Project #2 2D DCT Design in JPEG Image Compression

What is JPEG? Joint Picture Expert Group

5

Please make a hardware for 2D DCT operations in JPEG Compression

JPEG CODEC Architecture

MATLAB environments are given including Data IO between Verilog and MATLAB simulation

KECE 463 7

What is Discrete Cosine Transform?

$$X(k) = e(k) \sum_{n=0}^{N-1} x(n) \cos[rac{(2n+1)\pi k}{2N}], \; k = 0, 1, \cdots, N-1$$
 $e(k) = \left\{egin{array}{ll} rac{1}{\sqrt{2}}, & if \; k = 0, \ 1, & otherwise. \end{array}
ight.$

$$e(k) = \begin{cases} \frac{1}{\sqrt{2}}, & if \ k = 0, \\ 1, & otherwise. \end{cases}$$

ex) 8-point DCT presented in matrix multiplication

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \\ X(4) \\ X(5) \\ X(7) \end{bmatrix} = \begin{bmatrix} c_4 & c_4 \\ c_1 & c_3 & c_5 & c_7 & c_9 & c_{11} & c_{13} & c_{15} \\ c_2 & c_6 & c_{10} & c_{14} & c_{18} & c_{22} & c_{26} & c_{30} \\ c_3 & c_9 & c_{15} & c_{21} & c_{27} & c_1 & c_7 & c_{13} \\ c_4 & c_{12} & c_{20} & c_{28} & c_4 & c_{12} & c_{20} & c_{28} \\ c_5 & c_{15} & c_{25} & c_3 & c_{13} & c_{23} & c_1 & c_{11} \\ c_6 & c_{18} & c_{30} & c_{10} & c_{22} & c_2 & c_{14} & c_{26} \\ c_7 & c_{21} & c_3 & c_{17} & c_{31} & c_{13} & c_{27} & c_9 \end{bmatrix} \cdot \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \\ x(4) \\ x(5) \\ x(6) \\ x(7) \end{bmatrix}$$

$$\text{where } c_i = \cos \frac{i\pi}{16}$$

where
$$c_i = \cos \frac{i\pi}{16}$$

Original Image

DCT:

$$X(k) = e(k) \sum_{n=0}^{N-1} x(n) \cos[\frac{(2n+1)\pi k}{2N}], \ k = 0, 1, \dots, N-1$$

 $Z = Tx^{t}$ Note the symmetry of the DCT coef. matrix

$$T = \begin{bmatrix} c_4 & c_4 & c_4 & c_4 \\ c_1 & c_3 & c_5 & c_7 \\ c_2 & c_6 & -c_6 & -c_2 \\ c_3 & -c_7 & -c_1 & -c_5 \\ c_4 & -c_4 & -c_4 & c_4 \\ c_5 & -c_1 & c_7 & c_3 \\ c_6 & -c_2 & c_2 & -c_6 \\ c_7 & -c_5 & c_3 & -c_1 \end{bmatrix} \begin{bmatrix} c_4 & c_4 & c_4 & c_4 \\ -c_7 & -c_5 & -c_3 & -c_1 \\ -c_7 & -c_5 & c_3 & -c_1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ c_4 & -c_4 & -c_4 & c_4 \\ -c_6 & c_2 & -c_2 & c_6 \\ c_1 & -c_3 & c_5 & -c_7 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix}$$

$$\begin{bmatrix} c_1 = 0.980785280403230 \\ c_2 = 0.923879532511287 \\ c_3 = 0.831469612302545 \\ c_4 = 0.707106781186548 \\ c_5 = 0.555570233019602 \\ c_6 = 0.382683432365090 \\ c_7 = 0.195090322016128 \\ c_7 = 0.1$$

$$c_k = \cos \frac{k\pi}{16}$$

 $C_1 = 0.980785280403230$

decided by students

JPEG CODEC Architecture

2D DCT

Large quantization bit-width, Large Area, Large Power

Good Image!

PSNR: 36.5 dB

Small quantization bit-width, Small Area, Small Power

Poor Image!

