SRM INSTITUTE OF SCIENCE AND TECHNOLOGY Ramapuram Campus

FACULTY OF ENGINEERING AND TECHNOLOGY

Department of Mathematics

Odd Semester 2022 – 2023

Innovative Teaching Methods

21MAB101T - Calculus and Linear Algebra

Pedagogy 5 – Heuristic Learning

The Greek word 'Heuristic' means 'I find' or 'I discover'. In Heuristic Learning Method, the teacher becomes an observer and emphasis students to solve problems independently.

LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

General form
$$a_0 \frac{d^n y}{dx^n} + a_1 \frac{d^{n-1} y}{dx^{n-1}} + a_2 \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_n y = f(x)$$

Let $D = \frac{d}{dx}$, $D^2 = \frac{d^2}{dx^2}$, ... and so on.
 $(a_0 D^n + a_1 D^{n-1} + a_2 D^{n-2} + \dots + a_n)y = f(x)$. (i.e.) $\phi(D) y = f(x)$

The general or complete solution consists of two parts namely

(i) Complementary Function (C.F.) and (ii) Particular Integral (P.I.).

To find Auxiliary Equation (A.E.)

Put D = m in the given equation and then equate to zero.

To find C.F.

Roots of A.E.	C.F.
If the roots are real and different	$Ae^{m_1x} + Be^{m_2x}$
$m_1, m_2 (m_1 \neq m_2)$	
If two roots are equal and real	$(Ax+B)e^{mx}$
$m_1 = m_2 = m(say)$	(-20 / 2)
If three roots are equal and real	$(Ax^2 + Bx + C)e^{mx}$
$m_1 = m_2 = m_3 = m(say)$	
If the roots are complex	$e^{\alpha x} (A \cos \beta x + B \sin \beta x)$
$\alpha \pm i \beta$	
	If the roots are real and different m_1 , m_2 ($m_1 \neq m_2$) If two roots are equal and real $m_1 = m_2 = m(say)$ If three roots are equal and real $m_1 = m_2 = m_3 = m(say)$ If the roots are complex

To find P.I.

S.No.	f(x)	P.I.
1	e^{ax}	$D \rightarrow a$
2	$\sin a x, \cos a x$	$D^2 \rightarrow -a^2$
3	x^n	Use Binomial expansion and then operate on x^n
4	$e^{ax}f(x)$	Take e^{ax} outside and $D \rightarrow D + a$

High Level Problems

1. Solve
$$(D^2 - 4D + 3)y = e^x \cos 2x$$
.

$$2. \text{ Solve} \left(D^2 - 1\right) y = x^2 \cos x$$

3. Solve
$$(D^2 + 4)y = 2 \cos x \cos 3x$$
.

Staff incharge

HOD / Mathematics