```
import numpy as np
import scipy
import pandas as pd
import math
import random
import sklearn
from nltk.corpus import stopwords
from sklearn.model_selection import train_test_split
from sklearn.feature extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine similarity
from scipy.sparse.linalg import svds
import matplotlib.pyplot as plt
```

Capstone Project For Recommendation System. By Anshika dixit

```
from google.colab import files
uploaded = files.upload()
```

timestamp eventType


```
Choose Files No file chosen
                                       Upload widget is only available when the cell has been
executed in the current browser session. Please rerun this cell to enable.
Saving shared articles csv to shared articles csv
```

```
import io
articles_df = pd.read_csv(io.StringIO(uploaded['shared_articles.csv'].decode('utf-8')))
articles_df = articles_df[articles_df['eventType'] == 'CONTENT SHARED']
articles_df.head(2)
```

contentId

```
CONTENT
1 1459193988
                        -4110354420726924665 4340306774493623681 894034120520623
               SHARED
```

CONTENT 2 1459194146 -7292285110016212249 4340306774493623681 894034120520623 SHARED

Contains information about the articles shared in the platform. Each article has its sharing date (timestamp), the original url, title, content in plain text, the article' lang (Portuguese: pt or

authorSessi

authorPersonId

English: en) and information about the user who shared the article (author).

There are two possible event types at a given timestamp:

CONTENT SHARED: The article was shared in the platform and is available for users. CONTENT REMOVED: The article was removed from the platform and not available for further recommendation. For the sake of simplicity, we only consider here the "CONTENT SHARED" event type, assuming (naively) that all articles were available during the whole one year period.

```
from google.colab import files
uploaded = files.upload()
```

Upload widget is only available when the cell has been Choose Files No file chosen executed in the current browser session. Please rerun this cell to enable. Saving users interactions.csv to users interactions.csv

interactions_df = pd.read_csv(io.StringIO(uploaded['users_interactions.csv'].decode('utf-8 interactions_df.head(2)

	timestamp	eventType	contentId	personId	sess
0	1465413032	VIEW	-3499919498720038879	-8845298781299428018	12641967703399
1	1465412560	VIEW	8890720798209849691	-1032019229384696495	36217376435875

Contains logs of user interactions on shared articles. It can be joined to articles_shared.csv by contentld column.

The eventType values are:

VIEW: The user has opened the article. LIKE: The user has liked the article. COMMENT CREATED: The user created a comment in the article. FOLLOW: The user chose to be notified on any new comment in the article. BOOKMARK: The user has bookmarked the article for easy return in the future.

```
#data munging
event_type_strength = {
   'VIEW': 1.0,
   'LIKE': 2.0,
   'BOOKMARK': 2.5,
   'FOLLOW': 3.0,
   'COMMENT CREATED': 4.0,
}
interactions_df['eventStrength'] = interactions_df['eventType'].apply(lambda x: event_type
```

As there are different interactions types, we associate them with a weight or strength, assuming that, for example, a comment in an article indicates a higher interest of the user on the item than a like or than a cimple view

```
users_interactions_count_df = interactions_df.groupby(['personId', 'contentId']).size().gr
print('# users: %d' % len(users_interactions_count_df))
users_with_enough_interactions_df = users_interactions_count_df[users_interactions_count_d
print('# users with at least 5 interactions: %d' % len(users with enough interactions df))
     # users: 1895
    # users with at least 5 interactions: 1140
```

Recommender systems have a problem known as user cold-start, in which is hard do provide personalized recommendations for users with none or a very few number of consumed items, due to the lack of information to model their preferences. For this reason, we are keeping in the dataset only users with at leas 5 interactions.

```
print('# of interactions: %d' % len(interactions_df))
interactions_from_selected_users_df = interactions_df.merge(users_with_enough_interactions_
               how = 'right',
               left_on = 'personId',
               right_on = 'personId')
print('# of interactions from users with at least 5 interactions: %d' % len(interactions_f
     # of interactions: 72312
     # of interactions from users with at least 5 interactions: 69868
def smooth_user_preference(x):
    return math.log(1+x, 2)
interactions_full_df = interactions_from_selected_users_df \
                    .groupby(['personId', 'contentId'])['eventStrength'].sum() \
                    .apply(smooth_user_preference).reset_index()
print('# of unique user/item interactions: %d' % len(interactions_full_df))
interactions full df.head(10)
```

```
# of unique user/item interactions: 39106
               personId
                                    contentId eventStrength
```

0 -9223121837663643404 -8949113594875411859 1.000000

users are allowed to view an article many times, and interact with them in different ways (eg. like or comment). Thus, to model the user interest on a given article, we aggregate all the interactions the user has performed in an item by a weighted sum of interaction type strength and apply a log transformation to smooth the distribution.

```
U. 1000EU
interactions_train_df, interactions_test_df = train_test_split(interactions_full_df,
                               stratify=interactions_full_df['personId'],
                               test size=0.20,
                               random_state=42)
print('# interactions on Train set: %d' % len(interactions_train_df))
print('# interactions on Test set: %d' % len(interactions_test_df))
    # interactions on Train set: 31284
    # interactions on Test set: 7822
```

Evaluation We are using here a simple cross-validation approach named holdout, in which a random data sample (20% in this case) are kept aside in the training process, and exclusively used for evaluation. All evaluation metrics reported here are computed using the test set.

Ps. A more robust evaluation approach could be to split train and test sets by a reference date, where the train set is composed by all interactions before that date, and the test set are interactions after that date. For the sake of simplicity, we chose the first random approach for this notebook, but you may want to try the second approach to better simulate how the recsys would perform in production predicting "future" users interactions.

```
#Indexing by personId to speed up the searches during evaluation
interactions_full_indexed_df = interactions_full_df.set_index('personId')
interactions train indexed df = interactions train df.set index('personId')
interactions_test_indexed_df = interactions_test_df.set_index('personId')
def get items interacted(person id, interactions df):
    # Get the user's data and merge in the movie information.
    interacted_items = interactions_df.loc[person_id]['contentId']
    return set(interacted_items if type(interacted_items) == pd.Series else [interacted_it
#Top-N accuracy metrics consts
EVAL RANDOM SAMPLE NON INTERACTED ITEMS = 100
class ModelEvaluator:
```

```
def get_not_interacted_items_sample(self, person_id, sample_size, seed=42):
    interacted items = get_items interacted(person_id, interactions full indexed_df)
    all_items = set(articles_df['contentId'])
    non interacted items = all items - interacted items
   random.seed(seed)
   non_interacted_items_sample = random.sample(non_interacted_items, sample_size)
    return set(non interacted items sample)
def verify hit top n(self, item id, recommended items, topn):
            index = next(i for i, c in enumerate(recommended_items) if c == item_id)
        except:
            index = -1
        hit = int(index in range(0, topn))
        return hit, index
def evaluate_model_for_user(self, model, person_id):
   #Getting the items in test set
    interacted_values_testset = interactions_test_indexed_df.loc[person_id]
    if type(interacted_values_testset['contentId']) == pd.Series:
        person interacted items testset = set(interacted values testset['contentId'])
        person_interacted_items_testset = set([int(interacted_values_testset['contentI
    interacted_items_count_testset = len(person_interacted_items_testset)
   #Getting a ranked recommendation list from a model for a given user
    person_recs_df = model.recommend_items(person_id,
                                           items_to_ignore=get_items_interacted(person
                                                                                intera
                                           topn=10000000000)
   hits_at_5_count = 0
   hits at 10 count = 0
   #For each item the user has interacted in test set
   for item id in person interacted items testset:
        #Getting a random sample (100) items the user has not interacted
        #(to represent items that are assumed to be no relevant to the user)
        non_interacted_items_sample = self.get_not_interacted_items_sample(person_id,
                                                                      sample size=EVAL
                                                                      seed=item id%(2*
        #Combining the current interacted item with the 100 random items
        items_to_filter_recs = non_interacted_items_sample.union(set([item_id]))
        #Filtering only recommendations that are either the interacted item or from a
        valid_recs_df = person_recs_df[person_recs_df['contentId'].isin(items_to_filte
        valid recs = valid recs df['contentId'].values
        #Verifying if the current interacted item is among the Top-N recommended items
        hit_at_5, index_at_5 = self._verify_hit_top_n(item_id, valid_recs, 5)
        hits_at_5_count += hit_at_5
        hit_at_10, index_at_10 = self._verify_hit_top_n(item_id, valid_recs, 10)
        hits at 10 count += hit at 10
```

