Проектная работа по модулю "SQL и получение данных"

Итоговая работа

- 1. В работе использовался _облачный _ тип подключения.
- 2. Скриншот ER-диаграммы из DBeaver`a.

3. Краткое описание БД - из каких таблиц и представлений состоит.

В качестве предметной области выбраны авиаперевозки по России. База данных состоит из 9-ти таблиц:

- aircrafts data (описание самолетов)
- airports_data (описание аэропортов и направления рейсов)
- boarding_passes (посадочные талоны)
- bookings (бронирования)
- flights (полеты)
- products (товары)
- seats (места)
- ticket_flights (билеты на рейсы)
- tickets (билеты с описанием пассажиров)

Представление "bookings.flights v"

Над таблицей flights создано представление flights_v, содержащее дополнительную информацию:

- расшифровку данных об аэропорте вылета (departure_airport, departure_airport_name, departure_city),
- расшифровку данных об аэропорте прибытия (arrival_airport, arrival_airport_name, arrival_city),
- местное время вылета (scheduled_departure_local, actual_departure_local),
- местное время прибытия (scheduled_arrival_local, actual_arrival_local),
- продолжительность полета (scheduled_duration, actual_duration).

Столбец	Тип	Описание
flight_id	integer	Идентификатор рейса
flight_no	char(6)	Номер рейса
scheduled_departure	timestamptz	Время вылета по расписанию
scheduled_departure_local	timestamp	Время вылета по расписанию,
		местное время в пункте отправления
scheduled_arrival	timestamptz	Время прилёта по расписанию
scheduled_arrival_local	timestamp	Время прилёта по расписанию,
		местное время в пункте прибытия
scheduled_duration	interval	Планируемая продолжительность полета
departure_airport	char(3)	Код аэропорта отправления
departure_airport_name	text	Название аэропорта отправления
departure_city	text	Город отправления
arrival_airport	char(3)	Код аэропорта прибытия
arrival_airport_name	text	Название аэропорта прибытия
arrival_city	text	Город прибытия
status	varchar(20)	Статус рейса
aircraft_code	char(3)	Код самолета, ІАТА
actual_departure	timestamptz	Фактическое время вылета
actual_departure_local	timestamp	Фактическое время вылета,
		местное время в пункте отправления
actual_arrival	timestamptz	Фактическое время прилёта
actual_arrival_local	timestamp	Фактическое время прилёта,
		местное время в пункте прибытия
actual_duration	interval	Фактическая продолжительность полета

Материализованное представление bookings.routes

Таблица рейсов содержит избыточность: из нее можно было бы выделить информацию о маршруте (номер рейса, аэропорты отправления и назначения), которая не зависит от конкретных дат рейсов.

Именно такая информация и составляет материализованное представление routes.

Столбец	Тип	Описание
flight_no departure_airport departure_airport_name departure_city arrival_airport arrival_airport_name arrival_city aircraft_code duration days_of_week	char(6) char(3) text text char(3) text char(3) text text interval integer[]	Номер рейса Код аэропорта отправления Название аэропорта отправления Город отправления Код аэропорта прибытия Название аэропорта прибытия Город прибытия Код самолета, IATA Продолжительность полета Дни недели, когда выполняются рейсы

4. Развернутый анализ БД - описание таблиц, логики, связей и бизнес области (частично можно взять из описания базы данных, оформленной в виде анализа базы данных)

