ПРЕДСТАВЛЕНИЕ ДАННЫХ В ЭВМ

Системы счисления числовых данных

Система счисления — совокупность приемов и правил наименования и обозначения чисел, позволяющих установить взаимно однозначное соответствие между любым числом и его представлением в виде конечного числа символов (цифр) из определённого алфавита.

Алфавит позиционной системы счисления – упорядоченный набор символов (цифр), используемый для представления любых чисел в заданной позиционной системе счисления: { $d^{(0)}, d^{(1)}, \ldots, d^{(p-1)}$ }.

Основание позиционной системы счисления – количество различных цифр, используемых для изображения чисел в данной системе счисления: p>1.

Возможно существование бесчисленного множества разнообразных позиционных систем счисления. Системы счисления, наиболее часто используемые при работе с вычислительной техникой, представлены в следующей таблице.

Основание системы счисления	Название системы счисления	Алфавит системы счисления
2	Двоичная	{ 0, 1 }
3	Троичная	{ 0, 1, 2 }
8	Восьмеричная	{ 0, 1, 2, 3, 4, 5, 6, 7 }
10	Десятичная	{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
16	Шестнадцатеричная	{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

Представление натуральных чисел (и нуля) в произвольной p-ичной системе счисления:

$$\begin{split} \boldsymbol{X}_{\langle n \rangle} \, p &= \boldsymbol{X}_{n-1} \cdot \boldsymbol{p}^{n-1} + \ldots + \boldsymbol{X}_1 \cdot \boldsymbol{p}^1 + \boldsymbol{X}_0 \cdot \boldsymbol{p}^0 \\ \\ \boldsymbol{X}_i \in \boldsymbol{d}^{(0)}, \boldsymbol{d}^{(1)}, \ldots, \boldsymbol{d}^{(p-1)} \end{split}$$

n — количество разрядов (разрядность) представления целого числа. Например:

$$123_{10} = 1 \cdot 10^{2} + 2 \cdot 10^{1} + 3 \cdot 10^{0} =$$

$$= 7B_{16} = 7 \cdot 16^{1} + 11 \cdot 16^{0} =$$

$$= 1111011_{2} = 1 \cdot 2^{6} + 1 \cdot 2^{5} + 1 \cdot 2^{4} + 1 \cdot 2^{3} + 0 \cdot 2^{2} + 1 \cdot 2^{1} + 1 \cdot 2^{0}$$

Позиции, где располагаются цифры, соответствующие большим степеням порядка p, обычно называются стариими разрядами, а соответствующие меньшим степеням порядка p, — младиими разрядами.

*) На практике часто заменяют более компактным шестнадцатеричным представлением громоздкую запись в двоичной системе счисления. Существует правило соотношения: каждой шестнадцатеричной цифре однозначно соответствует своё четырёхразрядное двоичное число:

0_{16}	0000_{2}	4 ₁₆	0100_{2}	816	1000_{2}	C_{16}	1100_{2}
1 ₁₆	00012	516	01012	9 ₁₆	10012	D_{16}	11012
2 ₁₆	0010_{2}	616	0110_{2}	A_{16}	1010_{2}	E_{16}	1110_{2}
3 ₁₆	00112	7 ₁₆	01112	B_{16}	10112	F ₁₆	11112

Представление положительных вещественных (действительных) чисел в произвольной р-ичной системе счисления:

$$\begin{split} \boldsymbol{X}_{\langle n \rangle} \boldsymbol{\cdot} \boldsymbol{X}_{\langle m \rangle} \, p &= \boldsymbol{X}_{n-1} \cdot p^{n-1} + \ldots + \boldsymbol{X}_1 \cdot p^1 + \boldsymbol{X}_0 \cdot p^0 + \boldsymbol{X}_{-1} \cdot p^{-1} + \boldsymbol{X}_{-2} \cdot p^{-2} + \ldots + \boldsymbol{X}_{-m} \cdot p^{-m} \\ \\ \boldsymbol{X}_i \in \boldsymbol{d}^{(0)}, \boldsymbol{d}^{(1)}, \ldots, \boldsymbol{d}^{(p-1)} \end{split}$$

n – разрядность представления целой части числа (количество целых разрядов),

m – разрядность представления дробной части числа (количество дробных разрядов).

Так как при подобной записи позиция десятичной точки, разделяющей целую и дробную части числа, однозначно фиксируется используемой разрядностью представления (n разрядов для целой части числа и m разрядов для дробной части числа), то такое представление вещественных чисел получило название представления cфиксированной десятичной точкой.

Например:

$$12.375_{10} = 1 \cdot 10^{1} + 2 \cdot 10^{0} + 3 \cdot 10^{-1} + 7 \cdot 10^{-2} + 5 \cdot 10^{-3} =$$

$$= 1100.011_{2} = 1 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 0 \cdot 2^{0} + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3}$$

Однако, в каждой позиционной системе счисления можно точно представить только некоторое подмножество рациональных чисел. Рациональное число, точно представимое в одной из систем счисления, возможно, может быть только приближенно записано в других системах счисления.

Например:

$$\frac{7}{3} = 2.1_3 \approx 10.010101 \dots _2 \approx 2.3333 \dots _2$$

Поэтому при осуществлении арифметических операций с вещественными числами, представленных в одной из позиционных систем счисления, неизбежно возникают ошибки округления, наличие которых обязательно нужно учитывать при работе на реальных ЭВМ.

Двоичное представление данных в ЭВМ

1 бит – количество информации, необходимое для определения различий двух равновероятных событий. В двоичной системе счисления бит (bit, binary digit) представляет собой один двоичный разряд. Может принимать два значения, обозначаемые обычно как "0" и "1".

Байт (byte, binary term) – совокупность битов, одновременно обрабатываемая компьютером. В современных вычислительных системах байт считается равным восьми битам, в этом случае он может принимать одно из 256 (2^8) различных значений (состояний).

Машинное слово - количество битов или байтов, соответствующее разрядности регистров процессора и/или разрядности шины данных ЭВМ. В отличие от бита и байта машинное слово является машиннозависимой и платформозависимой величиной. Для современных 32-битных процессоров х86 исторически машинным словом считается 16 бит, реально – 32 бита (типы данных WORD и DWORD).

Обрабатываемые и хранимые в памяти ЭВМ данные являются аппаратной комбинацией символов 0 и 1. С точки зрения двоичной реализации на ЭВМ имеют место только три основных типа данных:

- целочисленные данные;
- вещественные данные в форме с плавающей десятичной точкой;
- данные в форме алфавитно-цифровых символов.

Правильная интерпретация ячейки памяти каждого типа позволяет корректно извлекать хранимую в ней информацию и обрабатывать ее соответствующим образом.

Двоичное представление целочисленных данных

Беззнаковые целочисленные величины представляются в своем двоичном коде.

Для знаковых целочисленных данных старший бит резервируется под знак (0 - "+", 1 - "-"). В оставшихся n-1 битах записывается либо прямой либо добавочный двоичный код числа. Прямой код соответствует обыкновенному двоичному коду. Добавочный код формируется для отрицательных чисел по правилу: инверсия всех битов модуля (абсолютной величины) числа + 1.

Например (для однобайтовых величин):

Например (для однооаитовых величин)
$$+0_{10} \rightarrow 00000000_2$$
 $-0_{10} \rightarrow 111111111_2 + 1_2 \rightarrow 1 \mid 00000000_2$ $+1_{10} \rightarrow 00000001_2$ $-1_{10} \rightarrow 111111110_2 + 1_2 \rightarrow 11111111_2$ $+2_{10} \rightarrow 00000010_2$ $-2_{10} \rightarrow 111111101_2 + 1_2 \rightarrow 111111110_2$

$$\begin{array}{c} +3_{10} \rightarrow 00000011_2 \\ -3_{10} \rightarrow 11111100_2 + 1_2 \rightarrow 11111101_2 \\ +50_{10} \rightarrow 00110010_2 \\ -50_{10} \rightarrow 11001101_2 + 1_2 \rightarrow 11001110_2 \\ +56_{10} \rightarrow 00111000_2 \\ -56_{10} \rightarrow 11000111_2 + 1_2 \rightarrow 11001000_2 \\ +100_{10} \rightarrow 01100100_2 \\ -100_{10} \rightarrow 10011011_2 + 1_2 \rightarrow 10011100_2 \\ +127_{10} \rightarrow 01111111_2 \\ -127_{10} \rightarrow 10000000_2 + 1_2 \rightarrow 10000001_2 \\ +128_{10} \rightarrow 10000000_2 \\ -128_{10} \rightarrow 01111111_2 + 1_2 \rightarrow 10000000_2 \\ +200_{10} \rightarrow 11001000_2 \\ +255_{10} \rightarrow 11111111_2 \end{array}$$

Примеры арифметических действия без переполнения

Беззнаковые числа:

Знаковые числа:

Примеры арифметических действия с переполнением

Беззнаковые числа:

unsigned char:

<u>char :</u>

7	6		0
бит знака числа (0 – "+" 1 – "-")		ой / добавоч й код числа	

unsigned short:

short:

unsigned int, unsigned long:

int, long:

Двоичное представление вещественных данных

Любое вещественное число N, представленное в системе счисления с основанием p, можно записать в виде экспоненциального представления :

$$N = \pm M \times p^{\pm k}$$
,

где:

$$\pmb{M}=\pmb{X}_{\langle n \rangle}$$
 . $\pmb{X}_{\langle m \rangle}=\pmb{X}_{n-1}\dots \pmb{X}_1\pmb{X}_0$. $\pmb{X}_{-1}\pmb{X}_{-2}\dots \pmb{X}_{-m}$ — мантисса числа,

k – целочисленный порядок числа.

