B3A1 Bei Teilaufgabe (a) möchten wir zwei Äquivalenzen zeigen. Zunächst einmal, dass $X_n \xrightarrow{\text{f.s.}} X$ äquivalent dazu ist, dass für alle $\varepsilon > 0$ gilt, $\lim_n \left(\bigcup_{m=n}^\infty \{|X_m - X| > \varepsilon\}\right) = 0$. Als zweites möchten wir zeigen, dass dies wieder äquivalent dazu ist, dass $\sup_{m \geq n} |X_n - X| \xrightarrow{P} 0$. Hierfür gehen wir wie im Beweis von Satz 6.1.2 in (Hes03) vor. Die Idee ist, die Definition der fast sicheren Konvergenz in Form von Vereinigungen und schnitten zu umschreiben. Da P ein Wahrscheinlichkeitsmaß ist, können wir den Limes, der bei der fast sicheren Konvergenz im Argument von P steht, rausziehen.

Gilt $X_n \xrightarrow{\text{f.s.}} X$, so heißt es nach Defintion, dass $P(\lim |X_n - X| = 0) = 1$, oder

$$0 = 1 - P(\lim |X_n - X| = 0)$$

Mit der Definition von Konvergenz bedeutet das für alle $\varepsilon > 0$

$$= 1 - P(\exists n \in \mathbb{N} \, \forall m \ge n \, |X_m - X| < \varepsilon).$$

 $\omega \in \{\exists n \in \mathbb{N} \, \forall m \geq n \, | X_m - X | < \varepsilon \}$ gilt genau dann, wenn ω in irgendeiner der Mengen $\{\forall m \geq 1 | X_m - X | < \varepsilon \}, \{\forall m \geq 2 | X_m - X | < \varepsilon \}, \ldots$ ist. Entsprechend gilt $\omega \in \{\forall m \geq n \, | X_m - X | < \varepsilon \}$ genau dann, wenn ω in all den Mengen $\{|X_n - X| < \varepsilon \}, \{|X_{n+1} - X| < \varepsilon \}, \ldots$ vorkommt. Hierdurch lässt sich umschreiben

$$=1-P\Bigl(\bigcup_{n=1}^{\infty}\bigcap_{m=n}^{\infty}\{|X_m-X|<\varepsilon\}\Bigr).$$

Dadurch, dass $\{|X_m - X| < \varepsilon\}^c = \{|X_m - X| \ge \varepsilon\}$, sowie $(\bigcup A_i)^c = \bigcap A_i^c$ und $(\bigcap A_i)^c = \bigcup A_i^c$ folgt

$$= P\left(\bigcap_{n=1}^{\infty} \bigcup_{m=n}^{\infty} \{|X_m - X| \ge \varepsilon\}\right).$$

Hierbei konvergiert die Folge $\left(\bigcup_{m=n}^{\infty}\{|X_m-X|\geq\varepsilon\}\right)_n$ von oben gegen $\bigcap_{n=1}^{\infty}\bigcup_{m=n}^{\infty}\{|X_m-X|\geq\varepsilon\},$ sodass wir nach Satz A.14 den Limes herausziehen können und sich ergibt

$$= \lim_{n} P\left(\bigcup_{m=n}^{\infty} \{|X_m - X| \ge \varepsilon\}\right),\,$$

womit wir schon mal die erste Äquivalenz gezeigt haben.

