The Dynamic Consequences of Technology and Discount Factor Shocks in Medium-Scale RANK vs TANK Models

Andreas Koundouros

Presentation for the Research Module Macroeconomics at the University of Bonn

24th January 2023

Roadmap

- 1. Introduction and Related Literature
- 2. The Models
- 3. The Shocks
- 4. Results
- 5. Conclusion

Introduction • Go to related literature

- aim: contrast a representative-agent to a two-agent framework ⇒ RANK vs TANK
- two household types in TANK: standard agents and hand-to-mouth agents
- analyse how dynamics after aggregate shocks are altered
- two shocks: to technology and to the discount factor

Key Results

1. for aggregate responses, RANK and TANK rarely differ qualitatively and usually do not differ too much quantitatively

4 / 27

Andreas Koundouros RANK vs TANK 24th January 2023

Key Results

- 1. for aggregate responses, RANK and TANK rarely differ qualitatively and usually do not differ too much quantitatively
- 2. underlying heterogeneity of individual-level responses is interesting feature of TANK

4 / 27

Andreas Koundouros RANK vs TANK 24th January 2023

Key Results

- 1. for aggregate responses, RANK and TANK rarely differ qualitatively and usually do not differ too much quantitatively
- 2. underlying heterogeneity of individual-level responses is interesting feature of TANK
- 3. two parameters are key in shaping the quantitative differences between RANK and TANK

The Models

- building on Gust et al. (2012) and Boehl (2022) with price indexation
- crucial difference RANK vs TANK: household sector

The Models

- building on Gust et al. (2012) and Boehl (2022) with price indexation
- crucial difference RANK vs TANK: household sector
- RANK: representative, consumption-smoothing agent with access to investment, bonds, profits, etc. resulting in standard labour supply and Euler equation:

$$w_t = \chi n_t^{\eta} (c_t - h c_{t-1}) \tag{2.1}$$

$$1 = \beta_{t+1} \frac{R_t}{\pi_{t+1}} \frac{(c_t - hc_{t-1})}{(c_{t+1} - hc_t)}$$
 (2.2)

plus standard budget constraint Go to budget constraint

4 D > 4 A > 4 E > 4 E > E | E | 900

The TANK Model (I)

- unit-mass population, of which a share $(1-\lambda)$ are standard, consumption-smoothing households
- these unconstrained agents behave just as RANK agents
 ⇒ identical equations (2.1), (2.2), budget constraint

The TANK Model (I)

- unit-mass population, of which a share (1λ) are standard, consumption-smoothing households
- these unconstrained agents behave just as RANK agents \Rightarrow identical equations (2.1), (2.2), budget constraint
- a share λ is **hand-to-mouth** and consume only current-period labour income with no access to consumption-smoothing tools

The TANK Model (II)

 hand-to-mouth households are characterised by labour supply and budget constraint:

$$w_t = \chi(n_t^H)^{\eta}(c_t^H - hc_{t-1}^H)$$
 (2.3)

$$c_t^H = w_t n_t^H \tag{2.4}$$

where η is, as before, the inverse Frisch elasticity of labour supply to the real wage

The TANK Model (II)

 hand-to-mouth households are characterised by labour supply and budget constraint:

$$w_t = \chi(n_t^H)^{\eta}(c_t^H - hc_{t-1}^H)$$
 (2.3)

$$c_t^H = w_t n_t^H \tag{2.4}$$

where η is, as before, the inverse Frisch elasticity of labour supply to the real wage

- hand-to-mouth cannot save or dissave in the face of shocks
- consumption of hand-to-mouth tied exclusively to labour market
 ⇒ labour market of great importance for TANK dynamics

<ロト < 個 ト < 重 ト < 重 ト 差 | 重 | 9 へ ()

The TANK Model (III)