Например:

$$123.45 = 123.45 \times 10^{0} = 1234.5 \times 10^{-1} = 12345 \times 10^{-2} = 123450 \times 10^{-3} =$$

$$= 12.345 \times 10^{1} = 1.2345 \times 10^{2} = 0.12345 \times 10^{3} = 0.012345 \times 10^{4}$$

$$1011.01 = 1011.01 \times 10^{0} = 10110.1 \times 10^{-1} = 101101 \times 10^{-10} = 1011010 \times 10^{-11} =$$

$$= 101.101 \times 10^{1} = 10.1101 \times 10^{10} = 1.01101 \times 10^{11} = 0.101101 \times 10^{100} = 0.0101101 \times 10^{101}$$

Такое представление вещественных чисел называется *представлением с плавающей* (*float*) *десятичной точкой* (*десятичной запятой*). Величина порядка определяет, на сколько разрядов необходимо осуществлять сдвиг относительно этой десятичной точки (десятичной запятой).

Нормализованная форма записи — такая форма записи вещественного числа с плавающей десятичной точкой (запятой), при которой эта плавающая десятичная точка (запятая) располагается в мантиссе перед первой значащей цифрой.

$$|\mathbf{M}| = 0.X_{(m)} = 0.X_{-1}X_{-2}...X_{-m}$$
 , $X_{-1} \neq 0$

Для двоичной системы счисления при нормализованной форме записи:

$$|\boldsymbol{M}| = 0.\boldsymbol{X}_{\langle m \rangle} = 0.1\boldsymbol{X}_{-2} \dots \boldsymbol{X}_{-m}$$

и можно хранить только m-1 разрядов мантиссы (самый старший разряд всегда равен 1). Значение абсолютной величины мантиссы при этом всегда находится в диапазоне

$$0.5 \leq |\boldsymbol{M}| \leq 1.$$

Порядок нормализованного вещественного числа задается в виде k-разрядного смещенного кода Грея, что позволяет производить операции над порядками как над беззнаковыми числами.

float:

double:

63	62		52	51		1	0
знак	поря	док в форме смещен	ІНОГО	a	бсолютная величина	а мантиссі	Ы
мантиссы	двои	чного кода (11 разря	ядов)		(52 разряда	a)	

long double:

79	78		64	63		1	0		
знак	поря	порядок в форме смещенного			абсолютная величина мантиссы				
мантиссы	двои	чного кода (15 разря	ядов)	(64 разряда)					

Двоичное представление символьной информации

Символьная (алфавитно-цифровая) информация хранится и обрабатывается в ЭВМ в форме цифрового кода, т.е. каждому символу ставится в соответствие отдельное бинарное слово-код.

Среди наборов символов исторически наибольшее распространение получили знаки кода ASCII (American Standard Code for Information Interchange — американский стандартный код обмена информацией). Базовый код ASCII — это семиразрядный код, обеспечивающий $2^7 = 128$ различных битовых комбинаций. Базовая таблица ASCII-кодов символов стандартна для всех IBM-совместимых компьютеров. Расширенная таблица ASCII-кодов относится к символам от 128 до 255 и может различаться на системах разного типа. Таким образом, алфавитно-цифровые символы хранятся в памяти ЭВМ в виде восьмиразрядных байтов.

В последнее время все большее распространение получает универсальная система кодирования текстовых данных UNICODE. В данной системе символы кодируются не восьмиразрядными, а 16-разрядными двоичными числами, что позволяет обеспечивать $2^{16} = 65536$ уникальных кодов символов.

Рассмотрим подробнее таблицу кодирования символов ASCII.

Символ	BIN	HEX	DEC
Управляющие	0000 0000	00	0
спец.			
СИМВОЛЫ	0001 1111	1F	31
' ' (SPACEBAR)	0010 0000	20	32
'!'	0010 0001	21	33
'/'	0010 1111	2F	47
'0'	0011 0000	30	48
'1'	0011 0001	31	49
'9'	0011 1001	39	57
':'	0011 1010	3A	58
'@'	0100 0000	40	64
'A'	0100 0001	41	65
'B'	0100 0010	42	66
'Z'	0101 1010	5A	90
'['	0101 1011	5B	91
'a'	0110 0001	61	97
'b'	0110 0010	62	98
'z'	0111 1010	7A	122
' { '	0111 1011	7B	123
Символы расшир.	1000 0000	80	128
таблицы			
ASCII-кодов	1111 1111	FF	255

В расширенной таблице ASCII-кодов располагаются коды специальных знаков, символов псевдографики и коды национальных символов. Например, для букв русского алфавита широко используется кодировка Windows-1251, а также КОИ-7 и КОИ-8 (коды обмена информацией 7-битный и 8-битный).