Equation assignment sequence for variable $\hat{H}^d{}_A$

no	var	equ	quations	token
87	V_147	-	P_{NK} :: port variable	
86	V_155	_	B:: port variable	
85	V_40	-	$\lambda_S:: ext{port variable}$	
84	V_38	-	$K^{o}_{K}::$ port variable	
83	V_33	-	$P_{K,NK}$:: port variable	
82	V_158	-	$N_{K,KS}$:: port variable	
81	V_36	-	$P_{NS,KS}$:: port variable	
80	V_35	-	$P_{N,NK}$:: port variable	
79	V_90	_	$D_{N,A}$:: port variable	
78	V_8	_	$F_{N,A}$:: port variable	
77	V_10	_	r_{xN} :: port variable	
76	V_127	_	1_S :: port variable	
75	V_1	_	# :: port variable	
74	V_14	_	S_N :: port variable	
73	V_24	_	A^v :: port variable	
72	V_15	_	V_N :: port variable	
71	V_5	_	t:: port variable	
70	V_12	-	r_{zN} :: port variable	

no	var	equ	quations	token
69	V ₁ 1	-	r_{yN} :: port variable	
68	V_13	_	U_N :: port variable	
67	V ₉ 1	_	$D_{NS,AS}$:: port variable	
66	V_70	_	$F_{NS,AS}$:: port variable	
65	V_41	E_20	$\lambda_S := \lambda_S$	
64	V_67	E_45	$c_{NS} := c_{NS}$	
63	V_57	E ₃ 6	$m_N := \lambda_S \overset{S \in NS}{\star} n_{NS}$	
62	V_152	E_124	$c^{o}_{NK,KS} := \text{Instantiate}(c_{NK,KS}, \#)$	
61	V_151	E_123	$c_{NK,KS} := P_{NK} \cdot \left(P_{NS,KS} \overset{NS}{\star} c_{NS} \right)$	
60	V_58	E_37	$m_N := m_N$	
59	V_44	E_23	$k_{xN}^q := (V_N)^{-1} \cdot \frac{\partial U_N}{\partial T_N} \cdot v_{xN}$	
58	V_62	E_41	$E^{a}_{NK} := Instantiate(R.T_{NK}, \#)$	
57	V_60	E_39	$T_{NK} := P_{N,NK} \stackrel{N}{\star} T_N$	
56	V_157	E_127	$R := A^v \cdot B$	
55	V_153	E_125	$x_{NK,KS} := (c^o_{NK,KS})^{-1} \cdot c_{NK,KS}$	
54	V ₄ 8	E_27	$k_{xN}^c := \left(\lambda_S \overset{S \in NS}{\star} (\mu_{NS})^{-1}\right) \cdot (V_N)^{-1} \cdot \frac{\partial U_N}{\partial p_N} \cdot v_{xN}$	
53	V_59	E_38	$\rho_N := m_N \cdot (V_N)^{-1}$	
52	V_2	\mathbb{E}_1	1 := Instantiate(#, #)	
51	V ₇ 6	E_53	$k_{xN}^q := k_{xN}^q$	
50	V_63	E_42	$K_{NK} := K^o{}_K \odot exp((-E^a{}_{NK}) \cdot (R \cdot T_{NK})^{-1})$	

no	var	equ	quations	token
49	V ₁ 60	$E_{1}29$	$\phi_{NK} := \prod_{KS} x_{NK,KS}^{N_{NK,KS}}$	
48	V_159	E_128	$N_{NK,KS} := P_{K,NK} \stackrel{K}{\star} N_{K,KS}$	
47	V_97	E_72	$d_A := \operatorname{sign}\left(F_{N,A} \stackrel{N}{\star} p_N\right)$	
46	V ₆ 6	E_44	$c_{NS} := (V_N)^{-1} \odot n_{NS}$	
45	V_4	E_3	0.5 := Instantiate(#, #)	
44	V_81	E_58	$k_{xN}^c := k_{xN}^c$	
43	V_74	E_51	$ ho_N := ho_N$	
42	V_171	E_138	$s := 0.5 \cdot (1 + \text{sign}(t^o))$	
41	V_106	E_81	$\hat{q}_{xA} := A_{yzN} \cdot k_{xN}^q \cdot D_{N,A} \stackrel{N}{\star} T_N$	
40	V_104	E_79	$\hat{w}_A := \text{Instantiate}(\hat{H}^c{}_A, \#)$	
39	V_102		$\hat{H}^c{}_A := \left(F_{NS,AS} \overset{NS}{\star}{}_{hNS}\right) \overset{S \in AS}{\star} \hat{n}^c{}_{AS}$	
38	V_163	E_130	$\tilde{n}_{NS} := V_N \overset{N}{\star} \left(P_{N,NK} \overset{NK}{\star} \left((K_{NK} \cdot \phi_{NK}) \cdot \left(P_{NS,KS} \overset{KS}{\star} N_{NK,KS} \right) \right) \right)$	
37	V_98	E_73	$c_{AS} := (0.5 \cdot (F_{NS,AS} - d_A \odot F_{NS,AS})) \stackrel{NS}{\star} c_{NS}$	
36	V_92	$E_{1}40$	$\hat{V}_A := \text{Instantiate}(\hat{V}_A, \#)$	
35	V_92	E ₆ 7	$\hat{V}_A := (\rho_N)^{-1} \cdot k_{xN}^c \cdot A_{yzN} \cdot D_{N,A} \stackrel{N}{\star} p_N$	
34	V_172	E_139	s := s	
33	V_96	E_71	$\hat{H}^d{}_N := F_{N,A} \stackrel{A}{\star} \hat{H}^d{}_A$	
32	V_107	E_82	$\hat{q}_N := F_{N,A} \stackrel{A}{\star} \hat{q}_{xA}$	
31	V_105	E_80	$\hat{w}_N := F_{N,A} \stackrel{A}{\star} \hat{w}_A$	
30	V_103	E ₇ 8	$\hat{H}^c{}_N := F_{N,A} \stackrel{A}{\star} \hat{H}^c{}_A$	

