Regressió sparse per les dades de una llengua electrònica

Xavier De La Fuente Quintana

Introducció al contingut general del treball

Context

Experiment

Objectius i Metodologia

Anàlisis teòric

Anàlisis de les dades

Resultats

Conclusions

Introducció al contingut del treball

Necesitat de mètodes

- eficaços
- ràpids
- gran volum de dades

llengua electrònica + anàlisis dades

Machine learning: Regressió

Sensors: modificar i optimitar

Experiment

Rendiment de una llengua electrònica concreta

- Solució concreta es van disoldre 3 aminoàcids:
 - Tryptophan (Trp)
 - Tyrosine (Tyr)
 - Cysteine (Cys)
- Proces voltamètric: -1 V fins a 1.2 V, a 0.1 Vs^{-1}
- Llengua electrònica: 1è de referència, 1è auxiliar i 5è (4+1)
- Dades: 42 experiments de 556 mostres/experiment (5 sensors)

——→ Alta correlació ——→ Mètodes Regressió Sparse

Objectius

• Analitzar les dades a través de mètodes de regressió:

model predictiu de concentracions de aminoàcids

Variational Garrote: 10 norm
Lasso: 11 norm

Metodologia

Dades sintètiques

Dades reals de l'experiment

Anàlisi teòric

- Machine learning : Regressió
 - Què és la regressió?

$$y = \alpha + Xv + \xi$$

$$X_{nxp}$$

$$y_{nx1}$$

$$v_{nx1}$$

$$y = Xv \qquad \qquad \Rightarrow \qquad \hat{v} = (X^T X)^{-1} X^T y$$

Casos

• n > p Sistema sobredeterminat.

Solució múltiple — Solució óptima

• n = p | Sistema determinat.

Solució única

n < pSistema subdeterminat.

Solució inconsistent — No té solució

Problemes

Overfitting

n<p \rightarrow Model massa complex

Sobreactuar a petits cambis com el soroll

Possibles solucions

Regularització ——

$$\min \sum_{i=1}^{n} V(f(\hat{x}i), \hat{y}i) + \lambda R(f)$$

λ : Quantitat de regularització

Major error d'entrenament, menor error en test

Validació Creuada

$$l_i = ||x||_p = \sum_{i=1}^N (|x_i|^p)^{1/p}$$

Regressió sparse per les dades de una llengua electrònica

Lasso

Donada la funció:

$$y^{\mu} = \sum_{i=1}^{n} \alpha + w_i x_i + \varepsilon^{\mu}$$

Definim les dades D: $\{x, y\} = 1,...,p$. La lasso regularitzada serà:

$$\min_{\beta,\alpha} \sum_{\mu} (v^{\mu} - \sum_{i=1}^{n} \alpha + w_{i}x_{i})$$
 subject to $||\beta||_{1} \le t$

On penalitzem β i α pot prendre qualsevol valor

Garrote

Donada la funció:

$$y^{\mu} = \sum_{i=1}^{n} w_{i} s_{i} x_{i} + \varepsilon^{\mu}$$
 $\sum_{i=1}^{n} s_{i} \le t$ on $s_{i} = 0, 1$

El model predictiu és: $y = \sum_{i} m_{i} w_{i} x_{i} + \varepsilon^{\mu}$

Definim les dades D: $\{x, y\} = 1,...,p$. El Variational garrote serà:

$$min \sum_{\mu} (y^{\mu} - \sum_{i=1}^{n} m_{i}w_{i}x_{i})$$
 subject to $\sum_{i} m_{i} \le t$

Dades sintètiques

$$y^{\mu} = \sum_{i} \widehat{w}_{i} \, \widehat{x}_{i}^{\mu} + d \, \xi^{\mu}$$

Concentracions reals

Train set (10 ⁻⁴ M)																						
#	1	2	3	4	5	6	7	8	9	10	11	12	2 1	3	14	15	16	17	18	19	20	21
TRP	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5	0.	5 0	1.5 (0.5	0.5	0.5	0.5	0.5	3.0	3.0	3.0
TYR	0.0	0.0	0.0	0.5	0.5	0.5	3.0	3.0	3.0	0.0	0.0	0.	0 0	.5 ().5	0.5	3.0	3.0	3.0	0.0	0.0	0.0
CYS	0.0	0.5	3.0	0.0	0.5	3.0	0.0	0.5	3.0	0.0	0.5	3.	0 0	0.0	0.5	3.0	0.0	0.5	3.0	0.0	0.5	3.0
ă.			Train s	et (10	-4 M)		18	:35						Test	set (10 ⁻⁴ N	(I)					
#	22	23	24	25	2	6	27	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
TRP	3.0	3.0	3.0	3.0) 3	.0	3.0	2.7	2.7	1.3	2.7	1.3	1.3	1.3	0.0	0.7	0.7	1.7	0.7	0.7	1.3	0.3
TYR	0.5	0.5	0.5	3.0) 3	.0	3.0	2.7	2.3	1.3	1.7	1.3	2.3	2.7	2.3	1.3	1.3	2.3	0.0	0.0	2.0	2.3
CYS	0.0	0.5	3.0	0.0	0 0	5	3.0	1.7	1.3	0.7	1.7	2.0	1.3	2.3	2.7	2.7	0.3	2.7	0.7	0.0	1.3	1.7

Matriu de correlació

Valor absolut

Alta correlació

>0.5, >0.7

Resultats

Els paràmetres que s'han extret per tal de analitzar els resultats són:

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (\widehat{Y}_i - y_i)^2$$

MSE test:

• Mitja aritmètica:

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Desviació estàndard:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N-1}}.$$

Dades sintètiques

Com afecta la correlació als nostres mètodes?

$$\beta = 2$$
; $\delta = 10$; $n_{train} = 100$; $n_{test} = 50$
 $\rho = 0.01, 0.2, 0.4, 0.8, 0.98$

I el soroll?

10¹

$$δ = 10; n_{train} = 100; n_{test} = 50; μ = 0.5$$

 $β = 10, 2, 0.1, 0.01$

I la densitat de la solució que busquem?

$$\beta = 2$$
; $n_{train} = 100$; $n_{test} = 50$; $\mu = 0.5$
 $\delta = 2$, 10, 25, 100

Concentracions reals: Entrenament i test paper

Lasso

Variational Garrote

	TRP		TYR		CYS	
	mitja	d.e.	mitja	d.e.	mitja	d.e.
MSE_train	1.6421	0	1.7222	0	1.3646	0
MSE_test	0.6757	0	0.9931	0	0.7188	0
NºZeros	1	0	0	0	7	0
sum(v)	-53995	0	0	0	1376900	0
Gamma	3212.7	13040	3212.8	13040	3212.7	13040

	TRP		TYR		CYS	
	mitja	d.e.	mitja	d.e.	mitja	d.e.
MSE_train	1.3361	0.6470	1.4181	0.3962	1.0000	0.3800
MSE_test	1.2886	0.3596	1.2785	0.3051	0.9973	0.1626
N°Zeros	730.5500	1031.1	368.9474	497.5114	904.6000	730.0285
sum(v)	-0.3001	0.6015	-0.4801	0.5271	0.7605	0.8959
Gamma	-8.3655	6.3533	-9.3200	5.8160	-6.4765	6.3826

Regressió sparse per les dades de una llengua electrònica

Concentracions reals: Entrenament i test paper

Regressió sparse per les dades de una llengua electrònica

Concentracions reals: Entrenament i testeig del conjunt d'entrenament

Lasso

Variational Garrote

	TRP		TYR		CYS	
	mitja	d.e.	mitja	d.e.	mitja	d.e.
MSE_train	1.6641	0	1.4112	0	1.7222	0
MSE_test	2.4609	0	2.5182	0	1.7222	0
N°Zeros	0	0	3	0	0	0
sum(v)	0	0	-4.0761e+05	0	0	0
Gamma	506.2241	16110	506.1681	16110	506.2241	1611
	mitja	d.e.	mitja	d.e.	mitja	d.e.
MSE_train	1.3099	0.1621	1.2717	0.1821	1.0665	0.3283
MSE_test	0.8011	0.2475	0.9824	0.2609	0.5699	0.2432
N°Zeros	614.1704	266.8825	690.6593	318.0390	1035.1	459.4942
sum(v)	-0.1638	0.1093	-0.7460	0.3096	0.6496	0.3266
Gamma	0.1621	1.9896	-9.2414	2.6956	-7.3952	3.1205

Concentracions reals: Entrenament i testeig del conjunt d'entrenament

Lasso

Regressió sparse per les dades de una llengua electrònica

Concentracions reals: Validació Creuada

Lasso

Variational Garrote

	TRP		TYR		CYS	
	mitja	d.e.	mitja	d.e.	mitja	d.e.
MSE_train	9.7119	3.5226	9.7451	4.0346	9.9006	3.3771
MSE_test	11.6773	4.3039	12.6444	3.9357	10.9502	3.3298
N°Zeros	0.6667	1.9149	2.8667	5.7055	1.8000	3.0284
sum(v)	404160	14026000	-403570	2055000	306440	155050
Gamma	506.3613	1611	506.3266	1611	506.3446	1611

	TRP		TYR		CYS	
	mitja	d.e.	mitja	d.e.	mitja	d.e.
MSE_train	1.0694	0.1382	1.3558	0.2579	1.3645	0.2371
MSE_test	0.7374	0.2342	0.8733	0.2800	0.9787	0.2597
NºZeros	1.0559e+03	230.0969	713.1676	430.1101	669.0102	341.1572
sum(v)	0.5208	0.2324	-0.7036	0.3794	-0.2170	0.1723
Gamma	-6.9758	1.5908	-9.2647	2.9963	-9.4159	2.8607

Regressió sparse per les dades de una llengua electrònica

Concentracions reals: Validació Creuada

Regressió sparse per les dades de una llengua electrònica

Conclusions

Anàlisis de les dades sintètiques

Anàlisis de les dades reals

- Dades 'estàndard'
- Dades conjunt d'entrenament
- Dades validació creuada

X

×

×

Perquè?

- Pròpia naturalesa de les dades
- Llengua ofereix unes mesures no molt bones
- Alta correlació en les dades → nealitat
- Rang de valors del conjunt d'entrenament vers el conjunt de test

Conclusió:

El rendiment dels mètodes degenera amb les dades reals

Future work

- Entendre bé les característiques de les dades
 - Principal Component Analysis (PCA)

- Sensors redundants
- Modificar algoritmes per per buscar solucions més denses
- Aplicar un altre tipus d'anàlisis o model:
 - Classificació

Gràcies