PSNR: 24.6 dB

For Image Quality Measure: PSNR!

$$MSE = \frac{\sum_{M,N} [I_1(m,n) - I_2(m,n)]^2}{M*N}$$

$$PSNR = 10 \log_{10} \left(\frac{R^2}{MSE} \right)$$

where M, N = 512, R = 255.

PSNR: 24.6 dB

PSNR measure process is already in the Matlab code

Please design a lowest cost
(minimum area and minimum power)
2D DCT hardware while satisfying the
PSNR value of 29.5 dB!

Some Design Tips?

Project 2 Process

A simple JPEG compressor:

- Cut an image up (512x512) into blocks of 8x8 pixels
- Run each block through an 8x8 2D-DCT
- DCT basis quantization is designer's choice!
- Internal Node Quantization is the designer's choice!
- Whole Simulation environment is given!
- Two types of MATLAB files!

Design with Verilog Use given MATLAB

Original Image

2D-DCT Implementation

Input memory buffer data structure

Overall 2D DCT process

Design your 2D DCT architecture !!

- 1) Image data is stored in the input buffer !! Control the input / output memory buffers !!
- 2) Transpose Memory module is given !!!

 But, if you can optimize, BONUS !!

Output memory buffer data structure

Data IO between Verilog and MATLAB

Data format for Data IO

PSNR value tiff image file

About Project #2 Evaluation

Given Files

- Input image vectors are stored in the input buffer (8 images, 512 x 512 pixels)
- 2. MATLAB codes (Data IO, JPEG encoding / decoding)
- 3. Stimulus files, SRAM memory files, Transpose memory
- 4. Synthesis Environment

Evaluation condition

Please use minimum hardware for 2D-DCT while satisfying the minimum required PSNR value (29.5 dB)

- PSNR values of all 8 images should be over 29.5 dB

About Project #2 Evaluation

8 of TIFF images are given. each of these should satisfy the PSNR standard.

Project 2: 2D-DCT Design

- Submit the report and Prepare for presentation
 - Describe the 2D-DCT hardware architecture
 - Describe the memory usage of your design
 - Show timing diagrams of your 2D-DCT design
 - Show timing & area report & .v file
 - Please use report_area hierarchy for area report
 - Check the critical path delay, Area & Power
- Presentation day: June 19th
- Describe your design in detail and show the above results
- Question TA's and toto9090@korea.ac.kr

Project HINTS: Discrete Cosine Transform

DCT:

$$X(k) = e(k) \sum_{n=0}^{N-1} x(n) \cos[rac{(2n+1)\pi k}{2N}], \,\, k = 0, 1, \cdots, N-1$$

 $Z = Tx^{t}$ Note the symmetry of the DCT coef. matrix

$$T = \begin{bmatrix} c_4 & c_4 & c_4 & c_4 \\ c_1 & c_3 & c_5 & c_7 \\ c_2 & c_6 & -c_6 & -c_2 \\ c_3 & -c_7 & -c_1 & -c_5 \\ c_4 & -c_4 & -c_4 & c_4 \\ c_5 & -c_1 & c_7 & c_3 \\ c_6 & -c_2 & c_2 & -c_6 \\ c_7 & -c_5 & c_3 & -c_1 \end{bmatrix} \begin{bmatrix} c_4 & c_4 & c_4 & c_4 \\ -c_7 & -c_5 & -c_3 & -c_1 \\ -c_7 & -c_5 & c_3 & -c_1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ c_4 & -c_4 & -c_4 & c_4 \\ -c_6 & c_2 & -c_2 & c_6 \\ c_7 & -c_5 & c_3 & -c_1 \end{bmatrix} \begin{bmatrix} c_4 & c_4 & c_4 & c_4 \\ -c_7 & -c_5 & -c_3 & -c_1 \\ -c_7 & -c_5 & c_3 & -c_1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{bmatrix}$$

$$\begin{bmatrix} c_1 = 0.980785280403230 \\ c_2 = 0.923879532511287 \\ c_3 = 0.831469612302545 \\ c_4 = 0.707106781186548 \\ c_5 = 0.555570233019602 \\ c_6 = 0.382683432365090 \\ c_7 = 0.195090322016128 \end{bmatrix}$$

