(EEE)

ELECTRICAL AND ELECTRONICS ENGINEERING

INSTRUCTIONS TO CANDIDATES

- 1. Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- Immediately on opening this Ouestion Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- 3. Use of Calculators, Mathematical Tables and Log books is not permitted.
- 4. Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate:
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

		Set Code: T2
		Booklet Code : B
Note:	(1)	Answer all questions.
	(2)	Each question carries I mark. There are no negative marks.
	(3)	Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
	(4)	The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

MATHEMATICS

(2) 4 sinA cosB sinC

	(3) 4 cosA cosB	cosC			(4)	4 SINA SINB SII	ic	•
2.	The principal solu	tion of T	anx = 0 is	5				
	(1) $x = n\pi, n \in \mathbb{Z}$				(2)	x=0		
	(3) $x=(2n+1) \pi/$	2, <i>n</i> ∈Z				$x = n\pi + \alpha, n \in$	Z	
3.	The value of Tan-	(2) + Ta	n ⁻¹ (3) is					
	$(1) \frac{\pi}{4}$	(2)	$\frac{\pi}{2}$	•	(3)	$\frac{\pi}{3}$. (4)	$\frac{3\pi}{4}$
4.	If the sides of a rig	oht angle	triangle	are in A	.P., th	en the ratio of i	ts side	sis
7.	(1) 1:2:3		2:3:4			3:4:5		4:5:6
5.	The value of $r.r_1$.	$r_2.r_3$ is						
	(1) Δ ²		Δ^{-2}		(3)	Δ-3	(4)	Δ^4
						*		
6.	$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3} = $							
	(1) $\frac{1}{r}$	(2)	$\frac{1}{2r}$		(3)	$\frac{1}{R}$	(4)	$\frac{1}{\Delta}$
101	•		21			55		

If $A+B+C = \pi$, then $\sin 2A + \sin 2B + \sin 2C =$

(1) 4 cosA sinB cosC

Set Code : Booklet Code :

- If a=6, b=5, c=9, then the value of angle A is 7.
 - (1) cos⁻¹ (2/9)
- $(2) \cos^{-1}(2/5)$
- (3) $\cos^{-1}(7/9)$ (4) $\cos^{-1}(1/3)$

- The polar form of complex number 1-i is
 - (1) $\sqrt{2}e^{-i\pi/4}$ (2) $\sqrt{2}e^{i\pi/4}$
- (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$
- If 1, ω , ω^2 be the cube roots of unity, then the value of $2^{\omega^3}.2^{\omega^5}.2^{\omega}$ is
 - (1) w
- (2) ω^2
- (3) 1
- (4) 0
- 10. The intercept made on X-axis by the circle $x^2+y^2+2gx+2fy+c=0$ is

- (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$
- 11. If one end of the diameter of the circle $x^2+y^2-5x-8y+13=0$ is (2, 7), then the other end of the diameter is
 - (1) (3, 1)

- (2) (1,3) (3) (-3,-1) (4) (-1,-3)
- 12. The radius of the circle $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$ is

 (1) 2c (2) 4c (3) c/2

- (4) c
- 13. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are
 - (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta, y = a \cos\theta$
- (3) $x = a \cos\theta, y = b \sin\theta$
- (4) $x = a \csc\theta, y = b \cot\theta$
- 14. The equation of the directrix of the parabola $2x^2 = -7y$ is
 - (1) 8y+7=0
- (2) 8y-7=0
- (3) 7y+8=0 (4) 8x-7=0
- 15. The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{h^2} = 1$ is
- (1) c = a/m (2) $c^2 = a^2m^2 b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

Set Code : T2 Booklet Code :

- 16. $Lt_{x\to 1} \frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$ is
 - (1) 3

- 17. $\log i =$
 - (1) $\pi/2$
- (3) $i\pi/2$

- 18. $\frac{d}{dx}[\log_7 X] =$

- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_7^e$ (4) $\frac{1}{x} \log_7^e$
- 19. $\frac{d}{dx}[2\cosh x] = 1$
 - (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$

- 20. $\frac{d}{dx} \left[\cos^{-1} \left(\frac{1 x^2}{1 + x^2} \right) \right] =$

 - (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$

- 21. If $x = at^2$, y = 2at, then $\frac{dy}{dx} =$
- (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$

- 22. The derivative of e^x with respect to \sqrt{x} is
- $(1) \quad \frac{2\sqrt{x}}{e^x} \qquad \qquad (2) \quad 2\sqrt{x}e^x \qquad \qquad (3) \quad \frac{e^x}{2\sqrt{x}}$

Set Code : T2 Booklet Code :

- 23. The equation of the normal to the curve $y = 5x^4$ at the point (1, 5) is

- (1) x + 20y = 99 (2) x + 20y = 101 (3) x 20y = 99 (4) x 20y = 101
- 24. The angle between the curves $y^2 = 4x$ and $x^2 + y^2 = 5$ is
 - $(1) \frac{\pi}{4}$
- (2) $tan^{-1}(2)$
- (3) $tan^{-1}(3)$

- 25. If $u = x^3y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$
 - (1) $6(x^3+y^3)$ (2) $6x^3y^3$
- (3) $6x^3$

- 26. $\int \csc x dx =$
 - (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x \cdot \cot x + C$

- 27. $\int_0^{\frac{\pi}{2}} \cos^{11} x \, dx =$
 - (1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$

- 28. [f'(x).[f(x)]'' dx =
 - (1) $\frac{[f(x)]^{n-1}}{n-1} + C$ (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

- $29. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$
 - (1) $Tan^{-1}(\sqrt{x+6})+C$

(3) $Tan^{-1}(x+7)+C$

(4) $2Tan^{-1}(x+7)+C$

6-B

Set Code : **Booklet Code:**

- 30. $\int \tan^{-1} x \, dx =$
 - (1) $x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$ (2) $\frac{1}{1+x^2} + C$

