INTRODUCTION: PART - 2 Data Types • Data types are the classification or categorization of data items. It represents the kind of value that tells what operations can be performed on a particular data. • Since everything is an object in Python Programming, data types are actually classes and variables are instance (object) of these Table 1-2: Common Data Types **Examples** Data type Integers -2, -1, 0, 1, 2, 3, 4, 5 Floating-point numbers -1.25, -1.0, --0.5, 0.0, 0.5, 1.0, 1.25 'a', 'aa', 'aaa', 'Hello!', '11 cats' Strings **Numbers in Python** integers (int) • In Python, integers are zero, positive or negative whole numbers without a fractional part or decimal part, e.g. 0, 100, -10 In [1]: # int example print(type(x)) # use the type function. To determine the type of value stored in any variable. <class 'int'> float • Float is used to represent real numbers and is written with a decimal point that divides the integer and fractional portions. For example, 97.98, 32.3+e18, -32.54e100 all are floating point numbers. In [2]: # float example x = 10.2# str means string

IOTA ACADEMY

Become Job Ready...

y = 10/1print(type(x)) print(type(y)) <class 'float'> <class 'float'> String (str) String is a sequence of characters. • It can be created using single quotes(' '), double quotes(" ") or triple quotes(' ' ' ' ' or """ """). • Whatever goes inside quotes it becomes string whether it be a number, text etc. In [3]: # Example name = "IOTA Academy" msg = 'for learning Data Analytics' print(name, msg) IOTA Academy for learning Data Analytics **Standard Input and Output** Input method • In Python, we use input() function to take input from the user. • Whatever you enter as input, the input function will read as string means the datatype of variable will be 'str'. x = input("Enter your name: ") print(type(x)) print("Hello",x)

The input() function waits for the user to type some text on the keyboard and press enter. Enter your name: iota <class 'str'> Hello iota x = input("Enter a number: ") print(type(x)) # str means string print("Your number is: ",x) # The input() function waits for the user to type some text on the keyboard and press enter. Enter a number: 345675577 <class 'str'>

In [4]: # input example 1 In [5]: # input example 2 -- enter a number as input and check datatype Your number is: 345675577 **Output method** In Python, we use **print()** function to display output.

In [6]: a = 10b = 20# method 1: using f print(f'a is {a} and b is {b}') # method 2: positional arguments print('a is {0} and b is {1}'.format(a,b)) # method3: if position is not mentioned print('a is {} and b is {}'.format(b,a)) # method 4: Keyword arguments print('a is $\{v1\}$ and b is $\{v2\}$ '.format(v1=a, v2=b)) # combination of positional and keyword arguments print('a is {0}, b is {1} and other is {other}'.format(a,b,other='OTHER'))

a is 10 and b is 20 a is 10 and b is 20 a is 20 and b is 10a is 10 and b is 20

Enter your name: IOTA

In [8]: # input and output example

In [7]: # example

a is 10, b is 20 and other is OTHER

name = input("Enter your name: ")

x1 = input("Enter a number: ")

x2 = input("Another number: ")

print("Multiply is: ", multiply)

print("x1", type(x1))

x1 = int(x1)

x2 = int(x2)

multiply = x1*x2

Enter a number: 30 x1 <class 'str'>

Another number: 20

Multiply is: 600

Print function

In [9]: # example

In [10]: # example

In [12]: # example

In [13]: # example

Optional keyword arguments:

iota academy indore

iota---academy---indore

iota--> academy

iota--> academy

In [14]: **for** i **in** range(100):

Operators

Operator Types:

1. Arithmetic Operators 2. Comparison Operators 3. Logical Operators 4. Bitwise Operators 5. Assignment Operators 6. Special Operators

Arithmetic Operators

Operator

**

%

//

In [16]: # five to the power 3

print(5**3)

print (5%2)

BODMAS Rule

In [17]: # modulus operator returns remainder

(5-1)*((7+1)/(3-1))

16.0

Comparison Operators

• Used to compare values.

Operator

==

!=

<

<=

>=

print(x)

42 == 42

50 == 56

True

True

False

3 != 4

34 **== '**34'

False

5

12

15

10

'hello' == 'hello'

Logical Operators

b

10

12

13

13

In [24]: a, b = True, False # keywords

print(a and b)

print(a or b)

print(not a)

4<3 or 5<1

if 5>6 **and** 7>=7:

Atleast one is false

Examples:

In [27]: a, b = 10, 4

14

In [28]: a = 40

a = a + 20print(a)

In [29]: # same as above

a = 40a **+=** 20 print(a)

print(a)

a = a + 10print(a)

a **/=** 20

print(a)

In [33]: # same as above a = 10 a = a/20print(a)

0.5

0.5

In [34]: a = 15

print(id(a))

print(id(b))

print(a is b)

1996959607536 1996959607216

b = "hemant"

print(id(a)) print(id(b))

1997063879024 1997063879280

print(len(b))

b = ['hemant',5]

print(id(a)) print(id(b))

print(a is b) 1997063978112 1997063878912

Example:

False

True

lst = [1, 2, 3, 4, 5]

In [39]: text = 'learning P, oython'

Exercise: 2

• Expected Output:

1) Print the given strings in the specified format.

IOTA-Academy-is-the-best-institute.

• The sum of a and b

• The product of a and b

"IOTA" "Academy" "is" "the" "best" "institute."

• The difference when a is subtracted from b

3) WAP to calculate the area of a circle which radius is given (pi - 3.14 or 22/7).

the program stopped running unexpectedly.

