Московский авиационный институт (национальный исследовательский университет)

Рабочая тетрадь

по начертательной геометрии

Студент:	
_	
Группа:	
1 5	
Преподаватель:	

Общие положения

Рабочая тетрадь по начертательной геометрии предназначена для студентов (бакалавров, специалистов и магистров) всех факультетов. Материал данной рабочей тетради скомпонован по блочному принципу и предназначен для самостоятельной работы. Максимальное количество блоков равно десяти. Каждый студент в зависимости от количества часов, выделенных в семестровом плане на изучение предмета, обязан изучить определённое количество блоков (последнее определяется программой курса). Знания теоретического материала и решение задач, включённых в блок, контролируются преподавателем на семинарских занятиях и оцениваются по пятибалльной системе. Студент, не освоивший материал конкретного блока, направляется на дополнительные занятия. В конце семестрового периода по результатам изучения всех блоков выставляется средняя оценка. Знания студента, не сдавшего хотя бы один блок, не оцениваются, и до ликвидации задолженности этот студент не допускается ни к зачёту, ни к экзамену. Преподаватель, выставивший среднюю оценку учащемуся, имеет право, с согласия студента, засчитать её как зачётную или экзаменационную.

1 Предисловие

Задачи данного учебного пособия составлены в соответствии с программой курса начертательной геометрии. Преподаватель, ведущий практические занятия в группе студентов, имеет право уменьшить или увеличить количество решаемых задач. Теоретический материал, изложенный в тетради, является базой для подготовки студентов к решению задач.

Решение каждой задачи состоит из двух этапов:

- 1. пространственное (стереометрическое) решение, при котором определяется последовательность действий для получения искомого геометрического ответа;
- 2. выполнение составленного плана решения задачи на чертеже с учётом закономерностей метода проекций начертательной геометрии. Решение пространственной задачи с помощью плоскостного (планиметрического) чертежа является главным в начертательной геометрии.

Для успешного решения задач студенту необходимы твёрдые знания основных теорем элементарной геометрии — планиметрии и стереометрии.

В данной рабочей тетради все чертежи должны быть выполнены максимально аккуратно и точно, с соблюдением всех требований **Государственных стандартов ЕСКД** по оформлению чертежа (типы линий, шрифт и т. п.)

Все построения (вспомогательные линии, линии связи) следует выполнять тонкими линиями простым карандашом. Результаты решения задач рекомендуется обводить основной линией чертежа.

Все заданные и получаемые элементы чертежа необходимо обозначать следующим образом:

- **точки** прописными буквами латинского алфавита A, B, C, D, ..., или арабскими цифрами 1, 2, 3, 4, ... (для вспомогательных построений);
- **прямые** строчными буквами латинского алфавита a, b, c, d, ...;
- **прямые уровня** горизонталь h, фронталь f, профильная прямая p;
 - **поверхности** прописными буквами греческого алфавита Γ , Δ , Θ , Λ , Σ , **и плоскости** Φ , Ψ , Ω , ...;
 - **углы** строчными буквами греческого алфавита α , β , γ , δ , ϕ , ...;
 - **плоскости** прописной буквой греческого алфавита Π (пи) с соответствующим нижним индексом: Π_1 горизонтальная, Π_2 фронтальная, Π_3 профильная плоскости проекций;
- **дополнительные** прописной буквой греческого алфавита Π (пи) с соответствующим нижним индексом Π_4 , Π_5 , ...; **проекций**
 - **точек, линий и** поверхностей и дий, на которую спроецирован объект. Так, проекции точ-ки A, прямой a и плоскости Γ соответственно надо обозначать: на плоскости $\Pi_1 A_1$, a_1 , Γ_1 , на плоскости $\Pi_2 A_2$, a_2 , Γ_2 , на плоскости $\Pi_3 A_3$, a_3 , Γ_3 ;
 - ≡ проекции двух элементов совпадают: $A_2 ≡ B_2$;
 - \in точка (элемент множества) принадлежит геометрической фигуре (множеству): $A \in m, B \in \Sigma;$
 - \cap пересечение множеств: $a \cap \Delta$, $b \cap c$;
 - \cup объединение множеств: [AB] \cup [BC] ломаная ABC;

