1	GAGGTCCAGC E V Q	TTCAGCAGTC L Q Q S		CTGGTGAAGC L V K	
51				CTCATTCACT ! S F T	
101				GCCTTGAGTG S L E W	
151	ATTAATCCTA I N P		TACTCTCTAC T L Y	AACCAGAAAT N Q K	TCAAGGACAA F K D k
201				CACAGCCTAC T A Y	
251	GCAGCCTGAC R S L T			ATTACTGTGC Y Y C A	
301	ATGATTACGA M I T		GGACTACTGG D Y W	GGTCAAGTAA G Q V	CCTCAGTCAC
351	CGTCTCCTCA V S S	GGTGGTGGTG G G G		TGGCGGCACT G G T	
401	GATCTAGTAT G S S I			CATTCCTGCT T F L L	
451	GGAGACAGGG C D R		CTGCAAGGCC C K A	AGTCAGAGTG S Q S	TGAGTAATGA V S N D
501	TGTAGDTTGG V A W			GTCTCCTACA S P T	
551	CCTATACATC S Y T S		GCTGGAGTCC A G V	CTGATCGCTT P D R F	•
601	GGATATGGGA G Y G			AGCACTTTGC S T L	AGGCTGAAGA Q A E D
651			AGCAAGATTA Q Q D Y	TAATTCTCCT N S P	CCGACGTTCG P T F
701	GTGGAGGCAC G G G T			•	•

ATGGGCCACA M G H	CACGGAGGCA T R R Q	GGGAACATCA G T S		GTCCATACCT C P Y L	50
		TGCTGGCTGG V L A G		TTCTGTTCAG F C S	100
GTGTTATCCA G V I H	CGTGACCAAG V T K	GAAGTGAAAG E V K	AAGTGGCAAC E V A T	GCTGTCCTGT L S C	150
GGTCACAATG G H N	TTTCTGTTGA V S V E	AGAGCTGGCA E L A		TCTACTGGCA I Y W Q	200
	AAAATGGTGC K M V	TGACTATGAT L T M M		ATGAATATAT M N I	250
GGCCCGAGTA W P E Y	CAAGAACCGG K N R	ACCATCTTTG T I F	ATATCACTAA D I T N	TAACCTCTCC N L S	300
ATTGTGATCC I V I		CCCATCTGAC P S D			350
TGTTCTGAAG V L K	TATGAAAAAG Y E K	ACGCTTTCAA D A F K		CTGGCTGAAG L A E	400
TGACGTTATC V T L S	AGTCAAAGCT V K A	GACTTCCCTA D F P	CACCTAGTAT T P S I	ATCTGACTTT S D F	450
GAAATTCCAA E I P	CTTCTAATAT T S N I	TAGAAGGATA R R I		CCTCTGGAGG T S G G	500
TTTTCCAGAG F P E		CCTGGTTGGA S W L E		GAATTAAATG E L N	550
CCATCAACAC A I N T		CAAGATCCTG Q D P			600
AGCAGCAAAC S S K	TGGATTTCAA L D F N	TATGACAACC M T T	AACCACAGCT N H S	TCATGTGTCT F M C L	650
		GAGTGAATCA R V N Q		TGGAATACAA W N T	700
		GATGGAGGCG D G G		GGTCCAGCTT V Q L	750

