Audio & translators -> RNN or Custom Audio is considered Unstructured data

As Data and NN size increases, time to train also increases

As data and computation capacity increases, NN becomes more feasible

Binary Classification

Where x is a n-dimensional feature vector and y can be 0 or 1 m training examples: $\{(\chi^{(\prime)}, \chi^{(\prime)}) ... (\chi^{(m)}, \chi^{(m)})\}$ $m = m_{train}$ m_test = #test examples

$$X = \begin{bmatrix} x^{(1)} x^{(2)} & \dots & x^{(m)} \\ 1 & 1 & \dots & 1 \end{bmatrix}$$

$$X \in \mathbb{R}^{n \times m} \quad X \cdot \text{shape} = (n, m) \quad Y \in \mathbb{R}^{1 \times m}$$

$$X \cdot \text{shape} = (1, m) \quad Y \cdot \text{shape} = (1, m)$$

Logistic Regression

probability that y is 1 given x

XER Parameters:
$$v \in \mathbb{R}^n$$
, $b \in \mathbb{R}$

Output $\hat{y} = \sigma(v \times + b)$ $\sigma(z) = \frac{1}{1 + e^{-z}}$

If z large regardine #

 $\sigma(z) = \frac{1}{1 + e^{-z}} \approx 1$

Logistic Regression cost function

Lose (error) Function: $\chi(\hat{q}, y) = \frac{1}{2}(\hat{q} - y)^2$

If
$$y=1: \mathcal{L}(\hat{g},y)=-\log \hat{g} \leftarrow \text{cont log } \hat{g} \mid \text{ange}$$

If
$$y=0$$
: $\lambda(\hat{y},y)=-\log(1-\hat{y})$ that \hat{y} large If $y=0$: $\lambda(\hat{y},y)=-\log(1-\hat{y})$ that \hat{y} large and \hat{y} small cost function: $\lambda(\hat{y},y)=-\log(1-\hat{y})$ or $\lambda(\hat{y},y)=-\log(1-\hat{y})$

Cost Revetion: J(w,b) = 1 & 1 (\hat{g}(i)) y(i)

$$= -\frac{1}{2} \left[\int_{0}^{\infty} |\log \hat{y}^{(i)}| \log \hat{y}^{(i)} + (1 - y^{(i)}) |\log (1 - \hat{y}^{(i)}) \right]$$

$$\hat{\mathbf{J}} = \sigma(\mathbf{w}^{\mathsf{T}} \mathbf{x} + \mathbf{b}), \ \sigma(\mathbf{z}) = \frac{1}{1 + \mathbf{c}^{\mathsf{T}} \mathbf{z}}$$

$$\hat{g} = \sigma(\omega^{T}x + b), \sigma(z) = \frac{1}{1 + c^{-2}}$$

$$\frac{1}{J(\omega, b)} = \frac{1}{m} \sum_{i=1}^{m} J(\hat{g}^{(i)}, y^{(i)}) = \frac{1}{m} \sum_{i=1}^{m} y^{(i)} |ag(\hat{g}^{(i)}) + (1 - y^{(i)})|ag(1 - \hat{g}^{(i)})$$

Want to find w,b that minimize J(w,b)