Want:

fit a street between the classes that is as wide as possible.

Question if we move some point of time bit for Boundary which does the Decision Boundary which work?

such that wix-b=1 goes through sv,

Maximum Margin:

maximize the distance from sv., svz to the Hyperplaneas minimize II will under conditions y: (wTxi-b) 21

Intuitive picture smaller v = wider margin

Simple case hyperplane through origin. Below more general.

$$Hargin = (sv_1 - sv_2)^T \frac{w}{||w||}$$

$$= sv_1^T \frac{w}{||w||} - sv_2^T \frac{w}{||w||}$$

$$= \frac{b+4}{||w||} - \frac{b-1}{||w||}$$

$$= \frac{2}{||w||}$$

Reminder: Dot Products & WY= HUll HVH cas O

Problem!

- impossible if classes are not linearly separable

IDEA!

Cut classifier some slack and give it a budet for margin violations and misclassifications

Look familiar?

Before (i.e. Ridge) minimise A + DB bigger D more weight

minimize CA + B smaller C more weight

⇒ C= 1

TLDR:

Soft Margin:

minimite: 1 C. S (max (0, 1- gi(wtxi-b)) + llwll2

Bonus!

also less sensitive to outliers!

