Address	Element	Description
0	partNum	Device ID: uint16_t This ID is used to identify the ADPD4100 sensor device type and do specific tuning. 0x00C0 - ADPD4000 device - on DVT1 watch 0x01C2 - ADPD4100 device - on DVT2/3 watch
1	targetSlots	Slot selection: uint16_t Determine the slot from the 12 slots available on ADPD4000/ADPD4100
2	targetChs	Target Channel(s) selection and shift: uint8_t The lower nibble chooses the input channel value to HRM from the slot (selected by targetSlots) while upper nibble chooses the shift value of channel signal in mode 4. Bit[3:0]: channel mode Bit[7:4]: shift (for mode 4) 1 - Channel 1 (default) 2 - Channel 2 3 - Channel will be fed as PD1+PD2 4 - Channel1 and Channel2 shifted by value in [7:4] and sum. Eg: - 0x24 → (Channel1>>2+Channel2>>2), 0x14 → (Channel1>>1+Channel2>>1),
3	deviceMode	Not used
4	featureSelect	Enable pre-process features: uint16_t Used to enable/disable some of the pre-process states of the ADPD State Machine. This should not be used unless the user is fully aware of what they are doing. Bit is 1: feature enabled; 0: feature disabled Bit 0 → Detect On Bit 1 → Detect Off Bit 4 → Not used Bit 6 → Not used Bit 6 → Not used Bit 8 → Dynamic AGC Bit 9 → Static AGC Bit 12 → HRM algorithm
5	drTime	Data Rate Time: uint16_t Sets the time used to determine the data rate

		adimeter and faster
		adjustment factor.
		To account for the fact that clock calibration does
		not align exactly on the rate needed. The data rate
		is determined during the running of the algorithm;
		this factor is then used to adjust the heart rate
		value determined by the algorithm.
		The input is a time in milliseconds. The default is
		Oms.
6	DutyCycle	Not used (uint32_t)
7	hrmInputRate	Used to check the sampling rate to be used for the
		algorithm. ADI HRM Algorithm used in this package
		will support only 50Hz: uint16_t
		To support a higher sample rate of ADPD and
		ADXL, both data should be decimated to 50Hz.
8	syncMode	Not used
9	proximityRate	Not used
10	proximityTimeout	Not used
11	proximityOnLevel	Not used
12	staticAgcRecalTime	Time in minutes for static AGC recalibration. Set
		this value to 0x00 to disable this feature.
13	Res16_1	Reserved(uint16_t)
14	Res8_1	Reserved(uint8_t)
15	Res16_2	Reserved(uint16_t)
16	Res16_3	Reserved(uint16_t)
17	Res32_2	Reserved(uint32_t)
18	initialLedPulse	Initial Pulse for Static AGC in PPG application:
		uint16_t
		When static AGC is not enabled, this will be the
		pulse for the session.
19	Res8_2	Reserved(uint8_t)
20	Res8_3	Reserved(uint8_t)
21	Res32_3	Reserved(uint32_t)
22	rmssdSampleWindow	RMSSD calculation window size: uint16_t
		This is used during RMSSD calculation of HRV data.
23	Res8_4	Reserved (uint8_t)
24	Res16_4	Reserved(uint16_t)
25	Res16_5	Reserved(uint16_t)
26	maxSamplingRate	Maximum sampling rate used for Dynamic AGC:
		uint16_t
L	1	·

27	targetDcPercent	Target DC level in percentage: uint8_t
		Used in dynamic AGC to set the target current
		percentage during AFE saturation. It is also used
		for checking DC level during pulse adjust
28	maxLedCurrent	Set Maximum Current for dynamic AGC: uint16_t
29	maxPulseNum	Set Maximum LED pulses dynamic AGC: uint8_t
30	satAdjustPercentForStaticAgc	Saturation adjust in percentage: uint8_t
		Used in Static AGC to set the target current
		percentage during AFE saturation.
		(It is also used by ppg application when static AGC
		is disabled)
31	Res8_5	Reserved(uint8_t)
32	InitialCurrentTiaGain	LED current & TIA gain when static AGC is disabled:
		uint16_t
		Eg:- 0000BF24 -> current(bit[15:8]) and Initial TIA
		Gain channel2 [5:3] channel1[2:0])
		where,
		current is the actual LED current
		Initial TIA Gain setting is
		000: 200 kΩ.
		001: 100 kΩ.
		010: 50 kΩ.
		011: 25 kΩ.
		100: 12.5 kΩ
33	motionThreshold	Low Motion activity threshold(For dynamic AGC):
		uint32_t
24	and a Charl Briad	Harris about a fad to an earl floorid as at
34	motionCheckPeriod	Upper = check period, Lower = rest time(dynamic
		AGC): uint32_t
0.5	1 11111	Default set to Upper=2min and Lower=3sec
35	motionThresholdHigh	High motion activity threshold (dynamic AGC):
		uint32_t
36	motionCheckPeriodHigh	Low & High motion activity period check (dynamic
		AGC): uint32_t
		Default set to 6sec for low and high activity
37	Res8_6	Reserved (uint8_t)
38	Res16_6	Reserved(uint16_t)
39	Res16_7	Reserved(uint16_t)
	•	•

40	sqiLowPowerThreshold	SQI low power threshold: uint16_t
		If SQI is greater than this threshold, then dynamic
		AGC will decrease the power. This means the signal
		is good.
		Default: (0.25*1024)
41	sqiHighPowerThreshold	SQI high power threshold: uint16_t
		If SQI is less than or equal to this threshold, then
		dynamic AGC will increase the power. This means
		the signal is poor.
		Default: (0.15*1024)