

DNA sequence alterations

- Substitutions: ACGA → AGGA
- Insertions: ACGA → ACCGGAGA
- Deletions: ACGGAGA → AGA
- Transpositions: ACGGAGA → AAGCGGA (move a subsequence)
- Inversions: ACGGAGA ACTCCGA

We seek a method to measure sequence similarity, or how closely sequences resemble each other.

Sequence Alignment

A reoccurring theme ... sequence alignment

Sequence alignment (being able to measure the similarity between sequences) is necessary for:

- * gene finding
- * sequence assembly
- * prediction of function
- * assess evolutionary relationships
- * database searching
- * mapping to a reference

Arguably the cornerstone of computational genomics.

Overview

- What does it *mean* to *align* sequences?
- How do we cast sequence alignment as a *computational problem?*
- What *algorithms* exist for solving this computational problem?

Sequence comparison overview

- Problem: Find the "best" alignment between a query sequence and a target sequence.
- To solve this problem, we need
 - a method for scoring alignments, and
 - an algorithm for finding the alignment with the best score.
 - a methods to assess whether an alignment is significant
 - best if we can do this "quickly"

Sequence alignment - definition

Sequence alignment is an arrangement of two or more sequences, highlighting their similarity.

For example: the sequences below are padded with **gaps** (dashes) so that wherever possible, columns contain **identical characters** from the sequences involved

```
tcctctgcctctgccatcat---caaccccaaagt
|||| ||| |||| |||| |||| |||||||||||
tcctgtgcatctgcaatcatgggcaaccccaaagt
```

Alignment type

 $S_1 = FTFTALILLAVAV$

 $S_2 = FTALLLAAV$

Global

o the whole of each sequence is included, end to end

FTFTALILLAVAV F--TAL-LLA-AV

▶ Local Needleman-Wunch

o only the best matching parts of each sequence

FTALILLA Smith-Waterman

Glocal

o global in query (small), local in reference (big)

FTFTALILL-AVAV FTAL-LLAAV

Scoring alignments

GAATC	GAAT-C	-GAAT-C
CATAC	C-ATAC	C-A-TAC
GAATC-	GAAT-C	GA-ATC
CA-TAC	CA-TAC	CATA-C

- We need a way to measure the quality of a candidate alignment.
- Alignment scores consist of two parts: a substitution matrix, and a gap penalty.

Percent Sequence Identity

The extent to which two nucleotide or amino acid sequences are invariant

70% identical

But depending purely on percent identity fails to consider # gaps and length of alignment!

Scoring an Alignment

- the score of an alignment is the sum of the scores for pairs of aligned characters plus the scores for gaps
- example: given the following alignment

VAHV---D--DMPNALSALSDLHAHKL AIQLQVTGVVVTDATLKNLGSVHVSKG

we would score it by

$$S(V,A) + S(A,I) + S(H,Q) + S(V,L) + S(gap,Q) + S(gap,V) ...$$

Scoring alignments

- Simplest scoring scheme:
 - Match (+1)
 - Mismatch (-1)
 - Gap (-1)

NOTE THAT THESE SCORES ARE ARBITRARY.

Alternatively use substitution matrix

These scores are more biologically inspired, BUT still arbitrary!

Transition (cheap)

A hypothetical substitution matrix:

	Α	С	G	Т
Α	10	-5	0	-5
С	-5	10	-5	0
G	0	-5	10	-5
Т	-5	0	-5	10

So can score any alignment

GAAT-C CA-TAC

-5 + 10 + ? + 10 + ? + 10 = **?**

A hypothetical substitution matrix:

	Α	С	G	Т
Α	10	-5	0	-5
С	-5	10	-5	0
G	0	-5	10	-5
Т	-5	0	-5	10

Scoring gaps

 Linear gap penalty: every gap receives a score of g.

My gap penalty implicitly reflects an opinion on gaps given my scoring matrix. So it must "scale" with my arbitrary system.

Additive scoring scheme => independence

Can invent intuitive scoring schemes, but what is the guiding principles?

Want assign a score that gives a relative likelihood that the sequences are related (as opposed to unrelated)

How do we develop a non-arbitrary scoring scheme?

- Lets think about this carefully:
 - every type of mutation has an associated probability
 - If we knew those probabilities, we could use them as a scoring scheme
 - BUT ... because of selection, not all positions have the same observed mutation rate
 - So we need to start by considering whether two sequences derive from a common anscestor ...

Homology implies a relationship between sequences, specifically vertical transmission

Homologous Genes

Two genes are said to be homologous if they are derived from the same ancestral gene

- Orthologous genes or orthologs are homologous genes that arose by a speciation event.
- Paralogous genes or paralogs are homologous genes found that arose by gene duplication.

If we have the tree, it's easy ...

But from sequence alignment, how do we tell which proteins are homologs?

- SEQ 1: GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL
 - G+ +VK+HGKKV A++++AH+D++ ++++LS+LH KL
- SEQ 2: GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

++ ++++H+ KV

- SEQ 1: GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL
- + +A ++ SEQ 2: NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG
- SEQ 1: GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD----LHAHKL
 - GS+ + G +D L ++ H+ D+ A +AL D

+L+ L+++H+ K

SEQ 2: GSGYLVGDSLTFVDLL--VAQHTADLLAANAALLDEFPQFKAHQE

Are these proteins homologs?

Both negatively charged

+L+ L+++H+ K

+L+ L+++H+ K

- SEQ 1: GSAQVKGHGKKVADALTNAVAHVDDMPNALSAL\$DLHAHKL G+ +VK+HGKKV A++++AH+D++ ++++LS+LH KL
- SEQ 2: GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL
- SEQ 1: GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL ++ ++++H+ KV + +A ++
- SEQ 2: NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG
- SEQ 1: GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD----LHAHKL GS+ + G +D L ++ H+ D+ A +AL D ++AH+
- SEQ 2: GSGYLVGDSLTFVDLL--VAQHTADLLAANAALLDEFPQFKAHQE

Caution: similarity does NOT equal homology!!

- SEQ 1: GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSDLHAHKL
 - G+ +VK+HGKKV A++++AH+D++ ++++LS+LH KL
- SEQ 2: GNPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKL

++ ++++H+ KV + +A ++

- SEQ 1: GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL
- SEQ 2: NNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG
- SEQ 1: GSAQVKGHGKKVADALTNAVAHVDDMPNALSALSD----LHAHKL
 - GS+ + G +D L ++ H+ D+ A +AL D
- SEQ 2: GSGYLVGDSLTFVDLL--VAQHTADLLAANAALLDEFPQFKAHQE

But barring any additional information, it's often the best we can do.

Homology:

P [a_i , a_j | H] = q_{ij} = (frequency of a_i , a_j pairs in homologous protein alignments)

Random sequence:

P [
$$a_i$$
, a_j | R] = p_i p_j = (frequency of a_i) *

(frequency of a_j)

We will come back to this soon.

The maximum local alignment score (similarity) is the alignment that maximizes the log odds ratio of H vs R:

$$s(x,y) = \log (q_{xy} / p_x p_y)$$

The logarithm is necessary for an additive scoring scheme. Each column of alignment is independent