(3) $x^2.Tan^{-1}x + C$

(4) $x.Tan^{-1}x - \log \sqrt{1+x^2} + C$

- 31. $\int \frac{dx}{1+e^{-x}} =$
 - (1) $\log (1+e^{-x}) + C$ (3) $e^{-x} + C$

- $32. \quad \int_{-\pi}^{\frac{\pi}{2}} \sin|x| \, dx =$
 - (1) 0
- (2) 1
- (3) 2

- 33. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- 34. The order of $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3

- 35. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{5}{2}} = a \frac{d^2 y}{dx^2}$ is
 - (1) 4
- (2) 2
- (3) 1
- 36. The family of straight lines passing through the origin is represented by the differential equation
 - (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0

Set Code:

Booklet Code:

- 37. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + hy + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- 38. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y \cdot e^{-x^2} = x + c$ (2) $y e^x = x + c$ (3) $y e^{x^2} = x + c$ (4) y = x + c

- 39. The complementary function of $(D^3+D^2+D+1)y = 10$ is

 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$ (2) $C_1 \cos x + C_2 \sin x + C_3 e^{x}$ (3) $C_1 + C_2 \cos x + C_3 \sin x$ (4) $(C_1 + C_2 x + C_3 x^2) e^{x}$
 - $(3) \quad C_1 + C_2 \cos x + C_3 \sin x$
- 40. Particular Integral of $(D-1)^4y = e^x$ is

 - (1) $x^4 e^x$ (2) $\frac{x^4}{24} e^{-x}$ (3) $\frac{x^4}{12} e^x$ (4) $\frac{x^4}{24} e^x$

- 41. If $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, then $A^4 =$
 - (1) 3I
- (2) 9I
- (3) 27I
- 42. If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is
- (2) 2
- (3) 3
- 43. What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64
- (2) 268
- (3) 512
- (4) 256

Set Code : Booklet Code :

- 44. If $A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$, then |A| = 1
 - (1) 1 .
- (2) 2
- (3) 3
- 45. The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
 - (1) x = -1, y = -2, z = -3 (2) x = 3, y = 2, z = 1

(3) x = 2, y = 1, z = 3

- 46. If $\frac{1}{r^2 + a^2} = \frac{A}{r + ai} + \frac{B}{r ai}$ then A =______, B =______.
 - (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

- 47. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to
 - (1) A,

- (2) $2A_2$ (3) $4A_2$ (4) $4A_1$
- 48. The period of the function $f(x) = |\sin x|$ is
 - (1) π
- (2) 2π
- (3) 3π

- 49. If A+B=45°, then (1-cotA). (1-cotB) is
 - (1) 1
- (2) 0
- (3) 2

- 50. The value of $\sin 78^{\circ} + \cos 132^{\circ}$ is

- (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$

Set Code :	T2
Booklet Code :	В

PHYSICS

51.	The linear momentum of a particle varies	s with time t as $p = a + bt + ct^2$ which	of the following is
	correct?		520

- (1) Force varies with time in a quadratic manner.
- (2) Force is time-dependent.
- (3) The velocity of the particle is proportional to time.
- (4) The displacement of the particle is proportional to t. .

52. A shell of mass m moving with a velocity ν suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is

- (1) v
- (2) 2v

53. The velocity of a freely falling body after 2s is

- (1) 9.8 ms⁻¹
- (2) 10.2 ms⁻¹
- (3) 18.6 ms⁻¹
- (4) 19.6 ms⁻¹

54. A large number of bullets are fired in all directions with the same speed u. The maximum area on the ground on which these bullets will spread is

- (1) $\frac{\pi u^2}{g^2}$ (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) $\frac{\pi u}{g^4}$

The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is µ, will be

- (1) $\frac{v^2}{2\mu g}$ (2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) $\frac{v}{2\mu g}$

56. When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts

- (1) In the backward direction on the front wheel and in the forward direction on the rear wheel
- (2) In the forward direction on the front wheel and in the backward direction on the rear wheel
- (3) In the backward direction on both the front and the rear wheels
- (4) In the forward direction on both the front and the rear wheels

								г	
					H	14		Code :	12
	n (8						Booklet C	ode :	B
57.	In a	perfectly inelastic coll	ision, the two bo	dies		1.3			
	(1)	strike and explode	r e e e er	(2)	explode with	out stril	king		
	(3)	implode and explode		(4)	combine and		0.000		
58.		ler the action of a const	ant force, a partic	cle is	experiencing	a consta	nt accelera	tion, the	n the
	(1)	zero		(2)	positive				£
	(3)	negative	55.7	(4)	increasing u	niformly	with time		
		**		+,					
59.	Con	sider the following two	statements:		9.0				
	A:	Linear momentum of	a system of part	icles	is zero.				
	B:	Kinetic energy of a sy	stem of particle	s is z	ero.				
	Ther	1							
	(1)	A implies B & B impl	ies A				14		
	(2)	A does not imply B &	B does not imply	yА					
	(3)	A implies B but B doe	s not imply A					9	
	(4)	A does not imply B bu			1061		H		
60.		engine develops 10 kW ht of 40 m? (Given g =	250 F. 1 100 100 100 100 100 100 100 100 100	mucl	n time will it t	ake to li	ft a mass o	f 200 kg	g to a
	(1)	4s (2)	5s	(3)	8s	(4)	10s		
61.	Ifas	spring has time period	f, and is cut into	n equ	al parts, then	he time	period will	be	
			T	(0)					
	(1)	$T\sqrt{n}$ (2)	\sqrt{n}	(3)	nI	(4)	T .		
						. 19			
62.		n temperature increase	s, the frequency	of a t	uning fork				
	(1)	increases					- X		
	(2)	decreases							
	(3) (4)	remains same	depending on th	ne ma	teriale				
	(+)	increases or decreases			itel lais				
			11	-В	6				

