Matrix Decompositions

CoE197M/EE298M (Foundations of Machine Learning)

Rowel Atienza, Ph.D.

rowel@eee.upd.edu.ph

Reference: "Mathematics for Machine Learning". Copyright 2020 by Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Published by Cambridge University Press.

Matrix Decompositions

Decomposing a matrix into a product of simpler matrices lets us better understand the data that the matrix represents

For example, by decomposing MNIST images, we understand what makes digits 0 different from 1 to 9 to help us design a better logistic regressor

By decomposing an audio waveform into frequency contents, we understand what makes the sound of "yes" different from "no"

By decomposing connectivity (edges) in a graph neural network, we understand which neurons (nodes) are triggered while an agent is solving a task

Determinant

Given a square matrix $A \in \mathbb{R}^{n \times n}$, the determinant is $det(A) \in \mathbb{R}$ Use of det(A)

Determining the inverse of A

Determining singularity (or invertibility) of A

$$det(\mathbf{A}) = |\mathbf{A}| = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} \in \mathbb{R}$$

Determinant of $A \in \mathbb{R}^{1 \times 1}$

$$det(A) = |a_{11}| = a_{11}$$

Determinant of $A \in \mathbb{R}^{2 \times 2}$

$$det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Determinant of $A \in \mathbb{R}^{3\times3}$

$$det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

 $A \in \mathbb{R}^{3 \times 3}$ can be computed by breaking it down into determinants of $A_i \in \mathbb{R}^{2 \times 2}$

Color coding shows computation of first term using $a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$

The coefficient of each term is multiplied by $(-1)^{i+j}$. For example, the coefficient of a_{12} is $(-1)^{1+2}=-1$

This method is known as Laplace Expansion

Determinant of $A \in \mathbb{R}^{n \times n}$ (Laplace Expansion)

For $j=1,2,\ldots,n$ and A_{jk} is the sub-matrix left after deleting row j and column k

Expansion along column *j*:

$$det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+j} a_{kj} det(\mathbf{A}_{kj})$$

Expansion along row *j*:

$$det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{k+j} a_{jk} det(\mathbf{A}_{jk})$$

Exercise: What is det(A) if $A \in \mathbb{R}^{4 \times 4}$

$$det(\mathbf{A}) = \begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{vmatrix}$$

Special Case: Determinant of a Triangular Matrix

Upper Triangular:
$$\mathbf{T} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_{(n-1)1} \\ 0 & \cdots & 0 & a_{nn} \end{bmatrix}$$
, $det(\mathbf{T}) = \prod_{i=1}^n a_{ii}$

Lower Triangular:
$$\mathbf{T} = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ a_{21} & a_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ a_{n1} & \cdots & a_{n(n-1)} & a_{nn} \end{bmatrix}$$
, $det(\mathbf{T}) = \prod_{i=1}^n a_{ii}$

Consider a > 0 and b > 0:

$$\mathbf{A} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix}$$

Determinant:

$$|A| = ab$$

The Area = |det(A)| holds true even for non-canonical vectors

Consider a > 0 and b > 0:

$$\boldsymbol{A} = \begin{bmatrix} a & 0 \\ 0 & -b \end{bmatrix} = \begin{bmatrix} \boldsymbol{a}_1 & \boldsymbol{a}_2 \end{bmatrix}$$

Determinant:

$$|A| = -ab$$

Consider:

$$\mathbf{A} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 \end{bmatrix}$$

Determinant:

$$|A| = ad - cb$$

Exercise:

Using trigonometric identities, prove that the area of the parallelogram is |A| = ad - cb

Consider:

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} = [a \quad b \quad c]$$

Determinant:

$$Signed\ Volume = det(A) = |A|$$

The Volume = |det(A)| holds true even for non-canonical vectors

$$Vol = |A|$$

Properties of det(A) of $A \in \mathbb{R}^{n \times n}$

det(AB) = det(A) det(B)

$$det(\mathbf{A}) = det(\mathbf{A}^T)$$

If *A* is invertible:

$$det(A^{-1}) = \frac{1}{det(A)}$$

Similar matrices have the same determinant:

$$det(\Phi(A)) = det(A)$$

Adding a multiple of a row/col to another does not change the determinant det(A)

Multiplication of A by $\lambda \in \mathbb{R}$ scales the determinant by λ :

$$det(\lambda A) = \lambda^n det(A)$$

Swapping row/col of A changes the sign of det(A)

Similar Matrices

Two matrices $A, \widetilde{A} \in \mathbb{R}^{n \times n}$, there exists a regular matrix $S \in \mathbb{R}^{n \times n}$ such that:

$$\widetilde{A} = S^{-1}AS$$

$$det(\widetilde{A}) = det(S^{-1}AS) = det(A)det(S^{-1}S) = det(A)$$

Numerical Method in Determining Determinant

Using the properties in the previous slide:

Use Gaussian Elimination to reduce the matrix into upper triangular form

Use property $det(T) = \prod_{i=1}^{n} a_{ii}$ to compute the determinant

Example

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & 0 \\ 2 & 0 & 0 & -1 \\ -1 & 1 & 0 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 2 & -3 \\ 0 & 0 & 0 & -1.5 \end{bmatrix}$$

$$det(A) = 1 \cdot 1 \cdot 2 \cdot -1.5 = -3$$

Determinant and Rank of $\mathbf{A} \in \mathbb{R}^{n \times n}$

If $det(A) \neq 0$, then rank(A) = n

Trace

Trace of $A \in \mathbb{R}^{n \times n}$

Trace of A is the sum of its diagonal elements:

$$tr(A) = \sum_{i=1}^{n} a_{ii}$$

Properties of Trace of $A, B, I \in \mathbb{R}^{n \times n}$

$$tr(A + B) = tr(A) + tr(B)$$

 $tr(\alpha A) = \alpha tr(A), \alpha \in \mathbb{R}$
 $tr(I) = n$
 $A \in \mathbb{R}^{n \times k}, B \in \mathbb{R}^{k \times n}$: $tr(AB) = tr(BA)$
 $A \in \mathbb{R}^{a \times k}, K \in \mathbb{R}^{k \times l}, L \in \mathbb{R}^{l \times a}$: $tr(AKL) = tr(KLA)$
 $tr(xy^T) = tr(y^Tx) = y^Tx \in \mathbb{R}$

Properties of Trace

Let Φ : $V \to V$ be a linear mapping If $\textbf{\textit{A}}$ is used to represent the transformation, then $tr(\Phi) = tr(\textbf{\textit{A}})$ If $\textbf{\textit{B}}$ is used to represent the transformation on another basis, then $tr(\Phi) = tr(\textbf{\textit{B}}) = tr(\textbf{\textit{S}}^{-1}\textbf{\textit{AS}}) = tr(\textbf{\textit{ASS}}^{-1}) = tr(\textbf{\textit{A}})$ $\therefore tr(\Phi)$ is basis independent

Eigenvalue and Eigenvectors

Eigenvalue and Eigenvectors

Certain vectors respond to certain transformation matrices in such a way that the effect is just a constant scaling

Let $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$. $x \in \mathbb{R}^n \setminus \{0\}$ is an eigenvector of A while λ is the corresponding eigenvalue if:

$$Ax = \lambda x$$

Properties of Eigenvalue and Eigenvector

There exists an $x \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that $Ax = \lambda x$ for $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$ or equivalently $(A - \lambda I_n)x = 0$ can be solved with $x \neq 0$ $rank(A - I_n\lambda) < n$ $det(A - I_n\lambda) = 0$

Characteristic Polynomial

Given $A \in \mathbb{R}^{n \times n}$ and $\lambda \in \mathbb{R}$

$$p_{A}(\lambda) = det(A - \lambda I) = c_0 + c_1 \lambda + c_2 \lambda^2 + \dots + c_{n-1} \lambda^{n-1} + (-1)^n \lambda^n$$

 $c_0, c_1, c_2, \dots, c_{n-1}$ are characteristic polynomial of \boldsymbol{A}

$$c_0 = det(A)$$

$$c_{n-1} = (-1)^{n-1} tr(A)$$

Non-uniqueness of Eigenvector

Collinear – 2 vectors are on the same or opposite direction

Codirected – 2 vectors are on the same direction

For a given $c \in \mathbb{R} \setminus \{0\}$:

$$Acx = cAx = c\lambda x = \lambda(cx)$$

 \therefore all vectors collinear to x are also eigenvectors; same eigenvalue, different eigenvectors

$$A = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos \frac{\pi}{6} \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$\lambda_1 = 0.0$$

$$\lambda_2 = 2.0$$

$$\det(\mathbf{A}) = 0.0$$

$$\lambda_1 = 0.5$$

$$\lambda_2 = 1.5$$

$$\det(\mathbf{A}) = 0.75$$

Properties of Eigenvalue and Eigenvector

 λ is an eigenvalue of \boldsymbol{A} if and only if λ is a root of characteristic polynomial of \boldsymbol{A} :

$$p_{A}(\lambda) = det(A - \lambda I) = c_0 + c_1 \lambda + c_2 \lambda^2 + \dots + c_{n-1} \lambda^{n-1} + (-1)^n \lambda^n = 0$$

