TD1: Généralités sur les groupes

Exercices * : à préparer à la maison avant le TD, seront corrigés en début de TD.

Exercices ** : seront traités en classe en priorité.

Exercices $\star \star \star$: plus difficiles.

Exercice 1: *

Soit E un ensemble muni d'une loi de composition, associative, avec élément neutre e, et telle que tout élément de E possède un inverse à gauche. Montrer que tout élément de E possède un inverse à droite qui coïncide avec son inverse à gauche. En déduire que E est un groupe.

Exercice 2: *

Soit G un groupe tel que $g^2 = e$ pour tout $g \in G$. Montrer que G est abélien.

Exercice 3: *

Soit G un groupe et soit H un sous-ensemble fini non vide de G stable pour la loi de composition du groupe G.

- a) Montrer que H est un sous-groupe de G.
- b) Trouver un exemple d'un groupe G et d'un sous-ensemble non vide de G stable pour la loi de composition du groupe G qui ne soit pas un sous-groupe de G.

Exercice 4: *

Soit G un groupe et soit H un sous-groupe de G d'indice 2. Montrer que H est distingué dans G.

Exercice 5:

Soit G un groupe fini.

- a) Montrer que des éléments conjugués dans G sont de même ordre.
- b) Deux éléments de même ordre dans G sont-ils toujours conjugués?
- c) Trouver tous les groupes abéliens finis G pour lesquels la question précédente a une réponse positive. Un exemple non abélien?

Exercice 6:

Soit $f: G_1 \to G_2$ un morphisme de groupes et soit x un élément de G_1 d'ordre fini. Montrer que l'ordre de f(x) divise l'ordre de x.

Exercice 7: *

Montrer qu'il n'existe pas de morphisme de groupes surjectif de $(\mathbb{Q}, +)$ dans (\mathbb{Q}_+^*, \times) .

Exercice 8:

Donner la liste de tous les groupes (à isomorphisme près) de cardinal inférieur ou égal à 7.

Exercice $9: \star\star$

Soit G un groupe tel que le quotient par son centre est monogène. Prouver que G est abélien.

Exercice 10: **

Soit G un groupe. Vrai ou faux?

- a) Si tout sous-groupe H de G est distingué dans G, alors G est abélien.
- b) Si $H \triangleleft G$ et $K \triangleleft H$, alors $K \triangleleft G$.
- c) Soient x et $y \in G$ d'ordre fini. Alors xy est nécessairement d'ordre fini.

- d) Si G a un nombre fini de sous-groupes, alors G est fini.
- e) Si H et K sont des sous-groupes de G, alors $\langle H \cup K \rangle = HK$.

Exercice 11:

Soit S un sous-ensemble non vide d'un groupe fini G. Soient $N(S) := \{g \in G \mid gSg^{-1} = S\}$ et $C(S) := \{g \in G \mid \forall s \in S, gsg^{-1} = s\}$ le normalisateur et le centralisateur de S dans G. Montrer que :

- a) N(S) < G et $C(S) \triangleleft N(S)$.
- b) N(S) = G si et seulement si $S = \bigcup_{g \in G} gSg^{-1}$.
- c) Si $H \triangleleft G$, alors $C(H) \triangleleft G$.
- d) Si H < G, alors N(H) est le plus grand sous-groupe de G contenant H et dans lequel H est distingué.

Exercice 12: **

Soit G un groupe et soit $H \triangleleft G$ un sous-groupe distingué.

- a) Décrire les sous-groupes distingués de G/H en fonction de ceux de G.
- b) Soit K un sous-groupe de G.
 - i) Si K est distingué dans G et contient H, montrer que l'on a un isomorphisme $(G/H)/(K/H) \cong G/K$.
 - ii) Montrer que HK est un sous-groupe de G égal à KH.
 - iii) Montrer que H est distingué dans HK.
 - iv) Montrer que l'on a un isomorphisme $K/(K \cap H) \cong (HK)/H$.

Exercice 13:

Quel est le nombre minimal de transpositions nécessaires pour engendrer le groupe \mathfrak{S}_n .

Exercice 14: $\star\star\star$

Soit G un groupe de type fini

- a) Un sous-groupe H de G est-il nécessairement de type fini?
- b) Même question en supposant de plus que le cardinal de G/H est fini.

Exercice 15: **

On dit qu'un groupe G est d'exposant e si e est le plus petit entier $n \ge 1$ tel que pour tout $g \in G$, on a $g^n = 1$. Pour quels entiers e un groupe d'exposant e est-il nécessairement commutatif?

Exercice 16:

- a) Prouver que les sous-groupes de \mathbb{Z} sont les $n\mathbb{Z}$ pour $n \in \mathbb{N}$.
- b) Prouver que les sous-groupes non denses de \mathbb{R} sont les $a\mathbb{Z}$, avec $a \in \mathbb{R}$.

Exercice 17: **

Soit G un groupe fini.

- a) Montrer qu'il existe $n \in \mathbb{N}$ tel que G soit un sous-groupe de \mathfrak{S}_n .
- b) Montrer qu'il existe $n \in \mathbb{N}$ tel que G soit un sous-groupe de \mathfrak{A}_n .
- c) Montrer qu'il existe $n \in \mathbb{N}$ tel que G soit un sous-groupe de $GL_n(k)$, pour tout corps k.

Exercice 18: $\star\star\star$

Déterminer les classes de conjugaison dans \mathfrak{S}_n . Et dans \mathfrak{A}_n ?

Exercice 19

Montrer que si $n \geq 2$, \mathfrak{S}_{n+2} a deux sous-groupes non conjugués isomorphes à \mathfrak{S}_n .

Exercice 20: $\star \star \star$

Montrer que tout sous-groupe d'indice n dans \mathfrak{S}_n est isomorphe à \mathfrak{S}_{n-1} .