October 4, 2021 EID424 Bioengineering Applications in Sports Medicine Prof. Kremenic

1

Overview

- + Basic cell physiology intro
- $\boldsymbol{+}$ The nerve cell
- + The action potential
- + Nerve to muscle
- + Muscle contraction
- + AL Hodgkin and AF Huxley received the 1963 Nobel Prize for working out many of the details here
 - + Work with squid axon
 - + Very large (0.5mm dia), easy to manipulate

2

Overview

- + Note:
 - + We'll be dealing mostly with the physiology of active tissue
 - + Nerve
 - + Muscle
 - + More general physiology later
 - + Sources of energy

1

Basic Cell Structure

- + Structures of interest:
 - + Nucleus
 - + Genetic material
 - + Mitochondria
 - + Store energy
 - ATDI
 - + Used to provide energy for all active processes
 - + Microtubules
 - + Transport
 - + Endo(sarco-)plasmic reticulum
 - + Endo-: protein synthesis
 - + Sarco-: in muscle cells, store Ca++

5

Basic Cell Structure

- + More structures of interest:
 - + Cytoplasm/cytosol
 - + Negative relative to outside the cell
 - + ~ -10 mV in red blood cells
 - + \sim -70 mV in nerve cells
 - + ~ -90 mV in muscle cells
 - + Field strength 12,000 V/mm [Deutsch and Deutsch, 1992]
 - ullet Cell membrane
 - + Selectively permeable to certain ions
 - ${\color{red} +} \ \ {\rm Specialized} \ protein \ channels \ {\rm control} \ {\rm access}$
 - ${\color{red} +} \ \ \text{Very good insulator}$

What's This -90 mV?

- + Cells maintain a resting potential
 - ullet Also called membrane potential
 - + Keep some salt out
 - + Otherwise, draw in too much water
 - + Aids in transport of other molecules
 - + Provides proper environment for other cellular processes (e.g., protein synthesis)
 - + Necessary for nerve/muscle cell function

7

Sources of Membrane Potential

- + Cell membrane is permeable to various ions
 - + Na+ constantly leaks in from extracellular fluid
 - ullet K+ constantly leaks out

8

Sodium-Potassium Pump

- + Present in all animal cells
- ${\color{blue}+}$ Actively pushes Na+ out of the cell, pulls K+ into the cell
 - + Works against concentration gradients
 - + Requires energy (ATP)
 - + More than one-third of resting energy consumption!

Sodium-Potassium Pump

- + Concentration gradients cause:
 - + Na+ to leak into cell
 - + K+ to leak out of cell
- + Na+-K+ pump offsets this diffusion

10

11

Types of Neurons

- + Motor neuron
 - + Innervates muscle tissue
- + Sensory neuron
 - ${\color{blue}\textbf{+}}$ Picks up stimuli from special receptors
 - + Transmits information to spinal cord/brain
- + Interneuron
 - + Sits between other neurons

13

14

The Neuron: Dendrites + Projections from cell body + Accept inputs from outside the cell + Other neurons + Sensory receptors + Increase surface area over which stimuli may be received

The Neuron: Axon

- + Long fiber extending from cell body
- + This is what is referred to as a "nerve"
 - + i.e., "femoral nerve," "median nerve"
 - + Really bundles of axons
 - + Can be several feet long (spinal cord to hand/foot)
- + Carries electrical impulses
 - + Action potential
 - + The crux of the biscuit

16

The Action Potential

- + A sudden change in voltage
- + Quick return to resting potential
- + Either happens or does not
 - $\boldsymbol{+}$ Action potentials are all the same size
 - + Strength of stimulus/contraction indicated by frequency of action potentials, not amplitude
- + Also referred to as the nerve "firing"

17

The Action Potential: What's It Look Like?

- + "We have to get into it sideways"
 - + Prof. S. Ben-Avi, many times in the 1980s-1990s

The Action Potential Explained

- + Changing voltages in the axon hillock in response to stimuli
 - + Graded potentials
- + Nothing happens until these graded potentials exceed a threshold potential
- + 20-30 mV above baseline
- + Unless threshold reached, potential returns to baseline

+ Then...

