Metal Complexes of Weakly Coordinating Anions. Precursors of Strong Cationic Organometallic Lewis Acids[†]

WOLFGANG BECK* and KARLHEINZ SÜNKEL

Institut für Anorganische Chemie, Universität München, 8000 München 2, FRG

Received February 4, 1988 (Revised Manuscript Received May 2, 1988)

Conte	ents	
I.	Introduction	1405
II.	Scope of the Review	1406
	Methods of Preparation	1406
	A. Abstraction of an Anionic Ligand by a Lewis Acid	1406
	Abstraction of Anionic Group X with Triphenylcarbenium Salts	1406
	Abstraction of Halide by Silver(I) and Thallium(I) Salts	1407
	 Protonation of Hydrido, Alkyl, and η³-Allyl Complexes 	1407
	4. Reactions Using BF ₃ , AlCl ₃ , NO ⁺ , R ₃ O ⁺ , CH ₃ OSO ₂ F, CoBr ₂ , and Hg ²⁺	1408
	B. Oxidation of Neutral Monomeric or Dimeric Complexes	1409
	C. Oxidative Addition of RX to Metal d ⁸ Systems	1409
	D. Miscellaneous	1409
IV.	Proof of Coordination	1409
	A. Crystal Structure Determinations	1410
	B. IR Spectroscopy	1410
	C. NMR Spectroscopy	1411
٧.	Reactivity	1411
	A. Relative Donor Strengths of Several Weakly Coordinating Anions	1411
	B. Substitution of Weakly Coordinating Ligands by Neutral σ - and π -Donors	1412
	C. Reaction of Tetrafluoroborato and Hexafluorophosphato Complexes with Water	1413
	1. Formation of Aqua Complexes	1413
	2. Condensation Reactions	1413
	3. Hydrolysis of the Anion	1413
	D. Reaction with Monoanionic Ligands	1413
	E. Directed Synthesis of Ligand-Bridged Complexes	1414
	Neutral Ligand-Bridged Bimetallic Complexes	1414
	Formation of Ligand-Bridged Cationic Complexes	1414
	Formation of Cationic Hydride- and Acyl-Bridged Complexes	1415
	F. Miscellaneous Reactions	1415
	1. Stoichiometric Reactions	1415
	2. Catalytic Reactions	1416

 $^{^\}dagger \mbox{Dedicated}$ to Professor Heinrich Nöth on the occasion of his 60th birthday.

VI.	Addendum	1416
VII.	Acknowledgment	1416
VIII.	Abbreviations	1416

I. Introduction

Organometallic compounds of weakly coordinating anions, e.g., BF_4 , PF_6 , AsF_6 , and SbF_6 , have been the object of many studies in recent years. These complexes contain a hard anion coordinated to a soft metal center in a low oxidation state with π -acceptor ligands (e.g., CO, PR_3). They are highly reactive; the anions are excellent leaving groups and can easily be replaced by other ligands under very mild conditions, so they have proven to be useful starting materials in preparative organometallic synthesis.

The first metal carbonyl compounds of this type that could be isolated were MCl(FBF₃)(NH=NR)(CO)-(PPh₃)₂ (M = Ru, Os),² Re(CO)₅(FAsF₅),³ and Cr- $(CO)_3(PMe_3)(\equiv CMe)(FBF_3)$. Our group in Munich entered this field when Klaus Schloter in his Master's thesis examined the reaction between Mo(CO)₃(Cp)-(SiMe₃) and Ph₃C⁺BF₄. Instead of the desired $Me_2Si = CH_2$ ligand, he discovered $Mo(CO)_3(Cp)(FBF_3)^5$ as a byproduct. Other good examples of such complexes are Re(CO)₅(FBF₃) and Au(PPh₃)X. They react as coordinatively and electronically unsaturated Re(CO)₅⁺ or Au(PPh₃)⁺ with a series of nucleophiles analogously to the isolobal carbenium ions or to the proton.⁶ We call these compounds "organometallic Lewis acids", in contrast to the "organometallic bases".7 It was recognized early that all the anions mentioned above have coordinating abilities, at least in the solid state:8 however, examples are known in which in spite of electronic unsaturation of the metal, the anion remains uncoordinated [e.g., $[Rh(PPh_3)_3]^{+9,80}$ or $[Co(P(OR)_3)_4]^{+}PF_6^{-;10}$ also in Cu(CO)(AsF₆) the anion is apparently not coordinated to the metal, in contrast to the corresponding sulfonato complexes¹¹].

The cationic fragment in these complexes must have low-lying acceptor orbitals as was shown for the d⁶ $M(CO)_5$ fragment.^{12a} A theoretical investigation of the $[Cp_2ZrCl]^+$ moiety showed two low-lying δ - and π -acceptor $MOs.^{12b}$ It appears that the more acidic the corresponding hydrides L_nMH are, the lower are the LUMOs and the higher is the electrophilicity of ML_n^+ . There are many such complexes of metals in "normal" oxidation states which can only be mentioned briefly here. Examples include $M(N\text{-vinylimidazole})_4SiF_6$ (M=Mn, Fe, Co, Ni, Cu, Zn), $[Ni(en)_2(H_2O)BF_4]BF_4$, $Cu(PPh_3)_3BF_4$, and $Mn(2,6\text{-lutidine }N\text{-oxide})(F)(BF_4).^{13}$ Often the anions BF_4^- and ClO_4^- occur as bridging or "semicoordinating" ligands.¹⁴

Prof. Wolfgang Beck was born in 1932 in München, West Germany. He received his Ph.D. under the supervision of Professor Walter Hieber at the Technische Hochschule München in 1960. He was appointed Professor of Inorganic Chemistry at the Ludwigs-Maximilians Universität München and Director of the Institute of Inorganic Chemistry in 1968. In 1977 he spent a term as Visiting Professor at the University of Wisconsin, Madison. Prof. Beck is the author of over 300 publications. He started his research with pseudohalide complexes, particularly fulminate and azido complexes, and with reactions at coordinated ligands. His current interests involve metal complexes of biologically important ligands, especially palladium and platinum compounds of α -amino acids and their derivatives and organometallic chemistry. In the latter field he presently studies with his co-workers metal complexes of weakly coordinating anions and nucleophilic attack of organometallic anions on coordinated unsaturated hydrocarbons.

Dr. Karlheinz Sünkel was born in 1955 in München, West Germany. He received his Diplomchemiker degree in 1979 and his Dr. rer. nat. degree with a thesis on organometallic compounds of weakly coordinating anions under the supervision of Prof. W. Beck in 1982 at the University of Munich. After postdoctoral study with Prof. R. Bau at the University of Southern California, Los Angeles, he returned to Munich and is presently working for his "Habilitation" on complexes of functionalized cyclopentadienyls and of other unsaturated hydrocarbons.

Reviews on perchlorato, ¹⁵ trifluoroacetato, ¹⁶ trifluoromethanesulfonato, and fluorosulfonato ¹⁷ complexes and of palladium(II) and platinum(II) compounds with such anions ¹ have been published. A review on the synthesis of such complexes by ion exchange has also appeared. ¹⁸ The preparation of several of the compounds described here will appear in Vol. 26 of *Inorganic Synthesis*.

II. Scope of the Review

Here, we try to focus on complexes with π -acidic ligands and with the very weakly coordinating anions. ClO_4^- and $CF_3SO_3^-$ usually are stronger ligands and will be considered here only for the sake of comparison,

where appropriate. Pentaammine fluorosulfato and triflato complexes of Os^{III} , Co^{III} , and Ru^{III} [M(NH₃)₅-(OSO₂R)]²⁺, which have been used extensively as starting materials for many interesting complexes, e.g., η^2 -benzene or η^2 -acetone, ¹⁹ will not be discussed here. Reactions of cationic with anionic metal complexes to give metal–metal-bonded compounds will also not be covered.

III. Methods of Preparation

Several methods of preparation of organometallic Lewis acids or their precursors have been developed.

A. Abstraction of an Anionic Ligand by a Lewis Acid

$$L_nM-Y + Lewis acid \rightarrow L_nM-X \xrightarrow{solv} [L_nM(solv)]^+X^- (1)$$

Lewis acid	X-	solvent
H ⁺ , Ag ⁺ Tl ⁺ , NO ⁺ R ₃ O ⁺ , Ph ₃ C ⁺ BF ₃ , AlCl ₃ CH ₃ OSO ₂ F C ₇ H ₇ ⁺ ArN ₂ ⁺ SbCl ₅	FBF ₃ ⁻ FPF ₅ ⁻ FAsF ₅ ⁻ FSbF ₅ ⁻ OClO ₃ ⁻ OReO ₃ ⁻ OSO ₂ R ⁻ OTeF ₅ ⁻	THF Me ₂ CO H ₂ O CH ₂ Cl ₂ CH ₃ CN SO ₂
CoCl ₂ HgCl ₂	$\frac{\text{CH(SO}_2\text{R)}_2}{\text{ClAlCl}_2}$	
	H ⁺ , Ag ⁺ Tl ⁺ , NO ⁺ R ₃ O ⁺ , Ph ₃ C ⁺ BF ₃ , AlCl ₃ CH ₃ OSO ₂ F C ₇ H ₇ ⁺ ArN ₂ ⁺ SbCl ₅	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

In the complexes $L_mM-X-EX_n$ the organometallic Lewis acid competes with the Lewis acid EX_n for the base X^- . In $AlCl_4$ complexes, the transition metal is usually the "winner"; i.e., formation of $AlCl_3$ and L_nM-Cl is often observed. In the presence of coordinating solvents (e.g., THF, CH_3CN , liquid SO_2) the cationic solvent complexes $[L_nM(solv)]^+$ are formed. From some cationic SO_2 complexes the neutral L_nMX can be obtained by simple evacuation.^{3,20}

1. Abstraction of Anionic Group X with Triphenylcarbenium Salts

The reaction of iridium hydrido complexes with trityl salts to give triphenylmethane was first reported in 1962.²¹ The organometallic product was not studied. A ruthenium dihydride yielded a cationic monohydrido complex with no coordination of anion or solvent.²²

$$RuH_2(PPh_3)_4 + Ph_3C^+BF_4^- \rightarrow [RuH(PPh_3)_4]^+BF_4^- + Ph_3CH$$
 (2)

However, phosphine transfer was observed in the analogous reaction of the corresponding iron hydride.^{22a}

A cationic complex [CpW(NO)₂NCMe]⁺ with coordinated solvent was obtained in the reaction of CpW-(NO)₂H with Ph₃C⁺BF₄⁻ in CH₃CN.²³ The first time a complex of coordinated BF₄⁻ could be obtained by this route was the synthesis of Cp(CO)₃MoFBF₃ from CpMo(CO)₃H and Ph₃CBF₄ in CH₂Cl₂.⁵ A similar reaction of Mn(CO)₄(PR₃)H in moist CH₂Cl₂ gave the aqua complex [Mn(CO)₄(PR₃)(H₂O)]⁺BF₄^{-;24} (OC)₅ReH and Ph₃C⁺BF₄⁻ afford (OC)₅ReFBF₃.⁴² Molybdenum and tungsten compounds of coordinated PF₆⁻, AsF₆⁻,

or SbF₆ could be obtained in the same manner:²⁵

$$\begin{array}{c} CpMo(CO)_3H + Ph_3C^+X^- \xrightarrow{CH_2Cl_2} CpMo(CO)_3X \\ (X = FBF_3, FPF_5, FAsF_5, FSbF_5) + Ph_3CH \ (3) \end{array}$$

Recently, the synthesis of the analogous pentamethylcyclopentadienyl complexes $(C_5Me_5)Mo(CO)_3$ - (BF_4, PF_6) by this method and its reactions have been reported. It may be noted in this context that the hydride $CpW(CO)_3H$ reacts with Ph_3C radical in the presence of Ph_3CCl and PR_3 to form $CpW(CO)_3Cl$ and $CpW(CO)_2(PR_3)Cl$. 26b

Fenske–Hall calculations show the more acidic character of the hydrogen atom in CpMo(CO)₃H compared to CpMo(NO)₂H,²⁷ but as these reactions show, the hydrogen atom can be abstracted as hydride in both cases. The dinuclear dihydride [CpFe(CO)H]₂(μ -dppe) gave the hydride-bridged [[CpFe(CO)]₂(μ -H)(μ -dppe)]⁺BF₄.²⁸ Interestingly, in one case an intermediate η ²-triphenylmethane complex could be isolated^{29a}

$$Cp(ON)(OC)Re-H + Ph_3C^+PF_6^- \rightarrow [Cp(ON)(OC)Re(\eta^2-C_6H_5CHPh_2)]^+PF_6^-$$
 (4)

in which the η^2 -arene ligand is readily displaced by PPh₃ and can be deprotonated to give Cp(ON)(OC)Re(η^1 -C₆H₄CHPh₂). The abstraction of hydride from hydrido complexes in the presence of ligands has been used for the preparation of various cationic complexes (L = H₂O, THF, NCMe): [CpOs(CO)₂(L)]^{+,30} [CpRe(NO)(CO)-L]^{+,31} [Mn(CO)₄(PR₃)L]^{+,24} [Mn(CO)₃(P(OR)₃)₂L]^{+,32} [CpW(NO)₂L]^{+,23} and [Cp₂Nb(CO)(L)]^{+,33} The [Co-(CO)₃L]⁺ system (L = CO, PPh₃) is obviously too unstable to be isolated, since the reaction of HCo(CO)₃L with Ph₃C⁺ gave only [Co(CO)₃L]₂ and cobalt(II).^{34,35} However, HCo(P(OPh)₃)₄ is oxidized to [HCo(P-(OPh)₃)₄]⁺ by Ph₃C⁺³⁶ (for the reaction with acid see below). The abstraction of hydride from the anionic complex [CpV(CO)₃H]⁻ led to CpV(CO)₃L.³⁷ The polyhydride Os(PR₃)₃H₄ gave [Os(PR₃)₃(CH₃CN)₃]^{2+,38} Formation of Ph₃CH from metal hydrides and trityl salts is further evidence for the negative charge^{39,40} on the hydrogen atom in these metal hydrides.

Abstraction of a methyl group by trityl cation has been reported first for $CpFe(CO)_2Me$ to yield the aqua complex $[CpFe(CO)_2(H_2O)]^{+.41}$ Also $Mn(CO)_4(PR_3)-Me^{24}$ and $M(CO)_5Me$ (M = Mn, Re)⁴² gave with Ph_3C^+ [Mn(CO)₄(PR₃)(H₂O)]⁺ and M(CO)₅FBF₃, respectively. On the other hand, Ph_3C^+ abstracts hydride from the methyl group in $CpRe(NO)(PPh_3)(CH_3)^{43}$ and $Cp_2W-(CH_2R)_2^{44}$ to afford the cationic methylene complexes $[CpRe(NO)(PPh_3)(CH_2)]^+$ and $[Cp_2W(CH_2R)(CHR)]^+$, respectively. Carbene complexes of metals in higher oxidation states are also obtained by hydride abstraction from alkyl ligands.⁴⁵

Evidence for initial electron transfer from the metal-alkyl compound to the trityl cation has been found in a few cases. 43c-e,46-48 Usually, with longer alkyl groups β -hydride elimination occurs and cationic η^2 -alkene complexes can be isolated. 41,43c Use of acylium cations instead of trityl salts leads to the formation of η^1 -aldehyde and ketone complexes. 49

$$L_nM-R + PhCO^+SbF_6^- \rightarrow [L_nM(PhCOR)]^+SbF_6^-$$

$$(5)$$

$$L_nM = Re(CO)_5, CpW(CO)_3; R = H, CH_3$$

2. Abstraction of Halide by Silver(I) and Thallium(I) Salts

The simple metathesis of halide with the weaker coordinating anions by means of silver salts has been used in numerous cases and not all examples can be cited here. Either cationic solvent complexes or complexes with coordinating anions could be obtained, e.g., $[CpFe(L)L'(solv)]^{+,50-52}[CpFe(CO)_2(FBF_3,^{53}) OTeF_5^{54a}], [(Mn,Re)(CO)_3L_2(OClO_3,^{55,56a,b}) FBF_3,^{56c}) OReO_3,^{57} FASF_5,^3 OSO_2CF_3,^{58} OSO_2F,^{59a} CH(SO_2F)_2^{59b}] [L = CO, PR_3], [(Mn,Re)(CO)_3L_2(H_2O)]^{+,56c} [CpCr(NO)_2-(NCMe)]^{+,60} [Pd(L)_2(solv)_2]^{2+} (L = \frac{1}{2}dppe,^{61a}) COD, nbd^{61b}, Ir(CO)(PPh_3)_2(OClO_3) and [Ir(CO)(PPh_3)_2-(solv)]^{+,62} Pt(nbd)(OTeF_5)_2,^{63} [Ru(dppe)_2L_2]^{2+,64} [Ru-(COD)(NCMe)_4]^{2+,65a} [Rh(COD)(solv)_x]^{+,66} [Cp_2Zr-(Me)(NCMe)]^{+,67a} Cp_2Zr(OSO_2CF_3)_2(THF),^{67b} and [(C_5Me_5)M(NCMe)_3]^{2+} (M = Rh, Ir).^{68} [Mn(CO)_3-(NCMe)_3]^{2+} has been shown to be a useful precursor for cationic manganese carbonyl compounds.^{65b} The complex CpFe(CO)_2FBF_3 from CpFe(CO)_2I and AgBF_4 is formed via the iodo-bridged complex [(CpFe(CO)_2]_2(\mu-I)]^{+}BF_4^{-.53}$ The mechanism of chloride abstraction in $Mo(NO)_2L_2Cl_2$ has been also investigated. These reactions have been carried out often in the presence of other ligands without isolation of any organometallic Lewis acids.

It should be pointed out that sometimes the silver atom gets attached to the molecule. 64,70,71

In a few cases Tl⁺ salts could also be used; e.g., WCl₂H₂(PMe₃)₄ and TlBF₄ in CH₃CN give [WCl-(NCMe)H₂(PMe₃)₄]⁺BF₄⁻, while in C₆H₅Cl the 16e complex [WClH₂(PMe₃)₄]⁺ is formed.⁷² Also [AuPR₃]⁺ can be generated in situ from AuPR₃Cl and TlBF₄.⁷³ CpFe(dmpe)I and TlBF₄ give [CpFe(dmpe)(solv)]⁺-BF₄,⁷⁴ while with AgBF₄ the 17e cation [CpFe(dmpe)I]⁺ is obtained.

3. Protonation of Hydrido, Alkyl, and η^3 -Allyl Complexes

The elimination of hydrogen by reaction of hydrido complexes with strong acids in the presence of other neutral ligands has often been studied, since the protonation of several hydrido complexes in several strong acids was examined in 1962:⁷⁵

$$ML_nH + HX + L' \rightarrow [ML_nL']^+X^- + H_0$$
 (6)

In several cases the first step of this reaction may be the formation of η^2 -dihydrogen complexes, as has been proven by the isolation of $[P(CH_2CH_2PPh_2)_3RhH_2]^{+,76a}$ $[FeH_3(dppe)_2]^{+,76b,d}$ and $[CpRu(CO)(PR_3)H_2]^{+}BF_4^{-,76c}$ Also other protonated hydrido complexes, like $[H_2Co-[P(OR)_3]_4]^{+,10}$ originally formulated as dihydrido compounds, might be η^2 -dihydrogen complexes. The Nitrosyl hydrides as $CpW(NO)_2H^{23}$ or $Mn(NO)_2(PPh_3)_2H^{77}$ yield with acids $HX CpW(NO)_2OTs$ and $Mn(NO)_2(PPh_3)_2X$ $(X = FBF_3, OSO_2CF_3)$, respectively.

(X = FBF₃, OSO₂CF₃), respectively.

Many polyhydrides, e.g., MoL_4H_4 , ^{78,79} OsH₄L₃, ^{38,80} and ReH₅(PR₃)₂L, ⁸¹ have been reacted with acids. Whereas sometimes all hydrogens remain in the complex after protonation, ^{80,81b,82} it also happens that one or more molecules of H₂ are lost. ^{80,83} A few interesting reactions have been observed with dihydrides. Thus, while ReH₂NO(PPh₃)₃ yields with HClO₄ in the presence of CO and alcohols the complexes ReH(OR)(CO)(NO)-(PPh₃)₂, ^{84a} a fluoro cation [Re(F)(CO)(NO)(PPh₃)₃]⁺ is

obtained with HBF₄/CO. RuH₂(PPh₃)₄ yields on protonation with p-TsOH, Sta H₂C(SO₂CF₃)₂/toluene, TsOH, or HBF₄ or phenol start n^6 -arene complexes [RuH-(PPh₃)₂(arene)]ⁿ⁺ (n=0,1), where the arene is either the phenyl ring of OTs⁻, toluene, PPh₃, or OPh⁻. Also OsH₄(PPh₃)₃ undergoes a similar reaction with sulfonic acids in refluxing benzene. Std

This method is especially convenient for metal carbonyl systems where the carbonyl metalate can be protonated without isolation of the intermediate hydride: complexes [Fe(CO)₃(NO)L]⁺⁸⁶ and Mn(CO)₅O-SO₂CF₃⁸⁷ have been produced from [Fe(CO)₃(NO)]⁻ and [Mn(CO)₅]⁻, respectively.

