MPI* Maths **Programme de khôlles**

Semaine 9

MY HOBBY: EXTRAPOLATING

Olivier Caffier

Table des matières

1	Cor	nnaissa	nnces de cours et démonstrations exigibles	1
	A	Ques	tions de cours, groupes $\mathbb{A}, \mathbb{B} \& \mathbb{C}$	1
		A.1	Définition et caractérisation séquentielle de la continuité et des limites	1
		A.2	Une fonction Lipschitzienne est continue. La réciproque est fausse	3
		A.3	Équivalence entre la dérivabilité et l'existence d'un DL à l'ordre 1. C'est faux pour les ordre supérieurs	4
		A.4	Exemple de fonction dérivable qui n'est pas de classe \mathcal{C}^1	5
		A.5	Somme de Riemann et théorème associé (proposer un exemple)	5
		A.6	Théorème de Rolle, égalité et inégalité des accroissements finis	6
		A.7	Formules de Taylor (Young + reste intégral), démo uniquement de la formule reste intégral	7
	В	Ques	tions de cours, groupes $\mathbb B$ et $\mathbb C$	8
		B.1	Définition d'un point adhérent à une partie. Caractérisation séquentielle	8
		B.2	Dérivée de $L(f)$ où L est une application linéaire continue	8
		B.3	Dérivée de $B(f,g)$ où B est une application bilinéaire continue	9
		B.4	Continuité de la fonction "distance à une partie <i>A</i> "	10
		B.5	Inégalité arithmético-géométrique.	10
	C	Ques	tions de cours, groupe ${\mathbb C}$ uniquement $\ldots \ldots \ldots \ldots \ldots$	11
		C.1	Démonstration du théorème de convergence des sommes de Riemann	11
		C.2	Majoration de l'erreur des sommes de Riemann en $\mathcal{O}(\frac{1}{n})$ (avec la bonne hypothèse)	12
		C.3	Majoration de l'erreur de la méthode des trapèzes en $\mathcal{O}(\frac{1}{n^2})$ (avec la bonne hypothèse)	13
		C.4	Démonstration du théorème fondamental du calcul intégral	14
		C.5	Adhérence de $GL_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$	15
		C.6	Inégalité de Jensen pour les fonctions convexes	16
		C.7	Caractérisation des fonctions convexes par l'inégalité des pentes	17
2	Exe	Exercices de référence 18		
	A	Exerc	ices de référence, groupes $\mathbb{A},\mathbb{B}\ \&\ \mathbb{C}$	18
	В		ices de référence, groupes $\mathbb{B} \& \mathbb{C}$	18
	C	Exercices de référence, groupe C uniquement		

1 Connaissances de cours et démonstrations exigibles

A Questions de cours, groupes \mathbb{A} , \mathbb{B} & \mathbb{C}

A.1 Définition et caractérisation séquentielle de la continuité et des limites.

Définition - Limite d'une application

Soient $(E, \|.\|_E)$ et $(F, \|.\|_F)$ 2 \mathbb{K} -e.v.n. Soient $A \subseteq E$, $f: A \longrightarrow F \longrightarrow \vec{f}(\vec{x})$, $a \in \bar{A}$ et $l \in F$.

On dit que $\lim_{x \to a} f(x) = l$ si :

$$\begin{aligned} \forall \varepsilon > 0, \begin{cases} \exists r > 0, \forall x \in B_f(a,r) \cap A, ||f(x) - l||_F \leq \varepsilon \\ \exists \eta > 0, \forall x \in A, ||x - a||_E \leq \eta \Rightarrow ||f(x) - l||_F \leq \varepsilon \end{aligned} \end{aligned}$$

Proposition - Caractérisation séquentielle de la limite

Soient $(E, \|.\|_E)$ et $(F, \|.\|_F)$ 2 \mathbb{K} -e.v.n.

Soient $A \subset E$, $f: \begin{pmatrix} A & \to F \\ \vec{x} & \mapsto \vec{f(x)} \end{pmatrix}$, $a \in \bar{A}$ et $l \in F$.

On a:

$$\lim_{x \to a} f(x) = l \Leftrightarrow \forall (x_n)_n \in A^{\mathbb{N}} \text{ tq. } x_n \to a, \lim_{n \to +\infty} f(x_n) = l$$

DÉMONSTRATION.

Définition - Continuité d'une application

Soient $(E, \|.\|_E)$ et $(F, \|.\|_F)$ 2 \mathbb{K} -e.v.n. Soient $A \subset E$ et $f : A \to F$ une application.

