### QF623: Portfolio management I Portfolio construction II

## Alternative portfolio construction methods

- Regularization of optimized portfolios
  - Introducing portfolio constraints
  - Shrinking the covariance matrix
- Risk-based weighting schemes
  - Robust, independent of expected returns
  - Minimum variance, equal risk contribution
  - Volatility targeting
- Black-Litterman (BL) approach
- Fundamental law of active management

- Most important input in mean-variance optimization is the vector of expected returns.
- Best and Grauer (1991) demonstrate that a small increase in the expected return of a single asset can dramatically increase its weight, resulting in unintuitive concentrated portfolios.
- Need to search for a reasonable (stable) starting (neutral) point for expected returns, i.e. the equilibrium returns.
- Put in other words, in the absence of views, what will a rational investor hold?

- Combines different well-known concepts
  - CAPM (Sharpe (1964))
  - Reverse optimization (Sharpe (1974))
  - Mixed estimation (Theil (1971,1978))
  - Mean-variance optimization (Markowitz (1952))
- Through CAPM and reverse optimization, the BL model provides an intuitive prior, the equilibrium market portfolio, as a starting point for estimating asset returns.
- Provides a clear way to specify investor views (relative or absolute, partial or complete) on returns and to blend these views with prior information, i.e. market-implied asset returns.

- Flexibility in the specification of investor views
  - Relative or absolute
  - Partial or complete
  - Span arbitrary and overlapping sets of assets
- Enables investors to combine their unique views on different assets in a manner that results in intuitive, diversified portfolios.
- Lee (2000) show that the BL model "largely mitigates" the problem of estimation error-maximization by spreading the errors across the expected returns.

Start with normally distributed expected returns:

$$r \sim N(\mu, \Sigma)$$
 (1)

- Goal of the BL model is to model these expected returns, which are assumed to be normally distributed with mean  $\mu$  and variance  $\Sigma$ .
- Define  $\mu$ , the unknown mean return, as a random variable distributed as:

$$\mu \sim N(\Pi, \Sigma_{\Pi})$$
 (2)

where  $\Pi$  is the estimate of the mean and  $\Sigma_{\Pi}$  is the variance of the unknown mean  $\mu$ .

• This is equivalent to saying that the prior returns are normally distributed around  $\Pi$  with some noise term  $\varepsilon$ :

$$\mu = \Pi + \varepsilon$$
 (3)

Figure 1 - Distribution of Actual Mean about Estimated Mean



Source: Walters, J (2014) – The Black-Litterman model in detail

- $\varepsilon$  is normally distributed with mean 0 and variance  $\Sigma_\Pi$  and is assumed to be uncorrelated with  $\mu$
- Define the variance of the returns about the estimate  $\Pi$  as  $\Sigma_r$ . The independence assumption between  $\varepsilon$  and  $\mu$  implies:

$$\Sigma_r = \Sigma + \Sigma_{\Pi} \quad (4)$$

- In the absence of estimation error, i.e.  $\varepsilon \equiv 0$ , then  $\Sigma_r = \Sigma$ .
- Canonical reference model for BL expected return is:

$$r \sim N(\Pi, \Sigma_r)$$
 (5)

### Black-Litterman model Computing equilibrium returns

- Model starts with a neutral equilibrium portfolio for the prior estimate of returns, i.e. returns before any investor views are incorporated
- Candidate for a neutral portfolio is the well-known CAPM market portfolio. Under the CAPM framework, the prior distribution for the BL model is the estimated mean excess (over the risk-free rate) return from the market portfolio.

$$E(r) = r_f + \alpha + \beta r_m$$

where  $r_f$  is the risk-free rate,  $r_m$  is the market portfolio return,  $\alpha$  is the residual or asset specific return and  $\beta$  is the asset's sensitivity to the market portfolio.

### Black-Litterman model Computing equilibrium returns

- Under CAPM, the asset specific risk is uncorrelated with other assets, and this risk can be diversified away => An investor is rewarded for taking on systematic risk measured by  $\beta$ .
- Because all investors should hold the same risky portfolio in the CAPM world, at equilibrium the market capitalization of the various assets will determine their weights in the market portfolio.

## Black-Litterman model Reverse optimization

Consider the following quadratic utility function:

$$U = w^T \Pi - \frac{\delta}{2} w^T \Sigma w$$

where w is the vector of asset weights,  $\Pi$  is the vector of equilibrium asset excess return,  $\delta$  is the risk aversion parameter and  $\Sigma$  is the covariance matrix of asset excess returns.