19

The Action Potential Explained

- + Voltage-sensitive Na+ channels in the cell membrane start to open causing...
- + The voltage to become more positive causing...
- + Even more voltage-sensitive Na+ channels to open
- + Rare example of naturally-occurring positive feedback
- + Membrane potential grows to +25-35 mV

20

The Action Potential Explained

- + Na+ stops flooding in
 - + Some gates close
 - + High concentration inside cell limits diffusion
 - $\mbox{\Large +}$ Positive voltage inhibits entry of positively-charged ions
- + K+ gates open
- + K+ leaves the cell
 - ullet More slowly than Na+ entered

Action Potential Explained

- $\boldsymbol{+}$ As K+ leaves, cell returns to resting state
- + But...
 - + Membrane potential overshoots resting potential
 - + Membrane is hyperpolarized
 - + Refractory period
 - + Na+ channels inactive
 - + No action potential can occur
- $\boldsymbol{+}$ After several msec, cell returns to normal state

22

Action Potential Schematic 1. Resting potential 2. Influx of Na+ 3. K+ gates open 4. Outflow of K+ 5. Hyperpolarization/refractory period Outflow of K+ Time (mase) Na equilibrium potential Outflow of K+ Time (mase)

23

Action Potential Propagation

- + Action potentials are not stationary
 - + Depolarization causes diffusion of neighboring ions until neighboring area reaches threshold potential
 - + Fire
 - $\begin{tabular}{l} $+$ Refractory\ period\ prevents\ action\ potential\ from\ traveling\ backward \end{tabular}$
- + Travel along length of axon to axon terminals
- + Ends at axon terminals

Cell-Cell Transmission of Information: The Synapse

- + Action potential ends at end of axon
- + At end of axon there is either
 - + Another nerve cell (dendrites)
 - + A muscle
- + Small gap in between
 - + Synapse

25

Synaptic Transmission

- + Action potential triggers release of Ca++
- $\hbox{\bf + Presence of Ca++ triggers release of special chemicals stored in } synaptic vescicles$
 - + Neurotransmitters
 - + Acetylcholine (ACh) most important for nerve-muscle transmission
 - + Excitatory
 - + Inhibitory
- + Neurotransmitters diffuse across synapse

26

Synaptic Transmission

- + Special proteins (*receptors*) on other end of synapse pick up neurotransmitters
- + If enough excitatory neurotransmitters are received, depolarization will occur
 - + And not too many inhibitory
- + New action potential
- + More action potentials received \rightarrow more neurotransmitters released

Action Potential Summary

- + All-or-nothing electrical response
 - ullet Stronger stimulus o more action potentials
- + Fast, positive change from influx of Na+
- + Slower (but still fast!) negative change from outgoing K+
- + Chemical transmission to next neuron/muscle though synapse via neurotransmitters
 - ullet Graded chemical response
 - + Excitatory or inhibitory

28

Action Potential is All-or Nothing!

- + Muy importante!
- + Intensity of stimulus is related to frequency of action

29

Speed of AP Propagation

- + Larger diameter axons \rightarrow faster AP propagation
 - + Wider pipe
 - + Thicker wire
 - + Pick your analogy
- + In a complex organism, nerves practically can only be so big before they take up too much space

Hyelin atted Nerves + Myelin + Insulating layer grows around axon + Schwann cells + Basically, layers of fat wrapped around + Axon not exposed to extracellular fluid except at periodic points + Nodes of Ranvier + Highly-concentrated Na+ gates

31

So Why Does Myelin Help?

- + AP "jumps" from node to node
 - + Saltatory conduction
- $\mbox{\bf +}$ AP does not have to be regenerated along entire length of axon
 - + Only at nodes
 - $\mbox{\Large +}$ Saves energy as well as speeding things up
- + Nodes typically 1-2 mm apart
 - + Diameter-dependent

32

How Much Faster?

- + Conduction velocity of unmyelinated nerves very slow
 - + Up to 1.5 m/sec
- + Myelinated nerves can be up to 120 m/sec
 - + Depends on size
 - + Would have to have 38x greater diameter if unmyelinated

Myelinated and Unmyelinated Nerves

- + Not all nerves myelinated
 - + Only about one-third
- ullet Slower signaling often sufficient
 - + e.g., perception of pain
- + Reflexes (motor) controlled by myelinated nerves
- + Consequences of de-myelination severe
 - + Demyelinating disease called _____
 - ${\color{red} \textbf{+}} \ \ \text{Slower conduction velocity}$
 - + Greater energy consumption

34

Speaking of Reflexes

- + Reflex arc
 - $\mbox{\Large +}$ Impulse goes from sensory nerve...
 - $\mbox{\Large +}$ To interneuron in spinal cord...
 - + To motor nerve...
 - + To muscle
- + Brain is not involved

35

Nerve to Muscle Agina meteración file Freschiert Freschiert Anne meteración Freschiert Anne meteración Anne meteración

Neuromuscular Junction

- + Axon branches at end
- + Each branch terminates at a muscle fiber
- + Also called motor endplate
 - + Innervation zone of muscle

