医学数据挖掘的成果与实践

邵学杰 李强 王艳铭

北京杰杰科技有限公司

	U7	- (f _x																
	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S
1			一般	情况				试验的	青况(化验)	数据)			手术情况				随访情况		
2	年龄	性别	籍贯	身高	体重	病史	心率	心率变异	ST段分析	室性节律	室上性节律	督导仪	HOLTER		心率	心率变异	ST段分析	室性节律	室上性节律
3																			
4																			
5																			
6																			
7																			
8																			

案例1:房颤与肾功能的关联性

MIT-BIH Database Distribution

Harvard-MIT Division of Health Sciences and Technology

Welcome!

We invite you to visit PhysioNet, the on-line component of the Research Resource for Complex Physiologic Signals, where you will find the data, software, and reference materials previously posted here or included on our CD-ROMs, and much more.

Since 1999, with the support of the National Center for Research Resources of the National Institutes of Health, we have been able to make a large amount of our data and software available freely via PhysioNet. Our CD-ROMs contained only a small fraction of the data and software freely available on PhysioNet. Everything previously available on our CD-ROMs is now downloadable without cost from PhysioNet, and we encourage you to use this service.

Links:

- Our laboratory, the Laboratory for Computational Physiology, is part of the Harvard-MIT Division of Health Sciences and Technology
- We collaborate closely with colleagues at
 - the Margret & H.A. Rey Laboratory for Nonlinear Dynamics in Medicine at Boston's Beth Israel Deaconess Medical Center
 - the Center for Polymer Studies at Boston University
 - Boston's Hebrew Rehabilitation Center for Aged

 - the Laboratory of Biomedical Computer Systems and Imaging at the University of Ljubljana (Slovenia)
 - the National Research Council (CNR) Institute of Clinical Physiology in Pisa (Italy)
 - = the Center for Nonlinear Dynamics in Physiology and Medicine at McGill University
- Here is a brief exploration of heart rate time series, with examples.
- Meet us at Computers in Cardiology! We hosted the 1986 and 2000 annual conferences and attend CinC regularly

George B. Moody (george@mit.edu) Harvard-MIT Division of Health Sciences and Technology MIT Room E25-505A Cambridge, MA 02139 USA

Updated 22 July 2005.

- 解释性数据分析
- · 描述性建模
- 预测性建模
- 知识性的发现
- 序列模式发现
- 依赖关系的发现
- 异常与趋势发现

医学数据挖掘的7种模式

案例2: 老年肺癌研究(双盲实验)

	to to when the transfer	
	肿瘤学评价	一次标准的肿瘤学检查包括但不限于:彻底的
		病史及体检,支气管镜,CT/PET C T,血液检
		<i>查,组织活检</i>
	老龄因素评价	身体功能,并发症探测,认知,心理,围术期
		护理,药物
	身体功能	主要是与手术相关的心血管,肺功能测试
		老年人过往病史研判,体检结果研判。能否预
		测哪些肺癌患者术后效果好、生存时间较长些?
		可用公用的预后评估模型察尔森合并症严重度
		指标(Charlson comorbidity index,CCI)为基础。
		JAMI (Charison comorbially index, CC1) /JAMING
	 <i>认知能力</i>	
	<i>以知能力</i>	认知缺陷对术前检查很重要,对术后康复也有
	# W. Ib	重大影响
	营养状况	老龄人口手术风险主要是耐受性。老年人营养
		差,身体弱会对手术,化疗的耐受性产生重大
		<i>影响。</i>
	心理状况	30%的老年肿瘤患者都有心理疾病
	<i>手术方式选择</i>	按照美国SEER数据库显示:右全肺切除要尽量
ጉ		避免,这与术后生存率息息相关。数据挖掘后
		还发现,年轻人肺段切和楔形切的生存率力大
		低于肺叶切除术,老年人则无此差别,就局部
		复发而言,肺段切高于肺叶切。
	<i>社会支持因素</i>	老人家庭的支持,围术期护理至失重要

手术适用模型

VATS Lobectomy Open Segmentectomy Significance

Mean % Predicted FEV1	(Range)	54(31-69)	51(34-69)	p=0.76
Mean Operating Time (mins)	(Range)	204(80-270)	195(114-266)	p=0.9
ITU admission		3 (5.7%)	3 (5.7%)	p=1
30 day mortality		3 (5.7%)	3 (5.7%)	p=1
Length of Stay (days)	(Range)	8.8 (3-67)	10.4 (3-32)	p=0.97
Mean Survival	Years	6	5.4	p=0.98

资料表明电视胸腔镜(VATS)技术在早期肺癌切除中并没有优势,这也是很多胸外科医生仍然偏爱小切口开胸手术的原因。

从1971年-2009年,英国每十万人中肺癌死亡率综合成缓降趋势,然而男性与女性有较大的差别,男性死亡率呈下降趋势而女性呈缓慢增长的趋势。女性肺癌患者30年来比较平稳的死亡率表明英国社会肺癌的环境因素在长达30年的过程中没有太大的变化,人口老龄化,职业女性,外来移民女性吸烟习惯的增加是重要的因素

10万例肺癌手术中,Pneumonectomy死亡率最高7.2%,Segmental/wedge最低1.5%,Bilobectomy4.6%高于Lobectomy2.5%,这深刻的表明肺癌生长部位,手术切除部位与方法对患者存活率有重大影响,老人肺全切可能导致呼吸系统衰竭。

在许多假设机制中,心率升高可能直接影响心血管风险,多数与心肌需氧增加、能量缺乏、动脉粥样硬化进展或斑块破裂风险升高有关。

如果上述假设为真,心率数据隐含着什么真相?心率与哪些风险相关?

