Analyse des systèmes : synthèse

Émilien DURIF

Lycée F. Roosevelt Classe de PCSI

Plan

Introduction

Introduction

La modélisation des systèmes linéaires continus et invariants peut présenté plusieurs objectifs :

- Prévoir les performances d'un système et vérifier les performances vis-à-vis du cahier des charges.
- Identifier les caractéristiques d'un système.

Introduction

Introduction

La modélisation des systèmes linéaires continus et invariants peut présenté plusieurs objectifs :

- Prévoir les performances d'un système et vérifier les performances vis-à-vis du cahier des charges.
- Identifier les caractéristiques d'un système.

Émilien DURIF 3,

On rappelle la méthodologie de l'analyse des performances réelles d'un système.

- Identifier la grandeur physique à mesurer (exemple la position du bras du robot) qui peut être défini par le cahier des charges.
- Mettre en place un protocole expérimental : à définir et à expliciter rigoureusement.
- 6 Effectuer la mesure avec généralement le logiciel d'acquisition dédié
- 4 Analyser les données expérimentales en identifiant des zones élémentaires
- 5 Vérifier la reproductibilité de la mesure en réitérant les manipulations
- Vérifier la limite du modèle (linéarité, vitesse de saturation, etc...).

On rappelle la méthodologie de l'analyse des performances réelles d'un système.

- Identifier la grandeur physique à mesurer (exemple la position du bras du robot) qui peut être défini par le cahier des charges.
- Mettre en place un protocole expérimental : à définir et à expliciter rigoureusement.
- 6 Effectuer la mesure avec généralement le logiciel d'acquisition dédié
- Analyser les données expérimentales en identifiant des zones élémentaires
- 5 Vérifier la reproductibilité de la mesure en réitérant les manipulations
- O Vérifier la limite du modèle (linéarité, vitesse de saturation, etc...).

On rappelle la méthodologie de l'analyse des performances réelles d'un système.

- Identifier la grandeur physique à mesurer (exemple la position du bras du robot) qui peut être défini par le cahier des charges.
- Mettre en place un protocole expérimental : à définir et à expliciter rigoureusement.
- Effectuer la mesure avec généralement le logiciel d'acquisition dédié.
- 4 Analyser les données expérimentales en identifiant des zones élémentaires.
- 5 Vérifier la reproductibilité de la mesure en réitérant les manipulations
- 6 Vérifier la limite du modèle (linéarité, vitesse de saturation, etc...).

On rappelle la méthodologie de l'analyse des performances réelles d'un système.

- Identifier la grandeur physique à mesurer (exemple la position du bras du robot) qui peut être défini par le cahier des charges.
- Mettre en place un protocole expérimental : à définir et à expliciter rigoureusement.
- Effectuer la mesure avec généralement le logiciel d'acquisition dédié.
- Analyser les données expérimentales en identifiant des zones élémentaires.
- Vérifier la reproductibilité de la mesure en réitérant les manipulations
- 6 Vérifier la limite du modèle (linéarité, vitesse de saturation, etc...).

On rappelle la méthodologie de l'analyse des performances réelles d'un système.

- Identifier la grandeur physique à mesurer (exemple la position du bras du robot) qui peut être défini par le cahier des charges.
- Mettre en place un protocole expérimental : à définir et à expliciter rigoureusement.
- Effectuer la mesure avec généralement le logiciel d'acquisition dédié.
- Analyser les données expérimentales en identifiant des zones élémentaires.
- O Vérifier la reproductibilité de la mesure en réitérant les manipulations.
- O Vérifier la limite du modèle (linéarité, vitesse de saturation, etc...).

On rappelle la méthodologie de l'analyse des performances réelles d'un système.

- Identifier la grandeur physique à mesurer (exemple la position du bras du robot) qui peut être défini par le cahier des charges.
- Mettre en place un protocole expérimental : à définir et à expliciter rigoureusement.
- Effectuer la mesure avec généralement le logiciel d'acquisition dédié.
- Analyser les données expérimentales en identifiant des zones élémentaires.
- Vérifier la reproductibilité de la mesure en réitérant les manipulations.
- O Vérifier la limite du modèle (linéarité, vitesse de saturation, etc...).

Les systèmes élémentaires sont principalement :

- système à action proportionnelle : H(p) = K;
- système à action intégrale : $H(p) = \frac{1}{p}$;
- système à action dérivée : H(p) = p;
- système du premier ordre : $H(p) = \frac{K}{1+\tau p}$ avec K le gain statique et τ (en s) la constante de temps ;
- système du premier ordre : $H(p) = \frac{K}{1 + \frac{2}{\omega_0} \xi} \frac{\xi}{\rho + \frac{p^2}{\omega_0^2}}$ avec K le gain statique, ξ coefficient d'amortissement (sans dimension) et ω_0 . la pulsation propre :

Les systèmes élémentaires sont principalement :

- système à action proportionnelle : H(p) = K;
- système à action intégrale : $H(p) = \frac{1}{p}$;
- système à action dérivée : H(p) = p;
- système du premier ordre : $H(p) = \frac{K}{1+\tau p}$ avec K le gain statique et τ (en s) la constante de temps ;
- système du premier ordre : $H(p) = \frac{K}{1 + \frac{2 \cdot \xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}$ avec K le gain statique, ξ coefficient d'amortissement (sans dimension) et ω_0 , la pulsation propre ;

Les systèmes élémentaires sont principalement :

- système à action proportionnelle : H(p) = K;
- système à action intégrale : $H(p) = \frac{1}{p}$;
- système à action dérivée : H(p) = p;
- système du premier ordre : $H(p) = \frac{K}{1+\tau p}$ avec K le gain statique et τ (en s) la constante de temps ;
- système du premier ordre : $H(p) = \frac{K}{1 + \frac{2 \cdot \xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}$ avec K le gain statique, ξ coefficient d'amortissement (sans dimension) et ω_0 , la pulsation propre ;

Les systèmes élémentaires sont principalement :

- système à action proportionnelle : H(p) = K;
- système à action intégrale : $H(p) = \frac{1}{p}$;
- système à action dérivée : H(p) = p;
- système du premier ordre : $H(p) = \frac{K}{1+\tau p}$ avec K le gain statique et τ (en s) la constante de temps;
- système du premier ordre : $H(p) = \frac{K}{1 + \frac{2 \cdot \xi}{\omega_0} p + \frac{p^2}{\omega_0^2}}$ avec K le gain statique, ξ coefficient d'amortissement (sans dimension) et ω_0 , la pulsation propre ;

Les systèmes élémentaires sont principalement :

- système à action proportionnelle : H(p) = K;
- système à action intégrale : $H(p) = \frac{1}{p}$;
- système à action dérivée : H(p) = p;
- système du premier ordre : $H(p) = \frac{K}{1+\tau p}$ avec K le gain statique et τ (en s) la constante de temps :
- système du premier ordre : $H(p) = \frac{K}{1 + \frac{2}{\omega_0} p + \frac{p^2}{\omega_0^2}}$ avec K le gain statique, ξ coefficient d'amortissement (sans dimension) et ω_0 , la pulsation propre;

Théorèmes généraux :

- Théorème du retard : $\mathscr{L}[f(t-\tau)] = e^{-\tau p} F(p)$;
- Amortissement : $\mathscr{L}\left[e^{-\omega t}f(t)\right] = F(p+\omega)$;
- Dérivation première : $\mathcal{L}\left[\frac{df}{dt}\right] = p \ F(p) f(0^-)$;
- Dérivation seconde : $\mathscr{L}\left[\frac{d^2f}{dt^2}\right] = p^2F(p) p\ f(0^-) f'(0^-)$;
- Intégration : $\mathscr{L}[g(t)] = \frac{1}{p}F(p) + \frac{g(0^-)}{p}$ avec $f(t) = \frac{dg(t)}{dt}$;
- Théorème de la valeur finale

$$\lim_{t\to+\infty} f(t) = \lim_{p\to 0} p F(p)$$

• Théorème de la valeur initiale

$$\lim_{t\to 0} f(t) = \lim_{p\to +\infty} p F(p)$$

.

Théorèmes généraux :

- Théorème du retard : $\mathcal{L}[f(t-\tau)] = e^{-\tau p} F(p)$;
- Amortissement : $\mathscr{L}\left[e^{-\omega t}f(t)\right] = F(p+\omega)$;
- Dérivation première : $\mathcal{L}\left[\frac{df}{dt}\right] = p \ F(p) f(0^-)$;
- Dérivation seconde : $\mathscr{L}\left[\frac{d^2f}{dt^2}\right] = p^2F(p) p\ f(0^-) f'(0^-)$;
- Intégration : $\mathscr{L}[g(t)] = \frac{1}{p}F(p) + \frac{g(0^-)}{p}$ avec $f(t) = \frac{dg(t)}{dt}$;
- Théorème de la valeur finale

$$\lim_{t\to+\infty} f(t) = \lim_{p\to 0} p \ F(p)$$

Théorème de la valeur initiale

$$\lim_{t\to 0} f(t) = \lim_{p\to +\infty} p F(p)$$

.

