

Power Function of the F-Test Under Non-Normal Situations

Author(s): M. L. Tiku

Source: Journal of the American Statistical Association, Dec., 1971, Vol. 66, No. 336

(Dec., 1971), pp. 913-916

Published by: Taylor & Francis, Ltd. on behalf of the American Statistical Association

Stable URL: https://www.jstor.org/stable/2284254

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms

Taylor & Francis, Ltd. and American Statistical Association are collaborating with JSTOR to digitize, preserve and extend access to Journal of the American Statistical Association

Power Function of the F-Test Under Non-Normal Situations

M. L. TIKU*

The values of the power of the F-test employed in analysis-of-variance are calculated under non-normal situations and compared with the normal-theory values of the power. Non-normality seems to have little effect on the power of the F-test.

1. INTRODUCTION

Many investigations have been made to study the effect of non-normality on Type I error of the F-test employed in analysis-of-variance [1, 2, 5, 6, 7, 10, 16, 17], but there have been few attempts to investigate the effect on the power of the test. Donaldson [4] obtained values of the power for normal, exponential and lognormal distributions through Monte Carlo methods. David and Johnson [3] calculated the product moments of "between" and "within" sum of squares under most general assumptions of non-normality. Srivastava [13] obtained the values of the power basing his derivations on the first four terms of the Edgeworth series. In this article, an expression for the power function of the F-test under non-normal situations is obtained from Laguerre series expansions of "between" and "within" sum of squares. The values of the power are computed under non-normal situations and compared with the normaltheory values of the power. The non-normal theory power of F is found to differ from the normal-theory power by a correction term which decreases sharply with increasing sample size. A simple two moment F-approximation is also derived, and it is found to provide satisfactory values of the power in cases of near-normal populations.

2. NUMERICAL VALUES OF THE POWER

In one-way-classification for analysis of variance, let $x_{ij}(i=1, 2, \dots, c; j=1, 2, \dots, n)$ be the jth observation in the ith group. Assume the mathematical model

$$x_{ij} = a + g_i + e_{ij}, \qquad \sum_{i} g_i = 0$$
 (2.1)

where a is a constant, g_i is the *i*th group effect and e_{ij} is a random error. Write

$$S_1 = n \sum_i (x_i - x_i)^2$$
 and $S_2 = \sum_i \sum_j (x_{ij} - x_i)^2$ (2.2)

where

$$x_{i.} = \sum_{j} x_{ij}/n, \quad x_{..} = \sum_{i} \sum_{j} x_{ij}/N, \quad N = nc.$$

To test the null hypothesis H_0 : $g_1 = g_2 = \cdots = g_c = 0$ under the assumption that e_{ij} 's are independently normally distributed with mean zero and constant variance σ^2 for all i and j, the statistic

$$F = f_2 S_1 / f_1 S_2, f_1 = c - 1, f_2 = N - c (2.3)$$

is used [15, p. 46]. The hypothesis H_0 is rejected if the value of F is found to be greater than the tabulated value F_{α} for a preassigned level of significance α . The effect of moderate non-normality on the Type I error α is known to be not very serious (see [5], [10] and [16]). Let H_1 be the hypothesis that $g_i \neq 0$, for some i. If $p(F, H_1)$ denotes the probability density function of F when H_1 is true

$$1 - \beta = \int_{F_{\alpha}}^{\infty} p(F, H_1) dF \tag{2.4}$$

determines the normal-theory power of F. Tang [14] and Tiku [19] have tables of $1-\beta$.

Assume that e_{ij} 's are not normally distributed and have a common non-normal distribution. Specify this distribution by the cumulants $0, \sigma^2, \kappa_3, \cdots, \kappa_r, \cdots$. Define

$$\lambda_r = \kappa_r / \sigma^r, \qquad r = 3, 4, \cdots \qquad (2.5)$$

and

$$\lambda = n \sum_{i} (g_i/\sigma)^2, \quad \mu = n \sum_{i} (g_i/\sigma)^3, \quad \delta = n \sum_{i} (g_i/\sigma)^4 \quad (2.6)$$

