Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 14

Math 237 – Linear Algebra Fall 2017

Version 5

Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Let V be the set of all polynomials with the operations, for any $f, g \in V$, $c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

- (a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot (f \oplus g) = c \odot f \oplus c \odot g$.
- (b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $f, g \in \mathcal{P}$, and let $c \in \mathbb{R}$.

$$c \odot (f \oplus g) = c \odot (f' + g') = c(f' + g')' = cf'' + cg'' = cf' \oplus cg' = c \odot f \oplus c \odot g.$$

However, this is not a vector space, as there is no zero vector. Additionally, $1 \odot f \neq f$ for any nonzero polynomial f.

Does span
$$\left\{ \begin{bmatrix} 2\\-1\\4\\2\\1 \end{bmatrix}, \begin{bmatrix} -1\\3\\5\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\5\\1\\-3 \end{bmatrix} \right\} = \mathbb{R}^5?$$

Solution: Since there are only three vectors, they cannot span \mathbb{R}^5 .

Standard V4.

Let W be the set of all complex numbers a + bi satisfying a = 2b. Determine if W is a subspace of \mathbb{C} .

Solution: Yes, because $c(2b_1 + b_1i) + d(2b_2 + b_2i) = 2(cb_1 + db_2) + (cb_1 + db_2)i$ belongs to W. Alternately, yes because W is isomorphic to \mathbb{R} .

Standard S2. $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is a basis of \mathbb{R}^2

Solution:

$$RREF \left(\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & 0 & -1 & 0 \\ 1 & 2 & 0 & -1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since this is not the identity matrix, the set is not a basis.

Additional Notes/Marks