Tokamak Reactor Requirement Validation Document

The Original Requirements Document

- Magnetic rods generate energy for the reaction
 - a. In the middle of the ring
 - b. Deuterium and tritium are fused into helium

The Validation Document

- Customer verifies that enough power has been generated
 - a. Can determine how much power is required
 - Donut Chamber.determineRequiredPower
 - assert(min required power>0)
 - b. Can determine how much power has been generated
 - Donut Chamber.absorbParticles
 - assert(heat>0)
 - assert(output==True)
 - c. Calculates generated power from both functions

The Original Requirements Document

- Fusion occurs in a donut-shaped chamber
 - a. One deuterium molecule and one tritium molecule are required in order to create one helium molecule
 - b. The electrical current is 3MA (3,000,000 Amperes)

The Validation Document

- Customer verifies that the chamber is donut-shaped to produce fusion
 - a. The chamber itself will be donut-shaped
 - b. It will contain magnetic rods to produce power
 - c. These rods can be adjusted to increase or decrease the amount of power being generated
 - Donut Chamber.increasePower
 - assert(amount>0)
 - assert(power>=min required power)
 - Donut Chamber.decreasePower
 - \blacksquare assert(amount>0)
 - assert(power>=min required power)

The Original Requirements Document

• Simulating forces on every particle

- a. Strong nuclear force rips fused particles apart
- b. Weak nuclear force causes particles to repel
- c. Gravity pulls particles together
- d. Magnetic force pulls particles together

The Validation Document

- Customer verifies that all four forces act on every particle
 - a. Strong Nuclear Force returns the effect on each particle
 - Strong Nuclear Force.effect
 - b. Weak Nuclear Force returns the effect on each particle
 - Weak Nuclear Force.effect
 - c. Gravity returns the effect on each particle
 - Gravity.effect
 - d. Magnetic Force returns the effect on each particle
 - Magnetic Force.effect
 - e. None of the effects are able to be zero
 - assert(Force!=0)

The Original Requirements Document

- The user can manipulate the simulation
 - a. Zoom in & out
 - b. Single particle zoom
 - c. Multiple particle zoom
 - d. System View

The Validation Document

- Customer verifies that the simulation can be manipulated by the user
 - a. Can verify that the zoom level has changed
 - GUI.ChangeZoom
 - assert(self.zoom!=tempZoom)
 - \blacksquare assert(zoom>=0)
 - \blacksquare assert(zoom<=150)
 - b. Can zoom to view a single particle
 - GUI.ChangeZoom
 - assert(self.zoom!=tempZoom)
 - \blacksquare assert(zoom>=0)
 - \blacksquare assert(zoom<=150)
 - c. Can configure the zoom to view multiple particles
 - GUI.ChangeZoom
 - assert(self.zoom!=tempZoom)

- assert(zoom>=0)
- \blacksquare assert(zoom<=150)
- d. Changes the speed of the playback, which is 0.5 of a billionth of real-time speed to 1.5 billion times real-time speed
 - GUI.ChangeSpeed
 - \blacksquare assert(speed>=0.5)
 - assert(speed<=1.5)</pre>
 - assert(self.speed!=tempSpeed)