CSE460: VLSI Design

Lecture 1

Very Large Scale Integration or VLSI

Contents

- Topics of this course
- History
- Transistors
- Moore's law
- Types of chips
- Design abstraction
- Design methodology

What will you learn in this course?

 You may have heard people say that electronics are made from sand, but do you know how?

What will you learn in this course?

- A solid introduction to VLSI
- Different kinds of chips/ICs
- How to build one
- Theoretical background to making a good chip
- Quality measures of a chip
- The complete lifecycle of a chip

The Transistor

- Transistor concept
 - Transistors can be viewed as electrically controlled switches with a <u>control terminal</u> and <u>two</u>
 <u>other terminals</u> that are connected or <u>disconnected</u> depending on the <u>voltage</u> or <u>current</u>
 applied to the <u>control terminal</u>

Transistor Invention

- 1947: First transistor was built
 - John Bardeen and Walter Brattain built the first functioning point contact transistor at Bell Labs
 - Nearly classified as military secret
 - Later publicly introduced by Bell Labs
 - ✓ Nobel Prize in Physics in 1956 for Bardeen, Brattain, and their supervisor William Shockley
 - We have called it the Transistor, T-R-A-N-S-I-S-T-O-R, because it is a resistor or semiconductor device which can amplify electrical signals as they are transferred through it from input to output terminals. It is, if you will, the electrical equivalent of a vacuum tube amplifier. But there the similarity ceases. It has no vacuum, no filament, no glass tube. It is composed entirely of cold, solid substances.

First IC

- 1959: U.S. Patent 3,138,743 for "Miniaturized Electronic Circuits"
 - Several years later after the invention of transistors, Jack Kilby at Texas Instruments realized the potential for miniaturization if multiple transistors could be built on one piece of silicon
 - Kilby received the Nobel Prize in Physics in 2000 for the invention of the integrated circuit

Bipolar Junction Transistor

- Bipolar Junction Transistor (BJT)
 - Developed by Bell Labs
- More reliable, less noisy, and more power-efficient than the point contact transistor
- BJTs require a small current into the control (base) terminal to switch much larger currents between the other two (emitter and collector) terminals
- Power being dissipated by these base currents even when idle

Metal Oxide Semiconductor Field Effect Transistor

- 1960s: (MOSFETs) began to enter production
- Metal Oxide Semiconductor Field
 Effect Transistors or MOSFETs offer
 the compelling advantage that they
 draw almost zero control current while
 idle.
- Two flavors: nMOS and pMOS
- Three terminals: Gate (control), Drain and Source

First MOSFET Gates

- 1963: First logic gate using MOSFETs
 - Frank Wanlass at Fairchild described the first logic gates using MOSFETs
- Fairchild's gates used both nMOS and pMOS transistors, earning the name Complementary Metal Oxide Semiconductor, or CMOS
- The circuits used discrete transistors but consumed six orders of magnitude less power than their bipolar counterparts
- With the development of the silicon planar process, MOS integrated circuits became attractive for their low cost because each transistor occupied less area and the fabrication process was simpler

Integration Levels

SSI: 1-12 gates

MSI: 13-99 gates

LSI: 100-9999 gates

VLSI: 10-99.9 k gates

ULSI: >100k gates

Trend in MOSFET IC Design

- Early commercial processes used only pMOS transistors and suffered from poor performance, yield, and reliability
- Processes using nMOS transistors became common in the 1970s
- While nMOS process was less expensive than CMOS, nMOS logic gates still consumed power while idle
- Power consumption became a major issue in the 1980s as hundreds of thousands of transistors were integrated onto a single die
- CMOS processes were widely adopted and replaced all the other technologies (pMOS, nMOS)

Types of MOSFET

- pMOS, nMOS, CMOS
- Metal-insulator-semiconductor field-effect transistor (MISFET)
- Floating-gate MOSFET (FGMOS)
- Power MOSFET
- Multi-gate field-effect transistor (MuGFET)
- Quantum field-effect transistor (QFET)

A Closer Look

Packan P, Akbar S, Armstrong M, et al. High performance 32nm logic technology featuring 2nd generation High-k + metal gate transistors. In: International Electron Devices Meeting, IEEE, 2009. 659–662

Cross sectional view of intel's 32nm CMOS devices

A Closer Look

Photomicrograph of a submicron MOS transistor (courtesy Agere)

Moore's Law

- 1965:Gordon Moore plotted # transistors on each chip vs year
 - Fit straight line on semi-log scale
 - Transistor counts have doubled about every 2 years

Moore's Law

- Process generations
 - A manufacturing technology at a particular channel length (feature size) is called a technology node/process node (micron, submicron, nanometer technologies)

Moore's Law

Moore's law and intel microprocessors

microprocessor	date of introduction	# transistors	
80286	2/82	134,000	
80386	10/85	275,000	
80486	4/89	1,200,000	
Intel Pentium TM	3/93	3,100,000	
Intel Pentium ProTM	11/95	5,500,000	
Intel Pentium IITM	1997	7,500,000	
Intel Pentium IIITM	1999	9,500,000	
Intel Pentium 4 TM	2000	42,000,000	
Intel Itanium TM	2001	25,000,000	
Intel Itanium 2™	2003	220,000,000	
Intel Itanium 2 TM (9 MB cache)	2004	592,000,000	

Intel Processors over the years

80286, 80386, 80486, Pentium

Types of chips

- Cell-based design
 - In the 1960s, standard parts were logic gates; in the 1970s they were
 LSI components. Today, standard parts include fairly specialized
 components: communication network interfaces, graphics accelerators
- Full custom
 - Designed manually piece by piece, fully custom layouts
- Application-specific integrated circuits (ASICs)
 - Rather than build a system out of standard parts, designers can now create a single chip for their particular application
- Systems-on-chips (SoCs)
 - a single-chip computer can include a CPU, bus, I/O devices, and memory

Chip Lifecycle

A wafer > fabrication > chips > packaging

Abstraction levels

- Specification
 - A set of requirements, not a design
- Behavior
 - generally modeled as some sort of executable program
- Register-transfer
 - The system is specified as Boolean functions stored in abstract memory elements
- Logic
 - The system is designed in terms of Boolean logic gates, latches, and flip-flops
- Circuit
 - The system is implemented as transistors
- Layout
 - The final design for fabrication

Design methodologies

- Top-down approach
 - Start from the specification and reach device specification
- Bottom-up approach
 - Start from the device optimization and go up to meet specification

Text

#	Title	Author(s)	Edition
1	CMOS VLSI Design	N.H.E. Weste, D. Harris & A. Banerjee	4th ed.
2	Fundamentals of Digital Logic with Verilog Design	Stephen Brown & Zvonko Vranesic	2nd/3rd ed.

Transistors = Switches

Slide References

- 1. https://en.wikipedia.org/wiki/MOSFET
- 2. https://www.techspot.com/article/1840-how-cpus-are-designed-and-built-part-3/
- 3. https://ieeexplore.ieee.org/document/5424253
- 4. Wayne Wolf Modern VLSI Design IP based design
- 5. Jan M. Rabaey Digital Integrated Circuits
- 6. Weste and Harris CMOS VLSI Design

Thank you!