1 Overview of exercises (PART I)

1. limb-darkening scattering exercise we did during the course. — You can look into your notes from that, and I attach here also a sample program which you can use a base. After you have familiarised yourself with this, you can start to think bout how you would go about to extend this to a 3D setting (assuming isotropic scattering).

- 2. (As prep for Monte-Carlo school) here is a script computing a UV resonance P-Cygni line in spherically symmetric wind with v beta-law. At top of routine, a few exercises are given, where you can modify and play around with code. Monte-Carlo program which computes a UV resonance spectral line from a fast outflowing spherically symmetric stellar wind (if you were not cc'd on that email, let me know so that I can send you the files as well). At the top of that little script, there are a few suggestions for exercises (additions) you could do to that program, in order to learn a bit more about the general workings of Monte-Carlo radiative transfer in this context. So that might be a good idea for you to do as well! (And you can also ask the others in the group for some tips etc. then.)
- 3. Some background reading:
 - Attached mc manual by Puls.
 - Paper by Sundqvist+ 2010 (Appendix, I think).

2 Overview of exercises (PART II)

- 1. Calculate the probability distribution to sample from in the case of Eddington limb darkening for the initial distribution (see 4.3.4).
- 2. Calculate analytical solution for simplified problem in 4.3.2 in the case that mu = 1.
- 3. Perform convergence analysis. See Section 4.3.6

3 Limb darkening

3.0.12D Case

We again have $\mu = \cos(\theta)$. The solution of the radiative transfer equation in plane-parallel symmetry with frequency-independent absorption and emission, is

$$I(\mu) = I_1(0.4 + 0.6\mu) \tag{1}$$

In the Monte Carlo code, the photons are sorted according to the direction that they leave the atmosphere.

Goal Calculates the angular dependence of photon's emitted from a plane-parallel, grey atmosphere of radial optical depth taumax. The value of tau determines the position of the photon

Variables and Algorithm

- muarray contains emergent photons
- na number of channels
- dmu = 1/na width of channels
- nphot number of photons
- taumax maximum optical depth

Algorithm 1 Limb darkening: compute quantitiy of photons

```
initialization
  radial optical depth \tau
  direction \mu
for all photons do
   \tau = \tau_{max}
    \overline{\text{while tau}} \ge 0 \text{ do}
       compute scattering angle mu
       if tau \geq taumax then |mu = sqrt(x)| (initial distribution)
       else mu = 2 * x = 1 (isotropic scattering)
       tau_i = -log(x2)
       tau = tau - tau_i*mu
   end while
   now we know that the photon has left the photosphere
   compute the distribution of all angles mu at which the photon left the photosphere
end for
visualisation:
```

- plot photon numbers from $\mu d\mu$ against mu
- plot specific intensity from $d\mu$ against mu against

Figure 1 is according to what is expected $I = I_0(0.4 + 0.6\mu)$

Figure 1: histogram for mu

3.0.2 3D Code

What changes is this:

- \bullet introduction of a new angle ϕ
- \bullet the optical depth has to be updated according to ϕ also

Figure 2: histogram for mu

Figure 3: histogram for phi

Figure 2 and Figure 3 are according to what is expected, namely $I=I_0(0.4+0.6\mu)$ and a uniform distribution for phi, which corresponds to a $I\sim\frac{1}{\phi}$

${f 4}$ Investigation of program: pcyg.f90

4.1 Overview of variables

name	explanation
	paramaters
xk0	
alpha	velocity profile parameter
beta	velocity profile parameter
sta	rt frequency of the photon
xstart	start frequency
vmin	
vmax	
	angle of the photon
xmuestart	start angle
xmuein	incident angle
xmueou	outward angle
pstart	impact parameter
xnew	new photon frequency
	optical depth
	opticar deptii
tau	optical depth
	optical depth
n	optical depth umber of photons admin
nphot	optical depth umber of photons admin number of photons
nphot nin	optical depth umber of photons admin number of photons photons scattered back into core
nphot nin	optical depth umber of photons admin number of photons photons scattered back into core photons escaped
nphot nin nout	optical depth umber of photons admin number of photons photons scattered back into core photons escaped functions
nphot nin nout	optical depth umber of photons admin number of photons photons scattered back into core photons escaped functions velocity profile
nphot nin nout func	optical depth umber of photons admin number of photons photons scattered back into core photons escaped functions velocity profile distance from center of star r
nphot nin nout func	optical depth umber of photons admin number of photons photons scattered back into core photons escaped functions velocity profile distance from center of star r outwards (scattered) angle
nphot nin nout func	optical depth umber of photons admin number of photons photons scattered back into core photons escaped functions velocity profile distance from center of star r outwards (scattered) angle $xk0$
nphot nin nout func	optical depth umber of photons admin number of photons photons scattered back into core photons escaped functions velocity profile distance from center of star r outwards (scattered) angle $xk0$ alpha

September 17, 2019

4.2 Mathematical things that are noteworthy

4.2.1 General working

5

The photons are sorted according to xnew. In general, the flux is dependent on μ and the frequency x.

make formula

- \bullet I think that it satisfies $N(x)dx \sim I(x)xdx$
- $\bullet\,$ We are thus interested in $F_\lambda=F_\nu$

4.2.2 Practical formula

- emission angle $\mu = \cos(\theta)$
- according p-ray $p = \sqrt{1 \mu^2} = \sin(\theta)$
- incident angle xmuein = $\sqrt{1 \left(\frac{pstart}{r}\right)^2}$

4.2.3 Geometry & Symmetry assumptions

• spherical geometry

4.3 Exercises

4.3.1 Investigation of original code

In original version of the code, all photons are released isotropially from the photosphere.

Figure 4: Original version of the code

4.3.2 First adaptation: what if all photons are released radially from photosphere?

Release photons radially: numerical MC experiments What would happen with line-profile, if you assumed all photons were released radially from photopshere?

- In other words xmuestart = 1. Results in Figure ??.
- This is implemented under the test case test_number=1.

Figure 5: The number of photons equals 10^5

Derive analytic expression See also slide 26/49 [Sundqvist course material].

• since xmuein = 1 we have for the velocity profile

$$v = v_{\infty} (1 - b/r)^{\beta} \tag{2}$$

A scaled version of the Equation (2) yields

$$u = \frac{v(r)}{v_{\infty}} = \left(1 - \frac{r_{\infty}}{r}\right)^{\beta} \tag{3}$$

with $u \in [0..1]$

- Doppler shift for the frequency of the photons: $x_{CMF} = x_{REF} \mu u$.
- Condition for resonance from Sobolov approximation (to be studied later): $x_{CMF} = 0$ thus

$$x_{REF} = \mu u \tag{4}$$

or thus $x_{REF} = \boxed{u_{\text{interaction}}}$ and than solve Equation 3 for $r_{\text{interaction}}$

• If $\mu = 1$ then

$$x = \left(1 - \frac{r_{\infty}}{r}\right)^{\beta}$$

$$x^{-\beta} = 1 - \frac{r_{\infty}}{r}$$
(5)

(6)

$$r(1 - x^{-\beta}) = r_{\infty}$$

$$r(x) = \frac{r_{\infty}}{1 - x^{-\beta}}$$

ullet From the location of interaction r, the incident angle can be calculated

$$\mathtt{xmuein} = \sqrt{1 - \left[\frac{\mathtt{pstart}}{r}\right]^2} = \sqrt{1 - \left[\frac{\sqrt{1 - \mathtt{xmuestart}^2}}{r}\right]^2} \tag{7}$$

Now also taking into account that xmuestart = 1 then yields

$$xmuein = 1 (8)$$

• The calculation of the optical depth goes as follows:

$$\tau = \frac{\text{xk0}}{rv^{2-\alpha}(1 + \text{xmuein}^2\sigma)} \tag{9}$$

Now also taking into account that xmuestart = 1 gives

$$\tau = \frac{\text{xk0}}{rv^2(1+\sigma)} \tag{10}$$

where
$$v(x) = \left(1 - \frac{b}{r}\right)^{\beta}$$
 and $\frac{dv}{dr} = \frac{\beta b}{r^2} \left(1 - \frac{b}{r}\right)^{\beta - 1}$ and $\sigma(x) = \frac{dv}{dr} \frac{r}{v} - 1$ thus $\sigma(x) = \frac{\beta b}{r} \left(1 - \frac{b}{r}\right)^{-1}$

- Conclusion: $\tau(x)$ is only dependent on x and not on xmuestart or xmuein.
- xmueou follows the distribution as given by the function xmueout, namely

$$p(x) = \frac{1 - e^{-\tau}}{\tau} \tag{11}$$

with $\tau = \frac{\tan 0}{1 + X^2 \sigma}$ where X is a random number, so actually this comes down to

$$p(x) = \frac{1 - e^{-\frac{\tau_0}{1 + x^2 \sigma(x)}}}{\frac{\tau_0}{1 + x^2 \sigma(x)}}$$
(12)

ullet Finally one can combine these results to get the distribution of the photons according to the frequency x via the relation

$$xnew = xstart + v(xmueou-xmuein) = xstart + v(xmueou -1)$$
 (13)

Via this link, you can go back to the exercises overview: Section 2.

4.3.3 Second adaptation: isotropic scattering

What would happen to line-profile, is you assumed scattering was isotropic (i.e., NOT following Sobolev-distribution)

 $\bullet\,$ test case number 2

Figure 6: The number of photons equals 10^5

The $grosso\ modo$ form has not changed, although the scaling has changed.

4.3.4 Third adaptation: introduction of Eddington limb-darkening

Put Eddington limb-darkening in. What happens?

General (introductory) discussion: Eddington limb darkening The data are taken from Christensen, 2015.

- the source function $S=< I>= a+b\tau_{\nu}$ with $a=\frac{\sigma}{2\pi}T_{eff}^4$ and $b=\frac{3\sigma}{4\pi}T_{eff}^4$
- solve the equation
- this yields $\frac{I(\theta)}{I(0)} = \frac{a+b\cos(\theta)}{a+b} = \frac{2}{5} + \frac{3}{5}\cos(\theta)$

Figure 7: Eddington limb darkening (two times the same plot with $\mu = \cos(\theta)$

Construction of probability distribution corresponding to Eddington limb darkening

- 1. Let us thus first review the emmission case where the flux in each direction is isotropic i.e. $I(\theta) = I$ (as experimented in paragraph 4.3.3)
 - the specific intensity is defined as $I_{\nu}(\mu) = \frac{dE_{\nu}}{\cos(\theta)dAdtd\nu d\Omega} = \frac{dE_{\nu}}{\mu dAdtd\nu d\Omega}$
 - the flux $F_{\nu} = \int_{\Omega} I_{\nu} \cos(\theta) d\Omega$ is in this case isotropic thus

$$\xi = \int_{0}^{\mu} F_{\nu} d\mu = \int_{0}^{\mu} \int_{\Omega} I_{\nu} \cos(\theta) d\Omega d\mu = A \int_{0}^{\mu} \mu d\mu$$
 (14)

together with the condition that μ satisfies a probability distribution:

$$1 = \int_{-1}^{1} F_{\nu} d\mu = \int_{-1}^{1} \int_{\Omega} I_{\nu} \cos(\theta) d\Omega d\mu = \frac{A}{2}$$
 (15)

thus A=2. Photons need to be sampled according to $\mu d\mu$.

2. Now we look at a new case where the photons need to be emitted following a distribution that corresponds to $I(\theta) = I(0)(0.4 + 0.6\cos(\theta))$.

• in this case the flux $F_{\nu} = \int_{\Omega} I_{\nu} \cos(\theta) d\Omega$ is isotropic but also satisfies

$$F_{\nu} = \int_{\Omega} I_{\nu}(0)[0.4 + 0.6\cos(\theta)]\cos(\theta)d\Omega \tag{16}$$

I am not sure about the correctness of the assumption of isotropy of the flux

$$\xi = \int_0^\mu F_\nu d\mu = A \int_0^\mu (0.4 + 0.6\mu)\mu d\mu \tag{17}$$

subject to the normalisation condition -very similar to Equation (15) - that

$$1 = \int_{-1}^{1} F_{\nu} d\mu = \frac{2A}{5} + \frac{A}{3} = \frac{11A}{15}$$
 (18)

thus $A = \frac{15}{11}$. Photons need to be sampled according to $(0.4 + 0.6\mu)\mu d\mu$.

In the code pcyg.f90 this corresponds to test_number = 3 (not yet implemented).

Via this link, you can go back to the exercises overview: Section 2.

${\bf 4.3.5}\quad {\bf Fourth\ adaptaion:\ photospheric\ line-profile}$

Challening: Put photospheric line-profile (simple Gaussian) in !What happens? Test on xk0=0 (opacity =0) case.

• test case number 4 (not yet implemented)

${\bf 4.3.6}\quad {\bf Convergence\ analysis}$

Figure 8: Original version of the code: convergence analysis (xk0=0) $\,$

Via this link, you can go back to the exercises overview: Section 2.

5 Milic Exercises

5.1 Lecture 7

- 1. Derive expressions for the emergent radiation when properties are the following:
 - optically thin slab at all wavelengths
 - $\bullet\,$ wavelength-independent incident radiation

Solution: see slide 14?

- 2. Derive ralations between Einstein coefficients.
- 3. Calculate electron density in atmosphere from FALC model

6 Mass loss from inhomogeneous hot star winds (Sundqvist)

- GOAL: synthesis of UV resonance lines from inhomogeneous 2D winds
 - clumped in density
 - clumped in velocity
 - effects of non-void inter-clump medium

• WIND MODELS

- symmetry assumptions
 - * 1D: spherical symmetry
 - * 2D: symmetry in Φ
- models
 - 1. time-dependent radiation-hydrodynamic from Puls and Owocki (POF)
 - * 1D
 - * isothermal flow
 - * perturbations triggered by photospheric sound waves
 - 2. time-dependent radiation-hydrodynamic from Feldmeier (FPP)
 - * 1D
 - * treatment of energy equation
 - * perturbations triggered by photospeheric sound waves or Langevin perturbagions (photospheric turbulence)
 - 3. stochastic model, clumped in density
 - * smooth winds with $v_{\beta} = (1 b/r)^{\beta}$ with $\beta = 1$
 - * clumping factor f_{cl}
 - 4. stochastic model, clumped in density and in velocity (non-monotonic velocity field)
 - * smooth winds with $v_{\beta} = (1 b/r)^{\beta}$ with $\beta = 1$
 - * clumping factor f_{cl}
- RADIATIVE TRANSFER (MC-2D)

- 7.1 Goldstein-Taylor
- 7.2 Radiative transfer