Zur zweiten Äquivalenz machen wir wieder die Überlegung mit den Quantoren. Es gilt $\omega \in \bigcup_{m=n}^{\infty} \{|X_m - X| \geq \varepsilon\}$ genau dann, wenn ω in mindestens einer der Mengen $\{|X_n - X| \geq \varepsilon\}, \{|X_{n+1} - X| \geq \varepsilon\}, \ldots$ liegt, also in einer Menge $\{|X_k - X| \geq \varepsilon\}$ mit $k \geq n$ so, dass für alle $m \geq n$ gilt $|X_k - X| \geq |X_m - X|$ und eventuell noch in weiteren $\{|X_m - X| \geq \varepsilon\}$, wobei $|X_m - X| \leq |X_k - X|$. Also genau dann, wenn $\omega \in \{\sup_{m \geq n} |X_m - X| \geq \varepsilon\}$. Es folgt $\lim_n P(\bigcup_{m=n}^{\infty} \{|X_m - X| \geq \varepsilon\}) = \lim_n P(\sup_{m \geq n} |X_m - X| \geq \varepsilon)$. Da die Beziehung für beliebige $\varepsilon > 0$ gilt, ist die gesuchte Äquivalenz mit der Definition der stochastischen Konvergenz 14.ii gezeigt.

Zur Teilaufgabe (b) bemerken wir, dass, wenn (X_n) fast sicher gegen ein X konvergiert, dann auch $|X_n - X| \wedge 1$ fast sicher gegen 0 konvergiert. Da $|X_n - X| \wedge 1$ die 1 als integrierbare Majorante hat, konvergiert mit Theorem 14 über majorisierte Konvergenz $E[|X_n - X| \wedge 1]$ fast sicher gegen 0 und schließlich (X_n) nach Lemma 17 stochastisch gegen X.

Als alternative Lösung gehen wie im Beweis zu Satz 6.2.2 in (Hes03) vor. Nach Teilaufgabe (a) gilt $\lim_n P\left(\bigcup_{m=n}^{\infty}\{|X_m-X|\geq\varepsilon\}\right)=0$. Für alle $n\in\mathbb{N}$ gilt die Inklusion $\{|X_n-X|\geq\varepsilon\}\subseteq\bigcup_{m=n}^{\infty}\{|X_m-X|\geq\varepsilon\}$. Aufgrund der Monotonie von P gilt somit auch $\lim_n P(|X_n-X|\geq\varepsilon)=0$, also $X_n\stackrel{P}{\to} X$.

Bei Teilaufgabe (c) wollen wir zeigen, dass (X_n) genau dann fast sicher konvergiert, wenn gilt, dass $\lim_n P\left(\bigcup_{m=1}^\infty \{|X_{m+n} - X_n| \geq \varepsilon\}\right) = 0$. Wir gehen wie in Satz 2.3.3.3 aus (Rüs16) vor. Sei (X_n) also fast sicher konvergent. Insbesondere ist es, außer in einer P-Nullmenge $N \subset \Omega$, punktweise konvergent. Das heißt für alle $\omega \in \Omega \setminus N$ sind $\left(X_n(\omega)\right)_n$ Cauchy-Folgen in den reellen Zahlen und das ist äquivalent dazu, dass (X_n) fast sicher eine Cauchy-Folge ist. Entsprechend der Argumentation mit Quantoren aus Teilaufgabe (a) heißt das, für alle $\varepsilon > 0$ gilt

$$1 = P\left(\bigcup_{n=1}^{\infty} \bigcap_{m=n}^{\infty} \{|X_m - X_n| < \varepsilon\}\right).$$

Mit Stetigkeit von unten folgt

$$= \lim_{n} P\left(\bigcap_{m=n}^{\infty} \{|X_m - X_n| < \varepsilon\}\right).$$

Da $\left(\bigcap A_n\right)^{\mathrm{c}} = \bigcup A_n^{\mathrm{c}}$ folgt mit Verschieben $m \mapsto m-n$ die Behauptung.

B3A2 Bei Teilaufgabe (a) ist zu zeigen, dass wenn $X_n \leq Y_n \leq Z_n$ für alle $n \in \mathbb{N}$ und $X_n \xrightarrow{P} X$, $Y_n \xrightarrow{P} Y$ sowie $Z_n \xrightarrow{P} Z$, dann $X_n + Y_n \xrightarrow{P} X + Y$. Es ist also zu zeigen, für alle $\varepsilon > 0$ gilt $\lim_n P(|X_n - X + Y_n - Y| \geq \varepsilon) = 0$. Für den Beweis gehen wir entsprechend (Tsi18) vor. Wir möchten uns zunächst Folgen (a_n) und (b_n) in den reellen Zahlen anschauen und zeigen, dass wenn $a_n \to a$ und $b_n \to b$ gilt, dann auch $a_n + b_n \to a + b$ gilt. Da $\left(P(|X_n - X| \geq \varepsilon)\right)_n$ und $\left(P(|Y_n - Y| \geq \varepsilon)\right)_n$ Folgen in reellen Zahlen sind, können wir die Summenregel dann auf diese anwenden.

