Optimistic Concurrency Control in a Distributed NameNode Architecture for Hadoop Distributed File System

Qi Qi

Instituto Superior Técnico - IST (Portugal) Royal Institute of Technology - KTH (Sweden) Swedish Institute of Computer Science - SICS (Sweden)

qiq@kth.se

19 September 2014

Overview

- Introduction
 - Motivation
 - Problem Statement
 - Contribution
- 2 Background
 - GFS Architecture
 - HDFS Architecture
 - Isolation Level
 - MySQL Cluster
 - Hop-HDFS
- Namespace Concurrency Control
 - HDFS Namespace Concurrency Control
 - Hop-HDFS Namespace Concurrency Control

Motivation

Introduction

Industrial Standard in Big Data Era

Apache Hadoop Ecosystem

Limits to growth in HDFS

Number of Files	Memory Requirement	Physical Storage	
1 million	0.6 GB	0.6 PB	
100 million	60 GB	60 PB	
1 billion	600 GB	600 PB	

Hop-HDFS and Its Limitation

Distributed NameNode Architecture Restricted Concurrency

Problem Statement

HDFS

System-level Lock

Hop-HDFS v1

System-level Lock

Hop-HDFS v2

Row-level Lock

MySQL Cluster

Read Committed / Anomalies

Contribution

Architectures and Namespace Concurrency Control

GFS, HDFS, Hop-HDFS and MySQL Cluster

Performance Accessment and Limitation Analysis

HDFS v.s. Hop-HDFS v2 (PCC version)

Solution for Hop-HDFS

Optimistic Concurrency Control with Snapshot Isolation on Semantic Related Group

GFS Architecture

HDFS Architecture

HDFS Architecture

Isolation Level

Berenson, Hal, et al. "A Critique of ANSI SQL Isolation Levels." ACM SIGMOD Record 24.2 (1995): 1-10.

Isolation Level	Lost	Fuzzy	Phantom	Read	Write
	Up-	Read		Skew	Skew
	date				
Read Uncommitted	✓	✓	✓	✓	√
Read Committed	✓	✓	√	√	✓
Cursor Stability	some-	some-	✓	\checkmark	some-
	times	times			times
Repeatable Read	Χ	X	√	Χ	Χ
Snapshot	Χ	X	sometimes	Χ	√
Serializable	Χ	Χ	Χ	Χ	Х

MySQL Cluster

- Distributed, in-memory, replicated database
- Supports only Read Committed
- High throughput:

Hop-HDFS

Overcome Limitations in HDFS NameNode

- Scalability of the Namespace
- Throughput Problem
- Failure Recovery

Hop-HDFS Architecture

HDFS Namespace Concurrency Control

HDFS Namespace Structure

id	parent_id	name
1	0	/
3	1	а
	1	b
4	1	С
5	2	d
6	3	е
7	5	f
8	6	g
9	7	h
10	7	i

Table

Treatments	Response 1	Response 2	
Treatment 1	0.0003262	0.562	
Treatment 2	0.0015681	0.910	
Treatment 3	0.0009271	0.296	

Table: Table caption

Theorem (Mass-energy equivalence)

$$E = mc^2$$

Verbatim

Example (Theorem Slide Code)

```
\begin{frame}
\frametitle{Theorem}
\begin{theorem}[Mass--energy equivalence]
$E = mc^2$
\end{theorem}
\end{frame}
```

Figure

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

Citation

An example of the \cite command to cite within the presentation:

References

Shvachko, K. V. (2010).

Hdfs scalability: The limits to growth.

login 35(2), 6-16.

Thank you.