クライアント認証

クライアント認証とは

正しいクライアントであることを確認する

認証方式の種類

- 名前による認証(厳密には認証でない) ID,グループ名,アドレス等の一致を確認
- パスワード認証方式
- ワンタイムパスワード方式
- チャレンジレスポンス方式
- 公開鍵認証方式
- (バイオメトリクス認証方式)

パスワード認証方式(基本)

☆パスワード認証方式に対する脅威、問題点

1.オンライン攻撃(通信チャンネルの盗聴)

キーボードの盗み見、スパイウェアによる監視も

2. オフライン攻撃(サーバのデータベースの解析)

パソコンの紛失、盗難も同じこと

3.スケーラビリティ(ユーザ数やサーバ数に対する拡張性)

パスワード認証方式(ハッシュ)

ID	Hash
Alice	#\$3aBk

(2) Hash("pass")を計算、照合

- オフライン攻撃に強くなる(ソルトを使用することもある)
- オンライン攻撃には無力
- 安全なハッシュ関数を用いれば、ハッシュ値から逆算してパスワードを求めることは困難
- 安易に推測可能なパスワードの場合、 ハッシュ値の一致を確認するのは容易

パスワードソルトの利用

パスワードハッシュ表が漏洩した場合

ID	ハッシュ値
Alice	3Eak7rv
Bob	3Eak7rv

- 表中に同じハッシュ値があると、同じ パスワードであることが分かる
- あらかじめ、パスワードとハッシュ値 の対応表を作成しておくことが可能

ID	ソルト	ハッシュ値
Alice	Fjl8w	oyBb4ap
Bob	5nnCi	80qvZ9e

- ・ ソルトの値(乱数)を登録時に決める
- ハッシュ値H = Hash(Salt|Pass)の ように求める
- 同じパスワードを使用していてもハッシュ値は異なる
- 事前にパスワードとハッシュ表の対応を計算しておくことができない

リプレイ攻撃

IDKeyHashAliceK#\$3aBk......

E(K, data): 鍵Kによるdataの暗号化

- (2) E(K,pass)を復号
- (3) Hash("pass")を計算、照合

- オンライン攻撃に強くなる?
- リプレイ攻撃に対して無力

チャレンジレスポンス方式

- ・ オンライン攻撃(リプレイ攻撃)不可
- オフライン攻撃は可能
- ワンタイムパスワード(後述)の一つとも考えられる

チャレンジレスポンス方式(2)

ID	Key
Alice	K
	•••

(4) sを復号し、Rと一致するか照合

- ・ オンライン攻撃(リプレイ攻撃)不可
- オフライン攻撃は可能
- ・ 鍵情報が漏洩した場合の影響大

ワンタイムパスワード方式

- ・ オンライン攻撃(リプレイ攻撃)不可
- ・ パスワード計算デバイスが必要
- 定期的に更新が必要な場合も
- フリーソフトウェアでは S/Keyが有名 (ハッシュ関数の性質を利用)

デバイスとサーバで 時刻に同期して、定期 的にパスワードが変 更される

ワンタイムパスワード(Lamport)

 $P_N = H^N(P)$

保有

N-2

$$P_{N-1} = H^{N-1}(P)$$

: H(P_{N-1})=P_N P_{N-1}を保存

$$P_{N-2} = H^{N-2}(P)$$

$$H(P_{N-2}) = P_{N-1}$$

チケット方式(Kerberos)

公開鍵による方式

- ・ オンライン攻撃(リプレイ攻撃)不可
- ・ オフライン攻撃不可
- ・ 秘密漏洩時の影響が小さい
- 計算量が多い(最近は多くの場合問題なし)

PKIが利用できる 場合、公開鍵リスト も不要

公開鍵による方式(2)

• あらかじめ公開鍵証明書を発行してもらう必要あり

OpenIDによる利用者認証

- •IDの「認証」を行うだけであって、サービスの「認可」とは別
- •OpenIDが使えることとRPが信頼できるかどうかは関係ない

「Shibboleth(シボレス)による シングルサインオンと大学間連携

パスワード認証は広く用いられているが、様々な脅威(本人が忘れることも含め) が存在する

安全なパスワードとは?

パスワードの安全性は、そのエントロピーEで見積もることができる

$$E = l \times \log_2 M(\text{bit})$$

Mはパスワードに使用する文字種類数、//はパスワード長

パスワード推定や総当たり攻撃に対処するためには、パスワードのエントロピーを高くすることが大事。

文字種類	M	1	E(bit)
数字のみ	10	4	13
アルファベット (小文字のみ)	26	8	38
アルファベット+数字	62	8	48
アルファベット+数字+記号	96	10	66
アルファベット+数字+記号	96	15	99
英語の単語			20

重要なサービスでは、80ビット程度以上のエントロピーが望ましい。

ビットサイズと全数探索

事項	個数	文字数 (6bit/1文字)	ビット数	探索時間 (10 ⁻¹³ 秒/1件)	
地球の人口	60億	6	32	60msec	
DES	7京(7×10 ¹⁶)	9	56	1.9時間	
水(180cc) 分子の数	6 × 10 ²⁴	14	82	19000年	
AES-128	3.4×10^{38}	21	128	100万 兆年	
AES-256	1.2×10^{77}	43	256		
宇宙の 基本粒子数	1080	44	265		

パスワードクラック

• (注)英単語(60万語程度<20bit)全て対象としても計算機には楽勝 長さには関係なし(supercalifragilisticexpialidocious)

パスワード認証の脅威への対策

- サーバへの攻撃等によるパスワードの漏えいに対して サービスごとに異なるパスワードを付けること 2段階認証も有効
- キーボードロガー等によるパスワード盗難に対して アンチウイルス、アンチスパイウェアソフトが有効 安易に信頼性の定かでないソフトをインストールしない
- パスワードの盗聴に対して SSHやHTTPS等のセキュアプロトコルを利用
- パスワード忘れに対して信頼性のあるパスワード管理ツールの利用