SECTION 1

- This section contains SIX (06) questions.
- Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of these four option(s) is (are) correct answer(s).
- For each question, choose the option(s) corresponding to (all) the correct answer(s).
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is(are) chosen;

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen;

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of

which are correct;

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a

correct option;

Zero Marks : 0 If unanswered; Negative Marks: -2 In all other cases.

For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to correct answers, then

choosing ONLY (A), (B) and (D) will get +4 marks;

choosing ONLY (A) and (B) will get +2 marks;

choosing ONLY (A) and (D) will get +2marks;

choosing ONLY (B) and (D) will get +2 marks;

choosing ONLY (A) will get +1 mark;

choosing ONLY (B) will get +1 mark;

choosing ONLY (D) will get +1 mark;

choosing no option(s) (i.e. the question is unanswered) will get 0 marks and

choosing any other option(s) will get -2 marks.

Q.1 Let

$$\begin{split} S_1 &= \big\{ (i,j,k): \ i,j,k \in \{1,2,\dots,10\} \big\}, \\ S_2 &= \{ (i,j): \ 1 \leq i < j+2 \leq 10, \ i,j \in \{1,2,\dots,10\} \}, \\ S_3 &= \{ (i,j,k,l): \ 1 \leq i < j < k < l, \ i,j,k,l \in \{1,2,\dots,10\} \} \end{split}$$

and

 $S_4 = \{(i, j, k, l) : i, j, k \text{ and } l \text{ are distinct elements in } \{1, 2, \dots, 10\}\}.$

If the total number of elements in the set S_r is n_r , r = 1,2,3,4, then which of the following statements is (are) **TRUE**?

(A)
$$n_1 = 1000$$

(B)
$$n_2 = 44$$

(C)
$$n_3 = 220$$

(A)
$$n_1 = 1000$$
 (B) $n_2 = 44$ (C) $n_3 = 220$ (D) $\frac{n_4}{12} = 420$

Q.2 Consider a triangle PQR having sides of lengths p, q and r opposite to the angles P, Q and R, respectively. Then which of the following statements is (are) **TRUE**?

$$(A)\cos P \ge 1 - \frac{p^2}{2ar}$$

(B)
$$\cos R \ge \left(\frac{q-r}{p+q}\right)\cos P + \left(\frac{p-r}{p+q}\right)\cos Q$$

$$(C)\frac{q+r}{p} < 2\frac{\sqrt{\sin Q \sin R}}{\sin P}$$

- (D) If p < q and p < r, then $\cos Q > \frac{p}{r}$ and $\cos R > \frac{p}{q}$
- Q.3 Let $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}$ be a continuous function such that

$$f(0) = 1$$
 and $\int_0^{\frac{\pi}{3}} f(t)dt = 0$

Then which of the following statements is (are) TRUE?

- (A) The equation $f(x) 3\cos 3x = 0$ has at least one solution in $\left(0, \frac{\pi}{3}\right)$
- (B) The equation $f(x) 3\sin 3x = -\frac{6}{\pi}$ has at least one solution in $\left(0, \frac{\pi}{3}\right)$

(C)
$$\lim_{x \to 0} \frac{x \int_0^x f(t)dt}{1 - e^{x^2}} = -1$$

(D)
$$\lim_{x \to 0} \frac{\sin x \int_0^x f(t)dt}{x^2} = -1$$

Q.4 For any real numbers α and β , let $y_{\alpha,\beta}(x)$, $x \in \mathbb{R}$, be the solution of the differential equation

$$\frac{dy}{dx} + \alpha y = xe^{\beta x}, \ y(1) = 1.$$

Let $S = \{y_{\alpha,\beta}(x) : \alpha, \beta \in \mathbb{R}\}$. Then which of the following functions belong(s) to the set S?