(1) Soit $a \in A$, on dit que f est continue en a si :

$$\lim_{x \to a} f(x) = f(a)$$

(2) On dit que f est continue sur A si elle est continue en tout point $a \in A$.

Proposition - Caractérisation séquentielle de la continuité

Soient $(E,\|.\|_E)$ et $(F,\|.\|_F)$ 2 \mathbb{K} -e.v.n. Soient $A \subset E$ et $f: A \to F$ une application. Soit $a \in A$ Alors :

f continue en $a\Leftrightarrow \forall (x_n)_n\in A^\mathbb{N}$ tq. $x_n\to a, \lim_{n\to+\infty}f(x_n)=f(a)$

A.2 Une fonction Lipschitzienne est continue. La réciproque est fausse.

Définition - Application lipschitzienne

Soient $(E, \|.\|_E)$ et $(F, \|.\|_F)$ 2 \mathbb{K} -e.v.n. Soient $A \subset E$ et $f : A \to F$ une application.

(1) Soit $K \in \mathbb{R}_+$, on dit que f est K-lipschitzienne si :

$$\forall x,y \in A, \|f(x)-f(y)\|_F \leq K \|x-y\|_E$$

(2) On dit que f est lipschitzienne si $\exists K \in \mathbb{R}_+$ tel que f est K-lipschitzienne.

Proposition

Soient $(E,\|.\|_E)$ et $(F,\|.\|_F)$ 2 \mathbb{K} -e.v.n. Soient $A \subset E$ et $f: A \to F$ une application. Alors

f lipschitzienne $\Rightarrow f C^0 \text{ sur } A$

⚠ LA RÉCIPROQUE EST FAUSSE!!

En effet, en prenant la fonction $f: x \mapsto x^2$, qui est bien \mathbb{C}^0 sur \mathbb{R} mais s'il existait un tel $K \in \mathbb{R}_+$: on aurait pour tout $x \in \mathbb{R}_+$, $|(x+1)^2 - x^2| \le K$, i.e $|2x+1| \le K$.

ce qui est absurde car on ne peut borner cette quantité sur $\mathbb R$ tout entier.

A.3 Équivalence entre la dérivabilité et l'existence d'un DL à l'ordre 1. C'est faux pour les ordre supérieurs.

Définition - Application dérivable

Soient $I \subset \mathbb{R}$ un intervalle, $(F, \|.\|_F)$ un \mathbb{R} -e.v.n et $f: \begin{cases} I & \to F \\ x & \mapsto f(x) \end{cases}$ une application. Soit $a \in I$.

(1) On dit que f est dérivable en a si :

$$\lim_{h \to 0, h \neq 0} \frac{f(a+h) - f(a)}{h} \text{ existe.}$$

On note f'(a) cette limite.

(2) On dit que f est dérivable sur I si elle l'est en tout point $a \in I$.

Proposition - Une équivalence pratique

Soient $I \subset \mathbb{R}$ un intervalle, $(F, \|.\|_F)$ un \mathbb{R} -e.v.n et $f: \begin{cases} I & \to F \\ x & \mapsto f(x) \end{cases}$ une application. Soit $a \in I$.

On suppose $f C^0$ sur I. Alors :

f est dérivable en $a \Leftrightarrow f$ admet un DL_1 en a.

Dans ce cas, f(a+h) = f(a) + hf'(a) + o(h)

№ FAUX AUX ORDRES SUPÉRIEURS!!

Il suffit de prendre la fonction $f: x \mapsto \begin{cases} x^3 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$ qui n'est pas 2 fois dérivable en 0 mais admet un DL_2 en ce point.

A.4 Exemple de fonction dérivable qui n'est pas de classe C^1

Fonction dérivable qui n'est pas de classe \mathcal{C}^1

La fonction

$$f: x \mapsto x^2 \sin(\frac{1}{x})$$

est dérivable sur \mathbb{R}^* mais pas \mathcal{C}^1 .

DÉMONSTRATION.

A.5 Somme de Riemann et théorème associé (proposer un exemple)

Définition - Somme de Riemann

Soient $I \subset \mathbb{R}$ un intervalle, $(F, \|.\|_F)$ un \mathbb{R} -e.v.n et $f: \begin{cases} I & \to F \\ x & \mapsto f(x) \end{cases}$ une application **continue ou continue par morceaux**.

Soient $[a;b] \subset I$ et $n \in \mathbb{N}$.

(1) On appelle Somme de Riemann (à gauche) la quantité :

$$S_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a+k\frac{b-a}{n})$$

(2) Généralement, on aura a = 0 et b = 1, d'où

$$S_n(f) = \frac{1}{n} \sum_{k=0}^{n-1} f(\frac{k}{n})$$

Théorème - Convergence d'une somme de Riemann

(mm notations) On a:

$$\lim_{n\to +\infty} S_n(f) = \int_a^b f(t) dt$$

EXEMPLE.