3/24

CAGCAGTCTG Q Q S	GACCTGACCT G P D L	GGTGAAGCCT V K P	GGGGCTTCAG TGAAGATATO	
CTGCAAGGCT C K A	TCTGGTTACT S G Y	CATTCACTGG S F T G	CTACTACATG CACTGGGTGA	A 850
AGCAGAGCCA K Q S H		CTTGAGTGGA L E W	TTGGACGTAT TAATCCTAAC	900
AATGGTGTTA N G V		CCAGAAATTC Q K F	AAGGACAAGG CCATATTAAC	
TGTAGACAAG V D K		CAGCCTACAT T A Y M	GGAGCTCCGC AGCCTGACAT E L R S L T	1000
CTGAGGACTC S E D S		TACTGTGCAA Y C A	GATCTACTAT GATTACGAAC R S T M I T N	1050
TATGTTATGG Y V M	ACTACTGGGG D Y W G	TCAAGTAACC Q V T	TCAGTCACCG TCTCCTCAGG	
TGGTGGTGGG G G G	AGCGGTGGTG S G G	GCGGCACTGG G G T G	CCCCGGCGGA TCTAGTATTG	1150
TGATGACCCA V M T Q			TTTCAGCAGG AGACACGGTT V S A G D R V	1200
ACCATAACCT T I T	GCAAGGCCAG C K A S		AGTAATGATG TAGCTTGGTA S N D V A W Y	
	CCAGGGCAGT P G Q	CTCCTACACT S P T L	GCTCATATCC TATACATCCA L I S Y T S	1300
GTCGCTACGC S R Y A	TGGAGTCCCT G V P	GATCGCTTCA D R F	TTGGCAGTGG ATATGGGACG I G S G Y G T	1350
GATTTCACTT D F T	TCACCATCAG F T I S		GCTGAAGACC TGGCAGTTTA A E D L A V Y	
		ATTCTCCTCC N S P P	GACGTTCGGT GGAGGCACCA T F G G G T	1450
AGCTGGAAAT K L E I				

FIG. 2cont'd

1	ATGGGACTGA M G L			GCCTTCCTGC A F L	
51	TGCTCCTCTG A P L	AAGATTCAAG K I Q	CTTATTTCAA A Y F N	TGAGACTGCA E T A	GACCTGCCAT D L P
101	GCCAATTTGC C Q F			TGAGTGAGCT L S E L	AGTAGTATTT V V F
151	TGGCAGGACC W Q D			GAGGTATACT E V Y	TAGGCAAAGA L G K E
201				GGGCCGCACA G R T	
251	CGGACAGTTG S D S W			TTCAGATCAA L Q I K	
301	TTGTATCAAT L Y Q	GTATCATCCA C I I H		CCCACAGGAA P T G	TGATTCGCAT M I R I
351	CCACCAGATG H Q M			TGCTAACTTC A N F	
401		AATTTCTAAT I S N		ATGTGTACAT N V Y I	AAATTTGACC N L T
451	TGCTCATCTA C S S			AAGAAGATGA K K M	
501	AAGAACCAAG R T K	AATTCAACTA N S T	TCGAGTATGA I E Y D	TGGTATTATG G I M	CAGAAATCTC Q K S
551	AAGATAATGT Q D N V	CACAGAACTG T E L		CCATCAGCTT S I S L	GTCTGTTTCA S V S
601	TTCCCTGATG F P D	TTACGAGCAA V T S N	TATGACCATC M T I	TTCTGTATTC F C I	TGGAAACTGA L E T D
651				TATAGAGCTT I E L	GAGGACCCTC E D P
701	AGCCTCCCCC	AGACCACATT D H T			

FIG. 4

```
atggcttgca attgtcagtt gatgcaggat acaccactcc tcaagtttcc atgtccaagg 60
ctcattcttc tctttgtgct gctgattcgt ctttcacaag tgtcttcaga tgttgatgaa 120
caactgtcca agtcagtgaa agataaggta ttgctgcctt gccgttacaa ctctccgcat 180
gaagatgagt ctgaagaccg aatctactgg caaaaacatg acaaagtggt gctgtctgtc 240
attgctggga aactaaaagt gtggcccgag tataagaacc ggactttata tgacaacact 300
acctactctc ttatcatcct gggcctggtc ctttcagacc ggggcacata cagctgtgtc 360
gttcaaaaga aggaaagagg aacgtatgaa gttaaacact tggctttagt aaagttgtcc 420
atcaaagetg acttetetae eeccaacata actgagtetg gaaacecate tgeagacaet 480
aaaaggatta cctgctttgc ttccgggggt ttcccaaagc ctcgcttctc ttggttggaa 540
aatggaagag aattacctgg catcaatacg acaatttccc aggatectga atctgaattg 600
tacaccatta gtagecaact agattteaat acgaetegea accaecat taagtgtete 660
attaaatatg gagatgctca cgtgtcagag gacttcacct gggaaaaacc cccagaagac 720
cctcctgata gcaagcccgg gggtggtggg agcggtggtg gcggcagtgg cggcggcgga 780
actagtgagg tccagcttca gcagtctgga cctgacctgg tgaagcctgg ggcttcagtg 840
advalatect geaaggette tggttactea treactgget actacatgea etgggtgaag 900
cagagccatg gaaagagcct tgagtggatt ggacgtatta atcctaacaa tggtgttact 960
ctctacaacc agaaattcaa ggacaaggcc atattaactg tagacaagtc atccaccaca 1020
gcctacatgg agctccgcag cctgacatct gaggactctg cggtctatta ctqtqcaaga 1080
totactatga ttacgaacta tgttatggac tactggggte aagtaactte agtcaccgte 1140
tcttcaggtg gtggtgggag cggtggtggc ggcactggcg gcggcggatc tagtattgtg 1200
atgacccaga ctcccacatt cctgcttgtt tcagcaggag acagggttac cataacctgc 1260
aaggccagtc agagtgtgag taatgatgta gcttggtacc aacagaagcc agggcagtct 1320
cctacactgc tcatatccta tacatccagt cgctacgctg gagtccctga tcgcttcatt 1380
ggcagtggat atgggacgga tttcactttc accatcagca ctttgcaggc tgaagacctg 1440
gcagtttatt tetgteagea agattataat teteeteega egtteggtgg aggeaceaag 1500
ctggaaatca aacggtaa
                                                                  1518
```

