

## STM8S103K3STM8S103F3 STM8S103F2

基础型系列,16MHz STM8S 8位单片机,多达8K字节Flash 集成数据EEPROM,10位ADC,3个定时器,UART,SPI,I<sup>2</sup>C

### 芯片特点

### 内核

- 高级STM8内核,具有3级流水线的哈佛 结构
- 扩展指令集

### 存储器

- 程序存储器: 8K字节Flash; 10K次擦写 后在55°C环境下数据可保存20年
- 数据存储器: 640字节真正的数据 EEPROM: 可达30万次擦写
- RAM: 1K字节

### 时钟、复位和电源管理

- 2.95到5.5V工作电压
- 灵活的时钟控制,4个主时钟源
  - 低功率晶体振荡器
  - 外部时钟输入
  - 用户可调整的内部16MHz RC
  - 内部低功耗128kHz RC
- 帯有时钟监控的时钟安全保障系统
- 电源管理:
  - 低功耗模式(等待、活跃停机、停机)
  - 外设的时钟可单独关闭
- 永远打开的低功耗上电和掉电复位

### 中断管理

- 带有32个中断的嵌套中断控制器
- 6个外部中断向量,最多27个外部中断

### 定时器

■ 高级控制定时器: 16位,4个捕获/比较通道,3个互补输出,死区控制和灵活的同步



- 16位通用定时器,带有3个捕获/比较通 道(IC、OC或 PWM)
- 带有8位预分频器的8位基本定时器
- 自动唤醒定时器
- **2**个看门狗定时器:窗口看门狗和独立看 门狗

### 通信接口

- 带有同步时钟输出的UART,智能卡, 红外IrDA,LIN主模式接口
- SPI接口最高到8Mbit/s
- I<sup>2</sup>C接口最高到400Kbit/s

#### 模数转换器

■ 10位,±1LSB的ADC,最多有5路通 道,扫描模式和模拟看门狗功能

#### I/O端口

- 32脚封装芯片上最多有28个I/O,包括 21个高吸收电流输出
- 非常强健的I/O设计,对倒灌电流有非常 强的承受能力

### 开发支持

■ 单线接口模块(SWIM)和调试模块(DM), 可以方便地进行在线编程和非侵入式调 试

本文档英文原文下载地址:

http://www.st.com/stonline/products/literature/ds/15441.pdf



# 目录

| 1  | 質                                       | 5介             |                                                    | 4  |
|----|-----------------------------------------|----------------|----------------------------------------------------|----|
| 2  | 详                                       | 生细 描述          | <u> </u>                                           | 5  |
| 3  |                                         |                |                                                    |    |
| 4  |                                         |                |                                                    |    |
| 4  | •                                       |                |                                                    |    |
|    | 4.1<br>4.2                              |                | <b>//8</b> 的中央处理单元                                 |    |
|    | 4.2                                     |                | 竞接口模块(SWIM)和调试模块(DM)<br>f控制器                       |    |
|    | 4.4                                     |                | h在问备<br>sh程序存储器和数据EEPROM存储器                        |    |
|    | 4.5                                     |                | 中控制器                                               |    |
|    | 4.6                                     |                | [ <del>  1                                  </del> |    |
|    | 4.7                                     |                | ]狗定时器                                              |    |
|    | 4.8                                     |                | b唤醒计数器                                             |    |
|    | 4.9                                     |                | 9器                                                 |    |
|    | 4.10                                    | TIM            | 1 — 16位高级控制定时器                                     | 11 |
|    | 4.11                                    | TIM            | 2 — 16位通用定时器                                       | 11 |
|    | 4.12                                    | TIM            | 4 — 8位基本定时器                                        | 11 |
|    | 4.13                                    | 模数             | 纹转换器(ADC1)                                         | 11 |
|    | 4.14                                    |                | 言接口                                                |    |
|    | • • • • • • • • • • • • • • • • • • • • | 14.1           | UART1                                              |    |
|    | • •                                     | 14.2<br>14.3   | SPIl <sup>2</sup> C                                |    |
| _  |                                         | _              |                                                    |    |
| 5  | -                                       |                | 其描述                                                |    |
|    | 5.1                                     | 备货             | 造功能重映射                                             | 18 |
| 6  | 存                                       | 居储器和           | 口寄存器映像                                             | 19 |
|    | 6.1                                     | 存储             | 皆器映像                                               | 19 |
|    | 6.2                                     | 寄存             | F器映像                                               | 20 |
| 7  | 中                                       | 断向量            | 量映像                                                | 27 |
| 8  | 选                                       | 项字节            | <u> </u>                                           | 28 |
| 9  | 特                                       | afID           |                                                    | 31 |
| 10 |                                         |                | Ė                                                  |    |
| 10 |                                         |                |                                                    |    |
|    | 10.1                                    |                | 收条件<br>最小和最大值                                      |    |
|    |                                         | ).1.1<br>).1.2 | 東小和東入恒<br>典型数值                                     |    |
|    |                                         | 0.1.2          | 典型曲线                                               |    |
|    |                                         | 0.1.4          | 负载电容                                               |    |
|    |                                         | 0.1.5          | 引脚输入电压                                             |    |
|    | 10.2                                    |                |                                                    |    |
|    | 10.3                                    | _              | F条件                                                |    |
|    | 10                                      | 0.3.1          | VCAP外部电容                                           |    |
|    | 10                                      | 0.3.2          | 供电电流特性                                             | 35 |
|    | 10                                      | 0.3.3          | 外部时钟源和时间特性                                         |    |
|    | 10                                      | 0.3.4          | 内部时钟源和时间特性                                         |    |
|    | 10                                      | 0.3.5          | 存储器特性                                              | 44 |
|    | 10                                      | 0.3.6          | I/O端口管脚特性                                          | 44 |
|    | 10                                      | 0.3.7          | 复位管脚特性                                             | 49 |
|    |                                         | 0.3.8          | 串行外设接口(SPI)                                        |    |
|    | 10                                      | 0.3.9          | I <sup>2</sup> C接口特性                               | 53 |



### STM8S103xx数据手册

|    | 10.3.10 | 10位ADC特性     | 53 |
|----|---------|--------------|----|
|    | 10.3.11 | EMC特性        | 55 |
| 11 | 封装特性    | 生            | 58 |
|    | 11.1 封装 | <b>棱机械数据</b> | 58 |
|    | 11.1.1  | LQFP封装尺寸     |    |
|    | 11.1.2  | QFN封装机械数据    | 59 |
|    | 11.1.3  | TSSOP 封装机械数据 | 60 |
|    | 11.1.4  | UFQFPN 封装    | 61 |
|    | 11.2 热特 | 寺性           | 62 |
|    | 11.2.1  | 参考文档         | 63 |
|    | 11.2.2  | 选择产品的温度范围    | 63 |
| 12 | 订购信息    | <u> </u>     | 64 |
| 13 | STM8 ₹  | F发工具 (本章从略)  | 65 |
|    | 13.1 仿真 | 真和在线调试工具     | 65 |
|    |         | 牛工具          |    |
|    | 13.2.1  | STM8工具套件     | 65 |
|    | 13.2.2  | C和汇编工具       |    |
|    | 13.2.3  | 编程工具         | 65 |
| 14 | (英文)版   | (本修改记录       | 66 |



简介 STM8S103xx数据手册

# 1 简介

这本数据手册描述了STM8S103xx基础型系列单片机的特点、引脚分配、电气特性、机械特性和订购信息。

- 如果需要关于STM8S单片机存储器、寄存器和外设等的详细信息,请参考<u>STM8S系列单</u> 片机参考手册(RM0016)。
- 如果需要关于内部Flash存储器的编程、擦除和保护的信息,请参考<u>STM8S闪存编程手册</u>(PM0051)。
- 如果需要关于调试和SWIM(single wire interface module单线接口模块),请参考<u>STM8</u> SWIM通信协议和调试模块用户手册(UM0470)。
- 如果需要关于STM8内核的信息,请参考STM8 CPU编程手册(PM0044)。



# 2 详细描述

STM8S103xx基础型系列8位单片机提供容量为8K字节的Flash程序存储器,集成真正的数据 EEPROM。在STM8S微控制器系列的参考手册(RM0016)中,被归为低密度系列。

STM8S103xx基础型系列所有的单片机具有以下性能:

- 更低的系统成本
- 内部集成真正的 EEPROM 数据存储器,可以达到 30 万次的擦写周期
- 高度集成了内部时钟震荡器、看门狗和掉电复位功能
- 高性能和高可靠性
- 16MHz CPU 时钟频率
- 强大的 I/O 功能,拥有分立时钟源的独立看门狗
- 时钟安全系统
- 完善的文档和多种开发工具选择
- 最新技术打造的高水平内核和外设

### 表1 STM8S103xx基础型系列产品特点

| 芯片型号                                   | 引脚             | GPIO<br>数目     | 外部中断引脚         | 定器入获 出较 道时输捕输比通 | 定时器互补输出     | AD转换通道      | 高吸收电流╽О        | Fla<br>序存 | 密度<br>sh程<br>序储器<br><sup>×节</sup> ) | 数据<br>EEPRO<br>M存储<br>器<br>(字节)                                | RAM<br>(字节)    | 外设                                                                                   |
|----------------------------------------|----------------|----------------|----------------|-----------------|-------------|-------------|----------------|-----------|-------------------------------------|----------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------|
| STM8S103K3<br>STM8S103F3<br>STM8S103F2 | 32<br>20<br>20 | 28<br>16<br>16 | 27<br>16<br>16 | 7<br>7<br>7     | 3<br>0<br>0 | 4<br>5<br>5 | 21<br>12<br>12 | 低密度       | 8K<br>8K<br>4K                      | 640 <sup>(1)</sup><br>640 <sup>(1)</sup><br>640 <sup>(1)</sup> | 1K<br>1K<br>1K | 高级控制定时器(TIM1)<br>SPI, I2C, UART<br>窗口看门狗,独立看门狗<br>ADC<br>PWM定时器(TIM2)<br>8位定时器(TIM4) |

<sup>1.</sup> 无RWW(写入的同时读)功能



模块框图 STM8S103xx数据手册

# 3 模块框图

图1 模块框图





## 4 产品概述

本节将要描述的是STM8S103x基础型系列芯片的功能模块和外设的基本特点。

如果需要更详细的信息请参考相应的产品系列参考手册(RM0016)。

## 4.1 STM8的中央处理单元

8位的STM8内核在设计时考虑了代码的效率和性能。

它的6个内部寄存器都可以在执行程序中直接寻址。共有包括间接变址寻址和相对寻址在内的20种寻址模式和80条指令。

### 结构和寄存器

- 哈佛结构
- 3级流水线
- 32位宽程序存储器总线 对于大多数指令可进行单周期取指
- 两个16位寻址寄存器: X寄存器和Y寄存器 允许带有偏移的和不带偏移的变址寻址模式和读—修改—写式的数据操作
- 8位累加器
- 24位程序指针 16M字节线性地址空间
- 16位堆栈指针 可以访问64K字节深度堆栈
- 8位状态寄存器 可根据上条指令的结果产生7个状态标志位

#### 寻址

- 20种寻址模式
- 用于地址空间内任何位置上的查询数据表的变址寻址方式
- 用于局部变量和参数传递的堆栈指针相对寻址模式

### 指令集

- 80条指令,指令的平均长度为2字节
- 标准的数据传送和逻辑/算术运算功能
- 8位乘8位的乘法指令
- 16位除8位和16位除16位除法指令
- 位操作指令
- 可通过对堆栈的直接访问实现堆栈和累加器之间的数据直接传送(push/pop)
- 可使用X和Y寄存器传送数据或者在存储器之间直接传送数据

## 4.2 单线接口模块(SWIM)和调试模块(DM)

单线接口模块和调试模块允许非侵入式、实时的在线调试和快速的存储器编程。

#### **SWIM**

通过单线接口模块可以直接访问调试模块和对存储器编程。这个接口在设备运行的所有模式下都有效。最大的数据传输速率为145字节/毫秒。

#### 调试模块

非侵入式调试模块近似于一个全功能的仿真器,通过影子寄存器可以实时地观测到存储器、外设和CPU的运行情况。

- 实时地对RAM和外设寄存器进行读写
- 通过暂停CPU可以对所有资源进行读写操作
- 可以对所有程序存储器指令设置断点(软件断点)



● 2个高级断点,23种预定义的配置

## 4.3 中断控制器

- 带有3级软件优先级设定的嵌套中断
- 带有硬件优先级的32个中断向量
- 包括TLI中断在内的,最多27个外部中断分布在6个中断向量上
- 陷阱(Trap)和复位中断

## 4.4 Flash程序存储器和数据EEPROM存储器

- 8K字节的单电压闪存程序存储器
- 640字节的真正的数据EEPROM
- 用户选项字节区

### 写保护(WP)

为了避免由于软件故障导致的对闪存程序存储器和数据EERPOM的意外擦写,芯片提供了写保护功能。

写保护分为两个等级。第一级写保护叫做MASS(Memory Access Security System,存储器操作安全保障系统)。MASS始终有效并保护主要的闪存程序存储器,数据EEPROM和选项设置字节。

如果需要执行IAP(In-Application Programming,在线编程),可以向控制寄存器中写入MASS关键字序列去掉写保护,然后应用程序就可以向数据EEPROM写入数据,或者修改主程序存储器或者设复用项设置字节。

为了进一步保护一些特殊的UBC(User boot code,用户启动代码)存储器区域,可以打开二级保护。参考图2。

在ICP模式下,可以通过设置UBC选项字节,按页增减UBC区域的大小,一页为512个字节。这将程序存储器分成了两部分:

- 主程序存储器:最多至8K字节减去UBC区域的大小
- 用户指定的启动代码(UBC): 可配置最高至8K字节

在线编程时UBC区域仍然保持写保护。也就是说,MASS关键字不能解锁UBC区域。这保护了用来存储启动程序,特殊的代码库,复位和中断向量,复位、IAP和通信程序的存储器区域。



#### 图2 Flash存储器结构



### 读出保护(ROP)

读出保护功能阻止在ICP模式(和调试模式)下对Flash程序存储器和数据EEPROM存储器的读写操作。一旦读保护功能使能后,任何尝试改变其状态的操作都会将程序和数据存储器全部擦除。尽管没有保护被认为是完全不可破解的,这个功能还是为通用的单片机提供了一个非常高等级的保护措施。

### 4.5 时钟控制器

时钟控制器将来自不同振荡器的系统时钟(f<sub>MASTER</sub>)连接到内核和外设,它也为低功耗模式管理时钟的选通,并确保时钟的可靠性。

### 特点:

- 时钟分频:为了在速度和电流消耗之间找到一个最佳的平衡点,可以通过一个可编程的预分频器来调整CPU和外设的时钟频率。
- 安全的时钟切换:通过一个配置寄存器,可以在运行的时候安全地切换时钟源。新的时钟 源准备好之前时钟信号不会被切换。这个设计能够保证无故障地切换时钟。
- 时钟管理: 为了减少功耗,时钟控制器可以关闭内核、每个外设或存储器的时钟。
- 主时钟源: 4个不同的时钟源可用来驱动主时钟
  - 1~16MHz 高速外部晶振(HSE)
  - 最高至 16MHz 的高速外部时钟(HSE)
  - 16MHz 高速内部 RC 振荡器(HSI)
  - 128kHz 低速内部 RC(LSI)
- 启动时钟:复位之后,单片机默认运行在内部2MHz时钟下(HSI/8)。一旦代码开始运行, 应用程序就可以更改预分频比例和时钟源。
- 时钟安全系统(CSS): 这个功能可以用软件打开。一旦HSE时钟失效,CSS可以自动地将 主时钟切换到内部RC(16MHz/8),并且可以选择产生一个中断。
- 可配置的主时钟输出(CCO): 应用程序可以控制输出一个外部时钟。



| 表2 CLK PCKENR1/2寄存器中的外设时钟挡 |
|----------------------------|
|----------------------------|

| 控制位     | 外设   | 控制位     | 外设               | 控制位     | 外设 | 控制位     | 外设  |
|---------|------|---------|------------------|---------|----|---------|-----|
| PCKEN17 | TIM1 | PCKEN13 | UART1            | PCKEN27 | 保留 | PCKEN23 | ADC |
| PCKEN16 | TIM2 | PCKEN12 | 保留               | PCKEN26 | 保留 | PCKEN22 | AWU |
| PCKEN15 | TIM3 | PCKEN11 | SPI              | PCKEN25 | 保留 | PCKEN21 | 保留  |
| PCKEN14 | TIM4 | PCKEN10 | I <sup>2</sup> C | PCKEN24 | 保留 | PCKEN20 | 保留  |

## 4.6 电源管理

为实现有效的电源管理,应用程序可以进入四种不同的低功耗模式。用户可以选择任意模式, 在最低的功耗、最快的启动和可用的唤醒源之间达到最佳的平衡。

- 等待模式(Wait): 在此模式下,CPU停止工作,但是外设仍在运行。可以用内部中断、外部中断、或复位来唤醒。
- 开启调压器的活跃停机模式:在此模式下,CPU和外设时钟停止工作。自动唤醒单元 (AWU)按照设定好的间隔时间产生内部唤醒。主电压调压器保持供电,所以电流的消耗比 调压器关闭的主动暂停模式大,但是唤醒时间更短。可用内部AWU中断,外部中断或者复位来唤醒。
- 调压器关闭的活跃停机模式: 此模式除了主电压调压器断电以外, 其它皆与调压器开启的 主动暂停模式相同, 所以唤醒时间较长。
- 停机模式:此模式下单片机的功耗最低,CPU和外设的时钟都被关闭,主电压调压器断电。可用外部事件或中断唤醒。

## 4.7 看门狗定时器

看门狗系统基于两个独立的定时器来为应用提供最可靠的安全保障。

WDG(看门狗)定时器可用选项设置字节或软件来激活。一旦激活,除非复位,用户程序不能够 关闭看门狗。

#### 窗口看门狗定时器

窗口看门狗用来监测导致应用程序跳出了正常的执行顺序的软件错误,这种错误通常是外部的干扰或者没有考虑到的逻辑条件产生的。

窗口功能用来调整看门狗的状态使其与应用程序达到完美的结合。

应用软件必须在超时之前的限定时间窗口内刷新计数器。

在下面两种情况下会产生复位:

- 1. 超时: 在16MHz CPU时钟下超时时间可以在75μs到64ms之间进行调整。
- 2. 在窗口之外刷新: 在递减计数器的值小于窗口寄存器存储的值之前, 计数器就被刷新。

### 独立看门狗(IWDG)定时器

独立看门狗外设用来解决硬件或软件故障导致的处理器失效。

定时器使用128kHz LSI内部RC时钟源,因此即使CPU时钟失效它仍然能够保持工作。

IWDG的时基范围从60µs到1s之间。

## 4.8 自动唤醒计数器

- 用来从活跃停机模式自动唤醒。
- 时钟源:内部128kHz低频RC振荡器或外部时钟。
- 用于校准时,LSI 时钟可以从内部连接到TIM1的输入捕获通道1。



### 4.9 蜂鸣器

蜂鸣器功能通过BEEP引脚输出信号来产生声音。这个信号可在1、2或者4kHz中选择。

## 4.10 TIM1 — 16位高级控制定时器

这是一个为宽范围控制应用而设计的高端定时器,带有互补输出、死区控制和中心对齐的PWM功能,这个领域的应用包括马达控制、照明和半桥驱动等。

- 带有16位预分频的16位递增、递减和双向(递增/递减)自动重载计数器
- 4个独立的捕获/比较通道(CAPCOM),可配置成输入捕获,输出比较,PWM产生(边沿或中心对齐模式)和单脉冲模式输出
- 使用外部信号控制定时器的同步模块
- 强制定时器输出进入预定状态的刹车输入
- 死区时间可调的3个互补输出
- 编码器模式
- 中断源: 3个输入捕获/输出比较,1个溢出/更新,1个刹车

### 4.11 TIM2 — 16位通用定时器

- 16位向上计数和自动装载计数器
- 15位的预分频器,分频系数可调整为1~32768之间的2次幂数值
- 带有3个独立可配置的捕获/比较通道
- PWM模式
- 中断源: 3个输入捕获/输出比较,1个溢出/更新

### 4.12 TIM4 — 8位基本定时器

- 8位自动装载可调整的预分频器,比例可选为1~128之间2次幂数值
- 时钟源: CPU时钟
- 中断源: 1个溢出/更新

#### 表3 定时器特点

| 定时器  | 计数<br>器(位) | 预分频            | 计数<br>模式 | CAPCOM<br>通道 | 互补<br>输出 | 外部<br>触发 | 定时器<br>同步/链 |
|------|------------|----------------|----------|--------------|----------|----------|-------------|
| TIM1 | 16         | 1~65536之间任意整数  | 向上/向下    | 4            | 3        | 有        |             |
| TIM2 | 16         | 1~32768间任意2的幂次 | 向上       | 3            | 0        | 无        | 无           |
| TIM4 | 8          | 1~128间任意2的幂次   | 向上       | 0            | 0        | 无        |             |

