

52 100: Модуль звена задержки

безопасный

Существуют следующие возможности применения модуля:

- При подключении по схеме 1001 согласно IEC 61508 для SIL 3
- При избыточном подключении по схеме 1002 или 2003 для приложений SIL 4

Выходы устойчивы к короткому замыканию

1 В зависимости от функции соединить с EL+ или L-

Рис. 1: Блок-схема

Выбрано	Временной диапазон	Разрешение		
ZF1	0,19,9 c	0,1 c		
ZF2	199 c	1 c		
ZF3	10990 c	10 c		
ZF4	605 940 c	60 c		
ZF5	60059 400 c	600 c		

Таблица 1: Установки временного диапазона

Точность выдержки времени < 0,1 % от заданной величины

Базовое отклонение -10...+90 мс

Сигналы 1 на выходах Y и \bar{Y} не накладываются один на другой (разрыв ок. 20 мс).

Время переключения У ок. 45 мс

Ÿ ок. 25 мс

Время возврата: У ок. 20 мс

Ÿ ок. 40 мс

Эксплуатационные данные 24 В пост. тока/100 мА

Необходимое пространство 3 RU, 4 HP

Безопасный элемент задержки представляет собой двухканальный безопасный процессор. Каждый процессор обрабатывает данную функцию времени и проводит автодиагностику и контроль. Модуль инициализируется после подключения питающего напряжения или при задействовании микропереключателя *АСК* (после сбоя). После инициализации безопасные выходы Y и Ў находятся в их рабочем состоянии.

Установку времени производят подачей EL+ соответственно на один из временных входов ZF1... ZF5 и настройкой двухразрядного переключателя предварительного набора на передней панели. Задержка времени либо длительность импульса t_v рассчитывается по формуле:

 t_v = разрешение x значение декадного переключателя

Во время работы недопустимы изменения на переключающем входе (U) при поступлении импульсов, функциональных входов (F1, F2) и временных входов (ZF1... ZF5). При изменении настройки декадных переключателей (светодиод TR мигает) нужно в течение 60 с задействовать кнопку *АСК* либо же восстановить прежнюю настройку, в противном случае модуль переключится в состояние сбоя. Изменение настройки времени вступает в силу только с новым пуском.

Оба безопасных выхода Y и \bar{Y} в случае сбоя или неполадки (внутренний сбой или неисправность модуля) переключаются на сигнал 0 (отсутствие выходного сигнала), а выход для сбоев ERR получает сигнал 1. По ходу время при функции «0-1-задержка» может стремиться к бесконечности, а при функции «1-0-задержка» и при работающих с импульсами функциях - к нулю.

Функции

Функции реализуются по следующим схемам (управляющий сигнал на входа Е):

Рис. 2: Функции

Значение сигналов от светодиодов

 \bar{Y} , Y (желтый) Индикация выходов \bar{Y} и Y

TR (желтый) Отсчет времени (постоянное горение)

Инициализация (постоянное горение)

Изменение времени (мигание)

Все функции на модуле отслеживаются микроконтроллером.

Это относится также к функциям, которые не подпадают под обеспечение безопасности, так как отказы могут добавлять безопасность (например, неполадки модуля на управляющем входе E).

При сбое загорается ERR, с выхода d28 поступает сигнал 1 и происходит размыкание релейного контакта z26-d26. Выход z28-b28 предусмотрен для подсоединения к модулю связи, например, для передачи данных в систему управления процессами.

Индикатор RDY (Ready) показывает наличие рабочего напряжения (≥ 20 В).

Примечания

При 1-0-задержке (SEVA) текущее время кратковременным прерыванием подачи EL+ на вход d4 (например, кнопкой) можно установить на нуль (= время истекло):

Рис. 3: 1-0-задержка (SEVA)

Примечания

Модуль для защиты настроек времени следует встраивать так, чтобы исключить несанкционированное изменение этих настроек.

Чтобы получить безопасное время, к задаваемому времени задержки прибавить макс. время опознания ошибки и реакции, составляющее 75 мс.

Требования, предъявляемые к функциям

Название	Функция	Допустимое использование	
0-1-задержка VESA	Включение с задержкой, выключение мгновенно	Лишь если задаваемое для задачи время может быть длиннее, но не короче.	
1-0-задержка SEVA Включение мгновенно, выключение с задержкой		Лишь если задаваемое для задачи время может быть длиннее, но не короче.	
0-1- и 1-0-задержка VEVA	Включение с задержкой, выключение с задержкой	При включении: лишь если задаваемое для задачи время может быть длиннее, но не короче При выключении: лишь если задаваемое для задачи время может быть короче, но не длиннее.	
Импульс	При смене входного сигнала 0-1	Лишь если задаваемое для задачи время может быть длиннее, но не короче	

Таблица 2: Требования, предъявляемые к использованию функций

Повторная проверка

Модуль 52 100 подлежит повторной проверке каждые 10 лет.