and note that if H_0 is true, λ , μ and δ are all zero. Also note that for a normal distribution $\lambda_r = 0$, for $r = 3, 4, \cdots$. To study the effect of non-normality on the power, the test function F in the non-normal case will be denoted by F^* . An approximation to order N^{-2} for the power-function of F^* is obtained (see the mathematical appendix)

$$1 - \beta^* = \int_{F_{\alpha}}^{\infty} p(F^*, H_1) dF^*$$

$$\simeq (1 - \beta) - \lambda_3 \mu A + \lambda_4 (B + B_1 \delta) - \lambda_3^2 C$$

$$+ \lambda_5 \mu D - \lambda_5 E + \lambda_4^2 H$$
(2.7)

where $1-\beta$ is given by Equation (2.4), and A, B, etc., are non-normality corrective-functions. The numerical values of these functions, presented in Table 3, give an idea of the relative contributions of the population standard

^{*} M. L. Tiku is associate professor of statistics, Department of Applied Mathematics, McMaster University, Hamilton, Ontario, Canada. The author is grateful to the editor and referees for very helpful comments.

cumulants λ_r . Srivastava's [13] equation (21) is similar to (2.7) but he did not work out the corrective-terms due to λ_5 , λ_6 and λ_4^2 . His equation however contains terms in $\lambda_3^2\mu^2$ and $\lambda_3^2\delta$, besides the first four terms on the right-hand side of (2.7). The contributions of these two terms are very small (see [13, Table 1]).

The difference $\beta - \beta^*$ between the power $1 - \beta^*$ and the normal-theory power $1 - \beta$ represents the effect of non-normality on the power of the test function F. To calculate the values of this difference we note that with $\sum_{i} g_i = 0$, the following two extreme situations can arise (see [14]):

- 1. The c groups form two distinct equal sets, with a single group falling mid-way between for odd c, the effect in one set cancelling the effect of the other set. In this situation the value of μ is zero and the value of δ is minimum and equal to λ^2/N or $c\lambda^2/N(c-1)$ according as c is even or odd.
- 2. Of the c groups, c-1 are similar and only one is different, its effect counterbalancing the rest. In this situation μ has an extreme positive or negative value $\pm (c-2)\lambda^{3/2}/\sqrt{\{N(c-1)\}}$, and δ is maximum and equal to $(c^2-3c+3)\lambda^2/N(c-1)$.

In practice, the situation may be anywhere between the two extremes (1) and (2).

Consider one of the three distributions described by E. S. Pearson [11, pp. 101-2] under his "Case B," namely, the Pearson Type IV curve

$$\begin{split} f(y \mid a, q, d) &= \operatorname{constant} \times (1 + y^2/a^2)^{-q} \\ & \cdot \exp \left\{ -d \tan^{-1}(y/a) \right\}, \qquad -\infty \leq y \leq \infty, \end{split}$$

the non-central t distribution

$$f(t \mid v, \tau) = \text{constant} \times (1 + t^2/v)^{-\frac{1}{2}(v+1)} \\ \cdot \exp\left\{-\frac{1}{2}v\tau^2/(v+t^2)\right\} \cdot Hh_v\left\{-t\tau/\sqrt{(v+t^2)}\right\}, \\ Hh_v(y) = \frac{1}{\Gamma(v+1)} \int_0^\infty u^v e^{-\frac{1}{2}(u+y)^2} du, \quad -\infty \le t \le \infty,$$

and the Johnson S_U curve

$$f(y \mid \gamma_0, \gamma_1) = \text{constant} \times (\cosh^{-1} y)$$
$$\cdot \exp\left\{-\frac{1}{2}(\gamma_0 + \gamma_1 \sinh^{-1} y)^2\right\}, \quad -\infty \le y \le \infty.$$

These are similar distributions with $\lambda_4 = 1.23$, $\lambda_3^2 = 0.58$ and have all values of λ_5 and λ_6 not far from 3.0 and 11.0, respectively. Suppose that the error has a distribution in one of these forms. We consider three extreme cases, namely,

- a. $\mu = 0$ and δ is minimum,
- b. μ is maximum positive and δ is maximum and
- c. μ is maximum negative and δ is maximum.

