EVOLUTIOSoc: A Meta-Framework for Complex Social Systems

Francisco J Navarro-Meneses

2025-10-02

Table of contents

Abstract 4				
1	1.1 1.2 1.3 1.4	History	7 10 11 12	
2	The		14	
	2.1	Natural Science as the Cornerstone of Evolutionary Inquiry	14	
	2.2	What is a Framework?	14	
	2.3	What is the purpose of a Meta-Framework?	15	
3	Met	hodology	16	
	3.1	Objetives	16	
	3.2	Rationale for a Meta-Framework	16	
	3.3	What is a Framework?	17	
	3.4	Stages for Constructing the Meta-Framework	18	
		Stage 1: Familiarization	19	
		Stage 2: Developing a thematic framework	19	
		Stage 3: Indexing	20	
		Stage 4: Charting	20	
		Stage 5: Mapping and interpretation	21	
4	Des	cription	22	
	4.1	SEARCH: A Systematic Review	23	
	4.2	Evolution	26	
		4.2.1 Competition	27	
		4.2.2 Convergent evolution (parallelism)	27	
		4.2.3 Buffon's perfect adapted organism	27	
	4.3	Origin	29	
	4.4	Structure	30	
	4.5	Environment	30	
		4.5.1 History	31	
		4.5.2 Forces	31	
		4.5.3 Selection	29	

	4.6	Behavior	2
	4.7	Change	3
		4.7.1 Mutations	4
	4.8	Reproduction	4
		4.8.1 Reproductive strategies	5
		4.8.2 Developmental constraints	5
			5
			6
	4.9		6
	4.10		7
			7
5			9
	5.1	Using SEARCH as a Meta-Framework to Guide Future Research	0
	5.2	Gaps in Positive Education Research	0
	5.3		1
	5.4	The Use of a Synthesis Method	1
	5.5	Practical Implications	2
		5.5.1 Evolutionary analyst	2
		5.5.2 Prediction ability	3
		5.5.3 Manipulation of the system and its programmability 4	3
		5.5.4 Inform and activate policies	3
		1 0	4
		5.5.6 Eugenics of individuals	4
		5.5.7 The connection with complex systems	4
		5.5.8 The contribution of this review to policy	4
	5.6	Framework Thematic Discussion	5
		5.6.1 On Evolution	5
		5.6.2 On the Origin	6
		5.6.3 On the Environment	6
		5.6.4 On the Unit	7
		5.6.5 On Change	8
		5.6.6 On Heredity	9
6			0
	6.1	Recommendations	1
Re	eferen	ices 5	2

Abstract

This paper presents a data-driven, meta-framework to support evidence-based decisions for researchers and practitioners when designing, investigating and implementing social complex systems: the EVOLUTIOSoc framework.

EVOLUTIOSoc was developed through a two-stage process.

Stage one comprised the thematic grouping of topics based on a seminal evolution history work. Stage two involved testing the framework and fine-tuning it with selected works in evolution, both from the field of biology and the social sciences.

Stage one comprised a large-scale bibliometric review and thematic grouping of topics based on natural language processing of over 18,403 positive psychology studies.

Stage two involved action-research with ten schools testing the practical validity of the wellbeing themes identified in stage one with educators.

The **result** of these two stages identified six overarching pathways to wellbeing that formed the SEARCH framework: 1) strengths, 2) emotional manage- ment, 3) attention and awareness, 4) relationships, 5) coping and 6) habits and goals.

The aim of this current review paper was to examine the existing educational and psychology literature for evidence of whether each SEARCH pathway has been found to successfully foster student wellbeing. Seventy five peer-reviewed studies (total student N= 35,888) were reviewed from North America, Europe, the United Kingdom, Asia, Australia and New Zealand.

Results demonstrate the value and applicability of the SEARCH framework. The comprehensive review conducted in this paper is then used to discuss current gaps in positive education research as well as present the utility of SEARCH as a framework to support positive education science and practice.

The review of views studies concludes that children's, young people's and parents' views about what helps and hinders their walking and cycling involves the strong culture of car use, the fear and dislike of local environments, children as responsible transport users, and parental responsibility for their children. Brunton et al. (2006)

The CEN Workshop Agreement (CWA) first presents an in-depth analysis of the current state-of-the art of ICT Practitioner Skills/Competence frameworks in order to clarify the nature of the next steps towards a European ICT Skills Meta-Framework, and its relationship to the

proposed European Qualifications Framework (EQF). Then, recommendations based on the results of the analysis are presented.@de2006european

A comprehensive overview of ICT frameworks has been produced, and a structured inventory of five particularly significant ICT Practitioner Skills/Competence frameworks is presented, in terms of a number of key attributes. Three specific frameworks, representing the national approaches in three large Member States, are analysed in some detail, and certain findings are evident, based on their mutual similarities and differences. The overall structural paradigm and an example comparable profile for each are examined. European Committee for Standardization (2006)

A structured review of four significant ICT Practitioner Frameworks (the three major national frameworks in the EU and one from North America) was carried out and is presented, and Level Descriptors for the specification of ICT Practitioner competence are developed from the generic EQF descriptors. In addition, based on the comparisons of existing frameworks, broad Guidance is provided for appropriate and effective use and further development of such frameworks. European Committee for Standardization (2006)

An "Ideal Scenario" is presented, aiming to introduce the potential benefits of greater coherence at the European level, and options are shown for possible ways of moving towards that world. It is recognized that there is a need for stronger evidence of benefits in relation to the different uses of such frameworks, and a set of recommendations for progressing increased coherence are made, in relation to both ICT Practitioner competence Frameworks and ICT Qualifications of different types.@de2006european

The in-depth analysis of a range of evidence leads to the following conclusions: - It is recommended to encourage and strengthen the process of convergence of ICT Practitioner skills/competence frameworks within the EU by means of a three step process:European Committee for Standardization (2006)

Keywords: Evolutionary analysis, meta-systhesis, framework, complex systems, social science

1 Introduction

Title: Evolution in the SOcial Sciences/ Theory of the Firm

0. Introduction / 0.1 Background / 0.2 Purpose of the European ICT Skills Meta-Framework European Committee for Standardization (2006)

A Meta-Framework is one which stands beyond (or above) (other) frameworks, in the sense of describing (other) frameworks. A Meta-Framework is a framework about frameworks. There are a number of existing frameworks for ICT Practitioners within the EU and beyond, and the proposed Meta-Framework would "stand beyond" them in particular because it is not intended, or designed, to stand alongside them. It is not a "new" ICT Practitioner Skills/Competence Framework, but attempts to encompass and disseminate information about existing (and possible future) such frameworks, for the benefit of all.@de2006european

Better understanding about ICT Skills can be useful in a number of ways, but extensive discussions as part of the Workshop process have concluded that the greatest value from this Meta-Framework can be gained from its use as:

• a tool for structured comparison between existing ICT Practitioner Skills/Competence Frameworks; • a guidance resource on which those considering the possibility of developing their own Frameworks can draw; • a conceptual basis for planning future developments that would help assure a greater supply of competent ICT Practitioners to European employers; and • a starting point from which the proposed European Qualifications Framework can be applied to, and evaluated for, ICT Practitioner work, both by employers and by practitioners planning their careers.@de2006european

Just as Information and Communication Technologies themselves are highly complex and continuing to evolve, so the skill-sets needed in relation to deploying and using ICT are both very complex and not yet stable or mature in terms of coherence of their classification. As a result, efforts to clarify and codify the structures of these skills have not yet reached a level of stability that enables adequate agreement at the European level on classification frameworks that could be thought of as a possible future standard for the European Union.@de2006european

The need for such a review was recognised in light of an effectiveness review of interventions promoting a shift away from car travel towards more active modes of transport, the 'modal shift' review (Ogilvie et al., 2004). This found equivocal evidence of effectiveness for population-level interventions that promote walking and cycling as alternatives to car use (...) Synthesising views studies and effectiveness studies together can lead to more specific recommendations for

developing interventions, choosing which to evaluate rigorously, as well as which to implement as policy. Brunton et al. (2006)

Synthesising these findings with the 'modal shift' review's effectiveness findings identified some interventions that are appropriate and effective; and some that may be promising either because they appear effective in some studies, but not others, or because they complement people's views, but have not been rigorously evaluated for their effects. Effective interventions to be adapted for wider use include social marketing, with and without the development of cycle networks.@brunton2006synthesis

Studies of people's views have several implications for intervention. The most important is the need to reduce the convenience of car travel and simultaneously increase the safety of pedestrians and cyclists in residential areas and around schools. According to the research evidence, this would encourage children, young people and parents to walk and cycle, and to use public spaces more, which would strengthen overall community environments.@brunton2006synthesis

1.1 History

The concept of evolution, in the sense of a gradual development or change over time, has been a subject of contemplation and inquiry for civilizations throughout history. While ancient civilizations may not have had access to the scientific methods and knowledge that underpin modern evolutionary theory, they did observe and speculate about patterns of change in the natural world. For example:

- 1. Ancient Greece: The ancient Greek philosophers contemplated the origins and development of life, the diversity of species, and the process of change in the natural world, proposing early ideas that laid the groundwork for later theories of evolution. The pre-Socratic philosofer Anaximander proposed a theory of evolution where life originated from a primordial substance, the "apeiron", which evolved over time through a process of spontaneous generation and transformation. He speculated that simpler forms of life gave rise to more complex organisms, anticipating the idea of a progression or development of species. Almost one hundred years later, Empedocles in his *Theory of the Four Elements* proposed that all matter was composed of four fundamental elements earth, air, fire, and water. He suggested that living organisms arose from combinations of these elements, hinting at a process of transformation and change over time.
- 2. **Aristotle (384 322 BCE)**: Aristotle proposed a scala naturae (Great Chain of Being), which depicted a hierarchical order of existence with all living beings arranged in a graded scale from simple to complex. While not a theory of biological evolution, Aristotle's ideas influenced later thinkers and shaped medieval and early modern views of nature. Atomist philosophers such as Leucippus and his student Democritus proposed a materialistic view of the universe, suggesting that all phenomena could be explained in terms of interactions between atoms. While their ideas differed from modern evolutionary theory,

