Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики Кафедра «Прикладная математика»

КУРСОВАЯ РАБОТА ПО ДИСЦИПЛИНЕ «МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

Выполнил студент группы 3630102/70301

Камянский Д.В.

Проверил к. ф.-м. н., доцент

Баженов А.Н.

Санкт-Петербург 2020

1 Постановка задачи

1.1 Подготовка данных

- Считать данные светимости;
- Выделить временные интервалы с различным типом циклического движения;
- Разделить матрицы состояния плазы по соответсвующим временым интервалам.

1.2 Расчеты

- Расчитать положение центра масс системы для каждого момента времени;
- Рассчитать периоды прохождения центром масс циклической траектории и соответсвующую частоту движения;
- Расчитать значения характерезующие частоту движения центра масс.

1.3 Анализ

Рассмотреть характер вращения системы и зависимость частоты вращения от времени.

2 Теория

2.1 Центр масс

Центр масс - геометрическая точка, характеризующая движение тела или системы частиц как целого. Положение центра масс системы определяется следующим образом:

$$r_c = \frac{\sum m_i r_i}{\sum m_i} \tag{1}$$

где r_c - радиус-вектор центра масс, r_i - радиус-вектор i-й точки системы, m_i - значение светимости в i-й точке.

2.2 Выборочная медиана и выборочное среднее

Выборочная медиана - это значение, которое разбивает выборку на две равные части. Половина наблюдений лежит ниже медианы, и половина наблюдений лежит выше медианы. Медиана вычисляется следующим образом. Изучаемая выборка упорядочивается в порядке возрастания (N - объем выборки). Получаемая последовательность a_k , где k=1,...,N называется вариационным рядом или порядковыми статистиками. Если число наблюдений N нечетно, то медиана оценивается как $m=a_{\frac{N+1}{2}}$. Если число наблюдений N четно, то медиана оценивается как $m=(a_{\frac{N}{2}}+a_{\frac{N}{2}+1})$

Пусть $X_1,...,X_n$ - выборка. Среднее значение выборки оценивается по формуле: $\overline{X} = \frac{\sum_{i=1}^n X_i}{n}$.

2.3 Выборочный коэффициент корреляции Пирсона

Пусть по выборке значений $\{x_i,y_i\}_1^n$ двумерной с.в. (X,Y) требуется оценить коэффициент корреляции $\rho=\frac{cov(X,Y)}{\sqrt{DX\,DY}}$. Естественной оценкой для ρ служит его статистический аналог в виде выборочного коэффициента корреляции, предложенного К.Пирсоном, —

$$r = \frac{\frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n} \sum (x_i - \bar{x})^2 \frac{1}{n} \sum (y_i - \bar{y})^2}} = \frac{K}{s_X s_Y},$$
 (2)

где K, s_X^2, s_Y^2 — выборочные ковариация и дисперсии с.в. X и Y [1, с. 535].

3 Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Python в среде разработки JupyterLab. Использованы библиотеки scipy для загрузки данных из файла, numpy для простоты использования различных статистических функций,matplotlib и seaborn для визуализации результатов. Исходный код лабораторной работы приведён в приложении в виде ссылки на репозиторий GitHub.

4 Результаты и Анализ полученных данных

На видео движения светимости плазмы можно выделить 2 интервала: интервал вращения ([157.0, 167.0]), где чётко разлечимо вращение ядра (область с самыми высокими значениями светимости), и интервал колебания ([167.0, 175.0]), где ядро либо остаётся на месте, либо отклоняется очень незначительно от изначального положения и быстро к нему возвращается.

Для исследования движения (в частности вращения) системы используется исследование движения центра масс. Частота расчитывается по формуле $\nu=\frac{1}{T}$, где T - период обращения центра масс (время, за которое точка центра масс возвращается в стартовое положение начала периода).

4.1 Частота вращения системы по исходным данным

Рис. 1: Частота вращения системы на интервале вращения [157.0, 167.0]

Рис. 2: Частота вращения системы на интервале колебаний [167.0, 175.0]

Таблица 1: Соотношение кол-ва вариаций позиции центра масс с кол-ом временных промежутков

	Вращение	Колебания
Кол-во различных позиций ц.м.	248	106
Кол-во временных промежутков	6250	5000

Таблица 2: Выборочные характеристики частоты вращения

	Среднее	Медиана
Вращение	12.93	5.48
Колебания	6.86	1.06

Выборочный коэффициент корреляции Пирсона на интервале вращения r=0.1461. Продолжительные пологие участки графиков - это временные промежутки на которых центр масс длительное время не меняет положения внутри цикла вращения (колебания), что приводит к сильному увеличению периода оборота. Данная проблема хорошо прослеживается при соотношении кол-ва различных позиций центра масс и количества рассматриваемых временных промежутков. Видно что большей части времени центр масс не меняет своей позиции.

