OCT 0 5 7009

CERTIFICATE OF MAILING

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Mail Stop Amendment, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, on , 2005.

Attorney for Applicants

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Appl. No.

10/849,347

Confirmation No.: 6692

Applicant

Robert H. Burgener, II et al.

Title

FABRICATION OF P-TYPE GROUP II-VI

SEMICONDUCTORS

Filed

TC/A.U.

2822

Examiner

Kevin M. Picardat

May 19, 2004

Docket No.

3398.2.8

Customer No.

21552

Mail Stop Amendment Commissioner for Patents 10/06/2005 HDESTA1 00000046 10849347

01 FC:1806

180.00 OP

P.O. Box 1450

Alexandria, VA 22313-1450

TRANSMITTAL OF SUPPLEMENTAL INFORMATION DISCLOSURE STATEMENT

Dear Sir:

Transmitted herewith is an Information Disclosure Statement disclosing information which has come to the attention of applicants and/or their attorneys and is being submitted so as to comply with the duty of disclosure set forth in 37 C.F.R. § 1.56. In accordance with 37 C.F.R. § 1.97(c), the enclosed Statement is being filed before the mailing date of either a final action or a notice of allowance and is accompanied by credit card payment form in the amount of One Hundred Eighty Dollars (\$180.00) to cover the fee set forth in 37 C.F.R. § 1.17(p).

Neither applicants nor their attorneys make any representation that any information disclosed herein may be "prior art" within the meaning of that term under 35 U.S.C. § 102 or § 103. Moreover, pursuant to 37 C.F.R. § 1.97, the filing of this Information Disclosure Statement

shall not be construed as a representation that a search has been made or as an admission that the

information cited herein is, or is considered to be, material to patentability as defined in 37

C.F.R. § 1.56(b).

In accordance with 37 C.F.R. § 1.98, transmitted herewith are:

1. A completed copy of Forms PTO/SB/08a and PTO/SB08b "Information

Disclosure Statement by Applicant" listing the patents, publications and other information being

submitted for consideration; and

2. A legible copy of each patent, publication and other item of information in written

form listed on the enclosed Forms PTO/SB/08a and PTO/SB/08b, except for copies of U.S.

patents and published U.S. patent applications which are not required for applications filed after

June 30, 2003.

Respectfully submitted,

Evan R. Witt

Reg. No. 32,512

Attorney for Applicants

Date: October 3, 2005

MADSON & METCALF Gateway Tower West 15 West South Temple, Suite 900 Salt Lake City, Utah 84101

Telephone: 801/537-1700

PTO/SB/08a (08-03)

Approved for use through 06/30/2006. OMB 0651-0031
U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE
the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number

Substitute for form 1449A/PTO

Sheet

TELEFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Complete if Known			
Application Number	10/849,347		
Filing Date	May 19, 2004		
First Named Inventor	Robert H. Burgener, II		
Group Art Unit	2822		
Examiner Name	Kevin M. Picardat		
Attorney Docket Number	3398.2.8		

	U.S. PATENT DOCUMENTS					
Examiner	1	Cite No.¹ Document Number Publication Date MM-DD-YYYY	Publication Date	Name of Patentee or Applicant of	Pages, Columns, Lines, Where Relevant	
Initials *	Cite No.		Cited Document	Passages or Relevant Figures Appear		
	U1	US-6,838,308 B2	01/2005	Haga, Koichi		
	U2	US-6,707,074 B2	03/2004	Yoshii et al.		
	U3	US-5,331,655 A	07/1994	Harder et al.		
	U4	US-3,864,725	02/1975	Merrin, Seymour		
	U5					
•	U6					
	U7					
	U8					
	U9					
	U10					
	U11					
	U12					
	U13					
	U14					

	FOREIGN PATENT DOCUMENTS							
Examiner	Cite No.1	Foreign Patent Document	Publication Date	Name of Patentee or Applicant of Cited	Pages, Columns, Lines,			
Initials*	Cite 140.	Country Code ³ - Number ⁴ - Kind Code ⁵ (Fknown)	MM-DD-YYYY	Document	Where Relevant Passages or Relevant Figures Appear	T ⁶		
	F1							
	F2							
	F3							
	F4							
	F5							
	F6							

Signature Date Considered	Examiner Signature	Date Cons	sidered	
---------------------------	-----------------------	--------------	---------	--

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant. ¹ Applicant's unique citation designation number (optional) . ² See Kinds Codes of USPTO Patent Documents at www.uspto.gov or MPEP 901.04. ³ Enter Office that issued the document, by the two-letter code (WIPO Standard ST.3). ⁴ For Japanese patent documents, the indication of the year of the Emperor must precede the serial number of the patent document. ⁵ Kind of document by the appropriate symbols as indicated on the document under WIPO Standard ST. 16 if possible. ⁵ Applicant is to place a check mark here if English language Translation is attached.

OCT OF PARS

PTO/SB/08b (08-03)
Approved for use through 06/30/2006. OMB 0651-0031
U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Undestite Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Sheet 1 Of 9

Complete if Known				
Application Number	10/849,347			
Filing Date	May 19, 2004			
First Named Inventor	Robert H. Burgener, II			
Group Art Unit	2822			
Examiner Name	Kevin M. Picardat			
Attorney Docket Number	3398.2.8			

