Ensembles définis inductivement, récursivité

Soit A un ensemble (fini). Un mot sur A est une suite finie d'élément de A. On définit l'opération de concaténation sur les mots de A comme étant u.v est la suite u suivie de la suite v. On note ϵ la suite vide (le mot sans lettre). On note A^* l'ensemble des mots sur A.

Exercice 1 Palindromes

Soit V un ensemble. Donner une définition inductive des palindromes sur V .

Exercice 2

Soit $V = \{a, b, c\}$. Donner une définition inductive de l'ensemble X des mots non vides sur V tels que deux lettres consécutives soient distinctes.

Exercice 3

On définit inductivement l'ensemble $X \subset \{a,b\}^*$ de la façon suivante : $\epsilon \in X$; si $u \in X$ alors $a.u.b \in X$. Montrer que $X = \{a^nb^n \mid n \in \mathbb{N}\}$.

Par convention $a^0 = \epsilon$

Exercice 4

Soit $V = \{a, x\}$. On définit X le sous-ensemble de V^* formé des mots contenant une seule fois le symbole x.

- 1) Donner une définition inductive de X.
- 2) Soit A le sous-ensemble de X définit par $xa \in A$; et si $m \in A$ alors $ama \in A$. Montrer que si $m \in A$ alors m contient un nombre impaire de a.

Exercice 5

On considère le sous-ensemble D de $\mathbb{N} \times \mathbb{N}$ défini inductivement par : $(n,0) \in D$; si $(n,n') \in D$ alors $(n,n+n') \in D$.

- 1) Donner quelques éléments de D.
- 2) Montrer que pour deux entiers n et n', $(n, n') \in D$ si et seulement s'il existe $k \in \mathbb{N}$, tel que n' = kn.

Exercice 6

On considère l'ensemble $X\subset \mathbb{N}^2$ définit inductivement par l'élément de base (0,0) et par les règles d'inférence suivantes :

$$\frac{(a,b)}{(a+1,b+1)}I_1 \qquad \qquad \frac{(a,b)}{(a+1,b)}I_2$$

- 1) Donner quelques éléments de X.
- 2) Pour chaque élément suivant dire s'il appartient à X ou non. Si oui , donnez l'arbre de construction, sinon justifiez.
 - a) (3,3)
 - b) (2,5)
 - c) (4,2)
- 3) Donner une définition non inductive des éléments de X.

Exercice 7

On considère l'ensemble $X\subset\mathbb{N}^3$ définit inductivement par l'élément de base (0,0,0) et par les règles d'inférence suivantes :

$$\frac{(a,b,c)}{(a+1,b+1,c)} I_1 \qquad \qquad \frac{(a,b,c)}{(a+1,b,c+1)} I_2$$

- 1) Donner quelques éléments de X.
- 2) Pour chaque élément suivant dire s'il appartient à X ou non. Si oui , donnez l'arbre de construction, sinon justifiez.
 - a) (2,1,1)
 - b) (3, 2, 2)
 - c) (5,2,3)
- 3) Donner une définition non inductive des éléments de X.

Exercice 8

Montrer que toute fonction totale f de \mathbb{N} dans \mathbb{N} décroissance est récursive.

Exercice 9

Indiquer en justifiant brièvement votre réponse quelles sont, parmi les fonctions suivantes, celles qui sont récursives et celles qui ne le sont pas :

- 1) f(n) =le nombre de programmes de moins de n symboles
- 2) f(n) = 0 s'il y a une infinité de programme P tel que P(0) = n, f(n) = 1 sinon.
- 3) f(n) = n-ième chiffre dans le développement décimal de π
- 4) f(l)=1 pour tout $l\in\mathbb{N}$ s'il existe $n,m,p\in\mathbb{N}\setminus\{0\}$ et $q\in\mathbb{N}\setminus\{0,1,2\}$ tels que $m^q+n^q=p^q$.
 - f(l) = 0 pour tout $l \in \mathbb{N}$ sinon.
- 5) f(l) = 1 pour tout $l \in \mathbb{N}$ si P=NP.
 - f(l) = 0 pour tout $l \in \mathbb{N}$ sinon.
- 6) f(n) = 1 si $P_n(k) \neq 0$ pour tout $k \in \mathbb{N}$.
 - f(n) = 0 sinon.