

Capítulo 4

Distribuições de probabilidade discreta

Texto baseado no livro:

Estatística Aplicada - Larson / Farber - Editora Pearson - 2010

- 4.1 Distribuições de probabilidades
- 4.2 Distribuições binomiais
- 4.3 Mais distribuições de probabilidades discretas

Variáveis aleatórias

Representa um valor numérico associado com cada resultado de uma distribuição de probabilidade, denotado por x

Exemplos:

x = Número de vendas que um vendedor faz em um dia

x = Horas gastas em ligações de venda em um dia

Variáveis aleatórias

Tipos: Discretas ou contínuas

Discretas

Exemplos:

- a) número de ocorrências da face cara no lançamento de três moedas.
- b) número de lâmpadas queimadas em um lote de 30 lâmpadas.
- c) número de carros que passam por um cruzamento por minuto, durante certa hora do dia.

Variáveis aleatórias

Tipos: Discretas ou contínuas

Contínuas

Exemplos:

- a) tempo durante o qual um equipamento elétrico é usado em carga máxima
- b) diâmetro de um cabo elétrico
- c) peso de um indivíduo

Variáveis aleatórias discretas

Tem um número finito ou contável de possíveis resultados que podem ser listados Exemplo:

x = Número de vendas que um vendedor faz em um dia

Variáveis aleatórias contínuas

Tem um número incontável de resultados possíves, representados por um intervalo na reta numérica Exemplo:

x = Horas gastas em ligações de venda em um dia

Exemplo: variáveis aleatórias

Decida se a variável aleatória x é discreta ou contínua.

1. x = O número de ações na média industrial da Dow Jones que tiveram aumento no preço em um dia.

Solução:

Variável aleatória discreta (o número de ações que tiveram aumento de preço pode ser contado).

Decida se a variável aleatória x é discreta ou contínua.

2. x = O volume de água em um recipiente de 32 litros.

Solução:

Variável aleatória contínua (a quantidade de água pode ser qualquer volume entre 0 até 32 litros).

Distribuição de probabilidades: Variável aleatória discreta

Definições:

- a) Variável aleatória: função que associa a todo evento pertencente a uma partição do espaço amostral, um único número real.
- b) **Função de probabilidade:** função que associa a cada valor assumido pela variável aleatória, a probabilidade do evento correspondente, ou seja, $P(X = x_i) = P(A_i)$, i=1,2...,n.
- c) Distribuição de probabilidade da variável X:

Conjunto
$$\{(x_i, p(x_i)), i=1,...,n\}$$
, onde $\sum_{i=1}^{n} p(x_i) = 1$

Distribuição de probabilidade discreta

Lista cada possível valor que a variável aleatória possa assumir, juntamente com sua probabilidade

Precisa satisfazer as seguintes condições:

Em palavras	Em símbolos

- 1. A probabilidade de cada valor da variável $0 \le P(x) \le 1$ discreta aleatória precisa estar entre 0 e 1.
- 2. A soma de todas as probabilidades tem de ser 1. $\sum P(x) = 1$

Construindo uma distribuição de probabilidade discreta

Seja x uma variável discreta aleatória com resultados possíveis x_1, x_2, \ldots, x_n .

- 1. Faça uma distribuição de frequências para os resultados possíveis.
- 2. Encontre a soma das frequências.
- 3. Encontre a probabilidade de cada resultado possível dividindo sua frequência pela soma das frequências.
- 4. Certifique-se de que cada probabilidade esteja entre 0 e 1 e que a soma seja 1.

Um psicólogo industrial aplicou um teste de inventário de personalidade para traços passivo-agressivos em 150 funcionários. Os indivíduos receberam pontuações de 1 a 5, em que 1 era extremamente passivo e 5 extremamente agressivo.

Uma pontuação de 3 indica neutralidade de traços. Construa uma distribuição de probabilidade para a variável aleatória x. Então faça um gráfico da distribuição usando um histograma.

Pontuação, x	Frequência, f
1	24
2	33
3	42
4	30
5	21

Solução: construindo uma distribuição de probabilidade discreta

Divida a frequência de cada pontuação pelo número total de indivíduos no estudo para encontrar a probabilidade para cada valor da variável aleatória

$$P(1) = \frac{24}{150} = 0.16$$
 $P(2) = \frac{33}{150} = 0.22$ $P(3) = \frac{42}{150} = 0.28$

$$P(4) = \frac{30}{150} = 0.20$$
 $P(5) = \frac{21}{150} = 0.14$

Distribuição da probabilidade discreta:

\boldsymbol{x}	1	2	3	4	5
P(x)	0,16	0,22	0,28	0,20	0,14

\boldsymbol{x}	1	2	3	4	5
P(x)	0,16	0,22	0,28	0,20	0,14

Essa é uma distribuição de probabilidade discreta válida, já que:

- 1. Cada probabilidade está entre 0 e 1, $0 \le P(x) \le 1$.
- 2. A soma das probabilidades é igual a 1:

$$\Sigma P(x) = 0.16 + 0.22 + 0.28 + 0.20 + 0.14 = 1.$$

Histograma

Como a largura de cada barra é 1, a área de cada barra é igual à probabilidade de um resultado em particular.

Média de uma distribuição de probabilidade discreta

$$\mu = \sum x P(x)$$

Cada valor de *x* é multiplicado por sua probabilidade correspondente e os produtos são somados

A distribuição de probabilidade para traços passivoagressivos é dada. Encontre a média.

Solução:

\boldsymbol{x}	P(x)	xP(x)
1	0,16	1(0.16) = 0.16
2	0,22	2(0.22) = 0.44
3	0,28	3(0.28) = 0.84
4	0,20	4(0.20) = 0.80
5	0,14	5(0.14) = 0.70

$$\mu = \sum x P(x) = 2,94$$

Variância de uma distribuição de probabilidade discreta

$$\sigma^2 = \sum (x - \mu)^2 P(x)$$

Desvio padrão de uma distribuição de probabilidade discreta:

$$\sigma = \sqrt{\sum (x - \mu)^2 P(x)}$$

Exemplo: encontrando a variância e o desvio padrão

A distribuição de probabilidade de personalidade para traços passivo-agressivos é dada. Encontre a variância e o desvio padrão (μ = 2,94).

\boldsymbol{x}	P(x)
1	0,16
2	0,22
3	0,28
4	0,20
5	0,14

Solução: encontrando a variância e o desvio padrão: Lembre-se: μ = 2,94

\boldsymbol{x}	P(x)	$x-\mu$	$(x-\mu)^2$	$(x-\mu)^2 P(x)$
1	0,16	1 - 2,94 = -1,94	$(-1.94)^2 = 3.764$	3.764(0.16) = 0.602
2	0,22	2 - 2,94 = -0,94	$(-0.94)^2 = 0.884$	0.884(0.22) = 0.194
3	0,28	3 - 2,94 = 0,06	$(0.06)^2 = 0.004$	0.004(0.28) = 0.001
4	0,20	4 - 2,94 = 1,06	$(1.06)^2 = 1.124$	1.124(0.20) = 0.225
5	0,14	5 - 2,94 = 2,06	$(2.06)^2 = 4.244$	4.244(0.14) = 0.594

Variância: $\sigma^2 = \Sigma (x - \mu)^2 P(x) = 1.616$

Desvio padrão: $\sigma = \sqrt{\sigma^2} = \sqrt{1.616} \approx 1.3$

Valor esperado

Valor esperado (esperança matemática) de uma variável aleatória discreta é igual à média da variável aleatória, ou seja:

$$E(x) = \mu = \sum x P(x)$$

Exemplo: encontrando um valor esperado

Em uma rifa, 1.500 bilhetes são vendidos a R\$ 2 cada para quatro prêmios de R\$ 500, R\$ 250, R\$ 150 e R\$ 75. Você compra um bilhete. Qual o valor esperado do seu ganho?

Solução: encontrando um valor esperado

Para encontrar o ganho de cada prêmio, subtraia o valor do bilhete do prêmio:

Seu ganho para o prêmio de R\$ 500 é R\$ 500 – R\$ 2 = R\$ 498 Seu ganho para o prêmio de R\$ 250 é R\$ 250 – R\$ 2 = R\$ 248 Seu ganho para o prêmio de R\$150 é R\$ 150 – R\$ 2 = R\$ 148 Seu ganho para o prêmio de R\$ 75 é R\$ 75 – R\$ 2 = R\$ 73

Se você não ganhar um prêmio, seu ganho é R\$ 0 – R\$ 2 = – R\$ 2

A distribuição da probabilidade para os possíveis ganhos (resultados)

Ganho, x	R\$ 498	R\$ 248	R\$ 148	R\$ 73	- R\$ 2
P(x)	$\frac{1}{1500}$	$\frac{1}{1500}$	$\frac{1}{1500}$	$\frac{1}{1500}$	$\frac{1496}{1500}$

$$E(x) = \sum xP(x) = 498 \cdot \frac{1}{1500} + 248 \cdot \frac{1}{1500} + 148 \cdot \frac{1}{1500} + 73 \cdot \frac{1}{1500} + (-2) \cdot \frac{1496}{1500}$$

$$=-1.35$$

Você pode esperar perder uma média de R\$ 1,35 para cada bilhete que comprar.

Seção 4.2

Distribuições binomiais

Características dos experimentos Binomiais

1. O experimento é repetido para um número fixo de tentativas; cada tentativa é independente das outras.

- 2. Há apenas dois resultados possíveis de interesse para cada tentativa. Os resultados podem ser classificados como sucesso (*S*) ou falha (*F*).
- 3. A probabilidade de um sucesso P(S) é a mesma para cada tentativa.

4. A variável aleatória x conta o número de tentativas bemsucedidas.

Notações para experimentos binomiais

Símbolo	Descrição
n	Número de vezes que uma tentativa é repetida
p = P(s)	Probabilidade de sucesso em uma única tentativa
q = P(F)	Probabilidade de falha em uma única tentativa $(q = 1 - p)$
X	A variável aleatória representa a contagem do número de sucessos em n tentativas: $x = 0, 1, 2, 3,, n$.

Exemplo: experimentos binomiais

Decida se o experimento é um experimento binomial. Se for, especifique os valores de n, p e q e liste os valores possíveis da variável aleatória x.

1. Um certo procedimento cirúrgico tem uma chance de sucesso de 85%. Um médico realiza o procedimento em oito pacientes. A variável aleatória representa o número de cirurgias bem-sucedidas.

Experimento binomial

- 1. Cada cirurgia representa uma tentativa. Há oito cirurgias, e cada uma é independente das outras.
- 2. Há apenas dois resultados possíveis de interesse para cada cirurgia: um sucesso (*S*) ou uma falha (*F*).
- 3. A probabilidade de um sucesso, P(S), é 0,85 para cada cirurgia.
- 4. A variável aleatória *x* conta o número de cirurgias bemsucedidas.

Experimento binomial

n = 8 (número de tentativas)

p = 0.85 (probabilidade de sucesso)

q = 1 - p = 1 - 0.85 = 0.15 (probabilidade de falha)

x = 0, 1, 2, 3, 4, 5, 6, 7, 8 (número de cirurgias bem-sucedidas)

Exemplo: experimentos binomiais

Decida se o experimento é um experimento binomial. Se for, especifique os valores de n, p e q e liste os possíveis valores da variável aleatória x.

2. Uma jarra contém cinco bolinhas vermelhas, nove bolinhas azuis e seis bolinhas verdes. Você pega aleatoriamente três bolinhas do jarro, *sem recolocá-las*. A variável aleatória representa o número de bolinhas vermelhas.

