BONDING IN MOLECULES PART 2: VB THEORY

General Chemistry I, Lecture Series 10

Pengxin Liu

Reading:

OGB8 §3.10, §3.11

Outline

- Valence Bond Theory (1927)
- Lewis dot structures (1916)
- Hybridization and VSEPR theory (1958)

H₂: Levels of Approximation

Inspiration of VB theory

- The characteristics (bond length, bond energy, polarity, etc.) of specific chemical bonds such as O-H, C-C, and C-H do not differ much from molecule to molecule.
- Justification for the Lewis electron pair model.
- Assuming that each participating atom arrives with at least one unpaired electron in an AO

The Valence Bond Theory

H—H ≈ H^{*}_×H or H_×^{*}H, but neither H H^{*}_× nor ^{*}_×H H.

The VB Wavefunction in 1D (1)

The VB Wavefunction in 1D (2)

VB Wavefunction (3)

$$\psi_{g}(x_{1},x_{2}) \approx c_{1}[\varphi^{A}(x_{1}) \cdot \varphi^{B}(x_{2}) + \varphi^{A}(x_{2}) \cdot \varphi^{B}(x_{1})]$$

VB Wavefunction (4)

$$\psi_{\mathsf{u}}(x_1, x_2) \approx c_2 [\varphi^{\mathsf{A}}(x_1) \cdot \varphi^{\mathsf{B}}(x_2) - \varphi^{\mathsf{A}}(x_2) \cdot \varphi^{\mathsf{B}}(x_1)]$$

Comparison of Density Plots

MO vs. VB Revisited

Molecular Orbital (MO)

- Ignores e-e repulsion
- Electrons wander around
- For orbitals that are
 - Delocalized 离域
 - 'Fat'
 - Singly occupied

Valence Bond (VB)

- Exaggerates e-e repulsion
- Electrons adhere to the nuclei
- For orbitals that are
 - Localized 定域/局域
 - 'Tight'
 - Strong

Pros and Cons of VB Theory

Works best for localized bonds

Difficult to estimate energy levels

Complicated programming

More accurate than MO for σ bonds Compatible with hybridization 杂化

$$\psi_{q}(x_{1},x_{2}) \approx c_{1}[\varphi^{A}(x_{1}) \cdot \varphi^{B}(x_{2}) + \varphi^{A}(x_{2}) \cdot \varphi^{B}(x_{1})]$$

Outline

- Valence Bond Theory (1927)
- Lewis dot structures (1916)
- Hybridization and VSEPR theory (1958)

In Practice

Consider

- Valence
- Bond order
- Molecular shape

Ignore

- Anti-bonding orbitals
- Bond energy

Bonding Orbital

VB: Orbital overlap

MO: Bonding orbital

H:H or H;H or H-H

Lewis: Shared electron pair

Lewis Diagram: Rules

- A shared pair = a covalent bond.
 A lone pair = no bonding.
- 2. Each atom achieves its own noblegas shell of electrons.
- 3. Share as many electrons as possible.

Gilbert N. Lewis (Berkeley, 1875–1946)

Lewis, G. N. "The Atom and the Molecule", *J. Am. Chem. Soc.* **1916**, *38*, 762–785.

Octet Rule Extension

Correlation

Molecular Orbital	Lewis Dot Structure
Bonding orbital	Shared electron pair
Nonbonding orbital	Lone electron pair
Bonding + antibonding orbitals	2 lone electron pairs
Delocalized orbital	Resonance structures
Two electrons from one atom	Coordinate bond
	Formal charge

Summary: Lone Pair

:N:::N: or :N≡N:

Lewis:

2 Ione electron pairs

MO: Bonding + antibonding orbitals

Triatomic Molecules: CO₂ (1)

Outline

- Valence Bond Theory (1927)
- Lewis dot structures (1916)
- Hybridization and VSEPR theory (1958)

