On large automorphism groups of algebraic curves in positive characteristic

M. Giulietti * and G. Korchmáros *

February 23, 2013

Abstract

In his investigation on large K-automorphism groups of an algebraic curve, Stichtenoth obtained an upper bound on the order of the first ramification group of an algebraic curve \mathcal{X} defined over an algebraically closed field of characteristic p. Stichtenoth's bound has raised the problem of classifying all \mathbb{K} -automorphism groups G of \mathcal{X} with the following property: There is a point $P \in \mathcal{X}$ for which

$$|G_P^{(1)}| > \frac{p}{p-1}g.$$
 (1)

Such a classification is obtained here by proving Theorem 1.3

1 Introduction

Let \mathbb{K} be an algebraically closed field of characteristic $p \geq 0$. Let $\operatorname{Aut}(\mathcal{X})$ be the \mathbb{K} -automorphism group of a (projective, non-singular, geometrically irreducible, algebraic) curve \mathcal{X} embedded in an r-dimensional projective space $\operatorname{PG}(r,\mathbb{K})$. If \mathcal{X} has genus $g \geq 2$, then $\operatorname{Aut}(\mathcal{X})$ is finite, but this does not hold for either rational or elliptic function fields. Over \mathbb{C} , more generally in zero characteristic, the classical Hurwitz bound for curves of genus $g \geq 2$ is

$$|\operatorname{Aut}(\mathcal{X})| \le 84(g-1). \tag{2}$$

 $^{^*\}mbox{Research}$ supported by the Italian Ministry MURST, Strutture geometriche, combinatoria e loro applicazioni, PRIN 2006-2007

In positive characteristic, \mathcal{X} with $g \geq 2$ may happen to have larger automorphism group. Nevertheless, from previous work by Roquette [18], Stichtenoth [19, 20], Henn [10], Hansen and Petersen [9], Garcia, Stichtenoth and Xing [4], Çakçak and Özbudak,[2], Giulietti, Korchmáros and Torres [6], Lehr and Matignon [16], curves with very large automorphism groups comparing with their genera are somewhat rare.

The Hermitian curve is the unique curve with $|\operatorname{Aut}(\mathcal{X})| \geq 16g^4$, see [19]. If p > g then (2) holds with only one exception, namely the hyperelliptic curve $\mathbf{v}(Y^p - Y - X^2)$ with $g = \frac{1}{2}(p+1)$ and $|G| = 2p(p^2 - 1)$, see [18]. Curves with $|\operatorname{Aut}(\mathcal{X})| \geq 8g^3$ were classified in [10]:

Theorem 1.1 (Henn). Let \mathcal{X} be a projective, geometrically irreducible nonsingular curve of genus $g \geq 2$. If a subgroup G of $|\operatorname{Aut}(\mathcal{X})|$ has order at least $8g^3$, then \mathcal{X} is birationally equivalent to one of the following plane curves:

- (I) The hyperelliptic curve $\mathbf{v}(Y^2 + Y + X^{2^k+1})$ with p = 2 and $g = 2^{k-1}$; $|\operatorname{Aut}(\mathcal{X})| = 2^{2k+1}(2^k+1)$ and $\operatorname{Aut}(\mathcal{X})$ fixes a point $P \in \mathcal{X}$.
- (II) The hyperelliptic curve $\mathbf{v}(Y^2 (X^q X))$ with p > 2 and $g = \frac{1}{2}(n-1)$; either $G/M \cong \mathrm{PSL}(2,n)$ or $G/M \cong \mathrm{PGL}(2,n)$, where n is a power of p and M is a central subgroup of G of order 2.
- (III) The Hermitian curve $\mathbf{v}(Y^n + Y X^{n+1})$ with $p \geq 2$, and $g = \frac{1}{2}(n^2 n)$; either $G \cong \mathrm{PSU}(3, n)$ or $G \cong \mathrm{PGU}(3, n)$ with n a power of p.
- (IV) The DLS curve (the Delign-Lusztig curve arising from the Suzuki group) $\mathbf{v}(X^{n_0}(X^n+X)-(Y^n+Y))$ with $p=2, n_0=2^r, r\geq 1, n=2n_0^2$, and $g=n_0(n-1); G\cong \mathrm{Sz}(n)$ where $\mathrm{Sz}(n)$ is the Suzuki group.

Another relevant example in this direction is the following.

(V) The DLR curve (the Delign-Lusztig curve arising from the Ree group) $\mathbf{v}(X^{n_0}(X^n+X)-(Y^n+Y))$ with $p=3, n_0=3^r, n\geq 0, n=3n_0^2,$ and $g=n_0(n-1); G\cong \operatorname{Ree}(n)$ where $\operatorname{Ree}(n)$ is the Ree group.

An important ingredient in the proof of Theorem 1.1, as well as in other investigations on curves with a large automorphism group G, is Stichtenoth's upper bound on the order of the Sylow p-subgroup in the stabiliser G_P of a point $P \in \mathcal{X}$. In terms of ramification groups, such a Sylow p-subgroup is the first ramification group $G_P^{(1)}$, and the bound depends on the ramification pattern of the Galois covering $\mathcal{X} \to \mathcal{Y}$ where \mathcal{Y} is a non-singular model of the quotient curve $\mathcal{X}/G_P^{(1)}$.

Theorem 1.2 (Stichtenoth). Let \mathcal{X} be a projective, geometrically irreducible, non-singular curve of genus $g \geq 2$. If $P \in \mathcal{X}$, then

$$|G_P^{(1)}| \le \frac{4p}{p-1}g^2.$$

More precisely, if \mathcal{X}_i is the quotient curve $\mathcal{X}/G_P^{(i)}$, then one of the following cases occurs:

- (i) \mathcal{X}_1 is not rational, and $|G_P^{(1)}| \leq g$;
- (ii) \mathcal{X}_1 is rational, the covering $\mathcal{X} \to \mathcal{X}_1$ ramifies not only at P but at some other point of \mathcal{X} , and

$$|G_P^{(1)}| \le \frac{p}{p-1}g;$$
 (3)

(iii) \mathcal{X}_1 and \mathcal{X}_2 are rational, the covering $\mathcal{X} \to \mathcal{X}_1$ ramifies only at P, and

$$|G_P^{(1)}| \le \frac{4|G_P^{(2)}|}{(|G_P^{(2)}|-1)^2}g^2 \le \frac{4p}{(p-1)^2}g^2.$$
 (4)

Stichtenoth's bound raises the problem of classifying all automorphism groups G with the following property: There is a point $P \in \mathcal{X}$ such that

$$|G_P^{(1)}| > \frac{p}{p-1}g. (5)$$

In this paper, we obtain such a classification by proving the following result.

