Well-Founded Relations

An operator \succ is called a *partial order* on a set \mathcal{N} iff it satisfies the following two conditions:

Irreflexivity $\forall n \in \mathcal{N} : \neg (n \succ n)$

Transitivity
$$\forall m, n, p \in \mathcal{N} : (m \succ n) \land (n \succ p) \Rightarrow (m \succ p)$$

A partial order \succ on \mathcal{N} is called a *total order* iff it also satisfies the condition:

Completeness
$$\forall m, n \in \mathcal{N} : (m \succ n) \lor (n \succ m) \lor (m = n)$$

A partial order \succ on a set \mathcal{N} is said to be well-founded iff there is no infinite descending chain of the form:

$$n_1 \succ n_2 \succ n_3 \succ \dots$$

with all the n_i in \mathcal{N} . This condition can be expressed formally in terms of functions \square as

$$\neg \exists f \in [Nat \to \mathcal{N}] : \forall i \in Nat : f[i] \succ f[i+1]$$

Any partial order on a finite set is obviously well-founded. The relation > is a well-founded total order on the set Nat of natural numbers. A well-founded partial (or total) order > on a set \mathcal{N} is also a well-founded partial (or total) order on any subset of \mathcal{N} .

A useful well-founded total order is the relation \succ_k on k-tuples of natural numbers, defined by letting

$$\langle a_1, \ldots, a_k \rangle \succ_k \langle b_1, \ldots, b_k \rangle$$

iff there exists i in 1...k such that $a_i > b_i$ and $a_j = b_j$ for all j in 1...(i-1). Since a k-tuple of natural numbers is a function from 1...k to Nat, this definition can be written formally as

$$\begin{array}{ll} a \succ_k b & \triangleq & \land \ a \in [1 \ldots k \to Nat] \\ & \land \ b \in [1 \ldots k \to Nat] \\ & \land \ \exists \ i \in 1 \ldots k \ : \land \ a[i] > b[i] \\ & \land \ \forall j \in 1 \ldots (i-1) \ : \ a[j] > b[j] \end{array}$$

(This isn't a TLA⁺ definition because we can't write \succ_k in TLA⁺; we would have to define the operator for a particular value of n.)

We can generalize these relations \succ_k to the well-founded total order \succ on the set of all finite sequences of natural numbers by defining $m \succ n$ to be true iff either (i) sequence m is longer than sequence n or (ii) they both have length k and $m \succ_k n$. The TLA⁺ definition of \succ is easily written using the operators Seq and Len defined in the standard Sequences module.