Lista 4

Zadania 1-8 należy rozwiązać za pomocą oprogramowania:

https://ampl.com/try-ampl/download-a-free-demo

We wszystkich zadaniach należy oddzielić dane od modelu. Zadania 9-11 należy rozwiązać odręcznie, wspomagając się oprogramowaniem.

- 1. Ilość klientów zgłaszających się na pocztę zmienia się w zależności od dnia tygodnia. W celu zapewnienia sprawnego funkcjonowania urzędu, kierownik poczty oszacował minimalną liczbę osób które powinny pracować w danym dniu na poczcie. Liczby te są następujące: poniedziałek 17, wtorek 13, środa 15, czwartek 19, piątek 14, sobota 16, niedziela 11 Pracownik zatrudniony na poczcie może rozpoczynać pracę w dowolnym dniu tygodnia. Pracuje przez kolejne pięć dni, po czym otrzymuje dwa dni wolne. Opracuj harmonogram zatrudniania pracowników na poczcie zapewniający minimalizację liczby zatrudnionych osób w ciągu tygodnia.
- 2. Linia lotnicza chce przyporządkować 23 nowe zakupione samoloty do 4 tras. Odpowiednie dane są podane w poniższej tabeli. Na przykład: linia dysponuje 5 samolotami typu 1, z których każdy może zabrać 50 pasażerów i wykonuje 3 dzienne loty na trasie 1, 2 dzienne loty na trasie 2 itd. W tabeli podane są również oszacowania liczby pasażerów korzystających dziennie z każdej z tras.

			Dzien	na liczb	a lotóv	v na trasie
Typ	Pojemność	Liczba	1	2	3	4
samolotu	samolotu	samolotów				
1	50	5	3	2	2	1
2	30	8	4	3	3	2
3	20	10	5	5	4	2
	Dzienna liczb	a pasażerów	1000	2000	900	1200

Koszty jednego przelotu na każdej trasie oraz koszty związane z utratą każdego pasażera (dla którego zabraknie miejsca w samolocie), są podane w poniższej tabeli:

	Koszt przelotu na trasie (w \$)			
Typ samolotu	1	2	3	4
1	1000	1100	1200	1500
2	800	900	1000	1000
3	600	800	800	900
Koszt 1 utraconego pasażera (w \$)	40	50	45	70

Wyznacz optymalny przydział samolotów do tras dla lini lotniczej.

3. Kapitan statku otrzymał listę n paczek ponumerowanych od 1 do n. Każda paczka i na tej liście ma zadaną wagę w_i i wartość c_i . Statek może zabrać paczki o sumarycznej wadze nie większej niż W. Dodatkowo, kapitan otrzymał listy L_1 , L_2 i L_3 . Każda z tych list składa się z par paczek i ich znaczenie jest następujące: jeżeli para (i,j) znajduje się na liście L_1 , to paczek i oraz j nie wolno przewozić razem; jeżeli para (i,j) znajduje się na liście L_2 to co najmniej jedna z paczek i lub j musi być zabrana; jeżeli para (i,j) znajduje się na liście L_3 , to zabranie paczki i wymusza również zabranie paczki j. Które paczki należy zabrać aby zmaksymalizować ich łączną wartość? Zbuduj ogólny model (przykładowe dane do zadania są podane w pliku "lista4_zad3.txt").

- 4. Pewne duże miasto podzielone jest na n dzielnic. Władze miasta chcą wybudować w dzielnicach posterunki straży pożarnej tak aby czas dojazdu straży pożarnej do każdej dzielnicy nie przekraczał T minut. Czas przejazdu między dzielnicami i oraz j wynosi t_{ij} . Gdzie należy wybudować posterunki straży aby ich liczba była minimalna? Zbuduj ogólny model (przykładowe dane do zadania są podane w pliku "lista4_zad4.txt").
- 5. W magazynie znajduje się n paczek ponumerowanych od 1 do n. Rozmiar paczki i wynosi a_i . Paczki te należy załadować do skrzyń, z których każda może pomieścić paczki o łącznym rozmiarze C. Wyznacz sposób zapakowania wszystkich paczek do jak najmniejszej liczby skrzyń. Zbuduj ogólny model (przykładowe dane do zadania znajdują się w pliku "lista4_zad5.txt").
- 6. Powierzchnia magazynu jest podzielona na $n \times n$ jednakowych kwadratów. Na zadanych kwadratach znajdują się cenne paczki. Kierownictwo chce umieścić w magazynie czujniki obserwujące wszystkie paczki. Każdy czujnik może obserwować r sąsiednich pól do przodu, do tyłu, w lewo i w prawo (zobacz rysunek paczki są oznaczone jako kwadraty a czujniki jako kółka, $n=9,\ r=2$). Gdzie należy umieścić czujniki aby ich liczba była minimalna? Czujników nie wolno umieszczać na polach zajmowanych przez paczki. Zbuduj ogólny model (przykładowe dane do zadania znajdują się w pliku "lista4_zad6.txt").

