CHAPITRE 15

TD

I Exercice 3

Table des matières

Ι	Exercice 3	1
II	Exercise 7	2
III	Exercice 8	3
IV	Exercice 9	3
V	Exercice 12	4
VI	Exercice 11	5
VII	Exercise 10	8

Première partie

Exercice 3

1. $0 \in F$. Soit $P, Q \in F, \lambda, \mu \in \mathbb{K}$. On pose $R = \lambda P + \mu Q$. Montrons que $R \in F$.

$$\begin{aligned} 2R'(1) + R(0) &= 2(\lambda P'(1) + \mu Q'(1)) + \lambda P(0) + \mu Q(0) \\ &= \lambda (2P'(1) + P(0)) + \mu (2Q'(1) + Q'(0)) \\ &= 0 \end{aligned}$$

Donc $R \in F$ et donc F est un sous-espace vectoriel de E.

2.

$$P \in F \iff 2P'(1) + P(0)$$
$$\iff 2(b+2c) + a = 0$$
$$\iff a + 2b + 4c = 0$$

III Exercise 7

3. Touver une famille génératrice de E

$$\begin{split} P \in F &\iff a + 2b + 4c = 0 \\ &\iff a = -2b - 4c \\ &\iff \forall x, P(x) = (-2b - 4c) + bx + cx^2 \\ &\iff \forall x, P(x) = b\underbrace{(-2 + x)}_{\in E} + c\underbrace{(-4 + x^2)}_{\in E} \end{split}$$

Donc,
$$F = \text{Vect}(P_1, P_2)$$
 où
$$\begin{cases} P_1 : x \mapsto -2 + x \\ P_2 : x \mapsto -4 + x^2 \end{cases}$$

4. Cette famille est-elle une base? P_1 et P_2 ne sont pas colinéaires car ils n'ont pas le même degré donc (P_1, P_2) est une base de F. On a dim(F) = 2.

Deuxième partie

Exercise 7

Let $(\lambda, \mu, \nu) \in \mathbb{R}^3$ such that

$$\lambda(u_n) + \mu(v_n) + \nu(w_n) = (0)$$

Thus,

$$\forall n \in \mathbb{N}, \lambda 2^n + \mu 3^n + \nu 4^n = 0$$

<u>1st METHOD</u> In particular, with $n \in \{0, 1, 2\}$, we have

(S):
$$\begin{cases} \lambda + \mu + \nu = 0 \\ 2\lambda + 3\mu + 4\nu = 0 \\ 4\lambda + 9\mu + 16\nu = 0 \end{cases}$$

$$(S) \iff \begin{cases} \lambda + \mu + \nu = 0 \\ \mu + 2\nu = 0 \\ 5\mu + 12\nu = 0 \end{cases}$$

$$\iff \begin{cases} \lambda + \mu + \nu = 0 \\ \mu + 2\nu = 0 \\ 2\nu = 0 \end{cases}$$

$$\iff \lambda = \mu = \nu = 0$$

Therefore, u,v and w are linearly independant. $2^{\rm nd}$ METHOD Suppose $\nu \neq 0$. Then,

$$0 = \lambda u_n + \mu v_n + \nu w_n \sim \nu 4^n \xrightarrow[n \to +\infty]{} \pm \infty$$

IV Exercice 9

Hence,
$$\nu = 0$$
.
Suppose $\nu \neq 0$, then $0 = \lambda 2^n + \mu 3^n \sim \mu 3^n \xrightarrow[n \to +\infty]{} \pm \infty$
Thus, $\mu = 0$. Also, $\lambda = 0$

