

Gröbner Fans for Linear Codes

Institute of Computer Technology

Bachelor Thesis

submitted by

Daniel Rembold

born on 27.06.1992 in Hamburg

July 23, 2014

advised by: Dipl.-Technomath. Natalia Dück

supervised by: Prof. Dr. Dr. habil. Karl-Heinz Zimmermann

Abstract

This work is about implementing a software, which enumerates the degree compatible as well as the whole Gröbner fan from a linear code.

The Gröbner fans from punctuated codes and the comparison between Gröbner fans are possible too.

${\bf Zusammen fassung}$

In dieser Arbeit geht es um die Implementierung einer Software, die den gradkompatiblen sowohl als auch den kompletten Gröbner-Fächer eines linearen Codes berechnet.

Die Gröbner-Fächer von punktierten Codes als auch der Vergleich von Gröbner-Fächern können ebenfalls untersucht werden.

Ackknowledgements

I would like to thank Prof. Dr. Zimmermann for giving me the opportunity to write this thesis and the freedom to work on it my own way. Also many thanks to Dipl.- Technomath. Nathalia Dück for her valuable advices, her patience and that she took time for me everytime I had questions or problems. Last but not least thanks to my parents for their support throughout the years.

Danksagung

Ich möchte mich bei Prof. Dr. Zimmermann bedanken für die Freiheit beim Bearbeiten dieser Bachelorarbeit. Außerdem vielen Dank an Dipl.- Technomath. Nathalia Dück für ihre hilfreichen Anweisungen, ihre Geduld und dass sie sich immer Zeit für mich genommen hat, falls ich Fragen oder Probleme hatte. Zu guter Letzt bedanke ich mich bei meinen Eltern die mich von Anfang an unterstützt haben.

Statutory Declaration

I declare with my signature that I have authored this thesis independently
and without foreign help. Content and passages from foreign sources, taken
directly or indirectly are quoted. Furthermore I assure that I have not used
any other literature mentioned in the bibliography. This insurance refers to
text content as well as all figures, sketches and tables. This work was not
submitted nor published at any other auditing authority.

Date:	Signature:	
Eide	sstaatliche Erklärung	
vorliegende Arbeit von mit den ist. Inhalte und Passa oder indirekt übernommen Ferner versichere ich, dass angegebenen Literatur verw auf Textinhalte sowie alle	ides statt und durch meine Unterschrift, dass selbstständig, ohne fremde Hilfe angefertigt wegen, die aus fremden Quellen stammen und dir worden sind, wurden als solche kenntlich gemach keine andere, außer der im Literaturverzeich endet habe. Diese Versicherung bezieht sich sowenthaltenden Abbildungen, Skizzen und Tabeller Prüfungsbehörde vorgelegt und auch noch nich	vor- cht nnis voh len
Datum:	Unterschrift:	

Contents

1	Intr	roduction	1
	1.1	Motivation	1
	1.2	Tasks	1
	1.3	Structure	2
2	Mat	thematical Background	3
	2.1	Monomials	3
	2.2	Monomial Order	
	2.3	Ideals	6
	2.4	Division Algorithm	7
	2.5	Gröbner basis	9
	2.6	Gröbner fans	11
	2.7	Toric Ideals	14
3	Enu	merating Gröbner fans and Code Ideals	15
	3.1	Enumerating Gröbner fans	15
		3.1.1 Breadth first search	20
		3.1.2 Reverse search tree	21
	3.2	Degree compatible Gröbner basis	24
	3.3	Linear Codes over Prime Fields	26
	3.4	Code Ideals	27
4	Soft	tware	29
	4.1	Data Structures	29
	4.2	Manual	31
	4.3	Computational experience	33
	4.4	Documentation and electronic availability	35
5	Fut	ure Work	36
6	Cor	nclusion	37

List of Figures

1	Gröbner fans for the given example	13
2	Comparison between the breath-first search and the reverse search	23
3	Comparison between the numbers of degree compatible and all Gröbner bases of binary linear code with the length 8	34
\mathbf{List}	of Algorithms	
1	Division Algorithm [1]	8
2	Buchbergers Algorithm [1]	
3	Finding the facets of a reduced Gröbner bases of I_A [2]	16
4	Finding a superset of the facet binomials of a reduced Gröbner	
	basis of I_A [2]	17
5	Local change of reduced Gröbner bases in I_A [2]	18
6	Enumerating the edge graph of the Gröbner fan via breath-first search [2]	20
7	Enumerating the edge graph of the Gröbner fan via reverse	
	search [2]	22
${f List}$	of Tables	
1	Computataional time in seconds	35

1 Introduction

1.1 Motivation

The Gröbner fan of a polynomial ideal is a polyhedral complex consisting of cones in $\mathbb{R}^n_{\geq 0}$. Many applications of Gröbner bases rely on the computation of the Gröbner fan. Gröbner bases have the nice property that they solve the Ideal membership problem and can be useful to solve polynomial equations. Furthermore, the Gröbner fan can be used for a necessary condition for the code equivalence problem.

In many applications, the complete Gröbner fan is not needed, but only the degree compatible. Computing this certain part of the Gröbner fan can be dramatically faster than computing the whole fan.

1.2 Tasks

The purpose of this bachelor thesis is to implement an efficient software, which enumerates the degree compatible Gröbner fan of a linear code. But first, the concepts and algorithms have to be researched. The mathematical background is discussed and then the implementation and its results are explained.

1.3 Structure

Chapter 2 deals with the mathematical background. The first subsections explains polynomials, term ordering, ideals and the ideal-membership problem which is necessary for the Gröbner bases and Gröbner fans.

Chapter 3 bases on chapter 2. The algorithms to enumerate the Gröbner fan of a linear code are introduced which is the main task to implement in the software.

Chapter 4 presents the basic data structures of the implementation. Furthermore this section shows a tutorial how to use the software and some computational experience.

Chapter 5 gives an overview of the future possible extensions and improvements.

In Chapter 6 conclusions about the results are drawn.

2 Mathematical Background

In this chapter a mathematical basis is systematically approached to give the reader an understanding of Gröbner Bases and Gröbner fans.

In the first section monomials are revisited. The second section explains how monomials can be totally ordered. After that ideals are defined over polynomial rings and a summary on Gröbner bases and Gröbner fans for ideals is presented. Furthermore, the next sections deal with enumerating Gröbner bases on special ideals. Finally, linear codes are presented and the connection between Gröbner bases and linear codes.

2.1 Monomials

In this section a brief explanation of polynomials is given.

Definition 2.1 (Monomial) [1] A monomial is a product of variables over a finite field \mathbb{K} , denoted by $\mathbb{K}[X_1, X_2, \dots, X_n]$ of the form $m = X_1^{u_1} X_2^{u_2} \cdots X_n^{u_n}$, where $u_i, 1 < i < n$ and $u \in \mathbb{N}_0$

The total **degree** of a monomial is $deg(m) = \sum_{i=1}^{n} u_i$.

Definition 2.2 (Polynomial) [1] A polynomial f is a finite linear combination with coefficients $c_u \in \mathbb{K}$ multiplied with monomials.

$$f = \sum_{u} c_u X^u$$

If $c_u \neq 0$ then $c_u x_u$ is a term of f.

2.2 Monomial Order

It is necessary to rearrange a polynomial with respect to a monomial order. That forms the foundation for dividing polynomials in the finite field $\mathbb{K}[X_1, X_2, \ldots, X_n]$ and solving the Ideal Membership Problem.

