# LABORATORY: Transformer Homework

NAME: STUDENT ID#:

# **Objectives:**

- The goal of this assignment is to deepen your understanding of Transformer-based architectures by implementing a Vision Transformer (ViT) model and applying it to a defect detection dataset.
- You will use the ViT model to classify images of industrial defects, treating each image as a sequence of patches.
- Through this assignment, you will:
  - o Understand how the Vision Transformer encodes image patches and uses self-attention to capture global relationships.
  - o Implement the Vision Transformer architecture using PyTorch.
  - o Train the ViT model on a real-world defect dataset.
  - o Evaluate the model's classification performance on unseen test data.

# **Part 1. Instruction**

In this assignment, you will implement a Vision Transformer (ViT) model for image classification using PyTorch, without using any prebuilt ViT modules or high-level Transformer libraries (e.g., no torchvision.models.vit, no timm.create model, etc.).

You are required to:

- Manually implement a patch embedding step, dividing each image into non-overlapping patches and flattening them into input sequences.
- Build the core Transformer encoder, including multi-head self-attention, feedforward layers, layer normalization, and residual connections, as described in the original ViT paper.
- Apply a classification head to predict defect categories from the final Transformer outputs.
- Train the model on the provided defect image dataset using a manual training loop.

### You should refer to:

- The lecture slide Transformer (page 34 and earlier) for an overview of Vision Transformer design.
- The paper: "An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale" [Dosovitskiy et al., 2020, <a href="https://arxiv.org/pdf/2010.11929">https://arxiv.org/pdf/2010.11929</a>] to understand how ViT works, how to embed image patches, how positional encodings are applied, and how to design the Transformer layers.

You will be provided with the **raw defect dataset**. You are responsible for splitting the dataset yourself into 70% training and 30% testing before starting model training.

### General ViT Workflow

- Patch embedding: Split the input image into fixed-size patches, flatten each patch, and apply a linear projection to get patch embeddings.
- Positional encoding: Add learnable positional embeddings to retain spatial order.
- Transformer encoder: Apply multi-head self-attention and feedforward layers across the sequence of patches.

Lecture: Prof. Hsien-I Lin



• Classification head: Use the [CLS] token output (or mean pooling) followed by an MLP head to predict the final class label.

After implementing the full forward pass, you must train the model on the defect training set and Evaluate its classification accuracy on the unseen test set.

# **Hyperparameter Tuning**

You are required to adjust the hyperparameters (e.g., learning rate, batch size, number of epochs, etc) to achieve the best possible classification accuracy and help your model reach high performance.

# Visualization and Reporting

In your report, you must include the following:

- (a) A screenshot of the model summary and the total number of parameters.
- (b) A screenshot of the final training result, showing total epochs completed, final test loss, and accuracy.
- (c) A confusion matrix visualizing the classification performance.
- (d) 24 example predictions from the test set, with 4 images shown per class.





**(c)** 

(b)

