Generating Function

The *generating function for the sequence* $a_0, a_1, \ldots, a_k, \ldots$ of real numbers is the infinite series

$$G(x) = a_0 + a_1 x + \dots + a_k x^k + \dots = \sum_{n=k}^{n=k} a_n x^k$$

$$Q_n = 1, \quad G_1(x) = \frac{1}{1-x} \iff \frac{1}{1-x} + x^k + x^k + \dots + (1-x)^{n-k}$$

$$Q_n = (-1)^n, \quad G(x) = \frac{1}{1+x} \qquad \frac{1-x+x^2-x^2+}{1-x^2+x^2-x^2+} \qquad (1+x)^{n-k}$$

$$G(x) = 1+3x+4x^2+8x^2+\dots = 1+(3x)+(3x)^2+(3x)^2+\dots$$

$$(1-3x)^{-1} \qquad Q_n = 2^n$$

$$G(x) = 1-3x+4x^2-8x^2+\dots = 1+(3x)+(3x)^2+(3x)^2+\dots$$

$$= (1+3x)^{-1} \qquad Q_n = 2^n(-1)^n$$

$$G(x) = 1+x^2+x^4+x^6+\dots = 1+x^2+(x^2)^2+\dots$$

$$= (1-1x^2)^{-1}$$

$$Q_n \Rightarrow x^n = (1-1x^2)^{-1}$$

$$Q_n \Rightarrow$$

G(x)	l i	-) nek	()	
$\sum_{k=0}^{n} C(n, k) x^{k}$ = 1 + C(n, 1)x +	$C(n,2)x^2+\cdots+x^n$	C(n, k) MCK	$(1-x)^n \rightarrow a_{\mathbf{K}}$	+
$1 + \sum_{k=0}^{n} C(n, k)a^{k}x^{k}$ $= 1 + C(n, 1)ax + C(n, k)a^{k}x^{k}$	$C(n,2)a^2x^2+\cdots+a^nx^n$	$C(n,k)a^k$ $k \leqslant 4$	$(4a^{k}_{(+22)})$	4
$(1+x^r)^n = \sum_{k=0}^n C(n,k)x^{rk}$ = 1 + C(n, 1)x^r +	$C(n,2)x^{2r}+\cdots+x^{rn}$	$C(n, k/r)$ if $r \mid k$; 0 o		
$\frac{1 - x^{n+1}}{1 - x} = \sum_{k=0}^{n} x^k = 1 + x$	$+x^2+\cdots+x^n$	1 if $k \le n$; 0 otherwis	В	
$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x$	+ x ² + · · ·	1		
$\frac{1}{1 - ax} = \sum_{k=0}^{\infty} a^k x^k = 1 +$	$ax + a^2x^2 + \cdots$	a^k		
$\frac{1}{1 - x^r} = \sum_{k=0}^{\infty} x^{rk} = 1 + x$	$x' + x^{2r} + \cdots$	1 if $r \mid k$; 0 otherwise		
$\frac{1}{(1-x)^2} = \sum_{k=0}^{\infty} (k+1)x^k =$	$1 + 2x + 3x^2 + \cdots$] k+1 Q _k =	(k+1)	
$\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} C(n+k-1)$ $= 1 + C(n,1)x + c$		C(n+k-1,k) = C	$\frac{(n+k-1,n-1)}{n} = (1-x)^{-n}$	η

(1-x)-3

 $1 + \chi + \chi^{3} + \chi^{4} + \chi^{5} = \frac{1(1-\chi^{6})}{1-\chi}$ $+ \eta_{(3} + \eta_{(1}\chi + \eta_{(2}\chi^{2} + ... + \eta_{(n}\chi^{n}))} = (1+\chi)^{\eta}$ $+ \eta_{(3} + \eta_{(1}\chi + \eta_{(2}\chi^{2} + ... + \eta_{(n}\chi^{n}))} = (1+\chi)^{\eta}$ $+ \eta_{(3} + \eta_{(1}\chi + \eta_{(2}\chi^{2} + ... + \eta_{(n}\chi^{n}))} = (1+\chi)^{\eta}$ $+ \eta_{(3} + \eta_{(1}\chi + \eta_{(2}\chi^{2} + ... + \eta_{(n}\chi^{n}))} = (1+\chi)^{\eta}$

-A-1. A- N-1 1 -- 1/A

Q28.

For each of these generating functions, provide a closed formula for the sequence it determines.

a)
$$(x^2 + 1)^3$$

b)
$$(3x - 1)$$

c)
$$1/(1-2x^2)$$

a)
$$(x^2 + 1)^3$$

b) $(3x - 1)^3$
c) $1/(1 - 2x^2)$
d) $x^2/(1 - x)^3$

e)
$$x-1+(1/(1-3x))$$
 f) $(1+x^3)/(1+x)^3$
(a) $(1+\chi^2)^3$ $(1+\chi^3)/(1+x)^3$
(b) $(3\chi-1)^3 = 3_{C_k}(-1)^k (3\chi)^k$
(c) $(3\chi-1)^3 = 3_{C_k}(-1)^k (3\chi)^k$
(d) $(3\chi-1)^3 = 3_{C_k}(-1)^k (3\chi)^k$

$$C_1 = (1-2x^2)^{-1}$$

$$C_1 = (1-2x^2)^{-1}$$

$$C_1 = (1-2x^2)^{-1}$$

$$C_2 = (1-2x^2)^{-1}$$

$$C_3 = (1-2x^2)^{-1}$$

$$C_4 = (1-2x^2)^{-1}$$

$$C_5 = (1-2x^2)^{-1}$$

$$C_6 = (1-2x^2)^{-1}$$

$$C_7 = (1-2x^2)^{-1}$$

$$C_8 = (1-2x^2)^{-1}$$

(d)
$$\frac{\chi^{2}}{(1-\chi)^{3}} = \chi^{2}(1-\chi)^{-3} = \chi^{2} = 3+k-1$$

 $Q_{k+2} \to k+2$ χ^{k+2} χ^{k+2} χ^{k+2} χ^{k+2} χ^{k+2} χ^{k+2}

$$a_{k+2} = K_{c_{3}}, k \geqslant 2$$

$$a_{0} = a_{1} = 0$$

Q27.

Find a closed form for the generating function for each of these sequences. (Assume a general form for the terms of the sequence, using the most obvious choice of such a sequence.)

a)
$$-(1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0, ...)$$

b) $1, 3, 9, 27, 81, 243, 729, ...$

c) $0, 0, 3, -3, 3, -3, 3, -3, ...$

d) $1, \frac{1}{2}, 1, 1, 1, 1, 1, 1, 1, 1, ...$

e) $(7_0) \cdot 2(7_1) \cdot 2^2(7_2) \cdot ... \cdot 2^7(7_1) \cdot 0, 0, 0, 0, ...$

(a) $G(x) = (-1) + (-1)x^{\frac{1}{2}} + (-1)x^{\frac{1}{2}} + ... + x^{\frac{1}{2}} + x^{\frac$

Q29.

Find the coefficient of x^9 in the power series of each of these functions.

a)
$$(1+x^3+x^6+x^9+\cdots)^3$$

b) $(x^2+x^3+x^4+x^5+x^6+\cdots)^3$