Model Evaluation

CS 3244 Machine Learning

IoT Sensors

Health Behavior Change

Data Analytics

NUS Ubicomp Lab
Apps and Analytics for Smart Cities and Healthcare
http://ubiquitous.comp.nus.edu.sg

Explainable Artificial Intelligence

Interactive Data Visualization

[Instructor] Brian Lim

brianlim@comp.nus.edu.sg

Academic Experience

- Asst. Prof. in Computer Science
- Ph.D. in HCI, Carnegie Mellon University
- B.S. in Engineering Physics, Cornell University

Research Interests

- Explainable Artificial Intelligence
- Human-Computer Interaction
- Ubiquitous Computing
- Data analysis and visualization
- Smart Health and Smart Cities

Week 07b: Learning Outcomes

- Describe various evaluation metrics of model performance
- Understand that model performance depends on prediction task and data
 - Describe several challenges in evaluating model performances
 - Choose appropriate evaluation metric for different prediction tasks

Week 07b: Lecture Outline

- 1. Recap: Supervised learning Classification vs. Regression
- 2. Classification Metrics
- 3. Regression Metrics
- 4. Unsupervised learning metrics [W12]

Classification vs. Regression

$$y \in \{0,1\}$$
 binary $y \in \{y_A, y_B, ...\}$ multi-class

Regression

 $y \in \mathbb{R}$ any real number

$$y \in \{0,1\}$$
 binary $y \in \{y_A, y_B, ...\}$ multi-class

$$y = M(x), \quad x = \vec{x} = (x_1, x_2)^{\mathsf{T}}$$

Regression

 $y \in \mathbb{R}$ any real number

$$y = M(x), \quad x = x_1$$

Image credit:

$$y \in \{0,1\}$$
 binary $y \in \{y_A, y_B, ...\}$ multi-class

$$y = M(x), \quad x = \vec{x} = (x_1, x_2)^{\mathsf{T}}$$

Image credit:

https://www.javatpoint.com/regression-vs-classification-in-machine-learning, https://stackoverflow.com/q/26431800

Regression

 $y \in \mathbb{R}$ any real number

$$y = M(x), \quad x = x_1$$

 $y = M(x), \quad x = (x_1, ..., x_n)^{\mathsf{T}}$

Classification Evaluation Metrics

Week 07: Lecture Outline

- 1. Recap: Classification vs. Regression
- 2. Classification Metrics
 - 1. Accuracy
 - 2. Confusion Matrix, TP, TN, FP, FN
 - Precision, Recall, F₁
 - 4. ROC, AUC
 - 5. Micro- and Macro-Averaging
 - 6. PR-AUC (Average Precision)
- 3. Regression Metrics

Accuracy

"Average correctness" across test dataset with m instances:

$$A = \frac{1}{m} \sum_{j=1}^{m} \left[\hat{y}_j = y_j \right]$$

where

- $\hat{y}_j = M(x_j)$ is the predicted value from model M of the jth instance x_j
- y_i is the ground truth value of the jth instance
- $[P] = \begin{cases} 1 & \text{if } P \text{ is true} \\ 0 & \text{otherwise} \end{cases}$ is the <u>Iverson bracket</u> notation for if/else

Confusion Matrix

Student alertness prediction

Inst.	Predicted \hat{y}	Actual y	
1	Alert	Alert	TP
2	Alert	Alert	IP
3	Sleepy	Alert	
4	Sleepy	Alert	FN
5	Sleepy	Alert	
6	Sleepy	Sleepy	
7	Sleepy	Sleepy	TN
8	Sleepy	Sleepy	IIN
9	Sleepy	Sleepy	
10	Alert	Sleepy	FP

Is the student Alert?

Actual Label

Accuracy =
$$\frac{TP+TN}{TP+TN+FP+TN}$$

Confusion Matrix

Student alertness prediction

Inst.	Predicted \hat{y}	Actual y	
1	Alert	Alert	
2	Alert	Alert	
3	Sleepy	Alert	
4	Sleepy	Alert	
5	Sleepy	Alert	
6	Sleepy	Sleepy	
7	Sleepy	Sleepy	
8	Sleepy	Sleepy	
9	Sleepy	Sleepy	
10	Alert	Sleepy	

Is the student **Alert**?

