

Claims

- 1 1. Method for a digital transmission system, in which a first and second known
2 symbol sequence ($\{s_1, s_2, \dots, s_M\}$) are transmitted, the frequency offset (ΔF) of the
3 transmission system is estimated by comparing a first section (1f_M) of the received signal
4 (r) corresponding to the first symbol sequence with a second section (2f_M) of the received
5 signal (r) corresponding to the second symbol sequence, and the square of the absolute
6 value of a pulse response (h) of the transmission system is reduced in a time domain in
7 order to lessen the influence of symbols (x) adjacent to the first or second known symbol
8 sequence ($\{s_1, s_2, \dots, s_M\}$) on the first and second section (${}^1f_M, {}^2f_M$), respectively, of the
9 received signal (r).
- 1 2. Method according to Claim 1, in which the first and second symbol sequence
2 ($\{s_1, s_2, \dots, s_M\}$) are selected to be identical to one another.
- 1 3. Method according to Claim 1 or 2, in which the reduction in the square of the
2 absolute value of the domain of the pulse response (h) of the transmission system is
3 undertaken with the aid of a filter (14).
- 1 4. Method according to Claim 3, in which a pulse response (h) of the transmission
2 system is estimated.
- 1 5. Method according to Claim 4, in which coefficients of the filter (14) are
2 determined and/or adapted by means of the estimated pulse response (h).
- 1 6. Method according to Claim 6, in which the pulse response (h) is shortened.
- 1 7. Method according to Claims 1, 2, 4, 5, or 6, in which the energy of a domain of
2 the pulse response (h) of the transmission system relative to the total energy of the pulse
3 response (h) is reduced with the aid of an all-pass filter (14).
- 1 8. Method according to Claim 7, in which the all-pass filter (14) is adapted to
2 achieve a low-phase pulse response of the transmission system.
- 1 9. Method according to Claim 8, in which one value (${}^1f_M, {}^2f_M$) of the first and
2 second section of the received signal (r) is determined by sampling the received signal (r).
- 1 10. Method according to Claim 9, in which the angular difference ($\Delta\varphi$) in the
2 complex plane between the first and second sample (${}^1f_M, {}^2f_M$) is used to estimate the
3 frequency offset (ΔF).

1 11. Method according to Claim 10, in which several pairs of samples ($[{}^1f_1, {}^2f_1]$,
2 $[{}^1f_2, {}^2f_2]$, ..., $[{}^1f_M, {}^2f_M]$) are averaged over the angular differences ($\Delta\phi$).

1 12. Method according to Claim 11, in which the signals are transmitted in blocks,
2 in particular in accordance with a GSM standard and/or EDGE standard.

1 13. Device (1) for a digital transmission system, comprising a transmitting device
2 for transmitting a first and second known symbol sequence ($\{s_1, s_2, \dots, s_M\}$), and means
3 (15) for comparing a first section (1f_M) of the received signal (r) corresponding to the first
4 symbol sequence with a second section (2f_M) of the received signal (r) corresponding to
5 the second symbol sequence, as a result of which it is possible to estimate the frequency
6 offset (ΔF) of the transmission system, characterized in that the device (1) comprises a
7 first module (14) for reducing the square of the absolute value of a pulse response (h) of
8 the transmission system in a time domain, it being possible by means of the reduction to
9 lessen the influence of symbols (x) adjacent to the first or second known symbol sequence
10 ($\{s_1, s_2, \dots, s_M\}$) on the first and second section (${}^1f_M, {}^2f_M$), respectively, of the received
11 signal (r).

1 14. Device (1) according to Claim 13, in which the first and second symbol
2 sequence ($\{s_1, s_2, \dots, s_M\}$) are identical to one another.

1 15. Device (1) according to Claim 13 or 14, in which the first module (14)
2 comprises a filter.

1 16. Device (1) according to Claim 15, which comprises a second module (11) for
2 estimating a pulse response (\hat{h}).

1 17. Device (1) according to Claim 16, which comprises a third module (12) for
2 determining and/or adapting suitable coefficients of the filter (14).

1 18. Device (1) according to Claim 17, in which the pulse response (h) can be
2 shortened by means of the first module (14).

1 19. Device (1) according to Claim 18, in which the first module (14) comprises an
2 all-pass filter.

1 20. Device (1) according to Claim 19, in which the all-pass filter (14) can be
2 adapted to achieve a low-phase pulse response of the transmission system.

1 21. Device (1) according to Claim 20, which comprises a sampling device for the
2 received signal (r), with the aid of which one value (1f_M , 2f_M) of the first and second
3 section of the received signal (r) can be sampled.

1 22. Device (1) according to Claim 21, which comprises means (16) for estimating
2 the frequency offset (ΔF) from the angular difference ($\Delta\phi$) in the complex plane between
3 the first and second sample (1f_M , 2f_M).

1 23. Device (1) according to Claim 22, which comprises means for determining an
2 average value of the angular differences ($\Delta\phi$) of several pairs of samples ($[^1f_1, ^2f_1]$, $[^1f_2,$
3 $^2f_2]$, ..., $[^1f_M, ^2f_M]$).

1 24. Device (1) according to Claim 23, which is adapted for transmission in
2 blocks, in particular in accordance with a GSM standard and/or EDGE standard.