לוגיקה הרצאה 2

הגדרה אינדוקטיבית ־ של קבוצה

העולם-W

מוכל ב W קבוצת בסיס

יצירה פעולות פעולי יצירה הבוצת יצירה $^{\rm T}$

מוכלת ב עם מוגדרת מוגדרת עובדה מקיימת: $X_{B,F}$

 $X_{B,F}$ מוכל ב B .1

. $X_{B,F}$ שייך ל $f(x_1,...,x_n)$ אייך ל איז אייך ל איז אייך ל $X_{B,F}$ שייך ל .2

. בו את את שמקיימת שמקיימת הוא קבוצה מינימלית $X_{B,F}$

$$X_{B,F} = \cup X_i$$
 הראינו ש

$$X_1 = B$$

$$X_1 = B$$
$$X_{i+1} = X_i \cup F(X_i)$$

משפט ההוכחה באינדוקציה

 $X_{B,F}\subseteq Y$ נתונים אז F,B עבור (א) ו־(ב) אם קבוצה אם קבוצה

הוכחה באינדוקציית מבנה:

 $X_{B,F}\subseteq Y$ כדי להוכיח

 $B \subseteq Y$.1

.F סגורה ל־ Y .2

 $b \in X_{B,F}$ להראות

נראה $\underline{\sigma}$ ברת יצירה a_n כך ש־

 $1 \leq i \leq n$ ולכל $a_n = b$

.Fה מעולה פעולה ע"י הפעלהת מהקודמים או התקבלה או התקבלה או $a_i \in B$

ונראה T (קבוצה) נציע עכונה $b \notin X_{B,F}$ ונראה

 $X_{B,F} \subseteq T$

 $b \not\in T$

לוגיקה - תחשיב מורכב מ־

- הגדרה סינטקטית של שפה
- הגדרה של הסמנטיקה של מילים בשפה
- מערכת הוכחה עם אכסיומות וכללי היסק שמאפשרת להוכיח "משפטים"
- קשור בין אוסף הנוסחאות וייכיחיות(יש אפשרות להוכיח אותן) לבין סמנטיקה.

תחשביב הפסוקים

סינטקס של תחשיב הפסיקים

A,B,C "משתנים" דוגמאות "משתנים" ((A o B) o (B o A)),(A o B),(+A) "השמש זורחת נסמן A ו"מ נסמן ע"י ($A\wedge B$) השמש זורח וחם בחוץ ($A\wedge B$) אם השמש זורחת אז חם בחוץ

הגדרה של הסינטקס של תחשיבי הפסוקים

קבוצה הפסוקים היא הקבוצה האינדוקטיבית שמוגדרת באופן הבא:

$$W=(\{\lor,\land,\lnot,\rightarrow,(,),\}\cup\{p_i|i\in N\})$$
 בסיס: $B=\{p_i|i\in N\}$ נקראות פסוקים אטומיים p_i

נקו אוונים p_i הפעולות:

 $F = \{F_{\neg}, F_{\wedge}, F_{\vee}, F_{\rightarrow}\} \bullet$

$$F_{\neg}(\alpha) = (\neg \alpha) \bullet$$

$$F_{\vee}(\alpha,\beta) = (\alpha \vee \beta) \bullet$$

$$F_{\wedge}(\alpha,\beta) = (\alpha \wedge \beta) \bullet$$

$$F_{\rightarrow}(\alpha,\beta) = (\alpha \rightarrow \beta) \bullet$$

:איך נראה ש

(פסוק חוקי בשפה) ($(p_5 \wedge p_{11}) o (p_6 o p_5))$

- p_5 .1
- p_{11} .2
- $(p_5 \vee p_{11})$.3
 - p_6 .4
- $(p_6 \rightarrow p_5)$.5
- $((p_5 \land p_{11}) \to (p_6 \to p_5))$.6

? מסוק $p_2(p_1:$

נוכיח:

תכונה: כל פסוק הוא או אטומי או שמספר הסוגריים הפתוחים שווה למספר הסוגריים הסגורים.

הוכחה באינדוקציית מבנה:

בסיס לכל פסוק אטומי יש תחונה.

שמקיימים את התכונה lpha,eta שמקיימים את התכונה .ב־ α יש א סוגריים מכל סוג ב־ β יש ח סוגריים מכל סוג. $(\alpha \to \beta) = F_{\to}(\alpha, \beta)$ נסתכל על המקרה הפעלת n+k+1 יש תכונה. (מספר הסוגריים מכל סוג (lpha
ightarrow eta) צ"ל ל

מסקנה מההוכחה ש־ $p_2(p_1)$ אינו פסוק.(צריך היה להראות לכל פעולה). $eta=b_1\cdots b_k, lpha=a_1\ldots a_n$ עבור סדרות סימנים לא ריקות lpha ו־ eta כך ש־

$a_i = b_i$ מתקיים ו $1 \leq i \leq n$ ובנוסף לכל אם אם של של של הוא רישא של מ

- abab של הוא רישא של ab
- aabc הוא רישא של ab
- $(n < k) \alpha \neq \beta$ ו הוא α של β אם α רישא של α הוא $\alpha \bullet$

מספר α מספר לכל פסוק β , אם α הוא ביטוי שהוא רישא ממש לא ריקה של הסוגריים השמאליים

גדול ממש ממספר הסוגריים הימניים.

