

Carga e Descarga de Capacitores

Juliana de Fátima da Silva
Renan Jaques

Departamento de Ciências Naturais
Rua Praça Dom Helvécio, 74 Fábricas - São João del Rei
e-mail: julianafju09@hotmail.com

0,8 Resumo.: Capacitores ou condensadores são elementos elétricos capazes de armazenar carga elétrica, e consequentemente, energia potencial elétrica, em que estes podem ser encontrados na forma esférica, cilíndrica ou plana. Para que haja o acúmulo de cargas elétricas há a necessidade de um material isolante; quanto mais isolante for o meio, mais cargas elétricas serão acumuladas, sendo que o processo de eletrização de um capacitor pode ocorrer por indução ou por contato. Neste experimento foram montados circuitos, utilizando-se capacitores de $2200 \mu\text{F}$ e $1000 \mu\text{F}$. Sendo a partir destes estudado o comportamento da corrente/ tensão com o tempo num processo de carga e descarga de um capacitor. Desta forma, foi observado em ambos os casos que ao iniciar o processo de carga, ocorre um aumento gradativo da diferença de potencial entre seus terminais e, consequentemente, tem-se uma diminuição da corrente, obedecendo a uma função exponencial, até quando este encontra-se totalmente carregado. Porém estando o capacitor carregado, o mesmo inicia sua descarga através do resistor R , sendo que neste instante a corrente no circuito será máxima e a partir daí diminui, obedecendo a uma função exponencial, até atingir o valor zero.

E quais valores de capacidade encontrados experimentalmente? Está de acordo com o valor teórico?

Resumo muito grande. Tentar ser breve e apresentar o que foi feito e se os resultados estão de acordo com o experimento.

Palavras chaves: Capacitores, carga e descarga.

0,8 Introdução

Em alguns circuitos elétricos, muitas vezes é necessário armazenar cargas elétricas ou seja, armazenar energia elétrica, que posteriormente poderão ser usadas. Para tal finalidade são utilizados capacitores.^[1]

Os capacitores são instrumentos constituídos de duas placas condutoras separadas por um isolante (dielétrico) e que possuem a propriedade de armazenar energia elétrica.^[1,3]

A explicação para o uso de materiais dielétricos nos capacitores é que o dielétrico possui a função de aumentar a capacidade, o que gera um aumento do armazenamento de cargas dentro do capacitor. Esse fenômeno é consequência da redução do campo elétrico entre as placas do capacitor. Além disso, a utilização desse dielétricos tem várias vantagens, sendo que a mais simples delas é que com o dielétrico pode-se colocar as placas do condutor muito próximas sem o risco de que eles entrem em contato. Portanto, é comum que o capacitor receba o nome do isolante colocado entre suas placas.

Dentre os diversos tipos de capacitores têm-se os seguintes: capacitor de poliéster, de cerâmica, eletrolítico, de mica, a óleo, etc.^[2]

Quando um capacitor é ligado a uma fonte de tensão, a armadura ligada ao polo negativo da fonte eletriza-se negativamente por contato, desta forma os elétrons livres se dirigem do polo negativo para a placa, carregando-a. Surge então um campo elétrico ao redor dela, que repele os elétrons livres da outra

placa, os quais se deslocam para o polo positivo da fonte. Essa placa, portanto, começa a se carregar positivamente por indução.^[3]

Observa-se então que assim que se aplica tensão sobre o capacitor, circula uma corrente de valor elevado, para carregá-lo. Portanto, no instante inicial, a tensão sobre o capacitor é nula e a corrente é máxima, atuando o capacitor como se fosse um curto-circuito. Com o passar do tempo essa corrente de carga vai decrescendo (a carga acumulada nas placas tende a repelir as outras que continuam chegando) à medida que a tensão vai crescendo. Observamos então um efeito dual ao do indutor: o capacitor se opõe à variação abrupta de tensão, atrasando esta em relação à corrente. Assim que o capacitor se carrega, a corrente cai a zero, comportando-se o componente como um circuito aberto.^[3]

Teoria 1,5

Figura 1. Montagem de um circuito RC

Assim:

Processo de carga do capacitor.