 First order condition with no constraints yields the implied equilibrium excess returns (equation 1):

$$\frac{dU}{dw} = \Pi - \delta \Sigma w = 0$$

$$\Pi = \delta \Sigma w \quad (6)$$

#### Reverse optimization

• Calibrating  $\delta$ : Multiply both sides of (5) by  $w^T$ :

$$w^{T}\Pi = w^{T}\delta\Sigma w$$

$$r - r_{f} = \delta\sigma^{2}$$

$$\delta = \frac{r - r_{f}}{\sigma^{2}} = \frac{SR}{\sigma}$$

where  $r = w^T \Pi + r_f$  is the total return on the market portfolio,  $r_f$  is the risk-free rate,  $\sigma^2$  is the variance of the market portfolio and SR is the Sharpe ratio of the market portfolio.

 Black and Litterman (1992) assume a Sharpe ratio close to 0.5 in their example to calibrate the market risk aversion coefficient.

#### Reverse optimization

- Black and Litterman make the simplifying assumption that the structure of the covariance matrix of the estimate is proportional to the covariance of the returns, i.e.  $\Sigma_{\Pi} = \tau \Sigma$
- We can rewrite (2) as:

$$\mu \sim N(\Pi, \tau \Sigma)$$

and rewrite (5) as:

$$r \sim N(\Pi, (1+\tau)\Sigma)$$

#### Reverse optimization

• From (6), we can write:

$$\Pi = \delta \Sigma w$$

$$w = (\delta \Sigma)^{-1} \Pi$$

$$\widehat{w} = (\delta (1 + \tau) \Sigma)^{-1} \Pi = (1/(1 + \tau))(\delta \Sigma)^{-1} \Pi$$

$$\widehat{w} = (1/(1 + \tau))w$$

• Because of uncertainty in the estimates, an investor may hold  $1/(1+\tau)$  in the neutral portfolio and  $\tau/(1+\tau)$  in the riskfree asset.

# Neutral portfolio on the efficient frontier

Figure 3 - Investor's Portfolio in the Absence of Views



## Black-Litterman empirical example Idzorek (2005) – Starting neutral point

| Table 1 | Expected | Excess | Return | Vectors |
|---------|----------|--------|--------|---------|
|---------|----------|--------|--------|---------|

|                     | Historical   | CAPM GSMI    | CAPM<br>Portfolio | Implied<br>Equilibrium<br>Return<br>Vector |
|---------------------|--------------|--------------|-------------------|--------------------------------------------|
| Asset Class         | $\mu_{Hist}$ | $\mu_{GSMI}$ | $\mu_P$           | П                                          |
| US Bonds            | 3.15%        | 0.02%        | 0.08%             | 0.08%                                      |
| Int'l Bonds         | 1.75%        | 0.18%        | 0.67%             | 0.67%                                      |
| US Large Growth     | -6.39%       | 5.57%        | 6.41%             | 6.41%                                      |
| US Large Value      | -2.86%       | 3.39%        | 4.08%             | 4.08%                                      |
| US Small Growth     | -6.75%       | 6.59%        | 7.43%             | 7.43%                                      |
| US Small Value      | -0.54%       | 3.16%        | 3.70%             | 3.70%                                      |
| Int'l Dev. Equity   | -6.75%       | 3.92%        | 4.80%             | 4.80%                                      |
| Int'l Emerg. Equity | -5.26%       | 5.60%        | 6.60%             | 6.60%                                      |
| Weighted Average    | -1.97%       | 2.41%        | 3.00%             | 3.00%                                      |
| Standard Deviation  | 3.73%        | 2.28%        | 2.53%             | 2.53%                                      |
| High                | 3.15%        | 6.59%        | 7.43%             | 7.43%                                      |
| Low                 | -6.75%       | 0.02%        | 0.08%             | 0.08%                                      |

Neutral starting point for the BL model from a return vector perspective

Source: Idzorek, T.M. (2005) – A step-by-step guide to the Black-Litterman model

Note: GSMI is the UBS global securities markets index

<sup>\*</sup> All four estimates are based on 60 months of excess returns over the risk-free rate. The two CAPM estimates are based on a risk premium of 3. Dividing the risk premium by the variance of the market (or benchmark) excess returns ( $\sigma^2$ ) results in a risk-aversion coefficient ( $\lambda$ ) of approximately 3.07.

