# Reviews from chap1 to chap4

# Reviews from chap1 to chap4

- Framework for describing algorithms
- Correctness of algorithms
- Efficiency of algorithms
- Divide and Conquer
- Asymptotic analysis of function (新近分析)
- Recurrences

# Reviews from chap1 to chap4

## Examples:

- Merge sort
- Multiplication of two integers
- Multiplication of two matrices
- Finding Minimum and Maximum
- Majority problem (多数问题)
- Branch growth (树枝生长)

# Exam1 Merge Sort

• • • • •

Multiplication of two integers (整数相乘问题)

$$31415962$$
 $\times 27182818$ 
?

 $X = x_{n-1}x_{n-2}...x_0$ , $Y = y_{n-1}y_{n-2}...y_0$ ,其中  $0 \le x_i$ , $y_j \le 9$  (i , j = 0, 1, ... , n-1) ,设计一个算法求  $X \times Y$ ,并分析其计算复杂度。说明:算法中"基本操作"约定为两个个位整数相乘  $x_i \times y_j$ 、两个整数相加、除以10、等等;这里的输入规模 n 表示输入数据的大小(位长),而不是输入数据的个数。

### two *n*-digit numbers *X* and *Y*, Complexity( $X \times Y$ ) = ?

(1) Naive (原始的) pencil-and-paper algorithm



Complexity analysis:  $n^2$  multiplications and at most  $n^2$ -1 additions (加法).

two *n*-digit numbers *X* and *Y*, Complexity( $X \times Y$ ) = ?

# (2) Divide and Conquer algorithm

Let 
$$X = ab$$
  
 $Y = cd$ 

where a, b, c and d are n/2 digit numbers, e.g.  $1364 = 13 \times 10^2 + 64$ .

Let 
$$m = n/2$$
. Then
$$XY = (10^{m}a+b)(10^{m}c+d)$$

$$= 10^{2m}ac+10^{m}(bc+ad)+bd$$

#### two *n*-digit numbers *X* and *Y*, Complexity( $X \times Y$ ) = ?

(2) Divide and Conquer algorithm

```
Let X = ab, Y = cd
then XY = (10^m a + b)(10^m c + d) = 10^{2m} ac + 10^m (bc + ad) + bd
```

```
Multiply(X; Y; n)

if n = 1

return X×Y

else

m = \lceil n/2 \rceil

a = \lfloor X/10^m \rfloor, b = X \mod 10^m

c = \lfloor Y/10^m \rfloor, d = Y \mod 10^m

e = \text{Multiply}(a; c; m)

f = \text{Multiply}(b; d; m)

g = \text{Multiply}(b; c; m)

h = \text{Multiply}(a; d; m)

return 10^{2m}e + 10^m(g + h) + f
```

#### Complexity analysis:

$$T(1) = 1,$$
  
 $T(n) = 4T(\lceil n/2 \rceil) + O(n).$   
Applying Master Theorem,

$$T(n) = ?$$

two *n*-digit numbers *X* and *Y*, Complexity( $X \times Y$ ) = ?

(3) Divide and Conquer (Karatsuba's algorithm) 卡拉茨巴算法

```
Let X = ab, Y = cd
then XY = (10^m a + b)(10^m c + d) = 10^{2m} ac + 10^m (bc + ad) + bd
Note that bc + ad = ac + bd - (a - b)(c - d). So, we have
```

```
FastMultiply(X; Y; n)

if n = 1

return X×Y

else

m = \lceil n/2 \rceil

a = \lfloor X/10^m \rfloor, b = X \mod 10^m

c = \lfloor Y/10^m \rfloor, d = Y \mod 10^m

e = \text{FastMultiply}(a; c; m)

f = \text{FastMultiply}(b; d; m)

g = \text{FastMultiply}(a-b; c-d; m)

return 10^{2m}e + 10^m(e + f - g) + f
```

#### Complexity analysis:

$$T(1) = 1,$$
  
 $T(n) = 3T(\lceil n/2 \rceil) + O(n).$   
Applying Master Theorem,  
 $T(n) = ?$ 

two *n*-digit numbers *X* and *Y*, Complexity( $X \times Y$ ) = ?

