Break-Ground:

What's the graph look like?

Two young mathematicians discuss how to sketch the graphs of functions.

Check out this dialogue between two calculus students (based on a true story):

Devyn: Riley, I've been thinking about the derivative.

Riley: It's all about change. It's some "change-detector" tool for math.

Devyn: I know! What's crazy is that you can use it as a tool for sniffing out dirt on functions.

Riley: First f' tells us increasing or decreasing.

Devyn: Then f'' tells us concavity.

Riley: From just that we know all local maxes and mins.

Devyn: And if we use limits, we can find any asymptotes!

Riley: You know, I'd like to make up a procedure based on all these facts, that would tell me what the graph of any function would look like.

Devyn: Me too! Let's get to work!

Problem 1 On some interval, we know that f'(x) is positive and f''(x) is positive. Which of the following is the best option for the shape of the graph on that interval?

Multiple Choice:

Learning outcomes: Determine how the graph of a function looks without using a calculator.

Problem 2 On some interval, we know that f'(x) is negative and f''(x) is positive. Which of the following is the best option for the shape of the graph on that interval?

Multiple Choice:

