Задание 1. Разминка

Задача 1.1

В высоком вертикальном цилиндрическом сосуде с площадью поперечного сечения S находится вода. В сосуд опускают небольшой алюминиевый цилиндр объема V. При этом уровень воды в сосуде оказывается равным h_0 . Удельные теплоемкости воды и алюминия равны c_1, c_2 , а их плотности - ρ_1, ρ_2 , соответственно. Удельная теплота испарения воды L, удельная теплота плавления льда λ , плотность льда ρ_3 .

Теплоемкостью сосуда можно пренебречь, также можно пренеберчь потерями теплоты в окружающую среду.

- 1.1.1 Пусть температура начальная воды равна $t_0 = 100\,^{\circ}C$, а начальная температуры цилиндра $t_1 = 120\,^{\circ}C$. До установления теплового равновесия вода полностью не выкипает, цилиндр все время остается погруженным в воду. Найдите, на сколько изменится уровень воды в сосуде Δh_1 после установления теплового равновесия.
- $1.1.2~\Pi$ усть температура воды равна $t_0=0.0^{\circ}C$, а начальная температуры цилиндра $t_1=-20^{\circ}C$. До установления теплового равновесия вода полностью не замерзает, цилиндр все время остается погруженным в воду. Найдите, на сколько изменится уровень воды в сосуде Δh_2 после установления теплового равновесия.
- 1.1.3 Оцените численное значение отношение изменения высот $\frac{\Delta h_2}{\Delta h_1}$, если $\frac{L}{\lambda} \approx 7$, а $\frac{\rho_3}{\rho_1} \approx 0.9$.

Задача 1.2

Угловой размер Солнца видимого с Земли (угол под которым виден солнечный диск на земном небе) равен $\phi \approx 32'$.

- 1.2.1 Рассчитайте, на какую высоту h надо поднять непрозрачный шар диаметра d=1,0 m, чтобы солнечная тень от него на поверхности земли стала не видна.
- $1.2.2\,$ На высоте h, найденной в п. $1.2.1\,$ горизонтально расположили большой непрозрачный плоский экран, в котором проделано круглое отверстие диаметра $d=1,0\,$ м. Найдите, чему будет равен диаметр солнечного «зайчика» от этого отверстия на поверхности Земли.