- their emphasis on naturalistic explanations contributed to humanity's ongoing quest to understand the origins and development of life on Earth, and opened the possibility of variation and change in living organisms.
- 3. Ancient India and China: Ancient Indian and Chinese philosophies also explored ideas related to the origins and development of life. For instance, Hindu and Buddhist cosmologies include concepts of cyclical time and reincarnation, which imply a process of change and evolution, and they are early attempts to understand the natural world and humanity's place within it. While not explicitly addressing biological evolution, Daoist texts such as the "Zhuangzi" and the "Dao De Jing" contained passages that reflected a cyclical view of time and the continuous transformation of the natural world. Central to the Chinese cosmology is the Yin-yang theory, which posited the dynamic interplay between opposing forces. This concept of balance and change informed Chinese views of the natural world, including notions of growth, decay, and cyclical renewal. While early Buddhist texts did not discuss biological evolution, the idea of continual change and the cycle of birth and rebirth suggested a broader understanding of evolutionary processes. Hindu cosmology, as outlined in texts such as the "Puranas" and the "Bhagavad Gita," described cycles of creation, destruction, and rebirth spanning vast epochs of time. The concept of "yugas" or cosmic ages implied a process of change and evolution within the universe.
- 4. Islamic Golden Age: During the Islamic Golden Age, scholars like Al-Jahiz in the 9th century proposed a rudimentary form of natural selection in his work "Kitab al-Hayawan" (Book of Animals), where he speculated about how organisms compete for resources and adapt to their environments, suggesting that those best suited to their surroundings are more likely to survive and reproduce. Muslim philosophers such as Al-Kindi, Al-Farabi, Avicenna (Ibn Sina), and Averroes (Ibn Rushd) engaged in philosophical speculation and inquiry, drawing upon Greek, Persian, and Indian sources. They explored concepts such as the eternity of the universe, the nature of causality, and the possibility of spontaneous generation. Islamic scholars, including physicians, astronomers, and natural philosophers, observed and studied the natural world, including plants, animals, and celestial phenomena. While their inquiries focused primarily on practical and empirical aspects of nature, they contributed to a broader understanding of the diversity and complexity of life.
- 5. Indigenous Cultures: Indigenous cultures around the world often developed rich and diverse cosmologies, creation myths, and oral traditions that reflected their understanding of the origins and development of life, and about the diversity of species. These stories usually include elements of change, adaptation, and transformation over time, and offer unique insights into humanity's relationship with the natural world. Many indigenous cultures viewed time as cyclical rather than linear, with recurring patterns of creation, destruction, and renewal. This cyclical perspective encompasses the idea of continual change and transformation in the natural world, including the evolution of species over time. Some indigenous cultures have interpreted fossils, geological formations, and natural phenomena in ways that reflect their cosmological beliefs and spiritual worldviews.

These interpretations differ from Western scientific explanations but provide cultural perspectives on the history and diversity of life on Earth.

While these historical perspectives on evolution greatly differ from modern scientific understanding, they reflect humanity's curiosity and attempts to make sense of the natural world and its processes of change. The development of modern evolutionary theory represents a culmination of centuries of scientific inquiry, observation, and experimentation, building upon and refining earlier ideas and insights.

In the centuries preceding Charles Darwin's formulation of the theory of evolution by natural selection, several thinkers proposed ideas and concepts that contributed to the development of evolutionary thought. Some of the main thinkers of evolution in pre-Darwinian times include:

- 3. Lucretius (c. 99 c. 55 BCE): A Roman poet and philosopher, Lucretius wrote "De Rerum Natura" (On the Nature of Things), in which he espoused a form of atomism and proposed ideas about the origins and development of life through natural processes.
- 4. Georges-Louis Leclerc, Comte de Buffon (1707 1788): Buffon, a French naturalist, proposed theories of transmutation and transformation of species in his work "Histoire Naturelle" (Natural History). He suggested that environmental influences could lead to changes in organisms over time.
- 5. **Jean-Baptiste Lamarck** (1744 1829): Lamarck, a French naturalist, proposed a theory of evolution based on the inheritance of acquired characteristics. He suggested that organisms could change over time in response to environmental pressures, and these acquired traits could be passed on to offspring.
- 6. Erasmus Darwin (1731 1802): Erasmus Darwin, an English physician, naturalist, and grandfather of Charles Darwin, proposed evolutionary ideas in his work "Zoonomia" and other writings. He suggested that life evolved from simpler to more complex forms through a process of gradual transformation.

These thinkers and others contributed to the development of evolutionary thought in pre-Darwinian times, laying the groundwork for Charles Darwin's theory of evolution by natural selection in the 19th century. While their ideas differed from modern evolutionary theory, they reflected early attempts to understand the origins and development of life on Earth.

In the centuries preceding the formulation of Charles Darwin's theory of evolution by natural selection, various ideas and concepts about the origins and development of life were proposed by philosophers, theologians, and naturalists. These pre-Darwinian ideas laid the groundwork for later evolutionary theories. Some of the main ideas about evolution in pre-Darwinian times include:

- 1. **Great Chain of Being**: The concept of the Great Chain of Being, prevalent in ancient Greek, Roman, and medieval Christian thought, posited a hierarchical order of existence, with God at the pinnacle and all living beings arranged in a graded scale from simple to complex. While not a theory of biological evolution, it implied a continuum of life forms and the potential for change over time within a fixed, predetermined framework.
- 2. **Transformational Theories**: Some ancient philosophers, such as Empedocles and Anaximander, proposed ideas of transformation and change in the natural world, suggesting that living organisms arose from combinations of fundamental elements or evolved from simpler forms over time.
- 3. **Vitalism**: Vitalism, a prominent idea in the medieval and early modern periods, proposed that living organisms possessed a vital force or essence that distinguished them from inanimate matter. While not explicitly evolutionary, vitalistic concepts contributed to debates about the nature of life and its origins.
- 4. **Spontaneous Generation**: Spontaneous generation, the belief that living organisms could arise from non-living matter under certain conditions, was a widespread idea in antiquity and the Middle Ages. This notion suggested a form of continuous generation and transformation of life forms but did not imply a process of biological evolution as understood today.
- 5. **Transmutation of Species**: Some naturalists in the 17th and 18th centuries, such as Jean-Baptiste Lamarck, proposed theories of transmutation or transformation of species. Lamarck's theory, for example, suggested that organisms could change over time in response to environmental pressures and that acquired traits could be passed on to offspring.

Overall, these pre-Darwinian ideas about evolution reflected early attempts to understand the diversity and complexity of life on Earth. While they did not constitute a comprehensive theory of biological evolution, they contributed to the intellectual foundations upon which Darwin later built his groundbreaking theory of natural selection.

1.2 The Role of Biology (The role of natural evolution as a framework)

The introduction of Biology has these forms, el conjunto de las cuales muestra una línea creciente de aportación a la profundidad del análisis económico y al papel más ligero o pesado en el que interviene en la resolucion de problemas complejos:

• Biology as a theoretical framework, sienta las bases conceptuales y relacionales sobre las que iniciar un análisis complejo en ciencias sociales y en economía. Se trata de un marco teórico que sirve de inspiración para afrontar una primera explicación o

una ampliación de la explicación de un problema social complejo sin tener que recurrir a un largo proceso de construcción teórica. Esto no significa que la teoría biológica sea siempre asimilada por la económica, sino que esta última sirve como espejo sobre la que construir un andamiaje teórico de forma más robusta y rápida.

- Biology as a metaphora, esto nos permite mejorar la explicación de los fenómenos económicos y reforzar nuestros argumentos al utilizar cadenas causales que ya están investigadas y demostradas en biología
- Biology as a paradigm, nos permite enfrentar el análisis económico teniendo delante un marco causal ya demostrado que podamos usar como referencia, tanto en el uso de los conceptos como en los flujos de interacción entre ellos. Digamos que el análisis económico no parte de cero ni necesita inventar un adamiaje metodológico y conceptual cada vez, sino que podemos recurrrir a la biología para que nos aporte un marco de reflexión y pensamiento (que podemos ir adaptando a las estructuras y comportamientos que vamos descubriendo en economía) y que nos ahorra mucho tiempo y esfuerzo.
- Biology as a canvas to draw computational methods directamente aplicables a los procesos de resolución de problemas, i.e. captura de datos, modelos lógicos, procesamiento y funcionamiento de la información e interpretación de los resultados. Esto facilita y amplia nuestras capacidades a la hora de recurrir a herramientas que ya están diseñadas y han sido probadas en la resolución de problemas complejos y que podemos manipular y hacer crecer en un entorno computacional.

1.3 The Need for a Meta-Framework in the Social Sciences

Successfully building well-being in students is not simply a matter of delivering a one-off positive education intervention. Rather, an embedded approach across interconnected systems throughout a whole school is needed (Waters 2011; White and Murray 2015). A meta-framework can qive researchers and practitioners a purposeful direction within which to design, apply and evaluate interventions. Such a framework must have broad and generalizable parameters that reflect a comprehensive model of student well-being, while still offering the flexibility needed to choose and/or design interventions that are best suited for different contexts.@waters2019search (...)In addition to its higher-order comprehensive nature, if a meta-framework is going to be useful in advancing positive education it must be evidence-based and actionable. Thankfully, the field has amassed a decent preliminary evidence base on effectiveness to draw upon (see Waters 2017. for a recent review of the field) Waters and Loton (2019) (...) Resultantly, a meta-framework must be useful in supporting the decision making of educators and practitioners applying positive education knowledge and interventions in concrete ways with students. Consistent with leading thinkers in the field who assert that wellbeing is a multidimensional construct, and that students need to have the opportunity to develop a diverse range of skills to build wellbeing (Diener et al. 1999; Forgeard et al. 2011; Keyes and Annas 2009), a meta-framework must be multidimensional.@waters2019search (...) Currently, the majority of frameworks in positive

education are not multidimensional but, rather, focus on only one or two aspects of wellbeing. For example,(...) Waters and Loton (2019)

1.4 Research question

One of the key questions that an evolutionary analyst can try to answer is what are the **mechanisms** that explain or direct the escalator of progress, whether this is the "struggle for existence" between individuals, nations, races, etc.

Another question that the evolutionary analyst can try to resolve is whether the individual **permits the struggle** to take place and, if not, to what extent this weakens the individual and, therefore, that the individual enters into a process of degeneration that leads to a replacement by another individual.

Research questions This review seeks to answer two questions: What research has been undertaken about the public's views of walking and cycling as modes of transport? How do children's, young people's and parents' views of the barriers to, and facilitators of, walking and cycling match interventions evaluated for their effects on walking and cycling?

(From Methodology) The review was conducted in three parts. First, we searched for and mapped the existing research literature on the general public's views of walking and cycling. Second, we conducted an in-depth review of a subset of this literature, the scope of which was selected by our Advisory Group, focusing on the views of children, young people and parents. Third, we synthesised the findings relating to these 'views studies' together with the research on interventions carried out by Ogilvie et al. (2004). The overall conclusions of the review are thus based both on international evaluations of specific interventions, and from findings of recent 'qualitative' research conducted in the United Kingdom (UK) examining the views and experiences of children, young people and parents. @brunton2006synthesis

1 Scope The scope issues in this workshop are very important, but they relate, rather than just to the types of skills considered, to the clarification and positioning of precisely what the proposed ICT Skills Meta-Framework is (and what it is not)European Committee for Standardization (2006)

The design of frameworks arises first and foremost from the intended purpose, or application. This is fundamental, since – although frameworks designed for one purpose can be, and often are, used for purposes beyond those they were designed for, they may well not be particularly well-suited for the other applications, and so may not perform effectively in that context. In short, frameworks – once created - can "take on a life of their own", and this can often produce unexpected, and sometimes undesirable, effects in other contexts.@de2006european

In short, the main priority of an ICT Practitioner Skills/Competence Framework (and any European Meta-Framework related to such frameworks) is to provide something largely specified by employers, and of real value to them as well as to those employed as - and those seeking work

as - ICT Practitioners, as well as stakeholders associated with both sides of the labour market. Its contribution as a platform via which the proposed EQF can be applied in relation to ICT Practitioner work remains secondary in the context of this Workshop European Committee for Standardization (2006)

2 Theory

- The concept of evolutionary frameworks in the economics/firm/business literature
- Reviews of framework studies

The following section combines several of these aspects, to provide a 'meta-framework' for evaluating STI frameworks.

2.1 Natural Science as the Cornerstone of Evolutionary Inquiry

The study of evolution in the natural sciences serves as a foundational pillar for understanding evolutionary phenomena across various disciplines due to its fundamental principles and overarching explanatory power. Evolutionary theory, rooted in biology and natural selection, elucidates the mechanisms driving change and adaptation in living organisms over time. These principles extend beyond biology, providing insights into the dynamics of change, adaptation, and innovation in diverse systems, including social, economic, and cultural domains. By examining how species evolve and interact within their environments, evolutionary science offers valuable analogies and frameworks for understanding analogous processes in other disciplines. Consequently, evolutionary concepts serve as a unifying framework, facilitating interdisciplinary research and fostering a deeper understanding of complex phenomena across different fields. Thus, the study of evolution in the natural sciences not only enriches our understanding of biological systems but also provides valuable insights into the dynamics of change and adaptation in broader contexts.

2.2 What is a Framework?

At a general level, in this paper a framework is understood as an abstraction: a type of mental and communicative construct to help build a coherent world view. A framework is not always visible to the user, but a framework for the use of indicators in a decision making context should be designed in a conscious, communicative process (15). Assmuth & Hildén (16) define frameworks as "the conceptual and procedural constructs that assimilate, process, and give meaning to information". This definition highlights two dimensions to help frameworks do precisely this: 1) the 'conceptual' dimension that aims to capture the substance or essence of what is to be measured and elucidated (for example, frameworks to measure 'sustainability'

organized in the Triple Bottom Line (TBL) domains), and 2) the 'procedural' or 'operational' dimension, which refers to more practical concerns – who needs to do what to collect, produce and report the required information? A third important dimension not highlighted by Assmuth and Hilden's definition concerns the purpose of the information, what is termed hereon the 'utilization' function. Cornet and Gudmundsson (2015)

2.3 What is the purpose of a Meta-Framework?

A meta-framework is understood as an overarching frame for what should inform the analysis and eventually the design of STI practice frameworks, meaning frameworks used by or provided for transportation policy and planning bodies to select and apply indicators for sustainable transportation. The meta-framework is not a general theory, nor a master framework to be adopted directly by agencies, but a classification and evaluation device. It should, above all, allow for a structuring of the empirical analysis of frameworks adopted by agencies in practice. Such analysis will review how the conceptual, operational and utilization functions of a case framework are performed, and how the most important criteria for each function are fulfilled. These criteria should allow a comprehensive analysis of the strengths and weaknesses of different practical frameworks with regard to how well they manage to connect sustainability theory to action. @cornet2015building

3 Methodology

3.1 Objetives

The present study delineates a comprehensive meta-framework designed to fulfill several pivotal objectives. Foremost among these aims is the systematic description and synthesis of primary and secondary data, incorporating an examination of the fundamental interrelationships inherent within. Concurrently, the meta-framework endeavors to map the evolutionary trajectory of pertinent studies in the domain of business scholarship and the theory of the firm, aligning them methodically within its overarching structure.

The meta-framework aspires to transcend conventional paradigms of data synthesis, aspiring instead to furnish a novel interpretive lens through which to scrutinize the theory of the firm from an evolutionary standpoint. By foregrounding the dynamic interplay between firms and their milieu, this endeavor represents a departure from static conceptualizations, facilitating a nuanced understanding of organizational behavior within an ever-changing economic land-scape.

Furthermore, it is incumbent upon the meta-framework to engender a tangible utility for both academic scholars and industry practitioners alike. Hence, the resultant synthesis is envisaged as a flexible tool, amenable to facilitating a deeper comprehension of firm-level decision-making processes and behavioral dynamics. In effect, the meta-framework is envisaged to serve as a practical aid, fostering enhanced insights and efficacious strategies pertinent to scholarly inquiry and managerial practice within the realm of business economics.

3.2 Rationale for a Meta-Framework

The adoption of a meta-framework as the principal methodological tool is underpinned by several reasons. First is the inherent suitability of framework synthesis for the analysis of descriptive data, particularly when confronted with the imperative to encapsulate the intricate structural nuances and dynamic interaction patterns characterizing the phenomenon or system under scrutiny (Smith and Firth 2011). Given the inherent complexity intrinsic to the evolutionary inquiry into firm behavior, encompassing a multitude of internal and external variables and their interplay, a methodological approach offering a comprehensive depiction of both structural configurations and behavioral dynamics becomes imperative for elucidating this multifaceted domain.

Moreover, the step-by-step procedural framework inherent in synthesis methodology endows it with a commendable level of transparency, thus enabling a clear delineation of the systematic processes guiding data analysis, from descriptive elucidation to explanatory inference. This procedural transparency extends further to encompass the researchers' interpretative endeavors, thereby ensuring a traceable trajectory of analytical insights over the course of the study.

Unlike alternative qualitative data analysis approaches such as grounded theory, narrative methods, or phenomenology, framework analysis adopts a pragmatic epistemological stance, thereby rendering it accommodating to a diverse array of data types and research contexts (Goldsmith 2021; Gale et al. 2013). This versatility is particularly salient in the context of the present investigation, where primary data derived from conceptual and empirical studies across natural and social sciences, alongside secondary data elucidating evolutionary paradigms within the realm of firm theory, collectively underpin the construction of the meta-framework. By integrating insights from disparate disciplinary domains, the meta-framework aspires to offer a holistic vantage point, transcending disciplinary boundaries to provide a nuanced understanding of evolutionary dynamics within the context of firm behavior.

3.3 What is a Framework?

Although there is no standard, universal definition of what a framework is from a qualitative research standpoint, the literature in general endorses the position of frameworks as bridges between the construction of theories and the way of conducting empirical observations (Partelow 2023; Mollinga 2008). This relevant position of frameworks within the theory of science is in turn reflected in the growth they have experienced in recent decades, to the point of being present in practically all areas of scientific knowledge. Its applications span wide and varied fields within the natural and social sciences, technological development, and environmental and experimental sciences, and many well-established frameworks are regularly applied by scientific organizations and policymakers around the world.

In some cases, frameworks act as valuable tools that help develop a common language and structure research processes (Binder et al. 2013). In other cases they serve as reference material used by scholars and practitioners to navigate the complex interactions between phenomena of different nature and to analyze and integrate the knowledge that thus emerges (Pulver et al. 2018). Whatever its purpose, if we tried to classify the most used frameworks today, we would realize that there are two main trends: frameworks that aim to capture the complex functioning of a phenomenon or system, and those that seek to simplify the central concepts. This is enough to give us an idea of the importance of frameworks as tools to structure and operationalize scientific knowledge.

From an epistemological point of view, frameworks, whether emerging from the top down or bottom up, cover the imperative need to build a seamless connection between different levels or scales of scientific knowledge, thus linking the higher more general levels of knowledge (a paradigm or a general theory) with the bottom levels (a model or a case study). As such a framework is intended to "organize diagnostic, descriptive, and prescriptive inquiry, providing the basic vocabulary of concepts and terms to construct the causal explanations expected by a theory" (Partelow 2023). Ultimately, frameworks aim to make science easier, guiding researchers in their research design and providing them with a groundwork of key concepts and foundational knowledge that they can then measure, compare, and evaluate. This way, researchers do not need to reinvent the wheel with each new investigation and can instead focus their skills on advancing the framework by applying it to other less-known areas, or integrating it with new knowledge from other disciplines.

Frameworks also help researchers position their work within a specific field of practice or knowledge, providing them with a well-grounded set of interconnected concepts, theories, and paradigms that have been shown to be useful in that field (Cox et al. 2016). Therefore, frameworks are not only valuable for synthesizing knowledge and focusing researchers' attention on key concepts and its interrelationships, but they also help drive the community debate, encourage a more collaborative and interdisciplinary research work, and lay the foundation for subsequent empirical efforts and for effective communication of the advances and discoveries being made.

Despite the growth of framework creation in recent years and its widespread applications in science, governance and policy-making, doubts persist about their development and the way in which they can be applied. Very often frameworks are developed from the experience and knowledge of scholars and practitioners themselves. This often earns them the criticism that they act as "black boxes" and do not make clear why some concepts and their relationships are chosen and others are left out. But this is not the only way a framework can be developed. It is also quite common for prior knowledge and experience to be combined with an empirical synthesis process derived from some research, allowing frameworks to emerge in a more robust way.

Once a framework has been created and its applications in a field seem clear, it is time to operationalize it. This will often pose numerous challenges for both its creators and end users. For example, if the purpose of the framework is to guide empirical analysis of a particular phenomenon, scholars and practitioners will need to develop specific strategies for choosing particular cases and conducting synthesis activities. In other cases the need will arise to connect the conceptual framework or the indicators provided by the framework with real-life data. In such cases, issues may arise when interpreting the data and adjusting the framework to reality.

3.4 Stages for Constructing the Meta-Framework

Framework analysis is a robust methodological approach that comprises five stages that facilitate systematic qualitative data analysis. Beginning with data familiarization and culminating in mapping and interpretation, these stages ensure comprehensive exploration and synthesis

of research findings. Each stage plays a critical role in elucidating patterns, themes, and associations within the data, ultimately contributing to a nuanced understanding of the research topic. Notably, the framework approach's flexibility enables adaptation to various research contexts, including longitudinal studies, case studies, and projects involving diverse participant groups. By embracing the methodological rigor inherent in framework analysis, researchers can effectively navigate the complexities of qualitative data and advance knowledge in their respective fields.

Stage 1: Familiarization

The initial stage of meta-framework construction, familiarization, aims at providing the researcher with a purposeful understanding of the collected data. Through an immersive engagement with the dataset, researchers embark on purposeful reading and re-reading of the data, allowing them to identify key ideas, patterns, and variations, as well as recurrent themes that underpin the richness of the data that serve as the foundation for subsequent analytical endeavors. This stage is instrumental in establishing a foundational comprehension of the dataset, encompassing an exploration of major themes pertinent to the research questions and their recurrence throughout the data. Data familiarization extends until the researcher attains a comprehensive grasp of the dataset's breadth of variation (Ritchie and Spencer 2002; Goldsmith 2021).

Specifically during the familiarization stage of our study, the author identified a seminal work from the existing literature that explored the trajectory of the evolutionary concept in the natural sciences through a historical lens (Bowler 2003). This work encapsulated fundamental concepts, theories, and their interrelationships over time, serving as a foundational resource for comprehending the evolutionary process within natural scientific thinking. Drawing upon Bowler's work, the author engaged in a thorough review of the dataset. This involved scrutinizing the data to discern recurring themes, patterns, and nuances relevant to the domain of evolution in natural science. This process culminated in the development of a tentative evolutionary framework. Although this first tentative framework did not perfectly align with the topic under study, it was a "best-fit" and provided relevant pre-existing themes against which to map and code the data extracted from the studies selected within the domain of evolutionary economics and the theory of the firm (Carroll, Booth, and Cooper 2011). By leveraging this established corpus of data, the author adopted an augmentative and deductive approach, building upon the existing literature in the natural sciences rather than starting from scratch. This methodological choice also facilitated a more nuanced and agile analysis of the forthcoming literature grounded in strong theoretical foundations.

