

Action Recognition Using Instance-Specific and Class-Consistent Cues

Chin-An Lin^{1,2}, Yen-Yu Lin¹, Hong-Yuan Mark Liao³, and Shyh-Kang Jeng²

¹Research Center for Information Technology Innovation, Academia Sinica, Taiwan

²Graduate Institute of Communication Engineering, National Taiwan University, Taiwan; ³Institute of Information Science, Academia Sinica, Taiwan

1. Summary

- We aim to resolve the difficulties of action recognition arising from the large intra-class variations. These unfavorable variations make it infeasible to represent one action instance by other ones of the same action. We hence propose to extract both instance-specific and class-consistent features to facilitate action recognition.
- · Contributions:
- Instance-specific features: Self-similarities among frames of an action sequence. Multivariate linear prediction (MLP) is adopted to aggregate all the causalities among frames.
- Class-consistent features: Characteristics shared by instances of the same action. Support vector machines (SVMs) are used to discover these features based on the bag-of-words model.
- We propose a generative formulation to integrate the two complementary types of features, and boost the performance.

2. Background

 We view actions as multivariate time signals. For signal processing in our approach, several essential techniques are demonstrated here.

2.1 Wide-Sense Stationary Process

- A discrete stochastic process {x(t): t ∈ T}, where T is a countable set, is a collection of random variables.
- The process is said to be wide-sense stationary if E[x(t)] = c, and $Cov(x(t), x(t+\tau)) = R(\tau)$ for all t.
- In this paper, we assume actions can be perfectly modeled by widesense stationary processes.

2.2

Linear Prediction

 Assume x(t) is a wide-sense stationary process with zero mean, the basic formulation is

$$x(t) = \sum_{k>0} a_k x(t-k) + e(t),$$

where a_k are coefficients, and e(t) is the reconstruction error.

- We often choose coefficients a_k that minimize the expected value of squared error, E[e²(t)].
- The above problem have an optimal solution, and it can be simplified into a linear system.

2.3

Support Vector Machine

- · An powerful algorithm for classification problems.
- Given training data $D = \{(x_i, y_i) | x_i \in \mathbb{R}^d, y_i \in \{-1, 1\}\}_{i=1}^{N}$, we want to find the maximum hyper-plane that divides the points having $y_i = 1$ from those having $y_i = -1$.
- The primal form of the problem is

$$\min_{w,b} \max_{\alpha > 0} \left\{ \frac{1}{2} \|w\|^2 - \sum_{i=1}^n \alpha_i [y_i(w \cdot x_i - b) - 1] \right\}$$

• We use LIBSVM to solve this problem

3. Generative Model

- The main idea is to consider the static and dynamic information of a multivariate time signal separately. This is based on the assumption that these two information are independent for action recognition.
- • The generative formulation for a observed time signal $\mathbf{X}(t)$, t=1,...,T is

$$p(\mathbf{X},c) = p(\mathbf{X}'|c)p(\mathbf{x}_{\mu},\mathbf{x}_{\sigma}|c)p(c),$$

where \mathbf{X}' is dynamic information containing instance-specific cue, and $(\mathbf{x}_u, \mathbf{x}_{\sigma})$ is static information containing class-consistent cue.

• The problem is

$$\arg\max\{p(\mathbf{X}'|\boldsymbol{\theta}_c)p(\boldsymbol{x}_{\boldsymbol{\mu}},\boldsymbol{x}_{\boldsymbol{\sigma}}|\boldsymbol{\theta}_c)p(c)\}$$

where θ_c is the set of model parameters for specific action c.

