KOALA: A new paradigm for election coverage

An opinion poll based "now-cast" of probabilities of events in multi-party electoral systems

Alexander Bauer
Statistical Consulting Unit StaBLab, LMU Munich

DAGStat | March 20, 2019 | Munich

Alexander Bauer 1 / 17

Alexander Bauer Statistical Consulting Unit StaBLab, LMU Munich

DAGStat | March 20, 2019 | Munich

Alexander Bauer 1 / 17

Collaborators

Dr. Andreas Bender Nuffield Department of Clinical Medicine,

University of Oxford, United Kingdom

Dr. André Klima StaBLab, LMU Munich

Prof. Dr. Helmut Küchenhoff StaBLab, LMU Munich

Alexander Bauer 1 / 17

Outline

- 1. Motivation
- 2. Methods
- 3. Technical implementation
- 4. Results & Outlook

Alexander Bauer 2 / 17

Outline

- 1. Motivation
- 2. Methods
- 3. Technical implementation
- 4. Results & Outlook

Alexander Bauer 2 / 17

Questions of interest

- Which parties will pass the 5% hurdle and enter the parliament?
- Which parties will form the governing coalition?
- Which party will have the third largest share of votes?

Alexander Bauer 3 / 1'

Reported voter shares

Union	SPD	Greens	FDP	The Left	Pirates	AfD	Others
40%	26%	10%	5%	9%	2%	4%	5%

Redistributed voter shares (based on 5% hurdle)

Union	SPD	Greens	FDP	The Left	Pirates	AfD	Others
44.44%	28.89%	11.11%	5.56%	10.00%	-	-	-

- Union-FDP have a joint seat share of exactly 50%
- Stating that Union-FDP would thus miss a joint majority would neglect sample uncertainty

⇒ We calculate event probabilities that fully reflect sample uncertainty

Alexander Bauer 3 / 1

Reported voter shares

Union	SPD	Greens	FDP	The Left	Pirates	AfD	Others
40%	26%	10%	5%	9%	2%	4%	5%

Redistributed voter shares (based on 5% hurdle)

Union	SPD	Greens	FDP	The Left	Pirates	AfD	Others
44.44%	28.89%	11.11%	5.56%	10.00%	-	-	-

- Union-FDP have a joint seat share of exactly 50%
- Stating that Union-FDP would thus miss a joint majority would neglect sample uncertainty

⇒ We calculate event probabilities that fully reflect sample uncertainty

Alexander Bauer 3 / 1

Motivation

We aim to do now-casting

- We incorporate the uncertainty as reported by the polling agencies
- · Potential house biases or an industry bias are not accounted for

We do not aim to do for-casting

- Our approach simply communicates sample uncertainty in a novel way
- Also, a relevant share of voters is still undecided shortly before election day (Küchenhoff et al., 2018)

Alexander Bauer 4 / 17

Motivation

We aim to do now-casting

- We incorporate the uncertainty as reported by the polling agencies
- · Potential house biases or an industry bias are not accounted for

We do not aim to do for-casting

- Our approach simply communicates sample uncertainty in a novel way
- Also, a relevant share of voters is still undecided shortly before election day (Küchenhoff et al., 2018)

Alexander Bauer 4 / 17

Outline

- 1. Motivation
- 2. Methods
- 3. Technical implementation
- 4. Results & Outlook

Alexander Bauer 5 / 17

Estimating probabilities of events (POEs)

Given one opinion poll with sample size n:

$$\mathbf{X} = (X_1, \dots, X_P)^T \sim Multinomial(n, \theta_1, \dots, \theta_P),$$

with voter counts X_j and the true percentage of voters θ_j per party j (assuming a simple random sample, ignoring a possible bias)

Using an uninformative Dirichlet prior (Gelman et al., 2013)

$$heta=(heta_1,\ldots, heta_P)^{\mathsf{T}}\sim extit{Dirichlet}(lpha_1,\ldots,lpha_P),$$
 with $lpha_1=\ldots=lpha_P=rac{1}{2},$

the resulting posterior distribution of $\theta | x$ is again Dirichlet:

$$\theta | \mathbf{x} \sim Dirichlet(x_1 + 1/2, ..., x_P + 1/2).$$

Alexander Bauer $6\,/\,1$

Estimating probabilities of events (POEs)

Given one opinion poll with sample size n:

$$\mathbf{X} = (X_1, \dots, X_P)^T \sim Multinomial(n, \theta_1, \dots, \theta_P),$$

with voter counts X_j and the true percentage of voters θ_j per party j (assuming a simple random sample, ignoring a possible bias)

Using an uninformative Dirichlet prior (Gelman et al., 2013)

$$m{ heta} = (heta_1, \dots, heta_P)^T \sim extit{Dirichlet}(lpha_1, \dots, lpha_P),$$
 with $lpha_1 = \dots = lpha_P = rac{1}{2},$

the resulting posterior distribution of $\theta|x$ is again Dirichlet:

$$\theta | \mathbf{x} \sim Dirichlet(x_1 + 1/2, ..., x_P + 1/2).$$

Alexander Bauer $6\,/\,1$

2 Methods

Estimating probabilities of events (POEs)

