Project 3

Anna Stray Rongve Knut Magnus Aasrud Amund Midtgard Raniseth

October 24, 2019

Abstract

- 1 Introduction
- 2 Theory
- 2.1 The problem
- 2.2 2×2 lattice, analytical expressions

To get started we will find the analytical expression for the partition function and the corresponding expectation values for the energy E, the mean absolute value of the magnetic moment |M| (which we will refer to as magnetization), the specific heat C_V and the susceptibility χ as function of T using periodic boundary conditions. These calculations will serve as benchmarks for our next steps.

Partition function, Z

The partition function in the canonical ensemble is defined as:

$$Z = \sum_{i=1}^{N} e^{-\beta E_i}$$

Where $\beta = \frac{1}{k_B T}$ and E_i is the energy of the system in the microstate i and N is the respective microstate.

We therefore have to find E_i which is defined as:

$$E_i = -J \sum_{\langle kl \rangle}^N s_k s_l$$

Where $\langle kl \rangle$ indicates that we sum only over the nearest neighbors and J is a constant for the bonding strenght. For our two dimensional system the equation

reads:

$$E_{i,2D} = -J \sum_{i}^{N} \sum_{j}^{N} (s_{i,j} s_{i,j+1} + s_{i,j} s_{i+1,j})$$

Four our two-spin-state system with two dimensions we get the following table if we use periodic boundary conditions:

Number of spins up	Degeneracy	Energy	Magnetization
4	1	-8J	4
3	4	0	2
2	4	0	0
2	2	8J	0
1	4	0	-2
0	1	-8J	-4

Table 1: Number of spins up, degeneracy, energy and magnetization of the two-dimensional benchmark scenario.

Where the magnetization is found by subtracting the number of spin downs from the number of spin up, or in other words the sum of the spins:

$$\mathcal{M} = \sum_{j=1}^{N} s_j$$

Getting back to the partition function, we insert all 16 of the E_i respectively.

$$Z = e^{-\beta(-8J)} + 2 \cdot e^{-\beta(8J)} + e^{-\beta(-8J)} = 2e^{-\beta 8J} + 2e^{\beta 8J}$$

Energy expectation value, $\langle E \rangle$

The expectation value of the energy is defined as:

$$\langle E \rangle = \sum_{i=1}^{M} E_i P_i(\beta) = \frac{1}{Z} \sum_{i=1}^{M} E_i e^{-\beta E_i}$$

Where M is the sum over all microstates. P_i is the Boltzmann probability distribution which reads:

$$P_i(\beta) = \frac{e^{\beta E_i}}{Z}$$

For our system, this is easily calculated by inserting the partition function and the microstate energy E_i .

$$\begin{split} \langle E \rangle &= \frac{1}{2e^{-\beta 8J} + 2e^{\beta 8J}} \left(2 \cdot -8J \cdot e^{\beta 8J} + 2 \cdot 8J \cdot e^{-\beta 8J} \right) \\ &= \frac{1}{2e^{-\beta 8J} + 2e^{\beta 8J}} \left(-16Je^{\beta 8J} + 16Je^{-\beta 8J} \right) \\ &= 8J \frac{1}{e^{-\beta 8J} + e^{\beta 8J}} \left(e^{-\beta 8J} - e^{\beta 8J} \right) \end{split}$$

- 3 Results
- 4 Discussion
- 5 Conclusion