The Ideal Membership Problem describes if a polynomial lies in an ideal I. Ideals will be defined in section 2.3.

Definition 2.3 (Term Ordering) [3] A monomial order is a relation > on the set of all monomials in $\mathbb{K}[x]$. Let m_1 , m_2 and m_3 be monomials

- for any pair of monomials m_1 , m_2 , either $m_1 > m_2$ or $m_2 > m_1$ or $m_1 = m_2$
- if $m_1 > m_2$ and $m_2 > m_3$ then $m_1 > m_3$
- $m_1 > 1$ for any monomial $m_1 \neq 1$
- if $m_1 > m_2$ then $m \cdot m_1 > m \cdot m_2$ for any monomial m

Two commonly used term orders are the following. Let u and v be elements of \mathbb{N}_0^n .

Lexicographic Order [3] $u >_{lex} v$ if in u - v the left most non-zero entry is positive. This can be written as $X^u >_{lex} X^v$ if $u >_{lex} v$.

Graded Lex Order [3] $u >_{grlex} v$ if deg(u) > deg(v) or if deg(u) = deg(v) and $u >_{lex} v$.

Example 1 Let $m_1 = x^2y^4z^3$ and $m_2 = x^1y^1z^4 \in \mathbb{K}[x, y, z]$. The monomials can also be written as $m_1 = X^{(2 4 3)}$ and $m_2 = X^{(1 1 4)}$. Thus $m_1 >_{lex} m_2$ because the left most non-zero entry of (2 4 3) - (1 1 4) is positive.

The total degree of m_1 is 9 and $deg(m_2) = 6$. Hence, $deg(m_1) > deg(m_2)$ so that $m_1 >_{grlex} m_2$

Weight vectors

In order to compare monomials with a generic vector $(a_1, \ldots, a_n) \in \mathbb{R}^n_+$, the dot product with the exponent vector has to be taken. The highest result is the leading term. If a tie occurs, some other fixed monomial order has to be used. Note that the standard monomial orders can be expressed as weight vector. The lexicographic order needs for instance the first unit vector, if a tie occurs the second unit vector and so on.

Leading term

Given a term order >, each non-zero polynomial $f \in \mathbb{K}[x]$ has a unique leading term, denoted by LT(f), given by the largest involved term with respect to the term order.

If $LT(f) = cX^u$, where $c \in \mathbb{K}$, then c is the leading coefficient of f and X^u is the leading monomial (LM) or the initial monomial [1].

Example 2 Let $f = 3x^2y^5z^3 + x^4 - 2x^3y^4 + 12x^2z^2$ With respect to lex order: $f = \underline{x^4} - 2x^3y^4 + 3x^2y^5z^3 + 12x^2z^2$ with respect to grlex order: $f = \underline{3x^2y^5z^3} - 2x^3y^4 + x^4 + 12x^2z^2$ with respect to the weight vector $(3,2,1): f = \underline{3x^2y^5z^3} - 2x^3y^4 + x^4 + 12x^2z^2$ The underlined terms are the leading terms with the respect to the monomial order.

2.3 Ideals

Definition 2.4 (Ideal) [1] An ideal I is a collection of polynomials $f_1, \ldots, f_s \in \mathbb{K}[X_1, \cdots, X_n]$ and polynomials which can be built from these by addition and multiplication with arbitrary polynomials.

This is called an ideal generated by f_1, \ldots, f_s

$$\langle f_1, \dots, f_s \rangle = \left\{ \sum_{i=1}^s h_i f_i \mid h_1, \dots, h_s \in \mathbb{K} \left[X_1, \dots, X_n \right] \right\}$$

An ideal satisfies [3]:

- $0 \in I = \langle f_1, \cdots, f_s \rangle$
- If $f, g \in \langle f_1, \dots, f_s \rangle$, then $f + g \in \langle f_1, \dots, f_s \rangle$
- If $f \in \langle f_1, \dots, f_s \rangle$ and $h \in \langle f_1, \dots, f_s \rangle$, then $f \cdot h \in \langle f_1, \dots, f_s \rangle$

Example 3 Let $I = \langle f_1, f_2 \rangle = \langle x^2 + y, x + y + 1 \rangle$ and $f = yx^2 + y^2 + x^2 + xy + x$. Since $f = y \cdot f_1 + x \cdot f_2, f \in I$.

Definition 2.5 (Leading Ideal) [2] The leading ideal of I with respect to a term order > on $\mathbb{K}[X_1, \dots, X_n]$ is the monomial ideal

$$lt_{>}(I) = \langle lt_{>}(f) : f \in I \rangle.$$

The set $lt_{>}(f)$ means the leading term of f with respect to >. In other words, the leading ideal of I is the ideal generated by its leading terms.

2.4 Division Algorithm

The Ideal Membership Problem is easy to solve in a polynomial ring with one variable. It is only necessary to apply the polynomial division, which means dividing the polynomial by the ideal and to check if the remainder is zero. If the result has zero remainder, the polynomial p lies in the ideal I. But in a ring with several variables like $\mathbb{K}[X_1, X_2, \cdots X_n]$, the usual division algorithm will not work. A generalized algorithm is needed.

The goal is to divide $g \in \mathbb{K}[X_1, \dots, X_n]$ by $f_1, \dots, f_s \in \mathbb{K}[X_1, \dots, X_n]$, so g can be expressed in the form

$$g = a_1 f_1 + \ldots + a_s f_s + r$$

where the $a_1f_1 + \ldots + a_sf_s$ and $r \in \mathbb{K}[X_1, \cdots, X_n]$ [4]. The remainder r is zero or r is a linear combination with the coefficients in \mathbb{K} , none of them are divisible by any of LT $(f_1), \ldots, \text{LT}(f_s)$. Furthermore, if $a_if_i \neq 0$, then $deg(g) \geq deg(a_if_i)$.

Algorithm 1 Division Algorithm [1]

```
Require: Basis \langle f_1, \cdots, f_m \rangle of nonzero polynomials
Ensure: r
                 = 0 or none of the terms in r
                                                                                divisible
                                                                         are
    LT_{\leq}(f_1), \cdots, LT_{\leq}(f_m)
 1: h_1 \leftarrow 0, \cdots, h_m \leftarrow 0; r \leftarrow 0; s \leftarrow f
 2: while s \neq 0 do
        i \leftarrow 1
 3:
        division\_occured \leftarrow false
 4:
         while i \le m and division_occured = false do
 5:
             if LT(f[i]) divides LT(s) then
 6:
 7:
                 s \leftarrow s - (LT(s)/LT(f[i])) \cdot f_i
 8:
                 h_i \leftarrow h_i + LT(s)/LT(f_i)
                 division\_occured = true
 9:
             else
10:
                 i \leftarrow i + 1
11:
             end if
12:
        end while
13:
14:
        if division\_occured = false then
             r \leftarrow r + LT(s)
15:
             S \leftarrow s - LT(s)
16:
        end if
17:
18: end while
```

Example 4 Consider the ideal $I = \langle f_1, f_2 \rangle = \langle xy^2 + z, y^2 - 1 \rangle$ and the polynomial $f = x^3y^2 + x^2z$. First, with respect to the lex-order, applying the division gives the expression : $f = x^2(xy^2 + z) + 0(y^2 - 1) + 0$ But the division with f and $I = \langle f_2, f_1 \rangle$ gives the expression $f = x^3(y^2 - 1) + x^2(xy^2 + z) - x^3y^2 + x^3$.

