Упражнение №13:

Областта на Скот $\mathcal{F}_{\pmb{k}}^{\perp}=(\mathcal{F}_k^{\perp},\;\sqsubseteq,\;\Omega^{(k)})$

Основни сведения

Да изберем елемент ⊥ ∉ № и да положим

$$\mathbb{N}_{\perp} = \mathbb{N} \cup \{\perp\}.$$

 Π лоската наредба на \mathbb{N}_{\perp} дефинираме посредством еквивалентността:

$$x \sqsubseteq y \iff x = \bot \lor x = y. \tag{1}$$

Ясно е, че $\bot \sqsubseteq x$ за всяко $x \in N_\bot$, т.е. \bot е най-малкият елемент на \mathbb{N}_\bot . Образно казано, той е на дъното на \mathbb{N}_\bot , затова се нарича bottom елемент. Това ще е елементът, с който ще обозначаваме, че една функция няма стойност в дадена точка; например $f(5) = \bot$ ще означава, че f няма стойност в 5.

Ето как изглеждаше графиката на релацията \sqsubseteq върху множеството \mathbb{N}_{\perp} (без примките $n \sqsubseteq n$):

Да наблегнем отново на това, че релацията \sqsubseteq няма нищо общо с числовото \leq . Две *числа x* и *y* са свързани с тази релация, т.е. $x \sqsubseteq y$, само когато x = y.

От лекциите знаем, че структурата $N_{\perp} = (N_{\perp}, \sqsubseteq, \bot)$ е ОС; ще я наричаме <u>плоска област на Скот</u>. Точната горна граница на монотонно растящата редица $x_0 \sqsubseteq x_1 \sqsubseteq \dots$ в N_{\perp} ще означаваме с

$$\bigsqcup_{n} x_{n}$$
.

В декартовото произведение $\mathbb{N}^k_\perp = \underbrace{\mathbb{N}_\perp \times \cdots \times \mathbb{N}_\perp}_k$ дефинираме <u>поком-</u>

понентната наредба, индуцирана от плоската наредба в \mathbb{N}_{\perp} , по следния начин:

Тази наредба в \mathbb{N}^k_{\perp} ще отбелязваме със същия символ \sqsubseteq и отново ще наричаме nnocka наредба.

Ще пишем $\bar{x} \sqsubseteq \bar{y}$, за да означим, че $\bar{x} \sqsubseteq \bar{y}$ и $\bar{x} \neq \bar{y}$.

На лекции видяхме, че структурата

$$\mathbf{N}_{\perp}^{k} = (\underbrace{\mathbb{N}_{\perp} \times \cdots \times \mathbb{N}_{\perp}}_{k}, \sqsubseteq, \underbrace{(\perp, \dots, \perp)}_{k})$$

също е област на Скот. И нея ще наричаме плоска област на Скот.

Да напомним и дефиницията на $\phi y n \kappa u u o n a n a c k o n$ породена от плоската ОС \mathbb{N}_{1}^{k} :

$$\mathcal{F}_{\boldsymbol{k}}^{\perp} = (\mathcal{F}_{k}^{\perp}, \sqsubseteq, \Omega^{(k)}).$$

Тази област е с домейн множеството \mathcal{F}_k^\perp от всички momanhu k-местни функции в \mathbb{N}_\perp :

$$\mathcal{F}_k^{\perp} = \{ f | f \colon \, \mathbb{N}_{\perp}^k \to \mathbb{N}_{\perp} \}.$$

Означаваме я така по аналогия с областта на Скот на *частичните* функции $\mathcal{F}_{\pmb{k}} = (\mathcal{F}_k, \subseteq, \emptyset^{(k)})$, в която работехме дотук.

Наредбата в \mathcal{F}_k^{\perp} е <u>поточковата наредба</u>, индуцирана от плоската наредба в \mathbb{N}_{\perp} , по-точно:

$$f \sqsubseteq g \stackrel{\text{\pie}\Phi}{\iff} \forall x_1 \in \mathbb{N}_{\perp} \dots \forall x_k \in \mathbb{N}_{\perp} \ f(x_1, \dots, x_k) \sqsubseteq g(x_1, \dots, x_k).$$
 (2)

Наредбата \sqsubseteq е пълна, т.е. всяка монотонно растяща редица $f_0 \sqsubseteq f_1 \sqsubseteq \dots$ в \mathcal{F}_k^{\perp} има точна горна граница (least upper bound или lub). Тази граница ще означаваме с $\bigsqcup_n f_n$. Очаквано, и тя се дефинира поточково:

$$(\bigsqcup_{n} f_{n})(\bar{x}) \stackrel{\text{\tiny Aed}}{=} \bigsqcup_{lub \text{ B } \mathcal{F}_{k}^{\perp}} f_{n}(\bar{x}).$$

$$(3)$$

Най-малкият елемент на \mathcal{F}_k^\perp — функцията $\Omega^{(k)}$ — дефинираме така:

$$\underline{\Omega^{(k)}(x_1,\ldots,x_k)} \stackrel{\text{деф}}{=} \bot$$

за всяка k-орка $(x_1,\ldots,x_k)\in\mathbb{N}^k_+$.

