1. Find $1 + (f'(x))^2$ for the following functions f(x):

(a)
$$f(x) = 2e^x + \frac{1}{8}e^{-x}$$

(b)
$$f(x) = \frac{2}{3}x^{3/2} - \frac{1}{2}x^{1/2}$$

2. Find $1 + (g'(y))^2$ for the following functions g(y):

(a)
$$g(y) = 3y^{4/3} - \frac{3}{32}y^{2/3}$$

(b)
$$g(y) = \frac{(y+2)^{3/2}}{3}$$

- 3. Simplify $\sqrt{1+(f'(x))^2}$ for each of the functions in #1. Simplify $\sqrt{1+(g'(y))^2}$ for each of the functions in #2. What do you notice?
- 4. (**) Find the length of the curve $g(y) = 3y^{4/3} \frac{3}{32}y^{2/3}$ from y = 1 to y = 8. Simplify your answer.
- 5. (**) Consider the arc of the curve $y = \sqrt{x}$ from x = 0 to x = 4.
 - (a) What happens when you try to find the length of the curve? What's going on?
 - (b) Set up an integral for the length of the curve in terms of y. Is this a valid integral?
- 6. (**) Suppose you know that the arc length of a certain smooth function f(x) from x=0 to $x=2\pi$ is

$$L = \int_0^{2\pi} \sqrt{1 + 36\sin^2(2x)} \ dx.$$

What can we say about f(x)?