Divide and Conquer (Karatsuba's algorithm)

```
FastMultiply(X; Y; n)

if n = 1

return X×Y

else

m = \lceil n/2 \rceil

a = \lfloor X/10^m \rfloor, b = X \mod 10^m

c = \lfloor Y/10^m \rfloor, d = Y \mod 10^m

e = \text{FastMultiply}(a; c; m)

f = \text{FastMultiply}(b; d; m)

g = \text{FastMultiply}(a-b; c-d; m)

return 10^{2m}e + 10^m(e+f-g) + f
```

$$T(n) = ?$$

1960年,一位名叫 Anatoly Karatsuba (安德烈·阿列克谢耶维奇·卡拉茨巴)的 23岁的俄罗斯数学家发明,于1962年发表。

A. Karatsuba, Yu. Ofman, "Multiplication of many-digital numbers by automatic computers", Doklady Akademii Nauk SSSR, 1962, Volume 145, Number 2, Pages 293–294.

n 很大时(如10000,或更大),可用 FFT 或中国余数定理

#### (3) Divide and Conquer (Karatsuba's algorithm)

学算法,不满足于刷题(虽然有的同学AC能力很强,有的同学WA的很痛苦), 有的同学WA的很痛苦), 读原著,算法研究与应用, 也很有趣。希望同学们可以 思考算法问题,尝试写点小 论文,如→ A. Karatsuba, Yu. Ofman, "Multiplication of many-digital numbers by automatic computers", Doklady Akademii Nauk SSSR, 1962, Volume 145, Number 2, Pages 293–294.

#### Karatsuba 算法的应用研究

| 佟凤辉;樊晓桠;王党辉

【摘要】文章从 Karatsuba 提出的乘法算法入手,经过逻辑推导,得出一个易于实现的逻辑代数式,根据这个逻辑式设计了一个具有流水线结构的乘法器.并对吞吐率、加速比和效率等性能指标做了详细的分析,用这个算法设计的乘法器结构简单、易于实现流水化,适合于数据量大的定点数的计算.

【期刊名称】《计算机工程与应用》

【年(卷),期】2002(038)012

【总页数】3页(P43-44,216)

【关键词】Karatsuba 算法 流水线 吞吐率 加速比

【作者】佟凤辉;樊晓桠;王党辉

【作者单位】西北工业大学航空微电子中心,西安,710072;西北工业大学航空微电子中心,西安,710072;西北工业大学航空微电子中心,西安,710072

Multiplication of two matrices (矩阵相乘问题)

**A**和**B**是两个*n*阶实方阵,表示为**A**=
$$\begin{pmatrix} a_{11}...a_{1n} \\ ..... \\ a_{n1}...a_{nn} \end{pmatrix}$$
,**B**= $\begin{pmatrix} b_{11}...b_{1n} \\ ..... \\ b_{n1}...b_{nn} \end{pmatrix}$ 

设计一个算法求 A×B, 并分析计算复杂度。

说明: 算法中"基本操作"约定为两个实数相乘,或两个实数相加。

two  $n \times n$  matrices **A** and **B**, Complexity( $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ ) = ?

#### (1) Standard method

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

#### MATRIX-MULTIPLY(A, B)

```
for i \leftarrow 1 to n

for j \leftarrow 1 to n

\mathbf{C}[i,j] \leftarrow 0

for k \leftarrow 1 to n

\mathbf{C}[i,j] \leftarrow \mathbf{C}[i,j] + \mathbf{A}[i,k] \cdot \mathbf{B}[k,j]

return \mathbf{C}
```

#### Complexity:

 $O(n^3)$  multiplications and additions.

$$T(n) = O(n^3).$$

two  $n \times n$  matrices **A** and **B**, Complexity( $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ ) = ?

