Math Module 3B Cheat Sheet

${\bf Hankertrix}$

October 16, 2023

Contents

1	Definitions				
	1.1	Riemann sum	3		
	1.2	Riemann integral	3		
	1.3	Antiderivatives	4		
	1.4	Improper integrals	4		
2	Theorems and lemmas				
	2.1	Continuous functions are integrable	5		
	2.2	Linearity	5		
	2.3	Additivity	5		
	2.4	The value of the integral follows the output of the function .	6		
	2.5	Triangle inequality for integrals	6		
	2.6	Continuity	6		
	2.7	The integral mean value theorem	6		
	2.8	The fundamental theorem of calculus	7		
	2.9	Newton-Leibniz' Formula	7		
3	Var	iable of integration	7		
4	Wh	at kind of functions are integrable?	7		
5	Nor	n-integrable functions	8		
	5.1	Example	8		
	5.2	Unbounded functions are not integrable	8		
6	Ave	rage value of a function	9		

7	App	Applications to physics			
	7.1	Work	10		
	7.2	Centre of mass	11		
	7.3	Continuous mass distribution	11		

1 Definitions

1.1 Riemann sum

A Riemann sum is the sum of all the areas of the rectangles under a curve.

$$\sum_{i=1}^{n} f(x_i^*) \Delta x_i$$

The limit of a Riemann sum is the area under a curve as the maximum width of a rectangle approaches 0 and the number of rectangles approaches infinity. Hence, the area under the curve is:

$$\lim_{\Delta x \to 0} \sum_{i=1}^{n} f(x_i^*) \Delta x_i$$

1.2 Riemann integral

Given a function $f:[a,b]\to\mathbb{R}$, a Riemann sum is:

$$\sum_{i=1}^{n} f(x_i^*) \Delta x_i, \quad \Delta x_i = a_i - a_{i-1}$$

Points $a = a_0 < a_1 < \cdots < a_n = b$ form a **partition** of the interval [a, b], and x_i^* are **sample points**. Further, let $\Delta x = max\{\Delta x_i : i = 1, \dots, n\}$. Suppose the limit of the Riemann sums **exists** and is independent of our choice of partition or sample points. Then we say that f is integrable on [a, b] and the limit below is called the **Riemann integral** of f from a to b.

$$\lim_{\Delta x \to 0} \sum_{i=1}^{n} f(x_i^*) \Delta x_i = \int_a^b f(x) \, dx$$

Also, for a = b and a > b, we define:

$$\int_{a}^{a} f(x) \, dx = 0, \quad \int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx$$

1.3 Antiderivatives

Given a function f(x), any function satisfying F' = f is called an **antiderivative** (or primitive function) to the function f.

If F' = G' = f on an interval I, then F(x) = G(x) + C on I for some constants C. This means that on an interval, different antiderivatives of a function can only differ by a constant.

1.4 Improper integrals

If f(x) is unbounded on (a, b], but integrable (and hence bounded) on [c, b] for every c > a, put:

$$\int_{a}^{b} f(x) dx = \lim_{c \to a+} \int_{c}^{b} f(t) dt$$

The left-hand side of the equation above is called an **improper integral**, and if the limit on the right exists, we say that the improper integral **converges**. Otherwise, we say that it **diverges**.

Similarly, we can consider the following improper integrals:

If f(x) is unbounded on [a, b] but integrable on [a, c] for c < b, put:

$$\int_{a}^{b} f(x) dx = \lim_{c \to b^{-}} \int_{a}^{c} f(t) dt$$

And also:

$$\int_{a}^{+\infty} f(x) dx = \lim_{R \to +\infty} \int_{a}^{R} f(t) dt$$

$$\int_{-\infty}^{b} f(x) dx = \lim_{R \to -\infty} \int_{R}^{b} f(t) dt$$

1.4.1 Example

$$\int_0^1 \frac{1}{\sqrt{x}} \, dx$$

Here, f is unbounded on (0,1] (not even defined at x=0), but for $c \in (0,1]$, the integral below exists:

$$\int_{c}^{1} \frac{1}{\sqrt{x}} \, dx$$

Hence, $\int_0^1 \frac{1}{\sqrt{x}} dx$ is an improper integral, that can be evaluated as:

$$\int_{0}^{1} \frac{1}{\sqrt{x}} dx = \lim_{c \to 0+} \int_{c}^{1} \frac{1}{\sqrt{x}} dx$$

This is only true if the limit exists.