Troisième partie

Exercice 8

Soit $P \in E$. On pose

$$P: x \mapsto ax^2 + bx + c$$

avec $(a, b, c) \in \mathbb{R}^3$

$$P \in F \iff \begin{cases} P(1) = 0 \\ \int_0^1 P(t) \ dt = 0 \end{cases}$$

$$\iff \begin{cases} a+b+c=0 \\ \frac{a}{3} + \frac{b}{2} + c = 0 \end{cases}$$

$$\iff \begin{cases} a+b+c=0 \\ \frac{2}{3}a + \frac{1}{2}b = 0 \end{cases}$$

$$\iff \begin{cases} a = -\frac{3}{4}b \\ c = -\frac{1}{4}b \end{cases}$$

$$\iff \forall x \in \mathbb{R}, P(x) = -\frac{3}{4}bx^2 + bx - \frac{1}{4}b = b\left(-\frac{3}{4}x^2 + x - \frac{1}{4}\right)$$

$$\iff P \in \text{Vect}(Q)$$

où $Q: x \mapsto -\frac{3}{4}x^2 + x - \frac{1}{4}$

Donc, F = Vect(Q) est un sous-corps vectoriel de E. De plus, $Q \neq 0$ donc (Q) est une base de F.

Exercice 12

Quatrième partie

Exercice 9

Soit $(x, y, z, t) \in \mathbb{R}^4$.

V

$$(x,y,z,t) \in H_2 \iff \begin{cases} x+y+z+t=0 \\ x-y-z+t=0 \end{cases}$$

$$\iff \begin{cases} x+y+z+t=0 \\ 2y+2z=0 \end{cases}$$

$$\iff \begin{cases} y=-z \\ x=-t \end{cases}$$

$$\iff (x,y,z,t) = (-t,-z,z,t) = z(0,-1,1,0) + t(-1,0,0,1)$$

$$\iff (x,y,z,t) \in \text{Vect}(u_1,u_2)$$

$$\text{où } \begin{cases} u_1 = (0,-1,1,0) \\ u_2 = (-1,0,0,1) \end{cases}$$

 $H_2 = \text{Vect}(u_1, u_2)$ est un sous-espace vectoriel de \mathbb{R}^4 u_1 et u_2 ne sont pas colinéaires donc (u_1, u_2) est une base de H_2 .

Cinquième partie

Exercice 12

$$\frac{a_{11} \mid a_{12} \mid a_{13}}{a_{21} \mid a_{22} \mid a_{23}}$$

$$\frac{a_{31} \mid a_{32} \mid a_{33}}{a_{31} \mid a_{32} \mid a_{33}}$$

$$\underbrace{S}_{3} \underbrace{\left(\begin{array}{c|c} 1 \mid 1 \mid 1 \\ \hline 1 \mid 1 \mid 1 \\ \hline 1 \mid 1 \mid 1 \end{array} \right)}_{C_{1}}$$

$$\begin{cases} a_{11} + a_{12} + a_{13} = 0 \\ \vdots \\ a_{11} + a_{22} + a_{33} = 0 \\ \end{array} \right) \begin{array}{c} 8 \text{ équations} \\ 9 \text{ inconnues} \\ \end{cases}$$

$$\underbrace{ \begin{bmatrix} a \mid -a - b \mid b \\ \hline a_{11} + a_{22} + a_{33} = 0 \\ \end{array} \right)}_{b = a} \left(\begin{array}{c|c} 1 \mid -1 \mid 0 \\ \hline -1 \mid 0 \mid 1 \\ \hline -1 \mid 1 \end{array} \right) + b \left(\begin{array}{c|c} 0 \mid -1 \mid 1 \\ \hline 1 \mid 0 \mid -1 \\ \hline -1 \mid 1 \mid 0 \\ \end{array} \right)$$

VI Exercice 11

L'ensemble $\mathscr C$ des carrés magiques est $\left\{\frac{S}{3}C_1 + aC_2 + bC_3 \mid (a,b,S) \in \mathbb K\right\} =$ $Vect(C_1, C_2, C_3).$