											Set Cod	e : T2
										Book	let Cod	e : B
63.	Ifa	simple harmon	nic moti	on is	renre	esente	ed by	$\frac{d^2x}{dx} + \alpha x = 0$	its time	neriod i	•	
							(dy^2	no time	periou i		
										_		
	(1)	$2\pi\sqrt{\alpha}$	(2)	2π	α		(3)	$\frac{2\pi}{\sqrt{\alpha}}$	(4)	$\frac{2\pi}{\alpha}$		
												14
64.	Ac	inema hall has	volume	of 7	500 n	n³. It i	s requi	ired to have r	everbera	tion tim	e of 1.5	seconds.
	(1)	total absorption 850 w-m ²	m in the	nan	snoui	a be	(2)	92 50 m	2			
	(3)	8.250 w-m ²	1350				(2)	82.50 w-m ² 0.825 w-m ²				
	(5)	0.250 11 111					(+)	0.025 W-III				
65.	To a	bsorb the soun	d in a ha	ll wl	hich o	fthe	follow	ing are used		*		
	(1)	Glasses, stor	es				(2)	Carpets, cu	rtains			
	(3)	Polished surf	aces				(4)	Platforms				*3
66	IfN	renresents ava	andro'e	numi	har th	on th	a numl	or of molecul	log in 6 o	6 hr	deces	-4 NITD :-
00.	(1)	represents ava	(2)		100	ich ur	(3)			N/6	drogen	ativiris
	.(-)	*	(2)	511			(3)		(4)	14/0		
67.	The	mean translation	onal kin	etic e	energ	y of a	perfec	t gas molecu	le at the	empera	ture T K	is
	(1)	$\frac{1}{2}kT$	(0)	ım		Hear	(0)	3	8 8 8			
12	(1)	$\frac{1}{2}$	(2)	KI			(3)	$\frac{1}{2}^{KI}$	(4)	2kT	1	
68.	The	amount of heat	airean t	0 a b	. d	hiah.			190	10.20		0.0
00.	(1)	amount of heat water equivale		Jau	ouy w	men	(2)					
	(3)	specific heat						temperature				
	. ,	1 - A - Prof. 1 to 200 (-) 100 (100)	3									8 9
69.		ng an adiabatio lute temperatu						s is found to	be propo	rtional t	to the cu	be of its
	(1)	3	(2)	4			(2)	•		5		
	(1)	2	(2)	3			(3)	2	(4)	3		
					excess in				- 1			

Set Code :	T2
Booklet Code :	В

- 70. Cladding in the optical fiber is mainly used to
 - (1) to protect the fiber from mechanical stresses
 - (2) to protect the fiber from corrosion
 - (3) to protect the fiber from mechanical strength
 - (4) to protect the fiber from electromagnetic guidance
- 71. Two quantities A and B are related by the relation A/B = m where m is linear mass density and A is force. The dimensions of B will be
 - (1) same as that of latent heat
 - (2) same as that of pressure
 - (3) same as that of work
 - (4) same as that of momentum
- 72. The dimensional formula of capacitance in terms of M, L, T and I is
 - (1) $[ML^2T^2I^2]$
- (2) $[ML^{-2}T^4I^2]$
- (3) $[M^{-1}L^{3}T^{3}I]$
- 73. If l, m and n are the direction cosines of a vector, then

 - (1) l+m+n=1 (2) $l^2+m^2+n^2=1$ (3) $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=1$

- 74. The angle between i+j and j+k is
 - (1) 0°
- (2) 90°
- (3) 45°
- 75. A particle is moving eastwards with a velocity of 5 ms-1. In 10 seconds the velocity changes to 5 ms⁻¹ northwards. The average acceleration in this time is
 - (1) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-west
- (2) zero
- (3) $\frac{1}{2}$ ms⁻² towards north
- (4) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-east

Set Code:	T2
Booklet Code :	В

CHEMISTRY

76.	Pota	assium metal an	d potas	sium ions						
	(1)	both react wit	h water		(2)	have the same number of protons				
	(3)	both react wit	h chlor	ine gas	(4)	have the same	electro	onic configurat	ion	
77.	stan	dard flask. 10 m	lofthis	ide were dissolv solution were pi on. The concentr	petted	out into another	flask a	nd made up with solution now is	distilled	
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M		
78.	Con	centration of a	1.0 M s	solution of phos	phoric	acid in water is	S	12		
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N	95	
79.	Whi	ich of the follov	ving is	a Lewis acid?						
	(1)	Ammonia			(2)	Berylium chlo	oride			
	(3)	Boron trifluo	ride	10	(4)	Magnesium o	xide			
80.	Whi (1) (2) (3) (4)	Potassium ch Sodium aceta Magnesium s	loride a te and a ulphate	nstitutes the cor nd potassium hy acetic acid and sulphuric ac I calcium acetate	droxic		solution	n?		
	0.50.05-0			3.5	6	2.0				
81.		ich of the follow Acetic acid		an electrolyte? Glucose	(3)	Urea	(4)	Pyridine		
82.	Calc			of the cell, Co	d/Cd+2	//Cu+2/Cu giver	n that E	$E^{0} \text{ Cd/Cd}^{+2} = 0.$	44V and	
		(-) 1.0 V		1.0 V	(3)	(-) 0.78 V	(4)	0.78 V		
83.	Asc	olution of nicke	l chlori	de was electroly	sed u	sing Platinum e	lectrod	es. After electr	olysis,	
	(1)			ted on the anode				ted at the catho		
	(3)		-	ed at the anode				ted on the cath		
		19	10		14-B	85				