$$\begin{bmatrix} c_1 = 0.980785280403230 \\ c_2 = 0.923879532511287 \\ c_4 = 0.707106781186548 \\ c_5 = 0.5555570233019602 \\ c_6 = 0.382683432365090 \\ c_7 = 0.195090322016128 \end{bmatrix}$$

$$\begin{bmatrix} c_1 = 0.980785280403230 \\ c_2 = 0.923879532511287 \\ c_4 = 0.707106781186548 \\ c_5 = 0.5555570233019602 \\ c_6 = 0.382683432365090 \\ c_7 = 0.195090322016128 \end{bmatrix}$$

$$c_k = \cos \frac{k\pi}{16}$$

 $C_1 = 0.980785280403230$

decided by student

Project HINTS: Simplification?

DCT:

$$X(k) = e(k) \sum_{n=0}^{N-1} x(n) \cos[\frac{(2n+1)\pi k}{2N}], \ k = 0, 1, \dots, N-1$$

$Z = Tx^{t}$ Note the symmetry of the DCT coef. matrix

$$T = \begin{bmatrix} c_4 & c_4 & c_4 & c_4 \\ c_1 & c_3 & c_5 & c_7 \\ c_2 & c_6 & -c_6 & -c_2 \\ c_3 & -c_7 & -c_1 & -c_5 \\ c_4 & -c_4 & -c_4 & c_4 \\ c_5 & -c_1 & c_7 & c_3 \\ c_6 & -c_2 & c_2 & -c_6 \\ c_7 & -c_5 & c_3 & -c_1 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ -c_3 & c_5 & -c_7 \\ c_4 & -c_4 & -c_4 & c_4 \\ -c_3 & -c_7 & c_1 & -c_5 \\ c_4 & -c_4 & -c_4 & c_4 \\ -c_3 & -c_7 & c_1 & -c_5 \\ c_1 & -c_3 & c_5 & -c_7 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ -c_3 & -c_7 & c_1 & -c_5 \\ c_1 & -c_3 & c_5 & -c_7 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ -c_3 & -c_7 & c_1 & -c_5 \\ c_1 & -c_3 & c_5 & -c_7 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \\ -c_3 & -c_7 & c_1 & -c_5 \\ c_1 & -c_3 & c_5 & -c_7 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_5 \\ x_7 \end{bmatrix} = \begin{bmatrix} c_1 & c_3 & c_5 & c_7 \\ c_3 & -c_7 & -c_1 & -c_5 \\ c_3 & -c_7 & -c_1 & -c_5 \\ c_5 & -c_1 & c_7 & c_3 \\ x_2 - x_5 \\ x_3 - x_4 \end{bmatrix}$$

$$\mathbf{C_k} = \mathbf{COS} \ \frac{\mathbf{k}\pi}{\mathbf{16}}$$

$$c_k = \cos \frac{k\pi}{16}$$

Even DCT

$$\begin{bmatrix} z_0 \\ z_2 \\ z_4 \\ z_6 \end{bmatrix} = \begin{bmatrix} c_4 & c_4 & c_4 & c_4 \\ c_2 & c_6 & -c_6 & -c_2 \\ c_4 & -c_4 & -c_4 & c_4 \\ c_6 & -c_2 & c_2 & c_6 \end{bmatrix} \begin{bmatrix} x_0 + x_7 \\ x_1 + x_6 \\ x_2 + x_5 \\ x_3 + x_4 \end{bmatrix}$$

$$\begin{bmatrix} z_1 \\ z_3 \\ z_5 \\ z_7 \end{bmatrix} = \begin{bmatrix} c_1 & c_3 & c_5 & c_7 \\ c_3 & -c_7 & -c_1 & -c_5 \\ c_5 & -c_1 & c_7 & c_3 \\ c_7 & -c_5 & c_3 & -c_1 \end{bmatrix} \begin{bmatrix} x_0 - x_7 \\ x_1 - x_6 \\ x_2 - x_5 \\ x_3 - x_4 \end{bmatrix}$$

