Simplex

Nome: Rafael Gonçalves — RA: 186062

Algoritimo para calculo de problema de programação linear desenvolvido para a matéria EA044 e implementado usando Python 3.

Uso:

No terminal, na mesma pasta que o arquivo main.py digite: python -m main.

Dê os coeficientes da função objetivo a ser minizada, em seguida os coeficientes das restrições e seu valor rhs na mesma linha, separada por espaços. Cada restrição deve estar em uma linha e separada por um Enter. Feito isso aperte Enter 2 vezes e o algoritimo deve resolver o problema. O problema deve estar na forma padrão para ser minizado.

Obs: Para usar com um arquivo de texto, digite:

python -m main < <file>

Onde é o arquivo de texto como descrito acima, com a função objetivo na primeira linha e cada restrição nas linhas subsequentes. Não esqueça de adicionar 2 linhas vazias no fim do arquivo.

Exemplo:

[lib/zero_not_feasible]
1 2 0 0 0
1 1 -1 0 0 2
-1 1 0 -1 0 1
0 1 0 0 -1 3

Exemplos:

Teste 1:

```
\begin{array}{ll} \text{Minimizar } v = -3x_0 - 2x_1 \\ \text{Sujeito a:} \\ 2x_0 + 1x_1 + 1x_2 &= 18 \\ 2x_0 + 3x_1 &+ 1x_3 &= 42 \\ 3x_0 + 1x_1 &+ 1x_4 = 24 \end{array}
```

Solução:

[test/optimal]

Give the coefficients of the objective function being minimized >-3 -2 0 0 0

Give the coefficients of the left hand size of the constraints and the right hand size of the

>2 1 1 0 0 18

>2 3 0 1 0 42

>3 1 0 0 1 24

>

All non-basic variables in ${\tt O}$ is possible solution.

...skipping phase 1.

Initializing phase 2.

Iteration 0

1	-3.00	-2.00	0.00	0.00	0.00	0.00
x2	2.00	1.00	1.00	0.00	0.00	18.00
x3	2.00	3.00	0.00	1.00	0.00	42.00
x4	3.00	1.00	0.00	0.00	1.00	24.00

v = 0.00, x1 = 0.00, x2 = 0.00, x3 = 18.00, x4 = 42.00, x5 = 24.00

Enter: x0
Leave: x4

Iteration 1

1	 -1.00	0.00	0.00	1.00	24.00
•	0.33	•		•	•
	2.33 0.33			•	•

v = -24.00, x0 = 8.00, x1 = 0.00, x2 = 2.00, x3 = 26.00, x4 = 0.00

Enter: x1
Leave: x2

Iteration 2

1	0.00	0.00	3.00	0.00	-1.00	30.00
•		•	3.00 -7.00		•	
		•	-1.00	•	•	•

v = -30.00, x0 = 6.00, x1 = 6.00, x2 = 0.00, x3 = 12.00, x4 = 0.00

Enter: x4 Leave: x3

It	era	ιti	on	3
----	-----	-----	----	---

1	0.00	0.00	1.25	0.25	0.00	33.00
•			•	0.50 0.25		
•				-0.25		

$$v = -33.00$$
, $x0 = 3.00$, $x1 = 12.00$, $x2 = 0.00$, $x3 = 0.00$, $x4 = 3.00$

...phase 2 done.

Optimal solution:

Iterations: 0 (phase 1) + 3 (phase 2) = 3 v = -33.00, x0 = 3.00, x1 = 12.00, x2 = 0.00, x3 = 0.00, x4 = 3.00

Done.

Teste 2:

Minimizar
$$v = -0.3x_0 - 0.2x_1 - 0.1x_2$$

Sujeito a:

$$3x_0 + 2x_1 + 1x_2 + 1x_3$$
 = 2
 $-1x_0 + 1x_1$ = 5
 $10x_0 + 30x_2$ $-1x_5 = 10$

Solução:

[test/multiple]

Give the coefficients of the objective function being minimized

>-0.3 -0.2 -0.1 0 0 0

Give the coefficients of the left hand size of the constraints and the right hand size of the $>3\ 2\ 1\ 1\ 0\ 0\ 2$

>-1 1 0 0 1 0 5

>10 0 30 0 0 -1 10

>

Initializing phase 1.