		NON PATENT LITERATURE DOCUMENTS	
Examiner Initials *	Cite No.1	Include name of the author (in CAPITAL LETTERS), title of the article (when appropriate), title of the item (book, magazine, journal, serial, symposium, catalog, etc.), date, page(s), volume-issue number(s), publisher, city and/or country where published.	T²
	01	AULBUR, W.; Density Functional Theory: Basic Ideas & Applications; Ohio State University.	
	O2	LOOK, D.C., and CLAFLIN, B.; P-type doping and devices based on ZnO; 08/2003; Wiley-VCH Verlag GmbH & Co.	
	О3	ZUNGER, A.; Practical Doping Principles; NCPV and Solar Program Review Meeting 2003; pp. 831-835.	
	04	ZHANG, S.B., WEI, S.H., and ZUNGER, A.; Intrinsic <i>n</i> -type versus <i>p</i> -type doping asymmetry and the defect physics of ZnO; Physical Review B; 01/31/2001; pp. 075205-1 – 075205-7; Volume 63; The American Physical Society.	
	O5	LIMPIJUMNONG, S., ZHANG, S.B., WEI, S-H., and PARK C.H; Doping by Large-Size-Mismatched Impurities: The Microscopic Origin of Arsenic- or Antimony-Doped p-Type Zinc Oxide; Physical Review Letters; 04/16/2004; Volume 92, Number 15; The American Physical Society.	
	O6	YAMAMOTO, T., and KATAYAMA-YOSHIDA, H.; Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO; Japanese Journal of Applied Physics; 02/15/1999; pp. L 166-L 169; Volume 38; Japanese Journal of Applied Physics Publication Board.	
	07	PARK, C.H., ZHANG, S.B., and WEI, S-H.; Origin of <i>p</i> -type doping difficulty in ZnO: The impurity perspective; Physical Review B; 08/05/2002; pp. 073202-1 – 073202-3; Volume 66; The American Physical Society.	
	08	TSUKAZAKI, A., ATSUSHI, T., OHTOMO, A., ONUMA, T., OHTANI, M., MAKINO, T., et al; Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO; Nature Materials; 01/2005; pp. 42-46; Volume 4; Nature Publishing Group.	
	09	NONAKA, M., MATSUSHIMA, S., MIZUNO, M., and KOBAYASHI, K.; Electronic Structure of Group III Elements Dopes into ZnO by Using Molecular Orbital Calculation; Chemistry Letters 2002; 02/20/2002; pp. 580-581; The Chemical Society of Japan.	
	O10	WANG, L.G., and ZUNGER, A.; Cluster-Doping Approach for Wide-Gap Semiconductors: The Case of <i>p</i> -type ZnO; Physical Review Letters; 06/27/2003; pp. 256401-1 – 256401-4; Volume 90, Number 25; The American Physical Society.	
	011	NORTON, D.P., HEO, Y.W., IVILL, M.P., IP, K., PEARTON, S.J., et al; ZnO: growth, doping and processing; Materialstoday; 06/2004; Elsevier Ltd.	
	O12	LEE, E-C., KIM, YS., JIN, YG., and CHANG, K.J.; First-Principles Study of p-Type Doping and Codoping in ZnO; Journal of the Korean Physical Society; 12/2001; pp. S23-S26; Volume 39.	
	O13	MORHAIN, C., TEISSEIRE, M., VEZIAN, S., VIGUE, F., RAYMOND, F., et al; Spectroscopy of Excitons, Bound Excitons and Impurities in h-ZnO Epilayers; 09/30/2001; pp. 881-885; Volume 229, Number 2; Wiley VCH; Berlin.	
	014	BANDYOPADHYAY, S., PAUL, G.K., ROY, R., SEN, S.K., and SEN, S; Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol-gel technique; Materials Chemistry and Physics; 05/17/2001; pp. 83-91; Volume 74; Elsevier Science B.V.	

Examiner Signature	Date Considered	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached.

Substitute for form 1449B/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Sheet 2 Of 9

Complete if Known				
Application Number	10/849,347			
Filing Date	May 19, 2004			
First Named Inventor	Robert H. Burgener, II			
Group Art Unit	2822			
Examiner Name	Kevin M. Picardat			
Attorney Docket Number	3398.2.8			

O15	WILKINSON, J., XIONG, G., UCER, K.B., and WILLIAMS, R.T.; Lifetime and Oscillator Strength of Excitonic Luminescence in Zinc Oxide; Department of Physics, Wake Forest University, Winston-Salem, NC.	
O16	KOBAYASHI, A., SANKEY, O.F., and DOW, J.D.; Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, CdSe, and ZnO; Physical Review B; 07/15/1983; pp. 946-956; Volume 28, Number 2; The American Physical Society.	
017	DANEU, N., REENIK, A., and BERNIK, S.; Grain Growth Control in Sb ₂ O ₃ -Doped Zinc Oxide; Journal of the American Ceramic Society; 2003; pp. 1379-1384; Volume 86, Number 8.	
O18	OHYAMA, M.; Sol-Gel Preparation of Transparent and Conductive Aluminum-Doped Zinc Oxide Films with Highly Preferential Crystal Orientation; Journal of the American Ceramic Society; 1998; pp. 1622-1632; Volume 81, Number 6.	
O19	DUAN, X.L., YUAN, D.R., CHENG, X.F., SUN, H.Q., SUN, Z.H., et al; Microstructure and Properties of Co ² : ZnAl ₂ O ₄ /SiO ₂ Nanocomposite Glasses Prepared by Sol-Gel Method; Journal of the American Ceramic Society; 2005; pp. 399-403; Volume 88, Number 2.	
O20	SOHN, K.S., HWANG, D.K., and MYOUNG, J.M.; Time Integrated/Resolved Photoluminescense of ZnO Films Deposited on Sapphire and GaAs; Japanese Journal of Applied Physics; 12/2003; pp. 7376-7378; The Japan Society of Applied Physics.	
O21	SUN, X.W.; Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition; Journal of Applied Physics; 07/01/1999; pp. 408-411; Volume 86, Number 1; American Institute of Physics.	
O22	BURDEN, A.P., BISHOP, H.E., BRIERLEY, M., FRIDAY, J.M., HOOD, C., et al.; Incorporating consumer-priced field emitting inks into arrays of triode devices; Solid State Electronics; 2001; pp. 987-996; Vol. 45; Printable Field Emitters Ltd.	
O23	MINAMI, T., MIYATA, T., SHIRAI, T., and NAKATANI, T.; Electroluminescent Oxide Phosphor Thin Films Prepared by a Sol-gel Process; Mat. Res. Soc. Symp. Proc.; 2000; pp. Q4.3.1 – Q4.3.6; Vol. 621; Materials Research Society.	
 O24	QIU, C., CHEN, H., WONG, M., and KWOK, H.S.; Dependence of the Current and Power Efficiencies of Organic Light-Emitting Diode on the Thickness of the Constituent Organic Layers; IEEE Transactions On Electron Devices; 09/2001; pp. 2131-2137; Vol. 48; IEEE.	
O25	MATSUDA, T., KAWABE, M., IWATA, H., and OHZONE, T.; Visible Electroluminescence from MOS Capacitors with Si-Implanted SiO ₂ ; IEICE Trans. Electron.; 09/11/2002; pp. 1895-1904; Vol. E85-C, No. 11.	
O26	ONG, H.C., LI, A.S.K., and DU, G.T.; Depth profiling of ZnO thin films by cathodoluminescence; Applied Physics Letters; 04/30/2001; pp. 2667-2669; Vol. 78, No. 18; American Institute of Physics.	
O27	WASHINGTON, P.L., ONG, H.C., DAI, J.Y., and CHANG, R.P.H.; Determination of the optical constants of zinc oxide thin films by spectroscopic ellipsometry; Applied Physics Letter; 06/22/1998; pp. 3261-3263; Vol. 72, No. 25; American Institute of Physics.	,
O28	SEKIGUCHI, T., OHASHI, N., and YAMANE, H.; Cathodoluminescence Study on ZnO and GaN; Solid State Phenomena; 1998; pp. 171-182; Vols. 63-64; Scitec Publications; Switzerland.	
O29	KOUYATE, D., RONFARD-HARET, JC., and KOSSANYI, J.; Photo- and electro- luminescence of rare earth-doped semiconducting zinc oxide electrodes: Emission from both the dopant and the support; Journal of Luminescence; 1991; pp. 205-210; Vol. 50; Elsevier Science Publishers B.V.	

