

2022-2023秋季课程:数据科学与大数据导论

Introduction to Data Science and Big data

Chapter 3: Big Data Analytics Fundmentals

曹劲舟 助理教授

深圳技术大学 大数据与互联网学院 caojinzhou@sztu.edu.cn

2022年9月

Outline

□Data Preprocessing 数据预处理 扩展学习

□编辑距离Edit Distance计算 - 动态规划算法

定义D(i,j) 为从字符串s1..si 到 t1..tj最少的编辑操作次数

(其中 d(c,d)=0 如果 c=d, 否则等于1)

另外初始化 D(i,0)=i 以及 D(0,j)=j

- □编辑距离Edit Distance计算 动态规划算法
 - ■看一个实例
 - ■假设有字符串s1为jary,和字符串s2为jerry,现在求s1和s2的编辑距离,也就是把s2转换为s1的最少编辑操作步数
 - ■首先,我们建立如下的矩阵,并且初始化该矩阵

			j	а	r	y
		0	1	2	3	4
日标	j	1				
目标	е	2				
	r	3				
	r	4				
	y	5				

■从源串的第一个字符("i")开始,从上至下与目标串进行对比

- □编辑距离Edit Distance计算 动态规划算法
 - ■Min (左上角+0或者1,上+1,左+1)
 - ■比如,第一次,源串第一个字符"j"与目标串的"j"对比,左+1、上+1、左上+0或者1 三个值中取出最小的值0,因为两字符相等,所以填上0
 - ■接着,依次对比"j"→"e"、"j"→"r"、"j"→"r"、"j"→"y"等进行处理,直到扫描完目标串,得到的结果如下

		j	a	r	y
	0	1	2	3	4
j	1	0			
е	2	1			
r	3	2			
r	4	3			
у	5	4			

- □编辑距离Edit Distance计算 动态规划算法
 - ■按照上面的方法,遍历整个源串的各个字符,与目标串的各个字符对比,填写各个单元格,各个单元格的变化如下表所示

		j	а	r	у
	0	1	2	3	4
j	1	0	1		
е	2	1	1		
r	3	2	2		
r	4	3	3		
у	5	4	4		
		j	а	r	У
	0	1	2	3	4
j	1	0	1	2 2 1	
е	2	1	1	2	
r	3	2	2		
r	4 5	3	3	2	
у	5	4	4	3	
		j	а	r	У
	0	1	2	3	4
j	1	0	1	2	3
е	2	1	1	2	3
r	3	2	2	1	2
r	4	3	3	2	2
у	5	4	4	3	2

- □处理完最后一列,则最后一列的最后一个值,为最短编辑距离
 - ■即jary和jerry的编辑距离为2
 - ■也就是, jary插入r得到jarry, 把a改成e得到jerry

		j	а	r	у
	0	1	2	3	4
j	1	0	1		
е	2	1	1		
r	3	2	2		
r	4	3	3		
У	5	4	4		
		j	а	r	y
	0	1	2	3	4
j	1	0	1	2	
е	2	1	1	2	
r	3	2	2	1	
r	4	3	3	2	
У	5	4	4	3	
		j	а	r	у
	0	1	2	3	4
j	1	0	1	2	3
е	2	1	1	2	3
r	3	2	2	1	2
r	4	3	3	2	2
у	5	4	4	3	2

马氏距离

- ■马氏距离:数据的协方差距离
 - 欧氏距离的扩展,考虑到各种特性之间的联系(协方差)

mahalanobis (p, q) =
$$(p - q) \sum^{-1} (p - q)^T$$

Σ 是总体样本 *X*的协方差矩阵

$$\Sigma_{j,k} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{ij} - \overline{X}_{j})(X_{ik} - \overline{X}_{k})$$

- 确定未知样本集与已知样本集的相似度
- 它考虑了数据集的相关性,并且是比例不变的

红色的数据点, 欧氏距离为14.7, 马氏距离为6

马氏距离vs 欧氏距离

- □假设:以厘米为单位测量人的身高,以克(g)为单位测量人的体重。每个人被表示为一个两维向量。如:一个人身高173cm,体重50000g,表示为(173,50000),根据身高体重来判断人的体型的相似程度
- □已知: 小明(160, 60000); 小王(160, 59000); 小李(170, 60000)。小明与谁的体型更相似?
- □分析:根据常识可以知道小明和小王体型相似。但是如果根据欧氏距离来判断,小明和小王的距离要远大于小明和小李之间的距离,即小明和小李体型相似
 - ■原因:不同特征的度量标准之间存在差异而导致判断出错。
 - ■以克(g)为单位测量人的体重,数据分布比较分散,即方差大,
 - ■以厘米为单位来测量人的身高,数据分布就相对集中,方差小
 - 马氏距离把方差归一化,使得特征之间的关系更加符合实际情况。

