Hazel Sánchez Omar García Ramos

1 Descripción de la base de datos

Origen de los datos

Estos datos forman parte del proyecto ISONET, que recopila isótopos estables de carbono ($\delta^{13}C$) en celulosa de anillos de árboles de toda Europa. El objetivo es estudiar el clima y la eficiencia en el uso del agua de los bosques durante los últimos 400 años.

Estructura de los datos

El conjunto de datos está organizado en un DataFrame con 415 observaciones (filas) y 26 variables (columnas). Contiene información sobre sitios de muestreo de árboles en Europa y sus registros isotópicos ($\delta^{13}C$) a lo largo de varios años. Los valores faltantes se indican como NA.

- Filas: Cada fila representa un año, desde aproximadamente el año 1600 hasta 1995 (primeras 10 filas de metadatos).
- Columnas: Cada columna representa un sitio de muestreo en Europa.

Metadatos

Sacamos los metadatos de cada variable de las primera 10 filas (incluyendo los indices) del DataFrame y obtenemos la siguiente tabla (por practicidad ha sido rotada y dividida).

Table 1: Metadatos - Información básica de los sitios

index	Site name Country		Latitude	Longitude	Species
BRO	Bromarv	Finland	60.00	23.08	Quercus robur
CAV	Cavergno	Switzerland	46.35	8.6	Quercus petraea
CAZ	Cazorla	Spain	37.93	-2.97	Pinus nigra
COL	Col Du Zad	Morocco	32.97	-5.07	Cedrus atlantica
DRA	Dransfeld	Germany	51.51	9.78	Quercus petraea
FON	Fontainebleau	France	48.38	2.67	Quercus petraea
GUT	Gutuli	Norway	62.00	12.18	Pinus sylvestris
ILO	Sivakkovaara	Finland	62.98	31.27	Pinus sylvestris
INA	Inari	Finland	68.93	28.31	Pinus sylvestris
AHI	Perchtold	Austria	48.25	16.77	Quercus petraea
LAI	Lainzer Tiergarten	Austria	48.18	16.20	Quercus petraea
LIL	Pinar de Lillo	Spain	43.07	-5.25	Pinus sylvestris
LOC	Lochwood	United Kingdom	55.27	-3.43	Quercus petraea
NIE1	Niepolomice	Poland	50.03	20.35	Quercus robur
NIE2	Niepolomice	Poland	50.03	20.35	Pinus sylvestris
PAN	Panemunes	Lithuania	54.09	23.96	Pinus sylvestris
PED	Pedraforca	Spain	42.23	1.70	Pinus uncinata
POE	Poellau	Austria	47.31	15.81	Pinus nigra
REN	Renn France		48.02	-1.83	Quercus robur
SER	Monte Pollino	Italy	39.93	16.21	Pinus leucodermis
SUW	Suwalki	walki Poland		23.25	Pinus sylvestris
VIG	Vigera	Switzerland	46.05	8.77	Pinus sylvestris
VIN	Vinuesa	Spain	42.00	2.75	Pinus uncinata
WIN	Windsor	United Kingdom	51.43	-0.61	Pinus sylvestris
WOB	Woburn	United Kingdom	51.98	-0.59	Pinus sylvestris

Table 2: Metadatos - Información temporal y de referencia

index	First year CE	Last year CE	elevation a.s.l.	Year CE
BRO	1901	2002	5	13CVPDB
CAV	1637	2002	900	13CVPDB
CAZ	1600	2002	1820	13CVPDB
COL	1600	2000	2200	13CVPDB
DRA	1776	1999	320	13CVPDB
FON	1600	2000	100	13CVPDB
GUT	1600	2003	800	13CVPDB
ILO	1600	2002	200	13CVPDB
INA	1600	2002	150	13CVPDB
AHI	1600	1883	n.s.	13CVPDB
LAI	1812	2003	300	13CVPDB
LIL	1600	2002	1600	13CVPDB
LOC	1749	2003	175	13CVPDB
NIE1	1627	2003	190	13CVPDB
NIE2	1627	2003	190	13CVPDB
PAN	1816	2002	45	13CVPDB
PED	1600	2003	2120	13CVPDB
POE	1600	2002	500	13CVPDB
REN	1611	1998	100	13CVPDB
SER	1604	2003	1900	13CVPDB
SUW	1600	2004	160	13CVPDB
VIG	1675	2003	1400	13CVPDB
VIN	1850	1999	1950	13CVPDB
WIN	1763	2003	80	13CVPDB
WOB	1604	2003	10	13CVPDB

Estadísticas de los datos

A continuación calculamos las estadísticas básicas sobre los datos y obtenemos.

