Ejercicios de Álgebra

semana 2

POR MILLER SILVA

1. Supongamos que existe $H \leq G$ talque |H| = n - 1. Como |G| = n entonces existe un único $x \in G \setminus H$. Sea $y \in H$ tal que $y \neq e$ entonces $xy \in G \setminus H$, ya que si $xy \in H \Rightarrow x \in H$. Así xy = x, luego y = e, contradicción.

Consideremos el grupo $\mathbb{Z}_3 = \{\bar{0}, \bar{1}, \bar{2}\}$ y el subgrupo $H = \{\bar{0}\}$, luego $|\mathbb{Z}_3| = 3$ y |H| = 3 - 2.

2.

a) Supongamos que $(a, n) \in \{2, ..., n\}$ entonces $\sigma_a(r^{n/(a,n)}) = r^{\frac{n}{(a,n)}a} = r^{n \times \frac{a}{(a,n)}} = 1 \Rightarrow r^{n/(a,n)} \in \text{Ker}(\sigma_a) = \{1\} \Rightarrow n \Big| \frac{n}{(a,n)}, \text{ pero } \frac{n}{(a,n)} < n, \text{ contradicción. Por lo tanto } (a,n) = 1.$

Sean $r^{k_1}, r^{k_2} \in \mathbb{Z}_n$, donde $k_i \in \{0, \dots, n-1\}$. Luego

$$\sigma_a(r^{k_1}r^{k_2}) = (r^{k_1}r^{k_2})^a = r^{(k_1+k_2)a} = r^{k_1a}r^{k_2a} = \sigma_a(r^{k_1})\sigma(r^{k_2}).$$

 σ_a es un homomorfismo. Además $\sigma_a(r^k) = 1 \Rightarrow r^{ka} = 1 \Rightarrow n | ka \text{ y como } (n, a) = 1 \Rightarrow n | k \Rightarrow r^k = 1$. Luego Ker $\sigma_a = \{1\}$, así σ_a es inyectiva. También el dominio y el conjunto de llegada tienen el mismo orden, por tanto σ_a es sobreyectiva y por ende isomorfismo.

- b) $\sigma_a = \sigma_b \Leftrightarrow r^a = r^b \Leftrightarrow r^{a-b} = 1 \Leftrightarrow n \mid a b \Leftrightarrow a b = 0 \mod n \Leftrightarrow a = b \mod n$.
- c) Sean $f, g \in Aut(G)$, luego $f \circ g: G \to G$ es biyectiva y

$$f \circ g(xy) = f(g(x)g(y)) = f \circ g(x)f \circ g(y)$$

por lo tanto $f \circ g$ es automorfismo, así $\operatorname{Aut}(G)$ es cerrada bajo la composición.

- $f, q, h \in G \Rightarrow f \circ (q \circ h) = (f \circ q) \circ h$
- $\exists I: G \to G \in \text{Aut}(G) \text{ con } I(g) = g$, tal que $f \circ I = I \circ f = f$ para todo $f \in \text{Aut}(G)$
- Para $f \in Aut(G)$ existe $f^{-1}: G \to G$ tal que $f \circ f^{-1} = f^{-1} \circ f = I$. Y

$$f(f^{-1}(x)f^{-1}(y)) = xy = f(f^{-1}(xy)) \Rightarrow f^{-1}(x)f^{-1}(y) = f^{-1}(xy),$$

así $f^{-1} \in Aut(G)$.

Por lo tanto $(Aut(G), \circ)$ es un grupo.

d)

$$F: (\mathbb{Z}_n)^{\times} \to \operatorname{Aut}(Z_n)$$
$$\bar{a} \mapsto \sigma_a$$

Veamos si está bien definida. Sea $\bar{a} \in \mathbb{Z}_n^{\times}$, entonces existe $\bar{b} \in \mathbb{Z}_n^{\times}$ tal que $\bar{a}\bar{b} = \bar{a}\bar{b} = \bar{1}$, $ab = 1 \mod n = nk+1$, remplazamos usando $a = (n,a)\frac{a}{(n,a)}, n = (n,a)\frac{n}{(n,a)}$

$$(n,a)\frac{a}{(n,a)}b=(n,a)\frac{n}{(n,a)}k+1 \Rightarrow (n,a)\left(\frac{a}{(n,a)}b-\frac{n}{(n,a)}k\right)=1 \Rightarrow (n,a)=1,$$

luego por el item (a), $\sigma_a \in \operatorname{Aut}(Z_n)$.

