Evaluating a model graphically

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount
Win-Vector LLC

Plotting Ground Truth vs. Predictions

A well fitting model

A poorly fitting model

- x = y line runs through center of points
- "line of perfect prediction"
- Points are all on one side of x = y line
- Systematic errors

The Residual Plot

A well fitting model

- Residual: actual outcome prediction
- Good fit: no systematic errors

A poorly fitting model

• Systematic errors

The Gain Curve

Home price model price~prediction

relative Gini score: 0.85 alt. hyp.: relGini(prediction)>permuted relGini, p<1e-05

sort criterion — model: sort by prediction - wizard: sort by price

Measures how well model sorts the outcome

- x-axis: houses in modelsorted order (decreasing)
- **y-axis**: fraction of total accumulated home sales

Wizard curve: perfect model

Reading the Gain Curve

GainCurvePlot(houseprices, "prediction", "price", "Home price model")

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Root Mean Squared Error (RMSE)

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount
Win-Vector LLC

What is Root Mean Squared Error (RMSE)?

$$RMSE = \sqrt{\overline{(pred-y)^2}}$$

where

- pred y: the error, or residuals vector
- $\overline{(pred-y)^2}$: mean value of $(pred-y)^2$

RMSE of the Home Sales Price Model

```
# Calculate error
err <- houseprices$prediction - houseprices$price</pre>
```

- price: column of actual sale prices (in thousands)
- prediction: column of predicted sale prices (in thousands)

RMSE of the Home Sales Price Model

```
# Calculate error
err <- houseprices$prediction - houseprices$price

# Square the error vector
err2 <- err^2</pre>
```


RMSE of the Home Sales Price Model

```
# Calculate error
err <- houseprices$prediction - houseprices$price

# Square the error vector
err2 <- err^2

# Take the mean, and sqrt it
(rmse <- sqrt(mean(err2)))</pre>
```

58.33908

• $RMSE \approx 58.3$

Is the RMSE Large or Small?

```
# Take the mean, and sqrt it
(rmse <- sqrt(mean(err2)))</pre>
```

58.33908

```
# The standard deviation of the outcome
(sdtemp <- sd(houseprices$price))</pre>
```

135.2694

- $RMSE \approx 58.3$
- $sd(price) \approx 135$

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

R-Squared (R^2)

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount
Win-Vector LLC

What is \mathbb{R}^2 ?

A measure of how well the model fits or explains the data

- A value between 0-1
 - o near 1: model fits well
 - o near 0: no better than guessing the average value

Calculating ${\cal R}^2$

 ${\mathbb R}^2$ is the variance explained by the model.

$$R^2 = 1 - rac{RSS}{SS_{Tot}}$$

where

- $RSS = \sum (y prediction)^2$
 - Residual sum of squares (variance from model)
- $SS_{Tot} = \sum (y \overline{y})^2$
 - Total sum of squares (variance of data)

Calculate \mathbb{R}^2 of the House Price Model: RSS

Calculate error

```
err <- houseprices$prediction - houseprices$price
```

• Square it and take the sum

```
rss <- sum(err^2)
```

- price: column of actual sale prices (in thousands)
- pred : column of predicted sale prices (in thousands)
- RSSpprox 136138

Calculate R^2 of the House Price Model: SS_{Tot}

• Take the difference of prices from the mean price

```
toterr <- houseprices$price - mean(houseprices$price)</pre>
```

Square it and take the sum

```
sstot <- sum(toterr^2)</pre>
```

- RSSpprox 136138
- $SS_{Tot} \approx 713615$

Calculate ${\mathbb R}^2$ of the House Price Model

```
(r_squared <- 1 - (rss/sstot) )</pre>
```

0.8092278

- RSSpprox 136138
- $SS_{Tot} pprox 713615$
- $R^2 pprox$ 0.809

Reading R^2 from the lm() model

```
# From summary()
summary(hmodel)
Residual standard error: 60.66 on 37 degrees of freedom
Multiple R-squared: 0.8092, Adjusted R-squared: 0.7989
F-statistic: 78.47 on 2 and 37 DF, p-value: 4.893e-14
summary(hmodel)$r.squared
0.8092278
# From glance()
glance(hmodel)$r.squared
0.8092278
```


Correlation and ${\mathbb R}^2$

rho <- cor(houseprices\$prediction, houseprices\$price)</pre>

0.8995709

rho^2

0.8092278

- $\rho = \text{cor(prediction, price)} = 0.8995709$
- ρ^2 = 0.8092278 = R^2

Correlation and ${\mathbb R}^2$

- True for models that minimize squared error:
 - Linear regression
 - GAM regression
 - Tree-based algorithms that minimize squared error
- True for training data; NOT true for future application data

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Properly Training a Model

SUPERVISED LEARNING IN R: REGRESSION

Nina Zumel and John Mount Win-Vector, LLC

Models can perform much better on training than they do on future data.

• Training \mathbb{R}^2 : 0.9; Test \mathbb{R}^2 : 0.15 -- **Overfit**

Test/Train Split

Recommended method when data is plentiful

Example: Model Female Unemployment

• Train on 66 rows, test on 30 rows

Model Performance: Train vs. Test

- Training: RMSE 0.71, R^2 0.8
- Test: RMSE 0.93, R^2 0.75

Preferred when data is not large enough to split off a test set

Create a cross-validation plan

```
library(vtreat)
splitPlan <- kWayCrossValidation(nRows, nSplits, NULL, NULL)</pre>
```

- nRows: number of rows in the training data
- nSplits: number folds (partitions) in the cross-validation
 e.g, nfolds = 3 for 3-way cross-validation
- remaining 2 arguments not needed here

Create a cross-validation plan

```
library(vtreat)
splitPlan <- kWayCrossValidation(10, 3, NULL, NULL)</pre>
```

First fold (A and B to train, C to test)

```
splitPlan[[1]]
```

```
$train
1 2 4 5 7 9 10
$app
3 6 8
```

Train on A and B, test on C, etc...

```
split <- splitPlan[[1]]
model <- lm(fmla, data = df[split$train,])
df$pred.cv[split$app] <- predict(model, newdata = df[split$app,])</pre>
```


Final Model

Example: Unemployment Model

Measure type	RMSE	R^2
train	0.7082675	0.8029275
test	0.9349416	0.7451896
cross-validation	0.8175714	0.7635331

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

