RhoChi:

- 1. Input files
- 2. Program structure
- 3. ToDo

Input files

- 1. Experimental data:
 - single crystal: list of hkl reflections
 - powder: 1D, 2D diffraction profiles and background
- 2. Model parameters:
 - ".cif" or STAR-like file (International Tables vol. G)
- 3. Handbook values:
 - space group
 - magnetic form-factors (<j₀>, <j₂>)
 - neutron scattering length

Experimental data

single crystal:

1D powder diffraction:

```
#wavelength 2.35
#field 0.0 0.0 5.0
# ttheta
             IntUP
                               IntDOWN
                      sIntUP
                                        sIntDOWN
    7.80
           0.74282
                     0.55201
                               0.24785
                                         0.29666
    8.00
           0.18608
                     0.18170
                               0.16548
                                         0.17133
```

2D powder diffraction:

background:

```
# ttheta IntBKGR
8.20 0.11000
80.40 0.18300
...
```

Model parameters -- ".rcif"

- phase (totally correspond to .cif description)
- experiment
- refinement

```
refinement
global filerhochi
                                             data ref
                                             refinement file name output 'full.lis'
data nacaalf
cell length a 9.88888773144
                                             100p
cell length b 9.88888773144
                                              refinement param1
                                              $pnd $nacaalf pd phase scale
loop
atom site label
atom site type symbol
                                             data pnd
atom site fract x
                                              2dpd file name bkgr 'full.bkg'
                                              2dpd file name input 'full.dat'
atom site fract y
atom site fract z
atom site occupancy
                                             loop
atom site b iso or equiv
                                             2dpd phase name
 F1 F 0.13847 0.30656 0.12052 1.0 0.0
                                             2dpd phase scale
                                              2dpd phase igsize
                                              2dpd phase extinction radius
                                             2dpd phase extinction mosaicity
   phase
                                              nacaalf 0.0110321630859 0.0 0.0 0.0
```

experiment

It can be directly used to plot the structure

Handbook values

space group: 'itables.txt'

coefficients for <j₀>, <j₂>: 'formmag.tab'

neutron scattering length: 'bscat.tab'

```
203 Fd-3
                     Cubic
choice: 1
centr: true
pcentr: -0.125, -0.125, -0.125
symmetry: x,y,z
symmetry: -x, -y, z
symmetry: -x, y, -z
symmetry: x, -y, -z
symmetry: z,x,y
symmetry: z_1 - x_1 - y
symmetry: -z, -x, y
symmetry: -z, x, -y
symmetry: y,z,x
symmetry: -y,z,-x
symmetry: y_{i}-z_{i}-x
symmetry: -y, -z, x
```

```
Z <j0> form factors for 3d transition elements and their ions

E Sc0 0 0.2512 90.0296 0.3290 39.4021 0.4235 14.3222 -0.0043

F Sc1 0 0.4889 51.1603 0.5203 14.0764 -0.0286 0.1792 0.0185

F Sc2 0 0.5048 31.4035 0.5186 10.9897 -0.0241 1.1831 0.0000

F Ti0 0 0.4657 33.5898 0.5490 9.8791 -0.0291 0.3232 0.0123

...
```

```
#Neutron scattering lengths and cross sections
#!Isotope conc
               Coh b
                      Inc b
                              Coh xs
                                     Inc xs Scatt xs
                                                        Abs xs
                                                        0.3326
Н
         --- -3.7390
                        --- 1.7568
                                    80.26
                                               82.02
   99.985 -3.7406 25.274 1.7583
                                    80.27
                                                         0.3326
1 H
                                               82.03
```

Program structure

Principal scheme

'Main window' (defined in the file 'rhochi.py')

The widgets:

- widg_cpanel
- widg_left
- widg_right

The widget description is given in separate files.

info about 'cmodel' output files

Task:

the widgets arrangement

'Widgets' interacting with 'cmodel'

List of widgets (each in the separate file '.py'):

- widg adp
- widg const
- widg exptype
- widg extinction
- widg magn
- widg magn ising

- widg nucl
- widg output
- widg param
 - widg profile
 - widg results
 - widg scale

- widg cb exp
- widg cb ph
- widg cb ph exp
- widg sconstr
- widg_spgr

example: widg nucl.py

pressing button 'load bscat'.

The position of atom and its isotropical displacement press buttons to add and to delete atoms.

The handbooks values of scattering amplitude for g

Common elements:

- QCheckBox
- QLineEdit
- QTableWidget

Parent class:

widg min (defined methods to interact with 'cmodel')

example: widg spgr.py

	On the page you can introduce information about crystall strucutre by loading it from the '.cif file
	press to point the '.cif file
	or by hands. Then introduce the name of phase (it should be unique) and the space groupe (example: $P2(1)/n'$ or $Fd-3m$ Z' , $'Z'$ means second choise in last example).
	phase
	P1
	1
	looks on elements of symmetry for given space groupe
	Unit cell parameters: a, b, c (in angstrems) // alpha, beta, gamma (in degrees)
g nucl.py	1.00000
s_nucl.py	90.00000 🗆 90.00000 🗅 90.00000
and its isotropical displacement	heck boxex to find the optimal parameters shown in the table
es of scattering amplitude for giv I bscat'.	en atoms can be loaded by
elete atom load bscat	
х у	z biso occ
□ 0.00000 □ 0.00000 □	0.00000 🗆 0.00000 🗀 1.00000

Object 'cmodel' ('cmodel.py')

- cmodel
 - cmodel ph
 - cmodel_at
 - cmodel_exp
 - cmodel_exp_ph
 - cmodel_ref:

Tasks:

- interaction with 'widgets'
- interaction with 'ccore'

Parent class:

cmodel_min
 (defined methods to interact with 'widgets')

'cmodel' has information about the model parameters

'cmodel_ph' has information about a phase 'cmodel at' has information about an atom

'cmodel_exp' has information about an experiment 'cmodel_exp_ph' has information about a phase contributing in the experiment (the classes are defined in the file 'cmodel.py')

Object 'ccore' ('ccore.py')

- ccore
 - ccore_ph
 - ccore_at
 - ccore_exp
 - ccore_exp_ph
 - ccore_ref:

Tasks:

- load exerimental data
- calculations

The main methods:

ccore:

- run_refinement
 refinement, by simplex method
- run_errors
 estimation of errorbars by calculation of Hessian

ccore_exp:

- load_exp_data
 make prelimitary calculations and load
 experimental data before refinement
- calc_chi2
 calculation of chi2 for one experiment

ccore_ph:

- calcFNhkl
 - calculation of the nuclear structure factor
- calcSFThkl
 calculation of the structure factor tensor

Structure of refinement

ToDo:

- 1. Executable file
- 2. Organization of file location
- 3. Least square refinement

Thank you for your attention.