一、选择题

1.	已知三点 M(1,2,1), A (2,1,1), B	$3(2,1,2)$,则 $\overrightarrow{MA} \cdot \overrightarrow{A}$	$\overrightarrow{B} = ()_{\circ}$
	A) -1	B) 1	C) 0	D) 2
2.	已知 $\vec{a} = 2\vec{i} - \vec{j} + \vec{k}$	$2\vec{k} , \vec{b} = 3\vec{i} + 4\vec{j}$	$-5\vec{k}$,则与 $3\bar{a}-\vec{b}$	平行的单位向量为
	()。			,
	A) {3,7,11} B) {	$(3,-7,11)$ C) \pm	$\frac{1}{\sqrt{129}}$ {3, -7, 11} D	$\pm \frac{1}{\sqrt{179}} \{3, -7, 11\}$
3.	设平面的一般式方	程为 $Ax + By + C$	$Cz + D = 0$, $\stackrel{.}{=} A =$	=D=0时,该平面必
	().			
	A) 平行于 У 轴	B) 垂直于 z 轴	由 C)垂直于 y	(轴 D)通过 <i>x</i> 轴
4.	方程 $z = \sqrt{2(x^2 + y^2)}$	_) 在空间直角坐板	示系中表示 ()。	
	A) 旋转抛物面	B)圆柱面	C) 圆锥面	D) 球面
5.	在空间直角坐标系	中,方程 $x^2 + y^2$	= 2表示 ()。	,
	A)圆	B)圆域	C)球面	D) 圆柱面
6.	方程 $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{c^2} =$	- 2 在空间直角坐	标系中表示()。	
	A) 单叶双曲面	B)双叶双曲	面 C) 马鞍面	D) 椭球面
7.	直线 $l: \frac{x}{1} = \frac{y-2}{1} = \frac{x}{1}$	$\frac{z+2}{0}$ 与平面 $\pi: x$	+2y+z=3的夹角	为()。
	A) $\frac{\pi}{6}$	$\frac{\pi}{3}$	C) $\frac{\pi}{2}$	D) $\frac{\pi}{4}$
8.	设直线 L 为 $\begin{cases} x+y \\ x-y \end{cases}$	$\begin{array}{c} +3z=0\\ -z=0 \end{array}, \mp \overline{\boxplus} \pi $	万为 x-y-z+1=0,	则 <i>L</i> 与π 的夹角为
	()。			
	A) 0	$\frac{\pi}{2}$	C) $\frac{\pi}{3}$	D) $\frac{\pi}{4}$

- A) 0

D) 3

19. 设
$$z = f(x, y)$$
 是由方程 $z^3 - 3xyz = a^3$ 确定,则 $\frac{\partial z}{\partial x} = ()$ 。

- A) $\frac{yz}{xv-z^2}$ B) $\frac{yz}{z^2-xy}$ C) $\frac{xz}{xy-z^2}$ D) $\frac{xy}{z^2-xy}$

- A) 6

- D) 9

21. 二元函数
$$z = (1-x)^2 + (1-y)^2$$
 的驻点是 ()。

- A) (0,0) B) (0,1) C) (1,0)

22. 设函数
$$z = f(x,y)$$
 在点 (x_0, y_0) 的某领域内具有二阶连续偏导数,又
$$f'_x(x_0, y_0) = 0$$
, $f'_y(x_0, y_0) = 0$,记 $f''_{xx}(x_0, y_0) = A$, $f''_{xy}(x_0, y_0) = B$, $f''_{yy}(x_0, y_0) = C$,

且 $AC-B^2 > 0$, A < 0, 则()。

- A) $f(x_0, y_0)$ 为极小值 B) $f(x_0, y_0)$ 为极大值
- C) $f(x_0, y_0)$ 不是极值
- D) 以上均不正确

23. 将二重积分
$$\iint_D f(x,y) dx dy$$
 化为二次积分, 其中积分区域 D 是由 $y = 4, y = x^2, x \ge 0$ 所围成, 下列各式中正确的是 ()。

- A) $\int_{a^2}^{4} dx \int_{0}^{2} f(x, y) dy$ B) $\int_{0}^{4} dx \int_{0}^{4} f(x, y) dy$
- C) $\int_0^4 dy \int_0^y f(x, y) dx$
- $D \int_0^4 dy \int_0^{\sqrt{y}} f(x, y) dx$

A) $\sum_{n=1}^{\infty} \frac{\pi}{n^2}$ B) $\sum_{n=1}^{\infty} \sin \frac{\pi}{n^2}$ C) $\sum_{n=1}^{\infty} \cos \frac{\pi}{n^2}$ D) $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$