 $a_n \to a$ bedeutet, dass für alle $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ existiert, sodass für alle $n \geq n_0$ gilt $|a_n - a| < \varepsilon$. Sei nun $\varepsilon > 0$ beliebig vorgegeben und $n_0 \in \mathbb{N}$ so, dass $|a_n - a| < \frac{\varepsilon}{2}$. Weiterhin sei $n_0' \in \mathbb{N}$ so, dass $|b_n - b| < \frac{\varepsilon}{2}$. Wenn wir nun ein $n \geq n_0 \vee n_0'$ wählen, so gilt nach Dreiecksungleichung $|a_n - a + b_n - b| \leq |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, sodass $a_n + b_n \to a + b$.

Nun möchten wir die entsprechende Aussage für stochastische Konvergenz zeigen. Das machen wir so ähnlich wie im Beweis von Lemma 16. Wir schätzen die Wahrscheinlichkeit, $P(|X_n - X + Y_n - Y| \ge \varepsilon)$, die im Limes verschwinden soll, nach oben hin mithilfe der Dreiecksungleichung durch die Einzelwahrscheinlichkeiten $P(|X_n - X| \ge \varepsilon)$ und $P(|Y_n - Y| \ge \varepsilon)$ ab, von denen wir wissen, dass sie im Limes verschwinden.

Sei hierfür wieder $\varepsilon > 0$ beliebig. In Analogie zur Konvergenz der reellen Folgen (a_n) und (b_n) gilt mit der Dreiecksungleichung und der Monotonie von P, dass

$$P(|X_n - X + Y_n - Y| \ge 2\varepsilon) \le P(|X_n - X| + |Y_n - Y| \ge 2\varepsilon).$$

Nun ist die Wahrscheinlichkeit, dass $|X_n-X|+|Y_n-Y|\geq \varepsilon$ kleiner als die Wahrscheinlichkeit dafür, dass nur $|X_n-X|\geq \varepsilon$ oder nur $|Y_n-Y|\geq \varepsilon$. Damit gilt

$$\leq P(\{|X_n - X| \geq \varepsilon\} \cup \{|Y_n - Y| \geq \varepsilon\}).$$

Da P subadditiv ist, können wir abschätzen

$$\leq P(\{|X_n - X| \geq \varepsilon\}) + P(\{|Y_n - Y| \geq \varepsilon\}).$$

Da $X_n \xrightarrow{P} X$ und $Y_n \xrightarrow{P} Y$, sind die beiden Terme in der obigen Summe

Folgen in \mathbb{R} , die gegen 0 konvergieren. Wir haben vorhin auch erklärt, dass dann die Summe der Folgen gegen 0 konvergiert. Damit ist die reelle Folge $P(|X_n-X+Y_n-Y|\geq\varepsilon)$ mit etwas nach oben abgeschätzt, dass für $n\to\infty$ gegen 0 konvergiert, sodass $\lim_n P(|X_n-X+Y_n-Y|\geq\varepsilon)=0$ und $X_n+Y_n\stackrel{P}{\longrightarrow} X+Y$.

