Sección de Diseño Diseño Mecatrónico 2024-1S

DISEÑO DE UN SISTEMA MECATRÓNICO

1. Objetivo.

Realizar el proceso diseño de un prototipo de una máquina lavadora de ropa, de carga frontal, programable, con funciones de remojo, lavado, centrifugado, tres temperaturas de agua. Nivel de madurez: TRL3.

2. Requerimientos.

2.1. Generales

Capacidad de lavado de ropa: 1,5 veces la capacidad de la lavadora asignada al equipo en el informe de análisis.

Lavadora de carga frontal.

Niveles de temperatura de agua: fría, media, caliente.

No se pueden seleccionar o usar componentes o repuestos de lavadoras comerciales.

2.2. Subsistema básico o mecánico.

Diseño conceptual de la estructura de soporte o chasis de la lavadora.

Cálculo de las dimensiones del tambor de lavado, selección del material y proceso de fabricación.

Descripción y partes del sistema de apoyo del tambor sobre el chasis, incluir componentes para permitir vibraciones y/o desplazamientos radiales del tambor respecto al chasis.

Realizar el cálculo estático y dinámico de las fuerzas y torque para aceleración, rotación, desaceleración del tanque.

Realizar el cálculo de las fuerzas y torques sobre el tambor y/o sobre los apoyos para el ciclo de centrifugado considerando la condición de carga de ropa desbalanceada según indica la figura 1.

Fig. 1

En muchas de las lavadoras el eje se une al tambor mediante una pieza denominada araña (Fig. 2). Haga el diseño conceptual del eje y la araña, considérelos como piezas separadas, diseño conceptual de la unión entre eje y araña, entre eje y motor y soporte del eje al chasis.

Fig. 2.

Realice el diseño por fatiga del eje y de la araña, presente los procedimientos del diseño, suposiciones y criterios de ingeniería para cada suposición. Considere un uso de hasta 4 días de uso a la semana, 4 horas por día de uso, 45 minutos de centrifugado con una vida útil de 10 años. Proponga un porcentaje adecuado de ciclos de trabajo con carga desbalanceada.

2.3. Subsistema eléctrico y electrónico.

Seleccione un motor sincrónico o uno tipo direct-drive, presente el procedimiento de selección teniendo en cuenta la velocidad y torque requeridos.

Seleccione un drive o control electrónico para el motor seleccionado y presente sus características.

Haga una propuesta conceptual del subsistema eléctrico y electrónico que considere otros actuadores diferentes al motor del tambor, sensores presentado un diagrama de bloques del subsistema.

Presente una BOM del subsistema eléctrico y electrónico.

Proponga un microcontrolador o tarjeta de desarrollo para hacer el control de su prototipo de lavadora, presente los análisis y argumentos de su selección.

Proponga el diseño conceptual de una HMI para su prototipo.

Requerimientos y características de fuentes de voltaje, cables y elementos de protección eléctrica.

3. Entregables.

• Un informe o memoria escrita, en formato PDF, escrito a una columna donde

se incluyan con todos los procedimientos, cálculos, diseños y selecciones realizadas. El documento debe seguir las normas de presentación establecidas en el programa de curso

- Planos de: diseño conceptual del chasis, plano para taller del eje, plano para taller de la araña.
- BOM y diagrama de bloques solicitado.
- Otros diagramas, planos e informaciones que considere pertinentes.
- Todos los entregables en un solo archivo comprimido con el nombre DM_P2_PR#_xx: P2 etapa del proyecto de curso, PR# número de proyecto o equipo de trabajo asignado.