

Einführung in die Informatik

WS 20/21

Hochschule RheinMain Prof. Dr. Heinz Werntges

Historisches

- In welchem Jahrzehnt wurde der erste elektromechanische, voll programmierbare Rechner gebaut, und von wem?
 - 192x, 193x, 194x, 195x, oder 196x (x=0...9)
- Durch welche Entwicklungen wurden die folgenden Personen berühmt:
 - Vinton Cerf
 - Dennis Ritchie
 - Alan Turing
 - Tim Berners-Lee
- Wer entwickelte das Konzept der "Analytical Engine"? Wann?
- Was besagt das Gesetz von Moore?
- •

***** Grundbegriffe

Sei Σ ein Alphabet, $L \subseteq \Sigma^*$ eine formale Sprache.

Was ergibt L*\L+?

Antwort: $L^+ = L^* \setminus \{\varepsilon\}$, also $L^* \setminus L^+ = L^* \setminus (L^* \setminus \{\varepsilon\}) = \{\varepsilon\}$

Sei $\Sigma = \{A, K, M\}$ ein Alphabet und < die lineare Ordnung auf Σ , die durch Größenvergleich der Obstsorten A=Apfel, K=Kirsche, M=Melone entsteht. Sortieren Sie folgende Wörter aus Σ^* gemäß der induzierten lexikografischen Ordnung:

M, AMK, AM, KAMA, K, MAKK, AKM

Antwort: Auf Σ gilt K(irsche) < A(pfel) < M(elone), also: K < KAMA < AKM < AM < AMK < M < MAKK

- Konvertieren Sie 1303₁₀ zur Basis B=8
 - Verwenden Sie das Horner-Schema.
 - **Rechnen Sie im Quellsystem!**

Lösung:

Schritt	/B	Quotient	Rest
1303	/8	162	7
162	/8	20	2
20	/8	2	4
2	/8	0	2

- Wandeln Sie 1111010, in die Darstellung zur Basis 10 um.
 - Verwenden Sie das Horner-Schema.
 - Rechnen Sie im Zielsystem!

Lösung:

	1	1	1	1	0	1	0
+	-	1*2	3*2	7*2	15*2	30*2	61*2
Σ	1	3	7	15	30	61	122

Probe:

-
$$127_{10} = 1111111_2 = 1111010_2 + 101_2 = 122_{10} + 5_{10}$$

- Wandeln Sie 1111010₂ in die Darstellung zur Basis 5 um.
 - Verwenden Sie das Horner-Schema.
 - Rechnen Sie im Zielsystem!

Lösung:

	1	1	1	1	0	1	0
+	-	1*2	3*2	12,*2	30 ₅ *2	110 ₅ *2	221,*2
Σ	1	3	7=12 ₅	30 ₅	110 ₅	221 ₅	442 ₅

Schnelle Umwandlungen

$$2102201_3 = ?_9$$

$$310233_4 = ?_{16}$$

Lösungen

$$2102201_3 = 2|10|22|01_3 = 2381_9$$

$$310233_4 = 31|02|33_4 = D2F_{16}$$

$$10011101,1101_2 = 10|011|101,110|100_2 = 235,64_8$$

$$1357_8 = 001|011|101|111_2$$

= $0010|1110|1111_2$
= $2EF_{16}$

(Umweg über Basis 2, da 16 keine Potenz von 8)

*

Repräsentierung

- - Geben Sie das Ergebnis zur Basis 16 an. Erinnerung:

```
Unicode-Zeichenbereich UTF-8 Codierung (Bytefolge)

U+00000000 - U+0000007F

0xxxxxxx2

U+00000080 - U+000007FF

110xxxx2 , 10xxxxxx2

U+00010000 - U+001FFFF

11110xx2 , (10xxxxxx2)3 (3 Folgebytes)

U+04000000 - U+7FFFFFF

111110x2 (10xxxxx2)5 (5 Folgebytes)
```

Lösung:

- U+2709 erfordert eine 3-Byte-Codierung, da $800_{16} \le 2709_{16} \le FFFF_{16}$
- 2709₁₆ = 0010 0111 0000 1001₂
- => UTF-8 Repr. = 1110 0010_2 , 1001 1100_2 , 1000 1001_2 = $E2_{16}$, $9C_{16}$, 89_{16}