Bei Teilaufgabe (b) konvergiert nun zusätzlich $E[X_n] \to E[X]$ und $E[Z_n] \to E[Z]$ und wir sollen zeigen, dass $E[Y_n] \to E[Y]$, also $Y_n \xrightarrow{\mathcal{L}^p} Y$. Entsprechend Tipp wollen wir Theorem 22 verwenden. Da laut Aufgabenstellung bereits $Y_n \xrightarrow{P} Y$ gilt, zeigen wir, dass (Y_n) gleichgradig integrierbar ist. Dann gilt nach Theorem 22, dass $Y_n \xrightarrow{\mathcal{L}^p} Y$. Um die gleichgradige Integrierbarkeit von (Y_n) zu zeigen, reicht es nach Lemma 20 zu zeigen, dass $E[|Y_n|] < \infty$ und dass $\lim_{\varepsilon \to 0} \sup_{A:P(A)<\varepsilon} \sup_n E[|Y_n|\mathbb{1}_A] = 0$. Da $X_n \le Y_n \le Z_n$ ist $|Y_n| \le |X_n| + |Z_n|$ für alle n. Wegen der Monotonie und Linearität des Erwartungswertes gilt für den Erwartungswert $E[|Y_n|]$, dass $E[|Y_n|] \le E[|X_n| + |Z_n|] = E[|X_n|] + E[|Z_n|] < \infty$, da die Folgen $(E[X_n])$ und $(E[Z_n])$ konvergent und somit beschränkt sind.

Nun ist noch zu zeigen, dass (Y_n) den zweiten Part der Bedingung (ii) von Lemma 20 erfüllt, also, dass $\lim_{\varepsilon \to 0} \sup_{A:P(A)<\varepsilon} \sup_n E[|Y_n|\mathbb{1}_A] = 0$ gilt. Wieder gilt wegen der Monotonie des Erwartungswertes

$$\lim_{\varepsilon \to 0} \sup_{A:P(A)<\varepsilon} \sup_{n \in \mathbb{N}} E[|Y_n|\mathbbm{1}_A] \leq \lim_{\varepsilon \to 0} \sup_{A:P(A)<\varepsilon} \sup_{n \in \mathbb{N}} E[(|X_n|+|Z_n|)\mathbbm{1}_A] \,.$$

Wegen der Linearität des Erwartungswertes gilt

$$\begin{split} &= \lim_{\varepsilon \to 0} \sup_{A:P(A) < \varepsilon} \sup_{n \in \mathbb{N}} E[|X_n| \mathbbm{1}_A] \\ &+ \lim_{\varepsilon \to 0} \sup_{A:P(A) < \varepsilon} \sup_{n \in \mathbb{N}} E[|Z_n| \mathbbm{1}_A] = 0 \,, \end{split}$$

da (X_n) und (Z_n) nach Theorem 22 gleichgradig integrierbar sind und somit Bedingung (ii) von Lemma 20 erfüllen.

Somit erfüllt (Y_n) Bedingung (ii) von Lemma 20 und ist damit gleichgradig integrierbar. Da $Y \xrightarrow{P} Y$ folgt mit Theorem 22, dass $E[Y_n] \to E[Y]$.

B3A3 Wir haben hier $K_n = \prod_{i=1}^n Y_i$ mit $P(Y_i = \frac{5}{3}) = P(Y_i = \frac{1}{2}) = \frac{1}{2}$ gegeben und sollen bei Aufgabe (a) EK_n bestimmen sowie zeigen, dass $\lim_n EK_n = \infty$. Nach der Definition der K_n gilt

$$E[K_n] = E\left[\prod_{i=1}^n Y_i\right].$$

Da die Y_i stochastisch unabhängig sind, erhalten wir nach Satz 27

$$= \left(\frac{5}{3} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}\right)^n = \left(\frac{13}{12}\right)^n.$$

Da $EK_{n+1} > EK_n$ gilt $\lim_{n \to \infty} EK_n = \infty$.