Sub-expression (Computation) Sharing?

$$T = \begin{bmatrix} c_4 & c_5 & -c_1 & c_7 & -c_5 & c_5 & c_1 & c_7 & -c_5 & c_6 & c_2 & c_6 & c_6 & c_2 & c_6 & c_6 & c_2 & c_6 & c_6 & c_7 & c_7$$

$$egin{bmatrix} c_4 & c_4 & c_4 & c_4 \ -c_7 & -c_5 & -c_3 & -c_1 \ -c_2 & -c_6 & c_6 & c_2 \ c_5 & c_1 & c_7 & -c_3 \ c_4 & -c_4 & -c_4 & c_4 \ -c_3 & -c_7 & c_1 & -c_5 \ c_1 & -c_3 & c_5 & -c_7 \ \end{bmatrix} egin{bmatrix} x_0 \ x_1 \ x_2 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ \end{bmatrix}$$

Multiple fixed Coefficients exist !!!

→ Low Power & Area DCT architecture.

FIR Filter Design with Adder Tree

These Techniques can be directly applicable!

Adder & Shift

Tree

• The number of Additions in FIR filter is dependent on the coefficients!

- What if ? The filter coefficients are changed to $C_0 = 01101100$, $C_1 = 00110110$, $C_2 = 01010011$
- The number of additions are also dependent on Number representation format!

Two's compliments?
Canonical Signed Digit?

• What if ? The filter coefficients are changed to $C_0 = 00111100$, $C_1 = 00111111$, $C_2 = 01011111$

(b)

Simplifying the Matrix Multiplications?

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} c_{00} & c_{01} & c_{02} & c_{03} \\ c_{10} & c_{11} & c_{12} & c_{13} \\ c_{20} & c_{21} & c_{22} & c_{23} \\ c_{30} & c_{31} & c_{32} & c_{33} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$\begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} c_{00} \\ c_{10} \\ c_{20} \\ c_{30} \end{pmatrix} (x_0) + \begin{pmatrix} c_{01} \\ c_{11} \\ c_{21} \\ c_{31} \end{pmatrix} (x_1) + \begin{pmatrix} c_{02} \\ c_{12} \\ c_{22} \\ c_{32} \end{pmatrix} (x_2) + \begin{pmatrix} c_{03} \\ c_{13} \\ c_{23} \\ c_{33} \end{pmatrix} (x_3)$$

$$X(n) * [[c_0, c_1, c_2, c_3, c_4]]$$

Computation Sharing?

Project HINTS: Sensitivity Differences

Project HINTS: Sensitivity Differences

Transpose Memory (TPmem.v)

- Transpose Memory for the 2D-DCT is given.
 - It is designed for 8 by 8 data blocks (1 data = BW bit)
- Bit Width
 - parameter BW in Verilog code
 - Input
 - Input data: 8xBW bit
 - Input enable : 1bit
 - Output
 - Output data: 8xBW bit
 - Output enable : 1bit

- Positive edge triggered(CLK)
- It is made of number of registers and MUXs

Transpose Memory (TPmem.v)

Waveform of Transpose memory

- Row-wise data input → Column-wise data output
 Column-wise data input → Row-wise data output
- The operations should be done in the following order
 1 pair : 8 clock cycles of write → 8 clock cycles of read
- No sequential write operations over 8 clock cycles
 operational error occurs

Project 2: 2D-DCT Design

SRAM32768x64.v SRAM model

- 1 port SRAM(Read or Write)
- Bit Width
 - Input
 - · Row Address: 12 bit
 - Column Address: 4 bit
 - Data In: 64 bit
 - Output
 - Data Out: 64bit
 - Control Signal
 - NWRT : 1bit (0 \rightarrow Write, 1 \rightarrow Read)
 - NCE : 1bit (0 → Enable, 1 → Disable)
- Positive Edge triggered(CLK)

