PC 2 (Modèle statistique)

1 Modèle exponentiel

Une grande partie des modèles utilisés dans les exemples élémentaires sont des modèles exponentiels (modèle gaussien, log-normal, exponentiel, gamma, Bernouilli, Poisson, etc). Nous allons étudier quelques propriétés de ces modèles. On appelle modèle exponentiel une famille de lois $\{\mathbb{P}_{\theta}, \theta \in \Theta\}$ ayant une densité par rapport à une mesure μ σ -finie sur \mathbb{R} ou \mathbb{N} de la forme

$$p_{\theta}(x) = c(\theta) \exp(m(\theta)f(x) + h(x)).$$

On supposera que Θ est un intervalle ouvert de \mathbb{R} , $m(\theta) = \theta$, c de classe C^2 , $c(\theta) > 0$ pour tout $\theta \in \Theta$. On notera X une variable aléatoire de loi \mathbb{P}_{θ} et on admettra que

$$\frac{\partial^i}{\partial \theta^i} \int \exp(\theta f(x) + h(x)) \, \mu(dx) = \int f(x)^i \exp(\theta f(x) + h(x)) \, \mu(dx) < +\infty, \quad \text{pour } i = 1, 2.$$

- 1. Montrez que $\varphi(\theta) := \mathbb{E}_{\theta} (f(X)) = -\frac{d}{d\theta} \log(c(\theta))$.
- 2. Montrez que $\operatorname{Var}_{\theta}(f(X)) = \varphi'(\theta) = -\frac{d^2}{d\theta^2} \log(c(\theta))$.
- 3. On dispose d'un n-échantillon X_1, \ldots, X_n de loi \mathbb{P}_{θ} . On note $\hat{\theta}_n$ l'estimateur obtenu en résolvant $\varphi(\hat{\theta}_n) = \frac{1}{n} \sum_{i=1}^n f(X_i)$. En supposant $\operatorname{Var}_{\theta}(f(X)) > 0$, montrez que

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) \stackrel{\text{loi}}{\to} \mathcal{N}\left(0, \frac{1}{\operatorname{Var}_{\theta}\left(f(X)\right)}\right).$$

Corrigé:

Observer que puisque p_{θ} est une densité, on a $c(\theta) = \left(\int \exp(\theta f(x) + h(x))\mu(dx)\right)^{-1}$.

1. D'après le résultat admis,

$$\phi(\theta) = c(\theta) \frac{d}{d\theta} \left(\frac{1}{c(\theta)} \right)$$

ce qui donne le résultat demandé.

2. De même, on a

$$\int f^{2}(x)p_{\theta}(x)\mu(dx) = c(\theta)\frac{d^{2}}{d\theta^{2}}\frac{1}{c(\theta)}$$

ce qui donne

$$\int f^{2}(x)p_{\theta}(x)\mu(dx) = -\frac{c''(\theta)}{c(\theta)} + 2\left(\frac{c'(\theta)}{c(\theta)}\right)^{2}$$

En combinant ce calcul avec la question précédente, on obtient

$$\operatorname{Var}_{\theta}(f(X)) = \left(\frac{c'(\theta)}{c(\theta)}\right)^2 - \frac{c''(\theta)}{c(\theta)}$$

ce qui donne le résultat demandé.

3. Par le TCL pour des v.a. i.i.d.

$$\sqrt{n}\left(\phi(\hat{\theta}_n) - \mathbb{E}_{\theta}[f(X)]\right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \operatorname{Var}_{\theta}(f(X)))$$

puis on conclut par la méthode delta appliquée avec la fonction ϕ^{-1} .

2 Estimation par la méthode plug-in

Soit X_1, \ldots, X_n des variables aléatoires réelles i.i.d. de fonction de répartition F, soit a < b deux réels et soit $\theta = F(b) - F(a)$.

- 1. Déterminer l'estimateur plug-in $\widehat{\theta}$ de θ .
- 2. Déterminer l'estimateur plug-in de la variance de $\widehat{\theta}$ et en déduire un intervalle de confiance asymptotique pour θ de niveau $1-\alpha$.

