UGANDA MARTYRS UNIVERSITY

FACULTY OF SCIENCE

DEPARTMENT OF NATURAL SCIENCES

BSc.III FINAL ASSESSMENT

REAL ANALYSIS I

Date: 20/01/2022 Time: 9:30 AM – 3:30 PM

INSTRUCTIONS

- 1. Carefully read through ALL the questions before attempting
- 2. Question 1 is compulsory and Attempt questions 2 and 3 following the given instructions.
- Ensure that your Reg number is indicated on all pages of the examination answer booklet
- 4. Ensure your work is clear and readable. Untidy work shall be penalized
- 5. Any type of examination malpractice will lead to automatic disqualification
- 6. Calculators and mathematical tables may be used
- 1. [28 marks] Indicate which f the following statements are TRUE (T) or FALSE (F)
 - (a) A function is said to be continuous on a set A if it continuous at most one point in A.
 - (b) A monotone function f with $D(f) \supset (a,b)$ can have at most countably many discontinuities in (a, b).
 - (c) If A is a closed bounded set of real numbers, then A is compact.
 - (d) A sequence converges if and only if it is a Cauchy sequence.
 - (e) Let A be bounded set of real numbers and suppose c is a real number. If c < 0, then g.l.b.(cA) = c(g.l.b.A).
 - (f) A sequence of real numbers can converge to at most one number.
 - (g) A sequence {a_n} converges if and only if it is bounded and has at least one subsequential limit point.
 - (h) Suppose f is continuous on [a, b] and differentiable on (a, b). If f'(x) = 0 on (a, b), then f is constant on [a, b].
 - (i) A sequence {a_n} converges to L if some subsequences of {a_n} converge to L.
 - (j) A bounded function f defined on [a, b] is Riemann integrable on (a, b) if and only if, given $\varepsilon > 0$, there is a partition P of [a, b] such that $U(f, P) < L(f, P) + \varepsilon$.

- (k) If f is Riemann integrable on [a, b], then |f| is Riemann integrable on [a, b] and $\left| \int_{a}^{b} f \right| \ge \int_{a}^{b} |f|.$
- (1) Every bounded infinite set of real numbers has at least one limit point.
- (m) If B and C are sets, then $(B \cup C)^c = B^c \cup C^c$
- (n) Continuity of f at x = c implies differentiability of f at x = c.
- 2. Attempt only SIX of the following:

(a) **[6 marks]** Given that
$$\{a_n\} = \left\{\frac{n^2 + 1}{n^2}\right\}$$
.

(i) Find the number to which the sequence converges.

- (ii) If L is the number to which the sequence converges, find how large n must be so that $|a_n L| < 0.01$
- (iii) For $\varepsilon > 0$, find $N(\varepsilon)$ such that $|a_n L| < \varepsilon$ if $n > N(\varepsilon)$.
- (b) [6 marks] Find the value of c where $\int_{2}^{6} f(x).dx = f(c)(6-2)$ if $f(x) = x^{2} + x$
- (c) [6 marks] Let A and B be sets of real numbers. Define a set by $A+B=\{a+b:a\in A,b\in B\}$. Let $\{-4,-1,2,4,6\}$ and $B=\{-2,5,8,11,14\}$. Find A+B. Show that if A and B are bounded sets, then l.u.b (A+B)= l.u.b.A + l.u.b.B and g.l.b. (A+B)= g.l.b.A + g.l.b.B
- (d) [6 marks] Let f and g be defined by $f(x) = \sqrt{2x-1}$ and $g(x) = x^3 + 4$. Find (i) $(f \circ g)(2)$, (ii) $(g \circ f)(5)$, (iii) $f^{-1}(5)$, (v) $g^{-1}(12)$.
- (e) [6 marks]Use l'Hopital's rule and any formulas from elementary calculus to evaluate:

(i)
$$\lim_{x \to \frac{\pi}{2}} \left(\frac{\pi}{2} - x \right) \tan x$$
 (ii) $\lim_{x \to 0} \left(e^{2x} - x \right)^{\frac{1}{x}}$

- (f) [6 marks] Let $f(x) = x^2 x$ and let $P = \{1, \frac{3}{2}, 2, \frac{5}{2}, \frac{3}{2}, \frac{7}{2}, 4\}$
 - (i) Find the upper and lower Riemann sums of f with respect to the partition P.
 - (ii) From part (i), calculate the Riemann sum of f.
- (g) [6 marks] Suppose $f(x) = 4x^3 7x^2$ and $g(x) = x^4 5$ are functions that are continuous on [0, 2] and differentiable on (0, 2). Find $c \in (0, 2)$ where [f(2) f(0)]g'(c) = [g(2) g(0)]f'(c).

- (h) [6 marks] Find a number c in the interval (-1, 3) that satisfies the Mean-Value Theorem for the function $f(x) = x^3 x^2 + 3$.
- 3. Attempt only SIX of the following:
 - (a) [6 marks] Show that Show that $\overline{A \cup B} = \overline{A} \cup \overline{B}$
 - (b) [6 marks] Suppose that $\{a_n\}$ and $\{b_n\}$ are sequences of real numbers such that $\{a_n\} \to a$ and $\{b_n\} \to b$. Prove that $\{a_n + b_n\} \to a + b$
 - (c) [6 marks] Let f and g be functions defined on (a, b) that are differentiable at $c \in (a,b)$. Show that (fg)'(c) = f(c)g'(c) + g(c)f'(c).
 - (d) [6 marks] Use the definition of limit to prove that $\lim_{x\to 2} 4x^2 + 3x 1 = 21$
 - (e) [6 marks] Let $f(x) = \frac{3x^2 27}{x+3}$.
 - (i) Find L such that $\lim_{x\to -3} f(x) = L$
 - (ii) Use the $(\varepsilon \delta)$ definition of limit to prove that $\lim_{x \to -3} f(x) = L$.
 - (f) [6 marks] Let $f: X \to Y$ with $A, B \subset Y$. Show that $f^{-1}(A) \cap f^{-1}(B) = f^{-1}(A \cap B)$.
 - (g) [6 marks] Show that for any positive integer n, $\sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6}$
 - (h) [6 marks] Suppose $f: A \to B$ and $g: B \to C$ are functions, show that if both f and g are bijection, then $g \circ f$ is bijection. [Note: bijection means both 1-1 and onto]