1 Smooth Functions

First we recall the definition of smoothness for domains in \mathbb{R}^n . Let $U \subset \mathbb{R}^n$ be open with $\mathbf{p} \in U$.

Definition: We say that $f: U \to \mathbb{R}^m$ is differentiable at $\mathbf{p} \in U$ if there is a linear map $f_{\mathbf{p}}': \mathbb{R}^n \to \mathbb{R}^n$ such that,

$$\lim_{\mathbf{h}\to 0} \frac{1}{|\mathbf{h}|} |f(\mathbf{p} + \mathbf{h}) - f(\mathbf{p}) - f'_{\mathbf{p}}(\mathbf{h})| = 0$$

 $f: U \to \mathbb{R}^m$ is differentiable if f is differentiable at each $\mathbf{p} \in U$.

Definition: Denote the vectorspace of continuous functions $U \to \mathbb{R}^m$ by \mathcal{C}^0 and for n > 0 define,

$$\mathcal{C}^n = \{ f : U \to \mathbb{R}^m \mid \forall p \in U : f'_p \text{ exists and } \forall \mathbf{v} \in \mathbb{R}^n : f'_{\mathbf{v}} \in \mathcal{C}^{n-1} \}$$

where $f'_{\mathbf{v}}$ is the map $\mathbf{p} \mapsto f'_{\mathbf{p}}(\mathbf{v})$. Furthermore, the space of smooth functions is,

$$\mathcal{C}^{\infty} = \bigcap_k \mathcal{C}^k$$

Proposition 1.1. A function $f: U \to \mathbb{R}^m$ is \mathcal{C}^k if f is differentiable k times and the k^{th} -derivative $f^{(k)}: U \to \mathbb{R}^m$ is continuous. Furthermore f is called \mathcal{C}^{∞} or smooth if it is \mathcal{C}^k for all $k \leq 0$.

Proposition 1.2. If $f: U \to \mathbb{R}^m$ is differentiable then f is continuous.

Proof. Becuase f'_p is linear it has limit zero as $\mathbf{h} \to 0$,

$$\lim_{\mathbf{h}\to 0} |f(\mathbf{p}+\mathbf{h}) - f(\mathbf{p})| = \lim_{\mathbf{h}\to 0} |f(\mathbf{p}+\mathbf{h}) - f(\mathbf{p}) - f_p'(\mathbf{h})| = 0$$

and the second term has zero limit by differentiability.

Proposition 1.3. Let $f:U\to V$ and $g:V\to\mathbb{R}^m$ be differentiable. Then the composition has derivative,

$$(g\circ f)'_{\mathbf{p}}=g'_{f(\mathbf{p})}\circ f'_{\mathbf{p}}$$

Proposition 1.4. Let $f, g: U \to \mathbb{R}$ be differentiable functions on $U \subset \mathbb{R}^n$ then,

$$(fg)'_{\mathbf{p}} = f(\mathbf{p})g'_{\mathbf{p}} + g(\mathbf{p})f'_{\mathbf{p}}$$

Proof. Consider,

$$(fg)(\mathbf{p} + \mathbf{h}) - (fg)(\mathbf{p}) = f(\mathbf{p} + \mathbf{h})g(\mathbf{p} + \mathbf{h}) - f(\mathbf{p})g(\mathbf{p})$$
$$= f(\mathbf{p} + \mathbf{h})[g(\mathbf{p} + \mathbf{h}) - g(\mathbf{p})] + [f(\mathbf{p} + \mathbf{h}) - f(\mathbf{p})]g(\mathbf{p})$$

Therefore,

$$Q(\mathbf{h}) = (fg)(\mathbf{p} + \mathbf{h}) - (fg)(\mathbf{p}) - [f(\mathbf{p} + \mathbf{h})g'_{\mathbf{p}}(\mathbf{h}) + g(\mathbf{p})f'_{\mathbf{p}}(\mathbf{h})]$$

= $f(\mathbf{p} + \mathbf{h})[g(\mathbf{p} + \mathbf{h}) - g(\mathbf{p}) - g'_{\mathbf{p}}(\mathbf{h})] + [f(\mathbf{p} + \mathbf{h}) - f(\mathbf{p}) - f'_{\mathbf{p}}(\mathbf{h})]g(\mathbf{p})$

which implies that,

$$\lim_{\mathbf{h} \to 0} \frac{1}{|\mathbf{h}|} |Q(\mathbf{h})| = 0$$

since both,

$$\lim_{\mathbf{h}\to 0} \frac{1}{|\mathbf{h}|} |f(\mathbf{p} + \mathbf{h}) - f(\mathbf{p}) - f'_{\mathbf{p}}(\mathbf{h})| = 0$$

and

$$\lim_{\mathbf{h}\to 0} \frac{1}{|\mathbf{h}|} \left| g(\mathbf{p} + \mathbf{h}) - g(\mathbf{p}) - g'_{\mathbf{p}}(\mathbf{h}) \right| = 0$$

Finally,

$$D(\mathbf{h}) = (fg)(\mathbf{p} + \mathbf{h}) - (fg)(\mathbf{p}) - [f(\mathbf{p})g_{\mathbf{p}}'(\mathbf{h}) + g(\mathbf{p})f_{\mathbf{p}}'(\mathbf{h})] = Q(\mathbf{h}) + [f(\mathbf{p} + \mathbf{h}) - f(\mathbf{p})]g_{\mathbf{p}}'(\mathbf{h})$$

And thus,

$$\frac{1}{|\mathbf{h}|}|D(\mathbf{h})| = \frac{1}{|\mathbf{h}|}|Q(\mathbf{h}) + [f(\mathbf{p} + \mathbf{h}) - f(\mathbf{p})]g_{\mathbf{p}}'(\mathbf{h})| \le \frac{1}{|\mathbf{h}|}|Q(\mathbf{h})| + \frac{|g_{\mathbf{p}}'(\mathbf{h})|}{|\mathbf{h}|}|f(\mathbf{p} + \mathbf{h}) - f(\mathbf{p})|$$

Since $g'_{\mathbf{p}}$ is linear, by Lemma 15.1, we can find some bound M such that,

$$\frac{|g_{\mathbf{p}}'(\mathbf{h})|}{|\mathbf{h}|} \le M$$

for all **h**. Therefore,

$$\frac{1}{|\mathbf{h}|}|D(\mathbf{h})| \le \frac{1}{|\mathbf{h}|}|Q(\mathbf{h})| + M|f(\mathbf{p} + \mathbf{h}) - f(\mathbf{p})|$$

and both terms have limit zero. Thus,

$$\lim_{bfh\to 0} \frac{1}{|\mathbf{h}|} |D(\mathbf{h})| = 0$$

2 Manifolds

Definition: A topolgoical space M is an n-manifold if it is Hausdorff, second countable, and locally Euclidean. That is, there exists an open cover by charts (U, φ) with homeomorphisms $\varphi: U \to V$ where $V \subset \mathbb{R}^n$ is open. Such an open cover by charts (U, φ) is called an atlas.

Definition: An atlas is smooth if for each pairs of charts $(U_{\alpha}, \varphi_{\alpha})$ and $(U_{\beta}, \varphi_{\beta})$ the transition maps

$$\varphi_{\beta} \circ \varphi_{\alpha}^{-1} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$$

are \mathcal{C}^{∞} . Likewise, an atlas is analytic, rational, or holomorphic if the transition maps are.

Definition: A smooth atlas is maximal if whenever (U, φ) is a chart compatible with the atlas then (U, φ) is a member of the atlas.

Proposition 2.1. Every smooth atlas is contained in a unique maximal atlas.

Definition: A topological space M is a smooth n-manifold if it is a manifold with a smooth structure. That is M equiped with a maximal smooth atlas.

Remark 1. Any smooth atlas is contained in a unique maximal atlas and thus any smooth atlas on M defines a unique smooth structure.

Definition: A map $F: M \to N$ between smooth manifolds is smooth if for each point $\mathbf{p} \in M$ there exists a chart (U, φ) of M and (V, ψ) of N such that $\mathbf{p} \in U$ and $F(U) \subset V$ and $\psi \circ F \circ \varphi^{-1} : \varphi(U) \to \psi(V)$ is smooth.

3 Sheaves

Definition: Let X be a topological space and \mathcal{C} a category. A pre-sheaf on X is a contravariant functor $\mathcal{F}: X^{\mathrm{op}} \to \mathcal{C}$ where X is a directed category on the open sets with inclusion maps. We call $\mathcal{F}(U)$ the sections restricted to U and for $U \subset V$ the maps res: $\mathcal{F}(V) \to \mathcal{F}(U)$ restriction maps denoted $s|_{U} = \mathrm{res}_{UV}(s)$.

Definition: A sheaf on X is a pre-sheaf such that for each open $U \subset X$ and open cover $\{U_{\alpha}\}$ of U the diagram,

$$\mathcal{F}(U) \xrightarrow{eq} \prod \mathcal{F}(U_{\alpha}) \Longrightarrow \prod \mathcal{F}(U_{\alpha} \cap U_{\beta})$$

is an equalizer of the maps defined by the products res : $U_{\alpha} \to U_{\alpha} \cap U_{\beta}$ and the products of the maps res : $U_{\beta} \to U_{\alpha} \cap U_{\beta}$ respectively. This is equivalent to the following conditions: let $\{U_{\alpha}\}$ be an open cover of $U \subset X$ then,

• If $s, t \in F(U)$ such that $s|_{U_{\alpha}} = t|_{U_{\alpha}}$ for each U then s = t.

• Suppose we have $s_{\alpha} \in \mathcal{F}(U_{\alpha})$ such that $s_{\alpha}|_{U_{\alpha} \cap U_{\beta}} = s_{\beta}|_{U_{\alpha} \cap U_{\beta}}$ then there exists a section $s \in F(U)$ such that $s|_{\alpha} = s_{\alpha}$ for each α .

Definition: Let \mathcal{F} and G be sheaves on X. Then a morphisms of sheaves $\varphi : \mathcal{F} \to \mathcal{G}$ is a natural transformation between the functors \mathcal{F} and \mathcal{G} . That is a collection of maps $\varphi_U : \mathcal{F}(U) \to \mathcal{G}(U)$ such that,

$$\mathcal{F}(U) \xrightarrow{\operatorname{res}_{V,U}} \mathcal{F}(V)$$

$$\downarrow^{\varphi_U} \qquad \qquad \downarrow^{\varphi_V}$$

$$\mathcal{G}(U) \xrightarrow{\operatorname{res}_{V,U}} \mathcal{G}(V)$$

whenever $V \subset U$.

Definition: Let $f: X \to Y$ be a continuous map and \mathcal{F} a sheaf on X. Then $f_*\mathcal{F}$ is a sheaf on Y defined by $f_*\mathcal{F}(V) = \mathcal{F}(f^{-1}(V))$ for $V \subset Y$ with the restriction maps on the preimages. Furthermore, f_* is a functor from the category of sheaves over X to sheaves over Y by sending a sheaf map $g^{\#}: \mathcal{F} \to \mathcal{G}$ to the sheaf map $f_*g^{\#}: f_*\mathcal{F} \to f_*\mathcal{G}$ given by $(f_*g^{\#})_U = g_{f^{-1}(U)}^{\#}$ such that the diagram commutes due to naturality of $g^{\#}$,

$$\mathcal{F}(f^{-1}(U)) \xrightarrow{f_* \operatorname{res}_{V,U}} \mathcal{F}(f^{-1}(V))$$

$$\downarrow^{g_{f^{-1}(U)}^{\#}} \qquad \qquad \downarrow^{g_{f^{-1}(V)}^{\#}}$$

$$\mathcal{G}(f^{-1}(U)) \xrightarrow{f_* \operatorname{res}_{V,U}} \mathcal{G}(f^{-1}(V))$$

Definition: Let \mathcal{F} be a sheaf on X. For $p \in X$ the stalk at p is given by,

$$\mathcal{F}_p = \varinjlim_{p \in U} \mathcal{F}(U)$$

under the directed system given by restricting two neighborhoods to their intersection.

