Lecture #21: Complexity, Memoization

How Fast Is This (I)?

• For this program (L is a list and N <= len(L)):

```
for x in range(N):
    if L[x] < 0:
        c += 1</pre>
```

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)?
- How about here?

```
for x in range(N):
    if L[x] < 0:
        c += 1
        break</pre>
```

Last modified: Fri Mar 12 17:13:49 2021

CS61A: Lecture #21 1

Last modified: Fri Mar 12 17:13:49 2021

CS61A: Lecture #21 2

How Fast Is This (I)?

• For this program (L is a list and N <= len(L)):

```
for x in range(N): # Answer: \Theta(N) comparisons if L[x] < 0:

c += 1
```

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)?
- How about here?

```
for x in range(N):
    if L[x] < 0:
        c += 1
        break</pre>
```

How Fast Is This (I)?

• For this program (L is a list and N <= len(L)):

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)?
- How about here?

```
for x in range(N):
    if L[x] < 0:
        c += 1
        break</pre>
```

Last modified: Fri Mar 12 17:13:49 2021 CS61A: Lecture #21 3

Last modified: Fri Mar 12 17:13:49 2021

How Fast Is This (I)?

• For this program (L is a list and $N \leftarrow len(L)$):

```
\begin{array}{lll} \mbox{for x in range(N):} & \mbox{\# Answer: } \Theta(N) \mbox{ comparisons} \\ \mbox{if $L[x] < 0:$} & \mbox{\# Answer: } \Theta(N) \mbox{ additions} \\ \mbox{c += 1} & \end{array}
```

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)?
- How about here?

```
for x in range(N): # Answer: \Theta(N) comparisons if L[x] < 0: c += 1 break
```

Last modified: Fri Mar 12 17:13:49 2021

CS61A: Lecture #21 5

How Fast Is This (I)?

• For this program (L is a list and N <= len(L)):

```
\begin{array}{lll} \text{for x in range(N):} & \text{\# Answer: } \Theta(N) \text{ comparisons} \\ & \text{if } L[\mathbf{x}] < 0: & \text{\# Answer: } \Theta(N) \text{ additions} \\ & \text{c += 1} \end{array}
```

- What is the worst-case time, measured in number of comparisons?
- What is the worst-case time, measured in number of additions (+=)?
- How about here?

```
\begin{array}{lll} \text{for x in range(N):} & \text{\# Answer: } \Theta(N) \text{ comparisons} \\ & \text{if } L[x] < 0: & \text{\# Answer: } \Theta(1) \text{ additions} \\ & & \text{c += 1} \\ & & \text{break} \end{array}
```

Last modified: Fri Mar 12 17:13:49 2021

CS61A: Lecture #21 6

How Fast Is This (II)?

- Assume that execution of f takes constant time.
- What is the complexity of this program, measured by number of calls to f? (Simplest answer)

```
for x in range(2*N):
    f(x, x, x)
    for y in range(3*N):
        f(x, y, y)
        for z in range(4*N):
        f(x, y, z)
```

How Fast Is This (II)?

- Assume that execution of f takes constant time.
- What is the complexity of this program, measured by number of calls to f? (Simplest answer)

```
for x in range(2*N): # Answer: \Theta(N^3)

f(x, x, x)

for y in range(3*N):

f(x, y, y)

for z in range(4*N):

f(x, y, z)
```

Last modified: Fri Mar 12 17:13:49 2021 CS61A: Lecture #21 7

Last modified: Fri Mar 12 17:13:49 2021

How Fast Is This (II)?

- Assume that execution of f takes constant time.
- What is the complexity of this program, measured by number of calls to f? (Simplest answer)

```
for x in range(2*N): # Answer: \Theta(N^3)

f(x, x, x)

for y in range(3*N):

f(x, y, y)

for z in range(4*N):

f(x, y, z)
```

• Why not $\Theta(24N^3 + 6N^2 + 2N)$?

How Fast Is This (II)?

- Assume that execution of f takes constant time.
- What is the complexity of this program, measured by number of calls to f? (Simplest answer)

```
for x in range(2*N): # Answer: \Theta(N^3)

f(x, x, x)

for y in range(3*N):

f(x, y, y)

for z in range(4*N):

f(x, y, z)
```

• Why not $\Theta(24N^3+6N^2+2N)$? That's correct, but equivalent to the simpler answer of $\Theta(N^3)$.

Last modified: Fri Mar 12 17:13:49 2021

CS61A: Lecture #21 9

Last modified: Fri Mar 12 17:13:49 2021

CS61A: Lecture #21 10

How Fast Is This (III)?

 What is the complexity of this program, measured by number of calls to f?

```
for x in range(N):
    for y in range(x):
        f(x, y)
```

How Fast Is This (III)?

 What is the complexity of this program, measured by number of calls to f?

```
for x in range(N): # Answer \Theta(N^2)
for y in range(x):
f(x, y)
```

• The complexity is given by an arithmetic series:

$$0 + 1 + 2 + \dots + N - 1 = N(N - 1)/2 \in \Theta(N^2).$$

 \bullet Again, constant factors (1/2) and linear terms (N/2) are ignorable.

 Last modified: Fri Mar 12 17:13:49 2021

How Fast Is This (IV)?

- ullet What about this one, measured by number of calls to f? (Carefull This is tricky.)
- How about measured by number of comparisons (<)?

```
z = 0
for x in range(N):
    for y in range(N):
        while z < N:
        f(x, y, z)
        z += 1</pre>
```

Last modified: Fri Mar 12 17:13:49 2021 CS61A: Lecture #21 13

How Fast Is This (IV)?

- What about this one, measured by number of calls to f? (Careful! This is tricky.)
- How about measured by number of comparisons (<)?

```
z = 0
for x in range(N):
    for y in range(N):
    while z < N:
        f(x, y, z)
        z + 1
```

Last modified: Fri Mar 12 17:13:49 2021

CS61A: Lecture #21 14

CS61A: Lecture #21 16

How Fast Is This (IV)?

- ullet What about this one, measured by number of calls to f? (Carefull This is tricky.)
- How about measured by number of comparisons (<)?

```
 \begin{array}{lll} \textbf{z} = \textbf{0} \\ & \text{for x in range(N):} & \text{\# Answer } \Theta(N) \text{ calls to f.} \\ & \text{for y in range(N):} & \text{\# Answer } \Theta(N^2) \text{ comparisons.} \\ & & \text{while } \textbf{z} < \textbf{N:} \\ & & \text{f(x, y, z)} \\ & & & \textbf{z} += 1 \end{array}
```

• In practice, which measure (calls to f or comparisons) would matter?

How Fast Is This (IV)?

- What about this one, measured by number of calls to f? (Careful! This is tricky.)
- How about measured by number of comparisons (<)?

```
\begin{array}{lll} \mathbf{z} = \mathbf{0} \\ & \text{for x in range(N):} & \text{\# Answer } \Theta(N) \text{ calls to f.} \\ & \text{for y in range(N):} & \text{\# Answer } \Theta(N^2) \text{ comparisons.} \\ & & \text{while } \mathbf{z} < \mathbf{N:} \\ & & \text{f(x, y, z)} \\ & & & \mathbf{z} += \mathbf{1} \end{array}
```

- In practice, which measure (calls to f or comparisons) would matter?
- \bullet Depends on size of N , actual cost of f. For large enough N , comparisons will matter more.

New Subject: Avoiding Redundant Computation

• Consider again the classic Fibonacci recursion:

```
def fib(n):
    if n <= 1:
        return n
    else:
        return fib(n-1) + fib(n-2)</pre>
```

• This is a tree recursion with a serious speed problem.

• Redundant computations and therefore computing time grow exponentially.

CS61A: Lecture #21 17

Last modified: Fri Mar 12 17:13:49 2021

Avoiding Redundant Computation (II)

- The usual iterative version of fib does not have this problem because
 it saves the results of the recursive calls (in effect) and reuses
 them.
- Each computation of a number in the sequence happens exactly once, so the computation is linear in n (if we count additions as constant-time operations).

```
def fib(n):
    if n <= 1:
        return n
    a = 0
    b = 1
    for k in range(2, n+1):
        a, b = b, a+b
    return b</pre>
```

Last modified: Fri Mar 12 17:13:49 2021

CS61A: Lecture #21 18

Change Counting

• Consider the problem of determining the number of ways to give change for some amount of money:

- Here, we often revisit the same subproblem:
 - E.g., Consider making change for 87 cents.
 - When we choose to use one half-dollar piece, we have the same subproblem (change for 37 cents) as when we choose to use no half-dollars and two quarters.

Memoizing

- Extending the iterative Fibonacci idea, let's keep around a table ("memo table") of previously computed values.
- Consult the table before using the full computation.
- Example: count_change:

```
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    memo_table = {}
    def count_change(amount, coins):
        key = (amount, coins)
        if key not in memo_table:
            memo_table[key] = full_count_change(amount, coins)
        return memo_table[key]
    def full_count_change(amount, coins):
        # original recursive solution goes here verbatim
        # when it calls count_change, calls memoized version.
    return count_change(amount, coins)
```

Question: how could we test for infinite recursion?

Optimizing Memoization

- Used a dictionary to memoize count_change, which is highly general, but can be relatively slow.
- More often, we use arrays indexed by integers (lists in Python), but the idea is the same.
- For example, in the count_change program, we can index by amount and by the *number of coins* remaining in coins.

```
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    # memo_table[amt][k] contains the value computed for
    # count_change(amt, coins[k:])
    memo_table = [ [-1] * (len(coins)+1) for i in range(amount+1) ]
    def count_change(amount, coins):
        if amount < 0: return 0
        elif memo_table[amount][len(coins)] == -1:
            memo_table[amount][len(coins)]
            = full_count_change(amount, coins)
        return memo_table[amount][len(coins)]
    def full_count_change(amount, coins):
        # Full recursive version.
    return count_change(amount, coins)</pre>
```

CS61A: Lecture #21 21

Order of Calls

- Going one step further, we can analyze the order in which our program ends up filling in the table.
- So consider adding some tracing to our memoized count_change program (using an extension of the @trace1 decorator from Lecture #9.)

Last modified: Fri Mar 12 17:13:49 2021

CS61A: Lecture #21 22

CS61A: Lecture #21 24

Result of Tracing

• Consider count_change(57) (-> N means "returns N"):

Last modified: Fri Mar 12 17:13:49 2021

```
full_count_change(57, ()) -> 0  # Need shorter 'coins' arguments
      full_count_change(56, ()) -> 0 # first.
      full_count_change(1, ()) -> 0
      full_count_change(0, (1,)) -> 1 # For same coins, need smaller
      full_count_change(1, (1,)) -> 1 # amounts first.
      full\_count\_change(57, (1,)) \rightarrow 1
      full\_count\_change(2, (5, 1)) \rightarrow 1
      full\_count\_change(7, (5, 1)) \rightarrow 2
      full_count_change(57, (5, 1)) -> 12
      full_count_change(7, (10, 5, 1)) -> 2
      full_count_change(17, (10, 5, 1)) -> 6
      full_count_change(32, (10, 5, 1)) -> 16
      full_count_change(7, (25, 10, 5, 1)) -> 2
      full_count_change(32, (25, 10, 5, 1)) -> 18
      full_count_change(57, (25, 10, 5, 1)) -> 60
      full_count_change(7, (50, 25, 10, 5, 1)) -> 2
      full_count_change(57, (50, 25, 10, 5, 1)) -> 62
Last modified: Fri Mar 12 17:13:49 2021
                                                                CS61A: Lecture #21 23
```

Order of Calls (II)

- (New slide; not in lecture)
- We can see from the code that to compute the value of full_count_change(N,
 C). it is sufficient to have
 - The values of full_count_change(N, C[k:]) for $1 \leq k \leq \text{len}(C)$, and
 - The values of full_count_change(k, C) for k < N.
- And that tells us that, for example, we can compute all the values for $full_count_change(k, C)$ for C == (), then C == (1,), then C == (5, 1),
- And for each of these values of C, we can compute full_count_change(k, C) for all values of k in order.
- ...and at each point, we will already have computed all the recursive call values we need.

Last modified: Fri Mar 12 17:13:49 2021

Filling in the Memo Table

Amount	Coins Left						
	0	1	2	3	4	5	
0	1	1	1	1	1	1	Arrows show order of filling
1	0	1	1	1	1	1	3
2	0	1	1 /	1	1	1	
3	0	1	1	1	1	1	
4	0 /	1 /	1 /	1	1 /	1	
5	0	1	2	2	2	2	
000	- 1	- /	-	- /	- [
23	o,	1	5	9 9	9	9	
24	Ø	1	5 5	9	9 9	9	
25	O	/1	6	12	13	13	
26	0	/1	6	12	13	13	
000	1	1	1	1	1		
54	0	1	11	36	49	50	
55	0	/ 1	12	42	60	62	
56	0	1	12	42	60	62	
57	0	1	12	42	60	62	
Last modified: Fri Mar 12 17:13:49 2021						CS	61A: Lecture #21 25

Dynamic Programming

- Now rewrite count_change to make the order of calls explicit, so that we needn't check to see if a value is memoized.
- Technique is called dynamic programming (for some reason).
- We start with the base cases (0 coins) and work backwards.

```
def count_change(amount, coins = (50, 25, 10, 5, 1)):
    memo_table = [ [-1] * (len(coins)+1) for i in range(amount+1) ]
    def count_change(amount, coins):
        if amount < 0: return 0
        else: return memo_table[amount][len(coins)]
    def full_count_change(amount, coins): # How often called?
        ... # (calls count_change for recursive results)

for a in range(0, amount+1):
        memo_table[a][0] = full_count_change(a, ())
    for k in range(1, len(coins) + 1):
        for a in range(1, amount+1):
            memo_table[a][k] = full_count_change(a, coins[-k:])
    return count_change(amount, coins)</pre>
```

Last modified: Fri Mar 12 17:13:49 2021