

CONCOURS D'ENTREE EN MASTER

Session: 2017

EPREUVE: PHYSIQUE / ELECTRONIQUE

Durée: 2h00

Exercice 1: (5 points) Questions de cours

Dans le vide, caractérisé par la permittivité ε_0 et la perméabilité μ_0 , il existe des charges électriques de densité volumique ρ et une densité de courant \vec{J} (sources des champs électrique \vec{E} et magnétique \vec{B})

- 1) Rappeler les équations de Maxwell dans le vide. En déduire la conservation des charges (équation de continuité) $\frac{\partial \rho}{\partial t} + div\vec{j} = 0$
- 2) Simplifier les équations de Maxwell dans le cas du vide sans charge ni courant. En déduire l'équation de propagation du champ magnétique \vec{B} .
- 3) Rappeler les deux relations qui lient les champs et les potentiels scalaire V et vectoriel \vec{A} , En déduire les équations de propagations du potentiel V (dans le vide sans charge ni courant), en admettant la condition de jauge de Lorentz.

Exercice 2: (7 points) Filtre actif du 1er ordre

On considère le filtre actif du premier ordre de la *figure 1*. L'amplificateur opérationnel est supposé idéal.

1) Montrer que la fonction de transfert $H(j\omega) = \frac{V_0(j\omega)}{V_s(j\omega)}$

s'écrit:
$$H(j\omega) = \frac{R_4}{R_3 + R_4} \frac{j\omega + \frac{1}{R_1C} \left[\frac{R_1}{R_2} - \frac{R_3}{R_4}\right]}{j\omega + \frac{1}{R_2C}}.$$

2) Sous quelle condition le circuit est-il un filtre passe-haut On tracera dans ce cas le diagramme de Bode et on déterminera la fréquence de coupure.

Figure 1

Exercice 3: (8 points) Analyse d'un circuit RL en régime transitoire

On considère le circuit ci-dessous (figure 2). A l'instant t = 0, on ferme l'interrupteur K.

Figure 2 : Circuit RL en régime transitoire

- 1) Déterminer $i(0^{-})$ la valeur de l'intensité i juste avant la fermeture.
- 2) Déterminer $u(0^+)$ la valeur de la tension u et $i(0^+)$ la valeur de l'intensité i juste après la fermeture de l'interrupteur K.
- 3) Déterminer $u(\infty)$ la valeur de la tension u et $i(\infty)$ la valeur de l'intensité i au bout d'un temps très long.
- 4) On pose $\tau = \frac{L}{R}$. Quelle est l'unité de τ dans le Système International ? Justifier votre réponse. Quel est le nom donné à cette constante ?
- 5) a) Etablir et résoudre l'équation différentielle vérifiée par i(t).
- b) En déduire la valeur de *i* pour un temps très long et vérifier que cette valeur correspond au comportement de l'inductance prévu à la question 3).
- 6) Tracer l'allure de la courbe représentative de l'intensité i(t) en précisant son asymptote. Calculer la valeur de la pente de la courbe à $t = 0^+$. Tracer la tangente à l'origine et calculer les coordonnées du point d'intersection A $(x_A; y_A)$ de cette tangente avec l'asymptote.
- 7) Déterminer, en fonction de τ , l'expression du temps τ_1 au bout duquel 99 % de la charge a été effectuée. On donne : $ln(10) \approx 2,3$.
- 8) Déterminer l'expression de u(t).
- 9) Etablir pour ce circuit le bilan de puissance à l'instant t.
- 10) Lorsque le régime permanent est établi, que devient l'énergie électrique fournie au circuit par le générateur ?