Основной сущностью является бронирование (bookings). В одно бронирование можно включить несколько пассажиров, каждому из которых выписывается отдельный билет (tickets). Билет имеет уникальный номер и содержит информацию о пассажире. Как таковой пассажир не является отдельной сущностью. Как имя, так и номер документа пассажира могут меняться с течением времени, так что невозможно однозначно найти все билеты одного человека; для простоты можно считать, что все пассажиры уникальны. Билет включает один или несколько перелетов (ticket_flights). Несколько перелетов могут включаться в билет в случаях, когда нет нет прямого рейса, соединяющего пункты отправления и назначения (полет с пересадками), либо когда билет взят «туда и обратно». В схеме данных нет жесткого ограничения, но предполагается, что все билеты в одном бронировании имеют одинаковый набор перелетов. Каждый рейс (flights) следует из одного аэропорта (airports) в другой. Рейсы с одним номером имеют одинаковые пункты вылета и назначения, но будут отличаться датой отправления. При регистрации на рейс пассажиру выдается посадочный талон (boarding_passes), в котором указано место в самолете. Пассажир может зарегистрироваться только на тот рейс. который есть у него в билете. Комбинация рейса и места в самолете должна быть уникальной, чтобы не допустить выдачу двух посадочных талонов на одно место. Количество мест (seats) в самолете и их распределение по классам обслуживания зависит от модели самолета (aircrafts), выполняющего рейс. Предполагается, что каждая модель самолета имеет только одну компоновку салона. Схема данных не контролирует, что места в посадочных талонах соответствуют имеющимся в самолете (такая проверка может быть сделана с использованием табличных триггеров или в приложении).

Список отношений

Имя	Тип	Sm	all		Medi	um		Big	Ţ	Описание
aircrafts airports	таблица таблица	16 48	kB kB		16 48			6 kB 8 kB	Ì	Самолеты Аэропорты
boarding_passes bookings	таблица таблица	31	MB MB	:	102 30		42	7 MB 5 MB	ł	Посадочные талоны Бронирования
flights	таблица		MB	İ		MB	1		į.	Рейсы
flights_v	представление		kb	١.	_	kB		9 kB	1	Рейсы
routes seats	мат. предст. таблица		kB kB	-	136 88	кв kВ	1 8	6 kB B kB	ł	Маршруты Места
ticket_flights	таблица	64		:	145		51		i	Перелеты
tickets	таблица	i 47	MB	i :	107	MB	38	1 MB	ıi.	Билеты

Таблица bookings.aircrafts

Каждая модель воздушного судна идентифицируется своим трехзначным кодом (aircraft_code). Указывается также название модели (model) и максимальная дальность полета в километрах (range).

```
| Модификаторы |
   Столбец
              | Тип
                                                     Описание
aircraft_code | char(3) | NOT NULL
                                       | Код самолета, ІАТА
              text
                         NOT NULL
                                         Модель самолета
range
              | integer | NOT NULL
                                       Максимальная дальность полета, км
Индексы:
   PRIMARY KEY, btree (aircraft_code)
Ограничения-проверки:
   CHECK (range > 0)
Ссылки извне:
   TABLE "flights" FOREIGN KEY (aircraft_code)
       REFERENCES aircrafts(aircraft_code)
   TABLE "seats" FOREIGN KEY (aircraft_code)
       REFERENCES aircrafts(aircraft_code) ON DELETE CASCADE
```

Таблица bookings.airports

Аэропорт идентифицируется трехбуквенным кодом (airport_code) и имеет свое имя (airport_name). Для города не предусмотрено отдельной сущности, но название (city) указывается и может служить для того, чтобы определить аэропорты одного города. Также указывается широта (longitude), долгота (latitude) и часовой пояс (timezone).

```
Столбец
              1 Тип
                       | Модификаторы |
                                                  Описание
airport_code | char(3) | NOT NULL
                                      | Код аэропорта
airport_name | text
                         NOT NULL
                                        Название аэропорта
                         NOT NULL
city
               text
                                      | Город
longitude
              float
                       I NOT NULL
                                      Координаты аэропорта: долгота
latitude
              | float
                         NOT NULL
                                       Координаты аэропорта: широта
timezone
             text
                       NOT NULL
                                      | Временная зона аэропорта
Индексы:
   PRIMARY KEY, btree (airport_code)
Ссылки извне:
   TABLE "flights" FOREIGN KEY (arrival_airport)
       REFERENCES airports(airport_code)
   TABLE "flights" FOREIGN KEY (departure_airport)
        REFERENCES airports(airport_code)
```