Definition: Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be ringed spaces. Then a morphism of ringed spaces $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ is a continuous map $f: X \to Y$ and a morphism of sheaves $f^{\#}: \mathcal{O}_Y \to f_*\mathcal{O}_X$.

Lemma 3.1. If $f^{\#}: \mathcal{F} \to \mathcal{G}$ is a map of sheaves on X then $f^{\#}$ induces a map on stalks $f^{\#}: \mathcal{F}_p \to \mathcal{G}_p$ for any $p \in X$.

Proof. Since $f^{\#}$ is a map of sheaves, each inclusion of $f_U^{\#}$ into \mathcal{G}_p is compatible with the restriction maps and thus lists to a map $f^{\#}: \mathcal{F}_p \to \mathcal{G}_p$. Furthermore,

Definition: Given a continous map $f: X \to Y$ and a sheaf \mathcal{F} on X there is a natural inclusion $(f_*\mathcal{F})_{f(p)} \to \mathcal{F}_p$.

Proof. By definition, the inclusion maps $\iota : \mathcal{F}(f^{-1}(V)) \to \mathcal{F}_p$ for $f(p) \subset V$ are compatible with restrictions. Therefore, we get a map $(f_*\mathcal{F})_{f(p)} \to \mathcal{F}_p$.

Definition: A space (X, \mathcal{O}_X) is locally ringed if $\mathcal{O}_{X,p}$ is a local ring for each $p \in X$. A morphism of locally ringed spaces is a morphism of ringed spaces such that the induced map $f^{\#}: \mathcal{O}_{Y,f(p)} \to (f_*\mathcal{O}_X)_{f(p)} \to \mathcal{O}_{X,p}$ is a local map. That is, considering the unique maximal ideals $\mathfrak{m}_{Y,f(p)} \subset \mathcal{O}_{Y,f(p)}$ and $\mathfrak{m}_{X,p} \subset \mathcal{O}_{X,p}$ then $f^{\#}(\mathfrak{m}_{Y,f(p)}) \subset \mathfrak{m}_{X,p}$.

3.1 The Sheaf of Smooth Functions

Definition: Let M be a smooth manifold and let \mathcal{C}_M^k be the sheaf of \mathcal{C}^k functions on M. Define $\mathcal{O}_M = \mathcal{C}_M^{\infty}$ to be the sheaf of smooth functions on M.

Now we can redefine the basics of smooth manifolds in terms of structure sheaves.

Definition:

Definition: A smooth manifold is a locally ringed second countable Hausdroff space (M, \mathcal{O}_M) with a covering by open sets (U, \mathcal{O}_U) which are isomorphic as ringed spaces to (V, \mathcal{O}_M) for some open $V \subset \mathbb{R}^n$ where \mathcal{O}_V is the sheaf of smooth functions on V.

Definition: Let (M, \mathcal{O}_M) and (N, \mathcal{O}_N) be smooth manifolds. A smooth map from M to N is a morphism of locally ringed spaces $(F, F^{\#}) : (M, \mathcal{O}_M) \to (N, \mathcal{O}_N)$.

Theorem 3.2. These definitions coincide with the classical definitions.

4 The Tangent Space

Definition: Let (M, \mathcal{O}) be a smooth-manifold. The cotangent space at $p \in M$ is the quotient $T_p^*M = \mathfrak{m}_p/\mathfrak{m}_p^2$ where \mathfrak{m}_p is the maximal ideal of the stalk \mathcal{O}_p given by germs of functions vanishing at p. The tangent space is the dual $T_pM = (T_p^*M)^*$.

Remark 2. Since T_pM is defined from the stalk of \mathcal{O} then T_pU is identical to T_pM for any open U containing p.

Proposition 4.1. Given the manifold $(\mathbb{R}^n, \mathcal{C}_{\mathbb{R}^n}^{\infty})$ we have $T_{\mathbf{p}}^* \mathbb{R}^n \cong (\mathbb{R}^n)^*$.

Proof. Let $f \in \mathcal{C}^{\infty}_{\mathbb{R}^n}$ be smooth. Then we have,

$$f(\mathbf{x}) = f(\mathbf{p}) + f'_{\mathbf{p}}(\mathbf{x} - \mathbf{p}) + E(\mathbf{x})$$

where $E(\mathbf{p}) = E'_{\mathbf{p}} = 0$. Then we have,

$$\mathfrak{m}_{\mathbf{p}} = \{ [f] \mid f \in \mathcal{C}_U^{\infty} \text{ such that } f(\mathbf{p}) = 0 \}$$

If $[g] = [h_1h_2]$ so on some neighborhood U we have g = ab with $a(\mathbf{p}) = b(\mathbf{p}) = 0$. Thus,

$$g'_{\mathbf{p}}(\mathbf{x}) = a(\mathbf{p}) \cdot b'_{\mathbf{p}}(\mathbf{x}) + a'_{\mathbf{p}}(\mathbf{x}) \cdot b(\mathbf{p}) = 0$$

so if $[g] \in \mathfrak{m}_{\mathbf{p}}^2$ then $g'_{\mathbf{p}} = 0$. Furthermore, if $E(\mathbf{p}) = 0$ and $E'_{\mathbf{p}} = 0$ then I claim that $[E] \in \mathfrak{m}_{\mathbf{p}}^2$. Consider the smooth functions,

$$f_i = \frac{x_i - p_i}{(\mathbf{x} - \mathbf{p})^2} E$$

These are smooth because

$$\lim_{|\mathbf{h}| \to 0} |f_i(\mathbf{p} + \mathbf{h})| = \lim_{|\mathbf{h}| \to 0} \left| \frac{E(\mathbf{p} + \mathbf{h})}{|\mathbf{h}|} \right| \cdot \frac{|h_i|}{|\mathbf{h}|} = 0$$

which is zero because E has zero derivative and value at **p**. Let $g_i(\mathbf{x}) = (x_i - p_i)$ then

$$E = \sum_{i=1}^{n} f_i(\mathbf{x}) g_i(\mathbf{x})$$

where $f_i(\mathbf{p}) = g_i(\mathbf{p}) = 0$ and thus $E \in \mathfrak{m}_{\mathbf{p}}^2$. Define the map, $\Phi : \mathfrak{m}_{\mathbf{p}} \to (\mathbb{R}^n)^*$ by $\Phi([f]) = f'_{\mathbf{p}}$ which is a linear functional. We have shown that $\ker \Phi = \mathfrak{m}_{\mathbf{p}}^2$. Furthermore, Φ is surjective because $[g_i] \mapsto \hat{e}_i$. By the first isomorphism theorem,

$$T_{\mathbf{p}}^* \mathbb{R}^n = \mathfrak{m}_{\mathbf{p}}/\mathfrak{m}_{\mathbf{p}}^2 \cong (\mathbb{R}^n)^*$$

Definition: A smooth $f: M \to N$ defines a linear map $f_p^*: T_{f(p)}^*N \to T_p^*M$ given by sending $[g] \in \mathfrak{m}_{f(p)}^N$ to $[g \circ f] \in \mathfrak{m}_p^M$. The dual map defines the differential,

$$\mathrm{d}f_p = (f_*)_p = (f_p^*)^* : T_p M \to T_{f(p)} M$$

Remark 3. The map $f_p^*: T_{f(p)}^*N \to T_p^*M$ is well-defined by Lemma 15.2 because the induced map $f_p^*: \mathfrak{m}_{f(p)}^N \to \mathfrak{m}_p^M$ is an algebra homomorphism.

Proposition 4.2. The tangent T_p is a covariant and the cotangent T_p^* is a contravariant functor from the category of smooth manifolds to the category of \mathbb{R} -vectorspaces.

Proof. For $f: M \to N$ and $g: N \to R$ smooth maps then,

$$(g \circ f)_p^*([h]) = [h \circ g \circ f] = f_p^*[h \circ g] = f_p^*(g_{f(p)}^*([h]))$$

and $id_p^*([h]) = [h \circ id] = [h]$. Thus, taking the dual map of vectorspaces,

$$\operatorname{d}(g \circ f)_p = ((g \circ f)_p^*)^* = (f_p^* \circ g_{f(p)}^*)^* = \operatorname{d}g_{f(p)} \circ \operatorname{d}f_p$$

Corollary 4.3. Let M be a smooth n-manifold. Then $T_pM \cong \mathbb{R}^n$ at each $p \in M$.

Proof. For $p \in M$ there is some chart $\varphi : U \xrightarrow{\sim} V$ for open $V \subset \mathbb{R}^n$. with $p \in U$. Thus, since φ has a smooth inverse, the map $d\varphi_p : T_pM \xrightarrow{\sim} T_{\varphi(p)}\mathbb{R}^n \cong \mathbb{R}^n$ is an isomorphism.

Definition: A linear functional $X : \mathcal{O}_p \to \mathbb{R}$ is called a derivation if is satisfies the Leibniz rule,

$$X(fg) = X(f)g(p) + f(p)X(g)$$

Proposition 4.4. T_pM is canonically isomorphic to the space of derivations at p.

Proof. Take $X \in T_pM = (T_p^*M)^*$ then $X : \mathfrak{m}_p/\mathfrak{m}_p^2 \to \mathbb{R}$. Given any germ $f \in \mathcal{O}_p$ we can extend X to act on f by $X(f) = X(\tilde{f})$ where $\tilde{f} = f - f(p) \in \mathfrak{m}_p/\mathfrak{m}_p^2$. Then take $f, g \in \mathcal{O}_p$ and consider,

$$X(fg) = X(fg - f(p)g(p)) = X(\tilde{f}\tilde{g} + \tilde{f}g(p) + f(p)\tilde{g})$$

= $X(\tilde{f}\tilde{g}) + X(\tilde{f})g(p) + f(p)X(\tilde{g}) = X(f)g(p) + f(p)X(g)$

because $\tilde{f}\tilde{g} \in \mathfrak{m}_p^2$ so $X(\tilde{f}\tilde{g}) = 0$. Thus, X is a derivation at p. Furthermore, any derivation is automatically a linear map $\mathfrak{m}_p \to \mathbb{R}$ so we only need to show that it descends to the quotient. Take $f, g \in \mathfrak{m}_p$ then we have,

$$X(fg) = X(f)g(p) + f(p)X(g) = 0$$

because f(p) = g(p) = 0. Thus, X is zero on \mathfrak{m}_p^2 so it factors through the quotient as a linear map $\tilde{X} : \mathfrak{m}_p/\mathfrak{m}_p^2 \to \mathbb{R}$ which an element of the dual space $(\mathfrak{m}_p/\mathfrak{m}_p^2)^* = T_pM$. Therefore, T_pM is canonically identified with the space of derivations.