Leader / 5T4 scFv / HlgG DNA and deduced protein sequence

 ${\tt CAGCAGTCTGGACCTGGTGAAGCCTGGGGGCTTCAGTGAAGATATCCTGCAAGGCTTCTGGTTACTCATTCACTGG}$ Q Q S G P D L V K P G A S V K I S C K A S G Y S F CTACTACATGCACTGGGTGAAGCAGAGCCATGGAAAGAGCCTTGAGTGGATTGGACGTATTAATCCTAACAATGGTGTTA Y Y M H W V K Q S H G K S L E W I G R I N P N N G V CTCTCTACAACCAGAAATTCAAGGACAAGGCCATATTAACTGTAGACAAGTCATCCACCACAGCCTACATGGAGCTCCGC AGCCTGACATCTGAGGACTCTGCGGTCTATTACTGTGCAAGATCTACTATGATTACGAACTATGTTATGGACTACTGGGG S L T S E D S A V Y Y C A R S T M I T N Y V M D Y W $\begin{smallmatrix}G&Q&V&T&S&V&T&V&S&S&G&G&G&G&G&G&G&G&G&S&S&I\\\end{smallmatrix}$ TGATGACCCAGACTCCCACATTCCTGCTTGTTTCAGCAGGAGACAGGGTTACCATAACCTGCAAGGCCAGTCAGAGTGTG V M T Q T P T F L L V S A G D R V T T T C K A S Q S AGTAATGATGTAGCTTGGTACCAACAGAAGCCAGGGCAGTCTCCTACACTGCTCATATCCTATACATCCAGTCGCTACGC S N D V A W Y Q O K P G O S P T L L I S Y T S S R Y TCCACTCCCTCATCGCTTCATTGGCAGTGGATATGGGACGGATTTCACCTTTCACCATCAGCACTTTGCAGGCTGAAGACC A G V P D R F I G S G Y G T D F T F T I S T L Q A E D ${\tt TGGCAGTTTATTTCTGTCAGCAAGATTATAATTCTCCTCCGACGTTCGGTGGAGGCACCAAGCTTGAAATCAAACGGGCC}$ L A V Y F C Q Q D Y N S P P T F G G G T K L E I K R A S T K G P S V F P L A P S S K S T S G G T A A L G C GGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCTGACCAGCGGCGTGCACACCTTCCCCG K D Y F P E P V T V S W N S G A L T S G V H T F P CTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTAC A V L O S S G L Y S L S S V V T V P S S S L G V N H K P S N T K V D K K V E P K S C D K T H ATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCA CPPCPAPELLGGPSVFLFPPKP TGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTAC M I S R T P E V T C V V V D V S H E D P E V K F N W Y $\begin{smallmatrix} V \end{smallmatrix} \ \ \mathsf{D} \hspace{\ \ \mathsf{G}} \hspace{\ \ \mathsf{V}} \hspace{\ \ \mathsf{E}} \hspace{\ \ \mathsf{V}} \hspace{\ \ \mathsf{H}} \hspace{\ \ \mathsf{N}} \hspace{\ \ \mathsf{A}} \hspace{\ \ \mathsf{K}} \hspace{\ \ \mathsf{T}} \hspace{\ \ \mathsf{K}} \hspace{\ \ \mathsf{P}} \hspace{\ \ \mathsf{R}} \hspace{\ \ \mathsf{E}} \hspace{\ \ \mathsf{E}} \hspace{\ \ \mathsf{Q}} \hspace{\ \ \mathsf{Y}} \hspace{\ \ \mathsf{N}} \hspace{\ \ \mathsf{S}} \hspace{\ \ \mathsf{T}} \hspace{\ \ \mathsf{Y}} \hspace{\ \ \mathsf{R}} \hspace{\ \ \mathsf{V}} \hspace{\ \ \mathsf{V}} \hspace{\ \ \mathsf{S}} \\$ V L T V L H Q D W L N G K E Y K C K V S N K A L P A TCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCATCCCGGGATGAGCTG I E K T I S K A K G Q P R E P Q V Y T L P P S R D E M ${\tt ACCAAGAACCAGGTCAGCCTGACCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGCAATGG}$ T K N O V S L T C L V K G F Y P S D I A V E W E S N GCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTATAGCAAGCTCACCG TGGACAAGAGCAGGTGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAG D K S R W Q Q G N V F S C S V M H E A L H N H Y T Q AAGAGCCTCTCCCTGTCCCCGGGTAAATGACTCGAG K S L S L S P G K

