9.2 GOALS OF EVALUATION

Evaluation has three main goals: to assess the extent and accessibility of the system's functionality, to assess users' experience of the interaction, and to identify any specific problems with the system. The system's functionality is important in that it must accord with the user's requirements. In other words, the design of the system should enable users to perform their intended tasks more easily.

The final goal of evaluation is to identify specific problems with the design. These may be aspects of the design which, when used in their intended context, cause unexpected results, or confusion amongst users. This is, of course, related to both the functionality and usability of the design (depending on the cause of the problem).

9.3.1 Cognitive walkthrough

Cognitive walkthrough was originally proposed and later revised by Polson and colleagues [294, 376] as an attempt to introduce psychological theory into the informal and subjective walkthrough technique.

The origin of the cognitive walkthrough approach to evaluation is the code walkthrough familiar in software engineering. Walkthroughs require a detailed review of a sequence of actions. In the code walkthrough, the sequence represents a segment of the program code that is stepped through by the reviewers to check certain characteristics (for example, that coding style is adhered to, conventions for spelling variables versus procedure calls, and to check that system-wide invariants are not violated). In the cognitive walkthrough, the sequence of actions refers to the steps that an interface will require a user to perform in order to accomplish some known task. The evaluators then 'step through' that action sequence to check it for potential usability problems. Usually, the main focus of the cognitive walkthrough is to establish how easy a system is to learn. More specifically, the focus is on learning through exploration. Experience shows that many users prefer to learn how to use a system by exploring its functionality hands on, and not after sufficient training or examination of a user's manual. So the checks that are made during the walkthrough ask questions that address this exploratory learning. To do this, the evaluators go through each step in the task and provide a 'story' about why that step is or is not good for a new user.

To do a walkthrough (the term walkthrough from now on refers to the cognitive walkthrough, and not to any other kind of walkthrough), you need four things:

- 1. A specification or prototype of the system. It doesn't have to be complete, but it should be fairly detailed. Details such as the location and wording for a menu can make a big difference.
- 2. A description of the task the user is to perform on the system. This should be a representative task that most users will want to do.
- 3. A complete, written list of the actions needed to complete the task with the proposed system.
- 4. An indication of who the users are and what kind of experience and knowledge the evaluators can assume about them.

Given this information, the evaluators step through the action sequence (identified in item 3 above) to critique the system and tell a believable story about its usability. To do this, for each action, the evaluators try to answer the following four questions for each step in the action sequence.

- 1. Is the effect of the action the same as the user's goal at that point? Each user action will have a specific effect within the system. Is this effect the same as what the user is trying to achieve at this point? For example, if the effect of the action is to save a document, is 'saving a document' what the user wants to do?
- 2. Will users see that the action is available? Will users see the button or menu item, for example, that is used to produce the action? This is not asking whether they will recognize that the button is the one they want. This is merely asking whether it is visible to them at the time when they will need to use it. Instances where the answer to this question might be 'no' are, for example, where a VCR remote control has a covered panel of buttons or where a menu item is hidden away in a submenu.
- 3. Once users have found the correct action, will they know it is the one they need? This complements the previous question. It is one thing for a button or menu item to be visible, but will the user recognize that it is the one he is looking for to complete his task? Where the previous question was about the visibility of the action, this one is about whether its meaning and effect is clear.
- 4. After the action is taken, will users understand the feedback they get? If you now assume that the user did manage to achieve the correct action, will he know that he has done so? Will the feedback given be sufficient confirmation of what has actually happened? This is the completion of the execution—evaluation interaction cycle (see Chapter 3). In order to determine if they have accomplished their goal, users need appropriate feedback

9.3.2 Heuristic evaluation

A heuristic is a guideline or general principle or rule of thumb that can guide a design decision or be used to critique a decision that has already been made. Heuristic evaluation, developed by Jakob Nielsen and Rolf Molich, is a method for structuring the critique of a system using a set of relatively simple and general heuristics. Heuristic evaluation can be performed on a design specification so it is useful for evaluating early design. But it can also be used on prototypes, storyboards and fully functioning systems. It is therefore a flexible, relatively cheap approach. Hence it is often considered a discount usability technique.

The general idea behind heuristic evaluation is that several evaluators independently critique a system to come up with potential usability problems. It is important that there be several of these evaluators and that the evaluations be done independently. Nielsen's experience indicates that between three and five evaluators is sufficient, with five usually resulting in about 75% of the overall usability problems being discovered.