## 4.13 模数转换器(ADC1)

- STM8S103xx系列基础型产品包括一个10位连续渐近式模数转换器(ADC1),提供多达5个外部输入和1个内部输入的多路复用通道,主要特点如下:
  - 输入电压范围: 0~V<sub>DD</sub>
  - 转换时间: 14个时钟周期
  - 单次和连续的以及带缓冲的连续转换模式
  - 缓冲区大小: n x 10 位 (n=输入通道数)
  - 对一系列的通道进行单次或连续的扫描
  - 带可编程上限或者下限的模拟看门狗
  - 模拟看门狗中断
  - 外部触发输入
  - 可用 TIM1 定时器触发信号(TRGO)触发
  - 转换结束(EOC)中断



# 4.14 通信接口

芯片带有以下接口:

- UART1:
  - 全功能 UART,同步模式,SPI 主模式,智能卡模式,IrDA 模式,单线模式,LIN2.1 主模式
- SPI 全双工和半双工, 8M位/秒
- I<sup>2</sup>C 最高至400K位/秒

### 4.14.1 UART1

### 主要特点

- 1M位/秒全双工SCI
- 模拟SPI
- 高精度波特率发生器
- 智能卡模拟
- IrDA SIR编码解码
- LIN主模式
- 单线半双工模式

### 异步通信(UART模式)

- 全双工通信 NRZ标准模式
- 可达1Mbits/s(f<sub>CPU</sub>/16)的可编程发送接收波特率,不管输入频率如何皆可兼容任何标准波 特率
- 发送和接收使能位可单独设置
- 2个接收唤醒模式:
  - 地址位(MSB)
  - 总线空闲(中断)
- 可产生中断的发送错误检测
- 奇偶校验控制

### 同步通信

- 全双工同步传输
- SPI主操作
- 8位数据通信
- 最大速度: 在16MHz(f<sub>CPU</sub>/16)时为1M位/秒

#### LIN主模式

- 发送:产生13位同步中断帧
- 接收:检测11位中断帧

### 4.14.2 SPI

- 最大速率: 8M位/秒(f<sub>MASTER</sub>/2)无论主设备或从设备
- 全双工同步传输
- 带有一根双向数据线的两线单工同步传输
- 主或从操作 可用硬件或软件选择
- CRC计算
- 1个字节的发送或接收缓冲器



● 从/主选择引脚

# 4.14.3 I<sup>2</sup>C

- I<sup>2</sup>C主设备特点:
  - 时钟产生
  - 开始和停止位产生
- I<sup>2</sup>C从设备特点:
  - 可编程的 I<sup>2</sup>C 地址检测
  - 停止位检测
- 可产生和检测7位/10位寻址和广播寻址
- 提供不同的通信速率:
  - 标准速率(最高至 100kHz)
  - 高速(最高至 400kHz)



# 5 引脚及其描述

#### 图3 STM8S103K VQFN32/LQFP32引脚



- 1. (HS)high sink capability高吸收电流。
- 2. (T)真正的开漏输出(没有P-buffer和连接到Voo的保护二极管)。
- 3. []复用功能重映射选项(如果相同的复用功能显示两次,用户也只能选择其中的一个,并不是其中一个是另一个的备份)。

表4 符号和缩写说明

| 类型                               | I=输入,             | I=输入,O=输出,S=供电引脚                |  |  |  |  |  |  |
|----------------------------------|-------------------|---------------------------------|--|--|--|--|--|--|
| 电平                               | 输入                | CM = CMOS                       |  |  |  |  |  |  |
|                                  | 输出                | HS = High sink 高吸收电流            |  |  |  |  |  |  |
| 输出速率                             | O1 = 慢速(最高到2MHz)  |                                 |  |  |  |  |  |  |
|                                  | O2 = 快速(最高到10MHz) |                                 |  |  |  |  |  |  |
|                                  | O3 = 可能           | 配置成快速或慢速,复位后默认为慢速               |  |  |  |  |  |  |
|                                  | O4 = 可能           | 配置成快速或慢速,复位后默认为快速               |  |  |  |  |  |  |
| 端口和控制配置 输入 float = 浮置, wpu = 弱上拉 |                   |                                 |  |  |  |  |  |  |
|                                  | 输出                | T = 真正的开漏结构, OD = 开漏结构, PP = 推挽 |  |  |  |  |  |  |

复位状态用**加粗字体**表示



表5 VFQFPN32/LQFP32引脚说明

| 管脚 |                            |     |    | 输入        |          |         | 输  | 出                |    | 主功能          | 默认的                                   | 映射后的               |
|----|----------------------------|-----|----|-----------|----------|---------|----|------------------|----|--------------|---------------------------------------|--------------------|
| 编号 | 管脚名称                       | 类型  | 浮空 | 弱<br>上拉   | 外部<br>中断 | 高<br>吸收 | 速度 | OD               | PP | (复位后)        | 复用功能                                  | 备选功能<br>[设置选项]     |
| 1  | NRST                       | I/O |    | X<br>T-17 | 1,1431   | 72.12   |    |                  |    | 复位(Reset)    | L                                     |                    |
| 2  | PA1/OSCIN <sup>(2)</sup>   | I/O | Χ  | Χ         | Х        |         | 01 | Χ                | Χ  | 端口A1         | 晶振输入                                  |                    |
| 3  | PA2/OSCOUT                 | I/O | Χ  | Х         | Х        |         | 01 | Χ                | Χ  | 端口A2         | 晶振输出                                  |                    |
| 4  | VSS                        | S   |    |           |          |         |    |                  |    | 数字地          |                                       |                    |
| 5  | VCAP                       | S   |    |           |          |         |    |                  |    | 1.8V调压器 F    | 电容                                    |                    |
| 6  | VDD                        | S   |    |           |          |         |    |                  |    | 数字部分供用       | 包                                     |                    |
| 7  | PA3/TIM2_CH3<br>[SPI_NSS]  | I/O | Х  | Х         | Х        | HS      | О3 | Х                | Х  | 端口A3         | 定时器2通道3                               | SPI主/从选择<br>[AFR1] |
| 8  | PF4                        | I/O | Χ  | Х         |          |         | 01 | Χ                | Χ  | 端口F4         |                                       |                    |
| 9  | PB7                        | I/O | Х  | Х         | Х        |         | 01 | Χ                | Χ  | 端口B7         |                                       |                    |
| 10 | PB6                        | I/O | Χ  | Х         | Х        |         | 01 | Χ                | Χ  | 端口B6         |                                       |                    |
| 11 | PB5/I2C_SDA                | I/O | Х  |           | Х        |         | 01 | T <sup>(3)</sup> |    | 端口B5         | I2C数据                                 |                    |
| 12 | PB4/I2C_SCL                | I/O | Х  |           | Х        |         | 01 | T <sup>(3)</sup> |    | 端口B4         | I2C时钟                                 |                    |
| 13 | PB3/AIN3/<br>TIM1_ETR      | I/O | Х  | Х         | Х        | HS      | О3 | Х                | Х  | 端口B3         | 模拟输入3/<br>定时器1外部触发                    |                    |
| 14 | PB2/AIN2/<br>TIM1_CH3N     | I/O | Х  | Х         | Х        | HS      | О3 | Χ                | X  | 端口B2         | 模拟输入2/<br>定时器1通道3反相<br>输出             |                    |
| 15 | PB1/AIN1/<br>TIM1_CH2N     | I/O | X  | X         | Х        | HS      | О3 | X                | X  | 端口B1         | 模拟输入1/<br>定时器1通道2反相<br>输出             |                    |
| 16 | PB0/AIN0/<br>TIM1_CH1N     | I/O | Х  | Х         | Х        | HS      | О3 | Х                | Х  | 端口B0         | 模拟输入0/<br>定时器1通道1反相<br>输出             |                    |
| 17 | PE5/SPI_NSS                | I/O | Χ  | Х         | Х        | HS      | О3 | Χ                | Χ  | 端口E5         | SPI主/从选择                              |                    |
| 18 | PC1/TIM1_CH1/<br>UART1_CK  | I/O | Х  | Х         | Х        | HS      | О3 | Х                | Х  | 端口C1         | 定时器1-通道1<br>UART1时钟                   |                    |
| 19 | PC2/TIM1_CH2               | I/O | Х  | Х         | Х        | HS      | О3 | Χ                | Χ  | 端口C2         | 定时器1-通道2                              |                    |
| 20 | PC3/TIM1_CH3               | I/O | Χ  | Х         | Х        | HS      | О3 | Χ                | Χ  | 端口C3         | 定时器1-通道3                              |                    |
| 21 | PC4/TIM1_CH4/<br>CLK_CCO   | I/O | Х  | Х         | Х        | HS      | О3 | Х                | Х  | 端口C4         | 定时器 <b>1</b> -通道 <b>4</b> /<br>配置时钟输出 |                    |
| 22 | PC5/SPI_SCK                | I/O | Х  | Х         | Х        | HS      | О3 | Χ                | Χ  | 端口C5         | SPI时钟                                 |                    |
| 23 | PC6/SPI_MOSI               | I/O | Х  | Х         | Х        | HS      | О3 | Χ                | Χ  | 端口C6         | SPI主出/从入                              |                    |
| 24 | PC7/SPI_MISO               | I/O | Х  | Х         | Х        | HS      | О3 | Χ                | Χ  | 端口C7         | SPI主入/从出                              |                    |
| 25 | PD0/TIM1_BKIN<br>[CLK_CCO] | I/O | Х  | X         | X        | HS      | 03 | X                | Х  | 端口D0         | 定时器1-刹车输入                             | 配置时钟输出<br>[AFR5]   |
| 26 | PD1/SWIM                   | I/O | Х  | X         | X        | HS      | 04 | X                | Χ  | 端口D1         | SWIM数据接口                              |                    |
| 27 | PD2/[TIM2_CH3]             | I/O | Х  | X         | X        | HS      | 03 | X                | Х  | 端口D2         | 晶振输出                                  | 定时器2通道3<br>「AFR1]  |
| 28 | PD3/TIM2_CH2/<br>ADC_ETR   | I/O | Х  | X         | X        | HS      | 03 | X                | Х  | 端口D3         | 定时器2通道2/<br>ADC外部触发                   |                    |
| 29 | PD4/TIM2_CH1/<br>BEEP      | I/O | Х  | X         | X        | HS      | 03 | X                | Х  | 端口D4         | 定时器2通道1/<br>蜂鸣器输出                     |                    |
| 30 | PD5/UART1_TX               | I/O | Χ  | X         | X        | HS      | 03 | X                | Χ  | 端口D5         | UART1数据发送                             |                    |
| 31 | PD6/UART1_RX               | I/O | Χ  | X         | X        | HS      | 03 | X                | Χ  | 端口D6         | UART1数据接收                             |                    |
| 32 | PD7/TL1<br>[TIM1_CH4]      | I/O | Х  | X         | X        | HS      | 03 | X                | Х  | 端口 <b>D7</b> | 最高级中断                                 | 定时器1通道4<br>[AFR6]  |



1. 同时作为大电流输出或/吸收的I/O脚,必须均匀地围绕着器件。同时,总的驱动电流必须符合绝对最大值的规定(见表17:电流特性)

- 2. 当MCU处于停机模式或活跃停机模式时,PA1被自动配置为内部弱上拉并且不可用来唤醒MCU。在这一模式下,PA1无法设置为输出口。在应用中,在停机模式或活跃停机模式下建议将PA1作为输入模式使用。
- 3. 在开漏输出列中'T'表示真正的开漏I/O(没有P-buffer和连接到Voo的保护二极管)。

#### 图4 STM8S103F TSSOP 20引脚



- 1. (HS) 大电流吸收
- 2. (T) 真正的开漏I/O(没有P-buffer和连接到Voo的保护二极管)
- 3. [] 复用功能重映射选项

#### 图5 STM8S103F UFQFPN封装引脚





- 1. (HS) 大电流吸收
- 2. (T) 真正的开漏I/O(没有P-buffer和连接到Voo的保护二极管)
- 3. [] 复用功能重映射选项

### 表6 STM8S103F引脚描述

| 管脚       | 编号       |                                                |     |    | 输入  |      |     | 输  | 出                |    |              |                               |                                      |
|----------|----------|------------------------------------------------|-----|----|-----|------|-----|----|------------------|----|--------------|-------------------------------|--------------------------------------|
| TSSPOP20 | WFQFPN20 | 管脚名称                                           | 类型  | 浮空 | 弱上拉 | 外部中断 | 高吸收 | 速度 | OD               | PP | 主功能<br>(复位后) | 默认的<br>复用功能                   | 映射后的<br>备选功能<br>[设置选项]               |
| 1        | 18       | PD4/BEEP/<br>TIM2_CH1/<br>UART1_CK             | I/O | Х  | Х   | Х    | HS  | О3 | Х                | Х  | 端口D4         | 定时器2通道1/<br>蜂鸣器输出/<br>UART1时钟 |                                      |
| 2        | 19       | PD5/AIN5/UART1_TX                              | I/O | Х  | X   | X    | HS  | О3 | Х                | X  | 端口D5         | 模拟输入5/<br>UART1数据发送           |                                      |
| 3        | 20       | PD6/AIN6/UART1_RX                              | I/O | Х  | Х   | Х    | HS  | О3 | Х                | Х  | 端口D6         | 模拟输入6/<br>UART1数据接收           |                                      |
| 4        | 1        | NRST                                           | I/O |    | Χ   |      |     |    |                  |    | 复位(Res       | et)                           |                                      |
| 5        | 2        | PA1/OSCIN <sup>(2)</sup>                       | I/O | Х  | Х   | Х    |     | 01 | Х                | Х  | 端口A1         | 晶振输入                          |                                      |
| 6        | 3        | PA2/OSCOUT                                     | I/O | Х  | Х   | Х    |     | 01 | Х                | Х  | 端口A2         | 晶振输出                          |                                      |
| 7        | 4        | VSS                                            | S   |    |     |      |     |    |                  |    | 数字部分         | 接地                            |                                      |
| 8        | 5        | VCAP                                           | S   |    |     |      |     |    |                  |    | 1.8V调压       | 器电容                           |                                      |
| 9        | 6        | VDD                                            | S   |    |     |      |     |    |                  |    | 数字部分         | 供电                            |                                      |
| 10       | 7        | PA3/TIM2_CH3<br>[SPI_NSS]                      | I/O | Х  | Х   | Х    | HS  | О3 | Х                | Х  | 端口A3         | 定时器2通道3                       | SPI主/从选择<br>[AFR1]                   |
| 11       | 8        | PB5/I2C_SDA<br>[TIM1_BKIN]                     | I/O | Х  |     | Х    |     | 01 | T <sup>(3)</sup> |    | 端口B5         | I2C数据                         | 定时器1刹车输入<br>[AFR4]                   |
| 12       | 9        | PB4/I2C_SCL                                    | I/O | Χ  |     | Х    |     | 01 | T <sup>(3)</sup> |    | 端口B4         | I2C时钟                         |                                      |
| 13       | 10       | PC3/TIM1_CH3<br>[TLI] [TIM1_CH1N]              | I/O | х  | Х   | Х    | HS  | О3 | Х                | Х  | 端口C3         | 定时器1通道3                       | 最高级中断[AFR3]<br>定时器1通道1反相<br>输出[AFR7] |
| 14       | 11       | PC4/CLK_CCO/<br>TIM1_CH4<br>[AIN2] [TIM1_CH2N] | I/O | х  | Х   | Х    | HS  | О3 | Х                | х  | 端口 <b>C4</b> | 配置时钟输出/<br>定时器1通道4            | 模拟输入2[AFR2]<br>定时器1通道2反相<br>输出[AFR7] |
| 15       | 12       | PC5/SPI_SCK<br>[TIM2_CH1]                      | I/O | Х  | Х   | Х    | HS  | О3 | Х                | Х  | 端口C5         | SPI时钟                         | 定时器2通道1<br>[AFR0]                    |
| 16       | 13       | PC6/SPI_MOSI<br>[TIM1_CH1]                     | I/O | Х  | Х   | Х    | HS  | О3 | Х                | Х  | 端口C6         | SPI主出/从入                      | 定时器1通道1<br>[AFR0]                    |
| 17       | 14       | PC7/SPI_MISO<br>[TIM1_CH2]                     | I/O | Х  | Х   | Х    | HS  | О3 | Х                | Х  | 端口C7         | SPI主入/从出                      | 定时器1通道2<br>[AFR0]                    |
| 18       | 15       | PD1/SWIM                                       | I/O | Х  | Х   | Х    | HS  | O4 | Х                | Х  | 端口D1         | SWIM数据接口                      |                                      |
| 19       | 16       | PD2[AIN3]<br>[TIM2_CH3]                        | I/O | х  | Х   | х    | HS  | О3 | Х                | х  | 端口D2         |                               | 模拟输入3[AFR2]<br>定时器2通道<br>3[AFR1]     |
| 20       | 17       | PD3/AIN4/TIM2_CH2/<br>ADC_ETC                  | I/O | Х  | Х   | х    | HS  | О3 | Х                | х  | 端口D3         | 模拟输入4/定时<br>器2通道2/ADC<br>外部触发 |                                      |

- 1. 同时作为大电流输出或/吸收的I/O脚,必须均匀地围绕着器件。同时,总的驱动电流必须符合绝对最大值的规定(见表17: 电流特性)
- 2. 当MCU处于停机模式或活跃停机模式时,PA1被自动配置为内部弱上拉并且不可用来唤醒MCU。在这一模式下,PA1无法设置为输出口。在应用中,在停机模式或活跃停机模式下建议将PA1作为输入模式使用。
- 3. 在开漏输出列中'T'表示真正的开漏I/O(没有P-buffer和连接到Voo的保护二极管)。



# 5.1 备选功能重映射

如引脚描述表最右列中所示,通过对8个AFR(备选功能重映射)选项位中的一位,一些备选功能可以被重新映射到不同的I/O端口上。请参考第8章:选项字节。当相应的重映射选项被打开后,引脚默认的复用功能将不可用了。

如果要使用备选的功能,外设寄存器中相应的外设一定要被使能。

备选功能重映射不影响I/O端口的GPIO功能(请见参考手册RM0016中有关GPIO的章节)。



# 6 存储器和寄存器映像

## 6.1 存储器映像

图6 存储器映像





# 6.2 寄存器映像

表7 I/O端口硬件寄存器映像

| 地址       | 模 组 | 寄存器标号  | 寄存器含义        | 复位值 |
|----------|-----|--------|--------------|-----|
| 00 5000h |     | PA_ODR | 端口A数据输出锁存寄存器 | 00h |
| 00 5001h |     | PA_IDR | 端口A输入引脚值寄存器  | 00h |
| 00 5002h | 端口A | PA_DDR | 端口A数据方向寄存器   | 00h |
| 00 5003h |     | PA_CR1 | 端口A控制寄存器1    | 00h |
| 00 5004h |     | PA_CR2 | 端口A控制寄存器2    | 00h |
| 00 5005h |     | PB_ODR | 端口B数据输出锁存寄存器 | 00h |
| 00 5006h |     | PB_IDR | 端口B输入引脚值寄存器  | 00h |
| 00 5007h | 端口B | PB_DDR | 端口B数据方向寄存器   | 00h |
| 00 5008h |     | PB_CR1 | 端口B控制寄存器1    | 00h |
| 00 5009h |     | PB_CR2 | 端口B控制寄存器2    | 00h |
| 00 500Ah |     | PC_ODR | 端口C数据输出锁存寄存器 | 00h |
| 00 500Bh |     | PC_IDR | 端口C输入引脚值寄存器  | 00h |
| 00 500Ch | 端口C | PC_DDR | 端口C数据方向寄存器   | 00h |
| 00 500Dh |     | PC_CR1 | 端口C控制寄存器1    | 00h |
| 00 500Eh |     | PC_CR2 | 端口C控制寄存器2    | 00h |
| 00 500Fh |     | PD_ODR | 端口D数据输出锁存寄存器 | 00h |
| 00 5010h |     | PD_IDR | 端口D输入引脚值寄存器  | 00h |
| 00 5011h | 端口D | PD_DDR | 端口D数据方向寄存器   | 00h |
| 00 5012h |     | PD_CR1 | 端口D控制寄存器1    | 02h |
| 00 5013h |     | PD_CR2 | 端口D控制寄存器2    | 00h |
| 00 5014h |     | PE_ODR | 端口E数据输出锁存寄存器 | 00h |
| 00 5015h |     | PE_IDR | 端口E输入引脚值寄存器  | 00h |
| 00 5016h | 端口E | PE_DDR | 端口E数据方向寄存器   | 00h |
| 00 5017h |     | PE_CR1 | 端口E控制寄存器1    | 00h |
| 00 5018h |     | PE_CR2 | 端口E控制寄存器2    | 00h |
| 00 5019h |     | PF_ODR | 端口F数据输出锁存寄存器 | 00h |
| 00 501Ah |     | PF_IDR | 端口F输入引脚值寄存器  | 00h |
| 00 501Bh | 端口F | PF_DDR | 端口F数据方向寄存器   | 00h |
| 00 501Ch |     | PF_CR1 | 端口F控制寄存器1    | 00h |
| 00 501Dh |     | PF_CR2 | 端口F控制寄存器2    | 00h |