#### (2) Divide and conquer

An  $n \times n$  matrix can be divided into four  $n/2 \times n/2$  matrices,

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

$$\mathbf{C}_{11} = \mathbf{A}_{11}\mathbf{B}_{11} + \mathbf{A}_{12}\mathbf{B}_{21}, \ \mathbf{C}_{12} = \mathbf{A}_{11}\mathbf{B}_{12} + \mathbf{A}_{12}\mathbf{B}_{22}$$
  
 $\mathbf{C}_{21} = \mathbf{A}_{21}\mathbf{B}_{11} + \mathbf{A}_{22}\mathbf{B}_{21}, \ \mathbf{C}_{22} = \mathbf{A}_{21}\mathbf{B}_{12} + \mathbf{A}_{22}\mathbf{B}_{22}$ 

#### Complexity analysis:

Totally, 8 multiplications (subproblems), and 4 additions ( $n/2 \times n/2 \times 4$ ).

$$T(1) = 1$$
,  $T(n) = 8T(\lceil n/2 \rceil) + n^2$ .

Applying Master Theorem, we have  $T(n) = O(n^3)$ .

two  $n \times n$  matrices **A** and **B**, Complexity( $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ ) = ?

(3) Divide and conquer (Strassen Algorithm, 斯特拉森)

Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 14(3):354–356, 1969.

### [引用] Gaussian elimination is not optimal

V Strassen - Numerische mathematik, 1969 - Springer

... This fact should be compared with the result of KLYUYEV and KOKOVKINSHCHERBAK [1] that Gaussian elimination for solving a system of linearequations is optimal if one restricts ...

☆ 保存 奶 引用 被引用次数: 3774 相关文章 所有 8 个版本

two  $n \times n$  matrices **A** and **B**, Complexity( $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ ) = ?

(3) Divide and conquer (Strassen Algorithm, 斯特拉森)

An  $n \times n$  matrix can be divided into four  $n/2 \times n/2$  matrices,

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} \\ \mathbf{A}_{21} & \mathbf{A}_{22} \end{bmatrix} \quad , \quad \mathbf{B} = \begin{bmatrix} \mathbf{B}_{11} & \mathbf{B}_{12} \\ \mathbf{B}_{21} & \mathbf{B}_{22} \end{bmatrix} \quad , \quad \mathbf{C} = \begin{bmatrix} \mathbf{C}_{11} & \mathbf{C}_{12} \\ \mathbf{C}_{21} & \mathbf{C}_{22} \end{bmatrix}$$

Define 
$$P_1 = (A_{11} + A_{22})(B_{11} + B_{22})$$
  
 $P_2 = (A_{11} + A_{22})B_{11}$   
 $P_3 = A_{11} (B_{11} - B_{22})$   
 $P_4 = A_{22} (-B_{11} + B_{22})$   
 $P_5 = (A_{11} + A_{12})B_{22}$   
 $P_6 = (-A_{11} + A_{21})(B_{11} + B_{12})$   
 $P_7 = (A_{12} - A_{22})(B_{21} + B_{22})$   
Then  $C_{11} = P_1 + P_4 - P_5 + P_7$ ,  $C_{12} = P_3 + P_5$   
 $C_{21} = P_2 + P_4$ ,  $C_{22} = P_1 + P_3 - P_2 + P_6$ 

Complexity analysis:

Totally, 7 multiplications,

And 18 additions.

$$T(1) = 1$$
,

$$T(n) = 7T(\lceil n/2 \rceil) + cn^2.$$

Applying Master Theorem,

$$T(n) = ?$$

two  $n \times n$  matrices **A** and **B**, Complexity( $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ ) = ?

# Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.

Matrix multiplication via arithmetic progressions D Coppersmith, S Winograd

$$T(n) = O(n^{2.376})$$

Proceedings of the nineteenth annual ACM symposium on Theory of computing, 1987 • dl.acm.org

We present a new method for accelerating matrix multiplication asymptotically. This work builds on recent ideas of Volker Strassen, by using a basic trilinear form which is not a matrix product. We make novel use of the Salem-Spencer Theorem, which gives a fairly dense set of integers with no three-term arithmetic progression. Our resulting matrix exponent is 2.376.