(A)
$$f(x) = \frac{x^2}{2}e^{-x} + \left(e - \frac{1}{2}\right)e^{-x}$$

(B)
$$f(x) = -\frac{x^2}{2}e^{-x} + \left(e + \frac{1}{2}\right)e^{-x}$$

(C)
$$f(x) = \frac{e^x}{2} \left(x - \frac{1}{2}\right) + \left(e - \frac{e^2}{4}\right)e^{-x}$$

(D)
$$f(x) = \frac{e^x}{2} \left(\frac{1}{2} - x \right) + \left(e + \frac{e^2}{4} \right) e^{-x}$$

- Q.5 Let O be the origin and $\overrightarrow{OA} = 2\hat{i} + 2\hat{j} + \hat{k}$, $\overrightarrow{OB} = \hat{i} 2\hat{j} + 2\hat{k}$ and $\overrightarrow{OC} = \frac{1}{2}(\overrightarrow{OB} \lambda \overrightarrow{OA})$ for some $\lambda > 0$. If $|\overrightarrow{OB} \times \overrightarrow{OC}| = \frac{9}{2}$, then which of the following statements is (are) **TRUE**?
 - (A) Projection of \overrightarrow{OC} on \overrightarrow{OA} is $-\frac{3}{2}$
 - (B) Area of the triangle *OAB* is $\frac{9}{2}$
 - (C) Area of the triangle ABC is $\frac{9}{2}$
 - (D) The acute angle between the diagonals of the parallelogram with adjacent sides \overrightarrow{OA} and \overrightarrow{OC} is $\frac{\pi}{3}$

Q.6 Let E denote the parabola $y^2 = 8x$. Let P = (-2, 4), and let Q and Q' be two distinct points on E such that the lines PQ and PQ' are tangents to E. Let F be the focus of E. Then which of the following statements is (are) **TRUE**?

- (A) The triangle *PFQ* is a right-angled triangle
- (B) The triangle QPQ' is a right-angled triangle
- (C) The distance between P and F is $5\sqrt{2}$
- (D) F lies on the line joining Q and Q'

SECTION 2

- This section contains **THREE (03)** question stems.
- There are **TWO (02)** questions corresponding to each question stem.
- The answer to each question is a **NUMERICAL VALUE**.
- For each question, enter the correct numerical value corresponding to the answer in the designated place using the mouse and the on-screen virtual numeric keypad.
- If the numerical value has more than two decimal places, **truncate/round-off** the value to **TWO** decimal places.
- Answer to each question will be evaluated <u>according to the following marking scheme</u>:

Full Marks : +2 If ONLY the correct numerical value is entered at the designated place;

Zero Marks : 0 In all other cases.

Question Stem for Question Nos. 7 and 8

Question Stem

Consider the region $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \ge 0 \text{ and } y^2 \le 4 - x\}$. Let \mathcal{F} be the family of all circles that are contained in R and have centers on the x-axis. Let C be the circle that has largest radius among the circles in \mathcal{F} . Let (α, β) be a point where the circle C meets the curve $y^2 = 4 - x$.

- Q.7 The radius of the circle C is ____.
- Q.8 The value of α is ____.

Question Stem for Question Nos. 9 and 10

Question Stem

Let $f_1:(0,\infty)\to\mathbb{R}$ and $f_2:(0,\infty)\to\mathbb{R}$ be defined by

$$f_1(x) = \int_0^x \prod_{j=1}^{21} (t-j)^j dt, \quad x > 0$$

and

$$f_2(x) = 98(x-1)^{50} - 600(x-1)^{49} + 2450, \quad x > 0,$$

where, for any positive integer n and real numbers $a_1, a_2, ..., a_n$, $\prod_{i=1}^n a_i$ denotes the product of $a_1, a_2, ..., a_n$. Let m_i and n_i , respectively, denote the number of points of local minima and the number of points of local maxima of function f_i , i = 1, 2, in the interval $(0, \infty)$.

- Q.9 The value of $2m_1 + 3n_1 + m_1n_1$ is ____.
- Q.10 The value of $6m_2 + 4n_2 + 8m_2n_2$ is ____.

Question Stem for Question Nos. 11 and 12

Question Stem

Let $g_i: \left[\frac{\pi}{8}, \frac{3\pi}{8}\right] \to \mathbb{R}$, i = 1, 2, and $f: \left[\frac{\pi}{8}, \frac{3\pi}{8}\right] \to \mathbb{R}$ be functions such that

$$g_1(x) = 1$$
, $g_2(x) = |4x - \pi|$ and $f(x) = \sin^2 x$, for all $x \in \left[\frac{\pi}{8}, \frac{3\pi}{8}\right]$

Define

$$S_{i} = \int_{\frac{\pi}{8}}^{\frac{3\pi}{8}} f(x) \cdot g_{i}(x) dx, \quad i = 1, 2$$

- Q.11 The value of $\frac{16S_1}{\pi}$ is ____.
- Q.12 The value of $\frac{48S_2}{\pi^2}$ is ____.

