

RGB LED CONTROLLER FIRMWARE

UNIV 3.8.0.0

1. Features

- Firmware for RGB LED controller
- Voltage control (PWM) in 255 steps (0-255) for each channel
- MASTER channel adjustable in 255 steps as well
- Possibility to set up minimum and maximum value for each channel
- Last state memory
- Adjustable dimming time for each channel
- 37 control instructions
- 3 blocking instructions
- 4 timers (1 for each channel) for instruction execution delay 1s-24h
- Allows defining up to 128 CAN messages which can indirectly control the module
- Settable power up states
- Uptime counter
- Health check monitor
- Transmit (42 messages) and receive (42 messages) FIFO buffers

2. Compatibility

- Firmware for UNIV 3.8.0.x module
- Firmware can be uploaded into processor with bootloader version 3.1 or compatible.

3. Firmware version

4. Communication Frames (messages)

4.1. RGB LED controller message

The module sends message to the bus, when the status of any channel changes.

Table 1. RGB LED controller frame (0x308)
Frame type | Flags | Module | Group | D

	0x308	3 2 1 0	Node Nr	Group Nr	0xFF	0xFF	CHANNEL	STATUS	RELAY	INSTR1	INSTR2	TIMER
_		_										•
L	0x308	- univers		ame, RGB LEI								
		3 -		flag, read as								
		2 -		flag, read as								
		1 -		flag, read as								
		0 RE	- response	flag, flag is e	equal "1" if no	ode was requ	ested. If flag	is equal "0" if	t means that	status of out	put has just o	changed.
		[Node Nr	- message : Group Nr	sender node - message	number sender group	o number					
					CHANNEL	- output ch	nannel (0x01	- red, 0x02 -	green, 0x03	3 – blue, 0x04	4 - MASTER)	
					STATUS	- current s	tatus of outpu	ıt 0x00 – 0xF	F			
					PRZEK	channel an	tatus of all ch d any colour ne power supp	channe is on)) – this byte	can be used t	to toggle rela	y which
					INSTR1	- instructio	n that is wait	ing for execu	tion, or 0xFF	if none instru	uction	
					INSTR2	- second b	yte of instruct	ion that is w	aiting for exe	cution, or 0x	FF	

TIMER - delay value of waiting instruction, or 0x00 if none waiting

4.2. Status request

Status of module can be checked by sending from computer STATUS REQUEST frame (0x109) (Table 2).

Table 2. STATUS REQUEST frame (0x109).

Frame type	Flags	Module	Group	D0	D1	D2	D3	D4	D5	D6	D7
0x109	0x0	COMP ID1	COMP ID2	0xXX	0xXX	Node Nr	Group Nr	0xXX	0xXX	0xXX	0xXX

0x1090 - STATUS REQUEST frame

COMP ID1 - computer identifier (must be unique on the network)

COMP ID2 - computer identifier (must be unique on the network)

Node Nr - node number of requested module

Group Nr - group number of requested module

0xXX - inessential data

As response the module will send RGB LED frames. The meaning of bytes is the same as in Table 1.

Table 3. Response to STATUS REQUEST

Tubic 5. IX	Sponse	10 517110	JINEQUES	•							
Frame type	Flags	Module	Group	D0	D1	D2	D3	D4	D5	D6	D7
0x308	0x1	Node Nr	Group Nr	0xFF	0xFF	0x01	STATUS	0xFF	INSTR1	INSTR2	TIMER1
Frame type	Flags	Module	Group	D0	D1	D2	D3	D4	D5	D6	D7
0x308	0x1	Node Nr	Group Nr	0xFF	0xFF	0x02	STATUS	0xFF	INSTR1	INSTR2	TIMER2
Frame type	Flags	Module	Group	D0	D1	D2	D3	D4	D5	D6	D7
0x308	0x1	Node Nr	Group Nr	0xFF	0xFF	0x03	STATUS	0xFF	INSTR1	INSTR2	TIMER3
Frame type	Flags	Module	Group	D0	D1	D2	D3	D4	D5	D6	D7
0x308	0x1	Node Nr	Group Nr	0xFF	0xFF	0x04	STATUS	RELAY	INSTR1	INSTR2	TIMER4

4.3. Uptime request

Table 4. UPTIME REQUEST (0x113).

			(/ -								
Frame type	Flags	Module	Group	D0	D1	D2	D3	D4	D5	D6	D7
0x113	0x0	COMP ID1	COMP ID2	0xXX	0xXX	Node Nr	Group Nr	0xXX	0xXX	0xXX	0xXX

0x1130 - UPTIME REQUEST frame

COMP ID1 - computer identifier (must be unique on the network)

COMP ID2 - computer identifier (must be unique on the network)

Node Nr - node number of requested module

Group Nr - group number of requested module

0xXX - inessential data

Table 5. Response to UPTIME REQUEST (0x113).