37

The Motor Unit

- $\mbox{+}\,$ The quantum of the neuromuscular system
- + Consists of:
 - + Motor neuron
 - + All muscle fibers innervated by it
- ${\color{blue}\bigstar}$ Motor unit either fires or does not
 - + All muscle fibers contract or none do
 - + Consequence of innervation by a single neuron

38

Muscle Fiber

- + Similar electrically to neurons
- + Action potential propagates across the surface of the fiber
 - + All or nothing!
 - + Slower propagation than nerve
 - + Action potential causes muscle contraction
 - + Allows physical interaction of proteins in muscle fibers

40

Types of Muscle

- + Smooth muscle
- + Cardiac muscle
- + Skeletal (striated) muscle

41

Smooth Muscle

- + Found in the viscera of the body
 - ullet Regulates blood vessels, airways, digestive tract
- + Different animal from skeletal muscle
 - + Smooth, not striated appearance
 - + No sarcomeres, different excitation
 - ullet Almost always in a partially-contracted state
 - + Does not fatigue
- + Involuntary

Cardiac Muscle

- + Found in the heart (duh)
- + More like skeletal muscle
 - + Striated
- + Important differences
 - + Entire heart contracts at once
 - + Contracts on its own
 - ullet Innervation influences rate of contraction only
 - + Long action potential
 - + Always relaxes after contracting
- + TBD in more detail with EKG at a later date

43

Skeletal Muscle

- + Attached to bone via tough, fibrous tissue
 - + Called _______
- + Also called striated muscle because of its appearance
- + What we will primarily be discussing

44

Muscle Anatomy

- + Muscle organized in progressively smaller bundles of fibers
- + Individual muscle cells called *sarcomeres*

Muscle Fiber

- ullet Composed of many myofibrils
- ${\color{red} \textbf{+}} \ \ \textbf{Each myofibril composed of multiple sarcomeres}$
- + Groups of muscle fibers (and a motor neuron) comprise a motor unit

46

Myofibrils

- ullet Individual sarcomeres bounded by fibrous z-lines
- ullet A-bands composed of overlapping myofilaments
 - ullet These are the contractile elements of muscle tissue

47

Mechanism of Muscle Contraction

- + Thick filaments
 - + Myosin (heavy chains, light chains)
- + Thin filaments
 - + Actin
- $\mbox{+}\,$ These filaments bond to each other when given the chance

Filament Resting State

- + Troponin and tropomyosin block attachment of mysoin head to actin
 - + Regulatory proteins

49

Filaments in Presence of AP

- f + AP causes sarcoplasmic reticulum to release Ca++ into the cell
- + Ca++ binds to troponin and moves tropomyosin out of the way
- + Myosin head can now bind to actin
- + Forms a cross bridge

50

Sliding Filaments

- + Using energy from ATP, myosin head ratchets and pulls the thin filament
 - + Sliding filament theory of muscle contraction
 - + By using more ATP, this process can be repeated as long as calcium is present

52

Relaxation

- $\mbox{\Large +} \,$ In the absence of an AP, Ca++ is gathered back into the sarcoplasmic reticulum
 - + Myosin and actin are no longer free to bind
 - ullet Muscle returns to resting length
 - + Requires energy
 - + No ATP \rightarrow myosin head stuck to actin
 - + Rigor mortis
- + It takes time, effort to relax!
 - + With fatigue rate of force development *and* relaxation grow longer

53

Types of Muscle Fiber

- + Type I
 - + Slow twitch
- + Type II
 - + Fast twitch
 - + IIa
 - + IIb

Type I Muscle Fiber

- + Slow twitch
 - + Less sarcoplasmic reticulum
 - + Slower to reclaim Ca++
- + Slow conduction velocity
- + Small fibers
- + Few fibers per motor unit
- + Responsible for fine movements

55

Type I Muscle Fiber

- + Able to extract oxygen from blood
 - + Aerobic metabolism
 - + Many mitochondria, myoglobin
 - + Many capillaries
 - + Huge (virtually infinite) supply of energy
 - + Relatively slow, but efficient ATP production
- + Resistant to fatigue

56

Type II Muscle Fiber

- + Fast twitch
- + High conduction velocity
 - $\mbox{+}$ Relative to Type I; still slow compared to nerve
- + Large fibers
- + Many fibers per motor unit
- + Responsible for gross movements

Type II Muscle Fiber

- ullet Primary energy supply is sugar stored in muscle
 - + Glycogen
 - + Anaerobic
 - + Fastest way to derive energy
 - + Glycolysis
 - + Not very efficient
 - + Only a small supply
 - + Produces lactic acid
- + Fatigues easily

58

The Two Type IIs

- + Type IIa
 - + What we've been talking about
- + Type IIb
 - + Hybrid
 - ullet Fast-twitch, fatigue-resistant
 - + Aerobic
- + Type IIc? IIx?

