CSE3502 – INFORMATION SECURITY MANAGEMENT

Review 1

ANDROID MALWARE ANALYSIS

Prof. In-Charge:

Dr. Vimala Devi

Team Details:

Harshit Mishra (19BCE0799)

Alokam Nikhitha (19BCE2555)

Shreeyam Sharma (19BCE2700)

Abstract:

Android is an open-source Operating System with more than a billion users. The amount of sensitive information produced be these technologies are rapidly increasing, which attracts a large number of audiences to develop tools and techniques to acquire that information or to disrupt the device's smooth operation. Despite several solutions being able to guarantee an adequate level of security, day by day the hacker's skills continues to grow, so it remains a permanent challenge for security tools developers to ensure the security of an android powered device.

As a response, several members of the research community are using artificial intelligence tools for android security, particularly machine learning techniques to classify between healthy or malicious android application.

In this project, we will implement a static framework and machine learning to do this classification.

Problem Statement and Objective:

Android is an open-source operating system for mobile devices, televisions automobiles and smart watches with more than a billion users. Therefore, it opens a wide array of attack vectors targeting the user information.

For the protection of the information and devices, android has several security mechanisms; the most relevant are: a sandbox environment at the kernel level to prevent access to the file system and other resources; an API of permissions that controls the privileges of the applications in the device; security mechanisms at the applications development level; and a digital distribution platform (Google play store), where the processes are implemented to limit the dissemination of malicious code.

Each application is compiled in an Android Application Package [APK] file, which includes the code of the application in ". dex" files, resources and the AndroidManifest.xml file. This latter is an important element, since it provides most of the information of the security features and configuration of each application. It also includes the information of the API regarding permissions, activities, services, content providers and the receiving broadcasts.

There are several tools and techniques for the analysis of threats for this operating system. Between the most representative, we have static analysis and dynamic analysis.

Static Analysis:

Static analysis is a technique that assesses behaviour in the source code, the data, or the binary files without the direct execution of the application. Its complexity has increased due to the experience that cybercriminals have gained in the development of applications. However, it has been demonstrated that it is possible to avoid this using obfuscation technique.

Dynamic Analysis:

Dynamic analysis is a set of methods that studies the behaviour of the malware in execution through gesture simulations. In this technique, the process in execution, the user interface, the network connections and sockets opening are analysed. Alternatively, there already exist some technique to avoid the processes performed by dynamic analysis, where the malware has the capacity to detect sandbox-like environments and to stop its malicious behaviour.

Literature Survey:

Paper	Problem and	Proposed	Limitations
•	Objective	Methodology	
Significant	The disturbing	In this work, they	The approach
Permission	development pace of	have proposed a	needed high end
Identification for	noxious applications	SigPID, a malware	processors, large
Machine Learning-	has turned into a	recognition	memory space and
Based Android	major issue that	framework in light	Graphical
Malware Detection	interferes with the	of authorization	processing unit.
	prosperous versatile	utilization	Since most of the
Jin Li, Lichao Sun,	environment. A new	investigation to	common computers
Qiben Yan,	report shows that a	adapt to the fast	lack these
Zhiqiang Li,	new vindictive	expansion in the	specifications, the
Witawas Srisa-an	application for	quantity of Android	approach is not as
and Heng Ye	Android is presented	Malware. SigPID	implementable and
	each 10 s. To battle	stands for	is rather subject to
July-2018	this genuine malware	Significant	hardware.
	crusade, we really	Permission	The process is
IEEE Transaction on	want an adaptable	Identification.	redundantly slow
Industrial	malware	SigPID utilizes	due the extensive
Informatics	identification	machine-learning-	use of SigPID
	approach that can	based classification	framework which
	successfully and	methods to classify	although increases
	effectively recognize	different families of	the accuracy by
	malware	malware and benign	leaps but alters the
	applications. Various	applications. Their	pace of detection.
	malware	evaluation found	
	identification	that only 22	
	instruments have	permissions among	
	been created,	the applications	
	including framework	stand significant.	
	level and	They then compared	
	organization level	the performance of	
	methodologies.	their approach, using	
	Notwithstanding,	only these 22	
	scaling the discovery	permissions, against	
	for a huge heap of	a baseline approach	
	applications stays a	that analyses all	
	difficult assignment.	permissions. The	
	In this paper, we	results indicate that	
	present Significant	when a support	
	Permission	vector machine is	
	IDentification	used as the	
	(SigPID), a malware	classifier, they	
	recognition	achieved an	
	framework in light of	accuracy over 90%.	
	authorization utilization		
	investigation to adapt		