The algebraic multiplicity of λ as an eigenvalue of A is the number of times it appears as a root in $p_A(\lambda)$

Eigenspace and Eigenspectrum

Eigenspace: The set of all eigenvectors, $\{x_1, x_2, ..., x_m\}$ of $A \in \mathbb{R}^{n \times n}$ for a corresponding eigenvalue $\lambda \in \mathbb{R}$ spans a subspace of \mathbb{R}^n called Eigenspace of E_{λ}

Eigenspectrum: The set of all eigenvalues, $\{\lambda_1, \lambda_2, ..., \lambda_m\}$, of $A \in \mathbb{R}^{n \times n}$

Identity Matrix $I \in \mathbb{R}^{n \times n}$ has $p_A(\lambda) = det(I - \lambda I) = (1 - \lambda)^n = 0$ Solution is λ repeated n times resulting to Eigenspectrum of $\{1\}$ and Eigenspace $E_{\lambda} = \mathbf{x} \in \mathbb{R}^n$

Other Properties

The matrix $A \in \mathbb{R}^{n \times n}$ and its transpose $A^T \in \mathbb{R}^{n \times n}$ have the same eigenvalues but not necessarily the same eigenvectors

Null space or Kernel: The Eigenspace is the Null space or Kernel of $(A - \lambda I)$ since $(A - \lambda I)x = 0$ or $x \in kernel(A - \lambda I)$

Similar matrices have the same eigenvalues. Therefore, under basis change, the following are invariant:

Determinant

Trace

Eigenvalues

Positive definite matrices always have positive real eigenvalues

Multiplicity

The algebraic multiplicity of λ as an eigenvalue of A is the number of times it appears as a root in $p_A(\lambda)$

The **geometric multiplicity** of λ is the number of independent eigenvectors associated with λ

The dimensionality of space spanned by the eigenvectors of λ

Example

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \text{ solve for the eigenvalues and eigenvectors}$$

$$det(A - \lambda I) = \begin{bmatrix} 2 - \lambda & 1 \\ 0 & 2 - \lambda \end{bmatrix} = 0 \Rightarrow p_A(\lambda) = (2 - \lambda)(2 - \lambda) = 0$$

$$det(A - \lambda I) = 4 - 4\lambda + \lambda^2, det(A) = 4, -4 = -1^1 Tr(A),$$
 Eigenvalues: $\lambda_1 = \lambda_2 = 2$, the algebraic multiplicity is 2 Eigenvectors for: $\lambda_1 = \lambda_2 = 2$
$$\begin{bmatrix} 2 - 2 & 1 \\ 0 & 2 - 2 \end{bmatrix} x = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x = 0$$

$$x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \text{ the geometric multiplicity is 1}$$

Eigenvalues and Eigenvectors

```
>>> import numpy as np
>>> a = np.array([[2, 1],[0, 2]])
>>> a.shape
(2, 2)
>>> np.linalg.det(a)
4.0
>>> np.linalg.eig(a)
(array([2., 2.]), array([[ 1.0000000e+00, -1.0000000e+00],
       [0.0000000e+00, 4.4408921e-16]])
>>>
```

Recall: Symmetric Positive Definite Matrix

Symmetric Positive Definite Matrix implies:

$$\forall x \in V \setminus \{\mathbf{0}\}$$
, $x^T A x > \mathbf{0}$

Symmetric Positive Semi-Definite Matrix if:

$$\forall x \in V \setminus \{\mathbf{0}\}$$
, $x^T A x \geq \mathbf{0}$

More Properties

Theorem: The eigenvectors $\{x_1, x_2, ..., x_n\}$ of matrix $A \in \mathbb{R}^{n \times n}$ with distinct eigenvalues $\{\lambda_1, \lambda_2, ..., \lambda_n\}$ are linearly independent *Definition*: If there are fewer than n linearly independent eigenvectors, the matrix is called defective

Theorem (SPSD): For a given matrix $A \in \mathbb{R}^{n \times n}$, we can always obtain a symmetric positive semi-definite matrix $S \in \mathbb{R}^{n \times n}$: $S = A^T A$ If rank(A) = n, then S is a symmetric positive definite (SPD) matrix

Theorem (Spectral Theorem): If $A \in \mathbb{R}^{n \times n}$ is symmetric, there exists an orthonormal basis of vector space V from the eigenvectors of A and each eigenvalue is real.

