Model-Checking de LTL

- Données: Une structure de Kripke M=(Q,T,A, q₀,AP, I) et une formule LTL φ.
- Question : Est-ce que M ⊧ φ?
 - M ⊧ φ ssi t,0 ⊧ φ pour toute trace initiale t de M.

Exercice

M⊧φ?

- φ=FGc
- φ=GFc
- φ=Ga
- $\phi = aU(G(b \lor c))$
- $X \neg c \rightarrow X X c$

Model-Checking de LTL: principe

- Soit Σ un alphabet. On note Σ^* l'ensemble des mots finis et Σ les mots infinis.
- Modèles de ϕ = mots infinis. Soit $[\phi]$ le langage des modèles de la formule : $[\phi] = \{t \in (2^{AP})^{\omega} \mid t, 0 \neq \phi\}$
- Soit [M] le langage des traces initiales de M : [M] = {t∈ (2^{AP})^ω | t est une trace initiale de M}
- Le problème du model-checking revient donc à vérifier si : [M]⊆[φ]

Outil : les automates de Büchi

- Définition : Un automate de Büchi est un n-uplet $A=(Q, \Sigma, I, T, F)$ avec
 - Q un ensemble fini d'états
 - Σ un alphabet fini
 - I⊆Q les états initiaux
 - $T\subseteq Q\times \Sigma\times Q$ la relation de transition
 - F⊆Q un ensemble d'états acceptants (ou répétés)

Outil : les automates de Büchi

- Une exécution de A sur un mot infini $w=w_0w_1w_2...$ de Σ^ω est une séquence $r=q_0q_1q_2q_3...$ telle que $q_0\in I$ et $(q_i,w_i,q_{i+1})\in T$, pour tout $i\geq 0$.
- r est acceptante si q_i∈F pour un nombre infini de
 i.
- w est accepté par A s'il existe une exécution acceptante de A sur w.
- $L(A)=\{w\in \Sigma^{\omega}\mid w \text{ accept\'e par }A\}.$

Automate de Büchi: exemple

Automate de Büchi: exemple

 $\mathcal{L}(\mathcal{A})$?

Automates de Büchi nondéterministes

- Les automates de Büchi non déterministes sont plus expressifs que les automates de Büchi déterministes
- Les langages reconnus par un NBA forment les ω -réguliers
- Toute formule de LTL peut être reconnue par un NBA

Les automates de Büchi pour LTL

- Définition : Un automate de Büchi est un n-uplet A=(Q, Σ, I, T, F) avec
 - Q un ensemble fini d'états
 - Σ un alphabet fini
 - I⊆Q les états initiaux
 - $T\subseteq Q\times \Sigma\times Q$ la relation de transition
 - F⊆Q un ensemble d'états acceptants (ou répétés)

Les automates de Büchi pour LTL

- Définition : Un automate de Büchi est un n-uplet $A=(Q, \Sigma, I, T, F)$ avec
 - Q un ensemble fini d'états
 - Σ un alphabet fini $\Sigma = 2^{AP}$
 - I⊆Q les états initiaux
 - $T\subseteq Q\times \Sigma\times Q$ la relation de transition
 - F⊆Q un ensemble d'états acceptants (ou répétés)

Exercice

- Exemple : automate de Büchi reconnaissant p, Xp.
- Construire des automates de Büchi reconnaissant Fp, XXp, Gp, FGp, GFp, pUq, pRq.

Automates de Büchi et LTL

- Les formules de LTL sont moins expressives que les automates de Büchi
- Exemple : «Un instant sur deux, l'événement a arrive.» est une propriété
 ω régulière non exprimable en LTL

Automates de Büchi

Théorème: Les automates de Büchi sont clos par union, intersection, et complément.

Théorème : on peut tester le vide d'un automate de Büchi.

Automates de Büchi - Test du vide

- Chercher si un état acceptant est accessible depuis l'état initial
- Chercher si cet état appartient à un cycle

Model-Checking LTL: approche par automates

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que L(A_M)=[M] (assez facile)
 - Transformer ϕ en un automate A_{ϕ} tel que $L(A_{\phi})=[\![\phi]\!]$ (plus difficile)
 - Tester si $L(A_M)\subseteq L(A_{\phi})$, i.e., si $L(A_M)\cap L(A_{\phi})^c=\emptyset$.

Model-Checking LTL: approche par automates

- Donnée: Structure de Kripke M, formule LTL φ.
- Transformer M en une menter un L(A_M)=[M] (assomple Büchi!!
 Transfocile de comple Büchi!
 Transfocile de comple Büchi!