Corrigé:

1. L'estimateur de substitution est donné par

$$\hat{\theta}_n = \hat{F}_n(b) - \hat{F}_n(a) = \frac{1}{n} \sum_{k=1}^n 1_{a < X_k \le b}.$$

2. Notons $\hat{\sigma}_n^2$ l'estimateur plug-in de la variance de $\hat{\theta}_n$. On a

$$\widehat{\sigma}_n^2 = \frac{\widehat{\theta}_n \left(1 - \widehat{\theta}_n \right)}{n}.$$

Le TCL pour des v.a. i.i.d. et le lemme de Slutsky (noter que $n\widehat{\sigma}_n^2 \xrightarrow{\text{p.s.}} \theta(1-\theta)$) donnent

$$\frac{1}{\widehat{\sigma}_n} \left(\widehat{\theta}_n - \theta \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1).$$

Notons $z_{1-\alpha/2}$ le quantile d'ordre $1-\alpha/2$ d'une loi $\mathcal{N}(0,1)$. On déduit de cette convergence en loi un intervalle de confiance asymptotique pour θ au niveau $(1-\alpha)$

$$\left[\widehat{\theta}_n - z_{1-\alpha/2}\widehat{\sigma}_n; \widehat{\theta}_n + z_{1-\alpha/2}\widehat{\sigma}_n\right]$$

3 Stabilisation de la variance

On dispose d'un échantillon X_1, \dots, X_n i.i.d. de loi de Bernoulli de paramètre $0 < \theta < 1$.

- 1. On note \bar{X}_n la moyenne empirique des X_i . Que disent la loi des grands nombres et le TCL?
- 2. Cherchez une fonction g telle que $\sqrt{n}(g(\bar{X}_n) g(\theta))$ converge en loi vers Z de loi $\mathcal{N}(0,1)$.
- 3. On note z_{α} le quantile d'ordre $1-\alpha/2$ de la loi normale standard. En déduire un intervalle $\hat{I}_{n,\alpha}$ fonction de z_{α}, n, \bar{X}_n tel que $\lim_{n\to\infty} \mathbb{P}(\theta \in \hat{I}_{n,\alpha}) = 1-\alpha$.

Corrigé:

1. On a

$$\overline{X}_n \xrightarrow{\text{p.s.}} \mathbb{E}_{\theta}[X] = \theta \qquad \sqrt{n} \left(\overline{X}_n - \mathbb{E}_{\theta}[X] \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \theta(1 - \theta)).$$

2. Par la méthode delta, on cherche une fonction g continûment différentiable telle que $(g'(\theta))^2 \theta (1 - \theta) = 1$. Plusieurs solutions possibles

$$\theta \mapsto \arccos(2\theta-1) \qquad \theta \mapsto \arcsin(2\theta-1) \qquad \theta \mapsto 2\arccos\sqrt{\theta}$$

3. On en déduit l'intervalle de confiance asympotique de niveau $1-\alpha$

$$I_{n,\alpha} = \left[\frac{1}{2} \left(1 + \cos \left(g(\overline{X}_n) + \frac{z_{\alpha}}{\sqrt{n}} \right) \right); \frac{1}{2} \left(1 + \cos \left(g(\overline{X}_n) - \frac{z_{\alpha}}{\sqrt{n}} \right) \right) \right]$$

4 Modèle d'autorégression

On considère l'observation $Z=(X_1,\ldots,X_n)$, où les X_i sont issus du processus d'autorégression:

$$X_i = \theta X_{i-1} + \xi_i, \quad i = 1, \dots, n, \qquad X_0 = 0,$$

avec les ξ_i i.i.d. de loi normale $\mathcal{N}(0,\sigma^2)$ et $\theta \in \mathbb{R}$. Écrire le modèle statistique engendré par l'observation Z.

Corrigé:

- espace probabilisable: \mathbb{R}^n muni de la tribu borélienne.
- une famille de lois \mathbb{P}_{ψ} sur \mathbb{R}^n données par

$$\mathbb{P}_{\psi}(A) = \int_{A} \frac{1}{(\sqrt{2\pi}\sigma)^{n}} \frac{1}{\sqrt{\det(\Gamma)}} \exp\left(-\frac{1}{2\sigma^{2}} \underline{x}^{T} \Gamma^{-1} \underline{x}\right) d\underline{x}$$

où $\psi = (\theta, \sigma) \in \mathbb{R} \times]0, \infty[$ et

$$\Gamma^{-1} = \begin{bmatrix} 1 + \theta^2 & -\theta & 0 & \cdots & \cdots \\ -\theta & 1 + \theta^2 & -\theta & 0 & \cdots \\ 0 & -\theta & 1 + \theta^2 & -\theta & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \cdots & \cdots & -\theta & 1 + \theta^2 & -\theta \\ \cdots & \cdots & 0 & -\theta & 1 \end{bmatrix}$$

Noter que $\Gamma = AA^T$ avec

$$A = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ \theta & 1 & \cdots & 0 & 0 \\ \theta^2 & \theta & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \theta^{n-1} & \theta^{n-2} & \cdots & \theta & 1 \end{bmatrix}$$

Pour obtenir l'expression de la loi \mathbb{P}_{ψ} , on peut remarquer que X_k est une combinaison linéaire des v.a. ξ_1, \dots, ξ_k ; et écrire le vecteur Z comme une transformation affine du vecteur gaussien (ξ_1, \dots, ξ_n) .

5 Survie

On étudie un système qui fonctionne si deux machines de types différents fonctionnent. Les durées de vie X_1 et X_2 des deux machines suivent des lois exponentielles de paramètres λ_1 et λ_2 : $\mathbb{P}(X_i > x) = e^{-\lambda_i x}$. Les variables aléatoires X_1 et X_2 sont supposées indépendantes.

- 1. Calculer la probabilité pour que le système ne tombe pas en panne avant la date t. En déduire la loi de la durée de vie Z du système. Calculer la probabilité pour que la panne du système soit due à une défaillance de la machine 1.
- 2. Soit I=1 si la panne du système est due à une défaillance de la machine 1, I=0 sinon. Calculer $\mathbb{P}(Z>t; I=\delta)$, pour tout $t\geq 0$ et $\delta\in\{0,1\}$. En déduire que Z et I sont indépendantes.
- 3. On dispose de n systèmes identiques et fonctionnant indépendamment les uns des autres dont on observe les durées de vie Z_1, \ldots, Z_n .

- (a) Écrire le modèle statistique correspondant. Les paramètres λ_1 et λ_2 sont-ils identifiables?
- (b) Supposons maintenant que l'on observe à la fois les durées de vie des systèmes Z_1, \ldots, Z_n et les causes de la défaillance correspondantes $I_1, \ldots, I_n, I_i \in \{0,1\}$. Écrire le modèle statistique dans ce cas. Les paramètres λ_1 et λ_2 sont-ils identifiables?

Corrigé:

1. La probabilité que le système ne tombe pas en panne avant la date t est

$$\mathbb{P}(Z > t) = \exp(-(\lambda_1 + \lambda_2)t).$$

La probabilité que la panne soit dûe à la défaillance de la machine 1 est

$$\mathbb{P}(Z = X_1) = \mathbb{P}(X_2 \ge X_1) = \frac{\lambda_1}{\lambda_1 + \lambda_2}.$$

2. Pour tout $t \geq 0$,

$$\mathbb{P}(Z > t, I = 1) = \mathbb{P}(X_2 \ge X_1, X_1 > t) = \frac{\lambda_1}{\lambda_1 + \lambda_2} \exp(-(\lambda_1 + \lambda_2)t) = \mathbb{P}(Z = X_1) \, \mathbb{P}(Z > t).$$

Résultat analogue pour $\mathbb{P}(Z > t, I = 0)$.

- 3. (a) Modèle statistique
 - Espace probabilisable: $]0, +\infty[^n]$ muni de la tribu borélienne.
 - Famille de fonctions de répartition F_{θ} sur $]0,\infty[$ indexées par $\theta=(\lambda_1,\lambda_2)\in\Theta=]0,+\infty[^2$ et définies par

$$F_{\theta}(x) = (1 - \exp(-(\lambda_1 + \lambda_2)x)) \mathbf{1}_{\mathbb{R}^+}(x)$$

Modèle non identifiable.

