GROUP 3: FINAL REPORT

PROJECT 1: FRAUD DETECTION OF INSURANCE CLAIMS

Oct 28, 2018

LI Weihao 1155077142 LI Jinzhao 1155077016 Wang Yiqun 1155062115 Peng Zhichao 1155062015

Contents

1	Data pre-processing	2
2	Selection Criteria	3
3	Method	3
4	Results: tables and graphs	10
5	Limitations	12
Re	eferences	13
Αŗ	ppendix	14

1 DATA PRE-PROCESSING

In this project, we employed several statistical methods to solve the fraud case detection problem. The data were cleaned before the models were fitted. Since the data mainly consisted of time variables, categorical variables and interval variables, certain modifications had to be made to the data so that our statistical models could be applied.

1.1 Time gap

The dataset has the following time variables: **Year, Month, WeekOfMonth, DayOfWeek, DayOfWeek, Claimed, MonthClaimed, WeekOfMonthClaimed.** Out of common sense, the time when the accident happens and the claim is made is not directly related to the fraud. Hence we would like to calculate the time gap between the claim and the accident to make better use of them.

Assumption 1 Considering we don't know exactly in which year the claim was made, we assume that the time gap is smaller than one year, because in real life it is quite rare that the claim is made such a long time after the accident. We noticed a few records whose claim was recorded earlier than accident. These records generated abnormal time gap values far from values of the rest of data, which had a huge influence on the result of modeling. Considering the sufficiency of data in this dataset, we decided to remove all 1655 abnormal records, 10.7% of the dataset.

Assumption 2 Assume the number of week of the month starts from the first day of the very month, instead of the first line of the calendar. We would like to explain with an example. January 1st in 1994 is a Saturday, then the first week of January of 1994 starts from January 1st and ends on January 7th, instead of consisting of only one day, January 1st, which is the only day on the first line of calendar of January, 1994. Similarly, the second week starts from the January 8th to January 14th, instead of starting from January 2nd to January 8th, the second line of the calendar in January, 1994.

Method

 $\label{eq:decomposition} Date (Month Claimed, Day Of Week Claimed, Day Of Week) \\ -Date (Year, Month, Week Of Month, Day Of Week)$

1.2 Mapping to numeric values

Some variables are interval variables, and this will cause ambiguity and inconvenience as we expect more numeric variables in most of the statistical models. We want to convert the interval variables to some numeric values so that they can be fitted into models better.

Assumption Assume that for a certain interval variable, the values are similar if falling into the same interval. E.g. for **NumberOfCars** indicating the number of cars owned by the policy holder, "3 cars" and "4 cars" are similar as they fall into "3 to 4" interval.

Method Assign the midpoint of the interval as the corresponding value of this interval.

1.3 Change to dummy variable

We have 11 categorical variables, accounting %33.3 of the entire 33 variables. For each categorical variable, we created some dummy variables to replace them. For the binary variables, only one dummy variable is used. For categorical variables with c levels, (c-1) dummy variables are used to replace the original one categorical variable

1.4 Create new features using PCA

We want to improve the performance of the classifier and reduce the dimensionality of the data by introducing PCA analysis to the data. Suppose we have n records with p variables, and we plan to reduce the number of variables from p to q. PCA achieves this task by constructing principal components $a_1^t x, a_2^t x, ..., a_q^t x$. The first component tries to contain maximum variance for the data, and for the next (q-1) components, the next one should be uncorrelated with the previous one and explain the maximum variance for the data successively.[1]

[1]Jolliffe I. (2011) Principal Component Analysis. In: Lovric M. (eds) International Encyclopedia of Statistical Science. Springer, Berlin, Heidelberg

2 SELECTION CRITERIA

• Precision is equal to the proportion of correctly raised alarms, as follows:

$$Pr = \frac{TP}{TP + FP}$$

• Recall is equal to the proportion of deviant signatures, which are correctly identified as such:

$$Re = \frac{TP}{TP + FN}$$

		Classified as	
Actual		Fraud	No fraud
	Fraud	TP-true positive	FN-false negative
	No fraud	FP-false positive	TN-true negative

• *F-measure* is a measure that calculates a harmonic mean between precision and recall, as follows:

 $F\text{-}measure = \frac{2*Pr*Re}{Pr+Re}$

• Use Recall and F-measure as final criterion and not use accuracy rate

Precision is the proportion of real fraud cases in cases classified as fraud. *Recall* is the proportion that fraud cases are classified correctly. F_score conveys the balance between these two rates.

Explanation: Usually, there are two steps in fraud claims detection, first people try to pick out all potential fraud cases, second, they further classify each selected case artificially. Recall measures the performance of step one that how many real fraud cases are selected while precision measures the workload of step two. Since we want both high recall and high precision, F_score is used to evaluate their integrative performance. Because our focus is on the first step, we eventually pick Recall and F-score as our selection criterion. The reason why accuracy rate is not adopted is that the imbalanced dataset is dominated by not fraud part so that Given low fraud detection rate, the accuracy rate is still high. One obvious extreme cases is that even there is no fraud detection, it gives an accuracy rate of 94 percent.

3 METHOD

3.1 Processing Unbalanced Data

To deal with unbalanced data, there are several commonly used methods, namely random undersampling, random over-sampling and Synthetic Minority Over-Sampling Technique. The following section will illustrate these three methods. It's worth mentioning that the proportion of majority class and minority class after random under-sampling are both 50%.

3.1.1 Random Under-sampling

Random under-sampling will randomly sample data from majority class to match with the number of the minority class in order to make the data balanced. The training sample obtained in this way will be relatively small. For huge training data set, this method will help improve the run time and

storage problem. On the other hand, useful information may lost because of under-sampling and small training may turn out to be a biased sample.

3.1.2 Random Over-sampling

Opposite to random under-sampling, random over-sampling will randomly over sample the data from minority class to deal with the unbalanced problem. In this way, all information from the majority class will be preserved and there is no information loss in this case. However, the replication of minority class may increase the risk of over fitting.

3.1.3 Synthetic Minority Over-Sampling Technique (SMOTE)

SMOTE is one of the modified over-sampling method. In stead of directly copying the minority class a couples of times, SMOTE generate the minority class by performing linear interpolation of between some k-nearest neighbour. The following plot will illustrate how SMOTE work.

3.2 Logistic Regression & K-Nearest Neighbors

For logistics regression, we noticed that there exists problem when applied the trained model to the testing set. There are nine levels in 'PolicyType', but for level 'Sport – Liability',only one person In the whole dataset, if this individual is not in the training set but in the testing data, error will come up since no coefficient for that level exist. It is also a motivation for us to change the categories to dummy and numerical.

First, we use the training set without PCA to train the logistics model. When put all independent variables into the logistics regression, some variables' coefficients are NA reported by R, we realized these variables may be collinear to other variables. We delete them from independent variables of training set and the testing set, and rerun the logistics regression.

Secondly, we apply the PCA on the training set and change the variables in the testing set according to same PCA linear combination. This time there is no NA in the model coefficients. In each case, we selected the 0.5 as the threshold to determine whether the individual is fraud or not, if the probability predicted is bigger than 0.5, we classified it as fraud case.

When comes to the KNN, KNN is a simple method which does not assume the data distribution, it contains all data point from the training set and use them in the testing procedure. By voting from the neighbor training point, the class of testing point can be determined. Due to this property, imbalanced dataset will make individual be classified as the majority class more easily when K is large. So we think that if the testing data is imbalanced, then the result of this method is undesirable.[3]

The selection of the K is based on our experiment, we run the KNN with k=1 to k=20 and select the one with best F score.

3.3 Support Vector Machines

Support Vector Machines (SVM) has been a successful classifier in the past fewer years and performed well in our project. We would like to briefly introduce this method.

3.3.1 Intuition of the methodology

To kick off, consider a set of linear separable data in 2-dimension, and there is more than one line

to separate these data. Instead of finding just one separating line, we want to select the best among all separating lines possible. A notion of *margin of a separating line* is introduced as following: the *margin* is the distance between the line and the nearest data point. We claim that the line with larger margin separates the data better, intuitively meaning that the best line passes the midpoint of the area between two data groups. An informal justification is that the chance that new data point falls in the wrong side of the separating line decreases as the line moves away from the center of data group.

3.3.2 Maximize margins

In the light of the intuition that fatter margin gives better separating lines, we try to maximize the margin. Say in the d-dimensional space, we have N data points and plane $w^t x = 0$. Note w multiplying two different constants leads to w_1 and w_2 respectively, but w, w_1 and w_2 indicate the same plane. So we normalize w by setting $|w^t x_n| = 1$, where x_n is the nearest point to the plane. We also pull out w_0 , one coefficient in w corresponding to the constant element in x, and the plane is expressed as $w^t x + b = 0$.

Like the margin of a line, the *margin of a plane* is defined as the distance between the nearest point and the plane. We set x_n is the nearest point and choose any point x on the plane $w^t x + b = 0$. Note w is the normal vector with direction vector \hat{w} . The margin of this plane is $\|\hat{w}^t(x_n - x)\| = \|w^t x_n - w^t x\|/\|w\| = 1/\|w\|$. Now, we have

Maximize
$$\frac{1}{||\boldsymbol{w}||}$$
, subject to $\min_{n=1,2,\dots,N} |\boldsymbol{w}^t \boldsymbol{x_n} + \boldsymbol{b}| = 1$

Notice that $y_n = 1$ or -1 and $y_n = sign(\boldsymbol{w^t}\boldsymbol{x_n} + b)$, and thus $|\boldsymbol{w^t}\boldsymbol{x_n} + b| = y_n(\boldsymbol{w^t}\boldsymbol{x_n} + b)$. So the problem above is equivalent to

Minimize
$$\frac{1}{2} \mathbf{w}^t \mathbf{w}$$
, subject to $y_n(\mathbf{w}^t \mathbf{x}_n + b) \ge 1$

Then we have Lagrange formulation

$$Minimize \ \mathcal{L}(\boldsymbol{w},b,\boldsymbol{\alpha}) = \frac{1}{2}\boldsymbol{w^t}\boldsymbol{w} - \sum_{i=1}^N \alpha_n(y_n(\boldsymbol{w^t}\boldsymbol{x_n} + b) - 1), \quad where \ each \ \alpha_n \geq 0$$

Note that

$$\nabla_{w} \mathcal{L} = \boldsymbol{w} - \sum_{i=1}^{N} \alpha_{n} y_{n} \boldsymbol{x}_{n} = \boldsymbol{0} \qquad \frac{\partial \mathcal{L}}{\partial b} = -\sum_{i=1}^{N} \alpha_{n} y_{n} = 0$$

We have

$$\mathcal{L}(\boldsymbol{\alpha}) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} y_n y_m \alpha_n \alpha_m \boldsymbol{x_n^t} \boldsymbol{x_m}, \quad \text{where each } \alpha_n \ge 0 \text{ and } \sum_{n=1}^{N} \alpha_n y_n = 0$$

This will be passed to quadratic programming and the solution $\boldsymbol{\alpha}=(\alpha_1,\alpha_2,...,\alpha_N)$ will maximize \mathcal{L} . Since quadratic programming is a well-developed numeric method, it will not be discussed here. Then we can solve \boldsymbol{w} , $\boldsymbol{w}=\sum_{i=1}^N\alpha_ny_n\boldsymbol{x_n}$.

Next we solve b. Note for n=1,2,...,N, $\alpha_n(y_n(\boldsymbol{w^t}\boldsymbol{x_n}+b)-1)=0$. We would like to reason this claim out of intuition. Remember we are defining the best separating plane, i.e. the line with largest margin. Notice that margin only concerns with the points nearest to the very plane, so those points far away contribute absolutely nothing to defining our plane and that's why the coefficient of the plane concerns none of these points far away from this plane. In other words, if a data point $\boldsymbol{x_n}$ has a positive α , it contributes to defining the best plane. We name these $\boldsymbol{x_n}$ as *support vectors*. Solve b with $y_n(\boldsymbol{w^t}\boldsymbol{x_n}+b)=1$ for any $\alpha_n\geq 0$.

Then the separating plane is known with w and b. Note the generalization of SVM concerns the number of support vectors and the size of dataset, not the dimension of the data points.

3.3.3 Nonlinear separable case: Kernel function

We assumed that the data is linear separable above. If data is not linear separable, non-linear transformation can be used to convert the data from original space $\mathcal X$ into a high dimension space $\mathcal X$ (i.e.

create a new data point z_i from each of data points x_i), where the new data is linear separable in \mathcal{Z} , and our linear separable assumption is valid then.

We can observe that after non-linear transformation the only difference made to SVM formula is that $x^t x$ becomes $z^t z$, and the generated w can be applied in the original space \mathscr{X} . Eventually, we will have a curve surface to separate the data points in \mathscr{X} , instead of a straight plane in the linear separable case.

We can observe that in SVM, x only appears in the form of dot product with its transpose, $x^t x$, implying that it is not z itself but $z^t z$ is concerned in SVM. If we define $z_i^t z_i$ as the kernel $\mathcal{K}(x_i, x_i)$, we can drop z out of the SVM formula by claiming that as long as a function $\mathcal{K}(x_i, x_i)$ can be written in terms of $z_i^t z_i$ for an existing z of any space, even if in infinite dimension, \mathcal{K} is a valid kernel and can be put in the place of $x^t x$. Then we can claim our hypothesis as

$$g(\mathbf{x}) = sign(\sum_{\alpha_n > 0} \alpha_n y_n \mathcal{K}(\mathbf{x_n, x}) + b)$$
 where $b = y_m - \sum_{\alpha_n > 0} \alpha_n y_n \mathcal{K}(\mathbf{x_n, x_m})$ for any support vector($\alpha_m > 0$)

The valid kernel can be manually constructed by finding the corresponding z. But apart from this tedious method, *Mercer's Condition* can be applied: $\mathcal{K}(x,x')$ is a valid kernel if and only if it is symmetric and the matrix $[\mathcal{K}(x_i,x_j)]_{ij}$ is positive semi-definite for any $x_i,...,x_N$.

3.4 Artificial Neural Network

We also train an Artificial Neural Network to solve for this classification problem. Artificial Neural Network is a sophisticated method and the following paragraph will give a brief introduction of Artificial Neural Network (will called ANN for simplicity in the later section).

3.4.1 Structure of Neural Network

ANN is inspired by the neural network in human brain and how the neuron works to deliver message. A neural network consists of an input layer, an output layer and some hidden layers in between. On each layer there are many nodes and the nodes of different layers are connected by some weights represented by lines (See Appendix 3.4.1). For a true neuron in human brain, it receives some signal from the outside, then evaluate the signal and become activate if the signal is strong enough to pass through some threshold. Similarly, in neural network, each nodes, or "neuron", in the hidden layers will receive some input, which is the linear combination of the output of the preceding neurons and the weights that connects to the underlying neuron and those preceding neurons. A bias term and it corresponding weights are also added in each layers to serve as the thresholds for the activation of the neurons in the next layer [4].

3.4.2 Activation Function

The input of each neuron will pass through an activation function in order to generate the output of that neuron. In biologically inspired neural network, activation function has only binary output to mimic the "active" (1) and "inactive" (0) state of the neuron while in ANN, we replace it with some smooth functions that map real number to a range between 0 and 1 or -1 and 1. The advantage of smooth function is that beside indicating the state of activation, it also reveals the extent of activation and meanwhile makes the activation function differentiable. The differentiability of activation function is crucial when we use backpropagation to update the weights and bias. Typical activation functions includes logistic(sigmoid) function, tanh function and softmax function. Their function, domain and range is shown is appendix 3.4.2.

It's worth mentioning that tanh is used as the activation function of the hidden layer while softmax is adopted as the activation function of the output layer. Tanh is chosen to be the activation function because it has stronger gradient than sigmoid, which will be more efficient in optimization. The range of tanh is [-1,1] while the range of sigmoid is [0,1]. Plots comparing the range of the derivatives of tanh and sigmoid are given in the appendix 3.4.3. The range of the derivative of tanh is [0.42,1] while that of sigmoid is [0.2,0.25] [5]. It's obvious that tanh function provide stronger gradient. Softmax function

is implemented to transform the output in the output layer into probability. It has the following formulae:

$$Pr(y = j | o_j) = \frac{e^{o_j}}{\sum_{k=1}^{K} e^{o_k}}$$

These probabilities tells us how likely the model think an observation is belong to a certain class and they are directly used in the computation of the loss of the model, which is our optimization objective [6].

