Country Pollution App Conceptual and Logical Database Design

Entity-Relationship Diagram (ERD)

ER Diagram Description

The Entity-Relationship Diagram (ERD) for the Country Pollution App consists of six entities:

- 1. Country
- 2. Climate
- 3. Economy
- 4. Energy
- 5. UserInfo

6. UserInput

There are 5 total relationships between these entities (between 2 types):

- Country has a 1-to-1 relationship with Climate.
- Country has a 1-to-1 relationship with Economy.
- Country has a 1-to-many relationship with Energy.
- UserInfo has a 1-to-many relationship with UserInput.
- Country has a 1-to-many relationship with UserInput.

Assumptions and Explanations

1. Country

• Assumptions:

- Each country is uniquely identified by a CountryID.
- A country's Name is also unique and can serve as another primary key.
- Attributes like Population, CapitalCity, and OfficialLanguage are properties that describe the demographics and geographic information about the country.

• Explanation:

- The Country entity is central to the application as it represents the primary subject of analysis.
- We modeled Country as an entity to encapsulate all country-specific data in one place.
- Attributes were chosen for users to learn facts about the country they're analyzing

2. Climate

• Assumptions:

- Each country has one set of climate data.
- Climate data includes metrics like AgriculturalLandPercent, ForestedAreaPercent, and CO2Emissions.

• Explanation:

- Climate is modeled as a separate entity to manage the most up-to-date climate-related attributes, which are substantial and may change over time.
- The 1-to-1 relationship with Country reflects that each country has a unique climate profile.

3. Economy

• Assumptions:

- Each country has one set of economic data.
- Economic data includes indicators like GDP, CPI, and UnemploymentRate.

• Explanation:

- Similar to Climate, Economy is a separate entity to handle economic attributes efficiently.
- The 1-to-1 relationship ensures that each country's economic data is directly linked to it.

4. Energy

• Assumptions:

- A country can have multiple energy sources (natural gas, coal, solar, hydro, etc.).
- Each energy source has specific data like EnergyType, EnergyConsumption, and EnergyProduction.

• Explanation:

- Energy is modeled as an entity to accommodate multiple energy records per country.
- This design avoids data redundancy and allows for detailed energy data management.
- The 1-to-many relationship with Country shows that a country can have multiple energy sources.

5. UserInfo

• Assumptions:

- Each user is uniquely identified by a UserID.
- Users have attributes like Username, Email, and PrimaryCitizenship.

• Explanation:

- UserInfo is the sole entity representing user accounts, adhering to the project requirement of having at most one user entity.
- It stores essential user information for authentication and personalization.

6. UserInput

• Assumptions:

- Users can provide multiple inputs or ratings for different countries.
- Each input includes ratings on various aspects like FoodRating, SafetyRating, and Comments.

• Explanation:

• UserInput captures user-generated content, crucial for the application's interactive features.

- The 1-to-many relationship with UserInfo allows users to submit multiple inputs.
- The 1-to-many relationship with Country enables aggregation of inputs for each country.

Relationships and Cardinality

Country to Climate (1-to-1)

• Assumptions:

• Each country has one unique set of climate data.

• Explanation:

• This relationship ensures that climate data is directly associated with its respective country without duplication.

Country to Economy (1-to-1)

• Assumptions:

• Each country has one unique set of economic data.

• Explanation:

• Economic data is specific to a country and doesn't vary per user, justifying the 1-to-1 relationship.

Country to Energy (1-to-many)

• Assumptions:

• A country can have multiple energy sources.

• Explanation:

• The 1-to-many relationship allows for multiple energy records (different energy sources) linked to a single country.

UserInfo to UserInput (1-to-many)

• Assumptions:

• A user can submit multiple inputs for the same or different countries.

• Explanation:

• This relationship enables users to provide numerous ratings and feedback entries over time.

Country to UserInput (1-to-many)

• Assumptions:

• A country can have multiple inputs from different users.

• Explanation:

• Aggregates user inputs for a country, facilitating collective analysis and integration of user feedback.

Database Schema Normalization Process

To ensure data integrity and eliminate redundancy, we have normalized our database schema. Below, we provide a detailed normalization process for each entity, including the identification of functional dependencies and demonstration of how each table satisfies the requirements for Boyce-Codd Normal Form (BCNF).

1. First Normal Form (1NF)

Definition: A table is in 1NF if all its attributes are atomic, meaning each attribute contains only indivisible values, and there are no repeating groups or arrays.

Application to Our Schema:

- All tables have atomic attributes with single values.
- There are no repeating groups or arrays in any of the entities.

Conclusion: All entities in our schema meet the requirements for 1NF.

2. Second Normal Form (2NF)

Definition: A table is in 2NF if it is in 1NF and all non-key attributes are fully functionally dependent on the entire primary key.

