(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-163456 (P2000 - 163456A)

(43)公開日 平成12年6月16日(2000.6,16)

(51) Int.Cl. ⁷	酸別記号	FI	テーマコード(参考)	
G06F 17/	50	G06F 15/60	664P 2G032	
G01R 31/	28	11/22	310A 5B046	
G06F 11/	22 3 1 0		340A 5B048	
	3 4 0	G 0 1 R 31/28	F 5F064	
H01L 21/	32	G 0 6 F 15/60	664R 9A001	
	審査請求	未請求 請求項の数3 OL	(全 13 頁) 最終頁に続く	
(21)出願番号	特願平10-334119	(71) 出願人 000005108		
		株式会社日立	製作所	
(22)出願日	平成10年11月25日(1998.11.25)	東京都千代田区神田駿河台四丁目 6 番地		
		(72)発明者 中田 孝広		
		神奈川県秦野	市堀山下1番地 株式会社日	
		立製作所汎用	立製作所汎用コンピュータ事業部内	
		(72)発明者 鈴木 薫	鈴木 薫	
		神奈川県秦野	神奈川県秦野市堀山下1番地 株式会社日	
		立製作所汎用	立製作所汎用コンピュータ事業部内	

(74)代理人 100080001

弁理士 筒井 大和

最終頁に続く

(54) 【発明の名称】 論理検証方法

(57)【要約】

【課題】 操作性や観測性に優れた論理検証を、効率良 く高速に行う。

【解決手段】 論理エミュレータ装置101に実装され る、検証対象論理構造モデル105に当該検証対象論理 構造モデル105の1/0環境等を提供する擬似論理モ デル304を組み込み、テストベクトル303aには、 当該テストベクトル303aの検証対象論理構造モデル 105への入力による論理検証動作を制御するテスト制 御プログラム305およびインタフェース情報306を 組み込み、外部の汎用言語で記述されたGUIインタフ ェースを持つ処理制御プログラム201から、インタフ ェース情報306を介して、擬似論理モデル304およ びテスト制御プログラム305との間でテスト情報の授 受を行うことで、GUIインタフェースにて論理検証の 操作性と観測性を向上させ、高速な論理エミュレータ装 置101による効率の良い大規模論理装置の一貫した論 理検証を達成する。

【特許請求の範囲】

【請求項1】 検証対象の目的論理装置の論理構造モデ ルが実装された論理エミュレータまたは前記目的論理装 置の実チップが実装された専用試験装置における論理検 証に用いられるテストベクトルの中に、前記論理エミュ レータまたは前記専用試験装置の外部に設けられた処理 制御プログラムとの間で情報の授受を行うことで、前記 テストベクトルの入力による前記論理検証を前記処理制 御プログラムから制御可能にするテスト制御プログラム を実装することを特徴とする論理検証方法。

【請求項2】 請求項1記載の論理検証方法において、 前記論理エミュレータでは、前記目的論理装置と等化な **論理機能を実現するための第1の論理構造モデルと、前** 記第1の論理構造モデルの動作環境を提供する論理機能 の少なくとも一部を実現するための第2の論理構造モデ ルとを実装し、前記目的論理装置の実行環境を実現する ための外部ハードウェアとの接続を必要とすることな く、前記目的論理装置の論理検証を行うことを特徴とす る論理検証方法。

【請求項3】 請求項1または2記載の論理検証方法に 20 おいて、

前記処理制御プログラムは、

前記テスト制御プログラムとの間における情報の授受を 行う機能、

前記論理エミュレータを制御する論理エミュレータ制御 プログラムとの間における情報の授受を行う機能、 前記目的論理装置の論理検証をソフトウェアにて行う論 理シミュレータとの間における情報の授受を行う機能、 前記専用試験装置との間における情報の授受を行う機

前記テスト制御プログラム、前記論理エミュレータ制御 プログラム、前記論理シミュレータ、前記専用試験装置 の少なくとも一つとの間で授受される前記情報の可視化 表示やユーザ入力の受け付けを行う汎用グラフィカル・ ユーザ・インタフェース、

のうちの少なくとも一つを備えたことを特徴とする論理 検証方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、論理検証技術に関 40 し、特に、論理シミュレータや論理エミュレータを用い た論理回路装置の機能検証技術等に適用して有効な技術 に関する。

[0002]

【従来の技術】従来の論理エミュレーション装置(論理 エミュレータ)を用いた論理エミュレーションは、論理 検証対象のシステム装置や論理チップの一部分である論 理モデルを動作記述言語で動作を記述し、設計された論 理構造モデルを論理コンパイルして論理エミュレーショ

ーションするインサーキット方式で論理検証を行ってい た。また、インサーキットではない装置や論理チップ は、インサーキット論理とのインタフェースを確保する ために論理エミュレーション装置の外部接続ピンに互い の外部信号線を接続し、信号値レベルで動作の同期をと っている。また、論理動作の観測やテストベクトルを個 別に指定する場合には、論理エミュレーション装置内の 観測可能な内部信号や外部ピンに対して論理値を与えた り、あらかじめ指定された信号線に対して信号線単位で 10 の観測を行い、論理動作の確認を行っていた。

【0003】このような論理エミュレーション技術に関 しては、特開平02-245831号公報に示されたよ うな方法等が知られている。すなわち、検証対象の論理 機能を外部からプログラム可能なゲートアレイ上にマッ ピングすることにより、目的の論理機能をハードウェア 的に実現して、高速な実行および論理検証を可能にしよ うとするものである。

[0004]

