1 Fragen

- Lösung des Shift/Reduce Konflikt. Was steht auf dem Keller? Was ist das nächste Zeichen?
- Wie funktioniert der Keller im Bezug auf die Elimation der linksrekursion? Script Seite 174
- Wie testet man auf LL-Bedingung? siehe hier 3.1
- Wie geh ich mit Mehrdeutigkeit um im Shift Reduce Kontext?
- Wie löse ich den Reduce/Reduce Konflikt?

Ich antworte ihr auf die Frage

2 Aufgaben

Auf Seite 7 im Script sind die Übungsaufgaben verzeichnet Laut den Alt-Klausuren

- Strukturierung von einem Übersetzer
- Fragen zur Grammatik
- Chomsky-Hierarchie
- Lark+Ast oder Rex
- Top-Down-Parser/Rekursiver Abstiegs-Parser
- Abstrakter Syntaxbaum
 - Grammatik
 - Automat
 - Ableitung

Laut Vollmer

- Scanner
- Parser (ist ein LR-Automat)

- Baum
- rekursiver Abstiegsparser (ist ein LL-Automat)

Andere Aufgaben

• Quiz File

3 LL-Eigenschaften

Seite 166 im Script stehen die Eigenschaften

Wie andere Grammatik transformiert findet man im Script auf Seite 169 Eine Grammatik kann nicht die LL-Eigenschaften erfüllen wenn sie linksrekursion bzw. linksgleiche Produktionen enthält (Was sind Produktionen?) Allgemeine Elimination von linksrekursion auf Seite 171 im Script

$$A ::= A\alpha$$

$$\Longrightarrow$$

$$A ::= \beta A'$$

$$A' ::= \alpha A' | \epsilon$$

Definition (Linksfaktorisierung). Problem FIRST(..FOLLOW(..)) nicht disjunkt:

$$A ::= \alpha \beta_1 | \alpha \beta_2$$

$$\Longrightarrow$$

$$A ::= \alpha A'$$

$$A' ::= \beta_1 | \beta_2$$

 $FF_1 = FIRST(TE'FOLLOW(E)) = i*$ das in den geschweiften Klammern ist das First(T) wenn ϵ nicht in der First-Menge ist. Falls doch ist es das First vom nächssten nicht Terminal. Falls alle ein ϵ in ihrer First_Menge haben ist es das Follow(E').

LL-Bedingungen 3.1

Die Grammatik erfüllt die LL-Bedingungen wenn die gleichen Follows in den First-Follow-Mengen einen unterschiedlichen Inhalt haben.

$$FF_1 = FIRST(TE'FOLLOW(E)) = i*$$

 $FF_2 = FIRST(\epsilon FOLLOW(E)) = \#$

3.2LL-Automaten

Seite 177 findet man die LL-Automaten

- Der LL-Automat erzeugt eine Linksableitung des Eingabewortes
- Erfüllt G die LL-Bedingungen, dann kann ein deterministischer Automat konstruiert werden.
- 1. Transfomieren Sie die Grammatik, so dass die Grammatik die LL(1) Bedingung erfüllt
- 2. Erstellen Sie den nichtdeterministischen LL(1)-Automaten für diese Grammatik
- 3. Erstellen Sie hieraus den deterministischen LL(1)-Automaten (nun ja er ist nicht ganz deterministisch, da die Produktionen eines Nichtterminals die LL(1) Bedingung nicht erfüllt, erstellen Sie den Automaten trotzdem!)
 - Markieren Sie die nichtdeterministischen Automatenregeln.
- 4. Akzeptieren Sie mit diesem Automaten das "Programm" + i[i+i]

Beispiel Aufgabe auf Seite 179 im Script

- Grammatik linksrekursion rausbekommen
- First-Follow-Menge berechnen
- LL1 Eigenschaften herausfinden
- Automat

• Automat mit First-Follow

Die Regel schreib man einfach umgekehrt zur Grammatik.

$$E' ::= +TE'$$

$$E'qt \longrightarrow E'T +$$

4 LR-Automaten

```
Beispiel 75 (Ausdrucksgrammatik)
```

```
\begin{array}{l} \text{Grammatik G} = (\text{N, T, P, E}), \\ T = \{+, *, (,), i\}, \\ N = \{\text{E, T, F}\} \\ P = \{1\} \text{ E} ::= T & 2) \text{ E} ::= \text{E} + \text{T} \\ 3) \text{ T} ::= \text{F} & 4) \text{ T} ::= \text{T} * \text{F} \\ 5) \text{ F} ::= i & 6) \text{ F} ::= (\text{E}) \} \\ \\ LR-\text{Automat A} = (\text{T, } \{q\}, \text{R, q, } \{q\}, \text{N} \cup \text{T, } \epsilon) \\ R = \{1\} & \text{Tq} \rightarrow \text{Eq} & 2) \text{ E} + \text{Tq} \rightarrow \text{Eq} \\ 3) & \text{Fq} \rightarrow \text{Tq} & 4) & \text{T*Fq} \rightarrow \text{Tq} \\ 5) & \text{iq} \rightarrow \text{Fq} & 6) & (\text{E})\text{q} \rightarrow \text{Fq} \\ \text{q} + \rightarrow + \text{q, q*} \rightarrow * \text{q, q}) \rightarrow \text{)q, q} \leftarrow (\text{q, qi} \rightarrow \text{iq} \\ \text{Eq#} \rightarrow \text{q#} \\ \end{cases}
```