Examiner	Date	
Signature	Considered	
	 00110100100	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

Applicant's unique citation designation number (optional). Applicant is to place a check mark here if English language Translation is attached.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

(use as many sheets as necessary)
Sheet 3 Of 9

Complete if Known			
Application Number	10/849,347		
Filing Date	May 19, 2004		
First Named Inventor	Robert H. Burgener, II		
Group Art Unit	2822		
Examiner Name	Kevin M. Picardat		
Attorney Docket Number	3398.2.8		

	KOSSANYI, J., KOUYATE, D., POULIQUEN, J., RONFARD-HARET, J.C., VALAT, P., et al.;	
O30	Photoluminescence of Semiconducting Zinc Oxide Containing Rare Earth lons as Impurities; Journal of Luminescence; 1990; pp. 17-24; Vol. 46; Elsevier Science Publishers B.V. (north-Holland).	
O31	WANG, Y.G., LAU, S.P., LEE, H.W., YU, S.F., TAY, B.K., et al.; Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air; Journal of Applied Physics; 07/01/2003; pp. 354-358; Vol 94, No.1; American Institute of Physics.	
O32	YU, S.F., YUEN, C., LAU, S.P., WANG, Y.G., LEE, H.W., et al.; Ultraviolet amplified spontaneous emission from zinc oxide ridge waveguides on silicon substrate; Applied Physics Letter; 11/24/2003; pp. 4288-4290; Vol. 83, No. 21; American Institute of Physics.	
O33	XIONG, G., WILKINSON, J., LYLES, J., UCER, K.B., and WILLIAMS, R.T.; Luminescence and stimulated emission in zinc oxide nanoparticles, films, and crystals.	
O34	ONG, H.C., DAI, J.Y., and DU, G.T.; Studies of electronic structure of ZnO grain boundary and its proximity by using spatially resolved electron energy loss spectroscopy; Applied Physics Letter; 07/08/2002; pp. 277-279; Vol. 81, No. 2; American Institute of Physics.	
O35	AGNE, T., GUAN, Z., LI, X.M., WOLF, H., and WICHERT, T.; Incorporation of the Donor Indium in Nanocrystalline ZnO; phys. stat. sol.; 2002; pp. 819-823; Vol. 229; WILEY-VCH Verlag Berlin GmbH; Berlin.	
036	QADRI, S.B., KIM, H., HORWITZ, J.S., and CHRISEY, D.B.; Transparent conducting films of ZnO-ZrO ₂ : Structure and properties; Journal of Applied Physics; 12/01/2000; pp. 6564-6566; Vol. 88, No. 11; American Institute of Physics.	
O37	HAN, J., MANTAS, P.Q., and SENOS, A.M.R.; Grain growth in Mn-doped ZnO; Journal of the European Ceramic Society; 2000; 2753-2758; Vol. 20.	·
O38	JIN, Y., ZHANG, B., YANG, S., WANG, Y., CHEN, J., et al.; Room temperature UV emission of Mg _x Zn _{1-x} O films; Solid State Communications; 2001; pp. 409-413; Vol. 119; Elsevier Science Ltd.	
O39	PETRIK, N.G., ALEXANDROV, A.B., and VALL, A.I.; Interfacial Energy Transfer during Gamma Radiolysis of Water on the Surface of ZrO₂ and Some Other Oxides; J. Phys. Chem. B; 2001; pp. 5935-5944; Vol. 105; American Chemical Society.	
O40	COUNIO, G., ESNOUF, S., GACOIN, T., and BOILOT, JP.; CdS:Mn Nanocrystals in Transparent Xerogel Matrices: Synthesis and Luminescence Properties; J. Phys. Chem.; 1996; pp. 20021-20026; Vol. 100; American Chemical Society.	
O41	STRAVREV, K., KYNEV, K., ST. NIKOLOV, G., and DYAKOVITCH, V.A.; Semiempirical Assignment of the Electron Transitions in Manganese(II)-Doped II-VI Compounds; J. Phys. Chem. Solids; 1987; pp. 841-844; Vol. 48, No. 9; Pergamon Journals Ltd.	
042	FALCONY, C., ORTIZ, A., DOMINGUEZ, J.M., FARIAS, M.H., COTA-ARAIZA, L. et al.; Luminescent Characteristics of Tb Doped Al ₂ O ₃ Films Deposited by Spray Pyrolysis; J. Electrochem Soc.; 01/1992; pp. 267-271; Vol. 139, No. 1; The Electrochemical Society, Inc.	
O43	BACHIR, S., KOSSANYI, J., SANDOULY, C., VALAT, P., and RONFARD-HARET, J.C.; Electroluminescence of Dy ³⁺ and Sm ³⁺ lons in Polycrystalline Semiconducting Zinc Oxide; J. Phys. Chem; 1995; pp. 5674-5679; Vol. 99; American Chemical Society.	
044	BACHIR, S., KOSSANYI, J., and RONFARD-HARET, J.C.; Electroluminescence of Ho ³⁺ lons in a ZnO Varistor-Type Structure; Solid State Communications; 1993; pp. 859-863; Vol. 89, No. 10; Elsevier Science Ltd.; Great Britain.	·
O45	CHAKRABARTI, S., GANGULI, D., CHAUDHURI, S., and PAL, A.K.; Crystalline magnesium oxide films on soda lime glass by sol-gel processing; Meterials Letters; 05/2002; pp. 120-123; Vol. 54; Elsevier Science B.V.	