The best and cleanest method for the isolation of organometallic Lewis acids seems to be the protonation of methyl complexes:

$$L_n M - CH_3 + HX \rightarrow L_n M - X + CH_4 \tag{7}$$

This method made the isolation of the following complexes possible: $Re(CO)_5FBF_3$, 88 $CpM(CO)(L)(OSO_2R)$ $(M = Fe, Ru, L = CO, PMe_3)$, 89 $Cp(OC)_2FeOTeF_5$, 54 $CpM(CO)_3X$ $(M = Mo, W; X = FBF_3, OSO_2R)$, 90 $M-(CO)_5OTeF_5$ (M = Mn, Re), 54 $CpRe(NO)(PPh_3)X$ $(X = OSO_2CF_3, FBF_3, FPF_5)$.

However, it could be shown that isolation of these complexes and of " $(C_6H_6)Ru(PR_3)(CH_3)^+$ " is not necessary for many reactions. ^{92–95} Also ethyl⁹⁶ and other σ -alkyl and σ -allyl⁹⁷ complexes can be used. H₃CCo-[P(OR)₃]₄ can be protonated by NH₄PF₆ to give [(H₃N)Co[P(OR)₃]₄]⁺PF₆^{-.10}

Some mechanistic investigations on the reaction of metal alkyl complexes with strong acids have been undertaken. The protonation of the optically active $CpRe*(NO)(PPh_3)R*$ by HBr proceeds with retention of configuration at both carbon and rhenium, which can be visualized as a net addition of HX across the rhenium–carbon σ -bond.

The intermediate complex $[Cp(Me_3P)_2Ru(CH_3)H]^+$ -BF₄ from the protonation of $Cp(Me_3P)_2Ru(CH_3)$ with HBF₄ could be isolated. Further examples for the cleavage of the metal-carbon σ -bond by protonic acids are summarized in ref 100.

The cleavage of the cyclopentadienyl ligand from nickelocene via [NiCp]⁺ has led to the first "triple-decker" compound [Ni₂Cp₃]⁺, ^{101a} which can be used as an excellent source for the extremely reactive [NiCp]⁺ unit. ^{101b}

Interestingly, protonation of $(\eta^6-C_7H_8)M(CO)_3$ (M = Mo, W) by HBF₄ yields the 16e system $[(C_7H_9)M-(CO)_3]^+BF_4^-$ with no coordination of the anion.¹⁰² In contrast to the analogous tungsten compound, the molybdenum atom is not electrophilic, since addition of phosphine takes place at the C_7H_9 group.

In contrast to these reactions, the cyclohexadienyl complex CpFeC₆H₇ is protonated by HBF₄·OEt₂ to give the very reactive diene–tetrafluoroborato complex CpFe(η^4 -C₆H₈)(FBF₃).¹⁰³ Protonation of the η^3 -allyl complex CpMo(CO)₂(C₃H₅) with HBF₄ yielded Cp-(CO)₂Mo(CH₂=CHMe)(FBF₃), an organometallic Lewis acid bearing two accessible coordination sites (eq 8).^{104a} Similarly, protonation of η^3 -allyl complexes (C₃H₅)ML_n (ML_n = Co[P(OMe)₃]₃,¹⁰ Mn(CO)₂[P(O-i-C₃H₇)₃]₂,^{104b} and Ru(η^4 -diene)^{104c}) gives compounds with two reactive coordination sites. Ni(η^3 -C₃H₅)₂, PMe₃, and HBF₄ yield (η^3 -C₃H₅)Ni(PMe₃)(FBF₃), which was characterized by ³¹P NMR (eq 9).¹⁰⁵

$$Cp(OC)_2Mo(CH_2CHCH_2) + HBF_4 \rightarrow Cp(OC)_2Mo(CH_2=CHCH_3)(FBF_3)$$
 (8)

$$Ni(CH_2CHCH_2)_2 + HBF_4 + PMe_3 \rightarrow (CH_2CHCH_2)Ni(PMe_3)(FBF_3) + CH_2=CHCH_3$$
 (9)

The aryl complexes $CpRe(CO)(NO)(C_6H_4R)$ gave cationic η^2 -arene complexes $[CpRe(CO)(NO)(\eta^2-C_6H_5R)]^+$ upon protonation with HBF_4 . Evidence for the formation of $CpFe(CO)_2BF_4$ from $CpFe(CO)_2SO_2OR$ and HBF_4 has been reported. 106

Closely related are the reactions of metal alkyl complexes with metal hydrides to give alkanes and dimeric species with metal-metal bonds. 107

4. Reactions Using BF₃, AICl₃, NO⁺, R₃O⁺, CH₃OSO₂F, CoBr₂, and Hg²⁺

A general applicable method for the synthesis of cationic metal carbonyl complexes is the halide abstraction promoted by BF₃ or AlCl₃ in the presence of neutral ligands;¹⁰⁸⁻¹¹¹ e.g.

L_nM-Cl + AlCl₃
$$\rightarrow$$
 L_nMClAlCl₃ $\xrightarrow{+L'}$ [L_nM-L']⁺AlCl₄⁻ (10)

Thus the first homoleptic metal carbonyl cations [M- $(CO)_6$]⁺ (M = Mn, Re) could be isolated. ^{108,109} In several cases evidence for the intermediacy of coordinated AlCl₄ and similar anions could be found. 112 Due to their sensitivity to water and the easy loss of AlCl₃, relatively few AlCl₄ complexes could be isolated. Addition of AlCl₃ to chloro complexes yielded the structurally characterized Sm(η^6 -C₆Me₆)(η^2 -Cl₂AlCl₂)₃, ^{113a,b} U(η^6 -C₆Me₆)(ClAlCl₃)₃, ^{113b} [U(μ_3 -Cl)₂(μ_2 -Cl)₃(μ_1 - η^2 -Cl₂AlCl₂)₃(η^6 -C₆Me₆)][AlCl₄], ^{113c} [Pd(η^1 -ClAlCl₃)(μ_2 - η^6 -C₆H₆)]₂, ¹¹⁴ (η^6 -C₆R₆)Ti(η^2 -Cl₂AlCl₂)₂, ^{115a} (η^3 -C₃H₅)-[(C₆H₁₁)₃P]NiClAlMe₂Cl, ^{105c} and Cp₂Ti(Cl)-(ClAlCl₃Me) ^{115b} Other examples are 1.1 adducte of (ClAlCl₂Me). 115b Other examples are 1:1 adducts of AlCl₃ with Cp₂TiCl₂^{116a} and (H)(OC)(Ph₃P)₂IrCl₂. ^{116b} An unusual tricoordinate ylide complex [Pt-(CH₂PPh₃)(PPh₃)Cl]AlCl₄ could be obtained by chloride abstraction from Pt(CH₂PPh₃)(PPh₃)Cl₂ by Al-Cl₃.¹¹⁷ Abstraction of a SiCl₃ group from Re(CO)₅SiCl₃ by SbCl₅ produced Re(CO)₅ClSbCl₅. 118 The carboniron bond in [(HNC₅H₄)CH₂Fe(CO)₂Cp]⁺ can be cleaved by Hg2+ salts in aqueous solution to give the $[CpFe(CO)_2(H_2O)]^+$ cation. 119

Reaction of several Fischer-type carbene complexes with BF₃ led to the isolation of (MeC)Cr(CO)₃-(PMe₃)FBF₃⁴ and (RC)W(CO)₄FBF₃. ¹²⁰ A niobium hydride was reported to react with BF₃ to give a complex of BF₃H⁻. ¹²¹ Also a general examination of the interaction of metal carbonyl hydrides with Lewis acids BCl₃ and AlBr₃ was undertaken. ¹²² The titanium boranate complex Cp₂TiBH₄ and BF₃·OEt₂ give Cp₂TiBF₄ with bidentate BF₄⁻. ¹²³

Trialkyl oxonium salts have also been used for the abstraction of halide, ^{24,124} methyl, ²⁴ or azide ^{125a-c} ligands. Halide and pseudohalide abstraction using R₃O⁺, SO₂F(OMe), NO⁺, or BF₃ is a directed way for the preparation of halide- and pseudohalide-bridged complexes. ¹²⁴⁻¹²⁶ (C₈H₁₄)AuCl and SO₂F(OMe) give the fluorosulfate complex (C₈H₁₄)₃AuOSO₂F. ¹²⁷ Cp₂ReH and AlX₃ form the hydride-bridged compounds Cp₂Re-H-AlX₃, ^{128a} while with CoBr₂ in MeCN, hydride abstraction and formation of (Cp₂Re)₂CoBr₄ are observed. ^{128b}

B. Oxidation of Neutral Monomeric or Dimeric Complexes

The oxidation of dimeric metal carbonyls in coordinating solvents has been used to produce cationic complexes of many metals.

$$[L_nM(CO)_m]_2 + solv \xrightarrow{-2e^-} 2[L_nM(CO)_m(solv)]^+$$
 (11)

A quite general method for the preparation of cationic complexes is oxidation of neutral monomeric and dimeric carbonyl complexes by nitrosyl salts; ¹²⁹ e.g., from $M_2(CO)_{10}$ and NO^+ in MeCN the cations $[(OC)_5MNCMe]^+$ (M = Mn, Re) have been obtained, which are useful starting compounds for other cations $[(OC)_5ML]^{+}$. ^{129d}

Other oxidants that have been used to produce [(OC)₅MNCMe]⁺ are Cu²⁺, Fe³⁺, and TCNE. ^{129e,f}

[CpFe(CO)₂]₂ and its derivatives can be oxidized by Fe³⁺,¹³⁰ O₂ in the presence of HBF₄·OEt₂,¹³¹ Ag⁺,¹³² Ph₃C⁺,¹³³ quinone,¹³⁴ or Cp₂Fe⁺,¹³⁵ to give [CpFe(CO)-L(solv)]⁺. Similarly, from [CpM(CO)₃]₂ (M = Cr, Mo) and Ag⁺,¹³⁶ Cp₂Fe⁺,¹³⁵ or Ph₃C⁺,¹³⁷ [CpRu(CO)₂]₂ and Ag⁺,¹³⁸ and [CpCr(NO)₂]₂ and HBF₄·OEt₂¹³⁹ the organometallic Lewis acids [CpM(CO)₃]⁺, [CpRu(CO)₂]⁺, and [CpCr(NO)₂]⁺ have been generated in situ. Oxidation of the bis(carbene) complex Mo(CO)₄L₂ with HO₃SCF₃ gave the bis(triflato) complex Mo(CO)₂L₂(O-SO₂CF₃)₂¹⁴⁰ (L = $\overline{-}$ CN(Et)(CH₂)₂NEt). It should be noted that in the cridation of the dimeric rhodium

SO₂CF₃)₂¹⁴⁰ (L = -CN(Et)(CH₂)₂NEt). It should be noted that in the oxidation of the dimeric rhodium complexes Cp₂Rh₂(μ -CO)(μ -L) (L = CO, dppm) with AgX, the cluster compounds (μ -AgX)[Cp₂Rh₂(μ -CO)-(μ -L)] are obtained. ^{141,142}

An elegant way for the synthesis of $[CpFe(CO)_2-(SO_2)]^+$, $[Mn(CO)_5(SO_2)]^+$, $[Re(CO)_5(SO_2)]^+$, and $[Co-(CO)_4(SO_2)]^+$ is the oxidation of the corresponding neutral dimers with AsF₅ in liquid SO₂;¹⁴³ e.g.

$$Re_2(CO)_{10} + 3AsF_5 + 2SO_2 \rightarrow 2[Re(CO)_5(SO_2)]^+AsF_6^- + AsF_3$$
 (12)

Another interesting example is Re(CO)₅FReF₅, which can be obtained from Re₂(CO)₁₀ and ReF₆ or XeF₂, respectively.¹⁴⁴

The hydrido complex CpFeL₂H and [CpFe(CO)₂L"]⁺ (L" = olefin, carbene) undergo redox reactions to give [CpFeL₂(solv)]⁺ and CpFe(CO)₂(alkyl).¹⁴⁵ Cp₂ReH is oxidized by CuCl₂ to [Cp₂Re]⁺[CuCl₂⁻].¹⁴⁶

Examples of dicationic complexes obtained by the oxidation of monomeric complexes include [Pd-(PPh₃)₄]²⁺ (from Pd(PPh₃)₄ and Ph₃C⁺), ¹⁴⁷ [MoH₂-(PR₃)₄(NCMe)₂]²⁺ (from MoH₄(PR₃)₄ and AgBF₄), ⁷⁸ [CpCoL₂]²⁺ (from CpCoL₂ and AgBF₄), ¹⁴⁸ [CpCoL₃]²⁺ (from CpCo(CO)₂, L, and [Cp₂Fe]⁺BF₄⁻), ¹⁴⁹ [M(NO)₂-(NCCH₃)₄)²⁺ (from M(CO)₆ (M = Mo, W) and NOBF₄), ¹⁵⁰ and [Mo(CO)₂(bpy)₂(OH₂)]²⁺(BF₄⁻)₂ (from Mo(CO)₂(bpy)₂ and AgBF₄). ¹⁵¹

A report of the synthesis of $[Mo(NO)_5]^{5+}[BF_4^-]_5$ from $Mo(CO)_6$ and $NOBF_4$ in $Cl_2C_2H_4$ is highly surprising 152 and certainly wrong. Reactions of $M(CO)_6$ with NOX $(X = Cl, PF_6)$ give polymeric $[M(NO)_2X_2]_n$. 153,185 " $[Mo(NO)_5]^{5+}[BF_4^-]_5$ " and $Mo(NO)_2(PF_6)_2$ show identical $\nu(NO)$ bands.

Seventeen-electron species can also be obtained ^{148,154} by oxidation of 18-electron complexes, e.g., [CpFe-(dppe)I] $^+$ PF $_6^-$. In the electrochemical oxidation of

 $[M(CO)_3Cp]_2$ and $Mn_2(CO)_{10}$ the radicals $[M(CO)_3Cp]^{\bullet}$ and $[Mn(CO)_5]^{\bullet}$ are key intermediates. ^156,157 Electrochemical preparations of cationic complexes include $[CpFe(CO)_2(solv)]^{+},^{158}$ $[IrR(CO)(PPh_3)_3]^{+},^{159}$ $[CpRh(CO)(PPh_3)]^{+},^{160}$ and $[CpCr(NO)_2(solv)]^{+},^{161}$

Recently, a complex of coordinated SbF_6^- could be prepared by oxidation of $W(CO)_5(PPh_3)$ with $NOSbF_6$: ¹⁶²

$$W(CO)_{5}(PR_{3}) + NOSbF_{6} \xrightarrow{CH_{2}Cl_{2}} W(CO)_{3}(NO)(PR_{3})(FSbF_{5}) + 2CO (13)$$

C. Oxidative Addition of RX to Metal d⁸ Systems

The oxidative addition of strong acids, of alkyl fluorosulfates, or of oxonium salts to Vaska's compound $IrCl(CO)(PPh_3)_2$ gives the complexes $Ir(CO)(Cl)-(PPh_3)_2(R)(X)$ (where R=H or Me and $X=FBF_3$, FPF_5 , $OPOF_2$, OSO_2CF_3 , $OSO_2C_4F_9$, OSO_2F , or $OClO_3$). 124a,b,163,164 Similarly, $Ir(N_2)(PPh_3)_2Cl$ and RX give $Ir(N_2)(PPh_3)_2(Cl)(R)(X)$ (R=H, Me; $X=OSO_2F$, OSO_2CF_3 , FBF_3), 163,165 which have two good leaving groups, similar to the above-mentioned $[CpMo(CO)_2-(CH_2=CHMe)(FBF_3)]$. 104 The Brönsted acidity of strong acids HX is transferred to Lewis acidity at the metal by these reactions. Reacting $Pt(PPh_3)_2(C_2H_4)$ with HBF_4 or HSO_3CF_3 gives $Pt(PPh_3)_2H_2X_2$ ($X=BF_4$, CF_3SO_3], 166 and addition of $H_2C(SO_2CF_3)_2$ yields $(PPh_3)_2PtH[HC(SO_2CF_3)_2]$. 167 $Pt(PPh_3)_2Cl_2$ adds two molecules of RX to give $Pt(PPh_3)_2HClX_2^{166}$ or $[Pt_2-(PPh_3)_4Cl_2][FSO_3]_2$, 124b depending on the nature of RX. Addition of HBF_4 to the dinuclear complex $[RhCl(\mu-dppm)]_2(\mu-CO)$ gives the mixed Rh^I/Rh^{III} dimer $[RhCl(\mu-dppm)_2]_2(\mu-CO)(\mu-H)(FBF_3)$. 39

D. Miscellaneous

Photochemical-induced disproportionation of dimeric complexes $[(MeCp)Mo(CO)_3]_2$ to give $[(MeCp)Mo(CO)_3]_2$ has been reported. The highly reactive " $[CpFe(dppe)]^+$ " is formed by irradiation of $[CpFe(CO)(dppe)]^+$; it coordinates a large variety of ligands. Abstraction of $[CpFe(CO)(dppe)]^+$; it coordinates $[CpCr(NO)_2CH_2Cl]_2$ by $[CpFe(CO)_2CH_2Cl]_2$ to " $[CpFe(CO)_2CH_2Cl]_2$ ". The disporportionation of cationic methylene complexes gives the intermediate organometallic Lewis acids and cationic ethylene compounds: $[CpCr(NO)_2CH_2Cl]_2$ ".

$$2[L_nM=CH_2]^+ \rightarrow [L_nM(C_2H_4)]^+ + "L_nM^+"$$
 (14)

where $L_nM = CpL_2Fe$, 171 $Cp(OC)_2LMo$, $Cp-(OC)_2LW$, 90,172 or $Cp(ON)(Ph_3P)Re^{173}$ (L = CO, PR_3). Triflato complexes can be isolated by this route. 90,171d,e An unusual weak ligand is $V(CO)_6^-$ in $V(THF)_4[(\mu-OC)V(CO)_5]_2^{174}$ and $(C_5Me_5)_2V(\mu-OC)V(CO)_5^{175}$ which is coordinated via the oxygen atom of one carbonyl ligand to the Lewis acid $[V(THF)_4]^{2+}$ and $[(C_5Me_5)_2V]^+$, respectively. In the latter complex $V(CO)_6^-$ is easily displaced by nitrogen donors. 175

IV. Proof of Coordination

In Table I a listing of isolated and characterized complexes of coordinated fluoro anions, $OTeF_5^-$, and carborane anions is given.

