Fully reproducible research in R (data, code, and computational environment).

Andrew Stewart University of Manchester

Inspired by The Turing Way

https://github.com/alan-turing-institute/the-turing-way

Open and Reproducible Research

- Data we already know this is important.
- Code we already know this is important.
- Computational environment why is this important and how do we do it?

PERSPECTIVE

Reproducible Research in Computational Science

Roger D. Peng

+ See all authors and affiliations

Science 02 Dec 2011: Vol. 334, Issue 6060, pp. 1226-1227 DOI: 10.1126/science.1213847

Why do we need to reproduce the computational environment?

- Quite often analysis code 'breaks' often in one of two ways:
- Code that worked previously now doesn't maybe a function in an R package was updated (e.g., lsmeans became emmeans so old code using lsmeans wouldn't now run).
- Code that worked previously still works but produces a slightly different result or now throws a warning where it didn't previousy (e.g., convergence/singular fit warnings in lme4 version 1.1-19 vs. version 1.1-20).

Capturing your local computational environment

- You need to capture the versions of the different R packages (plus their dependencies).
- May sound trivial but trying running some old R code and be amazed at how many things now don't work as they once did!

Docker for beginners

Docker packages your data, code and all its dependencies in the form called a docker container to ensure that your application works seamlessly in any environment.

When you run a docker container it's like running your analysis on a virtual computer that has the same configuration as our own one at the point in time when you ran the analysis

https://medium.com/the-andela-way/docker-for-beginners-61e8e0ce6a19

So what's Binder?

- Binder allows you to create custom computing environments (a Docker image) that can be shared and used by others anywhere in the world.
- Binder is powered by BinderHub, which is an opensource tool that deploys the Binder service in the cloud.
- Binder works by pulling information from a repository that you set up on GitHub. Think of a repository as a folder containing your R code, your data, and a few other small bits and pieces - but it sits in the cloud rather than on your computer.

My R code and data files.

- When I link my GitHub repository to Binder and launch it I then get the following in my web browser.
- This is RStudio running the cloud using my code, my data and the appropriate versions of the packages that I was using when I did the analysis originally!

Step 1 - Set up a GitHub account

Step 2 - Create a new repository

Give it a name, set it to public and tick "Initialise this repository with a README".

Create a new repository A repository contains all project files, including the revision history. Repository name * Owner andrewstewarttest first_binder Great repository names are short and memorable. Need inspiration? How about probable-funicular? Description (optional) Anyone can see this repository. You choose who can commit. Private You choose who can see and commit to this repository. Initialize this repository with a README This will let you immediately clone the repository to your computer. Skip this step if you're importing an existing repository. Add a license: None ▼ Add .gitignore: None ▼ Create repository

Step 3 - Upload your R script and data and make your first "Commit"

Click here to upload

Click here to Commit

Step 3 - Upload your R script and data and make your first "Commit"

- We need two other files at this point one is called "runtime.txt" and contains the date of R and its associated packages that you want to simulate.
- The other is called "install.R" and contains the list of R packages that need to be installed in order for your script to run.
- To create a new text file select "Create new file"

Name your file

Don't forget to click "Commit" after you've created each file!

Step 5 - Now we need to link our repote to Binder (mybinder.org)

Turn a Git repo into a collection of interactive notebooks

Have a repository full of Jupyter notebooks? With Binder, open those notebooks in an executable environment, making your code immediately reproducible by anyone, anywhere.

- 1. Paste the link to your repo here.
- 2. Add "rstudio" here with the URL option selected.
 - 3. Then click on "launch"

4. This is the URL to share with others.

And wait...

You can check the progress of the build by clicking on the "Build logs" bar.

And wait...

And then...

You've reproduced your computational environment in the cloud - which you can visit any time via your web browser!