Méthode de la pénalisation

On considère un chemin de classe C^1 $\gamma:[0,1]\to\mathbb{R}^2$ conduisant du point de départ $\gamma(0)=(0,0)$ au point d'arrivée $\gamma(1)=(1,1)$. Le but de cette étude est de minimiser

$$H(\gamma) = \frac{1}{2} \int_0 1 \left[x'(t)^2 + y'(t)^2 \right] dt$$

sous la contrainte suivante : le chemin doit contourner un obstacle qu'on suppose être un disque entièrement compris dans le carré unité du plan

$$D = \{(x, y) \in \mathbb{R}^2, (x - a)^2 + (y - b)^2 \le r^2\}.$$

Pour résoudre ce problème, nous allons "pénaliser" la contrainte. Pour $\varepsilon>0$ et "petit", on cherche à minimiser

$$H_{\varepsilon}(\gamma) = H(\gamma) + \frac{1}{\varepsilon}R(\gamma)$$

avec

$$R(\gamma) = \frac{1}{2} \int_0 1 \max \left(0, r^2 - (x(t) - a)^2 - (y(t) - b)^2 \right)^2 dt.$$

Noter que le terme de "pénalisation" n'intervient que si le point (x(t), y(t)) est situé dans l'obstacle. Si aucun point du chemin γ n'est situé dans l'obstacle, on a $H_{\varepsilon}(\gamma) = H(\gamma)$.

Discrétisation de $H(\gamma)$. Pour $N \in \mathbb{N}^*$, on pose $h = \frac{1}{N}$ et $t_n = nh$ pour $n = 0, \dots, N$. Pour calculer l'intégrale $H(\gamma)$, on écrit

$$H(\gamma) = \frac{1}{2} \sum_{n=0}^{N-1} \int_{t_n}^{t_{n+1}} \left[x'(t)^2 + y'(t)^2 \right] dt$$

et fait l'approximation

$$H(\gamma) \approx H(x,y) = \frac{1}{2} \sum_{n=0}^{N-1} \left[\left(\frac{x_{n+1} - x_n}{h} \right)^2 + \left(\frac{y_{n+1} - y_n}{h} \right)^2 \right] h,$$

où $x = (x_i)_{i=1}^{N-1} \in \mathbb{R}^{N-1}$, $y = (y_i)_{i=1}^{N-1} \in \mathbb{R}^{N-1}$ et les x_j (resp. y_j) sont des approximations des $x(t_j)$ (resp. $y(t_j)$) avec $(x_0, y_0) = \gamma(0)$, $(x_N, y_N) = \gamma(1)$.

Discrétisation de $R(\gamma)$. On fait l'approximation

$$R(\gamma) \approx R(x, y)$$

avec

$$R(x,y) = \frac{h}{2} \sum_{n=0}^{N-1} \max (0, r^2 - (x_n - a)^2 - (y_n - b)^2)^2.$$

On cherche donc à minimiser

$$H_{\varepsilon}(x,y) = H(x,y) + \frac{1}{\varepsilon}R(x,y),$$

pour x et y dans \mathbb{R}^{N-1} .