- final step for TANK model is economy-wide aggregation:

$$c_t = (1 - \lambda)c_t^U + \lambda c_t^H \tag{2.5}$$

$$n_t = (1 - \lambda)n_t^U + \lambda n_t^H, \tag{2.6}$$

where:

 c_t , n_t : aggregate consumption and employment

 c_t^U , n_t^U : unconstrained agents' consumption and employment

 c_t^H , n_t^H : hand-to-mouth agents' consumption and employment

The Discount Factor Shock

- the discount factor evolves according to:

$$\beta_{t} = \beta_{ss} \left(\frac{\beta_{t-1}}{\beta_{ss}} \right)^{\rho_{\beta}} \exp(\varepsilon_{\beta,t})$$
 (3.1)

where $\varepsilon_{\beta,t}=0.02$ in t=1, $\beta_{ss}=0.98$, $\rho_{\beta}=0.8$

Andreas Koundouros RANK vs TANK 24th January 2023 9 / 27

9/27

The Discount Factor Shock

– the discount factor evolves according to:

$$\beta_{t} = \beta_{ss} \left(\frac{\beta_{t-1}}{\beta_{ss}} \right)^{\rho_{\beta}} \exp(\varepsilon_{\beta,t})$$
 (3.1)

where $\varepsilon_{\beta,t} = 0.02$ in t = 1, $\beta_{ss} = 0.98$, $\rho_{\beta} = 0.8$

- what can one expect to happen?
 - contraction in today's consumption, output, labour hours, wages, inflation, interest rates (both models)
 - unconstrained agents in TANK should act similar to agents in RANK
 - hand-to-mouth will most likely be hit somewhat stronger as they cannot smooth consumption

Results

– calibration: mostly used the given values, but following Kaplan et al. (2018) and Debortoli and Galí (2018): $\lambda=0.3$ and $\eta=1$

Andreas Koundouros RANK vs TANK 24th January 2023 10 / 27

Results

- calibration: mostly used the given values, but following Kaplan et al. (2018) and Debortoli and Galí (2018): $\lambda=0.3$ and $\eta=1$
- roadmap for the results:
 - 1. responses to a discount factor shock
 - 2. influence of λ and η on quantitative differences

References

Figure: Aggregate Responses to a Discount Factor Shock

References

-0.4

-0.6

-0.8

-1

-1.2

-1.4₀

Inflation

30

40

(f) Nominal Interest Rate

10

20

Quarters

The Models

References

Figure: Individual-Level Responses to a Discount Factor Shock (TANK)

Sensitivity Analysis (I)

- check how the quantitative relative differences between RANK and TANK depend on choices of λ and η
- focus on aggregate consumption effects **on impact** after discount factor shock

Figure: Aggregate Consumption Response on Impact to a Discount Factor Shock as a Function of λ and η

Sensitivity Analysis (II)

- higher $\lambda \Rightarrow$ stronger impact in TANK relative to RANK for given η
- higher $\eta \Rightarrow$ stronger impact in TANK relative to RANK for given λ

Sensitivity Analysis (II)

- higher $\lambda \Rightarrow$ stronger impact in TANK relative to RANK for given η
- higher $\eta\Rightarrow$ stronger impact in TANK relative to RANK for given λ
- **interaction** of high η and λ leads to most pronounced difference
- intuition: together, high λ and high η , imply:

Sensitivity Analysis (II)

- higher $\lambda \Rightarrow$ stronger impact in TANK relative to RANK for given η
- higher $\eta\Rightarrow$ stronger impact in TANK relative to RANK for given λ
- interaction of high η and λ leads to most pronounced difference
- intuition: together, high λ and high η , imply:
 - labour market developments matter substantially (many hand-to-mouth)
 - and wage changes do not translate as much into changes in hours worked (low elasticity of labour to wages)

Conclusion

- key takeaways of simple RANK vs TANK comparison:
 - 1. responses usually coincide qualitatively
 - 2. for baseline calibration, quantitative differences not too large
 - 3. magnitude of differences depends on λ and η

Conclusion

- key takeaways of simple RANK vs TANK comparison:
 - 1. responses usually coincide qualitatively
 - 2. for baseline calibration, quantitative differences not too large
 - 3. magnitude of differences depends on λ and η
- myriad of possible extensions:
 - include HANK and compare it to RANK & TANK
 - consider fiscal policy and redistribution
 - estimation of key parameters, especially λ and η

Thank you very much for your attention!