3.4.3 Loss Function and Regularization

The loss function has been chosen to be log loss. Log loss is equivalent to cross entropy when class=2. Their formula are as follow:

Log Loss:
$$L(p, y) = -ylog(p) - (1 - y)log(1 - p)$$

Cross Entropy: $L(P, Y) = -\sum_k y_k log(p_k)$

 P_k is the probability predicted by the model, y_k is the true class that the observation belongs to and k indicates the class. P and Y are both encoded in a form of vector, like dummy variable. For example, in our case, which is binary classification, for an observation in class 1, $Y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and $y_1 = 1$, $y_2 = 0$, P

may be $\begin{bmatrix} 0.6 \\ 0.4 \end{bmatrix}$ and $p_1 = 0.6$ and $p_2 = 0.4$. Cross entropy will be large when the $y_k = 1$ and p_k is close to 0, meaning that the model classify the observation wrong.

We also add L1 regularization to the loss function:

$$L = -\frac{1}{n} \sum_{allx} \sum_{k} y_{k} log(p_{k}) + \lambda \sum_{l} \sum_{i} \sum_{j} |w_{ij}^{(l)}|$$

 $w_{ij}^{(l)}$ means the weight from the i^{th} node in layer l to the j^{th} node in layer l+1. L1 regularization takes the same logic from lasso regression. It has the ability to reduce some of the weights to zero. The logic behind can be easily understood by appendix 3.4.4. By forcing some of the weights to be zero, some of the neurons in our model will "die" and we do this in order to avoid over-fitting our model. Noted that regularization is only applied to weights instead of bias.

3.4.4 Gradient Descent and Backpropagation

With the above loss function, we can now update the weights to minimizing the loss function. The usual algorithm is called gradient descent. The algorithm of update one weight in the model at a time as follow:

$$w_{ij}(t+1) = w_{ij}(t) - \eta \frac{\partial L}{\partial w_{ij}}$$

 η here is called learning rate, which control the step size of the movement along the direction of the gradient. t stands for the tth iteration of the of the update and the each iteration is also known as an "epoch". The gradient, or the partial derivative of the loss function L with respect to the weigh w_{ij} can be found using a method called backpropagation. Backpropagation has essentially two phases. Phase 1 is called propagation, or forward propagation. In phase 1, we propagate the model forward through the network to generate the output and calculate the error(loss) via loss function. Phase 2 is called backpropagation, in which we propagate the predicted output back through the model using the true training target pattern to generate delta of all output and hidden layer [7]. Delta here is the difference between the targeted and actual output value. The gradient of the weight is given by the product of weight's output delta and input activation. An example illustrating how to obtain the gradient with detail derivation will be given in the appendix 3.4.5.

3.4.5 Stochastic Gradient Descent and Mini-batch Gradient Descent

Obtaining the gradient using backpropagation is computationally intensive. In reality, because of

the large size of the data set and the complicated structure of the neural network, gradient descent is extremely slow. In order to solve this problem, stochastic gradient descent(SGD) and mini-batch gradient descent are proposed. The difference between traditional gradient descent, or so call batch gradient descent, and SGD is that instead of taking the whole batch of data to calculate the gradient, SGD randomly draws one piece of training example out of the training set at each iteration and performs backpropagation solely based on it. There is a good metaphor illustrating the difference between SGD and batch gradient descent: SGD is like a drunken man walking downhill while batch gradient descent is like a carefully guy calculating each of his step prudentially in order to go downhill in the steepest way at each step. Mini-batch gradient descent is a compromise between batch gradient descent and SGD, which take a small batch of training example to perform the backpropagation update [8].

3.4.6 Model Fitting and Tuning Using R

neuralnetwork function in ANN2 package is used to train our neural network model. ANN2 is capable of performing SGD. 20% of the original train set is randomly selected out to be validation set while the remaining will still be the training set. Common method for parameter selection in neural network might be performing a grid search with all combination of parameters using cross validation. However, we didn't use this method since it's too time consuming and effectiveness. An alternative way is to tune the model using the loss plot of the training set and validation set. The loss plot plot loss of each epoch and it's a commonly used diagnosis plot to detect over fitting. Our final model has the following set of parameters: batchsize=32, learning rate=1e-4, $L1(\lambda)=0.03$. The structure of the network is 59-5-2. 59 input nodes is result from changing the categorical variables in to dummy variables. Results will be shown in later section and loss plot can be found in the appendix 3.4.7

3.5 Random Forest

Random forests are built by combining the predictions of several trees, each of which is trained in isolation. Unlike in boosting (Schapire & Freund, 2012) where the base models are trained and combined using a sophisticated weighting scheme, typically the trees are trained independently then take a majority vote to determine what class should the observation belongs to.

To understand RF better, we need some knowledge about classification tree and bagging.

Classification tree is a popular method in machine learning when tackling classification problem. We build up the tree from the top to the bottom, based on the formula of information gain like what is shown here. H(T) stands for the entropy of the parent nodes and H(H|a) is the weighted sum of the entropy of the children nodes given we choose a as our split. The variable with the highest information gain will be taken as the first split and the process will continue until all children nodes are pure, or until the information gain is 0. A typical classification tree flow is as following:

For bagging, or bootstrap aggregating, it is basically an algorithm designed to improve the stability and accuracy of machine learning algorithm for classification and regression. Bagging is usually applied to decision tree methods but in general it can be applied to any types of methods. It is shown that bagging is leads to "improvement of unstable procedure", like ANN, decision tree and subset selection of linear regression while it may mildly degrade the performance of stable methods such as KNN. (A stable learning algorithm is one for which the prediction does not change dramatically when the

training data is modified slightly.)

In general, the sample size for a random forest acts as a control on the "degree of randomness" involved, and thus as a way of adjusting the bias-variance tradeoff. Increasing the sample size results in a "less random" forest, and so has a tendency to overfit. Decreasing the sample size increases the variation in the individual trees within the forest, preventing overfitting, but usually at the expense of model performance. A useful side-effect is that lower sample sizes reduce the time needed to train the model.

The usual rule of thumb for the best sample size is a "bootstrap sample", a sample equal in size to the original dataset, but selected with replacement, so some rows are not selected, and others are selected more than once. Using a bootstrapped data set, each tree in the forest is trained on slightly different data, which introduces differences between the trees, and further randomness is introduced by identifying the best split feature from a random subset of available features.

Advantages Random forest is an ensemble method in which a classifier is constructed by combining several different Independent base classifiers.

- By combining different classifier predictions together, the net of information is much greater. Furthermore, the more diverse source of information, the more robust the random forest is because it will not be swayed by a single anomalous data source.
- The prediction is less likely to be wrong since it can be shown that an ensemble of independent classifiers, each with an error rate e, when combined significantly reduces the error rate.

randomForest in R The following is the R code of random Forest

```
#install.packages("randomForest")
#library(randomForest)
                                                 #get train set and test set
set . seed(4011)
train<-read.csv("smote_os_pca.csv",header
chaos_order<-sample(nrow(train),nrow(train))
train<-train[chaos_order,]
test<-read.csv("data PCA test.csv".header = T)
train$FraudFound_P=as.factor(train$FraudFound_P)#transfer the typw of target column from numeric to factor
m1=randomForest(FraudFound_P~.,data=train,mtry=10,replace=TRUE, ntree=350) #train the model using randomforest
result=predict(m1,newdata=test)
                                                #predict the result from test set
t=table(result.test$FraudFound_P)
                                                #confusion matrix
prec=precision(t,relevant = rownames(t)[2])
reca=recall(t,relevant = rownames(t)[2])
                                                #recall
F_{meas}(t, relevant = rownames(t)[2])
```

Remarks

- The type of target column must be transferred to factor or there will be error running random-Forest.
- In this pair of train and test dataset, there are 27 variables. 10 variables are selected as decision nodes randomly in each tree.

- There are 350 trees in the forest. If the number of trees is too small, the randomness of the result is too high; if the number of trees is too large, there would be error message that R cannot allocate large size data.
- "replace=true" means using bagging method.