Таблица bookings.boarding_passes

При регистрации на рейс, которая возможна за сутки до плановой даты отправления, пассажиру выдается посадочный талон. Он идентифицируется также, как и перелет — номером билета и номером рейса. Посадочным талонам присваиваются последовательные номера (boarding_no) в порядке регистрации пассажиров на рейс (этот номер будет уникальным только в пределах данного рейса). В посадочном талоне указывается номер места (seat_no).

```
Столбец
                            | Модификаторы |
                                                       0писание
             | char(13) | NOT NULL
                                            | Номер билета
ticket no
 flight_id
              integer
                              NOT NULL
                                              Идентификатор рейса
boarding_no | integer
                            NOT NULL
                                            Номер посадочного талона
              | varchar(4) | NOT NULL
                                            Номер места
seat_no
    PRIMARY KEY, btree (ticket_no, flight_id)
   UNIQUE CONSTRAINT, btree (flight_id, boarding_no)
UNIQUE CONSTRAINT, btree (flight_id, seat_no)
Ограничения внешнего ключа:
    FOREIGN KEY (ticket_no, flight_id)
        REFERENCES ticket_flights(ticket_no, flight_id)
```

Таблица bookings.bookings

Пассажир заранее (book_date, максимум за месяц до рейса) бронирует билет себе и, возможно, нескольким другим пассажирам. Бронирование идентифицируется номером (book_ref, шестизначная комбинация букв и цифр).

Поле total_amount хранит общую стоимость включенных в бронирование перелетов всех пассажиров.

```
| Модификаторы |
  Столбец
                    Тип
                                                      Описание
                           NOT NULL
          | char(6)
| timestamptz
book ref
                                          I Номер бронирования
                                            | Дата бронирования
 book date
                             I NOT NULL
 total_amount | numeric(10,2) | NOT NULL
                                           Полная сумма бронирования
Индексы:
   PRIMARY KEY, btree (book_ref)
Ссылки извне:
   TABLE "tickets" FOREIGN KEY (book_ref) REFERENCES bookings(book_ref)
```

Таблица bookings.flights

Естественный ключ таблицы рейсов состоит из двух полей — номера рейса (flight_no) и даты отправления (scheduled_departure). Чтобы сделать внешние ключи на эту таблицу компактнее, в качестве первичного используется суррогатный ключ (flight_id).

Рейс всегда соединяет две точки — аэропорты вылета (departure_airport) и прибытия (arrival_airport). Такое понятие, как «рейс с пересадками» отсутствует: если из одного аэропорта до другого нет прямого рейса, в билет просто включаются несколько необходимых рейсов.

У каждого рейса есть запланированные дата и время вылета (scheduled_departure) и прибытия (scheduled_arrival). Реальные время вылета (actual_departure) и прибытия (actual_arrival) могут отличаться: обычно не сильно, но иногда и на несколько часов, если рейс задержан.

Статус рейса (status) может принимать одно из следующих значений:

- Scheduled Рейс доступен для бронирования. Это происходит за месяц до плановой даты вылета; до этого запись о рейсе не существует в базе данных.
- On Time Рейс доступен для регистрации (за сутки до плановой даты вылета) и не задержан.
- Delayed Рейс доступен для регистрации (за сутки до плановой даты вылета), но задержан.
- Departed Cамолет уже вылетел и находится в воздухе.
- Arrived Самолет прибыл в пункт назначения.
- Cancelled Рейс отменен.

```
Столбец
                            Тип
                                    | Модификаторы |
                                                               0писание
                                     NOT NULL
flight_id
                      serial
                                                    | Идентификатор рейса
 flight_no
                       char(6)
                                      NOT NULL
                                                     Номер рейса
 scheduled_departure |
                       timestamptz
                                                      Время вылета по расписанию
                                      NOT NULL
                                      NOT NULL
 scheduled_arrival
                       timestamptz |
                                                     Время прилёта по расписанию
                                      NOT NULL
departure_airport
                       char(3)
                                                     Аэропорт отправления
 arrival_airport
                       char(3)
                                      NOT NULL
                                                     Аэропорт прибытия
                                                     Статус рейса
 status
                       varchar(20)
                                      NOT NULL
aircraft_code
                       char(3)
                                      NOT NULL
                                                     Код самолета, ІАТА
actual_departure
                                                     Фактическое время вылета
                      | timestamptz
actual_arrival
                      | timestamptz |
                                                    | Фактическое время прилёта
Индексы:
    PRIMARY KEY, btree (flight_id)
    UNIQUE CONSTRAINT, btree (flight_no, scheduled_departure)
Ограничения-проверки:
    CHECK (scheduled_arrival > scheduled_departure)
    CHECK ((actual_arrival IS NULL)
          ((actual_departure IS NOT NULL AND actual_arrival IS NOT NULL)
            AND (actual_arrival > actual_departure)))
    CHECK (status IN ('On Time', 'Delayed', 'Departed', 
'Arrived', 'Scheduled', 'Cancelled'))
Ограничения внешнего ключа:
    FOREIGN KEY (aircraft_code)
        REFERENCES aircrafts(aircraft_code)
    FOREIGN KEY (arrival_airport)
        REFERENCES airports(airport_code)
    FOREIGN KEY (departure_airport)
        REFERENCES airports(airport_code)
    TABLE "ticket_flights" FOREIGN KEY (flight_id)
        REFERENCES flights(flight_id)
```

