Math 214 – Foundations of Mathematics Homework 10

Due April 10th

Alexander Powell

Solve the following problems. Please remember to use complete sentences and good grammar.

- 1. (4 Points) Let $A = \mathbb{R} \{1\}$ and define a function $f: A \to A$ by $f(x) = \frac{x}{x-1}$ for all $x \in A$.
 - (a) Prove that f is bijective.

Solution: First we prove f is injective. Suppose $x, y \in A$ and f(x) = f(y) then

$$\frac{x}{x-1} = \frac{y}{y-1} \to x(y-1) = y(x-1)$$

 $xy - x = xy - y \rightarrow -x = -y \rightarrow x = y$, so f is injective.

Now we prove f is surjective. Take $y \in A$. Solve $y = \frac{x}{x-1} \to y(x-1) = x$.

$$xy - y - x = 0$$

 $xy-x=y \to x(y-1)=y \to x=\frac{y}{y-1}.$ So. $\forall y \in A$, we define $x=\frac{y}{y-1}.$ Then

$$f(\frac{y}{y-1}) = \frac{(\frac{y}{y-1})}{(\frac{y}{y-1}) - 1} = y$$

So f is surjective. Because f is both injective and surjective, we can say f is bijective.

(b) Determine f^{-1} .

Solution $\frac{x}{x-1} \to xy - y - x = 0 \to x(y-1) = y \to x = \frac{y}{y-1}$. So the inverse can be defined by $f^{-1}(x) = \frac{x}{x-1}$.

(c) Determine $f \circ f \circ f$.

Solution: First, let's determine $f \circ f = \frac{(\frac{x}{x-1})}{(\frac{x}{x-1})-1}$. Then $f \circ f \circ f =$

$$\frac{(\frac{x}{x-1})}{(\frac{x}{x-1})-1}$$

$$\frac{(\frac{x}{x-1})}{(\frac{x}{x-1})-1} - 1$$

2. (4 Points) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = 2x + 3$$
, $q(x) = -3x + 5$.

1

One can prove that f and g are both bijective.

(a) Determine the composition $g \circ f$.

Solution: $g \circ f = 3(2x+3) + 5$ or y = -6x - 4

(b) Determine the inverse functions f^{-1} and g^{-1} .

Solution: $f^{-1}(x) = \frac{x-1}{2}$ and $g^{-1}(x) = \frac{x-5}{-3}$

(c) Determine the inverse function $(g \circ f)^{-1}$ of $g \circ f$ and the composition $f^{-1} \circ g^{-1}$. What conclusion can you obtain here?

Solution: $(g \circ f)^{-1}(x) = \frac{x+4}{-6}$ and $f^{-1} \circ g^{-1} = \frac{(\frac{x-5}{-3})-3}{2}$. Because f and g are both bijective, then so is $(g \circ f)$.

- 3. (4 Points) Define $h: \mathbb{Z}_4 \to \mathbb{Z}_6$ by h([a]) = [3a] for each $a \in \mathbb{Z}$.
 - (a) Prove that h is well-defined thus it is a function.

Solution: h is well defined because if $(x,y) \in h$, and $(x,z) \in h$, then y=z. This is clear because the equivalence classes for $\mathbb{Z}_4 = \{[0], [1], [2], [3]\}$ and $\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\}$. Because of the following: $[3 \cdot 0] = [0] \in \mathbb{Z}_6$, and

 $[3 \cdot 1] = [3] \in \mathbb{Z}_6$, and

 $[3 \cdot 2] = [6] = [0] \in \mathbb{Z}_6$, and

 $[3 \cdot 3] = [9] = [3] \in \mathbb{Z}_6$. So, h is well defined.

(b) Prove h is neither injective nor surjective.

Solution: h is not injective because if you take a=0 and a=2, then $[3\cdot 0]=[0]\in\mathbb{Z}_6$, and $[3\cdot 2]=[6]=[0]\in\mathbb{Z}_6$.

h is not surjective because if you take a=5, then $[3\cdot 5]=[15]=[3]$

4. (4 Points) Prove that the function $f:[0,\infty)\to[0,\infty)$ defined by $f(x)=\frac{x^2}{2x+1}$ is a bijection, and determine the inverse function $f^{-1}(x)$ for $x\in[0,\infty)$.

Solution: First, we must prove it is injective. Suppose f(x) = f(y), then

$$\frac{x^2}{2x+1} = \frac{y^2}{2y+1} \to x^2(2y+1) = y^2(2x+1)$$

$$2yx^{2} - 2xy^{2} + x^{2} - y^{2} = 0 \rightarrow (2xy + x + y)(x - y) = 0$$

Since x > 0 and y > 0, then 2xy + x + y > 0, so x - y = 0 or x = y, so f is injective.

Now we prove surjectivity: Let $y = \frac{x^2}{2x+1} \to y(2x+1) = x^2 \to y = x^2 - 2xy$

So, for any x, let $x = y + sqrty^2 + y$

Also, the inverse function can be expressed as $f^{-1}(x) = x + sqrtx^2 + x$.

- 5. (4 Points) Give an example of a function $f: \mathbb{Z} \to \mathbb{N}$ that is
 - (a) surjective but not injective;

Solution: The function $f(x) = x^2 + 1$ defined by $f: \mathbb{Z} \to \mathbb{N}$ is surjective but not injective.

(b) injective but not surjective.

Solution: The function $f(x) = e^x + 5$ defined by $f: \mathbb{Z} \to \mathbb{N}$ is injective but not surjective.

6. (4 Points) For nonempty sets A and B and functions $f: A \to B$ and $g: B \to A$ suppose that $g \circ f = i_A$, the identity function on A. Prove that f is injective and g is surjective.

Solution: Suppose f(x) = f(y) for some $x, y \in A$.

Since f(x) = f(y), then g(f(x)) = g(f(y)) or $(g \circ f)(x) = (g \circ f)(y)$. Since $(g \circ f) = i_A$, then $(g \circ f)(x) = x$ and $(g \circ f)(y) = y$, hence $x = (g \circ f)(x) = (g \circ f)(y) = y$ So, f is injective.

Now we prove surjectivity: $\forall y \in A$, we need to find $x \in A$ such that f(x) = y. Since, $(g \circ f) = i_A$, then $(g \circ f)(y) = i_A(y) = y$. let x = f(y), then f(x) = g(f(xy)) = y, so f is surjective.

- 7. (extra 4 Points) For nonempty sets A and B and functions $f: A \to B$ and $g: B \to A$ suppose that $g \circ f = i_A$, the identity function on A.
 - (a) (1 Points) Show that f is not necessarily surjective.
 - (b) $(1 \ Points)$ Show that g is not necessarily injective.
 - (c) (2 Points) Prove: f is surjective if and only if q is injective.