Qiskit cheat sheet

Circuit Basics

Create a classical register wiith 3 bits

cr = ClassicalRegister(3)

Create a quantum register with 3 qubits

qr = QuantumRegister(3)

Create an initial circuit with classical and quantum registers

circ = QuantumCircuit(qr,cr)

Gates

X on qubit 0: circ.x(qr[0])

H on qubit 0: circ.h(qr[0])

CNOT on qubit 0,1: circ.cx(qr[0], qr[1])

<u>Measurement</u>

circ.measure(qr, cr)

Visualization

circ.draw(output = 'mpl')

Running experiments on a simulator

simulator = Aer.get_backend('qasm_simulator')

Execute a job

result = execute (circ, backend=simulator, shots=1024).result()

Plot a histogram

plot histogram(result.get counts(circ))

Running experiments on a real quantum computer

Load accounts

from qiskit import IBMQ

IBMQ.load account()

Get Backends

provider = IBMQ.get provider(hub='ibm-q')

provider.backends()

Choose a backend

mel= provider.get backend('ibmq 16 melbourne')

Execute a job

job mel16 = execute(circ, backend=mel)

Job Monitor

from giskit.tools.monitor import job monitor

job monitor(job mel16)

Plot a histogram

result mel16 = job mel16.result()

plot_histogram(result_mel16.get_counts(circ))