### 表8 通用硬件寄存器影像

| 地址                        | 模 组   | 寄存器标号                   | 寄存器含义           | 复位值 |
|---------------------------|-------|-------------------------|-----------------|-----|
| 00 501Eh<br>至<br>00 5059h | 保留区(6 | 0字节)                    |                 |     |
| 00 505Ah                  |       | FLASH_CR1               | FLASH控制寄存器1     | 00h |
| 00 505Bh                  |       | FLASH_CR2               | FLASH控制寄存器2     | 00h |
| 00 505Ch                  | Eloob | FLASH_NCR2              | FLASH互补控制寄存器2   | FFh |
| 00 505Dh                  | Flash | FLASH_FPR               | FLASH保护寄存器      | 00h |
| 00 505Eh                  |       | FLASH_NFPR FLASH互补保护寄存器 |                 |     |
| 00 505Fh                  |       | FLASH_IAPSR             | FLASH在应用编程状态寄存器 | 00h |



| 可行相以例                | •          |                     |                | 3111103     |  |  |  |  |  |  |  |  |
|----------------------|------------|---------------------|----------------|-------------|--|--|--|--|--|--|--|--|
| 00 5060h             | /E 51 E 40 |                     |                |             |  |  |  |  |  |  |  |  |
| 至<br>00 5061h        | 保留区(2      | 子节)                 |                |             |  |  |  |  |  |  |  |  |
| 00 5062h             | Flash      | FLASH_PUKR          | FLASH解保护寄存器    | 00h         |  |  |  |  |  |  |  |  |
| 00 5063h             | 保留区(1      | •                   |                |             |  |  |  |  |  |  |  |  |
| 00 5064h             | Flash      | FLASH_DUKR          | 数据EEPROM解保护寄存器 | 00h         |  |  |  |  |  |  |  |  |
| 00 5065h             | /C 57 C (= | /□ 60 EC (FO 🗢 ++ ) |                |             |  |  |  |  |  |  |  |  |
| 至<br>00 509Fh        | 保留区(59字节)  |                     |                |             |  |  |  |  |  |  |  |  |
| 00 50A0h             |            | EXTI_CR1            | 00h            |             |  |  |  |  |  |  |  |  |
| 00 50A1h             | ITC        | EXTI_CR2            | 外部中断控制寄存器2     | 00h         |  |  |  |  |  |  |  |  |
| 00 50A2h             |            |                     |                |             |  |  |  |  |  |  |  |  |
| 至<br>00 50B2h        | 保留区(1      | 7字节)                |                |             |  |  |  |  |  |  |  |  |
| 00 50B2h             | RST        | RST_SR              | 复位状态寄存器        | xx          |  |  |  |  |  |  |  |  |
| 00 50B4h             | 1101       | 1101_011            | 交匹/小心司 11 冊    |             |  |  |  |  |  |  |  |  |
| 至                    | 保留区(1      | 2字节)                |                |             |  |  |  |  |  |  |  |  |
| 00 50BFh<br>00 50C0h |            | CLK ICKR            | 内部时钟控制寄存器      | 01h         |  |  |  |  |  |  |  |  |
| 00 50C0H             | CLK        | CLK_ICKK  CLK ECKR  | 外部时钟控制寄存器      | 0111<br>00h |  |  |  |  |  |  |  |  |
| 00 50C1h             | 保留区(1      | _                   | 71、邮机771年明可行船  | OUII        |  |  |  |  |  |  |  |  |
| 00 50C2h             | 水田区(1      | CLK CMSR            | 主时钟状态寄存器       | E1h         |  |  |  |  |  |  |  |  |
| 00 50C3h             |            | CLK_CIVISK          | 主时钟切换寄存器       | E1h         |  |  |  |  |  |  |  |  |
| 00 50C4H             |            | CLK_SWK             | 时钟切换控制寄存器      | x0h         |  |  |  |  |  |  |  |  |
| 00 50C6h             |            | CLK_GWOR            | 时钟分频寄存器        | 18h         |  |  |  |  |  |  |  |  |
| 00 50C7h             |            | CLK PCKENR1         | 外设时钟门控寄存器1     | FFh         |  |  |  |  |  |  |  |  |
| 00 50C8h             | CLK        | CLK CSSR            | 时钟安全系统寄存器      | 00h         |  |  |  |  |  |  |  |  |
| 00 50C9h             | 02.1       | CLK CCOR            | 可配置时钟控制寄存器     | 00h         |  |  |  |  |  |  |  |  |
| 00 50CAh             |            | CLK PCKENR2         | 外设时钟门控寄存器2     | FFh         |  |  |  |  |  |  |  |  |
| 00 50CBh             |            | CLK CANCCR          | CAN总线时钟控制寄存器   | 00h         |  |  |  |  |  |  |  |  |
| 00 50CCh             |            | CLK_HSITRIMR        | HIS时钟微调寄存器     | xxh         |  |  |  |  |  |  |  |  |
| 00 50CDh             |            | CLK_SWIMCCR         | SWIM时钟控制寄存器    | x0h         |  |  |  |  |  |  |  |  |
| 00 50CEh             |            |                     |                |             |  |  |  |  |  |  |  |  |
| 至<br>00 50D0h        | 保留区(3      | 字节)                 |                |             |  |  |  |  |  |  |  |  |
| 00 50D1h             |            | WWDG_CR             | WWDG控制寄存器      | 7Fh         |  |  |  |  |  |  |  |  |
| 00 50D2h             | WWDG       | WWDG_WR             | WWDR窗口寄存器      | 7Fh         |  |  |  |  |  |  |  |  |
| 00 50D3h             |            |                     | 1              | I           |  |  |  |  |  |  |  |  |
| 至<br>00 50DFh        | 保留区(1      | 3字节)                |                |             |  |  |  |  |  |  |  |  |
| 00 50E0h             |            | IWDG KR             | IWDG密钥寄存器      |             |  |  |  |  |  |  |  |  |
| 00 50E1h             | IWDG       | IWDG PR             | IWDG预分频寄存器     | 00h         |  |  |  |  |  |  |  |  |
| 00 50E2h             | _          | IWDG_RLR            | IWDG重装载寄存器     | FFh         |  |  |  |  |  |  |  |  |
| 00 50E3h             |            | <u> </u>            | 1              |             |  |  |  |  |  |  |  |  |
| 至<br>00 50EFh        | 保留区(1      | 3字节)                |                |             |  |  |  |  |  |  |  |  |
| 00 50F0h             |            | AWU_CSR1            | AWU控制/状态寄存器    | 00h         |  |  |  |  |  |  |  |  |
| 00 50F1h             | AWU        | AWU_APR             | AWU异步预分频寄存器    | 3Fh         |  |  |  |  |  |  |  |  |
| 00 50F2h             |            | AWU_TBR             | AWU时基选择寄存器     | 00h         |  |  |  |  |  |  |  |  |



| 00 50F3h             | BEEP             | BEEP_CSR          | BEEP控制/状态寄存器              | 1Fh  |
|----------------------|------------------|-------------------|---------------------------|------|
| 00 50F4h             |                  | <del>-</del>      |                           | l .  |
| 至<br>00 50FFh        | 保留区(1            | 2字节)              |                           |      |
| 00 5200h             |                  | SPI CR1           | SPI控制寄存器1                 | 00h  |
| 00 5201h             |                  | SPI CR2           | SPI控制寄存器2                 | 00h  |
| 00 5202h             |                  | SPI ICR           | SPI中断控制寄存器                | 00h  |
| 00 5203h             |                  | SPI_SR            | SPI状态寄存器                  | 02h  |
| 00 5204h             | SPI              | SPI DR            | SPI数据寄存器                  | 00h  |
| 00 5205h             | -                | SPI CRCPR         | SPI CRC多项式寄存器             | 07h  |
| 00 5206h             |                  | SPI RXCRCR        | SPI接收CRC寄存器               | FFh  |
| 00 5207h             |                  | SPI TXCRCR        | SPI发送CRC寄存器               | FFh  |
| 00 5208h             |                  |                   | <u> </u>                  | L    |
| 至<br>00 520Fh        | 保留区(8            | 学节)               |                           |      |
|                      |                  | I2C CR1           | I <sup>2</sup> C控制寄存器1    | 00h  |
| 00 5210h<br>00 5211h | 1                | 12C_CR1           | I <sup>2</sup> C控制寄存器2    | 00h  |
| 00 5211h             | I <sup>2</sup> C | I2C_CR2           | I <sup>2</sup> C频率寄存器     | 00h  |
| 00 5212h             | 10               | I2C_FREQR         | I <sup>2</sup> C自身地址寄存器低位 | 00h  |
| 00 5213h             | 1                | I2C_OARL          | I <sup>2</sup> C自身地址寄存器高位 | 00h  |
| 00 5214h             | 保留区(1            | _                 | 10日才地址可付命同位               | 0011 |
| 00 5215h             | 休田区(1            | I2C DR            | I <sup>2</sup> C数据寄存器     | 00h  |
| 00 5210h             | -                | 12C_DR<br>12C_SR1 | I <sup>2</sup> C状态寄存器1    | 00h  |
| 00 5217H             | 1                | 12C_SR1           | I <sup>2</sup> C状态寄存器2    | 00h  |
| 00 5218h             |                  | 12C_SR2           | I <sup>2</sup> C状态寄存器3    | 00h  |
| 00 5219H             | I <sup>2</sup> C | I2C_SR3           | I <sup>2</sup> C中断控制寄存器   | 00h  |
| 00 52 1AII           | 1                | I2C_ITK           | I <sup>2</sup> C时钟控制寄存器低位 | 00h  |
| 00 521Bh             |                  | I2C_CCRH          | I <sup>2</sup> C时钟控制寄存器高位 | 00h  |
| 00 521Dh             |                  | I2C_TRISER        | I <sup>2</sup> C TRISE寄存器 | 02h  |
| 00 521Eh             |                  | I2C PECR          | I <sup>2</sup> C包错误检查寄存器  | 00h  |
| 00 521Eh             |                  | IZO_I LOIX        | 10世祖 庆恒 旦 司 行船            | 0011 |
| 至                    | 保留区(1            | <b>7</b> 字节)      |                           |      |
| 00 522Fh             |                  | 1                 |                           | T    |
| 00 5230h             |                  | UART1_SR          | UART1 状态寄存器               | C0h  |
| 00 5231h             |                  | UART1_DR          | UART1 数据寄存器               | xxh  |
| 00 5232h             |                  | UART1_BRR1        | UART1 波特率寄存器1             | 00h  |
| 00 5233h             | 4                | UART1_BRR2        | UART1 波特率寄存器2             | 00h  |
| 00 5234h             | <u> </u>         | UART1_CR1         | UART1 控制寄存器1              | 00h  |
| 00 5235h             | UART1            | UART1_CR2         | UART1 控制寄存器2              | 00h  |
| 00 5236h             |                  | UART1_CR3         | UART1 控制寄存器3              | 00h  |
| 00 5237h             |                  | UART1_CR4         | UART1 控制寄存器4              | 00h  |
| 00 5238h             |                  | UART1_CR5         | UART2控制寄存器5               | 00h  |
| 00 5239h             |                  | UART1_GTR         | UART1保护时间寄存器              | 00h  |
| 00 523Ah             |                  | UART1_PSCR        | UART1预分频寄存器               | 00h  |
| 00 523Bh<br>至        | 保留区(2            | 1字节)              |                           |      |
| 00 524Fh             | <u> </u>         |                   |                           |      |



| 存储器利 | 1寄存器映像        | Ę          |            |                 | STM8S1 |
|------|---------------|------------|------------|-----------------|--------|
|      | 00 5250h      |            | TIM1_CR1   | TIM1控制寄存器1      | 00h    |
|      | 00 5251h      |            | TIM1_CR2   | TIM1控制检测器2      | 00h    |
|      | 00 5252h      |            | TIM1_SMCR  | TIM1从模式控制寄存器    | 00h    |
|      | 00 5253h      |            | TIM1_ETR   | TIM1外部触发寄存器     | 00h    |
|      | 00 5254h      |            | TIM1_IER   | TIM1中断使能寄存器     | 00h    |
|      | 00 5255h      |            | TIM1_SR1   | TIM1状态寄存器1      | 00h    |
|      | 00 5256h      |            | TIM1_SR2   | TIM1状态寄存器2      | 00h    |
|      | 00 5257h      |            | TIM1_EGR   | TIM1事件产生寄存器     | 00h    |
|      | 00 5258h      |            | TIM1_CCMR1 | TIM1比较/捕获模式寄存器1 | 00h    |
|      | 00 5259h      |            | TIM1_CCMR2 | TIM1比较/捕获模式寄存器2 | 00h    |
|      | 00 525Ah      |            | TIM1_CCMR3 | TIM1比较/捕获模式寄存器3 | 00h    |
|      | 00 525Bh      |            | TIM1_CCMR4 | TIM1比较/捕获模式寄存器4 | 00h    |
|      | 00 525Ch      |            | TIM1_CCER1 | TIM1比较/捕获使能寄存器1 | 00h    |
|      | 00 525Dh      |            | TIM1_CCER2 | TIM1比较/捕获使能寄存器2 | 00h    |
|      | 00 525Eh      |            | TIM1_CNTRH | TIM1计数器高位       | 00h    |
|      | 00 525Fh      | TINAA      | TIM1_CNTRL | TIM1计数器低位       | 00h    |
|      | 00 5260h      | TIM1       | TIM1_PSCRH | TIM1预分频寄存器高位    | 00h    |
|      | 00 5261h      |            | TIM1_PSCRL | TIM1预分频寄存器低位    | 00h    |
|      | 00 5262h      |            | TIM1_ARRH  | TIM1预装载寄存器高位    | FFh    |
|      | 00 5263h      |            | TIM1_ARRL  | TIM1预装载寄存器低位    | FFh    |
|      | 00 5264h      |            | TIM1_RCR   | TIM1重复计数器寄存器    | 00h    |
|      | 00 5265h      |            | TIM1_CCR1H | TIM1比较/捕获寄存器1高位 | 00h    |
|      | 00 5266h      |            | TIM1_CCR1L | TIM1比较/捕获寄存器1低位 | 00h    |
|      | 00 5267h      |            | TIM1_CCR2H | TIM1比较/捕获寄存器2高位 | 00h    |
|      | 00 5268h      |            | TIM1_CCR2L | TIM1比较/捕获寄存器2低位 | 00h    |
|      | 00 5269h      |            | TIM1_CCR3H | TIM1比较/捕获寄存器3高位 | 00h    |
|      | 00 526Ah      |            | TIM1_CCR3L | TIM1比较/捕获寄存器3低位 | 00h    |
|      | 00 526Bh      |            | TIM1_CCR4H | TIM1比较/捕获寄存器4高位 | 00h    |
|      | 00 526Ch      |            | TIM1_CCR4L | TIM1比较/捕获寄存器4低位 | 00h    |
|      | 00 526Dh      |            | TIM1_BKR   | TIM1刹车寄存器       | 00h    |
|      | 00 526Eh      |            | TIM1_DTR   | TIM1死区寄存器       | 00h    |
|      | 00 526Fh      |            | TIM1_OISR  | TIM1输出停滞状态寄存器   | 00h    |
|      | 00 5270h      | /II rin II |            |                 |        |
|      | 至<br>00 52FFh | 保留区(1      | 47字节)      |                 |        |
|      | 00 5300h      | TIM2       | TIM2 CR1   | TIM2控制寄存器1      | 00h    |
|      | 00 5301h      |            |            |                 | L      |
|      | 00 5302h      |            | 保留         |                 |        |
|      | 00 5303h      | 1          | TIM2 IER   | TIM2中断使能寄存器     | 00h    |
|      | 00 5304h      | -          | TIM2 SR1   | TIM2状态寄存器1      | 00h    |
|      | 00 5305h      | -          | TIM2_SR2   | TIM2状态寄存器2      | 00h    |
|      | 00 5306h      | 1          | TIM2_EGR   | TIM2事件产生寄存器     | 00h    |
|      | 00 5307h      | 1          | TIM2_CCMR1 | TIM2比较/捕获寄存器1   | 00h    |
|      | 00 5308h      | 1          | TIM2_CCMR2 | TIM2比较/捕获寄存器2   | 00h    |
|      | 00 5309h      | 1          | TIM2_CCMR3 | TIM2比较/捕获寄存器3   | 00h    |
|      | <u> </u>      | j          | <u> </u>   | 1               |        |



| 1                         | I     | I          | 1                | İ        |
|---------------------------|-------|------------|------------------|----------|
| 00 530Ah                  |       | TIM2_CCER1 | TIM2比较/捕获使能寄存器1  | 00h      |
| 00 530Bh                  |       | TIM2_CCER2 | TIM2比较/捕获使能寄存器2  | 00h      |
| 00 530Ch                  |       | TIM2_CNTRH | TIM2计数器高位        | 00h      |
| 00 530Dh                  |       | TIM2_CNTRL | TIM2计数器低位        | 00h      |
| 00 530Eh                  |       | TIM2_PSCR  | TIM2预分频寄存器       | 00h      |
| 00 530Fh                  |       | TIM2_ARRH  | TIM2预装载寄存器高位     | FFh      |
| 00 5310h                  |       | TIM2_ARRL  | TIM2预装载寄存器低位     | FFh      |
| 00 5311h                  |       | TIM2_CCR1H | TIM2比较/捕获寄存器1高位  | 00h      |
| 00 5312h                  |       | TIM2_CCR1L | TIM2比较/捕获寄存器1低位  | 00h      |
| 00 5313h                  |       | TIM2_CCR2H | TIM2比较/捕获寄存器2高位  | 00h      |
| 00 5314h                  |       | TIM2_CCR2L | TIM2比较/捕获寄存器2低位  | 00h      |
| 00 5315h                  |       | TIM2_CCR3H | TIM2比较/捕获寄存器3高位  | 00h      |
| 00 5316h                  |       | TIM2_CCR3L | TIM2比较/捕获寄存器3低位  | 00h      |
| 00 5317h                  |       |            |                  |          |
| 至<br>00 533Fh             | 保留区(4 | 3字节)       |                  |          |
| 00 5340h                  |       | TIM4 CR1   | TIM4控制寄存器1       | 00h      |
| 00 5341h                  |       | 保留         |                  | 1 22     |
| 00 5342h                  |       | 保留         |                  |          |
| 00 5343h                  |       | TIM4 IER   | TIM4中断使能寄存器      | 00h      |
| 00 5344h                  | TIM4  | TIM4 SR    | TIM4状态寄存器        | 00h      |
| 00 5345h                  |       | TIM4 EGR   | TIM4事件产生寄存器      | 00h      |
| 00 5346h                  |       | TIM4 CNTR  | TIM4计数器          | 00h      |
| 00 5347h                  |       | TIM4 PSCR  | TIM4预分频寄存器       | 00h      |
| 00 5348h                  |       | TIM4 ARR   | TIM4预装载寄存器       | FFh      |
| 00 5349h                  |       | _          |                  |          |
| 至<br>00 53DFh             | 保留位(1 | 53字节)      |                  |          |
| 00 53E0h<br>至<br>00 53F3h | ADC1  | ADC_DBxR   | ADC数据缓冲寄存器       | 00h      |
| 00 53F4h<br>至<br>00 53FFh | 保留区(1 | 2字节)       |                  | l        |
| 00 5400h                  | ADC1  | ADC_CSR    | ADC控制/状态寄存器      | 00h      |
| 00 5401h                  |       | ADC_CR1    | ADC配置寄存器1        | 00h      |
| 00 5402h                  |       | ADC_CR2    | ADC配置寄存器2        | 00h      |
| 00 5403h                  |       | ADC_CR3    | ADC配置寄存器3        | 00h      |
| 00 5404h                  |       | ADC_DRH    | ADC数据寄存器高位       | 00h      |
| 00 5405h                  |       | ADC_DRL    | ADC数据寄存器低位       | 00h      |
| 00 5406h                  |       | ADC_TDRH   | ADC施密特触发器禁用寄存器高位 | 00h      |
| 00 5407h                  |       | ADC_TDRL   | ADC施密特触发器禁用寄存器低位 | 00h      |
| 00 5408h                  |       | ADC_HTRH   | ADC高阈值高位         | 03h      |
| 00 5409h                  |       | ADC_HTRL   | ADC高阈值低位         | FFh      |
| 00 540Ah                  |       | ADC_LTRH   | ADC低阈值高位         | 00h      |
| 00 540Bh                  |       | ADC_LTRL   | ADC低阈值低位         | 00h      |
| 00 540Ch                  |       | ADC_AWSRH  | ADC模拟看门狗状态寄存器高位  | 00h      |
| L                         | l     |            | 4 14 4 14        | <u> </u> |



|   | 00 540Dh                  |       | ADC_AWSRL | ADC模拟看门狗状态寄存器低位 | 00h |
|---|---------------------------|-------|-----------|-----------------|-----|
| Ī | 00 540Eh                  |       | ADC_AWCRH | ADC模拟看门狗控制寄存器高位 | 00h |
| Ī | 00 540Fh                  |       | ADC_AWCRL | ADC模拟看门狗控制寄存器低位 | 00h |
|   | 00 5410h<br>至<br>00 57FFh | 保留区(1 | 008字节)    |                 |     |

