## Space & Time Trade off

Ashesi University Brekuso – E/R Ghana CS456 – Algorithm Analysis & Design March /2024

### What is Space-time trade off? ...1/2

- Space time trade off is a case where an algorithm or program trades increased space usage with decreased time or vice versa.
- ◆ Space = data storage (ram, hdd, ssd,etc.)
- Time = time consumed during the computation of a computer task

#### What is Space-time trade off? ...2/2

- A *tradeoff* is a situation where one thing increases, and another thing decreases. i.e
  - Either in less time and more space, or
  - little space and more time
- Space –Time tradeoff is therefore a way of balancing the amount of time and space required by a computer during the execution of an algorithm.

## Space Time Trade offs

Two varieties of algorithms that trades space for time:

#### Input Enhancement:

Preprocess the input (or its part) to store some infomation to be used later in solving the problem

- counting sorts
- string searching algorithms

#### Pre-Structuring:

Preprocess the input to make subsequent accessing of its elements easier

hashing

# Short video on Comparison Counting Sort Algorithm

♦ https://www.youtube.com/watch?v=31 aWTP4TGJE

Two type of Counting Sort algorithms

1. Comparison Counting Sort Algorithm

2. Distribution Counting Sort Algorithm

## Comparison Counting – Counting Sorts

Let us consider the sorting of the numbers 62, 31, 84, 96, 19, and 47 using comparison-based counting sort

| Array A[05]        |          | 62       | 31   | 84   | 96 | 19  | 47 | ] |
|--------------------|----------|----------|------|------|----|-----|----|---|
|                    |          |          |      |      |    |     |    | 2 |
| Initially          | Count [] | 0        | 0    | 0    | 0  | 0   | 0  | ] |
| After pass $i = 0$ | Count [] | 3        | 0    | 1    | 1  | 0   | 0  | ĺ |
| After pass $i = 1$ | Count[]  |          | 1    | 2    | 2  | 0   | 1  |   |
| After pass $i = 2$ | Count [] |          |      | 4    | 3  | 0   | 1  |   |
| After pass $i = 3$ | Count [] |          |      |      | 5  | 0   | 1  |   |
| After pass $i = 4$ | Count [] |          |      |      |    | 0   | 2  |   |
| Final state        | Count [] | 3        | 1    | 4    | 5  |     |    | ١ |
|                    | Count [] | <u> </u> |      | 4    | 5  | 0   | 2  | ] |
| Array S[05]        | J        | 10       | -04  | 47   | 00 |     |    |   |
| Andy 3(03)         | i        | 19       | 31   | 47   | 62 | 84. | 96 |   |
| Evenesia et esse   |          | . 🔾      | 1    | 2    | 3  | 4   | 5  |   |
| Example of sorting | by compa | rison    | coun | ting |    | •   |    |   |

## Comparison Counting Sort Algorithm

```
ALGORITHM ComparisonCountingSort(A[0..n-1])
    //Sorts an array by comparison counting
   //Input: An array A[0..n-1] of orderable elements
    //Output: Array S[0..n-1] of A's elements sorted in nondecreasing order
    for i \leftarrow 0 to n-1 do Count[i] \leftarrow 0
    for i \leftarrow 0 to n-2 do
        for j \leftarrow i + 1 to n - 1 do
             if A[i] < A[j]
                  Count[j] \leftarrow Count[j] + 1
             else Count[i] \leftarrow Count[i] + 1
    for i \leftarrow 0 to n-1 do S[Count[i]] \leftarrow A[i]
    return S
```

#### Time Complexity of Comparison Counting Sort

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} (n-1-i) = \frac{n(n-1)}{2}.$$

Therefore, the time Complexity for the counting sort algorithm is  $\Theta(n^2)$ 

Space complexity for Comparison Counting Sort = O(n), because we have to create an extra array of size n called count[0..n-1]

## 2. Distribution Counting Sort

♦ https://www.youtube.com/watch?v=0B3 3As8jPgo

## 2. Example of Counting Sort – Distribution Counting

| EXAMPLE | Consider sorting | g the array |
|---------|------------------|-------------|
|---------|------------------|-------------|

| 13 | 11 | 12 | 13 | 12 | 12 |
|----|----|----|----|----|----|

| Array values        | 11 | 12 | 13 |
|---------------------|----|----|----|
| Frequencies         | 1  | 3  | 2  |
| Distribution values | 1  | 4  | 6  |

| A [5] | = | 12 |  |
|-------|---|----|--|
| A [4] | = | 12 |  |
| A [3] | = | 13 |  |
| A [2] | = | 12 |  |
| A [1] | = | 11 |  |
| A[0]  | = | 13 |  |

| [ | D[02] |   |  |  |  |  |  |  |  |
|---|-------|---|--|--|--|--|--|--|--|
| 1 | 4     | 6 |  |  |  |  |  |  |  |
| 1 | 3     | 6 |  |  |  |  |  |  |  |
| 1 | 2     | 6 |  |  |  |  |  |  |  |
| 1 | 2     | 5 |  |  |  |  |  |  |  |
| 1 | 1     | 5 |  |  |  |  |  |  |  |
| 0 | 1     | 5 |  |  |  |  |  |  |  |

| 0  | 1  | <sup>2</sup> S[C | )5] | 4  | 5  |
|----|----|------------------|-----|----|----|
|    |    |                  | 12  |    |    |
|    |    | 12               |     |    |    |
|    |    |                  |     |    | 13 |
|    | 12 |                  |     |    |    |
| 11 |    |                  |     |    |    |
|    |    |                  |     | 13 |    |