Montrons que (C_1, C_2, C_3) est libre. Soit $(\lambda, a, b) \in \mathbb{K}^3$

$$\lambda C_1 + aC_2 + bC_3 = 0$$

$$\iff \frac{\lambda + a}{\lambda + b - a} \begin{vmatrix} \lambda - a - b & \lambda + b \\ \lambda + b - a & \lambda & \lambda - b + a \end{vmatrix} = \frac{0 \mid 0 \mid 0}{0 \mid 0 \mid 0}$$

$$\iff \begin{cases} \lambda = 0 \\ a = 0 \\ b = 0 \end{cases}$$

Sixième partie

Exercice 11

Partie 1

1. En replacant t par 0, par $\frac{\pi}{8}$ et par $-\frac{\pi}{\sqrt{3}}$, on obtient

(S):
$$\begin{cases} a+b=0\\ ae^{\frac{\pi}{\sqrt{3}}} + be^{-\frac{\pi}{2\sqrt{3}}} = 0\\ ae^{-\frac{\pi}{\sqrt{3}}} - be^{\frac{\pi}{2\sqrt{3}}} = 0 \end{cases}$$

$$\begin{vmatrix} e^{\frac{\pi}{\sqrt{3}}} & e^{-\frac{\pi}{2\sqrt{3}}} \\ e^{-\frac{\pi}{\sqrt{3}}} & -e^{-\frac{\pi}{2\sqrt{3}}} \end{vmatrix} = -e^{\frac{3\pi}{2\sqrt{3}}} - e^{-\frac{3\pi}{2\sqrt{3}}} \neq 0$$

donc

$$\begin{pmatrix} e^{\frac{\pi}{\sqrt{3}}} & e^{-\frac{\pi}{2\sqrt{3}}} \\ e^{-\frac{\pi}{\sqrt{3}}} & -e^{-\frac{\pi}{2\sqrt{3}}} \end{pmatrix} \in \mathrm{GL}_2(\mathbb{R})$$

donc le système $\begin{cases} ae^{\frac{\pi}{\sqrt{3}}}be^{-\frac{\pi}{2\sqrt{3}}}=0\\ ae^{-\frac{\pi}{\sqrt{3}}}-be^{-\frac{\pi}{2\sqrt{3}}}=0 \end{cases}$ est de Cramer. Son unique solution est $\begin{cases} a=0\\ b=0 \end{cases}$

lution est
$$\begin{cases} a = 0 \\ b = 0 \end{cases}$$

VI Exercice 11

2.

$$\begin{split} af_1(t) &= bf_2(t) + cf_3(c) = a\left(1 + t + \frac{t^2}{2} + o(t^2)\right) \\ &+ b\left(1 - \frac{t}{2} + o(t)\right) \left(\frac{t\sqrt{3}}{2} + o(t^2)\right) \\ &+ c\left(1 - \frac{t}{2} + \frac{t^2}{8} + o(t^2)\right) \left(1 - \frac{3t^2}{8} + o(t^2)\right) \\ &= (a+c) + t\left(a + \frac{b\sqrt{3}}{2} - \frac{c}{2}\right) + t^2\left(\frac{a}{2} - \frac{b\sqrt{3}}{2} - \frac{c}{4}\right) + o(t^2) \end{split}$$

Par unicité du développement limité,

(S):
$$\begin{cases} a+c=0\\ a+\frac{b\sqrt{3}}{2}-\frac{c}{2}=0\\ a-\frac{b\sqrt{3}}{2}-\frac{c}{2}=0 \end{cases}$$

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ 1 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix} \quad \sim \quad \begin{pmatrix} 1 & 0 & 1 \\ 1 & \frac{\sqrt{3}}{2} & \frac{1}{2} \\ 0 & \sqrt{3} & 0 \end{pmatrix}$$

 $\operatorname{rg}(A)=3$ donc $A\in\operatorname{GL}_3(\mathbb{R})$ doncS est de Cramer donc a=b=c=0

3.

