Package 'BESTree'

October 12, 2022

,
Type Package
Title Branch-Exclusive Splits Trees
Version 0.5.2
Description Decision tree algorithm with a major feature added. Allows for users to define an ordering on the partitioning process. Resulting in Branch-Exclusive Splits Trees (BEST). Cedric Beaulac and Jeffrey S. Rosentahl (2019) <arxiv:1804.10168>.</arxiv:1804.10168>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports plyr, compiler, utils, stats
RoxygenNote 6.1.1
Suggests knitr, rmarkdown, testthat
Depends R (>= 2.10)
VignetteBuilder knitr
NeedsCompilation no
Author Beaulac Cedric [aut, cre]
Maintainer Beaulac Cedric <cedric@utstat.toronto.edu></cedric@utstat.toronto.edu>
Repository CRAN
Date/Publication 2019-08-09 11:00:02 UTC
R topics documented:
Acc BaggedBEST BEST BESTForest Data Fit ForgeVA

2 BaggedBEST

	FPredict MPredict																				
	Predict TreePruning			 				 													8
	VI																				
Index																					11

Acc

Computes the proportion of matching terms in two vectors of the same length. Used to compute the accuracy for prediction on test set.

Description

Computes the proportion of matching terms in two vectors of the same length. Used to compute the accuracy for prediction on test set.

Usage

```
Acc(Vec1, Vec2)
```

Arguments

Vec1 A vector of labels

Vec2 Another vector of labels

Value

Percentage of identical labels (accuracy)

Examples

```
Vec1 <- c(1,1,2,3,1)
Vec2 <- c(1,2,2,3,1)
Acc(Vec1,Vec2)</pre>
```

BaggedBEST

Performs Bootstrap Aggregating of BEST trees

Description

Performs Bootstrap Aggregating of BEST trees

Usage

```
BaggedBEST(Data, VA, NoT = 50, Size = 50)
```

BEST 3

Arguments

Data	A data set (Data Frame): Can take on both numerical and categorical predictors.
	Last column of the data set must be the Repsonse Variable (Categorical Variables
	only)

VA Variable Availability structure
NoT Number of Trees in the bag

Size Minimal Number of Observation within a leaf needed for partitionning (default

is 50)

Value

A list of BEST Objects

Examples

```
n <- 500
Data <- BESTree::Data[1:n,]
d <- ncol(Data)-1
VA <- ForgeVA(d,1,0,0,0)
Size <- 50
NoT <- 10
Fit <- BESTree::BaggedBEST(Data,VA,NoT,Size)</pre>
```

BEST Main function of the package. It produces Classification Trees with

Branch-Exclusive variables.

Description

Main function of the package. It produces Classification Trees with Branch-Exclusive variables.

Usage

```
BEST(Data, Size, VA)
```

Arguments

Data	A data set (Data Frame): Can take on both numerical and categorical predictors.
	Last column of the data set must be the Repsonse Variable (Categorical Variables

only)

Size Minimal Number of Observation within a leaf needed for partitionning

VA Variable Availability structure

Value

A BEST object with is a list containing the resulting tree, row numbers for each regions and the split points

BESTForest

Examples

```
n <- 1000
Data <- BESTree::Data[1:n,]
d <- ncol(Data)-1
VA <- ForgeVA(d,1,0,0,0)
Size <- 50
Fit <- BESTree::BEST(Data,Size,VA)</pre>
```

 ${\tt BESTForest}$

Generates a random forest of BEST trees

Description

Generates a random forest of BEST trees

Usage

```
BESTForest(Data, VA, NoT = 50, Size = 50)
```

Arguments

Data	A data set (Data Frame): Can take on both numerical and categorical predictors. Last column of the data set must be the Repsonse Variable (Categorical Variables only)
VA	Variable Availability structure
NoT	Number of Trees in the bag
Size	Minimal Number of Observation within a leaf needed for partitionning (default is 50)

Value

A list of BEST Objects (Random Forest)

```
n <- 500
Data <- BESTree::Data[1:n,]
d <- ncol(Data)-1
VA <- ForgeVA(d,1,0,0,0)
Size <- 50
NoT <- 10
Fit <- BESTree::BESTForest(Data,VA,NoT,Size)</pre>
```

Data 5

Data

Data generated according to decision tree for simulation purposes

Description

Data generated according to decision tree for simulation purposes

Usage

Data

Format

A data frame with 10000 rows and 5 variables:

- X_1 Binary predictor
- X_2 Binary predictor
- **X_3** Continuous predictor between 0 and 1
- X_4 Continuous predictor between 0 and 1
- Y The response variable ...

Fit

Data generated according to decision tree for simulation purposes

Description

Data generated according to decision tree for simulation purposes

Usage

Fit

Format

A typical list produced by the BEST function:

- 1 Tree structure indicating spliting variables, impurity of the region and split variable
- 2 List of splitting values
- 3 Observaton numbers in the respective regions ...

