durée : 2h

Exercice 1.

Soit (a_n) une suite réelle. Pour tout $n \in \mathbb{N}^*$, on pose

$$b_n = n(a_n - a_{n+1})$$
, $A_n = \sum_{k=1}^n a_k$ et $B_n = \sum_{k=1}^n b_k$

- 1. Dans cette question , on prend , pour tout $n \geqslant 1$, $a_n = \frac{1}{2^{n-1}}$
 - (a) Vérifier que la série $\sum_{n\geq 1} a_n$ converge et calculer sa somme.
 - (b) Soit $x \in \mathbb{R}$. Montrer que la série $\sum_{n \geqslant 1} nx^{n-1}$ converge si et seulement si $x \in]-1,1[$.
 - (c) En remarquant que $x^n=(n+1)x^n-nx^n$, vérifier que si $x\in]-1,1[$, alors $\sum_{n=1}^{+\infty}nx^{n-1}=\frac{1}{(1-x)^2}$.
 - (d) Montrer maintenant que la série $\sum_{n\geq 1} b_n$ converge et que sa somme vaut 2.
- 2. On prend dans cette question $a_n = \frac{1}{n \ln(n)}$, $n \ge 2$ et $a_1 = 0$
 - (a) A l'aide d'une comparaison série-intégrale, montrer que la série $\sum_{n\geq 1} a_n$ diverge.
 - (b) Calculer $\lim_{n \to +\infty} na_n$.
 - (c) Déterminer un équivalent de b_n puis en déduire que la série $\sum_{n>1} b_n$ diverge.
- 3. On suppose dans cette question que la série $\sum_{n\geqslant 1}a_n$ converge et que la suite $(a_n)_{n\in\mathbb{N}^*}$ est une suite décroissante .
 - (a) Pour tout entier naturel n non nul, on note $u_n = \sum_{p=n+1}^{2n} a_p$. Montrer que $\forall n \in \mathbb{N}^*, \ na_{2n} \leqslant u_n$.
 - (b) En déduire que $\lim_{n \to +\infty} na_{2n} = 0$.
 - (c) Démontrer que $\lim_{n\to+\infty} na_n = 0$.
 - (d) Montrer que la série $\sum_{n\geqslant 1} b_n$ converge.
 - (e) A-t-on $\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} b_n$?
- 4. On suppose dans cette question que la série $\sum_{n\geqslant 1}b_n$ converge et que la suite $(a_n)_{n\in\mathbb{N}^*}$ est positive, décroissante et de limite nulle.
 - (a) Vérifier que $\forall (n,m) \in \mathbb{N} * \times \mathbb{N}^*, \ m \leqslant n \Rightarrow B_n \geqslant A_m ma_{n+1}.$
 - (b) En déduire que $\sum_{n\geqslant 1} a_n$ converge.
 - (c) Peut-on en déduire que $\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{+\infty} b_n$?

$$1. \ u_n = \sqrt{n + \frac{1}{2}} - \sqrt{n}$$

$$2. \ u_n = \frac{\arctan(n)}{n^2}$$

3.
$$u_n = (\frac{1}{3} + \frac{1}{n})^n$$

4. $u_n = \mathrm{ch}^{\alpha}(n) - \mathrm{sh}^{\alpha}(n)$, suivant les valeurs prises par le paramètre réel α .