《线性回归》 —线性回归(3)

杨 瑛

清华大学 数学科学系 Email: yangying@mail.tsinghua.edu.cn

Tel: 62796887

2019.03.14

主要内容:线性模型(3)

- (LSE) 残差的性质
- R中的回归: lm
- 如何衡量拟合度?
- 方差分析
- r: 样本相关系数
- 1 多重线性回归
 - 统计误差
 - 估计与残差
 - 计算估计
 - 残差的性质
 - R^2 和调整的 \tilde{R}^2

(LSE)残差的性质

- ♠ $\sum_{i=1}^{n} \mathbf{X}_{i} \hat{\epsilon}_{i} = 0$, $\hat{Y}_{i} \hat{\epsilon}_{i} = 0$. ⇒ 残差与自变量 \mathbf{X}_{i} 不相关,同时与拟合值 \hat{Y}_{i} 不相关。
- ▲ 只要协变量的取值不全相等,则最小二乘估计是唯一定义的。如果 $\sum_{i=1}^{n} (\mathbf{X}_i \overline{\mathbf{X}})^2 = 0$,则最小二乘估计不唯一。为什么?试解释原因。

上面的求和等于零意味着什么?

R中的回归: Im

- \spadesuit model $< -\text{Im}(y \sim x)$
- summary(model)
- ♠ 回归系数: model\$coef 或者coef(model)
- ♠ 拟合值: model\$fitted 或者fitted(model),或 者fitted.values(model)
- ♠ 残差(residuals): model\$resid 或者resid(model) 或者residuals(model)

R中的回归: 模拟数据例子

- ♠ R中Im的例子(体重和身高)[以下是模拟的数据]
- ♠ 模型数据: h = runif(30, 165, 185), w = 1.1(h 100) + rnorm(30, 0, 2).
- ♠ 对(模拟的)身高和体重数据 (h_i, w_i) , $i = 1, \dots, 30$, 建立线性模型

$$w_i = \alpha + \beta h_i + \epsilon_i, \epsilon_i \sim N(0, \sigma^2), i = 1, \cdots, 30.$$

▲ 利用R函数Im可以实现w对h的回归(普通最小二乘估计)

$$L = lm(w \sim h).$$

R中的回归: 模拟数据例子(续)

- ♠ summary(L)可以得到如下结果: 【电脑演示】
- ♠ R的结果对应的模型是【黑板】
- ▲ 如何解释回归系数? $\hat{\beta}$ 是什么意思? $\hat{\alpha}$ 是什么意思? 解释合理吗?
- $\hat{\beta}$ 的解释是合理的。但是 $\hat{\alpha}$ 的解释有点问题?问题处在哪里?如何解决?
- ▲ 我们在观测范围之外的变量关系做解释时要特别的小心。
- 解决方案之一: 将 $h_i(i=1,\cdots,n)$ 进行中心化
- ♠ 注意原始数据和中心化数据之后,β的系数及其检验的值没有发生变化,而α的估计及其检验值发生了变化。试解释其中的原因。

残差标准差

- ♠ 残差标准差: $\hat{\sigma} = \sqrt{\mathsf{SSE}/(n-2)} = \sqrt{\frac{\sum_{i=1}^{n} \hat{c}_{i}^{2}}{n-2}}$.
- ♠ n-2个自由度(因为我们估计两个参数 α 和 β , 故我们失去了两个自由度)。
- ♠ 对于模拟数据, $\hat{\sigma} \approx 2$ 。解释如下:
 - ✓ 平均而言,使用最小二乘回归线从报告(模拟的)数据预测体重,导致大约2公斤的误差。

R^2

♠ 对于数据($\mathbf{X}_i, \mathbf{Y}_i$), $i = 1, \dots, n$, 可以建立两个模型:

$$M_0: \mathbf{Y}_i = \alpha' + \epsilon'_i, i = 1, \dots, n$$

 $M_1: \mathbf{Y}_i = \alpha + \mathbf{X}_i \beta + \epsilon_i, i = 1, \dots, n$

模型 M_0 是不包含协变量 \mathbf{X}_i 的模型,称为**空模型**,模型 M_1 中包含了协变量 \mathbf{X}_i ,称为**简单线性模型**.