## Black-Litterman empirical example Idzorek (2005) – Starting neutral point

 Table 2 Recommended Portfolio Weights

| 1144.32%<br>-104.59% | 21.33%                                   | 19.34%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.240/                                                                                                                                                      |
|----------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -104.59%             |                                          | A CONTRACTOR OF THE PARTY OF TH | 19.34%                                                                                                                                                       |
|                      | 5.19%                                    | 26.13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.13%                                                                                                                                                       |
| 54.99%               | 10.80%                                   | 12.09%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.09%                                                                                                                                                       |
| -5.29%               | 10.82%                                   | 12.09%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.09%                                                                                                                                                       |
| -60.52%              | 3.73%                                    | 1.34%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.34%                                                                                                                                                        |
| 81.47%               | -0.49%                                   | 1.34%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.34%                                                                                                                                                        |
| -104.36%             | 17.10%                                   | 24.18%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.18%                                                                                                                                                       |
| 14.59%               | 2.14%                                    | 3.49%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.49%                                                                                                                                                        |
| 1144.32%<br>-104.59% | 21.33%<br>-0.49%                         | 26.13%<br>1.34%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.13%<br>1.34%                                                                                                                                              |
|                      | 81.47%<br>-104.36%<br>14.59%<br>1144.32% | 81.47% -0.49%<br>-104.36% 17.10%<br>14.59% 2.14%<br>1144.32% 21.33%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 81.47%       -0.49%       1.34%         -104.36%       17.10%       24.18%         14.59%       2.14%       3.49%         1144.32%       21.33%       26.13% |

Neutral starting point for the BL model from the portfolio perspective

Source: Idzorek, T.M. (2005) – A step-by-step guide to the Black-Litterman model

Note: GSMI is the UBS global securities markets index

### Black-Litterman model Posterior return incorporating views

Let N be the number of assets and k be the number of investor views. Using the implied equilibrium excess returns  $\Pi$  as the starting point and Bayes Theorem, the posterior combined return vector<sup>1</sup> can be written as:

$$E[R] = [(\tau \Sigma)^{-1} + P^T \Omega^{-1} P]^{-1} [(\tau \Sigma)^{-1} \Pi + P^T \Omega^{-1} Q]$$
 (7)

where  $\tau$  is a scalar,  $\Sigma$  is the covariance matrix of excess returns ( $N \times N$  matrix), P is a matrix that identifies the assets involved in the views ( $K \times N$  matrix),  $\Omega$  is a diagonal covariance matrix of error terms from the expressed views representing the uncertainty in each view ( $K \times K$  matrix),  $\Pi$  is the implied equilibrium excess return vector ( $N \times 1$  column vector) and Q is the view vector ( $K \times 1$  column vector).

<sup>&</sup>lt;sup>1</sup> See for example Walters, J. (2014) – The Black-Litterman model in detail for the proof of the formula for the combined return vector

#### Posterior return incorporating views

• (7) can be re-written in a more intuitive form as:

$$E[R] = \Pi + (\tau \Sigma P^T (P \tau \Sigma P^T + \Omega)^{-1})(Q - P\Pi)$$
 (8)

• If there is 100% certainty of the views, then  $\Omega \to 0$  and (8) becomes:

$$E[R] = \Pi + (\tau \Sigma P^{T} (P \tau \Sigma P^{T})^{-1})(Q - P\Pi)$$

If *P* is invertible, i.e. a view on every asset has been offered, then the above equation becomes:

$$E[R] = P^{-1}Q$$

• If the investor is completely unsure of his views (i.e. equivalently to having no views), then  $\Omega \to \infty$  and (8) becomes:

$$E[R] = \Pi$$

### Black-Litterman empirical example Idzorek (2005) – Investor views

- Example showing absolute and relative views on single and pairs of assets, as well as a view involving multiple groups of assets.
- Absolute View 1: International developed equity will have an absolute excess return of 5.25% (confidence of 25%)
- Relative View 2: International bonds will outperform US bonds by 25 bps (confidence of 50%)
- Multiple assets View 3: US large growth and US small growth will outperform US large value and US small value by 2% (confidence of 65%)

## Black-Litterman empirical example Idzorek (2005) – Investor view 1

- View 1: The implied equilibrium excess return is 4.8% which is lower than the absolute expectation of 5.25%.
- Absolute views lead to a long bias in the portfolio.

Table 1 Expected Excess Return Vectors

|                     | Historical   | CAPM GSMI    | CAPM<br>Portfolio | Implied<br>Equilibrium<br>Return<br>Vector |
|---------------------|--------------|--------------|-------------------|--------------------------------------------|
| Asset Class         | $\mu_{Hist}$ | $\mu_{GSMI}$ | $\mu_P$           | П                                          |
| US Bonds            | 3.15%        | 0.02%        | 0.08%             | 0.08%                                      |
| Int'l Bonds         | 1.75%        | 0.18%        | 0.67%             | 0.67%                                      |
| US Large Growth     | -6.39%       | 5.57%        | 6.41%             | 6.41%                                      |
| US Large Value      | -2.86%       | 3.39%        | 4.08%             | 4.08%                                      |
| US Small Growth     | -6.75%       | 6.59%        | 7.43%             | 7.43%                                      |
| US Small Value      | -0.54%       | 3.16%        | 3.70%             | 3.70%                                      |
| Int'l Dev. Equity   | -6.75%       | 3.92%        | 4.80%             | 4.80%                                      |
| Int'l Emerg. Equity | -5.26%       | 5.60%        | 6.60%             | 6.60%                                      |
| Weighted Average    | -1.97%       | 2.41%        | 3.00%             | 3.00%                                      |
| Standard Deviation  | 3.73%        | 2.28%        | 2.53%             | 2.53%                                      |
| High                | 3.15%        | 6.59%        | 7.43%             | 7.43%                                      |
| Low                 | -6.75%       | 0.02%        | 0.08%             | 0.08%                                      |

