1. Sea $\{\vec{X}, \vec{Y}\}$, con $\vec{X}(t) = (x_1(t), x_2(t))^T$ y $\vec{Y}(t) = (y_1(t), y_2(t))^T$, un conjunto fundamental de soluciones del sistema $\vec{X}' = A\vec{X}$. Demostrar que si

$$A = \left[\begin{array}{cc} a & b \\ c & -a \end{array} \right]$$

entonces el wronskiano $W(t) = W(\vec{X}, \vec{Y})(t)$ es una función constante.

Solución:

2. Considere el sistema

$$\begin{cases} x_1' = x_1 \\ x_2' = 7x_1 + x_2 - 7x_3 \\ x_3' = x_1 + x_3. \end{cases}$$

- a) Determine la solución general de funciones a valores reales.
- b) Determine la única solución que satisface la condición inicial $X(0) = (2,1,3)^T$.

Solución:

3. Resolver $x^3y''' - x^2y'' = 0$ en $(0, +\infty)$.

Solución: La ecuación dada es una ecuación de Euler. Se puede hacer la sustitución $x=e^t$, o sea $t=\ln x$.

Entonces tenemos:

$$y' = \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{dy}{dt} \cdot e^{-t}$$

$$y'' = \frac{d}{dx} \left(\frac{dy}{dt} \cdot e^{-t} \right) = \frac{d^2y}{dt^2} e^{-2t} + \frac{dy}{dt} \left(-e^{-2t} \right) = \left(\frac{d^2y}{dt^2} - \frac{dy}{dt} \right) \cdot e^{-2t}$$

$$y''' = \frac{d}{dx} \left[\left(\frac{d^2y}{dt^2} - \frac{dy}{dt} \right) e^{-2t} \right] = \left(\frac{d^3y}{dt^3} - \frac{d^2y}{dt^2} \right) e^{-3t} + \left(2\frac{d^2y}{dt^2} - \frac{dy}{dt} \right) \left(-2e^{-3t} \right)$$

$$= \left(\frac{d^3y}{dt^3} - 3\frac{d^2y}{dt^2} + 2\frac{dy}{dt} \right) e^{-3t}$$

Sustituyendo en la ecuación dada, tenemos:

$$e^{3t} \left(y^{'''} - 3y^{''} + 2y^{'} \right) e^{-3t} - e^{2t} \left(y^{''} - y^{'} \right) e^{-2t} = 0$$
$$y^{'''} - 4y^{''} + 3y^{'} = 0$$

El polinomio auxiliar es:

$$\lambda^{3} - 4\lambda^{2} + 3\lambda = 0$$

$$\lambda(\lambda^{2} - 4\lambda + 3) = 0$$

$$\lambda_{1} = 0, \quad \lambda_{2} = 1, \quad \lambda_{3} = 3.$$

Entonces la solución general es: $y=C_1+C_2e^t+C_3e^{3t}$ Recordando, que $t=\ln x$, tenemos: $y=C_1+C_2x+C_3x^3$. Hallar la solución general de la ecuación diferencial $y'' + 3y = e^x + sen(2x)$.

Solución: Buscamos la solución de la ecuación homogénea, correspondiente a la ecuación dada: y'' + 3y = 0

El polinomio auxiliar es $p(\lambda)\lambda^2+3$ y $\lambda_{1,2}=\pm i\sqrt{3}$, entonces la solución de la ecuación homogénea y_h es: $y_h = C_1 \cos \sqrt{3}X + C_2 \sin \sqrt{3}X$ como la parte derecha de la ecuación dada consiste de dos sumandos, entonces podemos buscar solución particular y_p como suma de dos: $y_p=y_1+y_2$, donde y_1 es solución particular de la ecuación $y^{''}+3y=e^x$, y y_2 es la solución particular de la ecuación $y'' + 3y = \sin 2x$

Primero, buscamos $y_1: y'' + 3y = e^x$

Primero, buscamos $y_1: y''+3y=e^x$ (2) Como 1 no es la raíz de $p(\lambda)$, entonces buscamos la solución en forma $y_1=Ae^x$ $y_1' = Ae^x$, $y_1'' = Ae^x$, sustituyendo en la ecuación (2), tenemos:

$$Ae^x + 3Ae^x = e^x$$
, $\Rightarrow 4A = 1$, entonces, $A = \frac{1}{4}$; $y_1 = \frac{1}{4}e^x$.

Luego buscamos y_2 : $y^{''}+3y=\sin 2x$ como el número $B_i=2i$ no es la raíz de $p(\lambda)$, entonces:

$$y_2 = A \sin 2x + B \cos 2x$$

 $y_2' = 2A \cos 2x - 2B \sin 2x$
 $y_2'' = -4A \sin 2x - 4B \cos 2x$

Sustituyendo en la ecuación: $-4A \sin 2x - 4B \cos 2x + 3A \sin 2x + 3B \cos 2x = \sin 2x$ $-A=1 \Rightarrow A=-1$ $-B=0 \Rightarrow B=0$

 $y_2 = - \sin 2x$ Entonces:

Finalmente, la solución general de la ecuación dada es:

$$y = y_h + y_p$$

= $y_h + y_1 + y_2$, o sea,
 $y = C_1 \cos \sqrt{3}x + C_2 \sin \sqrt{3}x + \frac{1}{4}e^x - \sin 2x$.