Sabe-se que a capacidade é dada por:

$$C = \frac{Q}{V} \quad (1)$$

Logo, percorrendo o circuito da Figura 1 utilizando as Leis de Kirchhoff pode-se escrever:

$$\varepsilon - \frac{q}{C} - I.R = 0 \quad (2)$$

Em que:

q : é a carga acumulada no capacitor até o instante t .
 I : é a corrente que passa pelo circuito neste instante. Com isso, a parcela C/q é a diferença de potencial através do capacitor e $I.R$ é a diferença de potencial através do resistor.

Em $t = 0$, a carga acumulada no capacitor é nula. Logo, pela equação (2), pode-se perceber que a corrente é máxima neste instante. Logo, I_0 é a corrente máxima que passa por este circuito.^[2]

$$I_0 = \frac{\varepsilon}{R} \quad (3)$$

Muito tempo depois que a chave foi fechada, o capacitor está carregado e, com isso, não flui mais corrente pelo circuito. Logo, a carga máxima Q acumulada no capacitor ocorre quando $I = 0$. Pela equação (2), pode-se escrever:^[2]

$$Q = C\varepsilon \quad (4)$$

Isolando I na equação (2), tem-se:

$$I = \frac{\varepsilon}{R} - \frac{q}{RC} \quad (5)$$

Como a corrente que carrega o capacitor é exatamente I :

$$I = \frac{dq}{dt} \quad (6)$$

$$\begin{aligned} \frac{dq}{dt} &= \frac{\varepsilon}{R} - \frac{q}{RC} \\ \Rightarrow \frac{dq}{dt} &= \frac{C\varepsilon - q}{RC} \Rightarrow \frac{dq}{dt} = -\frac{q - C\varepsilon}{RC} \end{aligned} \quad (7)$$

Multiplicando por dt e dividindo por $-(q - C\varepsilon)$, tem-se:

$$\frac{dq}{q - C\varepsilon} = -\frac{dt}{RC} \quad (8)$$

Integrando os dois lados da equação:

$$\int_0^q \frac{dq}{q - C\varepsilon} = -\frac{1}{RC} \int_0^t dt \quad (9)$$

Para resolver as integrais da equação (9), pode-se do lado esquerdo, fazer uma troca de variáveis. Para isto $f(q) = q - C\varepsilon$. Como $df/dq = 1$, pode-se simplesmente trocar dq por df . Assim, a equação pode ser reescrita como:^[2]

$$\int_0^q \frac{df}{f} = -\frac{1}{RC} \int_0^t dt$$

Sabe-se que:

$$\begin{aligned} \int \frac{df}{f} &= \ln|f| \\ \ln(q - C\varepsilon)|_0^q &= -\frac{t}{RC} \end{aligned}$$

Logo:

$$\begin{aligned} \Rightarrow \ln(q - C\varepsilon) - \ln(-C\varepsilon) &= -\frac{t}{RC} \Rightarrow \ln\left(\frac{q - C\varepsilon}{-C\varepsilon}\right) = -\frac{t}{RC} \\ \Rightarrow \frac{q - C\varepsilon}{C\varepsilon} &= e^{-\frac{t}{RC}} \Rightarrow q - C\varepsilon = C\varepsilon e^{-\frac{t}{RC}} \Rightarrow q = C\varepsilon - C\varepsilon e^{-\frac{t}{RC}} \\ \boxed{q = C\varepsilon\left(1 - e^{-\frac{t}{RC}}\right)} \end{aligned} \quad (10)$$

Como:

$$V_c(t) = \frac{q(t)}{C} \quad (11)$$

Então a diferença de potencial no capacitor é dada por:

$$V_c(t) = \varepsilon \left(1 - e^{-t/RC}\right) \quad (12)$$

Ou

$$V_c(t) = \varepsilon \left(1 - e^{-t/\tau}\right) \quad (13)$$

Processo de descarga do capacitor.

