Respuesta en el tiempo

Modelado de sistemas – 2020

Ing. Camilo Sanabria

Pole and zero

Time response

$$y(t) = \mathcal{L}^{-1}[G(s)U(s)]$$

Tipo de Señal	Definición en el dominio del tiempo	Transformada de Laplace
Impulso $\delta(t)$ $\delta(t)$ t	$\delta(t) = \begin{cases} \alpha \forall t = 0 \\ 0 \forall \text{otrocaso} \end{cases}$	1
Escalón (Paso)	$u(t) = \begin{cases} 1 \forall t \ge 0 \\ 0 \forall \text{otrocaso} \end{cases}$	$\frac{1}{s}$
Rampa	$r(t) = \begin{cases} t \forall t \ge 0 \\ 0 \forall \text{otrocaso} \end{cases}$	$\frac{1}{s^2}$
Parábola a (t)	$a(t) = \begin{cases} \frac{t^2}{2} \forall t \ge 0\\ 0 \forall otrocaso \end{cases}$	$\frac{1}{s^3}$

First order systems

$$\frac{C(s)}{R(s)} = \frac{1}{Ts+1}$$

Source: Modern control engineering–Katsuhiko Ogata. 5ed

Source: Control systems Engineering – Norman Nise. 6ed

Step response for second-order system damping cases

Source: Control systems Engineering – Norman Nise. 6ed

Second order response

Reaction curve

Reaction curve

Reaction curve

Método de dos puntos (Smith)

$$\tau = \frac{3}{2}(t_2 - t_1) t_0 = t_2 - \tau$$

$$G(s) = \frac{Ke^{-t_0 s}}{\tau s + 1}$$

$$e^{-t_0 s} = \frac{1 - \frac{t_0}{2} s}{1 + \frac{t_0}{2} s}$$