Theorem 1.3. If (1) holds, then either G fixes P or one of the four cases (II),...,(V) in Theorem 1.1 occurs.

2 Background and some preliminary results

Let \mathcal{X} be a projective, non-singular, geometrically irreducible, algebraic curve of genus $g \geq 2$ embedded in the r-dimensional projective space $\operatorname{PG}(r, \mathbb{K})$ over an algebraically closed field \mathbb{K} of positive characteristic p > 0. Let Σ be the function field of \mathcal{X} which is an algebraic function field of transcendency degree one over \mathbb{K} . The automorphism group $\operatorname{Aut}(\mathcal{X})$ of \mathcal{X} is defined to be the automorphism group of Σ fixing every element of \mathbb{K} . It has a faithful permutation representation on the set of all points \mathcal{X} (equivalently on the set of all places of Σ). The orbit

$$o(P) = \{Q \mid Q = P^{\alpha}, \ \alpha \in G\}$$

is long if |o(P)| = |G|, otherwise o(P) is short and G_P is non-trivial.

If G is a finite subgroup of $\operatorname{Aut}(\mathcal{X})$, the subfield Σ^G consisting of all elements of Σ fixed by every element in G, also has transcendency degree one. Let \mathcal{Y} be a non-singular model of Σ^G , that is, a projective, non-singular, geometrically irreducible, algebraic curve with function field Σ^G . Sometimes, \mathcal{Y} is called the quotient curve of \mathcal{X} by G and denoted by \mathcal{X}/G . The covering $\mathcal{X} \mapsto \mathcal{Y}$ has degree |G| and the field extension Σ/Σ^G is of Galois type.

If P is a point of \mathcal{X} , the stabiliser G_P of P in G is the subgroup of G consisting of all elements fixing P. For $i = 0, 1, \ldots$, the i-th ramification group $G_P^{(i)}$ of \mathcal{X} at P is

$$G_P^{(i)} = \{ \alpha \mid \operatorname{ord}_P(\alpha(t) - t) \ge i + 1, \alpha \in G_P \},\$$

where t is a uniformizing element (local parameter) at P. Here $G_P^{(0)} = G_P$ and $G_P^{(1)}$ is the unique Sylow p-subgroup of G_P . Therefore, $G_P^{(1)}$ has a cyclic complement H in G_P , that is, $G_P = G_P^{(1)} \rtimes H$ with a cyclic group H of order prime to p. Furthermore, for $i \geq 1$, $G_P^{(i)}$ is a normal subgroup of G and the factor group $G_P^{(i)}/G_P^{(i+1)}$ is an elementary abelian p-group. For i big enough, $G_P^{(i)}$ is trivial.

For any point Q of \mathcal{X} , let $e_Q = |G_Q|$ and

$$d_Q = \sum_{i>0} (|G_Q^{(i)}| - 1).$$

Then $d_Q \ge e_Q - 1$ and equality holds if and only if $gcd(p, |G_Q|) = 1$.

Let g' be the genus of the quotient curve \mathcal{X}/G . The Hurwitz genus formula together with the Hilbert different formula give the following equation

$$2g - 2 = |G|(2g' - 2) + \sum_{Q \in \mathcal{X}} d_Q.$$
 (6)

If G is tame, that is $p \nmid |G|$, or more generally for G with $p \nmid e_Q$ for every $Q \in \mathcal{X}$, Equation (6) is simpler and may be written as

$$2g - 2 = |G|(2g' - 2) + \sum_{i=1}^{k} (|G| - |\ell_i|)$$
(7)

where ℓ_1, \ldots, ℓ_k are the short orbits of G on \mathcal{X} .

Let $G_P = G_P^{(1)} \rtimes H$. The following upper bound on |H| depending on g is due to Stichtenoth [19]:

$$|H| \le 4g + 2.$$

For any abelian subgroup G of $Aut(\mathcal{X})$, Nakajima [17] proved that

$$|G| \le \begin{cases} 4g+4 & \text{for} \quad p \neq 2, \\ 4g+2 & \text{for} \quad p = 2. \end{cases}$$

Let \mathcal{L} be the projective line over \mathbb{K} . Then $\operatorname{Aut}(\mathcal{L}) \cong \operatorname{PGL}(2,\mathbb{K})$, and $\operatorname{Aut}(\mathcal{L})$ acts on the set of all points of \mathcal{L} as $\operatorname{PGL}(2,\mathbb{K})$ naturally on $\operatorname{PG}(2,\mathbb{K})$. In particular, the identity of $\operatorname{Aut}(\mathcal{L})$ is the only automorphism in $\operatorname{Aut}(\mathcal{L})$ fixing at least three points of \mathcal{L} . Every automorphism $\alpha \in \operatorname{Aut}(\mathcal{L})$ fixes a point; more precisely, α fixes either one or two points according as its order is p or relatively prime to p. Also, $G_P^{(1)}$ is an infinite elementary abelian p-group. For a classification of subgroups of $\operatorname{PGL}(2,\mathbb{K})$, see [24].

Let \mathcal{E} be an elliptic curve. Then $\operatorname{Aut}(\mathcal{E})$ is infinite; however for any point $P \in \mathcal{E}$ the stabiliser of P is rather small, namely

$$|\operatorname{Aut}(\mathcal{E})_P| = \begin{cases} 2, 4, 6 & \text{when } p \neq 2, 3, \\ 2, 4, 6, 12 & \text{when } p = 3, \\ 2, 4, 6, 8, 12, 24 & \text{when } p = 2. \end{cases}$$

Let \mathcal{F} be a (hyperelliptic) curve of genus 2. For any solvable subgroup G of $\operatorname{Aut}(\mathcal{F})$, Nakajima's bound together with some elementary facts on finite permutation groups, yield $|G| \leq 48$.

In the rest of this Section, \mathcal{X} stands for a non-hyperelliptic curve of genus $g \geq 3$, and it is assumed to be the canonical curve of $\mathbb{K}(\mathcal{X})$. So, \mathcal{X} is a non-singular curve of degree 2g-2 embedded in $\mathrm{PG}(g-1,\mathbb{K})$, and the canonical series of $\mathbb{K}(\mathcal{X})$ is cut out on \mathcal{X} by hyperplanes. Let $1, x_1, \ldots, x_{g-1}$ denote the coordinate functions of this embedding with respect to a homogeneous coordinate frame $(X_0, X_1, \ldots, X_{g-1})$ in $\mathrm{PG}(g-1, \mathbb{K})$.