Stage 2: Developing a thematic framework

Following the immersion in the data during the familiarization stage, researchers embark on the task of developing a thematic framework. This phase marks the transition from data immersion

to abstraction and conceptualization, wherein researchers begin to discern underlying patterns and concepts within the data, forming the basis for analysis and interpretation. Drawing upon both a priori issues and emergent themes (Ritchie and Spencer 2002), researchers strive to construct a framework that encapsulates the richness and complexity of the data while addressing the overarching research objectives. The thematic framework thus serves as a scaffold within which the data can be systematically analyzed and referenced.

Framework identification is an iterative process that allows for refinement through testing against data subsets, enabling the progression from simple descriptions to conceptual abstractions (Goldsmith 2021; Gale et al. 2013). The development of themes involves systematic pattern recognition, often employing techniques such as the constant comparative method (Gale et al. 2013). In practice, researchers utilize computer-assisted qualitative data analysis software (CAQDAS) to organize data and develop nuanced understandings. The emphasis lies in identifying important themes and conceptual relationships rather than detailing their manifestation in the data, allowing for flexibility in approach based on the researcher's familiarity with the dataset and research objectives (Goldsmith 2021).

Stage 3: Indexing

With the thematic framework in place, researchers proceed to the indexing stage, where they systematically apply the established framework to the textual data. This process, akin to creating an index for a book, links study data with framework components by assigning relevant thematic references to passages within the data (Ritchie and Spencer 2002). As researchers navigate through the textual data, they are tasked with making subjective judgements regarding the meaning and significance of each passage, both in isolation and within the broader context of the research. By annotating the textual data, researchers make the indexing process transparent and accessible, allowing for collaboration and validation within the research community.

This step also provides an opportunity for framework revision, as researchers assess the framework's compatibility with the study data and make necessary adjustments to component definitions and boundaries. Iterative revision continues until all data are indexed on the final framework. Overall, indexing ensures alignment between the framework and study data, facilitating subsequent analysis and interpretation (Goldsmith 2021).

Stage 4: Charting

Having indexed the textual data according to the thematic framework, researchers transition to the charting phase, where they consolidate individual insights into a cohesive portrayal of the data. Charting involves the systematic organization of data based on thematic references, thereby providing researchers with a holistic view of the research findings. Charting builds

upon earlier decisions made in the indexing step, allowing researchers to revisit and enhance the selection and organization of units of analysis and framework components.

This process entails creating one or more matrix-based charts that summarize the data, with rows and columns representing units of analysis and framework components. Researchers establish the structure of the chart, populate its cells with summarized data, and determine the appropriate level of abstraction. By lifting data from its original context and rearranging it according to relevant themes, researchers gain deeper insights into the range of attitudes and experiences encapsulated within the data (Ritchie and Spencer 2002). Various tools, including pen and paper, word processing programs, spreadsheets, or computer-assisted qualitative data analysis software (CAQDAS), are utilized to create charts. Through charting, researchers synthesize and organize study data, enabling researchers to identify patterns and associations that inform the overarching research objectives, facilitating subsequent analysis and interpretation (Goldsmith 2021).

Stage 5: Mapping and interpretation

In the final stage of framework analysis, researchers integrate insights from earlier stages with the original research questions and emerging themes. This process involves reviewing, recombining, collapsing, or condensing charts and other data representations to align with the study's focus and major patterns. As such, this stage entails synthesizing key characteristics of the data set and elucidating emergent categories, associations, and patterns.

Researchers explore variations across the dataset, within subgroups, and thematic clusters, aiming to construct a cohesive narrative that elucidates the underlying structure and patterns within the data, thus providing nuanced explanations. Gradually, researchers discern characteristics within the dataset, potentially leading to the development of typologies, questioning theoretical constructs (whether pre-existing or emergent from the data), or mapping interconnections among categories to investigate relationships and potential causal relationships (Gale et al. 2013). However, the synthesis process entails more than aggregating patterns; it requires careful consideration of the salience and dynamics of issues and the search for a coherent structure amidst the evidence.

Mapping and interpretation may yield diverse outputs, such as describing key concepts, delineating the nature and scope of phenomena, elucidating associations, explaining attitudes, experiences, and behaviors, and developing typologies. Therefore, researchers are tasked with piecing together the overall picture, drawing on the richness of the data to provide meaningful interpretations that address the research objectives effectively. In this pursuit, the researcher's creativity plays a pivotal role when selecting the most appropriate approach to convey the findings effectively. As Ritchie and Spencer (2002) emphasize, the importance of flexibility and innovation is key to presenting analytical outcomes.

4 Description

(OJO, a tener en cuenta!) Table 4 Guiding points for future framework engagement, separated by development (or modification) and application Table 4 Guiding points for future framework engagement, separated by development (or modification) and application Framework process Guiding points Development and/ or modification Application/use • Explain the framework's positioning: (1) who developed it, (2) the values of those research- ers, (3) the research questions engaged with, and (4) the field in which it is embedded. • Explain the purpose of the framework, for example, which paradigms, specific theories and models it is intended to contribute to. • Explain each of the frameworks components and relationships, and how they were conceived (i.e., through review/meta-analysis, expert knowledge, empirical work, opinion). • Explain how the framework can be applied by others to increase methodological learning and data cohesiveness. • Explain why the framework is novel and adds value compared to other existing frameworks

It is clear that positive education will benefit from the development of meta-frameworks to guide research and practice. To this end, the first author of this paper has been involved in a multi-year programme of research to develop a data-driven, meta-framework in positive education - the SEARCH framework. SEARCH has been developed to help researchers organize current scientific findings and to advance future research. The framework is also designed to help (...) Waters and Loton (2019)

SEARCH is a new meta-framework that is higher-order in nature, evidence-based, actionable and multi-dimensional. SEARCH was developed through two key stages of research. Stage one involved a large-scale, 'birds-eye', review of the science of positive psychology in order to determine the key pathways of positive functioning/well-being (Rusk and Waters 2015). Stage two involved road testing the pathways identified in stage one via action research in ten schools. Both of these stages will be now be described.@waters2019search

With regard to stage one,(...) Findings revealed five over-arching pathways: 1) virtues and relationships, 2) emotional management, 3) attention and awareness, 4) comprehension and coping and 5) habits and goals. These five pathways formed the first iteration of the positive psychology (PP) framework Waters and Loton (2019)

(...)At the completion of stage one and two the six pathways comprising the framework were established. By taking the first letter of each pathway, the acronym SEARCH was created, and Fig. 1 visually depicts the six pathways of the SEARCH positive education framework.@waters2019search

4.1 SEARCH: A Systematic Review

Following the development and refinement of SEARCH as a meta-framework for positive education, the focus of the current paper is to conduct a systematic review of the educational literature to examine evidence of the six pathways in student samples and consider the ways these pathways can be increased in students through existing school-based interventions to boost wellbeing and academic achievement.@waters2019search

The current review paper was guided by the three below questions, for each of the six SEARCH pathways

- 1) What evidence is there to indicate that the intervention boosts the pathway it is targeting? For example, do mindfulness interventions actually boost attention and awareness? 2) What evidence is there to indicate that the intervention builds wellbeing? 3) What evidence is there to indicate that the intervention improves school-based and academic outcomes? Waters and Loton (2019)
- 5. CROSS-STUDY SYNTHESIS 5. Cross-study synthesis Having reviewed systematically the views of children, young people and parents about walking and cycling as a means of transport, we compared these views with evidence derived for the review by Ogilvie and colleagues (2004) of the effects of interventions promoting walking and cycling as a means of transport. Implications for interventions highlighted by our views synthesis were entered into a matrix alongside the included and excluded evaluations of interventions from the review of intervention effectiveness by Ogilvie et al. (2004). This table is provided in Appendix 8. We then examined the matrix to determine whether interventions matched, contradicted or simply failed to address children's, young people's or parents' views. Theme 1: Culture of car use Brunton et al. (2006)

Reflections on the framework and its value The framework we developed and have described in this paper is comprehensive in its scope. It accommodates diverse methods for public involvement in research, operating at international, national, regional and local levels, in urban and rural areas, stretching across the developed and developing world, and in contexts that differ widely in terms of topic of interest, organizational structures and under-pinning theories. The framework draws toge- ther examples of public involvement that share fundamental principles, but that have devel- oped in very different contexts (such as participatory research with Californian young people and with farmers in developing countries). Oliver et al. (2008)

It distinguishes between variables operating at different levels; at initiation, and subsequent choice of participants, forum and decision- making processes. It juxtaposes public involvement methods that share characteristics along one or more dimensions. Application of the framework facilitates the identification of general trends (such as collaborative relation- ships being more productive), and highlights exceptions (such as tokenistic committee involvement) to deepen our understanding of public involvement processes and increase pro- gress towards more productive methods of public involvement. Oliver et al. (2008)

A particularly fruitful method for involving the public in setting large-scale research agendas appears to be a combination of collaboration and consultation, with lay people taking leading roles in consulting their peers. Another advan- tage of our framework is that it exposes important gaps in the existing literature, most notably about methods for collective decision making,16 which are rarely reported in detail.@oliver2008multidimensional

our framework was constructed from a combination of a priori issues, the information needs of the study set by the funders, and issues that emerged from the data. The dimensions of the framework emerged from our personal experience, from the back- ground methodological literature, and from the empirical or reflective reports that provided the ÔdataÕ of the review. As with much primary qualitative research, the framework was not identified until we were familiar with the literature as data, and it was instrumental in helping us code and organize the data, then describe and interpret the concepts. This approach allowed comparative analysis of varied and complex methods and the identification of gaps, whether these were gaps in individual reports (such as little description of methods, even less of public views and influence) or gaps in our collective knowledge, in particular, about methods for reaching decisions with patients /publics. Oliver et al. (2008)

Our framework allowed the abstract concept of empowerment to be addressed in very practical terms: the num- bers of people involved; whether they were individuals or networked group members. Oliver et al. (2008)

It is important to clearly establish the differences that distinguish an evolutionary process from another of change or transformation. Although these are related concepts in evolutionary theory, they actually denote different processes that act on different agents, which is why they tend to be confusing even among some specialists.

Evolution is an overarching process that drives change in populations over generations. This means that evolutionary processes do not operate at the level of a specific individual or organism, which would only change or transform. Evolution therefore represents the cumulative effect of the inherited changes made by the characteristics of the individuals of a population, on which a selection process operates affecting the frequency of traits within a population over time. Change encompasses a broad spectrum of morphological or behavioral alterations within individuals from a variety of factors, including environmental pressures and reproductive patterns. Transformation suggests more profound or significant shifts in form, structure or function of individuals.

