Condition Numbers for the Cube.

I: Univariate Polynomials and Hypersurfaces

Josué TONELLI-CUETO (Inria Paris & IMJ-PRG) together with Elias TSIGARIDAS (Inria Paris & IMJ-PRG)

June 30, 2020

This presentation is about the accepted paper

Condition Numbers for the Cube.

I: Univariate Polynomials and Hypersurfaces
authored by

- · Elias Tsigaridas (Inria Paris & IMJ-PRG), and
- · Josué Tonelli-Cueto (Inria Paris & IMJ-PRG)

The authors were partially supported by

- · ANR JCJC GALOP (ANR-17-CE40-0009),
- · the PGMO grant ALMA, and
- · the PHC GRAPE.

Complexity of numerical algorithms

Numerical algorithms

What do characterize numerical algorithms?

- · Inexact input data
- · Approximate operations with numbers

Which problems arise when working with numerical algorithms?

- · Behaviour is not uniform
- · Some inputs (ill-posed) are intractable

Why do we want numerical algorithms?

- · More stable, i.e., robust with respect errors
- · They can be faster in practice

Complexity: Condition numbers I

ALL INPUTS ARE EQUAL BUT SOME INPUTS ARE MORE EQUAL THAN OTHERS

Condition number

- · Measure of the numerical sensitivity
 - · The bigger the worse!
 - · It depends on the metric!
- · Controls the complexity. This is what happens in:
 - Linear algebra
 - · Linear programming and optimization
 - Algebraic geometry

Complexity: Condition numbers II

Details in the Book!

...and some other papers!

Uniform complexity of numerical algorithms I

Worst-case complexity analysis:

What is the worst running time?

Average complexity analysis:

What is the expectation of the running time on a random input?

Smoothed complexity analysis: (Spielman, Teng; 2002)

What is the worst running time after perturbing the input with a random perturbation (with weight σ)?

Smoothed lies between worst-case and average complexity

- $\sigma \rightarrow$ 0: We recover worst-case complexity
- $\sigma \to \infty$: We recover average analysis

Uniform complexity of numerical algorithms II

Worst-case complexity analysis:

Infinite for numerical algorithms!

Average complexity analysis: (Goldstein & von Neumann, Demmel, Smale)

It allows to derive complexity estimates that do not depend on the condition number

Smoothed complexity analysis:

Explains the success of numerical algorithms in practice

The long-term goal

Better algorithms in real numerical algebraic geometry!

Algorithms are faster and simpler on the cube, but geometry is easier on the sphere!

Example:

Covering the cube efficiently is easy, but covering the sphere is not so easy.

Cubes are better for subdivisions!

Geometry on the sphere
$$=$$
 Euclidean norm $||x|| := \sqrt{\sum_i |x_i|^2}$
Geometry on the cube $=$ ∞ -norm $||x||_{\infty} := \max_i |x_i|$

Goal:

Geometry on the sphere
$$\rightarrow$$
 Geometry on the cube Euclidean norm \rightarrow ∞ -norm

Warning: The ∞ -norm does not come from an inner product!

Hopes:

- · Better complexity estimates
- Faster algorithms
- Better understanding of subdivision methods

Antecedent exploring other norms: (Cucker, Ergür, T.C.; SIAM AG'19)

Our local achievement

- · Condition theory for hypersurfaces in the cube
- · Gaussian polynomials
- Polynomials with restricted support (up to assumptions)

We showcase our results with:

- Separation bounds for roots of univariate polynomials in (0,1)
- · Plantinga-Vegter algorithm

Let's see some details!

