Strategy for Improving Pretrained Model on Graph

CPSC483: Deep Learning on Graph-Structured Data

Rex Ying

Strategy for Improving Pre-trained Model on Graph

- Improved pretrained model with negative sampling
 - Contrastive learning
 - KDD2023-BatchSampler: Sampling Mini-Batches for Contrastive Learning in Vision, Language, and Graphs
- Improved pretrained model with dataset grouping
 - Auxiliary molecule dataset
 - NeurIPS2023-Learning to group auxiliary dataset for molecule

Strategy for Improving Pre-trained Model on Graph

- Improved pretrained model with negative sampling
 - Contrastive learning
 - KDD2023-BatchSampler: Sampling Mini-Batches for Contrastive Learning in Vision, Language, and Graphs
- Improved pretrained model with dataset grouping
 - Auxiliary molecule dataset
 - NeurIPS2023-Learning to group auxiliary dataset for molecule

Self-Supervised Learning (1)

- How to train a model without supervised signals?
 - Design a proxy task!
 - Use the supervision signals from the data itself (self-supervised learning)

Self-Supervised Learning (2)

- How to design the pretrained proxy task?
- Generative task (Lecture 12)
 - Train the model by predicting some foundational properties of the data
 - E.g., molecule atom/bond types, graph structures, ...

Contrastive task

- Train the model by discriminating similar and dissimilar data instances
- Main idea: instances with similar semantic features typically fall within the same category

Contrastive Learning (1)

- How do humans differentiate between identical animals?
 - By contrasting fur color, body features, and overall appearance
 - Even without knowing the specific animal species
- For example,

Contrastive Learning (2)

- A pretrained model should be able to exploit the semantic features
 - Produce similar representations for similar instances
- Contrastive learning
 - Bringing semantically similar instances closer while pushing dissimilar instances

Contrastive Learning (3)

- Basic learning paradigm
 - Sample an instance (anchor), along with a semantically similar data point (positive sample) and a dissimilar data point (negative sample)
 - Minimize/maximize distance between anchor and positive samples/negative samples in latent space

Challenge in the foundation model setting: without labels, how could we know which instance is the positive one with respect to the anchor?

Contrastive Learning (4)

- Instance discrimination method
 - Instances that belong to same class contain similar semantic information
 - By differentiating between every instance, the model implicitly captures this underlying semantic structure

Contrastive Learning (5): Data augmentation

- Apply data augmentation on the anchor to generate the positive sample
 - The anchor is made to undergo transformations and used as positive sample to the anchor
 - Create diverse yet semantically consistent instances
 - E.g.,

Vision(credit)

Graph(credit)

Contrastive Learning (6): InfoNCE Loss

- Optimized model with InfoNCE loss
 - Sample a mini-batch of instances $\{x_i\}_B$ (anchor) and apply data augmentation to generate positives $\{x_i^+\}_B$
 - InfoNCE loss

$$\min - \sum_{i=1}^{B} \log \frac{e^{f(x_i)^T f(x_i^+)}}{\sum_{j} e^{f(x_i)^T f(x_j^+)}}$$

$$= \min - \sum_{i=1}^{B} \left(f(x_i)^T f(x_i^+) - \log \sum_{j} e^{f(x_i)^T f(x_j)} \right)$$

$$\min \sum_{i=1}^{B} \left(f(x_i)^T f(x_i^+) - \log \sum_{j} e^{f(x_i)^T f(x_j)} \right)$$

$$\min \sum_{i=1}^{B} \left(f(x_i)^T f(x_i^+) - \log \sum_{j} e^{f(x_i)^T f(x_j)} \right)$$

$$\min \sum_{i=1}^{B} \left(f(x_i)^T f(x_i^+) - \log \sum_{j} e^{f(x_i)^T f(x_j)} \right)$$

$$\min \sum_{i=1}^{B} \left(f(x_i)^T f(x_i^+) - \log \sum_{j} e^{f(x_i)^T f(x_j)} \right)$$

$$\min \sum_{i=1}^{B} \left(f(x_i)^T f(x_i^+) - \log \sum_{j} e^{f(x_i)^T f(x_j)} \right)$$

$$\min \sum_{i=1}^{B} \left(f(x_i)^T f(x_i^+) - \log \sum_{j} e^{f(x_i)^T f(x_j)} \right)$$

$$\min \sum_{i=1}^{B} \left(f(x_i)^T f(x_i^+) - \log \sum_{j} e^{f(x_i)^T f(x_j)} \right)$$

$$\min \sum_{i=1}^{B} \left(f(x_i)^T f(x_i^+) - \log \sum_{j} e^{f(x_i)^T f(x_j)} \right)$$

