Floating-Point Numbers

Caiwen Ding
Department of Computer Science and Engineering
University of Connecticut

CSE3666: Introduction to Computer Architecture

Outline

- Real numbers in binary
- IEEE 754 floating-point number standards
 - Single precision and double precision > 2/6
- RISC-V support for floating-point numbers Medical

 Martonial Si

Reading: Section 3.5, excluding hardware support for floating-point numbers.

 ∞_{-}

10123

Real numbers

(22)

- Computers need to deal with
 - Numbers with fractions (not just whole numbers)

Liedall alder

- Very big numbers
- Very small numbers

Example of real numbers in decimal:

3.14159...

not normalized

 -0.002×10^{-20}

 9.4607×10^{15} (meters in a light year)

Normalized scientific notation:

Only one non-zero digit to the left of the decimal point.

Binary number with fraction

• To represent fractions in binary, we use bits after the binary point

What is the value of the following binary number?

Binary to decimal

Example: 0b101.1101

			,				
	1	0	1	1	1	0	1
bas	2^{2}	21	2^{0}	2-1	2-2	- 2-3	2-4
Kod	ix ad			2	22	28	2/6

Multiply each bit with weight:

Integer part
$$0b101.1101$$

$$= 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$+ 1 \times 2^{-1} + 1 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4}$$

$$= 4 + 0 + 1 + 0.5 + 0.25 + 0 + 0.0625$$

$$= (5.8125)$$
Decimal

Fractional part

Decimal to binary

Example:

Convert the decimal number 0.8 to a binary number

0						
2^{0}	2-1	2-2	2-3	2-4	2-5	2-6

Converting decimal to binary

Decimal	Binary
0.8	0.
0.8 * 2 = 1.6	0.1
0.6 * 2 = 1.2	0.11
0.2 * 2 = 0.4	0.110
0.4 * 2 = 0.8	0.1100
0.8 * 2 = 1.6	0.11001
Continue	0.1100110011001100

Fraction .8 appears again. The pattern 1100 will repeat forever.

python
>>> float.hex(0.8)
'0x1.999999999999ap-1'

Question

Convert the decimal number 0.9 to a binary number

0						
2^0	2-1	2-2	2-3	2-4	2-5	2-6

Converting decimal to binary

Decimal	Binary
0.9	0.
0.9 * 2 = 1.8	0.1
0.8 * 2 = 1.6	0.11
0.6 * 2 = 1.2	0.111
0.2 * 2 = 0.4	0.1110 ?
0.4 X2 = 0.8	0.11100

fixed-point

What is the next digit?

B. 1

Normalized notation of binary numbers

There are many representations as we move the binary point

$$101.1101 = 10.11101 \times 2^{1} = 1.011101 \times 2^{2} = 0.1011101 \times 2^{3}$$

Normalized binary representation

The normalized binary representation has a single 1 before the point

$$\pm 1. x \times 2^E$$
 Exponent is written in decimal for convenience

```
python
>>> float.hex(float.fromhex('5.d'))
'0x1.7400000000000p+2'
```

Encode floating-point numbers = 001/--- 001/

• Given a number of bits, how do we represent

$$\pm 1.x \times 2^E$$

- What need to be encoded?
- How many bits for each?

Floating Point Standard (single and double precisions)

- Defined by IEEE Std 754-1985
 - Developed in response to divergence of representations
 - Solve the portability issues for scientific code
 - Now almost universally adopted
- Single precision (32-bit) and double precision (64-bit)
 - Double have more bits to represent exponent and fraction
 - They are types float and double in C
- Later versions of the standard include more types
 - E.g., 128-bit quad-precision

IEEE Floating-Point Format: single-precision

Exponent is in excess-127 representation. The Bias = 127.

EncodedExponent = ActualExponent + 127

Exponent field in single-precision

- The exponent field has 8-bit, keeping a value in [0, 255]
 - (1, 254]: A normal SP number

 We will discuss 0 and 255 soon

 = [-126, 127]

1 .. 254

- The range of actual exponent? [-126, 127]
 - Excess-127 representation!

$$\pm 1.x \times 2^E$$
 and $E \in [-126,127]$

Encoded = E + 127

Bits in the exponent field

Questions: Excess-127

• Given the eight bits in the exponent field of single-precision FP numbers, find the actual exponents in decimal.

15

Example: Read Single-Precision FP numbers

= -5

• What number (in decimal) is represented by the following single-precision floating-point number?

Question

What is the actual exponent of the following single-precision floating-point number?

What is its value in decimal?

