Big Mart Sales Analysis

Project Report

A guide by Husanbano Shamlik

Summary

Industry: Retail Industry

Stores: Super Market 1,2,3,Grocery Store

City:Tier 1(Metropolitan City),Tier 2(Mediun-sized urban center),Tier 3 (smaller towns and urban area)

Items: Dairy', 'Soft Drinks', 'Meat', 'Fruits and Vegetables', 'Household', 'Baking Goods', 'Snack Foods', 'Frozen Foods','Breakfast', 'Health and Hygiene', 'Hard Drinks', 'Canned','Breads', 'Starchy Foods', 'Others', 'Seafood'

Data Description

- BigMart has collected sales data from the year 2013, for 1559 products across 10 stores in different cities. Where the dataset consists of 12 attributes like Item Fat, Item Type, Item MRP, Outlet Type, Item Visibility, Item Weight, Outlet Identifier, Outlet Size, Outlet Establishment Year, Outlet Location Type, Item Identifier and Item Outlet Sales. Out of these attributes response variable is the Item Outlet Sales attribute and remaining attributes are used as the predictor variables.
- Item Identifier -> Unique product ID
- tem_Weight -> Weight of product
- Item_Fat_Content -> Whether the product is low fat or not
- tem_Visibility -> The % of total display area of all products in a store allocated to the particular product
- Item_Type -> The category to which the product belongs
- Item_MRP -> Maximum Retail Price (list price) of the product
- Outlet_Identifier -> Unique store ID
- Outlet_Establishment_Year -> The year in which store was established
- Outlet_Size -> The size of the store in terms of ground area covered
- Outlet_Location_Type -> The type of city in which the store is located
- Outlet_Type -> Whether the outlet is just a grocery store or some sort of supermarket
- Item_Outlet_Sales -> Sales of the product in the particular store. This is the outcome variable to be predicted.

DATA CLEANING:

Before handling missing values using mode and statistical methods

Treatment of Null Values in Dataset through Mapping and Statistical Imputation.

There are null values present in item weight as count less than total rows, We have seen above that Item_Weight is a Numerical Feature So we can substitute by its mode value to fill the missing values. * Outlet_Size is a Categorical Feature so will use mode to impute the missing values in this column.

We know that, the Outlet_size and Outlet_Type are related to each other. So we are filling the missing values of the Outlet_Size by using the values in Outlet_Type.

Exploratory Data Analysis(EDA)

Analysis of Item_Weight

From the plot ,We can see that Item_Weight with range 13 is having the highest distribution.

Analysis of Item Fat

As you can see the low fat and regular in item_fat_content written differently so first we need to correct it for further analysis because it represents the same thing.

Regular 3006 Name: Item_Fat_Content, dtype: int64

5517

Low Fat

Analysis of Item Visibility

The plot suggest that its not a normal distribution or we can say that the distribution is kind of right skewed or positive skewed

Analysis of Item Type

```
df['Item_Type'].value_counts()
```

Fruits and Vegetables	1232
Snack Foods	1200
Household	910
Frozen Foods	856
Dairy	682
Canned	649
Baking Goods	648
Health and Hygiene	520
Soft Drinks	445
Meat	425
Breads	251
Hard Drinks	214
Others	169
Starchy Foods	148
Breakfast	110
Seafood	64
Name: Item_Type, dtype:	int64

Fruits and Vegetables and Snack Foods are the two categories in which most of the items fall whereas Seafood is the least

Analysis of Outlet Identifier

There are 10 outlets which are almost balanced except for two outlets.

Analysis of EstablishmentYear

Analysis of Establishment Year with item Sales

	Outlet_Establishment_Yea	r Item_Outlet_Sales
0	198	5 2054.684740
1	198	7 2210.295979
2	199	7 2215.219692
3	199	8 339.351662
4	199	9 2286.007118
5	200	2 2134.445147
6	200	2346.946432
7	200	7 2224.100586
8	200	9 1979.629310

Avg Outlet Sales in the 2004 year are more and least sales in 1998

Analysis of Outlet Size

Small 4798
Medium 2793
High 932
Name: Outlet_Size, dtype: int64

There are few outlets with high size. Most of the outlets are of small size.

