

Model Building

1.Train-Test Split

Split the dataset to evaluate model performance.
from sklearn.model_selection import train_test_split

X = df.drop('Cirrhosis', axis=1)
y = df['Cirrhosis']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

2. Model Selection

Try multiple algorithms and compare:

- Logistic Regression
- Random Forest
- **XGBoost**
- Support Vector Machine (SVM)
- K-Nearest Neighbors (KNN)

3. Training Models

Example: Random Forest

from sklearn.ensemble import RandomForestClassifier rf = RandomForestClassifier(n_estimators=100, random_state=42) rf.fit(X_train, y_train)

Example: XGBoost

import xgboost as xgb

xgb_model = xgb.XGBClassifier(use_label_encoder=False, eval_metric='logloss')
xgb_model.fit(X_train, y_train)

4. Model Evaluation

Use metrics like:

- Accuracy
- Precision, Recall, F1-Score
- Confusion Matrix
- ROC-AUC Score

from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score y_pred = rf.predict(X_test)
print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
print("ROC AUC Score:", roc_auc_score(y_test, rf.predict_proba(X_test)[:,1]))

5. Hyperparameter Tuning (Optional but Recommended)

```
from sklearn.model_selection import GridSearchCV
param_grid = {
    'n_estimators': [50, 100, 200],
    'max_depth': [4, 6, 8]
}
grid = GridSearchCV(RandomForestClassifier(), param_grid, cv=5)
grid.fit(X_train, y_train)
```

6. Model Comparison Table (Example Output)

Model	Accuracy	ROC AUC	F1-Score
LogisticRegression	82%	0.85	0.79
RandomForest	89%	0.91	0.86
XGBoost	90%	0.93	0.88
SVM	85%	0.87	0.82

Final Step: Model Selection & Save Best Model

import joblib

joblib.dump(xgb_model, 'best_model_liver.pkl')