#Recall is the rate of the interacted items that are ranked among the Top-N recomm https://colab.research.google.com/github/TypicalDefender/recommendation-system/blob/master/recommendation_system.ipynb#scrollTo=7VSLx... 5/19

```
#when mixed with a set of non-relevant items
        recall_at_5 = hits_at_5_count / float(interacted_items_count_testset)
        recall_at_10 = hits_at_10_count / float(interacted_items_count_testset)
        person_metrics = {'hits@5_count':hits_at_5_count,
                          'hits@10 count':hits at 10 count,
                          'interacted_count': interacted_items_count_testset,
                          'recall@5': recall at 5,
                          'recall@10': recall at 10}
        return person metrics
    def evaluate model(self, model):
        #print('Running evaluation for users')
        people metrics = []
        for idx, person_id in enumerate(list(interactions_test_indexed_df.index.unique().v
            #if idx % 100 == 0 and idx > 0:
                 print('%d users processed' % idx)
            person_metrics = self.evaluate_model_for_user(model, person_id)
            person_metrics['_person_id'] = person_id
            people_metrics.append(person_metrics)
        print('%d users processed' % idx)
        detailed results df = pd.DataFrame(people metrics) \
                            .sort_values('interacted_count', ascending=False)
        global_recall_at_5 = detailed_results_df['hits@5_count'].sum() / float(detailed_re
        global_recall_at_10 = detailed_results_df['hits@10_count'].sum() / float(detailed_
        global_metrics = {'modelName': model.get_model_name(),
                          'recall@5': global_recall_at_5,
                          'recall@10': global recall at 10}
        return global_metrics, detailed_results_df
model evaluator = ModelEvaluator()
```

In Recommender Systems, there are a set metrics commonly used for evaluation. We chose to work with Top-N accuracy metrics, which evaluates the accuracy of the top recommendations provided to a user, comparing to the items the user has actually interacted in test set. This evaluation method works as follows:

For each user For each item the user has interacted in test set Sample 100 other items the user has never interacted. Ps. Here we naively assume those non interacted items are not relevant to the user, which might not be true, as the user may simply not be aware of those not interacted items. But let's keep this assumption. Ask the recommender model to produce a ranked list of recommended items, from a set composed one interacted item and the 100 non-interacted ("non-relevant!) items Compute the Top-N accuracy metrics for this user and interacted item from the recommendations ranked list Aggregate the global Top-N accuracy metrics The Top-N accuracy metric choosen was Recall@N which evaluates whether the interacted item is among the top N items (hit) in the ranked list of 101 recommendations for a user. Ps. Other popular

ranking metrics are NDCG@N and MAP@N, whose score calculation takes into account the

#popularity model
#Computes the most popular items
item_popularity_df = interactions_full_df.groupby('contentId')['eventStrength'].sum().sort
item_popularity_df.head(10)

	contentId	eventStrength
0	-4029704725707465084	307.733799
1	-6783772548752091658	233.762157
2	-133139342397538859	228.024567
3	-8208801367848627943	197.107608
4	-6843047699859121724	193.825208
5	8224860111193157980	189.044680
6	-2358756719610361882	183.110951
7	2581138407738454418	180.282876
8	7507067965574797372	179.094002
9	1469580151036142903	170.548969

class PopularityRecommender:

```
MODEL NAME = 'Popularity'
def __init__(self, popularity_df, items_df=None):
    self.popularity df = popularity df
    self.items_df = items_df
def get_model_name(self):
    return self.MODEL NAME
def recommend items(self, user id, items to ignore=[], topn=10, verbose=False):
    # Recommend the more popular items that the user hasn't seen yet.
    recommendations_df = self.popularity_df[~self.popularity_df['contentId'].isin(item
                           .sort_values('eventStrength', ascending = False) \
                           .head(topn)
    if verbose:
        if self.items_df is None:
            raise Exception('"items_df" is required in verbose mode')
        recommendations df = recommendations df.merge(self.items df, how = 'left',
                                                      left on = 'contentId',
                                                      right on = 'contentId')[['eventS
```

return recommendations_df

popularity_model = PopularityRecommender(item_popularity_df, articles_df)

print('Evaluating Popularity recommendation model...')
pop_global_metrics, pop_detailed_results_df = model_evaluator.evaluate_model(popularity_mo
print('\nGlobal metrics:\n%s' % pop_global_metrics)
pop_detailed_results_df.head(10)