The values of the difference $\beta - \beta^*$ are given in Table 1, for various values of the normalized non-centrality parameter $\phi = \sqrt{\{\lambda/(f_1+1)\}}$, (see [14]). The values for case (a) generally lie between the values for cases (b) and (c), and the latter do not differ from each other by more than a few units in the third decimal place (see Table 1). All the values of the difference in Table 1 are small and are positive except for large values of ϕ . However, these

1. VALUES OF $\mathfrak{g}-\mathfrak{g}^*$, THE DIFFERENCE BETWEEN THE POWER $1-\mathfrak{g}^*$ AND THE NORMAL-THEORY POWER $1-\mathfrak{g}$ FOR PEARSON'S DISTRIBUTION, FOR DEGREES OF FREEDOM f_1 AND f_2 AND NORMALIZED NONCENTRALITY PARAMETER $\Phi\colon\alpha=0.05$

	(μ,θ)	f ₁ = 1				f ₁ = 4			f ₁ = 9		
•						•					
		10	20	60	10	20	60	10	20	60	
0.0	1-β	.050	.050	.050	.050	.050	.050	.050	.050	.050	
	(a)	001	001	000	.000	001	001	.003	000	001	
0.5	1-B	.098	.103	.107	.095	.106	.116	.097	.115	.134	
	(a)	.002	.002	.001	.001	.001	.000	.003	.001	.000	
	(b)	.002	.002	.001	.001	.001	.000	.003	.000	.000	
	(c)	.002	.002	.001	.001	.001	.000	.003	.001	.000	
1.0	1-β	.242	.261	.274	.262	.319	.367	.290	.392	.496	
	(a)	.014	.011	.005	.006	.008	.006	.008	.009	.007	
	(b)	.014	.011	•005	.003	.004	.003	.006	.004	.004	
	(c)	.014	.011	.005	.010	.013	.010	.011	.016	.014	
1.5	1-β	.471	.507	.531	.550	.655	.730	.625	.789	.896	
	(a)	.026	.016	.005	.017	.013	.002	.011	.006	.004	
	(b)	.026	.016	.005	.013	.012	.006	.009	.008	.003	
	(c)	.026	.016	•005	.021	.014	001	.014	•003	010	
2.0	1-β	.716	.760	.788	.820	.907	.950	.890	.974	.996	
	(a)	.016	.003	.000	.009	003	003	001	007	002	
	(b)	.016	.003	.000	.013	.005	.002	.003	001	000	
	(c)	.016	.003	.000	.005	011	009	005	014	004	
2.5	1-β	.890	.923	.942	.958	.989	.997	.984	.999	1.000	
	(a)	007	009	004	007	006	001	007	002	000	
	(b)	007	009	004	006	002	.000	004	001	000	
	(c)	007	009	004	009	009	002	011	003	000	

negative differences may be due to the approximating nature of equation (2.7).

The values of the difference $\beta - \beta^*$ for case (a) for various values of λ_4 and λ_3^2 and $\lambda_6 = 0$ are given in Table 2. For other combinations of values of λ_r , the values of this difference may be calculated from Table 3. Calculations show that a value of λ_6 as high as twenty does not change these values by more than ± 0.009 .

2. VALUES OF THE DIFFERENCE $\beta - \beta^*$ FOR $\alpha = 0.05$ AND 0.01: DEGREES OF FREEDOM $f_1 = 4$ AND $f_2 = 20$: $\lambda_6 = 0$: $\mu = 0$, $\delta = c\lambda^2/N(c-1)$

		$\lambda_3^2 = 0.0$				λ ₃ = 1.5				λ ₃ = 3.0			
	1-в					λ ₄							
		-1.5	0	1.5	4	-1.5	0	1.5	4	-1.5	0	1.5	4
0.0	.050	.002	0	002	016	.004	.001	003	014	.006	.003	002	013
	.010	.001	0	001	007	.003	.002	.000	005	.006	.004	.002	003
0.5	.106	001	0	.000	.000	002	001	001	001	003	002	001	002
	.027	.001	0	001	003	.002	.001	.000	002	.004	.003	.002	.000
1.0	.319	017	0	.020	.059	021	004	.016	.056	024	007	.013	.052
	.123	008	0	.012	.039	011	002	.009	•037	013	005	.007	.034
1.5	.655	017	0	.015	.042	016	.001	.016	.043	015	.002	.017	.044
	-530	029	0	.030	.080	033	003	.026	.077	029	.001	.024	.073
2.0	.907	.010	0	010	027	.012	.002	008	025	.013	.003	007	024
	.708	012	0	.009	.014	009	.003	.012	.017	005	.007	.016	.021
2.5	.989	.008	0	007	018	.007	001	008	019	.007	001	008	019
	.924	.017	0	016	039	.019	.002	014	037	.020	.003	013	036
3.0	.999	.001	0	001	002	.001	.000	001	-,002	.001	.000	001	002
	.990	.004	0	004	008	.005	.001	005	009	.005	.001	005	009