- ▲ 利用普通的最小二乘方法可以得到模型 M_0 和 M_1 中参数的估计: $\hat{\alpha}' = \overline{Y}$, $\hat{\beta} = \sum_{i=1}^{n} (\mathbf{X}_i \overline{X})(\mathbf{Y}_i \overline{Y}) / \sum_{i=1}^{n} (\mathbf{X}_i \overline{X})^2 \pi \hat{\alpha} = \overline{Y} \overline{X}\hat{\beta}$.
- M_0 的残差为: $\hat{\epsilon}'_i = \mathbf{Y}_i \overline{Y}, i = 1, \dots, n,$ M_1 的残差为: $\hat{\epsilon}_i = \mathbf{Y}_i \hat{\alpha} \mathbf{X}_i \hat{\beta} = \mathbf{Y}_i \hat{\mathbf{Y}}_i, i = 1, \dots, n.$

R²(续)

 $igwedge M_0$ 的残差平方和: $TSS = \sum_{i=1}^n (\mathbf{Y}_i - \overline{Y})^2, [又称为$ **总平方和** $] M_1的残差平方和: <math>SSE = \sum_{i=1}^n (\mathbf{Y}_i - \widehat{\mathbf{Y}}_i)^2.$ 注意到

TSS =
$$\sum_{i=1}^{n} ([\mathbf{Y}_{i} - \widehat{\mathbf{Y}}_{i}] - [\widehat{\mathbf{Y}}_{i} - \overline{Y}])^{2}$$
=
$$\sum_{i=1}^{n} [\mathbf{Y}_{i} - \widehat{\mathbf{Y}}_{i}]^{2} + \sum_{i=1}^{n} [\widehat{\mathbf{Y}}_{i} - \overline{Y}]^{2}$$
= SSE + RegSS,

其中

$$\mathsf{RegSS} = \sum_{i=1}^{n} [\widehat{\mathbf{Y}}_{i} - \overline{Y}]^{2} = \sum_{i=1}^{n} (\mathbf{X}_{i} - \overline{X})^{2} \widehat{\beta}^{2},$$

称之为回归平方和。

R²(续)

▲ 从上面的式子,很容易看出:

- ♠ TSS = $\sum_{i=1}^{n} (Y_i \overline{Y})^2$ 为<mark>总平方和</mark>,即空模型 M_0 中的残差平方和。
- ♠ SSE为残差平方和,即模型 M_1 中的残差平方和。
- ♠ 定义确定系数: $R^2 = \text{RegSS/TSS} = 1 \text{SSE/TSS}$ 总平方和中回归平方和所占比例。
- ♠ 也可以解释为R²是由线性回归中能够解释Y的变化比例。

R²(续)

- ▲ 从TSS = SSE + RegSS, 或者 R^2 的表达式可以看出来,如果SSE/TSS的值越靠近1,则X对Y的(线性)的影响越弱,反之则越强。即, R^2 越大,X对Y的影响可能就越大。
- \land R^2 是无量纲的 \Longrightarrow 不随着尺度或者量纲的变化而改变。
- ♠ R²的"好"值在不同的应用领域有很大差异。

方差分析

- ♠ RegSS = $\sum_{i=1}^{n} (\widehat{Y}_i \overline{Y})^2$ (证明!)
- ♠ 因此,

TSS = SSE RegSS
$$\frac{\sum_{i=1}^{n}(Y_i - \overline{Y})^2}{\text{总离差平方和}} = \frac{\sum_{i=1}^{n}(Y_i - \widehat{Y}_i)^2}{\text{远黑于方和}} \frac{\sum_{i=1}^{n}(\widehat{Y}_i - \overline{Y})^2}{\text{回归平方和}}$$

这个分解称为方差分析(analysis of variance).

说明:

不同的教材中这些平方和的表示方法有可能不一样。更多方差分析的内容请阅读Draper和Smith 的《Applied Regression Analysis》中的1.3节中内容. 后面还要学习ANOVA的内容.

1

- ♠ 相关系数 $r = \pm R^2$ (如果 $\hat{\beta} > 0$, 则取正号,如果 $\hat{\beta} < 0$, 则取负号).
- ♠ r表示X 和Y 的关系的强度和方向。
- ♠ 利用这个公式,可以得到 $\hat{\beta} = r \frac{SD_y}{SD_y}$ (推导!)。
- ♠ 在目测回归中,陡峭的直线有斜率 $\frac{SD_x}{SD_x}$,而另一条直线的斜率 $\hat{\beta} = r \frac{SD_y}{SD_x}$ 是正确的。
- ♠ r 在X和Y中是对称的。
- ♠ r 没有单位⇒ 不随单位的改变而改变。

多个独立协变量

- ♠ 这个模型描述了三维空间 $\{X_1, X_2, Y\}$ 中的平面.
 - ✓ α是截距
 - ✓ 当 X_2 保持恒定时, β_1 是 X_1 增加一个单位时Y相应增加的量。
 - ✓ 当 X_1 保持恒定时, β_2 是 X_2 增加一个单位时Y相应增加的量。

