Комплесные числа

Множество комплексных чисел состоит из упорядоченных пар вещественных чисел:

$$\mathbb{C} = \{(a,b) : a,b \in \mathbb{R}\}$$

Формы записи

- Вещественная и мнимая часть z := (a, b), где $a, b \in \mathbb{R}$
- Школьная z = a + bi (очень удобно проводить операции с ней, так как это просто многочлен)
- Тригонометрическая $z = (r, \phi) = (r \cdot cos(\phi), r \cdot sin(\phi))$
- ullet Еще один вид тригонометрической записи $e^{i\phi}$

Геометрическая интерпретация

Комплексное число можно представить в декартовой системе координат \mathbb{R}^2 . По оси абсцисс будет откладывать вещественную часть, а по оси ординат мнимую. Модуль |z| расстояние от начала координат, а $\phi = arg(z)$ это направление угла против часовой стрелки.

Геометрическая интерпретация

Комплексное число можно представить в декартовой системе координат \mathbb{R}^2 . По оси абсцисс будет откладывать вещественную часть, а по оси ординат мнимую. Модуль |z| расстояние от начала координат, а $\phi = arg(z)$ это направление угла против часовой стрелки.

Теорема:

Пусть $x, y \in \mathbb{C}$. Тогда $|xy| = |x| \cdot |y|$ и arg(xy) = arg(x) + arg(y).

Геометрическая интерпретация

Комплексное число можно представить в декартовой системе координат \mathbb{R}^2 . По оси абсцисс будет откладывать вещественную часть, а по оси ординат мнимую. Модуль |z| расстояние от начала координат, а $\phi = arg(z)$ это направление угла против часовой стрелки.

Теорема:

Пусть
$$x, y \in \mathbb{C}$$
. Тогда $|xy| = |x| \cdot |y|$ и $arg(xy) = arg(x) + arg(y)$.

Для доказательства достаточно лишь представить x в виде $(r \cdot cos(\phi), r \cdot sin(\phi))$, а y в виде $(p \cdot cos(\psi), p \cdot sin(\psi))$.

И теперь лишь останеця применить правило умножения и некоторые тригонометрические упрощения.

$$cos(phi) \cdot cos(\psi) - sin(phi) \cdot sin(\psi) = cos(\phi + \psi)$$

$$cos(phi) \cdot sin(\psi) + sin(phi) \cdot cos(\psi) = sin(\phi + \psi)$$

Теорема:

Пусть $z \in \mathbb{C}, n \in \mathbb{N}$. Тогда $|z^n| = |z|^n$ и $arg(z^n) = n \cdot arg(z)$.

Теорема:

Пусть $z \in \mathbb{C}, n \in \mathbb{N}$. Тогда $|z^n| = |z|^n$ и $arg(z^n) = n \cdot arg(z)$.

Доказывать будем по индукции n. База n=1 очевидна.

Теорема:

Пусть $z \in \mathbb{C}, n \in \mathbb{N}$. Тогда $|z^n| = |z|^n$ и $arg(z^n) = n \cdot arg(z)$.

Доказывать будем по индукции n. База n=1 очевидна.

Переход $n \to n+1$.

• Пусть $|z|=r, arg(z)=\phi$ и утверждение доказано для n, то есть, $|z^n|=r^n$ и $arg(z^n)=n\cdot\phi.$

Теорема:

Пусть $z \in \mathbb{C}, n \in \mathbb{N}$. Тогда $|z^n| = |z|^n$ и $arg(z^n) = n \cdot arg(z)$.

Доказывать будем по индукции n. База n=1 очевидна.

Переход $n \to n+1$.

- Пусть $|z| = r, arg(z) = \phi$ и утверждение доказано для n, то есть, $|z^n| = r^n$ и $arg(z^n) = n \cdot \phi$.
- По прошлой теореме (о произведении геометрической записи) получаем

$$|z^{n+1}| = |z||z^n| = r \cdot r^n = r^{n+1}.$$

 $arg(z^{n+1}) = arg(z) + arg(z^n) = \phi + n\phi = (n+1)\phi.$