59

Motor Unit Recruitment

- + Size principal
 - + Smaller motor units recruited first
 - + Type I
 - + Can work longer
 - + Greater force required → more motor units recruited
 - $\mbox{+}$ As greater force is required, Type II motor units recruited

Modes of Muscle Contraction

- + Concentric
- + Isometric
- + Eccentric
- + More helpful to use "action" instead of "contraction"

61

Concentric Muscle Action

- + Length of muscle shortens while doing work
- + What people most commonly think of
 - + Biceps brachii in arm while lifting an object
 - ullet Quadriceps in leg when kicking a ball

62

Isometric Muscle Action

- + Muscle remains the same length while doing work
- + Push against an object that does not move
- $\mbox{\ +\ }$ Often used as a standard activity for normalization

Eccentric Muscle Action

- ${\color{blue}\textbf{+}}\,$ Muscle lengthens while doing work
 - + *Lengthens* while *contracting*?
- + Quadriceps when landing from a jump
- ${\color{red} \textbf{+}} \ \ \text{Partially, cross bridges being pulled apart}$
 - + Mostly, muscle acting isometrically and tendon stretching
- + Able to generate more force eccentrically than concentrically
 - + Muscle damage/reformation

64

Aside: Muscle Damage

Normal

Damageo

65

Aside: Muscle Damage

- + Normal physiology, not injury
 - + Not a muscle tear
- + Eccentric action
 - + Sarcomeres pulled apart
 - + Delayed-onset muscle soreness [DOMS]
 - + Protective effect
 - + Do bout of eccentric work to cause damage, causes soreness
 - + Subsequent bouts do not cause soreness

Muscle Force Generation

- + AP produces a muscle twitch
 - + Twitch force
- + Successive twitches, sufficiently fast can increase force
 - + Force summation
 - $\begin{tabular}{ll} $+$ Increase in force because second twitch starts before muscle completely relaxed \\ \end{tabular}$
- + Fast-enough twitches cause smooth force generation
 - ullet Tetanus, tetanic contraction
 - + Not the one you get from a cut!

67

68

Agonist-Antagonist Muscles

- + Agonist
 - + Responsible for motion in one direction about joint
- + Antagonist
 - + Responsible for other direction
- + Theoretically, while one is active, the other is silent
 - + In reality, co-contraction

Horse generating capacity of muscles depends on length of fibers 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.7 1.7 1.8

70

+ Sarcomeres very long + Little overlap between thick and thin filaments + Few cross bridges + Low force generation

71

Huscle Length-Tension Relationship + Sarcomeres very short + Thin filaments start to interfere with each other + Force generation impaired + When maximally contracted, no force generating capacity + Thick filaments hit z-lines

Muscle Length-Tension Relationship

- + Sarcomere at optimal length
 - + Maximum thick and thin filament overlap
 - + Maximum number of cross bridges form
 - + Max force generation

73

Muscle Model

- + Hill muscle model
- + Contractile element
- + Series elastic component
- + Some also use parallel elastic component

74

Muscle Model: Contractile Element

- + Models contractile properties
 - + Muscle fiber
- + Accounts for all force generation
- + Must take into account all contractile properties
 - + Length-tension relationship
 - ullet Load-velocity relationship
 - + Greater load, slower velocity of shortening

Muscle Model: Series Elastic Component				
+ Tissue between muscle fibers and bone				
+ Tendon				
+ Aponeurosis				
+ Junction of muscle and tendon				
+ Must stretch out before any force transmitted from muscle to bone				
+ Electromechanical delay				
[a	vastus medialis	www	mannanz	
	vastus lateralis	more	manny	
	rectus femoris	1 .	•	
		mong	manny	
	torque			
	angle			
	0	** Time (s) 22		

76

Measurements Based on This

- + EKG
 - + Electrocardiography
 - + Electrical activity of heart
- + EMG
 - $\textcolor{red}{+} \hspace{0.1cm} \textbf{Electromyography}$
 - + Electrical activity of skeletal muscle

77

Lots More Measurements...

- + EEG
 - + Electroencephelogram (brain)
- + EOG
 - + Electrooculogram (eye)
- + MMG
 - $+ \ \ \text{Mechanomyogram} \ (\text{sliding muscle filament} \ sounds)$
 - + Sometimes called AMG (acoustomyography)
- + EGG
 - + Electrogastogram (stomach)

+ ..