Домашние работы за первую четверть

Виногродский Серафим

18 октября 2019 г.

Содержание

Страницы 30 - 31	
Задача 1	
Задача 2	
Задача 3	
Задача 4	
Задача 5	
Задача 14	
Задача 15	
Задача 16	
Страницы 48 - 49	
$N_{2}1$	
Nº2	
Nº28	
Nº9	
Страницы 74 - 75	
Задача 5	
Задача 6	
Задача 9	
Задача 10	
Страницы 97 - 99	
Задача З	
Задача 4	
Задача 22	
Задача 23	
Задача 30	
Страницы 176 - 177 Задача 1	
Задача 2	

	Задача 7	15
	Страницы 218 - 219	15
	Задача 1	15
	Задача 2	15
	Задача 5	16
11	Сообщение «Постфиксная и инфиксная формы записи выражений»	18 18
	Введение	
	Описание	
	Вычисление	
	Перевод из инфиксной нотации в постфиксную	19
	Непостатки и ограничения	10

Часть І

Задачи

Страницы 30 - 31

Задача 1

По условию, только один поезд едит в Санкт-Петербург, а всего поездов 8, значит выбор происходит из восьми различных вариантов. По формуле $N=2^i$ получаем, что количество информации равно 3 битам, значит пасажир не прав.

Задача 2

В данной ситуации происходит выбор из двую вариантов: либо обезьяна сидит в первом вальере, либо во втором. По формуле $N=2^i$, получаем, что количество информации равно 1 биту, значит посетитель прав.

Задача 3

Для каждой из четырех пещер происходит выбор из двух вариантов (Либо в нем лежит клад, либо нет), так что всего существует 2^4 вариантов, значит по формуле $N=2^i$ мы получаем количествоинформации равное 4 битам, значит для кодирования сведений о расположении кладов необходимо 4 или более бит.

Задача 4

Для первого клада существует выбор из четырех вариантов расположения, для второго — из трех, так что всего существует $4\times 3=12$ вариантов расположения двух кладов. Округляем в большую сторону до степени двойки и по формуле $N=2^i$ получаем i=4, тоесть необходимо 4 бита информации.

Задача 5

Аналогично прошлой задаче выбор происходит из 12 вариантов и необходимый объем информации – 4 бита. Каждый отдельный случай можно закодировать четырехзначным двоизным числом следующим образом: цифры третьего и второго разрядов указывают на двоичный номер первого ключа уменьшенный на единицу, первого и нулевого – на номер второго в том же формате. Приведенное высказывание будет закодировано как число 0111.

Задача 14

$$8 \text{ K6} = 2^3 \times 2^{10} \times 2^3 \text{ бит} = 2^{16} \text{ бит}$$

Задача 15

$$\frac{1}{16}$$
 Кб = $2^{-4} \times 2^{10} \times 2^3$ бит = 2^9 бит = 512 бит

$$\frac{1}{512}$$
 Мб = $2^{-9} \times 2^{10} \times 2^{10} \times 2^3$ бит = 2^{14} бит

Страницы 48 - 49

№1

Структурирование информации – это процесс ее организации. Оно используется для облегчения ее восприятия и доступа к ней.

№2

Алфавитный (Лексикографический) порядок – порядок сортировки упорядоченных контейнеров по возрастанию, при котором для сравнения используется следующий алгоритм: Если длины контейнеров не одинаковы, то меньшим считается контейнер меньшей длины. В ином случае сравниваются первые элементы контейнеров, и, если они равны, то алгоритм повторяется для хвостов контейнеров. В ином случае использъзуется результат сравнения элементов. Пустые контейнеры полагаются равными.

Типичным примером является порядок слов в словаре.

№8

Записать соответствие между номерами столбцов и строк и данными, находящимися в ячей-ках.

№9

Дерево (Иерархия) – это связаный ациклический граф.

Направленное дерево — это связанный ациклический орграф, в котором любая вершина является конечной только для одной дуги.

Страницы 74 - 75

Задача 5

Решаем методом перебора. Ответ: ББААВА, БГАВА

Задача 6

Решаем методом перебора.

Ответ: АДААВВ, АВГАВВ, АВВВААВВ, АВВБАВВ

Построение дерева по кодовой таблице показывает, что наименьшее значения для Γ , при котором выполнеяется условие Φ ано – это 111.

Ответ: 111

Задача 10

Построение дерева по кодовой таблице показывает, что наименьшее значения для Γ , при котором выполнеяется условие Φ ано – это 11.

Ответ: 11

Страницы 97 - 99

Задача 3

Из двух чисел с одинаковой записью, но разными основаниями систем счисления, большим будет число с большим основанием. Исключение – числа длиной в один знак будут равны.

Ответ: 11_{25}

Задача 4

$$345_6 = 6^2 \times 3 + 6 \times 4 + 5 = 108 + 24 + 5 = 137$$
$$345_7 = 7^2 \times 3 + 7 \times 4 + 5 = 147 + 28 + 5 = 180$$
$$345_8 = 8^2 \times 3 + 8 \times 4 + 5 = 192 + 32 + 5 = 229$$
$$345_9 = 9^2 \times 3 + 9 \times 4 + 5 = 243 + 36 + 5 = 284$$

По схеме Горнера:

$$\begin{cases} 30 = (k_2p + k_1)p + k_0, \\ p > 0 \\ 0 < k_2 < p, \\ 0 \le k_1 < p, \\ 0 \le k_0 < p, \\ k_0, k_1, k_2, p \in \mathbb{N} \end{cases}$$

При целочисленном делении обоих частей равенства на p получаем:

$$\left| \frac{30}{p} \right| = (k_2 p + k_1) \tag{1}$$

Поскольку $k_2 > 0$ и $k_1 \ge 0$, то $p \le k_2 p + k_1$. Тогда по равенству (1) получаем:

$$p \le \left\lfloor \frac{30}{p} \right\rfloor$$

$$(\forall x : \lfloor x \rfloor \le x) \Rightarrow p \le \left\lfloor \frac{30}{p} \right\rfloor \le \frac{30}{p} \Rightarrow p \le \frac{30}{p}$$

$$p > 0 \Rightarrow p^2 \le 30 \Rightarrow p \le \sqrt{30}$$

$$p \in \mathbb{N} \Rightarrow \max p = \left\lfloor \sqrt{30} \right\rfloor = 5$$

Ответ: 5

Задача 23

Аналогично прошлой задаче:

$$\max p = \left\lfloor \sqrt{70} \right\rfloor = 8$$

Ответ: 8

Задача 30

Сопоставим каждое слово с некторым числом, в котором в четверичной системе счисления каждой из букв A, K, P и У соответствуют цифры 0, 1, 2 и 3 соответственно.

- 1. $N = 4^5 = 2^{10} = 1024$
- 2. (а) На 150-ом месте стоит слово, которому соответствует число 149 = 02111₄, значит 150-ое слово это APKKK
 - (b) На 250-ом месте стоит слово, которому соответствует число $249=03321_4$, значит 250-ое слово это AYYPK
 - (c) На 350-ом месте стоит слово, которому соответствует число $349=11131_4$, значит 350-ое слово это КККУК
 - (d) На 450-ом месте стоит слово, которому соответствует число $449 = 13001_4$, значит 450-ое слово это KУААК

- 3. (a) Слову АКУРА соответствует число $01320_4 = 120$, значит это 121-ое слово.
 - (b) Слову КАРАУ соответствует число $10203_4 = 291$, значит это 292-ое слово.
 - (c) Слову РУКАА соответствует число $23100_4 = 720$, значит это 721-ое слово.
 - (d) Слову УКАРА соответствует число $31020_4=840$, значит это 841-ое слово.
 - (e) Слову УРАКА соответствует число $32010_4 = 900$, значит это 901-ое слово.
- 4. Первому такому слову соответствует число $20000_4 = 512$, значит это 513-ое слово. Последнему такому слову соответствует число $23333_4 = 767$, значит это 768-ое слово.

Страницы 176 - 177

Задача 1

a)

A	В	$\neg (A \land B) \lor (A \land B)$
0	0	1
0	1	1
1	0	1
1	1	1

б)

A	В	$A \wedge B \vee \neg A \wedge \neg B \vee A \wedge \neg B$
0	0	1
0	1	0
1	0	1
1	1	1

A	В	$(A \lor B) \land (\neg A \lor \neg B) \land (A \lor \neg B)$
0	0	0
0	1	0
1	0	1
1	1	0

г)

A	В	\mathbf{C}	$A \land \neg B \lor B \land \neg C \lor C \land \neg A$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

д)

A	В	С	$A \land \neg B \land C \lor \neg A \land B \land \neg C \lor B \land C$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

e)

A	В	\mathbf{C}	$A \wedge (\neg B \wedge C \vee \neg A) \wedge (\neg C \vee B)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

ж)

A	В	С	$\neg (A \land B) \lor \neg (B \land \neg C)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

A	В	С	$\neg (A \lor B) \lor \neg (B \lor \neg C)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

и)