מסקנה α לא פסוק

דוגמאות:

$$\underbrace{((p_5 \to p_6) \lor (p_7 \land p_{11})}_{\alpha}$$

דוגמה לשפה חדשה שאין בה סוגריים ולכן אין בה קריאה יחידה:

 $a \wedge b \wedge c$ סדרת סימנים

 $c, a \wedge b$ על \wedge (1)

 $b \lor c, a$ על (2)

משפט הקריאה היחידה

- \square אם יש פסוקים β_1,γ_1 וקשר α אם יש מיש כך .1 כך ש־ $\alpha=(\beta_2\square\gamma_2)$ ש בנוסף יש פסוקים $\alpha=(\beta_2\triangle\alpha_2)$ וקשר $\alpha=(\beta_2\triangle\alpha_2)$ וקשר $\alpha=(\beta_2\alpha_2)$ וי $\alpha=(\beta_2\alpha_2)$ אז בהכרח $\alpha=(\beta_2\alpha_2)$ וי $\alpha=(\beta_2\alpha_2)$ אז בהכרח $\alpha=(\beta_2\alpha_2)$ וי $\alpha=(\beta_2\alpha_2)$ וי $\alpha=(\beta_2\alpha_2)$ אז בהכרח
- 2. לכל פסוק α , אם יש פסוק β כך ש־ $(\neg\beta)$ אז אין קשר β^* ואם קיים $\alpha=(\gamma\Box\delta)$ כך ש־ γ,δ כך ש־ $\beta=\beta^*$ אז $\alpha=(\neg\beta^*)$ כך ש־ $\beta=\beta^*$ אז $\alpha=(\neg\beta^*)$

 $eta_1,eta_2,\gamma_1,\gamma_2,\square,\triangle$ שיש נניח בשלילה נניח נניח $lpha=(eta_1\square\gamma_1)=(eta_2\triangle\gamma_2)$ ניח טענות טענות המשפט

$$lpha=\underbrace{a_1}_{(\underbrace{b_1}_{b2)}}\underbrace{a_2\dots a_n}_{b2)}\,eta_1
eq eta_2$$
 נניח נניח eta_1

נניח ש־ β_1 הוא רישא ממש של β_1 הוא פסוק ולפי מסקנה מתכונה, β_1 הוא פסוק ולפי מסקנה ממטוק ולכן β_1 אינו פסוק. דישא ממש של פסוק אינו פסוק ולכן β_2,β_1 שחירה לעובדה ש־ $\beta_1,\beta_1=\beta_2$ מסקנה $\beta_1=\beta_2$

 $eta_1=eta_2$ ידוע ידוע $\dfrac{-}{\Box}
eq \triangle$ אבל $\alpha=\underbrace{a_1}_{b2} \ldots \underbrace{a_k}_{\Delta} \underbrace{a_n}_{\Delta}$

ולכן זהים באותו מקום ב־ α ולכן זהים. \Box

 $\gamma_1 \neq \gamma_2$ ונניח $\square = \triangle, \beta_1 = \beta_2$ ידוע איזוע באות. לא יתכן כי שתיהן מתחילות באותו מקום ב־ α ונמשכות עד הסוף ולכן זהות. כתוצאה מהקריאה היחידה אפשר להתאים לכל פסוק עץ יצירה שהעולם שלו הם פסוקים אטומיים ובכל צומת פנימי יש קשר, אם הקשר הוא \neg אז יש לצומת בן יחיד. אם הוא \rightarrow, \lor, \lor אז יש לו 2 בנים.

$$(((A \rightarrow B) \lor (\neg C)) \land (X_{17} \rightarrow (A \lor B)))$$

משפט הקריאה היחידה מבטיח לנו כי לכל פסוק קיים עץ יחיד.

שמנטיקה מטרה להתאים ערך אמת או שקר לפסוקים האטומיים ומזה להסיק ערך אמת או שקר

לפסוק כולו.

T - אמת אמת F - שקר

 $\{T,F\}$:ערכי אמת

 $\{T,F\}$ השמה היא פונקציה מקבוצה הפסוקים האטומיים לקבוצה

$$V: \{p_i|i \in N\} \to \{T, F\}$$

$$V_2(p_i) = \begin{cases} T & i\%2 = 0\\ F & i\%2 \neq 0 \end{cases}$$

סמנטיקה לפסוק כלשהו:

$$V:\{p_i|i\in\mathbb{N}\} o\{T,F\}$$
 בהנתן נגדיר $\{T,F\} o\{T,F\}$ קבוצת הפסוקים: $\overline{V}:X_{B,F} o\{T,F\}$

נגדיר פונקציות טבלת אמת:

$$TT_\neg:\{T,F\}\to\{T,F\}$$

$$TT_{\wedge}: \{T, F\} \wedge \{T, F\} \rightarrow \{T, F\}$$

$$TT_{\vee}: \{T,F\} \vee \{T,F\} \rightarrow \{T,F\}$$

$$TT_{\rightarrow}: \{T,F\} \rightarrow \{T,F\} \rightarrow \{T,F\}$$