ETROC1 Single Pixel Design Note

This document aims to provide information for ETROC1 single pixel chip test.

Author: Wei Zhang

Co-author: Datao, Quan Sun, Tiankuan Liu

Version 0.1: Feb 5, 2020

Email: wzhang@mails.ccnu.edu.cn

Contents

1	Pin Assignment	1
2	ETROC1 Single Pixel block diagram	3
3	I2C Interface	4

1 Pin Assignment

The ETROC1 Single Pixel chip has 34 pads that can be divided into three types: general IO pads, differential IO pads, and power IO pads, respectively. The 34 pads are located on the top side of the ETROC1 chip. The below table listed the detail pad information of the ETROC1 Single Pixel chip.

Table 1: ETROC1 Single Pixel Chip pads information

NO.	Name	Location (x,y)	Type	Description	
1	RSTN_S	(4015.09, 8872.21)	Digital In	I2C Reset signal	
2	SCL_S	(3905.09, 8872.21)	Digital In	I2C write/read clock	
3	SDA_S	(3795.09, 8872.21)	Digital In/Out	I2C write/read data	
4	CLKTO_N_S	(3685.09, 8872.21)	Digital Out	Negative output of the test clock, 40M or 320M clock	
5	CLKTO_P_S	(3575.09, 8872.21)	Digital Out	Positive output of the test clock, 40M or 320M clock	
6	VDD_Dig_S	(3465.09, 8872.21)	Power supply	Power supply of the digital circuit, $1.2\mathrm{V}$	
7	VSS_Dig_S	(3355.09, 8872.21)	Gound	Ground for the digital circuit, 0 V	
8	DOut_N_S	(3245.09, 8872.21)	Digital Out	1.28 Gbps data output, negative	
9	DOut_P_S	(3135.09, 8872.21)	Digital Out	1.28 Gbps data output, positive	
10	QInj_N_S	(3025.09, 8872.21)	Digital In	Negative input of the charge injection trigger	
11	QInj_P_S	(2915.09, 8872.21)	Digital In	Positive input of the charge injection trigger	
12	CLK40MI_N_S	(2805.09, 8872.21)	Digital In	Negative input of the $40\mathrm{MHz}$ clock	
13	CLK40MI_P_S	(2695.09, 8872.21)	Digital In	Positive input of the $40\mathrm{MHz}$ clock	
14	CLK320MI_N_S	(2585.09, 8872.21)	Digital In	Negative input of the 320 MHz clock	
15	CLK320MI_P_S	(2475.09, 8872.21)	Digital In	Positive input of the 320 MHz clock	
16	CLK1P28GI_N_S	(2365.09, 8872.21)	Digital In	Negative input of the 1.28 GHz clock	
17	CLK1P28GI_P_S	(2255.09, 8872.21)	Digital In	Positive input of the 1.28 GHz clock	
18	VDD_Dig_S	(2145.09, 8872.21)	Power supply	Power supply of the digital circuit, $1.2\mathrm{V}$	
19	VSS_Dig_S	(2035.09, 8872.21)	Gound	Ground for the digital circuit, 0 V	
20	DiscriOut_S	(1925.09, 8872.21)	Digital Out	I2C module serial data	
21	PAIn_S	(1815.09, 8872.21)	Analog In	Input of the preamp	
22	PAIn_S	(1705.09, 8872.21)	Analog In	Input of the preamp	
23	VDD_PA_S	(1595.09, 8872.21)	Power supply	Power supply for preamp, 1.2 V	
24	VSS_PA_S	(1485.09, 8872.21)	Ground	Ground for GRO module	
25	VTHInOut_S	(1375.09, 8872.21)	Analog Out	DAC analog output	
26	VRef_S	(1265.09, 8872.21)	Analog In	1 V voltage reference input	
27	AOut_S	(1155.09, 8872.21)	Analog Out	Output of the analog buffer	
28	VDD_Buf_S	(1045.09, 8872.21)	Power supply	Power supply for analog buffer, 1.5 V	
29	VSS_Buf_S	(935.09, 8872.21)	Ground	Ground for analog buffer, 0 V	
30	$QV_{-}S$	(825.09, 8872.21)	Analog In/Out	Charge injection input/output	
31	VDD_QInj_S	(715.09, 8872.21)	Power supply	Power supply for charge injection, 1.2 V	
32	VSS_QInj_S	(605.09, 8872.21)	Ground	Ground for analog buffer, 0 V	
33	VDD_Discri_S	(495.09, 8872.21)	Power supply	Power supply for discriminator, 1.2 V	
34	VSS_Discri_S	(385.09, 8872.21)	Ground	Ground for discriminator, 0 V	

The layout of ETROC1 Single Pixel chip is shown as Figure 1. The **RSTN** pad is named as the pin 1. From the anti-clockwise direction, the pad number is increasing with the step 1.

