(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-224812

(43)公開日 平成11年(1999)8月17日

(51) Int. Cl. 6	識別記号		FΙ				
H01F 1/11			H01F 1/11			В	
C01G 49/00			C01G 49/00			С	
						D	
G11B 5/85			G11B 5/85			Z	
H01F 1/113			H01F 41/02			G	
		審査請求	未請求 請求	項の数19	F D	(全14頁)	最終頁に続く
(21)出願番号	特願平10-286008		(71)出願人	000003067	7		
				ティーデ	ィーケー	イ株式会社	
(22)出願日	平成10年(1998) 9月21日			東京都中:	央区日:	本橋1丁目1	3番1号
			(72)発明者	田口 仁			
(31)優先権主張番号	特願平9-273930			東京都中:	央区日:	本橋一丁目1	3番1号. ティ
(32)優先日	平 9 (1997) 9 月 19日			ーディー	ケイ株	式会社内	
(33)優先権主張国	日本(JP)		(72)発明者	増澤 清	幸.		
				東京都中	央区日:	本橋一丁目1	3番1号 ティ
	. ÷			ーディー	ケイ株	式会社内	
			(72)発明者	皆地 良	彦		
				東京都中	央区日:	本橋一丁目13	3番1号 ティ
				ーディー	ケイ株	式会社内	
			(74)代理人	弁理士	石井 !	場一	
							最終頁に続く

(54) 【発明の名称】磁石粉末、焼結磁石、それらの製造方法、ボンディッド磁石および磁気記録媒体

(57)【要約】

【課題】 保磁力や残留磁束密度の温度特性が極めて優れ、高温域において、残留磁束密度の低下が少なく、また、低温域においても保磁力の低下が少ないフェライト焼結磁石や磁石粉末と、それらの製造方法とを提供し、そのフェライトを用いてボンディッド磁石と、磁気記録媒体を提供し、好ましい態様においては、さらに高い残留磁束密度と保磁力を得る。

【解決手段】 M型フェライト相とスピネルフェライト相が共存した磁石粉末、焼結磁石、それらの製造方法、ボンディッド磁石および磁気記録媒体とした。

【特許請求の範囲】

【請求項1】 M型フェライト相とスピネルフェライト 相が共存した磁石粉末。

【請求項2】 少なくとも2つの異なるキュリー温度を 有する請求項1の磁石粉末。

【請求項3】 室温 (25℃) ~+125℃の温度範囲 での飽和磁化の変化の絶対値が、0.18%/℃以下で ある請求項1または2の磁石粉末。

【請求項4】 -50℃~50℃の温度範囲での保磁力 の温度係数の絶対値が 0. 25%/℃以下である請求項 10 i から選択される少なくとも 1種の元素を表す〕を含有 1~3のいずれかの磁石粉末。

【請求項5】 前記M型フェライト相が、A (AはS r、Ba、CaおよびPbから選択される少なくとも1 種の元素であって、Sr,Ca,またはBaを必ず含 む),およびR(Rは希土類元素(Yを含む)およびB iから選択される少なくとも1種の元素を表す〕を含有 する請求項1~4のいずれかの磁石粉末。

【請求項6】 前記M型フェライト相が、さらにCoを 含有する請求項5の磁石粉末。

【請求項7】 前記M型フェライト相が、

Sr、Ba、CaおよびPbから選択される少なくとも 1種の元素であって、Sr, CaまたはBaを必ず含む ものをAとし.

希土類元素 (Yを含む) およびBiから選択される少な くとも1種の元素をRとし、

Co, Zn, Mg, Mn, Cu, Fe, Ni およびLi +Fe等の2価の金属元素または2価を示す金属元素の 組合せをMとしたとき、

A, R, FeおよびMから構成され、

それぞれの金属元素の総計の構成比率が、全金属元素量 30 である請求項11~16のいずれかの焼結磁石。 に対し、

A:1~13原子%、

R:0.05~10原子%、

Fe:80~95原子%、

M:0.1~5原子%

である請求項1~6のいずれかの磁石粉末。

【請求項8】 請求項1~7の磁石粉末を含むボンディ ッド磁石。

【請求項9】 請求項1~7のいずれかの磁石粉末を含 む磁気記録媒体。

【請求項10】 R (Rは希土類元素(Yを含む)およ びBiから選択される少なくとも1種の元素を表す〕を 含有するM型フェライト原料を、還元性雰囲気または酸 素過少雰囲気で焼成して、請求項1~9のいずれかの磁 石粉末を得る磁石粉末の製造方法。

【請求項11】 M型フェライト相とスピネルフェライ ト相が共存した焼結磁石。

【請求項12】 少なくとも2つの異なるキュリー温度 を有する請求項11の焼結磁石。

【請求項13】 室温 (25℃) ~+125℃の温度範 50 【0003】磁石特性のうち特に重要なものは、残留磁

囲での飽和磁化の変化の絶対値が、0.18%/℃以下 である請求項11または12の焼結磁石。

【請求項14】 -50℃~50℃の温度範囲での保磁 力温度係数の絶対値が0.25%/℃以下である請求項 11~13のいずれかの焼結磁石。

【請求項15】 前記M型フェライト相が、A (AはS r、Ba、CaおよびPbから選択される少なくとも1 種の元素であって、Sr,Ca,またはBaを必ず含 む)、およびR (Rは希土類元素 (Yを含む) およびB する請求項11~14のいずれかの焼結磁石。

【請求項16】 前記M型フェライト相が、さらにCo を含有する請求項15の焼結磁石。

【請求項17】 前記M型フェライト相が、

Sr、Ba、CaおよびPbから選択される少なくとも 1種の元素であって、Srおよび/またはCaを必ず含 むものをAとし、

希土類元素 (Yを含む) およびBiから選択される少な くとも1種の元素をRとし、

20 Co、Zn、Mg、Mn、Cu、Fe、NiおよびLi +Fe等の2価の金属元素または2価を示す金属元素の 組合せをMとしたとき、

A, R, FeおよびMから構成され、

それぞれの金属元素の総計の構成比率が、全金属元素量 に対し、

A:1~13原子%、

R:0.05~10原子%、

Fe:80~95原子%、

M:0.1~5原子%

【請求項18】 前記M型フェライト相のc軸方向と、 立方晶の前記スピネルフェライト相の〈111〉方向と がほぼ一致している請求項11~17のいずれかの焼結 磁石。