### 表9 CPU/SWIM/调试模块/中断控制寄存器

| 地址                        | 模 组                            | 寄存器标号    | 寄存器含义           | 复位值 |
|---------------------------|--------------------------------|----------|-----------------|-----|
| 00 7F00h                  |                                | Α        | 累加器             | 00h |
| 00 7F01h                  |                                | PCE      | 程序计数器扩展字节       | 00h |
| 00 7F02h                  |                                | PCH      | 程序计数器高字节        | 00h |
| 00 7F03h                  |                                | PCL      | 程序计数器低字节        | 00h |
| 00 7F04h                  |                                | XH       | X索引寄存器高字节       | 00h |
| 00 7F05h                  | CPU <sup>(1)</sup>             | XL       | X索引寄存器低字节       | 00h |
| 00 7F06h                  |                                | YH       | Y索引寄存器高字节       | 00h |
| 00 7F07h                  |                                | YL       | Y索引寄存器低字节       | 00h |
| 00 7F08h                  |                                | SPH      | 堆栈指针高字节         | 03h |
| 00 7F09h                  |                                | SPL      | 堆栈指针低字节         | FFh |
| 00 7F0Ah                  |                                | CCR      | 条件代码寄存器         | 28h |
| 00 7F0Bh<br>至<br>00 7F5Fh | 保留区(8                          | 85字节)    |                 |     |
| 00 7F60h                  | CPU                            | CFG_GCR  | 全局配置寄存器         | 00h |
| 00 7F70h                  |                                | ITC_SPR1 | 中断软件优先级寄存器1     | FFh |
| 00 7F71h                  |                                | ITC_SPR2 | 中断软件优先级寄存器2     | FFh |
| 00 7F72h                  |                                | ITC_SPR3 | 中断软件优先级寄存器3     | FFh |
| 00 7F73h                  | ITC                            | ITC_SPR4 | 中断软件优先级寄存器4     | FFh |
| 00 7F74h                  |                                | ITC_SPR5 | 中断软件优先级寄存器5     | FFh |
| 00 7F75h                  |                                | ITC_SPR6 | 中断软件优先级寄存器6     | FFh |
| 00 7F76h                  |                                | ITC_SPR7 | 中断软件优先级寄存器7     | FFh |
| 00 7F77h                  |                                | ITC_SPR8 | 中断软件优先级寄存器8     | FFh |
| 00 7F78h                  | · 保留区(2                        | 2字节)     |                 |     |
| 00 7F79h                  | <b>Ж</b> ⊞ <b>С</b> ( <b>2</b> | - 1 14/  |                 |     |
| 00 7F80h                  | SWIM                           | SWIM_CSR | SWIM控制状态寄存器     | 00h |
| 00 7F81h<br>至<br>00 7F8Fh | 保留区(1                          | 15字节)    |                 |     |
| 00 7F90h                  | DM                             | DM_BK1RE | DM断点1寄存器扩展字节    | FFh |
| 00 7F91h                  | ]                              | DM_BK1RH | DM断点1寄存器高字节     | FFh |
| 00 7F92h                  | ]                              | DM_BK1RL | DM断点1寄存器低字节     | FFh |
| 00 7F93h                  |                                | DM_BK2RE | DM断点2寄存器扩展字节    | FFh |
| 00 7F94h                  |                                | DM_BK2RH | DM断点2寄存器高字节     | FFh |
| 00 7F95h                  |                                | DM_BK2RL | DM断点2寄存器低字节     | FFh |
| 00 7F96h                  | ] [                            | DM_CR1   | DM调试模块控制寄存器1    | 00h |
| 00 7F97h                  |                                | DM_CR2   | DM调试模块控制寄存器2    | 00h |
| 00 7F98h                  |                                | DM_CSR1  | DM调试模块控制/状态寄存器1 | 10h |



| 00 7F99h                  |      | DM_CSR2   | DM调试模块控制/状态寄存器2 | 00h |
|---------------------------|------|-----------|-----------------|-----|
| 00 7F9Ah                  |      | DM_ENFCTR | DM使能功能寄存器       | FFh |
| 00 7F9Bh<br>至<br>00 7F9Fh | 保留区( | 5字节)      |                 |     |

<sup>1.</sup> 只有调试模块可以访问



# 7 中断向量映像

表10 中断向量表

| 中断编号 | 中断源              | 说明                    | 从停机模<br>式唤醒      | 从活跃停机<br>模式唤醒    | 向量地址                     |
|------|------------------|-----------------------|------------------|------------------|--------------------------|
|      | RESET            | 复位                    | 是                | 是                | 0x00 8000                |
|      | TRAP             | 软件中断                  | -                | -                | 0x00 8004                |
| 0    | TLI              | 外部最高级中断               | -                | -                | 0x00 8008                |
| 1    | AWU              | 从停机模式自动唤醒             | -                | 是                | 0x00 800C                |
| 2    | CLK              | 时钟控制器                 | -                | -                | 0x00 8010                |
| 3    | EXTI0            | 端口A外部中断               | 是 <sup>(1)</sup> | 是 <sup>(1)</sup> | 0x00 8014                |
| 4    | EXTI1            | 端口B外部中断               | 是                | 是                | 0x00 8018                |
| 5    | EXTI2            | 端口C外部中断               | 是                | 是                | 0x00 801C                |
| 6    | EXTI3            | 端口D外部中断               | 是                | 是                | 0x00 8020                |
| 7    | EXTI4            | 端口E外部中断               | 是                | 是                | 0x00 8024                |
| 8    |                  | 保留                    | -                | -                | 0x00 8028                |
| 9    |                  | 保留                    | -                | -                | 0x00 802C                |
| 10   | SPI              | 传输结束                  | 是                | 是                | 0x00 8030                |
| 11   | TIM1             | 定时器1 更新/上溢出/下溢出/触发/刹车 | -                | -                | 0x00 8034                |
| 12   | TIM1             | 定时器1 捕获/比较            | -                | -                | 0x00 8038                |
| 13   | TIM2             | 定时器2 更新/上溢出           | -                | -                | 0x00 803C                |
| 14   | TIM2             | 定时器2 捕获/比较            | -                | -                | 0x00 8040                |
| 15   |                  | 保留                    | -                | -                | 0x00 8044                |
| 16   |                  | 保留                    | -                | -                | 0x00 8048                |
| 17   | UART1            | 发送完成                  | -                | -                | 0x00 804C                |
| 18   | UART1            | 接收寄存器数据满              | -                | -                | 0x00 8050                |
| 19   | I <sup>2</sup> C | I <sup>2</sup> C中断    | 是                | 是                | 0x00 8054                |
| 20   |                  | 保留                    | -                | -                | 0x00 8058                |
| 21   |                  | 保留                    | -                | -                | 0x00 805C                |
| 22   | ADC1             | ADC1转换结束/模拟看门狗中断      | -                | -                | 0x00 8060                |
| 23   | TIM4             | 定时器4 更新/上溢出           | -                | -                | 0x00 8064                |
| 24   | FLASH            | EOP/WR_PG_DIS         | -                | -                | 0x00 8068                |
|      |                  | 保留                    |                  |                  | 0x00 806C 至<br>0x00 807C |

<sup>1.</sup> PA1除外



# 8 选项字节

选项字节包括芯片硬件特性的配置和存储器的保护信息,这些字节保存在存储器中一个专用的块内。除了ROP(读出保护)字节,每个选项字节必须被保存两次,一个是通常的格式(OPTx)和一个用来备份的互补格式(NOPTx)。

可以在ICP模式(通过SWIM)下访问下表中EEPROM的地址来修改选项字节。

选项字节也可以通过应用程序在IAP模式下修改,但是ROP选项只能在ICP模式(通过SWIM)下被修改。

有关SWIM编程过程的内容请参考STM8S闪存编程手册(PM0051)和STM8 SWIM通信协议和调试模块用户手册(UM0470)。

表11 选项字节

| ᆅᆉᆛ    | <b>选项</b>    | 选项    |       |           |       | ž            | 选项位          |              |              |                |          |
|--------|--------------|-------|-------|-----------|-------|--------------|--------------|--------------|--------------|----------------|----------|
| 地址     | 选项名称         | 字节    | 7     | 6         | 5     | 4            | 3            | 2            | 1            | 0              | 默认<br>设置 |
| 0x4800 | 读保护          | OPT0  |       |           |       | R            | OP[7:0]      |              |              |                | 00h      |
| 0x4801 | 用户           | OPT1  |       | UBC[7:0]  |       |              | 00h          |              |              |                |          |
| 0x4802 | 启动代码         | NOPT1 |       | NUBC[7:0] |       |              |              | FFh          |              |                |          |
| 0x4803 |              | OPT2  | AFR7  | AFR6      | AFR5  | AFR4         | AFR3         | AFR2         | AFR1         | AFR0           | 00h      |
| 0x4804 | 重映射<br>(AFR) | NOPT2 | NAFR7 | NAFR6     | NAFR5 | NAFR4        | NAFR3        | NAFR2        | NAFR1        | NAFR0          | FFh      |
| 0x4805 |              | OPT3  |       | 保留        |       | HSI<br>TRIM  | LSI<br>_EN   | IWDG<br>_HW  | WWDG<br>_HW  | WWDG<br>_HALT  | 00h      |
| 0x4806 | 其它选项         | NOPT3 |       | 保留        |       | NHSI<br>TRIM | NLSI<br>_EN  | NIWDG<br>_HW | NWWDG<br>_HW | NWWDG<br>_HALT | FFh      |
| 0x4807 | 时钟选项         | OPT4  |       | 保         | 留     |              | EXT<br>CLK   | CKAWU<br>SEL | PRS<br>C1    | PRS<br>C0      | 00h      |
| 0x4808 | 时坪延坝         | NOPT4 |       | 保         | :留    | ·            | NEXT<br>CLK  | U            | NPRS<br>C1   | NPRS<br>C0     | FFh      |
| 0x4809 | HSE时钟        | OPT5  |       |           |       |              | ECNT[7:0]    |              |              |                | 00h      |
| 0x480A | 启动选项         | NOPT5 |       |           |       | NHSI         | NHSECNT[7:0] |              |              |                | FFh      |

表12 选项字节描述

| 选项字节 | 说明                                                 |
|------|----------------------------------------------------|
|      | ROP[7:0] 存储器读出保护(ROP)                              |
| OPT0 | 0xAA:读出保护使能(通过SWIM协议写入)                            |
|      | 注:详细内容请参考产品参考手册(RM0016)中关于Flash/EEPROM存储器读保护内容的章节。 |
|      | UBC[7:0] 用户启动代码区域                                  |
|      | 0x00: 没有UBC,没有写保护。                                 |
|      | 0x01: 页0定义为UBC,存储器写保护。                             |
| OPT1 | 0x02: 页0~页1定义为UBC,存储器写保护。页0~页1包含中断向量。              |
| OFTI |                                                    |
|      | 0x7F: 页0~页126定义为UBC,存储器写保护.                        |
|      | 其余数值:页0~页127定义为UBC,存储器写保护                          |
|      | 注:详细内容请参考产品参考手册(RM0016)中关于Flash/EEPROM存储器写保护内容的章节。 |
|      | AFR[7:0]                                           |
| OPT2 | 32引脚封装的参考表13                                       |
|      | 20引脚封装的参考表14                                       |



|       | HSITRIM: 高速内部时钟调节寄存器大小                                                                                                                                        |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|       | 0: CLK_HSITRIMR寄存器支持3位调节。                                                                                                                                     |  |  |  |  |  |
|       | 1: CLK_HSITRIMR寄存器支持4位调节。                                                                                                                                     |  |  |  |  |  |
|       | LSI_EN: 低速内部时钟使能                                                                                                                                              |  |  |  |  |  |
|       | 0: LSI时钟不能被用作CPU的时钟源。                                                                                                                                         |  |  |  |  |  |
|       | 1: LSI时钟可以被用作CPU的时钟源。                                                                                                                                         |  |  |  |  |  |
|       | IWDG_HW: 独立看门狗                                                                                                                                                |  |  |  |  |  |
| OPT3  | 0: IWDG独立看门狗由软件激活。                                                                                                                                            |  |  |  |  |  |
|       | 1: IWDG独立看门狗由硬件激活。                                                                                                                                            |  |  |  |  |  |
|       | WWDG_HW: 窗口看门狗激活                                                                                                                                              |  |  |  |  |  |
|       | 0: WWDG窗口看门狗由软件激活。                                                                                                                                            |  |  |  |  |  |
|       | 1: WWDG窗口看门狗由硬件激活。                                                                                                                                            |  |  |  |  |  |
|       | WWDG_HALT: 当芯片进入停机模式时窗口看门狗的复位动作                                                                                                                               |  |  |  |  |  |
|       | 0: 如果窗口看门狗使能,当芯片进入停机模式时不产生复位。                                                                                                                                 |  |  |  |  |  |
|       | 1: 如果窗口看门狗使能,当芯片进入停机模式时可以产生复位。                                                                                                                                |  |  |  |  |  |
|       | EXT_CLK: 外部时钟选择                                                                                                                                               |  |  |  |  |  |
|       | 0: 外部晶体振荡器连接到OSCIN/OSCOUT引脚上                                                                                                                                  |  |  |  |  |  |
|       | 1: 外部时钟连接到OSCIN引脚上                                                                                                                                            |  |  |  |  |  |
|       | CKAWUSEL: 自动唤醒单元/时钟                                                                                                                                           |  |  |  |  |  |
| OPT4  | 0: LSI时钟源作为AWU的时钟                                                                                                                                             |  |  |  |  |  |
|       |                                                                                                                                                               |  |  |  |  |  |
| 01 14 | 1: HSE分频后的时钟作为AWU的时钟源                                                                                                                                         |  |  |  |  |  |
| 01 14 | 1: HSE分频后的时钟作为AWU的时钟源 PRSC[1:0]: AWU时钟预分频                                                                                                                     |  |  |  |  |  |
| 0114  | 1: HSE分频后的时钟作为AWU的时钟源 PRSC[1:0]: AWU时钟预分频 0x: 16MHz到128kHz分频                                                                                                  |  |  |  |  |  |
| 0114  | 1: HSE分频后的时钟作为AWU的时钟源 PRSC[1:0]: AWU时钟预分频 0x: 16MHz到128kHz分频 10: 8MHz到128kHz分频                                                                                |  |  |  |  |  |
| OI 14 | 1: HSE分频后的时钟作为AWU的时钟源 PRSC[1:0]: AWU时钟预分频 0x: 16MHz到128kHz分频 10: 8MHz到128kHz分频 11: 4MHz到128kHz分频                                                              |  |  |  |  |  |
|       | 1: HSE分频后的时钟作为AWU的时钟源 PRSC[1:0]: AWU时钟预分频 0x: 16MHz到128kHz分频 10: 8MHz到128kHz分频 11: 4MHz到128kHz分频 HSECNT[7:0]: HSE晶体振荡器稳定时间                                    |  |  |  |  |  |
|       | 1: HSE分频后的时钟作为AWU的时钟源  PRSC[1:0]: AWU时钟预分频 0x: 16MHz到128kHz分频 10: 8MHz到128kHz分频 11: 4MHz到128kHz分频  HSECNT[7:0]: HSE晶体振荡器稳定时间 0x00: 2048个HSE周期                 |  |  |  |  |  |
| OPT5  | 1: HSE分频后的时钟作为AWU的时钟源  PRSC[1:0]: AWU时钟预分频 0x: 16MHz到128kHz分频 10: 8MHz到128kHz分频 11: 4MHz到128kHz分频  HSECNT[7:0]: HSE晶体振荡器稳定时间 0x00: 2048个HSE周期 0xB4: 128个HSE周期 |  |  |  |  |  |
|       | 1: HSE分频后的时钟作为AWU的时钟源  PRSC[1:0]: AWU时钟预分频 0x: 16MHz到128kHz分频 10: 8MHz到128kHz分频 11: 4MHz到128kHz分频  HSECNT[7:0]: HSE晶体振荡器稳定时间 0x00: 2048个HSE周期                 |  |  |  |  |  |

### 表13 STM8S103K 对于32脚封装的产品的复用功能重定义位

| 选项字节 | 说明 <sup>(1)</sup>                    |  |  |  |  |  |
|------|--------------------------------------|--|--|--|--|--|
|      | AFR7 复用功能重映射选项7                      |  |  |  |  |  |
|      | 保留                                   |  |  |  |  |  |
|      | AFR6 复用功能重映射选项6                      |  |  |  |  |  |
|      | 0: 端口D7复用功能为TLI                      |  |  |  |  |  |
|      | 1:端口D7复用功能为TIM1_CH4                  |  |  |  |  |  |
|      | AFR5 复用功能重映射选项5                      |  |  |  |  |  |
| ODTO | 0:端口D0复用功能为TIM1_BKIN                 |  |  |  |  |  |
| OPT2 | 1:端口D0复用功能为CLK_CCO                   |  |  |  |  |  |
|      | <b>AFR[4:2]</b> 复用功能重映射选项4:2         |  |  |  |  |  |
|      | 保留                                   |  |  |  |  |  |
|      | AFR1 复用功能重映射选项1                      |  |  |  |  |  |
|      | 0: 端口A3复用功能为TIM2_CH3                 |  |  |  |  |  |
|      | 1:端口A3复用功能为SPI_NSS,端口D2复用功能为TIM2_CH3 |  |  |  |  |  |
|      | AFRO 复用功能重映射选项O                      |  |  |  |  |  |
|      | 保留                                   |  |  |  |  |  |

- 1. 不要在同一个端口使能1个以上的复用功能。禁止同时使能AFR1和AFR0.
- 2. 参考引脚描述。



表14 STM8S103F 对于20脚封装的产品的复用功能重定义位

| 选项字节 | 说 明                                                                                                                                               |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|      | AFR7 复用功能重映射选项7 0: 端口C3复用功能TIM1_CH3,端口C4复用功能TIM1_CH4、AIN2或CLK_CCO 1: 端口C3复用功能TIM1_CH1N,端口C4复用功能TIM1_CH2N                                          |
|      | AFR6 复用功能重映射选项6<br>保留                                                                                                                             |
|      | AFR5 复用功能重映射选项5<br>保留                                                                                                                             |
|      | AFR4 复用功能重映射选项4         0: 端口B4复用功能I2C_SCL,端口B5复用功能I2C_SDA         1: 端口B4复用功能ADC_ETR,端口B5复用功能TIM1_BKIN                                           |
| OPT2 | AFR3 复用功能重映射选项3         0: 端口C3复用功能为TIM1_CH3         1: 端口C3复用功能为TLI                                                                              |
|      | AFR2 复用功能重映射选项2         0: AIN2和AIN3不映射在端口C4和D2上         1: 端口C4复用功能AIN2,端口D2复用功能AIN3                                                             |
|      | AFR1 复用功能重映射选项1 <sup>(1)</sup> 0:端口A3复用功能TIM2_CH3         1:端口A3复用功能SPI_NSS,端口D2复用功能TIM2_CH3                                                      |
|      | AFR0 复用功能重映射选项0 <sup>(1)</sup> 0: 端口C5复用功能SPI_SCK,端口C6复用功能SPI_MOSI,端口C7复用功能SPI_MISO         1: 端口C5复用功能TIM2_CH1,端口C6复用功能TIM1_CH1,端口C7复用功能TIM1_CH2 |