This example shows that is still possible to obtain a non-zero remainder even if $f \in \langle f_1, f_2 \rangle$. That means r = 0 is a necessary condition for the ideal membership but not a sufficient condition.

2.5 Gröbner basis

The solution of the Ideal Membership Problem needs a certain generating set for an ideal I. It would be helpful if the remainder r on division is uniquely determined and the condition r = 0 is equivalent to the membership in the ideal.

Definition 2.6 (Gröbner basis) [1] Let \leq be a monomial order on $\mathbb{K}[X_1, \dots, X_n]$ and let I be an ideal on $\mathbb{K}[X_1, \dots, X_n]$. A Gröbner basis G for I (with respect to \leq) is a finite set of polynomials $G = \{f_1, \dots, f_m\}$ in I with the property that for every nonzero $f \in I$, $LT_{\geq}(f)$ is divisible by $LT(f_i)$ for some $1 \leq i \leq m$.

A Gröbner basis has the beneficial property that the remainder r of f by the elements of a Gröbner basis are uniquely determined and independent of the order of the elements in G. Also every ideal in $\mathbb{K}[X_1, \dots, X_n]$ has a Gröbner basis with respect to any monomial order[1].

In order to obtain a Gröbner basis of an arbitrary basis $\{f_1, \ldots, f_n\}$ with an arbitrary monomial order > of an ideal I, an algorithm is needed. This algorithm is called Buchberger-Algorithm. The idea is to build every possible S-Polynomial of (f_i, f_j) for every $1 \le i \ne j \le n$ and every nonzero result is added to the basis until every S-Pair of (f_i, f_j) vanishes.

Let the polynomials $f, g \in \mathbb{K}[X_1, \dots, X_n]$ and $LT_{\leq}(f) = cX^{\alpha}$, $LT_{\leq}(g) = dX^{\beta}$ and $LCM(X^{\alpha}, X^{\beta})$ be the least common multiple between X^{α} and X^{β} .

Definition 2.7 (S-Polynomial) [1] The S-polynomial of f and g is the polynomial

$$S(f,g) = \frac{\operatorname{LCM}(X^{\alpha}, X^{\beta})}{\operatorname{LT}_{\leq}(f)} \cdot f - \frac{\operatorname{LCM}(X^{\alpha}, X^{\beta})}{\operatorname{LT}_{\leq}(g)} \cdot g.$$

Example 5 Consider the polynomials the polynomial ring $\mathbb{K}[x, y, z]$ with the basis $\{f, g\} = \{xy^2 - xz + y, xy - z^2\}$ with respect to the lexicographic order. Forming the S-Polynomial leads to:

$$S(f, g) = \frac{\operatorname{LCM}(xy^2, xy)}{xy^2} \cdot (xy^2 - xz + y) - \frac{\operatorname{LCM}(xy^2, xy)}{xy} \cdot (xy - z)$$
$$= \frac{xy^2}{xy^2} \cdot (xy^2 - xz + y) - \frac{xy^2}{xy} \cdot (xy - z)$$
$$= -xz - yz + y$$

 \Diamond

The S-Polynomial is not zero and is not divisible by the leading terms of f or g. That means the basis given in the example is not a Gröbner basis. This can be deduced by the following assertion.

Definition 2.8 (Buchberger Criterion) [1] A finite set $G = \{f_1, \dots, f_m\}$ of polynomials in $\mathbb{K}[X_1, \dots, X_n]$ is a Gröbner basis of an ideal $I = \langle f_1, \dots, f_m \rangle$ if and only $S(f_i, f_j) = 0, \forall 1 \leq i, j \leq n, i \neq j$

Algorithm 2 Buchbergers Algorithm [1]

```
Require: Basis F = (f_1, \dots, f_m)
Ensure: Gröbner basis G for I = \langle f_1, \dots, f_m \rangle with F \subseteq G
 1: G \leftarrow F
 2: repeat
         G' \leftarrow G
 3:
         for each pair f_i and f_j in G, i \neq j do
 4:
              S \leftarrow S\left(f_i, f_i\right)^{G'}
                                                        \triangleright S-Polynomial with the basis of G'
 5:
              if G \neq 0 then
 6:
                   G \leftarrow G \cup \{S\}
 7:
              end if
 8:
          end for
 9:
10: until G = G'
```

This algorithm is correct and terminates.[1]

However, a Gröbner basis is not unique. A arbitrary polynomial can be added to a Gröbner basis and will remain a Gröbner basis. Fortunately, each nonzero ideal in $\mathbb{K}[X_1, \dots, X_n]$ has a unique reduced Gröbner basis with respect to a fixed monomial order.

Definition 2.9 (Reduced Gröbner basis) [1] A Gröbner basis $G = \{f_1, \dots, f_m\}$ in $\mathbb{K}[X_1, \dots, X_n]$ is reduced if the polynomials f_1, \dots, f_m are monic and no term f_i is divisible by $LT_{\leq}(f_j)$ for any pair $i \neq j$, where \leq is monomial order.

2.6 Gröbner fans

Gröbner bases for a fixed ideal I with different monomial orders can look very different and have different properties. The difference can be in the number of elements in the Gröbner basis, the size or the degree of the elements. So it will be helpful if all possible Gröbner basis of a fixed ideal can be collected together.

Even though there are infinite monomial orders for an ideal, the amount of reduces Gröber bases are finite [4].

Definition 2.10 (Gröbner fan) [4] A Gröbner fan of an ideal I consists of finitely many closed convex polyhedral cones with vertices at the origin, such that

- A face of a cone σ is $\sigma \cap \{l = 0\}$, where l = 0 is a nontrivial linear equation such that $l \geq 0$ on σ . Any face of a cone in the fan is also in the fan.
- The intersection of two cones in the fan is a face of each.

In order to construct a Gröbner fan to a given ideal, consider the marked Gröbner basis $G = \{g_1, \dots, g_t\}$ of the ideal I. A marked Gröbner basis is a Gröbner basis where each $g \in G$ has an identified leading term, such that G

is a reduced Gröbner basis with respect to some monomial order > selecting those terms. Informally, where all leading terms in G are marked.

The elements of G, g_i , can be written as

$$g_i = x^{\alpha(i)} + \sum_{\beta} c_{i,\beta} \cdot x^{\beta},$$

where $x^{\alpha(i)}$ is the leading term and $x^{\alpha(i)} > x^{\beta}$, with respect to a monomial order, whenever $c_{i,\beta} \neq 0$.

If a weight vector **w** satisfies the inequality $\alpha(i)*\mathbf{w} \geq \beta*\mathbf{w}$, the vector selects the correct leading term in g_i as the term with the highest weight.

So, the cone of a Gröbner basis can be written as [4]

$$C_G = \left\{ \mathbf{w} \in (\mathbb{R}^n)^+ : \alpha(i) \cdot \mathbf{w} \ge \beta \cdot \mathbf{w} \text{ whenever } c_{i,\beta} \ne 0 \right\}$$

Example 6 Consider the ideal with $I = \langle x^2 - z, y - x \rangle \in \mathbb{Q}[x, y, z]$. Note that the ring has 3 variables so that Gröbner fan can be plotted in the positive orthant \mathbb{R}^3_+ .

