Modern Algebra

Definitions and Basic Properties of a Ring

 $Orville\ D.\ Hombrebueno$ odhombrebueno@nvsu.edu.ph

Saint Mary's University
March 30, 2019

The most general algebraic structure with two binary operations is called a ring.

Definition

A **ring** $\langle R, +, \cdot \rangle$ is a set R together with two binary operations + and \cdot , which we call *addition* and *multiplication* defined on R such that the following axioms are satisfied $\forall a, b \in R$:

- 1. $\langle R, + \rangle$ is an abelian group.
 - a. $a + b \in R$. (Closure)
 - b. a + (b + c) = (a + b) + c. (Associative)
 - c. $\exists \ 0 \in R \text{ s.t. } a + 0 = 0 + a = a. \text{ (Identity)}$
 - d. $\forall a \in R, \exists -a \in R \text{ s.t. } a+-a=-a+a=0. \text{ (Inverse)}$
 - e. a + b = b + a. (Commutative)
- 2. R is closed under \cdot , $a \cdot b \in R$.
- 3. Multiplication is associative, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.
- 4. $\forall a, b, c \in R$, the **left distributive law**, $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ and the **right distributive law** $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$ hold. \blacksquare