Percorrendo o circuito novamente, pode-se escrever:

$$-\frac{q}{C} - I.R = 0 \quad (14)$$

Mas $I = dq/dt$, logo:

$$\begin{aligned} -R \cdot \frac{dq}{dt} - \frac{q}{C} &= 0 \\ \Rightarrow \frac{dq}{q} &= -\frac{1}{RC} dt \end{aligned}$$

Repetindo o raciocínio utilizado no carregamento do capacitor, integrando os dois lados da equação.

$$\begin{aligned} \int_{Q_0}^q \frac{dq}{q} &= -\frac{1}{RC} \int_0^t dt \\ \Rightarrow \ln(q)|_0^q &= -\frac{t}{RC} \\ \Rightarrow \ln q - \ln Q_0 &= -\frac{t}{RC} \Rightarrow \ln \frac{q}{Q_0} = -\frac{t}{RC} \Rightarrow \frac{q}{Q_0} = e^{-\frac{t}{RC}} \end{aligned}$$

$$q = Q_0 e^{-\frac{t}{RC}} \quad (15)$$

Sendo

$$Q = \varepsilon C$$

Pelo mesmo princípio da equação (11), a diferença de potencial no capacitor é dada por:

$$V_c(t) = \varepsilon e^{-t/RC} \quad (16)$$

Ou

$$V_c(t) = \varepsilon e^{-t/\tau} \quad (17)$$

Objetivo 0,5

Estudar o comportamento da corrente/ tensão com o tempo num processo de carga e descarga de um capacitor. Assim como, determinar a constante de tempo RC de um circuito.

1,5

Procedimento Experimental

Materiais Utilizados

- fonte de alimentação de tensão contínua
- painel para ligações
- cabos para conexões
- resistência de década
- 2 capacitores: 1000 e 2200 μF
- Um multímetro

Procedimento

Inicialmente, foi montado o circuito representado na Figura, sendo utilizado para capacitor (2200 μF e 1000 μF), 5V na fonte e uma resistência de 100 k Ω . Em seguida foi realizado o processo de carga e descarga dos mesmos.

Para o processo de carga, com o auxílio de um cronômetro, de 10 em 10 segundos, anotou-se os valores de diferença de potencial no capacitor, medidos através do voltímetro do multímetro, com seus respectivos. Para o processo de descarga, foi realizado o mesmo procedimento, contudo a fonte foi desligada.

3.0 Resultado e Discussão

Inicialmente, realizou-se a montagem do circuito da Figura 1 com o capacitor de 2200 μF para que se pudesse realizar o processo de carga e descarga do capacitor. As medidas de tempo e diferença de potencial obtidas no processo de carga se encontram na Tabela 1.

Tabela 1. Valores de tempo e diferença de potencial para a carga do capacitor de 2200 μF .

Tempo (s) ± 1	V(V) $\pm 0,01$
0	2,48
10	2,34
20	2,16
30	2,00
40	1,90
50	1,80
60	1,70
70	1,62
80	1,54

90	1,46
100	1,39
110	1,32
120	1,27
130	1,25
140	1,19
150	1,16
160	1,10
170	1,06
180	1,01
190	0,97
200	0,92
210	0,89
220	0,84
230	0,81
240	0,77
250	0,74
260	0,70
270	0,66
280	0,64
290	0,61
300	0,59
310	0,56
320	0,54
330	0,51
340	0,49
350	0,47
360	0,45
370	0,43
380	0,41
390	0,39
400	0,37
410	0,36
420	0,34
430	0,33
440	0,33

A partir dos dados da Tabela 1, foi possível construir o Gráfico de carga para o capacitor de 2200 μF , em que este encontra-se representado pelo Gráfico 1.

Gráfico 1. Carga do capacitor de 2200 μF .

Ao ligarmos o capacitor aos terminais da fonte de corrente contínua, cada placa metálica contém bilhões de elétrons que se movem livremente por toda a placa. Ao ser colocada em funcionamento a fonte de corrente contínua com a polaridade indicada, os elétrons foram transportados do polo negativo da fonte até a placa negativa do capacitor. Da mesma forma, elétrons saíram da placa positiva do capacitor em direção ao polo positivo da fonte, até que a diferença de potencial entre as placas fosse igual à diferença de potencial da fonte sem carga. Desta forma a quantidade de eletricidade transportada é proporcional a esta diferença de potencial. Devido a isto, a tensão e a carga do capacitor em função do tempo apresentaram característica exponencial como demonstrado no Gráfico 1.

Muito boa explicação.

