Netzwerke und Internettechnologien 1

Schichtenmodelle in der Kommunikation

Netzwerke und Internettechnologien 1

Lernziele

OSI-Modell

Kommunikation = viele unterschiedliche Aufgaben bzw. Probleme:

- Übertragung der Daten im lokalen Netz
- Wegfindung im Internet
- Ist alles angekommen?
- Sind die Daten Korrekt angekommen?
- Für welchen Dienst ist die Nachricht?

•

Schichtenmodelle

- Mit Hilfe von Schichtenmodellen lassen sich komplexe und aufwendige Abläufe abbilden und durchführen, wie die Kommunikation im Netzwerk.
- Schichtenmodelle bestehen aus einzelnen Schichten, die in einer bestimmten Reihenfolge durchschritten werden müssen.
- Für jede Schicht gibt es Regeln (Protokolle) die angeben, wie die Daten verarbeitet werden.
- Dies eine hohe Flexibilität, denn die einzelne Schichten können durch eigene Protokolle ergänzt, geändert oder ausgetauscht werden, etwa für die Verwendung eines anderen Übertragungsmediums.

OSI-Modell (Open System Interconnection)

- Die Abkürzung OSI-Modell steht für Open Systems Interconnection Model. Die Entwicklung des OSI-Modells begann bereits in den 70er Jahren.
- Die Veröffentlichung erfolgte von Seiten der International Telecommunication Union (ITU) und der International Organization for Standardization (ISO).
- Ziel war es, ein Referenzmodell zu schaffen, das die Kommunikation verschiedener technischer Systeme über unterschiedliche Medien und Technologien ermöglicht und Kompatibilitäten bereitstellt.

OSI-Modell (Open System Interconnection)

- Das OSI-Modell verwendet insgesamt sieben verschiedene Schichten (Layer), die hierarchisch aufeinander aufbauen.
- Jeder Schicht sind bestimmte Aufgabe zugeordnet.
- Die Schnittstellen zur jeweils darüber- und darunterliegenden Schicht sind exakt beschrieben.
- Dadurch können einzelne Schichten können angepasst, zusammengefasst oder ausgetauscht werden, ohne dass die andren Schichten davon betroffen sind.
- Dadurch ist z.B. das Übertragungsmedium beliebig austauschbar.

- 7. Anwendungsschicht
- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
- 3. Vermittlungsschicht
- 2. Sicherungsschicht
- 1. Bitübertragungsschicht

Abbildung 1: OSI (Eigene Darstellung

OSI-Modell (Open System Interconnection)

- 7. Anwendungsschicht
- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
- 3. Vermittlungsschicht
- 2. Sicherungsschicht
- 1. Bitübertragungsschicht

Die Schichten 5 - 7 sind die anwendungsorientierten Schichten.

Die Schichten 1 - 4 sind die transportorientierten Schichten.

Schicht 1, Bitübertragungsschicht (Physical Layer)

- 7. Anwendungsschicht
- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
- 3. Vermittlungsschicht
- 2. Sicherungsschicht

1. Bitübertragungsschicht

- Die Bitübertragungsschicht definiert die elektrische, mechanische und funktionale Schnittstelle zum Übertragungsmedium.
- In dieser Schicht wird die Art der physikalischen Übertragung (elektrisch bzw. optisch) definiert.
- Es wird festgelegt, welches Medium benutzt wird (Kabel, Funk, Infrarot), die möglichen Stecker Techniken, die Beschaffenheit der Elektronik, die Darstellung und Codierung der physikalischen Bits usw.
- Die Protokolle dieser Schicht unterscheiden sich nur nach dem eingesetzten Übertragungsmedium und -verfahren.

Schicht 1, Bitübertragungsschicht (Physical Layer)

- 7. Anwendungsschicht
- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
- 3. Vermittlungsschicht
- 2. Sicherungsschicht
- 1. Bitübertragungsschicht

- Folgende Punkte zählen zur Bit-Übertragungsschicht:
 - Verbindungstypen
 - Physische Topologien
 - Digitale Signalisierung
 - Analoge Signalisierung

- Bitsynchronisation
- Bandbreite
- Multiplexen
- Netzwerksverbindungs-Hardware:
 - Konzentratoren, Verteiler und Verstärker, die elektrische Signale regenerieren.
 - Anschlüsse für Übertragungsmedien, die die mechanischen Schnittstellen zur Verbindung von Geräten mit dem Übertragungsmedium herstellen, Modems und Codecs, die digitale und analoge Konvertierungen durchführen.

