lab1

March 16, 2019

資科工碩 0756110 李東霖

1 Introduction

In this lab, we need to implement NN and back propagation Some request:

- Write a simple neural networks without framework (e.g. Tensorflow, PyTorch)
- Only use Numpy and other standard lib
- NN with two hidden layers
- Plot your comparison figure that show the predict result and ground truth

1.1 Implementation

- X,\hat{y} : Data
- $x_1, x_2 : NN inputs$
- y: NN output
- $L(\theta)$: Lost function (MSE $E(|\hat{y} y|^2)$)
- *W* : weight matrix
- σ : activation function (sigmoid $\frac{1}{1+e^{-x}}$)

1.2 Dataset

We have two data generator

- Linear
- XOR

Target y is 0 or 1, just like one class classification.

```
plt.subplot(1,2,1)
            plt.title('Ground truth', fontsize=18)
            plt.scatter(x[:,0], x[:,1], c=y[:,0], cmap=cm)
            plt.subplot(1,2,2)
            plt.title('Predict result', fontsize=18)
            plt.scatter(x[:,0], x[:,1], c=pred_y[:,0], cmap=cm)
            plt.show()
        def show_data(xs, ys, ts):
            cm = LinearSegmentedColormap.from_list(
                'mymap', [(1, 0, 0), (0, 0, 1)], N=2)
            n = len(xs)
            plt.figure(figsize=(5*n, 5))
            for i, x, y, t in zip(range(n), xs, ys, ts):
                plt.subplot(1,n, i+1)
                plt.title(t, fontsize=18)
                plt.scatter(x[:,0], x[:,1], c=y[:,0], cmap=cm)
            plt.show()
In [3]: def generate_linear(n=100):
            pts = np.random.uniform(0, 1, (n, 2))
            inputs = []
            labels = []
            for pt in pts:
                inputs.append([pt[0], pt[1]])
                distance = (pt[0] - pt[1]) / 1.414
                if pt[0] > pt[1]:
                    labels.append(0)
                else:
                    labels.append(1)
            return np.array(inputs), np.array(labels).reshape(n, 1)
        def generate_XOR_easy(n=11):
            inputs = []
            labels = []
            step = 1/(n-1)
            for i in range(n):
                inputs.append([step*i, step*i])
                labels.append(0)
                if i == int((n-1)/2):
                    continue
                inputs.append([step*i, 1 - step*i])
                labels.append(1)
```

return np.array(inputs), np.array(labels).reshape(n*2 - 1,1)
x1, y1 = generate_linear()
x2, y2 = generate_XOR_easy()
show_data([x1,x2], [y1,y2], ['Linear Data', 'XOR Data'])

2 Experiment setups

2.1 Activate function σ (Sigmoid)

In this lab, I use Sigmoid function as my activate function

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma'(x) = \frac{d(1 + e^{-x})^{-1}}{dx}$$

$$= -(1 + e^{-x})^2 \frac{d}{dx} (1 + e^{-x})$$

$$= -(1 + e^{-x})(1 + e^{-x})(-e^{-x})$$

$$= \sigma(x)(1 - \sigma(x))$$

implement reference from TAs.

Out[5]: <matplotlib.legend.Legend at 0x7fa002340ba8>

2.2 Loss function $L(\theta)$ (MSE)

In this lab, I use MSE (Mean Square Error) as my loss function.

$$\begin{split} L(y,\hat{y}) &= MSE(y,\hat{y})) = E((y-\hat{y})^2) = \frac{\sum (y-\hat{y})^2}{N} \\ L'(y,\hat{y}) &= \frac{\partial E((y-\hat{y})^2)}{\partial y} \\ &= \frac{1}{N} (\frac{\partial (y-\hat{y})^2}{\partial y}) \\ &= \frac{1}{N} (2(y-\hat{y})\frac{\partial (y-\hat{y})}{\partial y}) \end{split}$$

$$=\frac{2}{N}(y-\hat{y})$$

2.3 Neural network

2.3.1 Neural Unit

Our input *x* vector get output *y* scalar through neural unit

$$z = w^T x + b, y = \sigma(z)$$

Now extend neural unit as neural layer

2.3.2 Neural Layer

One neural unit can output one scalar. So if we want to output N scalar in this layer, we just put N units in layer.