A.6 Théorème de Rolle, égalité et inégalité des accroissements finis

Théorème de Rolle

Soient $a,b \in \mathbb{R}$ tq. a < b. Soit $f \in \mathcal{C}^0([a;b],\mathbb{R})$, dérivable sur]a;b[et telle que f(a)=f(b). Alors :

$$\exists c \in]a; b[, f'(c) = 0$$

DÉMONSTRATION.

Théorème - Égalité des Accroissements Finis

Soit $I = [a;b] \subset \mathbb{R}$ un intervalle, soit $f: I \to \mathbb{R}$ continue sur I et dérivable sur]a;b[. Alors :

Il existe
$$c \in a$$
; b [tel que $f'(c) = \frac{f(b) - f(a)}{b - a}$

DÉMONSTRATION.

Théorème - Inégalité des Accroissements Finis

(mm notations). On suppose qu'il existe $m, M \in \mathbb{R}_+$ tels que $m \le f' \le M$. Alors :

$$\forall (x,y) \in I^2, x \leq y \Rightarrow m(x-y) \leq f(x) - f(y) \leq M(x-y)$$

A.7 Formules de Taylor (Young + reste intégral), démo uniquement de la formule reste intégral

Proposition - Formule de Taylor-Young

Soit $I \subset \mathbb{R}$ un intervalle, soit $(E, \|.\|_E)$ un \mathbb{R} -e.v.n de dimension finie. Soit $n \in \mathbb{N}$ et $f : I \to \mathbb{R}$ de classe \mathbb{C}^n , alors : $\forall a, b \in I$,

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + o(|b-a|^n)$$

Proposition - Formule de Taylor Reste Intégral

Soit $I \subset \mathbb{R}$ un intervalle, soit $(E, \|.\|_E)$ un \mathbb{R} -e.v.n de dimension finie. Soit $n \in \mathbb{N}$ et $f : I \to \mathbb{R}$ de classe C^{n+1} , alors : $\forall a, b \in I$,

$$f(b) = \sum_{k=0}^{n} \frac{(b-a)^k}{k!} f^{(k)}(a) + \int_{a}^{b} \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$$

B Questions de cours, groupes \mathbb{B} et \mathbb{C}

B.1 Définition d'un point adhérent à une partie. Caractérisation séquentielle.

Définition - Point adhérent à une partie

Soit $(E, \|.\|_E)$ un \mathbb{K} -e.v.n et soit $A \subseteq E$. On dit de $a \in E$ qu'il est adhérent à A si :

$$\forall r > 0, B_f(a, r) \cap A \neq \emptyset$$

Proposition - Caractérisation séquentielle d'un point adhérent à une partie

(mm notations)

On dit de $a \in E$ qu'il est adhérent à A si :

$$\exists (x_n)_n \in A^{\mathbb{N}} \text{ tq. } x_n \to a$$

DÉMONSTRATION.

B.2 Dérivée de L(f) où L est une application linéaire continue.

Proposition

Soit $I \subset \mathbb{R}$. Soient $(E, \|.\|_E)$, $(F, \|.\|_F)$ 2 \mathbb{K} -e.v.n de dimension finie. Soit $f: I \to F$ une application et $L \in \mathcal{L}(E, F)$ (qui se trouve être continue car nous travaillons en dimension finie!).

Soit $a \in I$, on suppose f dérivable en a.

Alors L(f) est dérivable en a et

$$L(f)'(a) = L(f'(a))$$

B.3 Dérivée de B(f,g) où B est une application bilinéaire continue.

Proposition

Soit $I \subset \mathbb{R}$. Soient $(E, \|.\|_E)$, $(F, \|.\|_F)$, $(G, \|.\|_G)$ 3 \mathbb{R} -e.v.n.

Soit $B: E \times F \to G$ une application bilinéaire. Soit $a \in I$, supposons E et F de dimension finie ou $f \mathcal{C}^0$.

Si f et g sont dérivables en a, alors B(f,g) l'est également et :

$$B(f,g)'(a) = B(f',g)(a) + B(f,g')(a)$$

B.4 Continuité de la fonction "distance à une partie A"

Définition - Fonction "distance à une partie A"

Soit $(E, \|.\|_E)$ un \mathbb{K} -e.v.n et soit $A \subset E$. On définit d la fonction distance à A par :

nit
$$d$$
 la fonction distance
$$E \rightarrow \mathbb{R}$$

$$d: x \mapsto \inf_{a \in A} ||x - a||$$

On note généralement d(x) = d(x, A)

Proposition - Continuité de la fonction "distance à une partie *A*"

Soit $(E, \|.\|_E)$ un \mathbb{K} -e.v.n et soit $A \subseteq E$. On note d la fonction distance à A par . Alors d est continue.