2 Theorems and lemmas

2.1 Continuous functions are integrable

If a function is continuous on [a, b], then it is integrable on [a, b].

2.2 Linearity

If f and g are both integrable on [a, b] and $c, d \in \mathbb{R}$, then cf + dg is also integrable on [a, b] and:

$$\int_{a}^{b} [cf(x) + dg(x)] dx = c \int_{a}^{b} f(x) dx + d \int_{a}^{b} g(x) dx$$

2.3 Additivity

For f integrable on an interval containing the points a, b, c, we have:

$$\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx$$

2.4 The value of the integral follows the output of the function

If f and g are both integrable on [a,b] and if:

$$f(x) \le g(x)$$
, for all $x \in [a, b]$

Then:

$$\int_{a}^{b} f(x) \, dx \le \int_{b}^{a} g(x) \, dx$$

2.5 Triangle inequality for integrals

Note that the triangle inequality $|x+y| \le |x| + |y|$ generalises to sums with more terms, i.e.

$$\left| \sum_{i=i}^{n} x_i \right| \le \sum_{i=i}^{n} |x_i|$$

Using the definition of integrals and the properties of limits, and given that f and |f| are integrable on [a, b], it also follows that:

$$\left| \int_{a}^{b} f(x) \, dx \right| \leq \int_{a}^{b} |f(x)| \, dx$$

2.6 Continuity

Given an integrable function $f:[a,b]\to\mathbb{R}$ and let

$$F(x) = \int_{a}^{x} f(t) dt$$

Then $F \in C([a,b])$. This is to show that for every $x_0 \in [a,b]$, $\lim_{x\to x_0} F(x) = F(x_0)$

2.7 The integral mean value theorem

Suppose $f \in C([a,b])$. Then there exists a point $c \in (a,b)$ such that:

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

2.8 The fundamental theorem of calculus

Suppose that $f \in C([a,b])$ and let $F : [a,b] \to \mathbb{R}$ be defined by:

$$F(x) = \int_{a}^{x} f(t) dt$$

Then F'(x) = f(x) for any $x \in (a, b)$.

2.9 Newton-Leibniz' Formula

If f is continuous and F' = f on [a, b], then:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
$$= [F(x)]_{a}^{b}$$
$$= F(x)|_{a}^{b}$$

3 Variable of integration

The name for the variable of integration is like a summation index. It is **arbitrary**. However, please **avoid** writing:

$$\int_{a}^{x} f(x) dx$$

4 What kind of functions are integrable?

The definition requires that for f to be integrable on [a, b], the limit $\lim_{\Delta x \to 0} \sum_{i=1}^{n} f(x_i^*) \Delta x_i$ must exist and be independent of how the partition points a_i and sample points x_i^* are chosen.

A previous theorem stated that **continuous** functions on [a, b] are integrable.

Also, if $f:[a,b]\to\mathbb{R}$ is **bounded** and is continuous on [a,b] except at finitely many points, f is still integrable. Moreover, changing the value of f(x) at only finitely many points, does not affect the value of the integral $\int_a^b f(x) \, dx$.

5 Non-integrable functions

5.1 Example

Let $f:[0,1]\to\mathbb{R}$ be given by:

$$f(x) = \begin{cases} 1 & \text{for } x \in \mathbb{Q} \\ 0 & \text{for } x \notin \mathbb{Q} \end{cases}$$

Is f(x) integrable on [0,1]?

Let $0 = a_0 < a_1 < a_2 < \dots < a_n = 1$ be a partition of [0,1]. In each subinterval $[a_{i-1}, a_i]$, we can pick a point $x_i^* \in \mathbb{Q}$ and a point $t_i^* \notin \mathbb{Q}$.