【請求項19】 R (Rは希土類元素 (Yを含む) およ びBiから選択される少なくとも1種の元素を表す〕を 含有するM型フェライト原料を、還元性雰囲気または酸 素過少雰囲気で焼成して、請求項11~18のいずれか の焼結磁石を得る焼結磁石の製造方法。

40 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、フェライト磁石粉 末、焼結磁石、それらの製造方法、ボンディッド磁石、 さらには磁気記録媒体に関する。

[0002]

【従来の技術】酸化物永久磁石材料には、マグネトプラ ンバイト型 (M型) の六方晶系のSrフェライトまたは Baフェライトが主に用いられており、これらの焼結磁 石やボンディッド磁石等が製造されている。

東密度 (Br) および固有保磁力 (HcJ) であるが、それらの温度特性も重要である。

【0004】磁石材料のなかで、従来のM型SrフェライトまたはBaフェライトの飽和磁化(4πIs)の温度依存性は最も大きく、-0.19%/℃程度の値である。Brは4πIsに比例するから、この4πIsの温度係数は、Brまたは磁石の表面磁束密度の温度係数と同様である。このため、例えば自動車のエンジンルーム内で使用されるモータ等の場合、使用時の温度が100℃以上で、最高150℃程度にもなるが、このような高温時 10にトルクが大幅に低下するなどの問題がある。

【0005】一方、M型Srフェライト、Baフェライ ト焼結磁石のHcJの温度依存性は+130e/℃程度で、 温度係数は+0.3~+0.5%/℃程度の比較的大き な値である。このため、低温側でHcJが大きく減少し、 いわゆる「低温減磁」によって永久減磁し易くなる。こ の減磁を防ぐためには、室温におけるHcJを例えば5k0 e程度の大きな値にする必要があるが、このとき、高い Brを同時に得ることは実質的に不可能であった。M型 フェライト粉末のHcJの温度依存性は焼結磁石に比べる 20 と優れているが、それでも少なくとも+80e/℃程度 で、温度係数は+0.15%/℃以上であり、温度特性 をこれ以上改善することは困難であった。フェライト磁 石は、耐環境性に優れ安価でもあることから、自動車の 各部に用いられるモータなどに使用されることが多い。 自動車は、寒冷あるいは酷暑の環境で使用されることが あり、モータにもこのような厳しい環境下での安定した 動作が要求される。しかし、従来のフェライト磁石は、 上述したように低温環境下での保磁力の劣化が著しく、 永久減磁し易いという問題があった。

[0006]

【発明が解決しようとする課題】本発明の目的は、保磁力や残留磁束密度の温度特性が極めて優れ、高温域において、残留磁束密度の低下が少なく、また、低温域においても保磁力の低下が少ないフェライト焼結磁石や磁石粉末と、それらの製造方法とを提供することである。また、そのフェライトを用いてボンディッド磁石と、磁気記録媒体を提供することである。そして、好ましい態様においては、高い残留磁束密度と保磁力を得ることである。

[0007]

【課題を解決するための手段】このような目的は、下記 (1)~(19)のいずれかの構成により達成される。

- (1) M型フェライト相とスピネルフェライト相が共存した磁石粉末。
- (2) 少なくとも2つの異なるキュリー温度を有する 上記(1)の磁石粉末。
- (3) 室温(25℃)~+125℃の温度範囲での飽 和磁化の変化の絶対値が、0.18%/℃以下である上 記(1)または(2)の磁石粉末。

- (4) -50℃~50℃の温度範囲での保磁力の温度 係数の絶対値が0.25%/℃以下である上記(1)~(3)のいずれかの磁石粉末。
- (5) 前記M型フェライト相が、A(AはSr、Ba、CaおよびPbから選択される少なくとも1種の元素であって、Sr, Ca, またはBaを必ず含む), およびR [Rは希土類元素(Yを含む)およびBiから選択される少なくとも1種の元素を表す)を含有する上記(1)~(4)のいずれかの磁石粉末。
- (6) 前記M型フェライト相が、さらにCoを含有する上記(5)の磁石粉末。
- - (6) のいずれかの磁石粉末。
- (8) 上記(1)~(7)の磁石粉末を含むボンディッド磁石。
- (9) 上記(1)~(7)のいずれかの磁石粉末を含む磁気記録媒体。
- (10) R [Rは希土類元素 (Yを含む) およびBi から選択される少なくとも1種の元素を表す] を含有す 30 るM型フェライト原料を、還元性雰囲気または酸素過少雰囲気で焼成して、上記(1)~(9)のいずれかの磁石粉末を得る磁石粉末の製造方法。

【0008】(11) M型フェライト相とスピネルフェライト相が共存した焼結磁石。

- (12) 少なくとも2つの異なるキュリー温度を有する上記(11)の焼結磁石。
- (13) 室温 (25℃) ~+125℃の温度範囲での 飽和磁化の変化の絶対値が、0.18%/℃以下である 上記 (11) または (12) の焼結磁石。
- 40 (14) -50℃~50℃の温度範囲での保磁力温度 係数の絶対値が0.25%/℃以下である上記(11) ~(13)のいずれかの焼結磁石。
 - (15) 前記M型フェライト相が、A(AはSr、Ba、CaおよびPbから選択される少なくとも1種の元素であって、Sr, Ca, またはBaを必ず含む), およびR [Rは希土類元素(Yを含む)およびBiから選択される少なくとも1種の元素を表す〕を含有する上記(11)~(14)のいずれかの焼結磁石。
- (16) 前記M型フェライト相が、さらにCoを含有50 する上記(15)の焼結磁石。

(17) 前記M型フェライト相が、Sr、Ba、Ca およびР b から選択される少なくとも1種の元素であっ て、Srおよび/またはCaを必ず含むものをAとし、 希土類元素 (Yを含む) およびBiから選択される少な くとも1種の元素をRとし、Co、Zn、Mg、Mn、 Cu、Fe、NiおよびLi+Fe等の2価の金属元素 または2価を示す金属元素の組合せをMとしたとき、 A, R, FeおよびMから構成され、それぞれの金属元 素の総計の構成比率が、全金属元素量に対し、A:1~ 13原子%、R:0.05~10原子%、Fe:80~ 10 好ましい態様では、50e/℃以下、特に30e/℃以下、 95原子%、M:0.1~5原子%である上記(11) ~ (16) のいずれかの焼結磁石。

(18) 前記M型フェライト相のc軸方向と、立方晶 の前記スピネルフェライト相の〈111〉方向とがほぼ 一致している上記 (11) ~ (17) のいずれかの焼結 磁石。

