CS281 Spring 2010: Homework 2 Due Wednesday, April 21st – SOLUTIONS

- 1. Exercise 9.1.3: Here are two definitions of languages that are similar to the definition of L_d , yet different from that language. For each, show that the language is not accepted by a Turing machine, using a diagonalization-type argument. Note that you cannot develop an argument based on the diagonal itself, but must find another infinite sequence of points in the matrix suggested by Fig. 9.1.
 - a) The set A of all w_i such that w_i is not accepted by M_{2i} .
 - b) The set B of all w_i such that w_{2i} is not accepted by M_i .

Essentially we wish to use lines of slope -2 and -1/2 in the matrix respectively for (a) and (b) (in place of the diagonal, which has a slope of -1). However we must be careful in (b) since the string w_i we are considering for our set is *not* the same as the string whose acceptance we test.

- a) Suppose A is accepted by some machine. We may assume there is at least one transition defined for this machine, because otherwise we could add in a trivial one (from an extra state that never gets reached, to anywhere). Thus, using the enumeration scheme defined in Hopcroft we have an index ending in 0 for this machine; i.e., our machine is M_{2j} for some positive integer j. If we now consider the string w_j we find: $w_j \in A$ iff M_{2j} accepts w_j iff $w_j \notin A$, a contradiction. So in fact there can be no machine accepting A.
- b) Let B' be the set of all w_{2i} such that w_{2i} is not accepted by M_i . Clearly B is not accepted by any Turing machine (this is even more straightforward than (a), as any index j for such a machine allows us to look at w_{2j} and get a contradiction). On the other hand, if B were accepted by some machine M then we could construct a machine M' that accepts B' as follows: given a string of odd index, reject; given a string of even index, run M on the string with half that index. This implies there is no TM that accepts B.
- 2. **Exercise 9.2.4:** Let L_1, L_2, \ldots, L_k be a collection of languages over the alphabet Σ such that:
 - 1. For all $i \neq j$, $L_i \cap L_j = \emptyset$; i.e. no string is in two of the lnaguages.
 - 2. $L_1 \cup L_2 \cup \ldots \cup L_k = \Sigma^*$; i.e., every string is in one of the languages.
 - 3. Each of the languages L_i , for i = 1, 2, ..., k is recursively enumerable.

Prove that each of the languages is therefore recursive. Note that for each $i, \bar{L}_i = \bigcup_{j \neq i} L_j$

and so is \bar{L}_i is r.e. by question 3 (using induction to extend that result to finite unions). Thus L_i is recursive (since it and its complement are both r.e. - result proved in class).

- 3. Exercise 9.2.6 (a) (b): We have not discussed closure properties of the recursive languages or the RE languages, other than our discussion of complementation in Section 9.2.2. Tell whether the recursive languages and / or the RE languages are closed under the following operations. You may give informal, but clear, constructions to show closure.
 - a) Union.
 - b) Intersection.
 - a) The union of two r.e. sets is r.e. and the union of two recursive sets is recursive. Suppose M_1 and M_2 are machines accepting (resp. deciding) the r.e. (resp. recursive) languages L_1 and L_2 . Then define a new machine M which runs M_1 and M_2 and accepts if either of the M_i accepts. Then clearly M accepts exactly those strings from $L_1 \cup L_2$. Moreover, in the case of recursive L_i , we may force M to halt if both of the M_i have halted. This does not change acceptance so we still have $L(M) = L_1 \cup L_2$ but now our machine is guaranteed to halt.
 - b) The intersection of two r.e. sets is r.e. and the intersection of two recursive sets is recursive. Suppose M_1 and M_2 are machines accepting (resp. deciding) the r.e. (resp. recursive) languages L_1 and L_2 . Then define a new machine M which runs M_1 and M_2 and accepts if both of the M_i accept. Then clearly M accepts exactly those strings from $L_1 \cap L_2$. Moreover, in the case of recursive L_i , we may force M to halt if both of the M_i have halted. This does not change acceptance so we still have $L(M) = L_1 \cap L_2$ but now our machine is guaranteed to halt.
- 4. Exercise 9.3.7: Show that the following problems are not recursively enumerable:
 - a) The set S of pairs (M, w) such that TM M, started with input w, does not halt.
 - b) The set T of pairs (M_1, M_2) such that $L(M_1) \cap L(M_2) = \emptyset$.
 - c) The set V of triples (M_1, M_2, M_3) such that $L(M_1) = L(M_2)L(M_3)$; i.e. the language of the first is the concatenation of the languages of the other two TM's.
 - a) It is mentioned in Hopcroft (p. 390) that the Halting Problem

$$\{(M, w) \mid M \text{ halts on input } w\}$$

is r.e. but not recursive. Note that S is the complement of this problem, so if S were r.e. then both the Halting Problem and its complement would be r.e., hence by the result shown in class, recursive, a contradiction.

b) It is shown in Hopcroft (Theorem 9.6) that the complement of the set $L_u = \{(M, w) \mid w \in L(M)\}$ is not r.e. (specifically Hopcroft reduces the diagonalization language L_d to \bar{L}_u). Thus there is no TM which accepts \bar{L}_u . For each string w,

- let N(w) denote a particular machine which accepts $\{w\}$ (it need only compare its input character-by-character with a stored copy of w). Suppose there were a machine M accepting T. Then we could define a new machine as follows: on input (M, w), run M on the pair (M, N(w)). This machine would accept iff $L(M) \cap L(N(w)) = \emptyset$, i.e. iff $w \notin L(M)$ because $L(N(w)) = \{w\}$. In other words this machine would accept \bar{L}_u , a contradiction.
- c) Let N be a machine deciding the empty set (for example a machine with no transitions). So $L(N) = \emptyset$. Now let $L_e = \{M \mid L(M) = \emptyset\}$ as in Hopcroft. This is non r.e. by Theorem 9.10. Suppose there were a machine M accepting V then we could define a new machine as follows: on input M_1 , run M on the triple (M_1, N, N) . This machine would accept M_1 iff $L(M_1) = L(N)L(N) = \emptyset$, a contradiction to Theorem 9.10.