- 1. 参考引脚描述
- 2. 不要在同一个端口使能1个以上的复用功能。禁止同时使能AFR1和AFR0。



# 9 特有ID

STM8S103x 系列产品的特色是提供一个96-位的设备标识符,它提供了一个在任何情况和任何设备的索引码。该96位的标识符用户是无法更改的。

该特有的设备标识符可以被用户按字节读取而且可以按用户自己的方式来排列。

特有的设备标识符是一个非常适合用于:

- 1.被用在用户系列号
- 2.被用作密钥来增加程序内存空间的代码的安全性,在编程内存之前使用和通过软件初始密码和协议来结合该特有ID。

表15 特有ID寄存器 (96 位)

| Address | Content          |             |             |   | Uniq | ue ID bits | S |   |   |
|---------|------------------|-------------|-------------|---|------|------------|---|---|---|
| Address | description      | 7           | 6           | 5 | 4    | 3          | 2 | 1 | 0 |
| 0x4865  | X co-ordinate on |             |             |   | U_   | ID[7:0]    |   |   |   |
| 0x4866  | the wafer        |             | U_ID[15:8]  |   |      |            |   |   |   |
| 0x4867  | Y co-ordinate on |             |             |   | U_II | D[23:16]   |   |   |   |
| 0x4868  | the wafer        |             |             |   | U_II | D[31:24]   |   |   |   |
| 0x4869  | Wafer number     | U_ID[39:32] |             |   |      |            |   |   |   |
| 0x486A  |                  |             |             |   | U_II | D[47:40]   |   |   |   |
| 0x486B  |                  |             | U_ID[55:48] |   |      |            |   |   |   |
| 0x486C  | U_ID[63:56]      |             |             |   |      |            |   |   |   |
| 0x486D  | Lot number       | U_ID[71:64] |             |   |      |            |   |   |   |
| 0x486E  |                  |             | U_ID[79:72] |   |      |            |   |   |   |
| 0x486F  |                  |             |             |   | U_II | D[87:80]   |   |   |   |
| 0x4870  |                  |             |             |   | U_II | D[95:88]   |   |   |   |



电气特性 STM8S103xx数据手册

## 10 电气特性

## 10.1 参数条件

除非特别说明,所有电压的都以Vss为基准。

### 10.1.1 最小和最大值

除非特别说明,在生产线上通过对100%的产品在环境温度T<sub>A</sub>=25°C和T<sub>A</sub>=T<sub>Amax</sub>下执行的测试(T<sub>Amax</sub>与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件下得到保证。

在每个表格下方的注解中说明为通过推算、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在推算的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均 $\pm 3\Sigma$ )得到。

## 10.1.2 典型数值

除非特别说明,典型数据是基于 $T_A$ =25°C和 $V_{DD}$ =5V。这些数据仅用于设计指导而未经测试。 典型的ADC精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的 误差小于等于给出的数值(平均±2 $\Sigma$ )。

## 10.1.3 典型曲线

除非特别说明,典型曲线仅用于设计指导而未经测试。

## 10.1.4 负载电容

测量管脚参数时的负载条件如下图所示。

图7 管脚负载条件



## 10.1.5 引脚输入电压

管脚上的输入电压测量如下图所示。

图8 管脚输入电压





## 10.2 绝对最大额定值

加在器件上的载荷如果超过'绝对最大额定值'列表中给出的值可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

表16 电压特性

| 符号                                 | 描述               | 最小值                  | 最大值                  | 单 位 |
|------------------------------------|------------------|----------------------|----------------------|-----|
| V <sub>DDx</sub> - V <sub>SS</sub> | 供电电压(1)          | -0.3                 | 6.5                  |     |
|                                    | 在真正开漏管脚上的输入电压(2) | V <sub>SS</sub> -0.3 | 6.5                  | V   |
| V <sub>IN</sub>                    | 在其他管脚上的输入电压(2)   | V <sub>SS</sub> -0.3 | V <sub>DD</sub> +0.3 |     |
| $ V_{DDx} - V_{DD} $               | 不同供电管脚之间的电压差     |                      | 50                   | mV  |
| V <sub>SSx</sub> - V <sub>SS</sub> | 不同接地管脚之间的电压差     |                      | 50                   |     |
| V <sub>ESD</sub>                   | ESD静电放电电压        | 参考'绝对最大额             | 定值'列表                |     |

<sup>1.</sup> 所有的电源(V<sub>DD</sub>)和地(V<sub>SS</sub>)管脚必须始终连接到外部对应的供电引脚上。

表17 电流特性

| 符号                                                                                                                                          | 描述                                             | 最大值 <sup>(1)</sup> | 单位 |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------|----|
| $I_{VDD}$                                                                                                                                   | 经过V <sub>DD</sub> 电源线的总电流(输出电流) <sup>(2)</sup> | 100                |    |
| I <sub>VSS</sub>                                                                                                                            | 经过Vss地线的总电流(灌电流) <sup>(2)</sup>                | 80                 |    |
| 1                                                                                                                                           | 任意I/O和控制管脚上的输出灌电流                              | 20                 |    |
| IIO                                                                                                                                         | 任意I/O和控制管脚上的输出拉电流                              | -20                | A  |
|                                                                                                                                             | NRST管脚的注入电流                                    | +/-4               | mA |
| Ivdd         经过Vdd           Ivss         经过Vss地约           Ilio         任意I/O和控任意I/O和控机器T管脚的           Ind         OSCIN管脚           其他管脚的 | OSCIN管脚的注入电流                                   | +/-4               |    |
|                                                                                                                                             | 其他管脚的注入电流 <sup>(5)</sup>                       | +/-4               |    |
| $\sum I_{\text{INJ(PIN)}}^{(3)}$                                                                                                            | 所有I/O和控制管脚上的总注入电流 <sup>(5)</sup>               | +/-20              |    |

- 1. 数据基于特性总结得出,没有在生产时测试。
- 2. 所有的电源(V<sub>DD</sub>)和地(V<sub>SS</sub>)管脚必须始终连接到外部对应的供电引脚上。
- 3.  $I_{\text{INJ(PIN)}}$ 绝对不可以超过它的极限,即保证 $V_{\text{IN}}$ 不超过其最大值。如果不能保证 $V_{\text{IN}}$ 不超过其最大值,也要保证限制 $I_{\text{INJ(PIN)}}$ 不超过其最大值。当 $V_{\text{IN}}$ > $V_{\text{DD}}$ 时,有一个正向注入电流;当 $V_{\text{IN}}$ <<br/>V $_{\text{DD}}$ 时,有一个负向注入电流。对于真正开漏的管脚,没有正向注入电流,它对应 $V_{\text{IN}}$ 的最大值必须得到保证。
- 4. 负注入电流会干扰器件的模拟性能。参看10.3.10节。
- 5. 当几个I/O口同时有注入电流时, $\Sigma I_{INJ(PIN)}$ 的最大值为正向注入电流与负向注入电流的即时绝对值之和。该结果基于在器件4个I/O端口上 $\Sigma I_{INJ(PIN)}$ 最大值的特性。

### 表18 热工特性

| 符号               | 描述     | 值          | 单位 |
|------------------|--------|------------|----|
| T <sub>STG</sub> | 保存温度范围 | -65 至 +150 | ٥  |
| T <sub>J</sub>   | 最大结温   | 150        | C  |



<sup>2.</sup>  $I_{\text{INJ(PIN)}}$ 绝对不可以超过它的极限,即保证 $V_{\text{IN}}$ 不超过其最大值。如果不能保证 $V_{\text{IN}}$ 不超过其最大值,也要保证限制 $I_{\text{INJ(PIN)}}$ 不超过其最大值。当 $V_{\text{IN}}$ > $V_{\text{DD}}$ 时,有一个正向注入电流;当 $V_{\text{IN}}$ < $V_{\text{DD}}$ 时,有一个负向注入电流。对于真正开漏的管脚,没有正向注入电流,它对应 $V_{\text{IN}}$ 的最大值必须得到保证。

# 10.3 工作条件

表19 通用操作条件

| 符号                            | 参数                         | 条件                      | 最小值  | 最大值                | 单 位   |  |
|-------------------------------|----------------------------|-------------------------|------|--------------------|-------|--|
| f <sub>CPU</sub>              | 内部CPU时钟频率                  |                         | 0    | 16                 | MHz   |  |
| $V_{DD}$                      | 标准工作电压                     |                         | 2.95 | 5.5                | V     |  |
| C <sub>EXT</sub>              | VCAP外部电容 <sup>(1)</sup>    | 1MHz时0.05 ≤ ESR ≤ 0.2 Ω | 470  | 1000               | nF    |  |
|                               |                            | LQFP32                  |      | 330                |       |  |
|                               | 功率消耗                       | VFQFPN32                |      | 550                |       |  |
| P <sub>D</sub> <sup>(2)</sup> | T <sub>A</sub> =85℃ 温度标号6  | TSSOP20                 |      | 227                |       |  |
|                               |                            | UFQFPN20                |      | 220                | mW    |  |
| ГD                            |                            | LQFP32                  |      | 83                 | IIIVV |  |
|                               | 功率消耗                       | VFQFPN32                |      | 110                |       |  |
|                               | T <sub>A</sub> =125℃ 温度标号3 | TSSOP20                 |      | 59                 |       |  |
|                               |                            | UFQFPN20                |      | 55                 |       |  |
| <b>-</b>                      | 环境温度(温度标号6)                | 最大功率消耗                  | -40  | 85                 |       |  |
| T <sub>A</sub>                | 环境温度(温度标号3)                | 最大功率消耗                  | -40  | 125                | °C    |  |
| _                             | 4.温度英国                     | 温度标号6                   | -40  | 105                |       |  |
| $T_J$                         | 结温度范围                      | 温度标号3                   | -40  | 130 <sup>(3)</sup> |       |  |

- 1. 由于误差、温度的依赖性、直流偏致和频率变化等因素,需要谨慎地选择电容器。
- **2**. PDmax(TA) 的计算方法是使用公式PDmax = (TJmax TA)/∪JA (见 **11.2** 节热工参数),另外值 TJmax 给定在表 **19** 以及值∪JA 给定在表 **56** 热工参数中。
- 3. TJmax 是测试的极值,高于此温度是产品的性能是不保证的。

图9 不同f<sub>CPUmax</sub>及V<sub>DD</sub>情况下的MCU工作情况



表20 在上电/掉电时的工作条件

| 符号                    | 参数                                  | 条件    | 最小值 | 典型值  | 最大值  | 单位   |  |
|-----------------------|-------------------------------------|-------|-----|------|------|------|--|
| 4                     | V <sub>DD</sub> 上升速率                |       | 2   |      | ∞    |      |  |
| t <sub>VDD</sub>      | V <sub>DD</sub> 下降速率 <sup>(1)</sup> |       | 2   |      | ∞    | μs/V |  |
| t <sub>TEMP</sub>     | 复位释放延迟                              | VDD上升 |     |      | 1.7  | ms   |  |
| V <sub>IT+</sub>      | 上电复位阀值                              |       | 2.6 | 2.7  | 2.85 | V    |  |
| V <sub>IT-</sub>      | 掉电复位阀值                              |       | 2.5 | 2.65 | 2.8  | V    |  |
| V <sub>HYS(BOR)</sub> | 掉电复位滞后                              |       |     | 70   |      | mV   |  |



1. 在 $t_{TEMP}$ 时间延迟后一定会产生复位。当经过 $t_{TEMP}$ 时间延迟后,必须保证 $V_{DD}$ 时钟大于最小工作电压 ( $V_{DD}$ min)。

## 10.3.1 VCAP外部电容

通过在V<sub>CAP</sub>脚上加一个外部电容C<sub>EXT</sub>来保证主电压调节器的稳定。该电容的参数列于表**19**。要注意引脚上的串联电感值要小于**15**nH。

图10 外部电容C<sub>EXT</sub>



### 10.3.2 供电电流特性

电流消耗的测量方法如图7所示。

### 在运行模式下的总电流消耗

MCU处于以下条件中:

- 所有的I/O口工作于输入模式,并被连接到V<sub>DD</sub>或V<sub>SS</sub>(无负载)。
- 除非明确提及,所有外设都停止工作(通过配置外设时钟门控寄存器来停止时钟)。

运行在通常的VDD及TA条件下。

表21 在V<sub>DD</sub>=5.0V, MCU处于运行模式执行代码时的总电流消耗

| 符号                   | 参数           | 条件                                                   |                                   |      | 最大<br>值 <sup>(1)</sup>                        | 单<br>位            |      |      |  |
|----------------------|--------------|------------------------------------------------------|-----------------------------------|------|-----------------------------------------------|-------------------|------|------|--|
|                      |              |                                                      | HSE晶振(16MHz)                      | 2.3  |                                               |                   |      |      |  |
|                      |              | f <sub>CPU</sub> =f <sub>MASTER</sub> =16MHz         | HSE外部时钟(16MHz)                    | 2    | 2.35                                          |                   |      |      |  |
|                      | 运行模式下        |                                                      | HSI RC振荡器(16MHz)                  | 1.7  | 2                                             |                   |      |      |  |
|                      | 的 供 电 电流,代码在 | f <sub>CPU</sub> =f <sub>MASTER</sub> /128=125kHz    | HSE外部时钟(16MHz)                    | 0.86 |                                               |                   |      |      |  |
|                      | RAM中执行       | ICPU-IMASTER/ 120-123KHZ                             | HSI RC振荡器(16MHz)                  | 0.7  | 0.87                                          |                   |      |      |  |
|                      |              | f <sub>CPU</sub> =f <sub>MASTER</sub> /128=15.625kHz | HSI RC振荡器(16MHz/8)                | 0.46 | 0.58                                          |                   |      |      |  |
|                      |              | f <sub>CPU</sub> =f <sub>MASTER</sub> =128kHz        | LSI RC振荡器(128kHz)                 | 0.41 | 0.55                                          | mA                |      |      |  |
| I <sub>DD(RUN)</sub> |              | f <sub>CPU</sub> =f <sub>MASTER</sub> =16MHz         | HSE晶振(16MHz)                      | 4.5  |                                               | IIIA              |      |      |  |
|                      |              |                                                      | HSE外部时钟(16MHz)                    | 4.3  | 4.75                                          |                   |      |      |  |
|                      | 运行模式下        |                                                      | HSI RC振荡器(16MHz)                  | 3.7  | 4.5                                           |                   |      |      |  |
|                      | 的 供 电 电流,代码在 | f <sub>CPU</sub> =f <sub>MASTER</sub> =2MHz          | HSI RC振荡器(16MHz/8) <sup>(2)</sup> | 0.84 | 1.05                                          |                   |      |      |  |
|                      | Flash中执行     | f <sub>CPU</sub> =f <sub>MASTER</sub> /128=125kHz    | HSI RC振荡器(16MHz)                  | 0.72 | 0.9                                           |                   |      |      |  |
|                      |              | f <sub>CPU</sub> =f <sub>MASTER</sub> /128=15.625kHz | HSI RC振荡器(16MHz/8)                | 0.46 | 0.58                                          |                   |      |      |  |
|                      |              |                                                      |                                   |      | f <sub>CPU</sub> =f <sub>MASTER</sub> =128kHz | LSI RC振荡器(128kHz) | 0.42 | 0.57 |  |

- 1. 数据基于特性总结得出,没有在生产上测试。
- 2. 默认时钟配置将外设全部关闭。



表22 在V<sub>DD</sub>=3.3V,MCU处于运行模式执行代码时的总电流消耗

| 符号                   | 参数           | 条件                                                   |                                   |                                               | 最大<br>值 <sup>(1)</sup> | 单<br>位 |      |  |
|----------------------|--------------|------------------------------------------------------|-----------------------------------|-----------------------------------------------|------------------------|--------|------|--|
|                      |              |                                                      | HSE晶振(16MHz)                      | 1.8                                           |                        |        |      |  |
|                      |              | f <sub>CPU</sub> =f <sub>MASTER</sub> =16MHz         | HSE外部时钟(16MHz)                    | 2                                             | 2.3                    |        |      |  |
|                      | 运行模式下        |                                                      | HSI RC振荡器(16MHz)                  | 1.5                                           | 2                      |        |      |  |
|                      | 的 供 电 电流,代码在 | f <sub>CPU</sub> =f <sub>MASTER</sub> /128=125kHz    | HSE外部时钟(16MHz)                    | 0.81                                          |                        |        |      |  |
|                      | RAM中执行       | ICPU IMASTER/ IZO IZORI IZ                           | HSI RC振荡器(16MHz)                  | 0.7                                           | 0.87                   |        |      |  |
|                      |              | f <sub>CPU</sub> =f <sub>MASTER</sub> /128=15.625kHz | HSI RC振荡器(16MHz/8)                | 0.46                                          | 0.58                   |        |      |  |
| 1                    |              | f <sub>CPU</sub> =f <sub>MASTER</sub> =128kHz        | LSI RC振荡器(128kHz)                 | 0.41                                          | 0.55                   | mA     |      |  |
| I <sub>DD(RUN)</sub> |              |                                                      | HSE晶振(16MHz)                      | 4                                             |                        | IIIA   |      |  |
|                      |              |                                                      | HSE外部时钟(16MHz)                    | 3.9                                           | 4.7                    |        |      |  |
|                      | 运行模式下        |                                                      | HSI RC振荡器(16MHz)                  | 3.7                                           | 4.5                    |        |      |  |
|                      | 的 供 电 电流,代码在 | f <sub>CPU</sub> =f <sub>MASTER</sub> =2MHz          | HSI RC振荡器(16MHz/8) <sup>(2)</sup> | 0.84                                          | 1.05                   |        |      |  |
|                      | Flash中执行     | f <sub>CPU</sub> =f <sub>MASTER</sub> /128=125kHz    | HSI RC振荡器(16MHz)                  | 0.72                                          | 0.9                    |        |      |  |
|                      |              | f <sub>CPU</sub> =f <sub>MASTER</sub> /128=15.625kHz | HSI RC振荡器(16MHz/8)                | 0.46                                          | 0.58                   |        |      |  |
|                      |              |                                                      |                                   | f <sub>CPU</sub> =f <sub>MASTER</sub> =128kHz | LSI RC振荡器(128kHz)      | 0.42   | 0.57 |  |

- 1. 数据基于特性总结得出,没有在生产上测试。
- 2. 默认时钟配置将外设全部关闭。

### 在等待模式下的电流消耗

表23 在V<sub>DD</sub>=5.0V,MCU处于等待模式时的总电流消耗

| 符号                   | 参数    | 条件                                                   |                                   |      | 最大<br>值 <sup>(1)</sup> | 单<br>位 |
|----------------------|-------|------------------------------------------------------|-----------------------------------|------|------------------------|--------|
|                      |       |                                                      | HSE晶振(16MHz)                      | 1.6  |                        |        |
|                      |       |                                                      | HSE外部时钟(16MHz)                    | 1.1  | 1.3                    | mA     |
|                      | 等待模式下 |                                                      | HSI RC振荡器(16MHz)                  | 0.89 | 1.1                    |        |
| I <sub>DD(WFI)</sub> | 的供电电流 |                                                      | HSI RC振荡器(16MHz)                  | 0.7  | 0.88                   | IIIA   |
|                      |       | f <sub>CPU</sub> =f <sub>MASTER</sub> /128=15.625kHz | HSI RC振荡器(16MHz/8) <sup>(2)</sup> | 0.45 | 0.57                   |        |
|                      |       | f <sub>CPU</sub> =f <sub>MASTER</sub> =128kHz        | LSI RC振荡器(128kHz)                 | 0.4  | 0.54                   |        |

- 1. 数据基于特性总结得出,没有在生产上测试。
- 2. 默认时钟配置将外设全部关闭。

表24 在V<sub>DD</sub>=3.3V,MCU处于等待模式时的总电流消耗

| 符号              | 参数    | 条件                                                    |                                   |      | 最大<br>值 <sup>(1)</sup> | 单<br>位 |
|-----------------|-------|-------------------------------------------------------|-----------------------------------|------|------------------------|--------|
|                 |       |                                                       | HSE晶振(16MHz)                      | 1.1  |                        |        |
|                 |       | f <sub>CPU</sub> =f <sub>MASTER</sub> =16MHz<br>等待模式下 | HSE外部时钟(16MHz)                    | 1.1  | 1.3                    | ^      |
| ١.              | 等待模式下 |                                                       | HSI RC振荡器(16MHz)                  | 0.89 | 1.1                    |        |
| IDD(WFI)   的供电电 | 的供电电流 | f <sub>CPU</sub> =f <sub>MASTER</sub> /128=125kHz     | HSI RC振荡器(16MHz)                  | 0.7  | 0.88                   | mA     |
|                 |       | f <sub>CPU</sub> =f <sub>MASTER</sub> /128=15.625kHz  | HSI RC振荡器(16MHz/8) <sup>(2)</sup> | 0.45 | 0.57                   |        |
|                 |       | f <sub>CPU</sub> =f <sub>MASTER</sub> =128kHz         | LSI RC振荡器(128kHz)                 | 0.4  | 0.54                   |        |

