NAME: SOLUTIONS

						ž.							
1	/8	2	/12	3	/10	4	/6	5		/8			
6	/12	7	/12	8	/12	9	/10	10	7	/10	T	/1	.00

MATH 251 (Fall 2010) Final Exam, Dec 16th

No calculators, books or notes! Show all work and give complete explanations. This 120 min exam is worth 100 points.

(1) [8 pts] Calculate the following limits or show they do not exist.

(a)
$$\lim_{(x,y)\to(0,0)} \frac{x^2-3y^2}{4x^2+7y^2}$$

ALONG $x=0$: $\lim_{y\to 0} \frac{-3y^2}{7} = \lim_{y\to 0} \frac{-3}{7} = \frac{3}{7}$

ALONG $y=0$: $\lim_{x\to 0} \frac{-3y^2}{4x^2+7y^2} = \lim_{x\to 0} \frac{-3}{7} = \frac{3}{7}$

Since $\frac{-3}{7} = \frac{1}{4}$ $\lim_{x\to 0} \frac{3}{4x^2} = \lim_{x\to 0} \frac{1}{4} = \frac{1}{4}$

(b)
$$\lim_{(x,y)\to(0,0)} \frac{2+x+y}{1+x^2+y^2} = \frac{2+0+0}{1+0^2+0^2} = 2$$

Since the denominator is not Zero at (0,0) wh can just plug (x,y) = (0,0) in, ie we can use foot the function is defined + continuous at (x,y) = (0,0)

(2) [12 pts]

(a) Calculate the projection of the vector $\mathbf{a} = 3\mathbf{j}$ onto the vector $\mathbf{b} = \mathbf{i} + \mathbf{j}$. Draw a labelled picture that clearly illustrates the relationship between these three vectors.

PROT
$$(a) = \frac{a \cdot b}{|b|} = \frac{3}{\sqrt{1+1}}$$

$$= \frac{3}{\sqrt{1+1}} (\frac{1}{\sqrt{1+1}})$$

(b) Find the volume of the parallelipiped determined by the vectors (1, 2, 3), (0, 1, -4), and (5, 0, 2).

+ 7 (0x0 - 5x1)

$$= |2-40-15| = |-53| = 53$$

(a) Find an equation of the form z = ax + by + c for the tangent plane to the graph of $z = f(x, y) = 3x^2 + 5y^2$ at the point (x, y, z) = (1, 2, 23).

$$= 23 + 6(\pi - 1) + 20(y - 2)$$

(b) Calculate $\iint_D y^2 dA$, where D is the region in the xy-plane bounded by the curves $y^2 = x$ and $x + y^2 = 8$.

$$5c = y^2$$
 and $\alpha = 8 - y^2$

meet at

256/1

$$y^{2} = x = 8 - y^{2}$$
 $y^{2} = 8 - y^{2}$
 $y^{2} = 8 - y^{2}$

(4) [6 pts] Calculate the length of the curve $\mathbf{r}(t) = (4t, 3\cos t, 3\sin t)$ for $0 \le t \le \pi$.

$$L = \int_{0}^{T} |\vec{r}(t)| dt$$

$$= \int_{0}^{T} |\vec{r}(t)| dt$$

$$= \int_{0}^{T} |\vec{r}(t)| dt$$

$$\vec{7}(t) = (4, -3 \sin t, 3 \cot t)$$

 $|\vec{7}(t)| = \sqrt{4^2 + 3^2} = 5$

(5) [8 pts] An anemometer is an instrument that measures wind speed. Suppose that $\mathbf{F}(x,y) = y\mathbf{i} + 2x\mathbf{j}$ is the velocity vector field of air moving across the xy-plane. Suppose an ant that is carrying an anemometer is at the point $\mathbf{p} = (-1, 4)$ and is walking with velocity $\mathbf{v} = (2, 3)$. Is the wind speed measured by the anemometer increasing or decreasing?

