PROBLEM SET 4, BCMB/CHEM 8190

- 1) Use density matrix methods to examine magnetization for a pair of spin ½ nuclei (spin 1 and spin 2) in a magnetic field B_0 along the z-axis. The first spin listed oscillates at ω_1 (Ω_1) and the second at ω_2 (Ω_1). Assume the scalar coupling is small and can be neglected.
- a). Show the elements of an equilibrium deviation density matrix (sigma) in the simple product basis.
- b). Calculate equilibrium *z* magnetization using matrix methods.
- 2)
- a) For the same pair of spins as is (1) show in product operator notation, the effect of a 90° RF pulse along the +y axis on the density matrix represented by the $I_{1x}I_{2z}$ product operator (assume the pulse excites both spins equally).
- b) Show the density matrix equivalent (fill in elements of matrix) of the result in a two spin ½ system and sketch the Fourier transformed spectrum that would result from observing x magnetization.
- 3) Using product operators for a pair of spin 1/2 nuclei (I_1 and I_2 , i.e. ¹H and ¹⁵N, respectively) identify the operators evolving during t_1 that are detectable during t_2 as I_1 spin magnetization (not I_2 spin magnetization). The two spins are scalar coupled with value J and τ is set to 1/(4J).