$$\forall t, |f_2(t)| \leqslant e^{-\frac{t}{2}} \xrightarrow[t \to +\infty]{} 0$$

donc
$$f_2(t) \xrightarrow[t \to +\infty]{} 0$$

De même,
$$f_3(t) \xrightarrow[t \to +\infty]{} 0$$
 et $f_1(t) \xrightarrow[t \to +\infty]{} = 0$

$$\begin{array}{l} \operatorname{donc} \, f_2(t) \xrightarrow[t \to +\infty]{t \to +\infty} 0 \\ \operatorname{De} \, \operatorname{m\^{e}me}, \, f_3(t) \xrightarrow[t \to +\infty]{t \to +\infty} 0 \, \operatorname{et} \, f_1(t) \xrightarrow[t \to +\infty]{t \to +\infty} \to = 0 \\ \operatorname{Si} \, a \neq 0, \, \operatorname{alors}, \, 0 = a f_1(t) + b f_2(t) + c f_3(t) \xrightarrow[n \to +\infty]{t \to +\infty} \to \pm \infty \end{array}$$

Donc a = 0.

$$\forall t, b \sin\left(\frac{t\sqrt{3}}{2}\right) + c \cos\left(\frac{t\sqrt{3}}{2}\right) = 0$$

Si $c \neq 0$,

$$\forall t \not\equiv \frac{\pi}{\sqrt{3}} \left[\frac{2\pi}{\sqrt{3}} \right], \frac{b}{c} \tan \left(\frac{t\sqrt{3}}{2} \right) = 1$$

donc c = 0 et donc b = 0

4. $f_1' = f_1 \in G$

$$\forall t, f_2'(t) = -\frac{1}{2}e^{-\frac{t}{2}}\sin\left(\frac{t\sqrt{3}}{2}\right) + \frac{\sqrt{3}}{2}e^{-\frac{t}{2}}\cos\left(\frac{t\sqrt{3}}{2}\right)$$
$$= -\frac{1}{2}f_2(t) + \frac{\sqrt{3}}{2}f_3(t)$$

VI Exercice 11

 $\operatorname{donc} f_2' \in \operatorname{Vect}(\mathscr{B}) = G$

$$\forall t, f_3'(t) = -\frac{1}{2}e^{-\frac{t}{2}}\cos\left(\frac{t\sqrt{3}}{2}\right) - \frac{\sqrt{3}}{2}e^{-\frac{t}{2}}\sin\left(\frac{t\sqrt{3}}{2}\right)$$

Soit $f: t \mapsto af_1(t) + bf_2(t) + cf_3(t)$

$$f' = af_1 - \frac{b}{2}f_2 + b\frac{\sqrt{3}}{2}f_3 - \frac{c}{2}f_3 - c\frac{\sqrt{3}}{2}f_2$$
$$= af_1 - \left(\frac{b}{2} - \frac{c\sqrt{3}}{2}f_2\right) + \left(\frac{b\sqrt{3}}{2} - \frac{c}{2}\right)f_3 \in G$$

5. Les coordonnées de f est dans la base \mathscr{B} sont $\left(a, -\frac{b}{2}, -\frac{c\sqrt{3}}{2}, \frac{b\sqrt{3}}{2}, -\frac{c}{2}\right)$ Les coordonnées de f_1 sont (1,0,0)Les coordonnées de f_2 sont $\left(0, -\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ Les coordonnées de f_2 sont $\left(0, \frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$

Partie 2

- 3. $0 \in \mathscr{S}$ d'après 2. — Soient $f, g \in \mathscr{S}$, et $\lambda, \mu \in \mathbb{R}$
 - Solent $f, g \in \mathcal{S}$, et $\lambda, \mu \in \mathbb{R}$, $\lambda f + \mu g$ est dérivable 3 fois,

$$(\lambda f + \mu g)^{(3)} = \lambda f^{(3)} + \mu g^{(3)}$$
$$= \lambda f + \mu g$$