Examiner Signature	Date Considered	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached.

U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it contains a valid OMB control number.

Substitute for form 1449B/PTO

INFORMATION DISCLOSURE

STATEMENT BY APPLICANT

Sheet 4 Of 9

(use as many sheets as necessary)

Complete if Known			
Application Number	10/849,347		
Filing Date	May 19, 2004		
First Named Inventor Robert H. Burgener, II			
Group Art Unit 2822			
Examiner Name Kevin M. Picardat			
Attorney Docket Number	3398.2.8		

O46	ARKLES, B.; Commercial Applications of Sol-Gel-Derived Hybrid Materials; MRS Bulletin; 05/2001; pp. 402-407.	
O47	MURRAY, C.E., NOYAN, I.C., and MOONEY, P.M.; Mapping of strain fields about thin film structures using x-ray microdiffraction; Applied Physics Letters; 11/17/2003; pp. 4163-4165; Vol. 83, No. 20; American Institute of Physics.	_
048	MODENA, S., SORARU, G.D., BLUM, Y., and RAJ, R.; Passive Oxidation of an Effluent System: The Case of Polymer-Derived SiCO; Journal of the American Ceramic Society; 2005; pp. 339-345; Vol. 88.	
049	NOYAN, I.C., WANG, PC., KALDOR, S.K., and JORDAN-SWEET, J.L.; Deformation field in single-crystal fields semiconductor substrates caused by metallization features; Applied Physics Letters; 04/19/1999; pp. 2352-2354; Vol. 74, No. 16; American Institute of Physics.	
O50	NOYAN, I.C., JORDAN-SWEET, J., LINIGER, E.G., and KALDOR, S.K.; Characterization of substrate-thin-film interfaces with x-ray microdiffraction; Applied Physics Letters; 06/22/1998; pp. 3338-3340; Vol. 72, No. 25; American Institute of Physics.	
O51	TULLER, H.L.; ZnO Grain Boundaries: Electrical Activity and Diffusion; Journal of Electroceramics; 1999; pp. 33-40; Vol. 4:S1; Kluwer Academic Publishers; Boston.	
O52	WESTIN, G., EKSTRAND, A., NYGREN, M., OSTERLUND, R., and MERKELBACH, P.; Preparation of ZnO-based Varistors y the Sol-Gel Technique; J. Mater. Chem.; 1994; pp. 615-621; Vol. 4.	
O53	WANG, M., YANG, X., and WANG., F.; Properties of Sensitive Materials Mainly Composed of ZnO; J. Mater. Sci. Technol.; 2000; p. 204; Vol. 16, No. 2.	
O54	BAPTISTA, J.L., and MANTAS, P.Q.; High Temperature Characterization of Electrical Barriers in ZnO Varistors; Journal of Electroceramics; 2000; pp. 215-224; Vol. 4:1; Kluwer Academic Publishers; The Netherlands.	
O55	BRANKOVIC, Z., BRANKOVIC, G., POLETI, D., and VARELA, J.A.; Structural and electrical properties of ZnO varistors containing different spinel phases; Ceramics International; 2001; pp. 115-122; Vol. 27; Elsevier Science Ltd. And Techna S.r.l.	
O56	TANAKA, A., and MUKAE, K.; Evaluation of Single Grain Boundaries in ZnO: Rare-Earth Varistor by Micro-Electrodes; Key Engineering Materials; 1999; pp. 235-240; Vols. 157-158; Trans Tech Publications, Switzerland; CSJ Series-Publications of the Ceramic Society of Japan Vol. 1, The Ceramic Society of Japan.	
057	PANDEY, R., JAFFE, J.E., and KUNZ, A.B., <i>Ab initio</i> band-structure calculations for alkaline-earth oxides and sulfides; Physical Review B; 04/15/1991; pp. 9228-9237; Vol. 43, No. 11; The American Physical Society.	
O58	CANNEY, S.A., SASHIN, V.A., FORD, M.J., and KHEIFETS, A.S.; Electronic band structure of magnesium and magnesium oxide: experiment and theory; J. Phys. Condens. Matter; 1999; pp. 7507-7522; Vol. 11; IOP Publishing Ltd.	
O59	YAMASAKI, A., and FUJIWARA, T.; Electronic structure of the MO oxides (M=Mg, Ca, Ti, V) in the GW approximation; Physical Review B; 2002; pp. 245108-1 – 245108-9; Vol. 66; The American Physical Society.	
O60	MIKAJLO, E.A., SASHIN, V.A., NIXON, K.L., SEOULE DE BAS, B., DORSETT, H.E., and FORD, M.J.; Band Structures of the Group I and II Oxides: Using EMS Measurements as a Test of Theoretical Models.	
O61	JOHNSON, P.D.; Some Optical Properties of MgO in the Vacuum Ultraviolet; Physical Review; 05/15/1954; pp. 845-846; Vol. 94, No. 4.	

Examiner Signature	Date Considered	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached.