ctcgagccac	catgggatgg	agctgtatca	tcctcttctt	ggtagcaaca	gctacaggtg	60
					ggggcttcag	
tgaagatatc	ctgcaaggct	tctggttact	cattcactgg	ctactacatg	cactgggtga	180
agcagagcca	tggaaagagc	cttgagtgga	ttggacylal	Laalcclaac	aatggtgtta	240
					tcatccacca	
					tactgtgcaa	
				tcaagtaact		420
				cggcggcgga		480
				agacagggtt		540
				ccaacagaag		600
ctcctacact	gctcatatcc	tatacatcca	gtcgctacgc	tggagtccct	gatcgcttca	660
				cactttgcag		720
tggcagttta	tttctgtcag	caagattata	attctcctcc	gacgttcggt	ggaggcacca	780
agcttgaaat	caaacgggcc	tccacacaga	gcccatccgt	cttccccttg	acccgctgct	840
				ctgcctggcc		900
tcccggagcc	ggtgatggtg	acctgggaca	caggctccct	caacgggaca	actatgacct	960
taccagccac	caccctcacg	ctctctggtc	actatgccac	catcagcttg	ctgaccgtct	1020
				acacactcca		1080
actgggtcga	caacaaaacc	ttcagcgtct	gctccaggga	cttcaccccg	cccaccgtga	1140
agatcttaca	gtcgtcctgc	gacggcggcg	ggcacttccc	cccgaccatc	cagctcctgt	1200
gcctcgtctc	tgggtacacc	ccagggacta	tcaacatcac	ctggctggag	gacgggcagg	1260
				gggtgagctg		1320
				ccgcacctac		1380
tcacctatca	aggtcacacc	tttgaggaca	gcaccaagaa	gtgtgcagat	tccaacccga	1440
gaggggtgag	cgcctaccta	agccggccca	gcccgttcga	cctgttcatc	cgcaagtcgc	1500
ccacgatcac	ctgtctggtg	gtggacctgg	cacccagcaa	ggggaccgtg	aacctgacct	1560
ggtcccgggc	cagtgggaag	cctgtgaacc	actccaccag	aaaggaggag	aagcagcgca	1620
atggcacgtt	aaccgtcacg	tccaccctgc	cggtgggcac	ccgagactgg	atcgaggggg	1680
				ggccctcatg		1740
ccaagaccag	cggcccgcgt	gctgccccgg	aagtotatyo	glllycyacy	ccggagtggc	1800
cggggagccg	ggacaagcgc	accctcgcct	gcctgatcca	gaacttcatg	cctgaggaca	1860
				cgcccggcac		1920
agccccgcaa	gaccaagggc	tccggcttct	tcgtcttcag	ccgcctggag	gtgaccaggg	1980
ccgaatggga	gcagaaagat	gagttcatct	gccgtgcagt	ccatgaggca	gcgagcccct	2040
cacagaccgt	ccagcgagcg	gtgtctgtaa	atcccggtaa	atgagagctc		2090

