

The Cardinality-Constrained approach applied to manufacturing problems

Giovanni Lugaresi

Advisor: Prof. Andrea Matta

Co-Advisor: Prof. Ettore Lanzarone

- 1. Motivations and scope of work
- 2. The Cardinality-Constrained Approach
- 3. Applications
 - 3.1 The Part Type Selection Problem
 - 3.2 The Machine Loading Problem
 - 3.3 The Buffer Allocation Problem
- 4. Conclusions

- 1. Motivations and scope of work
- 2. The Cardinality-Constrained Approach
- 3. Applications
 - 3.1 The Part Type Selection Problem
 - 3.2 The Machine Loading Problem
 - 3.3 The Buffer Allocation Problem
- 4. Conclusions

Motivation: Uncertainty in manufacturing

The data from the machines might be unknown

iviacinites failures

System configuration

Impact on the solution (e.g. performance decreasing and/or cost increasing)

Motivation: Uncertainty in manufacturing

Number of disruptive events

Robust Optimization

CARDINALITY-CONSTRAINED APPROACH

The approach permits to select a constraint over which up to Γ coefficients go to the maximum value, where those coefficients are the ones causing the worst impact

Bertsimas & Sim
"The price of robustness"
Operations Research
(2004)

The approach has been <u>rarely</u>¹ applied to manufacturing problems in the literature.

1. Moreira, 2015

- 1. Motivations and scope of work
- 2. The Cardinality-Constrained Approach
- 3. Applications
 - 3.1 The Part Type Selection Problem
 - 3.2 The Machine Loading Problem
 - 3.3 The Buffer Allocation Problem
- 4. Conclusions

The Cardinality-Constrained approach

$$\max \sum_{i} c_{i}x_{i}$$
s.t.
$$\begin{cases} \sum_{j} \tilde{a}_{ij}x_{j} \leq b_{i} \ \forall i \\ x_{i} \leq u_{i} \ \forall i \\ x_{i} \geq 0 \ \forall i \end{cases}$$

ASSUMPTION: At maximum Γ_i coefficients \tilde{a}_{ij} go to the maximum value together $\forall i$

WHICH ONES? | THE ONES CAUSING THE WORST IMPACT

 Γ_i IS THE CARDINALITY

The Cardinality-Constrained approach

MAXIMIZATION PROBLEM

$$\sum_{j} \bar{a}_{ij} x_{j} + max_{|S_{i}| = \Gamma_{i}} \left\{ \sum_{j \in S_{i}} \hat{a}_{ij} x_{j} \right\} \leq b_{i} \, \forall i$$

Sub-problem: worst case selection

$$\max \sum_{j} \hat{a}_{ij} x_{j} z_{ij}$$
s.t.
$$\begin{cases} \sum_{j} z_{ij} \leq \Gamma_{i} \\ z_{ij} \leq 1 \ \forall j \\ z_{ij} \geq 0 \ \forall j \end{cases}$$

Dual

$$\min \ \Gamma_i z_i + \sum_j p_{ij}$$

$$S.t.$$

$$\begin{cases} z_i + p_{ij} \ge \hat{a}_{ij} x_j \ \forall j \\ z_i \ge 0 \ \forall j \\ p_{ij} \ge 0 \ \forall j \end{cases}$$

It is possible to reduce all to one single optimization problem!

Advantages

- Linear formulation.
- Intuitive meaning of the approach.
- No need of probability distributions.
- Ability to "tune" the number of events (level of robustness)
- One single Mathematical Programming Problem.
- Overcomes Stochastic Programming drawbacks.

Our work

We have evaluated the <u>applicability</u> and <u>behavior</u> of the Cardinality-Constrained Approach in 3 relevant manufacturing problems, on which it has been never applied.

PART TYPE SELECTION

MACHINE LOADING

BUFFER ALLOCATION

- 1. Motivations and scope of work
- 2. The Cardinality-Constrained Approach
- 3. Applications
 - 3.1 The Part Type Selection Problem
 - 3.2 The Machine Loading Problem
 - 3.3 The Buffer Allocation Problem
- 4. Conclusions

- Order quantity
- Importance of products
- Tools required
- Processing times (tools,...)
- Available time

Which products will be produced?

UNCERTAINTY

Uncertain processing times have the most critical impact on the solution (due date, customer satisfaction, penalties,...)

- Order quantity
- Importance of products
- Tools required
- Processing times (tools,...)
- Available time

Which products will be produced?