Evaluating Popularity recommendation model...
1139 users processed

Global metrics:

import nltk

{'modelName': 'Popularity', 'recall@5': 0.2417540271030427, 'recall@10': 0.3729225262

	_person_id	hits@10_count	hits@5_count	$\verb interacted_count $	recall@10
76	3609194402293569455	50	28	192	0.260417
17	-2626634673110551643	25	12	134	0.186567
16	-1032019229384696495	23	13	130	0.176923
10	-1443636648652872475	9	5	117	0.076923
82	-2979881261169775358	40	25	88	0.454545
161	-3596626804281480007	18	12	80	0.225000
65	1116121227607581999	33	20	73	0.452055
81	692689608292948411	23	17	69	0.333333
106	-9016528795238256703	18	14	69	0.260870
52	3636910968448833585	28	21	68	0.411765

```
nltk.download('stopwords')
#content based filtering
stopwords list = stopwords.words('english') + stopwords.words('portuguese')
#Trains a model whose vectors size is 5000, composed by the main unigrams and bigrams foun
vectorizer = TfidfVectorizer(analyzer='word',
                     ngram_range=(1, 2),
                     min df=0.003,
                     max df=0.5,
                     max features=5000,
                     stop_words=stopwords_list)
item_ids = articles_df['contentId'].tolist()
tfidf_matrix = vectorizer.fit_transform(articles_df['title'] + "" + articles_df['text'])
tfidf_feature_names = vectorizer.get_feature_names()
tfidf_matrix
     [nltk_data] Downloading package stopwords to /root/nltk_data...
     [nltk_data]
                   Unzipping corpora/stopwords.zip.
```

<3047x5000 sparse matrix of type '<class 'numpy.float64'>'
 with 638928 stored elements in Compressed Sparse Row format>

```
def get_item_profile(item_id):
    idx = item ids.index(item id)
    item_profile = tfidf_matrix[idx:idx+1]
   return item_profile
def get item profiles(ids):
    item profiles list = [get item profile(x) for x in ids]
    item_profiles = scipy.sparse.vstack(item_profiles_list)
    return item_profiles
def build users profile(person id, interactions indexed df):
    interactions_person_df = interactions_indexed_df.loc[person_id]
    user_item_profiles = get_item_profiles(interactions_person_df['contentId'])
   user_item_strengths = np.array(interactions_person_df['eventStrength']).reshape(-1,1)
    #Weighted average of item profiles by the interactions strength
    user_item_strengths_weighted_avg = np.sum(user_item_profiles.multiply(user_item_streng
    user profile norm = sklearn.preprocessing.normalize(user item strengths weighted avg)
    return user profile norm
def build_users_profiles():
    interactions indexed df = interactions full df[interactions full df['contentId'] \
                                                   .isin(articles_df['contentId'])].set_in
   user_profiles = {}
    for person id in interactions indexed df.index.unique():
        user_profiles[person_id] = build_users_profile(person_id, interactions_indexed_df)
    return user_profiles
user_profiles = build_users_profiles()
len(user_profiles)
    1140
myprofile = user_profiles[-1479311724257856983]
print(myprofile.shape)
pd.DataFrame(sorted(zip(tfidf_feature_names,
                        user profiles[-1479311724257856983].flatten().tolist()), key=lambd
             columns=['token', 'relevance'])
```

