Lecture 7: Estimators and Sampling Distributions

Ignacio Urbina

Introduction & Motivation

- Objective: Explore estimators and sampling distributions to assess the probability of obtaining specific estimates, given known distribution assumptions.
- Why is this important?
 - To quantify the likelihood of observing a particular estimate or range of estimates.
 - Analyze the behavior of sample estimates relative to population parameters and underlying assumptions.
- This forms the foundation of **statistical inference**, enabling us to draw conclusions about populations from samples.

Population Parameters vs. Sample Estimators

Population Parameters:

- Fixed values that describe the characteristics of the entire population (e.g., mean μ , variance σ^2).
- These values are typically unknown and constant (at a given point in time).

Sample Estimators:

- Estimator: A function applied to sample data to estimate population parameters.
- Estimate: A specific value calculated from a sample that serves as an approximation of the population parameter.
- **Examples**: Sample mean (\bar{X}) estimates μ , sample proportion (\hat{p}) estimates population proportion, and sample variance (s^2) estimates σ^2 .

Basic Properties of Estimators

- **Unbiasedness**: The expected value of the estimator equals the population parameter (i.e., $E[\hat{\theta}] = \theta$).
- Consistency: As the sample size increases, the estimator approaches the true population parameter.
- Efficiency: The estimator has the smallest variance among all unbiased estimators.

Bias and Efficiency

- We define the bias of an estimator $\hat{\theta}$ as:
 - Bias = $E[\hat{\theta}] \theta$
- Assume two different estimators $\{\hat{\theta}_1, \hat{\theta}_2\}$ of the same population parameter θ .
 - We say that the estimator $\hat{ heta}_1$ is more efficient than $\hat{ heta}_2$ if $V(\hat{ heta}_1) < V(\hat{ heta}_2)$
- Ideally, we want to employ an estimator that is unbiased and efficient to approximate a given population parameter of interest.

Bias vs Variance - A Graphical Illustration

Using Estimators to do Inference

- Say we decide to use an estimator with good properties (i.e., the sample mean). Further, we collect a sample and then compute a specific estimate.
- How can we then do inferences about the population parameter (i.e., the true population mean)?
- How can we assess our degree of confidence that the specific sample estimate is a good approximation of the true population mean?

Sample Variability - A Simulated Example

- The issue here is sample variability or uncertainty. To what extent if we were to collect the sample again we would likely obtain a similar value of the estimate?
- We will do a simulation to illustrate the issue of sample variability.
- Simulating Uniform(0, 100):
 - Generate data from a uniform distribution between 0 and 100.
 - Population size: 10,000.

```
set.seed(789) # Set seed for reproducibility
pop_data <- runif(10000, min = 0, max = 100) # Generate 10,000
    random values from a uniform distribution
# Plot histogram of the uniform data
hist(pop_data, breaks = 30,
    main = "Histogram of Simulated Uniform Data",
    xlab = "Value")</pre>
```

Plotting the Population Data

Random Sampling from Simulated Uniform Data

- Wel'll draw three random samples from the simulated population (Uniform(0, 100)):
 - Sample sizes: N = 20 (three different samples).
 - Compute the sample mean for each case.

```
# Population mean
true mean <- mean(pop data) # Calculate the true mean of the
    population
# Random samples from the population
set.seed(4321) # Set seed for reproducibility
sample_20_1 <- sample(pop_data, size = 20) # First random sample of</pre>
     size 20
sample_20_2 <- sample(pop_data, size = 20) # Second random sample
    of size 20
sample_20_3 <- sample(pop_data, size = 20) # Third random sample of
     size 20
# Compute sample means
mean_20_1 <- mean(sample_20_1) # Mean of the first sample
mean 20 2 <- mean(sample 20 2) # Mean of the second sample
mean 20 3 <- mean(sample 20 3) # Mean of the third sample
```

Computing the True Mean and Sample Means

- True mean of the population:
 - 50.24
- Sample means:
 - $-N_1=20, \bar{X}_1=49.53$
 - $-N_1=20, \bar{X}_2=45.85$
 - $-N_1=20, \bar{X}_3=41.74$

Visualizing the Sampling Process

 We can observe differences in the shape of the distribution across the samples and compared to the population distribution.