From Tables 1 and 2 it is clear that the effect of moderate non-normality on the power of the F-test is unimportant. However, λ_4 has a greater effect on the power than λ_3^2 .

It may be noted that (2.7) includes corrections only due to the first few population standard cumulants. For moderately non-normal populations it is expected that the contributions due to higher order standard cumulants will not be important especially for large N (see also Table 3). This might not be true for extremely non-normal populations in which case these cumulants could be very large in magnitude and approximations like (2.7) which ignore these cumulants might not be very useful (see [11]). It is clear that the accuracy of such approximations also depends on the relative magnitude of the successive standard cumulants λ_r . If (as in the case of chi-square and certain other distributions) $\lambda_r = 0$ ($q^{1-\frac{1}{2}r}$), q > 1 being some constant, (2.7) will provide very accurate approximations.

3. VALUES OF THE NON-NORMALITY CORRECTIVE TERMS IN EQUATION (2.7) FOR DEGREES OF FREEDOM f_1 AND f_2 AND NORMALIZED NON-CENTRALITY PARAMETER ϕ : $\alpha = 0.05$

CENTRALITY TARAMETER Q. W-0.00									
f ₁ = 4, f ₂	10 ⁵ A	10 ⁵ B	10 ⁵ B ₁	10 ⁵ C	10 ⁵ D	10 ⁵ E	10 ⁵ H		
			ф ==	0.0					
10	146	-377	- 3	-429	32	-35	-98		
20	248	-240	-14	- 97	37	-15	-40		
30	302	-172	-21	- 19	33	- 7	-19		
60	373	91	-30	18	23	- 2	- 5		
			φ =	0.5					
10	154	-61	6	-171	21	-11	-16		
20	281	53	12	70	21	3	15		
30	349	74	16	81	18	4	13		
60	439	65	23	50	11	2	6		
			ф =	1.0					
10	104	1324	6	410	0	72	150		
20	168	1209	12	236	-4	40	63		
30	191	981	15	122	-5	22	30		
60	212	594	19	30	-4	7	7		
			φ =	1.5					
10	10	2086	2	262	-6	40	-17		
20	-21	1063	1	-69	-6	-11	-43		
30	-42 -70	620	0	-72	-4 -2	-12 - 5	-26		
60	-70	228	-8	-31	-2	- 5	- 8		
			φ =	2.0					
10	-22	95	-0	-291	-17	-65	-94		
20	-38	-658	-1	-107	0	-25	- 1		
30	-41	-592	-2	- 30	.1	- 9 - 1	6		
60	-41	-352	-2	2	1	- 1	3		
			φ =	2.5					
10	-10	-1055	-0	-108	0	-24	35		
20	- 7	- 482	-3	42	o	7	10		
30 60	- 5 - 3	- 249	-0	26 7	0	4 1	2		
60	- 3	- 83	-2	7	0	1	0		

MATHEMATICAL APPENDIX

A.1 Distribution of F*

To obtain the probability density function of F^* , write

$$x = \frac{1}{2} \frac{1}{\rho} S_1/\sigma^2 \text{ and } y = \frac{1}{2} S_2/\sigma^2,$$

 $\rho = (f_1 + 2\lambda)/(f_1 + \lambda)$ (A.1)

and consider the approximation (see [16, p. 84])

$$p(x, y) \simeq \left\{ \sum_{r=0}^{4} \sum_{s=0}^{4} \beta_{rs} L_{r}^{(m)}(x) L_{s}^{(k)}(y) \right\} p_{m}(x) p_{k}(y). \tag{A.2}$$

Here

$$\begin{cases} m = \frac{1}{2}p = \frac{1}{2}(f_1 + \lambda)^2/(f_1 + 2\lambda), & k = \frac{1}{2}f_2, \quad p_n(u) = \frac{1}{\Gamma(n)}e^{-u}u^{n-1}, \\ \text{and} & (A.3) \\ L_r^{(n)}(u) = \frac{1}{r!} \sum_{j=0}^r (-1)^j \binom{r}{j} \frac{\Gamma(n+r)}{\Gamma(n+j)} u^j & (j=0,1,2,\cdots) \end{cases}$$

is the rth Laguerre polynomial associated with $p_n(u)$.

Note that under normality assumption of the error distribution

$$p(x, y) \simeq p_m(x)p_k(y)$$
 (A.4)

that is, x and y are independently distributed; $p_m(x)$ being Patnaik's [8] two-moment approximation to the distribution of $\frac{1}{2}\chi'^2/\rho = \frac{1}{2}(1/\rho)S_1/\sigma^2$, where χ'^2 is a non-central chi-square variate having f_1 degrees of freedom and non-centrality parameter λ .

Using the tables of the product moments of S_1 and S_2 [3] and proceeding on the same lines as Tiku [16], we obtain

$$\beta_{00} = 1, \qquad \beta_{10} = \beta_{01} = 0$$

$$\beta_{20} = (1/N)(f_1^2/(p+2)(f_1+2\lambda))\lambda_4,$$

$$\beta_{11} = (1/N)(f_1/(f_1+\lambda))\lambda_4,$$

$$\beta_{02} = (1/N)(f_2/(f_2+2))\lambda_4$$
(A.5)

and so on. For $\lambda = 0$, (A.5) agree with the corresponding expressions in [16, p. 85]. Note that β_{rs} , $r+s \leq 4$, are all the coefficients in terms of the population standard cumulants of order N^{-2} (see [3]).

From (A.2) and (A.5) the probability density function p(w) of

$$w = kx/my = F^*/(1 + \lambda/f_1)$$
 (A.6)

is obtained as

$$p(w) \simeq p_{00}(w) + \sum \sum_{2 \le r+s \le 4} \beta_{rs} p_{rs}(w);$$
 (A.7)

 $p_{oo}(w)$ and $p_{rs}(w)$ are given by Tiku's [16] Equation (4.2) with v_1 replaced by p and v_2 by f_2 .

A.2 Mean and Variance

From (A.7) we obtain the following expressions for the mean and variance of F^* (see also [16, p. 86]):

$$\mu_{1}' = \left(1 + \frac{\lambda}{f_{1}}\right) \frac{f_{2}}{f_{2} - 2} \left\{1 - \frac{1}{N} \frac{f_{1}}{(f_{1} + \lambda)} \lambda_{4} + \frac{1}{N} \frac{f_{2}}{(f_{2} + 2)} \lambda_{4} + 0 \left(\frac{1}{N^{2}}\right)\right\}$$

$$\simeq \left(1 + \frac{\lambda}{f_{1}}\right) \left(1 + \frac{2}{N}\right) + \frac{1}{f_{1}N} \lambda_{4} \lambda + 0 \left(\frac{1}{N^{2}}\right)$$
(A.8)

and

$$\begin{split} \mu_2 &= \left(1 + \frac{\lambda}{f_1}\right)^2 2 f_2^2 \frac{(p + f_2 - 2)}{p(f_2 - 2)^2 (f_2 - 4)} \\ &\cdot \left\{1 + \frac{1}{2N} \frac{f_1^2 (f_2 - 2)}{(p + f_2 - 2)(f_1 + 2\lambda)} \lambda_4 \right. \\ &- \frac{1}{N} \frac{f_1 (pf_2 + 4f_2 - 8)}{(p + f_2 - 2)(f_1 + \lambda)} \lambda_4 \\ &+ \frac{1}{2N} \frac{f_2 (pf_2 + 6f_2 + 2p - 12)}{(p + f_2 - 2)(f_2 + 2)} \lambda_4 \\ &- \frac{2}{N} \frac{f_2 - 2}{(p + f_2 - 2)(f_1 + \lambda)(f_1 + 2\lambda)} \lambda_4 \lambda^2 + 0 \left(\frac{1}{N^2}\right) \right\} \\ &\simeq \frac{2}{p} \left[\frac{p + 2}{f_1 + 2} \left(1 + \frac{f_1 + 6}{N}\right) \left(1 + \frac{\lambda}{f_1}\right)^2 \right. \\ &+ \frac{1}{2} \frac{p + 2}{N} \left\{ \frac{p}{p + 2} - \left(1 + \frac{\lambda}{f_1}\right) \right\} \lambda_4 \\ &- \frac{1}{N} \frac{p + 2}{f_1 + 2} \left(1 + \frac{\lambda}{f_1}\right) \lambda_4 \lambda \\ &- \frac{2}{N(f_1 + 2)(f_1 + 2\lambda)} \left(1 + \frac{\lambda}{f_1}\right) \lambda_4 \lambda^2 + 0 \left(\frac{1}{N^2}\right) \right]. \end{split}$$

For $\lambda = 0$, (A.8) and (A.9) agree with the corresponding expressions in [5] and [16]. In Section A.4 a simple two-moment F-approximation is derived from the above expressions. In cases of moderately non-normal populations, (A.8) and (A.9) should give accurate values for the mean and variance.

A.3 Power Function of F-Test

The power function

$$1 - \beta^* = \operatorname{Prob}(F^* \ge F_{\alpha})$$

= $\operatorname{Prob}\{w > F_{\alpha}/(1 + \lambda/f_1)\}$ (A.10)

of the above F-test (equation (A.6)) is obtained from (A.7) as

$$1 - \beta^* \simeq P_{00}(z) + \sum_{2 \le r+s \le 4} \beta_{rs} \cdot \frac{\Gamma(\frac{1}{2}p + r)\Gamma(\frac{1}{2}f_2 + s)}{r!s!\Gamma(\frac{1}{2}p)\Gamma(\frac{1}{2}f_2)} I_{r,s}(z)$$
(A.11)

where

$$z = 1/\{1 + f_1(f_1 + \lambda)F_{\alpha}/f_2(f_1 + 2\lambda)\}, \quad P_{00}(z) = I_z(\frac{1}{2}f_2, \frac{1}{2}p) \quad (A.12)$$

and

$$I_{r,s}(z) = \sum_{i=0}^{r} (-1)^{i} {r \choose i} \cdot \left\{ \sum_{j=0}^{s} (-1)^{j} {s \choose j} I_{z}(\frac{1}{2}f_{z} + j, \frac{1}{2}p + i) \right\},$$

 $I_z(a, b)$ being incomplete β -function [9]. The alternative forms of $I_{r,s}$ can be obtained by the method of effecting "index changes" [12] on I_z (a, b). These are given by Tiku's [16] equations (6.3) with v_1 replaced by p and v_2 by f_2 , and are easy to compute.

Retaining only the terms of order N^{-2} in (A.5), we obtain from (A.11) the explicit equation (2.7) given in Section 2. The terms on the right hand side of this equation can be easily obtained from (A.5) and (A.11). For example

 $\operatorname{Prob}(F \geq F_{\alpha})$

$$= 1 - \beta \simeq I_{s}(\frac{1}{2}f_{2}, \frac{1}{2}p) + \frac{1}{24} \frac{\lambda^{2}}{\rho^{3}(f_{1} + \lambda)} \left\{ 4I_{3.0} + 3 \frac{(f_{1} + 4\lambda)}{(f_{1} + \lambda)} I_{4.0} \right\}$$
(A.13)

$$A = \frac{1}{6} \frac{1}{\rho^3} \left\{ I_{3,0} + 3 \frac{\lambda}{\rho(f_1 + \lambda)} I_{4,0} \right\}$$
 (A.14)

and so on. Incidentally, note that (A.13) is Tiku's [18, p. 423] approximation to the power of the F-test in the normal situation.