For a point $P \in \mathcal{X}$, the order sequence of \mathcal{X} at P is the strictly increasing sequence

$$j_0(P) = 0 < j_1(P) = 1 < j_2(P) < \dots < j_{g-1}(P)$$
 (8)

such that each $j_i(P)$ is the intersection number $I(P, \mathcal{X} \cap H_i)$ of \mathcal{X} and some hyperplane H_i at P, see [21]. For i = g - 1, such a hyperplane H_{g-1} is uniquely

determined being the osculating hyperplane to \mathcal{X} at P. Another characterisation of the integers $j_i(P)$, called P-orders or Hermitian P-invariants, appearing in (8) is that j is a P-order if and only if j+1 is a Weierstrass gap, that is, no element in $\mathbb{K}(\mathcal{X})$ regular outside P has a pole of order j+1. Now, assume that $j_{g-1}(P) = 2g-2$, that is, P is the unique common point of H_{g-1} with \mathcal{X} . Then the hyperplanes of $\mathrm{PG}(g-1,\mathbb{K})$ whose intersection number with \mathcal{X} at P is at least $j_{g-2}(P)$ cut out on \mathcal{X} a linear series g_n^1 of degree $n=2g-2-j_{g-2}(P)$ and projective dimension 1. Let ℓ be the projective line over \mathbb{K} . Then g_n^1 gives rise to a covering $\mathcal{X} \to \ell$ of degree n which completely ramifies at P. If it also ramifies at the points P_1, \ldots, P_k of \mathcal{X} other than P, that is $e_{P_i} > 1$ for $i=1,\ldots,k$, then (6) yields

$$2g - 2 = -2n + d_P + \sum_{i=1}^{k} d_{P_i} \ge -(n+1) + \sum_{i=1}^{k} d_{P_i}.$$
 (9)

Note that n must be at least 3 as \mathcal{X} is neither rational, nor elliptic and nor hyperelliptic.

From finite group theory, the following results and permutation representations play a role in the proofs.

Huppert's classification theorem, see [14, Chapter XII]: Let G be a solvable 2-transitive permutation group of even degree n. Then n is a power of 2, and G is a subgroup of the affine semi-linear group $A\Gamma L(1, n)$.

The Kantor-O'Nan-Seitz theorem, see [15]: Let G be a finite 2-transitive permutation group whose 2-point stabiliser is cyclic. Then G has either a regular normal subgroup, or G is one of the following groups in their natural 2-transitive permutation representations:

$$PSL(2, n)$$
, $PGL(2, n)$, $PSU(3, n)$, $PGU(3, n)$, $Sz(n)$, $Ree(n)$.

The natural 2-transitive permutation representations of the above linear groups:

- (i) $G = \operatorname{PGL}(2, n)$, is the automorphism group of $\operatorname{PG}(1, n)$; equivalently, G acts on the set Ω of all \mathbb{F}_n -rational points of the projective line defined over \mathbb{F}_n . The natural 2-transitive representation of $\operatorname{PSL}(2, n)$ is obtained when $\operatorname{PSL}(2, n)$ is viewed as a subgroup of $\operatorname{PGL}(2, n)$,
- (ii) G = PGU(3, n) is the linear collineation group preserving the classical unital in the projective plane $PG(2, n^2)$, see [12]; equivalently

G is the automorphism group of the Hermitian curve regarded as a plane non-singular curve defined over the finite field \mathbb{F}_n acting on the set Ω of all \mathbb{F}_{n^2} -rational points. PSU(3, n) can be viewed as a subgroup of PGU(3, n) and this is the natural 2-transitive representation of PSU(3, n).

- (iii) $G = \operatorname{Sz}(n)$ with $n = 2n_0^2$, $n_0 = 2^r$ and $r \ge 1$, is the linear collineation group of $\operatorname{PG}(3,n)$ preserving the Tits ovoid, see [22, 23, 11]; equivalently G is the automorphism group of the DLS curve regarded as a non-singular curve defined over the finite field \mathbb{F}_n acting on the set Ω of all \mathbb{F}_n -rational points.
- (iv) G = Ree(n) with $n = 3n_0^2$, $n_0 = 3^r$ and $r \ge 0$, is the linear collineation group of PG(7,n) preserving the Ree ovoid, see [22]; equivalently, G is the automorphism group of the DLS curve regarded as a non-singular curve defined over the finite field \mathbb{F}_n acting on the set Ω of all \mathbb{F}_n -rational points.

For each of the above linear groups, the structure of the 1-point stabilizer and its action in the natural 2-transitive permutation representation, as well as its automorphism group, are explicitly given in the papers quoted.

Cyclic fix-point-free subgroups of some 2-transitive groups. The following technical lemma is a corollary of the classification of subgroups of PSU(3, n) and Ree(n).

Lemma 2.1. Let G be a 2-transitive permutation group of degree n. Let U be a cyclic subgroup of G which contains no non-trivial element fixing a point.

- (i) If G = PSU(3, n) in its natural 2-transitive permutation representation, then |U| divides either n + 1 or $n^2 n + 1$.
- (ii) If $G = \operatorname{Sz}(n)$ in its natural 2-transitive permutation representation, then |U| divides either n+1, or $n-2n_0+1$, or $n+2n_0+1$.
- (iii) If G = Ree(n) in its natural 2-transitive permutation representation, then |U| divides either n + 1, or $n 3n_0 + 1$, or $n + 3n_0 + 1$.

Schur multiplier of some simple groups. For a finite group G, a group Γ is said to be a covering of G if Γ has a central subgroup U, i.e. $U \subseteq Z(\Gamma)$, such that $G \cong \Gamma/U$. If, in addition, Γ is perfect, that is Γ coincides with

its commutator subgroup, then the covering is called proper. For a simple group G, a perfect covering is also called a semisimple group. From Schur's work, see [1] and [13, V.23,24,25], if G is a simple group, then it possesses a "universal" proper covering group $\bar{\Gamma}$ with the property that every proper covering group of G is a homomorphic image of $\bar{\Gamma}$. The center $Z(\bar{\Gamma})$ is called the Schur multiplier of G. The Schur multipliers of simple groups are known, see Griess [7, 8, 5]. In particular, the Schur multiplier of PSL(2, q) with $q \geq 5$ odd, has order 2; PSU(3, q) with $q \geq 3$ has non-trivial Schur multiplier only for 3|(q+1), and if this occurs the Schur multiplier has order 3; Ree(n) with n > 3 has trivial Schur multiplier. Therefore, the following result holds.

