Step into High-dimensional Statistics: Sparse Mean Estimation

Yajie Bao Shanghai Jiao Tong University

February 10, 2020

Classical Statistics always has a basic assumption: n > p, and many estimation methods with good asymptotic properties were build based on this assumption. Many multivariate statistical models (see Anderson [1958]) will fail when the number of variates is greater than sample size, such as linear regression, LDA, PCA... And in many situations, the dimension p will increase with the growth of sample size n.

Take the normal mean estimation as an example, X_i , i = 1, 2, ..., n are i.i.d samples from multivariate normal distribution $N(\boldsymbol{\mu}, \sigma^2 I_p)$, and sample mean $\bar{\boldsymbol{X}}$ is the minimax estimator of $\boldsymbol{\mu}$. Note that the minimax error is

$$\mathbb{E}\left(\bar{\boldsymbol{X}}-\boldsymbol{\mu}\right)^{2} = \sum_{j=1}^{p} \mathbb{E}\left(\bar{X}_{j}-\mu_{j}\right)^{2} = \frac{p\sigma^{2}}{n},$$

and obviously \bar{X} is not a consistent estimator when n = o(p), which is called the curse of dimensionality.

Another example is LDA, we need to compute the linear discriminant vector $\widehat{\Sigma}(\bar{X} - \bar{Y})$. The rank of sample covariance matrix is $\min\{n, p\} = n$, which means $\widehat{\Sigma}$ is non-invertible. So we can't obtain $\widehat{\Sigma}^{-1}$ directly.

1 Gaussian sequence model

A toy model in high-dimensional statistics is the Gaussian sequence model,

$$y_{ij} = \beta_j + z_{ij}, \ i = 1, 2, ..., n; \ j = 1, 2, ..., p$$
 (1.1)

where z_{ij} are i.i.d normal r.v with mean 0 and variance σ^2 for each j. Now we have n observations for each y_j to estimate $\boldsymbol{\beta} = (\beta_1, ..., \beta_p)$. To overcome this problem, we need to add some assumptions on high-dimensional parameter $\boldsymbol{\beta}$. A direct thought is sparsity, i.e., there are only few non-zero elements in $\boldsymbol{\beta}$. And this assumption can be written as

$$\sum_{j=1}^{p} 1(|\beta_j| \neq 0) \le s_0. \tag{1.2}$$

Next step is to find the positions of non-zero parameter entries and obtain their estimation, and the first part of our goal is also called support recovery. If $\beta_j = 0$, then $\hat{\beta}_j = \bar{Y}_j$ will be quite small. Thus we can only keep $\hat{\beta}_j$ with large magnitude, which leads to the idea of thresholding.

There are many thresholding functions like hard thresholding, soft thresholding (see Donoho and Johnstone [1994]), SCAD (see Fan and Li [2001]) etc. Here we use hard thresholding method

$$\widehat{\beta}_j = \bar{Y}_j \mathbb{I}\left(\left|\bar{Y}_j\right| \ge t\right), \quad \forall j \in \{1, \dots, p\},\tag{1.3}$$

where $\bar{Y}_j = \sum_{i=1}^n y_{ij}/n$. Next we will give some theoretical results on estimation error and support recovery. Before this we need a lemma on the bound of $\max_j |\bar{Y}_j - \beta_j|$

Lemma 1.1 For the sample mean \bar{Y}_j , j = 1, 2, ..., p

$$\max_{i=1}^{p} \left| \bar{Y}_{j} - \beta_{j} \right| = O_{p} \left(\sqrt{\frac{\log p}{n}} \right). \tag{1.4}$$

Proof: let $X_j = \bar{Y}_j - \beta_j = \frac{\sum_{i=1}^n z_{ji}}{n}$, where $z_{ji} \sim N(0, \sigma^2)$ and independent. Using the tail probability of normal random variables and the fact $X_j \sim N(0, \frac{\sigma^2}{n})$, we have

$$\mathbb{P}\left(\max_{j=1}^{p} |X_j| \ge t\right) \le \sum_{j=1}^{p} \mathbb{P}\left(|X_j| \ge t\right)$$
$$\le 2p \exp\left(-\frac{nt^2}{2\sigma^2}\right).$$

Set $t = \lambda \sqrt{\frac{\log p}{n}}$ for sufficiently large λ and the result follows.

