

PROBABILITY & STATISTICS

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Chapter 9: Tests of Hypotheses for a Single Sample

LEARNING OBJECTIVES

- 1. Introduction
- 2. Test on the μ of NORMDIST
- σ^2 known
- σ^2 unknown
- 3. Test on the *p*: Large-sample

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Definition

Statistical Hypotheses

A statistical hypothesis is a statement about the parameters of one or more populations.

Example

Suppose that we are interested in the burning rate of a solid propellant used to power aircrew escape systems.

- Burning rate is a random variable
- We are interested in deciding whether or not the mean burning rate is 50 centimeters per second.

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Two-sided Alternative Hypothesis

One-sided Alternative Hypotheses

$$H_0: \mu = 50; H_1: \mu > 50$$

$$H_0: \mu = 50; H_1: \mu < 50$$

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Test of a Hypothesis

- A procedure leading to a decision about a particular hypothesis
- Hypothesis-testing procedures rely on using the information in a random sample from the population of interest.
- If this information is *consistent* with the hypothesis, then we will conclude that the hypothesis is true; if this information is *inconsistent* with the hypothesis, we will conclude that the hypothesis is false.

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

ERRORS

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Decision	H_0 Is True	H_0 Is False
Fail to reject H_0	no error	type II error
Reject H_0	type I error	no error

$$\alpha \neq P$$
(type I error) = P (reject H_0 when H_0 is true)
Significance level

 $\beta = P(\text{ type II error}) = P(\text{ fail to reject } H_0 \text{ when } H_0 \text{ is false})$

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

To calculate α , we assume that $\sigma = 2.5$ and n = 10.

$$\alpha = P(\overline{X} < 48.5 \text{ when } \mu = 50) + P(\overline{X} > 51.5 \text{ when } \mu = 50)$$

= $P(Z < -1.90) + P(Z > 1.90) \approx 0.0574$

$$=\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}=\frac{\overline{X}-50}{2.5/\sqrt{10}}$$

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

$$\beta = P(48.5 < \overline{X} < 51.5 \text{ when } \mu = 52)$$

= $P(-4.43 < Z < -0.63) \approx 0.2643$

$$\beta = P(48.5 < \overline{X} < 51.5 \text{ when } \mu = 50.5)$$

= $P(-2.53 < Z < 1.27) \approx 0.8923$

Figure 9-3 The probability of type II error when $\mu = 52$ and n = 10.

Figure 9-4 The probability of type II error when $\mu = 50.5$ and n = 10.

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Acceptance Region	Sample Size	α	β at $\mu = 52$	β at $\mu = 50.5$
$48.5 < \bar{x} < 51.5$	10	0.0576	0.2643	0.8923
48 $< \bar{x} < 52$	10	0.0114	0.5000	0.9705
$48.5 < \bar{x} < 51.5$	16	0.0164	0.2119	0.9445
48 $< \bar{x} < 52$	16	0.0014	0.5000	0.9918

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

- 1. The size of the critical region, and consequently the probability of a type I error, can always be reduced by appropriate selection of the critical values.
- 2. Type I and type II errors are related: $\beta \downarrow$ then $\alpha \uparrow$ and $\alpha \downarrow$ then $\beta \uparrow$, provided that *n* fix.
- 3. An increase in sample size will generally reduce both α and β , provided that the critical values are held constant.
- 4. When the null H_0 is false, $\beta \uparrow$ as the true value of the parameter approaches the value hypothesized in $H_0,\beta \downarrow$ as the difference between the true mean and the hypothesized value increases.

POWER OF A TESTING

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Definition power of a statistical test

The **power** of a statistical test is the probability of rejecting the null hypothesis H_0 when the alternative hypothesis is true.

- The power is computed as 1 b, and power can be interpreted as *the probability of correctly rejecting a false null hypothesis*.
- We often compare statistical tests by comparing their power properties.

