CS 188 Robotics Week 6

Aidan Jan

May 6, 2025

Imitation Learning

Specifying reward for RL is hard...

• Reward hacking: AI system learns to exploit loopholds or unintended behaviors in its reward function to achieve high rewards without actually accomplishing the intended task

Reinforcement Learning

Imitation Learning

slide credit: Scott Niekum

Why learn from demonstrations?

- Natural and expressive
- No expert knowledge required
- Valuable human intuition
- Program new tasks as-needed

Human babies imitate adults when to learn.

How to Imitate?

Demonstrations to Autonomous Behavior

- Dynamic Movement Primitives (DMP): replay the motion
- Behavior Cloning (BC): supervised learning of behavior
 - This is what everyone (as in, robotics companies) is trying to do
- Inverse Reinforcement Learning (IRL): inferring the underlying intent

Types of Demonstrations

Demonstration	Ease of demonstration	High DOFs	Ease of mapping
Kinesthetic teaching	✓		✓
Teleoperation		✓	✓
Passive observation	✓	✓	

Learning Outcomes

Learning outcome	Low-level control	Action space continuity	Compact representation	Long-horizon planning	Multistep tasks
Policy	✓	√	✓		
Cost or reward	✓	✓		✓	
Plan			✓	✓	√

Policy Parameterization

Policy input	Ease of design	Performance guarantees	Robustness to perturbations	Task Variety	Algorithmic efficiency
Time	✓	✓			✓
State		✓	✓		✓
Raw observations	✓		✓	✓	

Policy Class

Policy class	Temporal context	Robustness to temporal perturbations	Repeatability	Multimodal behavior
Deterministic and time dependent	✓		✓	
Deterministic and time invariant		✓	✓	
Stochastic and time dependent	✓			√
Stochastic and time invariant		✓		√

Dynamic Movement Primitives (DMP)

$$au \dot{v} = K(\underline{g}-x) - Dv + \underline{(g}-\underline{x_0}) f$$

K: spring constant D: damping term

Non-linear force function:

$$f(s) = \frac{\sum_{i} w_i \psi_i(s)s}{\sum_{i} \psi_i(s)} \qquad \psi_i(s) = \exp(-h_i(s - c_i)^2)$$

$$\psi_i(s) = \exp(-h_i(s - c_i)^2)$$

Gaussian basis functions

s: phase variable

Learning:

$$f_{\mathrm{target}}(s) = rac{-K(g-x) + Dv + au \dot{v}}{g-x_0}$$

$$f(s) = rac{\sum_i w_i \psi_i(s) s}{\sum_i \psi_i(s)}$$

$$J = \sum_{s} (f_{\text{target}}(s) - f(s))^{2}$$

Linear regression

Pastor, Peter, et al. "Learning and generalization of motor skills by learning from demonstration." 2009 IEEE international conference on robotics and automation. IEEE, 2009.

Characteristics of DMPs

- Convergence to the goal g is guaranteed (for bounded weights) since f(s) vanishes at the end of a movement
- The weights w_i can be learned to generate any desired *smooth* trajectory.
- The equations are spatial and temporal invariant, i.e., movements are self-similar for a change in goal, start point, and temporal scaling without a need to change the weights w_i
- The formulation generates movements which are robust against perturbation due to the inherent attractor dynamics of the equations.

Weighted Sum of Gaussian Basis

https://studywolf.wordpress.com/2013/11/16/dynamic-movement-primitives-part-1-the-basics/

Dynamic Movement Primitives

Sketch of a one dimensional DMP: the canonical system drives the nonlinear function f which perturbs the transformation system.

Pastor, Peter, et al. "Learning and generalization of motor skills by learning from demonstration." 2009 IEEE international conference on robotics and automation. IEEE, 2009.

DMP control diagram: the desired task space positions and velocities are xd, $x \cdot d$, the reference task space velocity commands are $x \cdot r$, the reference joint positions, joint velocities, and joint accelerations are θr , $\theta \cdot r$, and $\theta \cdot r$.

Pastor, Peter, et al. "Learning and generalization of motor skills by learning from demonstration." 2009 IEEE international conference on robotics and automation. IEEE, 2009.

Multidimensional

- one central harmonic oscillator
- multiple transformations

Examples:

• 1 Dimensional:

• 2 Dimensional:

• 3 Dimensional / 6 Dimensional:

Limitations of DMPs

Summary

- DMP enable learning "movement styles" while enabling generalization to new movement targets
- ullet DMP is a purely kinematic account \Rightarrow DMP is not addressing control in that respect, analogy to force-fields is misleading
- DMP addresses timing, but account of coordination is limited
- DMP for different tasks and their combination...?