Let (i,y) = 7(t) be part of ant. So 7(0) = p, 76/=1

The speed of wind is

So s(t) = V (7(t)) is speed of wind as measured

by aremoneter (NOTE I am ignoring the motion of aritordative to ground here. Strictly specking it should be included—
the question was party worded in this respect)

 $S'(t) = \nabla V(7+t) \cdot \nabla V = \frac{1}{2}(y^2 + 4x^2)^{-1/2}(8x, 2y)$ $S'(t) = \nabla V(7+t) \cdot \nabla V(7) = \frac{1}{2}(20)^{-1/2}(-8, 8)$ 5'(0) = 2/3 (-8,8).(2,3)

(6) [12 pts] Sketch the following.

(b) The surface $\phi = \frac{5\pi}{6}$ for $0 \le \theta \le 2\pi$ and $1 \le \rho \le 2$.

(c) The solid region $0 \le \theta \le \frac{\pi}{2}$, $r^2 \le z \le 2$.

d

Rotate

2////
Jz

about 2 asis

(0,0)

(0,3)

(1/z, o)

(2,0)

(Z,2)

(2,3)

MA

- 1/2

4

$$[y=0]$$
 $h(x) = f(x,0) = 2x^2 - 2x$
 $0 \le x \le 2$
 $h(x) = 4x - 2 = 0$ at $x = \frac{1}{2}$

$$[x=2]$$
 $g(y) = f(z,y) = y^2 - 4y + 4y$
0 $\leq y \leq 3$

$$y=3h(a) = f(a) = 2x^2 - 8x + 9, 0 \le x \le 2.$$

(8) [12 pts]
(a) Carefully
your written
1 1

(a) Carefully state the Divergence Theorem. You may find it helpful to draw a picture and refer to it in your written explanation.

Let E be a sold region in space with the outword boundary surface IE endewed with the outword mornal vector. Let F be a vector field on E.

The

SU(V.F) dV = SIF. dS

E

(b) Let S be the surface $x^2 + y^2 + z^2 = 4$ with the outward orientation, and let **F** be the vector field $\mathbf{F} = xz^2\mathbf{i} + \sin(z)\mathbf{j} + xy\mathbf{k}$. Calculate $\iint_S \mathbf{F} \cdot d\mathbf{S}$.

S= JE where Ens ball of rodius? center origon $\nabla \cdot \vec{F} = \vec{z}^2$.

 $=\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{2}\left(\rho^{2}\cos^{2}\phi\right)\left(\rho^{2}\sin\phi\right)d\rho d\phi d\theta$

= 2m (5th cos of sund dep) (5, qtdp)

7 1384

choose the unit normal **n** on S to be the one with $\mathbf{n} \cdot \mathbf{j} > 0$. Let $\mathbf{F}(x, y, z) = x\mathbf{i} + z\mathbf{k}$. Calculate $\iint_S \mathbf{F} \cdot d\mathbf{S}$. [Hint: Define parameters for S in terms of polar coordinates in the xz-plane.] Use parametrization DC = - coso y = 22+22 = 12 050 524 32 (r,0) = (rcos0, r2, rsino) 0 4 5 2 $\frac{\partial \vec{x}}{\partial \theta} \times \frac{\partial \vec{n}}{\partial r} = \begin{vmatrix} \vec{x} & \vec{j} & \vec{k} \\ -rsin0 & 0 & rcos0 \end{vmatrix}$ $\frac{\partial \vec{x}}{\partial \theta} \times \frac{\partial \vec{n}}{\partial r} = \begin{vmatrix} \vec{x} & \vec{j} & \vec{k} \\ -rsin0 & 0 & rcos0 \end{vmatrix}$ = (-22200, T, 222300) >0 20 THE IN DIRECTION OF TO. (rcod, 0, rsud). (-22 coso, r, -22 andlera Pledge: I have neither given nor received aid on this exam

Signature:

(10) [10 pts] Let S be the surface that is the portion of the paraboloid $y = x^2 + z^2$ with $0 \le y \le 4$. We