Solução: experimentos binomiais

Não é um experimento binomial

A probabilidade de selecionar uma bolinha vermelha na primeira tentativa é de 5/20

Como a bolinha não é recolocada no jarro, a probabilidade de sucesso (vermelho) para as tentativas subsequentes já não será mais 5/20

As tentativas não são independentes e a probabilidade de sucesso não é a mesma para cada tentativa

Fórmula de probabilidade binomial

A probabilidade de exatamente *x* sucessos em *n* tentativas é:

$$P(x) = C(n,x)p^{x}q^{n-x} = \frac{n!}{(n-x)! \, x!} \, p^{x}q^{n-x}$$

n = número de tentativas

p =probabilidade de sucesso

q = 1 - p probabilidade de falha

x = número de sucessos em n tentativas

DISTRBINOM(núm_s; tentativas; probabilidade_s; cumulativo)

A função estatística DISTRBINOM retorna a probabilidade ou a probabilidade acumulada do número de tentativas bemsucedidas *núm_s*, conforme o valor do argumento cumulativo.

Se o argumento *cumulativo* for FALSO, a função retornará a probabilidade do número de sucessos *núm_s* com *probabilidade_s* de sucesso para um número de *tentativas* independentes.

Se o argumento *cumulativo* for VERDADEIRO, a função retornará a probabilidade acumulada do número máximo de sucessos *núm_s* com *probabilidade_s* de sucesso para um número de *tentativas* independentes.

Binomial no PYTHON

Importar biblioteca: from scipy.stats import binom

binom.pmf(k, n, p)

A função retornará a probabilidade do número de sucessos k com *probabilidade p* de sucesso para um número de n *tentativas* independentes.

binom.cdf(k, n, p):

A função retornará a probabilidade acumulada do número de sucessos k com *probabilidade p* de sucesso para um número de n *tentativas* independentes.

Cirurgias de microfraturas no joelho têm 75% de chance de sucesso em pacientes com problemas degenerativos no joelho. A cirurgia é realizada em três pacientes. Encontre a probabilidade da cirurgia ser bem-sucedida em exatamente dois pacientes.

Fórmula da probabilidade binomial.

$$n = 3$$
, $p = \frac{3}{4}$, $q = 1 - p = \frac{1}{4}$, $x = 2$

$$P(2 \text{ cirurgias com sucesso}) = \frac{3!}{(3-2)!2!} \left(\frac{3}{4}\right)^2 \left(\frac{1}{4}\right)^1$$
$$= 3\left(\frac{9}{16}\right) \left(\frac{1}{4}\right) = 3\left(\frac{9}{64}\right) = \frac{27}{64} \approx 0,422.$$

No Excel: =DISTRBINOM(2;3;0,75;FALSO)

Fórmula da probabilidade binomial.

$$n = 3$$
, $p = \frac{3}{4}$, $q = 1 - p = \frac{1}{4}$, $x = 2$

No Python:

prob = binom.pmf(2, 3, 0.75)

print('%0.3f' % prob)

= 0.422

Distribuição de probabilidade binomial

Distribuição de probabilidade binomial

Lista os valores possíveis de *x* com a correspondente probabilidade de cada um

Exemplo: Distribuição de probabilidade binomial para a cirurgia de microfraturas no joelho: n = 3, $p = \frac{3}{4}$

Usa a fórmula da probabilidade binomial para encontrar probabilidades

\boldsymbol{x}	0	1	2	3
P(x)	0,016	0,141	0,422	0,422

Em uma pesquisa, foi pedido a trabalhadores dos EUA as fontes de renda esperadas na aposentadoria. Sete trabalhadores que participaram da pesquisa são aleatoriamente selecionados e perguntados se eles planejam confiar no Seguro Social para sua renda na aposentadoria. Crie uma distribuição de probabilidade binomial para o número de trabalhadores que responderam sim.

Solução: construindo uma distribuição binomial

25% dos trabalhadores americanos esperam confiar no Seguro Social para recebimento de renda na aposentadoria

$$n = 7$$
, $p = 0.25$, $q = 0.75$, $x = 0, 1, 2, 3, 4, 5, 6, 7$

$$P(x = 0) = C(7,0) (0,25)^0 (0,75)^7 = 1(0,25)^0 (0,75)^7 \approx 0,1335$$

$$P(x = 1) = C(7,1) (0,25)^{1} (0,75)^{6} = 7(0,25)^{1} (0,75)^{6} \approx 0,3115$$

$$P(x = 2) = C(7,2) (0,25)^2 (0,75)^5 = 21(0,25)^2 (0,75)^5 \approx 0,3115$$

$$P(x = 3) = C(7,3) (0,25)^3 (0,75)^4 = 35(0,25)^3 (0,75)^4 \approx 0,1730$$

$$P(x = 4) = C(7,4) (0,25)^4 (0,75)^3 = 35(0,25)^4 (0,75)^3 \approx 0,0577$$

$$P(x = 5) = C(7,50 (0,25)^5 (0,75)^2 = 21(0,25)^5 (0,75)^2 \approx 0,0115$$

$$P(x = 6) = C(7,6) (0,25)^6 (0,75)^1 = 7(0,25)^6 (0,75)^1 \approx 0,0013$$

$$P(x = 7) = C(7,7) (0,25)^7 (0,75)^0 = 1(0,25)^7 (0,75)^0 \approx 0,0001$$

\boldsymbol{x}	P(x)
0	0,1335
1	0,3115
2	0,3115
3	0,1730
4	0,0577
5	0,0115
6	0,0013
7	0,0001

Todas as probabilidades estão entre 0 e 1 e a soma das probabilidades é $1,00001 \approx 1$.

Uma pesquisa indica que 41% das mulheres nos EUA consideram leitura como seu lazer favorito. Você seleciona aleatoriamente quatro mulheres dos EUA e pergunta se ler é o passatempo preferido delas. Encontre a probabilidade de pelo menos duas delas dizer sim.

Solução:

n = 4, p = 0,41, q = 0,59Pelo menos duas significa duas ou mais Encontre a soma de P(2), P(3), e P(4)

Solução: encontrando probabilidades binomiais

$$P(x = 2) = C(4,2) (0,41)^2 (0,59)^2 = 6 (0,41)^2 (0,59)^2 \approx 0,351094$$

 $P(x = 3) = C(4,3) (0,41)^3 (0,59)^1 = 4 (0,41)^3 (0,59)^1 \approx 0,162654$
 $P(x = 4) = C(4,4) (0,41)^4 (0,59)^0 = 1 (0,41)^4 (0,59)^0 \approx 0,028258$

$$P(x \ge 2) = P(2) + P(3) + P(4)$$

$$\approx 0.351094 + 0.162654 + 0.028258$$

$$\approx 0.542$$

Excel: =1- DISTRBINOM(1;4;0,41;VERDADEIRO)

Python: 1 - binom.cdf(1, 4, 0.41)

Os resultados de uma pesquisa recente indicam que, quando fazem grelhados, 59% dos lares dos Estados Unidos usam grelhas a gas. Se você selecionar aleatoriamente 100 lares, qual é a probabilidade de que exatamente 65 lares usem uma grelha a gás? Use uma ferramenta tecnológica para encontrar a probabilidade. (Fonte: Greenfield Online for Weber-Stephens Products Company.)

Solução:

Binomial com n = 100, p = 0.59, x = 65

Solução: encontrando probabilidades binomiais usando tecnologia

No excel: =DISTRBINOM(65;100;0,59;FALSO) = 0,0391

No Python: binom.pmf(65, 100, 0.59) = 0.0391

Exemplo: encontrando probabilidades binomiais usando uma tabela

Cerca de 30% dos adultos trabalhadores gastam menos de 15 minutos para ir e voltar ao trabalho. Você seleciona aleatoriamente seis adultos trabalhadores. Qual é a probabilidade de exatamente três deles gastarem menos de 15 minutos indo e voltando do trabalho? Use uma tabela para encontrar a probabilidade. (*Fonte: U.S. Census Bureau.*)