Application to Our Schema:

For each entity, we will list the primary key and functional dependencies (FDs):

Country

- **Primary Key**: CountryID
- Functional Dependencies:
 - \circ CountryID \rightarrow all other attributes in the Country table.

Since there is only one attribute in the primary key and all other attributes depend on it, there are no partial dependencies.

Climate

- Primary Key: CountryID
- Functional Dependencies:

○ CountryID → AgriculturalLandPercent, ForestedAreaPercent, CO2Emissions

All non-key attributes depend on the primary key.

Economy

- Primary Key: CountryID
- Functional Dependencies:
 - \circ CountryID \rightarrow all other attributes in the Economy table.

All non-key attributes depend on the primary key.

Energy

- **Primary Key**: (CountryID, EnergyType)
- Functional Dependencies:
 - (CountryID, EnergyType) → EnergyConsumption, EnergyProduction

All non-key attributes depend on the entire composite primary key.

UserInfo

- **Primary Key**: UserID
- Functional Dependencies:
 - UserID → Username, Password, Email, PrimaryCitizenshipID

All non-key attributes depend on the primary key.

UserInput

- Primary Key: UserInputID
- Functional Dependencies:
 - \circ UserInputID \rightarrow all other attributes in the UserInput table.

All non-key attributes depend on the primary key.

Conclusion: All tables are in 2NF as there are no partial dependencies.

3. Third Normal Form (3NF)

Definition: A table is in 3NF if it is in 2NF and all the attributes are dependent only on the primary key, not on any other non-key attributes

Application to Our Schema:

We need to check for transitive dependencies in each table.

Country

• Functional Dependencies:

- CountryID → Name, Abbreviation, LandAreaKm2, DensityPerKm2, Population, CapitalCity, LargestCity, OfficialLanguage, LaborForceParticipationPercent, BirthRate, FertilityRate, InfantMortality, LifeExpectancy, MaternalMortalityRatio, UrbanPopulationPercent, PhysiciansPerThousand, ArmedForcesSize, Latitude, Longitude, CallingCode
- **Assumption**: Name and Abbreviation are unique and could serve as candidate keys.

Transitive Dependencies:

• None, as all attributes depend directly on CountryID.

Climate

- Functional Dependencies:
 - CountryID → AgriculturalLandPercent, ForestedAreaPercent, CO2Emissions
- Transitive Dependencies:
 - None

Economy

- Functional Dependencies:
 - CountryID → GDP, CPI, CPIChangePercent, CurrencyCode, MinimumWage, UnemploymentRate, TaxRevenuePercent, TotalTaxRate, GasolinePrice, OutOfPocketHealthExpenditurePercent, GrossPrimaryEducationEnrollmentPercent, GrossTertiaryEducationEnrollmentPercent
- Transitive Dependencies:
 - o None.

Energy

- Functional Dependencies:
 - (CountryID, EnergyType) → EnergyConsumption, EnergyProduction
- Transitive Dependencies:
 - None

UserInfo

• Functional Dependencies:

- UserID → Username, Password, Email, PrimaryCitizenshipID
- Assumptions:
 - Username and Email are unique and could serve as candidate keys.
- Transitive Dependencies:
 - o None.

UserInput

- Functional Dependencies:
 - UserInputID → UserID, CountryID, DateVisitedFrom, DateVisitedTo, FoodRating, HospitalityRating, ClimateRating, TourismRating, SafetyRating, CostOfLivingRating, CultureEntertainmentRating, InfrastructureRating, HealthcareRating, Comments
- Transitive Dependencies:
 - o None.

All tables are in 3NF as there are no transitive dependencies.

4. Boyce-Codd Normal Form (BCNF)

Definition: A table is in BCNF if it is in 3NF and, for every non-trivial functional dependency $(X \rightarrow Y)$, X is a superkey.

Application to Our Schema:

Country

- Candidate Keys: CountryID, Name, Abbreviation
- Functional Dependencies:
 - \circ CountryID \rightarrow all other attributes
 - \circ Name \rightarrow all other attributes
 - \circ Abbreviation \rightarrow all other attributes
- Conclusion:
 - All determinants (CountryID, Name, Abbreviation) are candidate keys.
 - o No other functional dependencies violate BCNF.

Climate

- Candidate Key: CountryID
- Functional Dependencies:
 - CountryID → AgriculturalLandPercent, ForestedAreaPercent, CO2Emissions
- Conclusion:
 - The determinant CountryID is a candidate key.

No violations of BCNF

Economy

- Candidate Key: CountryID
- Functional Dependencies:
 - \circ CountryID \rightarrow all other attributes
- Conclusion:
 - The determinant CountryID is a candidate key.
 - No violations of BCNF.

