Line Tracer 05

- IR Sensor -

This lecture is based on

- GPIO

1. QTRX Sensor

About QTRX Sensor

About QTRX Sensor

Infra Red light comes from here

IR light should go to phototransistor

View QRTX Sensor with IR Camera

About QTRX Sensor

2. IR Sensor Implementation

IR Sensor Initialization

```
// 0,2,4,6 IR Emitter
P5->SEL0 &= ~0x08;
P5->SEL1 &= ~0x08; // GPI0
P5->DIR |= 0x08; // OUTPUT
P5->0UT &= \sim 0 \times 08; // turn off 4 even IR LEDs
// 1,3,5,7 IR Emitter
P9->SEL0 &= ~0x04;
P9->SEL1 &= ~0x04; // GPI0
P9->DIR |= 0x04;  // OUTPUT
P9->OUT &= ~0x04;  // turn off 4 odd IR LEDs
// 0~7 IR Sensor
P7->SEL0 &= ~0xFF;
P7->SEL1 &= ~0xFF; // GPI0
P7->DIR &= ~0xFF; // INPUT
```

```
while(1) {
    // Turn on IR LEDs
    P5->0UT |= 0x08;
    P9->0UT | = 0x04:
    // Make P7.0-P7.7 as output
    P7->DIR = 0xFF:
    // Charges a capacitor
    P7->OUT = OxFF:
    // Wait for fully charged
    Clock Delay1us(10);
    // Make P7.0-P7.7 as input
    P7->DIR = 0x00;
```

```
// Wait for a while
Clock Delay1us(1000);
// Read P7.7-P7.0 Input
// white : 0, black : 1
sensor = P7 -> IN \& 0x10:
if (sensor) {
    P2->OUT |= 0x01;
} else {
    P2->OUT &= ~Ox07:
// Turn off IR LEDs
P5->0UT \&= ~0x08;
P9->0UT &= ~0x04:
Clock Delay1ms(10);
```

You should turn on the power!

- 1) Turn on IR LED
 - Turn on both even and odd emitters

```
// Turn on IR LEDs
P5->OUT |= 0x08;
P9->OUT |= 0x04;
```


2) Charge Capacitors

- To charge, we should change P7->DIR to output and charge capacitors through P7->OUT = 0xFF
- We need to wait for fully charged

```
// Make P7.0-P7.7 as output
P7->DIR = 0xFF;
// Charges a capacitor
P7->OUT = 0xFF;
// Wait for fully charged
Clock_Delaylus(10);
```


- 3) Wait for a while after fully charged
 - Capacitor is discharged slowly in a natural situation, But it is very slow
 - When IR Sensor gets IR light, it discharges capacitor
 - Using above property, we can distinguish between white and black surfaces

```
// Make P7.0-P7.7 as input
P7->DIR = 0x00;

// Wait for a while
Clock_Delay1us(1000);

// Read 5th sensor, not entire
sensor = P7->IN & 0x10;
```


3) Wait for a while after fully charged

We have to read a sensor at this moment

- 4) Read Sensor
 - Make Port7 as input and read Port 7
 - When we read 0, it means white
 - When we read 1, it means black

```
// Read P7.7-P7.0 Input
// white : 0, black : 1
sensor = P7->IN & 0x10;

if (sensor) {
    P2->OUT |= 0x01;
} else {
    P2->OUT &= ~0x07;
}
```

- 5) Turn Off LEDs
 - To save energy, turn off IR LEDs and sleep for a while

```
// Turn off IR LEDs
P5->OUT &= ~0x08;
P9->OUT &= ~0x04;
Clock_Delay1ms(10);
```

Tip for Setting Waiting Constant

```
while (1) {
    P5->OUT = 0x08;
    P9->OUT | = 0x04;
    P7->DIR = 0xFF;
    P7->OUT = 0xFF;
    Clock Delay1us(10);
    P7->DIR = 0x00;
    int i;
    for (i = 0; i < 10000; i++) {
        sensor = P7->IN & 0x10;
        if (!sensor) {
            printf("Timing Constant : %d\n", i);
            break;
        Clock Delay1us(1);
    P5->OUT &= ~0x08;
    P9->OUT &= \sim0x04;
    Clock Delay1ms(10);
```

Timing Constant: 1713

Timing Constant: 1671 No Reflection

Timing Constant: 1689

•••

Timing Constant: 311

Timing Constant: 305 White Surface

Timing Constant: 310

•••

Timing Constant: 790

Timing Constant: 785 Black Surface

Timing Constant: 791

3. IR Sensor Activity

Line Follower – Sensor(not assignment)

Turn on LED when the line is located at the center of the robot