A	В	С	$\neg(\neg(\neg A \land C) \land \neg(\neg B \land C))$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

к)

A	В	С	$A \wedge (C \vee B \wedge \neg C) \vee C \wedge \neg (A \vee B)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

л)

A	В	С	$A \land (C \lor \neg(\neg B \lor C)) \lor B \land \neg(A \land C)$
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Задача 2

a)

A	В	$(A \Rightarrow B) \lor (\neg A \Rightarrow \neg B)$
0	0	1
0	1	1
1	0	1
1	1	1

б)

	Α	В	$(\neg A \Rightarrow B) \land (A \Rightarrow \neg B)$
ĺ	0	0	0
ĺ	0	1	1
ĺ	1	0	1
	1	1	0

в)

A	В	$(A \land B) \Rightarrow (\neg A \lor \neg B)$
0	0	1
0	1	1
1	0	1
1	1	0

г)

A	В	$(A \vee \neg B) \Rightarrow (A \wedge B)$
0	0	0
0	1	1
1	0	0
1	1	1

A	В	С	$(A \Rightarrow \neg B) \land (A \lor C) \land (\neg A \Rightarrow C)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

e)

A	В	С	$(\neg A \Rightarrow \neg B) \Rightarrow (A \Rightarrow \neg C)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

ж)

A	В	С	$A \land B \Rightarrow (B \lor \neg C)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

3)

A	В	С	$(\neg A \Rightarrow B) \Rightarrow \neg(\neg A \Rightarrow \neg C)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

и)

A	В	$(A \Leftrightarrow B) \lor (\neg A \Leftrightarrow B)$
0	0	1
0	1	1
1	0	1
1	1	1

Α	В	С	$(A \Leftrightarrow B) \lor (A \Leftrightarrow C) \lor (\neg B \Leftrightarrow C)$
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Подставляем значения аргументов из таблицы в данные выражения и получаем, что ей соответствуют только (б) и (г).

Ответ: б, г

Задача 7

Подставляем значения аргументов из таблицы в данные выражения и получаем, что ей соответствуют только (а) и (в).

Ответ: а, в

Страницы 218 - 219

Задача 1

Допустим, что Миша сказал только правду, тогда по его словам Миша и Коля не рабивали окно, значит окно разбил Сергей, но в таком случае Коля тоже сказал только правду, что не допустимо по условию задачи.

Допущение о том, что только правду сказал Коля приведет к тому же противоречию, значит только правду сказал Сергей. Из слов последнего получаем, что окно разбил Миша, а Сергей этого не делал, значит Коля сказал только ложь, значит по условию задачи Миша сказал в одной числи предложения правду, а в другой - ложь, что не вызывает противоречий.

Ответ: Миша

Задача 2

Имеем три пары высказываний, в каждой из которох верно только одно:

- A_1 "Наташа заняла первое место"
- A_2 "Маша заняла второе место"
- B_1 "Люда заняла второе место"
- B_2 "Рита заняла четвертое место"
- C_1 "Рита заняла третье место"
- C_2 "Наташа заняла второе место"

Допустим, что верно A_1 , тогда ложны A_2 и C_2 . Поскольку C_2 не верно, то C_1 истино, а значит ложно B_2 , поскольку оно противоречит C_1 , и истино B_1 .

Из верных высказываний следует, что Наташа заняла первое место, Рита – третье, а Люда – второе. Оставшееся четвертое место уходит Маше.

Допустим обратное: A_1 ложно. Тогда A_2 истино, а B_1 не верно, поскольку оно противоречит A_2 , и, как следствие, верно B_2 . Из последнего следует, что не верно C_1 , а значит верно C_2 . Однако C_2 противоречит A_1 , значит обратное допущение не верно.

Ответ: Наташа - 1, Люда - 2, Рита - 3, Маша - 4.

Задача 5

Построим таблицу, в которой строкам соответствуют роли, а стольбцам – люди:

	Михаил	Сергей	Виктор
Командир			
Механик			
Радист			

Допустим, что верно первое утверждение, тогда таблица начнет заполняться так:

	Михаил	Сергей	Виктор
Командир	1		1
Механик		1	
Радист			0

Однако, командиром в команде может быть только один, значит изначальное допущение неверно.

Допустим теперь, что верно второе утверждение. Тогда таблица примет такой вид:

	Михаил	Сергей	Виктор
Командир	0	0	1
Механик	1	0	0
Радист	0	1	0

Противоречий не возникает, и получившееся соответсвия ролей являются ответом, но необходимо рассмотреть остальные варианты допущений.