The marked Gröbner basis with respect to the *lex* order with x > y > z is

$$G^{(1)} = \left\{ \underline{y^2} - z, \underline{x} - y \right\}$$

The leading terms are underlined. Let $\mathbf{w} = (a, b, c) \in \mathbb{R}^3_+$. Then \mathbf{w} is in the cone C_{G^1} if and only if the inequalities defined above are satisfied.

- $(2,0,0) \cdot (a,b,c) \ge (0,0,1) \cdot (a,b,c)$ or $2a \ge c$
- $(0,1,0) \cdot (a,b,c) > (0,0,1) \cdot (a,b,c)$ or b > a

This is the first cone of the Gröbner fan and can be drawn in the positive orthant. It is sliced of the plane of a+b+c=d, $d \in \mathbb{R}_+$ for a better clarity.

Figure 1: Gröbner fans for the given example

Figure 1a shows that the Gröbner fan is not complete, since the cone does not cover the whole positive orthant. In this example, the other reduced Gröbner basis can be obtained by applying the Buchberger-Algorithm with common term orders to the ideal I. If the computed cones still are not the whole positive orthant, then a further computation with weight vectors are necessary.

The example illustrates clearly that an arbitrary non-negative weight vector can be selected and if the vector lies in a certain cone, the corresponding Gröbner base will match with respect to this weight vector.

This strategy is reasonable for small examples like above. In genearal, the whole Gröbner fan can be computed with the Gröbner walk [4].

An inexpensive way to obtain all reduced Gröbner bases of a special ideal, the Code ideal, will be explained in section 3.1.

2.7 Toric Ideals

This work is focused on Code Ideals, so it is useful to define toric ideals first. Given a matrix $A = [a_1, \ldots, a_n] \in \mathbb{Z}^{d \times n}$ and $u \in \mathbb{Z}^n$, which can be decomposed in u^+ and u^- , where u^+ and u^- have non-negative coefficients and disjoint support.

Definition 2.11 (Toric Ideal) [5] A toric ideal I_A is defined as

$$I_A = \langle \boldsymbol{x}^{u^+} - \boldsymbol{x}^{u^-} \mid u \in ker(A) \rangle$$

The toric ideal can also be expressed as

$$\mathbf{I}_A = \langle \mathbf{x}^u - \mathbf{x}^v \mid Au = Av, \ u, v \in \mathbb{N}_0^n \rangle.$$

3 Enumerating Gröbner fans and Code Ideals

Now that the mathematical background is given, the specific parts which are needed to implement the software and the connection between linear codes and Gröbner bases are presented. The first section deals with enumerating all Gröbner bases with the help of breadth-first and reverse search followed by the degree compatible Gröbner bases. After that, linear codes will be presented and to connect these two topics together, code ideals will be defined.

3.1 Enumerating Gröbner fans

In this section, two algorithms will be explained with the purpose to enumerate the Gröbner fan. To compute all Gröbner bases from a toric ideal I_A , it is necessary to search the *edge graph* of a Gröbner fan.

Two reduced Gröbner bases with respect to a term order covered by the generic weight vectors c_1 , c_2 are said to be adjacent if the two Gröbner cones share a common facet. Given a reduced Gröbner basis with respect to the weight vector c, facet binomials can be defined as follows.

Definition 3.1 (Facet Binomial) [2] The binomial $x^{\alpha_k} - x^{\beta_k} \in \mathcal{G}_c$ is a facet binomial of \mathcal{G}_c if and only if there exists a vector $u \in \mathbb{R}^n$ which satisfies:

- $\{\alpha_i \cdot u > \beta_i \cdot u : i = 1, \dots, t, i \neq k\}$
- $\{\beta_k \cdot u > \alpha_k \cdot u\}.$

Computing the facet binomials of a reduced Gröbner basis \mathcal{G} can be computationally expensive, because it is needed to solve as many linear programs as the cardinality of \mathcal{G} . Algorithm 3 for finding the facets can be as follows.

Algorithm 3 Finding the facets of a reduced Gröbner bases of I_A [2]

Input: Reduced Gröbner basis $\mathcal{G} = \{\underline{x}^{a_i} - x^{b_i} : i = 1, \dots, t\}$ of I_A Output: The facet binomials of \mathcal{G} 1: Facets := \emptyset 2: for each binomial $\underline{x}^{a_i} - x^{b_i}$ in \mathcal{G} do

3: if $a_i - b_i \notin \text{cone generated by } \{a_j - b_j : \underline{x}^{a_j} - x^{b_j} \in \mathcal{G}, i \neq k\}$ then

4: Facets := Facets $\cup \{x^{a_i} - x^{b_i}\}$ 5: end if

6: end for

Example 7 Given the reduced Gröbner basis

7: return Facets

 $\mathcal{G} = \{x_1 - x_5, x_2^2 - 1, x_2x_4 - x_5x_6, x_2x_6 - x_4x_5, x_3 - x_5, x_4^2 - 1, x_4x_5x_6 - x_2, x_5^2 - 1, x_6^2 - 1\}$ and it shall be determined if the term $x_2x_4 - x_5x_6$ is a facet or not. With linear programming, it must be checked if the vector $b = (0, 1, 0, 1, -1, -1)^T$ can be expressed by the matrix multiplication $A \cdot x = b$, where

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 2 & 1 & 0 & 0 \\ -1 & 0 & -1 & 1 & 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 2 \end{pmatrix}$$

Now the linear program can be set up to

$$\begin{array}{rcl} Ax & = & b \\ \text{subject to} & x & \geq & 0 \end{array}$$

Another way to find the facets without linear programming is possible with the property of the following initial ideals.

Let \mathcal{G}_c be a reduced Gröbner basis with respect to a generic weight vector c. Then $x^a - x^b$ is a facet binomial of \mathcal{G}_c only if $lt_c(I_a)$ (see definition 2.5) is the initial ideal of

$$W_{a-b} = \langle x^a - x^b \rangle + \langle x^c \mid x^c \text{ is a minimal generator of } lt_c(I_a), x^c \neq x^a \rangle$$

[2]. With the help of this property it is possible to define an algorithm to find a superset of facet binomials of a reduced Gröbner basis.

Algorithm 4 Finding a superset of the facet binomials of a reduced Gröbner basis of I_A [2]

```
Input: Reduced Gröbner basis \mathcal{G}_c of I_A
Output: A superset SS of the facet binomial \mathcal{G}_c

1: SS := \emptyset
2: for each x^a - x^b \in \mathcal{G}_c do
3: W_{a-b} := \langle x^a - x^b \rangle + \langle x^c \rangle \triangleright x^c is defined as before
4: if lt_c(I_A) is the leading ideal of W_{a-b} with respect to x_a > x_b then
5: SS := SS \cup \{x^a - x^b\}
6: end if
7: end for
8: return SS
```

In the example 6 the facet binomials of a Gröbner cone determine the border to an other Gröber cone. In order to traverse from a Gröber base \mathcal{G}_c to a neighboured Gröbner base $\mathcal{G}_{c'}$ with the certain facet $x^{\alpha} - x^{\beta}$, a procedure making a local change from \mathcal{G}_c to $\mathcal{G}_{c'}$ is required. This procedure is called flip and is presented in algorithm 5.

