Lecture 3 – Deterministic Finite Automata (DFA) COSE215: Theory of Computation

Jihyeok Park

2023 Spring

Recall

- Mathematical Preliminaries
 - Mathematical Notations
 - Inductive Proofs
 - Notations in Languages
- 2 Basic Introduction of Scala
 - Basic Features
 - Object-Oriented Programming (OOP)
 - Functional Programming (FP)
 - Immutable Collections (Data Structures)

Contents

1. Deterministic Finite Automata (DFA)

Definition

Transition Diagram and Transition Table

Extended Transition Function

Acceptance of a Word

Language of DFA (Regular Language)

Examples

Definition of DFA

Definition (Deterministic Finite Automata (DFA))

A deterministic finite automaton (DFA) is a 5-tuple:

$$D = (Q, \Sigma, \delta, q_0, F)$$

- Q is a finite set of states
- Σ is a finite set of symbols
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is the set of **final states**

$$D = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0,0)=q_1$$

$$\delta(q_1,0)=q_2$$

$$\delta(q_2,0)=q_2$$

$$\delta(q_0,1)=q_0$$

$$\delta(q_1,1)=q_0$$

$$\delta(q_2,1)=q_0$$

Definition of DFA


```
// The type definitions of states and symbols
type State = Int
type Symbol = Char
// The definition of DFA
case class DFA(
  states: Set[State].
  symbols: Set[Symbol],
  trans: Map[(State, Symbol), State],
  initState: State.
  finalStates: Set[State].
// An example of DFA
val dfa: DFA = DFA(
  states = Set(0, 1, 2),
  symbols = Set('0', '1'),
  trans = Map(
    (0, 0) \rightarrow 1, (1, 0) \rightarrow 2, (2, 0) \rightarrow 2,
    (0, '1') \rightarrow 0, (1, '1') \rightarrow 0, (2, '1') \rightarrow 0,
  ).
  initState = 0,
  finalStates = Set(2),
```

Transition Diagram and Transition Table

$$D = (\{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0,0)=q_1$$

$$\delta(q_1,0)=q_2 \qquad \qquad \delta(q_2,0)=q_2$$

$$\delta(q_2,0)=q_2$$

$$\delta(q_0, 1) = q_0$$

$$\delta(q_1,1)=q_0 \qquad \qquad \delta(q_2,1)=q_0$$

$$\delta(q_2,1)=q_0$$

Transition Diagram

Transition Table

q	0	1
$ ightarrow q_0$	q_1	q_0
q_1	q 2	q_0
* q 2	q 2	q_0

Extended Transition Function

Definition (Extended Transition Function)

For a given DFA $D=(Q, \Sigma, \delta, q_0, F)$, the extended transition function $\delta^*: Q \times \Sigma^* \to Q$ is defined as follows:

- (Basis Case) $\delta^*(q, \epsilon) = q$
- (Induction Case) $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$


```
// The type definition of words
type Word = String
// A helper function to extract first symbol and rest of word
object `<|` { def unapply(w: Word) = w.headOption.map((_, w.drop(1))) }</pre>
// The extended transition function of DFA
def extTrans(dfa: DFA)(q: State, w: Word): State = w match
  case "" => q
  case a <| x => extTrans(dfa)(dfa.trans(q, a), x)
// An example transition for a word "100"
extTrans(dfa)(0, "100") // 2
```

Acceptance of a Word

Definition (Acceptance of a Word)

For a given DFA $D = (Q, \Sigma, \delta, q_0, F)$, we say that D accepts a word $w \in \Sigma^*$ if and only if $\delta^*(q_0, w) \in F$

$$\delta^*(q_0, 100) = q_2 \in F$$

It means that D accepts 100.

Acceptance of a Word


```
// The acceptance of a word by DFA
def accept(dfa: DFA)(w: Word): Boolean =
  val curSt: State = extTrans(dfa)(dfa.initState, w)
  dfa.finalStates.contains(curSt)

// An example acceptance of a word "100"
accept(dfa)("100") // true
```


Definition (Language of DFA)

For a given DFA $D = (Q, \Sigma, \delta, q_0, F)$, the **language** of D is defined as follows:

$$L(D) = \{ w \in \Sigma^* \mid D \text{ accepts } w \}$$

Definition (Regular Language)

A language L is **regular** if and only if there exists a DFA D such that L(D) = L

$$\delta^*(q_0,100)=q_2\in F \quad\Rightarrow\quad D ext{ accepts } 100 \quad\Rightarrow\quad 100\in L(D)$$
 $\epsilon,0,1,01,10,11,001,010,011,101,\cdots
otin L(D)$

$$00,000,100,0000,0100,1000,1100,\dots \in L(D)$$

$$00,000,100,0000,0100,1000,1100,\dots \in L(D)$$

$$L(D) = \{w00 \mid w \in \{0,1\}^*\}$$

 $\epsilon, \mathtt{a}, \mathtt{aa}, \mathtt{ba}, \mathtt{bb}, \mathtt{aaa}, \mathtt{aba}, \mathtt{abb}, \mathtt{baa}, \mathtt{bab}, \mathtt{bba}, \cdots
ot \in \mathit{L}(\mathit{D})$

b, ab, aab, aaab, aaaab, aaaaab, aaaaab, $\cdots \in L(D)$

$$L(D) = \{a^n b \mid n \ge 0\}$$

Theorem

The language $L = \{w \in \{0, 1\}^* \mid w \text{ is a binary format (allowing leading zeros) of natural numbers divisible by 3} is regular.$

Proof) You need to construct a DFA D such that L(D) = L. Consider the following DFA D:

Theorem

The language $L = \{a^n b^n \mid n \ge 0\}$ is regular.

You need to construct a DFA D such that L(D) = L. However, it is impossible because L is actually not regular.

Then, is it possible to prove that L is not regular?

Yes, it is possible BUT you will learn how to prove it (using Pumping Lemma) later in this course.

Summary

1. Deterministic Finite Automata (DFA)

Definition

Transition Diagram and Transition Table

Extended Transition Function

Acceptance of a Word

Language of DFA (Regular Language)

Examples

Next Lecture

• Nondeterministic Finite Automata (NFA)

Jihyeok Park
jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr