

Occupational English I BLM3802

Yrd. Doç. Dr. Sırma Yavuz

sirmayavuz@gmail.com sirma@ce.yildiz.edu.tr

EXAMS

■ Midterm 1 - %20

■ Midterm 2 – In Class Presentations %40

Final - %40

SCHEDULE

Occupational English I BLM3802		
Week	Date	Content
1	18.02.2015	Introduction
2	25.02.2015	Discrete Event System Simulation
3	04.03.2015	Cryptography
4	11.03.2015	Neural Networks
5	18.03.2015	No Class
6	25.03.2015	Presentation
7	01.04.2015	Presentation
8	08.04.2015	Midterm Exam
9	15.04.2015	Presentation
10	22.04.2015	Presentation
11	29.04.2015	Presentation
12	06.05.2015	Presentation
13	13.05.2015	Midterm Exam
14	20.05.2015	Presentation
15	27.05.2015	Presentation

In Class Presentations choose one of the following or offer your own subject by March 11th

- Artificial Intelligence
- Information Retrieval
- Coding Theory
- Search & Sort Algorithms
- Data Structures
- Dynamic Programming
- Network Security
- Operating Systems
- Formal Languages&Abstract Machines
- Turing Machines

Discrete-Event System Simulation

An Introduction to the Basic Principles of Simulation

Modeling

- Modeling involves observing a system, noting the various components, then developing a representation of the system that will allow for further study of or experimentation on the system
- Focus computer model
 - Data Structures & Implementation
 - Interaction of the components

Simulation

The process of running a (computer) model of a real system to study or conduct experiments

- For understanding the model or its behavior
- To evaluate strategies for operation of the system
- Involves generation of an artificial history, used to draw conclusions about the real system

Modeling & Simulation

- Often described as one process
- Should distinguish between the two

System

- A set of inputs which pass through certain processes to produce outputs
 - A set of related components which work together toward a given goal
 - A group of objects joined in regular interactions or interdependence for the accomplishment of some purpose
 - Helpful if a system is observable, measurable, systematic

System Environment

- "World" in which the system exists
- System is affected by elements outside the system – the system environment
- Boundary "line" between the system & its environment
- Decision on boundary is dependent upon simulation purpose

System Components

- Consists of objects called ENTITIES
- Entities have a set of properties called ATTRIBUTES that describe them
- There exist interactions called ACTIVITIES and or EVENTS that occur between the entities that cause them to change
- The STATE OF A SYSTEM is a snapshot of the system at a given time
 - i.e. variables necessary to describe system
- The model starts in its INITIAL STATE

Activities & Events

- Cause changes in the attributes of the entities, and, therefore, the state of the system
- Event: instantaneous
- Activity: has a length of time

System Component Examples

- Bank
- Computer Network
- Hospital Emergency Room

Simulation as the Appropriate Tool

- Enables study and experimentation
- Changes simulated & results observed
- Gain knowledge of system
- Determining importance of variables and how variables interact
- Experiment before implementation
- Verify analytic solutions

- Try different capabilities (of a machine)
- Training
- Animation (graphics)
- Complexity of modern systems almost require simulation

When Simulation is Not Appropriate

- If can be solved by
 - Common sense or simple calculations
 - Analytical methods
 - Direct experiments
- If simulation costs exceed savings
- If resources & time are not available

When Simulation is Not Appropriate (cont'd.)

- If Data is not available
- If verification & validation are not practical due to limited resources
- If users have unreasonable expectations
- If system behavior is too complex