Modele i Wnioskowanie Statystyczne Laboratorium 5 Sprawozdanie

Igor Markiewicz

Zadanie 1

Model:

$$X \sim \mathcal{N}(\mu_X, \sigma^2)$$
$$Y \sim \mathcal{N}(\mu_Y, \sigma^2)$$
$$\overline{X} - \overline{Y} \sim \mathcal{N}(\mu_X - \mu_Y, \sigma^2(n^{-1} + m^{-1}))$$

a)

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\begin{aligned} & \overline{X} \approx 0,146 \\ & \overline{Y} \approx 0,8884 \\ & \overline{X} - \overline{Y} = -0,7424 \end{aligned}$$

b)

$$s_i^2 = \frac{1}{n-1} \sum_{i=1}^n (\overline{x} - x_i)^2$$

$$\begin{array}{l} s_X^2 \approx 1,155962 \\ s_Y^2 \approx 0,9695833 \end{array}$$

$$s^{2} = \frac{(n-1)s_{X}^{2} + (m-1)s_{Y}^{2}}{m+n-2}$$

$$s^2 = 1,04946$$

c)
$$s\sqrt{n^{-1}+m^{-1}}\approx 0,6872$$

d) Dwustronny, ponieważ hipoteza zerowa i alternatywna się dopełniają w przeciwieństwie do testu jednostronnego.

e) Testowana hipoteza ma postać :

$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

A statystyka testowa:

$$T = \frac{\overline{X} - \overline{Y}}{s\sqrt{n^{-1} + m^{-1}}}$$

Wykorzystano funkcję t.test z parametrami two.sided = TRUE oraz var.equal = TRUE. W efekcie otrzymano $p-value \approx 0,316$.

f) Dla poziomu $\alpha=0,1$ nie mamy podstaw do odrzucenia hipotezy zerowej.

Zadanie 2

a) Ze względu na brak informacji o równości wariancji :

$$X \sim \mathcal{N}(\mu_X, \sigma_X^2)$$

$$Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$$

postanowiono zastosować statystykę:

$$T = \frac{\overline{X} - \overline{Y}}{\varsigma}$$

$$s^2 = \frac{s_X^2}{n} + \frac{s_Y^2}{m}$$

dla testu:

$$H_0: \mu_1 = \mu_2$$

$$H_1: \mu_1 \neq \mu_2$$

Statystyka T ma w przybliżeniu rozkład t
 – Studenta, z liczbą stopni swobody (po zaokrąlgeniu do liczby całkowitej) :

$$d \approx \frac{(s^2)^2}{\frac{(s_X^2/n)^2}{n-1} + \frac{(s_Y^2/m)^2}{m-1}}$$

Wykorzystano funkcję t.test z parametrami two.sided = TRUE oraz var.equal = FALSE. W efekcie otrzymano $p-value \approx 0,0541$, co oznacza że na poziomie istotności $\alpha=0,1$ możemy odrzucić hpotezę zerową na rzecz alternatywnej, zaś dla $\alpha=0,05$ nie mamy przeciwskazań do przyjęcia hipotezy zerowej.

b) Wykonano test Manna – Whitneya – Wilcoxona (test sumy rang Wilcoxona) sprawdzający czy rozkłady dwóch zbiorów próbek różnią się o stałą wartość μ (przyjętą tutaj jako 0) (m.in przy założeniu niezależności obserwacji, równej wariancji oraz równości rozkładów) :

 H_0 – dystrybuanty rozkładów dla dwóch grup są przesunięte o 0

 ${\cal H}_1$ – dystrybu
anty rozkładów dla dwóch grup są przesunięte wartość inną ni
ż0

Zastosowano funkcję wilcox.test z parametrem domyślnym alternative="two.sided" oraz paired=FALSE, w efekcie czego otrzymano p-value=0,063, a więc dla poziomu $\alpha=0,1$ możemy odrzucić hipotezę zerową na rzecz alternatywnej, zaś dla $\alpha=0,05$ nie ma przeciwskazań do przyjęcia hipotezy zerowej.

- **c)** Test nieprarametryczny z podpunktu **b)** wydaje się być lepszym wyjściem, z racji na braku konieczności zakładania rozkładów normalnych, jednak posiada dużo dodatkowych obostrzeń do jego stosowania.
- d) Wykorzystując bootstrap nieparametryczny, zliczono ilość sytuacji w której czas żywotności łożysk z pierwszego materiału był większy od czasu żywotności łożysk wykonanych z drugiego

materiału, a następnie podzielono tę liczbę przez liczbę próbkowań otrzymując estymatę szukanego prawdpodobieństwa ok. 0,750232.

Zadanie 3

Model - dopasowanie funkcji liniowej w grupę punktów, tak aby minimalizowała błąd kwadratowy. Zakłada się że niepewności mają rozkład $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$:

$$y = \beta_0 + \beta_1 x$$

$$E(Y_i | X_i = x) = \beta_0 + \beta_1 x + \epsilon_i$$

$$\hat{\beta}_1 = \frac{\overline{XY} - \overline{XY}}{\overline{X^2} - \overline{X}^2}$$

$$\hat{\beta}_0 = \hat{Y} - \hat{\beta}_1 \overline{X}$$

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \left(Y_i - \hat{\beta}_0 - \hat{\beta}_1 X_i \right)^2$$

Z racji na założenia fizyczne zjawiska, przyjęto $\beta_0=0$. Z takich samych względów dodano punkt pomiarowy [0,0].

Rys. 1: Regresja liniowa dla $y \sim v$

Rys. 2: Regresja liniowa dla $\sqrt{y} \sim v$

	\hat{eta}_1
$y \sim v$	0,38390
$\sqrt{y} \sim v$	0,071199

Tab. 1: Wyliczone współczynnik $\hat{\beta}_1$

Współczynniki dopasowania modelu do danych:

$$R^{2} = \frac{\sum_{i=1}^{n} (y_{i} - f(x_{i}))^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})}$$

$$R_{adjusted}^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

Gdzie n to liczebność próbki, a p liczba zmienny objaśniających.

	R^2	$R_{adjusted}^2$
$y \sim v$	0,918	0,9044
$\sqrt{y} \sim v$	0,9975	0,997

Tab. 2: Wyliczone współczynniki \mathbb{R}^2 oraz $\mathbb{R}^2_{adjusted}$

Wnioski:

Możemy zauważyć że graficznie lepiej dopasowan jest zależność $\sqrt{y} \sim v$, co potwierdzają również współczynniki R^2 oraz $R^2_{adjusted}$ (im bliżej jedności tym lepiej model jest dopasowany).