Polynomial inequalities

and condition

Some notation

 $\mathcal{P}_{n,d}$: Polynomials of degree $\leq d$ in the variables X_1,\ldots,X_n

 B_n : Euclidean ball in \mathbb{R}^n

 I^n : Unit ∞ -ball ($[-1,1]^n$) in \mathbb{R}^n

$$f = \sum_{\alpha} f_{\alpha} X^{\alpha} \in \mathcal{P}_{n,d}$$
, $x \in \mathbb{R}^n$

 $\|f\|_W$: Weyl norm, given by $\sqrt{\sum_{\alpha} \binom{d}{\alpha, d-|\alpha|}^{-1/2} f_{\alpha}}$

 $||f||_1$: 1-norm, given by $\sum_{\alpha} |f_{\alpha}|$

f(x): Evaluation of f at x

 ∇f : Formal gradient of f, element of $\mathcal{P}^n_{n,d-1}$

 $\nabla_x f$: Gradient vector of f at x

Idea: Controlling size of evaluation

Proposition

Let $\dot{f} \in \mathcal{P}_{n,d}$ and $x \in B_n$. Then $|f(x)| \le ||f||_W ||(1,x)||^d$.

Proof.

$$|f(x)| = \left| \left\langle \left(\begin{pmatrix} d \\ \alpha, d - |\alpha| \end{pmatrix}^{-1/2} f_{\alpha} \right), \left(\begin{pmatrix} d \\ \alpha, d - |\alpha| \end{pmatrix}^{1/2} x_{\alpha} \right) \right\rangle \right|$$

$$\leq \left\| \left(\begin{pmatrix} d \\ \alpha, d - |\alpha| \end{pmatrix}^{-1/2} f_{\alpha} \right) \right\| \left\| \left(\begin{pmatrix} d \\ \alpha, d - |\alpha| \end{pmatrix}^{1/2} x_{\alpha} \right) \right\|$$

$$= \|f\|_{W} \sqrt{\sum_{\alpha} \begin{pmatrix} d \\ \alpha, d - |\alpha| \end{pmatrix}} x^{2\alpha}$$

$$= \|f\|_{W} \sqrt{(1 + \sum_{i} x_{i}^{2})^{d}}$$

$$= \|f\|_{W} \|(1, x)\|^{d}$$

1

Idea: Controlling size of evaluation

Proposition

Let $\dot{f} \in \mathcal{P}_{n,d}$, $x \in B_{\mathbf{q},n}$ and $p,q \ge 1$ such that 1/p + 1/q = 1. Then $|f(x)| \le ||f||_{W,p} ||(1,x)||_{\mathbf{q}}^d$.

Proof.

$$|f(x)| = \left| \left\langle \left(\begin{pmatrix} d \\ \alpha, d - |\alpha| \end{pmatrix}^{1/p - 1} f_{\alpha} \right), \left(\begin{pmatrix} d \\ \alpha, d - |\alpha| \end{pmatrix}^{1/q} x_{\alpha} \right) \right\rangle \right|$$

$$\leq \left\| \left(\begin{pmatrix} d \\ \alpha, d - |\alpha| \end{pmatrix}^{1/p - 1} f_{\alpha} \right) \right\|_{p} \left\| \left(\begin{pmatrix} d \\ \alpha, d - |\alpha| \end{pmatrix}^{1/q} x_{\alpha} \right) \right\|_{q}$$

$$= \|f\|_{W,p} \sqrt[q]{\sum_{\alpha} \begin{pmatrix} d \\ \alpha, d - |\alpha| \end{pmatrix}} x^{q\alpha}$$

$$= \|f\|_{W,p} \sqrt[q]{(1 + \sum_{i} x_{i}^{q})^{d}}$$

$$= \|f\|_{W,p} \|(1, x)\|_{q}^{d}$$

13

Idea: Controlling size of evaluation

Taking p = 1 and $q = \infty$...

Proposition

Let $f \in \mathcal{P}_{n,d}$, $x \in I^n$. Then $|f(x)| \leq ||f||_1$.

This, by duality, justifies our use of the 1-norm for polynomials when we use the ∞ -norm for points.