Théorèmes généraux :

- Théorème du retard : $\mathcal{L}[f(t-\tau)] = e^{-\tau p} F(p)$;
- Amortissement : $\mathscr{L}\left[e^{-\omega t}f(t)\right] = F(p+\omega)$;
- Dérivation première : $\mathcal{L}\left[\frac{df}{dt}\right] = p \ F(p) f(0^-);$
- Dérivation seconde : $\mathcal{L}\left[\frac{d^2f}{dt^2}\right] = p^2F(p) p\ f(0^-) f'(0^-)$;
- Intégration : $\mathscr{L}[g(t)] = \frac{1}{\rho}F(p) + \frac{g(0^-)}{p}$ avec $f(t) = \frac{dg(t)}{dt}$;
- Théorème de la valeur finale

$$\lim_{t \to +\infty} f(t) = \lim_{p \to 0} p \ F(p)$$

7

Théorème de la valeur initiale :

$$\lim_{t\to 0} f(t) = \lim_{p\to +\infty} p F(p)$$

.

Théorèmes généraux :

- Théorème du retard : $\mathcal{L}[f(t-\tau)] = e^{-\tau p} F(p)$;
- Amortissement : $\mathscr{L}\left[e^{-\omega t}f(t)\right] = F(p+\omega)$;
- Dérivation première : $\mathcal{L}\left[\frac{df}{dt}\right] = p \ F(p) f(0^-)$;
- Dérivation seconde : $\mathscr{L}\left[\frac{d^2f}{dt^2}\right] = p^2F(p) p\ f(0^-) f'(0^-)$;
- Intégration : $\mathscr{L}[g(t)] = \frac{1}{p}F(p) + \frac{g(0^-)}{p}$ avec $f(t) = \frac{dg(t)}{dt}$;
- Théorème de la valeur finale

$$\lim_{t\to+\infty} f(t) = \lim_{p\to 0} p \ F(p)$$

7

Théorème de la valeur initiale :

$$\lim_{t\to 0} f(t) = \lim_{p\to +\infty} p F(p)$$

.

Théorèmes généraux :

- Théorème du retard : $\mathcal{L}[f(t-\tau)] = e^{-\tau p} F(p)$;
- Amortissement : $\mathscr{L}\left[e^{-\omega t}f(t)\right] = F(p+\omega)$;
- Dérivation première : $\mathcal{L}\left[\frac{df}{dt}\right] = p \ F(p) f(0^-)$;
- Dérivation seconde : $\mathscr{L}\left[\frac{d^2f}{dt^2}\right] = p^2F(p) p\ f(0^-) f'(0^-)$;
- Intégration : $\mathscr{L}\left[g(t)\right] = \frac{1}{p}F(p) + \frac{g(0^-)}{p}$ avec $f(t) = \frac{dg(t)}{dt}$;
- Théorème de la valeur finale

$$\lim_{t \to +\infty} f(t) = \lim_{p \to 0} p F(p)$$

7

• Théorème de la valeur initiale :

$$\lim_{t\to 0} f(t) = \lim_{p\to +\infty} p F(p)$$

.

Théorèmes généraux :

- Théorème du retard : $\mathscr{L}\left[f(t-\tau)\right]=e^{-\tau p}\;F(p)$;
- Amortissement : $\mathscr{L}\left[e^{-\omega t}f(t)\right] = F(p+\omega)$;
- Dérivation première : $\mathcal{L}\left[\frac{df}{dt}\right] = p \ F(p) f(0^-)$;
- Dérivation seconde : $\mathscr{L}\left[\frac{d^2f}{dt^2}\right] = p^2F(p) p\ f(0^-) f'(0^-)$;
- Intégration : $\mathscr{L}[g(t)] = \frac{1}{p}F(p) + \frac{g(0^-)}{p}$ avec $f(t) = \frac{dg(t)}{dt}$;
- Théorème de la valeur finale :

$$\lim_{t\to+\infty}f(t)=\lim_{p\to 0}p\ F(p)$$

,

• Théorème de la valeur initiale

$$\lim_{t\to 0} f(t) = \lim_{p\to +\infty} p F(p)$$

Théorèmes généraux :

