

(9.2) a let P he an homogeneous point = () = () = () / w / z/w / Multiplying by a scalar $|a'| = P \times a$ $= \begin{pmatrix} a \times \\ a \times \\ a \times \\ a \times \\ a \times \end{pmatrix} = \begin{pmatrix} n/\omega \\ 3/\omega \\ 2/\omega \end{pmatrix}$ 9n, 30 this we get an equivalent homogeneous point b) we have 3 homogeneous point. $p_0 = (a_0, b_0, (o, 1); l_1 = (a_1, b_1, c_1, 1); l_2 = (a_2, b_2, c_2, 1)$ $l_3 = (a_3, b_3, c_3, 1)$ Summing them component cuize = $lo + l_y + l_z$ = $(Qo + Q_1 + Q_2, bo + b_1 + b_2, Co + C_1 + C_2, 3)$.: This is the centre b/w that points.

4.3	homogeneous If we have a line 'L' passing b/w two homogeneous points. P & Q. Then the points will satisfy the equation	
	$ \begin{array}{c} L^{T} P = 0 \\ X L^{T} Q = 0 \end{array} $ $ \begin{array}{c} P = \begin{pmatrix} x_{P} \\ y_{P} \\ z_{P} \end{pmatrix} Q = \begin{pmatrix} x_{Q} \\ y_{Q} \\ z_{Q} \\ 1 \end{pmatrix} $	
	But this equat ⁿ will also hold if $L = P \times Q$. as $P \times Q$ will be perpendicular to P .	
	Hence, we can say that cross product b/w 2	2000
	Hence, we can say that cross product b/w 2 homogeneous points gives a homogeneous coordinates of the the line.	000000