Determinant and Eigenvalues

Theorem: The determinant of matrix $A \in \mathbb{R}^{n \times n}$ is the product of its eigenvalues:

$$det(A) = \prod_{i=1}^{n} \lambda_i$$

where $\lambda_i \in \mathbb{C}$ (complex) and may be repeated eigenvalues of A

Trace and Eigenvalues

• Theorem: The trace of matrix $A \in \mathbb{R}^{n \times n}$ is the sum of its eigenvalues:

$$Tr(A) = \sum_{i=1}^{n} \lambda_i$$

where $\lambda_i \in \mathbb{C}$ (complex) and may be repeated eigenvalues of A

Cholesky Decomposition

Decomposition as Product of 2 Numbers

In positive real numbers, square root of a number is a useful decomposition. A number is expressed as a product of 2 identical numbers.

The square root of area of square is the length of its side: $A = s^2$

The square root of a number greater than 1 is always greater than 1:

$$n = m^2, n, m > 1$$

The square root of a number less than 1 is always less than 1

$$n = m^2, n, m < 1$$

In positive integers, factorization determines if a number is prime.

A number is prime if it has only 2 factors: itself and 1

Can we factor $A \in \mathbb{R}^{n \times n}$ as a product of 2 or more matrices?

Cholesky Decomposition

Theorem: A symmetric positive definite matrix $A \in \mathbb{R}^{n \times n}$ can be decomposed into a product of 2 matrices $A = LL^T$ where L is a lower triangular matrix with positive diagonal elements:

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{n1} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} l_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ l_{n1} & \dots & l_{nn} \end{bmatrix} \begin{bmatrix} l_{11} & \dots & l_{n1} \\ \vdots & \ddots & \vdots \\ 0 & \dots & l_{nn} \end{bmatrix}$$

L is called the Cholesky factor of A and it is unique

Example Cholesky Decomposition

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11}^2 & l_{11}l_{21} & l_{11}l_{31} \\ l_{11}l_{21} & l_{21}^2 + l_{22}^2 & l_{21}l_{31} + l_{22}l_{32} \\ l_{11}l_{31} & l_{21}l_{31} + l_{22}l_{32} & l_{31}^2 + l_{32}^2 + l_{33}^2 \end{bmatrix}$$

Example Cholesky Decomposition

$$\begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{21} & a_{22} & a_{32} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11}^2 & l_{11}l_{21} & l_{11}l_{31} \\ l_{11}l_{21} & l_{21}^2 + l_{22}^2 & l_{21}l_{31} + l_{22}l_{32} \\ l_{11}l_{31} & l_{21}l_{31} + l_{22}l_{32} & l_{31}^2 + l_{32}^2 + l_{33}^2 \end{bmatrix}$$

$$l_{11} = \sqrt{a_{11}}$$

$$l_{22} = \sqrt{a_{22} - l_{21}^2}$$

$$l_{21} = \frac{a_{21}}{l_{11}}$$

$$l_{32} = \frac{a_{32} - l_{21}l_{31}}{l_{22}}$$

$$l_{31} = \frac{a_{31}}{l_{11}}$$

$$l_{33} = \sqrt{a_{33} - l_{31}^2 - l_{32}^2}$$

Cholesky Decomposition: Applications

Numerical computation of determinant of $A \in \mathbb{R}^{n \times n}$:

$$det(\mathbf{A}) = det(\mathbf{L})det(\mathbf{L}^T) = \prod_{i=1}^{n} l_{ii}^2$$

Modelling of covariance matrix of a multi-variate Gaussian which is symmetric and positive definite

Eigendecomposition and Diagonalization

Diagonal Matrices

Determinant, Inverse, and Power are easy to compute for diagonal matrices

Definition: Diagonal Matrix

$$\mathbf{D} = \begin{bmatrix} d_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & d_{nn} \end{bmatrix}$$

Determinant

$$det(\mathbf{D}) = \prod_{i=1}^{n} d_{ii}$$

Inverse

$$\mathbf{D}^{-1} = \begin{bmatrix} \frac{1}{d_{11}} & \dots & 0\\ \vdots & \ddots & \vdots\\ 0 & \dots & \frac{1}{d_{nn}} \end{bmatrix}$$

Power

$$m{D}^k = egin{bmatrix} d_{11}^k & ... & 0 \ dots & \ddots & dots \ 0 & ... & d_{nn}^k \end{bmatrix}$$

Diagonal Matrices

Trick: Transform a matrix into a diagonal matrix using change of basis *Definition* (Diagonalizable): A matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix. There exists an invertible matrix $P \in \mathbb{R}^{n \times n}$ such that $D = P^{-1}AP$