A partir da análise do gráfico, foi possível obter através de um ajuste não linear a equação do mesmo, sendo esta: $V = 5,20(1 - e^{(-x/191,38)})$, e o valor de i_0 , já que este é E/R , ou seja, $(5,20 \pm 0,2) \times 10^{-5} \text{ A}$.

O valor teórico de RC para o capacitor de 2200 μF é equivalente à $220 \pm 11 \Omega \cdot \text{F}$. Desta forma, tem-se que o resultado obtido encontra-se próximo do esperado, sendo o erro relativo de 13%.

Ao se realizar as medições para carga do capacitor de 2200 μF , pôde-se, em um determinado tempo, observar que o potencial permaneceu constante, o que é evidenciado nos últimos dados da Tabela 1. Mostrando assim que o capacitor já está totalmente carregado. A partir dai, deu-se início ao processo de descarga do capacitor. Portanto, os dados obtidos na descarga do mesmo encontra-se na Tabela 2.

Tabela 2. Valores de tempo e diferença de potencial para a descarga do capacitor de 2200 μF .

Tempo (s) ± 1	V(V) $\pm 0,01$
0	0,25
10	0,45
20	0,56
30	0,80
40	0,94
50	1,08
60	1,28
70	1,45
80	1,60
90	1,75
100	2,03
110	2,14
120	2,27
130	2,38
140	2,49
150	2,60
160	2,78
170	2,88
180	2,98
190	3,14
200	3,19
210	3,26
220	3,38
230	3,50
240	3,60
250	3,70
260	3,78
270	3,85
280	3,91
290	3,98
300	4,03
310	4,07
320	4,11
330	4,15
340	4,18
350	4,21
360	4,24
370	4,26
380	4,28
390	4,28

A partir dos dados da Tabela 2 foi possível construir o Gráfico 2, referente a descarga do capacitor.

Gráfico 2. Descarga do capacitor de 2200 μF .

A curva de descarga depende da capacidade C, da tensão E e da resistência R, e como pode ser observado pela análise do Gráfico 2, a mesma tem característica exponencial, pois no início da descarga a tensão E no capacitor é máxima, bem como a circulação de cargas. Com o passar do tempo o capacitor vai se descarregando, diminuindo a tensão em seus terminais e consequentemente a circulação de cargas, que tendem a zero (capacitor descarregado). Assim, a tensão no resistor e a corrente de descarga tem sentido contrário ao da tensão e corrente de carga, devido à carga do capacitor ter polaridade inversa à da fonte.

A partir da análise do gráfico, foi possível obter através de um ajuste não linear a equação do mesmo sendo esta: $Y=2,26e^{(-x/213,13)}$.

Comparando-se esta equação com a equação (12) pôde-se obter o valor da constante de tempo RC, o qual é de : $213,13 \pm 0,3 \Omega \text{ F}$.

Esperava-se que os valores de RC, obtidos nos processos de carga e descarga fossem iguais, no entanto apesar dos valores serem diferentes, foram próximos, tais discrepâncias estão associadas a erros experimentais. Comente os possíveis erros

Após às medições de carga e descarga do capacitor de 2200 μF realizou-se novamente a montagem do circuito da Figura 1, agora utilizando o capacitor de 1000 μF , para que se pudesse realizar o processo de carga e descarga do capacitor. Sendo assim as medidas de tempo e diferença de potencial obtidas para o carregamento deste capacitor se encontram na Tabela 3.

Tabela 3. Valores de tempo e diferença de potencial para a carga do capacitor de $1000 \mu\text{F}$.

Tempo(s) ± 1	V(V) $\pm 0,01$
0	0,01
10	0,67
20	0,97
30	1,13
40	1,55
50	1,9
60	2,08
70	2,33
80	2,54
90	2,75
100	2,9
110	3,06
120	3,21
130	3,34
140	3,46
150	3,57
160	3,66
170	3,75
180	3,83
190	3,91
200	3,97
210	4,03
220	4,08
230	4,13
240	4,17
250	4,22
260	4,25
270	4,2
280	4,32
290	4,34
300	4,37
310	4,39
320	4,41
330	4,43
340	4,45
350	4,46
360	4,48
370	4,49
380	4,5
390	4,51
400	4,52
410	4,53
420	4,53
430	4,53

A partir dos dados da Tabela 3 foi possível construir o Gráfico 3, referente a carga do capacitor.

