DIGITAL SIGNAL PROCESSING (CP-301) Assignment No 3 CLO-3

Submission Date: 29-12-2021

Instructions:

• Individual Assignment

Q No 1: The signal $x_{\mathbf{C}}(t)$ be given by

$$x_{\rm C}(t) = 2\cos(650\pi t) + 4\cos(700\pi t) + 6\cos(750\pi t) + 8\cos(800\pi t)$$

- (a) If $x_{\rm C}(t)$ is sampled at $F_{\rm S} = 801$ samples/sec, determine and plot the spectrum of the sampled signal as a function of frequency.
- **(b)** If $x_{\rm C}(t)$ is sampled at $F_{\rm S} = 201$ samples/sec, determine and plot the spectrum of the sampled signal as a function of frequency.
- (c) What is your observation of the baseband signals after sampling in each of the above two cases.
- **Q No 2:** A bandpass signal has $F_L = 105$ Hz and $F_H = 145$ Hz. Determine the minimum sampling rate so as to have a minimum guard band of 10 Hz between two spectrum replicas. Draw the resulting spectrum over [-150, 150] Hz range.
- **Q No 3:** An 8-bit ADC has an input analog range of ± 5 volts. The analog input signal is $x_{\rm C}(t) = 2\cos(200\pi t) + 3\sin(500\pi t)$. The converter supplies data to a computer at a rate of 2048 bits/s. The computer, without processing, supplies these data to an ideal DAC to form the reconstructed signal $y_{\rm C}(t)$. Determine: (a) the quantizer step size, (b) the folding frequency and the Nyquist rate, (c) the reconstructed signal $y_{\rm C}(t)$.
- **Q No 4:** Consider the signal $x[n] = 0.9^n u[n]$. It is to be downsampled by a factor of M=3 to obtain $x_d[n]$. (a) Compute the spectrum of x[n] and plot its magnitude. (b) Compute the spectrum of $x_d[n]$ and plot its magnitude. (c) Compare the two spectra.