【発明が解決しようとする課題】従来のインサーキット 方式は、近年の論理規模の増大や論理の複雑さに対して 部分論理での論理エミュレーションのためシステムテス トのような論理品質を確保するには充分とは言えず、論 理チップ全体での論理エミュレーションによるシステム 論理検証が必要になってきている。論理チップ全体での 論理検証では、論理規模の増大や論理の複雑化も進み、 従来の信号線レベルでの論理値を与えたり、信号線の値 を観測したりする論理エミュレーションでは信号線全て に論理値を設定しなければならないため、効率の良い論 理検証を行うことが難しい。観測性や操作性を向上させ るには、マンマシンインタフェースを充実させ、テスト 容易性を向上させる必要がある。

【0005】また、論理チップ全体での論理シミュレー ションは、論理シミュレータではソフトウェアで論理モ デルを作成するため、ハードウェア動作に比べてソフト ウェア動作のため論理検証に莫大な時間を要し、製品を 短期開発し、早期出荷しなければならない今日では適用 が難しく、解決しなければならない課題の一つである。

【0006】また、検証対象の論理が周辺装置などの論 理の場合には、論理単体での論理検証動作を確認出来な い場合もあり、検証レベルの異なるアーキテクチャ論理 シミュレータ等を併用して検証対象論理の論理検証を行 ったり、専用の論理シミュレータを用いたりして論理検 証を行うことが必要になる。したがって、効率の良い論 理シミュレータを選択し、システムテストレベルで併用 出来る論理エミュレーション方式の構築が重要な課題で

【0007】また、論理エミュレーションが終了した段 階で実チップが製造され、チップ単体または装置全体で の論理品質検査を実施する時、それまでの論理検証環境 ン装置内のRAMに実装し、論理モデル動作をエミュレ 50 を継続して使用できれば論理不良が発見された場合に論 理シミュレーションや論理エミュレーションへのフィー ドバックが容易であり、検証環境の構築ということを考 えれば一貫した論理検証環境の構築が必要である。

【0008】本発明の目的は、論理チップ全体での論理 エミュレーションによるシステム論理検証を短時間に効 率よく行うことが可能な論理検証技術を提供することに ある。

【0009】本発明の他の目的は、マンマシンインタフ ェースを充実させ、論理エミュレーションにおける内部 状態の観測性や操作性、さらにはテスト容易性を向上さ 10 せることが可能な論理検証技術を提供することにある。

【0010】本発明の他の目的は、論理モデルから実チ ップに至るまでの一貫した論理検証を実現することが可 能な論理検証技術を提供することにある。

【0011】本発明の他の目的は、論理検証の環境構築 に要する工数や期間を短縮して、論理検証工程における コスト削減を実現することが可能な論理検証技術を提供 することにある。

[0012]

【課題を解決するための手段】本発明は、目的論理装置 の論理検証を目的として、論理エミュレータ上に目的論 理装置の論理構造モデルと、論理構造モデルと共に動作 することで当該論理構造モデルの実行環境を提供する擬 似論理モデルを実装し、論理エミュレータ上で実行され るテストベクトルには、外部の処理制御プログラムとの 間で情報の授受を行うことで論理検証動作を制御するテ スト制御プログラムを実装するものである。

【0013】擬似論理モデルとプログラムと論理エミュ レータを制御する処理制御プログラムは、たとえばネッ トワークを介して論理エミュレータに接続された情報処 30 理装置上に実装され、論理エミュレータと当該処理制御 プログラムの間で情報通信を行う手段と、論理エミュレ ータを非同期に動作させる手段と、各種情報の可視化表 示や情報の入力環境等を提供するグラフィカルユーザー インタフェースと、論理エミュレータ以外の論理シミュ レータ等の検証手法の異なる論理検証プログラムを当該 処理制御プログラムに接続する接続プラグインタフェー スと、論理エミュレータ上で動作するテスト制御プログ ラムやテストベクトルとのインタフェースとを有してお り、目的論理装置の論理検証の操作性と観測性を向上さ 40 せ効率よく高速に論理検証を可能とする。

【0014】また、目的論理装置の実チップが実装され る専用試験装置において、実チップに入力されるテスト ベクトル内に、外部の処理制御プログラムとの間で情報 の授受を行うことで論理検証動作を制御するテスト制御 プログラムを実装するものである。この場合、処理制御 プログラムは、上述の構成の他に、任意の接続インタフ ェースを介して専用試験装置が接続される情報処理装置 に実装され、前記接続インタフェースを制御するデバイ スドライバとの情報の授受を行うドライバ制御プログラ 50 テム全体をグラフィカルに表示、制御するグラフィカル

ムを有し、実チップの論理検証における操作性や観測性 を向上させ効率良く高速に論理検証を行う。また、テス トベクトルや、テスト制御プログラム、処理制御プログ ラムは、論理エミュレータの場合と共通のものを用いる ことができる。

【0015】また、テストベクトル内のテスト制御プロ グラムと擬似論理モデルとのインタフェースを持つ処理 制御プログラムにおいて、論理エミュレータに実装した 目的論理装置の論理モデルの内部信号値の観測や制御を 行い、処理状態を I / O リクエストとして制御し、テス ト制御プログラムと1/0リクエストを処理制御プログ ラムが送受信することで、論理エミュレータを制御しな がら目的論理装置の論理検証を行うことができる。

[0016]

【発明の実施の形態】以下、本発明の実施の形態を図面 を参照しながら詳細に説明する。

【0017】図1は本発明の第一の実施の形態である論 理検証方法が実施される情報処理システムの構成の一例 を示す概念図であり、図2は、本発明の論理検証方法を 実現するためのソフトウェアの構成の一例を例示した概 念図である。また、図8は、本実施の形態の論理検証方 法の参考技術の論理エミュレーションシステムの構成の 一例を示す概念図である。

