一、选择题(每小题3分,共24分)

1. 随机事件 A 或 B 发生时, C 一定发生,则 A, B, C 的关系是().

- A. $A \cup B \supset C$
- B. $A \cup B \subset C$
- C. $AB \supset C$ D. $AB \subset C$

2. 设 $X \sim B(25, 0.2)$, $Y \sim N(a, \sigma^2)$, 且 E(X) = E(Y), D(X) = D(Y), 则 Y 的密度 函数 p(y) = ().

- A. $\frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}$. B. $\frac{1}{2\sqrt{2\pi}}e^{-\frac{y^2}{8}}$. C. $\frac{1}{2\sqrt{2\pi}}e^{-\frac{(y-5)^2}{8}}$. D. $\frac{1}{4\sqrt{2\pi}}e^{-\frac{(y-5)^2}{32}}$.

3. 随机变量 X 服从指数分布,参数 $\lambda = ($)时, $E(X^2) = 18$

- A. 3. B. 6. C. $\frac{1}{6}$. D. $\frac{1}{3}$.

- A. $\frac{2}{3}$. B. $\frac{20}{81}$. C. $\frac{4}{9}$. D. $\frac{1}{3}$.

5. 设 $p_1(x)$, $p_2(x)$ 都是密度函数,为使 $ap_1(x)+bp_2(x)$ 也是密度函数,则常数 a,b 满足 ().

A. a + b = 1

B. $a+b=1.a \ge 0, b \ge 0$

- C. a > 0, b > 0
- D. *a*,*b* 为任意实数

6. 对于假设 $H_0:\sigma^2={\sigma_0}^2$, $H_1:\sigma^2\neq{\sigma_0}^2$,采用 χ^2 统计量,显著性水平为 α ,则 H_0 的拒绝域为().

- A. $(0, \chi^2_{\alpha}) \bigcup (\chi^2_{1-\alpha}, +\infty)$
- B. $(0, \chi^2 \alpha_2) \bigcup (\chi^2_{1-\alpha_2}, +\infty)$
- C. $(0, \chi^2_{1-\alpha/2}) \cup (\chi^2_{\alpha/2}, +\infty)$
- D. $(\chi^2_{1-\alpha/2}, \chi^2_{\alpha/2})$.

随机变量 X 与 Y 相互独立, 其分布律为:

X	-1	1
P	0.5	0.5

Y	-1	1
P	0.5	0.5

则下列各式正确的是(

A.
$$P\{X = Y\} = 1$$
.

B.
$$P\{X = Y\} = \frac{1}{4}$$
.

C.
$$P\{X = Y\} = \frac{1}{2}$$
.

D.
$$P\{X = Y\} = 0$$
.

- 8. 假设检验中一般情况下().

 - A. 只犯第一类错误. B. 只犯第二类错误.
 - C. 两类错误都可能犯. D. 两类错误都不犯.

二、填空题(每小题3分,共18分)

- 1. 设 A, B 是两个互不相容的随机事件,且知 $P(A) = \frac{1}{4}, P(B) = \frac{1}{2}$ 则 $P(A \cup \overline{B}) = ____.$
- 3. 设 (X,Y) 的联合分布函数为 $F(x,y) = \begin{cases} 1 e^{-x^2} e^{-2y^2} + e^{-x^2 2y^2} & x \ge 0, y \ge 0 \\ 0 &$ 其它

$$P\left\{X > \sqrt{2}\right\} = \underline{\hspace{1cm}}.$$

- 4. 若随机变量 X 与 Y 相互独立,且方差 D(X) = 0.5,D(Y) = 1,则 D(2X 3Y) =
- 5. 设随机变量 X_1, X_2, X_3, X_4 相互独立,且都服从正态分布 $N(\mu, \sigma^2)(\sigma > 0)$ 则

$$\frac{1}{4}(X_1 + X_2 + X_3 + X_4)$$
 服从的分布是______.

6. 要使假设检验两类错误的概率同时减少,只有 的方法.