In a similar way...

$$f \in \mathcal{P}_{n,d}$$
, $x \in I^n$, $v \in \mathbb{R}^n$

· Control of the derivative I:

$$\|\langle \nabla f, v \rangle\|_1 \le d\|f\|_1 \|v\|_{\infty}$$

· Control of the derivative II:

$$\|\nabla_x f\|_1 \le d\|f\|_1$$

 \cdot Lipschitz properties for f and its derivatives

Local condition number

Definition (T.C., Tsigaridas; ISSAC'20)

Let $f \in \mathcal{P}_{n,d}$ and $x \in I^n$, the local condition number of f at x is the quantity

$$C(f,x) := \frac{\|f\|_1}{\max\{|f(x)|, \frac{1}{d}\|\nabla_x f\|_1\}}.$$

Important observation: $C(f, x) = \infty$ iff x is a singular zero of f

Properties of the local condition number

- Regularity inequality either $|f(x)|/\|f\|_1 \ge 1/C(f,x)$ or $\|\nabla_x f\|_1/(d\|f\|_1) \ge 1/C(f,x)$.
- 1st Lipschitz property

$$f \mapsto ||f||_1 / C(f, x)$$
 is 1-Lipschitz

· 2nd Lipschitz property

$$I^n \ni x \mapsto 1/C(f,x)$$
 is d-Lipschitz

Condition Number Theorem

$$||f||_1/\mathrm{dist}_1(f,\Sigma_x) \le C(f,x) \le 2d ||f||_1/\mathrm{dist}_1(f,\Sigma_x)$$

where $\Sigma_x := \{g \in \mathcal{P}_{n,d} \mid x \text{ is a singular zero of } f\}$

• Higher Derivative Estimate. If $C(f,x)|f(x)|/||f||_1 < 1$, then

$$\gamma(f,x) \leq \frac{1}{2}(d-1)\sqrt{n} C(f,x).$$

where $\gamma(f, x)$ is Smale's γ

All we need for complexity analyses!

Application 1: Separation of roots

Separation of roots

Recall...

$$\Delta_{\alpha}(f) := \operatorname{dist}(\alpha, f^{-1}(0) \setminus \{\alpha\})$$

Theorem (T.C., Tsigaridas; ISSAC'20) Let $f \in \mathcal{P}_{1,d}$. Then, for every complex $\alpha \in f^{-1}(0)$ such that $\operatorname{dist}(\alpha, l) \leq 1/(3(d-1)C(f))$,

$$\Delta_{\alpha}(f) \geq \frac{1}{16(d-1) C(f)}$$

where

$$C(f) := \sup_{x \in I} C(f, x).$$

I.e., the condition number controls the separation of the roots

Probabilistic results

Randomness model I: Two properties

(SG) We call a random variable $\mathfrak x$ subgaussian, if there exist a K>0 such that for all $t\geq K$,

$$\mathbb{P}(|\mathfrak{x}| > t) \le 2\exp(-t^2/K^2).$$

The smallest such K is the subgaussian constant of \mathfrak{x} .

(AC) A random variable $\mathfrak x$ has the anti-concentration property, if there exists a $\rho > 0$, such that for all $\varepsilon > 0$,

$$\max\{\mathbb{P}\left(|\mathfrak{x}-u|\leq\varepsilon\right)\mid u\in\mathbb{R}\}\leq2\rho\varepsilon.$$

The smallest such ρ is the anti-concentration constant of \mathfrak{x} .

Randomness model II: Zintzo random polynomials I

Definition

Let $M \subseteq \mathbb{N}^n$ be a finite set such that $0, e_1, \dots, e_n \in M$. A zintzo random polynomial supported on M is a random polynomial

$$\mathfrak{f} = \sum_{\alpha \in M} \mathfrak{f}_{\alpha} X^{\alpha} \in \mathcal{P}_{n,d}$$

such that the coefficients \mathfrak{f}_{α} are independent subgaussian random variables with the anti-concentration property.

Note: 'zintzo', from Basque, means honest, upright, righteous.

