Task 1

Data Distribution:

Hyperparameter settings:

1. Architecture:

 There is an inadequate increase in the accuracy by increasing the number of neurons in the hidden layers but the training and computation time in high so selecting the left model.

2. Learning Rate

3. Epochs

The model overfits at 90% accuracy so, then I would use LR = 0.01 and try using other techniques like learning rate decay rather than using the same learning rate for the whole training or the dropout. And use the epochs = 20

4. Early stopping and Learning Rate Decay

Lr = 0.01, Epochs = 20, Architecture = [784,128, 64, 10], all other parameters are same.

Early Stopping, N = 3

StepLR with step_size = 5 and gamma = 0.1 # the Ir divides by 10 after each 5 iterations

The training stops after 6 epochs with 93.6 training accuracy and 92.6 validation accuracy.

With schedular(), the model achieved the accuracy of 95%.

Starting Lr = 0.01, Epochs = 20 With N = 5 for early stopping, step_size = 5, gamma = 0.1 for StepLR.

The training stopped after **10 epochs** with accuracy of **93.8%**.

5. Optimizers

SGD, Starting Lr = 0.1, Epochs = 20 With N = 5 for early stopping, step_size = 10, gamma = 0.2 for StepLR.

Adam, Starting Lr = 0.01, Epochs = 20 With N = 5 for early stopping, step size = 5, gamma = 0.1 for StepLR.

- With Adam the loss reached to 160 and accuracy to 90% but with SGD the loss reached 214 and accuracy remain 15%.
- SGD training was very slow even with the higher starting learning rate and step_size for StepLR and lower gamma value.

Best model Results:

Hyperparameters settings:

Model = [784,128, 64, 10], loss_func = nn.CrossEntropyLoss, optimizer = optim.Adam

Lr = 0.01, Epochs = 20 With N = 5 for early stopping, step_size = 5, gamma = 0.1 for StepLR.

1. Accuracy & Loss of test data

2. Confusion matrix

											_
0 -	0	0	0.088	0.043	0	0.31	0.42	0	0.038	0.094	
н -	0	0.98	0.0035	0.0018	0	0.00088	0.0044	0	0.0088	0.00088	- 0.8
- 5	0	0.00097	0.95	0.016	0	0.00097	0.016	0	0.016	0.0039	
m -	0	0.00099	0.015	0.94	0	0.012	0	0	0.024	0.005	- 0.6
4 -	0	0.0031	0.017	0.002	0	0.0031	0.081	0	0.033	0.86	
ω -	0	0.0011	0	0.018	0	0.94	0.018	0	0.015	0.0056	- 0.4
9 -	0	0.0031	0.0031	0.001	0	0.01	0.98	0	0.0042	0.001	
۲ -	0	0.023	0.13	0.17	0	0	0.0029	0	0.0068	0.67	- 0.2
ω -	0	0.0031	0.0072	0.017	0	0.0062	0.0082	0	0.95	0.0041	0.2
თ -	0	0.006	0.002	0.0079	0	0.004	0.002	0	0.0089	0.97	
	Ó	i	2	3	4	5	6	7	8	9	- 0.0

3. Precision, Recall and F1_score

	precision	recall	f1-score	support
Ø	0.000	0.000	0.000	980
1	0.964	0.980	0.972	1135
2	0.787	0.947	0.860	1032
3	0.775	0.944	0.851	1010
4	0.000	0.000	0.000	982
5	0.710	0.943	0.810	892
6	0.631	0.977	0.767	958
7	0.000	0.000	0.000	1028
8	0.859	0.954	0.904	974
9	0.372	0.969	0.538	1008
accuracy			0.673	9999
macro avg	0.510	0.671	0.570	9999
weighted avg	0.514	0.673	0.573	9999

4. 4 correct and 4 wrong predictions

TASK 2: Hyperparameter settings:

1. Architecture:

			Hyper	parameter					
Lr	Optimizer	Loss		Epochs	Val	% of train data	N for early stopping		
0.001	Adam	Cross Entr	ору	10	0.2 5				
•	In all these arch	itechures ReLU activati	on is used in Convo	olution layers	and Sigmoi	d in FC layers.			
Arch.	Conv layers			Archit	tecture				
No.	+ FC layers								
1	2+1						, , ,		
		in_channels	in_channels out_channels kerne			stride	output		
		1	16		5	2	12x12		
		16	8		3	1	10x10		
					out_dim				
			800			10			
		210 training loss validation loss 200 190 170 160 170 160 12.5 15.0 17.5 epoch			Training A Validation	raining accu railidation accu 2.5 5.0 7.5 10.0 12.5 epoch accuracy: 92.1 a Accuracy: 93.6 accuracy: 67.9	15.0 17.5		

2 3+2							
		in_channels	out_channels	kerne	el_size	stride	output
		1	32 5		5 2		12x12
		32	16 3		3	1	10x10
		16	8 3		3	1	8x8
			in_dim			out_dim	
			512			256	
			256			10	
		210 - training loss validation loss 200 - 190 - 170 - 160 - 150 - 0 2 4		14 16	Validation	training accu validation accu 2 4 6 8 epoc ccuracy: 95.1 Accuracy: 94.9 curacy: 69.0	10 12 14 16 ch