Solução:

Binomial com n = 6, p = 0.30, x = 3

Solução: encontrando probabilidades binomiais usando uma tabela

											p			
n	\boldsymbol{x}	0,01	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50	0,55	0,60
2	0	0,980	0,902	0,810	0,723	0,640	0,563	0,490	0,423	0,360	0,303	0,250	0,203	0,160
	1	0,020	0,095	0,180	0,255	0,320	0,375	0,420	0,455	0,480	0,495	0,500	0,495	0,480
	2	0,000	0,002	0,010	0,023	0,040	0,063	0,090	0,123	0,160	0,203	0,250	0,303	0,360
3	0	0,970	0,857	0,729	0,614	0,512	0,422	0,343	0,275	0,216	0,166	0,125	0,091	0,064
	1	0,029	0,135	0,243	0,325	0,384	0,422	0,441	0,444	0,432	0,408	0,375	0,334	0,288
	2	,	•	•	0,057	•	•	•	•	•	*	*	•	
	3	0,000	0,000	0,001	0,003	0,008	0,016	0,027	0,043	0,064	0,091	0,125	0,166	0,216
6	0	0,941	0,735	0,531	0,377	0,262	0,178	0,118	0,075	0,047	0,028	0,016	0,008	0,004
	1	0,057	0,232	0,354	0,399	0,393	0,356	0,303	0,244	0,187	0,136	0,094	0,061	0,037
	2			-	0,176	-	-			-	-	-	-	
	3	,	,	,	0,042	,	,			,	,	,	,	
	$4 \mid$	0,000	,	,	0,006	,	,	•	,	,	,	,	,	
	5	0,000	•	•	0,000	•	,			•	,	,	•	
	6	0,000	0,000	0,000	0,000	0,000	0,000	0,001	0,002	0,004	0,008	0,016	0,028	0,047

A probabilidade de exatamente três dos seis trabalhadores gastarem menos de 15 minutos indo e voltando do trabalho é de 0,185.

Cinquenta e nove por cento dos lares nos EUA são assinantes de TV a cabo. Você seleciona aleatoriamente seis lares e pergunta se a casa tem TV a cabo. Construa uma distribuição de probabilidade para a variável aleatória *x*. Depois, faça um gráfico da distribuição. (*Fonte: Kagan Research, LLC.*)

Solução:

n = 6, p = 0.59, q = 0.41

Encontre a probabilidade para cada valor de x

23		70.00
A	1	
35.		

\boldsymbol{x}	0	1	2	3	4	5	6
P(x)	0,005	0,041	0,148	0,283	0,306	0,176	0,042

Histograma

Assinatura de TV a cabo

Média, variância e desvio padrão

Média: $\mu = np$

Variância: $\sigma^2 = npq$

Desvio padrão: $\sigma = \sqrt{npq}$

Exemplo: encontrando a média, variância e desvio padrão

Em Pitsburgo, Pensilvânia, cerca de 56% dos dias em um ano são nublados. Encontre a média, variância e desvio padrão para o número de dias nublados durante o mês de junho. Interprete os resultados e determine quaisquer valores incomuns. (*Fonte: National Climatic Data Center.*)

Solução: n = 30, p = 0.56, q = 0.44

Média: $\mu = np = 30.0,56 = 16,8$

Variância: $\sigma^2 = npq = 30.0, 56.0, 44 \approx 7,4$

Desvio padrão: $\sigma = \sqrt{npq} = \sqrt{30 \cdot 0.56 \cdot 0.44} \approx 2.7$

Solução: encontrando a média, variância e desvio padrão

$$\mu = 16.8$$
; $\sigma^2 \approx 7.4$ e $\sigma \approx 2.7$

Em média, há 16,8 dias nublados no mês de junho O desvio padrão é de cerca de 2,7 dias Valores maiores de dois desvios padrão da média são considerados incomuns

