Stochastics II Stochastic Processes Winterterm 2016/17

Prof. Dr. U. Rösler S. Hallmann

Sheet 5

Exercise 1

Let $X \sim \exp(\lambda), \lambda > 0$. Show that the solution of the renewal equation

$$G(t) = g(t) + \int_0^t G(t-x) \mathbb{P}^X(dx)$$

for some bounded, measurable function $g:[0,\infty)\to\mathbb{R}$ is given by

$$G(x) = g(x) + \lambda \int_0^x g(z)dz.$$

Exercise 2 (renewal sequences an Markov chains, part 1)

A sequence $(u_n)_{n\in\mathbb{N}_0}$ of real numbers is called *renewal sequence*, if there exists a sequence $(f_n)_{n\in\mathbb{N}}$ of non negative real numbers, such that $\sum_{n\in\mathbb{N}} f_n = 1$ and

$$u_0 = 1, \quad u_n = \sum_{i=1}^n f_i u_{n-i}, \quad n \ge 1$$
 (1)

holds.

Show that for a Markov chain $(X_n)_{n\in\mathbb{N}_0}$ with state space E and $x\in E$ recurrent, $u_n:=\mathbb{P}_x(X_n=x), n\geq 0$ defines a renewal sequence $(u_n)_{n\in\mathbb{N}_0}$.

Exercise 3 (renewal sequences an Markov chains, part 2)

Show that for every renewal sequence $(u_n)_{n\in\mathbb{N}_0}$ there exist a Markov chain $(X_n)_{n\in\mathbb{N}_0}$ with state space \mathbb{N}_0 and $x\in E$, such that $(\mathbb{P}_x(X_n=x))_{n\in\mathbb{N}_0}$ satisfies the same renewal equation (1) as $(u_n)_{n\in\mathbb{N}_0}$.

Exercise 4 (renewal sequences an Markov chains, part 3)

Let $(u_n)_{n\in\mathbb{N}_0}$ and $(v_n)_{n\in\mathbb{N}_0}$ be renewal sequences. Show that $(u_nv_u)_{n\in\mathbb{N}_0}$ is also a renewal sequence.

Hand in until friday, 02.12.2016, 12:00