

ESS302 Applied Geophysics II

Gravity, Magnetic, Electrical, Electromagnetic and Well Logging

Gravity 3: Applications

Instructor: Dikun Yang Feb – May, 2019

From the Last Lecture

Inherent ambiguity

- How many objects?
- How big/dense?
- Where are they?

Contents

- Upward and downward continuation
- Gravity gradiometry
 - Horizontal and vertical derivatives
 - Full tensor gravity gradient
- Gravity inversion
 - Geometric inversion
 - Pixel/voxel inversion
- Gravity applications
 - Planetary science
 - Environmental
 - Military

Gravity Signal Decays as 1/r²

We measure the vertical component of *g* on the surface

$$g_z = \frac{GM \Delta z}{r^3}$$

Large distance: long-wavelength

Small distance: short-wavelength

Upward and Downward Continuation

Gravity Signal Decays as 1/r²

We measure the vertical component of *g* on the surface

$$g_z = \frac{GM \Delta z}{r^3}$$

Large distance: long-wavelength

Small distance: short-wavelength

Horizontal Derivative

Draw the first and second horizontal derivatives
Which derivative is more useful in defining the edges?

Horizontal Derivative

Can you tell the dipping direction from g_z ?

Which derivative is more useful in finding the dip?

Vertical Derivatives

 g_1 : 0 m above surface g_2 : 0.1 m above surface

 g_3 : 0.2 m above surface

High Order Derivative?

1% Gaussian noise in data

High Order Derivative?

Horizontal 1st derivative: Not too bad

High Order Derivative?

Horizontal 2nd derivative: Caution!

Derivative magnifies noise in data

Full Tensor Gradient: More from g_x and g_y

3D-FTG

Figure 3 – Umbrella-like arrangement of Gravity Gradient Instruments (GGI) according to Brett & Brewster (2010).

Figure 2 – Representation of rotational accelerometers gravity gradient according to Metzger (1986).

The Four-Sphere Model

Full Tensor Gravity Gradient

Geometric Inversion - Interactive

Geometric Inversion - Basement Relief

Pixel/Voxel Inversion

Data = Integration over a volume:

Not enough information to fully recover the true model

 A_{ij} : Contribution of the j^{th} element to the i^{th} datum Linear problem but the **inverse problem is ill-posed**!

So the piece-wise constant density model ρ is

$$\begin{bmatrix} \rho \\ \end{bmatrix} = \begin{bmatrix} A \\ \end{bmatrix} \begin{bmatrix} d \\ \end{bmatrix} ???$$

3D Voxel Inversion

Planetary Science – Crater on Moon

Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission

Maria T. Zuber^{1,*}, David E. Smith¹, Gregory A. Neumann², Sander Goossens³, Jeffrey C. Andrews-Hanna^{4,5}, James W. Head⁶, Walter S. Kiefer⁷, Sami W. Asmar⁸, Alexander S. Konopliv⁸, Frank G. Lemoine², Isamu Matsuyama⁹, H. Jay Melosh¹⁰, Patrick J. McGovern⁷, Francis Nimmo¹¹, Roger J. Phillips⁵, Sean C. Solomon^{12,13}, G. Jeffrey Taylor¹⁴, Michael M. Watkins^{8,15}, Mark A. Wieczorek¹⁶, James G. Williams⁸, Johanna C. Jansen⁴, Brandon C. Johnson^{1,6}, James T. Keane⁹, Erwan Mazarico², Katarina Miljković^{1,17}, Ryan S. Park⁸, Jason M. Soderblom¹, Dah-Ning Yuan⁸

Science 28 Oct 2016: Vol. 354, Issue 6311, pp. 438-44 DOI: 10.1126/science.aag0519

http://science.sciencemag.org/content/354/6311/438

¹Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA.

²Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA.

³Center for Research and Exploration in Space Science and Technology, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.

⁴Department of Geophysics and Center for Space Resources, Colorado School of Mines, Golden, CO 80401, USA.

⁵Southwest Research Institute, Boulder, CO 80302, USA.

⁶Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912, USA.

⁷Lunar and Planetary Institute, Houston, TX 77058, USA.

⁸ Jet Propulsion Laboratory, Pasadena, CA 91109, USA.

⁹Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721-0092, USA.

To Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA.

¹¹Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.

¹²Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA.

¹³Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA.

¹⁴Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA.

¹⁵Center for Space Research, University of Texas, Austin, TX 78712 USA.

¹⁶ Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, 75205 Paris Cedex 13, France.

¹⁷Department of Applied Geology, Curtin University, Perth, Western Australia 6845, Australia.

e Corresponding author, Email: zuber@mit.edu

⁻ Hide authors and affiliations

Density of the Moon's Interior

Can you sketch a density structure along the cross section A-A'?

Environmental – Sinkholes

Cave detection and 4-D monitoring: A microgravity case history near the Dead Sea

M. Rybakov, V. Goldshmidt, L. Fleischer, and Y. Rotstein, The Geophysical Institute of Israel https://library.seg.org/doi/pdf/10.1190/1.1487303n

Figure 2. One of largest sinkholes in the Dead Sea area (after Gilat, 1999).

Forward Modeling: Feasibility Study

Figure 6. Effect of detectability threshold level and density contrast—maximum depth for detection of spherical concealed cavern. Large density contrast corresponds to air-filled cavern and small density contrast to saltwater-filled cavern.

Cavern Mapping Result

Raw gravity data along a line

- Gravimeter accuracy 0.005 mGal
- Scintrex CG-3M: 0.001 mGal
- Geodetic control: Laser Total Station (a few mm)
- Real-time elevation of the instrument
- Base station repeated hourly
- Repeat measurement: 10% of all stations
- Fully terrain corrected: 25-m grid DTM + precise local survey near the station

Figure 9. Residual gravity map of the Hever site superimposed by detailed topography (white contours - 0.25-m interval). White circles denote open sinkholes. Photos show growth of sinkhole 1 between March and November 1999.

Military – Submarine Navigation

Collision warning:

- **Φzz** is diminishing
- The second horizontal derivatives of **Φxx** and **Φzz** attain a maximum and a minimum, respectively

Can gravity gradient be used to detect another submarine?

Summary

- Nature of gravity data: Ambiguity
- Approaches to identify sources of signals:
 - Regional removal
 - Upward/downward continuation
 - Derivatives
 - Full tensor gradients
- Gravity inversion
- Applications: Planetary science, environmental, military, basin, etc.
- What's your impression about the gravity method?