(1, 5000)

	token	relevance
0	learning	0.305655
1	machine learning	0.255557
2	machine	0.246095
3	google	0.208590
4	data	0.172509
5	ai	0.136818
6	algorithms	0.102396
7	graph	0.098438
8	like	0.096970
9	language	0.083993
10	people	0.077122
11	use	0.073203
12	models	0.073168
13	deep	0.072377

class ContentBasedRecommender:

```
MODEL NAME = 'Content-Based'
def __init__(self, items_df=None):
   self.item_ids = item_ids
   self.items df = items df
def get_model_name(self):
    return self.MODEL NAME
def _get_similar_items_to_user_profile(self, person_id, topn=1000):
    #Computes the cosine similarity between the user profile and all item profiles
    cosine_similarities = cosine_similarity(user_profiles[person_id], tfidf_matrix)
   #Gets the top similar items
    similar_indices = cosine_similarities.argsort().flatten()[-topn:]
    #Sort the similar items by similarity
    similar_items = sorted([(item_ids[i], cosine_similarities[0,i]) for i in similar_i
    return similar items
def recommend_items(self, user_id, items_to_ignore=[], topn=10, verbose=False):
    similar_items = self._get_similar_items_to_user_profile(user_id)
    #Ignores items the user has already interacted
    similar_items_filtered = list(filter(lambda x: x[0] not in items_to_ignore, simila
    recommendations_df = pd.DataFrame(similar_items_filtered, columns=['contentId', 'r
                                .head(topn)
```

```
if verbose:
```

```
if self.items_df is None:
    raise Exception('"items_df" is required in verbose mode')
```

return recommendations df

content_based_recommender_model = ContentBasedRecommender(articles_df)

print('Evaluating Content-Based Filtering model...')
cb_global_metrics, cb_detailed_results_df = model_evaluator.evaluate_model(content_based_r
print('\nGlobal metrics:\n%s' % cb_global_metrics)
cb_detailed_results_df.head(10)

Evaluating Content-Based Filtering model...
1139 users processed

Global metrics:

{'modelName': 'Content-Based', 'recall@5': 0.41459984658655075, 'recall@10': 0.524162

	_person_id	hits@10_count	hits@5_count	$\verb"interacted_count"$	recall@10
76	3609194402293569455	26	16	192	0.135417
17	-2626634673110551643	35	21	134	0.261194
16	-1032019229384696495	34	22	130	0.261538
10	-1443636648652872475	54	34	117	0.461538
82	-2979881261169775358	15	8	88	0.170455
161	-3596626804281480007	23	14	80	0.287500
65	1116121227607581999	15	10	73	0.205479
81	692689608292948411	20	11	69	0.289855
106	-9016528795238256703	10	5	69	0.144928
52	3636910968448833585	11	4	68	0.161765

users_items_pivot_matrix_df.head(10)

contentId	-9222795471790223670	-9216926795620865886	-91945728800522001
personId			
-9223121837663643404	0.0	0.0	C
-9212075797126931087	0.0	0.0	С
-9207251133131336884	0.0	2.0	С
-9199575329909162940	0.0	0.0	C
-9196668942822132778	0.0	0.0	С
-9188188261933657343	0.0	0.0	C
-9172914609055320039	0.0	0.0	C
-9156344805277471150	0.0	0.0	C
-9120685872592674274	0.0	0.0	C
***********			-
<pre>users_items_pivot_matrix = users_items_pivot_matrix[:1</pre>		ix_df.as_matrix()	
[0., 2., 0., , [0., 0., 0., [0., 0., 0.,	., 0., 0., 0.], ., 0., 0., 0.], ., 0., 0., 0.], ., 0., 0., 0.], ., 0., 0., 0.],		
4			•
users_ids = list(users_itemusers_ids[:10] [-9223121837663643404, -9212075797126931087, -9207251133131336884, -9199575329909162940, -9196668942822132778, -9188188261933657343, -9172914609055320039, -9156344805277471150, -9120685872592674274, -9109785559521267180]		x)	
<pre>#The number of factors to f NUMBER_OF_FACTORS_MF = 15 #Performs matrix factorizat U, sigma, Vt = svds(users_i</pre>	ion of the original us	er item matrix)