2 Свойства ортогонального проецирования

- 1. Проекция точки всегда точка.
- 2. Проекция прямой в общем случае прямая.
- 3. Если прямая параллельна направлению проецирования, то она проецируется в точку. Такая проекция прямой обладает собирательным свойством: все точки прямой проецируются в одну точку.
- 4. Проекция точки, принадлежащей некоторой прямой, принадлежит проекции этой прямой.
- 5. Точка пересечения прямых проецируется в точки пересечения проекций этих прямых, как принадлежащая им обеим, согласно предыдущему свойству.

- 6. Проекция прямой, принадлежащей какой-либо поверхности, принадлежит проекции этой поверхности. В свою очередь, проекция точки, лежащей на поверхности, принадлежит проекции хотя бы одной прямой этой поверхности.
- 7. Параллельные прямые пространства проецируются в параллельные.
- 8. Если плоская фигура принадлежит плоскости, параллельной плоскости проекций, то проекция этой фигуры конгруэнтна (равна) самой фигуре.
- 9. Проекция точки на отрезке делит проекцию отрезка в том же отношении, в каком точка делит отрезок.

Комплексный чертёж точки, прямой,

плоскости

Три взаимно перпендикулярных плоскости Π_1 , Π_2 , Π_3 делят пространство на восемь частей — октантов.

Рассмотрим первый октант. Он представлен на рис. 1.1. Π_1 — горизонтальная, Π_2 — фронтальная и Π_3 — профильная плоскости проекций. Оси X, Y, Z являются осями проекций (осями координат). Осям присваивают индексы плоскостей, по ним пересекающихся: X_{12} , Y_{13} , Z_{23} . Для получения плоского комплексного чертежа (он может быть двухкартинным или трёхкартинным) плоскость Π_1 поворачивают вокруг оси X, а плоскость Π_3 — вокруг оси Z до совмещения с плоскостью Π_2 . Ось Y_{13} раздваивается на Y_1 , уходящую вниз вместе с Π_1 , и на Y_3 , уходящую вправо вместе с Π_3 .

Рис. 1.1 Трёхкартинный комплексный чертёж

Комплексный чертёж точки

Точку A, расположенную в пространстве первого октанта, проецируем ортогонально на каждую из плоскостей проекций (рис. 1.1):

 A_1 — горизонтальная, A_2 — фронтальная, A_3 — профильная проекции точки A .

 AA_1 — высота точки A (координата Z), AA_2 — глубина точки A (координата Y), AA_3 — широта точки A (координата X).

На комплексном чертеже прямые A_1A_2 и A_2A_3 связывают соответствующие проекции и передают координаты X и Z. Они называются вертикальной и горизонтальной линиями связи. Для графической трансляции координаты Y используют ломаную линию связи, которая преломляется под прямым углом на постоянной прямой чертежа k_0 , проведённой под углом 45° к оси Y (рис. 1.2).

Комплексный чертёж прямой

Прямая линия бесконечна. Две точки прямой определяют её положение в пространстве. Положение прямой можно задать также одной точкой и направлением (рис. 1.3).

Рис. 1.2 Комплексный чертёж точки

Рис. 1.3 Комплексный чертёж прямой

Комплексный чертёж плоскости

Плоскость в пространстве определяется тремя точками, не лежащими на одной прямой — $\Sigma(A,B,C)$. Ту же плоскость можно задать точкой и прямой — $\Sigma(a,C)$, двумя пересекающимися прямыми — $\Sigma(a\cap b)$, двумя параллельными прямыми — $\Sigma(a\parallel b)$. Наиболее наглядно задание плоскости представляется тремя точками, соединёнными отрезками прямых, то есть треугольником. На комплексном чертеже любая плоскость может быть задана проекциями элементов, определяющих её положение в пространстве (рис. 1.4). В ходе решения задачи иногда приходится переходить от одного задания плоскости к другому.

