# **Locally Private Gaussian Estimation**

Matthew Joseph, Janardhan Kulkarni, Jieming Mao, Zhiwei Steven Wu majos@cis.upenn.edu, jakul@microsoft.com, maojm@google.com, zsw@umn.edu

#### Motivation -

Estimate mean of  $\mathcal{N}(\mu,\sigma)$  while guaranteeing local differential privacy.

# Problem Setup -

Users  $i \in [n]$  draw i.i.d. samples  $x_i \sim N(\mu, \sigma)$ . Analyst wants to communicate with users and estimate  $\mu$ . However, this communication protocol must satisfy *local differential privacy* (LDP).

$$\mathbb{P}\left[Q(x) \in S\right] \le e^{\varepsilon} \mathbb{P}\left[Q(x') \in S\right] + \delta.$$

Communication protocol  $\mathcal{A}$  is  $(\varepsilon, \delta)$ -LDP if all users send data through  $(\varepsilon, \delta)$ -local randomizers. Here, we use **sequentially interactivity**: each user outputs  $\leq 1$  message.

LDP adds randomness so that public communication reveals little about any one user, but not so much that the analyst can't learn. Expensive communication  $\Rightarrow$  should minimize sample and round complexity.

### - Related Work -

Central DP [3]:  $O(\sigma \sqrt{\frac{\log(1/\beta)}{n}} + \frac{\operatorname{polylog}(1/\beta)}{\varepsilon n}).$ 

Local DP [1]: If  $\sigma$  known, 2 rounds. If  $\sigma$  unknown,  $\Omega(\log(\mu))$  rounds.  $O(\frac{\sigma}{\varepsilon}\sqrt{\frac{\log(1/\beta)\log(n/\beta)\log(1/\delta)}{n}}) \text{ accuracy.}$ 

 $\Omega(\frac{\sigma}{\varepsilon}\sqrt{\frac{\log(1/\beta)}{n}})$  lower bound for sequentially interactive  $(\varepsilon,\delta)$ -locally private protocols.

### Our Results -

Suppose  $\sigma$  is known and  $\frac{n}{\log(n)} = \Omega(\frac{\log(\mu)\log(1/\beta)}{\varepsilon^2})$ .

**Theorem 1**: Protocol is  $(\varepsilon,0)$ -LDP, takes 2 rounds of interaction and, w.p.  $1-\beta$  estimates  $\mu$  to  $O(\frac{\sigma}{\varepsilon}\sqrt{\frac{\log(1/\beta)}{n}})$  accuracy.

Suppose  $\sigma$  lies in known interval  $[\sigma_{\min}, \sigma_{\max}]$  and  $\frac{n}{\log(n)} = \Omega\Big(\frac{[\log(\frac{\sigma_{\max}}{\sigma_{\min}} + 1) + \log(\mu)] \log(1/\beta)}{\varepsilon^2}\Big).$ 

**Theorem 2**: Protocol is  $(\varepsilon,0)$ -LDP, takes 2 rounds of interaction and, w.p.  $1-\beta$  estimates  $\mu$  to  $O(\frac{\sigma}{\varepsilon}\sqrt{\frac{\log(1/\beta)\log(n)}{n}})$  accuracy.

Lower bound for SI locally private protocols.

<u>Theorem 3</u>: Given  $\sigma$ , no SI  $(\varepsilon, \delta)$ -locally private protocol estimates  $\mu$  to  $o(\frac{\sigma}{\varepsilon}\sqrt{\frac{1}{n}})$  accuracy w.p.  $\geq 15/16$ .

# – Step 1: Coarse Estimation of $\mu$ –

Binary search: split users into  $L = \Theta(\frac{n\varepsilon^2}{\log(n/\beta)})$  groups. Each one estimates one bit of  $\mu$ .

Key trick: each user i in group j randomized responds on  $\lfloor x_i/2^j \rfloor \mod 4$ . Uses Gaussian concentration to binary search in single round.



After first round:  $O(\sigma)$ -accurate estimate  $\hat{\mu}_1$ .

### (Maybe) Step 1.5: Estimation of $\sigma$ —

Relies on the same randomized user responses on  $\lfloor x_i/2^j \rfloor$ . When  $2^j \gg \sigma$ , responses concentrate. When  $2^j \ll \sigma$ , responses spread out. Examine transition to estimate  $\sigma$  to  $O(\sigma)$  accuracy.



# **Step 2:** Fine Estimation of $\mu$

If  $\sigma$  known, have users randomized respond on  $\mathrm{sgn}(\frac{\mu-x_i}{\sigma})$ . Compare bias to that of standard normal CDF. Requires very accurate knowledge of  $\sigma$ , yields  $\hat{\mu}_2$ .

If  $\sigma$  estimated, use  $\hat{\mu}_1$  and  $\hat{\sigma}$  to generate large confidence interval I that w.h.p. contains  $\mu$ . Each user i clips  $x_i$  to I to produce  $x_i'$ , reports  $y_i = x_i' + \operatorname{Lap}\left(\frac{|I|}{\varepsilon}\right)$ . Take empirical mean  $\hat{\mu}_2 = \frac{2}{n} \sum_i y_i$ .

# More Stuff in Paper –

Can use [2] to extend lower bound to full interactivity with some assumptions.

Nonadaptive and 1-round (but higher-error) versions of both Theorems 1 and 2. Idea: parallelize and do all steps simultaneously. (Some groups will do Step 1, others will do Step 2 for different possible values from Step 1. Only one of these Step 2 groups will be useful. More groups  $\Rightarrow$  fewer people in "right" eventual group  $\Rightarrow$  higher error.)

### - References -

- [1] "Locally Private Mean Estimation: Z-test and Tight Confidence Intervals". Marco Gaboardi, Ryan Rogers, and Or Sheffet. AISTATS 2019.
- [2] "The Role of Interactivity in Local Differential Privacy". Matthew Joseph, Jieming Mao, Seth Neel, and Aaron Roth, FOCS 2019.
- [3] "Finite Sample Differentially Private Confidence Intervals". Vishesh Karwa and Salil Vadhan. ITCS 2017.