TinyML Fundamentals

How do we enable TinyML?

What Makes TinyML?

Input

Endpoints Have Sensors, Tons of Sensors

Motion Sensors, Gyroscope, Magnetometer, Radar, Accelerator Acoustic Sensors, Ultrasonic, Microphones, Geophones, Vibrometers

Environment Sensors, Temperature, Humidity Pressure, IR, etc

Touchscreen Sensors, Capacitive, IR

Image Sensors, Thermal, Image Biometric Sensors, Fingerprint, Heart Rate

Force Sensors, Pressure, Strain

Rotation Sensors, Encoders

Endpoints Have Sensors, Tons of Sensors

Motion Sensors, Gyroscope, Magnetometer, Radar, Accelerator Acoustic Sensors, Ultrasonic, Microphones, Geophones, Vibrometers

Environment Sensors, Temperature, Humidity Pressure, IR, etc

Touchscreen Sensors, Capacitive, IR

Image Sensors, Thermal, Image Biometric Sensors, Fingerprint, Heart Rate

Force Sensors, Pressure, Strain

Rotation Sensors, Encoders

Biometric Sensors

Fingerprint + Photoplethysmography (PPG)

Endpoints Have Sensors, Tons of Sensors

Motion Sensors, Gyroscope, Magnetometer, Radar, Accelerator Acoustic Sensors, Ultrasonic, Microphones, Geophones, Vibrometers Environment Sensors, Temperature, Humidity Pressure, IR, etc

Touchscreen Sensors, Capacitive, IR

Image Sensors, Thermal, Image Biometric Sensors, Fingerprint, Heart Rate

Force Sensors, Pressure, Strain

Rotation Sensors, Encoders

Processing

Thinking Big

Thinking Small

Mobile SoC 107mm²

Thinking Tiny

Tiny
Apple 0778
30mm²

Thinking Record-Breaking

Mobile SoC 107mm²

World's smallest ARM-Powered MCU 48MHz, 32kB flash, 20-pin

Tiny

Apple 0778

 30mm^2

+250 Billion MCU Today

MCU Demand and Pricing Forecast

urce: IC Insights

A fire in a Japanese semiconductor factory in March 2021

Floods at Chinese ports in August 2021

Drought conditions in Taiwan since 2020

Extreme winter weather in Texas (2021) impacted many supply chains

Semiconductor Crisis

7nm Tech Race

https://www.scmp.com/tech/big-tech/ article/3190590/chinas-top-chip-make r-smic-achieves-7-nm-tech-breakthroug h-par-intel

Comparing Power

300W NVIDIA Tesla P100

6.9W* Apple A15

Neural Decision Processor

Always-on deep learning speech/audio recognition Ultra low power, 128KB SRAM 12-pin, 2.52mm²

140 µW Syntian NDP100

Comparing Power

Use case: button cell battery

Neural Decision Processor

Always-on deep learning speech/audio recognition Ultra low power, 128KB SRAM 12-pin, 2.52mm²

140 µW Syntian NDP100

Output

Output

Speakers

Displays

MCUs enable TinyML

LOW POWER

LOW COST

MCUs enable TinyML

SIZE

LOW POWER

LOW COST

MCUs enable TinyML

SIZE

LOW POWER

What Makes TinyML?

- 1. MCU is the building block of **TinyML** devices.
- 2. Theses devices are going to be pervasive or ubiquitous
- 3. Are they capable of running ML models?