Table 3: Estadísticas descriptivas de los datos

	count	mean	std	min	25%	50%	75%	max
BRO	102.000	-25.505	0.671	-27.200	-26.000	-25.500	-25.000	-23.800
CAV	365.000	-24.122	0.489	-25.500	-24.400	-24.200	-23.800	-22.500
CAZ	403.000	-21.050	0.617	-24.300	-21.300	-20.900	-20.600	-19.600
COL	280.000	-20.756	0.435	-25.300	-21.000	-20.800	-20.500	-19.600
DRA	226.000	-23.788	0.856	-26.000	-24.300	-23.800	-23.300	-21.000
FON	283.000	-24.206	0.523	-26.410	-24.540	-24.180	-23.885	-22.820
GUT	403.000	-23.531	0.612	-26.070	-23.920	-23.510	-23.100	-21.820
ILO	403.000	-23.603	0.689	-26.000	-23.900	-23.500	-23.100	-22.300
INA	403.000	-24.783	0.586	-26.400	-25.100	-24.700	-24.400	-23.400
AHI	284.000	-24.694	0.828	-27.600	-25.100	-24.600	-24.200	-22.700
LAI	192.000	-25.060	0.786	-27.700	-25.525	-25.100	-24.600	-23.000
LIL	399.000	-22.197	0.761	-25.600	-22.700	-22.100	-21.700	-20.600
LOC	255.000	-26.245	0.643	-28.500	-26.600	-26.300	-25.800	-24.400
NIE1	377.000	-25.256	1.145	-28.710	-25.920	-25.160	-24.520	-20.460
NIE2	377.000	-23.443	0.809	-26.100	-23.700	-23.300	-22.900	-21.600
PAN	187.000	-23.452	0.431	-24.760	-23.715	-23.390	-23.180	-22.280
PED	401.000	-22.006	0.622	-24.170	-22.350	-22.000	-21.580	-20.340
POE	403.000	-23.893	0.923	-26.700	-24.550	-23.700	-23.250	-21.600
REN	367.000	-24.435	0.870	-26.680	-25.115	-24.280	-23.720	-22.640
SER	400.000	-22.210	0.697	-24.300	-22.500	-22.100	-21.700	-20.700
SUW	405.000	-23.080	0.811	-25.100	-23.700	-23.100	-22.500	-20.900
VIG	328.000	-23.281	0.597	-25.100	-23.700	-23.300	-22.800	-21.800
VIN	150.000	-22.573	0.832	-25.000	-22.900	-22.400	-22.000	-21.100
WIN	232.000	-22.852	0.594	-24.200	-23.300	-22.900	-22.400	-21.300
WOB	395.000	-24.976	0.851	-26.900	-25.600	-25.100	-24.400	-22.200

Valores Faltantes

A continuación contamos el numero de valores faltantes y tenemos

Table 4: Tipos de datos, valores no nulos y faltantes por columna

Columna	Tipo	No nulos	Valores faltantes	Porcentaje faltante
BRO	float64	102	304	74.876847
CAV	float64	365	41	10.098522
CAZ	float64	403	3	0.738916
COL	float64	280	126	31.034483
DRA	float64	226	180	44.334975
FON	float64	283	123	30.295567
GUT	float64	403	3	0.738916
ILO	float64	403	3	0.738916
INA	float64	403	3	0.738916
AHI	float64	284	122	30.049261
LAI	float64	192	214	52.709360
LIL	float64	399	7	1.724138
LOC	float64	255	151	37.192118
NIE1	float64	377	29	7.142857
NIE2	float64	377	29	7.142857
PAN	float64	187	219	53.940887
PED	float64	401	5	1.231527
POE	float64	403	3	0.738916
REN	float64	367	39	9.605911
SER	float64	400	6	1.477833
SUW	float64	405	1	0.246305
VIG	float64	328	78	19.211823
VIN	float64	150	256	63.054187
WIN	float64	232	174	42.857143
WOB	float64	395	11	2.709360

Mostramos una grafica de como se distribuyen los datos faltantes en la tabla. Cada casilla en blanco indica que es un valor faltante (NaN).

