

M. Cristina Miranda e Anabela Rocha

> Estatística VIII

M. Cristina Miranda e Anabela Rocha

M. Cristina Miranda e Anabela Rocha

M. Cristina Miranda e Anabela Rocha

Distribuiçoes Teóricas. Caraterização de algumas distribuições contínuas.

Distribuição Normal

Estatística

M. Cristina Miranda e Anabela Rocha

Distribuições Teóricas. Caraterização de algumas distribuições contínuas. Uma v.a. X segue uma distribuição Normal, se tiver a seguinte f.d.p.:

$$f(x) = \frac{1}{\sigma\sqrt{(2\pi)}} exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right], x, \mu \in \mathbb{R}, \sigma \in \mathbb{R}^+.$$

$$X \sim N(\mu, \sigma^2) \Leftrightarrow \begin{cases} E[X] = \mu \\ V[X] = \sigma^2 \end{cases}$$

Distribuição Normal

Estatística

M. Cristina Miranda e Anabela Rocha

Distribuições Teóricas. Caraterização de algumas distribuições contínuas.

Normal: função de distribuição

Х

M. Cristina Miranda e Anabela Rocha

Teóricas.
Caraterização de algumas distribuições contínuas.

Podemos obter no EXCEL os valores da função densidade e da função de distribuição para determinados valores da Média e da Variância:

M. Cristina Miranda e Anabela Rocha

Teóricas.
Caraterização de algumas distribuições contínuas.

Para obter o valor da função de distribuição preenche-se o valor cumulativo com 1 (verdadeiro):

M. Cristina Miranda e Anabela Rocha

Teóricas.
Caraterização de algumas distribuições contínuas.

Podemos ainda determinar no EXCEL o valor de um quantil de probabilidade p:

M. Cristina Miranda e Anabela Rocha

Teóricas.
Caraterização
de algumas
distribuições
contínuas.

Exemplo

Supondo que a v.a. X segue uma distribuição Normal com valor médio $\mu=4$ e variância $\sigma^2=2$, mostrar que:

- f(2) = 0.1;
- F(2) = 0.08;
- P(X < 3) = 0.24;
- P(X > 4) = 0.5;
- O valor do quantil de probabilidade p = 0.1 é x = 2.19.

Distribuição NORMAL PADRÃO ou NORMAL REDUZIDA

Estatística

M. Cristina Miranda e Anabela Rocha

Teóricas.
Caraterização de algumas distribuições contínuas.

Normal(0,1)

Dizemos que Z segue uma distribuição Normal reduzida ou padrão:

$$Z \sim N(0,1) \Leftrightarrow egin{cases} P(Z \leq z) &= \varPhi(z) \ \varPhi(z) &= \int_{-\infty}^z \varphi(z) dz \end{cases}$$

$$E[Z] = 0 \text{ e } V[Z] = 1.$$

No EXCEL

Estatística

M. Cristina Miranda e Anabela Rocha

Propriedades

Estatística

M. Cristina Miranda e Anabela Rocha

Teóricas.
Caraterização de algumas distribuições contínuas.

- f.d.p. é simétrica em relação a μ ;
- ullet f.d.p. tem dois pontos de inflexão em: $\mu-\sigma$ e $\mu+\sigma$;
- \bullet f.d.p. é mais achatada quanto maior for o valor de $\sigma;$

$$X \sim \mathit{N}(\mu, \sigma^2) \Rightarrow Z = \frac{X - \mu}{\sigma} \sim \mathit{N}(0, 1);$$

•

$$X \sim N(\mu, \sigma^2) \Rightarrow P(a < X < b) = \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma})$$

Propriedades

Estatística

M. Cristina Miranda e Anabela Rocha

Teóricas.
Caraterização de algumas distribuições contínuas.

 $\Delta(-)$ 1 $\Delta(-)$

$$\Phi(-z) = 1 - \Phi(z), \forall z \in \mathbb{R}$$

• Se X_i são v.a.s independentes e $X_i \sim N(\mu_i, \sigma_i^2)$, para $\alpha_i \in \mathbb{R}$,

$$\sum_{i=1}^n \alpha_i X_i \sim N(\mu, \sigma^2),$$

onde
$$\mu = \sum_{i=1}^{n} \alpha_i \mu_i$$
 e $\sigma^2 = \sum_{i=1}^{n} \alpha_i^2 \sigma_i^2$.

Propriedades

Estatística

M. Cristina Miranda e Anabela Rocha

Teóricas.
Caraterização
de algumas
distribuições
contínuas.

Note-se que, para qualquer distribuição Normal se tem,

$$P(\mu - \sigma < X < \mu + \sigma) =$$

$$= P(-\sigma < X - \mu < \sigma)$$

$$= P\left[-1 < \frac{X - \mu}{\sigma} < 1\right]$$

$$= \Phi(1) - \Phi(-1)$$

$$= 2\Phi(1) - 1 \simeq 0.68.$$

M. Cristina Miranda e Anabela Rocha

$$P(\mu - 3\sigma < X < \mu + 3\sigma) =$$

$$= P(-3\sigma < X - \mu < 3\sigma)$$

$$= P\left[-3 < \frac{X - \mu}{\sigma} < 3\right]$$

$$= \Phi(3) - \Phi(-3)$$

$$= 2\Phi(3) - 1 \simeq 0.997.$$

M. Cristina Miranda e Anabela Rocha

Teóricas. Caraterização de algumas distribuições contínuas.

