Introdução à lógica proposicional

Eduardo Furlan Miranda 2025-09-29

Baseado em: SCHEFFER, VC; VIEIRA, G; LIMA, TPFS. Lógica Computacional. EDE, 2020. ISBN 978-85-522-1688-9.

Lógica computacional

- Utilizamos as mesmas regras da Lógica Formal, porém colocando valores nos conteúdos, como verdadeiro ou falso, a fim de extrair nossas conclusões
- Ex.: "É lógico que Pedro será aprovado nos exames, pois ele é inteligente e estuda muito e todos os alunos inteligentes e estudiosos são aprovados"
- Esse argumento foi construído embasado por premissas (razões) e que levam a uma única conclusão

Termos

- **Proposição**: É a ideia mais básica. Uma frase declarativa que pode ser classificada como verdadeira ou falsa, ex.:
 - "O céu é azul" (V), "Humanos podem voar sem ajuda" (F)
- Premissas: Proposições que usamos como ponto de partida ou evidência em um raciocínio; fatos que aceitamos como verdadeiros para construir nossa lógica, ex.:
 - "Todo computador funciona com eletricidade"
- Argumento: É o raciocínio completo. É um conjunto estruturado de proposições onde as premissas são usadas para dar suporte e levar a uma conclusão
- Silogismo: um raciocínio dedutivo
- Falácia: argumentos que logicamente estão incorretos

Quadro 3.1 | Premissas e conclusões

Premissas (razões)	 Pedro é inteligente. Pedro estuda muito. Todos os alunos inteligentes e estudiosos são aprovados. 	
Conclusão	Pedro será aprovado	

- 3 premissas permitiram chegar a uma conclusão coerente
- Extrair essa conclusão do argumento só foi possível devido às regras da lógica proposicional
 - Por meio de premissas e conectores extraem-se resultados lógicos

- Fazer a separação premissa/conclusão é muito importante, pois nem toda frase é um argumento
 slide 3
- Imagine que queiramos criar um algoritmo para classificar se um aluno foi aprovado ou reprovado
 - Essas premissas precisam ser programadas em forma de regras
- Para ser um argumento é preciso existir uma conclusão
 - Logo, nem toda frase é um argumento

- É importante distinguirmos se uma sentença pode ou não ser classificada como verdadeira ou falsa (não ambas ao mesmo tempo), ex.:
 - O Brasil é um país da América Latina.
 - Minas Gerais é um estado do Nordeste.
 - São Paulo é a capital do Paraná.
 - Três mais um é igual a quatro.
 - Que horas são?

- Proposições
- V ou F
- Classificação binária

não pode ser valorada em V ou F

- "Está chovendo agora"
 - Não pode ser classificada como V ou F, pois deixa dúvida
 - P. ex., pode estar chovendo em um ponto da cidade e em outro não
- "Está chovendo agora na minha rua"
 - Mais específico, agora é possível classificar
- As proposições são usadas para sustentar uma conclusão em um argumento

O quadro mostra diagramas de Euler representando conjuntos e sentenças que podem ser classificadas como V ou F, e, portanto, são proposições

Quadro 3.2 | Proposições e conjuntos

Diagrama de Euler	Proposição
A B	Todo A é B.
A B	Nenhum A é B.

Letras maiúsculas representam proposições

Princípios básicos das proposições

- Princípio da Identidade: "Toda proposição é idêntica a si mesma"
 - Ou seja, sendo P uma proposição: P é P
- Princípio da Não Contradição: "Uma proposição não pode ser verdadeira e falsa ao mesmo tempo"
 - Sendo P uma proposição tem-se: não (P e não P)
- Princípio do Terceiro excluído: "Toda proposição ou é verdadeira ou é falsa, não existindo um terceiro valor que ela possa assumir"
 - Sendo P uma proposição tem-se: P ou não P

Classificação das proposições

Simples

Quando existir uma única afirmação na frase

Compostas

 Quando for constituída de, pelo menos, duas proposições simples "ligadas" por um conectivo lógico, também chamado de conector lógico, conectivo proposicional ou operação lógica

- A: 11 é um número ímpar.
- B: 11 é um número primo.
- C: 11 é um número ímpar e primo.
- As proposições A e B são compostas por uma única verdade
 - A: verdadeira
 - B: verdadeira
- A proposição C é composta por duas proposições simples ligadas pela palavra "e"

- "Os suíços fabricam os melhores relógios e os franceses, o melhor vinho"
 - Extraindo as proposições simples da frase:
 - P: Os suíços fabricam os melhores relógios.
 - S: Os franceses fabricam o melhor vinho.
- Reescrevendo a frase, utilizando uma notação simbólica:

P e S

- "Se eu prestar atenção na aula, então tirarei boa nota na prova"
 - A: Eu presto atenção na aula.
 - R: Eu tiro boa nota na prova.
- Reescrevendo:

Se A então R

Conectivos lógicos

- As "palavras" usadas para unir as proposições simples são os conectivos (ou conectores) lógicos e influenciam a valoração de uma proposição composta
- Os conectivos disponíveis para fazer a conexão são:
 - E
 - Ou
 - Não
 - Se ... então
 - Se, e somente se

Conectivo lógico de conjunção ("e")

Conjunção "e"				
P	9	p\q		
V	V	V		
V	F	F		
F	V	F		
F	F	F		

Conectivo lógico de conjunção ("e")