donc $\lambda f + \mu g \in \mathscr{S}$

Donc ${\mathscr S}$ est un sous-espace vectoriel de ${\mathbb R}^{\mathbb R}$

$$f_1' = f_1 \text{ donc } f_1^{(3)} = f_1 \text{ donc } f_1 \in \mathscr{S}$$

VII Exercise 10

$$f_2' = -\frac{1}{2}f_2 + \frac{\sqrt{3}}{2}f_3$$

$$f_2'' = -\frac{1}{2}\left(-\frac{1}{2}f_2 + \frac{\sqrt{3}}{2}f_3\right) + \frac{\sqrt{3}}{2\left(-\frac{1}{2}f_3 - \frac{\sqrt{3}}{2}f_2\right)}$$

$$= -\frac{1}{2}f_2 - \frac{\sqrt{3}}{2}f_3$$

$$f_2^{(3)} = -\frac{1}{2}\left(-\frac{1}{2}f_2 + \frac{\sqrt{3}}{2}f_3\right) - \frac{\sqrt{3}}{2}\left(-\frac{1}{2}f_3 + \frac{\sqrt{3}}{2}f_2\right)$$

$$= f_2$$

De même, $f_3^{(3)} = f_3$ ${\mathscr S}$ est stable par combinaison linéaire donc

$$G = \operatorname{Vect}(f_1, f_2, f_3) \subset \mathscr{S}$$

4.
$$g' = f' + f'' + f^{(3)} = f + f' + f'' = g$$

5.

$$y' - y = 0 \iff \exists \lambda \in \mathbb{R}, \forall t, y(t) = \lambda e^t$$

 $\iff y \in \text{Vect}(f_1)$

- 6. (f_1, f_2) car j et j^2 sont toujours solutions de $1 + z + z^2$
- 7. $\frac{\lambda}{3}f_1$ est une solution particulière

$$\frac{\lambda}{3}f_1 + \text{Vect}(f_2, f_3)$$

8.

$$f \in \mathscr{S} \implies f + f' + f'' \in \operatorname{Vect}(f_1)$$

$$\implies \exists \lambda, f + f' + f'' = \lambda f_1$$

$$\implies \exists (\lambda, a, b), f = \frac{\lambda}{3} f_1 + a f_2 + b f_3 \in G$$

Septième partie

Exercise 10

We need to show that $F \subset G$. Let $n \in \mathbb{N}$.

$$\forall x \in \mathbb{R}, \cos(nx) = T_n(\cos x)$$

where T_n is the *n*-th Tchebychev polynomial. Thus,

$$(x \mapsto \cos(nx)) \in G$$

. In fact,

$$\forall x \in \mathbb{R}, \cos(nx) = \mathfrak{Re}\left(e^{inx}\right)$$

$$= \mathfrak{Re}\left(\left(e^{ix}\right)^n\right)$$

$$= \mathfrak{Re}\left(\left(\cos x + i\sin x\right)^n\right)$$

$$= \mathfrak{Re}\left(\sum_{k=0}^n i^k \sin^k x \cos^{n-k} x \binom{n}{k}\right)$$

$$= \sum_{\substack{0 \leqslant k \leqslant n \\ k \text{ even}}} \binom{n}{k} \cos^{n-k} x \sin^k x i^k$$

$$= \sum_{\substack{0 \leqslant p \leqslant \frac{n}{2}}} \binom{n}{2p} \cos^{n-2p} x \left(\sin^2 x\right)^p (-1)^p$$

$$= \sum_{\substack{0 \leqslant p \leqslant \frac{n}{2}}} (-1)^p \binom{n}{2p} \cos^{n-2p} x \left(1 - \cos^2 x\right)^p$$

And,

$$\forall x \in \mathbb{R}, \cos^n x = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^n$$

$$= \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} e^{ikx} e^{-i(n-k)x}$$

$$= \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} e^{i(2k-n)x}$$

$$= \Re \left(\frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} e^{i(2k-n)x}\right)$$

$$= \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \cos\left(|2k-n|x\right)$$

 $T_n: u \mapsto \sum_{0 \le p \le \frac{n}{2}} (-1)^p \binom{n}{2p} u^{n-2p} (1-u^2)^p$

So, $(x \mapsto \cos^n x) \in F$.