4.2.4 LR分析法

□LR(0)分析法

讨论

□算符优先分析与LR分析法比较

相同点:通过分析栈的栈顶项和当前输入符号找当前句型句柄的右端;

不同点:优先分析法为找包柄的头必须对栈进行搜索;

LR分析法只根据栈顶状态和当前输入符号就可判断;

□问题: LR(0)分析器如何转换成LR(0)分析表?

LR(0)分析器如何构造?

4.2.4 LR分析法

总结

□基本概念:活前缀、可归前缀

规范句型的活前缀可以为FAM所识别

□LR(0)分析法

LR(0)分析器

LR(0)分析方法

□进一步要解决的问题

由LR(0)分析器构造LR(0)分析表

构造LR(0)分析器

4.2.4 LR分析法 □LR(0)分析法

4、LR(0)分析器的构造 --DFA构造

1)项目:给定文法的一个项目是一个在右部符号串中标 有一圆点的产生式,

形式: A→ α₁ · α₂

 $A \rightarrow \alpha_1 \alpha_2$ 为一个产生式

表示:已从输入串中看到了能由 α 1推导出的符号串,

希望进一步看到由 α ,推导出的符号串.

$$E \rightarrow E + \cdot T$$
 $E \rightarrow E + T \cdot$

4.2.4 LR分析法

□LR(0)分析法

■归约项目:圆点在最后的项目

$$E \rightarrow E + T \cdot$$

■接受项目:开始符号的归约项目

■移进项目:形如 $A \rightarrow \alpha$ ·a β 项目 $a \in V_t$

$$E \rightarrow E \cdot +T$$

■待约项目:形如 $A \rightarrow \alpha \cdot B \beta$ 项目 $B \in V_n$

$$E \rightarrow E + \cdot T$$

4.2.4 LR分析法 □LR(0)分析法

2) 有效项目:

 $A \rightarrow \alpha_1$: α_2 是项目,对于某一个活前缀 φ_{α_1} 存在 $S=^*>\varphi_{\alpha_1}$ α_2 t $t\in V_t^*$ 则称 $A \rightarrow \alpha_1$: α_2 是活前缀 φ_{α_1} 的有效项目.

- ■若归约项目A → β_1 ·对活前缀 α β_1 是有效的,应把 β_1 归约为A.

4、LR(0)分析器的构造

- □ DFA M的一个状态 i
- ---该状态识别出的所有活前缀的有效项目集 $C_{
 m i}$
- □ C 称为文法的LR(0)有效项目集规范族

(1)三种操作:

■开始操作:S为开始符号, $S \rightarrow \delta$ 则 $S \rightarrow \delta \in C_0$

- ■闭包操作:closure(C_i) C_i的闭包
 - ① C_i 的任何项目均属于closure(C_i)
 - ②若A $\rightarrow \alpha \cdot X \beta$ 且X $\in V_n$ 属于closure(C_i) 则X $\rightarrow \cdot \lambda$ 属于closure(C_i)

重复,直至 $closure(C_i)$ 不再增大.

 \bigcirc C_i=closure(C_i)

■ 读操作: $Go(C_i, x)$ $x \in V$

$$Go(C_i, x) = C_j$$

其中:
$$C_j = \{A \rightarrow \alpha x \cdot \beta \mid A \rightarrow \alpha \cdot x \beta \in C_i\}$$

(2) 算法(求文法的LR(0)有效项目集规范族C)

- ①拓广文法,保证唯一初态.
- ②生成 $\mathbb{C}_0 = \{S \rightarrow \cdot \delta \} \cup \{S \rightarrow \cdot \delta \text{ 的闭包操作}\}$
- ③重复以下过程,直至C不再增大为止.

$$C_i$$
读操作,生成 C_{j1} , C_{j2} ,..... C_{jn}

$$C_{j1}, C_{j2}, \dots, C_{jn}$$
闭包操作

(若其中某项目集已经存在就略去)

通过上述LR(0)分析表可见,项目集中不存在 下述项目---冲突项目

- (1)既含移进项目,又含归约项目
- (2)含有多个归约项目 这种文法称为LR(0)文法.

不满足条件可采用SLR(1),LR(1)分析法.

4)LR(0)分析器构造另一方法

- (1) 规则含 $S \longrightarrow \delta$ 为唯一初态.
- (2) 若状态i和状态j出自同一产生式而两个状态对 应的项目的圆点仅差一个位置

- (3) 若状态i为 $X \rightarrow \alpha \cdot A \beta$, $A \in V_n$ 则从i引 ε 弧到所有 $A \rightarrow \cdot r$ 的状态
- (4) 将NFA确定化为 DFA M.

5)LR(0)分析表构造---只适用于LR(0)文法

根据LR(0)文法的 $C=\{C_0,C_1,\ldots,C_n\}$

- (1)若GO(C_i ,a)= C_j , $a \in V_t$ 置ACTION(i,a)= S_j
- (2)若A $\rightarrow \alpha \cdot \in C_j$,所有 $a \in V_t$ (含#) 置ACTION(i,a)= r_i
- (3)若 $S \rightarrow \delta \cdot \in C_k$, (S为拓广文法开始符号) 置ACTION(k,#)=acc
- (4)若GO $(C_i,A)=C_i$, $A \in V_n$, 置GOTO(i,A)=j
- (5) 其它: 空白 (error)

三、SLR(1)分析法

$$C_i = \{U \rightarrow \alpha \cdot \mathbf{b} \ \beta, V \rightarrow \alpha \cdot , W \rightarrow \alpha \cdot \}$$
 含有冲突项目, $LR(0)$ 分析法无法解决