<sup>\*</sup> All four estimates are based on 60 months of excess returns over the risk-free rate. The two CAPM estimates are based on a risk premium of 3. Dividing the risk premium by the variance of the market (or benchmark) excess returns ( $\sigma^2$ ) results in a risk-aversion coefficient ( $\lambda$ ) of approximately 3.07.

### Black-Litterman empirical example Idzorek (2005) – Investor view 2

- Relative views align more closely to the way investment managers think.
- View 2 states that the return of international bonds is 25 bps greater than that of the US. Implied equilibrium spread between international bonds and US bonds is +59 bps, lower than what is expressed in the view.
- Relative to the neutral portfolio, we expect to underweight international bonds and overweight US bonds.

Table 1 Expected Excess Return Vectors

|                     | Historical   | CAPM GSMI    | CAPM<br>Portfolio | Implied<br>Equilibrium<br>Return<br>Vector |
|---------------------|--------------|--------------|-------------------|--------------------------------------------|
| Asset Class         | $\mu_{Hist}$ | $\mu_{GSMI}$ | $\mu_P$           | П                                          |
| US Bonds            | 3.15%        | 0.02%        | 0.08%             | 0.08%                                      |
| Int'l Bonds         | 1.75%        | 0.18%        | 0.67%             | 0.67%                                      |
| US Large Growth     | -6.39%       | 5.57%        | 6.41%             | 6.41%                                      |
| US Large Value      | -2.86%       | 3.39%        | 4.08%             | 4.08%                                      |
| US Small Growth     | -6.75%       | 6.59%        | 7.43%             | 7.43%                                      |
| US Small Value      | -0.54%       | 3.16%        | 3.70%             | 3.70%                                      |
| Int'l Dev. Equity   | -6.75%       | 3.92%        | 4.80%             | 4.80%                                      |
| Int'l Emerg. Equity | -5.26%       | 5.60%        | 6.60%             | 6.60%                                      |
| Weighted Average    | -1.97%       | 2.41%        | 3.00%             | 3.00%                                      |
| Standard Deviation  | 3.73%        | 2.28%        | 2.53%             | 2.53%                                      |
| High                | 3.15%        | 6.59%        | 7.43%             | 7.43%                                      |
| Low                 | -6.75%       | 0.02%        | 0.08%             | 0.08%                                      |

<sup>\*</sup>All four estimates are based on 60 months of excess returns over the risk-free rate. The two CAPM estimates are based on a risk premium of 3. Dividing the risk premium by the variance of the market (or benchmark) excess returns ( $\sigma^2$ ) results in a risk-aversion coefficient ( $\lambda$ ) of approximately 3.07.

### Black-Litterman empirical example Idzorek (2005) – Investor view 3

- View requires one to think in terms of 2 distinct sub-portfolios.
- Market-cap weighted within each sub-portfolio
- Weighted average equilibrium spread between Growth and Value is 2.47%, versus the view that it is expected to be 2%.
- Tilt away from Growth and towards Value

| Table 3a View 3 – Nominally "Outperforming" Assets |                                        |                    |                                                  |                              |  |  |  |  |  |  |
|----------------------------------------------------|----------------------------------------|--------------------|--------------------------------------------------|------------------------------|--|--|--|--|--|--|
| Asset Class                                        | Market<br>Capitalization<br>(Billions) | Relative<br>Weight | Implied<br>Equilibrium<br>Return<br>Vector<br>II | Weighted<br>Excess<br>Return |  |  |  |  |  |  |
| US Large Growth                                    | \$5,174                                | 90.00%             | 6.41%                                            | 5.77%                        |  |  |  |  |  |  |
| US Small Growth                                    | \$575                                  | 10.00%             | 7.43%                                            | 0.74%                        |  |  |  |  |  |  |
|                                                    | \$5.749                                | 100.00%            | Total                                            | 6.52%                        |  |  |  |  |  |  |

| Asset Class    | Market<br>Capitalization<br>(Billions) | Relative<br>Weight | Implied<br>Equilibrium<br>Return<br>Vector<br>II | Weighted<br>Excess<br>Return |
|----------------|----------------------------------------|--------------------|--------------------------------------------------|------------------------------|
| US Large Value | \$5,174                                | 90.00%             | 4.08%                                            | 3.67%                        |
| US Small Value | \$575                                  | 10.00%             | 3.70%                                            | 0.37%                        |
|                | \$5,749                                | 100.00%            | Total                                            | 4.04%                        |