4.1

Instance-Specific Cue via MLP

 The basic formulation of MLP for a wide-sense stationary process X'(t) with zero-mean and unit variance is

$$\mathbf{X}'(t) = \sum_{k=1}^{K} \mathbf{X}'(t-k)\mathbf{A}_k + \mathbf{e}(t) = \dot{\mathbf{X}}_t \mathbf{A} + \mathbf{e}(t),$$

$$\mathbf{X}'(t) \in \mathbb{R}^{1XD}, \mathbf{A}_k \in \mathbb{R}^{DXD}, \mathbf{e}(t) \in \mathbb{R}^{1XD}.$$

• For the action process $\mathbf{X}_c'(t)$ with label c, it can be written as $\mathbf{X}_c'(t) = \dot{\mathbf{X}}_{t,c}\mathbf{A}_c^* + \mathbf{e}_c(t)$, where

$$\mathbf{A}_c^* = \arg\min_{\mathbf{A}} \mathbb{E}[\|\mathbf{e}_c(t)\|^2 + \lambda \|\mathbf{A}\|_F],$$

where $\|\mathbf{A}\|_F$ is Frobenius norm, and λ is determined by using cross-validation.

In the probability form we can write

$$p(\mathbf{X}'_c(t)|\mathbf{X}'_c(t-1),\dots,\mathbf{X}'_c(t-K),\mathbf{A}^*_c) = p(\mathbf{e}_c(t))$$

· Thus conditional probability is

$$\begin{split} p(\mathbf{X}_c') &= p(\mathbf{X}'|c) = \prod_t p(\mathbf{X}'(t)|\mathbf{X}'(t-1), ..., \mathbf{X}'(1), \mathbf{A}_c^*) \\ &= \prod p(\mathbf{e}_{\mathbf{c}}(t)) \end{split}$$

In our experiments we choose

$$p(\mathbf{e}_c(t)) = \exp(-\gamma ||\mathbf{e}_c(t)||^2).$$

4.2

Class-Consistent Cue via SVM

• For $p(x_u, x_{\sigma}|c)$, from Bayes rule

$$p(x_{\mu}, x_{\sigma}|c) = \frac{p(c|x_{\mu}, x_{\sigma})p(x_{\mu}, x_{\sigma})}{p(c)} \propto p(c|x_{\mu}, x_{\sigma}),$$

where p(c) is the prior knowledge, and we assume $p(x_{\mu}, x_{\sigma})$ is uniformly distributed. Therefore, we use SVM to learn a function $f_c(x_{\mu}, x_{\sigma})$ to approximate $p(x_{\mu}, x_{\sigma}|c)$.

4.3

Linear Fusion

• Conclude the above results, the decision function become

$$\arg \max_{c} \left\{ \sum_{t} -\gamma \|\mathbf{e}_{c}(t)\|^{2} + \log f_{c}(\boldsymbol{x}_{\mu}, \boldsymbol{x}_{\sigma}) \right\},$$

where γ weights the importance between dynamic and static information

5. Video description

· We use three types of features: HOG; HOF; MBH.

- · Bag-of-word representation to multivariate time-series
 - We first use Wang's method to describe video into bag-of-word representation.
 - For each time interval, we count words inside it to compile the histogram of words.
 - These histograms are temporally ordered to form a multivariate time-series

6. Experimental Results

KTH action dataset (6 actions/25 human subjects)

- · We follow the author's evaluation protocol
- > 2/3 human subjects for training; 1/3 human subjects for testing
- Report average accuracy over all classes.

5.1

Results

• The average accuracy of the proposed method

Method	Recognition rate		
Wang et al. [6]	94.2%		
Chen and Aggarwal [12]	90.9%		
Le et al. [15]	93.9%		
Ours (instance-specific)	93.9%		
Ours (class-consistent)	93.6%		
Ours (combined)	95.0%		

- . The confusion matrix on the KTH dataset
- We get significantly improvement on recognizing between running and jogging.

	walk	run	jog	box	clap	wave
walk	100%	0%	0%	0%	0%	0%
run	0%	82.6%	17.4%	0%	0%	0%
jog	0%	9.0%	91.0%	0%	0%	0%
box	0.7%	0%	0%	99.3%	0%	0%
clap	0%	0%	0%	2.8%	97.2%	0%
wave	0%	0%	0%	0%	0%	100%