1. (35%) Linear Regression Analysis for Wine Quality

(a) (10%) Show the results of regression analysis as follows

33	f17	0.0633	0.019	3.409	0.001	0.027	0.100			
34	f18	-0.1904	0.021	-9.194	0.000	-0.231	-0.150			
35	f19	0.0278	0.026	1.051	0.294	-0.024	0.080			
36	f20	0.0126	0.020	0.644	0.520	-0.026	0.051			
37	f21	-0.0357	0.028	-1.263	0.207	-0.091	0.020			
38	f22	0.0747	0.021	3.533	0.000	0.033	0.116			
39	f23	-0.0088	0.020	-0.442	0.659	-0.048	0.030			
40	f24	0.0193	0.024	0.800	0.424	-0.028	0.067			
41	f25	-0.0679	0.020	-3.406	0.001	-0.107	-0.029			
42	f26	-0.0360	0.022	-1.625	0.105	-0.080	0.008			
43	f27	-0.0062	0.019	-0.324	0.746	-0.044	0.031			
44										
45	Omnibus:		39.6	669 Durbin	-Watson:		2.004			
46	Prob(Omnibus):		0.6	000 Jarque	-Bera (JB):		147.525			
47	Skew:		0.6	990 Prob(J	B):		9.23e-33			
48	Kurtosis:		5.3	883 Cond.	No.		1.34e+16			
49										
50										
51	Notes:	Notes:								
52	[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.									
53	[2] The smallest eigenvalue is 1.13e-29. This might indicate that there are									
54	strong multicollinearity problems or that the design matrix is singular.									

(b) (5%) The fitting of the linear regression is a good idea? If yes, why? If no, why? What's the possible reason of poor fitting?

Ans:

使用以下兩指標解讀線性分析的結果。

R-squared: the measurement of how much of the independent variable is explained by changes in our dependent variables.

- 統計結果的 R-squared 是 0.495,表示模型能解釋變數們 49.5% 的變量。R-squared < 0.5 指出此模型表現不佳。
- Adj. R-squared 的結果雷同。

Prob (F-Statistic): this number to tell you the accuracy of the null hypothesis(H0), or whether it is accurate that your variables' effect is 0.

- H0 是殘差正常的假設。
- 統計結果的 `Prob (F-Statistic)` 很小,為 1.16e-70,因此我們拒絕此假設,也表示此數據不太適合做 linear regression。
- (c) Based on the results, rank the independent variables by p values and which one are statistically significant variables with p values<0.01?

Ans: p 越小影響力越大,如下程式運行的結果,依照小至大排序為 f18 < f2 < ... < f6。

- (d) (15%) Testify the underlying assumptions of regression (1) Normality, (2) Independence, and (3) Homogeneity of Variance with respect to residual
 - Normality: Shapiro-Wilk test 常態性檢定 => Not normal
 - Independence: Durbin-Watson test 獨立性檢定 => Independent, features 間關聯性低
 - Homogeneity: Breusch-Pagan test 異質變異數檢定 => No Homogeneity

(**—**) Normality Check

Ans:

The residual is not normal. Because `Shapiro: statistics=0.935, p=0.000`. Result p-value < 0.05 so we reject H0.

(二) Independence Check (aka check multicollinearity)

None of the VIF (Variance Inflation Factor) value of the features > 10, therefore, no significant multicolinearity within the variables. No features should be removed.

(三) Homogeneity Check (aka Homoscedasticity)

B-P test shows hetroscedasticity, G-Q test shows homoscedasticity.

B-P test reject null hypothesis with p-value = $5.3e^{-20} < 0.5$. Which means residual doesn't show homoscedasticity. G-Q test result a p-value = 0.42. Although it less than 0.5 a little bit. It is more acceptable than the result of B-P test.

Check Homoscedasticity assumption $H_0:$ Homoscedasticity $H_1:$ Hetroscedasticity

2. (35%) Association Rule Market Basket Analysis

- ✓ Set the minimum support to 0.001
- ✓ Set the minimum confidence of 0.15
- (1) (10%) How to handle the raw dataset via data preprocessing?

Ans: Make each transaction record in to Boolean vector, so the dataset is a Boolean matrix. Item bought indicates the corresponding column is True, otherwise False.

(2) (10%) What's the top 5 association rules? Show the support, confidence, and lift to each specific rule, respectively?

Ans:

All the 5 rules show that "whole milk" and "other vegetables" is a great consequent product. The most frequent rule is {root vegetables, flour, whipped/sour cream → whole milk}. Its

support value is 0.001729, which means this itemset buying ratio.

All the confidence is 1.0 which means these are strong causal relationship.

Lift > 1 means these rules appear more frequent than normal case of consequent.

(3) (5%) Please provide/guess the "story" to interpret one of top 5 rules you are interested in. Ans:

The first rule is {root vegetables, flour, whipped/sour cream \rightarrow whole milk} may tell us that people tend to cook bisque soup. As well as the vegetables and flour, milk is a necessary ingredient for bisque soup.

(4) (10%) Give a visualization graph of your association rules.

Ans:

For the clearness, I show the graph from top 5 rules. We can find an interesting causal relationship: most edges point from "Rule node" to "whole milk" and "other vegetables".

3. (30%) Manufacturing System Analysis

(a) (10%)根據 Little's Law 試 計算各工作站的產出率 TH 於下表,試問瓶頸站的產出率 rb、最小生產週期時間 (總加工時間, T0)、關鍵在製品水準 (W0)各為多少?

Ans:
$$rb = 0.375$$
, $T0 = 41$, $W0 = 15.375$. $(W0 = rb * T0)$

工作站	機台數	加工時間	工作站的產能 TH		
編號		(小時)	(個/小時)		
1	3	5	3/-		
2	3	8	3/g min		
3	6	12	6/12		
4	2	4	2/4		
5	5	12	5/12		

(b) (10%)試給出最佳績效 (best case)下,最大的產出率 (THbest)與最小生產週期時間 (CTbest)的計算公式 (提示講義 22~29 頁)

Ans: 如下方程式碼。

$$CT(\mathbf{w}) = \begin{cases} T_0, & w \leq W_0 \\ \frac{w}{r_h}, & w > W_0 \end{cases}$$

$$TH(w) = \begin{cases} \frac{w}{T_0}, & w \leq W_0 \\ r_k, & w > W_0 \end{cases}$$

(c) (10%)根據該問題的產線,試程式撰寫建立一模擬模型(或用套裝軟體、數值分析)來驗證,當在製品 WIP 數量超過工廠產能時,其生產週期將嚴重惡化。也就是當產線的投

料速度(投產量)大於產線的產出率,此時生產系統將處於非穩態的狀態(non steady state)。 試用圖表呈現 WIP、 CT 與 TH 之間惡化的關係。(提示講義 22~29 頁)

Ans: 如下圖, W0 時 WIP = 15.375 是 critical wip, 為圖中的轉折點。