	10000.00	,	<u> </u>	7. (07.110	<i>,</i> ·						
Frame type	Flags	Module	Group	D0	D1	D2	D3	D4	D5	D6	D7
0x113	0x1	Node Nr	Group Nr	0xFF	0xFF	0xFF	0xFF	UPTIME3	UPTIME2	UPTIME1	UPTIME0

0x1131 - Response to UPTIME REQUEST frame

Node Nr - node number on the network
Group Nr - group number of the node on the network

UPTIME - (UPTIME3*256³+UPTIME2*256²+UPTIME1*256¹+UPTIME3*256⁰) in seconds

4.4. Health check request

Table 6. HEALTH CHECK - STATUS REQUEST (0x115).

Frame type	Flags	Module	Group	D0	D1	D2	D3	D4	D5	D6	D7
0x115	0x0	COMP ID1	COMP ID2	0x01	0xXX	Node Nr	Group Nr	0xXX	0xXX	0xXX	0xXX

0x1150 - HEALTH CHECK REQUEST frame

COMP ID1 - computer identifier (must be unique on the network)

COMP ID2 - computer identifier (must be unique on the network)

0x01 - status request

Node Nr - node number of requested module

Group Nr - group number of requested module

0xXX - inessential data

As response the module will send two frames (Table 7).

Table 7. Response to HEALTH CHECK - STATUS REQUEST (0x115).

Frame type	Flags	Module	Group	D0	D1	D2	D3	D4	D5	D6	D7
0x115	0x1	Node Nr	Group Nr	0x01	RXCNT	TXCNT	RXCNTMX	TXCNTMX	CANINTCNT	RXERRCNT	TXERRCNT

0x1151

- Response to HEALTH CHECK REQUEST frame

Node Nr - node number on the network

Group Nr - group number of the node on the network

0x01 - frame 1 (current values)

RXCNT - current level of receive FIFO buffer

TXCNT - current level of transmit FIFO buffer

RXCNTMX - maximum level of receive FIFO buffer since power up

TXCNTMX - maximum level of transmit FIFO buffer since power up

CANINTCNT - number of CAN interface restarts since power up

RXERRCNT - current receive errors register

TXERRCNT - current transmit errors register

Frame type	Flags	Module	Group	D0	D1	D2	D3	D4	D5	D6	D7
0x115	0x1	Node Nr	Group Nr	0x02	0xFF	0xFF	RXCNTMXE	TXCNTMXE	CANINTCNTE	RXERRCNTE	TXERRCNTE

0x1151

- Response to HEALTH CHECK REQUEST frame

Node Nr - node number on the network

Group Nr - group number of the node on the network

- frame 2 (maximum values saved in eeprom memory)

RXCNTMXE - maximum ever level of receive FIFO buffer

TXCNTMXE - maximum ever level of transmit FIFO buffer

CANINTCNTE - maximum ever number of CAN interface restarts

RXERRCNTE - maximum ever receive errors

TXERRCNTE - maximum ever transmit errors

To clear maximum values saved in eeprom memory the frame shown in Table 8 must be sent. There is no response to this message.

Table 8. HEALTH CHECK - CLEAR REQUEST (0x115).

				£ = = : (= :	,-						
Frame type	Flags	Module	Group	D0	D1	D2	D3	D4	D5	D6	D7
0x115	0x0	COMP ID1	COMP ID2	0x02	0xXX	Node Nr	Group Nr	0xXX	0xXX	0xXX	0xXX

0x1150

- HEALTH CHECK REQUEST frame

COMP ID1 - computer identifier (must be unique on the network)

COMP ID2 - computer identifier (must be unique on the network)

0x02 - clear request

Node Nr - node number of requested module

Group Nr - group number of requested module

0xXX - inessential data

5. Module control

The module can be controlled directly from PC, or indirectly by other modules.

5.1. Control instruction

The table below shows all instructions, which can be executed by the module. Some of them can be executed only with direct control and other with indirect control (through other modules).