Figure 1: Single Pixel Chip Layout

2 ETROC1 Single Pixel block diagram

Figure 2: ETROC1 Single Pixel Chip Block Diagram

3 I2C Interface

The ETROC1 Single Pixel chip employs an I2C interface as slow control. The slave provides 32 bytes for writing and 16 bytes for reading by ETROC1. A 4-bit chip ID and a 4-bit chip reversion are available as well. The registers in the I2C are triplicated to mitigate SEU. The slave address is 7'b1001110 (**0x4E**).

Table 2: ETROC1 Single Pixel Chip I2C Register Map

NO.	Name Reg name Description		Description	Default value	Default value	
1	TDC_autoReset	Reg_00[0]	TDC autoReset mode 1'b0			
2	TDC_enableMon REG		Delay Line raw data output enable	1'b0		
3	TDC_enable REG_00[Enable TDC	1'b1		
4	TDC_polaritySel REG_00[3]		TDC Controller signal polarity select	1'b1	010	
5	TDC_resetn	REG_00[4]	TDC reset, low active	1'b1	0x1C	
6	TDC_selRawCode	REG_00[5]	Select TDC raw code, always "0"	1'b0		
7	TDC_testMode	REG_00[6]	TDC test mode select	1'b0		
8	TDC_timeStampMode	REG_00[7]	TDC Calibration data timeStamp mode	1'b0		
9	TDC_level[2:0]	REG_01[2:0]	TDC Encoder bubble tolerance	3'b001	0x01	
10	TDC_offset[6:0]	REG_02[6:0]	TDC ripple counter window offset	7'b0000000	0x00	
11	dllEnable	REG_03[0]	Enable loop control of DLL	1'b1	0x09	
12	dllForceDown	REG_03[1]	Force to pull down the output of the phase detector, high active	1'b0		
13	dllCapReset	REG_03[2]	Reset the control voltage of DLL to power supply, high active	1'b0		
14	dllCPCurrent[3:0]			4'b0001	1	
15	PhaseAdj[7:0]	REG_04[7:0]	Phase control bits, PhaseAdj[7:3] for coarse, [2:0] for fine	7'b0000000	0x00	
16	RefStrSel[7:0]	REG_05[7:0]	TDC reference strobe selection	8'b00000011	0x03	
17	DMRO_resetn	REG_06[0]	DMRO reset, low active	1'b1		
18			DMRO Enable Scrambler, high active	1'b1	1	
19			DMRO 40 MHz clock reverse	1'b0		
20	DMRO_reverse	DMRO_reverse REG_06[3] DMRO reverse output data, high a		1'b0	0x83	
21	21 DMRO_testMode RI		DMRO test mode select	1'b0		
22	TestCLK0	REG_06[5]	TestCLK0=1, the phase shifter is bypassed	1'b0		
23	TestCLK1 REG_00		TestCLK1=1, the reference strobe generator is bypassed	1'b0		
24	CLKOutSel	REG_06[7] Select output from either 40 MHz clock or TDC reference strobe		1'b1		
25	Clk1G28_equ[1:0]	REG_07[1:0]	Equalization strength of the Rx for 1.28 GHz	2'b00		
26	Clk1G28_invertData	REG_07[2]	1.28 GHz clock input Rx data invert	1'b0		
27	Clk1G28_enTermination REG_07[3]		Enable 1.28 GHz clock input Rx termination	1'b1	0x38	
28	Clk1G28_setCommMode	REG_07[4]	Set 1.28 GHz clock input Rx common mode	1'b1		
29	Clk1G28_enableRx	lk1G28_enableRx REG_07[5] Enable 1.28 GHz		1'b1		
30	Clk320M_equ[1:0]	REG_08[1:0]	G_08[1:0] Equalization strength of the Rx for 320 MHz			
31	Clk320M_invertData REG_08[2]		320 MHz clock input Rx data invert	1'b0	1'b0	
32	Clk320M_enTermination REG_08[3]		Enable 320 MHz clock input Rx termination 1'b1		0x38	
33	Clk320M_setCommMode REG_08[4]		Set 320 MHz clock input Rx common mode	1'b1		
34	34 Clk320M_enableRx REG_08[5		Enable 320 MHz clock input Rx	1'b1		