TABLE I. Representative Examples of Proposed or Isolated Complexes with Fluoro-, Teflate- and Carborane anions

complex	X, L	ref
CrCp(NO) ₂ X	$X = FBF_3, FPF_5, FAsF_5$	20, 60, 161
$Cr(CO)_3(CMe)(PMe_3)X$	$X = FBF_3$	4
$MoCp(CO)_2(L)X$	$L = CO, PPh_3, PEt_3, P(OPh)_3; X = FBF_3$	5, 182
• • • • • •	$L = CO; X = FPF_5, FAsF_5, FSbF_5$	5, 25
$WCp(CO)_2(L)X$	$L = CO, PR_3; X = FBF_3$	5, 186a
•	$L = CO; X = FPF_5, FAsF_5, FSbF_5$	5, 202
$WCp(NO)_2X$	$X = FBF_3$	222
$W(CO)_3(NO)(PR_3)X$	$X = FSb\tilde{F}_{5}$; $PR_{3} = PMe_{2}Ph$, PMe_{3}	162
Mn(CO) _s X	$X = FBF_3$, $FAsF_5$, $OTeF_5$	3, 54, 183
$Re(CO)_3(L)_2X$	$L = bpy, tmen; X = FBF_s FAsF_s$	56c
	$L = CO$; $X = FBF_3$, $FAsF_5$, $OTeF_5$, $FReF_5$	3, 42, 54, 88, 144
$Re(Cp)(NO)(PPh_3)X$	$X = FBF_3, FPF_5$	91b
FeCp(CO) ₂ X	$X = FBF_3$	53
Fe(TPP)X	$X = FSb\tilde{F}_{5}, B_{11}CH_{12}$	179, 180
$[Rh_2Cl_2(\mu-H)(\mu-CO)(dppm)_2X]$	$X = FBF_3$	39
$Ir(L)(Cl)(PPh_3)_2(H)X$	$L = CO, N_2; X = FBF_3$	164
, , , , , , , , , , , , , , , , , , ,	$L = CO, X = FPF_5$	252
$U_2(C_5H_3(SiMe_3)_2)_4(\mu-F)_2(\mu-X)_2$	$X = F_2BF_2$	176
trans-(Ph ₃ P) ₂ PtHX	$X = [HC(SO_2CF_3)_2]$	167

TABLE II. Bond Lengths in Some M-F-EF, Complexes

compd	d(M-F _b)	$d(\mathbf{F_b} - \mathbf{E})$	$d(E-\overline{F}_t)$	ref
Cu(PPh ₃) ₃ FBF ₃	2.31	1.39	1.35	13c
$[UCp''_2(\mu-BF_4)(\mu-F)]_2$	2.41	1.34	1.38/1.23	176
$[\mathrm{Cu}(\mathrm{bpy})_2(\mathrm{F}_2\mathrm{BF}_2)]^+\mathrm{BF}_4^-$	2.56/2.66	1.37/1.35	1.39	14a
IrClCO(PPh ₃) ₂ (H)(FBF ₃)	$2.27^{'}$	1.45	1.34	164b
$Ag(CNR)_2F_2PF_4$	2.67	1.56	1.51	178
Fe(TPP)FSbF ₅	2.11	1.90	1.88-1.93	180a
$(Me_2PhP)(CO)_2ONWFSbF_5$	2.17	1.95	1.86	162
(OC) ₅ ReFReF ₅	2.13/2.20	1.98/1.95	1.84	144

TABLE III. $\nu(E-F)$ Bands (cm⁻¹) of Hexafluorophosphato, -arsenato, and -antimonato Complexes L_nM-X^a

$L_n \overline{M}$	X	$A_1(\nu_1)$	$\overline{A}_1(\nu_2)$	$B_1(\nu_2)$	$A_1(\nu_3)$	$E(\nu_3)$	$A_1(\nu_4)$	$\mathbf{E}(\nu_4)$	ref
Cu(py) ₄	$(FPF_5)_2$	742			852	828		551	181
CpMo(CO) ₃	FPF_5	739			879	810		488	5
IrHCl(PPh ₃) ₂ CO	FPF_5	734			880	810		488	116b
CpMo(CO) ₃	$FAsF_5$	669	511	550	699	726	395, 384, 367		25
$CpW(CO)_3$	$FAsF_5$	668			697	726			34
Re(CO) ₅	$FAsF_5$	675			712	730			3
$Mn(CO)_{5}$	$FAsF_5$	676			710	725			3
$Re(CO)_3(bpy)$	$FAsF_5$		530		705	765		390	56c
CpMo(CO) ₃	$FSbF_5$	642			662	679			25

^aThe ν (E-F) bands (F_{1u}) of the free octahedral anions are at ca. 830 cm⁻¹ (PF₆⁻), 700 cm⁻¹ (AsF₆⁻), and 670 cm⁻¹ (SbF₆⁻).

A. Crystal Structure Determinations

A series of crystal structures of non-carbonyl complexes show BF₄⁻ as a monodentate or bidentate bridging ligand. ^{13,14,176,177} Also the structures of complexes with PF₆-, ¹⁷⁸ AlCl₄-, and AlCl₂R₂-^{105c,113-115} have been elucidated. A group of Fe(TPP)X complexes, particularly with the weak anionic ligands $X = SbF_6^{-179}$ and B₁₁CH₁₂-,¹⁸⁰ was examined by X-ray crystallography. The crystal structure of AgB₁₁CH₁₂·2C₆H₆^{180c} shows a bridging carborane and an η^1 -coordinated benzene ligand, which is "interpreted as resulting from the poor ligation properties of the closo-carborane anion". Only a few crystal structures of carbonyl complexes with BF₄-, SbF₆-, ReF₆-, and OTeF₅- have been reported, e.g., IrCl(CO)(PPh₃)₂(H)(FBF₃), 164b (Me₂PhP)(CO)₃(NO)WFSbF₅, 162 (OC)₅ReFReF₅, 144 and (OC)₅MnOTeF₅.⁵⁴ In most of these compounds the bridging E-F bonds are longer than the terminal E-F bonds. The metal-fluorine interaction is stronger in complexes of π -acceptor ligands than it is in complexes of metals in normal oxidation states with nitrogen donors. The two very different terminal B-F bond lengths in $[UCp''_2(\mu-BF_4)(\mu-F)_2]$ $(Cp''=C_5H_3(SiMe_3)_2)$ are unusual. 176 The coordination of CH(SO₂CF₃)₂⁻ to platinum via the carbon atom was shown in a crystal structure determination of Pt(PPh₃)₂(H)(CH(SO₂CF₃)₂). ^{167b} This appears interesting since RHC(SO₂CF₃)₂ are strong protic acids and the negative charge of the corresponding anion should be delocalized.

Bond lengths of relevant examples are summarized in Table II.

B. IR Spectroscopy

Coordination of the highly symmetric anions BF_4^- (T_d), PF_6^- , AsF_6^- , or SbF_6^- (O_h) to a metal center leads to a significant lowering of the symmetry. This results in a characteristic splitting of the E-F stretching vibrations 13c,181 (Table III). The $\nu(BF_4)$ vibrations are especially sensitive to changes in the neighborhood of the BF_4^- anion. Four $\nu(BF)$ bands are expected for the C_s symmetry of the M-F-BF₃ group, as has been observed with $M(CO)_5FBF_3$ (M = Mn, Re); sometimes only three bands are visible (Table IV).

Splitting of the $\nu(BF_4)$ band may also be observed without coordination of the anions to a metal center, due to hydrogen bonds to coordinated water or amines.^{4,56c,184}

TABLE IV. $\nu(^{11}B-F)$ Bands of Tetrafluoroborato Complexes

compd		ν(¹¹ B	- F)		ref
CpMo(CO) ₃ FBF ₃	1130		884	722	5
CpMo(CO) ₂ (PPh ₃)FBF ₃	1119		901	732	182
CpMo(CO) ₂ (PEt ₃)FBF ₃	1137		891	730	182
Cu(PPh _s) _s FBF _s		984	769		13c
Cr(CMe)(CO) ₈ (PMe ₃)FBF ₃	1110		910	745	4
Re(CO) ₅ FBF ₃	1162	1128	902	738	42
Mn(CO) ₅ FBF ₃	1145	1118	919	738	183
[Cu(bpy),F,BF,]+BF,	1105	1070	1030		14a
[SnMe ₃ F ₂ BF ₂]+BF ₄ -	1170	1085	1005	758	14a
The free BF ₄ ion absorbs	at ca. 10	050-108	80 cm ⁻¹ .		

We have found that some very labile complexes can react with the material of the IR cell windows rapidly under formation of halide compounds. Then only the IR spectrum of the free anions is observed. In other cases the presence of water leads also to splitting of $\nu(BF_4)$ bands (see below).

Evidence for bridging F₂PF₄ groups in polymeric $[Mo(NO)_2(PF_6)_2]_n$ has been obtained by IR spectroscopy. 185

C. NMR Spectroscopy

In a few cases it has been possible to demonstrate the coordination by NMR spectroscopy. The ¹⁹F NMR low-temperature spectra of CpM(CO)₂(L)(FBF₃)¹⁸⁶ in CD₂Cl₂ show two widely separated signals; a doublet due to the terminal fluorine nuclei close to free BF, and a quartet at very high field due to the bridging fluorine atom. Similarly, coordination of BF₄ in CpFe(C₆H₈)(FBF₃) was proven by ¹⁹F NMR spectroscopy. 103 In phosphorus-containing compounds (L = PR₃) additional coupling to the ³¹P nuclei can be observed. ^{186,187} The ³¹P NMR spectra of these complexes as well of $(MeC \equiv) Cr(CO)_3 (PMe_3) FBF_3$, $^4W(CO)_3 - (PR_3)(NO)(FSbF_5)$, 162 and $(\eta^3 - C_3H_5)(Me_3P)NiFBF_3$ 105a also reveal a doublet at low temperature due to coupling of the ³¹P nucleus to a single fluorine atom. At higher temperatures typical coalescence behavior in both 31P and ¹⁹F NMR spectra is observed, which is consistent with an intramolecular exchange of coordinated and noncoordinated fluorine atoms.

In some cases only signals of freely rotating or uncoordinated fluoro anions could be obtained. 30,56c,60,91b,186a This was explained by an equilibrium between the coordinated and free BF₄ anion^{56c} or by rapid rotation of PF₆ on the NMR time scale;⁶⁰ a fast exchange of solvent and coordinated PF₆⁻ may also be an explanation. ^{186a} For CpRe(NO)(PPh₃)BF₄ ¹³C NMR evidence of coordinated CD₂Cl₂ in CD₂Cl₂ solution has been obtained.^{91b} The relatively small number of NMR "proofs" is a consequence of the low solubility of many of these complexes in weakly coordinating solvents. In stronger donor solvents substitution of the coordinated anion by the solvent occurs.

V. Reactivity

Organometallic Lewis acids such as "Re(CO)5+" or "AuPPh₃+" can serve as a probe for the behavior of all kinds of ligands, including ambivalent ligands. "Re-(CO)₅⁺" is especially useful since the pentacarbonyl group can easily be detected by its characteristic pattern of the $\nu(CO)$ bands in the IR spectrum.

TABLE V A. CO Frequencies (cm⁻¹) of Carbonyl Complexes L_n(CO)_nMX of Weakly Weakly Coordinating Anions

		***	ν(CO)		
$L_n(CO)_nM$	X	(ir	CH ₂ C	(l ₂)	ref
Mn(CO) ₅	FBF ₃	2163	2081	2023	183
•	OClO ₃	2158	2074	2023	54
	OSO ₂ CF ₃	2158	2073	2020	54
	OTeF ₅	2155	2070	2016	54
	OCOCF ₃	2149	2063	2012	54
	I	2129	2045	2008	54
Re(CO) ₅	FBF_3	2166	2066	2008	42
	OSO ₂ CF ₃	2166	2059	2004	54
	OTeF ₅	2164	2055	1998	54
	$OReO_3$	2163	2051	1995	239d
	Cl	2157	2046	1985	54
$CpFe(CO)_2$	FBF_3	2078	2032		53
	OTeF ₅	2069	2024		54
	I	2043	1998		53
Cp(CO) ₃ Mo	$FSbF_5$	2079	2001		25
	FPF ₅	2079	1997		5
	FAsF ₅	2072	1985		25
	FBF_3	2067	1975		5
	Cl	2057	1977		5
$Ir(PPh_3)_2(CO)(Cl)H$	FPF_{δ}		2072		252
(in Nujol)	FBF_3		2061		164b, 190
	OSO ₂ CF ₃		2055		164b, 190
	OSO_2F		2048		90
	$OReO_3$		2044		57
	Cl		2027		190

B. NO Frequencies (cm⁻¹) of Complexes CpW(NO)₂X

X	$\nu(N$	10)	ref	
FBF ₃	1770	1640	222	-
OTs	1737	1650	222	
Cl	1705	1625	222	

TABLE VI. δ(C₅H₅) Signals of Several Cyclopentadienyl Complexes CpL, MX of Weakly Coordinated Anions

CpL_nM	\mathbf{X}	$\delta(C_5H_5)^a$	ref
Cp(CO) ₃ Mo	FSbF ₅	6.02	25
• •	$FAsF_5$	6.02	25
	FBF_3	5.98	90
	$OSO_2^{r}F$	5.88	90
	OSO ₂ CF ₃	5.85^{b}	90
	Cl	5.70	5
$Cp(CO)_3W$	FBF_3	6.11	90
-	OSO_2F	6.00	90
	OSO ₂ CF ₃	5.96^{b}	90
	Cl	5.79	5

A. Relative Donor Strengths of Several Weakly **Coordinating Anions**

The cationic character of the metal carbonyl fragment, corresponding to a weak donor strength of the coordinated anions, can easily be derived from the v-(CO) data. The complex "Cu(CO)AsF₆" shows the highest ν (CO) frequency (2180 cm⁻¹) for monocarbonyls. 11a In the complexes M(CO)₅X (M = Mn, Re), $CpM(CO)_3X$ (M = Mo, W), or $CpFe(CO)_2X$ the $\nu(CO)$ frequencies are considerably higher for $X = EF_n$, ClO₄, OTeF₅, etc. than in the corresponding halides. In the nitrosyl complex CpW(NO)₂X the same observation can be made for $\nu(NO)$ (Table V).

Similar results can be obtained by comparing the ¹H NMR spectra of $CpM(CO)_3X$ (M = Mo, W), where the shifts for the cyclopentadienyl group occur at lower fields for weaker σ -donor ability of X (see Table VI). The IR and NMR data indicate the following order of

TABLE VII

 A. ¹H NMR Chemical Shifts and ν(Ir-H) Wavenumbers for Ir(PPh₀)₀(CO)(Cl)(H)X¹⁹⁰

 	113/2(00)(01)(11)1	•	
X	δ(Ir-H)	ν(Ir-H)	
 FBF ₃	-26.5	2333	
OSO_2CF_3	-21.77	2305	
NCSe	-16.1		
Cl		2240	
SeCN	-11.4	2180	

B. ³¹P NMR Data for trans-[(OC)₃(ON)(Me₃P)WL]⁺¹⁹¹

L	$\delta(^{31}P)$	¹ J(P-W)	
FSbF ₅	-16.25	282.9	
FBF_3^-	-17.46	282.0	
OPOF₂⁻	-21.48	274.4	
NCMe	-27.03	263.8	
Cl-	-28.34	263.8	
PPh_3	-35.96	252.4	

relative σ -donor strength: 5,54,57,90 FAsF₅-, FSbF₅-, FPF₅- < FBF₃- < OSO₂F-, OSO₂CF₃- < OClO₃- < OTeF₅-, OReO₃- \ll Cl⁻.

A similar order was found earlier from electronic spectra and magnetic data of complexes $M(en)_2X_2$ and $M(py)_4X_2$. 14c,188 Calculations of the "group electronegativities" 189 of the coordinating anions are consistent with this series. For complexes of the same type this trend is qualitatively also observed in the chemical reactivity. For instance, the reaction of $HRh(PP_3)$ ($PP_3 = P(CH_2CH_2PPh_2)_3$) with HBF_4 yields an η^2 - H_2 complex $[H_2Rh(PP_3)]^+BF_4^-$, which spontaneously loses H_2 on addition of $CF_3SO_3^-$ to give the triflato complex $(PP_3)RhOSO_2CF_3$. 76a

Two correlations have been found by comparing either the $\delta(Ir-H)$ chemical shifts and $\nu(Ir-H)$ in compounds $HIr(CO)(PPh_3)_2(L)Cl^{190}$ or the ³¹P NMR data of LW(NO)(PMe₃)(CO)₃¹⁹¹ (L = anionic or neutral ligand). Linear relationships between the $\delta(Ir-H)$ shift and the electronegativity of the ligand trans to hydrogen in the first case and between ³¹P NMR shifts and one-bond coupling constants $^1J(^{31}P^{-183}W)$ in the second case were found. Both measurements allow one to derive a general order of σ -donor strengths for both anionic or neutral ligands: F donor < O donor < N donor (Table VII).

From the porphyrin core coordination parameters of five-coordinate ferric porphyrins, e.g., the iron-nitrogen distances, or the distance of iron atoms from the porphyrin plane, the following order of decreasing strength of anion bonding has been found: 180b I $^-$ > OClO $_3$ $^-$ > FSbF $_5$ $^-$ > B $_{11}$ CH $_{12}$ $^-$. Thus the carborane ligand is the least coordinating anion, at least for the Fe(TPP)+ moiety. 179,180 A "new" candidate for the least coordinating anion is the B(OTeF $_5$) $_4$ $^-$ anion. 192 An "old" candidate for this position may be the C(SO $_2$ R) $_3$ $^-$ ion, which has been shown to be a very weak ligand. 193

B. Substitution of Weakly Coordinating Ligands by Neutral σ - and π -Donors

The weakly coordinated anions are readily displaced under very mild conditions by a large number of neutral σ - and π -donors to give ionic complexes

$$L_n M - X + L' \rightarrow [L_n M - L']^+ X^- \tag{15}$$

where X = BF₄-, PF₆-, AsF₆-, SbF₆-, OTeF₅-, OClO₃-, CF₃SO₃-, AlCl₄-, and SbCl₆- and L' = H₂O, ROH, 84a,194,195 R₂O, 58,195,196 R₂C=O, 5,42,49,50,55,56a,134,194,198,199

RNO₂, ^{134,200} H₂S, ^{24,201,202} RSH, ^{202,203} R₂E_n (n=1, 2; E = S, Se, Te), ^{103,200,202,204,205} R₂SO, ^{202,205} N₂, ^{74,169} NR₃, ^{169,206-209,282} R-CN, ^{134,210-213} ER₃ (E = P, As, Sb, Bi), ^{135e,205,214-218} R₃EX (E = P, As, Sb; X = S, Se, Te, O, NR), ^{219,282} RN=C, ^{220,245} R₂C=CR₂, ^{10,134,136a,182,221-226} R-C=C-R, ^{5,51,136b,225,227-229} CO, ^{5,42,62} SO₂, ^{194,213} O, S, and N heterocycles, ^{230,239b} and guanine ^{239c} and xanthine derivatives. ⁷⁷ Easy uptake of H₂ even in the solid state has been reported for $[Co(P(OMe)_3)_4]^+PF_6^-$ to give $[H_2Co(P(OMe)_3)_4]^+PF_6^-$ to give

The systems $CpFe(CO)_2X$, 231a $CpML_2X$ (M = Ru, Os), 231b and $CpM(CO)_2(L)X$ (M = Mo, W) have been intensively studied. It should be noted that the starting compounds $CpM(CO)_2(L)X$ (M = Mo, W) are extremely sensitive to moisture. The formation of the much less reactive red aqua complexes $[CpM(CO)_2L-(H_2O)]^+X^-$ from the violet BF_4^- complexes can easily be recognized. In the system $CpM(CO)_2(L)X$ we observed the following order of increasing ability to substitute weaker ligands: 5,195,196,202 $CH_2Cl_2 \sim PF_6^- \sim AsF_6^- \sim SbF_6^- < OEt_2 < BF_4^- < H_2S < THF < Me_2CO < H_2O < CF_3SO_3^- < CO \sim MeCN \sim PR_3$.

Other systems examined for substitution reactions include $CpW(NO)_2BF_4,^{222}$ $CpCr(NO)_2PF_6,^{60}$ $Mn-(CO)_5OClO_3,^{55,56a,217}$ $(Mn,Re)(CO)_5OSO_2CF_3,^{58}$ $(Mn,Re)(CO)_5FBF_3,^{42,56c,224,239a,b}$ $Mn(CO)_4(L)BF_4,^{24}$ $Mn-(CO)_3(L)_2X$ $(X=ClO_4^-,PO_2F_2^-,^{56a,220}$ $(Mn,Re)(CO)_5F-AsF_5,^{194,213,234}$ $Cp'Os(CO)_2BF_4,^{30}$ $(Rh,Ir)(CO)-(PPh_3)_2ClO_4,^{62,210,211}$ $HIr(Cl)(CO)(PPh_3)_2FBF_3,^{164}$ $Cp_2TiX_2,^{198,206,212}$ and $W(CO)_3(PR_3)(NO)X.^{191}$ $(OC)_5-ReOSO_2CF_3$ undergoes substitution of triflate with nucleophiles according to an associative process. 58 Interestingly, the reactions of $CpRe(NO)(PPh_3)X$ $(X^-=BF_4^-,PF_6^-)$ with σ - and π -donors proceed with retention of configuration at rhenium. 91b

Many substitution reactions have been carried out by in situ generation of L_nM-X or from cationic solvent complexes in the presence of donors. As far as these syntheses have been carried out in dichloromethane, coordination of CH_2Cl_2 may occur. 5,52,53,56b,91b,186a,221

Interesting ligands that could be coordinated to the metal via this method in cationic complexes are acetic and trifluoroacetic acid, 232 CH $_3$ I, 233a,e,236 C $_6$ H $_4$ I $_2$, 233b NS $^{+\ 234a}$ (thus a dicationic carbonyl complex [(OC) $_5$ ReNS] $^{2+}$ could be obtained), NSF $_3$, 234b HNSO, 234c HNSOF $_2$, 234d Ph $_3$ PCHCOCH $_3$, 235 and Et $_3$ PCS $_2$. 237 The alkyl iodide complexes [Ir(PPh $_3$) $_2$ H $_2$ (MeI) $_2$] $^{+\ 233a}$ and [CpRe(NO)(PPh $_3$)(ICH $_2$ SiMe $_3$)] $^+$ BF $_4$ $^{-\ 236}$ have been characterized by crystal structure determination. Closely related are [(COD)Ir(η^2 -(P,Br)-(Ph $_2$ PC $_6$ H $_4$ Br))] $^{+\ 233c}$ and [IrH $_2$ (PPh $_3$) $_2$ (η^2 -(8-fluoroquinoline))]. 233d

With diphosphines mono- and dinuclear cationic complexes can be obtained, e.g., $[(CO)_5Re-PPh_2-X-PPh_2-Re(CO)_5]^{2+}$, with $X=CH_2$, NH, or O, or the two tautomers $[(CO)_5Re-PPh_2-NH-PPh_2]^+$ and $[(CO)_5Re-PPh_2-N-PPh_2H]^+$. Several polyfunctional neutral ligands, such as pyrazine, ^{239b} TCNE, TCNQ, ^{239a} 1,3- or 1,4-dithiane, 1,3,5-trithiane, ^{219b,239d} or 1,4-dioxane, ¹⁹⁶ can also be metalated by more than one $Re(CO)_5^+$ to give ligand-bridged cations; e.g.

$$L-L + 2Re(CO)_5^+ \rightarrow [(OC)_5Re-L-L-Re(CO)_5]^{2+}$$
(16)

Trithiane and TCNQ can be trimetallated by $Cp(OC)_2Fe^{+219b}$ or $Re(CO)_5^+$, 239a respectively.

