PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 97/43303
C07K 5/00, 14/00, C07H 21/04, C12N 15/63, 9/00, A61K 48/00, 39/00, 39/085, 39/09, 39/02, C12P 19/34	A1	(43) International Publication Date: 20 November 1997 (20.11.97
(21) International Application Number: PCT/US9 (22) International Filing Date: 14 May 1997 (1)		Corporation, Corporate Intellectual Property, UW2220, 705
(30) Priority Data: 60/017,670 14 May 1996 (14.05.96)	ι	(81) Designated States: JP. US, European patent (AT, BE, CH, DE DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(71) Applicants (for all designated States except US): S LINE BEECHAM CORPORATION [US/US] Franklin Plaza, Philadelphia, PA 19103 (US). S LINE BEECHAM PLC [GB/US]; New Horizon Brentford, Middlesex TW8 9EP (GB).	i); Oi MITHI	Published With international search report.
(72) Inventors; and (75) Inventors/Applicants (for US only): BLACK, Micharance [GB/US]; 502 Milhouse Way, Chester Spri 19425 (US). HODGSON, John, Edward [GB/US]; 2 Road, Malvern, PA 19355 (US). KNOWLES, David Charles [GB/GB]; Downsview House, 45 Cronks H Redhill, Surrey RH1 6LY (GB). NICHOLAS, Richaley [GB/GB]; 355 Carmen Drive, Collegevill, P. (US). STODOLA, Robert, King [US/US]; 309 Hay Flourtown, PA 19031 (US).	ings, P 260 Lap d, Justi lill Roa ard, Oa A 1942	A pp n, d, k-

(54) Title: NOVEL COMPOUNDS

(57) Abstract

This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the uses of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides and recombinant host cells transformed with the polynucleotides. This invention also relates to inhibiting the biosynthesis or action of such polynucleotides or polypeptides and to the use of such inhibitors in therapy.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
АT	Austria	FR	France	LU	Luxembourg	SN	
AU	Australia	GA	Gabon	LV	Latvia	SZ	Senegal Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	LT	-
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Tajikistan Turkmenistan
BF	Burkina Faso	GR	Greece	*****	Republic of Macedonia	TR	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Turkey
BJ	Benin	18	Ireland	MN	Mongolia	UA	Trinidad and Tobago
BR	Brazit	IL	lurael	MR	Mauritania		Ukraine
BY	Belarus	IS	locland	MW	Malawi	UG	Uganda
CA	Canada	IT	Italy	MX	Mexico	US	United States of Americ
CF	Central African Republic	JP	Japan	NE NE		UZ	Uzbekistan
CG	Congo	KE	Kenya	NL	Niger Netherlands	VN	Viet Nam
CH	Switzerland	KG	Kyrgyzstan	NO		YU	Yugoslavia
CI	Côte d'Ivoire	KP	Democratic People's		Norway	zw	Zimbabwe
CM	Cameroon	•••	Republic of Korea	NZ PL	New Zealand		
CN	China	KR	Republic of Korea		Poland		
CU	Cuba	KZ	Kazakstan	PT	Portugal		
CZ	Czech Republic	LC	Saint Lucia	RO	Romania		
DE	Germany	ü	Liechtenstein	RU	Russian Federation		
DK	Denmark	LK	Sri Lanka	SD	Sudan		
RE	Estonia	LR	ori Lanka Liberia	SE	Sweden		
		Lak	Licens	SG	Singapore		

NOVEL COMPOUNDS

Field of the Invention:

5

10

15

20

25

30

This invention relates to newly identified polynucleotides, polypeptides encoded by such polynucleotides, the uses of such polynucleotides and polypeptides, as well as the production of such polynucleotides and polypeptides and recombinant host cells transformed with the polynucleotides. This invention also relates to inhibiting the biosynthesis or action of such polynucleotides or polypeptides and to the use of such inhibitors in therapy. Preferred embodiments of the invention include Streptococcal polypeptides and polynucleotides, particularly those of Streptococcus pneumoniae.

Background of the Invention:

The Streptococci make up a medically important genera of microbes known to cause several types of disease in humans, including otitis media, pneumonia and meningitis. Since its isolation more than 100 years ago, Streptococcus pneumoniae has been one of the more intensively studied microbes. For example, much of our early understanding that DNA is, in fact, the genetic material was predicated on the work of Griffith and of Avery, Macleod and McCarty using this microbe. Despite the vast amount of research with S. pneumoniae, many questions concerning the virulence of this microbe remain.

While certain Streptococcal factors associated with pathogenicity have been identified, e.g., capsule polysaccharides, peptidoglycans, pneumolysins, PspA Complement factor H binding component, autolysin, neuraminidase, peptide permeases, hydrogen peroxide, IgA1 protease, the list is certainly not complete. Further very little is known concerning the temporal expression of such genes during infection and disease progression in a mammalian host. Discovering the sets of genes the bacterium is likely to be expressing at the different stages of infection, particularly when an infection is established, provides critical information for the screening and characterization of novel antibacterials which can interrupt pathogenesis. In addition to providing a fuller understanding of known proteins, such an approach will identify previously unrecognised targets.

Brief Description of the Invention:

This invention provides novel proteins, particularly those from *Streptococcus* pneumoniae, strain 0100993, characterised in that it comprises the amino acid sequences given herein or fragments, analogues or derivatives thereof.

In accordance with another aspect of the present invention, there are provided polynucleotides (DNA or RNA) which encode such polypeptides.

In particular the invention provides polynucleotides having the DNA sequences given herein.

The invention also relates to novel oligonucleotides derived from the sequences given herein which can act as PCR primers in the process herein described to determine whether or not the *Streptococcus pneumoniae* gene identified herein in whole or in part is expressed in infected tissue. It is recognised that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained. The proteins so identified are also useful as targets in screens designed to identify antimicrobial compounds.

10

15

5

It is an object of the invention to provide polypeptides that have been identified as novel polypeptides by homology between the amino acid sequence set out in the Sequence Listing and a known amino acid sequence or sequences of other proteins such as the proteins identified under the heading Identity in Table 1.

It is a further object of the invention to provide polynucleotides that encode polypeptides set forth in the Sequence Listing, particularly polynucleotides that encode the polypeptide set forth in the Sequence Listing.

In a particularly preferred embodiment of the invention the polynucleotide comprises a region encoding polypeptides comprising the sequence set out in the Sequence Listing, or a variant thereof.

20

25

In another particularly preferred embodiment of the invention there is a novel protein from comprising an amino acid sequence of the Sequence Listing, or a variant thereof.

In accordance with another aspect of the invention, there is provided the use of a polynucleotide of the invention for therapeutic or prophylactic purposes, in particular genetic immunization. Among the particularly preferred embodiments of the invention are naturally occurring allelic variants the polynucleotides set forth in the Sequence Listing and polypeptides encoded thereby.

In accordance with yet another aspect of the invention, there are provided inhibitors to such polypeptides, useful as antibacterial agents, including, for example, antibodies.

30

In accordance with certain preferred embodiments of the invention, there are provided products, compositions and methods for assessing expression of the sequences the Sequence Listing, treating disease, for example, otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural empyema and endocarditis, and most particularly meningitis, such as for example infection of cerebrospinal fluid, assaying genetic variation, and

administering a polypeptide or polynucleotide of the invention to an organism to raise an immunological response against a bacteria, especially a *Streptococcus pneumoniae* bacteria.

In accordance with certain preferred embodiments of this and other aspects of the invention there are provided polynucleotides that hybridize to polynucleotide sequences of the invention, particularly under stringent conditions.

In certain preferred embodiments of the invention there are provided antibodies against polypeptides of the invention.

In other embodiments of the invention there are provided methods for identifying compounds which bind to or otherwise interact with and inhibit or activate an activity of a polypeptide or polynucleotide of the invention comprising: contacting a polypeptide or polynucleotide of the invention with a compound to be screened under conditions to permit binding to or other interaction between the compound and the polypeptide or polynucleotide to assess the binding to or other interaction with the compound, such binding or interaction being associated with a second component capable of providing a detectable signal in response to the binding or interaction of the polypeptide or polynucleotide with the compound; and determining whether the compound binds to or otherwise interacts with and activates or inhibits an activity of the polypetide or polynucleotide by detecting the presence or absence of a signal generated from the binding or interaction of the compound with the polypeptide or polynucleotide.

In accordance with yet another aspect of the invention, there are provided agonists and antagonists of the polynucleotide and/or polypeptides of the invention, preferably bacteriostatic or bacteriocidal agonists and antagonists.

In a further aspect of the invention there are provided compositions comprising a polynucleotide or a polypeptide of the invention for administration to a cell or to a multicellular organism.

Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following descriptions and from reading the other parts of the present disclosure.

Detailed Description of the Invention:

5

10

15

20

25

30

Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. Because each of the sequences contains an open reading frame (ORF) with appropriate initiation and termination codons, the encoded protein upon expression can be used as a target for the screening of antimicrobial drugs. Additionally, the DNA sequences encoding preferably the amino terminal regions of the encoded protein or the Shine-Delgamo region can be used to construct antisense sequences

to control the expression of the coding sequence of interest. Furthermore, many of the sequences disclosed herein also provide regions upstream and downstream from the encoding sequence. These sequences are useful as a source of regulatory elements for the control of bacterial gene expression. Such sequences are conveniently isolated by restriction enzyme action or synthesized chemically and introduced, for example, into promoter identification strains. These strains contain a reporter structural gene sequence located downstream from a restriction site such that if an active promoter is inserted, the reporter gene will be expressed.

Although each of the sequences may be employed as described above, this invention also provides several means for identifying particularly useful target genes. The first of these approaches entails searching appropriate databases for sequence matches in related organisms. Thus, if a homologue exists, the Streptococcal-like form of this gene would likely play an analogous role. For example, a Streptococcal protein identified as homologous to a cell surface protein in another organism would be useful as a vaccine candidate. To the extent such homologies have been identified for the sequences disclosed herein they are reported along with the encoding sequence.

Recently techniques have become available to evaluate temporal gene expression in bacteria, particularly as it applies to viability under laboratory and infection conditions. A number of methods can be used to identify genes which are essential to survival per se, or essential to the establishment/maintenance of an infection. Identification of an ORF unknown by one of these methods yields additional information about its function and permits the selection of such an ORF for further development as a screening target. Briefly, these approaches include:

1) Signature Tagged Mutagenesis (STM)

5

10

15

20

30

This technique is described by Hensel et al., Science 269: 400-403(1995), the contents of which is incorporated by reference for background purposes.

Signature tagged mutagenesis identifies genes necessary for the establishment/maintenance of infection in a given infection model.

The basis of the technique is the random mutagenesis of target organism by various means (e.g., transposons) such that unique DNA sequence tags are inserted in close proximity to the site of mutation. The tags from a mixed population of bacterial mutants and bacteria recovered from an infected hosts are detected by amplification, radiolabeling and hybridisation analysis. Mutants attenuated in virulence are revealed by absence of the tag from the pool of bacteria recovered from infected hosts.

In <u>Streptococcus pneumoniae</u>, because the transposon system is less well developed, a more efficient way of creating the tagged mutants is to use the insertion-duplication mutagenesis technique as described by Morrison et al., <u>J. Bacteriol.</u> 159:870 (1984) the contents of which is incorporated by reference for background purposes.

2) In Vivo Expression Technology (IVET)

5

10

15

20

25

This technique is described by Camilli et al., Proc. Nat'l. Acad. Sci. USA. 91:2634-2638 (1994), the contents of which is incorporated by reference for background purposes. IVET identifies genes up-regulated during infection when compared to laboratory cultivation, implying an important role in infection. ORF identified by this technique are implied to have a significant role in infection establishment/maintenance.

In this technique random chromosomal fragments of target organism are cloned upstream of a promoter-less recombinase gene in a plasmid vector. This construct is introduced into the target organism which carries an antibiotic resistance gene flanked by resolvase sites. Growth in the presence of the antibiotic removes from the population those fragments cloned into the plasmid vector capable of supporting transcription of the recombinase gene and therefore have caused loss of antibiotic resistance. The resistant pool is introduced into a host and at various times after infection bacteria may be recovered and assessed for the presence of antibiotic resistance. The chromosomal fragment carried by each antibiotic sensitive bacterium should carry a promoter or portion of a gene normally upregulated during infection. Sequencing upstream of the recombinase gene allows identification of the up regulated gene.

3) Differential display

This technique is described by Chuang et al., J. Bacteriol. 175:2026-2036 (1993), the contents of which is incorporated by reference for background purposes. This method identifies those genes which are expressed in an organism by identifying mRNA present using randomly-primed RT-PCR. By comparing pre-infection and post infection profiles, genes up and down regulated during infection can be identified and the RT-PCR product sequenced and matched to ORF 'unknowns'.

4) Generation of conditional lethal mutants by transposon mutagenesis.

This technique, described by de Lorenzo, V. et al., Gene 123:17-24 (1993); Neuwald, A. F. et al., Gene 125: 69-73(1993); and Takiff, H. E. et al., J. Bacteriol. 174:1544-1553(1992), the contents of which is incorporated by reference for background purposes, identifies genes whose expression are essential for cell viability.

In this technique transposons carrying controllable promoters, which provide transcription outward from the transposon in one or both directions, are generated. Random insertion of these transposons into target organisms and subsequent isolation of insertion mutants in the presence of inducer of promoter activity ensures that insertions which separate promoter from coding region of a gene whose expression is essential for cell viability will be recovered. Subsequent replica plating in the absence of inducer identifies such insertions, since they fail to survive. Sequencing of the flanking regions of the transposon allows identification of site of insertion and identification of the gene disrupted. Close monitoring of the changes in cellular processes/morphology during growth in the absence of inducer yields information on likely function of the gene. Such monitoring could include flow cytometry (cell division, lysis, redox potential, DNA replication), incorporation of radiochemically labeled precursors into DNA, RNA, protein, lipid, peptidoglycan, monitoring reporter enzyme gene fusions which respond to known cellular stresses.

20 5) Generation of conditional lethal mutants by chemical mutagenesis.

This technique is described by Beckwith, L. Methods in Enzymology 204: 3-18(1991), the contents of which are incorporated herein by reference for background purposes. In this technique random chemical mutagenesis of target organism, growth at temperature other than physiological temperature (permissive temperature) and subsequent replica plating and growth at different temperature (e.g. 42°C to identify ts, 25°C to identify cs) are used to identify those isolates which now fail to grow (conditional mutants). As above close monitoring of the changes upon growth at the non-permissive temperature yields information on the function of the mutated gene. Complementation of conditional lethal mutation by library from target organism and sequencing of complementing gene allows matching with unknown ORF.

6) RT-PCR

5

10

15

25

30

Streptococcus pneumoniae messenger RNA is isolated from bacterial infected tissue e.g. 48 hour murine lung infections, and the amount of each mRNA species assessed by reverse transcription of the RNA sample primed with random hexanucleotides followed by PCR

with gene specific primer pairs. The determination of the presence and amount of a particular mRNA species by quantification of the resultant PCR product provides information on the bacterial genes which are transcribed in the infected tissue. Analysis of gene transcription can be carried out at different times of infection to gain a detailed knowledge of gene regulation in bacterial pathogenesis allowing for a clearer understanding of which gene products represent targets for screens for novel antibacterials. Because of the gene specific nature of the PCR primers employed it should be understood that the bacterial mRNA preparation need not be free of mammalian RNA. This allows the investigator to carry out a simple and quick RNA preparation from infected tissue to obtain bacterial mRNA species which are very short lived in the bacterium (in the order of 2 minute halflives). Optimally the bacterial mRNA is prepared from infected murine lung tissue by mechanical disruption in the presence of TRIzole (GIBCO-BRL) for very short periods of time, subsequent processing according to the manufacturers of TRIzole reagent and DNAase treatment to remove contaminating DNA. Preferably the process is optimised by finding those conditions which give a maximum amount of S.pneumoniae 16S ribosomal RNA as detected by probing Northerns with a suitably labelled sequence specific oligonucleotide probe. Typically a 5' dye labelled primer is used in each PCR primer pair in a PCR reaction which is terminated optimally between 8 and 25 cycles. The PCR products are separated on 6% polyacrylamide gels with detection and quantification using GeneScanner (manufactured by ABI).

5

10

15

20

25

30

Each of these techniques may have advantages or disadvantage depending on the particular application. The skilled artisan would choose the approach that is the most relevant with the particular end use in mind. For example, some genes might be recognised as essential for infection but in reality are only necessary for the initiation of infection and so their products would represent relatively unattractive targets for antibacterials developed to cure established and chronic infections.

Use of the of these technologies when applied to the ORFs of the present invention enables identification of bacterial proteins expressed during infection, inhibitors of which would have utility in anti-bacterial therapy.

Streptococcus pneumoniae, strain 0100993 has been deposited at the National Collection of Industrial and Marine Bacteria Ltd. (NCIMB), Aberdeen, Scotland under NCIMB number 40794 on 11 April 1996, and a Streptococcus pneumoniae, strain 0100993 DNA library in E. coli was similarly deposited on 17 April 1996 under NCIMB number 40800.

The nucleotide sequences disclosed herein can be obtained by synthetic chemical techniques known in the art or can be obtained from Streptococcus pneumoniae, strain 0100993by probing a DNA preparation with probes constructed from the particular sequences disclosed herein. Alternatively, oligonucleotides derived from a disclosed sequence can act as PCR primers in a process of PCR-based cloning of the sequence from a bacterial genomic source. It is recognised that such sequences will also have utility in diagnosis of the stage of infection and type of infection the pathogen has attained.

5

10

15

20

25

30

To obtain the polynucleotide encoding the protein using the DNA sequence given herein typically a library of clones of chromosomal DNA of Streptococcus pneumoniae, strain 0100993 in E. coli or some other suitable host is probed with a radiolabelled oligonucleotide, preferably a 17mer or longer, derived from the partial sequence. Clones carrying DNA identical to that of the probe can then be distinguished using high stringency washes. By sequencing the individual clones thus identified with sequencing primers designed from the original sequence it is then possible to extend the sequence in both directions to determine the full gene sequence. Conveniently such sequencing is performed using denatured double stranded DNA prepared from a plasmid clone. Suitable techniques are described by Maniatis, T., Fritsch, E.F. and Sambrook, J. in MOLECULAR CLONING, A Laboratory Manual, 2nd edition, 1989, Cold Spring Harbor Laboratory (see: Screening By Hybridization 1.90 and Sequencing Denatured Double-Stranded DNA Templates 13.70).

A polynucleotide of the present invention may be in the form of RNA or in the form of DNA, which DNA includes cDNA, genomic DNA, and synthetic DNA. The DNA may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (anti-sense) strand. The coding sequence which encodes the polypeptide may be identical to the coding sequence shown or may be a different coding sequence which coding sequence, as a result of the redundancy or degeneracy of the genetic code, encoding the same polypeptide.

The present invention includes variants of the hereinabove described polynucleotides which encode fragments, analogues and derivatives of the polypeptide characterized by the deduced amino acid sequence given herein. The variant of the polynucleotide may be a naturally occurring allelic variant of the polynucleotide or a non-naturally occurring variant of the polynucleotide. In addition to the standard A, G, C, T/U representations for nucleic acid bases, the term "N" is also used. "N" means that any of the four DNA or RNA bases may appear at such a designated position in the DNA or RNA

sequence, except that N cannot be a base that when taken in combination with adjacent nucleotide positions, when read in the correct reading frame, would have the effect of generating a premature termination codon in such reading frame.

Thus, the present invention includes polynucleotides encoding the same polypeptide characterized by the deduced amino acid sequence given herein as well as variants of such polynucleotides which variants encode for a fragment, derivative or analogue of the polypeptide. Such nucleotide variants include deletion variants, substitution variants and addition or insertion variants.

5

10

15

20

25

30

The polynucleotide may have a coding sequence which is a naturally occurring allelic variant of the coding sequence characterized by the DNA sequence disclosed herein. As known in the art, an allelic variant is an alternate form of a polynucleotide sequence which may have a substitution, deletion or addition of one or more nucleotides, which does not substantially alter the function of the encoded polypeptide.

The polynucleotide which encodes for the mature polypeptide, may include only the coding sequence for the mature polypeptide or the coding sequence for the mature polypeptide and additional coding sequence such as a leader or secretory sequence or a proprotein sequence.

Thus, the term "polynucleotide encoding a polypeptide" encompasses a polynucleotide which includes only coding sequence for the polypeptide as well as a polynucleotide which includes additional coding and/or non-coding sequence.

The present invention therefore includes polynucleotides, wherein the coding sequence for the mature polypeptide may be fused in the same reading frame to a polynucleotide sequence which aids in expression and secretion of a polypeptide from a host cell, for example, a leader sequence which functions as a secretory sequence for controlling transport of a polypeptide from the cell. The polypeptide having a leader sequence is a preprotein and may have the leader sequence cleaved by the host cell to form the mature form of the polypeptide. The polynucleotides may also encode for a proprotein which is the mature protein plus additional 5' amino acid residues. A mature protein having a prosequence is a proprotein and may be an inactive form of the protein. Once the prosequence is cleaved an active mature protein remains.

Thus, for example, the polynucleotide of the present invention may code for a mature protein, or for a protein having a prosequence or for a protein having both a prosequence and a presequence (leader sequence). Further, the amino acid sequences provided herein show a methionine residue at the NH₂-terminus. It is appreciated, however,

that during post-translational modification of the peptide, this residue may be deleted.

Accordingly, this invention contemplates the use of both the methionine-containing and the methionineless amino terminal variants of each protein disclosed herein.

The polynucleotides of the present invention may also have the coding sequence fused in frame to a marker sequence at either the 5' or 3' terminus of the gene which allows for purification of the polypeptide of the present invention. The marker sequence may be a hexa-histidine tag supplied by the pQE series of vectors (supplied commercially by Quiagen Inc.) to provide for purification of the polypeptide fused to the marker in the case of a bacterial host.

5

10

15

20

25

30

The present invention further relates to polynucleotides which hybridize to the hereinabove-described sequences if there is at least 50% and preferably at least 70% identity between the sequences. The present invention particularly relates to polynucleotides, particularly Streptococcal polynucleotides, which hybridize under stringent conditions to the hereinabove-described polynucleotides. As herein used, the term "stringent conditions" means hybridization will occur only if there is at least 95% and preferably at least 97% identity between the sequences. The polynucleotides which hybridize to the hereinabove described polynucleotides in a preferred embodiment encode polypeptides which retain substantially the same biological function or activity as the polypeptide characterised by the deduced amino acid sequence given herein. An example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/ml denatured, sheared salmon sperm DNA, followed by washing the hybridization support in 0.1x SSC at about 65°C. Hybridization and wash conditions are well known and exemplified in Sambrook, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), particularly Chapter 11 therein.

The invention also provides a polynucleotide consisting essentially of a polynucleotide sequence obtainable by screening an appropriate library containing the complete gene for a polynucleotide sequence selected from the group consisting of the polynucleotides of the Sequence Listing under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence set forth in said polynucleotide of the Sequence Listing or a fragment thereof; and isolating said DNA sequence. Fragments useful for obtaining such a polynucleotide include, for example, probes and primers described elsewhere herein.

"Identity," as known in the art and used herein, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences. "Identity" and "similarity" can be readily calculated by known methods, including but not limited to those described in (Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Part I, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; and Carillo, H., and Lipman, D., SIAM J. Applied Math., 48: 1073 (1988). Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Atschul, S.F. et al., J. Molec. Biol. 215: 403-410 (1990). The BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215: 403-410 (1990).

10

15

20

25

30

As an illustration, by a polynucleotide having a nucleotide sequence having at least, for example, 95% "identity" to a reference nucleotide sequence selected from the group consisting of the polynucleotide of the Sequence Listing is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5 or 3 terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among

nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.

5

10

15

20

25

30

Similarly, by a polypeptide having an amino acid sequence having at least, for example, 95% identity to a reference amino acid sequence of selected from the group consisting of the amino acids of the Sequence Listing is intended that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

The deposit referred to herein will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Micro-organisms for purposes of Patent Procedure. These deposits are provided merely as convenience to those of skill in the art and are not an admission that a deposit is required under 35 U.S.C. §112. The sequence of the polynucleotides contained in the deposited material, as well as the amino acid sequence of the polypeptides encoded thereby, are incorporated herein by reference and are controlling in the event of any conflict with any description of sequences herein. A license may be required to make, use or sell the deposited material, and no such license is hereby granted.

The terms "fragment," "derivative" and "analogue" when referring to the polypeptide characterized by the deduced amino acid sequence herein, means a polypeptide which retains essentially the same biological function or activity as such polypeptide. Thus, an analogue includes a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.

The polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide, preferably a recombinant polypeptide.

The fragment, derivative or analogue of the polypeptide characterized by the deduced amino acid sequence herein may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code, or (ii) one in which one or more of the amino acid residues includes a substituent group, or (iii) one in which the polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the polypeptide or a proprotein sequence. Such fragments, derivatives and analogues are deemed to be within the scope of those skilled in the art from the teachings herein.

5

10

15

20

25

30

The polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity.

The term "isolated" means that the material is removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide or polypeptide present in a living animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides could be part of a composition, and still be isolated in that such vector or composition is not part of its natural environment.

The present invention also relates to vectors which include polynucleotides of the present invention, host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.

In accordance with yet a further aspect of the present invention, there is therefore provided a process for producing the polypeptide of the invention by recombinant techniques by expressing a polynucleotide encoding said polypeptide in a host and recovering the expressed product. Alternatively, the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.

Host cells are genetically engineered (transduced or transformed or transfected) with the vectors of this invention which may be, for example, a cloning vector or an expression vector. The vector may be, for example, in the form of a plasmid, a cosmid, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the

genes. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.

Suitable expression vectors include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA. However, any other vector may be used as long as it is replicable and viable in the host.

The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art.

10

15

20

25

30

The DNA sequence in the expression vector is operatively linked to an appropriate expression control sequence(s) (promoter) to direct mRNA synthesis. As representative examples of such promoters, there may be mentioned: LTR or SV40 promoter, the *E. coli. lac* or *trp*, the phage lambda P_L promoter and other promoters known to control expression of genes in eukaryotic or prokaryotic cells or their viruses. The expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.

In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in *E. coli*.

The gene can be placed under the control of a promoter, ribosome binding site (for bacterial expression) and, optionally, an operator (collectively referred to herein as "control" elements), so that the DNA sequence encoding the desired protein is transcribed into RNA in the host cell transformed by a vector containing this expression construction. The coding sequence may or may not contain a signal peptide or leader sequence. The polypeptides of the present invention can be expressed using, for example, the *E. coli* tac promoter or the protein A gene (spa) promoter and signal sequence. Leader sequences can be removed by the bacterial host in post-translational processing. See, e.g., U.S. Patent Nos. 4,431,739; 4,425,437; 4,338,397. Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are PKK232-8 and PCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, PL and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and

mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

In addition to control sequences, it may be desirable to add regulatory sequences which allow for regulation of the expression of the protein sequences relative to the growth of the host cell. Regulatory sequences are known to those of skill in the art, and examples include those which cause the expression of a gene to be turned on or off in response to a chemical or physical stimulus, including the presence of a regulatory compound. Other types of regulatory elements may also be present in the vector, for example, enhancer sequences.

10

15

20

25

30

An expression vector is constructed so that the particular coding sequence is located in the vector with the appropriate regulatory sequences, the positioning and orientation of the coding sequence with respect to the control sequences being such that the coding sequence is transcribed under the "control" of the control sequences (i.e., RNA polymerase which binds to the DNA molecule at the control sequences transcribes the coding sequence). Modification of the coding sequences may be desirable to achieve this end. For example, in some cases it may be necessary to modify the sequence so that it may be attached to the control sequences with the appropriate orientation; i.e., to maintain the reading frame. The control sequences and other regulatory sequences may be ligated to the coding sequence prior to insertion into a vector, such as the cloning vectors described above. Alternatively, the coding sequence can be cloned directly into an expression vector which already contains the control sequences and an appropriate restriction site.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of *E. coli* and *S. cerevisiae* TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

The vector containing the appropriate DNA sequence as hereinabove described, as well as an appropriate promoter or control sequence, may be employed to transform an appropriate host to permit the host to express the protein.

More particularly, the present invention also includes recombinant constructs comprising one or more of the sequences as broadly described above. The constructs comprise a vector, such as a plasmid or viral vector, into which a sequence of the invention has been inserted, in a forward or reverse orientation. In a preferred aspect of this embodiment, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and are commercially available. The following vectors are provided by way of example. Bacterial: pET-3 vectors (Stratagene), pQE70, pQE60, pQE-9 (Qiagen), pbs. pD10, phagescript, psiX174, pbluescript SK, pbsks, pNH8A, pNH16a, pNH18A, pNH46A (Stratagene); ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pBlueBacIII (Invitrogen), pWLNEO, pSV2CAT, pOG44, pXT1, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia). However, any other plasmid or vector may be used as long as they are replicable and viable in the host.

5

10

15

20

25

30

Examples of recombinant DNA vectors for cloning and host cells which they can transform include the bacteriophage I (E. coli), pBR322 (E. coli), pACYC177 (E. coli), pKT230 (gram-negative bacteria), pGV1106 (gram-negative bacteria), pLAFR1 (gram-negative bacteria), pME290 (non-E. coli gram-negative bacteria), pHV14 (E. coli and Bacillus subtilis), pBD9 (Bacillus), pIJ61 (Streptomyces), pUC6 (Streptomyces), YIp5 (Saccharomyces), a baculovirus insect cell system, YCp19 (Saccharomyces). See, generally, "DNA Cloning": Vols. I & II, Glover et al. ed. IRL Press Oxford (1985) (1987) and; T. Maniatis et al. ("Molecular Cloning" Cold Spring Harbor Laboratory (1982).

In some cases, it may be desirable to add sequences which cause the secretion of the polypeptide from the host organism, with subsequent cleavage of the secretory signal.

Polypeptides can be expressed in host cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrock, et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, N.Y., (1989), the disclosure of which is hereby incorporated by reference.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period.

Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents, such methods are well known to those skilled in the art.

5

10

15

20

25

30

Depending on the expression system and host selected, the polypeptide of the present invention may be produced by growing host cells transformed by an expression vector described above under conditions whereby the polypeptide of interest is expressed. The polypeptide is then isolated from the host cells and purified. If the expression system secretes the polypeptide into growth media, the polypeptide can be purified directly from the media. If the polypeptide is not secreted, it is isolated from cell lysates or recovered from the cell membrane fraction. Where the polypeptide is localized to the cell surface, whole cells or isolated membranes can be used as an assayable source of the desired gene product. Polypeptide expressed in bacterial hosts such as *E. coli* may require isolation from inclusion bodies and refolding. Where the mature protein has a very hydrophobic region which leads to an insoluble product of overexpression, it may be desirable to express a truncated protein in which the hydrophobic region has been deleted. The selection of the appropriate growth conditions and recovery methods are within the skill of the art.

The polypeptide can be recovered and purified from recombinant cell cultures by methods including ammonium sulphate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. Polypeptides of the invention may also include an initial methionine amino acid residue.

A "replicon" is any genetic element (e.g., plasmid, chromosome, virus) that functions as an autonomous unit of DNA replication *in vivo*; i.e., capable of replication under its own control.

A "vector" is a replicon, such as a plasmid, phage, or cosmid, to which another DNA segment may be attached so as to bring about the replication of the attached segment.

A "double-stranded DNA molecule" refers to the polymeric form of deoxyribonucleotides (bases adenine, guanine, thymine, or cytosine) in a double-stranded helix, both relaxed and supercoiled. This term refers only to the primary and secondary structure of the molecule, and does not limit it to any particular tertiary forms. Thus, this term includes double-stranded DNA found, *inter alia*, in linear DNA molecules (e.g., restriction fragments), viruses, plasmids, and chromosomes. In discussing the structure of particular double-stranded DNA molecules, sequences may be described herein according to the normal convention of giving only the sequence in the 5' to 3' direction along the nontranscribed strand of DNA (i.e., the strand having the sequence homologous to the mRNA).

5

10

15

20

25

30

A DNA "coding sequence of" or a "nucleotide sequence encoding" a particular protein, is a DNA sequence which is transcribed and translated into a polypeptide when placed under the control of appropriate regulatory sequences.

A "promoter sequence" is a DNA regulatory region capable of binding RNA polymerase in a cell and initiating transcription of a downstream (3' direction) coding sequence. For purposes of defining the present invention, the promoter sequence is bound at the 3' terminus by a translation start codon (e.g., ATG) of a coding sequence and extends upstream (5' direction) to include the minimum number of bases or elements necessary to initiate transcription at levels detectable above background. Within the promoter sequence will be found a transcription initiation site (conveniently defined by mapping with nuclease S1), as well as protein binding domains (consensus sequences) responsible for the binding of RNA polymerase. Eukaryotic promoters will often, but not always, contain "TATA" boxes and "CAT" boxes. Prokaryotic promoters contain Shine-Dalgarno sequences in addition to the -10 and -35 consensus sequences.

DNA "control sequences" refers collectively to promoter sequences, ribosome binding sites, polyadenylation signals, transcription termination sequences, upstream regulatory domains, enhancers, and the like, which collectively provide for the expression (i.e., the transcription and translation) of a coding sequence in a host cell.

A centrol sequence "directs the expression" of a coding sequence in a cell when RNA polymerase will bind the promoter sequence and transcribe the coding sequence into mRNA, which is then translated into the polypeptide encoded by the coding sequence.

A "host cell" is a cell which has been transformed or transfected, or is capable of transformation or transfection by an exogenous DNA sequence.

A cell has been "transformed" by exogenous DNA when such exogenous DNA has been introduced inside the cell membrane. Exogenous DNA may or may not be integrated (covalently linked) into chromosomal DNA making up the genome of the cell. In prokaryotes and yeasts, for example, the exogenous DNA may be maintained on an episomal element, such as a plasmid. With respect to eukaryotic cells, a stably transformed or transfected cell is one in which the exogenous DNA has become integrated into the chromosome so that it is inherited by daughter cells through chromosome replication. This stability is demonstrated by the ability of the eukaryotic cell to establish cell lines or clones comprised of a population of daughter cell containing the exogenous DNA.

A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations.

10

15

20

25

30

A "heterologous" region of a DNA construct is an identifiable segment of DNA within or attached to another DNA molecule that is not found in association with the other molecule in nature.

This invention is also related to the use of the polynucleotides of the invention for use as diagnostic reagents. Detection of a polynucleotide or polypeptide of the invention in a eukaryote, particularly a mammal, and especially a human, will provide a diagnostic method for diagnosis of a disease. Eukaryotes (herein also "individual(s)"), particularly mammals, and especially humans, infected with an organism comprising a polynucleotide of the invention may be detected at the nucleic acid level by a variety of techniques.

Nucleic acids for diagnosis may be obtained from an infected individual's cells and tissues, such as bone, blood, muscle, cartilage, and skin. Genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR or other amplification technique prior to analysis. RNA or cDNA may also be used in the same ways. Using amplification, characterization of the species and strain of prokaryote present in an individual, may be made by an analysis of the genotype of the prokaryote gene. Deletions and insertions can be detected by a change in size of the amplified product in comparison to the genotype of a reference sequence. Point mutations can be identified by hybridizing amplified DNA to labeled polynucleotide sequences of the invention. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase digestion or by differences in melting temperatures. DNA sequence differences may also be detected by alterations in the electrophoretic mobility of the DNA fragments in gels, with or without denaturing agents, or by direct DNA sequencing. See, e.g., Myers et al., Science, 230: 1242 (1985). Sequence changes at specific locations also may be

revealed by nuclease protection assays, such as RNase and S1 protection or a chemical cleavage method. See, e.g., Cotton et al., Proc. Natl. Acad. Sci., USA, 85: 4397-4401 (1985).

5

10

15

20

25

30

Cells carrying mutations or polymorphisms in the gene of the invention may also be detected at the DNA level by a variety of techniques, to allow for serotyping, for example. For example, RT-PCR can be used to detect mutations. It is particularly preferred to used RT-PCR in conjunction with automated detection systems, such as, for example, GeneScan. RNA or cDNA may also be used for the same purpose, PCR or RT-PCR. As an example, PCR primers complementary to a nucleic acid encoding a polypeptide of the invention can be used to identify and analyze mutations. These primers may be used for, among othe4r things, amplifying DNA isolated from a sample derived from an individual. The primers may be used to amplify the gene isolated from an infected individual such that the gene may then be subject to various techniques for elucidation of the DNA sequence. In this way, mutations in the DNA sequence may be detected and used to diagnose infection and to serotype and/or classify the infectious agent.

The invention further provides a process for diagnosing, disease, preferably bacterial infections, more preferably infections by *Streptococcus pneumoniae*, comprising determining from a sample derived from an individual a increased level of expression of polynucleotide having a sequence set forth in the Sequence Listing or a sequence of the invention. Increased or decreased expression of a polynucleotide of the invention can be measured using any on of the methods well known in the art for the quantation of polynucleotides, such as, for example, amplification, PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods.

In addition, a diagnostic assay in accordance with the invention for detecting over-expression of a polypeptide of the invention compared to normal control tissue samples may be used to detect the presence of an infection, for example. Assay techniques that can be used to determine levels of a polypeptide of the invention, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays.

In accordance with yet a further aspect of the present invention, there is provided the use of a polypeptide of the invention for therapeutic or prophylactic purposes, for example, as an antibacterial agent or a vaccine.

In accordance with another aspect of the present invention, there is provided the use of a polynucleotide of the invention for therapeutic or prophylactic purposes, in particular genetic immunisation.

In accordance with yet another aspect of the present invention, there are provided inhibitors to such polypeptides, useful as antibacterial agents. In particular, there are provided antibodies against such polypeptides.

Polypeptides of the invention may also be used to assess the binding of small molecule substrates and ligands in, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures. These substrates and ligands may be natural substrates and ligands or may be structural or functional mimetics. See, e.g., Coligan et al., Current Protocols in Immunology 1(2): Chapter 5 (1991).

5

10

15

20

25

30

The invention also provides a method of screening compounds to identify those which enhance (agonist) or block (antagonist) the action of polypeptides or polynucleotides of the invention, particularly those compounds that are bacteriostatic and/or bacteriocidal. The method of screening may involve high-throughput techniques. For example, to screen for agonists or antagoists, a synthetic reaction mix, a cellular compartment, such as a membrane, cell envelope or cell wall, or a preparation of any thereof, comprising a polypeptide of the invention and a labeled substrate or ligand of such polypeptide is incubated in the absence or the presence of a candidate molecule that may be an agonist or antagonist of a polypeptide of the invention. The ability of the candidate molecule to agonize or antagonize a polypeptide of the invention is reflected in decreased binding of the labeled ligand or decreased production of product from such substrate. Molecules that bind gratuitously, i.e., without inducing the effects of a polypeptide of the invention are most likely to be good antagonists. Molecules that bind well and increase the rate of product production from substrate are agonists. Detection of the rate or level of production of product from substrate may be enhanced by using a reporter system. Reporter systems that may be useful in this regard include but are not limited to colorimetric labeled substrate converted into product, a reporter gene that is responsive to changes in polynucleotide or polypeptide activity, and binding assays known in the art.

Another example of an assay for antagonists of a polypeptide of the invention is a competitive assay that combines such polypeptide and a potential antagonist with polypeptide-binding molecules, recombinant polypeptide-binding molecules, natural substrates or ligands, or substrate or ligand mimetics, under appropriate conditions for a competitive inhibition assay. Polypeptides of the invention can be labeled, such as by radioactivity or a colorimetric compound, such that the number of such polypeptide molecules bound to a binding molecule or converted to product can be determined accurately to assess the effectiveness of the potential antagonist.

Potential antagonists include small organic molecules, peptides, polypeptides and antibodies that bind to a polynucleotide or polypeptide of the invention and thereby inhibit or extinguish its activity. Potential antagonists also may be small organic molecules, a peptide, a polypeptide such as a closely related protein or antibody that binds the same sites on a binding molecule, without inducing an activities of a polypeptide of the invention, thereby preventing the action of such polypeptide by excluding it from binding.

5

10

15

20

25

.30

Potential antagonists include a small molecule that binds to and occupies the binding site of the polypeptide thereby preventing binding to cellular binding molecules, such that normal biological activity is prevented. Examples of small molecules include but are not limited to small organic molecules, peptides or peptide-like molecules. Other potential antagonists include antisense molecules (see Okano, *J. Neurochem. 56:* 560 (1991);

OLIGODEOXYNUCLEOTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988), for a description of these molecules). Preferred potential antagonists include compounds related to and variants of the polypetides of the invention.

Each of the DNA sequences provided herein may be used in the discovery and development of antibacterial compounds. The encoded protein, upon expression, can be used as a target for the screening of antibacterial drugs. Additionally, the DNA sequences encoding the amino terminal regions of the encoded protein or Shine-Delgarno or other translation facilitating sequences of the respective mRNA can be used to construct antisense sequences to control the expression of the coding sequence of interest.

The invention also provides the use of the polypeptide, polynucleotide or inhibitor of the invention to interfere with the initial physical interaction between a pathogen and mammalian host responsible for sequelae of infection. In particular the molecules of the invention may be used: in the prevention of adhesion of bacteria, in particular gram positive bacteria, to mammalian extracellular matrix proteins on in-dwelling devices or to extracellular matrix proteins in wounds; to block protein-mediated mammalian cell invasion by, for example, initiating phosphorylation of mammalian tyrosine kinases (Rosenshine et al., Infect. Immun. 60:2211 (1992); to block bacterial adhesion between mammalian extracellular matrix proteins and bacterial proteins that mediate tissue damage and; to block the normal progression of pathogenesis in infections initiated other than by the implantation of in-dwelling devices or by other surgical techniques.

The antagonists and agonists of the invention may be employed, for instance, to inhibit and treat otitis media, conjunctivitis, pneumonia, bacteremia, meningitis, sinusitis, pleural

empyema and endocarditis, and most particularly meningitis, such as for example infection of cerebrospinal fluid.

Another aspect of the invention is a pharmaceutical composition comprising the above polypeptide, polynucleotide or inhibitor of the invention and a pharmaceutically acceptable carrier.

5

10

15

20

25

30

In a particular aspect the invention provides the use of an inhibitor of the invention as an antibacterial agent.

The invention further relates to the manufacture of a medicament for such uses.

The polypeptide may be used as an antigen for vaccination of a host to produce specific antibodies which have anti-bacterial action. This invention also contemplates the use of the DNA encoding the antigen as a component in a DNA vaccine as discussed more fully below.

The polypeptides or cells expressing them can be used as an immunogen to produce antibodies thereto. These antibodies can be, for example, polyclonal or monoclonal antibodies. The term antibodies also includes chimeric, single chain, and humanized antibodies, as well as Fab fragments, or the product of an Fab expression library. Various procedures known in the art may be used for the production of such antibodies and fragments.

Antibodies generated against the polypeptides of the present invention can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, preferably a nonhuman. The antibody so obtained will then bind the polypeptides itself. In this manner, even a sequence encoding only a fragment of the polypeptides can be used to generate antibodies binding the whole native polypeptides. Such antibodies can then be used to isolate the polypeptide from tissue expressing that polypeptide.

Polypeptide derivatives include antigenically or immunologically equivalent derivatives which form a particular aspect of this invention.

The term 'antigenically equivalent derivative' as used herein encompasses a polypeptide or its equivalent which will be specifically recognised by certain antibodies which, when raised to the protein or polypeptide according to the present invention, interfere with the interaction between pathogen and mammalian host.

The term 'immunologically equivalent derivative' as used herein encompasses a peptide or its equivalent which when used in a suitable formulation to raise antibodies in a

vertebrate, the antibodies act to interfere with the interaction between pathogen and mammalian host.

In particular derivatives which are slightly longer or slightly shorter than the native protein or polypeptide fragment of the present invention may be used. In addition, polypeptides in which one or more of the amino acid residues are modified may be used. Such peptides may, for example, be prepared by substitution, addition, or rearrangement of amino acids or by chemical modification thereof. All such substitutions and modifications are generally well known to those skilled in the art of peptide chemistry.

The polypeptide, such as an antigenically or immunologically equivalent derivative or a fusion protein thereof is used as an antigen to immunize a mouse or other animal such as a rat or chicken. The fusion protein may provide stability to the polypeptide. The antigen may be associated, for example by conjugation, with an immunogenic carrier protein for example bovine serum albumin (BSA) or keyhole limpet haemocyanin (KLH). Alternatively a multiple antigenic peptide comprising multiple copies of the protein or polypeptide, or an antigenically or immunologically equivalent polypeptide thereof may be sufficiently antigenic to improve immunogenicity so as to obviate the use of a carrier.

10

15

20

25

30

For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein, Nature, 256:495-497(1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4:72(1983)), and the EBV-hybridoma technique to produce human monoclonal antibodies (Cole, et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).

Techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce single chain antibodies to immunogenic polypeptide products of this invention.

Using the procedure of Kohler and Milstein (supra, (1975)), antibody-containing cells from the immunised mammal are fused with myeloma cells to create hybridoma cells secreting monoclonal antibodies.

The hybridomas are screened to select a cell line with high binding affinity and favorable cross reaction with other Streptococcal species using one or more of the original polypeptide and/or the fusion protein. The selected cell line is cultured to obtain the desired Mab.

Hybridoma cell lines secreting the monoclonal antibody are another aspect of this invention.

Alternatively phage display technology could be utilised to select antibody genes with binding activities towards the polypeptide either from repertoires of PCR amplified v-genes of lymphocytes from humans screened for possessing anti-Fbp or from naive libraries (McCafferty, J. et al., Nature 348:552-554(1990), and Marks, J. et al., Biotechnology 10:779-783(1992)). The affinity of these antibodies can also be improved by chain shuffling (Clackson, T. et al., Nature 352:624-628(1991)).

The antibody should be screened again for high affinity to the polypeptide and/or fusion protein.

5

10

15

20

25

30

As mentioned above, a fragment of the final antibody may be prepared.

The antibody may be either intact antibody of M_T approx 150,000 or a derivative of it, for example a Fab fragment or a Fv fragment as described in Skerra, A and Pluckthun, A., <u>Science</u> 240:1038-1040 (1988). If two antigen binding domains are present each domain may be directed against a different epitope - termed 'bispecific' antibodies.

The antibody of the invention may be prepared by conventional means for example by established monoclonal antibody technology (Kohler, G. and Milstein, C. (supra. (1975) or using recombinant means e.g. combinatorial libraries, for example as described in Huse, W.D. et al., Science 246:1275-1281 (1989).

Preferably the antibody is prepared by expression of a DNA polymer encoding said antibody in an appropriate expression system such as described above for the expression of polypeptides of the invention. The choice of vector for the expression system will be determined in part by the host, which may be a prokaryotic cell, such as *E. coli* (preferably strain B) or *Streptomyces sp.* or a eukaryotic cell, such as a mouse C127, mouse myeloma, human HeLa, Chinese hamster ovary, filamentous or unicellular fungi or insect cell. The host may also be a transgenic animal or a transgenic plant (for example, as described in Hiatt, A. et al., Nature 340:76-78(1989). Suitable vectors include plasmids, bacteriophages, cosmids and recombinant viruses, derived from, for example, baculoviruses and vaccinia.

The Fab fragment may also be prepared from its parent monoclonal antibody by enzyme treatment, for example using papain to cleave the Fab portion from the Fc portion.

Preferably the antibody or derivative thereof is modified to make it less immunogenic in the patient. For example, if the patient is human the antibody may most preferably be 'humanised'; where the complimentarity determining region(s) of the hybridoma-derived antibody has been transplanted into a human monoclonal antibody, for example as described in Jones, P. et al., Nature 321:522-525 (1986), or Tempest et al., Biotechnology 9:266-273 (1991).

The modification need not be restricted to one of 'humanisation'; other primate sequences (for example Newman, R. et al., <u>Biotechnology</u> 10:1455-1460 (1992)) may also be used.

The humanised monoclonal antibody, or its fragment having binding activity, form a particular aspect of this invention.

This invention provides a method of screening drugs to identify those which interfere with the proteins selected as targets herein, which method comprises measuring the interference of the activity of the protein by a test drug. For example if the protein selected has a catalytic activity, after suitable purification and formulation the activity of the enzyme can be followed by its ability to convert its natural substrates. By incorporating different chemically synthesised test compounds or natural products into such an assay of enzymatic activity one is able to detect those additives which compete with the natural substrate or otherwise inhibit enzymatic activity.

The invention also relates to inhibitors identified thereby.

5

10

30

The use of a polynucleotide of the invention in genetic immunisation will preferably employ a suitable delivery method such as direct injection of plasmid DNA into muscles (Wolff et al., Hum. Mol. Genet. 1:363 (1992); Manthorpe et al., Hum. Gene Ther. 4:419 (1963)), delivery of DNA complexed with specific protein carriers (Wu et al., L. Biol. Chem. 264:16985 (1989)), coprecipitation of DNA with calcium phosphate

(Benvenisty & Reshef, Proc. Nat'l Acad. Sci. USA, 83:9551 (1986)), encapsulation of DNA in various forms of liposomes (Kaneda et al., Science 243:375 (1989)), particle bombardment (Tang et al., Nature 356:152 (1992)); Eisenbraun et al., DNA Cell Biol. 12:791 (1993)) and in vivo infection using cloned retroviral vectors (Seeger et al., Proc. Nat'l. Acad. Sci. USA 81:5849 (1984)). Suitable promoters for muscle transfection include CMV, RSV, SRa, actin, MCK, alpha globin, adenovirus and dihydrofolate reductase.

In therapy or as a prophylactic, the active agent i.e., the polypeptide, polynucleotide or inhibitor of the invention, may be administered to a patient as an injectable composition, for example as a sterile aqueous dispersion, preferably isotonic.

Alternatively the composition may be formulated for topical application for example in the form of ointments, creams, lotions, eye ointments, eye drops, ear drops, mouthwash, impregnated dressings and sutures and aerosols, and may contain appropriate conventional additives, including, for example, preservatives, solvents to assist drug penetration, and emollients in ointments and creams. Such topical formulations may also contain compatible conventional carriers, for example cream or ointment bases, and ethanol

or oleyl alcohol for lotions. Such carriers may constitute from about 1% to about 98% by weight of the formulation; more usually they will constitute up to about 80% by weight of the formulation.

For administration to human patients, it is expected that the daily dosage level of the active agent will be from 0.01 to 10 mg/kg, typically around 1 mg/kg. The physician in any event will determine the actual dosage which will be most suitable for an individual patient and will vary with the age, weight and response of the particular patient. The above dosages are exemplary of the average case. There can, of course, be individual instances where higher or lower dosage ranges are merited, and such are within the scope of this invention.

5

10

15

20

25

30

A vaccine composition is conveniently in injectable form. Conventional adjuvants may be employed to enhance the immune response.

A suitable unit dose for vaccination is $0.5-5 \mu g/kg$ of antigen, and such dose is preferably administered 1-3 times and with an interval of 1-3 weeks.

Within the indicated dosage range, no adverse toxicologicals effects are expected with the compounds of the invention which would preclude their administration to suitable patients.

The individual full length sequences given herein are summarized in the following Tables (Table 1 and Table 2). Under the column in Table 1 labeled "Identity" there is the deduced identity of each open reading frame of the invention determined using Blastp and/or MPSearch. The ORF# column indicates whether the polynucleotide encoding each ORF encodes more than one ORF. For example, SEQ ID NO: 263 has an ORF# 1 but no #2; thus the polynucleotide encodes this ORF#1, but no other ORF was detected. On the other hand, SEQ ID NO:286 and 287 have ORF#s 1 and 2 respectively, indicating that they were both encoded by the same polynucleotide. This can also be seen in Table 2 where the polynucleotide of SEQ ID NO: 24 encodes the ORFs of SEQ ID NOS: 286 and 287. Table 1 also shows in the position ("POSITION" columns) the start ("START" column) and stop ("STOP" column) codons for each ORF and their positions in the encoding polynucleotide sequence. The SEQ ID NOS of the polypeptides of this table are linked to both a deduced identity in this table and a polynucleotide sequence in Table 2 which encodes each polypeptide. The "Direction" column in Table 1 shows the direction of the ORF encoding each poypetide in this table. "Forward" denotes the sense orientation and "Reverse" denotes the antisense orientation of the ORF. Table 1 also provides an "Assembly ID" which is a unique numerical descriptor for each polynucleotide sequence of the invention.

TABLE 1

				Codon		Position		•
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
263.	probable transposase (insertion sequence IS861) - Streptococcus agalactiae (strain COH-1)		1	ATG	TAA	258	746	Forward
264.	Unknown	3112506	1	~CAT	СТА~	414	554	Reverse
265.	SUCCINYL- DIAMINOPIM ELATE DESUCCINYL ASE (EC 3.5.1.18) (SDAP) ESCHERICHIA COLI.	3112574	1	~CAT	TTA~		990	Reverse
266.	Unknown	3112646	1	ATG	TGA	353	460	Forward
	D-alanine permease (dagA) homolog - Haemophilus influenzae (strain Rd KW20)	3112686	1		TAA			Forward

				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start		Direction
268.	Unknown	3112810	1	~CAT	TTA~	328	468	Reverse
269.	Unknown	3112934	1	ATG	TAG	107	739	Forward
270.	3-OXOACYL- [ACYL- CARRIER PROTEIN] REDUCTASE PRECURSOR (EC 1.1.1.100) (3-KETOACYL- ACYL- CARRIER PROTEIN REDUCTASE) CUPHEA LANCEOLATA		1	ATG	TGA	586	1146	Forward
	HIGH- AFFINITY BRANCHED- CHAIN AMINO ACID TRANSPORT ATP-BINDING PROTEIN LIVG (LIV -I PROFEIN G) SALMONELLA TYPHIMURIU M.	3112994	1	ATG	TAA	307	648	Forward
272.	Unknown	3113026	1 .	ATG	TGA :	235	183	Forward

				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start		Direction
273.	Unknown	3113098	1	-CAT	TTA-	- 28	360	Reverse
274.	CELL DIVISION PROTEIN FTSH BACILLUS SUBTILIS.	3113274	1	ATG	TGA	125	700	Forward
275.	Unknown	3113306	1	~CAT	CTA-	255	500	D
	PTS SYSTEM, FRUCTOSE- SPECIFIC IIBC COMPONENT (EIIBC-FRU) (FRUCTOSE- PERMEASE II BC COMPONENT) (PHOSPHOTR ANSFERASE ENZYME II, BC COMPONENT) (EC 2.7.1.69) (EII -FRU) KANTHOMON AS CAMPESTRIS PV. CAMPESTRIS).	3113406		~CAT	TCA~		725	Reverse
7. Ľ	Jnknown	3113432 1		CAT	TA	17	10 -	
		3113436 1			TA~		10 F	leverse

				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
279.	HOLLIDAY JUNCTION DNA HELICASE RUVB ESCHERICHIA COLI.	3113510	1	ATG	TGA	187	411	Forward
280.	Unknown	3113514	1	ATG	TGA	361	495	Forward
281.	Unknown	3113546	1	TTG	TAA	2	241	Forward
282.	CELL DIVISION PROTEIN FTSA BACILLUS SUBTILIS.	3113610	1	TTG	TGA	3	665	Forward
283.	Unknown	3113692	1	ATG	TAG	304	594	Forward
	GALACTOSE- 6-PHOSPHATE ISOMERASE LACB SUBUNIT (EC 5) LACTOCOCCU S LACTIS (SUBSP. LACTIS) (STREPPOCOC CUS LACTIS).	3113696		ATG	TGA			Forward

			1	Codon	1	Position	1	
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
	3- ISOPROPYLM ALATE DEHYDROGE NASE (EC 1.1.1.85) (BETA-IPM DEHYDROGE NASE) (IMDH) LACTOCOCCU S LACTIS (SUBSP. LACTIS) (STREPTOCOC CUS LACTIS).	3113762	1	~CAG	TTA~	275	508	Reverse

		l	Codon		Position		1	
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
286.	PHOSPHO-2-DEHYDRO-3-DEOXYHEPTO NATE ALDOLASE (EC 4.1.2.15) (PHOSPHO- 2-KETO-3-DE OXYHEPTON ATE ALDOLASE) (DAHP SYNTHETASE) (3-DEOXY- D-ARABINO-HEPTULOSON ATE 7-PHOSPHATE SYNTHASE)CORYNEBACT ERIUM GLUTAMICU M.	3113794		ATG	TAG	40	219	Forward

	 			Codon		Position		T
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop			Direction
287.	PHOSPHO-2-DEHYDRO-3-DEOXYHEPTONATE ALDOLASE, PHE-SENSITIVE (EC 4.1.2.15) (PHOSP HO-2-KETO-3-DEOXYHEPTONATE ALDOLASE) (DAHP SYNTHETASE) (3-DEOXY-D-ARABINO-HEPTONATE TULOSONATE 7-PHOSPHATE SYNTHASE)	3113794	2	ATG	TGA	283	453	Forward
88.	PYRUVATE KINASE (EC 2.7.1.40) LACTOCOCCU S LACTIS (SUBSP. LACTIS) (STREPTOCOC CUS LACTIS).	3113802	1	ATG	TGA	69	260]	Forward
9. I	Jnknown	3113990 1	-	CAT	ГТА~	6 1	64 R	Reverse

				Codon		Position]	
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
290.	ADAPTIVE- RESPONSE SENSORY- KINASE SASA (EC 2.7) SYNECHOCOC CUS SP. (STRAIN PCC 7942) (ANACYSTIS NIDULANS R2).	3114082	1	ATG	TAG	22	189	Forward
	FOLYLPOLYG LUTAMATE SYNTHASE (EC 6.3.2.17) (FOLYLPOLY- GAMMA- GLUTAMATE SYNTHETASE) (FPGS) LACTOBACIL LUS CASEI.	3114096	1	CTG	TGA	1	243	Forward
	50S RIBOSOMAL PROTEIN L6 (BL10) BACILLUS STEAROTHER MOPHILUS.	3174146	1	~CAT	TCA~	581	949	Reverse

				Codon		Position	T	
SEQ ID NO:	IDENTITY	Assembly ID	ORF #	Start	Stop	Start	Stop	Direction
293.	grpE protein - Lactococcus lactis	3174148	1	-CAT	TTA~	256	780	Reverse
294.	Unknown	3174150	1	-CAT	TCA~	247	472	
295.	ribosomal protein S14 (rpS14) homolog - Haemophilus influenzae (strain Rd KW20)	3174152	1	~CAT	TTA-		391	Reverse Reverse
	50S RIBOSOMAL PROTEIN L3 BACILLUS STEAROTHER MOPHILUS.	3174154	1	ATG	TAA	441	1067	Forward
	PHOSPHATE TRANSPORT SYSTEM REGULATORY PROTEIN ESCHERICHIA COLI.	3174166	1	~CAT	TTA~	101 7	751 1	Reverse
2 2 5	PROBABLE TRANSKETOL ASE (EC 2.2.1.1) (TK) STREPTOCOC CUS PNEUMONIAE	3174184	2 .	-CAT	ΓΤΑ~ 8	95 1	350 R	Reverse

				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
299.	ntpJ protein - Enterococcus hirae	3174206	1	TTG	TAG	2	763	Forward
300.	Unknown	3174208	1	ATG	TAA	311	1054	Forward
301.	Unknown	3174210	1	~CAT	TTA~			Reverse
302.	ACYL CARRIER PROTEIN CRYPTOMON AS PHI.	3174220	1	ATG	TAG	788	r — — —	Forward
303.	ISL2 protein - Lactobacillus helveticus	3174224	1	~CAT	TTA~	447	737	Reverse
	ISL2 protein - Lactobacillus helveticus	3174226	1	ATG	TAG	850	1164	Forward
305.	Unknown	3174228	1	CTG	TAA	1	240	Forward
306.	Unknown	3174228	2	ATG	TAG	278	580	Forward
	Possible Ca2+- transporting ATPase	3174236	1	-CAT	TTA~	53		Reverse
	Possible Ca2+- transporting ATPase	3174238	1	-CAT	TTA~	53	529	Reverse

				Codon		Position		
SEQ II NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
309.	CATION- TRANSPORTI NG ATPASE PACL (EC 3.6.1) SYNECHOCOC CUS SP. (STRAIN PCC 7 942) (ANACYSTIS NIDULANS R2).		2	~CAT	TCA-	- 549	1298	Reverse
	PROLYL- TRNA SYNTHETASE (EC 6.1.1.15) (PROLINE TRNA LIGASE) (PRORS) (GLOBAL RNA SYNTHESIS FACTOR) ESCHERICHIA COLI.	3174270	1	-CAT	TTA~	150	1646	Reverse
1.	Unknown	3174278	A	TG	rga 7	33 8	67 1	
2.		3174278 2			raa 1	8 دد	67 F	orward

			1	Codon		Position	T	T
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start		Direction
313.	PROLYL- TRNA SYNTHETASE (EC 6.1.1.15) (PROLINE TRNA LIGASE) (PRORS) (GLOBAL RNA SYNTHESIS FACTOR) ESCHERICHIA COLI.		I	ATG	TAA	1009	2103	Forward
314.	BSCELABCD NCBI gi: 8957 - Bacillus subtilis.	3174288	1	ATG	TAA	78	464	Forward
	GLUTAMINE TRANSPORT ATP-BINDING PROTEIN GLNQ ESCHERICHIA COLI.	3174294	1	ATG	TGA	370	981	Forward
316.	Unknown	3174294	2	ATG	TAA	1044	1017	
317.		3174298		ATG	TAA			Forward Forward

				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop			Direction
318.	GLUTAMINE TRANSPORT ATP-BINDING PROTEIN GLNQ BACILLUS STEAROTHER MOPHILUS.	3174298	2	ATG	TAA	922	1179	Forward
319.	Unknown	3174302	1	-CAT	TTA	200	1000	[
320.	Unknown	3174302	2	-CAT	TTA~			Reverse
321.	Unknown	3174314	1	ATG		1486	1857	
322.	Unknown	3174314	2	ATG	TGA	523	891	Forward
24.	RIBOFLAVIN SYNTHASE ALPHA CHAIN (EC 2.5.1.9) BACILLUS SUBTILIS. 5,10- METHYLENET ETRAHYDROF OLATE REDUCTASE	3174328	1	-CAT	TAG CTA-	372	1370 653 1238	Forward Forward
25. U		3174356 3174368			TCA~ TAA			Reverse Forward
	actobacillus ake.							

				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
327.	agrB protein - Staphylococcus aureus	3174368	2	ATG	TGA	730	1056	Forward
328.	RESD PROTEIN BACILLUS SUBTILIS.	3174372	1	CTG	TGA	1	315	Forward
329.	PROBABLE TRANSCRIPTI ONAL REGULATORY PROTEIN ENDR BACILLUS POLYMYXA.	3174384	1	~CAT	TCA-	239	418	Reverse
330.	Unknown	3174384	2	-CAT	СТА~	514	1074	Danier
331.	30S RIBOSOMAL PROTEIN S2 ESCHERICHIA COLI.	3174390	1	ATG		597		Reverse Forward
	GLUTAMINE TRANSPORT ATP-BINDING PROTEIN GLNQ ESCHERICHIA COLI.	3174402	1	ATG	TGA	372	980	Forward

<u> </u>			ļ	Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
333.	GTP-BINDING PROTEIN ERA HOMOLOG STREPTOCOC CUS MUTANS.		1	-CAT	TTA~	592	1086	Reverse
334.	GTP-BINDING PROTEIN ERA HOMOLOG STREPTOCOC CUS MUTANS.	3174420	2	-CAT	TTA~	1022	1492	Reverse
	SULFATE TRANSPORT ATP-BINDING PROTEIN CYSA SYNECHOCOC CUS SP. (STRAIN PCC 794 2) (ANACYSTIS NIDULANS R2).	3174426	1	ATG	TGA	812	1270	Forward
]]]	NITRATE IRANSPORT PROTEIN NASD. KLEBSIELLA PNEUMONIAE	3174426	2	ATG	TAG	1298	1543	Forward

				Codon		Position	T	
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
337.	PROLIPOPROTEIN DIACYLGLYCERYL TRANSFERASE (EC 2.4.99) SALMONELLATYPHIMURIUM.			~CAT	TTA-	35	835	Reverse
338.	Unknown	3174444	1	ATG	TAA	164	895	Forward
339.	CYSTEINYL- TRNA SYNTHETASE (EC 6.1.1.16) (CYSTEINE TRNA LIGASE) (CYSRS) BACI LLUS SUBTILIS.	3174454	1	-CAT	TCA-			Reverse
340.	Unknown	3174460	1	ATG	TAG	529	1275	Forward
	PRIMOSOMAL PROTEIN N' (REPLICATIO N FACTOR Y). - ESCHERICHIA COLI.	3174462		TTG				Forward

ļ				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
342.	30S RIBOSOMAL PROTEIN S11 (BS11) BACILLUS SUBTILIS.	3174466	1	-CAT	TTA~	1019	1303	Reverse
343.	Unknown	3174474	1	~CAT	TTA~	238	423	Pavama
344.	Unknown	3174476	1	-CAT	TTA~			Reverse Reverse
	PEPTIDE CHAIN RELEASE FACTOR 3 (RF-3) BACTEROIDE S NODOSUS (DICHELOBAC TER NOD OSUS).	3174490	1	-CAT	СТА~		1291	
	mesI protein - Leuconostoc mesenteroides	3174496	I	ATG	TAG	812	1666	Forward
347.	Unknown	3174506	1	ATG	TGA	179	352	Forward
] 1 1	GALACTOKIN ASE (EC 2.7.1.6) LACTOBACIL LUS HELVETICUS.	3174514		~CAT	TCA~			Reverse
2 1	GALACTOKIN ASE (EC 2.7.1.6) BACILLUS SUBTILIS.	3174514	2	-CAT	TTA~	1177	1359	Reverse

				Codon		Position		
SEQ ID	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
350.	FORMATE ACETYLTRAN SFERASE 1 (EC 2.3.1.54) (PYRUVATE FORMATE- LYASE 1) ESCHERI CHIA COLI.	3174524	1	~CAT	TTA-	19	867	Reverse
351.	Unknown	3174546	1	-CAT	CTA~	912	1127	Reverse
352.	CACSPC NCBI gi: 899232 - Clostridium acetobutylicum.	3174550	1	ATG	TAG	645	956	Forward
353.	Unknown	3174562	1	CTG	TAG	1	504	Forward
354.	KETOACYL REDUCTASE HETN (EC 1.3.1) ANABAENA SP. (STRAIN PCC 7120).	3174562	2	ATG	TAA	525		Forward
355.	Unknown	3174570	1	ATG	TAG	249	593	Forward
				ATG				Forward

				Codon		Position	T	
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
357.	PROTEIN DLTD PRECURSOR BACILLUS SUBTILIS.	3174580	1	ATG	TGA	3	611	Forward
358.	ALANYL- TRNA SYNTHETASE (EC 6.1.1.7) (ALANINE TRNA LIGASE) (ALARS) ESCHERICH IA COLI.	3174582	1	ATG	TGA	537	875	Forward
	PTS SYSTEM, MANNOSE- SPECIFIC IIC COMPONENT (EIIC-MAN) (MANNOSE- PERMEASE IIC CO MPONENT) (PHOSPHOTR ANSFERASE ENZYME II, C COMPONENT) (EII-P-MAN) ESCHERICH IA COLI.	3174586	1	ATG	TGA	533	865	Forward

			1	Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop		Stop	Direction
360.	PTS SYSTEM, FRUCTOSE-SPECIFIC IIC COMPONENT (EIIC-FRU) (FRUCTOSE-PERMEASE IIC COMPONENT) (PHOSPHOTR ANSFERASE ENZYME II, C COMPONENT) (P28) BACILLUS SUBT ILIS.	3174586	2	ATG	TAA	747	1172	Forward
	URIDYLATE KINASE (EC 2.7.4) (UK) (URIDINE MONOPHOSP HATE KINASE) (UMP KINASE) (SMBA PROTEIN) ESCHERICHIA COLL	3174594	1	-CAT	TTA-	319	579	Reverse
62.	Unknown	3174606	1	CTG	TAA	1	153	Forward
63.	Unknown			ATG	TAA	-		Forward
64.	Unknown			-CAT	CTA~			Reverse
65.	Unknown	3174634		-CAT	TCA~			Reverse

				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#		Stop	Start		Direction
366.	5- METHYLTETR AHYDROPTER OYLTRIGLUT AMATE HOMOCYSTEI NE METHYLTRA NSFERASE (EC 2.1.1 .14) (METHIONINE SYNTHASE, VITAMIN-B12 INDEPENDEN T ISOZYME) ESCHERICHIA CO LI.	3174642	1	~CAT	TCA~	250	1620	Reverse
367.	HIGH- AFFINITY BRANCHED- CHAIN AMINO ACID TRANSPORT ATP-BINDING PROTEIN BRAF P SEUDOMONA S AERUGINOSA.	3174644	1	ATG	TGA	283	765	Forward
368.	Unknown	3174652	1	ATG	TGA	913	1134	Forward
369.		3174654		ATG				Forward

	·			Codon		Position		
SEQ ID	IDENTITY	Assembly ID	ORF #	Start	Stop	Start	Stop	Direction
370.	ADENYLOSUCCINATE LYASE (EC 4.3.2.2) (ADENYLOSUCCINASE) (ASL) BACILLUS SUBTIL IS.		1	~CAT	TTA	~ 941	1477	Reverse
371.	Unknown	3174660	1	ATG	TGA	454	594	Forward
372.	Unknown	3174662	1	~CAT	TCA-		768	
373.	50S RIBOSOMAL PROTEIN L16. - MYCOPLASM A CAPRICOLUM.	3174664	1	ATG	TAA	33	446	Reverse Forward
	STAGE V SPORULATIO N PROTEIN E. - BACILLUS SUBTILIS.	3174666	1	ATG	TAG	151	816	Forward
	Unknown	3174676	1 .	-CAT	CTA~	24	359	Reverse
	Unknown	3174678			TCA~			Reverse
7. 1		3174714						Forward

				Codon		Position		1
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	+	Stop	Start	Stop	Direction
378.	ATP- DEPENDENT CLP PROTEASE ATP-BINDING SUBUNIT CLPX ESCHERICHIA COLI.	3174736	1	CTG	TGA	3	317	Forward
379.	ATP- DEPENDENT CLP PROTEASE ATP-BINDING SUBUNIT CLPX ESCHERICHIA COLI.	3174736	2	ATG	TAG	411	797	Forward
380.	Unknown	3174738	1	ATG	TAA	184	558	Forward
381.	Unknown	3174744	1	ATG	TAA	507		Forward
382.	PYRROLIDON E- CARBOXYLAT E PEPTIDASE (EC 3.4.19.3) (5- OXOPROLYL- PEPTIDASE) STR EPTOCOCCUS PYOGENES.		1	ATG	TAA	218		Forward
383.	Unknown	3174748	2	ATG	TGA	693	875	Forward
	Unknown	3174760	1	ATG	TGA	280	495	Forward

				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
385.	Unknown	3174770	1	ATG	TGA	226	402	Forward
386.	RECOMBINAT ION PROTEIN. - BACILLUS SUBTILIS.	1	1	ATG	TAA	898	1527	
387.	ALPHA- ACETOLACTA TE DECARBOXYL ASE (EC 4.1.1.5) ENTEROBACT ER AEROGENES (AEROBA CTER AEROGENES).	3174774	1	ATG	TAG	155	550	Forward
	3- ISOPROPYLM ALATE DEHYDRATAS E (EC 4.2.1.33) (ISOPROPYLM ALATE ISOMERASE) (ALPHA- IPM ISOMERASE). LACTOCOCCU S LACTIS SUBSP. LACTIS) STREPTOCOC CUS LACTIS).	3174784	1	ATG	TAG	291	650	Forward

				Codon		Position	T	
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
389.	peptide chain release factor 1 Bacillus subtilis	3174802	1	ATG	TAA	293	1372	Forward
390.	ATP-dependent Clp proteinase (EC 3.4.21) chain clpL - Lactococcus lactis subs p. lactis plasmid pUCL22	3174806	1	~CAT	CTA-	592	1194	Reverse
391.	Unknown	3174812	1	ATG	TAA	55	933	Forward
392.	FAD synthase (EC 6.3) - Corynebacteriu m ammoniagenes	3174818	1	-CAT	TTA~		921	Reverse
	CYTIDINE DEAMINASE (EC 3.5.4.5) (CYTIDINE AMINOHYDR OLASE) (CDA) BACILLUS SUB TILIS.	3174826	1	ATG	TAG	25	414	Forward
394.	Unknown	3174832	1	-CAT	TTA-	23	382	Payare
								Reverse Forward

		<u> </u>		Codon	1	Position	1	
SEQ ID NO:	IDENTITY	Assembly ID	ORF #	Start	Stop	Start	Stop	Direction
380.	SARPLRPO NCBI gi: 677848NCBI gi: 473748 - Staphylococcus aureus.	3174842	1	~CAT	TCA-	299	574	Reverse
381.	Unknown	3174852	1	-CAT	TCA	101	-	
382.	TRK SYSTEM POTASSIUM UPTAKE PROTEIN TRKA HOMOLOG METHANOSA RCINA MAZEI.	3174858		CTG	TCA~	1	1077	Reverse Forward
383.	Unknown	3174870	1	~CAT	СТА	228	053	Davis
384.		3174878	1	~CAT	CTA~		953 667	Reverse
35. h	emolytic factor 3 Bacillus cereus	174926	-	CAT	TCA~	591 1	142	Reverse

				Codon		Position	T	
SEQ ID	IDENTITY	Assembly	ORF#	Start	Stop	Start	Stop	Direction
NO:		ID			-		•	
386.	DIPEPTIDYL	3174936	1	ATG	TAA	189	479	Forward
	PEPTIDASE IV			l	1			
	(EC 3.4.14.5)				1			
1	(X-PROLYL						1	
]	DIPEPTIDYL	İ						
	AMINOPEPTID							
	ASE IV) (X-	}						
	PDAP)							
	LACTOCOCCU							
	S LACTIS		1					
	(SUBSP.				1		Ì	
	CREMORIS)						1	
	(STREPTOCOC						1	
1	CUS							
	CREMORIS).		<u> </u>					
					ĺ	ļ		
387.	ARGININE	3174936	2	ATG	TGA	496	846	Forward
	HYDROXIMAT				ļ			
	E				İ			
	RESISTANCE							
	PROTEIN		!					
	BACILLUS							
	SUBTILIS.							
388.	Unknown	3174938	1	ATG	TGA	366	587	Forward
389.		3174946		~CAT	CTA~			Reverse
		3174952			TTA~	· · · · · · · · · · · · · · · · · · ·		
				CTG				Reverse
- 1	Lactococcus		·	- X	I OA	ا	200	Forward
ı	lactis		ĺ					ľ
392.	Unknown	3174990	1	ATG	TAA	141	1058	Forward

				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
409.	LACALS NCBI gi: 473900 - Lactococcus lactis (strain DSM 20384, sub_species lact is) DNA.	3175000	1	ATG	TAA	794	1015	Forward
410.	Unknown	3175006	1	ATG	TGA	56	631	Forward
411.	cellobiose phosphotransfer ase system celA - Bacillus stearothermophil us	3175006	2	ATG	TAA	646	963	Forward
412.	Unknown	3175010	1	~CAT	TTA~	13	231	Reverse
413.	Unknown	3175014	1	ATG	TGA	58	219	Forward
414.	Unknown	3175016	1	ATG	TAA	120	503	Forward
415.	Unknown	3175032	1	ATG	TAA	364	669	Forward
416.	Unknown	3175046	1	ATG	TGA	105	401	Forward

<u> </u>		<u> </u>		Codor	ı	Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
417.	GLYCYL- TRNA SYNTHETASE ALPHA CHAIN (EC 6.1.1.14) (GLYCINE TRNA LIGASE ALPHA CH AIN) (GLYRS) ESCHERICHIA COLI.	3175074		~CAT	СТА~	107	787	Reverse
418.	GLYCYL- TRNA SYNTHETASE ALPHA CHAIN (EC 6.1.1.14) (GLYCINE TRNA LIGASE ALPHA CH AIN) (GLYRS) ESCHERICHIA COLI.	3175074	2	~CAT	TCA~	787	936	Reverse
	endopeptidase PepO (EC 3.4) - Lactococcus lactis subsp. lactis	3175092	I	~CAT	TTA~	47	490	Reverse
	BSCELABCD NCBI gi: 895746 - Bacillus subtilis.	3175094	1	~CAT	СТА~	303	1019	Reverse

				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
421.	DNA LIGASE (EC 6.5.1.2) (POLYDEOXY RIBONUCLEO TIDE SYNTHASE (NAD+)) ESCHERICHI A COLI.	3175098	1	ATG	TAA	134	265	Forward
422.	Unknown	3175098	2	ATG	TAA	210	446	Forward
423.	TAGATOSE 1,6- DIPHOSPHAT E ALDOLASE (EC 4.1) LACTOCOCCU S LACTIS (SUBSP. LA CTIS) (STREPTOCOC CUS LACTIS).		1	ATG	TGA	495	950	Forward
424.	Unknown	3175104	1	CTG	TAA	1	525	Forward
425.	Unknown	3175114	1	~CAT	TTA~		508	Reverse
426.	Unknown	3175126	1	ATG	TAA		203	Forward
427.	Unknown	3175136	1	ATG			582	Forward
428.	Unknown	3175138	1	~CAG	TCA~		1448	Reverse

				Codon		Position	T	
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
429.	ISOPROPYLM ALATE SYNTHASE (EC 4.1.3.12) (ALPHA- ISOPROPYLM ALATE SYNTHASE) (ALPH A-IPM SYNTHETASE) LACTOCOCCU S LACTIS (SUBSP. LACTIS) (STREPTOCOCCUS LACTIS)).	3175140	1	ATG	TAA	963	1382	Forward
430.	LPLC PROTEIN BACILLUS SUBTILIS.	3175150	1	-CAT	TCA~	246	827	Reverse
31.	Unknown	3175158	1	-CAT	TTA~	114	407	Reverse
	PROTEASE SYNTHASE AND SPORULATIO N NEGATIVE REGULATORY PROTEIN PAI 1 BACILLUS SUBTILIS.	3175164	1		TTA~		754	Reverse

	1			Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
433.	PUTRESCINE TRANSPORT ATP-BINDING PROTEIN POTG ESCHERICHIA COLI.			ATG	TAG	380	844	Forward
434.	TRIOSEPHOSP HATE ISOMERASE (EC 5.3.1.1) (TIM) BACILLUS SUBTILIS.	3175174	1	~CAT	TTA~	270	818	Reverse
435.	Unknown	3175188	1	~CAT	TTA~	429	935	Reverse
436.	PNUC PROTEIN SALMONELLA TYPHIMURIU M.	3175192	1	ATG	TAG	111	536	Forward
437.	recF protein - Streptococcus pyogenes	3175228	1	-CAT	TTA~	144	356	Reverse
	3- DEHYDROQUI NATE SYNTHASE (EC 4.6.1.3) ESCHERICHIA COLI.	3175240	1	~CAT	TTA~	410	1123	Reverse
439.	Unknown	3175256	1	~CAT	TTA~	77	283	Reverse
140.	Unknown	3175262	1		TAA		377	Forward
141.	Unknown	3175266	1		TTA~		481	Reverse
142.	Unknown	3175288	1		TGA		522	Forward

				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
443.	NAD- DEPENDENT METHANOL DEHYDROGE NASE (EC 1.1.1.244) (MEDH) BACILLUS METHANOL ICUS.	3175298	1	-CAT	TTA-	440	658	Reverse
	ATP SYNTHASE ALPHA CHAIN (EC 3.6.1.34) ENTEROCOCC US FAECALIS (STREPTOCOC CUS FAECALIS).		1	ATG	TGA	478	639	Forward
	ANTHRANILA TE SYNTHASE COMPONENT II (EC 4.1.3.27) (GLUTAMINE AMIDO- TRANSFERAS E) LACTOGOCCU S LACTIS (SUBSP. LACTIS) STREPTOCOC CUS LACTIS).	3175310	1	ATG	TGA	117	683	Forward
16. I	Jnknown 3	3175322		CTG T	AA 3		13]	Forward

				Codon		Position	1	
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
447.	ALANYL- TRNA SYNTHETASE (EC 6.1.1.7) (ALANINE TRNA LIGASE) (ALARS) ESCHERICH IA COLI.	3175332	1	ATG	TAA	432	1250	Forward
448.	dihydrolipoamid e dehydrogenase (EC 1.8.1.4) - Pelobacter carbinolicus	3175356	1	~CAT	TTA~	486	1241	Reverse
449.	Unknown	3175366	1	CTG	TGA	1	405	Forward
450.	Unknown	3175380	1	~CAT	TCA~	168	413	Reverse
451 .	ASPARTATE AMMONIA LIGASE (EC 6.3.1.1) (ASPARAGINE SYNTHETASE) ESCHERICHIA C OLI.	3175380	2	~CAT	TTA~	422	913	Reverse
	aldose 1- epimerase precursor (mutarotase) (mro) homolog - Haemophilus influenza e (strain Rd KW20)	3175406	1	-CAA	TTA~	6	701	Reverse

				Codon		Position	T	
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
453 .	DIHYDROORO TATE DEHYDROGE NASE (EC 1.3.3.1) (DIHYDROOR OTATE OXIDASE) (DHODEHASE) BACILLUS SUBTILIS.		1	ATG	TAA	198	551	Forward
	SINGLE- STRAND BINDING PROTEIN (SSB) (HELIX- DESTABILIZI NG PROTEIN) BACILLUS S UBTILIS.	3175444	1	-CAT	TCA~	12	242	Reverse
	3-OXOACYL- [ACYL- CARRIER PROTEIN] REDUCTASE (EC 1.1.1.100) (3- KETOACYL- ACYL CAR RIER PROTEIN REDUCTASE) ESCHERICHIA COLI.	3175444	2	~CAT	TTA~	319	717	Reverse

	T	7	T	Codon	:; T	Position		1
SEQ ID	IDENTITY	Assembly	ORF#	Start	Stop	Start	Stop	Direction
NO:		ID	"		Бюр		Вюр	Direction
456.	Unknown	3175446	1	-CAT	TCA~	432	971	Reverse
457.	Unknown	3175450	1	ATG	TAG	75	584	Forward
458 .	LPLB PROTEIN BACILLUS SUBTILIS.	3175478	1	ATG	TAA	63	278	Forward
459.	Unknown	3175494	1	ATG	TGA	514	759	Forward
460.	Unknown	3175500	1	ATG	TGA	310	537	Forward
461.	30S RIBOSOMAL PROTEIN S9 (BS10) BACILLUS STEAROTHER MOPHILUS.	3175504	1	-CAT	TTA~	537	866	Reverse
462.	AMINO ACID PERMEASE ROCE BACILLUS SUBTILIS.	3175512	1	ATG	TAA	319	816	Forward
463.	ARGININE HYDROXIMAT E RESISTANCE PROTEIN BACILLUS SUBTILIS.	3175526	1	~CAT	CTA~	1	381	Reverse
464.	Unknown	3175532	1	ATG	TAA	309	644	Forward
	P115 protein - Mycoplasma hyorhinis (SGC3)	3175536	1	ATG			899	Forward
466.	Unknown	3175538	1	ATG	TGA	427	507	Forward
467.	Unknown	3175552	1				381	Forward
	Unknown		1		TTA~		597	Reverse

				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
469.	Unknown	3175564	1	ATG	TAA	3	164	Forward
470.	30S RIBOSOMAL PROTEIN S17 (BS16) BACILLUS SUBTILIS.	3175566	I	-CAT	TTA~	388	648	Reverse
471.	Unknown	3175600	1	~CAT	CTA-	266	626	<u> </u>
472.	LICD PROTEIN HAEMOPHILU S INFLUENZAE.	3175612	1	ATG	TGA	134	535	Reverse Forward
	DNA POLYMERASE III, ALPHA CHAIN (EC 2.7.7.7) BACILLUS SUBTILIS.	3175632	1	TTG	TAA	3	506	Forward
	ASPARTATE CARBAMOYL TRANSFERAS E (EC 2.1.3.2) (ATCASE) BACHLUS SUBTILIS.	3175638	1	ATG	TGA	269	526	Forward
1 1	SPOOB- ASSOCIATED GTP-BINDING PROTEIN BACILLUS SUBTILIS.	3175640	1	~CAT	rca~	21	476	Reverse

			T	Codon		Position	<u> </u>	
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
476.	URACIL PERMEASE BACILLUS CALDOLYTIC US.	3175644	1	~CAT	TTA-	42	287	Reverse
477.	Unknown	3175650	1	ATG	TAA	158	676	Forward
478.	DIHYDRODIPI COLINATE SYNTHASE (EC 4.2.1.52) (DHDPS) BACILLUS SUBTILIS.	3175652	1	-CAT	TTA~	179	514	Reverse
479.	Unknown	3175664	1	ATG	TGA	596	979	Forward
	DIACYLGLYC EROL KINASE (EC 2.7.1.107) (DAGK) (DIGLYCERID E KINASE) (DGK) STREP TOCOCCUS MUTANS.	3175670	1	-CAT	TTA~	77	367	Reverse
ļ	DnaK protein - Lactococcus lactis	3175688	1	~CAA	TTA~	170	1093	Reverse
	serine transporter (sdaC) homolog - Haemophilus influenzae (strain Rd KW20)	3175698	1	ATG	TGA	289	528	Forward

				Codon		Position		
SEQ II NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
483.	phage infection protein precursor - Lactococcus lactis subsp. lactis (strain C2	3175726	1	-CAG	TTA-	152	892	Reverse
484.	SCU19250 NCBI gi: 625076 - Streptomyces coelicolor.	3175744	1	ATG	TGA	3	431	Forward
185.	livH protein - Escherichia coli	3175754	1	ATG	TAA	3	677	Forward
186.	URACIL PERMEASE BACILLUS SUBTILIS.	3175758	1	~CAT	TTA~	49	555	Reverse
87.	Unknown	3175770	1	ATG	TAG	20		
	Unknown		2				171	Forward
	Unknown	3175774	1				311 408	Forward
90.	METHIONYL- TRNA SYNTHETASE (EC 6.1:1:10) (METHIONINETRNA LIGASE) (METRS) BA CILLUS SUBTILIS.	3175778	1				767	Forward Forward

			T	Codon	_` _	Position	Τ	T T
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
491.	STAGE III SPORULATIO N PROTEIN E. - BACILLUS SUBTILIS.	3175786	1	-CAT	TTA~	8	202	Reverse
492.	L-FUCOSE ISOMERASE (EC 5.3.1) ESCHERICHIA COLI.	3175790	1	ATG	TGĄ	328	534	Forward
493.	L-FUCOSE ISOMERASE (EC 5.3.1) ESCHERICHIA COLI.	3175790	2	ATG	TGA	440	784	Forward
494.	50S RIBOSOMAL PROTEIN L15. - BACILLUS STEAROTHER MOPHILUS.	3175792	1	ATG	ТАА	230	670	Forward
495.	Unknown	3175794	1	~CAT	TCA~	190	381	Reverse
496.	COME OPERON PROTEIN 2 BACILLUS SUBTILIS.	3175800	1	-CAT		182	649	Reverse
497.	Unknown	3175804	1	CTG	TAA	1	567	Forward
498.	Unknown	3175806	1	~CAT	TCA~	283	657	Reverse
499.	Unknown	3175812	1	-CAT	TCA~	78	596	Reverse

		<u> </u>		Codo	n	Position		
SEQ II NO:	IDENTITY	Assembly ID	ORF #	# Start	Stop		Stop	Direction
500.	FOLYLPOLYC LUTAMATE SYNTHASE (EC 6.3.2.17) (FOLYLPOLY- GAMMA- GLUTAMATE SYNTHETASE) (FPGS) BACILLUS SUBTILIS.	3175836	1	ATG	TAG	60	590	Forward
501.	Unknown	3175848	1	~CAT	TCA~	72	620	Reverse
	PHOSPHOSERI NE PHOSPHATAS E (EC 3.1.3.3) (PSP) (O- PHOSPHOSERI NE PHOSPHOHYD ROLASE) ESCHERICHIA COLI.		1	ATG	TAA	347	841	Forward
03.	Unknown	3175866	1	~CAT	CTA~	175	24	D
1 1 1 1			1					Reverse Reverse
5. t	Jnknown 3	3175896		~CAT	TTA~	54 6	36 I	Reverse

				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
506.	Unknown	3175916	1	ATG	TGA	177	437	Forward
507.	DNA- DIRECTED RNA POLYMERASE BETA CHAIN (EC 2.7.7.6) (TRANSCRIPT ASE BETA CHAIN) BACILLUS SUBTILIS.	3175948	1	TTG	TAG	2	187	Forward
508.	Unknown	3175960	1	ATG	TGA	534	758	Forward
509.	DNA topoisomerase (ATP- hydrolyzing) (EC 5.99.1.3) chain B - Staphylococcus aure us	3175984	1	~CAT	TTA~	125	604	Reverse
	GLUTAMYL ENDOPEPTID ASE PRECURSOR (EC 3.4.21.19) (GLUTAMATE SPECIFIC ENDOPEPTID A SE) (GSE) BACILLUS LICHENIFOR MIS.	3175998		-CAT	TCA~	43	540	Reverse

			1	Codon		Position		1
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
511.	6- phosphofructoki nase (EC 2.7.1.11) - Lactococcus lactis	3176002	1	ATG	TAA	662	829	Forward
512.	Unknown	3176010	li li	CTG	TAA	1	546	Farmed
513.	ASPARTYL- TRNA SYNTHETASE (EC 6.1.1.12) (ASPARTATE TRNA LIGASE) (ASPRS) THER MUS AQUATICUS (SUBSP. THERMOPHIL US).	3176030	1	-CAT	TCA-	+	625	Forward Reverse
14.	Unknown	3176046	1	~CAT	TTA~	242	454	Reverse
	GLYCOGEN BIOSYNTHESI S PROTEIN GLGD BACILLUS SUBTILIS.	3176048	1	ATG	TAG	411	704	Forward
]	S71704 NCBI gi: 560722 - Legionella pneumophila Philadelphia-1.	3176050	1	ATG	TGA	205	492	Forward
]	(P46) ESCHERICHIA COLI.	3176076	1	~CAT	TCA~	40	234	Reverse
18.	Unknown	3176082	1	ATG	TAA	48	491	Forward

	T			Codon	1	Position	T	
SEQ ID	IDENTITY	Assembly	ORF#		Stop	Start	Stop	Direction
NO:		ID		<u> </u>	<u>L</u> .		•	1
519.	SGHRDT NCBI gi: 510450 - Streptomyces griseus.	3176086	1	~CAG	TCA-	23	535	Reverse
520.	Unknown	3176108	1	-CAT	TTA~	4	501	Reverse
521.	trsB protein - Yersinia enterocolitica	3176112	1	ATG	TGA	127	408	Forward
522.	Unknown	3176116	1	ATG	TAA	198	515	Forward
523.	Unknown	3176120	1		TTA~		729	Reverse
524. 525.	SIGNAL PEPTIDASE I (EC 3.4.21.89) (SPASE I) (LEADER PEPTIDASE I) BACILLUS CA LDOLYTICUS. ligoendopeptidas e F - Lactococcus	3176124	1	~CAT	TCA~		570 380	Reverse
526.	lactis Unknown	3176134	1	~CAT	TTA~	200	426	D
		3176136	1				436	Reverse
		3176152	1		TCA~		273 688	Forward
		3176158	1				386	Reverse
530.		3176172	1		TTA~		331	Forward Reverse

				Codon		Position	T	
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
531.	Unknown	3176178	1	~CAA	CTA~	101	532	Reverse
	PTS SYSTEM, LACTOSE- SPECIFIC IIBC COMPONENT (EIIBC-LAC) (LACTOSE- PERMEASE IIBC COMPONENT) (PHOSPHOTR ANSFERASE ENZYME II, BC COMPONENT) (EC 2.7.1.69) (EII-L AC) LACTOCOCCU S LACTIS (SUBSP. LACTIS) (STREPTOCOC CUS LACTIS).			~CAT	TCA~		246	Reverse
	Unknown	3176184	1	ATG	TGA	61	336	Forward
	Unknown	3176188	1	ATG	TAG	42	248	Forward
	Unknown	3176208	1	ATG	TAA		238	Forward
	Unknown	3176216	1	~CAT	TTA~	135	335	Reverse
	Unknown	3176248	1	-CAT	TTA~	141	386	Reverse
	Unknown	3176260	1	ATG	TGA	158		Forward
539.	Unknown	3176272	1	~CAT	TTA~	331	465	Reverse

				Codon		Position		
SEQ ID NO:	IDENTITY	Assembly ID	ORF#	Start	Stop	Start	Stop	Direction
540.	REGULATORY PROTEIN MTRR NEISSERIA GONORRHOE AE.	3176280	1	ATG	TAA	287	502	Forward
541.	Unknown	3176288	1	~CAA	TCA~	5	520	Reverse
542.	Unknown	3176304	1	~CAT	TCA~	41	433	Reverse
543.	Unknown	3176330	1	CTG	TGA	2	298	Forward
544.	Unknown	3176330	2	ATG	TAG	271	381	Forward
545.	6-PHOSPHO-BETA-GLUCOSIDAS E (EC 3.2.1.86) ESCHERICHIA COLI.	3176338	1	-CAT	TCA~	5	130	Reverse
546.	Unknown	3176394	1	~CAT	TTA~	17	223	Reverse
547.	Unknown	3176398	1	~CAT	TTA~	41	310	Reverse
548.	Unknown	3176420	1	~CAA	TTA~	382	678	Reverse
549.	possible acid phosphatase	3176446	1	ATG	TGA	113	475	Forward
550.	Unknown	3176480	1	ATG	TAG	151	417	Forward
551.	Unknown	3176542	1	ATG	TAA	129	446	Forward
552.	Unknown	3176560	1			102	374	Reverse

Table 2 shows the correlation between the SEQ ID NO of each DNA sequence of the invention with the SEQ ID NO(S) of polypeptide or polypeptides that its open reading frame(s) encodes. For example, the DNA of SEQ ID NO:1 encodes one polypeptide, that of SEQ ID NO:24. Whereas, the DNA of SEQ ID NO:2 encodes two polypeptides, the polypeptides of SEQ ID NO:286 and SEQ ID NO:287.

TABLE 2

DNA	Protein (open reading frame)
1	263
2	264
3	265
4	266
5	267
6	268
7	269
8	270
9	271
10	272
11	273
12	274
13	275
14	276
15	277
16	278
17	279
18	280
19	281
20	282
21	283
22	284
23	285
24	286,287
.5	288
6	289
7	290
8	291
9	292
0	293
1	294
2	295
	296
	74

DNA	Protein (open reading frame)
34	297
35	298
36	299
37	300
38	301
39	302
40	303
41	304
42	305,306
43	307
44	308,309
45	310
46	311,312
47	313
48	314
49	315,316
50	317,318
51	319,320
52	321,322
53	323
54	324
55	325
56	326,327
57	328
58	329,330
59	331
60	332
61	333,334
62	335,336
63	337
64	338
65	339
66	340
67	341
68	342
69	343
70	344
71	345
72	346
73	347
74	348,349

DNA	Protein (open reading frame)
75	350
76	351
77	352
78	353,354
79	355,356
80	357
81	358
82	359,360
83	361
84	362
85	363
86	364,365
87	366
88	367
89	368
90	369
91	370
92	371
93	372
94	373
95	374
96	375
97	376
98	377
99	378,379
100	380
101	381
102	382,383
103	384
104	385
105	386
106	387
107	388
108	389
109	390
110	391
111	392
112	393
113	394
114	395
115	396

DNA	Protein (open reading frame)
116	397
117	398
118	399
119	400
120	401
121	402,403
122	404
123	405
124	406
125	407
126	408
127	409
128	410,411
129	412
130	413
131	414
132	415
133	416
134	417,418
135	419
136	420
137	421,422
138	423
139	424
140	425
141	426
142	427
143	428
144	429
145	430
146	431
147	432
148	433
149	434
150	435
151	436
152	437
153	438
154	439
155	440
156	441

DN	A Destain (amount of the control of
157	
158	
159	
160	
161	
	446
162	447
163	448
164	449
165	450,451
166	452
167	453
168	454,455
169	456
170	457
171	458
172	459
173	460
174	461
175	462
176	463
177	464
178	465
179	466
180	467
181	468
182	469
183	470
184	471
185	472
186	473
187	474
188	475
189	476
190	477
191	478
192	479
193	480
194	481
195	482
196	483
197	484

DNA	Protein (open reading frame)
198	485
199	486
200	487,488
201	489
202	490
203	491
204	492,493
205	494
206	495
207	496
208	497
209	498
210	499
211	500
212	501
213	502
214	503
215	504
216	505
217	506
218	507
219	508
220	509
221	510
222	511
223	512
224	513
225	514
226	515
227	516
228	517
229	518
230	519
231	520
232	521
233	522
234	523
235	524
236	525
237	526
238	527

DNA	Protein (open reading frame)
239	528
240	529
241	530
242	531
243	532
244	533
245	534
246	535
247	536
248	537
249	538
250	539
251	540
252	541
253	542
254	543,544
255	545
256	546
257	547
258	548
259	549
260	550
261	551
262	552

Examples

5

10

15

20

25

30

In order to facilitate understanding of the following example certain frequently occurring methods and/or terms will be described.

"Plasmids" are designated by a lower case p preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accord with published procedures. In addition, equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.

"Digestion" of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors and other requirements were used as would be known to the ordinarily skilled artisan. For analytical purposes, typically 1 µg of plasmid or DNA fragment is used with about 2 units of enzyme in about 20 µl of buffer solution. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 µg of DNA are digested with 20 to 250 units of enzyme in a larger volume. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer. Incubation times of about 1 hour at 37° C are ordinarily used, but may vary in accordance with the supplier's instructions. After digestion the reaction is electrophoresed directly on a polyacrylamide gel to isolate the desired fragment.

Size separation of the cleaved fragments is performed using 8 percent polyacrylamide gel described by Goeddel, D. et al., (1980) Nucleic Acids Res., 8:4057.

"Oligonucleotides" refers to either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide will ligate to a fragment that has not been dephosphorylated.

"Ligation" refers to the process of forming phosphodiester bonds between two double stranded nucleic acid fragments (Maniatis, T., et al., supra., p. 146). Unless otherwise provided, ligation may be accomplished using known buffers and conditions with 10 units to T4 DNA ligase ("ligase") per 0.5 µg of approximately equimolar amounts of the DNA fragments to be ligated.

Example 1

5

10

15

20

25

30

Isolation of DNA coding for a virulence gene in Streptococcus pneumoniae

As mentioned above each of the DNAs disclosed herein by virtue of the fact that it includes an intact open reading frame is useful to a greater or lesser extent as a screen for identifying antimicrobial compounds. A useful approach for selecting the preferred DNA sequences for screen development is evaluation by insertion-duplication mutagenesis. This system disclosed by Morrison et al., <u>J. Bacteriol</u>. 159:870 (1984), is applied as follows.

Briefly, random fragments of *Streptococcus pneumoniae*, strain 0100993 DNA are generated enzymatically (by restriction endonuclease digestion) or physically (by sonication based shearing) followed by gel fractionation and end repair employing T4 DNA polymerase. It is preferred that the DNA fragments so produced are in the range of 200-400 base pairs, a size sufficient to ensure homologous recombination and to insure a representative library in *E.coli*. The fragments are then inserted into appropriately tagged plasmids as described in Hensel et al., Science 269: 400-403(1995). Although a number of plasmids can be used for this purpose, a particularly useful plasmid is pJDC9 described by Pearce et al., Mol. Microbiol. 9:1037 (1993) which carries the erm gene facilitating erythromycin selection in either *E. coli* or *S. pneumoniae* previously modified by incorporation of DNA sequence tags into one of the polylinker cloning sites. The tagged plasmids are introduced into the appropriate *S. pneumoniae* strain selected, inter alia, on the basis of serotype and virulence in a murine model of pneumococcal pneumonia.

It is appreciated that a seventeen amino acid competence factor exists (Havastein et al., Proc. Nat'l. Acad. Sci. USA 92:11140-44 (1995)) and may be usefully employed in this protocol to increase the transformation frequencies. A proportion of transformants are analysed to verify homologous integration and as a check on stability. Unwanted levels of reversion are minimized because the duplicated regions will be short (200-400 bp), however if significant reversion rates are encountered they may be modulated by maintaining antibiotic selection during the growth of the transformants in culture and/or during growth in the animal.

The S. pneumoniae transformants are pooled for inoculation into mice, eg., Swiss and/or C57B1/6. Preliminary experiments are conducted to establish the optimum complexity of the pools and level of inoculum. A particularly useful model has been described by Veber et al. (I. Antimicrobiol. Chemother.32:432 (1993) in which 10⁵ cfu inocula sizes are introduced by mouth to the trachea. Strain differences are observed with respect to onset of disease e.g.,3-4 days for Swiss mice and 8-10 days for C57B1/6.

Infection yields in the lungs approach 108 cfu/lung. IP administration is also possible when genes mediating blood stream infection are evaluated. Following optimization of parameters of the infection model, the mutant bank normally comprising several thousand strains is subjected to the virulence test. Mutants with attenuated virulence are identified by hybridization analysis using the labelled tags from the "input" and "recovered" pools as probes as described in Hensel et al., Science 269: 400-403(1995). S. pneumoniae DNA is colony blotted or dot blotted, DNA flanking the integrated plasmid is cloned by plasmid rescue in E. coli (Morrison et al., J. Bacteriol. 159:870 (1984)) and sequenced. Following sequencing, the DNA is compared to the nucleotide sequences given herein and the appropriate ORF is identified and function confirmed for example by knock-out studies. Expression vectors providing the selected protein are prepared and the protein is configured in an appropriate screen for the identification of anti-microbial agents. Alternatively, genomic DNA libraries are probed with restriction fragments flanking the integrated plasmid to isolate full-length cloned virulence genes whose function can be confirmed by "knock-out" studies or other methods, which are then expressed and incorporated into a screen as described above.

5

10

15

SEQUENCE LISTING

(1) GENERAL INFORMATION

- (i) APPLICANT: Black, Michael
 Hodgson, John
 Knowles, David
 Nicholas, Richard
 Stodola, Robert
- (ii) TITLE OF THE INVENTION: Novel Compounds
- (iii) NUMBER OF SEQUENCES: 552
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: SmithKline Beecham Corporation
 - (B) STREET: 709 Swedeland Road
 - (C) CITY: King of Prussia
 - (D) STATE: PA
 - (E) COUNTRY: USA
 - (F) ZIP: 19406-0939
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 14-MAY-1997
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 60/017670
 - (B) FILING DATE: 14-MAY-1996
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: King, William T.
 - (B) REGISTRATION NUMBER: 30,954

- (C) REFERENCE/DOCKET NUMBER: P50475
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 610-270-5015
 - (B) TELEFAX: 610-270-5090
 - (C) TELEX:
 - (2) INFORMATION FOR SEQ ID NO:1:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 805 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CTANACAAAC CAGAT	AAGGA CCAAGAGCTT	AAAGCTGAAA	TTCAATCCAT	TTTTATCGAA	60
CACAAGGGAA ATTAT	GCTTA TCGCTGTATI	CATTTAGAAC	TAAGAAATTC	GTGCTTATCT	120
GGTAAATCAT AAAAG	AGTTC AAGGCTTGAT	GAAAGTACTC	AATTTACAAG	CTAAAATGCG	180
ACAGAAACGA AAATA	AAGGA GACGTTGGTA	AGAAGGCAGA	GAATCTCATT	CAAGGCCAAT	240
TTGAAGGCTC TAAAA	CAATG GAAAAGTGCT	ACACAGATGT	GACAGAATTT	GCCATTCCAG	300
CAAGTACTCA AAAGC	TTTAC TTATCACCAG	TTTTAGATGG	CTTTAATAGC	GAAATTATCG	360
CCTATAATCT TTCAA	CTTCA CCCAACTTAG	AACAAGTACA	AACAATGTTG	GAACAGGCAT	420
TCACAGAGAA GCACT.	ACGAG AATACGATTO	TCCATAGTGA	CCAAGGCTGG	CAATACCAAC	480
ACGATTCTTA TCATC	GGTTC CTAGAGAGTA	AGGGAATTCA	AGCATCCATG	TCACGCAAGG	540
GAAACAGCCA AGATA	ACGGT ATGATGGAAT	CTTTCTTTGG	GATTCTGAAA	TCGGAAATGT	600
TTTACGGTTA TGAGA	AGTCG TTTCAGTCGC	TTAAGCAATT	GGAACAAGCC	ATTATAGACT	660
ATATTGATTA CTACA	ACAAT AAGAGAATTA	AGGTAAAACT	AAAAGGACTT	AGCCCTGTGC	720
AATACAGAAC TAAAT	CCTTC GGATAAATTA	ATTGTCTAAC	TTTTGGGGGG	CAGTACATTT	780
TTGGTATATA TAAAA	TTTGT AGGAG				805

- (2) INFORMATION FOR SEQ ID NO:2:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 764 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

					ACCTAAAGCA	60
TCAATTTGAA	AAGTTTCTAC	TAGAATATGA	AATAAAGGAT	TAATGGGTCT	TGTCAGGTAT	120
			TGCCCTAGAG			180
			AAGCCATAGA			240
			AATATAATAT			300
CCTTGCGTTA	AAAAACGCCT	AAAACGCCAA	CAACGAAGTC	AACCTTATAC	TCCACAATTT	360
			GCATACGTTG			420
			TTCCAAATAA			480
			GCCTGAAGAA			540
CCAACAATGA	TCATAACTGG	AGTATAAATC	AAGGATGAAA	AAGGCAAAAG	CACACCAMAM	
CTGAGACAAC	CTTTGGAGAG	GATGCCAAGG	GAATCAAACT	CCCCCACAMO	CAGAGGATAT	600
TGGAAGTCTT	AAGTAGGTTY	GAACCCCAAA	Olarichanci	CCCCGACATT.	AAAGCCACTA	660
200111011	. L.C.I.GGIIG		GATTTTTAAA	CACAAAGGCT	GTAAATCCCA	720
AGCAAATATT	AAAGAAAAAG	TTAATCAGAT	AGGCGAGCGT	TAAG		764

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1133 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CTAAGACAG	G AGTCCGAATG	TCAATACGGA	TTTCAGAACG	TTCATGATTG	ATCATGAGAC	60
CTGCGACAT	r aaaggatagg	TGACCAGAAG	GTTCATCTGC	TATATCACCA	AAGATTTGTC	120
TTCCTGTGC	GTCTTGACCT	GCTTGTGTTG	CAAGAAAACT	GAGAGCAGGG	ТСТТСТТССА	180
GAGGAGCAA	AATGGTAGCT	AGTCGGATGA	CAGCATTGAT	ACCTTGACTA	CCATCCTTAC	240
CATGCTTTG	CACTCCGAGA	ACCGTTACGG	TTTGTTCAGT	GGATTGGTAA	TCATALOGA G	
CTTCTTTGAC	ACCGTTACAA	ACCTGTTCAT	AGAGCCCACC	OGATIGGIAA	TCATAACCAG	300
GTACAACGTT	' AAACCCCCCT	CCTACTTCAL	CORCER CETE	TIGGTAGTIG	GCCTTGTCTG	360
COTTCACCTC	AAAGGCGCCT	CCIRCIICAA	GCTCTAGTTG	ATCCGATCCA	GAGCCATAAA	420
GITIGACCTC	TAGAAGCCCT	TTTTCAGCAT	AGGTCAGAAG	AAAAGATGAG	TCAGGTGCNA	480
AGCCCATACT	GGCCTGTTCT	TCGATGGTAT	TGTAGCGTGC	CATGCAGCGC	CAGAGGGTTT	540
CCTCATCGGT	ACCAAAGATA	AAGCGTACGC	GCTTTTTGAA	CTGAATACCT	TGGTCCAGCA	600
AGCTTTTTAC	TGCATAGAGA	GCTGCGAGCG	GAGGGCCTTT	ATCATCTTCC	ACACCACCTC	660
CGATACCCAG	CCGTCTTTGA	TAGTTGCTTC	AAATGCCCCT	CTCTCCC	COCCACGIC	
ACCTGATGGA	ACAACATCCA	AAMCACACAC	11000001	GICIGCCAAT	CTGCTTCATC	720
mmomoon ===	ACAACATCCA	MATGACAGAG	AATGGCCAGA	AGCTCTGCTC	CCTGACCGAT	780
TICIGCATAT	CCGTAATAAC	CTTTAGGGTC	AAGATAGGTA	GTGAAACCTA	TGTCTCGACA	840

AATCTCTAAA	GTTTTTTCTA	GGACATCTTG	GATTGCTTGT	CCAAAAGGTG	TTCCATTTTC	900
					GAAATTCATC	960
					TTTATAGGAA	1020
					CGACTACGAG	1080
TTTGCCCATG	AATTTCCACC	AAGTACCAAT	GTTGATACGT	CCAAGTGCAA	GAG	1133

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1071 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

TGATAAGTAT	GAGACTCGAA	GCATTGAACA	TTAAACTTCC	AGATTTCAGA	TATATGGTGG	60
ACCTTCAAAT	CATCATACTT	ATTTTGGAGA	TÄAAAAACGA	TATTTACAAG	CAATTAAGAA	120
TTGAGCAAGA	GCTATTTACA	GTAGCTTAAT	GAAAGGAAAG	TATGTCAATT	ACATCATTTG	180
TAAAAAGAAT	TCAAGATATC	ACTCGAAACG	ATGCTGGTGT	TAATGGTGAT	GCTCAACGTA	240
TTGAGCAAAT	GTCTTGGTTA	TTATTCTTAA	AAATTTATGA	TAGCCGTGAA	ATGGTTGGGG	300
AATTAGGAAG	AAGGACGGAG	TATGGAGTCA	ATTATTCCCA	GGAGGAATTA	AAATGGCGGA	360
AATTGGGGCT	CATGCTCAAA	ATGGGGAACG	GGTATTGACA	GGCGATGAAT	TAATTGATTT	420
TGTCAATAAC	AAGTTATTCA	AAGAGTTGAA	AGGAGCTTGA	AATAACTTCA	AATATGCCTA	480
TTCGAAAAAC	GATTATTAAA	TCAGCTTTTG	AAGATGCGAA	CAACTATATG	AAAAATGGCG	540
TCTTGTTACG	CCAAGTCATC	AATGTTATTG	ATGAAGTTGA	TTTCAATAGC	CCTGAAGATC	600
	TAATGATATT					660
CAGGAGAATT	TTATACGCCA	CGTGCAGCGA	CTGATTTTAT	TGCCGAAGTT	CTTGACCCAA	720
AACTTGGAGA	ATCAATGGCA	GACCTTGCTT	GCGGAACAGG	AGGCTTCTTG	ACTTCGACTC	780
TGAACCGTTT	AAGTAGTCAA	CGTAAAACTA	GTGAAGATAC	СААААААТАТ	AATACAGCTG	840
TTTTTGGTAT	TGAAAGAAA	GCATTTCCTC	ATCTTTTAGC	AGTTACAAAT	CTGTTTCTTC	900
ACGAAATTGA	TGACCCTAAA	ATTGTTCATG	GAAATACTTT	GGAGAAAAT	GTTCGTGAAT	960
ATACGGATGA	TGAAAAATTT	GACATTATTA	TGATGAATCC	ACCTTTTGGA	GGGTCAGAAT	1020
TAGAAACAAT	AAAAAATAAC	TTTCCAGCAG	AATTACGGAG	TTCTGAAACA	G	1071

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1450 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CTAGGATAG	A CCGCTTTTTA					60
TGCTCTTTCT	TTTGGGGTTG	AAACGATAGG	AGAAGGAAAT	GTTAGAATTG	CTTAAATCAA	120
TCGATGCTTT	TGCTTGGGGA	CCGCCCCTCT	TGATTTATTG	GTCGGAACAG	GGATTTACCT	180
AACCATGCGG	CTAGGACTCT	TGCAGGTTTT	GCGTCTGCCC	AAGGCCTTTC	AGCTTATTTT	240
TATCCAGGAT	AAGGGACATG	GTGATGTATC	CAGTTTTACA	GCTTCTTGTG	TAACAGGCCC	300
TTGGGCATTC	AAACTGGTTG	GGAAACAGGG	AAATATCCAT	TAGGGAGTTG	GCGACGCCTA	360
TCAAGGTTGG	TGGACCAGGA	GCTCTATTTT	GGATGTGGAT	GGCGGCTTTC	TTTCCAATCC	420
CTACCAAGTA	TGCGGAAGGA	CTCTTGGCCA	TCAAATACCG	CACCAAGGAC	GACCATGGTC	480
CAGTAGCGGG	AGGTCCCATG	CATTATATCC	TTCTAGGGAT	GGGAGAAAG	TGGCGACCAC	540
TTGCTGTTTT	GTTTGCAGTA	GCAGGAGTAT	TGGTTGCTCT	CTTGGGAATC	CCA ACCUMICA	600
CCCAAGTCAA	CTCGATTACA	GAATCTATCC	AAAATACAAC	GACGATTTCC	CCACCCAMCA	•
CAGCTCTCGT	CTTGTCTGTC	TTTGTAGCGA	TTGCAGTCTT	TCCTCCACTC	CCAGCCATCA	660
CTAAGGTTTC	AACTACTGTT	GTTCCTTTTA	TGCCCATCAT	TGGTGGACTC	AAGTCTATTT	720
CAGTTATTTT	CTTTAATATC	GGAAAAATCC	CTCCCACAA	TTATATCTTA	GGAACTCTTA	780
CTTTTAGTCC	CCTTGCTGCG	GTACCTCCAT	TOGCACAAT	CGCTTTAGTC	TTTACCTCAG	840
AAAATGGTGT	CCCCCTCCT	COCOMMON	TIGCIGGIGC	TAGCGTTCGG	ATGGCTATTC	900
CACCTCCACC	GGCGCGTGGT	DATES	ACGAATCTGG	TCTGGGTTCT	GCTCCTATTG	960
COTTENTATES	TGCCAAGACA	AATGAACCAG	TAGAGCAAGG	TTTGATTTCC	ATGACAGGAA	1020
CCTTTATTGA	TACCCTCATC	ATTTGTACTC	TAACTGGTTT	GACCATCTTG	GTAACTGGAG	1080
TTTGGAGTGG	TGACTTGAAT	GGGGTTGCCT	TGACTCAGTC	AGCTTTCTCA	ACAGTCTTTT	1140
CACACTTTGG	GCCTGCCCTC	TTGACCATCT	TCCTTGTGCT	TTTTGCCTTT	ACAACGATTC	1200
TAGGTTGGAA	CTATTACGGA	AGAACGCTGT	TTTGAGTTCC	TCTTTGGGGT	TCGCTTTATC	1260
TGGCTCTACC	GNGTGGTTTT	TGTGCTCATG	GTCTTGTTAG	GAGGATTTAT	CGAGTTGGAN	1320
ATGGTCTGGA	TTATCGCAGA	TATCGTTAAC	GCCTTGATGG	CTCTGCCAAA	NTNGATTGCC	1380
CTCTTGGTCT	TGTCGCAAGT	CGTTATTGCT	GAAACTAAAA	AGTATTTTGA	CAAATAATGG	1440
AATCACACAG						1450

- (2) INFORMATION FOR SEQ ID NO:6:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 885 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

					TCCATAAAAT		60
	CACGATTTCC	TCATCCGCAA	AGAAAGGAAG	GCTGACCAAC	TCCAGTGCCA	CATCCTTGTA	120
	AACTACTTCT	TGCATATCAA	AGTAGGCAAA	GTTGAGGTCA	GCAGAATCAT	ACCCAATCTG	180
	TTTCAACACT	TGACTCTTCA	TCACTTCAAA	CTGACCCTGA	TCTGTCCCTG	TAAATAGGCG	240
	CAGGCTCGGT	AAATTCGATA	AAGTCAACTT	CTGACTTTCT	TCAATGGCTA	GCATCGTCTC	300
	TCCTTTCTTC	AGATTTTTCG	ATTTAATTTA	GTCAATATAG	CGCAATTTCC	CACGGAAATC	360
	TTCTAAGCTC	TCGTAGCCTT	TTTCCACCAT	GATTGCTTTC	AGTTCATTGG	TAAAGCGGTC	420
	AAAAGCACTG	ACGCCTTCTT	TGTGAAGGGT	CGTTCCCACC	TGCACCATAC	TTGCTCCACA	480
	GAGGATGTGT	TCAAAGGCAT	CTCGACCAGT	CAGAACGCCA	CCTGTTCCGA	TAATTTGGAT	540
	TTGAGGATTT	AAACGTTGAT	AAAAGGCGTG	AACATTGGCT	AGAGCAGTCG	GTTTGATGTA	600
	TTATCCACCA	ATTCCACCAA	AACCATTCTT	AGGCCGAATA	ACGACAGATT	CGTCTTCTAT	660
	ATAGAGGCCG	TTTCCGATAG	AGTTAACGCA	GTTGACAAAC	TTGAGCGGAT	ATTTGTTGAA	720
	AATAGCTGCC	GCTTGATCAA	AGTGAACAAT	ATCAAAATAA	GGTGGCAATT	TAATTCCAAG	780
•	AGGTTTGGTG	AAGTAAGCAA	ACACTTCTGC	CAAAATCCGG	TCTGTTGTCT	СААААТСАТА	840
1	GGCAATCTGA	GGTTTACCTG	GAACATTTGG	ACAGGAAAGA	TTTAG		885

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 774 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CTCAAACAAG	TGGTGAGATT	CCAGAAAAA	AAACGCGAAG	AAATTGCGTC	AGATTATCAC	60
AACTATCTTT	GAACAAAAGA	TGAATAAGCA	TAGTATTAAG	TAGAGAATGA	AAAAATATTT	120
TATTGGCGGT	TTGGGAAGCA	ATGCCTATCA	TAGCAAGGAT	TTTCTTCAAG	AACTAGATTC	180
	ŢŦŢÇŦAAATC					240
	AATGAGATTG					300
	GCTCGTTATT					360
	TATCTAGATT					420
	ATCAAATCTC					480
	AAGCATTGGT					540
	TATAATAGAT					600
	AGAAAAATAC					660
	CCTAATGAAG					720
	ATTTTTTAGA					774

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1196 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

TGCTGAACTT	GGCAAGATGG	TAGCAGTTCT	CAATACGCCA	GTAGAGGTCA	TTGAAGAAGC	60
CTGTCAAAAA	GCTTCTGGAA	CTTGGAGTGG	TTACTCCAGC	CAACTATAAC	ACACCTGCAC	120
AAATCGTCAT	TGCTGGAGAA	GTGGTTGCAG	TTGATCGAGC	GGTTGAACTT	TTGCAAGAAG	180
CAGGTGCCAA	ACGCTTGATT	CCTCTTAAGG	TGTCAGGTCC	CTTTCACACC	GCTCTCCTTG	240
AGCCTGCTAG	CCAGAAACTA	GCTGAAACTC	TAGCTCAGGT	AAGTTTTTCA	GATTTTACTT	300
GTCCCCTAGT	CGGCAATACA	GAAGCTGCTG	TGATGCAAAA	AGAGGACATT	GCTCAGCTCT	360
TGACGCGTCA	GGTCAAGGAA	CCCGTTCGTT	TCTATGAAAG	TATTGGGGTC	ATGCAAGAAG	420
CAGGCATAAG	CAACTTTATT	CGAGATTGGA	CCGGGGAAAG	TCTTGTCAGG	TTTTTTTTTAAA	480
AAAATTGATC	AAACTGCTCA	CTTAGCTCAT	GTGGAAGATC	AAGCGAGTTT	AGTAGCACTT	540
TTAGAAAAAT	AGACTAAAAT	AAGTAGAAGT	TTTGAAAGGA	AAAAAATGAA	ACTAGAACAT	600
AAAAATATCT	TTATTACAGG	TTCGAGTCGT	GGAATTGGTC	TTGCCATCGC	CCACAACTT	660
GCTCAAGCAG	GAGCCAACAT	TGTCTTAAAC	AGTCGTGGGG	CAATCTCAGA	AGA ATTOCTO	720
GCTGAGTTTT	CAAACTATGG	TATCAAGGTG	GTTCCCATTT	CACGAGATCT	AGAATIGCIC	
GCAGACGCTA	AGCGTATGAT	TGATCAAGCT	ATTGCAGAAC	TCCCTTCACT	ACAMOMOMO	780
GTCAACAATG	CAGGGATTAC	CCAAGATACT	СТТАТССТСА	AGATCACACA	AGAIGITIIG	840
GAAAAAGTGC	TCAAGGTCAA	TCTGACTGGT	CCCTTTANTA	TCACACA NO	AGCAGATTTT	900
CCGATGATGA	AAGCCAGAGA	AGGTGCTATC	ATTANTA	TGACACAATC	AGICITGAAA	960
GGGAATATTG	GTCAAGCTAA	CTATCCTCCT	MCMA ACCOMO	CTAGTGTTGT	TGGTTTGATG	1020
TCTGTGGCAC	GCGAGGTCGC	TACTICCION	1CTAAGGCTG	GCTTGATTGG	CTTTACCAAG	1080
GATTGAGTCT	GATATGACAC	CENTOCONAT.	ATACGAGTCA	ATGTGATTGC	TCCAGGAAAT	1140
	GATATGACAG	CIATCTTATC	AGATAAGATT	AAGGAAGCTA	CACTAG	1196

- (2) INFORMATION FOR SEQ ID NO:9:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 861 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

CTGGGAAAAC	CACCCTTTTC	AACCTTTTGA	CCGGTGTTTA	TGAACCAAGC	GAGGGAACAG	60
TAACCCTAGA	TGGTCACCTT	TTGAATGGGA	AATCACCTTA	TAAGATTGCC	TCTTTGGGAC	120
TTGGACGTAC	TTTCCAAAAT	ATCCGTCTTT	TTAAAGATTT	AACAGTTTTA	GACAATGTTT	180
TGATTGCTTT	TGGAAACCAT	CACAAACAGC	ATGTTTTTAC	TAGTTTCTTA	CGCTTACCAG	240
CTTTTTACAA	GAGTGAAAAA	GAATTAAAGG	CTAAAGCTTT	GGAATTGTTG	AAAATCTTTG	300
ATTTAGATGG	TGATGCAGAG	ACTCTTGCTA	AAAATCTTTC	CTACGGACAA	CAACGTCGTT	360
TGGAAATTGT	TCGTGCCCTT	GCTACGGAAC	CCTAAAATTC	TCTTCTTAGA	TGAACCAGCA	420
GCAGGTATGA	ACCCACAGGA	ÄACAGCCGAA	TTGACTGAGT	TAATTCGTCG	TATCAAAGAT	480
GAGTTTAAGA	TTACAATCAT	GTTGATTGAA	CACGATATGA	ATCTGGTCAT	GGAAGTAACA	540
GAACGTATCT	ACGTACTTGA	ATATGGCCGT	TTAATCGCTC	AAGGAACTCC	AGACGAAATT	600
AAGACCAATA	AACGCGTTAT	CGAAGCTTAT	CTAGGAGGTG	AAGCCTAATG	TCTATGTTAA	660
aagttgaaaa	TCTTTCTGTG	CATTACGGTA	TGATCCAAGC	AGTTCGTGAT	GTAAGCTTTG	720
aagttaatga	AGGAGAAGTT	GTTTCCCTTA	TCGGTGCCAA	CGGTGCAGGT	AAGACAACTA	780
TTCTTCGCAC	CTTGTCAGGT	TTGGTTCGAC	CAAGTTCAGG	AAAGATTGAA	TTTTTAGGTC	840
AAGAAATCCA	AAAAATGCCA	G				861

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 582 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

CTATGAGAGA	GAATGACCTT	CTCTTGATTA	CTGCGGACCA	TGGAAATGAC	CCAACGTATG	60
CAGGAACGGA	TCACACTCGG	GAATATATTC	CATTGTTGGC	CTATAGCCCT	GCCTTTAAAG	120
GAAATGGTCT	ÇAŢŢĊĊĀĠŦĀ	GGACATTTTG	CAGATATTTC	AGCGACTGTT	GCCGATAACT	180
				TAAATTGGTA		240
				AGAATAAGGT		300
				TTGAGAGCTA		360
				TGGTTGAAAA		420
				TTACTGAGTC		480
				GACTTGGCAC	GAAAAGATTT	540
TCTCTTTTAC	ACTGAGGGTT	TGGATGTGGA	CCAACGTCAT	CG		582

⁽²⁾ INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 698 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

لملحك فراكس	1 202242					
CIGATITI	* ACAATACCTG	CGAAATCTTA	GATTTCTTGT	GCGGACATGG	AAGAGTCGGC	60
CAACGGACGI	TGATTTGTAC	CATCTGTAAT	ATGAACAAAA	ССТССТАСАС	TTCCC3 TTCC	
ATAGCGTGAG	CGGAATGCTT	CCAAATCATT	C)COROCOCO	CCTOOTACAG	11GGGATTCC	120
CM2 2 2 MCMC2	000000000	-	GAGTIGGCTT	GGTTCTTCAC	TATTGATGAA	180
GIMMIGIGA	GCTTTGGTTT	CAGCTACGAC	ACCTGACAAT	GTACCTGCAA	ATTTACGGCA	240
GTAAGGGCAA	GTTTTGCGAC	CGATAAAGAA	GGTTGCAGTT	יוזי עי היהיאראראראראראראר	Chacacompo	
TTGCGCACGC	ACAACTCTAC	TC3 COMO > A		ICITITIAL	CAAGAGCTTC	300
212122	ACAACTGTAG	IGACTICAAG	GICTITGATG	TTATCTAAAA	ATTGTTCCAT	360
GAGATTACCT	CGCTTTCATT	GATAAGTCTA	GTATGCCATA	AAGTTTCTAA	AATTGCTTAG	420
ATTTGATACG	AAAAAAAATG	AGGTTGGTTG	CTCTC MCCTCT	MM1 m1 comes		420
ል ልጥር ር አ ጥጥ ር አ	M/MC/mcc/mass		GICICATCTT	TTATAGGTCT	TTATTTTACA	480
MAIGCALIGA	TTTCTGCTTC	GATGTTAGCA	ATCTTAGCTT	GTGATTCTTC	GTTGGTTTCC	540
CCTACAACTG	CAATGTAGAA	CTTGATTTTT	GGTTCTCTAC	CTCAACCCCC	11000011=	
CATGAACCGT	CAGCAAGTTC	TCTA COMO A A	2222222	CIGNNOGOCG	AACGGCAATC	600
1101000	CAGCAAGTTG	IGIATITCAA	CACATCACTT	GGAGGAGTTG	TCAAGTTTGT	660
AACAGTACCG	TCAGCAACAG	TAGCAGTTTG	TGCCTTGA			698
						430

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 707 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

TCAAGNO	TASE	THE PROPERTY	CC I CIITA MON				
		1001110000	GGAGNTATGA	CGACGGGAAA	AACCTTGAAC	CAATTTTTGA	60
TTGAGAT	rgga	TGGTTTTGAG	GGAAATGAAG	CCAMMAMMOO	5015000	GACAAACCGT	•
			COLLETTORNO	GOATTATTCG	TCATCGCTGC	GACAAACCGT	120
TCAGATO	FTAC	TTGATCCTGC	CCTTTTGCGT	TCCAGGAAGT	тттсатасаа	3 3 CM 3 MMC Cm	
TOCCOOR	~~	Camommaaaa			TITORINGNA	MAGTATTGGT	180
1000001	CCI	GATGTTAAAG	GTCGTGAAGC	AATCTTGAAA	GTTCACGCTA	AGAACAAGCC	240
TTTAGCA	GAA	GATGTTCATT	TO A A DOWN COM	000000			240
			I GAMAT TAGT	GGCTCAACAA	ACTCCAGGCT	TTGTTGGTGC	300
TGATTTA	GAG	AATGTCTTGA	ATGAAGCAGC	TTTAGTTGCT	COMOCMOS		
3.300003.0				TTINGTIGCT	GCTCGTCGCA	ATAAATCGAT	360
AATIGAT	GCT	TCAGATATTG	ATGAAGCAGA	AGATAGAGTT	ATTYCCTCCAC	CONTROL & CO. S.	400
АСАТААС	מית	CTITATION				CIICIMAGAA	420
MONIMO	MCA	GITTCACAAA	AAGAACGAGA	ATTGGTTGCT	TACCATGAGG	CAGGACATAC	480
						and an entire TVC	400

WO 97/43303	PCT/US97/07950
W U 7 //43303	FC 1/U39 //U/930

CATTGTTGGT	CTAGTCTTGT	CGAATGCTCG	CGTTGTCCAT	AAGGTTACAA	TTGTACCACG	540
CGGCCGTGCA	GGCGGATACA	TNATTGCACT	TCCTAAAGAG	GATCAAATGC	ТТСТАТСТАА	600
AGAAGATATG	AAAGAGCAAT	TGGCTGGCTT	AATGGGTGGA	CGTGTAGCTG	TATTAAAAA	660
CTCTAATGTC	CAAACTACCA	GGAGCTTCAA	ACGACTTTGA	ACAAGCC		707

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 571 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

CTCAATCAAT	TCTTCATTAG	TAGTTGATTG	ATGCAGTTGA	CTTTCGATTT	GTTCACTCTT	60
GCGGTCGATT	GAACGAAGGG	CTGTTAGGTA	AAGTCTGCAT	TGCGATAAAG	AATTTGAAAG	120
ATAAAACGTG	AACGCATGAA	GGTATAGAAA	TTACGCAATC	GACGGTTGAT	AAAGACATCA	180
AGGACAGGTA	GTGGTTCCAA	ACACGTAGTG	ATAATGGTTT	CCTCAGTGAT	GATAATACCA	240
AGCGGGATGG	TTACCTAGTA	GGTGCGGTTA	TTTCTTTCCT	CCGTGACCGG	CACGTCTACG	300
ATAATCAGGG	TATACTCGTC	CTCAATGGTA	ATACGACACA	TTTCTTCCGC	ATCGAGCGGT	360
GCTCGAAGGT	CGGCAATATC	AATATCGAAG	GTGTTGGCGA	TTTCGAGTGA	TTCATTTTGA	420
GTCGGATTGA	CGAGATTGAT	CCAAGTACCC	GGTTCAAGCG	TATCGATCTC	TTTAAATTCA	480
GTTGTTGTAG	AGAGAAAAAC	TTGTTTCATA	GCCCTTAGCC	TTTCTCATTC	TTCAGATTTT	540
TTCACACTGT	ACTATTATAC	TACAAAATCG	G			571

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 761 base pairs
 - (B) TYPE: nucleic acid-
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

TTGNGGAGAG	ACTTNAGTAT	TTTGTGGCAG	ACAGACCTCG	ATAATCACCA	CAGGCACTAG	60
GAACCAGTGG	ACACTGCAGA	GTGAGTGCTT	CACCACTGCG	CATAGATTTA	CCAAGCAACT	120
TCTTTGCAAT	AGCACCAGCC	ACGAACCTGC	TACCAAACTG	TTTTTCAGCA	TAGAGTAGGC	180