При избыточном подключении по схеме 1002 для приложений SIL 4

Два звена задержки 52 100 соединены через свои дискретные входы в резервную группу. Оба звена задержки настроены на одинаковые значения задержки, а выходы включены через схему логического элемента «И» (модуль 42 110). При отказе одного из звеньев задержки 52 100 выходы переводятся в безопасное состояние.

Рис. 4: При избыточном подключении по схеме 1002 для приложений SIL 4

При избыточном подключении по схеме 2003 для приложений SIL 4

Три звена задержки 52 100 соединены через свои дискретные входы в резервную группу. Все три звена задержки сконфигурированы на одинаковые предельные значения, а выходы включены через схему 2003 (напр. модуль 42 500) При отказе двух звеньев задержки 52 100 выходы переводятся в безопасное состояние.

Рис. 5: При избыточном подключении по схеме 2003 для приложений SIL 4

Коммуникация через Modbus

Считывание переменных

Тип BOOL: Функциональный код 1 Тип WORD: Функциональный код 3

События: Функциональные коды 65, 66, 67

Относит. адрес	Тип данных	Значение	Значение	Относ. номер события
0	WORD	E1 H	Тип модуля 52 100	
1	BOOL	0	Отсутствует	
2	BOOL	1	Модуль извлечен	
3	BOOL	1	Коммуникация с модулем не в порядке	
4	BOOL	1	Модуль в наличии, коммуникация в порядке	
5	BOOL	1	Слишком низкое рабочее напряжение, не RDY	
6	BOOL	1	Ошибки модуля, ERR	
78	BOOL	0	Отсутствует	
9	BOOL	1	Сигнал 1 на управляющем входе d2	0
10	BOOL	1	Сигнал 1 на переключающем входе d4	1
1124	BOOL	0	Отсутствует	
25	WORD	065 535	Остаток времени, с	
26	BOOL	1	Сигнал 1 на выходе d22 \bar{Y}	24
27	BOOL	1	Сигнал 1 на выходе d24 Y	25
2833	BOOL	0	Отсутствует	

Таблица 3: Вся информация о модулях 52 100

Показатель: 0 всегда имеет противоположное значение

Н: 16-тиричное значение

абсолютный адрес: A = p * 256 + относит. адрес

абсол. номер события: E = (p - 1) * 32 + относ. номер события

р = № слота на модульной стойке

Считывание всех переменных

Функциональный код°3, 84 элемента WORD

начиная с адреса 2000 Н, 3000 Н или 4000 Н

	WORD 0 (16 бит)		WORD 1 (16 бит)		WORD 2 (16 бит)	WORD 3 (16 бит)	
Относит. адрес	0	81	2417	169	25		3326
Данные	Тип модуля	Статус модуля	Отсутствует	Отсутствует	Остаток времени, с	Отсутствует	Выходы

Для безошибочной передачи данных должны быть считаны все 84 элемента типа WORD. Таким образом будут переданы все переменные модулей одной модульной стойки. Для незанятых слотов пересылается значение 0.

Коммуникация через PROFIBUS-DP

Считывание переменных

Относительные адреса типа WORD и типа BYTE

Состояние модуля, сигналы на выходах

WORD	Бит	BYTE	Бит	Значение	Значение	
	07 0 07 E1 H		E1 H	Тип модуля 52 100		
	8		0	0	Отсутствует	
	9		1	1	Модуль извлечен	
	10		2	1	Коммуникация с модулем не в порядке	
0	11	1	3	1	Модуль в наличии, коммуникация в порядке	
	12		4	1	Слишком низкое рабочее напряжение, не RDY	
	13		5	1	Ошибки модуля, ERR	
	14		6	0	Отсутствует	
	15		7	0	Отсутствует	
	0		0	1	Сигнал 1 на управляющем входе d2	
1	1	2	1	1	Сигнал 1 на переключающем входе d4	
	27		27	0	Отсутствует	
	815	3	07	0	Отсутствует	
2	815	4	07	0127	Остаток времени (старший байт), с	
	07	5	07	0127	Остаток времени (младший байт), с	
	0		0	1	Сигнал 1 на выходе d24 Ÿ	
3	1	6	1	1	Сигнал 1 на выходе d22 Y1	
	27		27	0	Отсутствует	
	815	7	07	0	Отсутствует	

Таблица 4: Состояние модуля, сигналы на выходах

Показатель: 0 всегда имеет противоположное значение

Н: 16-тиричное значение

абсолютный адрес WORD: W = 4*(p-1) + относит. адрес абсолютный адрес BYTE: B = 8*(p-1) + относит. адрес

р = № слота на модульной стойке

Параметры защиты

В следующей таблице отображены параметры PFD, PFH и SFF для одиночного модуля 52 100 (1001) и для вариантов установки с резервированием 1002 и 2003.

Параметр	1001	1002	2003
PFD	8,333359*10 ⁻⁶ /ч	6,627255*10 ⁻⁷ /ч	6,656553*10 ⁻⁷ /ч
PFH	7,546215*10 ⁻¹⁰ /ч	7,198501*10 ⁻¹⁰ /ч	7,290996*10 ⁻¹⁰ /ч
SFF	99,764 %	99,7647 %	99,7647 %
Интервал повторной проверки		10 лет	