Bei der Teilaufgabe (b) sollen wir zeigen, dass K_n dennoch stochastisch gegen 0 konvergiert. Hierfür nutzen wir den Tipp und betrachten die Zufallsvariable $\log K_n = \sum_{i=1}^n \log Y_i$ und wenden das schwache Gesetz der großen Zahlen auf die $\log Y_i$ an. Die Folge $(\log Y_i)$ genügt dem schwachen Gesetz der großen Zahlen, wenn die $\log Y_i$ unabhängig identisch verteilt sind und ihr Erwartungswert sowie ihre Varianz endlich sind. Da die Y_i unabhängig identisch verteilt sind, sind auch die $\log Y_i$ unabhängig und identisch verteilt. Wir rechnen nach, dass $E[\log Y_1] = \frac{1}{2}\log\frac{5}{3} + \frac{1}{2}\log\frac{1}{2} < 0$ und $|E[\log Y_1]| < \infty$. $E[(\log Y_1)^2] = \frac{1}{2}\left(\log\frac{5}{3}\right)^2 + \frac{1}{2}\left(\log\frac{1}{2}\right)^2 < \infty$, sodass Erwartungswert und Varianz endlich sind. Somit genügt $(\log Y_i)$ dem schwachen Gesetz der großen Zahlen, sodass gilt $\frac{1}{n}\sum^n \log Y_i \xrightarrow{P} E[\log Y_1] < 0$, also gilt mit der Definition von $\log K_n$ dass $\frac{\log K_n}{n} \xrightarrow{P} E[\log Y_1] < 0$. Da für den Nenner von $\frac{\log K_n}{n}$ gilt $n \to \infty$ und $E[\log Y_1] < 0$, muss gelten $\log K_n \xrightarrow{P} -\infty$, also $K_n \xrightarrow{P} e^{-\infty} = 0$.

B3A4 Sei $(X_n)_{n\in\mathbb{N}}$ eine Folge stochastisch unabhängiger Zufallsvariablen mit $P(X_n = \sqrt{n}) = \frac{1}{n} = 1 - P(X_n = 0)$. Wir sollen diese auf stochastische, P-fast-sichere und L^p -Konvergenz für alle $p \geq 1$ untersuchen. Weiterhin ist gefragt, ob (X_n) gleichgradig integrierbar ist.

Wir fragen uns, ob (X_n) stochastisch konvergiert, also ob für alle $\varepsilon > 0$ gilt $\lim P(|X_n - X| \ge \varepsilon) = 0$. Wir vermuten, dass, wenn (X_n) konvergiert, es gegen X = 0 konvergiert. Die Frage ist also, ob für alle $\varepsilon > 0$ gilt $\lim P(X_n \ge \varepsilon) = 0$. Sei, um das zu klären, ein $\varepsilon > 0$ gegeben. Weil X_n nach $\{0, \sqrt{n}\}$ abbildet gilt $X = \sqrt{n}$ Wenn $X_n \ge \varepsilon$. Somit ist der Limes gegeben durch $\lim P(X_n \ge \varepsilon) = P(X_n = \sqrt{n}) = \lim \frac{1}{n} = 0$. (X_n) konvergiert also stochastisch gegen X = 0.

Wir fragen uns nun, ob (X_n) P-fast sicher konvergiert, das heißt also, ob $P(\lim |X_n - X| = 0) = 1$. Um das zu klären folgen wir Beispiel 6.7 in (Hes03). Wir bemerken, dass, wenn $X_n \xrightarrow{f.s.} X$, nach Aufgabe 1 (b) auch $X_n \xrightarrow{P} X$. Wegen Lemma 16 über die Eindeutigkeit der Grenzwerte der stochastischen Konvergenz muss X = 0 gelten. Das heißt also, wenn $(X_n) \xrightarrow{f.s.} X$, dann ist X = 0. Wir fragen uns also, ob $P(\lim X_n = 0) = 1$. Nach Aufgabe 1 können wir uns auch genauso gut fragen, ob für alle $\varepsilon > 0$ gilt $\lim_n P(\bigcup_{m=n}^{\infty} \{X_m \geq \varepsilon\}) = 0$. Da $(\bigcup A_n)^c = \bigcap A_n^c$ und für alle m gilt $\{X_m \geq \varepsilon\} = \{X_m < \varepsilon\}^c$, können wir für alle $n \in \mathbb{N}$ schreiben $P(\bigcup_{m=n}^{\infty} \{X_m \geq \varepsilon\}) = 1 - P(\bigcap_{m=n}^{\infty} \{X_m < \varepsilon\})$. P ist als Wahrscheinlichkeitsmaß endlich und somit nach Satz A.14 stetig von oben. Wir können somit schreiben

$$P\left(\bigcap_{m=n}^{\infty} \{X_m < \varepsilon\}\right) = \lim_{N \to \infty} P\left(\bigcap_{m=n}^{N} \{X_m < \varepsilon\}\right).$$