4.1 The Tangent Bundle

4.2 Product Manifolds

Proposition 4.5. Let M and N be smooth manifolds of dimensions m and n then $M \times N$ naturally has a smooth structure making it a smooth m+n-manifold such that the projection maps are smooth.

Proposition 4.6. For $(p,q) \in M \times N$ we have, $T_{p,q}(M \times N) \cong T_pM \oplus T_qN$.

Proof. Consider the map $\Phi: T_p^*M \oplus T_q^*N \to T_{p,q}^*(M \times N)$ defined by $\Phi = \pi_1^* + \pi_2^*$ acting on $f \in \mathfrak{m}_p$ and $g \in \mathfrak{m}_q$ via $[f] \oplus [g] \mapsto [f \circ \pi_1 + g \circ \pi_2]$. Suppose that $\Phi([f] \oplus [g]) = 0$ then let $F = f \circ \pi_1 + g \circ \pi_2 \in \mathfrak{m}_{p,q}$ on some neighborhood of p, q. Thus we can write,

$$F = \sum_{i=1}^{n} a_i b_i$$

with $a_i, b_i \in \mathfrak{m}_{p,q}$. Then,

$$F(x,q) = \sum_{i=1}^{n} a_i(x,q)b_i(x,q)$$

and $a_i(-,q), b_i(-,q) \in \mathfrak{m}_p$ thus $F(-,q) \in \mathfrak{m}_p^2$. However, F(x,p) = f(x) + g(q) = f(x) so $f \in \mathfrak{m}_p^2$. Similarly, $g \in \mathfrak{m}_q$. Thus Φ is injective. Clearly, Φ is linear. Furthermore,

$$\dim \left(T_p^*M \oplus T_q^*N\right) = m + n = \dim T_{p,q}^*(M \times N)$$

Thus, Φ must be surjective by rank-nullty. Thus, Φ is an isomorphism. Taking the dual map we get an isomorphism,

$$\Phi^*: T_{p,q}(M \times N) \xrightarrow{\sim} T_pM \oplus T_qN$$

given explictly by $\Phi^* = (\pi_1)_* \oplus (\pi_2)_*$ since,

$$\Phi^*(X)([f] \oplus [g]) = X(\Phi([f] \oplus [g])) = X([f \circ \pi_1 + g \circ \pi_2])$$

$$= X([f \circ \pi_1]) + X([g \circ \pi_2]) = (\pi_1)_* X([f]) + (\pi_2)_* X([g])$$

$$= \Big((\pi_1)_* X \oplus (\pi_2)_* X\Big)([f] \oplus [g])$$

Proposition 4.7. Let $f: P \to M \times N$ a smooth map of smooth manifolds then

$$df_p = d(\pi_M \circ f)_p \oplus d(\pi_N \circ f)_p : T_p P \to T_{\pi_1(f(p))} M \oplus T_{\pi_2(f(p))} N$$

Proof. Let $X \in T_pP$ be a derivation (or linear functional on $T_p^*P = \mathfrak{m}_p/\mathfrak{m}_p^2$). Then consider,

$$\Phi^* \circ \mathrm{d} f_p(X) = (\pi_1)_* \circ \mathrm{d} f_p X \oplus (\pi_2)_* \circ \mathrm{d} f_p X = \left(\mathrm{d} (\pi_M \circ f)_p \oplus \mathrm{d} (\pi_N \circ f)_p \right) (X)$$

Proposition 4.8. Let $f: M \times N \to P$ a smooth map of smooth manifolds then

$$df_{p,q} = d(f \circ \iota_M^q)_p + d(f \circ \iota_N^p)_q$$

where $\iota_M^q: M \to M \times N$ is the inclusion $x \mapsto (x,q)$.

Proof. Let $X_1 \oplus X_2 \in T_pM \oplus T_qN$ be derivations corresponding to $X \in T_{p,q}(M \times N)$ I claim that $(\Phi^*)^{-1}(X_1 \oplus X_1) = (\iota_M^q)_*X + (\iota_N^p)_*X$. It is easy to check that,

$$\Phi^* \circ (\Phi^*)^{-1}(X_1 \oplus X_1) = \Phi^*((\iota_M^q)_* X_1 + (\iota_N^p)_* X_2) = (\pi_1)_* (\iota_M^q)_* X_1 \oplus (\pi_2)_* (\iota_N^p)_* X_2$$
$$= (\pi_1 \circ \iota_M^q)_* X \oplus (\pi_2 \circ \iota_N^p)_* X$$

where the cross terms vanish because $\pi_1 \circ \iota_N^p$ is a constant map which has zero differential. Furthermore, $\pi_1 \circ \iota_M^q = \mathrm{id}_M$ so $(\pi_1 \circ \iota_M^q)_* = \mathrm{id}_{T_pM}$. Thus,

$$\Phi^* \circ (\Phi^*)^{-1}(X_1 \oplus X_1) = (\pi_1)_*(\iota_M^q)_* X_1 \oplus (\pi_2)_*(\iota_N^p)_* X_2 = X_1 \oplus X_2$$

Since Φ^* is invertible, this must be its two-sided inverse. Now consider,

$$df_{p,q} \circ (\Phi^*)^{-1}(X_1 \oplus X_2) = df_{p,q}((\iota_M^q)_* X_1 + (\iota_N^p)_* X_2)$$

$$= (df_{p,q} \circ (\iota_M^q)_*) X_1 + (df_{p,q} \circ (\iota_N^p)_*) X_2$$

$$= d(f \circ \iota_M^q) X_1 + d(f \circ \iota_N^p) X_2$$

4.3 Vector Fields

4.4 Tensors and Tensor Fields

5 Oct. 2

Lemma 5.1. Let X be a smooth vector field on a smooth manifold M such that $\operatorname{Supp}(X) = \{p \in M \mid X_p \neq 0\}$ is compact. Then there exists a smooth $\phi : \mathbb{R} \times M \to M$ such that $\operatorname{d}\phi_p\left(\frac{\operatorname{d}}{\operatorname{d}t}\right) = X(\phi(t,p))$ and $\phi(0,p) = p$.

Proof. Let $K = \operatorname{Supp}(X)$ which is compact in M. For $p \notin K$ then X(p) = 0 so $\phi(t,p) = \phi(p)$. For $p \in K$ let U_p be an open neighborhood of p then a function satisfying the properties $\phi: (-\epsilon_p, \epsilon_p) \times U_p \to M$ is defined. By the compactess of K we need only a finite number of U_p to cover K so we can take the minimum of the ϵ_p . Then ϕ is defined on K.

Definition: Take $X \in \mathcal{C}^{\infty}(M, TM)$. The Lie derivative $\mathcal{L}_X : \mathcal{C}^{\infty}M \to \mathcal{C}^{\infty}M$ given by $\mathcal{L}_X(f)(p) = X_p(f)$ is \mathbb{R} -linear and satisfies the product rule.

Definition: For $X, Y \in \mathcal{C}^{\infty}(M, TM)$ then the Lie derivative on vector fields is a map $\mathcal{L}_X : \mathcal{C}^{\infty}(M, TM) \to \mathcal{C}^{\infty}(M, TM)$ given by $\mathcal{L}_X Y = [X, Y]$ and is \mathbb{R} -linear and satisfies the product rule,

$$\mathcal{L}_X(fY) = (\mathcal{L}_X f)Y + f\mathcal{L}_X Y$$

Definition: Let $F; M \to N$ be a diffeomorphism and $X \in \mathcal{C}^{\infty}(M, TM)$ define F_*X by $(F_*X)_q = \mathrm{d}F_{F^{-1}(q)}(X_{F^{-1}(q)})$ and for $Y \in \mathcal{C}^{\infty}(N, TN)$ then $F^*Y = (F_{-1})_*Y$.

Proposition 5.2. Let $X \in \mathcal{C}^{\infty}(M, TM)$ and ϕ the local flow of X then,

1. For $f \in \mathcal{C}^{\infty}(M)$ we have,

$$X_p(f) = \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0} (\phi_t^* f)(p) = \lim_{t \to 0} \frac{f \circ \phi_t(p) - f(p)}{t}$$

2. For $Y \in \mathcal{C}^{\infty}(M, TM)$ we have,

$$[X, Y]_p = -\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} ([\phi_t]_* Y)_p = \lim_{t\to 0} \frac{Y_p - ([\phi_t]_* Y)_p}{t}$$

Proof. Let,

$$T = \frac{\mathrm{d}}{\mathrm{d}t} \bigg|_{t=0}$$

be the standard derivation at zero on \mathbb{R} . Then $T(f \circ \phi_t(p)) = d\phi_p(T)(f) = X_p(f)$. \square

9

6 Vector Bundles

Definition: $\pi_E: E \to M$ is a \mathcal{C}^{∞} -vector bundle over M of rank r if there exists an open cover $\{U_{\alpha}\}$ of M such that π_E is locally trivialized via,

for each U_{α} .

Definition: The (r, s)-tensor bundle on M is the bundle,

$$T_s^r M = (TM)^{\otimes r} \otimes (T^*M)^{\otimes s}$$

Furthermore, the bundle of k-forms is given by the kth exterior power,

$$\bigwedge^k T^*M \subset (T^*M)^{\otimes k}$$

Thus every k-form is a (0, k)-tensor.

7 Differential Forms

Definition: The space of differential k-forms on M is,

$$\Omega^k(M) = \mathcal{C}^{\infty}\left(M, \bigwedge^k T^*M\right)$$

which are smooth sections of the bundle of k-forms.

Definition: The exterior derivative is an \mathbb{R} -linear map,

$$d: \Omega^s(M) \to \Omega^{s+1}(M)$$

satisfying,

- 1. For $f \in \Omega^0(M) = \mathcal{C}^{\infty}(M)$ the 1-form df is the differential.
- 2. For $f \in \Omega^0(M)$ we have ddf = 0.
- 3. For $\alpha \in \Omega^r(M)$ and $\beta \in \Omega^s(M)$ then $d(\alpha \wedge \beta) = d\alpha \wedge \beta + \alpha \wedge d\beta$.
- 4. We have $d \circ d = 0$ i.e. $\forall \omega \in \Omega^s(M)$ we have $dd\omega = 0$.
- 5. Let $\phi: M \to N$ be smooth and $\omega \in \Omega^s(N)$ then $\phi^* d\omega = d(\phi^* \omega)$ i.e. $d \circ \phi^* = \phi^* \circ d$.

- 6. Let X be a smooth vector field then $d \circ \mathcal{L}_X = \mathcal{L}_X \circ d$.
- 7. For $\alpha \in \Omega^s(M)$ and X_0, \ldots, X_s are smooth vector fields then,

$$d\alpha(X) = \sum_{i=0}^{s} (-1)^{i} X_{i} (\alpha(X|_{\text{not } i})) + \sum_{1 \le i < j \le s} (-1)^{i+j} \alpha([X_{i}, X_{j}], X_{0}, \dots, \hat{X}_{i}, \dots, \hat{X}_{j}, \dots, X_{s})$$

Definition: The space of all differential forms is,

$$\Omega^*(M) = \bigoplus_{k=1}^{\infty} \Omega^k(M)$$

Definition: Consider the cochain complex,

$$0 \longrightarrow \Omega^{0}(M) \xrightarrow{d^{0}} \Omega^{1}(M) \xrightarrow{d^{1}} \Omega^{2}(M) \xrightarrow{d^{2}} \Omega^{3}(M) \xrightarrow{d^{3}} \Omega^{4}(M) \longrightarrow \cdots$$

The de Rham cohomology is the cohomology of this complex,

$$H^k_{\mathrm{dR}}(M,\mathbb{R}) = \ker d^k/\mathrm{Im}(d^{k-1})$$

Definition: The interior derivative, for a smooth vector field $X \in \mathcal{C}^{\infty}(M, TM) = \mathscr{X}(M)$, is an \mathbb{R} -linear map on forms,

$$\iota_X:\Omega^s(M)\to\Omega^{s-1}(M)$$

defined by,

$$\iota_X(\alpha)(Y_1,\ldots,Y_{s-1}) = \alpha(X,Y_1,\ldots,Y_{s-1})$$

for any smooth vector fields $Y_1, \ldots, Y_{s-1} \in \mathcal{X}(M)$.

