# 第十一章 机械波 Mechanical Waves



- § 1 Formation & Propagation of a Mechanical Wave 机械波的产生和传播
- § 2 Wave Function of a Plane SHW 平面简谐波 波动方程
- § 3 Energy Energy Flow and Wave Intensity 波的能量 波动强度
- § 4 Huygen's Principle Principle of Superposition of Waves Interference of Waves 惠更斯原理 波的叠加原理 波的干射
  - § 5 Standing Waves 驻波

# 教学要求

- 1、确切理解描述波动的物理量的物理意义,并能熟练地确定这些物理量;
- 2、深刻理解平面简谐波波动方程的物理意义,并会建立波动方程,运用它来讨论与分析波动现象;
- 3、理解波的能量能流密度;
- 4、熟练掌握波的干涉原理和干涉强弱的条件;
- 5、理解驻波形成条件和干涉强弱条件.

#### The types of waves

(1) Mechanical waves: earthquake waves, sound wave, water wave, ...





## (2) Electromagnetic waves: light, sun, communication,...









#### (3) Matter waves: electron, atom, molecule......



#### The applications of wave

(1) The transmission of energy: solar energy, laser weapon, ...





(2)The transmission of information: radio, radar system, communications satellite, B-超, x-

ray,.....

In a wave, information and energy move from one point to another but no material makes

that journey.



In this chapter, for specific examples we shall refer(涉及) to Mechanical Waves.

#### 1、什么是波动

波动也是一种运动形式,波动是振动的传播过程。 波动有机械波,电磁波,物质波。

2、波动和其他运动形式相比

具时间和空间上的某种重复性。

3、各类波在传播途中具有共性:

类似的波动方程:

反射、折射现象: 在两种介质的界面上的反射, 折射;

干涉现象: 同一介质中,几列波的叠加;

衍射现象: 在介质中绕过障碍物继续前进。

# § 11-1 机械波的形成和传播

Formation & Propagation of a mechanical Wave

- <u>11. 1. 1</u> 机械波产生的条件Conditions of mechanical waves:
  - 1、什么是机械波
    - 一个振动以有限的速度在连续介质中的传播。
  - 2、机械波产生的条件:

波源(振源): There must be a vibrating center called source of wave:

一一在此只讨论作简谐振动的波源。

弹性介质:There must be medium propagating(传递) wave:

一一只讨论各向同性均匀无限大无吸收的 理想情况。



## 11. 1. 2 横波和纵波 Transverse wave and Longitudinal wave

1、横波传播的特点: 以绳上所形成的横波为例。

横波: 质点的振动方向和波的传播方向垂直。

transverse wave: a traveling wave that causes the particles of the disturbed medium to move perpendicular to the wave motion.



#### Water wave









- ①当点波源完成自己一个周期的运动,就有一个完整的波形发送出去。
- ② 沿着波的传播方向向前看去,前面各质元都要重复波源(已知点振动亦可)的振动状态(即位相),因此,沿着波的传播方向向前看去,前面质元的振动位相相继落后于波源的位相。
- ③ 所谓波形:是指介质中各质元在某确定时刻,各自偏离自己平衡位置位移的矢端曲线——简谐横波可用余弦函数描述。

#### 2、纵波的特点

质点的振动方向和波的传播方向平行。

longitudinal wave: a traveling wave that causes the particles of the disturbed medium to move parallel to the direction of wave motion.



Figure 15-8 A drawing of a longitudinal sound wave. The dark regions represent compressions (high density), the lighter regions represent rarefactions (low density).

The general waves are treated as the mixed waves as a combination of longitudinal and transverse wave. For example:

(1) Water wave.



(2) Earthquake waves.



#### Other classification:

(1)One-dimensional waves: a wave in a string;

(2)Two-dimensional waves: water wave;

(3) Three-dimensional waves: the flash of light.



#### 11.1.3 描述波动的三个物理量

Take a sinusoidal(正弦波) wave in a string as example.