AAACATAAAC	CCGCAAAGGA	CTGGAAGCAT	CAAACCAAAG	GCAGCTCCAC	CAATTTTCAT	240
GGAACATAGA	AGCTAAACTC	ATGGTAAGAA	CCAAGATTGC	CAAGGTTTTC	ATTTCAL	
CTCAAAGCAC	CGTCAATCAA	GAAGGCAAGG	GCAATCATGA	TACCACCACC	CAMARGANA	300
GGTAACATTT	GAGATACACC	ACTCATCAAG	ТСТТСТАСА	AGGCACCACC	GATAACGAAT	360
TTTTCGTTAG	AGGCTGTTGC	GACTTTGGCA	CCATTACCCC	CACGGTAGAC	AAGGCTTTGT	420
CCTGAAATAG	CCAAGTTGAT	CAATTCTTCT	GTCTTACCCA	TACCGTCAGC	TICCGCATCT	480
TTGATCAAAG	GTTTGCCATC	GAAACGATCC	ATTTCA ACCC	CCTTGTCTGC	AACTGGACGA	540
ATAGCTTTAG	CCTTACGGAT	ATCTTCTCA	CTTLCTTCLT	TTCCAACACC	TGCAATGATA	600
Table Table	ССТТСАТАСС	AACCCCCAmm	GITAGITGAT	TTCCAACACC	GCTAGCACCG	660
GCCATGTA AG	TGTGGGCAAT	ACCCCCATT	TCAGCAGCTA	CTTTTTGAAG	GGCTTCTTGG	720
OCCATOTANO	IGIGGCAAI	ACCIGITGIA	CAAGCTGTAA	С		761

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 693 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

CTCTAAAACG	AATTCTCTAC	AAGCACCGCA	AGGGCATGGC	TGAACTTCCA	CCATAAGGTG	60
GTTTGTCTCG	AAAGGCTAAT	ACTTCNTTAA	CCTTAGTTTG	TCCTGAAAAT	TGGTACATAT	120
TGAAGAGGC	CGCCCGTTCT	GCGCAGAGAT	GGAAAACACC	ACAGGTTCCC	TCCATACAGA	180
ATCCTGTAAA	TATTTGTCCA	TCTCCTGCTT	CTACTGCAGC	TACAACATCA	TTCCCAMAAA	240
	TACTTCATGT					
	TATTGTATCC					300
	TTTCACGTCC					360
						420
TOCCIOAAA	CTGCGATACG	AATAGGCATG	AAAAGATTTT	TCCCTTTAAT	ACCTGTTTCT	480
	CTTTAATTTG					540
CGCTTCAAGT	ŢŦŦĠĊŦŦŦĠĀ	ATGCTTCAAG	AACTGTTGGA	ACTGTTTCAC	CCGTCATGAC	600
	GCTTCTGTCA			GAAAGATCTG	TCCATGGGAT	660
ATCTCATCTA	CTGATTCATT	GTGGTTTATA	GAG			693

(2) INFORMATION FOR TO ID NO:16:

(i) SEQUENCE CHARACTER . . TICS:

(A) LENGTH: 713 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

СТСТАТСТАС	TGGCAACGCC	CATTCCCAAT	CTACATCATA	TO A COMMONOCO	maamamaaaa	
						60
ACCTTGAAAG	AAGTGGACTG	GATTGCTGCT	GAGGATACGC	GCAATACAGG	GCTTTTGCTC	120
AAGCATTTTG	ACATTTCCAC	CAAGCAGATC	AGTTTTCATG	AGCACAATGC	CAAGGAAAAA	180
ACTCCTGATT	TGATTGGTTT	CTTGAAAGCA	GGGCAAAGTA	TTGCTCAGGT	CTCTGATGCC	240
GGTTTGCCTA	GCATTTCAGA	CCCTGGTCAT	GGATTTGGGT	TAAGGCAGCT	ATTGGAGGGA	300
AGAAATTGCA	GTTGTTACAG	TTCCAGGTGC	CTCTGCAGGA	ATTTCTGCCT	TGATTGCCAG	360
TGGTTTAGCG	CCACAGCCAC	ATATCTTTTA	CGGTTTTTTA	CCGAGAAAAT	CAGGTCAACA	420
GAAGCAATTT	TTTGGCTCTA	AAAAAGATTA	TCCTGAAACA	CAGATTTTTT	ATGAATCACC	480
TCATCGTGTA	GCAGACACGT	TGGAAAATAT	GTTAGAAGTC	TACGGTGACC	GCTCCGTTGT	540
CTTGGTCAGG	GAATTGACCA	AAATCTATGA	AGAATACCAA	AGAGGTACAA	TTTCTGAATT	600
GCTGGAAAGC	ATCTCTGAAA	CGTCTCTCAA	GGGTGAATGT	CTTCTGATTG	TTGAAGGTGC	660
CAGCAAAGGT	GTGGAAGAAA	AAGATGAGGA	AGACTTGTTC	TTAGAAATCC	AAG	713

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 670 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

CTTTAAGGAA	AATCAAATCT	CTCATGCTGA	TACCTCTCCT	CATTAAATTA	AATAGTAAAA	60
AAGATTCTAT	CTCACTCCCT	GATTATTACA	AAACCATTGA	AATATCACAA	CTAATAGGCT	120
AGAATGGACA	TAGTAAGATN	TAGTAGATGA	GTCATTCTAC	TCAAATCCAC	GTTAGAAAGG	180
ACTGCTATGC	CAGACAATCT	CGCGCTTCGC	ATGCGCCCTA	AAACCATCGA	CCAGGTCATC	240
GGTCAGGAGC	NTCTGGTCGG	ACCTGGAAAA	ATCATCCGCC	GCATGGTGGA	AGCCAACCGC	300
CTGTCCTCCA	TGATTCTATA	TGGCCCTCCT	GGAATCGGCA	AAACCAGTAT	TGCCTCTGCC	360
ATCGCTGGAA	CGACCAAGTA	TGCCTTGCGA	GACCCCCAAC	GCGACAGTTG	ATAGTTAAAA	420
AGCGACTGCA	AAAAATCTCG	GAAGAAGCTA	AATTTTCTGG	TGGTCTCGTC	CTATTGCTAG	480
ACGAAATCCA	CCGACTAGAT	AAGACCAAGC	AAGACTTCCT	CTGGCCTCTC	TTGGAAAGTG	540
GACTGGTCAT	CATGATTGGA	GCAACGACTG	AAAATCCTTT	CTTCTCTGTC	ACTCCTGCCA	600
TTCGTAGCCG	AGTTCAAATT	TCCGAGTTGG	AACCTCTGTC	TAACCAAAAC	GTCAAAGGAG	660
GCCCCGCAAA						670

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 575 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

	_					
CTCTTAGTAT	CNTGATTATG	GCGACTTATG	AAACCTTCNC	GGCGGTCTAT	GATGCGGTCA	60
TGGACGAATA	GTTTATGCGA	CAAATGGACG	AATTTTTCTC	ATGCGTCATT	TGCCTAAGAC	120
CGAAGGAGAG	AAAGAAACTC	TTGGAATTGG	CTTGTGGGAC	AGGAATTCAA	TCAGTGCGCT	180
TCTCTCAGGC	TGGTTTTGAT	GTGACTGGAC	TTGACTTGAG	TGCGGATATG	TTCAACATTC	
CGGAGAAGAG	GAGCAACTTC	AGCCAAGCAA	AAGATTCCTT	TTATAGAAGG	TAAMAMAATIG	240
AATTTGTCCA	AGGCAGGGAA	ATACGATTTT	GTCACCTCTVT	ATTCGGACTC	TAATATGCTA	300
ATGCAGGATG	AGGTGGAAGT	AGGGGACCTC	TTTAACCACC	MOTERACIO	TATCTGCTAT	360
GAAGGAGTTT	тсалстттса	COTTCCACTICC	111AAGGACG	TGTACAATGC	GCTGAATGAA	420
GAAGGAGTTT	CARCALLAR	CGIGCACICG	ACCTACCAGA	CAGATGAAGT	ATTGCCCTGG	480
CTATTCCTAC	CATGAAAATC	TCGGAAGATT	TTGCCATGCT	TTGGGATACA	TATGAGGGCG	540
GAGCTCCTCA	CTCCATCGTG	CATGAGATCG	AGCCT			575

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 507 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

CTTGTCTTTA	ATTGATAATC	א עינארוייט אינע	3030030033		CAACCTATGA	
	***************************************	MICCITIIAM	AGATGATGAA	GATTTCGTGT	CAACCTATGA	60
CCTTGATAAA	TCTTTTATTT	CTATGGTATC	TGTTGATGTA	TCAGAATACC	TAGGAAGTCA	120
GGAACCCATT	AAAAAGACTT	TGACCATACC	AAAATGGGCA	GATAAGTTGG	GACGAGAAAT	180
GGGACTTAAC	TTTTCTCAGA	CTTTGACAGA	CGCTATTGCA	GATAAGAAAG	ТТСААСССТА	240
AGATTAAGCG	TGGTATCGTG	CTA ATTA CTCA	10111111		-1-1-10-CC1A	240
	TOUTHICGIG	GIMAIAGICA	ATAAAAAAGC	ACGTCCACTT	GTGCTAGTTA	300
CTCGCCTATT	GATTTTATAG	ATTTATTAGC	CCTTTCGAGG	GCTTTTTATA	TTGATTTTTA	360
TGAGAAATAA	AGAAATCAGA		AATCATTGAT			300
		CITITAMGAA	AATCATTGAT	ACCAAGGGTT	TAAATGAGGT	420
AATATGGTAT	AATTAGGACA	TAAAATAATT	TTGTGGTAAG	ATGGTAGTAT	CTATTTTAGC	480

WO 97/43303	PCT/US97/07950

ATATTTCCGA GCAACGGGGC GATTAAA

507

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 666 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

CTTTGACAAA	GAGTATGACA	CCTGACCGTG	AAGTCATTAC	СТТТАТТССТ	GAAAAATTTA	60
TTGTGGATGG	TTTCCAAGGG	ATTCGTGACC	CACGTGGCAT	GATICCCCCTT	CCCCMMCLL	•
TGCGTGGTTT	GCTTTATACA	GGACCTCGTA	СТАТСТТССА	CAARONGOOM	CGCCTTGAAA	120
AGCGTGCAGG	TGTTCAGGTT	GAAAATGTTA	TO A TOTAL OF	CAATTIGCGT	AAGACGGTTG	180
TTTTCAACCA	ACCCCA ACCT	Chammann	TCATTTCACC	ACTAGCAATG	GTTCAGTCTG	240
CCACMCMCCCA	AGGGGAACGT	GAATTIGGIG	CTACAGTGAT	TGATATGGGG	GCAGGTCAAA	300
CGACTGTCGC	TACAATCCGT	AATCAAGAAC	TCCAGTTCAC	ACATATTCTC	CAAGAAGGTG	360
GAGATTATGT	AACTAAAGAT	ATCTCCAAGG	TTTTGAAAAC	CTCTCGCAAA	TTAGCGGAAG	420
GCTTGAAACT	GAATTACGGG	GAAGCCTATC	CGCCTCTTGC	AAGCAAAGAA	ACCTTCCAAG	480
TAAAGGTTAT	TGGAGAAGTA	GAACCAGTCA	AAGTGACGGA	AGCCTACTTG	TCACAAATTA	540
TTTCTGCACG	AATCAAGCAC	ATCCTTGAAC	AAATCAAGCA	AGAATTAGAT	ACA ACCOCMO	
TGGTTGGACC	TCCCTGGTGG	TATTGTCTTA	ATCCCTCCCA	AGAATIAGAT	AGAAGGCGTC	600
GTTGAG			ATCOGIGGGW	AIGCCATTT	ACCAGGTATG	660
						666

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 703 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

0000000000						
CTCGTACAAA	CGGTATGGGA	TTTGCACGTG	ACAAGATGGT	TATTACCAGT	GTAAACAAAA	60
ACCTAGAATT	CACACCODAAA	MOO 1 mmo 1 mm			OTMACAMM	60
	QUCUGC I WWW	TGGATTGATG	CACAATACGC	TCCACTCCAA	TCTGTGCAAA	120
ATAACTGGGG	AACTTACCCA	CATCACAAAC			- 4101041221	120
		GATGACAAAC	AACAAAACAT	CTTTGAATTG	GATCAAGCGT	180
CAAATAGTCT	AAAACACTTA	CCACTAAACC	CAACMCCAA		CGTCAAAAGA	
		cene i Marico	GAACTGCACC	AGCAGAACTT	CGTCAAAAGA	240

CTGAAGTAGG	AGGACCACTA	GCTATCCTAG	ATTCATACTA	TGGTAAAGTA	ACAACCATGC	300
CTGATGATGC	CAGAATGGCG	TTTGGATCTT	ATCAAAGAAT	ATTATGTTCC	TTACATGAGC	360
AATGACAATA	ACTATCCAAG	AGTCTTTATG	ACACAGGAAG	ATTTGGACAA	GATTGCCCAT	420
ATCGAGGCAG	ATATGAATGA	CTATATCTAC	CGTAAACGTG	CTGAATGGAT	TGTAAATGGC	480
AATATTGATA	CTGAGTGGGA	TGATTACAAG	AAAGAACTTG	AAAAATACGG	ACTTTCTGAT	540
TACCTCGCTA	ТТАААСАААА	ATACTACGAC	CAATACCAAG	САААСААААА	CTAGAGGTTG	600
ATTATGGGAG	ATAAGAAATA	CACAGTAGAA	AAAGCCAATA	GTTTTATAGC	AGAAAATAAA	660
CATCTCGTTA	ATACTCAATA	TAAGCCTGAA	GGACATTTTT	CAG		703

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 673 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

CCACAACAAC	TCTCGTNTGA	TCACTATGGG	GGCACAACTT	GTTGGTGATG	AATTGGCTAA	60
AAACATCGCT	AAAGGATTTG	TTAATGGTAA	ATACGACCGT	CNACATCATC	AAATCCGGGT	120
TGACATGTTG	AACAAAATGG	GCTAATTAGA	TTACAGTAAG	AAAGGTAAGT	TAAAAATGAG	180
	GGATGCGACC					240
GAAATCAAAA	GGATATGAAG	TCATTGACTT	TGGTACATAT	GACCATACAC	GGACTCACTA	300
CCCAATCTTT	GGTAAAAAAG	TACGGGAAGC	TGTAACTATC	GGCCAACCTG	ATCTTGGAGT	360
ATGTACCTGT	GGTACTGGTG	TTGGTATCAA	CAACCCTGTA	AATAAAGTCC	CACGTGTTCG	420
CTCTGCCTTG	GTTCGTGATA	TGACAACAGC	CCTTTATGCT	AAAGAACAAT	TGAACGCCAA	480
CGTTATCGGT	TTTGGTGGTA	AGATTACTGG	TGAATTGCTC	ATGTGCGATA	TCATCGAAGC	540
	GCTGAATACA					600
	ACAÇACAATG					660
Aaaaatggga						673

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 508 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

CTACTTTCCG	CCAGAGTTTT	GAGGTCGCTA	GAACATTTTG	CTTATCGATA	CTAGTAACGA	60
TTTTTCTGCG	ATTTCTTGCA	ATTTCAAAGG	CTTTGCGAAT	AATCCGCTCC	ACTTCCTCAT	120
AGCTATAGTC	GTTGATATCA	CGCGCTTTGC	GCTCTTCAAG	AATATGATCT	CCAAAGTAAA	180
TCTCGCCTAA	TCAATTAACG	CACCACGACA	AAGTATACAC	CAGAAATTCG	TTCCGGTTTG	240
	AATACTTGAG	-				300
	ACGGAGAGCC					360
	GATAGCTACT					420
CATCAGGTAA	GGGAGGTCCT	GCTGCATCAA	TATCTGCACC	TCCGAACGGT	CGTCTGTCAA	480
TCTNCATAGT	CAAAACCTGT	TTTTTCAG				508

- (2) INFORMATION FOR SEQ ID NO:24:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 499 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

CTCTTGTCAG	AGAAATTTAC	AAAACGTTAG	GAGAATAAGA	TGGCATTTAT	TGAAAAAGGT	60
CAAGAAATCG	ATATGGAAGT	CATCAAGGCT	GAAACCCAAT	TGTCTGCAGA	AGCCTTGAGA	120
CTCAAGGAAA	GCCGTGACAG	GGAATTGGCA	GATATTATTT	CAGGGGAAGA	TGACCGTATT	180
CTCTTGGTGA	TTGGTCCTTG	CTCTTCTGAT	AATGATTAGG	CGGTCTTGGA	ATATGCTCGC	240
CGTTTATCCG	CCTTGCAAAA	GAAGGTAGCG	GATAAGATTT	TCATGGTCAT	GCGCGTGTAT	300
ACTGCTAAGC	CTCGTACCAA	TGGAGACGGC	TATAAAGGGT	TGGTTCACCA	GCCAGATACT	360
TCTAAGGCTC	CAACCCTGAT	TAACGGCTTG	CAGGCTGTGC	GCCATTTGCA	CTACCGCTTT	420
GATTACAGAT						480
GGTGGATGAC	TTTGGTCAC					499

- (2) INFORMATION FOR SEQ ID NO:25:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 354 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

CTTGTCATAA 1	TTACAATTT	AGTTAATAAG	ACCAAAAAGG	TCATATATAT	AAAGGAGTCA	60
CAAAAATCAT (SAACAAACGT	GTAAAAATCG	TTGCAACTTT	GGGTCCTGCG	GTAGAAATCC	120
GTGGTGGTAA A	VAAATTCGGT	GAGGACGGAT	ACTGGGGTGA	AAAACTTGAT	GTTGAAGCTT	180
CAGCTAAAAA C	CATTGCTAAA	TTGATTGAAG	CTGGTGCTAA	CACATTCCGA	TTCAACTTCT	240
CACACGGCGA C	CACCAATGA	ACAAGGTGNA	GCGTATGGCA	ACTGTTAAAC	TTGCGGAAAA	300
AATTGCAGGT A	AAAAAGTTG	GTTTCCTTCT	TGATACAAAA	GGACCTGAAA	TCCN	354

- (2) INFORMATION FOR SEQ ID NO:26:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 540 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

CTTCTTTACT	GAGATGGATT	TTCCTTTTTA	GTTCGTGCCA	ATCTCAAGGC	ACGATTTGGA	60
TTGAGACGAT	TAAATAGTTC	TTCCAATTTC	TTTTCATTCC	AAACGTCTGC	GGCGGAAACA	120
AAATTACCAT	CCGCATCTCG	GAAAGATATC	GGTTTATCTC	CCATACCAGT	CTCCTAGTCT	180
ACAAATTCAA	ACTCAAATTT	ACCAATGCGG	ACCAAATCCC	CATCTTTAGC	TCCACGCGCA	240
CGAAGGGCTT	CATCAACCCC	CATACCACGA	AGCTGACGGG	CAAATTTCAT	GACAGATTCA	300
TCACGATCAA	AGTTGGTCAT	ATTAAAGAGT	TTCATGAGTT	TTTCACCAGA	AAGTACCCAT	360
GTCGCATCGT	CATCACGACT	AATTTCAAAG	GCTTTTTCTT	רשייייייייייייייייייייייייייייייייייייי	MCCAMACONA.	
GCTTCTTCTT	CCATATCAGA	CTCGTCGTAG	AGCAAAAATT	CTCCTCTCTT	COCCATAGTAA	420
TCAGCTGTAG	CATCTAAAAG	TGTTGCCAGA	CAMCCAMCCA	Charces	GICTAACAAT	480
				CHAICCAGAA	ATTGGGAAGA	540

- (2) INFORMATION FOR SEQ ID NO:27:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 333 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GACTAAAGGT	GCAGGTGCCA	GATGATCGTC	ACCAACGTAT	CAGATAGTCA	ATTACTTTCC	60
CAAATCTTAC	TCAATCTTTT	ATCCAATGCC	ATCCGTTACA	CTGAACAAGG	GGGAAAAATT	120
					TACAGGGCAT	180
			CCCTGACCGT			240
					GAACTCAGTC	300
	GTGGCCGNAG					333

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 272 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

CTGAACATAG	GCTTAGAAGG	AGTCTACCAG	CAGGAGAATG	CAGCCTTGGC	GTTGCAAACT	60
TTTCTTCTCT	TTATGGGAGA	AGGANNGGAA	GCTGTCGATG	AACAGGCTGT	AAGAAAGGCC	120
TTGGAACACA	CCCATTGGGC	TGGTCGCTTG	GAGCGTATTC	GCCCACAGAT	TTACTTGGAT	180
GGTGCTCATA	ACCTCCCTGC	CTTGACTCGC	TTGGTTGACT	TCATCANCCA	ANAANTATCA	
TGAGGGTCAT	CGTCCTCCAA	المعامل الماليات الماليات الماليات الماليات الماليات الماليات الماليات الماليات الماليات الماليات الماليات الم	Ch	- CHICCA	MANAMIAICA	240
			GA			272

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1159 base pairs
 - (B) TYPE: nucleic acid-
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

CTGCATCAGC	CAAAGCTTTC	ACACGTCCGT	GATATAGATA	TCCACCGCGG	TCGAACACCA	60
CTTCTGAAAT	ACCTTTAGCG	TTTGCACGTT	CTGCAACGAG	TTTACCGACA	GCAACGGCTT	100
GTTCAGTTTT	AGTTCCTTTT	GAAACTTCTT	TATCARCACT	TC11CC0ACA	GCGAGCGTTA	120
			THI CHAGAGI	TGAAGCACTT	GCGAGCGTTA	180

	GTCATCAATC					24
	ATCAGCAGTT					30
	TTTATCTGGT					360
	AAAGTTGGAA					420
	CCTTCTTTAC					480
	GGTGAACGAA					540
	CTAACAACGA					600
	GTCTGGATGA					660
	ACCAACCCCA					720
	GTTCAAAAGG					780
	GTGAAAAGTT					840
	AAGTTCTCCT					900
	AGCAGGCAAC					960
	TGTCAGGCCA					1020
	CCAAACTCTC					1080
TCTTTCAAAA	AGGCTACAAA	CTCCATGAAC	GCATCCCTAC	GCCCAGCCAA	TGGTAGTGGT	1140
GTTATAACTA	AGAATACAA					1159

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 901 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

		AGAATCTATT					60
CGACGA	CGAG	TTAGTAAGGA	AGCTAGACAA	ACGCCATAGC	GATTGCCGTT	TTCTGACGAG	120
TTGCTT	PAGC	ŢAÇCGTCAGA	ATTGCCGAAT	CGAACACGCC	CTAAGCTCTG	AGTAAAAAAG	180
		TTGTGTTCAT					240
TACGGG	TTT	GTATCTTAGT	TATACACCAC	TACCATTGCT	GGGCGTAGGA	TGCGGTCATG	300
		CCTTTTTGAA					360
		TGGATGGCCA					420
		TCTTCTTTCA					480
		TCTGTCAAAC					540
		TTTGCCAAGT					600
		TGGATATTTT					660
		TCATTTGCCA					720
		TCCTCTTCTT					780
						CITOGGCCVI	700

GTTCGCCTCC	CTTTAATGAT	TTCAATCTTA	ATGTACTTCA	TAACGATTAC	TGCTGAGGTA	840
GCGGTAAAAA	TCTGTCNNCN	TCATAGTCAA	AACACGGTGA	ACACATTGAC	TNGATTGATA	900
A						901

- (2) INFORMATION FOR SEQ ID NO:31:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 766 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

				GAATACGGCG		60
TTCAACCCAT	CACGAATATC	TGGCAAAGCC	CGGTCTTGAA	TAATGTACTT	GGAGTAGCGA	120
				GAATGTTAGA		180
AAAGCCCATA	AAATACCAAG	TGAAAATAGA	AAATTCTTGA	AGTAAGCAAA	CTCACAAGAG	240
				CCTTTCAAAG		300
AGGTTTTTAT	GCAGTAAAAG	ATATTTTACG	GGAATTCGTC	CCGTGTTCAG	TTACGATAAG	360
				TGGTTTTCCA		420
				ATAAGCACTC		
				CAAACTGCTT		480
				TATTTTCTTT		540
				CCATTTACGG		600
						660
				CGCTAAATCT	TCAATTGTGA	720
CACGGATGAG	GGTACGTGTT	TCTGGGTTCA	TGGTTGTTTC	CCAGAG		766

- (2) INFORMATION FOR SEQ ID NO: 32:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 831 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

ACTTTCCTAG AAACTTTAGT TTCTTCGTCA AGTTTCCTAT TTTTACTTGG AGTTTTGACG 120 CTCTTGATAT CTTAAATTAC CAAGATGCTT TTGTTACACC AGGAATTTGA CCTTTATGCG 180 CAAGTTCGCG AAAAGCGATA CGACTCAGAC CAAATTTGCG GTAAACTGAA TGTGGGCGCC 240 CCGTAACTCT ACAACGATA TGTAAACGAG TCGGTGAGGC GTTGCGAGGT AATTTAGATA 300 AACCTTCGTA GTCCCCTGCC GCCTTTAATG CAGCACGTTT TTCAGCATAA CGGTCAACAA 360 TTTTTTTGGCG TTTAGCCTCT CTAGCTACCA TTGATTTTCT AGCAATTAGA TTTACCTCCT 420 ATATTATTTT GCAAAAGGCA TTCCAAGGCC TTGTAAGCAA TGCACGTGAC TCTTCGTCAG 480 TGGTTAGCAGT TGTTACGATA ACGATGTCAA GACCACGAGT TTTGTCAACG TCATCGAAGT 540 TGATTTCTGG GAAGATTAAT TGTNCTTTCA CACCAAGTGT GTAGTTCCCG CGTCCATCAA 600 ATGATTTTGT TGGAACACCG TGGAAGTCAC GTACCAGTG AAGTGAAACT GATACCAATT 660 NACCCAAGAN TTCGTACATA CGTTCACCAC GAAGGGTAAC TTTTGCACCG ATCGCNACAC 720 CTTCACGAAG ACGGAAGCCG GCGATTGATT TNTTAGCTCT AGTGATNAGT GGTTTTTGAC 780 CNGAGATAAG TGCCAATTCT CCAGCAGCTT TTTCAGGCTT TTAGCGTTTG A 831							
CTCTTGATAT CTTAAATTAC CAAGATGCTT TTGTTACACC AGGAATTTGA CCTTTATGCG 180 CAAGTTCGCG AAAAGCGATA CGACTCAGAC CAAATTTGCG GTAAACTGAA TGTGGGCGCC 240 CCGTAACTCT ACAACGATTA TGTAAACGAG TCGGTGAGGC GTTGCGAGGT AATTTAGATA 300 AACCTTCGTA GTCCCCTGCC GCCTTTAATG CAGCACGTTT TTCAGCATAA CGGTCAACAA 360 TTTTTTTGGCG TTTAGCCTCT CTAGCTACCA TTGATTTTCT AGCAATTAGA TTTACCTCCT 420 ATATTATTTT GCAAAAGGCA TTCCAAGGCC TTGTAAGCAA TGCACGTGAC TCTTCGTCAG 480 TGTTAGCAGT TGTTACGATA ACGATGTCAA GACCACGAGT TTTGTCAACG TCATCGAAGT 540 TGATTTCTGG GAAGATTAAT TGTNCTTTCA CACCAAGTGT GTAGTTCCCG CGTCCATCAA 600 ATGATTTTGT TGGAACACCG TGGAAGTCAC GTACACGTGG AAGTGAAACT GATACCAATT 660 NACCCAAGAN TTCGTACATA CGTTCACCAC GAAGGGTAAC TTTTGCACCG ATCGCNACAC 720 CTTCACGAAG ACGGAAGCCG GCGATTGATT TNTTAGCTCT AGTGATNAGT GGTTTTTGAC 780 CNGAGATAAG TGCCAATTCT CCAGCAGCTT TTTCACGCTT TTTCACCTTTT TTTTAGCTCT AGTGATNAGT GGTTTTTGAC	ACTTTCCTAG	AAACTTTAGT	TTCTTCGTCA	AGTTTCCTAT	TTTTACTTGG	AGTTTTGACG	120
CAAGTTCGCG AAAAGCGATA CGACTCAGAC CAAATTTGCG GTAAACTGAA TGTGGGCGCC 240 CCGTAACTCT ACAACGATTA TGTAAACGAG TCGGTGAGGC GTTGCGAGGT AATTTAGATA 300 AACCTTCGTA GTCCCCTGCC GCCTTTAATG CAGCACGTTT TTCAGCATAA CGGTCAACAA 360 TTTTTTTGGCG TTTAGCCTCT CTAGCTACCA TTGATTTTCT AGCAATTAGA TTTACCTCCT 420 ATATTATTTT GCAAAAGGCA TTCCAAGGCC TTGTAAGCAA TGCACGTGAC TCTTCGTCAG 480 TGTTAGCAGT TGTTACGATA ACGATGTCAA GACCACGAGT TTTGTCAACG TCATCGAAGT 540 TGATTTCTGG GAAGATTAAT TGTNCTTTCA CACCAAGTGT GTAGTTCCCG CGTCCATCAA 600 ATGATTTTGT TGGAACACCG TGGAAGTCAC GTACACGTGG AAGTGAAACT GATACCAATT 660 NACCCAAGAN TTCGTACATA CGTTCACCAC GAAGGGTAAC TTTTGCACCG ATCGCNACAC 720 CTTCACGAAG ACGGAAGCCG GCGATTGATT TNTTAGCTCT AGTGATNAGT GGTTTTTGAC 780 CNGAGATAAG TGCCAATTCT CCAGCAGCTT TTTCACGCTT TTTCACCGTTT TTTCACCTTTCACCACAC TTTTTCACCTTT TTTCACGCTTT TTTCACCTTT TTTCACCTTT TTTTCACCTTT TTTTTCACCTTT TTTTCACCTTT TTTTCACCTTT TTTTCACCTTT TTTTCACCTTT TTTTCACCTTT TTTTCACCTTT TTTTCACCTTT TTTTCACCTTT TTTTCACCTTT TTTTCACCTTTTTTTT	CTCTTGATAT	CTTAAATTAC	CAAGATGCTT	TTGTTACACC	AGGAATTTGA	CCTTTATGCG	•
AACCTTCGTA GTCCCCTGCC GCCTTTAATG CAGCACGTTT TTCAGCATAA CGGTCAACAA 360 TTTTTTGGCG TTTAGCCTCT CTAGCTACCA TTGATTTCT AGCAATTAGA TTTACCTCCT 420 ATATTATTTT GCAAAAGGCA TTCCAAGGCC TTGTAAGCAA TGCACGTGAC TCTTCGTCAG 480 TGTTAGCAGT TGTTACGATA ACGATGTCAA GACCACGAGT TTTGTCAACG TCATCGAAGT 540 TGATTTCTGG GAAGATTAAT TGTNCTTTCA CACCAAGTGT GTAGTTCCCG CGTCCATCAA 600 ATGATTTTGT TGGAACACCG TGGAAGTCAC GTACACGTGG AAGTGAAACT GATACCAATT 660 NACCCAAGAN TTCGTACATA CGTTCACCAC GAAGGGTAAC TTTTGCACCG ATCGCNACAC 720 CTTCACGAAG ACGGAAGCCG GCGATTGATT TNTTAGCTCT AGTGATNAGT GGTTTTTGAC 780	CAAGTTCGCG	AAAAGCGATA	CGACTCAGAC	CAAATTTGCG	GTAAACTGAA	TGTGGGCGCC	
TTTTTTGGCG TTTAGCCTCT CTAGCTACCA TTGATTTCT AGCAATTAGA TTTACCTCCT 420 ATATTATTT GCAAAAGGCA TTCCAAGGCC TTGTAAGCAA TGCACGTGAC TCTTCGTCAG 480 TGTTAGCAGT TGTTACGATA ACGATGTCAA GACCACGAGT TTTGTCAACG TCATCGAAGT 540 TGATTTCTGG GAAGATTAAT TGTNCTTTCA CACCAAGTGT GTAGTTCCCG CGTCCATCAA 600 ATGATTTTGT TGGAACACCG TGGAAGTCAC GTACACGTGG AAGTGAAACT GATACCAATT 660 NACCCAAGAN TTCGTACATA CGTTCACCAC GAAGGGTAAC TTTTGCACCG ATCGCNACAC 720 CTTCACGAAG ACGGAAGCCG GCGATTGATT TNTTAGCTCT AGTGATNAGT GGTTTTTGAC 780 CNGAGATAAG TGCCAATTCT CCAGCAGCTT TTTCACGCTT TTTCACGCTTT	CCGTAACTCT	ACAACGATTA	TGTAAACGAG	TCGGTGAGGC	GTTGCGAGGT	AATTTAGATA	300
ATATTATTT GCAAAAGGCA TTCCAAGGCC TTGTAAGCAA TGCACGTGAC TCTTCGTCAG 480 TGTTAGCAGT TGTTACGATA ACGATGTCAA GACCACGAGT TTTGTCAACG TCATCGAAGT 540 TGATTTCTGG GAAGATTAAT TGTNCTTTCA CACCAAGTGT GTAGTTCCCG CGTCCATCAA 600 ATGATTTTGT TGGAACACCG TGGAAGTCAC GTACACGTGG AAGTGAAACT GATACCAATT 660 NACCCAAGAN TTCGTACATA CGTTCACCAC GAAGGGTAAC TTTTGCACCG ATCGCNACAC 720 CTTCACGAAG ACGGAAGCCG GCGATTGATT TNTTAGCTCT AGTGATNAGT GGTTTTTGAC 780 CNGAGATAAG TGCCAATTCT CCAGCAGCTT TTTCACGCTT TTTCACGCTTT TTT	AACCTTCGTA	GTCCCCTGCC	GCCTTTAATG	CAGCACGTTT	TTCAGCATAA	CGGTCAACAA	360
TGTTAGCAGT TGTTACGATA ACGATGTCAA GACCACGAGT TTTGTCAACG TCATCGAAGT 540 TGATTTCTGG GAAGATTAAT TGTNCTTTCA CACCAAGTGT GTAGTTCCCG CGTCCATCAA 600 ATGATTTTGT TGGAACACCG TGGAAGTCAC GTACACGTGG AAGTGAAACT GATACCAATT 660 NACCCAAGAN TTCGTACATA CGTTCACCAC GAAGGGTAAC TTTTGCACCG ATCGCNACAC 720 CTTCACGAAG ACGGAAGCCG GCGATTGATT TNTTAGCTCT AGTGATNAGT GGTTTTTGAC 780 CNGAGATAAG TGCCAATTCT CCAGCAGCTT TTTCACGCTT TTTCACGCTT	TTTTTTGGCG	TTTAGCCTCT	CTAGCTACCA	TTGATTTTCT	AGCAATTAGA	TTTACCTCCT	420
TGATTTCTGG GAAGATTAAT TGTNCTTTCA CACCAAGTGT GTAGTTCCCG CGTCCATCAA 600 ATGATTTTGT TGGAACACCG TGGAAGTCAC GTACACGTGG AAGTGAAACT GATACCAATT 660 NACCCAAGAN TTCGTACATA CGTTCACCAC GAAGGGTAAC TTTTGCACCG ATCGCNACAC 720 CTTCACGAAG ACGGAAGCCG GCGATTGATT TNTTAGCTCT AGTGATNAGT GGTTTTTGAC 780 CNGAGATAAG TGCCAATTCT CCAGCAGCTT TTTCACGCTT TTTCACGCTTT ATATTATTT	GCAAAAGGCA	TTCCAAGGCC	TTGTAAGCAA	TGCACGTGAC	TCTTCGTCAG	480	
ATGATTTTGT TGGAACACCG TGGAAGTCAC GTACACGTGG AAGTGAAACT GATACCAATT NACCCAAGAN TTCGTACATA CGTTCACCAC GAAGGGTAAC TTTTGCACCG ATCGCNACAC CTTCACGAAG ACGGAAGCCG GCGATTGATT TNTTAGCTCT AGTGATNAGT GGTTTTTGAC CNGAGATAAG TGCCAATTCT CCAGCAGCTT TTTCACGCTT TTTCACGCTTT	TGTTAGCAGT	TGTTACGATA	ACGATGTCAA	GACCACGAGT	TTTGTCAACG	TCATCGAAGT	540
NACCCAAGAN TTCGTACATA CGTTCACCAC GAAGGGTAAC TTTTGCACCG ATCGCNACAC 720 CTTCACGAAG ACGGAAGCCG GCGATTGATT TNTTAGCTCT AGTGATNAGT GGTTTTTGAC 780 CNGAGATAAG TGCCAATTCT CCAGCAGCTT TTTCACGCTT TTT	TGATTTCTGG	GAAGATTAAT	TGTNCTTTCA	CACCAAGTGT	GTAGTTCCCG	CGTCCATCAA	600
CTTCACGAAG ACGGAAGCCG GCGATTGATT TNTTAGCTCT AGTGATNAGT GGTTTTTGAC 780 CNGAGATAAG TGCCAATTCT CCAGCAGCTT TTTCACGCTT TTTCACG	ATGATTTTGT	TGGAACACCG	TGGAAGTCAC	GTACACGTGG	AAGTGAAACT	GATACCAATT	660
CNGAGATAAG TGCCAATTCT CCAGCAGCTT TTTCAGGCTTT TTTCAGGCTTT	NACCCAAGAN	TTCGTACATA	CGTTCACCAC	GAAGGGTAAC	TTTTGCACCG	ATCGCNACAC	720
CNGAGATAAG TGCCAATTCT CCAGCAGCTT TTTCAGGCTT TTAGCGTTTG A 831	CTTCACGAAG	ACGGAAGCCG	GCGATTGATT	TNTTAGCTCT	AGTGATNAGT	GGTTTTTGAC	780
	CNGAGATAAG	TGCCAATTCT	CCAGCAGCTT	TTTCAGGCTT	TTAGCGTTTG	A	831

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1194 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

CTACTCGTAC	AGGTGCACAA	GTTGCGGGTC	CAATCCCACT	TCCAACTGAA	CGTAGCCTCT	60
ACACAATCAT	TCGTGCGACT	CACAAATACA	AAGACTCTCG	CGAACAATTT	GAAATGCGTA	120
CACACAAACG	TTTGATCGAT	ATCGTTAACC	CAACTCAAAA	AACAGTTGAT	GCCTTGATGA	180
AATTGGATCT	TCCAAGTGGT	GTAAACGTAG	AAATCAAACT	ТТААТСТААА	ATATAAAACA	240
GCAGAGGCTG	GTGTTTCAAT	CTAATTGAAC	ACGGACTAAA	СТСССТСТСА	AAAACAMAAA	
CTTCCTATTG	TCCGTTAGAC	ACTGCGTTAG	TTTCCTATTT	TCACTOTOTO.	AAAAGATAAA	300
MMD0000			TITCCIAIII	TCACTTIGAG	TTTGACGCCC	360
TTTGTATCTT	ĀGĄCTTGAGC	ATAAAAAACG	CTCGTTAAAA	ACTITITGAA	TAAAAAATAT	420
AGAAAAGGAA	CTATTTTCTC	ATGACAAAAG	GAATCTTAGG	GAAAAAAGTG	GGAATGACTC	480
AAATCTTCAC	TGAAGCTGGC	GAATTGATCC	CTGTAACAGT	TATTGAAGCA	ACTCCAAACG	540
TTGTTCTTCA	AGTTAAAACT	GTTGAAACAG	ACGGATACAA	CGCTATCCAA	CTTCCTTTCC	
ATCACAAACC	CC3 3 CM3 MMC				GIIGGIIICG	600
AT GACAMACG	CGAAGTATTG	AGCAACAAAC	CTGCTAAAGG	ACATGTAGCG	AAAGCTAACA	660
CGGCTCCTAA	GCGCTTCATT	CGTGAATTCA	AAAACGTTGA	AGGCTTGGAA	GTTGGCGCTG	720
AAATCACAGT	TGAAACATTC	GCAGCTGGAG	ATGTTGTTGA	MCM3 3 00000		
~~		-4.10010010	AIGIIGIIGA	TGTAACTGGT	ACTTCTAAAG	780
GTAAAGGTTT	CCAAGGTGTT	ATCAAACGCC	ACGGACAATC	ACGTGGACCA	ATGGCTCACG	840
GTTCTCGTTA	CCACCGTCGT	CCAGGTTCTA	TGGGGCCTGT	TGCACCTAAC	CGCGTATTCA	900
AAGGTAAAAA	CCTTGCAGGA	CCTATCCCTC	GTGACCGCGT			500
	chodn	COLAIGOOIG	O LONCCOCOT	AACAATTCAA	AATCTTGAAG	960
TIGTACAAGT	TGTTCCAGAA	AAGAACGTTA	TCCTTATCAA	AGGTAACGTA	CCAGGTGCTA	1020

AGAAATCTCT TATCACTATC AAATCAGCAG TTAAAGCTGG TAAATAAA AGAAAGGGGA 1080 AATCAGTCAC AATGGCAAAC GTAACATTAT TTGACCAAAC TGGTAAAGAA GCTGGCCAAG 1140 TTGTTCTTAA CGATGCAGTA TTTGGTATCG AACCAAATGA ATCAGTTGTG TTTG 1194

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1526 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

CTCCTCACTA TCTACACTGC TTAAATTGGT CAAATGAACT TTTTTACAAC CATAAAAAAG	60
AGCACTTAAT CGTACTCTTC TCTTTTAAGG ATTAGTTGAA TTAATTCAAA TCCACTACTT	120
CTCCTGTTTC TAGGTAGACT AGGCGTTCAC AAATGTTAGC AATGTAATCA GCGAAGCGTT	180
CCAGATGCCC TATGATATAA AGGTATTGTG TTCCATTGGG AATTGAGGTT TCTTCCTCTT	240
TCATAAGTCC AATGATTTCC TTTGATAAGG CATAATAATA TTGGTCAATC TGTTCATCTT	300
TITGAGCAAT ACTAATAGCT TTTGAGGCTT GGTGCAAAGG AAAGGCAACC AATAAATCGC	360
CTAGCATGCT GAGGGATAAT TTACCCATTT GGTGTAACTG TTCTTCGCCA GGGGCTAGTT	420
GATTTTCTTT TAGTTGCAAA ACAGCTTTGG CAATGCCTGC CATATGGTCT CCCATACGTT	480
CAAGGTCTGA ACAAGAAGAC ATGATGCTAA TCACAAATCG AAGGTCAGAC ACTTGTGGCT	540
GCTGCAAGGC TAACAAACGG GCACAGGTCA ATTCGATAGC GCTTTGACCT TGGTTGATAG	600
CATGATCCTT ATTGATAATT AGCTTTGCCA TCTCCTTGTC TTTGGAGGCT AAGGCCAGTA	660
AGGCTTTTGA AGCTGTTTCA AGGACAAGTT GCCCTAGTCC TAAAAAGGAT TGTTCTAATT	720
CATGCAATTC TAAGTCAAAT TGATTTCTCA TAGGTTTTTC CTTCCTTATC CGAACCCTCC	780
TGAAATATAG TCTTCTGTGC GCTGATCTTT TGGATTGGTA AACACGTCAA CGGTATCTCC	840
AAATTCGCAA ATTTCTCCTG TTAAGAAAAA AGCAGTTTTA TCTGAAATAC GTGAAGCTTG	900
TIGCATGITA TGGGTAACAA TGATAATCGT ATAATCCTTT TTTAGTTGCT GAATGACGTC	960
TTCAATTTTT AAAGTGGAGA TAGGGTCTAA GGCTGAAGTC GGCTCATCCA TTAACAGAAT	1020
ATCAGGTTCT ACTGCTAAAG CTCGCGCAAT GCAAAGGCGT TGCTGCTGAC CGCCAGATAA	1020
GGACATGGCA CTCTTTTTAA GATCATCTTT GACTTCTTCC CAAATGGCTG CCCCTTTTTAA	1140
AGATTICTCC ACTAAGGCAT CTAATTGTTT TTTGTCTCGA ATACCATGTG TCCTTGGACC	1200
ATAAGCCACG TTATCATAGA TAGACATGGC AAAGGGATTA GGCTGTTGAA AAACCATCCC	1260
TACACGCTTG CGTAGCTGAT TAAGGTTGAA TTTGCTACTA TAAATATCTT GCTCATCTAA	
GAGGACTTGG CCTTCAATAT GGCAAGAAGG AACCAAATCG TTCATCCGAT TAAGGGTTTT	1320
TAGAAAAGTT GATTTGCCAC AACCAGATGG GCCTATCAAG GCAGTAATCT GTCTTTCTGG	1380
TAATTGAATC GAAATATTTT TTAAGGCTTG AAAATCCCCG TAAAATAAGT CTAGGTGTCT	1440
GACTGAAAAT GTTCCCATAC TAGAAG	1500
	1526

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1738 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

CTGGGGCAGA	CGCACCGAAG	ATGTCAATAC	CGATGNCCGC	GCCATCCAAA	CCAACATACT	60
TGTACCAACT	TTGGGTCGCT	GCCATTTCAA	TGGCCACACG	ACGACGAGTC	TTAGATGGTA	120
AAATGTCTTC	CTTGTAGGTA	GCATCTTGAG	CATCAAATAG	TTCGGTTGAG	GGCATAGATA	180
CCACACGTAC	TTTACCACCT	TGTAAAACCA	ATTCCTTAGC	AGCTTTGATA	GCTAGATTGA	240
CCTCAGATCC	TGTAGCAATG	ATAATAGTAT	CAAATCCCGG	GGTATCATAC	ACGACGTAGG	300
CTCCTTTAGC	GACCTTACCA	AAGTCTGTCC	CTTCTTCAAC	TACCAAGTTT	TGACGGGTTA	360
AGACAATGAC	AGTTGGAGTG	GTGGTACTGG	TCAAGGCATG	ATGCCAAGTC	GCTTGAGTTT	420
CACGGGCATC	CGCTGGACGG	ATAACAGTCA	AGTTTGGCAT	TGAGCGTAAA	CCTGCCAAAT	480
GTTCAACTGG	TTCATGAGTT	GGACCATCTT	CACCAACGGC	AATTGAATCA	TGGGTAAAGA	540
CATAAGTTAC	AGGCAACTCC	TGAATGGCTG	ATAGCCGAAT	AGCAGCTTTG	ACGTAGTCAG	600
AGAAAACAAA	GAAGGTTCCG	CCATAAACTC	GTAAACCACC	ATGAAGAGCC	ATTCCATTGA	660
GGATTGTTCC	CATGACAAAT	TCACGTACCC	CAAACTGAAT	ATTGCGGTTT	AATGGATTAT	720
ATTTATCTTG	TAAGCCATCT	GCCTTGATGT	AGGTCATGTT	GGAGTGAGCT	AAGTCTGCCG	780
ATCCACCTAA	GAAGGTTGGT	AAAACTGCTG	CTGTATTAAT	AGCATCTTGG	GACGAATTAC	840
GAGTTGCTTG	AGAGAAGCCA	TTCTCATAGA	CAGGGAAGTC	TTTTTCAGTA	ATGGTTACAG	900
GGGATTTTCC	AGTACAATAG	CGTCAATCTC	ACTAGCAACT	TCGGGATAAG	CAACCTTGTA	960
ATCAGACACC	AAACTAGCCC	AAGCATCGTA	TGCCTCCTGA	CCACGATCCG	CTACATTTGT	1020
CTTGAAATCA	GAATATACTT	CCTCTGGTAC	TTCAAATGGA	TCGTAATCCC	ATCCCAAAAA	1080
CTTACGAGTT	GCTCCTGTTT	CTTCTGCTCC	TAGTGGTGCA	CCATGAACAG	CATTTGTACC	1140
ACTTTTATTG	GGTGAGCCGT	AACCAATTAC	CGTTTTCACT	TCAATCAAAC	ATCGGCTTGC	1200
CTGAAACTTT	JGCTGTTTCG	ATAGCAGCAT	GGATGGCTTC	CAAGTCTGTT	CCATTTTCAA	1260
CCAAGGCAGT	ATGCCAACCG	TAGGCATTGT	AACGGTCACG	AACACTTTCT	GTAAAGGAAT	1320
CCTTTGTCTC	ACCATCCAAG	TTGATATCAT	TTGAATCATA	AAGAACAACC	AACTTATCAA	1380
GTTTTTGCAA	GCCTGCGTAT	GAAGCTGCCT	CGCTTGAGAC	ACCTTCCATC	AAGTCTCCGT	1440
CTCCACAGAT	AACGTAAGTA	TAGTGGTCAA	AGATATTGTA	GCCTTCACGG	TTATATTTGG	1500
CTGCCAAGAA	ACGTTCTGCT	TGGGCAAAAC	CAGTAGCAGT	TGAAATCCCT	TGCCCTAGAG	1560
GACCTGTCGT	AGCATCAATC	CCTGCCGTAT	GACCAAATTC	TGGGTGACCT	GGTGTTTTTG	1620
AACCCCATTG	ACGGAAGCTC	CTTAATCTCA	TCCATGCTGA	CATCTTCCAA	AACCAGAAAG	1680
GTGAAGAAGA	GCATAAAGGA	GCATTGAACC	ATGACCTGCT	GAAAGAATAA	AGCGGTCG	1738
					-	

⁽²⁾ INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 810 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

CTTGGGAGCT	ATTTTGCTTA	GTTTTCGCCT	TATTCCTCAA	CTTGGCTGGG	GACGTGGTCT	60
TTTTAGTTCC	ATTTTTCTAG	CGATCTCAGC	CTTCTGTAAT	GCCGGTTTTG	ATAATTTAGG	120
GAGCACTAGT	TTATTTGCTT	TTCAGACAGA	TTTACTGGTC	AATCTGGTGA	TTGCAGGCTT	180
GATTATTACA	GCCGCCTTG	GTTTTATGGT	CTGGTTTGAT	TTGGCTGGTC	ATGTAGGAAG	240
AAAGAAAAA	GGACGTCTGC	ACTTTCATAC	GAAGCTTGTA	CTATTATTGA	CTATAGGTTT	300
GTTGTTATTT	GGAACGGCAA	CTACTCTCTT	TCTTGAGTGG	AACAATGCTG	GAACGATTGG	360
CAATCTCCCT	GTTGCCGATA	AGGTTTTAGT	TAGCTTTTTT	CAAACAGTGA	CGATGCGAAC	420
AGCTGGCTTT	TCTACGATAG	ATTATACTCA	GGCTCATCCT	GTGACTCTTT	TGATTTATAT	480
CTTACAGATG	TTTCTAGGTG	GGGCACCTGG	AGGAACAGCT	GGGGGACTCA	AGATTACGAC	540
ATTTTTTGTC	CTCTTGGTCT	TTGCACAAAG	TGAGCTTTTA	GGCTTGCCTC	ATGCCAATGT	600
TGCGAGACGA	ACGATTGCGC	CGCGAACGGT	TCAAAAATCC	TTTAGTGTCT	TTATTATCTT	660
TTTGATGAGC	TTCCTTGATA	GGATTGATTC	TGCTAGGGAT	AACAGCCAAA	GGCAATCCTC	720
CCTTTATCCA	CCTCCATATT	TGAAACCATT	TCCAGCTCCT	TAGTACAGTT	GGTGTTAACG	780
GCAAATCTGA	CTCCCTGACC	TTGGGAAATT				810

(2) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2179 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

CTCAACCCTG	GCATGGAAAA	TATCCATGTA	GCGGCTGGAG	ATTTGCTTAA	GGGTGTGGAA	60
ATTGAGGCAG	ATGTGATTGT	GGCTAATATC	TTGGCGGATA	TCCTCATTCA	TCTAATAGAC	120
GATGCCTATC	GTTTGGTTAA	GGACGAAGGC	TACCTGATCA	TGAGTGGCAT	TATCAAGGAT	180
AAGTGGGACA	TGGTGCGCGA	GTCGGCTGAA	TCAGCTGGAT	TTTTCCTCGA	AACTCACATG	240
GTTCAAGGGG	AATGGAATAC	CTGTGTCTTT	AAGAAAACCA	AGGATATCTC	TGGTGTGATT	300

GGAGGCTAGC ATGCAGCAGT ATTTTGTAAA AGGCAGTGCT ATCTCTCCTG TCACTATCGA	360
GGACAAGGAA ACCAGTAAGC ATATGTTTCA GGTTATGCGC TTGAAAGAAG AGGATGAGGT	420
TACCTTAGTC TTTGATGATG GCATCAAGCG CTTGGCGCGC GTGCTGGATA TGGAAAATCG	480
TCAGTTTGAG TTGGTCCAAG AATTAAATGA CAATGTGGAA CTACCAGTCC AAGTGACCAT	540
CGCATCTGGA TTTCCCAAGG GAGACAAGCT GGAGTTCATC GCTCAAAAAG TAACCGAACT	600
GGGTGCTAGC CAAATCTGGG CCTTTCCTGC AGACTGGTCA GTTGCCAAGT GGGATGGCAA	660
GAAATTGGGT AAAAAAGTTG AAAAACTAGA AAAAATTGCC CTTGGAGCAG CCGAGCAAAG	
CAAGCGTAAT ATTGTACCAA GTATTAAACT TTTCGAGAAA AAAGCAGATT TTCTAGCTCA	720
GCTGGACCAG TTTGATTCTA TCATAGTAGC CTATGAAGAA TCAGCTAAAG AAGGAGAAGC	780
CGCTGCGCTT CTGCAAGCAG TCACTGGTCT TGAAACAGGA GCCAAACTGC TCTTTATCTT	840
TGGTCCAGAA GGTGGTCTGT CACCTGCAGA AATCGAAAGT TTTGAAGCTA AAGGAGCAGT	900
TTTGGCAGGC CTAGGTTCTC GTATTTTGCG AGCAGAAACA GCACCGCTTT ACGCCTTATC	960
AGCCCTTAGT GTTTTAGTAG AATTAGAGAA ATAAGAGGAA GAAAATGGAA CAAAAACACC	1020
GTTCAGAATT TCCAGAGAAG GAACTCTGGG ACTTAACAGC CCTATACCAA GACCGTGAGG	1080
ATTTCTTGCG TGCAATCGAG AAAGCTCGTG AAGACATCAA CCAGTTTAGC CGTGATTACA	1140
AGGGCAATCT TCACACTTTT GAGGATTTCG AGAAGGCCTT TGCGGAATTG GAACAGATCT	1200
ACATTCAGAT GAGCCATATT GGCAACTATG CTTTTATGCC TCAGACGACG GACTATAGCA	1260
ATGACGAATT TGCCAATATT GCCCAAGCTG GGATGGAATT TGAAACAGAT GCCAGCGTAG	1320
CCTTGACCTT CTTTGACGAT GCCTTGGTGG TAGCAGACGA GGAAGTCTTG GACCGTTTGG	1380
GTGAATTGCC TCACTTGACG GCAGCTATTC GTCAGGCCAA AATCAAAAAA GCCCACTATC	1440
TAGGGGCTGA TGTGGAGAAG GCCTTGACCA ATCTCGGTGA AGTTTTCTAT AGTCCGCAGG	1500
ACATTTATAC TAAGATGCGA GCTGGGGATT TTGAAATGGC TGACTTTGAA GCCCATGGCA	1560
AGACCTATAA AAACAGCTTT GTCACCTATG AGAATTCTAC CAAAATCACG AGGATGCTGA	1620
GGTTCGGGAG AAATCCTTCC GTTCCTTCTC AGAGGGACTT CGGTAAGCAC CAAAATACGG	1680
CTGCAGCAGC CTATCTGGCT CAGGTCAAGT CTGAAAAACT CTTGGCTGAT ATGAAGGGAT	1740
ACGACTCTGT CTTTGATTAT CTTCTAGCTG AACAAGAAGT GGACCGTGTC ATGTTTGACC	1800
GCCAGATTGA CCTCATCATG AAGGACTTTG CACCAGTCGC TCAGAGATAC CTCAAGCATG	1860
TTGCCAAGGT AAATGGTCTT GAAAAGATGA CCTTTGCAGA CTGGAAATTG GACTTGGACA	1920
GCGCCCTGAA TCCTGAAGTG ACTATTGACG ATGCCTATGA TTTGGTCATG AAGTCGGTAG	1980
AACCTTTGGG GCAAGAATAT TGTCAGGAAG TTGCTCGTTA CCAAGAAGAG CGCTGGGTGG	2040
ACTITIGNED TAACAGTEGE AAGGATTCCE GTEGTTATEC GECEGACCCA TATCECETAC	2100
ACCCTTATGT ACTCATGAG	2160
	2179