Theorem 1.2 (Support recovery) Let $S(\beta) = \{j : |\beta_j| \neq 0\}$ and $S(\widehat{\beta}) = \{j : |\widehat{\beta}_j| \neq 0\}$, assume that $\min_{j \in S} |\beta_j| > \sigma \sqrt{\frac{2\log(2p/\delta)}{n}}$ and set $t = \sigma \sqrt{\frac{2\log(2p/\delta)}{n}}$ then with probability at least $1 - \delta$,

$$S(\beta) = S(\widehat{\beta}). \tag{1.5}$$

Proof: According to the proof of Lemma 1.1, with probability at least $1 - \delta$,

$$\max_{i=1}^{p} \left| \bar{Y}_j - \beta_j \right| \le \sigma \sqrt{\frac{2\log(2p/\delta)}{n}}.$$

If $j \in S$, then $|\widehat{\beta}_j| > 0$, otherwise the error will be great than $\sigma \sqrt{\frac{2\log(2p/\delta)}{n}}$. If $j \in S^c$, then

$$\mathbb{P}\left(|\widehat{\beta}_j|=0\right) = \mathbb{P}\left(\left|\bar{Y}_j-\beta_j\right| \ge t\right) \le 1-\delta.$$

Then we have completed the proof.

Theorem 1.3 (ℓ_1 error bound) Under the assumption (1.2) and set threshold $t = \lambda \sqrt{\frac{\log p}{n}}$

$$\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_1 = \sum_{j=1}^p |\widehat{\beta}_j - \beta_j| = O_p\left(s_0\sqrt{\frac{\log p}{n}}\right),\tag{1.6}$$

where $\lambda > \sqrt{2}\sigma$.

Proof: First using the assumption (1.2) and Lemma 1.1, we have

$$\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_{1} = \sum_{j=1}^{p} |\bar{Y}_{j}\mathbb{I}(|\bar{Y}_{j}| \geq t) - \beta_{j}|$$

$$= \sum_{j \in S} |\bar{Y}_{j}\mathbb{I}(|\bar{Y}_{j}| \geq t) - \beta_{j}| + \sum_{j \in S^{c}} |\bar{Y}_{j}\mathbb{I}(|\bar{Y}_{j}| \geq t)|$$

$$\leq \sum_{j \in S} |\bar{Y}_{j} - \beta_{j}| + \sum_{j \in S} |\bar{Y}_{j}|\mathbb{I}(|\bar{Y}_{j}| < t) + \sum_{j \in S^{c}} |\bar{Y}_{j}\mathbb{I}(|\bar{Y}_{j}| \geq t)|$$

$$\leq s_{0} \max_{i=1}^{p} |\bar{Y}_{j} - \beta_{j}| + s_{0}t + \max_{i=1}^{p} |\bar{Y}_{j} - \beta_{j}| \sum_{j \in S^{c}} \mathbb{I}(|\bar{Y}_{j}| \geq t)$$

$$= O_{p} \left(s_{0} \sqrt{\frac{\log p}{n}} \right) + I.$$

Then note that when $\beta_j = 0$, $\bar{Y}_j \sim N(0, \frac{\sigma^2}{n})$ and

$$\mathbb{P}\left(\sum_{j\in S^c} \mathbb{I}\left(\left|\bar{Y}_j\right| \ge t\right) > 0\right) = \mathbb{P}\left(\max_{j\in S^c} \left|\bar{Y}_j\right| \ge t\right)$$

$$\le 2p \exp\left(-\frac{\lambda^2}{2\sigma^2} \log p\right)$$

$$= 2\exp\left(-\frac{\lambda^2}{2\sigma^2} \log p + \log p\right) \to 0.$$

Thus $I = o_p\left(s_0\sqrt{\frac{\log p}{n}}\right)$ and the result follows.