Substitute for form 1449B/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Sheet 5 Of 9

Complete if Known			
Application Number	10/849,347		
Filing Date May 19, 2004			
First Named Inventor	Robert H. Burgener, II		
Group Art Unit	2822		
Examiner Name Kevin M. Picardat			
Attorney Docket Number	3398.2.8		

O62	NARAZAKI, A., TANAKA, K., HIRAO, K., HASHIMOTO, T., NASU, H., et al.; IR and XPS Studies on the Surface Structure of Poled ZnO-TeO₂ Glasses with Second-Order Nonlinearity;	
002	Journal of the American Ceramic Society; 2001; pp. 214-217; Vol. 84.	
O63	SCHONBERGER, U., and ARYASETIAWAN, F.; Bulk and surface electronic structures of MgO; Physical Review B; 09/15/1995; pp. 8788-8793; Vol. 52, No. 12; The American Physical Society.	
064	GONZALEZ, R., CHEN, Y., SEBEK, R.M., WILLIAMS, G.P., WILLIAMS, R.T., et al.; Properties of the 800-nm luminescence band in neutron-irradiated magnesium oxide crystals; Physical Review B; 03/01/1991; pp. 5228-5233; Vol. 43, No. 7; The American Physical Society.	
O65	BALZER, B., HAGEMEISTER, M., KOCHER, P., and LUDWIG, J.G.; Mechanical Strength and Microstructure of Zinc Oxide Varistor Ceramics; Journal of the American Ceramic Society; 2004; pp. 1932-1938; Vol. 87.	
O66	SHENG, H., EMANETOGLU, N.W., MUTHUKUMAR, S., YAKSHINSKIY, B.V., FENG, S., et al.; Ta/Au Ohmic Contacts to n_type ZnO; Journal of Electronic Materials; 2003; p. 935; Vol. 32, No. 9.	
O67	SHENG, H., EMANETOGLU, N.W., MUTHUKUMAR, S., FENG, S., and LU, L.; Nonalloyed Al Ohmic Contacts to Mg _x Zn _{12x} O; Journal of Electronic Materials; 2002; p. 811; Vol. 31, NO. 7.	
O68	XIONG, G., WILKINSON, J., MISCHUCK, B., TU ZEMEN, S., UCER, K.B., et al; Control of p- and n-type conductivity in sputter deposition of undoped ZnO; Applied Physics Letters; 02/18/2002; p. 1195; Vol. 80, No. 7.	
O69	YAMAMOTO, T., and KATAYAMA-YOSHIDA, H.; Unipolarity of ZnO with a wide-band gap and its solution using codoping method; Journal of Crystal Growth; 2000; pp. 552-555; Vol. 214/215; Elsevier Science B.V.	
O70	CHANG, R., MARKS, T., MASON, T., and POEPPELMEIR, K.; n/p-Type Transparent Conductors; pp. 259-260.	
071	OLORUNYOLEMI, T., BIRNBOIM, A., CARMEL, Y., WILSON, O.C., LLOYD, I.K.; Thermal Conductivity of Zinc Oxide: From Green to Sintered State; Journal of the American Ceramic Society; 2002; pp. 1249-1253; Vol. 85.	
072	MARTIN, L.P., and ROSEN, M.; Correlation between Surface Area Reduction and Ultrasonic Velocity in Sintered Zinc Oxide Powders; Journal of the American Ceramic Society; 1997; pp. 839-846; Vol. 80.	
073	WILKINSON, J., XIONG, G., UCER, K.B., and WILLIAMS, R.T.; Lifetime and Oscillator Strength of Excitonic Luminescence in Zinc Oxide.	
074	SEKIGUCHI, T., HAGA, K., and INABA, K.; ZnO films grown under the oxygen-rich condition; Journal of Crystal Growth; 2000; pp. 68-71; Vol. 214-215; Elsevier Science B.V.	
075	VAN DE WALLE, C.G.; Hydrogen as a Cause of Doping in Zinc Oxide; Physical Review Letters; 07/31/2000; pp. 1012-1015; Vol. 85, No. 5; The American Physical Society.	
076	KATO, H., SANO, M., MIYAMOTO, K., and YAO, T.; Effect of O/Zn on Flux Ratio on Crystalline Quality of ZnO Films Grown by Plasma-Assisted Molecular Beam Epitaxy; Japanese Journal of Applied Physics; 2003; pp. 2241-2244; Vol. 42; The Japan Society of Applied Physics.	
077	NAKAHARA, K., TANABE, T., TAKASU, H., FONS, P., IWATA, K., et al.; Growth of undoped ZnO Films with Improved Electrical Properties by Radical Source Molecular Beam Epitaxy; Japanese Journal of Applied Physics; 2001; pp. 250-254; Vol. 40; The Japan Society of Applied Physics.	

Examiner Signature	Date Considered	<u> </u>
Signature	Considered	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached.

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Substitute for form 1449B/PTO Complete

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)
Sheet 6 Of 9

Complete if Known			
Application Number	10/849,347		
Filing Date	May 19, 2004		
First Named Inventor	Robert H. Burgener, II		
Group Art Unit	2822		
Examiner Name	Kevin M. Picardat		
Attorney Docket Number	3398.2.8		

