Основы наивной теории множеств.

Лектор — Станислав Олегович Сперанский Создатель конспекта — Глеб Минаев *

Материалы лекций: ссылка Литература:

- K. Hrbacek and T. Jech. Introduction to Set Theory. 3rd ed., revised and expanded. Marcel Dekker, Inc., 1999.
- T. Jech. Set Theory. 3rd ed., revised and expanded. Springer, 2002.

Будем рассматривать как базовые выражения "x равен (совпадает с) y" ("x = y") "x лежит в y" (" $x \in y$ ").

Определение 1 (Наиваная схема аксиом выделения). Пусть $\Phi(x)$ — произвольное условие на объекты. Тогда существует X, что $\forall u(\Phi(u) \leftrightarrow u \in X)$. В этом случае X обозначается как $\{u \mid \Phi(u)\}$.

Утверждение 1 (парадокс Рассела). Пусть $R = \{u \mid u \notin u\}$. Тогда R не может лежать в себе u не может не лежать в себе одновременно.

Утверждение 2 (парадокс Берри). Пусть n — наименьшее натуральное число, которое нельзя описать менее чем одиннадиатью словами. Тогда n описывается 10 словами.

Из-за данного парадокса будем рассматривать только условия, образованные переменными $u \in = \neg, \land, \lor, \leftarrow, \leftrightarrow, \forall, \exists$.

Определение 2 (аксиомы ZFC (= ZF (аксиомы Цермело-Френкеля) + C (аксиома выбора))).

Ext) "Аксиома экстенциональности":

$$\forall X \forall Y (\forall u (u \in X \leftrightarrow u \in Y) \leftrightarrow X = Y)$$

Empty) "Аксиома пустого множества":

$$\exists \varnothing \ \forall u \ (u \notin \varnothing)$$

Pair) "Аксиома пары":

$$\forall X \, \forall Y \, \exists Z (\forall u \, (u \in Z \leftrightarrow (u = X \lor u = Y)))$$

Обозначение: $Z = \{X, Y\}$.

Sep) "Схема аксиом выделения":

$$\forall \Phi(x) \quad \forall X \exists Y \ \forall u \ (u \in Y \leftrightarrow (u \in X \land \Phi(u)))$$

Обозначение: $Y = \{u \in X \mid \Phi(u)\}.$

^{*}Оригинал конспекта опубликован расположен GitHub

Следствие. Операторы

$$X \cap Y := \{ u \mid u \in X \land u \in Y \}$$
$$X \setminus Y := \{ u \in X \mid u \notin Y \}$$
$$\bigcap X := \{ u \mid \forall v \in X \quad u \in v \}$$

определены корректно.

Union) "Аксиома объединения":

$$\forall X \exists Y \ \forall u \ (u \in Y \leftrightarrow \exists v \ (v \in X \land u \in v))$$

Обозначение: $Y = \bigcup X$.

Следствие. Оператор

$$X \cup Y := \bigcup \{X, Y\} = \{u \mid u \in X \land u \in Y\}$$

определён корректно.

Power) Пусть $x \subseteq y := \forall v \{v \in x \to v \in y\}$. "Аксиома степени":

$$\forall X \,\exists Y \,\forall u \,(u \in Y \leftrightarrow u \subseteq X)$$

Обозначение: $Y = \mathcal{P}(X) := \{u \mid u \subseteq X\}$. $\mathcal{P}(X)$ — "множество-степень X" или "булеан X".

Определение 3. Упорядоченная пара — это объект от некоторых X_1 и Y_1 , который равен другому такому объекту от X_2 и Y_2 тогда и только тогда, когда $X_1 = X_2 \wedge Y_1 = Y_2$.

Определение 4. Декартово произведение X и Y $(X \times Y) - \{(x;y) \mid x \in X \land y \in Y\}.$

3 a мечание 1. Можно несложно показать, что декартово произведение определено корректно.

Inf) Пусть $\operatorname{Ind}(X) := \emptyset \in X \land \forall u (u \in X \land u \cup \{u\} \in X)$. Если $\operatorname{Ind}(X)$, то X называется индуктивным. "Аксиома бесконечности": существует индуктивное множество.

Repl) "Схема аксиом подстановки":

$$\forall \Phi(x, y)$$

$$\forall x \, \forall y_1 \, \forall y_2 \, ((\Phi(x, y_1) \land \Phi(x, y_2)) \rightarrow y_1 = y_2) \rightarrow$$

$$\forall X \, \exists Y \, \forall y \, (y \in Y \leftrightarrow \exists x (x \in X \land \Phi(x, y)))$$

Reg) "Аксиома регулярности":

$$\forall X \, (X \neq \varnothing \to \exists u \, (u \in X \land X \cap u = \varnothing))$$

1 Отношения.

Определение 5. Бинарное (или двухместное) отношение R между X и Y — подмножество $X \times Y$. Если Y = X, R называется бинарным (или двухместным) отношением на X. Обозначение: $(x,y) \in R \Leftrightarrow xRy$.

Определение 6.

$$\mathrm{dom}(R) := \{u \in X \mid \exists v \quad uRv\}$$
 "область определения R " $\mathrm{range}(R) := \{v \in Y \mid \exists u \quad uRv\}$ "область значений R " $R[U] := \mathrm{range}(R \cap (U \times Y))$ $R^{-1} := \{(y,x) \mid (x,y) \in R\}$

Замечание 2.

range
$$(R) = dom(R^{-1}) = R[X]$$

range $(R^{-1}) = dom(R) = R^{-1}[Y]$

Определение 7. Бинарные отношения можно естественным образом комбинировать: для любых отношений R и Q между X и Y, Y и Z соответственно отношение

$$S = R \circ Q := \{(x,z) \in X \times Z \mid \exists y : xRy \wedge yQz\}$$

называется композицией R и Q.

Определение 8. Тождественное отображение на $X - id_X := \{(x, x) \mid x \in X\}.$

Замечание 3. Тождественное отображение при композиции (не важно, правой или левой) с другим отношением не меняет его.

