Погрешность решения задачи

Если a — точное значение некоторой величины, a^* — известное приближение к нему, то abconomhoù norpewhocmbo приближенного значения a^* обычно называют некоторую величину $\Delta(a^*)$, про которую известно, что

$$|a^* - a| \leqslant \Delta(a^*).$$

Относительной погрешностью приближенного значения называют некоторую величину $\delta(a^*)$, про которую известно, что

$$\left| \frac{a^* - a}{a^*} \right| \leqslant \delta(a^*) \,.$$

Относительную погрешность часто выражают в процентах.

В этой главе на модельных упражнениях показано принципиальное отличие между математически точными вычислениями и вычислениями с произвольно высокой, но конечной точностью. Приведены примеры катастрофического накопления вычислительной погрешности в стандартных алгоритмах, рассмотрены методы возможного улучшения исследуемых алгоритмов.

1.1. Вычислительная погрешность

Наиболее распространенная форма представления действительных чисел в компьютерах— $числа\ c\ n$ лавающей moчкой. Множество F чисел с плавающей точкой характеризуется четырьмя параметрами: основанием системы счисления p, разрядностью t и интервалом показателей [L,U]. Каждое число x, принадлежащее F, представимо в виде

$$x = \pm \left(\frac{d_1}{p} + \frac{d_2}{p^2} + \dots + \frac{d_t}{p^t}\right) p^{\alpha},$$

где целые числа p,α,d_1,\ldots,d_t удовлетворяют неравенствам $0\leqslant d_i\leqslant p-1,$ $i=1,\ldots,t;\;L\leqslant\alpha\leqslant U.$ Часто d_i называют разрядами, t-длиной мантиссы, $\alpha-$ порядком числа. Мантиссой (дробной частью) x называют число в скобках. Множество F называют нормализованным, если для каждого $x\neq 0$ справедливо условие $d_1\neq 0$.

Удобно определить, что округление с точностью ε — это некоторое отображение fl действительных чисел ${\bf R}$ на множество F чисел с плавающей точкой, удовлетворяющее следующим аксиомам.

1) Для произвольного $y \in \mathbf{R}$ такого, что результат отображения $fl(y) \in F$, имеет место равенство при $fl(y) \neq 0$

$$fl(y) = y(1+\eta), \quad |\eta| \leqslant \varepsilon.$$

2) Обозначим результат арифметической операции * с числами $a,b \in F$ через fl(a*b). Если $fl(a*b) \neq 0$, то

$$fl(a*b) = (a*b)(1+\eta), \quad |\eta| \leqslant \varepsilon.$$

Приведенные соотношения позволяют изучать влияние ошибок округления в различных алгоритмах.

Если результат округления не принадлежит F, то его обычно называют nepenonhehuem и обозначают ∞ .

Будем считать, что ε —точная верхняя грань для $|\eta|$. При традиционном способе округления чисел имеем $\varepsilon=\frac{1}{2}\,p^{1-t}$, при округлении отбрасыванием разрядов $\varepsilon=p^{1-t}$. Величину ε часто называют машинной точностью.

1.1. Построить нормализованное множество F с параметрами p=2, $t=3,\ L=-1,\ U=2.$

 \triangleleft Каждый элемент $x \in F$ имеет вид

$$x=\pm\left(\frac{d_1}{2}+\frac{d_2}{4}+\frac{d_3}{8}\right)2^{\alpha}$$
, где $\alpha\in\{-1,0,1,2\},\ d_i\in\{0,1\}$

и $d_1 \neq 0$ для $x \neq 0$.

Зафиксируем различные значения мантисс m_i для ненулевых элементов множества:

$$\frac{1}{2}\,,\quad \frac{1}{2}+\frac{1}{8}=\frac{5}{8}\,,\quad \frac{1}{2}+\frac{1}{4}=\frac{3}{4}\,,\quad \frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8}\,,$$

или $m_i \in \left\{\frac{1}{2}, \frac{5}{8}, \frac{3}{4}, \frac{7}{8}\right\}$. Далее, умножая m_i на 2^{α} с $\alpha \in \{-1, 0, 1, 2\}$ и добавляя знаки \pm , получим все ненулевые элементы множества $F \colon \pm \frac{1}{4},$

$$\pm \frac{5}{16}$$
, $\pm \frac{3}{8}$, $\pm \frac{7}{16}$, $\pm \frac{1}{2}$, $\pm \frac{5}{8}$, $\pm \frac{3}{4}$, $\pm \frac{7}{8}$, ± 1 , $\pm \frac{5}{4}$, $\pm \frac{3}{2}$, $\pm \frac{7}{4}$, ± 2 , $\pm \frac{5}{2}$, ± 3 , $\pm \frac{7}{2}$. После добавления к ним числа *нуль* имеем искомую модель системы действительных чисел с плавающей точкой.

1.2. Сколько элементов содержит нормализованное множество F с параметрами $p,\,t,\,L,\,U$?

Ответ:
$$2(p-1)p^{t-1}(U-L+1)+1$$
.

1.3. Каков результат операций fl(x) при использовании модельной системы из 1.1 для следующих значений x:

$$\frac{23}{32} \ , \ \frac{1}{8} \ , \ 4 \ , \ \frac{1}{2} + \frac{3}{4} \ , \ \frac{3}{8} + \frac{5}{4} \ , \ 3 + \frac{7}{2} \ , \ \frac{7}{16} - \frac{3}{8} \ , \ \frac{1}{4} \cdot \frac{5}{16} \ .$$

Oтвет: $\frac{3}{4}$, 0 , ∞ $\left(x>\frac{7}{2}\right)$, $\frac{5}{4}$, $\frac{3}{2}$ или $\frac{7}{4}$, ∞ , 0 , 0 .

1.4. Верно ли, что всегда $fl\left(\frac{a+b}{2}\right) \in [a,b]$?

Ответ: нет (см. 1.3).

1.5. Пусть отыскивается наименьший корень уравнения $y^2-140y+1=0$. Вычисления производятся в десятичной системе счисления, причем в мантиссе числа после округления удерживается четыре разряда. Какая из формул $y=70-\sqrt{4899}$ или $y=\frac{1}{70+\sqrt{4899}}$ дает более точный результат?

 \triangleleft Воспользуемся первой формулой. Так как $\sqrt{4899}=69,992...$, то после округления получаем $\sqrt{4899}\approx69,99$, $y_1\approx70-69,99=0,\underline{01}$.

Вторая формула представляет собой результат «избавления от иррациональности в числителе» первой формулы. Последовательно вычисляя, получаем $70+69,99=139,99\approx 140,0,\, \frac{1}{140}=0,00714285\ldots$ Наконец, после последнего округления имеем $y_2=0,007143$.

Если произвести вычисления с большим количеством разрядов, то можно проверить, что в y_1 и y_2 все подчеркнутые цифры результата верные; однако во втором случае точность результата значительно выше. В первом случае пришлось вычитать близкие числа, что привело к эффекту пропадания значащих цифр, часто существенно искажающему конечный результат вычислений. Увеличение абсолютной погрешности также может происходить в результате деления на малое (умножение на большое) число. Еще одна опасность— выход за диапазон допустимых значений в промежуточных вычислениях, например после умножения исходного уравнения на достаточно большое число.

1.6. Пусть приближенное значение производной функции f(x) определяется при $h \ll 1$ по формуле $f'(x) \approx \frac{f(x+h)-f(x-h)}{2h}$, а сами значения f(x) вычисляются с абсолютной погрешностью Δ . Какую погрешность можно ожидать при вычислении производной, если $|f^{(k)}(x)| \leqslant M_k$, $k=0,1,\ldots$?

 \triangleleft В данном случае имеется два источника погрешности: *погрешность* метода и вычислительная погрешность. Первая связана с неточностью формулы в правой части при отсутствии ошибок округления. Разложим функцию $f(x\pm h)$ в ряд Тейлора в точке x:

$$f(x \pm h) = f(x) \pm h f'(x) + \frac{h^2}{2} f''(x) \pm \frac{h^3}{6} f'''(x_{\pm}).$$

Подставляя полученные разложения в правую часть приближенного равенства, получим

$$\frac{f(x+h) - f(x-h)}{2h} = f'(x) + \frac{h^2}{6} \left[\frac{f'''(x_+) + f'''(x_-)}{2} \right].$$

Ограничиваясь главным членом в разложении по степеням h, имеем оценку для погрешности метода

$$\left|\frac{f(x+h)-f(x-h)}{2h}-f'(x)\right|\leqslant \frac{h^2}{6}M_3.$$

С другой стороны, в силу наличия ошибок округления в вычислениях участвуют не точные значения $f(x\pm h)$, а их приближения $f^*(x\pm h)$ с заданной абсолютной погрешностью. Поэтому полная погрешность выглядит так:

