Začeto dne	četrtek, 16. januar 2020, 09:53
Stanje	Zaključeno
Dokončano dne	ponedeljek, 20. januar 2020, 00:00
Porabljeni čas	3 dni 14 ure
Točke	6,25/8,00

Ocena 7,81 od možne ocene 10,00 (78%)

Vprašanje **1**Pravilno
Ocena 1,00 od
1,00

Na sliki je <u>usmerjeni graf</u>.

Z Dijkstrinim algoritmom želimo zgraditi vpeto drevo najkrajših povezav iz vozlišča A. V kakšnem vrstnem redu bodo dodana vozlišča v vpeto drevo (ki že vsebuje vozlišče A, kot koren vpetega drevesa)?

Vaš odgovor je pravilen.

Pravilen odgovor je: Prvo dodano vozlišče \rightarrow d, Drugo dodano vozlišče \rightarrow c, Tretje dodano vozlišče \rightarrow e, Četrto dodano vozlišče \rightarrow b, Peto dodano vozlišče \rightarrow f, Šesto dodano vozlišče \rightarrow g

Vprašanje **2**Pravilno
Ocena 1,00 od 1,00

Na sliki je prikazan mrežni diagram: a je začetno vozlišče, g pa zaključno.

Z algoritmom za analizo kritične poti po principu dinamičnega programiranja poiščemo pot med vozliščema a in g.

Vaš odgovor je pravilen.

Pravilen odgovor je: Naslednik vozlišča b na kritični poti je \rightarrow c, Naslednik vozlišča d na kritični poti je \rightarrow vozlišče ni na kritični poti, Naslednik vozlišča i na kritični poti je \rightarrow g, Naslednik vozlišča f na kritični poti je \rightarrow e, Naslednik vozlišča e na kritični poti je \rightarrow i, Naslednik vozlišča h na kritični poti je \rightarrow vozlišče ni na kritični poti, Naslednik vozlišča a na kritični poti je \rightarrow b, Naslednik vozlišča c na kritični poti je \rightarrow f

Vprašanje **3**Pravilno
Ocena 1,00 od
1,00

Na sliki je neusmerjeni graf.

Cene povezav so: a(6), b(6), c(2), d(2), e(6), f(3), g(4), h(5), i(5), j(4), k(2). S Kruskalovim algoritmom želimo zgraditi minimalno vpeto drevo. Če je več povezav enakovrednih, potem predpostavimo, da algoritem izbira po abecedi. V kakšnem vrstnem redu algoritem dodaja povezave v gozd?

Vaš odgovor je pravilen.

Pravilen odgovor je: Prva dodana povezava \rightarrow c, Druga dodana povezava \rightarrow d, Tretja dodana povezava \rightarrow k, Četrta dodana povezava \rightarrow f, Peta dodana povezava \rightarrow j, Šesta dodana povezava \rightarrow i, Sedma dodana povezava \rightarrow a

Vprašanje **4**Pravilno
Ocena 1,00 od
1,00

Nekdo se je lotil iskanja kritične poti v grafu tako, da je trivialno spremenil Dijkstrin algoritem: elemente v kopici je uredil od največjega proti najmanjšemu. Na ta način je v vsaki iteraciji v vpeto drevo dodal vozlišče, ki ima najdaljšo znano pot od začetnega vozlišča. Katera trditev je pravilna?

- opisani algoritem ne bo vedno pravilno deloval, čeprav ga poganjamo na usmerjenih grafih brez ciklov in brez povezav z negativnimi cenami
- opisani algoritem bo pravilno deloval na vseh usmerjenih grafih brez ciklov in brez povezav z negativnimi cenami
- opisani algoritem bo pravilno deloval na vseh usmerjenih grafih brez ciklov (ne glede na morebitne negativne cene povezav)
- opisani algoritem bo pravilno deloval na vseh usmerjenih grafih (ne glede na morebitne cikle in negativne cene povezav)

Vaš odgovor je pravilen.