3.6 Boosting

After we use the single method to solve the problem, we find the F score is low and each time there are many misclassifications. So we decide to use the boosting to combine the different classifier to reduce the error. Each time the sample probability is changed according the misclassification you make and calculate the corresponding weight. We used the "-1" to denote the non-fraud and "1" to stand for the fraud case, we computed the weighted sum of the testing result and to make it as fraud case when summation result is bigger than 0.[2]

```
    Learning set: L = (X<sub>I</sub>, Y<sub>I</sub>), ..., (X<sub>P</sub>, Y<sub>O</sub>)
    Re-sampling probabilities p= {p<sub>I</sub>,..., p<sub>s</sub>}, initialized to be equal.
    The /ht step of the boosting algorithm is:

            Using the current re-sampling prob p, sample with replacement from L to get a perturbed learning set L<sub>k</sub>.
            Build a classifier C(p, L<sub>n</sub>) based on L<sub>k</sub>.

    Run the learning set L through the classifier C(p, L<sub>n</sub>) and let d=1 if the rith case is classified incorrectly and let d=0 otherwise.
    Define

            ε<sub>p</sub> = p<sub>i</sub> d<sub>i</sub> and β<sub>p</sub> = (1-ε<sub>p</sub>)/ε<sub>p</sub>

    and update the re-sampling prob for the (b+1)st step by p<sub>i</sub> = (D|f)/ε<sub>p</sub>
    The weight for each classifier is σ<sub>b</sub> = log(β<sub>b</sub>)
```

We selected 20 as our iteration times, the classifier used in the boosting are KNN, SVM and classification tree. We used the R to implement the algorithm in above way.

4 RESULTS: TABLES AND GRAPHS

Bagging and Boosting does not perform well according to the F score. Choose under sample and over sample as example. Others can be found in the appendix.

	under sam	over sam		under sam	over sam
Normal-KNN	0.1861	0.1872	Normal-SVM	0.2109	0.2172
Bagging-KNN	0.1831	0.1503	Bagging-SVM	0.211	0.2096
Boost-KNN	0.1663	0.1349	Boost-SVM	0.2085	0.209

Initially, boosting is supposed to correctly classify those mis-classified at previous step, but when we see the weight sequence plot, we find that the error tend to increasing, which means that mistake cannot be corrected by any classifier. We show the boosting with KNN & SVM and B=20 as example.

Figure 1: Boosting weight for KNN and SVM

Results from five methods

Table 1: F score for five methods

	over	under	smote	PCA over	PCA under	PCAsmote
RF	0.16492	0.23145	0.24424	0.19081	0.22138	0.22678
KNN	0.16725	0.18002	0.17701	0.17241	0.18413	0.1699
Logistics	0.21086	0.22244	0.2122	0.20796	0.21668	0.20942
ANN	0.2181	0.2254	0.2107	0.2173	0.2318	0.2106
SVM	0.2237	0.216	0.2201	0.2378	0.22915	0.2177

Table 2: Recall of five methods

	over	under	smote	PCA over	PCA under	PCAsmote
RF	0.13751	0.69276	0.59314	0.556955	0.61373	0.67947
KNN	0.57594	0.57547	0.59485	0.59887	0.58565	0.71662
Logistics	0.86399	0.72811	0.75838	0.87251	0.7316	0.85823
SVM	0.91885	0.9146	0.9188	0.8507	0.82965	0.91355
ANN	0.9365	0.7692	0.8195	0.9106	0.7457	0.8805

- Overall, the KNN perform worse than other method, it may imply that training is still necessary to get some information from the training set.
- No matter what kinds of sampling used, the F score seems no significant difference.
- ANN,SVM & Logistics have higher better ability to classify the fraud correctly, but they are not the best method, which imply that they also categorize many non-fraud to fraud, which make the F score lower.

Below is the ten testing results from our best model, we apply the smote oversampling method to deal with the dataset and use "draws" index to extract ten dataset. It is unreasonable to apply our classifier without re-train the data because some of the testing data point are already in our previous training set, which will cause the over-fitting. So we remove corresponding testing index and make 10 training set for each testing dataset, after that we train the RandomForest on these ten dataset and get corresponding confusion matrix.

195 35 Q1	RandomForest			recall	F_score	F_mean					
Smote_OS_2	$smote_OS_1$	749	23	0.5741	0.2199	0.24424	Con_matrix				
Smote_OS_3 769 22 0.6271 0.2761		197	31					TN	FN		
smote_OS_3	smote_OS_2	742	19	0.6842	0.2626			FP	TP		
172 37		201	39								
smote_OS_4 746 24 0.5932 0.2422 Min 736 19 172 24 195 35 Q1 743 22.25 187.5 28.75 smote_OS_5 746 20 0.7015 0.3123 Median 747.5 23.5 195.5 35.5 smote_OS_6 736 27 0.5714 0.24 Max 777 27 201 47 201 36 mean 751.1 23.5 190.6 34.9 smote_OS_7 777 27 0.4706 0.1943 Sd 13.53555 2.6770631 10.762073 7.5638027 smote_OS_8 751 25 0.5283 0.2022 196 28 smote_OS_9 759 25 0.5192 0.2015 189 27	smote_OS_3	769	22	0.6271	0.2761						
195 35 Q1		172	37					TN	FN	FP	TP
smote_OS_5	$smote_OS_4$	746	24	0.5932	0.2422		Min	736	19	172	24
187 47 Q3 757 25 196.75 38.5 smote_OS_6 736 27 0.5714 0.24 Max 777 27 201 47 201 36 mean 751.1 23.5 190.6 34.9 smote_OS_7 777 27 0.4706 0.1943 Sd 13.53555 2.6770631 10.762073 7.5638027 smote_OS_8 751 25 0.5283 0.2022 smote_OS_9 759 25 0.5192 0.2015 189 27		195	35				Q1	743	22.25	187.5	28.75
smote_OS_6	smote_OS_5	746	20	0.7015	0.3123		Median	747.5	23.5	195.5	35.5
Smote_OS_7		187	47				Q3	757	25	196.75	38.5
smote_OS_7	smote_OS_6	736	27	0.5714	0.24		Max	777	27	201	47
172 24 smote_OS_8		201	36				mean	751.1	23.5	190.6	34.9
smote_OS_8	smote_OS_7	777	27	0.4706	0.1943		Sd	13.53555	2.6770631	10.762073	7.5638027
196 28 smote_OS_9 759 25 0.5192 0.2015 189 27		172	24								
smote_OS_9	smote_OS_8	751	25	0.5283	0.2022						
189 27		196	28								
	smote_OS_9	759	25	0.5192	0.2015						
smote OS 10 736 23 0.6618 0.2913		189	27								
3110tc_00_10 700 25 0.0010 0.2010	smote_OS_10	736	23	0.6618	0.2913						
196 45		196	45								

5 LIMITATIONS

First limitation is about the time gap we calculate for the claim, since there exists a complete fifth week in a month(which is not understandable), we cannot get accurate time gap in those cases. Secondly, since some methods like SVM, KNN, ANN are supposed to use numerical variables as input, our numeric variables transferred from categorical variables may not express real information, then the methods may not perform well

REFERENCES

- [1] Jolliffe I. (2011) Principal Component Analysis. In: Lovric M. (eds) International Encyclopedia of Statistical Science. Springer, Berlin, Heidelberg
- [2] Boosting Methods

http://di.ulb.ac.be/map/gbonte/bioinfo/boosting.pdf

[3] Introduction to k-Nearest Neighbors

https://www.analyticsvidhya.com/blog/2018/03/introduction-k-neighbours-algorithm-clustering/

[4] Artificial Neural Network

https://en.wikipedia.org/wiki/Artificial_neural_network

[5] Tanh activation function vs Sigmoid activation function

[6] Why is the softmax function often used as activation function of output layer in classification neural networks?

https://datascience.stackexchange.com/questions/37357/why-is-the-softmax-function-often-used-as-activation-function-of-output-layer-in

[7] Backpropagation

https://en.wikipedia.org/wiki/Backpropagation

[8] Stochastic gradient descent

https://en.wikipedia.org/wiki/Stochastic_gradient_descent

[9] Derivative of Softmax Loss Function

[10] A Step By Step Backpropagation Example

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

[11] Bagging explanation

https://stats.stackexchange.com/questions/24330/is-there-a-formula-or-rule-for-determining-the-correct-sampsize-for-a-randomfore

[12] RandomForest

https://en.wikipedia.org/wiki/Random_forest

Appendix

For convenience, I put the necessary file and code in the google drive, you can open the following url directly.