Определение 9. Отношение R между X и Y называется функциональным, если

$$\forall x \ \forall y_1 \ \forall y_2 \ ((xRy_1 \land xRy_2) \rightarrow y_1 = y_2).$$

Определение 10. Функция из X в Y — функциональное отношение R между X и Y, в котором $\mathrm{dom}(R) = X$. Обозначение: $R: X \to Y$.

Определение 11. Ограничение или сужение функции $f: X \to Y$ на $U \subseteq X$ — функция $f \upharpoonright_U := f \cap (U \times Y)$.

Если $f:X\to Y$ и $g:U\to Y$, где $U\subseteq X$, таковы, что $f\restriction_U=g$, то f называется расширением g, а g — ограничением f.

Определение 12. $Y^X := \{f : X \to Y\}.$

Определение 13. Функция $f: X \to Y$ называется

- сюръекцией, если range(f) = Y;
- *инъекцией*, если f^{-1} функционально;
- $\mathit{биекцией}$, если f сюръективно и инъективно.
- С) "Аксиома выбора":

$$\forall X(\varnothing \not\in X \to \exists f(f:X \to \bigcup X \land \forall u \in X(f(u) \in u)))$$

2 Натуральные числа и индукция

Важным следствием Inf является

$$\exists X (\operatorname{Ind}(X) \land \forall Y (\operatorname{Ind}(Y) \to X \subseteq Y)) \tag{Nat}$$

Nat описывает минимальное по включению индуктивное множество — \mathbb{N} , \aleph_0 или ω .

Доказательство. Пусть есть какое-то индуктивное X_0 . Тогда рассмотрим

$$\mathbb{N} := \{ x \in X_0 \mid \forall X (\operatorname{Ind}(X) \to x \in X) \}$$

По построению $\operatorname{Ind}(X) \to \mathbb{N} \subseteq X$. Также $\operatorname{Ind}(\mathbb{N})$.

Определение 14. Определим функцию последователя $s: \mathbb{N} \to NN$ как

$$s := \{(n, m) \in \mathbb{N} \times \mathbb{N} \mid m = n \cup \{n\}\}\$$

Вместо s(n) часто пишут n+1.

Определение 15. (Естественный) порядок на $\mathbb{N} - <:= \{(n,m) \in \mathbb{N}^2 \mid n \in m\}$.

Замечание 4. Для всех $n, m \in \mathbb{N}$ верно:

- 1. $\neg (n < 0)$;
- $2. \ n < m+1 \leftrightarrow (n < m \lor n = m).$

Теорема 3 (принцип индукции). Пусть Х удовлетворяет условию

$$0 \in X \land \forall n \in \mathbb{N} (n \in X \to n+1 \in X).$$

 $Tor \partial a \mathbb{N} \subseteq X.$

Доказательство. Из условия на X следует, что $\mathbb{N} \cap X$ индуктивно. Тогда из определения \mathbb{N} следует, что $\mathbb{N} \subseteq \mathbb{N} \cap X \subseteq X$, значит $\mathbb{N} \subseteq X$.

Замечание 5. В качестве X могут быть $\{n \in \mathbb{N} \mid \Phi(n)\}$.

Следствие 3.1. $\forall n \in \mathbb{N}$ верно $n \subseteq \mathbb{N}$.

Теорема 4 (возвратная индукция). Пусть дан X, что $\forall n \in \mathbb{N} (\forall m < n \ m \in X \to n \in X)$. Тогда $\mathbb{N} \subseteq X$.

Доказательство. Докажем, что $\forall n \in \mathbb{N} n \subseteq X$, по индукции. База для 0 очевидна. Шаг очевиден, так как $n \subseteq X$, значит $n \in X$, значит $n + 1 \subseteq X$.

Определение 16. $Min(X) := \{x \in X \mid \neg \exists u \in X u \in x\}.$

Теорема 5 (принцип минимального элемента). Если $X \subset \mathbb{N}$ и $X \neq \emptyset$, то $Min(X) \neq \emptyset$.

Доказательство. Пусть $Min(X) = \emptyset$. Возьмём $Y := \mathbb{N} \setminus X$. Заметим, что

$$\forall n \in \mathbb{N} (\forall m < n \ m \in Y \to n \in Y)$$

Тогда по принципу возвратной индукции $Y=\mathbb{N}$, а тогда $X=\varnothing$ — противоречие.

Теорема 6 (о рекурсии). Пусть есть $y_0 \in Y$ и $h : \mathbb{N} \times Y \to Y$. Тогда существует и единственная $f : \mathbb{N} \to Y$ такая, что для любого $n \in \mathbb{N}$

$$f(n) = \begin{cases} y_0 & ecnu \ n = 0 \\ h(m, f(m)) & ecnu \ n = m + 1 \end{cases}$$

Доказательство. Пусть $k \in \mathbb{N}$. Тогда будем называть функцию $f: k+1 \to Y$ правильной, если условие в определении рекурсии верно для всех $n \in k+1$. Также рассмотрим

$$S:=\{k\in\mathbb{N}\mid$$
 существует единственная правильная $f:k+1\to Y\}$

Будем обозначать для каждого $k \in S$ через f_k соответствующую правильную функцию из k+1 в Y.

Докажем по индукции, что $S = \mathbb{N}$.

База. Очевидно, $\{(0, y_0)\}$ — единственная правильная функция из 0+1 в Y. Поэтому $0 \in S$. **Шаг.** Легко заметить, что сужение любой правильной функции на k+2 на множество k+1 правильно. Поэтому все правильные функции на k+2 определены на k+1 как f_k . Тогда значение в k+1 определяется однозначно, значит правильная функция на k+2 существует и единственна.