8 Remannian Manifolds

Definition: A Remannian metric g on a smooth manifold M is a smooth (0, 2)-tensor such that $g_p: T_pM \times T_pM \to \mathbb{R}$ is an inner product on T_pM .

Definition: A Remannian manifold (M, g) is a smooth manifold M with a Remannian metric g on M.

8.1 Isometric Immersions

Let $f: M \to N$ be a smooth map and (N, g) a Riemannian manifold. Then f^*g is a symmetric (0, 2)-tensor on M. When is f^*g a Riemannian manifold on M? We have that,

$$(f^*g)_p(v,v) = g(\mathrm{d} f_p(v), \mathrm{d} f_p(v))$$

Thus we must have that $df_p(v) = 0$ implies v = 0 in order that f^*g be nondegenerate.

Proposition 8.1. If $f: M \to N$ is a smooth immersion and g is a Riemannian metric on N then f^*g is a Riemannian metric on M.

Proof. We know that f^*g is a symmetric (0,2)-tensor. Furthermore, we know that,

$$(f^*g)_p(v,v) = g(df_p(v), df_p(v)) = 0 \implies df_p(v) = 0$$

but f is an immersion so $df_p(v) = 0$ implies that v = 0. Thus, f^*g is nondegenerate. Then, since g is positive-defininite, so is f^*g .

Definition: A map $f:(M,g_M)\to (N,g_N)$ is,

- 1. an isometry if f is a diffeomorphism and $f^*g_N = g_M$.
- 2. an isometric immersion if f is a smooth immersion and $f^*g_N = g_M$.
- 3. an isometric embedding if f is a smooth embedding and $f^*g_N = g_M$.
- 4. a local isometry if f is a local diffeomorphism and $f^*g_N = g_M$.

Proposition 8.2. Let (M_1, g_1) and (M_2, g_2) be Riemannian manifolds, then their product $(M_1 \times M_2, g)$ is canonically a Riemannian manifold with $g = \pi_1^* g_1 + \pi_2^* g_2$.

Proof. We must check that g is non-degenerate. Suppose,

$$g((v, u), (v, u)) = g_1(v) + g_2(u) = 0$$

then since g_1 and g_2 are positive-definite we must have v = u = 0.

8.2 Distance

Definition: Let (M, g) be a connected Remannian manifold. For $x, y \in M$ we have $d(x, y) = \inf \text{len}(\gamma)$ for all picewise smooth paths $\gamma : I \to M$ from x to y.

Proposition 8.3. For all $x, y, z \in M$ we have,

$$d(x,z) + d(z,y) \ge d(x,y)$$

Proof. Let $\gamma_1, \gamma_2 : I \to M$ be picewise smooth paths from x to z and z to y respectively. Then $\gamma_2 * \gamma_1$ is a piecewise smooth path from x to y and the lengths add.

8.3 Volume Forms

Definition: Let M be a smooth n-manifold then a volume form on M is a nonvanishing smooth n-form $\omega \in \Omega^n(M)$.

Definition: An orientation on a smooth manifold M is an atlas on M such that each transition map has positive jacobian i.e. its differential has positive determinant.

Lemma 8.4. Let (M, g) be an oriented Riemannian n-manifold then there exists a unique volume form $\omega \in \Omega^n(M)$ such that at each point $p \in M$ there exists an ordered basis of (T_pM, g_p) compatible with the orientation.

Proof. For any $p \in M$ define $\omega(p) = e_1^* \wedge \cdots \wedge e_n^*$ where (e_1^*, \dots, e_n^*) is an ordered dual basis of T_p^*M orthonormal with respect to g_p and compatible with the orientation. If we choose a different set $(\tilde{e}_1, \dots, \tilde{e}_n)$ then we can write,

$$\tilde{e}_i^* = \sum_{j=1}^n A_{ji} e_j^*$$

with $A \in O(n)$ because it must preserve the metric g. Furthermore, since e'_i is also compatible with the orientation we must have $\det A > 0$ so $A \in SO(n)$ and thus $\det A = 1$. Furthermore,

$$\omega'(p) = \tilde{e}_1^* \wedge \cdots \wedge \tilde{e}_n^* = e_1^* \wedge \cdots \wedge e_n^* \det A = e_1^* \wedge \cdots \wedge e_n^* = \omega(p)$$

Lemma 8.5. Let M be a smooth n-manifold. There exists a volume form on M if and only if $\bigwedge^n T^*M$ is trivial.

Proof. There exists a volume form on M if and only if there exists a nonvanishing smooth section of $\bigwedge^n T^*M$ if and only if there there exists a smooth global frame of $\bigwedge^n T^*M$ if and only if $\bigwedge^n T^*M$ is a trivial vector bundle of rank 1 over M.

Lemma 8.6. Let M be a smooth n-manifold then every volume form is in corresponence to a choice of orientation. Thus, M admits a volume form if and only if M is orientible.

9 Connections

Definition: An affine connection ∇ on M is a bilinear map.

$$\mathscr{X}(M) \times \mathscr{X}(M) \to \mathscr{X}(M)$$

Definition: Let M be a \mathcal{C}^{∞} manifold. An affine connection ∇ on M is symmetric if,

$$\nabla_X Y - \nabla_Y X = [X, Y]$$

for any $X, Y \in \mathcal{X}(M)$.

Definition: The torsion of ∇ is defined as,

$$T_{\nabla}: \mathscr{X}(M) \times \mathscr{X}(M) \to \mathscr{X}(M)$$

where,

$$T_{\nabla}(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$$

Then T_{∇} is bilinear and antisymmetric so $T_{\nabla} \in \mathcal{C}^{\infty}(M, \Omega^2(M, TM) \otimes TM)$.

Remark 4. An affine connection ∇ is symmetric or torsion-free iff $T_{\nabla} = 0$.

Proposition 9.1. The space of all affine connections on M is an affine space with associated vectorspace $C^{\infty}(M, T_2^1 M)$. The space of all symmetric affine connections is also an affine space with associate vector space $C^{\infty}(M, \operatorname{Sym}^2(T^*M) \otimes TM)$.

Definition: Let (M, g) be a Riemannian manifold. An affine connection ∇ on M is compatible with the Riemannian structure g if,

$$X(g(Y,Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$$

for any $X, Y, Z \in \mathcal{X}(M)$.

Remark 5. If g is a symmetric T_2 field then $\nabla_X g \in \mathcal{C}^{\infty}(M, (T^*M)^{\otimes 2})$ defined by,

$$(\nabla_X g)(Y, Z) = X(g(Y, Z)) - g(\nabla_X Y, Z) - g(Y, \nabla_X Z)$$

Therefore, ∇ is compatible with $g \iff \nabla_X g = 0 \quad \forall X \in \mathscr{X}(M)$.

Theorem 9.2 (Levi-Civita). If (M, g) is a Riemannian manifold then there exists a unique symmetric affine connection ∇ on M which is compatible by the Riemannian structure.

Proof. Suppose that ∇ is an affine connection on M which is symmetric and compatible with g. Then, by compatibility,

$$X(g(Y,Z)) - g(\nabla_X Y, Z) - g(Y, \nabla_X Z) = 0$$

$$Y(g(X,Z)) - g(\nabla_Y X, Z) - g(X, \nabla_Y Z) = 0$$

$$Z(g(X,Y)) - g(\nabla_Z X, Y) - g(X, \nabla_Z Y) = 0$$

Then take (1) + (2) - (3), and use symmetry,

$$X(g(X,Z)) + Y(g(Z,X)) - Z(g(X,Y)) = g(X,[Y,Z]) + g(Y,[X,Z]) + g(Z,[X,Y]) + 2g(Z,\nabla_Y X)$$

Therefore,

inererore,

$$g(Z, \nabla_Y X) = \frac{1}{2} \left[X(g(Y, Z)) + Y(g(Z, X)) - Z(g(X, Y)) - g(X, [Y, Z]) - g(Y, [X, Z]) - g(Z, [X, Y]) \right]$$

Which implies that ∇ is uniquely determined by the metric g. To show existence, define $\nabla_X Y$ by the above equation for any $Z \in \mathscr{X}(M)$.

Definition: Let (M, g) be a Riemannian manifold and $p \in M$ then there exists an open neighborhood V of p in M and $\epsilon > 0$ such that $\phi(t, q, w)$ and $\gamma(t, q, w)$ are defined for |t| < 2 and $q \in V$ and $|w| \le \epsilon$ then $\exp : U_{(v,\epsilon)} \to M$ is defined by $\exp(q, w) = \gamma(1, q, w)$.

10 Curvature

Definition: Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita connection determined by g. Then given $X, Y \in \mathcal{X}(M)$ the Riemann map,

$$R(X,Y): \mathscr{X}(M) \to \mathscr{X}(M)$$

is defined by,

$$R(X,Y)(Z) = \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z + \nabla_{[X,Y]} Z$$

Proposition 10.1. Viewing the Riemann map as,

$$R: \mathscr{X}(M) \times \mathscr{X}(M) \times \mathscr{X}(M) \to \mathscr{X}(M)$$

we have,

- 1. R is antisymmetric in the first two arguments, R(X,Y,Z) = -R(Y,X,Z).
- 2. R is $\mathcal{C}^{\infty}(M)$ -linear viewing $\mathscr{X}(M)$ as a $\mathcal{C}^{\infty}(M)$ -module.
- 3. R is equivalent to an element of $\mathcal{C}^{\infty}(M, (\Lambda^2 T^*M) \otimes T^*M \otimes TM) = \Omega^2(M, \operatorname{End}(TM))$ so R is an $\operatorname{End}(TM)$ -valued 2-form.

Remark 6. Let $\pi: E \to M$ be a \mathcal{C}^{∞} vector bundle over M with connection $\nabla: \Omega^0(M, E) \to \Omega^1(M, E)$ then we may define,

$$R_{\nabla}: \mathscr{X}(M) \times \mathscr{X}(M) \times \Omega^{0}(M, E) \to \Omega^{0}(M, E)$$

by,

$$R_{\nabla}(X,Y)(S) = \nabla_X \nabla_Y S - \nabla_Y \nabla_X S - \nabla_{[X,Y]} S$$

Theorem 10.2 (Bianchi).

$$R(X,Y)(Z) + R(Y,Z)(X) + R(Z,X)(Y) = 0$$

Proof. This property follows from the symmetry of the Levi-Civita connection and the Jacobi identity. We have,

$$Q = R(X,Y)(Z) + R(Y,Z)(X) + R(Z,X)(Y) = \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z - \nabla_{[Y,X]} Z + \nabla_Z \nabla_Y X - \nabla_Y \nabla_Z X - \nabla_{[Z,Y]} X + \nabla_X \nabla_Z Y - \nabla_Z \nabla_X Y - \nabla_{[X,Z]} Y$$

Using symmetry,

$$Q = \nabla_Y [X, Z] - \nabla_{[Y,X]} Z + \nabla_X [Z, Y] - \nabla_{[Z,Y]} X + \nabla_Z [Y, X] - \nabla_{[X,Z]} Y$$

= $[Y, [X, Z]] + [X, [Z, Y]] + [Z[Y, X]] = 0$

Which is zero by the Jacobi identity.