Actual Label

		Pos	Neg
ed Label	Pos	TP True Positive	FP False Positive
Predicted	Neg	FN False Negative	TN True Negative

Is the student **Sleepy**?

Actual Label

		Pos	Neg
ed Label	Pos	TP True Positive	FP False Positive
Predicted	Neg	FN False Negative	TN True Negative

Which class is Positive? Negative?

You define based on your application

Confusion Matrix

Student alertness prediction

Inst.	Predicted \hat{y} Actual y		
1	Alert	Alert	
2	Alert	Alert	
3	Not	Alert	
4	Not	Alert	
5	Not	Alert	
6	Not	Not	
7	Not	Not	
8	Not	Not	
9	Not	Not	
10	Alert	Not	

Is the student Alert?

Actual Label

Two types of False mistakes. Which is worse?

- FN: Accuse alert students, or
- FP: Neglect sleepy students?

Confusion Matrix: which mistake is costlier?

Student alertness prediction

Inst.	Predicted \hat{y}	Actual y
1	Alert	Alert
2	Alert	Alert
3	Not	Alert
4	Not	Alert
5	Not	Alert
6	Not	Not
7	Not	Not
8	Not	Not
9	Not	Not
10	Alert	Not

Actual Label

3/10 students predicted as **Sleepy** when actually **Alert**

=> Many false accusations

1/10 students predicted as **Alert** when actually **Sleepy**

=> Few undeserved credits

Cost-Sensitive Evaluation Metrics

- 1. Report **Precision** vs. **Recall**
- 2. Vary Prediction Threshold

Among actual positives, what fraction of instances were **recalled**?

Maximize this
if false negative (FN) is costly.
E.g., cancer prediction,
not music recommendation

Among positive predictions, how **precisely** were actual positive instances predicted?

Maximize this
if false positive (FP) is costly.
E.g., email spam, satellite
launch date prediction.

Precision and Recall

Inst.	Predicted \hat{y}	Actual y
1	Alert	Alert
2	Alert	Alert
3	Not	Alert
4	Not	Alert
5	Not	Alert
6	Not	Not
7	Not	Not
8	Not	Not
9	Not	Not
10	Alert	Not

Actual Label

		Alert	Not	
d Label	Alert	True Positive	Talse Positive	3 ∑ Pred. Pos.
Predicted Label	Not	3 False Negative	4 True Negative	\sum Pred. Neg.
·		∑ Actual Pos.	5 ∑ Actual Neg.	

Precision
P = TP / (TP+FP)

Recall
$$R = TP / (TP+FN)$$

Precision and Recall \rightarrow F₁ Score

Inst.	Predicted \hat{y}	Actual y
1	Alert	Alert
2	Alert	Alert
3	Not	Alert
4	Not	Alert
5	Not	Alert
6	Not	Not
7	Not	Not
8	Not	Not
9	Not	Not
10	Alert	Not

Actual Label

		Alert	Not	
ed Label	Alert	True Positive	Talse Positive	3 ∑ Pred. Pos.
Predicted Label	Not	3 False Negative	4 True Negative	7 ∑ Pred. Neg.
•		∑ Actual Pos.	5 ∑ Actual Neg.	

Recall
$$R = TP / (TP+FN)$$

$$F_1 \text{ Score}$$

$$F_1 = \frac{2}{\frac{1}{P} + \frac{1}{R}}$$

F₁ Score: Why not just use simple average?

1. The measure is more **robust** (less sensitive to extreme values)

Ref: https://stackoverflow.com/a/26360501

2. It considers that the numerators of P and R are the same, so it compares their denominators

$$F_1 = \left(\frac{P^{-1} + R^{-1}}{2}\right)^{-1} = \frac{2}{\frac{1}{P} + \frac{1}{R}} = \frac{2TP}{(TP + FP) + (TP + FN)}$$

Other "fairer" metrics that consider true negatives (TN):

Matthews correlation coefficient, Youden's index, Cohen's kappa

Imbalanced Data

Imbalanced Data

Actual Label

_		Alert	Not		
d Label	Alert	2 True Positive	Talse Positive	3 Σ Pred. Pos.	Precision P = .66
Predicted Labe	Not	3 False Negative	4 True Negative	\sum Pred. Neg.	
-		5 ∑ Actual Pos.	5 ∑ Actual Neg.	Accuracy $A = .60$,

Recall R = .40

Actual Label

		Alert	Not		
ed Label	Alert	36 True Positive	Talse Positive	37 ∑ Pred. Pos.	Precision P = .97
Predicted Label	Not	14 False Negative	4 True Negative	$18 \atop \text{$\Sigma$ Pred. Neg.}$	
		50 ∑ Actual Pos.		Accuracy $A = .73$	/

Recall R = .40

Cost-Sensitive Evaluation Metrics

- 1. Report Precision vs. Recall
- 2. Vary Prediction Threshold

Prediction Confidence

Logistic regression example

Cost-Sensitive Confusion Matrix (Threshold = **0.5**)

Inst.	Confidence $p(\hat{y})$	Prediction \hat{y} $p(\hat{y}) > 0.5$	Actual y
1	0.9	Alert	Alert
2	0.6	Alert	Alert
3	0.5	Not	Alert
4	0.4	Not	Alert
5	0.3	Not	Alert
6	0.2	Not	Not
7	0.3	Not	Not
8	0.4	Not	Not
9	0.5	Not	Not
10	0.55	Alert	Not

Actual Label

True Positive Rate
TPR = TP / (TP+FN)

False Positive Rate FPR = FP / (FP+TN)

Cost-Sensitive Confusion Matrix (Threshold = **0.5**)

Inst.	Confidence $p(\hat{y})$	Prediction \hat{y} $p(\hat{y}) > 0.5$	Actual y
1	0.9	Alert	Alert
2	0.6	Alert	Alert
3	0.5	Not	Alert
4	0.4	Not	Alert
5	0.3	Not	Alert
6	0.2	Not	Not
7	0.3	Not	Not
8	0.4	Not	Not
9	0.5	Not	Not
10	0.55	Alert	Not

Actual Label

_		Alert	Not	
Predicted Label	Alert	True Positive	False Positive	3 ∑ Pred. Pos.
Predicte	Not	3 False Negative	4 True Negative	\sum Pred. Neg.
		S Actual Pos.		

True Positive Rate TPR = 2/5 = 0.4 False Positive Rate FPR = 1/5 = 0.2

Cost-Sensitive Confusion Matrix (Threshold = **0.3**)

Inst.	Confidence $p(\hat{y})$	Prediction \hat{y} $p(\hat{y}) > 0.3$	Actual y
1	0.9	Alert	Alert
2	0.6	Alert	Alert
3	0.5	Alert	Alert
4	0.4	Alert	Alert
5	0.3	Not	Alert
6	0.2	Not	Not
7	0.3	Not	Not
8	0.4	Alert	Not
9	0.5	Alert	Not
10	0.55	Alert	Not

Actual Label

		Alert	Not	
ed Label	Alert	True Positive	3 False Positive	7 ∑ Pred. Pos.
Predicted Label	Not	1 False Negative	2 True Negative	3 ∑ Pred. Neg.

True Positive Rate TPR = 4/5 = 0.8

False Positive Rate FPR = 3/5 = 0.6

Cost-Sensitive Confusion Matrix (Threshold = **0.9**)

Inst.	Confidence $p(\hat{y})$	Prediction \hat{y} $p(\hat{y}) > 0.6$	Actual y
1	0.9	Alert	Alert
2	0.6	Not	Alert
3	0.5	Not	Alert
4	0.4	Not	Alert
5	0.3	Not	Alert
6	0.2	Not	Not
7	0.3	Not	Not
8	0.4	Not	Not
9	0.5	Not	Not
10	0.55	Not	Not

Actual Label

_		Alert	Not	
Predicted Label	Alert	True Positive	False Positive	\sum Pred. Pos.
Predicte	Not	4 False Negative	5 True Negative	9 ∑ Pred. Neg.
		∑ Actual Pos.	∑ Actual Neg.	

True Positive Rate
TPR = 1/5 = 0.2

False Positive Rate FPR = 0/5 = 0.0

Cost-Sensitive Confusion Matrix

Confusion matrix depends on **prediction threshold**

Receiver Operator Characteristic (ROC) Curve

Threshold	TPR	FPR
0	1	1
0.1	1.0	1.0
0.2	1.0	0.8
0.3	0.8	0.6
0.4	0.6	0.4
0.5	0.4	0.2
0.6	0.2	0.0
0.7	0.2	0.0
0.8	0.2	0.0
0.9	0.0	0.0
1	0	0

- Diagonal random line indicates 50% chance of correctness.
- If **ROC curve** is above the **random** line, model is more accurate than chance.
- Perfect curve has TPR = 1 and FPR = 0 always.

Area Under Curve (AUC) of ROC

Threshold	TPR	FPR
0	1	1
0.1	1.0	1.0
0.2	1.0	0.8
0.3	0.8	0.6
0.4	0.6	0.4
0.5	0.4	0.2
0.6	0.2	0.0
0.7	0.2	0.0
0.8	0.2	0.0
0.9	0.0	0.0
1	0	0

- AUC is a concise metric instead of a full figure.
- Concise metrics enable *clearer comparisons*.
- AUC > 0.5 means the model is better than chance.
- AUC ≈ 1 means model is very accurate.

Area Under Curve (AUC) of ROC (example)

Image credit: https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/

$$\hat{y} \in \{0,1\}$$
 binary

$$\hat{y} \in \{y_A, y_B, ...\}$$
 multi-class

$$\hat{y} = M(x), \quad x = \vec{x} = (x_1, x_2)^{\mathsf{T}}$$

Regression

 $\hat{y} \in \mathbb{R}$ any real number (scalar)

$$\hat{y} = M(x), \quad x = x_1$$

 $\hat{y} = M(x), \quad x = (x_1, ..., x_n)^{\top}$

Image credit:

https://www.javatpoint.com/regression-vs-classification-in-machine-learning

Confusion Matrix (binary classification)

Inst.	Predicted \hat{y}	Actual y
1	Alert	Alert
2	Alert	Alert
3	Sleepy	Alert
4	Sleepy	Alert
5	Sleepy	Alert
6	Sleepy	Sleepy
7	Sleepy	Sleepy
8	Sleepy	Sleepy
9	Sleepy	Sleepy
10	Alert	Sleepy

Actual Label

		Alert	Sleepy
d Label	Alert	2	1
Predicted Label	Sleepy	3	4

Predicted \hat{y} Actual *y* Inst. Alert Alert Alert Alert Alert Sleepy Sleepy Alert Sleepy 5 Alert Sleepy 6 Sleepy Sleepy Sleepy 8 Sleepy Sleepy 9 Sleepy Sleepy Alert 10 Sleepy 11 Away Away 12 Away Alert • • • • • • • • •

Actual Label

_		Alert	Sleepy	Away
Predicted Label	Alert	3	2	#
	Sleepy	2	3	#
Pre	Away	#	#	#

Confusion Matrix (multiclass example)

Image Credit

How to calculate:

- Accuracy
- Precision, Recall, F₁
- AUC?

Confusion Matrix (binary classification)

Inst.	Predicted \hat{y}	Actual y
1	Alert	Alert
2	Alert	Alert
3	Sleepy	Alert
4	Sleepy	Alert
5	Sleepy	Alert
6	Sleepy	Sleepy
7	Sleepy	Sleepy
8	Sleepy	Sleepy
9	Sleepy	Sleepy
10	Alert	Sleepy

Actual Label

		Alert	Sleepy
d Label	Alert	2 True Positive	1 False Positive
Predicted	Sleepy	3 False Negative	4 True Negative

Predicted \hat{y} Actual *y* Inst. Alert Alert Alert Alert Alert Sleepy Alert Sleepy Alert 5 Sleepy 6 Sleepy Sleepy Sleepy Sleepy 8 Sleepy Sleepy 9 Sleepy Sleepy 10 Alert Sleepy 11 Away Away 12 Away Alert • • • • • • • • •

Actual Label

		Alert	Sleepy	Away
lpel	Alert	2 True Positive	1 False Positive	#
Predicted Label	Sleepy	3 False Negative	4 True Negative	#
Pre	Away	#	#	#

Which class is Positive? Negative?

Predicted \hat{y} Actual *y* Inst. Alert Alert Alert Alert Sleepy Alert Sleepy Alert Sleepy Alert Sleepy Sleepy Sleepy Sleepy Sleepy Sleepy 9 Sleepy Sleepy 10 Alert Sleepy Away Away 12 Alert Away

Actual Label

		Alert	Not	Not
Predicted Label	Alert	TP	FP	FP
	Not	FN	TN	TN
Prec	Not	FN	TN	TN

Alert class is Positive, others Neg.

Predicted \hat{y} Actual *y* Inst. Alert Alert Alert Alert Sleepy Alert Sleepy Alert Sleepy Alert Sleepy Sleepy Sleepy Sleepy Sleepy Sleepy 9 Sleepy Sleepy 10 Alert Sleepy Away Away 12 Alert Away

Actual Label

		Not	Sleepy	Not
Predicted Label	Not	TN	FN	TN
	Sleepy	FP	TP	FP
Pre	Not	TN	FN	TN

Sleepy class is Positive, others Neg.

Predicted \hat{y} Actual *y* Inst. Alert Alert Alert Alert Sleepy Alert Sleepy Alert Sleepy Alert Sleepy Sleepy Sleepy Sleepy Sleepy Sleepy 9 Sleepy Sleepy 10 Alert Sleepy Away Away 12 Alert Away

Actual Label

		Not	Not	Away
Predicted Label	Not	TN	TN	FN
	Not	TN	TN	FN
Pre	Away	FP	FP	TP

Away class is Positive, others Neg.

Multiclass evaluation metrics: Average?

Multiclass evaluation metrics: Micro-Average

$TP_{\Sigma} = \frac{1}{ C } \sum_{c \in C} TP_c$
$= (TP_{c1} + TP_{c2} + TP_{c3})/3$
$TN_{\Sigma} = \frac{1}{ C } \sum_{c \in C} TN_c$
$FP_{\Sigma} = \frac{1}{ C } \sum_{c \in C} FP_c$
$FN_{\Sigma} = \frac{1}{ C } \sum_{c \in C} FN_c$

		Actual Label		
		Not	Sleepy	Not
Predicted Label	Not	TN _{c2}	FN _{c2}	TN _{c2}
	Sleepy	FP _{c2}	TP _{c2}	FP _{c2}
	Not	TN _{c2}	FN _{c2}	TN _{c2}
	,	<u> </u>		<u> </u>

A_{Σ} , P_{Σ} , R_{Σ} ,	$F1_{\Sigma}$, AUC_{Σ}
--	--------------------------------

Actual Label			eı	
		Not	Not	Away
Predicted Label	Not	TN _{c3}	TN _{c3}	FN _{c3}
	Not	TN _{c3}	TN _{c3}	FN _{c3}
	Away	FP _{c3}	FP _{c3}	TP _{c3}

Multiclass evaluation metrics: Macro-Average

Micro- vs. Macro Average

Imbalanced Classification evaluation with Precision-Recall (PR) Curve AUC

Further reading: https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-imbalanced-classification/

NUS CS3244: Machine Learning

Match appropriate evaluation metric to challenge

Challenge	Evaluation Metric
	Accuracy (Emote :one:)
Imbalanced actual classes	Precision (:two:)
	Recall (:three:)
Multiclass classification	F ₁ Score (:four:)
IVIUILICIASS CIASSIIICALIOII	B ROC AUC (:five:)
	PRC AUC (:six:)
Cost-dependent classes	Micro-Average (:seven:)
	Macro-Average (:eight:)

Emote (react) in Slack #general channel one or more options (MRQ) for each challenge

Match appropriate evaluation metric to challenge

Challenge	Evaluation Metric
Imbalanced actual classes	Accuracy (Emote :one:)
	Precision (:two:)
	Recall (:three:)
	F ₁ Score (:four:)
	ROC AUC (:five:)
Cost-dependent classes 2 3 5	PRC AUC (:six:)
	Micro-Average (:seven:)
	Macro-Average (:eight:)

Regression Evaluation Metrics

Classification

$$\hat{y} \in \{0,1\}$$
 binary $\hat{y} \in \{y_A, y_B, ...\}$ multi-class

$$\hat{y} = M(x), \quad x = \vec{x} = (x_1, x_2)^{\mathsf{T}}$$

Regression

 $\hat{y} \in \mathbb{R}$ any real number

$$\hat{y} = M(x), \quad x = x_1$$

 $\hat{y} = M(x), \quad x = (x_1, ..., x_n)^{\mathsf{T}}$

Image credit:

https://www.javatpoint.com/regression-vs-classification-in-machine-learning

Week 07b: Lecture Outline

- 1. Recap: Classification vs. Regression
- 2. Classification Metrics
- 3. Regression Metrics
 - 1. 1D regression: MSE, MAE
 - 2. Vector regression: Euclidean distance, Angular distance / Cosine Similarity
 - 3. Complex metrics for unstructured data

Note: intuition is opposite to "correctness".

- Longer distance means worse performance
- Smaller distance is better performance

Average difference metrics for test dataset

Mean Absolute Error (MAE)

$$MAE = \frac{1}{m} \sum_{j=1}^{m} |\hat{y}_j - y_j|$$

Mean Squared Error (MSE)

$$MSE = \frac{1}{m} \sum_{j=1}^{m} (\hat{y}_j - y_j)^2$$

Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\frac{1}{m}} \sum_{j=1}^{m} (\hat{y}_j - y_j)^2$$

MSE and RMSE penalize larger differences more than MAE

Week 07b: Lecture Outline

- 1. Recap: Classification vs. Regression
- 2. Classification Metrics
- 3. Regression Metrics
 - 1. 1D regression: MSE, MAE
 - 2. Vector regression: Euclidean distance, Angular distance / Cosine Similarity
 - 3. Complex metrics for unstructured data

Multi-task prediction

Multi-task prediction: predicting a vector $oldsymbol{y}$

Vector Distances and Similarity

Squared Distance

$$d = (\hat{y} - y)^2$$

Euclidean Distance

$$d = \sqrt{(\widehat{\mathbf{y}} - \mathbf{y})^{\top}(\widehat{\mathbf{y}} - \mathbf{y})}$$
Dot Product

Cosine similarity is often used for text embeddings, since their vectors are unit length, i.e., $\|\widehat{\mathbf{y}}\|_2 \approx \|\mathbf{y}\|_2 \approx 1$

Cosine Similarity

$$s = \cos(\theta) = \frac{\widehat{\mathbf{y}}}{\|\widehat{\mathbf{y}}\|_2} \cdot \frac{\mathbf{y}}{\|\mathbf{y}\|_2}$$

Angular Distance

$$\theta = \cos^{-1}(s)$$

Week 07b: Lecture Outline

- 1. Recap: Classification vs. Regression
- 2. Classification Metrics
- 3. Regression Metrics
 - 1. 1D regression: MSE, MAE
 - 2. Vector regression: Euclidean distance, Angular distance / Cosine Similarity
 - 3. Complex metrics for unstructured data

Advanced Evaluation Metrics for Images, Time Series, Unstructured Data (with Deep Learning)

- 1. Similarity between (probability) distributions
 - 1. Kullback-Leibler Divergence
 - 2. <u>Jensen-Shannon Distance</u>
- 2. Similarity between images
 - Mean Squared Error
 - 2. <u>Peak Signal-to-Noise Ratio (PSNR)</u>
 - 3. Structural Similarity Index Measure (SSIM)
 - 4. Pearson Correlation Coefficient
- 3. Segmentation (region) overlap
 - 1. <u>Jaccard Index</u> / <u>Intersection-over-Union (IoU)</u>

Won't be in the exam!

Wrapping Up

What did we learn for Evaluation?

- 1. Classification vs. Regression
- 2. Classification Metrics
 - 1. Accuracy
 - Confusion Matrix, TP, TN, FP, FN
 - 3. Precision, Recall, F₁
 - 4. ROC, AUC
 - 5. Micro- and Macro-Averaging
 - 6. PR-AUC (Average Precision)
- 3. Regression Metrics
 - 1. 1D regression: MSE, MAE
 - 2. Vector regression: Euclidean distance, Angular distance / Cosine Similarity

Appropriate evaluation metric depends on <u>prediction task</u> and data issues.

Next week: Data Preparation for ML

W08 Pre-Lecture Task (due before next Mon)

Read

- 1. <u>Discover Feature Engineering, How to Engineer Features and How to Get Good</u> at It by Jason Brownlee
- 2. <u>8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset</u> by Jason Brownlee

Task

- 1. Identify cases of bad data in machine learning
- 2. <u>Propose</u> mitigation strategies
 - Tip: you can your own projects too; you don't have to be correct
- 3. Post a 1–2 sentence answer to the topic in your tutorial group: #tg-xx