To real to the control of the c

Lecture: Prof. Hsien-I Lin



| Part | 2. Code Template                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step | Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1    | #======================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | # Step 1: Unzip Dataset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | #======================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | import zipfile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | import os                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Import of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | WEED OF COLUMN AND A LANGE OF COLUMN AND A L |
|      | # TODO: Set the correct uploaded ZIP filename                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | zip_path = 'dataset.zip' # < replace with the exact uploaded filename                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | extract_path = './dataset' # folder where you want to extract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | # Unzip the dataset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | with zipfile.ZipFile(zip_path, 'r') as zip_ref:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | zip_ref.extractall(extract_path)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | print(f" Unzipped to: {os.path.abspath(extract_path)}")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | # Outional I intake automated fallow and to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | # Optional: List the extracted folder contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | print("Contents:")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | <pre>print(os.listdir(extract_path))</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | # =====================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | # Step 2: Split Dataset into Train/Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | # ====================================                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | import shutil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | import random                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | # TODO: Set source folder (where unzipped dataset is) and target folder (where split dataset will go)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | SOURCE_DIR = 'dataset' # folder from unzip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | TARGET_DIR = 'dataset_split' # new folder to store split data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | # Split ratios                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | train ratio = $0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|      | test_ratio = 0.3 # note: you can calculate this as 1 - train_ratio if needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | 1 CSL_14110 0.5 # Hote. you can calculate this as 1 - train_14110 if ficeucu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | # Set random seed for reproducibility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | random.seed(42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | # Create target train/test directories per class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | for split in ['train', 'test']:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | for class_name in os.listdir(SOURCE_DIR):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | os.makedirs(os.path.join(TARGET_DIR, split, class_name), exist_ok=True)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | # Process each class folder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | for class_name in os.listdir(SOURCE_DIR):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | class_path = os.path.join(SOURCE_DIR, class_name)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | if not os.path.isdir(class_path):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



```
continue
          images = os.listdir(class path)
          random.shuffle(images)
          # Calculate split point
          train cutoff = int(len(images) * train ratio)
          # Split images
          train images = images[:train cutoff]
          test_images = images[train_cutoff:]
          # Copy training images
          for img name in train images:
             src = os.path.join(class path, img name)
             dst = os.path.join(TARGET DIR, 'train', class name, img name)
             shutil.copyfile(src, dst)
          # Copy testing images
          for img name in test images:
             src = os.path.join(class_path, img_name)
             dst = os.path.join(TARGET DIR, 'test', class name, img name)
             shutil.copyfile(src, dst)
        print(" Dataset split complete!")
2
        import os
        import torch
        from torch.utils.data import DataLoader
        import torchvision
        import torchvision.transforms as transforms
        import matplotlib.pyplot as plt
        # Set dataset paths (update if needed)
        TRAIN PATH = 'dataset split/train'
        TEST PATH = 'dataset split/test'
        # Define image transforms: resize, grayscale, tensor, normalize
        transform custom = transforms.Compose([
          transforms.Resize((28, 28)),
          transforms.Grayscale(num output channels=1),
          transforms. To Tensor(),
          transforms. Normalize ((0.5,), (0.5,))
        # Load datasets
        train set = torchvision.datasets.ImageFolder(root=TRAIN PATH, transform=transform custom)
        test set = torchvision.datasets.ImageFolder(root=TEST PATH, transform=transform custom)
        # Print dataset info
        print("Classes:", train set.classes)
        print("Train samples:", len(train set))
        print("Test samples:", len(test set))
        # Show example images (2 per class)
```



```
def show_2x6_grid(dataset, n_per_class=2, title="Example Grid"):
           class counts = {i: 0 for i in range(len(dataset.classes))}
           collected = {i: [] for i in range(len(dataset.classes))}
           for img, label in dataset:
             if class counts[label] < n per class:
                collected[label].append(img)
                class counts[label] += 1