- (b) Modèle statistique
 - Espace probabilisable: $(]0, +\infty[\times\{0,1\})^n$ muni de la tribu engendrée par les ensembles $A \times \{0\}, A \times \{1\}$ où A est un borélien.
 - Famille de fonctions de répartition F_{θ} sur $]0,\infty[\times\{0,1\}]$ indexées par $\theta=(\lambda_1,\lambda_2)\in\Theta=]0,+\infty[^2$ et définies par

$$F_{\theta}(x,1) = (1 - \exp(-(\lambda_1 + \lambda_2)x)) \, \mathbf{1}_{\mathbb{R}^+}(x) \, \frac{\lambda_1}{\lambda_1 + \lambda_2}$$
$$F_{\theta}(x,0) = (1 - \exp(-(\lambda_1 + \lambda_2)x)) \, \mathbf{1}_{\mathbb{R}^+}(x) \, \frac{\lambda_2}{\lambda_1 + \lambda_2}$$

Modèle identifiable.

Exercices bonus

Exercice 1. Pour tout $\alpha > 0$, on appelle loi Gamma(α) la loi sur \mathbb{R}^+ de densité

$$g_{\alpha}(x) = \frac{1}{\Gamma(\alpha)} x^{\alpha - 1} e^{-x}$$
, où $\Gamma(\alpha) \triangleq \int_0^{\infty} x^{\alpha - 1} e^{-x} dx$.

Pour a,b>0, on appelle loi $\mathrm{Beta}(a,b)$ la loi sur [0,1] de densité

$$h_{a,b}(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}.$$

(0)

1. Soit s et t > 0 et soit X et Y deux variables indépendantes de loi Gamma(s) et Gamma(t), respectivement. On pose

$$U = X + Y$$
$$V = X/(X + Y)$$

Montrer que U et V sont indépendantes et que U est distribuée suivant une loi Gamma(s+t) et V suivant une loi Beta(s,t). [Indication: on pourra considérer la densité jointe de (U,V) sans se préoccuper des constantes de normalisation.]

2. Soit $\{Z_n\}_{n\geq 0}$ une suite de variables aléatoires telles que, pour tout $n\geq 0$, Z_n est de loi Gamma(n). Montrer que

$$\sqrt{n}\left(\frac{Z_n}{n}-1\right) \stackrel{\text{(loi)}}{\to} \mathcal{N}(0,1) \ .$$

3. oient $p \in (0,1)$ et $\{k_n\}$ une suite monotone croissante d'entiers vérifiant

$$\sqrt{n}\left(\frac{k_n}{n} - p\right) \to 0. \tag{1}$$

Soient $\{X_n\}_{n\geq 0}$ et $\{Y_n\}_{n\geq 0}$ deux suites indépendantes telles que $X_n \sim \operatorname{Gamma}(k_n)$ et $Y_n \sim \operatorname{Gamma}(n-k_n)$. On pose

$$V_n = \frac{X_n}{X_n + Y_n} \ .$$

Montrer que

$$\sqrt{n} (V_n - p) \stackrel{\text{(loi)}}{\to} \mathcal{N}(0, p(1-p))$$
.

[Indication: on pourra, dans un premier temps, considérer le comportement asymptotique du couple $\frac{1}{n}(X_n,Y_n)-(p,1-p)$.]

4. Conclure.

Corrigé:

1. Les v.a. X,Y étant indépendantes, la loi jointe est donnée par

$$f_{(X,Y)}(x,y) = f_X(x) f_Y(y) \propto x^{s-1} \exp(-x) y^{t-1} \exp(-y) \mathbf{1}_{\mathbb{R}^+}(x) \mathbf{1}_{\mathbb{R}^+}(y).$$

Par le changement de variable

$$\phi: \begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} x+y \\ \frac{x}{x+y} \end{bmatrix}$$

on obtient pour toute function h mesurable positive

$$\mathbb{E}[h(U,V)] \propto \int_{\mathbb{R}_{\star}^{+} \times]0,1[} h(u,v)u^{s+t-1} \exp(-u) \ v^{s-1} (1-v)^{t-1} \ du \ dv$$

dont on déduit que (U,V) sont deux variables indépendantes; U est une loi Gamma de paramètre s+t et V est une loi Beta de paramètres (s,t).

2. Par la question précédente, Z_n a même loi que $\sum_{k=1}^n W_k$ où $\{W_k, k \geq 1\}$ sont i.i.d. de loi Gamma de paramètre 1. Donc la limite en loi de $\sqrt{n}(Z_n/n-1)$ est la limite en loi de

$$\sqrt{n}\left(\frac{1}{n}\sum_{k=1}^{n}W_{k}-1\right)$$

Puisque $\mathbb{E}[W_1] = \text{Var}(W_1) = 1$, on obtient le résultat demandé en appliquant le TCL pour des v.a. i.i.d.

- 3. On propose une preuve basée sur l'indication suivante: établir la loi de X_n/Y_n puis observer que $V_n = g(X_n/Y_n)$ avec g(x) = x/(1+x)
 - \bullet D'après la question 1, en observant que X/Y=V/(1-V), on obtient par la méthode d'identification

 $\mathbb{E}\left[h\left(\frac{X}{Y}\right)\right] = \frac{\Gamma(s+t)}{\Gamma(s)\Gamma(t)} \int_0^\infty h(z) \frac{z^{s-1}}{(z+1)^{s+t}} dz$

(on reconnaît une Loi Beta de seconde espèce). Soit $R_n = X_n/Y_n$; sa densité est proportionnelle à $z^{k_n-1}(1+z)^{-n}\mathbf{1}_{\mathbb{R}^+}(z)$.

• Montrons que ¹

$$\sqrt{n}\left(R_n - \frac{p}{1-p}\right) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{p}{(1-p)^3}\right).$$
(2)

Soit h une fonction continue bornée. Posons c = p/(1-p).

$$\mathbb{E}\left[h\left(\sqrt{n}(R_n-c)\right)\right] = \frac{\Gamma(n)}{\Gamma(k_n)\Gamma(n-k_n)} \int_0^\infty h\left(\sqrt{n}(z-c)\right) z^{k_n-1} (1+z)^{-n} dz$$

$$= \frac{1}{\sqrt{n}} \frac{\Gamma(n)}{\Gamma(k_n)\Gamma(n-k_n)} \int_{-c\sqrt{n}}^{+\infty} h(v) \left(\frac{v}{\sqrt{n}} + c\right)^{k_n-1} \left(1+c+\frac{v}{\sqrt{n}}\right)^{-n} dv$$

$$= \frac{1}{\sqrt{n}} \frac{c^{k_n-1}}{(1-c)^n} \frac{\Gamma(n)}{\Gamma(k_n)\Gamma(n-k_n)} \int_{-c\sqrt{n}}^{+\infty} h(v) \left(1+\frac{v}{c\sqrt{n}}\right)^{k_n-1} \left(1+\frac{v}{(1+c)\sqrt{n}}\right)^{-n} dv$$

On écrit $\ln(1+x) = x - x^2/2 + o(x^2)$ au voisinage de zero, puis on applique le lemme de Scheffé. Pour identifier la densité limite, observer que

$$(k_n - 1) \ln \left(1 + \frac{v}{c\sqrt{n}} \right) - n \ln \left(1 + \frac{v}{(1+c)\sqrt{n}} \right)$$

$$= \frac{\sqrt{n}v}{c} \left(\frac{k_n - 1}{n} - \frac{c}{1+c} \right) - \frac{v^2}{2c^2} \left(\frac{k_n - 1}{n} - \frac{c^2}{(1+c)^2} \right) (1 + o(1)).$$

Puisque c/(1+c)=p, en utilisant (1) le terme de droite converge vers (à v fixé, quand $n\to\infty$)

$$-\frac{v^2}{2c^2}p(1-p) = -\frac{v^2}{2}\frac{(1-p)^3}{p}.$$

On vérifie ensuite que le terme constant converge vers la constante de normalisation de $v \mapsto \exp(-v^2(1-p)^3/(2p))$.

• On a $V_n = R_n/(1+R_n) = g(R_n)$ en ayant posé g(x) = x/(x+1). Notons que g est C^1 sur \mathbb{R}^+ et que $g'(x) = 1/(1+x)^2$. En observant que

$$g\left(\frac{p}{1-p}\right) = p$$
 $g'\left(\frac{p}{1-p}\right) = (1-p)^2$

on obtient le résultat demandé en appliquant la méthode delta à la convergence (2).

Exercice 2. Soit f une densité de probabilité portée par un intervalle (non nécessairement borné) $(a,b) \subset \mathbb{R}$. On suppose que f est continue et ne s'annule pas sur (a,b). On note $F(x) = \int_{-\infty}^{x} f(u)du$ la fonction de répartition associée. Cette fonction de répartition est alors strictement monotone sur $x \in [a,b]$ et définit une bijection de $[a,b] \to [0,1]$. On note F^{-1} la fonction réciproque de F de $[0,1] \to [a,b]$. De plus, par continuité de f, F est continuement dérivable sur (a,b) de dérivée f et il s'en suit que F^{-1} est dérivable sur (0,1).

1. Soit U une variable uniforme sur [0,1], $U \sim \text{Unif}([0,1])$. Montrer que la variable X définie par $X = F^{-1}(U)$ a pour densité f. Réciproquement, montrer que si X est une loi de densité f, alors U = F(X) est une loi uniforme sur [0,1].

^{1.} intuiter le terme de recentrage et la variance limite pour que l'application de la méthode delta permette d'aboutir au résultat demandé.

2. Soient g une densité et $Y_1,\ldots,Y_n,$ n v.a. i.i.d. de densité g. On note $(Y_{(1)},\ldots,Y_{(n)})$ la statistique d'ordre de l'échantillon, $Y_{(1)} < Y_{(2)} < \cdots < Y_{(n)}$. Montrer que $Y_{(k)}$ a pour densité

$$g_{Y_{(k)}}(y) = \frac{n!}{(k-1)!(n-k)!} G(y)^{k-1} [1 - G(y)]^{n-k} g(y) ,$$

où G est la fonction de répartition associée à g. [Indication: on pourra montrer successivement $g_{Y_{(k)}}(y) = n! \mathbb{P}(Y_1 < \cdots < Y_{k-1} < y < Y_{k+1} < \cdots < Y_n) g(y)$ puis $\mathbb{P}(\max(Y_1, \dots, Y_{k-1}) < y) = (k-1)! \mathbb{P}(Y_1 < \cdots < Y_{k-1} < y)$ et $\mathbb{P}(y < \min(Y_{k+1}, \dots, Y_n)) = (n-k)! \mathbb{P}(y < Y_{k+1} < \cdots < Y_n)$.]

- 3. Quelle est la loi de $Y_{(k)}$ si $g = \mathbb{1}_{[0,1]}$ est la densité de la loi uniforme sur [0,1]?
- 4. Soit $p \in (0,1)$. On note x_p le quantile d'ordre p, i.e. $x_p = F^{-1}(p)$. Montrer que

$$\sqrt{n}(X_{(k_n)} - x_p) \stackrel{\text{(loi)}}{\to} \mathcal{N}\left(0, \frac{p(1-p)}{f^2(x_p)}\right) .$$

- 5. Soit X_1, \ldots, X_n une suite de v.a. i.i.d. normales de moyenne μ et de variance σ^2 . Montrer que la médiane est un estimateur consistant et asymptotiquement normal de la moyenne. Déterminer la variance asymptotique de cet estimateur. Cet estimateur doit-il être préféré à la moyenne empirique?
- 6. Reprendre la question précédente avec X_1, \ldots, X_n suite de v.a. i.i.d. distribuées suivant une loi de Laplace de densité $f_{\mu}(x) = \frac{1}{2} e^{-|x-\mu|}$. Commenter.