Теорема 7 (о рекурсии, параметризованная). Пусть $g_0 \in Y^X$ и $h: X \times \mathbb{N} \times Y \to Y$. Тогда существует и единственна $f: X \times \mathbb{N} \to Y$, что $\forall x \in X, n \in \mathbb{N}$

$$f(x,n) = \begin{cases} g_0(x) & ecnu \ n = 0 \\ h(x,m,f(x,m)) & ecnu \ n = m+1 \end{cases}$$

Доказательство. Рассмотрим для каждого $x \in X$ функцию $h_x : \mathbb{N} \times Y \to Y, (n, y) \mapsto h(x, n, y)$. Тогда по теореме о рекурсии есть $f_x : \mathbb{N} \to Y$, что

$$f_x(n) = egin{cases} g_0(x) & ext{если } n = 0 \ h_x(m, f_x(m)) & ext{если } n = m+1 \end{cases}$$

Тогда определим $f: X \times \mathbb{N} \to Y, (x, n) \mapsto f_x(n)$. В этом случае

$$f(x,n) = f_x(n) = egin{cases} g_0(x) & \text{если } n = 0 \\ h_x(m,f_x(m)) & \text{если } n = m+1 \end{cases} = egin{cases} g_0(x) & \text{если } n = 0 \\ h(x,m,f(x,m)) & \text{если } n = m+1 \end{cases}$$

Замечание 6. Заметим, что с помощью теоремы о параметризованной рекурсии можно определить сложение, умножение и возведение в степень на натуральных числах.

Определение 17. Несложно заметить, что функциональные отношения $R \subseteq X \times Y$ — функции из подмножества X в Y. Поэтому будем называть их *частичными функциями* и обозначать как $R : \subseteq X \to Y$.

Теорема 8 (о рекурсии, частичной). Пусть $y_0 \in Y$ и $h :\subseteq \mathbb{N} \times Y \to Y$. Тогда существует и единственна $f :\subseteq \mathbb{N} \to Y$, что

• ∂n любого $n \in \text{dom}(f)$,

$$f(n) = \begin{cases} y_0 & ecnu \ n = 0 \\ h(m, f(m)) & ecnu \ n = m + 1 \end{cases}$$

5

• либо $dom(f) = \mathbb{N}$, либо dom(f) = k+1 для некоторого $k \in \mathbb{N}$, что $(k, f(k)) \notin dom(h)$.

Доказательство. Зафиксируем некоторое ы $\notin Y$ и положим $Y' := Y \cup \{ \mathbf{ы} \}$. Теперь расширим h до $h' : \mathbb{N} \times Y' \to Y'$ следующим образом:

$$h'(n,y') := egin{cases} h(n,y') & ext{если } (n,y') \in ext{dom}(h) \ & & ext{иначе} \end{cases}$$

В силу теоремы о рекурсии существует и единственна $f': \mathbb{N} \to Y'$ такая, что для любого $n \in \mathbb{N}$,

$$f'(n) = egin{cases} y_0 & ext{если } n = 0 \ h'(m, f'(m)) & ext{если } n = m+1 \end{cases}$$

Возьмём $f := f' \cup (\mathbb{N} \times Y)$. Несложно убедиться, что f будет искомой.

Определение 18. Конечными последовательностями элементов X называются элементы множества $X^* := \{f \mid \exists n \in \mathbb{N} (f : n \to X)\}.$

Теорема 9 (о возвратной индукции). Пусть $h : \mathbb{N} \times Y^* \to Y$. Тогда существует единственная $f : \mathbb{N} \to Y$ такая, что для любого $n \in \mathbb{N}$, $f(n) = h(n, f|_n)$.

Доказательство. По аналогии с доказательством теоремы о рекурсии, однако вместо обычной индукции тут используется возвратная. [...]

Определение 19. Условие $\Phi(x,y)$ называется функциональным, если

$$\forall x \forall y_1 \forall y_2 ((\Phi(x, y_1) \land \Phi(x, y_2)) \rightarrow y_1 = y_2)$$

Если для некоторого u нашёлся тот самый y, что $\Phi(u,y)$, тогда данный y обозначается как $\llbracket \Phi \rrbracket(x)$.

Функциональное условие $\Phi(x,y)$ называется тотальным, если $\forall x \exists y \ \Phi(x,y)$.

Теорема 10 (о возвратной "классовой рекурсии"). Пусть $\Phi(x,y)$ — тотальное функциональное условие. Тогда существует единственная функция $f \ c \ dom(f) = \mathbb{N}$, что $\forall n \in \mathbb{N}$

$$f(n) = \llbracket \Phi \rrbracket (f \upharpoonright_n)$$

Доказательство. Идея здесь та же, хотя деталей побольше. В нашем модуле эта теорема не будет играть особой роли, однако именно "классовая рекурсия" является базовым инструментом в TM. [...]

3 Мощности

Определение 20. X и Y *равномощны*, если существует биекция $f:X\to Y$. Обозначение: $X\sim Y$.

Теорема 11. Для всех X, Y u Z верно следующее:

- 1. $X \sim X$:
- 2. $X \sim Y \Leftrightarrow Y \sim X$;
- 3. $X \sim Y \sim Z \Rightarrow X \sim Z$.

Пример 1. $\mathcal{P}(X) \sim 2^X$. Действительно, рассмотрим для каждого $Y \subseteq X$ функцию $\chi_Y : X \to 2$, что

$$\chi_Y(x) := egin{cases} 1 & ext{если } x \in Y \ 0 & ext{если } x \in X \setminus Y \end{cases}$$

Несложно заметить, что отображение, сопоставляющее Y функцию χ_Y есть биекция из $\mathcal{P}(x)$ в 2^X .

Определение 21. Множество X по мощности менее или равно Y ($X \leq Y$), если существует инъекция из X в Y.

Множество X по мощности (строго) менее Y ($X \prec Y$), если $X \preccurlyeq Y \land X \nsim Y$.

3амечание 7. Тогда очевидно, что $X \leq Y$ тогда и только тогда, когда X равномощно некоторому подмножеству Y.

Теорема 12.

- 1. $X \leq X$.
- 2. $X \sim Y \Rightarrow X \preccurlyeq Y$.
- 3. $X \leq Y \sim Z \Rightarrow X \leq Z$.
- 4. $X \sim Y \leq Z \Rightarrow X \leq Z$.
- 5. $X \leq Y \leq Z \Rightarrow X \leq Z$.

Теорема 13 (Кантора, обобщённая). $X \prec \mathcal{P}(X)$.