Eigendecomposition

Theorem (Eigendecomposition): A square matrix $A \in \mathbb{R}^{n \times n}$ can be factored into:

$$A = PDP^{-1}$$

Where

$$m{D} = egin{bmatrix} \lambda_1 & \dots & 0 \ dots & \ddots & dots \ 0 & \dots & \lambda_n \end{bmatrix}$$
 and $m{P} = [m{p}_1 & \cdots & m{p}_n]$ are linearly independent

eigenvectors of $oldsymbol{A}$ or the basis of \mathbb{R}^n

The Matrix $P \in \mathbb{R}^{n \times n}$

Let $\{\lambda_1, \lambda_2, ..., \lambda_n\}$ be the eigenvalues of matrix $A \in \mathbb{R}^{n \times n}$

Let
$$\mathbf{D} = \begin{bmatrix} \lambda_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{bmatrix}$$

Let
$$\boldsymbol{P} = [\boldsymbol{p}_1 \quad \cdots \quad \boldsymbol{p}_n]$$

Then
$$extbf{\emph{PD}} = extbf{\emph{AP}} \Longrightarrow [extbf{\emph{p}}_1 \quad \cdots \quad extbf{\emph{p}}_n] egin{bmatrix} \lambda_1 & \dots & 0 \ \vdots & \ddots & \vdots \ 0 & \dots & \lambda_n \end{bmatrix} = extbf{\emph{A}}[extbf{\emph{p}}_1 \quad \cdots \quad extbf{\emph{p}}_n]$$

$$\lambda_1 \boldsymbol{p}_1 = A \boldsymbol{p}_1$$
, ..., $\lambda_n \boldsymbol{p}_n = A \boldsymbol{p}_n$

 p_1, \dots, p_n are eigenvectors of A that must be linearly independent so that P is invertible

Example

Given
$$A=\frac{1}{2}\begin{bmatrix}5&-2\\-2&5\end{bmatrix}$$
, perform Eigendecomposition Let $\mathbf{D}=\begin{bmatrix}\lambda_1&0\\0&\lambda_2\end{bmatrix}$ Let $\mathbf{P}=[\mathbf{p}_1&\mathbf{p}_2]$

Let
$$P = [P_1 \quad P_2]$$
To find the eigenvalues: $det(A - \lambda I) = \begin{vmatrix} \frac{5}{2} - \lambda & -1 \\ -1 & \frac{5}{2} - \lambda \end{vmatrix} = \mathbf{0}$

The characteristic polynomial:

$$\left(\frac{5}{2} - \lambda\right)^2 - 1 = 0 \text{ or } \lambda = \frac{7}{2}, \frac{3}{2}$$

$$\therefore \mathbf{D} = \begin{bmatrix} \frac{7}{2} & 0 \\ 0 & \frac{3}{2} \end{bmatrix}$$

$$A\mathbf{p}_1 = \lambda_1 \mathbf{p}_1 \Longrightarrow \frac{1}{2} \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix} \mathbf{p}_1 = \frac{7}{2} \mathbf{p}_1 \Longrightarrow \begin{bmatrix} 5 - 7 & -2 \\ -2 & 5 - 7 \end{bmatrix} \mathbf{p}_1$$

$$\Rightarrow \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \boldsymbol{p}_1 \Rightarrow \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \boldsymbol{p}_1 \text{ by GE or } \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \boldsymbol{p}_1 \text{ by } -1 \text{ Trick}$$

$$p_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, similarly $p_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ or $P = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$, $P^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$

Check

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \frac{7}{2} & 0 \\ 0 & \frac{3}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{7}{2} & \frac{3}{2} \\ \frac{7}{2} & \frac{3}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$A = \frac{1}{2} \begin{bmatrix} 5 & -2 \\ -2 & 5 \end{bmatrix}$$

Symmetric Matrix

Theorem (Eigendecomposition of Symmetric Matrix): A symmetric matrix $S \in \mathbb{R}^{n \times n}$ can always be diagonalized

Proof: A symmetric matrix has an orthonormal eigenvectors

Implication: **P** is an orthogonal matrix

Geometric Interpretation

Benefits of EigenDecomposition

Power:
$$\mathbf{A}^{k} = (\mathbf{P}\mathbf{D}\mathbf{P}^{-1})^{k} = \mathbf{P}\mathbf{D}^{k}\mathbf{P}^{-1}$$

 $det(\mathbf{A}) = det(\mathbf{P}\mathbf{D}\mathbf{P}^{-1}) = det(\mathbf{P})det(\mathbf{D})det(\mathbf{P}^{-1})$
 $\Rightarrow det(\mathbf{P}) \prod_{i=1}^{n} d_{ii}det(\mathbf{P}^{-1}) = \prod_{i=1}^{n} d_{ii}det(\mathbf{P})det(\mathbf{P}^{-1})$
 $\Rightarrow \prod_{i=1}^{n} d_{ii}det(\mathbf{P}\mathbf{P}^{-1}) = \prod_{i=1}^{n} d_{ii} = \prod_{i=1}^{n} \lambda_{i}$

