ML techniques in $H^+ \rightarrow \tau v$ mass reconstruction

Max Isacson, Mikael Mårtensson, Camila Rangel Smith, Henrik Öhman

Statistical Machine Learning, 21 april 2016

All HEP experiments have to deal with missing (transverse) energy (MET, $E_T^{\rm miss}$). Usually in the form of neutrinos escaping the detector without interacting.

The missing energy can be reconstructed in the transverse plane, by energy conservation:

$$E_{x,y}^{\text{miss}} = -\sum E_{x,y} \tag{1}$$

However in hadron colliders the longitudinal energy information is lost.

Introduction II

This is because we are acutally colliding the *partons* inside the hadrons, which carry an unknown fraction *x* of the longitudinal momentum.

Definitions

- Response of X The ratio between a reco. quantity X and the true value X_{truth} , as a function of X_{truth} .
- ▶ Resolution of X The distribution of $(X_{truth} X)/X_{truth}$.
- ► Transverse mass m_T The mass in the transverse plane between objects 1 and 2, $m_T = \sqrt{2E_T^1 E_T^2 (1 \cos(\phi_1 \phi_2))}$.

Signal process

- Most of the missing energy will be carried by v_{τ}^{H} The neutrino from the Higgs decay.
- ▶ The features used are the various kinematics of the visible part of this process.
- ▶ We consider 3 masses for the H^+ : 200, 300, and 400 GeV

Predictors

Regressors

- Gaussian process
- Neural network
- ► Bayesian ridge regression
- Support vector regression

- ▶ The target for the training is always the p_T of v_τ^H .
- ▶ We consider 4 measures of quality, the distribution of the predicted p_T , the response, the resolution, and the reconstructed m_T using the predicted p_T .
- ▶ These are compared to the standard MET.

Reconstruction of $p_T(v_\tau^H)$

Reconstruction of m_T

Conclusions and plans

Conclusions

- ▶ The neural network and bayesian ridge regression are the best performers.
- NN has the smallest bias, but larger variance than the BRR.
- ▶ However, all methods fails to reconstruct the spectrum at low p_T .
- ▶ More detailed studies has to be performed to draw more accurate conclusions.

Plans

- ▶ We plan to continue this in the future Will be of interest to HBSM searches at ATLAS and other hadron experiments.
- ▶ The performance will probably be better when training against the full 4-vector of v_{τ}^{H} .
- ▶ More complicated variables could also be included in the training.