Lemma 2.2. Let G be a simple group isomorphic to either PSU(3, n) with $n \geq 3$, or Ree(n) with n > 3. If the center $Z(\Gamma)$ of a group Γ has order 2 and $G \cong \Gamma/Z(\Gamma)$ then Γ has a subgroup isomorphic to G and $\Gamma = Z(G) \times G$.

3 Large p-subgroups of $Aut(\mathcal{X})$ fixing a point

In this section, Theorem 1.3 is proven.

We assume that case (iii) of Theorem 1.2 with $G \neq G_P$ occurs. In terms of the action of G_P on \mathcal{X} , Theorem 1.2 (iii) implies that

(*) no non-trivial p-element in G_P fixes a point distinct from P.

Let Ω be the set of all points $R \in \mathcal{X}$ with non-trivial first ramification group $G_R^{(1)}$. So, Ω consists of all points $R \in \mathcal{X}$ which are fixed by some element of G of order p. Since $P \in \Omega$ and $G \neq G_P$, Ω contains at least two points. It may be noted that the 2-point stabilizer of G is tame and hence cyclic.

Choose a non-trivial element z from the centre of a Sylow p-subgroup S_p of G containing $G_P^{(1)}$. Then z commutes with a non-trivial element of $G_P^{(1)}$. This together with (*) imply that z fixes P. Therefore, $z \in G_P^{(1)}$. In particular, z fixes no point of \mathcal{X} distinct from P. Let $g \in S_p$. Then zg = gz implies that

$$(P^g)^z = P^{gz} = P^{zg} = (P^z)^g = P^g$$

whence $P^g = P$. This shows that every element of S_p must fix P, and hence $S_p = G_P^{(1)}$. Since the Sylow p-subgroups of G are conjugate under G, every p-element fixes exactly one point of \mathcal{X} . From Gleason's Lemma, see [3, Theorem 4.14], Ω is a G-orbit, and hence the unique non-tame G-orbit.

By (iii) of Theorem 1.2, the quotient curve $\mathcal{X}_1 = \mathcal{X}/G_P^{(1)}$ is rational. This implies that $\mathcal{Y} = \mathcal{X}/G$ is also rational.

If there are at least two more short G-orbits, say Ω_1 and Ω_2 , from (7),

$$2g - 2 \ge -2|G| + (|G_P| + |G_P^{(1)}| + |G_P^{(2)}| - 3)|\Omega| + (|G_{Q_1}| - 1)|\Omega_1| + (|G_{Q_2}| - 1)|\Omega_2|,$$

where $Q_i \in \Omega_i$ for i = 1, 2. Note that

$$(|G_{Q_1}|-1)|\Omega_1|+(|G_{Q_2}|-1)|\Omega_2| \ge |G|$$

since $|G_{Q_i}| - 1 \ge \frac{1}{2} |G_{Q_i}|$, and $|G| = |G_{Q_i}| |\Omega_i|$. Also, $|G| = |G_P| |\Omega|$, and $|G_P^{(2)}| > 1$ by (iii) of Theorem 1.2. Therefore,

$$2g-2 \ge (|G_P^{(1)}|-1)|\Omega|.$$

Since $|\Omega| \geq 2$, this implies that $g \geq |G_P^{(1)}|$, a contradiction. Therefore, one of the following cases occurs:

- (i) Ω is the unique short orbit of G;
- (ii) G has two short orbits, namely Ω and a tame G-orbit. Furthermore, either
 - (iia) there is a point $R \in \Omega$ such that the stabiliser of R in G_P is trivial;
 - (iib) no point $R \in \Omega$ with the property as in (iia) exists.

Before investigating the above three cases separately, a useful equation is established.

Since \mathcal{X}_1 is rational, from (*)

$$2g - 2 + 2|G_P^{(1)}| = 2|G_P^{(1)}| - 2 + |G_P^{(2)}| - 1 + \dots = d_P - |G_P| + |G_P^{(1)}|.$$
 (10)

Therefore,

$$d_P = 2g - 2 + |G_P^{(1)}| + |G_P|. (11)$$

3.1 Case (i)

We prove that only one example occurs, namely the DLR curve for n=3. From (*) it follows that $|\Omega| \geq |G_P^{(1)}| + 1$ whence $|\Omega| > g-1$ by (1). On the other hand, (6) gives

$$2g - 2 = -2|G| + \deg D(\mathcal{X}/G) = |\Omega| (d_P - 2|G_P|). \tag{12}$$

whence $|\Omega|$ is a divisor of 2g-2. Therefore, $|\Omega|=2g-2$ and $d_P=2|G_P|+1$. This and (11) give

$$2g - 2 + |G_P^{(1)}| - |G_P| = 1. (13)$$

Since $G_P = G_P^{(1)} \rtimes H$, it follows that $2g - 2 = (|H| - 1)|G_P^{(1)}| + 1$. This and (1) imply that |H| = 2.

Therefore, $p \neq 2$ and $|G_P^{(1)}| = 2g - 3$. Since $|\Omega| = 2g - 2$ and G_P only fixes P, this implies that $G_P^{(1)}$ acts on $\Omega \setminus \{P\}$ as a transitive permutation group. Hence, $|\Omega| = q + 1$ with $q = |G_P^{(1)}|$. Since Ω is a G-orbit, it follows that G induces on Ω a 2-transitive permutation group \bar{G} whose one-point stabiliser has order either q or 2q according as $|G| = 2|\bar{G}|$ or $G = \bar{G}$.

If $|G| = 2|\bar{G}|$, the subgroup H is the kernel of the permutation representation of G on Ω ; that is, H fixes every point in Ω . In particular, H is a normal subgroup of G. Therefore, \bar{G} can be viewed as a \mathbb{K} -automorphism group of the quotient curve $\mathcal{Z} = \mathcal{X}/G$. Let P' be the point of \mathcal{Z} lying under P. Since $2 \nmid |G_P^{(1)}|$ it follows that $G_P^{(1)} \cong \bar{G}_{P'}^{(1)}$. Also, the points of \mathcal{Z} lying under the points in Ω form the unique short \bar{G} -orbit. Therefore, case (i) occurs for \mathcal{Z} and \bar{G} . From what was shown before, this implies that $\bar{G}_{P'} = \bar{G}_{P'}^{(1)} \rtimes \bar{H}$ with $|\bar{H}| = 2$ But this is impossible as the stabiliser $\bar{G}_{P'}$ has order q.

If $G = \bar{G}$, two cases are distinguished according as G is solvable or not. In the former case, Huppert's classification theorem implies that $q+1=d^k$ with d prime. Since $|\Omega|=2g-2$ is even, so d=2. From Huppert's classification for d=2 it also follows that G_P is a subgroup of the 1-point stabiliser of $A\Gamma L(1,q+1)$, and hence $|G_P|$ divides kq. On the other hand, $q+1=2^k$ can only occur when k and q are both primes. Since $|G_P|=2q$, this implies that k=2. Hence q=g=3; that is, p=3 and $|G_P^{(1)}|=g=3$ which contradicts (1).

Suppose that G is not solvable. If G has a regular normal subgroup M, then G/M is not solvable. On the other hand, $|G_P| = 2q$ and $|M| = |\Omega|$. From $|G| = |G_P||\Omega|$, it follows that |G/M| = 2q. But this is not possible for a non-solvable group, as q is a prime power.

If G does not have a regular normal subgroup, then we apply Kantor-O'Nan-Seitz theorem. Since |G|=2q, this shows that either $|\Omega|=6$ and $G\cong \mathrm{PSL}(2,5)$, or $|\Omega|=28$ and $G\cong \mathrm{Ree}(3)$. In the former case, $|G_P^{(1)}|=5$ and g=4; hence (1) does not hold. In the latter case, $|G_P^{(1)}|=27$ and g=15. This is consistent with (1), and $\mathcal X$ is the smallest DLR curve. Therefore (V) holds for $q=n^3$ with n=3.

3.2 Case (iia)

We prove that no example occurs. Let Δ denote the unique tame orbit of G. Choose a point P from Ω and a point Q from Δ . Let

$$N = |G_Q|(d_P - |G_P|) - |G_P|.$$

Then

$$|G| = 2(g-1)\frac{|G_P^{(1)}||H||G_Q|}{N},$$
(14)

where $G_P = G_P^{(1)} \rtimes H$.

By hypothesis, there exists a point $R \in \Omega$ such that the orbit o(R) of R under G_P is long. Let o'(R) denote the orbit of R under G. Then $|o'(R)| \cdot |G_R| = |G|$. Since P and R lie in the same orbit Ω of G, so $G_R \cong G_P$. Also, o(R) is contained in o'(R). Therefore,

$$|G_P| \le \frac{|G|}{|G_P|} = 2(g-1) \cdot \frac{|G_Q|}{N} \le 2(g-1)|G_Q|.$$
 (15)

Now, a lower bound on N is given. As

$$N \ge d_P |G_Q| - |G_P||G_Q| - 2(g-1)|G_Q|,$$

SO

$$N \ge |G_Q|(d_P - |G_P| - 2(g - 1)). \tag{16}$$

This and (11) imply that $N \ge |G_P^{(1)}| |G_Q|$. From (15),

$$N \le 2(g-1)|G_Q|/|G_P|.$$

Hence $|G_P||G_P^{(1)}| \leq 2(g-1)$. Since $|G_P| > 1$, this contradicts (1).

3.3 Case (iib)

We prove that \mathcal{X} is one of the examples (II),(III),(IV) and (V) with q > 3 in (V). Let Δ denote the unique tame orbit of G. Choose a point P from Ω and a point Q from Δ .

First the possible structure of G and its action on Ω are investigated.

Lemma 3.1. G acts on Ω as a 2-transitive permutation group. In particular, $|\Omega| = q + 1$ with $q = p^t$, and the possibilities for the permutation group G induced by G on Ω are as follows:

- (1) $\bar{G} \cong PSL(2,q)$ or PGL(2,q);
- (2) $\bar{G} \cong PSU(3, n)$ or PGU(3, n), with $q = n^3$;
- (3) $\bar{G} \cong Sz(n)$, with p = 2, $n = 2n_0^2$, $n_0 = 2^k$, with k odd, and $q = n^2$;
- (4) $\bar{G} \cong \text{Ree}(n)$ with p = 3, $n = 3n_0^2$, $n_0 = 3^k$, and $q = n^3$;
- (5) a minimal normal subgroup of \bar{G} is solvable, and the size of Ω is a prime power.

Proof. For a point $P \in \Omega$, let $\Omega_0 = \{P\}, \Omega_1, \dots \Omega_k$ with $k \geq 1$ denote the orbits of $G_P^{(1)}$ contained in Ω . Then, $\Omega = \bigcup_{i=0}^k \Omega_i$. To prove that G acts 2-transitively on Ω , it suffices to show that k = 1.

For any i with $1 \le i \le k$, take a point $R \in \Omega_i$. By hypothesis, R is fixed by an element $\alpha \in G_P$ whose order m is a prime different from p. Since $|G_P| = |G_P^{(1)}||H|$ and m divides $|G_P|$, this implies that m must divide |H|. By the Sylow theorem, there is a subgroup H' conjugate to H in G_P which contains α ; here, α preserves Ω_i .

Since the quotient curve $\mathcal{X}_1 = \mathcal{X}/G_P^{(1)}$ is rational, α fixes at most two orbits of $G_P^{(1)}$. Therefore, Ω_0 and Ω_i are the orbits preserved by α . As H' is abelian and $\alpha \in H'$, this yields that H' either preserves both Ω_0 and Ω_i or interchanges them. The latter case cannot actually occur as H' preserves Ω_0 . So, the orbits Ω_0 and Ω_i are also the only orbits of $G_P^{(1)}$ which are fixed by H'. Since $G_P = G_P^{(1)} \rtimes H'$, this implies that the whole group G_P fixes Ω_i . As i can be any integer between 1 and k, it follows that G_P fixes each of the orbits $\Omega_0, \Omega_1, \ldots, \Omega_k$. Hence, either k = 1 or G_P preserves at least three orbits of $G_P^{(1)}$. The latter case cannot actually occur, as the quotient curve $\mathcal{X}_1 = \mathcal{X}/G_P^{(1)}$ is rational.

Therefore k = 1. Also, the size of Ω is of the form q + 1 with $q = |G_P^{(1)}|$; in particular, q is a power of p.

Let \bar{G} denote the 2-transitive permutation group induced by G on Ω . We apply the Kantor-O'Nan-Seitz theorem to \bar{G} . Up to isomorphism, \bar{G} is one of the groups on the list, with \bar{G} acting in each of the first four cases in its natural 2-transitive permutation representation.

We also need the following consequence of Lemma 3.1.