 One anchor is paired with a positive sample, while the remaining instances in the mini-batch serve as negative samples

Negative Sampling

- In InfoNCE loss, mini-batch sampling is equivalent to negative sampling
 - Every instance serves as negative to the other instances within the mini-batch
 - Different kinds of negative

Similarity

Easy negative

False negative:
Negative with same label

Hard Negative Sampling (1)

- What negatives contribute the most in the mini-batch?
 - Hard negative pair!
 - Hard negative is the sample with different label but is semantically similar to anchor
 - Hard-to-distinguish negative pairs provide meaningful gradient to the model

Hard Negative Sampling (2)

- Model learns to create more robust representations that can differentiate between closely related instances
 - E.g.,

Similar background and body shape

Similar patterns

- How to sample hard negatives for InfoNCE loss?
 - Sample a mini-batch of instances where any instance pair are hard to distinguish

Proximity Graph (1)

- We use proximity graph to capture similarity relationships among the instances
 - Connect nodes based on similarity, ensuring that similar instances form local communities within graph

Representation space: Instances are dispersed in space and pair with higher similarity will be closer in space

Constructed graph

Proximity Graph (2)

- Graph construction
 - For each v_i , randomly pick M neighbor candidates to form a candidate set $\{v_m\}$
 - 1) Accelerate the construction progress
 - 2) It can be proved that the introduction of M can be used to modulate neighbor's similarity
 - Select the K nearest ones from the candidate set to form the neighbor set $\mathcal{N}_i = \mathrm{TopK}_{\{v_m\}}(\mathbf{e}_i \cdot \mathbf{e}_m)$ \mathbf{e} : representation
 - The graph will be updated after several training steps

Proximity Graph Construction (2)

- Theoretical guaranteed property: candidate set size M controls similarity between center node and its neighbors
 - When M = N, proximity graph degenerates to kNN graph
 - i.e., each node directly connects to top-k similar nodes
 - When M=1, each node will randomly connect with the other node
- Theoretical proof

Given an instance v_i with the corresponding representation e_i , assume that there are at least S instances whose inner product similarity with v_i is larger than s, i.e.,

$$|\{v_j \in \mathcal{V} | e_i \cdot e_j > s\}| \ge S.$$

Higher *M* indicates a greater probability____ that two adjacent nodes are similar

Then in the proximity graph G, the similarity between v_i and its neighbors is larger than s with proximate probability at least:

$$\mathbb{P}\{e_i \cdot e_k > s, \forall v_k \in \mathcal{N}_i\} \gtrsim (1 - p^M)^K$$

where $p = \frac{N-S}{N}$, and K is the number of neighbors.

Proximity Graph Sampling (1)

- With proximity graph, we can easily collect a batch of similar examples
 - Perform negative sampling as a walking in the proximity graph
- We apply Random Walk with Restart (RWR) to flexibly explore the negatives
 - It exhibits a mixture of BFS and DFS
 - Breadth-first Sampling(BFS) collects all the immediate neighbors
 - Depth-first Sampling(DFS) explores the node branch as far as possible
 - Beginning at a node, sampler iteratively teleports back to the start point with probability α or travels to a neighbor of the current position

RWR started on brown node in the proximity graph at different time step (1~t)

Proximity Graph Sampling (2)

- Theoretical guaranteed property: Restart probability α can modulate the probability of sampling within a neighborhood
- Theoretical proof:

For all $0 < \alpha \le 1$ and $\mathcal{S} \subset \mathcal{V}$, the probability that a Lazy Random Walk with Restart starting from a node $u \in \mathcal{S}$ escapes \mathcal{S} satisfies $\mathcal{S} \sum_{v \in (\mathcal{V} - \mathcal{S})} \mathbf{p}_u(v) \le \frac{1-\alpha}{2\alpha} \Phi(\mathcal{S})$, where \mathbf{p}_u is the stationary distribution, and $\Phi(\mathcal{S})$ is the graph conductance of \mathcal{S} .

- The probability of RWR escaping from a local cluster can be bound by lpha
 - Higher lpha indicates that the walker will approximate BFS behavior and sample within a small locality
 - Lower α encourages the walker to visit the nodes which are further away from the center node.

BatchSampler (1)

- BatchSampler: Proximity Graph-based Sampler
 - Capture similarity relationships among instances by proximity graph
 - Perform negative sampling as a walking in the proximity graph
- The number of candidates M and the restart probability α are the key to flexibly control the hardness of a sampled batch
 - kNN Sampler: Retrieve a set of nearest neighbors to construct a batch
 - Uniform Sampler: Randomly sample a batch of instances

Proximity graph==kNN graph;
Sampler only collects immediate neighbors

RWR degenerates into DFS and chooses neighbors that are linked at random

BatchSampler (2): Empirical Criterion of M, α

500 or 1000 exhibits the best performance

Modality	Dataset	Neighbor Candidate Size M				Restart Probability α				, linearly decay α from 0.2		
		500	1000	2000	4000	6000	0.1	0.3	0.5	0.7	0.2~0.05	to 0.05 as the training
	CIFAR10	92.54	92.49	91.83	91.72	91.43	92.41	92.26	92.12	92.06	92.54	epoch increases
Image	CIFAR100	67.92	68.68	67.05	66.19	65.55	68.31	67.98	68.20	68.00	68.68	
	STL10	84.16	84.38	82.80	81.91	80.92	83.01	80.69	83.93	82.56	84.38	
	ImageNet-100	59.6	60.8	60.1	59.1	58.4	60.8	59.6	58.1	57.7	60.8	α should be high for
Text	Wikipedia	71.36	76.69	76.09	75.76	75.11	71.74	72.13	72.41	76.69		pretrained language model
	IMDB-B	71.90±.46	71.28±.51	71.13±.48	70.86±.56	70.68±.59	71.26±.29	71.00±.46	71.06±.21	70.78±.58	71.90±.46	pretramed language model
Graph	IMDB-M	48.93±.28	$48.68 \pm .35$	$48.88 \pm .94$	$48.71 \pm .93$	$48.12 \pm .75$	48.48±1.07	$48.27 \pm .67$	$48.72 \pm .41$	$48.78 \pm .60$	$\textbf{48.93} {\pm} \textbf{.28}$	
	COLLAB	70.47±.33	$\textbf{71.48} {\pm} \textbf{.28}$	$70.93 \pm .50$	$70.46 \pm .28$	$70.24 \pm .56$	70.36±.28	$70.63 \pm .53$	$70.63 \pm .54$	$70.31 \pm .37$	$\textbf{71.48} {\pm} .28$	
	REDDIT-B	90.88±.16	89.45±.99	90.64±.38	89.92±.75	90.37±.89	90.22±.38	89.51±.61	90.44±.48	90.28±.89	90.88±.16	

- The suggested M would be 500 for the small-scale dataset, and 1000 for larger dataset
- The suggested α should be relatively high (0.7) for the pre-trained language model.
- Besides, dynamic decay α , e.g., 0.2 to 0.05, is the best strategy for the other algorithms.

BatchSampler (3)

BatchSampler is a modality-independent method which can generally improve the pretrained model
 7 textual similarity datasets (Language modality)

ImageNet (Vision modality)

Method	100 ep	400 ep	800 ep
SimCLR	64.0	68.1	68.7
w/ BatchSampler	64.7	68.6	69.2
MoCo v3	68.9	73.3	73.8
w/ BatchSampler	69.5	73.7	74.2

Only conduct experiments on BatchSampler.

