- Let T be the time to extinction in the linear death process with Xo=N and a.
- a) Note that $T = W_N$ and consequently $E[T] = E[W_N] = E[Z_i^N S_i] = Z_{i=1}^N E[S_i]$,

where Si are the independent sojourn times. In the linear death process, the death parameters are given by $\mu_{K} = k\alpha$, cf. p. 287.

Hence,

b) We begin as proposed in the book $E[T] = \int_{0}^{\infty} P(T > t) dt = \int_{0}^{\infty} (1 - F_{T}(t)) dt$

From eq. (6.15), we know F_T(t) for the linear cleath process.

$$\mathbb{E}[T] = \int_0^\infty \left(1 - \left[1 - e^{-\alpha t}\right]^N\right) dt.$$

Now, we use the proposed substitution $y=1-e^{-\alpha t}$. Then $dy/dt=\alpha e^{-\alpha t}$ and we get that $dt=(\alpha e^{-\alpha t})^{-1}dy=(\alpha(1-y))^{-1}dy$.

Hence,

$$\mathbb{E}[T] = \int_0^\infty 1 - (1 - e^{-\alpha t})^N dt = \int_0^1 (1 - y^n)(\alpha(1 - y))^{-1} dy$$

Note the change in the integration limits, as $y(t) \rightarrow 0$ for $t \rightarrow 0$ and $y(t) \rightarrow 1$ for $t \rightarrow \infty$.

Recall that the first N terms of a geometric Series is given by:

$$\sum_{k=0}^{k} CL_{k} = C(1-L_{M+1})/(1-L)^{k}$$
 $L \neq 1$

Thus,

$$\begin{aligned}
E[T] &= \int_{0}^{1} (1 - y^{N}) (\alpha (1 - y))^{-1} dy \\
&= \int_{0}^{1} \frac{1}{\alpha} \sum_{i=0}^{N-1} y^{i} dy \\
&= \frac{1}{\alpha} \sum_{i=0}^{N-1} \int_{0}^{1} y^{i} dy \\
&= \frac{1}{\alpha} \sum_{i=0}^{N-1} \left[\frac{1}{i+1} y^{i+1} \right]_{0}^{1} \\
&= \frac{1}{\alpha} \sum_{i=0}^{N-1} \frac{1}{i+1} \\
&= \frac{1}{\alpha} \sum_{i=1}^{N-1} \frac{1}{i} = \alpha^{-1} \sum_{i=1}^{N-1} \frac{1}{i}
\end{aligned}$$