Schicht 2, Sicherungsschicht (Data Link Layer)

- 7. Anwendungsschicht
 6. Darstellungsschicht
 5. Kommunikationsschicht
 4. Transportschicht
 3. Vermittlungsschicht
 2. Sicherungsschicht
 - 1. Bitübertragungsschicht
- Die Sicherungsschicht sorgt für eine zuverlässige und funktionierende Verbindung zwischen Endgerät und Übertragungsmedium.
- Zur Vermeidung von Übertragungsfehlern und Datenverlust enthält diese Schicht Funktionen zur Fehlererkennung, Fehlerbehebung und Datenflusskontrolle.
- Daten der höheren Schichten werden hier zur Übertragung über das physikalische Medium aufbereitet. Bits zum Übertragen über das physikalische Medium werden zu einem logischen Set (Frame) zusammengefasst.

Schicht 2, Sicherungsschicht (Data Link Layer)

- Die Sicherungsschicht wird noch einmal in einen Logical-Link-Control (LLC) und einen Medium-Access-Control-Layer (MAC) unterteilt.
 - LLC ist für die Übertragung und den Zugriff auf die logische Schnittstelle zuständig.
 - Die MAC-Schicht umfasst die Steuerung des Zugriffs auf das Übertragungsmedium und ist somit für den fehlerfreien Transport der Daten verantwortlich.

Schicht 2, Sicherungsschicht (Data Link Layer)

- 7. Anwendungsschicht
- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
- 3. Vermittlungsschicht
- 2. Sicherungsschicht
 - 1. Bitübertragungsschicht

- Aufgaben
 - Logische Topologien
 - Medienzugriff
 - Adressierung (MAC-Adresse)

- Übertragungs-Synchronisierung
- Verbindungs-Services

- Verbindungs-Hardware:
 - Brücken
 - Switches
 - Netzwerkschnittstellenkarten mit entsprechenden Treibern, eventuell auch Adapter

Schicht 3, Vermittlungsschicht (Network Layer)

- 7. Anwendungsschicht
 6. Darstellungsschicht
 5. Kommunikationsschicht
 4. Transportschicht
 3. Vermittlungsschicht
 2. Sicherungsschicht
 1. Bitübertragungsschicht
- Die Vermittlungsschicht steuert die zeitliche und logische getrennte Kommunikation zwischen den Endgeräten, unabhängig vom Übertragungsmedium und -topologie.
- Auf dieser Schicht erfolgt erstmals die logische Adressierung der Endgeräte.
- Die Adressierung ist eng mit dem Routing (Wegfindung vom Sender zum Empfänger) verbunden.

Schicht 3, Vermittlungsschicht (Network Layer)

- 7. Anwendungsschicht
- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
- 3. Vermittlungsschicht
 - 2. Sicherungsschicht
 - 1. Bitübertragungsschicht

- Techniken und Methoden:
 - Adressierung (logisches Netzwerk)
 - Vermittlung
 - Leitwegsuche und -auswahl
 - Verbindungs-Services
- Hardware:
 - Router/Gateway

- Protokolle:
 - ARP (Address Resolution Protocol)
 - ICMP (Internet Control Message Protocol)
 - IGMP (Internet Group Management Protocol)
 - IP (Internet Protocol)
 - IPsec (Internet Protocol Security)

- Aufgabe dieser Schicht ist es, die zuverlässige Übertragung von Daten zwischen zwei Endstationen zu garantieren.
- Dazu gehören der Aufbau und die Aufrechterhaltung der Verbindung, die Fehlerbehandlung, das Ordnen der Daten und anschließend der Abbau der Verbindung.
- Zusätzlich unterteilt diese Schicht Nachrichten, die von den höheren Schichten kommen, in Segmente, die von den unteren Schichten weiterverarbeitet werden können.

- 7. Anwendungsschicht
- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
 - 3. Vermittlungsschicht
 - 2. Sicherungsschicht
 - 1. Bitübertragungsschicht

- 7. Anwendungsschicht
- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
 - 3. Vermittlungsschicht
 - 2. Sicherungsschicht
 - 1. Bitübertragungsschicht

- Protokolle:
 - TCP (Transmission Control Protocol)
 - UDP (User Datagram Protocol)
 - SCTP (Stream Control Transmission Protocol)
 - TCP und SCTP arbeiten verbindungsorientiert, UDP dagegen verbindungslos

- 7. Anwendungsschicht
- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
 - 3. Vermittlungsschicht
 - 2. Sicherungsschicht
 - 1. Bitübertragungsschicht