Forge VA

ForgeVA	Quickly build the Available Variable list necessary for BEST This list contains details as to which variables is available for the partitioning.
	It also contains which variables are gating variables.

Description

Quickly build the Available Variable list necessary for BEST This list contains details as to which variables is available for the partitioning. It also contains which variables are gating variables.

Usage

```
ForgeVA(d, GV, BEV, Thresh = 0.5, Direc = 0)
```

Arguments d

d	Number of predictors
GV	Gating variables
BEV	Branch-Exclusive Variables
Thresh	Threshold for Gates

Direction of Gates (1 means add variable if bigger than thresh)

Value

The list containing the Variable Availability structure

```
#This function can be used to set up the variable availability structure. #Suppose we want to fit a regular decision tree on a data set containing d predictors d <- 10 VA <- ForgeVA(d,1,0,0,0) #Suppose now that predictor x5 is a binary gating variable for x4 #such that x4 is available if x5 = 1 GV <- 5 #The gating variable BEV <- 4 #The Branch-Exclusive variable Tresh = 0.5 #Value between 0 and 1 Direc = 1 #X4 is available if X5 is bigger than Tresh VA <- ForgeVA(d,GV,BEV,Tresh,Direc)
```

FPredict 7

FPredict

Emits prediction from a forest of BEST's

Description

Emits prediction from a forest of BEST's

Usage

```
FPredict(M, LFit)
```

Arguments

M A matrix of new observations where one row is one observation

LFit A list of BEST Objects (Usually produced by RBEST or BESTForest)

Value

A vector of predictions

Examples

```
n <- 500
Data <- BESTree::Data[1:n,]
d <- ncol(Data)-1
NewPoints <- BESTree::Data[(n+1):(n+11),1:d]
VA <- ForgeVA(d,1,0,0,0)
Size <- 50
NoT <- 10
Fit <- BESTree::BaggedBEST(Data,VA,NoT,Size)
Predictions <- BESTree::FPredict(NewPoints,Fit)</pre>
```

MPredict

Classify a set of new observation points

Description

Classify a set of new observation points

Usage

```
MPredict(M, Fit)
```

Arguments

M A matrix of new observations where one row is one observation

Fit A BEST object

8 Predict

Value

The predicted class

Examples

```
n <- 500
Data <- BESTree::Data[1:n,]
d <- ncol(Data)-1
NewPoints <- BESTree::Data[(n+1):(n+11),1:d]
VA <- ForgeVA(d,1,0,0,0)
Size <- 50
Fit <- BESTree::BEST(Data,Size,VA)
Predictions <- BESTree::MPredict(NewPoints,Fit)</pre>
```

Predict

Classify a new observation point

Description

Classify a new observation point

Usage

```
Predict(Point, Fit)
```

Arguments

Point A new observation
Fit A BEST object

Value

The predicted class

```
n <- 500
Data <- BESTree::Data[1:n,]
NewPoint <- BESTree::Data[n+1,]
d <- ncol(Data)-1
VA <- ForgeVA(d,1,0,0,0)
Size <- 50
Fit <- BESTree::BEST(Data,Size,VA)
BESTree::Predict(NewPoint[1:d],Fit)</pre>
```

TreePruning 9

TreePruning	Uses a Validation Set to select the best trees within the list of pruned trees.

Description

Uses a Validation Set to select the best trees within the list of pruned trees.

Usage

```
TreePruning(Fit, VSet)
```

Arguments

Fit A BEST object

VSet A Validation Set (Can also be used in CV loop)

Value

The shallower trees among trees with Highest accuracy. This replaces the first element in the BEST object list.

Examples

```
nv <- 50
ValData <- BESTree::Data[(1000+1):nv,]
Fit <- BESTree::Fit
Fit[[1]] <- BESTree::TreePruning(Fit,ValData)</pre>
```

۷I

Produces a variable important analysis using the mean decrease in node impurity

Description

Produces a variable important analysis using the mean decrease in node impurity

Usage

```
VI(Forest)
```

Arguments

Forest

A list of BEST Objects (Usually produced by RBEST or BESTForest)

10 VI

Value

A vector of importance (size d)

```
n <- 500
Data <- BESTree::Data[1:n,]
d <- ncol(Data)-1
NewPoints <- BESTree::Data[(n+1):(n+11),1:d]
VA <- ForgeVA(d,1,0,0,0)
Size <- 50
NoT <- 10
Fit <- BESTree::BaggedBEST(Data,VA,NoT,Size)
VI <- BESTree::VI(Fit)</pre>
```

Index

```
* datasets
Data, 5
Fit, 5

Acc, 2

BaggedBEST, 2
BEST, 3
BESTForest, 4

Data, 5

Fit, 5
ForgeVA, 6
FPredict, 7

MPredict, 7

Predict, 8

TreePruning, 9

VI, 9
```