Avila Dataset

BDA 5002 – Marketing Analytics 06.05.2019

The Dataset


```
Sample data:
    intercolumnar distance
                            upper margin lower margin exploitation \
                 0.266074
                               -0.165620
                                             0.320980
                                                            0.483299
                 0.130292
                               0.870736
                                             -3.210528
                                                            0.062493
                -0.116585
                               0.069915
                                             0.068476
                                                           -0.783147
                 0.031541
                               0.297600
                                             -3.210528
                                                           -0.583590
                 0.229043
                               0.807926
                                             -0.052442
                                                            0.082634
   row number
               modular ratio interlinear spacing
                                                     weight peak number
     0.172340
                    0.273364
                                         0.371178
                                                   0.929823
                                                                 0.251173
     0.261718
                    1.436060
                                                   0.636203
                                                                 0.282354
                                         1.465940
     0.261718
                    0.439463
                                         -0.081827 -0.888236
                                                                -0.123005
    -0.721442
                   -0.307984
                                         0.710932 1.051693
                                                                 0.594169
     0.261718
                    0.148790
                                         0.635431 0.051062
                                                                 0.032902
    m r/i s target
  0.159345
   0.515587
   0.582939
  -0.533994
4 -0.086652
Number of rows in the dataset: 10430
```


Sensitivity: Public

- 0.25

Feature Engineering

- One outlier data point is removed
- Data is split into training and test sets
- One feature is removed to prevent multicollinearity using VIF
- SMOTE (Synthetic Minority Over-sampling Technique) is used because of class imbalance problem

m_r/i_s is dropped with	VIF= 4.22
Remaining features with	VIF < 4:
intercolumnar_distance	1.29
upper_margin	1.15
lower_margin	1.05
exploitation	1.37
row_number	1.55
modular_ratio	1.26
interlinear_spacing	1.09
weight	1.74
peak_number	1.74

$$VIF(\hat{\beta}_i) = \frac{1}{1 - R_i^2}$$

where R_i^2 is the squared multiple correlation coefficient between x_i and the other explanatory variables.

You can see that even if correlation is around 0.8, inference is limited but perhaps manageable. As we move up in correlation, the standard deviation of the estimate is getting ridiculously high, in a sense that the estimate is 1, but it can be quite easily estimated as 0 or 2. This is shown by the increased standard deviation of the estimate, especially the sharp increase when correlation is above 0.95.

Algorithms' Performance on Training Set with 3-fold Cross Validation

Logistic Regression with hyperparameter optimization

Accuracy: 0.574 (+/- 0.017 with 95% CI)

Accuracy:	0.574	(+/- 0	.017)								
Predicted	Α	В	C	D	E	F	G	H	I	W	Х
Actual											
A	817	0	221	298	170	537	389	122	56	254	43
В	0	2999	0	0	0	0	0	0	0	0	0
B C	35	0	1128	92	313	2	131	1083	28	150	7
D	346	0	223	958	396	110	146	405	120	141	7
D E F	115	0	271	161	830	164	308	378	23	208	346
	506	0	217	208	103	855	500	403	44	110	0
G	214	0	120	6	22	176	1403	814	0	140	59
G Н	96	0	156	12	278	147	601	1533	69	5	48
I	23	0	72	0	5	38	9	6	2624	49	65
W X Y	0	0	0	0	0	0	0	0	0	2999	0
X	10	0	7	37	12	5	13	121	64	99	2317
Υ	42	0	21	44	50	3	39	79	115	228	185
A11	2204	2999	2436	1816	2179	2037	3539	4944	3143	4383	3077
Predicted	Υ	A11									
Actual											
A	92	2999									
В	0	2999									
A B C	30	2999									
D	147	2999									
E F	195	2999									
	53	2999									
G H	45	2999									
Н	54	2999									
I	108	2999									
W	0	2999									
X Y	314	2999									
	2193	2999									
A11	3231	35988									

AdaBoost Classifier (without SMOTE)

Accuracy: 0.487 (+/- 0.024 with 95% CI)

Accuracy:	0.487	(+/	- 0	.024)				
Predicted	Α	В	D	I	W	X	Υ	A11
Actual								
A	2938	4	2	5	28	20	2	2999
В	0	0	4	0	0	0	0	4
C	69	2	0	0	0	1	0	72
D	244	2	0	0	0	0	0	246
E	761	1	0	1	2	2	0	767
F	1368	0	0	0	2	3	0	1373
G	312	0	0	0	0	0	0	312
Н	363	0	0	0	0	0	0	363
I	59	0	0	523	0	0	0	582
W	30	0	0	0	1	0	0	31
X	324	0	0	0	0	3	38	365
Y	96	0	0	0	0	3	87	186
All	6564	9	6	529	33	32	127	7300

with SMOTE

Accuracy: 0.279 (+/- 0.044 with 95% CI)

