Turbulently-Driven Detonation Initiation in Electron-Degenerate Matter with Helium

Gabriel Casabona

Northwestern University

AAS 237

Thesis Adviser: Shane Larson, Ph.D. MS Adviser: Robert Fisher, Ph.D.

January 8, 2021

Motivation: D6

Vishal Tiwari (2019)

Carbon Detonation

- Turbulently-Driven Detonation Mechanism of Carbon
- Fisher RT, Mozumdar P, Casabona G. 2019. Carbon Detonation Initiation in Turbulent Electron-Degenerate Matter. The Astrophysical Journal.

Figure: Analytic Curve for Carbon Detonation

Method

- 3D Hydro Models
- Uniform Grid
- Driving force for turbulence on box scale

Figure: 100 km box

Detonation of Pure He Run With C Seed Nuclei

Detonation of 512³ run with $\rho = 10^6 \frac{g}{cm^3}$ and He fraction = 1.0.

Slice Plots of Pure He Run

Local Abundances of He and C

Conclusion

Table: A table of runs with the different resolutions, densities, helium abundances, and mean temperature at the time of detonation initiation, $T_{\rm det}$ (K).

Resolution	Density (g cm $^{-3}$)	Helium Abundance	$T_{ m det}$ (K)
512 ³	10 ⁵	0.1	8.28×10^{8}
512 ³	10^{5}	0.25	8.75×10^{8}
512 ³	10^{5}	1.0	None
512 ³	10^{6}	0.1	7.80×10^{8}
512 ³	10^{6}	0.25	6.30×10^{8}
512 ³	10^{6}	1.0	1.06×10^{9}