Gráfico 3. Carga do capacitor de $1000 \mu\text{F}$.

A partir da análise do gráfico, cuja equação é $Y = 4,60(1 - e^{(-x/100,8)})$. Pode-se fazer uma comparação com a equação (12) e desta forma obter o valor da constante de tempo RC , sendo esta: $100,8 \pm 0,3 \Omega \text{ F}$.

O valor teórico de RC para o capacitor de $1000 \mu\text{F}$ é equivalente à $100 \pm 5 \Omega \text{ F}$. Desta forma, tem-se que o resultado obtido encontra-se muito próximo do esperado, sendo o erro relativo de 8%.

Ao se realizar as medições para carga do capacitor de $1000 \mu\text{F}$, pôde-se, em um determinado tempo, observar que o potencial permaneceu constante, o que é evidenciado nos últimos dados da Tabela 3. Mostrando assim que o capacitor já está totalmente carregado. A partir daí, deu-se início ao processo de descarga do capacitor. Portanto, os dados obtidos na descarga do mesmo encontra-se na Tabela 4.

Tabela 4. Valores de tempo e diferença de potencial para a descarga do capacitor de $1000 \mu\text{F}$.

Tempo(s) ± 1	V(V) $\pm 0,01$
0	4,53
10	4,45
20	3,95
30	3,43
40	3,23
50	2,96
60	2,65
70	2,4
80	2,25
90	2,02

100	1,84
110	1,66
120	1,53
130	1,39
140	1,27
150	1,16
160	1,06
170	0,97
180	0,88
190	0,8
200	0,74
210	0,67
220	0,61
230	0,56
240	0,51
250	0,47
260	0,43
270	0,39
280	0,36
290	0,33
300	0,3
310	0,28
320	0,25
330	0,23
340	0,21
350	0,19
360	0,18
370	0,16
380	0,15
390	0,14
400	0,13
410	0,12
420	0,11
430	0,1
440	0,09
450	0,08
460	0,08
470	0,07
480	0,07
490	0,05
500	0,04
510	0,04

Grafico4: Descarga do capacitor de 1000 μF

A partir da análise do gráfico, cuja equação é $Y = Y_0 e^{(-x/104,4)}$, comparando-se com a equação (16) pôde-se obter o valor da constante de tempo RC, $104,4 \pm 0,9 \Omega \text{ F}$.

O valor teórico de RC para o capacitor de 1000 μF é equivalente à $100 \pm 5 \Omega \text{ F}$, desta forma, o erro relativo da medida foi de 4,2%.

Esperava-se que os valores de RC, obtidos nos processos de carga e descarga fossem iguais, no entanto apesar dos valores serem diferentes, foram próximos, tais discrepâncias estão associadas a erros experimentais.

1,0 Conclusão

A partir do experimento realizado, foi possível estudar o comportamento da corrente/ tensão com o tempo num processo de carga e descarga de um capacitor. Assim como, determinar a constante de tempo para capacitores de 2200 μF e 1000 μF .

Sendo observado em ambos os casos que ao iniciar o processo de carga, ocorre um aumento gradativo da diferença de potencial entre seus terminais e, consequentemente, tem-se uma diminuição da corrente, obedecendo a uma função exponencial, até quando este encontra-se totalmente carregado. Porém estando o capacitor carregado, o mesmo inicia sua descarga através do resistor R, sendo que neste instante a corrente no circuito será máxima e a partir daí diminui, obedecendo a uma função exponencial, até atingir o valor zero.

0,5 Referencias

[1] Eisberg, R. M., Lerner, L. S., Física: Fundamentos e Aplicações, 6º ed.; São Paulo: McGraw-Hill do Brasil, 1982.

[2] Disponível em:<http://www.alunosonline>

A partir dos dados da Tabela 4 foi possível construir o Gráfico 4, referente a descarga do capacitor.

.com.br/física/capacitor-plano.html Acesso em: 25,
Outubro, 2015.

[3] Halliday, David, Resnick, Robert e Krane,Kenneth. Física 5ed., volume 3.Rio de Janeiro:LTC 2012. Páginas 125-147.