

sometime we might have a state diagram I table with more states than over really needed.

*Might be useful to identify states whice are the same lequivabelt >> such states can be replaced (grayped) into one state.

Two states are the some 16.

- 1) They produce the same surfacts under all input condition.
- 2) They have the same next state (or equivalent next state) under every input condition graphical method for collapsing states (an use an implication chart + morger diagram to Sigure out equivalents.

Sigure out equivalents. The table that tells me the conditions under which 2 states are equivalent.

e.g.	CHYP.	Next state		Output (2) A=0 A=1		
V				A30	A≃l	
	80	53 6¢ 53	કર	l)	
	5 Ø 5 J	δø	54	0	0	
	52	<i>53</i>	SØ	l]	
	53	81	83	Ø)	
	54	82	<i>6</i> 1	0	Q	
			• •			

Implication Chart

51	X			
82	>	X		
53	X	X	X	
54	X	(5¢,52)√	X	X
	50	5]	52	53
	l			'

X: due to output vals. X: due to next state Merger Diagram.

OFINd	cliques	95	node
Connecte	ed by	edop	0

@ Ensure all constituing on any grouped edges are southfield.

Clique: a sol of nodes with edges between overy pair of nodes.

Curh	Ne		Output	
	A =0	A=1	A=	0 A=1
(ક્લ દ્વ)	\$3	(40,62)	1	1
(81,64)	(60,62)	(80,62) (81,64)	0	0
83	(50,62)	(67,54)	0	1