

Universidade de Aveiro

Departamento de Eletrónica, Telecomunicações e Informática

Exame teórico-prático, parte 2

Compiladores

Exame modelo

Curso: Nome: NºMec:

ALGORITMO do predict:

$$\mathtt{predict}(A \to \alpha) = \left\{ \begin{array}{ll} \mathtt{first}(\alpha) & & \varepsilon \not \in \mathtt{first}(\alpha) \\ (\mathtt{first}(\alpha) - \{\varepsilon\}) \cup \mathtt{follow}(A) & & \varepsilon \in \mathtt{first}(\alpha) \end{array} \right.$$

ALGORITMO do first:

$$\begin{split} & \text{first}(\alpha) \; \{ \\ & \text{if} \; (\alpha = \varepsilon) \; \; \text{then} \\ & \text{return} \; \{\varepsilon\} \\ & h = \text{head} \; (\alpha) \qquad \# \; com \; |h| = 1 \\ & \omega = \text{tail} \; (\alpha) \qquad \# \; tal \; que \; \alpha = h \; \omega \\ & \text{if} \; (h \in T) \; \; \text{then} \\ & \text{return} \; \{h\} \\ & \text{else} \\ & \text{return} \; \bigcup_{(h \to \beta_i) \in P} \text{first}(\beta_i \; \omega) \\ & \} \end{split}$$

ALGORITMO do follow:

- 1. $\$ \in \mathtt{follow}(S)$
- 2. if $(A \to \alpha B \in P)$ then $follow(B) \supseteq follow(A)$
- if $(A \to \alpha B\beta \in P) \land (\varepsilon \not\in \text{first}(\beta))$ then 3. $follow(B) \supseteq first(\beta)$
- 4. if $(A \to \alpha B\beta \in P) \land (\varepsilon \in \text{first}(\beta))$ then $follow(B) \supseteq ((first(\beta) - \{\varepsilon\}) \cup follow(A))$
- 1. Sobre o alfabeto $T_1 = \{t \ b \ z \ w \ a \ o \ v \ n\}$ considere a gramática G_1 dada a seguir e seja L_1 a linguagem por ela descrita.

- (a) Mostre que atwnvbz $\in L_1$. [1,5]
- [1,5](b) Avalie a veracidade da afirmação: {w,t} ⊂ first(X I t P). Apresente os passos intermédios e/ou o raciocínio adequados para suportar a sua resposta.
- (c) Avalie a veracidade da afirmação: $t \in follow(T)$. [1,5]Apresente os passos intermédios e/ou o raciocínio adequados para suportar a sua resposta.
- (d) Calcule o conjunto $predict(P \rightarrow X b P z P)$. [2,0]Apresente os passos intermédios e/ou o raciocínio adequados para suportar a sua resposta.
- (e) As produções começadas por P e C tornam a gramática G_1 inadequada à implementação de um reco-[2,0]nhecedor descendente com lookahead de 1. Altere-a de forma a obter uma equivalente que o permita.
 - 2. Considere o alfabeto $A = \{a, b, c\}$ e seja L_2 o conjunto de todas as expressões regulares definíveis sobre o alfabeto A. L_2 é uma linguagem independente do contexto definida sobre o alfabeto $T_2 = A \cup \{(,),*,+\}$, em que * representa o operador de fecho e + o operador de escolha; operação de concatenação tem o operador implícito. Em termos de precedência, da mais alta para a mais baixa, estão as operações de fecho, concatenação e escolha. Os parêntesis podem ser usados para alterar a precedência por defeito.
- [3,0](.) Construa uma gramática independente do contexto que represente a linguagem L_2 .

3. Sobre o alfabeto $T_3 = \{\text{NUM, BOX, CIRCLE, THICKNESS, COLOR, '{', '}'}\}$, considere a gramática G_3 dada a seguir e seja L_3 a linguagem por ela descrita.