explain some parameter in layer:

w: weight matrix

- size is (input_size + 1, output_size)
- initialize w in layer's __init__
- combine bias in *w*

x: input vector

- size is (data_size, input_size)
- *x'* automatically extend one columns for bias when forward

$$z: z = x'w$$

• size is (data_size, output_size)

$$y: y = \sigma(z)$$

- network output when output layer
- next layer input when hidden layer

 $\frac{\partial C}{\partial w}$, $\frac{\partial z}{\partial w}$, $\frac{\partial C}{\partial z}$: gradient matrix

- there are stored into layer parameter
- ullet use to update w when call update

Now, we see how to compute gradient from cost by using backpropagation

2.4 Backpropagation

In the begining, all weight parameters in network are randomly initial. And we want to minimize cost C from loss function $L(\theta)$.

So we use gradient descent to update network's weights. But $\frac{\partial C}{\partial w}$ is hard to compute. Because of that, we use chain rules.

$$\frac{\partial C}{\partial w} = \frac{\partial z}{\partial w} \frac{\partial C}{\partial z}$$

2.4.1 Forward

$$\frac{\partial z}{\partial w} = \frac{\partial x'w}{\partial w} = x'$$

So we can record $\frac{\partial z}{\partial w}$ as forward_gradient when call forward And matrix size = (data_size, input_size+1)

2.4.2 Backward

$$\frac{\partial C}{\partial z} = \frac{\partial y}{\partial z} \frac{\partial C}{\partial y}$$

we can get $\frac{\partial y}{\partial z}$ by:

$$y = \sigma(z), \frac{\partial y}{\partial z} = \sigma'(z)$$

We need to consider two case

output layer:

we know *C* is come from $L(\theta)$ *y* is network output and \hat{y} is groundtruth

$$C = L(y, \hat{y}) \frac{\partial C}{\partial y} = L'(y, \hat{y})$$

we need to compute derivative loss function and then use it as backward input.

• hidden layer:

 $\frac{\partial C}{\partial y}$ is more difficult than other.

we know that this layer output y will be input for next layer. and we assume that $\frac{\partial C}{\partial z_{next}}$ already know.

$$\frac{\partial C}{\partial y_{this}} = \frac{\partial z_{next}}{\partial y_{this}} \frac{\partial C}{\partial z_{next}}$$

$$\frac{\partial z_{next}}{\partial y_{this}} = w_{next}^T, z_{next} = y_{this} w_{next}$$

Finally, we first compute output layer and then send parameters to previous layer. Thus we can compute $\frac{\partial C}{\partial z}$ every layer.

2.5 Gradient Descent

Now we have $\frac{\partial C}{\partial w}$ and use it to update our network weights w. we can put a new hyperparameter called learning rate η to decide how fast

$$w = w - \eta \Delta w$$

2.6 implementation

I design a python class called layer. layer will initialize all weights when create python class. Every layer need two parameter input_size and output_size.

- forward function input *x* and get output *y*.
- backward function input $\frac{\partial C}{\partial y}$ and get output $\frac{\partial C}{\partial x}$
- update function use gradient to update layer's weights

```
In [7]: class layer():
            def __init__(self, input_size, output_size):
                self.w = np.random.normal(0, 1, (input_size+1, output_size))
            def forward(self, x):
                x = np.append(x, np.ones((x.shape[0],1)), axis=1)
                self.forward_gradient = x
                self.y = sigmoid(np.matmul(x, self.w))
                return self.y
            def backward(self, derivative_C):
                self.backward_gradient = np.multiply(
                    derivative_sigmoid(self.y),
                    derivative C
                )
                return np.matmul(self.backward_gradient, self.w[:-1].T)
            def update(self, learning_rate):
                self.gradient = np.matmul(
                    self.forward_gradient.T,
                    self.backward_gradient
                self.w -= learning_rate*self.gradient
                return self.gradient
```

Now I can combine multi layers become Neural Network I design a python class called NN. NN will create layers by size when create it.

- forward function positive sequence call all layer's forward, return final result
- backward function reverse call all layer's backward, return final result
- update function call all layer's update

```
In [8]: class NN():
             def __init__(self, sizes, learning_rate = 0.1):
                 self.learning_rate = learning_rate
                 sizes2 = sizes[1:] + [0]
                 self.l = []
                 for a,b in zip(sizes, sizes2):
                     if (a+1)*b == 0:
                         continue
                     self.1 += [layer(a,b)]
             def forward(self, x):
                 _{\mathbf{X}} = \mathbf{x}
                 for l in self.l:
                     _x = 1.forward(_x)
                 return _x
             def backward(self, dC):
                 _{d}C = dC
                 for l in self.l[::-1]:
                     _dC = 1.backward(_dC)
             def update(self):
                 gradients = []
                 for 1 in self.1:
                     gradients += [l.update(self.learning_rate)]
                 return gradients
```

3 Results of your testing

```
In [13]: nn_{linear} = NN([2,4,4,1], 1)
         nn_XOR = NN([2,4,4,1], 1)
         epoch_count = 10000
         loss_threshold = 0.005
         linear_stop = False
         XOR_stop = False
         x_linear, y_linear = generate_linear()
         x_XOR, y_XOR = generate_XOR_easy()
         for i in range(epoch_count):
             if not linear_stop:
                 y = nn_linear.forward(x_linear)
                 loss_linear = loss(y, y_linear)
                 nn_linear.backward(derivative_loss(y, y_linear))
                 nn_linear.update()
                 if loss_linear < loss_threshold:</pre>
                     print('linear is covergence')
                     linear_stop = True
```

```
y = nn_XOR.forward(x_XOR)
                 loss_XOR = loss(y, y_XOR)
                 nn XOR.backward(derivative loss(y, y XOR))
                 nn_XOR.update()
                 if loss_XOR < loss_threshold:</pre>
                     print('XOR is covergence')
                     XOR_stop = True
             if i%200 == 0 or (linear_stop and XOR_stop):
                 print(
                     '[{:4d}] linear loss : {:.4f} \t XOR loss : {:.4f}'.format(
                         i, loss_linear, loss_XOR))
             if linear_stop and XOR_stop:
                 break
   0] linear loss: 0.3835
                                     XOR loss: 0.2512
[ 200] linear loss: 0.1824
                                     XOR loss: 0.2461
[ 400] linear loss : 0.0497
                                     XOR loss: 0.2360
[ 600] linear loss: 0.0287
                                     XOR loss: 0.2179
[ 800] linear loss : 0.0210
                                     XOR loss: 0.2035
[1000] linear loss: 0.0169
                                     XOR loss: 0.1885
[1200] linear loss: 0.0144
                                     XOR loss: 0.1131
[1400] linear loss: 0.0127
                                     XOR loss: 0.0459
                                     XOR loss: 0.0226
[1600] linear loss: 0.0115
[1800] linear loss: 0.0105
                                     XOR loss: 0.0124
[2000] linear loss: 0.0098
                                     XOR loss: 0.0077
                                     XOR loss: 0.0053
[2200] linear loss: 0.0092
XOR is covergence
[2400] linear loss: 0.0087
                                     XOR loss: 0.0050
[2600] linear loss: 0.0083
                                     XOR loss: 0.0050
[2800] linear loss: 0.0079
                                     XOR loss: 0.0050
[3000] linear loss: 0.0076
                                     XOR loss: 0.0050
[3200] linear loss: 0.0073
                                     XOR loss: 0.0050
[3400] linear loss: 0.0070
                                     XOR loss: 0.0050
[3600] linear loss: 0.0068
                                     XOR loss: 0.0050
[3800] linear loss: 0.0065
                                     XOR loss: 0.0050
[4000] linear loss: 0.0063
                                     XOR loss: 0.0050
[4200] linear loss: 0.0061
                                     XOR loss: 0.0050
[4400] linear loss: 0.0059
                                     XOR loss: 0.0050
[4600] linear loss: 0.0057
                                     XOR loss: 0.0050
[4800] linear loss: 0.0054
                                     XOR loss: 0.0050
[5000] linear loss: 0.0052
                                     XOR loss : 0.0050
[5200] linear loss: 0.0051
                                     XOR loss: 0.0050
linear is covergence
```