07	WANG, X., DU, G., GU, C., JIA, J., LI, X., et al.; Two-step gr diamond/Si low-pressure metal-organic chemical vapour deg 2002; pp. L74-L76; Vol. 35; IOP Publishing Ltd., United King	osition; J. Phys. D: Appl. Phys.;
07	HAN, J., MANTAS, P.Q., and SENOS, A.M.R.; Grain growth European Seramic Society; 2000; pp. 2753-2758; Vol. 20; E	in Mn-doped ZnO; Journal of the sevier Science Ltd.
08	FONS, P., IWATA, K., NIKI, S., YAMADA, A., MATSUBARA of high-quality epitaxial ZnO films on (1 1 2 0)α-A1 ₂ O ₃ , Journ 532-536; Vol. 209; Elsevier Science B.V.	al of Crystal Growth; 2000; pp.
08	HAGA, K., KAMIDAIRA, M., KASHIWABA, Y., SEKIGUCHI, prepared by remote plasma-enhanced CVD method; Journa 80; Vol. 214/215; Elsevier Science B.V.	T., WATANABE, H.; ZnO thin films of Crystal Growth; 2000; pp. 77-
08	FONS, P., IWATA, K., NIKI, S., YAMADA, A., and MATSUB, epitaxial ZnO films on α-A1 ₂ O ₃ ; Journal of Crystal Growth; 1 Elsevier Science B.V.	999; pp. 627-632; Vol. 201/202;
08	MYOUNG, J-M., YOON, W-H., LEE, D-H., YUN, I., BAE, S-I Variation of Properties of ZnO Thin Films Grown by Pulsed I Journal of Applied Physics; 2002; pp. 28-31; Vol. 41; The Ja	pan Society of Applied Physics.
08	YULDASHEV, S.U., PANIN, G.N., CHOI, S.W., YALISHEV, Electrical and Optical Properties of ZnO Films Grown on Ga. 2003; pp. 3333-3336; Vol. 42; The Japan Society of Applied	As Substrates: Jpn. J. Appl. Phys: I
08	NONAKA, M., MATSUSHIMA, S., MIZUNO, M., KOBAYASH Group III Elements Doped into ZnO by Using Molecular Orbi 2002; pp. 580-581; The Chemical Society of Japan.	II, K.; Electronic Structure of tal Calculation; Chemistry Letters;
08	LIN, G-R., and WANG, S-C.; Comparison of High-Resistivity Substrates; Japanese Journal of Applied Physics; 2002; pp. Society of Applied Physics.	ZnO Films Sputtered on Different L398-L401; Vol. 41; The Japan
08	MANTAS, P.Q., and BAPTISTA, J.L.; The Barrier Height For of the European Ceramic Society; 1995; pp. 605-615; Vol. 1 Britain.	mation in ZnO Varistors; Journal 5; Elsevier Science Limited, Great
08	ALBERTSSON, J., and ABRAHAMS, S.C.; Atomic Displace Vibration, Expansivity and Pyroelectric Coefficient Thermal I 1989; pp. 34-40; Vol. B45; International Union of Crystallogram	Dependences in ZnO: Acta Cryst.:
08	BLEVINS, J.D.; Wide Bandgap Semiconductor Substrates:	Current Status and Future Trends.
09	TEKE, A., OZGUR, U., DOGAN, S., GU, X., MORKOC, H., e recombination dynamics in single-crystalline ZnO; Physical I 195207-10; Vol. 70; The American Physical Society.	et al.; Excitonic fine structure and Review B; 2004; pp. 195207-1 –
	LOOK, D.C., REYNOLDS, D.C., LITTON, C.W., JONES, R.I. Characterization of homoepitaxial p-type ZnO grown by mole Physics Letters; 09/02/2002; pp. 1830-1832; Vol. 81, No. 10	ecular beam epitaxy: Applied
09	KIM, K-K., KIM, H-S., HWANG, D-K., LIM, J-H., and PARK, thin films via phosphorus doping and thermal activation of th 07/07/2003; pp. 63-65; Vol. 83, No. 1; American Institute of	S-J.; Realization of p-type ZnO e dopant; Applied Physics Letters; Physics.
09	LOOK, D.C.; Emerging Research Fonts Comments by David Indicators; 04/28/2005.	I C. Look; ISI Essential Science

Examiner Signature	Date Considered	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached.

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

Complete if Known

Application Number 10/849,347

Filing Date May 19, 2004

First Named Inventor Robert H. Burgener, II

Group Art Unit 2822

Examiner Name Kevin M. Picardat

Attorney Docket Number 3398.2.8

(use as many sheets as necessary)
Sheet 7 Of 9

O94	SENGER, R.T., and BAJAI, K.K.; Binding energies of excitons in polar quantum well heterostructures; Physical Review B; 2003; pp. 205314-1 -205314-9; Vol. 68; The American Physical Society.	
O95	SUBRAMANYAM, T.K., NAIDU, B., and UTHANNA, S.; Structure and Optical Properties of dc Reactive Magnetron Sputtered Zinc Oxide Films; Cryst. Res. Technol.; 1999; pp. 981-988; Vol. 34.	
O96	MUTH, J.F., BROWN, J.D., JOHNSON, M.A.L., YU, Z., KOLBAS, R.M., et al.; Absorption coefficient and refractive index of GaN, AIN and AIGaN alloys; 1999; MRS Internet J. Nitride Semicond.	
O97	YOSHIKAWA, H., and ADACHI, S.; Optical Constants of ZnO; Japanese Journal of Applied Physics; 1997; pp. 6237-6243; Vol. 36.	
O98	SPRINGER, J., PORUBA, A., VANECEK, M., FAY, S., FEITKNECHT, L., et al.; Improved optical model for thin film silicon solar cells; Presented at 17th European Photovoltaic Solar Energy Conference, Munich 2001.	
O99	NEETHLING, J.H., SCRIVEN, G.J., and KREKELS, T.; A TEM investigation of Zn ₃ As ₂ grown on (001) and (111) InP by MOVPE; Journal of Materials Science; 2001; pp. 3997-4002; Vol. 36; Kluwer Academic Publishers.	
0100	BRINK, D.J., and ENGELBRECHT, A.A.; Ellipsometric investigation of rough zinc arsenide epilayers; Applied Optics; 04/01/2002; pp. 1894-1898; Vol. 41, No. 10; Optical Society of America.	
0101	SCRIVEN, G.J., LEITCH, A.W.R., NEETHLING, J.H., KOZYRKOV, V.V., and WATTERS, V.J.; The growth of Zn₃As₂ on InP by atmospheric pressure MOVPE; Journal of Crystal Growth; 1997; pp. 813-816; Vol. 170; Elsevier Science B.V.	
O102	ENGELBRECHT, J.A.A., SCRIVEN, G.J., NEETHLING, J.H., and WAGENER, M.C.; Crack formation in Zn₃As₂ epilayers grown by MOVPE; Journal of Crystal Growth; 2000; pp. 235-244; Vol. 216; Elsevier Science B.V.	
O103	NORMAN, A.G., OLSON, J.M., ROMERO, M.J., and AL-JASSIM, M.M.; Electron Microscopy Studies of Potential 1-eV Bandgap Semiconductor Compounds AnGeAs ₂ and Zn ₃ As ₂ Grown by MOVPE; National Renewable Energy Laboratory.	
0104	MILES, G.C., and WEST, A.R.; Polymorphism and Thermodynamic Stability of Zn ₇ Ab ₂ O ₁₂ ; Journal of the American Ceramic Society; 2005; pp. 396-398; Vol. 88.	
O105	TOMLINS, G.W., ROUTBORT, J.L., and MASON, T.O.; Oxygen Diffusion in Single-Crystal Zinc Oxide; Journal of the American Ceramic Society; 1998; pp. 869-876; Vol. 81.	
O106	BOTHA, J.R., SCRIVEN, G.J., ENGELBRECTH, J.A.A., and LEITCH, A.W.R.; Photoluminescence properties of metalorganic vapor phase epitaxial Zn ₃ As ₂ ; Journal of Applied Physics; 11/15/1999; pp. 5614-5618; Vol. 86, No. 10; American Institute of Physics.	
O107	XIONG, G., WILKINSON, J., MISCHUCK, B., TUZEMEN, S., UCER, K.B., et al.; Control of <i>p</i> -and <i>n</i> -type conductivity in sputter deposition of undoped ZnO; Applied Physics Letters; 02/18/2002; pp. 1195-1197; Vol. 80, No. 7; American Institute of Physics.	
O108	LOOK, D.C., RENLUND, G.M., BURGENER, II, R.H., and SIZELOVE, J.R.; As-doped p-type ZnO produced by an evaporation/sputtering process; Applied Physics Letters; 11/2004; Vol. 85.	
O109	AOKI, T., SHIMIZU, Y., MIYAKE, A., NAKAMURA, A., NAKANISHI, Y., and HATANAKA, Y.; p-Type ZnO Layer Formation by Excimer Laser Doping; phys. stat. sol.; 2002; pp. 911-914; Vol. 229, No. 2; WILEY-VCh Verlag Berlin GmbH, Berlin.	