SECTION 3

- This section contains **TWO (02) paragraphs**. Based on each paragraph, there are **TWO (02)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.
- Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +3 If ONLY the correct option is chosen;

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);

Negative Marks : -1 In all other cases.

Paragraph

Let

$$M = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x^2 + y^2 \le r^2\},$$

where r > 0. Consider the geometric progression $a_n = \frac{1}{2^{n-1}}$, $n = 1, 2, 3, \dots$. Let $S_0 = 0$ and, for $n \ge 1$, let S_n denote the sum of the first n terms of this progression. For $n \ge 1$, let C_n denote the circle with center $(S_{n-1}, 0)$ and radius a_n , and D_n denote the circle with center (S_{n-1}, S_{n-1}) and radius a_n .

- Q.13 Consider M with $r = \frac{1025}{513}$. Let k be the number of all those circles C_n that are inside M. Let l be the maximum possible number of circles among these k circles such that no two circles intersect. Then
 - (A) k + 2l = 22 (B) 2k + l = 26 (C) 2k + 3l = 34 (D) 3k + 2l = 40
- Q.14 Consider M with $r = \frac{(2^{199}-1)\sqrt{2}}{2^{198}}$. The number of all those circles D_n that are inside M is
 - (A) 198
- (B) 199
- (C) 200
- (D) 201

Paragraph

Let $\psi_1: [0, \infty) \to \mathbb{R}$, $\psi_2: [0, \infty) \to \mathbb{R}$, $f: [0, \infty) \to \mathbb{R}$ and $g: [0, \infty) \to \mathbb{R}$ be functions such that f(0) = g(0) = 0,

$$\psi_1(x) = e^{-x} + x, \quad x \ge 0,$$

$$\psi_2(x) = x^2 - 2x - 2e^{-x} + 2, \quad x \ge 0,$$

$$f(x) = \int_{-x}^{x} (|t| - t^2)e^{-t^2} dt, \quad x > 0$$

and

$$g(x) = \int_0^{x^2} \sqrt{t} e^{-t} dt, \quad x > 0.$$

Q.15 Which of the following statements is **TRUE**?

(A)
$$f(\sqrt{\ln 3}) + g(\sqrt{\ln 3}) = \frac{1}{3}$$

- (B) For every x > 1, there exists an $\alpha \in (1, x)$ such that $\psi_1(x) = 1 + \alpha x$
- (C) For every x > 0, there exists a $\beta \in (0, x)$ such that $\psi_2(x) = 2x(\psi_1(\beta) 1)$
- (D) f is an increasing function on the interval $\left[0, \frac{3}{2}\right]$

Q.16 Which of the following statements is **TRUE**?

(A)
$$\psi_1(x) \le 1$$
, for all $x > 0$

(B)
$$\psi_2(x) \leq 0$$
, for all $x > 0$

(C)
$$f(x) \ge 1 - e^{-x^2} - \frac{2}{3}x^3 + \frac{2}{5}x^5$$
, for all $x \in \left(0, \frac{1}{2}\right)$

(D)
$$g(x) \le \frac{2}{3}x^3 - \frac{2}{5}x^5 + \frac{1}{7}x^7$$
, for all $x \in \left(0, \frac{1}{2}\right)$

SECTION 4

- This section contains **THREE (03)** questions.
- The answer to each question is a **NON-NEGATIVE INTEGER.**
- For each question, enter the correct integer corresponding to the answer using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

• Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If ONLY the correct integer is entered;

Zero Marks : 0 In all other cases.

- Q.17 A number is chosen at random from the set $\{1, 2, 3, ..., 2000\}$. Let p be the probability that the chosen number is a multiple of 3 or a multiple of 7. Then the value of 500p is ____.
- Q.18 Let *E* be the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$. For any three distinct points *P*, *Q* and *Q'* on *E*, let M(P,Q) be the mid-point of the line segment joining *P* and *Q*, and M(P,Q') be the mid-point of the line segment joining *P* and *Q'*. Then the maximum possible value of the distance between M(P,Q) and M(P,Q'), as *P*, *Q* and *Q'* vary on *E*, is ____.
- Q.19 For any real number x, let [x] denote the largest integer less than or equal to x. If

$$I = \int\limits_0^{10} \left[\sqrt{\frac{10x}{x+1}} \, \right] dx ,$$

then the value of 9I is ___ .

END OF THE QUESTION PAPER