Method	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
SimCSE-BERT _{base}	68.62	80.89	73.74	80.88	77.66	77.79	69.64	75.60
w/ kNN Sampler	63.62	74.86	69.79	79.17	76.24	74.73	67.74	72.31
w/ BatchSampler	72.37	82.08	75.24	83.10	78.43	77.54	68.05	76.69

Molecular classification datasets (Graph modality)

Method	IMDB-B	IMDB-M	COLLAB	REDDIT-B	PROTEINS	MUTAG	NCI1
GraphCL	70.90±0.53	48.48±0.38	70.62±0.23	90.54±0.25	74.39±0.45	86.80±1.34	77.87±0.41
w/ kNN Sampler	70.72±0.35	47.97±0.97	70.59 ± 0.14	$90.21 \pm .74$	74.17 ± 0.41	86.46 ± 0.82	77.27 ± 0.37
w/ BatchSampler	71.90±0.46	48.93±0.28	71.48±0.28	90.88±0.16	75.04±0.67	87.78±0.93	78.93±0.38
MVGRL	74.20±0.70	51.20±0.50	-	84.50±0.60	-	89.70±1.10	-
w/ kNN Sampler	73.30±0.34	50.70±0.36	-	82.70±0.67	-	85.08±0.66	-
w/ BatchSampler	76.70±0.35	52.40±0.39	-	87.47±0.79	-	91.13±0.81	-

BatchSampler (4): Case Study

Case study of the negatives sampled on ImageNet

Summary

- Contrastive learning
 - Bringing semantically similar instances closer while pushing dissimilar instances
 - Apply data augmentation to generate positive samples
 - Mini-batch sampling is equivalent to the negative sampling
- Improved pretrained model with negative sampling
 - Benefit of hard negative sampling
 - BatchSampler: Proximity Graph-based Sampler
 - Capture similarity relationships among instances by proximity graph
 - Perform negative sampling as a walking in the proximity graph

Strategy for Improving Pre-trained Model on Graph

- Improved pretrained model with negative sampling
 - Contrastive learning
 - KDD2023-BatchSampler: Sampling Mini-Batches for Contrastive Learning in Vision, Language, and Graphs
- Improved pretrained model with dataset grouping
 - Auxiliary molecule dataset
 - NeurIPS2023-Learning to group auxiliary dataset for molecule

Recall: GNN for Molecule Prediction (1)

- Molecule property prediction is a fundamental task in biomedication
 - Evaluate the toxicity of new clinical drugs
 - Characterize the binding results for the inhibitors of human β-secretase
 - Predict the thermodynamic property of organic molecules

$$f(\bigcirc) = \begin{cases} \text{Solubility A?} \\ \text{Toxicity B?} \\ \vdots \\ \text{Bioactivity D?} \end{cases}$$

Recall: GNN for Molecule Prediction (2)

- We can apply GNN to learn the molecular graph representation
 - Molecule can naturally be modeled as graph
 - Node: atom
 - Edge: interaction between two atoms
 - Local level: Iteratively perform neighbor aggregation to obtain node representation
 - Global level: Use pooling operation to obtain graph representation

Recall: GNN for Molecule Prediction (3)

- Pretraining a GNN on molecular graph can bring better performance
 - Generative task
 - Node-level pretraining: attribute masking and context prediction
 - Graph-level pretraining: attribute prediction
 - Contrastive task
 - Apply data augmentation and InfoNCE loss

Challenge (1)

- However, labeling molecules requires expensive real-world clinical trials and expert knowledge
 - ClinTox: predict clinical toxicity of new drugs
 - 1,000 labeled instances
 - FreeSolv: estimate the hydration free energy of molecule in water
 - 400 labeled instances
 - BACE: Inhibitors of human β-secretase
 - 1,513 labeled instances
 - BBBP: Predict the permeability properties on the membrane
 - 2,039 labeled instances

- Even with pretraining, model struggle to effectively generalize on small molecule datasets
 - E.g., SOTA pretrained model MolCLR [1] only achieves
 - 1.2% improvement on BBBP (2,039 instances)
 - 1.5% improvement on BACE (1,513 instances)
 - 0.6% improvement on ClinTox (1,478 instances)
 - Compared with non-pretrained models

Auxiliary Molecule Dataset (1)