Figure 1: Mapa de color - Datos faltantes

En la grafica podemos identificar patrones de que la medición de los datos en ciertas variables falló de manera continua por ciertos periodos. Estos patrones sugieren que algunas mediciones empezaron después de otras o terminaron antes que otras. Además, en algunos casos las mediciones sólo tuvieron pausas.

Por otro lado, en otras variables los datos faltantes parecen seguir otra distribución que sugieren fallas intermitentes en la medición de los datos, y finalmente encontramos variables en las cuales no hay datos faltantes.

En nuestro caso, los NaN pueden aparecer porque:

- No se pudo tomar muestra ese año.
- El anillo no estaba presente o no era legible.
- No se llegó a ese año en la cronología de ese sitio.

Para el caso en que los datos faltantes sean por fallas intermitentes, el análisis suguiere que el anillo no estaba presente o no era legible. Más adelante consideraremos como manejar estos datos faltantes.

Clasificación de las variables según su escala de medición

A continuación se presenta la clasificación de cada variable de la base de datos según su escala de medición. Se incluye una breve explicación del porqué de cada clasificación.

Table 5: Clasificación de variables

Variable	Tipo	Justificación
Site code	Nominal	Categorías sin orden (códigos de sitio)
Site name	Nominal	Nombres sin orden jerárquico
Country	Nominal	Países sin orden
Latitude	Razón	Valor numérico con cero absoluto (grados)
Longitude	Razón	Valor numérico con cero absoluto (grados)
Species	Nominal	Nombre de especie sin orden
Year CE	Intervalar	Años con intervalo constante, pero sin cero absoluto (no hay "año cero")
$\delta^{13}\mathrm{C}$	Razón	Valor numérico medido en $\%_o$ (per mil), con cero absoluto

Los datos de cada variable se miden en $\delta^{13}C$ que es la relación de isótopos estables de carbono (13C/12C) en la celulosa del anillo de crecimiento. Se expresa en $\%_o$ (per mil) respecto al estándar internacional VPDB.

- Valores más negativos indican mayor fraccionamiento isotópico (ej: más humedad, menos estrés).
- Valores menos negativos indican menor fraccionamiento (ej: sequía, mayor eficiencia en el uso del agua).

Outliers

Dada la naturaleza de nuestros datos, podemos considerar cada variable (medida de $\delta^{13}C$ por localidad) como una serie de tiempo, para tener una mejor interpretación de estas series graficamos el comportamiento de las estas series.

Figure 2: Grafica de cada serie

En las graficas de cada variable observamos algunos picos inusuales que pueden sugerir la presencia de outliers, sin embargo estos picos ocurren en años distintos para cada variable. Por lo cual, en caso de ser estos valores outliers, no parecen tener que ver con algún factor físico en el entorno las localidades donde se realizaron las mediciones.

Aún así, la observación anterior no es determinante ya que en nuestro caso podemos notar que las variables no siguen un comportamiento suficientemente similar entre ellas, esto lo vemos a través de la matriz de correlación,

Figure 3: Matriz de correlación

Para buscar algún patrón que refleje ciclos podemos comparar las funciones de auto-correlación de cada variable, sin embargo no lo realizaremos.

Por otro lado, para continuar con el análisis de outliers consideremos las graficas de caja de cada variable.

Figure 4: Grafica de Boxplots

En las graficas de caja notamos que en la mayoría de las localidades, las mediciones parecen seguir una distribución simétrica (quizá una distribución normal).

Además, notamos que en cada localidad, las mediciones tomadas y que son candidatas a ser outliers se encuentran acumuladas por debajo de las otras mediciones, esto sugiere fuertemente la existencia de algún otro fenómeno que haga que las mediciones sean mas bajas en ciertos años.