- Théorème du retard : $\mathscr{L}[f(t-\tau)] = e^{-\tau p} F(p)$;
- Amortissement : $\mathscr{L}\left[e^{-\omega t}f(t)\right] = F(p+\omega)$;
- Dérivation première : $\mathcal{L}\left[\frac{df}{dt}\right] = p \ F(p) f(0^-)$;
- Dérivation seconde : $\mathscr{L}\left[\frac{d^2f}{dt^2}\right] = p^2F(p) p\ f(0^-) f'(0^-)$;
- Intégration : $\mathscr{L}[g(t)] = \frac{1}{p}F(p) + \frac{g(0^-)}{p}$ avec $f(t) = \frac{dg(t)}{dt}$;
- Théorème de la valeur finale :

$$\lim_{t\to+\infty} f(t) = \lim_{p\to 0} p \ F(p)$$

;

• Théorème de la valeur initiale :

$$\lim_{t\to 0} f(t) = \lim_{p\to +\infty} p \ F(p)$$

.

Lors d'une réponse indicielle (vis-à-vis d'une échelon), un système du premier ordre :

- est toujours stable (si $\tau > 0$),
- ne présente jamais de dépassements,
- converge vers $K e_0$,
- possède une tangente à l'origine de pente $\frac{K e_0}{T}$,
- possède un temps de réponse à 5% qui vaut $t_{r5\%} = 3 \tau$.

./images/1er_ordre.pdf

Lors d'une réponse indicielle (vis-à-vis d'une échelon), un système du premier ordre :

- est toujours stable (si $\tau > 0$),
- ne présente jamais de dépassements,
- converge vers $K e_0$,
- possède une tangente à l'origine de pente $\frac{K e_0}{T}$,
- possède un temps de réponse à 5% qui vaut $t_{r5\%} = 3 \tau$.

./images/1er_ordre.pdf

Lors d'une réponse indicielle (vis-à-vis d'une échelon), un système du premier ordre :

- est toujours stable (si $\tau > 0$),
- ne présente jamais de dépassements,
- converge vers $K e_0$,
- possède une tangente à l'origine de pente $\frac{K e_0}{T}$,
- possède un temps de réponse à 5% qui vaut $t_{r5\%} = 3 \tau$.

./images/1er_ordre.pdf

Lors d'une réponse indicielle (vis-à-vis d'une échelon), un système du premier ordre :

- est toujours stable (si $\tau > 0$),
- ne présente jamais de dépassements,
- converge vers $K e_0$,
- ullet possède une tangente à l'origine de pente $\frac{K\ e_0}{ au}$,
- possède un temps de réponse à 5% qui vaut $t_{r5\%} = 3 \tau$.

./images/1er_ordre.pdf

Lors d'une réponse indicielle (vis-à-vis d'une échelon), un système du premier ordre :

- est toujours stable (si $\tau > 0$),
- ne présente jamais de dépassements,
- converge vers $K e_0$,
- ullet possède une tangente à l'origine de pente $\frac{K\ e_0}{ au}$,
- possède un temps de réponse à 5% qui vaut $t_{r5\%} = 3 \tau$.

./images/1er_ordre.pdf

Lors d'une réponse indicielle (vis-à-vis d'une échelon), un système du deuxième ordre :

- présente un dépassement si $\xi < 1$,
- converge vers $K e_0$,
- possède une tangente à l'origine de pente nulle,
- possède un temps de réponse à 5% qui se calcule à partir de l'abaque.
- possède un optimal de rapidité pour $\xi = 0,7$ et $t_{r5\%} \cong \frac{3}{\omega_0 \epsilon}$.

./images/2nd_ordre_echelon0.pdf

Lors d'une réponse indicielle (vis-à-vis d'une échelon), un système du deuxième ordre :

- présente un dépassement si $\xi < 1$,
- converge vers $K e_0$,
- possède une tangente à l'origine de pente nulle,
- possède un temps de réponse à 5% qui se calcule à partir de l'abaque.
- possède un optimal de rapidité pour $\xi = 0,7$ et $t_{r5\%} \cong \frac{3}{\omega_0 \varepsilon}$.