Definition: For $X, Y, Z, W \in \mathcal{X}(M)$, the Riemman tensor is defined by,

$$\mathcal{R}(X, Y, Z, W) = g(R(X, Y)(Z), W) \in \mathcal{C}^{\infty}(M)$$

Thus, \mathcal{R} is a smooth (0,4)-tensor field on M.

Proposition 10.3. The Riemann tensor \mathcal{R} satisfies,

- 1. $\mathcal{R}(X, Y, Z, W) + \mathcal{R}(Y, Z, X, W) + \mathcal{R}(Z, X, Y, W) = 0.$
- 2. $\mathcal{R} \in \mathcal{C}^{\infty}(M, \operatorname{Sym}^2(\Lambda^2 T^* M))$ or equivalently,
 - (a) $\mathcal{R}(X, Y, Z, W) = -\mathcal{R}(Y, X, Z, W)$
 - (b) $\mathcal{R}(X, Y, Z, W) = -\mathcal{R}(X, Y, W, Z)$
 - (c) $\mathcal{R}(X, Y, Z, W) = \mathcal{R}(Z, T, X, Y)$

11 Covariant Derivatives of Tensors

Let M be a smooth n-manifold with an affine connection ∇ such that for $X \in \mathscr{X}(M)$ we have an \mathbb{R} -linear map, $\nabla_X : \mathscr{X}(M) \to \mathscr{X}(M)$. We will extend this to a derivative on all tensors inductively by imposing the Leibniz rule.

$$(0,0)$$
 $f \in \mathcal{C}^{\infty}(M)$ $\nabla_X f = X(f)$

$$(1,0)$$
 $Y \in \mathscr{X}(M)$ $\nabla_X Y$

$$(0,1) \quad \omega \in \Omega^1(M) \quad (\nabla_X \omega)(Y) = X(\alpha(Y)) - \alpha(\nabla_X Y)$$

Suppose that T_1 is an (r_1, s_1) -tensor and T_2 is an (r_2, s_2) -tensor. Then we want,

$$\nabla_X(T_1 \otimes T_2) = \nabla_X T_1 \otimes T_2 + T_1 \otimes \nabla_X T_2$$

This extends ∇_X to a map $\nabla_X : \mathcal{C}^{\infty}(M, T_s^r M) \to \mathcal{C}^{\infty}(M, T_s^r M)$ Given T a (r, s)-tensor we can write T as a map,

$$T: \mathscr{X}(M)^{\otimes s} \to \mathscr{X}(M)^{\otimes r}$$

which is $C^{\infty}(M)$ -linear. Now, define,

$$\nabla T: \mathscr{X}(M)^{\otimes (s+1)} \to \mathscr{X}(M)^r$$

given by,

$$(\nabla T)(X_1, \dots, X_{s+1}) = (\nabla_{X_{s+1}} T)(X_1, \dots, X_s)$$

Thus, ∇T is a (r, s + 1)-tensor.

Proposition 11.1. Let ∇ be an affine connection on a Riemannian manifold (M, q).

- 1. ∇ is symmetric \iff d $\alpha(X,Y) = \nabla\alpha(Y,X) \nabla\alpha(X,Y)$ for any $\alpha \in \Omega^1(M)$ and $X,Y \in \mathscr{X}(M)$
- 2. ∇ is compatible with $g \iff \nabla g = 0$.

Proof.

11.1 Covariant Derivatives In Local Coordinates

Take the local coordinates (x_1, \ldots, x_n) on U. We can write,

$$\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} = \sum_{k=1}^n \Gamma_{ij}^k \frac{\partial}{\partial x_k}$$

for some $\Gamma_{ij}^k \in \mathcal{C}^{\infty}(M)$ since this is a $\mathcal{C}^{\infty}(M)$ -basis of vector fields. Now,

$$\nabla_{\frac{\partial}{\partial x_i}} dx_j = \sum_{k=1}^n \left(\nabla_{\frac{\partial}{\partial x_i}} dx_j \right) \left(\frac{\partial}{\partial x_k} \right) dx_k = \sum_{k=1}^n \left(\frac{\partial}{\partial x_i} \left(dx_j \left(\frac{\partial}{\partial x_k} \right) \right) - dx_j \left(\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_k} \right) \right) dx_k$$
$$= \sum_{k=1}^n \left(\frac{\partial}{\partial x_i} \delta_{jk} - dx_j \left(\Gamma_{ik}^{\ell} \frac{\partial}{\partial x_{\ell}} \right) \right) dx_k = -\sum_{k=1}^n \Gamma_{ik}^{j} dx_k$$

Finally, we can compute the covariant derivative of an arbitrary tensor in local coordinates.

12 Jacobi Fields

Let (M, g) be a Riemannian manifold and $\gamma : [0, a] \to M$ a geodesic. Then a Jacobi field may arise as follows. Let $f_s : [0, a] \to M$ with $s \in (-\epsilon, \epsilon)$ be a smooth family of geodesics. That is,

$$f: (-\epsilon, \epsilon) \times [0, a] \to M$$

such that f_s is a geodesic and $f_0 = \gamma$. Then set $J(t) = \frac{\partial f}{\partial s}(0,t)$.

13 Feb 3

Let $f:(M,g)\to (\bar{M},\bar{g})$ be an isometric immersion. Then let ∇ and $\bar{\nabla}$ be the Levi-Civita connections and $\nabla=f^*\bar{\nabla}$ on $f^*T\bar{M}$.

14 Feb 13

Theorem 14.1. Let (M, g) be a connected Riemannian manifold then (M, d) is a metric space with d induced by q.

Theorem 14.2 (Hopf-Rinow). Let (M, g) be a connected Riemannian manifold so (M, d) is a metric space with d induced by g. Then for any $p \in M$ TFAE,

- 1. \exp_n is defined on T_pM
- 2. closed bounded subsets of M are compact

- 3. (M,d) is complete
- 4. (M, g) is geodesically complete
- 5. there exists compact sets $K_n \subset M$ covering M such that $q_n \notin K_n \implies d(p,q_n) \to \infty$ as $n \to \infty$.
- 6. $\forall q \in M$ there exists minimizing geodesic from p to q.

Proof.

Corollary 14.3. If M is a compact smooth manifold ten (M,g) is a geodesically complete Riemannian manifold for any Riemannian metric g.

Definition: A connected Riemannian manifold (M, g) is *expandible* if there exists a connected Riemannian manifold (M', g') and an isometric proper open embedding $\iota: (M, g) \to (M', g')$. Otherwise (M, g) is nonextendible.

Proposition 14.4. If (M, g) is complete then (M, g) is extendible.

Proof. If there exists $\iota:(M,g)\to (M',g')$ an isometric proper open embedding then $\iota(M)$ must be geodesically incomplete because it is a proper open subset of M'. Thus M is geodesically incomplete because ι is an isometric embedding and thus an isometry onto its image.

Corollary 14.5. Any (induced) connected Riemannian submanifold of a complete connected Riemannian manifold is complete.

Proof. Let $(N, \iota^*g) \xrightarrow{\iota} (M, g)$ be a Riemannian submanifold. Then $\forall p, q \in N$ we have $d_N(p,q) \geq d_M(p,q)$ so any Cauchy sequence in N is also Cauchy on M and thus converges in M. However, $N \subset M$ is closed and thus contains all its limit points. Thus all Cauchy sequences converge in N.

Definition: Let (M, g) be a connected complete Riemannian manifold then $\forall p \in M$ we have $\exp_p : T_p : M \to M$. We say that p is a pole if $\exp_p : T_pM \to M$ is a local diffeomorphism i.e. $\forall p \in T_pM$ the map,

$$d(\exp_p)_v : T_v(T_pM) \to T_{\exp_p(v)}M$$

is a linear isomorphism.

Lemma 14.6. Let (Mg) be a connected complete Riemannian manifold such that $\forall p \in M$ and any 2-plane $\sigma \subset T_pM$ then $K(p,\sigma) \leq 0$ then $\forall p \in M$ the point p is a pole.

Proof.

Lemma 14.7. Let (M, g) and (N, h) be complete Riemannian manifolds with smooth surjective map $f: (M, g) \to (N, h)$ which is a local diffeomorphism satisfying $\forall p \in M, v \in T_pM$ then $|\mathrm{d}f_p(v)|_{f(p)} \ge |v|_p$ then $f: (M, g) \to (N, h)$ is a covering map.

Lemma 14.8. Let (M, g) be a complete connected Riemannian manifold and $p \in M$ is a pole then $\exp_p : T_pM \to M$ is a covering map.

Corollary 14.9. If (M, g) is a complete, connected, simply-connected Riemannian manifold with a pole p then $\exp_p : T_pM \to M$ is a diffeomorphism.

Theorem 14.10 (Cartan-Hadamard). Let (M,g) be a connected complete Riemannian manifold with $K(p,\sigma) \leq 0$ for all $p \in M$ and $\sigma \in Gr(2,T_pM)$ then $\forall p \in M$ the exponential map $\exp_p : T_pM \to M$ is a covering map. In particular, if M is simply-connected then $M \cong \mathbb{R}^{\dim M}$.

15 General Lemmata

Lemma 15.1. Let $T: V \to W$ be a linear map of finite-dimensional real normed spaces. Then there exists $M \in \mathbb{R}$ such that for all $v \in V$,

Proof. For v=0, the inequality is trivial. Suppose $v\neq 0$ then we can always scale,

$$T(v) = ||v||T\left(\frac{v}{||v||}\right)$$

Let dim V=n and thus $V\cong\mathbb{R}^n$ as normed spaces. Thus, $\{v\in V\mid ||v||=1\}\cong S^{n-1}$. Furthermore, $T:V\to W$ is linear and thus continuous. Therefore, the restriction $T:S^{n-1}\to\mathbb{R}^n$ is also continuous. Since S^{n-1} is compact its image $T(S^{n-1})\subset W$ is compact and is thus bounded by Heine-Borel. Therefore, there exists $M\in\mathbb{R}$ such that whever ||v||=1 then $||T(v)||\leq M$. Finally, for any $v\in V$,

$$T(v) = ||v||T\left(\frac{v}{||v||}\right) \leq M||v||$$

becaues v/||v|| has unit norm.

Lemma 15.2. Let $f: A \to B$ be an K-algebra homomorphism. The quotient A/A^k is a K-vector space and $f: A/A^k \to B/B^k$ is a well-defined map of K-vectorspaces.

Proof. Clearly, $A^k \subset A$ is a subvector space so the quotuent is a K-vectorspace. Furthermore, consider the map,

$$A \xrightarrow{f} B \xrightarrow{\pi} B/B^k$$

However, $f(A^k) \subset B^k$ since f is an algebra homomorphism and thus $\pi \circ f(A^k) = (0)$ so $A^k \subset \ker \pi \circ f$ and thus $\pi \circ f$ factors through the quotient A/A^k .

