

Institut für Nachrichtentechnik

Abteilung Informationstheorie und Kommunikationssyteme

Prof. Eduard A. Jorswieck, Martin Le

Wintersemester 2023/2024

Formelsammlung

Signale und Systeme

Wintersemester 2023/2024

Hinweis: Diese Formelsammlung basiert auf der Formelsammlung zum Fach "Systemtheorie" an der TU Dresden.

Inhaltsverzeichnis

1 Fourier-Transformation			2
	1.1	Rechenregeln der Fourier-Transformation	2
	1.2	Korrespondenzen der Fourier-Transformation	3
2 Laplace-Transformation		lace-Transformation	4
	2.1	Rechenregeln der Laplace-Transformation	4
	2.2	Korrespondenzen der Laplace-Transformation	5

1 Fourier-Transformation

$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$$

1.1 Rechenregeln der Fourier-Transformation

Nr.	x(t)	$X(\omega)$	Bemerkungen
1	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(\omega) + \beta X_2(\omega)$	Linearität
2	x(t- au)	$e^{-j\omega\tau}X(\omega)$	Verschiebungssatz (Zeitverschiebung)
3	$x(t)e^{\mathrm{j}\omega_0t}$	$X(\omega-\omega_0)$	Verschiebungssatz (Frequenzverschiebung)
4	x(at)	$\begin{vmatrix} \frac{1}{ a } X\left(\frac{\omega}{a}\right) \\ j\omega X(\omega) \end{vmatrix}$	Ähnlichkeitssatz $(a \neq 0)$
	$\dot{x}(t)$		Differentiationsregel
6	$\int_{-\infty}^{t} x(\tau) d\tau$ $\int_{-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau$	$ \frac{1}{\mathrm{j}\omega}X(\omega) $	Integrationsregel *)
7	$\int_{-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau$	$X_1(\omega)X_2(\omega)$	Faltungssatz (Faltung im Zeitbereich)
8	$x_1(t)x_2(t)$	$\frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(u) X_2(\omega - u) du$	Faltungssatz (Faltung im Frequenzber.)
9	Gilt die Korrespondenz $x(t) \hookrightarrow X(\omega)$, so gilt auch die Korrespondenz $X(t) \hookrightarrow 2\pi x(-\omega)$.		Vertauschungssatz

^{*)} Man überprüfe, ob die Fourier-Transformierte des Integrals auf der linken Seite wirklich exisiert!

1.2 Korrespondenzen der Fourier-Transformation

Nr.	x(t)	$X(\omega)$	
1	$\delta(t)$	1	
2	$oxed{1}(t)$	$\pi\delta(\omega)+rac{1}{\mathrm{j}\omega}$	
3	Rect $\left(\frac{t}{2\tau}\right) = \begin{cases} 1 & -\tau \le t \le \tau \\ 0 & t < -\tau \lor t > \tau \end{cases}$	$2\tau \frac{\sin(\omega \tau)}{\omega \tau} = 2\tau \operatorname{si}(\omega \tau)$	
4	$\frac{\omega_0}{\pi} \operatorname{si}(\omega_0 t) = \frac{\omega_0}{\pi} \cdot \frac{\sin(\omega_0 t)}{\omega_0 t}$	$ \operatorname{Rect}\left(\frac{\omega}{2\omega_0}\right) = \begin{cases} 1 & -\omega_0 \le \omega \le \omega_0 \\ 0 & \omega < -\omega_0 \lor \omega > \omega_0 \end{cases} $	$(\omega_0 \neq 0)$
5	$\begin{cases} e^{-at} & t > 0\\ 0 & t < 0 \end{cases}$	$\frac{1}{\mathrm{j}\omega + a}$	(a > 0)
6	$e^{-a t }$	$\frac{2a}{\omega^2 + a^2}$	(a > 0)
7	$\begin{vmatrix} \frac{1}{t^2 + a^2} \\ e^{-at^2} \end{vmatrix}$	$\frac{\pi}{a} e^{-a \omega }$	(a > 0)
8	e^{-at^2}	$\sqrt{\frac{\pi}{a}} e^{-\frac{\omega^2}{4a}}$	(a > 0)
9	$(1+a t)e^{-a t }$	$\frac{4a^3}{(\omega^2 + a^2)^2}$	(a > 0)
	$\left(1 + a t + \frac{1}{3}(at)^2\right) e^{-a t }$	$\frac{16a^5}{3(\omega^2 + a^2)^3}$	(a > 0)
11	$e^{-a t }\cos(\beta t)$	$\frac{2a(\omega^2 + a^2 + \beta^2)}{(\omega^2 - a^2 - \beta^2)^2 + 4a^2\omega^2}$	(a > 0)
12	$e^{-a t } \left(\cos(\beta t) + \frac{a}{\beta} \sin(\beta t) \right)$	$\frac{4a(a^{2}+\beta^{2})}{((\omega-\beta)^{2}+a^{2})((\omega+\beta)^{2}+a^{2})}$	(a > 0)
13	$\begin{cases} a\left(1 - \frac{ t }{\tau}\right) & -\tau < t < \tau \\ 0 & \text{sonst} \end{cases}$	$\frac{4a}{\omega^2 \tau} \sin^2\left(\frac{\omega \tau}{2}\right) = a\tau \sin^2\left(\frac{\omega \tau}{2}\right)$	$(\tau \neq 0)$
14	$\cos(\omega_0 t)$	$\pi \left(\delta(\omega - \omega_0) + \delta(\omega + \omega_0)\right)$	
15	$\sin(\omega_0 t)$	$\left j\pi \left(\delta(\omega + \omega_0) - \delta(\omega - \omega_0) \right) \right $	