								Booklet Code : B
84.	Whi	ich of the follow	ing me	tals will und	ergo oxid	ation fastest?		15
		Cu	(2)		(3)		(4)	Iron
85.	Whi	ich of the follow	ing ca	nnot be used	for the ste	erilization of drin	nking	water?
	(1)	Ozone			(2)	Calcium Oxycl	nlorid	e
	(3)	Potassium Ch	loride		(4)	Chlorine water		
86.		ater sample sho				e of magnesium s	sulpha	ate. Then, its hardness in
	.(1)	1.0 ppm	(2)	1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppm
87.	Sod	a used in the L-	S proce	ess for soften	ing of wa	ter is, Chemicall	y.	
		sodium bicarb			(2)			cahydrate
	(3)	sodium carbor			(4)	sodium hydrox	ide (4	0%)
88.	The	process of ceme	entatio	n with zinc po	owder is k	cnown as		4
		sherardizing	(2)	9 9 5		metal cladding	(4)	electroplating
89.	Carr	rosion of a meta	l is fas	test in				*
	(1)	rain-water	(2)	acidulated v	vater (3)	distilled water	(4)	de-ionised water
90.	Whi	ch of the follow	ing is	a thermoset p	olymer?			
	(1)	Polystyrene	Ŭ		(2)	PVC		
	(3)	Polythene			(4)	Urea-formalde	hyde r	resin
91.	Cha	mically, neopre	no io		an 94			Pi v
,					(2)	polyacetylene		A* 6
		polyvinyl benz			. ,			
	(3)	polychloropre	ne	10	(4)	poly-1,3-butadi	ene	
92.	Vulc	canization involv	ves hea	ting of raw ru	bber with	e3		
	(1)	selenium elem	ent .	1	(2)	elemental sulph		
	(3)	a mixture of Se	e and e	lemental sulp	hur (4)	a mixture of sel	eniun	n and sulphur dioxide

								Set Co	de: T2	
								Booklet Co	de : B	
93.	Petr	ol largely contai	ns			*		7.0		
	(1)	a mixture of un	satura	ted hydrocarbo	ns C ₅ -0	C_8				
	(2)	a mixture of be								
	(3)	a mixture of sa	turate	d hydrocarbons	C12 - C	14.				
	(4)			d hydrocarbons		illa Ri				
94.	Whi	ch of the follow	ing ga	ses is largely re	sponsil	ole for acid-rain	?			
		SO, & NO,				CO2 & water va				
	2.00	CO, & N,			(4)	N ₂ & CO ₂				
	, ,	. 2 2				150 NS			50	
95.	BOI	O stands for	720	12					100	
	(1)	Biogenetic Oxy	gen D	Demand	(2)	Biometric Oxy	gen D	emand		
	(3)	Biological Oxy			(4)	Biospecific Ox	ygen l	Demand		
	, ,									
06	The	valency electror	io cor	efiguration of P	hosnho	rous atom (At N	lo. 15) is		
96.		3s ² 3p ³	(2)	3s ¹ 3p ³ 3d ¹	(3)	3s ² 3p ² 3d ¹ .	(4)	3s1 3p2 3d2		34
		¥					ngin ne			
97.	Ane	element 'A' of At			an eler	nent 'B' of At.No	0.17.7	The compoun	d formed	IS
	(1)	covalent AB	(2)	ionic AB ₂	(3)	covalent AB ₂	(4)	ionic AB		
		2			c 1	0 - 137 ! -				
98.		number of neutr					(4)	81		
	(1)	56	(2)	137	(3)	193	(4)	01		
00	114	rogen bonding i	n sivote	r molecule is re	enonei	ble for				
99.		decrease in its		20	(2)	increase in its	degree	of ionizatio	n	
		increase in its			(4)	decrease in its	boilin	g point		
	(3)	mercuse in its	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5 P						
100.	In th	ne HCl molecule	the b	onding between	hydro	gen and chlorine	is	7		1
		purely covalen			(3)	polar covalent	(4)	complex co	ordinate	
	(-)		1			3.5		¥		
										151

Set Code : T2 Booklet Code:

ELECTRICAL AND ELECTRONICS ENGINEERING

101. In a given below circuit, at res	sonance I, is equal to
---	------------------------

- (1) 0A
- (2) 10A
- (3) 5A
- (4) 0.5 A

102. An alternating current has a peak value of 2A. If its Peak Factor is $\sqrt{2}$ and its form factor is

$$\frac{\pi}{2\sqrt{2}}$$
, then its average value is

- (1) $\frac{8}{\pi}A$ (2) $\frac{4}{\pi}A$ (3) $\frac{\pi}{2}A$ (4) $\frac{\pi}{4}A$

103. The power factor of an incandescent bulb is

- (1) 0.8 lagging
- (2) 0.8 leading
- (3) unity

104. The power factor of a circuit comprising resistance R and reactance X in series is

(1)
$$\frac{R}{\sqrt{R^2 + X^2}}$$
 (2) $\frac{X}{\sqrt{R^2 + X^2}}$ (3) $\frac{R}{R^2 + X^2}$ (4) $\frac{X}{R^2 + X^2}$

$$(2) \quad \frac{X}{\sqrt{R^2 + X^2}}$$

$$(3) \quad \frac{R}{R^2 + X^2}$$

$$(4) \quad \frac{X}{R^2 + X^2}$$

105. The working principle of a Transformer is

- (1) Electromagnetism
- (2) Conduction

(3) Energy transfer

(4) Mutual induction

106. The equivalent resistance of a transformer having transformation ratio (K) = 5 and R1 = 0.1 Ω when referred to secondary is

- (1) 150Ω
- (2) 0.02 Ω
- (3) 0.004Ω
- (4) 2.5Ω

107. What is load at which maximum efficiency occurs in case of a 100 kVA transformer with iron loss of 1 kW and full load copper loss of 2 kW

