Chevron: Predicting Renewable Energy Investments

Logan Patterson, Sarah Nash, Joshua Ingram

Data Collection + Munging

- Given data converted to wide format
 - Each state has its own row for each year
 - Each MSN code has its own column
- Data Added
 - Employment Data FRED.gov
 - GDP Data bea.gov
 - Political Data bioguide.congress.gov
 - Census Data census.gov
 - Photovoltaic Shipment Data eia.gov
 - Columns containing NA removed

Model Selection + Variables

Multiple linear regression

- -Residual assumptions not met
- -Inaccurate

Time series -

- -Data too shallow
- Ill-equipped smoothing

Perceptron

- -Single Layer too Restrictive
- -Multi-Layer too complex

Stochastic SNN

- Quantitatively Predictive
- -Easily Parameterized

Decided Model Neural Net

- Developed a Single Layer Neural Network using neuralnetwork, tensorflow, and keras packages in R for our predictions.
- The hidden layer of this Neural Network contains 6 neurons on 97 variables.
- Final calculated RMSE of <u>32063309</u>.

Outcomes

Predicted vs Target totalAmountofAssistance

Loss and MAE Values

Thank you!

https://github.com/Joshuaingram/Rice Datathon Chevron