Jaccard相关系数

- ■简单匹配 Simple Matching VS Jaccard相关系数
- ■离散数据,属性的取值表示为0或1
 - 例:数据p和q,定义如下4个变量
 - F01: p为0, q为1的属性数量
 - F10: p为1, q为0的属性数量
 - F00: p为0, q为0的属性数量
 - F11: p为1, q为1的属性数量

$$p = (10000000000)$$

 $q = (0000001001)$

```
SMC = number of matches / number of attributes
= (F11 + F00) / (F01 + F10 + F11 + F00)
```


Jaccard = number of 11 matches / number of non-zero attributes = (F11) / (F01 + F10 + F11)

Jaccard相关系数

■简单匹配Simple Matching VS Jaccard相关系数

$$p = (1000000000000)$$

 $q = (00000001001)$
 $F01 = 2$ (p为0, q为1的属性数量)
 $F10 = 1$ (p为1, q为0的属性数量)
 $F00 = 7$ (p为0, q为0的属性数量)
 $F11 = 0$ (p为1, q为1的属性数量)
 $SMC = (F11 + F00) / (F01 + F10 + F11 + F00)$
 $= (0+7) / (2+1+0+7) = 0.7$
 $Jaccard = (F_{11}) / (F_{01} + F_{10} + F_{11}) = 0 / (2+1+0) = 0$

数据预处理:数据集成

- □练习题1:给定数据x和y,计算指定的相似性或距离:余弦相似度、相关度、欧几里得距离、Jaccard
- 口曰知: X = (0, 1, 0, 1), Y = (1, 0, 1, 0), 问: 分析X和Y 的相关性

$$\cos(\theta) = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}} \cdot p_{X,Y} = \frac{\sum_{i=1}^{n} (X_i - \tilde{X})(Y_i - \tilde{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \tilde{X})^2 \sum_{i=1}^{n} (Y_i - \tilde{Y})^2}}$$

$$dist = \sqrt{\sum_{k=1}^{n} (p_k - q)^2}$$
 $J = (F11) / (F01 + F10 + F11)$

有序数据相关性分析

□ 有序数据的距离度量(信息检索、推荐系统等)

- □ NDCG(Normalized Discounted cumulative gain)
 - CG(累计增益): 只考虑到了相关性的关联程度,没有考虑每个推荐 结果处于不同位置对整个推荐效果的影响

$$CG_k = \sum_{i=1}^k rel_i$$

rel_i表示处于位置 ii 的推荐结果的相关性

■ DCG(折损累计增益): 就是在每一个CG的结果上处以一个折损值, 目的就是为了让排名越靠前的结果越能影响最后的结果

$$DCG_k = \sum_{i=1}^{k} \frac{2^{rel_i}-1}{\log_2(i+1)}$$

■ i表示推荐结果的位置, i越大,则推荐结果在推荐列表中排名越靠后推荐效果越差,DCG越小

有序数据相关性分析

- □有序数据的距离度量(信息检索、推荐系统等)
 - ■NDCG(Normalized Discounted cumulative gain)
 - NDCG:由于搜索结果随着检索词的不同,返回的数量不一致,而 DCG是一个累加的值,没法针对两个不同的搜索结果进行比较,因此 需要标准化处理,这里是除以IDCG:

$$NDCG_k = \frac{DCG_k}{IDCG_k}$$

IDCG为理想(ideal)情况下最大的DCG值,指推荐系统为某一用户返回的最好推荐结果列表(或者,真实的数据序列)

