Classify the Size Categorie using SVM

```
from google.colab import drive
drive.mount('/content/drive')
     Mounted at /content/drive
import numpy as np
import pandas as pd
import seaborn as sns
import\ {\tt matplotlib.pyplot}\ as\ {\tt plt}
import matplotlib.cm as cm
from yellowbrick.cluster import KElbowVisualizer
from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from \ sklearn.metrics \ import \ silhouette\_score, \ calinski\_harabasz\_score, \ silhouette\_samples
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC \,
from sklearn.metrics import accuracy_score
import warnings
warnings.filterwarnings('ignore')
data = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/forestfires.csv')
```

data

	month	day	FFMC	DMC	DC	ISI	temp	RH	wind	rain	• • •	monthfeb	monthjan	monthjul	monthjun	monthmar	monthmay	monthnov
0	mar	fri	86.2	26.2	94.3	5.1	8.2	51	6.7	0.0		0	0	0	0	1	0	0
1	oct	tue	90.6	35.4	669.1	6.7	18.0	33	0.9	0.0		0	0	0	0	0	0	0
2	oct	sat	90.6	43.7	686.9	6.7	14.6	33	1.3	0.0		0	0	0	0	0	0	0
3	mar	fri	91.7	33.3	77.5	9.0	8.3	97	4.0	0.2		0	0	0	0	1	0	0
4	mar	sun	89.3	51.3	102.2	9.6	11.4	99	1.8	0.0		0	0	0	0	1	0	0
512	aug	sun	81.6	56.7	665.6	1.9	27.8	32	2.7	0.0		0	0	0	0	0	0	0
513	aug	sun	81.6	56.7	665.6	1.9	21.9	71	5.8	0.0		0	0	0	0	0	0	0
514	aug	sun	81.6	56.7	665.6	1.9	21.2	70	6.7	0.0		0	0	0	0	0	0	0
515	aug	sat	94.4	146.0	614.7	11.3	25.6	42	4.0	0.0		0	0	0	0	0	0	0
516	nov	tue	79.5	3.0	106.7	1.1	11.8	31	4.5	0.0		0	0	0	0	0	0	1
517 rows × 31 columns												•						

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 517 entries, 0 to 516
Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype
0	month	517 non-null	object
1	day	517 non-null	object
2	FFMC	517 non-null	float64
3	DMC	517 non-null	float64
4	DC	517 non-null	float64
5	ISI	517 non-null	float64
6	temp	517 non-null	float64
7	RH	517 non-null	int64
8	wind	517 non-null	float64
9	rain	517 non-null	float64
10	area	517 non-null	float64
11	dayfri	517 non-null	int64
12	daymon	517 non-null	int64
13	daysat	517 non-null	int64
14	daysun	517 non-null	int64
15	daythu	517 non-null	int64
16	daytue	517 non-null	int64
17	daywed	517 non-null	int64

```
18
    monthapr
                    517 non-null
                                    int64
    monthaug
                    517 non-null
                                    int64
19
20
    monthdec
                    517 non-null
                                    int64
21
    monthfeb
                    517 non-null
                                    int64
22
    monthian
                    517 non-null
                                    int64
23
    monthjul
                    517 non-null
                                    int64
24
    monthjun
                    517 non-null
                                    int64
25 monthmar
                    517 non-null
                                    int64
    monthmay
                    517 non-null
26
                                    int64
27
    monthnov
                    517 non-null
                                    int64
28 monthoct
                    517 non-null
                                    int64
29
    monthsep
                    517 non-null
                                    int64
30 size_category 517 non-null
                                    object
dtypes: float64(8), int64(20), object(3)
memory usage: 125.3+ KB
```

data.head()

```
month
          day
                FFMC
                      DMC
                               DC ISI
                                              RH
                                                  wind
                                                        rain
                                                               ... monthfeb
                                                                             monthjan monthjul monthjun monthmar
                                                                                                                        monthmay monthnov
0
     mar
            fri
                 86.2 26.2
                             94.3
                                   5.1
                                         8.2 51
                                                    6.7
                                                          0.0
                                                                            0
                                                                                      0
                                                                                                0
                                                                                                           0
                                                                                                                                0
                                                                                                                                          0
                 90.6 35.4
                            669.1
                                   6.7
                                         18.0
                                              33
                                                    0.9
                                                          0.0
                                                                           0
                                                                                      0
                                                                                                0
                                                                                                           0
                                                                                                                     0
                                                                                                                                0
                                                                                                                                          0
      oct
           tue
2
      oct
           sat
                 90.6 43.7
                            686.9
                                   6.7
                                         14.6 33
                                                    1.3
                                                          0.0
                                                                           0
                                                                                      0
                                                                                                0
                                                                                                           0
                                                                                                                     0
                                                                                                                                0
                                                                                                                                          0
                                                                           0
                                                                                      0
                                                                                                0
                                                                                                           0
                                                                                                                                0
                                                                                                                                          0
3
     mar
            fri
                 91.7
                      33.3
                             77.5
                                   9.0
                                         8.3 97
                                                    4.0
                                                          0.2
                                                                                                                     1
                                                                                                                                0
                                                                                                                                          0
      mar
           sun
                89.3 51.3 102.2 9.6
                                        11.4 99
                                                    1.8
                                                          0.0
                                                                            0
                                                                                      0
                                                                                                0
                                                                                                           0
5 rows × 31 columns
```

```
month
day
                  0
FFMC
                  0
DMC
                  0
DC
                  0
TST
                  0
temp
                  0
wind
                  0
rain
                  0
                  0
area
dayfri
daymon
                  0
daysat
                  0
daysun
daythu
                  a
daytue
                  0
daywed
monthapr
                  0
monthaug
                  0
monthdec
monthfeb
                  0
monthian
                  0
monthjul
                  0
monthjun
monthmar
                  0
monthmay
                  0
monthnov
                  0
```

monthoct monthsep

size_category

dtype: int64

a

0

data.isnull().sum()

from sklearn.preprocessing import LabelEncoder
label_encoder = LabelEncoder()
data['size_category'] = label_encoder.fit_transform(data['size_category'])