16 Feb. 24

Theorem 16.1 (Hadamard Theorem).

Theorem 16.2 (Cartan).

Lemma 16.3. Let $f:(M_1,g_1)\to (M_2,g_2)$ be a surjective local diffeomorphism and $\forall p\in M: |\mathrm{d}f_p(v)|\geq |v|$ and (M_1,g_1) is complete then f is a covering map.

Theorem 16.4. Let (\tilde{M}, \tilde{g}) be a simply connectd, complete manifold with constant sectional curvature K then $(tildeM, \tilde{g})$ is isometric to

- 1. (H^n, g_{can}) if K = -1
- 2. (R^n, g_{can}) if K = 0
- 3. (S^n, q_{can}) if K = 1

Proof. Let Δ be the required space in the cases K=-1 and K=0. Take $\tilde{p} \in \tilde{M}$ and $p \in \Delta$ be any point. Let $\iota: T_{\tilde{p}}\tilde{M} \to T_p\Delta$ be any linear isometry. By Hadamard's theorem, the exponetial maps are diffeomorphism. Therefore, $f=\exp_p\circ\circ\iota\circ\exp_{\tilde{p}}^{-1}$ is an isometry $\tilde{M}\to\Delta$.

Now conisder the case K=1. Let $p \in S^n$ and $\tilde{p} \in \tilde{M}$ be some maps and $\iota: T_pS^n \to T_{\tilde{p}}\tilde{M}$ any linear isometry. Again, define the map $f=\exp_{\tilde{p}}\circ\iota\circ\exp_{\tilde{p}}^{-1}$ taking the open neighborhood $S^n \setminus \{-p\}$ to \tilde{M} . By Cartan, f is a local isometry. Now, choose any other $p' \in S^n$ besides p and -p and $\tilde{p}'=f(p')$. Then we may construct the map $f':S^n \setminus \{-p'\} \to \tilde{M}$ via $f=\exp_{p'}\circ\iota'\circ\exp_{\tilde{p}'}$ via the linear isometry defined as $\iota'=\mathrm{d} f_{p'}:T_{p'}S^n \to T_{\tilde{p}'}\tilde{M}$. Therefore, f(p')=f'(p') and $\mathrm{d} f_{p'}=\iota=\mathrm{d} f'_{p'}$ and thus, on the overlap f=f'. Therefore the two functions glue to form a local isometry $h:S^n \to \tilde{M}$. By the lemma, h is a covering map but \tilde{M} is simply connected so h is a diffeomorphism and thus a global isometry.

Corollary 16.5. Let (M^n, g) be a space form (a complete Riemannian manifold with constant sectional curvature K) then (M^n, g) is isometric to $(\tilde{M}/\Gamma, \hat{g})$ where,

$$(\tilde{M}, \hat{g}) = \begin{cases} (S^n, \lambda^{-1} g_{\text{can}}) & K = \lambda \\ (\mathbb{R}^n, g_{\text{can}}) & K = 0 \\ (H^n, \lambda^{-1} g_{\text{can}}) & K = -\lambda \end{cases}$$

where Γ is a discrete subgroup of isometries of \tilde{M} which acts freely and properly discontinuously. Furthermore the map $(\tilde{M}, \tilde{g}) \to (\tilde{M}/\Gamma, \hat{g})$ is a covering map and local isometry.

Proof. Let \tilde{M} be the universal cover of M. Then equip \tilde{M} with the unique smooth structure such that $\pi: \tilde{M} \to M$ is a local diffeomorphism. Let $\tilde{g} = \pi^*(g)$ then \tilde{g} is a Riemannian metric on \tilde{M} . Let $\Gamma = D(\pi)$ be the group of deck transformations of the covering map $\pi: \tilde{M} \to M$. Since \tilde{M} is simply-connected $D(\pi) \cong \pi_1(M)$. We have that Γ facts isometrically on (\tilde{M}, \tilde{g}) since it commutes with π and $\tilde{g} = \pi^*(g)$. Furthermore, Γ acts freely and properly discontinuously since it is the deck transformations $\tilde{M} \to M$ is a covering map.

17 Feb. 28

Proposition 17.1. Let (M^n, g) ne a complete Riemannian manifold with constant sectional curvature K = +1 and n = 2m even then $M^n = S^n/\Gamma$ for $\Gamma \subset O(n+1)$ and thus (M^n, g) is isometric to either $(S^n, g_{\operatorname{can}})$ or (\mathbb{RP}^n, \hat{g}) . In particular, if M^n is orientable then $M^n \cong S^n$.

Proof. We have $M^n \cong S^{2m}/\Gamma$ with $\Gamma \subset O(n+1)$. Then Γ acts freely and properly discontinuously on S^{2m} . All O(n+1) maps are normal and thus diagonalizable with an odd number of eigenvalues each of the from $e^{i\theta}$. If $\gamma \in \Gamma$ has a +1 eigenvalue then γ has a fixed point on S^{2m} but the action is free so $\gamma = \mathrm{id}$. For any $\gamma \in \Gamma$, if $\det \gamma = +1$ then γ has +1 as an eigenvalue so $\gamma = \mathrm{id}$. Otherwise for $\gamma \in O(n+1)$ we must have $\det \gamma = -1$ so $\det \gamma^2 = 1$ and therefore $\gamma^2 = \mathrm{id}$. This implies that all the eigenvalues of γ are ± 1 . If $\gamma \neq \mathrm{id}$ then all its eigenvalues must be -1 and thus $\gamma = -\mathrm{id}$. Therefore either $\Gamma = \{\mathrm{id}\}$ or $\Gamma = \{\mathrm{id}, -\mathrm{id}\}$.

17.1 Conformal Maps

Definition: Let V and W be n-dimensional inner product spaces. Then $T:V\to W$ is a linear conformal map if T is a linear isomorphism and,

$$\cos \theta(T(v), T(u)) = \frac{\langle T(v), T(u) \rangle}{|T(u)| \cdot |T(v)|} = \frac{\langle v, u \rangle}{|v| \cdot |u|} = \cos \theta(v, u)$$

Lemma 17.2. Let V and W be inner product spaces of dimension n and $T: V \to W$ a linear map. Then T is a linear conformal map iff there exists $\lambda > 0$ such that $|L(v)|_W = \lambda |v|_V$ for all $v \in V$ iff $\langle T(v), T(u) \rangle_W = \lambda^2 \langle v, u \rangle_V$ for all $v, u \in V$.

Definition: Let (M, g) and (N, h) be Riemannian manifolds then a smooth map $f: M \to N$ is conformal if $\forall p \in M$ the differential $\mathrm{d} f_p: T_pM \to T_{f(p)}N$ is a linear conformal map.

Remark 7. linear conformal map \Longrightarrow linear isomorphism \Longrightarrow dim $M = \dim N$ and f is a local diffeomorphism. By the lemma, f is confroal map if f is a clocal diffeomorphism and $f^*h = \lambda^2 g$ for some smooth function $\lambda : M \to \mathbb{R}^+$. In particular, if f is a local isometry then it is conformal wit $\lambda = 1$. Local isometry \Longrightarrow conformal \Longrightarrow local diffeomorphism but neither arrow is reversable.

Example 17.3. Take $f_{\lambda}: \mathbb{R}^n \to \mathbb{R}^n$ given by $f(\vec{x}) = \lambda \vec{x}$ for $\lambda \in \mathbb{R}^+$. Then,

$$f_{\lambda}^* g = f_{\lambda}^* (dx_1^2 + \dots + dx_n^2) = \lambda^2 (dx_1^2 + \dots + dx_n^2) = \lambda^2 g$$

Then $\forall \vec{x}: df_{\lambda \vec{x}}: T_{\vec{x}}\mathbb{R}^n \to T_{\vec{x}}\mathbb{R}^n$. Also $\det df_{\lambda} = \lambda^n > 0$ so f_{λ} is a conformal orientation preserving map $(\mathbb{R}^n, g_0) \to (\mathbb{R}^n, g_0)$.

Example 17.4. For $\vec{x}_0 \in \mathbb{R}^n$ take $\iota_{\vec{x}_0} : \mathbb{R}^n \setminus \{\vec{x}_0\} \to \mathbb{R}^n \setminus \{\vec{x}_0\}$ which inverts the point across the unit sphere arround \vec{x}_0 such that,

$$|\iota_{\vec{x}_0}(\vec{x}) - \vec{x}_0| = \frac{1}{|\vec{x} - \vec{x}_0|}$$

We define,

$$\iota_{\vec{x}_0}(\vec{x}) = \frac{\vec{x} - \vec{x}_0}{|\vec{x} - \vec{x}_0|^2} + \vec{x}_0$$

Then the differential is,

$$d\iota_{\vec{x}_0 \ \vec{x}}(\vec{v}) = \frac{1}{|\vec{x} - \vec{x}_0|^2} \left(\vec{v} - 2 \frac{\langle \vec{x} - \vec{x}_0, \vec{v} \rangle}{|\vec{x} - \vec{x}_0|^2} (\vec{x} - \vec{x}_0) \right)$$

Therefore, the differential simply scales by $|\vec{x} - \vec{x}_0|^{-2}$ and reverses the component of \vec{v} perpendicular to the unit sphere which leaves the length of vectors invariant up to the overall scaling. Therefore $\iota_{\vec{x}_0}$ is conformal.

Theorem 17.5 (Liouville). Let $U \subset \mathbb{R}^n$ is connected open and $f: U \to \mathbb{R}^n$ is conformal with respect to g_0 . If $n \geq 3$ then f is the restriction to U of a composition of isometries, dilations (f_{λ}) , and inversions $\iota_{\vec{x}_0}$ at most one of each.

17.2 Möbius Transformation

Consider the map,

$$f(z) = \frac{az+b}{cz+d}$$
 $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in PSL(2, \mathbb{C})$

Theorem 17.6. For $n \geq 2$, the isometries of H^n are restrictions to $H^n \subset \mathbb{R}^n$ of the conformal transformations of \mathbb{R}^n that map $H^n \to H^n$.

18 March 4

Definition: Let $c:[0,a] \to M$ be a piecewise smooth curve in a smooth manifold M. A variation of c is a continuous map $f:(-\epsilon,\epsilon)\times[0,a]\to M$ denoted as $(s,t)\mapsto f_s(t)$ such that,

1.
$$f_0(t) = c(t)$$

2. $\exists 0 = t_0 < t_1 < \dots < t_k < k_{k+1} = a \text{ such that } f|_{(-\epsilon, \epsilon) \times [t_k, t_{k+1}]} \text{ is smooth.}$

Given a variation we have the following situations,

- 1. For fixed $s \in (-\epsilon, \epsilon)$ the map $f_s : [0, a] \to M$ is called the *curve of variation* of f.
- 2. For fixed $t \in (0, a]$ the function $g_t : (-\epsilon, \epsilon) \to M$ given by $g_t(s) = f_s(t)$ is called a transverse curve in the variation f.
- 3. The vector $V(t) = \frac{\partial f}{\partial s}(s,t)$ for $t \in [0,a]$ is called the variational field of f.
- 4. We say that f is proper if $\forall s \in (-\epsilon, \epsilon)$ we have $f_s(0) = c(0)$ and $f_s(a) = c(a)$ i.e. V(0) = V(a) = 0.