Energy

- Candidate Key: (CountryID, EnergyType)
- Functional Dependencies:
 - (CountryID, EnergyType) → EnergyConsumption, EnergyProduction
 - Possible Additional Dependency: EnergyType → EnergyProductionMethod (if such an attribute exists)
- Conclusion:
 - All determinants are superkeys.
 - No violations of BCNF.

UserInfo

- Candidate Keys: UserID, Username, Email
- Functional Dependencies:
 - UserID → Username, Password, Email, PrimaryCitizenshipID
 - Username → UserID, Password, Email, PrimaryCitizenshipID
 - o Email → UserID, Username, Password, PrimaryCitizenshipID
- Conclusion:
 - o All determinants are candidate keys.
 - No violations of BCNF.

UserInput

- Candidate Key: UserInputID
- Functional Dependencies:
 - \circ UserInputID \rightarrow all other attributes
 - Composite Candidate Key Consideration: (UserID, CountryID,
 DateVisitedFrom, DateVisitedTo) could potentially serve as a composite key if we assume a user cannot have multiple inputs for the same country and date range.
- Conclusion:

- The determinant UserInputID is a candidate key.
- No violations of BCNF.

All tables are in BCNF as all determinants of non-trivial functional dependencies are superkeys.

Relational Schema

Country

```
Country(
  CountryID: INT [PK],
  Name: VARCHAR(100),
  Abbreviation: VARCHAR(10),
  LandAreaKm2: DECIMAL,
  DensityPerKm2: DECIMAL,
  Population: INT,
  CapitalCity: VARCHAR(100),
  LargestCity: VARCHAR(100),
  OfficialLanguage: VARCHAR(100),
  LaborForceParticipationPercent: DECIMAL,
  BirthRate: DECIMAL,
  FertilityRate: DECIMAL,
  InfantMortality: DECIMAL,
  LifeExpectancy: DECIMAL,
  MaternalMortalityRatio: DECIMAL,
  UrbanPopulationPercent: DECIMAL,
  PhysiciansPerThousand: DECIMAL,
```

Climate

)

ArmedForcesSize: INT, Latitude: DECIMAL, Longitude: DECIMAL,

CallingCode: VARCHAR(10)

```
Climate(
    CountryID: INT [PK, FK to Country.CountryID],
    AgriculturalLandPercent: DECIMAL,
    ForestedAreaPercent: DECIMAL,
    CO2Emissions: DECIMAL
)
```

```
Economy
```

```
Economy(
  CountryID: INT [PK, FK to Country.CountryID],
  GDP: DECIMAL,
  CPI: DECIMAL,
  CPIChangePercent: DECIMAL,
  CurrencyCode: VARCHAR(10),
  MinimumWage: DECIMAL,
  UnemploymentRate: DECIMAL,
  TaxRevenuePercent: DECIMAL,
  TotalTaxRate: DECIMAL,
  GasolinePrice: DECIMAL,
  OutOfPocketHealthExpenditurePercent: DECIMAL,
  GrossPrimaryEducationEnrollmentPercent: DECIMAL,
  GrossTertiaryEducationEnrollmentPercent: DECIMAL
)
Energy
Energy(
  CountryID: INT [FK to Country.CountryID],
  EnergyType: VARCHAR(50),
  EnergyConsumption: DECIMAL,
  EnergyProduction: DECIMAL,
  [PK: CountryID, EnergyType]
)
UserInfo
UserInfo(
  UserID: INT [PK],
  Username: VARCHAR(50),
  Password: VARCHAR(50),
  Email: VARCHAR(100),
  PrimaryCitizenshipID: INT [FK to Country.CountryID]
)
```

UserInput

```
UserInput(
  UserInputID: INT [PK],
  UserID: INT [FK to UserInfo.UserID],
  CountryID: INT [FK to Country.CountryID],
  DateVisitedFrom: DATE,
  DateVisitedTo: DATE,
  FoodRating: INT,
  HospitalityRating: INT,
  ClimateRating: INT,
  TourismRating: INT,
  SafetyRating: INT,
  CostOfLivingRating: INT,
  CultureEntertainmentRating: INT,
  InfrastructureRating: INT,
  HealthcareRating: INT,
  Comments: TEXT
```

Summary

- **Entities:** The database includes six entities—Country, Climate, Economy, Energy, UserInfo, and UserInput—each serving a specific purpose in the application.
- **Relationships:** The schema includes various relationships with cardinalities such as 1-to-1 and 1-to-many, satisfying the requirement of having at least two types of relationships.
- **Normalization:** The database schema is normalized to BCNF, ensuring minimal redundancy and optimal data integrity.
- **Relational Schema:** The logical design translates the conceptual ERD into a relational schema, formatted as per the specified guidelines.