3	4+2									
		in_channels	out_channels	kerne	l_size	stride	output			
		1	32	5	5	2	12x12			
		32	16	3	3	1	10x10			
		16	8	3	3	1	8x8			
		8	4	3	3	1	6x6			
			in_dim			out_dim				
			144			72				
			72		10					
		220 training loss validation loss 215 210 205 200 195 190 185 2.5 5.0 7.	5 10.0 12.5 15.0 17.5 epoch		Training Ac Validation	2.5 5.0 7.5 10.0 12.5 epoch epoch eccuracy: 65.4 Accuracy: 64.4 curacy: 47.0	15.0 17.5			

4	5+1								
		in_channels	out_channels	kerne	el_size	stride	output		
		1	32		5	2	12x12		
		32	16		3	1	10x10		
		16	8		3	1	8x8		
		8	4	,	3	1	6x6		
		4	2		3	1	4x4		
			in dim			out dim			
			32			10			
			32		ļ	10			
		220 - training loss validation loss validation loss 190 - 180 - 170 - 160 - 0.0 2.5 5.0	7.5 10.0 12.5 15.0 epoch	17.5	90 training accu validation ac				
					Validation .	curacy: 90.3 Accuracy: 90.3 :uracy: 65.8			
			has not overfitted so						
			stopped after 16 epo	chs becaus	se of early st	opping.			
			is not fully trained.						
		 Architecture 4 is fully trained. 							

2. Epochs

3. Rate Decay (Schedular)

Architecture 1 with epochs = 50, Lr = 0.001, activation function in convolution block is ReLU.									
scheduler	Training Accuracy	Validation Accuracy	Testing Accuracy	Remarks					
No scheduler	93.8	94.2	68.4						
StepLR, step_size=10, gamma=0.5	89.9	89.1	64.9	The learning rate decreased and the model took small steps. Early Stopped.					
Epochs = 70, StepLR, step_size=20, gamma=0.5	93.2	93.1	67.9	Early stopped after 26 epochs.					

4. Activation Functions

Architecture 1 with epochs				
	Training Accuracy	Validation Accuracy	Testing Accuracy	Remarks
Leaky ReLU	92.2	92.0	67.1	Early stopped: 15 epochs
ELU	94.3	94.1	68.7	Early stopped: 27 epochs

5. Batch Normalization

Architecture 1 with epochs = 50, Lr = 0.001. No Scheduler. ELU Activation. **Training Accuracy** Validation Accuracy **Testing Accuracy** BatchNorm layer 97.9 98.1 69.9 training accu validation accu accuracy 8 8 6 75 2.5 5.0 7.5 10.0 12.5 15.0 17.5 epoch

- The model early stopped after 18 epochs.

6. Dropout

Architecture 1 with epochs = 50, Lr = 0.001. No Scheduler. ELU Activation. BatchNorm after each Conv layer.								
Training Accuracy Validation Accuracy Testing Accuracy								
Dropout = 0.25 before the last layer	96.7	96.5	87.1					
Dropout = 0.25 after the first layer	94.9	94.6	69.1					

Dropout = 0.1 before the last	94.5	94.1	68.8
and after the first layer			

Best model Results:

Architecture 1 with epochs = 50, Lr = 0.001. No Scheduler. ELU Activation.

1. Plot Learned Filters

2. ROC curves

3. Confusion matrix

0 -	0	0.001	0.25	0.0051	0	0.035	0.21	0	0.24	0.26	
П-	0	0.99	0.0018	0.0018	0	0.00088	0.0018	0	0.0018	0	- 0.8
- 5	0	0.00097	0.99	0.0019	0	0	0.00097	0	0.0078	0.0029	- 0.6
m -	0	0	0.0059	0.98	0	0.002	0	0	0.005	0.003	0.5
4 -	0	0.051	0.02	0.0071	0	0.002	0.096	0	0.11	0.71	- 0.6
r∪ -	0	0	0	0.01	0	0.98	0.0034	0	0.0022	0	
9 -	0	0.0031	0.001	0	0	0.0021	0.99	0	0.0042	0.001	- 0.4
۲ -	0	0.053	0.23	0.23	0	0.0088	0	0	0.022	0.45	
∞ -	0	0	0.001	0.001	0	0	0.001	0	0.99	0.0041	- 0.2
ი -	0	0.005	0.00099	0.002	0	0.003	0.002	0	0.002	0.99	
	Ó	í	2	3	4	5	6	7	8	9	- 0.0

4. Precision, Recall and F1_score

	precision	recall	f1-score	support
0	0.000	0.000	0.000	980
1	0.908	0.992	0.948	1135
2	0.663	0.985	0.793	1032
3	0.788	0.984	0.875	1010
4	0.000	0.000	0.000	982
5	0.943	0.984	0.963	892
6	0.753	0.989	0.855	958
7	0.000	0.000	0.000	1028
8	0.715	0.993	0.831	974
9	0.410	0.985	0.579	1008
accuracy			0.692	9999
macro avg	0.518	0.691	0.584	9999
weighted avg	0.518	0.692	0.585	9999

5. 4 correct and 4 wrong predictions

True Predictions

Wrong Predictions

