

eBay Analytics Platform Metadata and its Applications

September 2011

Agenda

- The Born of eBay
- eBay Analytics Platforms
- Analytics Platform Metadata and Its Applications
- Metadata Repository
- Other Applications
- Q & A

Started with a **Broken** Laser Pointer . . .

... sold for \$14.83 USD

AuctionWeb was born on the Labor Day weekend in September 1995

eBay Founder

Pierre Omidyar

FREE Service Running Off from a Home Server . . .

Requesting for donations . . .

Money Order

0101010100	2004-07-23		W1100	200¢
Consulate Gene	eral of Ukraine	NEGOTIABLE/ONL	The second second	IO POSSESSIO
ADDRESS 530 Bush Street, suite 402,		moy John S	mith	0011
San Francisco, CA 94108		ALONES 111 Buena Street, Apt.#11,		
90. NO. 04 asts row		San Francisco, CA 94111		
*******************	0000000			

Movie Tickets

Personal Check

Bills

Coupons

Start Profitable...

Initial Business Model and Target Users...

Build equitable electronic marketplace for Americans to buy and sell their stuff

eBay Analytics Platforms

Born in Year 2000 ...

From Oracle to Teradata in 2003 ...

Largest Teradata Customer Infrastructure Today ...

55,000 daily batch processes ...

6,000+ internal users relying on our platforms ...

eBay Analytics Platforms

500+ concurrent users

20-50 concurrent users

>5 concurrent users

Analytics & Reporting

Discover & Explore

Operational Analytics Transactional Analytics High volume ad hoc queries

Production Analytics Platform Large Concurrent User-base

"Compare User Activity against last year"
Trending and Forecast Analysis (large history)

Contextual-Complex Analytics
Deep, Seasonal, Consumable Data Sets

Image Fingerprinting
Image Classification
Pattern Recognition
Detect Counterfeits & SNADs

Structure the Unstructured Detect Patterns

Enterprise-Class System

Deep Analytics Enterprise-Class System

Research System

Closed Loop, Active Analytics Platform

Analytical Reporting

Marketing

Trust & Safety

Customer Support

Knowledge: Integrated, aggregated, augmented

Raw data: daily, hourly feeds

SACC2011

Wisdom: informed, fact based actions

Analytics Platform Metadata

Logical Data Map (Source to Target Mapping)

Analytics Platform Metadata

What else do we get?

Analytics Platform Metadata

Typically, metadata is . . .

How does Metadata help us?

Physical Data Flow Visualization

Data Rationalization

Data Quality Monitoring

Physical Data Flow Visualization

Data Flow Diagram

Problem Statements:

Manual Drawing of Data Flow is Time Consuming

No Complete Set of Data Flow Diagrams

Easily be Out Dated

Manual Drawing can only provide Limited Information

Accuracy not Guaranteed

Physical Data Flow Visualization

Data Flow Diagram

The Data Flow Visualization tool is an automated solution to generate Data Flow Diagrams (DFD) for all Analytics Platform tables.

The DFD shows how data is being flowed through from within the Analytics Platform production environment.

Physical Data Flow Visualization

Physical Data Flow Visualization

What questions can the Data Flow Diagram answer:

Where is the source?

How data gets flow into target?

Which SQL statements?

What are the start time and the end time?

When does a target table be ready?

What is the critical path?

Physical Data Flow Visualization

What do we use the Data Flow Information for?

Unusual delay of table readiness.

Unusual run time of SQL execution

Data Flow critical path change.

Failure down stream impact analysis.

Better view on business data analysis.

Etc...

Data Flow Visualization Tool User Interface

[+]B DC [+]B DLP [+]B DP [+]B ELF [+]B EMS [+]B ERE [+]B ESA00 [+]B_ESA01 [+]B_EXTERNAL_FEED [+]B_FDBK [+]B_FIND [+]B_GB [+]B GEM2 [+]B HALF [+]B ICE [+]B IMK [+]B IMK CORE [+]B IM DDM [+]B IM DF [+]B IM SEO [+]B_INCTV [+]B_I_EIP [+]B_HWDM [+]B LKP [+]B LSTG [+]B_LSTG_NONSLA [+]B_LSTG_S [+]B MAO [+]B MDM [+]B MERCH [+]B MGC [+]B MIDW PRS [+]B MIESA [+]B MIP [+]B_MI_TRUST [+]B_MI_UNIFY [+]B_MOTORS [+]B MYEBAY [+]B_NGDF [+]B_NPO

Data Rationalization

Problem Statements:

System becomes running out of space

Batches running slower and slower

Risk of missing business SLA

Takes longer on accessing data on the system

Lose end user satisfaction

Data Rationalization

Data rationalization leverages the <u>technical metadata</u> to determine the optimum collection of data to provide the <u>greatest business benefit</u> to the business user.

