TTIC 31230 Fundamentals of Deep Learning

Quiz 3

Problem 1 (25 points). Consider the following running update equation.

$$y_0 = 0$$

$$y_t = \left(1 - \frac{1}{N}\right) y_{t-1} + x_t$$

(a) If the input sequence is constant, i.e., if $x_t=c$ for all $t\geq 1,$ what is $\lim_{t\to\infty}\ y_t?$

Solution:

The limit y must satisfy

$$y = \left(1 - \frac{1}{N}\right)y + c$$

giving y = Nc.

(b) y_t is a running average of what quantity?

Solution: The update can be rewritten as

$$y_t = \left(1 - \frac{1}{N}\right) y_{t-1} + \frac{1}{N}(Nx_t)$$

so y_t is the running average of Nx_t .

(c) Express y_t as a function of μ_t where μ_t is defined by

$$\mu_0 = 0$$

$$\mu_t = \left(1 - \frac{1}{N}\right)\mu_{t-1} + \frac{1}{N}x_t$$

Solution: y_t is the running average of Nx_t which equals N times the running average of x_t so we have

$$y_t = N\mu_t$$

Problem 2 (25 points). Consider any probability distribution P(h) over an discrete class \mathcal{H} . Assume $0 \leq \mathcal{L}(h, x, y) \leq L_{\text{max}}$. Define

$$\mathcal{L}(h) = E_{(x,y) \sim \text{Pop}} \mathcal{L}(h, x, y)$$

$$\hat{\mathcal{L}}(h) = E_{(x,y) \sim \text{Train}} \mathcal{L}(h, x, y)$$

We now have the theorem that with probability at least $1 - \delta$ over the draw of training data the following holds simultaneously for all h.

$$\mathcal{L}(h) \le \frac{10}{9} \left(\hat{\mathcal{L}}(h) + \frac{5L_{\text{max}}}{N} \left(\ln \frac{1}{P(h)} + \ln \frac{1}{\delta} \right) \right) \quad (1)$$

This motivates

$$h^* = \underset{h}{\operatorname{argmin}} \hat{\mathcal{L}}(h) + \frac{5L_{\max}}{N} \ln \frac{1}{P(h)}$$
 (2)

The Bayesian maximum a-posteriori (MAP) rule is

$$h^* = \underset{h}{\operatorname{argmax}} P(h) \prod_{(x,y) \in \text{Train}} P(y|x,h)$$
 (3)

For $\mathcal{L}(h, x, y) = -\ln P(y|x, h)$ (cross entropy loss) rewrite (2) so as to be as similar to (3) as possible. Keep in mind that

$$\hat{\mathcal{L}}(h) = \frac{1}{N} \sum_{(x,y) \in \text{Train}} -\ln P(y|x,h)$$

Solution:

$$\underset{h}{\operatorname{argmin}} \left(\frac{1}{N} \sum_{(x,y) \sim \operatorname{Train}} - \ln P(y|x,h) \right) + \frac{5L_{\max}}{N} \ln \frac{1}{P(h)}$$

$$= \underset{h}{\operatorname{argmax}} \left(\frac{1}{N} \sum_{(x,y) \sim \operatorname{Train}} \ln P(y|x,h) \right) + \frac{5L_{\max}}{N} \ln P(h)$$

$$= \underset{h}{\operatorname{argmax}} \ln \left(\sum_{(x,y) \sim \operatorname{Train}} \ln P(y|x,h) \right) + 5L_{\max} \ln P(h)$$

$$= \underset{h}{\operatorname{argmax}} \ln \left(P(h)^{5L_{\max}} \prod_{(x,y) \sim \operatorname{Train}} P(y|x,h) \right)$$

$$= \underset{h}{\operatorname{argmax}} \ln \left(P(h)^{5L_{\max}} \prod_{(x,y) \sim \operatorname{Train}} P(y|x,h) \right)$$

Problem 3 (25 points).

(a) Consider a model with d parameters each of which is represented by a 32 bit floating point number. Express the bound (1) in problem 2 in terms of the dimension d assuming all representable parameter vectors are equally likely.

Solution:

$$\mathcal{L}(h) \le \frac{10}{9} \left(\hat{\mathcal{L}}(h) + \frac{5L_{\max}}{N} \left(32d \ln 2 + \ln \frac{1}{\delta} \right) \right)$$

(b) Repeat part (a) but for a model with d parameters represented by $\Phi_i = z[J[i]]$ where J[i] is an integer index with $0 \le J[i] < 32$ and where z[j] is a 32 bit floating point number and where all parameter vectors are equally likely.

Solution:

$$\mathcal{L}(h) \le \frac{10}{9} \left(\hat{\mathcal{L}}(h) + \frac{5L_{\text{max}}}{N} \left((32^2 + 5d) \ln 2 + \ln \frac{1}{\delta} \right) \right)$$

Problem 4 (25 points). This problem is on dynamic programming for hidden Markov models (HMMs). Assume we have an input sequence x_1, \ldots, x_T and a phoneme gold label y_1, \ldots, y_T with $y_t \in \mathcal{P}$. This problem is simpler than CTC because the gold label has the same length as the input sequence.

In an HMM we assume a hidden state sequence s_1, \ldots, s_T with $s_t \in \mathcal{S}$ where \mathcal{S} is some finite sets of "hidden states". Here will assume that then some deep network has computed transition probabilities and emission probabilities.

$$P_{\text{Trans}}(s_{t+1} \mid s_t)$$

$$P_{\text{Emit}}(y_t \mid s_t)$$

We assume an initial state s_{init} and a stop state s_{stop} such that $s_1 = s_{\text{init}}$ (before emitting any phonemes). The length T is determined by when the hidden state becomes s_{stop} giving $s_{T+1} = s_{\text{stop}}$.

For a given gold sequence y_1, \ldots, y_T we define a "forward tensor" as

$$F[t,s] = P(y_1, \dots, y_{t-1} \land s_t = s)$$

We have

$$F[1, s_{\text{init}}] = 1$$

$$F[1, s] = 0 \text{ for } s \neq s_{\text{init}}$$

(a) Write a dynamic programming equation to compute F[t,s] from F[t-1,s'] for various values of s'.

Solution:

$$F[t, s] = \sum_{s'} F[t - 1, s'] P_{\text{Emit}}(y_{t-1}|s') P_{\text{Trans}}(s|s')$$

(b) Express $P(y_1, \ldots, y_T)$ in terms of F[t, s].

Solution:

$$P(y_1, \dots y_T) = F[T+1, s_{\text{stop}}]$$

(c) Explain why, if the forward equations are written in a framework, we do not need to also implement "backward" equations to compute

$$B[t,s] = P(y_t, \dots, y_T \mid s_t = s).$$

Solution: Once we have expressed the loss $-\ln P(y_1, \ldots, y_T)$ in a framework we can train the model by SGD using the framework's implementation of backpropagation. Nothing more is needed.