Тензорные методы для оптимизации эффективности нейронных сетей

В. Кудревская + Я. Терещенко + К. Пугин + Л. Деда

В

InterPoLazio

- Задача: применение тензорных декомпозиций для сжатия нейронных сетей без потерь в качестве

- Использованные тензорные декомпозиции:
 - Каноническое разложение
 - Разложение Таккера
 - Tensor Train

- Разложения применялись к полносвязным слоям и сверточным

Для исследования были взяты библиотеки tensorly и tltorch. Помимо них были все три метода были реализованы и тоже добавлены к сравнению

- В качестве датасета была выбрана классификация медуз (6 классов), а метрика ассигасу
- Целью было сравнить реализации и готовые методы из библиотек tensorly и tltorch. Выявить, справляются ли они с поставленной задачей и что лучше использовать.

Каноническое разложение

Метод 1: Каноническое разложение

fc cp -realization

Training Accuracy

Tensor train decomposition

$$A(i_1,\ldots,i_d)\approx G_1(i_1)\ldots G_d(i_d)$$

 $G_k(i_k)$ имеет размер $r_{k-1} \times r_k$, $r_0 = r_d = 1$

Метод 2: tensor train decomposition

Разложение Такера (Tucker)

Метод 3: разложение Такера

60

Epoch

20

Общие графики

Training Accuracy

Еще один график

Полезные ссылки

Ссылка на рабочую версию программы: https://github.com/dmsy4/aim-nla-tensor-decompositions

Другие полезные ссылки:

- V. Lebedev, Y.Ganin, M. Rakhuba, I. Oseledets, V. Lempitsky, *Speeding-up convolutional neural networks using fine-tuned cp-decomposition*, URL: https://arxiv.org/pdf/1412.6553.pdf, 2015.
- Yu Pan, Maolin Wang, Zenglin Xu, *TedNet: A Pytorch Toolkit for Tensor Decomposition Networks*, URL: https://arxiv.org/pdf/2104.05018.pdf, 2021.
- https://jacobgil.github.io/deeplearning/tensor-decompositions-deep-learning
- https://tensorly.org/stable/index.html

Нереализовано

- Изменение размеров векторов ответов и признаков,

с целью получить тензорный оператор из матрицы

Весов, который в последствии можно было бы декомпозировать

- Не до конца изучены зависимости, когда декомпозиции

Дают реальный прирост в скорости, а когда нет

Спасибо за внимание!

