Übungsblatt 11 zur Homologischen Algebra I

Aufgabe 1. Basiswissen zu Gruppoiden

Ein *Gruppoid* ist eine Kategorie, in der alle Morphismen invertierbar sind. Man stellt sich einen Gruppoid wie eine Gruppe vor, mit der Einschränkung, dass nicht je zwei Elemente miteinander verknüpfbar sind.

- a) Erkläre, wie man aus einer Gruppe G einen Gruppoid BG mit genau einem Objekt machen kann.
- b) Verstehe, inwieweit Gruppoide mit genau einem Objekt dasselbe wie Gruppen sind.
- c) Seien x und y zwei isomorphe Objekte eines Gruppoids X. Welche Beziehung besteht zwischen den Automorphismengruppen $\operatorname{Aut}_X(x)$ und $\operatorname{Aut}_X(y)$?
- d) Sei G eine Gruppe. Erläutere, inwieweit eine (Links-)G-Menge dasselbe ist wie ein Funktor $BG \to \text{Set}$.
- e) Finde natürliche Beispiele für Gruppoide mit mehr als einem Objekt.

Eine mengenwertige Darstellung eines Gruppoids X ist ein Funktor $X \to \text{Set.}$ Die Kardinalität eines Gruppoids X ist die reelle Zahl $|X| = \sum_{[x]} \frac{1}{|\operatorname{Aut}_X(x)|}$ (im Falle der Konvergenz). Die Summe geht über alle Isomorphieklassen von Objekten von X.

- f) Was ist die Kardinalität des Gruppoids der endlichen Mengen und Bijektionen?
- g) Inwieweit verallgemeinert die Gruppoidkardinalität die Kardinalität von Mengen?

Aufgabe 2. Absolute Galoisgruppe ohne Abschlusswahl

Die absolute Galoisgruppe eines Körpers k ist die Galoisgruppe eines separablen Abschlusses k^{sep} über k, also die Gruppe der Isomorphismen $k^{\text{sep}} \to k^{\text{sep}}$ von k-Algebren. Allerdings ist der separable Abschluss nur bis auf uneindeutige Isomorphie bestimmt. Das führt dazu, dass die absolute Galoisgruppe nur bis auf Konjugation wohldefiniert ist.

- a) Definiere auf geeignete Art und Weise den $absoluten\ Galoisgruppoid\ eines\ K\"{o}rpers\ k.$ Dabei sollen keine Wahlen getroffen werden.
- b) Definiere einen Funktor von der dualen Kategorie der k-Algebren in die Kategorie der mengenwertigen Darstellungen des absoluten Galoisgruppoids von k.

Aufgabe 3. Ideale in Banachalgebren

Sei $\mathfrak{a} \subseteq A$ ein Ideal in einer Banachalgebra A. Zeige, dass der topologische Abschluss von \mathfrak{a} wieder ein Ideal ist. Folgere, dass maximale Ideale in Banachalgebren stets abgeschlossen sind

Bemerkung: Die Äquivalenz zwischen C*-Algebren und kompakten Hausdorffräumen benötigt das Auswahlaxiom. Eine Verfeinerung dieser Äquivalenz gilt aber auch konstruktiv: C*-Algebren sind äquivalent zu vollständig regulären Örtlichkeiten. Dieses Resultat findet Anwendung in der Theorie der Bohr-Topoi zu quantenmechanischen Systemen.

Aufgabe 4. Produkte in Kategorien

Ein Möchtegernprodukt zweier Objekte X und Y einer Kategorie \mathcal{C} ist ein Objekt P zusammen mit Morphismen $\pi_X: P \to X, \ \pi_Y: P \to Y$. Ein Produkt von X und Y ist ein Möchtegernprodukt, sodass für jedes Möchtegernprodukt $X \leftarrow \widetilde{P} \to Y$ genau ein Morphismus $\widetilde{P} \to P$ existiert, der die beiden offensichtlichen Dreiecke kommutieren lässt.

a) Beweise, dass ein Produkt P von X und Y den Funktor $\mathcal{C}^{\mathrm{op}} \to \mathrm{Set}$ mit

$$U \longmapsto \operatorname{Hom}_{\mathcal{C}}(U,X) \times \operatorname{Hom}_{\mathcal{C}}(U,Y)$$

darstellt. (Die Umkehrung stimmt ebenfalls und wurde in der Vorlesung bewiesen.)

b) Überlege, wie man das Konzept eines Produkts von drei Objekten definieren sollte. Zeige, dass wenn ein Produkt $X \times Y$ von Objekten X und Y in einer Kategorie \mathcal{C} existiert, und wenn ferner ein Produkt $(X \times Y) \times Z$ mit einem dritten Objekt Z existiert, dieses in kanonischerweise zu einem Produkt von X, Y, Z wird.

Aufgabe 5. Überlagerungen und Darstellungen des Fundamentalgruppoids

Der Fundamentalgruppoid $\Pi_1(X)$ eines topologischen Raums X hat als Objekte die Punkte von X und als Morphismen von x zu y die Homotopieklassen von Wegen von x nach y (wobei Homotopien die Endpunkte bewahren müssen). Als 1-Kategorie ist er eine Approximation des Fundamental-2-Gruppoids von X, welcher wiederum eine Approximation des Fundamental- ∞ -Gruppoids ist.

- a) Sei $x_0 \in X$. Mache dir klar, dass $\operatorname{End}_{\Pi_1(X)}(x_0) \cong \pi_1(X, x_0)$ als Gruppen.
- b) Sei $\pi: Y \to X$ eine Überlagerung. Dann erhält man eine mengenwertige Darstellung von $\Pi_1(X)$, das heißt einen Funktor $\Pi_1(X) \to \text{Set.}$ Auf Objektniveau ist dieser durch die Setzung $x \mapsto \pi^{-1}[\{x\}]$ gegeben.

Erkläre, wie dieser auf Morphismenniveau spezifiert werden soll. Weise insbesondere die Wohldefiniertheit deiner Setzung nach.

Tipp: Es gibt ein Lemma über die eindeutige Liftbarkeit von Wegen.

Wenn X lokal wegweise zusammenhängend und semi-lokal einfach zusammenhängend ist, ist die Kategorie der Überlagerungen von X äquivalent zur Kategorie der mengenwertigen Darstellungen von $\Pi_1(X)$. Diese Kategorienäquivalenz verfeinert die in der Vorlesung angesprochene Äquivalenz zwischen Überlagerungen und $\pi_1(X, x_0)$ -Mengen, die eine Basispunktwahl erfordert und nur funktioniert, wenn X wegweise zusammenhängend ist.

c) Verifiziere so viele Details dieser Äquivalenz oder der Äquivalenz der Vorlesung, wie du möchtest. Interessant ist insbesondere folgender Aspekt:

Sei \widetilde{X} die universelle Überlagerung von X bezüglich eines Basispunkts x_0 . Die Punkte von \widetilde{X} sind Homotopieklassen von Wegen, deren Anfangspunkt x_0 und deren Endpunkt beliebig ist. (Die Homotopien müssen Anfangs- und Endpunkt bewahren.) Topologisiert wird \widetilde{X} als Quotientenraum eines Unterraums des Raums der Abbildungen $[0,1] \to X$; dieser trägt die Kompakt-Offen-Topologie. Es gibt eine kanonische stetige Abbildung $\pi: \widetilde{X} \to X$, die der Äquivalenzklasse eines Wegs ihren Endpunkt zuordnet.

Sei dann ein beliebiger bei x_0 beginnender Weg γ in X und ein Urbild z von x_0 unter π gegeben. Dann gibt es einen Lift von γ auf \widetilde{X} , das heißt einen Weg $\widetilde{\gamma}$ in \widetilde{X} mit $\widetilde{\gamma}(0) = z$ und $\pi \circ \widetilde{\gamma} = \gamma$.

Hinweis: Mit Notation aus Homotopietyptheorie macht der Beweis mehr Spaß.

d) Sei konkret $X = \mathbb{C} \setminus \{0\}$ und $Y \to X$ der Totalraum der Garbe

$$U \subseteq X \longmapsto \{y \in \Gamma(U, \mathcal{O}_X) \mid y'(z) = \frac{1}{2z}y(z) \text{ für alle } z \in U\}.$$

Da diese Garbe lokal konstant ist, ist $Y \to X$ eine Überlagerung und induziert damit eine Darstellung von $\Pi_1(X)$.

Zeige: Die Wirkung dieser Darstellung auf einer Schleife in X, die sich genau einmal um den Ursprung windet, ist die Abbildung $[y] \mapsto [-y]$.

Aufgabe 6. Pontrjagin-Dualität

Die duale Gruppe G^{\vee} einer lokal kompakten topologischen abelschen Gruppe G ist die Menge aller Charaktere von G, also die Menge aller stetigen Gruppenhomomorphismen $G \to S^1$, versehen mit der punktweisen Gruppenstruktur und der Topologie gleichmäßiger Konvergenz auf Kompakta. Dabei ist S^1 die Menge der komplexen Zahlen mit Betrag 1, versehen mit der Multiplikation als Gruppenstruktur und der Teilraumtopologie von \mathbb{C} .

- a) Zeige: $\mathbb{Z}^{\vee} \cong S^1$.
- b) Zeige: $\mathbb{R}^{\vee} \cong \mathbb{R}$.

Zu lokal kompakten abelschen Gruppen existiert eine gute Theorie über Fouriertransformationen. Ist $f: A \to \mathbb{C}$ eine komplexwertige Funktion genügender Regularität auf einer solchen Gruppe A, so ist die Fouriertransformierte $\hat{f}: A^{\vee} \to \mathbb{C}$ die Funktion mit

$$\hat{f}(\chi) = \int_A f(x) \overline{\chi(x)} \, d\mu(x).$$

Die Integration findet bezüglich eines $Haar-Ma\beta es$ auf A statt.

c) Zeige, dass die so definierte Fouriertransformation im Fall $A=\mathbb{R}$ mit der üblichen Fouriertransformation übereinstimmt. Verwende als Haar-Maß das gewöhnliche Lebesgue-Maß.