Lecture 17:

Regularization/Shrinkage Methods

Big Data and Machine Learning for Applied Economics Econ 4676

Ignacio Sarmiento-Barbieri

Universidad de los Andes

October 12, 2021

Agenda

- Recap: Model Selection
- 2 Regularization
 - Lasso
 - Ridge
- 3 Family of penalized regressions
- 4 More predictors than observations (k > n)
- 5 Elastic Net
- 6 Review & Next Steps
- 7 Further Readings /
- 8 Demo Regularization +

Model Selection

▶ ML we care about prediction out of sample

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{k-1} X_{k-1} + \beta_k X_k + u$$
 (1)

- ► Trade off Bias/Variance: more "complex" models have less bias but more variance
- Overfit: complex models predict very well inside a sample but "bad" outside
- Choose the right complexity level
- ▶ Big innovation accept some bias to decrease variance → improves out of sample prediction

Model Selection

▶ Given the models, we choose the one that "best" predicts out of sample

$$M_0 \to y = \beta_0 + u \tag{2}$$

$$M_1 \to y = \beta_0 + \beta_j X_j + u \tag{3}$$

$$\vdots (4)$$

$$M_k \to y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + u$$
 (5)

- ► How we bet the "best":
 - 1 Choose based on some measure of sample fit, but penalized for complexity, e.g. $BIC \neq SSR + \frac{1}{2}p \log(n)$
 - 2 Use resampling techniques (create "a fake" out of sample) use prediction error

Model Selection

▶ Where do these *k* models come from? If I have *k* variables how do I search among the possible models

$$M_0 \to y = \beta_0 + u \tag{6}$$

$$M_1 \to y = \beta_0 + \beta_j X_j + u \tag{7}$$

$$\vdots (8)$$

$$M_k \to y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + u$$
 (9)

- Best subset selection
- ► Forward Stepwise Selection
- ► Backward Stepwise Selection

- ▶ What about if I do the following?
- ► Get the most general model I can

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{k-1} X_{k-1} + \beta_k X_k + u$$
 (10)

- ▶ What about if I do the following?
- ► Get the most general model I can

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{k-1} X_{k-1} + \beta_k X_k + u$$
 (10)

Run model, get coefficients and p-values

Sarmiento-Barbieri (Uniandes)

- What about if I do the following?
- Get the most general model I can

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{k-1} X_{k-1} + \beta_k X_k + u$$
 (10)

- ► Run model, get coefficients and p-values
- Take out those with p-values bellow a certain α

Sarmiento-Barbieri (Uniandes)

- ▶ What about if I do the following?
- ► Get the most general model I can

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{k-1} X_{k-1} + \beta_k X_k + u$$
 (10)

- ► Run model, get coefficients and p-values
- Take out those with p-values bellow a certain α
- ► Why is this a bad idea?

P V(B)

- ▶ What about if I do the following?
- ► Get the most general model I can

$$y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_{k-1} X_{k-1} + \beta_k X_k + u$$
 (10)

- ► Run model, get coefficients and p-values
- ightharpoonup Take out those with p-values bellow a certain α
- ► Why is this a bad idea?
- Backward selection approximates that idea (not exactly) and does a better job that the previous point.

Sarmiento-Barbieri (Uniandes)

- ▶ 'Crossing out' variables / coefficients is an extreme way to 'shrink' them.
- Lasso: a formal and algorithmic way of accomplishing this task.
- ► The strategy involves penalizing complexity so as to depart from optimality and stabilize the system
- ► The key of modern statistics is regularization

▶ For $\lambda \ge 0$ given, consider minimizing the following objective function

$$min_{\beta}L(\beta) = \underbrace{\sum_{i=1}^{n} (y_i - x_i'\beta)^2}_{Q(j)} + \lambda \underbrace{\sum_{s=2}^{p} |\beta_s|}_{Perol_{\mathcal{C}}} \qquad (11)$$

- ► Note:
 - First coef. constant

For $\lambda \geq 0$ given, consider minimizing the following objective function

$$min_{\beta}L(\beta) = \sum_{i=1}^{n} (y_i - x_i'\beta)^2 + \frac{1}{2} \frac{1}{2}$$

- ► Note:
 - First coef. constant
 - $\lambda = 0$?

Sarmiento-Barbieri (Uniandes)

For $\lambda \geq 0$ given, consider minimizing the following objective function

$$min_{\beta}L(\beta) = \sum_{i=1}^{n} (y_i - x_i'\beta)^2 + \lambda \sum_{s=2}^{p} |\beta_s|$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

- ► Note:
 - First coef. constant
 - $\lambda = 0$?
 - $\lambda = \infty$?

$$min_{\beta}L(\beta) = \sum_{i=1}^{n} (y_i - x_i'\beta)^2 + \lambda \sum_{s=2}^{p} |\beta_s|$$
 (12)

- ► LASSO's free lunch: automatically chooses which variables go in ($\beta_s \neq 0$) and which are out ($\beta_s = 0$)
- ▶ Why? Coefficients that don't go in are corner solutions
- $ightharpoonup L(\beta)$ in non differentiable

Sarmiento-Barbieri (Uniandes)

► Lasso Intuition

$$min_{\beta}L(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda |\underline{\beta}|$$
(13)

- Only one predictor, i.e., one coefficient.

► For
$$\lambda = 0$$
 man $Z(y - \lambda \cdot \beta)^2$ -> $Zy^2 - Zy(\lambda \cdot \beta)$ fpZn

$$\hat{\beta}_{OLS} = \frac{\sum_{i} x_{i} y_{i}}{\sum_{i} x_{i}^{2}} \longrightarrow \sum_{i} z_{i} z_{i}$$

$$(14)$$

▶ If we standardize predictor $\sum x_i^2 = 1$?

$$min_{\beta}L(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
(15)

- Non differentiable at $\beta = 0$
- ▶ Differentiable otherwise $\beta \neq 0$

$$L(\beta) = \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda |\beta| = \begin{cases} \sum_{i=1}^{n} (y_i - x_i \beta)^2 + \lambda \beta & \text{if } \beta > 0\\ \sum_{i=1}^{n} (y_i - x_i \beta)^2 - \lambda \beta & \text{if } \beta < 0 \end{cases}$$
(16)

$$\frac{dL(\beta)^{+}}{d\beta} = -2\sum y_{i}x_{i} + 2\beta\sum x_{i}^{2} + \lambda$$

$$= -2\sum y_{i}x_{i} + \beta + \lambda$$
(17)

$$\frac{dL(0)^+}{d\beta} = -2\sum y_i x_i + \lambda$$

then, if

$$\lambda \ge 2\sum y_i x_i \tag{18}$$

we have
$$\hat{\beta}_{lasso} = 0$$

ロ ト ◆ @ ト ◆ 差 ト ◆ 差 ・ 夕 Q ()

Sarmiento-Barbieri (Uniandes)

▶ If λ < 2 $\sum y_i x_i$ we have an interior solution

$$-2\sum y_i x_i + \hat{\beta}_{lasso} + \lambda = 0 \tag{19}$$

$$\hat{\beta}_{lasso} = \sum y_i x_i - \frac{\lambda}{2} \tag{20}$$

$$\hat{\beta}_{lasso} = \hat{\beta}_{OLS} - \frac{\lambda}{2} \tag{21}$$

► We get shrinkage towards 0

- ((0) - P (ag(7))

$$min_{\beta}L(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
 (22)

$$\hat{\beta}_{lasso} = \begin{cases} 0 & \text{si } \lambda \ge 2\sum y_i x_i \\ \hat{\beta}_{OLS} - \frac{\lambda}{2} & \text{si } \lambda < 2\sum y_i x_i \end{cases}$$
 (23)

◆□▶◆□▶◆■▶◆■▶ ■ 釣९○

Ridge

▶ For $\lambda \ge 0$ given, consider minimizing the following objective function

$$min_{\beta}R(\beta) = \sum_{i=1}^{n} (y_i - x_i'\beta)^2 + \lambda \sum_{s=2}^{p} (\beta_s)^2$$

$$(24)$$

- ► Note:
 - ▶ Intuition is similar to Lasso, however the problem is completely different

Simple case 1 predictor

$$min_{\beta}R(\beta) = \sum_{i=1}^{n} (y_i - x_i'\beta)^2 + \lambda(\beta_{\bullet})^2$$
(25)

FOC

$$-2\sum_{i=1}^{n} y_{i}x_{i} + 2\beta + 2\lambda\beta_{\$} = 0$$
 (26)

$$\hat{eta}_{ridge} = rac{\sum_{i=1}^{n} y_i x_i}{(1+\lambda)}$$

$$= rac{eta_{OLS}}{(1+\lambda)}$$

Solution is *always* interior (unlike Lasso)

► Solutions is "shrunken"