             if all(c >= n_per_class for c in class_counts.values()):
                break
           fig, axes = plt.subplots(n per class, len(dataset.classes), figsize=(len(dataset.classes)*2, n per class*2))
           for col, imgs in collected.items():
             for row in range(n per class):
                ax = axes[row][col] if n per class > 1 else axes[col]
                img = imgs[row].numpy().transpose(1, 2, 0) * 0.5 + 0.5 # unnormalize
                ax.imshow(img.squeeze(), cmap='gray')
                ax.set title(dataset.classes[col], fontsize=8)
                ax.axis('off')
           plt.suptitle(title)
           plt.tight_layout()
           plt.show()
        # Show training and test grids
        show_2x6_grid(train_set, 2, "Train Set Grid") show_2x6_grid(test_set, 2, "Test Set Grid")
3
        import torch
        import torch.nn as nn
        from einops import rearrange, repeat, einsum
        # === Helper ===
        def pair(t):
           return t if isinstance(t, tuple) else (t, t)
        # === TODO 1: Define PreNorm block ===
        class PreNorm(nn.Module):
           def init (self, dim, fn):
             super(). init ()
             # TODO: initialize LayerNorm and store fn
           def forward(self, x, **kwargs):
             # TODO: apply LayerNorm + fn
        # === TODO 2: Define FeedForward block ===
        class FeedForward(nn.Module):
           def init (self, dim, hidden dim, dropout=0.):
             super().__init__()
             # TODO: define two Linear layers + activation + dropout
           def forward(self, x):
             # TODO: apply layers
             pass
```



```
# === TODO 3: Define Attention block ===
class Attention(nn.Module):
  def init (self, dim, heads=4, dim head=64, dropout=0.):
    super(). init ()
    # TODO: set up qkv projections, softmax attention, final output projection
  def forward(self, x):
    # TODO: compute q, k, v, attention, and output
    pass
# === TODO 4: Define Transformer Encoder ===
class Transformer(nn.Module):
  def init (self, dim, depth, heads, dim head, mlp dim, dropout=0.):
    super(). init ()
    # TODO: stack multiple PreNorm + Attention + FeedForward layers
  def forward(self, x):
    # TODO: pass through each Transformer layer
    pass
# === TODO 5: Define Vision Transformer (ViT) ===
class ViT(nn.Module):
  def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads,
          mlp dim, pool='cls', channels=1, dim head=64, dropout=0., emb dropout=0.):
    # TODO: calculate patch numbers, set up patch embedding, positional embedding, cls token,
transformer, mlp head
  def forward(self, img):
    # TODO: apply patch embedding, add cls token + pos embedding, run transformer, pool, mlp head
    pass
# === TODO 6: Initialize model ===
# Example hyperparameters (students should adjust!)
model = ViT(
  image size=28,
  patch size=4,
  num classes=6,
  channels=1,
  dim=64,
  depth=6,
  heads=4,
  mlp_dim=128
# === TODO 7: Set up optimizer ===
import torch.optim as optim
optimizer = optim.Adam(model.parameters(), lr=0.003)
# === TODO 8: Print or summarize the model ===
print(model)
# Optionally: from torchsummary import summary
```



```
# summary(model, input_size=(1, 28, 28))
4
       # === TODO 1: Define training epoch ===
       def train epoch(model, optimizer, data loader, loss history):
          model.train()
          total samples = len(data loader.dataset)
          for i, (data, target) in enumerate(data loader):
            # TODO: Zero gradients
            # TODO: Forward pass
            # TODO: Compute loss
            # TODO: Backward pass and optimizer step
            if i \% 100 == 0:
              # TODO: Print progress info and save loss
       # === TODO 2: Define evaluation function ===
       def evaluate(model, data_loader, loss_history):
          model.eval()
          total samples = len(data loader.dataset)
          correct samples = 0
          total loss = 0
          with torch.no grad():
            for data, target in data loader:
              # TODO: Forward pass
              # TODO: Compute loss
              # TODO: Get predictions and count correct samples
          # TODO: Compute average loss and accuracy
          # TODO: Print evaluation summary
5
       # === SET EPOCHS ===
       N EPOCHS = 1
       # === START TIMER =
       start time = time.time()
       # === INIT LOSS TRACKERS ===
       train_loss_history, test_loss_history = [], []
       # === MAIN TRAINING LOOP ===
       for epoch in range(1, N EPOCHS + 1):
          print('Epoch:', epoch)
          train epoch(model, optimizer, train loader, train loss history)
          evaluate(model, test loader, test loss history)
       # === PRINT TOTAL TIME ===
       print('Execution time:', '{:5.2f}'.format(time.time() - start_time), 'seconds')
       # === SAVE TRAINED MODEL ===
       torch.save(model.state_dict(), 'Student_ID.pth') # replace with your actual Student ID
       print(" Model saved as .pth")
       #LOAD MODEL - if needed
```



```
# Make sure you define the same ViT model structure first
       model = ViT(image_size=28, patch_size=4, num_classes=6, channels=1, dim=64, depth=6, heads=4,
       mlp dim=128)
       # Load saved weights
       model.load state dict(torch.load('Student ID.pth'))
       model.eval()
       print(" Model loaded and ready for testing")
6
       import torch
       # === TODO: Define function to plot confusion matrix ===
       def plot confusion matrix(model, data loader, class names):
          # HINT:
          # - Get predictions and true labels
          # - Compute confusion matrix (sklearn)
          # - Plot with seaborn heatmap
          pass
       # === TODO: Define function to plot example predictions ===
       def plot classwise predictions(model, data loader, class names, samples per class=4):
          # HINT:
          # - Collect a few correct/incorrect predictions per class
          # - Plot grid of images with true vs predicted labels
          pass
       # === TODO: After training, call both functions ===
       # plot confusion matrix(model, test loader, train set.classes)
       # plot classwise predictions(model, test loader, train set.classes, samples per class=4)
```