DÉMONSTRATION.

B.5 Inégalité arithmético-géométrique.

Proposition - Inégalité arithmético-géométrique

Soient $x_1, ..., x_n \in \mathbb{R}_+^*$, alors :

$$(x_1 \times \ldots \times x_n)^{\frac{1}{n}} \le \frac{x_1 + \ldots + x_n}{n}$$

C Questions de cours, groupe $\mathbb C$ uniquement

C.1 Démonstration du théorème de convergence des sommes de Riemann

Théorème - Convergence d'une somme de Riemann

(mm notations) On a:

$$\lim_{n\to +\infty} S_n(f) = \int_a^b f(t) dt$$

DÉMONSTRATION.

MPI* Prime 11 MPI* Faidherbe 2023-2025

C.2 Majoration de l'erreur des sommes de Riemann en $\mathcal{O}(\frac{1}{n})$ (avec la bonne hypothèse)

Proposition

Soit $f \in \mathcal{C}^1(I,\mathbb{R})$ avec I = [a;b], a < b. On prend $(a_k)_{k \in [0;n-1]}$ une subdivision régulière de I d'ordre n. Alors, en posant $R_n = \sum_{k=0}^{n-1} \frac{b-a}{n} f(a_k)$, on a

Alors, en posant
$$R_n = \sum_{k=0}^{n-1} \frac{b-a}{n} f(a_k)$$
, on a

$$R_n - \int_a^b f(t) dt = \mathcal{O}(\frac{1}{n})$$

C.3 Majoration de l'erreur de la méthode des trapèzes en $\mathcal{O}(\frac{1}{n^2})$ (avec la bonne hypothèse)

Proposition

Soient $I = [a; b] \subset \mathbb{R}$, avec a < b, et $f \in C^2(I, \mathbb{R})$.

On prend
$$(a_k)_{k \in [0; n-1]}$$
 une subdivision régulière de I d'ordre n .
Alors, en posant $T_n = \frac{b-a}{n} \sum_{k=0}^{n-1} \frac{f(a_k) + f(a_{k+1})}{2}$, on a :

$$T_n - \int_a^b f(t) dt = \mathcal{O}(\frac{1}{n^2})$$

C.4 Démonstration du théorème fondamental du calcul intégral

Théorème fondamental du calcul intégral

Soient $I \subset \mathbb{R}$ et $f: I \to \mathbb{R}$ de classe C^0 . Soit $a \in I$. Alors, l'application

$$F: \begin{array}{ccc} I & \to & \mathbb{R} \\ x & \mapsto & \int_a^x f(t)dt \end{array}$$

est C^1 sur I et pour tout $x \in I$, F'(x) = f(x).

C.5 Adhérence de $GL_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$

Proposition

 $\overline{GL_n(\mathbb{R})}=\mathcal{M}_n(\mathbb{R})$

C.6 Inégalité de Jensen pour les fonctions convexes

Proposition - Inégalité de Jensen

Soient $I \subset \mathbb{R}$ un intervalle et $f: I \to \mathbb{R}$ une fonction convexe. Soit $(\lambda_1, \dots, \lambda_n) \in [0; 1]^n$ t.q $\sum_i \lambda_i = 1$. Alors,

$$f(\sum_{i=1}^{n} \lambda_i x_i) \le \sum_{i=1}^{n} \lambda_i f(x_i)$$

C.7 Caractérisation des fonctions convexes par l'inégalité des pentes

Proposition - Caractérisation des fonctions convexes par l'inégalité des pentes

Soient $I \subset \mathbb{R}$ un intervalle et $f: I \to \mathbb{R}$ une fonction.

On a:

$$f \text{ convexe} \Leftrightarrow \forall (x,y,z) \in I^3, x \leq y \leq z \Rightarrow \frac{f(y) - f(x)}{y - x} \leq \frac{f(z) - f(x)}{z - x} \leq \frac{f(z) - f(y)}{z - y}$$

2 Exercices de référence

- A Exercices de référence, groupes $\mathbb{A}, \mathbb{B} \& \mathbb{C}$
- B Exercices de référence, groupes $\mathbb{B} \& \mathbb{C}$
- C Exercices de référence, groupe $\mathbb C$ uniquement

TAYLOR SERIES EXPANSION IS THE WORST.