【0018】先ず、図8を川いて本実施の形態の説明の 前に、本実施の形態の参考技術の論理エミュレーション システムの概要を説明する。

【0019】図8の論理エミュレーションシステム10 Oは、LAN接続された論理エミュレータ装置101 と、同じくLAN接続された情報処理装置108上で動 作する論理エミュレータ制御プログラム109で構成さ れる。論理エミュレータ装置101は、制御装置102 と読み書き可能なRAMIO3で構成され、制御装置1 02には論理エミュレータ装置101に供給される動作 クロックを発生させるクロック発生装置104と、論理 エミュレーション制御用の制御信号ピン107などで構 成される。なお、本発明に関する構成要素のみについて 特化して説明を行う。

【0020】制御信号ピン107は、エミュレーション 状態を論理エミュレータ制御プログラム109に報告し たり、動作指示を受け取るための外部ピンである。RA M103は、検証対象論理構造モデル格納エリア105 に後述の検証対象論理構造モデル114aを実装した り、テストベクトル格納エリア106にテストベクトル を実装するために用いる。論理エミュレータ制御プログ ラム109は、論理エミュレータ装置101および論理 エミュレータ制御プログラム109を制御するための制 御部110と、RAMアクセス部112と、動作記述言 語で記述された検証対象論理114を論理コンパイルす る論理コンパイラ111と、論理エミュレーションシス

ユーザーインタフェース (GUI) 制御部113で構成 される。論理コンパイラ111は、検証対象論理114 を入力とし、論理コンパイルして検証対象論理構造モデ ル114aとして論理エミュレータ装置101内のRA MIO3の検証対象論理構造モデル格納エリアIO5に 実装する。

【0021】次に論理エミュレーションを実際に行う手 順について説明する。前述した検証対象論理114を論 理コンパイルして検証対象論理構造モデル114aとし てRAMIO3に実装した後、テストベクトルをRAM 10 アクセス部112によりテストベクトル格納エリア10 6に実装し、制御部110によって制御信号ピン107 に対して動作条件情報を送り、クロック発生装置 104 によって実際にクロックが供給され、論理エミュレータ 装置101を動作させ論理エミュレーションを行う。次 に一定サイクル論理エミュレーションを行った後、制御 装置102は、制御信号ピン107にエミュレーション 動作状態情報をセットし、この情報を制御部110が監 視し、その状態情報に合わせて引き続きクロックを供給 したり、中断してRAM103の状態を観測したりす る。これらの処理を繰り返し行うことで論理検証を行っ

【0022】次に図2に本発明の各実施の形態の論理検 証方法を実現するための処理制御プログラムの一例を示 す。処理制御プログラム201は、ネットワーク上に起 動された論理エミュレータ制御プログラム109との間 でプロセス間通信を行うプロセス間通信制御部203 と、論理エミュレータ制御部204と、テストベクトル 制御部205と、論理エミュレータ装置101との間で 送受信されるデータの変換処理を行うデータ変換部20 30 6と、論理エミュレータ装置101以外の検証装置およ び検証システムを処理制御プログラム201に接続する ための接続プラグインタフェース207と、本発明の論 理検証方式を総合的にコントロールするグラフィカルユ ーザーインタフェース(GUI)制御部202、で構成 される。なお、詳細な各処理部の説明は実施の形態の説 明で行う。また、図2には、簡単のため、プロセス間通 信制御部203~接続プラグインタフェース207の構 成要素をすべて含む構成が例示されているが、これらの うちの必要な構成要素のみを含む構成も本発明に含まれ 40

【0023】次に図1を用いて本発明の第一の実施の形 態である論理検証方法が実施される論理エミュレーショ ンシステムを説明する。図1に示した第一の実施の形態 の論理エミュレーションシステム300において、検証 対象論理を機能レベルアーキテクチャを実現した論理と して論理コンパイルして論理エミュレータ装置101の RAMIO3にセットし、論理検証を行う手法を説明す

ンシステム300では、論理エミュレータ装置101 は、インサーキット方式の論理検証において、後述の擬 似論理モデル304を論理エミュレータ装置101内に 実装することにより、検証対象の論理構造モデルのみを 実装した状態でのベクトル検証を可能にするものであ り、検証対象の論理モデル(と等化な動作を行う実チッ プ)の実際の動作環境を提供するために周辺のハードウ ェア回路を論理エミュレータ装置101に接続する必要 はない。

【0025】たとえば検証対象がマイクロプロセッサで ある場合、その全体の論理機能の検証には、実際のシス テムの構築に用いられる周辺回路との入出力環境を実現 する必要があるため、図8に例示されたような参考技術 の論理エミュレーションシステム100では、あらかじ め、周辺回路のハードウェア環境を準備しておき、マイ クロプロセッサの動作をエミュレートする論理エミュレ ータ装置101に対して配線接続する必要がある。これ に対して、本実施の形態の論理エミュレーションシステ ム300の場合には、後述の擬似論理モデル304が、 十一的の検証対象論理構造モデル307aの動作に必要な 1/0インタフェースを実現するので、実際の周辺回路 等への接続(インサーキット接続)は不要であり、論理 エミュレータ装置101の単体で検証動作が可能であ

【0026】本実施の形態では、テストベクトル303 は、LANに接続された情報処理装置301(A)に格 納されている。また、LANに接続された情報処理装置 302(B)には、 論理エミュレータ制御プログラム1 09および処理制御プログラム201が実装されて実行 される。情報処理装置301(A)や情報処理装置30 2 (B) は、たとえばUNIX等のOSで動作するワー クステーションやパーソナルコンピュータ等で構成され

【0027】先ず、前準備として検証対象論理307と テストベクトル303を準備する。前記の検証対象論理 307には、処理制御プログラム201とのインタフェ 一ス機能を有する擬似論理モデル304を組み込み、論 理コンパイラ111で論理コンパイルして検証対象論理 構造モデル307aとしておく。 擬似論理モデル304 の機能としては、論理動作中の内部信号線の論理値を観 測したり監視したりする機能と、検証対象論理307