- (1) 100 kVA
- (2) 70.7 kVA
- (3) 50.5 kVA
- (4) 25.2 kVA

17-B

							14		Set Co	de: T2
		20							Booklet Coo	le : B
108.	In hi	igh frequency tra	nsfor	mers, the n	nateri	ial used	for core is			
		Ferrite	(2)	Iron			Cast iron	. (4)	Silica	
100	Ruc	hholz relay is use	ed to							e to
109.	(1)	identify faults	u to							
	(2)	rectify the fault					100			
	(3)	trip-off connect		when fault	exist	S			1	
	(4)	clears the fault				=				
	(.)	cicuis inc inair							100	
110.		ribution transfor			ed to	keep	core losses mi	nimun	and copper	losses are
	relat	ively less import				50000				. 1
	(1)	The primary of s throughout the d	such tr lay wh	ansformers nile copper	are e loss o	nergize ccur or	ed for all the 24 h aly when the seco	ours in ondary	is supplying t	ne load
	(2)	To ensure maxis	mum.	All-day eff	icien	су	N 146			
10	(3)	Greater core lo								
	(4)	Greater core los	sses v	vill heat up	the o	oil of th	ne transformer i	apidly		
							*			c 1,
111.		ch one of the fol			give	es mor	e accurate resul	t for d	etermination	of voltage
	_	lation of an alter	nator	27						
	(1)	MMF method				(2)	Synchronous i	mpeda	nce method	
	(3)	Potier triangle	metho	od		(4)	ASA method			
		* *				400000000	* =		114	
112.	Hyd	rogen is used in l			main	ly to	derman ordered to be engine	an en		
	(1)	reduce distortion				(2)	cool the mach		■ meneration	
	(3)	strengthen the r	nagne	etic field		(4)	reduce eddy c	urrent	losses	
	T1	c	c		. 0	ala alta	matar munning	+ 900	rnm is	
113.		frequency of em			1 8-pc			(4)	60 Hz	
	(1)	50 Hz	(2)	120 Hz		(3)	90 Hz	(4)	00 FIZ	
114.		angle between sy		onously rot	ating	stator	flux and rotor p	oles of	f a synchrono	us motor is
		Synchronizing		Slip		(3)	Power factor	(4)	Torque	
	()	•.	10000000		(4))	41000000				
						18-B	<i>II</i>			(EEE)

Set Code : T2

							В	ooklet Cod	e: B
115.						nical angle and		number of	poles of a
		$\theta_e = P \times \theta_m$				$\theta_{\rm e} = (P/2) \times \theta_{\rm m}$			
		$\theta_{\rm e} = \theta_{\rm m}/P$				$\theta_e = P/\theta_m$			×
116.		essential conditi	on for	parallel operat	ion of tv	wo single phase to	ransform	ers is that th	ey should
	(1)	Polarity	(2)	KVA rating	(3)	Voltage ratio	(4) P	ercentage in	mpedance
117.	The	V-curve of a syr	nchron	ous motor is a	plot of				
	(1)	State current v			7				
-	(2)	Stator current				ıds		(2)	10
	(3)					ower delivered is	s constar	nt	
	(4)	Stator current							
	.,								
118.	roto		25 ohn , what	per phase. If a	an exteri ull load	of 0.03 when do nal resistance 0.5 torque?		er phase is o	•
119.	The	torque develone	d in a	three phase ind	luction i	motor depends o	n.		1
-CIRCU	(1)	Stator flux and			(2)			rrent	
	(3)	stator current a				rotor current as			
120.	A sii	ngle phase ac inc	duction	n motor is not	self star	ting because it h	as		
		No slip		141	(2)				
	(3)	high intertia			(4)	absence of rota		gnetic field	
121	A sir	ngle phase wind	ing in	single phase r	notor n	oduces	A		
	(1)	an alternating r			(2)	a stationary ma	onetic fi	eld .	
	(3)	a rotating magn	_		(4)	a steady magne	_	Ciu	
	(0)	a rotating magi	ictic ii	7. F	19-B	a steady magne	ale neid		(EEE)
								0	(222)

								Set C	ode :[T2
								Booklet Co	ode :[В
122.	Und	ler no-load cond	litions	, power factor of	an in	duction motor is	about	i i		
		0.2 lag		0.9 lag		Unity	(4)			
123.	Ofa	ll the plants, mir	iimum	quantity of fuel	used i	s required in	. plan	it.		
	(1)	Diesel power	(2)	Steam	(3)	Hydro-electric	(4)	Nuclear		
124.	The	overall efficience	cy (η)	of a Thermal Po	wer St	ation is				
	(1)	η_{boiler}	(2)	$\eta_{\text{boiler}}\!\times\!\eta_{\text{generator}}$	(3)	$\eta_{\text{generator}} \times \eta_{\text{turbine}}$	(4)	$\eta_{\text{turbine}} \times \eta_{\text{b}}$	oiler	
125.	The	effect of water h	amme	er can be minimiz	zed by	using		**		
	(1)	Spill way	(2)	Anvil	(3)	Surge Tank	(4)	Draft tube		
126.	In a	diesel power pla	nt sus	pended impuritie	s in th	ne fuel are remove	ed by			
	(1)	Cyclone separa	ators		(2)	Electrostatic se	parat	ors		
	(3)	Fabric filters	9		(4)	Strainer				
127.	The	rupturing capac	ity of a	circuit breaker	is mea	sured in				
	(1)	Ampere	(2)	Volt-Ampere	(3)	Watt	(4)	Volt		
128	A ci	rcuit breaker is e	essenti	ally						
120.		An arc extingui				1				
	(2)	range and the control of the control		device						
	(3)									
				zing the effect of	trans	ients				
	. ,	40								
129.	Mho	relay normally	is use	d for protection	of					
	(1)	Long transmiss	sion li	nes						
	(2)	Medium Transi	missio	n lines					•	
	(3)	Short transmiss	sion li	nes						
+	(4)	No length crite	rion	*						
		107		No.		141 3		199		(EEE)
				- 7	n_R					LEAC.E.