有序数据相关性分析

- □例,假设搜索返回的6个物品,其相关性分别是3、2、3、0、1、2
 - CG@6 = 3+2+3+0+1+2
 - DCG@6 = 7+1.89+3.5+0+0.39+1.07 = 13.85
 - □假如我们实际召回了8个物品,除了上面的6个,还有两个物品,第7个相关性为3,第8个相关性为0。那么在理想情况下的相关性分数排序应该是3、3、3、2、2、1、0、0。
 - □ 计算IDCG@6:
 - \blacksquare IDCG = 7+4.42+3.5+1.29+1.16+0.36 = 17.73
 - □ 计算NDCG@6:
 - NDCG@6 = 13.85/17.73 = 0.78

$$CG_k = \sum_{i=1}^k rel_i$$

$$DCG_k = \sum_{i=1}^k \frac{2^{rel_{i-1}}}{\log_2(i+1)}$$
 $NDCG_k = \frac{DCG_k}{IDCG_k}$

i	rel
1	3
2	2
3	3
4	0
5	1
6	2

i	rel
1	3
2	3
3	3
4	2
5	2
6	1

方法返回结果

真实结果

课堂练习: 数据集成

□练习题3

 $CG_k = \sum_{i=1}^k rel_i$

■已知6个网页的相关度是3,2,3,0,1,2,所以在信息检索中, 最好的返回结果应当如(a)所示。如果我们设计了两个检索算法, 它们的返回结果分别是(b)和(c),请问哪个方法的结果与真实结 $DCG_k = \sum_{i=1}^k \frac{2^{rel_{i-1}}}{\log_2(i+1)}$ 果更相似(根据NDCG的计算结果)。

i	相 关 度		
1	3		
2	3		
3	2		
4	2		
5	1		
6	0		

4	2				
5	1				
6	0				
(a)真实结!					

i	相关度
1	3
2	3
3	0
4	2
5	2
6	1

i	相关度
1	3
2	3
234	2
4	0
5	2
6	1

(c)方法2返回结果

$$NDCG_k = \frac{DCG_k}{IDCG_k}$$

可以只列出计 算公式,不用 给出计算结果

- 0.9746
- 0.9889

- ■例:如何把二维数据降维至一维
 - 思想: 方差越大,数据间的差异越大。让新数据的方差尽可能地大,使得新数据尽可能地不丢失原有数据的信息

课后思考:一元线性回归与PCA的关系?

- □主成分分析(principal component analysis, PCA)
 - ■原数据为X,降维后新数据为Y
 - 不同维度相互独立:要求数据Y的协方差矩阵为对角阵 $B = \frac{1}{m}Y^{\top}Y \in \mathbb{R}^{k \times k}$

$$B = \frac{1}{m} Y^{\top} Y = \frac{1}{m} (XP)^{\top} (XP) = \frac{1}{m} P^{\top} X^{\top} X P = P^{\top} C P \qquad \qquad C = \frac{1}{m} X^{\top} X \in \mathbf{R}^{n \times n}$$

- 最大化每个维度内的样本方差: Y的协方差矩阵中的对角元素越大越好
 - 对C进行特征值分解,将求解得到的特征值从大到小依次作为协方差矩阵的对角线元素,特征向量组成变换矩阵(P)
- 保留最大的k 个特征值: 第K个主成分就是第K大的特征值对应的特征向量
- ■存储空间:
 - 对于原始的N*M(N维M个样本)的数据,原始存储空间是N*M
 - PCA以后为: K*M (M个K维样本) +N*K(K个特征向量)

□主成分分析(principal component analysis, PCA)

Algorithm 5 PCA 算法

Input: 原始的样本矩阵 $X \in \mathbb{R}^{m \times n}$

Output: 压缩后的样本矩阵 $Y \in \mathbb{R}^{m \times k}$

- 1: 对样本矩阵进行去均值化 $\boldsymbol{x}_i \leftarrow \boldsymbol{x}_i \frac{1}{m} \sum_{i=1}^m \boldsymbol{x}_i, \forall i \in \{1, 2, \cdots, m\}$
- 2: 计算协方差矩阵 $C = \frac{1}{m}X^{\top}X$
- 3: 通过特征值分解求解 C 的特征值和特征向量
- 4: 将特征值从大到小排序,取最大的 k 个特征值对应的特征向量作为列向量构成变换矩阵 $P \in \mathbb{R}^{n \times k}$
- 5: 将原始数据转换到新的空间中 Y = XP

