

함수의 활용

C 언어

학습목표

- ▶ 라이브러리 함수에 대해 알 수 있다
- ▶ 재귀 함수에 대해 알 수 있다.

1 라이브러리 함수

- ① C 언어 컴파일러에서 사용자가 많이 필요로 하는 것을 함수로 제공하는데 이를 라이브러리 함수 또는 표준 함수라 한다.
- ② 라이브러리 함수는 함수명과 괄호 안의 인수로 구성된다.

형식: 함수명(인수)

③ 수치 라이브러리 함수의 종류

관련 헤더	함수명(인수)	의미
math.h	double sin(double x)	sin(x)
math.h	double cos(double x)	cos(x)
math.h	double tan(double x)	tan(x)
math.h	double sqrt(double x)	제곱근
math.h	int abs(int x)	절대값
stdlib.h	int rand(int x)	난수 발생

예 절대값을 구하는 프로그램(입력값: -5)

프로그램 소스 코드	실행 결과
#include 〈stdio.h〉 #include 〈math.h〉 void main(){ int a, b; scanf("%d", &a); b=abs(a); printf("%d의 절대값은=%d", a, b); }	- 5의 절대값은=5

[프로그램 해설]

- 절대값을 구하는 수치 함수를 사용하기 위해 math.h 헤더 파일을 포함시킨다.
- scanf() 문으로 값을 입력받아 abs() 함수에 입력하면 절대값을 구한 결과가 출 력된다.
- ④ 난수 발생 프로그램
 - C 언어에서는 난수 발생을 위해 rand() 함수와 srand() 함수를 제공한다.
 - rand() 함수는 난수를 발생시키고. srand() 함수는 초기화를 한다.
 - 난수를 발생하기 위해서는 〈stdlib.h〉 파일을 포함해야 한다.

```
EBS tip -
```

라이브러리 함수를 사용하기 위 해서는 헤더파일을 반드시 포함 시켜야 한다.

■ 절대값과 동일한 역할을 수행 하는 사용자 정의 함수 정의 int fun_abs(int x){ if (x > 0)return x; return x * (-1);

에 1부터 10까지 범위의 난수 20개를 발생하는 프로그램

프로그램 소스 코드	실행 결과
#include \stdio.h\> #include \stdio.h\> #include \stdiib.h\> #include \stime.h\> void main(){ int m, num, cnt; srand((unsigned)time(NULL)); cnt = 0; for(m = 1; m \le 20; m++){ num = (rand() % 10) + 1; printf("%3d", num); cnt++; if (cnt % 5 == 0) printf("\n"); } }	6 1 2 5 10 9 7 6 8 1 9 2 4 1 1 4 1 10 1 7

[프로그램 해설]

- srand((unsigned)time(NULL))를 이용하여 난수 발생 계열을 초기화한다. 발 생 계열을 초기화하지 않으면 계속해서 동일한 난수가 발생될 수 있다.
- rand()에 의해 생성된 값을 10으로 나눈 나머지는 0부터 9까지의 숫자에 해당 하므로 1부터 10까지의 난수를 발생하기 위해서는 발생된 값에 1을 더한다.
- 그리고 난수가 발생할 때마다 cnt 값을 1씩 더하여 난수가 발생된 수를 누적한 다. 또. 발생된 난수를 한 줄에 5개씩 인쇄하기 위해 cnt 값을 5로 나누어 나머 지가 0이면 다음 줄로 이동하기 위해 print(\n); 문을 사용하였다.
- 따라서 한 줄에 5개씩 20개의 난수를 발생하여 출력한다.

⑤ 문자열 라이브러리 함수

관련 헤더	함수명(인수)	의미
string.h	strlen(x)	문자열 x의 길이
string.h	strcat(a, b)	두 문자열의 접속
string.h	strcmp(a, b)	두 문자열의 비교
string.h	strcpy(a, b)	문자열의 복사
stdio.h	gets(x)	문자열 입력 함수
stdio.h	puts(x)	문자열 출력 함수

- rand() : 정수형의 난수값을 반환한다.
- srand(seed) : seed 값에 따 라 난수값을 초기화한다.
- 실행할 때마다 다른 난수가 발 생하도록 하기 위해 srand의 seed 값으로 항상 바뀌는 time 함수를 이용한다.
- time 함수를 사용하기 위해서는 프로그램에 〈time.h〉 헤더 파일 을 포함한다.