Considere ainda o conjunto de estados (conjuntos de itens) usado na contrução de um reconhecedor ascendente parcialmente apresentada a seguir, onde $\delta(Z_i, a)$ representa a função de transição de estado.

```
Z_0 = \{ draw \rightarrow \bullet \ seq \ , \ seq \rightarrow \bullet \ , \ seq \rightarrow \bullet \ seq \ item \}
Z_1 = \delta(Z_0, seq) = \{ draw \rightarrow seq \bullet , \ seq \rightarrow seq \bullet item \ , \ item \rightarrow \bullet \ \text{color num} \ , \ item \rightarrow \bullet \ \text{circle point num} \ , \ item \rightarrow \bullet \ \text{color num} \ , \ item \rightarrow \bullet \ \text{circle point num} \ , \ item \rightarrow \bullet \ \text{box point} \ '\{' \ seq '\}'\}
Z_2 = \delta(Z_1, item) = \{ seq \rightarrow seq \ item \bullet \}
Z_3 = \delta(Z_1, \text{color}) = \{ item \rightarrow \text{color} \bullet \text{num} \}
Z_4 = \delta(Z_1, \text{thickness}) = \{ item \rightarrow \text{thickness} \bullet \text{num} \}
Z_5 = \delta(Z_1, \text{circle}) = \{ \cdots \}
Z_6 = \delta(Z_1, \text{box}) = \{ \cdots \}
Z_7 = \delta(Z_3, \text{num}) = \{ item \rightarrow \text{thickness num} \bullet \}
Z_8 = \delta(Z_4, \text{num}) = \{ item \rightarrow \text{thickness num} \bullet \}
```

[2,0] (a) Preencha as linhas da tabela de reconhecimento (parsing) para um reconhecedor ascendente relativamente aos estados Z_0 a Z_4 .

	NUM	BOX	CIRCLE	THICKNESS	COLOR	{	}	\$ draw	seq	item	point
Z_0											
Z_1											
Z_2											
Z_3											
Z_4											

[2,0] (b) Determine os conjuntos de itens definidores dos estados Z_5 , Z_6 e de mais três, além dos apresentados.

- 4. Considere novamente a gramática G_3 dada no exercício anterior. Uma palavra na linguagem dada por G_3 descreve um desenho definido por uma sequência das seguintes operações gráficas (item):
 - color num, que permite mudar a cor da caneta de desenho para a dada por num.
 - THICKNESS NUM, que permite mudar a espessura da caneta de desenho para a dada por NUM.
 - circle *point* num, que desenha um circunferência centrada no ponto dado por *point* e com raio dado por num, usando a caneta de desenho ativa.
 - BOX point '{' seq '}', que cria um sub-desenho com um offset dado por point em relação ao desenho dentro do qual fica. O ponto (0,0) do sub-desenho é o ponto point do desenho onde está incluído.

Apenas o símbolo terminal num tem um atributo associado, designado v e que representa um número. O símbolo não terminal point representa as coordenadas X e Y de um ponto. A configuração inicial do sistema é caraterizada por cor 0, espessura 1 e offset (0,0). Finalmente, considere que dispõe da função drawCircle(x, y, r, c, t) que desenha uma circunferência centrada no ponto (x,y), com raio r, usando uma caneta de desenho com cor c e espessura t.

- [1,5] (a) Trace a árvore de derivação da palavra

 color num circle num num num box num num '{' thickness num circle num num num '}'

 Se quiser, ao traçar a árvore, pode abreviar a designação dos símbolos, usando n, ci, co, t, b, s, i e p em vez de num, circle, color, thickness, box, seq, item e point, respetivamente.
- [3,0] (b) Complete a gramática de atributos abaixo tal que ela adequadamente invoque a função drawCircle para cada circunferência incluída numa descrição em L_3 .

Production	Semantic rule
$draw \rightarrow seq$	
$seq \rightarrow \varepsilon$	
$seq_0 \rightarrow seq_1 item$	
$item ightarrow exttt{COLOR NUM}$	
$item ightarrow exttt{THICKNESS NUM}$	
$item ightarrow ext{CIRCLE } point ext{ num}$	drawCircle(point.x, point.y, NUM.v,
$item ightarrow ext{BOX point { seq }}$	
$point ightarrow exttt{NUM}_1 exttt{NUM}_2$	