(2) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2575 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

~~~						
					A AGAGGTAGCC	60
					CTCGGTAANA	120
					TTTCCGCTAT	180
					A GATTCGAAAA	240
					TAACCTCCCT	300
					TGTAAAAGAG	360
					TGAAGAAATA	420
					GTGCGATGGA	480
					AATTCTTCAA	540
					AGCACAGCTC	600
					TAGTTGTGGT	660
					AGCTCCTGGG	720
					AACAAAATGG	780
					AAAAACTGCT	840
					AAATAACCTA	900
CCGTAGCAGT	CATTTGCTGT	CGTTCATCTI	GACTAGACAT	GCGACTGGTT	AAGTCGTCTT	960
CAAAAACAGA	TTTATAATGT	TCTTCCTCTG	AACGGAGGTG	TTCAGGCAGC	AATAAGACAA	1020
ACTCCCCTAC	ATCAAGGTGA	TTCATCTTTT	GCTCAATAGT	TGTATCTACA	GGAATGTTTT	1080
GACGCTCCAA	GTATTGCGGT	GTGACGATAA	GGACATTGCC	ATTCGGGTTG	TAATCGTGCC	1140
ATTCTGTAGA	GGTTATCAAG	TTTTTGGAGG	AAGCCATGCC	ATTTTGCAAA	GTACGGTCAA	1200
TTAACTGGTG	TCTAGATAAG	AAAGCCTTTT	GTTCTGAAAC	AGCCAGATCC	ATCAATTGAT	1260
ACCAAGTTCT	GAGTTTCCTT	TGAGCTTGTT	CATCAAAACC	AGGACTCGTT	CCTTCACGGC	1320
TGATTGATAG	GGTAATCAGT	TGCCTTTCCT	GACTCCAAAC	CTCTTGTCCA	ATCCGATGCT	1380
GTTGCCAGGC	TTGGGAATAC	TTTAAGCTAC	TCCCTATTCC	CAGCGTTACA	ATAATAATCG	1440
CTAATAGTTG	ACCGATTAAA	ATCAAACTAA	TGATTCCTCT	GACAGGCACT	TGCCCTTTTA	1500
TAATCTGCAT	CAGGTGTATC	TTTTTTATCC	CAACTGCGAA	GAGTTGAGCG	AAAAACAGGG	1560
				TCCTATGGTC		1620
				CACGCCAGCT		1680
				GAAAATGGAC		1740
				AATTTGACTA		1800
				CTGAAATCCG		1860
				CATATTAGTC		1920
				<b>ÀTCGAATACA</b>		1980
				CTGAAGCCCA		2040
				TTCTGAGTTA		2100
					GTAGCAACAT	2160
				GTTGGGGTAA		2220
				CAAACTAGCA		
				CTAAAACAGA		2280
				GATAAAAGAA		2340
					CCTCTGAAAT	2400
			WILLIAMCKL	ALIATTACT	CCTCTGAAAT	2460

GAAATTTATG AAAATGAAGC GAAAATGGCA ACTACATATT TTAATCAGAA AATCTCAGTC 2520
TGAATTATAG TATCCTATTT TTCCCCTCCT TTCCTAACCT GGCACGTTCC TTTCT 2575

# (2) INFORMATION FOR SEQ ID NO:39:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1692 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CTATTCGGA	A TAAGAAAA'	r gccagtatg	TATTGGCAG	CAAGGCTGT	C AAAGATGGTG	60
AAGCAGACG	C TGTCCTTTC	G GCTGGGAATA	A CAGGTGCTT	T GTTGGCTGC	r GGATTCTTCA	120
TCGTGGGTC	G TATCAAGAA	T ATCGACCGT	CTGGACTTAT	GTCAACATT	CCGACTGTAG	180
ATGGGAAAG	TTTTGACAT(	G CTTGACCTCC	GTGCTAATG	AGAAAATAC	A GCCCAGCACC	240
TCCATCAATA	A CGCTGTCCT	A GGTTCTTTC1	ATGCCAAGA	TGTTCGTGG	ATTGCGCAAC	300
CACGTGTTG	TTTGCTCAAC	: AACGGAACAG	AGAGTAGCA	GGGCGACCC	СТТССТААСС	360
AAACTTATGA	ATTACTGGCC	GCTGATGAAA	GTTTGAACTT	TATCGGAAAC	GTGGAAGCGC	420
GTGATTTGAT	GAATGGCGTT	CAGATGTTG	TTGTGGCAGA	TGGTTTCACC	GGAAACGCTG	480
TGCTCAAATC	CATCGAAGGG	ACAGCTATGG	GAATCATGGG	CTTGCTCAAG	ACAGCTATTA	540
CAGGTGGTGG	TCTTCGAGCG	AAACTAGGTG	CCCTCCTTCT	CAAGGACAGC	CTCAGAGGTT	600
TGAAAAAACA	GCTCAATCAT	TCAGATGTTG	GTGGAGCGGT	CTTGTCTGGT	GTCAAGGCAC	660
CTGTTGTCAA	GACTCATGGC	TCAAGCGATG	CCAAGGCTGT	TTATAGTACG	ATTCGCCAGA	720
TTCGTACCAT	' GCTAGAAACA	GAAGTAGTTG	CCCAGACTGC	GCGTGAATTT	TCAGGAGAAT	780
AAAAGAGATG	AAAGAAAAAG	AAATTTTTGA	CAGTATTGTG	ACCATTATCC	AAGAGCGACA	840
GGGAGAGGAC	TTTGTCGTGA	CAGAATCCTT	GAGTCTGAAA	GACGACTTGG	ATGCTGACTC	900
AGTTGATTTG	ATGGAGTTTA	TCTTGACGCT	GGAGGATGAA	TTTAGTATCG	AAATCAGCGA	960
TGAGGAAATT	GACCAACTCC	AAAGTGTAGG	AGATGTGGTT	AAAATCATTC	AAGGAAAATA	1020
GCAATCGGAG	TTÇÇAAGTCA	ACGGAAGTAG	ATGGTTTTTA	GAAATGAGAA	ATATCGGACA	1080
AGCTGGTAAA	ATCTTGGCTG	ACAGTGGTTA	TCAAGGGCTC	ATGAAGATAT	ATCCTCAAGC	1140
ACAAACTTCC	ACGTAAATCC	AGCAAACTCA	AGCCGCTAAC	AGTTGAAGAT	AAAGCCTGTA	1200
ATCATGCGCT	ATCTAAGGAG	AGAAGCAAGG	TTGAGAATAT	CTTTGCCAAA	GTAAAAACGT	1260
TTAAAATGTT	TTCAACAACC	TATCGAAATC	ATCGTAAACG	CTTCGGATTA	CGAATGAATT	1320
TGATTGCTGG	TATTATCAAT	CATGAACTAG	GATTCTAGTT	TTGCAGGAAG	TCTAATAGTA	1380
AAAAAGTGAT	TAGAAAACAT	CTTTTTTAAA	AATAGAGATG	ATTTTGAAAC	AAAAAAGCTA	1440
ATTCAAGACG	TTTCGATGCC	AATTCAAGAT	TTGGATGAAA	AAAATTAATA	GATACTGTTA	1500
TACTAAACTT	GTCAAGTTTG	TAACAAGACA	AATATTAAAA	ATAAAAAAGA	GGTATTCGTT	1560
ATGAATACAA	AAAAGATGTC	ACAATTTGAA	ATTATGGATA	CTGAGATGCT	TGCTTGAGTT	1620
GAAGGTGGCG	GATGCAATTG	GGGAGATTTT	GCCAAAGCAG	GTGTTGGAGG	AGGAGTAGCA	1680
		_			ONOINGCA	T000

CGAGGTCTTC AG

#### (2) INFORMATION FOR SEQ ID NO:40:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1117 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

	GTCTTAGTAC					60
CGAAGAGCCC	TACCAAGCGA	TTAAATTTGC	TAGTAAGGAA	GATTGCTACA	AGTATTTGGG	120
CACCAAGTAT	GCGGATTATA	CAGGCGAGGG	ACTGGCTAAG	CCTTTTATCA	TGGATAATGA	180
TAAGTGGGTT	AAACTTTAAT	AGTGTTATGA	TATGACAGTA	ATCTTAGGAT	TTTTATTTCT	240
ATTTTTGATA	AGTTGGTGGG	TTATTTCAAT	CGTTAATAGC	CAGAAACCAC	GCAAAAATGA	300
AACATTTATT	GGCTATGTCC	AAAGATACGA	TATTGATGGG	AATGCCGTGA	TCAATCAATA	360
ACCGTGTCCT	TCAGAACTGA	GAGGAGTTCT	TGAAATCGTA	AAACCACTTT	GAACAAGAGT	420
AACTTCAACC	CATCGGCTCC	GACGGATTAA	GTGCTTTCGT	GAATACCAAA	ATCAGCCGCA	480
ATTTCTTCAT	AAGTGCGATA	TTCTCGCACA	TATTGAAGAG	TGGCCATAAG	AAGGTCTTCT	540
AGGCTTAATT	TAGGTTTTCG	TCCACCTTTT	GCGTGTTTAA	GTTGATAAGC	TGTTTTTAAT	600
ACAGCTAACA	TCTCTTCAAA	AGTCGTGCGT	TGAACACCAA	CAAGACGCTT	AAATCGTGCA	660
TCGGTTAGTT	GTTTACTTGC	TTCATCATTC	ATAGAACTAC	TATACCATAT	TTTATTTCGC	720
AGGAAGTCTG	ATCTCATCCG	GTTTTGCTTG	ACGGGCTTTT	GCGGTTATTT	CTTCAAAAGG	780
	ACTGGCCCAC					840
	TGCCAGTGGA					900
CTCAGCAGTA	AAGGCCTTGG	CAACTGCCTC	TTGGACTAAA	CTCATTTCTT	CTAGAAAATG	960
GAGTCTTGTG	TCCTTTTCTA	AAATGGTGCA	ATTCCGCGAC	ATGTTCCTTG	GCTAAAAAAA	1020
AACTATAGCT	TGCAAGCTCA	ATACTGATGG	TCTCCAATCA	CAAGATAGCC	TGTTTCCAAC	1080
	AGTAGGGATT				_	1117

# (2) INFORMATION FOR SEQ ID NO:41:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1385 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

_						
					GTTGTAGCAT	60
GTTTTCTGAC	: AAAAAACGGG	ATTCGCTTAA	TCAAGTCTTG	TGGGACTAGC	GCCAGAATCT	120
TCTCAGTAGT	TTCTTTGTCA	CTAATATNAG	ACATTGCAAG	CCTTTTCTTA	ATCATTTCCT	180
GTTCTTTTTC	TGTAAAATCT	TTTAATTCCA	TTCGATTAGT	CCTCCTATTT	TCTCTAAGTT	240
					CTTCTCACTG	300
					TAGTAGTTCT	360
ATGAATGATG	AAGCAAGTAA	ACAACTAACT	GATGCACGAT	TTAAACGTCT	TGTTGGTGTT	420
CAGCGCACGA	CTTTTGAAGA	GATATTAGCT	GTATTAAAAA	CAGCTTATCA	ACTTAAACAC	480
GCAAAAGGTG	GACGAAAACC	TAAATTAAGC	CTAGAAGACC	TTCTTATGGC	CACTCTTCAA	540
TATGTGCGAG	AATATCGAAC	TTATGAACAA	ATTGCGGCTG	ATTTTGGTAT	CCACGAAAGC	600
AACTTAATCC	GTCGGAGCCA	ATGGGTTGAA	GTAACTCTTG	TTCAAAGTGG	TGTTACGATT	660
TCAAGAACTC	CTCTCAGTTC	TGAGGACACG	GTAATGATTG	ATGCGACGGA	AGTACAAATC	720
AATCGCCCTA	AAAAAAGAAT	TAGCGAATCA	TTCTGGTAAA	AAGAAATTTC	ACGCTATGAA	780
GGCTCAAGCG	ATTGTCACAA	GTCAAGGGAG	AATTGTTTCT	TTGGATATCG	CTGTGAACTA	840
TAGCATGATA	TGAAGTTGTT	CAAAATGAGT	TGCAGAAATA	TCGGACAAGC	TGGTAAAATC	900
TTGGCTGACA	GTGATTATCA	AGGGCTCATG	AAGATATATC	CTCAAGCACA	AACTCCACGT	960
AAATCCAGCA	AACTCAAGCC	GCTAACAGCT	GAAGATAAAG	CCTATAACCA	TGCACTATCT	1020
AAGGAGAGAA	GCAAGGTTGA	GAACATCTTT	GCCAAAGTAA	AAACGTTTAA	AATGTTTTCA	1080
ACAACCTATC	GAAATCATCG	TAAACGCTTC	GGATTACGAA	TGAATTTGAT	TGCTGGCATT	1140
ATCAATCATG	AACTAGGATT	CTAGTTTTGC	AGGAAGTCTA	TTAAAAATTG	AGAAATTAAA	1200
AGAGATGATA	TTAGGGAGAA	CTGATTTAGG	CAAAGTGTCT	CCCCTAGTTA	CGACATAAAG	1260
AAGCATAAAT	CGATAATATT	TATGTTTCTT	TACTAGTGAA	ACGCCTAGCC	AAATTACCAT	1320
			TTATATTTAG			1380
GTTAG						1385
						2000

### (2) INFORMATION FOR SEQ ID NO:42:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 690 base pairs

(B) TYPE: nucleic acid-

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

CTGAGAAAAG	TGGTGGTTGT	TCGATTAGAA	AAACCAGTAA	CTTTTCACAA	TATGATAGCT	60
					AAGTTCAAGT	
					TOTTCAACAC	100

CTATCAAAAA	TTTCCGAACC	AGAAAAACTT	TATGCTTACA	TTGCTGAAGC	AACCGCTTAA	240
TCTTGTCTAT	TAAAAAATAA	AATCGGAGGA	AATCTAAATG	ATTAAAATTC	TTGCTGCCTG	300
CGGTGCAGGT	GTTAACTCAA	GTCACCAAAT	TAAAAGTGCT	CTAGAAGAAG	AACTTTCAAA	360
CCGTGGTTAT	GATGTTCACT	GTGATGCAGT	CATGGTGAAA	GATGTAAACG	AAGACCTTAT	420
GAAAGGTTAC	GATATCTTTA	CACCAATCGC	TGCAACAGAT	CTTGGTTTTG	AACCAGGTAT	480
CCCAGTTATC	GAAGCTGGGC	CAATCTTATT	CCGTATACCA	GCAATGAGCG	CTCCAGTATT	540
TGACAATATT	AGACTCCCTG	CGAAACAAAA	TATGGTATAG	TAGTTCTATG	AATGATGAAG	600
CAAGTAAACA	ACTAACTGAT	GCACGATTTA	AGCGTCTTGT	TGGTGTTCAG	CGTACCACTT	660
TTGAAGAGAT	GTTAGCTGTA	TTAAAAACAG				690

### (2) INFORMATION FOR SEQ ID NO:43:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 874 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

CTTCATCCTG	CCATACGGTC	GGTAATTGAC	CTGCTGACAT	CCGAAACCTC	CCTTAAATCG	60
CATTCTTGTC	AAAACCGAGT	TTGCGTTGAA	TAAACTTAGC	GATTTCGACG	ATGATAATCA	120
TTGAGAAGCT	TCCAGCCATA	ACAATTCCCC	ATTGTGACAA	GTCTAGTTTG	GTTACGTGGA	180
			TCGCCATGAG			240
			GGCTAGTGAT			300
			CATAGTCCTT			360
			TGATAGGAAG			420
			TGTAATCAAA			480
			ATATCATAAC			540
			GCAAAACTAG			600
			AAAGCGTTTA			660
			AAAGATGTTC			720
			AGCTGTTAGC			780
			CATGGGCCCT			840
	GATCTNNTTT				101ChOCCAA	874
			•			0/4

# (2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1461 base pairs
  - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

					CCTTAAATCG	60
CATTCTTGTC	AAAACCGAG1	TTGCGTTGAA	TAAACTTAAC	GATTTCGACG	ATGATAATCA	120
TTGAGAAGCT	TCCAGCCATA	ACAATTCCCC	ATTGTGACAA	GTCTAGTTTG	GTTACGTGGA	180
AGATTCCTTC	AAGCGGTTC1	ACAACGATTG	TTGCCATGAG	AAGGATAAAG	GATACCAAGA	240
TGGACCAGTT	AAAGGTCTTA	GACTTGAATG	GGCCAACTGT	CAAGATGGAT	TGGTAGACAG	300
		AAGAGCTGAA				360
GGGCATCTGC	ATGAATAGCA	TGATTGTCAC	CCACATGAAC	TGGGTAAGCA	ATCGCAAGGC	420
CATAAACACT	CATAACAAGA	GCTGCTTGGA	GTACACCTTG	ATAAATGATA	GAACTCAAAA	480
CACCACCTGA	GAAGAAGCTT	GCCTTGCGTC	CACGTGGTTT	ATGATTCATG	ACACCAGGTT	540
CTGCAGGTTC	AACACCACAG	AACGATAGCT	GGGAAGGTAT	CCGTTACCAA	GTTGATCCAC	600
AAAAGATGAA	CCGCCTGTAA	GACATCCCAA	CCAAACAAGG	TTGATAGGAA	GATGGTTAAT	660
ACTTCAGCAG	TATTAGCAGA	AAGTAGGTAC	TGAATAGTCT	TTTGAATGTT	TGAGAAGACC	720
TTACGTCCTT	CTTCCACTGC	GACGATAATA	GTCGCAAAGT	TATCATCTGC	AAGAATCATA	780
TCAGAAGCCC	CCTTAGAAAC	CTCTGTACCA	GTGATTCCCA	TACCGATACC	GATATCGGCT	840
GTTTTCAGAG	CTGGCGCGTC	ATTGACACCG	TCACCTGTCA	TGGCAACGAC	TTTACCTTCT	900
TTTTGCCAAG	CCTTGACGAT	ACGAACCTTG	TGTTCTGGAG	ACACACGGG	ATARACICAC	960
TATTGACCAA	CGACTTTTTC	AAATTCTTCA	TCTGACAGTT	CATTGAGTTC	ACCACCACTO	1020
AAAACGTGAC	CTTCTGTATC	GTTTGCGTCA	ATGATTCCCA	AACGTTTGGC	AGCACCAGII	
GCTGTGTCTT	GGTGGTCACC	TGTAATCATA	ATTGGACGGA	TTCCCCCTTTC	COMPAGGETTEE	1080
CGAACAGCCT	CAGCGGCTTC	AGGACGTTCA	GGGTCAATCA	TCCCAATCAA	CTTAGCCACA	1140
ATTAAATCAT	TTTCAAGCTC	TTCAGAAGTG	ACATTETORS	CARRACTAR	ACCAGTAAAA	1200
TAAGCACCTG	CAAGGACACG	CAAGGCTTGA	TCACCCA mmm	GAATACTATC	GATAATCTTA	1260
AGATTTGTAA	CCTTCTCATC	AATCGGAGCA	ATAMCCOCA	CAGAATIGIT	TGTATGAATG	1320
						1380
	GTTGACATGA	GCGCACCCTT	GACTGCTACA	AGGAAACGAC	CATCTGGCAA	1440
	OI IGACATGA	G				1461

# (2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2445 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

•					TCCTTGACAT	60
					ATTCCCCAAG	120
	A TICACCITII					180
					TGGCACAGCA	240
	r CATCCAAGAC					300
	C CGATCTCAAT					360
	r cacgaacttc					420
	G TCAAGTGGTA					480
	GATCTGCAAT					540
	CTTGAACAAC					600
	GATTTTTCAA					660
	CACCATCTGC					720
	CTGCAACTTC					780
	CGACAACACG					840
	TAGACTCACT					900
	CCTTGATTTC					960
	AGACAACCCA					1020
	CCTTACCACC					1080
	TGAAAATACG					1140
	TAGCGTGGAA					1200
	GTGGGCGTTT					1260
	TGTAAGATTT					1320
	AGATAAAGTC					1380
	AACGACCTGA					1440
	CACCAATCTT					1500
	CAAGTGGTAG					1560
	TAAGAGCATG					1620
	TTTTACTTTG					1680
	AAGTCACAGC					1740
	CAATTTCTTG					1800
	ÇAÇÇATCCAA					1860
	CCAAGAAGTA					1920
					AAATCAGATT	
					AACCACCTAC	
					AACGACCTTG	
					TAGTCACATC	
					AGCTTTCCCA	
GTCGCCAACC	TCATGTGAGC	CAACCTTGGC .	AATTTGTGCC	GTTTCTGGTA	CTCCTACCTT	2280
GGGCCAAGGG	CACCCTTGGG	GGGCATGGAT	TATGGAACTT	GGATTGGTAT	CTAACCATCT	2340
CTGACACCAC	CCTGCATAAA	GATTAAAACC	CAAAAAACAA	CAACACCTAA	GATAAAATTG	2400
TTCATAGGAC	CTGCAAAATT	GGTAATCAGT '	TTGCCCCAGA	TAAAG		2445
		4.0	•			

### (2) INFORMATION FOR SEQ ID NO:46:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2207 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

NCAGGCTAN	TCTCGTCTGA	ATGAAGATGG	AACCTTTGCT	GACAAGATTO	TCATGGGACG	60
TCACCAAGG	G GTCAACCAAG	AGTATCCAGC	TAATATIGTT	GACTACATGG	ACGTTTCACC	120
AAAACAGGTA	A GTTGCCGTTG	CGACAGCATG	TATTCCTTTC	TTGGAAAACG	ATGACTCCAA	180
CCGTGCCCTC	ATGGGAGCCA	ATATGCAACG	TCAGGCTGTG	CCATTGATTA	ATCCTCAGGC	240
ACCTTACGTT	r ggtactggta	TGGAATACCA	AGCAGCCCAC	GATTCTGGTG	CGGCTGTGAT	300
TGCTCAGTAT	GATGGTAAAG	TTACTTACGC	AGATGCTGAC	AAGGTAGAAG	TTCGTCGTGA	360
AGATGGTTCA	TTGGATGTTT	ACCACATCCA	AAAATTCCGT	CGTTCAAACT	CAGGTACTGC	420
TTACAACCAA	CGCACTCTCG	TAAAAGTTGG	TGATGTCGTT	GAAAAAGGCG	ATTTCATCGC	480
TGACGGACCI	TCTATGGAAA	ATGGAGAAAT	GGCGCTTGGA	CAAAACCCAA	TCGTTGCCTA	540
CATGACTTGG	GAAGGTTACA	ACTTCGAGGA	TGCCGTTATC	ATGAGCGAAC	GCTTGGTGAA	600
GGACGATGTC	TACACATCTG	TTCACCTTGA	AGAATACGAA	TCAGAAACGC	GCGATACAAA	660
GCTTGGGCCT	GAAGAAATCA	CTCGATCGAA	ATTCCAAACG	TTGGTGAAGA	TGCCCTCAAA	720
GACCTTGACG	AAATGGGGAT	TATCCGTATT	GGTGCTGAGG	TTAAAGAAGG	TGATATTCTT	780
GTAGGTAAAG	TAACACCTAA	GGGTGAGAAA	GATCTTTCAG	CTGGAAGAAC	GTCTCTTGCA	840
CGCTATCTTT	GGAGACAAGT	CTCGTGAAGT	GCGTGATACT	TCTCTTCGTG	TACCACACGG	900
TGCCGATGGT	GTCGTTCGTG	ATGTTAAGAT	CTTTACACGT	GTAAATGGAG	ATGAGTTGCA	960
ATCAGGTGTT	AACATGTTGG	TTCGTGTTTA	CATCGCTCAA	AAACGTAAGA	TTAAGGTCGG	1020
AGATAAAATG	GCCGGACGTC	ACGGAAACAA	AGGGGTTGTC	TCTCGTATCG	TTCCTGTAGA	1080
	TACCTTCCAG					1140
GCCATCACGT	<b>ATGAATATCG</b>	GTCAGGTTAT	GGAGCCTCAC	CTTGGTATGG	CAGCTCGTAC	1200
TCTTGGTATT	CACATTGCGA	CACCAGTCTT	TGATGGAGCA	AGTCCTGAAG	ATCTTTGGTC	1260
AACTGTTAAA	GAAGCAGGTA	TGGATAGCGA	TGCCAAGACA	ATCCTTTACG	ATGGACGTAC	1320
AGGTGAACCA	TTTGATAACC	GTGTTTCTGT	TGGAGTCATG	TACATGATCA	AACTCCACCA	1380
CATGGTTGAC	NATAAATTGC	ACGCGCGTTC	AGTCGGACCT	TATTCAACTG	TTACCCAACA	1440
ACCACTCGGA	GGTAAAGCTC	AGTTTGGTGG	ACAACGTTTC	GGTGAGATGG	AGGTTTGGGC	1500
TCTTGAAGCC	TACGGTGCGT	CAAATGTCCT	TCAAGAAATC	TTGACTTACA	AGTCTGACNA	1560
TATCAACGGG	ACGTTTGAAA	GCCTATGAAG	CTATTACAAA	AGGCAAACCA	ATTCCAAAAC	1620
CAGGTGTTCC	AGAATCCTTC	CGAGTTCTTG	TCAAAGAATT	GCAATCTCTT	GGTCTTGACA	1680
TGCGTGTCCT	AGACGAAGAT	GACCAAGAAG	TGGAACTTCG	CGACTTGGAT	GAAGGAATGG	1740
ACGAAGATGT	CATCCACGTA	GATGACCTTG	AAAAAGCCCG	CGAAAAAGCA	GCCCAAGAGG	1800

CTAAAGCAGC	CTTTGAAGCT	GAAGAAGCTG	AGAAAGCAAC	AAAAGCGGAA	GCAACAGAAG	1860
AAGCTGCTGA	ACAAGAATAA	GCAGTTCACT	TAGAATAGAA	AGGGAAGAAA	TAGTGGTTGA	1920
TGTAAATCGT	TTTAAAAGTA	TGCAAATCAC	CCTAGCTTCT	CCAAGTAAAG	TCCGTTCATG	1980
GTCTTATGGA	GAAGTCAAAA	AACCTGAAAC	AATCAATTAC	CGTACCTTGA	AACCAGAACG	2040
TGAAGGACTC	TTTGATGAAG	TGATCTTTGG	TCCTACAAAA	GACTGGGAAT	GTGCTTGTGG	2100
TAAGTACAAA	CGCATTCGTT	ACAGAGGAAT	TGTTTGTGAC	CGCTGTGGGG	TTGAAGTAAC	2160
GCGTACGAAA	GTTCGTCGTG	AGCGTATGGG	ACATATCGAA	TTGAAAG		2207

#### (2) INFORMATION FOR SEQ ID NO:47:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2339 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

CGACTGAAAT	GGGTGAATTG	TACTCTTGGC	TTGGTTTGTC	AGTAGGGATT	AACTTGGCTA	60
CCAAATCTCC	AATGGAGAAA	AAAGAAGCCT	ATGAGTGTGA	TATTACTTAC	TCAACTAACT	120
CAGAAATCGG	ATTTGACTAC	CTTCGTGACA	ATATGGTCGT	TCGCGCTGAA	AACATGGTAC	180
AACGTCCGCT	TAACTATGCC	TTGGTCGATG	AGGTTGACTC	TATCTTGATT	GACGAGGCTC	240
GTACACCTTT	GATTGTATCA	GGTGCCAATG	CGGTTGAAAC	CAGTCAGTTG	TATCACATGG	300
CAGACCACTA	TGTAAAATCT	TTGAACAAAG	ATGACTACAT	CATCGATGTG	CAGTCTAAGA	360
CTATTGGTTT	GTCTGATTCA	GGGATTGACA	GGGCTGAAAG	CTACTTCAAA	CTTGAAAACC	420
TCTATGACAT	CGAAAACGTG	GCTTTGACCC	ACTTTATCGA	TAACGCCCTT	CGTGCCAACT	480
ACATCATGCT	TCTCGATATT	GACTATGTGG	TGAGCGAAGA	GCAAGAAATC	TTGATTGTCG	540
ACCAATTTAC	AGGTCGTACC	ATGGAAGGTC	GTCGTTATTC	TGATGGATTG	CACCAAGCTA	600
	AGAAGGTGTG					660
ACCAAAACCT	TTTCCGTATG	TACAAAAAAT	TGTCTGGTAT	GACGGGTACA	GGTAAGACTG	720
AGGAAGAAGA	<u>ATTTCGTGAA</u>	ATCTACAACA	TTCGTGTTAT	TCCAATCCCA	ACAAACCGTC	780
CTGTTCAACG	TATTGACCAC	TCAGACCTTC	TTTATGCAAG	TATCGAATCT	AAGTTTAAAG	840
CGGTTGTCGA	AGACGTTAAG	GCTCGTTACC	AAAAGGGTCA	ACCTGTCTTG	GTTGGTACAG	900
TAGCGGTTGA	AACTAGTGAC	TACATTTCTA	AGAAATTGGT	TGCAGCTGGT	GTTCCTCACG	960
AAGTCTTGAA	TGCCAAAAAC	CACTATAGAG	AAGCCCAAAT	CATCATGAAT	GCTGGTCAAC	1020
GTGGTGCCGT	TACCATCGCA	ACCAACATGG	CGGGTCGTGG	TACCGACATC	AAGCTTGGTG	1080
AAGGTGTTCG	TGAACTTGGA	GGACTTTGTG	TTATTGGTAC	CAGAACGTCA	TGAAAGTCGT	1140
CGTATCGATA	ACCAGCTTCG	TGGACGTTCA	GGTCGTCAAG	GAGATCCAGG	TGAGTCACAA	1200
TTCTACCTAT	CTCTTGAAGA	TGATTTGATG	AAACGTTTTG	GTTCTGAACG	CTTGAAGGGA	1260
ATCTTTGAAC	GCTTGAACAT	GTCTGAAGAG	GCCATTGAGT	CTCGCATGTT	GACGCGTCAG	1320
GTTGAAGCAG	CTCAGAAACG	TGTCGAAGGA	AATAACTACG	ATACCCGTAA	ACAAGTCCTT	1380

CAATACGATG	ATCTV ATVCC					
100100010	AIGICAIGCG	TGAACAACG	GAGATTATCT	' ATGCTCAACG	TTACGATGTC	1440
ATCACTGCAG	ATCGTGACTT	GGCACCTGAA	ATTCAGTCTA	TGATTAAGCG	CACGATTGAA	1500
CGTGTCGTTG	ATGGTCATGC	GCGTGCCAAA	CAAGATGAAA	AACTAGAGGC	A R COMMUNICA A C	
TTTGCTAAGT	ACAACTTGCT	TCCTGAAGAT	TCTATTACGA	most to a	MATTITIGAAC	1560
TCTGATAAGG	CCATCAACCA	1010000000	TOTALIACGA	TGGAAGACTT	GTCAGGCTTG	1620
COMMON 11100	CCATCAAGGA	AGAGCTTTTC	CAACGTGCCT	TGAAGGTTTA	CGATAGTCAG	1680
GITTCAAAAC	TACGCGATGA	AGAAGCAGTT	AAAGAATTCC	AAAAAGTTTT	GATTCTACGA	1740
GTGGTGGATA	ACAAGTGGAC	AGATCATATC	GATGCCCTTG	ATCAATTGCG	TAACCCCCTT	
GGACTTCGTG	GCTATGCTCA	GAACAACCCT	GTTGTTGAGT	ATCACCCACA	100000011	1800
ATGTTTAATG	ATATGATTGG	TTCGATTCAC	TTTGATGTGA	ATCAGGCAGA	AGGTTTCCGT	1860
САААТТСАТС	AACAACAAAC	100ATTGAG	TITGATGTGA	CACGCTTGAT	GATGAAAGCA	1920
220011CAIG	ANCANGAMAG	ACCACAGGCA	GAACGTCATA	TCAGTACAAC	AGCGACTCGC	1980
AATATCGCTG	CTCACCAAGC	AAGTATGCTA	GAAGATTTGG	ATTTGAGCCA	GATTGGACGC	2040
AATGAACTTT	GCCCATGTGG	TTCTGGTAAG	AAATTTAAAA	ACTOTOLOGO	MILITARIO C	
TAAAATGAGA	TAGTTTAGAG	GCGGATATCT	TGTGAAAAGT	NC TOTCACGG	TAAAAGACAA	2100
TTTGCTTTAT	AAGGAGATGA	CTT A MCCOTT TO	TOTGAMMAGT.	AAATTITTAC	TGGGTATCCG	2160
A A C A A COMOCO	moonmon and	GITATGGTAT	TTACAGCAAA	AAGCTCTAAA	ATAAATATAG	2220
ANGANGTICG	TGCCTTGTCA	AAATTAGAAG	GTCAGGCTTT	GGAGAGGAAA	TCACAGCGAG	2280
ATCAAGAGCT	AGAAGCCATT	ATACGTGGAG	AAGACCAGCG	AATTCTCTTG	GTAATCCCC	2339
						£233

# (2) INFORMATION FOR SEQ ID NO:48:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 642 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

	<b>TTAATNGGTA</b>	CTTTGGCGAG	NCCOVERD A CC	*** * * * * * * * * * * * * * * * * * *			
		CTTTGGCGAG	MCCTTTTAGG	NAAAATGGTA	TCNATGGCCN	TGATCTAGTT	60
•	LIGGTATCGC	TTACTTTATG	GCTAGACAAT	ACAAAGTTGA	ፐርርጥል ጥጥር ርጥ	CCTCCTTAMO	
2	GTCATTATC	עייני ע יוייעי ע יוייעי אייניער	ACACMMA COC		IOUIATICCI	GCIGGIATIG	120
_		ATCTTTTATT	ACAGTTACGC	CTTTCATTAC	AGGAGAGGCT	GGAGCAGGAA	180
'1	GCCTACCGC	TTTCATGGCA	TCAAAAGGTT	TATTTGTTGC	<b>ТАТСАТОТОТ</b>	CCAMMCAMMA	
7	TGGCTATAT	СТАССААТСС	TTTT A TAR A TAR	101111	INIGHTITA	GGATTGATTA	240
_		CTACCAATGG	TITATAAATC	ATAATATACA	GATAAAAATG	CCGGATGGTG	300
7	TCCACCAGC	AGTATCTAAA	AGCTTTAGTG	CCATTATTCC	TGGTGCACTC	A COLL MODERNO	
G	TTGGTTGAT	TCTTTATCCA	A COMMA CA CA		1001GCNG1G	ACTATIGTIG	360
_		TGTTTATGCA	ACTITAGATA	AATTAAGTTT	ACCTAATCTT	CATGAAATTG	420
C	TCAAGTTAG	CTTTGGGAGG	TCCACTTGGA	CTTTTAGGAA	ልጥል አ <i>ጥር</i> የመከአጠ	MCCMCCM-	
А	TCTTAATTT	ጥርርጣጥን አጠን ር	M1 0mm		MIMMIGITAT	TGGTCTTCTT	480
-		TCCTTAATAG	TAGTTTTTGG	TTTGTAGGAT	TACACGGAGG	AAATGTTGTT	540
A	ATGCAGTTA	TGAAACCGTT	ATGGTTAGCT	<b>ΔΔΨ</b> ζΨδζδΨζ	C1110111		
c	CCCCC N N m	CCCNICEN E		MICINOMIC	CAAATAAAGT	ACNCGCCCNC	600
_	COOGGAAT	CCCNCTATTT	CNTAAACGGG	CCCCCCCCC	NG		642
							- V-12

# (2) INFORMATION FOR SEQ ID NO:49:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1460 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

CTTACTTTGC	AGAAATTTTC	CGTGGGGGAT	TGACACTATT	CCAAGAGGAC	AGTATGAGGC	60
TGCCAAGGTC	TTGAAGTTTA	GCCCTTTTGA	CAGAGTGCGC	TATATTATCT	TGCCCCAAGT	120
GACCAAGATO	GTTCTTCCTA	GTGTCTTTAA	TGAAGTTATG	AGTTTGGTCA	AGGATACTTC	180
TTTGGTCTAC	GCTCTCGGAA	TTTCAGACUT	TATCTTGGCT	AGTCNAACAG	CTGCTAACCG	240
CGATGCTAGT	CTGGTTCCTA	TGTTCTTGGC	AGGAGCTATT	TACTTGATTT	TAATTGGGAT	300
TGTGACAATT	ATTTCCAAAA	AAGTTGAGAA	AAAGTACAGT	TATTATAGAT	AGGGGCAGG	360
	TGTTAGAATT					420
	GTCTAAGTAT					480
	CAACTCTTTT					540
ATCTTTTATA	ATGGACAACC	TTTAGAGCTG	GATGAATTGC	AGAAGCGCAA	CCTACTGGGA	600
TTTGTCTTCC	AAGATTTTCA	ACTATTTCCT	CATCTATCAG	TTCTGGAAAA	TTTGACTTTA	660
TCGCCTGTGA	AGACCATGGG	AATGAAGCAG	GAAGAGGCTG	AGAAGAAGGC	GAGTGGACTC	720
TTGGAACAGT	TAGGACTAGG	AGGACACGCA	GAGTCCTATC	CTTTCTCACT	ATCTGGTGGG	780
	GGGTGGCTTT					840
	CTTCTGCCCT					900
	AACTTGGGAT					960
	TGTATTATTG					1020
	ATTAGTCAGT					1080
	TAGTGGAGAT					1140
	TACTTTTAGT					1200
	GATTTAAAAA					1260
	TGGGATTTGA					1320
	ŢĊĢĊŢĀĊĀĠ					1380
	CAGGTATTGG	TTACGAAGAA	ATCATCTGGT	ATCACGACTN	CAAAGGATAT	1440
GACTGGAAAG	ACATNAGGAG					1460

### (2) INFORMATION FOR SEQ ID NO:50:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1323 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

CTGCTATCTT	CATCGTTTCA	ATCAATACCG	GTGCCTACAT	GACTGAAATC	GTCCGTGGTG	60
GTATCCTGGC	AGTTGACAAG	GGACAATTTG	AAGCTGCGAC	TGCTCTTGGT	ATGACTCATA	120
	GTGTAAGATT					180
GTAATGAATT					TCTGTTGTCG	240
AGCTTTATTT	CTCAGGAAAT	ACCGTGGCGA	CGCAAACCTA	TCAATACTTC	CAGACATTTA	300
CAATCATCGC	CGTGATTTAC	TTTGTCCTCA	CCTTCACCGT	AACACGTATC	CTACGCTTTA	360
TCGAGCGCAG	AATGGACATG	GATACCTATA	CTACAGGTGC	TAACCAAATG	CAAACGGAGG	420
ATTTGAAATA	ATGACACAAG	CAATCCTTGA	AATTAAACAC	СТСААААА	CCTATGGACA	480
AAACGAAGTG	CTAAAAGACA	TTTCTCTCAC	TGTCCACAAG	GGAGAAGTTA	TCTCTATCAT	540
CGGAAGCTCT	GGAAGTGGGA	AATCGACCTT	CCTACGCTCC	ATTAACCTAC	TTGAAACGCC	600
AACTGATGGA	CAAATCCTTT	ATCATGGACA	AAACGTCCTC	GAAAAAGGCT	ATGACCTCAC	660
GCAATACCGT	GAAAAGTTAG	GGATGGTTTT	CCAATCCTTT	AACCTCTTTG	AAAATCTCAA	720
CGTTCTTGAA	AACACAATCG	TCGCTCAGAC	AACTGTCCTT	AAACGCGAAC	GCACAGAAGC	780
TGAAGAAATT	GCCAAAGAAA	ACCTGGAAAA	GGTCGGCATG	GGAGAACGCT	ACTGGCAATT	840
GCCAAACCAA	ATAGCAACTA	TCAGGTGGTC	AAAAACAACG	TGTGGCCATC	GCTCGTGCCC	900
TATCAATGAA	TCCAGACATC	TATGCTCTTT	GATGAACCAA	CTTCTGCCCT	TGACCCTGAG	960
ATGGTTGGAG	AAGTAATTAA	CGTTATGAAG	GAATTGGCTG	AGCAAGGCAT	GACCATGATT	1020
ATCGTAACCC	ATGAGATGGG	ATTTGCCCGC	CAGGTTGCCA	ACCGCGTTAT	СТТТАСТССА	1080
	TCCTTGAAGA					1140
CGTCTGAAAG	AGTTCTTAGA	TAAGGTCTTA	AACGTCTAAA	CTCAAACTGC	AAGGATTTCC	1200
	TCTACCTCGT					1260
AGTTTATGAA	ATGAGGTTTC	CTCATACCTA	GCAAGACTAG	GAATAAAAAT	AGAAATTAGG	1320
TAG						1323
						1323

# (2) INFORMATION FOR SEQ ID NO:51:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 2469 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

CTCTTCAAAT TCTTCACGAG TACGGAAGAA ATAGTCAACA CCGTCCACTT CTCCAGGACG 60
TTGTGCGCGT GTCGTCATCG ATACAGAATA TTGAAATTGG TTTTCAGAAC TCTCAAAAAT 120

CTCTCTTCTA	ACCGTTCCTT	TTCCAACCCC	TGAAGGACCA	GAAAAAACGA	TTAGTAAGCC	180
	ATTGTGTCTC					240
GGCAAAAAGC	CAGATTATCC	TTTACAGTCT	TTCTATATAG	TGTAACAAAA	AAGCAGTAAT	300
TTTTCAACTG	CTCTTTCTTA	TTTATTTAGC	ATAATCTACT	GCACGAAGCT	CGCGAATCAC	360
	ATATTTCCTG					420
	GTGACTTTGT					480
ACGTCCTGCT	TGAAGGGCAA	AGCTAGTTTG	CACTCCTTCA	AAGCCGTTAG	CAATTTCTTC	540
CAAATCATGG	AGACGCTTGA	TGTAGCTTTC	AAGAGACTCA	CTACGAGCAC	CTGGACGGC	600
TGCGCTCAAG	GCATCTGCTG	CAGCGACGAT	AACTGCTATC	ACGCTCTCAG	CTTCAACATC	. 660
TCCGTGGTGA	CTAGCAATCG	TATTCACCAC	AACTGGGGGT	TCCTTGTACT	TACGGGCCAA	720
TTCCATACCG	ATTTCAACGT	GGCTACCTTC	AACCTCATGG	TCAATGGCTT	TCCCGATATC	780
GTGAAGGAAT	CCAGCACGAC	GGGCAAGAGC	CGCATTTTCA	CCAAGTTCGC	TCGCCATGAT	840
ACCAGCCAAC	TTAGCAACCT	CAATCGAATG	GCGCAAAACA	TTTTGTCCAT	ATGAAGTACG	900
GAACTGCAAA	CGTCCCATAA	TCTTCATCAA	GTCTGGATGA	AGGTTTGGCG	CACCAATTTC	960
ATAGGCAGCA	GCCTCACCGT	ATTCACGAAT	CTTATTGTCA	ATCTCTTGAC	GGTTTTTCTC	1020
AACCAACTCT	TCGATACGAG	CTGGATGTAT	ACGACCATCT	TTGAGCAACA	TTTCCATAGT	1080
CATACGGGCA	ATCTCACGAC	GAATCGGATC	AAATCCTGAC	AAGGTCACCA	CTTCTGGTGT	1140
ATCGTCGATA	ATCACATCGA	CCCCTGTCAA	ACTTTCAAAG	GTACGAATGT	TACGACCTTC	1200
ACGACCAATA	ATGCGTCCCT	TCATAGTATC	GTCTGGCAGA	TGAACTGTTG	AGTTTGTTGA	1260
CTCCGCTACA	TATTCACCAG	CGATACGTTG	CATAGCTTGA	ACCAAGATGT	CCTTGGCCAT	1320
TTTGTCAGAA	CGTTCCTTGA	CCTCTTGCTC	AGCTTCGCGA	ATGCGGACTG	GCAATCTCCC	1380
TGGTCAAGGT	TTCCTCTGTC	GGAGCCAAGA	TAATATCTCG	TGCTTCTGCC	TGAGACAGAG	1440
CACCAATACG	CTCTAGTTCT	GCGTCTTTTG	GTCTTTCGAC	TTCCTCTAAT	TGCTCTTCAC	1500
GCGCATCAAG	GTTTTTCGCT	CTATCAGAAA	ATACTTTGTT	CTTTTCTGTT	CAAGTGTTTG	1560
TTCTTTACTC	GTCAAATTGT	CGTCCTTACG	GTCAAGGCTA	GTAGCTCTCT	CTGTCAAACG	1620
ACTTTCGATT	TGTTTGAGTT	CTTGACGTTC	TGATTTGAAT	TCAGCGTCCA	CTTCTTCACG	1680
GTATTTTCTG	GCTTCTTCTT	TGGCCTCCAA	TAGTGCTTCT	TTTTTAAGAG	ACTTGCTTTC	1740
ACGTTTGGCT	TCATTAACAA	GTAAATCCGC	TTCACGCTCA	GCTTGTCCAC	GTAAATTAGT	1800
TGCTTCTTGT	TCAGCATTTA	AAAGCATCAA	CTCTGCAGCT	TCCTGAGATG	ATTTCATCTT	1860
AGCTGAGATG	CTGACATATC	CCAATGACTA	AACCAATGAT	GACGGCAAAA	ACAGCAATCG	1920
CAAGCGACAT	GATTTCCATG	TTTTTACCTC	ATTTTATTGT	TATTCCGAAT	GACATACATT	1980
CTTTTACATT	CTACCATAAA	AAAGTGATTT	TCACAAACCT	AAAATAGAAT	ATGTTTTGGG	2040
					AGAAATCGTG	
					ATCGTTAGAA	
					GTAAATTAGA	
					ACTCCTTATT	
					GAACTACAAT	
					TTACCTTCTT	
CATGTAGTCC	TTTAAATGAT	TTCGGAATGT	TGAGTAAAGG	ACTGCTTCCA	TAACCACACC	2460
TCGTTTTAG						2469

⁽²⁾ INFORMATION FOR SEQ ID NO:52:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1828 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

CTATTCATG	T AAGCATTCG	T CCCGAAGAG	T TTATCAAAG	A TGAATCTGG	A GATATTGAAG	60
GAACTATTA	G CGATAGCGT	C TATCTTGGA	C TAAATACGG	A GTATTTCAT	T GAGACACCION	120
TIGCCTCAA	A AATTCAAGT	T AGTGAAGAA	T CAACTTTTG	A AGAAGAACT	A CAAAAACCCA	180
ATCGTATTC	G TCTACGAAT	C AATACGCAA	A AATTAAACA	CTTTTCTCC	A CAUCCUMOCO	240
AAAACCTGA!	T AAAAGGAGTY	C AACCATGGA	A CGTAAAAAA	TAAATATTY	GACACCCTCC	300
TCTTTCTTC	A TCTTTCTTAG	CTATCTTGT	TTTCTCGTT	ATCCTATCG	ת אררכיזיבריזיר	360
AAGTAAGCA	TTATACATGA	A AGGATAATT(	TCACTAGCT	ATTTTGTCAC	مات لا بلتبليف المليف ال	420
AAAGCCTACT	r Actetgagae	ACTAGTCAA	AGTTTCAGG	TTTCCATTAC	CCCTACTCTC	480
ACTTCCTTAC	TTGTAGGAAC	CCTATTAGCT	TATCTCTTCT	CTATGTATG	CTTC A ACCCC	540
AAGAAATTTC	TACAAATATI	GATTATCATT	GCTTCCATGT	CAACTCCTT	CGTAGGAGCC	600
TACTCCTGGA	TTCTCTTGCT	GGGACGAAA1	GAGGTCATCA	CTAAATTTTT	GACAAATGCC	660
CTTTATCTTC	CAGCTATCGA	TATTTATGGA	TTCAAAGGAA	TTATACTTCT	י ריייים אר אריייכי	720
CAACTATTCC	CACTGGTATT	TCTATATGTT	GCTGGAACAA	TGAACAGTAT	יייייייייייייייייייייייייייייייייייייי	780
CTACTTGAAG	CAGCTGAAAG	CATGGGGTCC	TTCGGATTTA	AACCTATCGT	AACGGTTGTT	840
TIACCICTCC	TAGTTCCAAC	CTTACTAGCA	GCTCCTTGCT	TGTATTTATG	ልርልርርልጥጥርጥ	900
CAGACTITGG	AACGCCTATG	TTGATTGGCG	AAGGATATCG	GACTTTCCCT	CTYCCTCATOTO	960
ATACCCAATT	TATTAGCGAG	GTTGGAGGAA	ATTCTGCTTT	TGCAATTATG	CCCATTATCA	1020
TIGCCTTGGC	AATTTTCCTT	ATCCAAAAAC	ACATTGCAAA	CCGCTACAGT	TTCACCATCA	1020
ATCTGCTCCA	TCCAATTGAG	ССТАААААА	CTACAAAAGG	AAAAATGGCT	GCCATTTATC	1140
CAACAGTCTA	CGGAATTATC	TTTATCTCTG	TTTTACCTCA	AATCTACTTA	ATTTATACCT	1200
CTTTCCTAAA	AACATCAGGT	ATGGTATTTG	TTAAAGGTTA	TTCTCCAAAC	AGTTACAAGG	1260
TAGCTTTCAA	TCGTATGGGA	TCTGCTATTT	TCAATACCAT	TCGTATCCCT	TTGATTGCCT	1320
TAGTTCTAGT	ŢĠŢŢĊĊŦĂŦŦ	TACGACATTT	ATCTCCTACC	TAGCCGTTAG	AAAACGGAAT	1320
TTGTTTACAA	ACTTAATTGA	CAGCCTCAGT	ATGGTACCTT	ATATTGTACC	AGGAACCGTT	1440
CTAGGGATTG	CCTTCATTTC	TTCCTTCAAT	ACTGGTCTAT	TTGGAAGTGG	ATTTCTTATG	
ATTACAGGGA	CTGCTTTCAT	CTTGATTATG	TCTCTATCTG	TCAGAAGATT	ACCCTATACT	1500
ATTCGCTCAT	CTGTTGCTAG	CTTACAACAA	ATAGCACCAA	GTATTGAAGA	ACCUCATALACT	1560
AGCTTAGGAA	GTAGTCGTCT	CAATACCTTT	GCTAAGATTA	CAACTCCAAT	CATCCTATCT	1620
GGTATCATTT	CTGGAGCCAT	CTTATCTTGG	GTCACAATGA	TTTCALLACT	CTCTACTTCT	1680
ATCCTCCTCT	ACAATGTCAA	AACAAGAACA	ATGACTGTAG	ATCAACCTON	TNC AMACCOM	1740
CGACCTCGAG	GGGNGCCCGG	GCCCAATG		CHAGCITA	INGATACGGT	1800
						1828

⁽²⁾ INFORMATION FOR SEQ ID NO:53:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1176 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

CTAAACTTTC	GCTCATAGGC	ATACAAATTA	ATCCTTTGGC	ATAAGTAGCC	AATAAAATTAA	60
CATTTTCTGT	TGTAGCTGCT	TGTGCAGAAC	AAATTAAGTC	TCCTTCATTT	TCTCTATCCT	120
TGTCGTCTAT	AACAAGAACA	AGTCGTCCCT	TCTGCAATGC	TTCTAATGCT	TCTTGTATTT	180
TTCGATATTC	CATTGACTGA	TTATCCTTTC	TGCTAAAATC	CATTTTGATA	TAATAGTTCC	240
TTCGATATTT	CTGATTTTGG	AGAGTTATCC	ATCAGTTTTT	GCACATATTT	ACCTAAGATA	300
TCATTTTCAA	GATTTACTGT	ACTCCCGACT	TGTTTACTCT	TAAGAATGGT	TTGTTTCAAG	360
GTATGAGGGA	TAACAGATAC	TGAAAAGTTT	ACTTTGGAGA	CTTTAGCGAC	AGTCAGACTA	420
ATGCCGTCAA	TTGTAATAGA	TCCTTTTTCA	ACTATTAAAT	CTAAAATTTC	TTTTTGTGTG	480
TTGATTTGAT	ACCATACAGC	ATTATCATCT	TTTTTTTTTG	ACGAGATTTT	TCCTGTACCA	540
TCAATGTGTC	CTGTAACGAC	GTGACCCCCA	AGTCGACCGT	TGACAGATAA	GGCTCTTTCT	600
AGATTCACCT	CACTTCCATG	TTTTAATAGA	GTAAGAGAGC	TGTTCGACTC	CATGTTTCAT	660
TCATTACATC	AACTGTAAAG	GATTGATGAT	TGAAATGAGT	AACTGTAAGA	CAGATACCAT	720
TTACTGCTAT	ACTATCGCCT	AAATGGATAT	CCGTTAATAT	TTTTGAGGCT	TTAATTGATA	780
GTTTACAATT	ACGAGAGTCT	TTCTGTATTC	TTTCAACTTT	TCCGATTTCT	TCAATTATTC	840
CTGTGAACAT	GGATAAATCA	CTTCACTTTC	TATGAGATAG	TCATTTCCTA	TTTGAGAAAA	900
AGCATAAGGT	TTCAATCTAA	TAGCGTCATT	TGGCAAAGAA	ATGCCTTCAC	CTCCGACAGG	960
AAACTTGGCA	CTGCCTCCAA	AAATTTTTGG	TGCAATATAT	ATTTTCAGCT	CATCAACAAT	1020
TTGTTGTTCC	AAAGCACTCC	AATTCATTAG	ACTGCCCCC	TCTAGAACTA	GGCTATCAAT	1080
CTGCATGTTT	CCTAGATGTT	GCATTAAACT	CGATAAGTCT	ATATGATTGC	CTTTTTTCTT	1140
TATGGGAAGT	ATTTCACAGC	CATGATTTTG	ATATAG			1176

### (2) INFORMATION FOR SEQ ID NO:54:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1449 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

CTATCGATA	A CATGGATGCA	C D C C THI D THINT	COMMONS			
TOTTCACA	\ \CTC\\\\	OACGITATII	CCTTTGAAGC	TAGCCGTTCA	AACCTTGAAA	60
TC11GGACGA	ACTCAAAGCG	AAAAACTTCC	AAACAGAAGT	' GGGACCTGGG	GTTTACGATA	120
TCCACTCACC	TCGTGTACCA	AATGAAGGCG	AAATCGACAA	CACAATCGAA	GCCATCCTTG	180
CTAAAGTGCC	AAGCAAGAAA	GTTTGGATCA	ACCCTGACTG	TGGTTTGAAA	ACACGTGGTA	240
TCCCAGAAAC	AAAAGAAAGC	TTGATCCGCC	TTGTTGAAGC	AGCTAAAGCT	GCGCGTGAGA	300
AATTGTAAGA	TTGGATTTCT	CTCCATACAG	TGGTTGTTCA	AAAAGAAATC	AACTAGAAAA	360
GGTTATTACA	TATGTCACGC	CAAACACCGT	CACTCTCATT	TGAAGTGTTC	CCTCCAAACC	420
CAGCCGTGGG	TAATGATAAC	ATTATTTCAG	CCTTGCAGGA	TATGCAGGAG	TTCCCTCCC	480
ATTTTATCAG	TGTAACTGCC	AGCAATAATA	AATTTAATAT	CAACCAAACC	110GCTCCCC	
TGGCTGACTT	TATCCAAAAT	GATTTCCCCA	TTCCCACCAM	TANGGAAACG	ACGGTTCGTT	540
ልጥንልልጥንልል	GGACAACCOO	CCTCAAACTA	TICCGACCAT	TGCCCACTTG	CCAGCTATTT	600
3330000000	GGACAAGGTT	GCIGAAACTA	TIGCTGACTT	GGACAAAGTT	GGGGTGCAGA	660
AAATCTTGGC	TCTTCGTGGG	GATATTATTC	CAGACGTGGA	ACCACAAAAG	GATTTCCGCT	720
ATGCAACCGA	CTTGATTGAG	TTTATCAAGG	AACAAACCCC	TCACTTTGAT	ATTATTGGAG	780
CTTGCTATCC	AGAAGGGCAT	CCAGATTCGC	CAAATCAGAT	TTCAGATATT	CAAAATCTTA	840
AGAAGAAAGT	GGATGCAGGC	TGTTCGAGCC	TCGTAACTCA	GCTCTTCTTT	GACAATGAGC	900
GCTTCTATGA	TTTTCAGGAC	AAGTGTATTT	TGGCTGGGAT	TGATGTTCCC	ATTCATCAC	
GAATTATGCC	AATTCTGAAT	CGAAATCAGG	CACACCGACA	CONTOLICCE	MITCATGCAG	960
TCCATCTTCC	ACGCAAATTT	AAACCCAMCM	TICICCOACI	CIIGAAGACT	TGTGAGAATA	1020
TCAGAGCAGC	3CC3Cmmccc	AMAGCCATC T	TAGACAAGTA	TGAGCATGAC	CCTGAGTCGC	1080
TEAGAGCAGE	AGGACTTGCC	TATGCAGTGG	ACCAAATCGT	GGACTTGGTA	ACTCAGGATG	1140
TIGCCGGIGT	GCATCTCTAT	ACGATGAATA	ATGCTGATAC	AGCAAAATAC	ATCCATCAAG	1200
CAACCCATGC	CTTGTTTAAT	CACCAGTCTC	TAGGATAATA	AAAGCAAACC .	ATTCTTCTCA	1260
GGTGAGGGGA	ATGGTTCCTT	TTTAATGGCA	AAGACCTCAC	TTTTTAAGAA	AAATATGATA	1320
AAATAGATTC	TGTACGTACT	TGATACAAAG	ATGAAGGTAT	TAAATAATAC	AATGCATTTA	1380
AACTGTAAGA	TTTAACGACA	CGAGTGAGTC	AAATCGATGT	ТАТТТСАССА		
AAAGCATTT					NACT INCT	1440
						1449

# (2) INFORMATION FOR SEQ ID NO:55:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1343 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

CTCGGTTTCC	TTTTCACGAT	TAAGCTCGTT	GTAGAGTTTT	TTTAGCACAC	GGTTCATCTT	60
GAGATTTTCT	TGCTCCACCT	CACGGATATT	GTCCAAGCGT	TTGCGGCTTT	CCAGCGTCTG	120
CTCTTCTAGT	TGCTCAATGA	TACGATTGAC	GTCATTGTCC	TGATCGATCT	GCTGACTGGC	
ATCTCCTACG	ATAACTTCAG	ATAGGCCTAG	ACGTTTGGCA	ATTTCAAAGG	CATTACTTCG	180 240
					CULTUCITO	240

					GTTGCAGTAT		300
ACTGGCA	TTT	TGCACAAAGG	CTGTCTCAAT	ACCGTAGGCC	TTGAGTTCTG	GATAGTGGGT	360
CGTCGCC	ATG	GTCTTGATTT	GACGCAGGCG	AAGGTCCTCC	AGAATAGCCA	TGGCAAGGGC	420
TGCTCCC	TCT	TGGGGATCAG	TACCAGCCCC	CAACTCATCC	AAAAGTAAGA	GTGAATGTTG	480
GTTGACC	TIG	CCAAGAATAT	CCACGATATT	GGTCATATGG	CTAGAGAAGG	TAGACAAGCT	540
CTGCTCA	ATA	GACTGCTCAT	CTCCAATATC	AGCAAAGATT	TCTTCAAAAA	TACCAACACG	600
ACTTCCC	TTG	TCTGCTAAAA	TCGGCAATCC	TGACTGGGCC	ATGACCTGTG	TCAAGCCCAG	660
					GTAATGACAA		720
					GACCAAAGGA		780
					GACTGCTTGT		840
					AATCCAAGCG		900
					GAGAATGCGA		960
					TTTGACTACC		1020
					GACACCTGCA		1080
					GCTAGCAACA		1140
					ATCGCGTACC		1200
PATCATG:	TAT	TTTTCGACGG	ATTCGCGCCA	ATTCTTCACT	GGCAAAATTT	TCAATGAAAC	1260
					AAAATCATGT		1320
		TAATTCTTCC					1343
							T2#2

# (2) INFORMATION FOR SEQ ID NO:56:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1620 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

(	CCGATCTCTT	ŢŦĄÇĄGAGGT	GTTTCCTATT	TIGIGCTICC	ATTTTTGGGG	CAAGGAATTG	60
•	<b>FAGATGGGGA</b>	TGGCAATCCT	ATCTTTTTAT	TGATTATGAT	ATTCGTTTGC	TTCATAGTTT	120
•	PAGTCTTTTT	GAAATGGTTA	GACTATGATT	TCACTAGATT	GAGAAGGGAG	TTTCTAGATA	180
(	CAGGTTTTCA	AAAGTCTCTT	ACTAAGATTA	ACTECCOANT	CCCCCCCCC	TATCTAGTGA	
				MOTOGGCANI	GGGGGCTTAT	TATCTAGTGA	240
7	IGCAAAGICT	ATCTTACCTT	GAATATGAAC	AAGGTATTCA	ATCAACGACT	GTTCGCCATC	300
7	CATCCTAGT	GTTTTACCTA	CTCTTTTTTA	TGGGGGGTAT	CAAGAAATTG	GATACCTATT	360
7	GAAGCAAAA	ACTITICA CCA C	C110001100				300
•		ACTTCAGGAG	GAACTGAACC	AAGAGCAGAC	CTTGCGCTAC	AGAGATATGG	420
P	ACGCTATAG	TCGGCATATA	GAGGAACTTT	ACAAGGAAAT	TCGGAGTTTT	СССАТСАСТ	480
2	יראריים ארריים	COOLLAN	<b>81.000000</b>			COCCATOACT	400
•	CACIMACCI	CTTAACCAGT	TACGTTTGGG	CATTGAAGAG	GAGGATATGG	AGCAGATAAA	540
A	GAGATCTAC	GACTCGGTCT	TAAGGGATTC	CACTORCARA	mmcc		
_				CHOICHGAMA	TIGCAGGACA	ATAAATATGA	600
C	CIGGCAGA	TTGGTGAATA	TTCGTGACCG	TGCCCTCAAG	AGTCTCCTAG	CTGGAAAATT	660
							300

### (2) INFORMATION FOR SEQ ID NO:58:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1588 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

					AATATTTTCG	60
	GTCGGCTGAA					120
	TCACTCTCTT					180
	ATATCCTCAA					240
	ACACCGATTA					300
	ATTTGTTTCA					360
	TTTCCCGTTT					420
CCGCAATGTC	TTTTATGGTC	AGTTTCTTCT	CCAATCTAAA	ACACCTCCTA	CTAATACTTA	480
	TTCACTATTC					540
	TCATATACTA					600
	ACACCAATAT					660
	AAAGCCAGAG					720
	TCAAAACTCT					780
	TTGGTGAGTT					840
	AAATCAAAAT					900
	ACATCCTTGT					960
	TCTACCAAGA					1020
	AAATCAGGTT					1080
CCTTTCTTTA	TGGTGACAAA	ACAGGGAGTG	AGGATAGTAT	TCATATTCCC	AGGATCCCGT	1140
	GGÄGCTTTCC					1200
	TCATATATCT					1260
	TGTAAGCAAA					1320
	AAAAATAGAT					1380
	GACTTAGGCT					1440
TTCTCGCCCC	AGGAACAAGA	GGCTAACCTA	ATCGACTTTA	ACATCCAAAC	CGTTAAGAAG	1500
GTCTCCCTTG	TTCAAAACCA	CAGCAGACAG	GCTCAAGTTA	TCTGTCGTGT	CTGTTGAATC	1560
GCTATCACCA	ATTTCCCATA	GTTCGTCC				1588

⁽²⁾ INFORMATION FOR SEQ ID NO:59:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1551 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

NTCTTGGGC	N CNGGGCGNNI	CCTTTGAGGA	CNACGGTATO	GATGACCTT	ATCTCAAGTG	60
CAAGCAGTA!	r ctgaatctgo	AGCAGCACCT	GTCCGTGCAA	AAGTTCGTC	AACATACAGT	120
ACAAACGCT.	r caagttatco	AATTGGAGAA	TGTACATGGG	GAGTAAAAA	ATTGGCACCT	180
TGGGCTGGA	ACTACTGGGG	TAATGGAGCA	CAGTGGGCTA	CAAGTGCAG	AGCAGCAGGT	240
TTCCGTACAC	GTTCAACACC	TCAAGTTGGA	GCAATTGCAT	GTTGGAATG	TGGTGGATAT	300
GGTCACGTAC	CGGTTGTTAC	AGCTGTTGAA	TCAACAACAC	GTATCCAAGT	ATCAGAATCA	360
AATTATGCAG	GTAATCGTAC	AATTGGAAAT	CACCGTGGAT	GGTTCAATCO	AACAACAACT	420
TCTGAAGGTT	TTGTTACATA	TATTTATGCA	GATTAATTTA	CAGAGGGACT	CGAATAGAGC	480
CCTCTTTTCA	GGTTTTACCG	TGACAATCCC	TATTAAAAAT	TATATCAAAA	TCGTGAAAAT	540
ATTGGAAAAG	TATGGTAGAA	TGAAAATTGT	CGTGTGAACG	ATAATACTCA	TTCTTGATGA	600
ATTGTGAAGO	AGTTGCCCTT	GGGTCGTTTT	GCGAGTTGAA	GTCAAGAAGA	GCAAAAAAA	660
AAAAAGGAGA	AATACTCATG	GCAGTAATTT	CAATGAAACA	ACTTCTTGAG	GCTGGTGTAC	720
ACTTTGGTCA	CCAAACTCGT	CGCTGGAATC	CTAAGATGGC	TAAGTACATC	TTTACTCAAC	720 780
GTAACGGAAT	CCACGTTATC	GACTTGCAAC	AAACTGTAAA	ATACGCTGAC	CAACCATACN	840
ACTTCATGCG	TGATGCAGCA	GCTAACGATG	CAGTTGTATT	GTTCGTTGGT	ACTARGARAG	900
AAGCAGCTGA	TGCAGTTGCT	GAAGAAGCAG	TACGTTCAGG	TCAATACTTC	ATCAACCACC	960
GTTGGTTGGG	TGGAACTCTT	ACAAACTGGG	GAACAATCCA	AAAACGTATC	CCTCCTTTCA	1020
AAGAAATTAA	ACGTATGGAA	GAAGATGGAA	CTTTCGAAGT	TCTTCCTAAG	AAACAACTTGA	
CACTTCTTAA	CAAACAACGT	GCGCGTCTTG	AAAAATTCTT	GGGCGGTATC	CAACAMAMCC	1080
CTCGTATCCC	AGATGTGATG	TACGTAGTTG	ACCCACATAA	AGAGCAAATC	CCTCTTALLC	1140
AAGCTAAAAA	ATTGGGAATC	CCAGTTGTAG	CGATGGTTGA	CACCAAMACE	CAMCCACAMC	1200
ATATCGATGT	AATCATCCCA	GCTAACGATG	ACGCTATCCG	TCCTCTTAAA	GATCCAGATG	1260
	ŢĠŖĊĠĊŦŔŦŦ					1320
CAGAATTTGC	AGCTCCAGAA	ACTCAAGCAG	ATTCAATTCA	ACAR ADCCOM	GCAGTTGAAG	1380
AAGGTGACAA	CGCTTAATTT	ATACAAATAG	TARTTACCTA	CCACCCCCC	GAAGTIGTAG	1440
GCTCTCCTAT	TTTCAAAAAA	TATAGGAGAA	TOOTERALITY	ACA A APPLACE	GCTTAGCCCG	1500
				MUMAATTACA	G	1551

# (2) INFORMATION FOR SEQ ID NO:60:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1007 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

				AGTCCAGCAG		60
				GAGGTTGGTG		120
AGGTTTTTCT	GTCAACATTG	aggttaaaag	CAAAACTAAG	GCTATTCTTG	TTCCTGTTAG	180
				GTGGATGAAC		240
TAAAAAAGTT	GAGGTTTCAT	TGGGAAATGC	TGACGCAGAA	AATCAAGAAA	TCACTTCTGG	300
				TCCTTGGAAG		360
				CTTCAGAAGT		420
GTGACCAAGA	ACTGCAGGTT	СТСАААААТА	TCAATCTAGA	AGTGAATGAG	GGTGAATTTG	480
				GATGAATACG		540
				AGAAGTGGCT		600
				TGTCTTTCAG		660
TTCTATCGAA	GCTCAATGCT	CTGCAAAATG	TAAAATTGCC	CTTGATTTAC	GCAGGAGTTT	720
CGTCTTCAAA	ACGTCGCAAG	TTGGCTGAGG	AATATTTAGA	CAAGGTTGAA	TTGATAGAAC	780
GTAGTCACCA	TTTACCTTCA	GAATTATCTG	GTGGTCAAAA	GCAACGTGTA	GCCATTGCGC	840
GCGCCTTGGT	AAACAATCCT	TCTATTATCC	TAGCGGATGA	ACCGACAGGA	GCCTTGGATA	900
CCAAAACAGG	TAACCAAATT	ATGCAATTAT	TGGTTGATTT	GAATAAAGAA	AGGAAAAACC	960
ATTATCATGG	TAACGCATGA	AGCCTGAGAT	TGCTGCCTAT	GCCAAAC		1007

# (2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1591 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

CTCGCCAGAC	AACTCATCCA	CATAGATATT	GCCAAGTCCA	GCTACCAAGG	TCTGGTCTAG	60
GAGATGGGAT	TTGATAGGCT	TTTTGGACTT	GGCAAGGGCA	GCTTGAAAGA	CCTCTAAACC	120
AAAGTCTTGT	TCGCTTGGTT	CAGGACCTAA	۷ و کوششششلیل ۱۳۵۶ میشششلیل	ATARACTICA	CCTGTAAATC	
GTCAGGCACC	AAGAGTTCCA	TGGTTCCAAA	CTTCCCTACA	MINANGIAGG	CGTCTAAAAG	180
CCCATCTTCA	AACCGGAAGA	AAACAMCCCC	AMOGRACA	TCCTCATAAA	CAAGCGTGCC	240
מתממממת	AACCGGAAGA	MARCH I GGGC	ATGCTTGCGT	TCAGGCACTT	GGTCTGGATA	300
AACCAAAMA	TTGCCCTCCA	TCCGCAAATG	GGAAATCAAG	ACCTTGTCTG	TCAGGCAGAA	360
MAGCMAATAT	TTTCCACGAC	GTCCCATTGA	CTCGATAATC	TGACTAGGCA	ATTCCCTTTG	420

ል ል ል ር ጥሎጥጥር ር	* *************************************					
AAACICIICC	AAATCCGTCT	TAATCATCTI	r GGGGTAGCGA	ATTTCTATAC	TCGAAATCTT	480
CTTTCCTATA	ATCAATTTTT	CTAAGCTACG	ACAAACGGTT	TCAACCTCAG	GTAATTCAGG	540
CATAAGTCCT	CCTTCTGTAA	AAACAAGAAG	CAGGCATGAG	CCTACCTCTA	CTTAGTATTY	600
TCTTTCATTA	TAGCCCAAGT	CAGCCAAATC	TAGCTTTTTA	プロストランシン		660
CTTGACCCAG	GTTTCTAGGA	AGACCTTGTC	TCCTAGCATC	ACTTCCAMAM	CLOCLOGGE	
CATGCTACCG	א מיידייייייייייייייי א	CCAMACGGGG	LOCINOCATO	AGTICGATAT	CACGACGGGC	720
\magaaaaa	ATTTTCTTAA	GCATAGCGCC	ACCITTACCG	ATGATAATCC	CTTTTTGGCT	780
ATCGCGCTCG	ACCATGATGG	TTGCACGGAT	GTGAACCTTG	TCTGTCTCTT	CGTCTCGTTT	840
CATAGAGTCA	ACAACTACTG	CTACAGAATG	CGGAATCTCT	TCACGAGTTA	GGTGCAAGAC	900
TTTCTCGCGA	ACCATTTCTG	AAACTAAGAA	ACGTTCTGGA	TGGTCTGTGA	TTTGATCAGA	960
CGGGAAATAT	TGGAAACCTT	CATCCAGATT	TTCACTCAAA	ATATCCACTA	GACCACACAC	
GTTATTTCCC	CTGAAGGGCT	GAGATTGGAA	Саапписсти	AAACTICCATA	GACGAGACAC	1020
AGTCATCAAT	CTGAGAGAAG	A COMPONENCE	CARTITICGI	AAAGTCCATT	TGATTACGGA	1080
	CTGAGACAAG	AGCTGGTCTG	GATGGACCTT	ATCGATTTTA	TTCACCACCA	1140
AAATCACAGG	AACCTTGGCA	GCCTTGAGAC	GCTCGATAAT	CATATCGTCC	CCCTTACCAC	1200
GCGATTCATC	AGCAGGCACC	ATGAAAAGAA	CAGTGTCCAC	TTCGCGAAGG	GTACTGTAGG	1260
CAGACTCAAC	CATGAAATCT	CCGAGAGCTG	TTTTAGGTTT	GTGAATCCCT	ССТСТСТССВ	
TAAAGACAAT	TTGCTCCTTA	TCAGTCGTGT	AAATTCCCAM	Clamman	GGTGTGTCGA	1320
GCGCCTTGTC	<b>ል</b> ሮሞሮ አጥር አጥር	CC3 Amommm	AMATICCCA!	GATTTTATTG	CGCGTTGTCT	1380
######################################	ACTCATGATG	GCAATCTTT	GCCCCATAAC	GTGATTTAAA	AAGGTTGACT	1440
TCCCAACATT	GGGACGTCCT	AAAATGGCTA	CAAAGCCTGA	TTTAAAAGTC	ATAATTTCCT	1500
CTTACTGTGT	AAAATAATAA	ATCCCAGAAT	CGTGGGCCAG	AAAAATCAAA	GCGCCTGTTA	1560
AGGAAGCAAA	AAGAGAAACC	ACTAATACCG	С			
			-			1591

# (2) INFORMATION FOR SEQ ID NO:62:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1652 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

GATCTGGAGT	GGATGTTGAT	TTGAAATTGC	CACCAGAAGA	AAGTTCTCCT	GACTTGGTTA	60
TCAACGGAAA	GGCACCATTT	GCAGTGTATT	TCCAAGACTA	CATGGCTAAG	AAATTGGAAA	120
AAGGAGCAGG	AATCACTGCC	GTTGCAGCTA	TTGTTGAACA	CAATACATCA	GGAATCATCT	180
CTCGTAAATC	TGATAATGTA	AGCAGTCCAA	AAGACTTGGT	TGGTAAGAAA	TATGGGACAT	240
GGAATGACCC	AACTGAACTT	GCTATGTTGA	AAACCTTGGT	AGAATCTCAA	GGTGGAGACT	300
TTGAGAAGGT	TGAAAAAGTA	CCAAATAACG	ACTCAAACTC	AATCACACCG	ATTGCCAATG	360
GCGTCTTTGA	TACTGCTTGG	ATTTACTACG	GTTGGGATGG	TATCCTTGCT	AAATCTCAAG	420
GTGTAGATGC	TAACTTCATG	TACTTGAAAG	ACTATGTCAA	GGAGTTTGAC	TACTATTCAC	480
CAGTTATCAT	CGCAAACAAC	GACTATCTGA	AAGATAACAA	AGAAGAAGCT	CCCARACTCA	540
TCCAAGCCAT	CAAAAAAGGC	TACCAATATG	CCATGGAACA	TCCAGAAGAA	CCTCCACAMA	
				* ~ CUGUNOUA	GCIGCAGATA	600

TICTCATCA	A GAATGCACCT	GAACTCAAGO	AAAAACGTGA	CTTTGTCATC	GAATCTCAAA	660
AATACTTGTC	: AAAAGAATAC	GCAAGCGAC	AGGAAAAATG	GGGTCAATTT	GACGCAGCTC	720
GCTGGAATGC	TTTCTATAA	TGGGATAAA	AAAATGGTAT	CCTTAAAGAA	GACTTGACAG	780
ACAAAGGCTT	CACCAACGAA	TTTGTGAAAT	AATGACAGAA	ATTAGACTAG	AGCACGTCAG	840
TTATGCCTAT	GGTCAGGAGA	GGATTTTAGA	GGATATCAAC	CTACAGGTGA	CTTCAGGCGA	900
AGTGGTTTCC	ATCCTAGGCC	CAAGTGGTGT	TGGAAAGACC	ACCCTCTTTA	ATCTARTCCC	960
TGGGATTTTA	GAAGTTCAGT	CAGGGAGAAT	TGTCCTTGAT	GGTGAAGAAA	AMCCCAACGC	
GCACGTGAGT	TATATGTTGC	AAAAGGATCT	GCTCTTGGAG	CACAAGACGG	ATCCCAAGGG	1020
TATCATTCTG	CCCCTCTTGA	TTCAAAAGGT	GGATAACCCA	GAAGCTATTT	TGCTTGGAAA	1080
TAAAATTCTT	GCGACCTTCC	AGCTGACAGC	TCTAACACAC	AAGTATCCTC	CCCGAGCGGA	1140
CGGTGGGATG	CGCCAGCGTG	TACCCORDACE	GGGGA GGGG	AAGTATCCTC	ATGAACTTAG	1200
AAATCCCTGA	GATGAGGCCT	TTACCCTACT	CCGGACCTAC	CTTTTTGGGC	ACAAGAATCG	1260
ምምር-ርጥልጥር- <b>ጥ</b> ጥ	CACAMMONCA	11AGCGCCTT	GGATGAGATG	ACAAAGATGG	AACTCCACGC	1320
TCACCACCCC	GAGAITCACA	AGCAGTTGCA	GCTAACAACC	CTGATCNTCA	CGCATAGTAT	1380
TOROGRACIO	CTCANTCTCA	GCGACCGCAT	CTATATCTTG	ANAAATCNCC	CTGGGCAGAT	1440
CULCLLAGAA	ATTAAACTAG	ACTGGTCTGA	AGATGAGGAC	NANGAAGTCC	NAAAGATTGC	1500
CNACAAACGT	CAAATCTTGG	CAGAATTAGG	CTTAGATAAG	TAGAAANATA	GGGAGTTGGT	1560
GAAGATTATC	CCTTTTACCA	GCGCCCTTTT	TTCTTTTAAA	AATGAAGANA	ATTTCGGTAT	1620
AATNNTCAAN	TAAGGTCAAG	GTTTAAANAN	AG			1652

# (2) INFORMATION FOR SEQ ID NO:63:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1256 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

- (	TAGGGCAAC	A A C A A M A M A M	00110000				
	- I I I I I I I I I I I I I I I I I I I	MANAMINIAT	GCAACTICTA	ACATTTAGTT	TTCCTCCTCT	GTAATATAGT	60
2	AGGGGCCTT	CTTTCGATTT	TGATAAATAA	CGATCATTAT	ACCGAGACCG	ATAAAGACAA	120
(	TGACAGCCA	TTGGGACACT	CGAAGGCCGA	1C11C1ma1a	econonecco	ATAMOMUMA	120
,	CATCACCAT	10010000	COMMODECOM	AGAACATGAG	ACTATCTGTT	CGCATACCTT	180
•	GAIGACCAT	ACGACCGAAA	CCATACCAAA	TCAAGTAAAA	GGCCGTGATA	TGACCTCGTC	240
1	GAGACTCTT	CCATTTCCGT	CTAAAAATCA	GAATCAAGGC	AAAGCCAACC	ACAMMOO.m.	
G	AGACTCATA	AAGGAAAGTC	CCTTC) cccm	10000	MASCCAAGC	AGATTCCATA	300
-	1111000100	AAGGAAAGTC	GGIIGACGGI	AGCTCCCCTC	AATATACATC	TGGTCACGGA	360
.1	AAAGCCAGG	TAGATAATCC	AGATTATCCA	CTGTTGCACC	ATAAGCTTCT	TGGTTAAAGA	420
A	ATTACCCCA	ACGCCCCAAA	CTTTGAGCAA	TCATACCOT	100000000		
Α	ATCCCAACT	A TOTAL COM		·	AGGCGCCGCA	ATATCTAGAA	480
•	niccento!	ATTGATGAGT	TTACGGTCAG	CAAAGATATA	GAGCACAAGA	GCCCCAGTTA	540
T	CAAACCACC	GTAAATGGCC	AAACCACCAT	TCCAAATGCC	222277CTCM	COM3 3 3 00000	
G	ACTATAGTA	ATCANATOCC	*******	3000	MANATCICI	CCTAAATICT	600
_		ATCAAATCGG	NAMATAACAT	AGTAGAGACG	AGCTCCTAAA	ATAGCCAAGG	660
G.	AAAGGCTAC	TAAGATAAAA	TCTAAAATAT	CGTCTGGTAT	GATCTTCTT	CTACCTCCTT	720
				· <del>-</del>		~************	120

CTTTCATGGT	CAAATAAACC	GCAAGAATCA	AGCCTGTCAC	AATACATAAG	GCATACCAAC	780
GAATGGCTAG	GGGTCCTAGT	TGAATAGCAA	TTGGATCAAG	CATTTTGCAC	CTCATTTCGA	840
GCTATGAGAC	TTGTCAGTCG	TTCGTCGAAC	AAACGGGTAG	CATCAAAGCC	CATTTCCTTG	900
GCACGATAAT	TCATGGCAGC	TGCCTCAATC	ACAACAGAGA	TATTACGACC	TGTTTTAACT	960
GGAATACGAA	TACGAGGAAT	GGCTACGCCA	GAAACTTCAA	GTTCCTCTGC	ATTGTTTCCA	1020
AGACGATCAA	AGGTCTTATG	CGTATCGTAA	TTTTCCAAAT	AGACAGCAAG	CTGAACCTGT	1080
GAAGAATCCT	TGACAGCACT	CGCACCGTAG	AGACTCATAA	CATCGATAAT	ACCAACCCCA	1140
			GCTGGTTCAC			1200
TTGGCAAAGA	TATCGACACG	GTCATCGGCT	ACCAAACGGT	GACCACGTTT	GACAAG	1256

### (2) INFORMATION FOR SEQ ID NO:64:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1847 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

AAGAGATGGT	GCCTGCTAAC	CTAAGCCAGT	AATTTTCTTC	TAACTTTGGA	AAATTATGTA	60
ATACCAGAGA	CGGACCCTTT	GTTCGCCTTT	ACCCAGCCCA	ATGTAACAGC	TGACGAATTT	120
TAACATCAAT	GGTCAGCTAC	AAAATGAGGT	CGAGCATGCC	AAGATGAGTA	AGATTATTGA	180
CCGTTATCGT	CCAGCTGGTG	AGGGCTTTGT	CCGTATCGAT	ACTCAAAACA	ATATGCCTAC	240
GGCAGCGGGC	CTGTCCTCAA	GTTCTAGTGG	TTTGTCCGCC	CTGGTCAAGG	CTTGTAATGC	300
TTATTTCAAG	CTTGGATTGG	ATAGAAGTCA	GTTGGCACAG	GAAGCCAAAT	TTGCCTCAGG	360
CTCTTCTTCT	CGGAGTTTTT	ATGGACCACT	AGGAGCCTGG	GATAAGGATA	GTGGAGAAAT	420
TTACCCTGTA	GAGACAGACT	TGAAACTAGC	TATGATTATG	TTGGTGCTAG	AGGACAAGAA	480
AAAACCAATC	TCTAGCCGTG	ACGGGATGAA	ACTTTGTGTG	GAAACCTCGA	CGACTTTTGA	540
CGACTGGGTT	CGTCAGTCTG	AGAAGGACTA	TCAGGATATG	CTGATTTATC	TCAAGGAAAA	600
TGATTTTGCC	<u>A</u> AĢATTGGAG	AATTAACGGA	GAAAAATGCT	CTGGCTATGC	ATGCTACGAC	660
AAAGACTGCT	AGTCCAGCCT	TTTCTTATCT	GACGGATGCC	TCTTATGAGG	CTATGGCCTT	720
TGTTCGCCAG	CTTCGTGAGA	AAGGAGAGGC	CTGCTACTTT	ACCATGGATG	CTGGTCCCAA	780
TGTTAAGGTC	TTCTGTCAGG	AGAAAGACTT	GGAGCATTTG	TCAGAAATTT	TCGGTCAGCG	840
TTATCGCTTG	ATTGTGTCAA	AAACAAAGGA	TTTGAGTCAA	GATGATTGCT	GTTAAAACTT	900
GCGGAAAACT	CTATTGGGCA	GGTGAATATG	CTATTTTAGA	GCCAGGGCAG	TTAGCTTTGA	960
TAAAGGATAT	TCCCATCTAT	ATGAGGGCTG	AGATTGCTTT	TTCTGACAGC	TACCGTATCT	1020
ATTCAGATAT	GTTTGATTTC	GCAGTGGACT	TAAGGCCCAA	TCCTGACTAC	AGCTTGATTC	1080
AAGAAACGAT	TGCTTTGATG	GGAGACTTCC	TCGCTGTTCG	CGGTCAGAAT	TTAAGACCTT	1140
TTTCCCTAAA	AATCTGTGGC	AAAATGGAAC	GAGAAGGGAA	AAAGTTTGGT	CTAGGTTCTA	1200
GTGGCAGCGT	CGTTGTCTTG	GTTGTCAAGG	CTTTACTGGC	TCTCTATAAT	CTTTCGGTTG	1260

ATCAGAATCT	CTTGTTCAAG	CTGACTAGCG	CTGTCTTGCT	CAAGCGAGGA	GACAATGGTT	1320
CCATGGGCGA	CCTTGCCTGT	ATTGTGGCAG	AGGATTTGGT	TCTCTACCAG	TCATTTGATC	1380
GCCAGAAGGC	GGCTGCTTGG	TTAGAAGAAG	AAAACTTGGC	GACAGTTCTG	GAGCGTGATT	1440
GGGGATTTTT	TATCTCACAA	GTGAAACCAA	CTTTAGAATG	TGATTTCTTA	GTGGGATGGA	1500
CCAAGGAAGT	GGCTGTATCA	AGTCACATGG	CCCACCAAAT	CAAGCAAAAT	ATCAATCAAA	1560
			TTTCTTTGGT			1620
			TAGCCAGCAA			1680
			TGAAAGAAGC			1740
			ACTGTGGCAT			
			CCGATCTGGG		TITGATGCGC	1800
	VUCC I IVVVV	WILCOLLOCC	CCGATCTGGG	GATTGAG		1847

### (2) INFORMATION FOR SEQ ID NO:65:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1360 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

	CAAAATCCAC					60
					TTTTCCCTCA	120
TGTTCTAGCC	CTCCACTTTT	TGGATGCACC	ATGAAACCAA	ACTCTCAAGA	CGTTCCAGAT	180
	ATGGAGATAG					240
	ATTTTTAGCC					300
CTTCTTCTTT	TTCCGTTAGG	ACCTGCTCCT	CCAACATGAG	AGCAATCAGG	CGAGCCTGAG	360
CCTTGGCTGA	CACATACTTG	GTTGCTTCTT	GATGGAGTTT	ATTGGGTTTG	GTCATACCTT	420
	GTGACGGCGA					480
CAATCCCGTT	AATGAGATTG	ACATCAATCA	CGTGTCCACC	TCACTCCATC	CTTGGTATCA	540
	ŢŢĊĊŢŢĠŖĠŢ					600
CGATTGGCAC	GCGCCTCTTG	GCGTTTTTGA	ATCAAGTCTT	CAATCTCTGC	ATCCAAAACT	660
TCCTCAACAA	AGACAATTCC	AAAAATTTCT	AACATATCTG	CAAGAGCTTG	CTTGACACTT	720
GCATCATAGT	TCCCTGAGTT	GATCCATTTG	GCCATTTCAA	AGACAACTGT	GATACCGTTG	780
GCAGCATTAA	AATCTTCATC	CATAGCTGCT	ACAAACTTAT	CTTTAAAGTT	TTGTAACTCT	840
TGGGCATCCA	CGTTTCCTGT	AAATGGTTGT	TCGTAAGTAT	TCTTCAGATA	CTTGAGATTG	900
GTCTCGGCAT	CGCGAACTGC	CTTTTCCGTG	AAGTTGATAG	GCTTACGGTA	CTCCTCCCTC	960
GCAAAGAAGA	AACGAAGTAC	TTGCCCATCA	AGAGTTTTAA	GGGCATCGTG	TACCCTAATC	1020
AAGTTACCCA	AGGACTTAGA	CATTTTGACA	ТТСТССАТАТ	TCACAAACCC	AGGGGAAIG	
CCAGTTAGTT	AGCAAAAGCC	TTGCCTGTTT	TAGCTTCAGA	TTCCCCA A mm	MATIGIGCATC	1080
GGTGTGGAAA	СТСТАССТСА	CCTCCACCAC	COMOCA TO A	1 IGGGCAATT	TCATTGGTGT	1140
	CTCTAGGTCA	GCICCACCAC	CGTGGATATC	AATGGTATCA	CCTAAAATCT	1200

CTGTCGACAT GACTGAACAC TCAATATGCC AACCCGGACG TCCAGGTCCC CAAGGACTAT 1260
CCCAAGAAAT CTCACCTGGT TTGGAAGATT TCCATAAAGC AAAGTCTACA GGATTTTCCT 1320
TACGAGCCGT TTCTTCATCG GTACGACCTG AAGCACCTAG 1360

### (2) INFORMATION FOR SEQ ID NO:66:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1297 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

CTATGAGGTG	GCCCTGGTTT	TACTGGATAT	CCAGATGCCC	AAGCTTAACG	GCTTAGAAGT	60
CCTAGCTGAG	ATTCGTAAAA	CCAGTCAGGT	TCCTGTCTTG	ATGTTGACAG	CTTTTCAGGA	120
TGAGGAATAC	AAGATGAGTG	CCTTTGCCTC	TTTGGCAGAT	GGCTATCTGG	AAAAACCTTT	180
CTCCCTCTCC	CTCTTAAAAG	TGAGGGTGGA	CGCGATTTTC	AAGCGCTACT	ACGATACAGG	240
ACGAATCTTT	TCTTACAAGG	ATACCAAGGT	GGACTTTGAA	AGCTACAGTG	CAAGCCTCGC	300
AGGTCAAGAA	GTGCCTATCA	ATGCCAAAGA	GTTGGAAATT	CTGGACTATC	TAGTGAAAAA	360
TGAAGGCCGG	GCCTTGACTC	GGTCTCAGAT	TATCGATGCC	GTCTGGAAAG	CGACAGATGA	420
	GACCGTGTTA					480
	CTCACTGTGC					540
	CAAAGATATT					600
	CTATTTATTT					660
	AGGCAACAGC					720
GAGCAAGTGT	TAGACTTGTA	TTCCCAGACT	AGTGATATCA	AGGGGACCGT	CAAAGGTGAG	780
	ACAAGTTAGA					840
	TTATTGAGGA					900
	CTTCCATGGA					960
	TGCTGGCCTC					1020
	CACCGATTTT					1080
	GATTGCGCGT					1140
AATAGCCTCT	ACCAGCATCT	CTTGACTGTT	ATTGCGGACT	TGCATGAAAA	GAATGAAGCC	1200
	TGGAGAAGAT					1260
	GCTAGTTTGA					1297
						/

- (2) INFORMATION FOR SEQ ID NO:67:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1043 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

		GAGAGCAAGT				60
CATAGTCCAA	AAGGAAGTTC	GACGCTCGGC	TGCTTATTTT	GAAGGAATTG	AAGCAAGTAG	120
ACCTTTGGAG	TTAAATCCAG	AACAAAGACA	GGCGCGTGAT	GCGGTTGTGA	GTTCTATTGG	180
CAGTTCTCAA	CCTCCCTTTC	TACTTCAAGG	GATTACAGGA	AGTGGGAAGA	CCGAGGTTTA	240
CTTGCAGATT	ATCCAAGGTG	CCCTGGATAA	GGGCAAGACA	GCTATTTTGC	TGGTACCTGA	300
GATTTCCTTG	ACTCCTCAGA	TGACCGAGCG	TTTTATAGCA	CGTTTTGGGG	ACAAGGTAGC	360
CATTCTTCAC	TCAGGATTAT	CCAATGGTGA	AAAGTATGAT	GAATGGCGCA	AGGTGGAGCG	420
TGGCGATGCC	CAAGTTGTTG	TTGGTGCCAG	ATCTGCTATC	TTTGCTCCTC	TGAAAAATCT	480
		AAGAGCATGA				540
		CTATTTTACG				600
TGGATCTGCA	ACGCCGAGCT	TAGAGAGCCG	GGCACGTGCT	GGCAAAGGCG	TCTATCAACA	660
CTTACGTCTA	ACCCAACGTG	CCAATCCTTT	GGCTACAATC	CCTGAGGTTT	CAAGTGATTG	720
ACTTTCGAGA	CTATATCGGA	CAAAATGAGA	CGTCAAACTT	TACGCCTCCT	TTGCTAGAGG	780
CTATCCAAGA	CCGTCTGGTT	AAAAAAGAGC	AGGTGGTTCT	CATGCTCAAT	CGCCGTGGTT	840
ATTCTAGCTT	TGTCATGTGT	CGGGAGTGTG	GGACGGTGGA	TACTTGTCCC	AACTGCGATA	900
		GATACCAAGA				960
AGGATATTCC	TCAGGTCTGT	CCTAACTGTA	AGAGCCGCAG	TATTCGTTAC	TATGGGACGG	1020
GAACTCAGAA	GGCTTATGAT	GAG				1043

### (2) INFORMATION FOR SEQ ID NO:68:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1449 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

CTAGTGCGTC	CTAGTTTACG	GTAAGCCATG	TATTCCTCCT	TTATTTATCT	TTTAATCCAA	60
					AGATTTCGTA	120
CTTTCATCAT	CTCTGCTTCA	GATTTTTCTG	TCAAATCATG	CACAGTATTG	ATACCGGCAC	180
GTTTTAAACA	GTTGTATGAA	CGCACAGACA	AGTCCAGTTC	CTCAATCGTA	CGATCTAAAA	240

				AGTTGACTTA		300
				TGCTGAAAGC		360
CTTCTGGAAT	AATTGTTCCA	TTTGTCAAGA	TTTCAAGGGT	TAATTTGTCG	AAACCATCAT	420
TGCTACCTAC	ACGAGCAGGT	TCCACTTGAT	AGTTGACTTT	TGTAACTGGT	GTATAAATAG	480
				ATTTTCATCA		540
				AGAACCTTCA		600
				TGTCAAAATG		660
				TTCGTCTTCA		720
				GTCTTCACGA		780
				TGTCACAGCT		840
				TGTACCGTAG		
				AATTTTTGTT		900
				AGCAGTGTAA		960
				CACTGGAGTC		1020
						1080
				AGCTGACTCA		1140
				TTCTTGTGCA		1200
CAGCTTCAGA	AGCCATTTGA	GCAGCGAATG	GTGTACATTT	ACGAGAACCT	TTGAAACCAA	1260
TGAGCACCAG	CTGATGACCA	AGCAATTGCA	TTACCATGCA	CATCAGTAAT	CATAACAATA	1320
				CGATATTCTT		1380
				TTATTTTTTC		1440
TCGCAACAG					····crocan	
						1449

# (2) INFORMATION FOR SEQ ID NO:69:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1167 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

CTTGTGTATG	ATTTTCGATA	TCCAAAATTT	GTTGTTCAGA	ACGGCCGTCA	AATTTTACAG	60
TTGAAATTGA	ATCTTTCAAA	CCGATACGTT	CAATCAAACC	TTTGGCTAAC	ACTTTTTCCT	120
CTGGCATTAA	GTATAATTGC	CATTTCAAAC	TTGAACTTCC	TGCATTGATT	GCAATTGTTT	180
TTGTCATAAC	ATGATACCCC	TTTTTAAGCG	TTTTCAACTA	TTATAACAAA	ATCTATTTTA	240
				AATTTCATTA		300
				GCTATTTCAC		360
				AGATTTTCAG		420
				AACAAATCAC		480
GGTCAACAAA	TCACTCGGAG	CTAGAAAAAT	AGGCGTATCC	GTCTGACTTG	AGGTACTTAA	540

			AAGTATGTTC			600
			AGCCAACAGG			660
			CATCTCCTTG			720
			CAATCAGCAA			780
			AGAAAGTAGC			840
			CTTTAAACAG			900
			GGTGATTGGC			960
			TGAGCCATTC			1020
			GTTCTAGCTC			1080
TGCTGTTTTG	CTCCACCAAG	GCGTCATAAA	AGTTGGNCGC	CAAATCACTT	TGGATGACTT	1140
GGACATNCNC	TAGTAAATAG	GTATAAG				1167

### (2) INFORMATION FOR SEQ ID NO:70:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1644 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

					TCGCTGTAAA	60
GATACGTTTC	TTTAACCAGT	TTTTCCTTCT	TGTTCNACAC	GAGTTTCACC	TAGAAACAGT	120
GTTGAATCTT	TTTTCTCAAC	TGTCTTGAAG	GCCAAATCTT	TTTCAACAAA	ATTTCGAGTT	180
GTGGGGAAGA	TCTTTCTTGT	AACAGCAGCA	ACTGTCTTTC	TCCAGAAACT	GGTTTTTCCC	240
TTAGTCAACT	GGATACCGGT	ATTCCTTAAC	TTGTTTTCCA	CTTTCTGAAA	CGAGGCGAAC	300
AAGTACTGGA	AGGCAATCTT	CTCCACTATC	TACCACAGTT	GAAGCTACTT	GATTGTTTTC	360
	ACTITITGCCC					420
AGCGAAATCA	GCAAGTTCTT	TTCCATCTAC	AAGAATCTTC	GATTGCGTGC	THICHTGAGG	480
	ĢĠŢĢĊAAGGA					540
ACGCTCCATA	CGCCATCTCA	TAGCTTTGGC	TTTGACAGCT	TTAAATGTTA	CCTTCATTTC	600
ATCACCAGCT	GCGATGTCTT	TATCCGCACG	ATAAGGCACA	CCTTCCCAAT	TTTTCTCCAME	
GTTGAATGGA	TGGTCTGCGT	CGTAGGCTTG	GTAGTTTGAA	TACTACCOMM:	CCACCOCCALL.	660
CTCTGGACCG	ACATAGCGTT	CTAAAACGAG	TTTDCTTCCT	COMMONTA	GCACTICAAA	720
3336336mas			TIMOTIGGT	GCATCCGTAC	CACTATCTGC	780
AAAGAAGIGA	AGTTTGGCTT	GCGCAACAGT	CCGTTCTACA	ATCTTACCAT	TTTCACGGAA	840
GATCACACCC	GCTGATACTT	CTGGATTAGA	AGATGGTGTT	GGAGACCAGT	TTGTCCAACG	900
ACGATTTTCT	GAATGATCTC	CGTCATTGAG	ATAGTCAACG	CGGTCATGAG	AGTTTTTGTC	960
AATATCATTG	GTTGCTGAAG	CAAAGGCCTG	GTTACTGTTT	TCATCATAGT	ТАСССТТАТС	1020
TGAAAGAGCT	TCGCCTAGTT	ጥርጥርጥርልር	TCCTA CACTO	300001001		
30033003			1CGIACAGIG	ACCTCAGCAA	CAAGATCACT	1080
ACCAAGGACA	TGGCCTCGAA	CGGTAAATTG	ACCTGCTTTT	GTCAGATTTT	CTGCTGGAAC	1140

TTCTTCCCAT	TCAACTGACA	AATCTTTTGT	TTCGTAGCCG	TCTTTACCTG	TGAAGTAAAC	1200
	GTCGGCAATT					1260
	GGTTTATGAG					1320
	TCGCCATTTT					1380
	ACGGTAGCGA					1440
	AGACTCAAGG					1500
	GGATTCTTGT					1560
	GATAACGTTC					1620
	AACTTTATCA				······	1020
		NUNU				1644

# (2) INFORMATION FOR SEQ ID NO:71:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1448 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

CACCAATTGC TCAATCCCCT TGTGGAAGGA TTTTTGCTTC ATAACATTCT TAGCAGAAACC 1 TTTCATGAAA ATTTCAGGAG TAAAGGTTGG CAGTGGTTCA AATTCAAACT TGTTTTTCC 1 AACCGTCAAG GTATCCCCAA CCTGATAAGT ACCGGTATCG TAAACCCCGA TAATATCACC 2 TGCTACGGCA TTGGTCACAT TCTCACGACT CTCCGCCATA AACTGGGTAA CATTAGATAG 3 TTTGGCACCC TTACCAGTAC GAGGGAGATT GACACTCATG CCACGCTCAA ATTCGCCTGA 3 AAAGACAAAG CCTGAGAAAT CCTTGTCATA AGGATCCACA ATTTCACCGT CTGTTTTCTT 4 GTGACCATGT GGTTCTGGAG CAAACTTGAG GAAGATTTCA AGGAAGGTCT GCACACCAAA 5 GTTTGTCAGG GCTGAACCGA AAAAGACAGG CGTCAATTCT CCAGCCAGAA TAGCTTCCTC GCACACCAAA 6 GTTTGTCAGG GCTGAACCGA AAAAGACAGG CGTCAATTCT CCAGCCAGAA TAGCTTCCTC GCACACAAA 6 AGGATTGCTA CCAAAAAGTT TGTCTCCATC TTCTAGGGCT AGCAAAACGC TCATCCCCTT 7 TGTAAAGCTC TAAACGTTGG TTATAGAGGT CATCACAGAC TTCCCCATCC 7 GGATCGAAAGCT TAAACGTTGG TAGCTAGCAA TGCCCAAGAT TTCTTCCAAT TCTTGCAAGA 6 GATCCAAAGG CTCACGACCG TCACGATCCA ACTTGTTCAT AAAGGTAAAG ACTGGAATGC 9 CACGATGTTT CACAACCTCA AACAATTCT TTGTTTGAGC CTCGATCCC TTGGCAGAGT 9 CCACGACCAT GACCGACGA TCCACCGCCA TCAAGGTACG ATAGGTACC TTGGCAGAGT 10 CCACGACCAT GACCGCAGA TCCACCGCCA TCAAGGTACG ATAGGTACC TTCTGAGAAGT 10 CCACGACCAT GACCGCAGA TCCACCGCCA TCAAGGTACG ATAGGTACC TTGGCAGAGT 10 CCACGACCAT GACCGCAGAA TCCACCGCCA TCAAGGTACG ATAGGTACC TTGGCAGAGT 10 CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTACA AATTGCATAA 10 CCACGATCGTC TGGCGTGCT TAACCGTCC TCCACGTCCC TTGGCAGAGT 10 CAAGATGAAGT AACAGAAATC CCACGTCGT TCCCGATCCC CCAAAGTACA AATTGCATAA 10 CAAGATGAAGT AACAGAAATC CCACGTCGT TCCCGATCCC CCAAAGTAGA 11 CAACTCCTC TTTTCTCCCT TTTACCGTAC CAGCCTCACG AATCCACCC CCAAAGTAGA 11 CAACTCCTC AACGAAATC CCACGTCAC AACCCTCACG AATCCACCC CCAAAGTAGA 11 CAACTCCCTC TTTTCTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA 11 CAACTCCTC AACGAAATC CAACCTCAC AACCTCACC CCAAAGTAGA 11 CAACTCCCTC TTTTCTCCCT TTTACCCCC CCAAAGTAGA AATTCCACC CCAAAGTAGA 11 CAACTCCCTC AACGTACC CACCTCACG AATCTCACCC CCAAAGTAGA 11 CAACTCCCTC AACGTACC CACCGCCA AACCACTCACG AATCTCACCC CCAAAGTAGA 11 CAACTCCTCT TTTCTCCCCT TTTACCCCC CCAAACTACC CCCAAAGTAGA 11 CAACTCCTCT TTTTCTCCCCT TTTTCCCCCC CCAAACTACC CCAACTACC CCAAAC							
CACCAATTGC TCAATCCCCT TGTGGAAGGA TTTTTGCTTC ATAACATTCT TAGCAGAAAC 1 TTTCATGAAA ATTTCAGGAG TAAAGGTTGG CAGTGGTTCA AATTCAAACT TGTTTTTTCC 1 AACCGTCAAG GTATCCCCAA CCTGATAAGT ACCGGTATCG TAAACCCCGA TAATATCACC 2 TGCTACGGCA TTGGTCACAT TCTCACGACT CTCCGCCATA AACTGGGTAA CATTAGATAG 3 TTTGGCACCC TTACCAGTAC GAGGGAGATT GACACTCATG CCACGCTCAA ATTCGCCTGA 3 AAAGACAAAG CCTGAGAAAT CCTTGTCATA AGGATCCACA ATTTCACCGT CTGTTTTCTT 4 AAAGACAAAG CCTGAGAAAT CCTTGTCATA AGGATCCACA ATTTCACCGT CTGTTTTCTT 4 AGGATCCATGT GGTTCTGGAG CAAACTTGAG GAAGATTCA AGGAAGGTCT GCACACCAAA 5 GTTTGTCAGG GCTGAACCGA AAAAGACAGG CGTCAATTCT CCAGCCAGAA TAGCTTCCTC GCTGTAGAAA AGGATTGCTA CCAAAAAGTT TGTCTCCATC TTCTAGGGCT AGCAAAAAGCC TCATCCCCTT 7 TGTAAAGCTC TAAACGTTGG TATAGAGGT CATACAAGCC CTCAAAGGCT TCCCCATCC TTCTAAAGCCC GTCAACGACA ACTTGTCAAT TCTTGCAAGA ACTGGAATGC GCACCAAAAAGCC CTCAAAGGCT TCCCCATCC TCCCACGACAA TGCCCAAGAC TCCCCATCC TTCTCCAAC TCCTGAACGC CTCAAAGGCT TCCCCATCC TCCCACGACAA ACCAGATGTT CACAACCCCA AACAATTCT TTGTTTCACC TCCGATCCC TTGGCAAGA ACTGGAATGC 9 CACGATGTTT CACAACCTCA AACAATTCT TTGTTTGAGC CTCGATCCC TTGGCAAGAT 10 CCACGACCAT GACCGACGA TCCACCGCCA TCAAGGTACG ACTGGAATGC 9 CCACGACCAT GACCGACCA TCCACCGCCA TCAAGGTACC ACTGGAATCT TCTGGAAAGT 10 CCACGACCAT GACCGCAGAA TCCACCGCCA TCAAGGTACC ACTGGATCCC TTGGCAGAGT 10 CCACGACCAT GACCGAGCA TCCACCGCCA TCAAGGTACC ACTGGATCCC TTGGCAGAGT 10 CCACGACCAT GACCGAGCA TCCACCGCCA TCAAGGTACC ACTGGATCCC TTGGCAGAGT 10 CCACGACCAT GACCGCAGA TCCACCGCCA TCAAGGTACC ACTGGATCCC TTGGCAGAGT 10 CCACGACCAT GACCGAGCA TCCACCGCCA TCCACGATCCC TCGGATCCC TTGGCAGAGT 10 CCACGACCAT GACCGAGCA TCCACCGCCA TCCACGATCCC TCGGATCCC TTGGCAGAGT 10 CCACGACCAT GACCGAGCA TCCACCGCCA TCCACGATCCC TCCGATCCC TTGGCAGAGT 10 CCACGACCAT GACCGAGCT TCCACCGCCA TCCACGATCCC TCCGATCCC TTGGCAGAGT 10 CCACGACCAT GACCGAGCT TCCACCGCCA TCCACGATCCC TCCACGATCA AATTGCATAA 10 CCACGATCACT TTTCTTCCCT TTTACCGTTC TCTCGATACC CCCCCAAAGTAGA 11 CCACGACCAT TTTCTTCCCT TTTACCGTTC TCTCGATCCC CCAAAGTAGA 11 CAACCACTCAC TTTTTTCTCCT TTTACCGTAC CACCCCCAAAACCC CCAAAGTAGA 11 CAACCACTAC TTTTTTTCCCT TTTACCGTAC CACCCCCAAAACCCC	CTCCCAGCAT	GTACTCACCT	GTTTGGTAAT	TCTTATAAAG	CTGATGACGG	CTCCTTCTTG	60
AACCGTCAAG GTATCCCCAA CCTGATAAGT ACCGGTATCG TAAACCCCGA TAATATCACC TGCTACGGCA TTGGTCACAT TCTCACGACT CTCCGCCATA AACTGGGTAA CATTAGATAG 3 TTTGGCACCC TTACCAGTAC GAGGGAGATT GACACTCATG CCACGCTCAA ATTCGCCTGA 3 TACGATACGG ACAAAGGCAA TACGGTCACG GTGACGAGGA TCCATGTTGG CTTGGATTTT 4 AAAGACAAAG CCTGAGAAAT CCTTGTCATA AGGATCCACA ATTCACCGT CTGTTTTCTT 4 GTGACCATGT GGTTCTGGAG CAAACTTGAG GAAGATTTCA AGGAAGGTCT GCACACCAAA 6 GTTTGTCAGG GCTGAACCGA AAAAGACAGG CGTCAATTCT CCAGGCCAGAA TAGCTTCCTC 7 TGAAAACTCA TTCCCAGCTT CATTTAAAAG CTCAATGTCA TCCTTGACTT GCTCGTAGAA 6 AGGATTGCTA CCAAAAAGTT TGTCTCCATC TTCTAGGGCT AGCAAAAAGCC TCATCCCCTT 7 TGTAAAGGTC TAAACGTTGG TAATAGAGGT CATACAAGCC CTCAAAGGCT TTCCCCATCC 7 CGATAGGCCA GTTCATAGGG TAGCTAGCAA TGCCCAAGAT TTCTTCCAAT TCTTGCAAGA 6 CACGATGTTT CACAACCTCA AACAATTTCT TTGTTTGAGC CTCGATCCC TTGGCAGAGT 7 CCACGACCAT GACCGCCAACAT TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGGAGAGT 7 CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGGAGAGT 7 CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGGAGAGT 7 CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGAGAAGT 7 CCACGATGACT TAACAGAAATC CCACCGTCA TCAAGGTACC CTCGATCCC CTCGAGAAT 7 CCACGACCAT GACCGCCACA TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGAGAAGT 7 CCACGACCAT TCCCCTCCC TCAAGGTACC AACTTGCACA AACTTGCAACAACCC CCAAAGTAAA 7 CAAGATGAACT TCTCCCCT TCTCCACCC TCAAGGTACC CCCAAAGTAAA 7 CAAGATGAACT TCTCCCCT TCTCCACCC CAAAGTAGA 114 AAGGTCCCTGT TTTCTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAAGTAGA 120 AAGGTCCCTGT TTTCTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAAGTAGA 120	CACCAATTGC	TCAATCCCCT	TGTGGAAGGA	TTTTTGCTTC	ATAACATTCT	TAGCAGAAAC	120
TGCTACGGCA TTGGTCACAT TCTCACGACT CTCCGCCATA AACTGGGTAA CATTAGATAG TTTGGCACCC TTACCAGTAC GAGGGAGATT GACACTCATG CCACGCTCAA ATTCGCCTGA TACGATACGG ACAAAGGCAA TACGGTCACG GTGACGAGGA TCCATGTTGG CTTGGATTTT AAAGACAAAG CCTGAGAAAT CCTTGTCATA AGGATCCACA ATTTCACCGT CTGTTTTCTT GTGACCATGT GGTTCTGGAG CAAACTTGAG GAAGATTCA AGGAAGGTCT GCACACCAAA GTTTGTCAGG GCTGAACCGA AAAAGACAGG CGTCAATTCT CCAGCCAGAA TAGCTTCCTC TGAAAACTCA TTCCCAGCTT CATTAAAAG CTCAATGTCA TCCTTGACTT GCTCGTAGAA AGGATTGCTA CCAAAAAGTT TGTCTCCATC TTCTAGGGCT AGCAAAACGC TCATCCCCTT TGTAAAGCTC TAAACGTTGG TAGCTAGCAA TGCCCAAGAT TTCTTCCAAT TCTTGCAAGA GATCCAAAGG CTCACGACCG TCACGATCA ACTTGTTCAT AAAGGTAAAG ACTGGAATGC CACGATGTTT CACAACCTCA AACAATTTCT TTGTTTGAGC CTCGATCCC TTGGCAGAGT CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTACA ACTTGAAGGT CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACA AATTGCATAA 108 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATACC CTCAAAGGTA AATTGCATAA 114 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATACC CATCCAGTCA GATTTAGCAAA 114 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATACC CCAAAGGTA AATTGCATAA 114 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATACC CCAAAGGTAAG AATTGCATAA 114 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATATC CATCCAGTCA GATTTAGCAA 114 CAGATGAAGT TCTTCTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAAGTAGA 120 CAGGATGAAGT TCTTCTCCTT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAAGTAGA 120 CAGGATGAAGTACA TCTTTCTTCTCTTTTTTTTTTTTTT	TTTCATGAAA	ATTTCAGGAG	TAAAGGTTGG	CAGTGGTTCA	AATTCAAACT	TGTTTTTTCC	180
TTTGGCACCC TTACCAGTAC GAGGGAGATT GACACTCATG CCACGCTCAA ATTCGCCTGA TACGATACGG ACAAAGGCAA TACGGTCACG GTGACGAGA TCCATGTTGG CTTGGATTTT AAAGACAAAG CCTGAGAAAT CCTTGTCATA AGGATCCACA ATTTCACCGT CTGTTTTCTT GTGACCATGT GGTTCTGGAG CAAACTTGAG GAAGATTCA AGGAAGGTCT GCACACCAAA GTTTGTCAGG GCTGAACCGA AAAAGACAGG CGTCAATTCT CCAGCCAGAA TAGCTTCCTC TGAAAACTCA TTCCCAGCTT CATTTAAAAG CTCAATGTCA TCCTTGACTT GCTCGTAGAA AGGATTGCTA CCAAAAAGTT TGTCTCCATC TTCTAGGGCT AGCAAAACGC TCATCCCCTT TGTAAAGCTC TAAACGTTGG TTATAGAGGT CATACAAGCC CTCAAAGGCT TTCCCCATCC CGATAGGCCA GTTCATAGGG TAGCTAGCAA TGCCCAAGAT TTCTTCCAAT TCTTGCAAGA GATCCAAAAG CTCACGACCG TCACGATCCA ACTTGTTCAT AAAGGTAAAG ACTGGAATGC CACGATGTTT CACAACCTCA AACAATTTCT TTGTTTGAGC CTCGATCCC TTGGCAGAGT CCACGACCAT GACCGCAGCA TCCACGCCA TCAAGGTACC ATAGGTATCT TCTGAGAAGT CCCTCGTGCCC TGGCGTGCT AAGATATTCA CGCGCTTGCC GTCGTAGTCA AATTGCATAA 108 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATATC CATCCAGTCA GATTTAGCAA 114 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATATC CATCCAGTCA GATTTAGCAA 114 CAGATGAAGT TTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAAGTAGA 126 CAGATGAAGT TTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAAGTAGA 126 CAGATGAAGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAAGTAGA 126 CAGATGAAGT TTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAAGTAGA 126 CAGATGAACT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAAGTAGA 126 CAGATCACACAC TTTTACCACAC TTTACCACC CAGCCTCACG AATCTCACCC CCAAAAGTAGA 126 CACGCTCACGA TTTACCACC CAGCCTCACG AATCTCACCC CCAAAAGTAGA 126	AACCGTCAAG	GTATCCCCAA	CCTGATAAGT	ACCGGTATCG	TAAACCCCGA	TAATATCACC	240
TACGATACGG ACAAAGGCAA TACGGTCACG GTGACGAGGA TCCATGTTGG CTTGGATTTT  AAAGACAAAG CCTGAGAAAT CCTTGTCATA AGGATCCACA ATTTCACCGT CTGTTTTCTT  GTGACCATGT GGTTCTGGAG CAAACTTGAG GAAGATTTCA AGGAAGGTCT GCACACCAAA  GTTTGTCAGG GCTGAACCGA AAAAGACAGG CGTCAATTCT CCAGCCAGAA TAGCTTCCTC  TGAAAACTCA TTCCCAGCTT CATTTAAAAG CTCAATGTCA TCCTTGACTT GCTCGTAGAA  AGGATTGCTA CCAAAAAGTT TGTCTCCATC TTCTAGGGCT AGCAAAACGC TCATCCCCTT  TGTAAAGCTC TAAACGTTGG TTATAGAGGT CATACAAGCC CTCAAAGGCT TTCCCCATCC  CGATAGGCCA GTTCATAGGG TAGCTAGCAA TGCCCAAGAT TTCTTCCAAT TCTTGCAAGA  GATCCAAAGG CTCACGACCG TCACGATCCA ACTTGTTCAT AAAGGTAAAG ACTGGAATGC  CCACGATGTTT CACAACCTCA AACAATTTCT TTGTTTGAGC CTCGATCCC TTGGCAGAGT  CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGAGAAGT  CCTCGTGCCC TGGCGTGTCT AAGATATTCA CGCGCTTGCC GTCGTAGTCA AATTGCATAA  AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA  AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA  120  AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA  120  AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA  120	TGCTACGGCA	TTGGTCACAT	TCTCACGACT	CTCCGCCATA	AACTGGGTAA	CATTAGATAG	300
AAAGACAAAG CCTGAGAAAT CCTTGTCATA AGGATCCACA ATTTCACCGT CTGTTTTCTT GTGACCATGT GGTTCTGGAG CAAACTTGAG GAAGATTCA AGGAAGGTCT GCACACCAAA GTTTGTCAGG GCTGAACCGA AAAAGACAGG CGTCAATTCT CCAGCCAGAA TAGCTTCCTC TGAAAACTCA ŢTÇCCAGCTT CATTTAAAAG CTCAATGTCA TCCTTGACTT GCTCGTAGAA AGGATTGCTA CCAAAAAGTT TGTCTCCATC TTCTAGGGCT AGCAAAACGC TCATCCCCTT TGTAAAGCTC TAAACGTTGG TTATAGAGGT CATACAAGCC CTCAAAGGCT TTCCCCATCC CGATAGGCCA GTTCATAGGG TAGCTAGCAA TGCCCAAGAT TTCTTCCAAT TCTTGCAAGA GATCCAAAGG CTCACGACCG TCACGATCCA ACTTGTTCAT AAAGGTAAAG ACTGGAATGC CCACGACCAT GACCGCAGCA TCCACCGCCA TCATGGTACG ATAGGTACCT TCTGGCAGAGT CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTTACG ATAGGTATCT TCTGAGAAGT CCTCGTGCCC TGGCGTGTCT AAGATATTCA CGCGCTTGCC GTCGTAGTCA AATTGCATAA 108 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATATC CATCCAGTCA GATTTAGCAA 114 AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA 120	TTTGGCACCC	TTACCAGTAC	GAGGGAGATT	GACACTCATG	CCACGCTCAA	ATTCGCCTGA	360
GTGACCATGT GGTTCTGGAG CAAACTTGAG GAAGATTTCA AGGAAGGTCT GCACACCAAA 5.6 GTTTGTCAGG GCTGAACCGA AAAAGACAGG CGTCAATTCT CCAGCCAGAA TAGCTTCCTC 6.6 TGAAAACTCA ŢTÇCCAGCTT CATTTAAAAG CTCAATGTCA TCCTTGACTT GCTCGTAGAA 6.6 AGGATTGCTA CCAAAAAGTT TGTCTCCATC TTCTAGGGCT AGCAAAACGC TCATCCCTT 7.7 TGTAAAGCTC TAAACGTTGG TTATAGAGGT CATACAAGCC CTCAAAGGCT TTCCCCATCC 7.6 CGATAGGCCA GTTCATAGGG TAGCTAGCAA TGCCCAAGAT TTCTTCCAAT TCTTGCAAGA 8.6 GATCCAAAGG CTCACGACCG TCACGATCCA ACTTGTTCAT AAAGGTAAAG ACTGGAATGC 9.6 CCACGATGTTT CACAACCTCA AACAATTTCT TTGTTTGAGC CTCGATCCC TTGGCAGAGT 9.6 CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGAGAAGT 10.6 CCTCGTGCCC TGGCGTGTCT AAGATATTCA CGCGCTTGCC GTCGTAGTCA AATTGCATAA 10.6 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATATC CATCCAGTCA GATTTAGCAA 11.4 AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA 12.0	TACGATACGG	ACAAAGGCAA	TACGGTCACG	GTGACGAGGA	TCCATGTTGG	CTTGGATTTT	420
GTTTGTCAGG GCTGAACCGA AAAAGACAGG CGTCAATTCT CCAGCCAGAA TAGCTTCCTC TGAAAACTCA ŢTÇCCAGCTT CATTTAAAAG CTCAATGTCA TCCTTGACTT GCTCGTAGAA AGGATTGCTA CCAAAAAGTT TGTCTCCATC TTCTAGGGCT AGCAAAACGC TCATCCCCTT TGTAAAGCTC TAAACGTTGG TTATAGAGGT CATACAAGCC CTCAAAGGCT TTCCCCATCC CGATAGGCCA GTTCATAGGG TAGCTAGCAA TGCCCAAGAT TTCTTCCAAT TCTTGCAAGA GATCCAAAGG CTCACGACCG TCACGATCCA ACTTGTTCAT AAAGGTAAAG ACTGGAATGC CCACGATGTTT CACAACCTCA AACAATTTCT TTGTTTGAGC CTCGATCCCC TTGGCAGAGT CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGAGAAGT CCTCGTGCCC TGGCGTGTCT AAGATATTCA CGCGCTTGCC GTCGTAGTCA AATTGCATAA CAGATGAAGT AACAGAAATC CCACGTCA TCTCGATATC CATCCAGTCA GATTTAGCAA AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA 120	AAAGACAAAG	CCTGAGAAAT	CCTTGTCATA	AGGATCCACA	ATTTCACCGT	CIGITITCIT	480
TGAAAACTCA ȚTÇCCAGCTT CATTTAAAAG CTCAATGTCA TCCTTGACTT GCTCGTAGAA AGGATTGCTA CCAAAAAGTT TGTCTCCATC TTCTAGGGCT AGCAAAACGC TCATCCCCTT TGTAAAGCTC TAAACGTTGG TTATAGAGGT CATACAAGCC CTCAAAGGCT TTCCCCATCC CGATAGGCCA GTTCATAGGG TAGCTAGCAA TGCCCAAGAT TTCTTCCAAT TCTTGCAAGA GATCCAAAGG CTCACGACCG TCACGATCCA ACTTGTTCAT AAAGGTAAAG ACTGGAATGC CACGATGTTT CACAACCTCA AACAATTTCT TTGTTTGAGC CTCGATCCCC TTGGCAGAGT CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGAGAAGT CCTCGTGCCC TGGCGTGTCT AAGATATTCA CGCGCTTGCC GTCGTAGTCA AATTGCATAA 108 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATATC CATCCAGTCA GATTTAGCAA 114 AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA 120							540
AGGATTGCTA CCAAAAAGTT TGTCTCCATC TTCTAGGGCT AGCAAAACGC TCATCCCCTT 72 TGTAAAGCTC TAAACGTTGG TTATAGAGGT CATACAAGCC CTCAAAGGCT TTCCCCATCC 72 CGATAGGCCA GTTCATAGGG TAGCTAGCAA TGCCCAAGAT TTCTTCCAAT TCTTGCAAGA 84 GATCCAAAGG CTCACGACCG TCACGATCCA ACTTGTTCAT AAAGGTAAAG ACTGGAATGC 96 CACGATGTTT CACAACCTCA AACAATTTCT TTGTTTGAGC CTCGATCCC TTGGCAGAGT 96 CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGAGAAGT 102 CCTCGTGCCC TGGCGTGTCT AAGATATTCA CGCGCTTGCC GTCGTAGTCA AATTGCATAA 108 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATATC CATCCAGTCA GATTTAGCAA 114 AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA 120							600
TGTAAAGCTC TAAACGTTGG TTATAGAGGT CATACAAGCC CTCAAAGGCT TTCCCCATCC 76 CGATAGGCCA GTTCATAGGG TAGCTAGCAA TGCCCAAGAT TTCTTCCAAT TCTTGCAAGA 84 GATCCAAAGG CTCACGACCG TCACGATCCA ACTTGTTCAT AAAGGTAAAG ACTGGAATGC 96 CACGATGTTT CACAACCTCA AACAATTTCT TTGTTTGAGC CTCGATCCCC TTGGCAGAGT 96 CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGAGAAGT 102 CCTCGTGCCC TGGCGTGTCT AAGATATTCA CGCGCTTGCC GTCGTAGTCA AATTGCATAA 108 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATATC CATCCAGTCA GATTTAGCAA 114 AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA 120	TGAAAACTCA	TTÇCCAGCTT	CATTTAAAAG	CTCAATGTCA	TCCTTGACTT	GCTCGTAGAA	660
CGATAGGCCA GTTCATAGGG TAGCTAGCAA TGCCCAAGAT TTCTTCCAAT TCTTGCAAGA GATCCAAAGG CTCACGACCG TCACGATCCA ACTTGTTCAT AAAGGTAAAG ACTGGAATGC 96 CACGATGTTT CACAACCTCA AACAATTTCT TTGTTTGAGC CTCGATCCCC TTGGCAGAGT 96 CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGAGAAGT 102 CCTCGTGCCC TGGCGTGTCT AAGATATTCA CGCGCTTGCC GTCGTAGTCA AATTGCATAA 102 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATATC CATCCAGTCA GATTTAGCAA 114 AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA 120							720
GATCCAAAGG CTCACGACCG TCACGATCCA ACTTGTTCAT AAAGGTAAAG ACTGGAATGC 90 CACGATGTTT CACAACCTCA AACAATTTCT TTGTTTGAGC CTCGATCCCC TTGGCAGAGT 90 CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGAGAAGT 102 CCTCGTGCCC TGGCGTGTCT AAGATATTCA CGCGCTTGCC GTCGTAGTCA AATTGCATAA 108 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATATC CATCCAGTCA GATTTAGCAA 114 AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA 120	TGTAAAGCTC	TAAACGTTGG	TTATAGAGGT	CATACAAGCC	CTCAAAGGCT	TTCCCCATCC	780
CACGATGTTT CACAACCTCA AACAATTTCT TTGTTTGAGC CTCGATCCCC TTGGCAGAGT  CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGAGAAGT  CCTCGTGCCC TGGCGTGTCT AAGATATTCA CGCGCTTGCC GTCGTAGTCA AATTGCATAA 108  CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATATC CATCCAGTCA GATTTAGCAA 114  AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA 120	CGATAGGCCA	GTTCATAGGG	TAGCTAGCAA	TGCCCAAGAT	TTCTTCCAAT	TCTTGCAAGA	840
CCACGACCAT GACCGCAGCA TCCACCGCCA TCAAGGTACG ATAGGTATCT TCTGAGAAGT  CCTCGTGCCC TGGCGTGTCT AAGATATTCA CGCGCTTGCC GTCGTAGTCA AATTGCATAA 108  CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATATC CATCCAGTCA GATTTAGCAA 114  AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA 120	GATCCAAAGG	CTCACGACCG	TCACGATCCA	ACTTGTTCAT	AAAGGTAAAG	ACTGGAATGC	900
CCTCGTGCCC TGGCGTGTCT AAGATATTCA CGCGCTTGCC GTCGTAGTCA AATTGCATAA 108 CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATATC CATCCAGTCA GATTTAGCAA 114 AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA 120	CACGATGTTT	CACAACCTCA	AACAATTTCT	TTGTTTGAGC	CTCGATCCCC	TTGGCAGAGT	960
CAGATGAAGT AACAGAAATC CCACGTTGCT TCTCGATATC CATCCAGTCA GATTTAGCAA 114 AAGTCCCTGT TTTCCTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA 120	CCACGACCAT	GACCGCAGCA	TCCACCGCCA	TCAAGGTACG	ATAGGTATCT	TCTGAGAAGT	1020
AAGTCCCTGT TTTCTTCCCT TTTACCGTAC CAGCCTCACG AATCTCACCC CCAAAGTAGA 120	CCTCGTGCCC	TGGCGTGTCT	AAGATATTCA	CGCGCTTGCC	GTCGTAGTCA	AATTGCATAA	1080
	CAGATGAAGT	AACAGAAATC	CCACGTTGCT	TCTCGATATC	CATCCAGTCA	GATTTAGCAA	1140
GTAACTGCTC AGTGATGGTT GTTTTCCCCG CGTCCGGGTG GGAGATAATG GCAAAGGTAC 126							1200
	GTAACTGCTC	AGTGATGGTT	GTTTTCCCCG	CGTCCGGGTG	GGAGATAATG	GCAAAGGTAC	1260

GACGTTTCTT AATTTCTTCT TGAATATTCA TAAGTTCTCT TTCTTTGATT CTCTATTTTC 1320
CTTGTTTCAA TAGCTGAGAA TGATTTGTAC ATTGGATTTT ACCATCCTTT CGACACTCCA 1380
TTATATCGGA TGTTAGCATT TCTTATTTCTT TCCACTTCCC CCTCCCTTAT 1440
TTATAGGA 1448

#### (2) INFORMATION FOR SEQ ID NO:72:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1971 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

CTCCTAGAGC	AACTTGAAGG	ACACCTGATA	TAAAGGAAAG	GATAACAGCC	GCTTTCCATC	60
CGCCGCGTTT	ATCAGCGTAG	ACCGCAATGG	CTGCATTGTC	AAAGAACACT	GGTACAAATC	120
CTGTAATAAT	AAGAATCGGA	TTTTTAAAGA	CGATGAGCAA	GACAATTGTA	ATCAATTGAC	180
CAATCAAACC	AAAGGTAAAT	CCTGACAAGA	CAGCATTTGG	AGAACCAAAT	CCATAAGAAG	240
CTGCAAAGTC	AACCGCTGGG	AATGAACCTG	GCAACAATTT	GTTTGAAATA	CCTTGGAAGG	300
CGTTTGTCAA	CTCAGATACG	AACATTCGGA	CACCTTGCAT	CAAAACGAAC	AAGTAAACTG	360
AGAAGGTAAA	GGCTGTTTGG	ATAATGTACA	TAAAGAAATC	TTGTTTAGCA	GGATTGAATA	420
GAGTTCCTGA	AGTGATGACT	TCTTTATTAG	ACATAATGTC	TGGACCCAAG	ATTAAAAGAA	480
TGGCCCCGAA	GAATACGAGC	ATCAAAGGTA	GCAGATGCAA	CAACTGTATC	GTGGAAGATT	540
	TAGGTAATTT					600
	CTACAAACCA					660
	AGCGTTGAGT					720
	TACCAATCGC					780
	GAGATACTGT					840
	AAGAGAATCG					900
	<b>AAGCAAGTTA</b>					960
	GCGGCCCAGC					1020
	ATCATTGGGG					1080
	CCAGTAGACA					1140
	CAGTGGCGGT					1200
	CGTTCCAACT					1260
CTGGCAGGCC	TTGGAGATTG	CGCAAGCTAA	GGATTTTGTC	AGTGAAAAGG	AAGGACTTTT	1320
GGATGCCCTA	ATTGAAGCAG	GGGGGCGAAA	TTTCTCAGGT	GGACAAAAAC	AAAGGTTGTC	1380
	GCAGTCTTGC					1440
ACTGGATACC	ATTACAGAGT	CCAAGCTCTT	GAAAGCTATT	AGAGAAAATT	TTCCAAACAC	1500
GAGCTTAATT	TTGATCTCTC	AACGAACCTC	AACTTTACAG	ATGGCGGACC	AGATTCTCCT	1560
					•	

CTTGGAAAAA	GGTGAGTTGC	TAGCTGTTGG	CAAGCACGAT	GACTTGATGA	AATCCAGCCA	1620
AGTCTATCGT	GAAATCAATG	CATCCCAACA	TGGAAAGGAG	GACTAGAATG	AAACGACAAA	1680
	GACGCTCAAA					1740
	TTCTAGGAAC					1800
	TCATTGACCA					1860
	TGCTCTTGGT					1920
	GTCTAATCTT					1971

### (2) INFORMATION FOR SEQ ID NO:73:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 620 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

	NTTGCGCGTC					60
TCAATNTATG	TANAACCCAG	TGAGTTGAAA	AAAATTGCCA	GTGAATTAGA	CACGACGGAA	120
	AAAAATTCAA					180
						100
	GCAGGGGTTG					240
GTTAGAGAAA	AAAATTGATG	GGTTGATTGA	GAAATTTAAA	Carconnan	C111momon1	200
						300
AATTGAAAAA	CTGGAAACCA	TCAACTCTAA	AGAAATTGAA	CGCAAATGGT	GAAACAGCGC	360
						300
	TGTGAAAAAT					420
TTTGGGTNGT	GATGGGAAAT	GTGTTAGTTT	ልጥርጥርጥጥ _{ን እ}	TOCK CON NO		
						480
GTGATTTTCC	CCNCCTACCN	NNTNAATTTT	GTTNCCAAAA	NTTAANNCCA	TTCCCNCCCT	540
						240
NCCCAMATTT	TTTGTNCTNC	CCCNATITCC	NNACCGGAAT	TTGTTCCCNN	NNTATTTAAC	600
cccccccc	CCCCCCTTTT		•			
						620

### (2) INFORMATION FOR SEQ ID NO:74:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1550 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

CTGGTCCTN	AGGTCAATC	ATTCCCCA	ATAGGNCTC	ACTCCCAAA	CACCTCCTCC	60
CACTCGTGC	: AAAACACGAT	TGGTCAGGT	GATTCGATCC	ATCTCCTCA	ATGAANTTTC	120
AGAAATGACA	TGTGTTACA	ATTNATCTAC	TAAGGTCACT	ATAGAGCCTC	CNTTNGACTA	180
GTCAAGGACG	CGAGTGCCAC	CTGAAACTTC	AGCGATATAG	AAGGCTNGGA	GGGTATCCAA	240
CTACTTCCTT	GTAGAGTTTC	CCTACAGCTT	CCTTAAAGGC	CTCAACAGTA	TCTTTTTGAA	300
CCAAGGCAAT	GGCACAGCCA	CCAAAACCAG	CCCCTGTCAT	ACGAGCACCG	AGAACTCCTT	360
CCTTGTGCCC	AAGCTGTGTG	AACAAGAGTA	TCCAATTCCA	AACCAGTTAC	TTCATAATCA	420
CGCTCCAGAG	AAACGTGTGA	CGCATTCATC	AAACGACCAA	ATGTTTCCAA	ATCACCTGCT	480
TGAAGGGCTG	CTTGAGCTTT	AAGGGTACGT	TGGTTTTCAA	GCACAGCATG	GCGAGCACGT	540
CTCAAACGAT	TTTCATCTTT	AATCAGATAG	CTATATTGGT	CAACGGCCCA	CTCGTCCAAT	600
TCACCCAGGG	TCTGAATATC	CAAGGCAACT	TGCAATTCTT	CCACTGCTTT	TTCACACTCA	660
GCACGACGTT	CATTGTATTT	AGAGTCCGCC	AATTCACGGC	GTTTGTTGGT	GTTCATGATA	720
ACAACGACAT	TGTCCTTCAA	ATCAAGTGGC	ACCAAGTCGT	ATTCTAAAGT	ATTGGTATCT	780
			CCAATAGCAA			840
TTTACTCCGA	TAAAGTTATT	TTCTGTTTGT	TTTCCGATTT	TAACCAAATC	GAGACGCTCT	900
AGTTTTAAAT	CAAAGAGATG	CTCTGCCACA	ACTCCTGTCA	AGAGCTCCAA	GGATGCTGAA	960
GAAGACAAAC	CACCACCATT	TGGGATATTC	CCATAAACAT	AAAAATCAAA	ACCTTTGTCA	1020
ATCACGTGCC	CAGCTTCTTG	CAAGAAATGA	AGGACACCTT	TTGGATAATT	GGTCCAGTTG	1080
TGCTCTTTTT	CAAACTTGAG	GTCAGCGAGA	GGCACTTCGA	TAATGCCCTT	GTCCTCAAAG	1140
TTAGCTGAGT	AGAAACGCAA	GACTTGGTCG	TCACGCTTAC	GAGCTGCACC	GTAAGTTCCC	1200
AAGGAAATAG	CACCAGGTAA	AAACGTGCCC	ACCGTTGTAG	TCTGTATGTT	CACCAATCAA	1260
ATTAATGCGG	CCTGGTGAAA	AGAAGGTTTG	GTCTGCTTCT	TGACCAAAAA	CAGCAAGAAA	1320
			TTGTGCCATA			1380
			CTTTCTATTG			1440
			ATATCAGTAA			1500
			CCTTAAAAGA			1550

# (2) INFORMATION FOR SEQ ID NO:75:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1139 base pairs

(B) TYPE: nucleic acid-

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

GTGGCGGCCG CTTAA	GAATT AGTGGGATCC	CGGGGCTGCA	GGATTTGAAC	TCAATGCATC	60
CAAGGCGTCA TCCAT	TGAAA GAACTTCGTG	GAAGACACGT	TGTGTCAATT	CAGTTTTTTG	120
TTCTGGAGTG AGGTA	TTTAG TGTTTACACA	GTATCCAGAG	ATACGTACGA	TAACGTCTTC	190

					TAACGTGTTG	240
				TTATCAACTT		300
AGTCTTACCA	AGAGCGCGAG	GTGATACTTG	TGTAGTCAAT	GAGATACCGT	CAGCTGCATA	360
ACTAAAGTCA	AGGCTAGAAA	GTGAGTTCAA	GTTTTGCAAC	CAACCACCTT	TAGCTTTGTT	420
AGATGGGTTA	GCACCTGGTG	AGAAGAATTC	AAGTTTAGAC	AAGTTCACAG	AACCATCTTC	480
GTTGAGGTAT	ACACCTTTGT	GAACTGGTGA	GTTACCAGTT	TGTTTAGAGT	AAGCAACGTT	540
AGATGTGATT	GTCAAAAGTG	ATACTGTAGC	TTCTGCGTCT	TTGTATAGTT	TGTGGCTACG	600
TAAACGAGTT	GTGTAAGCTT	CGATTAACCA	TTCTGCCAAT	TCGTTTGAAC	GTGGGTCATC	660
				TAGATGTAGC		720
				GTATCAACAG		780
				GGCAAGAAGG		840
				GTTCAAGGCA		900
				AACTGATTCA		960
				TTTGTGAACA		1020
CACCATTCAA						1020
TGTTGTGGCG						
				CACACAGCAT	GWGWIWCAG	1139

### (2) INFORMATION FOR SEQ ID NO:76:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1326 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

CAAAACCAGT	CTTTCCTTGG	CTGAGAAAAA	CAGCTGTTAA	GGCTCCAACC	AAGTCTCCTG	60
TCCCTGTTAT	CCAGTCTAAT	TCAGTACAGC	CATTCTCAAG	TACAGCAACT	TGATTCTCCG	120
AAACAATAAG	GTCCTTGGGA	CCTGTGACTA	AGAATGACAT	ACCAGGATAG	GTCTGACACC	180
AGTCTTTCAA	GACTTGAAGC	AAATCCTCCG	TTTCTTGATC	TTTAGCACTC	GCATCGACCC	240
CAACGCCGTG	ATGCTTTAAT	CCAACAAGAC	TTCGAATTTC	TGACATGTTT	CCTTTAAGGA	300
CCGTAGGTCT	ATAGTCTAAA	AGGTCTTTAA	CTAAGCTCTT	ACGAATGGAT	GAAGTCGTTA	360
CGCCAACCGC	ATCTACTACC	ATCGGGAGAG	AAGATTGGTT	TGCATACAAA	GCTGCCATGC	420
GGATTGCTTT	TTCCTT TTCA	GCTGACAAAT	GCCCCAAATT	GATGAAGAGA	GCCTGGCTTT	480
GCTTAGTAAA	$\mathbf{ATCAAC} \triangleleft \!\!\! \Delta \mathbf{CT}$	TCACGGGGAT	CATCT GCCAT	GACAGGTTTG	CATCCCAGAG	540
CCAAAATCCC	ATTTGCCAGC	ATCTCACAAG	AAATCTCATT	GGTCATACAG	TGAATGAGGG	600
AACTAGAGCC	TATAGGAAAA	GGATTTGTCA	ATGCCTGCAT	CATTCTATCC	TTTCAGCAAA	660
GAAATATCCT	TGCACTTTTT	TAAAGAATTC	CTGCTTGATT	AAAAATCTAA	ATGCAATAAA	720
GGAAATCGCT	GTACCAATCA	AGGTTGCTCC	GAAAAATCGA	GGCGTGTAGA	TAAACCAACT	780
				TAGGAAACAA		840

WO 97/43303	PCT/US97/07950

AATACCTGTT	CCCACAATTT	CTCCCAAGGC	AGAAAAGTAA	AATTTTCGAC	CGTACTTATA	900
AAAGAGACCT	GCTAGAAGGG	CTCCAAAAGT	CGCTCCTGTG	AGAGATAAAG	GAGCTTATCG	960
			GCTGTCACTG			1020
ACAGGTCCCA	TCATGATTCC	CGCTAGAATA	TTGACTACAC	TGGACATCGG	TGCCATTCCC	1080
			TCAAGGGCAA			1140
AATTTGTGAA	CTTGTAGTTG	GTGCTTTCTC	AAGTTTCTAT	TCTTCTCCTT	TTTCTAAAGA	1200
CTGTAAATCG	CTCTTCCATG	TCTGGTGTTG	GTAAGCCATC	TCCCAAAACT	TGGCTTCCAT	1260
ATGAACACTG	ATGTGGAAGG	CATCTAGCAT	TTTTTGCTTA	TCTGTCTCAT	CACTTTCTCG	1320
ATAGAG						1326

# (2) INFORMATION FOR SEQ ID NO:77:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1056 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

			GTACTTGGCA			60
			TTTTTGATAC			120
ATATAAAAGC	AGATGCTAAC	TATGCTGAAA	ATGAATGGCT	AAAGCAAGGT	GACGACTATT	180
TTTACCTCAA	ATCTGGTGGC	TATATGGCCA	AATCAGAATG	GGTAGAAGAC	AAGGGAGCCT	240
			AACGAAATGC			300
			ACTGGGTCTA			360
			CAGAGAAAGA			420
			TACTGACAAG			480
ATGTGAATGC	TAGTGGTGCC	AAAGTACAGC	AAGGTTGGCT	TTTTGACAAA	CAATACCAAT	540
			ATGCTGAAAA			600
			AATCCGGTGG			660
			TCAAATCTGA			
						720
			GGTACTACTT			780
CGAAAAATGA	GACAGTAGAT	GGTTATCAGC	TTGAAAGCGA	TGGTAAATGG	CTTGGAGGAA	840
AAGCTACAAA	TGAAAATGCT	GCTTACTATC	AAGTAGTGCC	TGTTACAGCC	AATGTTTATG	900
ATTCAGATGG	TGGAAAAGCT	TTCCCTATAT	ATCGCAAGGT	AGTGTCCTAT	GGCTAGATAA	960
GGATACNAAA	AAGTGATGAC	NAGCGCTTGG	СТАТТАСТАТ	ТТСТССТТТТС	TCACCCTATA	1020
		GCGCTAGATG			LUGGETAIA	1020
	ACATI TACAA	GCGCTAGATG	CTAGTA			1056

⁽²⁾ INFORMATION FOR SEQ ID NO:78:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1426 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

CTGGACCACA CTATTTTCTG TGTTGGCTAT CGTGTCATGC A	AAAAGGATCT AGAAGGGACG	60
CTGGATGCTG AAAAACTCAA GGCTGCTGGT GTTCCGTTCG G	SCCCGCTTTT TGGTAAAATC	120
AAAAACGGCC AGGATCTTGT TTTGGAAGAC GGAACTGAAA T	CAAGGCAGC AGACTATATC	100
TCAGCGCCAC GTCCAGGTAA GATTATCACT ATTTTAGGAG A	CACTCGAAA AACGGATGCC	240
AGTGTGCGTC TGGCTGTCAA TGCAGATGTC CTAGTTCATG AG	GTCCACTTA TGGCAAGGGT	300
GATGAAAAA TTGCTCGTAA CCATGGTCAC TCAACTAATA TO	GCAAGCTGC ACAAGTAGCG	360
GTAGAAGCAG GTGCCAAACG CCTCCTACTC AACCATATCA GT	TGCCCGTTT CCTCTCAAAA	420
GATATAAGCA AACTCAAGAA GGACGCTGCC ACAATTTTTG AA	AAATGTCCA TGTGGTCAAA	480
GACTTGGAAG AAGTGGAAAT CTAGCAGTCA CAGAAAGGAT AA	AGTATGCCT ACTATTCTCA	540
TTACCGGAGC TAGCGGTGGT CTAGCTCAAG AAATGGTCAA AC	CTCTTGCCC AATGACCAAC	600
TCATCTTGCT TGGTAGAAAT AAGGAAAAAT TAGCCCAACT CT	TACGGAAAT TATTCCCATC	660
CAGAATTGAT TGAAATTGAT ATTACCGACG ATTCAGCCCT AG	GAAGCTCTG GTAACTCATC	720
TTTATCTCCG CTATGGCAAG ATTGATGTCT TGATTAACAA CG	GCTGGTTAC GGGATTTTTC	780
AGGGATTTGA CCAGATTGCT GATAAAGATA TTCACCAGAT GT	PTTGAGGTC AATACCTTTG	840
CCCTGATGAA TCTGTCTCGT CACCTTGCGG CTCGTATGAA GG	SAAAGCAGC AAAGCCCATA	900
TCATCAACAT CGTCAGCATG GCAGGTCTAA TAGCTACTGG CA	AAGTCTAGT CTTACTCAC	960
CGACCAAGTT TGCGGCTATT GGTTTTTCAA ATGCTCTGCG AC	TCGAACTT ATCCCCTATC	1020
GAGTCTATGT GACAACAGTC AATCCAGGTC CAATCCGAAC AG	GATTTTT CACCAACCTC	1020
ACCCAGATGG AACTTATCTT AAATCGGTTG ACCGCTTCCT CT	TAGAGGCA GATGCAGTCC	1140
CTAAAAAGAT TGTCAAGATT ATAGGCAAAA ATAAACGAGA AC	TCAATCTC CCCATTTCO	1200
TGAACCTAGC CCATAAGTTT TATACTCTCT TTCCCAAGCT AG	CTCATARC TTCCCACCOC	
AAACTTTTAA TTATAAGTAA AAAGAACCAA TGTGCAGGTT GT	TICTACC TACATATEC	1260
TTCTTATCAT TTCTCAACTA TCAAACTGAA CTTCTTCTAG TAG	CATACHC INCAINTING	1320
CGCCCATCTT AGATAGGCTG GTTTTCTCAT GCTGGATATA GAG	CCAC	1380
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	CCAG	1426

# (2) INFORMATION FOR SEQ ID NO:79:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1702 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

					GATTGCCTAA	60
					AGGAAATCAC	120
					GCCTCCTCAG	180
					ATCTACATCA	240
					GCCAAACTAG	300
GAATTGAAA	CTTGCAAGAT	CTCTTGCTCT	ACTITCCTTI	CCGTTATGA	GACTTCAAAA	360
					CAGGTAGTGA	420
CTCCTGCTAG	TGTCCAGTAT	TATGGTTTCA	AGCGCAATCG	CCTGCGTTTT	AGTCTCAAGC	480
					GATAAAATAG	540
AGTTGGGAG	AACCCTTGCT	GTCTTTGGAA	AATGGGACCG	CGCTAAGGGC	TAGTCTGACT	600
GGGATGAAGG	TTCTGGCTCA	GGTAGAAGAT	GACCTCCAGC	CTGTCTATCG	TCTGGCTCAG	660
	AGGCCAGTCT					720
CTCTTGATAG	AAGAAAATCT	GCCCCAGTCT	TTACTAGACA	AATACAAACT	CATGTCCCGT	780
TGTCAGGCAG	TCCGAGCTAT	GCATTITCCA	AAGGATTTGG	CAGAAAACAA	GCAGGCTCTT	840
CGCCGTATCA	AGTTTGAGGA	ACTCTTTTAT	TTCCAAATGC	AGCTGCAGAC	GCTCAAGTCT	900
GAAAATAGAG	TTCAGGGAAG	TGGTCTGGTT	CTGGATTGGT	CTCAGGAAAA	AGTGACAGCA	960
GTTAAAGCAA	GTCTTCCTTT	TGCCCTGACC	CAAGCTCAGG	AAAAGAGTTT	GCAGGAAATT	1020
TTAACTGATA	TGAAGTCCGA	CCACCACATG	AATCGTCTCC	TACAAGGAGA	TGTGGGGAGC	1080
GGAAAAACGG	TAGTCGCTGG	CTTGGCCATG	TTTGCGGCAG	TGACAGCAGG	TTATCAGGCT	1140
GCCCTAATGG	TACCAACAGA	AATCCTCGCA	GAGCAACACT	TTGAGAGTTT	ACAGAACCTT	1200
TTTCCCAATT	TGAAACTGGC	TCTCTTGACA	GGTTCCTTGA	AAGCTGCAGA	AAAGAGAGAA	1260
GTCTTGGAGA	CCATTGCCAA	GGGTGAGGCT	GATTTGATTA	TAGGAACTCA	CGCTCTGATA	1320
	TGGAGTATGC					1380
GGTGTAGGGC	AAAGGCGTAT	TTTACGGGAA	AAAGGCGACA	ATCCAGATGT	CCTCATGATG	1440
ACGGCGACTC	CCATTCCACG	GACGCTTGCC	ATCACAGCCT	TTGGAGATAT	GGATGTTTCC	1500
ATTATCGACC	AGATGCCAGC	AGGTCGGAAG	CCTATTGTGA	CGCGCTGGAT	CAAACATGAG	1560
CAACTACCTC	AGGTCTTGAC	TTGGTTAGAG	GGGGAAATTC	AAAAAGGTTC	CCAAGTCTAT	1620
GTCATCTCTC	CTTTGATTGA	AGAATCACAA	GCTCCTAGAT	TTGAAAAAAT	GCCATTGCCT	1680
	<b>ĢTŢĢACTACT</b>					1702

## (2) INFORMATION FOR SEQ ID NO:80:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 663 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

CTATGAAGG	A CCTGGTTCAG	AAGTTGGCAA	GTAAAGAAGA	ATTGTCGACA	GCAGACAATG	60
AAATGATTG	A ATTATTGGCT	CGTTTTAATG	AACGCCAAGC	CTCCTTTTTT	GGTCAGTTTT	120
	G CTATGTTAAC					180
	TTATCAAGCA					240
						240
CCAMIMATGA	GATGGGAATG	GAAAATTATT	TCTATAATGA	GCAGATCAAG	AAGGATTTGA	300
AGAAATTAAA	GGATTCTCAG	AAAAGCTTTA	CCTATCTCAA	GTCGCCAGAG	TATAATGACT	360
	TTTAACACAG					
						420
	AAAATGGATG					480
TGCAGAAGAT	TCGCTACCAG	TTAGAAAGTC	AAGGTTTTAC	CAATATAGCA	AATTTTTCTA	540
	GGAGCCTTTC					340
						600
TTGGCTTTTG	ACAAGGCAGT	TGATCCTTTC	CTATCCATCC	CACACCAGAT	CCS SCTCCTC	660
CAG				- HENCENGAI	COANGICCIG	860
CAG						663

## (2) INFORMATION FOR SEQ ID NO:81:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1365 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

CTTGTCTTTT	GATTTTTGGA	GGTGTTGATG	AAAACATTTC	TTGTCAAACA	AAAGTTTCGT	60
CTTGGAGGCG	AACGCTTCGC	TATCAAGGAT	GACAGGGGAG	AAATTGCCTA	TCAGGTGGAG	120
GGATCATTTT	CTTAAGATTC	CCAAAACTTT	TACCATCTAT	GATGCGGCTG	GTGAACAAGT	180
CAGTCAGATC	AGTAAAGAAA	TCTTGACCTT	GCCTCCTCGT	TTTGGAGATT	CAGCTTCGGG	240
	ŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢ					300
ATAATCTAGG	TCTTCGTATC	GAGGGCAATA	TCTGGGATTT	GAATTTCAAA	TTGCTGGATG	360
ATCGCGATCA	GTTGATTGCG	GAAATTAAGA	AGGAACTCTT	CCATCTGACC	TCTACCTATA	420
CCGTAACGGT	TCTTGAAGAC	GCTTATGCAG	ACCTAGTCAT	TTCCCTCTGT	GTCGCGATTG	480
ACTATGTGGA	AATACTGGAA	AGCCAATCAC	ATTAAACAAG	TGAATAAGGA	GACAATATGA	540
	TAGTGCACAA					600
	ACCATCAGTA					660
ACTCTGGGGT	AGCAACCCTT	AAGAAATACT	TTGACGGGAC	CATTATCCCT	GAAAATCCAC	720
GTATTACCAA	TGCCCAAAAG	GCTATCCGTA	CCAACGACAT	CGAAAACGTT	AGGGAAAGAC	780
TGCGCGTCAC	CATACCATGT	TTGAAATGTT	GGGGAACTTC	TCTATCGGGG	ATTACTTCCG	840
TGACGAAGCT	ATCACTTGGG	CTTATGAGCT	TTTGACAAGC	CCTGAATGGT	TTGATTTCCC	900

TGCTGAAAAA	CTTTACATGA	CCTACTATCC	AGACGATAAA	GATTCTTACA	ACCGCTGGAT	960
TGAAGTGGGA	GTGGATCCAA	GTCACTTGAT	TCCAATTGAG	GACAACTTCT	GGGAAATCGG	1020
TGCGGGACCT	TCTGGACCAG	ATACAGAAAT	CTTCTTTGAC	CGTGGGGAAG	CCTTTGACCC	1080
AGAAAATATC	GGTCTTCGCC	TGCTTGCAGA	AGATATTGAA	AACGACCGTT	Atattgaaat	1140
CTGGAACATC	GTTTTGTCAC	AATTTAACGC	AGACCCTGCT	GTTCCTCGTA	GCGAATACAA	1200
GGAATTGCCA	CATAAGAACA	TTGATACGGG	CGCTGGTTTG	GAGCGTTTGG	TGGCCGTTAT	1260
CCAAGGGGCT	AAGACCAACT	TTGAAACGGA	CCTCTTCATG	CCGATTATCC	GTGAAGTCGA	1320
GAAATTGTCT	GGTAAGGTTT	ATGACCAAGA	TGGCGACAAC	ATGAG		1365

### (2) INFORMATION FOR SEQ ID NO:82:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1322 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

CTCCAGGTAA	TGTCAAGGCT	AACGTGGTTC	CAATTCAAAA	ACTGATTGAT	ATTTCAAAAG	60
ACCCACGTTT	TGGAGAAACA	CATGCCCTTA	TCTTGTTTGA	AACACCTCAA	GATGCCCTTC	120
GTGCCATCGA	AGGCGGCGTG	CCAATCAAGA	CTCTTAACGT	TGGTTCTATG	GCTCACTCAA	180
CAGGTAAAAC	ATTGGTCAAT	ACCGTTTTGT	CTATGGACAA	AGAAGATGTT	GCTACATTTG	240
AAAAAATGCG	TGACTTGGGT	GTTGAATTTG	ATGTCCGTAA	AGTACCAAAT	GATTCTAAAA	300
AAGATTTGTT	TGACTTGATT	AACAAAGCCA	ATGTCAAATA	AGCCATTATT	TATGAAAGGA	360
TTTTAAACAT	GTCTATTATT	TCTATGGTTT	TAGTAGTCGT	TGTAGCCTTC	CTTTGCAGGT	420
CTTGAAGGCA	TCCTCGACCA	GTTCCAATTT	CACCAACCAC	TTGTAGCCTG	TACCCTTATT	480
GGGCTTGTAC	AGGTCCTTGG	AAGCAGGGAT	TATCCTCGGT	GGATCGCTTC	AAATGATTGC	540
CCTTGGTTGG	TCAAATATCG	GTGCTGCTAT	CGCTCCTGAT	GCTGCACTTG	CTTCTGTCGC	600
TGCTGCCATT	ATCATGGTTC	TTGGTGGTGA	CTTTACCAAG	ACTGGTATCG	GTGTTGCCCA	660
AGCGGTTGCT	<b>ATCCCTCTTG</b>	CCGTAGCTGG	ACTITTCTTG	ACAATGATTG	TTCGTACAAT	720
TTCAGTTGGT	TTGGTTCATA	CTGCAGATGC	TGCCGCTAAA	AAAGGTGACT	TCGGCGCTGT	780
GGAGCGTGCG	CATTTCATTG	CGCTACTTTT	CCAAGGACTT	CGTATCGCGC	TTCCTGCAGC	840
TCTTCTCCCT	TATGGTACCA	ACTGAAACTG	TACAAAGTAT	CCTTAGTGCC	ATGCCAGACT	900
GGCTCAAAGA	TGGTATGGCT	ATCGGTGGTG	GTATGGTCGT	TGCCGTTGGT	TACGCCATGG	960
TTATCAACAT	GATGGCAACT	CGTGAAGTAT	GGCCATTCTT	CGCTCTTGGT	TTCGTTCTCG	1020
	AGATATTACT					1080
	CCTTTCTAAA					1140
	CGATATCCTA					1200
	CAATTAACTA					1260
				TGGGCTTATA		1320

WO 97/43303	PCT/US97/07950
	2 0 21 0 0 3 11 0 1 3 3 0

AG 1322

- (2) INFORMATION FOR SEQ ID NO:83:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 745 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

CTCCCATAAC	C3.3.CCC.3.3.MC					
