THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

Tutorial 7 (Week 8)

MATH2068/2988: Number Theory and Cryptography

Semester 2, 2017

Web Page: http://www.maths.usyd.edu.au/u/UG/IM/MATH2068/

Lecturer: Dzmitry Badziahin

More difficult questions are marked with either * or **. Those marked * are at the level which MATH2068 students will have to solve in order to be sure of getting a Credit, or to have a chance of a Distinction or High Distinction. Those marked ** are mainly intended for MATH2988 students.

Tutorial Exercises:

- 1. Let $a \ge 2$ be an integer. A composite number n > 1 is said to be a *pseudoprime* for the base a if $a^{n-1} \equiv 1 \pmod{n}$. Find the prime factorization of 341, and hence show that 341 is a pseudoprime for the base 2 but not for the base 3.
- **2.** A composite number n > 1 is called a *Carmichael number* if it is a pseudoprime for any base a such that gcd(a, n) = 1.
 - (a) Show that any Carmichael number must be odd. (Hint: consider a = n 1.)
 - (b) Find the prime factorization of 561 and show that, for each of its prime factors p, we have $p-1 \mid 560$.
 - (c) Hence show that 561 is a Carmichael number.
 - (d) Similarly, show that 6601 is a Carmichael number.
- **3.** Let n be an odd integer greater than 1. To try to decide whether n is prime, we could test whether $a^{n-1} \equiv 1 \pmod{n}$ for various $a \in \{2, 3, \dots, n-1\}$. A prime number will always pass this test, by Fermat's Little Theorem; but as seen in the previous questions, there are some composite numbers which will pass this test for many values of a. This question suggests a slight improvement to the test.
 - (a) Show that if n is prime and $a \in \{2, \dots, n-1\}$, then $a^{(n-1)/2} \equiv \pm 1 \pmod{n}$.
 - (b) Show that when n = 561 and a = 5, we have $a^{(n-1)/2} \not\equiv \pm 1 \pmod{n}$, despite the fact that, as seen in the previous question, $a^{n-1} \equiv 1 \pmod{n}$.
- **4.** Show that the function $f(k) = k^4 + k^3 + 2068k + 2988$ is $O(k^4)$.
- *5. Which of the following functions of a positive integer variable k are $O(k^a)$ for some positive integer a?

$$\log_2(k), \quad k \log_2(k), \quad k!, \quad \log_2(k!), \quad k^{\log_2(k)}, \quad \frac{(1.01)^k}{k^2}.$$

For the last function you can use the result from analysis: for any c > 1 and b > 0,

$$\lim_{k \to \infty} \frac{c^k}{k^b} = \infty.$$

**6. Recall the Fibonacci numbers F_n from Tutorial 3. Describe a polynomial-time algorithm which determines, for given positive integers n and m, the residue of F_n modulo m. To say that the algorithm is polynomial-time means that there is some positive integer a such that the maximum number of bit operations it requires when n and m have k bits is $O(k^a)$.

Extra Exercises:

- 7. It was shown in lectures that if $\frac{f(n)}{g(n)} \to L$ as $n \to \infty$ for some (finite) real number L, then f(n) is O(g(n)). As an example to show that the converse doesn't hold, prove that $\phi(n)$ is O(n), but $\frac{\phi(n)}{n}$ does not tend to any limit as $n \to \infty$.
- 8. Show that $2047 = 2^{11} 1$ is a pseudoprime for the base 2.
- *9. Suppose that n > 1 is odd and $2^{n-1} \equiv 1 \pmod{n}$. (This implies that n is either prime or a pseudoprime for the base 2.) Let $m = 2^n 1$.
 - (a) Show that $2^{m-1} \equiv 1 \pmod{m}$. (Hint: Question 6 of Tutorial 1 showed that $b \mid a \text{ implies } 2^b 1 \mid 2^a 1$.)
 - (b) Hence show that there are infinitely many pseudoprimes for the base 2.
- *10. Describe a polynomial-time algorithm which determines, for a given positive integer n, whether n is a Fibonacci number.
- **11. Show that every Carmichael number n is squarefree, i.e. n is the product of distinct primes. (Hint: suppose for a contradiction that $n = p^k m$ where p is prime, $k \ge 2$ and $\gcd(p, m) = 1$. Consider a = (n/p) + 1, and the residue of a^p modulo p^k .)