CO readily displaces $AlCl_4^-$, BF_4^- , or ReF_6^- in $(Mn, Re)(CO)_5X^{42,108,169,144}$ in a CO atmosphere, while for $X=OTeF_5^-$ or $CF_3SO_3^-$ no reaction occurs under these conditions. 54,58 On the other hand, in $(OC)_5MnX$ with $X=OTeF_5^-$ and $CF_3SO_3^-$ ligands CO is substituted by nucleophiles while the anionic ligand remains coordinated. 54,58 Interestingly, the metal-triflate bond of $(OC)_5MOSO_2CF_3$ (M=Mn, Re) is seriously weakened in superacidic solvents $(CF_3SO_3H, FSO_3H, SbF_5)$. In these systems the triflate complexes react with CO to give $[M(CO)_6]^{+}$. 58

Introducing alkenes or alkynes to form cationic complexes with coordinated unsaturated hydrocarbons is particularly easy by this method. Cationic complexes are important starting materials for nucleophilic addition reactions at coordinated unsaturated hydrocarbons, carbon monoxide, isonitriles, or ketones. ^{51e,199,240–243} The use of carbonyl metalates, e.g., Re(CO)₅, instead of organic nucleophiles for the attack on the coordinated unsaturated hydrocarbon leads to a series of hydrocarbon-bridged bimetallic complexes in a directed way;²⁴⁴ e.g.

$$[(OC)_5Re(C_2H_4)]^+ + [Re(CO)_5]^- \rightarrow (OC)_5ReCH_2CH_2Re(CO)_5$$

C. Reaction of Tetrafluoroborato and Hexafluorophosphato Complexes with Water

Three different types of reaction with water have been observed.

1. Formation of Aqua Complexes

The anion can be substituted by H_2O to give cationic aqua complexes. So $[Mn(CO)_5(H_2O)]^{+,246}$ $[Re(CO)_5-(H_2O)]^{+,42,56c,194,201}$ $[Mn(CO)_4(PPh_3)(H_2O)]^{+,24}$ $[(Mn,Re)(CO)_3L_2(H_2O)]^{+,56c}$ $[Cp(Mo,W)(CO)_2(L)(H_2O)]^{+,5,195}$ $[CpOs(CO)_2(H_2O)]^{+,30}$ $[Cr(CO)_3(PMe_3)(CMe)(H_2O)]^{+,4}$ $[CpFe(CO)_2(H_2O)]^{+,41,53}$ $[Pt(PPh_3)_2(Cl)(H_2O)]^{+,247}$ $[Cp_2Ti(H_2O)_2]^{2+,248}$ $[Cp_2Zr(H_2O)_3]^{2+,249}$ and $[W-(PMe_3)_4(H_2O)H_2F]^{+,250}$ have been obtained. The origin of the water can be moist solvent²⁴ or traces of water in the silver salts^{56c} used in synthesis.

A variable-temperature ¹⁹F NMR study of [Re-(CO)₃(tmen)(H₂O)]⁺ has been undertaken.^{56c} The coalescence of two singlets was interpreted as evidence for an equilibrium:

$$L_nM-FBF_3 + H_2O \Rightarrow [L_nM-OH_2]^+ \cdots FBF_3^-$$
 (17)

However, the characteristic pattern of coordinated BF₄⁻ has not been observed.

In complexes $[L_nM-OH_2]^+BF_4^-$ IR spectroscopy clearly reveals hydrogen bridges between coordinated H_2O and $BF_4^{-.4,5,56c,184,247,251}$ The characteristic pattern of the $\nu(BF)$ absorptions in H-bridged species can easily be distinguished from the pattern of coordinated BF_4^- and of free BF_4^- , as was shown for $[CpMo(CO)_3-(H_2O)]^{+.5,184}$ When more than stoichiometric amounts of water are present, hydrates are formed and the IR spectrum of free BF_4^- is observed.

$$L_nM-OH_2^+\cdots FBF_3 + H_2O \rightarrow [L_nM(OH_2)(OH_2)_n]^+BF_4^-$$
 (18)

The crystal structure determinations of the aqua complexes $[Ir(PPh_3)_2(Cl)H(H_2O)]^+BF_4^{-252}$ and

 $[(C_7H_7)Mo(acac)(H_2O)]^+BF_4^{-253}$ show a cyclic structure of two water molecules doubly hydrogen bridged to two different bridging BF_4^- anions. BF_4^- and AsF_6^- was shown to be hydrogen bonded to two coordinated water molecules of $[Re(CO)_3(tmen)(H_2O)]^{+.56c}$ Also in $[Cp_2Zr(H_2O)_2(OTs)]^+$ hydrogen bridges between H_2O and the sulfonato group have been proven. 254

2. Condensation Reactions

In the presence of weak bases cationic aqua complexes can be deprotonated, and condensation gives dinuclear hydroxo-bridged or tris(metallaoxonium) species. With $[\mathrm{CpCr(NO)_2(OH_2)}]^{+139}$ or $[\mathrm{Cp_2Zr}_{-(H_2O)_3}]^{2+255}$ the hydroxo-bridged $\{[\mathrm{CpCr(NO)_2}]_2(\mu-OH)\}^+BF_4^-$ and $[\mathrm{Cp_2Zr_2}(\mu-OH)_2(H_2O)_6]^{4+}$ have been obtained. On the other hand, $[\mathrm{CpMo(CO)_3(H_2O)}]^+$ and $[\mathrm{CpMo(NO)_2(H_2O)}]^+$ give $\{[\mathrm{CpMo(CO)_2}]_3O\}^{+184}$ and $\{[\mathrm{CpMo(NO)(OH)}]_3O\}^{+.256}$ $\{[\mathrm{CpMo(CO)_2}]_3O\}^+$ contains semibridging CO groups, while the homologous $\{[\mathrm{CpMo(CO)_2}]_3S\}^+$ does not.²⁵⁷ Oxonium salt formation is also observed in the system AuPPh₃Cl/AgBF₄, where $\{[\mathrm{Au(PPh_3)}]_3O\}^+$ is the reaction product in the presence of moisture.²⁵⁸ Oxo- and/or hydroxo-bridged oligomers are also obtained by alkaline hydrolysis of Fe(TPP)-Cl,²⁵⁹ $[\mathrm{Cp'CoX_2}]_2$,²⁶⁰ or $\mathrm{Cp_2ZrCl_2}^{261}$ and have been structurally characterized.

Nucleophilic attack of hydroxide on a carbon atom of a carbonyl ligand (Hieber base reaction 262) gives the ${\rm CO}_2$ -bridged complex 201,263

as the final product.

3. Hydrolysis of the Anion

Hydrolysis of the anion occurs especially with the PF_6^- anion, where the very stable $PO_2F_2^-$ ion is formed, which is also a much stronger donor. Examples are $Mn(CO)_3(L)_2OPOF_2^{56}$ and $IrCl(H)(PPh_3)_2-(CO)(PO_2F_2)$, which have been determined.

In some cases hydrolysis of BF_4^- and BPh_4^- to give BF_3OH^- and BPh_3OH^- is observed. 42,139,201,265 The structure of $(OC)_5Re(OH)BF_3$, which crystallized with $\{[(CO)_5Re]_3S\}^+BF_4^-$ in the same crystal, has been determined. 266 Interestingly, the BF_3OH^- ion was formed also by the reaction of AgF_2H with $Re(CO)_3(tmen)Br$ in a glass apparatus to give $\{[Re(CO)_3(tmen)F]_2H\}^+-BF_3OH^-$, as was shown by crystal structure determination 267

D. Reaction with Monoanionic Ligands

Particularly for Re(CO)₅X compounds the substitution of the BF₄⁻ ion in Re(CO)₅BF₄ by a large number of anionic ligands is a straightforward way under very mild conditions. In these reactions the Re(CO)₅ moiety remains intact, whereas in reaction of the corresponding

halides with silver salts loss of CO may occur. In several cases Re(CO)₅FBF₃ can be reacted in aqueous solution, where substitution of the aqua ligand in [Re(CO)₅-(H₂O)]⁺ takes place. Thus complexes Re(CO)₅X with $X = SCN, SeCN, OReO_3, ONO_2, NO_2, OCHO, NCNC-$ N-, NCC(CN)2-, or TCNQ- could be obtained. 57,201,239a Dicyanamide and tricyanomethanide have been shown to coordinate through the nitrile N atom to the metal. 239a Related substitutions with halide, pseudohalide, or nitrate ligands have been reported for [CpFe(CO)2- $(OH_2)]^+BF_4^{-,131}$ $W(CO)_4(CR)FBF_3^{-120}$ $Cp_2Ti-(CF_3SO_3)_2^{-268}$ and $W(CO)_2(NO)(PPh_3)_2(OClO_3)^{-269}$ In the perchlorato complexes Mn(CO)₅(OClO₃) the ClO₄ anion can be substituted by acetylide. Similar reactions with "[CpFe(CO)L]+" 271 and with Os(C₆H₆)(P $i-Pr_3$ I_2 /AgPF₆ and an alkyne²⁷² also yield σ -acetylide complexes $L_nM-C \equiv C-R$. Carboxylate complexes are obtained from [(Rh,Ir)(CO)(PPh₃)₂(MeCN)]⁺ and peroxocarboxylates, 273 from halide complexes with silver carboxylates, 274 or from [(Me₂NCH₂)₂C₆H₃(Ni,-Pt)(H₂O)]⁺ and NaOCHO.²⁷⁵ In an interesting reaction the highly electrophilic [(OEP)Rh]+ (from (OEP)RhCl and AgBF₄ or AgClO₄) yields in the presence of arenes Ph-X the σ-aryl compounds (OEP)Rh-C₆H₄X.²⁷⁶ Recently, the reaction of $(C_5R_5)M(CO)_3CH_3/HBF_4$ (M = Mo, W) with hydrogen selenide was reported to give (C₅R₅)M(CO)₃SeH.²⁷⁷ Metal-metal-bonded complexes can be obtained from the substitution of the weakly coordinated anion by an organometallic anion, 278 e.g., $(OC)_5MnRe(^{13}CO)_5$ from $(O^{13}C)_5ReOSO_2CF_3$ and $KMn(CO)_5$. 197

E. Directed Synthesis of Ligand-Bridged Complexes

1. Neutral Ligand-Bridged Bimetallic Complexes

It is well-known that Lewis acids of main-group elements (BF₃, SiF₄, AlR₃) add to the nitrogen atom of cyanide complexes. ²⁷⁹ Similarly, the Lewis acids [Me-(CO)(PR₃)₂(Cl)Ir]⁺, ²⁸⁰ [Cp₂Zr]^{2+,281} and [Re(CO)₅]⁺ ²⁰¹ form cyanide-bridged complexes with [Pt(CN)₄]²⁻ or [Au(CN)₂]⁻, e.g., NCAuCNRe(CO)₅ and (NC)₂Pt[CN-Re(CO)₅]₂. By the reaction of anionic carbonyl halide or pseudohalide complexes with Re(CO)₅FBF₃ the neutral compounds L_n M-X-Re(CO)₅ can be obtained

$$[L_nM-X]^- + Re(CO)_5FBF_3 \rightarrow L_nM-X-Re(CO)_5 + BF_4^-$$
 (19)

where $L_nM = Cr(CO)_5$ or $W(CO)_5$ and X = Cl, Br, I, CN, NCS, NCO, SH, or $NCC(CN)_2$.²⁸² Three $Re(CO)_5^+$ groups can be added to $[Cr(NCS)_6]^{3-}$ to afford $(SCN)_3Cr[NCSRe(CO)_5]^3$.²⁰¹ Examples of chalcogenide-bridged complexes obtained in a similar fashion are $[(C_5R_5)(CO)_3M]_2(\mu$ -E), with M = Mo or W and S or Se.⁹⁵

An interesting compound, $[(OC)_5Re-O(O)_2CrOCr-(O)_2O-Re(CO)_5]$, that shows that high and low oxidation states are compatible within one complex is precipitated from an aqueous solution of $[Re(CO)_5(H_2O)]^+BF_4^-$ and $K_2Cr_2O_7$. ^{239d}

From anionic acyl complexes and Re(CO)₅FBF₃ Fischer-type bimetallic carbene complexes can be prepared. These reactions are another example for the isolobal⁶ analogy between Re(CO)₅⁺ and carbenium ions

$$L_nM$$
-COR⁻ + Re(CO)₅FBF₃ \rightarrow
 L_nM =C(R)O-Re(CO)₅ + BF₄⁻ (20)

where $L_nM = Cr(CO)_5$, $W(CO)_5$, $Cr(CO)_4(PPh_3)$, or $W(CO)_4(PPh_3)$ and R = Me, Ph, or Fc. ^{282,283}

CpRe(CO)(NO)COOH and Cp₂Zr(Cl)Me yield Cp-(ON)(OC)Re(μ -(η ¹-C: η ²-O,O))ZrCp₂Cl; CpRe(NO)-(CO)CH₂OH and Cp₂Zr(Cl)Me give Cp(ON)(OC)Re-CH₂O-ZrCp₂Cl.²⁸⁴ The anionic η ²-acetaldehyde complex [CpMo(CO)₂(η ²-MeCHO)]⁻ and CpMo(CO)₃BF₄ give CpMo(CO)(μ - η ¹, η ²-MeCHO)(μ -CO)Mo(CO)₂Cp.²⁸⁵

Closely related is the reaction of Cp(CO)(NO)Mo-(CROLi) with [CpFe(CO)₂(THF)] +BF₄, which led to the crystallographically characterized Cp(NO)Mo(μ -CO)[μ -C(O)R]FeCp(CO)²⁸⁶ with a π -bonded μ -acyl bridge. Here, however, metal-metal bonds are involved. From iron-bonded enolates and the Lewis acid precursors AuPPh₃Cl or Cp₂ZrCl₂ bimetallic complexes with either a "keto" or an "enol" bridge are obtained: [Cp(Ph₃P)(OC)Fe-C(CH₂)O-ZrCp₂Cl] and [Cp-(Ph₃P)(OC)Fe-C(O)CH₂-AuPPh₃]. Bimetallic μ -malonyl compounds have been obtained from in situ generated Cp*Re(NO)(PPh₃)(COCH₂Li) and M(CO)₅-(CF₃SO₃) (M = Mn, Re). Respectively and tetrathiosquarate dianion can function as bridges between two Re(CO)₅ or CpM(CO)₃ (M = Mo, W) moieties. Colling and Colling are considered and colling are colling and colling are colling and colling are colling and colling are colling and more colling are colling as a colling are colling and colling are colling are colling as a colling are colling and colling are colling are colling as a colling are colling are colling as a colling are colling are

2. Formation of Ligand-Bridged Cationic Complexes

Metalation of halide, pseudohalide, or chalcogenide ligands by organometallic Lewis acids has led to a large variety of dimeric metal cations:

$$L_n M - X + L_n M^+ \rightarrow [L_n M - X - M L_n]^+ \qquad (21)$$

Multifunctional compounds $L_n MX_m$ can be metalated more than once. Examples for these reactions include $\{[CpM(CO)_3]_2I\}^+$ (M = Mo, W), 290 [Cp(CO)₂Fe-X-Re-(CO)₅]+ (X = Cl, Br, I, N₃, NCO, NCC(CN)CN, SR, CSSMe, PPh₂, 282 [(Ph₃PAu)₂(μ -Cl)]+, 291 {[(CO)₅M]₂(μ -X)}+ (M = Mn, Re; X = Cl, Br, I, NCS, 292 CN, HCOO, F, 201 N₃³²⁴), {[Mo(CO)₂(dppe)₂]₂(μ -F)}+, 293 {[CpFe-(CO)₂]₂(μ -X)}+ (X = I, 20,53 Cl, Br, 294 O₂CR²⁹⁵), [[CpCr-(NO)₂]₂(μ -Cl)}+, 20 [Pd₃(dppe)₃(μ -CN)₃]³⁺, 296 [Pd-(C₆F₅)L₂]₂(μ -X)}+ (X = CN, SCN, N₃), 297 {[((Me_CNCH₂)₂C, H₃)P+1 (μ -Y)}+ (Y = Cl, Br, I, CN) 202 more than once. Examples for these reactions include $(PPh_3)_2(Cl)(H)(CO)]_2(\mu-SeCN)$ +. 299 A compound [Cp- $(OC)_2Fe]_2(\mu_3-CS_2)Re(CO)_5]^+$, in which carbon disulfide bridges three metals, has been obtained and structurally characterized.²⁸² It is isoelectronic with the neutral $[Cp(OC)_2Fe]_2(\mu_3-CS_2)[W(CO)_5].^{300}$ Tricyanomethanide coordinated to three metals via its nitrile N atoms has been obtained in {(OC)₅WNCC[CNRe(CO)₅]₂}+BF₄-.²⁸² Cationic thiolate-bridged heterometallic complexes [CpNi(μ -SR)₂MCp₂]⁺BF₄⁻ can be obtained from thiolates Cp₂M(SR)₂ (M = Ti, Mo) and [Cp₃Ni₂]⁺.^{101b} Tris(metalla)sulfonium, tris(metalla)selenonium, or tris(metalla)telluronium salts $[(L_nM)_3E]^+$ (E = S, Se, Te) have been obtained from chalcogenides and organometallic Lewis acids. Structurally characterized were the star-shaped cations $\{[Re(CO)_5]_3E\}^+$ (E = S, Se, Te)²⁶⁶ and $\{[CpFe(CO)_2]_3Se\}^{+301}$ Unexpectedly, the compounds {[CpFe(CO)₂]₃Se}⁺ and {[Cp(CO)₂Fe]₂Se-Se-Fe(CO)₂Cp)⁺ are formed by reaction of [CpFe- $(CO)_2]_2$ Se_n (n = 1, 2) with Re $(CO)_5$ FBF₃.³⁰² They are

closely related to the $[E(HgX)_3]^{+303}$ and $\{[Au-(PPh_3)]_3E\}^{+}$ salts, 304 which were obtained in a different way.

Di- and tricationic ligand-bridged systems with neutral bridge ligands have been mentioned before. Other examples are $\{[(OC)_5Re]^2(\mu-(NS)_2NMe)\}^{2+},^{306}$ $\{[CpFe-(CO)_2](\mu-Ph_2E_2)\}^{2+}$ (E = S, Se, Te), 307 and $\{[Re-(CO)_5]_n(\mu-L_{CN})\}^{n+}$ (L_{CN} = TCNE (n=2), TCNQ (n=3)). 239a Two interesting types of ligand bridges occur with acetylides. From Re(CO)₅FBF₃ and SiMe₃C=CH or CpFe(CO)₂C=CPh the σ -, π -bridged complexes

$$(OC)_5$$
Re $-C = C - H$

$$\begin{vmatrix} & & & & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ &$$

are obtained. The unexpected formation of the latter compound with a rhenium-carbon σ -bond was confirmed by X-ray crystal structure determination. CpW(CO)₃C=CPh and HBF₄ yield the structurally characterized 309

[HPtL₂(acetone)]⁺BF₄⁻ and PtL₂(C=CPh)₂³¹⁰ or Cp-(CO)₂W=CAr³¹¹ give μ -alkylidene complexes.

3. Formation of Cationic Hydride- and Acyl-Bridged Complexes

The concept of Lewis acid-Lewis base coupling, i.e., the reaction of organometallic Lewis acids with metal hydrides, has been proven to be a directed way for the synthesis of homo- and heterobimetallic hydridobridged complexes, which has been reviewed:³¹²

$$L_nM-H + L_nM^+ \rightarrow [L_nM-H-ML_n]^+ \qquad (22)$$

Thus the complexes $[(R_3P)_2(R')Pt(\mu-H)M(PR''_3)]^+$ (M = Ag, Au), 313 $[Cp_2M(\mu-H)_2Rh(PPh_3)_2]^+$ (M = Mo, W), 314 $[Cp_2W(\mu-H)_2Pt(Ph)(PEt_3)]^+$, 315 $[(CpFe)_2(\mu-dppe)(\mu-H)]^+$, 28 $\{[CpMo(CO)_3]_2(\mu-H)\}^+$ (M = Mo, W), 5,316 and $\{[CpM(NO)_2]_2(\mu-H)\}^+$ (M = Mo, W) 317 have been obtained. Protonation of the dihydride $CpRh(PR_3)H_2$ by CF_3COOH yields $\{[CpRh(PR_3)]_2(\mu-H)_3\}^+$. 318 Also protonation of bimetallic neutral complexes $[CpM(CO)_3]_2$ (M = Mo, W), 75 $[CpFe(CO)_2]_2$, 139 or $Mn_2(CO)_5$ (dppm) $_2$ 319 gives hydride-bridged cationic complexes.

From transition-metal acyl complexes and organometallic Lewis acids cationic acyl-bridged bimetallic complexes can be obtained

$$L_nM-C(=O)R + L_nM^+ \rightarrow [L_nM-C(R)-O-ML_n]^+$$
(23)

e.g., $[Cp(CO)(L)Fe-C(CH_3)O-Mo(CO)_2(L)Cp]^{+25,320,321}$ and $[Cp(L)(OC)_2Mo-C(CH_3)O-Mo(CO)_2(L)Cp]^{3.320b}$ These compounds can also be obtained by the reaction of transition-metal alkyl complexes with organometallic Lewis acids. It could be confirmed by a crystal structure determination 321 that a symmetric acyl bridge can also be formed: 320

CpMo(CO)₃⁺ + CpMo(CO)₃Me →
[[Cp(OC)₂Mo]₂(
$$\mu$$
- η ²-OCCH₃)]⁺ +
[Cp(OC)₃Mo-C(CH₃)O-Mo(CO)₃Cp]⁺ (24)

This reaction is another example of a Lewis acid me-

diated methyl migration.³²² Careful reexamination of the reaction of CpMo(CO)₃H with "CpMo(CO)₃+"⁵ showed that actually hydrido bridges are formed and—due to the stable metal-hydrogen bond—migration of hydride to a carbonyl ligand does not occur. ³¹⁶

Coordination of the acyl oxygen atom in [Cp- $(OC)_2$ Fe- CH_2 CO-FeCp $(CO)_2$] to "CpFe $(CO)_2^+$ " or "Cp₂ZrMe" yields cationic trinuclear μ_3 - η^3 -(C,C,O)-ketene complexes [Cp $(OC)_2$ Fe- CH_2 C (OML_n) -Fe- $(CO)_2$ Cp]⁺ (ML_n = CpFe $(CO)_2$, Cp₂ZrMe).³²³

F. Miscellaneous Reactions

1. Stochiometric Reactions

Organometallic Lewis acids are sufficiently electrophilic to cleave M-C linkages in organo derivatives of the main-group elements (M = B, Al, Si, Sn). Thus from the reaction of CpW(NO), BF4 with AlR3 or SnR4 the compounds CpW(NO)₂R are produced.²²² CpW-(NO)₂BF₄ and Re(CO)₅BF₄ react with NaBPh₄ to give CpW(NO)₂Ph²²² and Re(CO)₅Ph,³²⁴ respectively. CpRu(L)₂X and NaBPh₄ yield either CpRu(L)₂Ph, $[CpRu(L)_2]_2$, or $[CpRu(\eta^6-Ph-BPh_3)]$, depending on the reaction conditions.³²⁵ Alkynylstannanes and -silanes and Re(CO)₅FBF₃ give σ -alkynyl complexes Re-(CO)₅-C=CR.³⁰⁸ For R = H the σ , π -ethynide-bridged {[(OC)₅Re-C=CH]Re(CO)₅}+BF₄- is formed as the stable product, as was mentioned before. This compound can easily be deprotonated in a reversible reaction by Brönsted bases to give (OC)₅Re-C=C-Re(C-O)₅.308 In a similar manner, the reaction of Re(CO)₅F-BF₃ and Me₃SiCH=CH₂ produced the σ,π -vinylbridged complex²³⁸

While with the organometallic Lewis acids CpMo- $(CO)_2(L)FBF_3$ and alkynes cationic π -alkyne compounds $[CpM(CO)(L)(RCCR)]^+BF_4^{-5,136,227}$ are obtained, $M(CO)_5FBF_3$ (M = Mn, Re) and MeCCMe produce derivatives of a $(2\pi + 2\pi)$ -cycloaddition: Mn- $(CO)_5FBF_3$ yields the π -cyclobutadiene compound $Mn(CO)_4(\eta^4-C_4Me_4)^+BF_4^-$ with loss of carbon monoxide. With $Re(CO)_5FBF_3$ a 1,3-H shift is observed and the pentacarbonyl complex

is formed as a consequence of the more stable Re(CO) $_{5}$ unit. 88

Terminal alkynes and $[CpRu(L)_2(MeOH)]^+$ give rise to cationic vinylidene complexes $[Cp(L_2)Ru=C=CHR]^+$, while $[CpRu(CO)_2(MeCN)]^+BF_4^-$ and tolane afford the cyclobutadiene complex $[CpRu(\eta^4-C_4Ph_4)(MeCN)]^+BF_4^-$. 138

Similar to other Lewis acids CpMo(CO)₃FBF₃ induces ring opening and dimerization of oxirane, and the 1,4-dioxane complex [CpMo(CO)₃O(CH₂)₄O]⁺ is formed. ¹⁹⁶

 $CpCo(CO)_2$ reacts with $CpMo(CO)_3FBF_3^{25}$ but not with $Re(CO)_5FBF_3^{282}$ to yield a cationic bimetallic complex with a metal–metal bond. Similarly, $CpM\cdot(PMe_3)_2$ (M = Co, Rh) or $(C_6H_6)Os(PMe_3)(CNR)$ and $AuPPh_3Cl$ yield $[Cp(Me_3P)_2M-AuPPh_3]^+X^{-327}$ and $[(\eta^6-C_6H_6)(Me_3P)(RNC)Os-AuPPh_3]^+X^{-,328}$ respectively.

2. Catalytic Reactions

The acetone complex [CpMo(CO)₃(OCMe₂)]+BF₄catalyzes the reaction of acetone with oxirane to form 1,3-dioxolane. 196 E.g., alkene polymerization, oligomerization, or rearrangements can be catalyzed by [Fe-(NO)₂Cl]₂/AgPF₆, ³²⁹ [Mo(NO)₂(MeCN)₄]^{2+,150} CpW-(NO)₂BF₄, ²²² L₂PdCl₂/AgBF₄ mixtures, ³³⁰ or (η^3 - C_3H_5)Ni(PMe_3)(PBF_3) and related systems Ni(n^3 - C_3H_5)(PR_3)(PR_3)(PR_3). Olefin metathesis can be induced by MoCl₂(NO)₂(PR₃)₂/AlEtCl₂ mixtures and similar systems, where the intermediate formation of a Mo-Cl-AlCl₃ moiety is discussed.³³¹ Claisen ester condensation reactions as well as the formation of 1,3dicarbonyl compounds from 1-alkynes and acid anhydrides are catalyzed by TiCl₂(OSO₂CF₃).³³² Diene polymerization and Diels-Alder reactions are catalyzed by (Me₃P)(ON)(OC)₃WFSbF₅;³³³ the X-ray structure of the presumed catalytic intermediate [(Me₃P)(ON)-(OC)₃W(acrolein)]⁺ was determined. Hydroformylation of olefins is catalyzed by [(PPh₃)₃Rh(CO)]⁺[HC- $(SO_2CF_3)_2]^{-.334}$

Ir(CO)(PPh₃)₂(OClO₃) catalyzes the hydrogenation of unsaturated aldehydes.³³⁵ The most important cationic complexes are [(R₃P)₂Rh(solv)₂]⁺ and [IrH₂L₂-(solv)₂]⁺ for olefin hydrogenation or C-H bond cleavage reactions, e.g., benzene formation from cyclohexane.³³⁶ This subject appears to be, however, beyond the scope of this review.

VI. Addendum

The rapid growth of this field is documented by a series of recent interesting communications.

The complexes $Cp_2Ti(FEF_5)_2$ (E = As, Sb) have been prepared in SO₂ from AgEF₆ and Cp₂TiCl₂³³⁷ and from Cp₂TiF₂ and AsF₅³³⁸ and the complexes [Cp₂Ti- $(NCCH_3)_3]^{2+339}$ and $CpTi(SO_2)_n(EF_6)_3$ have been studied. 340 Cp₂Ti(FAsF₅)₂ has been characterized by X-ray diffraction.³³⁸ The extremely reactive organometallic Lewis acid $[Cp(OC)(R_2O)Fe(\eta^2-CH_2=CHCH_3)]^+BF_4^$ was obtained by protonation of $Cp(OC)Fe(\eta^3$ -allyl) with $HBF_4 \cdot OR_2$. In this paper³⁴¹ previous work on the chemistry of CpL₂Fe⁺ cations is thoroughly described. Coordination of tetrafluoroborate could be shown by ¹⁹F NMR in $Cp(OC)_2Fe(FBF_3)$, ³⁴¹ $Cp(OC)_2Mo(\eta^2-1)$ CH_2 = $CHCH_3$)(FBF₃)³⁴¹ and in Ph₃P(OC)₄Mn(FBF₃). 342 Ligation of CH₂Cl₂ to the chiral Lewis acid Cp(ON)-(Ph₃P)Re⁺ has been definitely proven by low temperature ¹³C NMR spectra. ³⁴³ A hydrido-methyl complex [Cp(ON)(Ph₃P)Re(H)(Me)]⁺ has been detected as intermediate in the formation of Cp(ON)(Ph₃P)Re⁺ from Cp(ON)(Ph₃P)ReCH₃ and HBF₄·OEt₂.³⁴³ The chemistry of the stereochemically rigid Lewis acid Cp-(ON)(Ph₃P)Re⁺ has been extended.³⁴³⁻³⁴⁵ Impressive is the selective binding of one enantioface of monosubstituted alkenes to this cation.³⁴⁶ In a comprehensive study, preparation, reactions, and structures of a series of complexes (R₃P)(ON)(OC)₃W (FSbF₅, FPF₅, FBF₃) have been described.³⁴⁷ NMR spectra and crystal structure determination confirmed that the anions are coordinated to tungsten both in solution and in the solid state. Apparently the strongly electron-withdrawing NO ligand—trans to the coordinated anion—increases the Lewis acidity of the metal. "Spinning" of the coordinated SbF₆⁻ and BF₄⁻ ligands in these complexes also has been observed by ¹⁹F NMR spectroscopy. Bond length comparison has been made in a series of adducts of SbF₆, BF₄, PF₆, and ReF₆. The order of binding strength in these tungsten complexes is SbF₆ $> BF_4^- > PF_6^{-.347}$ ClO₄-, BF₄-, and PF₆- complexes of Cd²⁺, Pb²⁺, and Tl⁺ have been electrochemically generated in noncoordinating solvents and the equilibrium constants show that PF₆ ligation is considerably weaker than that of ClO₄ and BF₄.348 Cp(Ph₃P)₂RuOSO₂CF₃ with thiirane to give [Cp(Ph₃P)₂Ru-(CH₂CH₂S)]+SO₃CF₃-349 Protonation of H₂Ru[P-(CH₂CH₂CH₂PMe₂)₃P] by HBF₄ yields the coordinaunsaturated complex HRu[P-(CH₂CH₂CH₂PMe₂)₃P]⁺BF₄^{-.350} The reaction of arenes with $(OC)_5MFBF_3$ (M = Mn, Re) provides an efficient route to cationic complexes $[(\eta^6$ -arene)M(CO)₃]⁺-BF₄-.351,352

VII. Acknowledgment

W.B. is deeply indebted to his former and present co-workers Dr. Klaus Schloter, Dr. Bernhard Olgemöller, Dr. Luitgard Olgemöller, Herbert Ernst, Dr. Karlheinz Sünkel, Dr. Günter Urban, Dr. Herbert Bauer, Dr. Klaus Raab, Dr. Mathilde Appel, Dr. Wolfgang Sacher, Dr. Jürgen Heidrich, Dr. Peter Steil, Dr. Peter M. Fritz, Dr. Martin Schweiger, Elke Fritsch, and Torsten Weidmann for their invaluable contributions to this field and Dr. Ulrich Nagel and Manfred Steimann for crystal structure determinations. We thank Hannelore Hross, Christl Fengler, and Dr. Erich Leidl for their help in preparing the manuscript and Dr. A. Kendrik for reading the manuscript. Generous support by the Deutsche Forschungsgemeinschaft and Fonds der Chemischen Industrie is gratefully acknowledged.

VIII. Abbreviations

bpy 2,2'-bipyridine COD cyclooctadiene Cp η^5 -cyclopentadienyl

Cp* η^5 -pentamethylcyclopentadienyl dmpe bis(dimethylphosphino)ethane dppe 1,2-bis(diphenylphosphino)ethane

en ethylene diamine
Fc ferrocenyl
nbd norbornadiene
OEP octaethylporphyrinate
OTs p-toluenesulfonate

py pyridine THF tetrahydrofuran

tmen tetramethylethylenediamine TPP tetraphenylporphyrinate

References

 Davies, J. A.; Hartley, F. R. Chem. Rev. 1981, 81, 79.
 Laing, K. R.; Robinson, S. D.; Uttley, M. F. J. Chem. Soc., Dalton Trans. 1973, 2713.

- (3) Mews, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 640.
 (4) Richter, K.; Fischer, E. O.; Kreiter, C. G. J. Organomet.
- Chem. 1976, 122, 187.

 Beck, W.; Schloter, K. Z. Naturforsch., B 1978, 33b, 1214.

 Evidence for a complex with the Me₂Si—CH₂ ligand has been presented recently: Lewis, C.; Wrighton, M. S. J. Am. Chem. Soc. 1983, 105, 7768.
- (a) Hoffmann, R. Angew. Chem., Int. Ed. Engl. 1982, 21, 711.
- (b) Stone, F. G. A. Angew. Chem., Int. Ed. Engl. 1984, 23, 89. Werner, H. Angew. Chem., Int. Ed. Engl. 1983, 22, 927. See also: Müller, H.; Vahrenkamp, H. Chem. Ber. 1980, 113,
- (8) Rosenthal, M. R. J. Chem. Educ. 1973, 50, 331 and references therein.
- 106, 1510. (c) However, formation of coordinated BF₄ in Rh(PPh₃)₃BF₄ has been postulated from conductivity measurements: Legzdins, P.; Mitchell, R. W.; Rempel, G. L.; Ruddick, J. D.; Wilkinson, G. J. Chem. Soc. A 1970, 3322. See also: Pimblett, G.; Garner, C. D.; Clegg, W. J. Chem. Soc., Dalton Trans. 1985, 1977.
- (10) Muetterties, E. L.; Watson, P. L. J. Am. Chem. Soc. 1978, 100, 6978.
- (11) (a) Desjardins, C. D.; Edwards, D. B.; Passmore, J. Can. J. Chem. 1979, 57, 2714. (b) Doyle, G.; Eriksen, K. A.; van Engen, D. Inorg. Chem. 1983, 22, 2892.
 (12) (a) Elian, M.; Hoffmann, R. Inorg. Chem. 1975, 14, 1059. (b)
- Hofmann, P.; Stauffert, P.; Schore, N. E. Chem. Ber. 1982,
- (13) (a) Driessen, R. A. J.; Hulsbergen, F. B.; Vermin, W. J.; Reedijk, J. Inorg. Chem. 1982, 21, 3594. (b) Tomlinson, A. A. G.; Bonamico, M.; Dessy, G.; Fares, V.; Scaramuzza, L. J. Chem. Soc., Dalton Trans. 1972, 1671. (c) Gaughan, A. P., Jr.; Dori, Z.; Ibers, J. A. Inorg. Chem. 1974, 13, 1657. (d) Mikulski, C. M.; Gelfand, L. S.; Schwartz, E. S. C.; Pytlewski, L. L.; Karayannis, N. M. Inorg. Chim. Acta, 1980, 39, 143.
- Mikulski, C. M.; Gelfand, L. S.; Schwartz, E. S. C.; Pytlewski, L. L.; Karayannis, N. M. Inorg. Chim. Acta 1980, 39, 143.

 (14) (a) Foley, J.; Kennefick, D.; Phelan, D.; Tyagi, S.; Hathaway, B. J. Chem. Soc., Dalton Trans. 1983, 2333. (b) Nakai, H. Bull. Chem. Soc. Jpn. 1983, 56, 1637. (c) Mayfield, H. G., Jr.; Bull, W. E. J. Chem. Soc. A 1971, 2279. (d) Thomas, R. R.; Chebolu, V.; Sen, A. J. Am. Chem. Soc. 1986, 108, 4096.

 (15) (a) Gowda, N. M. N.; Naikar, S. B.; Reddy, G. K. N. Adv. Inorg. Chem. Radiochem. 1984, 28, 255. (b) For more recent examples, see: Fourati, M.; Chaabouni, M.; Belin, C. H.; Charbonnel, M.; Pascal, J. L.; Potier, J. Inorg. Chem. 1986, 25, 1386. (c) House, D. A.; Steel, P. J.; Watson, A. A. J. Chem. Soc., Chem. Commun. 1987, 1575.

 (16) Garner, C. J.; Hughes, D. Adv. Inorg. Chem. Radiochem.
- (16) Garner, C. J.; Hughes, D. Adv. Inorg. Chem. Radiochem. 1975, 17, 1.

- 1975, 17, 1.
 Lawrance, G. A. Chem. Rev. 1986, 86, 17.
 Kukushkin, V. Yu.; Kukushkin, Yu. N. Sov. J. Coord. Chem. (Engl. Transl.) 1986, 11, 583.
 (a) Jackson, W. G.; Begbie, C. M. Inorg. Chem. 1981, 20, 1654. (b) Dixon, N. E.; Jackson, W. G.; Lawrance, G. A.; Sargeson, A. M. Inorg. Synth. 1983, 22, 103. (c) Anderes, B.; Collins, S. T.; Lavallee, D. K. Inorg. Chem. 1984, 23, 2201. (d) Harman, W. D.; Taube, H. Inorg. Chem. 1987, 26, 2917. (e) Taube, H. Pure Appl. Chem. 1979, 51, 901. (f) Harman, W. D.; Fairlie, D. P.; Taube, H. J. Am. Chem. Soc. 1986, 108, 8223.

- 8223.
 Hartmann, G.; Froböse, R.; Mews, R.; Sheldrick, G. M. Z. Naturforsch., B 1982, 37b, 1234.
 Deno, N. C.; Friedman, N.; Hodge, J. D.; McKay, F. P.; Saines, G. J. Am. Chem. Soc. 1962, 84, 4713.
 (a) Sanders, J. R. J. Chem. Soc., Dalton Trans. 1972, 1333.
 (b) Sanders, J. R. J. Chem. Soc., Dalton Trans. 1973, 743.
 Legzdins, P.; Martin, D. T. Inorg. Chem. 1979, 18, 1250.
 Harris, P. J.; Knox, S. A. R.; McKinney, R. J.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1978, 1009.
 Sünkel, K.; Nagel, U.; Beck, W. J. Organomet. Chem. 1983, 251, 297

- (a) Leoni, P.; Aquilini, E.; Pasquali, M.; Marchetti, F.; Sabat, M. J. Chem. Soc., Dalton Trans. 1988, 329. Asdar, A.; Tudoret, M.-J.; Lapinte, C. J. Organomet. Chem. 1988, 349, 343. (b) Turaki, N. N.; Huggins, J. M. Organometallics 1986, 5,
- (27) Bursten, B. E.; Gatter, M. G. J. Am. Chem. Soc. 1984, 106,
- LaCroce, S. J.; Menard, K. P.; Cutler, A. R. J. Organomet.
- Chem. 1980, 190, C79.

 (a) Sweet, J. R.; Graham, W. A. G. Organometallics 1983, 2, 135. (b) Sweet, J. R.; Graham, W. A. G. J. Am. Chem. Soc.
- 1983, 105, 305. (30) Hoyano, J. K.; May, C. J.; Graham, W. A. G. Inorg. Chem.
- 1982, 21, 3095. Sweet, J. R.; Graham, W. A. G. Organometallics 1982, 1, 982.
- (32) Berke, H.; Weiler, G. Z. Naturforsch., B 1984, 39b, 431.

- (33) Otto, E. E. H.; Brintzinger, H. H. J. Organomet. Chem. 1978, 148, 29.
- (34) Sünkel, K. Ph.D. Thesis, Universität München, 1982. Sünkel, K.; Beck, W., unpublished.
 (35) Matsui, Y.; Orchin, M. J. Organomet. Chem. 1982, 236, 381.
- Sanders, J. R. J. Chem. Soc., Dalton Trans. 1973, 748; 1975, (36)
- (37) Hoch, M.; Rehder, D. J. Organomet. Chem. 1985, 288, C25.
- Bruno, J. W.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1984, 106, 1663.
- Sutherland, B. R.; Cowie, M. Inorg. Chem. 1984, 23, 1290. Sweany, R. L.; Owens, J. W. J. Organomet. Chem. 1983, 255, (40)
- (41) Green, M. L. H.; Nagy, P. L. I. J. Organomet. Chem. 1963,
- (42) Raab, K.; Olgemöller, B.; Schloter, K.; Beck, W. J. Organomet. Chem. 1981, 214, 81. Raab, K.; Nagel, U.; Beck, W. Z.
- met. Chem. 1981, 214, 81. Kaab, K.; Nagel, U.; Beck, W. Z. Naturforsch., B 1983, 38b, 1466.
 (43) (a) Kiel, W. A.; Lin, G.-Y.; Bodner, G. S.; Gladysz, J. A. J. Am. Chem. Soc. 1983, 105, 4958. (b) Patton, A. T.; Strouse, C. E.; Knobler, C. B.; Gladysz, J. A. J. Am. Chem. Soc. 1983, 105, 5804. (c) Asaro, M. F.; Bodner, G. S.; Gladysz, J. A.; Cooper, S. R.; Cooper, N. J. Organometallics 1985, 4, 1020. (d) Georgiou, S.; Gladysz, J. A. Tetrahedron 1986, 42, 1109 and references therein. (e) Rodner, G. S.; Gladysz, J. A. and references therein. (e) Bodner, G. S.; Gladysz, J. A.; Nielsen, M. F.; Parker, V. D. J. Am. Chem. Soc. 1987, 109,

- (46) Bly, R. S.; Bly, R. K.; Hossain, M. M.; Silverman, G. S.; Wallace, E. Tetrahedron 1986, 42, 1093.
- (47) Cutler, A. R., personal communication.
 (48) Kiel, W. A.; Buhro, W. E.; Gladysz, J. A. Organometallics **1984**, 3, 879
- (49) Appel, M.; Sacher, W.; Beck, W. J. Organomet. Chem. 1987, 322, 351.
- (50) Foxman, B. M.; Klemarczyk, P. T.; Liptrot, R. E.; Rosenblum, M. J. Organomet. Chem. 1980, 187, 253. (51) (a) Reger, D. L.; Coleman, C. J. Organomet. Chem. 1977, 131
- 153. (b) Reger, D. L.; Coleman, C. J.; McElligott, P. J. J. Organomet. Chem. 1979, 171, 73. (c) Reger, D. L.; McElligott, P. J. J. Am. Chem. Soc. 1980, 102, 5923. (d) Reger, D. L.; Coleman, C. J. Inorg. Chem. 1979, 18, 3155. (e) Reger, D. L.; Coleman, C. J. Inorg. Chem. 1979, 18, 3155. (e) Reger, D.
- L. Acc. Chem. Res. 1988, 21, 229.
 (52) Green, M. L. H.; Whiteley, R. N. J. Chem. Soc. A 1971, 1943.
 (53) Mattson, B. M.; Graham, W. A. G. Inorg. Chem. 1981, 20,
- (a) Abney, K. D.; Long, K. M.; Anderson, O. P.; Strauss, S. H. Inorg. Chem. 1987, 26, 2638.
 (b) Strauss, S. H.; Abney, K. D.; Long, K. M.; Anderson, O. P. Inorg. Chem. 1984, 23, 1994.
- (55) Usôn, R.; Riera, V.; Gimeno, J.; Laguna, M.; Gamasa, M. P. J. Chem. Soc., Dalton Trans. 1979, 996.
- (56) (a) Wimmer, F. L.; Snow, M. R. Aust. J. Chem. 1978, 31, 267.
 (b) Horn, E.; Snow, M. R. Aust. J. Chem. 1980, 33, 2369.
 (c) Horn, E.; Snow, M. R. Aust. J. Chem. 1984, 37, 1375.
 (57) Heidrich, J.; Loderer, D.; Beck, W. J. Organomet. Chem. 1986, 312, 329.
- (58) Nitschke, J.; Schmidt, S. P.; Trogler, W. C. Inorg. Chem. 1985, 24, 1972.
- 1985, 24, 1972.
 (59) (a) Mallela, S. P.; Aubke, F. Inorg. Chem. 1985, 24, 2969. (b) Gerus, I. I.; Yagupol'skii, Yu. L.; Volkov, N. D. Zh. Org. Khim. 1982, 18, 1186.
 (60) Regina, F. J.; Wojcicki, A. Inorg. Chem. 1980, 19, 3803.
 (61) (a) Davies, J. A.; Hartley, F. R.; Murray, S. G. J. Chem. Soc., Dalton Trans. 1980, 2246. (b) Roulet, R.; Vouillamoz, R. Helv. Chim. Acta 1974, 57, 2139.
 (62) Reed, C. A.; Roper, W. R. J. Chem. Soc. Dalton Trans. 1973.

- (62) Reed, C. A.; Roper, W. R. J. Chem. Soc., Dalton Trans. 1973, 1365, 1370
- (63) Colsman, M. R.; Manning, M. C.; Anderson, O. P.; Strauss, S. H. *Inorg. Chem.* 1987, 26, 3958.
- (64) Smith, G.; Cole-Hamilton, D. J.; Gregory, A. C.; Gooden, N. G. Polyhedron 1982, 1, 97.
- (a) Ashworth, T. V.; Singleton, E. J. Organomet. Chem. 1974, 77, C31. (b) Reimann, R. H.; Singleton, E. J. J. Organomet. Chem. 1973, 59, C24.
- Chem. 1973, 59, C24.
 (66) (a) Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. 1971, 93, 3089. (b) Usón, R.; Oro, L. A.; Ciriano, M. A.; Lahoz, F. J.; Bello, M. C. J. Organomet. Chem. 1982, 234, 205.
 (67) (a) Jordan, R. F.; Dasher, W. E.; Echols, S. F. J. Am. Chem. Soc. 1986, 108, 1718. (b) Thewalt, U.; Lasser, W. Z. Naturforsch., B 1983, 38b, 1501.
 (68) White, C.; Thompson, S. J.; Maitlis, P. M. J. Chem. Soc., Dalton Trans. 1977, 1654; 1978, 1305.
 (69) Ballivet-Tkatchenko, D.; Bremard, C. J. Chem. Soc., Dalton Trans. 1983, 1143.

- Trans. 1983, 1143.
- Trans. 1363, 1143. Usón, R.; Forniés, J.; Tomás, M.; Casas, J. M.; Cotton, F. A.; Falvello, L. R. J. Am. Chem. Soc. 1985, 107, 2556.

- (71) Liston, D. J.; Reed, C. A.; Eigenbrot, C. W.; Scheidt, W. R. Inorg. Chem. 1987, 26, 2739.
- Sharp, P. R.; Frank, K. G. Inorg. Chem. 1985, 24, 1808. Johnson, B. F. G.; Kaner, D. A.; Lewis, J.; Raithby, P. R.; Taylor, M. J. Polyhedron 1982, 1, 105.

 (a) Silverthorn, W. E. J. Chem. Soc., Chem. Commun. 1971,
- 1310. (b) Balavoine, G.; Green, M. L. H.; Sauvage, J. P. J. Organomet. Chem. 1977, 128, 247.
- (75) Davison, A.; McFarlane, W.; Pratt, L.; Wilkinson, G. J. Chem. Soc. 1962, 3653.
- (76) (a) Bianchini, C.; Mealli, C.; Peruzzini, M.; Zanobini, F. J. Am. Chem. Soc. 1987, 109, 5548. (b) Burdett, J. K.; Phillips, J. R.; Pourian, M. R.; Poliakoff, M.; Turner, J. J.; Upmacis, R. Inorg. Chem. 1987, 26, 3054. (c) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1987, 109, 5865. (d) Siedle, A. R.; Newmark, R. A.; Pignolet, L. H. Inorg. Chem. 1986, 25, 3412. (e) For a recent review on η²-H₂ complexes, see: Kubas, G. J. Acc. Chem. Res. 1988, 21, 120. J. Acc. Chem. Res. 1988, 21, 120.
- G. Act. Chem. Res. 1306, 21, 120.
 Schweiger, M. Ph.D. Thesis, University of Munich, 1988.
 (a) Crabtree, R. H.; Hlatky, G. G.; Holt, E. M. J. Am. Chem. Soc. 1983, 105, 7302. (b) Rhodes, L. F.; Zubkowski, J. D.; Folting, K.; Huffman, J. C.; Caulton, K. G. Inorg. Chem. 1982, 21, 4185.

- 1982, 21, 4185.
 Ellis, R.; Henderson, R. A.; Hills, A.; Hughes, D. L. J. Organomet. Chem. 1987, 333, C6.
 Siedle, A. R.; Newmark, R. A.; Pignolet, L. H.; Howells, R. D. J. Am. Chem. Soc. 1984, 106, 1510.
 (a) Allison, J. D.; Walton, R. A. J. Chem. Soc., Chem. Commun. 1983, 401. (b) Moehring, G. A.; Walton, R. A. J. Chem. Soc., Dalton Trans. 1987, 715.
 Werner, H.; Kletzin, H. J. Organomet. Chem. 1983, 243, C59.
 (a) Rhodes, L. F.: Caulton, K. G. J. Am. Chem. Soc. 1985.
- (83) (a) Rhodes, L. F.; Caulton, K. G. J. Am. Chem. 1985, 243, C95.
 (87) (259. (b) Crabtree, R. H.; Klatky, G. G.; Parnell, C. P.; Segmüller, B. E.; Uriarte, R. J. Inorg. Chem. 1984, 23, 354.
 (c) Crabtree, R. H.; Hlatky, G. G. Inorg. Chem. 1984, 23, 2388. (d) Harding, P. A.; Robinson, S. D. J. Chem. Soc., Dalton Trans. 1987, 947.
 (84) (a) Grundy, K. B.; Robertson, K. N. Inorg. Chem. 1985, 24.
- (84) (a) Grundy, K. R.; Robertson, K. N. Inorg. Chem. 1985, 24, 3898. (b) Cameron, T. S.; Grundy, K. R.; Robertson, K. N. Inorg. Chem. 1982, 21, 4149.
- (85) (a) Harding, P. A.; Preece, M.; Robinson, S. D.; Henrick, K. Inorg. Chim. Acta 1986, 118, L31. (b) Siedle, A. R.; Newmark, R. A.; Pignolet, L. H.; Wang, D. X.; Albright, T. A. Organometallics 1986, 5, 38. (c) Cole-Hamilton, D. J.; Young, R. J.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1976, 1995. (d) Harding, P. A.; Robinson, S. D.; Henrick, K. J. Chem. Soc., Dalton Trans. 1988, 415.
- (86) (a) Roustan, J. L. A.; Merour, J. Y.; Forgues, A. J. Organomet. Chem. 1980, 186, C23. (b) Ahmed, F. R.; Roustan, J. L. A.; Al-Janabi, M. Y. Inorg. Chem. 1985, 24, 2526.
 (87) Trogler, W. C. J. Am. Chem. Soc. 1979, 101, 6459.
 (88) Raab, K.; Beck, W. Chem. Ber. 1984, 117, 3169.

- (89) Griesmann, K. H.; Stasunik, A.; Angerer, W.; Malisch, W. J. Organomet. Chem. 1986, 303, C29.
- (90) Appel, M.; Schloter, K.; Heidrich, J.; Beck, W. J. Organomet. Chem. 1987, 322, 77.

- Chem. 1987, 322, Tr.
 (91) (a) Merrifield, J. H.; Fernández, J. M.; Buhro, W. E.; Gladysz, J. A. Inorg. Chem. 1984, 23, 4022. (b) Fernández, J. M.; Gladysz, J. A. Inorg. Chem. 1986, 25, 2672.
 (92) Forschner, T. C.; Cutler, A. R. Organometallics 1985, 4, 1247.
 (93) Kletzin, H.; Werner, H. J. Organomet. Chem. 1985, 291, 213.
 (94) (a) Watson, P. L.; Bergman, R. G. J. Am. Chem. Soc. 1980, 102, 2698. (b) Watson, P. L.; Bergman, R. G. J. Am. Chem. Soc. 1979, 101, 2055.
 (95) Fischer R. A.; Herrmann, W. A. J. Organomet. Chem. 1987.
- (95) Fischer, R. A.; Herrmann, W. A. J. Organomet. Chem. 1987,
- (96) Flood, T. C.; Miles, D. L. J. Organomet. Chem. 1977, 127, 33.
 (97) Green, M. L. H.; Massey, A. G.; Moelwyn-Hughes, J. T.; Nagy, P. L. I. J. Organomet. Chem. 1967, 8, 511.
- Nagy, P. L. I. J. Organomet. Chem. 1967, 8, 511.
 (98) O'Connor, E. J.; Kobayashi, M.; Floss, H. G.; Gladysz, J. A. J. Am. Chem. Soc. 1987, 109, 4837.
 (99) (a) Anderson, S. N.; Cooksey, C. J.; Holton, S. G.; Johnson, M. D. J. Am. Chem. Soc. 1980, 102, 2312. (b) Bryndza, H. E.; Fong, L. K.; Paciello, R. A.; Tam, W.; Bercaw, J. E. J. Am. Chem. Soc. 1987, 109, 1444.
 (100) Braterman, P. S. In Reactions of Coordinated Ligands; Braterman, P. S., Ed.; Plenum: New York, 1986; Vol. 1, p 37.
 (101) (a) Salzer, A.; Werner, H. Angew. Chem., Int. Ed. Engl. 1972, 11, 930. (b) Werner, H.; Ulrich, B.; Schubert, U.; Hofmann, P.; Zimmer-Gasser, B. J. Organomet. Chem. 1985, 297, 27.
 (102) (a) Salzer, A.; Werner, H. J. Organomet. Chem. 1975, 87, 101. (b) Salzer, A.; Werner, H. Z. Anorg. Allg. Chem. 1975, 418, 88.

- (103) Kuhn, N.; Schumann, H.; Winter, M.; Zauder, E. Chem. Ber. 1988, 121, 111.
 (104) (a) Markham, J.; Menard, K.; Cutler, A. Inorg. Chem. 1985, 24, 1581. (b) Stuhl, L. S.; Muetterties, E. L. Inorg. Chem. 1978, 17, 2148. (c) Schrock, R. R.; Johnson, B. F.; Lewis, J. J. Chapter Chem. 1978, 17, 2148. (c) Schrock, R. R.; Johnson, B. F.; Lewis, J. J. Chem. Soc., Dalton Trans. 1974, 951.

- (105) (a) Sperling, K. Ph.D. Thesis, Universität Bochum, 1983. (b) Jolly, P. W. Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford, 1982; Vol. 8, p 615. (c) Bogdanovic, B. Adv. Organomet. Chem. 1979, 17, 105. (d) Wilke, G. Angew. Chem., Int. Ed. Engl. 1988, 27, 189.
 (106) Poffenberger, C. A.; Wojcicki, A. Inorg. Chem. 1980, 19, 3795.
 (107) (a) Edidin, R. T.; Norton, J. R. J. Am. Chem. Soc. 1986, 108, 948. (b) Warner, K. E.; Norton, J. R. Organometallics 1985, 4, 2150.
- 4, 2150.
- (108) Fischer, E. O.; Fichtel, K. Chem. Ber. 1961, 94, 1200. Fischer,
- (108) Fischer, E. O.; Fichtel, K.; Öfele, K. Chem. Ber. 1962, 95, 249. Fischer, E. O.; Moser, E. Inorg. Synth. 1970, 12, 35.
 (109) Hieber, W.; Kruck, Th. Z. Naturforsch., B 1961, 16b, 709. Hieber, W.; Frey, V.; John, P. Chem. Ber. 1967, 100, 1961. Kruck, Th.; Noack, M. Chem. Ber. 1963, 96, 3028. Kruck, Th.; Höfler, M. Chem. Ber. 1963, 96, 3035.
 (110) Hiera B. J. Nichtel B. S. Stiddard M. H. R. J. Chem.
- (110) Haines, R. J.; Nyholm, R. S.; Stiddard, M. H. B. J. Chem. Soc. A 1967, 94. Treichel, P. M.; Barnett, K. W.; Shubkin, R. L. J. Organomet. Chem. 1967, 7, 449.
 (111) Abel, E. W.; Tyfield, S. P. Adv. Organomet. Chem. 1970, 8,
- (112) Pankowski, M.; Demerseman, B.; Bouquet, G.; Bigorgne, M.
- J. Organomet. Chem. 1972, 35, 155. Pankowski, M.; Bigorgne, M.; Chauvini, Y. J. Organomet. Chem. 1976, 110, 331.
 (113) (a) Cotton, F. A.; Schwotzer, W. J. Am. Chem. Soc. 1986, 108, 4657. (b) Cotton, F. A.; Schwotzer, W. Organometallics 1987, 6, 1275. (c) Cotton, F. A.; Schwotzer, W.; Simpson, C. Q., II. Angew. Chem., Int. Ed. Engl. 1986, 25, 637.
 (114) Allegge C. Tottomenti Carganada C. Immirri A. Porti
- Angen. Chem., Mt. Ed. Engl. 1986, 25, 637.
 Allegra, G.; Tettamanti Casagrande, G.; Immirzi, A.; Porri, L.; Vitulli, G. J. Am. Chem. Soc. 1970, 92, 289.
 (115) (a) Thewalt, U.; Stollmaier, F. J. Organomet. Chem. 1982, 228, 149. Thewalt, U.; Österle, F. J. Organomet. Chem. 1979, 172, 317. (b) Eisch, J. J.; Piotrowski, A. M.; Brownstein, S. K.; Gabe, E. J.; Lee, F. L. J. Am. Chem. Soc. 1985, 107, 7219.
 (116) (Combined and Chem. 1985, 107, 7219.
- (116) (a) Gmelin Handbuch der Anorganischen Chemie, 8. Auflage Titan, Titanorganische Verbindungen, Teil 2, p 245; Springer-Verlag: Berlin, 1980. Appel, M. Ph.D. Thesis, Universität München, 1986. (b) Bauer, H.; Nagel, U.; Beck, W. J. Organomet. Chem. 1985, 290, 219.
- (117) Scherer, O. J.; Jungmann, H. J. Organomet. Chem. 1982, 228,
- (118) Aylett, B. J.; Colquhoun, H. M. J. Chem. Res. (S) 1977, 148. (119) Dodd, D.; Johnson, M. D. J. Chem. Soc. B 1971, 662
- (120) (a) Fischer, E. O.; Walz, S.; Ruhs, A.; Kreissl, F. R. Chem.

