INTERROGATION 2 MERCREDI 3 AVRIL 2024 DURÉE : 45 MINUTES

Toutes les réponses doivent être rigoureusement justifiées. Les documents, calculatrices et objets connectés ne sont pas autorisés.

Questions de cours : Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I. Montrer que si la série $\sum f_n$ converge normalement sur I alors elle converge uniformément sur I.

Exercice.

Pour
$$x \in]0, +\infty[$$
 et $n \in \mathbb{N}^*$, on pose $f_n(x) = \frac{1}{n+n^3x}$.

On étudie la série $\sum f_n$ pour $n \ge 1$.

- (1) Montrer que la série $\sum_{n\geq 1} f_n$ converge simplement sur $]0,+\infty[$.
 - (2) On note $f(x) = \sum_{n \ge 1} f_n(x)$. Montrer que f est continue sur $]0, +\infty[$.
 - (3) Montrer que pour tout réel a>0 la série $\sum_{n\geq 1}f'_n$ converge normalement sur $[a,+\infty[$.
 - (4) Montrer que f est dérivable sur $]0, +\infty[$.
 - (5) La série converge-t-elle normalement sur $]0, +\infty[$? Justifier.
 - (6) Calculer la limite de f en $+\infty$.