Lemma 3.2. The subgroups G_P and G_Q have trivial intersection, and G_Q is a cyclic group whose order divides q + 1. Also,

$$2g - 2 = \frac{|G|(|G_P| - |G_P^{(1)}||G_Q|)}{|G_Q|(|G| - |G_P|)}$$
(17)

Proof. Let $\alpha \in G_P \cap G_Q$ be non-trivial. Then $p \nmid \operatorname{ord} \alpha$, and hence $\alpha \in H$. This shows that α fixes not only P but another point in Ω , say R. Since $Q \not\in \Omega$, this shows that α has at least three fixed points. These points are in three different orbits of $G_P^{(1)}$. Since the quotient curve $\mathcal{X}_1 = \mathcal{X}/G_P^{(1)}$ is rational, this implies that α fixes every orbit of $G_P^{(1)}$, a contradiction. Hence $|G_P \cap G_Q| = 1$. Therefore, no non-trivial element of G_Q fixes a point in Ω . Since $|\Omega| = q + 1$, the second assertion follows. Substituting d_P from (11) into (14) gives (17).

First the case when the action of G is faithful on Ω is considered. If $G \cong \operatorname{PGL}(2,q)$, then

$$|G| = q^3 - q$$
, $|G_P| = q^2 - q$, $|G_P^{(1)}| = q$.

From Theorem 1.2(iii), the second ramification group $G_P^{(2)}$ is non-trivial. As $G \cong \operatorname{PGL}(2,q)$, G_P has a unique conjugacy class of elements of order p. Since $G_P^{(i)}$ is a normal subgroup of G_P , if $g \in G_P^{(i)}$ with $i \geq 1$ then every conjugate of g in G also belongs to $G_P^{(i)}$. Therefore,

$$G_P^{(1)} = G_P^{(2)} = \ldots = G_P^{(k)}, |G_P^{(k+1)}| = 1.$$

Since the quotient curve $\mathcal{X}_1 = \mathcal{X}/G_P^{(1)}$ is rational, from (6),

$$2g = (q-1)(k-1).$$

By (1), this is only possible for k=2. Therefore $g=\frac{1}{2}(q-1)$ with $q\geq 5$ odd, and $|G_Q|=\frac{1}{2}(q+1)$.

Let $q \equiv 1 \pmod{4}$. Then $2g-2 \equiv 2 \pmod{4}$, and an involutory element in $\operatorname{PGL}(2,q) \setminus \operatorname{PSL}(2,q)$ has a no fixed point on Ω . Since G_Q has odd order, such an involutory element in $\operatorname{PGL}(2,q) \setminus \operatorname{PSL}(2,q)$ has no fixed point in Δ , either. Therefore, an involutory element in $\operatorname{PGL}(2,q) \setminus \operatorname{PSL}(2,q)$ fixes no point of \mathcal{X} . From (7) applied to such an involutory element $2g-2 \equiv 0 \pmod{4}$, a contradiction.

Let $q \equiv 3 \pmod{4}$, then $2g - 2 \equiv 0 \pmod{4}$ and an involutory element in $\operatorname{PGL}(2,q) \backslash \operatorname{PSL}(2,q)$ has exactly two fixed points in Ω . As before, $2 \nmid |G_Q|$ implies that such an involutory element has no fixed point in Δ . Therefore, an involutory element in $\operatorname{PGL}(2,q) \backslash \operatorname{PSL}(2,q)$ fixes exactly two points of \mathcal{X} . From (7) applied to such an involutory element $2g - 2 \equiv 2 \pmod{4}$, a contradiction. Therefore, the case $G \cong \operatorname{PGL}(2,q)$ does not occur.

If $G \cong PSL(2,q)$ with q odd, then

$$|G| = \frac{1}{2}(q^3 - q), |G_P| = \frac{1}{2}(q^2 - q), |G_P^{(1)}| = q.$$

The previous argument depending on the higher ramification groups at P still works as G_P has two conjugacy classes of elements of order p, and each of them generates $G_P^{(1)}$. Therefore, k=2 and hence $g=\frac{1}{2}(q-1)$. But to show that this case cannot actually occur, more is needed.

The K-automorphism group of a hyperelliptic curve in odd characteristic contains a central involution, say α . Since α commutes with every p-element of G, from (*) it follows that α must fix Ω pointwise. If $P \in \Omega$, then $|G_P|$ is even. But then the automorphism group generated by G_P together with α is not cyclic although it fixes P; a contradiction.

Therefore, \mathcal{X} is not hyperelliptic. So, \mathcal{X} may be assumed to be the canonical curve of $\mathbb{K}(\mathcal{X})$ embedded in $\mathrm{PG}(g-1,\mathbb{K})$. Then G is isomorphic to a linear collineation group Γ of $\mathrm{PG}(g-1,\mathbb{K})$ preserving \mathcal{X} such that the restriction of the action of Γ on \mathcal{X} is G. To simplify notation, the symbol G is used to indicate Γ , too.

Lemma 3.3. Let $G \cong PSL(2,q)$ with q odd. Then

- (1) $j_{q-1}(P) = 2g 2;$
- (2) Let H_{g-2} be a hyperplane of $PG(g-1,\mathbb{K})$ such that

$$I(P, \mathcal{X} \cap H_{g-2}) = j_{g-2}(P).$$

If H_{q-2} contains a point $R \in \Omega$ distinct from P, then

$$I(R, \mathcal{X} \cap H_{g-2}) = 2g - 2 - j_{g-2}(P)$$

and hence P and R are the only common points of \mathcal{X} and H_{q-2} .

Proof. To show (1) assume on the contrary that the osculating hyperplane H_{g-1} to \mathcal{X} at P contains a point $S \in \mathcal{X}$ distinct from P. Since $G_P^{(1)}$ preserves H_{g-1} , the $G_P^{(1)}$ -orbit of S lies in H_{g-1} . Since such a $G_P^{(1)}$ -orbit is long, this implies that H_{g-1} contains from \mathcal{X} at least q points other than P. Hence, $\deg \mathcal{X} \geq j_{g-1}(P) + q$. On the other hand, $j_{g-1}(P) \geq g - 1$. Therefore,

$$\deg \mathcal{X} \ge g - 1 + q > g - 1 + pg/(p - 1) > 2g - 2,$$

contradicting $\deg \mathcal{X} = 2g - 2$.

Similar argument may be used to show (2). Again, assume on the contrary that H_{g-2} contains a point $T \in \mathcal{X}$ other than P and R. As H_{g-1} does not contain R, H_{g-2} is the unique hyperplane through R whose intersection number with \mathcal{X} at P is $j_{g-2}(P)$. In particular, the stabiliser H of R in G_P preserves H_{g-2} . Since the H-orbit of T is long, H_{g-2} contains from \mathcal{X} at least $\frac{1}{2}(q-1)$ points other than P and R. On other hand $j_{g-2}(P) \geq g-2$. Therefore,

$$2g - 2 = \deg \mathcal{X} \ge g - 2 + 1 + \frac{1}{2}(q - 1),$$

whence $g \ge \frac{1}{2}(q+1)$, a contradiction.