### Black-Litterman empirical example Idzorek (2005) - Inputting views into the model

- Constructing the Q vector of K views (K = 3)
- $\varepsilon$  , the error term corresponding to each view, features in BL's expected return vector through  $\Omega$

General Case:

$$Q + \varepsilon = \begin{bmatrix} Q_1 \\ \vdots \\ Q_k \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_k \end{bmatrix}$$

Example:

$$Q + \varepsilon = \begin{bmatrix} Q_1 \\ \vdots \\ Q_k \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_k \end{bmatrix}$$

$$Q + \varepsilon = \begin{bmatrix} 5.25 \\ 0.25 \\ 2 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_k \end{bmatrix}$$
 Absolute view 1 Relative view 2 View 3

### Black-Litterman empirical example Idzorek (2005) - Inputting views into the model

- Constructing  $\Omega$ , the diagonal covariance matrix of error terms from the expressed views representing the uncertainty in each view.
- In our case, P is a 3 views by 8 assets matrix.

General Case:

$$P = \begin{bmatrix} p_{1,1} & \cdots & p_{1,n} \\ \vdots & \ddots & \vdots \\ p_{k,1} & \cdots & p_{k,n} \end{bmatrix}$$

Example (Based on Satchell and Scowcroft (2000)):

$$P = \begin{bmatrix} p_{1,1} & \cdots & p_{1,n} \\ \vdots & \ddots & \vdots \\ p_{k,1} & \cdots & p_{k,n} \end{bmatrix} \qquad P = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & .5 & -.5 & .5 & -.5 & 0 & 0 \end{bmatrix}$$
Absolute view 1 Relative view 2 View 3

Matrix *P* (Market capitalization method):

$$P = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & .9 & -.9 & .1 & -.1 & 0 & 0 \end{bmatrix}$$
 Absolute view 1 Relative view 2 View 3

## Black-Litterman empirical example Idzorek (2005) - Inputting views into the model

• Once P (matrix that identifies the assets involved in the views) is defined, we can calculate the variance of each individual view portfolio,  $p_k \Sigma p_k^T$  where  $p_k$  is a  $1 \times N$  row vector.

**Table 4** Variance of the View Portfolios

| View | Formula          | Variance |
|------|------------------|----------|
| 1    | $p_1\Sigma p_1$  | 2.836%   |
| 2    | $p_2 \Sigma p_2$ | 0.563%   |
| 3    | $p_3\Sigma p_3$  | 3.462%   |

Absolute view on developed equity Relative view between bonds Relative view between equity segments

## Black-Litterman empirical example Idzorek (2005) – Calibrating $\tau$

- Magnitude of portfolio departure from their neutral market cap weights is controlled by the ratio of  $\tau$  to the variance of the error term  $\Omega$
- Different authors propose different values of  $\tau$ 
  - Black and Litterman (1992) and Lee (2000) propose  $\tau$  to be close to 0 as there is less uncertainty in the equilibrium returns relative to historical returns.
  - He and Litterman (1999) calibrate the confidence of the view so that  $\Omega_{kk}/\tau$  is equal to the variance of the  $k^{th}$  view portfolio,  $p_k \Sigma p_k^T$ . Under this calibration,  $\tau$  becomes irrelevant (see equation 8).

### Black-Litterman empirical example Idzorek (2005) – Calibrating $\tau$

• Assuming  $\tau = 0.025$  and using the individual variances of the view portfolios from before, we have:

General Case:

$$\Omega = \begin{bmatrix} \left(p_1 \Sigma p_1\right) * \tau & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \left(p_k \Sigma p_k\right) * \tau \end{bmatrix}$$

Example:

$$\Omega = \begin{bmatrix} (p_1 \Sigma p_1) * \tau & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & (p_k \Sigma p_k) * \tau \end{bmatrix} \qquad \Omega = \begin{bmatrix} 0.000709 & 0 & 0 \\ 0 & 0.000141 & 0 \\ 0 & 0 & 0.000866 \end{bmatrix}$$

### Black-Litterman empirical example Idzorek (2005) – Final BL portfolio weights, $\hat{w}$

- A single view causes the posterior return of every asset in the portfolio to change due to the co-movements with other assets.
- One of the strongest features about the BL model is that weight changes only apply to assets with an expressed view.

