Лекція 27. Характеристики випадкових функцій

Математичним сподіванням випадкової функції $\xi(t)$ $t \in T$, називається невипадкова числова функція $m_{\xi}(t)$, яка при довільному значенні $t_0 \in T$ дорівнює математичному сподіванню відповідного перерізу $\xi(t_0)$ випадкового процесу:

$$m_x(t_0) = M \lceil \xi(t_0) \rceil.$$

Центрованим випадковим процесом називається різниця між випадковим процесом та його математичним сподіванням:

$$\overset{\circ}{\xi}(t) = \xi(t) - m_{\xi}(t),$$

Будь-який випадковий процес можно як сукупність регулярної складової (математичного сподівання) та центрованої випадкової складової

$$\xi(t) = m_{\xi}(t) + \xi(t).$$

Якщо переріз $\xi(t)$ - випадкова величина дискретного типу зі значеннями $x_1(t), x_2(t), ..., x_k(t)$, тобто випадковий процес зі дискретними значеннями та має одновимірний закон розподілу:

$\xi(t)$	$x_1(t)$	$x_2(t)$	•••	$x_i(t)$	•••
p(t)	$p_1(t)$	$p_2(t)$	•••	$p_i(t)$	•••

To
$$m_{\xi}(t) = \sum_{i=1}^{k} x_i(t) \cdot p_i(t).$$

Якщо значення перетинів випадкового процесу не залежать від аргументу t, від t залежать лише їх ймовірності, тобто закон розподілу має вигляд:

$\xi(t)$	x_1	x_2	•••	x_i	•••
p(t)	$p_1(t)$	$p_2(t)$	•••	$p_i(t)$	•••

то у цьому випадку $m_{\xi}(t) = \sum_{i=1}^{k} x_i \cdot p_i(t)$.

Якщо перетин випадкового процесу $\xi(t)$ при заданому значенні t є неперервною випадковою величиною, щільність якої $f_1(x,t)$, то його математичне сподівання обчислюють за формулою:

$$m_{\xi}(t) = \int_{-\infty}^{+\infty} x \cdot f_1(x,t) dx.$$

Властивості математичного сподівання

1.
$$M \lceil c(t) \rceil = m_c(t) = c(t)$$
.

2.
$$M\left[\stackrel{\circ}{\xi}(t)\right] = M\left[\xi(t) - m_{\xi}(t)\right] = M\left[\xi(t)\right] - m_{\xi}(t) = 0$$
.

3.
$$M[c(t)\cdot\xi(t)]=c(t)\cdot M[\xi(t)]=c(t)\cdot m_{\xi}(t)$$
.

4.
$$M\left[\xi(t)+\eta(t)\right]=m_{\xi}(t)+m_{\eta}(t)$$
.

У частковому випадку, якщо $\xi(t)$ — випадкова функція, $\eta(t)$ — невипадкова функція, то $M\big[\xi(t)+\eta(t)\big]=M\big[\xi(t)\big]+M\big[\eta(t)\big]=m_{\xi}(t)+\eta(t).$

5.
$$M\left[\xi(t)\cdot\eta(t)\right]=m_{\xi}(t)\cdot m_{\eta}(t)$$
.

Дисперсія випадкової функції $\xi(t)$, $t \in T$ називається невід'ємна невипадкова числова функція $D_{\xi}(t)$, яка при кожному фіксованому значенні $t_0 \in T$ параметра $t \in T$ дорівнює дисперсії відповідного перерізу цього процесу $\xi(t_0)$: $D_{\xi}(t_0) = D \Big[\xi(t_0) \Big]$. Отже,

$$D_{\xi}(t) = D[\xi(t)] = \sigma_{\xi}^{2}(t).$$

Дисперсія характеризує ступінь розсіяння можливих реалізацій цього процесу навколо математичного сподівання.

$$D_{\xi}(t) = M \left[\stackrel{\circ}{\xi^2}(t) \right].$$

Середнім квадратичним відхиленням випадкового процесу (флуктуацією, стандартом процесу) називають арифметичний корінь із дисперсії випадкового процесу:

$$\sigma_{\xi}(t) = \sigma[\xi(t)] = \sqrt{D_{\xi}(t)}$$
.

Якщо переріз $\xi(t)$ - випадкова величина дискретного типу зі значеннями $x_1(t), x_2(t), ..., x_k(t)$, тобто випадковий процес зі дискретними значеннями та має одновимірний закон розподілу (1.1):

$\xi(t)$	x_1	x_2	•••	x_i	•••
p(t)	$p_1(t)$	$p_2(t)$	•••	$p_i(t)$	•••

то дисперсія:
$$D_{\xi}(t) = \sum_{i=1}^{k} \left[x_i - m_{\xi}(t) \right]^2 \cdot p_i(t) = \sum_{i=1}^{k} x_i^2 \cdot p_i(t) - m_{\xi}^2(t)$$

Якщо переріз випадкового процесу $\xi(t)$ з неперервним значенням та має щільність якої $f_1(x,t)$, то дисперсію визначають за формулою:

$$D_{\xi}(t) = \int_{-\infty}^{+\infty} \left[x - m_{\xi}(t) \right]^{2} \cdot f_{1}(x,t) dx = \int_{-\infty}^{+\infty} x^{2} \cdot f_{1}(x,t) dx - m_{\xi}^{2}(t)$$

Властивості дисперсії

1.
$$D_{\xi}(t) > 0$$
.

2.
$$D[c(t)] = D_c(t) = 0$$
.

3.
$$D\left[\xi(t)+c(t)\right]=D_{\xi}(t)$$

4.
$$D \left[\xi(t) \cdot c(t) \right] = c^2(t) \cdot D_{\xi}(t)$$
.

5.
$$D_{\xi}(t) = M\left[\xi^2(t)\right] - m_{\xi}^2(t)$$
.

6.
$$D[\xi(t) + \eta(t)] = D_{\xi}(t) + D_{\eta}(t)$$
.

Для того щоб врахувати стохастичний зв'язок між різними перерізами випадкового процесу, використовують *кореляційні функції*.

Автокореляційною функцією випадкового процесу $\xi(t)$ називається невипадкова функція $K_{\xi}(t_1,t_2)$, яка при кожній парі значень t_1 і t_2 аргументу t є кореляційним моментом відповідних перерізів цього процесу:

$$K_{\xi}(t_1,t_2) = M\left[\xi(t_1) - m_{\xi}(t_1)\right] - m_{\xi}(t_1) \cdot m_{\xi}(t_2) = M\left[\xi(t_1) \cdot \xi(t_2)\right].$$

Префікс «авто» означає, що йдеться що йдеться про один ВП $\xi(t)$ з різними перерізами (значеннями) в моменти часу t_1 , t_2 . У разі вивчення двох чи більше ВП сумісно префікс відкидається й додається термін "взаємно".

Властивості автокореляційної функції (а.к.ф.)

1.
$$K_{\xi}(t_1,t_2) = K_{\xi}(t_2,t_1)$$
.

2.
$$K_{\xi}(t,t) = D_{\xi}(t)$$
.

3.
$$K_{\xi+c}(t_1,t_2) = K_{\xi}(t_1,t_2)$$
.

4.
$$K_{\xi c}(t_1, t_2) = K_{\xi}(t_1, t_2) \cdot c(t_1) \cdot c(t_2)$$
.

5.
$$|K_{\xi}(t_1, t_2)| \le \sqrt{D_{\xi}(t_1) \cdot D_{\xi}(t_2)}$$
.

У теорії випадкових процесів аналогом коефіцієнт кореляції характеристики є нормована автокореляційна функція.

Нормованою автокореляційною функцією $r_{\xi}(t_1,t_2)$ випадкового процесу $\xi(t)$ називається невипадкова функція двох аргументів t_1 , t_2 яка при кожній фіксованій парі їх значень дорівнює коефіцієнту автокореляції відповідних перерізів

$$r_{\xi}\left(t_{1},t_{2}\right)=\frac{K_{\xi}\left(t_{1},t_{2}\right)}{\sigma_{\xi}\left(t_{1}\right)\cdot\sigma_{\xi}\left(t_{2}\right)}.$$

Враховуючи, що

$$\sigma_{\xi}\left(t_{1}\right) = \sqrt{D_{\xi}\left(t_{1}\right)} = \sqrt{K_{\xi}\left(t_{1},t_{1}\right)} \text{ Ta } \sigma_{x}\left(t_{2}\right) = \sqrt{D_{x}\left(t_{2}\right)} = \sqrt{K_{x}\left(t_{2},t_{2}\right)}$$

отримаємо:
$$r_{\xi}\left(t_{1},t_{2}\right) = \frac{K_{\xi}\left(t_{1},t_{2}\right)}{\sqrt{K_{\xi}\left(t_{1},t_{1}\right)}\cdot\sqrt{K_{\xi}\left(t_{2},t_{2}\right)}}$$
.

Приклад 1.12. Знайти нормовану автокореляційну функцію випадкової функції $\xi(t)$, якщо відома її автокореляційна функція $K_{\xi}(t_1,t_2) = 8 \cdot \cos(t_2 - t_1)$.

Розв'язання: За означенням

$$r_{\xi}(t_1,t_2) = \frac{K_{\xi}(t_1,t_2)}{\sqrt{K_{\xi}(t_1,t_1)} \cdot \sqrt{K_{\xi}(t_2,t_2)}}.$$

За умовою $K_{\xi}(t_1, t_2) = 8 \cdot \cos(t_2 - t_1)$, тоді

$$K_{\xi}(t_1,t_1) = 8 \cdot \cos(t_1-t_1) = 8$$
, $K_{\xi}(t_2,t_2) = 8 \cdot \cos(t_2-t_2) = 8$.

Отже,
$$r_{\xi}(t_1, t_2) = \frac{8 \cdot \cos(t_2 - t_1)}{\sqrt{8} \cdot \sqrt{8}} = \cos(t_2 - t_1).$$

Таким чином, $r_{\xi}(t_1, t_2) = \cos(t_2 - t_1)$.

Властивості нормованої автокореляційної функції

1.
$$r_{\xi}(t_1,t_2) = r_{\xi}(t_2,t_1)$$
.

2.
$$|r_{\xi}(t_1,t_2)| \leq 1$$
.

3.
$$|r_{\xi}(t,t)| = 1$$
.

Щоб описати систему з двох випадкових функцій, крім зазначених характеристик, використовують також взаємну кореляційну функцію.

Нехай $\xi(t_1)$ та $\eta(t_2)$ є перетинами випадкових процесів $\xi(t)$ та $\eta(t)$ при відповідних значеннях аргументу $t=t_1,\ t=t_2.$

Взаємною кореляційною функцією двох випадкових процесів $\xi(t)$ і $\eta(t)$ називається невипадкова функція $R_{\xi\eta}(t_1,t_2)$ двох незалежних аргументів t_1 і t_2 , значення якої є кореляційним моментом відповідних перерізів цих випадкових процесів, тобто

$$R_{\xi\eta}(t_1,t_2) = M\left(\stackrel{\circ}{\xi}(t_1)\cdot\stackrel{\circ}{\eta}(t_2)\right).$$

Корельованими називаються два стохастичні процеси, взаємна кореляційна функція яких тотожно не дорівнює нулю: $R_{\xi\eta}(t_1,t_2) \neq 0$.

Некорельованими називаються два стохастичні процеси, взаємна кореляційна функція яких тотожно дорівнює нулю: $R_{\xi\eta}(t_1,t_2) = 0$.

Властивості взаємної кореляційної функції

1.
$$R_{\xi\eta}(t_1,t_2) = R_{\eta\xi}(t_2,t_1)$$

2.
$$R_{\xi+\varphi,\,\eta+\psi}(t_1,t_2) = R_{\xi\eta}(t_1,t_2)$$
, де $\varphi(t)$, $\psi(t)$ - невипадкові функції.

3.
$$R_{\xi\varphi,\,\eta\psi}(t_1,t_2) = \varphi(t)\cdot\psi(t)\cdot R_{\xi\eta}(t_1,t_2)$$
.

4.
$$\left| R_{\xi\eta}\left(t_1,t_2\right) \right| \leq \sqrt{D_{\xi}\left(t_1\right) \cdot D_{\eta}\left(t_2\right)}$$

5.
$$R_{\nu}(t_1, t_2) = R_{\xi}(t_1, t_2) + R_{\eta}(t_1, t_2) + R_{\xi\eta}(t_1, t_2) + R_{\eta\xi}(t_2, t_1)$$
.

Наслідки:

1. Якщо
$$t_1 = t_2 = t$$
, то $D_{\nu}(t) = D_{\xi}(t) + D_{\eta}(t) + 2 \cdot R_{\xi\eta}(t,t)$.

2. Якщо випадковий процес $\xi(t)$ і $\eta(t)$ некорельовані, то

$$R_{\nu}(t_1, t_2) = R_{\xi}(t_1, t_2) + R_{\eta}(t_1, t_2), D_{\nu}(t) = D_{\xi}(t) + D_{\eta}(t)$$

Нормованою взаємною кореляційною функцією двох випадкових функцій $\xi(t)$ і $\eta(t)$ називають невипадкову функцію двох незалежних аргументів t_1 і t_2 , яка визначається за формулою:

$$\rho_{\xi\eta}\left(t_{1},t_{2}\right) = \frac{R_{\xi\eta}\left(t_{1},t_{2}\right)}{\sqrt{K_{\xi}\left(t_{1},t_{1}\right)}\cdot\sqrt{K_{\eta}\left(t_{2},t_{2}\right)}} = \frac{R_{\xi\eta}\left(t_{1},t_{2}\right)}{\sigma_{\xi}\left(t_{1}\right)\cdot\sigma_{\eta}\left(t_{2}\right)} = \frac{R_{\xi\eta}\left(t_{1},t_{2}\right)}{\sqrt{D_{\xi}\left(t_{1}\right)\cdot D_{\eta}\left(t_{2}\right)}}.$$

Нормована взаємна кореляційна функція має такі самі властивості, що й взаємна кореляційна функція, окрім однієї: модуль нормованої взаємної кореляційної функції не перевищує одиниці: $\left| \rho_{\xi\eta} \left(t_1, t_2 \right) \right| \leq 1$.