

6-4

- a) 在 31ns 附近, Clock 为 1 时输入 S 发生改变, 因此违反了保持时间约束, 在 24ns 附近 S 和 R 同时为 1, 因此违反了输入组合约束。
- b) 在 24ns 附近, Clock 为 1 时输入 R 发生改变, 因此违反了保持时间约束, 在 24ns 附近 S 和 R 同时为 1, 因此违反了输入组合约束。
- c) 在28ns 附近, Clock 上升沿之前 D2 不满足建立时间约束。
- d) 在 16ns 附近, Clock 下降沿之后 D3 不满足保持时间约束; 在 24ns 附近, Clock 下降沿之前 D3 不满足建立时间约束。

6-5

a) 根据输入方程和输出方程, 画出电路图为:

b) 根据输入方程和输出方程,列出状态表为:

	sent ate	Inp	uts		ext ate	Output
A	В	X	Y	A	В	Z
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	0	1	1
0	1	1	1	1	1	1
1	0	0	0	1	1	0
1	0	0	1	1	1	0
1	0	1	0	0	0	0
1	0	1	1	1	0	0
1	1	0	0	1	1	0
1	1	0	1	1	1	0
1	1	1	0	0	1	1
1	1	1	1	1	1	1

c) 根据状态表,得到状态图为:

6-8

Present State	00	01	00	00	01	11	00	01	11	10	10
Input	1	0	0	1	1	0	1	1	1	1	0
Output	0	1	0	0	0	1	0	0	0	0	1
Next State	01	00	00	01	11	00	01	11	10	10	00

6-11

a) 从X到Y的最长路径是通过两个异或门XOR1和XOR2,所以

$$t_{delay} = 2 \times t_{pdXOR} = 4ns$$

b) 从X到第二个触发器的输入端的路径最长,经过一个异或门,一个非门,所以

$$t_{delay} = t_{pdXOR} + t_{pdINV} + t_{sFF} = 3.5$$
ns

c) 从第一个触发器的输出到Y的路径最长,经过两个异或门,所以 $t_{delay} = t_{pdFF} + 2 \times t_{pdXOR} = 6ns$

d) 从第一个触发器输出到第二个触发器输入的路径最长,经过一个异或门,一个非门,所以

$$t_{delay} = t_{pdFF} + t_{pdXOR} + t_{pdINV} + t_{sFF} = 5.5 \text{ns}$$

e) 两个时钟上升沿之间的最大延迟决定了时钟脉冲的最小周期,所以电路的最大时钟频率是 1/5.5ns = 181.82MHz。

6-13

a) 用 Reset 信号分别控制触发器的异步复位和异步置位脚。所以

b) 在触发器输入端前面的每个与门上增加一个输入,接在 Reset 上,当 Reset 为 0 时触发器输入为 0,实现同步复位。注意 Reset 上门的非号。

6-17 穆尔状态图为:

状态表:

Present state		State nput	Output
$D_2D_1D_0$	E=0	E=1	Z
000	001	001	0
001	010	010	1
010	011	011	1
011	100	100	1
100	101	101	1
101	110	110	1
110	111	111	$\bar{1}$
111	111	000	0

激励函数和输出函数:

$$\begin{split} &D_2(t+1) = D_2\overline{D_1} + D_2\overline{D_0} + \overline{D_2}D_1D_0 + D_2\overline{E} \ (D_2D_1D_0\overline{E}) \\ &D_1(t+1) = D_1\overline{D_0} + \overline{D_1}D_0 + D_2D_0\overline{E} \ (D_2D_1\overline{E}, \quad D_2D_1D_0\overline{E}) \\ &D_0(t+1) = \overline{D_0} + D_2D_1\overline{E} \ (D_2D_1D_0\overline{E}) \\ &Z = \overline{D_2D_1D_0 + \overline{D_2}\overline{D_1}\overline{D_0}} = D_1\overline{D_0} + D_2\overline{D_1} + \overline{D_2}D_0 = \overline{D_1}D_0 + \overline{D_2}D_1 + D_2\overline{D_0} \end{split}$$

为了能够产生第一个 0 输出,复位时应该复位到"111"状态,所以 Reset 信号 应该连到所有触发器的异步置位引脚。

电路图:

6-18

按照题意,电路需要能够接受带有停顿的输入序列,出现连续 5 个"1"以后忽略插入的一位,此时输出 Z=0, S=1。因此状态图为:

状态表:

Pres	sent s	tate	Input	Ne	xt st	ate	Out	put
A	В	С	X	A	В	С	Z	s
0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	1	0
0	0	1	0	0	0	0	0	0
0	0	1	1	0	1	0	1	0
0	1	0	0	0	0	0	0	0
0	1	0	1	0	1	1	1	0
0	1	1	0	0	0	0	0	0
0	1	1	1	1	0	0	1	0
1	0	0	0	0	0	0	0	0
1	0	0	1	1	0	1	1	0
1	0	1	0	0	0	0	0	1
1	0	1	1	0	0	0	0	1

$$D_{\scriptscriptstyle A} = A\overline{C}X + BCX$$

$$D_{\scriptscriptstyle B} = B\overline{C}X + \overline{A}\overline{B}CX$$

$$D_C = \overline{C}X$$

$$Z = \overline{A}X + \overline{C}X = (\overline{A} + \overline{C})X$$

$$S = AC$$

电路图为:

6-20

状态0和1表示收到的上一位消息的值。因此状态图为

状态表为:

现态	输入	次态	输出
A	X	A	Z
0	0	0	1
0	1	1	0
1	0	0	0
1	1	1	1

激励函数和输出函数为:

$$D = X$$

$$Z = \overline{A \oplus X}$$

电路图为:

6-21

按照输入 RA = 00、10、11、01 的顺序设立 4 个状态,表示正常工作时的状态循环,再设立一个异常状态,当出现错误输入时就转到异常状态去。状态图为:

状态表为:

_									_								
Pres	sent s	tate	inp	outs	Ne	xt st	ate	Output	Pres	ent s	tate	ınp	uts	Ne	xt st	ate	Outpu
В	c	D	R	A	В	C	D	E	В	c	D	R	A	В	С	D	E
0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
0	0	0	0	1	1	0	0	1	0	1	1	0	1	0	1	1	0
0	0	0	1	0	0	0	1	0	0	1	1	1	0	1	0	0	1
0	0	0	1	1	1	0	0	1	0	1	1	1	1	1	0	0	1
0	0	1	0	0	1	0	0	1	1	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	0	1	1	0	0	0	1	1	0	0	1
0	0	1	1	0	0	0	1	0	1	0	0	1	0	1	0	0	1
0	0	1	1	1	0	1	0	0	1	0	0	1	1	1	0	0	1
0	1	0	0	0	1	0	0	1									
0	1	0	0	1	0	1	1	0									
0	1	0	1	0	1	0	0	1									
0	1	0	1	1	0	1	0	0									

6-23 根据状态图,可以画出状态表为:

现态	次态	A B	输出
A B	X = 0	X = 1	Y
0 0	0 1	0 0	1
0 1	0 1	1 0	0
1 0	1 1	1 0	0
1 1	1 1	0 0	0

写出激励函数和输出函数:

$$D_A = A\overline{B} + A\overline{X} + \overline{A}BX$$

$$D_B = \overline{X}$$

$$Y = \overline{AB} = \overline{A+B}$$

因此,电路图为:

勘误: "状态表如表 6-5" 应该是"状态图如图 6-25(d)"。

6-26 假设无效的下一状态是不考虑的情况下,列出状态表为:

现态	次态	输出
A B C	A B C	X Y Z
0 0 0	1 0 0	1 1 1
0 0 1	0 0 0	0 0 0
0 1 0	x x x	x x x
0 1 1	0 0 1	0 1 0
1 0 0	1 1 0	0 1 1
1 0 1	x x x	x x x
1 1 0	1 1 1	1 0 1
1 1 1	0 1 1	1 1 0

a) 根据状态表,可写出激励函数和输出函数:

$$D_{A} = \overline{C}$$

$$D_{B} = A$$

$$D_{C} = B$$

$$X = A\overline{C} + \overline{A}B$$

$$Y = \overline{B}\overline{C} + BC = \overline{B \oplus C}$$

$$Z = \overline{C}$$

电路图略

- b) 将 Reset 信号连接至各个触发器的异步复位端。
- c) 如果用到儿童玩具中,则可以选择最简单的设计。
- d) 不需要重新设计。
- e) 如果用在商用航班控制系统中,由于可靠性要求很高,所以当出现错误时不 仅需要一步转移到初始状态(000)中,而且需要有信号指示出现错误。
- f) 错误指示信号E = ABC + ABC,修正设计需要将次态中的" $x \ x \ x$ "改成" $0 \ 0$ ",然后重新设计激励函数和输出函数,设计电路图。

6-31