Remark. Through the analysis above, under the sparsity assumption (1.2), if $s_0 \sqrt{\frac{\log p}{n}} \to 0$ then hard thresholding estimator is still consistent.

Theorem 1.4 (ℓ_{∞} error bound) Under the assumption (1.2) and set threshold $t = M_0 \sqrt{\frac{\log p}{n}}$ for some $M_0 > 0$, then we have

$$\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_{\infty} = O_p\left(\sqrt{\frac{\log p}{n}}\right). \tag{1.7}$$

Proof: Note that there exists some C_0 such that,

$$\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_{\infty} \leq \max_{j=1}^{p} |\bar{Y}_{j} - \beta_{j}| + \max_{j=1}^{p} |\bar{Y}_{j}| \mathbb{I}(|\bar{Y}_{j}| < t)$$
$$\leq C_{0} \sqrt{\frac{\log p}{n}} + t.$$

Remark. Using the simple norm inequality and Theorem 1.2, we have ℓ_2 error bound

$$\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_{2} \le \sqrt{s} \|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_{\infty} = O_{p} \left(\sqrt{\frac{s \log p}{n}} \right).$$
 (1.8)

And according to Johnstone [1986], (1.8) is statistical minimax lower bound of sparse mean estimation.

2 New tail bound assumption

Note that the assumption of normality is used to construct tail bound (1.4), and this assumption can be substituted by the following condition:

Assumption 2.1 (Exponential-type tails) Suppose that there exists some $\gamma > 0$ such that

$$\operatorname{E}\exp\left(tz_{ij}^2\right) \le K_1 < \infty \quad \text{for all } |t| \le \gamma \text{ and } i,j$$
 (2.1)

Here we use a lemma in Cai and Liu [2011] as following:

Lemma 2.2 Let ξ_1, \ldots, ξ_n be independent random variables with mean 0. Suppose that there exists some $\eta > 0$ and \bar{B}_n^2 such that $\sum_{k=1}^n E \xi_k^2 e^{\eta |\xi_k|} \leq \bar{B}_n^2$. Then for $0 < x \leq \bar{B}_n$,

$$P\left(\sum_{k=1}^{n} \xi_k \ge C_{\eta} \bar{B}_n x\right) \le \exp\left(-x^2\right),\tag{2.2}$$

where $C_{\eta} = \eta + \eta^{-1}$.

Proof: By the inequality $|e^s - 1 - s| \le s^2 e^{|s|}$, we have for any $t \ge 0$,

$$P\left(\sum_{k=1}^{n} \xi_{k} \geq C_{n} \bar{B}_{n} x\right) \leq \exp\left(-t C_{\eta} \bar{B}_{n} x\right) \prod_{k=1}^{n} \operatorname{E} \exp\left(t \xi_{k}\right)$$

$$\leq \exp\left(-t C_{\eta} \bar{B}_{n} x\right) \prod_{k=1}^{n} \left(1 + t^{2} \operatorname{E} \xi_{k}^{2} e^{t |\xi_{k}|}\right)$$

$$\leq \exp\left(-t C_{\eta} \bar{B}_{n} x + \sum_{k=1}^{n} t^{2} \operatorname{E} \xi_{k}^{2} e^{t |\xi_{k}|}\right).$$

Take $t = \eta (x/\bar{B}_n)$, it follows that

$$P\left(\sum_{k=1}^{n} \xi_k \ge C_{\eta} \bar{B}_n x\right) \le \exp\left(-\eta C_{\eta} x^2 + \eta^2 x^2\right) = \exp\left(-x^2\right).$$

Theorem 2.3 Assume that the noise z_{ij} satisfying Assumption 2.1, we have

$$\max_{i=1}^{p} \left| \bar{Y}_j - \beta_j \right| = O_p \left(\sqrt{\frac{\log p}{n}} \right). \tag{2.3}$$

Proof: Using the simple inequality

$$s^2 e^s \le e^{2s} \le e^{s^2 + 1}$$

we have for each i, j

$$\mathrm{E}\left(z_{ij}^{2}e^{\eta|z_{ij}|}\right) \le \mathrm{E}\left(\eta^{-2}\exp(2\eta|z_{i}j|)\right) \le e\mathrm{E}\left(\eta^{-2}\exp(\eta^{2}|z_{i}j|^{2})\right).$$

By Assumption 2.1, we can set

$$\bar{B}_n^2 = ne\eta^{-2} K_1,$$

where $0 < \eta < \sqrt{\gamma}$. Then for sufficiently large η

$$P\left(\max_{i=1}^{p} \left| \bar{Y}_{j} - \beta_{j} \right| > C\sqrt{\frac{\log p}{n}}\right) \leq \sum_{j=1}^{p} P\left(\sum_{i=1}^{n} |z_{ij}| > C\sqrt{n\log p}\right)$$
$$= pP\left(\sum_{i=1}^{n} |z_{ij}| > C\bar{B}_{n}e^{-1}\eta K_{1}^{-\frac{1}{2}}\sqrt{\log p}\right)$$
$$\to 0,$$

which completes the proof.

Remark. Assumption 2.1 is very similar to sub-Gaussian (see Vershynin [2018]), which has tail

$$\mathbb{P}\{|X| \ge t\} \le 2\exp\left(-t^2/K_1^2\right) \quad \text{for all } t \ge 0. \tag{2.4}$$

And there is concentration inequality about sum of independent sub-Gaussian random variables.

Theorem 2.4 (General Hoeffding's inequality) Let X_i , i = 1, 2, ..., N be be independent, mean zero, sub-gaussian random variables with parameter σ_i , then for every $t \geq 0$,

$$\mathbb{P}\left\{ \left| \sum_{i=1}^{N} X_i \right| \ge t \right\} \le 2 \exp\left(-\frac{ct^2}{\sum_{i=1}^{N} \sigma_i^2} \right). \tag{2.5}$$

Besides Exponential-type tails, there is another common tail called Polynomial-type tails.

Assumption 2.5 (Polynomial-type tails) Suppose that for some $\gamma > 0$,

$$E |z_{ij}|^{2(1+\gamma)} \le K \quad \text{for all } i, j. \tag{2.6}$$

Theorem 2.6 Under the Assumption (2.5), we have

$$\max_{i=1}^{p} \left| \bar{Y}_{j} - \beta_{j} \right| = O_{p} \left(\frac{p^{1/2(1+\gamma)}}{n^{1/2}} \right). \tag{2.7}$$

Proof: We use a moment inequality in Shao [2003], for q > 0

$$E\left|\sum_{i=1}^{n} z_{ij}\right|^{q} \le \frac{C_q}{n^{1-q/2}} \sum_{i=1}^{n} E\left|X_i\right|^{q}. \tag{2.8}$$

By Markov inequality,

$$P\left(\max_{i=1}^{p} |\bar{Y}_{j} - \beta_{j}| > t\right) \leq p \frac{E\left|\sum_{i=1}^{n} z_{ij}\right|^{2(1+\gamma)}}{(nt)^{2(1+\gamma)}}$$
$$\leq p \frac{Cn^{1+\gamma}K_{2}}{(nt)^{2(1+\gamma)}}$$
$$= pC_{p}K_{2}n^{-(1+\gamma)}t^{-2(1+\gamma)}.$$

Let $t = M \frac{p^{1/2(1+\gamma)}}{n^{1/2}}$ for sufficiently large M, then we complete the proof.

Remark. If we take threshold $t = M \frac{p^{1/2(1+\gamma)}}{n^{1/2}}$, then the convergence rate of ℓ_1 error will be $O_p(s_0 \frac{p^{1/2(1+\gamma)}}{n^{1/2}})$.

3 New sparsity assumption

Sparsity assumption (1.2) is actually an ℓ_0 ball in \mathbb{R}^p , which can be genlized to ℓ_q ball in \mathbb{R}^p , i.e., for q > 1

$$\mathcal{U}(q, s_q) = \left\{ \boldsymbol{\beta} \in \mathbb{R}^p : \sum_{j=1}^p |\beta_j|^q \le s_q \right\}.$$
(3.1)

Next we will build convergence rate of ℓ_q , and the proof is very similar to the Theorem 1 in Bickel and Levina [2008].

Theorem 3.1 (ℓ_1 error bound) If $\beta \in \mathcal{U}(q, s_q)$ and set threshold $t_n = M\sqrt{\frac{\log p}{n}}$ for sufficiently large M. Suppose that noise z_{ij} are sub-Gaussian random variables with same parameter σ , then

$$\left\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right\|_{1} = \sum_{j=1}^{p} |\widehat{\beta}_{j} - \beta_{j}| = O_{p} \left(s_{q} \left(\frac{\log p}{n} \right)^{(1-q)/2} \right). \tag{3.2}$$

Proof: Let T_{t_n} be hard thresholding function with threshold t_n , then note that

$$\left\|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}\right\|_{1} \leq \left\|T_{t_{n}}\left(\bar{\boldsymbol{Y}}\right) - T_{t_{n}}\left(\boldsymbol{\beta}\right)\right\|_{1} + \left\|\boldsymbol{\beta} - T_{t_{n}}\left(\boldsymbol{\beta}\right)\right\|_{1}.$$
(3.3)

By $\beta \in \mathcal{U}(q, s_q)$ we have

$$\|\boldsymbol{\beta} - T_{t_n}(\boldsymbol{\beta})\|_1 = \sum_{j=1}^p |\beta_j - \beta_j \mathbb{I}(|\beta_j| \ge t_n)|$$

$$= \sum_{j=1}^p |\beta_j| \mathbb{I}(|\beta_j| < t_n)$$

$$\leq \sum_{j=1}^p |\beta_j|^q t_n^{1-q} \mathbb{I}(|\beta_j| < t_n)$$

$$\leq s_q t_n^{1-q}.$$

Next we will bound the first term of (3.3),

$$||T_{t_n}(\bar{\boldsymbol{Y}}) - T_{t_n}(\boldsymbol{\beta})||_1 \leq \sum_{j=1}^p |\bar{Y}_j| \mathbb{I}(|\bar{Y}_j| \geq t_n, |\beta_j| < t_n)$$

$$+ \sum_{j=1}^p |\bar{Y}_j - \beta_j| \mathbb{I}(|\bar{Y}_j| \geq t_n, |\beta_j| \geq t_n)$$

$$+ \sum_{j=1}^p |\beta_j| \mathbb{I}(|\bar{Y}_j| < t_n, |\beta_j| \geq t_n)$$

$$= I + II + III.$$

For the second term, there exists some $C_1 > 0$ such that,

$$II \leq \sum_{j=1}^{p} |\bar{Y}_{j} - \beta_{j}| \mathbb{I}(|\beta_{j}| \geq t_{n})$$

$$\leq \max_{j=1}^{p} |\bar{Y}_{j} - \beta_{j}| \sum_{j=1}^{p} \mathbb{I}(|\beta_{j}| \geq t_{n})$$

$$\leq C_{1} \sqrt{\frac{\log p}{n}} s_{q} t_{n}^{-q}.$$

For the third term,

$$II \leq \sum_{j=1}^{p} \left| \beta_j - \bar{Y}_j \right| \mathbb{I} \left(|\beta_j| \geq t_n \right) + t_n \sum_{j=1}^{p} \mathbb{I} \left(|\beta_j| \geq t_n \right)$$
$$\leq C_1 \sqrt{\frac{\log p}{n}} s_q t_n^{-q} + s_q t_n^{1-q}.$$