Доказательство. Очевидно, что $f: X \to \mathcal{P}(X), x \mapsto \{x\}$ есть инъекция, поэтому $X \preccurlyeq \mathcal{P}(X)$. Покажем, что между ними нет биекции.

Предположим противное, т.е. есть биекция $f: X \to \mathcal{P}(X)$. Рассмотрим $Y:= \{x \in X \mid x \notin f(x)\}$. Поскольку f — биекция, то f(y) = Y для некоторого y. В итоге мы получаем

$$y \in Y \qquad \Longleftrightarrow \qquad y \not \in f(Y) \qquad \Longleftrightarrow \qquad y \not \in Y$$

Получаем противоречие.

Теорема 14 (Кантора-Шрёдера-Бернштейна). Если $X \preccurlyeq Y$ и $Y \preccurlyeq X$, то $X \sim Y$.

Доказательство.

Лемма 14.1. Если $X \supset Y \supset X'$ и $X \sim X'$, то $X \sim Y \sim X'$.

Доказательство. Пусть $f: X \to X'$ — биекция. Определим по рекурсии $\{X_i\}_{i=0}^{\infty}$ и $\{Y_i\}_{i=0}^{\infty}$:

$$X_n := egin{cases} X & ext{ если } n=0 \ f[X_m] & ext{ если } n=m+1 \end{cases}$$
 $Y_n := egin{cases} Y & ext{ если } n=0 \ f[Y_m] & ext{ если } n=m+1 \end{cases}$

По условию $X_0=X\supseteq Y=Y_0$ и $Y_0=Y\supseteq X'=f(X)=X_1$. Тогда несложно убедиться по индукции по n, что $X_n\supseteq Y_n\supseteq X_{n+1}$, так как $X_{n-1}\supseteq Y_{n-1}\supseteq X_n$, значит $f(X_{n-1})\supseteq f(Y_{n-1})\supseteq f(X_n)$, что буквально означает, что $X_n\supseteq Y_n\supseteq X_{n+1}$.

Тогда для каждого $n \in \mathbb{N}$ определим $U_n := X_n \setminus Y_n$. Пусть также $U := \bigcup_{n=0}^{\infty} U_n, \ Z := X \setminus U$.

Несложно видеть, что

$$X = \bigcup_{n=0}^{\infty} U_n \cup Z \qquad Y = \bigcup_{n=1}^{\infty} U_n \cup Z$$

Также несложно видеть, что $f[U_n] = f[X_n \setminus Y_n] = f[X_n] \setminus f[Y_n] = X_{n+1} \setminus Y_{n+1} = U_{n+1}$, а потому $f[U] = U \setminus U_0$.

Тогда определим $g: X \to X$ по правилу

$$g(x) := \begin{cases} f(x) & \text{если } x \in U \\ x & \text{если } x \in Z \end{cases}$$

Несложно видеть, что это инъекция. Действительно, g на U равна f, а значит есть биекция из U в $U \setminus U_0$, также является биекцией из Z в себя, а поскольку U и Z дизъюнктны, то g является биекцией из $U \cup Z$ в $U \setminus U_0 \cup Z$, т.е. из X в Y. Значит $Y \sim X$.

Пусть $f: X \to Y$ и $g: Y \to X$ — инъекции. Несложно видеть, что $g[Y] \subseteq X$, а $f[X] \subseteq Y$, значит $g[f[X]] \subseteq g[Y]$. Т.е. $X \supseteq g[Y] \supseteq g[f[X]]$. При этом $X \sim f[X] \sim g[f[X]]$, поэтому применяя лемму 14.1, имеем, что $X \sim g[Y] \sim Y$, значит $X \sim Y$.

Определение 22. Будем говорить, что X *имеет* n *элементов* (где $n \in \mathbb{N}$), если $X \sim n$. X *конечно*, если для какого-то $n \in \mathbb{N}$, что $X \sim n$.

Утверждение 15. X бесконечно, значит $\forall n \in \mathbb{N} \mid |X| \geqslant n$.

Доказательство. Докажем по индукции по n.

База: $|X| \geqslant 0$ — очевидно.

Шаг: Пусть |X| > n, тогда существует инъекция $f: n \to X$. $f(n) \neq X$, поэтому есть $x \in X \setminus f(n)$, значит есть $f' = f \cup \{(n; x)\}$ — инъекция из n+1 в X.

3.1 Основные свойства конечных множеств

Утверждение 16. *X* конечно, $a |Y| \leq |X|$, то |Y| конечно.

Доказательство. Существует $n \in \mathbb{N}$, что |X| = n. Тогда Y кончено, так как иначе $n = |X| \geqslant |Y| \geqslant n + 1$.

Утверждение 17. Пусть есть сюръекция из X в Y, и X конечно. Тогда $|Y| \leq |X|$.

Доказательство. WLOG X=n для некоторого $n\in\mathbb{N}$. Определим $g:Y\to n$ по правилу

$$g(y) :=$$
 "минимальный элемент в $f^{-1}[\{y\}]$ "

Легко понять, что $g:Y\to n$ — инъекция. Стало быть, $|Y|\geqslant |n|=n$.

Утверждение 18. Пусть X и Y конечны, причём $X \cup Y = \emptyset$. Тогда $X \cap Y$ конечно и $|X \cup Y| = |X| + |Y|$.

Доказательство. Докажем утверждение индукцией по |Y|.

База. Очевидно, если |Y|=0, то $|Y|=\varnothing$, а потому $|X\cup Y|=|X|=|X|+0=|X|+|Y|$.

Шаг. Пусть |Y|=n+1, т.е. существует биекция $f:n+1\to Y$. Рассмотрим $y=f^{-1}(n)$ и $Z:=Y\setminus\{y\}$. Очевидно, что |Z|=n. Тогда

$$|X \cup Y| = |(X \cup Z) \cup \{y\}|$$
 $= |X \cup Z| + 1$ $= |X| + (|Z| + 1)$ $= |X| + |Y|$

Утверждение 19. Пусть X и Y конечны. Тогда $X \times Y$ и X^Y кончены и $|X \times Y| = |X| \cdot |Y|$, $|X^Y| = |X|^{|Y|}$.

