

DESCRIPTION:

With high ability to withstand the shock loading of large current, BTA216B-600D series triacs provide high dv/dt rate with strong resistance to electromagnetic interface. With high commutation performances, 3 quadrants products especially recommended for use on inductive load.

MAIN FEATURES

Symbol	Symbol Value	
I _{T(RMS)}	16	А
V _{DRM} /V _{RRM}	600/800/1200	V

ABSOLUTE MAXIMUM RATINGS

Paran	neter	Symbol	Value	Unit
Storage junction temperature range		T _{stg}	-40-150	$^{\circ}\mathbb{C}$
Operating junction tem	Operating junction temperature range		-40-125	$^{\circ}$ C
Repetitive peak off-state	Repetitive peak off-state voltage (Tj=25℃)		600/800/1200	V
Repetitive peak reverse	e voltage (Tj=25℃)	V _{RRM}	600/800/1200	V
Non repetitive surge pe	eak Off-state voltage	V _{DSM}	V _{DRM} +100	V
Non repetitive peak reverse voltage		V _{RSM}	V _{RRM} +100	V
RMS on-state current	TO-263 (Tc=80°C)	I _{T(RMS)}	16	А
Non repetitive surge peak on-state current (full cycle, F=50Hz)		Ітѕм	160	А
I ² t value for fusing (tp=10ms)		l ² t	128	A ² s
Critical rate of rise of on-state current $(I_G = 2 \times I_{GT})$		dl/dt	50	A/µs
Peak gate current		I _{GM}	4	Α
Average gate power dissipation		P _{G(AV)}	1	W
Peak gate power		P _{GM}	5	W

ELECTRICAL CHARACTERISTICS (T_j =25 $^{\circ}$ C unless otherwise specified)

3 Quadrants

Symbol	Test Condition	Quadrant		Value				Unit
Symbol				BW	CW	sw	TW	Oilit
lgт	V 40V D 000	I - II -III	MAX	50	35	10	5	mA
V _G T	V _D =12V R _L =33Ω	I - II -III	MAX	1.3			V	
V _{GD}	$V_D = V_{DRM} T_j = 125$ °C $R_L = 3.3$ ΚΩ	I - II -III	MIN	0.2		V		
	I -III	MAX	70	50	30	15	mΛ	
IL	I _G =1.2I _{GT}	II	IVIAA	80	60	40	20	mA
Ін	I _T =100mA		MAX	60	40	25	15	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	1000	500	200	100	V/µs

4 Quadrants

Symbol	Test Condition	Quadrant		Va	Unit	
Symbol	rest Condition			В	С	Oille
I _{GT}		I - II -III	MAY	50	25	mΛ
IGI	V _D =12V R _L =33Ω	IV	IV MAX	70	50	mA
V _G T		ALL	MAX	1.5		V
V _{GD}	$V_D = V_{DRM} T_j = 125$ °C $R_L = 3.3$ ΚΩ	ALL	MIN	0.2		V
IL	1 -4 01	I -III-IV	MAX	70	50	mA
IL	I _G =1.2I _{GT}	II	IVIAA	100	80	IIIA
Ін	I _T =100mA		MAX	60	40	mA
dV/dt	V _D =2/3V _{DRM} Gate Open T _j =125℃		MIN	500	200	V/µs

STATIC CHARACTERISTICS

Symbol	Parameter		V	l lmi4		
Symbol			-600V	-800V	-1200V	Unit
V _{TM}	I _{TM} =22.5A tp=380μs	Tj=25℃		1.5		V
I _{DRM}	\\\-\\\-\\\\-\\\\-\\\\-\\\\-\\\\\\\\\\	Tj=25℃	5	5	10	μA
I _{RRM}	$V_D = V_{DRM} V_R = V_{RRM}$	T _j =125℃	1	1	2	mA

THERMAL RESISTANCES

Symbol	Parameter		Value	Unit
R _{th(j-c)}	junction to case(AC)	TO-263	2.5	°C/W
R _{th(j-a)}	junction to ambient	10-203	45	C/VV

FIG.1 Maximum power dissipation versus RMS on-state current

FIG.3: Surge peak on-state current versus number of cycles

FIG.5: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp<20ms, and corresponging value of I²t (dI/dt < 50A/µs)

FIG.2: RMS on-state current versus ambient temperature(printed circuit board FR4, copper thickness:35µm)(full cycle)

FIG.4: On-state characteristics (maximum values)

FIG.6: Relative variations of gate trigger current, holding current and latching current versus junction temperature

SOLDERING PARAMETERS

Reflow Condition		Pb-Free assembly	
		(see figure at right)	
	-Temperature Min	+150℃	
	(T _{s(min)})	+150 C	
Pre	-Temperature	+200℃	
Heat	Max(T _{s(max)})	1200 C	
	-Time (Min to Max) (ts)	60-180 secs.	
Average	ramp up rate	3°C/sec. Max	
(Liquidus	Temp (T∟)to peak)	3 C/Sec. Iviax	
T _{s(max)} to	T∟ - Ramp-up Rate	3℃/sec. Max	
	-Temperature(T∟)	+217℃	
Reflow	(Liquidus)	1217 C	
	-Temperature(t∟)	60-150 secs.	
Peak Ten	np (T _p)	+260(+0/-5)°C	
Time with	nin 5°Cof actual	20 40000	
Peak Temp (t _p)		20-40secs.	
Ramp-down Rate		6℃/sec. Max	
Time 25℃ to Peak Temp (T _P)		8 min. Max	
Do not ex	cceed	+260℃	