Singular Value Decomposition

Singular Value Decomposition (SVD)

Eigendecomposition and Cholesky Decomposition are limited to square matrices

SVD exists for all matrices

Theorem (SVD): Let $A \in \mathbb{R}^{m \times n}$ be a rectangular matrix of rank $r \in [0, \min(m, n)]$. The SVD of \boldsymbol{A} is a decomposition of the form:

 $A = U\Sigma V^T$

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} u_{11} & \dots & u_{1m} \\ \vdots & \ddots & \vdots \\ u_{m1} & \dots & u_{mm} \end{bmatrix} \begin{bmatrix} \sigma_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{mn} \end{bmatrix} \begin{bmatrix} v_{11} & \dots & v_{1n} \\ \vdots & \ddots & \vdots \\ v_{n1} & \dots & v_{nn} \end{bmatrix}^T$$
$$[\boldsymbol{a}_1 & \dots & \boldsymbol{a}_n] = [\boldsymbol{u}_1 & \dots & \boldsymbol{u}_m] [\boldsymbol{\sigma}_1 & \dots & \boldsymbol{\sigma}_n] [\boldsymbol{v}_1 & \dots & \boldsymbol{v}_n]^T$$

$$[\boldsymbol{a}_1 \quad \cdots \quad \boldsymbol{a}_n] = [\boldsymbol{u}_1 \quad \cdots \quad \boldsymbol{u}_m][\boldsymbol{\sigma}_1 \quad \cdots \quad \boldsymbol{\sigma}_n][\boldsymbol{v}_1 \quad \cdots \quad \boldsymbol{v}_n]^T$$

Orthogonal matrix: $U \in \mathbb{R}^{m \times m}$, Diagonal Matrix: $\Sigma \in \mathbb{R}^{m \times n}$, Orthogonal matrix: $V \in \mathbb{R}^{m \times n}$ $\mathbb{R}^{n \times n}$

 $\sigma_{ii} \geq 0$ (singular values), $\sigma_{ii} = 0$ for $i \neq j$

SVD

 $oldsymbol{u}_i$ - left singular vectors

 v_i - right singular vectors

 Σ – singular matrix

$$\begin{cases} \begin{bmatrix} \sigma_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{nn} \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{bmatrix} & if \ m > n \\ \begin{bmatrix} \sigma_{11} & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{mm} & 0 & \dots & 0 \end{bmatrix} & if \ m < n \end{cases}$$

Geometric Interpretation

$A = U\Sigma V^T$

SVD

Geometric Interpretation

Consider the Eigendecomposition of a Symmetric Positive Definite (SPD) matrix:

$$S = S^T = PDP^T$$

This is similar in form to:

$$S = U\Sigma V^T$$

In other words, the SVD of an SPD is an EigenDecomposition of $\boldsymbol{S} = \boldsymbol{S}^T$

Given $A \in \mathbb{R}^{m \times n}$, then $S = A^T A$ is a symmetric positive semi-definite matrix by SPSD Theorem

By Spectral Theorem, there exists an orthonormal basis and S can be diagonalized.

$$S = A^{T}A = PDP^{T} = P\begin{bmatrix} \lambda_{1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_{n} \end{bmatrix} P^{T}$$

 ${m P}$ is an orthogonal matrix made of orthonormal eigen basis

Assume that the SVD of $A = U\Sigma V^T$ exists, then:

$$A^{T}A = (U\Sigma V^{T})^{T}U\Sigma V^{T} = V\Sigma^{T}U^{T}U\Sigma V^{T} = V\Sigma^{T}\Sigma V^{T}$$

Since $\boldsymbol{U}^T\boldsymbol{U} = \boldsymbol{I}$

$$\mathbf{A}^T \mathbf{A} = \mathbf{V} \begin{vmatrix} \sigma_1^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n^2 \end{vmatrix} \mathbf{V}^T$$

$$\therefore \mathbf{P} = \mathbf{V} \text{ and } \lambda_i = \sigma_i^2$$

To obtain U, we use the same procedure except we compute for:

$$AA^{T} = U\Sigma V^{T}(U\Sigma V^{T})^{T} = U\Sigma^{T}V^{T}V\Sigma U^{T} = U\Sigma^{T}\Sigma U^{T}$$