ACM Digital Library

被引用次数:3995 相关文章 所有 11 个版本

作业: 读原著。实现算法。 出一道上机题?用作某一次 考试 (n = 1000)?

$$O(n^3) \Rightarrow O(n^{2.807})$$
$$\Rightarrow O(n^{2.376}) \Rightarrow ?$$

启示: 求解一类问题的某个 算法被提出,如果未被证明 是最优的,通常还有更优的 算法存在 (等着你去发现)

Find the lightest and heaviest of n elements using a balance that allows you to compare the weight of 2 elements. (对于一个具有n个元素的数组,用一个天平,通过比较 2个元素的重量,求出最轻和最重的一个)



Goal

Minimize the number of comparisons. (最少的比较次数?)

Max element: Find element with max weight (重量) from w[0, n-1]

```
maxElement = 0;
for (int i = 1; i < n; i++)
if (w[maxElement] < w[i])
maxElement = i;
```

Number of comparisons (比较次数) is *n*–1.

- (1) Obvious method (直接法)
- Find the max of n elements making n-1 comparisons.
- Find the min of the remaining n-1 elements making n-2 comparisons.
- Total number of comparisons is 2n-3.

#### (2) Divide and conquer



#### Example

- Find the min and max of {3, 5, 6, 2, 4, 9, 3, 1}.
  - $\mathbf{A} = \{3, 5, 6, 2\} \text{ and } \mathbf{B} = \{4, 9, 3, 1\}.$
  - min(A) = 2, min(B) = 1.
  - $\max(\mathbf{A}) = 6, \max(\mathbf{B}) = 9.$
  - $\min\{\min(\mathbf{A}), \min(\mathbf{B})\} = 1.$
- ◆ 选苹果;挑运动员; ......

#### (2) Divide and conquer

#### **Dividing Into Smaller Problems**



#### (2) Divide and conquer

**Dividing Into Smaller Problems** 



#### (2) Divide and conquer

```
MaxMin(L)

if length(L) = 1 or 2, we use at most one comparison.

else

{ split (分裂) L into lists L1 and L2, each of n/2 elements

(min1, max1) = MaxMin(L1)

(min2, max2) = MaxMin(L2)

return (Min(min1, min2), Max(max1, max2))
}
```

```
Complexity analysis (Number of Comparisons): T(1) = 0, T(2) = 1, T(n) = 2T(n/2) + 2 = 4T(n/4) + 2^2 + 2 = 2^3T(n/2^3) + 2^3 + 2^2 + 2 = \dots = 2^{k-1}T(n/2^{k-1}) + 2^{k-1} + \dots + 2 = 2^{k-1} + 2^{k-1} + \dots + 2 = 2^{k-1} + 2^k - 2 = 3n/2 - 2 \text{ (There, assume } n = 2^k, S_n = a(1-q^n)/(1-q) \text{ )}
```

Comparison between Obvious method (2n-3) and Divide-and-Conquer method (3n/2-2)

Assume that one comparison takes one second.

| Time     | 2n-3      | 3n/2-2    |
|----------|-----------|-----------|
| 1 minute | n = 31    | n = 41    |
| 1 hour   | n = 1801  | n = 2401  |
| 1 day    | n = 43201 | n = 57601 |

- Problem: Given an array A of n elements, only use "==" test to find the *majority* element (which appears more than n/2 times) in A.
- For example, given (2, 3, 2, 1, 3, 2, 2), then 2 is the majority element because 4 > 7/2.
- (1) Trivial solution:  $O(n^2)$

```
Majority(A[1, n])

for (i = 1 \text{ to } n)

M = 1

for (j = 1 \text{ to } n)

if (i != j \text{ and } A[i] == A[j])

M++

if (M > n/2) return "A[i] is the majortiy" return "No majortity"
```

#### (2) Divide and conquer

```
Majority(A[1, n])

if n = 1, then

return A[1]

else

m1 = \text{Majority}(A[1, n/2])

m2 = \text{Majority}(A[n/2+1, n])

test if m1 or m2 is the majority for A[1, n]

return majority or no majority.
```

 $\mathbf{A} = (2, 1, 3, 2, 1, 5, 4, 2, 5, 2)$ 

```
Complexity analysis (Counting):

T(n) = 2T(n/2) + O(n) = O(n\log n)
```

(3) However, there is a linear time algorithm for the problem. (假设最大元素不超过n)

```
for(i = 1 \text{ to } n)
++counting[A[i]]
M = Max(counting[...]) // A[j] 时取得MAX
if (M > n/2)
return "A[j] is the majority"
```

$$\mathbf{A} = (2, 1, 3, 2, 1, 5, 4, 2, 5, 2)$$

```
counting[1] = 2
counting[2] = 4
counting[3] = 1
counting[4] = 1
counting[5] = 2
```

What's the space complexity?