3.2 Основные свойства (не более чем) счётных множеств

Утверждение 20 (в ZFC). Пусть X бесконечно, тогда оно содержит счётное подмножество.

Доказательство. Пусть η — какая-нибудь функция выбора для $\mathcal{P}(X)\setminus\{\varnothing\}$. Используя рекурсию, определим $f:\mathbb{N}\to X$ по правилу

$$f(k) := \eta(X \setminus \operatorname{range}(f \upharpoonright_k))$$

Как легко видеть, $f:\mathbb{N}\to X$ — инъекция. Поэтому $\mathrm{range}(f)$ будет счётным подмножеством X.

Определение 23. \mathbb{N} является кардиналом и обычно обозначается \aleph_0 .

Следствие 20.1 (в ZFC). $|X| > \aleph_0$ тогда и только тогда, когда X бесконечно и несчётно.

Утверждение 21. $|X| \leq \aleph_0$ тогда и только тогда, когда X конечно или счётно.

Доказательство. Если X конечно или счётно, то, очевидно, $|X| \leq \aleph_0$.

Если $|X| \leqslant \aleph_0$, то WLOG $X \subseteq \mathbb{N}$. Если X бесконечно, то рекурсивно определим $f: \mathbb{N} \to X$ по правилу

$$f(k) :=$$
 "минимальный элемент в $X \setminus \operatorname{range}(f \upharpoonright_k)$ "

Нетрудно проверить, что $f: \mathbb{N} \to X$ — биекция.

Следствие 21.1 (в ZFC). $|X| \not> \aleph_0$ тогда и только тогда, когда $|X| \leqslant \aleph_0$.

Утверждение 22. Есть сюръекция из X в Y, причём $|X| \leqslant \aleph_0$. Тогда $|Y| \leqslant \aleph_0$.

Доказательство. WLOG $X \subseteq \mathbb{N}$. Определим $q: Y \to X$ по правилу

$$g(y) :=$$
 "минимальный элемент в $f^{-1}[\{y\}]$ "

Легко понять, что $g: Y \to X$ — инъекция. Стало быть, $|Y| \leq |X| \leq \aleph_0$.

Следствие 22.1. Непустое X не более чем счётно тогда и только тогда, когда существует сюр π екция из \mathbb{N} в X.

Следствие 22.2. Пусть R — отношение эквивалентности на X, причём X не более, чем счётно. Тогда X/R не более чем счётно.

Утверждение 23. Пусть X и Y не более чем счётны, тогда $X \times Y$ не более чем счётно.

Доказательство. WLOG $X,Y\subseteq\mathbb{N}$. Тогда $X\times Y\subseteq\mathbb{N}\times\mathbb{N}$, а значит нужно показать, что счётность $\mathbb{N}\times\mathbb{N}$. Определим $\nu:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ по правилу

$$\nu(n,m) := \frac{(n+m)(n+m+1)}{2} + n$$

Нетрудно проверить, что ν биективна.

Следствие 23.1. $\forall n \in \mathbb{N}$

$$\underbrace{\mathbb{N}\times\cdots\times\mathbb{N}}_{n}$$

счётно.

Следствие 23.2. Пусть X и Y не более чем счётны, тогда $X \cup Y$ не более чем счётно.

Доказательство. Поскольку X и $Y\setminus X$ равномощны некоторым подмножествам $\mathbb{N}\times\{0\}$ и $\mathbb{N}\times\{1\}$, то $X\cup Y=X\cup (Y\setminus X)$ равномощно подмножеству $\mathbb{N}\times\{0,1\}\subseteq\mathbb{N}\times\mathbb{N}$, а потому не более чем счётно.

Утверждение 24. X конечно, а элементы X не более чем счётны. Тогда $\bigcup X$ не более чем счётно.

Доказательство. По индукции по |X|.

Определение 24. Условие "быть (бесконечной) последовательностью" — $Seq(F) := \exists Y : F : \mathbb{N} \to Y$. Если Seq(F), то для любого $n \in \mathbb{N}$ вместо F(n) нередко пишут F_n .

Утверждение 25. Eсли F-nоследовательность последовательностей, то тогда

$$\bigcup \{ \operatorname{range}(F_n) \mid n \in \mathbb{N} \}$$

не более чем счётно.

Доказательство. Определим $g: \mathbb{N} \times \mathbb{N} \to \bigcup \{\operatorname{range}(F_n) \mid n \in \mathbb{N}\}$ по правилу

$$g(n,m) := F_n(m) = F(n)(m)$$

Легко понять, что g сюръективна.

Следствие 25.1 (в ZFC). Пусть X не более чем счётно, u все его элементы не более чем счётны, тогда $\bigcup X$ не более чем счётно.

Доказательство. WLOG $X \neq \emptyset$ и $\emptyset \notin X$. Пусть g — сюръекция из $\mathbb N$ на X. Для каждого $n \in \mathbb N$ положим

$$S_n := \{ f \mid f : \mathbb{N} \to g(n) - \text{сюръекция} \}$$

Очевидно, $S_n \neq \emptyset$ для всякого $n \in \mathbb{N}$. Обозначим $\{S_n \mid n \in \mathbb{N}\}$ через \mathcal{J} . Пусть η — какая-нибудь функция выбора для \mathcal{J} . Наконец, определим $F : \mathbb{N} \to \bigcup \mathcal{J}$ по правилу

$$F(n) := \eta(S_n)$$

Ясно, что $\bigcup \{ \operatorname{range}(F_n) \mid n \in \mathbb{N} \} = \bigcup \{ g(n) \mid n \in \mathbb{N} \} = \bigcup X.$

Теорема 26. Пусть непустое X не более чем счётно. Тогда X^* счётно.

Доказательство. Зафиксируем сюръекцию $g:\mathbb{N}\to X$. Очевидно, $f\circ g\in X^*$ для всякого $f\in\mathbb{N}^*.$ Определим $G:\mathbb{N}^*\to X^*$ по правилу

$$G(f) := f \circ q$$

Легко убедиться, что G сюръективна. Поэтому достаточно показать, что N^* не более чем счётно, а X^* бесконечно.

Пусть $\nu: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ — биекция. Разумеется, можно построить функции left : $\mathbb{N} \to \mathbb{N}$ и right : $\mathbb{N} \to \mathbb{N}$ такие, что для любых $n, m \in \mathbb{N}$,

$$\operatorname{left}(\nu(n,m)) = n$$
 u $\operatorname{right}(\nu(n,m)) = m$

Используя рекурсию, можно определить последовательность последовательностей f, удовлетворяющую следующим условиям:

$$f_0(i) = \varnothing$$

$$f_{n+1}(i) = f_n(\operatorname{left}(i)) \cup \{(n, \operatorname{right}(i))\}$$

Далее несложно доказать по индукции, что для каждого $n \in \mathbb{N}$

$$range(f_n) = \{g \mid g : n \to \mathbb{N}\}\$$

В таком случае $\bigcup \{ \operatorname{range}(f_n) \mid n \in \mathbb{N} \} = \mathbb{N}^*$. Поэтому \mathbb{N}^* не более чем счётно.

Осталось показать, что X^* бесконечно. Для этого выберем какой-нибудь $x_0 \in X$ и определим $h: \mathbb{N} \to X^*$ по правилу

$$h(n) := n \times \{x_0\},\$$

т.е. h(n) — последовательность длины n только из элемента x_0 . Очевидно, что h инъективна, а потому X^* не может быть конечным.

Определение 25. Для произвольного множества X обозначим

$$\mathcal{P}_{fin}(X) := \{ Y \mid Y \subseteq X \text{ и } Y \text{ конечно} \}$$

Говоря просто, $\mathcal{P}_{\text{fin}}(X)$ — семейство конечных подмножеств X.

Следствие 26.1. Пусть X счётно. Тогда $\mathcal{P}_{\mathrm{fin}}(X)$ счётно.

Доказательство. Рассмотрим $h: X^* \to \mathcal{P}_{\text{fin}}(X)$, действующую по правилу

$$h(f) := \operatorname{range}(f)$$

Легко видеть, что h сюръективна, значит $\mathcal{P}_{\text{fin}}(X)$ не более чем счётно.

С другой стороны пусть $\nu:\mathbb{N} \to X$ — инъекция. Тогда рассмотрим $g:\mathbb{N} \to \mathcal{P}_{\mathrm{fin}}(X)$, что

$$q(n) := \nu[n]$$

Несложно проверить, что $|\nu[n]|=n$, поэтому g инъективна, значит $\mathcal{P}_{\mathrm{fin}}(X)$ бесконечно, а значит счётно.

Следствие 26.2. В следствие теоремы Кантора ${\cal P}$ нельзя заменить на ${\cal P}_{\rm fin}.$

Теорема 27 (в ZFC). Пусть X бесконечно, а Y не более чем счётно. Тогда $|X \cup Y| = |X|$.

Доказательство. Заменяя Y на $Y\setminus X$, имеем, что WLOG $X\cap Y=\varnothing$. При этом у X есть счётное подмножество Z. Тогда понятно, что $Z\cup Y$ счётно, а значит есть биекция $f:Z\cup Y\to Z$. Тогда определим $g:X\cup Y\to X$ так, что

$$g(x) := egin{cases} f(x) & ext{если } x \in Z \cup Y \\ x & ext{если } x \in X \setminus Z \end{cases}$$

Очевидно, что q биективна.

Следствие 27.1. Пусть X более чем счётно, а Y не более чем счётно. Тогда $|X \setminus Y| = |X|$.

Доказательство. Пусть $U := X \cap Y$, а $V := X \setminus U$. Ясно, что U не более чем счётно, V бесконечно. Значит, $|X| = |V \cup U| = |V| = |X \setminus Y|$.

4 Упорядоченность

Определение 26. *Частично упорядоченное множество (ЧУМ)* — пара из множества и частичного порядка на нём.

Обозначение: $\mathfrak{A} = \langle A, \leqslant \rangle$.

Определение 27. Пусть даны ЧУМ $\mathfrak{A} = \langle A, \leqslant \rangle$ и непустое $S \subseteq A$. Тогда $a \in A$ является

- максимальным элементом для S в \mathfrak{A} , если $a \in S \land \neg (\exists x \in S : a < x)$;
- минимальным элементом для S в \mathfrak{A} , если $a \in S \land \neg (\exists x \in S : x < a)$;
- наибольшим элементом для S в \mathfrak{A} , если $a \in S \land (\forall x \in S \ x \leqslant a)$;
- наименьшим элементом для S в \mathfrak{A} , если $a \in S \land (\forall x \in S \ a \leqslant x)$.

Если S = A, то уточнение "для S" опускают.

Tакже a является

- верхней гранью для S в \mathfrak{A} , если $\forall x \in S$ $x \leqslant a$;
- нижней гранью для S в \mathfrak{A} , если $\forall x \in S \quad x \geqslant a$;
- супремумом гранью для S в \mathfrak{A} , если a наименьшая верхняя грань для S в \mathfrak{A} ;
- инфимумом гранью для S в \mathfrak{A} , если a наибольшая нижняя грань для S в \mathfrak{A} .

Утверждение 28. $B \ YYM \ \mathfrak{A}$

- не более одного наибольшего в 🎗 элемента;
- всякий наибольший в 🎗 максимален в 🎗;
- любые два максимальных в 🎗 несравнимы.

Аналогично для наименьших и минимальных элементов.

Утверждение 29. В ЛУМ все максимальные наибольшие и наоборот. Аналогично для минимальных и наименьших.

Определение 28. Гомоморфизм из $\langle A, \leqslant_A \rangle$ в $\langle B, \leqslant_B \rangle$ — отображение $f: A \to B$, что

$$a_1 \leqslant_A a_2 \Rightarrow f(a_1) \leqslant_B f(a_2)$$

В таком случае ещё говорят, что f сохраняет порядок.

Если f инъективно, а последнее условие усиливается до равносильности (а не остаётся следствием), то f называется вложением из $\langle A, \leqslant_A \rangle$ в $\langle B, \leqslant_B \rangle$.

