

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования

«Дальневосточный федеральный университет» (ДВФУ)

ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Департамент информационных и компьютерных систем

Курс «Компьютерные методы анализа больших данных»

Лабораторная работа №1 Контрольное мероприятие по рейтингу

на тему «Построение и визуализация датасета rand5» Вариант №15

Выполнил студент Б9122-01.03.02мкт Пелагеев Д.И.

Проверил доцент Достовалов В.Н.

г. Владивосток 2024

Оглавление

Вв	еден	ие	2
1	Под	готовка данных	Ç
	1.1	Загрузка и первичная обработка данных	S
	1.2	Описание данных	3
	1.3	Формирование подмножеств	4
2	Pac	нёт дисперсий и средних значений	
	2.1	Создание таблицы с результатами	
3	Виз	уализация данных	6
	3.1	Составные гистограммы с распределением веса	6
	3.2	Составные гистограммы с распределением цены	6
Заг	КЛЮ ^ч	иение	8
Сп	исок	использованных источников	C

Введение

Данный отчет посвящен процессу предварительного анализа данных из набора «Diamonds» в формате CSV. Нас интересуют следующие параметры:

- вес алмаза (в каратах);
- качество огранки;
- цвет алмаза;
- цена (в долларах США).

Актуальность данной работы обусловлена тем, что она служит хорошим материалом для изучения основных функций анализа данных в R.

Цель исследования — изучить возможности языка R для анализа данных и создать визуализации, которые позволят наглядно рассмотреть распределение характеристик алмазов.

Задачи работы:

- a) Прочитать файл с помощью команды: file <-read.csv(file="rand5.csv header=TRUE, sep=").
- б) Для двух наихудших классов color и cut построить subset и определить значения средней цены, дисперсию цены, значения среднего веса, дисперсию веса алмазов (таблица). Упорядоченность классов определяется функцией unique().
- в) Построить составные гистограммы с распределением веса, цены алмаза при фиксированных классах color и cut (см. п.2).

Основная часть

1 Подготовка данных

1.1 Загрузка и первичная обработка данных

Прежде чем мы начнем работать с данными, стоит сначала установить рабочую директорию, в которой будет находиться наш датасет "rand5.csv".

```
Листинг 1 — Установка директории
```

```
setwd ("/Users/daniil/Desktop/Education/BigData")
```

Теперь загружаем наш датасет "rand5.csv" с помощью функции read.csv.

```
Листинг 2 — Загрузка данных
```

```
\underline{\mathbf{file}} \leftarrow \mathrm{read.csv}(\underline{\mathbf{file}} = "\mathrm{rand5.csv"}, \ \mathrm{header} = \mathrm{TRUE}, \ \mathrm{sep} = ",")
```

Проверяем размерность наших данных до очистки, затем очищаем данные и проверяем ещё раз, чтобы убедиться, были ли пустые данные.

Листинг 3 - Очистка данных

```
1    cat(dim(diamond), "\n")
2    diamond ← na.omit(diamond)
4    cat(dim(diamond), "\n")
```

1.2 Описание данных

Изучаем, какие данные находятся в файле.

Листинг 4 — Проверка данных

```
\mathrm{head}\left(\mathrm{diamonds}\right)
```

Датасет diamonds представляет собой набор данных, содержащий информацию о различных алмазах, собранную для анализа их характеристик и цен. Он включает 53 940 записей и 10 переменных, каждая из

которых описывает определенные свойства алмаза[1]. У нас модифицированный датасет, который имеет 5000 записей и 6 переменных:

- X: идентификатор строки;
- **carat**: масса алмаза в каратах;
- **cut**: качество огранки алмаза (Fair, Good, Very Good, Premium, Ideal);
- **color**: цвет алмаза, обозначаемый буквами от D (бесцветный) до J (с легким желтым оттенком);
- **clarity**: чистота алмаза, описываемая различными категориями (например, I1, SI1, SI2, VS1, VS2, VVS1, VVS2, IF);
 - **price**: цена алмаза в долларах США.

Таблица 1 — Пример данных алмазов

X	carat	cut	color	clarity	price
1	1.20	Ideal	D	SI2	6140
2	0.37	Ideal	G	IF	1056
3	0.80	Ideal	F	VS2	3913
4	1.07	Ideal	Н	SI1	4955
5	0.52	Very Good	F	VS2	1581
6	1.01	Ideal	E	SI2	4666

1.3 Формирование подмножеств

После всех манипуляций с датасетом мы должны отобрать два наихудших класса color и cut. С помощью unique мы упорядочим наши классы и внесём два последних элемента, то есть два наихудших элемента, в новые переменные для дальнейшей работы.