- (1) Trivial solution:  $O(n^2)$
- (2) Divide and conquer:  $O(n \log n)$
- (3) Counting (计数): Linear time algorithm O(n)

Moral (寓意) of the story?

Divide and conquer may not always give you the best solution!

#### Exam6 Branch growth (树枝生长)

# 1棵树枝2年后分叉(找出新树枝),第n年,顶端有多少棵树枝?











#### Exam6 Branch growth (树枝生长)

1棵树枝2年后分叉(找出新树枝),第n年,顶端有多少棵树枝?





#### Exam6 Branch growth (树枝生长)

1棵树枝2年后分叉(找出新树枝),第n年,顶端有多少棵树枝?



$$F(1)$$
  $F(2)$   $F(3)$   $F(4)$   $F(5)$   $F(6)$  ...  $F(n)$  1 1 2 3 5 8 ... ?

递归解: F(n) = F(n-1) + F(n-2)

计算时间: T(n) = T(n-1) + T(n-2)



#### Fibonacci Number

$$F(1)$$
  $F(2)$   $F(3)$   $F(4)$   $F(5)$   $F(6)$  ...  $F(n)$  1 1 2 3 5 8 ... ?

$$T(n) = T(n-1) + T(n-2)$$

- 1. 直接递归计算,  $T(n) = a^n (a \approx 1.6)$ , S(n) 也不小 (S: Space)
- 2. 用数组, T(n) = n, S(n) = n

$$F[2] = F[1] = 1$$
; for  $(i: 1 \rightarrow n)$   $F[i] = F[i-1] + F[i-2]$ ;

3. 用变量, T(n) = n, S(n) = const

for(
$$i: 1 \rightarrow n$$
)  $f = f1+f2, f2=f1, f1=f$ ;

4. 通项公式 (黄金分割) , T(n) = ?

$$F(n) = (1/\sqrt{5})^* \{ [(1+\sqrt{5})/2]^n - [(1-\sqrt{5})/2]^n \};$$

5. 用矩阵法, lg(n)

$$\begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n$$

6. 其他方法.....

#### Fibonacci Number - (递归与分治也可以比较复杂)

#### 例: 母牛的数量 (F题 SkyLee的艾露猫) (鼹鼠) (兔子)

一头 x 年出生的母牛从 x+m 年到 x+n 年间每年生出一头母牛,并在 x+p 年被淘汰。写一个程序,按顺序读入整数 m, n, p, k (3 < m < n < p < 60, 0 < k < 60),设第 0 年有一头刚出生的母牛,计算第 k 年时共存有多少头未被淘汰的母牛。(母牛会老也会死的情况)



第 *k* 年母牛的总数量 *T(k)* 

详细分析见PPT a03-1

第 k 年新生母牛 N(k)

$$T(k) = N(k-p+1) + N(k-p) + \dots + N(k-0)$$
 ----- (1)

$$N(k) = N(k-n) + N(k-n+1) + \dots + N(k-m)$$
 ----- (2)

T(n)的时间复杂度分析?

#### Exercises

Find the second heaviest of n elements using a balance that allows you to compare the weight of 2 elements. (对于一个具有n个元素的数组,用一个天平,通过比较2个元素的重量,求出第二重的一个)

Try to give an algorithm, and analyze its running time. If using divideand-conquer method, how to describe the algorithm? And its running time?

#### **Exercises**

two  $n \times n$  matrices **A** and **B**, Complexity( $\mathbf{C} = \mathbf{A} \times \mathbf{B}$ ) = ?

#### Standard method

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$T(n) = O(n^3)$$

#### **Strassen Algorithm**

$$T(n) = O(n^{2.807})$$

把这两种算法分别编程实现,给出若干输入,对比两种方法的基本操作的步数,并对结果给出你的认识和体会。