* Assignment 3

Ai and ml

Name: kashish jain

Registration Number: 21BCE3204

- 1. Penguine_size.csv is downloaded
- 2. Load the dataset into the tool.

import numpy as np import pandas as pd

df=pd.read_csv('/content/penquins_size..csv df.head()

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm
0	Adelie	Torgersen	39.1	18.7	181.0
1	Adelie	Torgersen	39.5	17.4	186.0
2	Adelie	Torgersen	40.3	18.0	195.0
3	Adelie	Torgersen	NaN	NaN	
4	Adelie	Torgersen	36.7	19.3	193.0

3.1. Perform Univariates Analysis

from matplotlib import rcParams import seaborn as sns sns.displot(df.body_mass_g)

3.2. Perform Bivariates Analysis

sns.jointplot(x='culmen_length_mm',y='culmen_depth_mm',data=df)

3.3. Perform Multi-Variate Analysis

4. Perform descriptive statistics on the dataset.

df.describe()

	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
count	342.000000	342.000000	342.000000	342.000000
mean	43.921930	17.151170	200.915205	4201.754386
std	5.459584	1.974793	14.061714	801.954536
min	32.100000	13.100000	172.000000	2700.000000
25%	39.225000	15.600000	190.000000	3550.000000
50%	44.450000	17.300000	197.000000	4050.000000
75%	48.500000	18.700000	213.000000	4750.000000
max	59.600000	21.500000	231.000000	6300.000000

5. Check for Missing values and deal with them.

df.isnull().any() #Checking if there any null values in the dataset

species False
island False
culmen_length_mm True
culmen_depth_mm True
flipper_length_mm True
body_mass_g True
sex True
dtype: bool

```
df.isnull().sum()
```

```
species 0
island 0
culmen_length_mm 2
culmen_depth_mm 2
flipper_length_mm 2
body_mass_g 2
sex 10
dtype: int64
```

Code to replace null values in numerical columns with MEDIAN df['culmen_length_mm'].fillna(df['culmen_length_mm'].median(),inplace=True) df['culmen_depth_mm'].fillna(df['culmen_depth_mm'].median(),inplace=True) df['flipper_length_mm'].fillna(df['flipper_length_mm'].median(),inplace=True df['body_mass_g'].fillna(df['body_mass_g'].median(),inplace=True)

Code to replace null values in categorical column with MODE df['sex'].fillna(df['sex'].mode().iloc[0],inplace=True)

Now all null values are replaced with median and mode and dealt properly. df.isnull().any()

```
species False
island False
culmen_length_mm False
culmen_depth_mm False
flipper_length_mm False
body_mass_g False
sex False
dtype: bool
```

L. Find the outliers and replace the outliers

sns.boxplot(df.culmen_length_mm)

sns.boxplot(df.culmen_depth_mm)

sns.boxplot(df.flipper_length_mm)

sns.boxplot(df.body_mass_g)

Hence there are no outliers in the dataset.

7. Check for Categorical columns and perform encoding.

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['sex'] = le.fit_transform(df['sex'])
df['species'] = le.fit_transform(df['species'])
df['island'] = le.fit_transform(df['island'])
df.head()
```

	species	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm
0	0	2	39.10	18.7	181.0
1	0	2	39.50	17.4	186.0
2	0	2	40.30	18.0	195.0
3	0	2	44.45	17.3	197.0
4	0	2	36.70	19.3	193.0

O. Check the correlation of independent variables with the target (TARGET IS SPECIES and remaining are independent)

df.corr().species.sort_values(ascending=False)

species 1.000000
flipper_length_mm 0.850819
body_mass_g 0.747547
culmen_length_mm 0.728706
sex -0.003823
island -0.635659
culmen_depth_mm -0.741282
Name: species, dtype: float64

9. Split the data into dependent and independent variables

X=df.drop(columns=['species'],axis=1)
X.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
0	2	39.10	18.7	181.0	
1	2	39.50	17.4	186.0	
2	2	40.30	18.0	195.0	
3	2	44.45	17.3	197.0	
4	2	36.70	19.3	193.0	

Y=df['species'] Y.head()

0 0

1 0

2 0

3 0

4 0

Name: species, dtype: int64

10. Scaling the independent data

from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler()
X_scaled = pd.DataFrame(scale.fit_transform(X),columns=X.columns)
X_scaled.head()

	island	culmen_length_mm	culmen_depth_mm	flipper_length_mm	body_mass_g
0	1.0	0.254545	0.666667	0.152542	0.291667
1	1.0	0.269091	0.511905	0.237288	0 .305556
2	1.0	0.298182	0.583333	0.389831	0.152778
3	1.0	0.449091	0.500000	0.423729	0 .375000
4	1.0	0.167273	0.738095	0.355932	0.208333

11.	Split the	data	into	training	and	testing.

from sklearn.model_selection import train_test_split
X_train,X_test,Y_train,Y_test = train_test_split(X_scaled,Y,test_size=0.2,random_state=

12. Check the training and testing data shape.

Colab paid products - Cancel contracts here