For the first term,

$$I \leq \sum_{j=1}^{p} |\bar{Y}_{j} - \beta_{j}| \mathbb{I} (|\bar{Y}_{j}| \geq t_{n}, |\beta_{j}| < t_{n}) + \sum_{j=1}^{p} |\beta_{j}| \mathbb{I} (|\bar{Y}_{j}| \geq t_{n}, |\beta_{j}| < t_{n})
\leq \sum_{j=1}^{p} |\bar{Y}_{j} - \beta_{j}| \mathbb{I} (|\bar{Y}_{j}| \geq t_{n}, |\beta_{j}| < t_{n}) + s_{q} t_{n}^{1-q}
= IV + s_{q} t_{n}^{1-q}.$$

Now take $\gamma \in (0,1)$,

$$IV = \sum_{j=1}^{p} \left| \bar{Y}_{j} - \beta_{j} \right| \mathbb{I} \left(|\bar{Y}_{j}| \geq t_{n}, |\beta_{j}| < \gamma t_{n} \right) + \sum_{j=1}^{p} \left| \bar{Y}_{j} - \beta_{j} \right| \mathbb{I} \left(|\bar{Y}_{j}| \geq t_{n}, |\gamma t_{n}| \leq |\beta_{j}| \leq t_{n} \right)$$

$$\leq \sum_{j=1}^{p} \left| \bar{Y}_{j} - \beta_{j} \right| \mathbb{I} \left(|\bar{Y}_{j}| \geq t_{n}, |\beta_{j}| < \gamma t_{n} \right) + \sum_{j=1}^{p} \left| \bar{Y}_{j} - \beta_{j} \right| \mathbb{I} \left(|\beta_{j}| \geq \gamma t_{n} \right)$$

$$\leq C_{1} \sqrt{\frac{\log p}{n}} \sum_{j=1}^{p} \mathbb{I} \left(\left| \bar{Y}_{j} - \beta_{j} \right| > (1 - \gamma) t_{n} \right) + C_{1} \sqrt{\frac{\log p}{n}} s_{q} (\gamma t_{n})^{-q},$$

moreover using (2.4) and make $(1 - \gamma)^2 M > 2\sigma^2$ we have

$$P\left(\sum_{j=1}^{p} \mathbb{I}\left(\left|\bar{Y}_{j}-\beta_{j}\right| > (1-\gamma)t_{n}\right) > 0\right) = P\left(\max_{j=1}^{p} \left|\bar{Y}_{j}-\beta_{j}\right| > (1-\gamma)t_{n}\right)$$

$$\leq p \exp\left(-\frac{(1-\gamma)^{2}M \log p}{2\sigma^{2}}\right)$$

$$= \exp\left(\log p - \frac{(1-\gamma)^{2}M}{2\sigma^{2}} \log p\right)$$

$$\to 0.$$

Combining the inequalities above, (3.2) is proved.

References

- T. W. Anderson. An introduction to multivariate statistical analysis. Wiley, New York, 1958.
- P. J. Bickel and E. Levina. Covariance regularization by thresholding. *Annals of Statistics*, 36(6):2577–2604, 2008.
- T. Cai and W. Liu. Adaptive thresholding for sparse covariance matrix estimation. *Journal* of the American Statistical Association, 106(494):672–684, 2011.
- D. L. Donoho and J. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. *Biometrika*, 81(3):425–455, 1994.

- J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. *Journal of the American Statistical Association*, 96(456):1348–1360, 2001.
- Johnstone. On minimax estimation of sparse normal mean vector. *Annals of Statistics*, 14 (2):590–606, 1986.
- J. Shao. Mathematical statistics. Springer, 2003.
- R. Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.