מתודולוגיות עבודה ב-DS

דגשים בתהליך העבודה - הרצת אלגוריתמים

תוכן עניינים

- Test Harness •
- K-Fold Cross Validation
 - Hyperparameters
 - דגשים לסיווג
 - Confusion Matrix •
- Receiver operating characteristic
 - Area under the ROC Curve
 - Ensembles •

Test Harness

- בכדי להבין איזה אלגוריתם פותר את הבעיה בצורה הטובה ביותר יש לבצע את הבדיקות כך שיתאפשר להעריך את ביצועי המכונה גם במקרי אמת
 - לצורך כך יש לממש בדיקות באופן כזה שיאפשרו להעריך ביצועים של מכונות
 שונות
 - עליו מבוצע הבדיקות Test Harness ע"י חלוקה נכונה של ה-Data עליו מבוצע הבדיקות
 - יכול להיעשות במס' צורות Test Harness מימוש של
 - Train & Test- חלוקה •
 - Train, Cross & Test- חלוקה ל
 - K-Fold Cross Validation •
 - leakage בלבד למניעת Test- ההרצה הסופית מבוצעת על ה-•

K-Fold Cross Validation

K-Fold Cross Validation

```
x, y = load_iris(return_X_y=True)
clf = svm.SVC(kernel='linear', C=1, random_state=0)
scores = cross_validate(clf, x, y, cv=5, scoring='accuracy')
print("Test Score")
print(scores['test_score'])

print("Accuracy: %0.2f (+/- %0.2f)" % (scores['test_score'].mean(), scores['test_score'].std() * 2))
```

K-Fold Cross Validation

sklearn.model_selection.cross_val_score

 $sklearn.model_selection. \ \ \, cross_val_score \ (estimator, X, y=None, groups=None, scoring=None, cv='warn', n_jobs=None, verbose=0, fit_params=None, pre_dispatch='2*n_jobs', error_score='raise-deprecating') \ \ \, [source]$

- מטרת ה- Hyperparameters היא לימוד הפרמטרים הבונים את המודל ומועברים אליו, שאינם נלמדים במסגרת המודל, לדוגמא: & C , Kernel במודל של SVC
- הלימוד של הפרמטרים מבוצע ע"י הרצה של כל הקומבינציות האפשריות
 של הפרמטרים, והבאת הציון הגבוה ביותר
- חובה לבצע Hyperparameters למציאת התוצאה הטובה ביותר עבור ה-Cross Validation


```
#GridSearchCV
parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
svc = svm.SVC(gamma="scale")
clf = GridSearchCV(svc, parameters, cv=5)
clf.fit(x, y)
sorted(clf.cv results .keys())
clf.best_estimator_
clf.best params
clf.best_score_
```

sklearn.model_selection.GridSearchCV

class sklearn.model_selection. **GridSearchCV** (estimator, param_grid, scoring=None, fit_params=None, n_jobs=None, iid='warn', refit=True, cv='warn', verbose=0, pre_dispatch='2*n_jobs', error_score='raise-deprecating', return_train_score='warn') [source]

Confusion Matrix - דגשים לסיווג

		True condition				
	Total population	Condition positive	Condition negative	Prevalence $= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	Σ True positiv	racy (ACC) = ve + Σ True negative al population
Predicted condition	Predicted condition positive	True positive, Power	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive $\overline{\Sigma}$ Predicted condition positive	False discovery rate (FDR) = $\frac{\Sigma \text{ False positive}}{\Sigma \text{ Predicted condition positive}}$	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = $\frac{\Sigma}{\Sigma}$ False negative $\frac{\Sigma}{\Sigma}$ Predicted condition negative	Negative predictive value (NPV) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Predicted condition negative}}$	
		True positive rate (TPR), Recall, Sensitivity, probability of detection $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic odds ratio	F ₁ score =
		False negative rate (FNR), Miss rate = $\frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) $= \frac{FNR}{TNR}$		2 · Precision · Recall Precision + Recall

Confusion Matrix - דגשים לסיווג

	לקוחות עם קשיי תשלום	לקוחות ללא קשיי תשלום
חיזוי קשיי תשלום חיובי	59	12
חיזוי קשיי תשלום שלילי	34	150

$$(59+34)/59$$
Recall = •

$$(12 + 59)/59$$
 persicion =

Recall & percision - דגשים לסיווג

relevant elements false negatives true negatives 0 true positives false positives selected elements