Understanding Sampling Variability

- Imagine we had only done the process once and obtained a sample mean equal to 49.53. How much confidence should we place on that estimate?
- Our small exercise shows some variability: taking the sample again changes the estimate.
- So, given the sample size, how likely is it that we would get a wide range of different values or a small one?
- To answer this, we will introduce the concept of sampling distributions.

Estimators and Sampling Distributions

- Sampling Distribution:
 - The probability distribution of an estimator.
 - Key Concept: Sampling distributions allow us to understand the variability of estimators.
- **Example**: Distribution of the sample mean \bar{X} when repeatedly sampling from the population.

Example: Sampling Distribution for a Normal Population

- Assume a continuous random variable $X \sim N(\mu, \sigma^2)$ aka "a normal population." Assume we draw a sample of size n.
- What is the sampling distribution of the sample mean \bar{X} ?
- We can start answering this question by deriving \bar{X} true mean and standard deviation (also known as standard error).
- Following the derivation included in last week's lecture:
 - $-E[\bar{X}] = \mu$
 - Standard Error: $SE(\bar{X}) = SD(\bar{X}) = \frac{\sigma}{\sqrt{n}}$

Standard Error vs Standard Deviation

- Standard Deviation (σ):
 - Measures the spread of a population.
- Standard Error (SE):

$$SE(\bar{X}) = \frac{\sigma}{\sqrt{n}}$$

- Measures the spread of an estimator (e.g., the sample mean).
- Simply put, the Standard Error is the standard deviation of an estimator (recall that estimators are random variables)
- Difference: SE decreases as the sample size increases, reflecting more precise estimates.

Detour: Quick Review of the Normal Distribution

Probability Density Function (PDF):

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- Where μ is the mean and σ is the standard deviation.
- Properties:
 - The mean, median, and mode are all equal.
 - Symmetrical PDF.
 - Approximately 68% of the data falls within 1 standard deviation of the mean, 95% within 2, and 99.7% within 3 (aka, the empirical rule).
- Standard Normal Distribution: A normal distribution with mean 0 and standard deviation 1, often denoted by $Z \sim N(0,1)$.

Plotting PDF and CDF of Standard Normal Distribution

Cumulative Distribution Function (CDF) of Standard Normal

Z	CDF	z	CDF	z	CDF	Z	CDF
-3.00	0.00	-1.40	0.08	0.20	0.58	1.80	0.96
-2.80	0.00	-1.20	0.12	0.40	0.66	2.00	0.98
-2.60	0.00	-1.00	0.16	0.60	0.73	2.20	0.99
-2.40	0.01	-0.80	0.21	0.80	0.79	2.40	0.99
-2.20	0.01	-0.60	0.27	1.00	0.84	2.60	0.99
-2.00	0.02	-0.40	0.34	1.20	0.88	2.80	1.00
-1.80	0.04	-0.20	0.42	1.40	0.92	3.00	1.00
-1.60	0.06	0.00	0.50	1.60	0.94		
					• • • •		

Table 1: CDF of Standard Normal Distribution, CDF(z) = Pr(Z < z)

Computing Probabilities Using the Standard Normal

Computing the Probability P(Z < 1) = 0.84 :

```
P_Z_less_than_a <- pnorm(1) # pnorm(a) is a R function that computes CDF(a) for the std. normal distr.
P_Z_less_than_a
```

```
## [1] 0.8413447
```

• Computing the Probability P(Z < -0.8) = 0.21:

```
## [1] 0.2118554
```

• Probability P(-0.8 < Z < 1) = 0.63:

```
P_between_a_and_b <- pnorm(1) - pnorm(-0.8) # Compute the prob.

that Z is between -0.8 and 1
P_between_a_and_b
```

```
## [1] 0.6294893
```

Z-Scores & Probability Computations

Z-Score Formula:

$$Z = \frac{X - \mu}{\sigma}$$

- **Theorem 1**: If $X \sim N(\mu, \sigma^2)$, then Z follows a standard normal distribution N(0, 1).
 - **Takeaway**: If we can **assume** $X \sim N(\mu, \sigma^2)$, then we can standardize any value of X using the Z-score to compute probabilities under the standard normal distribution.
- **Example**: Given $X \sim N(50, 25)$, compute P(X < 55) using the standard normal CDF table:
 - Note $\sigma = \sqrt{\sigma^2} = \sqrt{25} = 5$.
 - Convert X=55 to $Z\longrightarrow Z=\frac{X-50}{5}=\frac{55-50}{5}=1$
 - Use a Z-table to find the corresponding probability, P(X < 55) = P(Z < 1) = 0.84.