Table 6 Return Vectors and Resulting Portfolio Weights

| Asset Class         | New Combined Return Vector E[R] | Implied<br>Equilibrium<br>Return<br>Vector<br>Π | Difference<br>E[R] − Π | New<br>Weight<br>ŵ | Market<br>Capitalization<br>Weight<br>w <sub>mkt</sub> | Difference $\hat{w} - w_{mkt}$ |
|---------------------|---------------------------------|-------------------------------------------------|------------------------|--------------------|--------------------------------------------------------|--------------------------------|
| US Bonds            | 0.07%                           | 0.08%                                           | -0.02%                 | 29.88%             | 19.34%                                                 | 10.54%                         |
| Int'l Bonds         | 0.50%                           | 0.67%                                           | -0.17%                 | 15.59%             | 26.13%                                                 | -10.54%                        |
| US Large Growth     | 6.50%                           | 6.41%                                           | 0.08%                  | 9.35%              | 12.09%                                                 | -2.73%                         |
| US Large Value      | 4.32%                           | 4.08%                                           | 0.24%                  | 14.82%             | 12.09%                                                 | 2.73%                          |
| US Small Growth     | 7.59%                           | 7.43%                                           | 0.16%                  | 1.04%              | 1.34%                                                  | -0.30%                         |
| US Small Value      | 3.94%                           | 3.70%                                           | 0.23%                  | 1.65%              | 1.34%                                                  | 0.30%                          |
| Int'l Dev. Equity   | 4.93%                           | 4.80%                                           | 0.13%                  | 27.81%             | 24.18%                                                 | 3.63%                          |
| Int'l Emerg. Equity | 6.84%                           | 6.60%                                           | 0.24%                  | 3.49%              | 3.49%                                                  | 0.00%                          |
|                     |                                 |                                                 | Sum                    | 103.63%            | 100.00%                                                | 3.63%                          |

### Black-Litterman empirical example BL portfolio in the presence of constraints

- The intuitiveness of the BL model is less apparent with added portfolio constraints on unity, risk, beta, short selling, etc.
- He and Litterman (1999) and Litterman (2003) suggest inputting the derived posterior return vector into the constrained mean-variance optimizer.
- The idea is that one will get a constrained solution close enough to the ideal BL portfolio.

### Deriving the posterior expected return Overview



<sup>\*</sup> The variance of the New Combined Return Distribution is derived in Satchell and Scowcroft (2000).

Source: Idzorek, T.M. (2005) – A step-by-step guide to the Black-Litterman model

### Black-Litterman model Incorporating investor confidence levels

- Herold (2003) notes that the major difficulty of the BL model is the requirement to specify a probability density function for each view.
- Idzorek (2005) present a method to determine implied confidence levels in the views and to allow for a 0%-100% user-specified confidence level for each view.
- This approach also removes the difficulty of specifying a value for  $\tau$ .

## Black-Litterman model Incorporating investor confidence levels

- Recall that in the last example, the investor's confidence in a view depends only on the volatility of the view portfolio.
- In practice, additional factors can affect an investor's confidence in a view, such as the volatility regime (or more generally macroeconomic regime) and historical accuracy of the model, screen or fundamental analyst.
- When 100% confidence is specified for all of the views, the BL formula for the posterior return vector is:

$$E[R_{100\%}] = \Pi + (\tau \Sigma P^T (P \tau \Sigma P^T)^{-1})(Q - P\Pi)$$

which can be input into (6) to derive  $w_{100\%}$ 

## Black-Litterman empirical example Idzorek (2005) – Comparing $w_{mkt}$ , $\hat{w}$ , $w_{100\%}$

#### Allocations







$$w_{100\%}$$

### Black-Litterman empirical example Idzorek (2005) – Implied confidence levels

Implied confidence level = 
$$\frac{\widehat{w} - w_{mkt}}{w_{100\%} - w_{mkt}}$$

**Table 7** Implied Confidence Level of Views

|                     | Market<br>Capitalization<br>Weights | New<br>Weight | Difference  | New Weights (Based on 100% Confidence) | Difference            | Implied Confidence Level $\hat{w} - w_{mkt}$ |
|---------------------|-------------------------------------|---------------|-------------|----------------------------------------|-----------------------|----------------------------------------------|
| Asset Class         | Wmkt                                | w             | $w-w_{mkt}$ | W100%                                  | $w_{100\%} - w_{mkt}$ | $w_{100\%} - w_{mkt}$                        |
| US Bonds            | 19.34%                              | 29.88%        | 10.54%      | 43.82%                                 | 24.48%                | 43.06%                                       |
| Int'l Bonds         | 26.13%                              | 15.59%        | -10.54%     | 1.65%                                  | -24.48%               | 43.06%                                       |
| US Large Growth     | 12.09%                              | 9.35%         | -2.73%      | 3.81%                                  | -8.28%                | 33.02%                                       |
| US Large Value      | 12.09%                              | 14.82%        | 2.73%       | 20.37%                                 | 8.28%                 | 33.02%                                       |
| US Small Growth     | 1.34%                               | 1.04%         | -0.30%      | 0.42%                                  | -0.92%                | 33.02%                                       |
| US Small Value      | 1.34%                               | 1.65%         | 0.30%       | 2.26%                                  | 0.92%                 | 33.02%                                       |
| Int'l Dev. Equity   | 24.18%                              | 27.81%        | 3.63%       | 35.21%                                 | 11.03%                | 32.94%                                       |
| Int'l Emerg. Equity | 3.49%                               | 3.49%         |             | 3.49%                                  |                       |                                              |

### Black-Litterman model Incorporating investor confidence levels

• Idzorek (2005) propose that the diagonal elements of  $\Omega$  be derived such that the user-specified confidence levels result in portfolio tilts which approximate:

$$Tilt_k \approx (w_{100\%} - w_{mkt}) \times C_k$$

where  $C_k$  is the confidence level associated with view k

 In the absence of other views, the approximate recommended weight vector resulting from the view is:

$$w_{100\%} \approx w_{mkt} + Tilt_k$$

## Black-Litterman model Idzorek (2005) method for incorporating $C_k$

• Step 1: For each view (k), calculate the posterior return vector using the BL formula under 100% certainty independently of other views.

$$E[R_{k,100\%}] = \Pi + \tau \Sigma p_k^T (p_k \tau \Sigma p_k^T)^{-1} (Q_k - p_k \Pi)$$

where  $E[R_{k,100\%}]$  is the posterior return vector based on 100% confidence in the  $k^{th}$  view ( $N \times 1$  column vector),  $p_k$  identifies the assets involved in the  $k^{th}$  view ( $1 \times N$  row vector) and  $Q_k$  is the  $k^{th}$  view ( $1 \times 1$ )

• Step 2: Calculate  $w_{k,100\%}$ , the weight vector based on 100% confidence in the  $k^{th}$  view, using the unconstrained mean-variance optimization formula

$$w_{k,100\%} = (\lambda \Sigma)^{-1} E[R_{k,100\%}]$$

## Black-Litterman model Incorporating investor confidence levels

• Step 3: Calculate the deviations from the neutral market cap weights caused by 100% confidence in the  $k^{th}$  view.

$$D_{k,100\%} = W_{k,100\%} - W_{mkt}$$

• Step 4: Multiply  $D_{k,100\%}$  by the user-specified confidence  $(C_k)$  in the  $k^{th}$  view to estimate the desired tilt caused by the  $k^{th}$  view.

$$Tilt_k = D_{k,100\%} \times C_k$$

• Step 5: Estimate the target weight vector  $(w_{k,\%})$  based on the tilt.

$$w_{k,\%} = w_{mkt} + Tilt_k$$

## Black-Litterman model Incorporating investor confidence levels

• Step 6: Find the value of  $\Omega_{kk}$  (the  $k^{th}$  diagonal element of  $\Omega$ ), representing the uncertainty in the  $k^{th}$  view, that minimizes the sum of squared differences between  $w_{k,\%}$  and  $w_k$ .

$$\begin{split} \min_{\Omega_{kk}} \sum \bigl(w_{k,\%} - w_k\bigr)^2 \\ subject\ to\ \Omega_{kk} > 0 \end{split}$$
 Where  $w_k = (\lambda \Sigma)^{-1} \bigl[ (\tau \Sigma)^{-1} + P_k^T \Omega_{kk}^{-1} P_k \bigr]^{-1} \bigl[ (\tau \Sigma)^{-1} \Pi + P_k^T \Omega_{kk}^{-1} Q_k \bigr]$ 

• Repeat steps 1 to 6 for the k views, and build the  $k \times k$  diagonal  $\Omega$  matrix incorporating the user-specified confidence levels. The final BL portfolio can be calculated as usual using (6) and (7).

# Generalized fundamental law of active management

 Clarke et al (2002) define the generalized fundamental law of active management as:

$$IR \approx TC \times IC \times \sqrt{N}$$

where TC is the transfer coefficient defined as the cross-sectional correlation between active weights and forecast returns, IC is the information coefficient defined as the cross-sectional correlation between forecast returns and realized returns, commonly used as a proxy for manager skill and N = number of independent bets.

# Generalized fundamental law of active management

 In terms of expected active return, the generalized fundamental law of active management becomes:

$$E(R_A) \approx TC \times IC \times \sqrt{N} \times \sigma_A$$

where  $\sigma_A$  = active risk of the portfolio.

In correlation form, the law can be expressed as:

$$PC = TC \times IC$$

where PC is the performance coefficient, defined as the expected correlation between active weights and subsequent returns.