Read Verilog output file using Matlab

```
% Load DCT output text file from verilog (512x512 pixel)
% Each pixel has 8bit data (0~255)
DCT_image_32768x1 = fopen(sprintf('DCT_image_%d.txt',image_number),'r');
DCT_image_64b = fscanf(DCT_image_32768x1,'%|x',[32768 1]);
x=1;
for k= 1:64
    for i= 1:64
        for j = 1 : 8
            DCT_image_temp(8*(k-1)+i, 8*(i-1)+1) = DCT_image_64b(x,1) / 2^56;
            DCT_{image_temp}(8*(k-1)+j, 8*(i-1)+2) = (DCT_{image_64b}(x,1) - (DCT_{image_64b}(x,1)/2^56)*2^56) / 2^48;
           DCT_{image_temp}(8*(k-1)+j, 8*(i-1)+3) = (DCT_{image_64b(x,1)} - (DCT_{image_64b(x,1)}/2^48)*2^48) / 2^40;
           DCT_image_temp(8*(k-1)+j, 8*(i-1)+4) = (DCT_image_64b(x,1) - (DCT_image_64b(x,1)/2^40)*2^40) / 2^32;
           DCT_{image_temp}(8*(k-1)+j, 8*(i-1)+5) = (DCT_{image_64b}(x,1) - (DCT_{image_64b}(x,1)/2^32)*2^32) / 2^24;
           DCT_{image_temp}(8*(k-1)+j, 8*(i-1)+6) = (DCT_{image_64b}(x,1) - (DCT_{image_64b}(x,1)/2^24)*2^24) + 2^16;
           DCT_image_temp(8*(k-1)+j, 8*(i-1)+7) = (DCT_image_64b(x,1) - (DCT_image_64b(x,1)/2^16)*2^16) / 2^8;
           DCT_{image_temp}(8*(k-1)+i . 8*(i-1)+8) = DCT_{image_64b(x.1)} - (DCT_{image_64b(x.1)}/2^8)*2^8;
            x = x+1;
        end
    end
end
for i = 1:512
    for i = 1:512
        DCT_image(i,j) = typecast(uint8(DCT_image_temp(i,j)), int8');
    end
end
```

Coefficient Quantization in Matlab

< Top of the matlab test file >

```
%-----Generation of DCT Bases Vector Matrix -----
% The number of Bits for Quantization
% You can "adjust this number" to improve the qualities of images.

DCT_quantization_bit = 4;
T = func_DCTquant(DCT_quantization_bit);
You can change this number if you need
```

Inside of Quantization function (func_DCTquant.m)

```
function T_quant = func_DCTquant(num_bin)
XX num_bin : The DCT Quantization bit allocation
XX Each DCT coefficients
a = 0.5*cos(pi/16);
b = 0.5*cos(2*pi/16);
c = 0.5*cos(3*pi/16);
d = 0.5*cos(4*pi/16);
e = 0.5*cos(5*pi/16);
f = 0.5*cos(6*pi/16);
g = 0.5*cos(7*pi/16);
%coefficient matrix
XX Change from Decimal to Binary number XX
******************
for i = 1:8
      I_bj(i,j,:) = func_Dec2Bin_mag(T(i,j), num_bin);
  end
XX Again Change from Binary to Decimal number XX
for i = 1:8
  for i = 1:8
      num\_int = 0;
      I_quant(i,j) = func_Bin2Dec_mag(T_bi(i,j,:), num_int, num_bin);
  end
```