9.3.3 Model-based evaluation

A third expert-based approach is the use of models. Certain cognitive and design models provide a means of combining design specification and evaluation into the same framework. These are discussed in detail in Chapter 12. For example, the GOMS (goals, operators, methods and selection) model predicts user performance with a particular interface and can be used to filter particular design options. Similarly, lower-level modeling techniques such as the keystroke-level model provide predictions of the time users will take to perform low-level physical tasks.

Design methodologies, such as design rationale (see Chapter 6), also have a role to play in evaluation at the design stage. Design rationale provides a framework in which design options can be evaluated. By examining the criteria that are associated with each option in the design, and the evidence that is provided to support these criteria, informed judgments can be made in the design

9.4 EVALUATION THROUGH USER PARTICIPATION

The techniques we have considered so far concentrate on evaluating a design or system through analysis by the designer, or an expert evaluator, rather than testing with actual users. However, useful as these techniques are for filtering and refining the design, they are not a replacement for actual usability testing with the people for whom the system is intended: the users. In this section we will look at a number of different approaches to evaluation through user participation. These include empirical or experimental methods, observational methods, query techniques, and methods that use physiological monitoring, such as eye tracking and measures of heart rate and skin conductance

9.4.1 Styles of evaluation

Before we consider some of the techniques that are available for evaluation with users, we will distinguish between two distinct evaluation styles: those performed under laboratory conditions and those conducted in the work environment or 'in the field'.

Laboratory studies

In the first type of evaluation studies, users are taken out of their normal work environment to take part in controlled tests, often in a specialist usability laboratory (although the 'lab' may simply be a quiet room). This approach has a number of benefits and disadvantages.

A well-equipped usability laboratory may contain sophisticated audio/visual recording and analysis facilities, two-way mirrors, instrumented computers and the like, which cannot be replicated in the work environment. In addition, the participant operates in an interruption-free environment. However, the

lack of context – for example, filing cabinets, wall calendars, books or interruptions – and the unnatural situation may mean that one accurately records a situation that never arises in the real world.

Field studies

The second type of evaluation takes the designer or evaluator out into the user's work environment in order to observe the system in action. Again this approach has its pros and cons.

High levels of ambient noise, greater levels of movement and constant interruptions, such as phone calls, all make field observation difficult. However, the very 'open' nature of the situation means that you will observe interactions between systems and between individuals that would have been missed in a laboratory study. The context is retained and you are seeing the user in his 'natural environment'. In addition, some activities, such as those taking days or months, are impossible to study in the laboratory (though difficult even in the field).

9.4.2 Empirical methods: experimental evaluation

One of the most powerful methods of evaluating a design or an aspect of a design is to use a controlled experiment. This provides empirical evidence to support a particular claim or hypothesis. It can be used to study a wide range of different issues at different levels of detail.

Participants

The choice of participants is vital to the success of any experiment. In evaluation experiments, participants should be chosen to match the expected user population as closely as possible. Ideally, this will involve experimental testing with the actual users but this is not always possible. If participants are not actual users, they should be chosen to be of a similar age and level of education as the intended user group. Their experience with computers in general, and with systems related to that being tested, should be similar, as should their experience or knowledge of the task domain. It is no good testing an interface designed to be used by the general public on a participant set made up of computer science undergraduates: they are simply not representative of the intended user population.

Variables

Experiments manipulate and measure variables under controlled conditions, in order to test the hypothesis. There are two main types of variable: those that are 'manipulated' or changed (known as the independent variables) and those that are measured (the dependent variables)

Independent variables are those elements of the experiment that are manipulated to produce different conditions for comparison. Examples of independent variables in evaluation experiments are interface style, level of help, number of menu items and icon design. Each of these variables can be given a number of different values; each value that is used in an experiment is known as a level of the variable. So, for example, an experiment that wants to test whether search speed improves as the number of

menu items decreases may consider menus with five, seven, and ten items. Here the independent variable, number of menu items, has three levels.

Dependent variables, on the other hand, are the variables that can be measured in the experiment, their value is 'dependent' on the changes made to the independent variable. In the example given above, this would be the speed of menu selection. The dependent variable must be measurable in some way, it must be affected by the independent variable, and, as far as possible, unaffected by other factors. Common choices of dependent variable in evaluation experiments are the time taken to complete a task, the number of errors made, user preference and the quality of the user's performance. Obviously, some of these are easier to measure objectively than others. However, the more subjective measures can be applied against predetermined scales, and can be very important factors to consider.

Hypotheses

A hypothesis is a prediction of the outcome of an experiment. It is framed in terms of the independent and dependent variables, stating that a variation in the independent variable will cause a difference in the dependent variable. The aim of the experiment is to show that this prediction is correct. This is done by disproving the null hypothesis, which states that there is no difference in the dependent variable between the levels of the independent variable. The statistical measures described below produce values that can be compared with various levels of significance. If a result is significant it shows, at the given level of certainty, that the differences measured would not have occurred by chance (that is, that the null hypothesis is incorrect).