./images/2nd_ordre_echelon0.pdf

Lors d'une réponse indicielle (vis-à-vis d'une échelon), un système du deuxième ordre :

- ullet présente un dépassement si $\xi < 1$,
- converge vers $K e_0$,
- possède une tangente à l'origine de pente nulle,
- possède un temps de réponse à 5% qui se calcule à partir de l'abaque.
- possède un optimal de rapidité pour $\xi = 0,7$ et $t_{r5\%} \cong \frac{3}{\omega_0 \epsilon}$.

./images/2nd_ordre_echelon0.pdf

Lors d'une réponse indicielle (vis-à-vis d'une échelon), un système du deuxième ordre :

- ullet présente un dépassement si $\xi < 1$,
- converge vers $K e_0$,
- possède une tangente à l'origine de pente nulle,
- possède un temps de réponse à 5% qui se calcule à partir de l'abaque.
- possède un optimal de rapidité pour $\xi=0,7$ et $t_{r5\%}\cong \frac{3}{\omega_0 \xi}$:

./images/2nd_ordre_echelon0.pdf

Lors d'une réponse indicielle (vis-à-vis d'une échelon), un système du deuxième ordre :

- présente un dépassement si $\xi < 1$,
- converge vers $K e_0$,
- possède une tangente à l'origine de pente nulle,
- possède un temps de réponse à 5% qui se calcule à partir de l'abaque.
- possède un optimal de rapidité pour $\xi = 0,7$ et $t_{r5\%} \cong \frac{3}{\omega_0 \xi}$.

./images/2nd_ordre_echelon0.pdf

Notion d'identification

L'identification d'un modèle sur une réponse expérimentale consiste à choisir un modèle pertinent puis d'extraire les paramètres associés. Selon la forme du relevé expérimental, le choix se porte généralement vers un modèle du premier ou du deuxième ordre.

- L'identification du gain statique s'obtient par le rapport de la valeur à convergence sur la valeur de l'échelon d'entrée : $K = \frac{s_{\infty}}{\text{en}}$;
- ullet Pour **un premier ordre** la constante de temps au s'obtient par :
 - par le temps à 63%;
 - par la tangente à l'origine;
 - le temps de réponse à 5% égal à 3τ .
- Pour un second ordre oscillant la pulsation propre ω_0 et le coefficient d'amortissement s'identifient avec les définitions de :
 - ullet la pseudo période : $T_p=rac{2\pi}{\omega_p}=rac{2\pi}{\omega_0\sqrt{1-\xi^2}}$
 - le dépassement $\%:D\%=100 \times \exp\left(\frac{-\xi\pi}{\sqrt{1-\xi^2}}\right)=\frac{s_{max}-s_{\infty}}{s_{\infty}} \times 100$

Calcul de la réponse temporelle

Le retour en temporel est rarement nécessaire car la plupart des performances utiles peuvent être déterminées directement à partir des expressions dans le domaine de Laplace. On peut éventuellement utiliser un logiciel de simulation pour estimer ces réponses temporelles (Scilab). Néanmoins pour calculer la réponse temporelle, il faut :

- Décomposer en éléments simples la réponse dans le domaine de Laplace.
- Identifier les coefficients introduits par la méthode aux limites ou la réduction au même dénominateur
- Transformer chaque élément simple à l'aide du tableau des transformées de Laplace usuelles.

Émilien DURIF 10,

Calcul de la réponse temporelle

Le retour en temporel est rarement nécessaire car la plupart des performances utiles peuvent être déterminées directement à partir des expressions dans le domaine de Laplace. On peut éventuellement utiliser un logiciel de simulation pour estimer ces réponses temporelles (Scilab). Néanmoins pour calculer la réponse temporelle, il faut :

- Décomposer en éléments simples la réponse dans le domaine de Laplace.
- Identifier les coefficients introduits par la méthode aux limites ou la réduction au même dénominateur
- Transformer chaque élément simple à l'aide du tableau des transformées de Laplace usuelles.

Calcul de la réponse temporelle

Le retour en temporel est rarement nécessaire car la plupart des performances utiles peuvent être déterminées directement à partir des expressions dans le domaine de Laplace. On peut éventuellement utiliser un logiciel de simulation pour estimer ces réponses temporelles (Scilab). Néanmoins pour calculer la réponse temporelle, il faut :

- Décomposer en éléments simples la réponse dans le domaine de Laplace.
- Identifier les coefficients introduits par la méthode aux limites ou la réduction au même dénominateur
- Transformer chaque élément simple à l'aide du tableau des transformées de Laplace usuelles.