Tutorial 13

Exercise 1: Properties of NP-complete problems

- 1. Prove the theorem on Slide 21 of Lecture 13: Let L be NP-complete. If $L \in P$, then P = NP.
- 2. In the picture on Slide 21 of Lecture 13 on the right-hand side, we have not argued why the set of NP-complete problems is (almost) equal to P/NP. Prove that statement, formalized as follows:

If P = NP, every nontrivial problem (i.e., $L \subseteq \Sigma^*$ with $L \neq \emptyset$ and $L \neq \Sigma^*$) in NP is NP-complete.

Solution:

1. Recall the theorem (from Lecture 12, Slide 22) stating that $A \leq_p B$ and $B \in P$ implies $A \in P$. By assumption, we have that L is NP-complete, so we have by definition $A \leq_p L$ for every $A \in NP$. Also, we have that L is in P.

Hence, by plugging in L for B in the theorem, we obtain $A \in P$ for every $A \in NP$, i.e., $NP \subseteq P$.

The other inclusion, i.e., $P \subseteq NP$, holds by definition (see Lecture 12, Slide 14). Hence, we have shown P = NP as required.

2. Let $L \in NP$ be an arbitrary nontrivial problem in NP. We need to prove that L is NP-complete, i.e., that L is NP-hard and in NP. The latter already holds by the choice of L, so we only need to prove the former. We do that by proving $L' \leq_p L$ for all $L' \in NP$.

Fix any $L' \in NP$. By our assumption P = NP, there is a polynomial-time halting DTM for L'; let us call it M'. Also, as L is nontrivial, there are words $w_L^+ \in L$ and $w_L^- \notin L$.

Now, consider the following function f:

$$f(w) = \begin{cases} w_L^+ & \text{if } w \in L', \\ w_L^- & \text{if } w \notin L'. \end{cases}$$

The following Turing machine computes f in polynomial time:

On input w:

- (a) Simulate M' on w.
- (b) If M' accepts, empty the tape and write w_L^+ .
- (c) If M' rejects, empty the tape and write w_L^- .
- (d) Terminate.

Each step takes a polynomial number of steps, so the overall running time is polynomial. Further, the Turing machine obviously computes f.

Finally, we show that $w \in L' \Leftrightarrow f(w) \in L$:

- If $w \in L' = L(M')$, then M' accepts w, which implies $f(w) = w_L^+ \in L$.
- If $w \notin L' = L(M')$, then M' rejects w, which implies $f(w) = w_L^- \notin L$.

Altogether, we have $L' \leq_p L$, as required.

Hence, L is NP-complete.

Exercise 2: 3SAT is NP-hard

Give a polynomial-time reduction from CNF-SAT to 3SAT.

Solution:

We present a reduction from CNF formulas φ into 3CNF formulas $f(\varphi)$ that preserves satisfiability, i.e., φ is satisfiable if and only if $f(\varphi)$ is satisfiable.

Let $\varphi = \bigwedge_{i=1}^n \bigvee_{j=1}^{m_i} \ell_{i,j}$ be an arbitrary formula in CNF. We show how to turn each clause $\bigvee_{j=1}^{m_i} \ell_{i,j}$ into a 3CNF formula ψ_i . Then, the desired 3CNF formula is $f(\varphi) = \bigwedge_{i=1}^n \psi_i$, which is indeed in 3CNF. Consider some clause $\bigvee_{j=1}^{m_i} \ell_{i,j}$. We distinguish several cases for m_i :