(検証対象論理構造モデル307a)の動作をコントロ ールするシステムコントロール機能と処理制御プログラ ム201とのインタフェース機能を有する。また、テス トベクトル303には、処理制御プログラム201との インタフェース機能を持つテスト制御プログラム305 と、処理制御プログラム201とのインタフェースに使 用するインタフェース情報306を組み込んでおく。

【0028】次に、論理エミュレータ制御プログラム1 【0024】なお、本実施の形態の論理エミュレーショ 50 09を起動し、準備した検証対象論理307のコンパイ

ル結果を、RAMアクセス部112を用いて、検証対象 論理構造モデル307aとしてRAM103内の検証対 象論理構造モデル格納エリア105にセットする。

【0029】次に処理制御プログラム201を起動し、 準備しておいたテストベクトル303をデータ変換部2 06でRAMI03にセット可能な形式のテストベクト ル303aに変換し、論理エミュレータ制御部204内 のRAMアクセス部210経由でRAM103内のテス トベクトル格納エリア106にセットする。

【0030】図8に示した参考技術の論理エミュレーシ ョンシステム100と異なる点は、擬似論理モデル30 4とテストベクトル303a内のテスト制御プログラム 305およびインタフェース情報306、および論理工 ミュレータ制御プログラム109と独立な処理制御プロ グラム201が設けられていることである。

【0031】また、本実施の形態の論理エミュレータ制 御プログラム109は、Tcl/Tkインタフェースを 有するため、処理制御プログラム201をTcl/Tk で作成することにより、参考技術である図8の論理エミ ュレータ制御プログラム 109の機能をそのまま使用で 20 きると共に論理エミュレータ制御プログラム109の拡 張機能の一貫として容易に接続可能である。つまり、処 理制御プログラム201は、論理エミュレータ装置10 1を外部から操作可能にする拡張プログラムと言える。 【0032】なお、T c 1/T k とは、カリフォルニア 大学バークレー校で開発されたグラフィカルインタフェ ース(GUI)を有する汎用スクリプト言語であり、オ

【0033】また、本発明で採用したTcl/Tkイン 30 タフェースは、本実施例の論理エミュレータ装置がTc I/Tkインタフェースを有していたためであり、本発 明を実施する際、マンマシンインタフェースを提供する GUI機能はXウインドウシステムやMotif等で実 現することが可能である。更に言い換えれば、GUIイ ンタフェースを持ったシステムであれば、その機能やシ ステムを限定するものではない。

ープンシェルスクリプトとして多くの大学や研究所の

他、大小様々な企業で利用されている。

【0034】次に実際に論理エミュレーションを行う手 順に沿って説明する。テストベクトル303aがセット された後、設定情報制御部215により詳細な論理エミ ュレーション動作の設定やテスト制御プログラム305 への設定、インタフェース情報306の詳細設定、動作 周波数など論理エミュレーション動作に必要な各種設定 を行う。これらの設定は、GUI制御部 1 1 3 やGUI 制御部202によって制御されている。各種設定が完了 した後、論理エミュレータ制御部204内の動作制御部 209が擬似論理モデル304に対してリセット要求を 出し、検証対象論理構造モデル307aの状態を動作可 能な状態にする。この後、制御信号ピン107に対して 動作クロック数を与え、制御装置102はクロック発生 50 レーションの制御が可能であり、操作性や観測性を向上

装置104により、指定されたクロック数分だけクロッ クが論理エミュレータ装置101に供給され実際に動作 する。指定された一定クロック数分だけ動作していると き、テスト制御プログラム305はインタフェース情報 306に対して、内部動作状態やテスト動作状態などを セットする。また、指定されたクロック数に到達するこ となく、エミュレーションを中断したり、処理制御プロ グラム201に対してメッセージ等の出力要求がテスト 制御プログラム305で発生した場合には、その状態情 報をインタフェース情報306にセットする。

【0035】擬似論理モデル304は、インタフェース 情報306を監視しているため、これらの要求を検出す ると、制御装置102の制御信号ピン107に対して、 トリガーイベントを発生させ制御装置 102に中断報告 を行う。このように擬似論理モデル304は、エミュレ ーション動作を中断させる機能を有し、処理制御プログ ラム201と直接対話型で情報のやりとりが可能であ る。つまり、論理内部の内部信号の値を監視したりする ことで、エミュレーションを中断し、その情報を処理制 御プログラム201に伝達可能である。

【0036】次に、処理制御プログラム201のトリガ ーイベント制御部208が、制御信号ピン107の監視 をしているため、トリガーイベントを検出すると中断情 報の格納されているインタフェース情報306をRAM アクセス部210経由で取得し、取得した情報は、表示 するためにデータ変換部206で変換し、表示部212 に引き渡し表示を行う。中断情報に対して、テストベク トル制御部205で取得情報の解析を行い、テスト制御 プログラム305が入力またはコマンド等を要求してい る場合には、入力制御部213により、オペレーターの キー入力やGUIウインドウ操作を受付け、入力された 情報をインタフェース情報306にセットする。セット した後、クロックを供給すれば論理エミュレーションは 継続される。

【0037】なお、これらのエミュレーション結果や動 作中の状態を保存する場合には、ログデータ採取制御部 216により、表示された情報や入力された情報、およ びアクセス可能なRAM情報などを取得し、ログ情報3 08として保存可能である。また、処理制御部211と ウインドウ制御部214は、一貫して処理制御プログラ ム201のコントロールを行い、各種操作をサポートす る。

【0038】以上のようにGUI制御部202の各種機 能とテストベクトル制御部205を用いてRAM103 内のテスト制御プログラム305と対話式に論理エミュ レーションを行うことで論理エミュレータ装置101内 の専用の擬似論理モデル304との対話手段を確保する ことが可能となり、論理エミュレーション動作におい て、インタフェース情報306のみの操作で論理エミュ

