1. نوات على: تامع ماس سر T: V روى وقاص بردارى (مراس مرترك) كم ∀2,12, ∈V: T(2,+2,)=T(2)+T(2), YecV, FreF: T(10)=rT(8) مولاف / برطری SCV کیمولرفت ار برطرا که (یم وطره Novo Soc jeep in, ا (دوله ن زرها المعالی می این می ا (dnelly) In (de like) Tit - V de che : Objection ・ナー・、といがり 06 (10) FO (10) (Pingl) 10) (10) (10) (10) (10) (10) $V^* = \{f: V \rightarrow F: V \Rightarrow f = L(V, F)$ Note weight: V-W wing: ((254)5 This It with the for is with the wildings

() وَعَنْ مَنْ (الْمُعْنَامُ وَ الْمُعَامِلُونَ الْمُعَامِولُ وَالْمُعَامِولُ وَالْمُعَامِولُ وَالْمُعَامِلُ وَالْمُعَامِلُونُ الْمُعَامِلُونُ الْمُعَامِلُونُ الْمُعَامِلُ وَالْمُعَامِلُ وَالْمُعْمِلُ وَالْمُعَامِلُ وَالْمُعِلَّ وَالْمُعَامِلُ وَالْمُعِلَّ وَالْمُعَامِلُ وَالْمُعَامِلُ وَالْمُعَامِلُ وَالْمُعَامِلُ وَالْمُعَامِلُ وَالْمُعَامِلُ وَالْمُعَامِلُ وَالْمُعَامِلُ وَالْمُعَامِلُ وَالْمُعَامِل $\alpha_{1}^{\prime} u_{1}^{\prime} + \cdots + \alpha_{d_{1}}^{\prime} u_{d_{1}}^{\prime} + \alpha_{1}^{\prime} u_{1}^{\prime} + \cdots + \alpha_{d_{r}}^{\prime} u_{r}^{\prime} + \cdots + \alpha_{d_{r}}^{\prime} u_{1}^{\prime} + \cdots + \alpha_{d_{r}}^{\prime} u_{d_{r}}^{\prime} = 0$ =) (a, w, +...+a, v,) + (a, v, +...+a, v,) +... + (a, v, +...+a, v,) =0 $\mathcal{U}_{i} \in \mathcal{V}_{i}$ $\mathcal{U}_{r} \in \mathcal{V}_{r}$ $\mathcal{U}_{r} \in \mathcal{V}_{r}$ => 2 = ... = 2 k = a (lov; ()) (po jung (on)) ن برای هم فرامی ترکسی و باز با بر مفریا کا واین ن ن کرهم (۱۹ میری) مین مفرامی در باز با بر مفریا کا واین ن ن کرهم (۱۹ میری) مین فا ν;=α;ν;+...+α;ν; σ ν;εν..., ν, ε, ο, ν;εν;ν; (Υ) (a, w, +...+a, w,)+ (a, w, +...+a, w,)+...+(a, w, +...+o, w, w,)=0 =) $a_1' = ... = a_{d_1}' = a_1' = ... = a_{d_2}' = ... = a_{d_K}' = o ((B_1,...,B_K)_{(B_1,...,$ الني تم مي دهدم ٥=١٠٠ ال

 $u_{1}...u_{n+r} \in \mathbb{R}^{n} = \sum_{i=1}^{n} 1, ..., [u_{n+r}] \in \mathbb{R}^{n+1}$ where is the constant of the const عبر الم مرور الما من المالية ما عبوات وجود طريد كم $a_{1}\begin{bmatrix} u_{1} \\ 1 \end{bmatrix} + \cdots + a_{n+r}\begin{bmatrix} u_{n+r} \\ 1 \end{bmatrix} = 0 \implies a_{1}u_{1} + \cdots + a_{n+r}u_{n+r} = 0$ وَصَ نَسِر] يَجْمُعُ الْدَرِهِي بِالْهِ لَمْ بِرَاكَ آنَ حَرَى . (تَرَقِي كَسَرَهُ يَا فَي نِورِدِ إِنَّ الْم صَوَى لَ عَرِي عَالَى اِنْ) . نَصْبِ عِلَمِهَا را دَرْنَ وَبِي بِاللَّهِ مِعَالَمُ اللَّهِ مِعَالَمُ اللَّهِ م صَوَى لَ عَرِدَ لَا مَنْ يَرِينَ) . نَصْبِ عِلَمِهَا را دَرْنَ وَبِي بِاللَّهِ مِعَالِمُ اللَّهِ مِعَالِمُ ال $\sum_{i \in I} \frac{a_i}{3} = \sum_{j \notin I} \left(\frac{-a_j}{3^j} \right) = 1$ ىنېرىنى مىت راىت ت وى بالا در بولى عمل على الله يى قوار دار د د مى الله در بولى عمل على قوار دار د د مى تان

در بول تحدب عند: ieI) وار دارد.