(19) R [Rは希土類元素 (Yを含む) およびB i から選択される少なくとも1種の元素を表す〕を含有す るM型フェライト原料を、還元性雰囲気または酸素過少 雰囲気で焼成して、上記 (11)~(18)のいずれか 20 の焼結磁石を得る焼結磁石の製造方法。

[0009]

【作用】通常、M型フェライトをN,中などの酸素過少 ないし還元雰囲気下で焼成すると、M型フェライトは分 解してW型フェライトが生成する。しかし、La等の希 土類Rで置換したM型フェライトを酸素過少ないし、還 元性雰囲気下で焼成すると、W型フェライトは生成せず に、M型フェライトとスピネルフェライトに分解するこ とがわかった。

【0010】また、LaCo置換系のSrCa系フェラ イトでは大気中焼成でもM型フェライトとスピネルフェ ライトの混合物が得られる場合がある。しかも、これら の二相型フェライトは、好ましくはスピネル相の〈11 1) 方向と、M型の〈OOL〉(c軸) 方向が一致して いる。

【0011】六方晶M型フェライトの結晶構造は、S (スピネル)ブロックとRブロックが交互に積層した構 造となっている。ここで、Sブロックはスピネルの(1 11) 方向を、六方晶のC軸に一致させた構造である。 La等の希土類元素Rで置換したM型フェライトを、例 40 えば、還元性雰囲気中で焼成することにより、上記のよ うな特徴的な構造が得られるのは、このSプロック部分 がスピネルフェライト相として分解析出したためとも考 えられる。

【0012】この結果、HcJやBrの温度特性が優れた フェライト磁石を実現することができる。具体的には、 HcJの温度特性をゼロにすることが可能にできる。一 方、スピネルフェライトはもともと磁化 (4 π Is (B r)) の温度変化が小さいため、本発明のフェライト磁 石はBrの温度特性も良くなる。

【0013】より具体的には、焼結磁石では、-50℃ ~50℃でのHcIの温度係数△HcJ/HcJ/△Tの絶対 値は、好ましい態様では、0.25%/℃以下、特に 0. 2%/℃以下、さらには、0. 15%/℃以下にす ることができる。また、室温 (25℃) と+125℃の 範囲の σ s の温度特性 Δ σ / σ / Δ Τ の絶対値は、通常 のM型Srフェライトの0.19%/℃に対し、0.1 8%/℃以下にすることができる。磁石粉末では、-5 0℃~50℃でのHcJの変化△HcJ/△Tの絶対値は、 さらには、20e/℃以下にすることができる。また、室 温 (25℃) と+125℃の範囲の σ s の温度特性 Δ σ /σ/ΔTの絶対値は、通常のM型Srフェライトの 0. 19%/℃に対し、0. 18%/℃以下にすること ができる。

【0014】この結果、従来はフェライト磁石の低温減 磁(永久減磁)の危険性のあった低温環境でも使用され る製品の信頼性を上げることが可能になる。

[0015]

【発明の実施の形態】本発明は、各種フェライト磁石で あってよいが、特に顕著な効果が得られることから、以 下の説明ではフェライト磁石粉末と焼結磁石の場合を例

【0016】本発明が適用される磁石粉末および焼結磁 石は、マグネトプランバイト型のM相の六方晶系のフェ ライト組成である。このようなフェライトとしては、A O·nFe₂O₃ (Aは好ましくはSr、CaおよびB aの1種以上、あるいはこれらとPbとの組合せ)を表 したとき、n=4. $5\sim6$. 5であることが好ましい。 30 このようなフェライトには、さらに、希土類元素、P b, Si, Al, Ga, Sn, Zn, In, Co, N i、Ti、Cr、Mn、Cu、Ge、Nb、Zr等が含 有されていてもよい。

【0017】より具体的には、磁石粉末および焼結磁石 は、Sr、Ba、CaおよびPbから選択される少なく とも1種の元素であって、Sr, CaまたはBaを必ず 含むものをAとし、希土類元素(Yを含む)およびBi から選択される少なくとも1種の元素をRとし、Co、 Zn、Mg、Mn、Cu、Fe、Ni、Li+Fe等の 2価の金属元素または2価を示す金属元素の組合せをM としたとき、A、R、FeおよびMそれぞれの金属元素 の総計の構成比率が、全金属元素量に対し、A:1~1 3原子%、R:0~10原子%、Fe:80~95原子 %、M:0~5原子%である組成とするものが好まし

【0018】また、好ましくは、A:2~13原子%、 R: 0. 05~10原子%、Fe: 83~95原子%、 M: 0. 1~5原子%であり、より好ましくは、A:3 ~11原子%、R:0.2~6原子%、Fe:83~9 50 4原子%、M: 0. 3~4原子%である。

【0019】Aが少ないと、M型フェライトが生成しなくなったり、αFe,O,などの非磁性相が多くなったりすることがある。また、Aが多いと、M型フェライトが生成しなくなったり、SrFeO, などの非磁性相が多くなったりすることがある。Rを添加すると、Mの固溶量が多くなり、BrやHcJが増大する。ただし、Rが多すぎるとオルソフェライトなどの非磁性の異相が多くなる。Mを添加すると、BrやHcJが増大する。ただし、Mが多すぎるとBrやHcJが低下してくる。

【0020】上記各構成元素において、Aは、Sr、Ba、CaおよびPbから選択される少なくとも1種の元素であって、Sr, CaまたはBaを必ず含む。A中のSr, CaまたはBaの比率は、好ましくは51原子%以上、より好ましくは70原子%以上、さらに好ましくは100原子%である。この場合、SrとCaとBaの量比は任意である。A中のSr, Ca, Baの比率が低すぎると、飽和磁化と保磁力が低下してくる。

【0021】 Rは、希土類元素 (Yを含む) およびBi から選択される少なくとも1種の元素である。Rには、 Laが必ず含まれることが好ましい。 Rが小さすぎる と、Mの固溶量が少なくなり、本発明の効果が得られな い。Rが大きすぎると、オルソフェライト等の非磁性の 異相が多くなってくる。R中においてLaの占める割合 は、好ましくは40原子%以上、より好ましくは70原 子%以上であり、飽和磁化向上のためにはRとしてLa だけを用いることが最も好ましい。これは、六方晶M型 フェライトに対する固溶限界量を比較すると、Laが最 も多いためである。したがって、R中のLaの割合が低 すぎるとRの固溶量を多くすることができず、その結 果、元素Mの固溶量も多くすることができなくなり、本 30 発明の効果が小さくなってくる。また、Biを併用すれ ば仮焼温度および焼結温度を低くすることができるの で、生産上有利である。