Crest:波峰(peak)

Trough:波谷(valley)

1. 波速 u : 单位时间 内一定振动状态或位 相沿波线传播的距离。



2. 波长λ: 同一波线上振动位相差为2π的相邻的两质点间的距离。 the distance from crest to adjacent(毗连的) crest or trough to adjacent trough.



3. 周期T: 波传播一个波长所需的时间。 the time in which wave traverses a distance of a wavelength.

频率 $\mathbf{v}$ :  $v = \frac{1}{T}$ 

即一秒钟通过横截面的完整波形的个数。

波的周期和频率与波源的振动周期及频率相同。

波速: 由媒质的性质决定。如空气声速不同于钢轨中的速度。

$$u = \sqrt{\frac{G}{\rho}}$$
 (固体中横波)  $u = \sqrt{\frac{K}{\rho}}$  (纵波)

G为固体的切变模量, K为介质的体积模量, ρ为介质的密度。

波长: 描述波的空间周期性,与波速和频率满足:

$$\lambda = u \cdot T = \frac{u}{v} = \frac{2\pi \cdot u}{\omega}$$

#### 11.1.4 波线和波面





(b) 球面波

- 1、波线: 波的传播方向。the direction of wave transmission or wave propagating line.
- 2、波面 (同相面): 振动传播时相位相同的点所组成的面。A surface marking the points that have same phase is called the same phase surface.

最前面的一个波面称波阵面(或波前)。 球面波和平面波:波阵面为球面(平面)。 在各向同性介质中,波线恒与波面垂直。



平面波

#### 11.1.5 简谐波 Harmonic move

一般说来,波动中各质点的振动是复杂的。最简单而又最基本的波动是简谐波,即波源以及介质中各质点的振动都是简谐振动。

这种情况只能发生在各向同性、均匀、无限大、无吸收的连续弹性介质中。

由于任何复杂的波都可以看成由若干个简谐波叠加而成,因此,研究简谐波具有特别重要的意义。

# § 11-2 平面简谐波的波动方程

The wave equation of plane harmonic waves

#### 11.2.1 平面简谐波的波动方程

在同一时刻,沿着波的传播方向,各质点的振动状态或位相依次落后;

波动是介质中大量质点参与的集体运动(振动)。

如何用数学式来描述大量质点以一定位相 关系进行集体振动呢?

#### 1、思路

介质中所有质点的振动方程



任一波面上任一质点振动方程通式





任一波线上任一质点振动方程式的通式

#### 2、过程

#### 条件:

- A、波源在坐标原点,X轴与某一波线重合;
- B、波是沿着X轴正向传播,传播速度为u;
- $\mathbf{C}$ 、波源的振动方程  $y(t) = A\cos(\omega t + \varphi_0)$

在波线ox上任选一点P来研究. 已知 o点的运动方程为

$$y_o = A \cos(\omega t + \varphi)$$



P点的运动状态是由o点的运动状态经一段时间传过来的。





 $t - \frac{x_p}{}$ 时刻**P**点的运动状态

t时刻P点的运动状 态

与相同

$$y_o(t - \frac{x_P}{u}) = A\cos[\omega(t - \frac{x_P}{u}) + \varphi]$$

t时刻P点的运动状 态

所以t时刻P点的运动状态为:

$$y_P(t) = y_o(t - \frac{x_P}{u}) = A\cos[\omega(t - \frac{x_P}{u}) + \varphi]$$

因为P为任意一点,去掉下标P,x轴上任一点(坐标x)满足:

$$y = A\cos[\omega(t - \frac{x}{u}) + \varphi]$$

$$y = A\cos[\omega(t - \frac{x}{u}) + \varphi]$$

上式所表示的是任一波线上任一点振动方程的通式,此即所求的平面简谐波的的波动表达式。

which is called the wave equation of plane harmonic wave.



