Problem 0.1 (MTH 371 Winter 2022, Homework # 3: due February 23). Given a $n \times n$ symmetric sparse matrix A (one from the test matrices provided).

- Form the following graph matrices associated with the sparsity pattern of A and store them in CSR format:
 - Adjacency matrix $\mathbb{A} = (\alpha_{ij})$ where $\alpha_{ij} = 1$ for any non-zero entry a_{ij} of A and zero otherwise.
 - The edge_vertex connectivity matrix E where in row e of E we have only two nonzero entries (equal to one) at positions (e, i) and (e, j) where e runs over the edges of the graph, i.e., the pairs e = (i, j) for which $a_{ij} \neq 0$.
 - form the transpose of E, E^T , which is the vertex-edge relation matrix.
 - Form the diagonal matrix D with entries d_i on the diagonal being the degree $d_i = \sum_i \alpha_{ij}$ (the rowsums of the adjacency matrix \mathbb{A}).
 - Form the edge_edge adjacency matrix $\mathbb{A}_E = EE^T$ as a product of two sparse matrices.
 - Form the graph Laplacian matrix $\mathcal{L} = D A$.
- For any given (small) number K, e.g., K = 2, 5, ..., K << n.
 - For a given number d, $d \ge K$ and d < n (d = 2, 5, 10) compute d eigenvectors $\mathbf{q}_1, \ldots, \mathbf{q}_d$, corresponding to the first d minimal eigenvalues of the graph Laplacian \mathcal{L} . For this use any available eigensolver library for symmetric (sparse) matrices. Form the coordinate vectors $\mathbf{x}_i \in \mathbb{R}^d$, $i = 1, 2, \ldots, n$, as the ith row of the eigenvector matrix $Q = [\mathbf{q}_1, \ldots, \mathbf{q}_d]$.
 - Either implement the K-means algorithm, or use a library that implements it, using the coordinates $\mathbf{x}_i \in \mathbb{R}^d$, of the vertices i = 1, 2, ..., n. The K-means algorithm (used for the chosen K) generate $n_c = K$ aggregates (groups of vertices) $A_1, A_2, ..., A_{n_c}$.
 - (1) Form the relation matrix $P = vertex_aggregate$ as a CSR matrix.
 - (2) Form the coarse matrix $A_c = P^T A P$ as a CSR matrix using products of sparse matrices P^T , A and P.
 - Optionally: Using graph visualization software, visualize the graph partitioned into aggregates, where vertices in a given aggregate use the same color, and desirably use different colors for different aggregates.