AUC for ROC curves

python-ב roc auc מימוש - בדגשים לסיווג

ROC Curve

במת ההמונים - Ensembles

- שילוב של מספר מודלים מוצלחים, לקבלת Ensembles תוצאה אופטימאלית
- -Bagging (Bootstrap Aggregation) I אימון מודל זהה על דוגמאות שונות מתוך ה - training set
 - training אימון מודל זהה על דוגמאות שונות מתוך ה- Boosting• set בשרשור, ומתן דגש על לימוד דוגמאות שסווגו לא נכון
- שונים כקלט –Blending (Stacking) I הכנסת תוצרי אימון של מודלים שונים כקלט ולימודם ע"י אלגוריתים חדש לקבלת תוצאה משוקללת

Original Dataset Bootstrap Bootstrap Bootstrap sample 2 sample 1 sample n Learning Learning Learning model 1 model 2 model n Aggregation

Bootstrap Aggregating

- הדוגמאות מחולקות לקבוצות קטנות, על כל קבוצה מבוצעת למידה
- לאחר אימון מתקבלים מודלים עליהם מבוצעת פעולת Aggregation
 - במקרה של רגרסיה החיזוי יהיה (soft) ממוצע של כלל המודלים
- במקרה של קלסיפיקציה החיזוי יתבצע ע"י פעולת (Voting (hard) או ממוצע על ההסתברויות (soft)
 - הוא דוגמא למודל שעושה
 באשר התת מודל שלו זה
 עצי ההחלטה

שימוש Bootstrap Aggregating -

```
#Ensembles
x, y = load iris(return X y=True)
x_new , y_new = put_anomaly(x,y,i_max=50)
x = x new
y = y new
X train, X test, y train, y test = train test split(
    x, y, test size=0.33, random state=42)
clf = RandomForestClassifier(n estimators=100, max depth=2,random state=0)
bagging = BaggingClassifier(clf, max samples=0.5, max features=0.5)
clf.fit(X_train,y_train).score(X_test,y_test)
bagging.fit(X train,y train).score(X test,y test)
```

Bootstrap Aggregating

```
In [1291]: bagging.fit(X_train,y_train).score(X_test,y_test)
Out[1291]: 0.74
In [1292]: clf.fit(X_train,y_train).score(X_test,y_test)
Out[1292]: 0.62
```

Bootstrap Aggregating

sklearn.ensemble.BaggingClassifier

class sklearn.ensemble. BaggingClassifier (base_estimator=None, n_estimators=10, max_samples=1.0, max_features=1.0, bootstrap=True, bootstrap_features=False, oob_score=False, warm_start=False, n_jobs=None, random_state=None, verbose=0) [source]

Boosting

- Data Set מבוצע אימון כל פעם על חלק מהדוגמאות מתוך ה
- לאחר האימון ניתן משקל לכל דוגמא כך שדוגמאות עליהם ניתן חיזוי שגוי
 יילמדו בפעמים הבאות
 - באופן זה הדוגמאות השגויות מאומנות יותר וכך התוצאות משתפרות
 - בסיום התהליך ניתן משקל גם למסווגים השונים
 - AdaBoost, בינהם: Boosting קיימים סוגים שונים של אלגוריתמים Boosting ימים סוגים שונים של אלגוריתמים. LPBoost, XGBoost, GradientBoost, BrownBoost
 - * מומלץ להשתמש ב-XGBoost

Boosting

Boosting -מימוש בפייתון

```
#Boosting - AdaBoost
clf_boost = AdaBoostClassifier(clf,n_estimators=100)
clf_boost.fit(X_train,y_train).score(X_test,y_test)
```

Training set New data training Classification C_2 models prediction **Predictions** Meta-Classifier Final prediction

Blending - Stacking

- בשיטה זו משתמשים במספר מסווגים שונים (meta-classifier) על כל הtrain data
- לבסוף ישנו אלגוריתים
 הלומד את התוצאות של
 מסווגים אלו, ונותן חיזוי
 המורכב מכלל התוצאות של
 meta-classifiera
- האימון יכול להיות על הסיווג עצמו או על ההסתברויות שמתקבלות מהסיווג

Blending

Ensemble

decrease model variance -Bagging •

decrease model bias -Boosting •

increase predictive force of the classifier -Blending •