Experimental design

In order to produce reliable and generalizable results, an experiment must be carefully designed. We have already looked at a number of the factors that the experimenter must consider in the design, namely the participants, the independent and dependent variables, and the hypothesis. The first phase in experimental design then is to choose the hypothesis: to decide exactly what it is you are trying to demonstrate. In doing this you are likely to clarify the independent and dependent variables, in that you will have identified what you are going to manipulate and what change you expect. If your hypothesis does not clearly identify these variables then you need to rethink it.

Studies of groups of users

So far we have considered the experimental evaluation of single-user systems. Experiments to evaluate elements of group systems bring additional problems. Given the complexities of human—human communication and group working, it is hardly surprising that experimental studies of groups and of groupware are more difficult than the corresponding single-user experiments already considered. For the purpose of discussion, let us assume that we are evaluating a shared application with video connections between the participants and consider some of the problems we will encounter.

• The participant groups To organize, say, 10 experiments of a single-user system requires 10 participants. For an experiment involving groups of three, we will, of course, need 30 participants for the same number of experiments. In addition, experiments in group working are often longer

than the single-user equivalents as we must allow time for the group to 'settle down' and some rapport to develop. This all means more disruption for participants and possibly more expense payments.

- The experimental task Choosing a suitable task is also difficult. We may want to test a variety of different task types: creative, structured, information passing, and so on. Also, the tasks must encourage active cooperation, either because the task requires consensus, or because information and control is distributed among the participants. Obviously, the task also depends on the nature of the groupware system: if it has several available channels, we want to encourage broad use. For example, in the case of shared application with video, it should not be possible (or at least not easy) to perform the task without using the application, otherwise we are simply investigating video conferencing.
- Data gathering Even in a single-user experiment we may well use several video cameras as well as direct logging of the application. In a group setting this is replicated for each participant. So for a three-person group, we are trying to synchronize the recording of six or more video sources and three keystroke logs. To compound matters, these may be spread over different offices, or even different sites. The technical problems are clearly enormous. Four-into-one video recording is possible, storing a different image in each quadrant of the screen, but even this is insufficient for the number of channels we would like.
- Analysis In true experimental tradition, we would like to see statistical differences between
 experimental conditions. We saw earlier that individual differences made this difficult in singleuser experiments. If anything, group variation is more extreme. Given randomly mixed groups,
 one group will act in a democratic fashion; in another, a particular pair will dominate discussion;
 in a third, one of the participants will act as coordinator, filtering the others' contributions. The
 level of variation is such that even catastrophic failures under one condition and fabulous
 successes in another may not always lead to statistically significant results.
- **Field studies with groups** There are, of course, problems with taking groups of users and putting them in an experimental situation. If the groups are randomly mixed, then we are effectively examining the process of group formation, rather than that of a normal working group. Even where a pre-existent group is used, excluding people from their normal working environment can completely alter their working patterns. For a new system, there may be no 'normal' workplace and all we can do is produce an artificial environment. However, even with a new system we have the choice of producing a 'good' experiment or a naturalistic setting. The traditions of experimental psychology are at odds with those of more qualitative sociological analysis.

9.4.3 Observational techniques

A popular way to gather information about actual use of a system is to observe users interacting with it. Usually they are asked to complete a set of predetermined tasks, although, if observation is being carried out in their place of work, they may be observed going about their normal duties. The evaluator watches and records the users' actions (using a variety of techniques – see below). Simple observation is seldom sufficient to determine how well the system meets the users' requirements since it does not always give insight into the their decision processes or attitude. Consequently users are asked to elaborate their actions by 'thinking aloud'. In this section we consider some of the techniques used to evaluate systems by observing user behavior.

Think aloud and cooperative evaluation

Think aloud is a form of observation where the user is asked to talk through what he is doing as he is being observed; for example, describing what he believes is happening, why he takes an action, what he is trying to do.

Think aloud has the advantage of simplicity; it requires little expertise to perform (though can be tricky to analyze fully) and can provide useful insight into problems with an interface. It can also be employed to observe how the system is actually used. It can be used for evaluation throughout the design process, using paper or simulated mock-ups for the earlier stages. However, the information provided is often subjective and may be selective, depending on the tasks provided.

