

## Department of Computer Science Engineering

# **UE23CS352A:** Machine Learning Lab Week 12: Naive Bayes Classifier

### 1. Lab Overview

Welcome to the lab on probabilistic classification using the Naive Bayes algorithm. The primary goal of this lab is to evaluate a text classification system using Naive Bayes methods, to accurately predict the section role (BACKGROUND, METHODS, RESULTS, OBJECTIVE, CONCLUSION) of biomedical abstract sentences.

The dataset used is a subset of the **PubMed 200k RCT** dataset, focusing on classifying abstract sentences into one of five categories.

## 2. Objectives

In this lab, you will:

- Implement the Multinomial Naive Bayes classifier from scratch.
- Utilize scikit-learn's tools for text vectorization (CountVectorizer, TfidfVectorizer) and modeling (MultinomialNB).
- Perform hyperparameter tuning using GridSearchCV to find the optimal model settings.
- Approximate the Bayes Optimal Classifier (BOC) using an ensemble method built using diverse base models (hypothesis) and a Soft Voting Classifier using calculated posterior weights.

# 3. Dataset Description

The data consists of sentences extracted from medical abstracts (PubMed Randomised Controlled Trials).

- **Source:** Subset of PubMed 200k RCT (text classification).
- **Target:** Predict the appropriate section title (label) for a given sentence (sentence).
- Classes (Target Names): BACKGROUND, CONCLUSIONS, METHODS, OBJECTIVE, RESULTS.
- **Splits:** The data is provided in three files (train.txt, dev.txt, test.txt) and is loaded by the provided load pubmed rct file function.

## 4. Key Concepts

- Multinomial Naive Bayes (MNB): A probabilistic classifier suitable for classification with discrete features (like word counts or TF-IDF values in text data). It relies on the strong, "naive" assumption of conditional independence between features given the class.
- Laplace Smoothing (Additive Smoothing): A technique used in MNB to handle words that appear zero times in a specific class. By adding a smoothing parameter ( $\alpha$ , typically 1), it prevents zero probabilities, ensuring the model remains stable and generalizable.
- Log-Sum Trick: Logarithms are used to prevent numerical underflow when multiplying many small probabilities (likelihoods), as  $\log(A \times B) = \log(A) + \log(B)$ .
- Bayes Optimal Classifier (BOC): The theoretical classifier that yields the lowest possible classification error for a given problem space. In practice, we approximate it using ensemble methods, such as a Hard Voting Classifier composed of models with diverse strengths.

#### 5. Instructions and Tasks

You must complete all the // TODO: sections in the provided Notebook.

#### Part A: Multinomial Naive Bayes from Scratch

In this section, you will implement the core mathematical components of the Multinomial Naive Bayes classifier to understand its mechanism.

- 1. **Data Loading:** Ensure the data loading cell is correctly executed to populate X\_train, y\_train, X dev, y dev, X test, and y test.
- 2. **Custom Classifier Logic:** Complete the NaiveBayesClassifier class:
  - o In the fit method, implement the calculation of the log prior  $(\log P(C))$  and the log likelihood  $(\log P(w_i|C))$  for each class, ensuring you include Laplace Smoothing.
  - In the predict method, implement the calculation of the final log probability for a new instance, which is the sum of the log prior and the log likelihood contributions. Use argmax to select the class with the maximum score.
- 3. **Feature Extraction:** Initialize CountVectorizer and set appropriate parameters for ngram\_range (e.g., single words or bigrams) and min\_df (e.g., to ignore words that appear very infrequently).
- 4. **Training and Evaluation:** Train your custom nb\_model using the Count-based features from the training set and evaluate its performance on the test set (X test counts).
- 5. **Visualization:** Generate and display a visual Confusion Matrix (heatmap) for the custom classifier's predictions on the test set.

## Part B: Sklearn MultinomialNB and Hyperparameter Tuning

In this section, you will utilize scikit-learn's MultinomialNB with TF-IDF features and optimize its hyperparameters.

1. Initial Pipeline: Define a Pipeline named pipeline that chains a TfidfVectorizer and a MultinomialNB classifier using default parameters. Train it on  $X_{\rm train}$  and evaluate its metrics on  $X_{\rm test}$ .

- 2. **Hyperparameter Grid:** Define the param\_grid for GridSearchCV. You must tune at least two parameters across two components:
  - o tfidf ngram range: Experiment with unigrams, bigrams, or both.
  - onb\_alpha: Experiment with different values of the smoothing parameter (e.g., [0.1, 0.5, 1.0, 2.0]).
- 3. **Grid Search:** Initialize and fit GridSearchCV using the pipeline and param grid.
  - o Crucial: Fit the grid search on the development data (X dev, y dev).
  - Use cv=3 and scoring='f1 macro'.
- 4. **Reporting:** Print the best params and the corresponding best score found by the grid search.

## Part C: Bayes Optimal Classifier

The final task is to approximate the theoretical Bayes Optimal Classifier (BOC). You will use five diverse base models, all trained on a sampled subset of the main training data.

- $H_1$ : Multinomial NB
- $H_2$ : Logistic Regression
- $H_3$ : Random Forest
- $H_4$ : Decision Tree
- $H_5$ : K-Nearest Neighbors

You must complete the following steps in the provided notebook:

#### 1. Posterior Weight Calculation:

- Split the X\_train\_sampled and y\_train\_sampled into a smaller sub-training set and a validation set.
- Train all five base hypotheses ( $H_1$  to  $H_5$ ) on the sub-training set.
- Calculate the log-likelihood for each model by evaluating its Predict\_proba results against the true labels of the validation set.
- Use the calculated log-likelihoods and equal model priors to determine the final posterior weights  $(P(h_i|D))$  for each hypothesis.
- 2. **Model Refitting:** Refit all five hypotheses ( $H_1$  to  $H_5$ ) on the full sampled training set (X train sampled, y train sampled).

#### 3. Ensemble Implementation:

- Initialize the VotingClassifier (boc soft voter) using the five refitted hypotheses.
- $\circ$  Crucially, set the voting='soft' parameter and use the calculated posterior weights (  $P(h_i|D)$ ) to assign the weights for the voter.
- Train the boc\_soft\_voter on the full sampled training set (X\_train\_sampled, y\_train\_sampled).

#### 4. Prediction and Evaluation:

- Make the final predictions on the full test set (X\_test)
- o Calculate and print the final evaluation metrics: Accuracy and Macro F1 Score.
- Generate and display the Classification Report and the Confusion Matrix visualization.

# **6. Expected Deliverables**

- 1. Completed Jupyter Notebook (.ipynb)
  - o All // TODO: sections filled.
  - Fully executed with all outputs (metrics, plots, reports) visible.
  - o Clean, well-documented, error-free code.
- 2. Lab Report (.pdf)
  - o Title Page (Project Title, Your Name, SRN, Course, Date).
  - **Introduction** (Purpose of the lab, tasks performed).
  - **Methodology** (Briefly describe the implementation approach for MNB and BOC)
  - Results and Analysis (Screenshots of plots and metrics):
    - Part A: Screenshot of final test Accuracy, F1 Score and Confusion Matrix.
    - Part B: Screenshot of best hyperparameters found and their resulting F1 score.
    - Part C:
      - 1. Screenshot of SRN and sample size.
      - 2. Screenshot of BOC final Accuracy, F1 Score and Confusion Matrix.
  - **Discussion:** Compare the performance of your scratch model (Part A) vs. the tuned Sklearn model (Part B) vs. the BOC approximation (Part C).