		0.279	(+/-	0.04	4)									
1	Predicted	Α	В	C	D	Ε	F	G	н	I	W	X	Υ	A11
1	Actual													
1	A	158	1	1	70	0	3	2271	0	26	328	121	20	2999
1	В	2100	0	300	599	0	0	0	0	0	0	0	0	2999
	C	61	7	19	85	9	0	2364	0	5	350	97	2	2999
1	D	7	2	3	61	0	0	2504	0	5	335	73	9	2999
1	E	28	0	0	41	0	0	2511	0	1	318	92	8	2999
-	F	66	0	0	20	0	1	2529	1	7	302	62	11	2999
-	G	0	0	0	0	0	0	2580	0	0	354	61	4	2999
1	H	54	0	0	10	0	3	2523	5	32	280	83	9	2999
1	I	104	0	0	39	0	0	0	0	2702	8	23	123	2999
	W	110	0	0	858	0	0	250	0	0	1598	183	0	2999
1	X	9	0	0	26	0	0	1466	0	8	496	539	455	2999
1	Υ	18	0	0	54	0	0	23	0	66	15	438	2385	2999
1	A11	2715	10	323	1863	9	7	19021	6	2852	4384	1772	3026	35988
- 1														

Random Forests Classifier

Accuracy: 0.997 (+/- 0.004 with 95% CI)

Accuracy:	0.997	(+/- 0	.004)								
Predicted	Α	В	ć	D	Е	F	G	н	I	W	Х
Actual											
A	2985	0	0	2	2	3	2	5	0	0	0
В	0	2999	0	0	0	0	0	0	0	0	0
2	0	0	2999	0	0	0	0	0	0	0	0
)	0	0	0	2999	0	0	0	0	0	0	0
) E F	7	0	0	4	2985	1	0	1	0	0	1
	27	0	0	0	3	2937	21	11	0	0	0
i i	1	0	0	0	1	1	2996	0	0	0	0
ł	0	0	1	0	3	1	3	2991	0	0	0
I	0	0	0	1	0	0	0	0	2998	0	0
d	0	0	0	0	0	0	0	0	0	2999	0
Κ.	0	0	0	0	6	0	0	0	0	0	2988
Y	0	0	0	1	1	0	0	0	0	0	5
A11	3020	2999	3000	3007	3001	2943	3022	3008	2998	2999	2994
Predicted	Υ	A11									
Actual											
A	0	2999									
3	0	2999									
	0	2999									
0	0	2999									
E F	0	2999									
	0	2999									
5	0	2999									
Н	0	2999									
I W	0	2999									
	0	2999									
X	5	2999									
Y	2992	2999									
A11	2997	35988									

Random Forests Classifier on Test Set with 3-fold CV

Accuracy: 0.957 (+/- 0.024 with 95% CI)

Accuracy:	0.957	(+/-	0.02	4)								
Predicted	Α	C	D	E	F	G	H	I	W	X	Y	All
Actual												
A	1272	0	0	6	6	2	8	0	0	0	0	1286
В	0	0	0	0	0	1	0	0	0	0	0	1
C	6	24	0	0	0	0	1	8	0	8	0	31
D	1	0	104	1	0	0	0	0	0	0	0	106
E	16	0	4	302	3	0	0	0	0	3	0	328
F	45	0	0	0	537	5	1	0	0	0	0	588
G	7	0	0	8	0	127	0	0	0	8	0	134
Н	6	1	0	8	2	0	147	0	0	0	0	156
I	0	0	0	1	0	0	0	248	0	0	0	249
W	1	0	0	1	0	0	0	0	11	0	0	13
X	3	0	0	4	0	0	0	0	0	148	2	157
Υ	3	0	0	0	0	0	0	0	0	2	75	80
A11	1360	25	108	315	548	135	149	248	11	153	77	3129

```
Features sorted by their score:
[(0.1928, 'intercolumnar_distance'), (0.1794, 'row_number'), (0.1786, 'upper_margin'), (0.1491, 'exploitation'), (0.1452, 'lower_margin'), (0.0662, 'peak_number'), (0.0504, 'interlinear_spacing'), (0.0235, 'modular_ratio'), (0.0148, 'weight')]
```

Scatterplot of Most Used Features (Axes are Limited)