- 7. Jako student Politechniki Wrocławskiej chcesz skonstruować sobie plan zajęć na kolejny semestr. Dziekanat dostarczył ci listę utworzonych grup. Opis grupy zawiera: nazwę przedmiotu, dzień tygodnia, godziny odbywania zajęć. Dodatkowo, każdej grupie przypisałeś liczbę od 1 do 10, która określa atrakcyjność danej grupy. Musisz zapisać się na dokładnie jedną grupę z każdego przedmiotu. W twoim planie nie może być kolizji terminowych i nie chcesz mieć więcej niż 6 godzin zajęć dziennie (dla uproszczenia zakładamy, że wszystkie zajęcia trwają 2 godziny). Skonstruuj dopuszczalny plan zajęć o maksymalnej sumarycznej atrakcyjności. Zbuduj ogólny model (przykładowe dane do zadania znajdują się w pliku "lista4_zad7.txt").
- 8. Przedsiębiorstwo dysponuje trzema fabrykami, które produkują ten sam wyrób i dostarczają go trzem odbiorcom. Każda z fabryk może wyprodukować do 200 sztuk wyrobu w ciągu miesiąca. Odbiorcy muszą otrzymać odpowiednio co najmniej 100, 80 i 50 sztuk wyrobu. Jednostkowe koszty transportu pomiedzy fabrykami i odbiorcami są podane w poniższej tabeli:

	Odbiorca 1	Odbiorca 2	Odbiorca 3
Fabryka 1	1	5	2
Fabryka 2	7	4	2
Fabryka 3	5	3	6

Uruchomienie produkcji w każdej z fabryk wiąże się ze stałymi kosztami, które wynoszą odpowiednio 300\$, 250\$ i 400\$. Ponadto, jeżeli w fabryce zostanie uruchomiona produkcja, to z przyczyn technologicznych, jej wielkość nie może być mniejsza niż 100. Wyznacz optymalny plan produkcji i transportu towaru. Zbuduj ogólny model i rozwiąż go dla danych z zadania.

9. Korzystając z metody graficznej, wyznacz zbiór dopuszczalnych rozwiązań w poniższym problemie. Podaj optymalne rozwiązanie. Jakie jest optymalne rozwiązanie relaksacji tego problemu? Jak będzie pierwszy podział w algorytmie podziału i ograniczeń?

$$\begin{array}{ll} \max z = & 5x_1 + 4x_2 \\ & x_1 + x_2 \leq 5 \\ & 10x_1 + 6x_2 \leq 45 \\ & x_1, x_2 \geq 0, \text{ integer} \end{array}$$

10. Wyznacz kilka wierzchołków drzewa podziału i ograniczeń dla poniższego problemu (możesz użyć AMPL IDE do rozwiązania odpowiednich relaksacji):

$$\max z = 18x_1 + 14x_2 + 8x_3$$
$$15x_1 + 12x_2 + 7x_3 \le 43$$
$$x_1, x_2, x_3 \ge 0, \text{ integer}$$

11. Wyznacz kilka wierzchołków drzewa podziału i ograniczeń dla następującego problemu plecakowego:

$$\max z = 8x_1 + 4x_2 + 5x_3 + 4x_4 + x_5$$
$$9x_1 + 6x_2 + 5x_3 + 2x_4 + x_5 \le 13$$
$$x_1, x_2, x_3, x_4, x_5 \in \{0, 1\}$$