- Die Protokolle verwenden Portnummern für die Kommunikation.
 - Im System erfolgt die Zuordnung der Portnummer zum Dienst in der Datei %SYSTEMROOT%\system32\drivers\etc\services (Windows) bzw. /etc/services (Linux)

Portverwendung

Well Known Ports	0 - 1.023	Diese Ports sind fest einer Anwendung oder einem Protokoll zugeordnet. Diese Ports dürfen nur von root (Administrator) gebunden werden.
Registered Ports	1.024 - 49.151	Diese Ports sind für Dienste vorgesehen.
Dynamically Allocated Ports	49.152 - 65.535	Diese Ports werden dynamisch zugewiesen. Jeder Client kann diese Ports nutzen

- 7. Anwendungsschicht
- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
 - 3. Vermittlungsschicht
 - 2. Sicherungsschicht
 - 1. Bitübertragungsschicht

- TCP (Transmission Control Protocol)
 - TCP ist ein verbindungsorientiertes Protokoll.
 - TCP arbeitet streamorientiert, da es seine Daten als Datenstrom ansieht. Durch die Verwendung von Sequenznummern kann die Empfängerseite die Segmente wieder in richtiger Reihenfolge zusammenbauen und wieder zu Datenstrom formieren.
 - TCP bietet einen verlässlichen Datentransfer durch einen Mechanismus, der Datenpakete solange an den Empfänger schickt, bis dieser eine Bestätigung des Empfangs schickt.
 - Nachteilig ist der recht große Overhead.

- TCP (Transmission Control Protocol)
 - TCP ist ein verbindungsorientiertes Protokoll, welches die Verbindung über den sogenannten 3-Way-Handshake aufbaut.

• Im Anschluss an die Kommunikation wird die Verbindung wieder abgebaut.

- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
 - 3. Vermittlungsschicht
 - 2. Sicherungsschicht
 - 1. Bitübertragungsschicht

- 7. Anwendungsschicht
- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
 - 3. Vermittlungsschicht
 - 2. Sicherungsschicht
 - 1. Bitübertragungsschicht

- UDP (User Datagram Protocol)
 - Ist ein einfaches Protokoll, welches die Übermittlung von Daten mit einem Minimum an Protokollinformationen ermöglicht.
 - UDP ist verbindungslos, die Sicherstellung des Empfangs ist Sache der Anwendungsprotokolle.
 - UDP arbeitet mit Datagrammen fester Größe, es ist nicht in der Lage einen Datenstrom aufzuteilen und wieder zusammenzusetzen.
 - Die Verwendung erfolgt immer dann, wenn es:
 - mehr auf die Geschwindigkeit, als auf die Sicherheit in der Übertragung ankommt.
 - wenn die Datenmenge so klein ist, dass ein großer Header nicht lohnt.

- 7. Anwendungsschicht
- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
 - 3. Vermittlungsschicht
 - 2. Sicherungsschicht
 - 1. Bitübertragungsschicht

- SCTP (Stream Control Transmission Protocol)
 - Das SCTP-Protokoll ist ein sicheres Transportprotokoll und übernimmt über den Signalisierungstransport hinausgehende Aufgaben. SCTP wird immer dann eingesetzt, wenn eine Applikation die besondere Leistungsfähigkeit des neuen Protokolls benötigt.
 - Unterstützt mehrere Dienste, so u.a. den optionalen Empfang von Datenpaketen in der richtigen Reihenfolge, die sequenzielle Übertragung von Nachrichten in multiplen Streams und den bestätigten, fehlerfreien Datenempfang.
 - Zusätzlich unterstützt SCTP Multistreaming und Multihoming.
 - Im Gegensatz zu TCP zeigt sich SCTP resistent gegen SYN-Flooding, eine Denial-of-Service-Attacke
 - SCTP verhält sich also in einem gemischten Netz (SCTP und TCP) neutral.

Schicht 5, Sitzungsschicht (Session Layer)

- 7. Anwendungsschicht
 6. Darstellungsschicht
 5. Kommunikationsschicht
 4. Transportschicht
 3. Vermittlungsschicht
 2. Sicherungsschicht
 1. Bitübertragungsschicht
- Die Aufgabe der Sitzungsschicht (auch Kommunikationssteuerungs-Schicht genannt) ist es, den darüber liegenden Schichten einen zuverlässigen Ende-zu-Ende-Transportservice zur Verfügung zu stellen.
- Die Sitzungsschicht kann man außerdem als Auskunftssystem beschreiben. Sie hilft den höheren Schichten, die im Netzwerk zur Verfügung stehenden Services zu erkennen und anzufordern.
- Den Dialog zwischen kommunizierenden Einheiten herstellen, aufrechterhalten und wieder abbauen, ist eine weitere wesentliche Aufgabe dieser Schicht.