- 1. 数据基于特性总结得出,没有在生产上测试。
- 2. 默认时钟配置将外设全部关闭。



#### 在活跃停机模式下的电流消耗

表25 在V<sub>DD</sub>=5.0V,MCU处于活跃停机模式时的总电流消耗

|                     | 参数       |                              | 条件                  |                       |      | 最大值                | 最大值                        |    |
|---------------------|----------|------------------------------|---------------------|-----------------------|------|--------------------|----------------------------|----|
| 符号                  |          | 主调压器<br>(MVR) <sup>(2)</sup> | 闪存模式 <sup>(3)</sup> | 时钟源                   | 典型值  | 85℃ <sup>(1)</sup> | <b>125℃</b> <sup>(1)</sup> | 単位 |
|                     | 活跃停机     | 的                            | 工作模式                | HSE晶振(16MHz)          | 1030 |                    |                            |    |
|                     |          |                              |                     | LSI RC振荡器<br>(128kHz) | 200  | 260                | 300                        |    |
| 1                   |          |                              | 断电模式                | HSE晶振(16MHz)          | 970  |                    |                            |    |
| I <sub>DD(AH)</sub> | 模式下的供电电流 |                              |                     | LSI RC振荡器<br>(128kHz) | 150  | 200                | 230                        | μΑ |
|                     |          | 关闭                           | 工作模式                | LSI RC振荡器             | 66   | 85                 | 110                        |    |
|                     |          | 大网                           | 断电模式                | (128kHz)              | 10   | 20                 | 40                         |    |

- 1. 数据基于特性总结得出,没有在生产上测试。
- 2. 配置CLK\_ICKR寄存器中的REGAH位。
- 3. 配置FLASH\_CR1寄存器中的AHALT位。

表26 在V<sub>DD</sub>=3.3V, MCU处于活跃停机模式时的总电流消耗

|     |              |                              | 条件                    |                       |     | 最大值                | 最大值                 |    |
|-----|--------------|------------------------------|-----------------------|-----------------------|-----|--------------------|---------------------|----|
| 符号  | 参数           | 主调压器<br>(MVR) <sup>(2)</sup> | 闪存模式 <sup>(3)</sup>   | 时钟源                   | 典型值 | 85℃ <sup>(1)</sup> | 125℃ <sup>(1)</sup> | 单位 |
|     |              | TH                           | 工作模式                  | HSE晶振(16MHz)          | 550 |                    |                     |    |
|     |              |                              |                       | LSI RC振荡器<br>(128kHz) | 200 | 260                | 290                 |    |
| 1   | 活跃停机<br>模式下的 | 开启                           |                       | HSE晶振(16MHz)          | 970 |                    |                     | μA |
| ` ' | 供电电流         |                              | LSI RC振荡器<br>(128kHz) | 150                   | 200 | 230                | μΑ                  |    |
|     |              | 关闭                           | 工作模式                  | LSI RC振荡器<br>(128kHz) | 66  | 80                 | 105                 |    |
|     |              | 大网                           | 断电模式                  |                       | 10  | 18                 | 35                  |    |

- 1. 数据基于特性总结得出,没有在生产上测试。
- 2. 配置CLK\_ICKR寄存器中的REGAH位。
- 3. 配置FLASH\_CR1寄存器中的AHALT位。

#### 在停机模式下的电流消耗

表27 在V<sub>DD</sub>=5.0V, MCU处于停机模式时的总电流消耗

| 符号                 | 参数    | 条件                  | 典型值 | 最大值<br><b>85</b> ℃ <sup>(1)</sup> | 最大值<br><b>125</b> ℃ <sup>(1)</sup> | 单位 |
|--------------------|-------|---------------------|-----|-----------------------------------|------------------------------------|----|
|                    | 停机模式下 | 闪存处于工作模式,唤醒后使用HSI时钟 | 63  | 75                                | 105                                |    |
| I <sub>DD(H)</sub> | 的供电电流 | 闪存处于断电模式,唤醒后使用HSI时钟 | 6.0 | 15                                | 35                                 | μA |

<sup>1.</sup> 数据基于特性总结得出,没有在生产上测试。

#### 表28 在V<sub>DD</sub>=3.3V,MCU处于停机模式时的总电流消耗

| 符号     | 参数    | 条件                  | 典型值 | 最大值<br><b>85</b> ℃ <sup>(1)</sup> | 最大值<br><b>125</b> ℃ <sup>(1)</sup> | 单位 |
|--------|-------|---------------------|-----|-----------------------------------|------------------------------------|----|
|        | 停机模式下 | 闪存处于工作模式,唤醒后使用HSI时钟 | 63  | 75                                | 100                                |    |
| IDD(H) | 的供电电流 | 闪存处于断电模式,唤醒后使用HSI时钟 | 4.5 | 12                                | 30                                 | μA |

1. 数据基于特性总结得出,没有在生产上测试。



#### 低功耗模式下的唤醒时间

表29 唤醒时间

| 符号                   | 参数                                 |                                         | 条件                                         |              |                   | 最大值 <sup>(1)</sup> | 单位 |
|----------------------|------------------------------------|-----------------------------------------|--------------------------------------------|--------------|-------------------|--------------------|----|
| tanango              | 从等待模式至运行                           |                                         |                                            |              |                   | 见注 <sup>(2)</sup>  |    |
| t <sub>WU(WFI)</sub> | 模式的唤醒时间(3)                         | f <sub>CPU</sub> =f <sub>MASTER</sub> = | <sub>CPU</sub> =f <sub>MASTER</sub> =16MHz |              |                   |                    |    |
|                      |                                    | MVR 调 压                                 | 闪存在工作模式 <sup>(5)</sup>                     | 唤醒后使<br>用HSI | 1 <sup>(6)</sup>  | 2 <sup>(6)</sup>   |    |
| <b></b>              | 从活跃停机模式至<br>运行模式的唤醒时               | 器开启 <sup>(4)</sup>                      | 闪存在断电模式(5)                                 |              | 3 <sup>(6)</sup>  |                    |    |
| twu(AH)              | 运行侯式的唤胜的<br>间 <sup>(3)</sup>       | MVR 调 压                                 | 闪存在工作模式 <sup>(5)</sup>                     |              | 48 <sup>(6)</sup> |                    | μs |
|                      |                                    | 器关闭 <sup>(4)</sup>                      | 闪存在断电模式(5)                                 |              | 50 <sup>(6)</sup> |                    |    |
| +                    | 从停机模式至运行<br>模式的唤醒时间 <sup>(3)</sup> | 闪存在工作模式 <sup>(5)</sup>                  |                                            | 52           |                   |                    |    |
| t <sub>WU(H)</sub>   |                                    | 闪存在断电模式 <sup>(5)</sup>                  |                                            |              | 54                |                    |    |

- 1. 数据由设计保证,没有在生产上测试。
- 2.  $t_{WU(WFI)} = 2 \times 1/f_{master} + 6 \times 1/f_{CPU}$ .
- 3. 测量从中断事件发生到取中断向量。
- 4. 配置CLK ICKR寄存器中的REGAH位。
- 5. 配置FLASH CR1寄存器中的AHALT位。
- 6. 根据同步状态需要增加1个LSI周期。

#### 在强迫复位状态下的总电流消耗及时间

表30 在强迫复位状态下的总电流消耗及时间

| 符号                   | 参数            | 条件                    | 典型值 | 最大值 <sup>(1)</sup> | 单位 |
|----------------------|---------------|-----------------------|-----|--------------------|----|
|                      | 复位状态下的供电电流(2) | V <sub>DD</sub> =5.0V | 400 |                    | μA |
| IDD(R)               |               | V <sub>DD</sub> =3.3V | 300 |                    |    |
| t <sub>RESETBL</sub> | 释放复位管脚至读取复位向量 |                       |     | 150                | μs |

- 1. 数据由设计保证,没有在生产上测试。
- 2. 所有I/O接到Vss时得到。

#### 片上外设的电流消耗

运行在通常的VDD及TA条件下。

使用HSI RC振荡器,f<sub>CPU</sub>=f<sub>MASTER</sub>=16 MHz,V<sub>DD</sub>=5V。

表31 外设电流功耗

| 符号                     | 参数                                  | 典型值  | 单位 |
|------------------------|-------------------------------------|------|----|
| I <sub>DD(TIM1)</sub>  | 定时器 <b>1</b> 供电电流 <sup>(1)</sup>    | 210  |    |
| I <sub>DD(TIM2)</sub>  | 定时器 <b>2</b> 供电电流 <sup>(1)</sup>    | 130  |    |
| I <sub>DD(TIM4)</sub>  | 定时器 <b>4</b> 供电电流 <sup>(1)</sup>    | 50   |    |
| I <sub>DD(UART1)</sub> | UART1供电电流 <sup>(2)</sup>            | 120  | μΑ |
| I <sub>DD(SPI)</sub>   | SPI供电电流 <sup>(2)</sup>              | 45   |    |
| I <sub>DD(I2C)</sub>   | I <sup>2</sup> C供电电流 <sup>(2)</sup> | 65   |    |
| I <sub>DD(ADC1)</sub>  | ADC1进行转换时的供电电流 <sup>(3)</sup>       | 1000 |    |

- 1. 数据根据复位配置和定时器计数器运行在16MHz时的I<sub>DD</sub>差值测量得到。没有IC/OC操作(没有I/O端口操作)。 生产时不做测试。
- 2. 数据根据片上外设处于复位配置并且没有开启时钟,和开启片上外设时钟但未处于复位配置时的 $I_{DD}$ 差值测量得到。没有I/O端口操作。生产时不做测试。
- 3. 数据根据复位配置与连续的A/D转换时的I<sub>DD</sub>差值测量得到。生产时不做测试。



#### 电流消耗曲线

图11至图16为当代码在RAM中运行时的典型电流消耗。

图11 使用HSE外部时钟f<sub>CPU</sub>=16MHz时典型的I<sub>DD(RUN)</sub>对比V<sub>DD</sub>



图12 使用HSE外部时钟,V<sub>DD</sub>=5V时典型的I<sub>DD(RUN)</sub>对比 f<sub>CPU</sub>



图13 使用HSI RC振荡器,f<sub>CPU</sub>=16MHz时典型的I<sub>DD(RUN)</sub>对比V<sub>DD</sub>





图14 使用HSE外部时钟f<sub>CPU</sub>=16MHz时,典型的I<sub>DD(WFI)</sub>对比V<sub>DD</sub>



图15 使用HSE外部时钟, V<sub>DD</sub>=5V时, 典型的I<sub>DD(WFI)</sub>对比f<sub>CPU</sub>



图16 使用HSI RC振荡器,f<sub>CPU</sub>=16MHz时典型的I<sub>DD(WFI)</sub>对比V<sub>DD</sub>



# 10.3.3 外部时钟源和时间特性

#### HSE用户外部时钟

运行在通常的VDD及TA条件下。



表32 HSE用户外部时钟特性

| 符号                               | 参数             | 条件                         | 最小值                   | 最大值                    | 单位  |
|----------------------------------|----------------|----------------------------|-----------------------|------------------------|-----|
| f <sub>HSE_ext</sub>             | 用户外部时钟源频率      |                            | 0                     | 16                     | MHz |
| V <sub>HSEH</sub> <sup>(1)</sup> | OSCIN输入管脚高电平电压 |                            | 0.7 x V <sub>DD</sub> | V <sub>DD</sub> + 0.3V | \/  |
| V <sub>HSEL</sub> <sup>(1)</sup> | OSCIN输入管脚低电平电压 |                            | V <sub>SS</sub>       | $0.3 \times V_{DD}$    | V   |
| I <sub>LEAK_HSE</sub>            | OSCIN输入管脚漏电流   | $V_{SS} < V_{IN} < V_{DD}$ | -1                    | +1                     | μA  |

<sup>1.</sup> 数据基于特性总结得出,没有在生产时测试。

图17 HSE外部时钟源



#### HSE石英/陶瓷晶体振荡器

HSE可由1~16MHz石英/陶瓷晶体提供时钟。本节的所有信息都是基于使用典型外部器件得到的特性结果。在实际应用中,晶体和负载电容必须尽可能近地放置于振荡器管脚旁,以减少输出畸变及启动时间。请参考晶体的用户手册以了解更多信息(频率、封装、精度...)。

表33 HSE振荡器特性

| 符号                       | 参数            | 条件                              | 最小值 | 典型值 | 最大值                             | 单位   |
|--------------------------|---------------|---------------------------------|-----|-----|---------------------------------|------|
| f <sub>HSE</sub>         | 外部高速振荡器频率     |                                 | 1   |     | 16                              | MHz  |
| $R_F$                    | 反馈电阻          |                                 |     | 220 |                                 | kΩ   |
| C <sup>(1)</sup>         | 建议的加载电容(2)    |                                 |     |     | 20                              | pF   |
| I                        | HSE振荡器功率消耗    | C=20pF, f <sub>OSC</sub> =16MHz |     |     | 6(启动)<br>1.6(稳定) <sup>(3)</sup> | mA   |
| I <sub>DD(HSE)</sub>     | TIOL 旅物 船 切 平 | C=10pF, f <sub>OSC</sub> =16MHz |     |     | 6(启动)<br>1.2(稳定) <sup>(3)</sup> | IIIA |
| g <sub>m</sub>           | 振荡器跨导系数       |                                 | 5   |     |                                 | mA/V |
| t <sub>SU(HSE)</sub> (4) | 启动时间          | V <sub>DD</sub> 是稳定的            |     | 1   |                                 | ms   |

- 1. C大约为晶体Cload的2倍。
- 2. 可根据供电电流,使用Rm较小的高质量晶体来优化振荡器的选择。更多信息请参考晶体的用户手册。
- 3. 数据基于特性总结得出,没有在生产中测试。
- **4.**  $t_{SU(HSE)}$ 是晶体的起振时间,其值为从软件使能HSE开始,直到16MHz稳定振荡的时间。该值通过测量一个标准晶体得到;对于不同的晶体制造商,该值可能变化较大。



#### 图18 HSE振荡器电路框图



### HSE振荡器关键参数gm计算公式

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$ 

Rm: 理想电阻(参看晶体技术手册) Lm: 理想电感(参看晶体技术手册) Cm: 理想电容(参看晶体技术手册) Co: 旁路电容(参看晶体技术手册)

CL1=CL2=C: 外部接地电容

 $g_m >> g_{mcrit}$ 

### 10.3.4 内部时钟源和时间特性

运行在通常的VDD及TA条件下。

### 高速内部RC振荡器(HSI)

表34 HSI振荡器特性

| 符号                   | 参数                  | 条件                                                                             | 最小值                    | 典型值 | 最大值                 | 单位  |
|----------------------|---------------------|--------------------------------------------------------------------------------|------------------------|-----|---------------------|-----|
| f <sub>HSI</sub>     | 频率                  |                                                                                |                        | 16  |                     | MHz |
|                      | HSI振荡器的精度           | 用户使用CLK_HSITRIM寄存器<br>在给定的V <sub>DD</sub> 和T <sub>A</sub> 条件下调整 <sup>(1)</sup> |                        |     | 1 <sup>(4)</sup>    | %   |
| 400                  |                     | $V_{DD}$ =5 $V$ , $T_{A}$ =25 $^{\circ}$ C $^{(2)}$                            | -2.5 <sup>(3)</sup>    |     | 1.3 <sup>(3)</sup>  |     |
| ACC <sub>HSI</sub>   | HSI振荡器的精度           | $V_{DD}$ =5 $V$ , 25°C $\leq T_A \leq 85$ °C                                   | -2.5 <sup>(3)</sup>    |     | 2 <sup>(3)</sup>    | %   |
|                      | (工厂校准后)             | 2.95V ≤ V <sub>DD</sub> ≤ $5.5$ V $-40$ °C ≤ T <sub>A</sub> ≤ $125$ °C         | -4.5 <sup>(2)(3)</sup> |     | 3 <sup>(2)(3)</sup> | 70  |
| t <sub>SU(HSI)</sub> | HSI振荡器包括校准的<br>唤醒时间 |                                                                                | 5                      |     | 1 <sup>(4)</sup>    | μs  |
| I <sub>DD(HSI)</sub> | HSI振荡器电流消耗          |                                                                                |                        | 170 | 250 <sup>(2)</sup>  | μA  |

- 1. 参考应用笔记。
- 2. 数据基于特性总结得出,没有在生产上测试。
- 3. 需要进一步的特性评估,以得到更好的结果。
- 4. 由设计保证,没有在生产上测试。



图19 V<sub>DD</sub>=5V时,在5种温度下典型的HIS精度



图20 在4种温度下典型的HSI频率与V<sub>DD</sub>对比



### 低速内部RC振荡器(LSI)

运行在通常的VDD及TA条件下。

表35 LSI 振荡器特性

| 符号                   | 参数          | 条件 | 最小值 | 典型值 | 最大值 | 单位  |
|----------------------|-------------|----|-----|-----|-----|-----|
| f <sub>LSI</sub>     | 频率          |    | 110 | 128 | 150 | kHz |
| t <sub>SU(LSI)</sub> | LSI振荡器的唤醒时间 |    |     |     | 7   | μs  |
| I <sub>DD(LSI)</sub> | LSI振荡器电流消耗  |    |     | 5   |     | μA  |

图21 在4种温度下典型的LSI频率与V<sub>DD</sub>对比





### 10.3.5 存储器特性

#### RAM和硬件寄存器

表36 RAM和硬件寄存器

| 符号       | 参数                  | 条件        | 最小值                | 典型值 | 最大值 | 单位 |
|----------|---------------------|-----------|--------------------|-----|-----|----|
| $V_{RM}$ | 数据保持 <sup>(1)</sup> | 停机(或复位)模式 | 2.8 <sup>(2)</sup> |     |     | V  |

<sup>1.</sup> 不丢失在RAM和硬件寄存器中保存的数据的最小供电电压(在停机模式或复位状态)。由设计保证,没有在 生产上测试。

### FLASH程序存储器/数据EEPROM存储器

表37 FLASH程序存储器/数据EEPROM存储器

| 符号                 | 参数                                                | 条件                       | 最小值  | 典型值 | 最大值  | 单位  |
|--------------------|---------------------------------------------------|--------------------------|------|-----|------|-----|
| $V_{\text{DD}}$    | 工作电压(所有模式下,执行/写/擦除)                               | f <sub>CPU</sub> ≤ 16MHz | 2.95 |     | 5.5  | V   |
| t <sub>prog</sub>  | 对于字节/字/块(1字节/4字节/64字节)标准编程时间(包括擦除)                |                          |      | 6   | 6.6  |     |
|                    | 对于1块(64字节)的快速编程时间                                 |                          |      | 3   | 3.33 | ms  |
| t <sub>erase</sub> | 擦除一块的时间                                           |                          |      | 3   | 3.33 |     |
| N <sub>RW</sub>    | 擦除/写入周期 <sup>(2)</sup> (程序存储器)                    | T <sub>A</sub> = +85℃    | 10k  |     |      | 次数  |
| INRW               | 擦除/写入周期 <sup>(2)</sup> (数据存储器)                    | T <sub>A</sub> = +125℃   | 300k | 1M  |      | 1人奴 |
| <b>t</b>           | 在T <sub>A</sub> =+55℃时经过10k次擦除/写入后,数据保持(程序和数据存储器) | T <sub>RET</sub> = 55℃   | 20   |     |      | 年   |
| t <sub>RET</sub>   | 在T <sub>A</sub> =+125℃时经过300k次擦除/写入后,数据保持(数据存储器)  | T <sub>RET</sub> = 85℃   | 1    |     |      | +   |
| I <sub>DD</sub>    | 供电电流(Flash编程或擦除1至128字节)                           |                          |      | 2   |      | mA  |

<sup>1.</sup> 数据基于特性总结得出,没有在生产上测试。

## 10.3.6 I/O端口管脚特性

#### 通用特性

除非特别说明,数据均对应于MCU运行在通常的V<sub>DD</sub>及T<sub>A</sub>条件下。所有没有使用的I/O口必须连接到固定的电平:例如将I/O口配置成输出模式,或使用上拉或下拉电阻。

