

MOTIVATION OF PROJECT

- We wanted to see if tourism did have an impact on the number of COVID-19 cases in Hawaii.
 - Find any possible information in regards to COVID-19 in Hawaii, with a primary focus on trans-pacific travelers.
- Hoped to find possible trends through the use of K-Means Clustering.

RELATED REFERENCE WORK

- "Assessing global preparedness for the next pandemic: development and application of an Epidemic Preparedness Index"
 - K-Means Clustering was used on **2009 H1N1 influenza pandemic**.
 - Clusters were used to determine a Epidemic Preparedness Index (EPI).
 - Used to improve overall preparedness for possible future pandemics.
- "Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19"
 - K-Means Clustering was used on blood samples from COVID-19 patients.
 (Mild & Severe)
 - Clusters were based on gene expression changes against a healthy donor group.

RELATED REFERENCE WORK

- "Enhancement of hepatitis virus outcome predictions with application of K-means clustering"
 - K-Means Clustering was used to determine if a patient with symptoms similar to Hepatitis B and Hepatitis C, actually has it.
 - The program had a roughly 84.85% success rate.
 - Authors note that K-Means Clustering could be used to make other medical predictions.

DATASET OVERVIEW

FEATURES	RANGE	AVERAGE
Daily COVID-19 Cases with Travel History	0 - 50 Cases	4.64 Cases
Percentage of all COVID-19 Cases with Travel History	0% - 100%	10.85%
Daily Trans-Pacific Passenger Arrivals	386 - 24,654 Arrivals	6,479.43 Arrivals

K-MEANS CLUSTERING OVERVIEW

- Type of unsupervised learning, which is used on unlabeled data.
- The goal is to find groups of data with a number of groups k, based on feature similarity.
- When a new data point is added, it can be grouped with a cluster based on its features.
- Can be used to find trends in data and classify new data accordingly.

RESULTS

RESULTS

RESULTS

CLUSTER CENTROIDS	ARRIVALS	# OF TRAVEL COVID CASES	% OF TRAVEL COVID CASES
1	781	2	20.98%
2	2,050	2	5.47%
3	5,786	7	10.79%
4	7,623	8	11.73%
5	9,449	11	13.49%
6	12,065	8	11.84%
7	15,822	4	9.10%
8	18,812	4	8.36%
9	21,959	3	6.71%

RESULTS PER COUNTY

HAWAII RESULTS

OAHU RESULTS

MAUI RESULTS

KAUAI RESULTS

RESULTS DISCUSSION

- Outliers in Red Rectangle
 - \circ 1/5-1/7 \rightarrow Christmas
 - \circ 1/8 1/12 \rightarrow New Year's
- Days when most COVID-19 cases were associated with travel correspond to Major Holidays

RESULTS DISCUSSION

- Outliers in Blue Circle
 - o 3/2020 5/2020
- → At start of COVID-19, most cases were associated with travel but few number of COVID-19 cases
 - Outliers in Red Rectangle
 - \circ 11/24 \rightarrow Veterans Day
 - \circ 12/3, 12/8 \rightarrow Thanksgiving
 - \circ 1/4 1/7 \rightarrow Christmas
 - \circ 1/8 1/14 \rightarrow New Year's

CONCLUSION

- Implementation of the K-Means Clustering algorithm provided an accurate representation of the effect of tourism on COVID-19 Cases.
- Major Findings:
 - Tourism is not a major contributor to COVID-19 Cases for the overall State of Hawaii
 - On the contrary, tourism does have an impact on the island of Kauai independently

THANK YOU!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

RESOURCES

- [1] A. Ahmad and L. Dey, "A k-mean clustering algorithm for mixed numeric and categorical data," Data & Knowledge Engineering, vol. 63, no. 2, pp. 503–527, Nov. 2007.
- [2] S. Amin, M. I. Uddin, M. A. Zeb, A. A. Alarood, M. Mahmoud, and M. H. Alkinani, "Detecting Dengue/Flu Infections Based on Tweets Using LSTM and Word Embedding," IEEE Access, vol. 8, pp. 189054–189068, Oct. 2020.
- J. S. Lee, S. Park, H. W. Jeong, J. Y. Ahn, S. J. Choi, H. Lee, B. Choi, S. K. Nam, M. Sa, J.-S. Kwon, S. J. Jeong, H. K. Lee, S. H. Park, S.-H. Park, J. Y. Choi, S.-H. Kim, I. Jung, and E.-C. Shin, "Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19," Science Immunology, vol. 5, no. 49, pp. 1–16, Jul. 2020.
- [4] B. Oppenheim, M. Gallivan, N. K. Madhav, N. Brown, V. Serhiyenko, N. D. Wolfe, and P. Ayscue, "Assessing global preparedness for the next pandemic: development and application of an Epidemic Preparedness Index," BMJ Global Health, vol. 4, no. 1, pp. 1–9, Jan. 2019.
- [5] A. M. Qahtani, B. M., H. Alhakami, S. Abuayeid, and A. Baz, "Predicting Hospitals Hygiene Rate during COVID-19 Pandemic," International Journal of Advanced Computer Science and Applications, vol. 11, no. 12, pp. 815–823, 2020.
- [6] A. Solovyov, G. Palacios, T. Briese, W. I. Lipkin, and R. Rabadan, "Cluster analysis of the origins of the new influenza A(H1N1) virus," Eurosurveillance, vol. 14, no. 21, May 2009.
- [7] M. Stricker, N. Onland-Moret, J. Boer, Y. V. D. Schouw, W. Verschuren, A. May, P. Peeters, and J. Beulens, "Dietary patterns derived from principal component- and k-means cluster analysis: Long-term association with coronary heart disease and stroke," Nutrition, Metabolism and Cardiovascular Diseases, vol. 23, no. 3, pp. 250–256, Mar. 2013.
- [8] G. Sun, Y. Hakozaki, S. Abe, N. Q. Vinh, and T. Matsui, "A novel infection screening method using a neural network and k-means clustering algorithm which can be applied for screening of unknown or unexpected infectious diseases," Journal of Infection, vol. 65, no. 6, pp. 591–592, Dec. 2012.
- [9] K. Teknomo, "K-Mean Clustering Tutorials," K-Mean Clustering Tutorial, 2019. [Online]. Available: https://people.revoledu.com/kardi/tutorial/kMean/index.html. [Accessed: 12-Mar-2021].
- [10] J. Turtle, P. Riley, M. Ben-Nun, and S. Riley, "Accurate influenza forecasts using type-specific incidence data for small geographical units," medRxiv, Nov. 2019.
- [11] G. Kurniawan and Z. Rustam, "Enhancement of hepatitis virus outcome predictions with application of K-means clustering," Proceedings of the 4th International Symposium on Current Progress in Mathematics and Sciences (ISCPMS2018), vol. 2168, no. 1, pp. 1–5, Nov. 2019.
- T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu, "An efficient k-means clustering algorithm: analysis and implementation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 881–892, Jul. 2002.

