



FIG. 2



connecting a video camera and infrared strobe light to a video synchronization separator circuit employing an infrared bandpass filter over a lens of the video camera connecting a video cassette recorder to the video camera connecting a television monitor to the video cassette recorder powering the video camera, infrared strobe light, video camera, video cassette recorder and television monitor setting a delay period of the video synchronization separator circuit having the video camera provide a signal to the video synchronization separator circuit, and having the video synchronization separator circuit fire the infrared strobe light as a result of the circuit receiving the signal from the video camera (i.e., having the video synchronization separator circuit extract a vertical synchronization pulse from the signal received from the video camera and use the vertical synchronization pulse to provide a triggering signal to the infrared strobe light) playing the video back in single frame mode.

FIG. 4