Таблица bookings.products

В данной таблице, видимо, содержатся товары, которыми можно воспользоваться на борту самолетов и цена пользования за каждый из них.

Таблица bookings.seats

Места определяют схему салона каждой модели. Каждое место определяется своим номером (seat_no) и имеет закрепленный за ним класс обслуживания (fare_conditions) — Economy, Comfort или Business.

Столбец	Тип	Модификаторы	Описание
aircraft_code seat_no fare_conditions	char(3)	NOT NULL NOT NULL NOT NULL	Код самолета, IATA Номер места Класс обслуживания
Индексы: PRIMARY KEY,	btree (aircraft	_code, seat_no)
Ограничения-прове	рки:	_ , ,	
CHECK (fare_c	onditions IN ('	Economy', 'Com	fort', 'Business'))
Ограничения внешн			
	aircraft_code)		
REFERENCE	S aircrafts(air	craft_code) ON	DELETE CASCADE

Таблица bookings.ticket_flights

Перелет соединяет билет с рейсом и идентифицируется их номерами.

Для каждого перелета указываются его стоимость (amount) и класс обслуживания (fare conditions).

```
Столбец
                                    | Модификаторы |
                                                              0писание
ticket_no | char(13) | NOT NULL | Номер билета flight_id | integer | NOT NULL | Идентификатор рейса
fare_conditions | varchar(10) | NOT NULL | Класс обслуживания amount | numeric(10,2) | NOT NULL | Стоимость перелета
Индексы:
    PRIMARY KEY, btree (ticket_no, flight_id)
Ограничения-проверки:
    CHECK (amount >= 0)
    CHECK (fare_conditions IN ('Economy', 'Comfort', 'Business'))
Ограничения внешнего ключа:
    FOREIGN KEY (flight_id) REFERENCES flights(flight_id)
    FOREIGN KEY (ticket_no) REFERENCES tickets(ticket_no)
Ссылки извне:
    TABLE "boarding_passes" FOREIGN KEY (ticket_no, flight_id)
         REFERENCES ticket_flights(ticket_no, flight_id)
```

Таблица bookings.tickets

Билет имеет уникальный номер (ticket_no), состоящий из 13 цифр.

Билет содержит идентификатор пассажира (passenger_id) — номер документа, удостоверяющего личность, — его фамилию и имя (passenger_name) и контактную информацию (contact_date).

Ни идентификатор пассажира, ни имя не являются постоянными (можно поменять паспорт, можно сменить фамилию), поэтому однозначно найти все билеты одного и того же пассажира невозможно.