三、实验解读应用题(每空2分,共24分)

(一) 如果要求估计一标准袋薯片的平均总脂肪量(单位:克). 现抽取了 11 袋,进行分析,结果如右表. 假定总脂肪量服从正态分布,试给出总体 μ 的 90%置信区间. 本实验用到的样本函数为 1 ,由实验结果知 μ 的置信水平为 0.9 的置信区间为 2 .

单个正态总体均值 t 估计活动表			
置信水平	0.9		
样本容量	11		
样本均值	18.2		
样本标准差	0.748331477		
标准误差	0.22563043		
t 分位数(单)	1.372183641		
t 分位数(双)	1.812461102		
单侧置信下限	17.89039362		
单侧置信上限	18.50960638		
区间估计			
估计下限	17.79105362		
估计上限	18.60894638		

(二)原有一台仪器测量电阻值时,相应的误差 $X \sim N(\mu, 0.06)$,现有一台新仪器,对一个电阻测量了 10 次,所得数据的分析结果如 右表. 在显著性水平 $\alpha = 0.10$ 下,问新仪器的精度是否比原有的好?检验的原假设为 H_0 : 3___,得到如右表的实验结果. 由于检验的 P-value== 4 ,因此, 5 .

正态总体方差的卡方检验活动表			
期望方差	0.06		
样本容量	10		
样本方差	8. 71111E-06		
统计量观测值	0. 001306667		
双侧检验P值	2. 22045E-16		
或	2		
左侧检验P值	0		
右侧检验P值	1		

差异源	SS	df	MS	F	P-value	F crit
组间	420	2	210	1. 70	0. 245946	3. 354131
组内	3836		142. 07	_	_	_
总计	4256		_	_		_

(四) 我们知道营业税税收总额Y与社会商品零售总额x有关. 现收集了9组数据(单位:亿元)计算结果如下. 某营业税税收总额Y关于社会商品零售总额x的线性回归方程为<u>9</u>,由于检验的P-value= 10 ,所以,在显著性水平 α = 0.05 下,线性回归关系 11 (是否显著),若已知社会商品零售总额为 x_0 = 300亿元时,估计营业税税收总额为 12 _.

	Coefficients	标准误差	t Stat	P-value
Intercept	-2. 25822	1. 107518	-2. 03899	0. 080833
X	0. 048672	0. 003631	13. 40338	3. 02E-06

四、应用题(每小题5分,共10分)

- 1. 设供电网站有 10000 盏灯,夜间每一盏灯开灯的概率都为 0. 7,而假设电灯开关时彼此独立,用中心极限定理计算同时开着的灯数在 6800~7200 盏的概率. ($\Phi(4.36) \approx 1$)
- 2. 某苗圃规定平均苗高 60 cm 以上方能出圃. 今从某苗床中随机抽取 9 株测得高度 (cm),计算可得: $\overline{x} = 61.111$, s = 1.7638.已知苗高服从正态分布,试问在显著性水平 $\alpha = 0.05$ 下,这些苗是否可以出圃? ($t_{0.05}(8) = 1.8595$, $t_{0.025}(8) = 2.3060$)

五、综合计算题(每问3分,共24分)

1. 设(X,Y)的联合密度函数

$$p(x, y) = \begin{cases} k(x + y), & 0 < x < 2, 0 < y < 2 \\ 0, & \sharp \, \stackrel{\sim}{\Sigma} \end{cases}$$

- (1) 验证k = 1/8; (2) 求关于 X 及关于 Y 的边缘密度函数;
- (3) X 与 Y 是否独立? 说明理由; (4) 求 P(X < 1, Y < 1)
- **2**. 设总体 X 的概率密度为 $p(x) = \begin{cases} \beta x^{-\beta-1}, x > 1 \\ 0, & x \le 1 \end{cases}$, 其中未知参数 $\beta > 1$, X_1, X_2, \dots, X_n 为

来自总体 X 的简单随机样本,求: (1) 求 X 的数学期望 E(X); (2) β 的矩估计量; (3) 求关于参数 β 的似然函数; (4) 求参数 β 最大似然估计值.