POST-QUANTUM BASED KEY EXCHANGE AND AUTHENTICATION IN TLS 1.3: A PURE POST-QUANTUM CRYPTOGRAPHY APPROACH

A PROJECT REPORT

Submitted by
TEJESSHREE S (2022503524)
JANANI A (2022503502)
KATHIRVEL M (2022503060)

COURSE CODE: CS6611

COURSE TITLE: CREATIVE AND INNOVATIVE PROJECT

DEPARTMENT OF COMPUTER TECHNOLOGY ANNA UNIVERSITY, MIT CAMPUS CHENNAI – 600044 MAY 2025

ANNA UNIVERSITY, MIT CAMPUS CHROMPET, CHENNAI – 600044 BONAFIDE CERTIFICATE

Certified that this project report "Post-Quantum based Key Exchange and Authentication in TLS 1.3: A Pure Post-Quantum Cryptographic Approach" is the work of Ms. Tejesshree S (2022503524), Ms. Janani A (2022503502), Mr. Kathirvel M (2022503060) in the Creative and Innovative Project Laboratory subject code CS6611 during the period January to May 2025.

SIGNATURE

SIGNATURE

Dr. GUNASEKARAN R

SUPERVISOR

Professor

Department of Computer Technology

Anna University, MIT Campus

Chromepet - 600044

Dr. JAYASHREE P

HEAD OF THE DEPARTMENT

Professor and Head

Department of Computer Technology

Anna University, MIT Campus

Chromepet -600044

ABSTRACT

Classical cryptographic algorithms such as Rivest–Shamir–Adleman (RSA), Elliptic Curve Cryptography (ECC), and Elliptic Curve Diffie–Hellman (ECDH) currently secure critical network protocols like TLS and SSH. However, with the advent of quantum computing, algorithms like Shor's and Grover's threaten these classical methods by exploiting their mathematical weaknesses, creating an urgent need for cryptographic algorithms resilient to quantum attacks.

This project implements pure Post-Quantum Cryptography (PQC) within TLS 1.3, replacing classical mechanisms with quantum-resistant alternatives for key exchange and authentication, specifically integrating ML-KEM and ML-DSA, lattice-based algorithms designed to resist quantum threats.

To evaluate the practical deployment of these algorithms, a custom test environment is developed, utilizing a PQC-signed Root Certificate Authority (CA). This setup enables comprehensive benchmarking of PQC-enabled TLS performance, assessing metrics such as handshake time, certificate size, and communication delays.

In addition to performance analysis, the project investigates the security benefits, computational overhead, and compatibility challenges associated with adopting pure PQC in TLS. These insights are essential for understanding the trade-offs and feasibility of transitioning to quantum-secure communication protocols in future internet infrastructures.

ACKNOWLEDGEMENT

We take this humble opportunity to thank the Dean, MIT Campus, Anna University, Dr. Ravichandran K, and Dr. Jayashree P, Professor & Head, Department of Computer Technology, MIT Campus, Anna University for providing all the lab facilities in pursuit of this project.

Undertaking this project has helped us learn a lot, and we would like to express our gratitude towards our supervisor Dr. Gunasekaran R, Professor, Department of Computer Technology, MIT, Anna University, whose guidance, and directions helped shape this project perfectly. The feedback from the supervisor was very instrumental in the successful completion of the project.

We acknowledge the efforts and feedback of the panel members Dr. Ponsy R K Sathia Bhama, Associate Professor, Department of Computer Technology, MIT, Anna University, Dr. P. Pabitha, Associate Professor, Department of Computer Technology, MIT, Anna University, Dr. S. Muthurajkumar, Associate Professor, Department of Computer Technology, MIT, Anna University, Dr. R. Kathiroli, Assistant Professor (Sr. Gr.), Department of Computer Technology, MIT, Anna University, and Dr. T. Sudhakar, Associate Professor, Department of Computer Technology, MIT, Anna University, in reviewing our work, providing constant valuable comments and encouraging us to view the different aspects of the project in successful implementation of the project.

We thank NGN Lab, and all the teaching and non-teaching members of the Department of Computer Technology, MIT, Anna University for their support during our project. We extent our sincere gratitude to the almighty, parents, family and friends for boosting us with moral support during this project.

Tejesshree S (2022503524)

Janani A (2022503502)

Kathirvel M (2022503060)

TABLE OF CONTENTS

CHAPTER NO.	ABSTRACT LIST OF FIGURES LIST OF TABLES LIST OF ABBREVIATIONS INTRODUCTION		PAGE NO
			iii
			viii
			ix
			X
			1
	1.1 CLASSICAL CRYPTOGRAPHY		1
	1.1.1 Rivest-Shamir-Adleman Algorithm		1
	1.1.2 Elliptic Curve Diffie-Hellman		2
	Algorithm		
	1.1.3 Quantum Threat to Classical		2
	Cryptography		
1	1.2 TRANSPORT LAYER SECURITY		3
1	1.3 POST QUANTUM CRYPTOGRAPHY		4
	1.3.1 Lattice Based Cryptography		
	1.3.1.1	Module-lattice key	5
		encapsulation mechanism	
	1.3.1.2	Module-lattice digital signature	5
		algorithm	6
	1.3.2 Benefits		6
	1.4 OBJECTI	VE	7
2	LITERATUE SU	JRVEY	8
	PROPOSED WORK		11
	3.1 INTRODUCTION		11
3	3.2 ALGORITHMS		11
	3.2.1 Module-Lattice Key Encapsulation		12
	Mech	anism	

CHAPTER NO.	TITLE	PAGE NO.
	3.2.2 Module-Lattice Digital Signature	14
	Algorithm	
	3.3 POST-QUANTUM CRYPTOGRAPHY IN	17
	TLS	
	3.3.1 Pure PQC - TLS 1.3	18
	3.3.2 Hybrid PQC - TLS 1.3	18
	3.4 PERFORMANCE METRICS	19
	IMPLEMENTATION	20
4	4.1 TOOLS USED	20
4	4.2 HYBRID PQC - TLS	22
	4.3 PURE PQC - TLS	23
	RESULT AND ANALYSIS	25
	5.1 EVALUATION METRICS	25
	5.1.1 Handshake Time	25 25
	5.1.2 Certificate Size	25
	5.1.3 Key Exchange Length	25
	5.1.4 Round Trip Time	25
	5.2 PERFORMANCE ANALYSIS	26
-	5.2.1 Hybrid PQC – TLS	27
5	5.2.2 Pure PQC – TLS	27
	5.2.3 Graphs	27
	5.3 INFERENCES	28
	5.3.1 Handshake Time	31
	5.3.2 Certificate Size	31
	5.3.3 Key Exchange Length	32
	5.3.4 Round Trip Time	32
	_	32

CHAPTER NO.	TITLE	PAGE NO.
6	CONCLUSION AND FUTURE WORK	34
	REFERENCES	35

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
1.1	TLS Handshake	4
3.1	ML-KEM Algorithm	13
3.2	ML-KEM Algorithm Flow Diagram	13
3.3	ML-DSA Algorithm	16
3.4	ML-DSA Algorithm Flow Diagram	16
3.5	Post-Quantum Based TLS	17
4.1	Hybrid PQC – TLS Implementation	23
4.2	Pure PQC – TLS Iimplementation	24
5.1	Handshake Time	25
5.2	Certificate Size	25
5.3	Key Exchange Length	26
5.4	Round Trip Time	26
5.5	Handshake Time Comparison	28
5.6	Certificate Size Variation	29
5.7	Key Exchange Length Variation	30
5.8	Round Trip Time Variation	31

LIST OF TABLES

TABLE NO.	TITLE	PAGE NO.
5.1	Performance Analysis Across Pure-PQC Security Levels	27
5.2	Performance Analysis Across Hybrid PQC Security Levels	27
5.3	Performance Analysis Across Classical Cryptography Algorithms	28

LIST OF ABBREVIATIONS

PQC - Post Quantum Cryptography

TLS - Transport Layer Security

ML-KEM - Module-Lattice Key Encapsulation Mechanism

ML-DSA - Module-Lattice Digital Signature Algorithm

RSA - Rivest-Shamir-Adleman

ECC - Elliptic Curve Cryptography

AES - Advanced Encryption Standard

ECDH - Elliptic-curve Diffie-Hellman

CSR - Certificate Signing Request

CA - Certificate Authority

RTT - Round Trip Time

OpenSSL - Open Secure Sockets Layer

libOQS - Open Quantum Safe Library

OQS-Provider - Open Quantum Safe Provider

NGINX - Engine X (High performance HTTP Server)

cURL - Client URL

NIST - National Institute of Standards and Technology

HTTP - Hypertext Transfer Protocol

SSH - Secure Shell

ECDLP - Elliptic Curve Discreate Logarithm Problem

KDF - Key Derivation Function

SVP - Shortest Vector Problem

CVP - Closest Vector Problem

LWE - Learning with Errors

SIS - Shortest Integer Solutions

FIPS - Federal Information Processing Standards