- If $m_i = 3$, i.e., the disjunction has already the right length, then we set $\psi_i = \bigvee_{i=1}^{m_i} \ell_{i,j}$.
- If $m_i = 1$, then we define $\psi_i = \ell_{i,1} \vee \ell_{i,1} \vee \ell_{i,1}$ (i.e., we repeat the literal three times). This is logically redundant but does not influence satisfiability.
- If $m_i = 2$, then we define $\psi_i = \ell_{i,1} \vee \ell_{i,2} \vee \ell_{i,2}$ (i.e., we repeat the second literal). Again, this is logically redundant but does not influence satisfiability.
- If $m_i > 3$, then we define $\psi_i = (\ell_{i,1} \vee \ell_{i,2} \vee p_1) \wedge (\neg p_1 \vee \ell_{i,3} \vee p_2) \cdots (\neg p_{m_i-3} \vee \ell_{i,m_i-1} \vee \ell_{i,m_i})$ where the p_j are new variables not occurring in φ . This formula is satisfiable if and only if $\bigvee_{j=1}^{m_i} \ell_{i,j}$ is satisfiable (make sure you understand why this is true).

Each of these cases can be implemented in polynomial time.

Exercise 3: Spot the error

Every now and then, someone claims to have proven P = NP or $P \neq NP$. An incomplete list of "proofs" can be found here: https://www.win.tue.nl/~wscor/woeginger/P-versus-NP.htm Last week, a very famous professor published the following proof that $P \neq NP$:

Proof: Consider the following halting DTM for CLIQUE:

On input $(\lceil G \rceil, k)$:

- 1. Generate all possible subsets of vertices from G.
- 2. If one of these subsets is a k-clique, then accept.
- 3. Otherwise, reject."

Because there are 2^n different subsets of nodes to examine, the algorithm clearly does not run in polynomial time. Therefore, we have proven that CLIQUE has exponential time complexity and this means CLIQUE \notin P. Because we know that CLIQUE \in NP, we conclude that P \neq NP.

Describe the error in the above proof.

Solution:

It is true that the suggested *algorithm* for CLIQUE does not run in polynomial time, but from this fact we cannot conclude that the *language* CLIQUE does not belong to the class P. There can still be other (faster) algorithms for CLIQUE that run in polynomial time; we simply cannot exclude this possibility by presenting one particular algorithm with an exponential running time. To conclude that CLIQUE \notin P, we would have to show *no* halting DTM for CLIQUE has a polynomial time complexity.

Exercise 4: Challenge

Consider the decision problem

Given an undirected graph G, does G have a clique of size 4?

- 1. Express this problem as a language 4CLIQUE.
- 2. Prove $4CLIQUE \in NP$.
- 3. Prove $4CLIQUE \in P$.
- 4. Why is CLIQUE not known to be in P if 4CLIQUE is? Justify your answer.

Solution:

1. The language is

$$4CLIQUE = { \lceil G \rceil \mid G \text{ is an undirected graph with a clique of size } 4}$$

2. We show that $4CLIQUE \in NP$ by constructing a polynomial-time halting NTM:

On input $\lceil G \rceil$:

- (a) Guess C, a set of 4 nodes from G.
- (b) Check that each pair of nodes from C is connected by an edge.
- (c) If this is the case, then accept, else reject.

The running time of this halting NTM is obviously polynomial.

3. In a graph with n nodes, there are

$$\binom{n}{4} = \frac{n!}{(n-4)!4!} \le n(n-1)(n-2)(n-3) = \mathcal{O}(n^4)$$

sets of nodes with exactly 4 elements. We can therefore create the following polynomial-time algorithm for 4CLIQUE:

On input $\lceil G \rceil$:

- 1. For every set C of 4 nodes from G:
 - Check that every pair of nodes from C is connected by an edge.
 - If this is the case, then accept.
- 2. If no set of 4 nodes is a clique, then reject.

Given a graph with n vertices, the algorithm will perform at most $O(n^4)$ traversals of its main loop. Every traversal will require at most n^2 steps, since each edge must be examined at most once. The algorithm therefore has polynomial time complexity.

4. We get no information about CLIQUE from our knowledge that 4CLIQUE ∈ P, since CLIQUE is a different problem, i.e., CLIQUE has two parameters, while 4CLIQUE only has one. Furthermore, for 4CLIQUE, there is a polynomial number of candidates to check (for a fixed polynomial), while for CLIQUE there is no such fixed polynomial that bounds the number of candidates.