MATH 308 M Exam II February 21, 2020

Name		
Student ID #		

HONOR STATEMENT

"I affirm that my work upholds the highest standards of honesty and academic integrity at the University of Washington, and that I have neither given nor received any unauthorized assistance on this exam."

SIGNATURE	

1	16	
2	6	
3	14	
4	14	
Bonus	8:01	
Total	50	

- Your exam should consist of this cover sheet, followed by 4 problems and a bonus question. Check that you have a complete exam.
- Pace yourself. You have 60 minutes to complete the exam and there are 4 problems. Try not to spend more than 12 minutes on each problem.
- Show all your work and justify your answers.
- Your answers should be exact values rather than decimal approximations. (For example, $\frac{\pi}{4}$ is an exact answer and is preferable to its decimal approximation 0.7854.)
- You may use TI-30X IIS calculator and one 8.5×11-inch sheet of handwritten notes. All other èlectronic devices (including graphing calculators) are forbidden.
- The use of headphones or earbuds during the exam is not permitted.
- There are multiple versions of the exam, you have signed an honor statement, and cheating is a hassle for everyone involved. DO NOT CHEAT.
- Turn your cell phone OFF and put it AWAY for the duration of the exam.

GOOD LUCK!

- (16 Points) True / False and Short Answer.
 Clearly indicate whether the statement is true or false and justify your answer.
 - (a) TRUE (FALSE) \mathbb{R}^2 is a subspace of \mathbb{R}^4 .

IR2 is not a subsect of IR4.

(b) TRUE /FALSE Let A be an $n \times m$ matrix such that $A^T \vec{x} = \vec{b}$ is a consistent linear system for every \vec{b} in \mathbb{R}^m . Then n < m.

At is an man matrix, and the statement Atrick
is a consistent linear system for every \$\beta\$ in \$R^{m'}\$ just
means \$A^T x = \beta\$ has a solution for any \$\beta\$ in \$R^{m'}\$. i.e. $T(x) = A^T b, T(R^n - 3R^n) (AT_{man})$ Is onto. This is only possible if \$n \ge m\$,
so the answer is faire.

Give an example of each of the following. If there is no such example, write NOT POSSIBLE and **justify why it is not possible.** If you provide an example, you do not need to justify why the example works.

(c) Give an example of a matrix A such that $A^8 = I_2$, but $A^k \neq I_2$ for an integer k such that 0 < k < 8.

restance 为 fi [cos保) - yn(字)] · [星星]

sin(字) cos(版)] · [星星]

(d) Give an example of a linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that Range(T) = Ker(T). [Hint: Consider the Rank-Nullity Theorem.]

Not Possible. By rank-rullity, delegated,

dim (range(T)) + dim (ker(t)) = 3

rank nullity dim of domain

If Range(T) = Ker(T), tun they have the same dimension, so there sum will always be even!

(e) Give an example of a linear transformation $T: \mathbb{R}^m \to \mathbb{R}^n$ where m < n and T is not one-to-one.

Let 4= [0]

3x2 | define T(x)= 4x = [0]

13x2 | O].

- 2. (6 points) Short Answer. Fully justify your reasoning.
 - (a) Recall from M126 that the Taylor series for the exponential function is $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$. Since we know how to take powers of a matrix, we can use this to define the exponential of a square $n \times n$ matrix A:

$$e^{A} = \sum_{n=0}^{\infty} \underbrace{A^{n}}_{n!}$$

 $e^A = \sum_{n=0}^\infty \overbrace{n!}^{A^n}$ where we use the convention that $A^0 = I_n$. Compute e^A where A is the matrix $\begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix}$.

Hint: If you compute the powers of the matrix correctly, you will not need to take an infinite sum.

$$A^{2} = \begin{bmatrix} 2 & 1 \\ 4 & 2 \end{bmatrix} \begin{bmatrix} 4 & 2 \end{bmatrix} \begin{bmatrix} 4 & 2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \quad A^{3} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = A^{2} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

(b) (**BONUS: 2 points**) Using the same instructions from part (a), compute e^A where A is the matrix $\begin{bmatrix} 7 & 0 \\ 0 & 9 \end{bmatrix}$.

$$e^{\lambda} = \frac{2}{2} \frac{1}{n!} \left[\frac{2}{n} \cdot \frac{n}{n!} \right] = \left[\frac{2}{n} \cdot \frac{n}{n!}$$

3. (14 Points) Let T be a linear transformation such that $T(\vec{x}) = A\vec{x}$ where A and its equivalent reduced row echelon form is given by

$$A = \begin{bmatrix} 0 & 2 & 6 & 14 \\ 2 & -1 & 1 & 3 \\ 1 & -1 & -1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 & 9 \\ 0 & 1 & 3 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) What is the domain of T?

(b) What is the codomain of T?

(c) Is the null space of A in the domain or codomain? Give a basis for Null(A).

Domain!
$$\begin{bmatrix} 0 & 26 & 14 & | & 0 \\ 2 & -1 & 1 & 3 & | & 0 \\ 1 & -1 & -1 & 2 & | & 0 \end{bmatrix}$$
 $\sim \begin{bmatrix} 1 & 0 & 29 & | & 0 \\ 0 & 1 & 3 & 7 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$ $\times_{3} = 5$ $\Rightarrow \vec{\chi} = \begin{bmatrix} -2s - 9t \\ 3s - 7t \\ 4t \end{bmatrix}$

so
$$\vec{x} = s \begin{bmatrix} -\frac{2}{3} \\ -\frac{3}{3} \end{bmatrix} + t \begin{bmatrix} -\frac{9}{7} \\ -\frac{7}{7} \end{bmatrix}$$
, null $(A) = span \left[\left[-\frac{2}{3} \right], \left[-\frac{2}{7} \right] \right]$, and

(d) Is the column space of A in the domain or codomain? Give a basis for Col(A).

(e) Is the row space of A in the domain or codomain? Give a basis for Row(A).

(f) Is T one-to-one? Onto? Justify your answer.

Not one to one since nall(A) + 803, i.e. ker(T) + 803.

Not onto since dim (col(A)) = 2 + 3 = dim (codomain).

4. (14 points)

(a) Let A be any square matrix A. Show that the set S consisting of the vectors \vec{v} that are fixed by the matrix A is a subspace, i.e. show that the set of vectors \vec{v} such that $A\vec{v} = \vec{v}$ is a subspace.

Method 1:
$$A\vec{v}=\vec{v}$$

 $A\vec{v}-\vec{v}=\vec{o}$
 $A\vec{v}-\vec{v}=\vec{o}$
 $(A-\vec{v})\vec{v}=\vec{o}$

The set of vectors satisfying

Av = v is the same as the set

of vectors satisfying (A-I)v = 0,

which is null (A-I), hence

it is a subspace (since null spaces)

(b) Now, let

are subspaces)

Method & We can also show S is a subspace by showing it satisfies the definition.

- DIF I and V are in S, is It I in S?

 Since II and V are in S, $AII = \lambda II$ and $AV = \lambda V$.

 Want to show! $A(II + V) = \lambda(II + V)$. To do this: $A(II + V) = AII + AV = \lambda II + \lambda V = \lambda(II + V)$.

 Thus, II I satisfies the equation.
- (3) If \(\vec{u} \) is in S and \(\text{is any scalar, is ru in S} \).

 Since \(\vec{u} \) is in S, \(A\vec{u} = \cap A\vec{u} \).

 A(r\vec{u}) = r \(A\vec{u} = r \left(\cap A\vec{u} \right) = \cap (r\vec{u} \right) \).

 Thus, \(r\vec{u} \) satisfies the equation also.

$$A = \begin{bmatrix} 3 & -2 & 3 \\ 4 & -3 & 6 \\ 2 & -2 & 4 \end{bmatrix}.$$

Give a basis for S as given in part (a). You may use the back of this page if you need more space.

Method 1: First S, we saw before that
$$S = \text{null}(A - I)$$
 because: $S = \{ \forall e R^3 | A \forall = \forall \} = \{ \forall e R^3 | A \forall = \forall e R^3 | A \forall = \forall \} = \{ \forall e R^3 | A \forall = \forall e R^3 | A \forall = \forall \} = \{ \forall e R^3 | A \forall = \forall e R^3 | A \forall = \forall \} = \{ \forall e R^3 | A \forall = \forall e R^3 | A \forall = \forall \} = \{ \forall e R^3 | A \forall = \forall e R^3 | A \forall = \forall \} = \{ \forall e R^3 | A \forall = \forall e R^3 | A \forall = \forall \} = \{ \forall e R^3 | A \forall = \forall$

Method 2: (Follow your nose approach.) Want to solve $A\overrightarrow{V} = \overrightarrow{V}$. We could try to put this into an augmented metrix:

what is this suying? Each line is an equation...
In fact $A\vec{v}=\vec{v}$ is a system of equations. The
issue is we have variables on both sides of
the equation that we are solving for!

while out the system:

$$\begin{cases} 3v_1 - 2v_2 + 3v_3 = v_1 & \text{combine} \\ 4v_1 - 3v_2 + 6v_3 = v_2 \\ 2v_1 - 2v_2 + 4v_3 = v_3 \end{cases} \begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 4v_1 - 4v_2 + 6v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{cases} 2v_1 - 2v_2 + 3v_3 = 0 \\ 2v_1 - 2v_2 + 3v_3 = 0 \end{cases}$$

$$\begin{bmatrix} 2 & -2 & 3 & | & 0 \\ 4 & -4 & 6 & | & 0 \\ 2 & -2 & 3 & | & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & -2 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$V_3 = t$$

$$V_2 = S$$

$$V_1 = S - \frac{3}{2}t$$

$$V_1 = S - \frac{3}{2}t$$

$$V_1 = S - \frac{3}{2}t$$

This is a solution to a homogoneous system, so these two vectors are linearly indepent, and $S = span \{[i], [\frac{3}{2}]\}$, so

$$\mathcal{B}_{S} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{-3}{2} \\ 0 \end{bmatrix} \right\}.$$

Bonus: (5 points) A quadratic form is a function $Q(\vec{x})$ that satisfies the following two properties:

- (a) $Q(r\vec{x}) = r^2 Q(\vec{x})$ for any vector \vec{x} and r any real number (scalar).
- (b) Fix a vector \vec{y} . Then $T(\vec{x}) = Q(\vec{x} + \vec{y}) Q(\vec{x}) Q(\vec{y})$ is a degree one polynomial in the entries of \vec{x} (i.e. T is a linear equation).

Show that for a 2×2 matrix A, the function $Q: \mathbb{R}^2 \to \mathbb{R}$ given by

$$Q(\vec{x}) = \vec{x}^T A \vec{x}$$

is a quadratic form. (Note: \vec{x}^T is a row vector.)

(See rext page for Method 2)

For (a), we can show this for any nxn metrix! (smee to (b) actually!)
$$Q(rx) = (r\vec{x})^T A (r\vec{x}) = r^2 (\vec{x}^T A \vec{x}) = r^2 Q(\vec{x}^*).$$

Method: For (b), let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{12} \end{bmatrix}$, $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $\vec{y} = \begin{bmatrix} y_2 \\ y_2 \end{bmatrix}$.

Then $T(\vec{x}^*) = Q(\vec{x}^* + \vec{y}^*) - Q(\vec{x}^*) = Q(\vec{y}^*)$

$$= (\vec{x}^* + \vec{y}^*)^T A (\vec{x}^* + \vec{y}^*) - \vec{x}^T A \vec{x} - \vec{y}^T A \vec{y}$$

$$= \begin{bmatrix} x_1 + y_1 \end{bmatrix}^T \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{12} \end{bmatrix} \begin{bmatrix} x_1 + y_1 \\ a_{21} & a_{12} \end{bmatrix} \begin{bmatrix} x_1 + y_1 \\ a_{21} & a_{12} \end{bmatrix} \begin{bmatrix} x_1 + y_1 \\ a_{21} & a_{12} \end{bmatrix} \begin{bmatrix} x_1 + y_1 \\ a_{21} & a_{12} \end{bmatrix} \begin{bmatrix} x_1 + x_2 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{11} & a_{12} \end{bmatrix} \begin{bmatrix} a_{1$$

Fined 1

METHOD 2: $T(\vec{x}) = Q(\vec{x}+\vec{y}) - Q(\vec{x}) - Q(\vec{y})$ $= (\vec{x}+\vec{y})^T A (\vec{x}+\vec{y}) - \vec{x}^T A \vec{x} - \vec{y}^T A \vec{y}$ $= (\vec{x}^T + \vec{y}^T) (A \vec{x} + A \vec{y}) - \vec{x}^T A \vec{x} - \vec{y}^T A \vec{y}$ $= \vec{x}^T A \vec{x} + \vec{y}^T A \vec{x} + \vec{x}^T A \vec{y} + \vec{y}^T A \vec{y} - \vec{x}^T A \vec{x} - \vec{y}^T A \vec{y}$ $= \vec{x}^T A \vec{y} + \vec{y}^T A \vec{x},$

Now, we can show T is a linear transformation, i.e. linear in the entries of 2!

$$T(r\vec{x}) = (\vec{x})^T A \vec{y} + \vec{y}^T A (r\vec{x}) = r(\vec{x}^T) A \vec{y} + r \vec{y}^T A \vec{x} = r (\vec{x}^T A \vec{y} + \vec{y}^T A \vec{x})$$

$$= r T(\vec{x}).$$