End Semester Examination

IIT Kharagpur, CSE Dept., Autumn'15

(CS41001) Theory of Computation (Full marks = 100)
Answer exactly 5 questions. In case of reasonable doubt, state your assumptions.

1. (a) Consider the function $f: \{a, b\}^* \to \{a, b\}^*$ such that

f(u) = a, if u contains even number of a's and odd number of b's;

= b, otherwise.

Show that f is grammatically computable. Give a brief explanation of the computational steps. Indicate the fixed parenthetic strings x, y, x', y'; explain clearly the purpose of other nonterminal symbols used in the computation of f by the grammar.

- (b) Show that the following functions are primitive recursive:
 - (i) rem(n, m) = the integer remainder when n is divided by m; zero when m is zero; use only the initial functions for this.
 - (ii) prime(n) = 0 if n is prime

= 1 if n is not a prime.

- (c) Prove that every grammatically computable function over strings is a μ -recursive function. You may assume that the following predicates or functions, as the case may be, are given to be primitive recursive:
 - (i) $\Sigma_0^* n$ ($\Sigma_1^* n$): n is the Godel number of a string in the domain Σ_0^* (codomain Σ_1^*) of the grammatically computable function,
 - (ii) Bpq: ("the derivation p begins with q") p is the Godel number of the derivation of the grammar (for computing the function) and q is the Godel number of the first string of terminals and nonterminals in p,
 - (iii) Epq: ("the derivation p ends with q") p is as given in (ii) above and q is the Godel number of the last string of terminals and nonterminals in p,
 - (iv) extract(p): extracts the Godel number of the string corresponding to the value f(n) of the grammatically computable function from q where Epq holds.

$$[6 + (4 + 4) + 6 = 20]$$

- 2. (a) Let $EQ_{REX} = \{ (R, S) \mid R \text{ and } S \text{ are equivalent regular expressions} \}$. Show that EQ_{REX} is in PSPACE.
 - (b) Let $BIPARTITE = \{G \mid G \text{ is a bipartite graph}\}$. Show that, $BIPARTITE \in \text{co-NL}$.
 - (c) Let $GG = \{\langle G, b \rangle \mid \text{Player 1 has winning strategy for the generalized geography game played on graph <math>G$ starting at node $b\}$. Prove that GG is PSPACE-complete.
 - (d) Show that, if every NP-hard language is also PSPACE-hard, then PSPACE = NP.

$$[5+5+7+3=20]$$

- 3. (a) Formally define the complexity classes Σ_2^p and Π_2^p . Prove that If P = NP then PH = P.
 - (b) Prove that $\Sigma_2^p \subseteq \text{NP}^{SAT}$. Prove that the emptyness problem of Buchi Automata can be checked in polynomial time.

- 4. (a) Prove the equivalence of the following LTL formulae.
 - i. $\neg \Diamond \phi \equiv \Box \neg \phi$
 - ii. $\phi U \psi \equiv \psi \vee (\phi \wedge \bigcirc (\phi U \psi))$
 - (b) Provide a formal definition of the Buchi Acceptance Condition. Construct a Buchi Automaton for the ω -regular language $(ab)^*a(ba)^{\omega}$.

- (c) Construct a Timed Automaton which captures the formal specification of a bus controller given as follows.
 - "Consider a system with two processors P_1 , P_2 connected by a bus. The bus controller grants exclusive access to the bus for P_1 , P_2 using events l_1 , l_2 respectively. The bus controller can request P_1 , P_2 to release the bus using events r_1 , r_2 respectively. Once granted access, a processor cannot entertain a release request within the next 2 seconds. If the release request comes within 2 seconds, the system cannot execute any further. If the release request comes after 2 seconds, then the processor releases the bus instantaneously. Once granted access, a processor can occupy the bus exclusively for not more than 5 seconds. If no release request comes within 5 seconds, then also system cannot execute any further. Two consecutive bus accesses by P_1 have to be separated by at least 10 seconds. Two consecutive bus accesses by P_2 have to be separated by at least 20 seconds." Note that $\Sigma = \{l_1, l_2, r_1, r_2\}$.

$$[(3+3)+(4+4)+6=20]$$

- 5. (a) Let MODEXP = $\{\langle a,b,c,p\rangle | a,b,c$, and p are binary integers such that $a^b \equiv c \pmod{p} \}$. Show that MODEXP is in P.
 - (b) For a graph G = (V, E), a set of nodes $S \subseteq V$ is called independent if no two nodes in S are connected by an edge $e \in E$. Let IND-SET be the language: IND-SET = $\{\langle G, k \rangle | \text{ Graph } G \text{ has an independent set of size } k \}$. Prove that IND-SET is NP-Complete,
 - (c) Which of the following LTL formulea are true on all paths of the labeled transition system given

- i. $\Box a$
- ii. $\Box(\neg b \implies \Box(a \land \neg b))$
- iii. $\bigcirc(a \land b)$
- iv. $bU(a \land \neg b)$

$$[5+5+(2.5 X 4)=20]$$

- 6. (a) Let $L_{\infty} = \{ \langle M \rangle | |L(M)| = \infty \}$. Prove that L_{∞} is not Turing-recognizable.
 - (b) Let $TQBF = \{\langle \phi \rangle \mid \phi \text{ is a true fully quantified boolean formula} \}$. Prove that TQBF is PSPACE-complete.
 - (c) Let us define the class of problems \mathbf{DP} as follows. A language L is in the class \mathbf{DP} if and only if there are two languages $L_1 \in \mathbf{NP}$ and $L_2 \in co\mathbf{NP}$ such that $L = L_1 \cap L_2$. Now let $SAT UNSAT = \{ \langle \phi, \phi' \rangle : \phi \text{ and } \phi' \text{ are boolean formulae in 3CNF and } \phi \text{ is satisfiable and } \phi' \text{ is not satisfiable} \}$. Prove that SAT UNSAT is \mathbf{DP} -complete.

$$[5+7+(3+5)=20]$$

- 7. (a) Let $L_{fin} = \{ \langle M \rangle | L(M) \text{ is finite} \}$. Prove that L_{fin} is undecidable.
 - (b) Construct a reduction from $Th(\mathbb{N}, <)$ to $Th(\mathbb{N}, +)$.
 - (c) Prove that for $f(n) \ge \log n$, $ASPACE(f(n)) = TIME(2^{O(f(n))})$.

[6+6+8=20]