1.1 Контрольные вопросы

- 1. В чём состоит метод проецирования?
- 2. Почему чертежи называются проекционными?
- 3. Перечислите свойства ортогонального проецирования.
- 4. Какой проекционный чертёж является обратимым?
- 5. Как образуется эпюр Монжа? Дайте определение комплексного чертежа.
- 6. Как образуется трёхкартинный комплексный чертёж?
- 7. Что представляет собой постоянная прямая чертежа k_0 ?

Рис. 1.4 Комплексный чертёж плоскости

- 8. Что на комплексном чертеже является характерным признаком параллельности прямых в пространстве?
- 9. Что на комплексном чертеже является характерным признаком пересекающихся в пространстве прямых?
- 10. Что на комплексном чертеже является характерным признаком скрещивающихся в пространстве прямых?
- 11. Перечислите варианты взаимного положения точки и прямой.

1.2 Задачи

1. Построить комплексный чертёж точек A(70,20,0) и B(20,40,30). Обозначить высоту и глубину точек. Через точки A и B провести прямую $a(a_1,a_2)$ и представить её положение в пространстве.

2. Определить положение точек A, B, C, D, E относительно прямой l. Ответ записать в таблице.

Точка	Положение относительно <i>l</i>
A	
В	
С	
D	
Е	

3. На комплексном чертеже задать плоскости общего положения:

4. Определить взаимное положение двух прямых.

Прямые и плоскости частного положения

Рис. 2.1 Прямые уровня

Рис. 2.2 Проецирующие прямые

Прямые и плоскости, перпендикулярные или параллельные плоскостям проекций, называются соответственно прямыми и плоскостями *частного положения*, в отличие от прямых и плоскостей общего положения, которые наклонены к плоскостям проекций.

Прямые и плоскости, параллельные какой-либо плоскости проекций, называются прямыми и плоскостями *уровня*.

Прямые и плоскости, перпендикулярные какой–либо плоскости проекций, называются проецирующими.

Рис. 2.3 Плоскости уровня

Рис. 2.4 Проецирующие плоскости

2.1 Контрольные вопросы

- 1. Что такое горизонталь? Как расположены её проекции? Основные свойства горизонтали.
- 2. Что такое фронталь? Как расположены её проекции? Основные свойства фронтали.
- 3. Что такое профильная прямая? Как расположены её проекции? Основные свойства профильной прямой.
- 4. Какая прямая называется прямой общего положения?
- 5. Как отображается ориентация проецирующей прямой в названии?
- 6. Свойства проецирующей прямой.
- 7. Что такое конкурирующие точки?
- 8. Перечислите названия плоскостей в зависимости от их положения по отношению к плоскостям проекций.
- 9. Какая плоскость называется плоскостью общего положения?

2.2 Задачи

1. Через точку A провести горизонтально–проецирующую прямую $a(a_1, a_2)$, фронтально–проецирующую прямую $b(b_1, b_2)$, профильно–проецирующую прямую $c(c_1, c_2)$.

2. Через точку A провести горизонталь h под углом 45° к Π_2 и фронталь f под углом 30° к Π_1 .

3. Через точку A провести горизонталь h и фронталь f, пересекающие прямую l.

4. Через точку A провести горизонтально–проецирующую плоскость Σ под углом 30° к Π_2 , фронтально–проецирующую плоскость Δ под углом 45° к Π_1 , а также горизонтальную и фронтальную плоскости уровня Θ и Ψ .

5. Через прямую l провести горизонтально–проецирующую плоскость Σ и фронтально–проецирующую плоскость Δ .

6. Через точку A провести плоскости уровня: горизонтальную Σ , фронтальную Δ и профильную Γ .

7. Через прямые $l \perp \Pi_2$ и $m \perp \Pi_1$ провести всевозможные плоскости частного положения.