表38 I/O静态特性

| 符号                              | 参数                   | 条件                                | 最小值                   | 典型值 | 最大值                   | 单位 |
|---------------------------------|----------------------|-----------------------------------|-----------------------|-----|-----------------------|----|
| V <sub>IL</sub>                 | 输入低电平电压              |                                   | -0.3V                 |     | 0.3 x V <sub>DD</sub> | V  |
| V <sub>IH</sub>                 | 输入高电平电压              | V <sub>DD</sub> = 5V              | 0.7 x V <sub>DD</sub> |     | $V_{DD}$ + 0.3 $V$    | V  |
| V <sub>hys</sub>                | 滞回电压 <sup>(1)</sup>  |                                   |                       | 700 |                       | mV |
| R <sub>pu</sub>                 | 上拉电阻                 | $V_{DD} = 5V$ , $V_{IN} = V_{SS}$ | 30                    | 45  | 60                    | kΩ |
|                                 |                      | 快速I/O,负载=50pF                     |                       |     | 20                    |    |
| t <sub>R</sub> , t <sub>F</sub> | 上升和下降时间<br>(10%~90%) | 标准和大吸收I/O,<br>负载=50pF             |                       |     | 125                   | ns |
| I <sub>lkg</sub>                | 数据输入漏电流              | $V_{SS} \le V_{IN} \le V_{DD}$    |                       |     | ±1                    |    |
| I <sub>Ikg ana</sub>            | 模拟输入漏电流              | $V_{SS} \le V_{IN} \le V_{DD}$    |                       |     | ±250                  | μΑ |
| I <sub>lkg(inj)</sub>           | 相邻管脚的漏电流             | 注入电流±4mA                          |                       |     | ±1                    |    |

<sup>1.</sup> 施密特触发器的滞回电压。数据基于特性总结得出,没有在生产中测试。



<sup>2.</sup> 关于V<sub>IT-max</sub>参数,见表20。

<sup>2.</sup> 存储器的组织结构是基于4字节的;因此,即使写/擦除操作只针对1个字节,实际的操作也是基于4个字节。

图22 在4种温度下典型的V<sub>IL</sub>和V<sub>IH</sub>与V<sub>DD</sub>的对比



图23 在4种温度下典型的上拉电阻与V<sub>DD</sub>的对比



图24 在4种温度下典型的上拉电流与V<sub>DD</sub>的对比



表39 输出驱动电流(标准端口)

| 符号              | 参数             | 条件                                             | 最小值                | 最大值              | 单位  |
|-----------------|----------------|------------------------------------------------|--------------------|------------------|-----|
| \/              | 输出低电平,4个管脚吸收电流 | $I_{IO} = 4mA$ , $V_{DD} = 3.3V$               |                    | 1 <sup>(1)</sup> |     |
| V <sub>OL</sub> | 输出低电平,8个管脚吸收电流 | $I_{IO} = 10 \text{mA}, \ V_{DD} = 5 \text{V}$ |                    | 2                | \ \ |
| V               | 输出高电平,4个管脚输出电流 | $I_{IO} = 4mA$ , $V_{DD} = 3.3V$               | 2.1 <sup>(1)</sup> |                  | V   |
| V <sub>OH</sub> | 输出高电平,8个管脚输出电流 | $I_{IO} = 10$ mA, $V_{DD} = 5$ V               | 2.8                |                  |     |

<sup>1.</sup> 数据基于特性总结得出,没有在生产中测试。



表40 输出驱动电流(真正的开漏端口)

| 符号              | 参数             | 条件                                               | 最小值 | 最大值                | 单位 |
|-----------------|----------------|--------------------------------------------------|-----|--------------------|----|
|                 |                | $I_{IO} = 10 \text{mA}, \ V_{DD} = 3.3 \text{V}$ |     | 1.5 <sup>(1)</sup> |    |
| V <sub>OL</sub> | 输出低电平,2个管脚吸收电流 | $I_{IO} = 10$ mA, $V_{DD} = 5$ V                 |     | 1                  | V  |
|                 |                | $I_{IO} = 20 \text{mA}, \ V_{DD} = 5 \text{V}$   |     | 2 <sup>(1)</sup>   |    |

<sup>1.</sup> 数据基于特性总结得出,没有在生产中测试。

表41 输出驱动电流(吸收大电流端口)

| 符号              | 参数             | 条件                                               | 最小值                | 最大值                | 单位                                    |
|-----------------|----------------|--------------------------------------------------|--------------------|--------------------|---------------------------------------|
|                 | 输出低电平,4个管脚吸收电流 | $I_{IO} = 10 \text{mA}, \ V_{DD} = 3.3 \text{V}$ |                    | 1 <sup>(1)</sup>   |                                       |
| $V_{OL}$        | 输出低电平,8个管脚吸收电流 | $I_{IO} = 10 \text{mA}, \ V_{DD} = 5 \text{V}$   |                    | 8.0                |                                       |
|                 | 输出低电平,4个管脚吸收电流 | $I_{IO} = 20 \text{mA}, \ V_{DD} = 5 \text{V}$   |                    | 1.5 <sup>(1)</sup> | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
|                 | 输出高电平,4个管脚输出电流 | $I_{IO} = 10 \text{mA}, \ V_{DD} = 3.3 \text{V}$ | 2.1 <sup>(1)</sup> |                    | V                                     |
| V <sub>OH</sub> | 输出高电平,8个管脚输出电流 | $I_{IO} = 10 \text{mA}, \ V_{DD} = 5 \text{V}$   | 4.0                |                    |                                       |
|                 | 输出高电平,4个管脚输出电流 | $I_{IO} = 20$ mA, $V_{DD} = 5$ V                 | 3.3 <sup>(1)</sup> | 1                  |                                       |

1. 数据基于特性总结得出,没有在生产中测试。

图25 V<sub>DD</sub>=3.3V时,典型的V<sub>OL</sub>曲线(标准端口)



图26 V<sub>DD</sub> =5.0V时,典型的V<sub>OL</sub>曲线(标准端口)





图27 V<sub>DD</sub> =3.3V时,典型的V<sub>OL</sub>曲线(真正开漏端口)



图28 V<sub>DD</sub> =5.0V时,典型的V<sub>OL</sub>曲线(真正开漏端口)



图29 V<sub>DD</sub> =3.3V时,典型的V<sub>OL</sub>曲线(吸收大电流端口)



图30 V<sub>DD</sub> =5.0V时,典型的V<sub>OL</sub>曲线(吸收大电流端口)





图31 V<sub>DD</sub> =3.3V时, 典型的V<sub>DD</sub>-V<sub>OH</sub>曲线(标准端口)



图32 V<sub>DD</sub> =5.0V时, 典型的V<sub>DD</sub>-V<sub>OH</sub>曲线(标准端口)



图33 V<sub>DD</sub> =3.3V时,典型的V<sub>DD</sub>-V<sub>OH</sub>曲线(吸收大电流端口)



图34 V<sub>DD</sub> =5.0V时,典型的V<sub>DD</sub>-V<sub>OH</sub>曲线(吸收大电流端口)





## 10.3.7 复位管脚特性

除非特别说明,数据均对应于MCU运行在通常的VDD及TA条件下。

表42 NRST管脚特性

| 符号                      | 参数                         | 条件                   | 最小值                 | 典型值 | 最大值                   | 单位 |
|-------------------------|----------------------------|----------------------|---------------------|-----|-----------------------|----|
| V <sub>IL(NRST)</sub>   | NRST输入低电平 <sup>(1)</sup>   |                      | -0.3V               |     | 0.3 x V <sub>DD</sub> |    |
| V <sub>IH(NRST)</sub>   | NRST输入高电平 <sup>(1)</sup>   |                      | $0.7 \times V_{DD}$ |     | V <sub>DD</sub> + 0.3 | V  |
| V <sub>OL(NRST)</sub>   | NRST输出低电平 <sup>(1)</sup>   | I <sub>OL</sub> =2mA |                     |     | 0.5                   |    |
| R <sub>PU(NRST)</sub>   | NRST上拉电阻 <sup>(2)</sup>    |                      | 30                  | 40  | 60                    | kΩ |
| t <sub>IFP(NRST)</sub>  | NRST输入滤波脉冲 <sup>(3)</sup>  |                      |                     |     | 75                    | ns |
| t <sub>INFP(NRST)</sub> | NRST输入无滤波脉冲 <sup>(3)</sup> |                      | 500                 |     |                       | ns |
| t <sub>OP(NRST)</sub>   | NRST输出脉冲 <sup>(3)</sup>    |                      | 20                  |     |                       | μs |

- 1. 数据基于特性总结得出,没有在生产中测试。
- 2. R<sub>PU</sub>上拉等效阻抗是基于一个有阻抗的晶体管。
- 3. 数据由设计保证,没有在生产中测试。

图35 在4种温度条件下NRST的典型VIL和VIH相对于VDD的变化



图36 在4种温度条件下NRST的典型上拉阻抗相对于VDD的变化





图37 在4种温度条件下NRST的典型上拉电流相对于VDD的变化



下图中的复位网络保护芯片不被意外复位。用户必须确保NRST引脚上的电平能够低于表38中 V<sub>L</sub>极限值。否则芯片将不能够被复位。

图38 推荐的复位引脚保护





# 10.3.8 串行外设接口(SPI)

除非特别指定,下表中的参数是在通常的环境温度、**f**<sub>MASTER</sub>频率和**V**<sub>DD</sub>供电电压条件下测量得到的。**t**<sub>MASTER</sub>= 1/**f**<sub>MASTER</sub>

更多关于输入/输出复用功能特性(NSS, SCK, MOSI, MISO)的细节请参考I/O端口特性。

表43 SPI特性

| 符号                                                    | 参数           | 条件 <sup>(1)</sup> | 最小值                     | 最大值                     | 单位    |
|-------------------------------------------------------|--------------|-------------------|-------------------------|-------------------------|-------|
| f <sub>SCK</sub>                                      | SPI时钟频率      | 主模式               | 0                       | 8                       | MHz   |
| 1/t <sub>c(SCK)</sub>                                 | OF IPT 建炒火华  | 从模式               | 0                       | 7 <sup>(2)</sup>        | IVITZ |
| $t_{r(SCK)}$ $t_{f(SCK)}$                             | SPI时钟上升和下降时间 | 电容负载: C = 30pF    |                         | 25                      |       |
| t <sub>SU(NSS)</sub> <sup>(3)</sup>                   | NSS建立时间      | 从模式               | 4 x t <sub>MASTER</sub> |                         |       |
| t <sub>h(NSS)</sub> <sup>(3)</sup>                    | NSS保持时间      | 从模式               | 70                      |                         |       |
| $t_{\text{w(SCKH)}}^{(3)}$ $t_{\text{w(SCKL)}}^{(3)}$ | SCK高和低的时间    | 主模式               | tsck/2 - 15             | tsck/2 + 15             |       |
| t <sub>su(MI)</sub> <sup>(3)</sup>                    | 数据输入建立时间     | 主模式               | 5                       |                         |       |
| t <sub>su(SI)</sub> (3)                               | 双油棚八炷业时间     | 从模式               | 5                       |                         |       |
| t <sub>h(MI)</sub> (3)                                | 数据输入保持时间     | 主模式               | 7                       |                         | ns    |
| t <sub>h(SI)</sub> (3)                                | 数功付制/\T木f寸时间 | 从模式               | 10                      |                         |       |
| t <sub>a(SO)</sub> (3)(4)                             | 数据输出访问时间     | 从模式               |                         | 3 x t <sub>MASTER</sub> |       |
| t <sub>dis(SO)</sub> (3)(5)                           | 数据输出禁止时间     | 从模式               | 25                      |                         |       |
| t <sub>v(SO)</sub> (3)                                | 数据输出有效时间     | 从模式(使能边沿之后)       |                         | 65 <sup>(2)</sup>       |       |
| t <sub>v(MO)</sub> <sup>(3)</sup>                     | 数据输出有效时间     | 主模式(使能边沿之后)       |                         | 30                      |       |
| t <sub>h(SO)</sub> (3)                                | 粉捏绘山伊持时间     | 从模式(使能边沿之后)       | 27 <sup>(2)</sup>       |                         |       |
| t <sub>v(MO)</sub> <sup>(3)</sup>                     | 数据输出保持时间     | 主模式(使能边沿之后)       | 11 <sup>(2)</sup>       |                         |       |

- 1. 参数是在选择I/O输出频率10MHz时得到。
- 2. 正在进行数据特性总结。
- 3. 数据基于设计模拟和/或特性总结得出,没有在生产中测试。
- 4. 最小时间是指驱动到输出的最小时间,最大时间是指数据在端口上有效的最长时间。
- 5. 最小时间是指输出变为无效的最小时间,最大时间是指端口上的数据变为高阻态的最长时间。

图39 SPI时序图 — 从模式并且CPHA=0





图40 SPI时序图 — 从模式并且CPHA=1



1. 测量点基于CMOS电平: 0.3V<sub>DD</sub>和0.7V<sub>DD</sub>

图41 SPI时序图 — 主模式<sup>(1)</sup>



1. 测量点基于CMOS电平: 0.3V<sub>DD</sub>和0.7V<sub>DD</sub>



# 10.3.9 I2C接口特性

#### 表44 I<sup>2</sup>C特性

| か 口                                                     | <b>会</b> 料·     | 标准I <sup>2</sup> | C模式    | 快速I <sup>2</sup> C | C模式 <sup>(1)</sup> | <b>光</b> / |
|---------------------------------------------------------|-----------------|------------------|--------|--------------------|--------------------|------------|
| 符号                                                      | 参数              | 最小值(2)           | 最大值(2) | 最小值(2)             | 最大值(2)             | 单位         |
| t <sub>w(SCLL)</sub>                                    | SCL时钟低时间        | 4.7              |        | 1.3                |                    | 110        |
| t <sub>w(SCLH)</sub>                                    | SCL时钟高时间        | 4.0              |        | 0.6                |                    | μs         |
| t <sub>su(SDA)</sub>                                    | SDA建立时间         | 250              |        | 100                |                    |            |
| t <sub>h(SDA)</sub>                                     | SDA数据保持时间       | 0 <sup>(3)</sup> |        | 0 <sup>(4)</sup>   | 900 <sup>(3)</sup> |            |
| $\begin{array}{c} t_{r(SDA)} \\ t_{r(SCL)} \end{array}$ | SDA和SCL上升时间     |                  | 1000   |                    | 300                | ns         |
| $t_{\text{f(SDA)}} \\ t_{\text{f(SCL)}}$                | SDA和SCL下降时间     |                  | 300    |                    | 300                |            |
| t <sub>h(STA)</sub>                                     | 开始条件保持时间        | 4.0              |        | 0.6                |                    | 20         |
| t <sub>su(STA)</sub>                                    | 重复的开始条件建立时间     | 4.7              |        | 0.6                |                    | μs         |
| t <sub>su(STO)</sub>                                    | 停止条件建立时间        | 4.0              |        | 0.6                |                    | μs         |
| tw(STO:STA)                                             | 停止至开始条件时间(总线空闲) | 4.7              |        | 1.3                |                    | μs         |
| Сь                                                      | 每条总线的容性负载       |                  | 400    |                    | 400                | pF         |

- 1. f<sub>MASTER</sub>至少为8MHz才能达到最快的I<sup>2</sup>C速度(400kHz)。
- 2. 数据基于标准 $I^2$ C协议的需要,没有在生产中测试。
- 3. 如果接口不允许延长低电平时间,则只需要遵守开始条件的最长保持时间。
- 4. 为了跳过SCL下降沿的不确定区域,芯片必须在内部为SDA提供一个至少300ns的保持时间。

### 10.3.10 10 位ADC特性

V<sub>DD</sub>、f<sub>MASTER</sub>和T<sub>A</sub>在通常的操作条件下,除非特别说明。

#### 表**45** ADC特性

| 符号                | 参数                      | 条件                          | 最小值             | 典型值  | 最大值      | 单位                 |
|-------------------|-------------------------|-----------------------------|-----------------|------|----------|--------------------|
| f                 | ADC时钟频率                 | V <sub>DD</sub> = 2.95~5.5V | 1               |      | 4        | MHz                |
| f <sub>ADC</sub>  | ADG的 种频率                | V <sub>DD</sub> = 4.5~5.5V  | 1               |      | 6        | IVIITZ             |
| V <sub>AIN</sub>  | 转换电压范围(1)               |                             | V <sub>SS</sub> |      | $V_{DD}$ | V                  |
| C <sub>ADC</sub>  | 内部采样保持电容                |                             |                 | 3    |          | pF                 |
| ts <sup>(1)</sup> | 最小采样时间                  | $f_{ADC} = 4MHz$            |                 | 0.75 |          | μs                 |
| ıs                | 取小水(干町町                 | $f_{ADC} = 6MHz$            |                 | 0.5  |          | μδ                 |
| t <sub>STAB</sub> | 从待机模式唤醒时间               |                             |                 | 7    |          | μs                 |
|                   | 月上光牡松叶闪/石红河籽叶           | $f_{ADC} = 4MHz$            |                 | 3.5  |          | μs                 |
| $t_{CONV}$        | 最小总转换时间(包括采样时间, 10位分辨率) | $f_{ADC} = 6MHz$            |                 | 2.33 |          | μs                 |
|                   | 1 47                    |                             |                 | 14   |          | 1/f <sub>ADC</sub> |

<sup>1.</sup> 在采样时间内,输入电容 $C_{AIN}$ (最大3pF)能够从外部进行充电或放电。模拟信号源的内部阻抗必须保证电容在采样时间 $t_s$ 内能够达到最终的电压。在采样时间 $t_s$ 之后,模拟输入电压的变化不会影响转换结果。采样时间 $t_s$ 的值由编程确定。



表46  $R_{AIN}$ <10kΩ, $V_{DD}$ =5V条件下ADC的精确度

| 符号             | 参数                      | 条件                      | 典型值 | 最大值(1) | 单位  |
|----------------|-------------------------|-------------------------|-----|--------|-----|
|                |                         | f <sub>ADC</sub> = 2MHz | 1.6 | 3.5    |     |
| E <sub>T</sub> | 总误差 <sup>(2)</sup>      | f <sub>ADC</sub> = 4MHz | 2.2 | 4      |     |
|                |                         | f <sub>ADC</sub> = 6MHz | 2.4 | 4.5    |     |
|                |                         | f <sub>ADC</sub> = 2MHz | 1.1 | 2.5    |     |
| E <sub>0</sub> | 偏移误差 <sup>(2)</sup>     | f <sub>ADC</sub> = 4MHz | 1.5 | 3      |     |
|                | f <sub>ADC</sub> = 6MHz | 1.8                     | 3   |        |     |
|                |                         | f <sub>ADC</sub> = 2MHz | 1.5 | 3      |     |
| E <sub>G</sub> | 增益误差 <sup>(2)</sup>     | f <sub>ADC</sub> = 4MHz | 2.1 | 3      | LSB |
|                |                         | f <sub>ADC</sub> = 6MHz | 2.2 | 4      |     |
|                |                         | f <sub>ADC</sub> = 2MHz | 0.7 | 1.5    |     |
| E <sub>D</sub> | 微分线性误差 <sup>(2)</sup>   | f <sub>ADC</sub> = 4MHz | 0.7 | 1.5    |     |
|                |                         | f <sub>ADC</sub> = 6MHz | 0.7 | 1.5    |     |
|                |                         | f <sub>ADC</sub> = 2MHz | 0.6 | 1.5    |     |
| E <sub>L</sub> | 积分线性误差(2)               | f <sub>ADC</sub> = 4MHz | 0.8 | 2      |     |
|                |                         | f <sub>ADC</sub> = 6MHz | 0.8 | 2      |     |

<sup>1.</sup> 正在进行数据特性总结。

表47  $R_{AIN}$ <10kΩ, $V_{DD}$ =3.3V条件下ADC的精确度

| 符号             | 参数                     | 条件                      | 典型值 | 最大值 <sup>(1)</sup> | 单位  |
|----------------|------------------------|-------------------------|-----|--------------------|-----|
| E <sub>T</sub> | 总误差 <sup>(2)</sup>     | f <sub>ADC</sub> = 2MHz | 1.6 | 3.5                |     |
| -              | 心灰左                    | f <sub>ADC</sub> = 4MHz | 1.9 | 4                  |     |
| E <sub>0</sub> | 偏移误差 <sup>(2)</sup>    | f <sub>ADC</sub> = 2MHz | 1   | 2.5                |     |
| =0             |                        | f <sub>ADC</sub> = 4MHz | 1.5 | 2.5                |     |
| E <sub>G</sub> | 增益误差 <sup>(2)</sup>    | f <sub>ADC</sub> = 2MHz | 1.3 | 3                  | LSB |
| ⊏G             | <b>垣皿</b> 庆左           | f <sub>ADC</sub> = 4MHz | 2   | 3                  | LOD |
| E <sub>D</sub> | 微分线性误差 <sup>(2)</sup>  | f <sub>ADC</sub> = 2MHz | 0.7 | 1                  |     |
| LD             |                        | f <sub>ADC</sub> = 4MHz | 0.7 | 1.5                |     |
| E <sub>L</sub> | 积分线性误差 <sup>(2)</sup>  | f <sub>ADC</sub> = 2MHz | 0.6 | 1.5                |     |
|                | 15/17   34   IT   15/2 | f <sub>ADC</sub> = 4MHz | 0.8 | 2                  |     |