Утверждение 30. Любой интективный гомоморфизм из ЛУМ в ЧУМ является вложением.

Определение 29. *Изоморфизм из* \mathfrak{A} *в* \mathfrak{B} — сюръективное вложение из \mathfrak{A} в \mathfrak{B} . Обозначение: $\mathfrak{A} \simeq \mathfrak{B}$.

Утверждение 31. "Изоморфность" — "отношение эквивалентности" на ЧУМах. Т.е. для любых \mathfrak{A} , \mathfrak{B} и \mathfrak{C} верно:

- 1. $\mathfrak{A} \simeq \mathfrak{A}$;
- 2. $\mathfrak{A} \simeq \mathfrak{B} \Leftrightarrow \mathfrak{B} \simeq \mathfrak{A}$:
- 3. $\mathfrak{A} \simeq \mathfrak{B} \simeq \mathfrak{C} \Rightarrow \mathfrak{A} \simeq \mathfrak{C}$.

Определение 30. Изоморфизм из \mathfrak{A} на себя — автоморфизм.

С ЧУМами можно делать базовые преобразования:

1. Пусть даны ЧУМ $\mathfrak{A}=\langle A,\leqslant \rangle$ и $S\subseteq A$. Возьмём

$$\leq_S := \leq \cap S \times S$$

Тогда $\langle S, \leqslant_S \rangle$ — ЧУМ. Оно называется *индуцированным в* $\mathfrak A$ *по* S. При этом из ЛУМ получится ЛУМ.

2. Пусть даны ЧУМ $\mathfrak{A}=\langle A,\leqslant_A\rangle$ и $\mathfrak{B}=\langle B,\leqslant_B\rangle$, причём A и B дизъюнктны. Возьмём

$$\leq := \leq_A \cup A \times B \cup \leq_B$$

Тогда $\langle A \cup B, \leqslant \rangle$ — ЧУМ, которое обозначается $\mathfrak{A} \oplus \mathfrak{B}$. При этом из двух ЛУМ всегда получится ЛУМ.

3. Пусть даны ЧУМ $\mathfrak{A} = \langle A, \leqslant_A \rangle$ и $\mathfrak{B} = \langle B, \leqslant_B \rangle$. Определим \leqslant на $A \times B$ по правилу

$$(a_1, b_1) \leqslant (a_2, b_2) : \Leftrightarrow a_1 \leqslant_A a_2 \land b_1 \leqslant$$

Тогда $\langle A \times B, \leqslant \rangle$ — ЧУМ, где \leqslant традиционно называют *покоординатным порядком*. Понятно, что \leqslant мало когда бывает линейным.

4. Модифицируем предыдущую конструкцию, сделав одну из координат главной. Например, первую:

$$(a_1, b_1) \leq (a_2, b_2) : \Leftrightarrow a_1 < a_2 \lor (a_1 = a_2 \land b_1 \leq b_2)$$

Тогда $\langle A \times B, \leqslant \rangle$ — ЧУМ, которое обозначается $\mathfrak{A} \otimes \mathfrak{B}$. В таком случае из двух ЛУМ получается ЛУМ.

4.1 Трансфинитная индукция и фундированность

Определение 31. Для ЧУМ $\mathfrak{A} = \langle A, \leqslant \rangle$ верен *принцип трансфинитной индукции*, если для всякого $X \subseteq A$,

$$\forall x \in A((\forall y < x)y \in X \to x \in X) \to X = A$$

Определение 32. Для ЧУМ $\mathfrak{A} = \langle A, \leqslant \rangle$ верен *принцип минимального элемента*, если для всякого $X \subseteq A$,

$$X \neq \emptyset \rightarrow \exists x \in X((\forall y \in X) \ y \not< x)$$

Такие ЧУМ называются фундированными.

Теорема 32. Для ЧУМ верен принцип трансфинитной индукции тогда и только тогда, когда оно фундировано.

Доказательство. Пусть $X \subseteq A$. Обозначим $A \setminus X$ через \overline{X} . Тогда

$$\forall x \in A((\forall y < x)y \in X \rightarrow x \in X) \rightarrow X = A \Longleftrightarrow$$

$$X \neq A \rightarrow \neg \forall x \in A((\forall y < x)y \in X \rightarrow x \in X) \Longleftrightarrow$$

$$X \neq A \rightarrow \exists x \in A \neg ((\forall y < x)y \in X \rightarrow x \in X) \Longleftrightarrow$$

$$X \neq A \rightarrow \exists x \in A((\forall y < x)y \in X \land x \notin X) \Longleftrightarrow$$

$$X \neq A \rightarrow \exists x \in A((\forall y \notin X)y \not < x \land x \notin X) \Longleftrightarrow$$

$$\overline{X} \neq \varnothing \rightarrow \exists x \in \overline{X}((\forall y \in \overline{X})y \not < x)$$

Утверждение 33.

1. Пусть даны фундированные ЧУМ $\mathfrak A$ и $\mathfrak B$, что $A\cap B=\varnothing$. Тогда $\mathfrak A\oplus\mathfrak B$ будет фундированным.

2. Пусть даны фундированные ЧУМ ${\mathfrak A}$ и ${\mathfrak B}$. Тогда ${\mathfrak A}\otimes {\mathfrak B}$ будет фундированным.

Определение 33. Вполне упорядоченное множество (ВУМ) — фундированное ЛУМ. Порядки ВУМ называются полными порядками.

Определение 34. Пусть дано ВУМ $\mathfrak{A} = \langle A, \leqslant \rangle$. *Начальный сегмент* — множество $S \subseteq A$, если для $\forall a_1, a_2 \in A$

$$(a_1 \leqslant a_2 \land a_2 \in S) \Rightarrow a_1 \in S$$

Определение 35. Пусть дано ВУМ $\mathfrak{A} = \langle A, \leqslant \rangle$. Множество

$$[0, a)_{\mathfrak{A}} := \{ x \in A \mid x < a \}$$

является начальным сегментом 𝔄. Когда ясно, о каком 𝔄 идёт речь, нижний индекс ∙ҳ обычно опускается.

