

MONASH INFORMATION TECHNOLOGY

FIT2094 Databases

Week 2 - Conceptual Modelling

Please obtain a copy of the Drone case study for this workshop from the week 2 block on Moodle under "Workshop Resources" header

Workshop S1 2022

The Database Design Life Cycle

Requirements Definition

- Identify and analyse user views.
- A 'user view' may be a report to be produced or a particular type of transaction that should be supported.
- Corresponds to the external level of the ANSI/SPARC architecture.
- Output is a statement of specifications which describes the user views' particular requirements and constraints.

Different views of the underlying data

Student

Staff & Student

Admin

ER Modeling

- ER (Entity-Relationship) model developed by Peter Chen in 1976 to aid database design.
- used for conceptual model (ERD).
- ER diagrams give a visual indication of the design.
- Basic components:
 - Entity
 - Attribute
 - Relationship

Conceptual Design

- Develop the enterprise data model.
- Corresponds to the conceptual level of the ANSI/SPARC architecture.
- Independent of all physical implementation considerations (the type of database to be used).
- Various design methodologies may be employed such as UML, ER (Entity-Relationship) Modelling and Semantic Modelling.
- ER consists of ENTITIES and RELATIONSHIPS between entities
 - -An ENTITY will have attributes (things we wish to record), one or more of which will identify an entity instance (called the KEY)

ERD - Notation

Chen

Information
Engineering/James
Martin/Crows foot
* This is what we will
be using

Conceptual Level (ER Model)

Logical Design

- Develop a data model which targets a particular database type (e.g. relational, hierarchical, network, object-oriented, noSQL).
- Independent of any implementation details which are specific to any particular vendors DBMS package.
- Normalisation technique (see week 4) is used to test the correctness of a relational logical model.

Logical Level (Logical Model - Relational)

Assignment 1B

Physical Design

- Develop a strategy for the physical implementation of the logical data model.
- Choose appropriate storage structures, indexes, file organisations and access methods which will most efficiently support the user requirements (not part of unit).
- Physical design phase is dependent on the particular DBMS in use.
- ANSI/SPARC internal level.

Physical Level – Starting point

```
Oracle Database 12c
                             Relational_1
                                                                 Generate
 8 CREATE TABLE customer (
                       NUMBER(7) NOT NULL,
         custno
 10
         custname
                       VARCHAR2(50) NOT NULL,
 11
         custaddress VARCHAR2(50) NOT NULL,
 12
         custphone
                       CHAR (10)
13
     );
14
     COMMENT ON COLUMN customer.custno IS
16
         'Customer number';
17
     COMMENT ON COLUMN customer.custname IS
19
         'Customer name';
 20
     COMMENT ON COLUMN customer.custaddress IS
 22
         'Customer address';
 23
     COMMENT ON COLUMN customer.custphone IS
 25
         'Customer phone number';
26
     ALTER TABLE customer ADD CONSTRAINT customer pk PRIMARY KEY ( custno );
 28
 29 CREATE TABLE order_product (
         orderno
                         NUMBER(7) NOT NULL,
 31
         prodno
                     NUMBER(7) NOT NULL,
 32
         op gtvordered NUMBER(3) NOT NULL,
 33
         op lineprice NUMBER(8, 2) NOT NULL
 34
```

The database schema

Important rule for Conceptual Modelling

- All that is described in the brief has been included and all that has been included was described in the brief
 - Every entity, attribute and relationship described in the brief has been included, and
 - Must not add entities, attributes and relationships which are not included as part of the brief, and
- In a real life scenario if there are concerns about features of the brief, discuss with client
 - For assignments:
 - your client will be the ed forum
 - may make assumptions provided they do not violate this rule

CONNECTIVITY/CARDINALITY

In general for Crows Foot notation specific cardinalities are not shown as above eg. (1,4), instead cardinality is depicted via min and max using standard symbols (Inside symbol = min, outside symbol = max)

Note this is not an acceptable form of a conceptual model in Crow's Foot notation (relationship lines cannot join)

Weak vs Strong Entity

- Strong entity
 - Has a key which may be defined without reference to other entities.
 - For example EMPLOYEE entity.
- Weak entity
 - Has a key which requires the existence of one or more other entities.
 - For example FAMILY entity need to include the key of employee to create a suitable key for family
- Database designer often determines whether an entity can be described as weak based on business rules
 - customer pays monthly account
 - Key: cust_no, date_paid, or
 - Key: payment_no (surrogate? not at conceptual level)

Weak vs Strong Entity

Note the Crow's Foot model shown here has been modified from the text version

Identifying vs Non-Identifying Relationship

Identifying

 Identifier of A is part of identifier of B.

- Shown with solid line
- ENROLMENT STUDENT
 Enrolment key includes student id,
 which is an identifier of student.

Non-identifying

 Identifier of A is NOT part of identifier of B.

- Shown with broken line
- Department no (identifier of department) is not part of Employee's identifier.

Types of Attributes

- Simple
 - Cannot be subdivided
 - Age, sex, marital status
- Composite
 - Can be subdivided into additional attributes
 - Address into street, city, zip
- Single-valued
 - Can have only a single value
 - Person has one social security number

- Multi-valued
 - Can have many values
 - Person may have several college degrees
- Derived
 - Can be derived with algorithm
 - Age can be derived from date of birth
- Attribute classification is driven by Client requirements
 - Phone Number?

Multivalued Attribute

- An attribute that has a list of values.
- For example:
 - Car colour may consist of body colour, trim colour, bumper colour.
- Crow's foot notation does not support multivalued attributes. Values are listed as a separate attribute.

Resolving Multivalued Attributes

Note the Crow's Foot model shown here has been modified from the text version

Associative (or Composite) Entity

