```
In [1]:
```

import numpy as np from sklearn.model_selection import KFold
from sklearn.model_selection import cross_val_score

from sklearn.neighbors import KNeighborsClassifier

import warnings

import pandas as pd

warnings.filterwarnings("ignore")

zoo = pd.read_csv('C:/Users/acer/Sandesh Pal/Data Science Assgn/KNN/Zoo.csv')

In [4]:

In [3]:

zoo.head()

Out[4]:

	animal name	hair	feathers	eggs	milk	airborne	aquatic	predator	toothed	backbone	breathes	venomous	fins	legs	tail	domestic	catsize	t
0	aardvark	1	0	0	1	0	0	1	1	1	1	0	0	4	0	0	1	
1	antelope	1	0	0	1	0	0	0	1	1	1	0	0	4	1	0	1	
2	bass	0	0	1	0	0	1	1	1	1	0	0	1	0	1	0	0	
3	bear	1	0	0	1	0	0	1	1	1	1	0	0	4	0	0	1	
4	boar	1	0	0	1	0	0	1	1	1	1	0	0	4	1	0	1	

In [5]:

checking for null values zoo.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 101 entries, 0 to 100

Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype					
0	animal name	101 non-null	object					
1	hair	101 non-null	int64					
2	feathers	101 non-null	int64					
3	eggs	101 non-null	int64					
4	milk	101 non-null	int64					
5	airborne	101 non-null	int64					
6	aquatic	101 non-null	int64					
7	predator	101 non-null	int64					
8	toothed	101 non-null	int64					
9	backbone	101 non-null	int64					
10	breathes	101 non-null	int64					
11	venomous	101 non-null	int64					
12	fins	101 non-null	int64					
13	legs	101 non-null	int64					
14	tail	101 non-null	int64					
15	domestic	101 non-null	int64					
16	catsize	101 non-null	int64					
17	type	101 non-null	int64					
d+ 1m	es. int6/(17)	object(1)						

dtypes: int64(17), object(1)

memory usage: 14.3+ KB

In [6]:

zoo.describe()

```
Out[6]:
             hair
                     feathers
                                   eggs
                                               milk
                                                       airborne
                                                                   aquatic
                                                                              predator
                                                                                          toothed
                                                                                                    backbone
                                                                                                                breathes
                                                                                                                          venomous
      101.000000 101.000000 101.000000 101.000000
                                                               101.000000
                                                                           101.000000 101.000000
                                                                                                 101.000000 101.000000
                                                                                                                         101.000000
count
         0.425743
                    0.198020
                                0.584158
                                           0.405941
                                                      0.237624
                                                                  0.356436
                                                                             0.554455
                                                                                         0.603960
                                                                                                    0.821782
                                                                                                               0.792079
                                                                                                                           0.079208
 mean
         0.496921
                    0.400495
                                0.495325
                                           0.493522
                                                      0.427750
                                                                  0.481335
                                                                             0.499505
                                                                                         0.491512
                                                                                                    0.384605
                                                                                                               0.407844
                                                                                                                           0.271410
  std
         0.000000
                    0.000000
                                0.000000
                                           0.000000
                                                      0.000000
                                                                  0.000000
                                                                             0.000000
                                                                                         0.000000
                                                                                                    0.000000
                                                                                                               0.000000
                                                                                                                           0.000000
  min
  25%
         0.000000
                    0.000000
                                0.000000
                                           0.000000
                                                      0.000000
                                                                  0.000000
                                                                             0.000000
                                                                                         0.000000
                                                                                                    1.000000
                                                                                                               1.000000
                                                                                                                           0.000000
  50%
         0.000000
                    0.000000
                                1.000000
                                           0.000000
                                                      0.000000
                                                                  0.000000
                                                                             1.000000
                                                                                         1.000000
                                                                                                    1.000000
                                                                                                               1.000000
                                                                                                                           0.000000
  75%
         1.000000
                    0.000000
                                1.000000
                                           1.000000
                                                      0.000000
                                                                  1.000000
                                                                             1.000000
                                                                                         1.000000
                                                                                                    1.000000
                                                                                                               1.000000
                                                                                                                           0.000000
         1.000000
                    1.000000
                                1.000000
                                           1.000000
                                                      1.000000
                                                                  1.000000
                                                                             1.000000
                                                                                         1.000000
                                                                                                    1.000000
                                                                                                               1.000000
                                                                                                                           1.000000
                                                                                                                               Þ
                                                                                                                            In [7]:
X = zoo.drop(['type', 'animal name'], axis =1)
X.head()
                                                                                                                           Out[7]:
   hair
        feathers
                      milk
                           airborne
                                   aquatic predator toothed backbone breathes venomous
                                                                                         fins
                                                                                              legs
                                                                                                   tail domestic catsize
                 eggs
0
                    0
                         1
                                                          1
                    0
                                         0
                                                          1
                                                                                       0
                                                                                            0
                                                                                                 4
                                                                                                              0
1
                                                                                                                      1
     0
              0
                    1
                         0
                                 0
                                         1
                                                          1
                                                                    1
                                                                             0
                                                                                       0
                                                                                            1
                                                                                                 0
                                                                                                              0
                                                                                                                      0
              0
                    0
                                 0
                                         0
                                                                                       0
                                                                                            0
                                                                                                 4
                                                                                                     0
                                                                                                              0
3
                         1
                                                  1
                                                          1
                                                                                                                      1
                    0
                                         0
                                                  1
                                                                                       0
                                                                                            0
                                                                                                 4
                                                                                                              0
                                                                                                                      1
                                                                                                                            In [8]:
  = zoo['type']
Υ
Υ
                                                                                                                           Out[8]:
0
        1
        1
2
        4
3
        1
4
96
        1
97
        6
98
        1
99
        7
100
        2
Name: type, Length: 101, dtype: int64
                                                                                                                            In [9]:
# Let's use Grid search CV to find out best value for K
                                                                                                                           In [10]:
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import GridSearchCV
                                                                                                                           In [11]:
n neighbors = np.array(range(1,40))
param grid = dict(n neighbors=n neighbors)
                                                                                                                           In [12]:
model = KNeighborsClassifier()
grid = GridSearchCV(estimator=model, param_grid=param_grid)
grid.fit(X, Y)
                                                                                                                          Out[12]:
GridSearchCV (estimator=KNeighborsClassifier(),
                                                                                       7,
                                                                             5,
                                                                                            8, 9, 10, 11, 12, 13, 14, 15
               param grid={'n neighbors': array([ 1,  2,
                                                                   3, 4,
                                                                                   6,
, 16, 17,
        18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
        35, 36, 37, 38, 39])})
4
                                                                                                                             - ▶
                                                                                                                           In [13]:
```

print(grid.best_score_)
print(grid.best params)

```
0.96
{'n_neighbors': 1}
                                                                                                              In [14]:
# Visualizing the CV results
                                                                                                              In [15]:
import matplotlib.pyplot as plt
%matplotlib inline
# choose k between 1 to 41
k_range = range(1, 41)
k_scores = []
# use iteration to caclulator different k in models, then return the average accuracy based on the cross
for k in k_range:
 knn = KNeighborsClassifier(n neighbors=k)
 scores = cross_val_score(knn, X, Y, cv=5)
 k_scores.append(scores.mean())
# plot to see clearly
plt.plot(k_range, k_scores)
plt.xlabel('Value of K for KNN')
plt.ylabel('Cross-Validated Accuracy')
plt.show()
  0.95
  0.90
Cross-Validated Accuracy
  0.85
  0.80
  0.75
  0.70
  0.65
  0.60
  0.55
                                               40
                10
                      15
                           20
                                     30
                                          35
                      Value of K for KNN
                                                                                                              In [16]:
#KNN Classification
num folds = 30
kfold = KFold(n_splits=20)
model = KNeighborsClassifier(n neighbors=1)
results = cross_val_score(model, X, Y, cv=kfold)
print(results.mean())
0.9800000000000001
                                                                                                               In []:
```