Schicht 5, Sitzungsschicht (Session Layer)

- Aufgaben der Sitzungsschicht:
 - Dialogsteuerung
 - Simplex
 - Halbduplex
 - Vollduplex
 - Sitzungsverwaltung
 - Verbindungsaufbau
 - Datenübertragung
 - Verbindungfreigabe

- 7. Anwendungsschicht
- 6. Darstellungsschicht
- 5. Kommunikationsschicht
 - 4. Transportschicht
 - 3. Vermittlungsschicht
 - 2. Sicherungsschicht
 - 1. Bitübertragungsschicht

- 7. Anwendungsschicht
- 6. Darstellungsschicht
 - 5. Kommunikationsschicht
 - 4. Transportschicht
 - 3. Vermittlungsschicht
 - 2. Sicherungsschicht
 - 1. Bitübertragungsschicht
- Aufgabe dieser Schicht ist es, die Verwendung verschiedener Datentypen in den kommunizierenden Anwendungen und deren unterschiedliche Darstellungsweisen auf verschiedenartiger Hardware- und Firmware zu realisieren.
- Bei der Kommunikation verschiedener Systeme, z.B. mit unterschiedlicher Hardware und unterschiedlichen lokalen Betriebssystemen, können Unterschiede in der Informationsdarstellung auftreten.
- In diesen Fällen müssen eine Reihe von Umwandlungen zum beiderseitigem Verständnis durchgeführt werden.

- 5. Kommunikationsschicht
- 4. Transportschicht
- 3. Vermittlungsschicht
- 2. Sicherungsschicht
- 1. Bitübertragungsschicht

- Schicht 6, Darstellungsschicht (Presentation Layer)
- Umwandlungsarten sind:
 - Bit-Reihenfolge
 - Byte-Reihenfolge
 - Zeichensatz
 - Dateisyntax
- Die Darstellungsschicht kann entsprechende Umwandlungen vornehmen, damit die Informationen auf jedem System richtig dargestellt werden.
- Weitere Aufgaben dieser Schicht sind:
 - Die Verschlüsselung bzw. Entschlüsselung der Daten (Sicherheitsaspekte).
 - Die Komprimierung bzw. Dekomprimierung von Daten (Kostenaspekt) vor und nach der Datenübertragung .

- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
- 3. Vermittlungsschicht
- 2. Sicherungsschich
- 1. Bitübertragungsschicht
- Die Anwendungsschicht stellt Funktionen für die Anwendungen zur Verfügung und die Verbindung zu den unteren Schichten her. Auf dieser Ebene findet auch die Dateneingabe und -ausgabe statt.
- Diese Schicht umfasst nicht die Anwendungen selbst, sondern stellt diesen vielmehr Dienste zur Verfügung.
- Aufgaben der Schicht sind:
 - Netzwerk-Services (Datei-, Verzeichnis-, Datenbank-, Name-Service usw.)
 - Serviceangebot (aktiv, passiv)
 - Servicebenutzung (Abfangen von OS-Aufrufen, rechnerferner Betrieb, kollaborativer Betrieb)

Schicht 7, Anwendungsschicht (Application Layer)

- In der Kommunikation wirkt die Anwendungsschicht eng mit der Transportschicht zusammen.
- Einige Protokolle der Schicht:
 - HTTP (Hypertext Transfer Protocol)
 - FTP (File Transfer Protocol)
 - SMTP (Simple Mail Transfer Protocol)
 - DNS (Domain Name System)
 - LDAP (Lightweight Directory Access Protocol)
 - DHCP (Dynamic Host Configuration Protocol)

- 6. Darstellungsschicht
- 5. Kommunikationsschicht
- 4. Transportschicht
- 3. Vermittlungsschicht
- 2. Sicherungsschicht
- 1. Bitübertragungsschicht

DoD-Modell TCP/IP-Modell

DOD-Modell

- Das DoD-Schichtenmodell ist das Schichtenmodell auf dem das Internet basiert.
- Es wurde Ende der 1960er Jahre von der DARPA (Defense Advanced Research Projects Agency) im Auftrag des Department-of-Defense (DoD) entwickelt.
- Es sollte die Kommunikation im ARPANET beschreiben, welches aufgrund seiner dezentralen Struktur vor Ausfällen schützen sollte.
- Obwohl einige Jahre später das OSI-Modell entwickelt wurde, wird es zur Beschreibung der Kommunikation in TCP/IP-Netzen verwendet.
- Da es die Kommuniktion in TCP/IP-Netzen, insbesondre des Internets, beschreibt, wird es als TCP/IP-Modell bezeichnet

TCP/IP-Modell

4. Anwendungsschicht

3. Transportschicht

2. Internetschicht

1. Netzzugangsschicht

Abbildung 3: TCP/IP-Modell (Eigene Darstellung)

- Ist in 4 Schichten unterteilt.
- Die Protokolle sind fest an die Schichten gebunden und lassen deshalb keine Anpassung zu.

