Esercizio 1)

Siano $X=\{a,b,c,d,e\}$ ed $R\subseteq X\times X$ la relazione rappresentata dal seguente grafo di incidenza

- a) Di che proprietà gode R?
- b) Costruire la relazione di equivalenza ρ generata da R.
- c) Determinare l'insieme quoziente X/ρ .

Traccia di soluzione

R non gode di alcuna delle proprietà che abbiamo considerato a lezione: non è seriale in quanto non esiste alcuna coppia la cui prima componente sia b appartenente ad R, non è simmetrica in quanto ad esempio $(a,b) \in B$, ma $(b,a) \notin R$, non è antisimmetrica in quanto (c,d) e (d,c) appartengono entrambe ad R e $c \ne d$, non è transitive in quanto ad esempio (c,d), $(d,c) \in R$ e $(c,c) \notin R$.

Per trovare ρ bisogna calcolare la chiusura transitiva della chiusura riflessiva e simmetrica di R , si vede facilmente che il grafo di incidenza di ρ è

dove i nuovi archi rossi vengono dalle chiusure riflessive e simmetriche quelli azzurri dalla chiusura transitiva.

L'insieme X/ ρ ha come elementi le classi di equivalenza di X, la ρ -classe di a, ρ_a , è {a,b} e quindi coincide con ρ_b , la ρ -classe di c, ρ_c , è {c,d,e} e quindi coincide con ρ_c e ρ_d . Dunque X/ ρ ={ ρ_a , ρ_c }.

Esercizio

Sia R[x] l'insieme dei polinomi a coefficienti reali nell'indeterminata x e sia $R \subseteq R[x] \times R[x]$ la relazione definita nel seguente modo:

 $\forall f,g \in R[x] \ (f,g) \in R \text{ se e solo se } \exists b \in R \text{ tale che } f(b) = g(b) = 0$

- a) Di che proprietà gode R
- b) Sia ρ la chiusura di equivalenza di R. Dimostrare che due polinomi che ammettono una radice reale sono sempre associati rispetto a ρ .

Traccia di soluzione

R non è seriale e quindi neppure riflessiva perché ad esempio il polinomio x^2+1 non avendo radici reali non è associato ad alcun polinomio. R è ovviamente simmetrica. R non è antisimmetrica perché ad esempio $(x^2+x, x^2-1), (x^2-1, x^2+x) \in R$ e $x^2-1 \neq x^2+x$. R non è transitiva in quanto ad esempio $(x^2-1, x^2+x) \in R, (x^2+x,x) \in R, \max(x^2-1, x) \notin R$.

Siano ora f e g due polinomi che ammettono una radice reale e sia a una radice reale di f e b una radice reale di g il polinomi $(x-a)(x-b)=x^2-(a+b)x+ab$ è tale che $(f, x^2-(a+b)x+ab)\in R\subseteq \rho$, $(x^2-(a+b)x+ab,g)\in R\subseteq \rho$, quindi per la transitività di ρ , $(f,g)\in \rho$.