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Hypothesis-testing problems

Two-sided test: H_0 : $\mu = \mu_0$; H_1 : $\mu \neq \mu_0$

One-sided test: H_0 : $\mu = \mu_0$; H_1 : $\mu > \mu_0$

 H_0 : $\mu = \mu_0$; H_1 : $\mu > \mu_0$

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Figure 9-6 The distribution of Z_0 when H_0 : $\mu = \mu_0$ is true, with critical region for (a) the two-sided alternative H_1 : $\mu \neq \mu_0$, (b) the one-sided alternative H_1 : $\mu > \mu_0$, and (c) the one-sided alternative H_1 : $\mu < \mu_0$.

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Hypothesis Tests on the Mean

z-test

Null hypothesis: H_0 : $\mu = \mu_0$

Test statistic:
$$Z_0 = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

Alternative hypothesis

Rejection criteria

$$H_1$$
: $\mu \neq \mu_0$

$$|z_0| > z_{\alpha/2}$$

$$H_1: \mu > \mu_0$$

 $H_1: \mu < \mu_0$

$$z_0 > z_\alpha$$

$$H_1$$
: $\mu < \mu_0$

$$z_0 > z_{\alpha}$$

$$z_0 < -z_{\alpha}$$

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Example 2

A melting point test of n = 10 samples of a binder used in manufacturing a rocket propellant resulted in $\bar{x} = 154.2^{\circ}$. Assume that melting point is normally distributed with $\sigma = 1.5^{\circ}$.

Test H_0 : $\mu = 155$; H_1 : $\mu \neq 155$ using $\alpha = 0.05$.

Solution: Test statistic:

$$z_0 = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{154.2 - 155}{1.5 / \sqrt{10}} \approx -1.69$$

 $z_{\alpha/2} = z_{0.025} = 1.96.$

 $|z_0| < z_{\alpha/2}.$

Fail to reject H_0 at $\alpha = 0.05$

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

P-Values in Hypothesis Tests

Definition

The P-value is the smallest level of significance that would lead to rejection of the null hypothesis H_0 with the given data.

$$P = \begin{cases} 2[1 - \Phi(|z_0|)] & \text{for a two-tailed test: } H_0: \mu = \mu_0 & H_1: \mu \neq \mu_0 \\ 1 - \Phi(z_0) & \text{for a upper-tailed test: } H_0: \mu = \mu_0 & H_1: \mu > \mu_0 \\ \Phi(z_0) & \text{for a lower-tailed test: } H_0: \mu = \mu_0 & H_1: \mu < \mu_0 \end{cases}$$

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Type II Error and Choice of Sample Size

Probability of type II error β for a two-sided test

$$\beta = \Phi(z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma}) - \Phi(-z_{\alpha/2} - \frac{\delta\sqrt{n}}{\sigma})$$

where
$$\delta = \mu - \mu_0$$

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Type II Error and Choice of Sample Size

Sample Size Formulas

Two-sided test

$$n \simeq \frac{(z_{\alpha/2} + z_{\beta})^2 \sigma^2}{\delta^2}$$

One-sided test

$$n \simeq \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{\delta^2}$$

where $\delta = \mu - \mu_0$.

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Exercise

The life in hours of a battery is known to be approximately normally distributed, with standard deviation $\sigma = 1.25$ hours. A random sample of 10 batteries has a mean life of $=4\overline{\alpha}5$ hours.

- (a) Is there evidence to support the claim that battery life exceeds 40 hours? Use $\alpha = 0.05$.
- (b) What is the *P*-value for the test in part (a)?
- (c) What is the β -error for the test in part (a) if the true mean life is 42 hours?
- (d) What sample size would be required to ensure that does not exceed 0.10 if the true mean life is 44 hours?

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Hypothesis Tests on the Mean

t-test

Null hypothesis: H_0 : $\mu = \mu_0$

Test statistic:
$$T_0 = \frac{X - \mu_0}{S / \sqrt{n}}$$

Alternative hypothesis

Rejection criteria

$$H_1$$
: $\mu \neq \mu_0$

$$|t_0| > t_{\alpha/2, \text{ n-1}}$$

$$H_1: \mu > \mu_0$$
 $H_1: \mu < \mu_0$

$$t_0 > t_{\alpha, \text{ n-1}}$$

$$H_1$$
: $\mu < \mu_0$

$$t_0 < -t_{\alpha, n-1}$$

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Figure 9-8 The reference distribution for H_0 : $\mu = \mu_0$ with critical region for (a) H_1 : $\mu \neq \mu_0$, (b) H_1 : $\mu > \mu_0$, and (c) H_1 : $\mu < \mu_0$.

