CSE 1003 Digital Logic and Design Module 4 Combinational Circuits II L2

Dr. S.Hemamalini
Professor
School of Electrical Engineering

VIT Chennai

- Binary Parallel Adder Look ahead carry
- Magnitude Comparator
- Decoders
- Encoders
- Multiplexers
- Demultiplexers
- CO4: Analyze the operation of medium complexity standard combinational circuits like the encoder, decoder, multiplexer, demultiplexer.

- A binary parallel adder is a digital circuit that adds two binary numbers in parallel form and produces the arithmetic sum of those numbers in parallel form.
- It consists of full adders connected in a chain, with the output carry from each full-adder connected to the input carry of the next full-adder in the chain.
- An n-bit parallel adder requires n-Full adders.
- Practical Applications:
- 1. It is used in Digital Processors
- 2. ALU in computers and in calculators
- 3. Different IC and microprocessor chips in PCs and laptops
- 4. In Ripple counters
- 5. Important tool in DSP (Digital Signal Processing)

Typical binary addition process

Block diagram of a five-bit parallel adder circuit using full adders.

Block diagram of 4-bit binary adder

Logic diagram of a 4-bit binary parallel adder

Logic symbol of 74LS283

PIN NAMES

 A_1-A_4 Operand A Inputs B_1-B_4 Operand B Inputs C_0 Carry Input $\Sigma_1-\Sigma_4$ Sum Outputs C_4 Carry Output

Logic diagram of a full adder

- Parallel adders suffer from propagation delay problem because higher bit additions depend on the carry generated from lower bit addition.
- The carry propagation delay for each full adder is the time between the application of the carry-in and the occurrence of the carry out.
- For an *n*-bit parallel adder, the total delay time is equal to nt_p , where t_p is the propagation delay of full-adder.
- The parallel adder in which the carry-out of each full adder is the carry-in to the next most significant adder is called a ripple carry adder.

The speed of parallel adder depends on the time required for the carries to propagate or ripple through all of the stages of the adder.

Block symbol for cascading two 74HC283s

• How many inputs does a full adder have? How many outputs?

Ans: 3,2

• Assume the following input levels in Figure.

$$A_4A_3A_2A_1A_0 = 01001;$$
 $B_4B_3B_2B_1B_0 = 00111;$ $C_0 = 0$

(a) What are the logic levels at the outputs of FA #2?

Ans:
$$S_2=0, C_3=1$$

(b) What is the logic level at the C_5 output?

Ans:
$$C_5 = 0$$

- The look-ahead-carry adder speeds up the operation by eliminating the ripple carry delay.
- It examines all the input bits simultaneously and also generates the carry-in bits for all the stages simultaneously.
- It looks ahead and generate the carry for a certain given addition operation.
- The method of speeding up the addition process is based on the two additional functions of the full-adder, called the carry generate and carry propagate functions.

Logic diagram of a full adder

$$P_{i} = A_{i} \oplus B_{i}$$

$$G_{i} = A_{i}.B_{i}$$

$$S_{i} = P_{i} \oplus C_{i}$$

$$C_{i+1} = P_{i}.C_{i} + G_{i}$$

Carry Generation

Carry is generated only if both the input bits are 1, that is, if both the bits A and B are 1's, a carry has to be generated in this stage regardless of whether the input carry C_{in} is a 0 or a 1. Otherwise carry will not be generated.

Carry-generation function, $G_i = A_i B_i$

Carry Propagation

- A carry is propagated if any one of the two input bits A
 or B is 1.
- If both A and B are 0, a carry will never be propagated.
- On the other hand, if both A and B are 1, then it will not propagate the carry but will generate the carry.
- Carry-propagation function

$$P_i = A_i \oplus B_i$$

Carry-generation and carry-propagation

Inputs			Outputs	
A	В	C_{in}	Sum	$C_{ m out}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1 🗆
1	0	0	1	0
1	0	1	0	1 🗆
1	1	0	0	1 0
1	1	1	1	1 0

□: Indicates carry propagated

O: Indicates carry generated

CARRY output of each full adder stage in the four-bit binary adder

$$\begin{split} C_2 &= G_1 + P_1.C_1 \\ C_3 &= G_2 + P_2.C_2 = G_2 + P_2.(G_1 + P_1.C_1) = G_2 + P_2.G_1 + P_1.P_2.C_1 \\ C_4 &= G_3 + P_3.C_3 = G_3 + P_3.(G_2 + P_2.G_1 + P_1.P_2.C_1) \\ C_4 &= G_3 + P_3.G_2 + P_3.P_2.G_1 + P_1.P_2.P_3.C_1 \end{split}$$

Four-bit full-adder with a look-ahead carry generator

$$\begin{split} C_2 &= G_1 + P_1.C_1 \\ C_3 &= G_2 + P_2.C_2 = G_2 + P_2.(G_1 + P_1.C_1) = G_2 + P_2.G_1 + P_1.P_2.C_1 \\ C_4 &= G_3 + P_3.C_3 = G_3 + P_3.(G_2 + P_2.G_1 + P_1.P_2.C_1) \\ C_4 &= G_3 + P_3.G_2 + P_3.P_2.G_1 + P_1.P_2.P_3.C_1 \end{split}$$

The circuit for look-ahead-carry introduces a delay corresponding to two gate levels.

Four-bit full adder with a look-ahead carry generator

IC 74182 interfaced with four four-bit adders

Look-ahead carry generation for adding 64-bit numbers