Os valores da tabela correspondem à área acumulada até z, sendo o valor das unidades e décimas de z expresso na primeira coluna (amarela) e os valores da casa da centésima na primeira linha (amarela) $\Phi(z) = P(Z \le z)$:

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.999

M. Cristina Miranda e Anabela Rocha

Teóricas.
Caraterização de algumas distribuições contínuas.

Tendo apenas disponível uma tabela com a distribuição Normal, é necessário centrar e reduzir antes do cálculo de probabilidades relativas a uma v.a. não standardizada, pois a tabela diz respeito em exclusivo à N(0,1).

- Exemplo
 - Sendo $X \sim N(0,1)$, calcule P(X > 1.3);
 - Sendo $X \sim N(5,4)$, calcule P(X < 3);

M. Cristina Miranda e Anabela Rocha

$$P(X > 1.3) = 1 - P(X \le 1.3)$$

$$=1-\Phi(1.3)=1-0.9032=0.0968.$$

$$P(X < 3) = P\left(\frac{X - 5}{2} < \frac{3 - 5}{2}\right) = P(Z < -1) = \Phi(-1) =$$

$$=1-\Phi(1)=1-0.8413=0.1587$$

Distribuição T-Student

Estatística

M. Cristina Miranda e Anabela Rocha

Propriedades da distribuição T-Student

Estatística

M. Cristina Miranda e Anabela Rocha

$$X \sim T_n \Leftrightarrow egin{cases} E[X] = 0 & , n
eq 1 ext{ (para n=1 n\tilde{a}o existe;)} \ V[X] = rac{n}{n-2}. \end{cases}$$

No EXCEL

Estatística

M. Cristina Miranda e Anabela Rocha

Teóricas.
Caraterização
de algumas
distribuições
contínuas.

obtém-se o valor de F(x)...

No EXCEL

Estatística

M. Cristina Miranda e Anabela Rocha

Teóricas.
Caraterização
de algumas
distribuições
contínuas.

E o valor do quantil de ordem \mathbf{p} , x : F(x) = p:

Aproximação da T-Student a uma Normal

Estatística

M. Cristina Miranda e Anabela Rocha

Para grandes valores de n, X aproxima-se da Normal padrão. (regra prática: obtêm-se boas aproximações para n>30). Podemos calcular

aproximações para n>30). Podemos calcular probabidades relativas à variável X (com distribuição t-student) usando valores aproximados, obtidos com a distribuição Normal padrão.

	P(X<2	2)		
n	t-Student	Normal Padrão		
2	0,908248	0,97725		
5	0,949030	0,97725		
10	0,96330	0,97725		
15	0,968027	0,97725		
20	0,970367	0,97725		
30	0,972687	0,97725		
500	0,976979	0,97725		
1000	0,9771148	0,97725		

M. Cristina Miranda e Anabela Rocha

Distribuições Teóricas. Caraterizaçã de algumas distribuições contínuas. Exemplo

Supondo que a v.a. ${\cal T}$ segue uma distribuição t-Student com 30 g.l., determine:

- F(1.5);
- o quantil de ordem 0.96;
- \bigcirc um valor aproximado para F(1.5).

M. Cristina Miranda e Anabela Rocha

Teóricas. Caraterização de algumas distribuições contínuas.

- $x_{0.96} = x : F(x) = 0.96 \Leftrightarrow x = (INV.T(0,96;30)) = 1,81;$
- $F_t(1.5) \simeq F_N(1.5) = (DIST.S.NORM(1,5;1)) = 0.933.$

Distribuição Qui-quadrado

Estatística

M. Cristina Miranda e Anabela Rocha

Teóricas.
Caraterização de algumas distribuições contínuas.

$$X \sim \chi_n^2 \Leftrightarrow \begin{cases} E[X] = n \\ V[X] = 2n \end{cases}$$

No EXCEL

Estatística

M. Cristina Miranda e Anabela Rocha

Teóricas.
Caraterização
de algumas
distribuições
contínuas.

obtém-se o valor de F(x)...

No EXCEL

Estatística

M. Cristina Miranda e Anabela Rocha

Teóricas.
Caraterização de algumas distribuições contínuas.

E o valor do quantil de ordem \mathbf{p} , x : F(x) = p:

M. Cristina Miranda e Anabela Rocha

Distribuiçõe: Teóricas. Caraterizaçã de algumas distribuições contínuas. Exemplo

Supondo que a v.a. Y segue uma distribuição Qui-quadrado com 4 g.l., determine:

- F(2);
- o quantil de ordem 0.99;
- P(2Y > 1).

M. Cristina Miranda e Anabela Rocha

Teóricas. Caraterização de algumas distribuições contínuas.

$$P(2) = P(Y \le 2) = (DIST.CHIQ(2; 4; 1)) = 0,264;$$

$$y_{0.99} = y : F(y) = 0.99$$

 $\Rightarrow y = (INV.CHIQ(0, 99; 4)) = 13.2767;$

$$P(2Y > 1) = P(Y > \frac{1}{2}) = 1 - P(Y \le \frac{1}{2}) = 1 - F(0.5)$$

$$= 1 - (DIST.CHIQ(0,5;4;1)) = 0.974.$$

M. Cristina Miranda e Anabela Rocha