 $Err = \left| \frac{f^*(x+h) - f^*(x-h)}{2h} - f'(x) \right|.$

Добавляя в числитель дроби $\pm f(x+h)$ и $\pm f(x-h)$, после перегруппировки слагаемых получим

$$Err \le \left| \frac{f^*(x+h) - f(x+h)}{2h} - \frac{f^*(x-h) - f(x-h)}{2h} \right| + \left| \frac{f(x+h) - f(x-h)}{2h} - f'(x) \right|.$$

Оценка вычислительной погрешности для каждого из двух первых слагаемых имеет вид $\frac{\Delta}{2\,h}$, а погрешность метода в предположении ограниченности третьей производной получена выше. Окончательно имеем $Err\leqslant \frac{\Delta}{h}+\frac{h^2}{6}~M_3$.

Зависимость такого рода при малых h наблюдается при численных экспериментах: при уменьшении h сначала погрешность квадратично убывает, а затем линейно растет; начиная с некоторого h ошибка может стать больше, чем сама производная f'(x). Здесь эффект пропадания значащих цифр (см. 1.5) усиливается за счет деления на малую величину.

Ответ: $Err \leqslant \frac{\Delta}{h} + \frac{h^2}{6} M_3$.

1.7. Найти абсолютную погрешность вычисления суммы $S = \sum_{j=1}^{n} x_{j}$, где все x_{j} — числа одного знака.

< Используя аксиому

$$fl(a+b) = (a+b)(1+\eta), \quad |\eta| \leqslant \frac{1}{2} p^{1-t},$$

имеем

$$fl(S) = (\dots((x_1 + x_2)(1 + \eta_2) + x_3)(1 + \eta_3) + \dots + x_n)(1 + \eta_n) =$$

$$= (x_1 + x_2) \prod_{j=1}^{n-1} (1 + \eta_{j+1}) + x_3 \prod_{j=2}^{n-1} (1 + \eta_{j+1}) + \dots + x_n \prod_{j=n-1}^{n-1} (1 + \eta_{j+1}).$$

Перепишем полученное выражение в виде

$$fl(S) = \sum_{j=1}^{n} x_j (1 + E_j),$$

где для модулей E_j справедливы равенства

$$|E_1| = \frac{n-1}{2} p^{1-t} + O(p^{2(1-t)}),$$

$$|E_i| = \left| \prod_{j=i-1}^{n-1} (1+\eta_{j+1}) \right| = \frac{n+1-i}{2} p^{1-t} + O(p^{2(1-t)})$$

при $2 \leqslant i \leqslant n$.

Найденное представление означает, что суммирование чисел на компьютере в режиме с плавающей точкой эквивалентно точному суммированию с относительным возмущением E_j в слагаемом x_j . При этом относительные возмущения неодинаковы: они максимальны в первых слагаемых и минимальны в последних. Абсолютная погрешность Δ вычисления суммы равна $\Delta = \sum_{j=1}^n |x_j| |E_j|$. Оценки E_j не зависят от x_j , поэтому в общем случае погрешность Δ будет наименьшей, если числа суммировать в порядке возрастания их абсолютных значений начиная с наименьшего.

Oтвет:
$$\Delta = \sum_{j=1}^{n} |x_j| |E_j|$$
.

1.8. Пусть вычисляется сумма $\sum\limits_{j=1}^{10^6}\frac{1}{j^2}$. Какой алгоритм $S_0=0$, $S_n=S_{n-1}+\frac{1}{n^2}$, $n=1,\ldots,10^6$, или $R_{10^6+1}=0$, $R_{n-1}=R_n+\frac{1}{n^2}$, $n=10^6,\ldots,1$, $\tilde{S}_{10^6}=R_0$, следует использовать, чтобы суммарная вычислительная погрешность была меньше?

1.9. Можно ли непосредственными вычислениями проверить, что ряд $\sum_{i=1}^{\infty} \frac{1}{j}$ расходится?

Ответ: следует воспользоваться вторым алгоритмом (см. решение 1.7).

1.10. Предложить способ вычисления суммы, состоящей из слагаемых одного знака, минимизирующий влияние вычислительной погрешности.

 \triangleleft Рассмотрим оценки величин E_j из 1.7. Имеем

$$|E_1| = \frac{n-1}{2} p^{1-t} + O(p^{2(1-t)}),$$

$$|E_i| = \frac{n+1-i}{2} p^{1-t} + O(p^{2(1-t)}), \ 2 \le i \le n.$$

Из этих оценок следует, что $\left|\frac{E_1}{E_n}\right| \approx n$, т. е. первое слагаемое вносит возмущение примерно в n раз большее, чем последнее. Неравноправие слагаемых объясняется тем, что в образовании погрешностей каждое слагаемое участвует столько раз, сколько суммируются зависящие от него частичные суммы.

