ssq in R

DCS 307:Simulation Winter 2023

Queueing Model

- Assumptions:
 - FIFO queue (ssq); others: LIFO, SIRO, priority
 - server takes no break
 - non-preemptive: once service begins, must be completed
 - conservative: if queue is not empty, no server can be idle
 - infinite queue length possible

Queue Terminology

- An A/B/c service node (Kendall's notation):
 - A: distribution of interarrival times
 - B: distribution of service times
 - c: number of servers
- Standard notation for interarrival, service:

M: exponentialD: deterministic (not stochastic)E: ErlangG: general (other distributions)

- Examples:
 - \bullet M/M/1: exponential interarrival and service times, one server
 - M/G/4: exponential interarrivals, four (identical) servers, each with same general service time distribution
 - ssq: M/M/1 service node by default

Job-Averaged Statistics

i	ri	a _i	$n(a_i + \epsilon)$	Wi	bi	Si	Ci
1	15	15	1	0	15	43	58
2	32	47	2	11	58	36	94
3	24	71	2	23	94	34	128
4	40	111	2	17	128	30	158
5	12	123	3	35	158	38	196
6	29	152	3	44	196	30	226
7	80	232	1	0	232	31	263
8	13	245	2	18	263	29	292

• Average service time: $\bar{s} = 33.875$ seconds per job Service rate: $1/\bar{s} \approx 0.030$ jobs per second

Arrival rate: $1/\bar{r} \approx 0.033$ jobs per second Service rate: $1/\bar{s} \approx 0.030$ jobs per second

Traffic Intensity

i	ri	aį	$n(a_i + \epsilon)$	Wi	bi	Si	Ci
1	15	15	1		15	43	58
2	32	47	2	11	58		94
3	24	71	2	23	94	34	128
4	40	111	2	17	128		158
5	12	123	3	35	158		196
6	29	152	3	44	196		226
7		232	1		232	31	263
	13	245	2	18	263	29	292

• Average service time: $\bar{s} = 33.875$ seconds per job Service rate: $1/\bar{s} \approx 0.030$ jobs per second

Arrival rate: $1/\overline{r} \approx 0.033$ jobs per second Service rate: $1/\overline{s} \approx 0.030$ jobs per second

Time-Averaged Statistics

Time-averaged statistics: area under a curve (integration)

- n(t): number in the system
- q(t): number in the queue
- x(t): number in service

$$\bar{n} = 1.435$$

$$\overline{q} = 0.507$$

$$\bar{x} = 0.928$$

Stochastic Components

• Given the algorithms, what are the stochastic components?

Stochastic Components

• Given the algorithms, what are the stochastic components?

Model Development At Three Levels

- Onceptual: big picture, what questions to ask (done!)
- Specification: equations, (psuedocode) algorithms
- 3 Computational: implement in code

Computational Model Using ssq

Program ssq() implemented in R package simEd:

- To use, type library(simEd) on R/RStudio startup
- Interarrival times: exponential(1.0) vexp(1, rate = 1)
- Service times: exponential(0.9) vexp(1, rate = 10/9)
- Investigate <u>transient</u> behavior
 - Fix # of processed jobs, replicate using same initial state
 - Each replication uses different initial seed
- Investigate steady-state behavior
 - Will the statistics converge independent of initial seed?
 - How many jobs until steady-state?

Running ssq via R

> ssq(maxArrivals=1000, seed=1234567) \$customerArrivals Γ1] 1000 \$customerDepartures Γ1] 1000 \$simulationEndTime [1] 996.19928 \$averageWait [1] 6.2324 \$averageSojourn [1] 7.1231 \$avgNumInSystem [1] 7.1503 \$avgNumInQueue [1] 6.2562 \$utilization Γ17 0.89415

> ssg(maxArrivals=1000, seed=8675309) \$customerArrivals Γ1] 1000 \$customerDepartures Γ1] 1000 \$simulationEndTime [1] 1022.81829 \$averageWait [1] 4.7171 \$averageSojourn [1] 5.6327 \$avgNumInSystem [1] 5.507 \$avgNumInQueue [1] 4.6118 **\$utilization** [1] 0.89518

?ssq gives R help

Arrival & Service Process in ssq

Program ssq() implemented in R package simEd:

- To use, type library(simEd) on R/RStudio startup
- Interarrival times: exponential(1.0) vexp(1, rate = 1)
- Service times: exponential(0.9) vexp(1, rate = 10/9)

What are these vexp function calls in simEd?

- v* functions are a collection of random variate generators (algorithmically generated realizations of random variables)
 - vexp, vnorm, vunif, ...
- compare to default R variate generators:
 - rexp, rnorm, runif, ...

What is the difference? Let's investigate using R...

Using ssq to Reproduce Your Table

ssq: can use custome inter-arrival and/or service functions

can be built using built-in R generators (e.g., rexp)

```
getService <- function() {
    return(rgamma(1, shape = 1.0, scale = 0.9))
}

getService <- function(a = 1.0, b = 0.9) {
    rgamma(1, shape = a, scale = b)
}</pre>
```

can also be built using hard-coded trace data

Use ?ssq and let's try it out ...

or

Grabbing Data from ssq

 ssq's output, like all R lists, allows individual access via the dollar sign

```
> ssq(maxArrivals=1000, seed=8675309)
$customerArrivals
[1] 1000
$customerDepartures
[1] 1000
```

Let's try it out...

Convergence To Steady-State

• The accumulated \bar{o} printed every 100 jobs

- Steady state average sojourn time is $\frac{1}{\mu \lambda} = \frac{1}{10/9 1} = 9$
- Convergence is slow, erratic, and dependent on initial seed

In-class Exercises (in R)

• Write R functions for three different gamma service processes:

```
getSvc1 = function() { rgamma(1, shape = 1.0, scale = 0.9) }
getSvc2 = function() { rgamma(1, shape = 1.05, scale = 0.9) }
getSvc3 = function() { rgamma(1, shape = 1.1, scale = 0.9) }
```

Experiment using the original and new service processes:

```
ssq(maxArrivals = 10000, seed = 1234567)
ssq(maxArrivals = 10000, seed = 1234567, serviceFcn = getSvc1)
ssq(maxArrivals = 10000, seed = 1234567, serviceFcn = getSvc2)
ssq(maxArrivals = 10000, seed = 1234567, serviceFcn = getSvc3)
```

What effects do the new service processes have on the output statistics? How do the arrival and service rates compare? What happens as you increase the number of arrivals?