U.shape

```
(1140, 15)
```

```
Vt.shape
     (15, 2926)
sigma = np.diag(sigma)
sigma.shape
     (15, 15)
all_user_predicted_ratings = np.dot(np.dot(U, sigma), Vt)
all user predicted ratings
     array([[ 0.01039915, 0.00081872, -0.01725263, ..., 0.00140708,
              0.0110647 , 0.00226063],
            [-0.00019285, -0.00031318, -0.00264624, ..., 0.00251658,
             0.00017609, -0.00189488],
            [-0.01254721, 0.0065947, -0.00590676, ..., 0.00698975,
             -0.01015696, 0.01154572],
            . . . ,
            [-0.02995379, 0.00805715, -0.01846307, ..., -0.01083078,
             -0.00118591, 0.0096798],
            [-0.01845505, 0.00467019, 0.01219602, ..., 0.00409507,
              0.00019482, -0.00752562],
            [-0.01506374, 0.00327732, 0.13391269, ..., -0.01191815,
              0.06422074, 0.01303244]])
```

cf_preds_df = pd.DataFrame(all_user_predicted_ratings, columns = users_items_pivot_matrix_ cf preds df.head(10)

-9223121837663643404 -9212075797126931087 -92072511331313368

```
len(cf preds df.columns)
     1140
      0216026706620966996
                                       0.000910
                                                              0.000313
                                                                                    0.0065
class CFRecommender:
    MODEL NAME = 'Collaborative Filtering'
    def __init__(self, cf_predictions_df, items_df=None):
        self.cf predictions df = cf predictions df
        self.items_df = items_df
    def get_model_name(self):
        return self.MODEL NAME
    def recommend_items(self, user_id, items_to_ignore=[], topn=10, verbose=False):
        # Get and sort the user's predictions
        sorted_user_predictions = self.cf_predictions_df[user_id].sort_values(ascending=Fa
                                    .reset index().rename(columns={user id: 'recStrength'}
        # Recommend the highest predicted rating movies that the user hasn't seen yet.
        recommendations_df = sorted_user_predictions[~sorted_user_predictions['contentId']
                               .sort_values('recStrength', ascending = False) \
                               .head(topn)
        if verbose:
            if self.items df is None:
                raise Exception('"items_df" is required in verbose mode')
            recommendations df = recommendations df.merge(self.items_df, how = 'left',
                                                          left on = 'contentId',
                                                          right on = 'contentId')[['recStr
        return recommendations df
cf_recommender_model = CFRecommender(cf_preds_df, articles_df)
print('Evaluating Collaborative Filtering (SVD Matrix Factorization) model...')
cf global metrics, cf detailed results df = model evaluator.evaluate model(cf recommender
print('\nGlobal metrics:\n%s' % cf global metrics)
cf_detailed_results_df.head(10)
```

Evaluating Collaborative Filtering (SVD Matrix Factorization) model... 1139 users processed

```
Global metrics:
```

{'modelName': 'Collaborative Filtering', 'recall@5': 0.33405778573254924, 'recall@10

	_person_id	hits@10_count	hits@5_count	<pre>interacted_count</pre>	recall@10
76	3609194402293569455	45	21	192	0.234375
17	-2626634673110551643	56	30	134	0.417910
16	-1032019229384696495	34	16	130	0.261538
10	-1443636648652872475	51	38	117	0.435897
82	-2979881261169775358	48	39	88	0.545455
161	-3596626804281480007	34	22	80	0.425000

class HybridRecommender:

```
MODEL_NAME = 'Hybrid'
def __init__(self, cb_rec_model, cf_rec_model, items_df):
    self.cb_rec_model = cb_rec_model
    self.cf_rec_model = cf_rec_model
    self.items_df = items_df
def get model name(self):
    return self.MODEL_NAME
def recommend_items(self, user_id, items_to_ignore=[], topn=10, verbose=False):
    #Getting the top-1000 Content-based filtering recommendations
    cb recs df = self.cb rec model.recommend items(user id, items to ignore=items to i
                                                       topn=1000).rename(columns={'rec
    #Getting the top-1000 Collaborative filtering recommendations
    cf_recs_df = self.cf_rec_model.recommend_items(user_id, items_to_ignore=items_to_i
                                                       topn=1000).rename(columns={'rec
    #Combining the results by contentId
    recs_df = cb_recs_df.merge(cf_recs_df,
                               how = 'inner',
                               left_on = 'contentId',
                               right on = 'contentId')
```

#Computing a hybrid recommendation score based on CF and CB scores recs_df['recStrengthHybrid'] = recs_df['recStrengthCB'] * recs_df['recStrengthCF']