Table 9. Module control instructions

Table 9. Module contro	111361	<u>actions</u>		Instructio	n Codding	l					
											T
Instrukcja	INSTR1	INSTR2	INSTR3	INSTR4	INSTR5	INSTR6	INSTR7	INSTR8	Note	Direct	Indirect
SET LED1 (R) TO	0x00	STATE	TIMER	0xXX	0xXX	0xXX	0xXX	0xXX	Cata the state of the shannel immediately at the level		
SET LED2 (G) TO	0x01	STATE		0xXX	0xXX	0xXX	0xXX	0xXX	Sets the state of the channel immediately at the level specified by the byte STATE (0-255). Instructions may be	√	√
SET LED3 (B) TO	0x02 0x03	STATE	TIMER	0xXX 0xXX	0xXX 0xXX	0xXX 0xXX	0xXX 0xXX	0xXX 0xXX	delayed if the TIMER is not zero.		'
SET MASTER TO TOGGLE LED1	0x03	0xXX	TIMER	0xXX	0xxx	0xXX	0xXX	0xXX			+
TOGGLE LED2	0x05	0xXX	TIMER	0xXX	0xXX	0xXX	0xXX	0xXX	If the channel is on, it will be turned off. If it is off, it will be turned to the maximum or the last memorized value	١,	١,
TOGGLE LED3	0x06	0xXX	TIMER	0xXX	0xXX	0xXX	0xXX	0xXX	(if state memory is set in the configuration). Instructions	√	\checkmark
TOGGLE MASTER	0x07	0xXX	TIMER	0xXX	0xXX	0xXX	0xXX	0xXX	may be delayed if the TIMER is not zero.		
STEP DOWN LED1 BY	0x08	VALUE		0xXX	0xXX	0xXX	0xXX	0xXX			
STEP DOWN LED2 BY	0x09	VALUE	TIMER	0xXX	0xXX	0xXX	0xXX	0xXX	Channel state will be reduced by the value indicated in	√	\checkmark
STEP DOWN LED3 BY STEP DOWN MASTER BY	0x0A 0x0B	VALUE		0xXX 0xXX	0xXX 0xXX	0xXX 0xXX	0xXX 0xXX	0xXX 0xXX	the VALUE byte.		'
STEP UP LED1 BY	0x0C	VALUE	TIMER	0xXX	0xxx	0xXX	0xXX	0xXX			+-
STEP UP LED2 BY	0x0D	VALUE		0xXX	0xXX	0xXX	0xXX	0xXX	Channel state will be increased by the value indicated in	١,	,
STEP UP LED3 BY	0x0E	VALUE		0xXX	0xXX	0xXX	0xXX	0xXX	the VALUE byte.	√	√
STEP UP MASTER BY	0x0F	VALUE		0xXX	0xXX	0xXX	0xXX	0xXX			
SET LED1 (R) SOFTLY TO	0x10	STATE	TIMER	0xXX	0xXX	0xXX	0xXX	0xXX	Sate the state of the channel slowly to the lovel specified	1	
SET LED2 (G) SOFTLY TO	0x11	STATE	TIMER	0xXX	0xXX	0xXX	0xXX	0xXX	Sets the state of the channel slowly to the level specified by the byte STATE (0-255). Instructions may be delayed	√	√
SET LED3 (B) SOFTLY TO SET MASTER SOFTLY TO	0x12 0x13	STATE	TIMER	0xXX 0xXX	0xXX 0xXX	0xXX 0xXX	0xXX 0xXX	0xXX 0xXX	if the TIMER is not zero.		1
STOP LED1	0x13	0xXX	0xXX	0xXX	0xXX	0xXX 0xXX	0xXX 0xXX	0xXX			+
STOP LEDI	0x15	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	It stops instruction which is being executed eq. START or		
STOP LED3	0x16	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	SET SOFTLY TO	√	
STOP MASTER	0x17	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX			
START LED1	0x18	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	Instruction START begins typical control process. If within 400ms from START instruction, controller receives STOP instruction then it toggles channel's state (exactly the		
START LED2	0x19	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	same as TOGGLE instruction). If after that time instruction STOP is not received then channel is brightened (if previous state was min or 0), or channel is	√	V
START LED3	0x1A	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	dimmed (if previous state was max). It gives possibility to control with one button. If button is	V	V
START MASTER	0x1B	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	pressed for less than 400ms the channel will turn on or off. If button is pressed for longer than 400ms, then channel will dim or brighten.		
SET LED1 SPEED TO	0x1C	VALUE	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	It sets dimming time of particular channel. VALUE byte		
SET LED2 SPEED TO	0x1D	VALUE	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	(0-255) defines time when channel changes its state from	√	√
SET LED3 SPEED TO SET MASTER SPEED TO	0x1E 0x1F	VALUE	0xXX 0xXX	0xXX 0xXX	0xXX 0xXX	0xXX 0xXX	0xXX 0xXX	0xXX 0xXX	0 to 255. This byte can hold value from 0 – 255 which corresponds to 1s – 256s.		
									It sets immediately values of three colour channels.	,	٠,
SET RGB TO SET SOFTLY RGB TO	0x20 0x21	STATE1		STATE3	TIMER	0xXX 0xXX	0xXX 0xXX	0xXX 0xXX	Instruction may be delayed if the TIMER is not zero. It sets slowly values of three colour channels. Instruction	√	√
SET RGB SPEED TO	0x22	VALUE	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	may be delayed if the TIMER is not zero. It sets dimming time of three colour channels. VALUE byte (0-255) defines time when channel changes its state from 0 to 255. This byte can hold value from 0 – 255 which corresponds to 1s – 256s.	√	√
RGB SPEED UP	0x23	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	It changes dimming speed of three colour channels to next lower value	√	√
RGB SPEED DOWN	0x24	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	It changes dimming speed of three colour channels to next higher value	√	√
		0x00	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	It stops any running program.		T
PROGRAM	0x25	0x01	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	Program 1 – every program calling causes colour changing with sequence: 1- red 2- green 3- blue 4- yellow 5- cyan 6- violet 7- white	√	√
		0x02	0xXX	0xXX	0xXX	0xXX	0xXX	0xXX	Program 2 – first program calling runs automatic colour changing with current dimming speed beginning from red colour. The second program calling stops colour. Another calling starts colour changing with reversed order.		
ENABLE BOX	0xDD	BoxX	BoxY	0xXX	0xXX	0xXX	0xXX	0xXX	It enables chosen boxes – these boxes will be compared with next received message from the bus.	L	√
DISABLE BOX	0xDE	BoxX	BoxY	0xXX	0xXX	0xXX	0xXX	0xXX	It disables chosen boxes – these boxes will be passed when next message arrives from the bus.		√
TOGGLE BOX	0xDF	BoxX	BoxY	0xXX	0xXX	0xXX	0xXX	0xXX	It toggles boxes – enables when they are disabled and vice versa	L	\checkmark
				0x	XX - iness	ential dat	а				