Sean $a, b \in \mathbb{Z}$ tal que $\bar{a} = \bar{b}$ entonces $a = b \mod n$, luego por el item (b), $F(\bar{a}) = \sigma_a = \sigma_b = F(\bar{b})$.

F es un homomorfismo:

$$F(\bar{a}\bar{b}) = F(\bar{a}\bar{b}) = \sigma_{ab} = \sigma_{a}\sigma_{b} = F(\bar{a})F(\bar{b}).$$

F es inyectiva:

$$F(\bar{a}) = \sigma_1 \Rightarrow \sigma_a = \sigma_1 \Rightarrow a = 1 \mod n \Rightarrow \bar{a} = \bar{1} \Rightarrow \operatorname{Ker} F = \{\bar{1}\}.$$

F es sobreyectiva:

Sea $f: Z_n \to Z_n$ un isomorfismo, luego existe $k \in \{0, \dots, n-1\}$ tal que $f(r) = r^k$. Así tomando cualquier elemento $r^{k_1} \in Z_n$ tenemos

$$f(r^{k_1}) = f(r)^{k_1} = r^{kk_1} = (r^{k_1})^k \Rightarrow f = \sigma_k \Rightarrow (k, n) = 1 \Rightarrow \exists z_1, z_2 \in \mathbb{Z} \text{ tq } z_1 k + z_2 n = 1$$
$$z_1 k = -z_2 n + 1 \Rightarrow \bar{z}_1 \bar{k} = \bar{1} \Rightarrow \bar{k} \in \mathbb{Z}_n^{\times} \Rightarrow F(\bar{k}) = \sigma_k = f$$

Por lo tanto F es un isomorfismo.

Sean $x, y \in \text{Aut}(\mathbb{Z}_n)$, entonces existen $i, j \in \mathbb{Z}$ tal que $x = F(\bar{i})$ e $y = F(\bar{j})$, luego

$$xy = F(\overline{i})F(\overline{j}) = F(\overline{i}\overline{j}) = F(\overline{j}\overline{i}) = F(\overline{j})F(\overline{i}) = yx$$

Por lo tanto $Aut(Z_n)$ es abeliano.

3. Los elementos de G tienen orden finito, ya que si existiera $x \in G$ tal que $|x| = \infty$, podríamos crear los siguientes subgrupos

$$\langle x \rangle, \langle x^2 \rangle, \dots, \langle x^n \rangle, \dots$$

todos distintos, y así G tendría infinitos subgrupos. Ahora sea $x_1 \in G$, luego $\langle x_1 \rangle \leqslant G$, si $\langle x_1 \rangle \neq G$, tomamos $x_2 \in G \setminus \langle x_1 \rangle$ y tendríamos $\langle x_2 \rangle \leqslant G$, si $\langle x_1 \rangle \cup \langle x_2 \rangle \neq G$, tomamos $x_3 \in G \setminus \langle x_1 \rangle \cup \langle x_2 \rangle$, luego $\langle x_3 \rangle \leqslant G$, si $\langle x_1 \rangle \cup \langle x_2 \rangle \cup \langle x_3 \rangle \neq G$ continuamos con el procedimiento. Esta construcción tiene que parar en algún momento ya que si no tendríamos infinitos subgrupos (todos diferentes)

$$\langle x_1 \rangle, \langle x_2 \rangle, \dots, \langle x_k \rangle, \dots$$

Por lo tanto $\langle x_1 \rangle \cup \cdots \cup \langle x_n \rangle = G$ (para algún $n \in \mathbb{N}$), donde cada subgrupo cíclico es finito, entonces G es finito.