Week 6 CS-312 Homework

Cory Ness

Jack Engledow

James Sgrazzutti

November 11, 2020

1 Problem 8.2

1.1 Question

Give a regular grammer for L of the form

$$S \rightarrow SaS \mid b$$

1.2 Answer

$$S \ \rightarrow \ b \ | \ b\, T$$

$$T \rightarrow aG$$

$$G \rightarrow b \mid bT$$

2 Problem 8.8

2.1 Question

Give a PDA equivalent to the following grammar:

$$S \rightarrow aAA$$

$$A \rightarrow aS \mid bS \mid a$$

2.2 Answer

3 Problem 8.11

3.1 Question

A 2-PDA is like a PDA except that it has two stacks. Show the following can be recognized by a 2-PDA.

$3.2 \quad \{0^n 1^n 2^n : n \ge 0\}$

- $\mathbf{q0}$, initial state. Transitions to itself on 0 while pushing X to the first stack. Transitions to $\mathbf{q1}$ on nothing.
- **q1.** Transitions to itself on 1 while popping X from the first stack, pushes X to the second stack. Transitions to q2 on nothing.
- **q2.** Transitions to itself on 2 while popping X from the second stack. Transitions to q3 on nothing while popping Z from both stacks and pushing Z onto both stacks.
- q3, final state.

3.3 $\{0^n1^n2^n3^n : n \ge 0\}$

- $\mathbf{q0}$, initial state. Transitions to itself on 0 while pushing X to the first stack. Transitions to $\mathbf{q1}$ on nothing.
- **q1.** Transitions to itself on 1 while popping X from the first stack, pushes X to the second stack. Transitions to q2 on nothing while popping and pushing Z on the first stack.
- **q2.** Transitions to itself on 2 while popping X from the second stack and pushing X to the first stack. Transitions to q3 on nothing while popping and pushing Z on the second stack.
- $\mathbf{q3.}$ Transitions to itself on 3 while popping X from the first stack. Transitions to $\mathbf{q4}$ on

nothing while popping Z from both stacks and pushing Z onto both stacks. q4, final state.

3.4
$$\{x\#x:x\in\{0,1\}^*\}$$

- **q0, initial state.** Transitions to itself on 0, pushing 0 to the first stack. Transitions to itself on 1, pushes 1 to the first stack. Transitions to q1 on #.
- **q1.** Transitions to itself on nothing, popping 0 from the first stack, and pushing 0 to the second stack. Transitions to itself on nothing, popping 1 from the first stack, and pushing 1 to the second stack. Transitions to q2 on nothing, popping and pushing Z from the first stack.
- **q2.** Transitions to itself on 1, popping 1 from the second stack. Transitions to itself on 0, popping 0 from the second stack. Transitions to q3 on nothing, popping and pushing Z from both stacks.
- q3, final state.

4 Problem 9.2

4.1 Question

Convert the following grammar with start variable S into Chomsky Normal Form.

4.2 Answer

5 Problem 9.4

5.1 Question

Show that the language $\{a^nb^{2n}a^n\}$ is not context-free.

5.2 Answer

Choose string $z = 0^k 1^{2k} 2^k$. Split the string into z = uvwxy. Because vwx combined has a length of at most k, the string vx cannot contain both 0's and 2's, and contains at least 1 symbol because vx must be nonempty. Therefore, $z^0 = uwy$ must contain fewer than 1^{2k} 1's or an uneven number of 0's and 1's.

6 Problem 9.12

6.1 Question

Show by example that context-free languages are *not* closed under intersection. Hint: Start with the context-free language $\{0^n1^n2^m\}$.

6.2 Answer

Start with L_1 and L_2 where $L_1 = \{0^n 1^n 2^m\}$ and $L_2 = \{0^m 1^n 2^n\}$. Both L_1 and L_2 are context-free languages. $L_1 \cap L_2 = \{0^n 1^n 2^n\}$ which is not a context-free language.

7 Problem 9.17

7.1 Question

A CFG is called linear if the right-hand side of every production contains at most one variable. Thus, a regular grammar is always linear. But a linear grammar need not generate a regular language; for example, we saw that palindromes are generated by a linear grammar. Show that the set of languages generated by linear grammars is closed under union.

7.2 Answer

Start with languages L_1 and L_2 where both L_1 and L_2 are linear. Produce a new language from the union of the two L where $L->L_1|L_2$. Clearly L is also linear, as both its productions contain 1 variable, where the variable is a linear CFG.