Chapter 1

Vortices

[Shifman:2012]

The second quantum soliton that we consider is the vortex in 2+1 dimensions in a model that in high-energy *Abelian Higgs mode* and in 3+1 dimensions was the first model proposed to make massive gauge fields in a gauge theory without losing gauge-invariance.

In its non-relativistic version in condensed matter it described by the *Landau-Ginzburg model* and in 3 space dimensions it was proposed as a phenomenological model for superconductors.

Our discussion will be performed in the Lagrangian formalism, starting from the classical model.

1.1 Classical treatment

The field content is made of a complex scalar field ϕ (whose complex conjugate is denote by ϕ^*) and a U(1) gauge field A_{μ} . The classical relativistic Lagrangian is

$$\mathcal{L} = -\frac{1}{4e^2} F_{\mu\nu}^2 + |F^{\mu}\phi|^2 - \lambda(|\phi|^2 - v^2)^2 \tag{1.1}$$

where e is the electric charge, the covariant derivative is defined by

$$D_{\mu}\phi = (\partial_{\mu} - in_e A_{\mu})\phi \tag{1.2}$$

and n_e is the electric charge of ϕ in units of e.

The non-relativistic Euclidean version replaces $|D^0\phi|^2$ by a first order term

$$|D^0\phi|^2 \quad \to \quad \phi^*(\partial_0 - in_e A_0)\phi \tag{1.3}$$

For the model of superconductivity ϕ is a field representing the large distance behaviour of the Cooper pairs generated by phonon attraction and $n_e \equiv 2$. The vortices that will be discusse later in fact really appear in nature.

A lattice version of such vortices, called $Abrikosov^{\rm I}$ vortices, is the equilibrium state of a class of superconductors in the presence of a magnetic field, orthogonal to the surface of the superconductors, whose direction will be denoted by z. The z-dependence is then trivial, and in the gauge $A_z = 0$ the 3+1 model reduces to a 2+1 model.

Notice that a typical characteristics of superconductors is the expulsion of the magnetic field (Meissner effect), but there are two behaviours of superconducting materials in this respect, called type I and type II. In type I the magnetic flux is completely expelled from the bulk of the material, whereas in type II it penetrates in the superconductor in tubes whose two-dimensional cross section are the vortices, as shown in fig. 1.1. Each of these tubes contains a flux $\frac{h}{e}$ and at equilibrium if they are sufficiently many^{II} they are arranged in a triangular lattice, the Abrikosov lattice.

^INobel prize in the 2003.

^{II}In order to increase the number of tubes one can increase the strength of the magnetic field.

Figure 1.1: Vortices created by the magnetic field in a type II superconductor.

The model is invariant under the U(1) gauge transformation

$$\begin{cases} \phi(x) & \to e^{i\beta(x)}\phi(x) \\ A_{\mu}(x) & \to A_{\mu}(x) + \frac{1}{in_e}e^{-i\beta(x)}\partial_{\mu}e^{i\beta(x)} = A_{\mu}(x) + \frac{1}{n_e}\partial_{\mu}\beta(x) \end{cases}$$
(1.4)

Let us first consider static configurations in the *temporal* gauge $A_0 = 0$, so that there is no difference between relativistic and non-relativistic models. The energy is given by

$$\mathcal{E}(\mathbf{A}(\mathbf{x}), \phi(\mathbf{x})) = \int d^2x \, \frac{1}{4e^2} F_{ij}^2 + |D_i\phi|^2 + \lambda (|\phi|^2 - v^2)^2$$

$$\tag{1.5}$$

and it has a global minimum for

$$\phi(\mathbf{x}) = ve^{i\theta} \quad \text{for} \quad \theta \in [0, 2\pi) \quad , \quad A_{\mu}(\mathbf{x})$$
 (1.6)

However by gauge invariance this configuration is physically equivalent to

$$\phi(\mathbf{x}) = ve^{i[\theta + \beta(\mathbf{x})]} \quad , \quad A_{\mu}(\mathbf{x}) = \frac{1}{in_e} e^{-i\beta(\mathbf{x})} \partial_{\mu} e^{i\beta(\mathbf{x})}$$
(1.7)

with $\beta(x)$ globally defined of compact support (indeed it cannot act on the boundary of the spacetime, otherwise it changes the boundary conditions).