Math 1560: Number Theory Lecture Notes

N. Looper

Spring 2022

These are lecture notes for Math 1560: Number Theory taught at BROWN UNIVERSITY by Nicole Looper in the Spring of 2022.

Contents

0	Jani	uary 27, 2022
	0.1	Course Logistics
	0.2	Introduction to Number Theory
		0.2.1 Examples of Analytic Number Theory
		0.2.2 Examples of Algebraic Number Theory
1	Feb	ruary 1, 2022
	1.1	Divisibility and Factorization
	1.2	Euclidean and Principal Ideal Domains
	1.3	Unique Prime Factorization
		Greatest Common Divisors

§0 January 27, 2022

§0.1 Course Logistics

- Mostly refer to syllabus for any information that you might need.
- Midterm is planned for March 17.
- Final exam schedule can be found on CAB.

§0.2 Introduction to Number Theory

Number theory can be split into two branches: analytic number theory and algebraic number theory.

What is number theory? Number theory is the study of integers and their analogues in algebraic number fields.

Prime numbers are a key focus of number theory, and the study of different properties of primes constitutes different fields of number theory:

- i. The study of their distributional properties, which is analytic number theory.
- ii. As building blocks for algebraic numbers, which is algebraic number theory.

§0.2.1 Examples of Analytic Number Theory

Here are some examples of analytic number theory and their statements:

- Prime Number Theorem
- Twin Prime Conjecture
- Goldbach's conjecture

Theorem 0.1 (Prime Number Theorem)

Let $\pi(x)$ be the number of primes between 1 and x, then

$$\lim_{x \to \infty} \frac{\pi(x)}{x/\ln(x)} = 1.$$

Conjecture 0.2 (Twin Prime Conjecture)

Twin primes are pairs of primes p, q of the form q = p + 2. Examples include $(3, 5), (11, 13), \ldots$. The conjecture postulates that there are infinitely many twin primes.

Conjecture 0.3 (Goldbach's conjecture)

Any positive even integer greater than 2 can be written as the sum of 2 primes.

§0.2.2 Examples of Algebraic Number Theory

Analyzing the factorization (rings of integers) of number fields is one topic of algebraic number theory.

Example 0.4

2 is prime (irreducible) in \mathbb{Z} .

Yet 2 is not prime in $\mathbb{Z}[i]$ (the Gaussian integers). This is because

$$2 = \underbrace{(1+i)(1-i)}_{\text{associates}}$$

we have that (1+i) = i(1-i). We also note the property that the principal ideals $(2) = (1+i)^2$ are equal.

In this example, we say that 2 "ramifies" in the ring of integers.

Fermat's Last Theorem is another such example.

Recall: that a Pythagorean triple is a triple of the form $a, b, c \in \mathbb{Z}_+$ such that

$$a^2 + b^2 = c^2$$

Are there examples of such numbers with different exponents (say, k^{th} powers for $k \geq 3$)?

Theorem 0.5 (Fermat's Last)

There are no positive integers $a, b, c \in \mathbb{Z}_+$ satisfying

$$a^k + b^k = c^k$$

for $k \geq 3$.

The answer is no! (Proved by Andrew Wiles)

Conjecture 0.6 (abc Conjecture, informally)

We say *powerful numbers* are positive integers whose prime factorization contains relatively few distinct primes (appropriately weighted) with an exponent of 1.

Example

 $2^{10}3^7$ is powerful, $2^{10}3^75$ is powerful, 1 is powerful.

If a, b are very powerful coprime numbers, then a + b is predicted to be not powerful.

Example 0.7

Consider 2^{10} and 3^{15} . We have

$$2^{10} + 3^{15} = 14,349,931 = \underbrace{31 \cdot 462 \cdot 901}_{\text{not powerful}}$$

What about another example, like $3^{15} + 5$? The *abc* conjecture also predicts that this number is not so powerful...¹

§1 February 1, 2022

Happy Lunar New Year! 🖔

§1.1 Divisibility and Factorization

We start with some commonly used notation:

Definition 1.1 (Divisibility)

We use $a \mid b$ to mean "a divides b" and $a \nmid b$ to mean "a does not divide b".