Влияние всех слагаемых можно уравнять с помощью следующего приема. Пусть для простоты количество слагаемых равно $n=2^k$. На первом этапе разобьем близкие слагаемые x_j на пары и сложим каждую из них. При этом в каждое слагаемое вносится относительное возмущение одного порядка. Далее будем складывать уже полученные суммы. Для этого повторяем процесс разбиения и попарного суммирования до тех пор, пока получающиеся суммы не превратятся в одно число (степень двойки 2^k

нужна только здесь). Абсолютная погрешность по-прежнему имеет вид $\Delta = \sum_{j=1}^n |x_j| \, |\tilde{E}_j|$, но теперь для всех \tilde{E}_j справедлива оценка

$$\left| \tilde{E}_{j} \right| = \frac{1 + \log_{2} n}{2} p^{1-t} + O(p^{2(1-t)}), \ 1 \leqslant j \leqslant n.$$

Таким образом, меняя только порядок суммирования можно уменьшить оценку погрешности примерно в $\frac{n}{\log_2 n}$ раз. Значения \tilde{E}_j отличаются от E_j в силу другого порядка суммирования.

- **1.11.** Предложить способ вычисления знакопеременной суммы, минимизирующий влияние вычислительной погрешности.
- **1.12.** Пусть значение многочлена $P_n(x) = a_0 + a_1 x + ... + a_n x^n$ вычисляется в точке x = 1 по схеме Горнера:

$$P_n(x) = a_0 + x(a_1 + x(...(a_{n-1} + a_n x)...)).$$

Какую погрешность можно ожидать в результате, если коэффициенты округлены с погрешностью η ?

У казание. Воспользоваться решением 1.7, учитывая незнакоопределенность a_i , и с точностью до слагаемых $O(\eta^2)$ получить

$$|P_n(1) - P_n^*(1)| \le n \eta (|a_0| + |a_1| + \dots + |a_n|).$$

1.13. Оценить погрешность вычисления скалярного произведения двух векторов $S = \sum_{j=1}^n x_j y_j$, если их компоненты округлены с погрешностью η .

Ответ: с точностью до слагаемых $O\left(\eta^2\right)$ имеем $|S-S^*|\leqslant n\,\eta\,\|x\|_2\|y\|_2$, где $\|z\|_2^2=\sum\limits_{j=1}^nz_j^2.$

1.14. Пусть вычисляется величина $S=a_1x_1+...+a_nx_n$, где коэффициенты a_i округлены с погрешностью η . Оценить погрешность вычисления S при условии, что $x_1^2+...+x_n^2=1$.

Ответ: с точностью до слагаемых $O\left(\eta^2\right)$ имеем $|S-S^*|\leqslant n\,\eta\,\|a\|_2$, где $\|a\|_2^2=\sum_{j=1}^n a_j^2$.

1.15. Для элементов последовательности

$$I_n = \int_0^1 x^n e^{x-1} dx$$

справедливо точное рекуррентное соотношение $I_n = 1 - n I_{n-1}$, $I_1 = \frac{1}{e}$. Можно ли его использовать для приближенного вычисления интегралов, считая, что опибка округления допускается только при вычислении I_1 ?

 \triangleleft Пусть в результате округления значения I_1 получено значение I_1^* , использование которого приводит к величинам $I_n^* = 1 - n \, I_{n-1}^*$. Для погрешности $\Delta_n = I_n - I_n^*$ имеем соотношение $\Delta_n = -n \, \Delta_{n-1}$, откуда следует $\Delta_n = (-1)^{n+1} n! \, \Delta_1$. Полученная формула гарантирует факториальный рост погрешности и ее знакопеременность. Учитывая, что точные значения удовлетворяют неравенству

$$0 < I_n < \int_0^1 x^n dx = \frac{1}{n+1} \,,$$

получим, что начиная с некоторого n величина погрешности существенно больше искомого результата. Алгоритмы такого рода называются n

1.16. Можно ли использовать для приближенного вычисления интегралов

$$I_n = \int_0^1 x^n e^{x-1} dx$$

точное рекуррентное соотношение $I_{n-1}=\frac{1-I_n}{n}$ (в обратную сторону по сравнению с 1.15), считая, что ошибка округления допускается только при вычислении стартового значения I_N ? Как выбрать это значение? Ответ: да (см. решение 1.15), $I_N\approx 0$ при достаточно больших N.