no	var	equ	quations	token
29	V_94	E ₆ 9	$\hat{n}^d_{NS} := F_{NS,AS} \overset{AS}{\star} \hat{n}^d_{AS}$	
28	V ₁ 64	E_131	$ \tilde{n}_{NS} := \tilde{n}_{NS}$	
27	V_100	E_75	$\hat{n}^c{}_{NS} := F_{NS,AS} \overset{AS}{\star} \hat{n}^c{}_{AS}$	
26	V_99	E_74	$\hat{n}^c{}_{AS} := \hat{V}_A \odot c_{AS}$	
25	V_173	E_141	$\hat{n}^{c,controlled}_{AS} := s \cdot \hat{n}^{c}_{AS}$	
24	V_28	E_15	$v_{xN} := rac{\partial r_{xN}}{\partial t}$	
23	V ₁ 68	E_134	$n_{tN} := 1_S \overset{S \in NS}{\star} n_{NS}$	
22	V_165	E_132	$boz_N := \operatorname{Instantiate}(S_N, \#)$	
21	V_108	E_83	$\dot{H}_N := \hat{H}^c{}_N + \hat{H}^d{}_N + \hat{q}_N + \hat{w}_N$	
20	V_17	\mathbf{E}_{6}	$p_N := \left(-\frac{\partial U_N}{\partial V_N}\right)$	
19	V_7	$ m E_5$	$t^e := \operatorname{Instantiate}(t, \#)$	
18	V_6	$ brack { m E}_4$	$t^o := \operatorname{Instantiate}(t, \#)$	
17	V_110	E_85	$n^o_{NS} := \text{Instantiate}(n_{NS}, \#)$	
16	V_101	E_76	$\dot{n}_{NS} := \hat{n}^c{}_{NS} + \hat{n}^d{}_{NS} + \tilde{n}_{NS}$	
15	V_101	E_142	$\dot{n}_{NS} := F_{NS,AS} \stackrel{AS}{\star} \operatorname{Stack} \left(\hat{n}^c_{AS}, \hat{n}^{c,controlled}_{AS} \right)$	
14	V_52	E_31	$k_{xNS}^d := (\mu_{NS})^{-1} \cdot \left(v_{xN} \odot \left((V_N)^{-1} \odot \frac{\partial U_N}{\partial \mu_{NS}} \right) \right)$	
13	V_18	\mathbb{E}_7	$T_N := \frac{\partial U_N}{\partial S_N}$	
12	V_169	E_135	$\xi_{NS} := (n_{tN})^{-1} \odot n_{NS}$	
11	V_166	E_133	$R_N := A^v \cdot boz_N$	
10	V_20	E_87	$H_N := \int_{t^o}^{t^e} \dot{H}_N \ dt$	

no	var	equ	quations	token
9	V_20	E ₉	$H_N := U_N - p_N \cdot V_N$	
8	V ₁ 6	E_86	$n_{NS} := \int_{t^o}^{t^e} \dot{n}_{NS} \ dt + n^o_{NS}$	
7	V ₈ 6	E_63	$k_{xNS}^d := k_{xNS}^d$	
6	V_71	E_48	$A_{yzN} := r_{yN} \cdot r_{zN}$	
5	V_19	$E_{1}36$	$\mu_{NS} := (R_N \cdot T_N) \odot ln(\xi_{NS})$	
4	V_19	E_8	$\mu_{NS} := \frac{\partial U_N}{\partial n_{NS}}$	
3	V ₅ 6	E_35	$h_{NS} := H_N \odot (n_{NS})^{-1}$	
2	V_93	E ₆ 8	$\hat{n}^d_{AS} := A_{yzN} \odot \left(-k_{xNS}^d \right) \cdot D_{NS,AS} \overset{NS}{\star} \mu_{NS}$	
1	V_75	E_52	$igg _{hNS} := h_{NS}$	
0	V_95	E_70	$\hat{H}^d{}_A := \left(F_{NS,AS} \overset{NS}{\star} {}_{hNS}\right) \overset{S \in AS}{\star} \hat{n}^d{}_{AS}$	