 - Tes $L(A_M)\subseteq L(A_{\varphi})$, i.e., si $L(A_M) \cap L(A_{\varphi})^c = \emptyset$.

Model-Checking LTL: approche par automates

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que $L(A_M)=[M]$
 - Transformer ϕ en un automate $A_{\neg \phi}$ tel que $L(A_{\neg \phi}) = \llbracket \neg \phi \rrbracket$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$.

Transformer φ en un automate de Büchi

- . Automates de Büchi généralisés
- II. Réduire la formule
 - 1. Forme normale négative
 - Réduire les connecteurs temporels
- III. Construire un graphe
- V. Transformation en automate de Büchi

Transformer φ en un automate de Büchi

- . Automates de Büchi généralisés
- II. Réduire la formule
 - 1. Forme normale négative
 - Réduire les connecteurs temporels
- III. Transformation en automate de Büchi généralisé

Automates de Büchi généralisés

- Définition : Un automate de Büchi généralisé est un n-uplet $A=(Q, \Sigma, I, T, F)$ avec
 - Q un ensemble fini d'états
 - Σ un alphabet fini
 - I⊆Q les états initiaux
 - $T\subseteq Q \times \Sigma \times Q$ la relation de transition
 - F={F₁,F₂,...,F_k}⊆2^Q un ensemble d'ensemble d'états acceptants (ou répétés)

Automates de Büchi généralisés

- Une exécution de A sur un mot infini $w=w_0w_1w_2...$ de Σ^ω est une séquence $r=q_0q_1q_2q_3...$ telle que $q_0\in I$ et $(q_i,w_i,q_{i+1})\in T$, pour tout $i\geq 0$.
- r est acceptante si pour tout $\mathcal{F} \in F$, $q_i \in \mathcal{F}$ pour un nombre infini de i.
- w est accepté par A s'il existe une exécution acceptante de A sur w.
- $L(A)=\{w\in \Sigma^{\omega}\mid w \text{ accept\'e par }A\}.$

Automates de Büchi généralisés : exemple

GFp∧GFq:

Automates de Büchi généralisés avec condition sur les transitions

- Définition : Un automate de Büchi généralisé avec condition sur les transitions est un n-uplet A=(Q, Σ, I, T, F) avec
 - Q un ensemble fini d'états
 - Σ un alphabet fini
 - I⊆Q les états initiaux
 - $T\subseteq Q\times \Sigma\times Q$ la relation de transition
 - $T=\{T_1,T_2,...,T_k\}\subseteq 2^T$ un ensemble d'ensemble de transitions acceptantes (ou répétées)

Automates de Büchi généralisés avec condition sur les transitions - exemple

GFp∧GFq:

Des ABG aux AB

Théorème: Tout automate de Büchi généralisé A peut être transformé en un automate de Büchi A' tel que L(A)=L(A')

Transformer φ en un automate de Büchi

- . Automates de Büchi généralisés
- Réduire la formule
 - 1. Forme normale négative
 - Réduire les connecteurs temporels
- III. Transformation en automate de Büchi généralisé

Forme normale négative

$$\varphi ::= \bot \mid \top \mid p \mid \neg p \mid \phi \lor \phi \mid \phi \land \phi \mid$$

$$X\phi \mid \phi U\phi \mid \phi R\phi$$

- ¬¬p=p
- $\neg(\phi_1 \lor \phi_2) = \neg\phi_1 \land \neg\phi_2$
- $\neg(\phi_1 \land \phi_2) = \neg \phi_1 \lor \neg \phi_2$
- $\bullet \neg (X\phi) = X(\neg \phi)$
- $\bullet \neg (\phi_1 \cup \phi_2) = \neg \phi_1 R \neg \phi_2$
- $\bullet \neg (\phi_1 R \phi_2) = \neg \phi_1 U \neg \phi_2$

Exercice

 Transformer G(p→Fq) en forme normale négative

Réduire les connecteurs temporels

- Idée: Un état de notre graphe va représenter l'ensemble des propositions atomiques vérifiées au prochain instant de la séquence, et l'ensemble des sousformules qu'il «promet» de vérifier à l'état suivant.
- Pour cela, on ne veut que des propositions atomiques (ou négations), et des sousformules commençant par X (next).

