

INSTITUTO FEDERAL DA PARAÍBA

DISCENTE: Micael Marques Rodrigues Silva

DOCENTE: Alexandre Sales Vasconcelos

Sistemas Embarcados

Projeto de Disciplina

CAMPINA GRANDE, PARAÍBA, 2022

Março de 2022

Micael Marques Rodrigues Silva

Rayanne Kelly Marcelino Barros Elias

Robô Pêndulo Invertido

Projeto apresentado como comprimento parcial da disciplina Sistemas Embarcados.

Março de 2022

Resumo

Este projeto visa à construção de um robô pêndulo invertido, o qual consiste em uma estrutura de dois andares que sobre duas rodas se equilibra. O robô segue o princípio físico do pêndulo invertido, ou seja, os motores irão atuar em cada roda para corrigir a inclinação medida por sensores na parte superior do robô, tentando manter o centro de massa em zero grau em relação ao eixo do robô.

Sumário

1	INTRO	DDUÇÃO	5
2	OBJE	DBJETIVOS	
3	DESENVOLVIMENTO		73.1
		MATERIAL UTILIZADO	7
	3.2	PROCESSO DE CONSTRUÇÃO	8
	3.3	DIAGRAMA DO CIRCUITO	8
4	CONCLUSÃO		9
		OGRAFIA	

1 - Introdução

Pêndulo invertido é uma estrutura onde o ponto de articulação abaixo do centro de gravidade. Este aparelho além de ser objeto de estudo em física clássica é usado em muitas aplicações de robótica. O pêndulo invertido é também o modelo de diversos dispositivos como o corpo humano, onde com a absorção e difusão dos sinais (visão, audição e outros) são enviados para o cérebro que calcula o ângulo que o corpo faz com o solo e envia sinais de controle, ativando os músculos para corrigir qualquer variação indesejada. Além do corpo humano, o pêndulo invertido (seu princípio) é usado em foguetes que regulam seu ângulo com a terra, exoesqueletos robóticos que ajudam pessoas com mobilidade dificultada e no famoso Segway, transportes pessoais que além de fazer alguém ficar em pé em cima dele, ainda é capaz de seguir instruções de direção.

Fonte: Internet

2 - Objetivos

Nesse projeto será utilizado o método do filtro de kalman, implementado em algoritmo a fim se adquirir um valor estável do sensor localizado no topo do robô. Em seguida, será implementado o método PID para controlar a variável de saída do sistema (velocidade do motor).

3 - Desenvolvimento

O robô pode ser divido em duas partes: as rodas e o corpo. As rodas são montadas em eixos coincidentes ligadas aos motores direito e esquerdo. O robô é simétrico com relação aos lados direito e esquerdo.

Fonte: Foto do autor.

3.1 - Material Utilizado

6(seis) - jumpers macho/fêmea 20cm

4(quatro) - jumpers macho/macho 10cm

2(dois) - Roda 68mm + Motor DC 3-6V com Caixa de Redução

1(um) – Arduino Uno SMD

1(um) – Acelerômetro e Giroscópio MPU 6050

1(um) - Mini Protoboard

1(um) - Bateria 9V

2(dois) – Placas de Acrílico 14x16cm

3.2 - Processo de Construção

Foi utilizado uma biblioteca do filtro de kalman para sua implementação no algoritmo do robô, com este foi extraído um valor de giro que vai de -38 a 38 sendo 0 o ponto de equilíbrio do sistema, em seguida foi implementado o método PID para controle de saída dos motores. A implementação do PID visa controlar os valores de saída do sistema afim de conseguir a melhor estabilidade.

3.3 - Diagrama do Circuito

4 - Conclusão

Neste projeto foi construído um robô pêndulo invertido utilizando motores CC(Corrente contínua), arduino e o MPU 6050 no qual foi implementado algoritmo de filtro de dados(filtro de kalman) para filtrar os valores dos sensores que são processado e convertido em dados de saída interpretados pelos motores para corrigir a inclinação do robô.

A aplicação do conceito do pêndulo invertido é de extrema importância para a indústria de automação e outras aplicações como foguetes e exoesqueletos.

5- Bibliografia

http://www.decom.ufop.br/imobilis/sensores-imu-uma-abordagem-completa-parte-2/

http://sites.poli.usp.br/d/PME2472/ziegler.pdf

http://blog.filipeflop.com/sensores/tutorial-acelerometro-mpu6050-arduino.htm l