させ、効率の良い論理検証が可能である。また、これらの手法は、論理エミュレータ制御プログラム109を間接的に制御しているため、図8に例示された参考技術を包含し、その上で外部から論理エミュレータ装置101を制御可能である。更に、テスト制御プログラム305で論理エミュレーション動作をコントロール可能であるため、論理エミュレーションを中断させることを最小限にし、論理エミュレータ装置101の高速性を最大限に利用できるため、高速な論理エミュレーションが可能である。

【0039】次に第一の実施の形態の論理エミュレーションにおける具体的な処理フローの一例を図3に示す。図3では、論理エミュレーション動作途中でのテスト制御プログラム305がメッセージ出力要求とコマンド入力要求を発生したときの本実施の形態の構成部分の作用についてのみの処理フローを説明する。先ず、図3での処理ステージは、オペレータ401、処理制御プログラム201、擬似論理モデル304、テスト制御プログラム305のステージに区分し、これら各ステージの連携動作を処理フローとして示す。

【0040】前述の検証対象論理307とテストベクト ル303が、それぞれ検証対象論理構造モデル307a およびテストベクトル303aとしてRAM103にセ ットされ、クロックを供給されればエミュレーションが 開始可能な状態である場合において、オペレータは動作 開始指示を行う(ステップ402)。このステップ40 2の動作開始指示には、動作クロック数 (動作サイクル 数)が指示されている。次に、処理制御ブログラム20 1はエミュレーション開始を実際に行い(ステップ40 3)、論理エミュレータ装置101は論理エミュレーシ 30 ョンを開始する。論理エミュレーションが開始されると 擬似論理モデル304とテスト制御プログラム305が 動作を開始する(ステップ404)。この時、擬似論理 モデル304はインタフェース情報306の監視を常に 行っている(ステップ405)。そして、テスト制御プ ログラム305が動作中にメッセージをオペレータに報 告するため、メッセージ出力要求が発生し、更にそのメ ッセージに対する応答コマンドの入力要求が発生した場 合(ステップ406)、テスト制御プログラム305は インタフェース情報306に出力メッセージと擬似論理 40 モデル304が検出可能なイベント情報をセットする (ステップ407)。次に擬似論理モデル304はイン タフェース情報306の監視によりイベントの検出を行 い(ステップ408)、制御信号ピン107に対してト リガーイベントを発生させる(ステップ409)。トリ ガーイベントが発生すると制御装置102はエミュレー ションを中断し(ステップ410)、処理制御プログラ ム201は中断状態からトリガーイベントによる中断で あることを認識し(ステップ411)、インタフェース

4 1 2)。取得した情報はデータ変換部 2 0 6 を通して データ変換し(ステップ413)、テスト制御プログラ ム305からの出力メッセージとして表示部212のウ インドウに表示する(ステップ414)。通常は、メッ セージの出力のみであれば、表示後エミュレーションを 再開するが、この実施の形態の場合には入力コマンド要 求も同時に発生しているため、コマンドの入力要求をオ ペレータ401に対して行い(ステップ415)、処理 制御プログラム201は入力待ち状態になる(ステップ 417)。オペレータ401は、キー入力を行い(ステ ップ416)、テスト制御プログラム305に対するコ マンドを入力する。次にキー入力されたコマンドを取得 し (ステップ418)、データ変換部206でデータ変 換を行い(ステップ413)、インタフェース情報30 6にセットすべく、RAM書き込みを行う(ステップ4 19)。次に、エミュレーション動作を再開し(ステッ プ420)、擬似論理モデル304とテスト制御プログ ラム305は動作を再開する(ステップ421)。再開 後は、インタフェース情報306から入力コマンドを取 得し(ステップ422)、そのコマンドに合わせた動作 を行う(ステップ423)。

【0041】このように、オペレータ401とテスト制御プログラム305の間でインタフェース情報を相互に転送し、対話的に論理エミュレーションを行うことで、オペレータは外部から論理エミュレータ装置101を制御し、テスト制御プログラム305は内部から論理エミュレータ装置101を制御することで効率の良い論理はである。なお、テスト制御プログラム305は同様にインタフェース情報306を監視する擬似論理モデル304も論理エミュレータ装置101を内部から制御可能であり、特に論理モデルであるため、内部信号などの観測性に優れ、擬似論理モデル304はハードウェア的に、テスト制御プログラム305はソフトウェア的に、論理エミュレータ装置101を制御可能であり、効率の良い論理エミュレーションが可能である。

【0042】すなわち、本実施の形態によれば、テストベクトル格納エリア106のテストベクトル303a内に設けられたテスト制御プログラム305や、擬似論理モデル304によりテストベクトル303aとのインタフェースを確保し、テストベクトル303aからの1/0リクエストを処理制御プログラム201が送受信し、Tcl/Tk等の汎用のGUI機能を用いて操作性や観測性を向上させることにより、論理エミュレーションでのシステム論理検証を効率良く高速に行うことが可能である。

ガーイベントが発生すると制御装置 102はエミュレーションを中断し(ステップ 410)、処理制御プログラム 201は中断状態からトリガーイベントによる中断で 00を図 4 を参照して説明する。図 4 の論理エミュレー ションシステム 5 の代わりに専用情報処理装置などを接続し、検証論理チ 50 の代わりに専用情報処理装置などを接続し、検証論理チ

