ML methods for materials discovery

1. Classical Machine Learning

1a. Supervised Learning Regression

- e.g., linear regression, SVM
- predict quantitative materials properties (e.g., bandgap, hardness, thermal conductivity)

Classification

- e.g., decision tree, random forests
- predict categorical outcomes

(e.g., crystal structure type, phase stability)

1b. Unsupervised Learning

- e.g., PCA, t-SNE
- clustering, Dimension Reduction
- materials categorization, discovery new phases

Reinforcement Learning

- optimize sequential decision-making tasks
- reaction pathways optimization

Active learning

- model-driven selection of informative experiments
- maximizing information gain

2. Deep Learning

2a. Feedforward Neural Networks (FNN)

- most basic deep learning architecture
- predict material properties from descriptors

2b. Convolutional Neural Networks (CNN)

- designed to process image data
- microscopy & diffraction image analysis

2c. Graph Neural Networks (GNN)

 molecules/Crystal structures as graphs (nodes = atoms, edges = bonds)

2d. Generative Models

- e.g., GANs, VAEs
- propose new compounds or structures

Baysian Optimization

- probablistic model guiding next experiment
- minimize the number of trials

Natural Language Processing

- text mining & literature analysis
- automatic extraction of data from articles