Last name(s)	Name	ID
Midterm EDA exam	Length: 2.5 hours	20/04/2017
,	•	•
Problem 1		(2 points)
different integers when wi	erage cost of insertion sort to ith probability $\frac{\log n}{n}$ one choose probability $1 - \frac{\log n}{n}$ one choose	es a vector which is
(b) (0.5 pts.) Consider the follo	wing function:	
bool mystery(int n) { if $(n \le 1)$ return fa if $(n == 2)$ return to if $(n\%2 == 0)$ return for (int $i = 3$; $i*i$ if $(n\%i == 0)$ return false;	rue; 1 false;	
if $(n\%i == 0)$		

$0.5~\mathrm{pts.}$) Show that $n!=\Omega(2^n)$ by applying the definition (not using limits).			
0.5 pts.) Show that $n! = \Omega(2^n)$ by applying the definition (not using limits).			
0.5 pts.) Show that $n!=\Omega(2^n)$ by applying the definition (not using limits).			
0.5 pts.) Show that $n! = \Omega(2^n)$ by applying the definition (not using limits).			
2.5 pts.) Show that $n! = \Omega(2^n)$ by applying the definition (not using limits).			
.5 pts.) Show that $n! = \Omega(2^n)$ by applying the definition (not using limits).			
.5 pts.) Show that $n! = \Omega(2^n)$ by applying the definition (not using limits).			
.5 pts.) Show that $n! = \Omega(2^n)$ by applying the definition (not using limits).			
.5 pts.) Show that $n! = \Omega(2^n)$ by applying the definition (not using limits).			
	.5 pts.) Show	that $n! = \Omega(2^n)$ by applying th	e definition (not using limits).
	.5 pts.) Show	that $n! = \Omega(2^n)$ by applying th	e definition (not using limits).
	.5 pts.) Show	that $n! = \Omega(2^n)$ by applying th	e definition (not using limits).
	.5 pts.) Show	that $n!=\Omega(2^n)$ by applying th	e definition (not using limits).
	.5 pts.) Show	that $n!=\Omega(2^n)$ by applying th	e definition (not using limits).
	.5 pts.) Show	that $n!=\Omega(2^n)$ by applying th	e definition (not using limits).
	.5 pts.) Show	that $n!=\Omega(2^n)$ by applying th	e definition (not using limits).
	pts.) Show	that $n!=\Omega(2^n)$ by applying th	e definition (not using limits).

lem 2 (3 \mathfrak{p} $n \ge 1$, a sequence of n integers a_0, \ldots, a_{n-1} is $unimodal$ if there exists $a < n$ such that $a_0 < \ldots < a_{t-1} < a_t$ and $a_t > a_{t+1} > \ldots > a_{n-1}$ ent a_t is called the top of the sequence. example, the sequence 1, 3, 5, 9, 4, 1 is unimodal, and its top is 9 (take $t = 0.5$ pts.) Implement a function $top(const\ vector < int > \&\ a)$ in C++ iven a non-empty vector a that contains a unimodal sequence, returned of the top of the sequence. If you use auxiliary functions that elong to the C++ standard library, implement them too. The solution	ts top is 9 (take $t = 3$). (int>& a) in C++ which all sequence, returns the ry functions that do no notoo. The solution must	Last name(s)	Name	ID	
In $n \ge 1$, a sequence of n integers a_0, \ldots, a_{n-1} is $unimodal$ if there exists $a_0 < n$ such that $a_0 < \ldots < a_{t-1} < a_t$ and $a_t > a_{t+1} > \ldots > a_{n-1}$ ent a_t is called the top of the sequence. Example, the sequence 1, 3, 5, 9, 4, 1 is unimodal, and its top is 9 (take $t = 0.5$ pts.) Implement a function int top (const $vector < int > \& a$) in C++ iven a non-empty vector a that contains a unimodal sequence, returned of the top of the sequence. If you use auxiliary functions that	to an analysis and all if there exists t with $a_{t+1} > \ldots > a_{n-1}$. The state $a_{t+1} > \ldots > a_{n-1}$ is top is 9 (take $t=3$). Since $a_{t+1} > a_{t+1} > \ldots$ in C++ which all sequence, returns the ry functions that do not note. The solution must				
ent a_t is called the top of the sequence. Example, the sequence 1, 3, 5, 9, 4, 1 is unimodal, and its top is 9 (take $t = 0.5$ pts.) Implement a function int top (const $vector < int > & a$) in C++ iven a non-empty vector a that contains a unimodal sequence, returned of the top of the sequence. If you use auxiliary functions that	ts top is 9 (take $t = 3$). (int>& a) in C++ which all sequence, returns the ry functions that do no notoo. The solution must	oblem 2		(3 p	oints
1.5 pts.) Implement a function int $top(\mathbf{const}\ vector < \mathbf{int} > \&\ a)$ in C++ iven a non-empty vector a that contains a unimodal sequence, returned of the top of the sequence. If you use auxiliary functions that	(int>& a) in C++ which all sequence, returns the ry functions that do no notion. The solution must	$\leq t < n$ such that $a_0 < \ldots < a_{t-1}$ ement a_t is called the <i>top</i> of the sequence	$a_{t-1} < a_t$ and a_t sence.	$> a_{t+1} > \ldots > a_{n-1}$	1. The
ave cost $\Theta(\log n)$ in time in the worst case. Justify the cost is indeed Θ and give a situation in which this worst case takes place.	, ,	(1.5 pts.) Implement a function in given a non-empty vector a that index of the top of the sequence belong to the C++ standard librative cost $\Theta(\log n)$ in time in the sequence	nt top (const vector contains a unimode. If you use auxiliary, implement the worst case. Justify t	<int>& a) in C++ adal sequence, returning functions that am too. The solution the cost is indeed a</int>	which ns the do no nus