Proposition 18.1. Let $c:[0,a] \to M$ be a piecewise smooth curve. For any piecewise smooth vector-field V(t) along c(t), there exists a variation $f:(-\epsilon,\epsilon)\times[0,a]$ of c for some $\epsilon>0$ such that, V is the variational field of f. Moreover, if V(0)=V(a)=0 then f can be chosen to be proper.

Energy Function Given a variation $f:(-\epsilon,\epsilon)\times[0,a]\to M$ of some piecewise smooth curve $c:[0,a]\to M$ on a Riemannian manifold M we define the energy function,

$$E_f(s) = \int_0^a \left| \frac{\partial f}{\partial t}(s, t) \right|^2 dt$$

which is a (piecewise) smooth map $E_f: (-\epsilon, \epsilon) \to \mathbb{R}$ i.e. a map $E(f_s)$. Let V be the variational field then,

$$dE_c(V) = E'(0)$$

Theorem 18.2 (Formula For the First Variation of Energy). Let (M, g) be a Riemannian manifold and $c : [0, a] \to M$ a piecewise smooth curve and $f : (-\epsilon, \epsilon) \times [0, a] \to M$ the variation of c with variational field V. Let $E : (-\epsilon, \epsilon) \to \mathbb{R}$ be the energy function of f. Then we may compute,

$$\frac{1}{2}E'(0) = -\int_0^a \left\langle V(t), \frac{D}{dt} \frac{dc}{dt} \right\rangle dt + \sum_{i=1}^k \left\langle V(t_i), \frac{dc}{dt}(t_i^+) - \frac{dc}{dt}(t_i^-) \right\rangle$$
$$-\left\langle V(0), \frac{dc}{dt}(0) \right\rangle + \left\langle V(a), \frac{dc}{dt}(0) \right\rangle$$

Proof. Consider the Energy function,

$$E(s) = \int_0^a \left\langle \frac{\partial f}{\partial t}, \frac{\partial f}{\partial t} \right\rangle dt = \sum_{i=1}^k \int_{t_i}^{t_{i+1}} \left\langle \frac{\partial f}{\partial t}, \frac{\partial f}{\partial t} \right\rangle dt$$

Consider, a single term,

$$\begin{split} \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}s} \int_{t_{i}}^{t_{i+1}} \left\langle \frac{\partial f}{\partial t}, \frac{\partial f}{\partial t} \right\rangle \mathrm{d}t &= \int_{t_{i}}^{t_{i+1}} \left\langle \frac{D}{\mathrm{d}s} \frac{\partial f}{\partial t}, \frac{\partial f}{\partial t} \right\rangle \mathrm{d}t \\ &= \int_{t_{i}}^{t_{i+1}} \left\langle \frac{D}{\mathrm{d}t} \frac{\partial f}{\partial s}, \frac{\partial f}{\partial t} \right\rangle \mathrm{d}t \\ &= \int_{t_{i}}^{t_{i+1}} \left(\frac{\partial}{\partial t} \left\langle \frac{\partial f}{\partial s}, \frac{\partial f}{\partial t} \right\rangle - \left\langle \frac{\partial f}{\partial s}, \frac{D}{\mathrm{d}t} \frac{\partial f}{\partial t} \right\rangle \right) \mathrm{d}t \\ &= \left\langle \frac{\partial f}{\partial s}, \frac{\partial f}{\partial s} \right\rangle \Big|_{t=t_{i}^{+}}^{t=t_{i+1}^{-}} - \int_{t_{i}}^{t_{i+1}} \left\langle \frac{\partial f}{\partial s}, \frac{D}{\mathrm{d}t} \frac{\partial f}{\partial t} \right\rangle \mathrm{d}t \end{split}$$

Therefore,

$$\frac{1}{2}E'(s) = -\int_0^a \left\langle \frac{\partial f}{\partial s}, \frac{D}{\mathrm{d}t} \frac{\partial f}{\partial t} \right\rangle \mathrm{d}t + \sum_{i=1}^k \left\langle \frac{\partial f}{\partial s}, \frac{\mathrm{d}f}{\mathrm{d}t} \right\rangle \Big|_{t=t_i^+}^{t=t_{i+1}^-}$$

However, at s=0 we have $\frac{\partial f}{\partial s}(0,t)=V(t)$ and $\frac{\partial f}{\partial t}(0,t)=c'(t)$. Therefore,

$$\frac{1}{2}E'(0) = -\int_0^a \left\langle V(t), \frac{D}{dt} \frac{dc}{dt} \right\rangle dt + \sum_{i=1}^k \left\langle V(t_i), \frac{dc}{dt}(t_i^+) - \frac{dc}{dt}(t_i^-) \right\rangle - \left\langle V(0), \frac{dc}{dt}(0) \right\rangle + \left\langle V(a), \frac{dc}{dt}(0) \right\rangle$$

Proposition 18.3. Consider the critical points of $E: \Omega_{pq} \to \mathbb{R}$ where $c: [0, a] \to M$ is a piecewise smooth cure. Then for any proper variation f of c, the energy function satisfies E'(0) = 0 if and only if c is a geodesic.

Proof. If c is a geodesic then,

$$\frac{D}{\mathrm{d}t}\frac{\mathrm{d}c}{\mathrm{d}t} = 0$$

and because c is smooth we have $c(t_i^+) = c(t_i^-)$. Therefore, by the above formula E'(0) = 0.

Conversely, consider two particular variations of c.

19 Principal Bundles

Definition: We say that $\pi: P \to M$ is a principal G-bundle for a Lie group G acting freely on the right on P such that $\pi: P \to M$ is the quotient map $P \to P/G$ if there are local trivializations $(U_{\alpha}, \psi_{\alpha})$ such that,

commutes and ψ_{α} is G-equivariant i.e. $\psi_{\alpha}(p \cdot g) = \psi_{\alpha}(p) \cdot g$ where the action of G on $U_{\alpha} \times G$ is $(x,h) \cdot g = (x,hg)$.

Definition: Let $\pi: P \to M$ be a pricipal G-bundle. Let F be a smooth manifold equiped with a left G-action. Then G actions on $P \times F$ freely on the right via $(p, \xi) \cdot g = (p \cdot g, g^{-1} \cdot \xi)$.

Definition: Let $P \times_G F$ denote the fibre product given by $(P \times F)/G$. Then the map $\tilde{\pi}: P \times_G F \to M$ given by $[p, \xi] \mapsto \pi(p)$ is a fibre bundle with base M and fiber F.

Definition: Let $\pi: P \to M$ be a principal G-bundle and $\rho: G \to \operatorname{Aut}(V)$ a representation. Then we may take $P \times_{\rho} V = P \times_{G} V$, the associate vector bundle.

Example 19.1. Let $\pi_E: E \to M$ be a vector bundle of rank r over M and take the frame bundle $\operatorname{Aut}(E) \to M$ which is a principle $\operatorname{Aut}(\mathbb{R}^r)$ -bundle. Then we may consider the associated vector bundle $\operatorname{Aut}(E) \times_{\rho} \mathbb{R}^r = E$. However, we may also consider the vector bundle associated to the dual representation, $\operatorname{Aut}(E) \times_{\rho^*} \mathbb{R}^r = E^*$. More generally, we may take the representation,

$$\rho^{\otimes s} \otimes (\rho^*)^{\otimes t} : \operatorname{Aut}(\mathbb{R}^r) \to \operatorname{Aut}(\mathbb{R}^{r^{s+t}})$$

then we find the associated vector bundle,

$$\operatorname{Aut}(E) \times_{\rho^{\otimes s} \otimes (\rho^*)^{\otimes t}} \mathbb{R}^{r^{s+t}} = E^{\otimes s} \otimes (E^*)^{\otimes t}$$

In particular,

$$\operatorname{Aut}(TM) \times_{\rho^{\otimes s} \otimes (\rho^*)^{\otimes t}} \mathbb{R}^{n^{s+t}} = T_t^s M$$

Example 19.2. Let h be an inner product on a real vector bundle E. Then consider the orthonormal frame bundle $\mathcal{O}(E,h) \to M$ which is a principal $\mathcal{O}(r)$ -bundle where r is the rank of E. There is a representation $\rho : \mathcal{O}(n) \to \operatorname{Aut}(\mathbb{R}^r)$ and then $\mathcal{O}(E,h) \times_{\rho} \mathbb{R}^r = E$ and $\mathcal{O}(E,h) \times_{\rho^*} \mathbb{R}^r = E^*$ but these are isomorphic because $\rho = \rho^*$ since it is the orthonormal representation.

Now let h be a hermitian metric on a complex vector bundle $E \to M$ of rank r and consider $\mathrm{U}(E,h) \to M$ the unitary frame bundle. Then there are representations $\rho: \mathrm{U}(r) \to \mathrm{Aut}\,(\mathrm{C}^r)$ and $\rho^*: \mathrm{U}(r) \to \mathrm{Aut}\,(\mathrm{C}^r)$ which give $\mathrm{U}(E,h) \times_{\rho} \mathrm{C}^r = E$ and $\mathrm{U}(E,h) \times_{\rho^*} \mathrm{C}^r = E^*$. However, $\rho^* = \overline{\rho}$ since it is the representation of the unitary group. Thus, $\mathrm{U}(E,h) \times_{\rho^*} \mathrm{C}^r = \overline{E}$.

20 March 27

20.1 Cross Section

Definition: A cross section of a fiber bunle $\pi: E \to \text{with fiber } F$ is a smooth map $\sigma: M \to E$ such that $\pi \circ \sigma = \mathrm{id}_M$.

Lemma 20.1. Let $\pi: E \to M$ be a trivial fiber bundle with fiber F then cross sections correspond exactly to smooth maps $M \to F$.

Proof. Consider,

 $s: M \to M \times F$ is a section of $M \times F \to M$ and thus is a map $M \to F$.

Lemma 20.2. Let $\pi: P \to M$ be a principal G-bundle then $\pi: P \to M$ is trivial iff it admits a cross section.

Proof. If $\pi: P \to M$ is trivial then the above lemma gives a section. Conversely, if $\sigma: M \to P$ is a corss section then define $\phi: M \times G \to P$ via $\phi(x,g) = \sigma(x) \cdot g$. Then ϕ is a G-equivariant diffeomorphism since

$$\phi((x,a) \cdot g)) = \phi(x,ag) = \sigma(x) \cdot (ag) = (\sigma(x) \cdot a) \cdot g = \phi(x,a) \cdot g$$

and furthermore the following diagram commutes,

because $\pi \circ \phi(x, g) = \pi(\sigma(x) \cdot g) = \pi(\sigma(x)) = x$.

20.2 Vertical Spaces

Definition: Let $\pi: E \to M$ be a fibre bundle with fibre F. For any $u \in E$ let $x = \pi(u) \in M$ then $\iota_x : \pi^{-1}(x) \hookrightarrow E$ be the inclusion of the firbre $\pi^{-1}(x) = E_x \cong F$. The vertical space $V_u = \operatorname{Im}((d\iota_x)_u) \subset T_uE$. Then $\dim V_u = \dim F = N$. Then $\{V_u \subset T_uE\}$ is a smooth distribution. Equivalently $V \to E$ is a smooth subbundle of $TE \to E$ of rank N. In particular if E is a vector bundle then $V \cong \pi^*E$.

