Discrete Optimization

The Knapsack Problem: Greedy Algorithms

Goals of the Lecture

- Compare different greedy algorithms
 - -knapsack example

What is Greedy?

Assume the it's "easy" to build a feasible solution

- Key Idea:
 - -Build a solution by picking items one at a time
- Called: greedy algorithms or heuristics

The Temple is Collapsing

2kg

\$1 Million 2kg

\$1 Million 2kg

\$10 Million 5kg

\$10 Million 5kg

Which items to take?

\$13 Million 8kg

\$7 Million 3kg

Maximum Capacity 10kg

- ►ldea 1:
 - More items is best, start with small ones and take as many as you can

Idea: The More Items the Better

\$7 Million 3kg

Maximum Capacity 10kg

- ► Idea 1: (\$10 Million)
 - More items is best, start with small ones and take as many as you can
- ► Idea 2:
 - Valuable items are best, start with the most valuable items

Idea: More Valuable is Better

3kg

Total: \$14 Million

- ► Idea 1: (\$10 Million)
 - More items is best, start with small ones and take as many as you can
- ► Idea 2: (\$14 Million)
 - Valuable items are best, start with the most valuable items
- ► Idea 3:
 - Value density! dollars per kilogram

Idea: The More Items the Better

- Is \$18 million dollars the best we can do?
 - -optimal?

Total: \$20 Million!

Maximum
Capacity
10kg

Greedy Algorithms Overview

- ► For one problem, there are **many** possible greedy algorithms.
 - -some will do better than others
 - depends on the input!
- Advantages
 - -quick to design and implement
 - -can be very fast
- ► Problems
 - -no quality guarantees (in general)
 - -quality can vary widely on the input
 - problem feasibility needs to be "easy"

The Essence of this Class

- We can always start with greedy
- Going beyond greedy
 - Constraint Programming
 - Local Search
 - Mixed Integer Programming
- Ways to
 - reliably find feasible solutions
 - reliably build high-quality solutions
 - robust to different inputs
 - ideally, proving those solutions are the best

Until Next Time

Citations

Stone Foundation Tablet with Inscription of Gudea - 41221 (http://commons.wikimedia.org/wiki/File:Sumerian __Stone_Foundation_Tablet_with_Inscription_of_Gudea_-_Walters_41221_-_View_A.jpg). Artist Unknown. Walters Art Museum [Public domain, CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Stone Foundation Tablet with Inscription of Gudea - 41220 (http://commons.wikimedia.org/wiki/File:Sumerian_-_
Stone_Foundation_Tablet_with_an_Inscription_of_Gudea_-_Walters_41220_-_View_A.jpg). Artist Unknown. Walters Art Museum [Public domain, CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0) via Wikimedia Commons

Ring with the engraved portrait of Ptolemy VI Philometor (http://commons.wikimedia.org/wiki/File:Ring_with_engraved_portrait_of_ Ptolemy_VI_Philometor_(3rd %E2%80%932nd_century_BCE)_-_2009.jpghttp://commons.wikimedia.org/wiki/File:Ring_with_engraved_
portrait_of_Ptolemy_VI_Philometor_(3rd-2nd_century_BCE)_-_2009.jpg>) By Unknown. (Photographed by PHGCOM in 2009.) [Public domain], via Wikimedia Commons

the mask of agamemnon (http://www.flickr.com/photos/rosemania/5705122218/) by Xuan Che (http://www.flickr.com/people/rosemania/) CC BY-2.0 (http://creativecommons.org/licenses/by/2.0/deed.en)

Terracotta Warrior (http://www.flickr.com/photos/59627558@N00/4677378806/) by fixermark (http://www.flickr.com/photos/59627558@N00/) CC BY 2.0 (http://creativecommons.org/licenses/by/2.0/deed.en)