Improving Adaptive Quantum Entanglement Witnessing

Arianna Meinking Advisor: Theresa W. Lynn

Department of Physics

Acknowledgements

Ben Hartley W Characterization, W' Proposal

Oscar Scholin W' Choice Optimization

Paco Navarro Current lab

Eritas Yang W Characterization, W' Proposal

Becca Verghese W Characterization, W' Proposal

Theresa W. Lynn Advisor

Funding Sources:
HMC Physics Summer Research Fund
Donnelly Experimental Learning Fund
Vandiver Summer Research Fund

Work accompanied by experimental tests by:
Alec Roberson
Richard Cheng
Lev Gruber

Goal: high chance of witnessing two-qubit entanglement if present from a small fraction of measurements required for full state tomography

Quantum Communication via ... Entanglement!

A Definition of Entanglement

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

They're correlated across ANY bases!

A Definition of Entanglement

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

They're correlated across ANY bases!

A Definition of Entanglement

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Entangled system!

They're correlated across ANY bases!

Check ALL the Measurements

Quantum Tomography

Quantum Communication via ... Entanglement!

Quantum Communication via ... Entanglement!

Liu, X., Hu, J., Li, ZF, et al. *Nature* 10.1038 (2021)

A Solution: Entanglement Witnessing

Entanglement Witnesses

A Solution: Entanglement Witnessing

Entanglement Witnesses

$$W = |\varphi_k\rangle\langle\varphi_k|^{\Gamma}$$
 How about...

$$|\varphi_k\rangle = \frac{|01\rangle - |10\rangle}{\sqrt{2}}$$

Then

$$|\varphi_k\rangle\langle\varphi_k| = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & 0\\ 0 & 1 & -1 & 0\\ 0 & -1 & 1 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$|\varphi_k\rangle\langle\varphi_k|^{\Gamma} = \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 & -1\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ -1 & 0 & 0 & 0 \end{bmatrix}$$

The W Witness Group

Measurements

$$W_{1} = \frac{1}{4} \left[\mathbb{I} \otimes \mathbb{I} + \sigma_{z} \otimes \sigma_{z} + (a^{2} - b^{2}) \sigma_{x} \otimes \sigma_{x} + (a^{2} - b^{2}) \sigma_{y} \otimes \sigma_{y} + 2ab(\mathbb{I} \otimes \sigma_{z} + \sigma_{z} \otimes \mathbb{I}) \right]$$

- Minimize a and $b \rightarrow$ going from a family to just one W
- Riccardi et al. proposed 6 Ws only include $\sigma_z \otimes \sigma_z$, $\sigma_x \otimes \sigma_x$, $\sigma_y \otimes \sigma_y$ matrices
- Computationally generate random entangled mixed states*
- W_{1-6} detect 33% miss 67% of those states

Riccardi et al., PRAppl. 101, 062319 (2020)

^{*}Random state generation following method used in Roik et al., PRAppl. 15.054006(2021)

The W's

Measurements

$\sigma_x \otimes \sigma_x$	$\sigma_x \otimes \sigma_y$	$\sigma_x \otimes \sigma_z$
$\sigma_y \otimes \sigma_x$	$\sigma_y \otimes \sigma_y$	$\sigma_y \otimes \sigma_z$
$\sigma_z \otimes \sigma_x$	$\sigma_z \otimes \sigma_y$	$\sigma_z \otimes \sigma_z$

$$W'_{1} = \frac{1}{4} \Big[\mathbb{I} \otimes \mathbb{I} + \sigma_{z} \otimes \sigma_{z} + 2 \cos 2\theta \left(\sigma_{x} \otimes \sigma_{x} + \sigma_{y} \otimes \sigma_{y} \right) \\ + 2 \sin 2\theta \cos \alpha \left(\mathbb{I} \otimes \sigma_{z} + \sigma_{z} \otimes \mathbb{I} \right) \\ + 2 \sin 2\theta \sin \alpha \left(\sigma_{x} \otimes \sigma_{y} + \sigma_{y} \otimes \sigma_{x} \right) \Big]$$

- Now, minimize θ and α
- Mixed Pauli pairs!
- Subgroups
 - W'_{1-3}
 - W'_{4-6}
 - W'₇₋₉

5/9 of the measurements witness 2/3 of the states!

5/9 of the measurements witness 2/3 of the states!

More work to be done...

My Thesis: Expand the W' Options?

- Another subgroup
 - W'_{1-3}
 - W'_{4-6}
 - W'₇₋
 - W'_{10-12} ?

Expanding the W' Options... Impossible!