Definition: Let G be a Lie group, Y a smooth manifold and G acts on Y on the right. Given any $\xi \in \mathfrak{g}$ we define the fundamental vector field $X_{\xi}^{Y} \in \mathscr{X}(Y)$ via,

$$X_{\xi}^{Y}(y) = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} y \cdot \exp(t\xi)$$

In particular if Y = G and G acts on G by right multiplication then,

$$X_{\xi}^G = X_{\xi}^L$$

is the unique left invariant vector field on G with $X_{\xi}^{L}(e) = \xi$. If Y = P is a princiall G-bundle over M then $X_{\xi}^{P}(u) \in V_{u}$ because the curve $t \mapsto y \cdot \exp(t\xi)$ is contained in the fiber E_{y} . Thus, $X_{\xi}^{P} \in \mathcal{C}^{\infty}(P, V)$.

Lemma 20.3. Let $\pi: P \to M$ be a principal G-buundle. Then the vertical bundle is given by $V \cong P \times \mathfrak{g}$ where $\mathfrak{g} = \text{Lie}(G)$.

Proof. Define $\phi: P \times \mathfrak{g} \to V$ via $\phi(u,\xi) = X_{\xi}^{P}(u) \in V_{u}$. This is an isomorphism of vector bundles over P.

Remark 8. In particular, if P = G is a principal G-bundle over a point then $V = TG \cong G \times \mathfrak{g}$.

20.3 Connections on Principal Bundles

Remark 9. A connection on a principal bundle $\pi: P \to M$ is of one,

- 1. horizontal spaces
- 2. connection 1-form
- 3. parallel transport

Definition: A connection on a principal G-bundle $\pi: P \to M$ s an assignment of hoizontal spaces $\{H_u \subset T_uP \mid u \in P\}$ which is a smooth distribution of n-planes on P where $n = \dim M$ such that,

- 1. $\forall u \in P : T_u P = Vu \oplus H_u$ and thus $TP = V \oplus H$
- 2. $\forall u \in P : \forall a \in G : H_{u \cdot a} = (dR_a)_u(H_u)$ with $R_a : P \to P$ via $u \mapsto u \cdot a$.

Definition: A connection 1-form on a principal G-bundle $\pi: P \to M$ is a smooth \mathfrak{g} -valued 1-form $\omega \in \Omega^1(P,\mathfrak{g})$ (i.e. for each $X \in \mathscr{X}(P)$ we have a smooth map $\omega(X): P \to \mathfrak{g}$) such that

- 1. $\forall \xi \in \mathfrak{g} : \omega(X_{\xi}^{P}) = (u \mapsto \xi)$
- 2. $\forall a \in G : R_a^*\omega = \operatorname{Ad}(a^{-1})\omega$ i.e. pointwise,

$$\forall u \in P : \forall a \in G : \forall y \in T_u P : \omega(u \cdot a)((dR_a)_u(y)) = \operatorname{Ad}(a^{-1})(\omega(u)(y))$$

Lemma 20.4. $(R_a)_*X_{\xi}^P = X_{\mathrm{Ad}(a^{-1})\xi}^P$

Proof. At $u \in P$ we have,

$$[(R_a)_* X_{\xi}^P](u) = (dR_a)_{u \cdot a^{-1}} (X_{\xi}^P(u \cdot a^{-1})) = (dR_a)_{u \cdot a^{-1}} \frac{d}{dt} \Big|_{t=0} u \cdot a^{-1} \exp(t\xi)$$

$$= \frac{d}{dt} \Big|_{t=0} u \cdot a^{-1} \cdot \exp(t\xi) \cdot a = \frac{d}{dt} \Big|_{t=0} u \cdot \exp(t \operatorname{Ad}(a^{-1})\xi) = X_{\operatorname{Ad}(a^{-1})\xi}^P(u)$$

Lemma 20.5. Horizontal spaces and connection 1-forms are in correspondence.

Proof. Given $\{H_u \subset T_u P\}$ satisfying the conditions, define, $\omega \in \Omega^1(P, V)$ as follows. $\forall u \in P : \forall u \in T_u P = H_u \oplus V_u$ then write $y = y^H + y^V$. Since $V \cong P \times \mathfrak{g}$ via the fundamental vector fields then $y^V = X_{\xi}^P(u)$ for a unique ξ . Define $\omega(u)(y) = \xi$. Clearly, $\omega(X_{\xi}^P) = \xi$.

Now, for $u \in P$, $a \in G$, $y \in T_uP$ then in the case $y \in H_u$ we have $(dR_a)_u(y) \in H_{u\cdot a}$ by assumption. Therefore, by construction,

$$\omega(u \cdot a)((dR_a)_u(y)) = 0 = \operatorname{Ad}(a^{-1})(\omega(u)(y))$$

For the case $y \in V_u$ we have $y = X_{\xi}^P(u)$ for some $\xi \in \mathfrak{g}$ and thus,

$$\omega(u \cdot a)((\mathrm{d}R_a)_u(y)) = \omega(u \cdot a)((R_a)_* X_{\xi}^P(u \cdot a)) = \omega(u \cdot a)(X_{\mathrm{Ad}a^{-1}\xi}^P) = \omega(X_{\mathrm{Ad}(a^{-1})\xi}^P)(u \cdot a) = \mathrm{Ad}(a^{-1})\xi$$

Furthermore,

$$\operatorname{Ad}(a^{-1})\omega(u)(y) = \operatorname{Ad}(a^{-1})\omega(u)(X_{\xi}^{P}(u)) = \operatorname{Ad}(a^{-1})\xi$$

and the general case follows by linearity.

21 April 1

Consider $\omega \in \Omega^1(P, \mathfrak{g})$ satisfying the connection 1-form conditions. Then let $H_u = \ker(\omega(u): T_uP \to \mathfrak{g})$. The first property gives $\omega(u)|_{V_u}: V_u \to \mathfrak{g}$ is a linear isomorphism so $T_uP = V_u \oplus H_u$. The second property is equivalent to,

$$T_{u}P \xrightarrow{\omega(u)} \mathfrak{g}$$

$$\downarrow^{(dR_{a})_{u}} \qquad \downarrow^{Ad(a^{-1})}$$

$$T_{(ua)}P \xrightarrow{\omega(u \cdot a)} \mathfrak{g}$$

$$v \in H_u = \ker \omega(u) \iff (dR_a)_u(v) \in \ker \omega(u \cdot a) = H_{ua}$$

21.1 ?

We now fix a principal G-bundle $\pi: P \to M$ of the base M and local trivializations $\phi_{\alpha}: \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times G$ which are G-equivariant diffeomorphisms and cross sections $\sigma_{\alpha}: U_{\alpha} \to \pi^{-1}(U_{\alpha})$ of $\pi^{-1}(U_{\alpha}) \to U_{\alpha}$ given by $\sigma_{\alpha}(x) = \psi_{\alpha}^{-1}(x, e)$ for $e \in G$. We want to consider all possible connections on this bundle.

Definition: Let G be a Lie group. Then Mauser-Cartan form is the unque \mathfrak{g} -valued 1-form $\theta \in \Omega^1(G, \mathfrak{g})$ on G which is left invariant and $\theta(e) : T_eG \to \mathfrak{g}$ is the identity i.e. $\theta(X_{\xi}^L = \xi \text{ for any } \xi \in \mathfrak{g}$. Equivalently,

$$\forall g \in G : \theta(g) = (\mathrm{d}L_q)_{q^{-1}} : T_q P \to T_e G$$

We use the notation $\theta = g^{-1}dg$ for a general group G. Then,

$$R_a^*\theta = R_a^*L_{a^{-1}}^*\theta = \operatorname{Ad}(a^{-1}\theta)$$

Example 21.1. Let $G = \operatorname{Aut}(\mathbb{R}^r)$ then $TG = G \times \mathfrak{g}$

Definition: Given any connection 1-form $\omega \in \Omega^1(P, \mathfrak{g})$ on a principal bundle $\pi : P \to G$ with given trivializations and sections. Define $\omega_{\alpha} = \sigma_{\alpha}^* \omega \in \Omega^1(U_{\alpha}, \mathfrak{g})$ then $\phi_{\alpha}^{-1}(\omega) \in \Omega^1(U_{\alpha} \times G, \mathfrak{g})$

Lemma 21.2. Then,

$$[(\psi_{\alpha}^{-1})^*\omega](x,g) = \operatorname{Ad}(g^{-1})\omega_{\alpha}(x) + \theta(g)$$

via,

$$((\psi_{\alpha}^{-1})^*\omega)(x,g): \qquad T_{(x,g)}(U_{\alpha}\times G) \longrightarrow \mathfrak{g}$$

$$\parallel \qquad \parallel$$

$$\operatorname{Ad}(g^{-1})\omega_{\alpha}(x) + \theta(g): \qquad T_xU_{\alpha} \oplus T_gG \longrightarrow \mathfrak{g}$$

Proof. First,

$$\left((\psi_{\alpha}^{-1})^*\omega\right)(x,g)\bigg|_{T_{\sigma}G} = \theta(g)$$

and

$$(\psi_{\alpha}^{-1})^*\omega(x,e)\Big|_{T_xU_{\alpha}} = (\sigma_{\alpha}^*\omega)(x) = \omega_{\alpha}(x)$$

and,

$$(\psi_{\alpha}^{-1})^*\omega(x,g)\bigg|_{T_xU_{\alpha}} = ((R_g \circ \sigma_{\alpha})^*\omega)(x) = [\sigma_{\alpha}^* R_g^*\omega](x) = [\sigma_{\alpha}^* (\operatorname{Ad}(g^{-1}))\omega](x) = \operatorname{Ad}(g^{-1})\omega_{\alpha}(x)$$

Lemma 21.3. On $U_{\alpha} \cap U_{\beta}$ with $\omega_{\alpha} = \sigma_{\alpha}^* \omega$ and $\omega_{\beta} = \sigma_{\beta}^* \omega$. Then,

$$\omega_{\alpha} = \mathrm{Ad}(\psi_{\alpha\beta}^{-1})\omega_{\beta} + (\psi_{\alpha\beta}^{-1})\theta$$

 \square

Example 21.4. Let $\pi: P \to M$ be a pricipal $\mathrm{GL}\,(()\,r,F)$ -bundle. Consider the fundamental representation ρ given by acting on F^r . Then $E = P \times_{\rho} F^r$ is a vector bundle of rank r over M. Then $P = \mathrm{Aut}\,(E)$. Given a connection on $P = \mathrm{Aut}\,(E)$ we define a conection $\nabla: \Omega^0(E) \to \Omega^1(E)$ on E as follows. LEt $\{U_\alpha: \alpha \in I\}$ be an open cover of M. Let $\sigma_\alpha(x) = (e_{\alpha,d}(x), \ldots, e_{\alpha,1}(x))$ frame of $E|_{U_\alpha} \to U_\alpha$ with $\pi: P \to M$. On $E|_{U_\alpha}$ we define,

$$\nabla e_{\alpha,i} = \sum_{j=1}^{n} e_{\alpha,j} \otimes \theta_{ji} \qquad \omega_{\alpha} = \sigma_{\alpha}^{*} \omega = (\theta_{ij}) \in \Omega^{1}(U_{\alpha}, \mathfrak{g})$$

Theorem 21.5. Given a connection of a principal bundle $\pi: P \to M$ then there is a connection on the associate vector bundle.