에 문자열 함수를 활용한 프로그램

프로그램 소스 코드	실행 결과
#include (stdio.h) #include (string.h) void main(){ char s[] ="ALGORITHMS"; int cnt, a;	10 AGRTM
a = strlen(s); printf("%2d\n", a);	
for(cnt = 0; cnt <= a; cnt++){ if ((cnt % 2) == 0) printf("%c ", s[cnt]); }	

[프로그램 해설]

- strlen() 함수를 사용하기 위해 〈string.h〉 헤더 파일을 include한다.
- strlen(s) 함수는 문자열 처리 함수 중에 하나로 문자열 s의 길이를 리턴한다.
- 따라서 문자열 길이를 저장하는 변수 a = 10이 된다.
- cnt를 2로 나누었을 때 나머지가 0인 경우의 첨자에 해당하는 문자만 출력한다.

2 재귀 함수

- ① 재귀 함수란 자기 자신으로부터 호출되는 함수를 말한다.
- ② 자기 자신을 호출하는것을 재귀 호출(recursive call)이라고 한다.
- ③ 재귀 호출 함수는 재귀 호출이 종료되는 조건을 반드시 설정해야 한다.
- 에 재귀 호출을 이용한 1부터 n까지의 합을 구하는 프로그램

프로그램 소스 코드	실행 결과
#include \stdio.h\\ int sum(int n); void main(){	Inpu Number =>10 sum of 1 - 10:55
<pre>int num; printf("Inpu Number =>"); scanf("%d", #); printf("sum of 1 - %d : %d\n", num, sum(num)); } int sum(int n){ if (n == 1) return 1; else return n + sum(n-1); }</pre>	

[프로그램 해설]

- 1부터 n까지의 합을 구하는 과정을 재귀적으로 분석하면, sum(n)=n+sum(n-1) 이 된다. 예를 들어. n=10인 경우 sum(10)=10+sum(9)와 같이 구할 수 있다.
- 재귀 호출이 종료되는 조건을 제시하기 위해 n=1일 때 sum(1)=1이 되도록 설 정한다.

■ C 언어에서 문자열 길이는 \O(null)을 제외한 문자의 개수 가 된다.

● 반복문을 이용한 1부터 n까지 의 합을 구하는 사용자 정의 함수

```
int sum(int n){
int k, tot = 0;
 for (k = 1; k \le n; k++)
    tot = tot + k;
return tot;
```

- sum 함수에서 n+sum(n-1)의 과정을 통해 자기 자신을 호출하므로 재귀 함수 이다
- 실행 과정은 다음과 같이 나타낼 수 있다.

변수의 영역 규칙(scope rules)

변수는 선언된 위치에 따라 변수의 수명과 유효 범위가 다르다.

(1) 지역 변수

- ① 지역(local) 변수는 하나의 블록에서만 정의되어 사용되는 변수이다.
- ② 지역 변수와 전역 변수의 이름이 같으면 지역 변수가 유효하다.
- ③ 중첩된 블록의 지역 변수들의 이름이 같으면 가장 안쪽에 정의된 지역 변수가 유 효하다

(2) 전역 변수

- ① 전역(global) 변수는 함수 밖에서 선언하여 전체 프로그램에서 사용할 수 있는 변수이다.
- ② 전역 변수는 많은 함수에서 사용하는 공용성이 높은 변수에 주로 사용한다.

(3) 프로그램에서의 사용 예

- ① 전역 변수로 선언된 변수 : 선언 위치부터 프로그램 끝까지 유효하다.
- ② 함수 내에 지역 변수로 선언된 변수: 함수 내부에서 유효하다.