X = data.drop("size_category", axis=1)
y = data["size_category"]

Convert categorical variables ---(month and day)---- into numerical
X = pd.get_dummies(X, columns=["month", "day"])

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
0.2, random_state = 0)

cols = X_train.columns
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
X_train = pd.DataFrame(X_train, columns=[cols])
X_test = pd.DataFrame(X_test, columns=[cols])
X_train.describe()
```

	FFMC	DMC	DC	ISI	temp	RH	wind	rain	area	da	
count	4.130000e+02	4.130000e+02	4.1								
mean	9.419422e-16	1.333343e-16	8.602212e-17	-6.021549e-17	4.537667e-16	1.849476e-16	-3.010774e-17	-3.440885e- 17	3.440885e-17	3.	
std	1.001213e+00	1.001213e+00	1.0								
min	-1.260458e+01	-1.704887e+00	-2.138457e+00	-1.939306e+00	-2.876600e+00	-1.763658e+00	-1.709652e+00	-7.126589e- 02	-2.320156e- 01		
25%	-6.158922e-02	-7.802221e-01	-4.426625e-01	-5.482765e-01	-5.651456e-01	-7.333164e-01	-7.153197e-01	-7.126589e- 02	-2.320156e- 01	•	
50%	1.661467e-01	-5.127821e-02	4.766767e-01	-1.416679e-01	9.034143e-02	-1.878417e-01	2.808847e-03	-7.126589e- 02	-2.266325e- 01		
75%	3.938826e-01	4.726984e-01	6.711908e-01	4.147439e-01	6.768298e-01	5.394579e-01	4.999748e-01	-7.126589e- 02	-8.756855e- 02		
max	9.719814e-01	2.767408e+00	1.274345e+00	1.006635e+01	2.453545e+00	3.388048e+00	2.985804e+00	1.955061e+01	1.650679e+01	2.3	
8 rows × 47 columns											

```
# import SVC classifier
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
svc=SVC()
svc.fit(X_train,y_train)
y_pred=svc.predict(X_test)
print('Model accuracy score with default hyperparameters: {0:0.4f}'.
format(accuracy_score(y_test, y_pred)))
     Model accuracy score with default hyperparameters: 0.7596
# instantiate classifier with rbf kernel and C=100
svc=SVC(C=100.0)
svc.fit(X_train,y_train)
y_pred=svc.predict(X_test)
print('Model accuracy score with rbf kernel and C=100.0 : {0:0.4f}'.
format(accuracy_score(y_test, y_pred)))
     Model accuracy score with rbf kernel and C=100.0 : 0.8750
# instantiate classifier with rbf kernel and C=1000
svc=SVC(C=1000.0)
svc.fit(X_train,y_train)
y_pred=svc.predict(X_test)
print('Model accuracy score with rbf kernel and C=1000.0 : {0:0.4f}'.
format(accuracy_score(y_test, y_pred)))
     Model accuracy score with rbf kernel and C=1000.0 : 0.8654
```

```
# instantiate classifier with linear kernel and C=1.0
linear_svc=SVC(kernel='linear', C=1.0)
# fit classifier to training set
linear_svc.fit(X_train,y_train)
# make predictions on test set
y_pred_test=linear_svc.predict(X_test)
# compute and print accuracy score
print('Model accuracy score with linear kernel and C=1.0 : \{0:0.4f\}'.
format(accuracy_score(y_test, y_pred_test)))
     Model accuracy score with linear kernel and C=1.0 : 0.9231
# instantiate classifier with linear kernel and C=100.0
linear_svc100=SVC(kernel='linear', C=100.0)
linear_svc100.fit(X_train, y_train)
y_pred=linear_svc100.predict(X_test)
print('Model accuracy score with linear kernel and C=100.0 : {0:0.4f}'. format(accuracy score(y test, y pred)))
     Model accuracy score with linear kernel and C=100.0 : 0.9712
# instantiate classifier with linear kernel and C=1000.0
linear_svc1000=SVC(kernel='linear', C=1000.0)
linear_svc1000.fit(X_train, y_train)
y pred=linear svc1000.predict(X test)
print('Model accuracy score with linear kernel and C=1000.0 : {0:0.4f}'. format(accuracy score(y test, y pred)))
     Model accuracy score with linear kernel and C=1000.0 : 0.9327
##Compare the train-set and test-set accuracy
y_pred_train = linear_svc.predict(X_train)
y_pred_train
     array([0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1,
           0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1,
           1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1,
           1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1,
           1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1,
           1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1,
           1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0,
           1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0,
           1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
           1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0,
           1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
           0,\ 0,\ 1,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 1,\ 1,\ 0,\ 1,\ 1,\ 1,\ 0,\ 0,
           1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,
           1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0])
print('Training-set accuracy score: {0:0.4f}'.
format(accuracy_score(y_train, y_pred_train)))
     Training-set accuracy score: 0.9516
## Check for overfitting and underfitting
print('Training set score: {:.4f}'.format(linear_svc.score(X_train,
y_train)))
print('Test set score: {:.4f}'.format(linear_svc.score(X_test,
y_test)))
     Training set score: 0.9516
     Test set score: 0.9231
```