CIGGGATAAC	CAAGCGAATC	ACAGAACCGT	CATTAGCCGG	TGTGATACCA	AGATCAGAAG	60
CGTTCAAGGC	ACGTTCGATG	TCTTTCAATG	AAGACTTGTC	AAATGGTGTT	ACCAACAAAA	120
CACGCGCTTC	TGGAATCGTA	ATTGAAGCGA	TTTGGTTAAG	AGGAGTTTCC	ACTCCATACT	180
ATTCTACATG	<b>ТАСАСССТСА</b>	ACC NACCOMO	CATTGGCACG		ACICCAIAGI	100
	cncoolca	NOCANGCT 16	CATTGGCACG	ACCAGCACGG	ATACCACCAA	240
ATTCACGAGC	AAGTGATTGG	TGAGACTGGG	TCATTCTCTC	TTTAGCTTTT	TCAATAATTA	300
CGTTAGCCAT	ATTCTTTCTT	ATTCCTTTTC	TTCGATATTA	TTTGAAACTG	TTGTTCCGAT	360
ATTTTCACCA	AATACGACAC	GTTTGATGTT	GCCTGATTGG	TTCATGTTGA	AGACAACCAA	420
GTCAATGTCG	בידיים בי בייביים	ACACCCOMPCA	00000000		noncruteem	420
GTCAATGTCG	TIGICCALIG	AGAGGGTTGA	GGCTGTTGAG	TCCATGATAC	GAAGACCTTT	480
GTTGATAACA	TCACGGTGGG	TCAATTCTTC	AAACTTAACG	GCTGTCTTGT	CCTTCTTAGG	540
ATCGGCATTG	TACACACCAT	CGACGCCATT	TTTAGCCATG	AGGATGGCAT	СФССФФССАФ	600
TTCAGCTGCA	CCARCCCCCC	MOMMON MOM	2222		CIGCIICGAI	600
TTCAGCTGCA	COMMOGCCGC	TGTTGTATCT	GTCGAGAAGT	ATGGTGAACC	AATTCCAGCA	660
CCAAAGATAA	CGATACGGCC	TTTTTCAAGG	TGACGAAGGG	CACGTCCACG	GACATAAGGC	720
TCTGCCACTT						
						745

- (2) INFORMATION FOR SEQ ID NO:84:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 636 base pairs
  - (B) TYPE: nucleic acid-
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

CTGATAAATC	TATATCCAGA	TTTAGATTTC	ATTGTGACGA	CGGTAGCTTT	GCAGGAACCA	60
					ACAACGTCTT	120
CAAGCAAAAA	TTCAGGAGAT	AAACTATGAA	TAATCTTTCG	CTTGTCCTTA	TGGATATATC	180

TGTTCAAAAT	CGTCAAGAAG	CCTACAAAGA	ATTAGCAAAT	CAAATCAGCC	TTCTTGTTTC	240
TGAAGATACA	GAAAAAATAG	AAGAGCTTCT	ATATTACCGT	GAGAGACAGG	GAAGTATAGA	300
GGTTGCTAAA	GGTGTTCTTC	TACCACATTG	TGAAGGAAAC	TTTCAACATC	ATGTCTTAGT	360
GATTACTAGA	TTAAAACCAC	CTATCAGAGA	ATGGTCGAAG	GATATCCAGT	GTGTTGACCT	420
TATTATCGGT	TTGGCCATTG	CAGTATCACA	GGACAAGTCA	TGTATTAAAA	CATTGATGAG	480
AAGACTAGCA	GATGAATCAT	TCATAAATCA	ATTAAAACAG	TTAACAAAAG	AAGAATTACG	540
GGAGATAATA	TATGGAAATC	AAAGATATTC	TTAATGTGAG	TCTGATCCAG	ACGGATTTAC	600
AGATGCAGAG	CAAAGAAGAG	GTTTTTGAGG	CATTAG			636

#### (2) INFORMATION FOR SEQ ID NO:85:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1128 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

CTGGTACAAT	CGGTGTGATG	GACGCTATCG	TGAAACAACC	AGGAGTTAAA	TCAATCATCG	60
GTGGTGGTGA	CTCAGCTGCC	GCAGCGATTA	ACCTTGGCCG	TGCAGACAAG	TTCTCATGGA	120
TTAGTACGGG	TGGTGGAGCA	TCAATGGAAC	TTCTTGAAGG	TAAGGTTCTT	CCAGGACTTG	180
CAGCCTTGAC	AGAAAAATAA	GATTTTATAA	ATAAATCAAA	GAAGAGAGGG	ATGAAAGTTC	240
CTCTTTTCTT	TTGCTTAAAA	TAAAAACGCT	TCCTCTCAAC	TATTACTCAT	AAAAATCACC	300
GATTTATGAT	AAAATGGAAA	TAGAAAGTTG	AGATTATGAG	TTATTTTAAA	AAATATAAAT	360
TCGATAAATC	CCAGTTCAAA	CTTGGTATGC	GAACCTTTAA	AACAGGTATT	GCTGTTTTTC	420
TAGTTCTCTT	GATTTTTGGC	TTTTTTGGCT	GGAAAGGTCT	TCAAATTGGT	GCTTTGACAG	480
CCGTTTTTAG	CCTGAGGGAG	AGTTTTGATG	AGAGTGTTCA	TTTTGGGACT	TCGCGTATTC	540
TAGGAAATAG	TATCGGTGGA	CTCTATGCCT	TGGTCTTCTT	CTTATTAAAT	ACCTTTTTCC	600
ACGAAGCCTT	TTGGGTGACC	TTGGTAGTTG	TTCCAATCTG	CACCATGTTA	ACCATTATGA	660
CAAATGTAGC	CATGAATAAC	AAAGCAGGGG	TTATTGGTGG	TGTAGCAGCT	ATGTTAATCA	720
TTACCCTATC	AATTCCAAGT	GGTGAGACAA	TTTTGTACGT	GTTTGTGCGT	GTATTAGAAA	780
CGTTTATGGG	AGTTTTTGTC	GCAATTATCG	TAAATTACAA	TATTGATCGT	ATTCGTCTCT	840
TTTTAGAGAA	AAAAGAAAAA	TAATGTTACA	TTTTATAACA	TTATCAATTG	ACGTTTGTCT	900
TTTTTTAGAC	TATAACAGAC	AGAAAGAAGG	Aaattgtaaa	TGAAGGAAAA	AGAATTTCGC	960
CGAAATATGG	CTGTTTTTCC	TATCGGCAGT	GTTATGAAGT	TGACCGATCT	ATCGGCGCGT	1020
CAGATTCGTT	ATTATGAAGA	TCAAGAGTTG	ATCAAGCCCG	ATCGAAACGA	AGGGAAATCG	1080
TCGCATGTAT	TCCTTGAAAT	GACATGGATC	GTCTGCTTGA	AAATCATT		1128

(2) INFORMATION FOR SEQ ID NO:86:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1249 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

ACCC A COMMO						
AGGCAGTTT	- AGACTAATAT	CCAAGTCGT	A AGAAATGCC	r gaaataagci	TTTCTAAATT	60
GICCAAAGC'	r TGCGGAAAA(	GCTCTTGGAZ	TAGTTTCTCT	T AAAGAACTTO	COCAMAMAA	120
ACATCTTGT	TCCAACGCA	CTGTATTTCA	TCTGTCACG	CGGGAACACC	CCTATACCMC	180
ATCTGACTGA	A GCAAGAGGGI	CGCATGATCC	GCATTGTGAG	TATCAATCAA	Cacaacmaca	
TTTTTAACAC	GGGTCAAAAA	AGTTTCCTCC	TGCCCCAAC	AGAAACTOTO	AAACTCCTTG	240
GCAATCATC	GCTAAACTCC	TTGGACAAAC	CTGGATACAC	COCCOCA	CGTGTCAAAA	300
AGTCCACTTT	' GAAGTAACTA	TCATCAATCT	COLOCATACAC	CICGIGATCI	' CGTGTCAAAA ' TCTCTGATGG	360
TACCTCGTGG	TTGACTGATA	GAGCCTCCAT	CCACACGAGC	ATAGAGACAT	TCTCTGATGG TCCAACCAAG	420
CACTTGGCAC	' ATGCA AGTCA	CCAMACAGGAI	TIAGAAAGAG	GATCTTGCCT	TCCAACCAAG	480
AGTYCCA ACTYT	. MICCAAGIGA	CCATAGAGGC	AGATAGCGGC	CTCTTCCTCC	TGAGCCCAGT	540
TCCTCCAACTI	TIGAAAGTTG	AAATTGATGT	CAAACAAGTG	ACCATGAGTT	TGGATAATCT	600
1001CGAACC	AAGCTCAGTC	ACCAGACGTT	CTGGGTAGCC	GGCGTAGAAG	TCCATGTTCC	660
CTTTAACAAC	GCGGATGCCC	TCCCAAAGTG	GAGAATCCGG	ACGTAGTTCA	GAATCGCCGT	720
TATGAAAAAC	GGCATCGACT	TTGCCCACAT	AGCGATCACG	GACTTCTTCC	BC A BTC A BCC	780
TATEGECATG	GGAATCGCTC	ATTACAATGA	TGGTTTGCTT	TGCCATGATG	CAAAMACCMC	840
CAAAAGTTTC	TTAACGGCTA	AGGCACGGTG	AGATTGACTA	المدام الملحاء الماسامان	CCACCCOMA	
TTCAGCTGAT	GACTCACCTG	TCTCTCCTAC	AAGGAAGAGG	CCATCATACC	CLAGGGTTAA	900
TTCACCCTTA	GGTTCAAAGT	TAATATAACC	TGACCACTOR	COMMONTAGE	CAAAGCCATT	960
CTTATTTGGG	CTGGCTACGA	СПАСССТТСТ	CTCCAACTCT	GCTTCAACAA	CTAAACTTTC	1020
AAAGACCATG	GCCA ATTTCCT	CONNECTOR	GIGGAACIGA	GCCGAGCGGT	CCTTGAGTTC	1080
ACCTGCGAAA	GCCAATTCGT	GCAAGAGT-T-T	GGCATTATTT	TCACGGTCAG	TAGCTCCCAC	1140
CATTCACTOR	CGAGCTGACC	AGACGCCTGG	TAAGCCACCA	AGGACNTCGA	CTTNAGACNA	1200
GATTCACTGC	CAAAACCATC	TTGNCCGTCA	ATGAGAANTG	GTTTCTGCC		1249

# (2) INFORMATION FOR SEQ ID NO:87:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1990 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

CTAGACCATT	TAACAGTGAT	AGGGTTAAGA	CGAGTGACAT	CACCCCAGAT	GATTGGTGGT	60
TTTACCCCAC	GGCATACCGT	ATGGATTGTA	AACCCAATCC	AATTTTTAAG	GAGGAAGGAG	120
GTATCCTGAZ	CAAGTTTTGG	ACCGGAAGTA	ACTTCAAACC	AATGTCATTA	ACGGCTCAAA	180
TTCAACCGTC	GAAACAAGGA	CATCAAAGTC	AATATCTTCT	TGCCAACTTG	AATCCATTCG	240
TCAATCGTTT	CAGCAAGGGA	AAGCATCGTA	CTCTTTTTGA	GACAATTCAC	CTTTACGGTA	300
AGCCAAACGT	TTGGCACGAA	CTTCTTTTGT	TTGAGGGAAT	GAACCAATCC	TTGTTGTTGG	360
AAAAGCTGGA	AATTTGAAAC	CTTCTCCTTG	GATAGCTTCA	CGTTCTGCAA	AGGCTGGCAA	420
ACGAGTGTAG	TCTGCGTCTG	TCAAGCCAGC	GATACGCGCA	CGAAGTTCAG	CATTTTCACC	480
AACACGCTCA	GTCGCAAAGA	GTTCTTTGTT	GGCTGCAAGA	GCTTCTGAAC	CTTGACCATT	540
GCGGATAGCA	TCCAAGTCAC	GGATTTCATC	CAATTTTTCA	ACTGCAAAGG	CAAAGTGGTT	600
CAAGAGTGCT	GGTTCAAATT	CTTCATTAGC	AGTTGTAAAT	GGCACATGAA	GAAGTGAGCA	660
AGAGCTTGTC	AAAACGATGT	TTTCAGCTGG	GATTTGCTCA	AGAACAGCCA	AGCTCTTTTC	720
GTAGTTGTTG	CGCCAGATGT	TTTTACCATT	GACAATACCT	ACATAGAGAG	TCTTGTCAGC	780
TGGGAAGCCA	CCTTTAACGA	GTTCAAGAGT	TTTCTTACCT	TCAACAAAGT	CAAGACCGAT	840
AGCATCTACT	GGTAAGTTTA	CAAGGTCAGC	GTATACGTCA	CGAACATCAC	CGAAATAAGT	900
TTGAAGCAAG	ACTTCAAGAC	CTTTTTTGTC	AGCCAAGAGT	TTGTTGTAAA	GGTTCAAGAA	960
AAGAGCTTTT	TCTTCAGCTG	TCAAGTCTTT	TACAAGAGCC	GCTTCATCCA	ATTGGATGCG	1020
AGTCGCACCA	AGTTCAGCCA	ATTTAGCAAA	AACTTCTTGG	TAAGCAGCCA	CTAAGCTATC	1080
TACGAAGTCG	TCTGCTTTCA	CGCCTTCTTC	AAAGTCTGAC	AATTGAAGGA	AAGTGAAGGG	1140
	ACAGGACGAG					1200
AATCTTGTGA	CCAGCCAATT	TTACTTGAGT	GTCTTTTTCA	AATTTAGGAA	CGATGTAGTG	1260
	TTGAACCATT					1320
	CCCAAAGCGA					1380
	ACGTTGAAAA					1440
	ATTTCAGTGA					1500
	GCTGCTAAAA					1560
	AATTCACGGA					1620
	CCAAAATTTG					1680
	ATTAGGGTTT					1740
	AGCAAACGTC					1800
	AAAACATGTT					1860
	ÇTÇATTCTAG					1920
	TGGCTAGGAC	TTTTAAGACT	GTATCCAACT	GAGGACTAGT	CTTTCCTGTC	1980
TCCATCCTAG						1990

# (2) INFORMATION FOR SEQ ID NO:88:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1064 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

CTTTATAATI	NACAANNACT	TGGATTTGA	CACTGATTA	CCATATAATG	ACDTTANACC	60
AGAGGTTAA	A GTATGGCCAA	GGATGGAAG1	ATTCTTCTTY	TTCGGAAACA	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	60
ATTAATTAA	GGAACCTGGC	TTAAAAGGG!	GCCAAAAGTT	מייית מיייתים	TCCCCAAAA	120
CAAATTTTTC	AAGCGGTTAA	GGATTTATCO	TTTGAGGTTC	CAAAGGGACA	1 CCCGAAAAA	180
TTTATTGGTG	CTAATGGGGC	AGGTAAGTCA	ACAACGATTA	AAATGTTGAC	AATTTAGGT	240
AAACCGACAT	CIGGITITIG	TCGCATTAAT	GGGAAGATTC	CTCAAGAAAA	AGGGATTTTA	300
TATGTTAAGG	ATATTGGTGT	TGTTTTTGGG	CAACGCACCC	AGCTTTGGTG	TCGTCAGGAT	360
TTACAAGAGA	CATACTCAGT	TTTAAAAGAA	ATTTATGATG	TCCCTGATGC	GGATTTGGCT	420
AAACGCATGG	ATTTTTTAAA	TGATGTTTTA	GACTTGAAAG	AGTTTATTAA	AGTATTTCAA	480
CGGACACTAT	CATTAGGTCA	ACGTATGAGA	GCGGATATTC	CGGCCTCCTT	GGATCCTGTG	540
CCCAAAGTTC	TTTTTTTAGA	TGAGCCGACC	ATTGGTTTCC	ACGTTTCGGT	GCTCCACAAT	600
ATTCGTCGGG	CAATTACTCA	GATCAATCAA	GAGGAAGAAA	CTACCATTCT	TAAGGATAAT	660
CACGATTTGA	GTGATATTGA	GCAATTTGTG	ATCGGATTTT	CATGATTGAC	THGACCACT	720
AGATTTTTGA	TGGAACAGTG	AGCCAACTCA	AGGAGACCTT	TGGTAAGATG	AAGGGGCAAG	780
CTTTTGAACT	GCTACCAGGT	CAAAGTCATC	TCGTCTCTCA	CTATGAAGGT	AAGACTCTCT	840
TGACCATTGA	TAGACAAGGA	AACAGCCTCA	ACATTGAATT	TGATAGTTCT	CIGTCTGATA	900
CAGCTGACAT	TATCAAGCAA	ACCCTGTCTG	ATTTTCAAAT	CCGCGATTTG	CGCTACCAGT	960
ATACGGATAT	TGAGGATATT	ATCCGTCGCT	TCTACCAAA	CCAC	AAGATGGTGG	1020
			ANCCOMMA	GGAG		1064

# (2) INFORMATION FOR SEQ ID NO:89:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1371 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLEÇULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

CTCTAGTGCC	TGGTTTGGTA	СТСАППИИСС	MT00000			
COMOCCONNON	1001110011	GIGATITIGG	TIGGGGATAA	TCCAGCCAGC	CAAGTCTAAC	60
GIICGCAACA	AGGAGAGGTC	AGCTCTTGCG	GCTGGTTCCC	GTACCGAAGT	ACTCCCACTT	120
CCAGAGACCA	TTACTCAAGA	GGAATTGTTA	GACCTCATTC	CMILITARIA		120
GCTTGGCATG	CC3 TOTALITICO	20122222	CHOCIGATIC	CTAAATATAA	TCAGGATCCA	180
	GGATTTTGGT	CCAGTTGCCA	TTACCAAAAC	ATATCGATGA	AGAGGCGGTT	240
TTATTAGCCA	TTGACCCAGA	AAAGGATGTG	GATGGTTTCC	ATTCCCCTTAAA	C10000100	
CTTTGGTCTG	GACATCCACT	Chrchmaco	200100	MICCCCIMM	CATGGGACGT	300
CARCALONE	GACATCCAGT	CAIGATTCCC	TCGACACCTG	CAGGAATTAT	GGAAATGTTT	360
CATGAATATG	GGATTGACTT	GGAAGGTAAA	AATGCGGTCG	TAATCGCTCC	ጥጥር እ አ አጥ አጥር	420
		_			TICMMINIC	420

GTTGGAAA	C CTATGGCTCA	GCTTCTTTTG	GCTAAAAATG	CGACAGTAAC	CTTGGCCCAC	480
TCACGAACT	C ATAATCTTGC	CAAGGTGGCT	GCTAAAGCAG	ATATTCTTGT	AGTCGCAATC	540
GCCCCCCC	A AGTTTGTGAC	TGCTGACTTT	GTCAAACCAG	GTGCGGTTGT	CATTGACGTT	600
GGGATGAAC	C GAGATGAAAA	TGGGAAGCTC	TGTGGAGATG	TTGATTATGA	GGCAGTTGCA	660
CCACTTGCT	'A GCCATATCAC	GCCAGTCCCT	GGAGGTGTCG	GTCCTATGAC	CATTACCATC	720
CTGATGGAG	C AAACTTATCA	AGCAGCACTT	CGGACATTGG	ATAGAAAATA	ACACAAACAM	
TCGATTAAT	A GAGTGTATTT	ТСТАТАССТА	TATOTALAND	CCCICILIA	AGAGAAACAT	780
TTTTACATAT	3 3C30003C333	3001001A		GGCAGAAATG	AATATTAAAT	840
TITAGATAI	A AGATTACAAA	AGGAGGTCTG	CGTCTCCTTT	TTGTTGTATA	ATAAAAGTGA	900
GAGGGAAAA	A GGATGAAAGT	GATTAATCAA	ACCTTACTAG	AAAAAGTTAT	TATTGAACGT	960
TCTCGTTCA	A GTCATAAAGG	AGATTATGGT	CGTCTGCTGC	TGCTTGGTGG	TACTTATCCT	1020
TATGGAGGT	G CCATCATCAT	GGCTGCTTTA	GCAGCTGTAA	AAAGCGGTGC	ACCATIVICOTIC	
ACCGTTGGA	A CGGACAGGGA	AAAATATCCC	CCCTCTCCA	10000000	WOON! 10010	1080
CCCCTTTTTT	7		GGCTCTGCAC	AGCCATTTAC	CTGAGCCTAT	1140
GGCCTTTTC	r cttcaagacc	AGCAATTGTT	AAAAGAGCAA	TTGGAGAAGG	CAGAAGTTAT	1200
CTTGCTGGG	G CCTGGTTTAC	GAGACGATGC	TTCTGGAGAA	AATCTAGTAA	AACAGGTCTT	1260
TGTTAATTT.	A AGCCAAAATC	AGATTTTGAT	TGTAGACGGA	COTOCOTO	CC) mmommoo	
TAGGACAAG	T TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTA	CCMCLLOCAL		GGIGCCIIGA	CCATTCTTGC	1320
**************************************	TTGTCATTTC	CCTCAAGCCA	GTCAATCCNG	CCNCCCGGGG	T	1371

# (2) INFORMATION FOR SEQ ID NO:90:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 635 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

TTTTGGGGGT	NTGGCTCCTT	NGGTNCTTTA	NAAAAGGCCC	TANCCCCNTC	ATCTGNAATT	60
CCCATTNNTG	GCTCNTNANC	TACCATCCGA	TTTNNCANGG	MOSCONIG	AICIGNAATT	60
NTTGTTNANA	ATRITICOTORE	COMMONANT	111MCANGG	NCCCCTNNCT	TTCCAATTTN	120
Ammanana	AINIGGICAT	CCTTGGANGT	NCACTCGATG	Anagtgatta	ATCAATCCTT	180
AAMMAMATTA	GTTATTATTG	ATCGTCCTCG	TTCAAGTCTT	AAAGGAGATT	ATGGTCGTCT	240
GCCGCNGCTT	GGTGGTANTT	ATGGGGGCGG	AGGTGNCACC	TCCATNGCTG	CTTGNTCNGG	300
TGNNNNAANC	NGTGCTTGAT	TGGTGACCGT	NGGNNCTNAC	CNCNNTYPATYT	TOCOCOCO	
GCACNTCATT	NNCCTGACCC	TNCGGCCATT	TCTCTTCAAN	CHOMMITATI	ICCCGGCTCT	360
CNTNTGGNNA	A TYCANACA A mm	THE COCCATT	TOTOTTCAAN	ACCAGCNATN	GTTNAANGAC	420
NON THE COUNTY	AIGNNGAATT	TINICTIGCT	GGGGCCTGGA	TTTACTANNA	CGATGCTTCC	480
NGNANGAAAA	TNTNGTTAAA	ACATGGTCTT	TGNTNAATTN	TAATCCCNAA	TTCCAAATTN	540
TGAATGTATA	ACNGAGGTGC	CNTNGNCCAT	CCTTGCNAAG	AANAATTTCT	TO CONTRACTOR	600
TCAANNCAAA	ATTGAAATNC	TGGCNCCCNG	GGGGG		*************	
	•					635

# (2) INFORMATION FOR SEQ ID NO:91:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1505 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

					GCAGGACTAG	60
TAGTCGCAG	ACTCATGGCC	ACACTAGCAG	CCTATGGACT	CACTAAAAGA	AAAGAAGACT	120
AAGTCTTTTC	: GATAAAAAT	AAACAGCGAG	ATTGAAGCTC	GCTGTTTATT	TTTTAATTAA	180
TCACCTAGTO	CAAGACGTTC	AAAGATATCA	TCCACTCGTT	TGGTGTAATA	AACTGGGTTG	240
AAGATTTCAT	CGATTTCTTC	TTGTGTGAGA	CGTGATGTTA	CTTCTGAATC	TGCCTCAAGA	300
AGTGGTTTAA	AGTCTACTTG	GTTGTCCCAA	GAGTAGGCTG	TTTTTGGTTG	CACCAAGTCA	360
TAGGCTTGCT	CACGGGTCAT	GCCTTTTTCA	ATCAATGTCA	ACATAGCCCG	TTGGCTAAAG	420
	AAGTCGAGTT					480
	TTCCAAAACG					540
	CAGCTGATGA					600
	TCATGTGACC					660
	GTTTGTGAGG					720
	GTTGCTCAGA					780
	TGCTGGCAAG					840
	ATTCCTTGGG					900
	TTGGCAAAGT					960
	TCGAAGCGCT					1020
	GGTTGTCGGC					1080
	CTTGGCCTTG					1140
TGATGTCGTT	GGCCTGCTTG	TAGAGGTAAC	CATAAGCAGT	ATCCACCACG	TCGGTAGAAG	1200
TTAACCCATA	GTGAACCCAC	TTGCGCTCTT	CACCAAGAGT	CTCAGAAACC	GCACGCGTGA	1260
	ATCGTGGCGC					1320
	GCGAATCAAA					1380
	GAGGATTTCC					1440
	CTCAGGGCGA					1500
AAGAT						1505
						エコロコ

- (2) INFORMATION FOR SEQ ID NO:92:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 622 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

(	GGTGGTGTT	GGACTGGCTG	CTCCCCAGTT	AGATATCTCA	AAACGCATTA	TCGCTGTTTT	60
C	GTACCTAAT	ATTGTTGAAG	AAGGCGAAAC	TCCACAGGAA	GCCTACGATT	TGGAAGCCAT	120
1	ATGTACAAT	CCAAAAATCG	TCTCTCACTC	TGTTCAAGAT	GCTGCTCTTG	GCGAAGGAGA	180
A	GGTTGCCTG	TCTGTTGACC	GTAACGTGCC	TGGCTATGTT	GTTCGCCATG	CCCGCGTTAC	240
1	GTTGACTAC	TTTGACAAAG	ATGGAGAAAA	ACACCGTATC	AAACTCAAAG	GCTACAACTC	300
C	ATTGTTGTT	CAGCATGAAA	TTGACCACAT	TAACGGTATC	ATGTTTTACG	ATCGCATCAA	360
T	GAAAAAGAC	CCATTTGCAG	TTAAAGATGG	TTTACTGATT	CTTGAATAAA	GAAAATCCCG	420
T	TGCAAGACG	GGGTTTTGTG	TTATAATAGA	GGCATGAAAA	CAAATGATAT	TGTCTATGGT	480
G	TCCACGCCG	TTACCGAAGC	CCTCCTTGCA	AATACAGGAA	ACAAACTCTA	CCTCCAAGAA	540
G	ATCTCCGAG	GTAAGAATGT	TGAGAAAGTT	AAGGAACTAG	CGGTGACATT	TTGAACAAAT	600
A	CCAATTTTG	Aaattgttat	TC				622
							022

- (2) INFORMATION FOR SEQ ID NO:93:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1534 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

CTCCACCTCG	AAACTTAATC	TTAGCCAGCA	ATCCCTTAGA	AACCTCGTGC	TTTTTTAAAA	60
AGGTCTTAAC	CTTGACATGT	TCATCTGCGA	TAAATTCAAA	CCTCATTCAT	CCACCTCACC	120
GATAAAGGCA	TCCTTAACAC	GGTTCCAGAA	ACTGGTATGG	CTAGGAGTCG	CGACAAAGTG	
AATCTTATGA	TGGTCGATTT	GATACTCAAT	ACCCTCAATA	TTACCOLLA	CONCANAGIG	180
ATTICTICA A CO	<b>633355</b>			TIACGGAAAG	AATAAACGCT	240
ATTGTCAACC	GAAATAGTAT	GATAATCGTT	TCTTGTTGGA	ATAAGTTCAA	TCTTATCCTT	300
CTTAGGCACA	ATAATGGAAG	AGCCCAGTGT	TCGATAAACA	CGATTATTAA	GGCTGGCAAT	360
TTCCGTTAAT	TGCAAAGCTT	СААТССТАСС	CTCTABBARA			300
1010001-			GIGINAMACA	GCACCGCCAA	GAGACTTGTT	420
ATAGGCAGTA	CTACCAGTCG	GTGTCGAAAC	TGTTAGCCCG	TCTCCACGAA	AACGTTCAAA	480
GGGAACACCA	TTTATTACAA	TATCTGCCAC	CATGGTTCGA	TC A C A C C TC C	001500000	
THE CHARGE COM	000000			ICAGACCIGC	GGATGCTGGC	540
TICGITGAGT	GCTCTGAAAA	TCTTAACTTC	ACCATTTTCA	AGAAAGACCT	TCACATTCAG	600
AACAGGGTAA	GAAACCCTTG	CCCCAGTATC	TAGCTGCAAA	ביים ביים ביים	CCMMCMCCA	
מישת מ מ מיציי	CC3M33momo		_	TINGTENCIA	GCTTGTCCAA	660
CICHEMITCA	CGATAATCTG	TATAGAAGCC	CAAATGTCCA	GTATGAAGAC	CGATAAAGCG	720
GACCTTGTCA	AGCTGATTTT	CGTACTTATG	AAAGGCCGAC	AACACCAMAC	01.00000000	
				MAGAGCATAC	CATCCCCGCC	780

******						
			ATTGAGTTAT			840
GATCTCGCAA	TTCATACAAA	ACCCTTTGAC	TCTGCGGTTT	TCTATTGGCT	ATCAGATCAA	900
TTCGTTTACC	TGTATTCTTC	ATCTGTATCG	TCACTGNNTC	CAACACCGTC	ATTTAATTTT	960
CTACTCAAAG	GATCAAAAAG	TGCCTGGGCT	TCTTGGATAT	CATCACGAAT	TTCACCCATT	1020
TCTTCATCCA	ACTGATGGGC	GATTCTAGCT	GTAATTTCCA	GTCGCTTCTT	AATCTCATCT	1080
GGGAAATCCC	CTTGGTACTT	GTAGTTGAGA	GAATGTTCTA	TCGTTGCCCA	GAAATTCATG	1140
GCCAAAGTAC	Gaatttgaat	TTCTGCCAAA	ATAGTCTTAG	CTCCATTGAT	GGTATCAACC	1200
GTATATTCTA	CTACCACATG	ATAGGAACGA	TAGCCTGATG	CTTTTCTATG	AGTAATGTAA	1260
TCTCGCTCCT	GTATGATTCG	CATATCCTGA	CGCTTGTGCA	AAATATCCAC	TACTTCCTTG	1320
ACGTCATCTA	CAAACTGAAC	CATCACACGT	AAGCCAGCAA	TATCCTGCAA	ATCGTGTTCC	1380
			ATTTTTTCTT			1440
			TGCTTATTTT			1500
ATACCACGAA						1534

# (2) INFORMATION FOR SEQ ID NO:94:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 597 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

CTCGTAAAAA	CACTAAAGGA	GGTAAATAAC	CAATGTTAGT	ACCTAAACGT	GTTAAACACC	60
GTCGTGAATT	CCGTGGAAAA	ATGCGCGGTG	AAGCAAAAGG	TGGAAAAGAA	GTAGCATTCG	120
GTGAATACGG	TCTTCAAGCT	ACAACTAGCC	ACTGGATCAC	TAACCGCCAA	ATCGAAGCTG	180
CTCGTATCGC	CATGACTCGT	TACATGAAAC	GTGGTGGTAA	AGTTTGGATT	AAAATCTTCC	240
CACACAAATC	ATACACTGCT	AAAGCTATCG	GTGTGCGTAT	GGGATCTGGT	AAAGGGGCAC	300
CTGAAGGTTG	GGTAGCACCA	GTTAAACGTG	GTAAAGTGAT	GTTCGAAATC	GCTGGTGTAT	360
CTGAAGAGAT	ŢGÇACGTGAA	GCGCTTCGAC	TTGCTAGCCA	CAAATTGCCA	GTTAAATGTA	420
AATTCGTAAA	ACGTGAAGCA	GAATAAGGAG	AAGGCATGAA	ACTTAATGAA	GTAAAAGAAT	480
TTGTTAAAGA	ACTTCGTGGT	CTTTCTCAAG	AAGAACTCGC	GAAGCGCGAA	AACGAATTGA	540
AAAAAGAATT	GTTTGAACTT	CGTTTCCAAC	CTGCTACTGG	TCAATTGGAA	CAAACAG	597

### (2) INFORMATION FOR SEQ ID NO:95:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1023 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

CTGCTTATGA	TTTTCAAGTT	TGGACTCGAA	ATCAATGGCT	TCCCCGTGCT	TTTAATGATT	60
	TCTCCTAGTT					120
	TAGTCTTGGT					180
	CCATTCTGGC					240
	GTGTTGAGAC					300
TTTAGTGCCT	TTTTTAATCC	TTTTGCCGAT	CGTGCTGATG	CAGGTCACCA	GTTAGCTAAT	360
TCTTATTTTG	CCATGGTCAA	TGGCGGTTGG	TTTGGTCTAG	GTCTTGGAAA	CTCGATTGAA	420
	ATTTGCCAGA					480
TTTGGCTTTG	TTGGTGCCAG	TCTTATTTTA	GCTCTCTTGT	TTTTCATGAT	TTTGCGGATT	540
ATCTTGGTCG	GTATCCGAGC	GGAGAATCCT	TTCAATGCCA	TGGTTGCACT	CGGTGTCGGA	600
GGGATGATGT	TGGTTCAGGT	ATTTGTCAAT	ATCGGAGGGA	TTTCGGGCTT	GATTCCATCT	660
	CTTTCCCCTT					720
	TTGTCTTAAA					780
TTGGAAAATC	AACCAATGAA	CCTTCTGTTG	AAGTAGGATA	AAGAAAGGAT	AGTTTATGTC	840
TCTTCAAAAA	TTAGAAAATT	Atagtaataa	AAGTGTTGTG	AAAGAAGAAG	TCTTGATTCT	900
AACAGAATTA	CTGGAAGATA	TTACTAAAAA	TATGCTTGCC	CCAGAGACCT	TTGAAAAAAT	960
AATACAGTTG	AAAGAATTAT	CAACGCAGGA	AGATTATCAA	GGTCTAAACC	GTCTAGTGAC	1020
TAG						1023
						1043

- (2) INFORMATION FOR SEQ ID NO:96:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 779 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

CTGGATTGAG A	AAAAGATAAC	AAGCTATTCT	CCACTCTCCA	ATTCATCCAT	ATCTTGTTCA	60
AATTTTTTCT C	SAGCCCATTC	GCCATAGCTC	TTAAGACCAA	GATTGCCAAT	AAAGACCCAC	120
GGAAGGTAAA 1						180
TGCTGATAAA 1	TTCTATGTT	Gaattgataa	TTCTGCAACA	TCAAAAGAGC	CGTAATAGCC	240
AAGGTTAGGA A	LAAAACAACC	CAAAATCGTA	AAATGAAAAC	GACTATAGTA	GGTCACTCCC	300
AGATAACGGG C	ACGATTGAA	AAAGTAAAAT	GTCCCTATGA	TGATAACGAT	TAGCAGCATA	360

TTAGAATTAA	AAAGGCTTGG	TGCTAATACT	GAAATGATAT	AAGATAGGAG	CGACAAAGCA	420
				GTTGTTCTTC		480
AGTAATTGAT	AATAATAAA	TCTATTTTTC	ATCTTCTTCC	TCCCAAAATA	GTTGGTCTAG	540
GGTTTTCCCT	AAACATCTGC	AAATAGACTG	GCAGAGCGAG	AGACTGGGAT	TGTATTTTCC	600
CGCCTCTATC	AAACCAATAG	TCTGGCGTGT	CACCCGACA	GCCTCTGCCA	GTTGACCTTG	660
				TTTTTAGCCA		720
				AACCAACACA		779

#### (2) INFORMATION FOR SEQ ID NO:97:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 663 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

TCATAAGGAA	GCTGTCGCTC	GTTCCGCTAA	GGTATGGACA	CCACGGTGAA	CATTGGCATT	60
	TAGTAACTGT					120
	AGATAGACCA					180
	GCTTCTACAT					240
	AATCATTTCA					300
	ACGAACAACC					360
	GTCTTCTGGA					420
	AATCAAAAGA					480
GAACACGGCT	CTCTTGTTGC	GCATCTGCTC	CCTTAGCACC	CTTGATGATG	TGGCCGATAC	540
	CAAAGTTGCT					600
	ATAGTTAGTT					660
GAG					CONCITONN	
						663

### (2) INFORMATION FOR SEQ ID NO:98:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1426 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

CTCAAGTTTA	AAACCAAGCA	AGTCAAGGAC	AGTCTCTACA	AGATTGCTGG	AATTGCAGAT	60
GTAGAAGTTG	CTGAAACGCT	TGGTATGGAA	CATCCAGTCA	AGTATCGCAA	TAAGGCGCAG	120
GTGCCCGTTC	GTCGAGTGAA	TGGTGTCTTG	GAAACAGGAT	TTTTCCGTAA	GAATTCGCAC	180
AACCTCATGC	CCCTTGAAGA	TTTCTTTATC	CAGGATCCTG	TCATTGACCA	AGTCGTAGTA	240
GCTCTTCGAG	ACCTGCTCCG	TCGTTTTGAT	TTAAAACCTT	ATGACGAAAA	GGAACAGTCT	300
GGATTGATTC	GGAATCTTGT	GGTGCGTCGT	GGTCACTATT	CAGGACAAAT	CATGGTCGTT	360
TTGGTGACAA	CTCGTCCAAA	AGTTTTTCGT	GTTGACCAAT	TGATTGAACA	AGTTATCAAG	420
CAGTTCCCAG	AGATTGTGTC	TGTCATGCAA	AATATCAACG	ACCAGAATAC	CAATGCGATT	480
TTTGGTAAGG	AGTGGCGCAC	TCTTTATGGT	CAAGACTATA	TTACGGACCA	GATGTTGGGA	540
AATGACTTCC	AAATCGCTGG	CCCAGCCTTT	TACCAAGTCA	ATACTGAAAT	GGCGGAGAAA	600
CTCTATCAAA	CAGCCATTGA	CTTTGCAGAG	TTAAAAAAAG	ATGATGTGGT	TATTGATGCT	660
TATTCTGGTA	TTGGAACCAT	TGGTTTATCA	GTCGCCAAGC	ATGTCAAAGA	AGTCTACGGT	720
GTTGAACTGA	TTCCAGAAGC	GGTTGAGAAT	AGTAAAAAA	ATGCTCAGCT	GAACAATATT	780
TCAAACGCCC	ACTATGTCTG	TGACACAGCT	GAAAATGCTA	TGAAGAATTG	GCTTAAAGAT	840
GGGATTCAAC	CAACCGTTAT	CTTGGTTGAT	CCTCCACGCC	AAGGGCTTGA	CAGAAAGCTT	900
TATCAAAGCA	AGCGCCCAAA	CAGGAGCCGA	TCGCATCACC	TATATCTCCT	GCAATGTTCG	960
CAACCATGGC	GCCGTTGATA	TTAAACTATA	CCAAGAGTTG	GGATATGAAT	TGAAGAAAGT	1020
CCAGCCGGTG	GATCTATTTN	TTCAAACGCA	TCACGTCGAG	ACGGTAGCAC	TTTTGTCCAA	1080
ACTCGATGTC	GATAAGCACA	TAAGTGTTGA	AATTGAGCTG	GATGAGATGG	ATTTGACAAG	1140
TGCGGAGAGC	AAAGCAACAT	ATGCTCAAAT	CAAAGAATAT	GTTTGGAATA	AATTTGAATT	1200
AAAAGTTTCG	ACATTATATA	TTGCACAGAT	AAAAAAGAAA	TGTGGAATAG	AATTACGAGA	1260
ACATTACAAC	AAGTNTAAAA	AGGATAAACA	AATTATTCCA	CAGTGTACAC	CTGAAAAAGA	1320
			CAAAATGATT		GAATGACAGT	1380
ATATGACTTT	CTGCATTTAT	TACATTCCTA	CTTGGTATAG	GAACAG		1426

# (2) INFORMATION FOR SEQ ID NO:99:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 991 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

CTCTGACGGA	GGCTGGTTAT	GTGGGTGAGG	ATGTGGAAAA	TATACTCCTC	AAACTCTTGC	60
AGGTTGCTGA	CTTTAACATC	GAACGTGCAG	AGCGTGGCAT	TATCTATGTG	GATGAAATTG	120
ACAAGATTGC	CAAGAAGAGT	GAGAATGTGT	CTATCACACG	TGATGTTTCT	GGTGAAGGGG	180
TGCAACAAGC	CCTTCTCAAG	ATTATTGAGG	GAACTGTTGC	TAGCGTACCG	CCTCAAGGTG	240

GACGCAAACA	TCCACAACAA	GTAGATGATT	CAAGTGGATA	СААААААТАТ	CCTCTTCATC	30
CTCCCTCCTC	CTTTTGATGG	TATTGAAGAA	ATTGTCAAAC	AACGTCTGGG	TGAAAAAGTC	360
ATCGGATTTG	GTCAAAACAA	TAAGGCGATT	GACAGAGAAA	CAGCTCATAC	ATGCAAGAAA	420
TCATCGCTGA	AGACATTCAA	AAATTTGGTA	TTATCCCTGA	GTTGATTGGA	CGCTTGCCTG	480
TTTTTGCGGC	TCTTGAGCAA	TTGACCGTTG	ATGACTTGGT	TCGCATCTTG	AAAGAGCCAA	540
GAAATGCCTT	GGTGAAACAA	TACCAAACCT	TGCTTTCTTA	TGATGATGTT	GAGTTGGAAT	600
TTGACGACGA	AGCCCTTCAA	GAGATTGCTA	ATAAAGCAAT	CGAACGGAAG	ACAGGGGCGC	660
GTGGACTTCG	CTCCATCATC	GAAGAAACCA	TGCTAGATGT	TATGTTTGAG	GTGCCGAGTC	720
AGGAAAATGT	GAAATTGGTT	CGCATCACTA	AAGAAACTGT	CGATGGAACG	GATAAACCGA	780
TCCTAGAAAC	AGCCTAGAGG	TGACTATGGA	ACTTAATACA	CACAATGCTG	AAATCTTGCT	840
CAGTGCAGCT	AATAAGTCCC	ACTATCCGCA	GGATGAACTG	CCAGAGATTG	CCCTAGCAGG	900
GCGTTCAAAT	GTTGGTAAAT	CCAGCTTTAT	CAACACTATG	TTGAACCGTA	AGAATCTCGC	960
TCGTACATCA	GGAAAACCTG	GTAAAACCCA	G			991

# (2) INFORMATION FOR SEQ ID NO:100:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1140 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

CTGGCTTGGC	TCTGATTGTC	AATAAAGGAG	GTTGATGTTG	ATAACCTAAC	GACAGAGCAA	60
CTTCGTCAAA	TCTTCATAGG	TGAGGTAACC	AATTGGAAAG	AGGTTGGTGG	TAAGGACTTA	120
CCCATCTCTG	TTATCAATCG	GGCAGCCGGC	TCTGGCTCTC	GTGCTACCTT	TGATACTGTC	180
ATTATGGAAG	GTCAGTCTGC	CATGCAAAGT	CAGGAGCAGG	ATTCAAATCC	AGCGGTAAAA	240
TCAATCGTAT	CAAAAAGTCC	AGGAGCTATC	TCTTATTTAT	CTCTTACCTA	MAMA CAMOAM	
TCGGTCAAAA	GCATGAAGTT	GAATGGCTAT	GACTURA ACTUC	CACAAAA	TATAGATGAT	300
AATTGGCCCT	TGTGGTCTTA	TGAGCATATG	TATACAMMOC	CAGAAAATAT	AAGTAGCAAT	360
GCAGAATTTC	TCAATTTTGT	TCTCTCCCAT	CACACACACACACACACACACACACACACACACACACACA	GGCAGCCCAA	TGAGTTGGCT	420
AAGTATATTC	CGATTAAGGA	AATCAACCTT	GAGACCCAAG	AAGGGATTGT	CAAAGGATTG	480
TTGGAAGGGA	CGATTAAGGA	AATGAAGGTT	GAAAAAGATG	CTGCCGGAAC	TGTGACAGTG	540
AGAATTCTCC	GACAATAATG	MATCAAGAAG	AATTAGCTAA	GAAAATGTTG	CTTCCATCAA	600
TCATCCTTCT	TCTGGAGAAA	TTAGGAAAAG	GTTTGACCTT	TGCCTGTCTT	TCTTTGATAG	660
TCA1CCITGT	GGCCATGATT	TIGGITTICG	TAGCGCAAAA	AGGCTTGTCG	ACCTTCTTTG	720
TCAATGGTGT	GAATATCTTT	GACTTTCTTT	TGGGAGGAAC	TTGGAATCCT	TCTAGTAAAG	780
AATTIGGIGC	CCTTCCTATG	ATTTTGGGTT	CCTTTATCGT	TACCATTCTC	TCAGCCCTTA	840
TCGCAACACC	CTTTGCTATT	GGTGCAGCAG	TTTTTATGAC	CGAAGTATCA	CCAAAAGGGG	900
CGAAGATTTT	GCAACCAGCT	ATTGAACTCC	TGGTTGGGAT	TCCTTCAGTA	GTGTACGGAT	960
TTATTGGCTT	GCAAGTCGTC	GTTCCCTTTG		CTTTGGTGGG		1020

GGATTTTGTC AGGGATTTCC GTCCTCTTG TCATGATTTT GCCGACCGTA ACCTTTATGA 1080
CAACGGATAG CTTGCGTGCG GTTCCTCCNT TATTATCGTG AAGCCAGTTT CGCTATGGGA 1140

## (2) INFORMATION FOR SEQ ID NO:101:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1155 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

CTGGGACTC	r cttcgtagaa	GTCATGCAAG	AATATTTTGA	TCAAAAGAG	AAATCATGAA	60
AAAAAGAGC	A ATAGTGGCAG	TCATTGTACT	GCTTTTAATT	GGGCTGGATC	AGTTGGTCAA	120
ATCCTATATO	GTCCAGCAGA	TTCCACTGGG	TGAAGTGCGC	TCCTGGATTC	CCAATTTCGT	180
TAGCTTGAC	TACCTGCAAA	ATCGAGGTGC	AGCCTTTTCT	ATCTTACAAG	ATCAGCAGCT	240
GTTATTCGCT	GTCATTACTC	TGGTTGTCGT	GATAGGTGCC	ATTTGGTATT	TACATAAACA	300
CATGGAGGAC	TCATTCTGGA	TGGTCTTGGG	TTTGACTCTA	ATAATCGCGG	GTGGTCTTGG	360
AAACTTTATI	GACAGGGTCA	GTCAGGGCTT	TGTTGTGGAT	ATGTTCCATC	TTGACTTTAT	420
CAACTTTGCA	ATTTTCAATG	TGGCAGATAG	CTATCTGACG	GTTGGAGTGA	TTATTTATT	480
GATTGCAATG	CTAAAAGAGG	AAATAAATGG	AAATTAAAAT	TGAAACTGGT	GGTCTGCGTT	540
TGGATAAGGC	TTTGTCAGAT	TTGTCAGAAT	TATCACGTAG	TCTCGCGAAT	GAACAAATTA	600
AATCAGGCCA	GGTCTTGGTC	AATGGTCAAG	TCAAGAAAGC	TAAATACACA	GTCCAAGAGG	660
GTGATGTCGT	CACTTACCAT	GTGCCAGAAC	CAGAGGTATT	AGAGTATGTG	GCTGAGGATC	720
TTCCGCTAGA	AATAGTCTAC	CAAGATGAGG	ATGTGGCTGT	CGTTAACAAA	CCTCACCCAA	720 780
TGGTTGTGCA	CCCGAGTGCT	GGTCATACCA	GTGGAACCCT	AGTAAATGCC	CTCATCTATC	
ATATTAAGGA	CTTGTCGGGT	ATCAATGGGG	TTCTGCGTCC	ACCCATUTOTO	CACCCTAMMC	840
ATAAGGATAC	GTCAGGTCTT	CTCATGATTG	CTAAAAACGA	TGATCCCAM	CACCGIATIG	900
CCCAAGAACT	CAAGGATAAA	AAGTCTCTCC	CGCAAATATT	CCCCCAMMON	CTAGCACTTG	960
TCTGCCTAAT	GATCGTGGTG	TTAATTGAAA	CCCCCSATT	CCCCAATTGT	TCCATGGAAA	1020
AAGAAACCAG	GTGGTAACTG	GCTAAAGGGA	ACCCGCAMC	ACCOMPANIES	AAAGAACCTT	1080
AACGCCTTGG	CGAAT		ACCCGGCATG	ACCCCTTTC	CCCTTCTTGG	1140
						1155

# (2) INFORMATION FOR SEQ ID NO:102:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1030 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

			TGACAGCAGG			60
CCCCAATGGC	TGCTAATTTT	AACGCTCTAC	CAGCAGCATT	GATGGATATG	AAAGATCAGA	120
ATGGCGTTAT	AAAGGCTCAA	GCAGGTGTTG	CTCTAGTAAT	GATTGTTATT	CACATATTCT	180
TAATGTACTT	TCTCGCATTT	TAGTAAAGGA	AAATAAAATG	AAAATATTGG	TTACAGGTTT	240
TAATCCTTTT	GGAGGTGAAA	AGATTAATCC	AGCTTTGGAG	GCTGTAAAAT	TATTACCATC	300
			AGAAATTCCA			360
			TCAACCAGAT			420
			ACGAGTGGCT			480
			TGATACACCG			540
			GATGGTACAA			600
			CTTTGTTTGC			660
			ATATGTTAAG			720
			AGCCGAATAC			780
			CAATCGGCGC			840
			ATTGATAGAA			900
			CTGCTCGGTA			960
GGATATAAGG	TAGGAGTGAA	AAACTAGCAA	TGCCAAAGGT	AATCCAATTG	AGGAAGTACC	1020
AAGGAAGAAG						1030

### (2) INFORMATION FOR SEQ ID NO:103:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 584 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

CTGTAAAAGA AGT	TAATCAA GTTGATAA	AG CACTTTTAAA	ACAAATTGGT	GCAGTTGATG	60
TCTTAGAAGT GAA	GGGTGGC ATTCAAGC	AA TCTATGGAGC	AAAAGCAATC	TTATATAAAA	120
ATAGTATTAA TGA	AATTITA GGTGTAGA	TG ATTAAGTACT	TACTGACTTA	АТААААААСА	180
GAGGAGAGTG ATG	GATGAGT AGGATGAA	AT GAAATCGCAT	ACAAGAAATA	AAGAACTCAT	240
TATCCAAGTT GGA	TACGCTT ATTACATA	GG AGAATACAAA	TGAAATTTAG	AAAATTAGCT	300
TGTACAGTAC TTG	CGGGTGC TGCGGTTC	TT GGTCTTGCTG	CTTGTGGCAA	TTCTGGCGGA	360
AGTAAAGATG CTG	CCAAATC AGGTGGTG	AC GGTGCCAAAA	CAGAAATCAC	TTGGTGGGCA	420

TTCCCAGTAT	TTACCCAAGA	AAAAACTGGT	GACGGTGTTG	GAACTTATCA	AAAATCAATC	400
					CATCGACTTC	480 540
CAGTCAGTCC						584

# (2) INFORMATION FOR SEQ ID NO:104:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 957 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

CTGGAATTAA	AACGCACGAG	TATTGCACGA	ATAACCAACC	AAACAACCAC	TCAGACCATG	60
TGGATCCATA	CCCTTACTTG	GCAAAATGGG	GCATTAGCCG	TGAGCAGTTT	AAGCATGATA	120
TTGAGAACGG	CTTGACGATT	GAAACAGGCT	GGCAGAAGAA	TGACACTGGC	TACTGGTACG	180
TACACTCAGA	CGGCTCTTAT	CCAAAAGACA	AGTTTGAGAA	AATCAATGGC	ACTTGGTACT	240
ACTTTGACAG	TTCAGGCTAT	ATGCTTGCAG	ACCGCTGGAG	GAAGCACACA	GACGCCAACT	300
GGTACTGGTT	CGACAACTCC	AGGCGAAATG	GCTACAGGCT	GGAAGTCTCC	A A CTICTUTORY	360
TTTTTTAATA	CAAGCTATTT	TGATTTAACC	GGCTGGTCTT	CACCTCTCTC	CARACTOTICIC	-
GCAATCGTAT	CTGCATACAA	TTTTGCTCCT	GCTTCGATAG	TCCTACTO	ACROSCOLLA	420
TGAACCTGGT	CTGTTCCAGC	CCAAATTTCT	GGATGCTCTT	TCCCAAcomo	ACTCCCGAAA	480
GCTATCGTAA	TGTAAGGTGT	CTTCTCTGCC	AATTCTCTCA	TEGERACTIG	ATTCCAATCT	540
ACGATGGCAT	AGGTCTCTTT	ТСТСТТАТСТ	CCCTCAMAAC	TATAGGCAGC	AGCCTTCTCA	600
TCTCCCTTAG	C) ) C) TOTAL	CLCCITATCI	CCCTCATAAG	GAGTCACCAA	AATCATATGG	660
TOTAL COSCILIA	GAAGATTTTT	CACGATACTG	TCCCAGTCAT	CCTTGTAATT	CTCAGGATTA	720
TTTACCCCAG	TCGCAATGAC	CACCGTCTTA	GGTAAAAATT	TATTCTGGCT	ATTATTTAGC	780
ATGATTTCAT	TTGCGGTCTT	GGTTGTTACG	CTGACCTGCG	CGTTAATCTG	TGCTCCAGGA	840
AGAGCTGTCT	GTAGTGCTGT	ATTTGCCCTT	AAAGCCACTG	AGTCACCAAT	TAACATAGTG	900
CCATCAGCAA	TTCCCAAACT	GTTTGCATCT	GCCCGTTCTG	CCATCACCTO	COTOTO	
				COMPONECTI	GG1C1GG	957

# (2) INFORMATION FOR SEQ ID NO:105:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1568 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

CTCGTGCGA	C GACAGATGT	P ATTCGTCATO	GTGCACCAA	GGCAGAGAT	GAGGGGCTTT	60
TCTCAGTTG	A GAATAGTCG	CTTTTACAGO	AAATTTTTGA	TGAGCAAGG	TTAGAATTAG	120
GTGATGAAA	T TATCATCCG	CGGGAAATCI	TGCAAAATG	TCGTAGTAT	AGCCGTGTAA	180
ATGGTCAGA'	T GGTTAATCT(	TCTGTTTTGC	GAGCTATTGG	GCAACATCTT	GTAGATATTC	240
ATGGTCAGC	A TGACCATGAC	GAGTTAATGC	GTCCCCAACT	GCATATCCAC	ATGTTGGATG	300
AATTTGGTG	A TGCCGCTTTT	TGGGACTTGA	AAGAAACCTA	TCAAACGAGT	TTTGATGCCT	360
ATCGGAAAA'	r GCGCAAGCAG	GTTCTGGAAG	TCAAGAAAAA	CCAACAGGAA	CACAAGGCAC	420
GTATCGAAA	GTTGGAATTI	CAAATGGCAG	AGATTGAGGC	AGCAAACTTG	CAGGCTGGAG	480
AAGACTTGG	TCTCAATCAA	GAGCGAGATA	AACTCCTCAA	CCACAAAAAT	ATTCCCCATA	540
CACTGACCA	TGCCTACAGT	ATGTTGGACA	ATGAAGATTT	TTCAAGTCTG	GCCAATGTTC	600
GTTCAGCTAT	GAATGACATG	GAAAGTGTCG	AAGAGTATGA	TCCTGAATAC	ССТСАААТТТ	660
CAAGCTCTCT	GTCTGAGACC	TACTATGTTT	TAGAAGACAT	TAACAAACGT	ТТССААССТА	720
TCATTGAGGA	CCTTGATTTT	GATGGCAATC	GCCTGATGCA	GGTTGAGAAT	ССТТТССАСС	780
TCCTTCATAC	TATTACTCGT	AAGTATGGTG	GGACTGTTGA	TGATGTTTTG	CALALA LA  840	
CCAAGATTAC	GGAAGAATAC	AATCTCTTGA	CAGGCAATAA	TCTTTCCGTC	TGAGGACATG	900
GAAGCAGAGC	TTAAGAAGTT	GGAAGTCAAT	CTTGTCAATT	TGGCAGGTCA	ACTTGCTTCT	960
GCTCGTCATA	ATTTGGCTCA	GCAACTCGAA	GCTGAGATTA	AACAAGAACT	GCAAGATCTT	1020
TATATGGAAA	AAGCCCAGTT	TCAGGTTCGT	TTTAGTAAGG	GAAAATTCAG	TCGTGAGGGA	1080
AATAAAATGG	TTGAGTTTTA	TATTTCAACC	AACCCTGGAG	AAGACTTTAA	ACCUTTGGTT	1140
AAGGTTGCTT	CTGGAGGGGA	ATTATCTCGT	CTCATGTTAG	CCATTAAGTC	TGCCTTTTCA	1200
CGTAAAGAAG	GCAAGACTAG	CATTGTCTTT	GATGAGGTGG	AAACGGGAGT	TTCAGGTCGT	1260
GTTGCTCAAG	CTATTGCTCA	GAAAATTCAT	AAAATTGGTC	AGCATGGTCA	GGTTTTGGCT	1320
ATCTCCCATT	TGCCACAAGT	AATTGCGATT	GCAGATTATC	AATTCTTTAT	TGAGAAGATT	1380
AGTAATGACC	ATTCAACGGT	TTCGACTGTT	CGTCTCTTGA	CGGTCGAAGA	GCGAGTGGAG	1440
GAAGTTGCCA	AGATGTTGGC	AGGTGATGAT	GTGACAGAAG	CAGCCCTGAC	GCAAGCCAGA	1500
GAATTGTTGA	GAAACAGGGA	GAAATAAGAT	GACAGATTAT	TATGTAATTG	GAGATGTTCT	1560
CGGAAAAG						1568

# (2) INFORMATION FOR SEQ ID NO:106:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 653 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

ACGCTGCAGT	GGTACCGCAT	CAGGCAGAGG	TCATTTTTCG	CCAGCGCTTT	GAGATGACAG	120
ACAAGGGAAT	TGAAAGAACG	AATTGAGTCT	TATTATGATG	GGGGAAAATC	TTTTCCGCTC	180
TATCAAGATT	CGGGGGGAAT	TTTTACATAT	GCATGTGCGT	ATGATTCCTA	AGTCAACACC	240
CGATACCAAG	TTTGCTGATG	TCGCAACCCA	TCAACCGGAA	TATAGTCGTG	ACAATGTTGC	300
GGGGACTATT	GTTGGTTTCT	GGACGCCTGA	GATTTTCCAT	GGGGTCAGTG	TGGCAGGCTA	360
CCATCTGCAC	TTCATATCAG	ATGATTTGAC	CTTCGGTGGA	CATGTCATGG	ATTTTGTCAT	420
CAAGGAAGGC	ATTATCGAGG	TGGGAGCAGT	TGACCAGTTG	GACCAACGTT	TCCCAGTCCA	480
AGACCGTCAA	TACTTGTTTG	CTAAGTTCAA	TGTTGACGAG	ATGAAAAAG	ATATTGAAAA	540
GGCAGAATAG	GAGAAGAAAA	TGACCATTCA	TATCATTATT	ACCATGTTGC	TGTTGCTAGC	600
TTTTCTGATA	GGAAGCATTT	GGTTTGCCAA	AAAGAAATAT	CAGATTAATC	TAG	653

### (2) INFORMATION FOR SEQ ID NO:107:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 708 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

CTATTATTGC	AAGGTNNTGA	AGTCGAACGA	AAAAATTACT	CTAGTCCTTT	TGATTTGGAA	60
TGTCATCATT	TCCTTGATTT	ATGGAATTGA	CATATTCAAG	GCAAGAAAAA	GAGCTTGGCG	120
CATCCCAGAG	AAAATCTTAC	TCATATTACC	CCTTACTTGT	GGTGGTTTGG	GGGCCTGGTT	180
TAGCTGGAAT	CACTTTTCAC	CACAAGACTC	GAAAATGGTA	CTTTAAAACA	GTTTGGTTTC	240
TTGGGATGGT	GACCACACTA	GTAGCCTTAT	ATTATATTTG	GAGGTAATGG	ATGGCAGGGT	300
CTTCGAGGGA	CCACGCTGCT	TGGGCTCTAG	CGGACTATGG	TTTTAAGGTC	GTGATTGCAG	360
GATCTTTCGG	TGACATTCAT	TACAATAATG	AACTCAATAA	TGGCATGTTG	CCAATCGTTC	420
AGCCTAGAGA	GGTTAGAGAG	AAACTAGCCC	AGTTAAAACC	AACCGACCAG	GTAACTGTGG	480
ACTTGGAACA	ACAAAAAATC	ATCTCACCAG	TTGAAGAATT	CACCTTCGAG	ATAGATAGCA	540
AGTGGAAACA	TAAACTCCTA	AATAGTTTGG	ATGATATCGG	TATTACCTTG	CAGTATGAAG	600
AGTTGATTGC	TGCTTATGAA	AAACAACGAC	CAGCCTACTG	GCAGGATTAG	AAAAAATAGA	660
AAAGGAAATA	TAGTAAACTG	AAATAAGATG	TAAACAAATG	AATTGGAG		708

### (2) INFORMATION FOR SEQ ID NO:108:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1381 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

CTCGTGTTGT	r GGACGAGTTA	GACATACCCG	TCATGGCTTT	TGGCTTGAAA	AATGACTTTC	60
GCAATGAATT	GTTCGAAGGT	TCCAAATATC	TCTTGCTTTT	AGCGGACAAG	ATTGACGAAA	120
TCAAGACCAT	CTGTCAGTAT	TGCAAGAAAA	AGGCGACCAT	GGTGTTGCGA	ACACAGGATG	180
GACTGCCCGT	TTACGATGGA	GAACAGATCC	AGATTGGTGG	TAATGAAACC	TATATCTCGG	240
TTTGCCGTAA	ACATTATTTT	GCCCTGAAA	TCAATAAGGA	GAATGAAGAA	AAATGAACAT	300
CTATGATCAA	CTACAAGCTG	TAGAAGACCG	TTATGAAGAA	CTAGGAGAAT	TECTENENCA	
CCCTGATGTC	GTTTCAGACA	CCAAGCGTTT	TATGGAGCTT	TCAAAAGAAG	AACCOMCAAA	360
TCGTGACACC	GTAATAGCCT	ACCGTGAGTA	TAAACAAGTC	CTTCAAAATT	TCCTCCAAA	420
CGAAGAGATG	ATTAAGGAAT	CAGGCGGAGA	TGCGGACTTG	GAAGAATTCC	CCAACCAACA	480
ACTCAAAGAT	GCCAAGGCTG	AAAAAGAAGA	ATATGAAGAA	AAACTCAAAA	TTTTTCCTCCT	540
TCCAAAGGAT	CCAAACGATG	ACAAGAATAT	CATCCTTGAA	ATCCCTCCAC	CLOCACCA	600
AGACGAAGCG	GCACTTTTCG	CTGGAGATTT	GCTAACTATC	TACCA A BACT	CAGCTGGTGG	660
CCAAGGTTGG	CGCTTTGAAG	TCATGGAAGC	CTCTATCAAT	COMOMOGOMO	ATGCGGAAGC	720
AGTGGTTGCT	ATGGTTTCAG	GTCAGTCTGT	TARDINIOTA AC	GGTGTCGGTG	GTTTTAAAGA	780
CCACCGTGTG	CAACGTGTTC	CTGTGACAGA	AACCCAACCC	CTTAAGTATG	AATCAGGTGC	840
GACAGTTCTT	GTTATGCCAG	AAGTTGAAGA	COMMON AREA	CGIGITCATA	CTTCGACAGC	900
TCGTGTCGAC	ATCTATCACG		MCCMCCA CA	GACATTGATC	CAAAAGACCT	960
TGCCGTTCGT	<b>ል</b> ጥርርጥጥር እርጥ	TCCCAACCAA	TGGTGGACAG	AACGTCAATA	AGGTTGCGAC	1020
CCAGCAGAAG	ATCGTTCACT	ACCOMATCA	TATCAAGGTT	GAGATGCAGG	AAGAACGTAC	1080
TGCTCAGATT	AACCGCGAGA	AGGCTATGAA	GATTATCCGT	GCACGCGTCG	CTGACCACTT	1140
CCCTTCACAA	GCTCAGGATG	AACAAGACGC	TGAGCGTAAG	TCGACAATCG	GTACTGGTGA	1200
CCCCTTCAGAA	CGGATCCGAA	CTTATAACTT	CCCACAAAAC	CGTGTCACAG	ACCACCGTAT	1260
TCCCTTGACC	СТССАААААС	TAGATACGAT	TTTGTCTGGT	AAATTGGACG	Aagttgtgga	1320
	CTTTATGACC	AAACACAAAA	ACTAGAAGAA	TTAAACAAAT	AATGAAATTA	1380
G						1381

- (2) INFORMATION FOR SEQ ID NO:109:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1276 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

CACTTGCAGT	' CACTTTCATA	TCTTCTGTG1	GGTTTTCGAT	TTTCCTTTCC	AATTCTGCAA	120
TGCGTGTTTT	' ATAGTTTAGA	GCTGCTTCA	AATCTTCTGC	TTCAACTGCT	TTTTCTTGCT	180
TGTCTTTTTC	CGTTTCGATT	TCTCGTTCAA	CAGCATGCAC	ATCTGTTACT	GGATGTTGAG	240
CCGCCAAGTG	AGCAGCCGTT	ACATCGACAA	GGTCAATAGC	CTTATCTGGC	AAGCTACGTT	300
GAGGAATGTA	TTGAACAGAA	TAATCCACCG	CTGCTTTCAA	GACTTCGTCT	GGCAAGATGA	360
CATTGTGGTG	TTGTTGATAG	AGGTCACGAA	TGCCTTGAAG	AATTTTAAAA	GTATTCTCTG	420
CTGAAGGAGC	ATTGACCTTC	ACTTCGTTGA	AACGACGAGC	AAGAGCAGCA	TTCTTCAAGA	480
AGGTGTTACG	GTATTCGTCT	TGAGTTGTTG	CCCCAATCAC	TGTCAATTCT	CCACGAGAGA	540
GACTGGCTGA	GAATATCCGC	AAGCCCTTTA	GAACCACTGT	CTCCACAAGT	GCTACCAGCA	600
CCAAGAATTG	TGAATTTCAT	CAAAGAAGAG	GATAATATTC	CCTGCTTCTT	TCACTTCATT	660
GACTAAGTTT	TGGACATTTT	CTTCAAAGCT	ACCACGGTAT	TGAGTACCAG	CCTCAAGACC	720
TGAGATATCA	ATAGAAATAA	TTTCCTTGTT	CTTGATAGCA	GCAGGAACAT	CTCCGTTCAC	780
AATGGCTTGC	GCTAGACCTT	CGACAACTGC	TGTCTTACCA	ACACCTGCAT	CTCCGACCAA	840
			GATTTCAGAT			900
ICGTCCGATA	ACAGGATCCA	ACTTGCCCTC	ACGCGCTTCT	GCTGTCAAGT	TTCGACCTAG	960
PTTTGCAAGG	ACACCGTCTT	GTTTCATACC	TGATGCCTGT	TGTGGCATTT	GCACATCAGT	1020
TTCTGCATTT	CCTGGTAATT	GACCAGTCGT	ACGATAGTGA	GCAAATTCCT	CAGGTGTGAC	1080
TTCGCGTCCA	TTAATTAAGT	AACGGCGATT	TTCAGAACTG	TATCCTCGCA	TACCACCCAT	1140
CAATTGGTTA	AATAAATCAT	CCATGTTATT	AAAATTATTA	AAGTTGTTAT	TCATATTCTT	1200
PACCTCTTTT	TGTTTACTTA	GTTATGATTA	CTGATATTGA	CTATCTTTGA	CCTTTGTTTT	1260
ATTTAAAAA						1276

# (2) INFORMATION FOR SEQ ID NO:110:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1234 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE-DESCRIPTION: SEQ ID NO:110:

	CTTGGCAGAA	TTTGCCGGTC	TATCAGACGC	ACTTAAAGGG	CAAGGACTCT	AAGTATGCAG	60
	GGACAAATCA	TTAAAGCCTT	GGCAGGTTTC	TACTATGTGG	AGAGTGATGG	CCAGGTTTAT	120
				AAAGGCCATA			180
				GGCTATATCC			240
				ATCGATCAAC			300
	AAGGAACCTG	ATTTTAACAG	CAATTTGCTG	GATCGTTTCT	JCCJJACJJATA	CCACCACAAC	
,	GGCATCCATC	CCATTGTCTA	TATTTCCAAA	ATGGATTTGT	TCCAACAMAC	GGAGCACAAG	360
				GGCTATGACT			420
	CTCCTCTCTT	TOTAL ACACC	Chacommag	GGCTATGACT	TIGIGACCAG	TAAAGAGGAA	480
		-011WCWGQ	CAMGGTTACG	GTCTTTATGG	GGCAGACAGG	TGTTGGGAAG	540

MC3 3 OMORMO	mass					
	TCAATAAACT					600
AGTCTAGGTC	GCGGTCGCCA	TACCACTCGA	GCTGTTAGTT	TTTACAATCT	CAACGGGGGT	660
	ATACACCAGG					720
	CTTTCCCAGA					780
	ATGAGCCGTC					
						840
	TTGATAATTA					900
TATAAAAAAG	TCAGCAAAAA	AATTCCAAAA	TAAGGAGAAA	CCTATGTCTC	AATACAAGAT	960
	ATTCTGGCAG					
			CILICITIGAA	CGIGAAATCA	AACGTCTAGA	1020
AGCAACTGGG	GCAGAATATG	CCCATATCGA	TATCATGGAC	AGTCATTTTG	TACCGCAAAT	1080
CACHIMINICOM	CONCORORO	### ### ### ##########################				1000
CNGIIIIGGI	GCAGGTGTGG	TCGAGAGCCT	TCGTCCTCAT	AGTAAGATGG	TTTTCGATTG	1140
CCACTTCATC	CTCTCAAACC	OTTOR A CAMOR	momoo			
	GTGTCAAACC			TTTTGCGCCC	GTTGCAGGGT	1200
TGCAAAAAAT	TCATCCAGTT	ATCCCATGTT	ጥልልል			
			* LRING			1234

# (2) INFORMATION FOR SEQ ID NO:111:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 945 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

CTCTTAAGAC	CAATTCCGAG	TTACTTCTTC	ATCAGCCTTT	AACCGATCCA	CTAATTGGTC	60
AACTGAGTCA	AATTTGGTCA	TATCTCGAAT	GCGATCAAGC	CAATAAACCA	TGACGGTTTC	120
CCCATAAATA	TCTTGATTAA	AATCAAAAAT	ATTGACTTCA	AAACGTGCTT	CTTCTCCATC	180
AAAGGTCACA	TTTTTCCCGA	CACTAGCCAT	AGCACGATAC	TTCTGTCTTT	GAATCTCAAC	240
		CTGCTGGCAT				300
TGTCGGATAA	CCAATTGTAC	GACCACGAGC	ATTACCATGA	ACTACCATAC	CTCTTGATGG	360
AAGCGGTGCC	CCCAAAAGTT	TTCCTGCTTC	TTTCACATTT	CCATCTAAAA	TAGCTTGACG	420
GATACGAGTT	GAACTAATCT	TTCCTTTCTC	ATCTTCTACA	GGTGGAACAA	TGATAACTTC	480
TCCATCAAAG	TAATCCTTTA	AATCTTCTGC	TGTTTTTTTG	TCAGAACCAA	ATGTATAATC	540
AAAACCTGCA	ACAATAATTT	TGGCATTCAT	AGCCTTGATA	TAAGTTGCAA	AGAATTCTTG	600
TGCAGTGAGA	CTAGCGAATT	GACTACTAAA	ATCAAGGAGA	TATAATTCTT	CTACACCTTC	660
GCGCTTTAAT	TTTCTTTCAC	GTTCAGCAGG	GTTCAAAATA	TGCAAAAACA	AATCTGGATG	720
ATAAGGCTCT	AAAGCGATCT	TTGGAGATTC	ATTAAAGGTC	ATAACGACGA	TAGGCAATAA	780
ATCCTTTCTC	GCAGCCTTGT	TGGCAACACG	AAATAATTCT	TGATGCCCCT	TATGTATGCC	840
ATCAAAATAG	CCGAGAACAA	CGACTGAATC	AGATGGTGTG	CCAATATCTT	TTTGGTTTTT	900
TATAGGAATA	GTAATAATCA	TTAAAATAATT	ATATCATAGC	GATAG		945

⁽²⁾ INFORMATION FOR SEQ ID NO:112:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 853 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

		AGGAGAATTG					60
		ATGCCTATGT					120
		ATGTTTACAC					180
		GAACAGCTAT					240
	TTGATTGTCT	ATGGTCAAAC	TGAAAAACCG	ATTTCACCAT	GTGGTGCTTG	TCGCCAAGTA	300
	ATGGTCGAAT	TTTTTGAACA	AGATTTAAAA	GTGACCTTAG	TCGCAAAAGA	TAAATCGACG	360
	GTCGAGATGA	CGGTCGGGGA	GTTACTTCCA	TATTCTTTTA	CAGACTTAAA	TTAGTCTGAG	420
	TCGCTCTTTG	AGTGGCAAGG	GTCTTTGTGA	CCAATCAATC	CATACTTGCA	ACATCGTTGC	480
	ACATCTTATT	TAGGAGGTTC	AGTAATGAAC	AAGAAACAAT	GGCTAGGTCT	TGGCCTAGTT	540
	GCAGTGGCAG	CAGTTGGACT	TGCTGCATGT	GGTAACCGCT	CTTCTCGTAA	CGCAGCTTCA	600
	TCTTCTGATG	TGAAGACAAA	AGCAGCAATC	GTCACTGATA	CTGGTGGTGT	TGATGACAAA	660
	TCATTCAACC	AATCAGCTTG	GGAAGGTTTG	CAGGCTTGGG	GTAAAGAACA	CAATCTTTCA	720
	AAAGATAACG	GTTTCACTTA	CTTCCAATCA	ACAAGTGAAG	CTGACTACGC	TAACAACTTG	780
4	CAACAAGCGG	CTGGAAGTTA	CAACCTAATC	TTTGGTGTTG	GTTTTGCCCT	TCACAATGCA	840
+	GTTGAAGAAG	CAG					853

### (2) INFORMATION FOR SEQ ID NO:113:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1007 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

CTCAGCTACT TCGCCTTT	PCT TTTTATTCTA	CTGGTTTTTC	TTGATTTCCA	GTAGTTGTAG	60
AAGATTCTGT TGTTTTAT	TTT TCTGAAGTTG	ATTCAGCAGG	TTTAGAATCT	CTTGTATTGC	120
TTGGTTTGTT TTCGTCGC					
TCTCAGCACT GGTGTTAT	CA CCATTTGCTT	CAGCATTTCT	TGCTGGACTT	GTTTCTTCAC	240

- $        -$		3 000000 3 000 3 00	mass			
TIGCGCIAGC	IIIIIGACIGG	ATTIGATGAT	TCAAAACTAG	AATAGCTTTT	GTCGATTCAA	300
GTAAAGCTGT	TTTGTCTTTA	CTATTAGCAG	AAAGTTGATC	TAATAATGCA	TCCACCTTAT	360
CAAAAGTCCG	CATCAGATCC	ATTATTACTT	ТСТАААТААА	AGTGAAGCGA	CATCACAAMA	
TYGTAGAGTT	TTTCATACAC	ጥ እ ር እ እ ርመርመር	<b>601001000</b>		CHICAGAAIA	420
	IIIGAIAGAG	TACAAGTGTC	TGAGGATCTT	GCTCAGCATT	TTCCTTTTCT	480
TGTTGAAGGG	CGCTAGCGAT	ACGAGTCAAG	ACATCTTTTA	CCTGACTGTT	TACTTCATCC	540
AAGTCTGCAT	CAGCCTTGTT	TGTGGCAGCT	TTTAGATTTT	CTACTTCTTC	TGCCAAAGAT	600
TGTCTGATTC	CTTCTTCATG	GATTCCTTCC	AAGAGTTGAT	TTTCCCCTTTCCT		
			MONGITGAT	TIGCCTIGCT	CAAAAGACTT	660
TCTACTTCTT	CCTTGCTATC	TGTCGCAGAT	TATTGGTTGC	TATCTACCAT	GTACTCCTAA	720
<b>AACAGGAGAG</b>	TTATAATCCA	AGATTACAAG	GCCTTACAGA	AATAACAAAT	CC1 C1 T1 1 C1	
CAATCTTCCT	CCAACAGGG	150000000		INTERNATIONAL I	CCAGATAAGA	780
CAMIGITOGI	CCAAGACGCT.	ATTCGCTTCG	CACAGCAGCA	CGGATTCAAT	ATGCTTTAAT	840
TTTAAAGTTT	AGGTGTCAAG	ACCTCTTTTT	AGTGTGCCCA	AAATTTACAC	3.3CM3.3MC3.3	•••
ጥር አ አርጥ አ አርጥ	מאונות אונים אינים א	mc> > > commo		. aut. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AAGTAATCAA	900
ICANGIANCI	IIIMIIIII	TCAAACTTTC	AGTAAACTGA	CCTAAAGCTA	ACTCAATCTG	960
TCTTTGTTCG	ATAGGCTTGT	CTTTGTAGAT	GCTTCTGCTA	TCAGATC		1007
						1007

# (2) INFORMATION FOR SEQ ID NO:114:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 896 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

CTCATTCAGA	GCTTGAAAAT	GCAGCCTGTG	TCGTGATTGG	GACAGGGATT	GGCGGAGCCA	60
TGATTATCAA	TGGTAGACTT	CATCGAGGTC	GCCACGGCTT	GGGTGGAGAA	TTTGGCTACA	120
TGACAACCCT	TGCCCCTGCT	GAAAAACTTA	ATAACTGGTC	GCAACTAGCG	TCAAACTGGG	180
AATATGGTAC	GATACGTGAT	TGAAAAATCT	GGTCATACTG	ATTGGGACGG	TCGCAAGATT	240
TACCAAGAGG	CCGCAGCTGG	TAATGCTCTT	TGTCAAGAAG	CCATTGAGCG	CATGAACCGC	300
AATCTGGCGC	AAGGCTTGCT	CAATATCCAG	TATCTCATCG	ATCCAGATGT	CATCAGTCTG	360
GGTGGCTCTA	TCAGTCAAAA	TCCAGATTTT	ATCCAAGATG	TCAAGAAGGC	TGTTGATAAC	420
TTTGTCGATA	CCTACGAAGA	ATACACGGTC	GCACCAGTTA	TCCAGGCCTG	CACCTATCAC	480
GCAGATGCCA	ATCTCTACGG	TGCTCTTGTC	AACTGGCTAC	AGGAGGAAAA	GCAATGGTAA	540
GATTTACAGG	ACTTAGTCCC	AAACAAACGC	AAGCTATTGA	GGTTTTAAAA	GGTCACATTT	600
CTCTACCAGA	TGTGGAAGTG	GCTGTCACTC	AGTCTGACCA	AGCCTCTATC	TCTATCGAGG	660
GTGAGGAAGG	TCACTATCAA	TTGACCTACC	GCAAACCTCA	CCAACTCTAT	CGTGCCTTGT	720
	AACAGTTCTA					780
TACGAAAATT	GGCTTACATG	GTTGACTGTT	CTCCAAATGC	GGTGCTGAAT	GTGGCTTTCC	840
TGCCNAAGCA	GATGACTGAA	GGTCTTGGCT	CTCNTGGGCT	ACTCCACCCT	TTGAAG	896

⁽²⁾ INFORMATION FOR SEQ ID NO:115:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 594 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

	CTAGCAACAA	GNGGNGCTAA	AATCAAGGTT	ACCTTATCGC	CCACACCACC	100101100	
							60
	TTGTCAACTT	TCACACCATC	AATGGCTGAC	AGGTCAAACT	CTTGCCCAGT	СТТААССАТА	120
							120
	IICAICGIIA	WHI CHOWONIA.	TTCTCGAGTC	GTCATTCCTT	TAAAATAAAC	AGCCATAGCA	180
	AAGGCAGACA	TCTGATAATC	AGGAACAGTT	CCTGATACAT	A CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	C1 CCC1 CCC1	
							240
	ATTTCACTTG	AAGTCAGTTC	TTGACCGTCT	CGTTTTTTTT	<b>GGATTAAATC</b>	AACTGCTCTC	300
							500
				CTTTGTCTTT			360
	CAAACACATC	CTCCATCTTG	GACTTAGCAC	TTGGAGCCCC	√ىمتىملىملىملىتكىلىل	mccamea coa	400
							420
	TIGICAAAIC	CCCACCAGTT	TCCAAGAAAT	CTTTACTTTT	CTCAATGATT	TCATGAACGA	480
							-00
		COCACOGAIA	GOMOGW1.1.GC	AAATGACATG	ATCAAAATGT	CCTTCAACTT	540
(	GTTCATAGAT	GTTGGACTGG	AAATCTCCTT	GCATTATTTT	TVC A C A THURCHUS	0330	
		/		CONTINITI	TCACATTCTC	CAAG	594

## (2) INFORMATION FOR SEQ ID NO:116:

# (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 643 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

CTAGTGTTTT	ATAGCCTGTT	TCTTTCACAA	ATTGAGCAAA	TTCTTGATTC	GTAACTGGAG	60
TATCCGCAAT	GGAAAAATCC	TTTACACTAA	CAGCGACTTG	AGGACCTTCA	AAATCATCTA	120
	TTCAGAATTT					
						180
	CTATCCCCCG					240
AACTAACTCT	TCATCCACAA	CAAAACCTTC	TTCTCTATAT	CTAAGAAAGT	CTACTAATTT	300
	TGACGAACAA					360
ATGCGGATCT	ما لا ما لا مامليلياس	CARAMAROMO	1 M 2 1 M 2 2 M 2 2 M 2 M 2 M 2 M 2 M 2			300
	TTTTTCATAT	CANATANCIG	ATAATGATTT	AAAACAGGAA	ACCAGATAAA	420
TTTCCACTGG	TCTGTCAAAA	TATATTGACT	AGAATCTTTT	CCTAAAGCAT	GTTCACCATG	480
AAATTCTGTT	CGCCACCCCT	CCTACTCTCC	333m33m3a			-00
		COINCIGICC	AAATAATAAA	TTCCTTAACA	CTCCGTCCAT	540

CTAGTTCATC TGTAGTAGTT CCTCCCTGCC AAATCCACGA AGTGAAGGAA AAATATCTTG 600
AATTTTCACT AATTGCTTGA TTGTTCCCTA TTACCAGATC GAN 643

- (2) INFORMATION FOR SEQ ID NO:117:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1077 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

	TCATATTGTC					60
ATTTTGCCAT	TCTTGAGCAA	GCCAGCGTCC	CAAGATTGTG	ATATCTTTAT	CGCCCTGACT	120
GAGCACGATO	AAGTCAACAT	GATTGCAGCA	GTTCTAGCCA	AGAAAATGGG	AGCTAAAGAA	180
	GGGTGCGGAA					240
CTCGGTTTTT		TAATCCTGAG				300
ATTGACTTCC	CCAACGCCCT	GTCTGTCGAA	CGCTTTGCTG	GTGGACGCGT	TAGCCTCATG	360
GAATTTGTCG	TCAAGTCCAC	CAGCGGTCTT	TGCCAAATGC	CCATTTCTGA	TTTTCGTAAA	420
	ATGTCATTGT					480
	CTGTACAGGA					540
ATACTCTTCC	ATAATTATTT	TAAATCACGC	GCCGTGAAGA	GCCTTCTCAT	CGTTGGAGCA	600
GGTAGAATTA	CCTATTATCT	ACTTGGTATT	CTCAAAGATA	GTCGTATCGA	TACAAAAGTC	660
	ATCCTGAAAT					720
	ATGGAACCGC					780
	CTCTAACAGG					840
	TACAGAAAAA					900
	ATTTTTCAAG					960
	GTGGTCGAGT					1020
AGCCAATGGC	CAAATCGAAA	CCCTGCAATT	CCATATCAAG	CCAACCCAAM	AAAAMCA	1020
				CONNECTIVITY	UUUU 10W	10//

- (2) INFORMATION FOR SEQ ID NO:118:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1499 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

60	AAGTCAGGGT	ATAAGGAGAG	GCCCCAACT	GCGTAGTCTC	AGAGCATTCA	CTTGAATGGC
120	AATAGCTGGC	CTCAGCGTCA	TGTAACCTGT	CGTGCTCGCA	TTGATTGTCT	GAAAGTTTCC
180	AGTTTTTTGG	TATGTTCTCT	CAGCGATTTC	TTGTAGGTTT	TGAAGCAGCC	GGTAATTTTG
240	ACACTTTCGT	AGTATGGCTA	CATAGTCTAG	TCACTATAGG	GATACAAAAG	CACAGCTGGC
300	CGGCCATTGA	TAGTCCGTGG	GGTATTGGGC	CCTAGTTCTT	AGAGAGGTAA	GGTGGTCGGT
360	TTCTCCTTCT	CTTGGAAGAG	CGGAGCATGG	CTGGCTGTTT	GTCGGCTTTG	TTCCGAGAGG
420	AAGTGTACCT	TACCGTCTAA	TCTGCGATAA	GCAGGCGCTA	CCATGTCCTT	AGGTCAGGGG
480	ATCGCGGTAG	GGAAACCAGT	CATTTTGGAA	TGGAGCCAGC	CCCGTTCATC	GGCATCATAC
540	GGCAAAGAGG	GTATGATAAG	TAGTGCTCCG	AAAGCGTTGA	AACCTTCTAA	CTATTGAGGA
600	ACCAGGCTTG	TAAAGAGGAC	CCATTGTTGC	ATCCCAGAAA	TGCGGAAGGT	GGGAAGGTGG
660	СТСАТААААА	ATTCATTAAT	GCTTGCCCTG	CATGTGGATG	TAGCCAGATC	ACAGTACCAG
720	GTCAGCCTCT	AGAAGGTTCG	CAGTGGTCAA	TCTGTAGAGG	AGAGGAAGAG	GTCTGTGGGA
780	GGCACTTGAT	AATCCGCTTG	AGATTTTCCC	ACGATGGAGG	TAATGTCAAA	CCTATCTCTA
840	AGAGATGAAA	CTTGAGAAGG	TTAAGCAGTG	TTGAGGTAGA	CAAAATCTTC	TTACAGCTAT
900	GTCTCCAACT	CAATTCGCCA	CTTGCTAAGT	GGTTTGACTA	GTTGCATCTC	GAAGTGGCTA
960	CATCAGTGGA	CAGTGAAGAG	ATTTGCAGGG	ATCCGTGTTC	TAGCAAGAAT	TCTTGGCTGA
1020	ATCTACCTGC	GAGTCCGCTT	CTGAGAGCCA	GCCTTCTTGT	TCTCTGTTTT	TTTTTATTGG
1080	CTTGCTTTTG	AGGGCTTTGC	TAGAGGGAGA	TGCGTGAAGA	GTTCATCTGC	TCAACTGTTA
1140	TTTGATAGCG	TGGGTTTCAA	CGGTGTGAGC	CATAGCAAGT	ATAGAAGCAC	CTTCAAACGA
1200	CATAAGAAGA	TTATCTATAT	GAAGCAAGCT	AGTGAGGCTG	AGCTTCAAAT	CAGGGAAAAG
1260	GAAGGAGCCA	ACAGGTGTCA	TTGACTGGTG	CTCCACCCAG	AAGAGGCTGT	CTGGCGGTGA
1320	GAAAGATAGG	CGAATCCCCT	GTGAGTTAAT	GACTGGGCTG	CCAATCCAAG	AGAGTAGTCC
1380	CAAAATAATT	GTCTGGGGCA	CTGGTCACTG	AAGATCCATC	TCAAAAAACC	CAGATGCGGA
1440	CATGCTTGCT	CGAGAGAAGG	GGTATTTCCC	TGTATGGCAG	GGCACGCCTG	CATCCCAAAA
1499	TTCCTTTAG	TTCATAGTCT	aagtagtggt	CGATGGTTTC	AAGCGGGTAT	AGCAGTACCA

### (2) INFORMATION FOR SEQ ID NO:119:

#### (i) SEQUENCE CHARACTERISTICS:

(A).LENGTH: 864 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

CTCCATCTGC AATCGGCATC AGACAAGATC TCCAAGTGTT GTTTCACGTA ATCAATACGA 60 CCATCATCGT AAACAGTGTT ATTAACGAAC TCATCTTTAT AGCCGAGACC ATTTTCAGTG 120

	·					
	TCTTGTAGTT					180
CCTTGAGGGT	AGATAATCCA	ATCCCAATCC	GTGCGTGGAT	ACATAGTCAG	GGAGCTACAA	240
	ACCTTTGATT					300
	TTCTCCATCA					360
	CAAGTCTTTT					420
	ATTGACTGAT					480
GACCTAGATA	AGTTGCGTCT	AAGATGAATT	TATTGTGGAT	GATATCTTCC	A A CTYCTYCOTYC	
CACGAACATC	TGCTGGATTT	TCAGGATCTA	GAGGATATTT	ACTACCACC	CCCTCLLCLG	540
CACCAATTTC	CCCTTTATAG	CCAMINAMAN	MCM1C11mm	TO TAGGEAGG	GCGTGAACAA	600
0017017170	ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii		TGTACAATTT	TACCGCGCAT	GCATGAGACA	660
CCATCATATT	GTGGTGTGAT	TGAAAAACTT	TGGCAAGGTC	GTACTGGATA	CCTGGAGGGA	720
ATTTCCCAAC	CAAATATTGA	CCATCACCGA	TTGGTCCAAT	TTCATTAAAG	GTTGTCCAAT	780
AGTTTACTTC	TGGAAATTCT	TCCAAAACAG	AAGGCAGCGT	ጥልርጥርጥክር እ አ	A A TOO TO TO CO. TO	
	TTTAAGAAGT			- WOTCINCAM	AAIGTTCGAT	840
		CICC				864

# (2) INFORMATION FOR SEQ ID NO:120:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1233 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

ACGAGCAATN	TNTTCGGATC	CATTTCTTCT	CCTTTGTAAT	AAGATAAAGT	CCGTTTATCA	60
AATTTTATTI	AGTGTTAATT	TGGTTAAAAC	AAGCAAACTA	AGCTGCTTTC	TTGGTTAGTT	120
GTGACAAGAT	TGCCAAACGA	TTTTGACGGA	CAGCCTGATC	TTCAGCCATT	ACCATAGTAT	180
TTTCAAAGAA	AGCATCAATG	ACTGGGCTAA	GCGCAAAGAG	TTGTTTCAAT	TGCTGACTTG	240
CAGGTCCTGA	TAAAACGAGT	GTTTCTACTG	CTTCTGCCAA	AGCTTTTTCT	TGGTCATTCT	300
CAAATAGTGC	TGAATCAACT	GTAGCAACCC	CTTCTGCCTT	CTCAGCCAGG	TTAAAGGCAC	360
GAGAAAGTGA	TTCAACAGAT	GGTTTAAAAT	CTTCTTCCTT	GCTTACTTCT	ACGAGAGCAC	420
TTGCTGCTTC	CAACATATCT	GCCACAACAA	AGTTTGAACC	TGCAAGAACT	COTTOCTOR	480
TATCTTTTGG	AGTAGAGCCC	ATCATCTTAT	CAACACGAGC	СТТСАТАЛАС	TCCATAACCT	540
CTGCTTTATT	TTCATAAGTC	AAACTGTCAA	ATTTCAATGC	ATALAGGCTA	TCAATCACCT	600
CCAACTGTAT	AACAGAGTCC	GCCAG	ATGAGAATCC	AGAAACCCC	TCANICAGCI	
CTGATAATGG	CAGGAATGAT	AGCCA - ACC	AACCAGCCCA	TA ATCA COTTA	ANCACCA ACC	660
CTAAATTTCT	CATTGACCTT	TTTAGCAAG	ATTTATACA	CALTRACTA	AAGAGCAAGG	720
CCCCATTGGA	TGACAATAAT	CAGATAGCCA	AACCACOON	GAATACCAAA	GATGGTCGTT	780
GGCGTGTATG	AGCCGCCAAT	GCCAACCTAA	AACCAGTTAT	TCATCAAGGT	CAAGACAACG	840
TATTTGTGGG	AGCCGGCAAT	CCCCARLCGTAA	ATCATAGAAT	GGTCAATGAT	TCGCAAAACA	900
AAGAGACTCA	TCGAACCATA	GGCCATAGAG	TGATAAATGG	TGGATGATAG	GAACATGAGA	960
UNOUGHC I GH	TGACGAAAAT	GGAAACGCCG	ATAGAGGATA	AAAATCCGTG	TGCTTCATAA	1020

CTATAGATGG	ATGAAATAGG	CAGCAAGATA	AGCATGATGA	CTGCACCCAC	AGCATGGGTC	1080
ACGCTATTAG	CAATCTCCTC	TCCAAAACTG	AGTTGTTTGC	TGAGTTTAAG	ACTAGTGTTC	1140
ATTGGATTAC	CTCCTCTTGA	GTATGATCGA	TTAAGTCTAG	AGTTTGATGA	TAGAGTTTAA	1200
CGGTTTGGCA	GCTGGTTTGG	ATAATAGGGT	TAG			1233

#### (2) INFORMATION FOR SEQ ID NO:121:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 888 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

TACTATTAAC	CTTCCTGTGA	CTAAAGATCT	CCACCTAAAC	CGTTCGCGCT	CAGCTCAATC	60
TTCGTATCAA	ATCCAGTACA	AACAAGGGGC	TCTTATCTGC	CCAACTGCTA	GAATTTGGGC	120
AAAAGAAATA	CCTACAACCT	TATCCAGCTA	TTTTAAGTGC	TAGAACCATT	GATAACGGTC	180
GCTATCACAT	GTTGGAAAAT	CTCTGTGAAT	TGCCATTTAG	ACCAGAGGCA	CAACGAGTCG	240
TGACAAAAGG	TTACCTTAAT	TTACAAAATA	GAAATGATTT	ACTGTTAGTA	GAGGATATTA	300
CTGCAGATGA	ATGGATGGAC	GTTCAATTTG	AACTGCAGCC	AACTATTTAC	AAGCTAAAAG	360
AAGGAGACAC	TCTCCGTTTA	GTCCTCTATA	CTACTGACTT	TGAAATCACC	ATCCGTGACA	420
ATACAGACTA	CCACTTGACT	GTCGACCTCG	CTCAGTCCAT	GCTTACCTTA	CCTTGCTAAA	480
AGGAGTTACA	TTATTATGAA	TAAATCAGAA	CACCGCCACC	AACTTATACG	CGCTCTTATC	540
ACAAAAAACA	AGATTCATAC	ACAGGCTGAG	TTGCAAGCCC	TTCTTGCTGA	GAACGACATT	600
CAAGTAACCC	AGGCAACCCT	CTCACGCGAC	ATCAAAAATA	TGAACCTATC	AAAAGTCCGC	660
GAAGAAGATA	GCGCTTATTA	TGTTCTTAAC	AATGGTTCCA	TCTCAAAATG	GGAAAAACGT	720
CTCGAACTCT	ACATGGAAGA	CGCCCTTGTC	TGGATGCGCC	CAGTTCAACA	CCAAGTCCTA	780
CTAAAAACCC	TTCCTGGACT	GGCTCAATCC	TTTGGTTCTA	TCATTGATGA	CTTTGAGCTT	840
CCCTGACGCT	ATCGCTACCC	TTTGTGGTAA	TGATGTCTGT	CTTATCAT		888

#### (2) INFORMATION FOR SEQ ID NO:122:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1524 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

CTGTGATTGT	CTTTTTGGT	C TATCTGATC	A TTACTGTAC	A AAAGCTTGG	T CGTGTCATCG	60
ATGAAACAGA	AAAGACGATT	I AAAACCTTG.	A CTTCAGATG	T GGATGTGAC	ר ייייעריאייארא	120
CCAATGAGTT	GTTGGCTAAC	GTCAATGTC	T TGGCAGATG	A TATCAATGT	2 DECEMPENTS	
CGATTGATCC	ACTCTTCAGT	CTGTTGCA	ATTTATCTC	I ATCTGTTTC	A GACCTCAATG	180
ACCATGCGCG	TGTCTTGAGC	AAGAAAGCT	CATCAGCTG	TTCAAAAAC	CTCAAGACTG	240
GTGCAAGTCT	GTCAGCTCTT	CGTCTTGCA	GTAAATTTT	CANAAAAA	AAAAGGAGAA	300
TCCTTATGGG	TAAATTATCC	TCAATCCTTT	TAGGAACCG	י ייייר אכניייכרי	GCTCTTGCCT	360
TGTTTTTAAC	AAGTGATAAG	GGCAAACAAG	TTTGCAGTC	GCCTC33C30	TTTTTAGATG	420
ATTTGAGAGA	AGATCCGGAG	TATGCCAAGG	AGCAAGTCTC	TGAAAAACAC	ACAGAAGTTA	480
AGGAGCAGGC	TACAGATTTT	GTTCTGAATA	ACAAAAGAA	, roundyche	ACAGAAGTTA	540
ACTGTGGACA	GTATACTTGC	TCAAGGCTAA	ATCCTATCCT	TTTTCARGIC	CAGAAGCATC	600
ААААААТСАА	TTAAATAATC	TCAAGGAACA	ATGCCAAGAA	111CAAGCGA	CAGAAGCATC GAATTCGATC	660
TCTTGATGAC	TCAGAAGAGA	TTGTGATTGA	TATAACACAA	AAAGGIGCAG	TCACCATCTC	720
CGGACGGACT	AAGTATCTGG	GGATGGTGAT	TOTAL	GAATAAACCA	TCACCATCTC	780
ATAATTACTA	TGCAGAAAA	ACCAACGTCA	CCTATCACG	AATCTAGTCT	TTGTGGCATA	840
ATCTGATAAC	ATTGTGATTT	TTCAAAGGTC	TONTO	ACATCCCATT	TAGTACCCAG	900
TTAGAGCATC	TGCTGGAAGA	C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L. C. L.	TICKICAAAA	ATCAGCCAGT	CGACAGCTAT	960
ATCGGTGGTG	GAACACCGAC	#CCCCucated	TATGATATTG	AAAAGTTGTC	AACCCTTTAT	1020
TTGACTAAAA	ACTTGGATTT	CTCTCTCTCTC	GCTCCGCAAC	TGGAGGTGTT	ACTGAATGGC	1080
TTGACTAAAA :	CGGATAAGAT	ACCOCCOMMO	GAAGAGTTGA	CCATTGAAGC	CAATCCAGGC	1140
GATTTGGATG (	CCTTTGATGA	TA A CARCETTE	AAAAATTCGG	CTGTCAATCG	TGTTTCGCTA	1200
GGTGTCCAGA (		TAAGATGTTG	AAAAAGATTG	GGCGCAGTCA	TTTGGAGAAG	1260
GATATTTATG		TCGCCTGAAA	CTGGCTGGTT	TTGACAACAT	CTCCATTGAT	1320
TTGATTTATG (	ATATTCCC1GG	CAMCACCATG	GAGCAAGTAA	AGGAAAATGT	GGCTAAAGCC	1380
ATTGGATTGG A	CAMCCCACA	TO CATGAGT TTG	TATAGTTTGA	TTTTAGAAAA	CCATACGGTC	1440
TTTATGAACC ( ATGTTTGAGT A	TOTAL GEORGE	IGGGAAATTG	CCTCTGCCTA	AGGAGGAACT	AGAAGCGGAG	1500
	CAICALIGE	MONG				1524

# (2) INFORMATION FOR SEQ ID NO:123:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 654 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

CTAAGTGACG ACCAAGCGTA GCCTCGCTAA TCACCAATTC TTGAGCCAGC TGATGGGCTA 60
AAAACTGTTG GTGGTAGAGA AGATAAACCA AAATCTGGTA TTTAACAGCA CTATCCAAAA 120

A	ACAAGCTCC	GAATATCTCT	CCCCTTAGTA	GCTGCACCTA	TAGACAGACG	CAGATTTTCA	180
T	CTTCTGAGT	GAATAGTCAG	TTCTAAGCCA	CTATCCAAAG	CCTTGTCATT	GAGCAGGGTG	240
A	CATATTTGG	TTAGGGTTGC	TTTTGAAAAT	CCTGTTTCTT	CCATTACAGC	CTTGACGGTC	300
G	TCTGAGACT	CTTGTAATAG	AAAGGAAAGG	ATTGAAAATT	GACCACACTC	GGCTTTCTCC	360
A	TCAAATCTC	CTAAATACAT	TTGTTATCCC	TTTCATTTTC	TACCTTAAGC	ATAGCATAAA	420
T	CTGACAAAT	GCTAAAATAA	TCTGTTTCTC	TTTTTATTT	CATGCTGATT	TCCTGGTCCA	480
T	TATCCTGAA	AATCAGTAAA	CACACGGCTC	CCCCTTTGGG	CATTTTTATG	CTAAAATAGT	540
A	GCTATGGAT	AAAATTATTA	AAACTATATC	AGAAAGCGGA	GCCTTTCGTG	CTTTTGTCCT	600
T	GATAGCACG	GAAACCGTCC	GCACTGCTCA	AGAAAAACAT	CAAACCCAAG	CTAG	654

### (2) INFORMATION FOR SEQ ID NO:124:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1181 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

CTTGAACATA	TTCATCAAAA	GAACTATGAA	CAAAGATTAC	ATCCGGGAAG	AGTTCATTTG	60
CAACACGGAA	TGGCTTCGCT	CAGATTTTTC	TTGGGACAGG	CTGGTGGTCA	CAGCCGTTTC	120
ATCATCAACC	ATTGGTTGGT	CGAAGCGTAG	GCAACGCACA	TCTGACAATT	TTTGTTTCCA	180
GAAGGTCAAG	GCCTCATCTT	TGTCAACTGG	AATTTCATTC	CCGTTACTGT	ACCAGTTGGC	240
AAAGAGAATA	CCTAAAACAC	GACTACCATC	CACACCCTGC	CAGTACATTT	CTGAAAACTG	300
AGACGTAAAC	TGCTCATCTT	CAAGGACTTG	GTTGTCAAAT	CCAATCGGCT	TCACACCACG	360
ACCAAAGGCC	GCCACGTGAA	TGCCTGATTT	TTGAAGAATT	TGAGGCGCTT	GTCCCATATT	420
TCCAAAGGTA	TCTGGAAAGT	AGCCAATCTG	GGTTGATTTA	CCCCATTTGG	CAGCTTCTTG	480
TTGACCAATC	AAGGTATTGC	GGACATTGGC	TTCACTGGAG	ATCAAATAAT	CATCCTGCAA	540
GATGTAAAAG	GGACCAATTT	TAAGCTTGCC	CTCGTCAATG	TAGCGTTGGA	CCTTGTCGCG	600
ATTTTCAGGG	CGAATTTGTA	AGTAGTCGTC	AAGGACAATA	GTTTGTCCAT	CCAAGTGGAA	660
ACTCTTGAAC	TCAGGGTCAT	TTTCAAAGAG	ATCAAAGAGA	TTGTCAAACA	ATTCCACCAA	720
TTGCATACGA	TGGCTTTCAA	AAGGCAAGTA	CCACTCACGA	TCCCAGTGGC	TATGTGAGAT	780
AATATGTACA	ACAACATTTT	CCATGAAGTA	AAACCTCATT	CTAAATTTAA	ATTTTAACGT	840
TTTAAATGTA	AACTTGTGAT	TCTGATAAGA	ATCGGTTGAG	CTAAAGCGAG	CCCCTTAGCG	900
AATATCCAAG	TAATCCAAGA	CCAACTCACA	GAACATCATG	TTAGCCCAGG	AGAACCATTC	960
ACGAGAGTAG	AGGGTCGGAT	CATCTACATG	GAAGCTTTCG	TGCATGACAC	CTGTACCACC	1020
ATCGCAGGCA	ACCAGCTGAT	CCAGCAAGAA	TTTTTTCTCT	GCCTTATCTC	TTGTTGTCAA	1080
TCCCTGGATA	AAAAGGCGAA	TGGGCCAGAT	ATAGCGATAG	AAGTATGAGA	ACTTCCGAGA	1140
CCGCTAGCGT	ATCTCCTTGG	TAGAAGTATG	GATTTTCAGA	A		1181

# (2) INFORMATION FOR SEQ ID NO:125:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 830 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

CHICARC & CCCC	0000000					
CTCTGACGGC	GTCGCCACTT	AAGAAGAGTA	TCAAAAAGAA	AAATAGAAAA	TTAACTAACA	60
AGGNAGAAAA	ACACATGTCT	AAAATTATCG	GTATTGACTT	AGGTACAACA	AACTCAGCAG	120
TTGCAGTTCT	TGAAGGAACT	GAAAGCAAAA	TCATCGCAAA	CCCAGAACGA	AACCGCACAA	
CTCCATCTGT	AGTCTCATTC	AAAAACCCAC	3.3.30003.0000	Toomandon	WCCGCWCWW	180
11001000		MANAGOGAG	AAATTATCGT	TGGTGATGCT	GCAAAACGTC	240
AAGCAGTCAC	AAACCCAGAT	ACAGTTATCT	CTATCAAATC	TAAGATGGGA	ACTTCTGAAA	300
AAGTTTCTGC	AAATGGAAAA	GAATACACTC	CCACAAGAAA	TCTCAGCTAT	GATCCTTCAA	360
TACTTGAAAG	GCTACGCTGA	AGACTACCTT	CCTCACAAAC	MANOGANAGO		
CORROCCOCO			COLGNOAMAG	TAACCAAAGC	TGTTATCACA	420
GTTCCGGCTT	ACTTCAACGA	CGCTCAACGT	CAAGCAACAA	AAGACGCTGG	TAAAATTGCT	480
GGTCTTGAAG	TANAACGTAT	TGTTAACGAA	CCAACTGCAG	CAGCTCTTGC	TTATGGTTTG	540
GACAAGACTG	ACAAAGAAGA	AAAAATCTTG	GTATTTGACC	TTCCTCCTCC	Macammona e	
CTCTCTATCC	mmcs a mmccoc	<b>501000000</b>		1100100100	TACATTCGAC	600
OICICIAICC	TTGAATTGGG	TGACGGTGTC	TTCGACGTAT	TGTCAACTGC	AGGGGACAAC	660
AAACTTGGTG	GTGACGACTT	TGACCAAAAA	ATCATTGACC	ACTTGGTAGC	AGAATTCAAC	720
AAAGAAAACG	GTATCGACTT	ר אייי אייי אייי	3 3 C 3 TT C C C 2 2 2			120
000011111		O1CIACIOAC	MAGATGGCAA	TGCAACGTTT	GAAAGATGCG	780
GCTGAAAAAG	CGAAGAAAGA	CCTTTCTGGT	GTAACTTCAA	CACAAATCAG		830

- (2) INFORMATION FOR SEQ ID NO:126:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1153 base pairs
  - (B) TYPE: nucleic acid
  - (C).STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

CTGGGAAAGG AGATATC	TGA CAATAATAAA	CTGTATTCGT	ТСАТАСААТТ	TACA AATAA A	<b>C</b> 0
ATATATGAGA ATTAGAA	עריים אריים איניים	Amma coos m		INGUNITAM	60
TCCCCTCTAM CCCA		ATTTAGCGAT	TITACTATGT	GCCANGCTTA	120
TCGCCTCTAT CGGATTA	AAT ATGGATTCGA	CTCCCGTGAT	TATNGGAGCC	ATGTTAATCT	180
CTCCTTTGAT GACACCT	ATT CTGGGAGTGG	GGCTCTCTCT	AGCTATATTT	GATTTTAAAT	240

TGTTAAGAAA	ATCTTTTAAA	ATATTAGCTA	TTCAAATTCT	TGCCAGTTTA	ATAGCTTCAA	300
CACTTTATTT	TTATCTTTCT	CCCATTTCGT	ATGCTAGTTC	GGAAATTGTT	GCTAGAACCT	360
CTCCGACTAT	TTGGGATGTT	CTCATTGCTT	TTGTAGGAGG	GATAGCAGGT	ATTATTGGTG	420
CTAGGAAAAA	AGAGACCAAT	AATATTGTTC	CTGGTGTTGC	TATTGCAACC	GCCTTGATGC	480
CTCCTCTTTG	TACAGTAGGT	TATGCTATTG	CTTCTGCTAA	TCTAAAATTT	ATCATAGGCT	540
CCTCTTACCT	ATTCCTCATC	AATTGTAGCT	TTATTGTCAT	TGCGACTTAT	ATAGGTGTTA	600
GGTTGATGAT	GGTTAAGAAA	CATTATTTTA	AAGATAATGA	AGAAGACTCT	AAAATGCGTA	660
GGATTTTGCT	TCTAGTTGCT	GTTTTGCTGA	TGATTCCGAG	TTTCATCTCT	GCAACGACTT	720
TAGTGAGAGA	AACGTTGAAA	AAAGAGTCCC	TTAAGAAATT	TATATCAGAG	CAGTTTCAGG	780
GGCATAATAT	TTTGAAAAA	ACCTATTCTA	AAAAGACTCA	TACCCTAAAG	CTAACCATTT	840
CAGGAAATTA	TTTGACAGAA	GAAGAACTCG	ATATGATTTC	AAGTAAGAGA	GGTGACTATG	900
GTTTAAGTGA	TGTTTCTGTT	CAAGTTTCAC	AATTGTCTGA	TTCAGAACAA	CTTAGTAAGG	960
AAGAACTGGT	GGAGTATTTC	TTCCAGTATA	TCAAGGATAA	GGAAGCAAAA	GAAAAGGAAA	1020
AAGCTAATAA	GTTTTATACA	GAGTCTGAGG	AGCAATAATT	TCTTGAGAAT	AGCTGGTTTT	1080
TCTCGTGAGT	CTTCTATGTA	TATCAAAGGA	AGACTGAGGT	TTTAAGTATG	AAACTTTTCT	1140
TCTATTATAG	TAG					1153

### (2) INFORMATION FOR SEQ ID NO:127:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1058 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

CTGCAATGGT	TAGCGAGGAT	GGTGAAATAG	AGGAGCCTTA	ACTATTTTGA	GGAATCCAAG	60
CTGACAGGAC	TGGTATGTCT	GCTCTTTGGC	TCTGAAGGCA	GACTATACCA	GCTGGAAGTT	120
TGACAGATGT	GGCACGTGAG	AATTATTGGA	GGCNTTGACN	TANTCAGAGG	ATTCTCTCTT	180
GATATTGGGT	TTGGCAGAGT	TGGATAGTGA	GTTGGAAAAT	TACCAAGCGG	TTATTCAAGC	240
CTATGCCCAG	TTAGATAATC	GCTCGATTTA	TGAGCAAACG	GGCATTTCCA	CCTATCAACG	300
		AGTTAGGGAA				360
		ATGACTTAAC				420
		CCACCCTCTA				480
		GGTACAGTCA				540
		AAGGATTAGA				
						600
		ATGAATTGCA				660
		AGGATACAGA				720
TCTGGAGCAG	GAGCGTTATG	AGGATATTCT	AGACTTGCAG	AGTGAGGAGC	CAGAAAATCT	780
		CTCGTTCTTA				840

TGAGCATTAT CAAGAGTTGA CAG	GGAGATTT GAAGGACAAT	CCAGAATTTC	TGGAACACTA	900
TATCTATCTC TTGCGTGAAT TGC	GGACATTT TGAAGAAGCA	AAAGTCCATG	CTCACACTTA	960
CTTAAAACTG GTTCCAGATG ATG				1020
TTTAAACATA TAGAACTGTA GTT				1058

### (2) INFORMATION FOR SEQ ID NO:128:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1211 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

CTTGTTGCTT	GTCCAATTGG	TGTAAATTTG	GAACCGATTG	ACCCATCTGC	AAAGAATGCT	60
AGAGGAAACA	CAGGAAATTG	TTGCAGGTCG	TGTTGCTAGT	GTTGAAACAT	TGAAGCGAAT	120
AGAGGAGTTA	GGTTTTGACT	TIGICIGITI	GACTGGAAAT	CCTGGAACAG	GAGTTAGCAA	180
TCGAGAAATC	ATTAAGGCTG	TTCAAACTGC	TAAGGAAAAC	TTTTCTGGTT	TGATTATTGC	240
AGGTAAGATG	CACGGGGCAG	GAGTGAATGA	GCCTGTGGCA	GAGCTTTCTG	TCGCAGAGCA	300
ATTGTTGGAA	GCAGGTGCGG	ATGTGATACT	TGTTCCAGCA	GTTGGAACCG	TTCCAGCCTT	360
TCATGACCAA	GAGTTGCGTG	AAGTCGTTGA	TCTCGTTCAT	AGTAAGGGTG	GTCTTGTATT	420
GAGTGCTATT	GGTACTAGCC	AAGAAACATC	TGATACAGAT	ACTATTAAGG	AAATTGCACT	480
TAGAAATAAA	ATTTGTGGAG	TTGATATTCA	ACATATAGGT	GACGCAGGAT	ATGGGGGACT	540
GGCAACAGTC	GATAATATTT	ATGCATTGAG	CAAGGCAATT	AGAGGAGTGA	GACATACAGT	600
ATCTCGCTTG	GCTAGGTCAG	TAAATAGGTG	ATAAAGGAGT	AAGCTATGGC	TAAAGTAACA	660
ATTATGTTAG	CATGTGCAGC	AGGTATGAGT	ACAAGTCTGC	TAGTGACAAA	GATGCAAAAG	720
GCAGCAGAAG	ATAAGGGGTT	GGATGCAGAA	ATTTTTGCAG	TTCCAGCTCC	TGAAGCAGAA	780
GAAATTGTAG	CAACAAAAGA	AGTAAATGTG	TTGCTTTTAG	GTCCTCAAGT	TCCTATTA	840
CTAGGGGACT	TTCAAGAAAA	ACTAAAAGAT	AGACAGATTC	СТСТСССССТ	TATTCCCARC	900
ACAGATTATG	GAATGATGAA	TGGTTCTAAA	GTCTTAGATT	TACCTCARAC	TATICCGAIG	
TAAGATTGAG	GAGAATGTTA	TGGATGAAAG	ТААТТТАСАА	TCTCTD AMCC	CCCTLLTAGAC	960
GTATGGTGGG	GAAGCCAAAA	GTAATGCTAT	GGAGGCTATT	CACCCACCA	GGCTAATTAT	1020
TTTCTCTAAA	GCCAATCGAA	GATTAGCTGA	TGCGA ATCCT	CAGGCAGCAA	AAAAAGGGGA	1080
GGCTCAAACA	GAAATGTTGA	CAAGAGAGGC	ACACCCCCAA	GCCTTATTAC	AGGCGCATAA	1140
GATGGTACAC		CINCINCIAC	ACAGGGGAA	GAAACATCAA	TTAGCCTCTT	1200
	•					1211

(2) INFORMATION FOR SEQ ID NO:129:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 858 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

CTTCAGCCAT CTTTAGTAAA	GACTTCCTGT	GTTGACAATT	GGTTGGGCAT	CATGATTGCC	60
ACAAAGAACG ACAAGGAGAT '					120
CAATTCCCCT TCATTGAGCC	GTTCTAGTGC	CATTTCAACC	ATTCCTACAG	CACCATCTAC	180
AATCATCTTC CGTGCATCAA					240
AATTTCTGGA GCATAAGCTT					300
CTTCTACGCG ACTTTGAATT	TCCTCACGAA	TACGGTTAGC	AACAATTTCG	CTAGAGCCAC	360
GGAGACTACC TTCATCTGCT					420
AAGGATAGAT GCGGACAATA					480
TGTAGTTATC AACGTTGAAG	ACTGCCTTAG	CGGTATCGAC	AACTCTCCAA	GTTACCGCGA	540
TACCGATTTC TACAGGGTTT (	CCTAAGCAAT	CATTGATTTT	TTGACGAGAA	TTGCTCAAGG	600
TCATGACTTT GAGGGAAATG	TGTTTCTTGC	CAATTTCAAG	ATTTACATCA	TTGTCATTTG	660
ATGATTTAGC TCCTAAAAAA (	GGAGATTTTG	TGCTAACATC	ACCACTTTGT	CCAAGTCGAA	720
TGTGGTTTGC AGGGTTGACT	GCTACGCTGA	AGGGATTGAC	Aaagtaaaa	CCAGGTTCTT	780
TCATGGTACC TGTATAATTA	CCAAAGAGTG	TCAGAACCAG	AGCTTCCTGA	GGTTTGACAA	840
CTTTTAAACC AGCATGAG					858

#### (2) INFORMATION FOR SEQ ID NO:130:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 723 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

TTACTTCGCT	AAACAATCAA	AGGAACAGTC	AAAAATTCAG	TTGGAGCTGG	TGATTCTATG	60
GTTGCTGGAT	TCACAGGTGA	ATTTGTCAAA	TCAAAAGACG	CAGTAGAAGC	CTTCAAATGG	120
GGAGTGGCTT	GCGGAACGGC	AACTACCTTC	TCAGATGACT	TGGCAACGGC	GGAATTTATT	180
AAAGAAACAT	ATGGAAAAGT	TGAGGTAGAA	AAACGATGAA	AATTCAAGAT	TTATTGAGAA	240
AAGATGTCAT	GTTGCTGGAT	TTGCAGGCAA	CTGAAAAGAC	TGCTGTCATT	GAAGAGATGA	300
TTAAAAGCCT	AACAGGCCAC	GGTTATGTGA	CAGATTTTGA	AACCTTTAAA	GAAGGCATTT	360
TGGCGCGTGA	AGCTTTAACT	TCTACTGGTT	TGGGTGATGG	AATCGCTATG	CCTCACAGCA	420

AAAACGCTGC	TGTCAAAGAA	GCGACAGTTC	TCTTTGCTAA	GTCAAACAAG	GGTGTTGACT	400
ATGACAGTTT	GGATGGGCAG	GCAACTGACC	TCTTCTTCAT	CATTICCACCO	CCAGAAGGTG	480
CCAATGATAC	TCACTTGGCA	GCATTGACAG	AATTCTCTCA	GATIGCAGCT	AAAGACGGTT	540
TTGCAGACAA	ACTITICAN	GCA A CAMOMO	ANTIGICICA	ATACTTGATG	AAAGACGGTT	600
CTTCACAAAA	ALCTROTOAN	GCAACAICIG	CAGACCAAGT	TATCGAACTT	TTTGACCAAG	660
CIICAGAAAA	AACTGAGGAA	CTTGTTCAAG	CACCTGCTAA	TGACTCTGGT	GACTTTATCG	720
TAG		•	•			722
						723

## (2) INFORMATION FOR SEQ ID NO:131:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 882 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

A A III COMO COMO CO						
AATCTCGTTG	ATTTAGACTT	TAACCGTGTC	ATCTATTTTA	GGCGCTGGTC	CTTTTCTTTG	60
GACTTGCTCA	TGAAGCTCAG	CTCAAGATTT	TGGAATTAAC	TGCTCGTCAA	CONTCOCACCA	- •
TGTATGAAAG	CCCAGTTGGC	TTCCGTCACG	GTCCAAAAmo	TOTTOTICAL	GIIGCGACCA	120
TIGTTTTGGT	Стттсстаса	30030000 am	OTCCAMMIC	TCTTATCAAC	GACAATACAG	180
COC) COM	CTTTGGTACA	ACGACGGACT	ACACTCGTAA	GTACGACTTG	GACTTGGTTC	240
GIGAAGIIGC	TGGTGACCAG	ATTGCTCGTC	GTGTTGTGCT	TTTGAGTGAT	CAAGCTTTTG	300
GTCTTGAAAA	TGTCAAAGAA	GTGGCCCTTG	GTTGTGGCGG	ТСТСТТСААТ	CATATTTACC	360
GTGTCTTCCC	TTACATCGTT	TATGCCCAAC	<b>TOTAL PROPERTY</b>	Amma amma	CATATITACC	
AAAATAAACC	AGATACACCC	TOTAL COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COMMON COM	221100001	ATTGACTTCA	CTCAAGGTAG	420
The attraction of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of	AGATACACCG	ICICCTACAG	GTACAGTAAA	CCGTGTAGTA	CAAGGTGTCA	480
TAATTCACGA	ATATCAAAAG	TAAGACAGTG	TTTATGAATT	CTTGACAAGA	GGATTTGTAA	540
ATTATCAGAT	AAACCATAGA	TTGTCAGTAC	GCTTTCTATG	Chalchenter	TTCACACAAA	600
TAGTAAAAGG	AGAACAGAAT	GAAAGCATAC	ACAGAGCCTC	W1 TO 1100	TIGNGAGAAA	
GAGGATGTCT	<b>ТССССТАТОС</b> С	\#####################################	nchonoco16	TAT-T-TGGAAA	TGTTGAGGGT	660
management	TGGCCTATCG	ATTTGAGACA	GACGGTGGCT	ACCAACTTGA	GGTTATGACT	720
TATGGTGCGA	CTATCTTGCG	CTATGTCGCA	CCTGACAAGG	CTGGAAATTT	TGCCAATGTT	780
ATCTTGGGAT	TTGATGACTT	TGATAGTTAT	GTAGGCAATA	GTCCCA ACCA	TCC3CC33CT	
GTAGGTCCTG	TAGCGGGTCG	ጥልጥጥሩሮልረርጥ	CCCACCOMME	OTCCCANGCA	TOGAGCAAGT	840
		THI I GCUGGI.	GCGACCTTTG	AG		882

## (2) INFORMATION FOR SEQ ID NO:132:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 864 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

CTCAAGGGCT	TGAAATCATC	CAGATAAATG	AAGAACAAGG	CCAATTTGGT	TTTGACCGCG	60
TTAAGGAATT	GGTTGATACT	TACAAGGTGG	AACGATTTGT	AGTGGGCTTG	CCTAAAAACA	120
TGAACAATAC	AAGTGGACCG	CGCGTAGAAG	CTAGTCAAGC	CTACGGAGCA	AAGCTAGAAG	180
AGTTTTTTGG	TTTACCAGTA	GACTATCAGG	ATGAACGCTT	GACAACAGTG	GCTGCTGAGC	240
GCATGTTGAT	TGAACAAGCA	GATATCAGTC	GCAATAAGCG	CAAGAAAGTC	ATTGATAAGT	300
TAGCAGCTTC	AGCTGATTTT	ACAAAATTAT	TTAGATAGAA	AATTTTAATA	TAAAGGAGAG	360
GCTATGTCAC	ACGATCATAA	CCACGACCAC	GAAGAACGTG	AACTAATCAC	ACTAGTAGAT	420
			CTTTTGACAA			480
			AACGCAGAAG			540
			GAAGATGGAA			600
			ATGATTGAAG			660
			AGCCCTGCGC			720
AGTCTGAGAG						780
AACATTTTTA						840
AGCCCACGTT						864

#### (2) INFORMATION FOR SEQ ID NO:133:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 952 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

GTATCGTTCA	ATTCCAAAGA	TACGGAGGAA	GCTGCGTTTC	GCGAGAAAAC	TCTTGTTAGA	60
CCAGATAGGG	ATTAGCCAAA	ATCCTTCTAT	GNGCTTATAT	CCAAATGGAG	ATGCAAACTT	120
CTGCCCAACT	CTTGACCAAT	AAGATCTTTC	TTAAAAATCC	ACTCAAGGCT	СТССТАСАСС	180
AAAAATATGG	GATTGAGTAT	GAAGAATTTA	CCAATCCTTG	GCACGCTGCC	ATOTOTACOT	240
TCGTTGCCTT	TTTCCTTAGA	AGTTTGCCTC	CAATGCTGTC	ACTICACCAMA	MECCALORS	
AATATCGCAT	CCCTGCTACT	GTCCTTATTG	TCCTCTCCC	AGTGACCATA	TICCCAAGIG	300
CTAGTGCCAG	ACTTGGAAAG	GATCCGACTA	Chacheman	CCTICTICTE	ACTGGTTACA	360
TCTCTTCACC	ATCCCACTOR	COMPOUNCE	GAACAGTATG	ATTCGGAACC	TTGCTATTGG	420
A A TA CORCO	ATGGGAGTTA	CCTTCCTGCT	CGAACAACTT	TTCAGCATTT	AGAATACAAG	480
TOTTO A A CONA	ATTTTGAAGT	CGAGGTATCT	TTTTTACATT	TGCACAATCT	TGCGATAACT	540
COMON CONTRA	ATCATGAAAA	TCAGCACATA	GGCGATGAGG	AAGATAGCGC	AGATAGACAA	600
GGTCACAATC	AACATCATAG	TCGTATCCAG	TACACCAATC	ACTTTTAAAA	TCAGGCTAAG	660

CATATGGTAG GCAAAGGCGA	GATGTATGAA	GGCAAAGAGC	AAAGGAAGGA	AGAAAACAGT	720
TAAAACCTGT TTGTTGATGG	TTTGCTTGAT	TTGCTTTTGG	TCCAAACCGA	CTTTCTCCAA	780
GATAATAAAG CGTTCACGGT	CTTCGTAGCC	TTCAGAAATT	TGTTTGTAGT	AGATGACCAG	840
AACAGTTCCG ACCATAAAGA	TAATGGATAG	GAAAATACCG	ATAAAGAAGA	CACCGCCAAA	900
GAGGACACTC ATTTGAGCAC	TAGCATCTGC	TAGATTGCTA	CCATAAACAT	AG	952

## (2) INFORMATION FOR SEQ ID NO:134:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1133 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

ACAGAATTAC	TCACTATTCT	GCGTCTTCTG	CTAAAAGTTT	AAACTCGTGT	TTCTTCATCC	60
AAAAGTGGGT	* AACCTAGGCG	TTTGCGTTCT	GCAACAAAGG	TTTTGGCTAC	AACACGGGCC	120
AAGTTACGG#	TACGGAGCGA	TATAGCCTGC	ACGGCTCTGT	TACAGATACG	GCACCACGCG	180
CGTCAAGCAG	ATTAAAGGTA	TGTGAACATT	TGAGAACATA	GTCATAGGCA	GGGTGTACCA	240
AGCCTTCTTC	TAATGCACGA	CCAGCTTCTT	TTTCAAACTT	ATCAAAGTTT	TCAAGCAACA	300
TTTCTTGGTT	CGAAATTTCA	AATGAATATT	TTGAGTGCTC	ATACTCAGGC	TGGATAAAGA	360
TTTCTCCGTA	TTTTACACCA	TCAGCCCACT	CGATATCATA	GACAGAGTCT	ACTTCTTGAA	420
TGTAAGAAGC	CAAGCGCTCC	AAACCATAGG	TAACTTCCGC	AGTCACAGGG	CCAGTTGCCA	480
ATCCACCGAC	TTGTTGGAAA	TAAGTGAACT	GAGTGATTTC	CATTCCGTCA	AGCCAAACTT	540
CCCAACCAAG	ACCAGCTGAA	CCAGTTGATG	GGTTTTCCCA	GTTGTCCTCA	ACAAAACGAA	600
TATCGTGCTC	CAAAGGATTG	ATTCCCAATT	TTTCCAAAGA	CTCAAGGTAA	AGTTCTTGGA	660
TATTTGATGG	AGAAGGCTTC	ATGACCACCT	GGAATTGGTG	GTGTTGGTAG	AGACGGTTAG	720
GGTTTTCCCC	ATAACGACCG	TCAGCAGGAC	GACGTGATGG	CTCTACATAA	GCTGCATTCC	780
ATGGCATCAG	GTCCGATAGG	CACGAAGGAA	AGTGTAAGGA	CTCATTGTTC	CCGCACCTTT	840
TTCATTATCA	TAAGCCTGCA	TAAGCATACA	ACCTTGGTCA	TTCCAAAATT	GTTGCAAAGT	900
CAAAATAATT	TCTTGAAATG	TTAATTCCTT	AGACATTGAA	TACTCCTTAA	ТАААААТАА	960
TTTCTTGCGA	CACGAGTTCT	GCCTCGTCGA	TTATACCNAG	GCACANAAAT	TANTICTNGC	1020
TTCCAAATTC	GAATCCCGCN	NCCCCGGGGG	ATTCNNTTTT	CNTAAACCGG	CCCCCCCCN	1080
GNGGGAACCC	CCCCNTTTTT	NCCNTTATTT	AAGGGTTANT	CNCCCNCTTG	NCN	1133

### (2) INFORMATION FOR SEQ ID NO:135:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 806 base pairs
  - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:135:

ልርርጥል ልጥጥላ	THE CAMMACAM					
ACCIMIIII	IICAIIAGAT	CCTCCAATTT	ATTAGGGCTT	TGCCCCTTAT	TTTAACAAAT	60
GTTTATTTT	CAGTTTCAAA	TATCGTTGTT	TGGGAGCGAT	AAAGAAGCTA	ATGAGAAAGA	
AACTAGCAGC	TGTAAGCACG	АТАСТАСААС	CTCCCCAAC	100110011	TAGCCAATAA	120
AGAGTCCCA A	3.3.CMC3.3.GC3		CIGCCGCAAC	ATTAAAACTA	TAGCCAATAA	180
AGAGICCCAA	MACTGAAGCA	GTAGCTCCGA	AGGTTGAGGA	AAGGAAAATC	ATGCTTTTCA	240
GACTATTAGC	ATACAGATAA	GCAGTTGCAG	CTGGGGTAAT	CAGCATGGCT	ACAATCAGGA	300
TAGTTCCGAC	ACTTTGCATG	GCTGTCACAG	ACACGAGACT	Classes	ATGAGAAGGT	
ACTCATACAA	A TOTAL CALCOLO	10000000	ACACGAGAG [	CAGGAGTACC	ATGAGAAGGT	360
	ATTGACAGGC	ATTCCCATGG	CTTTAGCCAA	GAGTTCATCA	AAGGAAGTTA	420
TCAAGAGTTG	CTTGAAGAAA	<b>ATCCAGATTA</b>	ACAAGAGGAT	GGCTGCCCCC	ACACCCATAC	
TAATAAACAT	ATCCGTATCT	TGGACGCCCA	CCATATON	1111100000		480
CACTTCAACT	TOTAL COCK CO		GONTATTACC	AAAAAGGATA	TGGAAAAGGT	540
CAGIIGAACI	TTTAGCGACA	CCAATCAAGA	TGATACCGAG	<b>GGCTAAGAAA</b>	GAAGAAAAGG	600
TAATGCCGAT	GGCGGTATCG	CTTTTGATAA	TCGAGTTTCC	TTTGATGTAG	CTA ATTCATICA	
TGGCAGCTAG	CAATCCAAAG	ACAATECETTE	CCAMAAACAA	TOLLEGE	GIANIGNIGA	660
GACCCCTTACA	000000000000000000000000000000000000000	nemiodele	CGATAAAGAA	TCAAGGCCCA	AGATGAAGGA	720
GAGGGCTACA	CCTGGTAAGA	CAGCATGTTG	AAATGGCATC	TCCCATGAAT	TGACATCCCG	780
CGTAGAATAA	TGAAACATCC	CACAGA				
						806

## (2) INFORMATION FOR SEQ ID NO:136:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1096 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:136:

CTAACATTTC	CTTTGCTACT	TCTAATAATG	TCATAGTGGT	CATTAAATGA	TCTTGAGCAT	60
GTACCATGAT	AATTTCAATT	TTAATTTCCA	CTYCEACTOR	OTT & TOTAL CONTRACT		00
יאו ע היהאניוערים איני	100000000		CICCACIIGC	GTATTCTTGC	AAGAGTTTGG	120
TITOTOCATO	ATGCGCTTCA	AGAATTATCT	CATTTGATTG	ATTTAATTTA	CTTTCTGCAT	180
CATCAAAACT	ACCTTCTCTC	ATTTTTTGCA	AATGCTTCAT	CTA mmmomos		
CCCGAATGCA	CCATAATIO	1117007	· · · · ·	GIATITUTGA	CCTTGCATTT	240
	GGATAATTTC	AAATGCTGCA	ACCTGCAGTT	CCTCTTGATT	CATATGAACC	300
TCCTATTTTA	TCTTCTCAAA	TATGTTAATA	AAATCTTCAA	ACTURA TURNO N	1C1M1Mm1 00	
TGATTTTGCA	ልምምረልምረልምም	CTCTCTCTC	010101	MOTINITICA	AGATATTAGC	360
00000000	ATTCATCATT	CICIGICAAA	GAGACTATCT	TTTTAGTCAC	AGTTGCCAAA	420
CCTTCCGTTC	CCATATATTG	ATGGAGATAG	AAGAAATAGC	TAGTCTCGAC	A MCMC A A COM	400
TGATTATCCC	AGAGTAACGA	A TOCOMO A A A A	10000	CICIOGAC	ATGTGAACTT	480
		ATCTTTACAA	ATTGCAACCG	AAACCTTTTC	CTCTGTACCA	540

			TTTTCAGAAA			600
			TGTTCAAACT			660
			ACCTTGTCTG			720
			TTGTTTTCAA			780
			ATAGCTTTTC			840
			GGGATTTGAA			900
			AGTTTTTCTT			960
			AACTCCGTTT			1020
TGGGCTGCAC	CAAATCCTGT	TGCACAAATA	GCAAGAATAT	TAAACTTAGT	ACTCTCTTTG	1080
CTACGTTCCA	TAGCAG					1096

### (2) INFORMATION FOR SEQ ID NO:137:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1124 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:137:

	GTTGCTGGGG					60
CTTCAAGCGT	GTTAAGGACA	TCCCTTTGAC	TTTGCCAGAA	GAACTAGATA	TCACAGTTCG	120
TGGGGAATGT	TACATGCCAC	GCGCTTCCTT	TGACCAAGTT	AACCAAGTGC	GCCAAGAAAA	180
TGGAGAGCCT	GAATTTGCTA	ATCCTCGTAA	TGCGGCAGCA	GGAACTATTG	TGTCAGTTGG	240
ATACAGCAGT	AGTTTCCAAG	CGTAATCTTG	CAACGTTTCT	TTATCAAGAA	GCCAGCCCTT	300
CAACTCGTGA	TAGCCAAGAA	AAGGGTTTGA	AGTACCTAGA	ACAACTAGGT	ATTGTGGTCA	360
ATCATAAGCG	AATCTTTGGC	TGGAAAATAG	ATAAAATATG	GAATTTTATC	CAAGAAGTAG	420
GACAGGAACG	GGAAAATTTG	CCTTAAGATA	TTGATGGAGT	GGTAATCAAG	GTCAACGACC	480
TAGCAAGTCA	AGAAGAACTT	GGTTTTACCG	TTAAGGCTCC	AAAGTGGGCA	GTAGCCTACA	540
AGTTCCCTGC	TGAAGAAAA	GAAGCTCAAC	TCTTATCAGT	TGACTGGACA	GTTGGCCGTA	600
CCGGTGTTGT	AACTCCAACT	GCTAATCTAA	CACCAGTACA	ACTTGCCGGT	ACGACTGTTA	660
	CCTGCACAAT					720
CGGTCATTGT	ATATAAGGCT	GGTGACATCA	TCCCTGCCGT	TTTACGTGTG	GTAGAGTCCA	780
AACGGGTTTC	TGAAGAAAA	CTAGATATCC	CTACAAACTG	TCCAAGTTGT	AACTCTGACT	840
	TGAAGATGAA					900
						960
	TGAGAAGCTT				-	1020
	AAGAAGATTT					1080
	TATCCAAGCA					1124

#### (2) INFORMATION FOR SEQ ID NO:138:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1264 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:138:

CTTGGTAGAA CTTGCTAATC AAGCTGGCAA GCCTGTAGTC TTGGACTGCT CAGGTGCAG	C 60
ACTITCAGGC TGTTCTTGAA TCACCCCATA AACCAACAGT CATCAAACCA AATAATGAA	G 120
AATTGTCTCA GCCTTCTTGG AAGAGAAGTT TCTGAGGATT TGGATGAATT AAAAGAAGT.	A 180
CTTCAAGAAA CCTTTGTTTG CAGGGATTGA ATGGATTATC GTTTCACTTG GTGCCAACG	
TACTTTTGCC AAACATGGTG ACACTTTCTA CAAGGTAGAT ATTCCTAGAA TTCAGGTGG	r 300
AAATCCTGTT GGATCTGGAG ACTCTACTGT GGCAGGAATT TCTTCAGGAC TTCTTCACAA	A 360
AGAATCGGAT GCAGAATTAC TCATCAAGGC AAATGTCCTT GGTATGCTCA ATGCTCAAGA	A 420
AAAAATGACT GGTCATGTCA ACATGGCCAA CTATCAAGTT CTATATGATC AATTAATAGT	° 480
AAAAGAGGTA TAAAATGGCT TTAACAGAAC AAAAACGAGC ACGCTTAGAA AAACTTTCTC	5 540
ATGAAAATGG TATCATCTCA GCTCTTGCAT TTGACCAACG TGGTGCTTTG AAACGCCTCA	600
TGGCTCAACA CCAAACAGAA GAACCAACTG TGGCTCAAAT GGAAGAACTG AAAGTCTTGG	660
TAGCAGATGA ATTGACTAAA TACGCTTCAT CAATGCTTCT TGACCCTGAG TATGGACTTC	720
CAGCAACTAA AGCTCTTGAT GAAAAAGCTG GTCTTCTCCT TGCTTATGAA AAAACAGGTT	780
ATGACACAAC AAGTACAAAA CGCTTGCCAG ACTGCTTGGA TGTTTGGTCT GCAAAACGTA	840
TTAAAGAAGA GGGTGCAGAT GCAGTTAAAT TCTTGCTTTA CTATGATGTA GATAGTTCAG	900
ACGAACTCAA CCAAGAAAAA CAAGCTTATA TCGGAGCGTA CCGGTTCTGA GTGTGTGGGC	960
TGAAGATATC CCATTCTTCC TTGAAATCCT TGCTTACGAT GAAAAAATTG CACACGCAGG	1020
TTCTGTACAA TATGCGAAAG TAAAACCACA CAAAGTGATC GGTGCTATGA AAGTCTTTTC	1080
ACACCCACGC TTTTAACATT GATGTCTTGG AAAGTTTGAA AGTTCCTGTT AACATTAAAT	1140
ATGTTGAAGG CTCCCCTGAA AGGTGAAGTG GGTTTACACA CGTTGAAGAA ACCAGCAGCC	1200
TTCTTCAAAG CGCAAGATGA AGCAACGAAC TTGCCATACA TTTACTTGAG TGCTGGTGTA	1260
TCAG	1264

## (2) INFORMATION FOR SEQ ID NO:139:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 597 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:139:

CTGAACTGGA	TTTTGCTACA	AGGTCTGATT	TGTCAAAGAG	ATGCGAGTTA	TGATATGAAG	60
CAGGATGATT	TGGATAAGGT	AGCAGATTAT	СТСТТСАААА	CAGAAGAATG	GACCATGTAT	120
GAGTTGATTC	TTTTCGGTAA	CCTCTATAGT	TTCTACGATG	TAGACTATGT	CACTCGGATT	180
			TACCAAGAGA			240
GTGTTGATTT	TGGCCCTCAA	TTGTTACCAG	CATTGTTTAG	AGCATTCTTC	עע עידעריייייייייייייייייייייייייייייייי	300
GCCAACTATT	TTGAGGCTTA	TACAGAGAAG	ATTATTGACA	AAGGTATTAA	COTTANT	
CGTAATGTTT	TCCATTATTT	AAAAGGTTTT	GCCTTATATC	AAAAAGGACA	CTCTLAIGAG	360
GGCTGTAAGC	AGATGCAAGA	GACCATGCAT	ATTTTTGATG	TOTALOGRA	MCC1C1AAGAA	420
GTAGCCTATT	ATCAGGAACA	CTACGAAAAA	מ מ מ מיייריייייייייייייייייייייייייייי	COMPARAMENT	TCCAGAGCAA	480
GAAAAAATAA	AAAGCTCCTT	TCGGTTTTGA	TACAATACTO	GITAATTTC	CCAAATAAGG	540
			THUMANIAGIT	TCAAAATTTG	AGAGGAG	597

## (2) INFORMATION FOR SEQ ID NO:140:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 623 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:140:

CCMCMMCCCA	<b>61566</b>					
CGTGTTCCCA	GATGGCCGCA	TCCATTTATT	GAGCCAGACG	TGTCCAAACT	CATCAGGGTT	60
ATCTTCGATA	ACCAAACGAA	TACGAGTGCT	TCGTCGCCAC	CAAGGTCTGG	TAGTTGACGA	120
TGTTCAAAAG	AGCCGTTTCG	ACCAACTGAC	ATTOCCCOM	100707070	INSTITUTE	
		ne conscione	ATTGGGCTAG	AGGTCCTTCC	ACCTGCACAA	180
TCGGTTCATT	AGCAAAAACC	AAATCCCCTT	CTTGGGCAGA	ACGAACGGTC	AACTCCAACT	240
TGAAATTGCG	AAGGTAATCC	AAGAACCCCC	Camcamaaaa			
		MONACUCC	CATGATAACC	AAGCGACTCC	AAATAGGCTA	300
TATCACTATC	ŢĠŖĸĸĸĸĸĊĠĊ	AAGTCTTCAA	CATACITTCAC	3.3.mmommoo		
	, . ,		ONTHUTTCAC	AATTCTTTCC	AAACCIGCAA	360
AAACCGCATA	GCCGTTCTTA	AAAGGCTGTT	GGCGGAAATA	CACCTCAAAC	1 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	420
መል የመንያመን እ እ መ				CHCCICHANG	ACCUCCITCT	420
IATTGTAAAT	CCCTTGATCA	AAGTAAACCT	GCATCATGTT	GATCTGGTAC	AAGTCCGTGT	480
CCAATCTCAA	ACTARCA MOM	001810151				400
CCIBILGICAN	ACTATCATCT	GGATACATAC	TTTTCCTACT	TCCTTAGCTA	GAAACCCATG	540
AAAATTTTCA	AGAACTTTCA	TYPE TO THE TOTAL A	M3.3.3.0003.000-			
		IGIATICCAM	TAAATTAGTA	CTATTATATC	ACATTTTAGC	600
TGGATTGAGA	AAAGAGTAAC	AAG				_
						623

- (2) INFORMATION FOR SEQ ID NO:141:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 609 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:141:

CCATGTTGGT TCTCAACTAT	GTTTATGCTG	TTCCTTTGTA	CGCTAAGTTT	GCTAACTTTG	60
ATATTGGAAA AATTTTGGGA	CTTTCCAACT	ACCTAATGAC	CATGGTATTA	ССффффа	120
TGATTGAAGG TGTTATCTTT	TCCGTTTCAT	TCTGGTTGTT	GTATGTTCTC	TTCANACCAN	
CCTTAAAACA TTATGAGAGA	TAAACAAACA	TTTTTAATGA	AGGGCAGTTT	TCCCCTTTTT	180
CTTTTCGTTA TTCTTGGCTA	CATGGTCAAA	TTTTACCCTG	AAACCCTCCT	CAAMMMMCAG	240
CAATCGATTC AGACTGCCAT	TCGAGGAGAC	TTACCAGATT	AMMTCACHAM	CAATTITGAC	300
GCCCTCACAC GTCTGATTGA	TATCCCAGTG	ATTATCACTT	CCCMMCMCAM	TCTTTTCGA	360
GTCTTTTATC GTAAGCGATG	GAAGATAGAA	yCultate Caroli	MCCMCCC	TACAGCTTTT	420
GCAGGTCTTT TAATCGTGAC	CTTTAAAAA	AGTITICA	TGCTGGGAAA	TCTGGCTTTG	480
CATCTGGTGG AAGAGAAGGG	ATTITUTE	CCA ACTION OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF	GCCCACGGCC	AGATATCTTA	540
ATGGTAGGT	ATTICCITC	CCMAGTGGGC	ATTCTCTGGC	TGTAACCTTG	600
					609

## (2) INFORMATION FOR SEQ ID NO:142:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 638 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:142:

CTABABABACT	TO CAROMOM					
C1188888888	iwcwwg.167.1.	GCCATGCCGA	GTTACATTGG	TTCCAGCTTG	GAGTTTACTA	60
AGAACAATTT	GATTCAAATT	GTTGGGATTA	AGGGAAGCTA	3/73/73/C3 3 C/7	TGTAGAAGTG	
ACCACACCCC	CDCC3 CCC3 -		oooiniocia	AIATAGAAGT	TGTAGAAGTG	120
ACGACAGCGC	CIGCAGGTAG	TGTAGAAGGC	ATGGTTGTTG	AACAAAGTCC	TAGAGCAGGT	180
GAAAAGGTAG	ACCTAAATAA	GACTAGAGTC	AACATITICAA	MCM1011100		
TO A COM A COMO	0000		.m.cmiiican	TCTACAAACC	TAAAACAACT	240
ICAGCIACIC	CTTAAAAGCA	GATGGATAAT	CAAAATGAGT	AATCAATCTT	TGTCATGATT	300
TCATGGCAAA	GATTTTTTTT	GAGTCCAGAT	TTV:TVC N TN C N	10101000		
C10C1110C1		oo.ccnon1	IIGIGATAGA	ATAGAGGGAG	TTGATAAAAG	360
GAGGAAAGCA	TGGAAGAATC	AAAAGAATTA	AATGCCGTCA	TTGATGTGAT	TATGCTAGCG	420
<b>GGGACTATTC</b>	TCCTTAAAAG	TGGCTCAGAA	MCC MCComo			420
1500000		100CICAGAA	ATCCATCGTG	TAGAAGATAC	CATGATTCGA	480
ATCGCGCATT	CGCAGGGGAT	TGTGGATTGC	AATGTCCTTG	CCATGCCTGC	СССФУФСФФФ	540
TTCTCTATTG	ΔΔΔΦΦΦΟΟΛΑ	Mammacocco			COCIMICITI	340
	AAAATACCAA	TWI-I-ICGCGC	ATGAACGCGT	GACCTCCTCT	TCTTATAACA	600
TCGAAAAAGT	CTGCGATGTG	AACCAGATTT	CTCGTCAG			
						638

### (2) INFORMATION FOR SEQ ID NO:143:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1450 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:143:

CTCCATATTT	CTTAGCCTTC	TCAATTAGGG	TCTTGAAGTC	TTCGACACCA	CCGATACGCT	60
TACCAATATC	AGCATAGTTC	AAGTGACCAG	AGTCATGGCT	GTGATATCCT	TAACTTTTTC	120
CCAACCTTGA	GGGTTGTTCA	TAATGCTACG	ATAAGCAATG	GCACCATCTT	GCCAATCAAC	180
TTTCTTGTCT	GCATTGGCAT	CTTCAGTGAT	AACAACCTTA	GCACTTGGAA	GTTCCTTCGT	240
GTATTCTGGG	AAAACAATGC	CCTTATAAGC	TTTTTCCCAT	TGCCATTCAG	AGCTGTGGAT	300
TCCTACATAG	TTGGCATTTC	CGACTGTTTC	TTTATAAGCT	GTCAAACGAG	TCCAGTCATT	360
CGAACCACCA	CCATAGCTAT	TTTGAGAGTT	ACTCCAAACA	CCAGCAGCAA	GCTTATCTGT	420
AGAAACAAAT	CCATACATGT	AACCCTTAGC	CAAATCCTTC	ATTGGATTGG	TTACATCGAT	480
ATGATCATCT	CCGCTGACAT	GCGTATTGTT	TGACATGGTT	GCCCCATCAA	ACTTAGCACC	540
AGTTTGATCA	CTAGAAACAG	AGACTAAAGC	ATTGCCGAGG	AAACTAATAG	AAGAAAGTAG	600
TTTTCTTTCG	TCATCAATCT	TTTGACCTGG	AGTGACTTGA	TTGTGGTTGA	CAATCTTGGT	660
CACATCAAAG	TGCAATTGAT	TGTCCACAAC	TTGCAAGCGT	ACTGTCATTT	CCGCATTGAT	720
TAAGTGAGCA	TCATCGCGAA	GCTTCATCAA	GTACTCTGCT	GTTGTCTCAT	TGATTTTTT	780
ATAAGTGACT	TCAGGGGTGA	TTCGGTGGTT	ATTGATAAAG	ACTTGGTTGA	ATTGTTGCAC	840
CTGTCCTGGC	AAAGTATGTC	CATTCAAGGT	GTATCCCTTG	ACACGAAGGA	AGGCTTGGTC	900
AATTACTGCC	TTAAGTACCT	TAAACTGGAT	CGTATCATAA	GTCACCTTGC	TATCGTCAAC	960
AACCGGACCT	GTTTCTTTCT	GGGCAGGGGT	ATCCTCTGGG	TTTTACCCTC	TCTGTGGCTA	1020
TCCGTTTCAA	CGCTTGAACA	ACTGGTCGCT	CATCGTCATA	AGAGCCCGCC	TTGAGAAAA	1080
TCTTCTTCTC	ATTTCTAAGA	TGGTCATTGA	CCGCAGCTGG	TAGAGTCACT	GTGTCAAAGA	1140
AGATTGACAT	CCTTATTTGC	CTGGCATTTA	CCTGACCGTC	TGACTTGAAG	ACTGATAGAG	1200
AGACGGTTTG	TTGATCCTGT	TTCAGGAGCA	GCAACACGAC	TACCTCTATA	ССРВСТССТВ	1260
GTTGTTGGAG	ATTTATACTC	CCAGAACCAG	CCATCCTTGT	CATAACCGAC	AAAAACATTA	1320
TTATTGGTAT	CTTTAAATTT	CAAGGAGACA	CCAAAGCGTG	ATTIGCCCTT	TTCACAATCT	1380
TCTTTGAAGG	TTAAATCAAC	AGTTGCATTT	CCATT TGCAT	CAACGGTCAA	CCCchickin	1440
TCAAACAGAG					GCCC11C11T	
			•			1450

## (2) INFORMATION FOR SEQ ID NO:144:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1474 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:144:

CTGTATTGCG	CCATGAAGGC	AATCAAAAGT	GGTATGCCGT	CTTGNTGAAA	ATCTCTTGGA	60
ATAAGCTGGA	AAAGGGCAGA	GAAGGACAAG	TGGAAGCAGT	CAACCTCAAG	CATGACCAAG	120
TAGCTAATTT	GCTTTCACAA	AAGGGGATTT	ATCCAGCCTT	CCATATGAGC	AAGCGCTACT	180
GGATTAGTGT	GTCCCTTGAT	GATACTTTAT	CAGATGAANA	AGTACTGGAA	TTGATAGAAA	240
AAAGTTGGAA	CTTAACCTCT	AAAAAATGAA	ATATTTTAAT	AATTTTCATG	AACTTTCAAT	300
TAGCTAAATA	TTCTTTACTG	AAGAAATTTT	CAGAAAATAT	AGGATTTACC	ACACCAGAGG	360
AATGTGGTGC	CATCTTCAAA	TACCTGATTG	AGAATGTCAA	GACGGATCGT	CAGATCATCT	420
ATTCGCCTCA	CTGTCATGAT	GAACTCCGAA	TGGCAGTGGC	AAATAGCCTT	GCTGCTGTCA	480
AGAATGGTGC	AGGACGTGTT	GAAGAGACTA	TCAATGGTAT	TAGGGAGCGA	GCTGAAAATG	540
CTGCTTTGGA	AGAAATTGCA	GTGGCTCTCA	ATATTCGCCA	AGATTACTAC	CAAGTAGAAA	600
CCAGTATTGT	CCTAAATGAG	ACCATCAATA	CGTCAGAAAT	GGTTTCTCGC	TTCTCTGGTA	660
TTCCAGTTCC	TAAAAACAAA	GCCGTCGTTG	GTGGCAATAC	CTTCTCCCAC	GAATCTGGTA	720
TTCACCAAGA	TGGAGTCCTT	AAAAATCCTC	TCACTTATGA	GATCATCACA	CCTGAATTGG	780
TTGGTGTTAA	GATTCCGCTT	GGAAAATTAT	CTGGTCGCCA	TGCTTTTGTT	GAGAAACTGA	840
GAGAATTGGC	CCTAGATTTT	ACAGAAGAGG	ATATCAAACC	ACTCTTTGCT	AAGTTCAAGG	900
CACTGGCCGA	TAAGAAGTAA	GAAATCACAG	ATGCAGATAC	TCGAGCTTTG	GTAGCTGGAA	960
CCATGGTTGA	AAATCCAGAA	GGCTTCCACT	TTGATGATTT	ACAACTTCAA	ACTCATGCAG	1020
ATAATGACAT	TGAAGCGCTC	GTTAGCCTAG	CCAATATGGA	TGGTGAGAAA	GTCGAATTTA	1080
ATGCGACAGG	GCAAGGTTCC	GTTGAAGCAA	TCTTTAACGC	TATCGATAAG	TTCTTTAACC	1140
AATCTGTTCG	TTTGGTGTCC	TACACTATCA	ATGCGGTAAC	AGATGGAATC	GATGCCCAGG	1200
ATCGGGTTTT	GGTCACTGTT	GAAAACAGAG	ATACAGAAAC	CATCTTTAAT	GCAGCAGGGC	1260
TTGATTTTGA	TGTGTTGAAG	GCTTCTGCTA	TTGCCTATAT	AAACGCTAAT	ACCTTTGTTC	1320
AAAAAGAGAA	TGCAGGTGAG	ATGGGACGCA.	GTGTTTCTTA	CCACGATATG	CCTAGTGTGT	1380
AAAGGAGAAG	GCTATGGCAA	AGAAAATAGT	AGCTCCTAAT	TACGAGACCG	AATTGGCCCA	1440
CAAATCATGG	AGGCTGGTTT	AGAAGTTCTG	GAAG			1474

#### (2) INFORMATION FOR SEQ ID NO:145:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1455 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:145:

			•			
CCATACGAC	C TGTTTCTTT	C GGTAGAGCA	A CTCCCAGTT	G ACCAGTCAA	G CCGACCGCTT	60
TGGCAATGT	A NTCCATATT	T TGTTGGATT	T GCATGANCA	A ATATTICAN	T CCAMACAACM	60
TATCACTCT	T GATGTAAAG	A AGGGCGTTG	A ACCAGTCAT	T CCAGAAACC	A AGAGCTGTCA	120
AAAGCGTGA	T GGTTGCGAT	A CCTGGTAGT	G ACAATGGCA	A ACACAMMCC	AGAGCTGTCA  AGAGCAAAATCC	180
GAGCCTCAC	T GGCACCATC	G ATACGAGCC	ATTCGAGAN	r ccommonae	A ATGGTCTTCT	240
TGAAAAAG	A ACGCATCAA	ATGATATTG	ATTECTED	2 Alcohora	A ATGGTCTTCT A ACAATCGAAG	300
GCCCAAACA	G TGTCACCAA	CTGAAGTAC	CCCCTCACA	AAGCATIGG	ACAATCGAAG TGGTACCAAA	360
CCAGCGTTG	A ACAACATAC	GAGAAGGAC	: COGGICACCA	TGATATAACC	TGGTACCAAA ATACTTAAAG	420
GTTGTCCGT	G AAATAGCGT	CCCAMACCOM	AAGATGGTAA	AAAATCTGCC	ATACTTAAAG	480
ACTACGGTT	A CAAAGAGAG	CAMCARAGGT	GITGIGATAA	AGACATTTGT	CAATGTCCCA	540
AAAAACTCA	A CAAAGACAGA	GATGAAGAGG	GCTTGTAGGA	TTTTATCCTT	AAACTGTGCC	600
ACCCTITUTE	A AACCGTCTAA	GCCAAATTGG	GATGGGAAGA	AGCTATAGCC	GTATTGGAGG	660
ACCCAAMC	CGTCTGTCAC	TGAAATAATG	ATAACGAATA	CAAAAGGTAG	GATACAAGAG	720
ACCCCACAC	AACCCGAAAT	GATACTGAAG	AAGATATCTG	CTTTCTTACT	Gaaggagtga	780
ATGCCGACAT	TATCAATTTT	TTCTTTTTTA	ATTITCTTTT	TTGCCATATT	CTCCTCCTTT	840
CTAGAACAA	GCTGAGTTTG	GATCGACTCG	TCTTGCAAGC	AAGTTTGATA	GGATAACCAG	900
AATCAAACCA	ACAACGGATT	GGTAAAGACC	GGCTGCTGCA	GCCATACCCA	MA MCMCCMcm	960
CIGAGICAAA	CCATTAAAGA	CATATACGTC	CAAAACGTTG	GTTACATTCT	333CCDC3CC	1020
AGCATTGTGT	GGGATTTGAT	AGAAGAGACC	GAAGTCTGCG	CGGAAGATAT	MMCCC) cmcc	1080
AAGGATGGTC	AATACAGTTA	CAAGCGGAGT	CAACTGAGGA	ATGGTTACCT	TCCC3 3 TB CC	1140
TIGCCACTIG	CTAGCTCCGT	CCACTGTCGC	TGCTTCGTAG	<b>ጥል</b> ርርጥጥር/ር አጥ	Chammooon	
GATCGTCGCA	TAGTACATGA	CACTGCTATA	TCCAAAGCCT	ТТССДДДТАС	CHACCAAAA	1200
TAGGAGATAG	GGCCAGATGC	CCAGGTCAGC	GTAGAAATTG	אירויים איריים אירים איריים אירים איריים איריים איריים אירים איריים איריים איריים איריים איריים איריים איריים איריים אירי	CIAGGAAAAAG	1260
TTCCAATAGA	TGATTGAACA	CCCCTTTATC	AATATTTAGG	AACCCAMOTO	GACCAAGACT	1320
AATGATAACC	CAAGACAAGA	AGTAAGGGAA	CAACATAGAA	COMMONANT	TAAAGAAACT	1380
TCTCTTAGAA	CGGAG			GITTGAAAAA	TCTTCACCAT	1440
						1455

# (2) INFORMATION FOR SEQ ID NO:146:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 769 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:146:

CTAAAAAGAC CAACTTGGCC TTGCCGTCTT	GAATGGCCTT	GACCACCAAT	TOTTO	60
ATATGATGCG CCCTGCTCGC TGAGCAACCG	00110101-		1C11CACCCG	00
ATATGATGCG CCCTGCTCGC TGAGCAAGCC	CCAAGAGATT	ACTTATCTTT	TGCTTATTCA	120

AGTCCCAACT CTCTTCTTT CACTTTGTGA TCCACATAAG CGATCAACTC GTCATAAAAG 180 CTTTCTTCCA CTTCCATGCT AAAGCTGCGG TTAAAGACCT TCTTCTTTTT CGCCTCTAGG 240 GCTTCTGCAT TGTCTAGTTT GATATAAGCG CCGCGGCCAT TGGCCTTGCC CGTAGGATCA 300 ATAAAGACTT GTCCTTCCTT GTTCTTGACA ATGCGGAGCA AATCACGCTT ATCAATCACT 360 TCGTTAGACA CAACAGACTT GCGCAAAAGGG ATTTTTCTTG TTTTCATCTT TCCCTCCTCT 420 AGCAGCGTTT ATTCTTCTAC AGTATCGTT TCTACTTCCA ACTCTACTGA AGCAGCGTCT 480 TCCATGGCTT CAAATTCGCT ATAGCAGACT TGATATCGAT ACGGTAACCA GTCAAGTGAG 540 CCGCCAAGCG CACGTTTTGT CCACGACGAC CAATGGCAAG AGAAAGCTTG TTATCTGGAA 600 CAACCACCAA GGCACGTTTG CTGTCGTTTT CATCAAAGAT AACTTGGTCA ACCCCAGCCA 660 GGAGCGATGG GCATGGTAGC ATAAAATTCAG CTGGATCTGC CACCCACCTC CAAAAACATCG 720 ATATTTTCTT CGATTGGTAC CATGCGGTCA TTTTTTAGCAT CGTAACGAG 769							
GCTTCTGCAT TGTCTAGTTT GATATAAGCG CCGCGGCCAT TGGCCTTGCC CGTAGGATCA 300 ATAAAGACTT GTCCTTCCTT GTTCTTGACA ATGCGGAGCA AATCACGCTT ATCAATCACT 360 TCGTTAGACA CAACAGACTT GCGCAAAGGG ATTTTTCTTG TTTTCATCTT TCCCTCCTCT 420 AGCAGCTTTT ATTCTTCTAC AGTATCGTTT TCTACTTCCA ACTCTACTGA AGCAGCGTCT 480 TCCATGGCTT CAAATTCGCT ATAGCAGACT TGATATCGAT ACGGTAACCA GTCAAGTGAG 540 CCGCCAAGCG CACGTTTGT CCACGACGAC CAATGGCAAG AGAAAGCTTG TTATCTGGAA 600 CAACCACCAA GGCACGTTG CTGTCGTTTT CATCAAAGAT AACTTGGTCA ACCCCAGCCA 660 GGAGCGATGG GCATGGTAGC ATAAATTCAG CTGGATCTGC CACCCACCTC CAAAACATCG 720 ATATTTTCTT CGATTGGTAC CATGCGGTCA TTTTTTAGCAT CCTTAACGAC	AGTCCCAACT	CTCTTCTTTT	CACTTTGTGA	TCCACATAAG	CGATCAACTC	GTCATAAAAG	180
GCTTCTGCAT TGTCTAGTTT GATATAAGCG CCGCGGCCAT TGGCCTTGCC CGTAGGATCA 300 ATAAAGACTT GTCCTTCCTT GTTCTTGACA ATGCGGAGCA AATCACGCTT ATCAATCACT 360 TCGTTAGACA CAACAGACTT GCGCAAAGGG ATTTTTCTTG TTTTCATCTT TCCCTCCTCT 420 AGCAGCTTTT ATTCTTCTAC AGTATCGTTT TCTACTTCCA ACTCTACTGA AGCAGCGTCT 480 TCCATGGCTT CAAATTCGCT ATAGCAGACT TGATATCGAT ACGGTAACCA GTCAAGTGAG 540 CCGCCAAGCG CACGTTTGT CCACGACGAC CAATGGCAAG AGAAAGCTTG TTATCTGGAA 600 CAACCACCAA GGCACGTTG CTGTCGTTTT CATCAAAGAT AACTTGGTCA ACCCCAGCCA 660 GGAGCGATGG GCATGGTAGC ATAAATTCAG CTGGATCTGC CACCCACCTC CAAAACATCG 720 ATATTTTCTT CGATTGGTAC CATGCGGTCA TTTTTTAGCAT CCTTAACGAC	CTTTCTTCCA	CTTCCATGCT	AAAGCTGCGG	TTAAAGACCT	TCTTCTTTTT	CGCCTCTAGG	240
ATAAAGACTT GTCCTTCCTT GTTCTTGACA ATGCGGAGCA AATCACGCTT ATCAATCACT 360 TCGTTAGACA CAACAGACTT GCGCAAAGGG ATTTTTCTTG TTTTCATCTT TCCCTCCTCT 420 AGCAGCTTTT ATTCTTCTAC AGTATCGTTT TCTACTTCCA ACTCTACTGA AGCAGCGTCT 480 TCCATGGCTT CAAATTCGCT ATAGCAGACT TGATATCGAT ACGGTAACCA GTCAAGTGAG 540 CCGCCAAGCG CACGTTTGT CCACGACGAC CAATGGCAAG AGAAAGCTTG TTATCTGGAA 600 CAACCACCAA GGCACGTTTG CTGTCGTTTT CATCAAAGAT AACTTGGTCA ACCCCAGCCA 660 GGAGCGATGG GCATGGTAGC ATAAATTCAG CTGGATCTGC CACCCACCTC CAAAACATCG 720 ATATTTTCTT CGATTGGTAC CATGCGGTCA TTTTTTAGCAT CCTTAACGAC	GCTTCTGCAT	TGTCTAGTTT	GATATAAGCG	CCGCGGCCAT	TGGCCTTGCC	ССТАССАТСА	
TCGTTAGACA CAACAGACTT GCGCAAAGGG ATTTTTCTTG TTTTCATCTT TCCCTCCTCT 420 AGCAGCTTTT ATTCTTCTAC AGTATCGTTT TCTACTTCCA ACTCTACTGA AGCAGCGTCT 480 TCCATGGCTT CAAATTCGCT ATAGCAGACT TGATATCGAT ACGGTAACCA GTCAAGTGAG 540 CCGCCAAGCG CACGTTTTGT CCACGACGAC CAATGGCAAG AGAAAGCTTG TTATCTGGAA 600 CAACCACCAA GGCACGTTTG CTGTCGTTTT CATCAAAGAT AACTTGGTCA ACCCCAGCCA 660 GGAGCGATGG GCATGGTAGC ATAAATTCAG CTGGATCTGC CACCCACCTC CAAAACATCG 720 ATATTTTCTT CGATTGGTAC CATGCGGTCA TTTTTAGCAT CCTTACGAC							
AGCAGCTTT ATTCTTCTAC AGTATCGTT TCTACTTCCA ACTCTACTGA AGCAGCGTCT 480 TCCATGGCTT CAAATTCGCT ATAGCAGACT TGATATCGAT ACGGTAACCA GTCAAGTGAG 540 CCGCCAAGCG CACGTTTGT CCACGACGAC CAATGGCAAG AGAAAGCTTG TTATCTGGAA 600 CAACCACCAA GGCACGTTG CTGTCGTTTT CATCAAAGAT AACTTGGTCA ACCCCAGCCA 660 GGAGCGATGG GCATGGTAGC ATAAATTCAG CTGGATCTGC CACCCACCTC CAAAACATCG 720 ATATTTTCTT CGATTGGTAC CATGCGGTCA TTTTTAGCAT CCTTAACCAC							360
TCCATGGCTT CAAATTCGCT ATAGCAGACT TGATATCGAT ACGGTAACCA GTCAAGTGAG 540 CCGCCAAGCG CACGTTTTGT CCACGACGAC CAATGGCAAG AGAAAGCTTG TTATCTGGAA 600 CAACCACCAA GGCACGTTTG CTGTCGTTTT CATCAAAGAT AACTTGGTCA ACCCCAGCCA 660 GGAGCGATGG GCATGGTAGC ATAAATTCAG CTGGATCTGC CACCCACCTC CAAAACATCG 720 ATATTTTCTT CGATTGGTAC CATGCGGTCA TTTTTTAGCAT CCTTAACGAC	TCGTTAGACA	CAACAGACTT	GCGCAAAGGG	ATTTTTCTTG	TTTTCATCTT	TCCCTCCTCT	420
TCCATGGCTT CAAATTCGCT ATAGCAGACT TGATATCGAT ACGGTAACCA GTCAAGTGAG 540  CCGCCAAGCG CACGTTTTGT CCACGACGAC CAATGGCAAG AGAAAGCTTG TTATCTGGAA 600  CAACCACCAA GGCACGTTTG CTGTCGTTTT CATCAAAGAT AACTTGGTCA ACCCCAGCCA 660  GGAGCGATGG GCATGGTAGC ATAAATTCAG CTGGATCTGC CACCCACCTC CAAAACATCG 720  ATATTTTCTT CGATTGGTAC CATGCGGTCA TTTTTTAGCAT CCTTAACGAC	AGCAGCTTTT	ATTCTTCTAC	AGTATCGTTT	TCTACTTCCA	ACTCTACTGA	AGCAGCGTCT	480
CCGCCAAGCG CACGTTTTGT CCACGACGAC CAATGGCAAG AGAAAGCTTG TTATCTGGAA 600 CAACCACCAA GGCACGTTTG CTGTCGTTTT CATCAAAGAT AACTTGGTCA ACCCCAGCCA 660 GGAGCGATGG GCATGGTAGC ATAAATTCAG CTGGATCTGC CACCCACCTC CAAAACATCG 720 ATATTTTCTT CGATTGGTAC CATGCGGTCA TTTTTAGCAT CCTAACGAC	TCCATGGCTT	CAAATTCGCT	ATAGCAGACT	TGATATCGAT	ACGGTAACCA	GTCAAGTGAG	
CAACCACCAA GGCACGTTTG CTGTCGTTTT CATCAAAGAT AACTTGGTCA ACCCCAGCCA 660 GGAGCGATGG GCATGGTAGC ATAAATTCAG CTGGATCTGC CACCCACCTC CAAAACATCG 720 ATATTTTCTT CGATTGGTAC CATGCGGTCA TTTTTAGCAT CCTAACCATC	CCGCCAAGCG	Cycentratical	CCACCACCAC	C11800011		O. C.	340
GGAGCGATGG GCATGGTAGC ATAAATTCAG CTGGATCTGC CACCCACCTC CAAAACATCG 720 ATATTTTCTT CGATTGGTAC CATGCGGTCA TTTTTTAGCAT CCTTAACCAC			CCACGACGAC	CAATGGCAAG	AGAAAGCTTG	TTATCTGGAA	600
GGAGCGATGG GCATGGTAGC ATAAATTCAG CTGGATCTGC CACCCACCTC CAAAACATCG 720 ATATTTTCTT CGATTGGTAC CATGCGGTCA TTTTTTAGCAT CCTTAACCAC	CAACCACCAA	GGCACGTTTG	CTGTCGTTTT	CATCAAAGAT	AACTTGGTCA	ACCCCAGCCA	660
ATATTTCTT CGATTGGTAC CATGCGGTCA TTTTTAGCAT CCTAACCAC	GGAGCGATGG	GCATGGTAGC	ATAAATTCAG	Спесаполе	C) CCC) CCD		000
ATATITICIT CGATIGGTAC CATGCGGTCA TTTTTAGCAT CGTAACGAG 769	a ma mmmmomm	60\mmaa==		CIGGNICIGC	CACCCACCTC	CAAAACATCG	720
	ATATTTTCTT	CGATTGGTAC	CATGCGGTCA	TTTTTAGCAT	CGTAACGAG		769

## (2) INFORMATION FOR SEQ ID NO:147:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 834 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:147:

ጥጥር ርር ል ል ርር ል	CAACCAOmmo	30000				
1 I COCAAGGA	CAAGGACTTC	ACCGGAGGAC	AATTTTTGGA	GAGACCAGCA	GCTGGTAATT	60
CGAACACCTT	'CTACCTCGAA	TCCCTGTAGT	TGACATTTTT	TCAGCCAACT	CTTGTGATGG	120
CACATCAATG	TCCACCAATT	СТТТТААССА	ת אור איים איים איים	303300000	TTTAGTTCTC	
CACAAMOACA	CDDCDC		TTTTTTTTTTT	ACAAGCATAA	TITAGTTCTC	180
CAGAATGACA	GPIGTCACTC	TAGTTCTTTT	CCTTTCCTAT	CATTTCAATA	GAAGAATCCT	240
CTTCTTACCT	TAATTTCTTT	CTCAGTAACC	AATCCGTATC	TACTTTTTGA	ССВВССВТВВ	300
AATGATGTTG	GCTAAATTTT	TCAAAACCAM	MCCCCCC TO		COMCCAIM	300
<b>M</b> ) <b>m</b> oonee		CUMBRICK	ATCGGTTATA	AAACGCTTGA	GCTTTTGTAT	360
TATGCTCCCA	AACACCTAGC	CAAGCCCAAG	AAAAACTATT	TTTTGTAGCA	AGTTCAAGAG	420
CAAATTCAAA	CAGTTGCTTA	CCTAGTCCAA	ATCCTTGGAA	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	101010100	
CTTC A ATTEC	3 3 3 3 CCC000CC			TITITIAGE	ACATAGAGGC	480
orranging.	AAAAGCGTCC	TCTAATTCTC	TCTCAGTTTG	AGCACTTCCC	CAGTTGACTT	540
TGAGAAAAGC	AGCTATCTCC	TCCTCCTGCA	TAATGAAATA	GGTTTCAGAG	TCACCATTO	600
CCAACTCAGT	TGACAAAGTVD	MMC3 C3 CM3 M	110000000	COLLICATIONG	TCAGGATTTC	600
	TGACAAAGTT	TICAGACTAT	AAGCCTCTTC	AAAGTATTCC	TGTAACTGCT	660
CITCCGTATT	ATCATACGCA	AAGGTTTCAC	GAAAGGTTTG	TTTGGCAATT	TTACCCAACA	720
CCTCAACATC	TGCCATTTCT	א א נווי אווי אווי אווי אווי אווי	MC 3 Mm 3 mm s		TINGCCANCA	720
1/POPPOSE	TGCCATTTCT	ACTITICIAA	TCATTATTTA	AACTGTTCTG	AGAAGCGGAC	780
ATCTCCTTGG	TAGAATCCAC	GGATATCGTT	GATTCCATAA	CGGAGCATAG	ATCG	834
						0.54

## (2) INFORMATION FOR SEQ ID NO:148:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 856 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:148:

CTCGTAAATG	GAATGTGGTC	AGTAATTTTG	GTAAATTTGC	AGATCCTATG	GCGGATAAGT	60
TACTAGTTAT	GTCGGCTTTT	ATTATGTTGA	TTGAGTTAGG	TATGGCTCCG	GCTTGGATTG	120
	TATCTGTCGT					180
	AATTTTAGCA					240
	TTTCTTGCTA					300
	CACTATCTAC					360
	TGGTTCGAAA					420
	CAGAACTACT					480
	ATTGTAGGGC					540
	GAAGCAGAAT					600
	AATATACGTC					660
	ACTGTTGAAG					720
	AAAAAGAGAG					720
	CCAGCGCGTC					
GTAGCCCTAA				GIGIGGCCAI	IGCAGGIGTI	840
	<del>-</del>					856

#### (2) INFORMATION FOR SEQ ID NO:149:

## (i)-SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1037 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:

TCCCCATCCC	AGTGGGCAGC	AGCATTAGTC	TGTACTTCTG	CGTCGTTGCG	TTTTATTAGA	60
AGACTGATTT	TGCTTTGAAC	TACTTGAAGC	TGTCGTTGTA	TCCTGCGAAG	TTTTTGCTAA	120
CTTCAGTTTC	ATTTGCAGCG	ACATGACTAG	TTGCCAAGCC	TAGTAAACAG	ATACTTGCTA	180
ATCCAATTTT	TGTTTTCAAT	CTTTCCTCTC	СТАТААААА	TGTAACAGAC	ATCTGAATGC	240
TGTTCCACCT	AGCTTTTGCT	ACTTACTGAT	TATTTTACAA	AGTCAAGCAA	AGCCAAGAAG	300
CTTTCAGCTT	CAAGTGACGC	ACCACCTACA	AGGGCACCGT	CAACGTCTGG	GCAAGCCATG	360
TATGAAGCAA	CATTTTCAGG	TTTAACAGAA	CCACCGTATT	GAACACGAAC	TTTGTCTGCG	420

ACTITOTICAC	CAAAGTCAGC	ACCUACAACC	MC1.CC1.1C1.1			
						480
TCGTCTTGTG	AAGCTGATTT	ACCAGTACCG	ATAGCCCAGA	TTGGCTCATA	ACCCATAACT	540
						240
GAGGCAGCAA	CTTGTTCAGC	AGTCAATCCA	GCCAATGCAG	CAGATACTTG	AGCACCTACG	600
<b>AATTCAGCAG</b>	CTTTACCAGC	TTCGTAAGTT	TCAAGTGATT	CACCACAACA	CATCATTCCA	660
						660
AGCATACCGT	TCGCAAAGAT	TGCTTTTGCT	TTTTTGTTGA	CATCTTCGTC	AGTATCATGG	720
AAGTAGTCAC	GGCGTTCTGA	GTGACCGATA	ACAACCTACT	Chemhecean	mmcmmaa a a	
						780
ACTTGTGGGC	TAGTTTCACC	AGTGAAAGCG	ACCTGCATTT	TCAAAGTAGC	AGTATTGAGC	840
						040
	AAGTTTGAGC					900
AGCAGNGATA	CCTGCTTCAA	CAAGATCTGA	TGAAGGAAGT	מ מ ביים מיים מיים מיים	COCCOMO NO	0.00
						960
GAATGNTCCA	GCTTNTTGGG	GATTTTTGTT	CATTTTCCAG	TTACCAGCGA	TAAATGGTTT	1020
ACGTGACATT						
	·					1037

#### (2) INFORMATION FOR SEQ ID NO:150:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 998 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:150:

GATTCTACAG	GATCCATTTT	ACTATCTTAC	GCGCCGGGAA	GTAGGCTGAG	ACATAACCAA	60
GTAATAGAGC	CAACAACTAG	AGTTCCTAAA	ACAGATAAAA	GATTTAATTC	AAAAACCTTA	120
	GGTAAAAGTG					180
	CCAGCAGCAA					240
CCTTTGACAT	CACGATTCTG	ATAACCAACT	GCTTTCATGA	CACCTATTTC	CTTGGAACGT	300
	TGATGTAAAT					360
GATGAAAGCA	CAATCAATAA	TCCCTGAATA	ACACGAATAA	AGGTAATCAC	AATATCAAGA	420
ACTCTCTGTT	AAGAAAGCAC	AGTATACTTC	TTATTTTTCT	GTAATTCTTC	ТСТТАСТАСТ	480
	ATGGATCTTT					540
GCCTCTTTCA	AAATCGTTTC	CATTTGATGA	GACAGCATGA	AACTGTTGCT	GTCCTCCATG	600
TCATCTTCAT	CATTGATTAC	ACGTACAATC	TTCGTTTGAA	ATTGAGCAAT	CTTACTACTT	660
TCGGCAGCAC	TTTCTACAAT	GCTGACTGAG	ACTGATTTGC	CAATAAGATC	ATORCOTO	720
AAATTTTTTC	CTGTCTGTTC	ATTCCAATTT	TTTAGTAAAC	TGCTTGGA AT	CCMMNAMOCO	
TGTTCATTTG	TATCAGTATA	GAGGGATCCA	GCCAACACTT	TCTCCCTCTC	AGRIANTOCC	780
ACAGAGATAC	TTGTATCATC	ATAAAGACTC	ACTACTTCAC	CATARCARC	ATTATTACTA	840
TCAAATCCAT	TTCTTGCCCA	Suncheland	CCCATCTANA	CATAAGAAGC	ATCGTTTGAC	900
CCCAAAAGGA	CTCTCCAAAT	amma amaca	TOOL CO.	GTAATATTTG	ACATGTTCAT	960
	CICICCHANI	MITIMATAGA	TCGAGCCT			998

(2) INFORMATION FOR SEQ ID NO:151:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1261 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:151:

	_					
CACATGTCGA	CTAAGCCGTT	AGAAATCAAG	TGTATAGGCA	GTTCATCATC	TAATAGAGCG	60
TTGCGTCCGA	AAGTCTATCC	AGACACGGCT	CTTTAAAAAC	AAAAGGAGAA	ATGATGCATA	120
CTTATTTGCA	AAAGAAAATT	GAAAATATCA	AAACAACCCT	AGGTGAAATG	TCAGGTGGTT	180
ACCGTCGTAT	GGTTGCGGCT	ATGGCTGATT	TAGGATTTTC	AGGAACTATG	AAGGCTATCT	240
GGGATGACCT	CTTTGCCCAT	CGTAGTTTTG	CCCAGTGGAT	TTATTTGCTG	GTTTCAGGAA	300
GTTTCCCTCT	CTGGCTGGAG	TTGGTTTACG	AACATCGTAT	TGTTGACTGG	ATTGGGATGA	360
TTTGTAGCTT	GACAGGGATT	ATCTGTGTAA	TCTTTGTATC	GGAAGGTCGA	GC A A CT A A TT	420
ATCTTTTTGG	CTTGATTAAC	TCTGTTATTT	ACCTTATTTT	GGCCCTACAG	AAACCCTTTTT	480
ATGGTGAGGT	GCTGACGACA	CTTTACTTCA	CAGTCATGCA	GCCAATTCCA	CTCTACTOR	
GATTTATCAG	GCACAGTTTA	AGAAAGGAAA	AGCAGGAGTT	TETCCCCCC	AAACTCCACC	540
GCAAGGGCTG	GACAAAGTAT	CTTTCCATTA	GTGTGCTTTC	CTCCTTCCCC	MAACTGGACG	600
TTTATCAAGT	CTATTGGTGC	CAATCGTTCC	CTTATCCCTC	ATTECANT	TTTGGCTTCA	660
CAATGGGGTA	GGGCAAATCC	CTCATCACAA	CTTATCCGTG	ATTCAATCAC	CAGATGCAAC	720
GGCGGCTACC	AATGTCTTTT	CAATCTATCT	GTCTGTTTAC	CGTGAACAGT	GGATATTCTG	780
GAAATATCTA	A TOTO TOTAL TOTAL	CAAICIAICI	CIGGIGGGGA	GAAAGCCTGC	AAATTCAAGG	840
TARCARAM	ATTTATCTCA	TTAACAGTCT	AGTTGGTTGG	TATCAATGGA	GCAAGGCAGC	900
TANGCAMANI	ACTGATTTAC	TTAACTAGGA	AAAGATGTTT	GAAAGTGCTG	TTTTGAGATT	960
TCGATTAAAA	CAGATATAGT	TGATAATCAA	GGATTTATAG	TATGAAAAAG	AGGATCGGCG	1020
GGTCCTCTTT	TGTTGTTGAA	AAGATAAAAA	ACTCAGTAAC	CTAGAAATAA	GACAACTGAA	1080
GCTTTACTCT	ATATTCAATT	TTTAGGAATG	AGAAGGTCTA	GATAAAATTG	GACAACTTCC	1140
TGGTCTGTGA	AATCTTGACC	TTTTTTGAGC	CACCAGGTCA	ATGTCTCGAT	AAAGTTGGAC	1200
ACGACCAAGT	GTTGGAGGTA	AGAAGTAGGC	AGATTAGGGT	GGGCTTCTTT	TAAATTATCA	1260
G						1261
						1401

## (2) INFORMATION FOR SEQ ID NO:152:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 442 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:152:

CTGATCATCT	AACACAGAAG	GGAACGTCTC	ATCTATTCTT	TGATCTGGTG	GTAGGTAACT	6
GTTTCTTTGC	TTTAGGATGT	GGTTAGGGAG	GTGAAGTCAG	ATAAGTAGAT	GGGCTTAATT	120
TGCCCAAGTC	CCACATCAAA	GAATTATCGG	CGAATCCAAG	GTGCTCCTTT	ል ልጥጥል ጥጥጥሩ ጥ	180
		GACAACTTGC				
TGTTTTAAGT	GATTAACTTT	TGTCACGATG	CCTTTTTGTG	TTACTTCCAT	TTCTN CCCC	240
ATGGATCCAG	TTTTTTTCTG	AACGAGACCT	GAACCATGAA	ACTITICAL	CIRCIAGGGGA	300
GAATGAGATT	CTTTATCTGT	TCGAGTTCGA	TOGACTACAC	OCTO A COOT	CATCATCAAT	360
TAGCCTCTAT	CATGTCTGTT	TT	- concincad	CGTCAAGGCT.	AACAAATAGA	420
			•			442

### (2) INFORMATION FOR SEQ ID NO:153:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1282 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:153:

_ G&GC-TC2-TC2	NOCOMOON N					
GAGCIGAIGA	ACGUICCAAA	GAATTTCGCA	AATCATCAAA	ACGGTACTTA	ATCCCCCAA	60
CCAAATCGGC	ATGACCTGGG	CGAGGATGAG	TAATTTTCCG	CTTGCTTTTA	AGGCGGTCTT	120
CAATGTCCTC	CGCAGACATG	ATGTCCAGCC	ATTTCTGGTG	GTCCTTATTC	ATGACATACA	180
TAGTAATAGG	CGCCCCTGTC	GTCTTCCCGT	GGCGAACGCC	CCAACMAAAC	ACAACCTGGT	
CATTCTCAAT	CTTCATACGA	CCACCACGAC	CCTACCCACC	COANGIAAAG	CTAAGGTCCT	240
CATTCATATA	CDC1 CCCCC		COINCCACC	CTGACGGCGT	CTAAGGTCCT	300
CATIGATATO	CTCAGCTGTC	AATGGAAGTC	CAGCTGGAAT	TCCCTCAATA	ATAGCTGTTA	360
GACGGGGACC	GTGTGATTCT	CCTGCAGTTA	AATATCTCAT	ACACTCTCCT	TATTTTACCA	420
AGTAGTCTTT	CATCTCTTCC	AGAGAAACTG	GATGAATGGT	CGCTGAACCA	ACCTCTCCCA	480
CCAAGACCAA	ŢŢŢĊĸĸĠĠŢĠ	TTGCCACGCG	CALACALCAR	ATCACTRACT	CCCTCIGGCA	
GCTTGTCAAC	TTCCC N N TOTAL	MC1M1 cmc1 1		ATGAGTAAGA	GCCTGATAAA	540
7717171	TTCCCAATTT	ICATAGICAA	CAGGCAAGCC	GAATTTCTGA	CACATCTCTG	600
TGATAGATTG	GGTAATGCCA	GCTGGCATGA	GGCCTTTTTC	CTCAGCAATC	TTGGAAATCT	660
GTACCATTCC	CATGGCAACA	GCCTCTCCAT	GCATGACCTT	GCCATAACCG	GCAGTCGCTT	720
CGATGGCATG	GCCAATAGTG	TGGCCAAAAT	TGAGGTAAAG	ACGRAMACCA	TTTCTCCC11	
CATCTTCAAC	CACCAMOMMO	CCCMMCN.com	010110110	NCONTACCA	TIGICCAACT	780
COMMOGNATION	CACCATCTTG	CGCTTCACCT	GACAAGAATG	TTCAATCAAG	GTCTCTGCAT	840
GTICCAAAAT	ACTCTCAACA	GAACCATTCA	GTCCCGTCAA	GAGAGCCCAC	AGTTCTGGAT	900
CCTCAATCAA	GCCATACTTG	ATAACTTCAC	CCATCCCTTC	A A TICA A CITICAL	O@@@@@@	
GGGTTTCAAG	AACAAGTGGA	MC33MC3333	22222	MICANCICI	CTTTTTCCGA	960
<b>M1 M</b>	AACAAGTGGA	ICAAICAAAA	CCCCATCTGG	TTGGGCAAAG	GTCCCCACCA	1020
TATTTTAGC	AAATGGTGTG	TTAACACCTG	TCTTTCCACC	GATAGAAGAA	TCAACCTGAG	1080
CTGTCAAACT	AGTCGGAATC	TGAACAAAGT	GAATACCCCG	Сататасста	CACCOMACA	
				CUTUTUOGIA	GAGGCTACAA	1140

ATCCCAGCCA	GGTCCCAACA	ACGCCACCAC	CAAGAGCAAC	GATTCCATCC	GCTACGANTC	1200
NGAACTTGCT	TGACTAGAAA	TTCATACACT	TTCTGAACCG	TAGTTAAATT	CTTTCTTTCT	1260
	AGAAGTCCAA					
						1282

- (2) INFORMATION FOR SEQ ID NO:154:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 769 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:154:

CTCACGCAGT	TCTGTTACCA	AACACCCTTC	3333300333			
_	TCTGTTACCA	MAGACCGTTC	AAAAAGCAAA	CTAGCAATAC	TTATAACTTA	60
TTAGAAATTC	CTAATTTTAC	CTTGCTAAAC	GAATACAGGT	CACGATGCCA	ጥርጥርልርጥርጥር	120
TGATTTCCAA	TTCCCTCCAT	CTC MCC MC	<b>BC1 BB00</b>		rerondicid	120
	TTGGCTCGAT	GICATCCATT	TGATTGGTAC	GTCAACTTCT	TGTGCTCGTT	180
GGGCAATCGT	TAACAGTTCT	TCTTTATGTG	CAACTTCGAT	GACATAGTAG	COTA A A COTO	240
GTAAGCCTTG	CTTA CCCCCA	300030300		- Interest No.	GCIMMCCIG	240
01.110000110	CTTACGCGGA	AGCCAGACCT	TITCCTTCCC	CATTCGTTAA	CTGCTAAATG	300
ATGATGGTAA	TCTCCAGCCG	CAATCCAACT	AGCGCCAGGC	ስር ስር ጥር እ አ <i>ጥ</i> ጥ	Ma mmomoma o	
CCCTAACACA	MMMMC1 m111		-10000011000	ACACIGAMII	TATTCTCTAG	360
CCCIMACACC	TTTTGATAAA	ACTGGCTGGA	CTTTCGACTA	TCCTTGACGG	AAAGATGAAT	420
ATGCCCCATT	CTTGTACCTT	CTGCCAGGAT	AAAGGGCTCT	ACTCTTTTCCC	0011000101	
A A TOCTOCOTOCO	0000011010			ACICITICC	CCAACTCATA	480
ANIGICCIGC	GCCGCAAGAG	CCTCCGTCAC	TCCGATAATG	CGTCCATCTT	CTCGAATATC	540
CCATGTGGAA	ACTGGCTTAT	CTCGATAGAG	ТТСААТСССА	TOTAL COMMON	110000000	
C(1) 1 1 (1) C(1)			TICANIGCCA	TTTCCCTCCA	AATCTTCCAA	600
GTAAATAGCT	TCACTGTAAC	CATGGTCTGC	ACCGCCGACA	AGAGGAATTT	GCAAATCTGT	660
CAGATGTTTC	AAGACATCAG	CCAAAGCCTT	CCCTCTCCC	110101100		- • •
					CCAAATGGTA	720
AAGACCATAA	TGTTCCCTCA	CTTCTCCGCT	CTTCTTGTGC	TTGAATCAG		769
						, 03

- (2) INFORMATION FOR SEQ ID NO:155:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 686 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:155:

CTGGAGATTA TTGAGATTGC CCGTCAAAAC GATTTGATTA TNTTTGCGGA TGAAATCTAT 60

~	22222						
					GGCGAGCTTG		120
					CATAGCAGGT		180
					CTATATCGAA		240
					ACAAGTCGTA		300
TG	GGGGGTCA	CCAATCAGTC	GATGAATTGC	TTCTTTCCTG	GTGGACGAAT	CTACGAGCAA	360
AG	AAATTTCA	TCTATAATGC	CATTCAAGAT	ATTCCAGGTT	TGTCTGCCGT	TAAACCCAAG	420
GC	GGGGCTCT	ATATCTTCCC	AAAAATCGAC	CGCAATATGT	ACCGTATCGA	TGATGATGAG	480
CA	GTTTGTCC	TTGATTTCTT	GAAGCAGGAA	AAGGTTCTCT	TGGTTCATGG	TCGAGGCTTT	540
AA	CTGGCAGG	AACCAGACCA	CTTCCGTATC	GTTTACCTTC	CTCGTGTTGA	TGAGTTAGCC	600
CA	AATCCAAG	AAAAGATGAC	TCGTTTCTTG	AAACAGTATC	GTAGATAGGG	CTTGCATTCG	660
AA.	AAAGCTGG	AAACATTTGC	CTAGAG			CALICG	
		_ <del>-</del>					606

## (2) INFORMATION FOR SEQ ID NO:156:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 525 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:156:

CTAAAAAAAG	TCAAGTAGAA	AACGAATATT	CTACTTAACT	TGCACGAAAT	TATTTTTCAC	60
GAATGACTTC	GACCTTATAT	CCATCAGGGT	CTTTGACAAA	GTAATAGTTT	GGTGCACTTC	120
CTGGTAGACC	ATTTGGCTCA	GTCACTTCAT	AGCCTTTTTCT	ACTGTGCTCT	TO TOCA OF TO	•
CCTCAAGATC	A C C TYCTE A CTTC	1000000		ACTOIGCICT	TGATGAAGTG	180
	AGGIGIACIG	AGGGCGATAT	GGGCAAACCC	ATCACCAACC	ACATACGGAC	240
CGTGATCGTA	GTTATAAGTC	AACTCCAACT	CATAGTCATC	ACCCTCAAGA	CCTAGATAGA	300
CAATCGTGAA	GGCATGGTCT	GGAAAATCTC	TGCGACGCAA	ТТСТТТАААА	CCAAAACCAM	360
CTTGATAAAA	ייי ער באוייי עי ער איי	MMMMC3 3 CS m			CCUMMIGCAI	360
	TOCHNITUMI	TTTTCAAGAT	TITCTACTCG	TAAGCAAGTG	TGTAGCATTT	420
TIGAAGCCAT	ATCTTTCTCC	TTTATTTTTA	AAAAGACTGG	ACAATCCTGT	TCCAGTCTCA	480
TCAGTTGTTA	TTTACCAAGT	<b>ТРАТОСТИТЕ</b>	CTCCATCTC	****		
		CIIING	CIGCHICIGC	AAGAG		525

## (2) INFORMATION FOR SEQ ID NO:157:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 575 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:157:

CTAGCTTTGT	GTCCTCTCTT	CTCTACGGAG	TGGCGGTTTT	GATTATCGCC	TGTCCTTGTG	60
CCTTGGGACT	TGCAACACCG	ACAGCCCTTA	TGGTGGGGAC	AGGACGTAGT	GCCAAGATGG	
GGGTTCTCCT	CAAAAATGGA	ACTGTCTTAC	AGGAAATCCA	CAAACOOM	ACTCTTGTCT	120
TTGATAAGAC	CGGGACTTTC	ACCCAACCCA	))COMMICCA	GAAAGTTCAA	ACTCTTGTCT	180
AACTACAACT	COMMISSION	ACGGAAGGGA	AACCIGIGGT	AACAGATATC	ATCGGCGACG	240
ANDINOANGI	GTTTGGGTTG	GCAGCCTCCT	TGGAAGATGC	TTCTCAACAC	CCACTGGCTG	300
AGGCTATCGT	TAAGCGAGCG	AGTGAAGCTG	GACTTGAGTT	TCAAACTGTT	GAAAATTTTC	360
AGACCTTGCA	CGGGAAAGGT	GTTTCCAGGG	CGAATTAATG	GAAAACAAGT	TOTAL DESIGNATION OF THE PERSON  420	
AATGCTAAAA	TGCTGGATGG	CATGGATATT	TCTAATACTT	ATCAACATAA	NOTICETOGA	
CTAGAAAAAG	AAGCTAAGAC	AGTTGTGT	CTTACCTON	ATCANGATAA	ACTAGAAGAA	480
GCCTTGCTTT	GCCAGATATC	000000000000000000000000000000000000000	CIIAGCIGII	GACAATGAAA	TCAAAGTTTT	540
0001100111	GCCAGATATC	CCTAAAGAAA	TGCTG			575

## (2) INFORMATION FOR SEQ ID NO:158:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1003 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:158:

CTCAATAGCA	CCAATAGACA	GTTTCTTGGT	TACATCATA	·CC3 CC3 CCmc	TTACCAAAGC	
TTCAACAGCG	TGAGTCAGAG	Catterante	CONTONION	GCACCAGGTG	TAGGTTTGGA	60
AAGCATGAGT	TCCCCCTC3	- CAICCAIACC	AGTAGCAGCA	GTCAGGCCTT	TAGGTTTGGA	120
	TCCGGGTCAT	TAACAGAGAT	AAGAGCAAGG	CTATTCTTGT	CAACCATTAC	180
CATCTTAACC	TIGCGTICIT	CATCAGTAAT	CACATAGTTA	ATAGTGATTT	CTGCAGAAGT	240
TCCTGCCGTT	GTATTGATAG	CCACAACTGG	CAAGCCTTTT	TTAGCAGACT	TATCAACCCC	300
TTCATAATCC	TGTGGTTTTC	CACCATTTGT	AGCCATGATA	CAAATACAAC	MICOMOCCC	
CTGTGGAGAA	CCCCCGCCAA	САСТСАТСАТ	AAAGTCACAG	GAAATACAAC	TAGCTGCATC	360
<b>ፐል</b> ርርርር አጥርጥ	CTC A C A COMMO	TI CI CATA	AMAGICACAG	CCATGTTCTT	GCAAAGCAGC	420
AMMOONTO	GIGACATITI	TACAAGTAGG	GTTTGGCGTC	TACATCGCTA	AAGATGACAT	480
ATTCGATTCC	TTCTGTATCC	AGTGGTTTTA	AAACCTTAGG	TAAAATATCA	CTGCCTTCGA	540
TGTACTTATC	TGTCACCAAA	AGTGCCTTTT	TATAGCCAAG	TTCCTTGATA	TAACCACCCA	600
CTTCATTTAC	AACACCTTTT	CCAATAAGGT	TGACTGCCGG	AACAMAAAAM	CON COCKET	
AATTTTCCTC	CTGCGCCTCC	CCCCTATCTA	TTTAACATCA	NACKIANANI.	GTAGCCATAT	660
יישר ע באושריינים	A TOTAL COLOR	DODDENA	TTTAACATCA	TTATATTACT	TTTTGTATTC	720
TOTAL SERVICE	ATTIGIGAAT	TGTTTAACAA	ATCTTTTTAA	AAGGATAGGA	GGGACGTAAG	780
TTCACCTCCT	ATATAAACAA	GGTTTATTTA	TGTAGTGGTC	CCAATAACTG	ACATGCACGA	840
TAGTCTGCTG	ATTCTAGATC	TTCTGTTCCA	AATAAGGACC	A A THURSTON C.C.	TCTA A A CATA	
TCTTCTTCGG	GTACATTATG	САТАТТСАСА	GGAATTCTCA	ACTITION OF	TCTAAAGATA	900
AAGTCTGCTC	СААПСТСТСТС	AMAMONTA TO	GCTCCGTGAT	ACATAGAAGC	CAAGGTAATC	960
	CHAIGIGIC			TAG		1003

#### (2) INFORMATION FOR SEQ ID NO:159:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 715 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:159:

CTAAAGTTTC	TGATGAACTT	GGTGGTGGAT	CAATTACAGC	CCTACCATTT	ATCGAGACAC	60
AAGCAGGAGA	TATCTCAGCC	TATATCGCAA	CCAACGTGAT	TTCTATCACT	GATGGACAAA	120
	CGATGGCCTC					180
	TGTAGGTGGT					
	CCTTGCTTCA					240
	AACACAGGCT					300
	CAAACCATTA					360
						420
	GGATACTGTT					480
CCICCIIIG	ATGCTCAACA	TCCAGAGATT	TTGGAAACCA	TTCGTGATAC	AAAAGACTTG	540
CCAGAAGAAG	CAGTCTTGGA	TGCTGCGATT	ACAGAGTTTC	TCAATCAATC	TAGCTTCCCA	600
	AAGTGTCAGA					660
AACAAAAAAT	ACGAGTCAAA	TCACTAATGC	CATGCAAATG	GTATCGGCTG	CTAAG	715

#### (2) INFORMATION FOR SEQ ID NO:160:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1087 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:160:

ATCAAAGAGC	CTATGTGCAG	GCTGGGGCAG	GGATTNTCTA	GATCTATCGC	CCAAAACGAA	60
TACCAAGAAA	CCATTAACAA	AGCAAAATTT	ATGACTAGAA	TTGGAGAACT	AAGACCATGA	120
TTTTATTGAT	TGACAACTAT	GATTCTTTTA	CCTATAACTT	GGCCCAATAC	ATTGGGAATT	180
TTGCAGAAGT	TCAGGTTCTG	AGAAATGATG	ATTCCAAGCT	CTATCARCAR	GCTGAAAAAG	
CAGATGGTCT	CCulculatetectur	CCTTCCTTCCTTC	OFFICE COLUMN	GIAIGAAGAA	GCTGAAAAAG	240
		CCIGGICCIG	GTTGGCCAGT	TGATGCTGGA	AAGATGGAAG	300

ACATGATTCC	TGATTTTGCA	GGCAAGAAGC	CGATTCTTGG	GATTETTE	CCCC200222	• • • •
CCATTGCAGA	AGTCTTTGGT	GGTAAGCTAG	GTTTGGCTCC	AAAACTC TIG	GGCCACCAAG	360
AGAGCAATAT	CAACTTTGAA	GCGCCATCTG	THE STREET OF THE STREET	AAAAGICAIG	CATGGGAAAC	420
CGGTCATGCG	TTATCACACT	A TUTTUTO A MANO	TITIGIATCA	AGGTATTGAG	GATGGCCGTG	480
CTCCTTCCAC	TTATCACAGT	ATTITICATIO	AGGAAATGCC	AGAAGACTTT	GAAGTGACAG	540
CICOTICOAC	TGATGACCAA	GCCATCATGG	GGATTCAACA	TAAAAACCTA	CCGATTTATG	600
GCTTCCAGTA	CCATCCAGAG	AGCATTGGAA	CGCCAGACGG	ער אנאני אני אני אני אני ער	ATTICCCA A COM	660
TTATCGAGGA	GGTTGTAAAG	TGAGGAAACT	AGGATGAAAG	AGATTATTCA	3 3 3 3 CM3 CC3	
AAATTTGAAA	ATTTATCAGG	TGTGGAAATG	ACGGATGTCA	TTCACCCTA	AAAACTAGCA	720
CGTGTAACTG	AAGCGCAGAT	TGCTTCTCTC	CTCTTTACCTCA	TIGAGCGTAT	CGTAACTGGG	780
CCTGAAGAAC	GCACAGCCAT	TCCCC3.3cmc	CICITAGCIC	TTAAGATGAA	GGGGGAAACA	840
GAGATTCATC	GCACAGCCAT	TGCCCAAGTC	ATGAGAGGAC	ATGCCCAGCA	TATTCCAACT	900
ORGATICATO	ATGCTATGGA	CAACTGTGGT	ACAGGTGGGG	ACAAGTCTTT	CAGTTTTAAT	960
ATTICCACAA	CIGCAGCCTT	TGTCTTGGCT	GGTGGCGGTA	TTCACATCCC	C11001====	1020
AACCGCTCGA	TTTCTTCTAA	ATCTGGTTCC	GCAGATTCCT	CNAACCTTCC	Charco age	
TGACCTC					GAATCAATCT	1080
						1087

# (2) INFORMATION FOR SEQ ID NO:161:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1089 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:161:

CTCTGCTTG	TTTTGTTGCT	TGGAATTTTG	TCACCTTTTT	TCTTTGCCCA	ССФВСФССВВ	60
ATGAAATTI'I(	TTATCAACAT	GCTGCTCCTA	CTTTTACAGG	AGTTACCCCA	THE THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF T	60
ATTTTTTTTA	TCCTGTGATT	GCAGGTCCCA	TTTTTGAAGA	Carcarran	CCECCAE	120
TGATGACTGC	TCTGGAAAAA	GGAAAGAAAT	GGGGGCTAGA	TOTACTOR	CGTGGATTAG	180
TATTTGGGGT	CTCGCACATT	AGTAATCACG	GTTCCCTCTT	CLCLCTCGT	TCCGCTGTTT	240
TGGGTGGAGG	TCTTATATTT	GCAGTCTTAT	TTACAATCAC	GACAGACTTT	GTCTTCTATA	300
TTGGACTGCA	TATAGTCTAC	AATGGCATTG	CTCACCO	AAAGTCAATT	TATTGGCCTA	360
TGTTAGTAGT	ATCGCGGTCT	ATCCTTCCCC	GICAGCTTTT	GATGTTACTG	TAATTTTGGT	420
TGTGATGAAA	GTATTTCTTC	AZAATACAGA	MAAGCTTCCC	ATTTGAATTT	AAGAAGGAGT	480
TTCAACGCTT	GGGGATACCA	TOTAL MONGA	TTTTAGACAA	TTAACCATCA	ACCAGTGGAT	540
TTTTGCCCCT	GGGGATACGA	TITTTATCT	GGCCTTCCTG	AATTATGTGG	CAGATACATC	600
AATCTTTCTC	TTGGCGATTT	TACTCATCAC	GATTTCAGAA	ACCCTGCCCC	AAGTTCTACA	660
TACTUTOR	GGAGTTTTGG	CGGATTTTCA	ACATCATCGT	GTCTTGAAAT	ACACAGTCAT	720
TTCCTTCTTC	AAATTTTTGC	TTTACTCTAT	AGTGTCCCTA	TCGCTTTCAG	GGCAGTCTTT	780
TICCITGTIG	CTAGTAACCT	TTATTTGTCT	GCTTAACCTC	TTGTCTGACA	CATTGAGTGC	840
11111CAGGC	GCCATGCTCA	CTCCGATTTT	CATTAGAATT	ATTGGGCAAG	ACCATCTGGC	900
AGAAGCTATT	GGATTTAAAC	AGTCAACTGT	TAGTTTAGTG	AAAACAACCA	GTAATATCCC	960

AGGAAGAATC TTACTAGGCA TTCTATCCAT CCAGTTTATT TCCTTACTGA ACGCTCTTAC

CTTTTTAATC GCATTTTAG GTATCCTCTT CATAAAAACT GACCTCTTGA AAGTAGAAAA

1080

AACGATTAG

1089

- (2) INFORMATION FOR SEQ ID NO:162:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1269 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:162:

ATTCAAGGT	T CATTCGCGG	CCAACATCC	G TTCACTTTC	A TTTGCCATC	G GTGGATGGTG	60
CCCTTCCAG	G AAATGGAGGG	TCGTGGTTA!	T GTCCTTTCG	T CGTCTTCTC	CIVCIVCINO	120
TATGCATGG	G TCAAAAATTG	GGTATCAAC	AGCCTTTCC	TTACAAAC	יי רכיזיזיירי א רייי	180
GITGGAAAA	A TCATGGAAAG	CTACTACCC	GAAGTGCTT	AGAAACGTG		240
AAAATCGTT	A AGAGGCGAAG	AAGAATCAT	TGCCCGTACC	CTTCACTCAR	CCTCNACACO	300
TIGCCCAAG	CATTGTAGCA	GACTTGAAAC	AAAAAGGTCA	ATCTCTTATC	COTCOTTO	360
AIGICTICAL	ACTCTATGAT	ACTTATGGGT	TCCCAGTTGA	ATTGACTGAZ	CAAAMCCCOMC	420
AAGAAGCTG	TATGACTGTA	GACCGTGAAG	GTTTTGAAGC	AGCCATGAA	GAAGAAGAAG	
AACGCGCGCC	TGCGTCAGCT	GTCAAGGGTG	GCTCAATGGG	TATCCAAAAT	CAACAACAAG	480
AAAACATCAC	TGTAGAAAGT	GCCTTCAACT	ACAATGCTAG		GAAACTCTTC	540
TAGCTATCGT	' GGCGGACAAT	GCAGAAGTAG	AAGCTGTTTC	AGAAGGAACT	CCCMCMCMC	600
TCTTTGCGGA	AACGTCATTT	TATGCTGAAA	TGGGTGGACA	CGTACCTCAC	GCCTCTCTTA	660
TCTTGGATGA	GTCAGGTAAG	GTTGTGGCTA	CTGTGACCAA	TGTTCACAAA	CCCCCACAA	720
GTCAAGCCCT	TCATACAGTT	GAAGTCCTTG	CACCGCTTGC	CTTCAACCAA	GCCCCAAATG	780
TGGCAATTGA	TAGCAATCGC	CGTCACCGTG	TCATGAAAA	CCACACCAA	GAATATACCT	840
TTCACGCTGC	CCTTCACAAT	ATCCTTGGAA	ACCACGCAAC	ACACACACAGG	ACTCATTTGC	900
AAGTTGAATT	CCTTCGCTTT	GACTTTACCC	ACTTCCAACC	MCMG CAGGA	TCTCTTAACG	960
GTGCGATTGA	ACAGCAAGTC	AACGAAAAA	TOTGGGAAGC	TGTAACTGCT	GAAGAATTGC	1020
AAACGGATAT	TGACACTGCT	AAAGAAAATG	GGAGATCCAA	TCTTGAAGTT	AAGACAGTTG	1080
CCACTAATTC	TANANCGGCC	GCCACCGCGG	TGGAACTCGAA	TTCCTGCAGC	CCGGGGGGAT	1140
AGGTTAATTG	CCNCCTGGGG	TTANCATEGO	CCNACCCCA	CTTTTNTTTC	CCTTTAATGA	1200
CCCCNAATC			CCMACCGT-I-I	CCCGTTTTAA	ATTGTATCCC	1260
						1269

- (2) INFORMATION FOR SEQ ID NO:163:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1243 base pairs

- (B) TYPE: nucleic acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:163:

	AGGCTTGGGC					60
CGGACCTGTG	AACTCAGCTT	TAACCCCGAG	TTGAGCCAGG	GTATTGATAA	CCGGAGTTGA	120
GAAGCTCTTG	AAGTCAAATG	CTTATTTTCA	TCTTCTTTGG	AGATGATCGT	GTAGTTGAGG	180
TTATTTAAAT	CGTGGTAAAC	AGCTCCACCA	CCACTAATAC	GGCGAACTAC	CTCAATACCA	240
TTTTCGCGAA	CATAATCACG	GTTGATTTCT	TCGATAGTGT	TCTGGTGACG	ACCAACAATG	300
ATAGATGGCT	TGTTAATCCA	AAGTAGGAAG	ATTTGATCCT	CATCCAAAAG	GTGTTTAAAG	360
GCGTATTCTT	CCAAGGCAAT	ATTAAAAGCA	GTGTCATTTG	AATGATTGAT	AATGTATTTC	420
	TTTACTTTAT					480
	TTTTCTTAGG					540
TACATCACTT	CAAAGTAAGT	TGGGTGTCCG	TGGATGGTCT	TCAGCATTTC	CTCAACAGTG	600
	CGATGATGCT					660
	CAAGGATTTC					720
	ATGCAATAGC					780
	CACGGGCTTG					840
	CAGGAGTCAA					900
	CTTCACCCAT					960
	CATAAATGCC					1020
	ATTCAAACTC					1080
	CTTTGCTTGC					1140
	CAATGATTTC					1200
	AGCGAAGGTT				ICCITIACUC	
			TOUCHICCH	ING		1243

- (2) INFORMATION FOR SEQ ID NO:164:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 679 base pairs
  - (B) TYPE: nucleic acid
- (C) STPANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:164:





GGTTGTGAGC	ATGTCAATCG	GGCTCTCGTT	GTTGAACGTC	AGGTGGCAGA	GCAGTTTGAT	120
CTGGAAATTG	TCAGTGTCCA	TCCTACTCTT	CATGCAGGAG	GTTCGGGGCA	GTTGGCAGCC	180
TTTAAGTTTA	TGCAGGATCC	AGTTGAGGTT	GAATTTATCA	AGGCTCATGC	TGGATTGGAT	240
ATCGGAGACA	CTGCAATTGG	CATGCATGTC	AAGCATGTTC	AGGTTCCGAT	TCGCCCTATT	300
TTGAGAGAGA	TTGGTCATGC	CCATGTAACG	GCACTGGCTA	GTCGTCCAAA	ATTAATCGGA	360
GGTGCGCGTG	CGCACTATCC	GCAAGACGCT	ATTAGAAAGT	CTTGAGAATG	AATAAAGGAG	420
ATAAAAGTGT	TTAAAAAAGA	CCGTTTTTCA	ATTCGTAAGA	TTAAGGGAGT	TGTAGGCTCT	480
GTATTTCTTG	GAAGCCTTTT	GATGGCTCCT	TCTGTAGTGG	ACGCAGCCAC	CTATCACTAT	540
GTAAATAAAG	AGATTATTTC	ACAAGAAGCT	AAAGATTTAA	TTCAGACAGG	AAAGCCTGAC	600
AGGAATGAAG	TTGTATATGG	TTTGGTGTAT	CAAAAAGATC	AGTTGCCTCA	AACAGGGACA	660
GAAGCATCTG	TTTTGACAG					679

## (2) INFORMATION FOR SEQ ID NO:165:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1024 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:165:

AGCTCTCTCT	ת בברר א ההתתתה	MMC3.3.55				
moma a constant	CAGCCATTTT	TICAATATCT	GCTACGATTT	GTTCCTTGGC	ATAGGGAGGG	60
TCTAAGAAA	CGAGGTCAAA	TTCCCCAGAN	AACCTGTTCC	AATGCCCTTT	CTGCATCCAT	120
TTTGGAGGAG	TTGAAATTTT	CCAACTTCCT	TGGTCATCTG	GATATTTTCA	GCCACGGATG	180
GTCTGAGCCT	TACGGTCTCG	CTCCACCAAA	ACAGCACTCC	ACATICCO	CGATACTGCT	
TCGATAGATA	AACCACCACT	АССТССАТАХ	VCCCCCT 100	ACATGCCACG	CGATACTGCT	240
GGACCAATCA	WWW	CCCCCCTIAA	AGGTCCAAGA	CTCGTCCCAC	TTCAAAGTAG	300
		GGCTCCCCTA	ACCTTATCCG	AAGTAGGTCT	TGTTGTCTTG	360
CCTTCTAGTG	TCTTGAGGGG	ACGTCCCCCA	TAGATTCCTG	ATACGATTTT	CATACTGTTT	420
ATTATACCAA	ATTATAGACA	AAAAGAGAAA	GAAAACCGAA	CCTTGCGGTT	ССУЛЛАСТСТВ	480
CAAAATATTT	TCGTAAGTAT	CGCGGACTTA	CTTGAGGCCA	A A C A COMMOND	CONTICICIA	-
CGATGTGTCT	CTTGCGAAGT	ACCAACATOC	COLORIGO	MACACTIGIT	TGCACTTCTC	540
<b>ምምርምር እ አምር</b> ር	CTTGCGAAGT	AGGAACA I GG	CCATACGAGA	TTGTCCAATT	CCTCCACCGA	600
TIGICARIGG	GAATAGGCCA	TTCAACAAAG	ACTTGTGCCA	TTCCAATTCT	AAGCGGTCTT	660
CATCACCTGT	AATTTCCACC	TGACGTCTAA	GAGTTTCTTC	ATCTACACGA	ATTCCCATAG	720
AAGACAACTC	AAAGGCTCCA	CCTAAAGACT	CATTCCAGAC	AAGAATATCA	CCATTONACAC	
CCTTGTAGCC	ATTCTCAGAC	<b>ПССЛАТСИСС</b>	ACTICA MONTH	ANOTATICA	CCATTTAGAC	780
GCGGTTTACC	ATCTCCCAAC	######################################	AGICATCATA	GTCTGGTGCA	CGTCCATCGT	840
TTT COLUMN	ATCTGGCAAC	TCGCCACCGA	TACCAATCAA	AAAGACGGCT	CCAAATTCCT	900
TTACAAATCG	CATTTTCCAC	GTTCTTTAGT	GTCAAGTCTG	GGTAGCGTTC	TACCAATTCT	960
TCTGTATGGA	TAAAGGTGAT	TTGTTTTGGC	AAGATAGACT	ССАТСТСАТА	CCCCCCCCC	
ACAG				- COLLOTCAIA	GCGGGCTTCA	1020
						1024

#### (2) INFORMATION FOR SEQ ID NO:166:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 702 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:166:

CTTTTTTATT	TCACAACAAG	TTCATAACGT	GTCTTACTGG	TGAAGGTTTG	ACCAGCTTTA	60
AGAATGACTT	GGCCTTTAAG	GTCACTGTGA	ATGGCATCTG	GTAAAGCTTG	CGCTTCAAGA	120
GCAATCCCAT	TGTGCTGTAG	CATTGGCTGA	CCTCCTATGA	TGACACTTTC	ATCCACAAAG	180
TTTGCTGTGT	AGACCACAAA	GCAAGGAGCT	TCTGTCTTGA	AAAGCAGGAA	GCGACCTGAA	240
TTTTGGTCAT	AAAGGAATCC	AGCATTGTCA	TGGCCTGCAG	GAAGGGCAAA	TGGATGATCC	300
AAACCTGATG	CCAGCTGGAT	TTGCTCATCT	TCTTCTGCAA	AGATATCCTT	CAACAAGGCA	360
CCATTGTAGA	TGTGTTTGAC	CACATCACGG	TTGGCTTCTG	GAGTTTTGGC	AGGAACACCG	420
TCAGGAGCGA	TTGAGTAAAT	GCCCTCTGTG	TTTAGTTGGA	AGACATGACG	GTCAATCGTC	480
TGCGTGAAAT	CACCAGACAA	GTTGAAATAG	CTGTGGTTGG	TTGGATTGAC	CAGCGTATCC	540
TGATCGGTCG	TTACCTTGTA	GATCGAATTC	ATGGAGGCAC	CAGTTTCTTC	CAAGTGATAA	600
CTGATCCAAA	TCTTGAGATT	TCCAGGGAAC	CCTCCTGTCC	CATCTGTACG	CTCTGTGTAG	660
AGAGTCAAGC	CATGATCGCT	TACTTCTTCA	ACTTCAAACA	AG		702

#### (2) INFORMATION FOR SEQ ID NO:167:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 677 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:167:

CTCAATATTT	CTTGTCCCAA	TGTTGACCAC	TGTAATCATG	GACTTTTGAT	TGGTCAAGAT	60
CCAGATTTGG	CTAATGATGT	GGTGAAAGCA	$\mathbf{GCTGATTGG} \wedge$	AGCCTCGAGT	GCCAGTTTAT	120
GTCAAATTAA	CCCCGAGTGT	GACCGATATC	GTTACTTTGC	AAAAGCTGCA	GAAGATGCGG	180
GAGCAAGTGG	CTTGACTATG	ATCAATACTC	TGGTGGGAAT	GCGCTTTGAC	CTCAAAACCA	240
GAAAACCAAT	CTTGGCCAAT	GGAACAGGTG	GAATGTCAGG	TCCAGCAGTC	TTTCCAGTAG	300
CCCTCAAACT	CATCCGCCAA	GTAGCCCAAA	CAACAGACCT	GCCTATCATT	GGAATGGGGG	360

AAGATTTATT	CTTTTAG					677
	TGGTACAATA	AATAAATAA	GAACAGAGGA	AGAAGGTTAA	TGAAGAAAGT	660
	AACTGCAATC					600
	TAAATACGGT					540
	TAACTTTACC					480
	GGCTGAAGCT					420

## (2) INFORMATION FOR SEQ ID NO:168:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1047 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:168:

ACGCATTTCA	TTCAACGGAA	ATGGAGACTA	CCCTTGGGTT	GGCGTAGGCT	TGCCAAAGTT	60
TTCTGGCTAG	TTCTGGCCCC	ATAGGGACCA	TATTGAACAA	AATCAGCTTC	ACGTTCACCG	120
TTTTGGTCTT	TGTAACGACG	GTTCACAGCG	ATAGTTGCTC	GCGCTACCGA	CTTGTCATTG	180
TTGGTTTTGT	GCAATTCTGG	TGTAGACGTT	AAACGCCCAA	TCATGATAAC	TTTATTATAC	240
ATATTTTCTT	CCTCCTACTT	ATCTATTCGT	AGGAAATCAA	AAAAGTTACA	GAAATTTGTA	300
ACTTTTCGAG	GAAATTTCTT	ATTTTTTATG	AATCATGAAA	CCTGTCGCCT	GTTGATTGGC	360
CATAATGGTC	ATATCTGTAA	TCTGAACACG	GCGAGGCTGA	CTGGTCACAT	AGACTACTGT	420
GTCTGCAATA	TCCTGAGCTT	GCAAGGCTTC	TATTCCTTGG	TAAACGGACG	CAGCCCGCTC	480
TTTATCACCA	TGAAAACGAA	CAGTTGAGAA	ATCTGTTTCG	ACAATCCCAG	GCTGAATGGT	540
TGTCACCTTG	ATATCCGTTG	CGATGGTATC	AATTCGCAGT	CCATCCGAAA	AGGTCTTAAC	600
CGCAGCCTTG	GTAGCTGAGT	AAACAAGGCG	GGCACCCAGG	CATAGGCGGT	AGGATTCCTG	660
GCGGGTTGAA	CCCCATATTT	TGGATAAACG	GGGACCTTGG	ATTGAACTTT	TAACCATTGG	720
		GTAACCGCCA				. 780
GTCAACATAT:	CCAACTCCTC	ATAGTCTTGA	TAGGGAGCCA	AGCCAAGAGC	CAGTCCGGCG	840
		CCTCCCTATC				900
		ATCTAGTGGA				960
ACTGCAAACT	CCGACTTGAA	GGATTTCTAA	TCTGTCTATC	CGTCGTCCTG	TTAGAACGAC	1020
ATCCTCACCC	TGCTCCAGAT	AAGCACG				1047

#### (2) INFORMATION FOR SEQ ID NO:169:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1165 base pairs
  - (B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:169:

CTTGTTGGAT	ATAAGGATTG	CGAGTTGCAT	AGCGAAGAAC	AATAATCGCG	GCAAATAGCC	60
	GGTAGAGGCG					120
	CATTCCTGAT					180
	CATTCCAAGA					240
	AAAAATGGCA					300
	CATGGCTCCA					360
	CATTAGTAAA					420
	ATCAAAGATT					480
	TAAAGTCCTG					540
	GATAGCGGTC					600
	GACCAGGAAC					660
	GCTCCAGTAA					720
	TGCGCCCCTT					780
	CAATCAGTTC					840
ATGACCTTGG	CTTCTTGATA	AAAGGGGTGT	TGTAAAATTC	GCTCGGTTAA	AGCTTGGTCT	900
ATAGCCTGTT	TITGTTCTTG	AGATAAAGCC	TTCATTTCAT	GCAAGACTTG	CTTGCGTAAT	960
TCCGATTTCA	TAGACAAGCC	CTCTATTCTG	CTGCCTTCTT	TTTCAGGAAA	CTAGACACCG	1020
CAGCCACCCC	AATAGCTAAG	ACTTCTTCCT	TAGGACTCAT	TTGAGGGTGA	TGAAGAGCGT	1080
	GATACCTAGC					1140
	TGTCATAGCA					1165

- (2) INFORMATION FOR SEQ ID NO:170:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 662 base pairs
  - (B) TYPE: nucleic acid-
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:170:

CTGGGCGACC	TTGAGAGTGG	CTTTACTGGG	GCTGATTTTG	GGAGTTTTGA	TTGCCTGTCT	60
TATGGCTGTA	CTCGATGGAT	AGTTTGACTT	GGCTCAATGA	CCTGATTTAC	CCTATGATGG	120
TGGTCAATCA	AACCATTCCC	ACCATTGCCA	TAGCTCCTAT	CCTGGTCTTG	TGGCTAGGTT	180

GCATTTTGGA CGGTTTTAGG CATTGCGACA AGGATATGCT GACCTTGTTT AGTCTGATGC 3 GGGCCAAGCC TTGGCAAATC CTGTGGCATT TTAAAAATTCC AGTCAGCCTG CCCTACTTTT 3 ATGCTGGTCT GAGGGTCAGT GTCTCCTACG CTTTTATCAC AACAGTGGTA TCTGAGTGGT 4 TGGGAGGCTT TGAGGGGCTT GGTGTTTATA TGATTCAGTC CAAGAAATTG TTTCAGTATG 4 ATACCATGTT CGCTATTATT ATTCTGGTAT CGATTATCAG CCTTTTGGGT ATGAAGTTGG 5 TCGATATTAG TGAAAAATAT GTGATTAAAT GGAAACGTTC GTAGAATTAG AATGTTTCTG 6 AAAAAGAAAA GAGGAAATCA AAATGAAGAA AACATGGAAA GTGTTTTTAA CGCTTGTAAC 6 AG	ATGGGATTTT	GCCCAAGATT	GTCTTGATTA	TCTTAACGAC	AACCTTTCCC	ATCATCGTCA	24
GGGCCAAGCC TTGGCAAATC CTGTGGCATT TTAAAATTCC AGTCAGCCTG CCCTACTTTT  ATGCTGGTCT GAGGGTCAGT GTCTCCTACG CTTTTATCAC AACAGTGGTA TCTGAGTGGT  TGGGAGGCTT TGAGGGGCTT GGTGTTTATA TGATTCAGTC CAAGAAATTG TTTCAGTATG  ATACCATGTT CGCTATTATT ATTCTGGTAT CGATTATCAG CCTTTTGGGT ATGAAGTTGG  TCGATATTAG TGAAAAATAT GTGATTAAAT GGAAACGTTC GTAGAATTAG AATGTTTCTG  AAAAAGAAAA GAGAAATCA AAATGAAGAA AACATGGAAA GTGTTTTTAA CGCTTGTAAC  AG							30
ATGCTGGTCT GAGGGTCAGT GTCTCCTACG CTTTTATCAC AACAGTGGTA TCTGAGTGGT 4 TGGGAGGCTT TGAGGGGCTT GGTGTTTATA TGATTCAGTC CAAGAAATTG TTTCAGTATG 4 ATACCATGTT CGCTATTATT ATTCTGGTAT CGATTATCAG CCTTTTGGGT ATGAAGTTGG 5 TCGATATTAG TGAAAAATAT GTGATTAAAT GGAAACGTTC GTAGAATTAG AATGTTTCTG 60 AAAAAGAAAA GAGGAAATCA AAATGAAGAA AACATGGAAA GTGTTTTTAA CGCTTGTAAC 60 AG							36
TGGGAGGCTT TGAGGGGCTT GGTGTTTATA TGATTCAGTC CAAGAAATTG TTTCAGTATG 4 ATACCATGTT CGCTATTATT ATTCTGGTAT CGATTATCAG CCTTTTGGGT ATGAAGTTGG 5. TCGATATTAG TGAAAAATAT GTGATTAAAT GGAAACGTTC GTAGAATTAG AATGTTTCTG 6. AAAAAGAAAA GAGGAAATCA AAATGAAGAA AACATGGAAA GTGTTTTTAA CGCTTGTAAC 6. AG							42
ATACCATGTT CGCTATTATT ATTCTGGTAT CGATTATCAG CCTTTTGGGT ATGAAGTTGG 5. TCGATATTAG TGAAAAATAT GTGATTAAAT GGAAACGTTC GTAGAATTAG AATGTTTCTG 6. AAAAAGAAAA GAGGAAATCA AAATGAAGAA AACATGGAAA GTGTTTTTAA CGCTTGTAAC 6. AG							48
TCGATATTAG TGAAAAATAT GTGATTAAAT GGAAACGTTC GTAGAATTAG AATGTTTCTG 60 AAAAAGAAAA GAGGAAATCA AAATGAAGAA AACATGGAAA GTGTTTTTAA CGCTTGTAAC 60 AG							540
AAAAAGAAAA GAGGAAATCA AAATGAAGAA AACATGGAAA GTGTTTTTAA CGCTTGTAAC 60	TCGATATTAG	TGAAAAATAT	GTGATTAAAT	GGAAACGTTC	GTAGAATTAG	AATGTTTCTG	600
AG							660
							663

### (2) INFORMATION FOR SEQ ID NO:171:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 555 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:171:

CC3 3 mmocs m						
GGAATICGAT	CTCTTAAAGC	CTATTATGGT	TAATCCAATT	TGTTTTAGCT	GCAGGTGGAA	60
TTATGAATGT	CGGATATGAA	AAAGCATTCT	TGATGCAGAC	ATCGTTAAAT	<b>ΤΤΓΓ</b> СС A A С ΤΤΤ	120
CTGAAATTAT	CTCGACATAT	GTCTATAAAG	ערייאנייאנייאנייער אריי	AMCACCACAC	#1000mm.	
			1100101101	ATCAGGAGAC	TATTCTTACT	180
CAACAGCGGT	TGGTTTGTTT	AATGCAGTGA	TTAACGTAGT	ATTGCTTGTT	GCAGTTAACC	240
ልልልጥርርምጥልል ል	ACCCATCAAC	3 3 55 55 55 5				
	VCQCVIQVVI	AATGGTGAAG	GAATTTAAGG	AGGAAAGTAT	GAAAAATTCG	300
ልጥልጋርንጥልባቸር	CAAAAmmmea	E1 C1 CC=1 ==				500
	CWWWILLIGH	TAGACGTATC	TTACTCTTAA	ATAAAATCAT	TATTCTCTTT	360
א באוויידיידים באווי	MC3 CMMMCCM					300
AICGITITEM	TGACTTIGCT	TCCTTTACTT	TATATCGTCG	TAGCATCCTT	<b>ጥልጥርርልጥርር</b> ም	420
3 3 COMMORGO		_			IIIIOOMICCI	420
MAGGITCIGG	TTAGTAGAGG	GATTAGCTTT	AATCCAGCCG	ATTYCCACTICT	ACA ACCERTA C	400
01.555555				MI IOGACIGI	AGAAGGITAC	480
CAGCGTGTAT	TCAGTGACCA	ATCTATTCTA	ACACCOMPTODA	TO A A DISTORTION	100101000	
	_			TOWNTTOTOT	ACTATACTCT	540
TTTGGATTTG	CAGCT					
						555

## (2) INFORMATION FOR SEQ ID NO:172:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 860 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:172:

	TATTTTGGAT					60
ACAAAGCTGG	AATCACTCCA	ATCGGAGTTT	ATACGCACGA	ACCACGTGAT	CAGGTTCCGC	120
TGGTCATTAA	GGAAGTGAAT	GGTATCAAGG	TTGCATTGTC	AGCCTATTCC	TATGGTTTCA	180
ATGGAATTGA	GCAGTATATT	TCTCAGGAAG	ACTATAATCG	TTATCTTTTA	GATTTAAACG	240
AAGATAAGAT	GAAGGCTGAA	GTTGAACGGG	CAGAGAAGGA	AGCAGATATC	ACCATTATCA	300
TGCCTCAGAT	GGGTGTTGAG	TATCGATTGG	AACCAACTGA	AGAACAAAA	GCTCTTTATC	360
ACAAGATGAT	CGATTGGGGA	GCGGATATTA	TCTTTGGAGG	GCATCCTCAC	GTTGTTGAGC	420
CATCTGAAAC	GGTTGAAAAA	GATGGAGATA	AGAAACTCAT	TATCTATTCA	ATGGGGAACT	480
TCATTTCCAA	TCAACGAATT	GAATCTATGG	GAGATGAAGA	GAATGCTAAG	TGGACTGAAC	540
GTGGTGTTCT	CATGGATGTT	CACCATCAAG	AAGAATGATG	GAAAAACAAC	TATCGGAACA	600
GCTAAAGATC	ATCCTACTTG	GGTCAATCGA	ACACCAAAGG	GAACCTTTTC	ACCAGAAGGA	660
TATCCCTTGT	ATCATTACCA	AACTTATATT	TTGGAAGATT	TTATAGAGGA	TGGCAGTCAT	720
CGTGACCAGT	TAGATGAAGC	GACTACCGGA	ACGAATTGAT	ACCCCTATAA	AGAAATGAAT	780
	GATTGAAGTG					840
	AGATATGGAT		•			860

### (2) INFORMATION FOR SEQ ID NO:173:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1284 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:173:

CTCATTTGCA	AAATCAGGAA	AAACGGATGG	TAACGGCAGT	CCGAAATGTT	CTATCTAAGA	60
AACAAGAGGC	TTTGAAAAAA	TGCAGTCAGT	CTGTTATCTT	TAGACAACCT	GAGCGCTTGT	120
ATGACGGTTA	TTTGCAACGC	TTGGACCAAC	TGCAACTGCG	TTTGAAACAA	AGTTTGCGAA	180
CTCGGATTTC	TGATAACAAA	CAATTAGTTC	AAGCAAGAAC	TCATCAATTA	GTACAATTAT	240
CACCTGTTAC	CAAAATCCAA	CGCTATCAAG	ACCGTTTAGG	ACAGTTGGAC	AAGCTTCTTA	300
GGTAGCCAAA	TGGCGTTAGT	TTATGACGCC	AAGGTTGCTG	AGGCCAAGCG	ACTTTCGGAA	360
GCTTTGCTCA	TGTTGGATAC	TAGCCGAATC	GTGGCGCGTG	GTTATGCTAT	TGTCAAAAA	420
GAAGAATCCG	TTGTAGATTC	GGTTGAGAGT	TTGAAGAAAA	AAGACCAAGT	AACGCTTTTG	480
ATGCGAGATG	GTCAAGTAGA	ATTAGAGGTT	AAAGATGTCA	AAACAAAAGA	AATTTGAGGA	540
AAATCTAGCA	GAACTGGAAA	CCATTGTCCA	AAGTTTGGAA	AATGGTGAAA	TTGCTCTGGA	600
AGATGCGATT	ACTGCCTTTC	AAAAGGGCAT	GGTCTTGTCA	AAAGAGCTCC	AAGCTACGCT	660
GGACAAGGCT	GAAAAGACCT	TGGTCAAGGT	CATGCAAGAA	GACGGAACAG	AAAGTGATTT	720
TGAATGAAAA	AGCAAGAAAA	ATTAGCTCTT	GTCGAGTCGG	CTTTGGAAGA	TTTTATGGAG	780

ACCAGCAGTT	TGCCTCTAGT	TTACGGGAGT	CTGTTCTCTA	TTCTATTCAT	GCTGGTGGCA	840
AGCGTATTCG	GCCTTTTCTC	TTGTTAGAAG	TTCTGGAAGC	CTTGCAGGTT	ACCATCAAAC	900
CTGCTCNCGC	GCAGGTAGCT	ACTGCCTTGG	AGATGATTCA	TACAGGGAGC	TTGATTCACG	960
ATGACCTTCC	TGCTATGGAT	GATGACGAGG	ATCGAGAGAG	GGCGGAAAAA	CCAATCACAA	1020
GAAATCCGGT	GAAGCTATGG	CCATCCTAGC	TGGAGATGCC	TCATGCTTAG	ACCCATATGC	1080
CTTGATTGCG	CAGGCAGATC	CGCCAAGTCA	GATCAAGGTG	GGCTCGATTG	CCAACTCATC	1140
CCTTGCTTCA	GGTAGCCTGG	GTATGGTGGC	AGGGCAAGTC	TTGGATATGG	AGGGCGAACA	1200
CCAGCACTGG	TCTCTGGAAG	AACTTCAGAC	TATGCATGCC	AACAAGACTG	GGAAGTTACT	1260
AGCCTATCCC	TTCCAACGCG	GCAG				1284

## (2) INFORMATION FOR SEQ ID NO:174:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 978 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:174:

CCACTATCA	GCATCTCTCT	TGCAAACTTT	ATCGCACTAT	CTCCATCACC	TTTATAATAT	60
ACATGAATAC	TCAATGTCAT	CTTATATCCT	CCAAAATCAT	CCTTCAATTT	TTAAAAAACA	120
AGTTTAGATO	AGGATCTAAA	CTTGTTTTT	ATGAACTAAT	TATCTAACGT	TTCGCCATTA	180
CTTTCAATCA	CTTCTTTATA	CCAATAAAAT	GATTTTTTCT	TATAGCGATT	TATAGTCAAT	240
TGAAACAAGA	ACAAGACAAA	AGCACCCATA	AGGTAAACTT	TTGAGTGCTT	TGAAACGTTG	300
ATATAATCGT	' ATTGATTAAC	GTTTTGAGGC	AACTGACCTT	GTCAGGTTGC	AGCCACATTT	360
GTAAGCGACT	' AAAGTCGCAA	CAACTGTGTC	AATTGCACCA	ATTTAGTAAG	AAACTATAAA	420
AAAAGAACAC	CCCGAAAGGT	GCTCTGTTAT	AAGTTATAGT	AATTCTTTCG	AATTAACGTT	480
TACTAAATTG	TGATGCTTTA	CGAGCTTTCT	TAAGACCTGG	TTTCTAACGT	TCAACTTTAA	540
CGGGAGTCAC	GTGTAAGAAG	TCCTGCGCGT	TTCAATGAAT	CGCGGAAGTC	<b>ፕ</b> ሃርርርምም አ ርም	600
TGAAGAAGGG	CACGAGCGAT	ACCATGACGG	ATAGCTCCTG	ATTGACCAGC	GTATCCACCA	660
CCTACAACGT	TAACGAAAAC	GTCGTATGAA	CCTACAGTTG	AAGTAACTGC	GAATGGTTCG	720
TIGATGACAA	GACGAAGGTC	AGCGTGTGGG	ATGTACTCTT	CAACATCTTT	מיים מיייבירית	780
GIGATTTTAC	CACTTCCTGG	AACAAGGCGA	ACGCG1GCAA	CAGCGTTTTT	ACGACGTCCA	840
GTACCTGCAT	ATTGTGCTTG	TGACATACTT	TATTGTTCCT	TTCCTTAGAT	A ACTCCTCA A	900
ATGTCAAGAA	CTTCTGGTTG	TTGTGCAGCG	TGAGTGTGCT	CAGCTCCAAC		960
AACTTCATAC	CTTGAGCG					960 978
						3/8

(2) INFORMATION FOR SEQ ID NO:175:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 874 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

	GGCAGCTTAT					60	
	TGGTACCTTT					120	
	CTTGGTGACT					180	
	AGTTATTTTG					240	
	GTTTGATAAT					300	
	CTGGTATTAT					360	
	CTAATGGGGG					420	
	TCTTATCGCT					480	
	TGGTTCACTA					540	
	GGATTAGTTG					600	
	GTATTTCGAT					660	
	TGCCTGCTGC					720	
	TGACAGGTCT					780	
ATTGCAGCCT	TTTTAAATAT	TTGTACCTTA	GCCTAATTGA	TCCTGCTGGC	TTATGGTCTG	840	
ATTCGCTTAC	GGAAAGAAAA	AGGAATGCCC	AAAG			874	

#### (2) INFORMATION FOR SEQ ID NO:176:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 551 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:176:

CTAACCCTNG	ACGGGGCCGC	TATCATCAGT	CAAACAGCTA	AAAATCTTGT	CTGCAAAAGT	60
CTCGATTAAC	TGAGCTTTTA	CAAAAGCCGT	ATTTCCTGGA	ATAACTTGGA	GATTGATCAT	120
CTTATCCATC	AATTCAGCCG	ATTCGATATT	GTCTTCAGCC	AGTTGCAGAC	TTTTTACGAT	180
TGATTTTGGC	AATTCGTAGA	CATAGGTGTT	GTCTCTCAAA	GGAATTTTGA	CAATACCTAA	240
CTCTTTGATA	TCTCGGGATA	CCGTCGCCTG	AGTGGCAGTG	ATACCTGCTT	CTTTCAAATG	300
TTCTACAATT	TCTTCTTGCG	TGCCGATTTG	ATAATCTGTC	ACCAATCTTC	TAATTTTTTC	360

AAGTCTCTCT	TTTTTATTCA	TTTTTAAATT	GACTATGCGC	CCTCTCTACT	GCTTCTTTAA	420
TCTCAGCAAG	AATCTGATTG	CTTGCTGACT	TTTCTTTTTT	CAAATACACT	AAAAATTCAA	480
TATTTCCATG	TCCACCTTGG	ATGGGAGAAA	AGTCCAAGCC	AAGGACTGAA	AAACTGCCTC	540
TACTGCCATA	G					551

- (2) INFORMATION FOR SEQ ID NO:177:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 774 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:177:

C	TCTTACAGG	AAGAAACTCG	TCGTGACCTT	GCTAAAGAAG	TGAAGAAGTT	CGGCGAAAAT	60
G	CTAAAGTGG	CTGTCCGCAA	TATCCGTCGC	GATGCTATGG	ACGAAGCTAA	GAAACAAGAA	120
A	AAGCAAAAG	AAATCACTGA	AGACGAATTG	AAGACTCTTG	AAAAAGATAT	TCAAAAAGTA	180
A	CAGACGATG	CTGTTAAACA	CATCGACGAC	ATGACTGCTA	ACAAAGAGAA	AGAACTTTTY	240
		AATAAACAGA					
A	AGGAAATAT	CAATACAAAT	OFF		COCTORGITI	INTICGAMAG	300
••	·	GAATACAAAT	CTTGCAAGTT	TTATCGTTGG	ACTGATCATC	GATGAAAATG	360
A	CCGTTTTTA	CTTTGTGCAA	AAGGATGGTC	AAACCTATGC	TCTTGCTAAG	GAAGAGGCC	420
A	ACATACAGT	AGGGGATACG	GTCAAAGGTT	TTGCATACAC	GGATATGAAG	CAAAAACTCC	480
G	CCTGACAAC	CTTAGAAGTG	ACTGCCACTC	AGGACCAATT	TGGTTGGGGA	CGTGTCACAG	540
A	GGTTCGTAA	GGACTTGGGT	Chantacacc	ATTACACOCOM	######################################		
_			0101110100	ATACAGGCCT	TCCTGACAAA	GAAATCGTTG	600
T	IGTCACTCG	ATATTCTCCC	TGTGCTCAAG	GAACTCTGGC	CTAAGAAGGG	CGACCAACTC	660
T	ACATCCGTC	TTGAAGTGGA	TAAGAAAGAC	CGTATCTGGG	GCCTCTTGGC	TTATCAAGAA	720
G	ACTTCCAAC	GTCTCGCTCG	ጥርርጥርርርጥልር	33C33C3DCC	101100111		
			-ccroccinc	MACMACATGC	AGAACCAAAA	CTGG	774

- (2) INFORMATION FOR SEQ ID NO:178:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1172 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:178:

CCTCCTC NCC	2 3 Th A C C TO TOTAL	MC > MC ON >				
CCIGCICACO	ATAAGGTCTT	TGATGTANAA	GTICTIGTIC	AAGGTAAGAG	CATCGGTCAA	60
GGCCAAGGTC	GTTCTAAGAA	ATTAGCAGAG	CAGGAAGCTG	CCAAAAATGC	CGTTGAGAAG	120
GGGCTGGATT	CATGTATTTA	AAGGAAATCG	AAATTCAGGG	GTTCAAGTCT	TTTTCTTCATA	180
AGACCAAGGT	CGTTTTTGAC	CAAGGTGTGA	CGGCAGTTGT	TCCACCCAAM	COMMONO	
AGTCCAATAT	TACAGAAAGT	СТСССТТССС	CTTTTCCCCC	STORECCARI	GGATCTGGAA	240
CTCCCCCN	CAMCCCCCAM	0700011000	CITIGGGGGA	GICTAGTGTC	AAGAGTCTCC	300
GIGGGGGCAA	GATGCCGGAT	GTCATCTTTG	CTGGAACCGA	AAGTCGCAAA	CCGCTCAATT	360
ATGCTTCTGT	AGTTGTGACT	CTGGATAATC	ATGACGGATT	TATCAAGGAT	GCAGGTCAAG	420
AAATCAGGGT	GGAACGCCAT	ATCTATCGTA	GTGGAGATAG	CGAATACAAG	ATTGACGGCA	480
AGAAAGTCCG	TCTGCGTGAT	ATTCATGACC	TCTTCTTGGA	TACTGGATTG	GCACGACATT	
CCTTCTCTAT	CATTTCCCAA	GGCAAGGTTG	AGGAGATTTT	TA ATTOON A C	GGACGAGATT	540
GCCGGGCTAT	TTTTGAAGAA	GCTGCACCAC	mmmma.	TARTICIAAG	CCTGAGGAAC	600
CTCACACTAA	1070011011	GCTGCAGGAG	TITTAAAATA	CAAGACTCGT	AGAAAAGAAA	660
CIGAGAGIAA	ACTGCAACAA	ACTCAGGATA	ATCTGGACCG	CTTAGAGGAC	ATTATCTACG	720
AGTTGGATAA	TCAAATCAAG	CCTCTTGAGA	AGCAAGCTGA	GAATGCCCGT	AAGTTTTTAG	780
ACTTGGAAGG	ACAACGTAAG	GCTATTTATT	TAGACGTTCT	GGTTGCTCAA	ATCARGANA	840
ATAAGGCAGA	ACTAGAGTCG	ACAGAAGAAG	AGAGTTGGCT	СУССТЕСТВО	A A CONCOUNTAIN	
GAGTTATTAC	CAAAAGCGTG	AAAAATTAGA	ACAACAAAAm	CASSITCAAG	AACTCTTGAT	900
ССААСАТТТА	CAGGCTGAAA	TCCCCO LLCA	AGAAGAAAA'I	CAAACTICTA	AAAAGCAACG	960
COMMISSION	CAGGCTGAAA	TGGCCAAAGA	CCAAGGCAGT	TTGATGGACT	TGACTAGTCT	1020
GATTAGTGAT	TTAGAAAGAA	AATTAGCCCT	ATCGAAACTG	GAGTCCGAGC	AAGTGGCCCT	1080
GAATCAACAG	GAGGCACAAG	CCCGTTTGGC	TGCTTTGGAG	GATAAGAGAA	ATTCACTCAA	1140
CAAAGAAAAG	TCTGATAAAG	AAAGCTCACC	AG			1172
						TT/4

## (2) INFORMATION FOR SEQ ID NO:179:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 597 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:179:

	CTGTTATTCC	TGCTGCAGGG	CTCCCCACAC	C) mmmmmaaa			
		-0010CM000	CIGGGCACAC	GATTTTTGCC	TGCCACTAAA	GCTTTGGCAA	60
	AAGAAATGCT	TCCAATTGTA	GACCGCCCCA	CAATTCATTT	TGTCATTGAA	GAAGCTTTAC	120
	GTTCGGGTAT	TGAAGATATT	CTACTIACTTIA	CECCATAGE		O.B.OCTTIAC	120
			CINGINGIIA	CIGGAAAGAG	TAAACGTTCT	ATTGAAGATT	180
	ATTITGATTC	AACTTTTGAA	TTGGAATATA	GTCTTAGAAA	ACAAGGAAAG	ATGGAACTTC	240
	TTAAGTCAGT	TAATGAATCG	A COTO A COTO A	330030300			240
			ACIGNIATIA	AAGTACATTT	CGTTCGTCAA	AGTTCACCAC	300
	GTGGTCTTGG	TGACGCTGTT	CTCCAAGCGA	AGTCTTTTGT	TGGTGACGAT		360
	ጥል አጥር/ርጥጥረ ር	CTC > TC > CCC			TOGICONI	CCCITIGITG	360
	INTIGETIGG	GTGATGACCT	TATGGATATC	ACCGACTCAA	CTGCTGTACC	TTTAACAAGA	420
(	CAATTGATGG	ATGATTACAA	CGCAACACAG	CCTTC A A CTTA	M0000000000000		
				GCTTCAACTA	TCGCAGTAAT	GCCTGTTAGA	480
•	TATGAAGAAG	TTCTCCTAAT	GGTGTGATTC	TCCCCAGAAT	TGGAAAGTTA	CTA ATCCCCCT	540
•	СТАТАСТСТ	CARCCCROS				GIMIOGCCI	540
•	LIMINGIGIT	GATGCCTTTG	GITGAGAACC	AAACCAGAAG	AAGCGCCTAG	CAATTAG	597
						_	,

#### (2) INFORMATION FOR SEQ ID NO:180:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 836 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:180:

	CTCCCTAGTG	TGGTAGATTA	GGCTATTTTT	TGGTATAATA	AAAGTTATGG	AAATCGAAAA	60
	AACCAATCGT	ATGGAATGCG	CTCTTTGAAT	TTTATGCGGG	CGCTTTTGAC	AGATAAGCAA	120
	ATGAATTATA	TAGAGCTTTA	CTACGCTGAT	GATTACAGTC	TTGCTGAGAT	AGCTGAGGAG	
	TTTGGTGTTA	GTCGTCAGGC	TGTCTATGAC	AATATCAAGC	GAACACAAAA	GATTCTGGAA	180
	GATTATGAGA	TGAAATTGCA	САТСТАСТС	CACTACATOC	BESCH	GATTTTTGAC	240
	0111mommo			GACIACATIG	TCCGTAGTCA	GATTTTTGAC	300
	CAAATCTTGG	ATCGCTATCC	CAAGGATGAT	TTTCTGCAGG	AGCAGATAGA	AATTTTAACA	360
	AGCATTGATA	ATAGAGAATA	AGAGGAAGAA	AAATGGCATT	TGAAAGTTTA	ACAGAACGTT	420
	TGCAGAACGT	СТТТАААААТ	CTACGTAAAA	AAGGAAAAAT	CTCTGAATCT	GATCTCCAAC	
	AGGCAACCAA	ACA A AMTYCCC	mmccccmmee.		01010001101	GATGICCAAG	480
		MONNA! I CGC	TIGGCCTTGC	TCGAGGCCGA	CGTTGCCTTG	CCTGTTGTAA	540
	AGGACTTTAT	CAAGAAAGTT	CGTGAGCGCG	CAGTCGGGCA	TGAGGTCATT	GATACACTTA	600
	ATCCTGCGCA	ACAGATTATT	AAAATCCTTC	3/003/003.3 cm	GACAGCCGTT		000
	\#\ coco			ATGAGGAACT	GACAGCCGTT	TTAGGTTCTG	660
٠	ATACGGCAGA .	AATTATCAAG	TCACCTAAGA	TTCCAACCAT	CATCATGATG	GTTGGTTTAC	720
	AAGGGGCTGG '	TAAAACAACC	TTTGCTGGTA	AATTCCCCAA	CAAACTCAAG	******	
	3TCCTCCTCC 1	TTTC: TC:			CAMAC TCAAG	AAAGAAGAAA	780
•	arecreated.	TITGATGATT	GCGGCGGATA	TTTATCGTCC	ACCTGCCATT	GACCAG	836

### (2) INFORMATION FOR SEQ ID NO:181:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 840 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:181:

CGGGTTTCAA ACTCTTCTCT TGTCTTGGGC AGACTGCGGT TCCGGAAGNC TTCCAGATAA 60
CGTTCAATTT CATCTAGCAA ATCAGAAGCA GGATTGGTCT GGCTCAGTTG ACCTGCAATT 120
TTTGAAAAGA GTTGCGCTAA GATCAGGCTT TCACTGGCGG CAAGGTGACA AGTGTTAATC 180
215

	TGTTGGGCCA	TGTTTCTCAG	GGATACGACT	TTGTCGTTGT	CTCATCTCAA	AGTAGTGGAT	240
						GTCTGAGGGC	300
						CGTCTCCTCT	360
			GCTGGAGGAT				420
			CTCGTGAAGG				480
			GGAATTCATT				540
			AAACAGTGCT				600
			AGGCCAGATA				660
			CCGATAGCCC				720
			CTTCTACGCG				780
(	CAGCCGAAAC	TGCTGATGAA	AGATTGAGAA	AATAAGCAAG	CAGGCAGGCA	AGACAGGTAG	840

### (2) INFORMATION FOR SEQ ID NO:182:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1168 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:182:

GGATGGAATT	GTTAGCAAAT	GCCAACAAAA	TCATGGAAGG	AAAAGTTGTG	CTAAATTGGG	60
	CCTTGGCTGG					120
	TATGATATCG					180
TTATGCTGAC	TTGACAGAAT	TGTACAAAAA	AGAAGGTAAA	GACCTTTACA	AGGCACTTGA	240
CCCAGCTTAT	ATCAAGGGTA	ATACTGTAAA	TGGTAAGATT	TATGCTGTAC	CAGTTGCAGC	300
CAACGTTGCG	TCATCTCAAA	ACTTTGCCTT	CAACGGAACT	CTCCTTGCTA	AATATGGTAT	360
CGATATTTCA	GGTGTTACTT	CTTACGAAAC	TCTTGAGCCA	GTCTTGAAAC	AAATTAAAGA	420
AAAAGCTCCA	GACGTAGTAC	CATTTGCTAT	TGGTAAAGTT	TTCATCCCAT	CTGATAACTT	480
TGACTACCCA	GTAGCAAACG	GTCTTCCATT	CGTTATCGAC	CTTGAAGGCG	ATACTACTAA	540
AGTTGTAAAC	CGTTACGAAG	TGCCTCGTTT	CAAAGAACAC	TTGAAGACTC	TTCACAAATT	600
	GGCTACATTC					660
	TGGTTCGTTC					720
	GTTGCCAACA					780
	ACACAAGTTG					840
ATCAATGGAA	ATCTTGAACC	TCTTGAATAC	CAACCCAGAA	CTCTTGAACG	GTCTTGTTTA	900
CGGTCCAGAA	GGCAAGAACT	GGGCAAAAAA	TTGAAGGTAA	AGAAAACCGT	GTTCGCGTTC	960
TTGATGGCTA	CAAAGGGAAA	CACTCACATG	GGTGGATGGN	AACACTGGTA	ACAACTGGAT	1020
CCTTTTACAT	CCAACGAAAA	ACGTTACAGA	CCCAACCAAA	TCCGAAAAAT	TCCTAAAGAA	1080
AAGAAATTTN	GGGCAGAAAG	CCTAAAAGAA	TCCTCCCCAG	CGCCTTTGGA	ATTTTATCCT	1140

### TTTTAAATAC CTTGGAACAA TGTTGAAA

1168

- (2) INFORMATION FOR SEQ ID NO:183:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 737 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:183:

	CAAGTGACAC					60
GGGCCAAAG	A TACGTGTTCC	GCGAGGAGTT	TTGTCTTCAC	GGATGATAAC	TGCTGCGTTT	120
	TGATGTATGA					180
ACTGCTTTAL	CAACGTCACC	TTTTTTAACC	GCACCACCAG	GAGTAGCTTG	TTTTACAGAT	240
	CATCACCGAT					300
	CGCGAGCACC					360
	TCTCCTTTCA					420
	CGTTTTGTAG					480
	ACATTGTTTT					540
	GGGTGGTTAC					600
	ACACGTCCAA					660
	TATTATTTCG					720
AACTTCTTTC						737
						, , ,

- (2) INFORMATION FOR SEQ ID NO:184:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 740 base pairs
  - (B) TYPE: nucleic acid-
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:184:

CAAGCAATTG	GCGCAGTTGT	TCATTTTCTG	TCTTTAAACT	TTCCACCTCA	TTTGATTTAA	60
CTTCTAATTG	GTAAAGCTGT	TTCTTCAAAC	TTTCATTTTC	ATTATATGTT	CGTGTCAAAT	120
GAGCCAAATC	TGATTTGACA	GAATCAAACC	ACTGAAAAGG	TTTTTGTACA	ACTCTATCAA	180
					TO TO TO TO TOWN	100

CCAATGAGAT	TCCATCTCCT	AATTTTGTCA	CAATTGTACT	TGAATAAGTC	GTCGCTAAGA	240
GAGCTGACAC	AAGCAGAACA	GTGACAAAA	CAATAATGAC	ATATTTTGAT	TTTTTTAAAAC	300
GGTTCATATC	CCTACCTTTA	TATCAAAAAC	TGTTACAGTA	ACTTTTTATC	AATTOOTOAA	
AGCTACTAAC	ATTTTAAGAA	AAATAAACAA	CAACCAACTA	CCACAAMAAC	ANTICCIGAN	360
AGCGTATCCT	TTAGAGTCCA	TTTC A ATTIC	COCCUCATO	CGAGAATAAC	AAGAATGGTC	420
TACCCACCC	Composition	CITICARTIGE	CGGTATTGAC	TICIGCCTTT	TCCACCCTGA	480
IAGCCACGCG	CTTCCATAGC	GATAGCCAAG	GAATCTGCAC	GTTTTAAACT	TGTCGCAAAA	540
AGAAGAATCA	AAATGGGAAT	CATCGCCTTT	ACTTTTTGAA	CGATGCTTCC	TTCTCCAAAA	600
TCCACTCCAC	GAGGCTTTCT	GTGCATTCAA	AATCCGAGTC	GTATCATCCA	TCAAGGTTCC	660
GACAATACGC	AAACTCATAG	ACAGCATCAA	TCCAATTTCA	TEARCICAA	-0.2.001100	
	GCTAATAAAG			- CONTROL TOGAM	CTTTCACACG	720
						740

## (2) INFORMATION FOR SEQ ID NO:185:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 567 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:185:

ACCTTTGATA	AAACAATCGA	TTTACCCTTT	GAGAATTTAA	GCCTTCCTGC	ACCTGAAAAA	60
TTTGATACTA	TTTTGACACA	ATTTTATGGA	GATTATATGA	CCCTACCACC	AGAAGAAAA	120
CGCTTCTACA	GTCATGAATT	TCACGCTTAT	AAATTGGAGG	ATTAGGATGC	AATATTTAGA	180
AAAAAAAGAA	ATTAAAGAAA	TTCAACTAGC	CCTGCTGGAC	TATATTGATG	AGACTTGTAA	240
GAAACATGAT	ATTCCTTATT	TTCTCAGTTA	TGGAACCATG	CTTGGAGCCA	TCCGCCACAA	300
AGGTATGATT	CCTTGGGATG	ATGATATTGA	TATTTCCCTT	TATCGTGAGG	ATTATGAGCG	360
TTTACTGAAG	ATTATTGAAG	AAGAAAATCA	CCCTCGCTAC	AAGGTTCTTT	CCTACGATAC	420
ATCTTCTTGG	TACTTCCATA	ATTTCGCATC	GATTTTGGAC	ACTTCTACTG	TTATAGAAGA	480
ACATGTTAAG	TACAAGCGTC	ATGATACCAG	CCTTTTCATC	GATGTCTCCC	ATTGATCGAT	540
TTACAGACTT	GAACATTGTC	GACAGAG				567

## (2) INFORMATION FOR SEQ ID NO:186:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 564 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:186:

CCTTGCGTGT	AGCTTACTTC	AAGGTTCACC	ATCCTATTTA	TTACTACTGT	GCTTACTTCT	60
CCATTCGTGC	TAAGGCTTTT	GATATCAAGA	CCATGGGTGC	GGGCTTGGAG	GTCATCAAGC	120
GCAGAATGGA	AGAAATCTCT	GAAAAACGGA	AGAACAATGA	AGCCTCTAAT	GTGGAAATCG	180
			AGATGTGGGA			240
AATTAGATCT	CTACTGTAGT	CAGACGACAG	AGTTCCTCAT	CGACGGGGAT	ACCCTTATCC	300
			AGAACGTTGC			360
			AACTACGCAA			420
CCTTGGTTGA	AAAGATGGAT	GAGATGGGTA	TTCTTGGAAA	TATGCCAGAG	GATAACCAGT	480
TGAGTTTGTT	TGATGAGTTG	TTTTAAAAAA	TTGCTTAATA	ATCTATTAAA	AGAAGCTAAC	540
GTATATCCAA	TAGATTTACA	TTAG				564

### (2) INFORMATION FOR SEQ ID NO:187:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 564 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:187:

CGAAGTTATC	TTGGTGGATG	ATGTGCTCTA	TACAGGTCGT	ACCATCCGTG	CTGCTATTGA	60
	GGTCATGGTC					120
	TTGCCAATCC					180
	ATCGTAGAGA					240
	AAAGTTAAAG					300
	GAAGACCTCA					360
	GGAGCCCAGA					420
	ACACGGACAC					480
	TTTGATGTGA		GGTTAATAAG	GGGTGAGACA	CTTTATGACA	540
CCATTTTGAC	TCTGTCTGCT	TTAG				564

## (2) INFORMATION FOR SEQ ID NO:188:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 727 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:188:

TTTAAGTT	CC AATTGTAAAC	TCACGTTCCT	GAACCTGGTT	CTCCATTTTC	AGAGATTTCC	60
	at tttttggtgt					120
	AA ATTCTTGCCC					180
	AG TCGTACCTTG					240
	GG TCATCCCTTT					300
TCCATCAA	GG TACGTAGTCC	TTCGTCTACA	ACGAAGACCA	CATTGCCTCC	ACGACCACCA	360
TCACCACC	CC AAGGGCCTCC	ATTAGGGACA	TATTTTTCAC	GACGAAAGGC	AACCATACCA	420
TCGCCACC	AT TACCAGCCTT	GACCTTAATC	TTAGCTGTAT	CTAAAAACAT	ACTCATTATT	480
TCTTCTCAC	CT TTAAAAAAGG	GCTGGGAAAT	CCCAGTCACT	AAATTTTCTT	GAATCTATTT	540
TATAGATTA	AC TGAGGGCACC	AATTGCAGTT	GCAAAAATTC	CCAATAAACT	TGCTACTAGC	600
ATGATAATO	CA CGATAAACAA	GGTTATTTTC	TCAAACATAG	TTTTTTTACG	ATTTCCATTA	660
TCTCCAAAT	TT GCCATTTTTC	TCTCCTTCCG	TTACATTCTA	TTTTCTATTA	TCTTAGCATG	720
AATTGAG						727

- (2) INFORMATION FOR SEQ ID NO:189:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1071 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:189:

CTGTGATAAA	GGCAAATGGA	AGGAACTAGA	TAAACTGGGA	CTTAAAACCA	GTAGCAATCA	60
			CAAAGGAGGG			120
AAAATCAATG	GTACCAAGAT	GGTCGCACCA	AACATGGCGA	AAACGTGTTG	GAAGCTAAGG	180
AGAATTCCTT	TTCCATCCGA	AGGACGTTGG	TCAACGTCTA	GTAACAAATC	AACAGITGAT	240
TCTTGTTTCA	TATAAACCTC	ACTTTTGGGC	ATCAGAAAAG	AGCCCATTAT	TTTACAGCAA	300
TAGGCCCTCA	GAGTAAGACT	TCTCTAAAAT	CTAGACTTTA	AAGAGTTTCA	AATATTTTTG	360
CGTCTTCGTC	ACCTCACGGG	ATGACATTAA	AAACCTTTGC	TTAGGATAGT	ATAGCAGAAA	420
AAAATGATTT	TGTAAATCAT	TTTTTCCCGA	GCCTAGAAAT	AAAAGAGCGA	GGCTGATTTT	480
GTAAACATTT	GTTTACTAAA	AAATTTAAAG	TGGGCGTTTA	TTTGGCATAC	CAGCCTTACG	540
TGGATATTTA	TTTGGTGTTT	CTTTTTTCTT	TTCTACCACT	GTGATATAGC	GCGGATCTCT	600
ATTCGGTAGG	GCGTACTGAG	ATTGTCTTCG	ACCTTACTAA	AAAGGAGATT	GAGGGCATTC	660

	TTAGCTTCTA	ATAATTCCTC	AGGCGCATTG	ATGGCCTTGA	GTGCCAATAG	TTTGCCACCA	720
٠	ACCTTAAGGT	AGGGAATAGT	CAATTCAGAT	AGGACCTGCA	TACGGGCAAC	CGCACGAGCT	780
					CAAAATCTTC		840
					AGAGTTGTAG		900
	CGCTTATTGA	GTGAATCAAT	AATGGTCACA	TCTAACTCCG	GATAGAGAAT	TTTCATTGGT	960
	AGACTAGGAA	ATCCTGCCCC	AGCCCCGATA	TCAAGAAGTT	TGATAGTTTC	ATTGGGAATC	1020
	AAACCTTGAA	GAATGGGTGC	AATCGAATCG	TAAAAATGTT	TGAGATAAAC	T	1071

## (2) INFORMATION FOR SEQ ID NO:190:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 827 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:190:

GGAACGTCGC	TATCAAATAG	AAGCACAACA	TATTGAGCGA	ATTTTTAGCC	ATTTTGACGC	60
CGATATGGCT	ATATTCCCTG	AACTAGCTAC	CAATATTCAG	AGGTGAGCAA	GAAAACCAGA	120
	ATTGTTTTCA					180
	ACCAATAGTG					240
TTTCTATACA	GAAGCTAAAA	CTTTTCATAC	AACACGGTTC	GGGACAATTG	TATTACATTC	300
	AATATACCAG					360
	TGGAAGCAAG					
	ATTGCAGGTG					420
	AGGGACGCAT					480
						540
	AAACTTTTTA					600
CTATGTTAAA	GATTTAGACA	TTGTAAGTTT	TCAAAACTCT	GATCATAGAT	GTATTTTTAC	660
AGAAATCACA	TTTTAATTAT	AAATATATT	ATCACCCCTC	TAGTGTTCAT	AAACTAGAGG	720
	ATÇCTACTAT					780
					. I CCGAGAGA	760
CGCIIGGATT	TTTTCCATGT	AGCGTGCGAC	TTCCTNCGTC	CGTTAAG		827

## (2) INFORMATION FOR SEQ ID NO:191:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 807 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:191:

CAGGGGATGC	CAGTTGATTT	COMPAN A COM	C1 000001 000			
		GCT TCAMGT-T	GACTTGACTC	GTACTTGGGA	AATCCTCGGA	60
GAAATCACTG	GGGATGCTGC	TCCAGATGAA	CTCATCACCC	AACTCTTTAG	CCAATTCTCT	100
TTAGGAAAAT	AAGAAAAATC	Carcaro	G1 mmonone.		CCAMITCIGT	120
100110011	AAGAAAAATC	CHIGHICCIT	CATTCGGTCA	TGGATTTTAT	TGTCTTTATT	180
AGTAATCTGG	TCTTAAGACC	CCTGTTACAG	TTGCCTTAGT	TGCTTCGTAG	TCCCCATCTA	240
CGACAACCTT	GATAATGCGT	תיייייי ביי ביי ביי ביי	COMONOCONO		TOCCATCIA	240
		- TOACAICII	CTTCTGGTGC	TGGAACAAGA	GGTAGACGAG	300
TGGGTCCAGC	TTCAAATCCC	ATATAGTTAA	GAATTGCCTT	AACTGGAGCA	GGACTTCCAM	200
AAGAGAAGAG	AGCATTAACC	TTACCA ATTCA	100010000		GGACTIGGAT	360
<b></b>		THOUMAIGA	ATTTACGCTG	AATTGCTGCG	GCTTTCTTCA	420
TATEGETTIC	TGCAATGGCA	GTAAACATCT	CGTGCATTTC	ATCCCCATTT	GTATGAGAGG	480
CAACAGAAAT	AACCCCATCC	GCCCCAACCT	TCATCCCATC	0111001	- IIII GAGAGG	480
00000		000001	TCATGGCATG	GAAAGCATCT	CCATCCTCAC	540
CIGIATAAAT	CAAGAACTCT	TCAGGCTTGT	GCTCAATCAA	GTTAAGCCAT	ATTAGCCAAG	600
CTAGTTACAT	TCCTTTGACA	ССССАТААТА	THE STORM	601.000000		800
mmmccmcc. c		-	TITGGMTGGT	CCAGCCCAAG	CGAAGCATGG	660
TTTCCTGGAG	TTCAATTCGA	CAACTACACG	CCCCTGGAAT	GTTATAGATA	ATAATTCCTA	720
GGTCAGAAGC	ATCTGCAATA	GC ጥጥ እ አ ርጥ	CCCCAMAGAM			,20
MCM3 CM3 3 CC		·	GCIGATACAT	CCCTTCTTGA	Gaaggtttgt	780
TGTAGTAAGG	AACAATAGCA	AGCCCAG				807
						557

## (2) INFORMATION FOR SEQ ID NO:192:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1191 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:192:

CGTGCCTTGG	CCAATGATCC	AAAATCOTTC	10000000000			
		www.iciig	ATTICAGACG	AGTCGCTTCA	AATTTCGGCC	60
CCTGGACCCT	TAAGACCAAC	CCAAGCAGAT	TTTGGCCCTT	GGTTGCAAGA	TTTCAACCAA	120
AAATTAGGCT	TGACTGTTGT	CCTCATORACO	C10011100		- 1 1 CONTICUENT	120
		CCIGNITACG	CATGAAATGC	AGATTGTCAA	AGACATTGCC	180
AACCGTGTTG	CAGTTATGCA	GGATGGGCAT	TTGATTGAAG	AGAGTAGTGT	GCTTGAAATC	240
TTCTCAGACC	CTABACBACC	• • • יישיי ע ביישיים				240
	CTAAACAACC	TITGACICAN	GACTTTATCT	CAACAGCTAC	AGGTATTGAC	300
GAAGCCATGG	TCAAAATCGA	GAAGCAAGAA	ATCCTCCAAC	A COMOMOMON	111010000	
MMCCMCC110			caroanac	ACTIGICICA	AAACAGICIC	360
TIGGIGCAAC	TCAAGTACGC	TGGATCTTCA	ACAGACGAGC	CACTTTTGAA	ТСААТТСТАС	420
AAGCATTATC	AAGTAATGGC	TA A TRA MITORIO	<b>3130000</b>			420
		THATATTCTC	TATGGGAATA	TCGAAATCCT	CGATGGTACT	480
CCTGTTGGAG	AATTGGTGGT	GGTCTTGTCA	GGTGAAAAAC	CACCCCTTCCC	10000000	
Chaccasama			COLGREDING	CAGCGCTGGC	AGGTGCTCAA	540
GAAGCCATTC	GTCAAGCAGG	CGTACAGTTA	AAAGTATTGA	AGGGAGGACA	GTAAGATGGA	600
ATCATTGATT	CAAACCOAOO	M) ((()) ) ) (()			GIMONIGGA	600
	CAAACCTATT	TACCAAATGT	CTATAAGATG	GGTTGGTCTG	GTCAGGCAGG	660
CTGGGGAACA	GCTATCTACC	TAACCCTCTA	TATCACACO		_	
			TATGACAGTT	CTTTCCTTCA	TTATCGGAGG	720

CTTCTTGGGG	CTAGTGGCAG	GTCTCTTTCT	CGTCTTGACA	GCGCCAGGTG	GTGTCTTGGA	780
GAATAAAGTC	<b>ĠTATTCTGGA</b>	TTTTAGACAA	AATTACCTCA	ATTTTTCGTG	CGGTTCCCTT	840
TATCATCCTC	TTGGCAATCT	TGTCACCACT	TTCTCACTTG	ATTGAAAAA	CAAGTATCGG	900
				TGCCTTCTTT		960
				GGCGGCTCAA		1020
				TCTTCCAGAT		
				TATGGCCGGT		1080
				CTTCCTCGCT		1140
		C0111111000	CGCICITCG	CITCCTCGCT	C	1191

## (2) INFORMATION FOR SEQ ID NO:193:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 682 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:193:

TTCAATGGGC	CCTGTAAGGC	TGCCAAAAAG	AGAAACCAAT	TAAAACCGCG	CCAGCCGCCA	60
AAATCCTTGG	GCATTTTAG	CCAGCATGGG	AAAAGTGATA	GTGACTGGCC	AAATCCACCA	120
CATTTTCGAT	AGCAGAATTG	ATAATTTCAA	AGGCTACCAC	CAACAAAATC	CTCAAMACCA	
				CUMOUNTAIG	CICAMIAGGA	180
GAAAGAGCCA	TTCGATTCGT	GACACCTGAA	AACCAAAACC	TGCAAGGATG	ACCACTAGAG	240
CCGTCACTGC	ATGTTTTCCC	ATATTGCGTT	COMCOMMON			
		MINITOCGII	CITCCTTGAT	AGCAGTAAAA	ATCCCTGTGA	300
TGGCAAATTC	TAAACTGGAT	ATCAGGTCAC	Cammona			
		MICAGGICAL	GATTTTTCCA	TTTTCGTTTA	TTGTCTTGTG	360
AGTCCATAGG	CTGTCAAAAT	TTCTTCTTGT	******	***********		
		1101101101	MAACCGAACA	TCTCCGCTTC	TTCTTCCGGA	420
GTATAGTGAT	CATAGCCGTT	AATATGTAAA	N A COCOMOMA	CECCOO		
		MINIGIAM	AMGCCGTGTA	CTGCCAAGAA	GCCCATCTCA	480
CGCTCAAAGC	TGTGACCATA	TTCTTCGGCC	TO CTICA TICA C	00000		
			TOCICATGAG	CCTTATCGAT	AGAGATGAAC	540
AATTCCCCAA	TATAGGCATC	AAACTCAGAC	<b>ልጥር እጥር ጥር ጥር</b>	CC3 1 mmcmca		
			ATCATCTCTG	CCAATTCTGG	ATTTTCAAGC	600
AAATCCTCTT	CGTCAAAGGC	AATTTCCAAT	ייי ע יויינישיים בייים איים	100011000	<b>0100101</b>	
	·		TCTGGTTTAT	ACTCAAGGCT	GATGACATCT	660
GTCGGACGGT	CGGTGTCACG	GT				
						682

# (2) INFORMATION FOR SEQ ID NO:194:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1094 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:194:

	AAATTCTTTA					60
	ATAATCCAAA					120
CTGCAATGTC	AGAAAGATTA	TTTTTATTAA	CACTCATAAC	ACTAGCCCCT	TATTTTTCAG	180
TAAACTCTCC	GTCTACGACG	TCATCGCCTG	CGTTTCCTGT	TGCTTGTGCG	CCTTCTGCTC	240
CTTCTTGAGC	TTGTTGCGCT	GCTGCGGCTT	GTTCGTAAAG	TTTCACAGCA	AGGCCTTGAG	300
CTTTTTCGTT	CAACGCTTCA	AGTTTCGCTT	TCATGTCGTC	CAAGTTGTTG	TCTTCTTGAG	360
CTTTCTTAAG	GTCATCAAGG	GCAGCTTGGG	CAGCGTCACG	TTCTGCGTCG	AAGCCTTTAC	420
CTTCAGTTTC	CTTGATTGTC	TTTTCAGTCG	CAAAGATTGC	TTGGTCTACT	TCATTACGAA	480
	TTCTTTACGT					540
TGCGGTCGAT	TTCTTCGTCA	GTCAAACCTG	AGTTCGATTG	GATGACAATA	GTTTGTTCTT	600
TTTGAGTTCC	AAGGTCTTTG					660
TTACTTCGAT	TTGAGGAATT	CCACGAGGTG	CAGCTGGGAT	ATCAGTCAAT	TGGAAGCGTC	720
CAAGAGTCTT	GTTATCTGCT	GCCATTGGGC	GTTCACCTTG	AAGAACGTGG	ATATCAACGG	780
CTGGTTGGTT	GTCTGCTGCT	GTTGAGAAGA	CTTGTGATTT	AGATGTTGGG	ATTGTAGTGT	840
	Aagttttgta					900
	AAGGACAACG					960
	AACTACTTCA					1020
	TTCAACAACG					1080
CGATTTCTGA						1094

#### (2) INFORMATION FOR SEQ ID NO:195:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 793 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:195:

CTCTGGGTTC	CATTCTTGTG	GCTGTAATAC	TAGGAATTTT	TCTAGGATTT	TTCTGGCAAG	60
AACCGATTCA	GAAAGAAAAT	CGTCTGGCTT	GTCATGAGCA	TGATTTTTCT	TAACTTGAGT	120
TCTGCAAAAA	AAGTTTTTCA	AGTCTTTGTG	CAGGCCATTG	ATGAATTTTT	TGATACGGGG	180
CGTTATTTGG						240
ATTCTGACCT						300
TTTCTTCTTT	CGCTCTGTAG	TGAGGCGGAT	GCCTTTATAG	GTGCTTCTCT	TCTCTCGAGT	360
TTCGGTTTGG	CACCAGTTCT	GGCCTTTCTC	GTCATTGGTC	CAATGCTGGA	TATCAAAAAT	420
ATTCTCATGA	TGAAAAATTA	CTTGAAAGCA	CGATTTATCA	GTCACTTCAT	AACAATTGTA	480

ACTCTTGTCG	TCTTAGTCTA	TTCTCTCTTG	ATTGGAGTCA	TCCTATGATT	CGATTTTTAG	540
TTTTAGCTGG	CTATTTTGAA	CTGACTATTT	ACCTCCATCT	GTCGGGCAAA	CTAAACCAGT	600
ACATCAACAT	GCACTATTCC	TATCTGGCCT	ATATCTCCAT	GGTGCTTTCT	TTTATCTTGG	660
CTATCGTTCA	ATTGTATATC	TGGATGAAGC	AAGTCAAAAC	CCACAGTCAT	CTGAACAGCC	720
GATTAGCCAA	GATGACGAGT	ATTTCTCTTC	TGGCTATTCC	ACTTGTCATC	GGCTTAACTT	
TCCCAACTGT					OGCITARCII	780
						793

## (2) INFORMATION FOR SEQ ID NO:196:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 894 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:196:

TTCTTCCA	T CCAGGAAGTN	AACTTGTTCC	AACCTTCTGC	TAGTTTCCCA	GAATCCATTC	60
TGCCNAATT	T ATTAGCTCTA	TTCTCTAATG	GAGAAGCACC	TGAAAGTAAC	TGACTGGATT	120
TGTCTGCTA	A TTGCCCAGAT	CCTGATTGTA	ATTAACCAAC	TCCTGCTGTC	AATCTAGAAG	180
ATTTTTGTG	T CAAGGTGTTT	GAGCCTGAAA	CTAGTTGATC	CAAACTACCT	GTCAAGGTGG	240
CATTTTTTT	C ACTTAGTTGA	CTTGCGCCCT	GAGAAACTTT	ATCAACACCT	GTAGTATATC	300
CGTTTACAC	C TGATGCAATC	GACTGACTGG	CAGGAACTAA	TTTGCTAGTA	ACATCTCCTON	
GTATCTCTG	T TAATCCACTT	GACAATCCTA	TCAAAGAAGT	AGAACTAATA	CCTCATACOTT	360
GATTAGATT	G ATTTTTTAAA	GTCGAAAGAT	TAGAAGATTC	AGRAGIAAIA	GGTGATACTT	420
TTCCCTGTA	A ATCTTGTACT	AAAGCGACAA	TTCATTCACC	ATTTTGTAAG	TTTTCTAAAC	480
AATTTTGAG	A TACAGAATCA	СТТАТСТСАС	TTTCTTCCTC	CGATTGAATA	CTATCAGTTG	540
CTGCTGTCG	A TTGAATATTG	CATAATCTAC	TITGTTGCTC	ACTIGICAAT	GATTGATAAG	600
TCACTACCA	T ATACTAATCC	CCAMCAMO	TIGITITE	AGATAAATCA	CTTGGTAAAG	660
AATGAAAAT	T ATAGTAATCG	CCATCTTCCA	ATCCCTTCTT	TCCTTCCTCT	TCATCTACAA	720
ТАСТАТТАС	C CAAGGTTTTA	TTTTCTTTA	AATTGGACAC	CATGTCTTTT	CCTATTGCCA	780
ACA ATTROCC	C ATTATAGGAA	GCCTCTTTAT	CATTATTTAC	AACTGCCACA	GGTAAGTCAG	840
ACAMI IUCCI	C ATATGGCTCC	CACATTGATG	ACAAAAATAT	GATATTGTAC	AGAG	894

# (2) INFORMATION FOR SEQ ID NO:197:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 627 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:197:

CTATGGCAGA	TCTAGACCAT	CCTCATATCG	TTCGGATAAC	AGATATTGGT	GAGGAAGACG	60
GTCAACAGTA	TCTTGCAATG	GAGTATGTTG	CTGGACTAGA	CCTCAAACGC	TATATCAAGG	120
AACATTATCC	TCTTTCTAAT	GAAGAAGCCG	TCCGTATCAT	GGGACAAATT	CTCTTGGCTA	
TGCGCTTGGC	CCATACTCGA	GGAATTGTTC	ACAGGGACTT	CAAACCTCAA	AATATCCTTT	180
TGACACCAGA	TGGGACTGCC	AACCTCACAC	1.Commona.	GAAACCICAA	TTTGCAGAGA	240
CAACTCTCAC	CCACACTANA	AAGG1CACAG	ACTITIGGGAT	TGCTGTAGCC	TTTGCAGAGA	300
CAAGICIGAC	CCAGACTAAC	TCCGATGTTT	GGGCTCAGTT	CATTACTTGT	CACCAGAGCA	360
GGCGCGTGGT	TCTAAGGCGA	CTGTGCAGAG	TGATATCTAT	GCCATGGGGA	TTATTTTCTA	420
TGAGATGTTG	ACAGGCCATA	TCCCTTATGA	CGGGGATAGC	GCGGTGACCA	TTGCCCTCCA	480
GCATTTCCAG	AAACCCCTGC	CGTCCGTTAT	TGCAGAAAAT	CCATCTGTAC	СТСАСССТТТ	540
AGAAAATGTT	ATTATCAAGG	CAACTGCTAA	AAAGTTGACC	AATCCCTACC	CCTCCCCTTT	
AGAGATGTAT	GTGGACTTGT	СТАСТАС			GC1CGG11FTC	600
						627

## (2) INFORMATION FOR SEQ ID NO:198:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 729 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:198:

CTATGCTAGC	GACAGCTATT	CTTGGTGTCG	TGATTGAGTT	TCTTGCTTAC	CGACCTTTGC	60
GCCACTCTAC	TCGTATTGCT	GTTTTGATTA	CGGCTATTGG	GGTTTCTTTC	CTATTGGAGT	120
ATGGAATGGT	CTATCTGGTT	GGTGCCAATA	CCCGTGCCTT	CCCTCAAGCG	ATTCAAACAG	180
TTCGATATGA	TTTGGGACCA	ATTAGCTTAA	CAAATGTGCA	GTTAATGATT	TTGGCCATTT	240
CCTTGATTTT	GATGATTTTG	TTACAAGTCA	TTGTCCAAAA	GACTAAGATG	GGGAAAGCCA	300
TGCGTGCAGT	ATCAGTAGAT	AGCGACGCGG	CACAATTGAT	GGGGATCAAT	GTAAACCGTA	360
CGATTAGCTT	TACCTTCGCT	TTGGGTTCTG	CTCTTGCGGG	TGCGGCTGGT	GTTCTGATTG	420
CTCTTTATTA	TAACTCTCTT	GAGCCTTTGA	TGGGGGTTAC	TCCAGGTCTT	AAATCTTTCG	480
TTGCCGCAGT	ACTTGGTGGT	ATCGGAATTA	TTCCTGGTGC	GGCTCTTGGT	GCCTTTGTGA	540
TTGGTCTATT	GGAAACCTTT	GCGACAGCCT	TTGGGATGTC	AGATTTCCGT	GATGCCATTG	600
TTTATGGAAT	CTTGTTGTTG	ATCTTGATTG	TCCGCCCAGC	TGGTATCCTT	GGTA A GA A TC	660
TGAAAGAGAA	GGTGTAAACG	ATGAAGGAAA	ATTTAAAAGT	ТААТАТТСТА	TCCTTACTCC	720
TTTTGTTAA					IGGITACICC	
						729

⁽²⁾ INFORMATION FOR SEQ ID NO:199:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 557 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:199:

	GACCCAAACA					60
TTGGNAAGA:	R AGCGATGGTT	CTGGACCAAA	GTAAAGATTG	TACTCTTTAA	AGGCACCACC	120
TGTGCTAAA	r ggcaagtaga	AACCAGGAAT	TTCGAACCAG	TTGGCTTTAA	GAACTGGTGT	180
	AAGCCAAGAG					240
	CGTAGGAAGC					300
	ACCAGAGCAT					360
	GCAAGTCCAA					420
	TCAATCCATT					480
	GTCAAGATAA					
			GGCAGCAGAT	ACATCCCCCC	CCATTTCTT	540
CATAGCCAGT	GACATAG					557

### (2) INFORMATION FOR SEQ ID NO:200:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 608 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:200:

CTTAGTATCT	AGAAAAGGAG	AAATAAAATG	GTTAAAGTAT	TAGCAGCGTG	CGGAAATGGA	60
ATGGGTTCAT	CAATGGTTAT	CAAGATGAAG	GTTGAAAATG	CTCTCCGTAA	GCTTAATCAA	120
ACAGATTTTA	CAGTCAATTC	ATGGCCAGTG	TCGGTGAAGC	TAAAGGTTTA	GCAGTAGGAT	180
ATGACATCGT	AATCGCTTCT	CTTCATTTGA	TTCAAGAATT	GGAAGGGCGA	ACTAATGGGA	240
AGTTAATTGG	GCTTGATAAC	TTGATGGATG	ATAAAGAAAT	CACCGAAAAA	CTCAGTCAAG	300
		GGGGGCTGGA				360
CTCCCTCTTT	AAATAAAGGA	GGCAGATATG	AATTTAAAAC	AAGCTTTAAT	TGACAACGAC	420
TCGATCCGAC	TAGGTTTAGA	GGCTAACGAT	TGGAAAGAAG	CAGTCAAGGT	AGCAGTAGAT	480
CCCTTGATTG	AAAGTGGGGC	AATTTTGCCA	GAATTATTAC	CAAGCTATCA	TTGAATCGAC	540

WO 97/43303	PCT/IS97/07950
	FC.170897/07950

TGAAGAGAAT TATGGGCCTT ACTATATCTT GATGCCAGGT ATGGCTATGC CACCTGAAG	CCACGCTAG 600
(2) INFORMATION FOR SEQ ID NO:201:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 686 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(b) Torologi: Tingar	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:201:	
CTGATTTCAC TTGGGTTAGA GCATAGCCTA CCGCTCTCTA GCCACCTCAA TA	TCAGCATT 60
GGTCCCTTAA TTCAAACCTG GCGTATCGGT TTTTCAGATG CCAAGGTCGC CC	ACCOMON 120
AAAATTGAAT CGGTGCTGCC TCTAATCAAT CCTCATGGTA TCGAGTTAGA TT	AGCCTCAA 120
TCTACTGTGT TTTTAAAACA GAAAGGAATG AAGATCGATC TAGGTTGTTT AG	CTTCTACT 180
TACAGTGCGG ATAAGGTTGC CCAATTTCTT AGGAAAGAGG GGGTGACTTC TG	CCAAAGGA 240
AATCTGGGAG GGAATATCCT GACCATTGGA AAAAATCAGG CAAGAGGGGA TA	CCTTGATC 300
CAAATCGGGG ATTCAAGGAC CCAGCCAATC CTAGGGGAAA TCATTTAATG AC	ACCCATGG 360
CTTGTCAATA AATCTGTCGT GACTTCAGGC ATTTATGAAC GTCACCTGAC CG	CATCCCTG 420
CAAGATTACC ATCACATTTT TGACAGTCAA ACAGGATATC CTGTTGAAAC GG	TCAATGGA 480
AGTCTAACAA TCATCTCTGA TAAATCAGTC GATGGCGAAA TCTGGACGAC TC	AACTAGCG 540
GGAGAAAGAC CGGCTTCTAT CCTCTGGCAA GTCGAAAGTT TGGAGGGCAT CG	GACTCTTT 600
CTCATCGATA AAGAAGGCCA CCTAAG	AAGTCATC 660
THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P	686
(2) INFORMATION FOR SEQ ID NO:202:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 912 base pairs	
(B) TYPE: nucleic acid	. •
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:202:	
CTCTGGCTAC GCTCAAGACG AACATGGTAA CTTTGACAAG TTCTGGAATG GAA	61 6mann
CCATATGGTA GGAAAAGACA TCCTTCGCTT CCACTCTATC TACTGGCCAA TCC	CAGTCTT 60
GATGTTGGAT GTTAAATTAC CTGATCCTTTT CATTGGCCAA TCC	TTCTTAT 120
GATGTTGGAT GTTAAATTAC CTGATCGTTT GATTGCCCAT GGTTGGTTTG TCA	TGAAAGA 180

CGGAAAAATG	TCTAAGTCAA	AAGGGAATGT	CGTTTACCCT	GAAATGTTGG	TAGAGCGTTA	240
TGGACTAGAT	CCACTTCGTT	ACTACCTCAT	GCGTAACCTT	CCAGTTGGTT	CAGACGGGAA	300
CCTTTACTCC	TGAAGACTAT	GTCGGTCGTA	TCAACTATGA	ATTGGCTAAT	GACCTTGGGA	360
ACCTCCTTAA	CCGTACGGTT	TCCATGATTA	ATAAGTACTT	TGATGGACAA	ATCCCTGCCT	420
ATGTAGAAGG	TGTGACTGAA	TTTGATCATG	TTCTTGCTGA	GGTTGCAGAA	AAATCAATCG	480
CAGACTTCCA	TACACACATG	GAAGCAGTTG	ACTATCCACG	TGCGCTTGAA	GCAGTCTGGA	540
CTCTGATCTC	TCGTACCAAT	AAATACATCG	ATGAGACTGC	ACCATGGGTC	TTGGACAAGG	600
ATGAAGCTCT	TCGTGACCAA	TTGGCAAGTG	TCATGAGCCA	CTTGGCAGCC	AGCATTCGTG	660
TAGTTGCTCA	CTTGATTGAA	CCATTTATGA	TGGAAACTAG	TCGTGCAGTT	TTGACTCAAC	720
TTGGTTTGGA	AGAAGTTTCT	AGTCTTGAAA	ACTTGAAGTT	TGGCTGACTT	CCCAGCAGAT	780
GTGACTGTAG	TTGCCAAACG	AACACCTATC	TTTCCACGTC	TAAATATGGA	AGAAGAAATC	840
GCCTATATCA	AGGAACAAAT	GGAAGGCAAT	AAACCAGCAG	TCGAAAAAGA	ATGGAATCCG	900
GACGAAGTTG	AG					012

#### (2) INFORMATION FOR SEQ ID NO: 203:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1097 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:203:

CTATTTTTTA	TTGCTGCANT	ACTTTTCTTG	GCTTGGTACC	TTCAGCTGGA	CCAATGACAC	60
CTGCCATCTC	AAGCTCTTCC	ATGAGACGGG	TCGCACGGTT	AAATCCAACT	GACAAACGAC	120
GCTGAATCAT	GGATGGCACT	GGCTTTCTGT	GTTTCGATAA	CCAAAGACTT	AGCTTCTTCA	180
AAAAGCGGAT	CACCACCAGC	ATCTCCATCC	GAAAATTCTC	CTTCATTTTC	AGAAACCTCA	240
CCTGGATCAA	AACTCTCATC	GTAGTCTGCA	TCTGCCTGAG	TCTTGATGAA	GTTCACAATG	300
CGCTCAACAT	CGTCATCCGA	GATAAAGGAG	CCTATGGAGA	CGTAACTGGA	TGATTTTCAT	360
TAATCGGTTT	AAAGAGCATG	TCTCCTCGAC	CAAGAAGTTT	TTCTGCTCCA	TTTACATCCA	420
AAATCGTGAC	GGGAGTCTGT	TCCTGATGAA	ACCGCAAATG	CTACACGAGA	TGGAACATTG	480
GCCTTAATCA	AACCAGAGAT	GACATCAACA	GATGGACGCT	GAGTTGCAAG	AATCATGTGG	540
ATACCTGCAG	CACGCGCCTT	CTGCCCAAGA	CGGATGATAG	CATCTTCCAC	TTCCTTGCTG	600
GCCACCATCA	TGAGGTCAGC	CAACTCATCC	ACAATCACGA	CAATGAATGG	TAGCGGAATT	660
TGCTTGTACT	CAGACTGGGA	ATCGAACTCG	TCTACCTTGG	CATTAAAACC	TGCAACAGCC	720
CGAACTCCCA	CCTTGGCAAA	GAGTTCATAA	CGGTTTGCCA	TTTCATCCAC	AACCTTTTGC	780
ACAGCCCTGC	TGGCTTTGCG	TGGATTGGTC	ACCACTGGCA	ATCTAACAGG	TGGGGAATAT	840
CACTGTAGAA	CAGATAACTC	AACCATCTTT	GGGATCGACC	ACCCATCCTC	AGTAAATTTA	900
ACTTGATCTG	GTCTCGCCTT	CATGAGAATG	CTANCAATAA	TGCCGTTAAC	TGCTACTGAC	960
TTCCCTGAAC	CCGTTGAACC	TGCAACTAGC	AAGTGGGGCA	TTTTAAAAAG	GTCAAAAGCT	1020
			•			

CTTGCGGTTC CATTAACAGC CTTCCCTAAA GGAATTTCCA AGAAATTTTC TGCTTCGTTT 1080
GCGATTGTTC CATAGTT 1097

- (2) INFORMATION FOR SEQ ID NO:204:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1083 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:204:

CTCTTGCAA	C TGGCTTGATC	AGAGACACTO	CTTACCTATO	AATGGGTAGT	GTTTCGATGG	•
GGATTGGCGC	TTCTATTGT	AATCCAGATT	TCTTCCAAGA	ATACTTAGGA	AMCCCC A A AMC	60
AATCGGTAG	TATGACGGAG	TTCACGCGCC	GTATGGACCG	TGGTATTTAT	CACCCAAATG	120
AGTTCGAACO	TGCTATGGTT	TGGGTAAAAG	AACATATCAA	AGAAGGGGGT	GACCCAGAAG	180
TTCGTGAGGA	TTTGATTCTT	TCTAAAGAAG	AGAAAGAAA	ACAATGGGAA	TGACCGAAAA	240
AGATGTTCAT	GATTGGAACG	TGACTTAATG	GTTCCTAACC	CAAGACTTGC	TTTGTTATTA	300
TTTGAGGAAG	AAGCAGTTGG	TCACCATGCT	TTACTAACC	GTTTCCAAGG	TGACCTTGGT	360
TGGACAGACC	ATTTTCCAAA	TGGGGACTON	ITAGTAACTG	TCCTCAATAC	TCAACGCCAG	420
TGGAATGGTA	TTCGAAAACC	ATTTCHARM	AIGGAAACTT	TCCTCAATAC	TCAGTTTGAC	480
AAATGGTGTG	TCTATCCTC	ATTIGIATE	GCTTGTATTT	GCGACAGAGA	ATGATTCACT	540
TGTGCGTACT	TATTCCACTC	CLORGON	ATTAACAAAT	ACTCCACAAA	TCTTTGCTGA	600
TTGTGCTGCA	CCTCCCTTCC	CAGAGGCTGT	TAAACGTGTA	ACGGGACATA	CTTTAGAGGG	660
AGGGCAACCM	ACTGGCTTCT	TACATCTAAT	CAACTCTGGT	TCTTGTACAT	TGGATGGTAC	720
TTGAACTTCA	ACTCGAAATG	GCAAACCTGT	TATGAAACCA	TTCTGGGAGT	TGGAAGAAAG	780
COCCA	AGGCTATGCT	TGAAAATACA	GACTTCCCAC	CAGCAAACCG	CGAATACTTC	840
COLGGAGGAG	GATTCTCAAC	TCGTTTCTTG	ACGAAGGGGG	ATATCCCACT	7.7.C. 3.000cms	900
CGICICAAIC	TTCTAAAAGG	GGTTGGTCCA	GTGCTACAAA	TTCCACAACC	MM3 M3 C3 C00	960
GARCIICCIG	AAGATGTTCA	CCATACTTTA	GATAATCGTA	CAGATOCAGO	3.MCCCCC3.3.cm	1020
ACTTGGTTTG	CTCCACGTTT	GACAGGAAAA	GGTGCTTTCA	AGTCTGTNTA	TGACGTCATC	1020
AAT	1					
						1083

- (2) INFORMATION FOR SEQ ID NO:205:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 813 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

:.

#### (ii) MOLECULE TYPE: Genomic DNA

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:205:

CTCTGTTATT AAAGAAGATA ACGCTGCTAT CCGTGGTATG ATCACAGCAG TATCTCACT	т 60
AGTAACAGTT GAAGAAGTAA ACTAATGAAG TTTTAGGGGA TGTGCACTGT ACCATCCCC	T 120
AAAACTAGAT ATAGTCATCT ATGATGACAT CGTATAGGCG AGTTGATGGG GGAGACAAC	C 180
TTTTCTCCCT TATCGGCGCT AGCATTTAC AAAAGAGGAG AAAATAAAAA TGAAACTTC	
TGAATTGAAA CCTGCAGAAG GTTCTCGTAA AGTACGTAAC CGCGTTGGTC GTGGTACTT	
ATCAGGTAAC GGTAAAACAT CTGGTCGTGG TCAAAAAGGT CAAAAAGCTC GTAGCGGTG	
CGGAGTTCGC CTTGGTTTTG AAGGTGGACA AACTCCATTG TTCCGTCGTC TTCCAAAAC	
TGGATTCACT AACATCAACG CTAAAGAATA CGCAATTGTG AACCTTGACC AATTGAACG	
CTTTGAAGAT GGTGCTGAAG TAACTCCAGT TGTTCTTATC GAAGCAGGAA TTGTTAAAG	
TGAAAAGTCA GGTATTAAAA TTCTTGGTAA CGGTGAGTTG ACTAAGAAAT TGACTGTGA	
AGCAGCTAAA TTCTCTAAAT CAGCTGAAGA AGCTATCACT GCTAAAGGTG GTTCAGTAG.	
AGTCATCTAA GAGAGGTGAC CTATGTTTTT TAAATTATTA AGAGAAGCTC TTAAAGTCA	
GCAGGTTCGA TCAAAAATTT TATTTACAAT TTTTATCGTT TTGGTCTTTC GTATCGGAA	780
TAGCATTACA GTTCCTGGTG TGAATGCCAA TAG	813

#### (2) INFORMATION FOR SEQ ID NO: 206:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 724 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:206:

CTGTCGTTCC	ATGCGTGCCA	ACTGTTTCTA	GCCCCATTTC	CTCAAGGACA	CGTGCCACAG	60
AGTCTCCAAC	CGCAGGGGTT	GGTGCCAAAC	TCAAGTCCAC	AATACCAAAC	TCAACACCCA	120
GTCTCTCAAT	GGGGCATTTG	GACCAAACCA	ATTGGACCGG	ATACGGAGTG	ATTTTAAAAG	180
GCAGTTTTCT	CAACTGGTTT	TCGGCTTACT	AACATCAAAG	CTCTGTCCAC	GAACTTTTTC	240
CAAAGCACGT	TTCACCACAC	CAGGACCAGA	AACTCCGACA	TTGATGATAA	CATCTGCTTC	300
	TGAAAGGCAC					360
	GCCGCTCCCA					420
	AGCCGTCATA					480
	CGTCTCAGTC					540
	TTTTTGTACT					600
	ATCAAGCGCT					660
	ATAGGTGTCA					720

VO 97/43303	PCT/US97/07950

CGCA 724

- (2) INFORMATION FOR SEQ ID NO:207:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 711 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:207:

CTCACGAAAA	GCTTTTGTAG	AACTATYCTCT	300300033			
		MOINICIGI	ACGACGCAAG	ATTGACAATT	TGTGTTGAAT	60
CAGTGGGTGA	TTAATAACTN	CAATTINCCC	ATTTGTGGAA	للملائمة والمحلوب والمحلوب	C110001000	
יוי עיוואי עיוואר עיוואר	3CC33M3MM			recticit	CAATTTATTC	120
· · · · · · · · · · · · · · · · · · ·	ACCAATATTA	ACGGTTTAAA	AATCTCCTAA	ACCATNTATN	TNNGATAATT	180
TTTACATTAG	ATCAGCCTCT	TTAAGAGCTC	TOTO TO COM			100
\		- 118/6/10/10	TCTGTACTGT	CTCAAGTGGT	AAATGGGTCA	240
ATTCTGTCCC	TTTTTCTTGA	TAAAGGTATT	GGGCGTAGTC	GTCCATTCCC	та стестите в	300
TATAAACCAC	ACCOMPTON	CCC3.CCmc3.3	********		INCIGGIIGA	300
	ACGCTTGCAG	CCGACCTGAA	GCAATTGTTT	TGTACAGTTG	AGACAAGGAA	360
AATGGGTTAC	ATAGGCTGTA	AAGCCTTTGG	GAACACCACG	CTCACCACCA	<b>601100101</b>	
CATTCACCTC	1000mox 100			CICAGCACCT	TGAAGGATAG	420
CHITCHCCIC	AGCGTGAAGG	GTGCGAACAC	AGTGGCCTTC	AATGACCAAA	CATTCGTGAT	480
CAATACAATG	CTCAGTCCCT	GACACCGAAC	Cammomaaoo			400
O		and the connection of	CATTGTAACC	AGTGGAAATA	ACCTTATTAT	540
CITTIACCAG	AATCGCGCCC	ACTTTAGCAC	GTTTACAAGT	GGAACGATTYC	CCA a mma cma	<b>COO</b>
GGGCTTGGGC	TOCAAAAMAC	MC1 MCCCC 1 ac		- maiconii i c	GCARTIAGTA	600
	TGCAAAATAC	TCATCCCAGG	CCAGTCTTTT	TTCAGTCATC	TCTTTTCTCC	660
TTTTTCTCTA	AAAATTTTTT	AATGGTAAAC	בארשים ב בידים	1.1.0000000000	_	
•			- AMMAICIGC	AATUTTTCA	G	711

- (2) INFORMATION FOR SEQ ID NO:208:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 677 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:208:

CTGTGGGACC	AGNTTCAGCT	<b>GGATATTTCA</b>	AAAACTAACT	ACTTACCCCT	GATTAATGCT	
TTTACTCAAA	TTGAACCCCC	## # COOMP # #		NC11NCGGG1	GATTAATGCT	60
***********	1 1 danse GGC	TAAGGCTTAT	TTATTTGCAA	ACTCTGAGTT	TTCGGGTGCG	120
GATTGGGATA	CGAAAATTTC	AAGGGATATT	TTCTGGGAAG	AATCTATGCA	TGGTATCTAT	100
CCAGAGAATG	TTCCCCTCAA	MCCM3 C3 CMC	0001	CIRICCA	IGGIAICTAT	180
	1100001CAA	TGCTAGACTC	CTTAATGATG	AAGCTGATTT	TTTTGACTAT	240

	CTAAATCATT	CTGCGATTTT	TACTGCGGAA	CGTGATCCCC	1010001	TTTTTATCCT	
	AMMC A CCCMC	0001000		COLONIGOGC	AGACCTATTA	TTTTTATCCT	300
	ATTCAGGCTG	GGGACTATTT	GGCTACGCCT	GAAATCCAAG	CATTTGCTCT	GAATGGGGAT	360
1	GAGGTTATTA	TTTACCCCCA	AGAGAAGGAT	THIT A A A CHIC	\	CCAGTACCAA	360
	CACOORAACCA	000010011		TTTGAAACTC	ATCGTAGTTA	CCAGTACCAA	420
	BACTTAACGA	CTCGAGGAAC	AGTTGAGTTT	CGTAGTGTGT	GTACACAGCC	ACTTGATAGG	480
	ACTITICCTT	CTGCAGCTTT	TCACTTGGGA	TT A TITO COMPA		GTTAGAAGCT	400
,	m. com. c		······	TIMITGGTTA	ATTTAGACAA	GTTAGAAGCT	540
	IACTTAGAAA	CAGCACCTTT	TCTTTAAAGT	ATTTGGTTAT	GATTACAAGT	TTTTA ACCAC	
2	ACAATTTTCT	AAGAAAAATC	TTACAGATCA	GGAAGAAACT		- · · · · · · · · · · · · · · · · · · ·	600
,	. C.) COMP. CEC		THERMION	GGAAGAAACT	ACGATTATTG	AATTTTCCAA	660
4	AGACTTACTC	CTACTAG					600
							677

## (2) INFORMATION FOR SEQ ID NO:209:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1160 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:209:

GTATTCGGA	C GTTCGTTCG	A ACCGGCCTG	TTGTTTCGC	GGCTGCACA	A TGGCATTTTG	60
GAMAATGAA	T AAAAAGAAT	TTATTCATC:	TCNAAACGCT	ייייייים באברייי	2 20202000	120
GATGTGT-T-T	T AAAATCATA	A TATTCAATC(	CTCTATTCC	GCTCGTCAA	CATARACAMO	180
IGAGCCATA	T TCATNGCTT	TAGCAACGC	TTATATGGAT	TGGTATCAG	שמא אייים אייים	240
11CATTACA	T TTACATCTCC	: TAGCTTCACA	AGTATTTATA	TATCATACAT	CCTCATCTC	300
AICCITCAT	A TAATCTTTGG	CAGCCCACTC	CCACACAGGA	AGTATCACCT	CAAAMACAMO	360
ICINICAMA	- ATCGGGGAAT	GGAATTCCTI	' GGGAGGCTCT	CTATCTCTAC	30003330000	420
MACTCCTTTY	A TCCTTCTTAA	CTTGGGGAAC	ATCTGTTGTG	CCAAACATCS	TATCCCTA CA	480
I I CGCGAGT	I GGGGCTCCAA	GAAATATAGC	ATTGACAAGC	<b>ТСТТСТСТВ Х</b>	MARING CONT. CA	540
MONCINIC	GAACGGGGTT	GTTGCATAAC	AATACAAACC	CCCATACATA	Claramon	600
TITITICACCA	ACGATAGCAA	CCATATTTTC	AAAATCTTTT	ТТАССТОТАС	TATIONATION	660
AGCAACTATE	AACTATATTC	TTCTATTACC	AAAAGTAAAG	GAGGAAGGCC	CACCMOMAGe	720
CCAMINCIAI	CAAATAAATC	ACTTTTGTTA	TAAATTTCCA	TCCCCCTATT	CAMOROCOM	780
CAACACCACA	GCACGATTTC	TAAAGGCATC	CTCATTAGTT	GTTCCATAAT	TTTCTACCTG	840
TTTTTTCCARC	AAATTTTGAT	AATTTATAAA	TATCTGAAAG	TTTTGGATCA	ATCACATATA	900
TTTTGCATG	TCTCCCAATT	ACGGTCTGAG	ATATGAAACG	AGTCAAGTAA	TAATATGTAA	960
CGATAATAAA	CCCAGCACCT	GACGCGCCCG	AGATAAGCAT	TGAAAAGTTT	TTTCTCAAAT	1020
AGGTAATATC	ATCATCATAG	ATTTTAATTT	TCAAACTATT	ATCTTCTTCC	AGAGGGAGAG	1080
AAATTTTTTTT	TAAACGTTCA ATATGATAAG	GGCTGTCTGT	ATACAAAGAC	ATATTCAACA	TGAGTAGCAT	1140
	AIRIGATAAG					1160

⁽²⁾ INFORMATION FOR SEQ ID NO:210:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 787 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:210:

CTGGATATGG	GTTACACCCA	AGTCTTTGAA	ATAGTCTAGT	TTTTCAATGA	AGGCTTCAAA	60
AGTCCCAAAT	GGTTTGGTCA	AGTCTTTTGC	AATGGCAGGA	TCTGAAGTGA	AGTCACGCAC	120
ATGAGCTTCG	TAGATAACGG	CGTCTTCACG	AGTCTTGAAA	TTGTGAATCT	TATTTGGCCC	180
ATAAGGCCCC	TTAAAAAGGG	ATCTTGAGGG	CCGAGTTGAG	CTGGATCTAC	AAAGGCGGCT	240
TTAGCCACTT	TATGGGCATC	GTCAATCTTG	GCATCGTCGC	TATTCCAAGC	AGCAAGAGAT	300
TTAGCGTAAG	GATCGAGTGC	AAGAACAGTT	TTACCTTGAC	GCTCGATTTG	GTATTGATAA	360
TAGTAGCCAG	TGAAATCTGT	GATTCCGAGT	TTGTTTGTGC	TGTCTAAAGT	TTGTTTCCAA	420
GTTCCTCTTT	CCCCTTTTTC	GAGAGCGACA	GTTCCAACTA	CTTTGTCAGG	GTCATTCTTG	480
TCGTAGACAA	CAACAGAAAC	CTTATCAGCA	CTTGGTGACC	AAAGGGTCAA	ATCAACTTGT	540
TTTCCTTCTT	CTTTTAGGTC	AAATCCCAGT	TTGCCATCAT	AGATCGAATG	CCTCATCTTT	600
CAGGCGCCAG	GGGGATCCAC	TAGTTCTAGA	GCGGCCGCCA	CCGCGGTGGG	AACTCCAGCT	660
TTTGTTCCCT	TTANTGAAGG	TTAATTGCCC	CTTGGGGTAA	TCCATGGTCA	TANCTGTTTC	720
CTGTGTNAAA	TTGGTANCGC	NCAAAATCCN	NNNAAATANA	ACCGGAACCT	AAATTTAAAC	780
CCNGGNN						787

#### (2) INFORMATION FOR SEQ ID NO:211:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 702 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:211:

CTTGTTTTTA	TTGGTAACTA	TACTTTAATG	CGATAATTGA	TTGGACTTTT	GTCAAGGAGA	60
TGTGTATGTT	TGAAGTAGAA	GAATGGCTTC	ATAGTCGGAT	TGGTTTGAAT	TTTCGATCAG	120
GTTTGGCCCG	AATACAGCAA	GCGGTGGATT	TGTTAGGAAA	TCCTGAGCAG	TCTTACCCTA	180
TTATCCACGT	AACAGGGACT	AATGGGAAAG	GATCTACCAT	TGCTTTTATG	AGGGAATTAT	240
TTATGGGGCA	TGGCAAAAA	GTTGCGACCT	TTACCTCCCC	TCATATCGTA	TCCATCAATG	300

ACCGAATTTG	CATTAATGGG	CAACCTATAG	CAGACGCAGA	CTTTATCCGT	TTGGCTGATC	260
AGGTCAAGGA	GATGGAGAAA	ACCCTTCTGC	AAACTCCTGA	CCAGTTGTCC	TTOOCTGATC	360
TGCTGACCTT	GGTTGCTTTT	لاشمادهاتمال لإشامليك	CCCLCCLCA	GGTGGATTTG	TTTTTTGAAT	420
ААСТСССААТ	TECTECCTOR	COMPONENCE	GGGAGCAGGA	GGTGGATTTG	GTTTTATTAG	480
TC3 CCTCC3 m	TOGTGGCTIA	CITIGACACGA	CCAATGTGGT	AACTGGAGAG	CTTGCTGTCA	540
TCACCTCCAT	TGGGCTTGAC	CATCAAAAAA	CCTTGGGTGA	TAGTTCCTAG	AACCAATGGC	600
AAACCAGAAA	GCTGGTTATT	TTCAAGGCTG	GTAAGAAGGC	AGTGATTGCG	AAATTGCCTC	660
CAGAAGCTAG	GCTTGTCTGT	CAGAAAAAAG	CCGAATCTTT	AG		702

- (2) INFORMATION FOR SEQ ID NO:212:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 622 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:212:

CCTGATAACT	TATACCATGTG	CGTTTTTTCT	CTTTCCCAAA	GCGGCGAAGC	TCCATGGCAG	60
TCGCAATGGT	ATCAATGCGT	TTCTAGCGAG	CTAAAAATCA	AGGGCGTAAT	AATCACCACA	
TTGCCTTTG	TTCGTTGCAT	AAGAGAAGCT	TTCTTGGATA	ATTICLATICC	ACCCCCCTCC	120
TGAGACATCT	TGATAGTAAA	GAATTCTTCC	TGCAAATCTG	GAATATAGCG	CAACCTCACC	180
CTGACAGAAT	AAGCAATCTT	ATAGGGCACA	CCAATTTGAT	TTAAACTGGA	ACCA A ACTICA	240
CTAGGATGGG	TTGTCATCAA	AAAGATAATA	GCCAGAGGAA	TGGTGCAAAG	AGCAAACIGA	300
ACCAAATTTA	GCAGATAAAA	GAGCTCCTGG	CTGGTTAGAG	TGTAGACACC	CATTCCCTCC	360
CAAATCACAC	TTCTCTCTCC	ATAAAGTCCA	ACCCCATACT	CGGGAGAAA	CACAMACAGO	420
ATCAAAACGT	TTAAAACGGC	AAATACCGTC	GCAAAAACGG	CTACAAACCA	AAGATAGACC	480
AAGCGAATTT	CTGATAAATA	GAGGAGAAAG	ACTGAAAAGA	TECCA AMONG	AACATCTTTA	540
CTGGTATCAT	AGCTAATCAT	GG		IGGCAATCAG	CAAGAGCATT	600
						622

- (2) INFORMATION FOR SEQ ID NO:213:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 886 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:213:

				GCATTGGACT		60
CTTGCTGACT	ACTGATAAAA	GGCTGACGGA	TCGCACCAAG	GCAACTTTGA	AAGCTGCGCG	120
TGATCGTGGT	ATCAAGGTCG	TATTGACAAC	TGGTCGTCCC	TTAAAAGCCA	TGGACTTCTT	180
TCTCCATGAG	TTAGGGACTG	ACGGTCAGGA	AGATGGAGTA	TACCATTACT	TCTAACGGTG	240
GTTTGGTTCA	GAAAAATACA	GGTGAAATCC	TTGATAAAAC	AGTCTTTTCA	TATGCTGATG	300
TGGCACCCTT	GTATGAGAAA	ACAGACAAAT	TATCACCTGC	CACTTGATGC	CAATCTCAGA	360
AAGAACAGTT	TATCAAATCC	AATCGGACCA	AGAAAGTCTT	TATGCCAAAT	TCAATCCAGC	420
TTTGACTTTT	GTTCCAGTTG	ACTTTGAAGA	CCTGTCTAGT	CAAATGACCT	ACAACAAATG	480
CGTGACTGCC	TTTGCTCAAG	AACCCTTGGA	TGCAGCCATT	CAGAAGATTT	CTCCAGAATT	540
GTTTGACCAA	TATGAAATCT	TTAAATCACG	TGAAATGTTG	CTAGAGTGGT	CACCAAAGAA	600
TGTTCATAAA	GCAACAGGTT	TGGCAAAACT	AATCAGCCAT	CTTGGAATCA	ACCAAAGCCA	660
AGTTATGGCC	TGTGGTGACG	AGGCCAATGA	CCTTTCTATG	ATTGAATGGG	CAGGTCTTGG	720
TGTCGCTATG	CAAAACGCTG	TTCCTGAAGT	AAAGGCAGCC	GCAAATGTAG	TAACGCCGAT	780
GACCAACGAT					AGGAGAACTA	840
AGATATGGGA	TTGTTTGACC	GTCTATTCGG	AAAAAAAGAA	GAACCT		886

### (2) INFORMATION FOR SEQ ID NO:214:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 671 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:214:

CTATGAGACC	TAACACAATT	ATTCTACCAA	AAATTCAATT	AAAAGTCAAT	TCTCTATTTA	60
TGGTAGGGGA	ATCCCTGCTG	AATCGTAAAA	GCGCGATAGA	TTTGTTCAAC	AAGAACTAGT	120
CTCATTAACT	GATGAGGCAA	GGTTAGGCGA	CCAAAACTGA	CAGAAAGATT	GGCTCTATTT	180
TTTACAGATG	ATGACAATCC	TAAACTTCCC	ССААТААТАА	AAGTAAGAGT	AGAAATCCCT	240
CCTTATAGAA	GTTTCTTCTA	ACTGCTTACT	AAATTCTTCT	GAGAAGAAAG	TTTTCCCTTC	300
AATGGCTAAC	ACAATAACGA	AATCACGGTC	AGCAATTTTT	GATAAAATTC	TCTGACCTTC	360
TATTTCTAAA	ATCTTTTGAT	TTTCTGATTC	ACTGGCCTTA	TCTGGTGTTT	TTTCATCTGA	420
TAACTCAATC	ATTTCAAACT	TAGCAAATCT	AGAAATTCGT	TTTGAATACT	CTGCGATACC	480
	TACTTTTCTT					540
	ATTCTCTATT					600
	ACAGTTTCAA					660
TTATAATTAA						671

⁽²⁾ INFORMATION FOR SEQ ID NO:215:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 521 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:215:

				TGCAATCCCC		60
				AAGAACCACA		120
				TTCTCCAAAT		180
				AGGATTGCTA		240
CTTTTATTTT	TTCTTAATTT	TTTAATTCTG	CTAAGTCGTT	TTGAGCAAGA	GCTGCTTTTA	300
CATCAGCACG	GTAAGTTGCT	TTTTCTTCTT	CTGTCCAGTC	ATAGAATCGT	CCCATTTCAT	360
CCAAAACTGG	CTCAACGATA	CTATCCAAGC	TATCACGCAT	AAAGAGCATG	TGATTGGTAC	420
				GCGCATTGCA		480
ACAAGGTGTC	TGCCAAGCTA	AGACCTGGCG	CTTGTTCCAA	G		521

## (2) INFORMATION FOR SEQ ID NO:216:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 744 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:216:

000011011						
CIGGAATAAC	ATTATAACGA	CCAGTCATGT	ATAATGGAGT	TTGTTCTCTA	TCAGTATTTA	60
CGTTTACAAA	GAACTTACCA	TTTCCTTTAT	TTGAATAGTC	TCCATGTATG	AATACTTTTC	120
TATCCTCAAG	TACTTTTCTT	TGGATGGTCC	TOCIMOCOCO	Marcamago	<b>************</b>	
			1001100001	ATTACATATC	TAAAAAATTC	180
TITTATTACT	TCGCTAAAGA	GTAAGCTTTC	TTTATTATTT	ACACCATAGG	TATAAGCTGG	240
GTGTTCAAAA	TTATAAACTA	CACCTCCATT	AAGGTAAACC	CCTAAAGCTT	Списиссияс	300
CAMACACMOM					CITCICCIAG	300
CATAGACTCT	GGTTCAGTCA	ACCATTGTCT	ATCTCCTTGA	CTTTTTCCGA	TATTACCACT	360
TGCAAACAGT	TTCCATTTAC	CTGTCTCATA	CCACTTCCAA	GTATCCATCA	AACCACCCCA	420
TOTAL SAME			·		MICCACCCCA	420
TIGATAAGTA	TGATTTGAAA	GCCAAAGTCC	CTTCATATAA	CTTTCTGTAG	TTGAATCATT	480
TCCCTCAGCA	GCACCTCTAT	TTTTC A A C A C	<b>~~~~</b>			
	GCAGGTGTAT	IIIIGAACAT	GAAAATAAGG	TTCTTCCAGT	ACTTATCAAC	540
AGATTTCTGA	AATGCTATCT	TACCGTTTTT	TCCAAATCCT	THE REPORT OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF	C1C11CC1==	
			INTOC 1	TITICIATIG	CAGAACCATT	600

ATTTTGTTCA GCCGGGGCAT ATAAAATATC CTCCATTTTT AGCTGATACT TTTAAGTAAT	
CTGCCGCCTT ATTTCAATA TCATTTGCCC AAATCCAATA ATTCTCTGTA CTGAAAATAC	660
CATGCAAATT TGGATATTTT TGAT	720
	744
(2) INFORMATION FOR SEQ ID NO:217:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 518 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:217:	
CTGAAATTTT GGAAGAAAA ATCGGTGTAG ATACAGTCCA AAAAATAGGA CGCATCTTGA	60
TTTTGTTTAA ACAATCTAGC AAGAAAGAAA ATCGCAAGAT TTCTAAGAAA GTCAAAGAAA	120
TCTAAGATCG AAACTCCAAA TAACTGTTTT TATAGAGAAA TAAAGGGGAC TAGCCTATGA	180
CAATCGAACT ATTGACTCCC TTTACCAAGG TAGAGTTGGA GCCAGAAATC AAGGAGAAAA	240
AACGCAAACA AGTTGGGATT TTAGGGGGGA ATTTTAACCC TGTTCACAAT GCCCATCTCA	300
TTGTTGCGGA TCAAGTACGG CAACAGTTGG GACTGGATCA AGTTCTGCTC ATGCCTGAAT	360
ACCAACCTCC TCACGTTGAT AAAAAGGAAA CCATCCCTGA ACACCATCGT CTCAAGATGC	420
TTGAGTTTGG CAATTGAAGG GAATTGAAGG CCTAGTCATT GAAACCATTG AGTTGGGAGC	480
GCAAGGGTAT TTCCTACACC TACGAAACCC ATGAAAGA	518
(2) TWEODY TOU TO	
(2) INFORMATION FOR SEQ ID NO:218:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 886 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:218:	
CTTGCTTNGN GGCTCGCTTA CTTNGACCCA CGTCGCTATG ACTTGGCAGC AGTTGGTCGT	
TACAAAATCA ATAGAAAAAC TCAATGTTAA AACACGTTGT GTTCAACCAA ACCATTGGCA	60
GGAGCCATTG GTAGACCCTG AAACTGGAGA AATCTTGGTA GAAGCTGGTA CGATTATGAC	120
TCGGTAGCGT GATTGAAAGC ATTGAAAGCC ATTTGGATGG CGACTTGAAC AAGATTGTCT	180
AACATCCCAA ACGATGCAGC CGTTGTGACT GAGCCTGTTG TTCTTCAAAA ATTCAAGGTT	240
SHOULDING TICTICARAA ATICAAGGTT	300

GTTGCTCCAA	CTGATCCAGA	TCGCGTCGTA	ACGATCATTG	GTAATGCTAA	CCCAGATGAC	36
AAGGTTCGTA	CGGTGACTCC	TGCAGATATC	CTTGCTGAGA	TGAGCTACTT	CCTCAACTTG	420
	TTGGCCGTGT					480
	TGCTTGCCAA					540
CGTGAACGTA	TGTCTGTTCA	GGACAATGAA	GTCTTGACAC	CACAACAAAT	TATCAATATC	600
CGTCCTGTAA	CAGCTGCGGT	TAAAGAATTC	TTTGGTTCAT	CACAGTTGTC	ACATTTCATG	660
GACCAACACA	ACCCGCTTTC	TGAGTTGTCT	CACAAACGCC	GTTTGTAGCC	TTAGGACCTG	720
GTGGTTTGAC	TCGTGACCGT	GCCGGATATG	AAGTACGTGA	CGTGCACTAC	ACTCACTATG	780
	TCCAATCGAG					840
	GGACACTTGA					886

## (2) INFORMATION FOR SEQ ID NO:219:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 791 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:

ע מיאבער אריאניין	GGCTCAACAT	00000011100				
O.C.C.I.GAI	GGCTGAACAT	GCGCCAAATG	CTAAGATTAC	AACTATTGAT	CGTAATCCAG	60
AAATGATTGG	TTTTGCCAAG	GAAAATTTTG	CCCAGTTTGA	CAGTCGCAAG	CAAATCACTC	120
TCCTAGAGGG	AGATGCGGTG	GATGTCTTAT	CTACACTCAC	ACACT/COMPAIN	CAMMMAAMA	
TOTA TO CAME				MONOICIINI	GATTTCGTCT	180
TIMIGGATTC	TGCCAAGTCT	AAATACATCG	TCTTTCTGCC	AGAAATCCTC	AAACATTTGG	240
AAGTTGGTGG	TGTGGTTGTC	TTGGATGATA	TTTTTCAAGG	TGGTGATGTT	GCCAAGGATA	300
TTATGGAAGT	CCCTCCTCCT	C100011001			000121001117	300
- INTOGRAGI	CCGTCGTGGT	CAGCGAACCA	TTTATCGAGG	CCTTCAAAAA	TTATTTGATG	360
CAACCTTAGA	CAATCCAGAA	CTCACCGCAA	CATTAGTGCC	тттассасат	CCM B MMCMC B	420
TCCTTCCTA A	*******			* * * * * * * * * * * * * * * * * * *	GGIATICICA	420
IGCITCGTAA	AAATGTAGCA	GATGTTCAAC	TGTCTGAAAG	CGAATGATTT	TCAGAAAAAT	480
TTAAGAAAAA	ATAGTAAAAT	AGATAGAGTA	ACACTTATCT	CAAAGGAGTA	CACATCAACA	E 4 0
<u>እ</u> እ እ እ እ ጥጥ አ ጥጥ	CCCLCCTCCC	100101		CILLICONGIA	GACATGAAGA	540
MANNITALI	GGCAGGTGCC	ATCACACTAT	TATCAGTAGC	AACTTTAGCA	GCTTGTTCGA	600
AAGGGTCAGA	AGGAGCAGAC	CTTATCAGCA	TGAAAGGGGA	TGTCATCACA	GAACATCAAT	660
<b>ТТТАТСАССА</b>	ACTICA A A A A C	) ) CCC			OMICATOMI	000
midnoch	AGTGAAAAAC	AACCCTTCAG	CCCAGCNAGT	CTTGTTAAAT	ATGACCATCC	720
AAAAAGTTTT	TGAAAAAACA	ATATGGCTCA	GAGCTTGATG	3000 3 3 C 3 C C C C	######################################	
3/MMCCCCC3 3 C			ooc.ida16	WI WWW GHORI.	TGATGATACT	780
ATTGCCGAAG	A					791
						, , ,

## (2) INFORMATION FOR SEQ ID NO:220:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 708 base pairs
  - (B) TYPE: nucleic acid

::

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:220:

CC	'ል ልርጥርጥጥር	3 3 MCCCC 3 mm s					
	ancici io	ANTECGATTA	TITAAATTAT	CAAAATCAAA	GATTGTTGTT	TCAGAGAAGA	60
TT	TTTGGGTC	CGGTGAGAAG	TGAACAGTTG	TTCCTGTTTT	ATCCGTATCT	CC3 3 Cm3 mmm	• •
CA	AGTTATGC	GACAACATGA	CCACGACCC	) MMCMmaa	ATGAATCTTA	CCAACTATTT	120
C3	3.03.003.3.0		oenconcoo!	ATTCTTGGTA	ATGAATCTTA	CCATTTTTGT	180
GA	ACATGAAC	GTCTAATTGA	GTGGAAAGGG	CATTAACAAC	TGACGACCCC	ACCCCGTGAA	240
GA	CCACCTGA	AACCTTGTAT	CCACCACCAC	CGAACTTTCC	TCCAGCGTGA	100100000	
AG	ACGGTCTC	AACAGCAGGA	CCCCCCCC		ICCNOCG1GM	AGGACTGTAA	300
-		INCINCTOCAGGA	CGGCCTGTAA	ATTCCTGAAT	ATCGACTGGG	ATACCACGCC	360
CA.	TCATCCAC	AACAGTAATC	GAATCATCTG	GCTCAATAAA	AACTTGAATA	TGGCTGGCAA	420
AT	CCTGCCAA	GGCCTCGTCA	ATTGAGTTAT	CAACAATTTC	CCAGACTAGA	POCE CALL	
СТ	עבאוויוויוויטן	A COTTO A TOO A	1.0001111.		CCAGACTAGA	TGGTGAAGAC	480
		NOTIGNICCA	ATGTANATCC	CTGAACGCAT	NCGAANAGCC	TCTAAGCCCT	540
CTA	AAAACTTG	AATTTGACTG	GCATCATAAT	CCTGTGCCTG	CAGATTTCTG	ል <b>ጥጥ</b> ጥጥር ተጭ	600
TC	ATCTAATG	CCTTTTTCTT	ATATGTCTAL	ሞ <b>ስ ርጥጥር መረ</b> መራ	AAATTCACGA		600
CAZ	COCCOMA	man name		TACTIGICIC	AAATTCACGA	TACTGGTAAA	660
-A	1010001A	TCAAGTCCTG	CAGCTTGACC	TGCTTCGATA	TCAATCNG		708

## (2) INFORMATION FOR SEQ ID NO:221:

## (i) SEQUENCE CHARACTERISTICS: .

(A) LENGTH: 542 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:221:

TTTAAATTT	יו או אני אים אים אים אים אים אים אים אים אים אי	MCOM3 om an				
	TTNTATGNNC	TUCTACTACG	CGGTGACTAG	CATCATAAAC	TGTAGTATCC	60
ACTAGACCCC	TCTAAAGTAT	CAACTTGGTA	ATCCAAGAAC	ATCCC ATCAM	Cacmmaaaaa	
TTGTTTTTTA	ጥርጥርጥልጥልርእ	//////////////////////////////////////		MIGCCAICAI	CACTTAAAAC	120
	TCTGTATACA	TTTGATGAAT	TTTAAAATTA	TATGATGGAT	AGCCTGTGAT	180
AGTCACAGTT	ATTCCTGTCA	AATTTTTTTG	ACTAGTAGGA	AGACCCAAAG	TCCCTT & TOTAL	240
TGCACCAATG	СССТСФТСФА	CAAmmaamaa	10001	···········	TCCCTAAT-T-T	240
	GGCTCTTCTA	GAATTAATAA	AGCCAAGTCA	TATTCCCTTG	CATCCTTAGA	300
ATTTAAATTT	CTAAATTCCT	TCAAATAACA	AACTTCCTTT	ACTOPOLICATION	TTCCS S STSC	3.60
TTCTTGACTT	GGACTAACAG	CCCCAACAAC			TICCAAATAG	360
	GGACTAACAG	CCGGAAGAAC	ATAAATATCA	TCCGCTTCTT	TCCCATAGTC	420
ATGTCTGTAG	TTAGTTGTGA	GCCCGCTGGT	AATTAACACA	ע ע נוויואואיאט עוואן	TA 3 3 3 MMCCC	400
ACTTCCCCTC	ССФФСФВСВФ	MC > MMC c > ma		TATCTTIAN	TAMAMTICGC	480
	CCTTCTACAT	TCATTCCATC	GGCTACTCCA	TAATACTTAG	ATAAAACCAT	540
AG						
						542

## (2) INFORMATION FOR SEQ ID NO:222:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1028 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:222:

CTCGTTACCC	AGAGTTCGCT	CAACTTGAAG	GGCAACTTAA	AGGGNTTGNG	CAATTGAAAA	60
AACACGGAAT	TGAAGGTGTA	GTTGTTATCG	GTGGTGACGG	ATCTTACCAC	GGCGCTATGC	120
GTTTGACTGA	ACATGGCTTC	CCAGCTATTG	GTCTTCCAGG	TACAATCGAT	AACGATATCG	180
TTGGTACTGA	CTTTACAATC	GGTTTTGACA	CAGCGGTTAC	TACTGCCATG	GACGCTATCG	240
ATAAGATTCG	TGATACATCA	TCAAGTCACC	GTCGTACTTT	TGTAATCGAA	GTTATGGGAC	300
	TGATATCGCT					360
TCCCTGAAGC	AGGCTTCAAG	ATGGAAGATA	TCCTAGCAAG	CATCAAAGCT	GGTTATGAAT	420
GTGGTAAAAA	ACACAATATC	ATCGTCTTAG	CTGAAGGTGT	GATGTCAGCG	GCTGAATTTG	480
GTCAAAAACT	TAAAGAAGCT	GGAGATACAA	GCGACCTTCG	TGTAACAGAA	CTTGGACATA	540
TTCAACGTGG	TGGTTCTCCA	ACTGCGCGTG	ACCGTGTTTT	GGCGTCACGT	ATGGGTGCAC	600
ATGCTGTTAA	ACTTCTTAAA	GAAGTATCGG	TGGTGTTGCG	GTTGGTATTC	GTAACGAAAA	660
AATGGTTGAA	AATCCAATTC	TTGGTACTGC	AGAAGAAGGG	GCATTGTTTA	GCCTTACTGC	720
AGAAGGTAAG	ATTGTGGTTA	ACAACCCGCA	CAAAGCCGAT	ATTGAGCCAA	GTCTTCTGGA	780
CCATTTTTTT	GTAGATACTC	ATCAGGATCC	AAGTTATCAG	GCATGCTAAC	CATTTCCACA	840
GGCATATCAC	CAATTTCATC	CAATGCTTTC	AATATCGCGG	CTTGCCCAGC	CTTATCTCCA	900
TCGTAAACAA	GAACCAATTT	CTTGGTTAAC	CTTTTCAGAT	GCTCAACATG	CTCTCCACTC	960
AAGGCCGTTC	CCATCGACCC	ACAGCATTTT	CGATTCCACC	CGATACCCTC	CAAMAACAMC	
CATGAATC				COMINGUEIG	CARIAACATC	1020
						1028

## (2) INFORMATION FOR SEQ ID NO:223:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 555 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:223:

CTGAAGAAAA	TCAGTAAACA	AGAGCTGGTT	AACACGCGCT	TTTCTCGTTT	ATTTGCTCAT	60
TTTGGACAGG	AAAAAGACGG	TAGTTTTCTT	GCCCAGCGTT	ACCAATTTTA	CCTCGCCCAG	120
CAGGGACAAA	CACTATCGGG	CGCTCATGAT	CTCTTGGACA	GCCTCATTGA	СССТСАТОВО	180
AACTTGTATG	CTGCGACAAA	TGGCATTACT	GCCATTCAGA	CACCACCTON	CCCTCATTAT	
GGTCTAGCAC	CTTATTTCAA	TC A A CITY-THE	ATCTCACA	CAGGACGIII	GGCTCAATCT	240
CATICCTICTUM	TTTTATCA A A A A	CARROTCIII	ATCTCAGAAC	AGTTGCAAAC	TCAAAAGCCG	300
OMIGCICITI	TTTATGAAAA	GATIGGCCAG	CAAATTGCTG	GATTTAGTAA	AGAAAAGACG	360
CIGAIGATIG	GAGATTCTCT	AACCGCCGAC	ATTCAAGGTG	GCAATAATGC	GGGGATTGAC	420
ACTATCTGGT	ATAATCCTCA	TCACCTCGAA	AATCACACAC	AAGCCCAGCC	GACTTACGAA	480
GTCTATTCTT	ACCAAGACTT	GCTGGATTGT	TTAGATAAAA	ATATTCTTGA	AAAGATCACG	540
TTTTAAGGAG						
						555

## (2) INFORMATION FOR SEQ ID NO:224:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 764 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:224:

CTCATAACCG	TTCAAGNCGN	TATCGTAAGC	AATGGCACGA	ACCTTAGCCA	AATCACCTTC	60
TAATTCGTGA	GCAGTCTCTT	CCTGTGGAAG	TGTGAATGGA	TGGTGGGCGC	TCATGTAGCG	120
GCCTTCTTCT	TCAGACCATT	CAAAACATCG	GCCAGTCAAC	CACCCAAAGG	AAGTTGAACT	180
TATCATTATC	AATCAAGCCA	AGCTCTTTAG	CAATACGTCC	ACGAAGGGCA	CCCAGTGTTG	240
CATTAGCCAC	TTCAAGCGTA	TCCGCCACAA	AGAGAACCAA	GTCCTTATCT	TCAAGAGCAA	300
GCGCTGTTGT	CAATTCTTCT	TGGATACCAG	TCAAGAACTT	GGCAACTGGT	CCGTTTAATT	360
CTCCATCAAC	CACCTTGACC	CAAGCAAGAC	CTTTGGCACC	ATACTGTTTG	GCTACTTCCG	420
TCATCTTGTC	GATGTCTTTA	CGTGAATAGT	TGTCCGCAGT	CAAGGGCTCG	AGACCGTTGA	480
CCACAATCGC	TTTTACAGCA	AGTGCTTCTG	AAAAGACTTT	AAAGTCTACA	CCTTTGACCA	540
CTTCTGTCAA	GTCCTGAAGC	AACATGTCAA	AACGAGTATC	TGGCTTGTCA	GAACCGTAAA	600
GAGCCATAGC	ATCATCGTAT	TTCATATGAG	GAACGGTAGC	GTTACTTCAA	TGCCTTTTCT	660
TTCCTTCATC	ACGCGCGCGA	TCAAGCCTTC	TGTAATATCT	TGGATTTCTT	CCTCACTAC	720
GAGATTCCAA	GTCGACTGAG	TAATTCAGCT	GGCGGTCTCC	ACCC	GCICAGIAAG	764
						/64

## (2) INFORMATION FOR SEQ ID NO:225:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 563 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:225:

CTGTATGAAC AATAT	'AGGAA CGTCTCCGGA	TAAACTCCTT	GGATTAATGG	AGTTTCTTTT	60
GGCATGGATG AAACA	CCATT AAAGGAAATT	CATAATATGT	CCTGCCATAA	AGGTTACATT	120
GTTTTCTTTA CACGC	ATCTA CCATCTCGCG	ACAATCTTGA	TAAGAAAGCG	GCAATTGGTT	180
TTTTCAACAG AAAAC	ATTTT TACCATGCTG	TGCAGCCTTA	ATAACCGGTT	CCTTATGAAG	240
ATTATTTGGG AGTTG	CGACG ATAACACAAT	CTACTTCATC	GCTAGAAACC	AACTCATCTA	300
AGGAACTTGC TACTT	TTGCT CCCAATTCTT	CTGCAATCGC	CTCTGCATTA	TCTGGATCAT	360
AGAGAAGAGT AATCT					420
AATACCCTGC TCCAA					480
CATTAATTTC CAAAT					540
ACGAATCATA TTTTTY					563

- (2) INFORMATION FOR SEQ ID NO: 226:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 732 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:226:

ACTATTGAGT	CACTTTGGGA	AGCGAACATG	GAGTATATTT	CTCCAGAAAA	TGCCTTGGAT	60
AGTCGTAACC	GTCAATGGAA	GATTTACTCA	AGAAACTTGA	TTTCACCACC	AAACTTCCTC	120
GGGGCAAATG	CTCATGTGGA	AGACTCATTA	GTTGTAGACG	GATGTTTCGT	TGAGGGGGGA	180
AACTGGTAAA	ACATTCTTAT	CCCTTTCAAC	AGGCGCGGCA	AAGTTTCGCG	AAAGGAGCGG	240
GAAGTCCCTT	GGATTTCAGT	TATCATGGAG	TGGAGCTATC	ATTGGTCAAG	GAGCTAAGAT	300
TAAACGTGCC	ATTATTGGTG	AAGGTGCGAT	TATTTCTGAC	GGTGTCGAAA	TTGATGGAAC	360
AGATGAAGTA	CAAGTTGTAC	GATATAATGA	AGTAGTGGGG	GTAGCAACAG	ATGAAGATTG	420
ATAAATATTC	TGCCATTTTA	GGAAATACAG	TTGGTTTTCA	CAATATGTCG	ACATTGACGG	480
ACCACCGTCC	AGTAGCAAGT	TTGCCATTTG	GTGGGAAATA	TCGTTTGATT	GACTTCCCC	540
TTTCAAGCCT	TGCTAATGCA	GGTGTTCGTA	GTGTCTTTGG	TATTTTCCAC	CACCATARA	
TCAGCTCAGT	ATTTGACCAT	ATTCGTTCAG	GACGCGAGTG	CCCCTTATCA	ACCOMMONA	600
GTCATTACTA	ССТРССРУИТ	TACA AMA COC	CMCM1010	GGGCTTATCA	ACCUTTCTTA	660
m) cm) co) ) c	CCTAGGAATT	INCANTACCC	GTGTAGAAAG	TTAGTACAGT	TGGAAAAGAA	720
TACTACCAAC	AG					732

## (2) INFORMATION FOR SEQ ID NO:227:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 508 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:227:

	CTCGTGTGAT	TTTTTTGCCT	ATAAATAATT	TTTATCAGCC	TGATATATAA	TATATATTAT	60
	GCAAGTGATT	GGAAGTGTGA	TAAACTAATA	TAACAACGAA	AATCTTATGA	GAGAATAAAG	120
	CTTTATCTTA	GATAAACTTA	GGAATCAGGA	TTTTATAAGA	TTTTCCAATA	ATATTAGTGT	180
	CAATAATAAG	AAAAGAGGTA	TCTTATGACA	ACATTTACTA	TCCATACAGT	AGAGTCAGCA	240
	CCAGCAGAAG	TGAAAGAAAT	TCTTGAAACA	GTAGAAAAG	ACAACAATGG	CTATATTCCC	300
,	AACCTAATCG	GTCTCTTGGC	CAATGCCCCG	ACTGTTTTAG	AAGCCTACCA	AATTGTCTCA	360
	TCTATCCACC	GTCGCAACAG	CCTGACACCC	GTTGAGCGTG	AAGTGGTGCA	AATCACGCA	420
(	GCCGTGACCA	ATGGTTGTGC	CTTTCTGTGT	CGCAGGTCAC	AACACCCTTT	TCCATCAAAC	480
		GAATGATGAC				TECHTCHARC	
							508

## (2) INFORMATION FOR SEQ ID NO:228:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 529 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:228:

CTGAACCCGT	ATTAATAAGG	GCATCCAACC	TGGAAATGAT	CAGCCAAAAT	TCGCCACACA	60
ATTCATAGCA	GACATGACCT	TACCAATTCC	ACTTTCTACA	AGAACGACTT	CATGAGAAGC	120
AATGGTTCCT	GTATGATAGG	TATTCCCCAA	AACAACTTGC	TCCTGGGCAT	ТАТСТАВАТС	180
CTGGACCAGA	TAAGCCAGTT	CTTCTGGCAT	AGCAGCAATA	ATTCCTATTT	ጥርኔጥጥጥርልኔጥ	240
TCCTTTTCTA	TTACAAAAGT	TTCATTGCTA	AAACAAGCAA	AATCAAGAGA	AACATCACCC	300
CAAATAAGAT	TTTATTCAAC	TTAGAATTGA	AGACATTTCT	Сттсстати	TCAATIGACCG	
GGCTTTTATG	AATAGATGGT	TCGACCTGAA	TCTTCAACGT	TTCCTCCCTA	1CAATACGAC	360
CCTTAGGATT	GGCATAACCA	AAACGGGAAG	A A C A C C MACC C	TICCIGGCIA	AAACCATGAT	420
TATCATCTAG	CAAAGGAGAG	CACCCTTCAA	AMUMUGITUG	TAAAATCTTA	GTITCCTCAT	480
		CACCGIIGAA	ATTTTTTCGC	CTCTATTAG		529

:.

### (2) INFORMATION FOR SEQ ID NO:229:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 730 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:229:

•							
						TTACACAACG	60
CZ	ATTTGCCTA	TGTTACAAGG	AAGTTTTTCA	AATCGATTGT	CATCTTCCTG	ATTATTCTCC	120
T	ratggcgag	CTTGAGTTTG	GTCGGCTTGT	CAATCAAGGG	AGCTACTGCC	AAGGCTTCTC	180
AC	GAGACCTT	TAAAAATATC	ACCAATAGCT	TCTCCATGCA	AATCAATCGT	CGCGTCAACC	240
A	AGGAACGCC	TCGTGGTGCT	GGGAATATCA	AGGGTGAAGA	CATCAAAAAA	ATCACCGAAA	300
		TGAGTCTTAT					360
		AACGCCAGAA					420
		GACGATTACA					480
		AACTAGTCCA					540
		AGGACTTGGC					600
		TCTACGATGC					660
		TCTTTGATGG					720
	AAACACAG						730
							730

#### (2) INFORMATION FOR SEQ ID NO:230:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 535 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:230:

245						
CGATAGCAAT	AGTTGTTCGG	CCCTGTCTCA	TCTTCGCCAG	AGAAGCTTGA	ACCAAACTTT	240
TGCGTCCCTT	ATCCAAGACA	TAGATGCAGT	TGGCGTCTTG	AATÄGTAGAA	AGGCGGTGAG	180
MCATCTIGIG	ATAAGTTCCT	CCCAGAGCCA	AGAGTTCCTC	ATGGGTTCCA	CTCTCGATAA	120
A C A DODDONO				0000000	IGCMANCIAT	60
CTGACATGGT	TTAAAGAGAT	TTTCAAAGAG	TATCGGCCAT	GCCCCTCCC	TGCAAACTAT	

CTGTTTCAGA	GTCAATATTG	GCTGTCGCTT	CATCCAAAAT	CAGGATTTTA	GGCTGGCTGG	300
CGACTGTTCT	AGCAAAGGCA	AGAAGCTGGC	GCTGCCCAGT	AGAGAAGCTC	GAACCACGCT	
CGGAAACAGG	GGAGTCGTAC	CTCTGAGGAA	CTTTCTTC A AT	777C170C1C	GCATCCACAA	360
AGGCTGCCGC	AGCCTTCAAC	CTCCTCATCA	OTTOTTONAT	AAAGGAATCT	GCATCCACAA	420
TTA ATTACTOR	COMPLETE	CIGCICATCA	CIGATTTCTT	GGTACATGGC	GAAATTGGAC	480
TIMATAGTTC	CCTTATAGAG	AGGTCCTGCA	GAACCAAACC	GATGTTTTTT	CTCAG	535

## (2) INFORMATION FOR SEQ ID NO:231:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 791 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:231:

CGGTTAAATC	GAAGGAACAA	TCGCCATCAG	GATAACACCT	ACCCACCOMA	CCCM1 monno	
CAGAAAATGC	AGACTICACAA	Maca coca ee	orthinicator (	ACCCACCCIA	GCGTATCTTC	60
	AGACTCAGAA	TAGACTCATT	CTTTGTCTTT	CCCTTACCAA	CCACCAGACT	120
CGCTAACAGA	TTGATAGTAA	TCGCAATAAT	TCCTAACCAG	AGAATCCCCT	CATCATTGAC	180
TGGTTGCGGA	TGCAAAATCT	TCGTGACATT	TTCCAAAATG	ACTACAACAC	) COCEDOMO .	
GAGAATCACA	CCTCTTACCA	ACCCMOOMAG	2100200110	NCINONACAG	AGCCTGTTAC	240
	GCTGTTACCA	AGGCTCCTAG	CAGGCTAAAT	CGCTTATAGC	CCAAGGTGTA	300
CIGATIGICT	TCTTCACGAT	TGGAGATTGT	TTCTAGAAAA	GCTGATATTC	CAATTGCAAT	360
CGCATCTCCC	AAGTCATGCA	CAGAGTCAGC	AAGAACAGCG	СТАСААССАА	A TTA CTCC A CC	
TGCAATAAAC	TCAACAATGG	САТАВОТОВВ	3.000m3.3.03.3.0	CINOMICCAN	ATACICCACC	420
THE THE COMMO	101-101-1100	CATAMOTOM	ATTTAAGAAA	AAAGCCACCC	AAACAGCATA	480
TITIGCCTTC	ATATTTCTCA	TTCCTTTGTT	ATAATAGATT	TATGAACACC	TTGTTCATTA	540
TCATTATCCA	CTAAAACTCA	AAGAAAGGAT	AGAAGCAAAA	CGTCAGCTTTT	እጥጥር እ ርጥጥ <b>ር</b> ጥ	600
GAACAATTTG	CCTTAAGTGT	CCATATCACT	3 3 C 3 MMC 3 C C		ATTCAGTTCT	600
A A A C C C A M C M	10011110101		AACATTGACC	GCCGTATCAG	CAAAACCAAA	660
AAAGCCATCT	ATCAAGCTTT	TATACAACTT	TTGAATGCTA	AGGGCTACGA	GGCCACTACT	720
GTTCAGGATA	TCATTGATCT	CGCAGATGTG	GGACGATCCA	ССТТТТАСТС	ጥር ልር እነርጥ አጥር	780
AGAGTAAGGA					*CACIALIATO	780
	_					791

## (2) INFORMATION FOR SEQ ID NO:232:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 522 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

:.

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:232:

CTCAGGCGAT	TACTAATTAC	ATGACTTCTG	CCTCAAACTT	TAATGTCGAT	GAGGCTAGCC	60
AATTCATTCA	ACAATTTACA	ATTACAAAAC	AAATCGAACA	AGTAGAAAA	CTATTAGAGG	120
					GGCGCAGTAC	
						180
			CAGACCTATC			240
GTTGATGATG	GTGCAACAGA	TGAAAGTGGT	CGCTTGTGTG	ATTCAATCGC	TGAACAAGAT	300
GACAGGGTGT	CAGTGCTTCA	TAAAAAGAAC	GAAGGATTGT	CGCAAGCACG	A A A TIC A TICCO	
ATCAACCACC	CMC1 CCCCC1			COCMACACA	MAMIGATGGG	360
A I GANGCAGG	CTCACGGGA	TTATCTGATT	TTTATTGACT	CCAAATGATT	ATATCCATCC	420
CAAGAAATGA	TCCAGACCTT	ATATAACCAA	TTAATTCCAA	CAACAAROOO	221	
10000000			ARTICCAA	GAAGAATGCC	GGATGTTCCA	480
AGCTGTGGTG	TTCATGAATG	TCTCTGCTAA	TGATAAAACC	CC		522

## (2) INFORMATION FOR SEQ ID NO:233:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 589 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:233:

TCGGAACAGG	GGATAATTTT	CATTAATAAA	ACCCAAAATT	TTTTCATGGA	GGTAAACTTT	60
TCATAACCCT	TTTTCAAGGA	AAAAATGGCA	ACCTACTAGC	TAATAAACAA	GGAGCTTTTA	120
GTGGAAAATT	CGGTATAAGG	TAAAACTATA	CCCTAACCAA	TTGAAATAGC	TATTAGCGAC	180
TTTCTCTGAA	ATATGGTATG	ATAAAGGATA	TACAAGGAGA	TAAAATGAAT	AATAATTTAC	240
TGGTATTACA	ATCAGACTTT	GGTCTGGTTG	ATGGTGCGGT	ATCGGCTATG	ATTGGAGTGG	300
CTTTAGAAGA	GTCTCCAACC	TTAAAAATCC	ATCACTTGAC	GCACGATATC	ACGCCTTATA	360
ATATTTTTGA	GGGGAGCTAT	CGTCTCTTTC	AGACGGTGGA	TTACTGGCCT	GAGGGAACGA	420
CCTTTCTATC	GGTTGTCGAT	CCAGGTGTCG	GTTCGAAACG	TAAGAGTGTA	GTTGCCAAGA	480
CACCEMEGGA	ATCAATACAT	TGTCACGCCA	GATAATGGGA	CGCTTTCCTT	TATCAAGAAA	540
CACGITGGCA	TTGTAGCCAT	TCGTGAGATT	TCTGAGGTGG	CCAACTAGG		589

## (2) INFORMATION FOR SEQ ID NO:234:

## (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 730 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

•

## (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:234:

		AAAAGTACCA					60
(	GATGAATTTC	ACCGGCAACC	ATACCAGCAT	ATCCGTCATA	GATACCAAAC	ACTTCCATTC	120
(	CTTCTGAAAT	TGCTTGACGA	ACAACTGCAC	GGATAGCAGC	GTTCATACCA	GGTGCGTCTC	180
(	CGCCACTAGT	CAAAACAGCA	ATACGTTTCA	TATTGGTTTA	TGCTCCTTTT	TCTTTTAACA	240
•	ITCTTTCTTG	ATTATATCAC	ATTTGATTTT	AAAATTCTTC	TATTTTCCGT	ATTTTTAGCG	300
i	ATAAATCGTT	TTCATAACGA	TTTCATTCAA	TTTCTCCTCT	AATTCATTGG	ATTTAGCTAC	360
1	<b>AAAATGATG</b> G	GGAGAAACGA	TGGTTTTCTG	TTCCTCTTCA	TACCGGATGA	TGACTGGGAT	420
•	rgggccttta	AATTGTTCTA	AAATACGTGA	AATTTCTTGA	TCCGATTCAT	GATTTTTCAC	480
(	CTGTATCCAA	AAGCGTTCAG	CAACTGCTTC	TCTTATTTCT	TGTGCAATCA	TTTGCAAACG	540
(	CCATCACGT	GATTGTATTT	TTCCTTTTAC	ATAGTAGAAG	GCTCCCTCTT	TTATTTCCTG	600
		CGATATAAGT					660
		AAGGCCATAT					720
	TCAACCAAT						730

## (2) INFORMATION FOR SEQ ID NO: 235:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 823 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:235:

TGTGATATCT	TNTGCTTNGA	AGGNACCTAA	CGTGGCGGCT	GTCGCTCGAA	ACCAAGCGGT	60
CATCTCCGAG	GAGAAGGTAT	TCTCCTTCTG	GGAACAGTAA	AGCTAAAGTT	GGTGTTGTAG	120
TTGACATCAA	CNGTGAAGGC	TTGGGCTTTT	TGAGCGATAC	TTCTAAAGAA	AGTTCCTTTA	180
TTTCCTTCAA	AGCCCTTGCC	TGAGTAAGTG	CTTTGGAGTT	TGTCATCCTT	GAAGCGTTTG	240
ATATAGTCTG.	CTAGATAAGG	CTCGTCCGTT	TCTTTGTCAT	TGGATGTAGG	AGTTTATTCA	300
TTTTTCGTAA	CGAATGGTGT	CGCCAGGCAT	TCCAATCACG	CGCTTGACGA	TGTCCTTATT	360
GCCATCTTCC	TCATGGGCCA	CCACGATATC	AAAACGGTCA	ATAGGAAGGT	GTTTTACAAC	420
GAAGAGAATT	TCGCCATCCG	CTAGGGTCGG	ATCCATGGAA	TGTCCTTCTA	CGCGAACATT	480
GCTCCAAAAA	AAGATACGAC	TTAAAGCTAG	TAATGACAGA	ATTAGGAGGA	ACAGTCCCCA	540
	AAATTTTTAA					600
	TTAAAGTGCA					660
	CTAGCCACCT					720
	CCCAGATTTT					780

AACTGCGACA GACTAGTATT TGCCCTCAGC CTTTTCTTCT AAG	823
(2) INFORMATION FOR SEQ ID NO:236:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 512 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:236:	
CTTCTAAAAA GTCAGCATAC TGCTTTTCGC TAATATCCAT AAATTCAGGA TCATAGAATG	60
AAAAGGCTTG GTCTAACTGG CTGTAGGAGT GTCATGGCCT TGGCATAGTA CTCTTGATAC	120
TTAGCTTCAC GTGTATCCTG GTCATTCTTC ATATGAGCAT AAACGTAAAG CTTCTCCATC	180
TGGCGTTCCA TTTCAAGAGA AAATTCAGTG ATTTCTAGTA GGTTATCCGC ACTATCCAAG	
AGATGGCCTT CATACTGGGC TACTGTCTCC AATTGTTCTG TTAAATCTTT TAAGGCTTCT	300
TCCCAAGCCT GGTCAGTTGG GTAGATCGTT GATAGATCCC ATGTATCTTT TTCATTTATT	360
TCATTTCTTT GTAATACCAT TAGATTCCTC CATCCTTTCT ATTCTACCAT ATTTTCAAG	420
AAATATTGCT GATAAAAGGC TGGTGGATAA AGCTTTTGCC AATCATTTTG AGGATTTTTT	480
GGGTAATAAG GTATAAAAGT GCTGAATAAT AA	512
(2) INFORMATION FOR SEQ ID NO:237:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 544 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: single	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Genomic DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:237:	
CTAATAATAA CGATTTTATG ACCAAGATGG TCATGGTCTG ATTGAGTGAG CCCGCGATAG	60
AGTCGAAGAG TCGAATGGCT GAAGCATTTG GGACAACGCT GGACACCGCA GATTGATTCA	120
TAAGCAAGCC CGCCTGACTT TCGATACTAG TTGCACTGGT ATCCCTTAAT GAGACCAGAT	180
AAGTGTTGGC TTGGGGTAGC TGTCCGTAAA GTTGCTCATA GCTAGCCTGA CTCATATAAA	240
TAAAGTGACC AACGTAGTTC TCAGTAATAG CAGCGACCTT TAGTTCCTGA CCTTCAATTT	300
ATAAAGTCTG CCCAACCTTG ACACCTGCCA GCTGGGCGAG TTTAGCTGTA ATAACGATGC	360
CATCTTTTAA TGTCAGCTCC TGCTGATGAT GTTGAAGATG GATAAAGGGA GTCAAATCTT	420

249

*-*:-

CCTTCTCTAT	CATCATAAGA	GTAATGTTTT	GAAGACCAGC	CTTGCCTTTG	AAATCCTTGT	480
CTAGCGTTTT	AGAATAGATT	TTCTGGTAGG	CTAGTATCTC	CTGCCCTTTC	AACACTTCTG	540
CTAG						544

- (2) INFORMATION FOR SEQ ID NO:238:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 814 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:238:

C	TGGCTTTGT	TTGATGAAAA	AGATCAGTTT	GTCCAAACAG	TGACCATCGC	TAGCCACCGT	60
A	AACAGAAGA	ACTTTGACAT	TATTAAATTC	AAAGATATGT	ACCATATCAA	TACTATCGAA	120
		GATACAGTCT					180
G	AATTTTACT	ATCACGAGAT	TATCGGTTTG	GAAGTCTATG	AGGGTGATAG	CTTGGTTGGA	240
A	CCATCAAGG	AAAATCCTGC	AACCAGGTGC	TAATGATGTC	TGGGTGGTCA	AACGAAAAGG	300
C	AAACGTGAT	TTGCTTTTAC	CTTATATCCC	ACCAGTGGTT	CTCAATGTTG	ATATTCCAAA	360
		GATGTGGAAA					420
		GATGTTTTCT					480
		TATCCAGTAT					540
		CCTACAGAGG					600
		CTATTGAAAA					660
		AGGCTTATGC					720
		AGGGTTATGA					780
		TCCTCACTGG					814
							07.4

- (2) INFORMATION FOR SEQ ID NO:239:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 727 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:239:

*:* .

	NACTTTCTGA					6
TCCCACTTCC	ACTTCCTGCG	TAGCCCATAT	CTCGCTGGGA	GAGGATTTCA	GCCGAATCCA	120
CAAAACCAGT	AATGGTATAA	GTATGGTCTT	TTAAAGAGGA	ATGACCCTCT	TCTTTTTCTT	180
TAAAACTAAT	CTCCTGTCCC	ACGCTGTATT	GGCCTTGCAA	ATGAGTGGCC	AAAGCGATTT	240
CCTTGTCTGA	CTGAGGAAGT	CATCCCTTTC	TTAGCTGAAA	GGTTGAAATT	CGCTCTGGTT	300
TGGAGTACAG	CCGAATGGCA	TCCTGCCCAT	TATCCATAGT	CACATCTGTC	AAATAGCCAA	360
	TGCGCCCTCC					420
	GACTGCCAAA					480
	GGGACTGGTT					540
GGATCAAGAT	GGATAAAAAA	CGCCCCTTGG	AGCCTGTGAA	GGACTGAATT	AAGTCCTTCC	600
aataagtttt	TCGCTTGATC	ATGCTAGTAC	TCCAAACTGT	CAATATCCTG	AGGATCCTCC	• • • •
TTGAGCACCA	CATCCTTGAC	ACTGGCATCG	TCCATATCA A	TC) CCC TO	AGGAIGCIGG	660
		c.localcd	IGCNINIGNA	TCACGCGATC	AGCAATGGGC	720
GCCAAAG						727

## (2) INFORMATION FOR SEQ ID NO:240:

## (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 607 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:240:

CTCAAAAAG	AGTAAAGAAA	GAAGAAAACA	GTCCTTTTGC	TGGCTTACAA	GGACTATTTG	60
ACGGAGATG	ATAATGATCT	TGTCAAAAAA	ACGAGCACGA	AAGGTGCTAG	AAGAAATCAA	120
TGCCCTATT	CAAGATGCCA	AGCATAGTAA	AGGTAATTTT	ACCAATCATT	AAGATACTCC	180
TGGGAGCGG	* AATGTAATCA	GCCCAGAAGA	CAGATGCAAC	GGTAAATAAG	ACCACACCAG	240
GTCTCTTTGT	TGTATATCCA	ACACCCCAAA	ATATGTATGT	AGCGACAGAG	AGAGAGATTG	300
CTAAACATAT	TTCTCGCTTG	GGATGGTATC	GGAATAAAGA	TAAATTCCTT	AAAAAATGTG	360
CCCAACAGTT	AGCTAAACGA	TTTTGATGGT	CAAGTCCCTC	AGACACGTGA	AGAATTGGAG	420
AGTITGGCAG	GTGTTGGTCG	CAAGACAGCC	AATGTTGTCA	TGAGTGTAGG	ATTTGGGATT	480
CCAGCCTTTG	CAGTGGATAC	TCATGTGGAG	CGTATTTGCA	AACACCACGA	TATTGTCGAA	540
	CGCCACTTGA	GGTGGAAAAG	CGGGTCATGG	ATATCTTGCC	GCCTGTTCAG	600
TGGTTAG						607

## (2) INFORMATION FOR SEQ ID NO:241:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 398 base pairs
  - (B) TYPE: nucleic acid

(C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:241:

CTCATAGTAT	TCCTCTGTTT	CTTCTTTAAT	CCCCAMACCC	100011000	GAAAAGACAG	
100010maga			CCOGNINGGC	AGTCAATCCT	GAAAAGACAG	60
AGGCACTCCC	CCTTTTAAAT	CTTTTTCCTT	ACAATTCAGC	AAGAATCGCT	TTAAGCAAGC	120
CTTTGAAATC	ACCTTTAACA	CGTTCAGTCA	CONTONIA		TTGAGTTCTT	120
CMMCC11100	100000111		CITCIACAAC	TTCTTCGTGA	TTGAGTTCTT	180
CTIGGAAACC	AGCCGCAAAG	TTAGTGATAC	ATGAAATTCC	CAGAACTTTC	AAGCCAGAGT	240
GGGCTGCCAC	GATAACTTCA	GGAACCGTAG	ACATACCANO	TGCATCTGCT		240
<b>ТЪТЪСССК</b> АС	C) ) mmmomoo		MONTACCAMC	TGCATCTGCT	CCCAGTGTCT	300
ININGGGAAC	GAATTTCTGC	TGGTGTTTCA	TAAGTCGGAC	CAGTTAACTC	CGATATAGAC	360
ACCTTTCCAT	CAAAGCTTGA	ATATTAAGTT	لا ت لا بلمانيليمليمل			300
			AGA			398

- (2) INFORMATION FOR SEQ ID NO:242:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 533 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:242:

-	CAGTTCAACT	GGTTGCAAAT	GCAAGAGCCA	AAACCCCCAA	3.00000000000	00100000	
	3 3 m 3 C C m C C C	3.03.0000000			ATCCTTCTGG	GCAGTTCTAA	60
•	MATAGE TGGG	ACACTCTGCA	ACTGGATCTG	CATCTTTTCT	CTATCCAAAT	TTCAAAGCCT	120
1	GCTGACTGAA	ACCCGATAAA	ATCATOTOCO	000000000000000000000000000000000000000			120
				CCGCAAACAA	CTCCTGACTG	ACTGTATCGT	180
•	<b>SCAAATCCCG</b>	AGCAATTCGC	TTCCGTTCTT	TCTCGATGAT	ע אינייי אור אור איניי	TCACCA NOCO	
•	TATGATTTC	א האומומומוט א	3.C3.C0000000		11cc1c11cA	TORGCAAGGC	240
		AGCTTTTTGA	AGAGCT-TC-TG	TCAAAAGGTT	AAGTTTACCT	GATAAGGACT	300
•	<b>IGAAACTGGC</b>	ATCCAAATCT	GGATCTGCAA	CCTGAACCAC	TTCTTCCCC	00011511	
•	COLOGNOS.	3.COC@003.mm		TO LOS MICHAEL	TICTIGCCCT	GCCAATAAAC	360
•	JC 1 1 GAGAII	AGCCTGCATT	TTTCTTAGAG	AAAGCTCTTC	GATCCCTCGC	CAAAACAGGG	420
(	TAAGAGACA	GGTTATGGAC	ATCCTCAAAA	003303355			420
_			ocionana	CCAACAATAA	AAAGACAAAT	TTTTCTGTTT	480
1	TTCGACATC	GTGCAAAAAG	ATAGACCAGT	CAAAATCAAG	TATTTCACC	220	
					**** * 1 CCAGC	AAG	533

- (2) INFORMATION FOR SEQ ID NO:243:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 420 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single





- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:243:

CTACCAAGAG	AGCCAGAATA	CCCATAGAAT	AGCTATAAGG	TTTCAGTCAG	AAAGGCTACA	60
ACTTGCATCA	GACCATTTAA	AGCCCCATGA	GTTTGGTACA	AAGGCAATCA	AGATAAAGAT	120
	AGAATAACAG					180
	GATAGTTTTT					240
	TAACTCCTCT					300
AAGATAGTTG	TCATTAAGTG	GTCTTGGCCA	TGCATCATGG	TTACACTATA	AGCCAAGTCC	360
TCACCTGAAG	CTTCCTTAGT	CAATACACTT	GTTTGCGCGT	GGTGAGCCTC	TGCAATACAG	420

- (2) INFORMATION FOR SEQ ID NO:244:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 513 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:244:

CTGTCTTTGA	AAAGGAAGGT	AAACTGCTTG	AAGCCCAGCG	TTTGAAACAG	CGGACAGAGT	60
ATGATATCGA	AATGTTGCGT	GAGATGGGCT	ATACCAATGG	GGTTGAAAAT	TATTCTCGCC	120
AACATGGATG	GACGGAGCGA	AGGAGAGCCT	CCTTATACGC	TTCTCGACTT	CTTCCCAGAT	180
GATTTCTTGA	TTATGATTGA	CGAGAGTCAT	ATGACCATAG	GGCAAATCAA	GGGCATGTAC	240
AATGGAGACC	GTTCGCGTAA	AGAAATGCTG	GTTAATTATG	GTTTCCGTTT	GCCGTCTGCT	300
TTGGACAATC	GTCCTCTCCG	TCGGGAGGAG	TTTTGAGAGT	TCACGTTCAT	CAGATTGTTT	360
	CGACACCTGG					420
	CCAACGGGAC					480
GATTGATGAC	CTCTTGGGTG	AAATCAATGC	CCG			513

- (2) INFORMATION FOR SEQ ID NO:245:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 760 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear



### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:245:

MCCC1						
TCGCAGACAA	ACCAAGGATG	ATATGAANCC	ATTCAATCTC	TATGAAGCAA	GTTGAAGCCA	60
AGGAAGAAGA	GCAAGAGCAG	GCTGAACGAG	AAGCTGAGAG	TAAGAAAGAA	CCTTACATCT	120
ACTACATCCT	TTCTTTTGCT	AAGTTGGCTG	ACTTGGTAGC	TTTTTCCAAC	ACAGTGACTT	
TTGAAATGGA	AACTTCTGAA	CTCTACAAAA	TGAACCACCC	COLUMN	ACAGIGACIT	180
CAMPONA ORG	010010000		1 GARCGROCG	CTATTATGGT	CTCTTTGACC	240
GATTGTAGTG	GACTATTGTA	AATCATCCAA	CGGCCCATAT	CCAGCTTGGC	TCTGATGGCC	300
CGAAATGCGC	GAGTTTGCAG	ACGATAGTGA	TATCAGTCGC	TCAGTCTTAC	AACAGTATCC	360
TCAAGTCTTG	ATGAGTCACG	ATGCAGTGCT	CAATICTICCAA	11100000		360
C3 3 3 CCC019701			CHRICIGCAM	AAATCGGCTA	ATCCTTTCTG	420
GAAAGCININ	TTNNNATTTT	AANANNAGCG	AATCGTCTGA	TCCNTTTTTT	CTTTTTNTAC	480
TGATATAGTG	ATTTACTATN	ATANGAATTT	TCACAANNTT	СТСТТАТААТ	ெரும் முக்கால் மாத முக்கால்	
AAAANTTTCG	ANGAGATAAN	ጥስ ጥእነ እ ር እ ከመመ	<b>61111</b>		OGCIAIAIIN	540
	ANGAGATAAN	TATMACMMTT	CANATIGCTT	TNCTTTGATT	TGGTTNNNTT	600
GCAANTGGTG	TGCCTTNCCT	CCNTNNANGG	ANAATGGAGG	ACTANTCATT	NCCNTCCCCN	660
CNTTCANATA	CCCAANTTGC	י נינויים ע קיביצים קים	CMCCCOVOLDO			000
COCHOO		- III I GIAIIN	GICCONGATC	ATCATNACTT	CNCTCTCTTG	720
CTCNCTCCNC	GGGAATGATT	TTTNCTTTGT	TCCCATCGTT			760
						760

### (2) INFORMATION FOR SEQ ID NO:246:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 452 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:246:

CTGGTGAAAA	AGAATTCGCG	CTTGGACTTT	CAAACGTGGT	ATGAAGGCTC	CTCAAGCAGC	60
TGGTATTATC	CACTCAGACT	TTGAAAAAGG	CTTTATTCGT	GCAGTAACCA	TGTCATATGA	120
AGATCTAGTG	AAATACGGAT	CTGAAAAGGC	CGTAAAAAA	GCTGGACGCT	TGCGTGAAGA	180
AGGAAAAGAA	TATATCGTTC	AAGATGGCGA	TATCATGGAA	TTCCGCTTTA	ATGTCTAAAA	240
ATTAATAAAT	GGTGTCAATT	AGGTTGGAAA	AAAATTCCAA	CCCTTTTGGC	TTTTGAAAGG	300
CARACACA	GACCAAATTA	CTTGTAGGCT	TGGGAAATCC	AGGGGATAAA	TATTTTGAAA	360
TTACACACCA	TGTTGGTTTT	ATGTTGATTG	ATCAACTAGC	GAAGAAACAG	AATGTCACTT	420
- INCACACOA	TAAGAATATT	TCCAAGAATT	CG			452

⁽²⁾ INFORMATION FOR SEQ ID NO:247:

### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 447 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:247:

ACTITICCCA CAA	ACCAGAGG GCCCTAGGA1	GACAACAACT	TCCCTTTTTTTTT	C1555555	
GAAAGTCCTT GGA	AGGATGGG ATTGTCTCCG	: AAGCAmmon	TCCCTTTTT	GATTTCTAGA	60
ATAGTTTCAG ACA	TTTAGTT COTOCA ATOM	- MAGGAIIIGT	TTAGTTCCTT	GATTTCTAAG	120
CCCTACCAAA CTC	TTTAGTT GCTCCAATGT	TTTTCTAAGT	GAGTGGATAG	TTTGGAAATA	180
COCINGCAAA CIG	CGAAATA TAAGACTAGA	ATGGTTCCAT	AAACCCAAAA	TGAACCAGTT	240
GGGATGGTCA GGC	GATTGCT ATCGATGATT	TGTTGTCCAA	CTTTGGTCAC	TTCCACAACC	300
CCAATCAAAA CAA	CTAATGA AGTGGTTTTA	ATCATCCGAG	TGACAAGATOT	CAMACOOMOO	
GGTACCAGTC TTC	TTAAGAC TTGTGGGATG	ATGATGTGGT	ACTA A ACTUA	MINGCETGC	360
AAGCCGAGTT GCC	TGTCCAC TTTTCAA		ACTAMAGTNG	AACATTAGTC	420
					447

# (2) INFORMATION FOR SEQ ID NO:248:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 433 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

# (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:248:

CTCGTGCTCC	ATAAGGGAAA	TCTCCATCCC	<b>5010101</b>		CATCAAAGCG	
ATCTTC A A CO		-CICGNIGGC	TGACACGCCC	GTAAAGGTCG	CATCAAAGCG	60
MICTIGAMCC	GACTCAGGAG	AGGCGCCATT	GTGCAATTCT	AACAAAATAT	СССТАССАС	120
ATGAATCCGT	TCATCTGTCA	TTAGTCTAAT	CCDATICACTOR	00010000	CCCGINGGAC	120
GTGCGTACAA	TVCTTTCTTCC3 m	10010	CCARTCACTT	CGTAGCCATT	CGCTTCCAGT	180
	TCTTGTCCAT	AGGAGTTCCT	GCTAGCTTAG	AACCCTGTTT	AAGTGATACT	240
TTACGACCAA	CTGTATTGCG	CATTAAGGGA	TTGGCAAGGG	COUNTRALABOO	211222	
AGAATTTCCA	AGACTITICATICA	A TOCOMPONE		GIIIAAAACC	CAACTCCACT	300
300300	AGACTTCTGG	AIGC11G1CC	ACCACTTCTG	CAACAGGAAT	TGACACATCG	360
ATGATATTGT	CCATGACGAC	CTCCATTGTA	TGTTCTAATA	СТСААТСААА	ATTCARAGERA	
CAACTAGAAC	TTG				A I CHANGAAC	420
						433

# (2) INFORMATION FOR SEQ ID NO:249:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 511 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:249:

CTTGTCATGT	TTTAGCTGGA	AATTTGAAAA	AGGTAGCTTC	TACCATGTAT	TTGTTGACAC	60
CAGTGAATGT	TATTGTAAAT	GTTGAAGATA	TCCGTTTACC	AGATGAAGAT	CAACAGGGTG	120
AGTTCGGTTT	TGATATGAAG	CGAAATAGAG	TACGATAATG	ATTTTTTTAA	TTCGTATGAT	180
			TTTGGTAGCC			240
			TTGGATTGTA			300
			AGCGGGTCCT			360
			AAAACCTAGT			420
			TTTCTCCCAT			480
	AAATGGAATG			MOTHOMITIC	GICCATITCE	480
LIGHCHNOOG	WWT GOWYT G	GATAAAGAAG	G			511

- (2) INFORMATION FOR SEQ ID NO:250:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 588 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:250:

					60
TTATTTAGGA	CATCATAAAT	CAATTTCTCG	TATGGTTCTG	GAGAAGCACC	120
					180
					240
					300
					360
					420
					480
				Gatgatagaa	540
ACTTAATCTT	TTCAGCACAA	ATCTCGTCTT	TTGTGAAG		588
	TTATTTAGGA GCGTCTGTAC CCATTTAGGC GCAAGTGGTT TTCCTTTTTC CGATCGCTGT ACATTTGGTT IGTCCACGGA	TTATTTAGGA CATCATAAAT GCGTCTGTAC GATAATCAAG CCATTTAGGC TAAGAGAAA GCAAGTGGTT CTCCAAATAT TTCCTTTTTC AGTCAGTCGT CGATCGCTGT CTACAAAGAA ACATTTGGTT CGCTACGATA TGTCCACGGA TAAAGTGTTC	TTATTTAGGA CATCATAAAT CAATTTCTCG GCGTCTGTAC GATAATCAAG TGAGTTAGGA CCATTTAGGC TAAGAGAGAA GCCTTCTGTT GCAAGTGGTT CTCCAAATAT AGAATCCATT TTCCTTTTC AGTCAGTCGT TTACCTGTAC CGATCGCTGT CTACAAAGAA GGCACCAGAT ACATTTGGTT CGCTACGATA AGAGATGTAT TGTCCACGGA TAAAGTGTTC TTTGAGTTCT	TTATTTAGGA CATCATAAAT CAATTTCTCG TATGGTTCTG GCGTCTGTAC GATAATCAAG TGAGTTAGGA GCCAAGTTAA CCATTTAGGC TAAGAGAGAA GCCTTCTGTT GGTTGAATAT GCAAGTGGTT CTCCAAATAT AGAATCCATT TGTTTAAAGA TTCCTTTTTC AGTCAGTCGT TTACCTGTAC GGAAAAAGAA CGATCGCTGT CTACAAAGAA GGCACCAGAT GTAAAGGTTT ACATTTGGTT CGCTACGATA AGAGATGTAT TTCATGCCAT	CGGTCAATCA ACTTCCATGA CGCACCAACC TCATCCCAGT GGCTAAAGTT TTATTTAGGA CATCATAAAT CAATTTCTCG TATGGTTCTG GAGAAGCACC GCGTCTGTAC GATAATCAAG TGAGTTAGGA GCCAAGTTAA ATTCTTCTCC CCATTTAGGC TAAGAGAGAA GCCTTCTGTT GGTTGAATAT AGATGGTCAA GCAAGTGGTT CTCCAAATAT AGAATCCATT TGTTTAAAGA CGATGTTGAC TTCCTTTTTC AGTCAGTCGT TTACCTGTAC GGAAAAAGAA AGGATCTAAC CGATCGCTGT CTACAAAGAA GGCACCAGAT GTAAAGGTTT CAGTTGTTGA ACATTTGGTT CGCTACGATA AGAGATGTAT TTCATGCCAT CAATCTTACC IGTCCACGGA TAAAGTGTTC TTTGAGTTCT TCATCAGTTG GATGATAGAA ACTTAAATCTT TTCAGCACAA ATCTCGTCTT TTGTGAAG

(2) INFORMATION FOR SEQ ID NO:251:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 596 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:251:

GANAACACAA	CCAGAGTCAG	CAATAATCTC	CANGNCATAG	AAATACTCCA	TCTTTGTCAG	60
TCATACATCG	ACNAAGGTTC	TGTCTCTCCN	ACAATTATCT	CATCAAAACC	CTTGAAACAA	• •
AAGCATCATC	CGTCTGTGGT	GACAAGTAGA	AACCAAAA	CAIGAAAACC	ACGTAGAATC	120
TCTGAAAAGT	CTCTCCAAAA	TCTC2222	AAGGAAAATG	TCATGTCTGA	ACGTAGAATC	180
CAACCCACCC	CTCTCGAAAA	TCTCAAAAAA	TCAAACCAAG	AATCCNATNT	ATTAACCAAA	240
CARGCCAGGG	ACACACGCCC	TCGGGCAACT	ATTGGAAAAA	AAGGAAATGA	CCAAGATTAG	300
TATTTATGAA	TTGGTCAAAC	GAGCAGGTGT	TTCGCGTGCG	GCCTTTTATC	CC3 5 mms mcs	360
CTCCAAAGAG	GAAATTTCAG	AGAGCGTATT	TAAACGAACT	GTCCACAATA	TTATOCA LOS	
GATGCATCAT	TACGATTTAA	AGACAGACCT	TTATCTCCTT	MCCMMC1 CCC	TIMIGGAACA	420
GCCAGAAAGG	AAGCTAGAGT	AATTCAATTC	Comment	TGCTTCACCT	TTTCCGGGAG	480
GTCCAAGCCA	TCCACCA A DO	MATTERATIO	GCCTTGGATT	ACCATCTGGC	AAAAATCTTT	540
	TGCAGGAATT	TATAGAAAAA	TACCATGGGA	AATCGAAAGG	CGTCAG	596

# (2) INFORMATION FOR SEQ ID NO:252:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 521 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Genomic DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:252:

CTTGTCATGA	ACATTTGAAA	CTGGGTCGCT	TCTC A TOTOL	100001100	AAGGCAAGTG	
CC 3 3 TTCCTC 3	100000000		TOTGATTIGA	ATCTGAAGCA	AAGGCAAGTG	60
OCAATICIGA	ACCGGTCCAT	TGGTCAGAAA	TGTTTGCACC	TTGCTCAGTT	TGAGCAGATIA	120
CGCGAACATG	AAGTTTAGTT	באדיים בידיים	Th Common.		TONOCAGAIA	120
C3.00mmo		or restricted	IACCTTCTAA	GCGACCATTA	ACTGTAAAGA	180
CACCTTCCTT	AGCGTATTGC	TCTGGACGAA	TCGCATCCCA	TGCAACCTTA	CCCCAMCAAA	
CGTGACCATT	ТСААТСАТАТ	CECCCAACA		TOCARCCITA	GCTGATGAAA	240
	TGAATCATAT	GICCGAACAC	TTTCTGGTAA	TTGTGGTGCT	TCTGCGATTG	300
GAGTTGTCAC	ACTGACTTCT	TCAACTGAAA	CGATACCCTC	M) () () () ()		300
CTTC A ACCINC	3 3 mmoommos		CONTACCOIC	TACAGAGACT	TTTGCACGCG	360
CIICAAGGIC	AATTCCTTCA	ACTITACCTA	GTACTTCAAA	TGTGTGATAG	CACTOTACTO	420
TGTCTTTCGG	AATAGCTTGC	CAACTCACTT	M3 MC3 co		CHOICIACIT	420
01100000		CILICIANCII	TATGAGTTTT	AGGGAAACCT	TTGTCATACT	480
CAACTGTTAC	TGTTGCTGGA	AGACTTGGTT	CCTGATGCAA	a.		
		_	GILOCAA	Α		521

#### (2) INFORMATION FOR SEQ ID NO:253:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 541 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:253:

TAGAATGATG	CTCTGCTAGC	AGGATTATTC	ACGCTACAGG	TCACCAGAGC	TTTCTTGATG	60
				TTTTGCATAA		60
						120
				TTCTAGTAGA		180
GGCGCAACCG	GAGATTAAGA	AATCCAACTG	CTTGACCTTT	CTCAGAAAAA	GCCACTAACT	240
GAATTGCAGG	AACCCATCCT	TCAGGCAGAT	TAATCCCCAT	TTCCTGTTCC	TGATTGCTTT	300
CCAACCACTC	TTCATACACA	AAATTCTCTG	TATCCCAAAA	TCCTCCATCA	TGGGCTGATT	360
				CTTATCCGCT		420
				GAGCTGGCTC		
						480
	TCTTGTTTAA	AAATIGTTCT	CTGAAGCTAA	GCAAGCGTTC	TTTCTTACCA	540
G						541

#### (2) INFORMATION FOR SEQ ID NO:254:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 486 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:254:

CCTGCTCCTT	ATCTTTGCAG	TAATTGGCGT	TTTAGTGGCC	TTGATAGCTC	AATTTTACTC	60
AGCAAAGGCA	GCAGTAGGTT	TTGCTAAGGA	ATTGACAAAC	GATCTTTATC	GTCATATTCT	120
TTCCTTGCCC	AAGGACAGCA	GAGACCGTCT	GACAACTTCT	AGTTTGGTTA	CTCGCTTGAC	180
TTCGGATACC	TACCAGATTC	AGACTGGTAT	CAATCAATTC	CTGCTGTCTC	TTTTTACGAG	240
CGCCCATATA	TCGTTTTTGG	TGCCATTTTT	ATGGCTTATC	GAATCTCAGC	TGAGTTGACT	300
TTCTGGTTCT	TAATCATGGT	TGCCATTTTG	ACCATTGTCA	TTGTTAGGGT	TATCTCGATT	360
GGTCAATCCT	CTCTACAGTA	GTCTCAGAAA	GAAAACCGAA	CCAACTGGGT	TCAGGAAACC	420
CCCCACCAAT	TGCAAGGGAT	GCCGGGTTAT	TCCGTGCCTT	TGGTCAAGAA	AAACGATAGT	480

WO 97/43303	PCT/US97/07950
0 7 //43303	PCT/US97/07950

TACAGC	
	486

#### (2) INFORMATION FOR SEQ ID NO:255:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 581 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:255:

CMICMOINE						
CTACTCAATG	ACGACCAGCA	GTCATAACAT	CAGCAACACT	AATTCCCTTG	CCACCTTCTT	60
GCCATCCACC	TTCAAGTTGA	TGAGCAGCAA	CAGCACCACC	CCATAAAAAT	CTATCTTTAA	120
AAGTAGTCAT	CTTTTTTCCT	CCTGACTTTG	ATACTCTTAT	TATAAACCTC	AAACCAAAAG	180
ATGAAAACGC	ATTCTTTTTC	CTTATTGTTA	AGGAAAGAAG	TAATTTTTAA	TGGGAAATAG	240
AACAATATCT	TCTTGTATTC	TCGTAATGAT	ATCTTTACGA	TTTTCAATAC	TTCCAAACTA	300
CAAAAACTCT	CACAATAATT	CTAATTCCCT	GTGTCTATAA	ACGACTTATC	GCTTTCTGGC	360
ATCCCAGAAT	CATCCTCTAT	ATAACGTTCA	ACTTGCATCT	TGGCAAGTGA	TATTTTTTC	420
TTAAATCTAA	GATTTTCTGC	ATTGTCTTTG	ATTGATGATG	CTTATCTAAA	GCTTCTTGAT	480
TTATCCACTG	ATCAATAAGG	AGAATAGTTC	CCTCTTTTTC	AATTGGTAAA	AAATATTCGT	540
ATTTCAAGTT	ACCTTTTTGA	TTTCTAATTT	CTTCAACAAG	G		581

#### (2) INFORMATION FOR SEQ ID NO:256:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 417 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:256:

ACTCCTTTGT	AATTTTTTAC	TTTTCTTCTT	TTATGTGTTT	AAGATGATCT	GGATGGTCAA	60
TCTCTAAATC	AAAAATCTCT	GGAATAGAAC	TGTAGTGGAT	AATGCACTTG	ATACCCAACT	
GATTCATTTT	TTGTATGAAA	GAAGTATTCA	GATACCOTCO	The section	TCAATCTTGT	120
TCTTTCTTCC	ででであっていって	ywywcwoma	GATAGCCIGC	TACAGCAAAA	TCAATCTTGT	180
CATCCCATTTC	111A1CC1GC	ATATOTOTTA	GCATATCTAA	CATTATTGGA	CTTTCCATAT	240
CAIGCCAITG	ACIGITICIC	ATAGTCGCAA	AAACAAAGGA	AGTCAAATCA	GTCACTCCAA	300
CTACAATCTT	TGAAATGCCC	GTTTCCAGTA	TACTAGATAA	GTCAAAATAC	GCTGACGGTA	360
		_				

ATTCAATCAT CGTTCCGACT TTCCCAGTAA AACCCTGCTG AGGCAATACT GTAATAA 417

- (2) INFORMATION FOR SEQ ID NO:257:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 448 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:257:

CAATCCGATC	CCTGAACTCA	CTCCTGTAAT	GAGAAAACCO	MM1 00001	AATTCTAACC	
			GUGNANACCI.	TTAGTCATGC	AATTCTAACC	60
CAATCCGTTG	CCAAAACATC	ACAAACTGTC	GGGCTCCAAC	ATGGGAAAAA	CCTTCTCCTT	120
CGCCAGAAAC	GTTGATTAGG	AAATAAGGTG	TCATTTCAAG	TGCAAGCCCA	Trimper Curcus	180
TGGTATCAAA	CACTITICCACA	M) 00000000				100
TOOTHICKM	GAGTTGGACA	TAGTTTTCCG	CACCTCCCCA	ACCAGTTCGT	ACATATTTCC	240
TCTTAGCCTT	TAACCCAGGC	ACC A TOTO COM	01110000			240
		MOGNICICITY	CAAATGTCAT	GITTICCTCC	TTTAATTCTA	300
CATTCTTCAT	TTAATTATAG	CAAAAAACCA	COMPAND COO	000000000		
		CHERRACCA	CITIMIACGG	CITITITIGGAC	TGTGAGTTAT	360
TCAAACCTGG	CTACTTACTT	ACGGGCAAAT	TATTCCCTCC	ACCCAACAMM	***	
0015555				WOOCWWOWI.I.	AAATTTCATA	420
CCATTCTTTT	CTTGTTAAGC	TAAAGTTT				440
						448

- (2) INFORMATION FOR SEQ ID NO:258:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 679 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Genomic DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:258:

- 4	العالا في المحالم المحليات الإيماليات	MCCOMOCALA.					
•	CINCILGIAL	TGCTGGAAA'I	GGTATAAGAT	GAAAATCTAC	<b>AAGTCACTAA</b>	TTTTCATATA	60
ì	ACCAAAAAAC	GAACAGGCTC	TTTTTCTGTT	ATTCAGAAGA	CAACTITICITITIC	GTTTTTATCT	• •
,					Caric 11011C	GITTITATCT	120
	IGATT-TCTT	AAAAAGCTCT	ATATACATAG	GGATTTTCTG	GTTTATCGAC	TTTGGTAAAG	180
(	CTGTCGATTT	CCAAGGTTGG	AAGGTTTTCT	TTCACTTOTA	M) moom, one	ATTGACCAGT	
				TIGNOTICIT	TATGGTAGTG	ATTGACCAGT	240
-	ITTCCTTTGG	CTGAAATCCA	AGTGTTGTTT	TCATACTGCC	GGGTATTCCC	CTTCCCTCACA	
,					COGINITACE	CITGGICAGC	300
•	MICCATAGA	CACCAGAATC	TGCGATGCAG	TGAATAATGC	CGAAGCGGAA	CAAAAATTCC	360
c	ייזי ע רוביבאוויים עיוני	C3.000000000					360
•		GACTGGGGTC	ATTATAGACA	AAGCCTGTTG	AACTGGATTG	TCTTAACCCT	420
C	CAAATTCATC	TGGGATAGTC	CTACATACCC	MCC1 MC1			420
		TGGGATAGTC	GINGATAGCC	TCCATGACCT	CCCATATAGT	TTTCATTAGT	480
			_				200

					540
GAAAAATAAG	AACTGGTATC	TGGTTTCAAA	TATTGGCTTG	TCGTCCCTTC	600
ATGGCTAGAT	CCGTTCCTTC	CGATAGGGGG	AAATGATAAC	CTTTAGCAGA	660
GAATCCAAG					679
	GAAAAATAAG ATGGCTAGAT	GAAAAATAAG AACTGGTATC ATGGCTAGAT CCGTTCCTTC	GAAAAATAAG AACTGGTATC TGGTTTCAAA ATGGCTAGAT CCGTTCCTTC CGATAGGGGG	GAAAAATAAG AACTGGTATC TGGTTTCAAA TATTGGCTTG ATGGCTAGAT CCGTTCCTTC CGATAGGGGG AAATGATAAC	CTATCTTGGG ATAAGTATTT ATCCGCCGCC GTTCGCATTT CCTTTTCATA GAAAAATAAG AACTGGTATC TGGTTTCAAA TATTGGCTTG TCGTCCCTTC ATGGCTAGAT CCGTTCCTTC CGATAGGGGG AAATGATAAC CTTTAGCAGA GAATCCAAG

#### (2) INFORMATION FOR SEQ ID NO:259:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 521 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:259:

	_					
CTGCTATCAA	GACAGTATTA	CCGCTGAAAG	AAACAGCTTC	ACTAAAAAGG	CGCAATTGAA	60
AAATAAGACG	GGATCACGAA	CTCCCGTTTT	TCTATAAAAG	AAAGGAAATG	GGATGAAAA	120
ATTAGTCTTT	GTCTGTCTGG	GAAATATTTG	CCGTACCCCT	ATGGCCGAGT	TTGTTATGAA	180
ATCAATGACA	GATAACTACG	AAATCCAAAG	TCGAGCAACT	TCCTCTTGGG	A A CATCCCA A	240
TCCGATTCAT	AAGGGGACTC	AGGGAATTTT	TCAAGAGTAT	GAGATTCCTT	ARCATOGCAA	
CAAGACATCG	СттСасатта	GTA ACCA ACA	TOTALONGIA	GAGATICCTI	ATGACAAGAA	300
CC3 CCCmmos	CITCHOATIA	GIANGGAAGA	TTTTGAAGCC	TTTGATTATA	TTATCGGAAT	360
GGACGCTTCA	AATGTTTCCG	ACTTACGTCA	GATGTGTCCA	GTACACTGTC	AAGATAAGAT	420
TTACTCATTT	TCATCTGAAA	GTGTTCCAGA	ACCTTGGTAT	ACAGGGAGAT	TTTGAAGAAA	480
CCTATCGACG	TGTTCAAAGA	AGGCTGTCAA	CTTGGTTAGA	A		521

### (2) INFORMATION FOR SEQ ID NO:260:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 515 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:260:

CTAAACGAAT	TTCCATCTTT	TTTCCTCATT	TCTGACTAGT	TTCTCCCATC	ATAGCATAAT	60
TTAAGTATTT	CTACAAGCAG	TTAAAACTTG	ACTTTGTGTT	ייישר עינייט אוייניי	TATAATCTAG	
TTATCAAAAC	TATATAAAA	GGAGTTGAAA	ATGAAAACTA	CCALALALCCALY	CCCAAAATGG	120
GCAGAAATTC	CAAACATTGA	CCTCTATCTG	GACCAGGTTT	TCCTCTATCT	CAATCAGGTC	180
				IGCICINIGI	CHAICHGGIC	240

TGCGCCCCTA TCTCTCCTAA TAAAGACAAG	GGCCTAACAG	CATCTATGGT	CAACAATTAT	300
GTGAAAAATG GTTACCTGAC AAAGCCTGAC	ААААААААТ	ACCAACGCCA	ACAGATTGCC	360
CCGTTTGATT GCTATCACAA CCCTCAAGTT	CTGTATTTTC	CTATTCCAAG	AAAATAGCCC	420
CAGACACTTA ATACTCCTAC AAACTCCAAG	CCAAGTTTCC	AGAACCAACT	CCTACGAAAG	480
CCTTTGTTGG AACTATATGA ACCCAGAATT	GACCC			515
(2) INFORMATION FOR SEQ	ID NO:261:			

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 452 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Genomic DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:261:

CTTGTTGGAT	ACAATCTTTG	AAGAAACACA	AAAGGGAGAT	GACTAAGATG	AAACGATGGA	60
TAGCATTAAA	TAAGATAGAA	TTTCTATTGA	CCAAACGGCA	ATCAGTCTAT	ТАТТТАТТАТ	120
CAGTAGGGAT	GCCGACAGCC	TTCTATCTAT	TCTTTTCTAG	CATGTACCAG	GATACTCCAG	180
GTGGACCCGC	GAATTTTATG	CGTGATTATC	TTATCTCCAT	GACTGCCTTT	TCTATGATGT	240
CGACAGCTAT	CTTCTCATTT	CCAGTTGTTT	TACATACCGA	CAAGATGAGC	AACTGGCAGA	300
AAACATTACG	TCATAGCCCT	GTTAATATGG	TAGAATATTA	CCTATCAAAG	ATAACAGTAT	360
GCTGGGTTGA	TTATTTGGTT	TTCCATTCTT	GGTGGTTTTT	CCTCAGTTTG	GGCTTTTTGT	420
TAGAAGGTGT	TGGACTTGTT	CTCTAACAAA	GA			452

### (2) INFORMATION FOR SEQ ID NO:262:

### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 571 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Genomic DNA

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:262:

TAACTCTGCT ATAATGGAT	TATTCCTTTT	TGTGTTTACA	CAATTTATTT	ТАТАСТАССА	60
AAAAAACAAG GTCAGGATT	TGTTCCTGAC	CTTTGACAAC	TTTACCGATT		120
ACATAGCGCT TGTACCAAAT	GTTTACATAG	GCTTCTGAGA	AAGGACCACG	TCCATTCTTA	120
ATCCAATCAA CAAGAATTT	GACATGTTCT	ТТТААААТАТ	AGTCCA AGTC	ATCACAATTA	180 240
				WI CUGUNIAN	240

TTCATTTTGC	GTTTGTGACG	CTCGTACTCT	TCAACGTCCA	AGAGACGTTT	TTCCCCATCT	300
GTAAAAATTT	TAACATCCAA	ATCGTAATCA	ATATACTTCA	GTGCTTCTTC	ATCCAGATAG	360
TAGGGGCTAG	CCATATTGCA	ATAGTAAGAA	GTCCATTATC	ACGAATCATG	GCAATGATAT	420
TAAACCAATA	TTTCTTGTGA	AGTAAACAAT	AGCCGGTTCT	CGAGTGACCA	ACGACGAACA	480
TCACTTTCGG	TAACAATGTA	TGATCGTTGA	CCCAATAATG	GCGTTTCTGT	TGTTTTAATA	540
CCATTGGTGT	CCGCCAAGTC	CGTGGAAATC	С			571

#### (2) INFORMATION FOR SEQ ID NO: 263:

#### (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 162 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:263:

Met	Glu	Lys	Cys	Туг	Thr	Asp	Val	Thr	Glu	Phe	Ala	Ile	Pro	Ala	Ser
1				5					10					15	
Thr	Gln	Lys	Leu	Tyr	Leu	Ser	Pro	Val	Leu	Asp	Gly	Phe	Asn	Ser	Glu
			20					25					30		
Ile	Ile	Ala	Tyr	Asn	Leu	Ser	Thr	Ser	Pro	Asn	Leu	Glu	Gln	Val	Gln
		35					40					45			
Thr	Met	Leu	Glu	Gln	Ala	Phe	Thr	Glu	Lys	His	Tyr	Glu	Asn	Thr	Ile
	50					55					60				
Leu	His	Ser	Asp	Gln	Gly	Trp	Gln	Tyr	Gln	His	Asp	Ser	Tyr	His	Arg
65					70					75					80
Phe	Leu	Glu	Ser	Lys	Gly	Ile	Gln	Ala	Ser	Met	Ser	Arg	Lys	Gly	Asn
				85					90					95	
Ser	Gln	Asp	Asn	Gly	Met	Met	Glu	Ser	Phe	Phe	Gly	Ile	Leu	Lys	Ser
			100					105					110		
Glu	Met	Phe	Tyr	Gly	Tyr	Glu	Lys	Ser	Phe	Gln	Ser	Leu	Lys	Gln	Leu
		115					120					125			
Glu	Gln	Ala	Ile	Ile	Asp	Tyr	Ile	Asp	Tyr	Tyr	Asn	Asn	Lys	Arg	Ile
	130					135					140				
Lys	Val	Lys	Leu	Lys	Gly	Leu	Ser	Pro	Val	Gln	Tyr	Arg	Thr	Lys	Ser
145					150					155					160
Phe	Gly														

MISSING UPON TIME OF PUBLICATION

:.

- (2) INFORMATION FOR SEQ ID NO:266:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 35 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:266:

- (2) INFORMATION FOR SEQ ID NO:267:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 280 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:267:

Pro Leu Ala Val Leu Phe Ala Val Ala Gly Val Leu Val Ala Leu Leu 55 Gly Ile Gly Thr Phe Thr Gln Val Asn Ser Ile Thr Glu Ser Ile Gln 70 Asn Thr Thr Thr Ile Ser Pro Ala Ile Thr Ala Leu Val Leu Ser Val 90 Phe Val Ala Ile Ala Val Phe Gly Gly Leu Lys Ser Ile Ser Lys Val 105 Ser Thr Thr Val Val Pro Phe Met Ala Ile Ile Tyr Ile Leu Gly Thr 120 Leu Thr Val Ile Phe Phe Asn Ile Gly Lys Ile Pro Gly Thr Ile Ala 135 Leu Val Phe Thr Ser Ala Phe Ser Pro Leu Ala Ala Val Gly Gly Phe 145 150 155 Ala Gly Ala Ser Val Arg Met Ala Ile Gln Asn Gly Val Ala Arg Gly 165 170 Val Phe Ser Asn Glu Ser Gly Leu Gly Ser Ala Pro Ile Ala Ala Ala 180 185 Ala Ala Lys Thr Asn Glu Pro Val Glu Gln Gly Leu Ile Ser Met Thr 200 Gly Thr Phe Ile Asp Thr Leu Ile Ile Cys Thr Leu Thr Gly Leu Thr 215 220 Ile Leu Val Thr Gly Val Trp Ser Gly Asp Leu Asn Gly Val Ala Leu 225 230 235 Thr Gln Ser Ala Phe Ser Thr Val Phe Ser His Phe Gly Pro Ala Leu 250 Leu Thr Ile Phe Leu Val Leu Phe Ala Phe Thr Thr Ile Leu Gly Trp 260 265 270 Asn Tyr Tyr Gly Arg Thr Leu Phe 275

- (2) INFORMATION FOR SEQ ID NO:268:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 46 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:268:

: .

 Met Val Gln Val Gly Thr Thr
 Leu His Lys Glu Gly Val Ser Ala Phe

 1
 5
 10
 15
 15

 Asp Arg Phe Thr Asn Glu Leu Lys Ala Ile Met Val Glu Lys Gly Tyr
 20
 25
 30

 Glu Ser Leu Glu Asp Phe Arg Gly Lys Leu Arg Tyr Ile Asp
 35
 40
 45

#### (2) INFORMATION FOR SEQ ID NO:269:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 210 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:269:

Met Lys Lys Tyr Phe Ile Gly Gly Leu Gly Ser Asn Ala Tyr His Ser 1 5 10 Lys Asp Phe Leu Gln Glu Leu Asp Ser Gln Val Tyr Phe Leu Asn Pro 25 Tyr Glu Lys His Leu Arg Asp Glu Thr Glu Leu Lys Ser Trp Phe Lys 40 Asn Glu Ile Val Glu Glu Glu Ser Ile Cys Leu Ile Gly His Ser Ile 55 60 Gly Gly Asp Leu Ala Arg Tyr Phe Ala Ser Glu Phe Glu Glu Val Lys 70 Lys Leu Ile Leu Leu Asp Gly Gly Tyr Leu Asp Leu Asp Lys Ile Leu 90 Pro Leu Asp Thr Glu Leu Glu Glu Thr Lys Asn Tyr Ile Lys Ser Gln 105 Ile Ile Ser Asp Leu Asp Val Leu Thr Ser Lys Glu Lys Ser Glu Ala 120 125 Lys His Trp Ser Glu Asn Met Glu Lys Ala Val Arg Gln Ser Tyr His Trp Asn Val Glu Tyr Asn Arg Tyr Glu Leu Ala Ile Asn Tyr Glu Asn 145 150 155 Ile Glu Ala Ile Leu Arg Leu Arg Lys Ile Gln Ala Phe Lys Arg 170 Glu Val Gly Asp Thr Leu Phe Ile Ser Pro Arg Tyr Pro Asn Glu Ala 180 185 190

Thr Trp Arg Glu Glu Ala Leu Lys Glu Leu Pro Asp Tyr Phe Asp Thr
195 200 205

Ile Phe 210

### (2) INFORMATION FOR SEQ ID NO:270:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 186 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:270:

Met Lys Leu Glu His Lys Asn Ile Phe Ile Thr Gly Ser Ser Arg Gly 1 5 10 15

Ile Gly Leu Ala Ile Ala His Lys Phe Ala Gln Ala Gly Ala Asn Ile 20 25 30

Val Leu Asn Ser Arg Gly Ala Ile Ser Glu Glu Leu Leu Ala Glu Phe
35 40 45

Ser Asn Tyr Gly Ile Lys Val Val Pro Ile Ser Gly Asp Val Ser Asp 50 55 60

Phe Ala Asp Ala Lys Arg Met Ile Asp Gln Ala Ile Ala Glu Leu Gly 65 70 75

Ser Val Asp Val Leu Val Asn Asn Ala Gly Ile Thr Gln Asp Thr Leu 85 90

Met Leu Lys Met Thr Glu Ala Asp Phe Glu Lys Val Leu Lys Val Asn

Leu Thr Gly Ala Phe Asn Met Thr Gln Ser Val Leu Lys Pro Met Met
115 120 125

Lys Ala Arg Glu Gly Ala Ile Ile Asn Met Ser Ser Val Val Gly Leu
130 135 140

Met Gly Asn Ile Gly Gln Ala Asn Tyr Ala Ala Ser Lys Ala Gly Leu 145 150 155 160

Ile Gly Phe Thr Lys Ser Val Ala Arg Glu Val Ala Ser Arg Asn Ile
165 170 175

Arg Val Asn Val Ile Ala Pro Gly Asn Asp 180 185

(2) INFORMATION FOR SEQ ID NO:271:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 113 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:271:

Met Val Met Gln Arg Leu Leu Leu Lys Ile Phe Pro Thr Asp Asn Asn 1 5 10 15

Val Val Trp Lys Leu Phe Val Pro Leu Leu Arg Asn Pro Lys Ile Leu 20 25 30

Phe Leu Asp Glu Pro Ala Ala Gly Met Asn Pro Gln Glu Thr Ala Glu 35 40 45

Leu Thr Glu Leu Ile Arg Arg Ile Lys Asp Glu Phe Lys Ile Thr Ile 50 55 60

Met Leu Ile Glu His Asp Met Asn Leu Val Met Glu Val Thr Glu Arg
65 70 75 80

Ile Tyr Val Leu Glu Tyr Gly Arg Leu Ile Ala Gln Gly Thr Pro Asp
85 90 95

Glu Ile Lys Thr Asn Lys Arg Val Ile Glu Ala Tyr Leu Gly Glu
100 105 110

Ala

- (2) INFORMATION FOR SEQ ID NO:272:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 82 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:272:

Met Thr Arg Tyr Ala Leu Leu Val Arg Gly Ile Asn Val Gly Gly Lys

1 5 10 15

# (2) INFORMATION FOR SEQ ID NO:273:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 110 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:273:

 Met
 Glu
 Glu
 Phe
 Leu
 Asp
 Asn
 Ile
 Lys
 Asp
 Leu
 Glu
 Val
 Thr
 Thr
 Val

 Val
 Arg
 Ala
 Glu
 Ala
 Leu
 Asp
 Lys
 Lys
 Glu
 Thr
 Ala
 Thr
 Phe
 P

- (2) INFORMATION FOR SEQ ID NO:274:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 191 amino acids
  - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:274:

Met Tyr Leu Ile Leu Pro Phe Cys Val Pro Gly Ser Phe Asp Arg Lys 1 5 10 Val Leu Val Gly Arg Pro Asp Val Lys Gly Arg Glu Ala Ile Leu Lys 25 Val His Ala Lys Asn Lys Pro Leu Ala Glu Asp Val Asp Leu Lys Leu 40 Val Ala Gln Gln Thr Pro Gly Phe Val Gly Ala Asp Leu Glu Asn Val 55 60 Leu Asn Glu Ala Ala Leu Val Ala Ala Arg Arg Asn Lys Ser Ile Ile 70 Asp Ala Ser Asp Ile Asp Glu Ala Glu Asp Arg Val Ile Ala Gly Pro 85 90 Ser Lys Lys Asp Lys Thr Val Ser Gln Lys Glu Arg Glu Leu Val Ala 100 105 Tyr His Glu Ala Gly His Thr Ile Val Gly Leu Val Leu Ser Asn Ala 120 Arg Val Val His Lys Val Thr Ile Val Pro Arg Gly Arg Ala Gly Gly 135 Tyr Xaa Ile Ala Leu Pro Lys Glu Asp Gln Met Leu Leu Ser Lys Glu 150 155 Asp Met Lys Glu Gln Leu Ala Gly Leu Met Gly Gly Arg Val Ala Glu 165 170 Lys Ile Ile Ser Asn Val Gln Thr Thr Arg Ser Phe Lys Arg Leu 180 185 190

- (2) INFORMATION FOR SEQ ID NO:275:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 84 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:275:

#### (2) INFORMATION FOR SEQ ID NO:276:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 162 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:276:

 Met
 Ala
 Glu
 Ala
 Leu
 Glu
 Lys
 Val
 Ala
 Ala
 Glu
 Met
 Gly
 Val
 Gly
 15
 15
 15
 15
 15
 15
 11
 15
 15
 15
 11
 15
 15
 11
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15
 15

Ile Met Ile Ala Leu Ala Phe Leu Ile Asp Gly Ala Leu Ser Val Pro
130 135 140

Asn Glu Asn Leu Gly Asn Leu Gly Ser Tyr His Glu Phe Ser Phe Tyr
145 150 155 160

Val Pro

- (2) INFORMATION FOR SEQ ID NO:277:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 97 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:277:

 Met
 Asp
 Ile
 Trp
 Glu
 Lys
 Met
 Tyr
 Glu
 Glu
 Ala
 Gln
 Lys
 Leu
 Tyr
 Asn

 1
 5
 1
 10
 10
 15
 15
 15

 Pro
 His
 Glu
 Val
 Ser
 Asp
 Phe
 Val
 Tyr
 Ala
 Asn
 His
 Val
 Ala
 Phe
 Asn
 - (2) INFORMATION FOR SEQ ID NO: 278:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 146 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:278:

Leu Tyr Leu Val Ala Thr Pro Ile Gly Asn Leu Asp Asp Met Thr Phe 10 Arg Ala Ile Gln Thr Leu Lys Glu Val Asp Trp Ile Ala Ala Glu Asp 25 Thr Arg Asn Thr Gly Leu Leu Leu Lys His Phe Asp Ile Ser Thr Lys 40 Gln Ile Ser Phe His Glu His Asn Ala Lys Glu Lys Thr Pro Asp Leu Ile Gly Phe Leu Lys Ala Gly Gln Ser Ile Ala Gln Val Ser Asp Ala Gly Leu Pro Ser Ile Ser Asp Pro Gly His Gly Phe Gly Leu Arg Gln 90 Leu Leu Glu Gly Arg Asn Cys Ser Cys Tyr Ser Ser Arg Cys Leu Cys 100 105 Arg Asn Phe Cys Leu Asp Cys Gln Trp Phe Ser Ala Thr Ala Thr Tyr 120 125 Leu Leu Arg Phe Phe Thr Glu Lys Ile Arg Ser Thr Glu Ala Ile Phe 130 135 140 Trp Leu 145

- (2) INFORMATION FOR SEQ ID NO:279:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 74 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protëin
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:279:

 Met
 Pro
 Asp
 Asp
 Leu
 Ala
 Leu
 Arg
 Met
 Arg
 Pro
 Lys
 Thr
 Ile
 Asp
 Gln

 1
 5
 5
 1
 10
 1
 15
 15

 Val
 6ly
 6ly
 Pro
 6ly
 Lys
 1le
 1le
 Arg
 Arg
 Arg

 Met
 Val
 6lu
 Ala
 Asn
 Arg
 Leu
 Ser
 Ser
 Met
 1le
 Leu
 Tyr
 Gly
 Pro
 Pro

 Met
 Val
 6lu
 Ala
 Asn
 Arg
 Leu
 Ser
 Ser
 Met
 Ile
 Leu
 Tyr
 Gly
 Pro
 Pro

Gly Ile Gly Lys Thr Ser Ile Ala Ser Ala Ile Ala Gly Thr Thr Lys
50 55 60

Tyr Ala Leu Arg Asp Pro Gln Arg Asp Ser
65 70

- (2) INFORMATION FOR SEQ ID NO:280:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 44 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:280:

 Met Gln Asp Glu Val Glu Val Glu Val Gly Asp Val Phe Lys Asp Val Tyr Asn

 1
 5
 10
 15
 15

 Ala Leu Asn Glu Glu Gly Val Phe Leu Phe Asp Val His Ser Thr Tyr
 20
 25
 25
 30
 30

 Gln Thr Asp Glu Val Leu Pro 35
 40
 40
 40
 40
 40

- (2) INFORMATION FOR SEQ ID NO:281:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 79 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:281:

Ile Pro Lys Trp Ala Asp Lys Leu Gly Arg Glu Met Gly Leu Asn Phe
50 55 60

Ser Gln Thr Leu Thr Asp Ala Ile Ala Asp Lys Lys Val Gln Ala
65 70 75

#### (2) INFORMATION FOR SEQ ID NO:282:

- (i) SEQUENCE CHARACTERISTICS:.
  - (A) LENGTH: 220 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:282:

Leu Thr Lys Ser Met Thr Pro Asp Arg Glu Val Ile Thr Phe Ile Pro 10 Glu Lys Phe Ile Val Asp Gly Phe Gln Gly Ile Arg Asp Pro Arg Gly 25 Met Met Gly Val Arg Leu Glu Met Arg Gly Leu Leu Tyr Thr Gly Pro 40 Arg Thr Ile Leu His Asn Leu Arg Lys Thr Val Glu Arg Ala Gly Val Gln Val Glu Asn Val Ile Ile Ser Pro Leu Ala Met Val Gln Ser Val 75 70 Leu Asn Glu Gly Glu Arg Glu Phe Gly Ala Thr Val Ile Asp Met Gly 90 Ala Gly Gln Thr Thr Val Ala Thr Ile Arg Asn Gln Glu Leu Gln Phe 100 Thr His Ile Leu Gln Glu Gly Gly Asp Tyr Val Thr Lys Asp Ile Ser 120 Lys Val Leu Lys Thr Ser Arg Lys Leu Ala Glu Gly Leu Lys Leu Asn 135 Tyr Gly Glu Ala Tyr Pro Pro Leu Ala Ser Lys Glu Thr Phe Gln Val 150 155 Lys Val Ile Gly Glu Val Glu Pro Val Lys Val Thr Glu Ala Tyr Leu 165 170 Ser Glu Ile Ile Ser Ala Arg Ile Lys His Ile Leu Glu Gln Ile Lys 185 Gln Glu Leu Asp Arg Arg Leu Val Gly Pro Pro Trp Tyr Cys 195 200 205

Leu Asn Arg Trp Glu Cys His Phe Thr Arg Tyr Gly
210 215 220

- (2) INFORMATION FOR SEQ ID NO:283:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 96 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:283:

- (2) INFORMATION FOR SEQ ID NO:284:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 161 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:284:

Met Arg Ile Ala Ile Gly Cys Asp His Phe Val Thr Asp Glu Lys Met

1 5 10 15

Ala Val Ser Glu Phe Leu Lys Ser Lys Gly Tyr Glu Val Ile Asp Phe 25 Gly Thr Tyr Asp His Thr Arg Thr His Tyr Pro Ile Phe Gly Lys Lys 40 Val Arg Glu Ala Val Thr Ile Gly Gln Pro Asp Leu Gly Val Cys Thr 55 Cys Gly Thr Gly Val Gly Ile Asn Asn Pro Val Asn Lys Val Pro Arg 70 Val Arg Ser Ala Leu Val Arg Asp Met Thr Thr Ala Leu Tyr Ala Lys 90 Glu Gln Leu Asn Ala Asn Val Ile Gly Phe Gly Gly Lys Ile Thr Gly 100 105 Glu Leu Leu Met Cys Asp Ile Ile Glu Ala Phe Ile His Ala Glu Tyr 120 Lys Pro Ser Glu Glu Asn Lys Lys Leu Ile Ala Lys Ile Glu His Val 135 140 Glu Thr His Asn Ala Gln Gln Thr Asp Ala Asn Phe Phe Thr Glu Xaa 145 155 Pro

#### (2) INFORMATION FOR SEQ ID NO:285:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 77 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:285:

Leu Lys Lys Gln Val Leu Thr Met Xaa Ile Asp Arg Arg Pro Phe Gly
1 5 10 15

Gly Ala Asp Ile Asp Ala Ala Gly Pro Pro Leu Pro Asp Glu Thr Leu 20 25 30

Lys Ala Ser Arg Glu Ala Asp Ala Ile Leu Leu Val Ala Ile Gly Ser 35 40 45

Pro Gln Tyr Asp Gly Val Ala Val Arg Pro Glu Gln Gly Leu Met Ala 50 55 60

Leu Arg Lys Asn Ser Ile Phe Thr Leu Ile Phe Val Leu 65 70 75

#### (2) INFORMATION FOR SEQ ID NO:286:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 59 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:286:

Met Ala Phe Ile Glu Lys Gly Gln Glu Ile Asp Met Glu Val Ile Lys

1 5 10 15

Ala Glu Thr Gln Leu Ser Ala Glu Ala Leu Arg Leu Lys Glu Ser Arg
20 25 30

Asp Arg Glu Leu Ala Asp Ile Ile Ser Gly Glu Asp Asp Arg Ile Leu 35 40 45

Leu Val Ile Gly Pro Cys Ser Ser Asp Asn Asp 50 S5

- (2) INFORMATION FOR SEQ ID NO:287:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 56 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:287:

Met Val Met Arg Val Tyr Thr Ala Lys Pro Arg Thr Asn Gly Asp Gly

1 10 15

Tyr Lys Gly Leu Val His Gln Pro Asp Thr Ser Lys Ala Pro Thr Leu
20 25 30

Ile Asn Gly Leu Gln Ala Val Arg His Leu His Tyr Arg Phe Asp Tyr
35

Arg Tyr Trp Phe Asp Asn Gly Arg

- (2) INFORMATION FOR SEQ ID NO:288:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 63 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:288:

Met Asn Lys Arg Val Lys Ile Val Ala Thr Leu Gly Pro Ala Val Glu Ile Arg Gly Gly Lys Lys Phe Gly Glu Asp Gly Tyr Trp Gly Glu Lys 20 25 Leu Asp Val Glu Ala Ser Ala Lys Asn Ile Ala Lys Leu Ile Glu Ala 40 Gly Ala Asn Thr Phe Arg Phe Asn Phe Ser His Gly Asp His Gln

60

(2) INFORMATION FOR SEQ ID NO:289:

55

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 52 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:289:

Met Gly Asp Lys Pro Ile Ser Phe Arg Asp Ala Asp Gly Asn Phe Val 5 Ser Ala Ala Asp Val Trp Asn Glu Lys Lys Leu Glu Glu Leu Phe Asn 25 Arg Leu Asn Pro Asn Arg Ala Leu Arg Leu Ala Arg Thr Lys Lys Glu

35 40

Asn Pro Ser Gln

50

(2) INFORMATION FOR SEQ ID NO:290:

MISSING UPON TIME OF PUBLICATION

MISSING UPON TIME OF PUBLICATION

MISSING UPON TIME OF PUBLICATION

Ile Ile Val Ile Thr Pro Gln Ser Thr Gly Pro Gln Ser Ile Leu Phe 500 505 Trp Ile Asp Ala Val Gln Asn Tyr Val Leu Phe Asn Gln Leu Ser Asp 520 Ala Gln Glu Leu Ile Gln Arg Gln Gly Ile Glu Asn Trp Val Ser Glu 535 540 Met Gln Thr Gly Tyr His Asn Tyr Ile Thr Leu Leu Asp Asn Ile Gln 550 555 Arg Glu Arg Trp Val Met Leu Ala Gly Ala Val Leu Gly Ile Ala Thr 565 570 Ser Ile Leu Leu Phe Asn Thr Met Asn Arg Leu Tyr Phe Glu Glu Phe 585 590 Arg Arg Ala Ile Phe Ile Lys Arg Ile Ala Gly Leu Arg Phe Leu Glu 600 Ile His Arg Thr Tyr Leu Phe Ala Gln Leu Gly Val Phe Leu Leu Gly Phe Val Ala Ser Val Phe Leu Gln Val Glu Ile Gly Val Ala Phe Leu 630 635 Val Leu Leu Phe Thr Gly Leu Ser Leu Leu Gln Leu His Val Gln 650 Met Gln Lys Glu Asn Lys Met Ser Ile Leu Val Leu Lys Gly Gly 660 665 670

# (2) INFORMATION FOR SEQ ID NO:302:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 77 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:302:

Gln Ser Val Gly Asp Val Val Lys Ile Ile Gln Gly Lys 65 70 75

- (2) INFORMATION FOR SEQ ID NO:303:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 96 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:303:

 Met
 Arg
 Ser
 Asp
 Phe
 Leu
 Arg
 Asp
 Lys
 Ile
 Trp
 Tyr
 Ser
 Ser
 Ser
 Met

 1
 5
 5
 Lys
 Gln
 Leu
 Thr
 Asp
 Ala
 Arg
 Phe
 Lys
 Arg
 Leu

 Asn
 20
 Lys
 Ser
 25
 Lys
 30
 Leu

Val Gly Val Gln Arg Thr Thr Phe Glu Glu Met Leu Ala Val Leu Lys
35 40 45

Thr Ala Tyr Gln Leu Lys His Ala Lys Gly Gly Arg Lys Pro Lys Leu 50 55 60

Ser Leu Glu Asp Leu Leu Met Ala Thr Leu Gln Tyr Val Arg Glu Tyr 65 70 75 80

Arg Thr Tyr Glu Glu Ile Ala Ala Asp Phe Gly Ile His Glu Ser Thr
85 90 95

- (2) INFORMATION FOR SEQ ID NO:304:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 104 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:304:

Met Lys Leu Phe Lys Met Ser Cys Arg Asn Ile Gly Gln Ala Gly Lys

1 5 10 15

 Ile Leu Ala Asp Ser Asp Ser Asp Tyr Gln Gly Leu Met Lys Ile Tyr Pro Gln

 20
 25
 30

 Ala Gln Thr Pro Arg Lys Ser Ser Lys Leu Lys Pro Leu Thr Ala Glu
 35
 40
 45

 Asp Lys Ala Tyr Asn His Ala Leu Ser Lys Glu Arg Ser Lys Val Glu
 50
 55
 60

 Asn Ile Phe Ala Lys Val Lys Thr Phe Lys Met Phe Ser Thr Thr Tyr
 75
 80

 Arg Asn His Arg Lys Arg Phe Gly Leu Arg Met Asn Leu Ile Ala Gly
 85
 90
 95

Ile Ile Asn His Glu Leu Gly Phe 100

- (2) INFORMATION FOR SEQ ID NO:305:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 79 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:305:

- (2) INFORMATION FOR SEQ ID NO:306:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 100 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:306:

 Met
 Ile
 Lys
 Ile
 Leu
 Ala
 Ala
 Cys
 Gly
 Ala
 Gly
 Val
 Asn
 Ser
 Ser
 His

 1
 5
 1
 10
 10
 15
 15

 Gln
 Ile
 Lys
 Ser
 Asn
 Arg
 Gly
 Tyr
 Asp

 Gln
 Ile
 Lys
 Asp
 Val
 Asp
 Ile
 Met
 Val
 Lys
 Asp
 Val
 Asp
 Leu
 Met

 Val
 His
 Cys
 Asp
 Ala
 Val
 Met
 Val
 Lys
 Asp
 Val
 Asp
 Leu
 Met

 Val
 His
 Cys
 Asp
 Ala
 Val
 Met
 Val
 Lys
 Asp
 Val
 Asp
 Leu
 Phe
 Asp
 Leu
 Phe
 Asp
 Ile
 Ile
 Asp

GIn Asn Met Val 100

- (2) INFORMATION FOR SEQ ID NO:307:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 62 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:307:

 Met
 Val
 Ser
 Phe
 Ile
 Leu
 Met
 Ala
 Thr
 Ile
 Val
 Glu
 Pro

 1
 Ile
 France
 Ile
 (2) INFORMATION FOR SEQ ID NO:308:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 158 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:308:

Met Asn His Lys Pro Arg Gly Arg Lys Ala Ser Phe Phe Ser Gly Gly

1 5 10 15

Val Leu Ser Ser Ile Ile Tyr Gln Gly Val Leu Gln Ala Ala Leu Val 20 25 30

Met Ser Val Tyr Gly Leu Ala Ile Ala Tyr Pro Val His Val Gly Asp 35 40 45

Asn His Ala Ile His Ala Asp Ala Leu Thr Met Ala Phe Ala Thr Leu 50 55 60

Gly Leu Ile Gln Leu Phe His Ala Tyr Asn Val Lys Ser Val Tyr Gln
65 70 75

Ser Ile Leu Thr Val Gly Pro Phe Lys Ser Lys Thr Phe Asn Trp Ser 85 90 95

Ile Leu Val Ser Phe Ile Leu Leu Met Ala Thr Ile Val Val Glu Pro

Leu Glu Gly Ile Phe His Val Thr Lys Leu Asp Leu Ser Gln Trp Gly
115 120 125

Ile Val Met Ala Gly Ser Phe Ser Met Ile Ile Ile Val Glu Ile Val
130 135 140

- (2) INFORMATION FOR SEQ ID NO:309:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 249 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:309:

Met	Ala	His	Gln	Ala	Leu	Arg	Val	Leu	Ala	Gly	Ala	Tyr	Lys	Ile	Ile
1				5					10					15	
Asp	Ser	Ile	Pro 20	Glu	Asn	Leu	Thr	Ser 25	Glu	Glu	Leu	Glu	Asn 30	Asp	Leu
Ile	Phe	Thr	Gly	Leu	Ile	Gly	Met 40	Ile	Asp	Pro	Glu	Arg 45	Pro	Glu	Ala
Ala	Glu 50	Ala	Val	Arg	Val	Ala 55	Lys	Glu	Ala	Gly	Ile 60	Arg	Pro	Ile	Met
Ile 65	Thr	Gly	Asp	His	Gln 70	Asp	Thr	Ala	Glu	Ala 75		Ala	Lys	Arg	Leu 80
Gly	Ile	Ile	Asp	Ala 85	Asn	Asp	Thr	Glu	Gly 90	His	Val	Leu	Thr	Gly 95	Ala
Glu	Leu	Asn	Glu 100	Leu	Ser	Asp	Glu	Glu 105	Phe	Glu	Lys	Val	Val 110	Gly	Gln
Tyr	Ser	<b>Val</b> 115	Tyr	Ala	Arg	Val	Ser 120	Pro	Glu	His	Lys	Val 125	Arg	Ile	Val
Lys	Ala 130	Trp	Gln	Lys	Gln	Gly 135	Lys	Val	Val	Ala	Met 140	Thr	Gly	Asp	Gly
Val 145	Asn	Asp	Ala	Pro	Ala 150	Leu	Lys	Thr	Ala	Asp 155	Ile	Gly	Ile	Gly	Met 160
Gly	Ile	Thr	Gly	Thr 165	Glu	Val	Ser	Lys	Gly 170	Ala	Ser	Asp	Met	Ile 175	Leu
Ala	Asp	Asp	Asn 180	Phe	Ala	Thr	Ile	Ile 185	Val	Ala	Va1	Glu	Glu 190	Gly	Arg
Lys	Val	Phe 195	Ser	Asn	Ile	Gln	Lys 200	Thr	Ile	Gln	Tyr	Leu 205	Leu	Ser	Ala
Asn	Thr 210	Ala	Glu	Val	Leu	Thr 215	Ile	Phe	Leu	Ser	Thr 220	Leu	Phe	Gly	Trp
Asp 225	Val	Leu	Gln	Pro	Val 230	His	Leu	Leu	Trp	Ile 235	Asn	Leu	Val	Thr	Asp 240
Thr	Phe	Pro	Ala	Ile 245	Val	Leu	Trp	Суз							

#### (2) INFORMATION FOR SEQ ID NO:310:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 498 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:310:

Me 1	et 1	Lys	G1	n Se	r Ly 5		t Pr	o Il	e Pr	o Th		u Ar	g Gl	u Me		o Ser
		Ala	Gl	n Va			r Hi	g Al	ם.ז מ						15	r Val
	•			20					25	u me	c re	u Ar	g Al	a G1	у ту	r Val
Ar	g (	iln	Va	l Se	r Al	a Gly	y Va	l Ty	_	r Tv	r Le	u Pro	o Le	υ Δ1.	a Ac	n Arg
			35					40					45	- 111	ı ns	" ALY
Va	1 1	le	Gl	u Ly	s Al	a Lys	As:	n Il	e Me	t Ar	g Gl	n Glu		e Gl	ı Ly:	s Ile
	5	0					55					60				
Gl	у А	la	Va:	l Gl	u Me	t Lei	Ala	a Pro	o Ala	a Le	u Lei	u Ser	Ala	a Glu	ı Leı	ı Trp
65						70					75					80
Ar	g G	iLu	Sei	r Gl	y Arg 85	у Туг	Gli	ı Thi	г Туз	r Gly 90	/ Glu	Asp	Le	1 Ту1		Leu
Ly	s A	sn	Arg	g Gli		s Ser	Ast	Phe	: Ile		ı Gla	, Pro	መከ፣	- Ui-	95 	Glu
				100	)		•		105		. 01]	rio	, 1111	110		GIU
Th	r P	he	The	Ala	a Ile	e Val	Arg	Asp	Ser	· Val	Lys	Ser	Tvr	Lvs	Glr	Leu
			115	i				120	)				125	•		
Pro	b	eu	Asn	Let	туг	Gln	Ile	Gln	Pro	Lys	Tyr	Arg	Asp	Glu	Lys	Arg
	1.	30					135					140				
145	) A:	rg	Asn	Gly	. Leu	Leu	Arg	Thr	Arg	Glu	Phe	Ile	Met	Lys	Asp	Ala
		۹۳	Phe	Hic	בות י	150	m	<b>.</b>		_	155					160
-,-					165	ASII	TYL	Asp	Ser			Ser	Val	Tyr		Glu
Tyr	L	/S	Ala	Ala			Ara	Tle	Pho	170		Ser	<b>01</b>	•	175	
				180	•		9		185	1111	Arg	ser	GIĀ	Leu 190	Asp	Phe
Lys	A]	la	Ile	Ile	Gly	Asp	Gly	Gly		Met	Gly	Gly	Lvs	Asp	Ser	Gln
			195					200					205			
Glu	Ph	ie i	Met	Ala	Ile	Thr	Ser	Ala	Arg	Thr	Asp	Leu	Asp	Arg	Trp	Val
	21	.0					215					220				
225	ьe	u .	Asp	Lys	Ser	Val	Ala	Ser	Phe	Asp	Glu	Ile	Pro	Ala	Glu	Val
	G1	11 (	27.,	Tla	Tve	230	G1	•	_	_	235					240
			<b></b>	116	245	WIG	GIU	Leu	Leu		Trp	Ile	Val	Ser		Glu
Asp	Th	r ]	Cle	Ala	Tyr	Ser	Ser	Glu	Ser	250	Th	Ala	.1.		255	
				260					265	Jei	TYL	ALA	AIA	270	Leu	Glu
Met	Al	a 7	hr	Asn	Glu	Tyr	Lys	Pro		Asn	Arg	Val '	Val	Ala	Glu	Gl.,
		2	:75					280					285			
Glu	Va:	1 7	hr	Arg	Val	Glu	Thr	Pro	Asp	Val	Lys	Ser :	Ile	Asp	Glu	Val
	290	J					295					300				
ane Ala	Ala	a P	he	Leu	Asn	Val :	Pro	Glu	Glu	Gln	Thr	Ile 1	Lys	Thr	Leu	Phe
305						310					315					320

Tyr Ile Ala Asp Gly Glu Leu Val Ala Ala Leu Leu Val Gly Asn Asp 325 330 Gln Leu Asn Glu Val Lys Leu Lys Asn His Leu Gly Ala Asn Phe Phe 345 Asp Val Ala Ser Glu Glu Glu Val Ala Asn Val Val Gln Ala Gly Phe 355 360 Gly Ser Leu Gly Pro Val Gly Leu Pro Glu Asn Ile Lys Ile Ile Ala 375 380 Asp Arg Lys Val Gln Asp Val Arg Asn Ala Val Val Gly Ala Asn Glu 390 395 Asp Gly Tyr His Leu Thr Gly Val Asn Pro Gly Arg Asp Phe Thr Ala 405 410 Glu Tyr Val Asp Ile Arg Glu Val Arg Glu Gly Glu Ile Ser Pro Asp Gly Gln Gly Val Leu Asn Phe Ala Arg Gly Ile Glu Ile Gly His Ile 440 Phe Lys Leu Gly Thr Arg Tyr Ser Ala Ser Met Gly Ala Asp Val Leu 455 460 Asp Glu Asn Gly Arg Ala Val Pro Ile Ile Met Gly Cys Tyr Gly Ile 470 475 Gly Val Ser Arg Leu Leu Ser Ala Val Met Glu Gln His Ala Arg Leu 485 490 Phe Val

#### (2) INFORMATION FOR SEQ ID NO:311:.

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 44 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:311:

#### (2) INFORMATION FOR SEQ ID NO:312:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 66 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:312:

 Met
 Arg
 Val
 Leu
 Asp
 Glu
 Asp
 Glu
 Val
 Glu
 Leu
 Arg
 Asp
 Leu

 1
 5
 1
 10
 10
 15
 15
 15

 Asp
 Glu
 Asp
 Glu
 Asp
 Val
 Ile
 His
 Val
 Asp
 Leu
 Glu
 Lys

 Ala
 Arg
 Glu
 Lys
 Ala
 Ala
 Glu
 Glu
 Ala
 Ala
 Glu
 Ala
 Ala
 Glu
 Ala
 Ala
 Glu
 Ala
 - (2) INFORMATION FOR SEQ ID NO:313:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 364 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:313:

 Met
 Leu
 Val
 Asn
 Val
 Pro
 Leu
 Pro
 Ser
 Gln
 Pro
 Thr
 Arg
 Val

 1
 5
 5
 10
 10
 15
 15
 15

 Val
 Val
 Pro
 Thr
 Ser
 Leu
 Val
 Lys
 Val
 Phe
 Val
 Asn
 Leu
 Glu
 Arg
 His
 Glu
 Ser
 Arg
 Ile
 Asp
 Asn

 Phe
 Val
 Leu
 Val
 Pro
 Glu
 Arg
 His
 Glu
 Ser
 Arg
 Ile
 Asp
 Asn

 Ass
 45
 40
 40
 40
 45
 45
 45
 45

Gln	Leu	Arg	Gly	Arg	Ser	Gly	Arg	Gln	Gly	Asp	Pro	Gly	Glu	Ser	Gln
	50					55					60				
Ph	е ту	r Le	u Se	r Le	u Gl	ı Ası	p As	p Le	u Me	t Ly	s Ar	g Ph	e Gl	y Se	r Glu
65					70					75					80
Ar	g Le	u Ly	s Gl	y Il	e Phe	Gl:	u Ar	g Le	u As	n Me	t Se	r Gl	u Gl	u Al	a Ile
				85					90					95	
Gl	u Se:	r Ar	g Me	t Le	ı Thr	Arg	g Gl	n Vai	1 G1	u Ala	a Ala	Glr	ı Ly	s Ar	g Val
			10	0				109	5				11	0	
Glı	ı Gly	/ As	n Ası	а Туз	Asp	Thr	Arg	J Lys	Gl:	n Vai	l Leu	Glr	Ty	c Ası	p Asp
		11!	5				120	)				125	<b>i</b>		
Val	l Met	: Arg	g Glı	ı Glr	a Arg	Glu	Ile	: Ile	Ty:	Ala	a Glm	Arg	Ty	: Ası	Val
	130	)				135	,				140				
Ile	Thr	Ala	a Ası	Arg	(Asp	Leu	Ala	Pro	Glu	ı Ile	Gln	Ser	Met	: Ile	Lys
145	•				150					155	;				160
Arg	Thr	Ile	Glı	Arg	Val	Val	Asp	Gly	His	Ala	Arg	Ala	Lys	Glr	Asp
				165	•				170	)				175	
Glu	Lys	Lev	Glu	Ala	Ile	Leu	Asn	Phe	Ala	Lys	Tyr	Asn	Leu	Leu	Pro
			180	)				185					190		
Glu	Asp	Ser	Ile	Thr	Met	Glu	Asp	Leu	Ser	Gly	Leu	Ser	Asp	Lys	Ala
<b>~</b> 1 -	<b>-</b>	195					200					205			
TIE	Lys	GIu	Glu	Leu	Phe	Gln	Arg	Ala	Leu	Lys	Val	Tyr	Asp	Ser	Gln
17-1	210		_	_	_	215					220				
225	ser	гÀ2	Leu	Arg	Asp	Glu	Glu	Ala	Val	Lys	Glu	Phe	Gln	Lys	Val
	110	T	3	••-	230	_	_			235					240
Ded	116	rea	Arg	245	vai	Asp	Asn	Lys		Thr	Asp	His	Ile	Asp	Ala
Leu	Asn	Gln	Len		N ===	.1.			250					255	
	· · · · ·	01	260	AL Y	vett	MIG	vaı		Leu	Arg	Gly	Tyr	Ala	Gln	Asn
Asn	Pro	Val		Glu	Tur	Gl n	21-	265	01				270		
		275			-7-	G111	280	GIU	GIY	Pne	Arg		Phe	Asn	Asp
Met	Ile	Gly	Ser	Ile	Glu	Phe		Va 1	The	<b>&gt;</b>	Leu	285		_	
	290	_				295	···op		1111	Arg	300	met	Met	Lys	Ala
Gln	Ile	His	Glu	Gln			Pro	Gln	Ala	Glu	Arg	ui.	T1.	C	<b>~</b>
305					310	•				315	AIG	ήIS	116	ser	
Thr	Ala	Thr	Arg	Asn	Ile .	Ala	Ala	His	Gln	Ala	Ser :	Mat	Low	C1	320
				325					330					335	nsp
Leu	Asp	Leu	Ser	Gln	Ile	Gly .	Arg			Leu	Cys :	Pro :	Cve	Gly	Sa~
			340					345	_		J		350	y	SET
Gly	Lys	Lys	Phe	Lys	Asn (	Cys	His	Gly	Lys	Ara	Gln	,			
		355					360	-	-	~	· — • •				

# (2) INFORMATION FOR SEQ ID NO:314:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 128 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:314:

Met Ala Arg Gln Tyr Lys Val Asp Gly Ile Pro Ala Gly Ile Val Ser Leu Ser Ser Phe Ile Thr Val Thr Pro Phe Ile Thr Gly Glu Ala Gly 25

Ala Gly Met Pro Thr Ala Phe Met Ala Ser Lys Gly Leu Phe Val Ala

Met Ile Leu Gly Leu Ile Asn Gly Tyr Ile Tyr Gln Trp Phe Ile Asn 55

His Asn Ile Gln Ile Lys Met Pro Asp Gly Val Pro Pro Ala Val Ser 70 75

Lys Ser Phe Ser Ala Ile Ile Pro Gly Ala Val Thr Ile Val Gly Trp 90

Leu Ile Val Tyr Ala Thr Leu Asp Lys Leu Ser Leu Pro Asn Leu His 100 105 110

Glu Ile Ala Gln Val Ser Phe Gly Arg Ser Thr Trp Thr Phe Arg Lys 115 120

- (2) INFORMATION FOR SEQ ID NO:315:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 203 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:315:

Met Leu Glu Leu Arg Asn Ile Asn Lys Val Phe Gly Asp Lys Gln Ile 1 5 Leu Ser Asp Phe Ser Leu Ser Ile Pro Glu Lys Gln Ile Leu Ala Ile 20 25 30

Val Gly Pro Ser Gly Gly Ser Lys Thr Thr Leu Leu Arg Met Leu Ala 40 Gly Leu Glu Thr Ile Asp Ser Gly Gln Ile Phe Tyr Asn Gly Gln Pro 60 Leu Glu Leu Asp Glu Leu Gln Lys Arg Asn Leu Leu Gly Phe Val Phe 70 Gln Asp Phe Gln Leu Phe Pro His Leu Ser Val Leu Glu Asn Leu Thr 90 Leu Ser Pro Val Lys Thr Met Gly Met Lys Gln Glu Glu Ala Glu Lys 100 105 Lys Ala Ser Gly Leu Leu Glu Gln Leu Gly Leu Gly Gly His Ala Glu 125 Ser Tyr Pro Phe Ser Leu Ser Gly Gly Gln Lys Gln Arg Val Ala Leu 135 140 Ala Arg Ala Met Met Ile Asp Pro Glu Ile Ile Gly Tyr Asp Glu Pro 150 155 Thr Ser Ala Leu Asp Pro Glu Leu Arg Leu Glu Val Glu Lys Leu Ile 165 170 Leu Gln Asn Arg Glu Leu Gly Met Thr Gln Ile Val Val Thr His Asp 185 Leu Gln Phe Ala Glu Asn Ile Ala Met Tyr Tyr 195 200

- (2) INFORMATION FOR SEQ ID NO:316:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 57 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:316:

1

# (2) INFORMATION FOR SEQ ID NO:317:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 181 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:317:

Met Thr Gln Ala Ile Leu Glu Ile Lys His Leu Lys Lys Ser Tyr Gly

1 5 10 15

Gln Asn Glu Val Leu Lys Asp Ile Ser Leu Thr Val His Lys Gly Glu

20 25 30

Val Ile Ser Ile Ile Gly Ser Ser Gly Ser Gly Lys Ser Thr Phe Leu
35 40 45

Arg Ser Ile Asn Leu Leu Glu Thr Pro Thr Asp Gly Gln Ile Leu Tyr
50 55 60

His Gly Gln Asn Val Leu Glu Lys Gly Tyr Asp Leu Thr Gln Tyr Arg

70 75 80

Glu Lys Leu Gly Met Val Phe Gln Ser Phe Asn Leu Phe Glu Asn Leu 85 90 95

Asn Val Leu Glu Asn Thr Ile Val Ala Gln Thr Thr Val Leu Lys Arg

Glu Arg Thr Glu Ala Glu Glu Ile Ala Lys Glu Asn Leu Glu Lys Val

Gly Met Gly Glu Arg Tyr Trp Gln Leu Pro Asn Gln Ile Ala Thr Ile
130 135 140

Arg Trp Ser Lys Thr Thr Cys Gly His Arg Ser Cys Pro Ile Asn Glu
145 150 155

Ser Arg His Leu Cys Ser Leu Met Asn Gln Leu Leu Pro Leu Thr Leu
165 170 175

Arg Trp Leu Glu Lys

180

- (2) INFORMATION FOR SEQ ID NO:318:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 85 amino acids
  - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:318:

Met Leu Phe Asp Glu Pro Thr Ser Ala Leu Asp Pro Glu Met Val Gly

1 5 10 15

Glu Val Ile Asn Val Met Lys Glu Leu Ala Glu Gln Gly Met Thr Met

Ile Ile Val Thr His Glu Met Gly Phe Ala Arg Gln Val Ala Asn Arg
35 40 45

Val Ile Phe Thr Ala Asp Gly Glu Phe Leu Glu Asp Gly Thr Pro Asp 50 55 60

Gln Ile Phe Asp Asn Pro Gln His Pro Arg Leu Lys Glu Phe Leu Asp 65 70 75 80

Lys Val Leu Asn Val

85

- (2) INFORMATION FOR SEQ ID NO:319:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 332 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:319:

Met Ala Lys Asp Ile Leu Val Gln Ala Met Gln Arg Ile Ala Gly Glu

1 5 10 15

Tyr Val Ala Glu Ser Thr Asn Ser Thr Val His Leu Pro Asp Asp Thr 20 25 30

Met Lys Gly Arg Ile Ile Gly Arg Glu Gly Arg Asn Ile Arg Thr Phe

Glu Ser Leu Thr Gly Val Asp Val Ile Ile Asp Asp Thr Pro Glu Val
50 55 60

Val Thr Leu Ser Gly Phe Asp Pro Ile Arg Arg Glu Ile Ala Arg Met 65 70 75 80

Th	r Me	t Gl	u Me		u Lei	ı Lys	s Asp	Gl ₃		ı Ile	e His	Pro	Ala	. Arg	, Ile
<b>0</b> 1.		_		85	_				90					95	
GI	1 GI	ı Le			ı Lys	3 Asr	ı Arç			ı Ile	Asp	) Asn	Lys	Ile	e Arg
-3.	_		100			_		105					110		
GI	ı Tyı			u Ala	a Ala	Ala	Туг	Glu	Ile	: Gly	Ala	Pro	Asn	Leu	His
_		115					120					125			
Pro			ı Met	t Lys	: Ile			Arg	Leu	Gln	Phe	Arg	Thr	Ser	Tyr
	130					135					140				
Gly	Glr Glr	Asr	l Val	l Leu	Arg	His	Ser	Ile	Glu	Val	Ala	Lys	Leu	Ala	Gly
145	•				150					155					160
Ile	Met	Ala	Ser	Glu	Leu	Gly	Glu	Asn	Ala	Ala	Leu	Ala	Arg	Arg	Ala
				165	•				170					175	
Gly	Phe	Lev	His	asp	Ile	Gly	Lys	Ala	Ile	Asp	His	Glu	Val	Glu	Gly
			180	)				185					190		
Ser	His	Val	Glu	Ile	Gly	Met	Glu	Leu	Ala	Arg	Lys	Tyr	Lys	Glu	Pro
		195					200					205			
Pro	Val	Val	Val	Asn	Thr	Ile	Ala	Ser	His	His	Gly	Asp	Val	Glu	Ala
	210					215					220	•			
Glu	Ser	Val	Ile	Ala	Val	Ile	Val	Ala	Ala	Ala	Asp	Ala	Leu	Ser	Ala
225					230					235	•				240
Ala	Arg	Pro	Gly	Ala	Arg	Ser	Glu	Ser	Leu		Ser	Tvr	Tle	Ive	Ara
				245					250			-1-		255	9
Leu	His	Asp	Leu	Glu	Glu	Ile	Ala	Asn	Glv	Phe	Glu	Glv	Val	Gla	Th∽
			260					265	•				270	<b>U</b>	*****
Ser	Phe	Ala	Leu	Gln	Ala	Gly	Arg	Glu	Ile	Ara	Tle			) en	Dro
		275				-	280			3		285	<b>741</b>	non	710
Gly	Lys	Ile	Lys	Asp	Asp	Lys	Val	Thr	Ile	Leu			Tare	t/a 1	2~~
	290					295					300		uy 3	vai,	ALG
Lys	Lys	Ile	Glu	Asn	Asn	Leu	Asp	Tvr	Pro			Tlai	lve '	Val I	Mr
305					310		•	-		315	- 1011	-15	ny s		
Val	Ile	Arg	Glu	Leu	Arg .	Ala	Va 1	Asn '			T 1 1 0				320
	-	_		325	- <b>2</b>	<b>-</b>			330 73T	nia	nys				

# (2) INFORMATION FOR SEQ ID NO:320:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 123 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:320:

Met Lys Ser Ser Gln Glu Ala Ala Glu Leu Met Leu Leu Asn Ala Glu 1 10 Gln Glu Ala Thr Asn Leu Arg Gly Gln Ala Glu Arg Glu Ala Asp Leu 20 25 Leu Val Asn Glu Ala Lys Arg Glu Ser Lys Ser Leu Lys Lys Glu Ala 40 Leu Leu Glu Ala Lys Glu Glu Ala Arg Lys Tyr Arg Glu Glu Val Asp 55 Ala Glu Phe Lys Ser Glu Arg Gln Glu Leu Lys Gln Ile Glu Ser Arg 70 75 Leu Thr Glu Arg Ala Thr Ser Leu Asp Arg Lys Asp Asp Asn Leu Thr 90 Ser Lys Glu Gln Thr Leu Glu Gln Lys Arg Thr Lys Tyr Phe Leu Ile 105 Glu Arg Lys Thr Leu Met Arg Val Lys Ser Asn 115 120

## (2) INFORMATION FOR SEQ ID NO:321:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 122 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:321:

 Met
 Tyr
 Asp
 Phe
 Lys
 Gly
 Lys
 Lys
 Phe
 Leu
 Gln
 Ile
 Leu
 Ile
 I

Phe Gly Phe Lys Pro Ile Val Thr Val Val Leu Pro Leu Leu Val Pro
100 105 110

Thr Leu Leu Ala Ala Pro Cys Leu Tyr Leu
115 120

- (2) INFORMATION FOR SEQ ID NO:322:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 160 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:322:

Met Arg Ala Phe Ser Asp Phe Gly Thr Pro Met Leu Ile Gly Glu Gly 1 10 Tyr Arg Thr Phe Pro Val Leu Ile Tyr Thr Gln Phe Ile Ser Glu Val Gly Gly Asn Ser Ala Phe Ala Ile Met Ala Ile Ile Ile Ala Leu Ala 40 Ile Phe Leu Ile Gln Lys His Ile Ala Asn Arg Tyr Ser Phe Ser Met Asn Leu Leu His Pro Ile Glu Pro Lys Lys Thr Thr Lys Gly Lys Met 70 Ala Ala Ile Tyr Ala Thr Val Tyr Gly Ile Ile Phe Ile Ser Val Leu 85 90 Pro Gln Ile Tyr Leu Ile Tyr Thr Ser Phe Leu Lys Thr Ser Gly Met 105 Val Phe Val Lys Gly Tyr Ser Pro Asn Ser Tyr Lys Val Ala Phe Asn 120 125 Arg Met Gly Ser Ala Ile Phe Asn Thr Ile Arg Ile Pro Leu Ile Ala 135 140 Leu Val Leu Val Val Pro Ile Tyr Asp Ile Tyr Leu Leu Pro Ser Arg 145 150 155 160

- (2) INFORMATION FOR SEQ ID NO:323:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 146 amino acids
  - (B) TYPE: amino acid

*:* .

(C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:323:

Met Glu Ser Asn Ser Ser Leu Thr Leu Leu Lys His Gly Ser Glu Val Asn Leu Glu Arg Ala Leu Ser Val Asn Gly Arg Leu Gly Gly His Val

25

Val Thr Gly His Ile Asp Gly Thr Gly Lys Ile Ser Ser Ile Lys Lys 40

Asp Asp Asn Ala Val Trp Tyr Gln Ile Asn Thr Gln Lys Glu Ile Leu 55

Asp Leu Ile Val Glu Lys Gly Ser Ile Thr Ile Asp Gly Ile Ser Leu 70 75

Thr Val Ala Lys Val Ser Lys Val Asn Phe Ser Val Ser Val Ile Pro

His Thr Leu Lys Gln Thr Ile Leu Lys Ser Lys Gln Val Gly Ser Thr 105

Val Asn Leu Glu Asn Asp Ile Leu Gly Lys Tyr Val Gln Lys Leu Met 120

Asp Asn Ser Pro Lys Ser Glu Ile Ser Lys Glu Leu Leu Tyr Gln Asn 130 135 140

Gly Phe

145

- (2) INFORMATION FOR SEQ ID NO:324:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 288 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:324:

Met Ser Arg Gln Thr Pro Ser Leu Ser Phe Glu Val Phe Pro Pro Asn 1 10 15

Pro	Ala	Val	Gly	Asn	Asp	Asn	Ile	Ile	Ser	Ala	Leu	Gln	Asp	Met	Gln
			20					25					30		
Glu	ı Lei	ı Ala	a Pro	o His	s Phe	e Ile	Sez	· Val	l Th	r Al	a Se	r Ası	n Asr	ı Ly	s Ph
		35					40					45			
Asr	Ile	E Ly	s Glu	ı Thi	Thi	· Val	Arg	Leu	ı Ala	a Ası	P Phe	ı Ile	e Glr	ı Ası	n Ası
	50		•			55					60				
Leu	Ala	Ile	Pro	Thr	: Ile	Ala	His	Leu	Pro	Ala	a Ile	Ty:	: Lev	Thi	Ly
65					70					75					80
Asp	Lys	Val	Ala	Glu	Thr	Ile	Ala	Asp	Lev	Ası	Lys	. Val	. Gly	Va]	Glr
				85					90					95	
Lys	Ile	Lev	. Ala	Leu	Arg	Gly	Asp	Ile	Ile	Pro	) Asp	Val	Glu	Pro	Glr
			100	)				105					110	1	
Lys	Asp	Phe	Arg	Tyr	Ala	Thr	Asp	Leu	Ile	Glu	Phe	Ile	Lys	Glu	Glr
		115					120					125			
Thr			Phe	Asp	Ile	Ile	Gly	Ala	Cys	Туг	Pro	Glu	Gly	His	Pro
	130					135					140				
	Ser	Pro	Asn	Gln	Ile	Ser	Asp	Ile	Gln	Asn	Leu	Lys	Lys	Lys	Val
145					150					155					160
Asp	Ala	Gly	Cys	Ser	Ser	Leu	Val	Thr	Gln	Leu	Phe	Phe	Asp	Asn	Glu
				165					170				•	175	
Arg	Phe	Tyr		Phe	Gln	Asp	Lys	Cys	Ile	Leu	Ala	Gly	Ile	Asp	Val
_			180					185					190		
Pro	Ile		Ala	Gly	Ile	Met	Pro	Ile	Leu	Asn	Arg	Asn	Gln	Ala	Leu
	_	195					200					205			
Arg	Leu	Leu	Lys	Thr	Cys		Asn	Ile	His	Leu	Pro	Arg	Lys	Phe	Lys
	210					215					220				
Ala	ITE	Leu	Asp	Lys		Glu	His	Asp	Pro	Glu	Ser	Leu	Arg	Ala	Ala
225	_			_	230					235					240
GIĀ	Leu	Ala	Tyr		Val	qaA	Gln	Ile	Val	Asp	Leu	Val	Thr	Gln	Asp
1			•	245					250					255	
vaı	АТА	Gly		His	Leu	Tyr	Thr	Met	Asn	Asn	Ala	Asp	Thr	Ala	Lys
M	<b>T</b> 1 -	•••	260					265					270		
ıyı	тте	HIS	Gln	Ala	Thr			Leu	Phe	Asn	His	Gln	Ser	Leu	Gly
		275					280					285			

# (2) INFORMATION FOR SEQ ID NO:325:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 252 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:325:

Leu Glu Glu Leu Ala Leu Trp Phe Glu Lys Leu His Asp Phe Pro Gln 10 Leu Gln Gly Asn Leu Gln Ala Phe Asn Asp Ala Gly Phe Ile Glu Asn 25 Phe Ala Ser Glu Glu Leu Ala Arg Ile Arg Arg Lys Ile His Asp Ser 40 Glu Ser Gln Val Arg Asp Val Leu Gln Asp Leu Leu Lys Gln Lys Ala 55 60 Gln Met Leu Thr Glu Gly Ile Val Ala Ser Arg Asn Gly Arg Gln Val 70 Leu Pro Val Lys Asn Thr Tyr Arg Asn Lys Ile Ala Gly Val Val His 90 Asp Ile Ser Ala Ser Gly Asn Thr Val Tyr Ile Glu Pro Arg Glu Val 100 105 Val Lys Leu Ser Glu Glu Ile Ala Ser Leu Arg Ala Asp Glu Arg Tyr 120 Glu Met Leu Arg Ile Leu Gln Glu Ile Ser Glu Arg Val Arg Pro His 135 Ala Ala Glu Ile Ala Asn Asp Ala Trp Ile Ile Gly His Leu Asp Leu 150 155 Ile Arg Ala Lys Val Arg Phe Ile Gln Glu Arg Gln Ala Val Val Pro 170 Gln Leu Ser Glu Asn Gln Glu Ile Gln Leu Leu His Val Cys His Pro 180 185 Leu Val Lys Asn Ala Val Ala Asn Asp Val Tyr Phe Gly Gln Asp Leu 195 200 205 Thr Gly Tyr Cys His Tyr Arg Ser Gln Tyr Arg Trp Glu Asp His His 215 220 Ala Gln Asn Ser Gly Leu Asp Thr Gly His Gly Pro Val Arg Ile Ala 230 240 Asp Phe Ser Arg Gln Gly Lys Ser Cys Trp Tyr Phe 245 250

## (2) INFORMATION FOR SEQ ID NO:326:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 106 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:326:

 Met
 Gly
 Ala
 Tyr
 Leu
 Val
 Met
 Gln
 Ser
 Leu
 Ser
 Tyr
 Leu
 Glu
 Tyr

 Glu
 Gln
 Gln
 Ser
 Thr
 Thr
 Val
 Arg
 His
 Leu
 Ile
 Leu
 Val
 Phe

 Glu
 Gln
 Gln
 Ser
 Thr
 Thr
 Val
 Arg
 His
 Leu
 Ile
 Leu
 Arg
 Thr
 Tyr
 Leu

 Tyr
 Leu
 Leu
 Arg
 Ile
 Lys
 Lys
 Leu
 Arg
 Thr
 Tyr
 Leu

 Lys
 Glu
 Lys
 Leu
 Glu
 Glu
 Glu
 Leu
 Arg
 Tyr
 Tyr
 Tyr
 Tyr
 Glu
 Glu
 Glu
 Tyr
 Lys
 Glu
 Glu
 Leu
 Tyr
 Lys
 Glu
 Lys
 Lys
 Glu
 Lys
 Lys
 G

- (2) INFORMATION FOR SEQ ID NO:327:
  - (i) SEQUENCE CHARACTERISTICS:

Trp Ala Leu Lys Arg Arg Ile Trp Ser Arg

100

- (A) LENGTH: 108 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:327:

 Met
 Ser
 Leu
 Asp
 Phe
 Leu
 Thr
 Ile
 Val
 Ser
 Ile
 Leu
 Cys
 Asp
 Asp
 Asp
 Asp

 Ala
 Ile
 Lys
 Ala
 Ser
 Ala
 Glu
 Ala
 Ser
 Gln
 Pro
 His
 Val
 Ser
 Ile
 Ala

 Phe
 Leu
 Lys
 Asp
 Gly
 Ala
 Glu
 Glu
 Thr
 Phe
 Ile
 Ile
 Glu
 Asp
 Ile

 Ala
 Glu
 Glu
 Glu
 Ala
 Glu
 Thr
 Phe
 Ile
 Ile
 Glu
 Asp
 Ile

 Ala
 Glu
 Glu
 Glu
 Ile
 Asp
 Ile
 Fhe
 Ile
 Ile
 Ile
 Asp
 Ile

 Ala
 Glu
 Glu
 Glu
 Asp
 Ile
 Ser
 Glu
 Ile
 Phe
 Ile
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Ile
 Ile
 I

Val Glu Ser His Pro Asn Thr Asn Leu Asn Thr Thr Cys Gln Asn Gln 85 90 95

Val Phe Arg Gln Val Leu Thr Val Ile His Ala Glu 105

- (2) INFORMATION FOR SEQ ID NO:328:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 104 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:328:

 Leu Ile
 Ser Leu Gly Asn Leu Lys Met Lys Met Asn His Ser Ser His Glu Val

 1
 5
 10
 5
 15
 15

 Gln Ile Gly Glu Lys Met Leu Asp Leu Thr Val Lys Ser Phe Glu Leu
 20
 25
 25
 25
 30
 30

 Leu Trp Ile Leu Ala Ser Asn Bro Glu Arg Val Phe Ser Lys Thr Asp 35
 40
 40
 45
 45
 45

Leu Tyr Glu Lys Ile Trp Lys Glu Asp Tyr Val Asp Asp Thr Asn Thr
50 55 60

Leu Asn Val His Ile His Ala Leu Arg Gln Glu Leu Ala Lys Tyr Ser 65 70 75 80

Ser Asp Gln Thr Pro Thr Ile Lys Thr Val Trp Gly Leu Gly Tyr Lys 85 90 95

Ile Glu Lys Pro Arg Gly Gln Thr

- (2) INFORMATION FOR SEQ ID NO: 329:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 59 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:329:

 Met
 Ala
 Glu
 Thr
 Ser
 Lys
 Thr
 Thr
 Val
 Ser
 Phe
 Tyr
 Leu
 Asn
 Gly
 Lys

 Tyr
 Glu
 Lys
 Met
 Ser
 Glu
 Glu
 Thr
 Arg
 Glu
 Lys
 Ile
 Glu
 Lys
 Val
 Ile

 His
 Glu
 Thr
 Asn
 Tyr
 Lys
 Pro
 Ser
 Ile
 Val
 Ala
 Arg
 Ser
 Leu
 Lys
 Leu

 Glu
 Thr
 Asn
 Lys
 Ile
 Asn
 Arg
 Phe
 Asp
 Arg

 Glu
 Thr
 Asn
 Lys
 Ile
 Asn
 Arg
 Phe
 Asp
 Arg

#### (2) INFORMATION FOR SEQ ID NO:330:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 186 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:330:

Met His Tyr Ile Glu Gly Ala Tyr Trp Ser Ala Glu Pro Asp Leu Pro Tyr Leu His Lys Arg Lys Ile Leu Met Leu Val Glu Asp Val Trp Leu 25 Leu Val Asp Asp Ile Arg Cys Gln Gly Gln His Glu Ala Leu Thr Gln 40 Phe Ile Leu Asp Lys Asp Val Thr Tyr Gln Asp Gly Lys Ile Asn Gln Leu Arg Leu Trp Ser Glu Val Asp Phe Asp Leu Glu Asp Thr Ile Ile 70 75 Ser Pro Lys Tyr Asn Glu Leu Glu Arg Ser Ser Lys Leu Thr Lys Arg Gln Phe Phe Glu Asn Gln Met Leu Asp Tyr Thr Ile Ile Ala His Glu 105 Ser Phe Glu Ile Ile Arg His Ser Val Tyr Gln Thr Asp Asp Arg Glu 120 Val Glu Asn Ala Leu Ala Phe Glu Val Lys Asn Asp Glu Thr Asp Lys 135 140 Leu Ile Leu Leu Ser Glu Asp Ile Gly Val Gly Glu Lys Leu Cys 145 150 155

Leu Val Asp Gly Thr Lys Met Arg Gly Lys Cys Leu Val Tyr Asp Lys

165

170

175

Ile Asn Glu Arg Met Ile Arg Leu Gln Cys

180

185

#### (2) INFORMATION FOR SEQ ID NO:331:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 286 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:331:

Met Asn Cys Glu Ala Val Ala Leu Gly Ser Phe Cys Glu Leu Lys Ser Arg Arg Gly Lys Lys Gln Lys Gly Glu Ile Leu Met Ala Val Ile Ser 25 Met Lys Gln Leu Leu Glu Ala Gly Val His Phe Gly His Gln Thr Arg 40 Arg Trp Asn Pro Lys Met Ala Lys Tyr Ile Phe Thr Glu Arg Asn Gly 55 Ile His Val Ile Asp Leu Gln Gln Thr Val Lys Tyr Ala Asp Gln Ala 65 70 75 . Tyr Xaa Phe Met Arg Asp Ala Ala Ala Asn Asp Ala Val Val Leu Phe 85 Val Gly Thr Lys Lys Gln Ala Ala Asp Ala Val Ala Glu Glu Ala Val 105 Arg Ser Gly Gln Tyr Phe Ile Asn His Arg Trp Leu Gly Gly Thr Leu 120 Thr Asn Trp Gly Thr Ile Gln Lys Arg Ile Ala Arg Leu Lys Glu Ile 135 140 Lys Arg Met Glu Glu Asp Gly Thr Phe Glu Val Leu Pro Lys Lys Glu 150 155 Val Ala Leu Leu Asn Lys Gln Arg Ala Arg Leu Glu Lys Phe Leu Gly 165 170 Gly Ile Glu Asp Met Pro Arg Ile Pro Asp Val Met Tyr Val Val Asp 185 Pro His Lys Glu Gln Ile Ala Val Lys Glu Ala Lys Lys Leu Gly Ile 195 200 205

