Learning 421 game

Model-Based Learning

Guillaume Lozenguez

@imt-nord-europe.fr

IMT Nord Europe

École Mines-Télécom IMT-Université de Lille

- 1. Back to Q-Learning on 421
- 2. **ON or OFF policy**
- 3. Scale-Up

- ▶ Iterative update on (**state**, **action**) evaluation
- ▶ Q-Value equation:

$$Q(s,a) = (1-lpha)Q(s,a) + lpha\left(r + \gamma Q(s',a')
ight)$$

- Few parameters:
 - α learning rate; ϵ Exploration-Exploitation ratio and γ discount factor.

Q-Learning: for instance

▶ Reaching 4-2-1 from 6-2-1 by doing *roll-keep-keep*.

$$Q(ext{6-2-1, r-k-k}) = (1-lpha)Q(ext{6-2-1, r-k-k}) + lpha\left(r + \gamma Q(ext{4-2-1, }a')
ight)$$

$$Q(ext{2-6-2-1, r-k-k}) = (1-lpha)\ 40.0 + lpha\,(0.0 + 80.0) \quad (a' = ext{keep}^3)$$

With α learning rate at 0.1, Q(6-2-1, r-k-k) is now equals to 44

► With 500 steps of 500 games:

 $\sim \alpha$: 0.1; ϵ : 0.1; γ : 0.99;

Drawing plot in Python: pyplot

```
Codes:

import matplotlib.pyplot as plt

...

plt.plot( values )
plt.ylabel( "mean of the y value" )
plt.show()
```

 \triangleright Where values is a list of values in $\mathbb R$

► With 500 steps of 500 games:

With optimal threshold

► With 500 steps of 500 games:

 $\sim \alpha$: 0.01; ϵ : 0.1; γ : 0.99;

► With 500 steps of 500 games:

 $\sim \alpha$: 0.01; ϵ : 0.6; γ : 0.99;

Playing with the parameters:

- Generate rapidly "good" policies
- Converge on a maximal and stable Q-Values (an indicator for optimal policy)
- ▶ Potentially: be reactive to system modification (recovery)

Ideally: implement dynamic parameters

- 1. Back to Q-Learning on 421
- 2. ON or OFF policy
- 3. Scale-Up

On or Off Policy: The main idea

Does the Q-values match the actual in-use policy?

- **ON** the *Q-values* and the in-use policy π are aligned.
- ▶ OFF the learning Q-values model something else.
 - Generally π is ϵ -greedy and Q-values optimals

On or Off Policy: more formally

$$Q(s,a) = (1-lpha)Q(s,a) + lpha\left(r + \gamma Q(s',a')
ight)$$

ON:

$$a' = \pi(s')$$
 (with π the ϵ -greedy policy for instance)

OFF:

$$a' = \max_{a' \in A} Q(s', a') \quad \left(ext{and} \quad \pi^*(s) = rg \max_{a \in A} Q(s, a)
ight)$$

On or Off Policy: with an example:

▶ Deterministic action outcome but 10% to random action.

- 1. Back to Q-Learning on 421
- 2. ON or OFF policy
- 3. Scale-Up

Scale-Up:

The central difficulty in Machine-Learning

- ▶ You are encouraged to try *QLearning* on 421 Duo mode...
 - From scratch to win random AI.
 - From 421-Solo to win 421-Solo playing Duo.

Scale-Up:

Heuristic values

- ► Expert-oriented reward function.
- Expert-based qvalue initialization.

Iterative Learning

Start with few state and action and grow the model.

Hybrid Approach

- Process Q-Learning a record in the same time
- Use punctually heavy 'classical' learning
 - Typically estimate V or T with deep-neural model