冠心病患者的风险临界点能否用单一心率指标作风险提示? 心率升高与结局之间的定量关系如何描述?

能否用数据挖掘的手段给出答案?

案例3: 心率数据的模式识别

表1 患者基线特征

	心率< 70次/min	心率≥70次/min	Р
	(n = 2745)	(n = 2693)	Ρ
人口统计学特征			
年齢(岁)	65.6 (8.2)	64.4 (8.6)	< 0.000 1
性别(男)	2298 (84%)	2209 (82%)	0.098
当前吸烟者	353 (13%)	481 (18%)	< 0.000 1
体重指数(kg/m²)	28.3 (4.1)	28.7 (4.7)	0.001 6
既往病史			
高血压病史	1911 (70%)	1927 (72%)	0.12
糖尿病史	864 (31%)	1155 (43%)	< 0.000 1
血脂异常病史	2155 (79%)	2123 (79%)	0.77
既往心肌梗死	2468 (90%)	2349 (87%)	0.001 9
经皮冠状动脉介入或冠状动脉搭桥术	1464 (53%)	1360 (51%)	0.037
卒中史	468 (17%)	503 (19%)	0.12
周围动脉疾病史	346 (13%)	402 (15%)	0.013
心脏参数			
心率(次/min)	64.1 (2.8)	79.2 (8.7)	
收缩压 (mmHg)	127.2 (15.2)	128.5 (15.7)	0.001 7
舒张压 (mmHg)	76.7 (9.2)	78.3 (9.2)	< 0.000 1
左室射血分数(%)	32.7 (5.3)	31.9 (5.7)	< 0.000 1
NYHA心力衰竭分级 I 级	467 (17%)	373 (14%)	< 0.000 1
NYHA心力衰竭分级Ⅱ级	1744 (64%)	1615 (60%)	
NYHA心力衰竭分级Ⅲ级	534 (19%)	705 (26%)	
随机分组时的治疗药物			
阿司匹林或抗血小板药物	2596 (95%)	2507 (93%)	0.023
血管紧张素转换酶抑制剂和(或) 血管紧张素 Ⅱ 受体抑制剂	2452 (89%)	2421 (90%)	0.049
β受体阻断剂	2465 (90%)	2273 (84%)	< 0.000 1
他汀类药物	2087 (76%)	1945 (72%)	0.001 4
利尿剂(除外醛固酮拮抗剂)	1490 (54%)	1704 (63%)	< 0.000 1
硝酸酯类药物	1133 (41%)	1202 (45%)	0.012 3
醛固酮拮抗药物	666 (24%)	800 (30%)	< 0.000 1

除非特别说明,数据以n (%) 或 \overline{x} (s)表示。NYHA = 纽约心脏协会。1 mmHg \approx 0.133 kPa

图1 Kaplan-Meier 时间—事件曲线,分别为心率与心血管死亡(A)、心力衰竭入院(B)、心肌梗死入院(C)及冠状动脉血运重建(D)

图2 按照心率分组的事件粗发生率及HR

按照心率分组的事件租发生率(条;左侧标尺)以及HR(95%CI,右侧标尺),与心率<65次/min有关的(A)心血管死亡、(B)心力衰竭入院;(C)心肌梗死入院;(D)冠状动脉血运重建术。水平线为HR = 1。表1中以基线时差异较小的变量进行校正的HR(P<0.05)

- 结 论 在冠心病和左室收缩功能障碍的患
- · 者中,心率升高(≥70次/min)意味着心血管疾病
- 结局风险升高,同时对心力衰竭相关性结局与冠
- 状动脉事件相关性结局有着不同的影响

案例4: 胰腺癌与二型糖尿病

变量名称	变量指标
血糖控制和胰岛素敏	OGTT 中的空腹血糖水平(FPG) (mmol /L)
感性指标	OGTT 中的空腹胰岛素水平 (FINS) (pmol /L)
	OGTT 中的餐后2 h 血糖水平(PBG) (mmol /L)
	OGTT 中的餐后2 h 胰岛素水平(FINS) (pmol /L)
	糖 化 血 红 蛋 白 (HbA1c) (%)
糖尿病相关的脂代谢	第一次就诊时的总 胆固醇 水平(TC) (mmol /L)
指标	第一次就诊时的甘油三酯 水平(TG) (mmol /L)
	第一次就诊时的低密度脂蛋白胆 固醇水平(LDL - C) (mmol /L)
	体 重 指 数 (BMI)
糖尿病相关的肝、肾	总胆红素水平 (TBIL) (μmol /L)
功能指	γ- 谷 氨 酰 转 肽 酶 水 平 (γ- GT) (u / L)
	胱 抑 素C(Cystatin C) (mg /L)
	肌酐(蘭法) (CR) (µmol /L)