 Pro
 Val
 Val
 Ale
 Val
 Asp
 Thr
 Asp
 Thr
 Asp
 Pro
 Asp
 Asp
 Ile
 Asp
 Pro
 Asp
 Asp
 Ile
 Asp
 Ala
 Ile
 Arg
 Ala
 Val
 Leu
 Ile
 Ile

 Val
 Ile
 Ile
 Asp
 Asp
 Asp
 Ala
 Ile
 Ile
 Arg
 Ala
 Val
 Lys
 Leu
 Ile
 Asp
 Ala
 Ile
 Ile
 Ile
 Arg
 Arg
 Ala
 Val
 Arg
 Ala
 Val
 Ile
 Arg
 Ala
 Val
 Ile
 Arg
 Ala
 Val
 Ile
 Arg
 Ala
 Val
 Arg
 Ala
 Ile
 Ile
 Arg
 Arg
 Ala
 Ile
 Ile
 Ile
 Ala
 Arg
 Arg
 Arg
 Ile
 Ile
 Ile
 Arg
 A

- (2) INFORMATION FOR SEQ ID NO:332:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 202 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:332:

Met Lys Gln Leu Ile Ser Leu Lys Asn Ile Phe Arg Ser Tyr Arg Asn 10 Gly Asp Gln Glu Leu Gln Val Leu Lys Asn Ile Asn Leu Glu Val Asn 20 25 30 Glu Gly Glu Phe Val Ala Ile Met Gly Pro Ser Gly Ser Gly Lys Ser 40 Thr Leu Met Asn Thr Ile Gly Met Leu Asp Thr Pro Thr Ser Gly Glu 55 Tyr Tyr Leu Glu Gly Gln Glu Val Ala Gly Leu Gly Glu Lys Gln Leu 70 Ala Lys Val Arg Asn Gln Gln Ile Gly Phe Val Phe Gln Gln Phe Phe 85 90 Leu Leu Ser Lys Leu Asn Ala Leu Gln Asn Val Lys Leu Pro Leu Ile 100 Tyr Ala Gly Val Ser Ser Lys Arg Arg Lys Leu Ala Glu Glu Tyr 120 Leu Asp Lys Val Glu Leu Ile Glu Arg Ser His His Leu Pro Ser Glu 135 Leu Ser Gly Gly Gln Lys Gln Arg Val Ala Ile Ala Arg Ala Leu Val 145 150 155 160

Asn Asn Pro Ser Ile Ile Leu Ala Asp Glu Pro Thr Gly Ala Leu Asp 165 170 175

Thr Lys Thr Gly Asn Gln Ile Met Gln Leu Leu Val Asp Leu Asn Lys 180 185 190

Glu Arg Lys Asn His Tyr His Gly Asn Ala 195 200

#### (2) INFORMATION FOR SEQ ID NO:333:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 164 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:333:

Met Thr Ser Val Ile Lys Trp Thr Leu Arg Lys Leu Phe Gln Ser Gln

1 5 10 15

Pro Phe Arg Gly Asn Asn Val Ser Arg Leu Val Asp Ile Leu Ser Glu
20 25 30

Asn Leu Asp Glu Gly Phe Gln Tyr Phe Pro Ser Asp Gln Ile Thr Asp 35 40 45

His Pro Glu Arg Phe Leu Val Ser Glu Met Val Arg Glu Lys Val Leu 50 55 60

His Leu Thr Arg Glu Glu Ile Pro His Ser Val Ala Val Val Val Asp
65 70 75 80

Ser Met Lys Arg Asp Glu Glu Thr Asp Lys Val His Ile Arg Ala Thr 85 90 95

Ile Met Val Glu Arg Asp Ser Gln Lys Gly Ile Ile Ile Gly Lys Gly
100 105 110

Gly Ala Met Leu Lys Lys Ile Gly Ser Met Ala Arg Arg Asp Ile Glu 115 120 125

Leu Met Leu Gly Asp Lys Val Phe Leu Glu Thr Trp Val Lys Val Lys
130 140

Lys Asn Trp Arg Asp Lys Lys Leu Asp Leu Ala Asp Leu Gly Tyr Asn 145 150 155 160

Glu Arg Glu Tyr

# (2) INFORMATION FOR SEQ ID NO:334:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 156 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:334:

Met Thr Phe Lys Ser Gly Phe Val Ala Ile Leu Gly Arg Pro Asn Val

1 5 10 15

Gly Lys Ser Thr Phe Leu Asn His Val Met Gly Gln Lys Ile Ala Ile 20 25 30

Met Ser Asp Lys Ala Gln Thr Thr Arg Asn Lys Ile Met Gly Ile Tyr 35 40 45

Thr Thr Asp Lys Glu Gln Ile Val Phe Ile Asp Thr Pro Gly Ile His 50 55 60

Lys Pro Lys Thr Ala Leu Gly Asp Phe Met Val Glu Ser Ala Tyr Ser 65 70 75 80

Thr Leu Arg Glu Val Asp Thr Val Leu Phe Met Val Pro Ala Asp Glu
85 90 95

Ser Arg Gly Lys Gly Asp Met Ile Ile Glu Arg Leu Lys Ala Ala 100 105 110

Lys Val Pro Val Ile Leu Val Val Asn Lys Ile Asp Lys Val His Pro 115 120 125

Asp Gln Leu Leu Ser Gln Ile Asp Asp Phe Arg Asn Gln Met Asp Phe
130 135 140

- (2) INFORMATION FOR SEQ ID NO:335:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 152 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:335:

Met Thr Glu Ile Arg Leu Glu His Val Ser Tyr Ala Tyr Gly Gln Glu Arg Ile Leu Glu Asp Ile Asn Leu Gln Val Thr Ser Gly Glu Val Val 25 Ser Ile Leu Gly Pro Ser Gly Val Gly Lys Thr Thr Leu Phe Asn Leu 40 Ile Ala Gly Ile Leu Glu Val Gln Ser Gly Arg Ile Val Leu Asp Gly Glu Glu Asn Pro Lys Gly His Val Ser Tyr Met Leu Gln Lys Asp Leu 70 75 Leu Leu Glu His Lys Thr Val Leu Gly Asn Ile Ile Leu Pro Leu Leu Ile Gln Lys Val Asp Lys Ala Glu Ala Ile Ser Arg Ala Asp Lys Ile 100 105 Leu Ala Thr Phe Gln Leu Thr Ala Val Arg Asp Lys Tyr Pro His Glu 120 125 Leu Ser Gly Gly Met Arg Gln Arg Val Ala Leu Leu Arg Thr Tyr Leu 135 140 Phe Gly His Lys Asn Arg Asn Pro 145 , 150

## (2) INFORMATION FOR SEQ ID NO:336:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 81 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:336:

 Met
 Thr
 Lys
 Met
 Glu
 Leu
 His
 Ala
 Trp
 Tyr
 Leu
 Glu
 His
 Lys
 Gln

 1
 5
 15
 10
 10
 10
 15
 15
 15

 Leu
 Gln
 Thr
 Thr
 Leu
 Thr
 His
 Ser
 Ile
 Glu
 Glu
 Ala
 Leu

 Xaa
 Leu
 Ser
 Asp
 Arg
 Ile
 Trp
 Ile
 Leu
 Xaa
 Asp
 Xaa
 Pro
 Gly
 Gln
 Ile

 Val
 Ser
 Glu
 Ile
 Lys
 Leu
 Asp
 Trp
 Ser
 Glu
 Asp
 Xaa
 Asp
 Xaa
 Xaa
 Xaa
 Xaa

Xaa Lys Ile Ala Xaa Lys Arg Gln Ile Leu Ala Glu Leu Gly Leu Asp 65 75 Lys

# (2) INFORMATION FOR SEQ ID NO:337:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 266 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:337:

Met Arg Cys Lys Met Leu Asp Pro Ile Ala Ile Gln Leu Gly Pro Leu 10 Ala Ile Arg Trp Tyr Ala Leu Cys Ile Val Thr Gly Leu Ile Leu Ala 25 Val Tyr Leu Thr Met Lys Glu Ala Pro Arg Lys Lys Ile Ile Pro Asp Asp Ile Leu Asp Phe Ile Leu Val Ala Phe Pro Leu Ala Ile Leu Gly 55 60 Ala Arg Leu Tyr Tyr Val Ile Phe Arg Phe Asp Tyr Tyr Ser Gln Asn 70 75 Leu Gly Glu Ile Phe Ala Ile Trp Asn Gly Gly Leu Ala Ile Tyr Gly 85 90 Gly Leu Ile Thr Gly Ala Leu Val Leu Tyr Ile Phe Ala Asp Arg Lys 105 Leu Ile Asn Thr Trp Asp Phe Leu Asp Ile Ala Ala Pro Ser Val Met 115 120 125 Ile Ala Gln Ser Leu Gly Arg Trp Gly Asn Phe Phe Asn Gln Glu Ala Tyr Gly Ala Thr Val Asp Asn Leu Asp Tyr Leu Pro Gly Phe Ile Arg 150 155 Asp Gln Met Tyr Ile Glu Gly Ser Tyr Arg Gln Pro Thr Phe Leu Tyr 170 Glu Ser Leu Trp Asn Leu Leu Gly Phe Ala Leu Ile Leu Ile Phe Arg 180 185 Arg Lys Trp Lys Ser Leu Arg Arg Gly His Ile Thr Ala Phe Tyr Leu

205

200

| Trp Tyr Gly Phe Gly Arg Met Val Ile Glu Gly Met Arg Thr Asp 210 | 215 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220

## (2) INFORMATION FOR SEQ ID NO:338:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 243 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:338:

Met Ser Lys Ile Ile Asp Arg Tyr Arg Pro Ala Gly Glu Gly Phe Val Arg Ile Asp Thr Gln Asn Asn Met Pro Thr Ala Ala Gly Leu Ser Ser 20 25 Ser Ser Ser Gly Leu Ser Ala Leu Val Lys Ala Cys Asn Ala Tyr Phe 40 Lys Leu Gly Leu Asp Arg Ser Gln Leu Ala Gln Glu Ala Lys Phe Ala Ser Gly Ser Ser Ser Arg Ser Phe Tyr Gly Pro Leu Gly Ala Trp Asp 70 75 Lys Asp Ser Gly Glu Ile Tyr Pro Val Glu Thr Asp Leu Lys Leu Ala 90 Met Ile Met Leu Val Leu Glu Asp Lys Lys Pro Ile Ser Ser Arg 100 105 Asp Gly Met Lys Leu Cys Val Glu Thr Ser Thr Thr Phe Asp Asp Trp 120 Val Arg Gln Ser Glu Lys Asp Tyr Gln Asp Met Leu Ile Tyr Leu Lys 135 Glu Asn Asp Phe Ala Lys Ile Gly Glu Leu Thr Glu Lys Asn Ala Leu 150 155 Ala Met His Ala Thr Thr Lys Thr Ala Ser Pro Ala Phe Ser Tyr Leu 165 170 175

## (2) INFORMATION FOR SEQ ID NO:339:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 191 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

· .

(ii) MOLECULE TYPE: Protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:339:

Met His Asn Gly Phe Val Asn Ile Asp Asn Val Lys Met Ser Lys Ser Leu Gly Asn Phe Ile Thr Val His Asp Ala Leu Lys Thr Leu Asp Gly 20 25 Gln Val Leu Arg Phe Phe Phe Ala Thr Gln His Tyr Arg Lys Pro Ile 40 Asn Phe Thr Glu Lys Ala Val Arg Asp Ala Glu Thr Asn Leu Lys Tyr 55 Leu Lys Asn Thr Tyr Glu Gln Pro Phe Thr Gly Asn Val Asp Ala Gln 65 70 75 Glu Leu Gln Asn Phe Lys Asp Lys Phe Val Ala Ala Met Asp Glu Asp 85 90 Phe Asn Ala Ala Asn Gly Ile Thr Val Val Phe Glu Met Ala Lys Trp 105 Ile Asn Ser Gly Asn Tyr Asp Ala Ser Val Lys Gln Ala Leu Ala Asp 115 120 Met Leu Glu Ile Phe Gly Ile Val Phe Val Glu Glu Val Leu Asp Ala 135 Glu Ile Glu Asp Leu Ile Gln Lys Arg Gln Glu Ala Arg Ala Asn Arg 145 150 155 160

Asp Phe Glu Thr Ala Asp Gln Ile Arg Asp Gln Leu Val Thr Gln Gly
165 170 175

Ile Lys Leu Leu Asp Thr Lys Asp Gly Val Arg Trp Thr Arg Asp
180 185 190

#### (2) INFORMATION FOR SEQ ID NO:340:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 248 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:340:

Met Lys Arg Thr Gly Leu Phe Thr Lys Ile Phe Ile Tyr Thr Phe Ser Ile Phe Ser Val Leu Val Ile Cys Leu His Leu Ala Ile Tyr Phe Leu 20 25 Phe Pro Ser Thr Tyr Leu Ser His Arg Gln Glu Thr Ile Gly Gln Lys Ala Thr Ala Ile Ala Gln Ser Leu Glu Gly Lys Asp Arg Gln Ser Ile 55 Glu Gln Val Leu Asp Leu Tyr Ser Gln Thr Ser Asp Ile Lys Gly Thr 65 70 75 Val Lys Gly Glu Met Thr Glu Asp Lys Leu Glu Val Lys Asp Ser Leu Pro Leu Asp Thr Asp Arg Gln Thr Thr Ser Leu Phe Ile Glu Glu Arg 105 Glu Val Lys Thr Gln Asp Gly Gly Thr Met Ile Leu Gln Phe Leu Ala 120 Ser Met Asp Leu Gln Lys Glu Ala Glu Gln Ile Ser Leu Gln Phe Leu 135 Pro Tyr Thr Leu Leu Ala Ser Phe Leu Ile Ser Leu Leu Val Ala Tyr 150 Ile Tyr Ala Arg Thr Ile Val Ala Pro Ile Leu Glu Ile Lys Arg Val 165 170 Thr Arg Arg Met Met Asp Leu Asp Ser Gln Val Arg Leu Arg Val Asp 185 Ser Lys Asp Glu Ile Gly Asn Leu Lys Glu Gln Ile Asn Ser Leu Tyr 195 200 205

## (2) INFORMATION FOR SEQ ID NO:341:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 239 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:341:

Leu Leu Glu Ser Tyr Ser Arg Glu Gln Val Asn Phe Phe Val Asp Gln 10 Gly Ala Val Thr Ile Val Gln Lys Glu Val Arg Arg Ser Ala Ala Tyr 25 Phe Glu Gly Ile Glu Ala Ser Arg Pro Leu Glu Leu Asn Pro Glu Gln 40 Arg Gln Ala Arg Asp Ala Val Val Ser Ser Ile Gly Ser Ser Gln Pro Pro Phe Leu Leu Gln Gly Ile Thr Gly Ser Gly Lys Thr Glu Val Tyr 70 75 Leu Gln Ile Ile Gln Gly Ala Leu Asp Lys Gly Lys Thr Ala Ile Leu Leu Val Pro Glu Ile Ser Leu Thr Pro Gln Met Thr Glu Arg Phe Ile 100 105 Ala Arg Phe Gly Asp Lys Val Ala Ile Leu His Ser Gly Leu Ser Asn 120 Gly Glu Lys Tyr Asp Glu Trp Arg Lys Val Glu Arg Gly Asp Ala Gln 135 Val Val Val Gly Ala Arg Ser Ala Ile Phe Ala Pro Leu Lys Asn Leu 150 Gly Val Met Ile Ile Asp Glu Glu His Glu Ala Ala Tyr Lys Gln Asp 165 170 Ser Asn Pro Arg Tyr His Ala Arg Glu Val Ala Ile Leu Arg Ala Arg

190

- (2) INFORMATION FOR SEQ ID NO:342:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 94 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:342:

 Met
 Cys
 Met
 Val
 Met
 Gln
 Leu
 Leu
 Gly
 His
 Gln
 Leu
 Val
 Leu
 Gly
 Gly
 Leu
 Ile
 Gly
 Ile
 Gly
 Ile
 th

- (2) INFORMATION FOR SEQ ID NO:343:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 61 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:343:

 Met
 Ile
 Ser
 Leu
 Phe
 Ala
 Asn
 Ala
 Lys
 Gln
 Ser
 Lys

 1
 Ile
 Phe
 Ile
 Leu
 Gln
 Lys
 Ser
 Glu
 Ile
 Ala
 Val
 Glu
 Pro
 Phe

 Thr
 Ile
 Phe
 Leu
 Gln
 Lys
 Lys
 Ser
 Glu
 Ile
 Ala
 Val
 Glu
 Pro
 Phe
 Phe
 Phe
 Gln
 Asp
 Ala
 Ser
 Val
 Leu
 Met
 Lys
 Phe

 Lys
 Glu
 Asn
 Phe
 Gln
 Lys
 Thr
 Gln
 Gly
 Thr
 Glu
 Ile
 ## (2) INFORMATION FOR SEQ ID NO:344:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 401 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:344:

Met Gly Lys Phe Arg Gln Ser Gln Pro Ser Val Ser Asn Asn Gly Leu 1 10 Ala Thr Val Val Pro Ser Val Arg Glu Gly Glu Pro Val Arg Val Ile Ala Lys Ala Glu Asn Gly Asp Ile Leu Gly Glu Tyr Arg Leu His Phe 40 45 Thr Lys Asp Lys Asn Leu Leu Ser His Lys Pro Val Ala Ala Val Lys Gin Ala Arg Leu Leu Gin Val Gly Gin Ala Leu Glu Leu Pro Thr Lys 70 75 Val Pro Val Tyr Phe Thr Gly Lys Asp Gly Tyr Glu Thr Lys Asp Leu 90 Ser Val Glu Trp Glu Glu Val Pro Ala Glu Asn Leu Thr Lys Ala Gly 100 105 Gln Phe Thr Val Arg Gly His Val Leu Gly Ser Asp Leu Val Ala Glu 120 Val Thr Val Arg Val Thr Asp Lys Leu Gly Glu Ala Leu Ser Asp Asn 135 Pro Asn Tyr Asp Glu Asn Ser Asn Gln Ala Phe Ala Ser Ala Thr Asn 145 150 155

ASP	Ile	Asp	Lys	Asn	Ser	His	Asp	Arg	Val	Asp	Tyr	Leu	Asn	Asp	Gly
				165	i				170	)				175	5
Asp	His	Ser	Glu	Asn	Arg	Arg	Tr	Thi	: Ası	Tr	Se	r Pro	Th:	Pro	Se:
			180	1				185	5				190	)	
Ser	Asn	Pro	Glu	Val	Ser	Ala	Gly	' Val	Ile	Phe	Arg	g Glu	ı Asr	Glv	/ Lvs
		195	<b>,</b>				200					205		•	
Ile	Val	Glu	Arg	Thr	Val	Ala	Gln	Ala	Lys	Leu	His	Phe	Phe	. Ala	a Asr
	210					215					220				
Ser	Gly	Thr	Asp	Ala	Pro	Thr	Lys	Leu	Val	Leu	Glu	Arq	Tvr	Val	GIV
225					230					235			-3-		240
Pro	Glu	Phe	Glu	Val	Pro	Thr	Tyr	Tyr	Ser	Asn	Tyr	Gln	Ala	Tvr	Asn
				245					250		_			255	
Ala	Asp	His	Pro	Phe	Asn	Asn	Pro	Glu	Asn	Trp	Glu	Ala	Val	Pro	Tvr
			260					265		_			270		-1-
Arg	Ala	Asp	Lys	Asp	Ile	Ala	Ala	Gly	Asp	Glu	Ile	Asn	Val	Thr	Phe
		275					280					285			
Lys	Ala	Val	Lys	Ala	Lys	Ala	Met	Arg	Trp	Arg	Met	Glu	Arg	Lvs	Ala
	290					295					300				
Asp	Lys	Ser	Gly	Val	Ala	Met	Ile	Glu	Met	Thr	Phe	Leu	Ala	Pro	Ser
305					310			•		315					320
Glu	Leu	Pro	Gln	Glu	Ser	Thr	Gln	Ser	Lys	Ile	Leu	Val	Asp	Gly	Lvs
				325					330					335	
Glu	Leu	Ala	Asp	Phe	Ala	Glu	Asn	Arg	Gln	Asp	Tyr	Gln	Ile	Thr	Tvr
			340					345					350		
Lys	Gly	Gln	Arg	Pro	Lys	Val	Ser	Val	Glu	Glu	Asn	Asn	Gln	Val	Ala
		355					360					365			
Ser	Thr	Val	Val	Asp	Ser	Gly	Glu	Asp	Cys	Leu	Pro	Val	Leu	Val	Ara
	370					375					380				5
Leu	Val	Ser	Glu	Ser	Gly	Lys	Gln	Val	Lys	Glu	Tyr	Arg	Tyr	Pro	Val
385					390					395	-		-		400
Asp															-

# (2) INFORMATION FOR SEQ ID NO:345:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 207 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:345:

Met Asn Ile Gln Glu Glu Ile Lys Lys Arg Arg Thr Phe Ala Ile Ile 10 Ser His Pro Asp Ala Gly Lys Thr Thr Ile Thr Glu Gln Leu Leu Tyr 25 Phe Gly Gly Glu Ile Arg Glu Ala Gly Thr Val Lys Gly Lys Lys Thr 40 Gly Thr Phe Ala Lys Ser Asp Trp Met Asp Ile Glu Lys Gln Arg Gly Ile Ser Val Thr Ser Ser Val Met Gln Phe Asp Tyr Asp Gly Lys Arg 70 75 Val Asn Ile Leu Asp Thr Pro Gly His Glu Asp Phe Ser Glu Asp Thr Tyr Arg Thr Leu Met Ala Val Asp Ala Ala Val Met Val Val Asp Ser 100 105 Ala Lys Gly Ile Glu Ala Gln Thr Lys Lys Leu Phe Glu Val Val Lys 120 His Arg Gly Ile Pro Val Phe Thr Phe Met Asn Lys Leu Asp Arg Asp 135 Gly Arg Glu Pro Leu Asp Leu Leu Gln Glu Leu Glu Glu Ile Leu Gly 150 Ile Ala Ser Tyr Pro Met Asn Trp Pro Ile Gly Met Gly Lys Ala Phe 165 170 Glu Gly Leu Tyr Asp Leu Tyr Asn Gln Arg Leu Glu Leu Tyr Lys Gly 185 Asp Glu Arg Phe Ala Ser Pro Arg Arg Trp Arg Gln Thr Phe Trp 195 200 205

- (2) INFORMATION FOR SEQ ID NO:346:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 284 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:346:

Met Leu Ile Asn Ser Leu Asn Gln Ser Tyr Ile Ser Ala Lys Arg Ile

1 5 10 15

Glu	Glu	val	l Phe 20	Ala	a Glu	ı Sei	r Pro	Gl 25	ı Ası	n Il	e His	s Se		ı Le	u Gl
G) -	Tree			<b>~</b> _						_			30		
GII	. Dys	35	ı val	Thi	Sei	- G17	Arç 40	y Va.	l Le	ı Glı	n Val	45	n Glu	ı Leı	ı Thi
Phe	Thr 50	Туг	Pro	) Asp	Ala	Ala 55	Glr	Pro	Sez	r Lev	Arg	Asp	) Ile	e Ser	Phe
Asp 65	Met	Thr	Gln	Gly	Gl::	Ile	Leu	Gly	/ Ile	: Ile	Gly	Gly	Thr	Gly	Ser 80
Gly	Lys	Ser	Ser	Leu 85	Val	Gln	Leu	Lev	Leu 90		' Leu	Tyr	Pro	Val 95	Asp
Lys	Gly	Asn	11e		Leu	Tyr	Gln	Asn 105		Arg	Ser	Pro	Leu 110	Asn	Leu
Glu	Gln	Trp 115		Ser	Trp	Ile	Ala 120		Val	Pro	Gln	Lys 125	Val		Leu
Phe	Lys 130	Gly	Thr	Ile	Arg	Ser 135		Leu	Thr	Leu	Gly			Gln	Glu
Val 145	Ser	Asp	Gln	Lys	Leu 150	Trp	Gln	Ala	Leu	Glu 155	Ile	Ala	Gln	Ala	
Asp	Phe	Val	Ser	Glu 165		Glu	Gly	Leu	Leu 170		Ala	Leu	Ile		160 Ala
Gly	Gly	Arg	Asn 180		Ser	Gly	Gly	Gln 185		Gln	Arg	Leu	Ser	175 Ile	Ala
Arg	Ala	Val 195	Leu	Arg	Gln	Ala	Pro 200		Ile	Ile	Leu	<b>Asp</b> 205		Ala	Thr
Ser	Ala 210	Leu	Asp	Thr	Ile	Thr 215	Glu	Ser	Lys	Leu	Leu 220		Ala	Ile	Arg
Glu 225	Asn	Phe	Pro	Asn	Thr 230	Ser	Leu	Ile	Leu	Ile 235	Ser	Gln	Arg	Thr	Ser 240
Thr	Leu	Gln	Met	Ala 245	Asp	Gln	Ile	Leu	Leu 250	Leu	Glu	Lys	Gly	Glu 255	
Leu	Ala	Val	Gly 260	Lys	His	Asp	Asp	Leu 265	Met	Lys	Ser	Ser	Gln 270		Tyr
Arg		Ile 275	Asn	Ala	Ser	Gln	His 280	Gly	Lys	Glu	Asp		•		

# (2) INFORMATION FOR SEQ ID NO:347:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 57 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:347:

Met Ile Asp Asp Ala Gly Val Gly Val Lys Ile Leu Thr Ser Ser Lys

1 5 10 15

Asp Ala Asn Asp Leu Leu Glu Lys Lys Ile Asp Gly Leu Ile Glu Lys
20 25 30

Phe Lys His Ala Tyr Ala Asn Val Lys Ile Glu Lys Leu Glu Thr Ile 35 40 45

Asn Ser Lys Glu Ile Glu Arg Lys Trp 50 55

- (2) INFORMATION FOR SEQ ID NO:348:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 43 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:348:

Met Thr Gly Ala Gly Phe Gly Gly Cys Ala Ile Ala Leu Val Gln Lys

1 5 10 15

Asp Thr Val Glu Ala Phe Lys Glu Ala Val Gly Lys Leu Tyr Lys Glu 20 25 30

Val Val Gly Tyr Pro Xaa Ser Leu Leu Tyr Arg 35 40

- (2) INFORMATION FOR SEQ ID NO:349:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 60 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

<u>.</u> .

- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:349:

 Met
 Ala
 Gln
 His
 Leu
 Thr
 Glu
 Ala
 Leu
 Arg
 Lys
 Asp
 Phe
 Leu
 Ala

 1
 5
 5
 1
 10
 1
 15
 15

 Val
 Phe
 Gly
 Gln
 Ala
 Asp
 Gln
 Thr
 Phe
 Phe
 Phe
 Gly
 Arg
 Ile

 Asn
 Leu
 Ile
 Gly
 His
 Thr
 Asp
 Tyr
 Asn
 Gly
 His
 Val
 Phe
 Thr

 Trp
 Cys
 Tyr
 Phe
 Leu
 Gly
 Asn
 Leu
 Arg
 Cys
 Ser
 #### (2) INFORMATION FOR SEQ ID NO:350:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 282 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:350:

Met Thr Asp Arg Tyr Asn Tyr Glu Ala Val Gln Met Ala Phe Leu Pro 1 5 10 Thr Lys Gln Arg Ala Asn Met Gly Phe Gly Ile Cys Gly Phe Ala Asn Thr Val Asp Thr Leu Ser Ala Ile Lys Tyr Ala Thr Val Lys Pro Ile Arg Asp Glu Asp Gly Tyr Ile Tyr Asp Tyr Glu Thr Ile Gly Asp Tyr 55 Pro Arg Trp Gly Glu Asp Asp Pro Arg Ser Asn Glu Leu Ala Glu Trp 70 75 Leu Ile Glu Ala Tyr Thr Thr Arg Leu Arg Ser His Lys Leu Tyr Lys 90 Asp Ala Glu Ala Thr Val Ser Leu Leu Thr Ile Thr Ser Asn Val Ala 100 105 Tyr Ser Lys Gln Thr Gly Asn Ser Pro Val His Lys Gly Val Tyr Leu 120 Asn Glu Asp Gly Ser Val Asn Leu Ser Lys Leu Glu Phe Phe Ser Pro 135 140 Gly Ala Asn Pro Ser Asn Lys Ala Lys Gly Gly Trp Leu Gln Asn Leu 150 155

Asn Ser Leu Ser Ser Leu Asp Phe Ser Tyr Ala Ala Asp Gly Ile Ser 170 Leu Thr Thr Gln Val Ser Pro Arg Ala Leu Gly Lys Thr Arg Asp Glu 185 Gln Val Asp Asn Leu Val Thr Ile Leu Asp Gly Tyr Phe Glu Asn Gly 200 205 Gly Gln His Val Asn Leu Asn Val Met Asp Leu Asn Asp Val Tyr Glu 215 Lys Ile Met Ser Gly Glu Asp Val Ile Val Arg Ile Ser Gly Tyr Cys 230 235 Val Asn Thr Lys Tyr Leu Thr Pro Glu Gln Lys Thr Glu Leu Thr Gln 245 250 Arg Val Phe His Glu Val Leu Ser Met Asp Asp Ala Leu Asp Ala Leu 265 270 Ser Ser Asn Pro Ala Ala Pro Gly Ser His 275 280

- (2) INFORMATION FOR SEQ ID NO:351:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 71 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:351:

 Met
 Met
 Ile
 Ala
 Leu
 Asp
 Val
 Val
 Leu
 Thr
 Pro
 Ile
 Phe
 Arg
 Ile
 Glu

 Gly
 Met
 Ala
 Ser
 Ser
 Val
 Val
 Asn
 Ile
 Leu
 Ala
 Gly
 Ile
 Leu
 Ala
 Gly
 Ile
 Leu
 Ala
 Ile
 Leu
 Ala
 Thr
 Val
 Thr
 Ala
 Phe
 Ile
 Ala
 Ile
 Ala
 Thr
 Val
 Thr
 Ala
 Phe
 Ile
 Ala
 Ile
 Ala
 Thr
 Val
 Thr
 Ala
 Phe
 Ile
 Ala
 Ile
 Ala
 Thr
 Val
 Thr
 Ala
 Ile
 A

- (2) INFORMATION FOR SEQ ID NO:352:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 103 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:352:

 Met
 Thr
 Ala
 Asn
 Glu
 Trp
 Ile
 Trp
 Asp
 Lys
 Glu
 Ser
 Trp
 Phe
 Tyr
 Leu

 Lys
 Ser
 Asp
 Gly
 Lys
 Ile
 Ala
 Glu
 Lys
 Glu
 Trp
 Val
 Tyr
 Asp
 Ser
 His

 Ser
 Gln
 Asp
 Gly
 Tyr
 Phe
 Lys
 Ser
 Gly
 Tyr
 Met
 Ala
 Lys
 Asp

 Glu
 Thr
 Ala
 Trp
 Tyr
 Gly
 Leu
 Gly
 Ser
 Asp
 Gly
 Lys
 Trp
 Leu
 Gly
 Trp
 Trp
 Leu
 Gly
 Trp
 Trp
 Ile
 Trp
 Ile
 Trp
 Ile
 Trp
 Ile
 Trp
 Ile
 Trp
 Trp
 Ile
 Trp
 Ile
 Trp
 I

#### (2) INFORMATION FOR SEQ ID NO:353:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 167 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:353:

Glu Asp Gly Thr Glu Ile Lys Ala Ala Asp Tyr Ile Ser Ala Pro Arg 55 Pro Gly Lys Ile Ile Thr Ile Leu Gly Asp Thr Arg Lys Thr Asp Ala 70 75 Ser Val Arg Leu Ala Val Asn Ala Asp Val Leu Val His Glu Ser Thr 85 Tyr Gly Lys Gly Asp Glu Lys Ile Ala Arg Asn His Gly His Ser Thr 100 105 Asn Met Gln Ala Ala Gln Val Ala Val Glu Ala Gly Ala Lys Arg Leu 120 125 Leu Leu Asn His Ile Ser Ala Arg Phe Leu Ser Lys Asp Ile Ser Lys 130 140 Leu Lys Lys Asp Ala Ala Thr Ile Phe Glu Asn Val His Val Val Lys 150 155 160 Asp Leu Glu Glu Val Glu Ile 165

### (2) INFORMATION FOR SEQ ID NO:354:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 251 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:354:

Met Pro Thr Ile Leu Ile Thr Gly Ala Ser Gly Gly Leu Ala Gln Glu Met Val Lys Leu Leu Pro Asn Asp Gln Leu Ile Leu Leu Gly Arg Asn 20 25 Lys Glu Lys Leu Ala Gln Leu Tyr Gly Asn Tyr Ser His Ala Glu Leu Ile Glu Ile Asp Ile Thr Asp Asp Ser Ala Leu Glu Ala Leu Val Thr 55 Asp Leu Tyr Leu Arg Tyr Gly Lys Ile Asp Val Leu Ile Asn Asn Ala 65 75 Gly Tyr Gly Ile Phe Glu Gly Phe Asp Gln Ile Ala Asp Lys Asp Ile 90 His Gln Met Phe Glu Val Asn Thr Phe Ala Leu Met Asn Leu Ser Arg 100 105 110

His Leu Ala Ala Arg Met Lys Glu Ser Ser Lys Gly His Ile Ile Asn Ile Val Ser Met Ala Gly Leu Ile Ala Thr Gly Lys Ser Ser Leu Tyr 135 Ser Ala Thr Lys Phe Ala Ala Ile Gly Phe Ser Asn Ala Leu Arg Leu 150 155 Glu Leu Met Pro Tyr Gly Val Tyr Val Thr Thr Val Asn Pro Gly Pro 170 Ile Arg Thr Gly Phe Phe Asp Gln Ala Asp Pro Asp Gly Thr Tyr Leu 180 185 Lys Ser Val Asp Arg Phe Leu Leu Glu Ala Asp Ala Val Ala Lys Lys 195 200 Ile Val Lys Ile Ile Gly Lys Asn Lys Arg Glu Leu Asn Leu Pro Ile 215 220 Leu Leu Asn Leu Ala His Lys Phe Tyr Thr Leu Phe Pro Lys Leu Ala 230 235 240 Asp Lys Leu Ala Gly Glu Thr Phe Asn Tyr Lys 245

## (2) INFORMATION FOR SEQ ID NO:355:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 114 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:355:

Met Ser Cys Leu Val Trp Asp Gln Ser Gln Gln Lys Asn Asn Ala Lys 1 5 Leu Gly Ile Glu Asn Leu Gln Asp Leu Leu Leu Tyr Phe Pro Phe Arg 25 Tyr Glu Asp Phe Lys Thr Lys Gln Val Le Glu Leu Glu Asp Gly Glu 40 45 Lys Ala Val Leu Ser Gly Gln Val Val Thi so Ala Ser Val Gln Tyr 55 Tyr Gly Phe Lys Arg Asn Arg Leu Arg Phe Ser Leu Lys Gln Gly Glu 70 75 Val Val Phe Ala Val Asn Phe Phe Asn Gln Pro Tyr Leu Ala Asp Lys 85 90 95

Ile Glu Leu Gly Ala Thr Leu Ala Val Phe Gly Lys Trp Asp Arg Ala
100 105 110
Lys Gly

### (2) INFORMATION FOR SEQ ID NO:356:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 363 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:356:

Met Lys Val Leu Ala Gln Val Glu Asp Asp Leu Gln Pro Val Tyr Arg 10 Leu Ala Gln Gly Ile Ser Gln Ala Ser Leu Val Lys Val Ile Lys Thr 20 25 Ala Phe Asp Gln Gly Leu Asp Leu Leu Ile Glu Glu Asn Leu Pro Gln 40 Ser Leu Leu Asp Lys Tyr Lys Leu Met Ser Arg Cys Gln Ala Val Arg 60 Ala Met His Phe Pro Lys Asp Leu Ala Glu Asn Lys Gln Ala Leu Arg 65 70 75 Arg Ile Lys Phe Glu Glu Leu Phe Tyr Phe Gln Met Gln Leu Gln Thr Leu Lys Ser Glu Asn Arg Val Gln Gly Ser Gly Leu Val Leu Asp Trp 100 105 Ser Gln Glu Lys Val Thr Ala Val Lys Ala Ser Leu Pro Phe Ala Leu 120 Thr Gln Ala Gln Glu Lys Ser Leu Gln Glu Ile Leu Thr Asp Met Lys 135 Ser Asp His His Met Asn Arg Leu Leu Gln Gly Asp Val Gly Ser Gly 150 155 Lys Thr Val Val Ala Gly Leu Ala Met Phe Ala Ala Val Thr Ala Gly 165 170

205

200

Tyr Gln Ala Ala Leu Met Val Pro Thr Glu Ile Leu Ala Glu Gln His 180 185 190 Phe Glu Ser Leu Gln Asn Leu Phe Pro Asn Leu Lys Leu Ala Leu Leu

Thr Gly Ser Leu Lys Ala Ala Glu Lys Arg Glu Val Leu Glu Thr Ile Ala Lys Gly Glu Ala Asp Leu Ile Ile Gly Thr His Ala Leu Ile Gln 230 235 Asp Gly Val Glu Tyr Ala Arg Leu Gly Leu Ile Ile Asp Glu Gln 245 250 His Arg Phe Gly Val Gly Gln Arg Arg Ile Leu Arg Glu Lys Gly Asp 265 Asn Pro Asp Val Leu Met Met Thr Ala Thr Pro Ile Pro Arg Thr Leu 280 Ala Ile Thr Ala Phe Gly Asp Met Asp Val Ser Ile Ile Asp Gln Met 295 300 Pro Ala Gly Arg Lys Pro Ile Val Thr Arg Trp Ile Lys His Glu Gln 310 Leu Pro Gln Val Leu Thr Trp Leu Glu Gly Glu Ile Gln Lys Gly Ser 330 Gln Val Tyr Val Ile Ser Pro Leu Ile Glu Glu Ser Gln Ala Pro Arg 340 345 Phe Glu Lys Met Pro Leu Pro Tyr Gln Arg Ser 355 360

## (2) INFORMATION FOR SEQ ID NO:357:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 202 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:357:

 Met
 Lys
 Asp
 Leu
 Val
 Glu
 Lys
 Leu
 Ala
 Ser
 Lys
 Glu
 Glu
 Leu
 Thr

 1
 5
 5
 1
 1
 10
 1
 1
 15
 15

 Ala
 Asp
 Asn
 Glu
 Met
 Ile
 Glu
 Leu
 Ala
 Arg
 Phe
 Asn
 Glu
 Arg
 Gln

 Ala
 Ser
 Phe
 Phe
 Ser
 Glu
 Arg
 Gly
 Tyr
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Tyr

 Lys
 His
 Val
 Ala
 Lys
 Tyr
 Leu
 Lys
 Ile
 Leu
 Pro
 Asp
 Glu
 Phe
 Ser
 Tyr

 So
 5
 5
 5
 8
 Ala
 Glu
 Lys
 Asn
 Thr
 Ser

 Glu
 Ala
 Ile
 Asp
 Val
 Val
 Lys
 Ala
 Asp
 Ala
 Blu
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp

Asn Asn Glu Met Gly Met Glu Asn Tyr Phe Tyr Asn Glu Gln Ile Lys 85 90 Lys Asp Leu Lys Lys Leu Lys Asp Ser Gln Lys Ser Phe Thr Tyr Leu 100 105 Lys Ser Pro Glu Tyr Asn Asp Leu Gln Leu Val Leu Thr Gln Phe Ser 115 120 Lys Ser Lys Val Asn Pro Ile Phe Ile Ile Pro Pro Val Asn Lys Lys 135 Trp Met Asp Tyr Ala Gly Leu Arg Glu Asp Met Tyr Gln Gln Thr Val 150 155 Gln Lys Ile Arg Tyr Gln Leu Glu Ser Gln Gly Phe Thr Asn Ile Ala 165 170 Asn Phe Ser Lys Asp Gly Gly Glu Pro Phe Phe Met Lys Asp Thr Ile 180 185 190 His Leu Gly Trp Leu Gly Leu Val Gly Phe 195 200

#### (2) INFORMATION FOR SEQ ID NO:358:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 112 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:358:

Met Lys Gln Leu Ser Ser Ala Gln Val Arg Gln Met Trp Leu Asp Phe Trp Ala Thr Lys Gly His Ser Val Glu Pro Ser Val Ser Leu Val Pro 25 30 Val Asn Asp Pro Thr Leu Leu Trp Ile Asn Ser Gly Val Ala Thr Leu Lys Lys Tyr Phe Asp Gly Thr Ile Ile Pro Glu Asn Pro Arg Ile Thr 55 Asn Ala Gln Lys Ala Ile Arg Thr Asn Asp Ile Glu Asn Val Arg Glu 70 75 Arg Leu Arg Val Thr Ile Pro Cys Leu Lys Cys Trp Gly Thr Ser Leu 90 Ser Gly Ile Thr Ser Val Thr Lys Leu Ser Leu Gly Leu Met Ser Phe 100 105 110

#### (2) INFORMATION FOR SEQ ID NO:359:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 110 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:359:

Met Ile Ala Leu Gly Trp Ser Asn Ile Gly Ala Ala Ile Ala Pro Asp 1 5 10 15

Ala Ala Leu Ala Ser Val Ala Ala Ile Ile Met Val Leu Gly Gly
20 25 30

Asp Phe Thr Lys Thr Gly Ile Gly Val Ala Gln Ala Val Ala Ile Pro 35 40 45

Leu Ala Val Ala Gly Leu Phe Leu Thr Met Ile Val Arg Thr Ile Ser 50 55 60

Val Gly Leu Val His Thr Ala Asp Ala Ala Lys Lys Gly Asp Phe 65 70 75 80

Gly Ala Val Glu Arg Ala His Phe Ile Ala Leu Leu Phe Gln Gly Leu 85 90 95

Arg Ile Ala Leu Pro Ala Ala Leu Leu Pro Tyr Gly Thr Asn 100 105 110

- (2) INFORMATION FOR SEQ ID NO: 360:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 141 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:360:

Met Leu Pro Leu Lys Lys Val Thr Ser Ala Leu Trp Ser Val Arg Ile 1 5 10 15

Ser Leu Arg Tyr Phe Ser Lys Asp Phe Val Ser Arg Phe Leu Gln Leu 25 Phe Ser Leu Met Val Pro Thr Glu Thr Val Gln Ser Ile Leu Ser Ala Met Pro Asp Trp Leu Lys Asp Gly Met Ala Ile Gly Gly Met Val 55 Val Ala Val Gly Tyr Ala Met Val Ile Asn Met Met Ala Thr Arg Glu 70 75 Val Trp Pro Phe Phe Ala Leu Gly Phe Val Leu Ala Ala Val Ser Asp 90 Ile Thr Leu Ile Gly Phe Gly Ala Ile Gly Val Ala Ile Ala Leu Ile 100 Tyr Leu His Leu Ser Lys Thr Gly Gly Asn Gly Gly Gly Ala Ala 120 Thr Ser Asn Asp Pro Ile Gly Asp Ile Leu Glu Asp Tyr 130 135

## (2) INFORMATION FOR SEQ ID NO:361:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 86 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:361:

Met Ala Lys Asn Gly Val Asp Gly Val Tyr Asn Ala Asp Pro Lys Lys 10 Asp Lys Thr Ala Val Lys Phe Glu Glu Leu Thr His Arg Asp Val Ile 20 25 Asn Lys Gly Leu Arg Ile Met Asp Ser Thr Ala Ser Thr Leu Ser Met 40 Asp Asn Asp Ile Asp Leu Val Val Phe Asn Met Asn Gln Ser Gly Asn Ile Lys Arg Val Val Phe Gly Glu Asn Ile Gly Thr Thr Val Ser Asn 70

85

Asn Ile Glu Glu Lys Glu

(2) INFORMATION FOR SEQ ID NO:362:

75

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 50 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:362:

- (2) INFORMATION FOR SEQ ID NO:363:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 175 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:363:

- (2) INFORMATION FOR SEQ ID NO: 364:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 69 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:364:

Met Ile Ala Lys Glu Phe Glu Thr Phe Leu Leu Gly Gln Glu Glu Thr 1 5 10 15

Phe Leu Thr Pro Val Lys Asn Leu Val Val Leu Ile Asp Thr His Asn 20 25 30

Ala Asp His Ala Thr Leu Leu Leu Ser Gln Met Thr Tyr Thr Arg Val
35 40 45

Pro Val Val Thr Asp Glu Ile Gln Leu Arg Trp Arg Gln Asp Val Leu 50 55 60

Tyr Gln Gln Val Leu

- (2) INFORMATION FOR SEQ ID NO: 365:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 173 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:365:

Met Ala Lys Gln Thr Ile Ile Val Met Ser Asp Ser His Gly Asp Ser 10 Leu Ile Val Glu Glu Val Arg Asp Arg Tyr Val Gly Lys Val Asp Ala 25 Val Phe His Asn Gly Asp Ser Glu Leu Arg Pro Asp Ser Pro Leu Trp Glu Gly Ile Arg Val Val Lys Gly Asn Met Asp Phe Tyr Ala Gly Tyr 55 60 Pro Glu Arg Leu Val Thr Glu Leu Gly Ser Thr Lys Ile Ile Gln Thr 65 His Gly His Leu Phe Asp Ile Asn Phe Asn Phe Gln Lys Leu Asp Tyr 90 Trp Ala Gln Glu Glu Ala Ala Ile Cys Leu Tyr Gly His Leu His 100 105 Val Pro Ser Ala Trp Leu Glu Gly Lys Ile Leu Phe Leu Asn Pro Gly 120 125 Ser Ile Ser Gln Pro Arg Gly Thr Ile Arg Glu Cys Leu Tyr Ala Arg 135 Val Glu Ile Asp Asp Ser Tyr Phe Lys Val Asp Phe Leu Thr Arg Asp 150 155 His Glu Val Tyr Pro Gly Leu Ser Lys Glu Phe Ser Arg 170

- (2) INFORMATION FOR SEQ ID NO:366:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 456 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:366:

Met Ser Thr Thr Ile Ile Gly Phe Pro Arg Leu Gly Glu Phe Arg Glu

1 5 10 15

Leu	Lys	Phe	Thr	Thr	Glu	Lys	Tyr	Phe	Arg	Lys	Glu	Ile	Ser	Glu	Glu
			20					25					30		
Glu	ı Lei	1 Le	u Ala	a Al	a Ala	a Ly:	ASI 40	) Let	ı Ar	g Gly	y Lys	# Hi:	s Tr	p As	n Ile
Va]	L Lys 50	Gl;	y Ly:	s Gl	y Ile	Thi 55	r Glu	ı Ile	Pro	Sea	Asr	n Ası	) Phe	e Se:	r His
Ту: 65	: Ası	) Ası	n Phe	e Le	u Asp 70	Ala	a Ala	a Phe	e Lev	1 Phe		val	L Vai	l Pro	Ala 80
Ser	· Val	Glı	n Asr	n Let 85	ı Ası	Leu	ser	Asp	Let 90		a Arg	туз	Phe	Ala 95	a Leu
Gly	Arg	Gly	7 Tyr 100		n Gly	gly	/ Lys	Gly 105	Asp	Val	. Arg	Ala	Let	ı Pro	) Met
Lys	Lys	Trp		e Asr	n Thr	Asn	120		Tyr	Ile	. Val	Pro	Lys		Glu
Lys	130		Glr	ı Val	Lys	Leu 135		Gly	His	Lys	Ile 140	Phe	Asp	Glu	Phe
Gln 145		Ala	Lys	Glu	Leu 150		Leu	Asn	Thr	Arg		Val	Leu	Val	Gly 160
Pro	Phe	Thr	Phe	Leu 165		Leu	Ser	Asp	Phe	Glu	Glu	Gly	Val	Lys	Ala
Asp	Asp	Phe	Val 180		Ser	Leu	Val	Ala 185	Ala	Tyr	Gln	Glu	Val	Phe	Ala
Lys	Leu	Ala 195		Leu	Gly	Ala	Thr 200	Arg	Ile	Gln	Leu	Asp 205			Ala
Leu	Val 210	Lys	Asp	Leu	Thr	Ala 215	Glu	Glu	Lys	Ala	Leu 220		Leu	Asn	Leu
Tyr 225	Asn	Lys	Leu	Leu	Ala 230	Asp	Lys	Lys	Gly	Leu 235		Val	Leu	Leu	Gln 240
Thr	Tyr	Phe	Gly	Asp 245	Val	Arg	Asp	Val	Tyr 250		Asp	Leu	Val	Asn 255	
Pro	Val	Asp	Ala 260	Ile	Gly	Leu	Asp	Phe 265	Val	Glu	Gly	Lys	Lys 270		Leu
Glu	Leu	Val 275	Lys	Gly	Gly	Phe	Pro 280	Ala	Asp	Lys	Thr	Leu 285		Val	Gly
Ile	Val 290	Asn	Gly	Lys	Asn	Ile 295	Trp	Arg	Asn	Asn	Tyr 300	Glu	Lys	Ser	Leu
Ala 305	Val	Leu	Glu	Gln	Ile 310	Pro	Ala	Glu	Asn	Ile 315	Val	Leu	Thr	Ser	Ser 320
Cys	Ser	Leu	Leu	His 325	Val	Pro	Phe		Thr 330		Asn	Glu	Glu	Phe	
Pro	Ala	Leu	Leu 340	Asn	His	Phe		Phe 345	Ala	Val	Glu		Leu 350	Asp	Glu

Ile Arg Asp Leu Asp Ala Ile Arg Asn Gly Gln Gly Ser Glu Ala Leu 355 Ala Ala Asn Lys Glu Leu Phe Ala Thr Glu Arg Val Gly Glu Asn Ala 375 Glu Leu Arg Ala Arg Ile Ala Gly Leu Thr Asp Ala Asp Tyr Thr Arg 385 390 395 Leu Pro Ala Phe Ala Glu Arg Glu Ala Ile Gln Gly Glu Gly Phe Lys 410 Phe Pro Ala Phe Pro Thr Thr Arg Ile Gly Ser Phe Pro Gln Thr Lys 420 425 Glu Val Arg Ala Lys Arg Leu Ala Tyr Arg Lys Gly Glu Leu Ser Gln 445 Lys Glu Tyr Asp Ala Phe Pro Cys 450

### (2) INFORMATION FOR SEQ ID NO:367:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 160 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:367:

Met Leu Thr Gly Ile Leu Lys Pro Thr Ser Gly Phe Cys Arg Ile Asn 1 10 Gly Lys Ile Pro Gln Glu Asn Arg Gln Asp Tyr Val Lys Asp Ile Gly Val Val Phe Gly Gln Arg Thr Gln Leu Trp Trp Asp Leu Ala Leu Gln 40 Glu Thr Tyr Ser Val Leu Lys Glu Ile Tyr Asp Val Pro Asp Ala Val 55 Phe Gln Lys Arg Met Asp Phe Leu Asn Asp Val Leu Asp Leu Lys Glu 70 75 Phe Ile Lys Asp Pro Val Arg Thr Leu Ser Leu Gly Gln Arg Met Arg 85 Ala Asp Ile Ala Ala Ser Leu Leu His Asn Pro Lys Val Leu Phe Leu 105 Asp Glu Pro Thr Ile Gly Leu Asp Val Ser Val Lys Asp Asn Ile Arg 115 120

Arg Ala Ile Thr Gln Ile Asn Gln Glu Glu Glu Thr Thr Ile Leu Leu 130 135 140

Thr Thr His Asp Leu Ser Asp Ile Glu Gln Phe Val Ile Gly Phe Ser 145 150 155 160

- (2) INFORMATION FOR SEQ ID NO:368:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 73 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:368:

- (2) INFORMATION FOR SEQ ID NO:369:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 53 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:369:

Met Xaa Val Ile Asn Gln Ser Leu Leu Xaa Xaa Val Ile Ile Asp Arg 1 5 10 15

Pro Arg Ser Ser Leu Lys Gly Asp Tyr Gly Arg Leu Pro Xaa Leu Gly
20
25
30
Gly Xaa Tyr Gly Gly Gly Gly Xaa Thr Ser Xaa Ala Ala Xaa Xaa Gly
35
40
45
Xaa Xaa Xaa Xaa Ala
50

### (2) INFORMATION FOR SEQ ID NO:370:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 178 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:370:

Met Ile Asn Arg Tyr Ser Arg Pro Glu Met Ala Asn Ile Trp Ser Glu Glu Asn Lys Tyr Arg Ala Trp Leu Glu Val Glu Ile Leu Ser Asp Glu 25 Ala Trp Ala Glu Leu Gly Glu Ile Pro Lys Glu Asp Val Ala Leu Ile Arg Lys Lys Ala Asp Phe Asp Ile Asp Arg Ile Leu Glu Ile Glu Gln Glu Thr Arg His Asp Val Val Ala Phe Thr Arg Ala Val Ser Glu Thr 75 Leu Gly Glu Glu Arg Lys Trp Val His Tyr Gly Leu Thr Ser Thr Asp 85 Val Val Asp Thr Ala Tyr Gly Tyr Leu Tyr Lys Gln Ala Asn Asp Ile 100 105 Ile Arg Arg Asp Leu Glu Asn Phe Thr Asn Ile Ile Ala Asp Lys Ala 120 Lys Glu His Lys Phe Thr Ile Met Met Gly Arg Thr His Gly Val His Ala Glu Pro Thr Thr Phe Gly Leu Lys Leu Ala Thr Trp Tyr Ser Glu 150 155 Met Lys Arg Asn Ile Gly Ala Leu Arg Ala Cys Gly Cys Trp Cys Arg 165 170 175 Ser Trp

#### (2) INFORMATION FOR SEQ ID NO:371:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 46 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:371:

Met Lys Thr Asn Asp Ile Val Tyr Gly Val His Ala Val Thr Glu Ala Leu Leu Ala Asn Thr Gly Asn Lys Leu Tyr Leu Gln Glu Asp Leu Arg 25 Gly Lys Asn Val Glu Lys Val Lys Glu Leu Ala Val Thr Phe 35 40

- (2) INFORMATION FOR SEQ ID NO:372:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 221 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:372:

Met Leu Leu Ser Ala Phe His Lys Tyr Glu Asn Gln Leu Asp Lys Val 5 Arg Phe Ile Gly Leu His Thr Gly His Leu Gly Phe Tyr Thr Asp Tyr 25 Arg Asp Phe Glu Leu Asp Lys Leu Val Thr Asn Leu Gln Leu Asp Thr 40 Gly Ala Arg Val Ser Tyr Pro Val Leu Asn Val Lys Val Phe Leu Glu 55 60 Asn Gly Glu Val Lys Ile Phe Arg Ala Leu Asn Glu Ala Ser Ile Arg 70 75

Arg Ser Asp Arg Thr Met Val Ala Asp Ile Val Ile Asn Gly Val Pro 90 Phe Glu Arg Phe Arg Gly Asp Gly Leu Thr Val Ser Thr Pro Thr Gly 105 Ser Thr Ala Tyr Asn Lys Ser Leu Gly Gly Ala Val Leu His Pro Thr 115 Ile Glu Ala Leu Gln Leu Thr Glu Ile Ala Ser Leu Asn Asn Arg Val 135 140 Tyr Arg Thr Leu Gly Ser Ser Ile Ile Val Pro Lys Lys Asp Lys Ile 150 155 Glu Leu Ile Pro Thr Arg Asn Asp Tyr His Thr Ile Ser Val Asp Asn 165 170 Ser Val Tyr Ser Phe Arg Asn Ile Glu Arg Ile Glu Tyr Gln Ile Asp 180 His His Lys Ile His Phe Val Ala Thr Pro Ser His Thr Ser Phe Trp 200 Asn Arg Val Lys Asp Ala Phe Ile Gly Glu Val Asp Glu 210 215

#### (2) INFORMATION FOR SEQ ID NO:373:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 137 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:373:

## (2) INFORMATION FOR SEQ ID NO:374:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 221 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:374:

Met Tyr Thr Val Ser Gly Ile Ala Tyr Arg Trp Phe Ser Thr Ile Leu 10 Ala Leu Val Ser Ala Thr Ser Val Phe Val Leu Thr Thr Ile Ser Leu 25 Ile Gly Val Glu Thr Phe Ser Lys Ile Pro Val Phe Gly Tyr Val Ala 40 Lys Arg Phe Ser Ala Phe Phe Asn Pro Phe Ala Asp Arg Ala Asp Ala 55 Gly His Gln Leu Ala Asn Ser Tyr Phe Ala Met Val Asn Gly Gly Trp 70 75 Phe Gly Leu Gly Leu Gly Asn Ser Ile Glu Lys Arg Gly Tyr Leu Pro 90 Glu Ala His Thr Asp Phe Val Phe Ser Ile Val Ile Glu Glu Phe Gly 100 105 Phe Val Gly Ala Ser Leu Ile Leu Ala Leu Leu Phe Phe Met Ile Leu 120 125 Arg Ile Ile Leu Val Gly Ile Arg Ala Clu Asn Pro Phe Asn Ala Met 135 Val Ala Leu Gly Val Gly Gly Met Met Leu Val Gln Val Phe Val Asn 145 155 Ile Gly Gly Ile Ser Gly Leu Ile Pro Ser Thr Gly Val Thr Phe Pro 170 Phe Leu Ser Gln Gly Gly Asn Ser Leu Leu Val Leu Ser Val Ala Val 180 185 190

Ala Phe Val Leu Asn Ile Asp Ala Ser Glu Lys Arg Ala Lys Leu Tyr
195 200 205

Arg Glu Leu Glu Asn Gln Pro Met Asn Leu Leu Leu Lys
210 215 220

- (2) INFORMATION FOR SEQ ID NO:375:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 111 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:375:

Met Leu Leu Ile Val Ile Ile Ile Gly Thr Phe Tyr Phe Phe Asn Arg 5 Ala Arg Tyr Leu Gly Val Thr Tyr Tyr Ser Arg Phe His Phe Thr Ile 20 25 Leu Gly Cys Phe Phe Leu Thr Leu Ala Ile Thr Ala Leu Leu Met Leu 40 Gln Asn Tyr Gln Phe Asn Ile Glu Ile Tyr Gln His Asn Pro Leu Asn **5**5 Phe Lys Tyr Leu Ser Ala Trp Val Ile Thr Tyr Val Ile Tyr Leu Pro 65 · 75 Trp Val Phe Ile Gly Asn Leu Gly Leu Lys Ser Tyr Gly Glu Trp Ala 85 Gln Lys Lys Phe Glu Gln Asp Met Asp Glu Leu Glu Ser Gly Glu 100 105 110

- (2) INFORMATION FOR SEQ ID NO:376:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 68 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:376:

 Met
 Leu
 Asp
 Val
 Glu
 Ala
 Ile
 Arg
 Lys
 Asp
 Phe
 Pro
 Ile
 Leu
 Asp
 Glu

 Ile
 Val
 Asn
 Asn
 Asp
 Glu
 Pro
 Leu
 Val
 Tyr
 Leu
 Asp
 Asn
 Ala
 Ala
 Thr
 Thr
 Thr

 Glu
 Lys
 Pro
 Leu
 Val
 Val
 Leu
 Lys
 Ala
 Ile
 Asn
 Ser
 Tyr
 Tyr
 Glu
 Glu

 Glu
 Asn
 Ala
 Asn
 Val
 His
 Arg
 Gly
 Val
 His
 Thr
 Leu
 Ala
 Glu
 Arg
 Ala

 Thr
 Ala
 Ser
 Leu
 Eu
 <

## (2) INFORMATION FOR SEQ ID NO:377:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 174 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

. .

- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:377:

Met Gly Phe Asn Gln Pro Leu Ser Trp Leu Ile Leu His Ala Lys Gly 1 5 10 Leu Thr Glu Ser Phe Ile Lys Ala Ser Ala Gln Thr Gly Ala Asp Arg 25 Ile Thr Tyr Ile Ser Cys Asn Val Arg Asn His Gly Ala Val Asp Ile Lys Leu Tyr Gln Glu Leu Gly Tyr Glu Leu Lys Lys Val Gln Pro Val 55 60 Asp Leu Phe Xaa Gln Thr His His Val Glu Thr Val Ala Leu Leu Ser 70 Lys Leu Asp Val Asp Lys His Ile Ser Val Glu Ile Glu Leu Asp Glu 85 90 Met Asp Leu Thr Ser Ala Glu Ser Lys Ala Thr Tyr Ala Gln Ile Lys 105 Glu Tyr Val Trp Asn Lys Phe Glu Leu Lys Val Ser Thr Leu Tyr Ile 120 Ala Gln Ile Lys Lys Cys Gly Ile Glu Leu Arg Glu His Tyr Asn 130 135 140

Lys Xaa Lys Lys Asp Lys Gln Ile Ile Pro Gln Cys Thr Pro Glu Lys 145 150 Glu Glu Ala Ile Met Asp Ala Leu Arg Xaa Phe Lys Met Ile 165 170

- (2) INFORMATION FOR SEQ ID NO:378:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 104 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:378:

Leu Thr Glu Ala Gly Tyr Val Gly Glu Asp Val Glu Asn Ile Leu Leu 1 Lys Leu Leu Gln Val Ala Asp Phe Asn Ile Glu Arg Ala Glu Arg Gly 20 Ile Ile Tyr Val Asp Glu Ile Asp Lys Ile Ala Lys Lys Ser Glu Asn

40

Val Ser Ile Thr Arg Asp Val Ser Gly Glu Gly Val Gln Gln Ala Leu 55

Leu Lys Ile Ile Glu Gly Thr Val Ala Ser Val Pro Pro Gln Gly Gly 65 70 75

Arg Lys His Pro Gln Gln Val Asp Asp Ser Ser Gly Tyr Lys Lys Tyr 85 90 95

Pro Leu His Arg Gly Trp Cys Phe

- (2) INFORMATION FOR SEQ ID NO:379:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 128 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:379:

Met Gln Glu Ile Ile Ala Glu Asp Ile Gln Lys Phe Gly Ile Ile Pro Glu Leu Ile Gly Arg Leu Pro Val Phe Ala Ala Leu Glu Gln Leu Thr 25 Val Asp Asp Leu Val Arg Ile Leu Lys Glu Pro Arg Asn Ala Leu Val 40 Lys Gln Tyr Gln Thr Leu Leu Ser Tyr Asp Asp Val Glu Leu Glu Phe Asp Asp Glu Ala Leu Gln Glu Ile Ala Asn Lys Ala Ile Glu Arg Lys 70 75 Thr Gly Ala Arg Gly Leu Arg Ser Ile Ile Glu Glu Thr Met Leu Asp 90 Val Met Phe Glu Val Pro Ser Gln Glu Asn Val Lys Leu Val Arg Ile 100 105 Thr Lys Glu Thr Val Asp Gly Thr Asp Lys Pro Ile Leu Glu Thr Ala 125

## (2) INFORMATION FOR SEQ ID NO:380:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 124 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:380:

 Met
 Glu
 Gly
 Ser
 Ala
 Met
 Gln
 Ser
 Gln
 Gln
 Gln
 Gln
 Asp
 Ser
 Als
 Gly

 Ala
 Val
 Lys
 Ser
 Ile
 Val
 Ser
 Lys
 Ser
 Pro
 Gly
 Ala
 Ile
 Ser
 Tyr
 Leu

 Ser
 Leu
 Tyr
 Ile
 Asp
 Asp
 Ser
 Val
 Lys
 Ser
 Met
 Lys
 Leu
 Asp
 Leu
 Asp
 Gly
 Ala
 Ile
 Ser
 Ile
 Asp
 Ile

Lys Gly Leu Lys Tyr Ile Pro İle Lys Glu Met Lys Val Glu Lys Asp 100 105 110 Ala Ala Gly Thr Val Thr Val Leu Glu Gly Arg Gln 115 120

#### (2) INFORMATION FOR SEQ ID NO:381:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 191 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:381:

Met Glu Ile Lys Ile Glu Thr Gly Gly Leu Arg Leu Asp Lys Ala Leu 10 Ser Asp Leu Ser Glu Leu Ser Arg Ser Leu Ala Asn Glu Gln Ile Lys 20 Ser Gly Gln Val Leu Val Asn Gly Gln Val Lys Lys Ala Lys Tyr Thr 40 Val Gln Glu Gly Asp Val Val Thr Tyr His Val Pro Glu Pro Glu Val 55 Leu Glu Tyr Val Ala Glu Asp Leu Pro Leu Glu Ile Val Tyr Gln Asp 65 70 80 Glu Asp Val Ala Val Val Asn Lys Pro Gln Gly Met Val Val His Pro 90 Ser Ala Gly His Thr Ser Gly Thr Leu Val Asn Ala Leu Met Tyr His 105 Ile Lys Asp Leu Ser Gly Ile Asn Gly Val Leu Arg Pro Gly Ile Val 115 125 His Arg Ile Asp Lys Asp Thr Ser Gly Leu Leu Met Ile Ala Lys Asn 135 Asp Asp Ala His Leu Ala Leu Ala Gln Glu Leu Lys Asp Lys Lys Ser 150 155 Leu Pro Gln Ile Leu Gly Asp Cys Ser Met Glu Ile Cys Leu Met Ile 165 170 Val Val Leu Ile Glu Thr Pro Glu Leu Ala Asn Glu Lys Glu Pro 180 185 190

(2) INFORMATION FOR SEQ ID NO:382:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 157 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:382:

Met Lys Ile Leu Val Thr Gly Phe Asn Pro Phe Gly Gly Glu Lys Ile 1 5 10 15

Asn Pro Ala Leu Glu Ala Val Lys Leu Leu Pro Ser Glu Ile Asn Gly
20 25 30

Ala Glu Val Arg Trp Val Glu Ile Pro Thr Val Phe Tyr Lys Ser Ser 35 40 45

Glu Val Leu Glu Ala Glu Ile Leu Arg Tyr Gln Pro Asp Ala Val Leu
50 55 60

Cys Ile Gly Gln Ala Gly Gly Arg Thr Gly Leu Thr Pro Glu Arg Val 65 70 75 80

Ala Ile Asn Gln Asp Asp Ala Arg Ile Pro Asp Asn Glu Gly Asn Gln
85

Pro Ile Asp Thr Pro Ile Arg Ile Asp Gly Ala Ser Ala Tyr Phe Ser 100 105 110

Ser Leu Pro Ile Lys Ala Met Val Gln Ala Ile Lys Lys Gln Gly Leu 115 120 125

Pro Ala Val Val Ser Asn Ser Ala Gly Thr Phe Val Cys Asn His Leu 130 135 140

Met Tyr Gln Ala Leu Tyr Leu Val Asp Lys Glu Ile Pro 145 150 155

- (2) INFORMATION FOR SEQ ID NO:383:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 60 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:383:

- (2) INFORMATION FOR SEQ ID NO:384:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 71 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:384:

 Met Lys
 Phe Arg
 Lys
 Leu Ala
 Cys
 Thr
 Val
 Leu Ala
 Gly
 Ala
 Ala
 Val

 1
 5
 5
 10
 10
 15
 15

 Leu Gly
 Leu Ala Ala
 Cys
 Gly
 Asn
 Ser
 Gly
 Gly
 Ser
 Lys
 Asp
 Ala
 Ala

 Lys
 Ser
 Gly
 Gly
 Asp
 Gly
 Ala
 Lys
 Thr
 Glu
 Ile
 Thr
 Trp
 Trp
 Ala
 Phe

 Pro
 Val
 Phe
 Thr
 Glu
 Lys
 Thr
 Gly
 Asp
 Gly
 Val
 Gly
 Thr
 Tyr
 Glu

50 55 60

Lys Ser Ile Ile Glu Ala Phe 65 70

- (2) INFORMATION FOR SEQ ID NO:385:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 58 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:385:

 Met Ala Leu Gly Thr Thr Leu Thr Val Gln Ala Ile Cys Leu Gln Thr

 1
 5
 10
 15
 15

 Ala Gly Gly Ser Thr Gln Thr Ala Thr Gly Thr Gly Thr Gly Ser Thr Thr Program
 30
 30

 Gly Glu Met Ala Thr Gly Trp Lys Ser Pro Thr Leu Leu Phe Phe Asn
 35
 40
 45

 Thr Ser Tyr Phe Asp Leu Thr Gly Trp Ser
 55
 55

## (2) INFORMATION FOR SEQ ID NO:386:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 209 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:386:

Met Glu Ala Glu Leu Lys Lys Leu Glu Val Asn Leu Val Asn Leu Ala 10 Gly Gln Leu Ala Ser Ala Arg His Asn Leu Ala Gln Gln Leu Glu Ala 25 Glu Ile Lys Gln Glu Leu Gln Asp Leu Tyr Met Glu Lys Ala Gln Phe 40 Gln Val Arg Phe Ser Lys Gly Lys Phe Ser Arg Glu Gly Asn Lys Met 60 Val Glu Phe Tyr Ile Ser Thr Asn Pro Gly Glu Asp Phe Lys Pro Leu 65 70 80 Val Lys Val Ala Ser Gly Gly Glu Leu Ser Arg Leu Met Leu Ala Ile 90 Lys Ser Ala Phe Ser Arg Lys Glu Gly Lys Thr Ser Ile Val Phe Asp 100 105 Glu Val Glu Thr Gly Val Ser Gly Arg Val Ala Gln Ala Ile Ala Gln 120 Lys Ile His Lys Ile Gly Gln His Gly Gln Val Leu Ala Ile Ser His 135 Leu Pro Gln Val Ile Ala Ile Ala Asp Tyr Gln Phe Phe Ile Glu Lys 145 150 155 160

 Ile
 Ser
 Asn
 Asp
 His
 Ser
 Thr
 Val
 Ser
 Thr
 Val
 Arg
 Leu
 Thr
 Val

 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 I

#### (2) INFORMATION FOR SEQ ID NO:387:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 131 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:387:

Met Met Gly Glu Asn Leu Phe Arg Ser Ile Lys Ile Arg Gly Glu Phe 1 10 Leu His Met His Val Arg Met Ile Pro Lys Ser Thr Pro Asp Thr Lys 20 Phe Ala Asp Val Ala Thr His Gln Pro Glu Tyr Ser Arg Asp Asn Val 40 Ala Gly Thr Ile Val Gly Phe Trp Thr Pro Glu Ile Phe His Gly Val Ser Val Ala Gly Tyr His Leu His Phe Ile Ser Asp Asp Leu Thr Phe 70 75 Gly Gly His Val Met Asp Phe Val Ile Lys Glu Gly Ile Ile Glu Val 90 Gly Ala Val Asp Gln Leu Asp Gln Arg Phe Pro Val Gln Asp Arg Gln 105 Tyr Leu Phe Ala Lys Phe Asn Val Asp Glu Met Lys Lys Asp Ile Glu 115 120 125 Lys Ala Glu 130

- (2) INFORMATION FOR SEQ ID NO:388:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 119 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:388:

Met Ala Gly Ser Ser Arg Asp His Ala Ala Trp Ala Leu Ala Asp Tyr 10 Gly Phe Lys Val Val Ile Ala Gly Ser Phe Gly Asp Ile His Tyr Asn 25 Asn Glu Leu Asn Asn Gly Met Leu Pro Ile Val Gln Pro Arg Glu Val 40 Arg Glu Lys Leu Ala Gln Leu Lys Pro Thr Asp Gln Val Thr Val Asp 55 Leu Glu Gln Gln Lys Ile Ile Ser Pro Val Glu Glu Phe Thr Phe Glu 70 75 Ile Asp Ser Lys Trp Lys His Lys Leu Leu Asn Ser Leu Asp Asp Ile

85 90 Gly Ile Thr Leu Gln Tyr Glu Glu Leu Ile Ala Ala Tyr Glu Lys Gln 100 105

Arg Pro Ala Tyr Trp Gln Asp 115

(2) INFORMATION FOR SEQ ID NO:389:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 359 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:389:

Met Asn Ile Tyr Asp Gln Leu Gln Ala Val Glu Asp Arg Tyr Glu Glu 5 10 Leu Gly Glu Leu Leu Ser Asp Pro Asp Val Val Ser Asp Thr Lys Arg 25 30

Pho	e Me	t Gl	.u I	Leu	Ser	Lys	Gli	ı Glı	ı Al	a Se	r A	sn	Arg	Ası	Th	r Va	1	Tle
		3	5					4(	)					4				
A)	la T	yr A	rg	Glu	ту	r Ly	s G]	ln Va	al L	eu G	ln i	Asn	Ile	e Va	ıl A	5D A	l a	Glu
	20	,					55	•					60					
Gl	u Me	et I	le	Lys	Gl	u Se	r Gl	y G1	у Аз	sp A	la 1	ds.	Lev	. G1	u G	) T.	۵11	Ala
0.3	•					70					7	75						90
Ly	s G]	n G	lu	Leu	Ly	s As	p Al	a Ly	s Al	a G	lu I	ys	Glu	Gl	u Ts	er c	1,,	Glu
					85					90	)					٥	5	
Ly	s Le	u L	ys	Ile	Leu	ı Le	ı Le	u Pr	o Ly	s As	p P	ro	Asn	As	D As	io L	vs.	Asn
				100					10	5					11	0		
Il	e Il	e Le	eu (	Glu	Ile	Arq	g Gl	y Al	a Al	a Gl	уG	ly	Asp	Gl	ı Al	a A'	la	T.e.ii
		7.7	7.2					12	0					129	5			
Ph	e Al	a G]	ly 1	Asp	Leu	Lei	Th	r Me	t Ty	r Gl	n L	ys	Tyr	Ala	a G1	u Al	la	Gln
	13	U					13	5					140					
Gl	y Tr	p Ar	g	Phe	Glu	Val	Met	t Glu	Al.	a Se	r M	et	Asn	Gly	/ Va	1 G1	y	Glv
14:	•					150	+				19	55						160
Phe	≥ Ly	s Gl	u V	/al	Val	Ala	Met	: Val	Se:	r G1	y G	ln	Ser	Val	Ту	r Se	r	Lys
					165					17	0					17	5	
Lei	Lys	з Ту	r G	lu	Ser	Gly	Ala	His	Arg	y Va	1 G)	ln .	Arg	Val	Pro	o Va	1 :	Thr
			1	.80					185	5					196	1		
GIU	Ser	. Gl	n G	ly	Arg	Val	His	Thr	Sei	Th	r A]	la '	Thr	Val	Lei	ı Va	1 1	let
D=0		19						200						205				
PFO	210	ı va	T G	lu	Glu	Val	Glu	Tyr	Asp	) Ile	e As	ip l	Pro	Lys	Asp	Le	u A	\rg
Wa 1						- •	215					:	220					
225	ASD	, 110	e T	yr .	His	Ala	Ser	Gly	Ala	G13	/ G1	У	Sln	Asn	Val	. Ası	n I	ys.
		mъ.		1. 1	1	230					23	5					2	40
•••	Ald	1111	C A.	ıa ,	vai 245	Arg	He	Val	His			0 1	hr.	Asn	Ile	Ly	5 V	'al
Glu	Met	G1 ₇	. G			<b>3</b>	<b>m</b> L			250						255	5	
		011	21	50	31 U	Arg	THE	Gln		Lys	As	n A	urg (	Glu	Lys	Ala	ı M	et
Lvs	Ile	Ile			41a	A-~	17- 1		265				_		270			
•		275	 i	.9 .	12 U	ALG	val	Ala	Asp	HIS	Ph	e A	la (	Gln	Ile	Ala	G	ln
Asp	Glu			en 2	בוג	G1.,	<b>&gt;</b>	280	0				_	285				
•	290			. بود	114	GIU	295	Lys	ser	Thr	Ile			Chr	Gly	Asp	A	rg
Ser		Ara	11	e A	ra '	<b>ም</b> ክ <del>-</del>		) on	nh-	<b>D</b>		3	00					
305					9	310	- 7 -	Asn	Pne	PTO			sn A	irg	Val	Thr	A.	sp
His	Arg	Ile	Gl	v L			I.e.,	Gln	Tuo	T	315				_		32	20
	-			3	25			2111	nys	330	ASŢ	T	nr I	тe	Leu		G.	ly
Lys	Leu	Asp	G1			Val	Asn	Ala	T.e.v		T					335		
		•	34	0	-				345	vdI	ner	17	YI A			Thr	G]	ln
Lys	Leu	Glu			eu 1	Asn :	Lvs		747						350			
		355		_	•		- , -											

### (2) INFORMATION FOR SEQ ID NO:390:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 200 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:390:

Met Asn Asn Asn Phe Asn Asn Met Asp Asp Leu Phe Asn 5 10 Gln Leu Met Gly Gly Met Arg Gly Tyr Ser Ser Glu Asn Arg Arg Tyr 20 25 Leu Ile Asn Gly Arg Glu Val Thr Pro Glu Glu Phe Ala His Tyr Arg 40 45 Thr Thr Gly Gln Leu Pro Gly Asn Ala Glu Thr Asp Val Gln Met Pro 55 Gln Gln Ala Ser Gly Met Lys Gln Asp Gly Val Leu Ala Lys Leu Gly 70 75 Arg Asn Leu Thr Ala Glu Ala Arg Glu Gly Lys Leu Asp Pro Val Ile 90 Gly Arg Asn Lys Glu Ile Gln Glu Thr Ser Glu Ile Leu Ser Arg Arg 105 Thr Lys Asn Asn Pro Val Leu Val Gly Asp Ala Gly Val Gly Lys Thr 120 Ala Val Val Glu Gly Leu Ala Gln Ala Ile Val Asn Gly Asp Val Pro 135 140 Ala Ala Ile Lys Asn Lys Glu Ile Ile Ser Ile Asp Ile Ser Gly Leu 150 Glu Ala Gly Thr Gln Tyr Arg Gly Ser Phe Glu Glu Asn Val Gln Asn 165 170 Leu Val Asn Glu Val Lys Glu Ala Gly Asn Ile Ile Leu Phe Phe Asp 180 185 190 Glu Ile His Asn Ser Trp Cys Trp 195 200

- (2) INFORMATION FOR SEQ ID NO:391:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 292 amino acids

(B) TYPE: amino acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

## (ii) MOLECULE TYPE: Protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:391:

Met	Gln	Gly	Gln	Ile	Ile	Lys	Ala	Leu	Ala	Gly	Phe	Tyr	Туг	Val	Glu
1				5					10					15	
Ser	Asp	Gly	Gln	Val	Tyr	Gln	Thr	Arg	Ala	Arg	Gly	Asn	Phe	Arg	Lys
			20					25					30		
Lys	Gly	His	Thr	Pro	Tyr	Val	Gly	Asp	Trp	Val	His	Phe	Ser	Ala	Glu
		35					40					45			
Glu	Asn	Ser	Glu	Gly	Tyr	Ile	Leu	Lys	Ile	His	Glu	Arg	Lys	Asn	Ser
	50					55					60				
Leu	Val	Arg	Pro	Pro	Ile	Val	Asn	Ile	Asp	Gln	Pro	Val	Val	Ile	Met
65					70					75					80
Ser	Val	Lys	Glu	Pro	Asp	Phe	Asn	Ser	Asn	Leu	Leu	Asp	Arg	Phe	Leu
				85					90					95	
Val	Leu	Leu	Glu	His	Lys	Gly	Ile	His	Pro	Ile	Val	Tyr	Ile	Ser	Lys
			100					105					110		
Met	Asp	Leu	Leu	Glu	Asp	Arg	Gly	Glu	Leu	Asp	Phe	Tyr	Arg	Gln	Thr
		115					120					125			
Tyr	Gly	Asp	Ile	Gly	Tyr	Asp	Phe	Val	Thr	Ser	Lys	Glu	Glu	Leu	Leu
	130					135					140				
	Leu	Leu	Thr	Gly	Lys	Val	Thr	Val	Phe	Met	Gly	Gln	Thr	Gly	Val
145					150					155					160
Gly	Lys	Ser	Thr	Leu	Leu	Asn	Lys	Leu	Val	Pro	Asp	Leu	Asn	Leu	Glu
				165					170					175	
Thr	Gly	Glu	Ile	Ser	Asp	Ser	Leu	Gly	Arg	Gly	Arg	His	Thr	Thr	Arg
			180					185					190		
Ala	Val		Phe	Tyr	Asn	Leu	Asn	Gly	Gly	Lys	Ile	Ala	Asp	Thr	Pro
_		195					200					205			
Gly		Ser	Ser	Leu	qzA	Tyr	Glu	Val	Ser	Arg	Ala	Glu	Asp	Leu	Asn
	210					215					220				
	Ala	Phe	Pro	Glu		Ala	Thr	Val	Ser	Arg	Asp	Сув	Lys	Phe	Arg
225					230					235					240
Thr	Суѕ	Thr	His	Thr	His	Glu	Pro	Ser	Суз	Ala	Val	Lys	Pro	Ala	Val
				245					250					255	
Glu	Glu	Cly		Ile	Ala	Thr	Phe	Arg	Phe	Asp	Asn	Tyr	Leu	Gln	Phe
			260					265					270		

Leu Ser Glu Ile Glu Asn Arg Arg Glu Thr Tyr Lys Lys Val Ser Lys
275 280 285

Lys Ile Pro Lys 290

### (2) INFORMATION FOR SEQ ID NO:392:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 305 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:392:

Met Ile Ile Thr Ile Pro Ile Lys Asn Gln Lys Asp Ile Gly Thr Pro 1 5 10 15

Ser Asp Ser Val Val Val Leu Gly Tyr Phe Asp Gly Ile His Lys Gly
20 25 30

His Gln Glu Leu Phe Arg Val Ala Asn Lys Ala Ala Arg Lys Asp Leu
35 40 45

Leu Pro Ile Val Val Met Thr Phe Asn Glu Ser Pro Lys Ile Ala Leu 50 55 60

Glu Pro Tyr His Pro Asp Leu Phe Leu His Ile Leu Asn Pro Ala Glu 65 70 75 80

Arg Glu Arg Lys Leu Lys Arg Glu Gly Val Glu Glu Leu Tyr Leu Leu 85 90 95

Asp Phe Ser Ser Gln Phe Ala Ser Leu Thr Ala Gln Glu Phe Phe Ala 100 105 110

Thr Tyr Ile Lys Ala Met Asn Ala Lys Ile Ile Val Ala Gly Phe Asp 115 120 125

Tyr Thr Phe Gly Ser Asp Lys Lys Thr Ala Glu Asp Leu Lys Asp Tyr
130 140

Phe Asp Gly Glu Val Ile Ile Val Pro Pro Val Glu Asp Glu Lys Gly
145 150 155 160

Lys Ile Ser Ser Thr Arg Ile Arg Gln Ala Ile Leu Asp Gly Asn Val

Lys Glu Ala Gly Lys Leu Leu Gly Ala Pro Leu Pro Ser Arg Gly Met
180 185 190

Val Val His Gly Asn Ala Arg Gly Arg Thr Ile Gly Tyr Pro Thr Ala 195 200 205

Asn Leu Val Leu Leu Asp Arg Thr Tyr Met Pro Ala Asp Gly Val Tyr 215 Val Val Asp Val Glu Ile Gln Arg Gln Lys Tyr Arg Ala Met Ala Ser 230 Val Gly Lys Asn Val Thr Phe Asp Gly Glu Glu Ala Arg Phe Glu Val 250 Asn Ile Phe Asp Phe Asn Gln Asp Ile Tyr Gly Glu Thr Val Met Val 260 265 Tyr Trp Leu Asp Arg Ile Arg Asp Met Thr Lys Phe Asp Ser Val Asp 275 280 285 Gln Leu Val Asp Arg Leu Lys Ala Asp Glu Glu Val Thr Arg Asn Trp 295 Ser 305

## (2) INFORMATION FOR SEQ ID NO:393:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 129 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:393:

 Met
 Ala
 Thr
 Glu
 Leu
 Ile
 Glu
 Leu
 Ala
 Ile
 Glu
 Thr
 Ser
 Lys
 His

 1
 5
 7
 7
 1
 10
 7
 15
 15
 15

 Ala
 Tyr
 Val
 Pro
 Tyr
 Ser
 His
 Phe
 Pro
 Ile
 Gly
 Ala
 Val
 Leu
 Val
 Ala
 Ala
 Leu
 Val
 Ala
 Ala
 Ser
 Tyr
 Ala
 Ala
 Ser
 Tyr
 Ala
 Ala
 Ala
 Ser
 Tyr
 Ala
 Ala
 Ala
 Ser
 Tyr
 Ala
 Ile
 Ala
 Ile
 Phe
 Lys
 Ala
 Ile
 Ser
 Ala
 Ile
 Phe
 Lys
 Ala
 Ile
 Ala
 Ile
 Ile
 Ala
 Ile
 Ile
 Ala
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 <t

Val Glu Met Thr Val Gly Glu Leu Leu Pro Tyr Ser Phe Thr Asp Leu 115 120 125

Asn

### (2) INFORMATION FOR SEQ ID NO:394:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 119 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:394:

Met Asp Leu Met Arg Thr Phe Asp Lys Val Asp Ala Leu Leu Asp Gln

1 5 10 15

Leu Ser Ala Asn Ser Lys Asp Lys Thr Ala Leu Leu Glu Ser Thr Lys
20 25 30

Ala Ile Leu Val Leu Asn His Gln Ile Gln Ser Lys Ala Ser Ala Ser 35 40 45

Glu Glu Thr Ser Pro Ala Arg Asn Ala Glu Ala Asn Gly Asp Asn Thr
50 55 60

Ser Ala Glu Asn Gln Pro Asn Ala Thr Ala Glu Ser Asn Ile Glu Thr
65 70 75 80

Ala Ser Asp Glu Asn Lys Pro Ser Asn Thr Arg Asp Ser Lys Pro Ala 85 90 95

Glu Ser Thr Ser Glu Asn Lys Thr Thr Glu Ser Ser Thr Thr Gly
100 105 110

Asn Gln Glu Lys Pro Val Glu

115

## (2) INFORMATION FOR SEQ ID NO:395:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 118 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:395:

Met Val Arg Tyr Val Ile Glu Lys Ser Gly His Thr Asp Trp Asp Gly 1 10 Arg Lys Ile Tyr Gln Glu Ala Ala Ala Gly Asn Ala Leu Cys Gln Glu Ala Ile Glu Arg Met Asn Arg Asn Leu Ala Gln Gly Leu Leu Asn Ile 40 Gln Tyr Leu Ile Asp Pro Asp Val Ile Ser Leu Gly Gly Ser Ile Ser 55 Gln Asn Pro Asp Phe Ile Gln Asp Val Lys Lys Ala Val Asp Asn Phe 70 75 Val Asp Thr Tyr Glu Glu Tyr Thr Val Ala Pro Val Ile Gln Ala Cys 85 Thr Tyr His Ala Asp Ala Asn Leu Tyr Gly Ala Leu Val Asn Trp Leu 100 105 Gln Glu Glu Lys Gln Trp 115

#### (2) INFORMATION FOR SEQ ID NO:396:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 91 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:396:

 Met
 Gln
 Gly
 Asp
 Phe
 Gln
 Ser
 Asp
 Ile
 Tyr
 Glu
 Gln
 Val
 Gly
 His

 1
 5
 15
 10
 10
 15
 15
 15

 Phe
 Asp
 His
 Val
 Ile
 Ser
 Asp
 Pro
 Ile
 Arg
 Ala
 Gly
 Lys
 Gln
 Val

 Val
 His
 Glu
 Ile
 Glu
 Lys
 Ser
 Lys
 Asp
 Phe
 Leu
 Glu
 Thr
 Gly
 Gly

 Asp
 Leu
 Thr
 Ile
 Val
 Ile
 Gly
 Lys
 Ser
 Lys
 Glu
 Gly
 Ala
 Pro
 Ser
 Ala
 Phe
 Leu
 Gly
 Ala
 Pro
 Ser
 Ala
 Lys
 Lys
 Ala
 Pro
 Ser
 Ala
 Pro
 Ser
 Ala
 Pro
 Ser
 Ala
 Pro
 Ser
 Ala
 Pro
 Ser
 Ala
 Pro
 Ser
 Ala
 Pro
 Ser
 Ala
 Pro
 Ser
 Ala

Lys Gly Tyr Tyr Ile Leu Arg Ser Val Lys Glu 85 90

- (2) INFORMATION FOR SEQ ID NO:397:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 119 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:397:

Met Asp Gly Val Leu Arg Asn Leu Leu Phe Gly Gln Tyr Glu Gly Trp

1 5 10 15

Arg Thr Glu Phe His Gly Glu His Ala Leu Gly Lys Asp Ser Ser Gln
20 25 30

Tyr Ile Leu Thr Asp Gln Trp Lys Phe Ile Trp Phe Pro Val Leu Asn 35 40 45

His Tyr Gln Leu Phe Asp Met Lys Lys Asp Pro His Glu Met Asn Asp 50 55 60

Leu Tyr Pro Ser Glu Lys Tyr Gln Pro Ile Val Arg Gln Met Lys Lys 65 70 75 80

Lys Leu Val Asp Phe Leu Arg Tyr Arg Glu Glu Gly Phe Val Val Asp 85 90 95

Glu Glu Leu Val Pro Val Glu Leu Ser Lys Ile Thr Pro Thr Leu Thr 100 105 110

Lys Thr Gly Asp Ser Gln Ser

- (2) INFORMATION FOR SEQ ID NO:398:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 358 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:398:

Lei	ı Phe	e Se	r Il	e Ile	≥ Lev	ı Sei	r Vai	l Al	a Le	u Ile	e Se	r Lei	۷a:	l Se	r Le
1				5					10					15	
Va]	l Thi	Gly	y Pro 20	o Ile	e Lev	Pro	Phe	Let 25	ı Se	r Lys	s Pro	Ala	Sei 30	r Gli	n As
Cys	Asp	35	≥ Phe	e Ile	e Ala	Leu	Thi	Glı	ı His	s Ası	Glu	1 Val		n Met	: 11
Ala	Ala 50	Va]	l Lei	ı Ala	Lys	Lys 55	Met	: Gl ₃	/ Ala	a Lys	60		Ile	· Val	Ar
Val	Arg	Asn	Pro	Glu	Tyr	Ser	Asn	Ser	Туз	. Phe		Glu	Ive	. Der	T14
65					70				-	75			,_	7631.	80
Leu	Gly	Phe	Ser	: Leu 85	Ile	Val	. Asn	Pro	90	1 Leu	Leu	Ala	Ala	<b>Ar</b> g	
Ile	Ala	Asn	11e		Asp	Phe	Pro	Asn 105		Leu	Ser	Val	Glu 110	Arg	Phe
Ala	Gly	Gly 115		Val	Ser	Leu	Met 120		Phe	. Val	Val	Lys 125			Ser
Gly	Leu 130	Суз	Gln	Met	Pro	Ile 135		Asp	Phe	Arg	Lys 140	Lys	Phe	Gly	Asn
Val 145	Ile	Val	Суз	Ala	Ile 150	Glu	Arg	Asp	His	Gln 155	Ile	Ile	Ile	Pro	Ser 160
Gly	Asp	Met	Thr	Val	Gln	Asp	Lys	Asp	Arg		Phe	Val	Thr	Glv	
				165					170					175	
Arg	Val	Asp	Met 180	Ile	Leu	Phe	His	Asn 185	Туг	Phe	Lys	Ser	Arg		Val
Lys	Ser	Leu 195	Leu	Ile	Val	Gly	Ala 200	Gly	Arg	Ile	Thr	Tyr 205		Leu	Leu
Gly	Ile 210	Leu	Lys	Asp	Ser	Arg 215	Ile	qzA	Thr	Lys	Val 220		Glu	Ile	Asn
Pro	Glu	Ile	Ala	Ser	Phe	Phe	Ser	Glu	Lys	Phe	Pro	Asn	Leu	Tyr	Ile
225					230					235				_	240
Val	Gln	Gly	Asp	Gly 245	Thr	Ala	Lys	Asp	Ile 250	Leu	Leu	Glu	Glu	Ser 255	Ala
Gln	His	Tyr	Asp 260	Ala	Val	Ala	Thr	Leu 265	Thr	Gly	Val	Asp	Glu 270	Glu	Asn
Leu	Ile	Thr 275	Ser	Met	Phe	Leu	Asp 280	Arg	Val	Gly	Val	Gln 285	Lys	Asn	Ile
Thr	Lys 290	Val	Asn	Arg	Thr	Ser 295	Leu	Leu	Glu	Ile	Ile 300		Ala	Pro	Asp
Phe 305	Ser	Ser	Ile		Thr 310	Pro	Lys	Ser	Ile	Ala 315		Asp	Thr	Ile	<b>Met</b> 320
His	Phe	Ile	Arg	Gly 325	Arg	Val	Asn	Ala	Gln 330		Ser	Arg		Ser 335	

His Ala Pro Ser Ser Gln Trp Pro Asn Arg Asn Pro Ala Ile Pro Tyr 340 345 350

Gln Gly Lys Pro Ile Lys 355

### (2) INFORMATION FOR SEQ ID NO:399:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 241 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:399:

Met Leu Phe Thr Ala Leu Gln Met Asn Thr Asp Ile Leu Ala Ile Ser 1 5 10 15

Gln Glu Val Gly Asp Trp Arg Ile Asp Leu Ala Ser Ser Gln Thr Glu 20 25 30

Met Gln Leu Ala Thr Ser Phe Ile Ser Pro Ser Gln Ala Leu Leu Asn 35 40 45

Leu Pro Gln Glu Asp Phe Asp Ser Cys Lys Ser Ser Ala Gln Ala Asp 50 55 60

Trp Glu Asn Leu Leu His Arg Phe Asp Ile Ile Glu Ile Gly Glu Ala 65 70 75 80

Asp Arg Thr Phe Phe Asp His Cys Leu Tyr Arg Leu Phe Leu Phe Pro 85 90 95

Gln Thr Phe Tyr Glu Ile Asn Glu Ser Gly Gln Ala Ile His Met Asp 100 105 110

Leu Ala Thr Gly Thr Val Lys Pro Gly Val Leu Phe Ser Asn Asn Gly 115 120 125

Phe Trp Asp Thr Phe Arg Thr Thr Phe Pro Leu Phe Ala Leu Ile Ile 130 135 140

Pro Glu His Tyr Gln Arg Phe Leu Glu Gly Phe Leu Asn Ser Tyr Arg 145 150 155 160

Asp Thr Gly Phe Leu Pro Lys Trp Leu Ala Pro Asp Glu Arg Gly Met
165 170 175

Met Pro Gly Thr Leu Leu Asp Gly Ile Ile Ala Asp Ser Ala Cys Lys
180 185 190

Asp Met Ala Pro Asp Leu Glu Gly Glu Leu Phe Gln Ala Met Leu Arg 195 200 205

# (2) INFORMATION FOR SEQ ID NO:400:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 146 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:400:

Met Met Val Ser His Ala Cys Ala Val Lys Leu Tyr Lys Glu Lys Gly 1 5 10 Tyr Lys Gly Glu Ile Gly Val Val His Ala Leu Pro Thr Lys Tyr Pro Leu Asp Pro Glu Asn Pro Ala Asp Val Arg Ala Ala Glu Leu Glu Asp Ile Ile His Asn Lys Phe Ile Leu Asp Ala Thr Tyr Leu Gly Arg Tyr 55 Ser Ala Glu Thr Met Glu Gly Val Asn His Ile Leu Ser Val Asn Gly 70 Gly Ser Leu Asp Leu Arg Glu Glu Asp Phe Thr Ala Leu Glu Ala Ala 90 Lys Asp Leu Asn Asp Phe Leu Gly Ile Asn Tyr Tyr Met Ser Asp Trp 100 105 Met Glu Ala Phe Asp Gly Glu Thr Glu Ile Ile His Asn Gly Lys Gly 120 125 Glu Lys Gly Ser Ser Lys Tyr Gln Ile Lys Gly Ile Gly Arg Leu Val 130 135 140 Ala Pro 145

- (2) INFORMATION FOR SEQ ID NO:401:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 183 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Protein

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:401:

Met Asn Thr Ser Leu Lys Leu Ser Lys Gln Leu Ser Phe Gly Glu Glu 10 Ile Ala Asn Ser Val Thr His Ala Val Gly Ala Val Ile Met Leu Ile 20 25 Leu Leu Pro Ile Ser Ser Ile Tyr Ser Tyr Glu Ala His Gly Phe Leu Ser Ser Ile Gly Val Ser Ile Phe Val Ile Ser Leu Phe Leu Met Phe 55 60 Leu Ser Ser Thr Ile Tyr His Ser Met Ala Tyr Gly Ser Thr His Lys 70 Tyr Val Leu Arg Ile Ile Asp His Ser Met Ile Tyr Val Ala Ile Ala 90 Gly Ser Tyr Thr Pro Val Val Leu Thr Leu Met Asn Asn Trp Phe Gly 105 Tyr Leu Ile Ile Val Ile Gln Trp Gly Thr Thr Ile Phe Gly Ile Leu Tyr Lys Ile Phe Ala Lys Lys Val Asn Glu Lys Phe Ser Leu Ala Leu 135 Tyr Leu Ile Met Gly Trp Leu Val Leu Ala Ile Ile Pro Ala Ile Ile 150 155 Ser Gln Xaa Thr Pro Val Phe Trp Ile Leu Met Val Thr Gly Gly Leu 165 170 Cys Tyr Thr Val Gly Ala Asp

### (2) INFORMATION FOR SEQ ID NO:402:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 96 amino acids
  - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:402:

 Met
 Leu
 Glu
 Cys
 Glu
 Leu
 Pro
 Phe
 Arg
 Pro
 Glu
 Ala
 Gln
 Arg

 1
 5
 5
 1
 10
 1
 15
 15

 Val
 Thr
 Lys
 Gly
 Tyr
 Leu
 Asn
 Leu
 Gln
 Asn
 Arg
 Asn
 Asp
 Leu
 Leu
 Asn
 Arg
 Asn
 Asp
 Leu
 Leu
 Asn
 Arg
 Asn
 Asp
 Leu
 Asn
 Arg
 Asn
 Asp
 Leu
 Asn
 Arg
 Asn
 Asp
 Leu
 Arg
 Asn
 Arg
 Asn
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg

### (2) INFORMATION FOR SEQ ID NO:403:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 116 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:403:

Met Asn Lys Ser Glu His Arg His Gln Leu Ile Arg Ala Leu Ile Thr 1 10 Lys Asn Lys Ile His Thr Gln Ala Glu Leu Gln Ala Leu Leu Ala Glu 25 Asn Asp Ile Gln Val Thr Gln Ala Thr Leu Ser Arg Asp Ile Lys Asn Met Asn Leu Ser Lys Val Arg Glu Glu Asp Ser Ala Tyr Tyr Val Leu 55 Asn Asn Gly Ser Ile Ser Lys Trp Glu Lys Arg Leu Glu Leu Tyr Met 70 Glu Asp Ala Leu Val Trp Met Arg Pro Val Gln His Gln Val Leu Leu 85 90 Lys Thr Leu Pro Gly Leu Ala Gln Ser Phe Gly Ser Ile Ile Asp Asp 100 105

Phe Glu Leu Pro 115

- (2) INFORMATION FOR SEQ ID NO:404:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 73 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:404:

 Met
 Gly
 Lys
 Leu
 Ser
 Ser
 Ile
 Leu
 Leu
 Gly
 Thr
 Val
 Ser
 Gly
 Ala
 Ala

 1
 5
 15
 10
 15
 15

 Leu
 Ala
 Leu
 Thr
 Ser
 Asp
 Lys
 Gly
 Lys
 Gln
 Val
 Cys
 Ser
 Gln

 Ala
 Gln
 Asp
 Phe
 Leu
 Asp
 Asp
 Leu
 Arg
 Glu
 Asp
 Pro
 Glu
 Tyr
 Ala
 Lys

 Glu
 Gln
 Val
 Cys
 Glu
 Lys
 Glu
 Val
 Lys
 Glu
 Ala
 Thr
 Asp

 Follow
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure
 Figure

- (2) INFORMATION FOR SEQ ID NO:405:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 89 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:405:

Met Tyr Leu Gly Asp Leu Met Glu Lys Ala Glu Cys Gly Gln Phe Ser 1 5 10 15

Ile Leu Ser Phe Leu Leu Gln Glu Ser Gln Thr Thr Val Lys Ala Val 20 25 30

Met Glu Glu Thr Gly Phe Ser Lys Ala Thr Leu Thr Lys Tyr Val Thr

35
40
45

Leu Leu Asn Asp Lys Ala Leu Asp Ser Gly Leu Glu Leu Thr Ile His
50
55
60

Ser Glu Asp Glu Asn Leu Arg Leu Ser Ile Gly Ala Ala Thr Lys Gly
65
70
75
80

Arg Asp Ile Arg Ser Leu Phe Phe Gly
85

#### (2) INFORMATION FOR SEQ ID NO: 406:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 260 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:406:

Met Arg Phe Tyr Phe Met Glu Asn Val Val Val His Ile Ile Ser His 10 Ser His Trp Asp Arg Glu Trp Tyr Leu Pro Phe Glu Ser His Arg Met 20 Gln Leu Val Glu Leu Phe Asp Asn Leu Phe Asp Leu Phe Glu Asn Asp 40 Pro Glu Phe Lys Ser Phe His Leu Asp Gly Gln Thr Ile Val Leu Asp Asp Tyr Leu Gln Ile Arg Pro Glu Asn Arg Asp Lys Val Gln Arg Tyr 70 Ile Asp Glu Gly Lys Leu Lys Ile Gly Pro Phe Tyr Ile Leu Gln Asp 90 Asp Tyr Leu Ile Ser Ser Glu Ala Asn Val Arg Asn Thr Leu Ile Gly 105 Gln Gln Glu Ala Ala Lys Trp Gly Lys Ser Thr Gln Ile Gly Tyr Phe 120 Pro Asp Thr Phe Gly Asn Met Gly Gln Ala Pro Gln Ile Leu Gln Lys 135 Ser Gly Ile His Val Ala Ala Phe Gly Arg Gly Val Lys Pro Ile Gly 150 155 Phe Asp Asn Gln Val Leu Glu Asp Glu Gln Phe Thr Ser Gln Phe Ser 165 170

Glu Ala Leu Thr Phe Trp Lys Gln Lys Leu Ser Asp Val Arg Cys Leu 210 215 220

Arg Phe Asp Gln Pro Met Val Asp Asp Glu Thr Ala Val Thr Thr Ser 225 230 235 240

Leu Ser Gln Glu Lys Ser Glu Arg Ser His Ser Val Leu Gln Met Asn 245 250 255

Ser Ser Arg Met 260

## (2) INFORMATION FOR SEQ ID NO:407:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 125 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:407:

Leu Thr Ala Ser Pro Leu Lys Lys Ser Ile Lys Lys Lys Asn Arg Lys

1 10 15

Leu Thr Asn Lys Xaa Glu Lys His Met Ser Lys Ile Ile Gly Ile Asp
20 25 30

Leu Gly Thr Thr Asn Ser Ala Val Ala Val Leu Glu Gly Thr Glu Ser 35 40 45

Lys Ile Ile Ala Asn Pro Glu Gly Asn Arg Thr Thr Pro Ser Val Val 50 55 60

Ser Phe Lys Asn Gly Glu Ile Ile Val Gly Asp Ala Ala Lys Arg Gln 65 70 75 80

Ala Val Thr Asn Pro Asp Thr Val Ile Ser Ile Lys Ser Lys Met Gly

Thr Ser Glu Lys Val Ser Ala Asn Gly Lys Glu Tyr Thr Pro Thr Arg

Asn Leu Ser Tyr Asp Pro Ser Ile Leu Glu Arg Leu Arg 115 120 125

# (2) INFORMATION FOR SEQ ID NO:408:

# (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 305 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:408:

Met Asp Ser Thr Pro Val Ile Xaa Gly Ala Met Leu Ile Ser Pro Leu 10 Met Thr Pro Ile Leu Gly Val Gly Leu Ser Leu Ala Ile Phe Asp Phe 25 Lys Leu Leu Arg Lys Ser Phe Lys Ile Leu Ala Ile Gln Ile Leu Ala 40 Ser Leu Ile Ala Ser Thr Leu Tyr Phe Tyr Leu Ser Pro Ile Ser Tyr Ala Ser Ser Glu Ile Val Ala Arg Thr Ser Pro Thr Ile Trp Asp Val 70 Leu Ile Ala Phe Val Gly Gly Ile Ala Gly Ile Ile Gly Ala Arg Lys 90 Lys Glu Thr Asn Asn Ile Val Pro Gly Val Ala Ile Ala Thr Ala Leu 105 Met Pro Pro Leu Cys Thr Val Gly Tyr Ala Ile Ala Ser Ala Asn Leu 115 120 Lys Phe Ile Ile Gly Ser Ser Tyr Leu Phe Leu Ile Asn Cys Ser Phe Ile Val Ile Ala Thr Tyr Ile Gly Val Arg Leu Met Met Val Lys Lys 150 155 His Tyr Phe Lys Asp Asn Glu Glu Asp Ser Lys Met Arg Arg Ile Leu 170 Leu Leu Val Ala Val Leu Leu Met Ile Pro Ser Phe Ile Ser Ala Thr 180 185 Thr Leu Val Arg Glu Thr Leu Lys Lys Glu Ser Leu Lys Lys Phe Ile Ser Glu Gln Phe Gln Gly His Asn Ile Leu Lys Lys Thr Tyr Ser Lys 215 220 Lys Thr His Thr Leu Lys Leu Thr Ile Ser Gly Asn Tyr Leu Thr Glu 230 235 Glu Glu Leu Asp Met Ile Ser Ser Lys Arg Gly Asp Tyr Gly Leu Ser 245 250 255

Asp Val Ser Val Gln Val Ser Gln Leu Ser Asp Ser Glu Gln Leu Ser 260 265 270

Lys Glu Glu Leu Val Glu Tyr Phe Phe Gln Tyr Ile Lys Asp Lys Glu 275 280 285

Ala Lys Glu Lys Glu Lys Ala Asn Lys Phe Tyr Thr Glu Ser Glu Glu 290 295 300

Gln

305

- (2) INFORMATION FOR SEQ ID NO:409:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 73 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:409:

Met Ile Ala Arg Ser Tyr Gln Glu Met Asp Asp Leu Asp Thr Ala Tyr

1 5 10 15

Glu His Tyr Gln Glu Leu Thr Gly Asp Leu Lys Asp Asn Pro Glu Phe
20 25 30

Leu Glu His Tyr Ile Tyr Leu Leu Arg Glu Leu Gly His Phe Glu Glu
35 40 45

Ala Lys Val His Ala His Thr Tyr Leu Lys Leu Val Pro Asp Asp Val 50 55 60

Gln Met Gln Glu Leu Phe Glu Arg Leu 65 70

- (2) INFORMATION FOR SEQ ID NO:410:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 191 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:410:

Met Leu Glu Glu Thr Gln Glu Ile Val Ala Gly Arg Val Ala Ser Val Glu Thr Leu Lys Arg Ile Glu Glu Leu Gly Phe Asp Phe Val Cys Leu 25 Thr Gly Asn Pro Gly Thr Gly Val Ser Asn Arg Glu Ile Ile Lys Ala Val Gln Thr Ala Lys Glu Asn Phe Ser Gly Leu Ile Ile Ala Gly Lys Met His Gly Ala Gly Val Asn Glu Pro Val Ala Glu Leu Ser Val Ala 70 75 Glu Gln Leu Leu Glu Ala Gly Ala Asp Val Ile Leu Val Pro Ala Val 90 Gly Thr Val Pro Ala Phe His Asp Gln Glu Leu Arg Glu Val Val Asp 100 105 Leu Val His Ser Lys Gly Gly Leu Val Leu Ser Ala Ile Gly Thr Ser 120 Gln Glu Thr Ser Asp Thr Asp Thr Ile Lys Glu Ile Ala Leu Arg Asn 135 Lys Ile Cys Gly Val Asp Ile Gln His Ile Gly Asp Ala Gly Tyr Gly 145 150 155 Gly Leu Ala Thr Val Asp Asn Ile Tyr Ala Leu Ser Lys Ala Ile Arg 165 170 Gly Val Arg His Thr Val Ser Arg Leu Ala Arg Ser Val Asn Arg 180 185 190

### (2) INFORMATION FOR SEQ ID NO:411:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 105 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:411:

 Met
 Ala
 Lys
 Val
 Thr
 Ile
 Met
 Leu
 Ala
 Cys
 Ala
 Ala
 Gly
 Met
 Ser
 Thr

 1
 5
 10
 10
 15
 15

 Ser
 Leu
 Leu
 Val
 Thr
 Lys
 Met
 Gln
 Lys
 Ala
 Ala
 Glu
 Asp
 Lys
 Gly
 Leu

 20
 25
 25
 30
 30
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10

Asp Ala Glu Ile Phe Ala Val Pro Ala Pro Glu Ala Glu Glu Ile Val
35 40 45

Ala Thr Lys Glu Val Asn Val Leu Leu Gly Pro Gln Val Arg Tyr
50 55 60

Leu Leu Gly Asp Phe Gln Glu Lys Leu Lys Asp Arg Gln Ile Pro Val

Ala Val Ile Pro Met Thr Asp Tyr Gly Met Met Asn Gly Ser Lys Val 85 90 95

Leu Asp Leu Ala Glu Ser Leu Leu Asp 100 105

## (2) INFORMATION FOR SEQ ID NO:412:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 72 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:412:

Met Leu Gln Arg Gln Gln Ala Ser Ala Ile Ile Asp Ala Arg Lys Met

1 5 10 15

Ile Val Asp Gly Ala Val Gly Met Val Glu Met Ala Leu Glu Arg Leu 20 25 30

Asn Glu Gly Glu Leu Val Glu Leu Asp Glu Glu Arg Lys Ala Ala Met
35 40 45

Val Ser Asn Leu Leu Val Val Leu Cys Gly Asn His Asp Ala Gln Pro
50 55 60

Ile Val Asn Thr Gly Ser Leu Tyr 65 70

# (2) INFORMATION FOR SEQ ID NO:413:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 53 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein 379

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:413:

 Met Val Ala Gly Phe Thr Gly Glu Phe Val Lys Ser Lys Asp Ala Val 1
 5
 10
 15
 15

 Glu Ala Phe Lys Trp Gly Val Ala Cys Gly Thr Ala Thr Thr Phe Ser 20
 25
 30
 30

 Asp Asp Leu Ala Thr Ala Glu Phe Ble Lys Glu Thr Tyr Gly Lys Val 35
 40
 45

 Glu Val Glu Lys Arg 50

## (2) INFORMATION FOR SEQ ID NO:414:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 127 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:414:

Met Tyr Glu Ser Pro Val Gly Phe Arg His Gly Pro Lys Ser Leu Ile 10 Asn Asp Asn Thr Val Val Leu Val Phe Gly Thr Thr Thr Asp Tyr Thr 25 Arg Lys Tyr Asp Leu Asp Leu Val Arg Glu Val Ala Gly Asp Gln Ile Ala Arg Arg Val Val Leu Leu Ser Asp Gln Ala Phe Gly Leu Glu Asn 55 Val Lys Glu Val Ala Leu Gly Cys Gly Gly Val Leu Asn Asp Ile Tyr 70 Arg Val Phe Pro Tyr Ile Val Tyr Ala Gln Leu Phe Ala Leu Leu Thr 85 90 Ser Leu Lys Val Glu Asn Lys Pro Asp Thr Pro Ser Pro Thr Gly Thr 100 105 Val Asn Arg Val Val Gln Gly Val Ile Ile His Glu Tyr Gln Lys 115 120 125

# (2) INFORMATION FOR SEQ ID NO:415:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 101 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:415:

Met Ser His Asp His Asp His Glu Glu Arg Glu Leu Ile Thr

1 5 10 15

Leu Val Asp Glu Gln Gly Asn Glu Thr Leu Phe Glu Ile Leu Leu Thr
20 25 30

Ile Asp Gly Lys Glu Glu Phe Gly Lys Asn Tyr Val Leu Leu Val Pro 35 40 45

Val Asn Ala Glu Glu Asp Glu Asp Gly Gln Val Glu Ile Gln Ala Tyr
50 55 60

Ser Phe Ile Glu Asn Glu Asp Gly Thr Glu Gly Glu Leu Gln Pro Ile
65 70 75 80

Pro Glu Asp Ser Glu Asp Glu Trp Asn Met Ile Glu Glu Val Phe Asn 85 90 95

Ser Phe Met Glu Glu

100

- (2) INFORMATION FOR SEQ ID NO:416:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 98 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:416:

5 10 15

Lys Asn Pro Leu Lys Ala Leu Val Glu Glu Lys Tyr Gly Ile Glu Tyr
20 25 30

Glu Glu Phe Thr Asn Pro Trp His Ala Ala Ile Ser Ser Phe Val Ala 35 40 45

 Phe
 Leu
 Arg
 Ser
 Leu
 Pro
 Pro
 Met
 Leu
 Ser
 Val
 Thr
 Ile
 Phe
 Pro

 50
 55
 55
 60
 60
 12
 41
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 1

# (2) INFORMATION FOR SEQ ID NO:417:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 226 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:417:

Met Pro Trp Asn Ala Ala Tyr Val Glu Pro Ser Arg Arg Pro Ala Asp Gly Arg Tyr Gly Glu Asn Pro Asn Arg Leu Tyr Gln His His Gln Phe 25 Gln Val Val Met Lys Pro Ser Pro Ser Asn Ile Gln Glu Leu Tyr Leu 40 Glu Ser Leu Glu Lys Leu Gly Ile Asn Pro Leu Glu His Asp Ile Arg 55 Phe Val Glu Asp Asn Trp Glu Asn Pro Ser Thr Gly Ser Ala Gly Leu Gly Trp Glu Val Trp Leu Asp Gly Met Glu Ile Thr Gln Phe Thr Tyr 90 Phe Gln Gln Val Gly Gly Leu Ala Thr Gly Pro Val Thr Ala Glu Val Thr Tyr Gly Leu Glu Arg Leu Ala Ser Tyr Ile Gln Glu Val Asp Ser 120 Val Tyr Asp Ile Glu Trp Ala Asp Gly Val Lys Tyr Gly Glu Ile Phe 130 135 Ile Gln Pro Glu Tyr Glu His Ser Lys Tyr Ser Phe Glu Ile Ser Asn 150 155 Gln Glu Met Leu Glu Asn Phe Asp Lys Phe Glu Lys Glu Ala Gly 165 170

Arg Ala Leu Glu Glu Gly Leu Val His Pro Ala Tyr Asp Tyr Val Leu 180 185 190

Lys Cys Ser His Thr Phe Asn Leu Leu Asp Ala Arg Gly Ala Val Ser 195 200 205

Val Thr Glu Pro Cys Arg Leu Tyr Arg Ser Val Ser Val Thr Trp Pro 210 215 220

Val Leu

225

- (2) INFORMATION FOR SEQ ID NO:418:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 49 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:418:

 Met
 Ser
 Lys
 Glu
 Leu
 Thr
 Phe
 Gln
 Glu
 Ile
 Ile
 Leu
 Thr
 Leu
 Gln
 Gln
 Gln
 Gln
 Ile
 Ile
 Leu
 Thr
 Leu
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 I

Lys Gly Ala Gly Thr Met Ser Pro Tyr Thr Phe Leu Arg Ala Tyr Arg 35 40 45

Thr

- (2) INFORMATION FOR SEQ ID NO:419:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 147 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:419:

Met Phe Ile Thr Met Gly Val Gly Ala Ala Ile Leu Leu Leu Ile Trp 1 10 Ile Phe Phe Lys Gln Leu Leu Ile Thr Ser Phe Asp Glu Leu Leu Ala 25 Lys Ala Met Gly Met Pro Val Asn Phe Tyr His Tyr Leu Leu Met Val Leu Leu Thr Leu Val Ser Val Thr Ala Met Gln Ser Val Gly Thr Ile 55 Leu Ile Val Ala Met Leu Ile Thr Pro Ala Ala Thr Ala Tyr Leu Tyr 70 75 Ala Asn Ser Leu Lys Ser Met Ile Phe Leu Ser Ser Thr Phe Gly Ala 85 90 Thr Ala Ser Val Leu Gly Leu Phe Ile Gly Tyr Ser Phe Asn Val Ala 105 Ala Gly Ser Ser Ile Val Leu Thr Ala Ala Ser Phe Phe Leu Ile Ser 120 125 Phe Phe Ile Ala Pro Lys Gln Arg Tyr Leu Lys Leu Lys Asn Lys His 130 135 140 Leu Leu Lys 145

# (2) INFORMATION FOR SEQ ID NO: 420:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 238 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:420:

Ser Ser Lys Ile Asn Lys Phe Glu Asn Asn Gly Phe Arg Gln Tyr Phe 90 Ser Lys Glu Asn Phe Leu Ile Cys Thr Glu Ser Asp Lys Val Asn Leu 105 Leu Glu Lys Met Val Glu Ser Leu Ser Val Gly Glu Ser Asn Glu Phe 115 Glu Gln Ser Leu Leu Tyr Gly Ile Lys Gln Arg Glu Glu Leu Ser Ser 135 Val Val Phe Ser Glu Lys Ile Ala Val Pro His Pro Ile Gln Pro Phe 150 155 Gly Thr Glu Glu Lys Val Ser Val Ala Ile Cys Lys Asp Ser Leu Leu 170 Trp Asp Asn Gln Ser Ser His Val Gln Thr Ser Tyr Phe Phe Tyr Leu 180 185 His Gln Tyr Met Gly Thr Glu Gly Leu Ala Thr Val Thr Lys Lys Ile 200 Val Ser Leu Thr Glu Asn Asp Glu Leu Gln Asn Gln Leu Ile Ser Cys 215 Asn Asn Phe Glu Asp Phe Ile Asn Ile Phe Glu Lys Ile Lys 225 230 235

## (2) INFORMATION FOR SEQ ID NO:421:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 43 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:421:

 Met
 Pro
 Arg
 Ala
 Ser
 Phe
 Asp
 Gln
 Val
 Asn
 Gln
 Val
 Arg
 Gln
 Glu
 Asn

 1
 5
 5
 10
 15
 15

 Gly
 Glu
 Phe
 Ala
 Asn
 Pro
 Arg
 Asn
 Ala
 Ala
 Gly
 Thr
 Ile

 Val
 Ser
 Val
 Gly
 Tyr
 Ser
 Ser
 Phe
 Gln
 Ala

 35
 40
 40

- (2) INFORMATION FOR SEQ ID NO: 422:
- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 78 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:422:

Met Arg Gln Gln Glu Leu Leu Cys Gln Leu Asp Thr Ala Val Val Ser

1 5 10 15

Lys Arg Asn Leu Ala Thr Phe Leu Tyr Gln Glu Ala Ser Pro Ser Thr

Arg Asp Ser Gln Glu Lys Gly Leu Lys Tyr Leu Glu Gln Leu Gly Ile 35 40 45

Val Val Asn His Lys Arg Ile Phe Gly Trp Lys Ile Asp Lys Ile Trp 50 55 60

Asn Phe Ile Gln Glu Val Gly Gln Glu Arg Glu Asn Leu Pro 65 70 75

- (2) INFORMATION FOR SEQ ID NO: 423:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 151 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:423:

Met Ala Leu Thr Glu Gln Lys Arg Ala Arg Leu Glu Lys Leu Ser Asp 1 5 10 15

Glu Asn Gly Ile Ile Ser Ala Leu Ala Phe Asp Gln Arg Gly Ala Leu
20 25 20 20

Lys Arg Leu Met Ala Gln His Gln Thr Glu Glu Pro Thr Val Ala Gln
35 40

Met Glu Glu Leu Lys Val Leu Val Ala Asp Glu Leu Thr Lys Tyr Ala 50 55 60

Ser Ser Met Leu Leu Asp Pro Glu Tyr Gly Leu Pro Ala Thr Lys Ala
65 70 75 80

Leu Asp Glu Lys Ala Gly Leu Leu Ala Tyr Glu Lys Thr Gly Tyr 90 Asp Thr Thr Ser Thr Lys Arg Leu Pro Asp Cys Leu Asp Val Trp Ser 105 Ala Lys Arg Ile Lys Glu Glu Gly Ala Asp Ala Val Lys Phe Leu Leu 115 120 125 Tyr Tyr Asp Val Asp Ser Ser Asp Glu Leu Asn Gln Glu Lys Gln Ala

135

Tyr Ile Gly Ala Tyr Arg Phe 145

### (2) INFORMATION FOR SEQ ID NO: 424:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 174 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:424:

Leu Asn Trp Ile Leu Leu Gln Gly Leu Ile Cys Gln Arg Asp Ala Ser 10 Tyr Asp Met Lys Gln Asp Asp Leu Asp Lys Val Ala Asp Tyr Leu Phe 20 30 Lys Thr Glu Glu Trp Thr Met Tyr Glu Leu Ile Leu Phe Gly Asn Leu 40 Tyr Ser Phe Tyr Asp Val Asp Tyr Val Thr Arg Ile Gly Arg Glu Val 55 Met Glu Arg Glu Glu Phe Tyr Gln Glu Ile Ser Arg His Lys Arg Leu . .70 75 Val Leu Ile Leu Ala Leu Asn Cys Tyr Gln His Cys Leu Glu His Ser Ser Phe Tyr Asn Ala Asn Tyr Phe Glu Ala Tyr Thr Glu Lys Ile Ile 105 Asp Lys Gly Ile Lys Leu Tyr Glu Arg Asn Val Phe His Tyr Leu Lys 115 120 Gly Phe Ala Leu Tyr Gln Lys Gly Gln Cys Lys Glu Gly Cys Lys Gln 135 140 Met Gln Glu Thr Met His Ile Phe Asp Val Leu Gly Leu Pro Glu Gln 145

155

160

Val Ala Tyr Tyr Gln Glu His Tyr Glu Lys Phe Val Lys Ser 165 170

- (2) INFORMATION FOR SEQ ID NO: 425:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 149 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:425:

Met Tyr Pro Asp Asp Ser Leu Thr Leu His Thr Asp Leu Tyr Gln Ile 1 5 10 15

Asn Met Met Gin Val Tyr Phe Asp Gln Gly Ile Tyr Asn Lys Lys Ala
20 25 30

Val Phe Glu Val Tyr Phe Arg Gln Gln Pro Phe Lys Asn Gly Tyr Ala 35 40 45

Val Phe Ala Gly Leu Glu Arg Ile Val Asn Tyr Leu Glu Asp Leu Arg
50 55 60

Phe Ser Asp Ser Asp Ile Ala Tyr Leu Glu Ser Leu Gly Tyr His Gly
65 70 75

Ala Phe Leu Asp Tyr Leu Arg Asn Phe Lys Leu Glu Leu Thr Val Arg

Ser Ala Gln Glu Gly Asp Leu Val Phe Ala Asn Glu Pro Ile Val Gln
100 105 110

Val Glu Gly Pro Leu Ala Gln Cys Gln Leu Val Glu Thr Ala Leu Leu 115 120 125

Asn Ile Val Asn Tyr Gln Thr Leu Val Ala Thr Lys His Ser Tyr Ser 130 135 140

Phe Gly Tyr Arg Arg

- (2) INFORMATION FOR SEQ ID NO: 426:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 66 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 426:

 Met
 Leu
 Val
 Tyr
 Val
 Tyr
 Ala
 Val
 Pro
 Leu
 Tyr
 Ala
 Lys
 Pro
 Leu
 Tyr
 Ala
 Lys
 Lys
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 I

- (2) INFORMATION FOR SEQ ID NO:427:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 70 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:427:

 Met
 Glu
 Glu
 Lys
 Glu
 Leu
 Asn
 Ala
 Val
 Ile
 Asp
 Val
 Ile
 Met
 Leu
 Leu

 Ala
 Gly
 Thr
 Ile
 Leu
 Leu
 Lys
 Ser
 Gly
 Ser
 Glu
 Ile
 His
 Arg
 Val
 Glu

 Asp
 Thr
 Met
 Ile
 Arg
 Ile
 Ala
 His
 Ser
 Glu
 Gly
 Ile
 His
 Arg
 Val
 Asn
 Asn

 Val
 Leu
 Ala
 Ala
 Ile
 Phe
 Phe
 Phe
 Ser
 Ile
 Glu
 Asn
 Thr
 Asn

 Ile
 Ser
 Arg
 Met
 Asn
 Ala
 Ile
 Phe
 Phe
 Phe
 Phe
 Ser
 Ile
 Glu
 Asn
 Thr
 Asn

 Ile
 Ser
 Arg
 Met
 Asn
 Ala
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 I

- (2) INFORMATION FOR SEQ ID NO:428:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 104 amino acids

- (B) TYPE: amino acid(C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:428:

- (2) INFORMATION FOR SEQ ID NO:429:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 139 amino acids
  - (B) TYPE: amino acid

100

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:429:

 Met
 Val
 Glu
 Asn
 Pro
 Glu
 Gly
 Pne
 His
 Phe
 Asp
 Leu
 Glu
 Leu
 Glu
 Leu
 Glu
 Asp
 Leu
 His
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 Asp
 Leu
 A

Ala Ile Phe Asn Ala Ile Asp Lys Phe Phe Asn Gln Ser Val Arg Leu 50 55 60

 Val
 Ser
 Tyr
 Thr
 Ile
 Asn
 Ala
 Val
 Thr
 Asp
 Gly
 Ile
 Asp
 Ala
 Gln
 Asp

 65
 70
 70
 75
 75
 80

 Arg
 Val
 Leu
 Asp
 Thr
 Val
 Glu
 Asp
 Thr
 Glu
 Thr
 Ile
 Phe
 Asp

 Ala
 Ala
 Gly
 Leu
 Asp
 Phe
 Asp
 Val
 Leu
 Lys
 Ala
 Ser
 Ala
 Ile
 Ala
 Tyr

 Ile
 Asn
 Ala
 Asn
 Thr
 Phe
 Val
 Glu
 Lys
 Ala
 Ser
 Ala
 Ile
 Ala
 Tyr

 Ile
 Asn
 Ala
 Asn
 Thr
 Phe
 Val
 Glu
 Lys
 Glu
 Asn
 Ala
 Ile
 Ala
 Tyr
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala
 Ile
 Ala</td

#### (2) INFORMATION FOR SEQ ID NO:430:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 193 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:430:

Met Ala Lys Lys Ile Lys Lys Glu Lys Ile Asp Asn Val Gly Ile 10 His Ser Phe Ser Lys Lys Ala Asp Ile Phe Phe Ser Ile Ile Ser Gly 20 Leu Ile Ala Leu Ser Cys Ile Leu Pro Phe Val Phe Val Ile Ile Ile 40 Ser Val Thr Asp Glu Lys Ser Leu Leu Gln Tyr Gly Tyr Ser Phe Phe Pro Ser Gln Phe Gly Leu Asp Gly Phe Glu Phe Leu Ala Gln Phe Lys 65 70 Asp Lys Ile Leu Gln Ala Leu Phe Ile Ser Val Phe Val Thr Val Val 90 Gly Thr Leu Thr Asn Val Phe Ile Thr Thr Thr Tyr Ala Tyr Ala Ile 105 Ser Arg Thr Thr Phe Lys Tyr Arg Arg Phe Phe Thr Ile Phe Val Leu 115 120 Leu Ser Met Leu Phe Asn Ala Gly Leu Val Pro Gly Tyr Ile Met Val 135 140 Thr Arg Val Leu Gln Leu Gly Asp Thr Val Trp Ala Phe Asp Cys Ser 145 150 155 160

# (2) INFORMATION FOR SEQ ID NO:431:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 97 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:431:

 Met
 Lys
 Thr
 Arg
 Lys
 Ile
 Pro
 Leu
 Arg
 Lys
 Ser
 Val
 Val
 Ser
 Asn
 Glu

 Val
 Ile
 Asp
 Lys
 Arg
 Asp
 Leu
 Leu
 Arg
 Ile
 Val
 Lys
 Asn
 Lys
 Glu
 Glu
 Glu
 Asn
 Glu
 Arg
 Glu
 Arg
 Glu
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 A

- (2) INFORMATION FOR SEQ ID NO: 432:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 169 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein 392

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:432:

Met Ile Arg Lys Val Glu Met Ala Asp Val Glu Val Leu Ala Lys Ile 10 Ala Lys Gln Thr Phe Arg Glu Thr Phe Ala Tyr Asp Asn Thr Glu Glu 25 Gln Leu Gln Glu Tyr Phe Glu Glu Ala Tyr Ser Leu Lys Thr Leu Ser 40 Thr Glu Leu Gly Asn Pro Asp Ser Glu Thr Tyr Phe Ile Met Gln Glu 55 Glu Glu Ile Ala Ala Phe Leu Lys Val Asn Trp Gly Ser Ala Gln Thr Glu Arg Glu Leu Glu Asp Ala Phe Glu Ile Gln Arg Leu Tyr Val Leu 90 Gin Lys Phe Gin Gly Phe Gly Leu Gly Lys Gin Leu Phe Glu Phe Ala 105 Leu Glu Leu Ala Thr Lys Asn Ser Phe Ser Trp Ala Trp Leu Gly Val 120 Trp Glu His Asn Thr Lys Ala Gln Ala Phe Tyr Asn Arg Tyr Gly Phe 135 140 Glu Lys Phe Ser Gln His His Phe Met Val Gly Gln Lys Val Asp Thr 145 150 155 Asp Trp Leu Leu Arg Lys Lys Leu Arg 165

### (2) INFORMATION FOR SEQ ID NO:433:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 154 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:433:

Gly Glu Trp Leu Ser Ile Val Gly His Asn Gly Ser Gly Lys Ser Thr 35 Thr Val Arg Leu Ile Asp Gly Leu Leu Glu Ala Glu Ser Gly Glu Ile Val Ile Asp Gly Gln Arg Leu Thr Glu Glu Asn Val Trp Asn Ile Arg 70 Arg Gln Ile Gly Met Val Phe Gln Asn Pro Asp Asn Gln Phe Val Gly 90 Ala Thr Val Glu Asp Asp Val Ala Phe Gly Leu Glu Asn Gln Gly Leu 105 Ser Arg Gln Glu Met Lys Lys Arg Val Glu Glu Ala Leu Ala Leu Val 120 125 Gly Met Leu Asp Phe Lys Lys Arg Glu Pro Ala Arg Pro Ile Arg Cys 135 Gln Lys His Val Trp Pro Leu Gln Val Leu 145 150

# (2) INFORMATION FOR SEQ ID NO:434:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 182 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:434:

 Met
 Gln
 Val
 Ala
 Phe
 Thr
 Gly
 Glu
 Thr
 Ser
 Pro
 Gln
 Val
 Leu
 Lys
 Glu

 1
 5
 5
 6
 10
 10
 7
 15
 15

 1le
 Gly
 Thr
 Asp
 Val
 Ile
 Gly
 His
 Ser
 Glu
 Arg
 App
 Tyr

 Phe
 His
 Asp
 Thr
 Asp
 Glu
 Asp
 Val
 Asp
 Lys
 Lys
 Ala
 Lys
 Ala
 Ile
 Phe

 Ala
 Asp
 Glu
 Asp
 Val
 Asp
 Cys
 Cys
 Cly
 Glu
 Ser
 Leu
 Glu
 Thr

 Ala
 Asp
 His
 Cys
 Cys
 Cly
 Glu
 Ser
 Leu
 Glu
 Thr

 Ala
 Asp
 His
 Gly
 Cys
 Cly
 Gly
 Ala
 Gly
 Val
 Ser
 Ala

 Ala
 Ala
 Ala
 Gly
 Phe
 Val
 Ala
 Ala
 Ala

Asp Ala Gln Lys Met Cys Lys Val Val Arg Asp Val Val Ala Ala Asp Asp 115 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125 - 125

## (2) INFORMATION FOR SEQ ID NO:435:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 168 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:435:

Met Gly Lys Lys Arg Trp Ala Arg Asn Gly Phe Glu Ser Asn Asp Ala 10 Ser Tyr Ala Gln Val Val Ser Leu Tyr Asp Asp Thr Ser Ile Ser Val 25 Ser Asn Asn Glu Thr Asp Lys Val Leu Ala Gly Ser Leu Tyr Thr Asp 40 Thr Asn Glu Gln Gly Leu Thr Ile Pro Ser Ser Leu Leu Lys Asn Trp Asn Glu Gln Thr Gly Lys Asn Leu Thr Ala Asn Asp Leu Ile Gly Lys 70 Ser Val Ser Val Ser Ile Val Glu Ser Ala Ala Glu Thr Ser Lys Ile 85 90 Ala Gln Phe Gln Thr Lys Ile Val Arg Val Ile Asn Asp Glu Asp Asp Met Glu Asp Ser Asn Ser Phe Met Leu Ser His Gln Met Glu Thr Ile 120 125 Leu Lys Glu Ala Gly Phe Thr Lys Ala Val Ser Tyr Phe Ile Leu Glu 130 135 Leu Lys Asp Pro Ser Gln Thr Lys Val Val Thr Glu Glu Leu Gln Lys 150 155 160