- "e", "AND", "^"
- Essa operação lógica é chamada conjunção e sua valoração será verdadeira somente quando ambas as proposições simples forem verdadeiras
- Se A e B forem proposições simples verdadeiras
 - A proposição composta A ∧B (lê-se "A e B") será verdadeira

- A: Quatro é um número par
- B: Três é um número ímpar
- C: Cinco é maior que dez
- P: Quatro é um número par e três é um número ímpar
- R: Quatro é um número par e cinco é maior que dez
- Valorando as proposições simples
 - A: verdadeira
 - B: verdadeira
 - C: falsa

(continuação)

- Reescrevendo as proposições P e R utilizando notação simbólica:
 - P: A ∧B
 - R: A ∧C
- Na proposição P temos que as proposições simples A e B são verdadeiras (V)
 - Portanto P = V e V, o que resulta em verdadeiro, ou seja, a proposição P pode ser valorada como verdadeira

(continuação)

- Na proposição R temos que A é verdadeiro, mas C é falso
 - Portanto R = V e F, o que resulta em falso
 - ou seja, a proposição R deve ser valorada como falsa, já que para essa operação lógica ambas proposições precisam ser verdadeiras para o resultado também ser verdadeiro

Conjunção

 Além da palavra "e" outras podem ser usadas para representar a conjunção entre duas proposições: mas, todavia, contudo, no entanto, visto que, enquanto, além disso, embora

• Ex.:

- A: João foi ao cinema.
- B: Maria foi ao shopping.
- C: João foi ao cinema, mas Maria foi ao shopping.
- D: João foi ao cinema, enquanto Maria foi ao shopping.

Conectivo lógico de disjunção ("ou")

Disjunção Inclusiva				
"ou"				
p	q	рVq		
V	>	V		
V	F	V		
F	V	V		
F	F	F		

Disjunção Exclusiva				
"ouou"				
Р	q	p <u>∨</u> q		
V	V	F		
V	F	V		
F	V	V		
F	F	F		

Conectivo lógico de disjunção ("ou")

- "ou", "OR", "\"
- Essa operação lógica é chamada de disjunção e seu operador lógico pode ser utilizado de 2 formas:
 - Inclusivo
 - Exclusivo
- O operador lógico de disjunção usado na forma inclusiva terá sua valoração falsa somente quando ambas as proposições simples forem falsas
- se A e B forem proposições simples falsas, a proposição composta A VB (lê-se "A ou B") será falsa, nos demais casos a valoração é verdadeira

- A: Quatro é um número par.
- B: Três é um número ímpar.
- C: Cinco é maior que dez.
- D: Sete é um número par.
- P: Quatro é um número par ou três é um número ímpar.
- R: Quatro é um número par ou cinco é maior que dez.
- S: Cinco é maior que dez ou sete é um número par.
- Valorizando as proposições simples (A, B, C, D):
 - A: verdadeira.
 - B: verdadeira.
 - C: falsa.
 - D: falsa.

- Proposições P, R, S utilizando notação simbólica:
 - P: A ∨ B
 - R: A ∨ C
 - S: C \leftarrow D

(continuação)

- Na proposição P temos que as proposições simples A, B são verdadeiros, portanto P = V ou V, o que resulta em verdadeiro, ou seja, a proposição P pode ser valorada como verdadeira
- Na proposição R, temos que A é verdadeiro, mas C é falso, portanto R = V ou F, como se trata da disjunção inclusiva, o resultado será verdadeiro, pois para ser falso ambas proposições simples têm que ser falsas
- Já na proposição S, temos que C, D são proposições simples falsas, portanto S = F ou F, o que resultado em falso

Operador lógico de negação ("não")

- Os operadores lógicos de conjunção e disjunção são binários, ou seja, juntam duas expressões para formar uma nova proposição
- O operador lógico de negação é unário, ou seja, ele não junta duas proposições, ele age sobre uma única proposição (que pode ser resultado de uma operação binária)
 - A palavra usada para fazer a negação é o não que também pode ser visto na literatura em inglês NOT, ou ainda de forma simbólica como ~,
 ¬,':
 - ~ A, ¬ B, C'
- A negação pode ser aplicada ao resultado de uma outra operação, como p.ex.: ~(A ∧B)

- A: Luís gosta de viajar.
- A negação de A (~ A) pode ser lida como:
 - ~ A : Luís não gosta de viajar.
- Ou ainda como:
 - ~ A : É falso que Luís gosta de viajar.
- Ou ainda
 - ~ A : Não é verdade que Luís gosta de viajar.

- Imagine que você está trabalhando em um sistema web para uma universidade
- Em uma das páginas do sistema, deverá ser implementada a opção para o usuário escolher o curso, o semestre e a idade dos alunos
- Nesse cenário vamos considerar as seguintes proposições:
 - A: Todos os alunos são do curso de engenharia.
 - B: Todos os alunos são do segundo semestre.
 - C: Todos os alunos possuem idade superior a 30 anos.

(continuação)

- Suponhamos que o usuário do sistema queira listar alunos que não são dos cursos de engenharia, alunos que estão no segundo semestre, alunos que possuem idade superior a 30 anos
- Como essa regra (proposição) deve ser construída?
- Qual combinação de conectores deve ser usada para produzir o resultado desejado?
- Considerando as proposições dadas, a lógica a ser criada deve ser:
 ~A ∧B ∧C