Функцията $\Omega^{(k)}$ съответства на никъде недефинираната функция $\emptyset^{(k)}$ при частичните функции, която беше такава, че

$$\neg!\emptyset^{(k)}(x_1,\ldots,x_k)$$

за всяка k-орка $(x_1, \ldots, x_k) \in \mathbb{N}^k$.

Задача 1. Докажете, че за произволни функции $f,g\in\mathcal{F}_k^\perp$:

$$f \sqsubseteq g \iff \forall \bar{x} \in \mathbb{N}^k \mid (f(\bar{x}) \neq \bot \implies f(\bar{x}) = g(\bar{x})).$$

Решение. Следва директно от дефиницията (1) на плоска наредба и това, че дизюнкцията $p \lor q$ е еквивалентна на $\neg p \Longrightarrow q$:

$$f \sqsubseteq g \stackrel{(2)}{\Longleftrightarrow} \forall \bar{x} \in \mathbb{N}^k_{\perp} \ (f(\bar{x}) \sqsubseteq g(\bar{x})) \stackrel{(1)}{\Longleftrightarrow} \forall \bar{x} \in \mathbb{N}^k_{\perp} \ (f(\bar{x}) = \bot \ \lor \ f(\bar{x}) = g(\bar{x}))$$

$$\iff \forall \bar{x} \in \mathbb{N}^k_{\perp} \ (f(\bar{x}) \neq \bot \implies f(\bar{x}) = g(\bar{x})).$$

Обърнете внимание колко си приличат горната характеризация на $f \sqsubseteq g$ и дефиницията на релацията \subseteq между частични функции:

$$f \subseteq g \iff \forall \bar{x} \in \mathbb{N}^k \ (!f(\bar{x}) \implies f(\bar{x}) \simeq g(\bar{x})).$$

Подобна аналогия забелязваме и между определението на точна горна граница $g = \bigcup_n f_n$ на монотонно растяща редица $f_0 \subseteq f_1 \subseteq \dots$ в \mathcal{F}_k :

$$g(\bar{x}) \simeq y \iff \exists n \ f_n(\bar{x}) \simeq y$$

и следващото свойство на точната горна граница в \mathcal{F}_k^\perp :

Задача 2. Нека $f_0 \sqsubseteq f_1 \sqsubseteq \dots$ е монотонно растяща редица в \mathcal{F}_k^{\perp} и $g = \bigsqcup_n f_n$ е нейната точна горна граница. Докажете, че за всяка k-орка $\bar{x} \in \mathbb{N}_+^k$ и $y \in \mathbb{N}$ е изпълнено:

- a) $g(\bar{x}) = \bot \iff \forall n \ f_n(\bar{x}) = \bot;$
- 6) $g(\bar{x}) = y \iff \exists n \ f_n(\bar{x}) = y.$

Решение. Нека $f_0 \sqsubseteq f_1 \sqsubseteq \dots$ е монотонно растяща. За произволно $\bar{x} \in \mathbb{N}_{\perp}^k$ и да означим $y_n \stackrel{\text{деф}}{=} f_n(\bar{x})$. От това, че редицата от функции е монотонно растяща в \mathcal{F}_k^{\perp} следва, че и редицата от стойностите им ще е монотонно растяща в \mathbb{N}_{\perp} , т.е. ще имаме

$$y_0 \sqsubseteq y_1 \sqsubseteq y_2 \sqsubseteq \dots$$

От основните свойства на плоската наредба от лекциите знаем, че всяка монотонно растяща редица в \mathbb{N}_{\perp} изглежда по един от следните два начина:

- $-\perp$, \perp , \perp , ... с граница \perp ;
- $\underbrace{\perp,\ldots\perp}_{n>0},y,\ y,\ \ldots$ с граница $y\in\mathbb{N}.$

Сега вече условията от твърдението изглеждат съвсем очевидни.