- One common strategy is to collaborate with auxiliary datasets
 - \mathcal{D}_{Target} : Target dataset, \mathcal{D}_{Aux} : Auxiliary dataset
 - Such as augmenting the current drug data from other known drugs
 - ToxCast: A toxicology data based on in vitro high-throughput screening
 - ClinTox: A set of drugs approved by FDA
 - Significantly improve performance by introducing out-of-distribution knowledge

Auxiliary Molecule Dataset (2)

- Such a strategy can also be demonstrated by other domains
 - Incorporating additional supervision signals to enhance the performance

Multi-task learning: Multiple annotations are applied to each training instance

Transfer learning: Model will first be optimized on another dataset/task

Auxiliary Molecule Dataset (3)

- However, having more data does not always guarantee improvements
 - Negative transfer can occur when the knowledge in the target dataset differs or contradicts that of the auxiliary molecule datasets
- Let's do an empirical study to verify
 - Totally 15 molecule datasets with 11 small datasets as target datasets
 - Domain: Medication, quantum chemistry, chemical analysis
 - Pair each target dataset with every other dataset and measure the relative improvement achieved by the combination

Auxiliary Molecule Dataset (4)

- Train the model using the combined datasets and assess its performance on the target datasets
 - The overall training loss is calculated as the unweighted mean of the losses for all included tasks
 - Backbone: GIN

Auxiliary Molecule Dataset (5)

 Relative improvement between pairwise performance and single-train performance: (a-b)/b

These findings highlight the presence of underlying affinity between

Understanding Relationship between Datasets (1)

- How can we measure the affinity of auxiliary datasets to a target dataset?
- We analyze the relationship between molecule datasets by dividing them into two dimensions
 - Structural characteristics: Fingerprint features
 - Associated predictive task: Task embedding extracted by Task2vec[1]
- We can extract each dataset's fingerprint distribution and task embedding

Understanding Relationship between Datasets (2)

- Asymmetric KL divergence is used as similarity metric
 - Considering the asymmetric nature of the impact between molecule datasets
- For each pair of dataset, we can measure the similarity in terms of structure and task

Understanding Relationship between Datasets (3)

- Similarity measure
 - (1) Structure similarity
 - (2) Task similarity
 - (3) (Structure similarity + Task similarity) / 2
- Finding: Combination of task and structure leads to stronger correlation

Understanding Relationship between Datasets (4)

- Analysis on individual dataset
 - Compute structural and task similarity between each target dataset and the other 14 datasets individually

Understanding Relationship between Datasets (3)

- Analysis on individual dataset
 - Compute structural and task similarity between each target dataset and the other 14 datasets individually
- Finding: Both similar and dissimilar structures and tasks can benefit target dataset
 - Although most of cases show a positive correlation, there are also negatively related cases
 - Additional information required from the other sources of data varies across different target datasets

Higher absolute score indicates stronger correlation

Understanding Relationship between Datasets (4)

Week structural correlation but strong task correlation in Tox21

- Finding: Structure and task are compensatory
 - A dataset may present a low structural correlation but a high correlation in task similarity
 - E.g., Tox21
 - These two sources of information contribute to the performance gain in a complementary manner

Understanding Relationship between Datasets (5)

- Takeaway message
 - We demonstrate the presence of the underlying affinity between different molecule datasets
 - 1) Combine graph structure and task similarity can serve as a more reliable indicator
 - 2) Both similar and dissimilar structure and task can potentially benefit the target dataset
 - Given a target dataset, how to identify a good subset of datasets which can maximize the performance?

Problem Formulation

- Problem definition: Auxiliary dataset grouping
 - Given a target dataset \mathcal{D}_T and a set of auxiliary datasets $\{\mathcal{D}_{Aux}\}_M$
 - Select a subset of the auxiliary datasets that can maximize the performance of \mathcal{D}_T when train together
- Training pipeline with multiple datasets
 - In each training step, we sample data from each dataset with equal probability to form a mini-batch $\frac{1}{2}$ batch of data from $\frac{1}{2}$ dataset
 - Each batch includes \mathcal{B}_T , $\{\mathcal{B}_m\}_M$, so we obtain losses l_T , $\{l_m\}_M$
 - The overall training loss is calculated as the unweighted mean of the losses for all included datasets

