Prove Claim 3.3 from class: let S be a non-empty subset of \mathbb{R} . Then $\max(S)$ exists (that is, S has a maximal element) $\iff S$ is bounded above and $\sup(S) \in S$.

Solution

First assume that $\max(S)$ exists. Let $M = \max(S)$. By definition $x \leq M \forall x \in S$, M is an upper bound for S, and $M \in S$. Let z be some upper bound for S and assume that z < M. Therefore, by the definition of an upper bound, $\forall x \in S, x < z$. In particular M < z. This is a contradiction so $M \leq z$. Then by definition of the supremum, $M = \sup(S) \in S$. Now let S be bounded above and $M = \sup(S) \in S$. By the definition of the supremum, $x \leq M \forall x \in S$ so $M = \max(S)$ by definition so $\max(S)$ exists.

Problem 2

Let S be a non-empty subset of \mathbb{R} . Let UB(S) be the set of all upper bounds of S (note that this set may be empty) and LB(S) be the set of all lower bounds of S. Also let $-S = \{-s : s \in S\}$

- (i) Let $M \in \mathbb{R}$. Prove that $M = \sup(S)$ if and only if $M = \min(UB(S))$ (the minimal element of UB(S)). Also prove that $M = \inf(S)$ if and only if $M = \max(LB(S))$ (the maximal element of LB(S)). This is essentially a reeformulation of the definition of sup and inf.
- (ii) Let $y \in \mathbb{R}$. Prove that $y \in UB(S) \iff -y \in LB(-S)$.
- (iii) Deduce from (ii) that UB(S) has a minimum $\iff LB(-S)$ has a maximum, and if they exist, then $\min(UB(S)) = -\max(LB(-S))$.
- (iv) (practice) Combine (i)-(iii) to deduce the reflection principle as formulated in Lecture 4.

Solution

- (i) Let $M = \sup(S)$. Then M is an upper bound of S and UB(S) is non-empty. By definition of a suprenum M is at least as small as any other upper bound of S so $\forall x \in UB(S), M \leq x$ so $M = \min(UB(S))$ by definition.
 - Now let $M = \min(UB(S))$. Thus UB(S) is non-empty and by its presence in the set M must be an upper bound of S. By the definition of a minimum, $M \le x \forall x \in UB(S)$. Therefore M is less than or equal to all other upper bounds of S so $M = \sup(S)$ by definition.
- (ii) $\forall x \in -S, -x \in S$. For any $y \in \mathbb{R}$, $y \in UB(S) \iff -x \leq y \iff x \geq -y \iff -y \in LB(S)$.

- (iii) Let $m = \min(UB(S))$. Then $\forall x \in UB(S), m \leq x$. By the result of (ii), $-m \in LB(-S)$. So $\forall x \in UB(S), -x \in LB(-S)$ so $m \leq x \implies -m \geq -x$ and $m = \max(LB(-S))$ by definition.
- (iv) Let $S \subseteq \mathbb{R}, S \neq \emptyset$ and let $-S = \{-s : s \in S\}$.
 - (a) By (ii) if S is bounded above (and thus UB(S) is non-empty) then LB(-S) is also non-empty and -S is bounded below. By (i) and (iii) $\inf(S) = \max(LB(S)) = -\min(UB(-S)) = -\sup(-S)$.
 - (b) If S is bound below $(LB(S) \neq \emptyset)$ then by (ii) UB(-S) is non-empty and -S is bounded below. Further, by (i) and (iii) $\inf(S) = \max(LB(S)) = -\min(UB(-S)) = -\sup(-S)$.

Use the Archimedean property to prove that for every real number $\epsilon > 0$ there exists $n \in \mathbb{N}$ such that $\frac{1}{n} < \epsilon$.

Solution

By the Archimedean property $\exists n \in N \text{ such that } n\epsilon > 1 \implies \epsilon > \frac{1}{n}$.

Problem 4

Prove the following result, which can be thought of as a converse of the Approximation Theorem (Theorem 3.2). Let S be a non-empty subset of \mathbb{R} which is bounded above. Let $M \in \mathbb{R}$ be an upper bound for S, and suppose that for all $\epsilon > 0$ there exists $x \in S$ such that $M - \epsilon < x < M$. Prove that $M = \sup(S)$.

Solution

In order to prove that $M = \sup(S)$ we want to show that M is an upper bound for S and that M is at least as small as any upper bound for S. The first of these conditions is given. Let z be some upper bound for S. Assume that z < M. Then M - z > 0 so we can set $\epsilon = M - z$ and it is given that

$$\exists x \in S \text{ such that } M - \epsilon < x \le M$$

$$\implies M - (M - z) < x \le M$$

$$\implies z < x \le M$$
(1)

However, this implies that there is some element $x \in S$ that is larger than z. This is a contradiction because z is an upper bound for S. Therefore $z \ge M$ and we have shown that $M = \sup(S)$.

Let A and B be non-empty bounded above subsets of \mathbb{R} , and let $A + B = \{a + b : a \in A, b \in B\}$. Prove that A + B is also bounded above and $\sup(A + B) = \sup(A) + \sup(B)$.

Solution

Let $M = \sup(A) + \sup(B)$. In order to prove that $M = \sup(A + B)$ we want to show that $\forall x \in (A + B), x \leq M$ and that M is at least as small as all upper bounds of S.

