EVOLUTION OF ARM MICROCONTROLLERS

ARM series of microcontrollers – ARM Families Important ARM features

History of ARM series of Microcontrollers

- Architectural ideas developed in 1983 by Acorn Computers
 - To replace the 8-bit 6502 microprocessor in BBC computers
 - The first commercial RISC implementation
- The company founded in 1990
 - Advanced RISC Machine (ARM)
 - Initially owned by Acorn, Apple and VLSI

Introduction

- 32-bit RISC architecture
- Developed by ARM Corporation, previously known as Acorn RISC Machine
- Licensed to companies that want to manufacture ARM based CPUs or SOC products
- Helps the licensee to develop their own-processors complaint with ARM instruction set architecture

Why do we talk about ARM?

- One of the most widely used processor cores
- Some application examples:
 - ARM: iPod
 - ARM9: BenQ, Sony Ericsson
 - ARM11: Apple iPhone, Nokia N93, N100
 - 90% of 32-bit embedded RISC processors till 2010
- Mainly used in battery-operated devices:
 - Due to low power consumption and reason performance

Popular ARM Architectures

• ARM7

- 3 pipeline stages (fetch/decode/execute)
- High code density/low power consumption
- Most widely used for low-end systems

ARM9

- Compatible with ARM7
- 5 stages (fetch/decode/execute/memory/write)
- Separate instruction and data cache

• ARM10

6-stages (fetch/issue/decode/execute/memory/write)

ARM Architecture History

Version	Year	Features	Implementation	
V1	1985	The first commercial RISC (26-bit)	ARM1	
V2	1987	Coprocessor support ARM2, ARM3		
V3	1992	32-bit, MMU, 64-bit MAC	ARM6, ARM7	
V4	1996	THUMB	ARM7TDMI, ARM8, ARM9TDMI, StrongARM	
V5	1999	DSP and Jazelle extensions	ARM10, XScale	
V6	2001	SIMD, THUMB-2, TrustZone, Multiprocessing	ARM11, ARM11 MPCore	
V7	2005	Three profiles, NEON, VFP	?	

ARM Family Comparison

	ARM 7 (1995)	ARM9 (1997)	ARM10 (1999)	ARM11 (2003)
Pipeline depth	3-stage	5-stage	6-stage	8-stage
Typical clock frequency (MHz)	80	150	260	335
Power (mW/MHz)	0.06	0.19	0.50	0.40
Throughput (MIPS/MHz)	0.97	1.1	1.3	1.2
Architecture	Non Neumann	Harvard	Harvard	Harvard
Multiplier	8 x 32	8 x 32	16 x 32	16 x 32

Architecture Revisions

ARM processor families

• ARMv1

First version of ARM processor 26-bit addressing, no multiply/coprocessor

ARMv2

ARM2, First commercial chip Included 32-bit result multiply instructions/coprocessor support

ARMv2a

ARM3 chip with on-chip cache Added load and store Cache mangement

ARM processor families

ARMV3

ARM6, 32 bit addressing, virtual Memory support

ARMV4-ARM7TDMI, Strong ARM

Includes MMU

Unified 8K cache

Five stage pipeline

- T: Thumb, 16-bit instruction set
- D: on-chip Debug support, enabling the processor to halt in response the processor to halt in response to a debug request

ARM processor families

• ARM v7

ARM11
Thumb 2 (mixed 16 and 32 bit)
ARM cortex implementation

ARM v8A

32-bit and 64-bit
A32, T32 and A64 instruction sets
Virtual memory system
Supporting rich operating systems

• ARM v8R, v8M

Instructions used in single bit operation T32/Thumb® instruction set only Protected memory systems

Development of the ARM Architecture

architectures

Halfword and signed halfword / byte support

System mode

4

SA-110

SA-1110

Thumb instruction set ARM7TDMI

ARM720T

ARM9TDMI

ARM940T

Improved ARM/Thumb Interworking

CLZ Saturated maths

DSP multiplyaccumulate instructions

ARM1020E

XScale

ARM9E-S

ARM966E-S

Jazelle

Java bytecode execution

ARM9EJ-S

ARM7EJ-S

ARM926EJ-S

ARM1026EJ-S

SIMD Instructions

Multi-processing

Multi-processing

V6 Memory architecture (VMSA)

Unaligned data support

6

ARM1136EJ-S

ARM is based on RISC Architecture

- RISC supports simple but powerful instructions that execute in a single cycle at high frequency
- MAJOR DESIGN FEATURES:
 - Instructions: reduced set/single cycle/fixed length
 - Pipeline: decode in one stage / no need for microcode
 - Registers: large of general-purpose registers (GPR's)
 - Load/store instructions work on registers on register's only: load/store instructions to transfer data from/to memory
- Now-a-days CISC machines also implement RISC concepts

ARM features

- ARM architecture is different from pure RISC:
 - Variable cycle execution for certain instructions (multiple register load/store for higher code density)
 - In-line barrel shifter results in more complex instructions (improves performance and code density)
 - Thumb 16-bit instruction set (results in improvement in code density by about 30%)
 - Conditional execution (reduces branch and improves performance)
 - Enhanced instructions (some DSP instructions are present)

Features

- ARM cores are very simple, requires relatively lesser number of transistors, leaving enough space on die to realize other functionalities on the silicon
- Instruction set architecture and the pipeline design aimed at minimizing energy consumption
- Also capable of running 16-bit THUMB instruction set-greater code density and enhanced power saving
- Higher performance
- Highly modular architecture-the only mandatory part is the integer pipeline, all other components are optional
- Built-in JTAG debug port and on-chip embedded in-circuit emulator (ICE) that allows programs to be downloaded and fully debugged in-system

ARM Nomenclature

ARM $\{x\}\{y\}\{z\}\{T\}\{D\}\{M\}\{I\}\{E\}\{J\}\{J\}\{F\}\{-S\}\}$

X: family

Y: Memory management/protection unit

Z: cache

T: Thumb 16 bit decoder

D: JTAG debug

M: fast multiplier

I: embedded ICE macrocell

E: enhanced instruction

J: Jazelle

F: vector floating point

S: synthesizible version

Memory-mapped I/O:

- No specific instructions for I/O
- Use Load/Store instr. for I/O
- Peripheral's registers at some memory addresses