Позиционные задачи

Под *позиционными* задачами понимаются задачи на определение взаимного положения различных геометрических фигур. К ним относятся задачи на взаимную принадлежность и на пересечение.

Задачи на взаимную принадлежность

Точка принадлежит прямой, если проекции точки принадлежат одноимённым проекциям прямой: $A \in a \iff A_1 \in a_1, A_2 \in a_2$ (рис. ??).

Прямая лежит в плоскости, если две любые её точки принадлежат этой плоскости: $l \subset \Sigma(A, B, C) \iff l \cap AB = 1, \ l \cap AC = 2$ (рис. ??).

Точка принадлежит плоскости, если она принадлежит какой-либо прямой, лежащей в этой плоскости: $M \in \Sigma(A, B, C) \iff M \in l, \ l \subset \Sigma(A, B, C)$ (рис. ??).

Задачи на пересечение

Пересечение прямой общего положения с проецирующей плоскостью

Построим точку $K(K_1,K_2)=l(l_1,l_2)\cap\Sigma(\Sigma_2)$ (рис. ??) и определим видимость участков прямой l. Полупрямая, находящаяся выше плоскости Σ , будет видимой на Π_1 .

Пересечение проецирующей прямой с плоскостью общего положения

Построим точку $K(K_1, K_2) = l(l_1, l_2) \cap \Lambda(A, B, C), l \perp \Pi_1$ (рис. ??):

- $l_1 \equiv K_1$;
- строим недостающую проекцию K_2 точки K:
 - проводим прямую $a(a_1)$, проходящую через точку $K(K_1)$ и лежащую в плоскости Λ ;
 - строим a_2 , учитывая, что $a \subset \Lambda$;
 - получаем $K_2 = a_2 \cap l_2$;
- видимость прямой l определяем способом конкурирующих точек.

Пересечение проецирующей плоскости с плоскостью общего положения

Построим прямую $l(l_1, l_2) = \Delta(\Delta_2) \cap \Psi(A, B, C)$ (рис. ??):

- $l_2 \equiv \Delta_2$;
- строим l_1 , учитывая, что $l \subset \Psi$;

Пересечение прямой общего положения с плоскостью общего положения (первая основная позиционная задача)

Построим точку $K(K_1, K_2) = l(l_1, l_2) \cap \Theta(A, B, C)$ и определим видимость прямой l (рис. ??):

- через прямую l проводим вспомогательную проецирующую плоскость, например фронтально–проецирующую плоскость $\Delta(\Delta_2)$;
- строим прямую $m(m_1, m_2) = \Delta \cap \Theta$;
- отмечаем $K_1 = m_1 \cap l_1$, затем $K_2 \in l_2$;
- видимость прямой l определяем способом конкурирующих точек. Конкурирующими называются точки, расположенные на одном проецирующем луче. При виде сверху на Π_1 видимой будет та точка, высота которой больше. При виде спереди на Π_2 видимой будет та точка, глубина которой больше.

Пересечение двух плоскостей общего положения (вторая основная позиционная задача)

Построим прямую $l(l_1, l_2)$ пересечения двух плоскостей $\Phi(a \cap b)$ и $\Omega(c \parallel d)$ общего положения (рис. ??):

- проводим вспомогательную проецирующую плоскость $\Delta(\Delta_2)$;
- строим две прямые $m = \Phi \cap \Delta$ и $n = \Omega \cap \Delta$;
- отмечаем точку $A = m \cap n$;
- проводим ещё одну вспомогательную проецирующую плоскость Ξ (лучше, если $\Xi \parallel \Delta$);
- строим две прямые $q = \Phi \cap \Xi$ и $r = \Omega \cap \Xi$;
- отмечаем точку $B = q \cap r$;
- получаем искомую прямую l(A, B).

Параллельность прямой и плоскости

Прямая параллельная плоскости, если она параллельна какой-либо прямой, лежащей в этой плоскости: $l \parallel m \subset \Sigma \Longrightarrow l \parallel \Sigma$ (рис. ??).

Параллельность двух плоскостей

Плоскости параллельны, если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости: $a \cap b, \ m \cap n, \ a \parallel m, \ b \parallel n \Longrightarrow \Theta(a \cap b) \parallel \Phi(m \cap n)$ (рис. ??).

3.1 Контрольные вопросы

- 1. Какие задачи называются позиционными?
- 2. В каких случаях точка принадлежит прямой; плоскости?
- 3. Когда прямая принадлежит плоскости?
- 4. Как решается первая основная позиционная задача?
- 5. Как определить на чертеже видимость точек и прямых?
- 6. В чём заключается способ плоскостей-посредников?
- 7. Как решается вторая основная позиционная задача?
- 8. Сформулируйте условие параллельности прямой и плоскости.
- 9. Как построить плоскость, параллельную заданной?

3.2 Задачи

- 1. Определить, лежит ли прямая a в плоскости Θ в следующих случаях:
- 2. Достроить недостающие проекции прямой l и точки M при условии их принадлежности плоскости $\Lambda(A,B,C)$.
- 3. Достроить горизонтальную проекцию **плоского** пятиугольника *ABCDE*.
- 4. Построить горизонталь h и фронталь f, принадлежащие плоскости $\Xi(A, B, C)$.
- 5. С помощью новых линий уровня построить в плоскости $\Phi(h \cap f)$ отрезок AB, разно-имённые концы которого заданы.
- 6. Построить точку $K = m \cap \Delta$ и определить видимость прямой m.
- 7. Через точку N провести прямую n, пересекающую скрещивающиеся прямые a и b.
- 8. Определить проекции прямой q как результат пересечения
- 9. Определить положение прямой r относительно плоскости Δ .
- 10. Через точку R провести плоскость, параллельную прямым s и t.
- 11. Через точку S провести плоскость, параллельную плоскости Ψ .
- 12. Достроить проекции прямой u, параллельной плоскости Ω .
- 13. Через точку T провести прямую v, параллельную плоскости Σ .

Метрические задачи

Метрическими называются задачи, связанные с определением расстояний и углов между геометрическими фигурами.

Определение натуральной величины отрезка прямой способом прямоугольного треугольника

Натуральной величиной отрезка AB является гипотенуза прямоугольного треугольника $A\tilde{B}B$, у которого один катет равен горизонтальной проекции отрезка: $A\tilde{B}=A_1B_1$, а другой — разности высот концов отрезка: $\delta Z=B\tilde{B}=BB_1-AA_1$.

Рассмотрим комплексный чертёж. Пусть отрезок AB задан проекциями A_1B_1 и A_2B_2 . Построим прямоугольный треугольник $A_1B_1\bar{B}$ по катетам A_1B_1 и $B_1\bar{B}=\delta Z_{AB}$. Треугольник $A_1B_1\bar{B}$ равен треугольнику $A\bar{B}B$. Гипотенуза $A_1\bar{B}$ — натуральная величина отрезка AB. Полученный угол α определяет величину наклона отрезка AB к плоскости Π_1 .

Аналогично определяется натуральная величина отрезка по его фронтальной проекции и разности глубин его концов.

Ортогональная проекция прямого угла

Теорема. Прямой угол, одна сторона которого параллельна плоскости проекций, а другая не перпендикулярна ей, проецируется в прямой угол.

Следствие. Если одна из сторон прямого угла является горизонталью, то прямой угол проецируется без искажения на Π_1 ; если фронталью — на Π_2 ; если профильной прямой — на Π_3 .

Теорема верна как для пересекающихся прямых, так и для скрещивающихся. Углом между скрещивающимися прямыми называется угол, образованный двумя пересекающимися прямыми, параллельными скрещивающимся.