【0022】元素Mは、Co、Zn、Mg、Mn、Cu、Fe、Ni、Li+Fe等の2価の金属元素または2価を示す金属元素の組合せの1種または2種以上であり、CoであるかCoおよびZnであることが好ましい。Mが小さすぎたり、Mが大きすぎると、Br やHcJが逆に低下してくる。M中のCoの比率は、好ましくは10原子%以上、より好ましくは20原子%以上である。Coの比率が低すぎると、保磁力向上が不十分となる。

【0023】また、好ましくは本発明に用いるフェライトは

式 I A₁₋₁R, (Fe₁₂₋₁,M,),O₁, と表したとき、

- 0. $0.4 \le x \le 0.9$
- $0.04 \le y \le 0.8$
- $0. 8 \le x / y \le 5,$
- 0. $7 \le z \le 1$. 2

である。

【0024】また、より好ましくは

- $0. 1 \le x \le 0. 4$
- $0.1 \le y \le 0.8$
- $0.8 \le z \le 1.1$

であり、特に好ましくは

 $0. \quad 9 \leqq z \leqq 1. \quad 0.5$

である。

【0025】上記式Iにおいて、xが小さすぎると、す なわち元素Rの量が少なすぎると、六方晶フェライトに対する元素Mの固溶量を多くできなくなり、飽和磁化と異方性磁場が低下してくる。xが大きすぎると六方晶フェライト中に元素Rが置換固溶できなくなり、例えば元素Rを含むオルソフェライトが生成して飽和磁化が低くなってくる。yが小さすぎると飽和磁化と異方性磁場が低下してくる。yが大きすぎると六方晶フェライト中に元素Mが置換固溶できなくなってくる。また、元素Mが置換固溶できる範囲であっても、異方性定数(K₁)や異方性磁場(H₁)の劣化が大きくなってくる。zが小20 さすぎたり、zが大きすぎると、保磁力の温度特性が悪化してくる。

【0026】上記式Iにおいて、x/yが小さすぎても大きすぎても元素Rと元素Mとの価数の平衡がとれにくくなり、W型フェライト等の異相が生成しやすくなる。元素Mは2価であるから、元素Rが3価イオンである場合、理想的にはx/y=1である。なお、x/yが1超の領域で許容範囲が大きい理由は、yが小さくてもFe $^{11} \rightarrow$ Fe 12 の還元によって価数の平衡がとれるためである

【0027】組成を表わす上記式Ⅰにおいて、酸素

(O) の原子数は19となっているが、これは、Rがすべて3価であって、かつx=y、z=1のときの化学量 論組成比を示したものである。Rの種類やx、y、zの値によって、酸素のモル数は異なってくる。また、例えば焼成雰囲気が還元性雰囲気の場合は、酸素の欠損(ベイカンシー)ができる可能性がある。さらに、FeはM型フェライト中においては通常3価で存在するが、これが2価などに変化する可能性もある。また、Co等のMで示される元素も3価に変化する可能性があり、これらにより金属元素の対する酸素の比率は変化する。本明細書では、Rの種類やx、y、zの値によらず酸素の原子数を19と表示してあるが、実際の酸素の原子数は化学量論組成比から多少偏倚していてもよい。

【0028】フェライトの組成は、蛍光X線定量分析などにより測定することができる。また、上記の主相の存在はX線回折から確認される。

【0029】磁石粉末、焼結磁石には、B,O,が含まれていてもよい。B,O,を含むことにより仮焼温度および焼結温度を低くすることができるので、生産上有利である。

50 る。B₂O₃の含有量は、磁石粉末全体の0.5 wt%以下

30

10

であることが好ましい。 B, O, 含有量が多すぎると、飽 和磁化が低くなってしまう。

【0030】磁石粉末、焼結磁石中には、Na、Kおよ びRbの少なくとも1種が含まれていてもよい。これら をそれぞれNa,O、K,OおよびRb,Oに換算したと き、これらの含有量の合計は、磁石粉末、焼結磁石全体 の3vt%以下であることが好ましい。これらの含有量が 多すぎると、飽和磁化が低くなってしまう。これらの元 素をM'で表わしたとき、フェライト中においてM'は例 えば

 $Sr_{1.3-2}$, $R_{\bullet}M_{\bullet-0.3}^{1}$, $Fe_{11.7}M_{0.3}O_{19}$ の形で含有される。なお、この場合、0.3<a≦01 5であることが好ましい。aが大きすぎると、飽和磁化 が低くなってしまう他、焼成時に元素M'が多量に蒸発 してしまうという問題が生じる。

【0031】また、その他の化合物、例えばSi, A l, Ga, In, Li, Mg, Mn, Ni, Cr, C u, Ti, Zr, Ge, Sn, V, Nb, Ta, Sb, As, W, Mo等を酸化物の形で、それぞれ酸化シリコ ン1wt%以下、酸化アルミニウム5wt%以下、酸化ガリウ 20 ム5wt%以下、酸化インジウム3wt%以下、酸化リチウム 1wt%以下、酸化マグネシウム3wt%以下、酸化マンガン 3wt%以下、酸化ニッケル3wt%以下、酸化クロム5wt% 以下、酸化銅3wt%以下、酸化チタン3wt%以下、酸化ジ ルコニウム3wt%以下、酸化ゲルマニウム3wt%以下、酸 化スズ3wt%以下、酸化バナジウム3wt%以下、酸化ニオ プ3wt%以下、酸化タンタル3wt%以下、酸化アンチモン 3wt%以下、酸化砒素 3wt%以下、酸化タングステン 3wt %以下、酸化モリブデン3wt%程度以下含有されていても よい。

【0032】本発明のフェライト磁石において、特にL a を含む組成では、後述の酸素過少の焼成を行うことに より、M相とスピネル相とが生成する。また、La、C oを含み、A中の比率で、Caを好ましくは10原子% 以上、特に20~100原子%含む組成では、大気中の 焼成でもM相とスピネル相とが生成する。

【0033】M相とスピネル相との共存は、X線回析 (XRD) によって確認される。上記のような異方性焼 結磁石において、c面のXRDをみたとき、M相の(0 0 L) ピークと、スピネル相の(1 1 1) ピークが主に 40 観察され、これにより、配向したMと配向したスピネル (S) の2相状態になっていることがわかる。好ましい 態様ではM(OOL)とS(111)ピークのみが観察 される。

【0034】このようなc面のXRDチャートから、M の最強ピーク、通常(008)、Sの(111)ピーク の強度比から、M相とS相との量比が推定される。I (111)/I(008)は通常0.05~0.2程度 である。

【0035】好ましい態様では、c面のXRDはMの

(00L) とSの(111)のみしか観察されず、M、 Sそれぞれの最大ピークに対し、M、Sそれぞれの他の 面指数ピークは、強度比で0.3以下、特に0.2以 下、さらには0.1以下で、0となることもある。ま た、スピネルが配向していない場合は、Sの(220) のピーク等が観察される。

【0036】また、2相状態は、キュリー点からも確認 される。すなわち、少なくとも2つの異なるキュリー点 が観察されるものである。

【0037】キュリー温度(Tc)は、磁性材料が強磁 10 性から常磁性に変化するときの温度である。Tcを測定 するにはいくつかの方法があるが、特に複数のTcをも つ磁性材料の場合は、ヒータなどで測定サンプルの温度 を変化させながら、磁化ー温度曲線(σ-T曲線)を描 くことによりTcを求める。ここで、磁化の測定には、 振動式磁力計(VSM)が多く用いられる。これは、サ ンプルの周囲にヒータ等を設置する空間を確保しやすい ためである。

【0038】試料は粉末でも焼結体でもよいが、粉体の 場合は耐熱性の接着剤のようなもので固定する必要があ る。また、温度の均一性と追随性をよくするため、磁化 の測定精度が確保できる範囲で、サンプルはなるべく小 さくすることが好ましい(本発明の実施例では、直径: 5 mm、高さ: 6.5 mm程度)。また、周囲温度とサンプ ルの温度を一致させるために、周囲温度の変化速度を遅 くすることが好ましい。

【0039】サンプルは異方性でも、等方性でもよい が、異方性サンプルの場合は磁化容易軸方向であるc軸 方向に着磁後、c軸方向に測定することが好ましい。等 方性サンプルの場合は、着磁方向と同一方向の磁化を測 定する。サンプルの着磁は、10 kOe以上の充分に大き な磁場を印加して行う。通常は常温で着磁した後、温度 を上げながらサンプルの磁化を測定していくが、このと き磁場は全く印加しないか、印加しても1 kOe以下の弱 い磁場下で測定することが好ましい。これは、大きな磁 場を印加しながら測定すると、キュリー温度以上の常磁 性成分も検出してしまい、Tcが不明確になるためであ る。

【0040】2つのキュリー温度が表れる例を図9に示 す。この場合、一段目のキュリー温度(Tcl)は、接 線①と接線②の交点から求めることができる。また、二 段目のキュリー温度(Tc2)は、接線 $3c_{\sigma}=0$ の軸 との交点から求められる。

【0041】2つの異なるキュリー点Tc₁、Tc₂は、 一方がM相のT c, で350~480℃ (ただし480 ℃を含まない)、さらに350~470℃、特に、42 0~465℃、他方がスピネル相のT c₂で、300~ 600℃であるが、好ましくは480℃以上、特に50 0~580℃である。Tc₁、Tc₂は場合によっては複

数存在してもよい。

【0042】本発明におけるフェライト磁石粉末、焼結 磁石は、上記の組成と2相構造とを有する。平均粒径 は、好ましくは2μm以下、より好ましくは1μm以下で あり、さらに好ましくは0.5~1μmである。平均粒 径が大きすぎると、磁石粉末中の多磁区粒子の比率が高 くなってHcJが低くなり、平均粒径が小さすぎると、磁 場中成形時の配向性や成形性が悪くなる。

【0043】磁石粉末は、通常、これをバインダで結合 したボンディッド磁石に用いられる。

を説明する。

【0045】上記フェライトを有する磁石粉末は、原料 粉末として、通常、酸化鉄粉末と、元素Aを含む粉末、 さらには元素Rを含む粉末と、元素Mを含む粉末とを用 い、これらの粉末の混合物を仮焼することにより製造す る。元素Aを含む粉末、元素Rを含む粉末および元素M を含む粉末としては、酸化物、または焼成により酸化物 となる化合物、例えば炭酸塩、水酸化物、硝酸塩等のい ずれであってもよい。原料粉末の平均粒径は特に限定さ れないが、特に酸化鉄は微細粉末が好ましく、一次粒子 20 の平均粒径が1μm以下、特に0.5μm以下であること が好ましい。また、元素AおよびRはストック時の安定 性等から水酸化物、炭酸塩であることが好ましい。

【0046】なお、上記の原料粉末の他、必要に応じて B₂O₃等や、他の化合物、例えばSi, Al, Ga, I n, Li, Mg, Mn, Ni, Cr, Cu, Ti, Z r, Ge, Sn, V, Nb, Ta, Sb, As, W, M o 等を含む化合物を添加物あるいは不可避成分等の不純 物として含有していてもよい。

【0047】仮焼は、空気中において例えば1000~ 30 ことが好ましい。 1350℃で1秒間~10時間、特に1秒間~3時間程 度行えばよい。

【0048】このようにして得られた仮焼体は、通常、 実質的にマグネトプランバイト型のフェライト構造をも つ。ただし、Caと、Laと、Coとを含有する系で・ は、前記のとおり二相化する。仮焼体の一次粒子の平均 粒径は、好ましくは2μm以下、より好ましくは1μm以 下、さらに好ましくは $0.1\sim1\mu m$ 、最も好ましくは 0. 1~0. 5 μmである。平均粒径は走査型電子顕微 鏡により測定すればよい。

【0049】仮焼体を二相構造の磁石粉末として用いる 場合には、還元性雰囲気または酸素過少雰囲気で仮焼を 行う。この二相化は空気中での仮焼の後に、酸素過少の 焼成を行ってもよい。酸素過少の焼成温度と時間は仮焼 条件と同様である。これにより、Laを含む組成では容 易に二相化する。CaLaCo系でも二相化が生じる。 この場合、酸素過少雰囲気とは、大気中より酸素濃度が 低い雰囲気であり、酸素濃度は1%以下のものが好まし い。

