

Agent-Based Modelling & Simulation

Rosaldo Rossetti

rossetti@fe.up.pt

Http://www.fe.up.pt/~rossetti

Associate Professor at FEUP – Faculty of Engineering of the University of Porto Researcher at LIACC – Artificial Intelligence and Computer Science Lab.

Simulation Approaches

- Types of discrete models
 - Event-oriented
 - Process-oriented
 - Activity-oriented
 - Object-oriented
 - Agent-based

Simulation Approaches

- As for Agent-Based Modelling and Simulation (ABMS)
 - Agent-Based Modelling
 - Agents as a metaphor for system modelling
 - Simulation methodology for MAS simulation
 - Agent-Directed Simulation
 - Agents steer and manage the whole simulation process
 - ML and Meta-modelling for intelligent calibration and scenario management
 - Agent-Oriented Simulation SW
 - SW architectures for Simulation IDEs based on MAS

Motivation for ABMS

Traditional Simulation Drawbacks:

- Systems are getting more complex
- Complex systems are difficult to model as a whole (aggregate)
- Higher level tools available
- Human behaviour is often neglected or over simplified in the simulation process

Distributed Applications Challenges (DDD problems):

- Need for coordination of heterogeneous entities
- Entities with local processing/decision capabilities
- Human vs Artificial entities

Agent Based Modelling and Simulation:

Entities represented by Agents with Autonomous Behaviour

Motivation for ABMS

- Agent-Based Modelling
 - Computational method
 - Experiments
 - Models
 - Scale models
 - Ideal-type models
 - Analogical (analogy) models
 - Mathematical or equation-based models
 - Agents
 - The environment

Artificial Intelligence

Intelligence

 "Capacity to solve new problems through the use of knowledge" (do things correctly!)

Artificial Intelligence

- "Science concerned with building intelligent machines, that is, machines that perform tasks that when performed by humans require intelligence"
 - The Turing Test
 - Dijkstra 's Submarine:

"The question of whether a computer can think is no more interesting than the question of whether a submarine can swim."

artificial intelligence and computer science laboratory

Autonomous Agents

Computational System, situated in a given **environment**, that has the ability to **perceive** that environment using **sensors** and **act**, in an **autonomous way**, in that environment using its **actuators** to fulfill a given **function**."

artificial intelligence and computer science laboratory

Agent Requirements

- Requisites:
 - Perceive its environment (sensors)
 - Decide actions to execute ("think")
 - Execute actions in/upon the environment using actuators
 - Communicate?
 - Perform a complex function?
- Agents vs Objects:
 - Agents decide what to do
 - Object methods are called externally
 - Agents react to sensors and control actuators

"Objects do it for free; agents do it for money"

Multi-Agent System (MAS)

- Composed by multiple agents that:
 - Exhibit autonomous behavior
 - Interact with the other agents in the system

MAS Motivation:

- Problem Dimensions
- Legacy Systems
- Natural Solution (distributed problems)
- Distributed knowledge or information
- Human-machine interface
- Project Clarity and simplicity
- Efficiency
- Robustness and Scalability
- Problem division
- Information privacy

artificial intelligence and computer science laborator

Multi-Agent System (MAS)

To build individual autonomous intelligent agents is important!

However:

- Agents don't leave alone...
- Necessary to work in group...
- Multi-Agent Applications...
- Coordination is necessary: "to work in harmony in a group to achieve a given goal"

artificial intelligence and computer science laborator

Reasons for Coordination

- Dependencies in agent actions
- Need to respect global constraints
- No agent, individually has enough resources, information or capacity to execute the task or solve the complete problem
 - Tragedy of the commons
 - Nash equilibrium
 - (Evolutionary) Game theory
 - Social dilemmas
- Efficiency:
 - Information exchange or tasks division
- Prevent anarchy and chaos:
 - Partial vision, lack of authority, conflicts, agent's interactions

artificial intelligence and computer science laborator

Cooperative vs. Competitive MAS

Cooperative MAS:

- Usually projected by a single entity
- Global utility and global performance

Competitive MAS ("self-interested agents"):

- Each agent has a distinct designer
- Agents have their own motivation and agenda
- Agents are interested in their own utility
- Usual in negotiation, electronic commerce, internet

MAS & Intelligent Robotics

Robotics

- Science and technology for projecting, building, programming and using Robots
- Study of Robotic Agents: natural physical embodiment for an agent
- MAS → Multi-Robot Systems
- Increased Complexity:
 - Environments: Dynamic, Inaccessible, Continuous e Non-deterministic!
 - Perception: Vision, Sensor Fusion
 - Action: Robot Control
 - Robot Architecture (Physical / Control)
 - Navigation in unknown environments
 - Interaction with other robots/humans
 - Multi-Robot Systems: robots with social abilities

artificial intelligence and computer science laboratory

The "Name" - ABMS

ABMS is known by many names:

- ABM: "Agent-based modeling" or "anti-ballistic missile?"
- ABS: "Agent-based simulation" or "anti-lock braking system?"
- IBM: "Individual-based modeling" or "International Business Machines Corporation?"

ABM, ABS, and IBM are all widely-used acronyms, but "ABMS" will be used throughout this course

ABMS is not the same as "mobile agents"

Need for Agent-based Modeling

We live in an increasingly complex world!

Systems are More Complex:

- Systems are becoming more complex: more variables and interactions
- Decentralization of Decision-Making
- Increasing Physical and Economic Interdependencies

New Tools, Toolkits, Modeling Approaches:

- New tools exist to analyze complex systems
- Economic markets and the diversity among economic agents
- Social systems, social networks
- Robotic systems interaction

Avalaible Data:

 Micro-data available in databases (finer levels of granularity) enables micro-simulations!

Computational Power:

Computational power advancing – micro-simulations!

ABMS as a New Field

Agents

- Discrete entity with its their own perceptions, actions, goals and behaviors
- Autonomous, capable of adapting and modifying its behaviors

Assumptions

- Some key aspect of behaviors can be described
- Mechanisms by which agents interact can be described
- Complex social processes and a system can be built "bottom-up"

artificial intelligence and computer science laboratory

Features of Agent-Based Models

- **Ontological correspondence**
- Heterogeneous agent
- Representation of the environment
- **Agent interactions**
 - Simply passing data to one another
 - Based on more sophisticated language representations (e.g. NLP)
- **Bounded rationality**
- Learning
 - Individual learning
 - Evolutionary learning
 - Social learning

Other Modelling Approaches

Microsimulation

System Dynamics

- An agent-based model consists of:
 - A set of agents (part of the user-defined model)
 - A set of agent relationships (part of the user-defined model)
 - The environment in which agents cohabit
 - A framework for simulating agent behaviors and interactions (provided) by an ABMS toolkit or other implementation)
- Unlike other modeling approaches, agent-based modeling begins and ends with the agent's perspective

U. PORTO

Agent-Based Model

Types of environments

(b) Cellular Automata (von Neumann)

(c) Euclidean Space (2-D)

U. PORTO

Agent-Based Model

Types of interactions

Depending on the environment agents interact differently.

- Typically, agents interact with neighbours.
- In a network, first-degree links are neighbours
- Interactions can be implicit or explicit

Finding patterns...

Finding patterns...

The Schelling model of segregation (Schelling 1971, 1978) is one of the earliest agent-based **models** of social science.

Finding patterns...

artificial intelligence and computer science laboratory

U. PORTO

Agent-Based Model

Finding patterns...

http://agentbase.org/model.html?b24f11b263d0de2610f1#

Example: Modeling Simple Flocking Behavior with Agent Rules

Cohesion: Steer to move toward the average position of local flockmates

Alignment: Steer towards the average heading of local flockmates

Separation: Steer to avoid crowding local flockmates

"Boids"by Craig Reynolds, http://www.red3d.com/cwr/boids/

Example: Modeling Simple Flocking Behavior with Agent Rules

- **Flows**
- **Markets**
- **Organisations**

artificial intelligence and computer science laboratory

- **Diffusion**
 - Urban models
 - Opinion dynamics
 - Consumer behaviour
 - Supply chain management
 - Electricity market
 - Participative and companion modelling

ABMS Applications

Business and Organizations

- Manufacturing Operations
- Supply chains
- Consumer markets
- Insurance industry

Economics

- Artificial financial markets
- Trade networks

Infrastructure

- Electric power markets
- Transportation
- Hydrogen infrastructure

Crowds

- Pedestrian movement
- Evacuation modeling

Society and Culture

- Ancient civilizations
- Civil disobedience
- Social determinants of terrorism
- Organizational networks

Military

- Command & control
- Force-on-force

Biology

- Population dynamics
- Ecological networks
- Animal group behavior
- Cell behavior and subcellular processes

artificial intelligence and computer science laboratory

ABMS Platforms

- **Agent-based Modeling and Simulation Toolkits**
 - Repast (Java) similar to Swarm (Objective C, Java)
 - NetLogo, StarLogo (Logo, Lisp)
 - MASON
 - AnyLogic (commercial)
- **General Tools**
 - Spreadsheets, with macro programming
 - Computational Mathematics Systems: MATLAB and Mathematica
- **General Programming Languages (Object-oriented)**
 - Java, C++, Pascal
- Agent-based model development process often makes use of several tools

ABMS Platforms

When to use ABM?

- When agents are the natural representation metaphor:
 - When there are decisions and behaviors that can be well-defined discretely
 - When it is important that agents adapt and change their behaviors
 - When it is important that agents have a dynamic relationship with other agents, and agent relationships form, change and decay
 - Agents learn and engage in dynamic strategic behaviours and decisionmaking
 - Organizational dynamics (adaptation and learning are important at the organization level)
 - Spatial component inherent to their behaviours and interactions
 - When the past is no predictor of the future because the processes of growth and change are dynamic

Why to use ABM?

- Agent-based models represent individuals, their behaviours and their interactions
- **Equation-based models** represent aggregates and their dynamics
- Agents have decision-making abilities and an understanding of their environment
- Micro to Macro: Agent behaviours emerging toward System Behaviours

Questions?

Agent-Based Modelling and Simulation