Now for a series of definitions:

Definition 1.2 (Primality)

A positive integer $p \ge 2$ is said to be prime if its only positive divisors are 1 and p.

¹After lecture Jiahua: It's a prime!?

Definition 1.3 (Positive Integers)

 \mathbb{Z}_+ will denote the positive integers.

Definition 1.4 (Order)

For a nonzero $n \in \mathbb{Z}$ and a prime p, there is a nonnegative integer a such that $p^a \mid n$ but $p^{a+1} \nmid n$. This number a is called the order of n at p, denoted by $\operatorname{ord}_p n$.

For n=0, we set $\operatorname{ord}_p 0=\infty$. We also have $\operatorname{ord}_p n=0 \Leftrightarrow p \nmid n$.

We prove a lemma as warm-up:

Lemma 1.5 (Existence of Factorization)

Every nonzero integer can be written as a product of primes.

We make an exception for -1. The empty product is 1 so 1 is fine.

Proof. Suppose for the sake of contradiction otherwise, that some nonzero integer can be written as a product of primes. Let N be the smallest integer greater than 2 that cannot be written as a product of primes.

N had better not be a prime number itself (since then it would be a product of itself). Then we can write $N = a \cdot b$ where 1 < a, b < N.

Since we took N as the least such number that cannot be written as a product of primes, a and b which are less than N can be written as a product of primes. Then N is a product of primes since a and b individually are. This is a contradiction! Thus it had better be the case that every nonzero integer can be written as a product of primes.

This is the theorem we will eventually work toward proving:

Theorem 1.6 (Unique Factorization)

Every nonzero integer n yields a unique prime factorization

$$n = (-1)^{\varepsilon} \cdot \prod_{p} p^{a(p)}, a(p) \ge 0$$

where $\varepsilon = 0$ or 1, and $\varepsilon, a(p)$ are uniquely determined by n. Moreover, we note that $a(p) = \operatorname{ord}_p n$.

§1.2 Euclidean and Principal Ideal Domains

Before this proof, we first recall a conclusion from Math 1530:

Lemma 1.7 (Division Lemma)

If $a, b \in \mathbb{Z}$ and b > 0, then there exists $q, r \in \mathbb{Z}$ such that

$$a = bq + r$$

with $0 \le r < b$.

Proof. Consider the set

$$S = \{a - xb \mid x \in \mathbb{Z}\}\$$

We note that S contains some positive elements. Let r = a - qb be the least nonnegative element of S.

We claim that $0 \le r < b$. Suppose for the sake of contradiction otherwise, then $r = a - qb \ge b$ gives $a - qb - b \le 0$ and $a - (q + 1)b \le 0$. Which is a contradiction since we took r to be a the least nonnegative element in S and we've found such smaller element a - (q + 1)b.

Then it had better be that $0 \le r < b$ for some $r, q \in \mathbb{Z}$.

Corollary 1.8

 \mathbb{Z} is a Euclidean domain, with a Euclidean function given by lemma 1.7.

R[x] for field R is also a Euclidean domain, with $\lambda = \deg$.

Definition 1.9 (Euclidean Domain)

Let R be an integral domain. R is a <u>Euclidean domain</u> if there exists a function $\lambda : R \setminus \{0\} \to \mathbb{N}$ such that if $a, b \in R$ with $b \neq 0$, then there exists some $c, d \in R$ with the property that a = cb + d with d = 0 or $\lambda(d) < \lambda(b)$.

Example 1.10

 \mathbb{Z} is a Euclidean domain with λ function given in lemma 1.7.

Proposition 1.11

If R is a Euclidean domain, then R is a principal ideal domain. That is, if $I \subseteq R$ is an ideal, then $\exists a \in R$ such that $I = Ra = \{ra \mid r \in R\}$.

