### MATO2014 - Planejamento de Experimentos II Introdução aos delineamentos fatoriais

Rodrigo Citton P. dos Reis rodrigocpdosreis@gmail.com

Universidade Federal do Rio Grande do Sul Instituto de Matemática e Estatística

Departamento de Estatística

### Porto Alegre, 2018

### Príncipios e definições básicas

#### Fatores e delineamentos fatoriais

- Muitos experimentos envolvem o estudo de efeitos de dois ou mais fatores.
- Em geral, **delineamentos fatoriais** são mais eficientes para este tipo de experimento.
- Por delineamento fatorial, queremos dizer que em cada replicação completa do experimento todas as possíveis combinações são investigadas.
  - Por exemplo, se existem a níveis do fator A e b níveis do fator B, cada replicação contém todas as combinações de tratamentos ab.
- Quando os fatores são organizados em um delineamento fatorial, eles costumam ser cruzados.

## Fatores e delineamentos fatoriais (comentários)

- De maneira geral, quando se fala de fatoriais não se está falando em delineamentos de experimentos, e sim em delineamentos de tratamentos.
  - No entanto, como será visto no curso, existem algumas modificações nos delineamentos básicos que só podem ser aplicadas aos ensaios fatoriais.

## Fatores e delineamentos fatoriais (comentários)

- Chama-se de fator àquilo que se quer testar e de níveis às suas diferentes manifestações.
  - Por exemplo, em estudos de adubação de plantas, três elementos - nitrogênio (N), fósforo (P) e potássio (K) são considerados os macronutrientes.
    - Assim, cada elemento é considerado um fator, e suas diferentes doses de aplicação níveis.
    - Se apenas um elemento for testado num ensaio, cada nível será chamado de tratamento.
    - Por sua vez, se dois ou três elementos forem testados, cada combinação entre seus níveis é que será declarada como um tratamento.
- Os fatores podem ser **quantitativos**: doses, espaçamento entre plantas, etc; ou **qualitativos**: cultivares, etc.

#### Efeitos principais

- O efeito de um fator é definido como a mudança na resposta produzida pela mudança no nível do fator.
  - Este é frequentemente chamado de efeito principal porque se refere aos principais fatores no experimento.

Experimento fatorial com dois fatores com dois níveis



#### Efeitos principais

$$A=ar{y}_{A^{+}}-ar{y}_{A^{-}}=rac{40+52}{2}-rac{20+30}{2}=21$$

- Aumento na média da resposta de 21 unidades.
- ullet Similarmente, temos que o efeito principal de B é

$$B = ar{y}_{B^+} - ar{y}_{B^-} = rac{30 + 52}{2} - rac{20 + 40}{2} = 11$$

#### Efeito de interação

- Em alguns experimentos, nós poderemos encontrar que a diferença na resposta entre os níveis de um fator não é o mesmo em todos os níveis dos outros fatores.
- Quando isto ocorre, existe uma interação entre os fatores.
   Outro experimento fatorial com dois fatores com dois níveis



#### Efeito de interação

ullet No nível  $B^-$ , o efeito de A é

$$A = 50 - 20 = 30$$

ullet No nível  $B^+$ , o efeito de A é

$$A = 12 - 40 = -28$$

ullet A magnitude do efeito de interação é a diferença média desses dois efeitos A, ou

$$AB = \frac{-28 - 30}{2} = -29$$

#### Efeito de interação





experime

#### Representação por modelo de regressão

$$y = eta_0 + eta_1 x_1 + eta_2 x_2 + eta_{12} x_1 x_2 + \epsilon$$

- y é a resposta
- β's são parâmetros
- $x_1$  representa o fator A (escala contínua de -1 a 1)
- $x_2$  representa o fator B (escala contínua de -1 a 1)
- ε é o erro aleatório

## Representação por modelo de regressão (ausência de interação)

$$\hat{y} = 35.5 + 10.5x_1 + 5.5x_2 + 0.5x_1x_2 pprox 35.5 + 10.5x_1 +$$





## Representação por modelo de regressão (presença de interação)

$$\hat{y} = 35.5 + 10.5x_1 + 5.5x_2 + 8x_1x_2$$





"Interação é uma forma de curvatura"

#### Efeitos principais vs efeito de interação

 Geralmente quando um efeito de interação é grande, os efeitos principais correspondentes têm pouco significado prático.



- $ullet A=ar y_{A^+}- ar y_{$
- No entanto, efeitos de A vemos que is
  - lacktriangle O fator A

#### Efeitos principais vs efeito de interação

- Ou seja, o conhecimento da interação AB é mais útil que o conhecimento do efeito principal.
- Uma interação significativa geralmente irá mascarar a significância dos efeitos principais.
- Na presença de interação significativa, o pesquisador deve usualmente examinar os níveis de um fator, fator A, com os níveis do outro fator fixados para obter conclusões sobre efeito principal de A.

# Delineamento fatorial com dois fatores

#### Delineamento fatorial com dois fatores

- Os tipos de delineamentos fatoriais mais simples envolvem apenas dois fatores ou conjuntos de tratamentos.
- Existem a níveis do fator A e b níveis do fator B, e estes são organizados em um delineamento fatorial.



- Um engenheiro está desenhando uma bateria para ser usada em um dispositivo que estará sujeita a variações de temperatura.
  - Três tipos de materiais (MT) são possíveis para a fabricação da bateria.
  - Três temperaturas, consistentes com as temperaturas do ambiente de uso.
  - Quatro baterias foram testadas em cada combinação de material e temperatura.
- Delineamento fatorial  $3^2$ .

| Material Type  1 | Temperature (°F) |     |     |     |     |     |
|------------------|------------------|-----|-----|-----|-----|-----|
|                  | 15               |     | 70  |     | 125 |     |
|                  | 130              | 155 | 34  | 40  | 20  | 70  |
|                  | 74               | 180 | 80  | 75  | 82  | 58  |
| 2                | 150              | 188 | 136 | 122 | 25  | 70  |
|                  | 159              | 126 | 106 | 115 | 58  | 45  |
| 3                | 138              | 110 | 174 | 120 | 96  | 104 |
|                  | 168              | 160 | 150 | 139 | 82  | 60  |

- 1. Quais os efeitos do tipo e temperatura do material na vida?
- 2. Existe uma escolha de material que daria vida longa, independentemente da temperatura (um **produto robusto**)?



- a níveis do fator A; b níveis do fator B; n replicações.
- Este é um delineamento completamente aleatorizado.



#### O modelo de efeitos:

$$y_{ijk}=\mu+ au_i+eta_j+( aueta)_{ij}+\epsilon_{ijk}, i=1,\ldots,a, j=1,\ldots,$$

- $\bullet\,$  Em um experimento fatorial com dois fatores, os fatores A e B são de igual interesse.
- Especificamente, estamos interessados em testar
   hipóteses sobre a igualdade dos efeitos de tratamento das linhas
- $H_0: au_1= au_2=\ldots= au_a=0 \quad vs. \quad H_1: ext{pelo menos um}$  e a igualdade dos efeitos de tratamento das colunas
- $H_0:eta_1=eta_2=\ldots=eta_b=0\quad vs.\quad H_1: ext{pelo menos um}$
- Também estamos interessados em determinar em que linha e coluna os tratamentos interagem
- $H_0: ( aueta)_{ij} = 0$  vs.  $H_1: ext{pelo menos um } ( aueta)_{ij} 
  eq 0$

- Pergunta: O que estas hipóteses representam na prática? - Cenas dos próximos capítulos: Análise de variância de dois fatores

# Criando um planejamento fatorial com dois fatores no R

```
D <- expand.grid(MT = 1:3, T = c(15, 70, 125))
D
```

```
## MT T
## 1 1 15
## 2 2 15
## 3 3 15
## 4 1 70
## 5 2 70
## 6 3 70
## 7 1 125
## 8 2 125
## 9 3 125
```

```
D <- rbind(D, D, D, D)
set.seed(2591)
D <- D[order(sample(1:36)), ]
BatteryDes <- D[ c( "MT", "T" )]
BatteryDes
write.csv(BatteryDes, file = "BatteryDes.csv", row.names = FALSE)</pre>
```

# As vantagens dos delineamentos fatoriais

#### Para casa

- Discuta as vantagens dos delineamentos fatoriais em comparação com o delineamento um fator por vez.
  - Veja Czitrom, V. "One-Factor-at-a-Time Versus Designed Experiments". The American Statistician, 53:126-131, 1999.