U V = V ville V vI/(vieigi)//4,3 {V_a cV: aE] in joj. r deI 1 Valor 10 10 ! وَمِن مَنْ عَلَى اللهِ عَنْ هَا يَ اللهِ اللهِ عَنْ هَا يَ اللهِ ما درجمور استار و حذف یم اسکاری ی داری و وی و کاری YXeI: dim Va=n-1, x + x = Va/ , x = Va/ , x eI عال بری از روهناها ماس می آوجی کئی: $\dim V_{\alpha} = \dim V_{\alpha_{\sigma}} = n-1$ $V_{\alpha} \neq V_{\alpha_{\sigma}} = V_{\alpha} = V_{\alpha_{\sigma}} = N-1$ $V_{\alpha} \neq V_{\alpha_{\sigma}} = V_{\alpha} = V_{\alpha_{\sigma}} = N-1$ VacI-88): الرياد المراكم المراكب المراك J (4) jui . 0, € Va,

v.eV, v.≠Va. [21 EVa, YaeI-{a,) : 20, \$ Va 1 Ur= li+re eV by rink F hasespy y ستى دهم . ترج نسر كم هي دو يال (ملاها دهن بي لا ي ولس مال يرا ال « « Ur, , ur, ∈ Va / » « () « () r, ≠r, , α ≠0 ur,-ur, = (r,-r,) v, eV2 => v, eV2 .X. : veil ureta, Livurto , a= s), $v_{1}+rv_{0}\in V_{\alpha_{0}} \longrightarrow rv_{0}\in V_{\alpha_{0}} \longrightarrow v_{0}\in V_{\alpha_{0}}$ ساراین دو عفر میل ماسد ۲ . تک روفعای بلت ماسد که دوردرد $U_{l} = U$ $U_{r} = T(2e)$ \vdots

 $(i \leqslant K):$ $T(\mathcal{U}_i) = T(T^{i+1}(\mathcal{U})) = T^{i+r}(\mathcal{U}) = \mathcal{U}_{i+1}$

 $= \sum_{i=1}^{n} \left(T(2i) \right)_{i} = \left[\frac{1}{n} \right]_{i} \left(\frac{1}{n} \left(\frac{1}{n} \right) \right)$

 $T(\mathcal{O}_{\mathbf{k}+\mathbf{l}}) \in V \implies T(\mathcal{O}_{\mathbf{k}+\mathbf{l}}) = a_{\mathbf{l}}\mathcal{U}_{\mathbf{l}} + \dots + a_{\mathbf{k}+\mathbf{l}}\mathcal{U}_{\mathbf{k}+\mathbf{l}}$

 $= \int \left[\left[\left(\mathcal{U}_{k+1} \right) \right]_{\alpha} = \left[\begin{array}{c} a_{i} \\ a_{k+1} \end{array} \right]$

 $= \sum_{\alpha} \left[\left[\left[\left(\mathcal{U}_{\alpha} \right) \right]_{\alpha} \right] \cdots \left[\left[\left[\left(\mathcal{U}_{k+1} \right) \right]_{\alpha} \right] \right]$ $= \begin{bmatrix} 0 & 0 & \cdots & 0 & \alpha_{1} \\ 1 & 0 & & 0 & \alpha_{r} \\ 0 & 1 & & 0 & \alpha_{r} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & 1 & \alpha_{k+1} \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 & \cdots & 0 & \alpha_{1} \\ 0 & & & \alpha_{r} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & 1 & \alpha_{k+1} \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 & \cdots & 0 & \alpha_{1} \\ 0 & & & \alpha_{r} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & 1 & \alpha_{k+1} \end{bmatrix}$ $= \begin{bmatrix} 0 & 0 & \cdots & 0 & \alpha_{1} \\ 0 & & & & \alpha_{r} \\ \vdots & \vdots & & \vdots \\ 0 & & & & & \alpha_{r+1} \end{bmatrix}$

 $Z_{1}=a_{1}+ib_{1}, \quad Z_{2}=a_{r}+ib_{r} \qquad : Z_{1}\cdot(Z_{p}\cdot \mathcal{U})=(Z_{1}Z_{p})\cdot \mathcal{U} \quad (1)$ $=>Z_{1}Z_{r}=(a_{1}a_{r}-b_{1}b_{r})+i(a_{1}b_{r}+a_{r}b_{1})$ $Z_{1}\cdot(Z_{r}\cdot \mathcal{U})=Z_{1}\cdot(a_{r}\mathcal{U}+b_{r}T(\mathcal{U}))=a_{1}(a_{r}\mathcal{U}+b_{r}T(\mathcal{U}))+b_{1}T(a_{r}\mathcal{U}+b_{r}T(\mathcal{U}))$

 $\begin{aligned} z_{1} \cdot (z_{r} \cdot u) &= z_{1} \cdot (a_{r}u + b_{r}T(u)) = a_{r}(a_{r}u + b_{r}T(u)) + b_{r}T(u) + b_{r}T(u) \\ &= a_{1}a_{r}u + (a_{1}b_{r} + b_{r}a_{1})T(u) + b_{r}T(u) = (a_{1}a_{r} - b_{r}b_{r})u + (a_{1}b_{r} + b_{r}a_{1})T(u) \\ &= (z_{1}z_{r}) \cdot u \end{aligned}$ $= (z_{1}z_{r}) \cdot u = z_{1}u + z_{2}u \cdot u + z_{2}u \cdot u + z_{3}u \cdot u + z_{4}u \cdot u + z_{5}u \cdot u + z_{5}$

 $((a_1+a_1)+i(b_1+b_1)) \circ \mathcal{V} = (a_1+a_1)\mathcal{V} + (b_1+b_1)T(\mathcal{V})$ $= [a_1\mathcal{V} + b_1T(\mathcal{V})] + [a_1\mathcal{V} + b_1T(\mathcal{V})] = z_1 \cdot \mathcal{V} + z_1 \cdot \mathcal{V}$