5. Hallar un conjunto fundamental de soluciones reales del sistema

$$\begin{cases} x' = x - 4y \\ y' = 2x + 5y \end{cases}$$

2

Solución:

Resolver $x^3y''' + 2x^2y'' + xy' - y = 0$ en $(0, \infty)$.

Solución: La ecuación dada es una ecuación de Euler. Se puede hacer la sustitución $x = e^t$, o sea $t = \ln x$.

Entonces tenemos:

$$y' = \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{dy}{dt} \cdot e^{-t}$$

$$y'' = \frac{d}{dx} \left(\frac{dy}{dt} \cdot e^{-t} \right) = \frac{d^2y}{dt^2} \cdot e^{-2t} + \frac{dy}{dt} \left(-e^{-2t} \right) = \left(\frac{d^2y}{dt^2} - \frac{dy}{dt} \right) \cdot e^{-2t}$$

$$y''' = \frac{d}{dx} \left[\left(\frac{d^2y}{dt^2} - \frac{dy}{dt} \right) e^{-2t} \right] = \left(\frac{d^3y}{dt^3} - \frac{d^2y}{dt^2} \right) e^{-3t} + \left(\frac{d^2y}{dt^2} - \frac{dy}{dt} \right) \left(-2e^{-3t} \right)$$

$$= \left(\frac{d^3y}{dt^3} - 3\frac{d^2y}{dt^2} + 2\frac{dy}{dt} \right) \cdot e^{-3t}.$$

Sustituyendo en la ecuación dada, tenemos:

$$e^{3t} \left(y^{'''} - 3y^{''} + 2y^{'} \right) e^{-3t} + 2e^{2t} \left(y^{''} - y^{'} \right) e^{-2t} + e^{t} y^{'} e^{-t} - y = 0,$$
Entonces, $y^{'''} - y^{''} + y^{'} - y = 0$

El polinomio auxiliar es:

$$\begin{array}{rcl} \lambda^3-\lambda^2+\lambda-1&=&0,\quad \text{o sea}\\ \lambda^2(\lambda-1)+(\lambda-1)&=&0\\ \left(\lambda^2+1\right)(\lambda-1)&=&0.\\ \lambda_1&=&1,\quad \lambda_{2,3}=\pm i \end{array}$$

Al sistema fundamental de soluciones forman las funciones: e^t , $\cos t$, $\sin t$. Finalmente, la solución general es:

$$y = C_1 e^t + C_2 \cos t + C_3 \sin t$$

 $y = C_1 x + C_2 \cos(\ln x) + C_3 \sin(\ln x).$

7. Hallar la solución general del sistema

$$\begin{cases} x' = -x - y + t \\ y' = x - 3y + 1. \end{cases}$$

Solución:

8. Demostrar que si y(x) es solución de $y'' + 2by' + b^2y = 0$, con b > 0, entonces

$$\lim_{x \to \infty} y(x) = 0.$$

Solución: El polinomio auxiliar es

$$\lambda^{2} + 2b\lambda + b^{2} = 0$$
$$(\lambda + b)^{2} = 0 \Rightarrow \lambda_{1,2}$$
$$= -b$$

3

La solución es:

$$\begin{array}{rcl} y&=&C_1e^{-bx}+C_2xe^{-bx}\,,&b>0\\ \mbox{o sea }y&=&e^{-bx}(C_1+C_2x) \end{array}$$

Analizando: $\lim_{x\to\infty}\frac{C_1+C_2x}{e^{bx}}=0$, b>0 ya que la exponencial tiende mucho más rápido al ∞ , que el polinomio.

9. Sea φ_p una solución particular del sistema lineal X'=A(t)X+B(t). Demuestre que para toda la solución φ de dicho sistema existe φ_h solución del sistema homogéneo X'=A(t)X tal que

$$\varphi = \varphi_p + \varphi_h.$$

Solución:

10. Hallar la solución del sistema

$$\left\{\begin{array}{lcl} x^{'} & = & 4x & - & y \\ y^{'} & = & x & + & 2y \end{array}\right.$$

que satisface las condiciones iniciales x(0) = 9 y y(0) = 4.

Solución:

11. Hallar la solución general del sistema

$$\begin{cases} x' = 6x - 3y + e^{5t} \\ y' = 2x + y + 4. \end{cases}$$

Solución:

12. Resolver la ecuación $y'' - 3y' + 2y = 2x^2 + 4e^{3x}$.

Solución:

13. Hallar la solución general del sistema

$$\begin{cases} x' = -x - y + t \\ y' = x - 3y + 1. \end{cases}$$

Solución: