

Abschlusspräsentation PSE

Kamerabasierte Steuerung eines Mikroquadrokopterschwarms

Daniela Grimm, Dennis Keck, Dominik Kiefer, Carina Kübler, Sebastian Schmidt, Lukas Werling

Implementierung eines Steuerungssystems für einen oder mehrere gleichzeitig fliegende Mikroquadrokopter

- Tracking und Positionsbestimmung der Quadrokopter mit Hilfe von Kinect-Kameras

- Implementierung eines Steuerungssystems für einen oder mehrere gleichzeitig fliegende Mikroquadrokopter
- Flugsteuerung einzelner Quadrokopter und des Schwarms
- Positionsdarstellung und Steuerung durch die GUI

Geplante Herausforderungen

Problem: Echtzeitsystem
- Lösung: Schnelle Rechner, Nutzung
vorhandener schneller
Softwarebibliotheken (OpenCV, cvBlob)

Geplante Herausforderungen

Problem: Drahtlose Kommunikation

- Lösung: Bereitgestellt durch cflib

Geplante Herausforderungen

Problem: Unterscheidung einzelner Quadrokopter

- Lösung: Farbbasiertes Tracking

Problem: Verteiltes System

- Lösung: ROS

Modulübersicht

Kameramodul

Kamerakalibrierung

Farbbasiertes Tracking eines Quadrokopters in Echtzeit

Tracking ist zeitkritisch

Komplexe Software zur Bildverarbeitung

Endergebnis

- Funktionierendes farbbasiertes Tracking mehrerer Quadrokopter
- Visualisierung des Trackings
- Funktionierende Kamerakalibrierung

Positionsmodul

Multikamerakalibrierung

Berechnung von Quadrokopterpositionen aus Kameradaten

Berechnung der Geometrie des Trackingbereiches

Multikamerakalibrierung mit der amcctoolbox

Lösung: enger Kontakt mit Entwickler

Transformation des Kamerakoordinatensystems parallel zum Boden

Geschwindigkeit der Positionsberechnung

Lösung: Berechnung ohne Matlab

Finden einer geeigneten Form des Trackingbereiches

Lösung: Zwei aufeinanderstehende Pyramiden

Gegenübergestellte Kameras liefern ungenaue Daten

Lösung: Verwerten der Daten nur bei Winkel > PI/8

Synchronisation der Kameradaten

Lösung: Zeitsynchronisation mit NTP

Endergebnis

- Tracking funktioniert schnell genug bei langsamen Bewegungen
- Geschwindigkeit der Crazyflies zu hoch
- Rauschen <1mm bei stehendem Quadrokopter
- Fehler ca. 5-10cm bei guter Kalibrierung

Steuerungsmodul

Ziel

- Quadrokopter Einzelsteuerung
 - Starten und Landen
 - Stabilisierung
 - Bewegung
- Formationssteuerung
 - Aufbau einer Formation
 - Rotation der Formation um einen Punkt
 - Bewegung der Formation

- Problem: Batterieabhängigkeit der Motorleisung
 - Lösung: Alle Thrust-Werte werden batterieabhängig berechnet
- Problem: Stabilisierung in z-Richtung
 - Lösung: PID-Regler für Thrust-Werte

- Problem: Stabilisierung in x- und y-Richtung
 - Lösung: P-Regler für Pitch- und Roll-Werte
- Problem: Orientierung der Quadrokopter
 - Lösung: Verwendung von Yawrate-Werten in einem weiteren P-Regler

- Problem: Geeignete Koeffizienten zur Regelung
 - Lösung: Findung durch Tests
- Problem: Höhere Latenzen der Bilddaten bei schnelleren Bewegungen
 - Lösung: Notfallroutine um zurück in den Trackingbereich zu gelangen

Endergebnis

- Alle Funktionalitäten implementiert
- Steuerung der Quadrokopter (Thrust, Roll, Pitch und Yaw)
- Annäherung an gesetztes Ziel und Gegenlenken bei Abweichung
- Quadrokopter können sich größtenteils stabilisieren
- Landeprozess bei Verlassen des Trackingbereichs oder Shutdown-Befehl

Quadrokoptermodul

Funktionalität

Auslesen der Sensorwerte Steuerung der Quadrokopter

Crazyflie

"Open platform" Nano-Quadrokopter

Crazyflie Sensoren

- 3-Achsen Gyrometer & Accelerometer
 - 3-Achsen Magnetometer
 - Altimeter (Barometer)

Mehrmals Änderungen an dem Crazyflie SDK, Umbenennung der Sensorvariablen

Teilweise nur schlechte und veraltete Dokumentation

API

Funktionalität

Einheitliche Schnittstelle zum verteilten Gesamtsystem

Funktionalität

Controller Funktionalität für die GUI nach dem MVC Modell

GUI-Applikation

GUI-Applikation

Ziel

Ziel

- Steuerzentrale
 - Multikamerakalibrierung
 - Systemstart
 - Verwaltung der Quadrokopter
- 3D-Ansicht

- Parallele Entwicklung der API
 - Blockierte Entwicklung der GUI
 - Testen und Debugging gleichzeitig für beide Module

Integration verschiedener Bibliotheken

Fazit

- Aufwendiger Entwicklungszyklus
 - Immer Neustart des Gesamtsystems Notwendig
 - Zugriff via VNC
 - Bedienung der GUI nicht automatisierbar
- Kaum automatisiertes Testen möglich

- Häufige Reparaturen von kaputten Quadrokoptern
- Abhängigkeit aller Module
 - Entwicklung
 - Problemerkennung
 - Testen

- Stabilisierung der Quadrokopter
- Einschränkungen des selbstentwickelten Tracking mit Kinects:
 - Zu hohe Latenz bei hoher Fluggeschwindigkeit
 - Kleiner Trackingbereich
- Wahl der Koeffizienten der Regler

Endergebnis

- Sprachen: C++, Python
- Tools:
 - cflih
 - libfreenect, OpenCV, cvBlob
 - ROS
 - Matlab, AMCC Toolbox
 - Irrlicht, SDL, Qt

Endergebnis

- Tracking der Quadrokopter mit Hilfe von Kinect-Kameras
- Positionsbestimmung der Quadrokopter mit Hilfe von Matlab
- Kommunikation durch ROS
- Flugsteuerung und Steuerung durch die GUI
- API

Ausblick

- Andere Trackingansätze
 - Infrarotmarker
 - Tiefensensor
 - Hardwaresynchronisierte Kameras
- Andere Steuerungsansätze
 - Vorberechnung der Position
 - Komplexere Regler