Section 4.2 – Representing Relations

Representing Relations Using Matrices

A relation between finite sets can be represented using a zero-one matrix. Suppose that R is a relation from $A = \{a_1, a_2, a_3, ..., a_m\}$ to $B = \{b_1, b_2, b_3, ..., b_n\}$. The relation R can be represented by the matrix $M_a = \{m_{ij}\}$ where

$$m_{ij} = \begin{cases} 1 & if \left(a_i, b_j\right) \in \mathbf{R} \\ 0 & if \left(a_i, b_j\right) \notin \mathbf{R} \end{cases}$$

Example

Suppose that $A = \{1, 2, 3\}$ and $B = \{1, 2\}$. Let R the relation from A to B containing (a, b) if $a \in A$, $b \in B$, and a > b. What is the matrix representing R is $a_1 = 1$, $a_2 = 2$, $a_3 = 3$, and $b_1 = 1$, $b_2 = 2$?

Solution

$$R = \{(2, 1), (3, 1), (3, 2)\} \qquad M_R = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Example

Let $A = \{a_1, a_2, a_3\}$ and $B = \{b_1, b_2, b_3, b_4, b_5\}$. Which ordered pairs are in the relation R represented by the matrix

$$M_R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{bmatrix}?$$

Solution

$$R = \left\{ \left(a_{1}, b_{2}\right), \; \left(a_{2}, b_{1}\right), \; \left(a_{2}, b_{3}\right), \; \left(a_{2}, b_{4}\right), \; \left(a_{3}, b_{1}\right), \; \left(a_{3}, b_{3}\right), \; \left(a_{3}, b_{5}\right) \right\}$$

A relation R on A is **reflexive** if $(a, a) \in R$ whenever $a \in A$

$$M_R = \left(M_R\right)^t \qquad \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$$

A relation *R* on *A* is *symmetric*

A relation R on A is **antisymmetric** iff $(a, b) \in R$ and $(b, a) \in R \implies a = b$

Example

Suppose that the relation R on the set is represented by the matrix

$$M_{R} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Is *R* reflexive, symmetric, and/or antisymmetric?

Solution

Because the diagonal elements are equal to 1, R is reflexive.

 M_{p} is symmetric and it is not antisymmetric.

Relations Using Diagraphs

Definition

A directed graph, or diagraph, consists of a set V of vertices (or nodes) together with a set E ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

13

Example

Draw the directed graph with vertices a, b, c, and d, and edges (a, b), (a, d), (b, b), (b, d), (c, a), (c, b), and (d, b)

Solution

Example

Draw the directed graph of the relation $R = \{(1, 1), (1, 3), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (4, 1)\}$ on the set $\{1, 2, 3, 4\}$

Solution

Example

What are the ordered pairs in the relation R represented by the directed graph shown below

Solution

 $R = \{(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3), (4, 1), (4, 3)\}$

Exercises Section 4.2 – Representing Relations

- 1. Represent each of these relations on {1, 2, 3} with a matrix (with the elements of this set listed in increasing order). Then draw the directed graphs representing each relation
 - a) $\{(1, 1), (1, 2), (1, 3)\}$
 - b) $\{(1, 2), (2, 1), (2, 2), (3, 3)\}$
 - $c) \{(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$
 - $d) \{(1,3),(3,1)\}$
- 2. Represent each of these relations on {1, 2, 3, 4} with a matrix (with the elements of this set listed in increasing order). Then draw the directed graphs representing each relation
 - a) $\{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}$
 - b) $\{(1, 1), (1, 4), (2, 2), (3, 3), (4, 1)\}$
 - $c) \{ (1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3) \}$
 - $d) \{(2,4), (3,1), (3,2), (3,4)\}$
- 3. List the ordered pairs in the relations on {1, 2, 3} corresponding to these matrices (where the rows and columns correspond to the integers listed in increasing order). Then draw the directed graphs representing each relation
 - $a) \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \qquad b) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad c) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
- List the ordered pairs in the relations on {1, 2, 3, 4} corresponding to these matrices (where the 4. rows and columns correspond to the integers listed in increasing order). Then draw the directed graphs representing each relation
 - $a) \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ \vdots & 0 & 1 & 1 \end{bmatrix} \qquad b) \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix} \qquad c) \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$
- **5.** Let *R* be the relation represented by the matrix
 - $M_{R} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$
 - Find: a) R^2 b) R^3 c) R^4
- **6.** Draw the directed graph that represents the relation $\{(a, a), (a, b), (b, c), (c, b), (c, d), (d, a), (d, b), (d, c), (d, d), (d, d)$ *b*)}

15

7. Determine whether the relations represented by the directed graphs are reflexive, irreflexive, symmetric, antisymmetric, and/or transitive

