CS2302 Operating Systems

Processes

Fan Wu

Department of Computer Science and Engineering Shanghai Jiao Tong University

Spring 2022

Process Concept

- Process a program in execution
- An operating system executes a variety of programs:
 - Batch system jobs 批处程系统。
 - Time-shared systems user programs or tasks
 - All these activities are processes
- Textbook uses the terms job and process almost interchangeably

The Process

- Multiple parts
 - The program code, also called text section
 - Data section containing global variables
 - Stack containing temporary data
 - Function parameters, return
 addresses, local variables 新英星
 - Heap containing memory dynamically allocated during run time

The Process (Cont.)

- What is the difference between program and process?
 - Program is passive entity, process is active
 - Program becomes process when the executable file is loaded into memory
- Execution of program started via GUI clicks, command line entry of its name, etc
- One program can be several processes
 - Consider multiple users executing the same program

Process State

- As a process executes, it changes state
 - New: The process is being created
 - **Ready**: The process is waiting to be assigned to a processor
 - Running: Instructions are being executed
 - Waiting: The process is waiting for some event to occur
 - **Terminated**: The process has finished execution

Process Control Block (PCB)

保机3进程的-切状态

Information associated with each process

- Process state
- Process number
- Program counter PC
- CPU registers
- CPU scheduling information
- Memory-management information
- Accounting information
- I/O status information

process state
process number
program counter
registers
memory limits
list of open files

Process Representation in Linux

■ Represented by the C structure task struct

```
pid t pid; /* process identifier */
long state; /* state of the process */
unsigned int time slice /* scheduling information */
struct task struct *parent; /* this process's parent */
struct list head children; /* this process's children */
struct files struct *files; /* list of open files */
struct mm struct *mm; /* address space of this pro */
```


PCBs in UNIX

■ The PCB is the box labeled **process structure**, but the **user structure** maintains some of the information as well (only required when the process is resident).

PCBs in Windows NT

- Information is scattered in a variety of objects.
 - Executive Process Block (EPROCESS)
 - Kernel Process Block (KPROCESS)
 - Process Environment Block (PEB)

CPU Switch From Process to Process

Process Scheduling

- Maximize CPU use, quickly switch processes onto CPU for time sharing
- Process scheduler selects among available processes for next execution on CPU
- Maintains scheduling queues of processes
 - Job queue set of all processes in the system
 - Ready queue set of all processes residing in main memory, ready and waiting to execute
 - Device queues set of processes waiting for an I/O device
 - Processes migrate among the various queues

Ready Queue And Various I/O Device Queues

Representation of Process Scheduling

Schedulers

- Long-term scheduler (or job scheduler) selects which processes should be brought into the ready queue
- Short-term scheduler (or CPU scheduler) selects which process should be executed next and allocates CPU
 - Sometimes the only scheduler in a system

Schedulers (Cont.)

- Short-term scheduler is invoked very frequently (milliseconds) ⇒ (must be fast)
- Long-term scheduler is invoked very infrequently (seconds, minutes)⇒ (may be slow)
- The long-term scheduler controls the *degree of multiprogramming*
- Processes can be described as either:
 - I/O-bound process spends more time doing I/O than computations, many short CPU bursts
 - CPU-bound process spends more time doing computations;
 some long CPU bursts

Operations on Processes

Process Creation

Process Termination

Process Creation

- Parent process create children processes, which, in turn create other processes, forming a tree of processes
- Generally, process identified and managed via a process identifier (pid)

Process Creation (Cont.)

- Resource sharing
 - Parent and children share all resources
 - Children share subset of parent's resources
 - Parent and child share no resources
- Initialization data
- Execution
 - Parent and children execute concurrently
 - Parent waits until children terminate
- Address space
 - Child duplicate of parent
 - Child has a program loaded into it

C Program Forking Separate Process

- UNIX examples
 - fork system call creates new process
 - exec system call used after a fork to replace the process' memory space with a new program

```
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int main()
   int i = 1:
   pid t pid;
   /* fork another process */
    pid = fork();
    if (pid < 0) { /* error occurred */</pre>
          fprintf(stderr, "Fork Failed");
          return 1;
    else if (pid == 0) { /* child process */
          printf("This is child.");
    else { /* parent process */
          /* parent will wait for the child */
          wait (NULL);
          printf ("Child Complete.");
   return 0;
```

Process Execution

Process Termination

- Process executes last statement and asks the operating system to delete it (exit)
 - Output data from child to parent (via wait)
 - Process' resources are deallocated by operating system
- Parent may terminate execution of children processes (abort)
 - Child has exceeded allocated resources
 - Task assigned to child is no longer required
 - If parent is exiting
 - Some operating systems do not allow child to continue if its parent terminates
 - All children terminated cascading termination

Interprocess Communication

- Processes within a system may be independent or cooperating
- Cooperating process can affect or be affected by other processes, including sharing data
- Reasons for cooperating processes:
 - Information sharing
 - Computation speedup
 - Modularity
 - Convenience
- Cooperating processes need InterProcess Communication (IPC)
- Two models of IPC
 - Shared memory
 - Message passing

Communications Models

Interprocess Communication – Shared Memory

- A region of memory that is shared by cooperating processes is established.
- Processes can then exchange information by reading and writing data to the shared region.

Producer-Consumer Problem

- Paradigm for cooperating processes, producer process produces information that is consumed by a consumer process
 - unbounded-buffer places no practical limit on the size of the buffer
 - bounded-buffer assumes that there is a fixed buffer size

Bounded-Buffer – Shared-Memory Solution

Shared data

```
#define BUFFER_SIZE 10
typedef struct {
    ...
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
```

Bounded-Buffer – Shared-Memory Solution

```
while (true) {
    /* Produce an item */
    while (((in + 1) % BUFFER_SIZE) == out)
    ; /* do nothing -- no free buffers */
    buffer[in] = item;
    in = (in + 1) % BUFFER_SIZE;
}
```

Consumer

```
while (true) {
   while (in == out) → 程序的
   ; // do nothing
   // remove an item from the buffer
   item = buffer[out];
   out = (out + 1) % BUFFER_SIZE;
   return item;
}
```

Ordinary Pipes

- Ordinary Pipes allow communication in standard producerconsumer style
 - Producer writes to one end (the write-end of the pipe)
 - Consumer reads from the other end (the read-end of the pipe)
- Ordinary pipes are in fact unidirectional
- Require parent-child relationship between communicating processes

Ordinary Pipe

Using Pipe – Part 1

First, create a pipe and check for errors

```
int mypipe[2];
if (pipe(mypipe)) {
   fprintf (stderr, "Pipe failed.\n");
   return -1;
}
```

```
mypipe[0] read-end
mypipe[1] write-end
```

- Second, fork your threads
- Third, close the pipes you don't need in that thread
 - reader should close(mypipe[1]); 7
 - writer should close(mypipe[0]);

Using Pipe – Part 2

- Fourth, the writer should write the data to the pipe
 - write(mypipe[1],&c,1);
- Fifth, the reader reads from the data from the pipe:
 - while (read(mypipe[0],&c,1)>0) { //do something, loop will exit when WRITER closes pipe Sixth, when writer is done with the pipe, close it

 close(mypine[1]): //[COT]:
- Seventh, when reader receives EOF from closed pipe, close the pipe and exit your polling loop
 - close(mypipe[0]); //all pipes should be closed now

Interprocess Communication – Message Passing

- Mechanism for processes to communicate and to synchronize their actions
- Message system processes communicate with each other without resorting to shared variables
- IPC facility provides two operations:
 - send(message) message size fixed or variable
 - receive(message)
- If P and Q wish to communicate, they need to:
 - establish a communication link between them
 - exchange messages via send/receive

Direct Communication

- Processes must name each other explicitly:
 - send (P, message) send a message to process P
 - receive(Q, message) receive a message from process Q
- Properties of communication link
 - Links are established automatically; The processes need to know only each other's identity to communicate
 - A link is associated with exactly one pair of communicating processes
 - Between each pair there exists exactly one link

Indirect Communication

- Messages are directed to and received from mailboxes (also referred to as ports)
 - Each mailbox has a unique id
 - Processes can communicate only if they share a mailbox
- Primitives are defined as:
 - send(A, message) send a message to mailbox A
 receive(A, message) receive a message from mailbox A
- Properties of communication link
 - Link established only if processes share a common mailbox
 - A link may be associated with many processes
 - Each pair of processes may share several communication links

Sockets

- A **socket** is defined as an *endpoint for communication*
- Concatenation of IP address and port
- The socket **161.25.19.8:1625** refers to port **1625** on host **161.25.19.8**
- Communication consists between a pair of sockets

Socket Communication

Steps to Create Server Side

- Create a socket with the socket() system call
- Bind the socket to an address using the bind() system call.
- Listen for connections with the listen() system call
- Accept a connection with the accept() system call (This call typically blocks until a client connects with the server)
- Send and receive data with read() and write() system calls
- Close connection with close() system call

Steps to Create Client Side

- Create a socket with the socket() system call
- Connect the socket to the address of the server using the connect() system call
- 3. Send and receive data with read() and write() system calls.
- 4. Close the socket with close() system call

Interaction Between Client and Server

Internet Domain Socket

- IP address:
 - 32 bits (IPv4) or 128 bits (IPv6)
 - C/S work on same host: just use localhost
- Port
 - 16 bit unsigned integer
 - Lower numbers are reserved for standard services
- Transport layer protocol: TCP / UDP

Headers

- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <sstream>
- #include <unistd.h>
- #include <sys/types.h>
 - Definitions of a number of data types used in system calls
- #include <sys/socket.h>
 - Definitions of structures needed for sockets
- #include <netinet/in.h>
 - Constants and structures needed for internet domain addresses

Creating Socket

```
int sockfd
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0) {
    perror("ERROR opening socket");
    exit(2);
}</pre>
```

- AF_INET: address domain
- SOCK_STREAM: stream socket, characters are read in a continuous stream as if from a file or pipe
- 0: protocol. The operating system chooses the most appropriate protocol. It will choose TCP for stream sockets.

Binding Socket

```
struct sockaddr_in serv_addr;
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = htonl(INADDR_ANY);
serv_addr.sin_port = htons(BASIC_SERVER_PORT);
bind(sockfd, (sockaddr*) &serv_addr, sizeof(serv_addr));
//error check
```

- INADDR_ANY: get IP address of the host automatically
- htonl, htons: data format conversion
- bind(): binds a socket to an address

Listening and Accepting Connection

```
listen(sockfd, 5);
```

listen(): allows the server to listen on the socket for connections, with a backlog queue of size 5.

```
int client_sockfd;
struct sockaddr_in client_addr;
int len = sizeof(client_addr);
client_sockfd = accept(sockfd, (sockaddr *) &client_addr,
&len);
   //error check
```

accept(): block process until a client connects to the server. It returns a new socket file descriptor, if the connection is created.

Reading and Writing

```
char buf[1024];
int nread = read(client_sockfd, buf, 1024);
read(): reads from the socket
```

```
write(client_sockfd, buf, len);
```

write(): writes to the socket

```
close(client_sockfd);
```

close(): closes the socket

Connecting A Client to A Server

```
int sockfd;
sockfd = socket(AF INET, SOCK STREAM, 0);
  // error check
struct sockaddr in serv addr;
struct hostent *host;
serv addr.sin family = AF INET;
host = gethostbyname(argv[1]);
  // error check
memcpy(&serv_addr.sin_addr.s_addr, host->h_addr,
  host->h length);
serv addr.sin port = htons(BASIC SERVER PORT);
connect(sockfd, (sockaddr *) &serv_addr, sizeof(serv_addr))
  // error check
```

Homework

- Reading
 - Chapter 3

