Feuille 1. NORMES

Exercice 1 (Propriétés de la valeur absolue) Soient $x \in \mathbb{R}$ et $y \in \mathbb{R}$.

- 1°. Montrer que $|x+y| \le |x| + |y|$. Sous quelles hypothèses sur x et y a-t-on |x+y| = |x| + |y|?
- 2° . Montrer que $|x-y| \ge ||x|-|y||$.

Exercice 2 (Inégalité de Cauchy-Schwarz et la norme euclidienne) Soient $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ et $y=(y_1,\ldots,y_n)\in\mathbb{R}^n$. On note

$$||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{\frac{1}{2}}$$
 et $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$.

On considère $P(\lambda) = ||\lambda x + y||_2^2 = \langle \lambda x + y, \lambda x + y \rangle$.

1°. Vérifier que $\langle x, y \rangle = \langle y, x \rangle$ et que pour tout $\alpha \in \mathbb{R}, \beta \in \mathbb{R}, z \in \mathbb{R}^n$,

$$<\alpha x + \beta y, z> = \alpha < x, z> +\beta < y, z>$$

 2° . Écrire $P(\lambda)$ sous la forme

$$P(\lambda) = A(x, y)\lambda^{2} + 2B(x, y)\lambda + C(x, y)$$

en explicitant A(x, y), B(x, y) et C(x, y).

3°. Déduire de ce qui précède l'inégalité de Cauchy-Schwarz :

$$|\langle x, y \rangle| \le ||x||_2 ||y||_2$$
.

 4° . Montrer que $\|.\|_2$ est une norme sur \mathbb{R}^n .

Exercice 3 (Comparaison des 3 normes usuelles) On reprend les notations de l'exercice précédent et celles du cours.

1°. Montrer que pour tout $x=(x_1,\cdots,x_n)\in\mathbb{R}^n$, on a les inégalités suivantes :

$$\begin{split} & \|x\|_{\infty} \le \|x\|_1 \le n \|x\|_{\infty}; \\ & \|x\|_{\infty} \le \|x\|_2 \le \sqrt{n} \|x\|_{\infty}; \\ & \|x\|_2 \le \|x\|_1 \le \sqrt{n} \|x\|_2. \end{split}$$

Montrer que chacune de ces inégalités est optimale.

- 2°. Que peut-on dire de ces trois normes?
- 3°. Dessiner la boule unité associée à chacune de ces trois normes.

Exercice 4 Soit $(E, \|\cdot\|)$ un e.v.n. Montrer que pour tout $x, y \in E$, on a $\|x\| - \|y\| \le \|x + y\|$.

Exercice 5 [CC1, 2018] On définit les applications suivantes pour $x = (x_1, x_2) \in \mathbb{R}^2$:

$$N_1(x) = |x_1 + 2x_2|, \quad N_2(x) = |x|_1 + 2|x_2|, \quad N_3(x) = \sup_{t \in [1,2]} |x_1 + tx_2|.$$

- 1°. Montrer que N_2 et N_3 définissent deux normes sur \mathbb{R}^2 .
- 2°. L'application N_1 définit-elle une norme sur \mathbb{R}^2 ? Justifier.

- 3° . Déterminer la boule unité fermée associée à N_2 .
- 4°. Trouver des nombres réels A>0 et B>0 tels que pour tout (x,y) dans \mathbb{R}^2 ,

$$AN_2(x) \le N_3(x) \le BN_2(x),$$

Exercice 6 Soit p > 1 et $n \ge 2$. Pour tout $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, on définit

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}.$$

- 1°. Vérifier que $||x|| = 0 \iff x = 0$.
- 2°. Vérifier que pour tout $\lambda \in \mathbb{R}$ et pour tout $x \in \mathbb{R}^n$, $\|\lambda x\|_p = |\lambda| \|x\|_p$.
- 3°. On veut maintenant montrer que l'inégalité triangulaire est vérifiée.
 - a. Soit q > 1 tel que $\frac{1}{p} + \frac{1}{q} = 1$. Montrer l'Inégalité de young :

$$\forall a \in \mathbb{R}, \ \forall b \in \mathbb{R}, \ |ab| \le \frac{|a|^p}{p} + \frac{|b|^q}{q}.$$

b. En déduire l'Inégalité de Hölder : pour tout $A=(a_1,\cdots,a_n)\in\mathbb{R}^n$ et $B=(b_1,\cdots,b_n)\in\mathbb{R}^n$ \mathbb{R}^n , on a:

$$\sum_{j=1}^{n} |a_j b_j| \le ||A||_p ||B||_q.$$

Indication: Supposer dans un premier temps que $||A||_p = ||B||_q = 1$. c. Montrer que pour tout $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ et pour tout $y = (y_1, \dots, y_n) \in \mathbb{R}^n$, on a :

$$\sum_{j=1}^{n} |x_j| |x_j + y_j|^{p-1} \le ||x||_p \left(\sum_{j=1}^{n} |x_j + y_j|^p \right)^{\frac{1}{q}}.$$

d. En déduire que

$$||x+y||_p \le ||x||_p + ||y||_p.$$

- e. L'inégalité triangulaire est-elle toujours vérifiée si 0 ?
- 4° . Vérifier que pour tout $x \in \mathbb{R}^n$, on a :

$$||x||_{\infty} \le ||x||_p \le n^{\frac{1}{p}} ||x||_{\infty}.$$

5°. En déduire la limite quand $p \to +\infty$ de $||x||_p$.

Exercice 7 On considère $E = \mathcal{M}_n(\mathbb{R})$, l'espace vectoriel des matrices carrées d'ordre n à coefficients dans \mathbb{R} . Pour tout $A = (a_{i,j})_{1 \leq i \leq n, 1 \leq j \leq n}$, on pose

$$||A|| = n \max_{i,j} |a_{i,j}|.$$

- 1°. Vérifier que $\|\cdot\|$ est une norme sur E.
- 2° . Montrer que pour tous $A, B \in E$ on a :

$$||AB|| \le ||A|| ||B||.$$

Exercice 8 (Un exemple en dimension infinie)

Soient E l'espace vectoriel des fonctions continues de [0,1] dans \mathbb{R} . Pour tout $f \in E$, on pose

$$||f|| = \int_0^1 |f(x)| dx, \quad ||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|.$$

- 1°. Vérifier que $\|\cdot\|$ et $\|\cdot\|_{\infty}$ sont deux normes sur E.
- 2° . Montrer que, pour tout $f \in E$,

$$||f|| \leq ||f||_{\infty}$$
.

3°. Montrer que ces deux normes ne sont pas équivalentes.