Algorithm 5 Local change of reduced Gröbner bases in I_A [2]

Input: Reduced Gröbner basis \mathcal{G} of I_A

A prescribed facet binomial $\underline{x}_i^a - x_i^b \in \mathcal{G}$

Output: The reduced Gröbner basis is adjacent to \mathcal{G} in which $\underline{x}_i^b - x_i^a$ is a facet binomial.

- 1: Old := $\{\underline{x}_i^a x_i^b\} \cup \{\underline{x}_j^a : \underline{x}_j^a x_j^b \in \mathcal{G}, j \neq i\}$ \triangleright Prescribed Facet and leading terms only in Old
- 2: Temp := $\{\underline{x}_i^b x_i^a\} \cup \{\underline{x}_i^a : x_i^a \in Old\}$ > Flipping the facet Binomial
- 3: New := Reduced Gröbner basis with respect to the new marking ▷ See algorithm 2.
- 4: $\mathcal{G}' = \left\{ \underline{x}_i^b x_i^a \right\}$
- 5: for each monomial h in New do
- 6: Reduce h with \mathcal{G} to obtain the monomial h'.
- 7: Add h h' to \mathcal{G}' with h marked as the leading term.
- 8: end for
- 9: Auto-reduce \mathcal{G}' to get $\mathcal{G}_{new} \triangleright$ no term shall be divisible by a leading term

This algorithm is correct and can terminate [2]. The main advantage of the algorithm is that no weight vectors must be stored or computed. Weight vectors are carried implicitly and that is possible due to the binomial structure that this subroutine generates for every Gröbner basis. For this work $\operatorname{flip}(x_i^a - x_i^b, \mathcal{G})$ means that algorithm 5 is applied with the needed input.

Example 8 Consider the reduced Gröbner basis with respect to a term order \succ : $\mathcal{G} = \{x_6^2 - 1, x_5^2 - 1, x_4x_5x_6 - x_2, x_4^2 - 1, x_3 - x_5, x_2x_6 - x_4x_5, x_2x_5 - x_4x_6, x_2x_4 - x_5x_6, x_2^2 - 1, x_1 - x_5\}.$

Applying the procedure flip $(x_3 - x_5, \mathcal{G})$ leads to:

Old :=
$$\{x_3 - x_5, x_6^2, x_5^2, x_4x_5x_6, x_4^2, x_2x_6, x_2x_5, x_2x_4, x_2^2, x_1\}$$

Temp := $\{x_5 - x_3, x_6^2, x_5^2, x_4x_5x_6, x_4^2, x_2x_6, x_2x_5, x_2x_4, x_2^2, x_1\}$

Now the new Gröbner basis has to be calculated, but first it useful to know that all pairs of binomials which have the least common multiple 1 will be auto-reduced to zero. In other words, it is only necessary to form the S-Pairs of binomials that are not relatively prime.

$$S(x_5 - x_3, x_5^2) = x_3 x_5$$

$$S(x_5 - x_3, x_4 x_5 x_6) = x_3 x_4 x_5$$

$$S(x_5 - x_3, x_2 x_5) = x_2 x_3$$

$$S(x_5 - x_3, x_3 x_5) = x_3^2$$

Now the new Gröbner basis \mathcal{G}' shall be filled with all monomials from \mathcal{G} . The underlined terms are the terms reduced with \mathcal{G} and will be the new non-leading terms.

$$x_{3}x_{5} = x_{5}(x_{3} - x_{5}) + 1(x_{5}^{2} - 1) + \underline{1}$$

$$x_{3}x_{4}x_{6} = x_{4}x_{6}(x_{3} - x_{5}) + 1(x_{4}x_{5}x_{6} - x_{2}) + \underline{x_{2}}$$

$$x_{2}x_{3} = x_{2}(x_{3} - x_{5}) + 1(x_{2}x_{5} - x_{4}x_{6}) + \underline{x_{4}x_{6}}$$

$$x_{3}^{2} = x_{3}(x_{3} - x_{5}) + x_{5}(x_{3}x_{5}) + 1(x_{5}^{2} - 1) + \underline{1}$$

$$x_{1} = (x_{1} - x_{5}) + (x_{5} - x_{3}) + \underline{x_{3}}$$

$$x_{2}x_{6} = (x_{2}x_{6} - x_{4}x_{5}) + x_{4}(x_{5} - x_{3}) + \underline{x_{3}x_{4}}$$

$$x_{2}x_{4} = (x_{2}x_{4} - x_{5}x_{6}) + x_{6}(x_{5} - x_{3}) + \underline{x_{3}x_{6}}$$

The other monomials of \mathcal{G} are not notated here because they did not get a new non-leading term.

This results to the Gröbner base:

$$\mathcal{G}' = \{x_5 - x_3, x_6^2 - 1, x_5^2 - 1, x_4x_5x_6 - x_2, x_4^2 - 1, x_2x_6 - x_3x_4, x_2x_5 - x_4x_6, x_2x_4 - x_3x_6, x_2^2 - 1, x_1 - x_3, x_3x_5 - 1, x_3x_4x_6 - x_2, x_2x_3 - x_4x_6, x_3^2 - 1\}$$
 This Gröbner base is not reduced yet. After cancelling all binomials whose terms are divisible by some other leading terms the new reduced Gröbner basis is $\mathcal{G}_{new} = \{x_5 - x_3, x_6^2 - 1, x_4^2 - 1, x_2x_6 - x_3x_4, x_2x_4 - x_3x_6, x_2^2 - 1, x_1 - x_3, x_3x_4x_6 - x_2, x_2x_3 - x_4x_6, x_3^2 - 1\}$

3.1.1 Breadth first search

In this section an algorithm to enumerate the edge graph of a Gröbner fan via breath-first search and its drawbacks are presented.

Algorithm 6 Enumerating the edge graph of the Gröbner fan via breath-first search [2]

```
Input: Any reduced Gröbner basis \mathcal{G}_0 of I_A
Output: All reduced Gröbner bases of I_A, (all vertices of the edge graph)
 1: Todo := [\mathcal{G}_0]
 2: Verts := []
 3: while Todo \neq \emptyset do
          \mathcal{G} := \text{first element in (Todo)}
         Remove \mathcal{G} from Todo
 5:
          add \mathcal{G} to Verts
 6:
         determine list L of facet binomials of \mathcal{G}
 7:
                                                                    ▶ With linear programming
         for each x^{\alpha} - x^{\beta} \in L do
 8:
              \mathcal{G}' = \text{flip}(\mathcal{G}, x^{\alpha} - x^{\beta})
 9:
              if \mathcal{G}' \notin \text{Todo} \cup \text{Verts then}
10:
                   add \mathcal{G}' to Todo
11:
              end if
12:
          end for
13:
14: end whilereturn Verts
```

This algorithm is intuitive but has the drawback that every vertex of the edge graph must be stored and every vertex must be checked against all other vertices if it is a new vertex or not. The more vertices the edge graph has, the more expensive the calculation will be. Also the need of memory will arise if a Gröbner fan has a lot of cones.

3.1.2 Reverse search tree

The disadvantages can be canceled out with a memoryless algorithm, which runs linear depending on the size of output. The idea is to enumerate the edge graph with depth-first reverse search. The result will be a directed subgraph of the edge graph, called reverse search tree $T_{\succ}(I_A)$.

Definition 3.2 (Mismarked Polynomial) [2] A polynomial f that has been marked with respect to the monomial order > is mismarked with respect to the monomial order >'.

Example 9 Consider the reduced Gröbner base

 $\mathcal{G} = \{x^2y - z, y^2 - xz, zy - xy^2z\}$ with a certain monomial order >, which is not the lexicograpic order. Then, the second and last term are clearly mismarked with respect to $>_{lex}$.

Applying the flip-procedure $(\mathcal{G}, y^2 - xz)$ leads to the Gröbner base $\mathcal{G} = \{x^2y - z, xz^2 - y^2, zy - xy^2z\}$. Now only the last binomial is mismarked and using flip $(\mathcal{G}, zy - xy^2z)$ the result is the reduced Gröbner basis with respect to the lexicographic order $\mathcal{G} = \{xy^2z - xy, xz^2 - y^2, xy - z\}$. Note that every monomial can not be divided by the leading terms, so all Gröbner bases are reduced and no auto-reduce is necessary.

The reverse search tree $T_{\succ}(I_A)$ with a given monomal order \succ can be defined as follows:

Definition 3.3 (Reverse Search Tree) [2] For two reduced Gröbner bases \mathcal{G}_i and \mathcal{G}_j , $[\mathcal{G}_i, \mathcal{G}_j]$ directed from \mathcal{G}_i to \mathcal{G}_j is an edge of $T_{\succ}(I_A)$ if \mathcal{G}_i is obtained from \mathcal{G}_j by the algorithm 5 flip $(x^{\alpha} - x^{\beta}, \mathcal{G}_i)$. x^{α} is lexicographically maximal among all facet binomials of \mathcal{G}_i , that are mismarked with respect to \succ .

It can be shown that the reverse search tree is an acyclic graph with a unique sink and from any reduced Gröbner basis of \mathcal{G}_c of a toric ideal I_A , there is a unique path to the sink \mathcal{G}_{\succ} [2]. Unlike the Gröbner walk procedure, there are still no weight vectors involved, but in return every facet of the Gröebner cone must be computed, which can be computionally expensive for reduced Gröbner basis with many polynomials.

Algorithm 7 Enumerating the edge graph of the Gröbner fan via reverse search [2]

```
Input: Any reduced Gröbner basis \mathcal{R}_{\succ} of I_A and its term order \succ
Output: All reduced Gröbner bases of I_A, (all vertices of the edge graph)
 1: \mathcal{G} := \mathcal{R}_{\succ}; j := 0; L := \text{list of facet binomials of } \mathcal{G} \text{ marked by } \succ
 2: add \mathcal{G} to output
 3: repeat
 4:
           while j < |L| do
                j := j + 1
 5:
                \mathcal{G}' := \text{flip}(\mathcal{G}, L[j]);
 6:
                if [\mathcal{G}',\mathcal{G}] \in T_{\succ}(I_A) then
 7:
                                                                                    ▷ Check for adjacency
                     \mathcal{G} := \mathcal{G}'; \ j := 0
 8:
 9:
                     L := \text{list of facet of } \mathcal{G} \text{ marked by } \succ
                     add \mathcal{G} to output
10:
                end if
11:
           end while
12:
          if \mathcal{G} \neq \mathcal{R}_{\succ} then
13:
                \mathcal{G}' := \text{ unique element such that } [\mathcal{G}', \mathcal{G}] \in T_{\succ}(I_A)
14:
15:
                L := \text{list of facets of } \mathcal{G}' \text{ marked by } \succ
16:
17:
                repeat
                     j := j + 1
18:
                until the common facet of \mathcal{G} and \mathcal{G}' is the j-th facet of L
19:
           end if
20:
21: until \mathcal{G} = \mathcal{R}_{\succ} and j = |L|
```

Example 10 Consider the ideal with the reduced Gröbner basis with respect to the lexicographic order $x_1 > ... > x_6$

$$G = \{x_1 - x_2, x_3 - x_4, x_5 - x_6, x_2^2 - 1, x_4^2 - 1, x_6^2 - 1\}.$$

Applying the breath-first search algorithm for this reduced Gröbner basis results to the following edge graph.

Using the reverse search method, this search tree on figure 2b results.

Figure 2: Comparison between the breath-first search and the reverse search

The flipping binomials at figure 2b are written on the edges.

The Gröbner bases are:

$$\mathcal{G}_{1} = \{x_{1} - x_{2}, x_{3} - x_{4}, x_{5} - x_{6}, x_{2}^{2} - 1, x_{4}^{2} - 1, x_{6}^{2} - 1\}$$

$$\mathcal{G}_{2} = \{x_{1} - x_{2}, x_{4} - x_{3}, x_{5} - x_{6}, x_{2}^{2} - 1, x_{3}^{2} - 1, x_{6}^{2} - 1\}$$

$$\mathcal{G}_{3} = \{x_{2} - x_{1}, x_{4} - x_{3}, x_{5} - x_{6}, x_{1}^{2} - 1, x_{3}^{2} - 1, x_{6}^{2} - 1\}$$

$$\mathcal{G}_{4} = \{x_{1} - x_{2}, x_{3} - x_{4}, x_{6} - x_{5}, x_{2}^{2} - 1, x_{4}^{2} - 1, x_{5}^{2} - 1\}$$

$$\mathcal{G}_{5} = \{x_{1} - x_{2}, x_{4} - x_{3}, x_{6} - x_{5}, x_{2}^{2} - 1, x_{3}^{2} - 1, x_{5}^{2} - 1\}$$

$$\mathcal{G}_{6} = \{x_{2} - x_{1}, x_{4} - x_{3}, x_{6} - x_{5}, x_{1}^{2} - 1, x_{3}^{2} - 1, x_{5}^{2} - 1\}$$

$$\mathcal{G}_{7} = \{x_{2} - x_{1}, x_{3} - x_{4}, x_{6} - x_{5}, x_{1}^{2} - 1, x_{4}^{2} - 1, x_{5}^{2} - 1\}$$

$$\mathcal{G}_{8} = \{x_{2} - x_{1}, x_{3} - x_{4}, x_{5} - x_{6}, x_{1}^{2} - 1, x_{4}^{2} - 1, x_{6}^{2} - 1\}$$

A lot of edges were saved which results to less computation.

3.2 Degree compatible Gröbner basis

Computing the whole Gröbner fan can be very expensive and not every Gröbner basis is interesting. In this section, the degree compatible Gröbner fan is introduced and how the algorithm can be changed so that only the degree compatible Gröbner fan will be computed.

Definition 3.4 (Degree compatible Gröbner basis) [6] A reduced Gröbner basis for an ideal I with respect to a certain monomial order is degree compatible if and only if the corresponding Gröbner cone contains the all-one vector **1**.

Equivalent to this, the leading term of every polynomial must have the highest degree. Since a Gröbner fan is homogeneous at \mathbb{R}^n_+ , there will be at least one degree compatible Gröbner basis. That is a special case can be easily determined as follows.

Definition 3.5 (Only degree compatible Gröbner basis) [6] A Gröbner basis \mathcal{G} with respect to a degree compatible monomial ordering > is the only degree compatible Gröbner basis for an ideal if and only if

$$deg(x^a) > deg(x^b) \ \forall \ x^a - x^b \in \mathcal{G}.$$

This can be also described by the all-one vector that lies completely in a Gröbner cone of a Gröbner basis \mathcal{G} . It follows that the all-one vector does not intersect with any facets if there is only one degree compatible Gröbner basis.

The algorithms 6 and 7 can be adapted in order to compute only the degree compatible Gröbner fan.

The breadth-first search now needs a degree compatible Gröbner basis as an input. This can be achieved by applying the Buchberger Algorithm with a degree compatible monomial, for example the *grlex* order. After that it is required that the Gröbner basis is checked if its is the only degree compatible basis. Also the only facet binomials $x^a - x^b$ which are allow to be "flipped" are the binomials that satisfy the condition $\deg(x^a) = \deg(x^b)$.

The reverse search tree can be deployed as in definition 3.3 but with the restriction that $deg(x^a) = deg(x^b)$ must be fulfilled to traverse the degree compatible Gröbner fan. Lemma 2.2 from [6] guarantees that at least one such facet binomial will be found. The sink of the reverse search tree contains binomials that are not mismarked with respect to some degree compatible monomial order.

3.3 Linear Codes over Prime Fields

This work is focused on computing the Gröbner fan of linear codes. Now the mathematic background of the Gröbner fans is given, the linear Codes and code ideals have to be defined to give a connection between these two topics. Let \mathbb{F} be a finite field and let n and $k \in \mathbb{N}$ with $n \geq k$.

Definition 3.6 (Linear Code) [5] A linear code of length n and dimension k over \mathbb{F} is the image \mathcal{C} of a injective linear mapping $\phi : \mathbb{F}^k \to \mathbb{F}^n$

Such a code will be denoted as an [n,k] code and its elements are called codewords. The codewords are written as row vectors. The Code \mathcal{C} can alternatively be described as a row space matrix of $G \in \mathbb{F}^{k \times n}$. The rows of G form a basis of \mathcal{C} . The matrix G is also called generator matrix for \mathcal{C} .

Definition 3.7 (Standard form) [5] A [n,k] code C is in standard form if it has a generator matrix like $G = (I_k|M)$, where I_k is the $k \times k$ matrix.

Example 11 Consider the binary [7,4] Hamming Code with its generator matrix

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

The codeword c of the word x is obtained with the vector-multiplication

$$xG = c$$

Let x be (1,0,1,0), then the codeword c results to:

$$(1,0,1,0) \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{pmatrix} = (1,0,1,0,0,0,1)$$

 \Diamond

Two codes are equivalent if one generator matrix can be obtained from the other by permuting columns and rows. It follows that every linear code is equivalent to a linear code in standard form.[5]

A linear Code C can be *punctured* by deleting individual code symbols. This reduces the length of the code and rises the data rate for a transmission of a code.

3.4 Code Ideals

In this section, the linear codes and the Gröbner bases come together. Each linear code \mathcal{C} can be associated to a binomial ideal.[dueckpaper] Let \mathcal{C} be a [n, k] code and let $\mathbb{K}[\mathbf{x}] = \mathbb{K}[x_1, \dots, x_n]$. Then the code ideal can be defined as follows:

Definition 3.8 (Code Ideal) [6] A code ideal I(C) is the union between the toric ideal and a nonprime ideal I_p , such that

$$I_{\mathcal{C}} = \langle \boldsymbol{x}^{c} - \boldsymbol{x}^{c'} | c - c' \in \mathcal{C} \rangle + I_{p},$$
where $I_{p} = \langle x_{i}^{p} - 1 | 1 \leq i \leq n \rangle$

Example 12 Let C_1 be a binary [6,3] code with generator matrix

$$G_1 = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

The associated code ideal $I(\mathcal{C})$ leads to:

$$I(\mathcal{C}) = \{x_1 - x_5, \ x_2 - x_4 x_5 x_6, \ x_3 - x_5\} \cup \{x_1^2 - 1, \ x_2^2 - 1, \ x_3^2 - 1, \ x_4^2 - 1, \ x_5^2 - 1, \ x_6^2 - 1\}$$

Note that the terms $x_1^2 - 1$, $x_2^2 - 1$, $x_3^2 - 1$ are divisible by the leading terms of the toric ideal. The reduced Gröbner basis $\mathcal{G}_{>}$ with respect to the lexicographic ordering > with $x_1 > \cdots > x_6$ is:

$$\mathcal{G}_{>} = \{x_1 - x_5, x_2 - x_4 x_5 x_6, x_3 - x_5\} \cup \{x_4^2 - 1, x_5^2 - 1, x_6^2 - 1\}$$

Puncturing the fourth symbol x_4 results to new reduced Gröbner base

$$\mathcal{G}_{>} = \{x_1 - x_5, x_2 - x_5 x_6, x_3 - x_5\} \cup \{x_5^2 - 1, x_6^2 - 1\}.$$

Note that the term $x_4^2 - 1$ was auto-reduced.

4 Software

This section is all about the practical part of this work. At first, an accurate description is presented of how the software can be compiled and used for own demands. Secondly, the software is tested on some randomly generated linear Codes. The number of degree compatible and all Groebner bases are presented and comparison of the operational time against Gfan [7] is presented.

This software, called CIDGEL (Code Ideal degree compatible Groebner bases enumerating from Linear Codes), is a re-implementation of TiGERS [2], that is why the software is written in C. All features that are needed for the code ideals were added, also the adapted algorithms for computing degree compatible Groebner bases with reverse search and breath-first search were implemented. Additional features are explained in Section 4.2.

4.1 Data Structures

With the special attribute that code ideals only contain binomials and reduced Groebner bases have always the coefficient 1, only the exponent vectors representing the monomials have to be stored.

Listing 1: Data structure of binomials [2]

```
typedef struct bin_tag *binomial;
struct bin_tag{
   int *exps1;
   int *exps2;
   int *E;
   int ff;
   int bf;
   binomial next;
};
```

The pointer exps1 stores the exponent vector of the first monomial and exps2 does it with the second monomial. The integer ff is a flag which shows if a binomial is a facet binomial or not and bf tells if there is a monomial or binomial. The pointer binomial next indicates that binomials are linked together like a linear list, which is necessary to describe ideals and Groebner bases. The pointer E points to exps1 and exps2 and is used for allocating and deallocating space.

The next code snippet shows the other important data structure. Again, it is a linked list like the binomials with the purpose to connect all reduced Groebner together, which is needed for the breath-first search.

The first four integers show off the identification number of the vertex of the edge graph, the number of facet binomials, number of binomials and the highest degree. Next is a pointer to the next generating set of the linked list.

The binomial $cache_edge$ and the pointer $cache_vtx$ stores the caching information in order not to recompute every facet binomial in the reverse search.

Listing 2: Data structure of generating sets

```
typedef struct gset_tag *gset;

/* Linked List of gset_tag which contiains the binomial and the caching informations*/
struct gset_tag{
  int id;
  int nfacets;
  int nelts;
  int deg;
  binomial bottom;
  binomial cache_edge;
  struct gset_tag *cache_vtx;
  struct gset_tag *next;
};
```

4.2 Manual

This software was programmed and evaluated with Linux, so at first, it is needed to compile the software. The makefile is given and it only takes the console, moving to the direction of the folder and typing 'make'.

All inputs, outputs, options and flags are passed with the command-line arguments. At first it is useful to run the program with the purpose to print the help-message only with the command ./cidgel -h.

Listing 3: Code Snippet of the help-message

```
static char *helpmsg[] = {
   "Function: Enumerate all or d.c Groebner bases of a code ideal I(C).",
   "\n",
   "Options:\n",
   " —h print this message\n"
   " -i (filename) set file name for input [default: stdin]\n",
   " −o (filename) set file name for output [default: stdout]\n",
   " -m (filename) set file name for code-matching \n",
   " -R only compute root of tree n",
   " -r compute all grobner bases [done by default]\n",
   " -C turn partial caching on [done by default]\n",
   " -c turn partial caching off n",
   " -T print edges of search tree \n",
   " -t do not print edges of search tree [assumed by default]\n",
   "-L print vertices by giving initial ideals\n",
   " and printing facet biomials.\n",
   " -l print vertices as grobner bases [done by default]\n",
   "-F Use only linear algebra when testing facets [default]\n",
   " -f use FLIPPABILITY test first when determining facets\n",
   " -e use exhaustive search instead of reverse search\n",
   " -E use reverse search [default]\n",
   " -d degree compatible Groebner bases only \n",
   " -n do not print vertices or edges \n",
   " -p calculate Groebner fans of punctured codes \n",
   NULL
};
```

The listing above shows all options that are available. These flags can be passed in arbitrary order to the program. It is necessary to write a matrix and storing it into a file to give the program an input.

For example, the data has the name 'Example-input', has the following content and is in the same folder as the compiled software.

Note that 2 inputs for a program call are possible in order to check if the two codes are equivalent. It is possible to compare the whole or the degree compatible Gröbner fan. It will be checked if the Gröbner fans have the same amount of polynomials, facets and degree for each Gröbner basis. This provides a necessary but not a sufficient condition.

Listing 4: Example-input

This Matrix is a generator matrix for a binary [10,6] code in essential standard form. The first number in the first row gives the code dimension, the second tells the length of the codeword and the last number indicates in which primary field the generator matrix shall be evaluated.

Now if the degree compatible Groebner bases of this generator matrix without printing the Groebner basis shall be written in a outputfile called Example-output. Additionally the linear programming shall be leaved out, then the program call is: ./cidgel -i Example-input -o Example-output -d -n -f. The user do not has to specify an output file, the result will be printed in the console then.

Listing 5: Snippet of the example output

```
R: 10
G: \{a-i*j, b-g*h, c-g*h*i*j, d-h*i*j, e-g, f-h*j,
        g^2-1, h^2-1, i^2-1, j^2-1}
Enumerating degree compatible Groebner bases
  using reverse search
  taking input from randomgenerator/10_6
  with partial caching
  using wall ideal pretest for facet checking
Number of Groebner bases found 216
Number of edges of state polytope 792
max caching depth 10
max facet binomials 18
min facet binomials 12
max binomials in GB 41
min binomials in GB 40
max degree 3
min degree 2
randomgenerator/10_6: Reverse Search, Caching, A-pretest,
time used (in seconds) 42.16
```

4.3 Computational experience

In this section the difference between degree compatible Gröbner bases and all Gröbner bases from a linear Code are studied. Furthermore, the computational time for all Gröbner bases is compared against Gfan. The linear codes were randomly generated.

Figure 3: Comparison between the numbers of degree compatible and all Gröbner bases of binary linear code with the length 8

Figure 3 shows a remarkable difference between all reduced Gröbner bases of a code ideal and the degree compatible. The next table shows the computational time of the randomly generated codes.

The table shows that the software CIDGEL can be way faster than Gfan for computing all the reduced Gröbner bases of a code ideal. The reason is the special binomial structure of the code ideals and the fast algorithms that can be linked with. Gfan is a software for Gröbner bases with more general structure. Even though the amount of all Gröbner bases are much more than the degree compatible Gröbner bases, the computational time does hold proportionally to the amount. The computational time depends most on the computation of facets, see page 16. The degree compatible Gröbner bases mostly have more binomials than all other Gröbner bases, that is why the computational time for a code ideal with a few Gröbner bases will last longer than for a code ideal with many Gröbner bases with low cardinality.

Dimension k	CIDGEL d.c.	CIDGEL	Gfan
1	0.01	0.011	0.239
2	0.206	10.198	38.127
3	0.08	0.688	6.32
4	7.743	25.86	47.748
5	0.19	0.608	3.588
6	0.029	0.039	0.553
7	0.009	0.009	0.116

Table 1: Computational time in seconds

For linear codes with the length more than 9 the computation took more than 10 hours for the complete Gröbner fan. The reason is that the amount of reduced Gröbner bases and the cardinality of each basis will be greater if the codewords will be longer. Nevertheless, the computation of the degree compatible Gröbner fan is useful for a certain length.

In some cases the amount of the degree compatible and all Gröbner bases can rise enormously. A randomly generated [9,2] code had 8 degree compatible Gröbner bases and overall 295.863 Gröbner bases. Computing the whole fan took 24.471,32 and the degree compatible fan only took 1,08 seconds.

4.4 Documentation and electronic availability

A HTML-based documentation of the software is created with the help of doxygen [8]. The software is also available under my repository https://github.com/smdr2670/CIDGEL

5 Future Work

Even if the algorithms are well suited for the given problems, this software can be improved. The algorithms themselves may already have mathematically the best performance. Section 4.3 shows that the computation of facets is the most expensive step, so the performance can be heavily improved by enhancing the linear programming. The software uses a built-in LP solver mentioned in [2], but extern LP-solver like the GLPK (GNU Linear Programming Kit) could be more efficient.

The software package CaTS [9] enumerates all reduced Gröbner bases for a lattice Ideal. CaTS uses an external LP-Solver too to improve the performance.

Another approach will be parallelization of the computation of facets. To compute the facets, a certain amount of linear programs have to be set up, which can be solved independently. Every processor core of the computing unit can solve the linear programs.

If a LP solver is thread-safe, both ideas can be put together and lead to a large speedup.

6 Conclusion

In this thesis a software was introduced to compute the Gröbner fan of linear codes. Firstly, the mathematical background and concepts were discussed with the purpose to develop the software, with the hope that it might be useful for researches and other thesis that only needs the degree compatible Gröbner fan.

In my knowledge, no other software provides this useful feature to compute the degree compatible Gröbner fan. Computing the degree compatible can be dramatically faster than computing the whole Gröbner fan.

The given data structures and the well written algorithms from TiGERS [2] made it easy to extend the software with a lot of new features in terms of linear codes and the degree compatible Gröbner fan. The computational experience in section 4.3 shows that CIDGEL can be way faster than Gfan for computing the whole Gröbner fan. Computing the degree compatible Gröbner fan with CIDGEL leads to an additional speedup.

Bibliography

- [1] Karl-Heinz Zimmermann. Algebraic Statistics. July 2009.
- [2] Rekha R. Thomas Birkett Huber. Computing gröbner fans of toric ideals. Technical report, Institute for Defense Analysis, United States, Department of Mathematic, University of Washington, 1999.
- [3] Mehwish Saleemi. *Coding Theory via Groebner Bases*. PhD thesis, Technischen Universität Hamburg-Harburg, 2012.
- [4] David A. Cox, John Little, and Donal O'Shea. *Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics)*. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.
- [5] Karl-Heinz Zimmermann Natalia Dück. Universal gröbner bases for binary linear codes. *International Journal of Pure and Applied Mathematics*, 2013.
- [6] Natalia Dück. Computation of the d.c. gröbner fan. April 2014.
- [7] Anders Nedergaard Jensen. The gfan homepage, April 2005.
- [8] Dimitri van Heesch. Doxygen, April 2014.
- [9] Anders Nedergaard Jensen. Cats version 2.2: A user's manual, November 2003.