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Exercise

Consider the dissolved oxygen concentration at TVA dams. The observations are (in milligrams per liter): 5.0, 3.4, 3.9, 1.3, 0.2, 0.9, 2.7, 3.7, 3.8, 4.1, 1.0, 1.0, 0.8, 0.4, 3.8, 4.5, 5.3, 6.1, 6.9, and 6.5.

- (a) Test the hypotheses H_0 : $\mu = 4$; H_1 : $\mu \neq 4$. Use $\alpha = 0.01$.
- (b) What is the *P*-value in part (a)?
- (c) Compute the power of the test if the true mean $\mu = 3$.

Introduction

Test on the μ of **NORMDIST**

 σ^2 known

 σ^2 unknown

Test on the *p*

Summary

Hypothesis Tests on the Mean

Null hypothesis: H_0 : $p = p_0$

Test statistic:
$$Z_0 = \frac{\hat{P} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Alternative hypothesis

Rejection criteria

$$H_1: p \neq p_0$$
 $|z_0| > z_{\alpha/2}$
 $H_1: p > p_0$ $z_0 > z_{\alpha}$
 $H_1: p < p_0$ $z_0 < -z_{\alpha}$

$$H_1: p < p_0$$
 $z_0 < -z$

Introduction

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the *p*

Summary

Example

In a random sample of 85 automobile engine crankshaft bearings, 10 have a surface finish roughness that exceeds the specifications. Does this data present strong evidence that the proportion of crankshaft bearings exhibiting excess surface roughness exceeds 0.10? State and test the appropriate hypotheses using $\alpha = 0.05$.

Solution:
$$H_0$$
: $p = 0.10$; H_1 : $p > 0.10$

$$\hat{p} = \frac{10}{85} \approx 0.12 \Rightarrow z_0 = \frac{0.12 - 0.10}{\sqrt{\frac{0.10(1 - 0.10)}{85}}} = 0.61 < z_\alpha$$

Fail to reject H_0 at $\alpha = 0.05$.

Introduction

Type II Error and Choice of Sample Size

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the *p*

Summary

Probability of type II error β

Two-sided test

$$\beta = \Phi(\frac{p_0 - p + z_{\alpha/2} \sqrt{p_0 (1 - p_0)/n}}{\sqrt{p(1 - p)/n}}) - \Phi(\frac{p_0 - p - z_{\alpha/2} \sqrt{p_0 (1 - p_0)/n}}{\sqrt{p(1 - p)/n}})$$

One-sided test: $p > p_0$

$$\beta = \Phi(\frac{p_0 - p + z_{\alpha} \sqrt{p_0 (1 - p_0)/n}}{\sqrt{p(1 - p)/n}})$$

One-sided test: $p < p_0$

$$\beta = 1 - \Phi(\frac{p_0 - p - z_\alpha \sqrt{p_0(1 - p_0)/n}}{\sqrt{p(1 - p)/n}})$$

Introduction

Type II Error and Choice of Sample Size

Test on the μ of NORMDIST

 σ^2 known

 σ^2 unknown

Test on the p

Summary

Two-sided test

$$n = \left[\frac{z_{\alpha/2} \sqrt{p_0 (1 - p_0)} + z_{\beta} \sqrt{p (1 - p)}}{p - p_0} \right]^2$$

One-sided test

$$n = \left[\frac{z_{\alpha} \sqrt{p_0 (1 - p_0)} + z_{\beta} \sqrt{p (1 - p)}}{p - p_0} \right]^2$$

SUMMARY

Introduction

We have studied:

Test on the μ of NORMDIST

1. Test on the μ of NORMDIST

 σ^2 known

• σ^2 known

 σ^2 unknown

• σ^2 unknown

Test on the p

2. Test on the *p*: Large-sample

Summary

Homework: Read slides of the next lecture.