ップ508の論理検証を行う手法を説明する。構成とし ては、LAN接続された情報処理装置301(A)は第 一の実施の形態と同じでテストベクトル303も同じも のである。また、情報処理装置501(C)は、この第 二の実施の形態では一例として、たとえば汎用のパーソ ナルコンピュータ用OSであるWindows系OSで 動作するパーソナルコンピュータとして説明する。情報 <u>処理装置501(C)は、Tc1/Tkインタプリタ5</u> 03と、処理制御プログラム201と、ドライバ制御プ ログラム601と、デバイスドライバ505で構成され 10

【0044】そして、情報処理装置Cにパラレル1/0 インタフェース506で接続される専用情報処理装置5 02は、制御装置507と、検証論理チップ508と、 RAM509で構成される。ここでの検証論理チップ5 08は、第一の実施の形態での検証対象論理構造モデル 307a(検証対象論理307)を実際のチップとして 製造したものである。そして、RAM509のテストベ クトル格納エリア106には、第一の実施の形態で使用 したテストベクトル303a(テストベクトル303) をそのままセットする。

【0045】デバイスドライバ505は、Window s 系 O S のデバイスドライバでパラレル I / O インタフ ェース506を制御可能なデバイスドライバである。そ して、このデバイスドライバ505を制御するためのド ライバ制御プログラム601は、処理制御プログラム2 01の接続プラグインタフェース207とのインタフェ ースを持つことにより、処理制御プログラム201とデ バイスドライバ505とを接続し、処理制御プログラム 201がシステム全体を制御可能とする。そして、デバ 30 イスドライバ経由で制御装置507を制御することで専 用情報処理装置502を制御する。

[0046] st. Tc1/Tk4/29799503は、Windows系OS版のTcl/Tkのインタプ リタであり、処理制御プログラム201は、第一の実施 の形態のUNIX系OS版のものがそのままWindo ws系OS版でも動作可能である。

【0047】したがって、この第二の実施の形態の検証 目的は、実機に搭載する論理チップが製造された時点 3と処理制御プログラム201を用いて、論理チップの 論理品質を検証することである。つまり、実機システム 検証の前に論理チップ単体の論理品質検証を行うことで ある。

【0048】次に、ドライバ制御プログラム601の概 要を図5に示す。ドライバ制御プログラム601は、制 御部602と、処理制御プログラムインタフェース部6 03と、デバイスドライバ制御部604と、ログデータ 採取制御部605で構成される。制御部602は、ドラ イバ制御プログラム601の全体の制御を行い、処理制 50 し(ステップ717)、データ変換を行い(ステップ7

御プログラムインタフェース部603は、処理制御プロ グラム201からのRAMアクセスや専用情報処理装置 502の制御指示を制御する。デバイスドライバ制御部 604は、デバイスドライバ505とのインタフェース を持ち、デバイスドライバ経由でパラレル 1/0インタ フェース506を制御する。ログデータ採取制御部60 5は、ドライバ制御プログラム601で取得可能なログ データを採取し、ログ情報504として出力あるいは保 存する機能を持つ。

【0049】次に第二の実施の形態の具体的な処理フロ ーを図6に示し説明する。図6では、専用情報処理装置 502が動作途中でのテスト制御プログラム305がメ ッセージ出力要求とコマンド入力要求を発生したときの 本発明の部分に着目して処理フローを説明する。先ず、 図6での処理ステージは、オペレータ701、処理制御 プログラム201、ドライバ制御プログラム601、テ スト制御プログラム305のステージに区分されてお り、全体処理フローを表している。

【0050】前述の検証論理チップ508が専用情報処 型装置502にセットされ、テストベクトル303aが RAM509のテストベクトル格納エリア106にセッ トされ、動作開始指示待ち状態である場合において、オ ペレータ701は検証開始指示を行う(ステップ70 2)。次に処理制御プログラム201は、ドライバ制御 プログラム601に対して動作開始指示を行い(ステッ プ703)、ドライバ制御プログラム601は、専用情 報処理装置502を作動させる(ステップ704)。装 置が作動するとテスト制御プログラム305は動作を開 始する(ステップ705)。また、処理制御プログラム 201は、ステップ703を行った後、インタフェース 情報の監視を開始する(ステップ706)。インタフェ ース情報306の監視では、RAM509のボーリング アクセスのため、ドライバ制御プログラム601は、常 にRAMアクセスを行い、RAM読み出しを行っている (ステップ707)。これらの状態であるとき、テスト 制御プログラム305は、メッセージの出力要求とコマ ンド入力要求が発生すると(ステップ708)、メッセ ージとイベントをインタフェース情報にセットする(ス テップ709)。次にインタフェース情報306の監視 で、論理エミュレーションで用いたテストベクトル30 40 を行っている処理制御プログラム201が、このイベン トを要求として検出し(ステップ710)、インタフェ ース情報306を取得する(ステップ711)。取得し たデータはデータ変換され(ステップ712)、メッセ ージとしてウインドウに表示される(ステップ71 3)。表示後は、オペレータ701がコマンド入力要求 (ステップ714) に対してキー入力やウインドウ操作 (ステップ715)を行う。

> 【0051】次に入力待ち状態の処理制御プログラム2 01は(ステップ716)、入力されたキー入力を取得

12)、インタフェース情報306としてRAM509に書き込むことにより(ステップ718)、テスト制御プログラム305に転送する(ステップ719)。転送後は処理制御プログラム201は再度、インタフェース情報306の監視状態に入る(ステップ706)。テスト制御プログラム305は、前記ステップ708の要求を出した後も動作中であり(ステップ720)、転送されたインタフェース情報306から入力イベントを検出すると(ステップ721)、インタフェース情報306から入力コマンドを取得し(ステップ722)、取得しから入力コマンドを取得し(ステップ722)、取得したコマンドに対する動作を行う(ステップ723)。このような一連の動作を行い、対話的に検証論理チップ508の論理検証を行う。