Count plot for Outlet Size

Source: <u>theguardian.com</u>

Analysis of Outlet Location Type

Tier 3 3350 Tier 2 2785 Tier 1 2388

Most of the stores are located in Tier 3 cities.

Source: <u>travel.trade.gov</u>

Analysis of Outlet Type

Supermarket Type1 5577
Grocery Store 1083
Supermarket Type3 935
Supermarket Type2 928
Name: Outlet_Type, dtype:

supermarket Type 1 has more no of outlet type category

Analysis of Item outlet sales

Most Outlet sales in range of 1000 to 2000 and its a right skewed distribution.

Analysis of Outlet Establishment Year and Outlet Location

Type Outlet Location Type Outlet Establishment Year Tier 1 Tier 2 Tier 3

Name: Outlet_Establishment_Year, dtype: int64

In Tier1 and Tier3 cities outlets were established in 1985 whereas tier2 got outlets after 2000

Analysis of Outlet Establishment year and Outlet

Туре		ê
Outlet_Establishment_Year	Outlet_Type	
1985	Supermarket Type3	935
	Grocery Store	528
1987	Supermarket Type1	932
1997	Supermarket Type1	930
1998	Grocery Store	555
1999	Supermarket Type1	930
2002	Supermarket Type1	929
2004	Supermarket Type1	930
2007	Supermarket Type1	926
2009	Supermarket Type2	928
Name: Outlet_Type, dtype:	int64	

Supermarket type 2 was build much later while grocery stores and supermarket Type1 and Type3 are the oldest outlet type.

Analysis of Outlet Sales and Item MRP

We can see the correlation between these two variables as the mrp of an item increases item outlet sales also increases.

Analysis of Outlet Sales and Item Type

Item_Type	Item_Outlet_Sales	
Baking Goods	1794.3310	11
	539.2980	5
	1518.0240	5
	1211.7560	4
	126.5020	3
Starchy Foods	5452.9020	1
	5642.6550	1
	5712.5640	1
	6301.1312	1
	6478.2340	1

Baking Goods, Starchy Foods contribute towards the item outlet sales.

Analysis of Outlet Sales and Item MRP

Item MRP

Analysis of Outlet Sales and Item Visivility

There is no correlation between these two variables.

Analysis of Outlet Sales and Item_Weight

 Item_Weight
 Item_Outlet_Sales

 Item_Weight
 1.000000
 0.012705

 Item_Outlet_Sales
 0.012705
 1.000000

There is very low correlation between these two variables.

Analysis of Outlet Sales and Outlet Type

SuperMarket Type 3 has given the most item outlet sales

Analysis of Outlet Sales and Outlate Location

Tier 3 cities produced highest item outlet sales compared to other types of cities.

Before removing outliers by its median values

Before

7240.5750

After

em_Outlet_Sales	Item_Visibility It	Item_Outlet_Sales	Item_Visibility	ľ
6768.5228	0.255395	3735.1380	0.016047	
7968.2944	0.293418 F	443.4228	0.019278	S
	0.278974 S	2097.2700	0.016760	
6976.2524	0.291865 _V	732.3800	0.000000	V
7370.4060	0.204700	994.7052	0.000000	ŀ
6704.6060				
	0.209163 _V	2778.3834	0.056783	
7549.5062	0.266397	549.2850	0.046982	
6630.0364	0.214125 S	1193.1136	0.035186	ı
7240.5750	0.227261	1845.5976	0.145221	

After removing outliers by its median values

Statistical Analysis

- 1.Conduct Statistical test to determine the significance of factor such as Iltem Type and product attribute on sales.
- 2.Used the technique like ANOVA to quantify the impact of item categories on sales.
- 3. a.F-Stistics: 2.602491065669314
- b.P-value: 0.000645762579431471
- 4.A p-value below a chosen threshold (e.g., 0.05) indicates strong evidence against the null hypothesis.
- 5. Since our p-value (0.0006457625) is less than our chosen significance level of 0.05, we reject the null hypothesis. This indicates that at least one item category exhibits a statistically significant difference in outlet sales compared to others.
- 6. The significant differences observed in sales across item categories suggest that certain types of items may have a stronger impact on sales performance than others. This information can guide strategic decision-making related to inventory

management, marketing, and sales promotions.

Thank You