					Bookle	t Code : B
130. Th	e scheme adopted for bu	ıs-bar protection	ic			
(1)	• • • • • • • • • • • • • • • • • • • •		(2)	differential prote	ection	
	over current protection		(4)	reverse power p		8
	,		(.)	reverse power pr	occuon	
131. Du	e to the ferrari effect on	long overhead	lines			
(1)						
(2)						
(3)	receiving end voltage	is equal to sendi	ng vo	ltage		
· (4)	receiving end voltage	is not effected				
132. Co	rona occurs between two	o transmission li	nes w	hen they are	9	
(1)			(2)	widely spaced	,	
(3)	having high potential	difference	(4)	carrying DC pow	er	
133. Sur	ge impedence of a transi	mission line is ai	ven h	NV.		
				•	14.54	N #
(1)	$\sqrt{(L/C)}$ (2)	$\sqrt{(C/L)}$	(3)	\sqrt{LC} ($(4) 1\sqrt{LC}$	
134 The	a canaral distance for sh					•
(1)	general distance for she less than 80 km	ort transmission				4,
(3)	more than 250 km	7.50	(2)	80 km-250 km		
(3)	more than 250 km		(4)	150 km-300 km		
135. The	resistance of the line			0.20		
(1)	increases with increase	e in frequency	(2)	decreases with inc	rease in fre	aueney
(3)	is independent of frequ			increases with dec		• 0.00
` ^		,	,	mercuses with dec	orease in nec	quency
136. In H	VDC Transmission Syst	em AC is conver	ted to	DC using		
					4) Cycloco	onverter
137. Susp	ension type insulators a	re used for volta	ges be	eyond		25 10
(1)	220 V (2) 4	100 V	(3)	11 KV (4	4) 33 KV	
	***	21-	В			(EEE

							i a		Set	Code :	T2
					*			.35	Booklet	Code :[B
138.	Pow	er Factor of l	ndu	strial	loads is genera	ally					
	(1)	Unity		(2)	Leading	(3)	Lagging	(4)	Zero		
139.	Pole	mounted tra	nsfo	rmer	stations are m	eant for					
	(1) (3)	Primary tran Secondary t				(2) (4)	Primary distr Secondary di		on .		
140.	Tran	smission line	es ar	e tran	sposed to		94				
	(1)	Reduce cop									
	(2)	Reduce skin	n eff	ect							
	(3)	Prevent inte	erfer	ence	with communi	cation li	nes				
	(4)	Present sho	rt ci	rcuit	between condu	ictors					
-											. "
141.	The	units for spe	cific	ener	gy consumptio	n relate	d to traction is	3			- 2
	(1)	Watt - Hou Tonne - km	_	(2)	Watt - Hour km	(3)	Joules/Sec	(4)	Watt		
142	In K	ando system	of	track	electrification		is convert	ed into			
		single phase				(2)			60	-	
	(3)				ase	(4)			nase		
143.					ed of 60 kmph uration of stop			ch are 6	km apart.	The actu	ıal run
	(1)	60 sec		(2)	360 sec	(3)	240 sec	(4)	300 sec		
144.	Aver	age speed of	`a tra	ain is	dependent on						
	(1)	Distance bet	twee	n two	stops & run tin	ne	75		51		
	(2)	Run time &	sto	p time	:	*					
	(3)	Stop time &	acc	celera	tion		0 32				
	(4)	Acceleratio	n &	dece	eration						
						22-B					(EEE)

							Set C	Code : T2
							Booklet C	code : B
145.	The	electric motor u	sed fo	or traction wo	rk should	have		
		Low starting to			(2)	High starting torq	ue	
	(3)	Rise in speed v	vith ir	crease in load	d (4)	No braking capab		
146.	Trac	tive effort of an	electi	ric locomotive	e can be i	ncreased by		
	(1)	Increasing the	supply	voltage		5403.579 W.		
	(2)	Increasing the	speed					
	(3)	Increasing the	dead v	veight over the	e driving	axles		
	(4)	Using high rati	ng mo	otors				
							5	
147.	Trac	tive effort requir	red for	r a train going	down fro	m an upgradiant is		
	(1)	less than tractiv	ve eff	ort on level tra	ack	*		
**	(2)	more than tract	ive ef	fort on level t	rack			
	(3)	equal to the tra	ctive	effort on level	l track			
	(4)	independent of	mass	of the train				
148.	The	area under speed	l-time	curve of a tra	in repres	ents		
	(1)	average speed		*	(2)	average accelerati	on	
	(3)	distance travell	ed	- 14	(4)	average velocity		
						,		
149.	As th	ne number of wi	re gua	ge increases t	the cross	sectional area of w	ire	
	(1)	increases			(2)	remains same		
	(3)	becomes neglib	ole		(4)	decreases		
150.	Whic	ch of the following	ng wi	ring is not visi	ible outsi	de?		
	(1)	conduit wiring			(2)	cleat wiring		
	(3)	casing and capp	ing wi	ring	981 86	concealed wiring		
151.	Resis	tance of earth s	ystem	of power stat	ions shou	ald not exceed the	imit of	
	(1)	0.5 ohms	(2)	2 ohms	(3)	1 ohms (4) 5 ohms	
					23.R			(FFF)