atggcttgca	attgtcagtt	gatgcaggat	acaccactcc	tcaagtttcc	atgtccaagg	60
ctcattcttc	tctttgtgct	gctgattcgt	ctttcacaag	tgtcttcaga	tgttgatgaa	120
caactgtcca	agtcagtgaa	agataaggta	ttgctgcctt	gccgttacaa	ctctccgcat	180
gaagatgagt	ctgaagaccg	aatctactgg	caaaaacatg	acaaagtggt	gctgtctgtc	240
attgctggga	aactaaaagt	gtggcccgag	tataagaacc	ggactttata	tgacaacact	300
acctactctc	ttatcatcct	gggcctggtc	ctttcagacc	ggggcacata	cagctgtgtc	360
gttcaaaaga	aggaaagagg	aacgtatgaa	gttaaacact	tggctttagt	aaagttgtcc	420
atcaaagctg	acttctctac	ccccaacata	actgagtctg	gaaacccatc	tgcagacact	480
aaaaggatta	cctgctttgc	ttccgggggt	ttcccaaagc	ctcgcttctc	ttggttggaa	540
aatggaagag	aattacctgg	catcaatacg	acaatttccc	aggatcctga	atctgaattg	600
tacaccatta	gtagccaact	agatttcaat	acyactoyca	accacaccat	taagtgtctc	660
attaaatatg	gagatgctca	cgtgtcagag	gacttcacct	gggaaaaacc	cccagaagac	720
cctcctgata	gcaagcccgg	gggtggtggg	agcggtggtg	gcggcagtgg	cggcggcgga	780
actagtaata	gtgactctga	atgtcccctg	tcccacgatg	ggtactgcct	ccatgatggt	840
gtgtgcatgt	atattgaagc	attggacaag	tatgcatgca	actgtgttgt	tggctacatc	900
ggggagcgat	gtcagtaccg	agacctgaag	tggtgggaac	tgcgc		945

4

35 ဗ္ဗ FIG. 9 CT26-neo Transfectants 25 Time (Days) 20 15 5 --- LscFv - Pure -a-LscFv - Sup -x-B7-scFv --- scFv-lg → PBS 2 0.00 1800.00 _T 1600.00 1400.00 1200.00 - 00.009 200.00 400.00

FIG. 11 B16-h5T4 Tumour Growth

FIG. 15

FIG. 19

FUSION PROTEIN CONSTRUCTS IN PONY 8.1SM

B. L-5T4scFv

FIG. 20

pKLink – the $(Gly_4Ser)_3$ linker in pBluescript II SK (pBS II)

FIG. 21

An scFv and leader sequence in pBSII

Eco RI

Bam HI

IfqS

pony 8.1 SM

1

FIG. 25

FUSION PROTEIN CONSTRUCTS IN PADAPIT

A. B7-5T4scFv

Canine 5T4 Coding Sequence

ATGC	CTG	GGG	GG'	rgc	TCC	CCG	GGG	GCC	CCG	CCG	CCG	GGG	ACC	GGG	CGG'	TTC	GCG	GC.	rgg	CGC	CGG	CTC	GC	GC'	rge	TG	CTC	CTGG	G 80
M	P	G	G	С	: :	S	R	G	P	A	A	G	D	G	R	I		R	L	A	R	I	L	A	L	V	L	L	
CTGGG G W																													G 160
CCCC																									-	_			C 240 R
														GC <i>F</i> R															C 320
CCCCC																													T 400
GCGC(C 480 F
GCCTI A																													A 560
CGACC D D																													T 640
GCCTG C I																													C 720
CTGCG L																													008 A
CAACG D N																													A 880
ACCCC																													G 960 G
CTCAC L																													т 1040
CCTCC																													т 1120
TGTAT L Y																													С 1200 н
TACAG Y																													1263