에 지역 변수와 전역 변수

프로그램 소스 코드	실행 결과
#include \(\stdio, h \) int a, b, c; int fun(int b, int c) { a = a + 10; b = b + 10; c = c + 10; return a; } void main(void) { int a, b, c; a = 3; b = 5; c = 7; a = fun(b, c); printf("%2d %2d %2d\n", a, b, c); }	10 5 7

[프로그램 해설]

- 함수 외부의 변수 a, b, c는 전역 변수로 선언되었다. 따라서 프로그램 전체에 서 접근 및 사용이 가능하다.
- main() 함수에서 변수 a, b, c는 지역 변수로 선언하여 사용된다. 따라서 전역 변수와 이름이 동일하지만, 선언된 지역 내에서만 사용할 수 있다.
- fun()에서 선언된 변수 b, c는 fun() 내에서만 유효하다. 즉 변수 b와 c의 값이 함수 fun() 내에서 바뀌어도 main() 함수에서 b와 c의 값에는 영향을 주지 않 는다.
- 따라서 출력값은 전달받은 10이 main() 함수의 a에 저장되어 10 5 7이 된다.

- 지역 변수와 전역 변수의 이 름이 같으면 지역 변수가 유 효하다.
- 프로그램 작성시 가급적 지역 변수명과 전역 변수명은 다르 게 설정하는 것이 바람직하다.

기출 모의고사

정답 및 해설 p. 15

2009학년도 대수능

[1~2] 다음은 자료를 관리하는 프로그램이다. 물음에 답 하시오.

```
#include \( stdio.h \)
int k[10];
int Fr. Re;
void fun P(int m) {
k[Re] = m;
Re = Re + 1;
int fun_G() {
  int b;
  b = k[Fr];
  Fr = Fr + 1;
  return b;
void main() {
int a;
Fr = 0; Re = 0;
fun_P(7);
fun_P(5);
a = fun G();
fun_P(a);
fun_P(3);
a = Fr;
while(a != Re ) {
  printf(" %d", k[a]);
  a = a + 1;
```

위 프로그램에 대한 설명으로 옳은 것만을 〈보기〉 에서 있는 대로 고른 것은?

一【보기】一

- ¬. fun P()는 반환값이 없다.
- ㄴ. fun_G()는 정수형의 연산 결과를 반환한다.
- ㄷ. 변수 Fr은 fun_G()에서 사용되는 지역 변수 이다.
- (1) ¬
- (2) L
- ③ 7, ∟

- (4) L. C
- (5) 7, L, C

위 프로그램의 실행 결과는?

 $\bigcirc 357$

2573

3753

④ 7553

⑤ 7573

입력값이 5일 때 다음 프로그램의 실행 결과는?

```
#include \( stdio.h \)
int r(int x);
void main(){
int a.s;
 scanf("%d", &a);
 s=r(a);
 printf("%d", s);
int r(int x){
 if (x==1)
  return 1;
 else
   return r(x-1)+x;
```

- 1)5
- 2 10
- ③ 15

- 4) 20
- (5)25

4 다음은 밑변 a, 높이 b를 입력받아 직각 삼각형 의 빗변 c를 구하는 프로그램을 작성하려고 한 다. 이에 대한 설명으로 옳지 않은 것은?


```
#include (stdio.h)
#include \( \text{math.h} \)
void main() {
변수 선언 부분 (가)
scanf("%f,%f", &a, &b);
c=a*a+b*b;
d=sqrt(c); (나)
printf("%6.2f", d);
```

- ① (가)의 변수 선언은 실수형이어야 한다.
- ② 자료를 입력받기 위해 함수를 사용하였다.
- ③ 변수 c의 값이 4.0이라면 d의 값은 16.0이다.
- ④ (나)에서 사용한 함수를 라이브러리 함수라 한다.
- ⑤ (나)의 함수가 포함된 헤더 파일을 전처리기에 포함시켜야 한다.

5 다음의 프로그램의 실행 결과는?

```
#include \( stdio.h \)
#include \( \string.h \)
void main(){
 char s[10] = "KOREAART";
 int cnt, n;
 n = strlen(s);
 for(cnt = 0; cnt \langle = n; cnt++ \rangle
    if (cnt % 2 ==1)
    printf("%c", s[cnt]);
```

- ① KOREA ② KRAR
- ③ OEAA

- (4) OEAT
- (5) REAA

다음 프로그램의 실행 결과는?

```
#include \( stdio.h \)
void main(){
int k;
scanf("%d", &k);
if (k\langle 0)
 k=k*(-1);
printf("d\n", k);
```

- ① exp()
- ② int()
- ③ log()

- 4 abs()
- (5) sqrt()