

Predicting moisture content and bulk density of various grains from their dielectric properties

USDA ARS

Zeenat Islam*, Dr. Hussein Gharakhani[†], Dr. Samir Trabelsi[‡]*Computer Science and Engineering, [†]Agricultural and Biological Engineering, [‡]USDA Agricultural Research Service

Background and Motivation

- Moisture content of grains is a critical variable in the buy-sell process to monitor quality production and crop analysis.
- Water's polar nature leads to correlate microwave frequencies and dielectric properties of moisture-containing materials.
- These properties can contribute to calculate moisture content of grains using calibration equations and non-destructive 'free-space' transmission techniques.
- Nevertheless, there are errors associated with calibration-based methods which can be further reduced.

Objectives

- Provided a dataset of different microwave <u>frequencies</u> and corresponding <u>dielectric properties</u> measurements, we predict <u>Moisture Content</u> and <u>Bulk density</u> of different grains.
- Features of the dataset include:
 Microwave frequency
 Permittivity
 Attenuation
 Phase shift
- Grains considered in this study are as follows (dataset size in parentheses):
 - Wheat (806)
- Sorghum (399)
- Barley (366)
- Soybeans (571)
- Oats (485)
- Corn (1339)

Methodology

Visualizing the dataset

(II) Correlation amongst dataset features for different grains in Heatmap

Model architecture and variants explored

Results and Future Work

Metrics used	Moisture content	Bulk density
R ² values	0.95 to 0.991	0.835 to 0.958
RMSE	0.739 to 1.875	0.0192 to 0.0693
Inference time	24ms to 59ms	

- OATS performed best in terms of both outputs
- SORGHUM performed worst for both outputs
- → For future work, we will compare our DNN models' performance against SVR and Random Forests.

Acknowledgements

We would like to acknowledge USDA Agriculture Research Service (USDA-ARS) for supporting this research.