Столбец	Тип	Модификаторы	Описание
ticket_no book_ref passenger_id passenger_name contact_data Индексы:	char(13) char(6) varchar(20) text jsonb	NOT NULL NOT NULL NOT NULL NOT NULL	Номер билета Номер бронирования Идентификатор пассажира Имя пассажира Контактные данные пассажира
PRIMARY KEY, Ограничения внеш FOREIGN KEY Ссылки извне:	(book_ref) REF	ERENCES bookings	s(book_ref) t_no)

5. Список SQL запросов с описанием логики их выполнения

Запрос	Описание			
1.В каких городах больше одного аэропорта?				
Вариант №1:	Обратились к таблице «airports_data».			
select ad.city, count(ad.airport_name)	Больше одного аэропорта имеют города			
from airports_data ad	Москва и Ульяновск.			
group by ad.city	WOOKBA W FIIBAHOBEK.			
having count(ad.airport_name) > 1				
Вариант №2:				
SELECT a.airport_code as code, a.airport_name,				
a.city, a.timezone				
FROM airports a				
WHERE a.city IN (
SELECT aa.city				
FROM airports aa				
GROUP BY aa.city				
HAVING COUNT(*) > 1				
)				
ORDER BY a.city, a.airport_code;				
2.В каких аэропортах есть рейсы, выполняемые	самопетом с максимальной			
дальностью перелета?	camone rom e makenmanion			
select distinct a.airport_code, a.airport_name, a.city,	Берем за основу таблицу airports.			
ar.model, ar.range	Присоединяем таблицу aircrafts через			
from airports a	таблицу flights для получения данных о			
join flights f on f.departure_airport = a.airport_code	дальности полёта.			
join aircrafts ar on ar.aircraft_code = f.aircraft_code	Так как функция тах не может			
where ar.range = (select max(ar.range) from aircrafts	использоваться в where напрямую из-за			
ar);	этапа выполнения запросов, то			
	оборачиваем в подзапрос.			
3.Вывести 10 рейсов с максимальным временем задержки вылета				
select f.flight_id, f.flight_no, f.scheduled_departure,	Мы обратились к таблице flights и			
f.actual_departure, f.actual_departure -	выбрали те строки, где фактическое			
f.scheduled_departure as time_fail	время вылета больше, чем время вылета			
from flights f	по расписанию. Также мы создали новый			
where f.actual_departure > f.scheduled_departure	столбец time_fail, в котором вычислили			
order by time_fail	время задержки вылетов самолетов.			
desc limit 10;	Ранжировали все по новому столбцу и			
,	вывели первые 10 полетов с			
	максимальным временем задержки.			
4.Были ли брони, по которым не были получень				
SELECT count(*)				
FROM (tickets t2 JOIN boarding_passes bp				
ON t2.ticket_no = bp.ticket_no)				
LEFT OUTER JOIN tickets t3				
ON t2.ticket_no = bp.ticket_no				
WHERE t2.book_ref IS NOT NULL AND				
bp.boarding_no is NULL;				
5.Найдите свободные места для каждого рейса,	их % отношение к общему количеству			

 Найдите свободные места для каждого рейса, их % отношение к общему количеству мест в самолете.

Добавьте столбец с накопительным итогом - суммарное количество вывезенных пассажиров из аэропорта за день. Т.е. в этом столбце должна отражаться сумма - сколько человек уже вылетело из данного аэропорта на этом или более ранних рейсах

за сегодняшний день.

SELECT ts.flight_id, ts.flight_no,

ts.scheduled_departure_local, ts.departure_city, ts.arrival city, a.model, ts.fact passengers,

ts.total_seats,

round(ts.fact_passengers::numeric/

ts.total_seats::numeric, 2) AS fraction FROM (SELECT f.flight id, f.flight no,

f.scheduled_departure_local,

f.departure_city, f.arrival_city,

f.aircraft_code,

count(tf.ticket_no) AS fact_passengers,

(SELECT count(s.seat_no)

FROM seats s

WHERE s.aircraft_code = f.aircraft_code

) AS total_seats

FROM flights_v f JOIN ticket_flights tf

ON f.flight_id = tf.flight_id

WHERE f.status = 'Arrived'

GROUP BY 1, 2, 3, 4, 5, 6

) AS ts JOIN aircrafts AS a

ON ts.aircraft code = a.aircraft code

ORDER BY ts.scheduled_departure_local;

С помощью данного запроса мы выяснили степень заполнения самолетов на всех рейсах.

