

Visualizing and analyzing AI ethics charters & manifestos with clustering

Alexandre Rocchi-Henry Alexandre Malfoy Damien Thai Baptiste Cervoni

13/11/2024

Introduction

Objectif: fournir une analyse d'un corpus de textes sur l'éthique de l'IA

- réutiliser les outils utilisés dans l'article "Mapping Al ethics" [1] et créer un pipeline pour :
 - Prétraitement
 - Représentation
 - Visualisation/Clustering
- explorer différents modèles pour la partie représentation du pipeline.

Corpus : MapAIE collection de 627 chartes et manifestes autour de l'intelligence artificielle et de l'éthique de l'IA

[1] : GORNET Mélanie, DELARUE Simon, BORITCHEV Maria, VIARD Tiphaine, *Mapping AI ethics: a meso-scale analysis of its charters and manifestos*, The 2024 ACM Conference on Fairness, Accountability, and Transparency. 2024. p. 127-140.

Plan de la présentation

I/ Preprocessing

II/ Embeddings

III/ Clustering et Topic modeling

IV/ Résultats et Affichage

V/ Améliorations possibles

I/ Preprocessing

Récupération des données par 'Crawling' : pages html, articles pdf

Nettoyage du texte :

- détection de langue
- filtre des pages webs avec regex sur des marqueurs html, css
- stopwords (nltk)

II/ 1) SVD & SVD_PPMI

Principe:

 Décomposition en valeurs singulières avec une matrice de co-occurence ou une matrice PPMI pour obtenir des relations

Avantages:

- Réduction de dimension efficace
- Réduction de bruit avec la matrice PPMI

Inconvénients:

- Sensibilité au bruit
- Complexité de calcul PPMI
- Sensibilité qualité matrice PPMI

II/ 2) GloVe

Principe:

- Capture relations de similarités entre chaque mot

Avantages:

- Efficace pour les similarités
- Rapide à exécuter

Inconvénients :

Chargement du modèle qui peut être long

II/ 3) TF-IDF

Principe:

 mesure l'importance d'un mot par sa fréquence dans le texte et sa rareté dans le corpus

Avantages:

- Très simple et rapide
- Bonne interprétabilité

Inconvénients:

- Vecteurs de très hautes dimensions
- Sensibles au bruit et aux mots peu fréquent

II/ 4) Roberta

Principe:

- modèle transformer qui capture le contexte des mots

Avantages:

Prise en compte du contexte de la phrase

Inconvénients:

- Coût de calcul et d'entraînement très élevé.
- Model complexe, interprétabilité difficile

II/ 4) Comparaison

	TFIDF	Roberta	Glove	SVD	SVD_PPMI
Avantages	Simple Rapide à exécuter	Contexte de la phrase	Modèle déjà entraîné Rapide à exécuter	Efficace pour réduction de dimension	Traite le problème du bruit
Inconvénients	Sensible au bruit	Long à exécuter	Chargement du modèle	Sensible au bruit	Complexité de calcul de la matrice PPMI

III/ 1) Clustering

Utilisation de 3 méthodes principales de clustering (sklearn) :

- **KMeans**: Initialisation des centroïdes => assignation => calcul des points moyens Avantages : simple et rapide, efficace clusters sphériques, distincts et non chevauchants
- **Hierarchical Clustering ascendant :** initialement, un cluster par document => fusion des clusters les plus proches => arbre relationnel

Avantages : clusters de tailles, formes variées et nombre inconnu, robuste au bruits

- Gaussian Clustering : Assimile les clusters à des distributions gaussiennes de moyenne les centroïdes et avec une matrice de covariance

Avantages : clusters elliptiques de tailles variées, irréguliers et des distributions imbriquées

III/ 2) Topic Modelling

Comment donner du sens aux clusters?

- -Regrouper les textes par types d'institutions
 - -> pré définir une liste d'entités pour chaque type
- -Regrouper les textes par thème
 - -> un texte aborde un thème si des mots clés sont utilisés plusieurs thèmes par texte
- -> on peut choisir le thème principal qui a le plus de mots clés un thème est omniprésent
 - -> on choisit le thème principal qui a le plus grand TFIDF

III/ 2) Topic Modelling

Avec les thèmes

Avec les catégories d'institutions

explication des métriques :

Silhouette score :
$$s_{sil}(i) = \dfrac{b(i) - a(i)}{\max(a(i),b(i))}$$

a distance moyenne intra clusters b distance moyenne cluster voisin

Davies score :
$$R_{ij} = rac{s_i + s_j}{d(i,j)}$$

 $R_{ij}=rac{s_i+s_j}{d(i,j)}$ si et sj : distances moyennes des points aux centroïdes (= taille du cluster). d(i,j) est la distance entre les centroïdes des clusters

$$ext{CH} = rac{ ext{trace}(B_k)}{ ext{trace}(W_k)} imes rac{N-k}{k-1}$$

 $ext{CH} = rac{ ext{trace}(B_k)}{ ext{trace}(W_k)} imes rac{N-k}{k-1} ext{ Bk matrice de dispersion inter clusters}$ Wk intra clusters => variance inter/intra

Métriques	Intervalle de définition	critère de qualité	Utilisation
Silhouette	[-1; 1]	proche de 1	homogénéité intra-cluster et la séparation entre clusters sont essentielles
Davies-Bouldin	[0; ∞[proche de 0	clusters de densité variée, minimiser le chevauchement
Calinski-Harabasz	[0; ∞[très élevé	maximiser la séparation et la densité des clusters

RÉSULTATS ET AFFICHAGE SCORES 14/18

Tableau des scores :

 Nécessité de Réduire la dimension en sortie des modèles pour une visualisation 2D.

- 2 techniques employées :
 - PCA
 - t-SNE

Glove K-Means

TF-IDF K-Means

V/ Améliorations possibles

- Tester réduction de dimension avant ou après le clustering
- Ngram (2,3)
- Topic modeling automatisé (LDA)
- Topic modeling par clusters
- Tester différentes tailles de clusters pour trouver le nombre de clusters optimal
- Cluster vs topics