Corrigé:

- 1. Pour tout $x \in [a,b]$, $\{F^{-1}(U) \le x\} = \{U \le F(x)\}$ et pour tout $t \in [0,1]$, on a $\{F(X) \le t\} = \{X \le F^{-1}(t)\}$. Ce qui donne le résultat.
- 2. La correction ne suit pas l'indication: on calcule d'abord la fonction de répartition puis on obtient la densité par dérivation On a

$$\{Y_{(k)} \leq t\} = \bigcup_{j=k}^{n} \{\text{il existe exactement } j \text{ variables dans }]-\infty,t] \text{ et } (n-j) \text{ dans }]t,\infty[\};$$

Il s'agit d'une union disjointe et chaque événement décrit le résultat d'une Binômiale de paramètres (n,G(t)). On en déduit que

$$\mathbb{P}(Y_{(k)} \le t) = \sum_{j=k}^{n} \binom{n}{j} G(t)^{j} (1 - G(t))^{n-j}$$

puis par dérivation, on obtient pour densité

$$t \mapsto n \binom{n-1}{k-1} (G(t))^{k-1} (1 - G(t))^{n-k} g(t)$$

- 3. Le cas uniforme correspond à $g(t) = 1_{[0,1]}(t)$ et G(t) = t pour tout $t \in [0,1]$.
- 4. Ici, $\{k_n, n \geq 1\}$ est une suite d'entiers telle que $\lim_n \sqrt{n}(k_n/n p) = 0$. On établit la propriété dans le cas où les v.a. $\{X_k, k \geq 1\}$ sont i.i.d. uniformes sur [0,1] (ce qui entraine $x_p = p$). Le cas général est une conséquence de la méthode delta appliquée avec la fonction $t \mapsto F^{-1}(t)$ dont la dérivée est $1/f(F^{-1}(t))$.

En utilisant la question précédente, pour toute fonction h mesurable positive

$$\mathbb{E}\left[h\left(\sqrt{n}\left(X_{k_{n}}-p\right)\right)\right] \\ \sqrt{n}\binom{n-1}{k_{n}-1}p^{k_{n}-1}(1-p)^{n-k_{n}}\int_{-p\sqrt{n}}^{\sqrt{n}(1-p)}h(y)\left(1+\frac{y}{p\sqrt{n}}\right)^{k_{n}-1}\left(1-\frac{y}{(1-p)\sqrt{n}}\right)^{n-k_{n}}dy$$

En procédant comme dans la question 3 de l'exercice 1, on obtient par le lemme se Scheffé (voir PC1 exercice 2) que

$$\lim_{n} \mathbb{E}\left[h\left(\sqrt{n}\left(X_{k_{n}}-p\right)\right)\right] \propto \int h(y) \exp\left(-\frac{y^{2}}{2p(1-p)}\right) dy.$$

On en déduit que

$$\sqrt{n}(X_{k_n}-p) \xrightarrow{\mathcal{L}} \mathcal{N}(0,p(1-p)).$$

5. Par la moyenne empirique, un intervalle de confiance (non asymptotique) au noveau $(1-\alpha)$ est

$$\left[n^{-1} \sum_{k=1}^{n} X_n \pm z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} \right]$$

où $z_{1-\alpha/2}$ est le quantile d'ordre $1-\alpha/2$ d'une loi $\mathcal{N}(0,1)$.

Par l'estimateur de la médiane, en utilisant la question précédente, on obtient un intervalle de confiance (asymptotique) de niveau $1-\alpha$

$$\left[X_{k_n} \pm z_{1-\alpha/2} \sqrt{\frac{\pi}{2}} \frac{\sigma}{\sqrt{n}} \right]$$

6. D'après la question 4, il vient

$$\sqrt{n} \left(X_{\lfloor n/2 \rfloor} - \mu \right) \xrightarrow{\mathcal{L}} \mathcal{N}(0,1).$$

Par le TCL, puisque $Var(X_1) = 2$,

$$\sqrt{n}\left(n^{-1}\sum_{k=1}^{n}X_{k}-\mu\right) \xrightarrow{\mathcal{L}} \mathcal{N}(0,2).$$