Запрос выдает нам не только число билетов, проданных на данный рейс, и общее число мест в самолете, но также вычисляет отношение этих двух показателей.

Самый внутренний подзапрос — total_seats — выдает общее число мест в самолете. Этот подзапрос выполняется для каждой строки, обрабатываемой во внешнем подзапросе, то есть для каждой модели самолета. Для подсчета числа проданных билетов использовалось соединение представления flights_v с таблицей ticket_flights с последующей группировкой строк и вызовом функции count.

6.Найдите процентное соотношение перелетов по типам самолетов от общего количества.

Select aircraft_code, round (count

(flight_no)*100./(select count (flight_no) from flights), 1)

From flights

Group by aircraft_code

Мы обратились к таблице flights. Вычислили процентное соотношение перелетов от общего количества с помощью функции round. И сгруппировали все по типам самолетов.

7.Были ли города, в которые можно добраться бизнес - классом дешевле, чем экономклассом в рамках перелета?

with min_busin as (select ticf.fare_conditions

,min(amount) as business_min

from ticket_flights ticf

join flights_v f on f.flight_id =ticf.flight_id

where ticf.fare_conditions='Business'

group by ticf.flight_id,ticf.fare_conditions

order by ticf.flight_id asc),

max_econ as (select ticf.fare_conditions ,max(amount

) as max econ

from ticket flights ticf

join flights_v f on f.flight_id =ticf.flight_id

where ticf.fare_conditions='Economy'

group by ticf.flight id,ticf.fare conditions

order by ticf.flight_id asc)

select business_min, max_econ

from min busin

join max_econ on ticf.flight_id = f.flight_id

where business min < max econ

order by business min asc

8. Между какими городами нет прямых рейсов?

С помощью СТЕ мы создали новые столбцы на основе таблицы ticket_flights, чтобы нам вывелись значения по каждому полету — максимальная цена по эконому и минимальная цена по бизнесу. Далее мы сравнили построчно эти два новых столбца, прописав условие, где максимальный эконом будет больше минимального бизнеса. Далее к сожалению не смогла прописать запрос..

with p_air as
(select a.city->>'ru' as c_from,
b.city->>'ru' as c_to
from airports_data a, airports_data b
where a.city <> b.city)
select distinct *
from p_air
except
select fl.city_dp, fl.city_ar
from fl city fl;

В запросе было использовано декартово произведение, представления и оператор Exept (выводит только те данные из первого набора строк, которых нет во втором наборе).

9.Вычислите расстояние между аэропортами, связанными прямыми рейсами, сравните с допустимой максимальной дальностью перелетов в самолетах, обслуживающих эти рейсы.

create view d c as(select flight id, flight no, departure airport, departure city, aircraft code, a.latitude ,a.longitude from flights_v fv join airports a on fv.departure airport = a.airport code) create view a c as (select flight_id, flight_no, arrival_airport, arrival_city, aircraft_code, a.latitude, a.longitude from flights v fv join airports a on fv.arrival airport = a.airport code) create view calculation as(select d_c.flight_id, departure_city, d_c.latitude as dLatitude, d c.longitude as dLogitude, arrival city, a c.latitude as aLatitude, a c.longitude as aLongitude, d_c.aircraft_code from d c join a c on d c.flight id = a c.flight id) with final as(select distinct c.departure city, c.arrival city, c.aircraft code. radians(acosd(sind(dLatitude)*sind(alatitude) + cosd(dlatitude)*cosd(alatitude)*cosd(dlogitude alongitude))) * 6371 as distance_km, a."range" as max aircraft distance from calculation c join aircrafts a on c.aircraft_code = a.aircraft_code order by departure city) select *, (case when distance km < max aircraft distance then 'flight will be great' when distance_km > max_aircraft_distance then 'flight will stop' end) from final

Добавляю данные о широте и долготе аэропорта вылета Добавляю данные о широте и долготе аэропорта прилета создаю представление, где объединены начальный и конечный город и их координаты Рассчитываю дистанцию между аэропортами и добавляю информацию о максимальной дальности полета самолета Сравниваю расстояние между аэропортами и максимальную дальность полета самолета