Asn Lys Lys Tyr Thr Val Leu Ser

### (2) INFORMATION FOR SEQ ID NO:436:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 141 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:436:

Met Met His Thr Tyr Leu Gln Lys Lys Ile Glu Asn Ile Lys Thr Thr 1 5 10 15

Leu Gly Glu Met Ser Gly Gly Tyr Arg Arg Met Val Ala Ala Met Ala 20 25 30

Asp Leu Gly Phe Ser Gly Thr Met Lys Ala Ile Trp Asp Asp Leu Phe 35 40 45

Ala His Arg Ser Phe Ala Gln Trp Ile Tyr Leu Leu Val Ser Gly Ser 50 55 60

Phe Pro Leu Trp Leu Glu Leu Val Tyr Glu His Arg Ile Val Asp Trp 65 70 75 80

Ile Gly Met Ile Cys Ser Leu Thr Gly Ile Ile Cys Val Ile Phe Val 85 90 95

Ser Glu Gly Arg Ala Ser Asn Tyr Leu Phe Gly Leu Ile Asn Ser Val

Ile Tyr Leu Ile Leu Ala Leu Gln Lys Gly Phe Tyr Gly Glu Val Leu
115 120 125

Thr Thr Leu Tyr Phe Thr Val Met Gln Pro Ile Gly Leu
130 135 140

### (2) INFORMATION FOR SEQ ID NO:437:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 70 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:437:

### (2) INFORMATION FOR SEQ ID NO:438:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 237 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:438:

Met Arg Gly Ile His Phe Val Gln Ile Pro Thr Ser Leu Thr Ala Gln 10 Val Asp Ser Ser Ile Gly Gly Lys Thr Gly Val Asn Thr Pro Phe Ala Lys Asn Met Val Gly Thr Phe Ala Gln Pro Asp Gly Val Leu Ile Asp 40 Pro Leu Val Leu Glu Thr Leu Gly Lys Arg Glu Leu Ile Glu Gly Met Gly Glu Val Ile Lys Tyr Gly Leu Ile Glu Asp Pro Glu Leu Trp Ala 70 Leu Leu Thr Gly Leu Asn Gly Ser Val Glu Ser Ile Leu Glu His Ala 90 Glu Thr Leu Ile Glu His Ser Cys Gln Val Lys Arg Lys Met Val Val 105 Glu Asp Glu Leu Asp Asn Gly Ile Arg Leu Tyr Leu Asn Phe Gly His 115 120 125

Thr Ile Gly His Ala Ile Glu Ala Thr Ala Gly Tyr Gly Lys Val Met 135 His Gly Glu Ala Val Ala Met Gly Met Val Gln Ile Ser Lys Ile Ala 150 155 Glu Glu Lys Gly Leu Met Pro Ala Gly Ile Thr Gln Ser Ile Thr Glu 165 Met Cys Gln Lys Phe Gly Leu Pro Val Asp Tyr Glu Asn Trp Glu Val 180 185 Asp Lys Leu Tyr Gln Ala Leu Thr His Asp Lys Lys Ala Arg Gly Asn 200 Thr Leu Lys Leu Val Leu Val Pro Glu Leu Gly Ser Ala Thr Ile His 215 220 Pro Val Ser Leu Glu Glu Met Lys Asp Tyr Leu Val Lys

235

- (2) INFORMATION FOR SEQ ID NO:439:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 68 amino acids

230

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:439:

- (2) INFORMATION FOR SEQ ID NO:440:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 97 amino acids
  - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:440:

Met Cys Ile Thr Pro Val Ala Ser Leu Ala Pro Asp Val Phe Cys Val Ser Met Asn Gly Leu Ser Lys Ser His Arg Ile Ala Gly Phe Arg Val 25 Gly Trp Met Val Leu Ser Gly Pro Lys Thr His Val Lys Gly Tyr Ile Glu Gly Leu Asn Met Leu Ser Asn Met Arg Leu Cys Ser Asn Val Leu 55 Ala Gln Gln Val Val Gln Thr Ser Leu Gly Gly His Gln Ser Val Asp 65 75 Glu Leu Leu Ser Trp Trp Thr Asn Leu Arg Ala Lys Lys Phe His 85

90

Leu

- (2) INFORMATION FOR SEQ ID NO:441:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 143 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:441:

Met Arg Leu Glu Gln Asp Cys Pro Val Phe Leu Lys Ile Lys Glu Lys 5 Asp Met Ala Ser Lys Met Leu His Thr Cys Leu Arg Val Glu Asn Leu Glu Lys Ser Ile Ala Phe Tyr Gln Asp Ala Phe Gly Phe Lys Glu Leu 40 Arg Arg Arg Asp Phe Pro Asp His Ala Phe Thr Ile Val Tyr Leu Gly 50

Leu Glu Gly Asp Asp Tyr Glu Leu Glu Leu Thr Tyr Asn Tyr Asp His 65 70 75 Gly Pro Tyr Val Val Gly Asp Gly Phe Ala His Ile Ala Leu Ser Thr 85 90 Pro Asp Leu Glu Ala Leu His Gln Glu His Ser Thr Lys Gly Tyr Glu 100 105 Val Thr Glu Pro Asn Gly Leu Pro Gly Thr Ala Pro Asn Tyr Tyr Phe 120 Val Lys Asp Pro Asp Gly Tyr Lys Val Glu Val Ile Arg Glu Lys 130 135 140

- (2) INFORMATION FOR SEQ ID NO:442:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 30 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:442:

Met Leu Asp Gly Met Asp Ile Ser Asn Thr Tyr Gln Asp Lys Leu Glu 1 5 5 10 5 15 15 Glu Leu Glu Lys Glu Ala Lys Thr Val Val Phe Leu Ser Cys 20 30

- (2) INFORMATION FOR SEQ ID NO:443:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 72 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:443:

Met Ala Thr Phe Tyr Val Pro Ala Val Asn Leu Ile Gly Lys Gly Val 1 5 10 15

Val Asn Glu Val Gly Pro Tyr Ile Lys Glu Leu Gly Tyr Lys Lys Ala

20
25
30

Leu Leu Val Thr Asp Lys Tyr Ile Glu Gly Ser Asp Ile Leu Pro Lys

35
40

Val Leu Lys Pro Leu Asp Thr Glu Gly Ile Glu Tyr Val Ile Phe Ser

50

Asp Val Asp Ala Lys Pro Tyr Leu

65

- (2) INFORMATION FOR SEQ ID NO:444:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 53 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:444:

- (2) INFORMATION FOR SEQ ID NO:445:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 188 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:445:

Met Ile Leu Leu Ile Asp Asn Tyr Asp Ser Phe Thr Tyr Asn Leu Ala 10 Gln Tyr Ile Gly Asn Phe Ala Glu Val Gln Val Leu Arg Asn Asp Asp 25 Ser Lys Leu Tyr Glu Glu Ala Glu Lys Ala Asp Gly Leu Val Phe Ser Pro Gly Pro Gly Trp Pro Val Asp Ala Gly Lys Met Glu Asp Met Ile 55 Arg Asp Phe Ala Gly Lys Lys Pro Ile Leu Gly Ile Cys Leu Gly His 70 Gln Ala Ile Ala Glu Val Phe Gly Gly Lys Leu Gly Leu Ala Pro Lys 90 Val Met His Gly Lys Gln Ser Asn Ile Asn Phe Glu Ala Pro Ser Val 105 Leu Tyr Gln Gly Ile Glu Asp Gly Arg Ala Val Met Arg Tyr His Ser 120 Ile Leu Ile Glu Glu Met Pro Glu Asp Phe Glu Val Thr Ala Arg Ser 135 Thr Asp Asp Gln Ala Ile Met Gly Ile Gln His Lys Asn Leu Pro Ile 150 155 Tyr Gly Phe Gln Tyr His Pro Glu Ser Ile Gly Thr Pro Asp Gly Leu 165 170 Ser Ser Ile Arg Asn Phe Ile Glu Glu Val Lys 180 185

- (2) INFORMATION FOR SEQ ID NO:446:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 136 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:446:

 Pro
 Ile
 Phe
 Glu
 Asp
 Met
 Ile
 Tyr
 Arg
 Gly
 Leu
 Val
 Met
 Thr
 Ala
 Leu

 Glu
 Lys
 Gly
 Lys
 Lys
 Lys
 Trp
 Gly
 Leu
 Asp
 Val
 Leu
 Gly
 Ser
 Ala
 Val
 Leu
 Ha
 Val
 Leu
 Asp
 Ha
 Cly
 Trp
 Val
 Leu
 Trp
 Val
 Leu
 Trp
 Val
 Leu
 Trp
 Val
 Leu
 Trp
 Val
 Leu
 Trp
 Val
 Leu
 Trp
 Val
 Leu
 Trp
 Val
 Leu
 Trp
 Val
 Leu
 Trp
 Val
 Leu
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum
 Incum

#### (2) INFORMATION FOR SEQ ID NO:447:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 272 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:447:

Met Thr Val Asp Arg Glu Gly Phe Glu Ala Ala Met Lys Glu Gln Gln Glu Arg Ala Arg Ala Ser Ala Val Lys Gly Gly Ser Met Gly Met Gln 25 Asn Glu Thr Leu Gln Asn Ile Thr Val Glu Ser Ala Phe Asn Tyr Asn 40 Ala Ser Gln Leu Ser Ser Lys Leu Val Ala Ile Val Ala Asp Asn Ala 55 Glu Val Glu Ala Val Ser Glu Gly Thr Ala Ser Leu Ile Phe Ala Glu 70 Thr Ser Phe Tyr Ala Glu Met Gly Gly Gln Val Ala Asp Tyr Cly Gln 90 Ile Leu Asp Glu Ser Gly Lys Val Val Ala Thr Val Thr Asn Val Gln 100 105 Lys Ala Pro Asn Gly Gln Ala Leu His Thr Val Glu Val Leu Ala Pro 120 Leu Ala Leu Asn Gln Glu Tyr Thr Leu Ala Ile Asp Ser Asn Arg Arg 130 135 140

HIS	Arg	Val	Met	Lys	Asn	His	Thr	Ala	Thr	His	Leu	Let	His	Ala	Ala
145					150					155					160
Leu	His	Asn	Ile	Leu	Gly	Asn	His	Ala	Thr	.Gln	Ala	Gly	Ser	Leu	Asn
				165					170					175	
Glu	Val	Glu	Phe	Leu	Arg	Phe	Asp	Phe	Thr	His	Phe	Gln	Ala	Val	Thr
			180					185					190		
Ala	Glu	Glu	Leu	Arg	Ala	Ile	Glu	Gln	Gln	Val	Asn	Glu	Lys	Ile	Tro
		195					200					205			
Glu	Ala	Leu	Glu	Val	Lys	Thr	Val	Glu	Thr	Asp	Ile	Asp	Thr	Ala	Lvs
	210					215					220				
Glu	Asn	Gly	Arg	Ser	Asn	Ser	Суѕ	Ser	Pro	Gly	Gly	Ser	Thr	Asn	Ser
225					230					235					240
Xaa	Xaa	Ala	Ala	Thr	Ala	Val	Glu	Leu	His	Phe	Xaa	Phe	Pro	Leu	Met
				245					250					255	
Lys	Val	Asn	Сув	Xaa	Leu	Gly	Leu	Xaa	Trp	Pro	Xaa	Arg	Phe	Pro	Phe
			260					265				-	270		

# (2) INFORMATION FOR SEQ ID NO:448:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 251 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:448:

Met Asp Ala Glu Val Ser Lys Asn Leu Arg Leu Ile Leu Glu Arg Lys 10 Gly Met Thr Ile Leu Thr Gly Thr Lys Leu Gln Glu Ile Ile Glu Glu 20 25 Asn Gly Gln Leu Arg Ile Lys Val Glu Gly Lys Asp Asn Ile Ile Ala 40 Ser Lys Ala Leu Leu Ser Ile Gly Arg Met Pro Asp Leu Glu Gly Ile Gly Glu Val Glu Phe Glu Leu Asp Arg Gly Cys Ile Lys Val Asn Glu 70 75 Tyr Met Glu Thr Ser Val Pro Gly Ile Tyr Ala Pro Gly Asp Ile Asn 90 Gly Thr Lys Met Leu Ala His Ala Ala Phe Arg Met Gly Glu Val Ser 100 105

Ala Glu Asn Ala Leu Lys Gly Asn His Ala Val Ala Lys Leu Asn Leu 115 120 Thr Pro Ala Ala Ile Tyr Thr Leu Pro Glu Val Ala Ala Val Gly Leu 135 Thr Glu Glu Gln Ala Arg Glu Lys Tyr Asp Val Ala Ile Gly Lys Phe 150 155 Asn Phe Ala Ala Asn Gly Arg Ala Ile Ala Ser Asp Ala Ala Gln Gly 165 170 Phe Val Lys Val Ile Ala Asp Lys Lys Tyr Gly Glu Ile Leu Gly Val His Ile Ile Val Pro Ala Ala Ala Glu Leu Ile Asn Glu Ala Ser Ser 200 Ile Ile Glu Met Glu Ile Thr Val Glu Glu Met Leu Lys Thr Ile His 215 220 Gly His Pro Thr Tyr Phe Glu Val Met Tyr Glu Ala Phe Ala Asp Val 230 240 Leu Gly Met Ala Ile His Ser Pro Lys Lys 245 250

### (2) INFORMATION FOR SEQ ID NO:449:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 134 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:449:

Ile Arg Pro Ile Leu Arg Glu Ile Gly His Ala His Val Thr Ala Leu 100 105 110

Ala Ser Arg Pro Lys Leu Ile Gly Gly Ala Arg Ala His Tyr Pro Gln
115 120 125

Asp Ala Ile Arg Lys Ser

130

- (2) INFORMATION FOR SEQ ID NO:450:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 81 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:450:

Met Lys Ile Val Ser Gly Ile Tyr Gly Gly Arg Pro Leu Lys Thr Leu

1 5 10 15

Glu Gly Lys Thr Thr Arg Pro Thr Ser Asp Lys Val Arg Gly Ala Ile
20 25 30

Phe Asn Met Ile Gly Pro Tyr Phe Glu Val Gly Arg Val Leu Asp Leu 35

Tyr Ala Gly Ser Gly Gly Leu Ser Ile Glu Ala Val Ser Arg Gly Met 50 55 60

Ser Ser Ala Val Leu Val Glu Arg Asp Arg Lys Ala Gln Thr Ile Arg 65 70 75 80

- (2) INFORMATION FOR SEQ ID NO:451:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 163 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:451:

Met Arg Phe Val Lys Glu Phe Gly Ala Val Phe Leu Ile Gly Ile Gly 10 Gly Glu Leu Pro Asp Gly Lys Pro His Asp Gly Arg Ala Pro Asp Tyr 20 25 Asp Asp Trp Thr Ser Glu Ser Glu Asn Gly Tyr Lys Gly Leu Asn Gly Asp Ile Leu Val Trp Asn Glu Ser Leu Gly Gly Ala Phe Glu Leu Ser 55 Ser Met Gly Ile Arg Val Asp Glu Glu Thr Leu Arg Arg Gln Val Glu 70 75 Ile Thr Gly Asp Glu Asp Arg Leu Glu Leu Glu Trp His Lys Ser Leu Leu Asn Gly Leu Phe Pro Leu Thr Ile Gly Gly Gly Ile Gly Gln Ser 100 105 Arg Met Ala Met Phe Leu Leu Arg Lys Arg His Ile Gly Glu Val Gln 120 Thr Ser Val Trp Pro Gln Val Ser Pro Arg Tyr Leu Arg Lys Tyr Phe 135 Val Glu Asn Arg Thr Ala Arg Phe Gly Phe Leu Ser Leu Phe Val Tyr 145 150 155 160 Asn Leu Val

#### (2) INFORMATION FOR SEQ ID NO:452:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 231 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:452:

Lys Val Thr Thr Asp Gln Asp Thr Leu Val Asn Pro Thr Asn His Ser 50 55 Tyr Phe Asn Leu Ser Gly Asp Phe Thr Gln Thr Ile Asp Arg His Val 75 Phe Gln Leu Asn Thr Glu Gly Ile Tyr Ser Ile Ala Pro Asp Gly Val 85 90 95 Pro Ala Lys Thr Pro Glu Ala Asn Arg Asp Val Val Lys His Ile Tyr 100 Asn Gly Ala Leu Leu Lys Asp Ile Phe Ala Glu Glu Asp Glu Gln Ile 120 Gln Leu Ala Ser Gly Leu Asp His Pro Phe Ala Leu Pro Ala Gly His 135 Asp Asn Ala Gly Phe Leu Tyr Asp Gln Asn Ser Gly Arg Phe Leu Leu 145 150 155 Phe Lys Thr Glu Ala Pro Cys Phe Val Val Tyr Thr Ala Asn Phe Val 170 Asp Glu Ser Val Ile Ile Gly Gly Gln Pro Met Leu Gln His Asn Gly 180 185 Ile Ala Leu Glu Ala Gln Ala Leu Pro Asp Ala Ile His Ser Asp Leu Lys Gly Gln Val Ile Leu Lys Ala Gly Gln Thr Phe Thr Ser Lys Thr 220 Arg Tyr Glu Leu Val Val Lys 225 230

# (2) INFORMATION FOR SEQ ID NO:453:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 117 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:453:

Pro Ile Ile Gly Met Gly Gly Val Asp Ser Ala Glu Ala Ala Leu Glu 50 55 60

Met Tyr Leu Ala Gly Ala Ser Ala Ile Gly Val Gly Thr Ala Asn Phe 65 70 75 80

Thr Asn Pro Tyr Ala Cys Pro Asp Ile Ile Glu Asn Leu Pro Lys Val

Met Asp Lys Tyr Gly Ile Ser Ser Leu Glu Glu Leu Arg Gln Glu Val

Lys Glu Ser Leu Arg

115

- (2) INFORMATION FOR SEQ ID NO:454:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 76 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:454:

Met Tyr Asn Lys Val Ile Met Ile Gly Arg Leu Thr Ser Thr Pro Glu
1 5 10 15

Leu His Lys Thr Asn Asn Asp Lys Ser Val Ala Arg Ala Thr Ile Ala 20 25 30

Val Asn Arg Arg Tyr Lys Asp Gln Asn Gly Glu Arg Glu Ala Asp Phe 35 40 45

Val Gln Tyr Gly Pro Tyr Gly Ala Arg Thr Ser Gln Lys Thr Leu Ala
50 55 60

Ser Leu Arg Gln Pro Lys Gly Ser Leu His Phe Arg 65 70 75

- (2) INFORMATION FOR SEQ ID NO:455:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 132 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:455:

Met Val Lys Ser Ser Ile Gln Gly Pro Arg Leu Ser Lys Ile Trp Gly 1 Ser Thr Arg Gln Glu Ser Tyr Arg Leu Cys Leu Gly Ala Arg Leu Val 25 Tyr Ser Ala Thr Lys Ala Ala Val Lys Thr Phe Ser Asp Gly Leu Arg Ile Asp Thr Ile Ala Thr Asp Ile Lys Val Thr Thr Ile Gln Pro Gly 55 Ile Val Glu Thr Asp Phe Ser Thr Val Arg Phe His Gly Asp Lys Glu Arg Ala Ala Ser Val Tyr Gln Gly Ile Glu Ala Leu Gln Ala Gln Asp 90 Ile Ala Asp Thr Val Val Tyr Val Thr Ser Gln Pro Arg Arg Val Gln 105 Ile Thr Asp Met Thr Ile Met Ala Asn Gln Gln Ala Thr Gly Phe Met 115 120 125 Ile His Lys Lys 130

# (2) INFORMATION FOR SEQ ID NO:456:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 179 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:456:

Lys Asp Gly Lys Arg Val Leu Thr Pro Lys Thr Tyr Pro Lys Gly Arg 65 70 75 Met Asp Phe Val Val Tyr Asp Pro Gln Gln Leu Val Lys Thr Ser Phe 90 Gly Leu Leu Glu Pro Gln Gly Asp Leu Glu Val Val Asp Val Ser Lys 100 105 Ile Asp Leu Ile His Val Pro Gly Leu Ala Phe Thr Thr Lys Gly Tyr Arg Ile Gly Tyr Gly Gly Gly Tyr Tyr Asp Arg Tyr Leu Glu His Phe 135 Ser Gly Arg Ala Leu Ser Thr Ile Tyr Pro Cys Gln Ile Gln Asp Phe 150 155 Ile Pro Glu Asn His Asp Ile Pro Val Gln Glu Val Leu Ile Asp Glu 165 170 Gly Asn Leu

### (2) INFORMATION FOR SEQ ID NO:457:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 169 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:457:

 Met
 Asp
 Ser
 Leu
 Thr
 Trp
 Leu
 Asp
 Leu
 11e
 Tyr
 Pro
 Met
 Val

 1
 1
 5
 1
 1
 10
 1
 1
 15
 15

 Val
 Asp
 Gln
 Thr
 Ile
 Pro
 Thr
 Ala
 Ile
 Ala
 Pro
 Ile
 Leu
 Ala
 Ile
 Ala
 Pro
 Ile
 Ile
 Leu
 Ala
 Ile
 Ala
 Pro
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 Ile
 <td

 Ser
 Glu
 Trp
 Leu
 Gly
 Gly
 Gly
 Leu
 Gly
 Val
 Tyr
 Met
 Ile
 Gln
 Gln
 120
 125
 125
 125
 125
 125
 125
 125
 125
 125
 125
 126
 125
 126
 126
 126
 126
 126
 126
 126
 126
 126
 126
 126
 126
 126
 127
 127
 127
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 128
 1

- (2) INFORMATION FOR SEQ ID NO: 458:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 71 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:458:

- (2) INFORMATION FOR SEQ ID NO:459:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 81 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:459:

### (2) INFORMATION FOR SEQ ID NO:460:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 75 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:460:

 Met
 Ala
 Leu
 Val
 Tyr
 Asp
 Ala
 Lys
 Val
 Glu
 Ala
 Glu
 Ala
 Lys
 Ala
 Lys
 Ala
 Lys
 Ala
 Lys
 Lys
 Lys
 Ala
 Ala
 Ala
 Ala
 Ala
 Arg
 Ala
 Arg
 Ala
 Arg
 Ala
 Arg
 Ala
 Arg
 Ala
 Arg
 Ala
 Arg
 Ala
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 A

# (2) INFORMATION FOR SEQ ID NO:461:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 109 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:461:

 Met
 Ser
 Gln
 Ala
 Gln
 Tyr
 Ala
 Gly
 Thr
 Gly
 Arg
 Ley
 Ala
 Val
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In
 In<

105

- (2) INFORMATION FOR SEQ ID NO:462:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 165 amino acids
  - (B) TYPE: amino acid

100

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:462:

 Met
 Ala
 Gly
 Ala
 Ser
 Leu
 Met
 Phe
 Phe
 Gly
 Phe
 Leu
 Gly
 Phe
 Gly
 Phe
 Leu
 Gly
 Phe
 Glu
 Phe
 Leu
 Gly
 Phe
 Glu
 Phe
 Leu
 Leu
 Leu
 Leu
 Phe
 Leu
 Phe
 Leu
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 Phe
 P

Trp Ala Ala Asn Tyr Val Ser Leu Val Ala Ile Leu Thr Leu Ile Thr 85 90 95

Val Cys Ile Ser Met Thr Tyr Ala Leu Ser Arg Met Ile Tyr Ser Leu 100 105 110

Ala Ser Asp Gly Leu Val Pro Ala Ala Phe Lys Glu Leu Thr Lys Thr 115 120 125

Ser Lys Ile Pro Lys Asn Ala Thr Ile Leu Thr Gly Leu Ala Ser Ala 130 135 140

Ile Cys Thr Leu Ala

165

### (2) INFORMATION FOR SEQ ID NO:463:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 126 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:463:

Met Asn Lys Lys Glu Arg Leu Glu Lys Ile Arg Arg Leu Val Thr Asp 1 5 10 15

Tyr Gln Ile Gly Thr Gln Glu Glu Ile Val Glu His Leu Lys Glu Ala
20 25 30

Gly Ile Thr Ala Thr Gln Ala Thr Val Ser Arg Asp Ile Lys Glu Leu 35 40 45

Gly Ile Val Lys Ile Pro Leu Arg Asp Asn Thr Tyr Val Tyr Glu Leu 50 55 60

Pro Lys Ser Ile Val Lys Ser Leu Gln Leu Ala Glu Asp Asn Ile Glu 65 70 75 80

Ser Ala Glu Leu Met Asp Lys Met Ile Asn Leu Gln Val Ile Pro Gly 85 90 95

Asn Thr Ala Phe Val Lys Ala Gln Leu Ile Glu Thr Phe Ala Asp Lys
100 105 110

Ile Phe Ser Cys Leu Thr Asp Asp Ser Gly Pro Val Xaa Gly
115 120 125

### (2) INFORMATION FOR SEQ ID NO:464:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 111 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:464:

 Met
 Asn
 Thr
 Asn
 Leu
 Ala
 Ser
 Phe
 Ile
 Val
 Gly
 Leu
 Ile
 Asp
 Glu
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 Asp
 Ile
 A

- Lys Asp Leu Gly Val Phe Val Asp Thr Gly Leu Pro Asp Lys Glu Ile

  85 90 95

  Val Val Val Thr Arg Tyr Ser Pro Cys Ala Gln Gly Thr Leu Ala
  - 100 105 110
    - (2) INFORMATION FOR SEQ ID NO:465:
    - (i) SEQUENCE CHARACTERISTICS:
      - (A) LENGTH: 255 amino acids
      - (B) TYPE: amino acid
      - (C) STRANDEDNESS: single
      - (D) TOPOLOGY: linear
    - (ii) MOLECULE TYPE: Protein
    - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:465:

Met Tyr Leu Lys Glu Ile Glu Ile Gln Gly Phe Lys Ser Phe Ala Asp 1 5 5 10 15 Lys Thr Lys Val Val Phe Asp Gln Gly Val Thr Ala Val Val Gly Pro

Asn	Gly	Ser	Gly	Lys	Ser	Asn	Ile	Thr	Glu	Ser	Leu	Arg	Trp	Ala	Lev
		35					40				•	45			
Gly		Ser	Ser	Val	Lys	Ser	Leu	Arg	Gly	Gly		Met	Pro	Asp	Val
	50					55					60				
	Phe	Ala	Gly	Thr		Ser	Arg	Lys	Pro	Leu	Asn	Tyr	Ala	Ser	Val
65					70					75					80
Val	Val	Thr	Leu	Asp	Asn	His	Asp	Gly	Phe	Ile	Lys	Asp	Ala	Gly	Gln
				85					90					95	
Glu	Ile	Arg	Val	Glu	Arg	His	Ile	Tyr	Arg	Ser	Gly	Asp	Ser	Glu	Tyr
			100					105					110		
Lys	Ile	Asp	Gly	Lys	Lys	Val	Arg	Leu	Arg	Asp	Ile	His	Asp	Leu	Phe
		115					120					125			
Leu	Asp	Thr	Gly	Leu	Gly	Arg	Asp	Ser	Phe	Ser	Ile	Ile	Ser	Gln	Gly
	130					135					140				
Lys	Val	Glu	Glu	Ile	Phe	Asn	Ser	Lys	Pro	Glu	Glu	Arg	Arg	Ala	Ile
145					150					155					160
Phe	Glu	Glu	Ala	Ala	Gly	Val	Leu	Lys	Tyr	Lys	Thr	Arg	Arg	Lys	Glu
				165					170					175	
Thr	Glu	Ser	Lys	Leu	Gln	Gln	Thr	Gln	Asp	Asn	Leu	Asp	Arg	Leu	Glu
			180					185					190		
Asp	Ile	Ile	Tyr	Glu	Leu	Asp	Asn	Gln	Ile	Lys	Pro	Leu	Glu	Lys	Gln
		195					200			_		205		•	
Ala	Glu	Asn	Ala	Arg	Lys	Phe	Leu	Asp	Leu	Glu	Gly	Gln	Ara	Lvs	Ala
	210					215					220				
Ile	Туг	Leu	Asp	Val	Leu	Val	Ala	Gln	Ile	Lvs	Glu	Asn	Lvs	Ala	Glu
225					230					235			-,-		240
Leu	Glu	Ser	Thr	Glu	Glu	Glu	Ser	Trp	Leu	_	Phe	Lvs	Asn	Ser	
				245					250	9		_, _		255	
														ل ل ي	

### (2) INFORMATION FOR SEQ ID NO:466:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 26 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:466:

Met Asp Asp Tyr Asn Ala Thr Gln Ala Ser Thr Ile Ala Val Met Pro 1 5 10 15

Val Arg Tyr Glu Glu Val Leu Leu Met Val 20 25

- (2) INFORMATION FOR SEQ ID NO:467:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 101 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:467:

Met Arg Ser Leu Asn Phe Met Arg Ala Leu Leu Thr Asp Lys Gln Met

1 5 10 15

Asn Tyr Ile Glu Leu Tyr Tyr Ala Asp Asp Tyr Garage

Asn Tyr Ile Glu Leu Tyr Tyr Ala Asp Asp Tyr Ser Leu Ala Glu Ile 20 25 30

Ala Glu Glu Phe Gly Val Ser Arg Gln Ala Val Tyr Asp Asn Ile Lys
35 40 45

Arg Thr Glu Lys Ile Leu Glu Asp Tyr Glu Met Lys Leu His Met Tyr 50 55 60

Ser Asp Tyr Ile Val Arg Ser Gln Ile Phe Asp Gln Ile Leu Asp Arg

70 75 80

Tyr Pro Lys Asp Phe Leu Gln Glu Gln Ile Glu Ile Leu Thr Ser

Ile Asp Asn Arg Glu

- (2) INFORMATION FOR SEQ ID NO:468:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 140 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:468:

Met Gly Trp Glu Ile Gly Ile Thr Pro Ser Thr Val Leu Val Ser His 5 10 Leu Leu Val Gln Glu Ser Thr Ser Pro Asp Leu Leu Val Asn Glu Phe 25 Leu Leu Phe Ala Ile Gly Thr Gly Phe Ala Leu Leu Val Asn Leu Tyr 40 Met Pro Ser Arg Glu Glu Glu Ile Gln His Tyr His Thr Leu Val Glu 60 Glu Lys Leu Lys Asp Ile Leu Gln Arg Phe Lys Tyr Tyr Leu Ser Arg Gly Asp Gly Arg Asn Arg Ala Gln Leu Val Ala Glu Leu Asp Thr Leu 90 Leu Lys Glu Ala Leu Arg Leu Val Tyr Leu Asp His Ser Asp His Leu 100 105 Phe His Gln Thr Asp Tyr His Ile His Tyr Phe Glu Met Arg Gln Arg 120 Gln Ser Arg Ile Pro Glu Lys His Gly Pro Thr Asp 130 135 140

### (2) INFORMATION FOR SEQ ID NO:469:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 53 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:469:

Met Glu Leu Leu Ala Asn Ala Asn Lys Ile Met Glu Gly Lys Val Val 5 Leu Asn Trp Asp Ile Gln Tyr Leu Gly Trp Gly Asp Tyr Gly Lys Glu Asn Val Ser Tyr Gln His His Leu Val Lys Thr Met Ile Ser Pro Leu 40 Gln Ile Thr Ile Leu 50

- (2) INFORMATION FOR SEQ ID NO:470:
- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 86 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:470:

Met Glu Arg Asn Asn Arg Lys Val Leu Val Gly Arg Val Val Ser Asp 1 5 10 15

Lys Met Asp Lys Thr Ile Thr Val Val Glu Thr Lys Arg Asn His

Pro Val Tyr Gly Lys Arg Ile Asn Tyr Ser Lys Lys Tyr Lys Ala His
35 40 45

Asp Glu Asn Asn Val Ala Lys Glu Gly Asp Ile Val Arg Ile Met Glu
50 55 60

Thr Arg Pro Leu Ser Ala Thr Lys Arg Phe Arg Leu Val Glu Val Val 65 70 75 80

Glu Glu Ala Val Ile Ile

85

- (2) INFORMATION FOR SEQ ID NO:471:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 86 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:471:

Met His Arg Lys Pro Arg Gly Val Asp Phe Gly Glu Gly Ser Ile Val

Gln Lys Val Lys Ala Met Ile Pro Ile Leu Ile Leu Leu Phe Ala Thr
20 25 30

Ser Leu Lys Arg Ala Asp Ser Leu Ala Ile Ala Met Glu Ala Arg Gly
35 40 45

Tyr Gln Gly Gly Lys Gly Arg Ser Gln Tyr Arg Gln Leu Lys Trp Thr
50 55 60

Leu Lys Asp Thr Leu Thr Ile Leu Val Ile Leu Val Leu Gly Cys Cys
65 70 75 80

Leu Phe Phe Leu Lys Ser

85

- (2) INFORMATION FOR SEQ ID NO:472:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 133 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:472:

Met Asn Phe Thr Leu Ile Asn Trp Arg Ile Arg Met Gln Tyr Leu Glu

1 5 10 15

Lys Lys Glu Ile Lys Glu Ile Gln Leu Ala Leu Leu Asp Tyr Ile Asp 20 25 30

Glu Thr Cys Lys Lys His Asp Ile Pro Tyr Phe Leu Ser Tyr Gly Thr 35 40 45

Met Leu Gly Ala Ile Arg His Lys Gly Met Ile Pro Trp Asp Asp Asp 50 55 60

Ile Asp Ile Ser Leu Tyr Arg Glu Asp Tyr Glu Arg Leu Leu Lys Ile
65 70 75 80

Ile Glu Glu Glu Asn His Pro Arg Tyr Lys Val Leu Ser Tyr Asp Thr
85 90 95

Ser Ser Trp Tyr Phe His Asn Phe Ala Ser Ile Leu Asp Thr Ser Thr
100 105 110

Val Ile Glu Glu His Val Lys Tyr Lys Arg His Asp Thr Ser Leu Phe 115 120 125

Ile Asp Val Ser His

130

- (2) INFORMATION FOR SEQ ID NO: 473:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 167 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:473:

Leu Arg Val Ala Tyr Phe Lys Val His His Pro Ile Tyr Tyr Tyr Cys 10 Ala Tyr Phe Ser Ile Arg Ala Lys Ala Phe Asp Ile Lys Thr Met Gly Ala Gly Leu Glu Val Ile Lys Arg Met Glu Glu Ile Ser Glu Lys 40 Arg Lys Asn Asn Glu Ala Ser Asn Val Glu Ile Asp Leu Tyr Thr Thr Leu Glu Ile Val Asn Glu Met Trp Glu Arg Gly Phe Lys Phe Gly Lys 70 75 Leu Asp Leu Tyr Cys Ser Gln Thr Thr Glu Phe Leu Ile Asp Gly Asp 90 Thr Leu Ile Pro Pro Phe Val Ala Met Asp Gly Leu Gly Glu Asn Val 105 Ala Lys Gln Leu Val Arg Ala Arg Glu Glu Gly Glu Phe Leu Ser Lys 120 Thr Glu Leu Arg Lys Arg Gly Gly Leu Ser Ser Thr Leu Val Glu Lys 135 140 Met Asp Glu Met Gly Ile Leu Gly Asn Met Pro Glu Asp Asn Gln Leu 150 155 160 Ser Leu Phe Asp Glu Leu Phe 165

- (2) INFORMATION FOR SEQ ID NO:474:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 85 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:474:

Met Ser Glu Asn Gln Gln Ala Leu Asn His Val Val Ser Met Glu Asp 1 5 10

 Leu Thr Val Asp Gln Val Met Lys Leu Ile Lys Arg Gly Ile Glu Phe

 20
 25
 30

 Lys Asn Gly Ala Gln Ile Pro Tyr Glu Asp His Pro Ile Val Ser Asn 35
 40
 45

 Leu Phe Phe Glu Asp Ser Thr Arg Thr His Lys Ser Phe Glu Val Ala 50
 55
 60

 Glu Ile Lys Leu Gly Leu Glu Arg Leu Asp Phe Asp Val Lys Thr Ser

75

Ser Val Asn Lys Gly

85

#### (2) INFORMATION FOR SEQ ID NO:475:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 151 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:475:

Met Ser Met Phe Leu Asp Thr Ala Lys Ile Lys Val Lys Ala Gly Asn 1 10 Gly Gly Asp Gly Met Val Ala Phe Arg Arg Glu Lys Tyr Val Pro Asn 20 Gly Gly Pro Trp Gly Gly Asp Gly Gly Arg Gly Gly Asn Val Val Phe 40 Val Val Asp Glu Gly Leu Arg Thr Leu Met Asp Phe Arg Tyr Asn Arg His Phe Lys Ala Asp Ser Gly Glu Lys Gly Met Thr Lys Gly Met His 65 . 70 Gly Arg Gly Ala Glu Asp Leu Arg Val Arg Val Pro Gln Gly Thr Thr 90 Val Arg Asp Ala Glu Thr Gly Lys Val Leu Thr Asp Leu Ile Glu His Gly Gln Glu Phe Ile Val Ala His Gly Gly Arg Gly Arg Gly Asn 115 120 125 Ile Arg Phe Ala Thr Pro Lys Asn Pro Ala Pro Glu Ile Ser Glu Asn 135 Gly Glu Pro Gly Ser Gly Thr 145 150

- (2) INFORMATION FOR SEQ ID NO:476:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 81 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:476:

- (2) INFORMATION FOR SEQ ID NO:477:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 172 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:477:

 Met
 Ala
 Asn
 Tyr
 Asp
 Ile
 Phe
 Thr
 Ser
 Pro
 Pro
 Thr
 Asn
 Ser
 Gly
 Ile

 1
 5
 5
 10
 10
 15
 15

 Ala
 Pro
 Val
 Thr
 Val
 Lys
 Lys
 Ser
 Tyr
 Gly
 Phe
 Tyr
 Thr
 Glu

 20
 25
 25
 30
 30
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10</t

Ala Lys Thr Phe His Thr Thr Arg Phe Gly Thr Ile Val Leu His Ser Arg Lys Gln Asn Ile Pro Asp Ile Ile Ala Leu His Thr Ala Pro Pro Leu Pro Gly Leu Met Glu Ile Trp Lys Gln Asp Leu Asn Ile Ile His 70 75 Asn Gln Leu Ala Ser Lys Tyr Pro Lys Ala Ile Ile Ala Gly Asp Phe 90 Asn Ala Thr Met Arg His Gly Ala Leu Ala Lys Ile Ser Ser His Arg 105 Asp Ala Leu Asn Val Leu Pro Pro Phe Glu Arg Gly Thr Trp Asn Ser 120 Gln Ser Pro Lys Leu Phe Asn Ala Thr Ile Asp His Ile Leu Leu Pro 135 Lys Asn His Tyr Tyr Val Lys Asp Leu Asp Ile Val Ser Phe Gln Asn 150 155 Ser Asp His Arg Cys Ile Phe Thr Glu Ile Thr Phe 165 170

#### (2) INFORMATION FOR SEQ ID NO:478:

#### (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 111 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:478:

Met Asn Leu Gly Ala Asp Gly Val Ile Ser Val Ala Ser His Thr Asn 1 . 5 Gly Asp Glu Met His Glu Met Phe Thr Ala Ile Ala Glu Ser Asp Met 20 25 Lys Lys Ala Ala Ala Ile Gln Arg Lys Phe Ile Pro Lys Val Asn Ala 40 Leu Phe Ser Tyr Pro Ser Pro Ala Pro Val Lys Ala Ile Leu Asn Tyr 55 Met Gly Phe Glu Ala Gly Pro Thr Arg Leu Pro Leu Val Pro Ala Pro 70 75 Glu Glu Asp Val Lys Arg Ile Ile Lys Val Val Val Asp Gly Asp Tyr 85 90

Glu Ala Thr Lys Ala Thr Val Thr Gly Val Leu Arg Pro Asp Tyr 100 105

- (2) INFORMATION FOR SEQ ID NO:479:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 127 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:479:

Met Glu Ser Leu Ile Gln Thr Tyr Leu Pro Asn Val Tyr Lys Met Gly Trp Ser Gly Gln Ala Gly Trp Gly Thr Ala Ile Tyr Leu Thr Leu Tyr 25 Met Thr Val Leu Ser Phe Ile Ile Gly Gly Phe Leu Gly Leu Val Ala 40 Gly Leu Phe Leu Val Leu Thr Ala Pro Gly Gly Val Leu Glu Asn Lys 55 Val Val Phe Trp Ile Leu Asp Lys Ile Thr Ser Ile Phe Arg Ala Val 75 Pro Phe Ile Ile Leu Leu Ala Ile Leu Ser Pro Leu Ser His Leu Ile 85 90 Glu Lys Thr Ser Ile Gly Pro Asn Ala Ser Pro Cys Pro Thr Phe Phe 105 Cys Ser Leu Cys Leu Cys Pro Ser Gly Ala Gly Cys Leu Gly 115 120

- (2) INFORMATION FOR SEQ ID NO:480:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 56 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: Fingle
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:480:

PCT/US97/07950 WO 97/43303

Met Asp Ser Gln Asp Asn Lys Arg Lys Trp Lys Asn Arg Asp Leu Ile 10 Ser Ser Leu Glu Phe Ala Ile Thr Gly Ile Phe Thr Ala Ile Lys Glu 25 Glu Arg Asn Met Arg Lys His Ala Val Thr Ala Leu Val Val Ile Leu 40 Ala Gly Phe Gly Phe Gln Val Ser Arg Ile Glu Trp Leu Phe Leu Leu 55 Leu Ser Ile Phe Leu Val Val Ala Phe Glu Ile Ile Asn Ser Ala Ile 75 Glu Asn Val Val Asp Leu Ala Ser His Tyr His Phe Ser His Ala Gly 85

#### (2) INFORMATION FOR SEQ ID NO:481:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 307 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:481:

Leu Ser Glu Ile Asp Glu Val Ile Leu Val Gly Gly Ser Thr Arg Ile 1 Pro Ala Val Val Glu Ala Val Lys Ala Glu Thr Gly Lys Glu Pro Asn 20 Lys Ser Val Asn Pro Asp Glu Val Val Ala Met Gly Ala Ala Ile Gln 40 Gly Gly Val Ile Thr Gly Asp Val Lys Asp Val Val Leu Leu Asp Val 55 Thr Pro Leu Ser Leu Gly Ile Glu Thr Met Gly Gly Val Phe Thr Lys 65 70 Leu Ile Asp Arg Asn Thr Thr Ile Pro Thr Ser Lys Ser Gln Val Phe 90 Ser Thr Ala Ala Asp Asn Gln Pro Ala Val Asp Ile His Val Leu Gln 105 Gly Glu Arg Pro Met Ala Ala Asp Asn Lys Thr Leu Gly Arg Phe Gln 115 120

Leu Thr Asp Ile Pro Ala Ala Pro Arg Gly Ile Pro Gln Ile Glu Val 135 Thr Phe Asp Ile Asp Lys Asn Gly Ile Val Ser Val Lys Ala Lys Asp 150 155 Leu Gly Thr Gln Lys Glu Gln Thr Ile Val Ile Gln Ser Asn Ser Gly 165 170 Leu Thr Asp Glu Glu Ile Asp Arg Met Met Lys Asp Ala Glu Ala Asn 180 Ala Glu Ala Asp Lys Lys Arg Lys Glu Glu Val Asp Leu Arg Asn Glu 200 Val Asp Gln Ala Ile Phe Ala Thr Glu Lys Thr Ile Lys Glu Thr Glu Gly Lys Gly Phe Asp Ala Glu Arg Asp Ala Ala Gln Ala Ala Leu Asp 230 235 Asp Leu Lys Lys Ala Gln Glu Asp Asn Asn Leu Asp Asp Met Lys Ala 245 250 Lys Leu Glu Ala Leu Asn Glu Lys Ala Gln Gly Leu Ala Val Lys Leu 260 265 Tyr Glu Gln Ala Ala Ala Gln Gln Ala Gln Glu Gly Ala Glu Gly 280 Ala Gln Ala Thr Gly Asn Ala Gly Asp Asp Val Val Asp Gly Glu Phe 295 300 Thr Glu Lys 305

- (2) INFORMATION FOR SEQ ID NO:482:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 79 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:482:

Lys Asn Tyr Leu Lys Ala Arg Phe Ile Ser His Phe Ile Thr Ile Val
50 55 60

Thr Leu Val Val Leu Val Tyr Ser Leu Leu Ile Gly Val Ile Leu
65 70 75

#### (2) INFORMATION FOR SEQ ID NO:483:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 246 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:483:

Leu Tyr Asn Ile Ile Phe Leu Ser Ser Met Trp Glu Pro Tyr Gly Gln 10 Leu Ser Asp Leu Pro Val Ala Val Val Asn Asn Asp Lys Glu Ala Ser 25 Tyr Asn Gly Asn Thr Met Ala Ile Gly Lys Asp Met Val Ser Asn Leu 40 Lys Glu Asn Lys Thr Leu Asp Phe His Phe Val Asp Glu Glu Gly 55 Lys Lys Gly Leu Glu Asp Gly Asp Tyr Tyr Met Val Val Thr Leu Pro 75 Ser Asp Leu Ser Glu Lys Thr Thr Thr Leu Ser Asn Ile Gln Ser Thr 85 Ala Ala Tyr Gln Ser Leu Thr Ser Glu Gln Gln Thr Glu Ile Ser Asp 105 Ser Val Ser Gln Asn Ser Thr Asp Ser Ile Gln Ser Ala Gln Ser Ile 115 120 Val Ala Leu Val Gln Asp Leu Gln Gly Ser Leu Glu Asn Leu Gln Asn 135 140 Gln Ser Ser Asn Leu Ser Thr Leu Lys Asn Gln Ser Asn Gln Val Ser 150 155 Pro Ile Thr Ser Thr Ser Leu Ile Gly Leu Ser Ser Gly Leu Thr Glu 165 170 Ile Gln Gly Asp Val Thr Ser Lys Leu Val Pro Ala Ser Gln Ser Ile 185 Ala Ser Gly Val Asn Ala Tyr Thr Thr Gly Val Asp Lys Val Ser Gln 195 200 205

Gly Ala Ser Gln Leu Ser Glu Lys Asn Ala Thr Leu Thr Gly Ser Leu 210 215 220

Asp Gln Leu Val Ser Gly Ser Asn Thr Leu Thr Gln Lys Ser Ser Arg
225 230 235 240

Leu Thr Ala Gly Val Gly

245

# (2) INFORMATION FOR SEQ ID NO:484:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 142 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:484:

Met Ala Asp Leu Asp His Pro His Ile Val Arg Ile Thr Asp Ile Gly

1 5 10

Glu Glu Asp Gly Gln Gln Tyr Leu Ala Met Glu Tyr Val Ala Gly Leu 20 25 30

Asp Leu Lys Arg Tyr Ile Lys Glu His Tyr Pro Leu Ser Asn Glu Glu
35 40 45

Ala Val Arg Ile Met Gly Gln Ile Leu Leu Ala Met Arg Leu Ala His 50 55 60

Thr Arg Gly Ile Val His Arg Asp Leu Lys Pro Gln Asn Ile Leu Leu 65 70 75

Thr Pro Asp Gly Thr Ala Lys Val Thr Asp Phe Gly Ile Ala Val Ala 85 90 95

Phe Ala Glu Thr Ser Leu Thr Gln Thr Asn Ser Asp Val Trp Ala Gln
100 105

Phe Ile Thr Cys His Gln Ser Arg Arg Val Val Leu Arg Arg Leu Cys
115 120 125

Arg Val Ile Ser Met Pro Trp Gly Leu Phe Ser Met Arg Cys
130 135 140

- (2) INFORMATION FOR SEQ ID NO:485:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 224 amino acids
  - (B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:485:

Met Leu Ala Thr Ala Ile Leu Gly Val Val Ile Glu Phe Leu Ala Tyr Arg Pro Leu Arg His Ser Thr Arg Ile Ala Val Leu Ile Thr Ala Ile 25 Gly Val Ser Phe Leu Leu Glu Tyr Gly Met Val Tyr Leu Val Gly Ala 40 Asn Thr Arg Ala Phe Pro Gln Ala Ile Gln Thr Val Arg Tyr Asp Leu 55 Gly Pro Ile Ser Leu Thr Asn Val Gln Leu Met Ile Leu Ala Ile Ser 70 75 Leu Ile Leu Met Ile Leu Leu Gln Val Ile Val Gln Lys Thr Lys Met 85 Gly Lys Ala Met Arg Ala Val Ser Val Asp Ser Asp Ala Ala Gln Leu 105 110 Met Gly Ile Asn Val Asn Arg Thr Ile Ser Phe Thr Phe Ala Leu Gly 120 Ser Ala Leu Ala Gly Ala Ala Gly Val Leu Ile Ala Leu Tyr Tyr Asn 135 Ser Leu Glu Pro Leu Met Gly Val Thr Pro Gly Leu Lys Ser Phe Val 150 155 Ala Ala Val Leu Gly Gly Ile Gly Ile Ile Pro Gly Ala Ala Leu Gly 170 Gly Phe Val Ile Gly Leu Leu Glu Thr Phe Ala Thr Ala Phe Gly Met Ser Asp Phe Arg Asp Ala Ile Val Tyr Gly Ile Leu Leu Leu Ile Leu 200 205 Ile Val Arg Pro Ala Gly Ile Leu Gly Lys Asn Val Lys Glu Lys Val 215 220

- (2) INFORMATION FOR SEQ ID NO:486:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 168 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:486:

Met Ser Leu Ala Met Lys Glu Met Gly Gly Asp Val Ser Ala Ala Gln Thr Gly Val Ile Leu Thr Gly Leu Val Tyr Val Leu Val Ala Thr Ser Ile Arg Phe Val Gly Thr Lys Trp Ile Asp Lys Leu Leu Pro Pro Ile 40 Ile Ile Gly Pro Met Ile Ile Val Ile Gly Leu Gly Leu Ala Gly Ser Ala Val Thr Asn Ala Gly Leu Val Ala Asp Gly Asn Trp Lys Asn Ala 65 70 Leu Val Ala Val Val Thr Phe Leu Ile Ala Ala Phe Ile Asn Thr Lys 90 Gly Lys Gly Phe Leu Arg Ile Ile Pro Phe Leu Phe Ala Ile Ile Gly 105 Gly Tyr Leu Phe Ala Leu Thr Leu Gly Leu Val Asp Phe Thr Pro Val 120 Leu Lys Ala Asn Trp Phe Glu Ile Pro Gly Phe Tyr Leu Pro Phe Ser 135

Thr Gly Gly Ala Phe Lys Glu Tyr Asn Leu Tyr Phe Gly Pro Glu Pro 150 155 160 Ser Leu Ser Xaa Gln Ser Xaa Xaa

165

- (2) INFORMATION FOR SEQ ID NO:487:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 47 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:487:

Met Val Lys Val Leu Ala Ala Cys Gly Asn Gly Met Gly Ser Ser Met 1 5

Val Ile Lys Met Lys Val Glu Asn Ala Leu Arg Lys Leu Asn Gln Thr

20
25
30
Asp Phe Thr Val Asn Ser Trp Pro Val Ser Val Lys Leu Lys Val

35
40
45

- (2) INFORMATION FOR SEQ ID NO:488:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 56 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:488:

 Met Ala Ser Val
 Gly Glu Ala Lys Gly Leu Ala Val Gly Tyr Asp Ile

 1
 5
 10
 15

 Val Ile Ala Ser Leu His Leu Ile Gln Glu Leu Glu Gly Arg Thr Asn 20
 25
 30

 Gly Lys Leu Ile Gly Leu Asp Asn Leu Met Asp Asp Lys Glu Ile Thr 35
 40
 45

 Glu Lys Leu Ser Gln Ala Leu Gln 50
 55

- (2) INFORMATION FOR SEQ ID NO:489:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 135 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:489:

Leu Ile Ser Leu Gly Leu Glu His Ser Leu Pro Leu Ser Ser His Leu

1 5 10 15

Asn Ile Ser Ile Gly Pro Leu Ile Gln Thr Trp Arg Ile Gly Phe Ser

20 25 30

## (2) INFORMATION FOR SEQ ID NO:490:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 127 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:490:

Met Ile Asn Lys Tyr Phe Asp Gly Gln Ile Pro Ala Tyr Val Glu Gly Val Thr Glu Phe Asp His Val Leu Ala Glu Val Ala Glu Lys Ser Ile 25 Ala Asp Phe His Thr His Met Glu Ala Val Asp Tyr Pro Arg Ala Leu 35 Glu Ala Val Trp Thr Leu Ile Ser Arg Thr Asn Lys Tyr Ile Asp Glu 55 Thr Ala Pro Trp Val Leu Asp Lys Asp Glu Ala Leu Arg Asp Gln Leu 70 Ala Ser Val Met Ser His Leu Ala Ala Ser Ile Arg Val Val Ala His 90 Leu Ile Glu Pro Phe Met Met Glu Thr Ser Arg Ala Val Leu Thr Gln 105 Leu Gly Leu Glu Glu Val Ser Ser Leu Glu Asn Leu Lys Phe Gly 115 120 125

#### (2) INFORMATION FOR SEQ ID NO:491:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 64 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:491:

Met Leu Val Val Ile Arg Phe Leu Lys Lys Leu Ser Leu Trp Leu Ser 1 5 10 15 15 Lys His Arg Lys Pro Val Pro Ser Met Ile Gln Arg Arg Leu Ser Val

20 25 30

Gly Phe Asn Arg Ala Thr Arg Leu Met Glu Glu Leu Glu Met Ala Gly
35 40 45

Val Ile Gly Pro Ala Glu Gly Thr Lys Pro Arg Lys Val Xaa Gln Gln 50 55 60

- (2) INFORMATION FOR SEQ ID NO: 492:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 68 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:492:

Met Val Gly Asn Pro Arg Leu Ala Asp Leu Gly Phe Glu Glu Glu Ala

Val Gly His His Ala Leu Val Thr Gly Phe Gln Gly Gln Arg Gln Trp

20 25 30

Thr Asp His Phe Pro Asn Gly Asp Phe Met Glu Thr Phe Leu Asn Thr 35 40 45

Gln Phe Asp Trp Asn Gly Ile Arg Lys Pro Phe Val Phe Ala Cys Ile 50 55 60

Cys Asp Arg Glu

65

Glu Ser

## (2) INFORMATION FOR SEQ ID NO:493:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 114 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:493:

 Met
 Gly
 Thr
 Leu
 Trp
 Lys
 Leu
 Ser
 Ser
 Ile
 Leu
 Ser
 Leu
 Thr
 Gly
 Met

 1

- (2) INFORMATION FOR SEQ ID NO:494:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 146 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:494:

Met Lys Leu His Glu Leu Lys Pro Ala Glu Gly Ser Arg Lys Val Arg 10 Asn Arg Val Gly Arg Gly Thr Ser Ser Gly Asn Gly Lys Thr Ser Gly 20 25 Arg Gly Gln Lys Gly Gln Lys Ala Arg Ser Gly Gly Gly Val Arg Leu Gly Phe Glu Gly Gly Gln Thr Pro Leu Phe Arg Arg Leu Pro Lys Arg 55 Gly Phe Thr Asn Ile Asn Ala Lys Glu Tyr Ala Ile Val Asn Leu Asp 75 Gln Leu Asn Val Phe Glu Asp Gly Ala Glu Val Thr Pro Val Val Leu 90 Ile Glu Ala Gly Ile Val Lys Ala Glu Lys Ser Gly Ile Lys Ile Leu 100 105 Gly Asn Gly Glu Leu Thr Lys Lys Leu Thr Val Lys Ala Ala Lys Phe 120 Ser Lys Ser Ala Glu Glu Ala Ile Thr Ala Lys Gly Gly Ser Val Glu 130 135 140 Val Ile 145

### (2) INFORMATION FOR SEQ ID NO:495:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 63 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:495:

 Met Gly Ala Ala Lys
 Leu Val Val Phe
 Ala Asn Ala Val Glu Asp Asn

 1
 5
 10
 15

 Pro Phe Met Ala Gly Ala Phe His Gly Val Gly Glu Ala Asp Val Ile
 20
 25
 25
 30

 Ile Asn Val Gly Val Gly Val Ser Gly Pro Gly Val Val Val Lys
 Arg Ala Leu Glu
 35
 40
 45

 Lys Val Arg Gly Gln Ser Phe Asp Val Ser Lys
 Pro Lys Thr Ser
 50
 55
 60

## (2) INFORMATION FOR SEQ ID NO:496:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 155 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:496:

Met Thr Glu Lys Arg Leu Ala Trp Asp Glu Tyr Phe Ala Ala Gln Ala 1 5 10 15

Leu Leu Ile Ala Asn Arg Ser Thr Cys Lys Arg Ala Lys Val Gly Ala
20 25 30

Ile Leu Val Lys Asp Asn Lys Val Ile Ser Thr Gly Tyr Asn Gly Ser
35 40 45

Val Ser Gly Thr Glu His Cys Ile Asp His Glu Cys Leu Val Ile Glu
50 55 60

Gly His Cys Val Arg Thr Leu His Ala Glu Val Asn Ala Ile Leu Gln
65 70 75

Gly Ala Glu Arg Gly Val Pro Lys Gly Phe Thr Ala Tyr Val Thr His

Phe Pro Cys Leu Asn Cys Thr Lys Gln Leu Leu Gln Val Gly Cys Lys

Arg Val Val Tyr Ile Asn Gln Tyr Arg Met Asp Asp Tyr Ala Gln Tyr 115 120 125

Leu Tyr Gln Glu Lys Gly Thr Glu Leu Thr His Leu Pro Leu Glu Thr
130 135 140

Val Gln Thr Ala Leu Lys Glu Ala Asp Leu Met 145 150 155

## (2) INFORMATION FOR SEQ ID NO:497:

- (i) SEQUENCE CHAPACTERISTICS:
  - (A) LENGTH: 188 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:497:

Leu Trp Asp Gln Xaa Gln Leu Asp Ile Ser Lys Thr Asn Tyr Leu Arg Val Ile Asn Ala Phe Thr Gln Ile Glu Ala Ala Lys Ala Tyr Leu Phe 20 Ala Asn Ser Glu Phe Ser Gly Ala Asp Trp Asp Thr Lys Ile Ser Arg 40 Asp Ile Phe Trp Glu Glu Ser Met His Gly Ile Tyr Pro Glu Asn Val 55 Gly Val Asn Ala Arg Leu Leu Asn Asp Glu Ala Asp Phe Phe Asp Tyr 75 Leu Asn His Ser Ala Ile Phe Thr Ala Glu Arg Asp Gly Gln Thr Tyr 90 Tyr Phe Tyr Pro Ile Gln Ala Gly Asp Tyr Leu Ala Thr Pro Glu Ile 105 Gln Ala Phe Ala Leu Asn Gly Asp Glu Val Ile Ile Tyr Pro Gln Glu 120 125 Lys Asp Phe Glu Thr His Arg Ser Tyr Gln Tyr Gln Asp Leu Thr Thr 135 140 Arg Gly Thr Val Glu Phe Arg Ser Val Cys Thr Gln Pro Leu Asp Arg 150 155 Thr Phe Ala Ser Ala Ala Phe His Leu Gly Leu Leu Val Asn Leu Asp 170 Lys Leu Glu Ala Tyr Leu Glu Thr Ala Pro Phe Leu 180

### (2) INFORMATION FOR SEQ ID NO:498:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 124 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:498:

Gln Pro Arg Ser Asp Ser Leu Ser Thr Asn Ile Arg Glu Gln Leu Val 40 Asn Ala Ile Phe Leu Gly Ala Pro Thr Arg Glu Ser Ser His Met Met 55 Phe Gly Thr Thr Asp Val Pro Gln Val Lys Lys Asp Lys Gly Val Gly 70 75 Leu Tyr Ser Thr Asp Arg Glu Pro Pro Lys Glu Phe His Ser Pro Met 85 90 Phe Asp Arg Asp Val Phe Glu Val Ile Leu Pro Val Trp Glu Trp Ala 100 105 Ala Lys Asp Tyr Met Lys Asp Glu Asp Val 115 120

## (2) INFORMATION FOR SEQ ID NO:499:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 172 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:499:

Met Arg His Ser Ile Tyr Asp Gly Lys Leu Gly Phe Asp Leu Lys Glu Glu Gly Lys Gln Val Asp Leu Thr Leu Trp Ser Pro Ser Ala Asp Lys 25 Val Ser Val Val Val Tyr Asp Lys Asn Asp Pro Asp Lys Val Val Gly Thr Val Ala Leu Glu Lys Gly Glu Arg Gly Thr Trp Lys Gln Thr Leu 55 -60 Asp Ser Thr Asn Lys Leu Gly Ile Thr Asp Phe Thr Gly Tyr Tyr 75 Gln Tyr Gln Ile Glu Arg Gln Gly Lys Thr Val Leu Ala Leu Asp Pro 90 Tyr Ala Lys Ser Leu Ala Ala Trp Asn Ser Asp Asp Ala Lys Ile Asp 100 Asp Ala His Lys Val Ala Lys Ala Ala Phe Val Asp Pro Ala Gln Leu 120 Gly Pro Gln Asp Pro Phe Leu Arg Gly Leu Met Gly Gln Ile Arg Phe 130 135 140

PCT/US97/07950 WO 97/43303

Thr Ile Ser Arg Leu Val Lys Thr Pro Leu Ser Thr Lys Leu Met Cys 145 150 Val Thr Ser Leu Gln Ile Leu Pro Leu Gln Lys Thr 165 170

#### (2) INFORMATION FOR SEQ ID NO:500:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 176 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:500:

Met Cys Met Phe Glu Val Glu Glu Trp Leu His Ser Arg Ile Gly Leu Asn Phe Arg Ser Gly Leu Ala Arg Ile Gln Gln Ala Val Asp Leu Leu 20 25 Gly Asn Pro Glu Gln Ser Tyr Pro Ile Ile His Val Thr Gly Thr Asn 40 Gly Lys Gly Ser Thr Ile Ala Phe Met Arg Glu Leu Phe Met Gly His Gly Lys Lys Val Ala Thr Phe Thr Ser Pro His Ile Val Ser Ile Asn 70 75 Asp Arg Ile Cys Ile Asn Gly Gln Pro Ile Ala Asp Ala Asp Phe Ile 90 Arg Leu Ala Asp Gln Val Lys Glu Met Glu Lys Thr Leu Leu Gln Thr 100 Pro Asp Gln Leu Ser Phe Phe Glu Leu Leu Thr Leu Val Ala Phe Leu 120 Tyr Phe Arg Glu Gln Glu Val Asp Leu Val Leu Leu Glu Val Gly Ile 135 Gly Gly Leu Leu Asp Thr Thr Asn Val Val Thr Gly Glu Leu Ala Val 150 Ile Thr Ser Ile Gly Leu Asp His Gln Lys Thr Leu Gly Asp Ser Ser 165 170

- (2) INFORMATION FOR SEQ ID NO:501:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 182 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: Protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:501:

Met Ile Ser Tyr Asp Thr Arg Met Leu Leu Leu Ile Ala Ile Phe Ser 1 5 10 Val Phe Leu Leu Tyr Leu Ser Glu Ile Arg Phe Lys Asp Val Ser Phe 25 Val Ala Val Phe Ala Thr Val Phe Ala Val Leu Asn Val Leu Met Val Tyr Leu Phe Ser Pro Glu Tyr Gly Val Gly Leu Tyr Gly Glu Arg Ser 55 Val Ile Trp Gln Gly Ile Gly Val Tyr Thr Leu Thr Ser Gln Glu Leu 70 Phe Tyr Leu Leu Asn Leu Val Ile Lys Tyr Leu Cys Thr Ile Pro Leu Ala Ile Ile Phe Leu Met Thr Thr His Pro Ser Gln Phe Ala Ser Ser 105 Leu Asn Gln Ile Gly Val Pro Tyr Lys Ile Ala Tyr Ser Val Ser Leu 120 Thr Leu Arg Tyr Ile Pro Asp Leu Gln Glu Glu Phe Phe Thr Ile Lys 135 140 Met Ser Gln Glu Ala Arg Gly Met Glu Leu Ser Lys Lys Ala Ser Leu 145 150 Met Gln Arg Ile Lys Gly Asn Leu Leu Ile Ile Thr Pro Leu Ile Phe 165 170

175

(2) INFORMATION FOR SEQ ID NO:502:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 164 amino acids
  - (B) TYPE: amino acid

Ser Ser Leu Glu Thr His 180

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:502:

Met Pro Ile Ser Glu Arg Thr Val Tyr Gln Ile Gln Ser Asp Gln Glu 5 10 Ser Leu Tyr Ala Lys Phe Asn Pro Ala Leu Thr Phe Val Pro Val Asp 25 Phe Glu Asp Leu Ser Ser Gln Met Thr Tyr Asn Lys Cys Val Thr Ala 45 Phe Ala Gln Glu Pro Leu Asp Ala Ala Ile Gln Lys Ile Ser Pro Glu 55 Leu Phe Asp Gln Tyr Glu Ile Phe Lys Ser Arg Glu Met Leu Leu Glu 75 Trp Ser Pro Lys Asn Val His Lys Ala Thr Gly Leu Ala Lys Leu Ile 90 Ser His Leu Gly Ile Asn Gln Ser Gln Val Met Ala Cys Gly Asp Glu 105 Ala Asn Asp Leu Ser Met Ile Glu Trp Ala Gly Leu Gly Val Ala Met 120 Gln Asn Ala Val Pro Glu Val Lys Ala Ala Ala Asn Val Val Thr Pro 130 135 140 Met Thr Asn Asp Glu Glu Ala Val Ala Arg Ala Ile Glu Gln Tyr Val 150 155 160 Leu Lys Glu Asn

### (2) INFORMATION FOR SEQ ID NO:503:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 119 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:503:

Met Lys Ile Lys Val Val Thr Val Gly Lys Leu Lys Glu Lys Tyr Leu 1 5 5 10 15 Lys Asp Gly Ile Ala Glu Tyr Ser Lys Arg Ile Ser Arg Phe Ala Lys 20 25 30

Phe Glu Met Ile Glu Leu Ser Asp Glu Lys Thr Pro Asp Lys Ala Ser

Glu Ser Glu Asn Gln Lys Ile Leu Glu Ile Glu Gly Gln Arg Ile Leu
50 55 60

Ser Lys Ile Ala Asp Arg Asp Phe Val Ile Val Leu Ala Ile Glu Gly
65 70 75 80

Lys Thr Phe Phe Ser Glu Glu Phe Ser Lys Gln Leu Glu Glu Thr Ser 85 90 95

Ile Arg Arg Asp Phe Tyr Ser Tyr Phe Tyr Tyr Trp Gly Lys Phe Arg

100 105 110

Ile Val Ile Ile Cys Lys Lys 115

# (2) INFORMATION FOR SEQ ID NO:504:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 88 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:504:

Leu Glu Gln Ala Pro Gly Leu Ser Leu Ala Asp Thr Leu Ser Leu His

1 5 10 15

Tyr Ala Met Arg Asn Glu Leu Thr Leu Ser Pro Val Asp Phe Leu Leu 20 25 30

Arg Arg Thr Asn His Met Leu Phe Met Arg Asp Ser Leu Asp Ser Ile 35 40 45

Val Glu Pro Val Leu Asp Glu Met Gly Arg Phe Tyr Asp Trp Thr Glu 50 55 60

Glu Glu Lys Ala Thr Tyr Arg Ala Asp Val Lys Ala Ala Leu Ala Gln 65 70 75 80

Asn Asp Leu Ala Glu Leu Lys Asn

85

- (2) INFORMATION FOR SEQ ID NO:505:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 190 amino acids
  - (B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:505:

Met Glu Asp Ile Leu Tyr Ala Pro Ala Glu Gln Asn Asn Gly Ser Ala Ile Glu Lys Ala Phe Gly Lys Asn Gly Lys Ile Ala Phe Gln Lys Ser 25 Val Asp Lys Tyr Trp Lys Asn Leu Ile Phe Met Phe Lys Asn Thr Pro 40 Ala Ala Glu Gly Asn Asp Ser Thr Thr Glu Ser Tyr Met Lys Gly Leu Trp Leu Ser Asn His Thr Tyr Gln Trp Gly Gly Leu Met Asp Thr Trp 75 Lys Trp Tyr Glu Thr Gly Lys Trp Lys Leu Phe Ala Ser Gly Asn Ile 90 Gly Lys Ser Gln Gly Asp Arg Gln Trp Leu Thr Glu Pro Glu Ser Met 100 Leu Gly Glu Glu Ala Leu Gly Val Tyr Leu Asn Gly Gly Val Val Tyr 120 Asn Phe Glu His Pro Ala Tyr Thr Tyr Gly Val Asn Asn Lys Glu Ser 135 Leu Leu Phe Ser Glu Val Ile Lys Glu Phe Phe Arg Tyr Val Ile Ala 145 150 His Pro Ala Pro Ser Lys Glu Lys Tyr Leu Arg Ile Gln Lys Tyr Ser 165 170 Tyr Met Glu Thr Ile Gln Ile Lys Glu Met Val Ser Ser Leu 180 185 190

- (2) INFORMATION FOR SEO ID NO:506:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 86 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:506:

 Met
 Thr
 Ile
 Glu
 Leu
 Thr
 Pro
 Phe
 Thr
 Lys
 Val
 Glu
 Leu
 Glu
 Pro

 1
 5
 1
 10
 1
 15
 15

 Glu
 Ile
 Lys
 Lys
 Lys
 Lys
 Gln
 Val
 Gly
 Ile
 Leu
 Gly
 Gly
 Asn

 Phe
 Asn
 Pro
 Val
 His
 Asn
 Ala
 His
 Leu
 Ile
 Val
 Ala
 Asp
 Gln
 Val
 Arg

 Gln
 Gln
 Leu
 Asp
 Gln
 Val
 Leu
 Leu
 Pro
 Glu
 Tyr
 Gln
 Pro

 Fro
 His
 Val
 Asp
 Lys
 Glu
 Thr
 Ile
 Pro
 Glu
 His
 Arg
 Leu
 Lys

 Gl
 His
 Val
 Asp
 Lys
 Glu
 Thr
 Ile
 Pro
 Glu
 His
 His
 Arg
 Leu
 Lys

 Het
 Leu
 Glu
 Pro
 Glu
 His

- (2) INFORMATION FOR SEQ ID NO:507:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 61 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:507:

- (2) INFORMATION FOR SEQ ID NO:508:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 74 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:508:

#### (2) INFORMATION FOR SEQ ID NO:509:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 159 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:509:

Met Thr Gly Glu Ile Arg Asn Leu Gln Ala Gln Asp Tyr Asp Ala Ser 5 10 Gln Ile Gln Val Leu Glu Gly Leu Glu Ala Xaa Xaa Met Arg Ser Gly 25 Xaa Tyr Ile Gly Ser Thr Ser Lys Glu Gly Leu His His Leu Val Trp 40-Glu Ile Val Asp Asn Ser Ile Asp Glu Ala Leu Ala Gly Phe Ala Ser 55 His Ile Gln Val Phe Ile Glu Pro Asp Asp Ser Ile Thr Val Val Asp 75 Asp Gly Arg Gly Ile Pro Val Asp Ile Gln Glu Phe Thr Gly Arg Pro 85 Ala Val Glu Thr Val Phe Thr Val Leu His Ala Gly Gly Lys Phe Gly 105 Gly Gly Gly Tyr Lys Val Ser Gly Gly Leu His Gly Val Gly Ser Ser 115 120

- (2) INFORMATION FOR SEQ ID NO:510:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 165 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:510:

Met Val Leu Ser Lys Tyr Tyr Gly Val Ala Asp Gly Met Asn Val Glu Gly Arg Gly Ser Ala Asn Phe Ile Lys Asp Asn Val Leu Ile Thr Ser 25 Gly Leu Thr Thr Asn Tyr Arg His Asp Tyr Gly Lys Glu Ala Asp Asp 40 Ile Tyr Val Leu Pro Ala Val Ser Pro Ser Gln Glu Leu Phe Gly Lys 55 60 Ile Lys Val Lys Glu Val Cys Tyr Leu Lys Glu Phe Arg Asn Leu Asn 75 Ser Lys Asp Ala Arg Glu Tyr Asp Leu Ala Leu Leu Ile Leu Glu Glu 85 90 Pro Ile Gly Ala Lys Leu Gly Thr Leu Gly Leu Pro Thr Ser Gln Lys 105 Asn Leu Thr Gly Ile Thr Val Thr Ile Thr Gly Tyr Pro Ser Tyr Asn 115 120 Phe Lys Ile His Gln Met Tyr Thr Asp Lys Lys Gln Val Leu Ser Asp 135 140 Asp Gly Met Phe Leu Asp Tyr Gln Val Asp Thr Leu Glu Gly Ser Ser 150 155 160 Gly Tyr Tyr Ser Leu 165

- (2) INFORMATION FOR SEQ ID NO:511:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 55 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

#### (ii) MOLECULE TYPE: Protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:511:

 Met
 Val
 Glu
 Asn
 Pro
 Ieu
 Leu
 Gly
 Thr
 Ala
 Glu
 Gly
 Leu
 Phe
 10
 Ieu
 15
 Ieu
 15
 Ieu
 Ieu
 15
 Ieu
 Ieu
 Asn
 Asn
 Asn
 Pro
 His
 Lys
 Ala

 Asp
 Ile
 Glu
 Pro
 Ser
 Leu
 Leu
 Asp
 His
 Phe
 Phe
 Val
 Asp
 Thr
 His
 Gln

 Asp
 Pro
 Ser
 Tyr
 Gln
 Ala
 Cys
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu
 Ieu</

#### (2) INFORMATION FOR SEQ ID NO:512:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 181 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:512:

Leu Lys Lys Ile Ser Lys Gln Glu Leu Val Asn Thr Arg Phe Ser Arg 1 5 5 10 15 Leu Phe Ala His Phe Gly Gln Glu Lys Asp Gly Ser Phe Leu Ala Gln 20 25 30

Arg Tyr Gln Phe Tyr Leu Ala Gln Gln Gly Gln Thr Leu Ser Gly Ala 35 40 45

His Asp Leu Leu Asp Ser Leu Ile Glu Arg Asp Tyr Asn Leu Tyr Ala
50 55 60

Ala Thr Asn Gly Ile Thr Ala Ile Gln Thr Gly Arg Leu Ala Gln Ser 65 70 75 80

Gly Leu Ala Pro Tyr Phe Asn Gln Val Phe Ile Ser Glu Gln Leu Gln 85 90 95

Thr Gln Lys Pro Asp Ala Leu Phe Tyr Glu Lys Ile Gly Gln Gln Ile 100 105 110

Ala Gly Phe Ser Lys Glu Lys Thr Leu Met Ile Gly Asp Ser Leu Thr
115 120 125

Ala Asp Ile Gln Gly Gly Asn Asn Ala Gly Ile Asp Thr Ile Trp Tyr
130 135 140

Asn Pro His His Leu Glu Asn His Thr Gln Ala Gln Pro Thr Tyr Glu
145 150 155 160

Val Tyr Ser Tyr Gln Asp Leu Leu Asp Cys Leu Asp Lys Asn Ile Leu
165 170 175

Glu Lys Ile Thr Phe 180

## (2) INFORMATION FOR SEQ ID NO:513:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 161 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:513:

Met Lys Tyr Asp Asp Ala Met Ala Leu Tyr Gly Ser Asp Lys Pro Asp 1 5 10 15

Thr Arg Phe Asp Met Leu Leu Gln Asp Leu Thr Glu Val Val Lys Gly
20 25 30

Val Asp Phe Lys Val Phe Ser Glu Ala Leu Ala Val Lys Ala Ile Val

Val Asn Gly Leu Glu Pro Leu Thr Ala Asp Asn Tyr Ser Arg Lys Asp 50 55 60

Ile Asp Lys Met Thr Glu Val Ala Lys Gln Tyr Gly Ala Lys Gly Leu
70 75 80

Ala Trp Val Lys Val Val Asp Gly Glu Leu Asp Gly Pro Val Ala Lys
85 90 95

Phe Leu Thr Gly Ile Gln Glu Glu Leu Thr Thr Ala Leu Ala Leu Glu 100 105 110

Asp Lys Asp Leu Val Leu Phe Val Ala Asp Thr Leu Glu Val Ala Asn . 115 120 125

Ala Thr Leu Gly Ala Leu Arg Gly Arg Ile Ala Lys Glu Leu Gly Leu 130 135 140

Ile Asp Asn Asp Lys Phe Asn Phe Leu Trp Val Val Asp Trp Pro Met
145 150 155 160
Phe

- (2) INFORMATION FOR SEQ ID NO:514:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 70 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:514:

 Met
 Val
 Lys
 Tyr
 Gly
 Val
 Val
 Gly
 Ala
 Gly
 Tyr
 Phe
 Gly
 Ala
 Glu
 Leu
 Leu
 Leu
 Leu
 Leu
 Tyr

 Ala
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 A

50 55 60

Ile Val Ala Thr Pro Lys 65 70

- (2) INFORMATION FOR SEQ ID NO:515:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 97 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:515:

Met Lys Ile Asp Lys Tyr Ser Ala Ile Leu Gly Asn Thr Val Gly Phe 1 5 10 15

- (2) INFORMATION FOR SEQ ID NO:516:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 95 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:516:

 Met
 Thr
 Phe
 Thr
 Ile
 His
 Thr
 Val
 Glu
 Ser
 Ala
 Pro
 Ala
 Glu
 Val

 1
 1
 5
 1
 1
 10
 1
 1
 15
 15
 15

 Lys
 Glu
 Ile
 Leu
 Glu
 Thr
 Val
 Glu
 Lys
 Asp
 Asp
 Asp
 Asp
 Gly
 Tyr
 Ile
 Pro

 Asn
 Leu
 Ile
 Gly
 Leu
 Leu
 Ala
 Asp
 Ala
 Pro
 Thr
 Val
 Leu
 Glu
 Ala
 Tyr

 Glu
 Ile
 Val
 Leu
 Ala
 Ala
 Arg
 Arg
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp
 Asp

- (2) INFORMATION FOR SEQ ID NO:517:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 64 amino acids
  - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:517:

 Met
 Lys
 Ile
 Gly
 Ile
 Ala
 Ala
 Met
 Pro
 Glu
 Glu
 Leu
 Ala
 Tyr
 Leu

 1
 5
 10
 10
 15
 15

 Val
 Gln
 His
 Leu
 Gly
 Asn
 Thr

 20
 25
 25
 30
 30

 Tyr
 His
 Thr
 Gly
 Thr
 Ile
 Ala
 Ser
 His
 Glu
 Val
 Leu
 Val
 Glu
 Ser

 35
 40
 45
 45
 45
 45
 45
 60
 60
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45
 45

- (2) INFORMATION FOR SEQ ID NO:518:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 147 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:518:

50 55 60

Gln Gly Thr Pro Arg Gly Ala Gly Asn Ile Lys Gly Glu Asp Ile Lys 65 70 75 80

Lys Ile Thr Glu Asn Lys Ala Ile Glu Ser Tyr Val Lys Arg Ile Asn 85 90 95

Ala Ile Gly Asp Leu Thr Gly Tyr Asp Leu Ile Glu Thr Pro Glu Thr
100 105 110

## (2) INFORMATION FOR SEQ ID NO:519:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 170 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:519:

Leu Arg Lys Asn Ile Gly Leu Val Leu Gln Asp Leu Ser Ile Arg Glu 10 Leu Leu Ser Pro Ile Ser Pro Cys Thr Lys Lys Ser Val Met Ser Arg 20 Phe Lys Ala Ala Ala Ala Phe Val Asp Ala Asp Ser Phe Ile Gln Glu Leu Pro Gln Arg Tyr Asp Ser Pro Val Ser Glu Arg Gly Ser Ser Phe 55 60 Ser Thr Gly Gln Arg Gln Leu Leu Ala Phe Ala Arg Thr Val Ala Ser 70 Gln Pro Lys Ile Leu Ile Leu Asp Glu Ala Thr Ala Asn Ile Asp Ser 90 Glu Thr Glu Ser Leu Val Gln Ala Ser Leu Ala Lys Met Arg Gln Gly 100. 105 Arg Thr Thr Ile Ala Ile Ala His Arg Leu Ser Thr Ile Gln Asp Ala 120 Asn Cys Ile Tyr Val Leu Asp Lys Gly Arg Ile Ile Glu Ser Gly Thr 135 His Glu Glu Leu Leu Ala Leu Gly Gly Thr Tyr His Lys Met Tyr Ser 145 150 155 Leu Gln Ala Gly Ala Met Ala Asp Thr Leu 165 170

(2) INFORMATION FOR SEQ ID NO:520:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 165 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:520:

Met Arg Asn Met Lys Ala Lys Tyr Ala Val Trp Val Ala Phe Phe Leu

1 5 10 15

Asn Leu Thr Tyr Ala Ile Val Glu Phe Ile Ala Gly Gly Val Phe Gly
20 25 30

Ser Ser Ala Val Leu Ala Asp Ser Val His Asp Leu Gly Asp Ala Ile 35 40 45

Ala Ile Gly Ile Ser Ala Phe Leu Glu Thr Ile Ser Asn Arg Glu Glu 50 55 60

Asp Asn Gln Tyr Thr Leu Gly Tyr Lys Arg Phe Ser Leu Leu Gly Ala 65 70 75 80

Leu Val Thr Ala Val Ile Leu Val Thr Gly Ser Val Leu Val Ile Leu
85 90 95

Glu Asn Val Thr Lys Ile Leu His Pro Gln Pro Val Asn Asp Glu Gly
100 105 110

Ile Leu Trp Leu Gly Ile Ile Ala Ile Thr Ile Asn Leu Leu Ala Ser

Leu Val Val Gly Lys Gly Lys Thr Lys Asn Glu Ser Ile Leu Ser Leu 130 135 140

His Phe Leu Glu Asp Thr Leu Gly Trp Val Ala Val Ile Leu Met Ala 145 150 155 160

Ile Val Pro Ser Ile

- (2) INFORMATION FOR SEQ ID NO:521:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 93 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:521:

 Met Glu Thr Ala Leu Ile Ser Val Ile Val Pro Val Tyr Asn Val Ala

 1
 5
 10
 10
 15
 15

 Gln Tyr Leu Glu Lys Ser Ile Ala Ser Ile Gln Lys Gln Thr Tyr Gln
 20
 25
 25
 30
 30

 Asn Leu Glu Ile Ile Leu Val Asp Asp Gly Ala Thr Asp Glu Ser Gly 35
 40
 45
 45
 45

 Arg Leu Cys Asp Ser Ile Ala Glu Glu Gln Asp Asp Asp Asp Glu Ser Val Leu Ser Gln Ala Arg Asn Asp Glu Gly Het Lys
 55
 60
 45
 45

 His Lys Lys Asn Glu Gly Asp Tyr Leu Ile Phe Ile Asp Ser Lys
 75
 55
 75
 75
 80

## (2) INFORMATION FOR SEQ ID NO:522:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 105 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:522:

 Met
 11e
 Lys
 Asp
 11e
 Gly
 Asp
 Lys
 Met
 Asp
 Asp
 Asp
 Leu
 Val

 1
 1
 5
 1
 10
 1
 1
 15
 15

 Leu
 Gln
 Ser
 Asp
 Phe
 Gly
 Leu
 Val
 Asp
 Gly
 Ala
 Met
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e
 1e

- (2) INFORMATION FOR SEQ ID NO:523:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 144 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:523:

Leu Val Glu Val Gln Lys Ile Lys Val Ile Arg Thr Lys Lys Gly Glu

1 10 15

Asn Met Ala Phe Leu Gln Ala Asp Asp Ser Lys Lys Lys Leu Asp Val 20 . 25 30

Thr Leu Phe Ser Asp Leu Tyr Arg Gln Val Gly Gln Glu Ile Lys Glu 35 40 45

Gly Ala Phe Tyr Tyr Val Lys Gly Lys Ile Gln Ser Arg Asp Gly Arg
50 55 60

Leu Gln Met Ile Ala Gln Glu Ile Arg Glu Ala Val Ala Glu Arg Phe 65 70 75 80

Trp Ile Gln Val Lys Asn His Glu Ser Asp Gln Glu Ile Ser Arg Ile 85 90 95

Leu Glu Gln Phe Lys Gly Pro Ile Pro Val Ile Ile Arg Tyr Glu Glu
100 105 110

Glu Gln Lys Thr Ile Val Ser Pro His His Phe Val Ala Lys Ser Asn 115 120 125

Glu Leu Glu Glu Lys Leu Asn Glu Ile Val Met Lys Thr Ile Tyr Arg 130 135 140

- (2) INFORMATION FOR SEQ ID NO:524:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 90 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:524:

 Met
 Asn
 Ser
 Phe
 Lys
 Asn
 Phe
 Leu
 Lys
 Glu
 Trp
 Gly
 Leu
 Phe
 Leu
 Leu
 Leu

 1
 5
 Leu
 Leu
 Ala
 Leu
 Ser
 Arg
 Ile
 Phe
 Phe
 Trp
 Ser
 Asn
 Val

 Arg
 Val
 Glu
 Gly
 His
 Ser
 Met
 Asp
 Pro
 Thr
 Leu
 Phe
 Asp
 Gly
 Glu
 Ile

 Arg
 Val
 Gly
 His
 Ser
 Met
 Asp
 Pro
 Thr
 Leu
 Ala
 Asp
 Gly
 Gly
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val
 Val</

- (2) INFORMATION FOR SEQ ID NO:525:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 109 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:525:

Asp Ser Ala Asp Asn Leu Leu Glu Ile Thr Glu Phe Ser Leu Glu Met 50 55 60

Glu Arg Gln Met Glu Lys Leu Tyr Val Tyr Ala His Met Lys Asn Asp
65 70 75 80

Gln Asp Thr Arg Glu Ala Lys Tyr Gln Glu Tyr Tyr Ala Lys Ala Met 85 90 95

Thr Leu Leu Gln Pro Val Arg Pro Ser Leu Phe Ile Leu 100 105

- (2) INFORMATION FOR SEQ ID NO:526:
- (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 45 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:526:

 Met Met Ile Glu Lys Glu Asp Leu Thr Pro Phe Ile His Leu Gln His

 1
 5
 10
 15
 15

 His Gln Gln Glu Leu Thr Leu Lys Asp Gly Ile Val Ile Thr Ala Lys
 20
 25
 25
 30

 Leu Ala Gln Leu Ala Gly Val Lys Val Gly Gln Thr Leu
 35
 40
 45

- (2) INFORMATION FOR SEQ ID NO:527:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 90 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:527:

Leu Ala Leu Phe Asp Glu Lys Asp Gln Phe Val Gln Thr Val Thr Ile

1 5 10 15

Ala Ser His Arg Lys Gln Lys Asn Phe Asp Ile Ile Lys Phe Lys Asp
20 25 30

Met Tyr His_Ile-Asn-Thr Ile Glu Lys Tyr Lys Gly Tyr Ser Leu Lys
35 40 45

Val Ala Glu Glu Asp Leu Asn Asp Leu Asp Asp Gly Glu Phe Tyr Tyr
50 55 60

His Glu Ile Ile Gly Leu Glu Val Tyr Glu Gly Asp Ser Leu Val Gly 65 70 75 80

Thr Ile Lys Glu Asn Pro Ala Thr Arg Cys

85

90

(2) INFORMATION FOR SEQ ID NO:528:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 142 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:528:

Met Pro Val Ser Arg Met Trp Cys Ser Thr Ser Ile Leu Arg Ile Leu

1 5 10

Thr Val Trp Ser Thr Ser Met Ile Lys Arg Lys Thr Tyr Trp Lys Asp
20 25 30

Leu Ile Gln Ser Phe Thr Gly Ser Lys Gly Arg Phe Leu Ser Ile Leu 35 40 45

Ile Leu Met Met Leu Gly Ser Leu Ala Leu Val Gly Leu Lys Val Thr
50 55 60

Ser Pro Asn Met Glu Thr Thr Ala Asn Ala Tyr Leu Thr Thr Ala Gln
65 70 75 80

Thr Leu Asp Leu Ala Val Met Ser Asn Tyr Gly Leu Asp Gln Ala Tyr

85

90

95

Gln Glu Glu Leu Lys Gln Thr Glu Gly Ala Glu Val Glu Phe Gly Tyr
100 105 110

Leu Thr Asp Val Thr Met Asp Asn Gly Gln Asp Ala Ile Arg Leu Tyr
115 120 125

Ser Lys Pro Glu Arg Ile Ser Thr Phe Gln Leu Arg Lys Gly
130 135 140

- (2) INFORMATION FOR SEQ ID NO:529:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 37 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:529:

Met Tyr Val Ala Thr Glu Arg Glu Ile Ala Lys His Ile Ser Arg Leu

1 5 10 15

Gly Trp Tyr Arg Asn Lys Asp Lys Phe Leu Lys Lys Cys Ala Gln Gln 20 25 30

Leu Ala Lys Arg Phe

35

- (2) INFORMATION FOR SEQ ID NO:530:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 80 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:530:

Met Lys His Gln Gln Lys Phe Val Pro Tyr Lys Thr Leu Gly Ala Asp
1 5 10 15

Ala Val Gly Met Ser Thr Val Pro Glu Val Ile Val Ala Ala His Ser 20 25 30

Gly Leu Lys Val Leu Gly Ile Ser Cys Ile Thr Asn Phe Ala Ala Gly
35 40 45

Phe Gln Glu Glu Leu Asn His Glu Glu Val Val Glu Val Thr Glu Arg
50 55 60

Val Lys Gly Asp Phe Lys Gly Leu Leu Lys Ala Ile Leu Ala Glu Leu 65 70 75 80

- (2) INFORMATION FOR SEQ ID NO:531:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 143 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:531:

Leu Leu Glu Ile Leu Asp Phe Asp Trp Ser Ile Phe Leu His Asp Val 1 5 10 15

Glu Lys Thr Glu Lys Phe Val Phe Leu Leu Val Phe Ser Met Ser 25 Ile Thr Cys Leu Leu Ala Leu Phe Trp Arg Gly Ile Glu Glu Leu Ser 45 Leu Arg Lys Met Gln Ala Asn Leu Lys Arg Leu Leu Ala Gly Gln Glu 55 Val Val Gln Val Ala Asp Pro Asp Leu Asp Ala Ser Phe Lys Ser Leu 75 Ser Gly Lys Leu Asn Leu Leu Thr Glu Ala Leu Gln Lys Ala Glu Asn 85 90 His Ser Leu Ala His Glu Glu Glu Ile Ile Glu Lys Glu Arg Lys Arg 100 105 Ile Ala Arg Asp Leu His Asp Thr Val Ser Gln Glu Leu Phe Ala Ala 120 His Met Ile Leu Ser Gly Phe Ser Gln Gln Ala Leu Lys Phe Gly 130 135 140

- (2) INFORMATION FOR SEQ ID NO:532:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 67 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:532:

- (2) INFORMATION FOR SEQ ID NO:533:
- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 91 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:533:

Met Ile Ser Lys Cys Cys Val Arg Trp Ala Ile Pro Met Gly Leu Lys

1 5 10 15

Ile Ile Leu Ala Asn Met Asp Gly Arg Ser Glu Gly Glu Pro Pro Tyr
20 25 30

Thr Leu Leu Asp Phe Phe Pro Asp Asp Phe Leu Ile Met Ile Asp Glu 35 40 45

Ser His Met Thr Ile Gly Gln Ile Lys Gly Met Tyr Asn Gly Asp Arg 50 55 60

Ser Arg Lys Glu Met Leu Val Asn Tyr Gly Phe Arg Leu Pro Ser Ala 65 70 75 80

Leu Asp Asn Arg Pro Leu Arg Arg Glu Glu Phe 85 90

- (2) INFORMATION FOR SEQ ID NO:534:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 68 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE-DESCRIPTION: SEQ ID NO:534:

Met Lys Gln Val Glu Ala Lys Glu Glu Glu Glu Gln Glu Gln Ala Glu Arg

1 5 10 15

Glu Ala Glu Ser Lys Lys Glu Pro Tyr Ile Tyr Tyr Ile Leu Ser Phe

20 25 30

Ala Lys Leu Ala Asp Leu Val Ala Phe Ala Lys Thr Val Thr Phe Glu 35 40 45

Met Glu Thr Ser Glu Leu Tyr Lys Met Asn Glu Arg Tyr Tyr Gly Leu 50 55 60

Phe Asp Arg Leu 65

- (2) INFORMATION FOR SEQ ID NO:535:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 65 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:535:

- (2) INFORMATION FOR SEQ ID NO:536:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 66 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D)_TOPOLOGY: linear ·
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:536:

 Met Ile Lys Thr Thr Ser Leu Val Val Leu Ile Gly Val Val Glu Val

 1
 5
 10
 15

 Thr Lys Val Gly Gln Gln Ile Ile Asp Ser Asn Arg Leu Thr Ile Pro

 20
 25
 30

Thr Gly Ser Phe Trp Val Tyr Gly Thr Ile Leu Val Leu Tyr Phe Ala 35 40 45

Val Cys Tyr Pro Ile Ser Lys Leu Ser Thr His Leu Glu Lys His Trp 50 55 60

Ser Asn

- (2) INFORMATION FOR SEQ ID NO:537:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 81 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:537:

 Met
 Glu
 Val
 Val
 Asp
 Asp
 Asp
 Ile
 Ile
 Asp
 Val
 Ser
 Ile
 Pro
 Val
 Ala

 Glu
 Val
 Val
 Asp
 Lys
 His
 Pro
 Glu
 Val
 Leu
 Glu
 Ile
 Leu
 Glu
 Glu
 Leu
 Glu
 Ile
 Leu
 Glu
 Glu
 Leu
 Glu
 Ile
 Leu
 Asp
 Leu
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg

- (2) INFORMATION FOR SEQ ID NO:538:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 61 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:538:

 Met
 Ile
 Phe
 Leu
 Ile
 Arg
 Met
 Ile
 Tyr
 Asn
 Ala
 Val
 Asp
 Ile
 Tyr
 Ser

 Leu
 Ile
 5
 Ile
 Val
 Met
 Ser
 Trp
 Phe
 Pro
 Gly
 Ala
 Tyr

 Leu
 Ile
 Val
 Ala
 Leu
 Val
 Ile
 Val
 Leu
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val
 Ile
 Val

- (2) INFORMATION FOR SEQ ID NO:539:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 44 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:539:

- (2) INFORMATION FOR SEQ ID NO:540:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: -71 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:540:

Met Thr Lys Ile Ser Ile Tyr Glu Leu Val Lys Arg Ala Gly Val Ser

1 5 10 15

Arg Ala Ala Phe Tyr Arg Asn Tyr Asp Ser Lys Glu Glu Ile Ser Glu 20 25 30

Ser Val Phe Lys Arg Thr Val His Asn Ile Met Glu Gln Met His His 35

Tyr Asp Leu Lys Thr Asp Leu Tyr Val Val Cys Phe Thr Phe Ser Gly 50

Arg Pro Glu Arg Lys Leu Glu 65

### (2) INFORMATION FOR SEQ ID NO:541:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 171 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:541:

Leu His Gln Glu Pro Ser Leu Pro Ala Thr Val Thr Val Glu Tyr Asp Lys Gly Phe Pro Lys Thr His Lys Val Thr Trp Gln Ala Ile Pro Lys 25 Asp Lys Val Asp Ser Tyr His Thr Phe Glu Val Leu Gly Lys Val Glu 40 Gly Ile Asp Leu Glu Ala Arg Ala Lys Val Ser Val Asp Gly Ile Val Ser Val Glu Glu Val Ser Val Thr Thr Pro Ile Ala Glu Ala Pro Gln 70 75 Leu Pro Glu Ser Val Arg Thr Tyr Asp Ser Asn Gly His Val Ser Ser 85 90 Ala Lys Val Ala Trp Asp Ala Ile Arg Pro Glu Gln Tyr Ala Lys Glu 105 Gly Val Phe Thr Val Asn Gly Arg Leu Glu Gly Thr Gln Leu Thr Thr 120 Lys Leu His Val Arg Val Ser Ala Gln Thr Glu Gln Gly Ala Asn Ile 130 135 140 Ser Asp Gln Trp Thr Gly Ser Glu Leu Pro Leu Ala Phe Ala Ser Asp 150 160 Ser Asn His Lys Arg Pro Ser Phe Lys Cys Ser 165 170

- (2) INFORMATION FOR SEQ ID NO:542:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 130 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:542:

Met Glu Leu Arg Arg Pro Arg Leu Ala Asp Lys Lys Ala Val Leu Asp

1 5 10 15

Met Met Thr Glu Phe Glu Lys Ser Gln Ser Ala His Asp Gly Gly Phe
20 25 30

Trp Asp Thr Glu Asn Phe Val Tyr Glu Glu Trp Leu Glu Ser Asn Gln
35 40 45

Glu Gln Glu Met Gly Ile Asn Leu Pro Glu Gly Trp Val Pro Ala Ile
50 55 50

Gln Leu Val Ala Phe Ser Glu Lys Gly Gln Ala Val Gly Phe Leu Asn 65 70 75

Leu Arg Leu Arg Leu Ser Asn Phe Leu Leu Glu Glu Gly Gly His Ile
85 90

Gly Tyr Ser Ile Arg Pro Ser Glu Arg Gly Lys Gly Tyr Ala Lys Glu
100 105

Leu Ser Val Arg Ala Cys Lys Leu Leu Arg Lys Arg Thr Ser Arg Lys
115 120 125

Leu Trp

- (2) INFORMATION FOR SEQ ID NO:543:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 98 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:543:

- (2) INFORMATION FOR SEQ ID NO:544:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 36 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:544:

Met Ala Tyr Arg Ile Ser Ala Glu Leu Thr Phe Trp Phe Leu Ile Met

1 5 10 10 15

Val Ala Ile Leu Thr Ile Val Ile Val Arg Val Ile Ser Ile Gly Gln
20 25 30

Ser Ser Leu Gln

- (2) INFORMATION FOR SEQ ID NO:545:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 41 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:545:

Met Thr Thr Phe Lys Asp Arg Phe Leu Trp Gly Gly Ala Val Ala Ala

1 5 10 15

His Gln Leu Glu Gly Gly Trp Gln Glu Gly Gly Lys Gly Ile Ser Val

20 25 30

Ala Asp Val Met Thr Ala Gly Arg His

- (2) INFORMATION FOR SEQ ID NO:546:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 68 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:546:

Met Leu Asp Met Leu Arg Asp Met Gln Asp Lys Ala Arg Lys Asn Lys

1 10 15

Ile Asp Phe Ala Val Ala Gly Tyr Leu Asn Thr Ser Phe Ile Gln Lys
20 25 30

Met Asn Gln Leu Gly Ile Lys Cys Ile Ile His Tyr Ser Ser Ile Pro
35 40 45

Glu Ile Phe Asp Leu Glu Ile Asp His Pro Asp His Leu Lys His Ile
50 55 60

Lys Glu Glu Lys

65

- (2) INFORMATION FOR SEQ ID NO:547:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 89 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

#### (xi) SEQUENCE DESCRIPTION: SEQ ID NO:547:

 Met
 Lys
 Asn
 Val
 Glu
 Leu
 Lys
 Glu
 Glu
 Glu
 Asn
 Met
 Thr
 Phe
 Glu
 Glu
 Ile

 Leu
 Pro
 Gly
 Leu
 Lys
 Ala
 Lys
 Arg
 Lys
 Tyr
 Val
 Arg
 Tyr
 Val
 Arg
 Lys
 Tyr
 Val
 Arg
 Lys
 Tyr
 Val
 Arg
 Lys
 Tyr
 Val
 Arg
 Lys
 Tyr
 Val
 Arg
 Tyr
 Val
 Arg
 Lys
 Tyr
 Val
 Arg
 Tyr
 Val
 Arg
 Lys
 Tyr
 Val
 Arg
 Thr
 Glu
 Glu
 Arg
 Glu
 Arg
 Thr
 Glu
 Arg
 Glu
 Phe
 Val
 Arg
 Glu
 Phe
 Val
 Arg
 Arg
 Glu
 Phe
 Val
 Arg
 Arg
 Arg
 Phe
 Val
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 Arg
 A

#### (2) INFORMATION FOR SEQ ID NO:548:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 98 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:548:

# (2) INFORMATION FOR SEQ ID NO:549:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 120 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:549:

Met Lys Lys Leu Val Phe Val Cys Leu Gly Asn Ile Cys Arg Thr Pro

1 5 10 15

Met Ala Glu Phe Val Met Lys Ser Met Thr Asp Asn Tyr Glu Ile Gln
20 25 30

Ser Arg Ala Thr Ser Ser Trp Glu His Gly Asn Pro Ile His Lys Gly
35 40 45

Thr Gln Gly Ile Phe Gln Glu Tyr Glu Ile Pro Tyr Asp Lys Asn Lys
50 55 60

Thr Ser Leu Gln Ile Ser Lys Glu Asp Phe Glu Ala Phe Asp Tyr Ile

70 75 80

Ile Gly Met Asp Ala Ser Asn Val Ser Asp Leu Arg Gln Met Cys Pro

Val His Cys Gln Asp Lys Ile Tyr Ser Phe Ser Ser Glu Ser Val Pro
100 105 110

Glu Pro Trp Tyr Thr Gly Arg Phe 115 120

- (2) INFORMATION FOR SEQ ID NO:550:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 88 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:550:

Met Lys Thr Thr Phe Ser Tyr Pro Lys Trp Ala Glu Ile Pro Asn Ile

1 5 10 15

Asp Leu Tyr Leu Asp Gln Val Leu Leu Tyr Val Asn Gln Val Cys Ala Pro Ile Ser Pro Asn Lys Asp Lys Gly Leu Thr Ala Ser Met Val Asn 40 Asn Tyr Val Lys Asn Gly Tyr Leu Thr Lys Pro Asp Lys Lys Lys Tyr 55 Gln Arg Gln Gln Ile Ala Pro Phe Asp Cys Tyr His Asn Pro Gln Val 70 75 Leu Tyr Phe Pro Ile Pro Arg Lys

85

## (2) INFORMATION FOR SEQ ID NO:551:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 105 amino acids
  - (B) TYPE: amino acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:551:

Met Pro Thr Ala Phe Tyr Leu Phe Phe Ser Ser Met Tyr Gln Asp Thr Pro Gly Gly Pro Ala Asn Phe Met Arg Asp Tyr Leu Ile Ser Met Thr 20 25

Ala Phe Ser Met Met Ser Thr Ala Ile Phe Ser Phe Pro Val Val Leu

His Thr Asp Lys Met Ser Asn Trp Gln Lys Thr Leu Arg His Ser Pro 55

Val Asn Met Val Glu Tyr Tyr Leu Ser Lys Ile Thr Val Cys Trp Val 70 75

Asp Tyr Leu Val Phe His Ser Trp Trp Phe Phe Leu Ser Leu Gly Phe 85

Leu Leu Glu Gly Val Gly Leu Val Leu 100 105

- (2) INFORMATION FOR SEQ ID NO:552:
- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 90 amino acids
  - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:552:

 Met
 Ala
 Ser
 Pro
 Tyr
 Leu
 Asp
 Glu
 Glu
 Ala
 Leu
 Lys
 Tyr
 Ile
 Asp

 1
 5
 5
 10
 10
 10
 15
 15
 15

 Tyr
 Asp
 Leu
 Asp
 Val
 Lys
 Ile
 Phe
 Thr
 Asp
 Glu
 Lys
 Arg
 Lys
 Arg
 Lys
 Arg
 Leu
 Leu
 Asp
 Asp
 Tyr
 Ser
 Asp
 Arg
 Tyr
 Asp
 Trp
 Asp
 Tyr
 Asp
 Trp
 Asp
 Tyr
 Asp
 Tyr
 Tyr
 Asp
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr

## WHAT IS CLAIMED IS:

15

1. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:

- 5 (a) a polynucleotide having at least a 70% identity to a polynucleotide encoding a polypeptide comprising an amino acid sequence of selected from the group consisting of SEQ ID NO:263 through 552,
  - (b) a polynucleotide which is complementary to the polynucleotide of (a);
- (c) a polynucleotide having at least a 70% identity to a polynucleotide encoding the same mature polypeptide expressed by the a gene comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:1 through 262 contained in the DNA of the deposited clone; and
  - (d) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b) or (c).
    - The polynucleotide of Claim 1 wherein the polynucleotide is DNA.
      - 3. The polynucleotide of Claim 1 wherein the polynucleotide is RNA.
  - 4. The polynucleotide of Claim 2 comprising the nucleic acid sequence set forth in SEQ ID NO:1 THROUGH 262.
- 5. The polynucleotide of Claim 2 comprising a nucleotide sequence selected from 20 the group consisting of SEQ ID NO:1 through 262.
  - 6. The polynucleotide of Claim 2 which encodes a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:263 through 552.
    - 7. A vector comprising the polynucleotide of Claim 1.
    - 8. A host cell comprising the vector of Claim 7.
- 9. A process for producing a polypeptide comprising: expressing from the host cell of Claim 8 a polypeptide encoded by said DNA.
  - 10. A process for producing a noval polypeptide or fragment comprising culturing a host of claim 8 under conditions sufficient for the production of said polypeptide or fragment.
- 30 11. A polypeptide comprising an amino acid sequence which is at least 70% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:263 through 552.
  - 12. A polypeptide comprising an amino acid selected from the group consisting of SEQ ID NO:263 through 552.

- An antibody against the polypeptide of claim 11.
- 14. An antagonist which inhibits the activity or expression of the polypeptide of claim 11.
- A method for the treatment of an individual in need of a Streptococcal
   polypeptide comprising: administering to the individual a therapeutically effective amount of the polypeptide of claim 11.
  - 16. A method for the treatment of an individual having need to inhibit a bacterial polypeptide comprising: administering to the individual a therapeutically effective amount of the antagonist of Claim 14.
- 10 17. A process for diagnosing a disease related to expression or activity of the polypeptide of claim 11 in an individual comprising:
  - (a) determining a nucleic acid sequence encoding said polypeptide, and/or
  - (b) analyzing for the presence or amount of said polypeptide in a sample derived from the individual.
- 15 18. A method for identifying compounds which interact with and inhibit or activate an activity of the polypeptide of claim 11 comprising:

contacting a composition comprising the polypeptide with the compound to be screened under conditions to permit interaction between the compound and the polypeptide to assess the interaction of a compound, such interaction being associated with a second component capable of providing a detectable signal in response to the interaction of the polypeptide with the compound;

and determining whether the compound interacts with and activates or inhibits an activity of the polypetide by detecting the presence or absence of a signal generated from the interaction of the compound with the polypeptide.

- 25 19. A method for inducing an immunological response in a mammal which comprises inoculating the mammal with Streptococcal polypeptide of claim 11, or a fragment or variant thereof; adequate to produce antibody and/or T cell immune response to protect said animal from disease.
- 20. A method of inducing immunological response in a mammal which comprises delivering a nucleic acid vector to direct expression of Streptococcal polypeptide of claim 11, or fragment or a variant thereof, for expressing said Streptococcal polypeptide, or a fragment or a variant thereof in vivo in order to induce an immunological response to produce antibody and/ or T cell immune response to protect said animal from disease.
  - 22. An isolated nucleic acid encoding one of the amino acid sequences of

Claim 21 and nucleic acid sequences capable of hybridizing therewith under stringent conditions.

- 23. Recombinant vectors comprising the nucleic acid sequences of Claim 22 and host cells transformed or transfected therewith.
- 5 24. A method of identifying an antimicrobial compound comprising contacting candidate compounds with a polypeptide of Claim 21 and selecting those compounds capable of inhibiting the bioactivity of said polypeptide.
  - 25. Antimicrobial compounds identified by the method of Claim 24.
- 26. An isolated polynucleotide comprising a polynucleotide sequence selected from the group consisting of:
  - (a) a polynucleotide having at least a 70% identity to a polynucleotide encoding a polypeptide comprising an amino acid sequence of SEQ ID NO: 389,
    - (b) a polynucleotide which is complementary to the polynucleotide of (a);
- (c) a polynucleotide having at least a 70% identity to a polynucleotide encoding the
  same mature polypeptide expressed by the a gene comprising a polynucleotide sequence of SEQ
  ID NO: 389 contained in the DNA of the deposited clone; and
  - (d) a polynucleotide comprising at least 15 sequential bases of the polynucleotide of (a), (b) or (c).
    - 27. A polypeptide encoded by the polynucleotide of claim 26.

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/07950

A. CLASSIFICATION OF SUBJECT MATTER						
IPC(6) :Please See Extra Sheet.  US CL. :Please See Extra Sheet.						
According to International Patent Classification (IPC) or to both national classification and IPC						
B. FIELDS SEARCHED						
Minimum d	ocumentation searched (classification system follower	d by classification symbols)				
U.S. : 435/320.1, 183.1, 91.1, 91.4; 536/23.1, 23.5, 24.1; 530/300, 333, 350; 424/184.1, 244.1, 237.1, 234.1; 514/44						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched						
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) Please See Extra Sheet.						
C. DOCUMENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.			
A	PAPE et al. Cloning and characterization of the gene for the yeast cytoplasmic threonyl-tRNA synthetase. Nucleic Acids Research. 1985, Vol. 13, No. 17, pages 6171-6183, see entire document.					
A	TATUSOV et al. Metabolism and influenzae deduced from a whole- Escherichia coli. Current Biology pages 279-291, see entire docum	1-12,15				
A	SHARP et al. Roles of selection evolution of type I restriction-enterobacteria. Proc. Natl. Acad 89, pages 9836-9840, see entire	1-12, 15				
Further documents are listed in the continuation of Box C. See patent family annex.						
Special categories of cited documents:     T' later document published after the international filing date or priority						
*A* document defining the general state of the art which is not considered to be of particular relevance  *A* document defining the general state of the art which is not considered to be of particular relevance.						
"F" earlier document published on or after the international filing data. "X" document of particular relevance; the claimed invention cannot be						
°L° doc	current which may throw doubts on priority claim(s) or which is and to establish the publication date of another citation or other	considered novel or cannot be consider when the document is taken alone	red to myolys an investive step			
apecial resent (as specified)  *O* document referring to an oral disclosure, use, exhibition or other means		*Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination				
*P* doc	and account of the miles					
Date of the actual completion of the international search  Date of mailing of the international search report						
21 AUGU	ST 1997	1 5 OCT 1997				
Name and mailing address of the ISA/US Commissioner of Patenta and Trademarks Box PCT		Authorized officer				
Washington	i, D.C. 20231	NITA M. MINNIFIELD				
Facsimile No. (703) 305-3230		l Telephone No. (703) 308-0196	-1.			

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/07950

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)					
This is	This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:				
· [	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:				
2. 🛽	Claims Nos.: 22-25 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:  It is noted that there is no claim 21 and that claims 22-25 depend from claim 21.				
3.	Claims Nos.:  because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).				
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	1			
	This International Searching Authority found multiple inventions in this international application, as follows:  Please See Extra Sheet.				
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.				
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.				
3. X	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: 1-12, 15; Species 1-4				
4. 🔲	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:				
Remark	The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.				

Form PCT/ISA/210 (continuation of first sheet(1))(July 1992)*

## INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/07950

A. CLASSIFICATION OF SUBJECT MATTER:

IPC (6):

COTK 5/00, 14/00; CO7H 21/04; C12N 15/63, 9/00; A61K 48/00, 39/00, 39/085, 39/09, 39/02; C12P 19/34

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

435/320.1, 183.1, 91.1, 91.4; 536/23.1, 23.5, 24.1; 530/300, 333, 350; 424/184.1, 244.1, 237.1, 234.1; 514/44

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

maspar, medline, embase, biosis, biotechds, lifesci, confsci, caplus, japio, wpids, aps, dissabs

search terms: streptococcal polypeptide, inventor names, polynucleotide, DNA helicase, prolyl tRNA synthetase, proline tRNA ligase, alanyl tRNA synthetase, isopropylmalate dehydratase

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1.

Group I, claims 1-12 and 15, drawn to Streptococcal polypeptides, polynucleotide, vector, host cells.

Group II, claim 13, drawn to an antibody.

Group III, claim 14, drawn to an antagonist.

Group IV, claim 16, drawn to a method of using an antagonist.

Group V, claims 17 and 18, drawn to a process of diagnosis.

Group VI, claim 19, drawn to a method of inducing an immunological response in a mammal using a polypeptide.

Group VII, claim 20, drawn to a knighthood of inducing an immunological response in a mammal using a nucleic acid vector.

Group VIII, claims 26 and 27, drawn to a polynucleotide with specific sequences.

The inventions listed as Groups I-VIII do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

The special technical feature of Group 1 is considered to be Streptococcal polypeptides, polynucleotide sequences that encode the Streptococcal polypeptides, vectors and host cells.

The special technical feature of Group II is considered to be an antibody directed against the polypeptide.

The special technical feature of Group III is considered to be an antagonist.

The special technical feature of Group IV is considered to be a method of using an antagonist.

The special technical feature of Group V is considered to be a process of diagnosis of a disease.

The special technical feature of Group VI is considered to be a method of inducing an immunological response in a mammal using a polypeptide.

The special technical feature of Group VII is considered to be a to a method of inducing an immunological response in a mammal using a polypeptide.

The special technical feature of Group VIII is considered to be a to a polynucleotide with specific sequences.

Accordingly, Groups I-VIII are not so linked by the same or corresponding special technical feature as to form a single inventive concept.

This application contains claims directed to more than one species of the generic invention. These species are deemed to lack Unity of Invention because they are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for more than one species to be searched, the appropriate additional search fees must be paid. The species are as follows:

Species 1: SEQ ID No. 1-10

Species 2: SEQ ID No. 247, 279, 282, 283 Species 3: SEQ ID No. 310, 313, 339, 356

Species 4 : SEQ ID No. 358, 368, 388, 418

Species 5-136 cach species consists of 4 SEQ ID Nos. taken from the remaining 530 SEQ ID Nos.



International application No.

	PCT/US97/07950		
The species listed above do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, the species lack the same or corresponding special technical features for the reasons given above and the species are different structurally and/or functionally with regard to their site of action.			
	, ~		
,			
	•		

Form PCT/ISA/210 (extra sheet)(July 1992)#