

BIOMOLECULES Carbohydrat

Ms. Ronalyn T. Boco,

OBJECTI FS

carbohydrates 2. Give examples of common monosaccharides, disaccharides, and polysaccharides used in daily life 3. Distinguish the properties of starch,

glycogen and cellulose

I. Describe

BIOMOLECULES

 Plants, animals and all other living things are made up of organic molecules which are organized into larger molecules,

CARBOHYDRATES (CHO)

- Carbohydrates are compounds made up of carbon, hydrogen, and oxygen.
- Carbohydrates have different biochemical functions.
- Carbohydrates also have structural functions

CARBOHYDRATES

Carbohydrates

Glucose Fructose Galactose

Single sugar molecule

Disaccharide

Maltose Sucrose Lactose

Two sugar molecules linked

Polysaccharide

Starch Glycogen Cellulose

Many sugar molecules linked

MONOSACCHA RIDES

- One unit of sugar (one saccharide)
- Basic building blocks of large carbohydrate molecules
- Contain two kinds of functional groups-two or more hydroxyl gro

MONOSACCHARIDES	FORMULA	STRUCTURE	SOURCES
GLUCOSE	C ₆ H ₁₂ O ₆	CH ₂ OH H OH OH OH OH OH OH OH OH	Fruits
FRUCTOSE	C ₆ H ₁₂ O ₆	CH ₂ OH OH CH ₂ OH OH H	Fruits Honey
GALACTOSE	C ₆ H ₁₂ O ₆	CH ₂ OH C OH H OH H C OH H OH H OH H OH H OH	Precursor to glucose production

When two monosaccharides join together through a condensation reaction, a disaccharide is produced along with a molecule of water.

When two glucose units react via condensation reaction, the disaccharide, maltose, is formed.

Glu + Glu
$$\longrightarrow$$
 Glu -O- Glu + H_2O
Maltose

When glucose and fructose are joined, sucrose (table sugar) is formed.

Glu + Fru
$$\longrightarrow$$
 Glu -O- Fru + H_2O
Sucrose

When glucose and galactose are joined, lactose (milk sugar) is formed.

(a) Dehydration reaction in the synthesis of maltose

(b) Dehydration reaction in the synthesis of sucrose

DISACCHARID ES

- Two units of sugar (two saccharides)
- They act as a source of monosaccharides
- The two similar or different monosaccharide molecules are attached via a glycosidic bond to form a disaccharide. As a water molecule is released in this condensation process, it is also known as a dehydration react

DISACCHARIDES	FORMULA	STRUCTURE	SOURCES
SUCRCOSE	C ₁₂ H ₂₂ O ₁₁	CH ₂ OH H OH H OH H OH Glucose CH ₂ OH H OH H OH Fructose	Fruits Nectars Sugar cane
LACTOSE	C ₁₂ H ₂₂ O ₁₁	CH ₂ OH OH OH Glucose	Milk
MALTOSE	C ₁₂ H ₂₂ O ₁₁	CH ₂ OH CH ₂ OH H H OH H OH H OH Glucose Glucose	Some fruits Grains

POLYSACCHAR IDES

- Are made up of several monosaccharide units joined together by covalent bonds called *glycosidic bonds*.
- These complex biomacromolecules functions as ar important source of energy in animal cell and form a structural component of a plan

STARCH Occurs as microscopic granules in the cells of roots, tubers and seeds of plants.

 Serve as a major source of energy for animals & humans.

GLYCOG

- branched
 polysaccharide that
 is the main storage
 form of glucose in
 animals and
 humans.
- Glycogen is also an important form of glucose storage in fungi and bacteria.
- Found in the muscles and liver.

CELLUL

- up plant cell walls.
- It is insoluble in water and cannot be digested by humans.
- Generally used in paper making, used in the production of rayon, photographic films & nitrocellulose.

	Cellulose	Starch		Chroman	
	Cellulose	Amylose	Amylopectin	Glycogen	
Source	Plant	Plant	Plant	Animal	
Subunit	β-glucose	α-glucose	α-glucose	α-glucose	
Bonds	1-4	1-4	1-4 and 1-6	1-4 and 1-6	
Branches	No	No	Yes (~per 20 subunits)	Yes (~per 10 subunits)	
Diagram	<u></u>	5-5-5-5	5-5-5-5	5-5-5-5	
Shape	000000000000000000000000000000000000000	2000	业业	AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

CHITIN

Found in the exoskeletons of insects, the cell walls of fungi, and certain hard structures in invertebrates and fish.

PEPTIDOGLY

- makes up the cell wall of most bacteria.
- Provides a very important role in bacteria because bacteria are unicellular; it gives strength to the outer structure of the organism.

KEY

- Biomolecules are the most essential organic molecules, which are involved in the maintenance and metabolic processes of living organisms.
- There are four major classes of Biomolecules – Carbohydrates, Proteins, Nucleic acids and Lipids.
- Carbohydrates are compounds made up of carbon, hydrogen, and oxygen. They are built from three types of sugar units—

THANK YOU FOR LISTENING!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