	-		
Examiner Signature		Date Considered	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Applicant's unique citation designation number (optional). 2 Applicant is to place a check mark here if English language Translation is attached.

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.

Substitute for form 1449B/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)

Sheet	8	Of	9
Onco.	•	Ο.	

Complete if Known			
Application Number	10/849,347		
Filing Date	May 19, 2004		
First Named Inventor	Robert H. Burgener, II		
Group Art Unit	2822		
Examiner Name	Kevin M. Picardat		
Attorney Docket Number	3398.2.8		

O110	LEE, J-M., KIM, K.K., PARK, S-J., and CHOI, W.K.; Low-resistance and non-alloyed ohmic contacts to plasma treated ZnO; Applied Physics Letters; 06/11/2001; pp. 3842-2844; Vol. 78, No. 24; American Institute of Physics.	
0111	YAMAMOTO, T.; Codoping Method to Realize Low-Resistivity p-type ZnO Thin Films; Asia Display/IDW '01, Oct. 16-19, 2001, Nagoya, Oct. 18, PH1-2.	
0112	WANG, L.G., and ZUNGER, A.; Cluster-Doping Approach for Wide-Gap Semiconductors: The Case of p-type ZnO; Physical Review Letters; 06/27/2003; pp. 256401-1 - 256401-4; Vol. 90, No. 25; The American Physical Society.	
0113	NAKAHARA, K., TAKASU, H., FONS, P., YAMADA, A., IWATA, K., et al.; Growth of N-doped and Ga+N-codoped ZnO films by radical source molecular beam epitaxy; Journal of Crystal Growth; 2002; pp. 503-508; Vol. 237-239; Elsevier Science B.V.	
0114	RECNIK, A., DANEU, N., WALTHER, T., and MADER, W.; Structure and Chemistry of Basal- Plane Inversion Boundaries in Antimony Oxide-Doped Zinc Oxide; Journal of the American Ceramic Society; 2001; pp. 2357-2668; Vol. 84.	
O115	NONAKA, M., MATSUSHIMA, S., MIZUNO, M., and KOBAYASHI, K.; Electronic Structure of Group III Elements Doped into ZnO by Using Molecular Orbital Calculation; Chemistry Letters; 2002; pp. 580-581; The Chemical Society of Japan.	
O116	RYU, Y.R., KIM, W.J., and WHITE, H.W.; Fabrication of homostructural ZnO p-n junctions; Journal of Crystal Growth; 2000; pp. 419-422; Vol. 219; Elsevier Science B.V.	
0117	LU, J., YE, Z., WANG, L., HUANG, J., and ZHAO, B.; Structural, electrical and optical properties of N-doped ZnO films synthesized by SS-CVD; Materials Science in Semiconductor Processing; 2003; pp. 491-496; Vol. 5; Elsevier Science Ltd.	
O118	ZHENGUO, J., KUN, L., CHENGXING, Y., RUIXIN, F., and ZHIZHEN, Y.; Structural, optical and electrical properties of ZnO thin films prepared by reactive deposition; Journal of Crystal Growth; 2003; pp. 246-251; Vol. 253; Elsevier Science B.V.	
O119	JI, Z., YANG, C., LIU, K., and YE, Z.; Fabrication and characterization of p-type ZnO films by pyrolysis of zinc-acetate—ammonia solution; Journal of Crystal Growth; 2003; pp. 239-242; Vol. 253; Elsevier Science B.V.	
O120	YE, Z-Z., LU, J-G., CHEN, H-H., ZHANG, Y-Z., WANG, L., et al.; Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering; Journal of Crystal Growth; 2003; pp. 258-264; Vol. 253; Elsevier Science B.V.	
O121	MINEGISHI, K., KOIWAI, Y., KIKUCHI, Y., YANO, K., KASUGA, M., et al.; Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition; Japanese Journal of Applied Physics; 1997; pp. L 1453 – L 1455; Vol. 36.	
O122	JOSEPH, M., TABATA, H., and KAWAI, T.; p-Type Electrical Conduction in ZnO Thin Films by Ga and N Codoping; Japanese Journal of Applied Physics; 1999; pp. L 1205 – L 1207; Vol. 38; Publication Board, Japanese Journal of Applied Physics.	
O123	ASHRAFI, A.B.M.A., SUEMUNE, I., KUMANO, H., and TANAKA, S.; Nitrogen-Doped p-Type ZnO Layers Prepared with H₂O Vapor-Assisted Metalorganic Molecular-Beam Epitaxy; Japanese Journal of Applied Physics; 2002; pp. L 1281 – L 1284; Vol. 41; The Japan Society of Applied Physics.	
O124	The Promise of Solid State Lighting for General Illumination: Light Emitting Diodes (LEDs) and Organic Light Emitting Diodes (OLEDs); 2001; pp. 1-29; Optoelectronics Industry Development Association, Washington, D.C.	
O125	TALBOT, D.; LEDs vs. the Light Bulb; Technology Review; 05/2003; pp. 30-36.	