Observation: No scaling in the coefficients, as it happens with dobro random polynomials (Cucker, Ergür, TC; ISSAC'19)

Randomness model II: Zintzo random polynomials II

For \mathfrak{f} a zintzo random polynomial, we define:

1. the subgaussian constant of f which is given by

$$K_{\mathfrak{f}} := \sum_{\alpha \in M} K_{\alpha}, \tag{5.1}$$

where K_{α} is the subgaussian constant of \mathfrak{f}_{α} , and

2. the anti-concentration constants of \mathfrak{f} which is given by

$$\rho_{\mathfrak{f}} := \sqrt[n+1]{\rho_0 \rho_{e_1} \cdots \rho_{e_n}}, \tag{5.2}$$

where ρ_0 is the anti-concentration constant of \mathfrak{f}_0 and for each i, ρ_{e_i} is the anti-concentration constant of \mathfrak{f}_{e_i} .

 $K_{\rm f}$ and $\rho_{\rm f}$ will control the complexity estimates

Randomness model II: Zintzo random polynomials III

Let $M \subseteq \mathbb{N}^n$ be such that it contains $0, e_1, \dots, e_n$. These are two important cases of zintzo random polynomials:

- G A Gaussian polynomial supported on M is a zintzo random polynomial $\mathfrak f$ supported on M, the coefficients of which are i.i.d. Gaussian random variables. In this case, $\rho_{\mathfrak f}=1/\sqrt{2\pi}$ and $K_{\mathfrak f}\leq |M|$.
- U A uniform random polynomial supported on M is a zintzo random polynomial $\mathfrak f$ supported on M, the coefficients of which are i.i.d. uniform random variables on [-1,1]. In this case, $\rho_{\mathfrak f}=1/2$ and $K_{\mathfrak f}\leq |M|$.

Randomness model III: Smoothed case

Proposition

Let $\mathfrak f$ be a zintzo random polynomial supported on $M, f \in \mathcal P_{n,d}$ a polynomial supported on M, and $\sigma > 0$. Then,

$$\mathfrak{f}_{\sigma} := f + \sigma ||f||_1 \mathfrak{f}$$

is a zintzo random polynomial supported on M such that

$$K_{\mathfrak{f}_{\sigma}} \leq ||f||_1 (1 + \sigma K_{\mathfrak{f}}) \text{ and } \rho_{\mathfrak{f}_{\sigma}} \leq \rho_{\mathfrak{f}}/(\sigma ||f||_1).$$

In particular,

$$K_{\mathfrak{f}_{\sigma}}\rho_{\mathfrak{f}_{\sigma}}=(K_{\mathfrak{f}}+1/\sigma)\rho_{\mathfrak{f}}.$$

I.e., the smoothed case is included in our average case!

Probabilistic bound

Theorem (T.C., Tsigaridas; ISSAC'20)

Let $\mathfrak{f} \in \mathcal{P}_{n,d}$ a zintzo random polynomial supported on M. Then for all $t \geq e$,

$$\mathbb{P}(C(\mathfrak{f},x)\geq t)\leq \sqrt{n}d^n|M|\left(8K_{\mathfrak{f}}\rho_{\mathfrak{f}}\right)^{n+1}\frac{\ln^{\frac{n+1}{2}}t}{t^{n+1}}.$$

Corollary (T.C., Tsigaridas; ISSAC'20)

Let $\mathfrak{f}\in\mathcal{P}_{n,d}$ be a zintzo random polynomial supported on M. Then, for all t>2e,

$$\mathbb{P}(C(\mathfrak{f}) \geq t) \leq \frac{1}{4} \sqrt{n} d^{2n} |M| \left(64 K_{\mathfrak{f}} \rho_{\mathfrak{f}}\right)^{n+1} \frac{\ln^{\frac{n+1}{2}} t}{t}.$$

Application 2:

Plantinga-Vegter algorithm

Setting

What do we have?

- An implicit curve C inside $[-1,1]^2$ given by a C^1 function $f:[-1,1]^2 \to \mathbb{R}$
- Interval approximations $\Box f$ of f and $\Box \nabla f$ of ∇f

What do we want?

• Piecewise-linear approximation L of C in $[-1,1]^2$ such that $([-1,1]^2,C)$ and $([-1,1]^2,L)$ are isotopic

Any assumptions?