Beispiel 76 (Ausdrucksgrammatik, LR-Ableitung)

•	,						,						07					
Regel			Keller				Eingabe					umgekehrte						
												R	echt	ss	ab	le	it	ung
shift							q	1	+	2	*	3	#					
reduce	5					i	q	+	2	*	3	#		1	+	2	*	3
reduce	3					F	q	+	2	*	3	#		F	+	2	*	3
reduce	1					T	q	+	2	*	3	#		T	+	2	*	3
shift						E	q	+	2	*	3	#						
shift					Е	+	q	2	*	3	#							
reduce	5			Ε	+	i	q	*	3	#				E	+	2	*	3
reduce	3			Ε	+	F	q	*	3	#				Ε	+	F	*	3
shift				E	+	T	q	*	3	#								
shift			Ε	+	T	*	q	3	#									
reduce	5	Ε	+	T	*	i	q	#						E	+	T	*	3
reduce	4	E	+	T	*	F	q	#						E	+	T	*	F
reduce	2			Ε	+	T	q	#						Е	+	T		
reduce						E	q	#						E				
							q	#										
							-											

Mehrdeutigkeit wird unterbunden in dem bevorzugt gesschiftet wird. ⇒ Lösung Dangeling-Else Problem.

5 Struktur vom Compiler

1. Wozu kann ein Übersetzerbenutzt werden?

Erzeugen von Maschinencode

Programmanalyse und das Füllen einer Datenbank mit Informationen über das Programm

Programmtransformation in eine andere Programmiersprache

- 2. Wie ist ein Ubersetzer strukturiert? Beschreiben Sie **kurz** die Aufgaben und Ergebnisse der einzelen Phasen!
 - 1. Lexikalische Analyse, 2.syntaktische Analyse, 3. Transformation(nicht ausreichend)
- 3. Welche Rolle spielt die Grammatik in einer Sprache?
 - a Eine Grammatik dient zur Spezifikation der Programmiersprachr für den Benutzer der Sprache, damit dieser weiß, wie ein korrektes Programm geschriebenwerden kann(ANleitung zum Generieren eines Satzes der Sprache).
 - b Eine Grammatik dient zur Spezifikation des Übersetzters für diese Programmiersprache (Anleitung zur Konstruktion eines Akzeptors für diese Sprache).

6 Fragen zur Grammatik

1. Geben sie die Definition einer regulären Grammatik an.

G = (N, T, P, Z), Nichtterminale(z.B. E,T,D die Dinge mit denen man die Regeln macht), Terminale = Symbole(z.B. +,-,*), Produktion (Regel), Startsymbol

2. Geben sie die Definition des Begriffes der von einer Grammatik erzeugten Sprache an.

$$L = \{ w \in T * | Z \Longrightarrow *w \}$$

- Kein Plan was das heißen soll steht auch auf Seite 71 im Script
- 3. Geben Sie die Definition eines endlichen Automaten an.
- 4. Geben sie die Definition der von diesem Automaten akzeptierten Sprache an.(Welche Art von Sprachen wird vom Automat akzeptiert)
- 5. Was ist der Zusammenhang zwischen einem endlichen Automaten A, der die von G erzeugte Sprache akzeptiert.
 - Zu jeder regulären Grammatik G gibt es einen endlichen Automaten A, der die von G erzeugte Sprache akzeptiert(Gibt einen Beweis aber kein bock den hinzuschreiben oder zu lernen)
- 6. Was ist der Zusammenhang zwischen deterministischen und nichtdeterministischen endlichen Automaten?
 - Zu jedem nichtdeterministischen endlichen Automaten gibt es einen deterministischen endlichen Automaten, der die gleiche Sprache akzeptiert.
- 7. Es wird eine Sprache beschrieben an dieser sollen folgende Aufgaben durch geführt werden
 - a Die rechts reguläre Grammatik soll für die Sprache angegeben werden.
 - b Für die Grammatik soll der Endliche Automat angegeben werden. (eigentlich dann mit Shift und Reduce)
 - c Stellen sie ihren Automaten graphisch dar. Kennzeichnen Sie Startund Finalzustände.
 - d Ist Ihr Automat deterministisch? Falls nein,kennzeichnen Sie nichtdeterministischen Übergänge.
- 8. Konstruieren Sie (mittels des aus der Vorlesung bekannten Verfahrens) den deterministischen endlichen Automaten, der die von Ihnen definierten C-Bezeichner akzeptiert. Zeichen Sie den resultierenden Automaten(Es ist die Teilmengen Konstruktion)