201-103-RE - Calculus 1

WORKSHEET: DEFINITION OF THE DERIVATIVE

1. For each function given below, calculate the **derivative at a point** f'(a)using the limit definition.

(a)
$$f(x) = 2x^2 - 3x$$
 $f'(0) = ?$

(b)
$$f(x) = \sqrt{2x+1}$$
 $f'(4) = ?$

(a)
$$f(x) = 2x^2 - 3x$$
 $f'(0) = ?$
(b) $f(x) = \sqrt{2x+1}$ $f'(4) = ?$
(c) $f(x) = \frac{1}{x-2}$ $f'(3) = ?$

2. For each function f(x) given below, find the **general derivative** f'(x)as a new function by using the limit definition.

(a)
$$f(x) = \sqrt{x-4}$$
 $f'(x) = ?$

(b)
$$f(x) = -x^3$$
 $f'(x) = ?$

(a)
$$f(x) = \sqrt{x}$$
 1 $f(x) = x$
(b) $f(x) = -x^3$ $f'(x) = x$
(c) $f(x) = \frac{x}{x+1}$ $f'(x) = x$

(d)
$$f(x) = \frac{1}{\sqrt{x}}$$
 $f'(x) = ?$

3. For each function f(x) given below, find the equation of the tangent line at the indicated point.

(a)
$$f(x) = x - x^2$$
 at $(2, -2)$

(b)
$$f(x) = 1 - 3x^2$$
 at $(0,1)$

(c)
$$f(x) = \frac{1}{2x}$$
 at $x = 1$

(d)
$$f(x) = x + \sqrt{x}$$
 at $x = 1$

ANSWERS:

1. (a)
$$f'(0) = -3$$
 (b) $f'(4) = 1/3$ (c) $f'(3) = -1$

2. (a)
$$f'(x) = \frac{1}{2\sqrt{x-4}}$$
 (b) $f'(x) = -3x^2$ (c) $f'(x) = \frac{1}{(x+1)^2}$ (d) $f'(x) = \frac{-1}{2x^{3/2}}$

3. (a)
$$y = -3x + 4$$
 (b) $y = 1$ (c) $y = -\frac{1}{2}x + 1$ (d) $y = \frac{3}{2}x + \frac{1}{2}$