Пусть верно третье утверждение. Часть таблицы примет такой вид:

	Михаил	Сергей	Виктор
Командир	0		1
Механик		1	
Радист			1

Однако, Виктор не может быть одновременно и командиром и механиком, значит изначальное допущение неверно.

Пусть верно последнее утверждение. Чвсть таблицы примет такой вид:

	Михаил	Сергей	Виктор
Командир	0		0
Механик		1	
Радист			0

Однако, в таком случае Виктор может быть только механиком, хотя эта роль уже занята Сергеем, значит изначальное допущение неверно.

Ответ: Виктор – командир, Михаил – Механик, Сергей – Радист.

Часть II

Сообщение

«Постфиксная и инфиксная формы записи выражений»

Введение

Инфиксная нотация знакома и привычна подовляющему большинству населения Земли, потому что именно она является общепринятой и используется повсеместно. Однако это не единствеый способ записи выражений, помимо других существуют префиксная и постфиксная формы. В данном тексте мы подробнее рассмотрим последнюю из них, так же называемую "Обратная польская нотация".

Описание

В привычной нам инфиксной форме записи бинарные операторы записываются между их аргументами, а функции — перед списком аргументов, окруженных скобками и разделенных запятыми, так, например, произведение синуса трех и суммы четырех и пяти будет записано как " $\sin(3)$ * (4+5)". Во избежание неоднозначности в этой нотации присутствуют приоритеты операторов указывающие на порядок вычислений, а так же скобки, позволяющие при необходимости изменять этот порядок.

В обратной польской нотации же все функции и бинарные операторы записываются справа от своих аргументов без каких-либо скобок. Так, описаное выше выражение будет записано как " $3 \sin 4 5 + *$ ". Значительным преимуществом данной нотации является ее одназначность без необходимости введения приоритета операторов и использования скобок, отсутствие которых делает постфикстую форму записи более компактной и обеспчивает гораздо более простой алгоритм ее разбора и вычисления.

Вычисление

Рассмотрим наиболее простой алгоритм вычисления выражения, записанного постфиксной формой записи, использующий стек в качестве изменяемого состояния (Предположим, что текст уже разбит на токены):

Описание алгоритма:

- Пока есть токены для чтения:
 - Читаем один токен
 - Если это число, то добавляем его в стрек.
 - Если это функция или оператор, то применеям ee/eго к необходимому количеству значений, изымаемых из стека. Результат применения запиываем в стек.
- Если выражение было записано корректно, то по окончанию списка тоекнов в стеке должно остаться одно число, являющееся результатом вычисления.

Перевод из инфиксной нотации в постфиксную

Рассмотрим наболее часто использующийся алгоритм перевода инфиксной нотации в обратную польскую (Предположим, что текст уже разбит на токены). Для его реализации используется стек операций в качастве изменяемого состояния.

Описание алгоритма:

- Пока есть токен для чтения:
 - Читаем один токен
 - Если это число или постфиксная функция, добавляем его к выходному выражению.
 - Если это префиксная функция или открывающая скобка, помещаем его в стек.
 - Если это закрывающая скобка:
 - * До тех пор, пока верхним элементом стека не станет открывающая скобка:
 - Выталкиваем элементы из стека в выходное выражение.
 - * Если стек закончился раньше, чем встретилась открывающая скобка, то выражение записано некорректно.
 - * Появление непарной скобки также свидетельствует об ошибке.
 - * Открывающая скобка удаляется из стека.
 - Если символ является бинарной операцией О:
 - * Пока на вершине стека префиксная функция, или операция на вершине стека приоритетнее О, или операция на вершине стека левоассоциативная с приоритетом как у О:
 - выталкиваем верхний элемент стека в выходную строку;
 - * Помещаем операцию О в стек.
- По окончанию списка токенов:
 - Если в стеке есть что-либо кроме скобок, значит в выражении не согласованы скобки.
 - В ином случае выталкиваем все токены из стека в выходное выражение.

Недостатки и ограничения

Постфиксная нотация имеет так же и определенные недостатки, главные из которых:

- Неудобство чтения и записи для подовляющего большинства людей. Как уже было сказано, общепринятой является инфиксная нотация.
- Отсутствие возможности использовать операции, являющиеся одновременно и унарными, и бинарными. Так, например, невозможно использовать минус одновременно для вычитания и для смены знака числа. Для решения этой проблемы необходимо либо использовать разные символы для унарной и бинарной функций, либо выражать бинарную функцию через унарную или наоборот. В случае с минусом можно, например, заменить "-3" на "0 3" и уже это выражение переводить в постфиксную нотацию.