Any questions?

References

- Boehl, G. (2022). Econpizza: Solving Nonlinear Heterogeneous Agents Models Using Machine Learning Techniques. https://econpizza.readthedocs.io/en/latest/index.html
- Debortoli, D., & Galí, J. (2018). Monetary Policy with Heterogeneous Agents: Insights from TANK Models. https://repositori.upf.edu/handle/10230/44714
- Galí, J., López-Salido, J. D., & Vallés, J. (2007). Understanding the Effects of Government Spending on Consumption. Journal of the European Economic Association, 5(1), 227–270.
- Gust, C., Herbst, E., López-Salido, D., & Smith, M. E. (2012). The Empirical Implications of the Interest-Rate Lower Bound. https://www.federalreserve.gov/econresdata/feds/2012/files/ 201283r1pap.pdf
- Kaplan, G., Moll, B., & Violante, G. L. (2018). Monetary Policy According to HANK. American Economic Review, 108(3), 697-743.

Andreas Koundouros RANK vs TANK 24th January 2023 20 / 27

Appendix A: Related Literature Back

- one of the first papers to do TANK similar to the present model is by Galí et al. (2007)
- seminal paper by Kaplan et al. (2018) on monetary policy transmission in fully-fledged HANK models: direct vs indirect effects of a real interest rate shock
- Debortoli and Galí (2018): prototypical HANK model features three key aspects of heterogeneity; the most important one is the gap in consumption between unconstrained and constrained agents; TANK can replicate this and its aggregate responses are thus close to HANK

Appendix B: Household Budget Constraint • Back

 this is the budget budget constraint of RANK households as well as of unconstrained TANK agents:¹

$$dd_{t} + c_{t} + \tau_{t} + \frac{\Phi}{2} \left(\frac{i_{t}}{i_{t-1}} - 1 \right)^{2} i_{t} = w_{t} n_{t} + \frac{R_{t-1}}{\pi_{t}} dd_{t-1} + \dots$$

$$\dots \left(1 - mc_{t} - \frac{\psi}{2} \left(\frac{\pi_{t}}{\tilde{\pi}_{t-1}} - 1 \right)^{2} \right) y_{t} + \dots$$

$$\dots \left(q_{t} \left(1 - \frac{\Phi}{2} \left(\frac{i_{t}}{i_{t-1}} - 1 \right)^{2} - 1 \right) i_{t} + b prof_{t}$$

$$(6.1)$$

Andreas Koundouros RANK vs TANK 24th January 2023 22 / 27

Appendix C: The Technology Shock Pack

- technology adheres to:

$$z_{t} = z_{ss} \left(\frac{z_{t-1}}{z_{ss}}\right)^{\rho_{z}} \exp(\varepsilon_{z,t})$$
 (6.2)

where $\varepsilon_{z,t} = 0.02$ in t = 1, $z_{ss} = 1$, $\rho_z = 0.8$

- what can one expect to happen?
 - most likely expansion in production, output, consumption as well as drop in labour hours (well-documented fact in NK literature) and inflation (as output does not rise sufficiently due to price adjustment costs), leading to decrease in nominal interest rate
 - in TANK certainly heterogeneous effects as unconstrained households receive higher firm profits and hand-to-mouth suffer from decrease in wages

Andreas Koundouros RANK vs TANK 24th January 2023 23 / 27

Figure: Aggregate Responses to a Technology Shock

Figure: Individual-Level Responses to a Technology Shock (TANK)

Figure: Aggregate Consumption Response on Impact to a Technology Shock as a Function of λ and η

Andreas Koundouros RANK vs TANK 24th January 2023 27 / 27