Appendix 3.4.1 Structure of Neural Network

Appendix 3.4.2 Properties of Activation Functions

Name	Function	Domain	Range
Logistic	$f(x) = \frac{1}{1 + e^{-x}}$	\mathbb{R}	(0, 1)
Tanh	$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	R	(-1,1)
Sofmax	$f_i(\mathbf{x}) = \frac{e^{x_i}}{\sum_{k=1}^K e^{x_k}}$	\mathbb{R}^K	(0,1)

Appendix 3.4.3 Plots of Sigmoid and Tanh Function and their First Derivatives

Appendix 3.4.4 Illustration of L1 Penalty similar to Lasso

Appendix 3.4.5

Derivation of Partial Derivative of the Loss Function (Cross Entropy) with Softmax Function as Transformation Function [9]

$$p_{j} = \frac{e^{o_{j}}}{\sum_{k} e^{o_{k}}}$$

$$L = -\sum_{k} y_{k} log(p_{k})$$

We encode $Y = (y_k)$ as dummy variable. Since y_k can only be 0 or 1, we will have $\sum_k y_k = 1$.

1.
$$j = i$$

$$\frac{\partial p_j}{\partial o_i} = \frac{e^{o_i} \sum - e^{o_i} e^{o_i}}{\sum}$$
$$= \frac{e^{o_j}}{\sum} \frac{\sum - e^{o_i}}{\sum}$$
$$= p_i (1 - p_i)$$

Note: Here we use Σ to represent $\sum_k e^{o_k}$.

2. $j \neq i$

$$\frac{\partial p_j}{\partial o_i} = \frac{0 - e^{o_j} e^{o_i}}{\Sigma^2}$$
$$= -p_i p_j$$

The partial derivatives of loss function(Cross Entropy) with softmax function as transformation function can be derived as follow:

$$\begin{split} \frac{\partial L}{\partial o_i} &= \frac{\partial}{\partial o_i} (-\sum_k y_k log(p_k)) \\ &= -\sum_k y_k \frac{\partial}{\partial o_i} log(p_k) \\ &= -\sum_k y_k \frac{\partial}{\partial p_k} log(p_k) \frac{\partial}{\partial o_i} p_k \\ &= -\sum_k y_k \frac{1}{p_k} (\frac{\partial}{\partial o_i} p_k) \\ &= -y_i \frac{1}{p_i} p_i (1 - p_i) - \sum_{k \neq i} y_k \frac{1}{p_k} (-p_i p_k) \\ &= -y_i (1 - p_i) + \sum_{k \neq i} y_k p_i \\ &= -y_i (\sum_k y_k) - y_i \\ &= p_i (\sum_k y_k) - y_i \\ &= p_i - y_i \end{split}$$

Appendix 3.4.6

Derivation of Gradients using Backpropagation with Simple Example [10]

As illustrated in the article, weights are updated using the following formula:

$$w_{ij}(t+1) = w_{ij}(t) - \eta \frac{\partial L}{\partial w_{ij}}$$

Therefore we need to compute the gradient $\frac{\partial L}{\partial w_{ij}}$ using backpropagration.

For demonstration, we consider a simple neural network having only one hidden layer with two nodes, two input nodes, and two output nodes. h_{1Net} is the input of the activation function tanh while h_{1Out} is the corresponding output after applying the activation function. The whole setting of this simple neural network is similar to our ANN model except for the structure.

The goal is to obtain the gradient with respect to weights between layers. w_1 and w_5 will be derived as examples in the following section.

$$h_{1Net} = b_1 + w_1 i_1 + w_3 i_2 \tag{1}$$

$$h_{1Out} = tanh(h_{1Net}) = \frac{e^{h_{1Net}} - e^{h_{1Net}}}{e^{h_{1Net}} + e^{h_{1Net}}}$$
(2)

$$o_1 = b_3 + w_5 h_{1Out} + w_7 h_{2Out} (3)$$

$$o_2 = b_4 + w_6 h_{1Out} + w_8 h_{2Out} \tag{4}$$

$$Pr(y=1|obs) = p_1 = softmax(o_1) = \frac{e^{o_1}}{\sum_{k=1}^{2} e^{o_k}}$$
 (5)

$$Pr(y=2|obs) = p_2 = softmax(o_1) = \frac{e^{o_2}}{\sum_{k=1}^{2} e^{o_k}}$$
 (6)

$$L = -\sum_{k} y_{k} log(p_{k}) = -y_{1} log(p_{1}) - y_{2} log(p_{2})$$
(7)

- $\frac{\partial L}{\partial w_5}$
 - 1. Apply chain rule, we can expand the gradient as: $\frac{\partial L}{\partial w_5} = \frac{\partial L}{\partial p_1} \frac{\partial p_1}{\partial o_1} \frac{\partial o_1}{\partial w_5} = \frac{\partial L}{\partial o_1} \frac{\partial o_1}{\partial w_5}$
 - 2. $\frac{\partial L}{\partial o_1} = (p_1 y_1)$. (Derived in appendix 3.4)
 - 3. From (3), $\frac{\partial o_1}{\partial w_5} = \frac{\partial}{\partial w_5} (b_3 + w_5 h_{1Out} + w_7 h_{2Out}) = h_{1Out}$.
 - 4. $\frac{\partial L}{\partial w_5} = (p_1 y_1) h_{1Out}$

- $\frac{\partial L}{\partial w_1}$
 - 1. Apply chain rule again. Noticed that now w_1 will affect o_1 and o_2 , therefore we have $\frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial o_1} \frac{\partial o_1}{\partial h_{1Out}} \frac{\partial h_{1Out}}{\partial h_{1Net}} \frac{\partial h_{1Net}}{\partial w_1} + \frac{\partial L}{\partial o_2} \frac{\partial o_2}{\partial h_{1Out}} \frac{\partial h_{1Out}}{\partial h_{1Net}} \frac{\partial h_{1Net}}{\partial w_1} \frac{\partial h_{1Net}}{\partial w_1}$
 - 2. $\frac{\partial L}{\partial o_1} = (p_1 y_1); \frac{\partial L}{\partial o_2} = (p_2 y_2).$
 - 3. From (3), $\frac{\partial o_1}{\partial h_{1Out}} = \frac{\partial}{\partial h_{1Out}}(b_3 + w_5 h_{1Out} + w_7 h_{2Out}) = w_5$. Similarly, from (4), $\frac{\partial o_2}{\partial h_{1Out}} = \frac{\partial}{\partial h_{1Out}}(b_4 + w_6 h_{1Out} + w_8 h_{2Out}) = w_6$.
 - 4. Note that $\frac{d}{dx}(tanh(x)) = 1 tanh^2(x)$. Combined with (2) we have $\frac{\partial h_{1Out}}{\partial h_{1Net}} = 1 tanh^2(h_{1Net})$.
 - 5. From (1), $\frac{\partial h_{1Net}}{\partial w_1} = \frac{\partial}{\partial w_1}(b_1 + w_1i_1 + w_3i_2) = i_1$.
 - 6. Assemble all the components and we will have

$$\begin{split} \frac{\partial L}{\partial w_1} &= (p_1 - y_1) w_5 [1 - tanh^2(h_{1Net})] i_1 + (p_2 - y_2) w_6 [1 - tanh^2(h_{1Net})] i_1 \\ &= [(p_1 - y_1) w_5 + (p_2 - y_2) w_6] [1 - tanh^2(h_{1Net})] i_1 \end{split}$$

We further inspect the gradients and rewrite their form as follows:

$$\frac{\partial L}{\partial w_5} = (p_1 - y_1)h_{1Out} = \delta_5 \times h_{1Out} \tag{8}$$

$$\frac{\partial L}{\partial w_1} = [(p_1 - y_1)w_5 + (p_2 - y_2)w_6][1 - tanh^2(h_{1Net})]i_1 = \delta_1 \times i_1$$
(9)

where $\delta_5 = (p_1 - y_1)$ and $\delta_1 = [(p_1 - y_1)w_5 + (p_2 - y_2)w_6][1 - tanh^2(h_{1Net})].$

It's obvious that the gradients do follow the form of delta times the input. From the hidden layer to the output layer, the difference between predicted and actual value is essentially $(p_i - y_i)$. The delta corresponding to w_1 can be understood as the cumulative difference related to w_1 times before performing transformation via activation function.

Meanwhile, noticed that when deriving the gradient $\frac{\partial L}{\partial w_1}$, the formula contains (p_1-y_1) and (p_2-y_2) . These two components have been calculated when we deriving the gradient $\frac{\partial L}{\partial w_5}$ and $\frac{\partial L}{\partial w_6}$. We are essentially reusing the results that we obtain before. In practice, we usually work out the gradients near the output layer at the back first, and then work backward to obtain the gradients at the front reusing the former results. The logic behind is that the delta at the front is affected by the delta at the back, therefore we can obtain the delta at the front by "back-propagate" the effect of deltas at the back. This is how backpropagation got its name.

Appendix 3.4.7 Loss Plot Examples

Loss plot indicating over-fitting

Normal loss plot

Appendix 3.4.8 Final ANN Model Structure (PCA Processed data)

Black lines represent positive weights while gray lines represent negative weights. The width of the line is determined by the absolute value of the weight.

Appendix 3.4.8 Result for running

RandomForest	seed(4011)		recall	F_score	F_mean	RandomForest	seed(4011)		recall	F_score	F_mean	RandomForest			recall	F_score	F_mear
under_sample1	689	17	0.6852	0.2126	0.2315	over_sample1	916	49	0.0926	0.1124	0.1649	smote_OS_1	749	23	0.5741	0.2199	0.244
	257	37			0.6928		30	5			0.1375		197	31			0.593
under_sample2	676	13	0.7719	0.2391		over_sample2	909	49	0.1404	0.1616		smote_OS_2	742	19	0.6842	0.2626	
	267	44					34	8					201	39			
under_sample3	700	20	0.661	0.2301		over sample3	912	53	0.1017	0.1277		smote OS 3	769	22	0.6271	0.2761	
	241	39					29	6					172	37			
under_sample4	681	17	0.7119	0.2327		over_sample4	895	51	0.1356	0.1416		smote_OS_4	746	24	0.5932	0.2422	
	260	42					46	8					195	35			
under_sample5	694	19	0.7164	0.2712		over_sample5	904	53	0.209	0.2545		smote_OS_5	746	20	0.7015	0.3123	
	239	48					29	14					187	47			
under_sample6	668	18	0.7143	0.2387	4	over_sample6	909	54	0.1429	0.18		smote_OS_6	736	27	0.5714	0.24	
	269	45					28	9					201	36			
under_sample7	724	19	0.6275	0.2078		over_sample7	919	44	0.1373	0.1591		smote_OS_7	777	27	0.4706	0.1943	
pie/	225	32	5.5275	2.2070		o.ccampie/	30	7	5.2575				172	24	2.1700	5.2545	
under_sample8	702	15	0.717	0.2262		over_sample8	921	48	0.0943	0.119		smote_OS_8	751	25	0.5283	0.2022	
ander_semples	245	38	0.717	0.2202		over_samples	26	5	0.0343	0.115		2111016_00_0	196	28	0.3203	0.2022	
under sample9	687	23	0.5577	0.1696		avas samalag	918	46	0.1154	0.1364		smote_OS_9	759	25	0.5192	0.2015	
under_sample9	261	29	0.5577	0.1636		over_sample9	30	6	0.1154	0.1304		smote_os_9	189	27	0.5152	0.2015	
	689	16	0.7647	0.2865			905	54	0.2059	0.2569		00 10	736	23	0.6618	0.2913	
under_sample10	243	52	0.7647	0.2865		over_sample10	27	14	0.2059	0.2569	-	smote_OS_10	196	45	0.6616	0.2915	
RandomForest	seed(4011)		recall	F_score	F_mean	RandomForest	seed(4011)		recall	F_score	F_mean	RandomForest	seed(4011)		recall	F_score	F_mear
over_sample_PCA1	936	52	0.037	0.0606	0.0908	smote_OS_PCA1	694	15	0.7222	0.2261	0.2268	under_sample_PCA1	709	20	0.6296	0.2092	0.221
	10	2			0.057		252	39			0.6795		237	34			0.613
over_sample_PCA2	933	55	0.0351	0.058		smote_OS_PCA2	683	14	0.7544	0.2389		under_sample_PCA2	705	21	0.6316	0.2175	
	10	2					260	43					238	36			
over_sample_PCA3	935	57	0.0339	0.0597		smote_OS_PCA3	723	22	0.6271	0.2357		under_sample_PCA3	743	30	0.4915	0.2028	
	6	2					218	37					198	29			
over_sample_PCA4	927	58	0.017	0.027		smote_OS_PCA4	660	21	0.6441	0.2011		under_sample_PCA4	703	26	0.5593	0.2	
	14	1					281	38					238	33			
over_sample_PCA5	927	58	0.1343	0.2195		smote_OS_PCA5	687	21	0.6866	0.2527		under_sample_PCA5	692	22	0.6716	0.255	
	6	9					246	46					241	45			
over_sample_PCA6	925	61	0.0317	0.0519		smote_OS_PCA6	683	16	0.746	0.2582		under_sample_PCA6	692	19	0.6984	0.25	
	12	2					254	47					245	44			
over_sample_PCA7	934	47	0.0784	0.1143		smote OS PCA7	728	20	0.6078	0.2046		under sample_PCA7	727	26	0.4902	0.1978	
	15	4	2.3701			2212_00_1 010	221	31	2.3070	2.2010		sumple_r or u	222	25	2.1502	2.2570	
over sample PCA8	933	49	0.0755	0.1127		smote OS PCA8	691	21	0.6038	0.1877		under_sample_PCA8	713	16	0.6981	0.2284	
over_somple_i cho	14	4	0.0733	0.1127		3012_00_1 040	256	32	0.0036	0.2077		anaci_sample_1 ond	234	37	0.0001	5.2264	
	4.7		0.0385	0.0615		smote OS PCA9	686	15	0.7115	0.2108		under_sample_PCA9	702	19	0.6346	0.1994	
over sample PCA9	927																
over_sample_PCA9	937	50	0.0385	0.0615		SINGLE_GO_I CAD			0.7113	0.2200		under_sample_r ers			0.0340	0.133	
over_sample_PCA9	11	2 62	0.0882			smote_OS_PCA10	262 674	37		0.252		under_sample_PCA1	246 704	33 25	0.6324		

	seed(4011)					F_mean			seed(4011)		recall	F_score				seed(40		recall	F_score	
under_sample1		556 190	20 34	0.6296	0.1798	0.18002 0.57547		over_sample1	651 295	26 28	0.5189	0.1485	0.1672		e_OS_1	638		0.5741	0.1577	0.1770
under_sample2		554	25	0.5614	0.1693			over_sample2	614	27	0.526	0.1442			e_OS_2	639	9 25	0.5614	0.1628	
under_sample3		189 591	32 24	0.5932	0.2035			over_sample3	329 648	26	0.559	0.1714		smot	e_OS_3	304 668	8 19		0.215	
under_sample4		150 553	35 23	0.6101	0.1879			over_sample4	293 616	33 27	0.542	0.1538		smot	e_OS_4	273 640			0.1818	
under_sample5		288 547	36 30	0.5522	0.1897			over_sample5	325 626	32 26	0.6119	0.1975			e_OS_5	30: 62:			0.1937	
		286	37						307	41						308	6 40			
under_sample6		552 285	32 31	0.42	0.1635			over_sample6	657 280	21 42	0.6667	0.2181		smot	e_OS_6	29		0.5556	0.1776	
under_sample7		80 269	19 32	0.6274	0.1818			over_sample7	629 320	17 34	0.6667	0.1679		smot	e_OS_7	648 30:		0.5294	0.142	
under_sample8		48	24	0.5471	0.1522			over_sample8	611	23	0.566	0.1431		smot	e_OS_8	628	8 23		0.1492	
under_sample9		199 538	29 21	0.5961	0.1577			over_sample9	336 630	30 23	0.5576	0.1453		smot	e_OS_9	319 649	5 20		0.1653	
under_sample10		310 551	31 26	0.6176	0.2148			over_sample10	318 632	29 31	0.544	0.1827		smot	e_OS_10	64!		0.6617	0.225	
		281	42						300	37						287	7 45			
KNN	seed(4011)		-	ecall	F_score	F_mean		KNN	seed(4011)		recall	F_score	F_mean	KNN		seed(40	11)	recall	F_score	F_mean
over_sample_PCA1		552 294	23 31	0.5741	0.1636	0.17241		smote_OS_PCA1	553 393	17 37	0.685	0.1528	0.169		r_sample_PCA1	650		0.6111	0.1751	0.1841
over_sample_PCA2		513	26	0.5438	0.1483	0.55007		smote_OS_PCA2	556	14	0.754	0.1765	0.7100		r_sample_PCA2	669	5 19	0.6667	0.2037	0.3030
over_sample_PCA3		330 548	31 24	0.5932	0.1809			smote_OS_PCA3	387 567	43 10	0.8309	0.2033		unde	r_sample_PCA3	68		0.5593	0.1896	
over_sample_PCA4		193	35 27	0.5423	0.1516			smote_OS_PCA4	374 556	49 21	0.644	0.1576		unde	r_sample_PCA4	256		0.4919	0.1643	
		331	32						385	38						26	5 29			
over_sample_PCA5		333 300	25 42	0.6268	0.2053			smote_OS_PCA5	542 391	20 47	0.7014				r_sample_PCA5	29	2 34			
over_sample_PCA6		544 193	23 40	0.6349	0.202			smote_OS_PCA6	554 383	20 43	0.6825	0.1758		unde	r_sample_PCA6	26		0.6508	0.2204	
over_sample_PCA7		528	17	0.6667	0.1674			smote_OS_PCA7	558	17	0.6667	0.1428		unde	r_sample_PCA7	67:	1 22	0.5686	0.162	
over_sample_PCA8		321 520	34 20	0.6226	0.1598			smote_OS_PCA8	391 534	34 13	0.7547	7 0.1581		unde	r_sample_PCA8	278		0.5094	0.1417	
over sample PCA9		327 522	33 21	0.5961	0.1515			smote OS PCA9	413 550	40 15	0.711	0.1519			r sample PCA9	30:		0.6153	0.1763	
		326 527	31		0.1937				398 535	37 18		0.1941				279	9 32			
over_sample_PCA10		305	40	0.5882	0.1937			smote_OS_PCA10	397	50	0.735	0.1941		unde	r_sample_PCA1	27			0.2352	
ANN																				
Jnder Sample		test1		test	2	test	:3	test4	test5		te	est6		test7	test8		test9		test10	
		test.y		test.	y	test	.у	test.y	test.y	,	te	est.y		test.y	test.y		test.y		test.y	
		0 1		0 1		0 1		0 1	0 1		_	1		0 1	0 1		0 1		0 1	
		0 667 15			37 12 C 45		40 14	0 630 12	0.627			613 15		0 682 15	0 656 13		0 601 12		0 645 2	
Precision		1279 39 [1] 0.122			6 45 .128205)1 45).13005	1311 47 78 [1] 0.131284	1306	, 50 15934		324 48] 0.1290		1267 36 [1] 0.1188119	1291 40		1347 40 [1] 0.103		1287 4 [1] 0.140	
Recall		[1] 0.722		-).76271				-] 0.7619		[1] 0.705882			[1] 0.769			
F							0.22222	22 [1] 0.225419] 0.2206	897	[1] 0.203389	3 [1] 0.208		[1] 0.182		[1] 0.23	
Over Sample		test1		test	2	test	.3	test4	test5		le le	est6		test7	test8		test9		test10	
over pample		test.y		test.		tesi		test.y	test.y			est.y		test.y	test.y		test.y		test.y	
		0 1		0 1	7	0 1		0 1	0 1			1		0 1	0 1		0 1		0 1	
		0555 4		0.53	7 3	0.5	59 5	0536 4	0.555	5 3	0	531 4		0583 8	0549 6		05313		0545	3
		1391 50			6 54		32 54	1405 55	1378			406 59		1366 43	1398 47		1417 49		1387 6	
Precision Recall		[1] 0.1133 [1] 0.925			.117391; .94736(). 12385;). 91525;			14479 95522		[] 0.1268 [] 0.9365		[1] 0.1051345 [1] 0.8431373			[1] 0.105 [1] 0.942		[1] 0.143 [1] 0.95	
F		[1] 0.202).218181			25147	-	-		[1] 0.0431313 [1] 0.1869565			[1] 0.342		[1] 0.25	30024
		.,,										,		.,			.,,		.,,	
BMOTE Over Sa	mple	test1		test	2	test	:3	test4	test5		te	est6		test7	test8		test9		test10	
		test.y		test.		test	•	test.y	test.y	ı		est.y		test.y	test.y		test.y		test.y	
		01 06189		0.1	5 14	0.1	08 11	0 1 0 590 19	0.1	3.8		1 586 12		01 06168	0 1 0 619 13		0 1 0611 12		0 1 0612 1	1
		1328 45			8 43		33 48	1351 40	1310			351 51		1333 43	1328 40		1337 40		1320 5	
Precision		[1] 0.120			.115903		.12598] 0.1268		[1] 0.1143617	[1] 0.1086		[1] 0.106		[1] 0.151	
Recall F		[1] 0.833 [1] 0.210).81355).218181] 0.8095] 0.2193		[1] 0.8431373 [1] 0.2014052			[1] 0.769 [1] 0.186		[1] 0.83 [1] 0.25	
PCA Under Sam	ple	test1		test		tesi		test4	test5			est6		test7	test8		test9		test10	
		test.y 0 1		test.		test		test.y 0 1	test.y	,		est.y		test.y	test.y		test.y		test.y	
		U 1 0 663 12	2		6 13	0.1	85 17	0 640 15	0 648	3 13		1 615 14		0 1 0674 16	0 645 14		0 1 0622 14	4	0 1 0646 1	7
		1283 42	2	129	7 44	127	6 42	1301 44	1285	54	1	322 49		1275 35	1302 39		1326 38	3	1286 5	1
Precision Recall		[1] 0.129 [1] 0.777			.129032 .771929), 13207!), 711864] 0.1320] 0.7777		[1] 0.1129032 [1] 0.686274!			[1] 0.104 [1] 0.730		[1] 0.151 [1] 0.75	
necali E		[1] 0.221			.221105).22281							[1] 0.000214: [1] 0.1939058			[1] 0.130		[1] 0.25	
PCA Over Samp	le	test1		test		tesi		test4	test5			est6		test7	test8		test9		test10	
		test.y 0 1		test.		test 0 1		test.y	test.y)		est.y 1		test.y 0 1	test.y		test.y 0 1		test.y 0 1	
		0 1 0 554 3	3		7 4		63 7	0549 4	0.568	3 7		535 5		U 1 0 585 8	0556 6		บ 1 0537 4		0 1 0 551 10	D
		1392 51	1	139	6 53	137	78 52	1392 55	1365	60	1	402 58		1364 43	1391 47		1411 48		1381 58	В
Precision Recall		[1] 0.1151 [1] 0.944			.118040 .92982), 12093), 88135!] 0.1260 10.9206		[1] 0.1056511 [1] 0.8431373	[1] 0.1073 [1] 0.886		[1] 0.104 [1] 0.923		[1] 0.132 [1] 0.853	
recall :		[1] 0.205). 21267i] 0.3200] 0.2217		[1] 0.6431373 [1] 0.1877723			[1] 0.323 [1] 0.187		[1] 0.22	
	_																			
PCA SMOTE Ov	er Samp	test1 test.y		test.		tesi		test4 test.y	test5			est6		test7 test.y	test8 test.y		test9 test.y		test10 test.y	
		test.y		0 1		0 1		0 1	0 1			est.y 1		test.y O 1	0 1		test.y 0 1		test.y	
		05816		0.54	3 5	0.50	69 5	0536 6	0.566		0	545 7		05968	0570 5		0 555 10		0.558	
		1365 48 [1] 0.1162			0 52 .115044		72 54 1 12676	1405 53 06 [1] 0.115720	1367 5 [1] 0.1			392 56] 0.125		1353 43 [1] 0.1085853	1377 48		1393 42 [1] 0.096		1374 6	
Pracision		grij O. HOa	-660	1110	. 113044	_ ըսև		ao marzu	 □ [1]0. 	43		g 0. IZJ								
Precision Recall		[1] 0.888	38889	9 [1] 0.	.912280	7 [1] 0).915254	42 [1] 0.898309	51 [1] 0.8	38059	97 [1] 0.8888	3889	[1] 0.8431373	3 [1] 0.905	6604	[1] 0.807	76923	[1] 0.89	70588