MolGroup: Routing Mechanism (1)

- We apply routing mechanism to quantify the affinity between datasets
- Let's consider two extreme situations of knowledge transfer

MolGroup: Routing Mechanism (2)

- Intuition
 - Parameters of a positively transferred pair should be more "shared"
 - Parameters of a negatively transferred pair should be more "specific"
- We use a routing function $g(\cdot)$ to determine such a relation
 - θ_T : target dataset's parameter
 - θ_m : m-th auxiliary dataset's parameter

Original layer:
$$\mathbf{z}^{(l+1)} = f_{\theta}^{(l)}(\mathbf{z}^{(l)}) \qquad \qquad \begin{matrix} f_{\theta}^{(l)} \text{: l-th layer} \\ \mathbf{z}^{(l)} \text{: l-th input} \end{matrix}$$

Current layer:
$$\mathbf{z}^{(l+1)} = \alpha_m f_{\theta_T}^{(l)} \left(\mathbf{z}_m^{(l)} \right) + (1 - \alpha_m) f_{\underline{\theta_m}}^{(l)} \left(\mathbf{z}_m^{(l)} \right)$$
 with $\alpha_m = g_m \left(\mathcal{B}_T, \mathcal{B}_m \right)$ Input batch

MolGroup: Routing Mechanism (3)

- We assign different parameters to different datasets
 - Target dataset's parameter: θ_T , Auxiliary dataset's parameter: $\{\theta_m\}_M$
- Routing mechanism $g(\cdot)$ determines the impact of m-th auxiliary dataset on the target dataset's parameter

$$\alpha_m = g(\mathcal{B}_T, \mathcal{B}_m)$$

- $\alpha_m = 0$ indicates all-specific architecture
- $\alpha_m = 1$ indicates all-sharing architecture

MolGroup: Routing Mechanism (4)

- The calculation of $g(\cdot)$ is divided into two calculations
 - For task affinity, we assign learnable embeddings $e_T^{\,task}$, $e_m^{\,task}$
 - For structure affinity
 - Extract fingerprint feature for each molecule in the batch
 - Embed it using a weight matrix and apply Set2Set to obtain $e_T^{struct.}$, $e_m^{struct.}$
 - Finally, given an input batch of target dataset and m-th auxiliary dataset, the gating score α_m is computed as:

$$\alpha_m = g(\mathcal{B}_T, \mathcal{B}_m) = \sigma(\lambda e_T^{\text{task}} \cdot e_m^{\text{task}} + (1 - \lambda)e_T^{\text{struct.}} \cdot e_m^{\text{struct.}})$$

Hyperparameter

MolGroup: Bi-level Optimization (1)

Original optimization framework with routing mechanism

$$\min_{\theta_T} L_m(\mathcal{B}_T;\theta_T)$$
 gate score m-th auxiliary dataset loss $\min_{\theta_T,\theta_m} L_m(\mathcal{B}_m;\theta_T,\theta_m,\frac{\alpha_m}{\alpha_m})$

- Optimize the model towards minimizing the loss functions
- What is the desired objective for auxiliary dataset grouping?
 - Optimize the routing mechanism toward minimizing target dataset's loss
 - The auxiliary dataset with great benefit should be assigned a larger gating score

MolGroup: Bi-level Optimization (2)

- Desired objective
 - Optimize the routing mechanism toward minimizing target dataset's parameters
- At each learning step, we explicitly represent target parameter optimized by m-th auxiliary dataset as $\theta_T(\alpha_m)$
- Let's break the optimization into two steps to meet the objective
 - 1) Obtain $\theta_T(\alpha_m)$: Optimize the target parameter θ_T with \mathcal{B}_m
 - 2) Optimize $g(\cdot)$ based on the performance $\theta_T(\alpha_m)$ on \mathcal{B}_T
 - If it lowers the target dataset's loss, let's optimize it toward greater gating score

MolGroup: Bi-level Optimization (3)

- The bi-level optimization for MolGroup
 - Lower level: Optimize the target parameter θ_T with \mathcal{B}_m and obtain $\theta_T(\alpha_m)$

$$\theta_T(\alpha_m) = \operatorname{argmin}_{\theta_T} L_m(\mathcal{B}_m; \theta_T, \theta_m, \alpha_m)$$

• Higher level: Optimize $g(\cdot)$ based on the loss of $\theta_T(\alpha_m)$ on \mathcal{B}_T

$$\min_{\alpha_m} L_T(\mathcal{B}_T; \theta_T(\alpha_m))$$

 Usually, we call the gradient of higher-level objective with respect to the lower-level parameters as meta gradient

MolGroup: Overall Pipeline

- Main idea: quantify the affinity score as gating score produced by routing mechanism
 - Input: Target dataset, candidate auxiliary datasets, threshold β , number of iteration n
 - Output: a subset of auxiliary datasets
- Iterative filtering
 - Step1: initialize and train the model with routing function on all the datasets
 - 1) Update target parameters through routing mechanism with auxiliary dataset
 - 2) Optimize routing mechanism with updated target parameters
 - Step2: filter out the dataset that contains gate scores above β
 - Step3: go to step4 if iteration number == n or go back to step1
 - Step4: pick the auxiliary datasets with topk affinity

Benchmarking (1)

- Dataset: 15 molecule datasets
 - 11 target datasets
- Setting: Given a target dataset, select the auxiliary datasets and evaluate the performance when they train together
- Backbone: GIN and pretrained Graphormer
- Baseline
 - Search-based method
 - Grouping-based method
 - Multi-task learning method
 - The method that train on all datasets

Benchmarking (2)

• Grouping good auxiliary datasets can improve pretrained model Graphormer

Method	BBBP(†)	ClinTox(↑)	Tox21(↑)	BACE(↑)	$FreeSolv(\downarrow)$	qm8(↓)
Only-target	$66.62_{0.028}$	$56.45_{0.023}$	$74.23_{0.005}$	$75.02_{0.026}$	$3.842_{1.579}$	$0.0385_{0.001}$
Beam search(P)	$66.02_{0.015}$	$57.86_{0.068}$	$74.71_{0.004}$	$67.34_{0.039}$	$3.271_{0.479}$	$0.0553_{0.002}$
Beam search(P+S)	$67.69_{0.034}$	$57.63_{0.036}$	$\overline{74.36_{0.003}}$	$69.74_{0.056}$	$\overline{3.331_{0.287}}$	$0.0494_{0.000}$
TAG	$60.66_{0.014}$	$57.98_{0.028}$	$70.32_{0.006}$	$70.02_{0.076}$	$3.922_{0.748}$	$\overline{0.0637_{0.001}}$
Task2vec	$68.18_{0.011}$	$\overline{47.30_{0.031}}$	$68.00_{0.005}$	$74.71_{0.032}$	$3.383_{0.766}$	$0.0635_{0.001}$
MTDNN	$66.56_{0.021}$	$52.90_{0.039}$	$71.87_{0.003}$	$\overline{69.91_{0.026}}$	$3.428_{0.733}$	$0.0523_{0.002}$
UA	$60.41_{0.008}$	$51.99_{0.078}$	$68.16_{0.004}$	$61.75_{0.018}$	$4.095_{0.334}$	$0.0625_{0.001}$
Gradnorm	$61.21_{0.007}$	$53.08_{0.070}$	$59.40_{0.041}$	$64.83_{0.028}$	$4.356_{0.589}$	$0.0657_{0.006}$
Pretrain-Finetune	$56.59_{0.026}$	$56.00_{0.037}$	$50.64_{0.015}$	$64.80_{0.052}$	$4.391_{0.043}$	$0.0637_{0.001}$
MolGroup	$68.36_{0.016}$	$59.77_{0.027}$	$75.66_{0.004}$	$77.33_{\scriptstyle 0.015}$	$3.116_{0.279}$	$0.0385_{0.001}$

Table 1: Performance comparison of GIN on target molecule datasets, with \uparrow indicating higher is better and \downarrow indicating lower is better.