Since Ω is a $G_P^{(1)}$ -orbit, Lemma 3.3(2) shows that for every $R \in \Omega \setminus \{P\}$ there exists a hyperplane $H_{g-2}(R)$ such that

$$I(P,\mathcal{X}\cap H_{g-2}(R)) = j_{g-2}(P), \qquad I(R,\mathcal{X}\cap H_{g-2}(R)) = n = 2g-2-j_{g-2}(P).$$

Since such hyperplanes are distinct for distinct points R, from (9) it follows that $2g-2 \ge -(n+1)+q(n-1)$ with $n \ge 3$. As $g=\frac{1}{2}(q-1)$, this leaves just one possibility, namely q=5, g=2, n=3. But then $\mathcal X$ would be hyperelliptic, a contradiction. Therefore the case $G \cong \mathrm{PSL}(2,q)$ does not occur.

If $G \cong PSU(3, n)$ with $q = n^3$ then

$$|G| = (n^3 + 1)n^3(n^2 - 1)/\mu, |G_P| = n^3(n^2 - 1)/\mu, |G_P^{(1)}| = n^3,$$

where $\mu = \gcd(3, n + 1)$. By (17),

$$2g = \frac{(n^3 + 1)(n^2 - 1)}{\mu |G_Q|} - (n^3 + 1).$$

Since (1) is assumed, Lemma 2.1 (i) together with the first two assertions in Lemma 3.2 ensure the existence of a divisor $t \ge 1$ of $(n^2 - n + 1)/\mu$ such that $|G_Q| = (n^2 - n + 1)/(t\mu)$. Hence

$$2g = (n-1)(t(n+1)^2 - (n^2 + n + 1)). (18)$$

Since t is odd, this and (1) imply that t = 1. Then $g = \frac{1}{2}n(n-1)$. Therefore, (III) holds. Since PSU(3, n) is a subgroup of PGU(3, n) of index μ , the above argument works for $G \cong PGU(3, n)$.

If $G \cong \operatorname{Sz}(n)$ with $q = n^2$ and $n = 2n_0^2$ for a power $n_0 \ge 2$ of 2, then

$$|G| = (n^2 + 1)n^2(n - 1), |G_P| = n^2(n - 1), |G_P^{(1)}| = n^2.$$

By (17),

$$2g = \frac{(n+2n_0+1)(n-2n_0+1)(n-1)}{|G_Q|} - (n^2-1).$$

From the preceding argument depending on (1) and Lemmas 2.1 and 3.2, there is an odd integer t such that either (A) or (B) holds, where

(A)
$$2g = (t-1)(n^2-1) - 2tn_0(n-1), \quad |G_Q| = (n+2n_0+1)/t;$$

(B)
$$2g = (t-1)(n^2-1) + 2tn_0(n-1), \quad |G_Q| = (n-2n_0+1)/t.$$

In case (A), t must be at least 3. But then (1) does not hold except for $n_0 = 2$. In the latter case, however, t does not divide $n + n_0 + 1 = 11$. In case (B), (1) implies that t = 1. Then $g = n_0(n - 1)$. Therefore, (IV) holds.

If $G \cong \text{Ree}(n)$ with $q = n^3$ and $n = 3n_0^2$ for a power $n_0 \ge 0$ of 3, then

$$|G| = (n^3 + 1)n^3(n - 1), \quad |G_P| = n^3(n - 1), \quad |G_P^{(1)}| = n^3.$$

By (17),

$$2g = (n-1)\left(\frac{(n+3n_0+1)(n-3n_0+1)(n+1)}{|G_Q|} - (n^2+n+1)\right).$$

Again the previous argument based on (1) and Lemmas 2.1 and 3.2 works showing this time the existence of an integer $t \geq 1$ such that either (A) or (B), or (C) holds, where

(A)
$$2g = (n-1)[(t-1)(n^2+1) - (t+1)n], |G_Q| = (n+1)/t;$$

(B)
$$2g = (n-1)[t(n^2-1) - 3tnn_0 + n(2t-1) - 3tn_0 + t - 1],$$

 $|G_Q| = (n+3n_0+1)/t;$

(C)
$$2g = n-1$$
 [$t(n^2-1) + 3tnn_0 + n(2t-1) + 3tn_0 + t - 1$],
 $|G_Q| = (n-3n_0+1)/t$.

In case (A), hypothesis (1) yields that t = 2. Then $|G_Q| = \frac{1}{2}(n+1)$, hence $|G_Q|$ is even. But this is impossible as every involution in Ree(n) has a fixed point.

If case (B) occurs, then $t \geq 2$. Since t is odd and $t \neq 3$, t must be at least 5. But then (1) does not hold.

If case (C) holds with t = 1, this (C) reads $2g = 3n_0(n-1)(n+n_0+1)$, and (V) for n > 3 follows. Otherwise, $t \ge 5$ contradicting (1).

It remains to investigate the possibility of the permutation representation \bar{G} of G on Ω having non-trivial kernel. Such a kernel M is a cyclic normal subgroup of G whose order is relatively prime to p. By Lemma 3.2 no point outside Ω is fixed by a non-trivial element in M. Let \tilde{g} be the genus of the quotient curve $\mathcal{Y} = \mathcal{X}/M$. From (7) applied to M,

$$2g - 2 = |M|(2\tilde{g} - 2) + (|M| - 1)(q + 1).$$

By (1), this implies that either |M|=2, or |M|=3 and $\tilde{g}=0$.

Suppose first that |M| = 2, $\tilde{g} = 0$. Then, $g = \frac{1}{2}(q-1)$ and \mathcal{Y} is rational. So, \mathcal{Y} may be assumed to be the projective line ℓ over \mathbb{K} . Let Ω' be the set of all points of ℓ which lie under the points of Ω . Then $|\Omega'| = |\Omega|$ and \bar{G} acts on Ω' and Ω in the same way. So, \bar{G} may be viewed as a subgroup of $\mathrm{PGL}(1,\mathbb{K})$ acting on a subset Ω' of ℓ . This shows that no non-trivial element of \bar{G} fixes three distinct points.

