ORANGE - FRUTAS Análisis de resultados:

Model	AUC	CA	F1	Prec	Recall	MCC
Tree	0. 700	0. 686	0. 687	0. 699	0.686	0.380
Logistic Regression	0. 910	0. 857	0. 858	0. 859	0.857	0.712
Neural Network	0. 877	0. 771	0. 769	0. 771	0.771	0.529

Inicialmente analizamos la métrica de **accuracy**, donde la **Regresión Logística** se destacó con un **91%**, siendo el modelo con mejor desempeño general.

Sin embargo, como en nuestro caso es importante considerar tanto los **falsos positivos** como los **falsos negativos**, el accuracy por sí solo no es suficiente. Por eso, tomamos como métrica principal el **F1-score**, ya que permite un balance entre **precisión** y **recall**, brindando una evaluación más completa del rendimiento del modelo.

En este sentido, la **Regresión Logística** vuelve a sobresalir al obtener el **mayor F1-score**: **85,8%**. Esto refleja que, además de tener un alto nivel de aciertos en general, logra un buen equilibrio entre identificar correctamente los **positivos reales** y **evitar excesivos falsos positivos**.

Considerando tanto el **accuracy** como el **F1-score**, concluimos que la **Regresión Logística** es la opción más robusta para abordar este problema, por lo que recomendamos continuar trabajando con este modelo como primera elección.