Перпендикулярность прямой и плоскости

Теорема. Если прямая l перпендикулярна плоскости Θ , то горизонтальная проекция прямой l перпендикулярна горизонтальной проекции горизонтали $(l_1 \perp h_1)$, а фронтальная проекция — фронтальной проекции фронтали $(l_2 \perp f_2)$ плоскости Θ :

$$l \perp \Theta(h \cap f) \iff l_1 \perp h_1, l_2 \perp h_2.$$

Перпендикулярность плоскостей

Две плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой. Через точку можно провести сколь угодно много плоскостей, перпендикулярных другой плоскости; через прямую — только одну.

$$a_1 \perp h_1, a_2 \perp f_2 \Longrightarrow \Lambda(h \cap f) \perp \Gamma(a \cap b)$$

Линии наибольшего наклона

Линии наибольшего наклона данной плоскости к плоскости проекций — прямые, лежащие в плоскости и составляющие с плоскостями проекций наибольшие углы.

Теорема. Прямые, лежащие в плоскости и перпендикулярные линиям уровня этой плоскости, являются линиями наибольшего наклона.

 $AH \perp h$ — линия наибольшего наклона плоскости $\Psi(A,B,C)$ к плоскости Π_1 , $\alpha = \angle(\Psi,\Pi_1)$;

 $KF \perp f$ — линия наибольшего наклона плоскости $\Omega(K,L,M)$ к плоскости Π_2 , $\beta = \angle(\Omega,\Pi_2)$.

4.1 Контрольные вопросы

- 1. Какие задачи называются метрическими?
- 2. Как можно определить углы наклона прямой к плоскостям проекций?
- 3. В чём состоит способ прямоугольного треугольника?
- 4. В каком случае прямой угол проецируется в прямой?
- 5. Как определить угол между скрещивающимися прямыми?
- 6. Когда две плоскости взаимно перпендикулярны?
- 7. Что такое линии наибольшего наклона?
- 8. Как определить угол наклона плоскости к плоскостям проекций?

4.2 Задачи

- 1. Определить натуральную величину отрезков AB и CD способом прямоугольного треугольника, используя
- 2. Достроить недостающие проекции прямого угла, образованного пересекающимися прямыми m и n.
- 3. Из точки A опустить перпендикуляр на горизонталь h и фронталь f и определить его длину.
- 4. Через точку E провести горизонталь h и фронталь f, перпендикулярные прямой l.
- 5. Построить проекции ромба ABCD, если даны диагональ и проекция A_1 точки A.
- 6. Через точку T провести прямую r, перпендикулярную данной плоскости:
- 7. Определить расстояние от точки S до плоскости $\Delta(A, B, C)$.
- 8. Построить точку N, симметричную точке M относительно плоскости $\Gamma(A, B, C)$.
- 9. Через точку Q провести плоскость Σ , перпендикулярную данной прямой:
- 10. Определить расстояние от точки R до прямой t.
- 11. Построить геометрическое место точек, равноудалённых от точек U и V.

- 12. На прямой v найти точку, равноудалённую от точек U и W.
- 13. Из точки A построить перпендикуляр к плоскости $\Theta(A,B,C)$ длиной 40 мм.
- 14. Используя линии наибольшего наклона, определить угол наклона плоскости $\Lambda(Q,R,S)$:
- 15. Через прямую $n(n_1, n_2)$ провести перпендикулярную плоскость Ξ :
- 16. Построить горизонтальную проекцию **равнобедренного** треугольника *RST*, основанием которого служит отрезок $RS \parallel \Pi_1$.

Способы преобразования комплексного чертежа

Решение позиционных и метрических задач значительно упрощается, если геометрические объекты занимают частное положение относительно плоскостей проекций. В связи с этим в курсе начертательной геометрии большое внимание уделяется преобразованиям комплексного чертежа.

Способ замены плоскостей проекций

Данный способ состоит в переходе от данной системы, в которой заданы проекции объекта, к новой системе взаимно перпендикулярных плоскостей.