Since $V^TV = I$

$$AA^T = U \begin{bmatrix} \sigma_1^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_n^2 \end{bmatrix} U^T$$

$$\therefore \mathbf{P} = \mathbf{U} \text{ and } \lambda_i = \sigma_i^2$$

SVD Algorithm – Connecting $oldsymbol{U}$ and $oldsymbol{V}$

Since the columns of V are orthonormal, for $i \neq j$:

$$(Av_i)^T A v_j = 0$$

$$(\mathbf{A}v_i)^T \mathbf{A}v_j = v_i^T \mathbf{A}^T \mathbf{A}v_j = v_i^T \lambda_j v_j = \lambda_j v_i^T v_j = 0$$

SVD Algorithm – Connecting $oldsymbol{U}$ and $oldsymbol{V}$

For *i*:

$$(\mathbf{A}\boldsymbol{v}_i)^T \mathbf{A}\boldsymbol{v}_i = \sigma_i^2 \boldsymbol{v}_i^T \boldsymbol{v}_i \Rightarrow \|\mathbf{A}\boldsymbol{v}_i\| = \sigma_i \|\boldsymbol{v}_i\| = \sigma_i \sqrt{\boldsymbol{v}_i^T \boldsymbol{v}_i} = \sigma_i$$

Furthermore, $AV = U\Sigma \rightarrow Av_i = u_i\sigma_i \ for \ i=1...r$ u_i is simply the normalized image of Av_i :

$$u_i = \frac{Av_i}{\|Av_i\|} = \frac{1}{\sigma_i}Av_i$$

SVD Algorithm – Connecting $oldsymbol{U}$ and $oldsymbol{V}$

Therefore,

$$Av_i = \sigma_i u_i = u_i \sigma_i$$

The above equation holds for i = 1, ..., r where $r = \min(m, n)$

If m > n = r, we know that for i > r, u_i vectors are orthonormal

If r = m < n, we know that for i > r, $Av_i = 0$

Therefore,

$$AV = U\Sigma \Rightarrow A = U\Sigma V^T$$

Since for orthogonal matrix: $V^{-1} = V^T$

Example: Perform SVD on
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$$

We need to solve for Σ and $V: A^TA = V\Sigma^T\Sigma V^T$

$$\boldsymbol{A}^T\boldsymbol{A} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

The diagonal elements of $\mathbf{\Sigma}^T\mathbf{\Sigma}$ are the Eigenvalues of $\mathbf{A}^T\mathbf{A}$

$$det(\mathbf{A} - \lambda \mathbf{I}) = \begin{bmatrix} 2 - \lambda & -1 \\ -1 & 2 - \lambda \end{bmatrix} = 0, \lambda_1 = \sigma_1^2 = 3, \lambda_2 = \sigma_2^2 = 1$$

$$\mathbf{\Sigma} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{bmatrix} = \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Example: Perform SVD on
$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$$

Solving for *V*:

$$A^{T}Av_{1} = \lambda_{1}v_{1} \Rightarrow \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}v_{1} = 3Iv_{1} \Rightarrow v_{1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$A^{T}Av_{2} = \lambda_{2}v_{2} \Rightarrow \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}v_{2} = Iv_{2} \Rightarrow v_{2} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

$$V = \begin{bmatrix} v_{1} & v_{2} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & -1 \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Example: Perform SVD on $\mathbf{A} = \begin{bmatrix} 1 & \mathbf{U} \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$

Solving for *U*:

$$u_{1} = \frac{Av_{1}}{\sigma_{1}} = \frac{\begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}}{\sqrt{3}} = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \end{bmatrix}$$
$$u_{2} = \frac{Av_{2}}{\sigma_{2}} = \frac{\begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}}{1} = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$

Example: Perform SVD on $\mathbf{A} = \begin{bmatrix} 1 & \mathbf{0} \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$

Solving for *U*:

$$\boldsymbol{u}_{3} = \boldsymbol{u}_{1} \times \boldsymbol{u}_{2} = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \end{bmatrix} \times \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \end{bmatrix}$$

$$\boldsymbol{U} = \begin{bmatrix} \boldsymbol{u}_1 & \boldsymbol{u}_2 & \boldsymbol{u}_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ -\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \end{bmatrix}$$

```
>>> a = np.array([[1, 0], [-1, 1], [0, 1]])
>>> a.shape
(3, 2)
>>> np.linalg.svd(a)
(array([-4.08248290e-01, -7.07106781e-01, -5.77350269e-01],
       [ 8.16496581e-01, -5.55111512e-17, -5.77350269e-01],
       [4.08248290e-01, -7.07106781e-01, 5.77350269e-01]]),
array([1.73205081, 1. ]),
array([[-0.70710678, 0.70710678],
       [-0.70710678, -0.70710678]])
>>> np.sqrt(3)
1.7320508075688772
>>> 1/np.sqrt(3)
0.5773502691896258
>>> 1/np.sqrt(6)
0.4082482904638631
>>> 1/np.sqrt(2)
0.7071067811865475
```