 Ber. 1978, 111, 2765. (b) Fischer, E. O.; Wittmann, D.; Himmelreich, D.; Schubert, U.; Ackermann, K. Chem. Ber. 1982,
- (121) Otto, E. E. H.; Brintzinger, H. H. J. Organomet. Chem. 1979, 170, 209.
- (122) Richmond, T. G.; Basolo, F.; Shriver, D. F. Organometallics 1982, 1, 1624.
- (123) Nöth, H.; Hartwimmer, R. Chem. Ber. 1960, 93, 2246.
- (124) (a) Eaborn, C.; Farrell, N.; Murphy, J. L.; Pidcock, A. J. Organomet. Chem. 1973, 55, C68. (b) Eaborn, C.; Farrell, N.; Murphy, J. L.; Pidcock, A. J. Chem. Soc., Dalton Trans. 1976, 58. (c) Eaborn, C.; Farrell, N.; Pidcock, A. J. Chem. Soc., Dalton Trans. 1976, 289. (d) Connor, J. A.; Hudson, G. A. J. Organomet. Chem. 1974, 73, 351. (e) Sontag, C.; Orama, O. Parle J. Chem. Per 1987, 1997, 550.
- O.; Berke, H. Chem. Ber. 1987, 120, 559. (125) (a) Werner, K. v.; Beck, W. Chem. Ber. 1972, 105, 3209. (b) Beck, W.; Werner, K. v. Chem. Ber. 1971, 104, 2901. (c) Beck, W.; Kreutzer, P.; Werner, K. v. Chem. Ber. 1971, 104, 528. (d) Fehlhammer, W. P.; Beck, W.; Pöllmann, P. Chem. Ber. 1969, 102, 3903.
- (126) (a) Druce, P. M.; Lappert, M. F.; Riley, P. N. K. J. Chem. Soc., Chem. Commun. 1967, 486. (b) Clark, H. C.; Dixon, K. R.; Jacobs, W. J. J. Am. Chem. Soc. 1969, 91, 596, 1346.
 (127) Komiya, S.; Kochi, J. K. J. Organomet. Chem. 1977, 135, 65.
- (128) (a) Ishchenko, V. M.; Soloveichik, G. L.; Bulychev, B. M.; Sokolova, T. A. Russ. J. Inorg. Chem. (Engl. Transl.) 1984, 29, 66. (b) Ishchenko, V. M.; Bulychev, B. M.; Bel'skii, V. K.; Soloveichik, G. L.; Ellert, O. G.; Seifulina, Z. M. Sov. J.
- Soloveichik, G. L.; Ellert, O. G.; Seifulina, Z. M. Sov. J. Coord. Chem. (Engl. Transl.) 1985, 11, 483.
 (129) (a) Connelly, N. G.; Dahl, L. F. J. Chem. Soc., Chem. Commun. 1970, 880. (b) Reimann, R. H.; Singleton, E. J. Organomet. Chem. 1971, 32, C44; J. Chem. Soc., Dalton Trans. 1973, 2658. (c) Connelly, N. G.; Davies, J. D. J. Organomet. Chem. 1972, 38, 385. (d) Drew, D.; Darensbourg, D. J.; Darensbourg, M. Y. Inorg. Chem. 1975, 14, 1579. (e) Krusic, P. J.; Stoklosa, H.; Manzer, L. E.; Meakin, P. J. Am. Chem. Soc. 1975, 97, 667. (f) Schmidt, S. P.; Basolo, F.; Trogler, W. C. Inorg. Chim. Acta 1987, 131, 181.
 (130) Johnson, E. C.; Meyer, T. J.; Winterton, N. Inorg. Chem. 1971, 10, 1673.
 (131) Dombek, B. D.; Angelici, R. J. Inorg. Chim. Acta 1973, 7, 345.
- (131) Dombek, B. D.; Angelici, R. J. Inorg. Chim. Acta 1973, 7, 345.
 (132) (a) Williams, W. E.; Lalor, F. J. J. Chem. Soc., Dalton Trans.
 1973, 1329. (b) Callan, B.; Manning, A. R.; Stephens, F. S. J. Organomet. Chem. 1987, 331, 357.

- (133) Boyle, P. F.; Nicholas, K. M. J. Organomet. Chem. 1976, 114,
- (134) Schmidt, E. K. G.; Thiel, C. H. J. Organomet. Chem. 1981, 209, 373
- (a) Catheline, D.; Astruc, D. J. Organomet. Chem. 1984, 266, C11. (b) Catheline, D.; Astruc, D. Organometallics 1984, 3, 1094. (c) Schumann, H. J. Organomet. Chem. 1986, 304, 341. (d) Schumann, H. J. Organomet. Chem. 1985, 290, C34. (e) Schumann, H. J. Organomet. Chem. 1987, 323, 193. Schumann, H. J. Organomet. Chem. 1987, 323, 193. Schumann, H. J. Organomet. Chem. 1987, 320, 145.

 (a) Barnes, S. G.; Green, M. J. Chem. Soc., Chem. Commun. 1980, 267. (b) Green, M. Polyhedron 1986, 5, 427.

- (137) Herberhold, M.; Ott, J.; Haumaier, L. Chem. Ber. 1985, 118,
- (138) (a) Crocker, M.; Green, M.; Orpen, A. G.; Thomas, D. M. J. Chem. Soc., Chem. Commun. 1984, 1141. (b) Crocker, M.; Froom, S. F. T.; Green, M.; Nagle, K. R.; Orpen, A. G.; Thomas, D. M. J. Chem. Soc., Dalton Trans. 1987, 2803.
 (139) Legzdins, P.; Martin, D. T.; Nurse, C. R.; Wassink, B. Organometallics 1983, 2, 1238.
 (140) Anderson, D. M. Britton, C. S.; Hitchcook, P. R.; Legim, H.

- (140) Anderson, D. M.; Bristow, G. S.; Hitchcock, P. B.; Jasim, H. A.; Lappert, M. F.; Skelton, B. W. J. Chem. Soc., Dalton Trans. 1987, 2843.
 (141) Herrmann, W. A.; Kalcher, W. Chem. Ber. 1985, 118, 3861.
 (142) Bruno, G.; Lo Schiavo, S.; Piraino, P.; Faraone, F. Organo-mathlics 1985, 4, 1998.
- metallics 1**985**, 4, 1098
- (143) Hartmann, G.; Mews, R. Chem. Ber. 1986, 119, 374.
 (144) (a) Bruce, D. M.; Holloway, J. H.; Russell, D. R. J. Chem. Soc., Dalton Trans. 1978, 64. (b) Holloway, J. H.; Senior, J. B.; Szary, A. C. J. Chem. Soc., Dalton Trans. 1987, 741.
 (145) Bodnar, T.; LaCroce, S. J.; Cutler, A. R. J. Am. Chem. Soc. 1987, 198

- (145) Bodnar, T.; LaCroce, S. J.; Cutler, A. R. J. Am. Chem. Soc. 1980, 102, 3292.
 (146) Ishchenko, V. M.; Bulychev, B. M.; Soloveichik, G. L.; Bel'sky, V. K.; Ellert, O. G. Polyhedron 1984, 3, 771.
 (147) Yamazaki, S. Inorg. Chem. 1982, 21, 1638.
 (148) McKinney, R. J. Inorg. Chem. 1982, 21, 2051.
 (149) Kuhn, N.; Brüggemann, H.; Winter, M.; De Bellis, V. M. J. Organomet. Chem. 1987, 320, 391.
 (150) Sen, A.; Thomas, R. R. Organometallics 1982, 1, 1251.
 (151) Connor, J. A.; James, E. J.; Overton, C.; Murr, N. E. J. Chem. Soc., Dalton Trans. 1984, 255.
- Soc., Dalton Trans. 1984, 255.
- Keller, A. Inorg. Chim. Acta 1987, 133, 207. Hunter, A. D.; Legzdins, P. Inorg. Chem. 1984, 23, 4198. Connor, J. A.; Riley, P. I. J. Chem. Soc., Dalton Trans. 1979, (153)(154)1231
- Treichel, P. M.; Molzahn, D. C.; Wagner, K. P. J. Organomet. (155)Chem. **1979**, *174*, 191
- (156) Kadish, K. M.; Lacombe, D. A.; Anderson, J. E. Inorg. Chem.
- 1986, 25, 2246. Lacombe, D. A.; Anderson, J. E.; Kadish, K. M. *Inorg. Chem.* (157)1**986**, *25*, 2074.
- Ferguson, J. A.; Meyer, T. J. Inorg. Chem. 1971, 10, 1025. (159) Zecchin, S.; Zotti, G.; Pilloni, G. J. Organomet. Chem. 1985,
- (160) Connelly, N. G.; Lucy, A. R.; Payne, J. D.; Galas, A. M. R.; Geiger, W. E. J. Chem. Soc., Dalton Trans. 1983, 1879.
 (161) Legzdins, P.; Wassink, B. Organometallics 1984, 3, 1811.
 (162) Hersh, W. H. J. Am. Chem. Soc. 1985, 107, 4599.
 (163) Sirray H. Williams C. L.
- (162) Hersh, W. H. J. Am. Chem. Soc. 1985, 107, 4599.
 (163) Singer, H.; Wilkinson, G. J. Chem. Soc. A 1968, 2516. Strope, D.; Shriver, D. F. Inorg. Chem. 1974, 13, 2652. Burgess, J.; Hacker, M. J.; Kemmitt, R. D. W. J. Organomet. Chem. 1974, 72, 121. Strope, D.; Shriver, D. F. J. Am. Chem. Soc. 1973, 95, 8197. Garzon, G. Ecletica Quim. 1979, 29. Kubota, M.; McClesky, T. M.; Hayashi, R. K.; Webb, C. G. J. Am. Chem. Soc. 1987, 109, 7569.
 (164) (a) Olgemöller, B.; Bauer, H.; Beck, W. J. Organomet. Chem. 1981, 213, C57. (b) Olgemöller, B.; Bauer, H.; Löbermann, H.; Nagel, U.; Beck, W. Chem. Ber. 1982, 115, 2271. (c) Bauer, H.; Beck, W. J. Organomet. Chem. 1986, 308, 73 and references cited therein.
- references cited therein.
- references cited therein.

 (165) Blake, D. M. J. Chem. Soc., Chem. Commun. 1974, 815. Smith, L. R.; Blake, D. M. J. Am. Chem. Soc. 1977, 99, 3302.

 (166) Olgemöller, L.; Beck, W., unpublished results.

 (167) (a) Siedle, A. R.; Newmark, R. A.; Gleason, W. B. J. Am. Chem. Soc. 1986, 108, 767. (b) Siedle, A. R.; Gleason, W. B.; Newmark, R. A.; Pignolet, L. H. Organometallics 1986, 5,
- Stiegman, A. E.; Tyler, D. R. J. Am. Chem. Soc. 1985, 107, 967. Philbin, C. E.; Goldmann, A. S.; Tyler, D. R. Inorg. Chem. 1986, 25, 4434.
- (169) Sellmann, D.; Kleinschmidt, E. J. Organomet. Chem. 1977,
- (170) Hubbard, J. L.; McVicar, W. K. J. Am. Chem. Soc. 1986, 108, 6422.
- (171) (a) Jolly, P. W.; Pettit, J. J. Am. Chem. Soc. 1966, 88, 5044. (b) Green, M. L. H.; Ishaq, M.; Whiteley, R. N. J. Chem. Soc. A 1967, 1508. (c) Brookhart, M.; Nelson, G. O. J. Am. Chem. Soc. 1977, 99, 6099. (d) Humphrey, M. B.; Lamanna, W. M.; Brookhart, M.; Husk, G. R. Inorg. Chem. 1983, 22, 3355. (e) Guerchais, V.; Astruc, D. J. Chem. Soc., Chem. Commun.

- 1985, 835. (f) Grötsch, G.; Boese, R.; Malisch, W. Chem. Ber. 1986, 119, 2367
- (172) (a) Kegley, S. E.; Brookhart, M.; Husk, G. R. Organometallics 1982, 1, 760. (b) Bodnar, T. W.; Cutler, A. R. Organometallics 1985, 4, 1558.
 (173) (a) Merrifield, J. H.; Lin, G. Y.; Kiel, W. A.; Gladysz, J. A. J. Am. Chem. Soc. 1983, 105, 5811. (b) Tilset, M.; Bodner, G.
- S.; Senn, D. R.; Gladysz, J. A.; Parker, V. D. J. Am. Chem. Soc. 1987, 109, 7551.
 Schneider, M.; Weiss, E. J. Organomet. Chem. 1976, 121, 365.
- (175) Osborne, J. H.; Rheingold, A. L.; Trogler, W. C. J. Am. Chem. Soc. 1985, 107, 6292.
- (176) Hitchcock, P. B.; Lappert, M. F.; Taylor, R. G. J. Chem. Soc., Chem. Commun. 1984, 1082.
 (177) Rheingold, A. L.; Wu, G.; Heck, R. F. Inorg. Chim. Acta 1987,
- 131, 147.
- (178) Yamamoto, Y.; Aoki, K.; Yamazaki, H. Inorg. Chim. Acta
- 1982, 68, 75. (179) Shelly, K.; Bartczak, T.; Scheidt, W. R.; Reed, C. A. *Inorg.*
- Shelly, R.; Bartezak, 1.; Scheidt, W. R.; Reed, C. A. Inorg. Chem. 1985, 24, 4325.

 (a) Gupta, G. P.; Lang, G.; Lee, Y. J.; Scheidt, W. R.; Shelly, K.; Reed, C. A. Inorg. Chem. 1987, 26, 3022. (b) Shelly, K.; Reed, C. A.; Lee, Y. J.; Scheidt, W. R. J. Am. Chem. Soc. 1986, 108, 3117. (c) Shelly, K.; Finster, D. C.; Lee, Y. J.; Scheidt, W. R.; Reed, C. A. J. Am. Chem. Soc. 1985, 107, 5025 5955
- (181) Bell, S. A.; Lancaster, J. C.; McWhinnie, W. R. Inorg. Nucl. Chem. Lett. 1971, 7, 405.
- (182) Sünkel, K.; Ernst, H.; Beck, W. Z. Naturforsch., B 1981, 36b,
- (183) Raab, K.; Nagel, U.; Beck, W. Z. Naturforsch., B 1983, 38b,
- Schloter, K.; Nagel, U.; Beck, W. Chem. Ber. 1980, 113, 3775. Legzdins, P.; Oxley, J. C. Inorg. Chem. 1984, 23, 1053. (a) Sünkel, K.; Urban, G.; Beck, W. J. Organomet. Chem.
- (186)1983, 252, 187. (b) Appel, M.; Beck, W. J. Organomet. Chem. 1987, 319, C1.
 Isobe, K.; Nanjo, K.; Nakamura, Y.; Kawaguchi, S. Chem. Lett. 1979, 1193.
- (187)
- (a) Morrison, R. M.; Thompson, R. C. Can. J. Chem. 1982, (188) (a) Morrison, R. M.; I nompson, R. C. Can. J. Chem. 1982, 60, 1048. (b) Rowley, D. A.; Drago, R. S. Inorg. Chem. 1968, 7, 795. (c) Byington, A. R.; Bull, W. E. Inorg. Chim. Acta 1977, 21, 239. (d) Hathaway, B. J.; Billing, D. E.; Nicholls, P.; Procter, I. M. J. Chem. Soc. A 1969, 319.
 (189) (a) Bratsch, S. G. J. Chem. Educ. 1985, 62, 101. (b) Mullay, J. J. Am. Chem. Soc. 1985, 107, 7271.
 (190) Olgemöller, B.; Beck, W. Inorg. Chem. 1983, 22, 997.
 (191) Honeychuck, R. V.; Hersh, W. H. Inorg. Chem. 1987, 26, 1826.

- 1826.
- (192) Noirot, M. D.; Anderson, O. P.; Strauss, S. H. Inorg. Chem. 1987, 26, 2216. (193) Beck, W.; Johansen, O.; Fehlhammer, W. P. Z. Anorg. Allg.
- Chem. 1968, 361, 147.
- Oltmanns, M.; Mews, R. Z. Naturforsch., B 1980, 35b, 1324. Sünkel, K.; Urban, G.; Beck, W. J. Organomet. Chem. 1985, (195)
- (196) Schloter, K.; Beck, W. Z. Naturforsch., B 1980, 35b, 985.
 (197) Schmidt, S. P.; Basolo, F.; Jensen, C. M.; Trogler, W. C. J. Am. Chem. Soc. 1986, 108, 1894.
- (198) Honold, B.; Thewalt, U. J. Organomet. Chem. 1986, 316, 291.
 (199) Fernández, J. M.; Emerson, K.; Larsen, R. D.; Gladysz, J. A. J. Am. Chem. Soc. 1986, 108, 8268; J. Chem. Soc., Chem. Commun. **1988**, 37.
- (200) Crabtree, R. H.; Davis, M. W.; Mellea, M. F.; Mihelcic, J. M.
- Inorg. Chim. Acta 1983, 72, 223.
 (201) Raab, K.; Beck, W. Chem. Ber. 1985, 118, 3830.
 (202) Urban, G.; Sünkel, K.; Beck, W. J. Organomet. Chem. 1985,
- (203) Treichel, P. M.; Rosenhein, L. D. Inorg. Chem. 1981, 20, 942.
 (204) Kuhn, N.; Schumann, H. J. Organomet. Chem. 1984, 276, 55.
 Schumann, H. Chem.-Ztg. 1987, 111, 65. Kuhn, N.; Schumann, H.; Zauder, E. J. Organomet. Chem. 1987, 327, 17. Kuhn, N.; Schumann, H. J. Organomet. Chem. 1985, 287,
- (205) Uson, R.; Oro, L. A.; Carmona, D.; Esteruelas, M. A. J. Or-
- ganomet. Chem. 1984, 263, 109. (206) Thewalt, U.; Berhalter, K. J. Organomet. Chem. 1986, 302,
- (207) Angelici, R. J.; Dunker, J. W. Inorg. Chem. 1985, 24, 2209.
 (208) Grove, D. M.; Van Koten, G.; Ubbels, H. J. C.; Vrieze, K.;
 Niemann, L. C.; Stam, C. H. J. Chem. Soc., Dalton Trans. 1986, 717.
- (209) Usón, R.; Oro, L. A.; Carmona, D.; Esteruelas, M. A. Inorg. Chim. Acta 1983, 73, 275.
 (210) Lee, M. K.; Kim, I. B.; Chin, C. S. J. Organomet. Chem. 1985,
- 290, 115.
- (211) Park, S. H.; Park, H.-K.; Chin, C. S. Inorg. Chem. 1985, 24,
- (212) Berhalter, K.; Thewalt, U. J. Organomet. Chem. 1987, 332,

- (213) Froböse, R.; Mews, R.; Glemser, O. Z. Naturforsch., B 1979, 34b, 1461.
- (214) Laguna, A.; Laguna, M.; Fananas, J.; Jones, P. G.; Fittschen, C. Inorg. Chim. Acta 1986, 121, 39.
 (215) Dey, K.; Koner, D.; Ray, S. J. Chem. Soc., Dalton Trans.
- 1982, 2385
- (216) Hammud, H. H.; Moran, G. M. J. Organomet. Chem. 1986, 307, 255.
- 307, 255.
 Carriedo, G. A.; Riera, V.; Rodriguez, M. L.; Sainz-Velicia, J. J. Polyhedron 1987, 6, 1879.
 (218) (a) Schumann, H. Chem.-Ztg. 1986, 110, 121, 161. (b) Schumann, H. J. Organomet. Chem. 1986, 299, 169. (c) Schumann, H. J. Organomet. Chem. 1985, 293, 75.
 (219) (a) Kuhn, N.; Schumann, H. J. Organomet. Chem. 1986, 304, 181. (b) J. Organomet. Chem. 1986, 315, 93. (c) Kuhn, N.; Schumann, H. J. Chem. Soc., Dalton Trans. 1987, 541.
 (220) Garcia Alonso, F. J.; Riera, V.; Villafane, F.; Vivanco, M. J. Organomet. Chem. 1984, 276, 39.
 (221) Schmidt, E. K. G.; Thiel, C. H. J. Organomet. Chem. 1981, 220, 87 and references therein.

- (221) Schmidt, E. K. G., Thiel, C. H. J. Organomet. Chem. 1981, 220, 87 and references therein.
 (222) Legzdins, P.; Martin, D. T. Organometallics 1983, 2, 1785.
 (223) Olgemöller, B.; Beck, W. Angew. Chem., Int. Ed. Engl. 1980,
- (224) Beck, W.; Raab, K.; Nagel, U.; Sacher, W. Angew. Chem., Int. Ed. Engl. 1985, 24, 505.
 (225) (a) Bottrill, M.; Green, M. J. Chem. Soc., Dalton Trans. 1977, 2365. (b) Allen, S. R.; Baker, P. K.; Barnes, S. G.; Green, M.; Trollope, L.; Manojlovic-Muir, L.; Muir, K. W. J. Chem. Soc., Dalton Trans. 1981, 272 170llope, L.; Manojlovic-Muir, L.; Muir, K. W. S. Chem. Soc., Dalton Trans. 1981, 873. Green, M. J. Organomet. Chem. 1986, 300, 93 and literature cited therein.

 (226) Hughes, R. P.; Reisch, J. W.; Rheingold, A. L. Organometallics 1985, 4, 241.

