PRUEBA DE ACCESO (LOGSE)

UNIVERSIDAD DE CASTILLA Y LEÓN

SEPTIEMBRE - 2003

MATEMÁTICAS II

Tiempo máximo: 1 horas y 30 minutos

<u>Criterios generales de evaluación de la prueba</u>: Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones.

<u>Datos o tablas (si ha lugar):</u> Podrá utilizarse una calculadora "en línea". No se admitirá el uso de memoria para texto, ni las prestaciones gráficas.

Optatividad: Se proponen dos pruebas, A y B. Cada una de ellas consta de dos problemas y cuatro cuestiones. Cada problema tendrá una puntuación máxima de tres puntos, y cada cuestión se puntuará, como máximo, con un punto. El alumno deberá escoger una de las pruebas, A o B, y desarrollar las preguntas de la misma.

PRUEBA A

PROBLEMAS

1°) a) Discutir en función de los valores de m el sistema
$$\begin{cases} 2x - 3y = 0 \\ x - y + z = 0 \\ x + 2y + mz = m \end{cases}$$

- b) Resolver en los casos de compatibilidad del sistema anterior.
- 2°) Hallar el área de la región limitada por la gráfica de la función $f(x) = (x-2)^2(x+2)$, el eje OX y las rectas x = -3 y x = 2.

CUESTIONES

1^a) Se consideran las matrices $A = \begin{pmatrix} 1 & 2 & m \\ 1 & -1 & -1 \end{pmatrix}$ $y B = \begin{pmatrix} 1 & 3 \\ m & 0 \\ 0 & 2 \end{pmatrix}$, donde m es un número

real. Encontrar los valores de m para los que $A \cdot B$ es inversible.

2ª) Hallar un vector de módulo uno que sea ortogonal a los vectores $\overrightarrow{u} = (2, 2, 1)$ y $\overrightarrow{v} = (2, 0, -1)$.

3^a) Calcular
$$\lim_{x \to 0} \{x \cdot [L(x+1) - Lx]\}.$$

4ª) Hallar los puntos de la gráfica de $f(x) = x^3 - 3x^2 + x$ en los que la tangente a la curva es paralela a la recta y = x.

PRUEBA B

PROBLEMAS

1°) Dadas las rectas $r \equiv \begin{cases} x - 2z = 0 \\ y - z = 2 \end{cases}$ $y \ s \equiv \begin{cases} x + y = 5 \\ x + 2z = a \end{cases}$:

- a) Hallar el valor de a para que ambas rectas estén en el mismo plano π .
- b) Hallar la ecuación de dicho plano.
- 2°) a) Hallar las coordenadas del punto P de la gráfica de la función $y = 2\cos x$ siendo $0 \le x \le \frac{\pi}{2}$ con la propiedad de que la suma de la ordenada y la abscisa es máxima.
- b) Calcular el área comprendida por la curva $y = 2\cos x$ y la recta y = 1 en el intervalo $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

CUESTIONES

- 1^a) Sean A y B dos matrices cuadradas que verifican que $A \cdot B = B^2$, ¿cuándo se puede asegurar que A = B?
- 2^{a}) ¿Cuál es el ángulo que forma la recta x = y = z con el eje OX?
- 3ª) Utilizando la definición de la derivada, estudiar la derivabilidad de la siguiente función: $f(x) = x \cdot |x-1|$ en x = 1.
- 4^{a}) Hallar la ecuación de la circunferencia cuyo centro es el punto P(3, 5) y que es tangente a la recta t = 4x + 3y 2 = 0.