Given the posterior distribution of voter shares we can use **Monte Carlo simulations** to estimate POEs:

- 1. Simulate 10 000 election outcomes from the posterior
- 2. If necessary: Redistribute voter shares to get obtained seats in parliament
- 3. POE = Percentage of simulations where event of interest occurred

Example

Given the Forsa poll, the coalition of Union-FDP obtained a majority of seats in 2 633 of 10 000 simulations

 \Rightarrow POF $\approx 26\%$

Alexander Bauer 7 / 17

Estimating probabilities of events (POEs)

Given the posterior distribution of voter shares we can use **Monte Carlo simulations** to estimate POEs:

- 1. Simulate 10 000 election outcomes from the posterior
- 2. If necessary: Redistribute voter shares to get obtained seats in parliament
- 3. POE = Percentage of simulations where event of interest occurred

Example

Given the Forsa poll, the coalition of Union-FDP obtained a majority of seats in 2633 of 10000 simulations

 \Rightarrow POE \approx 26%

Alexander Bauer 7 / 17

Voter shares

Alexander Bauer 8 / 17

Posterior distribution of joint CDU-FDP seat share

 \Rightarrow POE \approx 26%

Alexander Bauer 9 / 17

Plan:

- 1. Als Motivationsbeispiel die frueheste gepoolte Umfrage im 2013er Ridgeline Plot nehmen
- 2. Erstmal nur Ridgeline zeigen und Zeitverlauf animieren
- 3. Bei erster richtiger Bimodalitaet Animation anhalten und kurz daneben Unionund FDP-Stimmanteil-Zeitverlauf einblenden
- 4. Animation fertig laufen lassen (Union und FDP dabei wieder ausgeblendet)
- 5. Am Ende links den redistributed joint voter share und die POE-W'keiten einblenden

Alexander Bauer 10 / 1

Pooling

We aggregate multiple polls to reduce sample uncertainty. In case of multiple random samples:

$$\left(\sum_{i} X_{i1}, \dots, \sum_{i} X_{iP}\right)^{T} \sim Multinomial\left(\sum_{i} n_{i}, \theta_{1}, \dots, \theta_{P}\right).$$

We account for correlations between polling agencies by using an **effective sample size** (Hanley et al., 2003).

 \Rightarrow **Example:** Pooling two polls with 1500 and 2000 respondents (where the strongest party obtained 40%), we get a conservative effective sample size of $n_{\text{eff}} = 2341$.

Alexander Bauer 11 / 17

Pooling

We aggregate multiple polls to reduce sample uncertainty. In case of multiple random samples:

$$\left(\sum_{i} X_{i1}, \dots, \sum_{i} X_{iP}\right)^{T} \sim Multinomial\left(\sum_{i} n_{i}, \theta_{1}, \dots, \theta_{P}\right).$$

We account for correlations between polling agencies by using an **effective sample size** (Hanley et al., 2003).

 \Rightarrow **Example:** Pooling two polls with 1500 and 2000 respondents (where the strongest party obtained 40%), we get a conservative effective sample size of $n_{\rm eff} = 2341$.

Alexander Bauer 11 / 17

Pooling in practice

- We only pool surveys published in the last 14 days
- We only include one survey per polling agency

Correction of rounding errors

Party shares are only published with a certain accuracy. We add **uniformly distributed random noise** to avoid potential biases.

Alexander Bauer 12 / 17

Pooling in practice

- We only pool surveys published in the last 14 days
- We only include one survey per polling agency

Correction of rounding errors

Party shares are only published with a certain accuracy. We add **uniformly distributed random noise** to avoid potential biases.

Alexander Bauer 12 / 17

Outline

- 1. Motivation
- 2. Methods
- 3. Technical implementation
- 4. Results & Outlook

Alexander Bauer

2 Technical implementation

R package coalitions

... Code example: More on GitHub

Alexander Bauer 14 / 17

2 Technical implementation

Web-Interface

- koala.stat.uni-muenchen.de
- Blog
- @koala_lmu
- based on Shiny
- automatic update scraping data from wahlrecht.de

Alexander Bauer 15 / 1

Outline

- 1. Motivation
- 2. Methods
- 3. Technical implementation
- 4. Results & Outlook

Alexander Bauer $16 \ / \ 17$

content

Alexander Bauer 17 / 17

References

Topic

Doe J, Mustermann M (2019) This is the paper title. Journal, 19(2-3), 1-19 **Doe J, Mustermann M (2019)** This is the paper title. Journal, 19(2-3), 1-19

Another topic

Doe J, Mustermann M (2019) This is the paper title. Journal, 19(2-3), 1-19 Hanley et al., 2003

Alexander Bauer 17 / 17

References

One more topic

Doe J, Mustermann M (2019) This is the paper title. Journal, 19(2-3), 1-19

Alexander Bauer 17 / 17