Price Integration in Competitive Markets with Capacitated Transportation Networks

Michael Pavlin

Wilfrid Laurier University

Coauthors: Ian Yihang Zhu, Timothy C.Y. Chan, John R. Birge

Are Gasoline Prices Integrated?

Prices are integrated if they respond to the same price shocks

- Typically answered using co-integration tests.
 - Does $p_1 = Ap_2 + B$?
- NA Fuel Markets "fairly" Co-integrated

Holmes et al. (2013), Paul et al. 2001

But do co-integration tests capture the whole picture?

Statistical co-integration tests

- Aggregate tests of stationarity over long periods of time
- Based on pair-wise tests
- Not able to detect transient dis-integration
- Not able to detect submarkets (McNew Fackler 97)

Year

M.J. Holmes et al. / Energy Economics 36 (2013) 503-510

Co-integration and the Law of One Price

Zooming in: transient failures of LOOP

Arbitrage would fix this if:

- Same product
- Transparent pricing
- Cheap and fast transportation

Hypothesis:

Transient sub-markets can arise due to capacitated transportation

Research questions

Theoretical:

• What are the implications of capacitated transportation to price integration?

Empirical:

- Can these results motivate algorithms to identify highly integrated sub-markets?
- Are transient submarkets identifiable in the North American gasoline market?

Aside: Overview of approach

- 1. Concerned with markets where there is spatial variation in prices
 - Can we use pricing data to isolate the effect of capacity constraints on spatial variation?
- 2. Assume an optimal form to the market mechanism
 - Electricity markets: market facilitator (ISO) finds the "welfare maximizing" allocation
 - Gasoline (and other) markets
 Assumption of competitive markets: equilibrium == solution of optimal allocation problem
- 3. Determine data assumptions
 - Treat prices and allocation as partial dual and primal solutions
 - Allow demand and supply to vary over time
 - Fix the transportation network
- 4. Use optimality conditions to make inferences
 - Inverse optimization approach (Birge, Hortaçsu, Pavlin 2017)

Model: A Spatially Separated Market

Consider an idealized model of a spatially separated market for a single commodity

Uncapacitated markets: Samuelson 52, Takayama and Judge 64, McNew and Fackler 97

Capacitated energy market models Cremer et al. 03, Secomandi 2010, Gabriel et al. 05

- A market consists of a set of production nodes K and demand nodes S
 - Production node $k \in K$ produces b_k units at cost $W_k(b_k)$
 - Demand node $s \in S$ consumers b_s units receiving welfare $W_s(b_s)$
- Nodes are connected by a set of capacitated transportation links E
 - Flow over $(i,j) \in E$ is $f_{ij} \le u_{ij}$ at cost $f_{ij}c_{ij}$

Market dynamics:

- Demand/supply functions may change every period
- Network structure remains stable
- At each period prices and allocation correspond to a spatial price equilibrium

Single Period: Spatial Price Equilibrium Model

SPE extends a competitive pricing equilibrium

- With diminishing marginal returns i.e. concave $W_s(b_s)$ convex $W_k(b_k)$
- Allocation optimizes the welfare maximization problem

$$\max_{f,b} \sum_{S} W_{S}(b_{S}) - \sum_{k} W_{k}(b_{k}) - \sum_{(i,j)} c_{ij} f_{ij}$$

$$S.T.$$

$$\sum_{(i,s)} f_{is} - b_{s} - \sum_{(s,j)} f_{sj} = 0 \quad \forall s \in S$$

$$\sum_{(i,k)} f_{ik} + b_{k} - \sum_{(k,j)} f_{k,j} = 0 \quad \forall k \in K$$

$$0 \le f_{ij} \le u_{ij}$$

$$b \ge 0$$

• Commodity **prices** λ_S , λ_k are locational and correspond to dual variables of flow balance constraints,

Optimality/Equilibrium Conditions

Nodal prices

• λ_s , λ_k

 v_{ij} = shadow price of flow u.b.

Price differences

Driven by transportation costs and a surcharge for congestion

$$\lambda_{S} = W'_{S}(b_{S}) + \alpha_{S} \qquad \forall S \in S$$

$$\lambda_{k} = W'_{k}(b_{k}) - \alpha_{k} \qquad \forall k \in K$$

$$\lambda_{j} - \lambda_{i} = c_{ij} - w_{ij} + v_{ij} \ \forall (i,j) \in E$$

$$\alpha_{n} \geq 0 \qquad \forall n \in N$$

$$w_{ij}, v_{ij} \geq 0 \qquad \forall (i,j) \in E$$

Analysis with costly transportation: The Neutral Band

A Neutral band is a range within which the difference between a pair of prices may deviate as a result of changes in demand and supply

- Characterized for neighbouring market locations resulting from transaction costs (e.g. Goodwin, Piggot 2001)
- Small range of neutral band ≅ higher price integration

Theorem – network neutral band

In the absence of active capacity constraints, the **network neutral band** between a pair of consumers *s*,*r* operating in a costly transportation network is defined by:

$$\min\{p_{ks}^* - p_{kr}^* | k \in K\} \le \lambda_s - \lambda_r \le \max\{p_{ks}^* - p_{kr}^* | k \in K\}$$