	, 		
Evaminar	1	Date	
Examiner		Date	
Signature	l .	Considered	
Signature	1	Considered	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Applicant's unique citation designation number (optional). ² Applicant is to place a check mark here if English language Translation is attached.

Substitute for form 1449B/PTO

INFORMATION DISCLOSURE STATEMENT BY APPLICANT

(use as many sheets as necessary)
Sheet 9 Of 9

Complete if Known			
Application Number	10/849,347		
Filing Date	May 19, 2004		
First Named Inventor	Robert H. Burgener, II		
Group Art Unit	2822		
Examiner Name	Kevin M. Picardat		
Attorney Docket Number	3398.2.8		

O126	JOHNSON, S.; LEDs—An Overview of the State of the Art in Technology and Application; Light Right 5 Conference, May 27-31, 2002, Nice, France.	
0127	TUZEMEN, S., XIONG, G., WILKINSON, J., MISCHICK, B., UCER, K.B., et al.; Production and properties of p-n junctions in reactively sputtered ZnO; Physica B; 2001; pp. 1197-1200; Vol. 308-310; Elsevier Science B.V.	
O128	GUO, X-L., CHOI, J-H., TABATA, H., and KAWAI, T.; Fabrication and Optoelectronic Properties of a Transparent ZnO Homostructural Light-Emitting Diode; Japanese Journal of Applied Physics; 2001; pp. L 177 – L 180; Vol. 40; The Japan Society of Applied Physics.	
O129	XIONG, G., WILKINSON, J., TÜZEMEN, S., ÜCER, K.B., and WILLIAMS, R.T.; Toward a new ultraviolet diode laser: luminescence and p-n junctions in ZnO films.	
O130	HOFFMAN, R.L., NORRIS, B.J., and WAGER, J.F.; ZnO-based transparent thin-film transistors; Applied Physics Letters; 02/03/2003; pp. 733-735; Vol. 82, No. 5; American Institute of Physics.	
O131	BOCKOWSHI, M.; Growth and Doping of GaN and AIN Single Crystals under High Nitrogen Pressure; Cryst. Res. Technol.; 2001; pp. 771-787; Vol. 36; WILEY-VCH Verlag Berlin GmbH, Berlin.	
O132	KATAYAMA-YOSHIDA, H., SATO, K., and YAMAMOTO, T.; Materials design for new functional semiconductors by <i>ab initio</i> electronic structure calculation: Prediction vs. experiment; JSAP International; 07/2006; pp. 20-27; No. 6.	
O133	MUKAI, T., MORITA, D., and NAKAMURA, S.; High-power UV InGaN/AlGaN double-heterostructure LEDs; Journal of Crystal Growth; 1998; pp. 778-781; Vol. 189/190; Elsevier Science B.V.	
0134	XING, H., GREEN, D.S., MCCARTHY, L., SMORCHKOVA, I.P., CHAVARKAR, P., et al.; Progress in Gallium Nitride-based Bipolar Transistors.	
O135	PIPREK, J., and NAKAMURA, S.; nano-Scale Effects in GaN-based Light-Emitting Diodes; 2004.	
O136	PIPREK, J.; Simulation of GaN-based Light-Emitting Devices; 2004.	
0137	BUNEA, G.E., HERZOG, W.D., UNLU, M.S., GOLDBERG, B.B., and MOLNAR, R.J.; Time-resolved photoluminescence studies of free and donor-bound exciton in GaN grown by hydride vapor phase epitaxy.	
O138	YAO, T.; Plasma-Assisted MBE Growth of ZnO; Molecular Beam Epitaxy; pp. 98-105.	
O139	Chapter 2 Geometric Structure of Metal Oxides; pp. 55-58.	
O140	Chapter 4 Electronic Structure of Non-Transition-Metal-Oxide Surfaces; pp. 143-150.	
0141	IP, K., KHANNA, R., NORTON, D.P., PEARTON, S.J., REN, F., et al.; Thermal Stability of Tungsten-Based Schottky Contacts to N-Type ZnO.	

	r	
Examiner Signature	Date Considered	

EXAMINER: Initial if reference considered, whether or not citation is in conformance with MPEP 609. Draw line through citation if not in conformance and not considered. Include copy of this form with next communication to applicant.

¹ Applicant's unique citation designation number (optional). ² Applicant is to place a check mark here if English language Translation is attached.

This collection of information is required by 37 CFR 1.97 and 1.98. The information is required to obtain or retain a benefit by the public which is to file (and by the USPTO to process) an application. Confidentiality is governed by 35 U.S.C. 122 and 37 CFR 1.14. This collection is estimated to take 2 hours to complete, including gathering, preparing, and submitting the completed application form to the USPTO. Time will vary depending upon the individual case. Any comments on the amount of time you are required to complete this form and/or suggestions for reducing this burden, should be sent to the Chief Information Officer, U.S. Patent and Trademark Office, U.S. Department of Commerce, P.O. Box 1450, Alexandria, VA 22313-1450. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450.