1.17. Пусть вычисления ведутся по формуле

$$y_{n+1} = 2y_n - y_{n-1} + h^2 f_n \,,$$

где $n=1,2,\ldots$; $y_0,\,y_1$ заданы точно, $|f_n|\leqslant M,\,\,\,h\ll 1.$ Какую вычислительную погрешность можно ожидать при вычислении y_n для больших значений n? Улучшится ли ситуация, если вычисления вести по формулам $\frac{z_{n+1}-z_n}{h}=f_n\,,\frac{y_n-y_{n-1}}{h}=z_n\,?$

 \triangleleft Формулы, приведенные в условии, являются численными алгоритмами решения задачи Коши для уравнения y''=f(x). Рассмотрим модельную задачу y''=M, y(0)=y'(0)=0, имеющую точное решение $y(x)=x^2\frac{M}{2}$. Введем сетку с шагом h: $x_n=n\,h$ и будем искать приближенное решение по формуле

$$y_{n+1} = 2y_n - y_{n-1} + h^2 M$$
, $n = 1, 2, ...$; $y_0 = 0, y_1 = h^2 \frac{M}{2}$.

При отсутствии ошибок округлений получим $y_n = (n h)^2 \frac{M}{2}$, т. е. проекцию точного решения на сетку.

Вычисления приводят к соотношениям

$$y_0^* = 0, y_1^* = h^2 \frac{M}{2} + \eta_1,$$

$$y_{n+1}^* = 2y_n^* - y_{n-1}^* + h^2 M + \eta_{n+1}, \quad n = 1, 2, \dots.$$

 \triangleright

Отсюда для погрешности $r_n = y_n^* - y_n$ получим

$$r_{n+1} = 2r_n - r_{n-1} + \eta_{n+1}, \quad n = 1, 2, \dots; \quad r_0 = 0, r_1 = \eta_1.$$

Для простоты вычислений предположим, что все η_n постоянны и равны η , тогда для погрешности справедлива формула $r_n = \eta \frac{n^2 + n}{2}$. Сопоставляя точное решение y_n и погрешность, приходим к относительной погрешности порядка $h^{-2} \frac{\eta}{M}$. Требование малости этой величины накладывает ограничение на шаг интегрирования h снизу, так как обычно $\eta \sim p^{1-t}$.

Аналогичные рассуждения для второго способа расчетов приводят к относительной погрешности порядка $h^{-1}\frac{\eta}{M}$, что, в свою очередь, приводит к более слабым ограничениям на h при одном и том же η . Другими словами, используя формулы

$$\frac{z_{n+1} - z_n}{h} = f_n \,, \quad \frac{y_n - y_{n-1}}{h} = z_n \,,$$

как правило, получаем меньшую вычислительную погрешность.

1.2. Погрешность функции

Пусть искомая величина y является функцией параметров x_j , $j=1,2,\ldots,n$: $y=y(x_1,x_2,\ldots,x_n)$. Область G допустимого изменения параметров x_j известна, требуется получить приближение к y и оценить его погрешность. Если y^* — приближенное значение величины y, то npedenhoù абсолютной погрешностью называют величину

$$A(y^*) = \sup_{(x_1, x_2, \dots, x_n) \in G} |y(x_1, x_2, \dots, x_n) - y^*|;$$

при этом $npedeльной относительной погрешностью называют величину <math>R(y^*) = \frac{A(y^*)}{|y^*|}.$

1.18. Доказать, что предельная абсолютная погрешность $A(y^*)$ минимальна при

$$y^* = \frac{y_1 + y_2}{2},$$

где $y_1 = \inf_G y(x_1, x_2, \dots, x_n), y_2 = \sup_G y(x_1, x_2, \dots, x_n).$

 \triangleleft Используя определения величин y_1 и y_2 , выражение для $A(y^*)$ перепишем в виде

$$A(y^*) = \sup_{y(x_1, x_2, \dots, x_n) \in [y_1, y_2]} |y(x_1, x_2, \dots, x_n) - y^*|,$$

при этом $A(y_1) = A(y_2) = y_2 - y_1$. Обозначим $A = y_2 - y_1$. Так как нас интересует минимальное значение величины $A(y^*)$, то достаточно проанализировать только $y^* \in [y_1, y_2]$. Это следует из того, что для $y^* \notin [y_1, y_2]$