Prost = Pols IT + (1-11) Pros

Zx, 2=1

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

 β_1

 β_1

Sarmiento-Barbieri (Uniandes) Lecture 17 October 12, 2021 17/35

Lasso and Ridge Example

Technical comments

$$\beta = \frac{\beta_{00}}{1+\lambda} - \frac{\beta(\beta) - \frac{\beta(\beta)}{1+\lambda}}{2(\beta-\beta)}$$

- \blacktriangleright We showed that Ridge is biased, but you have to show in the PS that λ $MSE(\beta_{ridge}) < MSE(\beta_{OLS})$
- Not possible to derive an exact result for Lasso, but Ridge works similarly
- Lasso shrinks everything towards zero, Ridge not quite so
- Application wise:

Application wise:

Standardize the data

Selection of
$$\lambda$$
?

$$(y_1 - x_1 \beta)^2 + \lambda (\beta)^2$$

$$(y_1 - x_2 \beta)^2 + \lambda (\beta)^2$$

Technical comments: λ Selection

- \triangleright Selection of λ ?
- Use CV
 - ightharpoonup Choose a grid of λ values, and compute the CV error for each value
 - \blacktriangleright Select the λ^* that minimizes the prediction error
 - \blacktriangleright Estimate using all the observations and the selected λ^*

Family of penalized regressions

► Family of penalized regressions

$$min_{\beta}R(\beta) = \sum_{i=1}^{n} (y_i - x_i'\beta)^2 + \lambda \sum_{s=2}^{p} |\beta_s|^p$$
 (28)

FIGURE 3.12. Contours of constant value of $\sum_{j} |\beta_{j}|^{q}$ for given values of q.

More predictors than observations (k > n)

- ► Objective 1: Accuracy
 - ightharpoonup Minimize prediction error (in one step) ightharpoonup Ridge, Lasso
- Objective 2: Dimensionality
 - ▶ Reduce the predictor space → Lasso's free lunch

More predictors than observations (k > n)

- ▶ Objective 1: Accuracy
 - ightharpoonup Minimize prediction error (in one step) ightharpoonup Ridge, Lasso
- ► Objective 2: Dimensionality
 - ightharpoonup Reduce the predictor space ightarrow Lasso's free lunch
- ▶ What happens when we have more predictors than observations (k > n)?
 - OLS fails
 - ► Ridge and Lasso to the rescue?

OLS when k > n

- ► Rank? Max number of rows or columns that are linearly independent
 - ▶ Implies $rank(X_{k \times n}) \le min(k, n)$

- ► If $rank(X_{k \times n}) = k$ then rank(X'X) = k
- ▶ If k > n, then $rank(X'X) \le n < k$ then (X'X) cannot be inverted
- ▶ Ridge and Lasso work when $k \ge n$

Ridge when k > n

- Solution \rightarrow data augmentation \hookrightarrow
- Intuition: Ridge "adds" *k* additional points.

Allows us to "deal" with
$$k \ge n$$
Add P Paint - $\chi_S = \left(O_1 \right) \left(\frac{1}{S} \right)$

Lasso when k > n

K=300

- Lasso works fine in this case
- However, there are some issues to keep in mind
 - \blacktriangleright When k > n chooses at most n variables
 - When we have a group of highly correlated variables,
 - Lasso chooses only one. Makes it unstable for prediction. (Doesn't happen to Ridge)
 - ▶ Ridge shrinks the coefficients of correlated variables toward each other. This makes Ridge "work" better than Lasso. "Work" in terms of prediction error

Naive Elastic Net

Combination? Elastic Net

Elastic Net
$$\lim_{\beta \to \infty} \sum_{i=1}^{n} (y_i - x_i'\beta)^2 + \lambda_1 \sum_{s=2}^{p} |\beta_s| + \lambda_2 \sum_{s=2}^{p} \beta_s^2$$

$$= \sum_{i=1}^{n} (y_i - x_i'\beta)^2 + \lambda \sum_{s=2}^{p} ((1 - \alpha)\beta_s^2 + \alpha|\beta_s|) \tag{30}$$

Naive Elastic Net

- ► Elastic net: happy medium.
 - ► Good job at prediction and selecting variables

$$min_{\beta}NEL(\beta) = \sum_{i=1}^{n} (y_i - x_i'\beta)^2 + \lambda_1 \sum_{s=2}^{p} |\beta_s| + \lambda_2 \sum_{s=2}^{p} \beta_s^2$$
 (31)