2 Laplace-Transformation

$$X(s) = \int_{0}^{\infty} x(t)e^{-st}dt$$

$$x(t) = \frac{1}{2\pi i} \int_{\delta - j\infty}^{\delta + j\infty} X(s)e^{st}ds$$

2.1 Rechenregeln der Laplace-Transformation

Nr.	x(t)	X(s)	Bemerkungen
1	$\alpha x_1(t) + \beta x_2(t)$	$\alpha X_1(s) + \beta X_2(s)$	Linearität
2	$x(t-\tau) (\tau > 0)$	$e^{-s\tau}X(s)$	Verschiebungssatz
3	x(at)	$\frac{1}{a}X\left(\frac{s}{a}\right)$	$\ddot{\text{Ahnlichkeitssatz}}$ $(a > 0)$
4	$\left \stackrel{.}{\dot{x}}(t) \right $	sX(s) - x(+0)	Differentiationsregel
5	$\begin{vmatrix} \dot{x}(t) \\ \int_{0}^{t} x(\tau) d\tau \\ e^{-at}x(t) \end{vmatrix}$	$\frac{1}{s}X(s)$	Integrationsregel
		X(s+a)	Dämpfungssatz
7	$\int_{0}^{t} x_{1}(\tau)x_{2}(t-\tau)d\tau$	$X_1(s)X_2(s)$	Faltungssatz
8	$x(t) = \sum_{i} \operatorname{Res}_{s=s_i} \left[X(s) e^{st} \right]$	[st]	Residuenformel,

wobei

$$\operatorname{Res}_{s=s_i} \left[X(s) e^{st} \right] = \frac{1}{(m-1)!} \lim_{s \to s_i} \frac{d^{m-1}}{ds^{m-1}} \left[X(s) e^{st} (s-s_i)^m \right]$$

mit s_i : m-facher Pol von X(s) und X(s) rational mit $X(\infty) \to 0$.

$$\mathcal{L}(s) = \frac{1}{5} - \frac{1}{5}e^{-2S} = \frac{1}{5}\left(1 - e^{-2S}\right) = \frac{1}{jw}\left(1 - \cos 2w + j\sin 2w\right)$$

$$= \sqrt{\frac{(1 - \cos 2w)^2 + \sin 2w^2}{w^2}}$$

$$= \frac{1 - 2\cos 2w + \cos^2 2w + \sin^2 2w}{w^2}$$

2.2 Korrespondenzen der Laplace-Transformation

Nr.	x(t)	X(s)
1	$\delta(t)$	1
2	$oxed{1}(t)$	$\frac{1}{s}$
3	$\left \begin{array}{cc} t & 1(t) \end{array} \right $	$ \begin{vmatrix} \frac{1}{s} \\ \frac{1}{s^2} \end{vmatrix} $
4	$e^{at} 1(t)$	$\begin{vmatrix} \frac{1}{s-a} \\ \frac{1}{(s-a)^2} \end{vmatrix}$
5	$t e^{at} 1(t)$	$\frac{1}{(s-a)^2}$
6	$\frac{t^{n-1}}{(n-1)!}e^{at} 1(t)$	$\frac{1}{(s-a)^n} \qquad (n=1,2,3,\dots)$
7	$\cos at \ 1(t)$	$\frac{s}{s^2 + a^2}$
8	$\sin at \ 1(t)$	$\frac{a}{s^2 + a^2}$
9	$\cosh at \ 1(t)$	$\frac{s}{s^2 - a^2}$
10	$\sinh at \ 1(t)$	$\frac{a}{s^2 - a^2}$
11	$e^{at}\cos\beta t \ 1(t)$	$\frac{s-a}{(s-a)^2+\beta^2}$
12	$e^{at}\sin\beta t \ 1(t)$	$\frac{\beta}{(s-a)^2 + \beta^2}$
13	$e^{at} \left(\cos \beta t + \frac{a}{\beta} \sin \beta t \right) 1(t)$	$\frac{s}{(s-a)^2 + \beta^2}$
	$\cos^2 at \ 1(t)$	$\frac{s^2 + 2a^2}{s(s^2 + 4a^2)}$
15	$\sin^2 at \ 1(t)$	$\frac{2a^2}{s\left(s^2+4a^2\right)}$
16	$\cos(at+b) \ 1(t)$	$\frac{s\cos b - a\sin b}{s^2 + a^2}$
17	$\sin(at+b) \ 1(t)$	$\frac{s\sin b + a\cos b}{s^2 + a^2}$
18	$ \frac{1}{\sqrt{\pi t}} 1(t) $	$\frac{1}{\sqrt{s}}$
19	$2\sqrt{\frac{t}{\pi}} 1(t)$	$\left \begin{array}{c} \frac{1}{s\sqrt{s}} \end{array} \right $