Práctica:

Comunicación por puerto serie

Titulación: Ingeniero de Telecomunicación Asignatura: Arquitectura y Tecnología de Computadores

Transmisión serie asíncrona

- La unidad de transmisión es el carácter
- Tiempo entre caracteres arbitrario
- Temporización rígida dentro de cada carácter(tbit)
- Formato: 1 bit start 8 bits datos 1 bit stop
- Primero se transmite el bit de menor peso (b₀)

Estructura:

Estructura:

• Muestreo de datos:

Estructura:

Estructura:

Funcionamiento:

Módulo generador de baudios

$$REG_N_BAUDIOS = \left(2^{n} \times 16 \times BAUDIOS/frec_{CLK}\right)$$

REG_N_BAUDIOS =
$$(2^{17} \times 16 \times 9600 / 60 \cdot 10^6)$$
 = 335.5443

BAUDIOS =
$$(336 \times 60 \cdot 10^6 / 2^{17} \times 16) = 9613$$
 Baudios

error% =
$$((9613 - 9600) / 9600) \times 100 = 0.1354$$
%

Módulo generador de baudios

$$REG_N_BAUDIOS = \left(2^{n} \times 16 \times BAUDIOS/frec_{CLK}\right)$$

REG_N_BAUDIOS =
$$(2^{17} \times 16 \times 9600 / 60 \cdot 10^6)$$
 = 335.5443

BAUDIOS =
$$(336 \times 60 \cdot 10^6 / 2^{17} \times 16) = 9613$$
 Baudios

error% =
$$((9613 - 9600) / 9600) \times 100 = 0.1354$$
%

CLK = 60MHZ, n = 17			
BAUDIOS	REG_N_BAUDIOS (decimal)	BAUDIOS REALES	ERROR %
115200	4027	115213,39	0,012
76800	2684	76789,86	0,013
57600	2013	57592,39	0,013
38400	1342	38394,93	0,013
28800	1007	28810,50	0,036
19200	671	19197,46	0,013
14400	503	14390,95	0,063
9600	336	9613,04	0,136
7200	252	7209,78	0,136
4800	168	4806,52	0,136
3600	126	3604,89	0,136
2400	84	2403,26	0,136
1800	63	1802,44	0,136
1200	42	1201,63	0,136
900	31	886,92	1,454
600	21	600,81	0,136

Módulo generador de baudios


```
--- Generador de Baudios.
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.numeric_std.ALL;
entity generador_baudios is
   Generic ( dimension_acu: integer :=16 );
   Port (clk: in std_logic;
             reset: in std_logic;
             baudios: in std_logic_vector(15 downto 0);
             clk_16: out std_logic);
end generador baudios;
architecture arc_generador_baudios of generador_baudios is
    signal acumulador: unsigned( dimension_acu downto 0);
   signal reg_n baudios: unsigned( dimension_acu downto 0);
begin
   req n baudios(baudios'length-1 downto 0) <= unsigned(baudios);</pre>
   reg_n_baudios(dimension_acu downto baudios'length) <= (others => '0');
   gen_baud: process (clk,reset)
   begin
        if (reset='1') then
          acumulador <= (others => '0');
        elsif (clk'event and clk='1') then
          acumulador <= acumulador+req_n_baudios;</pre>
        end if;
   end process;
   clk_16 <= std_logic(acumulador(dimension_acu));</pre>
end arc_generador_baudios;
```

Módulo transmisor

Módulo receptor

Circuito de prueba