11 12 12 13 13 Example of sorting by distribution counting. The distribution values being decremented are shown in bold.

Array values must not be overwritten in the process of sorting

## Distribution Counting Sort Algorithm – Counting Sort

```
ALGORITHM
                 DistributionCounting(A[0..n-1], l, u)
    //Sorts an array of integers from a limited range by distribution counting
    //Input: An array A[0..n-1] of integers between l and u (l \le u)
    //Output: Array S[0..n-1] of A's elements sorted in nondecreasing order
    for j \leftarrow 0 to u - l do D[j] \leftarrow 0
                                                             //initialize frequencies
    for i \leftarrow 0 to n-1 do D[A[i]-l] \leftarrow D[A[i]-l]+1 //compute frequencies
    for j \leftarrow 1 to u - l do D[j] \leftarrow D[j - 1] + D[j] //reuse for distribution
    for i \leftarrow n-1 downto 0 do
        j \leftarrow A[i] - l
        S[D[j]-1] \leftarrow A[i]
        D[j] \leftarrow D[j] - 1
    return S
```

#### Time Complexity of Distribution Counting Sort

- the initialization of the count array + the loop which performs a prefix sum on the count array takes O(k) time. k = range of the numbers to be sorted
- And other two loops for initialization of the output array takes O(n) time.
- Therefore, the total time complexity for the algorithm is: O(k) + O(n) + O(k) + O(n) = O(n+k).
- Space complexity is O(n+k)

## String Matching

## String Matching Problems

- Considered as being of two forms:
  - Exact string matching;
  - Approximate string matching
- **text** We have a long string of n characters of some alphabets  $(\Sigma)$
- pattern string of m characters from the same alphabet

#### **Exact Matching**

Given a long string **text** T of length n, and another string **pattern** P of length m,  $m \le n$ , the exact string matching problem is to find the positions of all occurrences of P in T.

### Review: String searching by brute force

pattern: a string of m characters to search for
text: a (long) string of n characters to search in

#### Brute force algorithm

- Step 1 Align pattern at beginning of text
- Step 2 Moving from left to right, compare each character of pattern to the corresponding character in text until either all characters are found to match (successful search) or a mismatch is detected
- Step 3 While a mismatch is detected and the text is not yet exhausted, realign pattern one position to the right and repeat Step 2

#### Review: The Brute Force Exact Matching Algorithm

#### Example

#### Review: Brute Force String Matching Pseudocode

```
ALGORITHM BruteForceStringMatch(T[0..n-1], P[0..m-1])
    //Implements brute-force string matching
    //Input: An array T[0..n-1] of n characters representing a text and
            an array P[0..m-1] of m characters representing a pattern
    //Output: The index of the first character in the text that starts a
              matching substring or -1 if the search is unsuccessful
    for i \leftarrow 0 to n - m do
        i \leftarrow 0
        while j < m and P[j] = T[i + j] do
            j \leftarrow j + 1
        if j = m return i
    return -1
```

## String searching by preprocessing

Several string searching algorithms are based on the **input** enhancement idea of preprocessing the pattern

- Knuth-Morris-Pratt (KMP) algorithm preprocesses pattern left to right to get useful information for later searching
- Boyer -Moore algorithm preprocesses pattern right to left and store information into two tables
- Horspool's algorithm simplifies the Boyer-Moore algorithm by using just one table

## Horspool's Algorithm

A simplified version of Boyer-Moore algorithm:

 preprocesses pattern to generate a shift table that determines how much to shift the pattern when a mismatch occurs

always makes a shift based on the text's character
 caligned with the last character in the pattern
 according to the shift table's entry for c

## Cases during Shifting



◆ If letter in the text 'S' does not occur anywhere in the pattern, shift the entire pattern past 'S'.

