### A. Setup in word

To set in word: a. Go to the Insert tab and select Symbol

- Ω Symbol ▼
- b. Click on 'More Symbols' and search for the desired symbol
- c. Select symbol and click on 'AutoCorrect'
- d. In the replace field write the name that you want to be replaced with the symbol

| ✓ Replace text as you type |       |              |
|----------------------------|-------|--------------|
| Replace:                   | With: | O Plain text |
| and                        | ^     |              |
|                            |       |              |

#### B. Intro

CNF – Conjunctive Normal Form

BDD - Binary Decision Diagram

- 1 not
- V disjunctie (OR)
- ^ conjunctie (AND)
- → implicatie logica

| p | q | $p \wedge q$ |
|---|---|--------------|
| T | T | T            |
| T | F | F            |
| F | T | F            |
| F | F | F            |

| P | q | $p \lor q$ |
|---|---|------------|
| T | T | T          |
| T | F | T          |
| F | T | T          |
| F | F | F          |

### Reguli:

Comutativitate:  $A \land G \equiv G \land A$ 

 $A \lor G \equiv G \lor A$ 

Asociativitate  $(A \land G) \land H \equiv A \land (G \land H)$ 

 $(A \lor G) \lor H \equiv A \lor (G \lor H)$ 

Absorbtie:  $A \land (A \lor G) \equiv A$ 

$$A \lor (A \land G) \equiv A$$

Distributivitate:  $A \land (G \lor H) \equiv (A \land G) \lor (A \land H)$ 

 $A \lor (G \land H) \equiv (A \lor G) \land (A \lor H)$ 

Negatie dubla:  $\neg \neg A \equiv A$ 

De Morgan's:  $\neg (A \land G) \equiv (\neg A \lor \neg G)$ 

 $\neg (A \lor G) \equiv (\neg A \land \neg G)$ 

Altele:

A V  $\neg$ A  $\equiv$  true A  $\land \neg$ A  $\equiv$  false A V true  $\equiv$  true

 $A \land false \equiv false (Zero Laws)$ 

A V false  $\equiv$  A

 $A \wedge true \equiv A (Identity Laws)$ 

CNF = o conjunctie (^) de disjunctii (V) de literali, clause

$$x \vee 1y \wedge z - NOT CNF$$

# $p \rightarrow q \Leftrightarrow 1p \lor q$

$$1(p \rightarrow q) \Leftrightarrow p \land 1q$$

### C. Exemple transformare in CNF

1. 
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

| х | у | z | $(x \vee y) \wedge (x \vee z)$ |
|---|---|---|--------------------------------|
| T | T | T | T                              |
| T | T | F | T                              |
| T | F | T | T                              |
| Т | F | F | T                              |
| F | T | T | T                              |
| F | T | F | F                              |
| F | F | Т | F                              |
| F | F | F | F                              |

2. 
$$(p \land q) \lor (p \land 1q) = ((p \land q) \lor p) \land ((p \land q) \lor 1q)$$
  

$$= ((p \lor p) \land (q \lor p)) \land ((p \lor 1q) \land (q \lor 1q))$$

$$= p \land (q \lor p) \land (p \lor 1q)$$

$$= p \land (p \lor 1q)$$

$$= p$$

3. 
$$a \rightarrow (b \rightarrow c) = a \rightarrow (1b \lor c)$$
  
=  $1a \lor (1b \lor c) - o$  clauza cu disjunctii

| а | b | С | $\neg a \lor \neg b \lor c$ |
|---|---|---|-----------------------------|
| T | T | T | T                           |
| T | T | F | F                           |
| T | F | Т | T                           |
| Т | F | F | T                           |
| F | T | T | T                           |
| F | T | F | T                           |
| F | F | T | T                           |
| F | F | F | T                           |

4. 
$$1 ((a \land b) \lor ((a \rightarrow (b \land c)) -> c)) = 1(a \land b) \land 1((a \rightarrow (b \land c)) -> c)$$

$$= (1a \lor 1b) \land 1((1a \lor (b \land c)) \lor c)$$

$$= (1a \lor 1b) \land (1a \lor (b \land c)) \land 1c$$

$$= (1a \lor 1b) \land (1a \lor (b \land c)) \land 1c$$

$$= (1a \lor 1b) \land (1a \lor b) \land (1a \lor c) \land 1c \ (dam \ factor \ comun \ pe \ 1a)$$

$$= 1a \lor (1b \land b) \land (1a \lor c) \land 1c \ ((1b \land b) = F)$$

$$= 1a \land (1a \lor c) \land 1c \ (aborbtie)$$

$$= 1a \land 1c$$

| а | С | $\neg a \land \neg c$ |
|---|---|-----------------------|
| T | T | F                     |
| T | F | F                     |
| F | T | F                     |
| F | F | T                     |

5. 
$$(a \rightarrow (b \lor c)) \rightarrow (a \land d) = \neg (a \rightarrow (b \lor c)) \lor (a \land d)$$

$$\equiv (a \land \neg (b \lor c)) \lor (a \land d)$$

$$\equiv (a \land \neg b \land \neg c) \lor (a \land d)$$

$$\equiv ((a \land \neg b \land \neg c) \lor a) \land ((a \land \neg b \land \neg c) \lor d) \text{ (absorbtie)}$$

$$\equiv a \land ((a \land \neg b \land \neg c) \lor d)$$

$$\equiv a \land (a \lor d) \land (\neg b \lor d) \land (\neg c \lor d) \text{ (absorbtie)}$$

$$\equiv a \land (\neg b \lor d) \land (\neg c \lor d) \text{ (CNF)}.$$

https://www.wolframalpha.com/input?i=CNF%28a+and+b%29

#### D. Exemple transformare BDD

stanga – false

# dreapta - true





# Tema:

1. transformati in CNF: (p  $\rightarrow$  (q  $\rightarrow$  r))  $\rightarrow$  (p  $\rightarrow$  (r  $\rightarrow$  q))

2. transformati in CNF: (p  $\rightarrow$  q)  $\rightarrow$  ((q  $\rightarrow$  r)  $\rightarrow$  (p  $\rightarrow$  r))

3. BDD pentru: ((x1  $^{\lor}$  x2)  $^{\land}$  ( $^{1}$ x1  $^{\lor}$   $^{1}$ x2))