- ► Mixes Ridge and Lasso
- ► Lasso selects predictors
- ► Strict convexity part of the penalty (ridge) solves the grouping instability problem
- ightharpoonup H.W.: $β_{OLS} > 0$ one predictor standarized

$$\hat{\beta}_{naive\,EN} = \underbrace{\left(\hat{\beta}_{OLS} - \frac{\lambda_1}{2}\right)_+}_{\left|1 + \lambda_2\right|} \tag{32}$$

Elastic Net

- ► Elastic Net: reescaled version
- ▶ Double Shrinkage introduces "too" much bias, final version "corrects" for this

- Careful sometimes software asks.
- ▶ How to choose (λ_1, λ_2) ? → Bidimensional Crossvalidation
- ► Zou, H. & Hastie, T. (2005) <u>/</u>

Review & Next Steps

- ► Today:
 - Regularization
 - Lasso
 - Ridge
 - ► Elastic Net
- ► Next class: Lasso for Causal Inference.
- ▶ PS3 Friday and remember to work on your proposals

Further Readings

- Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New York: Springer series in statistics.
- ▶ James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
- ► Kuhn, M. (2012). The caret package. R Foundation for Statistical Computing, Vienna, Austria. https://topepo.github.io/caret/index.html
- ▶ Taddy, M. (2019). Business data science: Combining machine learning and economics to optimize, automate, and accelerate business decisions. McGraw Hill Professional.

```
#Load the required packages
library("dplyr") #for data wrangling
library("caret") #ML
data(swiss) #loads the data set
set.seed(123) #set the seed for replication purposes
str(swiss) #conmpact display
## 'data.frame':
                47 obs. of 6 variables:
  $ Fertility
                : num 80.2 83.1 92.5 85.8 76.9 76.1 83.8 92.4 82.4 82.9 ...
```

\$ Examination

\$ Education

\$ Catholic

\$ Agriculture : num 17 45.1 39.7 36.5 43.5 35.3 70.2 67.8 53.3 45.2 ...

: int. 15 6 5 12 17 9 16 14 12 16 ...

: num 9.96 84.84 93.4 33.77 5.16 ... ## \$ Infant.Mortality: num 22.2 22.2 20.2 20.3 20.6 26.6 23.6 24.9 21 24.4 ...

: int 12 9 5 7 15 7 7 8 7 13 ...

```
ols <- train(Fertility ~ ., # model to fit
                        data = swiss.
                        trControl = trainControl(method = "cv", number = 10), # Method: crossvalidation,
                        method = "lm")
                                                                 # specifying regression model
ols
## Linear Regression
## 47 samples
## 5 predictor
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 42, 42, 42, 42, 44, ...
## Resampling results:
##
    RMSE
            Rsquared MAE
    7.424916 0.6922072 6.31218
```

Tuning parameter 'intercept' was held constant at a value of TRUE

##

```
lambda <- 10^seq(-2, 3, length = 100)
lasso <- train(
  Fertility ~., data = swiss, method = "glmnet",
   trControl = trainControl("cv", number = 10),
   tuneGrid = expand.grid(alpha = 1, lambda=lambda), preProcess = c("center", "scale")
)</pre>
```

```
## glmnet
##
47 samples
## 47 predictor
##
## Pre-processing: centered (5), scaled (5)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 43, 43, 42, 42, 41, ...
## Resampling results across tuning parameters:
##
## Tuning parameter 'alpha' was held constant at a value of 1
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were alpha = 1 and lambda = 0.02009233.
```

```
ridge <- train(
  Fertility ".. data = swiss, method = "glmnet".
  trControl = trainControl("cv", number = 10),
  tuneGrid = expand.grid(alpha = 0,lambda=lambda), preProcess = c("center", "scale")
ridge
## glmnet
## 47 samples
## 5 predictor
## Pre-processing: centered (5), scaled (5)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 42, 42, 43, 44, 42, 42, ...
```

Resampling results across tuning parameters:

Tuning parameter 'alpha' was held constant at a value of 0
RMSE was used to select the optimal model using the smallest value.
The final values used for the model were alpha = 0 and lambda = 0.7390722.

##

```
##
## Call:
## summary.resamples(object = ., metric = "RMSE")
##
## Models: ridge, lasso
## Number of resamples: 10
##
## RMSE
##
            Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## ridge 2.615430 4.674108 7.627190 6.923531 8.939798 10.55026
## lasso 3.205868 5.553161 5.961622 7.324069 8.587818 13.46074
```