Example: Convert to Single-Precision FP numbers

Represent –0.75 with a single precision floating-point number

$$-0.75 = -0.11_2 = (-1)^1 \times 1.1_2 \times 2^{-1}$$

$$S = 1$$

Fraction = $1000...00_2$

EncodedExponent = -1 + Bias = -1 + 127 = 126 = 0

1 01111110 100 0000 0000 0000 0000 0000

0xBF40 0000

Question: Convert to Single-Precision FP numbers

Represent 4.75 with a single precision floating-point number

Solutions

Represent 4.75 with a single precision floating-point number

$$4.75 = 100.11_{2} = (-1)^{0} \times 1.0011_{2} \times 2^{2}$$

$$S = 0$$
Fraction = $0011000...00_{2}$
EncodedExponent = $2 + \text{Bias} = 2 + 127 = 129 = 10000001_{2}$

$$0 10000001 \ 001 \ 1000 \ 0000 \ 0000 \ 0000 \ 0000$$

$$0x4098 \ 0000$$

Single-Precision Range (Normal Numbers)

- In normal SP FP numbers, encoded exponents are in [1, 254]
 - 00000000₂ and 11111111₂ are reserved
- What is the smallest positive value of normal SP FP numbers?

• What is the largest positive value of normal SP FP numbers?

Single-Precision Range (Normal Numbers)

- In normal SP FP numbers, exponents are from 1 to 254
 - 00000000₂ and 11111111₂ are reserved
- Smallest positive value
 - Exponent: $00000001_2 \Rightarrow \text{actual exponent} = 1 127 = -126$
 - Fraction: $000...00 \Rightarrow \text{significand} = 1.0$

$$1.0 \times 2^{-126} \approx 1.2 \times 10^{-38}$$

Can we have positive numbers that are even closer to 0? How do we represent 0.0?

- Largest positive value
 - Exponent: $11111110_2 \Rightarrow \text{actual exponent} = 254 127 = 127$
 - Fraction: 111...11 ⇒ significand ≈ 2.0

$$2.0 \times 2^{+127} \approx 3.4 \times 10^{+38}$$

Denormalized/subnormal Numbers - 1

- LO,255) →T12567
- Denormalized number: the exponent field is 0 >0 /257
 - The actual exponent is -126 (= 1 Bias) for single precision numbers
 - The hidden bit is 0

$$v = (-1)^{S} \times (0. \text{ Fraction}) \times 2^{-126}$$

• 0 is a denormalized number!

All bits in exponent and fraction are 0.

But the sign can be 0 or 1. So we have two 0's!

$$x = (-1)^{S} \times (0.0) \times 2^{-126} = \pm 0.0$$

Denormalized Numbers - 2

- Denormalized numbers can represent numbers smaller than normal numbers
 - Allow for gradually approaching to 0, with diminishing precision

In the table, only the first number is a normal number

Exponent	Fraction	Actual exponent in decimal	Value
0000 0001	0000000	-126	1.0 x 2 ⁻¹²⁶ (normal number)
0000 0000	1000000	-126	$0.1 \times 2^{-126} = 2^{-127}$
0000 0000	0100000	-126	$0.01 \times 2^{-126} = 2^{-128}$
0000 0000	0000001	-126	$0.001 \times 2^{-126} = 2^{-149}$
0000 0000	0000000	-126	$0.000 \times 2^{-126} = 0$

Infinities and NaN

- Exponent = 1111 1111, Fraction = 000...0

 ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Try these in Python:

```
float('inf') + 1.0
float('inf') + float('-inf')
```

IEEE Floating-Point Format: double precision

value =
$$(-1)^S \times (1. Fraction) \times 2^{(EncodedExponent-Bias)}$$

Exponent in single-precision: excess-127: Bias = 127.

Exponent in double-precision: excess-1023: Bias = 1023

Single precision vs double precision

	Single	Double
Total number of bits	32	64
Number of bits in exponent	8	11
Number of bits in fraction	23	52
Bias	127	1023
Smallest positive value (normal values)	$1.0 \times 2^{-126} $ $\approx 1.18 \times 10^{-38}$	1.0×2^{-1022} $\approx 2.2 \times 10^{-308}$
Largest positive value	$2.0 \times 2^{+127}$ $\approx 3.4 \times 10^{+38}$	$2.0 \times 2^{+1023}$ $\approx 1.8 \times 10^{+308}$
Precision	23 bits \approx 6 dec. digits	52 bits \approx 16 dec. digits

Converting decimal to binary - 2

Decimal	Binary
0.9	0.
0.9 * 2 = 1.8	0.1
0.8 * 2 = 1.6	0.11
0.6 * 2 = 1.2	0.111
0.2 * 2 = 0.4	0.1110

We can find the first 4 digits after the binary point by the following steps:

 $0.9 * 2^4 = 14.4$

Convert 14 to 4-bit binary number and we get 1110.

Solutions

0x C1C0 0000

1100 0001 1100 0000 0000 0000 0000 0000

$$S = 1$$

Fraction = $10000...00_2$

Encoded Exponent = $10000011_2 = 131$ (as unsigned)

Actual exponent = 131 - 127 = 4

The value is

$$(-1)^1 \times (1 + 0.1_2) \times 2^{(131-127)}$$

= $-1 \times 1.5 \times 2^4$
= -24