CSC3001 Discrete Mathematics

Final Examination

May 12, 2023: 1:30pm - 4:00pm

Name:	Student ID:	

Answer ALL questions in the Answer Book.

1. (12 points) Show that the below graph is not bipartite.

Solution: Because there is an odd cycle 23654 the graph must not be bipartite.

2. (16 points) Let $A = \{(x, y, z) \in \mathbb{Z}^3 \mid x, y, z \ge 0, x + y + z = 9\}$. Let $B = \{(x, y, z) \in A \mid 3 \nmid x\}$. Find |A| and |B|.

Solution:
$$|A| = \binom{11}{2} = 55$$
. $|B| = |A| - |\{y, z \ge 0 \mid y + z \in \{0, 3, 6, 9\}\}| = 55 - (1 + 4 + 7 + 10) = 33$.

- 3. (16 points) Let G = (V, E) be a connected simple graph with at least two vertices. We denote the number of vertices as |V| and the number of edges as |E|.
 - (a) (8 points) Show that if $|E| \ge |V|$, then G has a cycle.
 - (b) (8 points) Show that if $|E| \ge |V| + 1$, then G has two cycles.

Solution:

Part (a) We prove it by contradiction. If G does not contain a cycle, then G is a tree. Then |E| = |V| - 1 < v. Contradiction.

Part (b) Because $|E| \ge |V| + 1 \ge |V|$, G has a cycle. Specify a cycle and remove an arbitrary edge from the cycle. We have $|E| = |V| \ge |V|$. Therefore there is another cycle. Hence G has two cycles.

- 4. (16 points) Let $n \in \mathbb{Z}^+$. n+1 distinct numbers are arbitrarily selected from the set $\{1, 2, \ldots, 2n\}$.
 - (a) (8 points) Prove that there are two selected numbers such that the greatest common divisor between them is 1.
 - (b) (8 points) Prove that there are two selected numbers such that one is divisible by the other.

Solution:

Part (a) Consider n pairs $(1,2), (3,4), (5,6), \ldots, (2n-1,2n)$. Since we selected n+1 numbers, at least one pair is selected fully. But gcd(k, k+1) = 1

Part (b) Any number between 1 and 2n has the form $(2k+1)2^m$, where $k=0,\ldots,n-1$. Hence at least for two selected numbers the value of k will be equal. It means some selected numbers are of the form $(2k+1)2^{m_1}$ and $(2k+1)2^{m_2}$, which are divisible one by another.

5. (12 points) Let $T_1 = 1$. For $k \in \mathbb{Z}^+$, let $T_{k+1} = \min\{2T_z + 2^{k-z+1} - 1 \mid 1 \le z \le k, z \in \mathbb{Z}^+\}$. Here min denotes the minimum element of the set.

Suppose that you are playing the Tower of Hanoi with n disks and 4 poles. Similar to the 3-pole case, in the starting configuration all disks are on pole 1 and the goal is to move all disks to pole 4. At any time a bigger disk cannot be placed on top of a smaller disk. Show that there is a way to achieve the target configuration with at most T_n moves.

Solution: We prove this by strong induction. The base case n=1 is immediate. Assume that we can complete z disks in T_z moves for $z \le k$. For k+1 disks, we can move z disks to pole 2 using all 4 poles with T_z moves, and then move the rest of the disks to pole 4 using 3 poles with $2^{k-z+1}-1$ moves, and then move the disks on pole 2 to pole 4 using T_z moves. Because we could choose z arbitrarily, we use at most $\min\{2T_z+2^{k-z+1}-1\mid 1\le z\le k, z\in\mathbb{Z}^+\}$ moves as we desired.

- 6. (12 points) Let k, n > 1 be integers and let f be a function $f : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., k\}$. Recall that a surjection is a function where all elements in the codomain can be mapped from some element.
 - (a) (6 points) How many different surjective functions f are there, for k=2 and k=3, respectively?
 - (b) (6 points) Let k be even. How many functions f satisfy the property $f(a) \equiv a \pmod{2}$ for all $a \in \{1, 2, ..., n\}$?

Solution:

Part (a) When k=2 there are 2^n functions in total. Only two of them are not surjective. One that has f(a)=1 for all a, and the other that has f(a)=2 for all a. Therefore the number of surjective functions is 2^n-2 . When k=3, by the Inclusion-Exclusion principle, we start with all 3^n functions, and subtract $3 \cdot 2^n$ functions whose range is $\{1,2\}$ or $\{1,3\}$ or $\{2,3\}$. Then add 3 functions whose range is $\{1\}$ or $\{2\}$ or $\{3\}$. The answer is then $3^n-3\cdot 2^n+3$.

Part (b) There are $(k/2)^n$ such functions. Indeed, every odd integer can be mapped to any of k/2 odd integers $1, 3, 5, \ldots, k-1$. Every even integer can be mapped to any of k/2 even integers $2, 4, \ldots, k$. Since there are k/2 choices for each of n elements, we get $(k/2)^n$ choices in total.

- 7. (16 points) Let G_1 be a simple graph with at least one vertex. For $k \in \mathbb{Z}^+$, define the recurrence relationship between G_{k+1} and G_k as below.
 - Denote G_k as $(V = \{v_1, \ldots, v_n\}, E)$. Then $G_{k+1} = (\{v_1, \ldots, v_n, u_1, \ldots, u_n, w\}, E_1 \cup E_2)$. Here E_1 includes $u_1 w, \ldots, u_n w$, E_2 includes edges $v_i v_j, v_i u_j, v_j u_i$ if and only if $v_i v_j \in E$ $(\forall v_i, v_j \in V)$. Note that edges are undirected.
 - (a) (6 points) Let $k \in \mathbb{Z}^+$. Show that G_k is triangle-free (i.e., the complete graph K_3 of 3 vertices is not a subgraph of G_k) if and only if G_{k+1} is triangle-free.
 - (b) (6 points) Recall that the chromatic number $\chi(G)$ of a graph G denotes the minimum number of colors needed to color G. Let $k \in \mathbb{Z}^+$. Show that $\chi(G_{k+1}) = \chi(G_k) + 1$.
 - (c) (4 points) Recall that $\omega(G)$ of a graph G denotes the size of the largest complete subgraph of G. Show that for an arbitrary $d \in \mathbb{Z}^+$, there is a simple graph G such that $\chi(G) \omega(G) \geq d$.

Solution:

Part (a) Because G_k is a subgraph of G_{k+1} , if G_{k+1} has no triangle, then G_k has no triangle.

Meanwhile, we investigate G_{k+1} when G_k has no triangle. Because there is no edge between u_i , u_j , a triangle cannot appear with two or more vertices in $\{u_1, \ldots, u_n\}$. As w is only connected to $\{u_1, \ldots, u_n\}$, a triangle cannot involve w. Then a triangle can only involve v_i, v_j, u_k for distinct i, j, k. But this is impossible as it requires the triangle v_i, v_j, v_k in G_k .

Part (b) Consider a coloring of G_{k+1} . If the subset $\{u_1, \ldots, u_n\}$ of vertices uses less than $\chi(G_k)$ colors, then one could copy the color of u_i to v_i , which obtains a less than $\chi(G_k)$ -coloring of G_k . Contradiction. Therefore any coloring of G_{k+1} requires at least $\chi(G_k)$ different colors on $\{u_1, \ldots, u_n\}$. Because w connects to all of them, $\chi(G_{k+1}) \geq \chi(G_k) + 1$.

Meanwhile, if we have a *j*-coloring of G_k , we may color G_{k+1} by using the same color of v_i and u_i , i = 1, ..., n, and an additional color for w. Therefore $\chi(G_{k+1}) \le \chi(G_k) + 1$. Hence $\chi(G_{k+1}) = \chi(G_k) + 1$.

Part (c) Let $G_1 = (\{v_1\}, \emptyset)$. Then by induction $\chi(G_k) = k$ but $\omega(G_k) = 2$. It amounts to letting k = d + 2.

Remark:

This is known as the Mycielskian graph, which was introduced in the lectures.