Method	Method BBBP(↑)		$Tox21(\uparrow)$ BACE(\uparrow)		FreeSolv(↓)	qm8(↓)
Only-target	$66.40_{0.019}$	$77.59_{0.028}$	$75.97_{0.009}$	$78.91_{0.023}$	$2.004_{0.088}$	$0.0372_{0.002}$
Beam search(P)	$67.53_{0.010}$	$76.77_{0.117}$	$76.61_{0.008}$	$81.58_{0.038}$	$2.129_{0.215}$	$0.0473_{0.001}$
Beam search(P+S)	$67.15_{0.030}$	$77.70_{0.076}$	$76.83_{0.007}$	$80.68_{0.024}$	$2.312_{0.191}$	$0.0458_{0.001}$
TAG	$69.62_{0.008}$	$78.08_{0.036}$	$76.57_{0.006}$	$80.10_{0.016}$	$2.038_{0.178}$	$0.0537_{0.001}$
Task2vec	$66.93_{0.022}$	$72.92_{0.049}$	$75.15_{0.007}$	$80.84_{0.017}$	$1.941_{0.123}$	$0.0530_{0.001}$
MTDNN	$66.71_{0.039}$	$71.97_{0.078}$	$76.84_{0.008}$	$79.79_{0.001}$	$\overline{2.173_{0.321}}$	$0.0512_{0.001}$
UW	$65.37_{0.000}$	$80.52_{0.027}$	$72.16_{0.009}$	$75.64_{0.000}$	$2.405_{0.415}$	$0.0569_{0.000}$
Gradnorm	$60.40_{0.045}$	$\overline{43.46_{0.083}}$	$55.06_{0.002}$	$48.00_{0.005}$	$2.552_{0.595}$	$0.1694_{0.014}$
MolGroup	$69.66_{0.009}$	$81.21_{0.040}$	$77.34_{0.006}$	$82.94_{0.017}$	$1.879_{0.032}$	$0.0372_{0.002}$

Table 2: Performance comparison using Graphormer on target molecule datasets.

Grouping Results

- Each edge from auxiliary dataset to target dataset represents a selection
- Auxiliary dataset with top-3 affinity scores
 - PCBA is the most "famous" one
 - Tox21 can benefit ClinTox and ToxCast
 - Some datasets belong to distinct domains but still can benefit the other dataset
 - Qm8 for BBBP
 - ESOL for Lipo

Takeaway Messages

- PCBA is an effective booster
 - It can boost performance of most of the small molecule datasets

	BBBP(↑)	ClinTox(↑)	ToxCast(↑)	Tox21(↑)	ESOL(↓)	FreeSolv(↓)	Lipo(↓)
Only-target	$ 66.62_{0.028} $	$56.45_{0.023}$	$60.69_{0.010}$	$74.23_{0.005}$	$1.563_{0.040}$	$3.842_{1.579}$	$0.8063_{0.015}$
+PCBA	$ 67.11_{0.023} $	$57.77_{0.028}$	$62.05_{0.007}$	$74.81_{0.006}$	$1.463_{0.020}$	$3.563_{0.989}$	$0.8021_{0.009}$

• Grouping more high-affinity datasets improves performance

Combinations	ClinTox	Tox21	FreeSolv	BBBP	BACE	ToxCast	ESOL	Lipo
+ Top{1}	56.45 _{0.023} 57.77 _{0.028} 57.48 _{0.032}		$3.842_{1.579}$ $3.563_{0.989}$ $3.462_{0.970}$	66.62 _{0.028} 67.36 _{0.023} 68.64 _{0.012}	$75.02_{0.026} \\ 71.27_{0.045} \\ 71.13_{0.019}$		$1.563_{0.040} \\ 1.502_{0.043} \\ 1.524_{0.077}$	
+Top{1,2,3}	59.77 _{0.027}	$75.66_{0.004}$	$3.116_{0.279}$	$68.36_{0.016}$	$77.33_{0.015}$	$63.91_{0.005}$	$1.402_{0.010}$	$0.7996_{0.005}$

Summary

- Given a target dataset, how to identify a good subset of auxiliary datasets which can maximize the performance?
- Preliminary analysis
 - Investigate the relationship between molecule datasets in terms of structure and task similarity
- MolGroup, a routing-based grouping method
 - Learn to route between auxiliary-specific or target-specific parameters
 - Routing mechanism is optimized toward maximizing the target dataset's performance