Why Hybridize? (1) CH₄

Pauling's Answer

$$+ 2 \times \frac{\downarrow}{-13.6} \longrightarrow :CH_2$$

H: 1s¹

Carbene

Or better,

C: $(sp^3)^4$

$$+ 4 \times H 1s^1 \longrightarrow CH_2$$

Why Hybridize? (2) BeH₂

 $\begin{array}{c|c}
\hline
2p_x & 2p_y \\
\hline
2s & 2p_z
\end{array}$

Be: (*sp*)²

Why Hybridize? (2) BH₃

$$2p_x$$

 $\cos^2(30^\circ) + \cos^2(150^\circ)$
 $= \frac{3}{2}$

$$2p_y$$

 $\sin^2(30^\circ) + \sin^2(150^\circ)$
 $+ \sin^2(-90^\circ) = \frac{3}{2}$

$$\uparrow E
\uparrow 2p_x 2p_y 2p_z$$

$$\uparrow \downarrow 2s$$

B: $2s^22p^1$

External field

$$\frac{\uparrow}{2s} \frac{\uparrow}{2p_x} \frac{\downarrow}{2p_y}$$
B: $(sp^2)^3$

sp Hybridization

sp² Hybridization

sp³ Hybridization

sp3d Hybridization

s,
$$p_x$$
, p_y , p_z , d_{z2}

Polyatomic Molecules

Molecular Geometry

The Valence Shell Electron-Pair Repulsion Theory

Ideas based on VB theory:

- Only the valence shell matters
- Shared electron pairs and lone pairs
- Molecular energy ≈
 Bond energies + repulsion energies

Ronald J. Gillespie (UCL, 1924–)

Ronald S. Nyholm (UCL, 1917–1971)

Rules of VSEPR Theory

- 1. Rewrite a structure as AX_mE_n m = number of ligandsn = number of lone pairs
- 2. Assign a Steric Number 空间数 SN = m + n
- 3. Place the ligands and lone pairs on a polyhedron of SN vertexes

Ligand 配体X Central atom A Ligand Lone 配体X pair E

4. Size: Lone pair > multiple bonds > shared pair

H-Be-H

BeH₂: m = 2, n = 0

 CO_2 : m = 2, n = 0

Linear 直线形

: N≡N:

 N_2 : m = 1, n = 1

 BF_3 : m = 3, n = 0 Trigonal planar 平面三角形

 CH_3^+ : m = 3, n = 0 Trigonal planar

sp² hybrid

 SO_2 : m = 2, n = 1Bent / V-shaped 弯曲形 / V形 / 角形

$$O = N O \longrightarrow O = N O$$

 NO_2 : m = 2, 0.5 < n < 1 Bent

SO₂

H C_{H} C_{H} : m = 4, n = 0 Tetrahedral 四面体

 $H_2O: m = 2, n = 2$ Bent

F-CI: CIF₃: m=3, n=2 T-shaped

 $:-Xe^{\frac{1}{2}}: XeF_2: m = 2, n = 3 Linear$

Example: sp³d Hybridization

 s, p_x, p_y, p_z, d_{z2}

Avoid A–E \bot A–E Minimize A–E \bot A–X

Lone Pairs Are Fat

Summary

- 1. Count the number of lone pairs from Lewis structure
- 2. Place the lone pairs on equatorial positions
- Deduce the molecular geometry by ignoring the lone pairs

N

Simple and intuitive

Compatible with VB theory

Qualitative

Doesn't work for transition metals

Crystal-field theory

Molecular Orbital (MO) Valence Bond (VB) / Hybridization Molecular Atomic orbitals Hybridized orbital (s, p, d)atomic orbital Shared / dative **Bonding Electron** MO **Nonbonding** Lone pair Repulsive **Antibonding** Correlation Lewis dot Oxid. state Bond type (σ, π, δ) diagram diagram Bond order Bond length & energy Valence **Excited** Resonance Aufbau **Formal** Electronic structure state structure principle charges of molecules 2nd/3rd period Octet rule **VSEPR** Conjugated π system 18-electron rule Transition metals Ligand-field theory

Next: Organics

Reading: OGB8 §7

