DIOFANTSKE APROKSIMACIJE I PRIMJENE

5. zadaća

- 1. Neka je (n,e)=(32311427,22100011) Bobov javni RSA ključ. Poznato je da tajni eksponent d zadovoljava nejednakost $d<\frac{1}{3}\sqrt[4]{n}$. Odredite d (Bobov tajni RSA ključ) i pomoću njega dešifrirajte šifrat y=843 koji je Alice poslala Bobu.
- 2. Alice je poslala istu poruku m nekolicini agenata. Eva je presrela šifrate c_1 , c_2 , c_3 za trojicu agenata čiji su javni ključevi n_1 , n_2 i n_3 . Poznato je da Alice i agenti koriste RSA kriptosustav s javnim eksponentom e=3. Za zadane

$$n_1 = 407,$$
 $c_1 = 356,$
 $n_2 = 533,$ $c_2 = 281,$
 $n_3 = 551,$ $c_3 = 468.$

pokažite kako će Eva otkriti poruku m (bez poznavanja faktorizacije modula n_1, n_2, n_3).

- 3. Primjenite Coppersmithovu metodu na polinom $f(x) = x^2 + ax + b$ uz m = 1. Za dovoljno veliki N, metoda nalazi rješenje x_0 kongruencije $f(x_0) \equiv 0 \pmod{N}$ ako je $|x_0| \leq N^{\delta}$. Odredite eksponent δ .
- 4. Neka je $P(x) = a_d x^d + \cdots + a_0$ minimalni polinom algebarskog broja α , te neka su $\alpha^{(1)} = \alpha$, $\alpha^{(2)}$, ..., $\alpha^{(d)}$ korijeni od P. Dokažite da se tada za konstantu $c(\alpha)$ u Liouvilleovom teoremu može uzeti

$$c(\alpha) = a_d^{-1} \prod_{j=2}^d (1 + |\alpha| + |\alpha^{(j)}|)^{-1}.$$

5. Dokažite da tvrdnja Rothovog teorema vrijedi za sve $\alpha \in \mathbb{C} \setminus \mathbb{R}$.

Andrej Dujella