16.8 - 2(2.7) = 11.4; junho com 11 dias nublados seria incomum

16,8 + 2(2,7) = 22,2; junho com 23 dias nublados seria incomum também

Uma distribuição de probabilidade discreta Satisfaz as seguintes condições:

O experimento consiste em contar o número de vezes que um evento, x, ocorre em um dado intervalo. O intervalo pode ser de tempo, área ou volume

A probabilidade de o evento ocorrer é a mesma para cada intervalo

O número de ocorrências em um intervalo independe do número de ocorrências em outros intervalos

Condições:

A probabilidade do evento ocorrer é a mesma para cada intervalo

A probabilidade de exatamente *x* ocorrências em um intervalo é

$$P(x) = \frac{\mu^x e^{-\mu}}{x!}$$

em que $e \approx 2.71818$ e μ é o número médio de ocorrências

POISSON(x; média; cumulativo)

A função estatística POISSON retorna dois tipos de probabilidades conforme o valor do argumento *cumulativo*. Se o argumento *cumulativo* for FALSO, a função retornará a probabilidade do número de sucessos *x* considerando o argumento *média* esperada de sucessos. Se o argumento *cumulativo* for VERDADEIRO, a função retornará a probabilidade acumulada até *x* considerando o argumento *média*.

Importar biblioteca: from scipy.stats import poisson poisson.pmf(k, media)

A função retorna a probabilidade do número de sucessos *k* considerando o argumento *média* esperada de sucessos.

poisson.cdf(k, media)

A função retornará a probabilidade acumulada até *k* considerando o argumento *média*.

Exemplos de Aplicações na distribuição do número de:

carros que passam por um cruzamento por minuto, durante certa hora do dia

erros tipográficos por página em um material impresso

defeitos por unidade (m² m³ etc) por peça fabricada

mortes de ataque de coração por ano em uma cidade

Exemplo: distribuição de Poisson

O número médio de acidentes mensais em uma certa interseção é 3. Qual é a probabilidade de que em um mês qualquer quatro acidentes ocorram na interseção?

Solução:

Distribuição de Poisson com x = 4, $\mu = 3$

$$P(4) = \frac{3^4 (2.71828)^{-3}}{4!} \approx 0.168$$

Excel: =POISSON(4;3;FALSO)

Python: poisson.pmf(4, 3)

Exemplo: distribuição de Poisson

O número médio de acidentes mensais em uma certa interseção é 3. Qual é a probabilidade de que em um mês qualquer pelo menos quatro acidentes ocorram na interseção?

Solução:

Distribuição de Poisson com x = 4, $\mu = 3$

Excel: =1- POISSON(3;3;VERDADEIRO)

Python: 1 - poisson.cdf(3, 3)

Exemplo: distribuição de Poisson

O número médio de acidentes mensais em uma certa interseção é 3. Qual é a probabilidade de que em um mês qualquer no máximo dois acidentes ocorram na interseção?

Solução:

Distribuição de Poisson com x = 4, $\mu = 3$

Excel: = POISSON(2;3;VERDADEIRO)

Python: poisson.cdf(2, 3)

1. Uma firma recebe 720 mensagens em sua central de atendimento em 8 horas de funcionamento. Qual a probabilidade de que:

a) em 4 minutos não receba mensagem?

Resp: 0,002479

b) em 6 minutos receba pelo menos 4 mensagens?

Resp: 0,978774

c) Em 12 minutos recebe no máximo 6 mensagens?

Resp: 0,00104

1. Uma firma recebe 720 mensagens em seu fax em 8 horas de funcionamento. Qual a probabilidade de que:

a) em 4 minutos não receba mensagem? Resp: 0,002479

Excel; =POISSON(0;6;FALSO)
$$\left(\lambda = \frac{720}{480} * 4 = 6\right)$$

Python: poisson.pmf(0, 6)

(média 1,5 por minuto. 4 minutos média é 6)

1. Uma firma recebe 720 mensagens em seu fax em 8 horas de funcionamento. Qual a probabilidade de que:

b) em 6 minutos receba pelo menos 4 mensagens?