Data Rationalization

Benefits

- ✓ Reduce in overall IT expenditures
- ✓ Freeing up valuable resources
- ✓ Extend the life of value-generating system
- ✓ Enhance User Experience

Data Rationalization - Table Usage Metadata

The Table Usage Metadata (TUM) collects the table usage and consumption information for analysis and rationalization purposes.

Data Rationalization - Table Usage Metadata

Table Basic Info

Table Size
Table Skew Factor
Table PI Info

Table Access Info

Refresh Frequency Average Completion Time End User Access Frequency Column Access Info

Table Usage Info

CPU Cost (both population and consumption)
Downstream Batch Hit Counts
End User Hit Counts

Table Utilization Index

Data Rationalization

Typical Approaches

- ✓ Table Retirement
- ✓ Loading Frequency Reduction
- ✓ Table Retention by Removing Old Data Records
- ✓ Table Retention by removing End of Life Data Elements

Data Quality Monitoring

Problem Statements:

Data Quality from Source cannot be guarantee

Data Quality issues usually discovered by end user

Data Quality issues cannot be discovered immediately

Data Quality issues cost a large amount of effort to fix

Lose customer satisfaction on data quality

Data Quality Monitoring

Data Quality Monitoring tool (DQ Firewall) is designed to monitor data quality on the system close to real time. Issues can be monitored and prevented by leveraging business metadata or customized data quality rules.

Data Quality Monitoring

Benefits

- ✓ Discover Data Quality issues immediately when occur
- ✓ Prevent downstream impact when issues are discovered
- ✓ Enhance user experience on Data Quality
- ✓ Improve data accuracy on the system

Data Quality Monitoring

How does it Work?

Data Element Metadata

Data Type
Data Allowable Domain
Referential Integrity
Constraints
Defaults

Monitoring Engine (DQ Firewall)

Alerts and Automated Actions

Data Model Management

Data Model Management by Metadata Repository (MDR) Tool

Subject Areas and Tables

Data Model Compliance

Data Model **Metadata Repository and Compliance Report**

				Model
	В	С	D	E
3,700	3,509	229	58	38
57,793	53,532	4980	128	719
3	3,700	3,509	3,700 3,509 229	3,700 3,509 229 58

A Total count of tables (including persistent tables and indices) or columns in the data model. B Total count of tables (including persistent tables and indices) and columns that are in the data warehouse. C Count of tables (including persistent tables and indices) and columns that are in the data warehouse. Primarily consists of projects that are modeled but have not been released into production. D Count of columns (and the associated tables) that occur in both the data model and the data warehouse, but the data types are different. The column nust exist in both the data model and the data warehouse but he data model and the data warehouse production databases, entire tables, persistent tables and indices and the associated columns that are missing from the data model plus a count of columns that are missing in the data model and the data warehouse. Views and working databases are not included.	Comments
Indices) and columns that are in the data warehouse. Count of tables (including persistent tables and indices) and columns that occur in the model but not in the data warehouse. Primarily consists of projects that are modeled but have not been released into production. D Count of columns (and the associated tables) that occur in both the data model and the data warehouse, but the data types are different. The column must exist in both the date model and the data warehouse to be compared. E Count of all objects in the data warehouse production databases, entire tables, persistent tables and indices and the associated columns that are missing from the data model plus a count of columns that are missing in the data model from tables that exist in both the data model and the data warehouse. Views and working	
and columns that occur in the model but not in the data warehouse. Primarily consists of projects that are modeled but have not been released into production. D Count of columns (and the associated tables) that occur in both the data model and the data warehouse, but the data types are different. The column must exist in both the data model and the data warehouse production databases, entire tables, persistent tables and indices and the associated columns that are missing from the data model plus a count of columns that are missing in the data model from tables that exist in both the data model and the data warehouse. Views and working	indices) and columns that are in the data warehouse.
in both the data model and the data warehouse, but the data types are different. The column must exist in both the data model and the data warehouse to be compared. E Court of all objects in the data warehouse production databases, entire tables, persistent tables and indices and the associated columns that are missing from the data model plus a count of columns that are missing in the data model from tables that exist in both the data model and the data warehouse. Views and working	and columns that occur in the model but not in the data warehouse. Primarily consists of projects that are
databases, entire tables, persistent tables and indices and the associated columns that are missing from the data model plus a count of columns that are missing in the data model from tables that exist in both the data model and the data warehouse. Views and working	in both the data model and the data warehouse, but the data types are different. The column must exist in both

Data Model Domain & Subject Areas

Other Applications

- ETL Performance Monitoring
- Product Return on Investment Management
- Query Pattern Recognition
- Analytics Platform User Behavior Analysis
- ETL Problematic Path Analysis
- Others

In Summary . . .

Metadata is NOT . . .

Operational Applications can be designed to rely heavily on Metadata to us help managing our Analytics Platforms . . .

Analytics Platform Architecture

OLTP / Source Systems Data Acquisition and Integration Layer Data Management/Storage

Data Presentation Layer

APD – Global Team Locations

development, VLDB, MPP, business analysis, DW Dev.