【0052】また、第一の実施の形態と共通したテストベクトル303と処理制御プログラム201をそのまま使用可能であり、検証対象論理構造モデル105を用いた論理エミュレーションと、検証論理チップ508等の実チップの単体検証を同じ環境で行うことが可能であり、論理モデルから実チップに至るまでの一貫した論理検証が可能となる。

【0053】すなわち、論理エミュレータ装置101を用いた論理エミュレーションによる論理検証工程と、検証論理チップ508等の実チップによる論理検証工程に共通のソフトウェアやテストベクトルを使用できることで、各工程別にソフトウェアやテストベクトルを用意する等の重複した労力を軽減でき、効率の良い論理検証が可能となる。

【0054】次に本発明の第三の実施の形態である論理検証方法が実施される論理エミュレーションシステム800を図7に示す。図7の論理エミュレーションシステ 30ム800では図1の第一の実施の形態に論理シミュレータを加え、論理検証手法と論理検証レベルの異なる論理エミュレータと論理シミュレータが混在する論理検証方式の場合が例示されている。

【0055】この第三の実施の形態としては、具体的には、たとえば論理シミュレータ802でマイクロプロセッサ等の論理動作を行わせ、論理エミュレータ装置101では、このマイクロプロセッサを含むシステムで使用される1/0制御デバイス等の論理を実装することで、双方の実チップを使用したシステムを組み上げる前に、両者の連携した動作における双方の論理検証を行う場合が考えられる。

【0056】この第三の実施の形態での論理シミュレータ802は機能レベル命令シミュレータであり、論理シミュレータ802をマイクロ命令動作として説明する。情報処理装置801(D)の上で、論理エミュレータ制御プログラム109と、処理制御プログラム201と、論理シミュレータ802を起動する。この3つのプログラムの間では、処理制御プログラム201の接続プラグインタフェース207によって論理シミュレータ802 50

が接続され、プロセス間通信制御部203によってプロセス間通信を行う。よってシステム全体を統括し、コントロールしているのは処理制御プログラム201である

14

【0057】論理検証の手順としては、第一の実施の形態の要領で論理エミュレータ装置101を作動させ動作可能状態とする。次に論理シミュレータ802を処理制御プログラム201が起動し、論理シミュレータ802に与えるテストベクトル(テスト命令列)806をRAMモデル805にセットする。なお、ここで取り上げる論理シミュレータ802は一般的な機能レベル命令論理シミュレータとし、処理制御部803と論理モデル804とRAMモデル805を構成要素とするものとして説明を行う。

【0058】次に論理シミュレータ802でセットされ たテストベクトル806のテスト命令列を順次シミュレ ーションすると、特殊な意味を持つ命令列をシミュレー ションするとき、その特殊命令列がマイクロ命令動作を 伴う場合に、論理シミュレータ802は、インタフェー ス情報306に現在のRAMモデル805の内容をセッ トし、マイクロ命令動作を論理エミュレータ装置101 に対して要求する。この要求は処理制御部803経由で 処理制御プログラム201に伝えられ、セットされたイ ンタフェース情報を論理エミュレータ装置101のイン タフェース情報306に転送する。論理シミュレータ8 02は要求を出した後、引き続きテスト命令列のシミュ レーションを再開する。また、インタフェース情報を転 送した後、処理制御プログラム201は、論理エミュレ ータ装置101を動作させ、この時点で論理シミュレー タ802と論理エミュレータ装置101が完全に非同期 に動作を開始する。次に一定サイクルだけエミュレーシ ョンを行うとマイクロ命令動作が完了し、第一の実施の 形態と同様の手順で論理エミュレータ装置101は動作 を中断する。この時、中断状態をインタフェース情報と して論理シミュレータ802に転送するが、非同期に動 作している論理シミュレータ802と同期を取るのが同 期/非同期制御部217である。

【0059】この同期/非同期制御部217は、論理シミュレータ802がマイクロ命令動作要求を出したときに論理シミュレータ802側で論理エミュレーション完了時刻をあらかじめ予想しているため、論理シミュレータ802がテスト命令列を一定命令数だけシミュレーションすると待ち合わせを行う場合と、一定命令数だけシミュレーションが完了していない場合には、割込み処理として論理シミュレータ802に報告する場合とを制御する。

【0060】報告されたエミュレーション完了報告を処理制御部803が管理し、テスト命令列のシミュレーションを制御する。これら一連の処理を繰り返し行い、論理検証を行う。このように論理シミュレータ802と論

理エミュレータ装置101が混在する論理検証方式で は、インタフェース情報を互いに転送しあい、検証状態 の整合性をとりながら、検証途中では完全に非同期に動 作し、効率の良い論理検証を行う。また、論理シミュレ ータ802を接続する場合には、接続プラグインタフェ ース207を用いて接続するため、接続インタフェース を統一することが可能であれば、どのような論理検証手 法であっても接続が可能であり、更に複数の異なる論理 検証手段を一括して取扱うことが可能である。

【0061】以上のように第一の実施の形態で説明した 10 通り、検証対象論理構造モデル105に組み込まれた擬 似論理モデル304と、テストベクトル303aに組み 込まれたテスト制御プログラム305と、これらと情報 の授受を行うことで、外部から論理エミュレーションを 制御する処理制御プログラム201を組み込むことで、 論理エミュレータ装置101の高速性を最大限に利用し た高速、且つ、操作性や観測性に優れた対話型の論理検 証方式の確立が可能となる。

【0062】また、第二の実施の形態に例示したよう に、処理制御プログラム201が、たとえばOS等の実 20 行環境に依存しないTcl/Tk等の汎用言語で記述さ れていることにより、第一の実施の形態で使用したテス トベクトル303や処理制御プログラム201をそのま ま使用して、検証論理チップ508等の実チップの論理 検証が可能な環境を構築することができ、論理モデルか ら実チップに至るまでの一貫した論理検証が可能とな り、論理検証を効率良く行うことが可能である。