Z-Scores & Probability Computations

- Given $X \sim N(\mu, \sigma^2)$, how do we use the standard normal CDF table if we want to compute P(X > b)?
- **Example 2**: Given $X \sim N(50, 25)$, compute P(X > 42) using the standard normal CDF table:
 - Note $\sigma = \sqrt{25} = 5$.
 - Convert X = 42 to Z: $Z = \frac{42-50}{5} = -1.6$
 - Use a Z-table to find the probability of the complement of X > 42: P(X < 42) = P(Z < -1.6) = 0.06,
 - Then use the complement rule: P(X > 42) = 1 P(X < 42) = 1 P(Z < -1.6) = 1 0.06 = 0.94

Wrapping Up Normal CDFs \longrightarrow Back to Sampling Distributions

- We took a short detour to review the standard normal distribution and how to:
 - Compute probabilities using the **CDF of** $Z \sim N(0,1)$
 - Convert values from $X \sim N(\mu, \sigma^2)$ into **Z-scores**
 - These tools are essential for doing inference with normally distributed estimators.
- Now, let's return to our core question:
 - What is the distribution of the **sample mean** X when each $X_i \sim N(\mu, \sigma^2)$?
- Key observation:
 - $-\bar{X}$ is a **linear combination (or scaled sum)** of the individual X_i 's.
 - So, to fully understand \bar{X} , we first need to understand: The distribution of **sums of normal random variables**.

Distribution of a Sum of Normal RVs

• Assume there is a sequence of independent draws of Y, denoted by y_i , all following a normal distribution $Y \sim N(\mu, \sigma^2)$. Define the sum of these draws as:

$$S = \sum_{\forall i} y_i = y_1 + y_2 + \dots + y_N$$

- What is the distribution of S?
- **Theorem 2**: If $Y_1, Y_2, ..., Y_N$ are independent and identically distributed random variables with $Y_i \sim N(\mu, \sigma^2)$, then the sum S also follows a normal distribution:

$$S \sim N(E[S], V[S])$$

– This applies to any linear combination of the form: $S = \sum_{\forall i} a_i \cdot y_i$ in which a_i corresponds to fixed coefficient (not RVs).

Sampling Distribution of \bar{X} when $x_i \sim N(\mu, \sigma^2)$

- Assume there is a series of independent draws of X, denoted by x_i , all following a normal distribution $X \sim N(\mu, \sigma^2)$.
- Define the sample mean as a linear combination:

$$\bar{X} = \frac{\sum_{\forall i} x_i}{N} = \frac{x_1}{N} + \frac{x_2}{N} + \dots + \frac{x_N}{N}$$

- What is the distribution of \bar{X} ?
- **Theorem 3**: Applying the previous theorem: $\bar{X} \sim N(E[\bar{X}], V[\bar{X}])$. Thus,

$$\bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{N}})$$

Sampling Distribution of the Sample Mean for a Normal Population

• Assume $X \sim N(\mu = 50, \sigma^2 = 25)$. Then, **compute the probability** $P(\bar{X} > 51)$ assuming a sample size of n = 100 using a standard normal CDF table:

```
# Given mean (mu), standard deviation (sigma), and sample size (n)
mu <- 50 # Population mean
sigma <- 5 # Population standard deviation
n <- 100 # Sample size
b <- 51 # Threshold value for sample mean
# Standard error
SE <- sigma / sqrt(n) # Calculate the standard error of the sample
    me.a.n.
# Z-score
Z_b \leftarrow (b - mu) / SE \# Calculate the Z-score for the sample mean
    threshold
# Probability P(bar(X) > b)
P_X_greater_than_b <- 1 - pnorm(Z_b) # Calculate the prob. that the
     sample mean > b
P X greater than b
```

```
## [1] 0.02275013
```

Recap, Sampling Distributions

- Starting with a known distribution for a random variable under examination, we can derive the exact sampling distribution of the sample mean.
- The sampling distribution can be used as a tool to measure the underlying uncertainty of a given estimate, which allows us to perform statistical inference.
- Yet, in most cases, we do not know the underlying distribution of a random variable we are studying (i.e., the population distribution is unknown).
- How can we then perform statistical inference with a sampling estimate when the population distribution is unknown?

