Digital Electronic Circuits Section 1 (EE, IE)

Lecture 27

Algorithmic State Machine (ASM) Chart

- State Transition Diagram though compact is unsuitable for describing large state machines.
- Algorithmic State Machine (ASM) chart is a flow diagram like representation to design sequential digital electronic circuits.

n input: 2^n branch at each state

Basic Components:

ASM Chart: Mealy Model - Part 1

Problem Statement:

Design circuit for a vending machine that takes only Rs. 5 and Rs. 10 coin as inputs to deliver a product that is priced Rs. 15. Coin sensing is as follows.

I	\boldsymbol{J}	Activity
0	Χ	No coin deposited
1	0	Rs. 5 deposited
1	1	Rs. 10 deposited

Other than the output, *X* for product , there is another output, *Y* to return Rs. 5 if Rs. 20 is received by the machine anyhow.

At every clock trigger, I is sensed. If I = 0, state is maintained. Both output are 0.

State Definition:

a: Initial state i.e. money accumulated is zero.

b: Rs. 5 accumulated.

Part 2

At state a, If I = 1, a coin has been deposited.

Then decision is taken on J = 0 / J = 1 whether the circuit goes to state b / state c, at next clock trigger.

State Definition:

a: Initial state i.e. money accumulated is zero.

b: Rs. 5 accumulated.

c: Rs. 10 accumulated.

At state a, if IJ = 11, then, output XY = 00.

Part 3

At state b, If I = 1, a coin has been deposited.

Then decision is taken on J = 0 / J = 1 whether the circuit goes to state c with XY = 00 / delivers product with XY = 10 and goes to state a, at next clock trigger.

State Definition:

a: Initial state i.e. money accumulated is zero.

b: Rs. 5 accumulated.

Part 4

At state c, If I = 1, a coin has been deposited.

Then decision is taken on J = 0 / J = 1 whether only product is delivered with XY = 10 to go to state a / p product delivery and Rs. 5 return happen with XY = 11 and circuit goes to state a, at next clock trigger.

State Definition:

a: Initial state i.e. money accumulated is zero.

b: Rs. 5 accumulated.

Full ASM Chart

Full ASM Chart for the vending machine example.

ASM Chart: Moore Model

Problem Statement:

A sequence detector for '110' from a binary data stream is to be designed.

Start Input: X Output: Y Y = 00 X = ? $Y = \bigcirc$ 0 X=?Y = 0X=?Y = 1X=?

State Transition Diagram

ASM Chart

State Assignment

Problem Statement:

Design circuit for a vending machine that takes only Rs. 5 and Rs. 10 coin as inputs to deliver a product that is priced Rs. 15. Coin sensing is as follows.

I	\boldsymbol{J}	Activity
0	Χ	No coin deposited
1	0	Rs. 5 deposited
1	1	Rs. 10 deposited

Other than the output, *X* for product , there is another output, *Y* to return Rs. 5 if Rs. 20 is reached anyhow.

a: Initial state i.e. money accumulated is zero.

b: Rs. 5 accumulated.

c: Rs. 10 accumulated.

Two flip-flops: BA

State	В	A
а	0	0
b	0	1
С	1	0

State Table

Present State	Input	Next State	Output	$D_{\scriptscriptstyle B}$ $D_{\scriptscriptstyle A}$
B_n A_n	I J	B_{n+1} A_{n+1}	X = Y	
	0 0	0 0	0 0	0 0
0 0	0 1	0 0	0 0	0 0
	1 0	0 1	0 0	0 1
	1 1	1 0	0 0	1 0
	0 0	0 1	0 0	0 1
0 1	0 1	0 1	0 0	0 1
	1 0	1 0	0 0	1 0
	1 1	0 0	1 0	0 0
	0 0	1 0	0 0	1 0
1 0	0 1	1 0	0 0	1 0
	1 0	0 0	1 0	0 0
	1 1	0 0	1 1	0 0

a: Initial state i.e. money accumulated is zero.

b: Rs. 5 accumulated.

State	В	A
а	0	0
b	0	1
С	1	0

Design Equations

$\sum B_n A_n$									
IJ	0 0	0.1	11	10					
0 0	0	1	×	0					
0 1	0	1	×	0					
11	0	0	×	0					
10	1	0	×	0					

1	O	^	U
D_{λ}	$=\overline{I}A$	$+I\overline{J}\overline{B}$	\overline{A}

Present	t State	Inp	out	Next	State	Out	tput	$D_{_{\mathcal{B}}}$	$D_{\!\scriptscriptstyle A}$
B_n	A_n	I	J	B_{n+1}	A_{n+1}	X	Y		
		0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
		1	0	0	1	0	0	0	1
		1	1	1	0	0	0	1	0
		0	0	0	1	0	0	0	1
0	1	0	1	0	1	0	0	0	1
		1	0	1	0	0	0	1	0
		1	1	0	0	1	0	0	0
		0	0	1	0	0	0	1	0
1	0	0	1	1	0	0	0	1	0
		1	0	0	0	1	0	0	0
		1	1	0	0	1	1	0	0

Design Equations

$B_n A_n$											
IJ	0 0	0 1	1 1	1 0							
0 0	0	0	×	0							
0 1	0	0	×	0							
1 1	0	0	×	1							
10	0	0	×	0							

Y	=	I	J	B_{\star}

Present	t State	Inp	put	Next	State	Out	tput	$D_{\scriptscriptstyle B}$	$D_{\!\scriptscriptstyle A}$
B_n	A_n	I	J	B_{n+1}	A_{n+1}	X	Y		
		0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0
		1	0	0	1	0	0	0	1
		1	1	1	0	0	0	1	0
		0	0	0	1	0	0	0	1
0	1	0	1	0	1	0	0	0	1
		1	0	1	0	0	0	1	0
		1	1	0	0	1	0	0	0
		0	0	1	0	0	0	1	0
1	0	0	1	1	0	0	0	1	0
		1	0	0	0	1	0	0	0
		1	1	0	0	1	1	0	0

Circuit Diagram

$$\begin{split} D_B &= \overline{I}B_n + I\,\overline{J}\,A_n + I\,J\,\overline{B}_n\overline{A}_n\\ D_A &= \overline{I}A_n + I\,\overline{J}\,\overline{B}_n\overline{A}_n\\ X &= I\,B_n + I\,J\,A_n\\ Y &= I\,J\,B_n \end{split}$$

Use of Decoder-OR

Present State	Input	Next State	Output	$D_{\scriptscriptstyle B}$ $D_{\scriptscriptstyle A}$
B_n A_n	I J	B_{n+1} A_{n+1}	X = Y	
	0 0	0 0	0 0	0 0
0 0	0 1	0 0	0 0	0 0
	1 0	0 1	0 0	0 1
	1 1	1 0	0 0	1 0
	0 0	0 1	0 0	0 1
0 1	0 1	0 1	0 0	0 1
	1 0	1 0	0 0	1 0
	1 1	0 0	1 0	0 0
	0 0	1 0	0 0	1 0
1 0	0 1	1 0	0 0	1 0
	1 0	0 0	1 0	0 0
	1 1	0 0	1 1	0 0

$$D_B = F(B_n, A_n, I, J) = \sum m(3,6,8,9)$$
 $D_A = \sum m(2,4,5)$ $X = \sum m(7,10,11)$ $Y = \sum m(11)$

$$D_A = \sum m(2,4,5)$$

$$X = \sum m(7,10,11)$$

$$Y = \sum m(11)$$

References:

☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &

Applications 8e, McGraw Hill