With sample points x_i^* , we get:

$$\sum_{i=1}^{n} f(x_i^*) \Delta x_i = \sum_{i=1}^{n} 1 \cdot \Delta x_i = 1 \to 1 \text{ as } \Delta x \to 0$$

On the other hand, with sample points t_i^* , we get:

$$\sum_{i=1}^{n} f(t_i^*) \Delta x_i = \sum_{i=1}^{n} 0 \cdot \Delta x_i = 0 \to 0 \text{ as } \Delta x \to 0$$

Since the limit of Riemann sums as $\Delta x \to 0$ is not independent of our choice of sample points, the function f is **not integrable**.

5.2 Unbounded functions are not integrable

If f is unbounded on [a, b], then f is **not** integrable on [a, b].

6 Average value of a function

For a finite set of numbers a_1, a_2, \ldots, a_n , their mean (average) value a_{avg} is:

$$a_{avg} = \frac{a_1 + a_2 + \ldots + a_n}{n}$$

The idea is that if we replaced all the different a_i with one fixed value, the average a_{avg} , we would still have the same sum, i.e.

$$a_{avg} + a_{avg} + \ldots + a_{avg} = na_{avg} = a_1 + a_2 + \ldots + a_n$$

$$\sum_{i=1}^{n} a_{avg} = \sum_{i=1}^{n} a_i$$

The average value f_{avg} of a function $f:[a,b]\to\mathbb{R}$ we choose such that if we replace y=f(x) with the constant $f=f_{avg}$, we still get the same integral.

7 Applications to physics

7.1 Work

The amount of work W is the product of the force F and the distance s the object is moved:

$$W = F \cdot s$$

This assumes that the force is **constant** and acts in the direction of motion.

If the force is not constant, suppose F = F(x).

Let's assume that F(x) is continuous, and moves an object from x = a to x = b. Divide [a, b] into n subintervals, $[a_{i-1}, a_i]$ where:

$$a = a_0 < a_1 < a_2 < \ldots < a_n = b$$

Let $\Delta x_i = a_i - a_{i-1}$ and take $x_i^* \in [a_{i-1}, a_i]$. Since F is continuous, if Δx_i is small, we have:

$$F \approx F(x_i^*), \quad \text{for } x \in [a_{i-1}, a_i]$$

The work ΔW_i required to move the object along $[a_{i-1}, a_i]$ is:

$$\Delta W_i \approx F(x_i^*) \Delta x_i$$

And the total work to move from a to b is:

$$W = \sum_{i=1}^{n} \Delta W_i \approx \sum_{i=1}^{n} F(x_i^*) \Delta x_i$$

Taking more but smaller subintervals, the approximation gets better, so:

$$W \int_{a}^{b} F(x) \, dx$$

7.2 Centre of mass

Consider a system of n masses m_i at positions x_i respectively (i = 1, ..., n).

It's centre of mass, is the point \bar{x} about which the total moment is zero.

$$\sum_{i=1}^{n} (x_i - \bar{x}) m_i = \sum_{i=1}^{n} x_i m_i - \bar{x} \sum_{i=1}^{n} m_i = 0$$

I.e.

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i m_i}{\sum_{i=1}^{n} m_i} = \frac{M_{x=0}}{m}$$

Where $M_{x=0}$ is the total moment about x=0 and m is the total mass.

7.3 Continuous mass distribution

Consider a one-dimensional distribution of mass with continuously variable line density $\rho(x)$ along the interval [a, b].

Consider an element of length dx at position x. It has mass $dm = \rho(x) dx$ and has a moment $x = x_0$ of:

$$dM_{x=x_0} = (x - x_0) dm = (x - x_0) \rho(x) dx$$

It's centre of mass, is the point \bar{x} about which the total moment is zero, i.e.

$$\int_{x=a}^{b} dM_{x=\bar{x}} = \int_{a}^{b} (x - \bar{x})\rho(x) dx = \int_{a}^{b} x\rho(x) dx - \bar{x} \int_{a}^{b} \rho(x) dx = 0$$

Hence:

$$\bar{x} = \frac{\int_a^b x \rho(x) \, dx}{\int_a^b \rho(x) \, dx} = \frac{M_{x=0}}{m}$$

Where $M_{x=0}$ a is the total moment about x=0 and m is the total mass.