EQUILIBRE STATIQUE

©François Carrel, EMF, octobre 2014

Equilibre statique en translation

Addition de 5 forces concourantes et coplanaires

Cette figure fermée s'appelle un dyname

$$\sum \vec{F} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \vec{F}_4 + \vec{F}_5 = \vec{R} = \vec{0}$$

Equilibre statique en translation

La condition d'équilibre statique en translation est remplie si :

$$\sum \vec{F} = \vec{0}$$

dyname

Le plan incliné

Le plan incliné

Le moment d'une force

 M_F : moment de force [N·m]

F: force (perpendiculaire au levier) [N]

 d_{\perp} : levier (perpendiculaire à la force) [m]

Couple de forces

$$M = \frac{d}{2} \cdot F_1 + \frac{d}{2} \cdot F_2 = F \cdot d$$

Forces obliques

Calcul d'un moment : méthode 1

Forces obliques

$$M_A = F_{\perp} \cdot d$$
$$F_{\perp} = F \cdot \sin \alpha$$

Forces obliques

Les deux méthodes sont équivalentes!

1.
$$M_A = F \cdot d_{\perp} = F \cdot d \cdot \sin \alpha$$

2.
$$M_A = F_{\perp} \cdot d = F \cdot \sin \alpha \cdot d$$

Equilibre statique en rotation

$$\sum M_F = 0$$

$$M_1 = M_2$$

$$F_1 \cdot d_{1\perp} = F_2 \cdot d_{2\perp}$$

FORCES D'APPUI

Lorsqu'un corps rigide A exerce une force \vec{F}_{AB} sur un second corps rigide B, celui-ci exerce en retour une force \vec{F}_{BA} égale mais opposée

$$\vec{F}_{AB} = -\vec{F}_{BA}$$

Loi d'interaction ou loi d'action-réaction (3ème loi de Newton)

FORCES D'APPUI

réaction exercée par la table sur le scanner

action exercée par le scanner sur la table

Appui coulissant

Appui articulé

représentation schématique

Conditions d'équilibre

Un corps est en équilibre statique si :

$$\sum M_F = 0$$
 équilibre en rotation

et
$$\sum \vec{F} = \vec{0}$$
 équilibre en translation

Conditions d'équilibre

Conditions d'équilibre

Résoudre un problème de statique revient à résoudre un système de 3 équations :

$$\sum M_F = 0$$
 pour trouver R_B (réaction à l'appui mobile)

$$\sum F_{x} = 0$$
 pour trouver $R_{A_{x}}$ (réaction à l'appui articulé)

$$\sum F_{y} = 0$$
 pour trouver $R_{A_{y}}$ (réaction à l'appui articulé)

Bonne route dans le monde merveilleux de la statique l