Да обобщим наблюдението от края на това доказателството:

Задача 3. Докажете, че всяка монотонно растяща редица в областта на Скот $(\mathbb{N}^k_{\perp}, \sqsubseteq, \underbrace{(\perp, \ldots, \perp)}_{k})$ има краен брой различни елементи.

Решение. Ако $(x_1, \ldots, x_k) \sqsubset (y_1, \ldots, y_k)$, то за поне едно $i \in \{1, \ldots, k\}$ ще е вярно, че $x_i \sqsubset y_i$. Това според дефиницията на плоска наредба (1) означава, че $x_i = \bot$, а $y_i \in \mathbb{N}$. Когато имаме монотонно растяща редица от k-орки, е ясно, че това може да се случи най-много k пъти и следователно различните елементи в редицата ще са най-много k+1.

Ето един пример за k=3, който казва всичко:

$$(\bot, \bot, \bot) \sqsubset (\bot, 5, \bot) \sqsubset (\bot, 5, 3) \sqsubset (0, 5, 3).$$

Точни функции

Казваме, че функцията $f\colon \mathbb{N}^k_\perp \longrightarrow \mathbb{N}_\perp$ е точна (или стриктна, strict), ако за всяка k-орка $(x_1,\ldots\,x_k)\in \mathbb{N}^k_\perp$ е изпълнено:

$$(\exists i : x_i = \bot) \implies f(x_1, \ldots x_k) = \bot.$$

С други думи, една функция е точна, ако всеки път, когато някой от аргументите ѝ е \bot , стойността ѝ също е \bot .

На пръв поглед между една частична функция $f\colon \mathbb{N}^k \longrightarrow \mathbb{N}$ и една точна функция $f\colon \mathbb{N}^k_\perp \longrightarrow \mathbb{N}_\perp$ няма разлика, ако приемем, че условието $\neg!f(\bar{x})$ отговаря на $f(\bar{x})=\bot$. Да не забравяме, обаче, че сред аргументите на $f\colon \mathbb{N}^k_\perp \longrightarrow \mathbb{N}_\perp$ може да има \bot , за разлика от аргументите на частичната функция $f\colon \mathbb{N}^k \longrightarrow \mathbb{N}$, които са само естествени числа.

Множеството на всички k-местни точни функции ще означаваме с S_k :

$$\mathcal{S}_k = \{ f \mid f \colon \mathbb{N}^k_\perp \longrightarrow \mathbb{N}_\perp \& f \text{ е точна} \}.$$

Частичните функции от \mathcal{F}_k "потапяме" в множеството $\mathcal{S}_k \subseteq \mathcal{F}_k^{\perp}$, като на всяка функция $f \in \mathcal{F}_k$ съпоставяме следната точна функция:

$$f^*(\bar{x}) = \begin{cases} f(\bar{x}), & \text{ако } \bar{x} \in \mathbb{N}^k \& ! f(\bar{x}) \\ \bot, & \text{иначе} \end{cases}$$

за всяко $\bar{x} \in \mathbb{N}^k_{\perp}$. Случаят "иначе" ще рече, че или сред елементите на k-орката \bar{x} има \perp , или $\bar{x} \in \mathbb{N}^k$, но $\neg ! f(\bar{x})$.

Функцията f^* ще наричаме <u>естествено продължение на f</u>. Тя очевидно е точна функция.

Примери. Ето няколко примера за естествени продължения на функции и предикати:

а) Нека f(x,y) = x+y. Нейното естествено продължение f^* е функцията

$$f^*(x,y) = \begin{cases} x+y, & \text{ако } x \in \mathbb{N} \ \& \ y \in \mathbb{N} \\ \bot, & \text{ако } x = \bot \ \lor \ y = \bot. \end{cases}$$

б) Нека x div y е функцията целочислено деление

$$x$$
 div $y\simeq egin{cases} \lfloor rac{x}{y}
floor, & ext{ako } y>0 \ \lnot!, & ext{ako } y=0. \end{cases}$

Нейното естествено продължение x div *y вече е тоталната функция

$$x \; \mathrm{div}^* y = \begin{cases} \lfloor \frac{x}{y} \rfloor, & \text{ako } x \in \mathbb{N} \; \& \; y \in \mathbb{N}^+ \\ \bot, & \text{ako } x = \bot \; \vee \; y = \bot \; \vee \; y = 0. \end{cases}$$

в) Да означим с E предиката "равенство". Неговото естествено продължение E^* има следната дефиниция:

$$E^*(x,y) = \begin{cases} 1, & \text{ako } x \in \mathbb{N} \& y \in \mathbb{N} \& x = y \\ 0, & \text{ako } x \in \mathbb{N} \& y \in \mathbb{N} \& x \neq y \\ \bot, & x = \bot \ \lor \ y = \bot. \end{cases}$$

