BY R-TUTORIALS.COM

Simple validation

set.seed(23) # to make the example reproducible

?sample

library(ggplot2)

?diamonds

mydiamonds = diamonds[1:500,]

attach(mydiamonds)

trainingdiamonds = sample(x = 500, size = 200) # 200 observations from 500 in the df

mylm = lm(data = mydiamonds, subset = trainingdiamonds, x ~ y + z) # fitting a simple Im

mean ((x - predict(mylm, mydiamonds))[-trainingdiamonds]^2) # mean standard error

library(boot) # for the cv functions

BY R-TUTORIALS.COM

 $myglm = glm(data = mydiamonds, x \sim y + z)$

myglm.error = cv.glm(data = mydiamonds, myglm)

myglm.error\$delta

delta is the cv estimate or the error rate - raw and adjusted

Cross Validation K=5

myglm.error2 = cv.glm(data = mydiamonds, myglm, K = 5)

using K to adjust the group number

myglm.error2\$delta

BY R-TUTORIALS.COM

Create a model with the faithful dataset

?faithful

- o explain waiting with eruptions
- o get a visual impression to get an idea of the relationship
- o get the MSE using simple cross validation and 5-fold CV
- o in the solution I will use a 50/50 split of the dataset for simple CV
- o compare the results which one has a lower error rate?
- o what could be possible problems with the CV approach I outlined

BY R-TUTORIALS.COM

1. simple CV

simple xy plot

plot(faithful\$waiting, faithful\$eruptions)

linear model explaining the waiting time - training data 1-136

mymodel = glm(data = faithful[1:136,], waiting ~ eruptions)

MSE on the second half of the data (validation set)

mean((faithful\$waiting - predict(mymodel, faithful))[137:272]^2)

Or an alternative way to code it

mean((faithful\$waiting[137:272] - predict(mymodel, faithful[137:272,]))^2)

2. 5-fold CV

library(boot) # for the cv.glm function

we are going to get a model with the ful dataset

mymodel2 = glm(data=faithful, waiting ~ eruptions)

cv.glm for 5 fold CV

cv.result = cv.glm(data = faithful, mymodel2, K = 5)

the error rate is lower than with standard CV

cv.result\$delta

if you perform simple CV with a 50/50 split, you could get bias in your model

because the observations might be affected by time e.g. first oberservations are higher than the last ones, etc

so always be careful how you split your data, best way is to use "sample"

BY R-TUTORIALS.COM

KNN Classification

?mtcars

attach(mtcars)

library(lattice)

we want to create a model to classify the number of cylinders

according to weight and mpg

with(mtcars, xyplot(wt ~ mpg, group=cyl, auto.key=T, pch=20, cex=3))

for KNN we need to get the library class

library(class)

lets take a look at the knn function we are using

?knn

train: the data we use to create our model

test: the data we use to test if the model works

k: number of neighbors we use for the model

Extra arguments:

I: a minimum amount of votes of one class

use.all: tie handling

prob: shows the proportion of winning class votes

BY R-TUTORIALS.COM

data frame for training

train <- cbind(mpg, wt)</pre>

test data

test <- c(26,2.2)

knn(train, test, cl = cyl, k=2, prob = T)

LDA Classification

we need MASS for the Ida function

library(MASS)

?lda

similar to lm and glm

mylda = Ida(data=mtcars, cyl ~ wt + mpg)

mylda

prior probabilities give the proportions of a class in the dataset

we see the group means for each independent variable and class

coefficients are calculated to define the areas of each class

BY R-TUTORIALS.COM

plot(mylda)

to use the predict function, it is useful to create a data frame with the

test data as data frame

wt= c(2.2, 4, 1.1,5)

mpg= c(26, 20, 27, 15)

class=c(4, 6, 4, 8)

test = data.frame(wt, mpg,class)

mylda.prediction = predict(object = mylda, newdata = test[,c(1,2)])\$class

we specify that we want the class as output

mylda.prediction

table(mylda.prediction, test[,3])