Where p_{ks}^* is the shortest path between supplier k and consumer s

Analysis with Costly Transportation: Example of Network Neutral Bands

Network neutral band

$$\min\{p_{ks}^* - p_{kr}^* | k \in K\} \le \lambda_s - \lambda_r \le \max\{p_{ks}^* - p_{kr}^* | k \in K\}$$

Analysis with Costly Transportation and Capacity Constraints: The congestion surcharge

The congestion surcharge w_s is the amount by which the equilibrium cost exceeds the uncapacitated delivery cost

$$w_S = \max\{\lambda_S - \lambda_k - p_{kS}^* | k \in K\}$$

Theorem – neutral band shifted by congestion surcharge

The price difference between a pair of consumers r and s is bounded by:

$$\min\{p_{ks}^* - p_{kr}^* | k \in K\} + w_s - w_r \le \lambda_s - \lambda_r \le \max\{p_{ks}^* - p_{kr}^* | k \in K\} + w_s - w_r$$

Where p_{ks}^* is the shortest path between supplier k and consumer s

Analysis with Costly Transportation and Capacity Constraints: A bottleneck link may not evenly affect all downstream consumers

Congestion surcharge w_s from a single congested link e

- w_s is less than or equal to the shadow price v_e
- $w_s \in [\min\{v_e, \min(\delta_{ks}(e))\}, \min\{v_e, \max(\delta_{ks}(e))\}]$
 - Rerouting cost $\delta_{ks}(e)$ is the additional cost of routing from k to s without link e

Analysis with Costly Transportation and Capacity Constraints: Price Decomposition

Theorem

Assume stable market structure, set of sample market realizations T, price λ_n^t of node n may be decomposed as follows:

$$\lambda_n^t = \eta^t + \rho_n + \epsilon_n^t + w_n^t,$$

- Supply cost in green
 - η^t node invariant "market price"
 - ρ_n time invariant "transportation cost"
- Neutral band variation in blue
 - $\epsilon_n^t \in [-h, h]$ variation within the uncongested neutral band
- Congestion surcharge in red

Analysis of Equilibrium With Capacity Constraints: Implications of Price Decomposition

Implications for Co-Integration

Without congestion:

• Prices are integrated if h=0, otherwise they may vary within a neutral band

With congestion:

Variation in congestion surcharge may decrease co-integration

Implication for Market Structure

Congestion-Induced Submarkets

• A Congestion-Induced Submarket S_e is a set of nodes with a non-zero congestion component for a particular link e

Implications for Identification of Price Components

- Difficult to disentangle ϵ_n^t and w_n^t
- Overcome by assuming $w_n^t = 0$ most of the time

Bringing it to data: Surcharge Estimation Model (SEM)

- Assume stable market structure (N, E, c, u) over samples T
- Demand and supply vary (W_k, W_s)

$$\underset{\eta^t, \rho_s, \epsilon_s^t, w_s^t, \alpha_s}{\text{minimize}} \quad \sum_{s \in \mathcal{S}} \alpha_s$$

Search for congestion surcharge:

subject to
$$\lambda_s^t = \eta^t + \rho_s + \epsilon_s^t + w_s^t$$
, $\forall s \in \mathcal{S}, t \in \mathcal{T}$,

Minimizing neutral band

$$|\epsilon_s^t| \le \alpha_s, \quad \forall s \in \mathcal{S}, t \in \mathcal{T},$$

Implemented as MIP

 $w_s^t \in \mathcal{W}(\theta)^+, \ \forall s \in \mathcal{S}, t \in \mathcal{T}.$

- Parameters:
 - Number of submarkets
 - Maximum time submarkets are active (parameter β)

Bringing it to data: Colonial Pipeline Disruption Case Study

- Colonial pipeline serves gasoline from Gulf to Eastern US
- Disruption on September 9th 2016
- Data
 - Jan-Dec 2016
 - Average daily prices at 18 locations

Colonial Pipeline Disruption Case Study

Colonial Pipeline Disruption Case Study Prices in market footprint

Retail gasoline prices at 20 cities in Southeastern US

Colonial Pipeline Disruption Case Study: Consistent estimates of periods with high surcharge

Colonial Pipeline Disruption Case Study: Difficult at present to determine "correct" β

Colonial Pipeline Disruption Case Study Congestion component of submarket

Colonial Pipeline Disruption Case Study Pipeline map and discovered submarket

Conclusions

- Capacitated spatial price equilibrium model of energy markets
 - Characterize neutral band and congestion surcharge on network
 - Price decomposition
- Implications for market price integration
 - ϵ_n^t : Neutral band bounded by transportation network structure
 - w_s : Congestion can lead to transient separation of regional prices
- SEM Algorithm:
 - Identifying nodes consistent with pipeline disruption
 - Identifying magnitude of congestion related price changes
- Ongoing:
 - Identify appropriate parameter levels to differentiate between congestion and neutral band variation
 - perform larger scale empirical investigations