logistics	seed(4011)		recall	F_score		logistics	seed(4011)			F_score		logistics	seed(4011)		recall	F_score	
under_sample1	665	13	0.7592	0.218	0.2224	over_sample1	579	5	0.9074	0.2085	0.2109	smote_OS_1	645	13	0.7592	0.2071	0.2122
	281	41			0.7281		367	49			0.864		301	41			0.7584
ınder_sample2	650	16	0.7192	0.2097		over_sample2	565	8	0.8596	0.2024		smote_DS_2	618	14	0.7543	0.2023	
	293	41					378	49					325	43			
under sample3	674	15	0.7457	0.2378		over sample3	591	6	0.8983	0.2294		smote OS 3	638	12	0.7966	0.2298	
	267	44					350	53					303	47			
under_sample4	654	16	0.7288	0.2211		over_sample4	565		0.8983	0.2172		smote OS 4	622	20	0.661	0.1871	
	287	43					376	53					319	39			
under_sample5	672	14	0.791	0.2782		over_sample5	592	9	0.8656	0.2400		smote OS 5	647	10	0.8507	0.2781	
under_sample5			0.131	0.2102		over_samples			0.0030	0.2403		smote_U3_3			0.0301	0.2101	
	261	53					341	58					286	57			
under_sample6	633	12	0.8095	0.244		over_sample6	554		0.8889	0.2231		smote_OS_6	605	15	0.7619	0.2167	
	304	51					383	56					332	48			
under_sample7	704	20	0.6078	0.1896		over_sample7	597	- 11	0.7843	0.1806		smote_OS_7	628	13	0.7451	0.1853	
	245	31					352	40					321	38			
under_sample8	669	16	0.6981	0.2011		over_sample8	559	7	0.8679	0.1889		smote_OS_8	630	14	0.7358	0.1907	
	278	37					388	46					317	39			
under_sample9	633	14	0.7307	0.1876		over_sample9	562	8	0.8461	0.1825		smote_OS_9	614	12	0.7692	0.1877	
	315	38				010_00.00	386	44					334	40			
under_sample10	651	21	0.6911	0.2373		over_sample10	563	12	0.8235	0.2271		smote_OS_10	621	17	0.75	0.2372	
ander_sample to	281	47	0.0311	0.2313		over_sample to	369	56	0.0233	0.2211		SINORE_CO_10	311	51	0.13	0.2312	
ogistios	seed(4011)		recall	F_score		logistics	seed(4011)			F_score		logistics	seed(4011)		recall	F_score	
over_sample_PCA ⁻	566	4	0.9259	0.2066	0.208	smote_OS_PCA1	586	7	0.8703	0.2039	0.2094	under_sample_PCA1	658	14	0.7401	0.2094	0.2167
	380	50			0.8725		360	47			0.8582		288	40			0.7316
over_sample_PCA2	552	7	0.8771	0.2008		smote_OS_PCA2	552	8	0.8596	0.1971		under_sample_PCA2	643	16	0.7192	0.206	
	391	50					391	49					300	41			
over_sample_PCA	576	6	0.8983	0.2222		smote_OS_PCA3	586	6	0.8983	0.2269		under_sample_PCA3	673	17	0.7118	0.2276	
	365	53					355	53					268	42			
										0.216		under_sample_PCA4	643	16	0.7288	0.215	
over sample PCAs	554	8	N 8644	0.2052		smote FIS PCA4	554	9	N 8474					10	5200	0.210	
over_sample_PCA		8 51	0.8644	0.2052		smote_OS_PCA4	554 387		0.8474	0.210		ander_sample_r orri	298	43			
over_sample_PCA	387	51					387	50					298	43	0.791	0.2572	
	387 575	51 8		0.2052		smote_OS_PCA4	387 580	50 9		0.2426		under_sample_PCA5	641	14	0.791	0.2572	
over_sample_PCAS	387 575 358	51 8 59	0.8805	0.2438		smote_OS_PCA5	387 580 353	50 9 58	0.8656	0.2426		under_sample_PCA5	641 292	14 53			
	387 575 358 540	51 8 59 7		0.2438			387 580 353 547	50 9 58 7		0.2426			641 292 621	14 53 12		0.2572 0.2372	
over_sample_PCAS	387 575 358 540 397	51 8 59 7 56	0.8805	0.2438		smote_OS_PCA5	387 580 353 547 390	50 9 58 7 56	0.8656	0.2426		under_sample_PCA5	641 292 621 316	14 53 12 51	0.8095	0.2372	
over_sample_PCAS	387 575 358 540 397 596	51 8 59 7 56 10	0.8805	0.2438		smote_OS_PCA5	387 580 353 547 390 598	50 9 58 7 56 10	0.8656	0.2426		under_sample_PCA5	641 292 621 316 695	14 53 12 51 16	0.8095		
over_sample_PCA over_sample_PCA over_sample_PCA	387 575 358 540 397 596 353	51 8 59 7 56 10 41	0.8805 0.8889 0.8039	0.2438 0.2171 0.1842		smote_OS_PCA5 smote_OS_PCA6 smote_OS_PCA7	387 580 353 547 390 598 351	50 9 58 7 56 10 41	0.8656 0.8889 0.8039	0.2426 0.2203 0.1851		under_sample_PCA5 under_sample_PCA6 under_sample_PCA7	641 292 621 316 695 254	14 53 12 51 16 35	0.8095 0.6862	0.2372	
over_sample_PCAS	387 575 358 540 397 596 353 555	51 8 59 7 56 10 41 7	0.8805 0.8889 0.8039	0.2438		smote_OS_PCA5	387 580 353 547 390 598 351 572	50 9 58 7 56 10 41 9	0.8656 0.8889 0.8039	0.2426		under_sample_PCA5	641 292 621 316 695 254 652	14 53 12 51 16 35 14	0.8095 0.6862	0.2372	
over_sample_PCA(over_sample_PCA(over_sample_PCA(over_sample_PCA(387 575 358 540 397 596 353 555 392	51 8 59 7 56 10 41 7 46	0.8805 0.8889 0.8039 0.8679	0.2438 0.2171 0.1842 0.1873		smote_OS_PCA5 smote_OS_PCA6 smote_OS_PCA7 smote_OS_PCA8	387 580 353 547 390 598 351 572 375	50 9 58 7 56 10 41 9	0.8656 0.8889 0.8039 0.8301	0.2426 0.2203 0.1851 0.1864		under_sample_PCA5 under_sample_PCA6 under_sample_PCA7 under_sample_PCA8	641 292 621 316 695 254 652 295	14 53 12 51 16 35 14 39	0.8095 0.6862 0.7358	0.2372 0.2058 0.2015	
over_sample_PCA over_sample_PCA over_sample_PCA	387 575 358 540 337 596 353 555 332 550	51 8 59 7 56 10 41 7 46	0.8805 0.8889 0.8039	0.2438 0.2171 0.1842 0.1873		smote_OS_PCA5 smote_OS_PCA6 smote_OS_PCA7	387 580 353 547 390 598 351 572 375 557	50 9 58 7 56 10 41 9 44 7	0.8656 0.8889 0.8039	0.2426 0.2203 0.1851 0.1864		under_sample_PCA5 under_sample_PCA6 under_sample_PCA7	641 292 621 316 695 254 652 295 623	14 53 12 51 16 35 14 39	0.8095 0.6862 0.7358	0.2372	
over_sample_PCA(over_sample_PCA(over_sample_PCA(over_sample_PCA(over_sample_PCA(387 575 358 540 397 596 353 555 392 550 398	51 8 59 7 56 10 41 7 46 7	0.8805 0.8889 0.8039 0.8679 0.8653	0.2438 0.2171 0.1842 0.1873 0.1818		smote_OS_PCA5 smote_OS_PCA6 smote_OS_PCA7 smote_OS_PCA8 smote_OS_PCA9	387 580 353 547 390 598 351 572 375 557 391	50 9 58 7 56 10 41 9 44 7	0.8656 0.8889 0.8039 0.8301 0.8653	0.2426 0.2203 0.1851 0.1864 0.1844		under_sample_PCA5 under_sample_PCA6 under_sample_PCA7 under_sample_PCA8 under_sample_PCA9	641 292 621 316 695 254 652 295 623 325	14 53 12 51 16 35 14 39 17	0.8095 0.6862 0.7358 0.6731	0.2372 0.2058 0.2015 0.1699	
over_sample_PCA(over_sample_PCA(over_sample_PCA(over_sample_PCA(387 575 358 540 337 596 353 555 332 550	51 8 59 7 56 10 41 7 46	0.8805 0.8889 0.8039 0.8679 0.8653	0.2438 0.2171 0.1842 0.1873		smote_OS_PCA5 smote_OS_PCA6 smote_OS_PCA7 smote_OS_PCA8	387 580 353 547 390 598 351 572 375 557	50 9 58 7 56 10 41 9 44 7	0.8656 0.8889 0.8039 0.8301 0.8653	0.2426 0.2203 0.1851 0.1864		under_sample_PCA5 under_sample_PCA6 under_sample_PCA7 under_sample_PCA8	641 292 621 316 695 254 652 295 623 325	14 53 12 51 16 35 14 39	0.8095 0.6862 0.7358 0.6731	0.2372 0.2058 0.2015	