REPUBLIQUE TUNISIENNE ♦♦♦

EXAMEN DU BACCALAUREAT SESSION DE JUIN 2012

MINISTERE DE L'EDUCATION

Epreuve: MATHEMATIQUES

Durée : 4 h

Coefficient: 4

SECTION:

mathématiques

Session de contrôle

Le sujet comporte 3 pages.

Exercice 1 (3 points)

Une expérience aléatoire est représentée par l'arbre de probabilité suivant :

Répondre par vrai ou faux à chacune des affirmations suivantes en justifiant la réponse :

- 1) $p(\overline{A}) = 0.6$.
- 2) La probabilité de B sachant A est égale à 0,7.
- 3) p(B)=0,7.
- 4) $p(A \cup B) = 0.64$.

Exercice 2 (4 points)

Soit a un réel strictement positif.

- 1) Résoudre dans \mathbb{C} l'équation : $z^2 (1+i)$ a z + i a² = 0.
- 2) Le plan est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

On désigne par A et B les points d'affixes respectives a et ia.

- a) Quelle est la nature du triangle OAB?
- b) Déterminer l'affixe du point C tel que OACB soit un carré.
- 3) Soient P et Q les points du plan tels que les triangles OAP et AQC sont équilatéraux de sens direct.
 - a) Montrer que l'affixe de P est égale à $(\frac{1}{2} + i\frac{\sqrt{3}}{2})$ a .
 - b) Calculer l'affixe du point Q.
 - c) Montrer que les points B, P et Q sont alignés.

Exercice 3 (3 points)

- 1) On considère dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E) : 7 x + 18 y = 9.
 - a) Montrer que le couple (9,-3) est une solution particulière de l'équation (E).
 - b) Résoudre dans $\mathbb{Z} \times \mathbb{Z}$ l'équation (E).
- 2) Résoudre alors dans \mathbb{Z} , le système $\begin{cases} n \equiv 6 \pmod{7} \\ n \equiv 15 \pmod{18} \end{cases}$

Exercice 4 (5 points)

On considère dans le plan orienté un carré ABCD de centre O tel que $(\widehat{AB}, \widehat{AD}) \equiv \frac{\pi}{2} [2\pi]$.

On note I, J et K les milieux respectifs des segments [AB], [CD] et [AD].

Soit S la similitude directe qui transforme A en O et B en J.

- 1) Montrer que S est de rapport $\frac{1}{2}$ et d'angle $\frac{\pi}{2}$.
- 2) a) Déterminer les images des droites (BC) et (AC) par S.
 - b) En déduire S(C).
- 3) a) Déterminer l'image du carré ABCD par S.
 - b) En déduire que S(D) = K.
 - c) Soit Ω le centre de S. Montrer que Ω est le barycentre des points pondérés (C ,1) et (K , 4).
 - d) Soit E le milieu du segment [OD]. Montrer que SoS(A) = E.
 - e) Construire Ω .
- 4) Montrer que les droites (AE), (CK) et (DI) sont concourantes.

Exercice 5 (5 points)

- 1) Soit g la fonction définie sur $]0,+\infty[$ par $g(x) = 1 + x x \ln x.$
 - a) Etudier les variations de g.
 - b) En déduire que l'équation g(x)=0 admet une unique solution x_0 dans $\left]0,+\infty\right[$. Vérifier que $3,5 < x_0 < 3,6$.
 - c) En déduire le signe de g.
- 2) Soit f la fonction définie sur $]0,+\infty[$ par $f(x) = \frac{\ln x}{1+x^2}$.

On désigne par (C) la courbe représentative de f dans un repère orthonormé (O, \vec{i} , \vec{j}).

- a) Calculer f'(x) et vérifier que f'(x) = $\frac{g(x^2)}{x(1+x^2)^2}$.
- b) Dresser le tableau de variation de f.
- c) Vérifier que $f(\sqrt{x_0}) = \frac{1}{2 x_0}$.
- d) Tracer la courbe (C). (On prendra $x_0 \approx 3.6$)
- 3) Soit (a_n) la suite définie sur \mathbb{N}^* par $a_n = \int_1^{\frac{1}{n}} f(t) dt$.
 - a) Montrer que la suite (an) est croissante.
 - b) Montrer que pour tout x de l'intervalle]0,1[, $\ln x \le f(x) \le \frac{1}{2} \ln x$.
 - c) En déduire que $\frac{1}{2}\left(1-\frac{1+\ln n}{n}\right) \le a_n \le 1-\frac{1+\ln n}{n}$.
 - d) Montrer alors que la suite (a_n) est convergente et que sa limite appartient à l'intervalle $[\frac{1}{2},1]$.