		1						Set Co	ode: T2
								Booklet Co	ode : B
152.	In el	ectrical installat	ions t	he fuse is alw	ays conn	ected in		wire.	
		earth		neutral		phase	(4)	ground	
153.	The	transistor used in	n amp	lifier circuits	operates	in			8
	(1)	Active region			(2)	Saturation re	gion		
	(3)	Cut off region		20	(4)	Reverse regi	on		
154.	The	gain of an ampli	fier is	given by the	following	formula			
	(1)	$G(dB) = 10 \log$	(p _{in} /p	out)	(2)	G(dB) = 101	og (pout)		
		$G(dB) = 10 \log$		7.7.5	(4)	G(dB) = 10 I	og (p _{in})	7	
155	The	number of diode	e that	are used in h	alf wave r	ectifier and fu	ll wave	bridge rectif	ier are
155.		1,2			(3)		(4)		
	(-)	1,5	(-)		(-)		`.'		
156.	The	average voltage o z is	f a ful	l wave rectifie	er fed from	an ac source o	f peak v	oltage, V _m an	nd frequency
	(1)	V_m/π	(2)	$2V_{\rm m}/\pi$	(3)	$V_{_{\text{m}}}\!/\sqrt{2}$	(4)	$V_m/2$	
157	În a	transistor which	of the	following la	ver is ligh	tly doped		12	7
157.		Emitter		Collector			(4)	Base	
	(1)	Simula	(-)		(-)				
158.	Zene	er diode regulate	s						
		Voltage	(2)	Current	(3)	Resistance	(4)	Power	
159.	The	frequency of osc	illatio	on of wein br	idge oscil	lator in Hz is			
	(1)	$1/2 \pi RC$	(2)	2πRC	(3)	1/RC	(4)	R/C	
160.	XY	$Z + (\overline{X} + \overline{YZ})XY$	Z+X	YZ					
	(1)	XYZ	(2)	X	(3)	Z	(4)	0	
		12			24-B				(EEE)

					20			Booklet Code : B	
161.	The	2's complemen	t of th	e number 1001	100 is				
		0110 0011		0110 0100			(4)	1001 1101	
162.	The	bolean expressi	ion for	NOR gate with i	nputs	A and B is			
	(1)	A+B	(2)	AB	(3)	A+B	(4)	$\overline{A+B}$	
163.	ΑD	AC with 8 input	t bits h	asre	solutio	on compared wit	h DA	C with 4 input bits.	
	(1)	High	(2)	Same	(3)	Low	(4)	Infinite	
164.	The	power electron	ic devi	ce, Silicon Cont					
	(1)	Two junctions	and th	ree layers	(2)	Three junction	s and	three layers	
	(3)	Three junction	s and	four layers	(4)	Two junctions	and tw	vo layers	
165.	Whi	ch one of the fo	llowin	g is a bidirection	nal Co	ntrolled switch			
	(1)	Thyristor	(2)	Triac	(3)	GTO	(4)	Diac	
166.	Ifth	e gate current of	fan SC	R is increased, i	ts forv	vard break over	voltag	e V _{BO} will	
	(1)	Increase	(2)	Decrease	(3)	Not be affected	d (4)	Be infinity	
167.	Ìn ar	UJT triggering		it for SCR, pulse		6) Jan 19 19 19 19 19 19 19 19 19 19 19 19 19	7.		
	(1)	Emitter (E)	(2)	Base 1 (B1)	(3)	Base 2(B2)	(4)	B1-B2	
168.	In a	half wave contr	olled r	ectifier feeding l	R-L lo	ad, the range of	firing	angle of thyristor is	
	(1)	$0 \le \alpha \le 180^{\circ}$	(2)	90 ≤ α ≤180°	(3)	$0 \le \alpha \le 90^{\circ}$	(4)	$0 \le \alpha \le 360^{\circ}$	
169.		DC output volta	ige, V _o	of a basic chopp	er circ	cuit with input vo	oltage	, $\boldsymbol{V}_{\text{in}}$ and duty cycle, $\boldsymbol{\delta}$	is
	(1)	$V_o = V_{in} \times \delta$	(2)	$V_o = V_{in}/\delta$	(3)	$V_o = V_{in}/(1-\delta)$	(4)	$V_o = V_{in}$	

25-B

									Set	Code	: T2
									Booklet	Code	B
170	. An	AC regulator p	rovides								
	(1)	Variable free	quency, f	ixed mag	gnitudeA	C					
	(2)	Fixed freque	ncy, var	iable ma	gnitude A	AC.					
	(3)	Fixed freque	ency, fixe	ed magni	itude AC						
	(4)	Variable free	quency, v	ariable r	nagnitud	eAC					
171.	The	output voltage	e of a sir	igle phas	se bridge	inver	ter is				67.6
	(1)	Square wave		•		(2)	Sinusoid	al wave			
	(3)	Constant de			e 6	(4)					
170	т.		.•				1101.1				
1/2.		quadrant ope			or can be				350		
	(1)	Uncontrolled		tor	-			trolled con			
	(3)	Half wave co	onvertor			(4)	Fully cor	ntrolled con	vertor		
173.	For	controlling the	e speed o	of a 3 ph	ase indu	ction	motor V/f	ratio is mai	ntained co	nstant :	for
	(1)	Constant air	1117			(2)		reactance			
	(3)		•				Variable				
											4
174.		l microcontro	ller has		_data lin	es an	d	address	lines.		,
	(1)	16, 8	(2)	8, 8		(3)	8, 16	(4)	16, 20		
175.	Whi	ch of the follo	wing in	struction	is not a	data ti	ansfer ins	truction?			
		XCH		PUSH			ADD	(4)	MOV		
	(1)	ACII	(2)	LOSII		(3)	ADD	(4)	WOV		
176.	Inter	rnal memory o	f 8051 i	micro co	ontroller	consi	sts of				
	(1)	128 bytes of R	RAM, 21	K bytes o	fROM						
	(2)	4 K bytes of	RAM, 1	28 bytes	of ROM	[
	(3)	2 K bytes of R	RAM, 12	8 bytes o	fROM			i.			
	(4)	128 bytes of	RAM, 4	K bytes	of ROM	[
										1.0	
					2	6-B				20	(EEE)