□ 不足之处

- 当原始数据的维度n特别大的时候,计算协方差时的 XTX已经具有相当大的计算量
- 针对协方差矩阵C的特征值求解过程计算效率不高

样本矩阵(10个城市样本,8个属性)的转置XT

92	GDP	居民消	固定资	职工平	货物周	居民消费	商品零售	工业总
省份		费水平	产投资	均工资	转 量	价格指数	价格指数	产值
	X_1	X_2	X_3	X_4	X_5	X_{ϵ}	X_7	X_8
北京	1394.89	2505	519-01	8144	373-9	117- 3	112 6	843.43
天津	920.11	2720	345.46	6501	342.8	115.2	110-6	582-51
河北	2849. 52	1258	704.87	4839	2033.3	115. 2	115-8	1234-85
山西	1092.48	1250	290.9	4721	717.3	116. 9	115.6	697.25
内蒙	832-88	1387	250. 23	4134	781.7	117.5	116.8	419.39
辽宁	2793.37	2397	387. 99	4911	1371-1	116-1	114	1840.55
吉林	1129-2	1872	320, 45	4430	497.4	115.2	114.2	762, 47
黑龙江	2014.53	2334	435. 73	4145	824.8	116.1	114.3	1240.37
上海	2462-57	5343	996. 48	9279	207.4	118.7	113	1642.95
江苏	5155-25	1926	1434.95	5943	1025.5	115.8	114.3	2026-64

三个主成分 (8*3)

第一特征向量	第二特征向量	第三特征向量
a_1	a_2	a_3
0.470641	0-107995	0. 19241
0.456708	0. 258512	0.109819
0.424712	0- 287536	0.19241
-0.31944	0. 400931	0.397525
0.312729	-0.40431	0. 24505
0.250802	0.498801	-0.24777
0.240481	-0.48868	0.332179
-0.26267	0-167392	0. 723351

特征值 分解

	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8
X_1	1.000	. 267	. 951	. 191	. 617	−. 274	264	. 874
X_2	. 267	1.000	. 426	. 718	151	 234	593	. 363
X_3	.951	. 426	1.000	. 400	431	−. 282	- . 359	.792
X_4	.191	.718	. 400	1.000	356	 134	- .539	.104
X_5	.617	 151	. 431	356	1.000	 255	. 022	.659
X_{6}	274	234	282	134	255	1.000	. 760	 126
X_7	[264]	593	359	539	. 022	.760	1.000	 192
X_8	. 874	. 363	. 792	104	. 659	126	 192	1.000

特征子集选择

□维度规约

- ■属性子集选择 (特征子集)
 - 做法: 删除不相关或冗余的属性来减少维度与数据量
 - 目标: 找到最小属性集, 使得数据的概率分布尽可能接近使用所有属性得到的原分布
 - 理解: 从全部属性中选取一个特征属性子集, 使构造出来的模型更好
- ■启发式步骤
 - 建立子集集合
 - 构造评价函数
 - 构建停止准则
 - 验证有效性
 - 例如: 决策树

特征子集选择

- □常用方法
 - ■奇异值分解(SVD)
 - ■矩阵分解(PMF)
 - ■深度学习(Deep Learning)
 - DNN, AutoEncoder, etc

数据规约: 数值规约

- □数值规约
 - ■通过选择替代的、较小的数据表示形式来减少数据量
 - 参数化方法
 - 使用一个参数模型估计数据,最后只要存储参数即可,不用存储数据(除了可能的离群点)
 - 常用方法
 - □ 线性回归方法;多元回归;对数线性模型;
 - 非参数化方法
 - 不使用模型的方法存储数据
 - 常用方法: 直方图, 聚类, 抽样

资料推荐

- □数据挖掘导论第2章:数据,人民邮电出版社
- □数据挖掘原理与算法第2章,清华大学出版社
- ☐T.C. Redman Data Quality: The Field Guide. January 2001
- □I.T.Jolliffe. Principal Component Analysis. Springer Verlag, 2nd edition,
- □October 2002.
- ☐ Feature selection algorithms: A survey and experimental evaluation, ICDM 2003
- □Zhenya Huang, Qi Liu, Enhong Chen, Learning or Forgetting? A Dynamic Approach for
- ☐ Tracking the Knowledge Proficiency of Students, ACM TOIS
- □Fei Wang, Qi Liu, Enhong Chen, Zhenya Huang, Neural Cognitive Diagnosis for Intelligent Education Systems, AAAI'2020