#Sorting recommendations by hybrid score recommendations_df = recs_df.sort_values('recStrengthHybrid', ascending=False).hea

if verbose:

```
if self.items_df is None:
    raise Exception('"items_df" is required in verbose mode')
```

recommendations_df = recommendations_df.merge(self.items_df, how = 'left',

left_on = 'contentId', right_on = 'contentId')[['recStr

return recommendations df

hybrid_recommender_model = HybridRecommender(content_based_recommender_model, cf_recommend

print('Evaluating Hybrid model...') hybrid_global_metrics, hybrid_detailed_results_df = model_evaluator.evaluate_model(hybrid_ print('\nGlobal metrics:\n%s' % hybrid global metrics) hybrid detailed results df.head(10)

Evaluating Hybrid model... 1139 users processed

Global metrics:

{'modelName': 'Hybrid', 'recall@5': 0.4337765277422654, 'recall@10': 0.53796982868831

	_person_id	hits@10_count	hits@5_count	interacted_count	recall@10
76	3609194402293569455	40	27	192	0.208333
17	-2626634673110551643	56	38	134	0.417910
16	-1032019229384696495	35	27	130	0.269231
10	-1443636648652872475	52	37	117	0.44444
82	-2979881261169775358	31	26	88	0.352273
161	-3596626804281480007	28	20	80	0.350000
65	1116121227607581999	21	16	73	0.287671
81	692689608292948411	23	14	69	0.333333
106	-9016528795238256703	19	14	69	0.275362
52	3636910968448833585	19	16	68	0.279412

global_metrics_df = pd.DataFrame([pop_global_metrics, cf_global_metrics, cb_global_metrics .set_index('modelName') global_metrics_df

recall@10 recall@5

modelName		
Popularity	0.372923	0.241754
Collaborative Filtering	0.468167	0.334058
Content-Based	0.524163	0.414600
Hybrid	0.537970	0.433777

```
%matplotlib inline
ax = global_metrics_df.transpose().plot(kind='bar', figsize=(15,8))
for p in ax.patches:
    ax.annotate("%.3f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()),
```



```
def inspect_interactions(person_id, test_set=True):
   if test_set:
        interactions_df = interactions_test_indexed_df
   else:
        interactions df = interactions train indexed df
   return interactions_df.loc[person_id].merge(articles_df, how = 'left',
                                                      left_on = 'contentId',
                                                      right_on = 'contentId') \
                          .sort_values('eventStrength', ascending = False)[['eventStrength
                                                                           'contentId',
                                                                           'title', 'url',
```

inspect_interactions(-1479311724257856983, test_set=False).head(20)

	title	contentId	eventStrength	
https://www.ebayinc.com/storie:	At eBay, Machine Learning is Driving Innovativ	7342707578347442862	4.285402	115
http://www.wired.com/2016/08/bo	Al Is Here to Help You Write Emails People Wil	621816023396605502	4.129283	38
http://www.wildml.com/2016/04/de	Deep Learning for Chatbots, Part 1 - Introduction	-4460374799273064357	4.044394	8
https://databricks.com/blog/2016/	Auto-scaling scikit-learn with Spark	-7959318068735027467	3.954196	116
http://radar.oreilly.com/2015/07/6	6 reasons why I like KeystoneML	2589533162305407436	3.906891	10
https://hbr.org/2016/10/machine-	Machine Learning Is No Longer Just for Experts	5258604889412591249	3.700440	28
	10 Stats About			

hybrid_recommender_model.recommend_items(-1479311724257856983, topn=20, verbose=True)

	title	contentId	recStrengthHybrid	
http://techcrunch.com/2016/0	The barbell effect of machine learning.	3269302169678465882	0.484696	0
https://medium.com/@atdusl	Power to the People: How One Unknown Group of	5092635400707338872	0.428711	1
https://hbr.org/2016/10/mach	No Longer Just for Experts	5258604889412591249	0.411263	2
https://techcrunch.com/2016/09	Google's Cloud Machine Learning service is now	-9033211547111606164	0.358686	3
https://backchannel.com/how-go	How Google is Remaking Itself as a "Machine Le	5250363310227021277	0.335053	4
https://backchannel.com/how-go	How Google is Remaking Itself as a "Machine Le	-7126520323752764957	0.316371	5
	The Al		0.040000	2