Séquence 04 - TP01 - Îlot 01

Lycée Dorian Renaud Costadoat Françoise Puig

Géométrie pour la mécanique

S04 - TP01 - I01 Référence

Compétences

entre solides indéformables

Description

Système Barrière Sympact

Objectif du TP:

Déterminer une loi d'entrée/sortie géométrique

MODELISER -

Paramétrer le système

Des données sur le système sont disponibles ici : Ressources système.

- **Question 1** Écrire les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} dans les bases respectives $B_0(\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$, $B_1(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ et $B_2(\overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$. On mesurera $\|\overrightarrow{AB}\|$ et $\|\overrightarrow{BC}\|$ directement sur le système et on prendra $\|\overrightarrow{AC}\| = l(t)$ variable.
- Question 2 Donner la relation qui existe entre ces trois vecteurs.
- **Question 3** Projeter cette relation dans la base $B_0(\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ afin d'obtenir deux équations scalaires. On fera apparaître les angles θ_1 et θ_2 .
- **Question 4** A l'aide de ces deux relations faire disparaître l(t) afin de trouver une relation entre θ_1 et θ_2 .
- **Question 5** Mettre cette relation sous la forme $\theta_1 = f(\theta_2)$.
- **Question 6** Mettre cette relation sous la forme $\theta_2 = f(\theta_1)$.

EXPERIMENTER

Vérifier la relation $\theta_1 = f(\theta_2)$.

Télécharger le fichier Modèle Solidworks.

- **Question 7** Ouvrir le fichier assemblage de la barrière et vérifier sont paramétrage. On pourra vérifier en déplaçant les pièces à la main que les contraintes ont été correctement mises en place.
- Question 8 Simuler le modèle simulink (version 2016a), vérifier les données affichées.
- **Question 9** Recopier la formule de la première partie dans le bloc fonction et comparer les résultats des deux modèles.

Utilisation de Matlab Simscape

La procédure suivante explique comment utiliser Matlab afin de simuler un modèle Simscape.

Ce modèle a été construit à partir des pièces, assemblages et contraintes d'un modèle Solidworks. Ce dernier n'est pourtant pas nécessaire pour le faire tourner.

Procédure:

- Dézipper l'archive à télécharger ici Modèle Simscape,
- Lancer Matlab 🍑 MATLAB R2016b
- Depuis Matlab, naviguer dans le dossier dézippé jusqu'au dossier contenant les fichiers « .slx » et « Simscape »,

<table-cell-rows>

→ 🔁 🛜 🌗 → P: → Mes do

Faire un clic-droit sur le dossier « Simscape » et cliquer sur « Add to Path »,

 Double-cliquer sur le fichier correspondant au TP et à la version de Matlab utilisée, il doit avoir une extension en « slx ».

Correction 1

Question 1:

$$\overrightarrow{AB} = a \cdot \overrightarrow{y_0}, \overrightarrow{AC} = l(t) \cdot \overrightarrow{x_1}$$
 et $\overrightarrow{BC} = b \cdot \overrightarrow{x_2}$, avec a=112mm et b=81mm.

Question 2:
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$
.

Question 3:

$$l(t) \cdot \cos\theta_1 = b \cdot \cos\theta_2 \tag{1}$$

$$l(t) \cdot sin\theta_1 = a + b \cdot sin\theta_2 \tag{2}$$

Question 4:

$$tan\theta_1 = \frac{a + b \cdot sin\theta_2}{b \cdot cos\theta_2} \tag{3}$$

Question 5:

$$\theta_1 = \arctan\left(\frac{a + b \cdot \sin\theta_2}{b \cdot \cos\theta_2}\right) \tag{4}$$

Question 6:

$$b \cdot \sin\theta_{1} \cdot \cos\theta_{2} = a \cdot \cos\theta_{1} + b \cdot \sin\theta_{2} \cdot \cos\theta_{1}$$

$$b \cdot (\sin\theta_{1} \cdot \cos\theta_{2} - \sin\theta_{2} \cdot \cos\theta_{1}) = a \cdot \cos\theta_{1}$$

$$b \cdot \sin(\theta_{1} - \theta_{2}) = a \cdot \cos\theta_{1}$$

$$\theta_{1} - \theta_{2} = \arcsin\left(\frac{a}{b} \cdot \cos\theta_{1}\right)$$

$$\theta_{2} = \theta_{1} - \arcsin\left(\frac{a}{b} \cdot \cos\theta_{1}\right)$$
(5)