- Another subgroup
 - W'_{1-3}
 - W'_{4-6}
 - W'₇₋₉
 - W'_{10-12} ?
- The $\sigma_i \otimes \sigma_j$ groups must come with a paired $\sigma_j \otimes \sigma_i$ or some **cross-terms** ...
- $W = |\varphi_k\rangle\langle\varphi_k|^{\Gamma}$

The V Witnesses: Include Cross-Terms

$\sigma_x \otimes \sigma_x$	$\sigma_x \otimes \sigma_y$	$\sigma_{\scriptscriptstyle \chi} \otimes \sigma_{\scriptscriptstyle Z}$
$\sigma_y \otimes \sigma_x$	$\sigma_y \otimes \sigma_y$	$\sigma_y \otimes \sigma_z$
$\sigma_z \otimes \sigma_x$	$\sigma_z \otimes \sigma_y$	$\sigma_z \otimes \sigma_z$

- Different Subgroups!
 - Include a cross-term!
 - $\sigma_i \otimes \sigma_j$, $\sigma_j \otimes \sigma_k$ and $\sigma_i \otimes \sigma_k$
- Key Points:
 - Each Pauli pair adds restrictions
 - The groups we exclude is how we get constraints!

The V Witnesses: Include Cross-Terms

$$V_{4}$$

$$\sigma_{x} \otimes \sigma_{x} \quad \sigma_{x} \otimes \sigma_{y} \quad \sigma_{x} \otimes \sigma_{z}$$

$$\sigma_{y} \otimes \sigma_{x} \quad \sigma_{y} \otimes \sigma_{y} \quad \sigma_{y} \otimes \sigma_{z}$$

$$\sigma_{z} \otimes \sigma_{x} \quad \sigma_{z} \otimes \sigma_{y} \quad \sigma_{z} \otimes \sigma_{z}$$

- Different Subgroups!
 - $V_1 V_4$
- Four groups of $\sigma_i \otimes \sigma_j$, $\sigma_j \otimes \sigma_k$, $\sigma_i \otimes \sigma_k$
- Key Points:
 - Each Pauli pair adds restrictions
 - The groups we exclude is how we get constraints!

The W": Do a W' then ONE More

- One subgroup
 - W'₁₋₃
 - W'_{4-6}
 - W'₇₋₉

The W": Do a W' then ONE More

- One subgroup
 - W'_{1-3}
 - W'_{4-6}
 - W'_{7-9}
- Now W", just one additional measurement!
 - E.g. $\sigma_v \otimes \sigma_z + W'_{7-9} = W''_{\alpha}$
 - One extra measurement, or 3 measurements together, may be useful

The W": Do a W' then ONE More

- One subgroup
 - W'_{1-3}
 - W'_{4-6}
 - W'₇₋₉
- Now W", just one additional measurement!
 - E.g. $\sigma_y \otimes \sigma_z + W'_{7-9} = W''_{\alpha}$
 - One extra measurement, or 3 measurements together, may be useful

And the V and W" Witness New States!

Without Optimization ...

- V witness 0.5% states that are undetected by all W, W'
- W" witness 0.01% states that are undetected by all W, W'

The Three-Step V-Step Process

The Three-Step V-Step Process

Key Takeaways / Questions?

Remember...

Goal: high chance of witnessing two-qubit entanglement if present from a small fraction of measurements required for full state tomography

My work!

V and W" witnesses find new states!

Future work

- Minimize the V and W"!
- New way to parameterize witnesses?

BACKUP SLIDES

W' Extension impossible (backup)

Experimental Apparatus (backup)

We start with ... a single qubit!

We start with ... a single qubit!

$$|\psi\rangle = \cos\theta |0\rangle + e^{i\phi} \sin\theta |1\rangle$$

$$\rho_{\psi} = |\psi\rangle \langle\psi| \xrightarrow{\{|0\rangle,|1\rangle\}} \begin{pmatrix} \cos^2\theta & e^{-i\phi} \cos\theta \sin\theta \\ e^{i\phi} \cos\theta \sin\theta & \sin^2\theta \end{pmatrix}$$

Measurements?

$$\langle \sigma_z \rangle = tr(\rho_\psi \sigma_z)$$

Where..

$$\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

References

Alberto Riccardi, Dariusz Chruściński, and Chiara Macchiavello. "Optimal entanglement wit- nesses from limited local measurements". en. In: Physical Review A 101.6 (June 2020), p. 062319. ISSN: 2469-9926, 2469-9934. DOI: 10.1103/PhysRevA.101.062319. URL: https://link.aps.org/doi/10.1103/PhysRevA.101.062319 (visited on 05/24/2023).

Eritas Yang, Becca Verghese, and Ben Hartley. "Entanglement Witness Writeup". In: Unpublished (July 2022). URL: https://github.com/Lynn-Quantum-Optics/Summer-Spring-2022-3/blob/main/Summer2022/summer-2022-QO write up.pdf.

Jan Roik et al. "Accuracy of Entanglement Detection via Artificial Neural Networks and Human- Designed Entanglement Witnesses". In: Physical Review Applied 15 (May 2021). Publisher: American Physical Society, p. 054006. DOI: 10.1103/PhysRevApplied.15.054006. URL: https://link.aps.org/doi/10.1103/PhysRevApplied.15.054006 (visited on 05/30/2023).

Oscar Scholin, Richard Zheng, Alec Roberson, Theresa W. Lynn, "Entanglement Witnessing: Neural Network Optimization and Experimental Realization". Presented at SQUINT 2023.