Correctness:

Claim:

For all two subsequences $(a_n)_{n\in\mathbb{N}}$, $(b_m)_{m\in\mathbb{N}}$ of characters. s.t $1\leq n,m$

f(n,m) returns the LCS of let (a_n) and (b_m)

Proof: (by induction on n and m)

Base case:

- (3) Assume n = 0 or m = 0. Then f returns 0, as required.
- **(4)** Assume n = 1 and m = 1.

if $a_1 = b_1$ then f returns $1 + f(0,0) =_{(3)} 1 + 0 = 1$, as required.

Let $(a_n)_{n\in\mathbb{N}}$, $(b_m)_{m\in\mathbb{N}}$ be any two subsequences of characters.

(*) Assume that the claim holds for any k < n, l < m.

Assume that $a_n = b_m$.

(5) Therefore, we count 1 and add to that the return value of f(n-1, m-1).

From (*), f(n-1, m-1) returns the LCS of

 $(a_1, a_2, \dots, a_{n-1})$ and $(b_1, b_2, \dots, b_{m-1})$, say that this value is r, then of course that the LCS of (a_n) and (b_m) is 1 + r. From here and (5) we get what is required.

Assume that $a_n \neq b_m$.

Therefore, the LCS of (a_n) and (b_m) can only be at

(6)
$$(a_1, a_2, ..., a_{n-1})$$
 and $(b_1, b_2, ..., b_m)$ or at

(7)
$$(a_1, a_2, ..., a_n)$$
 and $(b_1, b_2, ..., b_{m-1})$.

From (*), f(n-1,m) return the LCS of the subsequence at (6), say this value is r_1

and f(n, m-1) returns the LCS of the subsequence at (7), say this value is r_2

Of course, the result is the maximum value between r_1 and r_2 .

That means, the result is $\max(f(n-1,m), f(n,m-1))$. As required.

We assumed that the claim holds for any k < n, l < m and shows that the claim holds for n and m. Therefore, we completed the inductive step.

Conclusion: By mathematical induction, it's proved that the claim holds for all $1 \le n, m$.

Author: Idan Damri