# KDD CUP 2019: Humanity RL Track Solution by Alpha

Speaker: Suigian Luo

Guazi

August 6, 2019

#### Overview

- Introduction
- 2 Environment Analysis
  - Feedback phase
  - Check phase
  - Verification phase
- Solution
- About Guazi

#### Overview

- Introduction
- 2 Environment Analysis
  - Feedback phase
  - Check phase
  - Verification phase
- Solution
- 4 About Guazi

## Background

- Policy learning for malaria control in Sub Saharan Africa
- Sequential decision making task
- Applying machine learning tools to determine novel solutions

#### **Evaluation**

- Final score
  - Median of reward scores from 10 instantiations
- Instantiation
  - 21 episodes in an instantiation
  - Scores in previous episodes can be used
  - Maximum score from all episodes
- Episode
  - 5 sequential actions in an episode
  - Action represented by two real numbers between 0 and 1
  - Denoted by  $(x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4), (x_5, y_5)$

#### Overview

- 1 Introduction
- 2 Environment Analysis
  - Feedback phase
  - Check phase
  - Verification phase
- Solution
- About Guazi

## **Environment analysis**

- Three interesting environments in total
- The understanding of environments is critical
- No background material about environments

- How does the 5<sup>th</sup> action affect the final reward?
  - Fix the first 4 actions with (0.0, 0.0)



- How does the 4<sup>th</sup> action effect the final reward pattern?
  - Fix the first 3 actions with (0.0, 0.0)



## Assumption

- Basic pattern f(x, y)
- Reward

score = 
$$f(x_1, y_1)$$
  
+  $f((1 - x_1) \cdot x_2, (1 - y_1) \cdot y_2)$   
+  $f((1 - x_2) \cdot x_3, (1 - y_2) \cdot y_3)$   
+  $f((1 - x_3) \cdot x_4, (1 - y_3) \cdot y_4)$   
+  $f((1 - x_4) \cdot x_5, (1 - y_4) \cdot y_5)$ 

Confirmed by random trials

# Dynamic programming

- Let H(k, x, y) denote the highest score
  - From  $(k+1)^{th}$  action to  $5^{th}$  action
  - Given that the  $k^{th}$  action is (x, y)
- Transition equation

$$H(k, x, y) = \max_{a,b} \{H(k+1, a, b) + f((1-x)a, (1-y)b)\}$$

• 
$$H(5, x, y) = 0$$

# Dynamic programming

- The goal is H(0, 0, 0)
- The best score is around these actions

$$(0,0.79),(1,0),(0,0.79),(1,0),(0,0.79)$$

## Check phase

Use the same assumption in previous phase

score = 
$$f(x_1, y_1)$$
  
+  $f(x_1, x_2, y_1, y_2)$   
+  $f(x_2, x_3, y_2, y_3)$   
+  $f(x_3, x_4, y_3, y_4)$   
+  $f(x_4, x_5, y_4, y_5)$ 

• Try to detect if there is any pattern of score we can get

## First action



#### First and second action



## Second and third action



#### Third and fourth action





## Fourth and fifth action



## Check phase

- 8 × 8 grid
- Different scores for different action round
- Very complex basic patterns

## Verification phase

- Gradient?
- $N \times N$  grid?
- Not enough chances to detect
- No prior knowledge about patterns and rewards

#### Overview

- Introduction
- 2 Environment Analysis
  - Feedback phase
  - Check phase
  - Verification phase
- Solution
- 4 About Guaz

## Main process

- Two-stage Random Search<sup>1</sup>
- 21 episodes in total
  - 6 episodes for random choices
    - Pick up the best reward
  - 15 episodes for random adjustments
    - 3 rounds for 5 actions in order
    - If get a higher score, accept the adjustment

<sup>1</sup>https://en.wikipedia.org/wiki/Random\_search



## Tricks

- Similar actions may be less informative
  - Restrict the number choices in

$$\{0.1, 0.3, 0.5, 0.7, 0.9\}$$

• Do not choose the same action to explore

## Code

- The code is available
  - https://github.com/luosuiqian/submission

#### Overview

- Introduction
- 2 Environment Analysis
  - Feedback phase
  - Check phase
  - Verification phase
- Solution
- 4 About Guazi