Problem 1

(1.C.1) Consider the choice structure $(\mathcal{B}, C(\cdot))$ with $\mathcal{B} = (\{x, y\}, \{x, y, z\})$ and $C(\{x, y\}) = \{x\}$. Show that if $(\mathcal{B}, C(\cdot))$ satisfies the weak axiom, then we must have $C(\{x, y, z\}) = \{x\}, = \{z\}, \text{ or } = \{x, z\}.$

Solution. By the definition of WARP: if for any B, such that $x, y \in B$ and $B \subset \mathcal{B}$ it is true that $x \in C(B)$, then for all other B', such that $x, y \in B'$ the following should be satisfied:

$$x \in B'$$

Let's suppose, that $y \in C(\{x, y, z\})$, then:

$$\begin{cases} y \in \{x, y, z\} & \text{by condition} \\ y \in \{x, y\} & \text{by condition} & \xrightarrow{\text{WARP}} y \in C(\{x, y\}) \\ y \in C(\{x, y, z\}) & \text{by assumption} \end{cases}$$
 (1)

But conditions state, that $y \notin C(\{x,y\}) = \{x\}$, thus we got contradiction.

Problem 2

(1.D.3) Let $X = \{x, y, z\}$, and consider the choice structure $(\mathcal{B}, C(\cdot))$ with

$$\mathcal{B} = \{\{x, y\}, \{y, z\}, \{x, z\}, \{x, y, z\}\}$$

and $C(\lbrace x,y\rbrace)=\lbrace x\rbrace,\,C(\lbrace y,z\rbrace)=\lbrace y\rbrace$ and $C(\lbrace x,z\rbrace)=\lbrace z\rbrace.$ Show that $(\mathcal{B},C(\cdot))$ must violate the weak axiom.

Solution.

If the WARP is not violated:

- 1. From the $C(\{x,y\}) = \{x\}$ it should follow, that $y \notin C(\{x,y,z\})$
- 2. From the $C(\{y,z\}) = \{y\}$ it should follow, that $z \notin C(\{x,y,z\})$
- 3. From the $C(\{x,z\}) = \{z\}$ it should follow, that $x \notin C(\{x,y,z\})$

As we can see from the points above, $C(\{x,y,z\}) = \emptyset$ which is contradictionary to the defintion of choice function, thus WARP is violated.

Problem 3

Let $X = \mathbb{R}$, and define a pair of binary relations, R_1 and R_2 , on this set as follows: For any $x, y \in X$:

$$x R_1 y \iff x \ge y - 1$$

 $x R_2 y \iff x \ge y + 1$

For i=1;2, determine if R_i is complete, transitive or asymmetric. Find a simple expression for the symmetric part R_i^{\sim} , which is defined as $x R_i^{\sim} y \iff [x R_i \ y \text{ and } y R_i \ x]$. Explain your answer.

Solution.

${\bf Completeness}.$

The binary relation R_i is complete if the following holds:

$$\forall x, y \in X$$
, we have that either $(x R_i y)$ or $(y R_i x)$

In other words, if $X \setminus A = \emptyset$, where A – set of points, such that $(x R_i \ y)$ or $(y R_i \ x)$, then relation is complete.

1. i = 1

 $A = \{y \ge x-1\} \cup \{y \le x+1\}$. A is obviously a union of two rays, with non-empty intersection at $y \in [x-1,x+1]$ thus it covers the whole $\mathbb{R} \implies R_1$ is complete.

2. i = 2

 $A = \{y \le x - 1\} \cup \{y \ge x + 1\}$. A doesnt include points $x, y \in X$, such that $y \in (x - 1, x + 1) \implies R_2$ is not complete.

Assymetry.

Lets start with i = 1. If asymmetry holds, then the following should be true:

$$x R_1 y \Longrightarrow \neg (y R_1 x)$$

$$x \ge y - 1 \Longrightarrow \neg (y \ge x - 1)$$

$$y \le x + 1 \Longrightarrow \neg (y \ge x - 1)$$

$$y \le x + 1 \Longrightarrow y < x - 1$$

We see that $y \le x + 1$ doesn't imply y < x - 1 (for example points $x, y \in X$ such that x = y), therefore R_1 is not By the analogy for i = 2:

$$x R_2 y \Longrightarrow \neg (y R_2 x)$$

$$x \ge y + 1 \Longrightarrow \neg (y \ge x + 1)$$

$$y \le x - 1 \Longrightarrow \neg (y \ge x + 1)$$

$$y \le x - 1 \Longrightarrow \neg (y \ge x + 1)$$

$$y \le x - 1 \Longrightarrow y < x + 1$$

We see that $y \le x - 1$ implies y < x + 1, therefore R_2 is assymetric.

Transitivity.

Lets take $x, y, z \in X$. From transitivity the following should apply:

1. i = 1

$$(x R_1 y) \land (y R_1 z) \Longrightarrow x R_1 z$$

$$(x R_1 y) \land (y R_1 z) \Longleftrightarrow \begin{cases} y \le x + 1 \\ z \le y + 1 \end{cases} \Longrightarrow z \le x + 2 \Longrightarrow x \ge z - 1 \Longleftrightarrow x R_1 z$$

Thus relation is not transitive.

2. i = 2

$$(x R_2 y) \land (y R_2 z) \Longrightarrow x R_2 z$$

$$(x R_2 y) \land (y R_2 z) \Longleftrightarrow \begin{cases} y \le x - 1 \\ y \ge z + 1 \end{cases} \Longrightarrow z \le x - 2 \Longrightarrow x \ge z + 1 \Longleftrightarrow x R_1 z$$

Thus relation is transitive.

Simmetric part.

So we define R_i^{\sim} as $[(x R_i y) \land (y R_i x)]$

1. i = 1

$$R_{1}^{\sim} \iff [(x R_{1} y) \land (y R_{1} x)]$$

$$\iff \begin{cases} y \le x + 1 \\ x \le y + 1 \end{cases} \implies 0 \le 2 \quad \forall x, y \in X$$

$$\iff x, y \in X$$

2. i = 2

$$R_{2}^{\sim} \iff [(x R_{2} y) \land (y R_{2} x)]$$

$$\iff \begin{cases} x \ge y + 1 \\ y \ge x + 1 \end{cases} \implies 0 \ge 2 \quad \forall x, y \in X$$

$$\iff x, y \notin X$$

Problem 4

Consider a binary relation P on a set X that is assymmetric and negatively transitive. Define a further binary relation \succeq_p on X as follows:

$$x \succsim_p y \iff \neg(y P x)$$

Show that \succeq_p is a complete and transitive binary relation.

Solution.

Completeness.

$$\forall x, y \in X$$
, we have that either $(x P y)$ or $(y P x)$

Lets notice that $x \succsim_p y \iff \neg(y \ P \ x)$ and $y \succsim_p x \iff \neg(x \ P \ y)$, applying assymetricity we get:

$$x \succsim_{p} y \iff \neg(y P x) \tag{2}$$

$$x \succsim_{p} y \iff x P y \tag{3}$$

So from point (3) we see, that $x \succsim_P y \ [x \ P \ y]$ is actually the opposite for $x \precsim_P y \ [\neg (x \ P \ y)]$ and therefore relations are complete.

Transitivity.

$$\forall x, y, z \in X$$
, we have that if $(x \succsim_p y)$ and $(y \succsim_p z)$ then $(x \succsim_p z)$

$$\begin{cases} \neg (y \ P \ x) & \xrightarrow{\text{neg. trans}} \neg (z \ P \ x) = \neg (z \ P \ x) \quad \forall x, y, z \in X \\ \neg (z \ P \ y) & \end{cases}$$

Strict part.

$$x \succ_p y \xrightarrow{\text{definition}} \forall x, y \in X$$
, we have that $(x \succsim_p y)$ and not $(y \succsim_p x)$

$$\neg (y P x) \land x P y$$
$$x P y \land x P y \iff x P y$$

Therefore $x \succ_p y \xrightarrow{\text{definition}} P$.

Problem 5

Consider a choice structure (\mathcal{B}, C) on a set X. Suppose that any subset of X that has two elements belongs to \mathcal{B} (in addition to other sets, possibly). Let \succsim^* denote the revealed preference relation derived from C, as we denoted in class. Show that if C satisfies WARP, then for any $x, y \in X$, we have $x \succsim^* y$ iff $x \in C\{x, y\}$

Solution. Firstly, lets show, that there is rational revealed preference relation \succeq^* . The preference is rational once it satisfies transitivity and completeness:

- 1. Completeness. Since \mathscr{B} includes all pairs of elements in X, then $\forall x, y \in X$ either $C(\{x, y\})$ is either $\{x\}$ or $\{y\}$ or $\{x, y\}$. Thus, all elements from X can be sorted by preference.
- 2. Transitivity. Let $x \succeq^* y$ and $y \succeq^* z$ and lets consider $B = \{x, y, z\}$. If \succeq^* is rational, then $x \in C(B)$, because by the transitivity $x \succeq^* z$. Because of the completeness, $C(B) \neq \emptyset$. Lets suppose $C(\cdot)$ is such that $y \in C(B)$, then, by the WARP and $x \succeq^* y$, the x must be in C(B). Suppose instead $z \in C(B)$. Then, by the WARP and \succeq^* we conclude that $y \in C(B)$. From the previous logic, we conclude that x is also in C(B).

Now, lets consider rationalized choice structure $C^*(B, \succsim)$ as

$$C^*(B, \succeq) = \{x \in B : x \succeq y, \ \forall y \in B\} \text{ for all B in } \mathscr{B}$$

and lets prove, that $C(B) = C^*(B, \succeq)$ for all B in \mathscr{B} . First, let $x \in C(B)$, then $x \succeq^* y, \forall y \in B$. Therefore $x \in C^*(B, \succeq^*)$, which means, that $C(B) \subset C^*(B, \succeq^*)$. From the other hand, if $x \in C^*(B, \succeq^*)$, then $x \succeq^* y$ for all $y \in B$. So, for each $y \in B$ there must be some set $B_y \in \mathscr{B}$, which satisfies $x, y \in B_y$ and $x \in C(B_y)$. Due to WARP, $x \in C(B)$, therefore $C^*(B, \succeq) \subset C(B)$. From this point it can be concluded, that $C(B) = C^*(B, \succeq^*)$.

And as X consists of all pairs of elementary objects, thus there is unque rationalizing preference relation \succsim^* , therefore we can get from choice structure and WARP to rational preference relation, or in other words

$$x \succsim^* y \iff x \in C\{x,y\}$$