Representantes ordenados

Problema

Dada una lista de grupos de trabajos prácticos g_1, g_2, \ldots, g_n , queremos saber si es posible elegir un representante de cada grupo de tal forma que nos queden ordenados alfabéticamente.

Representantes ordenados

Problema

Dada una lista de grupos de trabajos prácticos g_1, g_2, \ldots, g_n , queremos saber si es posible elegir un representante de cada grupo de tal forma que nos queden ordenados alfabéticamente.

Ejemplo 1

[[Andrea, Juan], [Pedro, Juana, Roberta], [Sandro] Rta: Se puede, por ejemplo tomando Andrea, Juana, Sandro.

Ejemplo 2

[[Andrea, Juan], [Pedro, Juana, Roberta], [Celia]] Rta: No se puede.

1. Definir subproblemas

1. Definir subproblemas

Propuesta:

- $S_{i,s}$ = "decidir si existe una solución para los grupos g_i, \ldots, g_n tal que el primer representante es mayor o igual a s".
- el problema completo sería $S_{1,""}$

1. Definir subproblemas

Propuesta:

- $S_{i,s}$ = "decidir si existe una solución para los grupos g_i, \ldots, g_n tal que el primer representante es mayor o igual a s".
- el problema completo sería $S_{1,""}$
- Para resolver $S_{i,s}$ elegimos un representante r_i para g_i y pasamos a resolver S_{i+1,r_i} .

2. Elección greedy

 Podemos elegir un representante en cada paso de tal forma que después no nos arrepintamos?

2. Elección greedy

- Podemos elegir un representante en cada paso de tal forma que después no nos arrepintamos?
- Sí! Tomamos el más chico posible (alfabéticamente).

2. Elección greedy

- Podemos elegir un representante en cada paso de tal forma que después no nos arrepintamos?
- Sí! Tomamos el más chico posible (alfabéticamente).
- $r_i = min\{x \in g_i : r_{i-1} < x\} \ (r_0 = "")$
- Y podemos llamar $R_i = r_1, ..., r_i$ a nuestras soluciones parciales.
- Existen siempre?

3. Demostración de correctitud

Teorema

La estrategia greedy *Rn* va a estar bien definida (siempre encuentra un representante) si y solo si existe una solución para los grupos dados.

Queremos ver que si Rn está bien definida, existe una solución. Por hipótesis sabemos que existen r_1, \ldots, r_n , que por definición son $r_1 < \ldots < r_n$. Listo, esa es una solución.

$$(r_i = min\{x \in g_i : r_{i-1} < x\})$$

Sabemos que existe una solución s_1, \ldots, s_n y queremos ver que R_n está bien definida.

 $P(i) = \text{Si existe solución e } i \leq n$, entonces R_i está bien definida y $r_i \leq s_i$

Caso base:
$$r_1 = min\{x \in g_1 : "" < x\}.$$

 $P(i) = \text{Si existe solución e } i \leq n$, entonces R_i está bien definida y $r_i \leq s_i$

Caso base: $r_1 = min\{x \in g_1 : "" < x\}.$

 s_1 está en el conjunto así que R_1 está bien definida. Y además $r_1 \le s_1$ por ser el mínimo.

P(i) = Si existe solución e $i \leq n$, entonces R_i está bien definida y $r_i \leq s_i$

Caso base: $r_1 = min\{x \in g_1 : "" < x\}.$

 s_1 está en el conjunto así que R_1 está bien definida. Y además $r_1 \le s_1$ por ser el mínimo.

Paso inductivo: $(P(i) \implies P(i+1))$. Si $i \ge n$ ya está. Si no: Sabemos que $R_i = r_1, \ldots, r_i$ está bien definida. Queremos ver que $r_{i+1} = min\{x \in g_{i+1} : r_i < x\}$ está bien definido.

P(i) = Si existe solución e $i \leq n$, entonces R_i está bien definida y $r_i \leq s_i$

Caso base: $r_1 = min\{x \in g_1 : "" < x\}.$

 s_1 está en el conjunto así que R_1 está bien definida. Y además $r_1 \le s_1$ por ser el mínimo.

Paso inductivo: $(P(i) \implies P(i+1))$. Si $i \ge n$ ya está. Si no:

Sabemos que $R_i = r_1, \dots, r_i$ está bien definida. Queremos ver que $r_{i+1} = min\{x \in q_{i+1} : r_i < x\}$ está bien definido.

Afirmo que s_{i+1} está en ese conjunto.

(⇒

Sabemos que existe una solución s_1, \ldots, s_n y queremos ver que R_n está bien definida. Veamos por inducción que las R_i van a estar bien definidas. Formalmente:

 $P(i) = \text{Si existe solución e } i \leq n$, entonces R_i está bien definida y $r_i \leq s_i$

Caso base: $r_1 = min\{x \in g_1 : "" < x\}.$

 s_1 está en el conjunto así que R_1 está bien definida. Y además $r_1 \le s_1$ por ser el mínimo.

Paso inductivo: $(P(i) \implies P(i+1))$. Si $i \ge n$ ya está. Si no:

Sabemos que $R_i = r_1, \dots, r_i$ está bien definida. Queremos ver que $r_{i+1} = min\{x \in g_{i+1} : r_i < x\}$ está bien definido.

Afirmo que s_{i+1} está en ese conjunto. s_{i+1} está porque $s_{i+1} > s_i$ y $s_i \ge r_i$ por HI.

 $P(i) = \text{Si existe solución e } i \leq n$, entonces R_i está bien definida y $r_i \leq s_i$

Caso base: $r_1 = min\{x \in g_1 : "" < x\}.$

 s_1 está en el conjunto así que R_1 está bien definida. Y además $r_1 \le s_1$ por ser el mínimo.

Paso inductivo: $(P(i) \implies P(i+1))$. Si $i \ge n$ ya está. Si no:

Sabemos que $R_i = r_1, \dots, r_i$ está bien definida. Queremos ver que $r_{i+1} = min\{x \in g_{i+1} : r_i < x\}$ está bien definido.

Afirmo que s_{i+1} está en ese conjunto. s_{i+1} está porque $s_{i+1} > s_i$ y $s_i \ge r_i$ por HI.

Además $r_{i+1} \le s_{i+1}$ por ser el mínimo del conjunto.

4. Implementación

```
bool representantes(vector<vector<string> >& grupos){
    string anterior = "";
    for(vector<string>& g : grupos){
        string r = "";
        for(string& e : g){
           if(e > anterior) if(r = "") r = e; else r = min(r, e);
        if(r = "") return false;
        anterior = r;
    return true;
```

Complejidad?

4. Implementación

```
bool representantes(vector<vector<string> >& grupos){
    string anterior = "";
    for(vector<string>& g : grupos){
        string r = "";
        for(string& e : g){
           if(e > anterior) if(r = "") r = e; else r = min(r, e);
        if(r = "") return false;
        anterior = r;
    return true;
```

• Complejidad? O(n) con n la cantidad de estudiantes.

4. Changüí: versión recursiva

```
bool representantesBT(int i, const string& s, vector<vector<string> >& grupos){
    if(i = grupos.size()) return true;
    for(string& e : grupos[i]){
        if(e > s && representantesBT(i+1, e, grupos)) return true;
    return false:
bool representantesGrRec(int i, const string& s, vector<vector<string> >& grupos){
    if(i = grupos.size()) return true;
    string r = "";
    for(string& e : grupos[i]){
    return representantesGrRec(i+1, r, grupos);
```