Sei nun n so gewählt, dass $\sqrt{n} \ge \varepsilon$, also zum Beispiel $n = \lceil \varepsilon^2 \rceil$. Dann gilt für $m \ge n$, dass $\{X_m < \varepsilon\} = \{X_m = 0\}$, also

$$= \lim_{N \to \infty} P\left(\bigcap_{m=n}^{N} \{X_m = 0\}\right).$$

Da die X_m unabhängig sind, gilt

$$= \lim_{N \to \infty} \prod_{m=n}^{N} \frac{m-1}{m} \, .$$

Da gilt $\prod_{m=n}^{N+1} \frac{m-1}{m} < \prod_{m=n}^{N} \frac{m-1}{m}$ erhalten wir

=0

und insgesamt somit $\lim_{n} P(\bigcup_{m=n}^{\infty} \{X_m \geq \varepsilon\}) = 1$. Nach Aufgabe 1 konvergiert (X_n) also nicht fast sicher.

Wir überlegen uns noch, ob $X_n \xrightarrow{L^p} X$ für $p \geq 1$ und folgen hier Beispiel 6.12 aus (Hes03). Für den Erwartungswert von $E[|X_n|^p]$ ergibt sich $E[|X_n|^p] = \sqrt{n^p} \cdot \frac{1}{n} + 0 \cdot \frac{n-1}{n} = n^{\frac{p}{2}-1}$. Nach Theorem 22 ist X = 0, sollte $X_n \xrightarrow{L^p} X$ gelten. Somit konvergiert $E[|X_n|^p]$, falls $\frac{p}{2} - 1 < 0$, also p < 2. Bei uns ist aber $p \geq 1$, sodass (X_n) für $1 \leq p < 2$ bezüglich der L^p -Norm konvergiert.

Da die Folge (X_n) also bezüglich der L^1 -Norm konvergiert, ist sie nach Theorem 22 auch gleichgradig integrierbar. Folge wird immer kleiner, also Kandidat 0. Es gilt $E[|X_n|^p] = \int_0^1 X_n(\omega)^p = \frac{k_n^p}{2^{k_n}} \to 0$ mit L'Hospital. Damit L^p , stochastische, schwache Konvergenz und gleichgradige Integrierbarkeit. Für f.s. müsste Grenzwert auch 0 sein. Möchte Divergenz zeigen, also P(A) > 0 für $A = \{\omega \in \Omega \mid \forall c \in \mathbb{R} \exists N \in \mathbb{N} \forall n > NX_n > c\}$. Sei $\omega \in \Omega$ und $c \in \mathbb{R}$ gegeben, wähle N so, dass $k_N > c$ und $\frac{m_n}{2^{k_n}} \le \omega \le \frac{m_n+1}{2^{k_n}}$. Dann gilt $X_n(\omega) > c$, also $\omega \in A$. Da ω beliebig war, gilt $A = \Omega$ und $P(X_n \text{ konvergiert nicht }) = 1$.

Literatur

- [Hes03] Hesse, Christian H.: Angewandte Wahrscheinlichkeitstheorie. Springer-Verlag, 2003
- [Rüs
16] RÜSCHENDORF, Ludger: Wahrscheinlichkeitstheorie. Springer,
 2016
- [Tsi18] TSITSIKLIS, John: Convergence in probability of the sum
 of two random variables: Introduction to probability: Supplemental Resources. https://ocw.mit.edu/courses/
 res-6-012-introduction-to-probability-spring-2018/
 resources/convergence-in-probability-of-the-sum-of-two-random-variables/,
 2018