统计误差

- ♠ 数据: $(\mathbf{X}_{11}, \mathbf{X}_{12}, \mathbf{Y}_1), \dots, (\mathbf{X}_{n1}, \mathbf{X}_{n2}, \mathbf{Y}_n)$.
- ♠ 建立模型: $\mathbf{Y}_i = \alpha + \beta_1 \mathbf{X}_{i1} + \beta_2 \mathbf{X}_{i2} + \epsilon_i$, 其中 ϵ_i 是第i个观测的统计误差。
- ▲ 因此观测值 \mathbf{Y}_i 等于 $\alpha + \beta_1 \mathbf{X}_{i1} + \beta_2 \mathbf{X}_{i2}$,但是要相差 ϵ_i 是未知的随机量。
- ♠ 我们对 ϵ_i 做出与以前相同的假设(预先假设了 ϵ_i 与 X_i 独立):
 - \checkmark **E**[ϵ_i] = 0, $i = 1, \cdots, n$
 - \checkmark Var $(\epsilon_i) = \sigma^2, i = 1, \cdots, n$
 - \checkmark Cov $(\epsilon_i, \epsilon_i) = 0, i \neq j$

估计与残差

- ♠ 总体参数 α , β_1 , β_2 , σ 是未知的
- ♠ 我们可以计算总体参数的估计: $\hat{\alpha}$, $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\sigma}$
- $\hat{\mathbf{Y}}_i = \hat{\alpha} + \hat{\beta}_1 \mathbf{X}_{i1} + \hat{\beta}_2 \mathbf{X}_{i2}$ 称为拟合值。
- $\hat{\epsilon}_i = \mathbf{Y}_i (\hat{\alpha} + \hat{\beta}_1 \mathbf{X}_{i1} + \hat{\beta}_2 \mathbf{X}_{i2})$ 称为残差
- \land 残差是可观察的,可用于检验关于统计误差 ϵ_i 的假设。
- ▲ 平面上方的点具有正残差,平面下方的点具有负残差。
- ▲ 适合数据的平面具有较小的残差。

计算估计

- ♠ 最小化SSE $(\alpha, \beta_1, \beta_2) = \sum_{i=1}^n \widehat{\epsilon}_i^2 = \sum_{i=1}^n (\mathbf{Y}_i \alpha \beta_1 \mathbf{X}_{i1} \beta_2 \mathbf{X}_{i2})^2$ 得到估计量 $\widehat{\alpha}, \widehat{\beta}_1, \widehat{\beta}_2$.
- ♠ 我们可以对SSE(α , β_1 , β_2)求偏导并让它们等于**0**。
- ▲ 这样就给出了三个方程关于未知数 α , β_1 , β_2 的三个方程。解这些**正规方程** (normal equations)得到回归系数的估计: $\hat{\alpha}$, $\hat{\beta}_1$, $\hat{\beta}_2$.
- ♣ 最小二乘估计是唯一的,除非其中一个自变量是不变的,或者自变量是完全共线的。
- ♠ 对p个协变量 X_1, \dots, X_p 的多重线性回归模型也是一样的。但是,使用矩阵表示法更容易(我们可以在这里具体推导!)。
- ♠ 在R中: model= lm(y~ x1+x2); 如果拟合没有截距项的回归模型,则model= lm(y~ 0+x1+x2);

残差的性质

- ♠ 残差 $\hat{\epsilon}_i$ 与拟合值 \hat{Y}_i 不相关,与协变量 $\mathbf{X_1}, \cdots, \mathbf{X_p}$ 中的任何一个不相关。
- ♠ 残差的标准误差 $\hat{\sigma} = \sqrt{\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}/(n-p-1)}$ 给出了残差的"平均"大小。
- ♠ n-p-1 为自由度(因为我们估计p+1个参数 α , β_1 , · · · , β_p , 故我们失去p+1自由度.

R^2 和调整的 \tilde{R}^2

- \blacktriangle TSS = $\sum_{i=1}^{n} (\mathbf{Y}_i \overline{Y})^2$.
- \blacktriangle SSE = $\sum_{i=1}^{n} (\mathbf{Y}_i \hat{\mathbf{Y}}_i)^2 = \sum_{i=1}^{n} \hat{\epsilon}_i^2$ (残差平方和)
- RegSS = TSS SSE = $\sum_{i=1}^{n} (\widehat{Y}_i \overline{Y})^2$.
- ♠ $R^2 = \text{RegSS/TSS} = 1 \text{SSE/TSS}$ 表示变异中由Y对 X_1, \dots, X_p 的线性回归可以解释的比例。
- ▲ 当我们向模型中添加额外的变量时,*R*²永远不会减少。为什么?

$$\tilde{R}^2 = 1 - \frac{\text{SSE}/(n-p-1)}{\text{TSS}/(n-1)},$$

当模型中有额外变量时,惩罚原来的R².

♠ 如果样本量很大的话, R^2 和 \tilde{R}^2 相差很小。

【第七讲结束】