The idea of individualism is confronted with that of populationism. Darwin's theory is a mix of both: natural selection operates at the level of the individual organism, regulating the frequencies of traits within a population over time. Populations are the units of evolution.

Another important approach to take into account is the one that confronts the idea of evolutionism with that of progressionism. The first refers to a change that is non-directional, while the second implies a direction in evolution, usually following a teleological change.

Figure 4.1: Fig1. Framework for evolutionary systems analysis. Source: own elaboration

4.2 Evolution

A simple evolutionary framework works like this:

Sudden or slow changes in the environment trigger a response in the organism that involves an adaptation, which means the loss, modification or creation of new individual traits. When the new traits are incorporated into the genetic variation of the population, the process of natural selection operates to favor some over others and derive a greater or lesser reproductive advantage to those individuals that have incorporated those new traits. This favoring or penalizing process carried out by the environment determines the greater or lesser ability of an organism to survive. This favoring or penalizing process carried out by the environment determines the greater or lesser ability of an organism to survive. At the end of the process the frequency of advantageous qualities (which are those that offer a greater ability to survive) will be higher, and those that offer less ability to survive have a lower frequency.

Figure 4.2: Fig2. Simple evolutionary framework

In the process of evolution is worth consider the role of feedback loops between mental an social evolution (as imagined by H.Spencer). For this author a more complex society is a stimulus for more mental development. This is the foundation of evolutionary psychology and of sociobiology.

How is the mechanism of evolution: cyclic vs. continuous?

The role of the organism to focus in new habits and become an active creative agent in charge of its own destiny is an idea of H.Spencer. This takes the evolutionary analyst to think about the role of knowledge and learning to change habits and create new instincts, in the end, to unfold a process of self-improvement (which is Lamarckian).

Study of the role of innovation and learning, and of free enterprise of individuals to cope with a competitive environment (H.Spencer). Linked to the above is also the discussion about the role of the government and the state as instruments that affect the environment.

4.2.1 Competition

The evolutionary analyst must understand competition as that within an ecology based on struggle. These are three fundamental terms to understand the evolutionary analysis framework.

It is important to stop for a moment to understand the implications of the concept of ecology to explain an evolutionary system. To achieve this, a common approach has been to use biogeography as a way of knowing about the spread of relationships and how species compete to occupy territory.

4.2.2 Convergent evolution (parallelism)

This conception of the evolutionary process implies the existence of a parallelism between independent evolutionary trajectories.

The environmental challenges over species A and B, make those species develop the sames structures and behaviors, which may have an impact on morphology, physiology, and life history traits. This continues forward with the same genetic pathways (even the same phenotypic traits), the consequence being on predictability/replicability of evolution, namely, the same solutions given to similar selective pressures.

This opens the debate between uniformitarianism (and graduation) vs catastrophism. The former is Lyell's idea of the same processes of change today than ever. The later is about sudden changes, such as catastrophic events. ### Lamarckian approach The Lamarckian approach to evolution is based on the changes posed by the environment that determine (influence) the needs of organisms. These needs, when varying, affect the degree of use or disuse of certain organs (as is the case of a giraffe) and hence the greater or lesser development of certain parts of the body. This greater or lesser development of the parts of the body in turn affects the size and power of the organism's organs and, ultimately, the organism's ability to be preserved through reproduction.

4.2.3 Buffon's perfect adapted organism

According to this framework of thought, only when alterations in the environment occur, due to alterations in climate or geography, do variations appear. This is the moment when natural selection operates to adapt the species to new conditions.

Environmental stressors cause the perfectly adapted organism to begin a process of degeneration and lose its original adaptability and perfection. This process that takes place over time gives rise to intermediate or transitional forms, which ultimately explain the diversity of life on earth.

Figure 4.3: Fig2. Lamarckian evolutionary framework

Spencer's framework

Herbert Spencer's analytical framework establishes that new situations in the environment give rise to organisms having to learn how to cope with them. From this learning is derived the development of new instincts, which are more complex human faculties, which allow the organism to be more prepared to face the "survival of the fittest."

4.3 Origin

The problem of the origin is associated with that of the "Problem of Generation" and its accompanying theories of generation. An analysis of the origin involves the need to explore for evidence of the past in search for a better system (what are the sources of evidence?).

The following are some of the theories to consider when addressing the problem of generation of the original structure:

- Spontaneous generation (often only for the simplest forms)
- Preformationism (forms that are predetermined)
- Pre-existence
- A mold that is fixed.

After the evidence of generation has become evident, the next step is to continue understanding the trend towards higher levels of complexity, and thee material forces that have an influence on the trend.

When the evolutionary analyst deals with the problem of generation she must attend to the *developmental process*, and the constraints that it can impose on the rest of the evolutionary process. These constraints might introduce non-random variations, which can mean a way to direct, the course of evolution.

It is especially useful for the evolutionary analyst to consider that the unit (species) has a limited number of developmental pathways available and that the selection process would therefore be limited only to the possibility of tinkering with the details.

4.4 Structure

The main issue when considering Structure is to establish what the analytical unit of the system is (and what its main basic components are). In the case of natural evolutionary theory, this unit has traditionally been the organism, but also the population and later, after modern synthesis, the gene. It is the analyst's job to determine as clearly as possible which is the "unit" on which the evolutionary analysis of the system will focus.

Thinking about population opened the door to a statistical model of explanation, which is opposed to the Newtonian view of law-based causation. This is the eternal debate between determinism and probabilism.

4.5 Environment

What is the role of the environment as a key impact driver?

The environment surrounding the chosen unit of analysis exerts various types of forces that act on the structure to provoke a process of change, with greater or lesser intensity, and in one direction or another.

The forces of change originating in the environment force the unit to change, so it is essential that the analyst analyze the environment in depth as a key impact driver, understanding the role of the environment in the evolutionary process of the system.

The connection between the environment and the origin is a key issue as well, since the direction of the change, if it exists, and the intensity or depth of the change that may take place in the structure of the unit may sometimes depend on it.

This opens the debate between directionalism vs catastrophism in change. The latter is a random process of a destructive-creative type, in which change occurs in discontinuous steps

and not through a gradual modification. The above opens the debate over purposeful changes (goal directed with no fixed line of advance- H. Spencer). The "struggle for existence" (Malthus) and the "survival of the fittest" (spencer).

One result of this view is whether evolution is linear (represented by a ladder) vs a tree (the idea of branching).

4.5.1 History

The system as the outcome of historical forces (Montesquieu).

The evolutionary analyst should elucidate whether the same forces of the past are those that govern the forces of today.

...And the vision of progress with phases of equilibrium as the whole moved from homogeneity to heterogeneity (E.Tylor)

(From Change) A good question to be reviewed by the evolutionary analyst: Is change a staged process, a process depending on historical forces?

4.5.2 Forces

It is important when analyzing the environment to specify the type of force applied to the structure, and its sources in said environment.

The forces that operate to produce evolutionary changes can be:

- 1. Mutation
- 2. Natural selection
- 3. Genetic drift

Following another typology of change forces (which should be clarified):

- 1. Hybridization
- 2. Recombination
- 3. Superposition

4.5.3 Selection

Is (natural) selection an episodic or a continuous process?

Are there periods of stable life where (natural) selection does not operate? or, Is (natural selection) always operating even in a stable environment?

A related approach is the one which considers selectionism vs. saltationism, and the extension with the role of mass extinctions. This would open the debate about evolution not always being progressive, and the acceptance that species could degenerate in less challenging lifestyle.

Is the (social) behavior programmed into us by natural selection? This would take us to the question of the development of social instincts.

The idea of struggle and death might have a positive purpose to keep species well adapted to a challenging environment (this is an utilitarian perspective). They might have a creative role (along with sex reproduction). Utilitarism in behavior and change/adaptation can be seen in J.S. Mill and W.Poley.

How evolution can produce advance in several directions (and not only towards humanity)?

The notion of selection used in this paper is that of having a balance between different characters within a population and not about the development of a murderous or aggressive instinct.

4.6 Behavior

Behavior is the way in which the structure articulates a response to the pressure exerted by environmental forces. Behavior establishes the boundaries within which the structure is capable of absorbing the forces of the environment and giving an adaptive response to the new situation or challenge posed by the environment.

The result of the behavior, which takes place within the boundaries established by the structure of the unit, can give rise to three types of adaptive responses by the system:

- New system qualities (traits)
- Loss of system qualities (traits)
- Modification of system qualities (traits)

What types of evolutionary behaviors can we find?:

- 1. Cyclical
- 2. Linear
- 3. Random

Another way to

4.7 Change

Both the structure and the behavior are permanently immersed in a process of change, since the unit is always sensitive to the forces exerted on it originating in the environment. The overall evolutionary process of the unit will depend on the way in which these forces affect the unit.

The characterization of the change process must be carried out considering the following key dimensions, all of them closely related:

- 1. The direction or trend of the change process. This question has historically been part of the discussion on evolutionary theory, with different approaches given by different authors.
- 2. The change driver, whether it is a single one or a set of drivers that configure the change process. This opens the debate between configurable versus non-configurable change or, in other words, whether change is manipulable (Lamarckian) or non-manipulable (Darwinian).
- 3. The mechanics of the process, whether gradual and slow, or sudden/abrupt and in jumps, or any intermediate alternative in the continuum formed by these two extremes.
- 4. The time scale on which the change process takes place. This can develop over a vast amount of time or a small amount of time, or somewhere in between.
- 5. Open-ended process based on trial-and-error vs. directed (fixed) process

Some important considerations to keep in mind are that the process of change always implies progress, but it can also involve regression. Therefore, the evolutionary analyst faces both forward and backward movements. This goes hand in hand with the idea of continuous progress, as opposed to progress in jumps or saltation.

A good question to be reviewed by the evolutionary analyst: Is change a staged process, a process depending on historical forces?

What is the role of the state of technology to explain the change process, and that of diffusion of knowledge?

Be aware that the process of accumulation of change can lead to the formation of new organs (new structure), according to E.Darwin.

4.7.1 Mutations

Mutations play a role in the process of change, specifically they provide a source of random variation, but they do not generate new species. Mutations generate variation and natural selection then shapes the distribution of traits within a population over time.

It must be taken into account that not all genes that undergo a mutation produce drastic changes in the organism (individual); in reality, most mutations are neutral and do not produce noticeable changes. The evolutionary analyst will have to take into account that the environment plays a role in determining which mutated characters are those that spread in the population (this is nothing more than the phenomenon of selection).

Maybe the concept of mutation is for more drastic transformations leading to new species, accepting that adaptation and selection might be irrelevant.

Can the evolutionary analyst evaluate the idea that there might be internal forces generating characters unrelated to the organism's needs? A related consideration may take us to consider that evolutionary changes occur in a predetermined manner driven by internal factors (this is called "directed evolution"). This is what has historically been called orthogenesis (F.Eimer).

The above opens involves fixity of direction, and if variation is also considered as not random, therefore there is no need for adaptation. According to this vision the environment would not have any role in evolution. Evolution might come to happen beyond what is functionally needed and not because environmental factors.