Листинг 5 — Наихудшие цвета и огранки

```
unique(diamond$color)

worst_colors 
unique(diamond$color)[6:7]
```

```
unique(diamond$cut)

worst_cuts ← unique(diamond$cut)[4:5]
```

Теперь, зная наихудшие цвета и огранки, мы можем выделить подвыборку на их основе.

```
Листинг 6 — Подмножество
```

```
subset ← diamond[(diamond$cut %in% worst_cuts) & (diamond$color %in% worst_colors), ]
```

2 Расчёт дисперсий и средних значений

Среднее значение — это сумма всех значений в выборке или совокупности, делённая на их количество.

Дисперсия — это статистическая мера, которая показывает степень разброса значений в выборке или генеральной совокупности относительно их среднего значения.

2.1 Создание таблицы с результатами

Чтобы найти нужные величины, воспользуемся встроенными методами в R [2] [3]. Для поиска дисперсий воспользуемся функцией var, а для поиска среднего значения — mean.

Листинг 7 — Создание таблицы

```
summary \( \text{data.frame}(

Mean_price = mean(subset$price),

Var_price = var(subset$price),

Mean_weight = mean(subset$carat),

Var_weight = var(subset$carat)

)
```

И выведем это всё с помощью следующей строки:

```
Листинг 8 — Вывод
1 summary
```

Получим следующую таблицу:

Таблица 2 — Статистические данные по алмазам

Mean_price	Var_price	Mean_weight	Var_weight
4972.884	14023118	1.164419	0.2683732

3 Визуализация данных

Визуализацию модифицированного набора diamonds будем производить с помощью библиотеки ggplot2 [4], которая позволяет создавать наглядные графики на языке R.

3.1 Составные гистограммы с распределением веса

Строим гистограмму распределения веса алмазов при фиксированных классах color и cut, равных I, J и GOOD, Fair соответственно.

Листинг 9 — Код для первой гистограммы

```
ggplot(subset, aes(x = carat, fill = interaction(color, cut))) +
geom_histogram(binwidth = 0.1, position = "stack") +
labs(title = "Distribution of Diamond Carat by Color and Cut",
x = "Carat",
y = "Count") +
scale_fill_discrete(name = "Color and Cut") +
theme_minimal()
```

3.2 Составные гистограммы с распределением цены

Строим гистограмму распределения цены алмазов при фиксированных классах color и cut, равных I, J и GOOD, Fair соответственно.

Листинг $10 - { m Ko}$ д для второй гистограммы

```
ggplot(subset, aes(x = price, fill = interaction(color, cut))) +
geom_histogram(binwidth = 500, position = "stack") +
labs(title = "Distribution of Diamond Price by Color and Cut",
x = "Price",
y = "Count") +
scale_fill_discrete(name = "Color and Cut") +
theme_minimal()
```


Рисунок 2 — Гистограмма распределения цены алмазов при фиксированных классах color и cut

Заключение

В данном отчёте была проведена предварительная обработка и анализ данных из набора «Diamonds».

Визуализация данных с использованием библиотеки ggplot2 позволила проанализировать распределения веса и цены алмазов в зависимости от их характеристик.

Проведённый анализ демонстрирует возможности языка R и его библиотек для проведения предварительной обработки данных, вычисления ключевых статистических показателей и создания информативных визуализаций.

Список использованных источников

- 1. R Foundation for Statistical Computing. Diamonds dataset. 2023. Режим доступа: Diamonds dataset (дата обращения: 3.11.2024).
- 2. Официальная страница среды статистического моделирования R.-2024.- Режим доступа: R: The R Project for Statistical Computing (дата обращения: 3.11.2024).
- 3. Официальная страница интегрированной среды разработки RStudio. 2024. Режим доступа: RStudio | Open source & professional software for data science teams RStudio дата обращения: 3.11.2024).
- 4. Wickham, Hadley. ggplot2: Elegant Graphics for Data Analysis (Use R!) / Hadley Wickham. New York: Springer, 2009. Режим доступа: ggplot2 (дата обращения: 3.11.2024).