BoxX	Note
0x00	- from Box 1
0x01	- from Box 2
0x7F	- from Box 128

BoxY	Note
0x00	+ 0 -(and not anyone else)
0x01	+ 1 -(and 1 following)
0x7F	+127 -(and 127 following)

5.2. Timer

Each channel has its own timer which can delay execution of the instruction. Delay can be chosen between 1s-24h set in TIMER register. Drawing below shows delay dependence of TIMER register.

Figure 1. Delay/timer register relationship

5.3. Direct control

It is possible to control module by sending DIRECT CONTROL message. The message contains instruction, which will be executed by the module.

Table 10. DIRECT CONTROL frame (0x10A).

Table 101 Bittle Continue (CA107)											
Frame type	Flags	Module	Group	D0	D1	D2	D3	D4	D5	D6	D7
0x10A	0x0	COMP ID1	COMP ID2	INSTR1	INSTR2	Node Nr	Group Nr	INSTR3	INSTR4	INSTR5	INSTR6

0x10A - DIRECT CONTROL frame

COMP ID1 - computer identifier (must be unique on the network)

COMP ID2 - computer identifier (must be unique on the network)

Node Nr - node number of requested module

Group Nr - group number of requested module

INSTR1-6 - instruction to be executed (byte1)

5.4. Indirect control

Indirect control means that module will react to messages sent by other modules on the network. It depends on configuration programmed into the module boxes (memory cells).

This firmware has feature to set simple conditions of executing instruction. To do so, you can use blocking instruction (0xDD - 0xDF) shown in Table 9.

6. Configuration

Parameters that can be configured with this firmware:

- Module identifier (module number and group number);
- Module description (16 chars);
- Minimum and maximum values;
- Power up dimming speed;
- Power up states;
- Last state memory;
- Text notes;
- Linking device with other modules (indirect control of module).

Configuration process can be done using HAPCAN Programmer.

6.1. Module identifier

Every module on the network must have unique identifier. The identifier is made of two bytes, module number (1 byte) and group number (1 byte). Identifier of the Ethernet Interface can be changed in HAPCAN Programmer in software settings.

6.2. Module description

Every module can have 16 char description, which makes easier for user (programmer) to distinguish nodes.

6.3. Minimum and maximum values

It is possible to set minimum and maximum values for each channel.

6.4. Power up dimming speed

This parameter defines how fast channel goes from value 0 to value 255. The dimming speed can be chosen between 1s and 256s with 1s step.

6.5. Power up states

It is possible to configure channel states at startup after power loss. At startup values can be chosen between 0 and 255 or the or the last state saved in non-volatile memory can be taken. The last state value must be unchanged for at least 6s before power failure.

6.6. Last state memory

The last state of any channel can be remembered. In this mode, when channel is being switched on, it sets to the value that was before switching off. In no state memory mode it sets to the maximum value.

6.7. Text notes.

Up to 1024 characters can be written into processor's memory.

6.8. Linking devices

The module has 128 memory cells (boxes). Each box can contain information about message sent by other node, and instruction which will be executed when that message is received.

7. License

HAPCAN Home Automation Project firmware, Copyright (C) 2014 hapcan.com

This program is free firmware: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This firmware is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this firmware. If not, see http://www.gnu.org/licenses/qpl-3.0.html.

8. Document version

File	Note	Date
univ_3-8-0-0a.pdf	Original version	January 2014