【0063】また、第三の実施の形態に例示したよう に、論理シミュレータ802と論理エミュレータ装置1 0 1 等のように、検証レベルの異なる論理検証手法を接 続し、インタフェース情報を互いに転送することで非同 期動作の整合性をとった論理検証が可能であり、たとえ ば、マイクロプロセッサとその周辺機器の1/0制御デ バイス等で構成されるシステム全体等のような、大規模 論理の装置全体としての一貫した論理検証が可能であ る。

【0064】以上本発明者によってなされた発明を実施 の形態に基づき具体的に説明したが、本発明は前記実施 の形態に限定されるものではなく、その要旨を逸脱しな い範囲で種々変更可能であることはいうまでもない。

[0065]

【発明の効果】本発明の論理検証方法によれば、論理チ ップ全体での論理エミュレーションによるシステム論理 検証を短時間に効率よく行うことができる、という効果 が得られる。

【0066】また、マンマシンインタフェースを充実さ せ、論理エミュレーションにおける内部状態の観測性や 操作性、さらにはテスト容易性を向上させることができ る、という効果が得られる。

の一貫した論理検証を実現することができる、という効 果が得られる。

【0068】また、論理検証の環境構築に要する工数や 期間を短縮して、論理検証工程におけるコスト削減を実 現することができる、という効果が得られる。

【図面の簡単な説明】

【図1】本発明の第一の実施の形態である論理検証方法 が実施される情報処理システムの構成の一例を示す概念 図である。

【図2】本発明の論理検証方法を実現するためのソフト ウェアの構成の一例を示した概念図である。

【図3】本発明の第一の実施の形態である論理検証方法 の作用の一例を示すフローチャートである。

【図4】本発明の第二の実施の形態である論理検証方法 が実施される情報処理システムの構成の一例を示す概念 図である。

【図5】本発明の第二の実施の形態である論理検証方法 にて用いられるソフトウェアの構成の一例を示した概念 図である。

【図6】本発明の第二の実施の形態である論理検証方法 の作用の一例を示すフローチャートである。

【図7】本発明の第三の実施の形態である論理検証方法 にて用いられるソフトウェアの構成の一例を示した概念 図である。

【図8】 本発明の論理検証方法の参考技術である論理エ ミュレーションシステムの構成の一例を示す概念図であ る。

【符号の説明】

100…論理エミュレーションシステム、101…論理 エミュレータ装置、102…制御装置、103…RA M、104…クロック発生装置、105…検証対象論理 構造モデル格納エリア、106…テストベクトル格納エ リア、107…制御信号ピン、108…情報処理装置、 109…論理エミュレータ制御プログラム、110…制 御部、111…論理コンパイラ、112…RAMアクセ ス部、113…GUI制御部、113…グラフィカルユ ーザーインタフェース制御部、114…検証対象論理、 114a…検証対象論理構造モデル、201…処理制御 プログラム、202…GUI制御部、203…プロセス 40 間通信制御部、204…論理エミュレータ制御部、20 5…テストベクトル制御部、206…データ変換部、2 07…接続プラグインタフェース、208…トリガーイ ベント制御部、209…動作制御部、210…RAMア クセス部、211…処理制御部、212…表示部、21 3…入力制御部、214…ウインドウ制御部、215… 設定情報制御部、216…ログデータ採取制御部、21 7…同期/非同期制御部、300…論理エミュレーショ ンシステム、301…情報処理装置、302…情報処理 装置、303…テストベクトル、303a…テストベク 【0067】また、論理モデルから実チップに至るまで 50 トル、304…擬似論理モデル (第2の論理構造モデ

ル)、305…テスト制御プログラム、306…インタフェース情報、307…検証対象論理、307a…検証対象論理構造モデル(第1の論理構造モデル)、308…ログ情報、500…論理エミュレーションシステム、501…情報処理装置、502…専用情報処理装置、503…Tc1/Tkインタプリタ、504…ログ情報、505…デバイスドライバ、506…パラレル1/0インタフェース、507…制御装置、508…検証論理チ*

17

*ップ(目的論理装置)、509…RAM、601…ドライバ制御プログラム、602…制御部、603…処理制御プログラムインタフェース部、604…デバイスドライバ制御部、605…ログデータ採取制御部、800…論理エミュレーションシステム、801…情報処理装置、802…論理シミュレータ、803…処理制御部、804…論理モデル、805…RAMモデル、806…テストベクトル。

【図1】 【図5】 **図** 1 ⊠ 5 <u>300</u> 第一の実施例 **600** ドライバ射御プログラムの概要 **絵理エミュレータ装置** 情報処理装潢A 301 **- 101** 何御装置 107 -102 303 制御信号ピン -104 ドライバ制御プログラム 601 テストベクトル RAM (P) OF THE 602 103 検証対象論理構造モデル 105(307a) 情報処理装置B 処理制御プログラム インタフェース部 603 302 r 304 疑似論理モデル √1**09** 論理エミュレータ 制御プログラム 604 テストベクトル デバイスドライバ制御部 ~106(303a) 换距対象論理 308 - 305 テスト制御プログラム 201 605 ログデータ採取制御部 処理制御プログラム . 306 インタフェース情報 ログ情報 LAN

【図2】

図 2 処理制御プログラムの扱要

【図7】

【図8】

フロントページの続き

(51) Int.Cl.

識別記号

FI

テーマコード(参考)

Fターム(参考) 2G032 AA01 AC08 AE07 AE08 AE10

5B046 AA08 BA03 JA05

5BO48 AAO1 BBO2 DDO1 DDO5 DD15

5F064 HH05 HH09 HH10 HH13 HH14

9A001 BZ05 DZ13 HZ32 JJ49 JZ45