# Cases during Shifting Case II:



Case 2 If there are occurrences of character c in the pattern but it is not the last one there—e.g., c is letter c in our example—the shift should align the rightmost occurrence of c in the pattern with the c in the text:

## Cases during Shifting - Case III



If **c** happens to be the last character in the pattern but there are no **c**'s among its other **m** – 1 characters—e.g., **c** is letter R in our example—the situation is similar to that of Case 1 and the pattern should be shifted by the entire pattern's length **m**:

## Cases during Shifting -Case IV



if **c** happens to be the last character in the pattern and there are other **c**'s among its first **m** – 1 characters—e.g., **c** is letter R in our example—the situation is similar to that of Case 2 and the rightmost occurrence of **c** among the first **m** – 1 characters in the pattern should be aligned with the text's **c**:

# Calculating the Shift Table (the input enhancement)

$$t(c) = \begin{cases} \text{the pattern's length } m, \\ \text{if } c \text{ is not among the first } m-1 \text{ characters of the pattern;} \end{cases}$$

$$t(c) = \begin{cases} \text{the distance from the rightmost } c \text{ among the first } m-1 \text{ characters of the pattern to its last character, otherwise.} \end{cases}$$

Start by initializing the table entries to the **size** of the pattern. e.g. for a pattern **BARBER**, the size is **6**So all entries will be initialized to **6** (including, even those that are not present in the pattern now) then we use the above t(c) to update the letters that are present in the pattern.

## How to fill the shift table

- ▼ Table[k] = pattern length -1-index
- ◆ 0<=k< (m-1)
  </p>
- For pattern BARBER the shift table will be

\* Means any other character

For repetitive letters we store ONLY the least no We do not calculate/assign value to the last letter

## Example of Horspool's Algorithm

| character c  | A | В | C | D | E | F |   | R |   | Z | _ |
|--------------|---|---|---|---|---|---|---|---|---|---|---|
| shift $t(c)$ | 4 | 2 | 6 | 6 | 1 | 6 | 6 | 3 | 6 | 6 | 6 |

The actual search in a particular text proceeds as follows:

Always compare from RIGHT to LEFT

n means order of shifting

#### Algorithm for ShiftTable(P[0..m-1])

```
ALGORITHM Shift Table (P[0..m-1])

//Fills the shift table used by Horspool's algorithms

//Input: Pattern P[0..m-1] and an alphabet of possible characters

//Output: Table[0..size-1] indexed by the alphabet's characters and

// filled with shift sizes computed by formula (t(c))
```

```
for i \leftarrow 0 to size -1 do Table[i] \leftarrow m
for j \leftarrow 0 to m - 2 do
Table[P[j]] \leftarrow m - 1 - j
```

return Table

**EndAlg** 

## Algorithm HorspoolMatching

```
ALGORITHM HorspoolMatching(P[0..m-1], T[0..n-1])
//Implements Horspool's algorithm for string matching
//Input: Pattern P[0..m-1] and text T[0..n-1]
//Output: The index of the left end of the first matching substring
// or -1 if there are no matches
ShiftTable(P[0..m - 1]) //generate Table of shifts
i \leftarrow m - 1
                                 //position of the pattern's right end
while i \le n - 1 do
  k \leftarrow 0
                                   //number of matched characters
  while k \le m - 1 and P[m - 1 - k] = T[i - k] do
      k \leftarrow k + 1
  if k = m
     return i - m + 1
 else i \leftarrow i + Table[T[i]]
                                      // shift appropriately
return -1
EndAlq
```

## Time Complexity of Horspool Algorithm

- The worst case time complexity is O(mn), where m = the length of the pattern and n = the length of the text
- But for a random text, the runtime is O(n), which is linear. Horspool alogirthm runs much faster than the brute force algorithm even when they happen to be in the same time complexity.

## Short video on Horspool's Algorithm

1. https://www.youtube.com/watch?v=0-FZyh46zwA&t=19s

Watch the next video (No. 2, a bit longer) at home

2. https://youtu.be/XTw9 SEIm68

#### In-class discussion ....1/4

1. Apply Horspool's algorithm to search for the pattern baobab in the text

BESS\_KNEW\_ABOUT\_THE\_BAOBABS\_IN\_TOWN

2. Consider the problem of searching for genes in DNA sequences using Horspool's algorithm. A DNA sequence is represented by a text on the alphabet  $\{A, C, G, T\}$ , and the gene or gene segment is the pattern. Construct the shift table for the following gene segment of your chromosome 10:

# In-class discussion – ....2/4 TCCTATTCTT

Apply Horspool's algorithm to locate the above pattern in the following DNA sequence:

#### TTATAGATCTCGTATTCTTTTATAGATCTCCTATTCTT

3. How many character comparisons will be made by Horspool's algorithm in searching for each of the following patterns in the binary text of 100010010 zeros?

**a.** 0001 **b.** 1001 **c.** 01010

## In-class exercises ... 3/4

♦ 1.Consider the following numbers. Use the counting sort algorithm to sort these numbers. Show all steps.

[20, 30, 60, 40, 30, 20, 10, 40, 30, 30, 60, 60, 40, 40]

#### In-class discussion – ...4/4

Assuming that the set of possible list values is {a, b, c, d}, sort the following list in alphabetical order by the distribution counting algorithm:

b, c, d, c, b, a, a, b.