### The correlation triangle

Figure 2: The correlation triangle



Source: Clarke et al (2002)

#### What drives portfolio performance?

- Manager skill (IC)
- Number of independent bets (N)
- Active risk  $(\sigma_A)$
- Transfer coefficient (TC)
- Transfer coefficient and number of positions are somewhat related

#### What drives the TC?

The transfer coefficient (TC) can be explicitly written as:

$$TC \equiv \frac{Cov(\alpha, \mathbf{w}^e)}{\sqrt{Var(\alpha)}\sqrt{Var(\mathbf{w}^e)}} = \frac{E(\alpha - E(\alpha))E(\mathbf{w}^e - E(\mathbf{w}^e))}{\sqrt{Var(\alpha)}\sqrt{Var(\mathbf{w}^e)}}$$

where  $\alpha$  is the vector of expected return of the  $i^{th}$  asset and  $w^e = w - w^b$  is the weight difference between the portfolio and the benchmark.

$$TC \equiv \frac{\sum_{i=1}^{N} (w_i^e - \overline{w}^e)(\alpha_i - \overline{\alpha})}{\sqrt{\sum_{i=1}^{N} (w_i^e - \overline{w}^e)^2} \sqrt{\sum_{i=1}^{N} (\alpha_i - \overline{\alpha})^2}}$$

where N is the number of assets.

## Active portfolio construction problem with TC constraint

Consider the following multi-factor model:

$$R_i = \alpha + \sum_{k=1}^K \beta_{i,k} F_k + \varepsilon_i, i = 1, 2, \dots, n$$

where  $F_k$ , k = 1, 2, ..., K are factor returns,  $\beta_{i,k}$  are factor exposures of the  $i^{th}$  asset and  $\varepsilon_i$  is the idiosyncratic return, uncorrelated to  $R_i$ .

The tracking error, using the multi-factor model is then:

$$TE = \sqrt{\sum_{k=1}^{K} \sum_{l=1}^{K} \beta_k \beta_l \sigma_{kl}} + \sum_{i=1}^{n} \sigma_{\varepsilon_i}^2 (w_i^e)^2$$

Where  $\beta_k = \sum_{i=1}^n \beta_{ik} w_i^e$ ,  $\sigma_{\varepsilon_i}^2 = Var(\varepsilon_i)$  and  $\sigma_{kl} = cov(f_k, f_l)$ 

### MV optimization with TC constraint Yamamoto et al (2012)

#### Empirical study framework Yamamoto et al (2012)

- Objective: To see if the addition of the TC constraint helps in portfolio construction.
- Data: Monthly data from Jan 1996-Dec 2007 of Tokyo stock exchange (TSE) consisting of around 1700 stocks.
- Use of Fama-French-Cahart 4 factor model as the risk model for tracking error calculation. Factor loadings estimated using 36 months of history.
- Alpha signals is a combination of price-to-earnings and price-to-book.
- Study carried out for TE of 1%, 2% and 3% annualized, and TC values of 0, 0.7, 0.8 and 0.9 (note that a TC value of 0 reverts back to the usual MV optimization)

# TC profile of mean-variance optimized portfolios ( $\rho = 0$ )



## Weight distribution under different TC values



**Figure 2:** Portfolio weight ( $\sigma_T = 2.0$  per cent, December, 2007).

#### Portfolio characteristics

Table 2: Average of portfolio characteristics

| $\sigma_T$ | ρ   | Objective value | Tracking error (%/ann.) | No. of assets | TC   |
|------------|-----|-----------------|-------------------------|---------------|------|
| 1 per cent | 0.0 | 0.99            | 1.00                    | 596.1         | 0.59 |
|            | 0.7 | 0.92            | 1.00                    | 649.1         | 0.70 |
|            | 0.8 | 0.70            | 1.00                    | 796.1         | 0.80 |
|            | 0.9 | 0.33            | 1.00                    | 1012.9        | 0.90 |
| 2 per cent | 0.0 | 1.57            | 2.00                    | 323.7         | 0.53 |
|            | 0.7 | 1.25            | 2.00                    | 542.4         | 0.70 |
|            | 0.8 | 0.79            | 2.00                    | 777.3         | 0.80 |
|            | 0.9 | 0.34            | 1.97                    | 1010.9        | 0.90 |
| 3 per cent | 0.0 | 1.88            | 3.00                    | 200.5         | 0.50 |
|            | 0.7 | 1.34            | 3.00                    | 524.6         | 0.70 |
|            | 0.8 | 0.80            | 3.00                    | 776.2         | 0.80 |
|            | 0.9 | 0.35            | 2.87                    | 1009.3        | 0.90 |

### Ex-post performance



Figure 3: Ex-post performance.

#### Simulation framework

- For robustness, Yamamoto et al (2012) also conducted the same backtest but using randomly generated expected return vectors  $\boldsymbol{\alpha} \in R^n$  using N(0,1) with  $Cor(R_{t+1}, \alpha) = 0.03$ .
- 100 backtests were run to smooth out the randomness.



**Figure 5:** Information ratio ( $\sigma_T = 2.0$  per cent).