

Sistemas de Comunicación

- Sistemas de Comunicación -
 - Análoga y Digital -

Ph.D. Cristian Guarnizo Lemus

cristianguarnizo@itm.edu.co

Contenido

- 1. Comunicaciones
- 2. Esquemas de transmisión.
- 3. Longitud de onda.
- 4. Modulación, Ruido, Ancho de Banda.

Innovación Tecnológica con Sentido Humano

Espectro de Frecuencia

© 2013 Encyclopædia Britannica, Inc.

Esquemas de Transmisión

Diapositiva 4

CGL1 Cristian Guarnizo Lemus; 1/8/2019

Esquema Análogo

Esquema Digital

Longitud de Onda - Frecuencia

longitud de onda
$$=\frac{\text{velocidad}}{\text{frecuencia}}$$

$$\lambda = \frac{c}{f}$$

 $\lambda = longitud de onda (metros por ciclo)$

c = velocidad de la luz (300,000,000 metros por segundo)

f =frecuencia (hertz)

Longitud de Onda - Ejemplo

Ejemplo

Calcular la longitud de onda, en metros, para las siguientes frecuencias: 1 kHz, 100 kHz y 10 MHz:

$$\lambda = \frac{300,000,000}{1}$$

Diseño de Antenas

https://en.wikipedia.org/wiki/Dipole antenna

Medio de transmisión

Los mas comunes son: cableado, espacio libre, cable de fibra óptica.

Servicio	Bandas de frecuencia	Usos
Emisión por AM estándar	540-1600 kHz	Emisión de radio
Emisión FM	88-108 MHz	Canal de música
Televisión	54-72 MHz 76-88 MHz 174-216 MHz 420-890 MHz	VHF (Very High Frequencies) TV UHF (Ultra High Frequencies) TV
Celular Mobile radio	896-901 MHz 840-935 MHz	Móvil a estación base Estación base a móvil
Comunicaciones Satelitales	5.925-6-425GHz 3.7-4.2 GHz	Uplink Downlink

Modulación

señal modulante

modulación efectuada

analógica

digital

Modulación

AM (Amplitude Modulation) – Amplitud Modulada FM (Frequency Modulation) – Frecuencia Modulada PM (Phase Modulation) – Fase Modulada

ASK (Amplitude Shift Keying) – Desplazamiento en Amplitud FSK (Frequency Shift Keying) – Desplazamiento en Frecuencia

PSK (Phase Shift Keying) – Desplazamiento en Fase QAM (Quadrature Amplitude Modulation) – Modulación de Amplitud en Cuadratura.

Modulación Análoga - AM

Modulación Análoga - AM

Modulación Análoga - AM

Propiedad de desplazamiento de la función delta Dirac.

$$f(t) * \delta(t-T) = \int_{-\infty}^{\infty} f(\tau)\delta(t-T-\tau)d\tau$$
$$= \int_{-\infty}^{\infty} f(\tau)\delta(\tau-(t-T))d\tau$$
$$= f(t-T)$$

Innovación Tecnológica con Sentido Humano

Modulación Análoga - AM

Innovación Tecnológica con Sentido Humano

Modulación Digital - ASK

Modulación

Beneficios:

- Menor tamaño de las antenas.
- Multiplexado en la frecuencia.
- Velocidad de propagación.

Multiplexado en la frecuencia

Innovación Tecnológica con Sentido Humano

Tipos de Comunicación

Duplex

Tipos de Comunicación

Innovación Tecnológica con Sentido Humano

FIGURE 1.2 Satellite communication system.

Ancho de Banda de un Canal

Rango de frecuencias en el que se pude transmitir con fidelidad razonable.

Ejemplo: Si un canal puede transmitir con fidelidad una señal con componentes frecuenciales 0Hz-5000Hz, el canal tiene un ancho de banda B de 5kHz.

Preguntas

Qué es la modulación?
Como se emplea la modulación en el espectro electromagnético?
Para que es útil conocer la longitud de onda de una señal?
Cuales son los tipos de Comunicación y como se caracterizan?

Bibliografía

- WAYNE, Tomasi. (2003). Sistemas de Comunicaciones Electrónicas. 4ª ed.
 Prentice Hall.
- BLAKE, Roy. (2004). Sistemas electrónicos de comunicaciones. Thomson.
- STREMLER, Ferrel G (1993). Introducción a los sistemas de Comunicación Pearson Educación.

