Predicting task-evoked activity from resting-state data

Elvis Dohmatoh

(with B. Thirion and G. Varoquaux)

Parietal Team, INRIA

October 31, 2017

Table of contents

- Introduction
- 2 Methods
- Results
- 4 Concluding remarks

Introduction

Brain function regions and networks

Part of the language network

(Picture is courtesy of Gael Varoquaux)

A zoom on brain-decoding

Spontaneous / resting-state brain activity

■ Can we predict task-evoked activity from this?

Can we predict task maps from resting-state data?

- **X**_s: resting-state functional connectivity graph for subject s
- \mathbf{Y}_s : task-specific activation maps for subject s

'Dual regression Parcellations Algorithms

Methods

stacked resting-state data X

- $X_s \in \mathbb{R}^{n_s \times p}$: resting-state data for subject s.
- p = # voxels; $n_s =$ number of 3D scans (i.e time points)

- $\mathbf{X}_s \in \mathbb{R}^{n_s \times p}$: resting-state data for subject s.
- p = # voxels; $n_s =$ number of 3D scans (i.e time points)
- $k \ll \min(p, \min_s n_s)$. E.g $p = 2 \times 10^5$, $\min_s n_s = 1200$, k = 100

- $\mathbf{X}_s \in \mathbb{R}^{n_s \times p}$: resting-state data for subject s.
- p = # voxels; $n_s =$ number of 3D scans (i.e time points)
- $k \ll \min(p, \min_s n_s)$. E.g $p = 2 \times 10^5$, $\min_s n_s = 1200$, k = 100

Subject-specific dictionary

subject dictionary D_s subject loadings C_s

$$\mathbf{C}_s \in \operatorname{argmin}_{\mathbf{C}_s \in \mathbb{R}^{n_s \times k}} \|\mathbf{X}_s - \mathbf{C}_s \mathbf{D}\|_{\operatorname{Fro}}^2 \ (\mathbf{D} = \mathbf{shared} \ \operatorname{dictionary})$$

Subject-specific dictionary

 $\mbox{subject dictionary } D_{{\mathcal S}} \\ \mbox{subject loadings } C_{{\mathcal S}} \\$

$$\begin{array}{l} \blacksquare \mathbf{C}_s \in \operatorname{argmin}_{\mathbf{C}_s \in \mathbb{R}^{n_s \times k}} \| \mathbf{X}_s - \mathbf{C}_s \mathbf{D} \|_{\operatorname{Fro}}^2 \ (\mathbf{D} = \operatorname{shared} \ \operatorname{dictionary}) \\ \blacksquare \mathbf{D}_s \in \operatorname{argmin}_{\mathbf{D}_s \in \mathbb{R}^{k \times p}} \| \mathbf{X}_s - \mathbf{C}_s \mathbf{D}_s \|_{\operatorname{Fro}}^2 \end{array}$$

Subject-specific dictionary

subject dictionary $D_{\it s}$ subject loadings $C_{\it s}$

$$\begin{array}{l} \blacksquare \mathbf{C}_s \in \operatorname{argmin}_{\mathbf{C}_s \in \mathbb{R}^{n_s \times k}} \| \mathbf{X}_s - \mathbf{C}_s \mathbf{D} \|_{\operatorname{Fro}}^2 \left(\mathbf{D} = \operatorname{shared} \text{ dictionary} \right) \\ \blacksquare \mathbf{D}_s \in \operatorname{argmin}_{\mathbf{D}_s \in \mathbb{R}^{k \times p}} \| \mathbf{X}_s - \mathbf{C}_s \mathbf{D}_s \|_{\operatorname{Fro}}^2 \end{array}$$

Subject-level model

subject dictionary \mathbf{D}_s

Parcellations

- Fit a "small" linear model per parcel per subject
- ■Imposes spatial locality
- Piece-linear model

Learning algorithm


```
    parallel for each parcellation P do
    parallel for each parcel M ∈ P do
    parallel for each subjects s do
    Fit a model f̂s for predicting Ys from Ds restricted on the parcel M
    end pararell for
    end pararell for
    end pararell for
```

Prediction algorithm

```
2: parallel for each parcellation \mathcal{P} do
3: parallel for each parcel \mathcal{M} \in \mathcal{P} do
4: \hat{f} \leftarrow bagged linear model for this parcel
5: parallel for each test subject s do
6: Predict \mathbf{Y}_s via \hat{f}_s:
\hat{\mathbf{Y}}_s|_{\mathcal{M}} \leftarrow \hat{\mathbf{Y}}_s|_{\mathcal{M}} + \hat{f}(\mathbf{D}_s|_{\mathcal{M}})
contribution of parcellation \mathcal{P}
```

- 7: end pararell for
- 8: end pararell for
- 9: end pararell for

Introduction Methods **Results** Concluding remarks

Results

Prediction accuracy

Prediction accuracy: confusion matrices

Predicted typographies

- predicted
- ■group mean

Using multiple parcellations improves sample-complexity

Number of parcels transparently controls model complexity

Concluding remarks

rsfmri predicts task-evoked activity

Can we predict task maps from resting-state data?

 \mathbf{x}_s : resting-state functional connectivity graph for subject s

Proposal: Deep semi-supervised voxel encoding

- $\mathbf{Y} \in \mathbb{R}^{p \times C}$: subject-specific GLM maps of brain activity
- $\mathbf{X} \in \mathbb{R}^{p imes T}$: resting-state fMRI data

- Learned the a presentation of task activity in resting-state space!
- This is ongoing application of models developed in previous sections!

Preliminary results: predicted individual maps

2BK vs 0BK contrast of the Working Memory task [van Essen '12]

- ■magenta = population mean
- reference method [Tavor '16]
- proposed method
 - Prediction agrees with subject's topography more faithfully

Preliminary results: quantitative

Confusion matrix for predicted versus true activation maps

Relevant contributions I