Да дефинираме и обратното изображение $^{\circ}$, което се прилага върху всички функции от \mathcal{F}_k^{\perp} (не само върху точните). За всяка функция $f \in \mathcal{F}_k^{\perp}$ полагаме

$$f^{\circ}(\bar{x}) \simeq \begin{cases} f(\bar{x}), & \text{ако } f(\bar{x}) \neq \bot \\ \neg!, & \text{иначе.} \end{cases}$$
 (4)

за всяко $\bar{x} \in \mathbb{N}^k$.

Задача 4. Докажете, че една функция от \mathcal{F}_k^{\perp} е точна тогава и само тогава, когато се явява естествено продължение на някоя частична функция от \mathcal{F}_k .

Решение. Всяка функция, която е естествено продължение, е точна по дефиниция. Обратно, ако една функция $f \in \mathcal{F}_k^{\perp}$ е точна, то тя очевидно е естествено продължение на функцията $f^{\circ} \in \mathcal{F}_k$.

Задача 5. Докажете, че:

- а) За всяка функция $f \in \mathcal{F}_k$ е вярно, че $(f^*)^\circ = f$.
- **б**) За всяка *точна* функция от \mathcal{F}_k^{\perp} е вярно, че $(f^{\circ})^* = f$.
- в) Да се даде пример за функция $f \in \mathcal{F}_k^{\perp}$, за която равенството $(f^{\circ})^* = f$ вече не е в сила.

Решение. Подточки а) и б) са очевидни от дефинициите. $\ddot{\smile}$

в) Разгледайте например функцията $\lambda x.0$ от \mathcal{F}_1^{\perp} .

Монотонни функции в \mathcal{F}_k^{\perp}

Функцията $f: \mathbb{N}^k_\perp \longrightarrow \mathbb{N}_\perp$ наричаме <u>монотонна,</u> ако е изпълнено условието: за всяко $\bar{x} \in \mathbb{N}^k_\perp$ и $\bar{y} \in \mathbb{N}^k_\perp$:

$$\bar{x} \sqsubseteq \bar{y} \implies f(\bar{x}) \sqsubseteq f(\bar{y}).$$

Един първи пример за монотонни функции са точните функции:

Задача 6. Докажете, че всяка точна функция е монотонна.

Решение. Нека $f: \mathbb{N}_{\perp}^k \longrightarrow \mathbb{N}_{\perp}$ е точна функция. Да вземем произволни $\bar{x} = (x_1, \dots, x_k)$ и $\bar{y} = (y_1, \dots, y_k)$, такива че $\bar{x} \sqsubseteq \bar{y}$. Интересен е случаят, когато

$$(x_1,\ldots,x_k) \sqsubset (y_1,\ldots,y_k).$$

Тогава за поне едно $i \in \{1, \ldots, k\}$ ще е изпълнено $x_i \sqsubseteq y_i$, което съгласно дефиницията на плоска наредба (1) означава, че $x_i = \bot$. Но f е точна и значи $f(\bar{x}) = \bot$, откъдето $f(\bar{x}) \sqsubseteq f(\bar{y})$. Следователно f е монотонна. \square

Множеството на всички k-местни монотонни функции ще означаваме с \mathcal{M}_k :

$$\mathcal{M}_k = \{ f \mid f \colon \mathbb{N}^k_\perp \longrightarrow \mathbb{N}_\perp \& f \text{ е монотонна} \}.$$

От последната задача имаме, че $\mathcal{S}_k \subseteq \mathcal{M}_k$. Дали е строго включването? Да!

Задача 7. Докажете, че съществуват монотонни функции, които не са точни.

Решение. Нека $f: \mathbb{N}_{\perp} \longrightarrow \mathbb{N}_{\perp}$ е константната функция $\lambda x.c$, където $c \in \mathbb{N}$. Имаме $f(\perp) = c$ и следователно f не е точна. Тя, обаче, е монотонна, защото при $x \sqsubseteq y$ ще имаме:

$$f(x) \stackrel{\text{деф}}{=} c \stackrel{\text{деф}}{=} f(y)$$
, следователно $f(x) \sqsubseteq f(y)$.

Ето как изглеждат класовете от функции в N_{\perp} , които въведохме дотук:

Следващата задача обобщава резултата от горния пример и описва всички монотонни функции на един аргумент.