Does "overdevelopment theory" apply (A.Hyatt)?

4.8 Reproduction

Currently there is a generalized consensus in accepting the reproductive success of the unit as the main driver of selection, that is, the ability to transmit the genetic load of the unit to the offspring (this perspective has been criticised by Stephen Jay Gould). This modern vision of evolution has not always been like this, so less than 100 years ago success was considered to be found in the ability to adapt to the environment.

Selection based on reproductive success has opened the doors to new avenues of interest and study, which now focus more on sexual selection, in the case of natural systems, or on the reproduction mechanisms of any other system. An interesting factor that every evolutionary analyst may want to analyze is the role of geographic barriers to explain the way in which species multiply.

Let us also think that the selection process that takes place in the environment is continuous and is not interrupted even when the environment is stable. In other words, competition between some units and others for scarce resources never stops, even if the environment appears stable. The analogy of the Red Queen hypothesis, introduced by Van Halen Van Valen (2014)

to denote that in the evolutionary race between organisms species must constantly adapt and evolve just to maintain their relative fitness within an ever-changing environment, it is good to explain that units must remain constantly improving or, otherwise, they will be outstripped by their rivals.

4.8.1 Reproductive strategies

What are the reproductive strategies in a population? There are a few: parthenogensis, hermaphroditism, R-selected, K-selected, Sewel parity, itero parity, mono/poly gams, hybridization, transmutation, pangenesis, orthogenesis.

Germ (hard heredity) vs somato plasm (soft heredity).

4.8.2 Developmental constraints

The concept of developmental constraints affects in shaping the course of evolution. This is because the embryonic development process imposes a series of limitations on the types of changes that can occur in organisms over time. Patterns and constraints of embryonic development can provide insights into the mechanisms underlying evolutionary change and diversification.

4.8.3 Evo-devo approach

This approach, abandoned by current biologists, states that "ontogeny recapitulates phylogeny". To understand it we must apply an "evo-devo" approach, meaning that embryological processes are part of evolutionary systems. This approach presents the idea of "blending" as the most convincing explanation of reproduction.

The "evo-devo" approach is based on Von Baer's laws of embryology, which establish the following:

- 1. The basic structures of the body are established before specialized features appear
- 2. Embryos progress from general to specific characteristics as they develop

Homology vs analogy. These concepts establish that similar structures in different organisms are derived from a common ancestor.

In the case of homology a common ancestor "A" gives rise to a divergent pattern of species "B" and "C" that are specialized and have a different formation.

The pattern in the case of analogy is convergent, since two species "A" and "B" present the same organ with the same function.

4.8.4 Speciation and Specialization

The problem of speciation, that is, the division of a parent into several descendants. This is related to niche specialization and adaptation. Speciation is a fundamental mechanism of biological diversification.

Speciation leads to opportunities for specialization. Specialization within populations can contribute to reproductive isolation and promote speciation. It can also drive specialized traits that lead to divergence of populations over time.

In specialization a constant force, natural selection, determines the level of specialization, posing a pressure to specialize on species (in line with Adam Smith thought). The level of specialization influences the level of adaptation, which drives a divergent process of speciation.

Types of specialization: genetic, behavioral or ecological.

Role of geographical isolation of speciation. One considers that specialization emerges without the need of geographical barriers, this is called sympatric speciation and is a radiply evolving type of speciation. Whereas allopatric speciation is much less rapid and more accepted today, and considers geographical barriers at the initial stage of species separation.

4.9 Heredity

Heredity is an accumulated effect (think of Lamarckian IAC).

Species have a gene pool that contain a large pool of genetic variability, in which many of these genes are simply useless or harmful. This gene pool is the raw material for selection.

An important task of the evolutionary analyst will be to determine if there are modifier genes (W.Castle) that influence the genes responsible for phenotypic characters.

Some Lamarckian stances might be worth an analysis. For example, the evolutionary analyst might consider that not all inherited acquired characteristics (IAC) are inherited by or as a response to changes in the environment.

The above might take of to the question if all evolution is mere trial-and-error, and how much is a deliberate choice of new habits in response to changes in the environment? Current thinking considers that not all needs to be inherited, so (to what extent) Can the environment influence heredity? (W.Bateson). But be advised that genetics is hostile to this idea.

Mendelian rule of "one single unit" in the germ plasm being responsible for determining the character and transmitting it to offspring. This would lead us to have to elucidate which genes (alleles) are dominant and which are recessive. This would lead us to have to elucidate which genes (alleles) are dominant and which are recessive, and thus explain that there are discontinuous characters (Bateson).

4.10 About the Evolutionary Analysis Model

The analysis model for evolutionary analysis must balance theory with observation (Herschel). In reality, theories derive their power from their ability to establish connections with other areas of study.

(In Structure) Thinking about population opened the door to a statistical model of explanation, which is opposed to the Newtonian view of law-based causation. This is the eternal debate between determinism (causation) and probabilism (statistical).

Other discussions apart from determinism vs probabilism established by evolutionary analysis are these:

- Predictive vs descriptive
- Reductionist vs holistic
- Macroscopic vs microscopic

The method of evolutionary analysis is that of a patient observer (Darwin), who poses some hypothetical situations and then uses the deductive method to try to verify them.

4.11 Tables to Include: Refinement of the Initial Framework

Table 2 Goldsmith (2021) Framework Identification (Step 2) in the TBA Dataset: Initial and revised framework for understanding the work and value of TBAs and formal health care providers in the birth process

(ver tabla que pusieron en este paper para comparar el framework inicial y el refinado después de aplicar el framework al resto de la literatura)

Initial Framework Reasons why women use TBAs rather than formal health care providers Reasons why women use formal health care providers rather than TBAs Concerns about TBA practice Concerns about formal health care provider practice Characteristics of positive work relationships between TBAs and formal health care providers Characteristics of negative work relationships between TBAs and formal health care providers

Revised Framework Reasons why women use TBAs rather than formal health care providers

• TBAs more easily affordable than health center • TBAs local while health center can be far away • TBA practice preferred over formal health care providers practice • Formal health care providers' treatment has not worked Reasons why women

Figure 2: An example of the coding index (ver en Smith and Firth (2011)) Initial themes Initial categories

(ver cómo está organizada esta tabla) Figure 9.3 Example of an indexed transcript Ritchie and Spencer (2002)

Table 3 Goldsmith (2021) Charting (Step 4) in the TBA Dataset: Example of data abstraction for a few key framework components and sub-components by stakeholder group for understanding the work and value of TBAs and formal health care providers in the birth process

Figure 9.4 Example of subject chart headings Ritchie and Spencer (2002)

Figure 3: Developing the core concept, labelled uncertainty, and the final themes within the concept (ver en Smith and Firth (2011)) Initial Themes | Initial categories | Refined Categories | Final Themes | Core Concept

Table 4 Goldsmith (2021) Mapping and Interpretation (Step 5) in the TBA Dataset: Example of data intensity mapping for a few key framework components and sub-components by stakeholder group for understanding the work and value of TBAs and formal health care providers in the birth process

5 Discussion

The framework we have described categorizes the engagement of participants in research agenda setting in terms of the types of people involved, the degree of public involvement, and the initiators of the engagement. It combines and extends concepts proposed by Arnstein9 and Mullen et al.12 The framework is consistent with an eight-dimensional framework described by Byrt and Dooher. Oliver et al. (2008)

Our review findings provide some answers to Boote et al. Os questions 7: how can public involvement be conceptualized; how and why does public involvement influence health research; and what factors are associated with success?. Oliver et al. (2008)

In many ways our analysis drew similar conclusions to research addressing public participation in health services. We found that lay (...) Oliver et al. (2008)

Particular success has been achieved by a research agenda setting exercise that addressed the key dimensions of the framework by com-bining the benefits of representative consultation with iterative collaboration and explicit decision making.64 Acomprehensive evaluation of process and outcome concluded that the (...) Oliver et al. (2008)

Our framework has been since used in a systematic review of involvement in a broader range of activities: developing health-care policy and research, clinical practice guidelines and patient information.65 Use of the framework in this review ensured that different methods of involvement were described in comparable terms, and it enabled the review to highlight areas where no evidence was available at all. The review showed clearly that no trials to date have evaluated different degrees of involvement, different forums of communication, lay involvement in decision making, or the provision of training or personal or financial support for lay involvement. Oliver et al. (2008)

The SEARCH framework has been developed as a tool to support future research and practice in positive education and to help overcome (...) Waters and Loton (2019)

SEARCH is a data-driven, multidimensional and actionable framework, comprising six evidence-based pathways to foster wellbeing. The higher-order nature of these path- ways provides a comprehensive and integrated focus whilst still (...) Waters and Loton (2019)

To further establish the utility of SEARCH for school students the current review paper examined whether the existing evidence from published positive education interventions mapped on to the six pathways. Eighty-five peer-reviewed intervention studies were identified that had tested the

effects of each of the SEARCH pathways on students. The interventions were tested in school students ranging from ages (...) Waters and Loton (2019)

The intervention studies showed a consistent pattern of evidence that each of the six pathways can be effectively targeted to improve wellbeing and academic outcomes, although tests of efficacy were not universally significant. Positive(...) Waters and Loton (2019)

6.1 Substantive findings / 6.2 Strengths and limitations of the review / 6.3 Methods of primary studies / 6.5 The context of previous 'views' research / 6.6 Policy context Brunton et al. (2006)

5.1 Using SEARCH as a Meta-Framework to Guide Future Research

We offer SEARCH as a useful framework to help researchers scaffold and build the science of positive education. For example, when researchers are designing and/or evaluating (...) A positive consequence of this is that it may create greater connections amongst researchers and foster stronger cross-pollination across topics when pulled together by an overarching framework like SEARCH. Waters and Loton (2019)

One potential avenue of research using SEARCH may be in developmental psychology where the framework can be used to create an age-stage appropriate scope and sequencing of well-being curriculums. In addition, research may also show that certain pathways are needed to be developed earlier than other pathways in certain ages (...) Such developmental questions on how to best build wellbeing over time can be scaffolded by using the SEARCH meta-framework.@waters2019search*

5.2 Gaps in Positive Education Research

The current review of existing positive education literature has identified a number of gaps that can be addressed through future research. First, (...) Waters and Loton (2019)

Another gap identified in this review paper is the disparity of research conducted between the six pathways in positive education interventions (...) Waters and Loton (2019)

Finally, this review points towards the need for more RCT designs to be used when testing the effectiveness of positive education interventions (...) Waters and Loton (2019)

One untapped area for future research is the effect of context and where and how the interventions are delivered. In the current review, the bulk of the interventions were (...) Waters and Loton (2019)

5.3 Using SEARCH as a Meta-Framework to Guide School Practice

Waters and Loton (2019) Note: meter aquí el archivo de "Implications"

SEARCH is not only an evidence-based framework to guide research in the field, it is also a framework that can guide practical application in schools, something that White and Kern (2018) highlight as being of central importance. We offer SEARCH as a framework to assist schools when implementing positive education interventions in a co-ordinated manner across different year levels and across all areas of the school (...) Waters and Loton (2019)

SEARCH provides a data-driven, action-research informed framework for teachers to use when designing positive education interventions. Educators are encouraged to think not only about the content of the intervention but how that intervention can be used to build one or more of the higher-order pathways of wellbeing. For example, while (...) Waters and Loton (2019)

Beyond the design ofindividual positive education interventions, SEARCH can be used to design larger wellbeing curriculums. Such curriculums can teach students how to (...) Waters and Loton (2019)

School leaders and administrators can find strategic and consistent ways to infuse SEARCH into elements of the school that impact faculty and staff such as recruitment and selection, performance development, professional learning, employee wellbeing programs and staff/faculty room culture. A key question for school leaders prompted by the SEARCH framework is 'How can I intentionally create a culture that fosters strengths, emotional management, attention and awareness, relationships, coping and habits and goals for all the adult members of the school? Waters and Loton (2019)

5.4 The Use of a Synthesis Method

There are arguments about whether it is feasible or acceptable to conduct syntheses of qualitative evidence at all,41 and whether it is acceptable to synthesise qualitative studies derived from different traditions. The distinctions, tensions and conflicts between these have been vividly described.@dixon2005synthesising

Perhaps even more likely to generate controversy are attempts to synthesise qualitative and quantitative evidence. It is evident from the discussion above that synthesis of diverse forms of evidence will generally involve conversion of qualitative data into quantitative form or vice versa. Dixon-Woods et al. (2005)

Should reviews start with a well-defined question and how many papers are required? The issue of questions is an important one for syntheses. It will be clear that the methods described above will be more suited to some questions than others: for example questions concerning causality may be better suited to qualitative comparative analysis than questions concerned with the production of mid-range theory, which might be better suited to meta-ethnography. The

issue of how questions should be identified and formulated in the first instance is one on which there is much uncertainty.

Estabrooks et al, like many in the systematic review community, argue that review questions should be selected to focus on similar populations or themes.43 However, others point out that in primary qualitative research, definitions of the phenomenon emerge from the data.15 Whether one should start with an a priori definition of the phenomenon for purposes of a secondary synthesis is therefore an important question.@dixon2005synthesising

A related issue is how to limit the number of papers included in the review. One approach is to narrow the focus. An alternative strategy is offered by theoretical sampling, used in primary qualitative research with a view towards the evolving development of the concepts. Sampling continues until theoretical saturation is reached, where no new relevant data seem to emerge regarding a category, either to extend or contradict it.45 It has been suggested that this approach would also be suitable for selecting papers for inclusion in reviews.46–48 However, the application of this form of sampling has been rarely tested empirically, and some express anxiety that this may result in the omission of relevant data, thus limiting the understanding of the phenomenon and the context in which it occurs. Dixon-Woods et al. (2005)

Appraising studies for inclusion The issue of how or whether to appraise qualitative papers for inclusion in a review has received a great deal of attention. The NHS CRD guidance emphasises the need for a structured approach to quality assessment for qualitative studies to be included in reviews, but also recognises the difficulties of achieving consensus on the criteria that might constitute quality standards. 5 Some argue that weak papers should be excluded. Others, however, propose that papers should not be excluded for reasons of quality, particularly where this might result in synthesisers discounting important studies for the sake of 'surface mistakes', which are distinguished from fatal mistakes that invalidate the finding. Published examples include reviews that have chosen not to appraise the papers, 14 as well as those which have opted to appraise the papers using a formalised approach. 22 If the argument prevails that some quality appraisal is necessary, the problem then arises as to how this should be undertaken. Dixon-Woods et al. (2005)

Conclusions There is an urgent need for rigorous methods for synthesising evidence of diverse types generated by diverse methodologies. These methods are required to meet the needs of policy-makers and practitioners, who need to be able to benefit from the range of evidence available. Dixon-Woods et al. (2005)

5.5 Practical Implications

5.5.1 Evolutionary analyst

One of the practical benefits derived from the present proposal of formulating an evolutionary systems analytical framework is to determine the need to have professionals with an evolution-

ary analyst profile. An evolutionary analyst is understood to be an academic or professional who has a clear and deep understanding of the evolutionary functioning of systems and who is capable of using rigorous analysis and tools to determine the factors that explain their essence and elements of change.

5.5.2 Prediction ability

If we are able to acquire a deep understanding of the functioning of the evolutionary system, its components, behaviors and flow of changes, we can then better foresee in which direction the evolutionary system is moving and glimpse whether the system has the capacity to survive or, on the contrary, is doomed to disappearance.

It is worth considering the possibility of whether, based on increasingly deeper knowledge of the evolution of a system, it would be possible to act on the future of the system. In other words, if it could be feasible to design your own plan and carry it out based on the knowledge generated about the evolution of the system.

To what extent is the system under observation random in change or does it evidence a logic that can be known and even altered based on our desires or needs?

5.5.3 Manipulation of the system and its programmability

If they were really able to manipulate the system as we wish, on what elements would it be most feasible to do so? Would it be possible to act on both the structural and behavioral elements, only on one of them? Being able to act on a known evolutionary system would open new and great opportunities to design systems that meet a wide diversity of needs.

The above would necessarily entail having to assess the ethical problems of altering the course of nature and the new problems that would emerge by distorting the natural mechanisms of the functioning of life and society. The opposite position would be to conclude that the system is unalterable and we cannot intelligently design it to satisfy our desires.

Society would go from a stage in which social systems are considered elusive to another in which we would be able to know to what extent their evolution is random, to what extent there is causality and to what extent they are programmable.

5.5.4 Inform and activate policies

An evolutionary analysis framework can serve to inform who cannot support themselves, namely, who is more likely to survive and continue competitive, and who is threatened by disappearance.

Identifying who dominates over whom, that is, elucidating the relationships and power structures has great significance, but it is also a way to understand how species advance. In fact, the process of replacement or extinction of species is an essential aspect to understand human progress.

The level at which the analyst expects to inform policy, or the level of contribution expected by decision makers from an evolutionary model, is a factor in determining the level of analysis to be used in the "struggle for existence."

Additionally, if education (education policies) could improve individuals, the benefits could perhaps be passed on through inheritance (this is a Lamarckian view).

5.5.5 Overcoming the barriers that prevent systematic struggle

From the RQs: Another question that the evolutionary analyst can try to resolve is whether the individual **permits the struggle** to take place and, if not, to what extent this weakens the individual and, therefore, that the individual enters into a process of degeneration that leads to a replacement by another individual.

This leads us to the recommendation, in some circumstances mediated by policies, that the struggle does not have constraints that condition it. Thus, as the environment continues to pose challenges that must be faced (resolved) by the individual, progress will continues.

5.5.6 Eugenics of individuals

The above leads us to the problem of eugenics, and the reflection on to what extent the system must ensure that the selection produces and there are no barriers for it to unfold its effects.

5.5.7 The connection with complex systems

The analysis of evolutionary systems demonstrates a connection with complex systems, such that species should be seen as complex systems with an enormous amount of variation, stimulated by selection.

5.5.8 The contribution of this review to policy

The key message from this systematic review is that interventions will not work unless public views about the value, safety, benefits and costs of walking and cycling are taken into account. This information will thus be of interest to parents and children, government policy-makers at the national and local level, schools, and research funding bodies. Policy-makers need to understand that perceived safety is a key influence on walking and cycling, but that environmental improvements and facilities can encourage a shift away from car culture. @brunton2006synthesis

5.6 Framework Thematic Discussion

5.6.1 On Evolution

When addressing the study of an evolutionary system, it is of paramount importance to first elucidate what **the unit** of the system will be, on which the entire conceptual and methodological apparatus of evolution will be applied. This is a discussion that has changed over time, having moved from the individual organism to what is currently considered a more correct approach, the gene. What the above means is that instead of prioritizing "adaptive fitness" in the analysis, today it seems more appropriate to focus on the reproductive success of the individual. This new perspective has given rise to the movement of ultra-Darwinism.

The analysis of evolutionary **stratigraphy**, that is, the analysis of the evolutionary process cut into layers, can provide valuable evidence and insight about the evolution followed by each stratum, as well as the relationships that exist between strata. Additionally, it may also be valuable to study the global stratigraphy of the system, that is, the system of layers resulting from aggregating lower-level strata into higher-level strata, since this can suggest new stratal relationships that previously remained hidden from view of the evolutionary system.

The geological **law of superposition**, which states that in any sequence of undisturbed sedimentary rocks, each layer of rock is younger than the one below it and older than the one above it, can be used analogously in the analysis of an evolutionary system, thus establishing that each lower layer manifests a behavior on which the behavior of the upper layer is based.

5.6.1.1 Hierarchy

The idea of hierarchy involves something on top down to something else.

Once the evolutionary system has been sliced into strata and the evidence that each one individually provides, as well as that of the global stratigraphic system, has been analyzed, the evolutionary analyst will be able to infer the **hierarchical structure** of evolutionary elements that characterize the system under observation.

5.6.1.2 Classification

A classification or taxonomy is a procedure used to better understand the diversity (and variation) of organisms.

When studying the evolution of a population, building a **classification or taxonomy** of units (species) becomes relevant. This requires discipline and deep analysis into the building blocks and the relationships (or degrees of relationships) that stand between individuals. By formulating a classification/taxonomy, new avenues can be opened that allow the evolutionary

analyst to trace (and understand) the past of the units and make it easier to foresee the next steps that the unit will go through.

With a classification or taxonomy the analyst can study the diversity of the units (species) based e.g. in their morphology, as well as the ecological relationships that exist between them.

In the history of evolution, three major frameworks for classifying species are usually proposed:

- 1. Chain of being (Bonnet) -> it is a hierarchical chain of relationships
- 2. The rope of being (Rubinet)
- 3. Lineo taxonomy based on visible resemblances (with no hierarchy)

5.6.1.3 Miscelaneous

The idea of the extent to which the **history of "life"** has been progressive but in an irregular way.

The idea of "emergent evolution" (Lloyd Morgan) which highlights the new high-level properties that appear as evolution reaches a certain level of complexity.

5.6.2 On the Origin

The idea of the Origin is consubstantially associated with the idea of an **end**, since everything that begins must necessarily have an end.

The problem of origin is closed related to the **problem of generation**, thus the evolutionary analyst must elucidate whether the origin of the unit is spontaneous, preformationist, etc.

An alternative perspective to the problem of origin can be raised from **biogenesis** (life arising from non-living matter) and the "**primordial soup**" (Opsin), that is, the combination of elements that gives rise to the synthesis of compounds "organic" after adding energy to the system (from lightning, UVA radiation, volcanic activity, etc.)

5.6.3 On the Environment

5.6.3.1 On the Forces

We do not know the forces (and their sources) that operate driving the process of change in the individuals of a population.

Apart from the forces that operate at the level of individuals, it is necessary to know what the transmission mechanisms are like from the environment to the individual, between individuals, and vice versa, from the individual to the environment.

What is the materiality of the pressure for change exerted by an environmental force?