<sup>1.</sup> 正在进行数据特性总结。



<sup>2.</sup> ADC精度与负的注入电流的关系:必须避免在任何模拟输入管脚注入负的电流,这会显著地降低将要在另一个模拟输入上的转换精度。建议在可能产生潜在的负注入电流的标准模拟管脚上增加一个肖特基二极管。任何正的注入电流,只要不超过10.3.6节的 $I_{INJ(PIN)}$ 和 $\Sigma I_{INJ(PIN)}$ ,则不会影响ADC的精度。

<sup>2.</sup> ADC精度与负的注入电流的关系: 必须避免在任何模拟输入管脚注入负的电流,这会显著地降低将要在另一个模拟输入上的转换精度。建议在可能产生潜在的负注入电流的标准模拟管脚上增加一个肖特基二极管(连接到地)。任何限制在10.3.6节的 $I_{INJ(PIN)}$ 和 $\Sigma I_{INJ(PIN)}$ 的正向注入电流,不会影响ADC的精度。

#### 图42 ADC的精确度特性



- 1. 一个真实的转换曲线例子
- 2. 理想的转换曲线
- 3. 端点连接线
  - ET = 总误差:实际的转换曲线与理想的转换曲线的最大偏差。
  - Eo = 偏移误差: 第一个实际的转换值与第一个理想的转换值之间的偏差
  - E<sub>G</sub> = 增益误差: 最后一个实际的转换值与最后一个理想的转换值之间的偏差
  - E<sub>D</sub> = 差分线性误差:实际的转换步长与理想的转换步长之间的最大偏差
  - EL = 积分线性误差: 在任何实际转换值与端点连接线的最大偏差

#### 图43 ADC的典型应用



### 10.3.11 EMC特性

兼容性测试是在产品评定中一个样本基础上进行的。

#### 功能EMS(电磁兼容)

产品在两种电磁测试环境下运行一个简单的应用程序(用I/O端口翻转两个LED)直到失效发生(在LED上表现出来)。

- **ESD:** 静电放电(正向和反向)加载在芯片的所有引脚上,直到功能性干扰发生。测试遵守 IEC 1000-4-2标准。
- FTB: 快速脉冲群电压(正向和反向)经过一个100pF的电容加载在Vpp和Vss上,直到功能性干扰发生。测试遵守IEC 1000-4-4标准。

设备复位允许正常的操作继续进行。表中的测试结果是基于<u>应用笔记AN1709</u>中定义的EMS等级和分类得到的。

#### 设计可靠的软件以避免噪声问题

EMC性能评定和优化是在典型的应用环境和简单的MCU软件下元器件级别的测试。应该注意的 是良好的EMC性能高度依赖于用户的应用和特殊的软件。

因此建议用户进行EMC软件优化,并且针对应用的EMC等级要求进行预先的测试。



#### 评估试验

大多数一般失效(意外复位和程序指针错误)能够恢复,通过在NRST引脚或振荡器引脚上加上1秒钟的低电平。

为了完成这种试验,ESD信号可以被直接加载在芯片引脚上,可超出指定的范围。当检测到意外的状态时,软件能够阻止不可恢复的错误发生(参见应用笔记AN1015)。

表**48** EMS数据

| 符号                | 参数                                                        | 条件                                                                                                    | 级别/等级 |
|-------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------|
| V <sub>FESD</sub> | 施加到任意I/O脚上的静电电压,导致功能失效的极限。                                | V <sub>DD</sub> =3.3V,T <sub>A</sub> =+25℃,<br>f <sub>MASTER</sub> =16MHz(HSI时钟),<br>遵循IEC 1000-4-2标准 | 2/B   |
| V <sub>EFTB</sub> | 通过一个100pF的电容,施加到V <sub>DD</sub> 和Vss脚上的快速脉冲群电压,导致功能失效的极限。 | V <sub>DD</sub> =3.3V,T <sub>A</sub> =+25℃,<br>f <sub>MASTER</sub> =16MHz(HSI时钟),<br>遵循IEC 1000-4-4标准 | 4/A   |

#### 电磁干扰(EMI)

产品在电磁干扰环境下运行一个简单的应用程序(用I/O端口翻转两个LED), 电磁干扰测试遵循 为测试软件、板卡布局和引脚负载制定的SAE J 1752/3 标准。

表49 EMI数据

|      | 参数                                                             | 条件                    |              |                                                     |                 |      |  |
|------|----------------------------------------------------------------|-----------------------|--------------|-----------------------------------------------------|-----------------|------|--|
| 符号   |                                                                | 一般条件                  |              | 最大f <sub>HSE</sub> /f <sub>CPU</sub> <sup>(1)</sup> |                 | 单位   |  |
| 13 3 |                                                                |                       | 监视频率段        | 16MHz/<br>8MHz                                      | 16MHz/<br>16MHz |      |  |
|      | V <sub>DD</sub> =5V,<br>尖峰级别 T <sub>A</sub> =+25℃,<br>LQFP32封装 | V <sub>DD</sub> =5V,  | 0.1MHz~30MHz | 2                                                   | 3               |      |  |
|      |                                                                | T <sub>A</sub> =+25℃, | 30MHz~130MHz | 10                                                  | 10              | dΒμV |  |
| БЕМІ |                                                                |                       | 130MHz~1GHz  | 5                                                   | 7               |      |  |
|      | SAE EMI级别                                                      | 遵循SAE J 1752/3        |              | 2.5                                                 | 2.5             |      |  |

<sup>1.</sup> 数据基于特性总结得出,没有在生产中测试。

#### 最大绝对等级(电子敏感性)

为了确定产品在电子敏感性方面的性能,使用特定的测试方法进行了两种不同的测试(ESD和LU)。更加详尽的内容参见<u>应用笔记AN1181</u>。

#### 静电放电(ESD)

静电放电(一个正向脉冲,接着是一个反向脉冲,间隔为1秒)根据引脚的组合加载在每一组样本引脚上。样本的大小取决于芯片供电引脚的数目(3个样本x(n+1)供电引脚)。一个模型可以被模拟: 人体模型。测试符合JESD22-A114A/A115A标准。更多详尽的内容参见应用笔记AN1181。

表50 ESD绝对最大等级

| 符号                    | 评级             | 条件                                              | 等级 | 最大值 <sup>(1)</sup> | 单位 |
|-----------------------|----------------|-------------------------------------------------|----|--------------------|----|
| V <sub>ESD(HBM)</sub> | 静电放电电压(人体模型)   | T <sub>A</sub> =+25℃,遵循JESD22-A114              | Α  | 4000               | V  |
| V <sub>ESD(CDM)</sub> | 静电放电电压(充电设备模型) | LQFP32封装,T <sub>A</sub> =+25℃,遵循<br>JESD22-C101 | IV | 1000               | V  |

<sup>1.</sup> 数据基于特性总结得出,没有在生产中测试。

#### 静态死锁

为了获得死锁性能,需要在10个样片上进行两种相反的静态测试。

- 供电过压(加载到每一个电源供电引脚)和
- 在每一个样片上进行电流注入(加载到每一个输入、输出和可配置的I/O上)

测试符合EIA/JESD 78 IC死锁标准。更多详尽的内容参见应用笔记AN1181。



表51 电子敏感性

| 符号 | 参数     | 条件                    | 等级 <sup>(1)</sup> |
|----|--------|-----------------------|-------------------|
|    |        | T <sub>A</sub> =+25℃  | Α                 |
| LU | 静态死锁等级 | T <sub>A</sub> =+85℃  | А                 |
|    |        | T <sub>A</sub> =+125℃ | Α                 |

<sup>1.</sup> 等级说明: A等级是STMicroelectronics的内部规范。它的所有限制高于JEDEC规范,也就是说一个符合A等级的芯片超出了JEDEC标准。B等级严格符合所有JEDEC标准(国际标准)。



# 11 封装特性

为了符合环境的需要,ST根据不同的环境等级提供了这些芯片不同等级的ECOPACK®封装。 ECOPACK®规范、等级定义和产品状态可以在<u>www.st.com</u>网站上获得。

ECOPACK®是ST的商标。

# 11.1 封装机械数据

# 11.1.1 LQFP封装尺寸

图44 32脚低剖面方形扁平封装(7x7)



表52 32脚低剖面方形扁平封装尺寸(7x7)

| <b>+</b> ⊏ □ |       | 亳米    |       |        | 英寸 <sup>(1)</sup> |        |  |
|--------------|-------|-------|-------|--------|-------------------|--------|--|
| 标号           | 最小值   | 典型值   | 最大值   | 最小值    | 典型值               | 最大值    |  |
| Α            |       |       | 1.600 |        |                   | 0.0630 |  |
| A1           | 0.050 |       | 0.150 | 0.0020 |                   | 0.0059 |  |
| A2           | 1.350 | 1.400 | 1.450 | 0.0531 | 0.0551            | 0.0571 |  |
| b            | 0.300 | 0.370 | 0.450 | 0.0118 | 0.0146            | 0.0177 |  |
| С            | 0.090 |       | 0.200 | 0.0035 |                   | 0.0079 |  |
| D            | 8.800 | 9.000 | 9.200 | 0.3465 | 0.3543            | 0.3622 |  |
| D1           | 6.800 | 7.000 | 7.200 | 0.2677 | 0.2756            | 0.2835 |  |
| D3           |       | 5.600 |       |        | 0.2205            |        |  |
| Е            | 8.800 | 9.000 | 9.200 | 0.3465 | 0.3543            | 0.3622 |  |
| E1           | 6.800 | 7.000 | 7.200 | 0.2677 | 0.2756            | 0.2835 |  |
| E3           |       | 5.600 |       |        | 0.2205            |        |  |
| е            |       | 0.800 |       |        | 0.0315            |        |  |
| L            | 0.450 | 0.600 | 0.750 | 0.0177 | 0.0236            | 0.0295 |  |
| L1           |       | 1.000 |       |        | 0.0394            |        |  |
| k            | 0.0°  | 3.5°  | 7.0°  | 0.0°   | 3.5°              | 7.0°   |  |
| ccc          |       |       | 0.100 |        |                   | 0.0039 |  |

<sup>1.</sup> 英寸的数值是根据毫米的数据按照4位小数精度转换取整得到的。



# 11.1.2 QFN封装机械数据

图45 32脚薄细间距方形扁平无引脚QFN封装(5x5)



表53 32脚薄细间距方形扁平无引脚QFN封装封装数据

| 标号                | 毫米   |      |      | 英寸 <sup>(1)</sup> |        |        |
|-------------------|------|------|------|-------------------|--------|--------|
| 1/1/ <del>5</del> | 最小值  | 典型值  | 最大值  | 最小值               | 典型值    | 最大值    |
| Α                 | 0.80 | 0.90 | 1.00 | 0.0315            | 0.0354 | 0.0394 |
| A1                | 0    | 0.02 | 0.05 |                   | 0.0008 | 0.0020 |
| А3                |      | 0.20 |      |                   | 0.0079 |        |
| b                 | 0.18 | 0.25 | 0.30 | 0.0071            | 0.0098 | 0.0118 |
| D                 | 4.85 | 5.00 | 5.15 | 0.1909            | 0.1969 | 0.2028 |
| D2                | 3.20 | 3.45 | 3.70 | 0.1260            | 0.1358 | 0.1457 |
| Е                 | 4.85 | 5.00 | 5.15 | 0.1909            | 0.1969 | 0.2028 |
| E2                | 3.20 | 3.45 | 3.70 | 0.1260            | 0.1358 | 0.1457 |
| е                 |      | 0.50 |      |                   | 0.0197 |        |
| L                 | 0.30 | 0.40 | 0.50 | 0.0118            | 0.0157 | 0.0197 |
| ddd               | _    | _    | 0.08 | _                 |        | 0.0031 |

<sup>1.</sup> 英寸的数值是根据毫米的数据按照4位小数精度转换取整得到的。



# 11.1.3 TSSOP 封装机械数据

图46 TSSOP 20引脚, 4.4mm芯片大小, 引脚间距0.65mm



表54 TSSOP 20引脚, 4.4mm芯片大小, 0.65mm引脚间距机械数据

| ±= B. |       | 毫米                       |       | 英寸(1)  |        |        |
|-------|-------|--------------------------|-------|--------|--------|--------|
| 标号    | 最小值   | 典型值                      | 最大值   | 最小值    | 典型值    | 最大值    |
| Α     |       |                          | 1.200 |        |        | 0.0472 |
| A1    | 0.050 |                          | 0.150 | 0.0020 |        | 0.0059 |
| A2    | 0.800 | 1.000                    | 1.050 | 0.0315 | 0.0394 | 0.0413 |
| b     | 0.190 |                          | 0.300 | 0.0075 |        | 0.0118 |
| С     | 0.090 |                          | 0.200 | 0.0035 |        | 0.0079 |
| D     | 6.400 | 6.500                    | 6.600 | 0.2520 | 0.2559 | 0.2598 |
| Е     | 6.200 | 6.400                    | 6.600 | 0.2441 | 0.2520 | 0.2598 |
| E1    | 4.300 | 4.400                    | 4.500 | 0.1693 | 0.1732 | 0.1772 |
| е     |       | 0.650                    |       |        | 0.0256 |        |
| L     | 0.450 | 0.600                    | 0.750 | 0.0177 | 0.0236 | 0.0295 |
| L1    |       | 1.000                    |       |        | 0.0394 |        |
| k     | 0.0°  |                          | 8.0°  | 0.0°   |        | 8.0°   |
| aaa   |       | LAW III IA III A D. I. W | 0.100 |        |        | 0.0039 |

<sup>1.</sup> 英寸的数值是根据毫米的数据按照4位小数精度转换取整得到的。



封装特性 STM8S103xx数据手册

## 11.1.4 UFQFPN 封装

图47 20引脚非常非常薄的细间距方形扁平无引脚封装(3x3)<sup>(1)</sup>



#### 1. 图示未按比例

图48 推荐的在目标板上进行仿真所用的封装(1)



1. 图示未按比例



图49 推荐的无需再目标板上进行仿真所用的封装(1)(2)



- 1. 图中未按比例绘制。
- 2. 以毫米为单位

表55 20引脚非常非常薄的细间距方形扁平无引脚封装(3x3)机械数据

| <b>₩</b> . P. | 毫米   |       |      | 英寸 <sup>(1)</sup> |         |         |
|---------------|------|-------|------|-------------------|---------|---------|
| 标号            | 最小值  | 典型值   | 最大值  | 最小值               | 典型值     | 最大值     |
| Α             | 0.65 | 0.75  | 0.85 | 0. 0256           | 0. 0295 | 0. 0335 |
| A1            |      | 0.01  | 0.05 |                   | 0.0004  | 0.0020  |
| A2            | 0.45 | 0. 55 | 0.65 | 0. 0177           | 0. 0217 | 0. 0256 |
| A3            | 0.19 | 0.22  | 0.24 | 0.0075            | 0.0087  | 0. 0094 |
| b             | 0.2  | 0.25  | 0.3  | 0.0079            | 0.0098  | 0. 0118 |
| D             | 2.9  | 3     | 3. 1 | 0. 1142           | 0. 1181 | 0. 1220 |
| Е             | 2.9  | 3     | 3. 1 | 0. 1142           | 0. 1181 | 0. 1220 |
| е             |      | 0.5   |      |                   | 0. 0197 |         |
| L1            | 0.3  | 0.4   | 0.5  | 0. 0118           | 0. 0157 | 0. 0197 |
| L2            | 0.25 | 0.35  | 0.45 | 0.0098            | 0. 0138 | 0. 0177 |
| ddd           |      | 0.08  |      |                   | 0.0031  |         |
|               | 管脚数目 |       |      |                   |         |         |
| N             | 20   |       |      |                   |         |         |

1. 英寸的数值是根据毫米的数据按照4位小数精度转换取整得到的。

## 11.2 热特性

芯片的最大结温(Timax)一定不能超过表19给出的数值范围。

芯片的最大结温(TJmax)用摄氏温度表示,可用下面的公式计算:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

这里:

● T<sub>Amax</sub>是最大的环境温度,用℃表示



封装特性 STM8S103xx数据手册

- Θ<sub>IA</sub>是封装结到环境的热阻抗,用℃/W标示
- P<sub>Dmax</sub>是P<sub>INTmax</sub>和P<sub>I/Omax</sub>的和(P<sub>Dmax</sub>= P<sub>INTmax</sub>+ P<sub>I/Omax</sub>)
- P<sub>INTmax</sub>是I<sub>DD</sub>和V<sub>DD</sub>的积,用瓦特(Watt)表示,是芯片的最大内部功耗
- P<sub>I/Omax</sub>是所有输出引脚的最大功率消耗 这里:

 $P_{I/Omax} = \Sigma (V_{OL}^* I_{OL}) + \Sigma ((V_{DD} - V_{OH})^* I_{OH})$  考虑在应用中I/O上低电平和高电平的实际的 $V_{OL}^* I_{OL}$ 和 $V_{OH}^* I_{OH}$ 。

#### 表56 热特性(1)

| 符号            | 参数                         | 数值 | 单位   |
|---------------|----------------------------|----|------|
| $\Theta_{JA}$ | 结到环境的热阻抗—— LQFP32 – 7x7mm  | 60 | °C/W |
| $\Theta_{JA}$ | 结到环境的热阻抗—— VFQFN32 – 5x5mm | 22 | °C/W |
| $\Theta_{JA}$ | 结到环境的热阻抗—— TSSOP20 – 4x4mm | 84 | °C/W |
| $\Theta_{JA}$ | 结到环境的热阻抗—— WFQFN20 – 3x3mm | 90 | °C/W |

<sup>1.</sup> 热阻抗是基于自然对流环境下,对符合JEDEC JESD51-2标准的4层PCB板测量得到的。

### 11.2.1 参考文档

JESD51-2 集成电路热测量环境条件 - 自然对流(空气静止)。

参见www.jedec.org。

### 11.2.2 选择产品的温度范围

当订购微控制器时,温度范围在订购代码中指定(见第12章)。

下面的例子说明如何根据特定的应用计算需要的温度范围。

假设下面的应用条件:

最大环境温度T<sub>Amax</sub> = 75℃(根据JESD51-2标准测量)

 $I_{DDmax}$  = 8 mA,  $V_{DD}$  = 5 V, 同时最多有20个I/O处于输出低电平 $I_{OL}$ =8mA,  $V_{OL}$ =0.4V

 $P_{INTmax} = 8mA \times 5V = 400mW$ 

 $P_{IOmax} = 20 \times 8mA \times 0.4V = 64mW$ 

这样得到了: P<sub>INTmax</sub> = 400mW和 P<sub>IOmax</sub> = 64mW:

 $P_{Dmax} = 400 \text{mW} + 64 \text{mW}$ 

因此 P<sub>Dmax</sub> = 464mW

根据表56中得到的数据如下计算T<sub>Jmax</sub>:

对于LQFP32 59℃/W

 $T_{Jmax} = 75^{\circ}C + (46^{\circ}C/W \times 464 \text{mW}) = 75^{\circ}C + 27^{\circ}C = 102^{\circ}C$ 

结果在尾缀为6的版本(-40 < T」 < 105℃)温度范围内。

在这个例子中,最低要订购温度范围尾缀为6的芯片。



订购信息 STM8S103xx数据手册

# 12 订购信息

图50 STM8S103x基础型订购信息表



如果需要可用的选择和可订购的型号列表,或者关于这颗芯片任何方面的更多信息,请到 www.st.com网站或者联络离您最近的ST销售机构。



- 13 STM8开发工具 (本章从略)
- 13.1 仿真和在线调试工具
- 13.2 软件工具
- 13.2.1 STM8 工具套件
- 13.2.2 C和汇编工具
- 13.2.3 编程工具



# 14 (英文)版本修改记录

表57 文档版本修改记录

| Date        | Revision | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 02-Mar-2009 | 1        | Initial revision                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10-Apr-2009 | 2        | Added Table 2 on page 15.  Updated Section 4.8: Auto wakeup counter on page 17.  Modified description of PB4 and PB5 (removed X in PP column) and added footnote concerning HS I/Os in Table 5 and Table 6.  Removed TIM3 and UART from Table 8: Interrupt mapping Updated VCAP specifications in Section 9.3.1 on page 50.  Corrected block size in Table 37: Flash program memory/data EEPROM memory.  Updated Section 9: Electrical characteristics.  Updated Table 56: Thermal characteristics. |