A variation on think aloud is known as cooperative evaluation in which the user is encouraged to see himself as a collaborator in the evaluation and not simply as an experimental participant. As well as asking the user to think aloud at the beginning of the session, the evaluator can ask the user questions (typically of the 'why?' or 'what-if?' type) if his behavior is unclear, and the user can ask the evaluator for clarification if a problem arises.

Protocol analysis

Methods for recording user actions include the following:

- Paper and pencil This is primitive, but cheap, and allows the analyst to note interpretations and extraneous events as they occur. However, it is hard to get detailed information, as it is limited by the analyst's writing speed. Coding schemes for frequent activities, developed during preliminary studies, can improve the rate of recording substantially, but can take some time to develop. A variation of paper and pencil is the use of a notebook computer for direct entry, but then one is limited to the analyst's typing speed, and one loses the flexibility of paper for writing styles, quick diagrams and spatial layout. If this is the only recording facility available then a specific note-taker, separate from the evaluator, is recommended.
- Audio recording This is useful if the user is actively 'thinking aloud'. However, it may be difficult
 to record sufficient information to identify exact actions in later analysis, and it can be difficult to
 match an audio recording to some other form of protocol (such as a handwritten script)

- Video recording This has the advantage that we can see what the participant is doing (as long as the participant stays within the range of the camera). Choosing suitable camera positions and viewing angles so that you get sufficient detail and yet keep the participant in view is difficult. Alternatively, one has to ask the participant not to move, which may not be appropriate for studying normal behavior! For single-user computer-based tasks, one typically uses two video cameras, one looking at the computer screen and one with a wider focus including the user's face and hands. The former camera may not be necessary if the computer system is being logged.
- **Computer logging** It is relatively easy to get a system automatically to record user actions at a keystroke level, particularly if this facility has been considered early in the design. It can be more difficult with proprietary software where source code is not available (although some software now provides built-in logging and playback facilities).
- **User notebooks** The participants themselves can be asked to keep logs of activity/ problems. This will obviously be at a very coarse level at most, records every few minutes and, more likely, hourly or less. It also gives us 'interpreted' records, which have advantages and problems. The technique is especially useful in longitudinal studies, and also where we want a log of unusual or infrequent tasks and problems.

Automatic protocol analysis tools

Analyzing protocols, whether video, audio or system logs, is time consuming and tedious by hand. It is made harder if there is more than one stream of data to synchronize. One solution to this problem is to provide automatic analysis tools to support the task. These offer a means of editing and annotating video, audio and system logs and synchronizing these for detailed analysis.

Post-task walkthroughs

Often data obtained via direct observation lack interpretation. We have the basic actions that were performed, but little knowledge as to why. Even where the participant has been encouraged to think aloud through the task, the information may be at the wrong level. For example, the participant may say 'and now I'm selecting the undo menu', but not tell us what was wrong to make undo necessary. In addition, a think aloud does not include information such as alternative, but not pursued, actions.

A walkthrough attempts to alleviate these problems, by reflecting the participants' actions back to them after the event. The transcript, whether written or recorded, is replayed to the participant who is invited to comment, or is directly questioned by the analyst. This may be done straightaway, when the participant may actually remember why certain actions were performed, or after an interval, when the answers are more likely to be the participant's post hoc interpretation. (In fact, interpretation is likely even in the former case.) The advantage of a delayed walkthrough is that the analyst has had time to frame suitable questions and focus on specific incidents. The disadvantage is a loss of freshness.

9.4.4 Query techniques

Another set of evaluation techniques relies on asking the user about the interface directly. Query techniques can be useful in eliciting detail of the user's view of a system. They embody the philosophy that states that the best way to find out how a system meets user requirements is to 'ask the user'. They can be used in evaluation and more widely to collect information about user requirements and tasks. The advantage of such methods is that they get the user's viewpoint directly and may reveal issues that have not been considered by the designer.

Interviews

Interviewing users about their experience with an interactive system provides a direct and structured way of gathering information. Interviews have the advantages that the level of questioning can be varied to suit the context and that the evaluator can probe the user more deeply on interesting issues as they arise. An interview will usually follow a top-down approach, starting with a general question about a task and progressing to more leading questions (often of the form 'why?' or 'what if?') to elaborate aspects of the user's response.

Interviews can be effective for high-level evaluation, particularly in eliciting information about user preferences, impressions and attitudes. They may also reveal problems that have not been anticipated by the designer or that have not occurred under observation. When used in conjunction with observation they are a useful means of clarifying an event (compare the post-task walkthrough).

Questionnaires

An alternative method of querying the user is to administer a questionnaire. This is clearly less flexible than the interview technique, since questions are fixed in advance, and it is likely that the questions will be less probing. However, it can be used to reach a wider participant group, it takes less time to administer, and it can be analyzed more rigorously. It can also be administered at various points in the design process, including during requirements capture, task analysis and evaluation, in order to get information on the user's needs, preferences and experience.

There are a number of styles of question that can be included in the questionnaire. These include the following:

- General: These are questions that help to establish the background of the user and his place
 within the user population. They include questions about age, sex, occupation, place of
 residence, and so on. They may also include questions on previous experience with computers,
 which may be phrased as open-ended, multi-choice or scalar questions.
- Open-ended: These ask the user to provide his own unprompted opinion on a question, for example 'Can you suggest any improvements to the interface?'. They are useful for gathering general subjective information but are difficult to analyze in any rigorous way, or to compare, and can only be viewed as supplementary.

- **Scalar:** These ask the user to judge a specific statement on a numeric scale, usually corresponding to a measure of agreement or disagreement with the statement.
- **Multi-choice:** Here the respondent is offered a choice of explicit responses, and may be asked to select only one of these, or as many as apply.
- Ranked: These place an ordering on items in a list and are useful to indicate a user's preferences.

9.4.5 Evaluation through monitoring physiological responses

One of the problems with most evaluation techniques is that we are reliant on observation and the users telling us what they are doing and how they are feeling. What if we were able to measure these things directly? Interest has grown recently in the use of what is sometimes called objective usability testing, ways of monitoring physiological aspects of computer use. Potentially this will allow us not only to see more clearly exactly what users do when they interact with computers, but also to measure how they feel. The two areas receiving the most attention to date are eye tracking and physiological measurement.

Eye tracking for usability evaluation

Eye tracking has been possible for many years, but recent improvements in hardware and software have made it more viable as an approach to measuring usability. The original eye trackers required highly invasive procedures where eye caps were attached to the cornea under anaesthetic. Clearly inappropriate for usability testing! Modern systems vary: some use a head-mounted camera to monitor the eye, but the most sophisticated do not involve any contact between the equipment and the participant.

Eye movements are believed to reflect the amount of cognitive processing a display requires and, therefore, how easy or difficult it is to process [150]. So measuring not only where people look, but also their patterns of eye movement, may tell us which areas of a screen they are finding easy or difficult to understand. Eye movement measurements are based on fixations, where the eye retains a stable position for a period of time, and saccades, where there is rapid ballistic eye movement from one point of interest to another. There are many possible measurements related to usability evaluation including:

- Number of fixations: The more fixations the less efficient the search strategy.
- **Fixation duration:** Longer fixations may indicate difficulty with a display.

• Scan path: indicating areas of interest, search strategy and cognitive load. Moving straight to a target with a short fixation at the target is the optimal scan path but plotting scan paths and fixations can indicate what people look at, how often and for how long.

Eye tracking for usability is still very new and equipment is prohibitively expensive for everyday use. However, it is a promising technique for providing insights into what really attracts the eye in website design and where problem areas are in system use. More research is needed to interpret accurately the meaning of the various eye movement measurements, as well as to develop more accessible and robust equipment.

Physiological measurements

Emotional response is closely tied to physiological changes. These include changes in heart rate, breathing and skin secretions. Measuring these physiological responses may therefore be useful in determining a user's emotional response to an interface.

Physiological measurement involves attaching various probes and sensors to the user. These measure a number of factors:

- Heart activity, indicated by blood pressure, volume and pulse. These may respond to stress or anger.
- **Activity of the sweat glands**, indicated by skin resistance or galvanic skin response (GSR). These are thought to indicate levels of arousal and mental effort.
- **Electrical activity in muscle**, measured by the electromyogram (EMG). These appear to reflect involvement in a task.
- **Electrical activity in the brain,** measured by the electroencephalogram (EEG). These are associated with decision making, attention and motivation.

9.5 CHOOSING AN EVALUATION METHOD

As we have seen in this chapter, a range of techniques is available for evaluating an interactive system at all stages in the design process. So how do we decide which methods are most appropriate for our needs? There are no hard and fast rules in this – each method has its particular strengths and weaknesses and each is useful if applied appropriately. However, there are a number of factors that should be taken into account when selecting evaluation techniques. These also provide a way of categorizing the different methods so that we can compare and choose between them. In this final section we will consider these factors.

9.5.1 Factors distinguishing evaluation techniques

We can identify at least eight factors that distinguish different evaluation techniques and therefore help us to make an appropriate choice. These are:

- The stage in the cycle at which the evaluation is carried out
- The style of evaluation
- The level of subjectivity or objectivity of the technique
- The type of measures provided
- The information provided
- The immediacy of the response
- The level of interference implied
- The resources required.