DETERMINISTIC ILP MODEL: maximize the size of the batch

Hwan & Shogan

"Modelling and solving an FMS part selection problem"

International Journal of Production Research (1989)

ROBUST COUNTERPART:

$$\sum_{i} \bar{t}_{i,j} q_{i} y_{i} + \max_{S_{j}} \left\{ \sum_{i} \hat{t}_{i,j} q_{i} y_{i} \right\} \leq T_{j} \quad \forall j$$

$$\max \quad \sum_{i} w_{i} y_{i}$$

$$s.t. \quad \sum_{j} c_{j} x_{j} \leq S$$

$$\sum_{j} T_{j} \leq M$$

$$a_{i,j} y_{i} \leq x_{j} \quad \forall i, j$$

 $z_i + p_{i,j} \ge \hat{t}_{i,j} q_i y_i$

 $\sum_{i} t_{i,j} q_i y_i + \Gamma_j z_j + \sum_{i} p_{i,j} \le T_j \quad \forall j$

CASE STUDY: Screws production facility

- Use the robust Part Type Selection model for supporting Production Planning decisions
- Evaluate the worst impact of disruptive events on the production
- Prioritize products in a batch

TESTS

Impact of disruptions on processing times

- 2X
- 10X

Importance of products

- Importance ↑ due date ↓ (linear)
- Same importance (constant weights)

Cardinality of disruptive events [Γ]

0 (deterministic case); 1; 2; 3; 4; 5

RESULTS

10X disruptions

linear weights

BATCH: extract from the solution

$$y_i = \begin{cases} 1 \text{ included in the batch} \\ 0 \text{ not included in the batch} \end{cases}$$

		Cardinality					
Part Code	Weights	0	1	2	3	4	5
36	10	1	1	1	1	1	1
37	9	1	1	1	1	1	1
38	9	1	1	1	1	1	1
39	8	1	1	1	1	1	0
40	7	1	1	1	1	1	1
41	10	1	1	1	1	1	1
42	11	1	1	1	1	1	1
43	3	1	1	0	0	0	0
44	4	1	1	1	1	1	0
45	3	1	1	1	1	1	1

RESULTS

Evaluation of how much disruptive events

TOOL FOR PIANIFICATION

influence the detriment of the objective function

RESULTS

Evaluation of how much disruptive events influence the composition of the batch

TOOL FOR PIANIFICATION

Lost part types Evaluation of how many part types

are not included in the batch

- 1. Motivations and scope of work
- 2. The Cardinality-Constrained Approach
- 3. Applications
 - 3.1 The Part Type Selection Problem
 - 3.2 The Machine Loading Problem
 - 3.3 The Buffer Allocation Problem
- 4. Conclusions

The Machine Loading Problem

- Product demand
- Costs/Profits
- Tools required
- Processing times
- Available time

- Production
- Tools to load on machines

UNCERTAINTY

are valid in this case

- 1. Motivations and scope of work
- 2. The Cardinality-Constrained Approach
- 3. Applications
 - 3.1 The Part Type Selection Problem
 - 3.2 The Machine Loading Problem
 - 3.3 The Buffer Allocation Problem
- 4. Conclusions

- Cost of buffer space
- Processing times
- Failures' data/variability of processing times

- In the analytical form, it was not possible to group the constraints by machine $(\forall j)$
- Other formulations resulted in non-linear dual problems

Matheuristic Tabu Search algorithm for each fixed cardinality

- Generation of failures' patterns with a boolean Failures' matrix.
- Evaluation of the buffer space given the pattern
- Output: maximum buffer space obtained (over N iterations)

Alfieri & Matta

"Mathematical programming formulations
for approximate simulation of multistage
production systems."

European Journal of Operational Research
(2009)

Failure's Matrix

SIMULATION-OPTIMIZATION MODEL

BUFFER SPACE

$\hat{z}_{ij} = \begin{bmatrix} 1 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 1 & 0 & 0 & \dots & 0 \\ 1 & 0 & 0 & \dots & 1 \end{bmatrix}$

1: increment of processing times

0: nominal processing times

Cardinality constraint

$$\sum_{i} \hat{z}_{ij} = \Gamma_{j} \ \forall j$$

NOTE: Cardinality is respected while generating new failures' patterns

Random Switch 0-1

NEW Failure's Matrix

The cardinality vector Γ represents the <u>number of failures</u> on the machines of the flow line

$$\Gamma = [10 \ 10 \ \Gamma_3 \ 10]$$

Disruptions on M3

- $\Gamma_3 \in [0, 23]$
- Each run: 1500 iterations

Until $\Gamma_3 = 14$ there is no increment in buffer space

After $\Gamma_3 = 14$ the buffer space is increased to cover from failures on M3

- 1. Motivations and scope of work
- 2. The Cardinality-Constrained Approach
- 3. Applications
 - 3.1 The Part Type Selection Problem
 - 3.2 The Machine Loading Problem
 - 3.3 The Buffer Allocation Problem
- 4. Conclusions

Conclusions

CARDINALITY-CONSTRAINED APPROACH

PART TYPE SELECTION

✓

ROBUST ILP

MACHINE LOADING

ROBUST MILP

BUFFER ALLOCATION

ROBUST MATHEURISTIC

Applicability in the industrial practice

THANK YOU