Замена одной плоскости проекций

Пусть точка $A(A_1,A_2)$ определена в системе плоскостей проекций (Π_1,Π_2) (рис. ??). Введём новую плоскость проекций $\Pi_4 \perp \Pi_1$, и спроецируем на неё точку A. Теперь точка $A(A_1,A_4)$ определена в новой системе плоскостей проекций (Π_1,Π_4), причём её высота остаётся неизменной: $AA_1 = A_2A_{12} = A_4A_{14}$.

Новая система плоскостей проекций представляет собой две взаимно перпендикулярные плоскости, одна из которых взята из старой системы, а вторая выбирается так, чтобы проекция объекта на неё давала наилучшее представление нём для получения решения.

Замена двух плоскостей проекций

Продолжим процесс замены плоскостей проекций. Перейдём от системы (Π_1 , Π_4) к новой системе (Π_4 , Π_5), заменив плоскость проекций Π_1 на Π_5 (рис. ??). При этом нужно руководствоваться следующими правилами:

- новые линии связи перпендикулярны к новой оси;
- расстояния новых проекций точек от новой оси равны расстояниям заменяемых проекций от предыдущей оси.

Основные задачи, решаемые способом замены плоскостей проекций

Задача 1. Преобразовать прямую $l(l_1, l_2)$ общего положения (рис. ??) в линию уровня в новой системе плоскостей проекций.

Решение. Пусть мы хотим, чтобы прямая l в новой системе плоскостей проекций была фронталью. Для этого плоскость Π_2 заменим на плоскость $\Pi_4 \parallel l$. Таким образом, в новой системе (Π_1, Π_4) прямая l является фронталью.

Задача 2. Преобразовать прямую $m(m_1, m_2)$ общего положения (рис. ??) в проецирующую прямую в новой системе плоскостей проекций.

Решение. Прямую общего положения нельзя одной заменой плоскости проекций преобразовать в проецирующую. Поэтому сначала нужно преобразовать прямую m в линию уровня $m(m_1, m_4)$, а затем заменой второй плоскости проекций — в проецирующую прямую $m(m_4, m_5)$.

Задача 3. Преобразовать плоскость $\Xi(A,B,C)$ общего положения (рис. ??) в проецирующую плоскость в новой системе плоскостей проекций.

Решение. Пусть мы хотим, чтобы плоскость Ξ в новой системе плоскостей проекций была фронтально–проецирующей. Построим горизонталь $h \subset \Xi$ и и заменим плоскость Π_2 на плоскость Π_4 . Таким образом, в новой системе (Π_1, Π_4) плоскость Ξ является фронтально–проецирующей.

Задача 4. Преобразовать фронтально–проецирующую плоскость $\Xi(A,B,C)$ (рис. ??) в плоскость уровня в новой системе плоскостей проекций.

Решение. Заменим плоскость Π_1 на плоскость $\Pi_5 \parallel \Xi$. Таким образом, в новой системе (Π_4, Π_5) плоскость Ξ является горизонтальной.

Способ плоскопараллельного движения

 Π лоскопараллельным движением фигуры в пространстве называется такое её перемещение, при котором все точки фигуры перемещаются в параллельных плоскостях. Если фигура совершает плоскопараллельное движение относительно плоскости Π_1 , то фронтальные проекции её точек перемещаются по прямым, перпендикулярным линиям связи, а горизонтальная проекция фигуры не изменяет своей величины.

Основные задачи, решаемые способом плоскопараллельного движения

Задача 1. Преобразовать прямую n(D, E) общего положения (рис. ??) в линию уровня (фронталь), используя плоскопараллельное движение относительно плоскости Π_1 . *Решение*. Устанавливаем прямую n в положение фронтали ($\bar{n}_1 \parallel OX_{12}$). Фронтальную проекцию получаем на пересечении линий связи новой горизонтальной проекции с плоскостями Σ^D и Σ^E , в которых перемещаются соответственно точки D и E.

Задача 2. Преобразовать линию уровня (фронталь) $\bar{n}(\bar{D},\bar{E})$ (рис. ??) в проецирующую (горизонтально–проецирующую), используя плоскопараллельное движение относительно плоскости Π_2 .