Чтобы преодолеть проблему низкой изменчивости позиции центра масс, были рассмотрены два подхода: слабая фильтрация с последующим ослаблением ядра и сильная фильтрация.

4.2 Частота вращения системы после слабой фильтрации и ослабления ядра

Данный подход опирается на предположение, что причиной малой изменчивости позиции центра масс (далее ц.м.) является малая подвижность ядра системы и чтобы увеличить вес хвостовой части вращения требуется ослабить центральную ядерную часть. Чтобы при подобном ослаблении не увеличивать весовую роль шумовых значений, предварительно отфильтруем систему на значения меньшие или равные 25-му перцентилю.

Рис. 3: Частота вращения системы на интервале вращения [157.0, 167.0]

Рис. 4: Частота вращения системы на интервале колебаний [167.0, 175.0]

Таблица 3: Выборочные характеристики частоты вращения

	Среднее	Медиана
Вращение	26.35	15.63
Колебания	48.83	10.97

Выборочный коэффициент корреляции Пирсона на интервале вращения r=0.2823, на интервале колебаний r=0.4313.

Как видим, среднее и медианное значение частоты сильно возросло, особенно в случае колебаний, что лучше отражает наблюдаемую на видео динамику. Так же виден заметный рост коэффициента корреляции.

4.3 Частота вращения системы после сильной фильтрации

Второй подход исходит из предположения, что само ядро в достаточной степени подвижно и хорошо выражает общую динамику движения системы, а статичность возникает в результате влияния шумовых значений. Тогда, чтобы усилить влияние ядра производится фильтрация значений ниже 75-го перцентиля.

Рис. 5: Частота вращения системы на интервале вращения [157.0, 167.0]

Рис. 6: Частота вращения системы на интервале колебаний [167.0, 175.0]

Таблица 4: Выборочные характеристики частоты вращения

	Среднее	Медиана
Вращение	46.1	32.89
Колебания	78.66	22.32

Выборочный коэффициент корреляции Пирсона на интервале вращения r=0.2503, на интервале колебаний r=0.6187.

После сильной фильтрации видно, что графики стали значительно лучше отражать наблюдаемую на видео динамику. С графика интервала вращения практически исчезли частотные плато, они присутствуют только в начале, когда система ещё не перешла в фазу активного вращения. На графике колебаний плато попрежнему присутствуют, при чем основная их часть приходиться на промежуток времени после окончания интервала вращения и начала интервала колебаний, когда на видео мы

наблюдаем стабилизацию системы с последующим возникновением слабых колебательных движений.

Также заметно и улучшение выборочных характеристик: на интервале вращения относительная разность между средним и медианным значениями уменьшилась, а в абслотном значении характеристики выросли, на интервале колебаний высокая разница между медианой и средним сохраняется, но она объективно обусловлена исходной динамикой.

Коэффициент корреляции хорошо отражает наблюдаемую динамику вращения. На интервале колебаний мы наблюдаем, как со временем устаявшаяся система переходит в небольшие колебания, с наростанием частоты этих колебаний. На промежутке [162,163.5] происходит некоторое замедление, после чего колебания вновь усиливаются. На интервале вращения частота имеет явно нелинейную циклическую динамику, в результате чего коэффициент линейной корреляции Пирсона достаточно низок.

5 Обсуждение

Исходя из полученных результатов можно сделать вывод о том, что подход, основанный на сильной фильтрации является наиболее предпочтительным при иследовании движения светимости.

Динамика вращения системы на интервалах вращения и колебания сильно отличается: на интервале вращения [157,167] мы наблюдаем достаточно равномерные циклические колебания частоты со средним значением $46.1\ 1/{\rm mc}$, после чего система приходит [167,170] в устойчивое состояние, в котором центр масс практически не меняет своего положения, из которого система переходит в состояние быстрых коротких колебаний [170,175] с возростающей динамикой частоты со средним значением частоты $78.66\ 1/{\rm mc}$.

6 Приложения

Код программы и полученные видео на GitHub, URL: https://github.com/dkamianskii/MatStatLabs/tree/master/Course%20Project

Список литературы

- [1] Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д. Спб.: «Иван Федоров», 2001.-592 с., илл.
- [2] Баженов А.Н., Затылкин П.А. Малоракурсная реконструкция светимости плазмы для сферического токамака. Вычислительные технологии. 2020; 25(1):5–38.