Утверждение 34. Пусть $\mathfrak{A} - BYM$, а S -начальный сегмент \mathfrak{A} , отличный от A. Тогда существует единственный $a \in A$, что S = [0, a).

Определение 36. $IS_{\mathfrak{A}}$ — множество всех начальных сегментов \mathfrak{A} , отличных от A, а

$$\subseteq_{\mathrm{IS}_{\mathfrak{A}}} := \{(U, V) \in \mathrm{IS}_{\mathfrak{A}} \times \mathrm{IS}_{\mathfrak{A}} \mid U \subseteq V\}$$

Утверждение 35. Для любого ВУМ $\mathfrak A$ верно, что $\mathfrak A \simeq \langle \mathrm{IS}_{\mathfrak A}, \subseteq_{\mathrm{IS}_{\mathfrak A}} \rangle$.

Доказательство. Несложно видеть, что

$$f: A \to \mathrm{IS}_{\mathfrak{A}}, a \mapsto [0, a)$$

есть изоморфизм из \mathfrak{A} в $\langle \mathrm{IS}_{\mathfrak{A}}, \subseteq_{\mathrm{IS}_{\mathfrak{A}}} \rangle$.

Утверждение 36. Пусть $\mathfrak{A} - BYM$, а $f - вложение из <math>\mathfrak{A}$ в \mathfrak{A} . Тогда $f(a) \geqslant a$ для всех $a \in A$.

Доказательство. Рассмотрим

$$X := \{a \in A \mid f(a) < a\}$$

Предположим, что X непусто. Пусть a' — наименьший элемент для X в \mathfrak{A} . Тогда f(a') < a', поэтому f(f(a')) < f(a'), что значит $f(a') \in X$. В таком случае $a' \leq f(a')$ — противоречие. \square

Следствие 36.1. Для каждого $BYM \mathfrak{A}$ единственным автоморфизмом \mathfrak{A} является id_A .

Доказательство. Пусть f — автоморфизм \mathfrak{A} . Очевидно, что f^{-1} также будет автоморфизмом \mathfrak{A} . Тогда для любого $a \in A$ имеем, что $f(a) \geqslant a$ и $f^{-1}(a) \geqslant a$, а значит $a \geqslant f(a) \geqslant a$, т.е. f(a) = a. Таким образом $f = id_A$.

Следствие 36.2. Для любых $BYM \mathfrak{A}$ и \mathfrak{B} имеется не более одного изоморфизма из \mathfrak{A} в \mathfrak{B} .

Доказательство. Пусть f и g — изоморфизмы из $\mathfrak A$ в $\mathfrak B$. Тогда несложно понять, что $f \circ g^{-1}$ есть автоморфизм, а значит $f \circ g^{-1} = id_A$. Следовательно $f = f \circ g^{-1} \circ g = id_A \circ g = g$.

Лемма 37. Никакой собственный начальный сегмент ВУМ $\mathfrak A$ не изоморфен самому $\mathfrak A$.

Доказательство. Пусть f — изоморфизм из $\mathfrak A$ на некоторый собственный начальный сегмент $\mathfrak A$. Тогда $\operatorname{range}(f) = [0,a)$ для некоторого $a \in A$. Поэтому f(a) < a — противоречие. \square

Теорема 38 (о сравнении ВУМ). Для любых ВУМ **3** и **3** имеет место ровно один из трёх случаев:

- 1. **A** и **B** изоморфны;
- 2. \mathfrak{A} изоморфно собственному начальному сегменту \mathfrak{B} ;
- 3. \mathfrak{B} изоморфно собственному начальному сегменту \mathfrak{A} .

 $\Pi pu \ этом \ в \ пунктах (2) \ u \ (3) \ соответствующие собственные начальные сегменты определяются однозначно.$

Доказательство. Единственность сегментов в (2) и (3) и взаимная исключаемость пунктов (1), (2) и (3) следуют из предыдущей леммы. Поэтому осталось показать, что один из трёх случаев точно будет иметь место.

Рассмотрим

$$\xi := \{(a,b) \in A \times B \mid [0,a)_{\mathfrak{A}} \simeq [0,b)_{\mathfrak{B}}\}$$

По предыдущей лемме ξ и ξ^{-1} являются функциональными.

Также несложно видеть, что если f — изоморфизм из $[0,a)_{\mathfrak{A}}$ на $[0,b)_{\mathfrak{B}}$, а $a'<_A a$ и $b'<_B b$, то

- $f \upharpoonright_{[0,a')_{\mathfrak{A}}}$ является изоморфизмом из $[0,a')_{\mathfrak{A}}$ на $[0,f(a'))_{\mathfrak{B}};$
- $f^{-1} \upharpoonright_{[0,b')_{\mathfrak{B}}}$ является изоморфизмом из $[0,b')_{\mathfrak{B}}$ на $[0,f^{-1}(b'))_{\mathfrak{A}}$.

Следовательно, если $a \in \text{dom}(\xi)$, то $[0,a)_{\mathfrak{A}} \subseteq \text{dom}(\xi)$; если $b \in \text{range}(\xi)$, то $[0,b)_{\mathfrak{B}} \subseteq \text{range}(\xi)$. Поэтому ξ — биекция между начальными сегментами \mathfrak{A} и \mathfrak{B} . Также следует и то, что $a_1 <_A a_2 \Leftrightarrow f(a_1) <_B f(a_2)$, что значит, что ξ — изоморфизм между начальными сегментами \mathfrak{A} и \mathfrak{B} .

Если $\operatorname{dom}(\xi) \neq A$, а $\operatorname{range}(\xi) \neq B$, то существуют $a \in A$ и $b \in B$, что $\operatorname{dom}(\xi) = [0,a)_{\mathfrak{A}}$, а $\operatorname{range}(\xi) = [0,b)_{\mathfrak{B}}$. Это значит, что $(a,b) \in \xi$ — противоречие. Значит $\operatorname{dom}(\xi) = A$ или $\operatorname{range}(\xi) = B$, откуда следует желаемое.