EE25BTECH11065 - Yoshita

Question:

Find the equation of the plane which passes through the point (5, 2, -4) and perpendicular to the line with direction ratios 2, 3, -1.

Solution:

The plane passes through a known point,

$$\mathbf{A} = \begin{pmatrix} 5 \\ 2 \\ -4 \end{pmatrix}$$

The plane is perpendicular to a line with direction ratios (2, 3, -1).

$$\mathbf{n} = \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$

The equation of a plane is given by the formula

$$\mathbf{n}^T(\mathbf{x} - \mathbf{A}) = 0$$

where **x** is a general point $[x, y, z]^T$ on the plane.

Substituting the numerical values for our normal vector ${\bf n}$ and point ${\bf A}$:

$$(2 \quad 3 \quad -1) \begin{pmatrix} x \\ y \\ z \end{pmatrix} - \begin{pmatrix} 5 \\ 2 \\ -4 \end{pmatrix} = 0$$

$$\Rightarrow (2 \quad 3 \quad -1) \begin{pmatrix} x - 5 \\ y - 2 \\ z - (-4) \end{pmatrix} = 0$$

$$\Rightarrow (2 \quad 3 \quad -1) \begin{pmatrix} x - 5 \\ y - 2 \\ z + 4 \end{pmatrix} = 0$$

$$\Rightarrow 2(x - 5) + 3(y - 2) - 1(z + 4) = 0$$

$$\Rightarrow 2x - 10 + 3y - 6 - z - 4 = 0$$

$$\Rightarrow 2x + 3y - z = 20$$

Thus, the equation of the plane is 2x + 3y - z = 20.

1

Fig. 0: A plane passing through point A with normal vector \mathbf{n} .