Probability and Stochastic Modelling 1

Semester 1, 2022

 $Dr\ Alexander\ Browning$

TARANG JANAWALKAR

Contents

Contents			1		
	Eve	Events and Probability			
	1.1	Events	4		
	1.2	Probability	;		
	1.3	Circuits	2		

1 Events and Probability

1.1 Events

Definition 1.1 (Event). An event is a set of outcomes in a random experiment commonly denoted by a capital letter. Events can be simple (a single event) or compound (two or more simple events).

Definition 1.2 (Sample space). The set of all possible outcomes of an experiment is known as the sample space for that experiment and is denoted Ω .

Definition 1.3 (Intersection). An intersection between two events A and B describes the set of outcomes that occur in both A and B. The intersection can be represented using the set AND operator $(\cap) - A \cap B$ (or AB).

Definition 1.4 (Disjoint). Disjoint (mutually exclusive) events are two events that cannot occur simultaneously, or have no common outcomes.

Theorem 1.1 (Intersection of disjoint events). The intersection of disjoint events results in the null set (\emptyset) .

Lemma 1.1.1. Disjoint events are **dependent** events as the occurrence of one means the other cannot occur.

Definition 1.5 (Union). A union of two events A and B describes the set of outcomes in either A or B. The union is represented using the set OR operator $(\cup) - A \cup B$.

Definition 1.6 (Complement). The complement of an event E is the set of all other outcomes in Ω . The complement of E is denoted \overline{E} .

Theorem 1.2 (Intersection of complement set).

$$A\overline{A} = \emptyset$$

Theorem 1.3 (Union of complement set).

$$A \cup \overline{A} = \Omega$$

Definition 1.7 (Subset). A is a (non-strict) subset of B if all elements in A are also in B. This can be denoted as $A \subseteq B$.

Theorem 1.4. All events E are subsets of Ω .

Theorem 1.5. Given $A \subseteq B$

$$AB = A$$
 and $A \cup B = B$

Corollary 1.5.1. Given $\emptyset \subseteq E$

$$\emptyset E = \emptyset$$
 and $\emptyset \cup E = E$

Theorem 1.6 (Associative Identities).

$$A(BC) = (AB) C$$
$$A \cup (B \cup C) = (A \cup B) \cup C$$

Theorem 1.7 (Distributive Identities).

$$A(B \cup C) = AB \cup AC$$
$$A \cup BC = (A \cup B) (A \cup C)$$

1.2 Probability

Definition 1.8 (Probability). Probability is a measure of the likeliness of an event occurring. The probability of an event E is denoted Pr(E) (sometimes P(E)).

$$0 < \Pr(E) < 1$$

where a probability of 0 never happens, and 1 always happens.

Theorem 1.8 (Probability of Ω).

$$Pr(\Omega) = 1$$

Theorem 1.9 (Multiplicative rule). The probability of the intersection between two independent events A and B is given by

$$\Pr\left(AB\right) = \Pr\left(A\right)\Pr\left(B\right)$$

Theorem 1.10 (Probability of disjoint events). The probability of disjoint events A and B is given by

$$Pr(AB) = 0$$
$$Pr(\emptyset) = 0.$$

Disjoint events are dependent events, since the occurrence of one means the other cannot occur.

Theorem 1.11 (Addition rule). The probability of the union between two independent events A and B is given by

$$\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(AB).$$

If A and B are disjoint, then Pr(AB) = 0, so that $Pr(A \cup B) = Pr(A) + Pr(B)$.

Corollary 1.11.1 (Addition rule for 3 event). The addition rule for 3 events is as follows

$$Pr(A \cup B \cup C) = Pr(A) + Pr(B) + Pr(B) - Pr(AB) - Pr(AC) - Pr(BC) + Pr(ABC).$$

Proof. If we write $D = A \cup B$ and apply the addition rule twice, we have

$$\begin{split} \Pr\left(A \cup B \cup C\right) &= \Pr\left(D \cup C\right) \\ &= \Pr\left(D\right) + \Pr\left(C\right) - \Pr\left(DC\right) \\ &= \Pr\left(A \cup B\right) + \Pr\left(C\right) - \Pr\left(\left(A \cup B\right)C\right) \\ &= \Pr\left(A\right) + \Pr\left(B\right) - \Pr\left(AB\right) + \Pr\left(C\right) - \Pr\left(AC \cup BC\right) \\ &= \Pr\left(A\right) + \Pr\left(B\right) - \Pr\left(AB\right) + \Pr\left(C\right) - \left(\Pr\left(AC\right) + \Pr\left(BC\right) - \Pr\left(ACBC\right)\right) \\ &= \Pr\left(A\right) + \Pr\left(B\right) + \Pr\left(C\right) - \Pr\left(AB\right) - \Pr\left(AC\right) - \Pr\left(BC\right) + \Pr\left(ABC\right) \end{split}$$

Theorem 1.12 (Complement rule). The probability of the complement of E is given by

$$\Pr\left(\overline{E}\right) = 1 - \Pr\left(E\right)$$

Theorem 1.13 (Probability of subsets). If $A \subseteq B$ then $Pr(A) \le Pr(B)$. Also, Pr(AB) = Pr(A) and $Pr(A \cup B) = Pr(B)$.

Theorem 1.14 (Law of total probability). By writing the event A as $AB \cup A\overline{B}$, and noting that AB and $A\overline{B}$ are disjoint:

$$\Pr(A) = \Pr(AB) + \Pr(A\overline{B})$$

Theorem 1.15 (De Morgan's laws). Recall De Morgan's Laws:

$$\overline{A \cup B} = \overline{A} \ \overline{B}$$
$$\overline{AB} = \overline{A} \cup \overline{B}.$$

Taking the negation of both sides and applying the complement rule yields

$$\Pr(A \cup B) = 1 - \Pr(\overline{A} \ \overline{B})$$

$$\Pr(AB) = 1 - \Pr(\overline{A} \cup \overline{B})$$

1.3 Circuits

A signal can pass through a circuit if there is a functional path from start to finish.

We can define a circuit where each component i functions with probability p, and is independent of other components.

Then W_i to be the event in which the associated component i functions, we can determine the event S in which the system functions, and probability Pr(S) that the system functions.

As the probability that any component functions is p, in other words

$$\Pr\left(W_{i}\right)=p,$$

 $\Pr(S)$ will be a function of p defined $f:(0, 1) \to (0, 1)$.