TD3: les structures répétitives

Exercice 1:

Écrire un algorithme qui calcul la somme des N premiers nombres entiers.

Exercice 2:

Écrire un algorithme qui recherche le minimum et le maximum dans un ensemble de N nombres.

Exercice 3:

Écrire un algorithme qui calcul le quotient et le reste de la division de deux entiers A et B sans utiliser l'opération de division.

Exercice 4:

Écrire un algorithme qui détermine tous les diviseurs d'un entier X donné.

Exercice 5:

Écrire un algorithme qui détermine si un nombre entier X est premier ou non.

Exercice 6:

Écrire un algorithme qui calcule la somme des chiffres qui composent un entier naturel N.

Exercice 7:

Écrire un algorithme qui permet à l'utilisateur de saisir un texte caractère par caractère ; le texte se termine par un point ' . ', et qui affiche à la fin le nombre d'apparition de la lettre 'a'.

Exercice 8:

Écrire un algorithme permettant de calculer la valeur de l'expression E, telle que $E = (1+2) \times (1+2+3) \times (1+2+3+4) \times ... \times (1+2+3+\cdots + (N-2)+(N-1)+N)$, et $(N \ge 2)$.

Exercice 9:

Écrire un algorithme qui affiche un carré de taille $(N \times N)$ rempli du caractère ' * '. Exemple de sortie pour (N = 5):

Exercices (Devoirs non corrigés):

10. Écrire un algorithme qui affiche un carré de taille $(N \times N)$ rempli du caractère ' * '. Exemple de sortie pour (N = 5):

**

**

11. Écrire un algorithme qui génère et affiche une matrice identité de taille $(N \times N)$. Exemple de sortie pour (N = 4):

 $1000 \\ 0100 \\ 0010 \\ 0001$

Faculté Polydisciplinaire de Taroudant Département Mathématiques et Informatique

Licence Génie Informatique Semestre 1 – TD03

- 12. Écrire un algorithme qui affiche les (N) premières lignes du triangle de Pascal en utilisant uniquement les boucles. Exemple de sortie pour (N = 5) :
 - 1 11
 - 121
 - 1331
 - 14641
- 13. Ecrire un programme C qui permet de lire un entier entre 10 et 20 et d'afficher la somme harmonique :

$$S = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

14. Soit la suite \mathcal{U}_n définie par :

$$\begin{cases}
U_0 = 1 \\
U_{n+1} = 5U_n + 3
\end{cases}$$

 $\begin{cases} U_0=1\\ U_{n+1}=5U_n+3 \end{cases}$ Ecrire un algorithme qui permet de lire n et de calculer la suite U_n pour un rang n.