Eigendecomposition vs SVD

$$A = PDP^{-1}$$

Exists for square matrix $A \in \mathbb{R}^{n \times n}$ with basis eigenvectors of \mathbb{R}^n

P vectors are not necessarily orthogonal. Hence, may not represent rotations

$A = U\Sigma V^T$

Exists for any matrix $A \in \mathbb{R}^{m \times n}$

U and V^T vectors are orthonormal. Hence, they represent rotations

Eigendecomposition vs SVD

$$A = PDP^{-1}$$

Linear Mapping

Change of basis in the domain
Independent scaling of new basis.
Mapping from domain to codomain.
Change of basis in the codomain

Domain and codomain must have the same dimension

$A = U\Sigma V^T$

Linear Mapping

Change of basis in the domain
Independent scaling of new basis.
Mapping from domain to codomain.
Change of basis in the codomain

Domain and codomain may have different dimensions

Eigendecomposition vs SVD

$$A = PDP^{-1}$$

 \boldsymbol{P} and \boldsymbol{P}^{-1} are inverses of each other

 $m{D}$: real or complex eigenvalues If $m{A}$ is symmetric, the Eigendecomposition is equal to SVD

$A = U\Sigma V^T$

U and **V** are not necessarily inverses of each other

 Σ : the non-zero entries are real and positive

 Σ : the non-zero eigenvalues are square root of non-zero eigenvalues of A^TA which are equal to non-zero eigenvalues of A^TA

If \boldsymbol{A} is symmetric, the SVD is equal to EigenDecomposition

Matrix Approximation

Low-Rank Approximation of $A \in \mathbb{R}^{m \times n}$

Assume SVD: $A = U\Sigma V^T$

Assume the singular values in Σ are sorted in descending order

Rank 1 approximation of *A*:

$$A \approx \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T$$

Rank 2 approximation of *A*:

$$\boldsymbol{A} \approx \sigma_1 \boldsymbol{u}_1 \boldsymbol{v}_1^T + \sigma_2 \boldsymbol{u}_2 \boldsymbol{v}_2^T$$

Rank k (where $k \le r = number$ of non - zero singular values) approximation of A:

$$A \approx \widehat{A}(k) = \sum_{i=1}^k \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^T$$

Application of Low-Rank Approximation

For example, given a 640×480 grayscale image. The total number to represent the image is 307,200

A rank 3 approximation is only $3 \times (640 + 480) + 3 = 3,363$ which is

just 1% of the original size

(a) Original image A.

(b) Rank-1 approximation $\widehat{A}(1)$.(c) Rank-2 approximation $\widehat{A}(2)$.

(d) Rank-3 approximation $\widehat{A}(3)$.(e) Rank-4 approximation $\widehat{A}(4)$.(f) Rank-5 approximation $\widehat{A}(5)$.

Distance/Norm of Low-Rank Approximation

Given $A \in \mathbb{R}^{m \times n}$, distance or norm measures how far is the low-rank approximation $\widehat{A}(k)$ from A

Definition (Spectral Norm of a Matrix): For $x \in \mathbb{R}^n \setminus \{0\}$, the spectral norm of $A \in \mathbb{R}^{m \times n}$ is:

$$||A||_2 := \max_{x} \frac{||Ax||_2}{||x||_2}$$

Theorem (Spectral Norm): The spectral norm of A is its largest singular value σ_1 .

Distance/Norm of Low-Rank Approximation

Theorem (Eckart-Young): Consider a matrix $A \in \mathbb{R}^{m \times n}$ of rank r and any matrix $B \in \mathbb{R}^{m \times n}$ of rank k. For any $k \leq r$ with $\widehat{A}(k) = \sum_{i=1}^k \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^T$, it holds that:

$$\widehat{A}(k) = \underset{rank(B)=k}{\operatorname{argmin}} \|A - B\|_{2},$$

$$\|\mathbf{A} - \widehat{\mathbf{A}}(k)\|_2 = \sigma_{k+1}$$

Eckart-Young Theorem

We can justify $\|\mathbf{A} - \widehat{\mathbf{A}}(k)\|_2 = \sigma_{k+1}$ since:

$$A - \widehat{A}(k) = \sum_{i=k+1}^{r} \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^T$$

Eckart-Young Theorem shows that $\widehat{A}(k)$ is an optimal low-rank approximation of A

In Summary

Determinants are signed volume of matrices

Matrix decomposition helps in the interpretability of matrices

Matrix approximation is useful in signal compression/approximation

Pizza

SPECTRAL NORMALIZATION FOR GENERATIVE ADVERSARIAL NETWORKS, Miyato et al ICLR 2018