Introduction to Data Science (IDS) course

Instruction of Neural Network2

- Imagine a neural network with two inputs and one hidden layer same as below. Calculate the new weights based on back propagation.
 - Learning rate = 0.0.5
 - The real output is 1
 - There is no activation function in the neurons.

$$2 \times 0.11 + 3 \times 0.21 = 0.85$$

$$2 \times 0.12 + 3 \times 0.08 = 0.48$$

$$0.85 \times 0.14 + 0.48 \times 0.15 = 0.191$$

$$Error = 1 - 0.191 = 0.809$$

learning_rate = 0.05

$$E_6 = 0.809$$

 $w_6 = 0.15 + 0.05(0.809)0.48 = 0.17$

Now repeat feed forward with new weights

$$E_5 = 0.15 * 0.809$$

 $w_4 = 0.08 + 0.05(0.809 * 0.15)3 = 0.1$

 The following table consists of training data from an employee database. For a given row entry, Count represents the number of data tuples having the values for department, status, age, and salary given in that row.

department	status	age	salary	count
sales	senior	31 35	46K 50K	30
sales	junior	26 30	26K 30K	40
sales	junior	31 35	31K 35K	40
systems	junior	21 25	46K 50K	20
systems	senior	31 35	66K 70K	5
systems	junior	26 30	46K 50K	3
systems	senior	41 45	66K 70K	3
marketing	senior	36 40	46K 50K	10
marketing	junior	31 35	41K 45K	4
secretary	senior	46 50	36K 40K	4
secretary	junior	26 30	26K 30K	6

- Let status be the class-label attribute.
 - (a) Design a multilayer feed-forward neural network or the given data. Label the nodes in the input and output layers.
 - Using the multilayer feed-forward neural network obtained in (a), show the weight values after one iteration of the backpropagation algorithm, given the training instance:
 - "(sales, senior, 31 . . . 35, 46K . . . 50K)".
 - Indicate your initial weight values learning rate used.

- Every feasible solution is correct. Discrete-valued attributes can be encoded such that there is one input unit per domain value.
- For hidden layer units, the number should be smaller than that of input units, but larger than that of output units.

- Explain the network architecture knowing that we are trying to distinguish between head and tail!
 - And an example of training tuple's is as follows:
 - T1{0.6, 0.1, head},
 - T2{0.2, 0.3, tail}.

 This network should have two inputs and two outputs based on the training samples and also the number of hidden layers can be for example one layer with three neurons.