Proof. Assume WLOG that I is not the trivial ideal $I \neq (0)$. Let $0 \neq a \in I$ such that $\lambda(a) \leq \lambda(b) \forall b \in I, b \neq 0$.

We claim that I = (a) = Ra.

We know that $Ra \subseteq I$ since I is an ideal. Let $b \in I$. Then $\exists c, d \in R$ such that b = ca + d where d = 0 or $\lambda(d) < \lambda(a)$. Now we have $d = b - ca \in I$, so we can't have $\lambda(d) < \lambda(a)$. Thus d = 0, so $b = ca \in Ra$.

Hence we have $I \subseteq Ra$. Together, we conclude that I = Ra.

Definition 1.12 (Principal Ideals, PIDs)

If I = (a) for some $a \in I$, then I is said to be a principal ideal.

R is a principal ideal domain (PID) if every ideal of R is principal.

Here are some important properties of PIDs:

1. Nonunit irreducible elements are exactly the prime elements in R.

Recall: $p \in R$ is irreducible if $a \mid p \Rightarrow a$ is either a unit or an associate of p.

 $p \in R$ is prime if $p \mid ab \Rightarrow p \mid a$ or $p \mid b$ and p is a nonzero, nonunit of R.

2. GCDs always exist in PIDs.

§1.3 Unique Prime Factorization

We're nearly ready to prove unique factorization, after a lemma:

Lemma 1.13

Suppose p is a prime, and $a, b \in Z$. Then $\operatorname{ord}_p(ab) = \operatorname{ord}_p a + \operatorname{ord}_p b$.

Proof. WLOG, assume $a, b \neq 0$. We let

$$\alpha = \operatorname{ord}_p a$$

$$\beta = \operatorname{ord}_{p} b$$

Then we have

$$a = p^{\alpha} \cdot c$$
 where $p \nmid c$

$$b = p^{\beta} \cdot d$$
 where $p \nmid d$

Thus, $ab = p^{\alpha+\beta} \cdot cd$. We have that $p \nmid cd$ since $p \nmid c$ and $p \nmid d$ (we rely on the fact that if p is irreducible, p is prime). Thus we have that $\operatorname{ord}_p(ab) = \alpha + \beta$.

Proof. (of theorem 1.6, that \mathbb{Z} is a UFD). Recall that for a nonzero $n \in \mathbb{Z}$, we write

$$n=(-1)^{\varepsilon}\prod_{p}p^{a}(p), \text{where } \varepsilon=0 \text{ or } 1 \text{ and } a(p)\geq 0$$

Given a positive prime q, we take ord_q of both sides. By lemma 1.13, this yields

$$\operatorname{ord}_q n = \varepsilon \cdot \operatorname{ord}_q(-1) + \sigma_p a(p) \operatorname{ord}_q(p)$$

Since we have that $\operatorname{ord}_q(-1) = 0$ and $\operatorname{ord}_q(p) = 0, \forall p \neq q$, we've uniquely determined a(q) since $\operatorname{ord}_q(n) = a(q)$. That is, a(q) is uniquely determined for all primes q. So n has a unique prime factorization.

§1.4 Greatest Common Divisors

Definition 1.14

Let R be an integral domain. Then $d \in R$ is said to be a gcd of two elements a, b if

- i) $d \mid a$ and $d \mid b$,
- ii) if $d' \mid a$ and $d' \mid b$, then $d' \mid d$.

Remark. An aside for ring theory enthusiasts: gcd domains are a class of rings mroe general than PIDs or UFDs.

We will denote (a, b) as the gcd of a and b.

Caution, however! gcd's are only unique up to units.

Example

-5 and 5 are both gcds of -5 and 10 since -1 is a unit.

We will ake the convention that the gcd of 2 integers is the positive gcd, that is, (-5, 10) = 5.

An edge case is that gcd(0,0) = 0.