										Set	Code: T2
										Booklet	Code : B
177.	The	highest p	riority	inter	runt is						
• • • • •	(1)	TF1	riorny	(2)			(3)	TF0	(4)	IE0	
	(1)	11.1		(2)	IEI		(3)	110	(4)	iEu	
178.	Perc	entage V	oltage	regula	ation of a	trans	mission	line is give	n by		
	(1)	$(E_s-E_r)/$	E,*100) -			(2)	$(E_r - E_s)/E$	*100		20 00
		$(E_s-E_r)/$						(E,-E,)/E	Bara Bara		
	` '	, 8 1	s				()	(r -s/	3		
179.	In a	main line	servi	ce of	electric tr	action	n system	i	33		
	(1)	Distance	e betw	een tv	vo stops i	s very	small				
	(2)	Accelera	ation a	nd ret	ardation	perio	ds are sn	nall			
	(3)	Free run	ning a	nd co	asting per	riods a	are short				
	(4)	Accelera	ation a	nd ret	ardation	period	ds are lo	ng			
180.	For S	SCR, dv/c	it prote	ection	is achiev	ed by	connec	ting			
	(1)	L in serie	es with	SCR			(2)	RL in seri	ies with SC	R	
	(3)	RC in se	ries w	ith SC	R		(4)	RC in par	allel with S	CR	
12											
181.	The	effective	resista	nce b	etween te	rmina	ıls A and	B in the be	low figure	is	
	(1)	r									
	(2)	2r				<u>~</u> ~	10	В			
	(3)	3r			r	1	w-]			
	(4)	4r					1				
182	IfIh	e the curr	ent C	he the	canacita	nce an	d V be t	he notentia	difference	s the I/CV	/ will have the
	unit		ciit, C	oc uic	capacitai	ice an	id v be ti	ne potentia	difference	3, 410 1/0	will have the
	(1)	Time		(2)	Power		(3)	Frequency	(4)	Reactive	Power
							02445				
183.	In a s	eries R-C	circu	it exci	ited by a I	DC vo	oltage E,	the initial	current is		
	/1:	E		4-1			/41	E		C	
	(1)	R		(2)	0	78	(3)	$\frac{E}{C}$	(4)	E	
							17 D				(PPP)
						1.7	27-B				(EEE)

Set Code :	T2
Booklet Code :	В

194	The strength of el	ectromagnet ca	n he	increased	by
104.	The strength of ci	ecti offiagnet ca	11 00	mercaseu	U

- (1) Decreasing the length of the conductor (2) Increasing the length of the conductor
- (3) Increasing the number of turns
- (4) Decreasing the number of turns

185. Tesla is a unit of

- (1) Flux
- (2) Field strength (3) Current
- (4) Flux density

186. According to joule's law heat produced by an electric current is proportional to

- (1) square of the resistance
- (2) square of the current

(3) potential difference

square of the time

187. The Thevenin's equivalent resistance
$$R_{th}$$
 for given below network is

- (1) Γ_{Ω}
- $(2) \cdot 2 \Omega$
- (3) 4Ω
- (4) Infinity

188. In a differential compound generator, the series field turns are provided on

- (1) Armature
- (2) Commutator
- (3) Interpole
- (4) Main pole

189. The function of the commutator in a dc machine is

- (1) to change alternating current to direct current
- (2) to improve commutation
- (3) for easy speed control
- (4) to change alternating voltage to direct voltage

190. If N is the speed and P is number of poles, then the frequency of induced e.m.f in DC generator will be

						Set Code: T2					
				8	ēđ.			Bookl	et Code	: B	
191.	The	demagnetizing f	lux in	dc generator							
	(1)	Increases e.m.f			(2)	Decreases e.n	n.f				
	(3)	Increases speed	i .		(4)	Decreases spe	eed				
192.		be the torque an			ent for	a dc series mot	or, then	which	of the f	ollowing	
	(1)	$T_a \alpha I_a$	(2)	$T_a \alpha (1/I_a)$	(3)	$T_a \alpha (I_a^2)$	(4)	$T_a \alpha$	$1/I_a)^2$		
193.	What will happen if the back e.m.f of a DC motor vanishes suddenly										
	(1)					The motor will continue to run					
	(3)	The armature m	ay bu	m ·	(4)	The motor wil	l run no	oisy			
101	The	mechanical now	er des	eloned by a DC	motor	is equal to	32				
174.	The mechanical power developed by a DC (1) Power input + losses					Back e.m.f × armature current					
		Power output ×			2000	Power output					
195.	_	lecting saturatio			a seri	ies motor is inc	creased	from	10A to	12A, the	
	•	20%		44%	(3)	30.5%	(4)	16.69	%		
196.	Dynamometer type instrument have										
	(1)	Cramped scale	at the	beginning	(2)	Cramped at th					
	(3)	Cramped at the	midd	le	(4)	Uniform scale	•	j.			
197.	To measure a signal of 10 mV at 75 Hz, which one of the following instrument can be used										
		cathode ray osc			(2)	VIVM	1000 M				
	(3)	Moving Iron vo	ltmet	er	(4)	digital multim	eter			(%)	
198.	Whi	ch one of the foll	owing	g a passive trans	ducer						
		piezolectric		thermocouple		photovoltaic o	ell	(4)	LVDT		

Set Code :	T2
Booklet Code :	

- 199. The voltage coil of a single phase house energy meter
 - (1) is highly resistive
 - (2) is highly inductive
 - (3) is highly capacitive
 - (4) has a phase angle equal to load power factor angle
- 200. The effective value of a triangular wave is
 - (1) Max. value

(2) $\sqrt{3}$ (Max. value)

(3) $\frac{\sqrt{3}}{\text{Max. value}}$

 $(4) \quad \frac{\text{Max. value}}{\sqrt{3}}$