5.6.3.2 On Selection

One of the most difficult questions that every evolutionary analyst must face is how the **selection process** imposed by the environment actually work, and to what extent different alternative selection approaches can help explain the evolutionary course of the system.

We refer to the selection process not as the blind application of a closed paradigm that we know a priori will provide an explanatory response to the evolution of any system, but rather the analyst evaluates to what degree alternative selection models can provide insight into our understanding of the evolution of the system. It is about better understanding how rival visions can have a place in our understanding of the evolutionary phenomena of the system, even in an open and simultaneous way.

5.6.4 On the Unit

5.6.4.1 On the Structure

5.6.4.2 On the Behavior

To what extent is the system's behavior governed by inherited **instincts**? And to what extent can the selection process alter instincts? Are instincts constraints to the development of behavior and the process of change, or are they not such constraints?

What behavioral traits can be considered **innate** and which are constructed with the interaction with the natural and social environment? What are the environmental stimuli that might help explain the individual instincts?

Perhaps the analyst, in addition to (the above) behavioralist approach, might approach the analysis of the behavior by exploring the internal processes inside the individual that trigger observable responses in the individual.

Can individual behavior be **predicted**? Furthermore, can behavior be controlled by manipulating the environment and creating a stimulus-response association in the individual? The evolutionary analyst might also focus on how the individual learns through the association of stimuli with specific responses.

To what extent can **learning** and **technology** affect instincts to the point of making them heritable?

The problem of **hierarchy** can also affect behavior to the point that the evolutionary analyst can try to elucidate what the behavioral hierarchy is (e.g. intellectual, social, moral, etc.). How are these behavioral faculties created?

It is important for the evolutionary analyst to assess to what extent there is the possibility that we have the ability to **control genes** and, therefore, that we can control how human behavior can be controlled (The Blind Watchmaker- R.Dawkins)

5.6.5 On Change

We know what an individual is today, but we do not know how an individual became what it is today. This necessarily raises the need to study the **historical past** as a source of knowledge to understand the process of change or evolution followed.

If change does not leave any **proof** (of evolution), why don't we seek indirect progress (i.e. the equivalent of fossils)?

It is necessary to know which components of the individual's structure (or flows) the **forces** of the environment act on, or on which behaviors the forces of the environment have an impact.

Also relevant is the question of how the **development process** of an individual is like, both before conception (embryonic development) and during its life period.

Does the change caused by forces in the environment respond to any **goal or objective**? Is there any direction, goal or trend? And if there is one, what is the justification for it to exist? Is there any type of constraint associated with the development of the individual that conditions or limits the process of change? Can we rule out that the individual's process of change does not have a teleological character (e.g. a guiding principle, a force, etc.) towards a specific end/goal?

In the analysis of **evolutionary dynamics**, it is interesting to know if the system becomes stable and in equilibrium, stable and not in equilibrium. Finding out this situation allows us to better understand the nature of the evolutionary process and try to predict the next steps in the evolution of the system.

What are the **change mechanisms** used by units to respond to environmental forces? Some may be:

- 1) Hybridization
- 2) Recombination
- 3) etc.

To what extent is the **timeline** for the adoption of changes a key factor that determines the individual results of the change? When analyzing change it is key therefore key to elucidate the timeline in which it unfolds.

Speaking about the timescale of the change processes, it is interesting to find out if the system is constrained by certain structural limitations, or that they have their origin in its own development, and that explain why the changes occur. This would allow the evolutionary analyst to

estimate the particular evolutionary "clock" of the system. The idea of the clock is to explain traits that evolve at a constant rate overtime, due to underlying molecular mechanisms. In other words, that would explain the rate of change at which changes accumulate over time.

It is evident that the clock idea would not offer precise information similar to that currently used in the field of molecular biology or genetics to provide insight into the tempo and mode of evolutionary change, but it could be a qualitative approximation to the temporal factors that intervene in the rate of evolution of a system.

A possible model that explains the evolutionary process that should be seriously taken into account is known as **punctuated equilibria**". According to this model, species remain relatively stable and in equilibrium with their environment for long periods of time. During this time they register small changes in their morphology or level of adaptation. However, at certain times, sudden changes occur that trigger evolutionary episodes of changes (punctuation) associated with events that are accompanied by speciation. These periods of rapid change would be interspersed with long periods of stasis.

The evolutionary analyst should open to the notion of **arrow of time**, and the preferred direction or sequence of change. And if the change process is reversible vs irreversible (with higher entropy). In turn, this should lead the analyst to consider the predictability or unpredictability of evolution.

Is the result of evolution the same system of a new one?

5.6.6 On Heredity

What are the limits of heredity (change)?

6 Conclusion

The evolutionary analysis of systems fundamentally requires generating much more extensive and precise knowledge about individuals and populations, as well as about the periods and places in which they develop. This is self-evident when it comes to obtaining a deeper understanding of the reasons for change and diversity.

We also know today that systems do not evolve smoothly and continuously over long periods of time but do so based on pulses between periods of interruption that cause disruptive changes and the mass extinction of units.

Knowing the sequence of events that have shaped the evolutionary processes opens new analytical dimensions to the study of the evolutionary phenomenon and allows us to confront elements considered unpredictable until now in the course of evolution.

It is certainly an exciting time for the field with the rapid expansion of science and practice. However, this growth has put positive education at risk of lacking a cohesive direction and of failing to build the cumulative evidence needed to advance the field.@waters2019search

In this paper we have argued that a meta-framework can prevent these risks by providing higher-order parameters that help us to guide future research and practise in ways that ensure more consistent, integrated, cohesive and perhaps even synergistic outcomes. The SEARCH framework, developed from a large-scale bibliometric analysis of the field combined with action research has been supported through a systematic review of evidence in the current paper which has shown that schools can build up each of the six pathways through interventions in and out of the classroom.@waters2019search

We offer this framework to our colleagues in the field and hope it is used far and wide to build rigorous research and reliable practices that help positive education to achieve the dual purpose put forward by Seligman et al. (2009) of boosting wellbeing and academic outcomes.@waters2019search

This review of involving the public in research agenda setting builds on the technique of framework analysis which has previously been described only for primary research. We found this approach useful for developing a conceptual framework of public involvement in research based on accessing and reviewing a broad literature. Our framework is consistent with analyses in the literature about empowerment for public involvement in public services more broadly. It is potentially applicable to a wide range of reports of public involvement in research and research-based activities. Use of the framework facilitates learning from many different strategies and reports of these, from informal reflections to formal research. Such a breadth can thus

generate an overview of achievements to inform policies and practices in the area of public involvement in research. As with other systematic review methods, application of the framework also usefully identifies gaps in the literature which need to be filled in order to increase our understanding of how to promote public involvement and evaluate the effectiveness of different approaches.@oliver2008multidimensional

6.1 Recommendations

We need more good quality research on interventions for particular social groups. Nonetheless, it is possible to derive a number of recommendations from the work described in this report. They are grouped into recommendations for developing future effective and appropriate interventions, systematic reviews, and views studies.@brunton2006synthesis

Type of recommendations: Recommendations for developing effective and appropriate interventions / Recommendations for future views studies / Recommendations for future systematic reviews. Brunton et al. (2006) The

References

- Binder, Claudia R, Jochen Hinkel, Pieter WG Bots, and Claudia Pahl-Wostl. 2013. "Comparison of Frameworks for Analyzing Social-Ecological Systems." *Ecology and Society* 18 (4).
- Bowler, Peter J. 2003. "Evolution." In *The History of Science and Religion in the Western Tradition*, 549–57. Routledge.
- Brunton, Ginny, Sandy Oliver, Kathryn Oliver, and Theo Lorenc. 2006. "A Synthesis of Research Addressing Children's, Young People's and Parents Views of Walking and Cycling for Transport."
- Carroll, Christopher, Andrew Booth, and Katy Cooper. 2011. "A Worked Example of" Best Fit" Framework Synthesis: A Systematic Review of Views Concerning the Taking of Some Potential Chemopreventive Agents." *BMC Medical Research Methodology* 11: 1–9.
- Cornet, Yannick, and Henrik Gudmundsson. 2015. "Building a Metaframework for Sustainable Transport Indicators: Review of Selected Contributions." *Transportation Research Record* 2531 (1): 103–12.
- Cox, Michael, Sergio Villamayor-Tomas, Graham Epstein, Louisa Evans, Natalie C Ban, Forrest Fleischman, Mateja Nenadovic, and Gustavo Garcia-Lopez. 2016. "Synthesizing Theories of Natural Resource Management and Governance." *Global Environmental Change* 39: 45–56.
- Dixon-Woods, Mary, Shona Agarwal, David Jones, Bridget Young, and Alex Sutton. 2005. "Synthesising Qualitative and Quantitative Evidence: A Review of Possible Methods." Journal of Health Services Research & Policy 10 (1): 45–53.
- European Committee for Standardization. 2006. "European ICT Skills Meta-Framework State-of-the-Art Review, Clarification of the Realities, and Recommendations for Next Steps." In Workshop Agreement, CWA. Vol. 15515.
- Gale, Nicola K, Gemma Heath, Elaine Cameron, Sabina Rashid, and Sabi Redwood. 2013. "Using the Framework Method for the Analysis of Qualitative Data in Multi-Disciplinary Health Research." *BMC Medical Research Methodology* 13 (1): 1–8.
- Goldsmith, Laurie J. 2021. "Using Framework Analysis in Applied Qualitative Research." *Qualitative Report* 26 (6).
- Mollinga, Peter P. 2008. "The Rational Organisation of Dissent: Boundary Concepts, Boundary Objects and Boundary Settings in the Interdisciplinary Study of Natural Resources Management." ZEF working paper series.
- Oliver, Sandy R, Rebecca W Rees, Lorna Clarke-Jones, Ruairidh Milne, Ann R Oakley, John Gabbay, Ken Stein, Phyll Buchanan, and Gill Gyte. 2008. "A Multidimensional Conceptual Framework for Analysing Public Involvement in Health Services Research." *Health*

- Expectations 11 (1): 72–84.
- Partelow, Stefan. 2023. "What Is a Framework? Understanding Their Purpose, Value, Development and Use." Journal of Environmental Studies and Sciences, 1–10.
- Pulver, Simone, Nicola Ulibarri, Kathryn L Sobocinski, Steven M Alexander, Michelle L Johnson, Paul F McCord, and Jampel Dell'Angelo. 2018. "Frontiers in Socio-Environmental Research." *Ecology and Society* 23 (3).
- Ritchie, Jane, and Liz Spencer. 2002. "Qualitative Data Analysis for Applied Policy Research." In *Analyzing Qualitative Data*, 173–94. Routledge.
- Smith, Joanna, and Jill Firth. 2011. "Qualitative Data Analysis: The Framework Approach." Nurse Researcher 18 (2).
- Van Valen, L. 2014. "19. A New Evolutionary Law (1973)." In Foundations of Macroecology, 284–314. University of Chicago Press.
- Waters, Lea, and Daniel Loton. 2019. "SEARCH: A Meta-Framework and Review of the Field of Positive Education." *International Journal of Applied Positive Psychology* 4: 1–46.