A.4 Two-Moment Central F Approximation

Assume that F^*/h is distributed as normal-theory F-distribution having degrees of freedom (f, f_2) . Equating the mean μ_1'/h and variance μ_2/h^2 given by (A.8) and (A.9) with the mean and variance of this distribution we obtain (see also [20])

$$h = (f_2 - 2)\mu_1'/f_2$$
 and $f = (f_2 - 2)/\{\frac{1}{2}(\mu_2/\mu_1'^2)(f_2 - 4) - 1\}$ $(f_2 > 4)$ (A.15)

and therefore the equation

$$1 - \beta^* \simeq I_u(\frac{1}{2}f_2, \frac{1}{2}f), \quad u = 1/(1 + fF_\alpha/hf_2).$$
 (A.16)

Calculations show that even for "error" degrees of freedom f_2 as small as ten the equation (A.16) gives substantially the same values as Srivastava's equation (21). For example, for $\lambda_1 = 0.5$, $\lambda_4 = 2.0$, $f_1 = 4$, $f_2 = 10$, and $\phi = 1.0$ and $\mu = 0$, the values of $1 - \beta^*$

calculated from these two equations are 0.281 and 0.285, respectively. In fact, the equation (A.16) gives accurate approximations in cases of near-normal populations represented by the first four terms of Edgeworth series ([5] and [13]).

REFERENCES

- Box, G. E. P. and Watson, G. S., "Robustness to Non-Normality of Regression Tests," *Biometrika*, 49 (June 1962), 93-106.
- [2] David, F. N., "The Z-test and Symmetrically Distributed Random Variables," Biometrika, 46 (June 1959), 123-29.
- [3] and Johnson, N. L., "The Effect of Non-Normality on the Power Function of the F-Test in the Analysis of Variance," Biometrika, 38 (June 1951), 43-57.
- [4] Donaldson, T. S., "Robustness of the F-Test to Errors of Both Kinds and the Correlation between the Numerator and Denominator of the F-Ratio," Journal of the American Statistical Association, 63 (June 1968), 660-7.
- [5] Gayen, A. K., "The Distribution of the Variance Ratio in Random Samples of Any Size from Non-Normal Universes," Biometrika, 37 (December 1950), 236-55.
- [6] Geary, R. C., "Testing for Normality," Biometrika, 34 (June 1947), 209-42.
- [7] Hack, H. R. B., "An Empirical Investigation into the Distribution of the F-Ratio in Samples from Two Non-Normal Populations," Biometrika, 45 (June 1958), 260-5.
- [8] Patnaik, P. B., "The Non-Central χ^2 and F Distributions and Their Applications," Biometrika, 36 (June 1949), 202–32.
- [9] Pearson, Karl, Tables of the Incomplete β-Function, London: Cambridge University Press, 1919.
- [10] Pearson, E. S., "The Analysis of Variance in Cases of Non-Normal Variation," *Biometrika*, 23 (June 1932), 114-33.
- [11] ——, "Some Problems Arising in Approximating to Probability Distributions Using Moments," *Biometrika*, 50 (June 1963), 95-112.
- [12] Soper, H. E., "The Numerical Evaluation of the Incomplete β-Function," Tracts of computers, No. VI, London: Cambridge University Press, 1919.
- [13] Srivastava, A. B. L., "Effect of Non-Normality on the Power of the Analysis of Variance Test," *Biometrika*, 46 (June 1959), 114-22.
- [14] Tang, P. C., "Power of the F-Test in Terms of Non-Central F-Distribution," Statistics Research Memoirs, No. 2 (1938), 126-49.
- [15] Scheffé, H., The Analysis of Variance, New York: John Wiley & Sons, Inc., New York, 1967.
- [16] Tiku, M. L., "Approximating the General Non-Normal Variance-Ratio Sampling Distributions." Biometrika, 51 (June 1964), 83-95.
- [17] ——, "A Laguerre Product Series Expansion of the Distribution of Variance-Ratios in Two-Way-Classification,"

 Journal of Indian Society of Agricultural Statistics, 16

 (December 1964), 304-16.
- [18] ——, "Laguerre Series Forms of Non-Central χ^2 and F Distributions," *Biometrika*, 52 (December 1965), 415–27.
- [19] ———, "Tables of the Power of the F-Test," Journal of the American Statistical Association, 62 (June 1967), 525-39.
- [20] ——, "A Note on Approximating to the Non-Central F Distribution," Biometrika, 53 (December 1966), 606-10.