to the fast expansion in the quantity of Android malware. Rather than	
Android malware.	
Rather than	
separating and	
breaking down all	
Android consents, we	
foster three degrees	
of pruning by mining	
the authorization	
information to	
recognize the main	
consents that can be	
viable in recognizing	
harmless and	
pernicious	
applications	
MEGDroid: A The tremendous They have proposed There are quite a	
model-driven event growth of Android a MEGDroid, a few limitations for	
generation Malware in recent Model Driven achieving the gola	
<u>framework for</u> years is a strong Engineering (MDE) due to the anti-stat	ic
dynamic android motivation for the framework in which and anti-dynamic	
malware vast endeavour in malware-related analysis technique	S
detection and information is that are usually use	d
Hayyan Hasan and analysis of malware automatically by malware to hide	•
Behrouz Tork apps. A prominent extracted and their information.	
Ladani approach for this represented as a The obfuscation	
purpose is dynamic domain-specific approach can be	
July-2021 analysis in which model. This model, used to by pass thi	S
providing complex then is used to detection process.	
Information and interactions with the generate appropriate Thus, if the hacker	
Software samples under events for malware is smart enough th	3
Technology analysis is a need. analysis using process of	
Event generation model-to-model and MEGDroid	
tools are almost used model-to-code detection is not	
to provide such transformations. The sufficient to detect	
interactions, but they proposed model- the malware.	
have deficiencies for driven artifacts also	
effective malware provide required	
analysis. facilities to put the	
human in the loop	
for properly taking	
his/her knowledge	
into account.	
An Android Android Malicious This paper proposed The working of	
Malicious Code Code has increased a Dendritic Cell proposed system	
<u>Detection Method</u> dramatically and the Algorithm (DCA), works only if they	
Based on Improved technology of which is an Android can access the	
DCA algorithm reinforcement is malware algorithm Android Packaging	5
increasingly that has a higher (APKs) of a	

Chundong Wang, Zhiyuan Li, Liangyi Gong, Xiulian Mo, Hong Yang and Yi Zhao

February-2017

Entropy-Based
Applied
Cryptography and
Enhanced Security
for Future IT
Environments

powerful. Due to the development of code obfuscation and polymorphic deformation technology, the current android malicious code static detection method whose feature selected is the semantic of application sources code cannot completely extract malware's code features. The Android malware static detection methods whose features used are only obtained from the AndroidManifest.xml files are easily affected by useless permissions.

detection rate, does not need to modify the system, and reduces the impact of code obfuscation to a certain degree. This algorithm is applied to an Android malware detection method based on oriented Dalvik disassembly sequence and application interface (API) calling sequence. Through the designed experiments, the effectiveness of this method is verified for the detection of Android Malware. This is a dynamic implementation approach which studies the execution phase of an application and classifies them as safe or not based on

particular application. It requires a large number of APKs to deliver optimal working. With less than 400 APKs the accuracy of model stood at a mere 92%. With around 750 APKs it went to a count of 97%. Hence we need large number of APKs for it to work accurately.

Machine Learning Aided Android Malware Classification

N Milosevic, A Dehghantanha and k Choo

Februray-2017

White Rose university Consortium

Malware have been used as a means for conducting cyber attacks for decades. With adoption of smartphones, which stores lots of private and confidential information, made them an important target for malware developers. Android as the dominant mobile operating system has always been an interesting platform for malware developers and lots of Android malware

In the work, they have proposed two Machine Learning based approaches for static analysis of the mobile applications: one based on permissions, while the other based on source code analysis that utilizes a bag of word representation model. Their sourcecode based classification achieved F-score of 95.1%, while the approach that used

Their approach had few limitations. For permission-based approach they reported an F-score of 87% for single machine learning algorithm. This means there are chances that some malware loaded applications were not classified as such and some benign applications are classified as malicious. Also, the False Negative rates in

species are infecting vulnerable users everyday which make manual malware forensics would assist cyber forensics investigators in their fight against malicious programs. permission names only performed with F-measure of 89%. Their approach provides a method for automated static code analysis and malware detection with high accuracy and reduces smartphone malware analysis time.

their case is high, which means that the detection rate of malware applications was low and this possessed a potential vulnerability in classification due to this alarming false negative rates.

AdDroid: Rule-Based machine
Learning
Framework for
Android Malware
Analysis

Anam Mehtab, Waleed Bin Shahid and Tahreem Yaqoob

August-2019

Mobile Networks and Applications

Recent years have witnessed huge growth in Android malware development. Colossal reliance on Android applications for day to day working and their massive development dictates for an automated mechanism to distinguish malicious applications from benign ones. A significant amount of research has been devoted to analysing and mitigating this growing problem; however, attackers are using more complicated techniques to evade detection.

analysis time. This paper proposed a framework named AdDroid: for analysing and detecting malicious behaviour in Android Applications based on various combinations of artefacts called rules. The artefacts represent actions of an Android application such as connecting to the Internet, uploading a file to a remote server or installing another package on the device etc. AdDroid employs an ensemble-based machine learning technique where Adaboost is combined with traditional classifiers in order to train a model founded on static analysis of Android applications that is capable of recognizing malicious applications. Feature

Selection and extraction

The dataset used for the approach was very biased towards malicious applications with a ratio approximately reaching 2:3. This suggest that the results of accuracy is also biased towards malicious applications. This further suggests that the rate of False positive data is going to be high because the model is more fitted to those applications. The model was able to detect applications on the basis of the permissions they have, this limits the scope and scalability of approach and applications in real time cannot be classified using this approach.

techniques were used to get the most distinguished Rules. The proposed model was created using a dataset comprising 1420 Android Applications with 910 malicious and 510 being benign.	