Задача 8. Докажете, че функцията $f: \mathbb{N}_{\perp} \longrightarrow \mathbb{N}_{\perp}$ е монотонна тогава и само тогава, когато е точна или е константна.

Решение. \leftarrow Следва от предишните две задачи.

 \Longrightarrow Нека f е едноместна монотонна функция. Имаме две възможности:

1 сл. $f(\bot) = \bot$ и в този случай f е точна.

2 сл. $f(\bot)=y\in\mathbb{N}.$ Понеже за всяко $x\in\mathbb{N}_{\bot}:\bot\sqsubseteq x,$ то от монотонността на f ще имаме

$$f(\perp) \sqsubseteq f(x)$$
, r.e. $y \sqsubseteq f(x)$.

Но $y\in\mathbb{N}$ и тогава $y\sqsubseteq f(x)$ означава y=f(x), като това е за всяко $x\in\mathbb{N}_{\perp}.$ Следователно функцията f е константна.

В горната задача беше важно, че f е едноместна функция. Ако функцията е на повече аргументи, това вече не е така.

Задача 9. Дайте пример за монотонна функция, която нито е точна, нито е константна.

Решение. Да разгледаме тази двуместна функция $f \colon \mathbb{N}^2_+ \longrightarrow \mathbb{N}_\perp$:

$$f(x,y) = \begin{cases} \bot, & \text{ако } x = \bot \\ 5, & \text{ако } x \neq \bot. \end{cases}$$

f не е точна, защото например $f(0, \perp) = 5$. Очевидно тя не е и константна. Обаче f е монотонна: наистина, нека

$$(x,y) \sqsubset (x',y').$$

Разглеждаме поотделно двете възможности за x:

1 сл. $x = \bot$. Тук

$$f(\perp, y) \stackrel{\text{де}\Phi}{=} \perp \sqsubseteq f(x', y').$$

2 сл. $x \neq \bot$. От строгото включване $(x,y) \sqsubset (x',y')$ следва, че непременно $y = \bot$. Пак от същото включване и това, че $x \in N$ ще имаме, че x = x'. Следователно

$$f(x,\perp) \stackrel{\text{деф}}{=} 5 \stackrel{\text{деф}}{=} f(x',y'),$$
 изначи $f(x,y) \sqsubseteq f(x',y').$

Така получихме, че f е монотонна.

За една функция $f: \mathbb{N}_{\perp}^k \longrightarrow \mathbb{N}_{\perp}$ ще казваме, че е *монотонна по і-тия си аргумент*, ако за всички $x_1, \dots, x_i, \dots, x_k, x_i' \in \mathbb{N}_{\perp}$ е изпълнено условието:

$$x_i \sqsubseteq x_i' \implies f(x_1, \dots, x_i, \dots, x_k) \sqsubseteq f(x_1, \dots, x_i', \dots, x_k).$$

Задача 10. Докажете, че функцията $f: \mathbb{N}^k_{\perp} \longrightarrow \mathbb{N}_{\perp}$ е монотонна тогава и само тогава, когато е монотонна по всеки от аргументите си.

Решение. Правата посока е ясна.

Нека сега, че f е монотонна по всеки от аргументите си. Да вземем произволни $\bar{x}=(x_1,\ldots,x_k)$ и $\bar{y}=(y_1,\ldots,y_k)$, такива че $(x_1,\ldots,x_k)\sqsubseteq (y_1,\ldots,y_k)$. Тогава и $(x_1,\ldots,x_k)\sqsubseteq (y_1,x_2,\ldots,x_k)$, откъдето поради монотонноста на f по първия ѝ аргумент ще имаме, че

$$f(x_1,\ldots,x_k)\sqsubseteq f(y_1,\ldots,y_k).$$

Аналогично, от това че $(y_1, x_2, \dots, x_k) \sqsubseteq (y_1, y_2, x_3, \dots, x_k)$ и монотонността на f по втория аргумент ще имаме, че

$$f(y_1, x_2, ..., x_k) \sqsubseteq f(y_1, y_2, x_3, ..., x_k).$$

Повтаряме неколкократно това разсъждение, докато стигнем до последното включване $f(y_1, \ldots, y_{k-1}, x_k) \sqsubseteq f(y_1, \ldots, y_k)$. Така получаваме

$$f(x_1,\ldots,x_k) \sqsubseteq f(y_1,x_2,x_3,\ldots,x_k) \sqsubseteq \ldots \sqsubseteq f(y_1,\ldots,y_k)$$

и значи общо $f(\bar{x}) \sqsubseteq f(\bar{y})$.