SLR(1) 向前看一个输入符号决定当前动作 产生一个最右推导(最左归约) 自左向右扫描输入串

简单Simple

1 SLR(1)分析法

SLR(1)分析法=LR(0)分析法+冲突解决办法

$$C_i = \{U \rightarrow \alpha .b \beta , V \rightarrow \alpha ., W \rightarrow \alpha .\} (b \in V_T)$$

- ◆对输入符号a
 - ■a=b, 置ACTION(i,b)="移进"
 - ■a ∈ Follow(V),则用V→ α 归约
 - ■a ∈ Follow(W),则用W→ α 归约
 - ■否则, err

条件: {b}, follow(v),follow(w) 两两互不相交

定义SLR(1)文法

LR(0)有效项目集规范族C中, 若一个项目含有m个移进项目, 同时n个归约项目, 即

$$C_{i} = \{U_{1} \rightarrow \alpha .b_{1} \beta , U_{2} \rightarrow \alpha .b_{2} \beta , \dots, U_{m} \rightarrow \alpha .b_{m} \beta ,$$

$$V_{1} \rightarrow \alpha ., V_{2} \rightarrow \alpha ., \dots, V_{n} \rightarrow \alpha .\}$$

若 $\{b_1, b_2, \dots, b_m\}$,FOLLOW (V_1) , ..., FOLLOW (V_n) 两两互不相交, 满足此条件的文法为SLR(1)文法, 可用SLR(1)分析方法解决。

解决办法:

- (1) $a \in \{b_1, b_2, ..., b_m\}$ 移进
- (2) a \in Follow(V_i) 归约
- (3) 其他出错

2) SLR(1)分析表构造

SLR(1)分析表构造= LR(0)分析表+SLR(1)分析法

SLR(1)分析表构造

- (1) 拓广文法G'
- (2) 构造(对G')LR(0)有效项目集族C和Go函数
- (3) 若 $GO(C_i, a) = C_j$ $a \in V_t$, 置 $ACTION(i, a) = S_j$
- - $(A \rightarrow \alpha \ \beta \hat{r} \ j$ 个产生式)
- (5) 若 $S \rightarrow \delta \cdot \in C_k$, (S为拓广文法开始符号) 置ACTION(k,#)=acc
- (6) 若GO $(C_i,A)=C_j$, $A \in V_n$, 置GOTO(i,A)=j
- (7) 其它: 空白 (error)

- □若一个文法是SLR(1)文法,则按上述方法 构造的分析表一定不含多重定义.
- □如果不满足SLR(1)文法的要求,则 可采用 LR(1)分析法 LALR(1)分析法

例2: 算术表达式文法

 $S \rightarrow E[0]$ $E \rightarrow E + T[1]$ **E**→**T**[2] $T \rightarrow T^*F[3]$ $T \rightarrow F[4]$ $F \rightarrow (E)[5]$ F →i[6]

对应识别活前缀的DFA

冲突解决

$$I_1$$
中FOLLOW(S')={#} \cap {+}= Φ \checkmark I_2 中FOLLOW(E)={+,\),#} \cap {*}= Φ \checkmark I_9 中FOLLOW(E)={+,\),#} \cap {*}= Φ \checkmark I_1 ={S \rightarrow E., E \rightarrow E.+T} I_2 ={E \rightarrow T., T \rightarrow T.*F} \Rightarrow 字得以解决 I_0 ={E \rightarrow E+T., T \rightarrow T.*F}

SLR(1)分析表

	ACTION							GOTO	
状态	i	+	*	()	#	E	Т	F
0	S ₅			S ₄			1	2	3
1		S_6				acc			
2		r ₂	S ₇		r ₂	r ₂	1		
3		r ₄	r ₄		r ₄	r ₄			
4	S ₅			S_4			8	2	3
5		r ₆	r ₆		r ₆	r ₆			
6	S ₅			S_4				9	3
7	S ₅			S ₄					10
8		S ₆			S ₁₁			į	
9		r ₁	S ₇		\mathbf{r}_1	r_1			
10		r ₃	r ₃		r ₃	r ₃			
11		r ₅	r ₅		r ₅	r ₅			

对输入串i+i*i#的SLR(1)分析过程

步骤	状态栈	符号栈	输入串	ACTION	GOTO
1	0	#	i+i * i#	S_5	
2	05	#i	+i * i #	r ₆	3
3	03	#F	+i * i #	r ₄	2
4	02	#T	+i * i#	r ₂	1
5	01	#E	+i * i#	S ₆	
6	016	#E+	i * i#	S_5	
7	0165	#E+i	* i #	\mathbf{r}_{6}	3
8	0163	#E+F	* i #	r ₄	9
9	0169	#E+T	* i #	S ₇	
10	01697	#E+T*	i#	S_5	
11	016975	#E+T * i	#	r ₆	10
12	01697(10)	#E+T*F	#	r ₃	9
13	0169	# _. E+T	#	$\mathbf{r_1}$	1
14	01	# E	#	acc	

S'→S[0]

对应识别活前缀的DFA

S→aAd[1]

S→bAc[2]

S→aec[3]

S→bed[4]

A→e[5]

突

•
$$I_5$$
 S \rightarrow ae·c A \rightarrow e·

- I_5 S \rightarrow ae·c A \rightarrow e· I_7 S \rightarrow be·d A \rightarrow e·
- FOLLOW (A) = $\{c, d\}$
- FOLLOW (A) $\bigcap \{c\} \neq \varphi$
- FOLLOW (A) $\bigcap \{d\} \neq \varphi$
- 利用SLR(1) 无法解决冲突

- 如何解决SLR(1)分析法中出现的冲突?
- 采用LR(1)、LALR(1)分析
- 提示: 利用FIRST()集