35	Clk40M_equ[1:0]	REG_09[1:0]	Equalization strength of the Rx for $40\mathrm{MHz}$	2'b00		
36	Clk40M_invertData	REG_09[2]	40 MHz clock input Rx data invert	1'b0		
37	Clk40M_enTermination	REG_09[3]	Enable 40 MHz clock input Rx termination	1'b1	0x38	
38	Clk40M_setCommMode	REG_09[4]	Set $40\mathrm{MHz}$ clock input Rx common mode	1'b1		
39	Clk40M_enableRx REG_09[5]		Enable 40 MHz clock input Rx	1'b1		
40	QInj_equ[1:0]	REG_0A[1:0]	Equalization strength of the Rx for QInj	2'b00		
41	QInj_invertData	REG_0A[2]	QInj input Rx data invert	1'b0		
42	QInj_enTermination	REG_0A[3]	Enable QInj input Rx termination	1'b1	0x38	
43	QInj_setCommMode	REG_0A[4]	Set QInj input Rx common mode	1'b1		
44	QInj_enableRx			1'b1		
45	CLKTO_AmplSel[2:0]	REG_0B[2:0]	CLKTO CML driver amplitude selection	3'b111		
46	CLKTO_disBIAS[3]	REG_0B[3]	Disable CLKTO CML Driver Bias, high active	1'b0	0x77	
47	Dataout_AmplSel[2:0]	REG_0B[6:4]	Dataout output CML driver amplitude selection	3'b111	0.7.7	
48	Dataout_disBIAS[3]	REG_0B[7]	Disable Dataout CML Driver Bias, high active	1'b0		
49	CLSel[1:0]	REG_0C[1:0]	Select of load capacitance of the preamp first stage, 2'b00 $->0~{\rm fC},$ 2'b01 $->80~{\rm fC},$ 2'b10 $->80~{\rm fC},$ 2'b11 $->160~{\rm fC}$	2'b00	0xf8	
50	RfSel[1:0]	REG_0C[3:2]	Feedback resistance selection, 2'b00 $->$ 20 kOhm, 2'b01 $->$ 10 kOhm, 2'b10 $->$ 5.7 kOhm, 2 b11 $->$ 4.4 kOhm	2'b10		
51	HysSel[3:0]	REG_0C[7:4]	Hysteresis voltage selection, 4'b0000 - > Vhys1, 4'b0001 - > Vhys2, 4'b0011 - > Vhys3, 4'b0111 - > Vhys4, 4'b1111 - > Vhys5, Vhys1>Vhys2>VHys3>Vhys4>Vhys5=0	4'b1111		
52	IBSel[2:0]	REG_0D[2:0]	Bias current selection of the input transistor in the preamp, 3'b000 - > 11, 3'b001, 3'b010, 3'b100 - > 12, 3'b011, 3'b110, 3'b101 - > 13, 3'b111 - > 14; 11>12>13>14			
53	QSel[4:0]	REG_0D[7:3]	Select injected charge, from $1\mathrm{fC}$ (5'b00000) to $32\mathrm{fC}$ (5'b11111), Typical charge from LGAD sensor is $7\mathrm{fC}$ (7'b0000110)	5'b00110	0x37	
54	VTHIn[7:0]	REG_0E[7:0]	Threshold voltage input of Discriminator control bit [7:0]	8'b00000000	0x00	
55	VTHIn[9:8]	REG_0F[1:0]	Threshold voltage input of Discriminator control bit [9:8]	2'b10		
56	EN_QInj REG_0F[2]		Enable the charge injection	1'b1		
57	EN_DiscriOut REG_0F[3]		Enable Discriminator Output	1'b0	0x56	
58	Dis_VTHInOut REG_0F[4]		Disable VTHIn Output 1		0.7.50	
59	PD_DACDiscri REG_0F		Power down the DAC	1'b0		
60	OE_DMRO REG_0F[6] Output enable of		Output enable of the DMRO	1'b1		