【0050】次いで、通常、仮焼体を粉砕ないし解砕し 50 い。

て磁石粉末とする。そして、この磁石粉末を樹脂、金 属、ゴム等の各種バインダと混練し、磁場中または無磁 場中で成形する。その後、必要に応じて硬化を行なって ボンディッド磁石とする。

【0051】また、磁石粉末をバインダと混練して塗料 化し、これを樹脂等からなる基体に塗布し、必要に応じ て硬化することにより磁性層を形成すれば、塗布型の磁 気記録媒体とすることができる。

【0052】焼結磁石は、必要に応じて仮焼体を粉砕し 【0044】次に、磁石粉末と焼結磁石を製造する方法 10 た後、成形し、焼結することにより製造する。具体的に は、以下の手順で製造することが好ましい。なお、この 場合仮焼体の二相化は必ずしも必要ない。

> 【0053】仮焼体粒子は一般に顆粒状なので、これを 粉砕ないし解砕するために、まず、乾式粗粉砕を行うこ とが好ましい。乾式粗粉砕には、仮焼体粒子に結晶歪を 導入して保磁力HcBを小さくする効果もある。保磁力の 低下により粒子の凝集が抑制され、分散性が向上する。 また、粒子の凝集を抑制することにより、配向度が向上 する。粒子に導入された結晶歪は、後の焼結工程におい て解放され、保磁力が回復することによって永久磁石と することができる。なお、乾式粗粉砕の際には、通常、 SiO。と、焼成によりCaOとなるCaCO。とが添 加される。SiOzおよびCaCO、は、一部を仮焼前 に添加してもよい。不純物および添加されたSiやCa は、大部分粒界や三重点部分に偏析するが、一部は粒内 のフェライト部分(主相)にも取り込まれる。特にCa は、Srサイトにはいる可能性が高い。

> 【0054】乾式粗粉砕の後、仮焼体粒子と水とを含む 粉砕用スラリーを調製し、これを用いて湿式粉砕を行う

> 【0055】湿式粉砕後、粉砕用スラリーを濃縮して成 形用スラリーを調製する。濃縮は、遠心分離やフィルタ ープレス等によって行えばよい。

> 【0056】成形は、乾式で行っても湿式で行ってもよ いが、配向度を高くするためには、湿式成形を行うこと が好ましい。

> 【0057】湿式成形工程では、成形用スラリーを用い て磁場中成形を行う。成形圧力は0.1~0.5 ton/cm ²程度、印加磁場は5~15kOe程度とすればよい。

> 【0058】湿式成形では、非水系の分散媒を用いても よいし、水系の分散媒を用いてもよい。非水系の分散媒 を用いる場合には、例えば特開平6-53064号公報 に記載されているように、トルエンやキシレンのような 有機溶媒に、例えばオレイン酸のような界面活性剤を添 加して、分散媒とする。このような分散媒を用いること により、分散しにくいサブミクロンサイズのフェライト 粒子を用いた場合でも最高で98%程度の高い磁気的配 向度を得ることが可能である。一方、水系の分散媒とし ては、水に各種界面活性剤を添加したものを用いればよ

【0059】成形工程後、焼結工程において、成形体を 大気中または酸素過少雰囲気中で好ましくは1150~ 1270℃、より好ましくは1160~1240℃の温 度で0.5~3時間程度焼結して、異方性フェライト焼 結磁石を得る。なお、La系は大気中の焼結後、酸素過 少雰囲気中で焼結と同様の条件で熱処理してもよい。

【0060】なお、前記成形体をクラッシャー等を用い て解砕し、ふるい等により平均粒径が100~700μ m程度となるように分級して磁場配向顆粒を得、これを てもよい。

【0061】本発明には、薄膜磁性層を有する磁気記録 媒体も包含される。この薄膜磁性層は、上記した本発明 の磁石粉末と同様に、上記の組成の六方晶マグネトプラ ンバイト型フェライト相を有する。

【0062】薄膜磁性層の形成には、通常、スパッタ法 を利用することが好ましい。スパッタ法を用いる場合、 上記焼結磁石をターゲットとして用いてもよく、少なく とも2種の酸化物ターゲットを用いる多元スパッタ法を 利用してもよい。スパッタ膜形成後、六方晶マグネトプ 20 ランバイト構造を形成するために、通常、二相化のため の熱処理を施す。

【0063】本発明の焼結磁石やボンディッド磁石は所 定の形状に加工され、下記に示すような幅広い用途に使 用される。

【0064】例えば、フュエールポンプ用、パワーウイ ンド用、ABS用、ファン用、ワイパ用、パワーステア リング用、アクティブサスペンション用、スタータ用、 ドアロック用、電動ミラー用等の自動車用モータ;FD Dスピンドル用、VTRキャプスタン用、VTR回転へ 30 ッド用、VTRリール用、VTRローディング用、VT Rカメラキャプスタン用、VTRカメラ回転ヘッド用、 VTRカメラズーム用、VTRカメラフォーカス用、ラ

ジカセ等キャプスタン用、CD, LD, MDスピンドル 用、CD, LD, MDローディング用、CD, LD光ピ ックアップ用等のOA、AV機器用モータ;エアコンコ ンプレッサー用、冷蔵庫コンプレッサー用、電動工具駆 動用、扇風機用、電子レンジファン用、電子レンジプレ ート回転用、ミキサ駆動用、ドライヤーファン用、シェ ーバー駆動用、電動歯ブラシ用等の家電機器用モータ; ・ロボット軸、関節駆動用、ロボット主駆動用、工作機器 テーブル駆動用、工作機器ベルト駆動用等のFA機器用 乾式磁場成形した後、焼結することにより焼結磁石を得 10 モータ;その他、オートバイ用発電器、スピーカ・ヘッ ドホン用マグネット、マグネトロン管、MRI用磁場発 生装置、CD-ROM用クランパ、ディストリビュータ 用センサ、ABS用センサ、燃料・オイルレベルセン サ、マグネットラッチ等に好適に使用される。そして、 低温にて高い信頼性を示す。

[0065]

【実施例】実施例1(大気中焼成により作製したLa含 有Srフェライト粉末の、N2中再焼成) 実験組成

Sr₁₋₁ La, M, Fe₁₂₋₁O₁₉ (M; Mg, Mn, C u, Fe, Co, Ni, Li+Fe) t, x=0. 4tる組成になるように配合した原料混合物を大気中120 0℃で1時間焼成した。使用した原料は、 α -Fe₂O₃ (工業用)、La₂O₃ (99.9%)、SrCO₃ (工 業用)、酸化コバルト(試薬;Co含有量=71wt %)、MnOz(試薬特級)、CuO(試薬特級)、Ni O (99.8%)、Li,CO, (試薬特級)、MgO (99.9%) である。次に、この焼成粉末を、N2中 1200℃で1時間焼成して各種の特性を測定した。

