Planche no 1. Structures

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice no 1 (***):

Soit (G, \times) un groupe fini (la loi de G est donc notée multiplicativement). Montrer que le groupe (G, \times) est isomorphe à un sous-groupe du $(S(G), \circ)$ où S(G) est l'ensemble des permutations de G (théorème de Cayley). Indication : on pourra considérer les applications $\sigma_x : y \mapsto xy, x \in G$ donné.

Exercice n° 2 (***):

On note $\mathbb{Z}[i]$ l'ensemble des nombres complexes de la forme a + ib, $(a, b) \in \mathbb{Z}^2$.

- 1) Montrer que $\mathbb{Z}[i]$ est un sous-anneau de l'anneau $(\mathbb{C}, +, \times)$ (anneau des entiers de GAUSS).
- 2) Montrer que pour tout $(z, z') \in \mathbb{Z}[i] \times (\mathbb{Z}[i] \setminus \{0\})$, il existe $(q, r) \in (\mathbb{Z}[i])^2$ tel que z = qz' + r et |r| < |z'|.
- 3) Montrer que l'anneau ($\mathbb{Z}[i], +, \times$) est un anneau principal.

Exercice nº 3 (*):

- 1) Quels sont les éléments d'ordre fini du groupe $(\mathbb{C},+)$?
- 2) Quels sont les éléments d'ordre fini du groupe (\mathbb{C}^*, \times) ?

Exercice no 4 (**):

Soit (G, \times) un groupe fini de cardinal impair. Montrer que l'application $f: x \mapsto x^2$ est bijective.

Exercice no 5 (***):

Soit $(A, +, ., \times)$ une \mathbb{R} -algèbre de dimension finie $n \ge 2$, intègre, dont l'élément neutre pour \times est noté 1.

- 1) Soit $a \in A$. Montrer que a est inversible (pour \times) si et seulement si $a \neq 0$ (indication : considérer $f_a : x \mapsto ax$). Que peut-on en déduire?
- **2)** Soit $a \in A$.
 - a) Montrer que a admet un polynôme annulateur non nul.
 - b) Montrer que $\{P \in \mathbb{R}[X]/ P(a) = 0\}$ est un idéal de l'anneau $(\mathbb{R}[X], +, \times)$. En déduire que a admet un polynôme minimal non nul.
 - c) Montrer que le polynôme minimal de \mathfrak{a} est irréductible dans $\mathbb{R}[X]$.
- 3) (****) En déduire que l'algèbre $(A, +, ., \times)$ est isomorphe à l'algèbre $(\mathbb{C}, +, ., \times)$ (\mathbb{C} est donc, à un isomorphisme près, la seule algèbre de dimension finie sur \mathbb{R} et intègre).

Exercice nº 6 (***):

Soit (G, \times) un groupe. Soient H et K deux sous-groupes. On pose $HK = \{hk, \ (h, k) \in H \times K\}$. Montrer que les propriétés suivantes sont équivalentes :

- (1) HK est un sous-groupe du groupe (G, \times)
- (2) KH est un sous-groupe du groupe (G, \times)
- (3) $HK \subset KH$
- (4) $KH \subset HK$.

Exercice no 7 (*):

Soit $(A, +, \times)$ un anneau. Soient x et y deux éléments de A tels que xy est nilpotent. Montrer que yx est nipotent.

Exercice nº 8 (*):

Soit $(A, +, \times)$ un anneau dont l'élément neutre pour \times est noté 1. Soit I un idéal de l'anneau $(A, +, \times)$. Montrer que $I = A \Leftrightarrow 1 \in I$.