Assume that \bar{G} has a regular normal subgroup. Arguing as in Case (i), this yields $q+1=2^k$ with both q and k primes. In particular, q=p with $p-1>g=\frac{1}{2}(p-1)$. From Roquette's theorem [18], |G|<84(g-1)=42(p-3). On the other hand

$$|G| \ge 2(p+1)p,$$

as \bar{G} is doubly transitive on Ω . This together with $p+1=2^k$ leaves only one possibility, namely p=7, k=3, g=3, |G|=112 and \bar{G} is sharply 2-transitive on Ω . In particular, $|G_P|=14, |G_P^{(1)}|=7$. But then (17) yields that $|G_Q|=1$, a contradiction.

If \bar{G} has no regular normal subgroup, from the classification of Zassenhaus groups either \bar{G} is a sharply 3-transitive group on Ω , or \bar{G} is $\mathrm{PSL}(2,q)$, Therefore, |G| = 2q(q-1)(q+1) in the former case, and |G| = q(q-1)(q+1) in the latter case. In both cases, $|G| > 8(\frac{1}{2}(q-1)^3) = 8g^3$. By Theorem 1.1, (II) holds.

Suppose next that |M| = 2, $\tilde{g} = 1$. Since $G_P^{(1)}$ may be viewed as a subgroup of $\operatorname{Aut}(\mathcal{Y})$ of the elliptic curve $\mathcal{Y} = \mathcal{X}/M$, the order of $G_P^{(1)}$ does not exceed 24. Thus, q is one of the integers 2, 3, 4, 8. This leaves just one case, namely q = p = g = 3, but then (1) fails.

Suppose now that |M| = 2, $\tilde{g} \geq 2$. Then (1) holds for $\mathcal{Y} = \mathcal{X}/M$ with \bar{G} acting faithfully on $\bar{\Omega}$. From what proven before, either \bar{G} contains a subgroup $\bar{G}' \cong \mathrm{PGU}(3,n)$ of index $\mathrm{gcd}(3,n+1)$, or $\bar{G} \cong \mathrm{Ree}(n)$ with n > 3.

In the former case, let G' be the subgroup of G for which $G'/M = \bar{G}'$. Since |M| = 2 and hence $M \subset Z(G)$, Lemma 2.2 implies that $G' = M \times U$ with $U \cong \mathrm{PSU}(3,n)$. Also, U acts on Ω as $\mathrm{PSU}(3,n)$ in its natural 2-transitive permutation representation. Since the one-point stabiliser U_P of U with $P \in \Omega$ contains a cyclic subgroup V of even order, it turns out that the subgroup of G generated V and M is a not cyclic, although it fixes P; a contradiction.

In the latter case, the same argument works for G = G' = Ree(n).

Finally, suppose that |M|=3, $\tilde{g}=0$. Then g=q-1. This together with (1) imply that p>g+1=q, a contradiction.

References

- [1] M. Aschbacher, Finite group theory, Corrected reprint of the 1986 original. Cambridge Studies in Advanced Mathematics, 10. Cambridge University Press, Cambridge, 1993. x+274 pp.
- [2] E. Çakçak and F. Özbudak, Subfields of the function field of the Deligne–Lusztig curve of Ree type, *Acta Arith.* **115** (2004), 133–180.
- [3] P. Dembowski, *Finite geometries*. Reprint of the 1968 original. Classics in Mathematics. Springer-Verlag, Berlin, 1997. xii+375 pp.

- [4] A. Garcia, H. Stichtenoth and C.P. Xing, On subfields of the Hermitian function field, *Compositio Math.* **120** (2000), 137–170.
- [5] D. Gorenstein, Finite simple groups, The Uinversity Series in Mathematics, Plenum Press, New York, 1982 x+333 pp.
- [6] M. Giulietti, G. Korchmáros and F. Torres, Quotient curves of the Deligne-Lusztig curve of Suzuki type, Acta Arith., 122 (2006), 245–274.
- [7] R. Griess, Schur multipliers of the known finite simple groups. *Bull. Amer. Math. Soc.* **78** 1972 68–71.
- [8] R. Griess, Schur multipliers of the known finite simple groups. II. *The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979)*, pp. 279–282, Proc. Sympos. Pure Math., **37**, Amer. Math. Soc., Providence, R.I., 1980.
- [9] J.P. Hansen and J.P. Pedersen, Automorphism group of Ree type, Deligne-Lusztig curves and function fields, J. Reine Angew. Math. 440 (1993), 99–109.
- [10] H.W. Henn, Funktionenkörper mit groβer Automorphismengruppe, J. Reine Angew. Math. **302** (1978), 96–115.
- [11] J.W.P. Hirschfeld, Finite Projective Spaces of Three Dimensions, Oxford Univ. Press, Oxford, 1985, x+316 pp.
- [12] J.W.P. Hirschfeld, "Projective Geometries Over Finite Fields", second edition, Oxford University Press, Oxford, 1998.
- [13] B. Huppert, Endliche Gruppen. I, Grundlehren der Mathematischen Wissenschaften 134, Springer, Berlin, 1967, xii+793 pp.
- [14] B. Huppert and B.N. Blackburn, Finite groups. III, Grundlehren der Mathematischen Wissenschaften 243, Springer, Berlin, 1982, ix+454 pp.
- [15] W.M. Kantor, M. O'Nan and G.M. Seitz, 2-transitive groups in which the stabilizer of two points is cyclic, *J. Algebra* **21** (1972), 17–50.
- [16] C. Lehr and M. Matignon, Automorphism groups for *p*-cyclic covers of the affine line, *Compositio Math.* **141** (2005), 1213–1237.

- [17] S. Nakajima, On abelian automorphism groups of algebraic curves, *J. London Math. Soc.* **36** (1987), 23–32.
- [18] P. Roquette, Abschätzung der Automorphismenanzahl von Funktionenkörpern bei Primzahlcharakteristik, *Math. Z.* **117** (1970), 157–163.
- [19] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. I. Eine Abschätzung der Ordnung der Automorphismengruppe, Arch. Math. 24 (1973), 527–544.
- [20] H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik. II. Ein spezieller Typ von Funktionenkörpern, Arch. Math. 24 (1973), 615–631.
- [21] K.O. Stöhr and J.F. Voloch, Weierstrass points and curves over finite fields, *Proc. London Math. Soc.* **52** (1986), 1–19.
- [22] J. Tits, Les groupes simples de Suzuki et de Ree, Séminaire Bourbaki 6, Soc. Math. France, Paris, 1995, 65–82.
- [23] J. Tits, Ovoides et groupes de Suzuki, Arch. Math. 13 (1962), 187–198.
- [24] R.C. Valentini and M.L. Madan, A Hauptsatz of L.E. Dickson and Artin–Schreier extensions, J. Reine Angew. Math. 318 (1980), 156–177.