Iteration 0

1 | -10.00 | 0.00 | -30.00 | 0.00 | 1.00 | 0.00 | 0.00

x3	3.00	2.00	1.00	1.00	0.00	0.00	0.00	2.00
x4	-1.00	1.00	0.00	0.00	1.00	0.00	0.00	5.00
x6	10.00 l	0.00	30.00 l	0.00	0.00	-1.00 l	1.00 l	10.00

Enter: x2
Leave: x6

1

1	0.00	0.00	0.00	0.00	0.00	0.00	1.00	10.00
x3	2.67	2.00	0.00	1.00	0.00	0.03	-0.03	1.67
x4	-1.00	1.00	0.00	0.00	1.00	0.00	0.00	5.00
x2	0.33	0.00	1.00	0.00	0.00	-0.03	0.03	0.33

...phase 1 done.

Initializing phase 2.

Iteration 0

1	-0.27	-0.20	0.00	0.00	0.00	-0.00	0.03
•	2.67	•	•	•	•	•	•
	0.33						

v = -0.03, x1 = 0.00, x2 = 0.00, x3 = 0.33, x4 = 1.67, x5 = 5.00, x6 = 0.00

Enter: x0
Leave: x3

Iteration 1

1	0.00	0.00	0.00	0.10	0.00	0.00	0.20
x0	1.00	0.75	0.00	0.38	0.00	0.01	0.62
x4	0.00	1.75	0.00	0.38	1.00	0.01	5.62
x2	0.00	-0.25	1.00	-0.12	0.00	-0.04	0.12

v = -0.20, x0 = 0.62, x1 = 0.00, x2 = 0.12, x3 = 0.00, x4 = 5.62, x5 = 0.00

...phase 2 done.

Multiple solutions

Showing one optimal solution:

Iterations: 1 (phase 1) + 1 (phase 2) = 2

v = -0.20, x0 = 0.62, x1 = 0.00, x2 = 0.12, x3 = 0.00, x4 = 5.62, x5 = 0.00

Done.

Teste 3:

Minimizar $v = -10x_0 - 22x_1 - 15x_2$

Sujeito a:

 $1x_0 + 1x_1 - 1x_2 + 1x_3 = 200$

 $-1x_0 + 1x_1 + 1x_4 = 10$

Solução:

[test/unbounded]

Give the coefficients of the objective function being minimized

>-10 -22 -15 0 0

Give the coefficients of the left hand size of the constraints and the right hand size of the >1 1 -1 1 0 200

>-1 1 0 0 1 10

>

All non-basic variables in 0 is possible

solution.

...skipping phase 1.

Initializing phase 2.

Iteration 0

1	-10.00	-22.00	-15.00	0.00	0.00	0.00
x3	1.00	1.00	-1.00	1.00	0.00	200.00
x4 l	-1.00 l	1.00 l	0.00	0.00	1.00 l	10.00 l

$$v = 0.00$$
, $x1 = 0.00$, $x2 = 0.00$, $x3 = 0.00$, $x4 = 200.00$, $x5 = 10.00$

Enter: x1 Leave: x4

Iteration 1

1 | -32.00 | 0.00 | -15.00 | 0.00 | 22.00 | 220.00 |

x3 | 2.00 | 0.00 | -1.00 | 1.00 | -1.00 | 190.00 | x1 | -1.00 | 1.00 | 0.00 | 1.00 |

v = -220.00, x0 = 0.00, x1 = 10.00, x2 = 0.00, x3 = 190.00, x4 = 0.00

Enter: x0
Leave: x3

Iteration 2

1	0.00	0.00	-31.00	16.00	6.00	3260.00
x0	1.00	0.00	-0.50	0.50	-0.50	95.00
x1	0.00	1.00	-0.50	0.50	0.50	105.00

v = -3260.00, x0 = 95.00, x1 = 105.00, x2 = 0.00, x3 = 0.00, x4 = 0.00

Enter: x2
Iteration 3

1		0.00	-31.00	16.00	6.00	3260.00
x0	1.00	0.00	-0.50	0.50	-0.50	95.00
x1	0.00	1.00	-0.50	0.50	0.50	105.00

v = -3260.00, x0 = 95.00, x1 = 105.00, x2 = 0.00, x3 = 0.00, x4 = 0.00

...phase 2 done.

Unbounded solution

Iterations: 0 (phase 1) + 3 (phase 2) = 3

v and solutions tend to infinity.

Done.