Pravilen odgovor je: opisani algoritem ne bo vedno pravilno deloval, čeprav ga poganjamo na usmerjenih grafih brez ciklov in brez povezav z negativnimi cenami

Vprašanje **5**Pravilno
Ocena 1,00 od
1,00

S Kruskalovim algoritmom želimo poiskati MAKSIMALNO vpeto drevo za podani graf. Katere trditve so pravilne?

Izberite enega ali več odgovorov:

- trivialna sprememba algoritma, s katero bi v vsaki iteraciji izbirali maksimalno namesto minimalne povezave med dvema vpetima drevesoma, ne bo dala pravilnega rezultata
- cene povezav v grafu bi lahko množili z -1, toda Kruskalov algoritem ne deluje na grafih z negativnimi cenami povezav
- ✓ če algoritem spremenimo tako, da v vsaki iteraciji izbere maksimalno povezavo med dvema vpetima drevesoma, dobimo maksimalno vpeto drevo grafa ✓

Vaš odgovor je pravilen.

Pravilni odgovori so: če cene vseh povezav v grafu množimo z -1 in poženemo algoritem, dobljena rešitev določa maksimalno vpeto drevo originalnega grafa, če algoritem spremenimo tako, da v vsaki iteraciji izbere maksimalno povezavo med dvema vpetima drevesoma, dobimo maksimalno vpeto drevo grafa

Vprašanje **6**Delno pravilno
Ocena 0,25 od
1,00

Želimo uporabiti Dijkstrin algoritem za gradnjo vpetega drevesa najkrajših poti v grafu. Težava je v tem, da ima naš graf nekatere (ne vse) povezave z negativnimi cenami. Kako lahko spremenimo graf, da bo dobljena rešitev pravilna tudi za začetno situacijo (več možnih odgovorov)?

Izberite enega ali več odgovorov:

- ✓ če v grafu obstajajo "negativni cikli", najkrajše poti sploh niso definirane (zaradi negativnih povezav so lahko nekatere poti dolge minus neskončno)
- cene vseh povezav spremenimo v pozitivne vrednosti tako, da jim prištejemo dovolj veliko konstanto ter nato poženemo algoritem
- povezave z negativnimi cenami odstranimo iz grafa in nato poženemo algoritem
- 🏿 grafa ni potrebno spreminjati dobljeni rezultat bo pravilen, ne glede na negativne cene povezav 🗙
- grafa se v splošnem ne da popraviti tako, da bi Dijkstrin algoritem pravilno deloval
- cene povezav zamenjamo z njihovimi absolutnimi vrednostmi in nato poženemo algoritem

Vaš odgovor je delno pravilen.

Pravilno ste izbrali 1.

Pravilni odgovori so: grafa se v splošnem ne da popraviti tako, da bi Dijkstrin algoritem pravilno deloval, če v grafu obstajajo "negativni cikli", najkrajše poti sploh niso definirane (zaradi negativnih povezav so lahko nekatere poti dolge minus neskončno)

Vprašanje 7 Pravilno Ocena 1,00 od 1,00	Primov algoritem implementiramo tako, da prioritetno vrsto predstavimo z AVL drevesom. Če z n označimo število vozlišč v grafu in z m število povezav, je časovna kompleksnost dobljenega algoritma: O(m*log(m)) O(m*log(n)) ✓ O(n^2) O(m(log(m)+n^2)) O(m*n)
	Vaš odgovor je pravilen. Pravilen odgovor je: O(m*log(n))
Vprašanje 8 NEpravilno Ocena 0,00 od 1,00	Na grafu, ki ima n vozlišč in m povezav, smo pognali Primov algoritem. Pri gradnji minimalnega vpetega drevesa bo algoritem izvršil n-krat operaciji INSERT in DELETEMIN. Velja tudi, da bo algoritem izvršil operacijo DECREASE_KEY največ O(m) krat. Kakšna bo časovna zahtevnost algoritma v odvisnosti od števila vozlišč n in števila povezav m, če prioritetno vrsto realiziramo z urejenim seznamom?
	 O(n * m) O(n^2 + m*n) O(n * log(n)) * O(m * log(m)) O(m^2)
	Vaš odgovor je napačen. Pravilen odgovor je: O(n^2 + m*n)
	Sitve kritična pot, Dijkstra, ruskal (kopiraj)