【0066】 (結果) 表1に結果を示す。

[0067]

【表1】

表 1

		1200℃(air)		1200°C(N₂)			-	
М2+ х	σ s(emu/g)	HcJ(kOe)	σ s(emu/g)	HcJ(kOe)	Te	(C)	<u>Δ</u> σ/σ/Δ T(%/° C)	
C _o	0.4	64.9	3.10	71.3	1.37	464	512,576	-0.152
Ni	0.4	64.8	4.60	71.5	1.29	464	570	-0.138
Fe	0.4	66.9	5.37	72.5	1.94	450	574	-0.157
Li+Fe	0.4	68.4	1.92	68.4	0.91	458	596	-0.135
Cu	0.4	69.7	0.32	71.6	0.18	450,468	508	-0.175
Mg	0.4	68.4	3.95	68.9	1.91	466	550	-0.162
Mn	0.4	66.6	5.20	72.4	2.21	452	504	-0.169

【0068】すべての試料で、M相(Tc=450~4 70℃) とスピネル相 (Tc>500℃) の二相になっ た。M=Fe、Mnの場合に、σsが向上した(M型S rフェライトでは、71emu/g)。また、全ての試料で 室温(25℃)と+125℃の範囲のσsの温度特性も 改善された (M型Srフェライトで-0.19%/

【0069】実施例2 (SrCaLaCo組成) $Sr_{0.4-x}Ca_xLa_{0.6}Co_{0.6}Fe_{11.4}O_{10}\tau x=0$ 0. 2. 0. 4

Sr:Ca:La:Co:Feが上式の比になるよう、 50 原料を秤量、混合した。使用した原料は、α F e₂ O

,(工業用)、La₂O₃(99.9%)、SrCO₃(工 業用)、酸化コバルト (試薬: Co含有量=71%) で ある。この際、SiO₂ (0.4wt%)、CaCO 、(1. 25 wt%) を同時に添加した。秤量した原料 は、湿式アトライターにて混合後、乾燥した。得られた 混合粉末をバッチ炉にて、1200℃で3時間大気中で 仮焼を行った。

【0070】その後、仮焼粉末にSiO。(0. 4wt %)、CaCO₃(1.25wt%) およびエタノールを 1 ml添加し、乾式振動型ロッドミルで20分間粉砕し た。粉砕された粉体にオレイン酸を1.3wt%添加し て、キシレン中でボールミル粉砕を40時間行った。得 られたスラリーは遠心分離機により、スラリー濃度が約 85%になるように調整した。次に約10k0eの磁界中 にて湿式プレス (プレス圧力 0.4 ton/cm²) を行い、 30 φ×15mmの円柱試料を作製した。得られた成形体 は、1200℃および1240℃でそれぞれ大気中にて 1時間焼成を行った。焼成後、試料を研磨し、B-Hト レーサーによる磁気特性評価を行った。また、焼結体を 5 mm径×6.5 mmの円柱(高さ方向がc軸)に加工し、 VSMによって-198℃~+150℃の磁化曲線を測

【0071】 <結果>図1にx=0.2の時の1200 ℃で焼成した焼結体の-198℃~+150℃の磁化曲 線の第2象限を示す。この温度範囲でHcJの変化は0. 2kOe以内であり、温度依存性は非常に小さいことがわ かった。他の組成でも同様であった。焼結体のc面をX RDにより調べた結果を表2に示す。

[0072]

【表 2】

x	相
0	M+S
0.2	M+8
0.4	M+S

【0073】これより、スピネルとMの二相状態になっ

ていることがわかった。しかも、このスピネルは(11 1) 面からの回析強度が特に強く、〈1111〉方向に配 向していることがわかった。

【0074】実施例3(大気中焼成により作製した各種 M型フェライト焼結体の、N2中再焼成)

空気中で本焼成を行った各種の異方性M型フェライトの 焼結体を、N₂中で1200℃×1時間焼成した。表3 に焼結体表面のXRD解析結果を示す。

[0075]

10 【表3】

表 3: 焼結体表面の XRD 解析結果

六方晶フェライト	添加物	1200℃	1250℃
Sr フェライト	SiO ₂ , CaO	M	M
LaZnSr フェライト	SiO ₂ , CaO	M+S	M+S
LaCoSr フェライト	SiO ₂ , CaO	M+S	M+S
Ba フェライト	SiO ₂ , CaO	М	M+(W)
Ba フェライト	SiO ₂ , SrO	M	M+W

【0076】LaZnおよびLaCo置換の場合だけW 相にならずに、M相とスピネル相の二相状態となった。 【0077】試料はSrFe₁₂O₁₉、BaFe₁₂O₁₉、 Sro., Lao., Coo., Feii., Oio. Sro., Lao., 2 n。, Fe₁₁,O₁,であり、試料の作製は実施例2に 準じた。

【0078】図2はLaZn置換Srフェライトの焼結 体c面(磁場配向方向に垂直面)のXRDパターンであ る。生成したスピネル相は、実施例2と同様に〈11

1) 配向していることがわかった。

【0079】実施例4 -

30 Sro. a Lao. 2 Feii. a Coo. 2 Oi の組成となるよう に配合した原料混合物を、窒素と酸素の混合ガス中で酸 素分圧を変えて1100℃と1200℃で焼成して、各 種の特性を評価した。結果を表4に示す。

[0080]

【表4】

5 2								
焼成温度 (℃)	酸聚分圧 (atm)	Tc (%)	スピネル (%)	σs (emu/g)	HcJ (kOe)	Δσ/σ/Δ T (%/C)	ΔHω/ΔT (Oe/C)	
1100	0.02	442,460,544	1.0	60.8	3.62	_	_	
1100	0.20	442,457,528	0.5	59.2	4.24	-0.176	-0.7	
1100	1.00	439,455,532	0.5	58.4	4.79	-0.180	-1.1	
1200	0.02	440,459,564	1.0	68.2	4.71	-0.173	-1.5	

【0081】全ての試料で、スピネルフェライトのTc (520~560℃) が検出された。このように、焼成 時の雰囲気を必ずしも還元性雰囲気にしない場合でも、 スピネルフェライトと、M型フェライトの2相構造が得 られ、温度特性の改善が認められた。このとき、σsは 6 1 emu/g 以下の低い値であった。より高い σ s を得る ためには、焼成温度を1200℃以上にして、しかも還 50 元性雰囲気で焼成することが好ましい。

【0082】実施例5

図3に示すように、Srフェライト (SrFe

12O19)、およびCoフェライト(CoFe2O4)を別 々に作製して、乾式粗粉砕時に所定の割合で混合し、以 下実施例2の方法で焼結体を作製した。

【0083】得られた焼結体表面をXRD解析したとこ

18

ろ、Srフェライトに対するCoフェライト量が10, 20wt%のとき、若干のW相のピークが見られた。しか し、それ以外はSェフェライトと、Coフェライトの二 相であることが確認された。

【0084】図4~6に焼結体の磁気特性(Br、Hc J、σ s の温度係数) を示す。 C ο フェライトの量が増 えると、BrとHcJは低下したが、飽和磁化 (σs) の 温度特性が著しく改善された。

【0085】実施例6

/ (Fe+Co) = 0. 25のとき最大となるため、こ の組成のCoフェライトを混合する場合について検討し た。

【0086】Coフェライトの量を30%として、実施 例2と同様の方法で焼結体を作製した。ただし、Сοフ ェライトの仮焼は窒素中で温度を変化させて (700~ 1300℃)、2時間行い、焼成は1150℃で1時 間、窒素と酸素の混合ガスにより酸素分圧を変化させて (酸素濃度:0.1%および1%) 行った。

【0087】得られた各サンプルの磁気特性 (Br、H 20 cJ) を図7, 8に示す。これにより、900℃で仮焼し たСοフェライトを用いて、1%の酸素濃度で焼成した 場合に、Br=4.0 kG、HcJ=3.0k0eの最高特 性が得られ、このとき σ sの温度特性は、-0.15%**∕℃**であった。

【0088】上記各実施例で作製したSェフェライトに おいてLaの一部をBiで置換したところ、Bi添加に より仮焼温度を低くできることがわかった。すなわち、 最良の特性が得られる仮焼温度が低温側に移動し、しか も、保磁力の温度特性はほとんど劣化しなかった。ま た、Laの一部を他の希土類元素で置換した組成につい て仮焼体および焼結体を作製したところ、上記各実施例 と同様にHcJの温度特性の向上が認められた。

【0089】また、上記各実施例で作製したSrフェラ イト仮焼体を用いてボンディッド磁石を作製したとこ ろ、良好な温度特性が得られた。

【0090】また、上記各実施例で作製したSェフェラ イト仮焼体を含有する塗布型磁性層を基体上に形成し て、磁気カードを作製したところ良好な温度特性が得ら

れた。

【0091】また、スパッタ法により薄膜を基体上に形 成し、これを熱処理して上記実施例と同様な二相構造の フェライト相を形成して薄膜磁性層として、磁気記録媒 体を作製した。これらの磁気記録媒体でも、良好な温度 特性が得られた。

[0092]

【発明の効果】以上のように、本発明によれば、保磁力 や残留磁束密度の温度特性が極めて優れ、髙温域におい Coスピネルフェライトの結晶磁気異方性HcJは、Co 10 て、残留磁束密度の低下が少なく、また、低温域におい ても保磁力の低下が少ないフェライト焼結磁石や磁石粉 末と、それらの製造方法とを提供することができる。ま た、そのフェライトを用いてボンディッド磁石と、磁気 記録媒体を提供することができる。そして、好ましい態 様においては、高い残留磁束密度と保磁力を得ることが できる。

【図面の簡単な説明】

【図1】本発明のフェライト焼結磁石の減磁曲線であ

【図4】本発明のフェライト焼結磁石のX線回析チャー トである。

【図3】本発明のフェライトの製造方法を示すフローチ ャートである。

【図4】本発明のフェライト焼結磁石の磁気特性(B r) とCoフェライトの割合の関係を示すグラフであ

【図5】本発明のフェライト焼結磁石の磁気特性(Hc J) とCoフェライトの割合の関係を示すグラフであ

【図6】本発明のフェライト焼結磁石の磁気特性 (σs の温度係数) とCoフェライトの割合の関係を示すグラ フである。

【図7】本発明のフェライト焼結磁石の磁気特性(B r)と焼成温度の関係を示すグラフである。

【図8】本発明のフェライト焼結磁石の磁気特性(Hc と焼成温度の関係を示すグラフである。

【図9】2つのキュリー温度の求め方を説明するための 参考グラフである。

Sr_{0.2}Ca_{0.2}La_{0.6}Co_{0.6}Fe_{11.4}O₁₈ の組成の接結体試料の c軸方向の減磁曲線(反磁場補正なし)

【図3】

【図2】

LaZn 置換 Sr フェライトの異方性焼結体(空気中1220℃焼成)を、 № 中1200℃で焼成した場合の、焼結体表面(c面)の XRD パターン (M 相と(111)配向したスピネル相)

【図4】

【図5】

【図6】

【図7】

【手続補正書】

【提出日】平成11年1月21日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】図面の簡単な説明

【補正方法】変更

【補正内容】

【図面の簡単な説明】

【図1】本発明のフェライト焼結磁石の減磁曲線である。

【図2】本発明のフェライト焼結磁石のX線回析チャートである。

【図3】本発明のフェライトの製造方法を示すフローチ

ャートである。

【図4】本発明のフェライト焼結磁石の磁気特性(Br)とCoフェライトの割合の関係を示すグラフである。

【図5】本発明のフェライト焼結磁石の磁気特性(Hc J)とCoフェライトの割合の関係を示すグラフである。

【図6】本発明のフェライト焼結磁石の磁気特性 (σ s の温度係数) と C ο フェライトの割合の関係を示すグラフである。

【図7】本発明のフェライト焼結磁石の磁気特性(Br)と焼成温度の関係を示すグラフである。

【図8】本発明のフェライト焼結磁石の磁気特性 (Hc 【図9】 2 つのキュリー温度の求め方を説明するための J) と焼成温度の関係を示すグラフである。

参考グラフである。

フロントページの続き

(51) Int. Cl. ⁶ 識別記号

 $F(I) = \ldots = +$

H01F 1/113

(72)発明者 飯田 和昌

HO1F 41/02 ·

東京都中央区日本橋一丁目13番1号 ティ ーディーケイ株式会社内