786. Molecular Polarisability: Molar Kerr Constants and Dipole Moments of Vinyl Bromide and Six Polyvinyl Bromides as Solutes in Dioxan.

By R. J. W. LE Fèvre and K. M. S. SUNDARAM.

Apparent dipole moments and molar Kerr constants are reported for vinyl bromide and six polyvinyl bromides (molecular weights between 10,000 and 38,000) as solutes in dioxan. Values for the monomer are 1.3_8 D and $58\cdot 4\times 10^{-12}$; for the polymers μ 's and $_{\infty}(_mK_2)$'s range from $14\cdot 1$ to $33\cdot 5$ D. and 228×10^{-12} to 3489×10^{-12} , respectively. As solutes, these macromolecules display small anisotropies of polarisability consistent with conformations as near-random coils or as helices. No notable differences between polyvinyl chlorides or bromides are found. Empirical relations are given for the polyvinyl bromide series whereby certain easily observable physical quantities may be connected with degrees of polymerisation.

THE work here reported parallels that recently ¹ described on vinyl chloride and a number of polyvinyl chlorides. Its purpose was to find whether the greater effective radius of bromine than of chlorine 2 affects the relative flexibilities of polyvinyl bromides and chlorides in ways detectable by polarity and polarisability measurements.

EXPERIMENTAL

Vinyl Bromide.—This was prepared 3 by dropping 1,2-dibromoethane into an excess of a warm 20% solution of potassium hydroxide in 95% ethanol. The vapours were led consecutively through water, potassium hydroxide pellets, and anhydrous calcium chloride, then collected in a trap cooled in solid carbon dioxide-acetone. The liquid monomer was kept in the dark over anhydrous magnesium sulphate in sealed tubes at about 0°. Shortly before use it was distilled directly from the drying agent (b. p. 15.8°).

Le Fèvre and Sundaram, J., 1962, 1494.
 Stuart, Z. phys. Chem., 1935, B, 27, 350.

³ Kharasch, McNab, and Mayo, J. Amer. Chem. Soc., 1933, 55, 2521.

Le Fèvre and Sundaram:

TABLE 1.

Dielectric constants, birefringences, etc., observed for solutions of vinyl bromide and six polymers.

			six poly			
		V	inyl bromide	in dioxan		
$10^5 w_2 \dots \dots \dots 10^4 \Delta n \dots \dots$	$\frac{1158}{1}$	2648 3	$\begin{array}{c} 4203 \\ 5 \end{array}$	$\frac{5811}{7}$	800 3 9	9 3 91 11
ε ₁₂	2.2338	2.2654	2.3038	2.3425	2.3770	2.4057
d_{12}	1.03187	1.03674	1.04223	1.04788	1.05526	1.05929
$1\overline{07}\Delta B \dots$	0.037_{0}	0.087_{1}	0.136_{8}	0.187_2	0.258_2	0.298_{9}
		whence $\sum \Delta n_i = \sum \Delta d/\sum w_2 = \sum \Delta d/\sum w_2$	$ \sqrt{\sum}w_2 = 0.01 $ 0.3373 ; $\sum a$	ΔB_1 ; $\sum \Delta \varepsilon / \sum w$ $\Delta B / \sum w_2 = 3$	$_{2}^{2}=2.160; \ 22_{0} imes10^{-7}$	
		Poly	vinyl bromia	le I in dioxan	ı	
$10^5 w_2 \dots \dots$	1771	1929	2341	2693	2944	3205
$10^4\Delta n \dots$	15	18	20	22	24	27
$10^4\Delta n^2$	42	51	57	62	68	$\begin{array}{c} 77 \\ 2 \cdot 2878 \end{array}$
$\stackrel{\varepsilon_{12}}{d}_{12}$	$2.2527 \\ 1.03708$	$2.2579 \\ 1.03777$	$2.2649 \\ 1.03993$	$2.2811 \\ 1.04150$	$2 \cdot 2846 \\ 1 \cdot 04324$	1.04444
w12 ·····		whence $\sum \Delta n/2$	$\sum w_2 = 0.084$		$v_2 = 0.239_9;$	1 01111
- 0.	2000					
$10^5 w_2 \dots \dots$	2693	2944	3205	3861	4123	$\frac{4462}{0.007}$
$10^7 \Delta B$	0.0044	0.005		0.006,	0.0074	0·007 ₉
				$=0.175_8 \times$		
		Polyvin	yl bromide 1	in cyclohexar	none	
10^4c	7611	10,801	14,002	16,400	18,821	
d_{12}	0.94753	0.94891	0.94999	0.95091	0.95187	
$10^4 \eta_{ m sp} \dots \dots$	415	591	772	910	1046	
				$_{0} = 0.0540$	44	
7.07	7011		-	le II in dioxa		2404
$10^5 w_2 \dots \dots \dots$	1244	1489	1751	1984	2344	2684
$10^4 \Delta n \dots \dots \dots 10^4 \Delta n^2 \dots \dots$	$\begin{array}{c} 11 \\ 32 \end{array}$	$\begin{array}{c} 12 \\ 34 \end{array}$	15 43	$\begin{array}{c} 17 \\ 49 \end{array}$	$\begin{array}{c} 20 \\ 57 \end{array}$	22 63
ε ₁₂	2.2434	2.2490	2.2564	2.2612	2.2708	2.2797
d_{12}	1.03434	1.03564	1.03691	1.03838	1.04011	1.04178
		whence $\sum \Delta n$ $\sum \Delta \varepsilon / \sum u$	$w_1/\sum w_2 = 0.0$ $w_2 = 2.667$;	$\begin{array}{l} 84_4; \; \sum \Delta n^2/\sum \ \Delta d/\sum w_2 = \end{array}$	$w_2 = 0.241_8 \\ 0.5146$;
$10^5 w_2 \dots \dots$	1366	1741	2091	2322	2641	2902
$10^7 \Delta B$	0.002		0.0048		0.0068	0.0073
		-		$=0.245_{0}\times$	•	ŭ
				I in cyclohexa		
10 ⁴ c	6212	9703	13,192	15,824	18,233	
d_{12}	0.94660	0.94688	0.94756	0.94982	0.95078	
$10^4 \eta_{ m sp} \ldots \ldots$	383	601	821	988	1143	
		wl	nence $[\eta_{ m sp}/c]_c$	$\rightarrow 0 = 0.0617$	•	
		Poly	vinyl bromid	e III in diox	an	
$10^5 w_2 \dots \dots$	1346	1624	1928	2212	2416	2815
$10^4\Delta n \dots$	11	14	16	18	20	23
$10^4\Delta n^2$	31	40	46	51	55	66
ε ₁₂	2.2496	2.2571	2.2644	2.2785	2.2831	2.2905
d_{12}^{7} $10^{7}\Delta B$	$1.03477 \ 0.005$	$1.03632 \\ 0.006$	$\frac{1.03783}{0.007_9}$	$\frac{1.03927}{0.009}$	1·04040 0·009 ₇	1.04246 0.011_{6}
10.ΔD	0.0004	•	-	•	•	0 0116
	$\sum \Delta \varepsilon / \sum w_2$	whence $\sum \Delta n = 2.992$; $\sum \Delta n = 2.992$;	$\Delta d/\sum w_2 = 0.08$	$5110; \sum \Delta B/2$	$\sum_{1}^{2} w_{2} = 0.234_{2};$ $\sum_{1}^{2} w_{2} = 0.407$	$_{6}$ $ imes$ 10^{-7}
		Polyviny	yl bromide I	II in cyclohex	anone	
10 ⁴ c	6989	11,043	13,004	16,400	18,410	
d_{12}	0.94664	0.94727	0.94987	0.95126	0.95321	
$10^4 n_{ m sp} \dots$	537	857	1012	1280	1443	
		wh	ence $[\eta_{\rm sp}/c]_{c}$	$\rightarrow_0 = 0.0761$		

Table 1. (Continued.)								
		Polyv	inyl bromide	: IV in dioxa	n			
$10^5 w_2 \dots \dots$	1548 13	2133 18	$\begin{array}{c} 2683 \\ 22 \end{array}$	3449 30	$\frac{3921}{32}$	4275 33		
$10^4\Delta n^2$	$\begin{array}{c} \bf 37 \\ 2 \cdot 2553 \end{array}$	$\begin{array}{c} 51 \\ 2 \cdot 2744 \end{array}$	$\begin{array}{c} 63 \\ 2 \cdot 2888 \end{array}$	$\begin{array}{c} 86 \\ 2 \cdot 3215 \end{array}$	$91 \\ 2 \cdot 3340$	$94 \\ 2 \cdot 3462$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.03631	1.03881	1.04307	1.04593	1.04855	1.05144		
		whence $\sum \Delta n/\sum u$	$\sum w_2 = 0.082$ $v_2 = 3.144$;	$\sum_{2} \sum_{1} \sum_{2} \Delta n^2 / \sum_{2} w_{2} = \sum_{1} \Delta d / \sum_{2} w_{2} = \sum_{1} \sum$	$v_2 = 0.234_3; \ 0.5337$			
$10^5 w_2 \dots \dots$	1952	2382	2788	3245	3803	4314	4892	
$10^7 \Delta B$	0.008^{2}	0.010_{1}	0.012_{8}	0.014_{3}	0.016,	0.019_{5}	0.021_{8}	
		when	e $\sum \Delta B/\sum w_2$	$= 0.444_1 \times$	10-7			
				' in cyclohexe				
10^4c	$8005 \\ 0.94964$	$11,541 \\ 0.95168$	$14,512 \\ 0.95318$	19,473 0.95554	$25,308 \\ 0.95831$			
d_{12} $10^4 \eta_{\mathrm{sp}}$	673	978	1237	1688	2209			
100		wh	ence $[\eta_{\rm sp}/c]_{c}$	$\rightarrow 0 = 0.0825$	5			
		Poly	vinyl bromid	e V in dioxa	n			
$10^5 w_2 \dots \dots \dots$	1467	1782	1926	2234	2532	3064	3344	
$10^4 \Delta n \dots \dots \dots 10^4 \Delta n^2 \dots \dots$	$\begin{array}{c} 12 \\ 34 \end{array}$	$\begin{array}{c} 14 \\ 39 \end{array}$	$\begin{array}{c} 15 \\ 42 \end{array}$	18 51	$\begin{array}{c} 21 \\ 59 \end{array}$	$\begin{array}{c} 25 \\ 71 \end{array}$	$\begin{array}{c} 28 \\ 79 \end{array}$	
ε_{12}	2.2598	2.2716	2.2761	2.2854	2.2970	2.3165	$2 \cdot 3220$	
d_{12}	1.03582	1.03769	1.03807	1.04006	1.04185	1.04414	1.04644	
		whence $\sum \Delta n/2$ $\sum \Delta \varepsilon / \sum w$	$\sum w_2 = 0.081$ $v_2 = 3.458$;	$\sum_{13}^{13}; \sum_{13}^{13} \Delta n^2 / \sum_{13}^{13} w_2 = 0$	$v_2 = 0.229_4; \\ 0.5387$			
$10^5 w_2 \dots \dots$	1728	1994	2334	2648	2905	3304		
$10^7 \Delta B$	0.009_{2}	0.010	0.0125	0.014 ₀	0.015	0.017_{2}		
		whence	e $\sum \Delta B / \sum w_2$	= 0.531, ×	10-7			
				in cyclohexa				
10 ⁴ c	$6200 \\ 0.94786$	$9001 \\ 0.95147$	$12,806 \\ 0.95392$	15,399 0.95527	$17,741 \\ 0.95674$			
$d_{12} \dots \dots$	591	865	1250	1516	1762			
/*F		wh	ence $[\eta_{ extsf{sp}}/c]_{c-}$	$_{>0} = 0.0927$				
		Polyt	vinyl bromide	e VI in dioxa	ın			
$10^5 w_2 \dots \dots \dots$	2033	2645	3126	3508	3751	4104	4672	
$10^4 \Delta n \dots \dots$	$\begin{array}{c} 16 \\ 45 \end{array}$	$\begin{array}{c} 20 \\ 57 \end{array}$	23 65	$\frac{27}{77}$	$\begin{array}{c} 29 \\ 82 \end{array}$	31 88	$\begin{array}{c} 36 \\ 102 \end{array}$	
ε_{12}	2.2856	2.3109	2.3309	2.3457	2.3540	2.3682	2.4008	
d_{12}	1.03879	1.04167	1.04460	1.04675	1.04828	1.04984	1.05281	
whence $\sum \Delta n/\sum w_2=0.076_3$; $\sum \Delta n^2/\sum w_2=0.216_4$; $\sum \Delta \varepsilon/\sum w_2=3.914$; $\sum \Delta d/\sum w_2=0.5316$								
$10^5 w_2 \dots \dots 10^7 \Delta B \dots$	$987 \\ 0.006_{3}$	$ \begin{array}{c} 1099 \\ 0.006_{9} \end{array} $	$\frac{1186}{0.007}$	1354 0.008,	$1725 \\ 0.010_{9}$	$1916 \\ 0.012$	$2105 \\ 0.013$	
	0	•		$= 0.642_1 \times$	-	•	•	
				I in cyclohexe				
10 ⁴ c	4003	6605	8001	10,211	12,011			
d_{12}	0.94911	0.95172	0.95432	0.95653	0.95701			
$10^4 \eta_{ m sp} \dots$	5 3 5	923	1177	1549	1909			
	whence $[\eta_{\rm ep}/c]_{c \rightarrow 0} = 0.1212$							

Polymerisation.—The pure monomer (64 ml.) was collected under nitrogen in an ampoule containing 0.10 g. of benzoyl peroxide. The ampoule was then sealed and irradiated at room temperature for 12 hr. by a 300-w Hanovia-Slough mercury lamp, from a distance of 10 cm. The liquid monomer was transformed gradually into a cream-coloured powder, which was purified 4 by extraction with warm dioxan and reprecipitation by an excess of methanol. The separated white polymer (32 g.) was washed several times with methanol and dried in vacuo.

⁴ Blauer, Shenblat, and Katchalsky, J. Polymer Sci., 1959, 38, 189.

Fractionation.—The total polymer was dissolved in dioxan (21.) at 25° . This 1.6% solution was diluted by methanol until the appearance of cloudiness which, on stirring and cooling, became a precipitate removable by filtration. The procedure was recommenced on the filtrate,

4008

Molecular Polarisability.

Table 4.

Empirical connections between physical properties and logarithms of the degrees of polymerisation of polyvinyl bromide preparations.

			•	* *		
	o	$\kappa \varepsilon_1 = 1.22 - 0$	0.910L + 0.75	$8L^2$		
αε ₁ (obs.)			2.992		3.458	3.914
αε ₁ (calc.)	2.432	2.675	3.060	3.242	3.485	3.900
• , ,						
			550 + 0.063L			
βd_1 (obs.)	0.5104		0.5110	0.5337	0.5387	0.5316
βd_1 (calc.)	0.5110	0.5177	0.5281	0.5321	0.5379	0.5453
	γn_1	= 0.0900 + 0	0.0080L - 0.0	$051L^{2}$		
γn_1 (obs.)	0.085	0.084		0.082	0.081	0.076
γn_1 (calc.)	0.086	0.084		0.081	0.080	0.077
, 1 ,						
		-	.51 + 0.843L			
δB_1 (obs.)	0.176			0.444	0.532	0.642
δB_1 (calc.)	0.176	0.265	0.405	0.459	0.536	0.636
	00	$p_2 = 0.4200 -$	-0.221L + 0.	$141L^{2}$		
$_{\infty}p_{2}$ (obs.)	0.5557	0.5789	0.6335	0.6523	0.7027	0.7797
∞p_2 (calc.)	0.5440	0.5817	0.6456	0.6731	0.7144	0.7706
		$\infty r_0 = 0.22$	000 - 0.0253L			
∞r_2 (obs.)	0.1674	0.1667		0.1608	0.1587	0.1581
∞r_2 (calc.)	0.1700	0.1667		0.1609	0.1586	0.1556
2 ()						
		$_{\infty}(_{8}K_{2})=-3$	24.00 + 13.05	L		
$10^{14}_{\infty}(_{8}K_{2})$ (obs.)	$2 \cdot 128$	3.224		6.343	7.663	9.309
$10^{14}_{\infty}(_{ m s}K_2)$ (calc.)	2.110	3.486	5.644	6.478	7.680	9.207
		$\mu = 1.60 - 17$	7.48L + 11.64	L^2		
μ (obs.)		16.41			27.38	33.52
μ (calc.)	13.20	16.54	21.90	$24 \cdot 44$	27.85	32.60

Table 5. Apparent semi-axes of polarisability of polyvinyl bromides.

Polymer	M_{2}	$(b_1 - b_2)$	$b_1 + 2b_2$	b_1	b_{2}
I	10,720	0.01	202.62	67.55	67.54
II	13,660	0.02	$257 \cdot 33$	85.79	85.77
III	19,990	0.02	$375 \cdot 28$	$125 \cdot 11$	125.09
${f IV}$	23,160	0.02_{5}	420.68	140.24	140.22
\mathbf{v}	28,630	0.03	$513 \cdot 42$	$171 \cdot 16$	171.13
$\mathbf{v}\mathbf{I}$	37,480	0.03	$669 \cdot 20$	223.09	223.06

for the two C-C, three C-H, and C-Br bonds ¹⁶ in the -CH₂-CHBr repeating unit, when multiplied by x, gives $(b_1 + 2b_2)$, for polymers I—IV, respectively, as follow: 197·09, 251·19, 367·63, 425·86, 526·57, and 689·24).

A low anisotropy is thus revealed. These polymers therefore behave as would be expected if, in solution, they exist as almost random coils. Remarks in ref. I regarding the polyvinyl chlorides apply *mutatis mutandis* to the bromides; in particular, it is again the case that helical conformations can be proposed which are equivalent from polarity and polarisability viewpoints to near-random coils. By experiment these two types cannot be distinguished, nor can any notable differences in flexibility between the chlorides and bromides be convincingly detected.

The award of an H. B. and F. M. Gritton Research Scholarship to K. M. S. S. is gratefully acknowledged.

4007

For the calculation a priori of the polarisability semi-axes of vinyl chloride Le Fèvre and Sundaram 1 used $b_{\rm L}^{\rm C-Cl}$ and $b_{\rm T}^{\rm C-Cl}=b_{\rm V}^{\rm C-Cl}$ values * as drawn from carbon tetrachloride and chloroform. Unpublished measurements 12 on bromoform give analogous longitudinal and transverse polarisabilities for C-Br as $b_L^{\text{C-Br}} = 0.56$ and $b_T^{\text{C-Br}} = b_V^{\text{C-Br}} =$ 0.26. Taking the C-C-Br angle in vinyl bromide as 122° (ref. 13 quotes $121.7^\circ \pm 1^\circ$ or 121° + 3°), and the bond polarisabilities of C-H and C=C as in Le Fèvre and Sundaram, 1 then leads to molecular semi-axes having the magnitudes and locations shown in Table 3.

TABLE 3. Polarisability semi-axes calculated for vinyl bromide.