# 3、波动表达式的多种形式:

将 
$$\omega = 2\pi v = \frac{2\pi}{T}$$
,  $u = \frac{\lambda}{T} = \frac{\omega}{2\pi} \lambda$  等代入:

$$y = A \cos \left[\omega \left(t - \frac{X}{u}\right) + \varphi_0\right]$$

$$= A\cos(\omega t - \frac{2\pi}{\lambda}x + \varphi_0)$$

$$= A \cos \left[2\pi \left(\frac{t}{T} - \frac{X}{\lambda}\right) + \varphi_0\right]$$

#### 11.2.2 波动方程的物理意义

振动 y=f(t) 描述一个质点的位移随时间变化的规律。

波动 y=f(x,t) 描述波线上所有质点的位移随时间变化的规律。

#### 1、假定 $x=x_0$ 常数:则考察的是波线上某固定点

$$y = A\cos\left[\omega(t - \frac{X_0}{u}) + \varphi_0\right]$$
  
 $= A\cos\left(\omega t - 2\pi \frac{X_0}{\lambda} + \varphi_0\right)$   
 $y = A\cos(\omega t + \varphi')$   $y=f(x, t)$  蜕变成  $y=f(t)$ 

when x is given to be  $x_0$ , y is the function of time t, which shows the displacement of particle at point  $x_0$ . That is the equation of vibration of the particles at point  $x_0$ .

29

## (1) 波动方程蜕变成 $x_0$ 处质元的振动方程

$$y(t) = A\cos(\omega t + \varphi') = A\cos(\omega t - 2\pi \frac{X_0}{\lambda} + \varphi_0)$$
$$v_P = \frac{dy_P}{dt} = -A\omega\sin(\omega t + \varphi')$$

(2) x<sub>0</sub> 处质元的振动初位相

$$\varphi' = -\frac{2\pi}{\lambda} X_0 + \varphi_0$$

- "一"表示 $x_0$ 处质元的位相落后于原点0。
- (3) 同一时刻, 同一波线上两点的振动位相差

$$\Delta \varphi = -\frac{2\pi}{\lambda} (x_2 - x_1)$$

当 
$$\begin{cases} x_2-x_1=k\lambda$$
时, 
$$\Delta\varphi=2k\pi\\ x_2-x_1=(2k+1)\frac{\lambda}{2}$$
时, 
$$\Delta\varphi=(2k+1)\pi \end{cases}$$

#### 可见,波长反映了波动在空间上的周期性。



#### 2、假定t=t₀常数

相当于对某波动过程照相后的相片,这时 y=f(x,t) 蜕变成 y=f(x)When t is given, y is the function of x, which indicates the shape of wave at time t(摄像法).

(1) 波动方程蜕变成 to 时刻的波形方程

$$y=A\cos\left[\omega(t_0-x/u)+\varphi_0\right]$$
 to时刻的波形方程





# (2) 时间延续 $\triangle t$ ,整个波形向前推进 $\triangle x=u\cdot \triangle t$ 据此,可由已知 时刻的波形图画出下一时刻的波形图;



#### (3) 同一质元在不同的两个时刻的振动位相差

设: 
$$y_1 = A\cos(2\pi v \ t_1 - \frac{2\pi}{\lambda} \ x + \varphi_0)$$
  $\varphi_1 = 2\pi v \ t_1 - \frac{2\pi}{\lambda} \ x + \varphi_0$ 

$$y_2 = A\cos(2\pi v \ t_2 - \frac{2\pi}{\lambda} \ x + \varphi_0)$$
  $\varphi_2 = 2\pi v \ t_2 - \frac{2\pi}{\lambda} \ x + \varphi_0$ 

$$\therefore \Delta \phi = 2\pi v (t_2 - t_1) = 2\pi \frac{t_2 - t_1}{T}$$
 当 $\Delta t = kT$  则  $\Delta \varphi = 2k\pi$ 

所以波动周期T反映了波动在时间上的周期性。

#### 3、x, t都变

y=f(x,t)描述波线上各个不同质点在不同时刻的位移.

In general, y is the function of x and t, which describes the traveling wave:

t 时刻的波形方程为: y(x)=Acosω(t-x/u)



4. 如何判断波线上一点某一时刻的运动方向(以横波为例)?



当波沿x轴正向传播时:"下坡上","上坡下"

5. 前面讨论的波沿x轴正向传播,如波沿x轴负向传播,如何写出相应波动方程?将上面所有方程中的速度作以下变换:



# 6. 己知xp的振动方程,写出波动方程



$$y_P = A\cos[\omega(t - \frac{x - x_P}{u}) + \varphi_P]$$

如 u < 0 , 波动方程?

例1 一横波沿绳子传播,波的表达式为  $y = 0.05\cos(100\pi t - 2\pi x)$ , 试求:

- (1) 此波的振幅、波速、频率和波长;
- (2)绳上各质点的最大振动速度和最大振动加速度;
- (3)  $x_1 = 0.2 \text{ m}$ 和  $x_2 = 0.7 \text{ m}$ 处二质元的相位差。

解: (1) 由题意知,  

$$y = A\cos[\omega(t-\frac{x}{u})+\varphi_0]$$
  
 $y = 0.05\cos(100\pi t - 2\pi x) = 0.05\cos\left[100\pi(t-\frac{x}{50})\right]$ 

与标准形式相比较知,此波沿x轴正向传播,而 A=0.05m v=50Hz  $\omega=100\pi=2\pi v$  u=50m/s  $\lambda=u/v=1m$ 

(2) 质点的最大振动速度为  $u_{\text{max}} = A\omega = 5\pi = 15.7 m / s$  质元的最大振动加速度为  $a_{\text{max}} = A\omega^2 = 4.93 \times 10^3 m \cdot s^{-2}$ 

(3) 相位差  $\Delta \varphi = \varphi_1 - \varphi_2 = \frac{2\pi}{\lambda} (x_2 - x_1) = \pi$  , 这两个质元的振动相位相反。

例2 一平面简谐波以6 m·s<sup>-1</sup> 的速率沿x轴正方向传播,已知t=3 s时波形如图11.9(a)所示。

- (1)写出坐标原点的振动方程;
- (2)写出波动方程。



解: 由图11.9看出A = 0.05m, $\lambda = 24m$ ,则

$$T = \frac{\lambda}{u} = \frac{24}{6} = 4$$
  $\omega = \frac{2\pi}{T} = \frac{2\pi}{4} = \frac{\pi}{2}$ 

在t =3 s,坐标原点y=0, v < 0,由旋转矢量图 11.9(b)知  $\pi$ 

$$\varphi_{t=3} = \frac{\pi}{2}$$

$$\overrightarrow{\text{m}} \varphi_{t=3} = \omega \times 3 + \varphi_0$$
 ,  $\mathbb{P} \frac{\pi}{2} = \frac{\pi}{2} \times 3 + \varphi_0$ 

所以有 
$$\varphi_0 = \frac{\pi}{2} - \frac{3\pi}{2} = -\pi$$

因此坐标原点的振动方程为

$$y = 0.05 \cos\left(\frac{\pi}{2}t - \pi\right)$$

波动方程为

$$y = 0.05 \cos \left[ \frac{\pi}{2} \left( t - \frac{x}{6} \right) - \pi \right]$$

例3:如图为一平面简谐波t=0时刻的波形图。求: (1) 该波的 波动方程: (2) P处质点的振动方程。

解:由图可知:

$$A = 0.04 m$$
  $\lambda = 0.4 m$ 

$$V = 0.08 m / s \quad T = \frac{\lambda}{V} = 5s$$

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{5}$$

(1) 先求o点的振动方程:



$$\mathbf{y}_o = 0.04\cos(\frac{2\pi}{5}\mathbf{t} + \varphi)$$



$$\begin{cases} y_o(0) = 0 \\ v_o(0) > 0 \end{cases} \Rightarrow \varphi = -\frac{\pi}{2} \Longrightarrow y_o = 0.04 \cos(\frac{2\pi}{5}t - \frac{\pi}{2})$$

$$\mathbf{y}_o = 0.04\cos(\frac{2\pi}{5}\mathbf{t} - \frac{\pi}{2})$$

所以波的波动方程为:

$$y = 0.04 \cos\left[\frac{2\pi}{5}(t - \frac{x}{0.08}) - \frac{\pi}{2}\right]$$

(2) P点  $(x_p = 0.20m)$  的振动方程

$$y_{P} = 0.04 \cos\left[\frac{2\pi}{5}\left(t - \frac{x_{P}}{0.08}\right) - \frac{\pi}{2}I\right]$$

$$= 0.04 \cos\left[\frac{2\pi}{5}\left(t - \frac{0.20}{0.08}\right) - \frac{\pi}{2}I\right]$$

$$= 0.04 \cos\left(\frac{2\pi}{5}t - \frac{3\pi}{2}\right)$$

例题4 已知波动方程为  $y = 0.1\cos\frac{\pi}{10}(25t-x)$  其中x, y的单位为m, t的单位为s, 求 (1)振幅、波长、周期、波速; (2)距原点为8 m和10 m两点处质点振动的位相差; (3)波线上某质点在时间间隔0.2 s内的位相差.

解: (1) 用比较法,将波动方程改写为:  $y = 0.1\cos\frac{25}{10}\pi\left(t - \frac{x}{25}\right)$ 

并与波动方程的标准形式  $y = A\cos[\omega\left(t - \frac{x}{u}\right) + \varphi_0]$  比较,即可得

A = 0.1 m, 
$$\omega = \frac{25}{10} \pi \, s^{-1}$$
, u = 25 m / s,  $\varphi_0 = 0$ 

所以 
$$T = \frac{2\pi}{\omega} = 0.8s, \lambda = uT = 20m$$

(2) 同一时刻波线上坐标为  $X_1$  和  $X_2$  两点处质点振动的位相差

$$\varphi = -\frac{2\pi}{\lambda} (x_2 - x_1) = -2\pi \frac{\delta}{\lambda}$$

 $\delta = x_2 - x_1$ 是波动传播到  $X_1$  和  $X_2$ 处的波程之差,上式就是同一时刻波线上任意两点间位相差与波程差的关系.

$$\delta = x_2 - x_1 = 10 - 8 = 2m$$
 Fig.  $\Delta \varphi = -2\pi \frac{\delta}{\lambda} = -\frac{\pi}{5}$ 

负号表示x2处的振动位相落后于x1处的振动位相.

(3) 对于波线上任意一个给定点(x-定),在时间间隔 $\Delta$ t内的位相差

$$\Delta \varphi = \omega (t_2 - t_1) = \omega \Delta t$$

$$\Delta t = 0.2s, \text{M}\Delta \varphi = \frac{\pi}{2}$$

例5. 已知t=0时的波形曲线为 I, 波沿ox 正方向传播, 经t=1/2s 后波形变为曲线 II。已知波的周期T>1s,试根据图中给 出的条件求出波的表达式,并求A点的振动方程。

解: 
$$A = 0.01$$
m  $\lambda = 0.04$ m   
波速:  $u = \frac{x_1 - x_o}{t} = \frac{0.01}{1/2} = 0.02 \, m/s$ 

$$T = \frac{\lambda}{u} = \frac{0.04}{0.02} = 2s \qquad \omega = \frac{2\pi}{T} = \pi \, s^{-1}$$

原点振动方程: 
$$y_o = A\cos(\omega t + \varphi_0)$$

初始条件: 
$$0 = A\cos\varphi_0 \rightarrow \varphi_0 = \pm \frac{\pi}{2}$$
  
 $v = -\omega A\sin\varphi_0 < 0 \rightarrow \varphi_0 = \frac{\pi}{2}$   $\therefore y_o = 0.01\cos(\pi t + \frac{\pi}{2})$ 

波动方程: 
$$y = 0.01\cos\left[\pi(t - \frac{x}{0.02})\right] + \frac{\pi}{2}$$

A点振动方程: 
$$y_A = 0.01\cos[\pi(t - \frac{0.01}{0.02}) + \frac{\pi}{2}] = 0.01\cos\pi t$$



$$\therefore y_o = 0.01\cos(\pi t + \frac{\pi}{2})$$