- i. Select an arbitrary element $x \in A + B$. By definition x = a + b for some $a \in A, b \in B$. For any such $a, b, a \leq \sup(A)$ and $b \leq \sup(B)$. Thus $x = a + b \leq \sup(A) + \sup(B) = M$.
- ii. Select some arbitrary $\epsilon > 0$. Then by the approximation property of supremum $\exists a \in A$ such that $\sup(A) \frac{\epsilon}{2} < a \leq \sup(B)$. Similarly, $\exists b \in B$ such that $\sup(B) \frac{\epsilon}{2} < b \leq \sup(B)$. So

$$\sup(A) + \sup(B) - \epsilon < a + b \implies \sup(A) + \sup(B) < a + b + \epsilon$$

Let z be some upper bound of S. Then $a+b \le z \ \forall a \in A, b \in B$. Then $\sup(A) + \sup(B) < z + \epsilon \implies M = \sup(A) + \sup(B) \le z$.

Thus M has satisfied the necessary conditions and $M = \sup(A + B)$.

Problem 6

This problem introduces the notions of open and closed subsets of \mathbb{R} . Let S be a subset of \mathbb{R} . We say that S is open if for every $x \in S$ there exists $\epsilon > 0$ (which may depend on x) such that $(x - \epsilon, x + \epsilon) \subseteq S$ (thus, for every point of S there is some open interval centered at that point which is entirely contained in S). We say that S is closed if its complement \mathbb{R} S is open.

- (a) Prove that if S is an open interval (that is, $S = (a, b) = \{x \in \mathbb{R} : a < x < b\}$ for some a < b), then S is an open subset of \mathbb{R} . **Hint:** This is merely a reformulation of one of the results in HW#1.
- (b) Prove that if S is a closed interval $(S = [a, b] = \{x \in \mathbb{R} : a \le x \le b\}$ for some $a \le b$, then S is a closed subset of \mathbb{R} .

Solution

Part (a)

It is clear from the definition of S that S is a subset of \mathbb{R} . In order to show that it is open we must show that, for arbitrary $x \in S$ there exists and $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subseteq S$. Select any $x \in S$. By the definition of S, a < x < b. Then by the result of HW#5.(c) there exists an $\epsilon > 0$ such that $(x - \epsilon, x + \epsilon) \subset S$. This proves the result.

Part (b)

It is clear from the definition of S that it is a subset of \mathbb{R} . In order to show that S = [a, b] is closed we must show that $S \setminus mathbb{R}$ is open. $S \setminus mathbb{R} = \{x \in R : x < a \text{ or } x > b\}$. So the complement of S can be written as the union of the two open intervals $(-\infty, a)$ and (b, ∞) . By the result of part a this is an open subset of \mathbb{R} and so S is closed.

Problem 7

- (a) Let $X = \mathbb{R}$ and d(x,y) = |x-y|. Recall that (X,d) is a metric space by HW#1.6(b). Prove that $B_{\epsilon}(x) = (x \epsilon, x + \epsilon)$ for all $x \in X$ and $\epsilon > 0$ (thus, an open ball of radius ϵ centered at x in this case is simply the open interval of length 2ϵ centered at x). **Hint:** The result follows directly from basic properties of absolute values.
- (b) Now let $X = \mathbb{R}^2 = \{(x,y) : x,y \in \mathbb{R}\}$, and define functions $d: X \times X \to \mathbb{R}$ and $D: X \times X \to \mathbb{R}$ by setting $d((x_1,y_1),(x_2,y_0)) = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$ and $D((x_1,y_1),(x_2,y_2)) = |x_1-x_2|+|y_1-y_1|$. Describe the open ball $B_{\epsilon}((x,y))$ in each of these two metric spaces.

Solution

Part (a)

WTS: $B_{\epsilon}(x) = \{y \in X : d(x,y) < \epsilon\}$ is equal to $(x - \epsilon, x + \epsilon) = \{y \in \mathbb{R} : x - \epsilon < y < x + \epsilon\}$. We know $X = \mathbb{R}$ and d(x,y) = |x - y| so $B_{\epsilon}(x)$ can be rewritten as:

$$\{y \in \mathbb{R} : |x - y| < \epsilon\}$$

by properties 2 and 6 of absolute values:

$$\{y \in \mathbb{R} : |x - y| < \epsilon\} = \{y \in \mathbb{R} : |y - x| < \epsilon\}$$

$$= \{y \in \mathbb{R} : -\epsilon < y - x < \epsilon\}$$

$$= \{y \in \mathbb{R} : x - \epsilon < y < x + \epsilon\}$$

$$(2)$$

So the sets are equivalent.

Part (b)

In the first space it forms a disk. It selects all points less than a given cartesian distance from a central point. In the second space it forms a filled in square. These are shown in the picture below.

Prove that if S is any open ball in X (that is, $S = B_{\alpha}(y)$ for some $y \in X$ and $\alpha > 0$, then S is an open subset of X.

Solution

 $S = B_{\alpha}(y) = \{z \in X : d(y,z) < \alpha\}$. Select an arbitrary $x \in B_{\alpha}$. We want to show that there exists some $\epsilon > 0$ such that $B_{\epsilon}(x) = \{z \in X : d(x,z) < \epsilon\} \subseteq S$.

Let $\epsilon = \alpha - d(y, x)$. By the definition of B_{α} d(y, x) must be less than α so ϵ is positive. For any $z \in B_{\epsilon}$, $d(y, z) \le d(y, x) + d(x, y)$ by the third property of a metric space. If it were the case that $d(x, z) \ge \epsilon$ then:

$$d(x,z) \ge \epsilon \implies d(x,z) \ge \alpha - d(y,x)$$

$$\implies d(x,z) \ge d(y,z) - d(y,x)$$

$$\implies d(x,z) + d(y,x) \ge d(y,z)$$
(3)

This is a contradiction with property three so $d(x,z) < \epsilon$ for all $z \in B_{\epsilon}$ and S is an open subset of X.