the diagonal shows the correct predictions

as you can see in the table, there is one error in the result

observation 2 in the test set was classified as 8

in the data frame it is class 6

on the plot we can see that it is quite near to class 8

BY R-TUTORIALS.COM

Logistic Regression

```
# in this case we want to model a binary outcome am, with wt, mpg and drat
head(mtcars)
mymtcars=data.frame(am = as.factor(mtcars$am),
          wt = mtcars$wt,
          mpg = mtcars$mpg,
          drat = mtcars$drat)
# since we are performing a logistic regression on a classification, we check if
our outcome
# variable is in deed a factor (class)
class(mymtcars$am)
# glm with family = binomial is the classic way of logistic regression in R
mylog = glm(data = mymtcars, am ~ wt + mpg + drat, family = "binomial")
summary(glm(data = mymtcars, am ~ wt + mpg + drat, family = "binomial"))
# in this case I decide to keep all three predictors in the model
# we are going to run the model on the training data itself
testprediction <- predict(mylog, type="response")</pre>
testprediction
# prob <= 0.5 means 0 or automatic
# we can get a character vector of the 2 transmission types
predicted.classes = rep( "automatic" ,32)
predicted.classes[testprediction > .5]="manual"
predicted.classes
```

BY R-TUTORIALS.COM

table(predicted.classes, mymtcars\$am)

the table tells us that we had 2 misclassifications

now we see what the model would predict for our test add-on

for the predict function it is best to use a data frame

addon = data.frame(wt = 4.500, mpg = 30.2, drat = 4.9)

predict(mylog, addon, type="response")

type response for probabilities

the model would predict that a car of 4500 lb has 0 % probability of having a manual transom

BY R-TUTORIALS.COM

Exercise Iris - LDA and KNN

```
# Classify the iris dataset according to Species
# using the predictors Petal.Length and Petal.Width
# perform both LDA and KNN (k of 3)
```

test dataframe

```
Petal.Width = c(0.7, 2.5)
```

Petal.Length = c(2.4, 7)

Species = c("setosa", "virginica")

test = data.frame(Petal.Width, Petal.Length, Species)

library(lattice)

with(iris, xyplot(Petal.Length ~ Petal.Width, group=Species,

auto.key=T, pch=20, cex=3))

library(MASS)

mylda = Ida(data=iris, Species ~ Petal.Length+Petal.Width)

mylda

plot(mylda)

to use the predict function, it is useful to create a data frame with the test vectors

BY R-TUTORIALS.COM

test dataframe

Petal.Width = c(0.7, 2.5)

Petal.Length = c(2.4, 7)

Species = c("setosa", "virginica")

test = data.frame(Petal.Width, Petal.Length, Species)

mylda.prediction = predict(object = mylda, newdata = test[,c(1,2)])\$class

we specify that we want the class as output

mylda.prediction

table(mylda.prediction, test[,3])

BY R-TUTORIALS.COM

KNN

clear the environment at first to avoid object name confusion

attach(iris)

train <- cbind(Petal.Width, Petal.Length)</pre>

library(class)

test = matrix(c(0.7, 2.5, 2.4, 7), nrow=2)

knn(train, test, cl=Species, k=3, prob=T)

STATISTICAL MODELING WITH R EXAMPLES BY R-TUTORIALS.COM # for this true classification tree I am factorizing am # you can see it as qualitative now mytree = tree(data=mtcars, as.factor(am) ~ wt + mpg) # a summary gives a first overview on the tree summary(mytree) plot(mytree) text(mytree) title("Classification Tree MTCARS", sub="automatic vs manual Transmission") # the terminal nodes appear to be the same, so the whole last split could have been omitted # however it can be useful because as we can see in the previous tree, the means on the terminal nodes are very different # lets split the dataset in half and calculate the test error rate # I am creating a new data frame with am as factor mtcars.new = data.frame(am.new = as.factor(am), wt, mpg) head(mtcars.new)

class(mtcars.new\$am.new)

STATISTICAL MODELING WITH R EXAMPLES BY R-TUTORIALS.COM # training and test data made out of the inital mtcars train = mtcars.new[1:16,] test = mtcars.new[17:32,] # tree made from the training set mytree.train = tree(am.new ~ wt + mpg, data=train) # now we run a prediction on the test data mytree.pred = predict(mytree.train, test, type="class") # type class for classification # and here we compare the results predicted vs reality table(mytree.pred, test\$am.new) treetable = table(mytree.pred, test\$am.new) (sum(diag(treetable)))/16

in this case the tree would be correct in 87.5 % of the cases

BY R-TUTORIALS.COM

Exercise Classification Tree

Example with diamonds data

- Library: ggplot2, dataset: diamonds
- create a tree to classify for color with price and the variable x
- o use the first 500 rows for your tree
- o plot and visualize the tree
- o check the test error by splitting the set of 500 in 2 subgroups

```
library(tree)
library(ggplot2)
attach(diamonds)
mytree = tree(data=diamonds[1:500,], color ~ price + x)
summary(mytree)
plot(mytree)
text(mytree)
title("Classification Tree Color of Diamonds")

# Lets check the test error rate
diamonds.df = data.frame(color, price, x)
diamonds.new = diamonds.df[1:500,]
head(diamonds.new); class(diamonds.new)
train = diamonds.new[1:250,]
test = diamonds.new[251:500,]
```

