

Guía de problemas G2

Resolución del ejercicio 22

En <u>modo presentación</u>, haga click sobre este icono para escuchar la explicación correspondiente a cada ítem

Enunciado

El CS_2 tiene una presión de vapor de 298mmHg a la temperatura de 20°C. Se coloca una muestra de 6g, de dicho material, en un sistema cilindro - pistón móvil cerrado. Se lo mantiene sumergido en un baño termostático de agua, a la temperatura constante de 20°C.

- A. ¿Cuál será el volumen máximo que se alcanzaría si el sistema se mantiene en equilibrio líquido vapor?
- B. Si el pistón se regula de tal forma que el volumen del cilindro fuera de 3L, contestar justificando las siguientes preguntas:
- b₁)¿Cuál sería la presión del gas en el cilindro?
- o b₂)¿Cuántas fases tendría el sistema?
- b₃)¿Qué masa de CS₂ hay en cada fase?
- C. Contestar las mismas preguntas del punto b), en el caso que el volumen del cilindro fuera de 7L.
- D. Ubicar sobre un hipotético diagrama p vs T los resultados obtenidos en los puntos a), b) y c).

Ítem A

- \circ CS₂ (sulfuro de carbono): $M_R = 76g/mol$.
- A una T=20°C=293K presenta una Pvap=298mmHg=0,392atm.
- Se coloca una m_0 =6g, lo cual equivalen a n_0 =0,079moles de CS₂.
- Tal que exista equilíbrio líquido-vapor. Si existe este equilibrio, la presión del sistema será igual a la Pvap. De esta forma:

$$V_{max} = \frac{n_0 * R * T}{P_{vap}} = \frac{0.079 \, mol * 0.082 \, atm \, L * 293 \, K}{(0.392 \, atm) \, K \, mol} = 4.84 \, L$$

Ítem B

Si el volumen es de 3L (V₁), como este es menor que Vmax, todavía habrá equilibrio líquido-vapor, pero habrá menos cantidad del compuesto en fase vapor. De esta forma:

$$n_1 = \frac{V_1 * P_{vap}}{R * T} = \frac{3L * 0.392 \ atm}{0.082 \frac{atm \ L}{K \ mol} * 293 \ K} = 0.05 \ mol$$

- O Lo que equivale a una $m_1=3,72g$.
- O Así, el sistema será heterogéneo, tendrá dos fases, 3,72g de CS_2 en fase vapor y 2,28g de CS_2 en fase líquida. La presión será Pvap=0,392atm.

Ítem C

O Si el volumen es de 7L (V_2), como este es mayor que Vmax, ya no habrá equilibrio líquidovapor, por lo que la cantidad de CS_2 en fase vapor será la inicial (n_0) y estos ejercerán una presión (P_2) menor a Pvap. De esta forma:

$$P_2 = \frac{n_0 * R * T}{V_2} = \frac{0.079 \, mol * 0.082 \, \frac{atm \, L}{K \, mol} * 293 \, K}{7L} = 0.271 \, atm$$

Así, el sistema será homogéneo, tendrá una fase de 6g de CS_2 en fase vapor. La presión será P_2 =0,271atm

Ítem D

Recordar que 1 atm= 760 mmHg