TCP/IP-Modell

4. Anwendungsschicht

3. Transportschicht

2. Internetschicht

1. Netzzugangsschicht

Die Schicht 4 ist die anwendungsorientierte Schicht.

Die Schichten 3 - 1 sind die transportorientierte Schichten.

Abbildung 3: TCP/IP-Modell (Eigene Darstellung)

TCP/IP-Modell

4. Anwendungsschicht

3. Transportschicht

2. Internetschicht

1. Netzzugangsschicht

Abbildung 3: TCP/IP-Modell (Eigene Darstellung)

Protokollstapel:

• HTTP, SMTP, FTP

• TCP, UDP

• IP

• Ethernet

TCP/IP- versus OSI-Modell

- Wenn es um die Beschreibung von Protokollen im Internet und der Netzwerktechnik geht, dann wird wahlweise das TCP/IP- oder das OSI-Schichtenmodell herangezogen.
- Obwohl das Internet und damit alle Netzwerke auf dem TCP/IP-Schichtenmodell basieren, wird regelmäßig auf das OSI-Schichtenmodell Bezug genommen.
- Das OSI-Schichtenmodell wurde erst einige Jahre nach dem TCP/IP-Schichtenmodell entwickelt. Es ist aber an dieses abwärtskompatibel angelehnt. Der direkte Vergleich zeigt eine gewisse Ähnlichkeit.
- Das OSI-Schichtenmodell ist allerdings wesentlich feiner gegliedert und flexibler. So lässt das OSI-Schichtenmodell die Zusammenfassung oder Entfernung einzelner Schichten zu.

Protokolle

Protokolle (Kommunikationsregeln)

- In jeder Schicht eines Referenzmodells sind Protokolle definiert. Es handelt sich dabei Regeln zur Kommunikation in der jeweiligen Schicht.
- An den Übergängen der Schichten kommunizieren die Protokolle über Schnittstellen.
- Einige Protokolle erfüllen Aufgaben mehrerer Schichten und erstrecken sich über zwei oder mehr Layer.
- Damit der Datenaustausch gelingt, müssen die beteiligten Stationen die gleichen Netzwerk-Protokolle verstehen und verwenden.
- Je nach Protokoll kann die Datenübertragung in verschiedenen Formen wie verbindungsorientiert, verbindungslos, gesichert oder ungesichert erfolgen

Kommunikationsablauf im OSI-Modell

Kommunikationsablauf im OSI-Modell

Werden in der Kommunikation Geräte zwischengeschaltet, so müssen auf diesen nicht alle Schichten durchlaufen werden.

Abbildung 5: OSI-Vermittlung (Eigene Darstellung)

So durchläuft ein Paket durch den TCP/IP-Stapel

Netzwerkmedium

Prinzip der Datenkapselung

Jede Schicht fügt beim Senden ihren Header den Daten der vorherigen Schicht hinzu.
 Dabei bilden Header und Daten der vorherigen Schicht die Nutzlast.

• Beim Empfang entfernt jede Schicht ihren Header, bevor die Daten der nächsthöheren Schicht übergeben werden.

Anwendung

Anwendungsschicht (Application Layer)
Darstellungsschicht (Presentation Layer)
Sitzungsschicht (Session Layer)
Transportschicht (Transport Layer)
Vermittlungsschicht (Network Layer)
Sicherungsschicht (Data Link Layer)
Bitübertragungsschicht (Physical Layer)

Abbildung 6: OSI-Kapselung (Eigene Darstellung)

Quellen

Buchquelle

Abbildungen

Kersken, Sascha (2017): IT-Handbuch für Fachinformatiker. Der Ausbildungsbegleiter. 8. Auflage, revidierte Ausgabe. Bonn: Rheinwerk Verlag; Rheinwerk Computing.

Schreiner, Rüdiger (2014): Computernetzwerke. Von den Grundlagen zur Funktion und Anwendung. 5., erw. Aufl. München: Hanser.

VIELEN DANK!