 (227) Sünkel, K.; Nagel, U.; Beck, W. J. Organomet. Chem. 1981, 202 251

- (228) (a) Bruce, M. I.; Wallis, R. C. Aust. J. Chem. 1979, 32, 1471.
 (b) Bruce, M. I.; Wong, F. S. J. Organomet. Chem. 1981, 210, C5. (c) Treichel, P. M.; Komar, D. A. Inorg. Chim. Acta 1980,
- (229) Ashley-Smith, J.; Johnson, B. F. G.; Segal, J. A. J. Organomet. Chem. 1973, 49, C38.
- (230) Sauer, N. N.; Angelici, R. J. Inorg. Chem. 1987, 26, 2160. (231) (a) Rosenblum, M. Acc. Chem. Res. 1974, 7, 122; J. Organomet. Chem. 1985, 300, 191. (b) For a recent review, see: Albers, M. O.; Robinson, D. J.; Singleton, E. Coord. Chem. Rev. 1987, 79, 1. Consiglio, G.; Morandini, F. Chem. Rev. 1987, 87, 761.
- 1987, 87, 761.
 (232) (a) Alt, H. G.; Hayen, H. I. J. Organomet. Chem. 1986, 316, 301. (b) Werner, H.; Roll, J.; Zolk, R.; Thometzek, P.; Linse, K.; Ziegler, M. L. Chem. Ber. 1987, 120, 1553.
 (233) (a) Burk, M. J.; Segmuller, B.; Crabtree, R. H. Organometallics 1987, 6, 2241. (b) Crabtree, R. H.; Faller, J. W.; Mellea, M. F.; Quirk, J. M. Organometallics 1982, 1, 1361. (c) Burk, M. J.; Crabtree, R. H.; Holt, E. M. Organometallics 1984, 3, 638. (d) Kulawiec, R. J.; Holt, E. M.; Lavin, M.; Crabtree, R. H. Inorg. Chem. 1987, 26, 2559. (e) Kulawiec, R. J.; Crabtree, R. H. Organometallics 1988, 7, 1891.
 (234) (a) Hartmann, G.; Mews, R. Angew. Chem., Int. Ed. Engl. 1985, 24, 202. (b) Mews, R.; Glemser, O. Angew. Chem., Int. Ed. Engl. 1975, 14, 186. (c) Hartmann, G.; Hoppenheit, R.; Mews, R. Inorg. Chim. Acta 1983, 76, L201. (d) Mews, R.; Braeuer, H. C. Z. Anorg. Allg. Chem. 1978, 447, 126.
 (235) Uson, R.; Fornies, J.; Navarro, R.; Espinet, P.; Mendivil, C. J. Organomet. Chem. 1985, 290, 125.
 (236) Winter, C. H.; Arif, A. M.; Gladysz, J. A. J. Am. Chem. Soc.

- (236) Winter, C. H.; Arif, A. M.; Gladysz, J. A. J. Am. Chem. Soc. 1987, 109, 7560.
- 1987, 109, 7560.
 Usón, R.; Fornies, J.; Navarro, R.; Usón, M. A.; Garcia, M. P.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1984, 345.
 Steil, P.; Beck, W., unpublished results.
 (a) Sacher, W.; Nagel, U.; Beck, W. Chem. Ber. 1987, 120, 895. (b) Appel, M.; Sacher, W.; Beck, W. J. Organomet. Chem. 1987, 333, 237. (c) Bauer, H.; Sheldrick, G. M.; Nagel, U.; Beck, W. Z. Naturforsch., B 1985, 40b, 1237. (d) Heidrich, J.; Beck, W. J. Organomet. Chem. 1988, 354, 91.
 Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metals;
- Principles and Applications of Organotransition Metals; University Science Books: Mill Valley, CA, 1987.
- (241) The Chemistry of the Metal-Carbon Bond; Hartley, F. R., Patai, S., Eds.; Wiley-Interscience: New York, 1985; Vol. 2.
- (242) Reactions of Coordinated Ligands; Braterman, P. S., Ed.; Plenum: New York, 1986; Vol. 1.
 (243) Bush, R. C.; Angelici, R. J. J. Am. Chem. Soc. 1986, 108, 2735.
 (244) Beck, W. Polyhedron, in press.
 (245) Steil, P.; Nagel, U.; Beck, W. J. Organomet. Chem. 1988, 339,

- 111 and literature cited therein (246) Snow, M. R.; Wimmer, F. L. Inorg. Chim. Acta 1980, 44,
- (247) Olgemöller, B.; Olgemöller, L.; Beck, W. Chem. Ber. 1981,
- Thewalt, U.; Klein, H.-P. J. Organomet. Chem. 1980, 194,

- (249) Thewalt, U.; Lasser, W. J. Organomet. Chem. 1984, 276, 341. (250) Green, M. L. H.; Parkin, G.; Chen, M.; Prout, K. J. Chem.
- Soc., Dalton Trans. 1986, 2227.
 (251) Boniface, S. M.; Clark, G. R.; Collins, T. J.; Roper, W. R. J.
- Organomet. Chem. 1981, 206, 109. (252) Bauer, H.; Nagel, U.; Beck, W. J. Organomet. Chem. 1985, *290*, 219.
- (253) Green, M.; Kirsch, H. P.; Stone, F. G. A.; Welch, A. J. J.

- Chem. Soc., Dalton Trans. 1977, 1755.

 (254) Lasser, W.; Thewalt, U. J. Organomet. Chem. 1986, 302, 201.

 (255) Lasser, W.; Thewalt, U. J. Organomet. Chem. 1986, 311, 69.

 (256) Legzdins, P.; Nurse, C. R. Inorg. Chem. 1982, 21, 3110.

 (257) Curtis, M. D.; Butler, W. M. J. Chem. Soc., Chem. Commun. 1980, 998.
- (258) Grandberg, K. I. Sov. J. Coord. Chem. (Engl. Transl.) 1984,
- (259) Baldwin, J. E.; Haraldsson, G. G.; Jones, J. G. Inorg, Chim. Acta 1981, 51, 29.
- Kölle, U.; Fuss, B. Chem. Ber. 1984, 117, 753.
- Thewalt, U.; Döppert, K.; Lasser, W. J. Organomet. Chem. 1986, 308, 303. (261)
- (a) Hieber, W.; Leutert, F. Z. Anorg. Allg. Chem. 1932, 204,
 145. (b) Kruck, Th.; Höfler, M.; Noack, M. Chem. Ber. 1966, (262)99, 1153
- (263) Beck, W.; Raab, K.; Nagel, U.; Steimann, M. Angew. Chem., Int. Ed. Engl. 1982, 21, 526.
 (264) Bennett, M. A.; Matheson, T. W.; Robertson, G. B.; Steffen, W. L.; Turney, T. W. J. Chem. Soc., Chem. Commun. 1979,
- Dewan, J. C.; Thompson, L. K. Can. J. Chem. 1982, 60, 121. Beck, W.; Sacher, W.; Nagel, U. Angew. Chem., Int. Ed. Engl. (265)(266)
- 1986, 25, 270. Horn, E.; Snow, M. R. Aust. J. Chem. 1984, 37, 35. (267)
- (268) Klein, H.-P.; Thewalt, U. J. Organomet. Chem. 1981, 206, 69. (269) Hillhouse, G. L.; Haymore, B. L. Inorg. Chem. 1987, 26, 1876.
- (270) Miguel, D.; Riera, V. J. Organomet. Chem. 1985, 293, 379.
 (271) Reger, D. L.; Swift, C. A. Organometallics 1984, 3, 876.
 (272) Werner, H.; Weinand, R.; Otto, H. J. Organomet. Chem.
- 1986, 307, 49. (273) Bird, C.; Booth, B. L.; Haszeldine, R. N. J. Chem. Soc., Dalton Trans. 1982, 517.
- (274) King, R. B.; Kapoor, R. N. J. Organomet. Chem. 1968, 15,
- (275) Grove, D. M.; Van Koten, G.; Ubbels, H. J. C.; Zoet, R.; Spek, A. L. J. Organomet. Chem. 1984, 263, C10.
 (276) Aoyama, Y.; Yoshida, T.; Sakurai, K.; Ogoshi, H. J. Chem.
- Soc., Chem. Commun. 1983, 478. (277) Fischer, R. A.; Kneuper, H.-J.; Herrmann, W. A. J. Organo-
- met. Chem. 1987, 330, 365. (278) Lee, K. Y.; Kuchynka, D. J.; Kochi, J. K. Organometallics
- 1987, 6, 1886. (279) (a) Shriver, D. F. Struct. Bonding (Berlin) 1966, 1, 32. (b) Kristoff, J. S.; Shriver, D. F. Inorg. Chem. 1973, 12, 1788. (c) Manzer, L. E.; Parshall, G. W. Ibid. 1976, 15, 3114.
 (280) Strope, D.; Shriver, D. F. Inorg. Chem. 1974, 13, 2652.
 (281) Abys, J. A.; Ogar, G.; Risen, W. M., Jr. Inorg. Chem. 1981, 20, 4446.
- 4446.
- (282) Fritz, P. M.; Beck, W., unpublished results. (283) Fritz, P. M.; Steimann, M.; Beck, W. Chem. Ber. 1987, 120,
- (284) Tso, C. T.; Cutler, A. R. J. Am. Chem. Soc. 1986, 108, 6069. (285)
- (a) Adams, H.; Bailey, N. A.; Gauntlett, J. T.; Winter, M. J. J. Chem. Soc., Chem. Commun. 1984, 1360. (b) Gauntlett, J. T.; Winter, M. J. Polyhedron 1986, 5, 451.
 (a) Bonnesen, P. V.; Baker, A. T.; Hersh, W. H. J. Am. Chem. Soc. 1986, 108, 8304. (b) Bonnesen, P. V.; Yau, P. K. L.; Hersh, W. H. Organometallics 1987, 6, 1587.

 Weinsteel, J.; Elevini, C.; Chici, Villa, A.; Guestini, C. J.
- (287) Weinstock, I.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Am. Chem. Soc. 1986, 108, 8298.
- (288) O'Connor, J. M.; Uhrhammer, R.; Rheingold, A. L. Organometallics 1987, 6, 1987. O'Connor, J. M.; Uhrhammer, R. J. Am. Chem. Soc. 1988, 110, 4448.
 Götzfried, F.; Grenz, R.; Urban, G.; Beck, W. Chem. Ber. 1985, 118, 4179.
- (290) (a) Nesmeyanov, A. N.; Makarova, L. G.; Vinogradova, V. N.; Ustynyuk, N. A. Koord. Khim. 1977, 3, 62. (b) Burckett-St.Laurent, J. C. T. R.; Field, J. S.; Haines, R. J.; McMahon, M. J. Organomet. Chem. 1979, 181, 117.
 (291) Jones, P. G.; Sheldrick, G. M.; Usön, R.; Laguna, A. Acta Crystallogr., Sect. B 1980, B36, 1486.
 (292) Mews. R. Angew Chem. Int. Ed. Engl. 1977, 16, 56.

- (292) Mews, R. Angew. Chem., Int. Ed. Engl. 1977, 16, 56.
 (293) Snow, M. R.; Wimmer, F. L. Aust. J. Chem. 1976, 29, 2349.
 (294) Fischer, E. O.; Moser, E. Z. Anorg. Allg. Chem. 1966, 342,
- Tso, C. C.; Cutler, A. R. Organometallics 1985, 4, 1242

Acta 1984, 82, 215.

(296) Davies, J. A.; Hartley, F. R.; Murray, S. G.; Pierce-Butler, M. A. J. Chem. Soc., Dalton Trans. 1983, 1305. Uson, R.; Fornies, J.; Espinet, P.; Navarro, R. Inorg. Chim.

- (298) (a) Grove, D. M.; Van Koten, G.; Ubbels, H. J. C.; Spek, A. L. J. Am. Chem. Soc. 1982, 104, 4285. (b) Terheijden, J.; Van Koten, G.; Grove, D. M.; Vrieze, K.; Spek, A. L. J. Chem. Soc., Dalton Trans. 1987, 1359.
- (299) Olgemöller, B.; Beck, W. Chem. Ber. 1981, 114, 2360.
 (300) Stolzenberg, H.; Fehlhammer, W. P. J. Organomet. Chem. 1982, 235, C7. Busetto, L.; Monari, M.; Palazzi, A.; Albano,
- 1982, 235, Cf. Busetto, L.; Monari, M.; Palazzi, A.; Albano, V.; Demartin, F. J. Chem. Soc., Dalton Trans. 1983, 1849.
 (301) Hecht, C.; Herdtweck, E.; Rohrmann, J.; Herrmann, W. A.; Beck, W.; Fritz, P. M. J. Organomet. Chem. 1987, 330, 389.
 (302) Fritz, P. M.; Beck, W.; Nagel, U.; Polborn, K.; Herrmann, W. A.; Hecht, C.; Rohrmann, J. Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1988, 43, 665.
 (303) Weiss, A.; Nagorsen, G.; Weiss, A. Z. Anorg. Allg. Chem. 1953, 274, 151. Puff, H.; Küster, J. Naturwissenschaften 1962, 49, 299. Kamenar, B.; Kaitner, B.; Pocey, St. J. Chem.
- 1962, 49, 299. Kamenar, B.; Kaitner, B.; Pocev, St. J. Chem.
- Soc., Dalton Trans. 1985, 2457.
 Kowala, C.; Swan, J. M. Aust. J. Chem. 1966, 19, 547. Abel, E. W.; Jenkins, C. R. J. Organomet. Chem. 1968, 14, 285. Schmidbaur, H.; Franke, R.; Eberlein, J. Chem.-Ztg. 1975, 99,
- (a) Jones, P. G.; Sheldrick, G. M.; Hädicke, E. Acta Crystallogr., Sect. B 1980, 36, 2777. (b) Lensch, C.; Jones, P. G.; (305)Sheldrick, G. M. Z. Naturforsch., B 1982, 37b, 944.
- (306) Hartmann, G.; Mews, R.; Sheldrick, G. M. Angew. Chem., Int. Ed. Engl. 1983, 22, 723.
 (307) Kuhn, N.; Schumann, H. J. Organomet. Chem. 1985, 287,
- Appel, M.; Heidrich, J.; Beck, W. Chem. Ber. 1987, 120, 1087. Kolobova, N. E.; Skripkin, V. V.; Rozantseva, T. V.; Struchkov, Yu. T.; Aleksandrov, G. G.; Andrianov, V. G. J. Organomet. Chem. 1981, 218, 351. (308)(309)
- Afzal, D.; Lenhert, P. G.; Lukehart, C. M. J. Am. Chem. Soc. 1984, 106, 3050. Afzal, D.; Lukehart, C. M. Organometallics
- 1987, 6, 546. (311) Davis, J. H., Jr.; Lukehart, C. M. Organometallics 1984, 3,
- 1763.
 (312) Venanzi, L. M. Coord. Chem. Rev. 1982, 43, 251.
 (313) Albinati, A.; Lehner, H.; Venanzi, L. M.; Wolfer, M. Inorg. Chem. 1987, 26, 3933 and references therein.
 (314) Howarth, O. W.; McAteer, C. H.; Moore, P.; Morris, G. E.; Alcock, N. W. J. Chem. Soc., Dalton Trans. 1982, 541.
 (315) Albinati, A.; Naegeli, R.; Togni, A.; Venanzi, L. M. J. Organomet. Chem. 1987, 330, 85.
 (316) Markham, J.; Cutler, A. Organometallics 1984, 3, 736.

- (316) Markham, J.; Cutler, A. Organometallics 1984, 3, 736.
 (317) Hames, B. W.; Legzdins, P. Organometallics 1982, 1, 116.
 (318) Werner, H.; Wolf, J.; Höhn, A. J. Organomet. Chem. 1985, 287, 395
- (319) Aspinall, H. C.; Deeming, A. J. J. Chem. Soc., Dalton Trans. 1**985**, 743.
- (320) (a) LaCroce, S. J.; Cutler, A. R. J. Am. Chem. Soc. 1982, 104, 2312. (b) Markham, J.; Tolman, W.; Menard, K.; Cutler, A. J. Organomet. Chem. 1985, 294, 45.
 (321) Sünkel, K.; Schloter, K.; Beck, W.; Ackermann, K.; Schubert, U. J. Organomet. Chem. 1983, 241, 333.

- (322) Butts, S. B.; Strauss, S. H.; Holt, E. M.; Stimson, R. E.; Alcock, N. W.; Shriver, D. F. J. Am. Chem. Soc. 1980, 102, 5093.
- Akita, M.; Kawahara, T.; Moro-oka, Y. J. Chem. Soc., Chem. Commun. 1987, 1356.
- (324) Sacher, W.; Beck, W., unpublished results. (325) Haines, R. J.; DuPreez, A. L. J. Organomet. Chem. 1975, 84,
- (326) Raab, K.; Appel, M.; Beck, W. J. Organomet. Chem. 1985, 291, C28
- (327)
- Werner, H.; Otto, H. Chem. Ber. 1986, 119, 3866. Werner, H.; Weinand, R. Z. Naturforsch., B 1983, 38b, 1518. (328)
- (329) Ballivet-Tkatchenko, D.; Nickel, B.; Rassat, A.; Vincent-Vaucquelin, J. Inorg. Chem. 1986, 25, 3497.
 (330) Oehme, G. J. Prakt. Chem. 1984, 326, 779.
 (331) (a) Seyferth, K.; Taube, R. J. Organomet. Chem. 1984, 268, 268, 268 155. (b) Seyferth, K.; Taube, R. J. Organomet. Chem. 1984,
- 262, 179.
 (332) (a) Tanabe, Y.; Mukaiyama, T. Chem. Lett. 1984, 1867. (b)
 Tanabe, Y.; Mukaiyama, T. Chem. Lett. 1985, 673.
 (333) Honeychuck, R. V.; Bonnesen, P. V.; Favahi, J.; Hersh, W. H.
- (334)
- Honeychuck, R. V.; Bonnesen, P. V.; Favahi, J.; Hersh, W. H. J. Org. Chem. 1987, 52, 5293. Siedle, A. R.; Markell, C. G.; Lyon, P. A.; Hodgson, K. O.; Roe, A. L. Inorg. Chem. 1987, 26, 219. Yang, K. J.; Chin, C. S. Inorg. Chem. 1987, 26, 2732. (a) Howarth, O. W.; McAteer, C. H.; Moore, P.; Morris, G. E. J. Chem. Soc., Dalton Trans. 1984, 1171. (b) Crabtree, R. H.; Dion, R. P.; Gibboni, D. J.; McGrath, D. V.; Holt, E. M. J. Am. Chem. Soc. 1986, 108, 7222. (c) Halpern, J. In Asym. Am. Chem. Soc. 1986, 108, 7222. (c) Halpern, J. In Asymmetric Synthesis; Morrison, J. D., Ed.; Academic: Orlando, 1985; Vol. 5. (d) Crabtree, R. H. Acc. Chem. Res. 1979, 12, 331.
- Klapötke, Th. Polyhedron 1988, 7, 1221.

- (338) Klapötke, Th.; Thewalt, U. J. Organomet. Chem., in press.
 (339) Klapötke, Th. Polyhedron, in press.
 (340) Klapötke, Th. Inorg. Chim. Acta, in press.
 (341) Cutler, A. R.; Todaro, A. B. Organometallics 1988, 7, 1782.
 (342) Schweiger, M.; Beck, W., unpublished results.
 (343) Fernández, J. M.; Gladysz, J. A. Organometallics, in press.
 (344) Winter, C. H.; Arif, A. M.; Gladysz, J. A. Organometallics, in press.
- (345)
- Buhro, W. E.; Zwick, B. D.; Georgiou, S.; Hutchinson, J. P.; Gladysz, J. A. J. Am. Chem. Soc. 1988, 110, 2427.
- (346) Bodner, G. S.; Fernández, J. M.; Arif, A. M.; Gladysz, J. A. J. Am. Chem. Soc. 1988, 110, 4082.
 (347) Honeychuck, R. V.; Hersh, W. H., submitted to J. Am. Chem.
- (348) Bond, A. M.; Ellis, S. R.; Hollenkamp, A. F. J. Am. Chem.
- Soc. 1988, 110, 5293. (349)
- Amarasekera, J.; Rauchfuss, T. B.; Wilson, S. R. J. Am. Chem. Soc. 1988, 110, 2332.
- (350)Antberg, M.; Dahlenburg, L.; Frosin, K.-M.; Höck, N. Chem. Ber. 1988, 121, 859.
- (351) Pearson, A. J.; Richards, I. C. J. Organomet. Chem. 1983, 258,
- (352) Weidmann, T.; Beck, W., unpublished results.