# **Grading Assignment & Submission**

### **Implementation:**

- (35%) Vision Transformer Model Design: Implement the full ViT model from scratch, including all required components, without using any prebuilt ViT libraries; code must compile and run without critical errors.
- 2. **(15%) Training and Hyperparameter Tuning:** Train the model on the defect dataset and tune hyperparameters to achieve at least 60% test accuracy, with higher accuracy earning more points.
- 3. **(5%) Evaluation Function:** Write a correct evaluation loop to compute and report the test set's accuracy and loss.
- 4. **(10%) Visualization:** Provide a clear confusion matrix plot and 24 example predictions (4 per class) showing both true and predicted labels.
- 5. **(5%) Report Quality:** Submit a well-organized report summarizing your implementation, results, and analysis.

#### **Question:**

6. **(5%)** Briefly explain the role of patch embedding and positional encoding in ViT. You may include parts of your Step 3 model code to support your explanation.

Lecture: Prof. Hsien-I Lin



- 7. **(5%)** Describe which hyperparameters you tuned, why you chose them, and how they affected your final accuracy.
- 8. **(5%)** Compare ViT and CNN for image classification: what are the main differences, and when might one be preferred over the other using the provided dataset?
- 9. **(5%)** Report the final achieved test accuracy; explain whether you reached the >60% baseline if not, describe what you tried and why it might have failed; if you did, explain how you achieved it.
- 10. (10%) Based on the paper you referred to (Dosovitskiy et al., An Image is Worth 16x16 Words), please brief explain: *You may include parts of your Step 3 model code to support your explanation*.
  - a. How does the Vision Transformer process input images from start to finish?
  - b. How are the image patches divided and transformed into input sequences?
  - c. How does the multi-head self-attention mechanism operate within the Transformer encoder?
  - d. How does the model use the [CLS] token (or final output) to produce the final image classification?

# **Submission:**

- 1. Upload both your report, code, and trained model to the E3 system (Lab8 Homework). Name your files correctly as follows:
  - a. Report: StudentID Lab8 Homework.pdf
  - b. Code: StudentID Lab8 Homework.py or StudentID Lab8 Homework.ipynb
  - c. Trained Model: StudentID Lab8 Homework.pth
- 3. Deadline: May 13 21:00 PM
- 4. Plagiarism is **strictly prohibited**. Submitting copied work from other students will result in penalties.
- 5. References: You must include any references or external sources you used when working on this assignment in your report.

### **Results and Discussion:**

Lecture: Prof. Hsien-I Lin



```
(a) model summary.
--- Model Architecture ---
ViT(
  (to_patch_embedding): Sequential(
    (0): Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=4, p2=4)
    (1): LayerNorm((16,), eps=1e-05, elementwise_affine=True)
    (2): Linear(in_features=16, out_features=64, bias=True)
    (3): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
  (dropout): Dropout(p=0.1, inplace=False)
  (transformer): Transformer(
    (layers): ModuleList(
      (0-5): 6 x ModuleList(
        (0): PreNorm(
          (norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
          (fn): Attention(
            (attend): Softmax(dim=-1)
            (dropout): Dropout(p=0.1, inplace=False)
            (to_qkv): Linear(in_features=64, out_features=192, bias=False
            (to out): Sequential(
              (0): Linear(in_features=64, out_features=64, bias=True)
              (1): Dropout(p=0.1, inplace=False)
        (1): PreNorm(
          (norm): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
          (fn): FeedForward(
            (net): Sequential(
              (0): Linear(in_features=64, out_features=128, bias=True)
              (1): GELU(approximate='none')
              (2): Dropout(p=0.1, inplace=False)
              (3): Linear(in_features=128, out_features=64, bias=True)
              (4): Dropout(p=0.1, inplace=False)
       )
  (mlp_head): Sequential(
    (0): LayerNorm((64,), eps=1e-05, elementwise_affine=True)
    (1): Linear(in_features=64, out_features=6, bias=True)
```