• The quotient when a is divided by b

• The remainder when a is divided by b

5) WAP to calculate the area of a triangle whose sides are given.

• The result of a to the power b

4) WAP to convert Degree Celsius to Fahrenheit.

Great Job!

'P,o' in text

print(6 in lst)

- Membership Operators

• in and not in are the membership operators in Python.

True

In [36]: print(len(a))

6

In [37]: a = ['hemant',5]

False

In [38]:

Out[39]:

print(a is not b)

b = 5

False

In [35]: #1.1

60

21

21

In [30]: a = 11

In [31]: a = 11

In [32]: a = 10

Bitwise Operators

print("Both are True")

print("Atleast one is false")

& , | , ~ , ^ , >> , << are Bitwise operators

10 to binary is : 1010: 2^3+2^1 # 4 to binary is : 0100: 2^2

Assignment Operators

a += 10 # same as a = a+10

a = a/20

Special Operators

- Identity Operators

• is and is not are the identity operators.

Used to check if two values (or variables) are located on the same part of the memory.

a = "hemant" # here is a space so both a and b are different

True for only basic data types (numbers and strings)

• Used to test whether a value or variable is found in a sequence (string, list, tuple, set and dictionary).

2) Write a program (WAP) that reads two integers, a and b, from the user. Your program should compute and display:

ERRORS ARE OKAY!

Programs will crash if they contain code the computer can't understand, which

your computer, though, so don't be afraid to make mistakes. A crash just means

will cause Python to show an error message. An error message won't break

Used to assign values to the variables.

print(a&b) # 1010 & 0100 --> 0000 --> 0

print(a|b) # 1010 | 0100 ---> 1110 ---> 14 (8+4+2)

False True False

False

In [25]:

Out[25]:

In [26]: # and

• and, or and not are logical operators.

condition 1

a>b

a>b

a>b

a<b

True

In [18]: x = 7! = 6

In [19]:

Out[19]:

In [20]:

Out[20]:

In [21]:

Out[21]:

In [22]:

Out[22]:

In [23]:

Out[23]:

4 * ((7 + 1) / (3 - 1))

Figure 1-1: Evaluating an expression reduces it to a single value.

• It either returns True or False, according to the condition.

Meaning

Equal to

Less than

Not equal to

Greater than

Less than or equal to

Greater than or equal to

comparison operators always returns True or False

condition 2

b!=12

b!=12

b!=13

a!=b

True and False---> False

True or False ---> True

when left and right both conditions are true then true else false

Bitwise operators act on operands as if they were strings of binary digits. It operates bit by bit.

• a = 5, here "=" is a simple assignment operation. "=" assigns the value 5 (right) to the variable a on the left.

• =, +=, -=, *=, /=, %=, //=, **=, &=, |=, ^=, >>=, <<= are assignment operators.

not True ---> False

condition 1 output

FALSE

FALSE

TRUE

TRUE

condition 2 output

TRUE

FALSE

FALSE

TRUE

and

TRUE

FALSE TRUE

FALSE FALSE

FALSE TRUE

or

TRUE,

>, <, >=, <=, ==, != are comparison operators.

I am next line value2

I am next line value2

In [11]: print("iota", "academy", sep="--> ")

Hi IOTA, you have successfully logged in.

print("x1 type after type casting", type(x1))

print("x2 after type casting", type(x2))

x1 type after type casting <class 'int'>

print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

file: a file-like object (stream); defaults to the current sys.stdout.

print("iota", "academy", "indore") # default separator is single space

print("I am next line", "value2") # default end is next line("\n")

end: string appended after the last value, default a newline.

Prints the values to a stream, or to sys.stdout by default.

sep: string inserted between values, default a space.

print("iota", "academy", "indore", sep="---")

print("iota", "academy", sep="--> ", end='\n')

print("IOTA", "Academy 3*10", 3*10, sep="-->", end=" *** ")

• The value that the operator operates on is called the operand.

7 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

• Operators are special symbols in Python that carry out arithmetic or logical computation.

• Used to perform mathematical operations like addition, substraction, multiplication etc.

Modulus/remainder

Operation

Exponent

Division

Multiplication

Subtraction

Addition

print(7//2) # answer will be 3 (<3.5 and close to 3.5)

Table 1-1: Math Operators from Highest to Lowest Precedence

Integer division/floored quotient

In [15]: # floor division: returns an integer closest and less than the result after division.

To avoid unexpected results, it is advised that you always use brackets in your calculations.

 $0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12\ 13\ 14\ 15\ 16\ 17\ 18\ 19\ 20\ 21\ 22\ 23\ 24\ 25\ 26\ 27\ 28\ 29\ 30\ 31\ 32\ 33\ 34\ 35\ 36\ 37\ 38\ 39\ 4$ 0 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 7

Evaluates to...

8

6

2

2.75

15

3

4

Example

2 ** 3

22 % 8

22 // 8

22 / 8

3 * 5

2 + 2

IOTA-->Academy 3*10-->30 *** I am learning Python

print("I am next line", "value2")

print("I am learning Python")

print(i,end=' ')

flush: whether to forcibly flush the stream.

x2 after type casting <class 'int'>

print(f"Hi {name}, you have successfully logged in.")

when we take user input. it is always a string and

function multiply two numbers which are taken as user input

#this is called: Tyepcasting

we can't apply arithmetic operations to strings so we have to change it to int or float.