- · C smooth
- C Intersects the boundary of $[-1, 1]^2$ transversely

Plantinga-Vegter algorithm for curves I

Algorithm: PV Algorithm for curves (Plantinga, Vegter; 2004)

Input: $f: \mathbb{R}^2 \to \mathbb{R}$

with interval approximations $\Box[f]$ and $\langle \Box[\nabla f], \Box[\nabla f] \rangle$

SUBDIVISION:

Starting with the trivial subdivision $S := \{[-1, 1]^n\}$, repeatedly subdivide each $J \in S$ into 4 squares until for all $J \in S$,

$$0 \notin \Box f(J)$$
 or $0 \notin \langle \Box \nabla f(J), \Box \nabla f(J) \rangle$

CONSTRUCTION:

Construct piecewise-linear curve L joining the midpoints of "small" edges of each $J \in S$ with oposite f-signs at their vertices

Output: Piecewise-linear approximation L of $C = f^{-1}(0) \cap [-a, a]^2$ isotopic to it

Plantinga-Vegter algorithm in higher dimensions

- Plantinga-Vegter algorithm can be generalized to produce isotopic approximations of surfaces (Plantinga, Vegter; 2004) This is really why is called Plantinga-Vegter! Very efficient in practice
- 2. The subdivision method can be generalized to higher dimensions (Burr, Gao, Tsigaridas; ISSAC2017)

We will focus on the later, since...

complexity of the algorithm is mainly that of the subdivision part

We will mainly count the number of subdivisions, because...

 $cost(subdivision algorithm) \sim \#(subdivisions) \cdot cost(evaluations)$

Subdivision in Plantinga-Vegter algorithm

Algorithm: Subdivision of PV Algorithm (Burr, Gao, Tsigaridas; ISSAC'17)

Input: $f: \mathbb{R}^n \to \mathbb{R}$

with interval approximations $\square[hf]$ and $\square[h'\nabla f]$

for some functions $h, h' : \mathbb{R}^n \to (0, \infty)$

Starting with the trivial subdivision $S := \{[-a, a]^n\}$, repeatedly subdivide each $J \in S$ into 2^n cubes until the condition

$$C_f(J): 0 \notin \square[hf](J) \text{ or } 0 \notin \langle \square[h'\nabla f], \square[h'\nabla f] \rangle$$

holds for all $J \in \mathcal{S}$

Output: Subdivision $S \subseteq \mathcal{I}_n$ of $[-a, a]^n$ such that for all $J \in S$, $C_f(J)$ is true

h, h' depend on the setting and the interval arithmetic one uses

The complexity estimate

We had...

Theorem (Cucker, Ergür, T.C.; ISSAC'19)

Let $f \in \mathcal{P}_{n,d}$ be a dobro random polynomial with parameters K and ρ . The average number of boxes of the final subdivision of PV algorithm on input f is at most

$$d^{\frac{n^2+3n}{2}}2^{\frac{n^2+16n\log(n)}{2}}(c_1c_2K\rho)^{n+1}.$$

We get...

Theorem (T.C., Tsigaridas; ISSAC'20)

Let $\mathfrak{f}\in\mathcal{P}_{n,d}$ be a zintzo random polynomial supported on M. The average number of boxes of the final subdivision of PV algorithm on input \mathfrak{f} is at most

$$n^{\frac{3}{2}}d^{2n}|M|\left(80\sqrt{n(n+1)}K_{\mathfrak{f}}\rho_{\mathfrak{f}}\right)^{n+1}.$$

An specific bound

Corollary (T.C., Tsigaridas; ISSAC'20)

Let $\mathfrak{f} \in \mathcal{P}_{n,d}$ be a random polynomial supported on M. The average number of boxes of the final subdivision of PV algorithm on input \mathfrak{f} is at most

$$n^{\frac{3}{2}} \left(40\sqrt{n(n+1)}\right)^{n+1} d^{2n} |M|^{n+2}$$

if \mathfrak{f} is Gaussian or uniform.

Bere arretagatik eskerrik asko! Merci pour votre attention!

Galderak?
Des questions?