| (                              | autout chann                     | B #          |
|--------------------------------|----------------------------------|--------------|
| Layer (type)                   | Output Shape                     | Param #      |
| Rearrange-1                    | [-1, 49, 16]                     | 0            |
| LayerNorm-2                    | [-1, 49, 16]                     | 32           |
| Linear-3                       | [-1, 49, 64]                     | 1,088        |
| LayerNorm-4                    | [-1, 49, 64]                     | 128          |
| Dropout-5                      | [-1, 50, 64]                     | 0            |
| LayerNorm-6                    | [-1, 50, 64]                     | 128          |
| Linear-7                       | [-1, 50, 192]                    | 12,288       |
| Softmax-8                      | [-1, 4, 50, 50]                  | 0            |
| Dropout-9                      | [-1, 4, 50, 50]                  | 0            |
| Linear-10                      | [-1, 50, 64]                     | 4,160        |
| Dropout-11                     | [-1, 50, 64]                     | 0            |
| Attention-12                   | [-1, 50, 64]                     | 9            |
| PreNorm-13                     | [-1, 50, 64]                     | 0            |
| LayerNorm-14                   | [-1, 50, 64]                     | 128          |
| Linear-15<br>GELU-16           | [-1, 50, 128]<br>[-1, 50, 128]   | 8,320        |
| Dropout-17                     | [-1, 50, 128]                    | 0            |
| Linear-18                      | [-1, 50, 64]                     | 8,256        |
| Dropout-19                     | [-1, 50, 64]                     | 0            |
| FeedForward-20                 | [-1, 50, 64]                     | 0            |
| PreNorm-21                     | [-1, 50, 64]                     | 0            |
| LayerNorm-22                   | [-1, 50, 64]                     | 128          |
| Linear-23                      | [-1, 50, 192]                    | 12,288       |
| Softmax-24                     | [-1, 4, 50, 50]                  | 0            |
| Dropout-25                     | [-1, 4, 50, 50]                  | 0            |
| Linear-26                      | [-1, 50, 64]                     | 4,160        |
| Dropout-27<br>Attention-28     | [-1, 50, 64]                     | 9            |
| PreNorm-29                     | [-1, 50, 64]<br>[-1, 50, 64]     | 0            |
| LayerNorm-30                   | [-1, 50, 64]                     | 128          |
| Linear-31                      | [-1, 50, 128]                    | 8,320        |
| GELU-32                        | [-1, 50, 128]                    | 0            |
| Dropout-33                     | [-1, 50, 128]                    | 0            |
| Linear-34                      | [-1, 50, 64]                     | 8,256        |
| Dropout-35                     | [-1, 50, 64]                     | 0            |
| FeedForward-36                 | [-1, 50, 64]                     | 0            |
| PreNorm-37                     | [-1, 50, 64]                     | 0            |
| LayerNorm-38                   | [-1, 50, 64]                     | 128          |
| Linear-39                      | [-1, 50, 192]                    | 12,288       |
| Softmax-40                     | [-1, 4, 50, 50]                  | 0            |
| Dropout-41<br>Linear-42        | [-1, 4, 50, 50]<br>[-1, 50, 64]  | 4 150        |
| Dropout-43                     | [-1, 50, 64]                     | 4,160        |
| Attention-44                   | [-1, 50, 64]                     | 0            |
| PreNorm-45                     | [-1, 50, 64]                     | 0            |
| LayerNorm-46                   | [-1, 50, 64]                     | 128          |
| Linear-47                      | [-1, 50, 128]                    | 8,320        |
| GELU-48                        | [-1, 50, 128]                    | 0            |
| Dropout-49                     | [-1, 50, 128]                    | 0            |
| Linear-50                      | [-1, 50, 64]                     | 8,256        |
| Dropout-51                     | [-1, 50, 64]                     | 0            |
| FeedForward-52                 | [-1, 50, 64]                     | 0            |
| PreNorm-53                     | [-1, 50, 64]                     | 0            |
| LayerNorm-54                   | [-1, 50, 64]                     | 128          |
| Linear-55<br>Softmax-56        | [-1, 50, 192]<br>[-1, 4, 50, 50] | 12,288       |
| Dropout-57                     | [-1, 4, 50, 50]                  | 0            |
| Linear-58                      | [-1, 50, 64]                     | 4,160        |
| Dropout-59                     | [-1, 50, 64]                     | 0            |
| Attention-60                   | [-1, 50, 64]                     | 0            |
| PreNorm-61                     | [-1, 50, 64]                     | 0            |
| LayerNorm-62                   | [-1, 50, 64]                     | 128          |
| Linear-63                      | [-1, 50, 128]                    | 8,320        |
| GELU-64                        | [-1, 50, 128]                    | 0            |
| Dropout-65                     | [-1, 50, 128]                    | 0            |
| Linear-66                      | [-1, 50, 64]                     | 8,256        |
| Dropout-67<br>FeedForward-68   | [-1, 50, 64]<br>[-1, 50, 64]     | 9            |
| PreNorm-69                     | [-1, 50, 64]                     | 9            |
| LayerNorm-70                   | [-1, 50, 64]                     | 128          |
| Linear-71                      | [-1, 50, 192]                    | 12,288       |
| Softmax-72                     | [-1, 4, 50, 50]                  | 0            |
| Dropout-73                     | [-1, 4, 50, 50]                  | 0            |
| Linear-74                      | [-1, 50, 64]                     | 4,160        |
| Dropout-75                     | [-1, 50, 64]                     | 0            |
| Attention-76                   | [-1, 50, 64]                     | 0            |
| PreNorm-77                     | [-1, 50, 64]                     | 0            |
| LayerNorm-78<br>Linear-79      | [-1, 50, 64]                     | 128<br>8,320 |
| GELU-80                        | [-1, 50, 128]<br>[-1, 50, 128]   | 8,320        |
| Dropout-81                     | [-1, 50, 128]                    | 0            |
| Linear-82                      | [-1, 50, 64]                     | 8,256        |
| Dropout-83                     | [-1, 50, 64]                     | 0            |
| FeedForward-84                 | [-1, 50, 64]                     | 0            |
| PreNorm-85                     | [-1, 50, 64]                     | 0            |
| LayerNorm-86                   | [-1, 50, 64]                     | 128          |
| Linear-87                      | [-1, 50, 192]                    | 12,288       |
| Softmax-88                     | [-1, 4, 50, 50]                  | 0            |
| Dropout-89                     | [-1, 4, 50, 50]                  | 4 160        |
| Linear-90<br>Dropout-91        | [-1, 50, 64]<br>[-1, 50, 64]     | 4,160        |
| Attention-92                   | [-1, 50, 64]                     | 0            |
| PreNorm-93                     | [-1, 50, 64]                     | 0            |
| LayerNorm-94                   | [-1, 50, 64]                     | 128          |
| Linear-95                      | [-1, 50, 128]                    | 8,320        |
| GELU-96                        | [-1, 50, 128]                    | 0            |
| Dropout-97                     | [-1, 50, 128]                    | 0            |
| Linear-98                      | [-1, 50, 64]                     | 8,256        |
| Dropout-99                     | [-1, 50, 64]                     | 9            |
| FeedForward-100                | [-1, 50, 64]                     | 0            |
| PreNorm-101<br>Transformer-102 | [-1, 50, 64]                     | 9            |
| LayerNorm-103                  | [-1, 50, 64]<br>[-1, 64]         | 128          |
| Linear-104                     | [-1, 6]                          | 390          |
|                                | [-1, 0]                          |              |

