Notes on Math 421: Calculus, proof based

Harry Luo Fall 2024

Contents

Notes on Math 421: Calculus, proof based	1
1. Numbers	2
1.1. Even and Odd number	2
1.2. Mathematical Induction	2
1.3. Properties of $\mathbb R$	2
1.3.1. Propositions	2
1.4. Properties of Inequalities	2
2. Functions and Sets	3
2.1. Image and Preimage	3
2.2. Surjective, Injective,Bijective	3
2.3. Interval	3
2.3.1. Definition of Open and Closed Intervals	3
3. Limits	
3.1. Definition of Limit via epsilon-delta	4
3.2. Limit Operation laws	4

1. Numbers

1.1. Even and Odd number

Even: $x \in \mathbb{N}$ is even iff $\exists y \in \mathbb{N} \ s.t. \ x = 2y$.

Odd: $x \in \mathbb{N}$ is odd iff $\exists y \in \mathbb{N} \cup \{0\}$ s.t. x = 2y + 1.

1.2. Mathematical Induction

To prove some statement P(n) is true for all $n \in \mathbb{N}$, we need to prove two things:

- 1. [Base Case] P(n) is true.
- 2. [Inductive Step]: $\forall n \in \mathbb{N}, P(n) \Rightarrow P(n+1)$
- Note that, it can often be useful to use formulas for fractions such like

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1} \quad ; \quad \frac{1}{(2n-1)(2n+1)} = \frac{1}{2} \left(\frac{1}{2n-1} - \frac{1}{2n+1} \right)$$

1.3. Properties of \mathbb{R}

- Addition
 - closure: $\forall x, y \in \mathbb{R}, x + y \in \mathbb{R}$
 - commutative: $\forall x, y \in \mathbb{R}, x + y = y + x$
 - associative: $\forall x, y, z \in \mathbb{R}, x + (y + z) = (x + y) + z$
 - identity: $\forall x \in \mathbb{R}, x + 0 = x$
 - inverse: $\forall x \in \mathbb{R}, \exists -x \in \mathbb{R} \ s.t.x + (-x) = 0$
- Multiplication
 - closure: $\forall x, y \in \mathbb{R}, x \cdot y \in \mathbb{R}$
 - comutative: $\forall x, y \in \mathbb{R}, x \cdot y = y \cdot x$
 - associative: $\forall x, y, z \in \mathbb{R}, x \cdot (y \cdot z) = (x \cdot y) \cdot z$
 - \rightarrow identity: $\forall x \in \mathbb{R}, x \cdot 1 = x$
 - inverse: $\forall x \in \mathbb{R}, x \neq 0, \exists x^{-1} \in \mathbb{R} \text{ s.t. } x \cdot x^{-1} = 1$
- Distributivity: $\forall a, b, c \in \mathbb{R}, (a+b) \cdot c = a \cdot c + b \cdot c$

1.3.1. Propositions

- if $a, b, c \in \mathbb{R}$ s.t. $a + b = a + c \implies b = c$.
- If $a, c, b \in \mathbb{R}$ s.t. $a \cdot b = a \cdot c, a \neq 0 \implies b = c$
- $\forall a \in \mathbb{R}, \quad a \cdot 0 = 0 = 0 \cdot a$
- if $a, b \in \mathbb{R}$, $a \cdot b = 0$, then a = 0 or b = 0
- $\forall a, b \in \mathbb{R}, (-a) \cdot b = -(a \cdot b) = a \cdot (-b)$
- $\forall a, b \in \mathbb{R}, (-a) \cdot (-b) = ab$

1.4. Properties of Inequalities

- Trichotomy: for each $a,b\in\mathbb{R},$ only one of the following is ture: $a< b, \quad a=b, \quad b< a.$
- Transitivity: $\forall a, b, c \in \mathbb{R}, a < b \text{ and } b < c \Rightarrow a < c$

- Addition: $\forall a, b, c \in \mathbb{R}, a < b \implies a + c < b + c$
- Multiplication: $\forall a, b, c \in \mathbb{R}, a < b \text{ and } c > 0 \Rightarrow ac < bc$
- Reciprocal: $\forall a, b \in \mathbb{R}, a < b \text{ and } c < 0 \Rightarrow ac > bc$
- flip sign: $\forall a, b \in \mathbb{R}, a < b \Rightarrow -b < -a$

2. Functions and Sets

2.1. Image and Preimage

• def: Let $f: A \to B$ be a function:

If $X \subset A$, the **image** of X under f is

$$f(X) = \{ f(a) : a \in X \}$$

• The image of f is f(A)

If $Y \subset B$ the **preimage** of Y under f is

$$f^{-1}(Y) = \{ a \in A : f(a) \in Y \}$$
 [3]

2.2. Surjective, Injective, Bijective

- def: Let $f: A \to B$ be a function:
- Surjective: f is surjective iff f(A) = B. i.e

$$\forall b \in B, \exists a \in A \quad s.t. \quad f(a) = b$$

定义域无落单

• **Injective**: f is injective iff $f(a) = f(b) \Rightarrow a = b$. i.e

$$\forall a, b \in A, f(a) = f(b) \quad \Rightarrow \quad a = b \tag{5}$$

Bijective: both surjective and injective

2.3. Interval

• def: A set $I \in \mathbb{R}$ is an **interval** iff

$$(\forall x, y, x \in \mathbb{R}, x, z \in I, x < y < z) \Rightarrow y \in I$$
 [6]

• Lemma: $\forall a, b \in \mathbb{R}, a < b, \Rightarrow (a, b)$ is an interval.

2.3.1. Definition of Open and Closed Intervals

• def: A set $U \subseteq \mathbb{R}$ is **open** iff

$$\forall x \in U, \exists \varepsilon > 0 \quad s.t. \quad (x - \varepsilon, x + \varepsilon) \subseteq U$$
 [7]

- *def*: A set $F \subseteq \mathbb{R}$ is **closed** iff $F^c = \{x \in \mathbb{R} : x \notin F\}$ is open.
- Lemma: Union of open sets is open.
- Lemma: Intersections of finitely many open sets is open.

3. Limits

3.1. Definition of Limit via epsilon-delta

$$\lim_{x \to a} f(x) = l$$

$$\Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0 \ s.t. \ 0 < |x-a| < \delta \quad \Rightarrow |f(x)-l| < \varepsilon$$
 [8

3.2. Limit Operation laws

• Theorem: Let $f,g:\mathbb{R}\to\mathbb{R}$ be functions and $a\in\mathbb{R}$ be a limit point. If $\lim_{x\to a}f(x)=l$ and $\lim_{x\to a}g(x)=m$, then:

$$\lim_{x \to a} (f(x) + g(x)) = l + m$$
 [9]

$$\lim_{x \to a} (f(x) - g(x)) = l - m$$
 [10]

$$\lim_{x \to a} (f(x) \cdot g(x)) = l \cdot m$$

$$\lim_{x \to a} \left(\frac{f(x)}{g(x)} \right) = \frac{l}{m} \quad , \text{ if } m \neq 0$$
 [12]