Report_area -hierarchy

Report_area -hierarchy

Hierarchical cell	Global cell area		Local cell area				Hierorobys
	Absolute Total	Percent Total	Combi- national	Noncombi- national	Black boxes	Design	Hierarchy
convenSC	2780.7871	100.0	0.0000	0.0000	0.0000	convenSC	Top module
TAGE[0].NUM PE[0].CONVPE	395.8402	14.2	36.1600	0.0000	0.0000	mergedPE Q5 0	والبيام و وور وأبيا
STAGE[0].NUM PE[0].CONVPE/D0[0]	8.6400	0.3	0.0000	8.6400	0.0000	dff 100	Sub module
TAGE[0].NUM PE[0].CONVPE/D0[1]	8.6400	0.3	0.0000	8.6400	0.0000	dff 99	
STAGE[0].NUM PE[0].CONVPE/D0[2]	8.6400	0.3	0.0000	8.6400	0.0000	dff 98	
TAGE[0].NUM PE[0].CONVPE/D0[3]	8.6400	0.3	0.0000	8.6400	0.0000	dff 97	
TAGE[0].NUM PE[0].CONVPE/D0[4]	8.6400	0.3	0.0000	8.6400	0.0000	dff 96	
TAGE[0].NUM PE[0].CONVPE/D1[0]	8.6400	0.3	0.0000	8.6400	0.0000	dff 95	
STAGE[0].NUM PE[0].CONVPE/D1[1]	8.6400	0.3	0.0000	8.6400	0.0000	dff 94	
STAGE[0].NUM PE[0].CONVPE/D1[2]	8.6400	0.3	0.0000	8.6400	0.0000	dff 93	
TAGE[0].NUM PE[0].CONVPE/D1[3]	8.6400	0.3	0.0000	8.6400	0.0000	dff 92	
TAGE[0].NUM PE[0].CONVPE/D1[4]	8.6400	0.3	0.0000	8.6400	0.0000	dff 91	
STAGE[0].NUM PE[0].CONVPE/F0[0]	8.6400	0.3	0.0000	8.6400	0.0000	dff 104	
TAGE[0].NUM PE[0].CONVPE/F0[1]	8.6400	0.3	0.0000	8.6400	0.0000	dff 103	
TAGE[0].NUM PE[0].CONVPE/F0[2]	8.6400	0.3	0.0000	8.6400	0.0000	dff 102	
STAGE[0].NUM PE[0].CONVPE/F0[3]	8.6400	0.3	0.0000	8.6400	0.0000	dff 101	
STAGE[0].NUM PE[0].CONVPE/F0[4]	8.6400	0.3	0.0000	8.6400	0.0000	dff 0	
TAGE[0].NUM PE[0].CONVPE/PEMERGE		8.3	149.1200	0.0000	0.0000	PE merged B5 0	
TAGE[0].NUM PE[0].CONVPE/PEMERGE		0.0	145.1600	0.0000	0.0000	rb_mergea_bo_o	
THOULOU, INDIT_FU[0]:CONTENT.	80.9600	2.9	1.2800	0.0000	0.0000	PE B5 0	
STAGE[0].NUM PE[0].CONVPE/PEMERGE			1.2000	0.0000	0.0000	- H_B3_0	
TRABMAT (ATVINOS:[0]AT_MON.[0]ABATO	6.7200	0.2	6.7200	0.0000	0.0000	add sub half 0	
STAGE[0].NUM_PE[0].CONVPE/PEMERGE				0.0000	0.0000	add_sdb_naii_o	
TAGE[0].NON_FE[0].CONVFE/FEMERGE	18.2400	_wikiNG[1] 0.7	18.2400	0.0000	0.0000	add sub full 0	
STAGE[0].NUM PE[0].CONVPE/PEMERGE				0.0000	0.0000	add_sdb_1d11_0	
TAGETO 1. NON_FETO 1. CONVEY FEMERAL	18.2400	0.7	18.2400	0.0000	0.0000	add sub full 27	
TAGE[0].NUM PE[0].CONVPE/PEMERGE				0.0000	0.0000	add_sdb_1d11_27	
TAGE[0].NOT-PE[0].CONVPE/PETAGE	18.2400	_wikiNG[3] 0.7	18.2400	0.0000	0.0000	add sub full 26	
TAGE[0].NUM PE[0].CONVPE/PEMERGE				0.0000	3.0000	add_sub_1u11_20	
TAGE[0].NON_PE[0].CONVPE/PEMERGE	_MOD_PE/PE_ 18.2400	_WIKING[4] 0.7	18.2400	0.0000	0.0000	add sub full 25	
PACE[0] NUM DE[1] CONVDE	388.8002	14.0	29.1200	0.0000	0.0000		Sub module
STAGE[0].NUM PE[1].CONVPE	J00.0VU4	14.0	49.1400	0.0000	0.0000	mergedPE Q5 6	Sub illudule

40