Resp: 0,978774) (6 minutos, média é 9)

Excel: = 1 - POISSON(3;9;VERDADEIRO)

Python: 1 - poisson.cdf(3, 9)

$$\frac{6}{480} * 720 = 9 \ m\'edia$$

e atendimento

1. Uma firma recebe 720 mensagens em sua central de atendimento em 8 horas de funcionamento. Qual a probabilidade de que:

c) Em 12 minutos recebe no máximo 6 mensagens?

Excel: = POISSON(6;18; VERDADEIRO) = 0,00104

Python: poisson.cdf(6, 18) = 0,00104

$$\frac{12}{480} * 720 = 18 \ m\'edia$$

2. Num livro de 800 páginas há 800 erros de impressão. Qual a probabilidade de que:

a) uma página contenha pelo menos três erros? Resp: 0,080302

b) uma página contenha no máximo 4 erros? Resp: 0,9963

c) uma página contenha cinco erros? Resp: 0,00305

- 2. Num livro de 800 páginas há 800 erros de impressão.
- a) Qual a probabilidade de que uma página contenha pelo menos três erros? Resp: 0,080302

Média: $\lambda = 1$

Excel: = 1 - POISSON(2;1;VERDADEIRO)

Python: 1 - poisson.cdf(2, 1)

2. Num livro de 800 páginas há 800 erros de impressão. Qual a probabilidade de que:

b) uma página contenha no máximo 4 erros? Resp: 0,9963

Excel: = POISSON(4;1;VERDADEIRO)

Python: poisson.cdf(4, 1)

2. Num livro de 800 páginas há 800 erros de impressão. Qual a probabilidade de que:

c) uma página contenha cinco erros? Resp: 0,00307

Excel: = POISSON(5;1;FALSO)

Python: poisson.pmf(5, 1)

3. Numa estrada há 2 acidentes para cada 100 km. Qual a probabilidade de que em 250 km ocorram pelo menos 3 acidentes?

Resp: 0,875348

3. Numa estrada há 2 acidentes para cada 100 km. Qual a probabilidade de que em 250 km ocorram pelo menos 3 acidentes? Resp: 0,875348

Média em 250 km = 5

Excel: = 1 - POISSON(2;5; VERDADEIRO)

Python: 1 - poisson.cdf(2, 5)

4. A experiência mostra que de cada 400 lâmpadas, 2 se queimam ao serem ligadas. Qual a probabilidade de que numa instalação de 900 lâmpadas, exatamente 8 se queimem?

Resp: 0,046330

4. A experiência mostra que de cada 400 lâmpadas, 2 se queimam ao serem ligadas. Qual a probabilidade de que numa instalação de 900 lâmpadas, exatamente 8 se queimem? **Resp: 0,046330**

Média para 900 lâmpadas = 4,5

Excel: =POISSON(8;4,5;FALSO)

Python: 1 - poisson.pmf(8,4.5)

Aproximação da Distribuição Binomial pela Distribuição de Poisson

No uso da Binomial, quando n $\rightarrow \infty$ (maior que o maior valor tabelado, no caso, n > 30) e p \rightarrow 0 (p < 0,1),

é possível fazer uma aproximação da Binomial pela distribuição de Poisson.

Neste caso, E(X) = n.p será tomada como $\lambda = n.p$ e, em seguida, utiliza-se a fórmula de Poisson.

Exercício: Aproximação da Binomial por Poisson

Seja X: B(200; 0,01). Calcular P(X=10):

a) Pela Binomial Resp: 0,000033

Excel: = DISTRBINOM(10;200;0,01;FALSO)

Python: binom.pmf(10, 200, 0.01)

b) Aproximação por Poisson ($\lambda = np = 200.0,01 = 2$)

Resp: 0,000038

Excel: =POISSON(10;2;FALSO)

Python: poisson.pmf(10, 2)