Aula 16

Teorema (Função Inversa Complexa): Seja $f: D_{\mathbf{f}} \subset \mathbb{C} \to \mathbb{C}$ uma função holomorfa no ponto $z_0 = x_0 + i y_0 \in \mathrm{int} D_f$. Então, se $f'(z_0) \neq 0$ tem-se

- ullet existe uma vizinhança aberta U_{z_0} de z_0 e uma vizinhança aberta V_{w_0} de $w_0=f(z_0)$ tal que $f:U_{z_0} o V_{w_0}$ é uma bijecção
- a inversa $f^{-1}: V_{w_0} \to U_{z_0}$ é diferenciável (no sentido complexo) em $w_0 = f(z_0)$
- ullet a derivada da inversa f^{-1} em $w_0=f(z_0)$ é dada pelo (número) inverso de $f'(z_0)$

$$(f^{-1})'(w_0) = (f^{-1})'(f(z_0)) = \frac{1}{f'(z_0)}.$$

Proposição: Qualquer ramo do logoritmo complexo $\log_{\mathbb{C}} z = \log_{\mathbb{R}} |z| + i \operatorname{Arg} z$, com $\operatorname{Arg} z \in [\theta_0, \theta_0 + 2\pi[$ é diferenciável complexo em $z \neq 0$ e $\operatorname{Arg} z \neq \theta_0$ com

$$\log' z = \frac{1}{z}.$$

Equações de Cauchy-Riemann em Coordenadas Polares

$$\begin{array}{ccc}]0,\infty[\times]\theta_0,\theta_0+2\pi[& \mapsto & \mathbb{C} \\ (r,\theta) & \mapsto & x+iy=re^{i\theta}=r\cos\theta+ir\mathrm{sen}\,\theta \end{array}$$

Proposição: Fazendo $\tilde{u}(r,\theta)=u(r\cos\theta,r\sin\theta)$ e $\tilde{v}(r,\theta)=v(r\cos\theta,r\sin\theta)$ as equações de Cauchy-Riemann em coordenadas polares são

$$\begin{cases} \frac{\partial \tilde{u}}{\partial r} = \frac{1}{r} \frac{\partial \tilde{v}}{\partial \theta} \\ \frac{\partial \tilde{v}}{\partial r} = -\frac{1}{r} \frac{\partial \tilde{u}}{\partial \theta} \end{cases}$$

sendo a derivada dada por

$$f'(z_0 = r_0 e^{i\theta_0}) = e^{-i\theta_0} \frac{\partial f}{\partial r} (r_0 e^{i\theta_0}) = \frac{e^{-i\theta_0}}{ir_0} \frac{\partial f}{\partial \theta} (r_0 e^{i\theta_0})$$

$$= e^{-i\theta_0} \left(\frac{\partial \tilde{u}}{\partial r} (r_0 e^{i\theta_0}) + i \frac{\partial \tilde{v}}{\partial r} (r_0 e^{i\theta_0}) \right)$$

$$= \frac{e^{-i\theta_0}}{r_0} \left(\frac{\partial \tilde{v}}{\partial \theta} (r_0 e^{i\theta_0}) - i \frac{\partial \tilde{u}}{\partial \theta} (r_0 e^{i\theta_0}) \right)$$

Proposição: Seja f(z)=u(x,y)+iv(x,y) holomorfa no ponto $z_0=x_o+iy_0$, com $f'(z_0)\neq 0$. Então, as curvas de nível

$$u(x,y) = c_1 = \text{Re}(f(z_0))$$
 e $v(x,y) = c_2 = \text{Im}(f(z_0))$

que passam no ponto z_0 , cruzam-se ortogonalmente nesse ponto.

Integração Complexa

<u>Definição</u>: Um **caminho** ou **parametrização duma curva** em \mathbb{C} é uma aplicação contínua $\gamma:[t_0,t_1]\subset\mathbb{R}\to\mathbb{C}$.

- Diz-se que é um **caminho fechado** se as imagens dos pontos inicial e final são as mesmas, ou seja, se $\gamma(t_0) = \gamma(t_1)$.
- Diz-se que é um **caminho simples** se γ é injectiva (ou seja, que as suas imagens não se auto-intersectam), exceptuando possivelmente apenas os extremos, no caso de ser fechado.
- Diz-se que é um caminho regular se $\gamma \in C^1[t_0, t_1]$. E diz-se que é um caminho seccionalmente regular se é possível encontrar uma partição finita $t_0 = s_0 < s_1 < s_2 < \cdots < s_n = t_1$ tal que $\gamma \in C^1[s_j, s_{j+1}]$ para todo o $j = 0, \ldots, n-1$.

Chama-se **curva** em $\mathbb C$ ao contradomíno dum caminho $\gamma([t_0,t_1])$. Uma curva diz-se fechada, simples ou regular, se existem caminhos com essas propriedades que a parametrizam. Uma curva simples e fechada designa-se por **curva de Jordan**.

Definição: Seja $f:D_f\subset\mathbb{C}\to\mathbb{C}$ uma função contínua sobre os pontos duma curva $C\subset D_f$ a qual é parametrizada por um caminho seccionalmente regular $\gamma:[t_0,t_1]\subset\mathbb{R}\to\mathbb{C}$, com $C=\gamma([t_0,t_1])$. Então, define-se o **integral de** f **ao longo de** γ , e representa-se por $\int_{\gamma}f(z)dz$, ou mais simplesmente $\int_{\gamma}f$, como

$$\int_{\gamma} f(z)dz := \sum_{j=0}^{n-1} \int_{s_j}^{s_{j+1}} f(\gamma(t))\gamma'(t)dt.$$