if not XOR_stop:

[5254] linear loss : 0.0050 XOR loss : 0.0050

linear test loss: 0.004998301926023007

XOR test loss: 0.004984722899437262

linear test result :

[[0.00127438]

[0.99963048]

[0.00110397]

[0.99967442]

[0.00244083]

[0.99963929]

[0.9987874]

[0.00140453]

[0.00131287]

[0.00150334]

[0.99956104]

[0.99895211]

[0.67410639]

[0.99927398]

[0.00112912]

[0.98738375]

[0.97859111]

[0.99943916]

[0.99844841] [0.99937749]

[0.99902285]

[0.00121178]

[0.99881502]

[0.00108736]

- [0.00163561]
- [0.9346675]
- [0.00543449]
- [0.01082715]
- [0.99968211]
- [0.00730359]
- [0.99942062]
- [0.99877801]
- [0.0011435]
- [0.00111643]
- [0.99923101]
- [0.99773533]
- [0.99365109]
- [0.00146336]
- [0.99960882]
- [0.00135928]
- [0.2934638]
- [0.00129483]
- [0.99946953]
- [0.09278763]
- [0.82878393]
- [0.00112694]
- [0.00127975]
- [0.00120702]
- [0.00291165]
- [0.99968023]
- [0.99961166]
- [0.99935175]
- [0.99955449]
- [0.00110964]
- [0.00126752]
- [0.9991323]
- [0.00111803]
- [0.99939436]
- [0.99962201]
- [0.00122198]
- [0.02690406]
- [0.00112542]
- [0.39744108]
- [0.99961734]
- [0.99966773]
- [0.05587581]
- [0.00154267]
- [0.00150998]
- [0.00317554]
- [0.99947727]
- [0.00494795]
- [0.00215899]

- [0.99964369]
- [0.68546723]
- [0.02156635]
- [0.99842914]
- [0.00559345]
- [0.00526649]
- [0.00125945]
- [0.02088807]
- [0.98882897]
- [0.99862005]
- [0.00110082]
- [0.00158562]
- [0.00122363]
- [0.00126444]
- [0.01860277]
- [0.99954892]
- [0.00110318]
- [0.01020721]
- [0.99950236]
- [0.99964959]
- [0.00424223]
- [0.98935269]
- [0.03530341]
- [0.99945057]
- [0.99966074]
- [0.99952167]
- [0.97406166]
- [0.00111279]]

XOR test result :

- [[0.06823995]
- [0.99178587]
- [0.06777908]
- [0.99120513]
- [0.06743711]
- [0.98941854]
- [0.06720555]
- [0.98084773]
- [0.06707543]
- [0.82957466]
- [0.06703769]
- [0.06708346]
- [0.85767423]
- [0.06720427]
- [0.96107665]
- [0.06739225]
- [0.96658707]
- [0.06764024]

- [0.96769416]
- [0.06794189]
- [0.96804362]]

In []: