EECE 5698 - ST: Reinforcement Learning

Spring 2023

HW2

Problem 1.

Consider the following system with two states $s_k \in \{s^1 = 0, s^2 = 1\}$.

There are two possible actions: a¹ and a². The transition probabilities can be expressed as:

$$p(s'|s,a^1) \begin{cases} 1 & s=0,s'=0 \\ 0 & s=0,s'=1 \\ 0 & s=1,s'=0 \\ 1 & s=1,s'=1 \end{cases} \qquad p(s'|s,a^2) \begin{cases} 0 & s=0,s'=0 \\ 1 & s=0,s'=1 \\ 1 & s=1,s'=0 \\ 0 & s=1,s'=1 \end{cases}$$

Reward function is as follows: $\begin{cases} moving \ to \ state \ s^2 : +1 \\ moving \ to \ state \ s^1 : 0 \\ action \ a^1 \ and \ a^2 : 0 \end{cases}$

Start with a random policy $\pi^0(s^1) = a^1, \pi^0(s^2) = a^1, \gamma = 0.9, \theta = 0.85$. Use Policy Iteration to compute $\pi^1(s^1)$, $\pi^1(s^2)$. Use $V_0(s^1) = V_0(s^2) = 0$, for initialization of Policy Evaluation.

Problem 2.

Consider the problem defined in Problem 1.

- a) Given $\begin{bmatrix} V_0(s^1) \\ V_0(s^2) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\gamma = 0.9$, perform Value Iteration method to compute V_1, V_2, V_3 .
- b) Compute $\pi(s = 0)$ and $\pi(s = 1)$ associated with V_3 .

Problem 3.

Consider the following MDP having two states: A, B. In each state, there are two possible actions: 1 and 2. The transition model and reward are shown in the diagram below. Apply Policy Iteration to determine the optimal policy and state values of A and B. Assume the initial policy is action 2 for both staters, $\gamma = 0.9$.

For evaluation of policy, you need to solve two set of linear equations for the following form, instead of iterative steps of policy evaluation:

$$V^{\pi}(s) = \sum_{s',r} P(s'|s,\pi(s))[R(s,\pi(s),s') + \gamma V^{\pi}(s')]$$

*Here is an example of transition and reward from the diagram:

In state A, action 2 moves the agent to state B with probability 0.8 with the corresponding reward -5, and make the agent stay at state A with probability 0.2 and corresponding reward -10.

Problem 4.

consider the following maze with 14 states and a goal. The agent can take one of the following four actions at any given state $A = \{UP, Dawn, Right, Left\}$ The state transitions are deterministic; becample P(S = 10 | P = 12, a = U) = 1 The reward is at allower. (-1 taking any action

a) Using $\delta=1$ and $\theta=0.5$, perform vector-form value Iteration method with $V_{0.65}=0$ to compute V^* .

b) Compute the optimal policy.

* Show all intermediate state values in maxe, without details of calculation.

7	8	9	lo
6		()	Ŋ
5		13	
4			G
→ ₃	S ₂	1	

Problem 5.

For an MDP Jehined by state space S, action space L, he would Ris, a, s') and transition probability pis 15, a), write the following:

- a) For a given Pality X, write
 - Vis) based on Vie
 - VT(s) based on Qx
 - QT(s,a) based on VT
 - QT(s,a) based on QT
- b) For the optimal Policy X*, write
 - V*(s) based on V*
 - V(s) based on Q*
 - Q(s,a) based on V*
 - Q*(s,a) based on Q*
 - Help: An example of response:

$$v^{\pi}(s) = \sum_{s'} p(s'|s, \pi(s)) [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Questions about the HW should be directed to TA, Begum Taskazan, at taskazan.b@northeastern.edu.