	Directi	on cosines with	n +	
	X	Y	Z	
$b_1 = 0.918_5$	0.7986	-0.6018	0	$\mu_1 = 1.23_1$
$b_2 = 0.638_4$	0.6018	0.7986	0	$\mu_2 = 0.62_3$
$b_3 = 0.529$	0	0	1	$\mu_{3} = 0$

* Axes X, Y, Z taken with X collinear with C=C and Z perpendicular to molecular plane.

Thus b_1 is at $\phi = 21^{\circ}$ anti-clockwise to C-Br in the C=C-Br plane, and when $\mu_{\text{resultant}}$ acts $\psi = 5^{\circ} 52'$ clockwise from C-Br the calculated molar Kerr constant equals that found; these results resemble those for vinyl chloride 1 (for which $\phi = ca$. 28° and $\psi = 5^{\circ}$ 22') and the remarks of ref. 1 concerning mesomerism in the chloride apply also to the bromide.

Physical Properties and Molecular Weights of Polyvinyl Bromides.—As with the polyvinyl chlorides, empirical equations may be fitted fairly satisfactorily to most of the measured quantities. Table 4 summarises the relations between dielectric constant, density factors, etc., and $L = \log (M_{\text{polymer}}/M_{\text{monomer}})$.

Apparent Dipole Moments of Polyvinyl Bromides.—As with the polyvinyl chlorides reported in ref. 1, the apparent polarities increase with molecular weight. If the moment μ_0 of the repeating unit be taken as that ¹⁴ of ethyl bromide (1.9₃ D), x is the degree of polymerisation, and all inter-bond angles are assumed to be tetrahedral, then the Debye-Bueche ¹⁵ quotients rise from 0.5_3 to 0.8_6 :

Polymer	I	II	III	${f IV}$	\mathbf{v}	VI
$\mu^2_{\text{apparent}}/x\mu_0^2$	0.53	0.57	0.64	0.68	0.75	0.86

The quotient would ¹⁵ be 0.92 were internal rotations "free" except for steric restrictions imposed by bond angles and lengths. The observed quotients therefore suggest that flexibility becomes greater with the size of the polymer, but this of course is to be expected from elementary principles. Comparison with our results 1 for polyvinyl chlorides is handicapped by the fact that, through preparative causes, the x ranges for the chlorides and bromides are different (539—2023 and 100—350, respectively); nevertheless the emergence of similar quotients (e.g., ~ 0.7) for the two polymers at degrees of polymerisation related roughly as 8:1 may be interpreted as indicating a somewhat greater rigidity among the chain segments assembled in the macromolecules of the chloride than among those of the bromide.

Apparent Anisotropic Polarisabilities of Polyvinyl Bromides.—Table 5 summarises calculations made by assuming that the dissolved polyvinyl bromides have polarisability ellipsoids of revolution, that b_1 is greater than $b_2=b_3$, that $\mu_{
m resultant}$ acts parallel to the axis b_1 , and that $_{\rm E}P=0.95R_{_{
m D}}$ (the factor 0.95 is a mean value; the sum $b_{_{
m L}}+2b_{_{
m T}}=1.967$,

- * Polarisabilities quoted throughout in units 10⁻²³ c.c.
- 12 Le Fèvre and Ritchie, unpublished work.
- 13 "Tables of Interatomic Distances and Configuration in Molecules and Ions," ed. Sutton, Chem. Soc. Spec. Publ. No. 11, 1958.

 14 Le Fèvre and Williams, unpublished work.

 15 Debye and Bueche, J. Chem. Phys., 1951, 19, 589

Table 4.

Empirical connections between physical properties and logarithms of the degrees of polymerisation of polyvinyl bromide preparations.

	d	$ae_1 = 1.22 - 0$	0.910L + 0.758	$8L^2$			
αε ₁ (obs.)		2.667	2.992	3.144	3.458	3.914	
$\alpha \epsilon_1$ (calc.)	$2 \cdot 432$	2.675	3.060	3.242	3.485	3.900	
		$\beta d_1 = 0.38$	50 + 0.063L				
βd_1 (obs.)	. 0.5104	0.5146	0.5110	0.5337	0.5387	0.5316	
βd_1 (calc.)	. 0.5110	0.5177	0.5281	0.5321	0.5379	0.5453	
	γn_1	= 0.0900 + 0	0.0080L - 0.00	$051L^{2}$			
γn_1 (obs.)	. 0.085	0.084	0.083	0.082	0.081	0.076	
γn_1 (calc.)	. 0.086	0.084	0.082	0.081	0.080	0.077	
		$\delta B_1 = -1$	51 + 0.843L				
δB_1 (obs.)	. 0.176	0.245	0.408	0.444	0.532	0.642	
δB_1 (calc.)	. 0.176	0.265	0.405	0.459	0.536	0.636	
	∞	$p_2 = 0.4200 -$	0.221L + 0.1	$141L^2$			
∞p_2 (obs.)	. 0.5557	0.5789	0.6335	0.6523	0.7027	0.7797	
∞p_2 (calc.)	0.5440	0.5817	0.6456	0.6731	0.7144	0.7706	
		$_{\infty}r_{2}=0.22$	00 - 0.0253L				
∞r_2 (obs.)	0.1674	0.1667	0.1662	0.1608	0.1587	0.1581	
∞r_2 (calc.)	. 0.1700	0.1667	0.1625	0.1609	0.1586	0.1556	
		$_{\infty}(_{8}K_{2})=-2$	24.00 + 13.05	L			
$10^{14}_{\infty} (_{\rm s} K_2) \text{ (obs.)} \dots$. 2.128	3.224	5.829	6.343	7.663	9.309	
$10^{14}_{\infty} (_{8}K_{2})$ (calc.)	. 2.110	3.486	5.644	6.478	7.680	9.207	
$\mu = 1.60 - 17.48L + 11.64L^2$							
μ (obs.)		16.41	$21 \cdot 17$	23·38	27.38	33.52	
μ (calc.)	. 13.20	16.54	21.90	$24 \cdot 44$	27.85	$32 \cdot 60$	

Table 5.

Apparent semi-axes of polarisability of polyvinyl bromides.

Polymer	${M}_2$	$(b_1 - b_2)$	$b_1 + 2b_2$	b_1	b_2
I	10,720	0.01	$202 \cdot 62$	67.55	67.54
\mathbf{II}	13,660	0.02	257.33	85.79	85.77
III	19,990	0.02	$375 \cdot 28$	$125 \cdot 11$	125.09
${f IV}$	23,160	0.02_{5}	420.68	140.24	140.22
\mathbf{v}	28,630	0.03	$513 \cdot 42$	$171 \cdot 16$	171.13
$\mathbf{v}\mathbf{I}$	37,480	0.03	$669 \cdot 20$	223.09	223.06

for the two C–C, three C–H, and C–Br bonds ¹⁶ in the –CH₂–CHBr repeating unit, when multiplied by x, gives $(b_1 + 2b_2)$, for polymers I—IV, respectively, as follow: 197·09, 251·19, 367·63, 425·86, 526·57, and 689·24).

A low anisotropy is thus revealed. These polymers therefore behave as would be expected if, in solution, they exist as almost random coils. Remarks in ref. 1 regarding the polyvinyl chlorides apply *mutatis mutandis* to the bromides; in particular, it is again the case that helical conformations can be proposed which are equivalent from polarity and polarisability viewpoints to near-random coils. By experiment these two types cannot be distinguished, nor can any notable differences in flexibility between the chlorides and bromides be convincingly detected.

The award of an H. B. and F. M. Gritton Research Scholarship to K. M. S. S. is gratefully acknowledged.

University of Sydney, Sydney, Australia.

[Received, December 27th, 1961.]

¹⁶ Le Fèvre, Liversidge Lecture, J. Proc. Roy. Soc. New South Wales, 1961, 95, 1.