30. 若 $\lim_{n\to\infty} u_n = 0$,则级数 $\sum_{n=0}^{\infty} u_n$ ()。

A)一定收敛且和为 0 B)一定收敛但和不	一定为0
C) 一定发散 D) 可能收敛也可能	 龙发散
31. 设有级数 $\sum_{n=1}^{\infty} u_n$,则以下命题成立的是()。	
A) $Z = \sum_{n=1}^{\infty} u_n $ 收敛则 $\sum_{n=1}^{\infty} u_n$ 收敛 B) $Z = \sum_{n=1}^{\infty} u_n$ 收敛则	$ \sum_{n=1}^{\infty} u_n $ 收敛
C) 若 $\sum_{n=1}^{\infty} u_n $ 发散则 $\sum_{n=1}^{\infty} u_n$ 发散 D) 以上均错	
32. 下列级数收敛的是()。	
A) $\sum_{n=3}^{\infty} \frac{1}{\ln n}$ B) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$ C) $\sum_{n=1}^{\infty} \frac{1}{n}$	D $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$
33.下列级数发散的是()。	
A) $\sum_{n=1}^{\infty} \frac{1}{n!}$ B) $\sum_{n=1}^{\infty} \frac{1}{n^n}$ C) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$ 34. 不同函数在同一积分区间上的定积分,满足下列哪个	n=1
一定大()。	
A) 上限大于下限 B) 上限小于下限	
C) 上限等于下限 D) 上限与下限都大于零	
35. 变上限的定积分是 ()。	
A) 上限的函数 B) 积分变量的函数	
C) 常数 D) 函数簇	
36. 关于线性微分方程,下列说法错误的是()。	
A) 因变量及其各阶导数不会以函数的形式出现	
B) 因变量及其各阶导数的系数可以是自变量的函数	
C) 不会有常数项出现	
D) 因变量及其各价导数不会相互乘除	
37.关于二阶线性微分方程的解,下列说法错误的是()。
A〉齐次解中一定会有两个任意常数	
B) 齐次解中最多会有两个任意常数	
C) 任意常数的值需要由初始条件来确定	
D) 非齐次特解中没有任意常数	

38.两向量的向量积的方向()。

A)与第一个向量的方向相同						
B)平行于参与运算的两个向量						
C)垂直于参与运算的两个向量						
D) 与第一个向量的方向垂直						
39.在空间直角坐标系中, 点 P(-3,2,-4)位于 ()。						
A) 第二卦限 B) 第三卦限	C) 第五卦限	D)第六卦限				
40.在空间直角坐标系中, XOY 平面与 Y	OZ 平面的交线是	()。				
A) X轴 B) Y轴	C) Z轴	D)不确定				
41.旋转曲面中,母线与轴的关系是()。					
A) 平等 B) 垂直	C)共面	D)没有关系				
42.一元函数在三维空间中代表的曲面是	()。					
A)旋转曲面 B)平面	C) 球面	D)柱面				
43.二元函数的驻点是指()。						
A)对x偏导为零的点	B) 对 y 偏导为零	的点				
C)対 x、y 偏导都为零的点	D)对 x、y 任一偏-	导为零的点				
44.空间曲面上某点为驻点是该点为极点的()。						
A) 充分条件	B)必要条件					
C)充分必要条件	D) 前面三种都不	是				
45.一般项极限为零是级数收敛的()。						
A)充分条件	B) 必要条件					
C)充分必要条件	D) 前面三种都不	是				
46.利用二次积分计算二重积分时()。	0					
A)外层积分的上下限必是常数	B) 内层积分的上	下限必是常数				
C)外层积分的上下限不能是常数	D) 内层积分的上	下限不能是常数				
47.聚点是指 ()。	,					
A) 内点 B) 外点 C) 内	n点和边界点 D) 外点和边界点				
48.关于绝对收敛与条件收敛,下列说法正确的是()。						
A)正项级数若收敛,则必是绝对收敛						
B)正项级数若收敛,则必是条件收	敛					

- C) 交错项级数若收敛,则必是绝对收敛
- D) 交错项级数若收敛,则必是条件收敛
- 49.常微分方程是指()。
 - A) 最常见的微分方程
 - B) 因变量及其各阶导数的系数都为常数的微分方程
 - C)只包含一元函数及各阶导数的微分方程
 - D) 具有常数项的微分方程
- 50.对于多元函数而言()。
 - A) 既有偏导数,也有全导数
 - B) 既有偏微分,也有全微分
 - C) 只有偏微分,没有全微分
 - D) 只有全微分,没有偏微分

二、填空题

1.
$$\vec{a} = (a_x, a_y, a_z), \vec{b} = (b_x, b_y, b_z), \quad \text{If } \vec{a} \cdot \vec{b} =$$

2.
$$\vec{a} = (a_x, a_y, a_z), \vec{b} = (b_x, b_y, b_z)$$
, 则 $\vec{a} \times \vec{b} =$ ______.

3. 己知
$$\vec{a} = (1,1,4), \vec{b} = (1,-2,-2), \quad 则 \vec{a} \cdot \vec{b} = \underline{\hspace{1cm}}$$

4. 己知
$$\vec{a} = (2,1,-1), \vec{b} = (1,-1,2), 则 \vec{a} \times \vec{b} =$$
_______.

5. 二元函数
$$f(x, y) = \ln(1 - x^2 - y^2)$$
 的定义域为

6. 函数
$$z = \arccos(y - x)$$
 的定义域为______.

8.
$$\lim_{(x,y)\to(0,0)} \frac{e^{xy}-1}{xy} = \underline{\hspace{1cm}}.$$

9.
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x+y)}{2(x+y)} = \underline{\hspace{1cm}}$$

10. 将 yOz 坐标面上的抛物线 z=y绕 z 轴旋转一周生成的曲面方程为_____.

11	1. 将 xOz 坐标面上的抛物线 $z = x^2$ 绕 z 轴旋转一周生成的	曲面方程为	
11.	1. 付XUX 至协国工的她初致 Z=X 统《 抽账书》 向生成的	一曲 叫刀 性刀_	<u> </u>

13. 设
$$D: \frac{x^2}{4} + \frac{y^2}{9} \le 1$$
,则 $\int_D dx dy =$ ________.

14. 曲线
$$\begin{cases} x^2 + y^2 + z^2 = 10 \\ y = 2 \end{cases}$$
 在 xOz 面上的投影柱面方程为______.

15. 经过直线
$$L$$
:
$$\begin{cases} x+2y-z=6\\ x-2y+z=0 \end{cases}$$
且垂直于平面 $\pi: x+2y+z=0$ 的平面方程为

16.
$$\int_0^1 \frac{x}{\sqrt{x+1}} dx = \frac{1}{x}$$

17. 微分方程
$$y' = e^{2x-y}$$
, $y|_{x=0} = 0$ 的特解为_____.

18. 已知微分方程
$$y''+2y'-3y=0$$
 ,则其通解为______.
19. 已知微分方程 $y''-2y'+y=0$,则其通解为______.

22. 交换二次积分的积分次序:
$$\int_0^1 dy \int_0^y f(x,y) dx =$$
_______.

23. 交 换 二 次 积 分 的 积 分 次 序
$$\int_0^1 dy \int_{y+1}^2 f(x,y) dx = _____.$$

25.
$$\boxtimes \boxtimes D = \{(x, y) \mid 0 \le y \le \sqrt{4 - x^2}, 0 \le x \le 2\}$$
, $\iiint_D \sqrt{4 - x^2} d\sigma = \underline{\hspace{1cm}}$.

26. 若 D 是以点
$$(0,0)$$
, $(1,1)$ 和 $(0,1)$ 为顶点的三角形闭区域,则 $\iint_D e^{-y^2} dx dy$

27. 设积分区域
$$D$$
 为 $1 \le x^2 + y^2 \le 4$, $\iint_D 2 dx dy =$ _______.

28. 设积分区域
$$D: x^2 + y^2 \le a^2$$
,且 $\iint_D dx dy = 9\pi$,若 $a \ge 0$,则 $a =$ ______.

- 29. 曲线 $y = e^x$, $y = e^{-x}$, x = 1 所围成图形的面积为_____.
- 30. Ω 是由曲面 $z = \sqrt{2 x^2 y^2}$ 与 $z = x^2 + y^2$ 所围成的区域,则 $\iiint_{\Omega} z dv =$ ______.
- 31. 若 Ω 为三个坐标面与 x+y+z=1 所围成的闭区域,则 $\iint_{\Omega} x dx dy dz$
- 33. 若 Ω 为球体 $x^2 + y^2 + z^2 \le z$,则 $\iint_{\Omega} \sqrt{x^2 + y^2 + z^2} dv = \underline{\qquad}$.
- 34. 设 $z = x \sin(x + y)$,则微分dz = ______.
- 35. 已知函数 $z = e^{xy}$,则在(2,1)处的全微分 dz =_______.
- 37. 设 f(u,v) 偏导数连续, $z = f(xy, \frac{y}{x})$,则 $\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$

- 41. 方程 $x^3 + y^3 + z^3 3xyz = 0$ 确定了函数 z(x, y),则 $\frac{\partial z}{\partial x} =$ ______.

- 44. $\forall z = f(u, v, t) = uv + \sin t, \ u = e^t, v = \cos t, \ \frac{dz}{dt} = \underline{\hspace{1cm}}$
- 45. 函数 $f(x,y) = x^3 y^3 + 3x^2 + 3y^2 9x$ 的 极大值为______, 极小值为
- 46. 函数 $f(x,y) = 4(x-y) x^2 y^2$ 的极值为_____.
- 47. 函数 $z = x^2 + xy + y^2 2x y$ 的驻点为______.
- 48. 函数 $f(x,y) = 2x^2 + ax + xy^2 + 2y$ 在点 (1,-1) 处取得极值,常数 a=
- 50. 级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{2n}$ 是_____ (绝对或条件) 收敛的.