

ANNÉE UNIVERSITAIRE 2012/2013 Session 1 d'Automne

Master Sciences et Technologies, Mention Mathématiques ou Informatique

Spécialité Cryptologie et Sécurité Informatique

UE M1MA7W01 : Arithmétique

Responsable : Jean-Paul Cerri

 $Date: 17/12/2012 \quad Dur\acute{e}e: 3h$

Exercice 1 – [QUESTIONS DE COURS]

- 1) Quels sont les sous-corps de $\mathbb{F}_{3^{12}}$? Représenter le diagramme des inclusions.
- 2) Quelle est la forme de la décomposition de $X^{11} 1$ dans $\mathbb{F}_3[X]$ (nombre de facteurs irréductibles et leurs degrés)?
- 3) Quel est le nombre de polynômes unitaires irréductibles de degré 3 dans $\mathbb{F}_3[X]$?
- 4) Quel est le nombre de polynômes unitaires primitifs de degré 3 dans $\mathbb{F}_3[X]$?

Exercice 2 – [Corps \mathbb{F}_{25}]

- 1) On note A l'anneau $\frac{\mathbb{F}_5[X]}{(X^2+X+2)}$. Montrer que A est un corps.
- **2)** Soit α la classe de X dans A. Calculer successivement α^2 , α^4 , α^8 et α^{12} .
- 3) Le polynôme $X^2 + X + 2$ est-il primitif dans $\mathbb{F}_5[X]$?
- 4) Quel est le polynôme minimal de α^2 sur \mathbb{F}_5 ? Est-il primitif?
- 5) Même question avec α^7 à la place de α^2 .
- 6) Dresser la liste des polynômes de degré 2, primitifs et unitaires de $\mathbb{F}_5[X]$.

Exercice 3 – [MLS]

- 1) Montrer que $X^5 + X^2 + 1$ est irréductible dans $\mathbb{F}_2[X]$.
- 2) Soit $n \ge 2$ un entier tel que $2^n 1$ soit premier. Montrer que n est nécessairement premier.
- 3) On suppose dans les questions 3, 4, 5, 6 et 7 que $2^n 1$ est premier. Rappeler pourquoi n divise $2^n 2$.
- 4) Quel est le nombre de polynômes irréductibles de $\mathbb{F}_2[X]$ de degré n?
- 5) Quel est le nombre de polynômes primitifs de $\mathbb{F}_2[X]$ de degré n?
- 6) En déduire que tout polynôme irréductible de $\mathbb{F}_2[X]$ de degré n est en fait primitif.
- 7) Ne pouvait-on pas établir ce résultat directement, sans passer par un dénombrement?

8) On considère la suite $(s_i)_{i\geqslant 0}\in (\mathbb{F}_2)^{\mathbb{N}}$ définie par la donnée de ses 5 premiers termes s_0, s_1, s_2, s_3, s_4 et par la relation de récurrence linéaire

$$s_{i+5} = s_{i+2} + s_i$$
 pour tout $i \geqslant 0$.

Déterminer la matrice A associée à la suite, i.e. la matrice $A \in \mathcal{M}_{5\times 5}(\mathbb{F}_2)$ telle que pour tout $i \geq 0$ on ait

$$\begin{pmatrix} s_{i+1} \\ s_{i+2} \\ s_{i+3} \\ s_{i+4} \\ s_{i+5} \end{pmatrix} = A \begin{pmatrix} s_i \\ s_{i+1} \\ s_{i+2} \\ s_{i+3} \\ s_{i+4} \end{pmatrix}.$$

- 9) Déterminer son polynôme caractéristique $\chi_A(X)$.
- **10)** Déduire de la question **6** que $(s_i)_{i\geqslant 0}$ est une MLS (maximal length sequence). Quelle est sa période?
- 11) On pose $s_0 = 0$, $s_1 = 0$, $s_2 = 0$, $s_3 = 0$, $s_4 = 1$. Calculer les premiers termes de la suite et vérifier qu'il s'agit bien d'une MLS.
- 12) On garde les hypothèses de la question précédente. Soit α une racine de $\chi_A(X)$ dans \mathbb{F}_{32} . Écrire le terme général de la suite sous la forme $s_i = \text{Tr}(\alpha^{i+k})$ où Tr désigne l'application trace de \mathbb{F}_{32} dans \mathbb{F}_2 et où k est un entier naturel à déterminer.

Exercice 4 – [Code de Hamming]

1) On considère la matrice $M \in \mathcal{M}_{11 \times 15}(\mathbb{F}_2)$ suivante :

On note L_i la ligne numéro i de M ($1 \leq i \leq 11$). Expliquer pourquoi les L_i sont linéairement indépendantes sur \mathbb{F}_2 .

- 2) On considère le code linéaire binaire C de longeur 15 admettant M comme matrice génératrice. Quel est le cardinal de C?
- 3) Montrer que le mot

appartient à C.

- 4) En déduire que C est cyclique.
- 5) Quel est le polynôme générateur de C?

- $\mathbf{6}$) Montrer que C est un code de Hamming de longueur 15. Quels sont ses paramètres?
- ${\bf 7})$ Y a-t-il d'autres codes de Hamming de longueur 15 ? Si oui, exprimer leurs polynômes générateurs.
- 8) Soit C^{\perp} le code dual de C. On sait qu'il est nécessairement cyclique. Quel est son polynôme générateur?
- 9) Donner une matrice génératrice de C^{\perp} .

Exercice 5 – [CODE DE REED-SOLOMON]

On considère le code de Reed-Solomon C défini sur \mathbb{F}_7 de longueur 6, de dimension 2 et de matrice génératrice

$$G = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 5 & 4 & 6 & 2 & 3 \end{pmatrix}.$$

On a pris 5 pour élément primitif de \mathbb{F}_7 .

- 1) Quels sont les paramètres de C? Quel est l'ordre de sa capacité de décodage e?
- 2) Un mot c est envoyé à l'aide du polynôme $P(X) \in \mathbb{F}_7[X]$ de degré < 2. On reçoit le mot

$$r = (r_1, r_2, r_3, r_4, r_5, r_6) = (5, 3, 0, 0, 1, 0),$$

qui contient au plus e erreurs. Calculer le polynôme interpolateur $R(X) \in \mathbb{F}_7[X]$ de degré ≤ 5 qui vérifie

$$R(i) = r_i$$
 pour tout $1 \le i \le 6$.

3) À l'aide du début du développement en fraction continue de $\frac{R(X)}{X^6-1}$, retrouver P(X) et le mot c.