BY R-TUTORIALS.COM

mytree.train = tree(color ~ price + x, data=train)
mytree.pred = predict(mytree.train, test, type="class")
type class for classification
table(mytree.pred, test\$color)
(sum(diag(table(mytree.pred, test\$color))))/250

Random Forests and Bagging

- 2 methods to reduce variance in the model
- idea bagging: use bootstrapping to sample 100s of training sets and
- o calculate a tree model for each of the sets average the models
- o idea randomFo: same as bagging but only a limited number of predictors is
- used to calculate a given split

```
library(randomForest)
library(ggplot2)
set.seed(123)
# mtr determins the number of predictor variables to be used
# the full number makes for a bagging approach
bagging = randomForest(formula = color ~ . , data = diamonds[1:500,], mtr=9)
plot(bagging)
```

BY R-TUTORIALS.COM

now it is a random forest with 3 predictors per split

randomFor = randomForest(formula = color \sim . , data = diamonds[1:500,], mtr=3)

we can check the importance of the predictors

importance(randomFor)

and we can visualize it

varImpPlot(randomFor)

lets test the random forest with a test data frame

test = diamonds[501:800,]

predicted.bagging = predict(newdata=test, bagging, type = "class")

predicted.randomFor = predict(newdata=test, randomFor, type = "class")

table(predicted.bagging, test\$color)

table(predicted.randomFor, test\$color)

we can calculate the percentage of correct predictions

sum(diag(table(predicted.bagging, test\$color)))/300

sum(diag(table(predicted.randomFor, test\$color)))/300

keep in mind that color has 7 levels - 0.35 better than pure chance of 1/7

BY R-TUTORIALS.COM

for a simple example we can use the rivers dataset

plot(rivers)

the function is called kmeans, number of clusters = center

nstart specifies the number of random sets to start with

kclust = kmeans(rivers, centers = 3, nstart = 30)

kclust

we can get a visual impression of our clustered data

plot(rivers, col = kclust\$cluster)

Hierarchical Clustering

simple example of Euclidean distance

Square Root of Sum of Squares of Differences in Attributes

a = mtcars[1,]

b = mtcars[11,]

dist(rbind(a,b))

lets get the distance matrix of the first 16 obs at first

dm = dist(as.matrix(mtcars[1:16,]))

BY R-TUTORIALS.COM

use the hclust function for hierachical clustering

hcluster = hclust(dm) # standard method is complete linkage

dendrogram

plot(hcluster)

Exercise K Means Clustering

- data for the exercise: extract the first 3 numeric columns from the iris dataset
- head(iris)
- check if the extraction worked (hint: head, summary, nrow, class, ...)
- perform K means clustering on the dataset (experiment with the number of K)
- create a vector with all observation numbers of a specific cluster (hint: which, on cluster 3)
- o visualize your results in a 3d plot (hint: library rgl, plot3d)

at first lets get the dataset to work with

clusterdata = data.frame(iris\$Sepal.Length, iris\$Sepal.Width, iris\$Petal.Length)

checking if the data frame has the attributes we want

head(clusterdata); summary(clusterdata); nrow(clusterdata); class(clusterdata)

I am performing 3 kmeans analyses with K of 3, 5, 8

clusterk3 = kmeans(clusterdata, centers = 3, nstart = 35)

clusterk5 = kmeans(clusterdata, centers = 5, nstart = 35)

clusterk8 = kmeans(clusterdata, centers = 8, nstart = 35)

BY R-TUTORIALS.COM

Lets take a look at the 3 objects

clusterk3; clusterk5; clusterk8

extracting a vector with all observation IDs in a given cluste

cluster3vector = which(clusterk3\$cluster == 3)

cluster3vector

library(rgl) # for an easy 3d scatterplot function

using the plot3d function to get a 3 dimensional scatterplot

plot3d(clusterdata, size = 6, col = clusterk3\$cluster,

xlab = "", ylab = "", zlab = "", sub = "3 Clusters")

plot3d(clusterdata, size = 6, col = clusterk5\$cluster,

xlab = "", ylab = "", zlab = "", sub = "5 Clusters")

plot3d(clusterdata, size = 6, col = clusterk8\$cluster,

xlab = "", ylab = "", zlab = "", sub = "8 Clusters")

which plots shows be most overlapping?