Решение. Устанавливаем прямую \bar{n} в горизонтально–проецирующее положение ($\bar{n}_2 \perp OX_{12}$). Горизонтальную проекцию получаем на пересечении линии связи новой фронтальной проекции с плоскостью Δ , в которой перемещаются точки \bar{D} и \bar{E} .

Задача 3. Преобразовать плоскость $\Theta(T,U,V)$ общего положения (рис. ??) в проецирующую (фронтально–проецирующую), используя плоскопараллельное движение относительно плоскости Π_1 .

Решение. Построим горизонталь $h(h_1,h_2)$ ⊂ Θ и переместим плоскость Θ до положения, когда её горизонталь займёт фронтально–проецирующее положение ($\bar{h}_1 \perp OX_{12}$). Так как горизонталь \bar{h} стала фронтально–проецирующей, то и плоскость $\bar{\Theta}$ оказывается фронтально–проецирующей.

Задача 4. Преобразовать проецирующую плоскость $\bar{\Theta}(\bar{T},\bar{U},\bar{V})$ (рис. ??) в плоскость уровня (горизонтального уровня), используя плоскопараллельное движение относительно плоскости Π_2 .

Решение. Устанавливаем плоскость $\bar{\Theta}$ в горизонтальное положение ($\bar{\Theta}_2 \parallel OX_{12}$). Горизонтальная проекция $\bar{\Theta}_1$ будет давать натуральную величину плоскости $\bar{\Theta}$.

Способ вращения вокруг проецирующей оси

Способ вращения вокруг проецирующей оси является частным случаем плоскопараллельного движения, при котором все точки фигуры движутся в плоскостях, параллельных плоскости проекций. Центры окружностей принадлежат проецирующей оси; величины радиусов равны расстоянию от вращаемых точек до оси.

Основные задачи, решаемые способом вращения вокруг проецирующей оси

Задача 1. Повернуть прямую q вокруг горизонтально–проецирующей оси i до положения прямой уровня.

Решение.

Задача 2. Повернуть прямую уровня \bar{q} вокруг фронтально–проецирующей оси j до положения проецирующей прямой.

Решение.

Задача 3. Повернуть плоскость LMN общего положения вокруг горизонтально–проецирующей оси i до положения проецирующей плоскости.

Решение.

Задача 4. Повернуть проецирующую плоскость $\bar{L}\bar{M}\bar{N}$ вокруг фронтально–проецирующей оси j до положения плоскости уровня.

Решение.

Способ вращения вокруг линии уровня (совмещение)

Способ вращения вокруг линии уровня используют для определения натуральных величин элементов плоских фигур в тех случаях, когда данную плоскую фигуру можно совместить с плоскостью уровня.

Рассмотрим сначала вращение точки W вокруг горизонтали h до совпадения её с горизонтальной плоскостью $\Sigma(\Sigma_2)\supset h$ (рис. ??). Точка W поворачивается в горизонтально–проецирующей плоскости $\Lambda(\Lambda_1)\perp h$. Центр вращения — точка $O=\Lambda\cap h$. Величина радиуса R^A определяется способом прямоугольного треугольника.

Усложним задачу. Определим натуральную величину треугольника STU с помощью его вращения вокруг горизонтали h. Допустим, мы провели горизонталь через точку S. Тогда для получения натуральной величины треугольника STU достаточно повернуть только точки T и U, дважды выполнив алгоритм, описанный в предыдущей задаче.

5.1 Контрольные вопросы

- 1. С какой целью применяются преобразования комплексного чертежа?
- 2. В чём состоит различие способов замены плоскостей проекций и плоскопараллельного перемещения?
- 3. Как формулируются четыре основные задачи преобразования?
- 4. Сформулируйте основное правило замены плоскостей проекций.
- 5. Что общего у способов преобразования чертежа плоскопараллельным перемещением и вращением вокруг проецирующей прямой?
- 6. Опишите способ вращения вокруг прямой уровня.