Total params: 201,446 Trainable params: 201,446 Non-trainable params: 0

# (b) final traing result

--- Epoch: 20/20 ---

Training: 100% 20/20 [00:06<00:00, 3.19it/s, acc=0.98, loss=0.117]

(9)

# (() confusion matrix



# Example Predictions from Test Set



# Question 6

#### Patch Embedding

- Function: Converts a 2D image into a sequence of 1D embeddings, which can be processed by a Transformer.
- Steps:
  - 1. The input image is divided into a grid of non-overlapping patches (e.g., 4×4 pixels).
  - 2. Each patch is flattened into a 1D vector.
  - 3. A learnable linear projection (typically nn.Linear, often preceded by LayerNorm) maps the flattened vector into a fixed-dimensional embedding (dimension dim).
- Purpose: This process transforms spatial image information into a sequence format compatible
  with Transformer input (like words in NLP).

#### ★ Code Snippet:

#### Positional Encoding

- Problem: Transformers do not inherently capture positional information in sequences.
- Solution:
  - Add learnable (or fixed) positional embeddings to the patch embeddings.
  - These embeddings encode the position (e.g., row and column index) of each patch in the original image.
- Impact: Restores spatial ordering, allowing the model to reason about structure and layout when computing attention.

#### ★ Code Snippet:

```
python \mathcal{O} 複製 \mathcal{V} 编辑 self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) x += self.pos_embedding[:, :(n + 1)]
```

# Question 7.

| Hyperparameter                                | Reason for Tuning                                                    | Impact                                                                                                                           |  |
|-----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--|
| Learning Rate (Ir)                            | Controls optimization step size. Tested values: 1e-3 , 1e-4 , 5e-5 . | Too high can cause divergence, too low slows learning.  Moderate values like 1e-4 balance speed and stability.                   |  |
| Number of Epochs (N_EPOCHS)                   | Controls training duration.                                          | Too few = underfitting; too many = overfitting. Final choice (e.g., 20) is a trade-off.                                          |  |
| Batch Size (BATCH_SIZE)                       | Affects gradient quality and memory usage.                           | Small batches introduce more noise (possibly help generalization), large batches yield smoother gradients.                       |  |
| Optimizer                                     | Chose AdamW (better with weight decay for Transformers).             | Affects convergence behavior and generalization.                                                                                 |  |
| Model Dimensions (dim, depth, heads, mlp_dim) | Controls model capacity.                                             | Larger dimensions increase expressiveness but risk overfitting and higher compute; smaller models are faster but might underfit. |  |
| Dropout Rates (dropout, emb_dropout)          | Regularization to prevent overfitting.                               | Dropout values around 0.1 are typical. Too little = overfit, too much = underfit.                                                |  |



#### Main Differences

| Aspect                  | CNN                                                                                                                                 | ViT                                                                                           |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Processing Approach     | Uses local receptive fields with shared filters across spatial locations. Builds hierarchical representations from local to global. | Divides the image into patches and processes the entire sequence globally via self-attention. |
| Inductive Bias          | Strong: locality and translation equivariance. Useful for image data.                                                               | Weak: treats image patches as<br>generic tokens. Learns spatial<br>relationships from data.   |
| Data Dependency         | Performs well on small or medium datasets, even from scratch.                                                                       | Requires large-scale datasets or pretraining for strong performance.                          |
| Global Context Handling | Gradually acquired through deep layers and increasing receptive fields.                                                             | Captures long-range dependencies from the beginning through self-attention.                   |



✓ Significantly exceeds the required >60% baseline.

#### Reasons for Success

#### 1. Correct ViT Implementation:

- · Included all core components:
  - · Patch embedding
  - · Positional encoding
  - Multi-head self-attention
  - MLP blocks
  - Layer normalization
  - · CLS token for classification

#### 2. Proper Data Handling:

- · Dataset split: 70% training / 30% testing
- Used ImageFolder and DataLoader from PyTorch
- · Preprocessing included resizing, grayscale conversion, normalization

#### 3. Effective Training Loop:

- Loss function: crossEntropyLoss
- Optimizer: Adam or Adamw
- Standard training + evaluation procedure

#### 4. Hyperparameter Tuning:

- Final parameters (e.g., 1r=1e-3, epochs=20, dim=64, depth=6) likely chosen through trial-anderror
- · Tuned for balance between underfitting and overfitting

### 5. Dataset Properties:

- The defect patterns in the dataset may align well with ViT's attention mechanism
- . Even without large-scale pretraining, ViT could exploit global texture or structural patterns

#### Preference for the Provided Dataset

- . The dataset used in the experiment appears to be:
  - Small image size: 28×28 pixels
  - · Grayscale: single-channel
  - Moderate number of samples
- ONN is preferred for this kind of dataset:
- Its inductive biases (locality, translation equivariance) make it efficient and accurate on small-scale image datasets
- Requires less data and computational overhead.
- ViT may underperform without pretraining:
- Needs more data to learn spatial relationships effectively.
- Might still perform well on some tasks where attention can exploit global or textural patterns.
- In this project, ViT achieved high accuracy likely due to:
  - Small model size
  - Careful tuning
  - · Dataset characteristics aligning with attention strengths

# Question 10

#### a. End-to-End Processing Pipeline of ViT

#### Step-by-step process:

- 1. Input Image Division:
  - The image is split into non-overlapping fixed-size patches (e.g., 16×16 pixels).

#### 2. Flattening & Embedding:

- · Each patch is flattened into a 1D vector.
- A learnable linear projection maps this vector into a fixed-dimensional embedding space
   (dim.)

#### 3. Positional Embedding:

Learnable positional embeddings are added to preserve the spatial information of patches.

#### 4. [CLS] Token Addition:

 A special learnable [cls] token is prepended to the sequence. It serves as the representative feature for classification.

#### 5. Transformer Encoder:

- The patch + CLS embeddings pass through multiple stacked Transformer blocks, each containing:
  - · Multi-Head Self-Attention (MHSA)
  - MLP (Feedforward Network)
  - Residual connections
  - Layer Normalization

#### 6. Classification Head:

 The final hidden state of the [cus] token is passed through an MLP head (often just a linear layer) to produce classification logits.

### b. Patch Division and Embedding into Input Sequence

- Patch size: P × P
- · Total number of patches:

$$N = \frac{H}{P} \times \frac{W}{P}$$

- Transformation Steps:
  - 1. Flatten each  $P \times P \times C$  patch  $\rightarrow$  1D vector of size  $P^2 \cdot C$
  - 2. Linearly project each vector  $\rightarrow$  embedding of size D
- Result: A sequence of N patch embeddings of shape  $(N \times D)$

#### d. Use of the [CLS] Token for Classification

- A learnable [cls] token is prepended to the sequence before entering the Transformer.
- This token aggregates information from all patches through the self-attention mechanism.
- After the final encoder layer, the output corresponding to the <code>[cls]</code> token (e.g.,  $z_L^{[CLS]}$ ) is extracted.
- This vector is passed through a classification head (e.g., nn.Linear) to produce the final prediction.

#### c. Multi-Head Self-Attention (MHSA) Operation

#### Within each Transformer block:

- 1. Linear Projections:
  - Input  $z \in \mathbb{R}^{N \times D}$  is projected into:
    - Queries Q
    - Keys K
    - Values V
- 2. Scaled Dot-Product Attention (per head):

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

- 3. Multiple Heads:
  - Use h parallel attention heads.
  - Each computes attention independently and outputs V<sub>i</sub> features.
- 4. Concatenation & Output Projection:
  - Concatenate all head outputs → pass through a linear layer.
  - Output maintains shape (N, D)