Last name(s)	Name	ID

Problem 3 (2 points)

The following class *vect* is a simplification of the class *vector* of the STL:

In an object of class *vect*, field *sz* stores the number of elements that the vector currently contains. The reserved memory for the vector, pointed by field *data*, always has enough space to store the *sz* current elements, and possibly some more. The maximum number of elements that could be stored in the reserved memory is called capacity, and is the value of

Reserved space: cap = 6

field *cap*. The diagram on the right illustrates a possible implementation of a vector with contents (4, 2, 3, 1). Note shaded cells are reserved but unused.

The reason for this data structure is that calling the system to ask for more memory is an expensive operation that one does not want to perform often. Function **void** *reserve* (**int** *new_cap*), whose implementation is not detailed here, takes care of that: it asks for a new memory fragment that is big enough to store *new_cap* elements, copies the contents of the old vector there and updates conveniently the fields *sz*, *data* and *cap*.

Observe that every time function *push_back* is called, if there is not enough reserved space, function **int** *new_capacity*() is called which, using the current capacity, determines the new capacity for function *reserve*.

(a) (0.5 pts.) Consider the following implementation of function new_capacity:

```
int new\_capacity () { const int A; // A is a prefixed parameter such that A \ge 1 return cap + A; }
```

What is the exact value of *cap* in a vector that initially has cap = 0 and to which operation *reserve* has been applied m times? Let us denote this value by C(m).

If we make n calls of $push_back$ over a vector which is initially empty (sz = cap = 0), how many times **exactly** have we called *reserve* (in other words, which is the value of m such that $n \le C(m)$ and C(m-1) < n)? Give also an asymptotic expression of this number that is as precise and simple as possible.

Last name(s)	Name	ID
Problem 4		(3 points
We want to have a function		
int stable_partition	(int x , $vector < int$)	>& a)
which, given an integer <i>x</i> and a vector reorders the contents of the vector so these than or equal to <i>x</i> , and all element than <i>x</i> , and also returns the index <i>k</i> (<i>k</i> = Moreover, the original relative order of order of a[i] and a[j] with i < j are bounded as a finite index	that all elements of s of the subvector $a = -1$ if all elements of a is the elements of a is the less than or equals	the subvector $a[0k]$ are $[k+1n-1]$ are greater of a are greater than x). It is respected:
that contains the elements $\leq x$;	-	
• if $a[i]$ and $a[j]$ with $i < j$ are both will occur before $a[j]$, and both will contains the elements $> x$.		
For example, given $x = 2$ and the sequential function updated a to $(1,0,5,3,4)$, and		
(a) (1 pt.) Implement the function sta be $\Theta(n)$. Justify the cost. What is the your implementation is using?	•	

(b) (0.5 pts.) What does the next function *mystery* do? Do not justify the answer. **void** $mystery_aux(vector < int > & a, int l, int r) {$ $// \text{ Pre: } 0 \le l \le r < a.size()$ **for** (int i = l, j = r; i < j; ++i, --j) swap(a[i], a[j]); } **void** $mystery(vector < int > & a, int l, int p, int r) {$ // Pre: $0 \le l \le p \le r < a.size()$ $mystery_aux(a, l, p);$ $mystery_aux(a, p+1, r);$ $mystery_aux(a, l, r);$ (c) (1.5 pts.) Fill the gaps in the following alternative implementation of stable_partition and analyze its cost in time in the worst case. Assume that, in the worst case, at each recursive call of *stable_partition_rec* we have that $q - p = \Theta(r - l + 1)$. int stable_partition (int x, vector < int> & a) { **return** $stable_partition_rec$ (x, a, 0, a. size ()-1);int $stable_partition_rec$ (int x, vector < int > & a, int l, int r) { **if** (l == r) { if $(a[l] \le x)$ return l; else return int m = (l+r)/2; **int** $p = stable_partition_rec (x, a, l, m);$ **int** $q = stable_partition_rec$ (x, a,mystery(a, , m, ;} return Analysis of the cost: