ΜΑΣ026 - ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΙΙ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2019-2020 Ασκήσεις

1ο Κεφάλαιο

1. Έστω $\vec{x}=(-3,-2)$ και $\vec{y}=(2,1)$. Αν θ είναι η γωνία των $\vec{y}-\vec{x}$ και \vec{y} να βρεθεί το $\cos\theta$.

Απάντηση: $\frac{13}{\sqrt{170}}$

2. Να βρεθεί το εμβαδόν του τριγώνου με κορυφές A(1,0,0), B(1,2,-1) και C(0,2,-4).

Απάντηση: $\frac{\sqrt{41}}{2}$

3. Να βρεθεί διάνυσμα $\vec{u} \in \mathbb{R}^2$ ώστε $\vec{u} = \lambda(4,2)$ με $\lambda > 0$ και $\|u\| = 2$.

Απάντηση: $\frac{1}{\sqrt{5}}\left(\frac{4}{5},\frac{2}{5}\right)$

4. Έστω τρίγωνο με κορυφές A(1,5,3), B(3,5,5) και $\Gamma(1,9,4)$.

ί. Να βρεθούν τα συνημίτονα των γωνιών του τριγώνου. Τι είδους τρίγωνο είναι;

ii. Ποιο είναι το εμβαδόν του τριγώνου;

Απάντηση: i. $\frac{2}{\sqrt{8}\sqrt{17}}, \frac{6}{\sqrt{8}\sqrt{21}}, \frac{15}{\sqrt{17}\sqrt{21}}$, οξυγώνιο. ii. $\frac{\sqrt{33}}{2}$

5. Έστω $\vec{a} = (2, 1, 0)$ και $\vec{b} = (3, 3, 3)$.

i. Είναι τα γινόμενα $(\vec{a} \times \vec{b}) \times \hat{\imath}$ και $\vec{a} \times (\vec{b} \times \hat{\imath})$ ίσα;

ii. Να δειχθεί ότι $(\vec{a} \times \vec{b}) \times \hat{\imath} = (\vec{a} \cdot \hat{\imath}) \vec{b} - (\vec{b} \cdot \hat{\imath}) \vec{a}$ και $\vec{a} \times (\vec{b} \times \hat{\imath}) = (\vec{a} \cdot \hat{\imath}) \vec{b} - (\vec{a} \cdot \vec{b}) \hat{\imath}$.

Απάντηση: i. Δεν είναι ίσα.

6. Έστω \vec{r} , \vec{s} , \vec{t} τρία μη μηδενικά διανύσματα στον \mathbb{R}^3 . Αποφασίστε αν τα παρακάτω είναι Σωστά ή Λάθος και αιτιολογήστε την απάντησή σας.

i. Αν το \vec{r} είναι παράλληλο με το \vec{s} και το \vec{s} παράλληλο με το \vec{t} , τότε το \vec{r} είναι παράλληλο με το \vec{t} .

ii. Αν το \vec{r} είναι κάθετο με το \vec{s} και το \vec{s} κάθετο με το \vec{t} , τότε το \vec{r} είναι κάθετο με το \vec{t} .

iii. Αν το \vec{r} είναι παράλληλο με το \vec{s} και το \vec{s} είναι κάθετο με το \vec{t} , τότε το \vec{r} είναι κάθετο με το \vec{t} .

iv. $\vec{r} \cdot (\vec{s} \times \vec{t}) = (\vec{t} \times \vec{s}) \cdot \vec{r}$.

ν. Αν $\vec{r} \cdot (\vec{s} \times \vec{t}) = 0$ και $\vec{s} \times \vec{t} \neq \vec{0}$ τότε το \vec{r} είναι κάθετο στο $\vec{s} + \vec{t}$.

vi. Αν $\vec{r} \times (\vec{s} \times \vec{t}) = \vec{0}$ και $\vec{s} \times \vec{t} \neq \vec{0}$ τότε το \vec{r} είναι κάθετο στα \vec{s} και \vec{t} .

Απάντηση: Σωστό, Λάθος, Σωστό, Λάθος, Λάθος, Σωστό.

7. Ανήκουν τα σημεία P(1,0,1), Q(2,4,6), R(3,-1,2) και S(6,2,8) στο ίδιο επίπεδο;

Απάντηση: Ναι.

8. Αποδείξτε ότι η εξίσωση $\rho = \frac{3}{\sin \phi}$ σε σφαιρικές συντεταγμένες και η εξίσωση r=3 σε κυλινδρικές συντεταγμένες περιγράφουν την ίδια επιφάνεια. Ποια επιφάνεια είναι αυτή;

Απάντηση: Προκύπτει από τους τύπους $\rho \sin \phi = x^2 + y^2$ και $r = x^2 + y^2$. Η επιφάνεια είναι κύλινδρος με άξονα z'z και ακτίνα 3.

* 9. Μια μάζα ενός κιλού βρίσκεται στην αρχή των αξόνων και κρέμεται από δύο νήματα καρφωμένα στα σημεία (1,1,1) και (-1,-1,1). Αν η βαρύτητα ασκείται προς την κατεύθυνση του $-\hat{k}$, να βρεθούν τα διανύσματα που περιγράφουν τις δυνάμεις που ασκούνται από τα νήματα. [Μια μάζα ενός κιλού έχει βάρος 9.8 Nt.]

Απάντηση: Λόγω συμμετρίας, τα νήματα ασκούν την ίδια τάση T. Τα μέτρα των διανυσμάτων βρίσκονται εφαρμόζοντας τον πρώτο νόμο του Νεύτωνα.

** 10. (Διανυσματική μορφή του νόμου του Snell) Δύο υλικά με δείκτες διάθλασης n_1 και n_2 χωρίζονται από επίπεδο κάθετο στο μοναδιαίο διάνυσμα \vec{N} . Έστω \vec{a} και \vec{b} μοναδιαία διανύσματα στην κατεύθυνση της προσπίπτουσας και διαθλώμενης ακτίνας αντίστοιχα. Να δειχθεί ότι $n_1(\vec{N}\times\vec{a})=n_2(\vec{N}\times\vec{b})$.

Απάντηση: Από τον νόμο του Snell προκύπτει ότι τα διανύσματα έχουν ίδια νόρμα, άρα ίδιο μέτρο. Από τον κανόνα του δεξιού χεριού προκύπτει ότι έχουν ίδια κατεύθυνση,

2ο Κεφάλαιο

11. Να υπολογίσετε τα παρακάτω όρια ή να δείξετε ότι δεν υπάρχουν.

i.
$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2}$$

iii.
$$\lim_{(x,y)\to(\pi,\pi)} x \sin\left(\frac{x+y}{4}\right)$$

ii.
$$\lim_{(x,y)\to(0,0)} \frac{x^2+xy+y^2}{x^2-y^2}$$

iv.
$$\lim_{(x,y)\to(0,0)} \sqrt{\left|\frac{x+y}{x-y}\right|}$$

Απάντηση: 0, δεν υπάρχει, π , δεν υπάρχει.

12. Να ελέγξετε αν οι παρακάτω συναρτήσεις είναι συνεχείς.

i.
$$f(x,y) = \begin{cases} \frac{xy}{|x| + |y|}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

ii.
$$f(x,y,z) = \begin{cases} \frac{xy - z^2}{x^2 + y^2 + z^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$

Απάντηση: Συνεχής, ασυνεχής.

- **13.** Έστω η συνάρτηση $f(x, y) = e^{2x+3y}$.
 - i. Να βρεθεί η παράγωγος της f.
 - ii. Να βρεθεί η εξίσωση του εφαπτόμενου επιπέδου της f στο σημείο (0,0).

Απάντηση:
$$Df = \begin{bmatrix} 2e^{2x+3y} & 3e^{2x+3y} \end{bmatrix}$$
, $z = 2x + 3y + 1$.

14. Να βρεθεί η παράγωγος της συνάρτησης $f(x,y)=(xye^{xy},x\sin y,5xy^2)$.

Anávthon:
$$Df=egin{bmatrix} ye^{xy}+xy^2e^{xy} & xe^{xy}+x^2ye^{xy} \\ \sin y & x\cos y \\ 5y^2 & 10xy \end{bmatrix}$$

15. Έστω η συνάρτηση $T(x,y,z)=x^2+y^2+z^2$, όπου $x=\cos t,y=\sin t,z=t$. Να βρεθεί με δύο τρόπους η παράγωγος της T ως προς τη μεταβλήτη t.

Απάντηση: 2t.

- - ii. Έστω $f(x,y,z)=2x^2+2y^2+z^2$. Αν θέσουμε $x=\rho\cos\theta\sin\phi$, $y=\rho\sin\theta\sin\phi$ και $z=\rho\cos\phi$, να βρεθούν οι παράγωγοι $\frac{\partial f}{\partial \rho}$, $\frac{\partial f}{\partial \theta}$ και $\frac{\partial f}{\partial \phi}$ με χρήση του κανόνα αλυσίδας.

Aπάντηση: (i)
$$\frac{\partial f}{\partial r} = (1 + 2r^2 \cos^3 \theta + 2r^2 \cos \theta \sin^2 \theta)e^{r^2}$$
, $\frac{\partial f}{\partial \theta} = (1 + 2r^2 \cos \theta \sin \theta e^{r^2}(r \cos \theta)$, (ii) $\frac{\partial f}{\partial \rho} = 4\rho \sin^2 \phi + 2\rho \cos^2 \phi$, $\frac{\partial f}{\partial \theta} = 0$, $\frac{\partial f}{\partial \phi} = 2\rho^2 \sin \phi \cos \phi$.

17. Αν η y είναι συνάρτηση του x και συνδέονται με τη σχέση $x^2 + y^3 + e^y = 0$ να βρεθεί η παράγωγος $\frac{dy}{dx}$.

Anánthon:
$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2x}{3y^2 + e^y}$$
.

18. Έστω η συνάρτηση $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$. Σε ποια κατεύθυνση είναι η παράγωγος της f ίση με 0 στο σημείο (1,1);

Απάντηση:
$$\pm \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$$
.

19. Αν S είναι η επιφάνεια στον \mathbb{R}^3 με εξίσωση $\cos(xy)=e^z-2$, να βρεθεί το εφαπτόμενο επίπεδο και ένα μοναδιαίο κάθετο διάνυσμα της S στο σημείο $(1,\pi,0)$.

Απάντηση: z = 0.

20. Έστω $f: \mathbb{R}^2 \to \mathbb{R}$ μια συνάρτηση δύο μεταβλητών x,y. Αποφασίστε αν τα παρακάτω είναι Σωστά ή Λάθος και αιτιολογήστε την απάντησή σας.

3

i. Αν $\lim_{(x,y) \to (1,1)} f(x,y) = 2$ και L είναι μια ευθεία που διέρχεται από το (1,1), τότε

$$\lim_{\substack{(x,y)\to(1,1)\\(x,y)\in L}} f(x,y) = 2.$$

- ii. Αν υπάρχουν οι μερικές παράγωγοι $\frac{\partial f}{\partial x}$ και $\frac{\partial f}{\partial y}$ τότε η f είναι παραγωγίσιμη.
- iii. Αν η f είναι παραγωγίσιμη, η παράγωγος της είναι ο πίνακας $Df = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix}$.
- iv. Αν η f είναι παραγωγίσιμη και \vec{u} είναι ένα μοναδιαίο διάνυσμα, τότε $D_{-\vec{u}}f(x,y)=-D_{\vec{u}}f(x,y)$.
- ν. Αν η f είναι παραγωγίσιμη και $\vec{u}=(1,2)$, τότε η παράγωγος της f σε ένα σημείο (x_0,y_0) στην κατεύθυνση του \vec{u} δίνεται από τον τύπο $\nabla f(x_0,y_0)\cdot \vec{u}$.

Απάντηση: Σωστό, Λάθος, Λάθος, Σωστό, Λάθος.

21. Η εξίσωση ιδανικών αερίων είναι η PV = nRT, όπου το R είναι σταθερό. Να δειχθεί ότι

$$\frac{\partial V}{\partial T} \cdot \frac{\partial T}{\partial P} \cdot \frac{\partial P}{\partial V} = -1.$$

22. Το ύψος ενός θαλάσσιου ηφαιστείου στη Χαβάη δίνεται από τη συνάρτηση

$$h(x,y) = 2,59 - 0,00024y^2 - 0,00065x^2,$$

όπου h είναι το ύψος από το επίπεδο στάθμης της θάλασσας και τα x και y μετράνε απόσταση δυτικά-ανατολικά και βόρεια-νότια από την κορυφή του ηφαιστείου. Στο σημείο (x,y)=(-2,-4) του ηφαιστείου:

- i. Πόσο γρήγορα αυξάνεται το ύψος στην κατεύθυνση (1,1) (δηλ. BA);
- ii. Ποια κατεύθυνση δείχνει την πιο απότομη ανηφόρα;

Απάντηση: (i) $\frac{0.0026}{\sqrt{6}} + \frac{0.00192}{\sqrt{2}}$, (ii) (0.0026, 0.00192).

23. Έστω η συνάρτηση $f(x,y,z)=ze^{xy}+yz^3x^2$. Να δειχθεί ότι

$$\frac{\partial^3 f}{\partial x \partial y \partial z} = \frac{\partial^3 f}{\partial z \partial y \partial x}.$$

- **24.** Μια συνάρτηση λέγεται αρμονική αν $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$. Να δειχθεί ότι η $f(x,y) = e^x \sin y$ είναι αρμονική.
- 25. Βρείτε τα τοπικά μέγιστα και ελάχιστα και τα σαγματικά σημεία των παρακάτω συναρτήσεων:

4

i.
$$f(x,y) = 8y^3 + 12x^2 - 24xy$$

ii.
$$f(x,y) = e^{1+x^2+y^2}$$

Απάντηση: (i) (0,0) sagmatik'o shme'io, (1,1) topik'o el'aqisto, (ii) 1(0,0) sagmatik'o shme'io.

26. Να βρεθούν τα κρίσιμα σημεία και τα (απόλυτα) ακρότατα της συνάρτησης $f(x,y) = \sin x + \cos y$, ορισμένη στο σύνολο $D = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 2\pi, 0 \le y \le 2\pi\}$.

Απάντηση: Κρίσισμα σημεία:
$$\left(\frac{\pi}{2},\pi\right)$$
, $\left(\frac{3\pi}{2},\pi\right)$, $(0,0)$, $(0,\pi)$ $(0,2\pi)$, $(2\pi,0)$, $(2\pi,\pi)$, $(2\pi,2\pi)$, $\left(\frac{\pi}{2},0\right)$, $\left(\frac{3\pi}{2},0\right)$, $\left(\frac{3\pi}{2},2\pi\right)$, $\left(\frac{3\pi}{2},2\pi\right)$. Ακρότατα: $f\left(\frac{\pi}{2},2\pi\right)$, $f\left(\frac{3\pi}{2},\pi\right)$, $f\left(\frac{\pi}{2},0\right)$.

27. Να βρεθούν τα ακρότατα της $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$ υπό την συνθήκη g(x,y) = x + y = 1.

Απάντηση: f(0,1), f(1,0).

28. Ποιο σημείο της σφαίρας $x^2 + y^2 + z^2 = 4$ απέχει τη μικρότερη απόσταση από το σημείο (3, 1, -1);

Απάντηση:
$$\left(\frac{6}{\sqrt{11}}, \frac{2}{\sqrt{11}}, -\frac{2}{\sqrt{11}}\right)$$
.

3ο Κεφάλαιο

- **29.** Έστω C ο κύκλος ακτίνας 2 με κέντρο (0,0).
 - i. Να βρεθεί μια παραμέτρηση με αριστερόστροφη φορά ξεκινώντας από το (2,0).
 - ii. Να βρεθεί παραμέτρηση δεξιόστροφη φορά ξεκινώντας από το (0,2).
 - iii. Να βρεθεί παραμέτρηση αν το κέντρο μετακινηθεί στο (4,7).

Anávingn: (i) $r(t) = (2\cos t, 2\sin t)$, $t \in [0, 2\pi]$, (ii) $r(t) = (2\sin t, 2\cos t)$, $t \in [0, 2\pi]$, (iii) $r(t) = (2\cos t + 4, 2\sin t + 7)$, $t \in [0, 2\pi]$.

30. Έστω η καμπύλη $r(t)=(t^2,t^3-4t,0)$. Ένα σωματίδιο διατρέχει αυτήν την καμπύλη και σε χρόνο $t_0=2$ διαφεύγει και κινείται στην κατεύθυνση της εφαπτομένης της r. Βρείτε την θέση που θα έχει το σωματίδιο σε χρόνο $t_1=3$.

Απάντηση: (8, 8, 0).

31. Έστω η καμπύλη $r(t)=(e^t\cos t,e^t\sin t)$. Να δειχθεί ότι η γωνία μεταξύ της r και της r' είναι σταθερή.

Απάντηση: Η γωνία προκύπτει ίση με $\pi/4$.

32. Ένα σωματίδιο που κινείται στον χώρο έχει επιτάχυνση a(t)=(2,-6,4), αρχική ταχύτητα v(0)=(-5,1,3) και αρχική θέση r(0)=(6,-2,1). Να βρεθούν τα σημεία τομής της τροχιάς του σωματιδίου με το yz-επίπεδο.

Απάντηση: (0, 12, -1), (0, -26, -8).

33. Να βρεθεί το μήκος της καμπύλης $r(t) = (\log \left(\sqrt{t}\right), \sqrt{3}t, \frac{3}{2}t^2)$, για $1 \le t \le 2$.

Απάντηση:
$$\frac{9 + \log 2}{2}$$
.

34. Να βρεθεί το μήκος της καμπύλης $r(t) = (2t, t^2, \log t)$ μεταξύ των σημείων (2, 1, 0) και $(4, 4, \log 2)$.

Απάντηση: $3 + \log 2$.

35. Έστω $F(x,y,z) = (x^2 + y^2 + z^2)(3\hat{\imath} + 4\hat{\jmath} + 5\hat{k})$. Να βρεθούν η απόκλιση και ο στροβιλισμός του F.

Απάντηση: $\nabla \cdot F = 6x + 8y + 10z$, $\nabla \times F = (10y - 8x)\hat{\imath} + (6z - 10x)\hat{\jmath} + (8x - y)\hat{k}$.

36. Έστω $F: \mathbb{R}^3 \to \mathbb{R}^3$ ένα δύο φορές παραγωγίσιμο διανυσματικό πεδίο. Ποιες από τις παρακάτω εκφράσεις έχουν νόημα; Αυτές που έχουν, ορίζουν βαθμωτό ή διανυσματικό πεδίο;

i. $\operatorname{curl}(\operatorname{grad} F)$

iv. grad(div F)

ii. $\operatorname{grad}(\operatorname{curl} F)$

 \mathbf{v} . $\operatorname{curl}(\operatorname{div} F)$

iii. $\operatorname{div}(\operatorname{grad} F)$

vi. $\operatorname{div}(\operatorname{curl} F)$

Απάντηση: (α), (β), (γ), (ε) Δεν έχουν νόημα, (δ) έχει νόημα και είναι διανυσματικό πεδίιο, (στ) έχει νόημα και είναι βαθμωτό πεδίο.

- **37.** Έστω $F(x, y, z) = (x^2, x^2y, z + zx)$.
 - i. Να δειχθεί ότι $\nabla \cdot (\nabla \times F) = 0$.
 - ii. Υπάρχει βαθμωτή συνάρτηση $f:\mathbb{R}^3 \to \mathbb{R}$ ώστε $F = \mathbf{\nabla} f$;

Απάντηση: (ii) Όχι.

38. Έστω $f,g,h:\mathbb{R}\to\mathbb{R}$ παραγωγίσιμες συναρτήσεις και F(x,y,z)=(f(x),g(y),h(z)). Να δειχθεί ότι το F είναι αστρόβιλο.

4ο Κεφάλαιο

39. Έστω D το ορθογώνιο $[0,1] \times [0,1]$. Να υπολογιστούν τα ολοκληρώματα:

i.
$$\iint_{D} \sin(x+y) \, dx dy,$$

ii.
$$\iint_D (xy)^2 \cos(x^3) dxdy.$$

Απάντηση: (i) $2 \sin 1 - \sin 2$, (ii) $\sin 1/9$.

40. Να υπολογιστεί το ολοκλήρωμα $\iiint\limits_W ye^{-xy}\,dxdydz$, όπου W είναι ο κύβος $[0,1]\times[0,1]\times[0,1]$.

Απάντηση: 1/3.

41. Υπολογίστε το ολοκλήρωμα $\int\limits_0^{\pi/2} \int\limits_0^{\cos x} y \sin x \, dy dx$, αφού πρώτα σχεδιάσετε το χωρίο ολοκλήρωσης.

Απάντηση: $\frac{1}{6}$.

42. Υπολογίστε το ολοκλήρωμα $\int\limits_0^1 \int\limits_{\sqrt{y}}^1 e^{x^3} \, dx dy.$

Απάντηση: $\frac{e-1}{3}$.

43. Υπολογίστε το ολοκλήρωμα $\iiint\limits_W (1-z^2)\,dxdydz$, όπου W η πυραμίδα με άνω κορυφή (0,0,1) και κάτω κορυφές (0,0,0), (1,0,0), (0,1,0) και (1,1,0).

Απάντηση: $\frac{3}{10}$.

44. Να υπολογιστεί το ολοκλήρωμα $\iint\limits_D e^{x^2+y^2}\,dxdy$, όπου D ο κυκλικός δίσκος $x^2+y^2\leq 1$.

Απάντηση: $(e-1)\pi$.

45. Έστω το ολοκλήρωμα $\iint_D \frac{1}{x+y} dx dy$, όπου D το χωρίο μεταξύ των ευθειών $x=0,\ y=0,\ x+y=1$ και x+y=4. Να υπολογιστεί η τιμή του χρησιμοποιώντας τον μετασχηματισμό x=u-uv και y=uv.

Απάντηση: 3.

46. Να υπολογιστεί το ολοκλήρωμα $\iiint\limits_W \frac{1}{(x^2+y^2+z^2)^{3/2}} dx dy dz$, όπου W το χωρίο μεταξύ των σφαιρών $x^2+y^2+z^2 \leq a^2$ και $x^2+y^2+z^2 \leq b^2$, με 0 < b < a.

Απάντηση: $4\pi(\log a - \log b)$.

ii. Να βρεθεί με τριπλό ολοκλήρωμα ο όγκος του ελλειψοειδούς $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Απάντηση: (i) $\frac{ab\pi}{4}$, (ii) $\frac{4}{3}\pi abc$.

48. Αποφασίστε αν τα παρακάτω είναι Σωστά ή Λάθος και αιτιολογήστε την απάντησή σας.

i.
$$\int_{-1}^{2} \int_{0}^{6} x^{2} \sin(x-y) dx dy = \int_{0}^{6} \int_{-1}^{2} x^{2} \sin(x-y) dy dx.$$

ii.
$$\int_{0}^{1} \int_{0}^{x} \sqrt{x^2 + y^2} dy dx = \int_{0}^{x} \int_{0}^{1} \sqrt{x^2 + y^2} dx dy.$$

iii.
$$\int_{0}^{8} \int_{y}^{4} dx dy = \int_{0}^{4} \int_{0}^{2x} dy dx$$
.

Απάντηση: Σωστό, Λάθος, Σωστό.

49. Να γράψετε το ολοκήρωμα $\int\limits_0^1\int\limits_y^1\int\limits_0^y dz dx dy$ με άλλους 5 διαφορετικούς τρόπους.

7

Anávthon:
$$\int\limits_0^1\int\limits_0^x\int\limits_0^ydzdydx, \int\limits_0^1\int\limits_y^y\int\limits_u^1dxdzdy, \int\limits_0^1\int\limits_z^1\int\limits_y^1dxdydz, \int\limits_0^1\int\limits_z^x\int\limits_z^xdydzdx, \int\limits_0^1\int\limits_z^1\int\limits_z^xdydxdz.$$

5ο Κεφάλαιο

- 50. Να υπολογιστούν τα παρακάτω ολοκληρώματα.
 - i. $\int\limits_C xy^4\,ds$, όπου C το δεξί ημικύκλιο του κύκλου $x^2+y^2=16.$
 - ii. $\int\limits_C x \sin y \, ds$, όπου C το ευθύγραμμο τμήμα από το (0,3) στο (4,6).
 - iii. $\int\limits_C xe^{yz}\,ds$, όπου C το ευθύγραμμο τμήμα από το (0,0,0) στο (1,2,3).

Anávthon: (i)
$$\frac{2\cdot 4^6}{5}$$
, (ii) $-\frac{20}{3}\cos 6 + \frac{20}{9}(\sin 6 - \sin 3)$, (iii) $\frac{\sqrt{14}}{12}(e^6-1)$.

51. Να υπολογιστεί το ολοκλήρωμα $\int\limits_C \sin x \, dx + \cos y \, dy$, όπου C η καμούλη που αποτελείται από το τόξο του κύκλου $x^2 + y^2 = 1$ από το (1,0) στο (-1,0) και από το ευθύγραμμο τμήμα από το (-1,0) στο (-2,3).

Απάντηση: $\sin 3 + \cos 1 - \cos 2$.

52. Να βρεθεί το έργο του πεδίου $F=x\sin y\,\hat{\imath}+y\hat{\jmath}$ καθώς μετακινεί ένα αντικείμενο κατά μήκος της παραβολής $y=x^2$ από το (-1,1) στο (2,4).

Anánthon:
$$\frac{1=+\cos 1-\cos 4}{2}.$$

- **53.** Να εξετάσετε αν τα παρακάτω πεδία είναι συντητηρικά και αν είναι, να βρεθεί βαθμωτή συνάρτηση f ώστε $F = \nabla f$.
 - i. $F(x,y) = (2x 3y)\hat{i} + (-3x + 4y 8)\hat{j}$
 - ii. $F(x,y) = e^x \cos y \,\hat{\imath} + e^x \cos y \,\hat{\jmath}$
 - iii. $F(x,y) = e^x \sin y \,\hat{\imath} + e^x \cos y \,\hat{\jmath}$

Απάντηση: (i) Συντηρητικό, $f(x,y) = x^2 - 3xy + 2y^2 - 8y + c$, (ii) δεν είναι συντηρητικό, (iii) συντηρητικό, $f(x,y) = e^x \sin y + c$.

- **54.** Επαληθεύστε το Θεώρημα Green για το πεδίο $F=\sin x\,\hat{\imath}+\cos y\,\hat{\jmath}$ στο χωρίο $D=[0,\pi/2]\times[0,\pi/2]$.
- **55.** Να υπολογιστεί το $\int\limits_C y\,dx-x\,dy$, όπου C το σύνορο του τετραγώνου $[-1,1]\times[-1,1]$ χρησιμοποιώντας το Θεώρημα Green.

8

Απάντηση: -4.

56. Έστω
$$F = (x^3 - 2xy^3)\hat{\imath} + -3x^2y^2\hat{\jmath}$$
.

i. Να δειθχεί ότι το F είναι συντηρητικό πεδίο.

- ii. Να βρεθεί βαθμωτή συνάρτηση f ώστε $F = \nabla f$.
- iii. Να υπολογιστεί το ολοκλήρωμα του πεδίου F κατά μήκος της καμπύλης $x=\cos^3\theta$, $y=\sin^3\theta$, $\theta\in[0,\pi/2]$.

Απάντηση: (ii)
$$f(x,y) = \frac{x^4}{4} - 2xy^3 + c$$
, (iii) $-\frac{1}{4}$.

- 57. Αποφασίστε αν τα παρακάτω είναι Σωστά ή Λάθος και αιτιολογήστε την απάντησή σας.
 - i. Αν $F=F_1\,\hat{\imath}+F_2\,\hat{\jmath}$ και $\frac{\partial F_1}{\partial x}=\frac{\partial F_2}{\partial y}$ τότε το F είναι συντηρητικό πεδίο.
 - ii. Αν η f έχει συνεχείς μερικές παραγώγους τότε $\int\limits_C \mathbf{\nabla} f\,ds=0$, όπου C μια κλειστή καμπύλη.
 - iii. Το ολοκλήρωμα $\int\limits_C F\cdot ds$ είναι αριθμός.
 - iv. Αν F είναι ένα συντηρητικό πεδίο, τότε $\nabla \cdot F = 0$.
 - ν. Αν $\int\limits_C F \cdot ds = 0$ τότε η C είναι κλειστή καμπύλη.

Απάντηση: Λάθος, Σωστό, Σωστό, Λάθος, Λάθος.

58. Έστω D ο δακτύλιος $a^2 \le x^2 + y^2 \le b^2$ (0 < a < b) και $F = (2x^3 - y^3)\hat{\imath} + (x^3 + y^3)\hat{\jmath}$. Χρησιμοποιώντας το Θεώρημα Green να υπολογιστεί το $\int\limits_{\partial D} F \cdot ds$.

Απάντηση: $\frac{3\pi}{2}(b^4-a^4)$.