Lecture 4.1: Inner product

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

The Euclidean dot product

Definition

We define the Euclidean dot product of two vectors x and y of \mathbb{R}^n as:

$$x \cdot y = \sum_{i=1}^{n} x_i \, y_i.$$

Inner product

Let V be a vector space.

Definition

An inner product on V is a function $\langle \cdot, \cdot \rangle$ from $V \times V$ to $\mathbb R$ that verifies the following points:

- 1. Symmetry: $\langle u, v \rangle = \langle v, u \rangle$ for all $u, v \in V$.
- 2. Linearity: $\langle u+v,w\rangle=\langle u,w\rangle+\langle v,w\rangle$ and $\langle \alpha v,w\rangle=\alpha\langle v,w\rangle$ for all $u,v,w\in V$ and $\alpha\in\mathbb{R}$.
- 3. Positive definiteness: $\langle v,v\rangle \geq 0$ with equality if and only if v=0.

Other example

If V is the set of all random variables (on a probability space Ω) that have a finite second moment, then

$$\langle X, Y \rangle \stackrel{\text{def}}{=} \mathbb{E}[XY]$$

is an inner product on ${\cal V}$.

Norm induced by an inner product

Proposition

If $\langle \cdot, \cdot \rangle$ is an inner product on V then

$$||v|| \stackrel{\text{def}}{=} \sqrt{\langle v, v \rangle}$$

is a norm on V. We say that the norm $\|\cdot\|$ is induced by the inner product $\langle\cdot,\cdot\rangle$.

Cauchy Schwarz inequality

Theorem (Cauchy-Schwarz inequality)

Let $\|\cdot\|$ be the norm induced by the inner product $\langle\cdot,\cdot\rangle$ on the vector space V. Then for all $x,y\in V$:

$$|\langle x, y \rangle| \le ||x|| \, ||y||. \tag{1}$$

Moreover, there is equality in (1) if and only if x and y are linearly dependent, i.e. $x = \alpha y$ or $y = \alpha x$ for some $\alpha \in \mathbb{R}$.

Examples

Examples