Réduire les connecteurs temporels

- Un ensemble Z de formules en forme normale négative est réduit si
 - I. pour tout $z \in \mathbb{Z}$, z est de la forme p, $\neg p$ ou X(z')
 - 2. il est cohérent : $\bot \not\in Z$, $\{p, \neg p\} \not\subseteq Z$, pour tout $p \in AP$.

Réduire les connecteurs temporels

- On utilise les équivalences suivantes :
 - $\phi U \phi' \equiv \phi' \lor (\phi \land X(\phi U \phi'))$
 - $\phi R \phi' \equiv (\phi \wedge \phi') \vee (\phi' \wedge X(\phi R \phi'))$

$$(pUq)\land (\neg rUs)$$

$$(pUq)\land (\neg rUs)$$

Transformer φ en un automate de Büchi

- . Automates de Büchi généralisés
- II. Réduire la formule
 - 1. Forme normale négative
 - Réduire les connecteurs temporels
- Transformation en automate de Büchi généralisé

Exemple (fin)

$$T_{pUq} = \{(1,3)(3,3),(3,4),(4,4)\}$$

$$T_{\neg r \cup s} = \{(1,2),(2,2),(2,4),(1,4),(4,4)\}$$

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que $L(A_M)=[\![M]\!]$
 - Transformer ϕ en un automate $A_{\neg \phi}$ tel que $L(A_{\neg \phi}) = \llbracket \neg \phi \rrbracket$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$.

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que L(A_M)=[M]
 - Transformer ϕ en un automate $A_{\neg \phi}$ tel que $L(A_{\neg \phi}) = \llbracket \neg \phi \rrbracket$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$.

Transformer M en un automate de Büchi

- Soit $M=(Q,T,A,q_0,AP,I)$ une structure de Kripke. On construit un automate de Büchi $B=(Q',\Sigma,q'0,T',F)$ tel que $L(B)=[\![M]\!]$:
- Idée: on fait «basculer» les étiquettes des états vers les transitions + tous les états sont acceptants
 - $\Sigma = 2^{AP}$
 - Q'=T U {q₀'}
 - F=Q'
 - Soit $t=(q_0,q)\in T$, alors $(q_0',l(q_0),t)\in T'$
 - Soient t=(q,q') et $t'=(q',q'')\in T$, alors $(t,l(q'),t')\in T'$

Exemple

• au tableau

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que $L(A_M)=[M]$
 - Transformer ϕ en un automate $A_{\neg \phi}$ tel que $L(A_{\neg \phi})=[\neg \phi]$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$.

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que $L(A_M)=[M]$
 - Transformer ϕ en un automate $A_{\neg \phi}$ tel que $L(A_{\neg \phi}) = \llbracket \neg \phi \rrbracket$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$.

Tester le vide de l'intersection

- Construire l'automate $A_M \otimes A_{\neg \varphi}$ tel que $L(A_M \otimes A_{\neg \varphi}) = L(A_M) \cap L(A_{\neg \varphi})$. (cf théorème)
- Rechercher s'il existe un mot accepté par $A_M \otimes A_{\neg \phi}$. (cf théorème)

Model-Checking LTL: catching bugs with a lasso

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que L(A_M)=[M] ✓
 - Transformer ϕ en un automate $A_{\neg \phi}$ tel que $L(A_{\neg \phi}) = \llbracket \neg \phi \rrbracket$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$.

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que L(A_M)=[M] ✓ O(|M|)
 - Transformer ϕ en un automate $A_{\neg \phi}$ tel que $L(A_{\neg \phi}) = \llbracket \neg \phi \rrbracket$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$.

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que L(A_M)=[M] ✓ O(|M|)
 - Transformer φ en un automate $A_{\neg \varphi}$ tel que $L(A_{\neg \varphi}) = \llbracket \neg \varphi \rrbracket \checkmark \bigcirc (2|\varphi|)$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$.

- Donnée: Structure de Kripke M, formule LTL φ.
- Etapes de l'algorithme :
 - Transformer M en un automate A_M tel que L(A_M)=[M] ✓ O(|M|)
 - Transformer φ en un automate $A_{\neg \varphi}$ tel que $L(A_{\neg \varphi}) = \llbracket \neg \varphi \rrbracket \checkmark \bigcirc (2|\varphi|)$
 - Tester si $L(A_M) \cap L(A_{\neg \varphi}) = \emptyset$. \checkmark $O(|M|.2|\varphi|)$

Model-Checking LTL: techniques à la volée

- Pas nécessaire de construire l'automate produit en entier
- On construit pas à pas, et on s'arrête lorsqu'on trouve un cycle (=contreexemple).