The Central Limit Theorem (CLT)

- **Theorem**: For a sufficiently large sample size, the sampling distribution of the sample mean \bar{X} is approximately normal, regardless of the population's distribution.
- **Key Implication**: This enables us to use *Z-score* transformations to approximate probabilities for \bar{X} , even when the original variable X is not normally distributed.
- Why It Matters: The CLT justifies inference on population parameters using sample data, making it foundational for hypothesis testing and confidence intervals.

Assumptions of the Central Limit Theorem (CLT)

- For the CLT to hold, the following conditions must be met:
 - The sample consists of **independent** observations
 - Simple Random Sampling (SRS) supports the independence assumption
 - The observations are drawn from the same distribution
 - The underlying distribution has a finite mean and finite variance
 - The sample size is sufficiently large
- Notes:
 - "Sufficiently large" depends on the shape of the population:
 - For populations with symmetric distributions: n ≥ 30 often works well
 - \Box Skewed or heavy-tailed distributions may require larger n

Simulated Example of CLT (Population is *Uniform*(20, 80))

CLT Example 2 (Pop. is Binomial(n = 20, p = 0.15))

Z-Scores, the CLT, & Probability Computations

- Invoking the CLT **assume** $\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$:
 - Use the Z-score formula to standardize the sample mean \bar{X} for probability computations.
 - Z-Score Formula:

$$Z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

- Example:
 - Given $\bar{X} \sim N(50, \frac{25}{100})$ (where $\mu = 50, \sigma^2 = 25, n = 100$), compute $P(\bar{X} > 51)$.
 - Convert to Z:

$$Z = \frac{51 - 50}{\frac{5}{\sqrt{100}}} = 2$$

– Use a Z-table to find the probability corresponding to Z=2.

From Theory to Practice: The Plug-in Principle & the CLT

• For a large *n*, the Central Limit Theorem assumes:

$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

where μ and σ are **population parameters** (usually unknown).

- In practice, we don't know these parameters.
 - We apply the plug-in principle: use sample statistics to estimate unknown parameters. This is justfied by the Law of Large Numbers (LLN).
- Replace:
 - μ with \bar{Y} (sample mean)
 - $-\sigma$ with s (sample standard deviation)
- This gives the approximation:

$$\bar{Y} \approx N\left(\bar{Y}, \frac{s^2}{n}\right)$$

The Law of Large Numbers (LLN)

- Law of Large Numbers (LLN): As the sample size n increases, the sample mean \bar{X}_n converges to the population mean μ .
 - More formally: If X_1, X_2, \ldots, X_n are i.i.d. random variables with finite mean μ , then:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \longrightarrow \mu \quad \text{as } n \to \infty$$

(Convergence in probability)

- Key assumptions. The observations must be:
 - Independent
 - Identically distributed (i.i.d.)
 - With a finite expected value $\mathbb{E}[X] = \mu$
- Why it matters: With enough independent data, the sample mean gets arbitrarily close to the true mean.

Using the CLT - Practical Example.

Suppose we have a random sample of a random variable y_i of sample size N=400. Further, suppose $\bar{Y}=23.5$ and s=20 (sample sd). What is the probability that the sample mean is higher than 25?

```
## [1] 0.0668072
```

• **Result**: *If we draw a new sample of same size*, the probability that the sample mean is greater than 25 is app. 6.7%.

Conclusion

Key Takeaways:

- Estimators help us understand population parameters using sample data.
- Sampling distributions allows to measure uncertainty in a given estimate.
- The Central Limit Theorem is foundational for statistical inference.
- Z-scores are useful for probability calculations under normal assumptions or when we invoke the CLT.