

CHEMISTRY TOMO III

RETROALIMENTACIÓN

2 ¿Qué peso de carbono se tiene en una muestra formada por 300g de metano(CH₄) y 260g de acetileno (C₂H₂)?.

RECUERDA

1 mol de moléculas --- $\overline{M}_{(g)}$

$$\overline{M} = \sum m.A.$$

RESOLUCIÓN

Para CH₄:
$$\overline{M} = 12 + 4 \times 1 = 16 \frac{g}{mol}$$

1 mol CH₄ --- 1 mol C

16 g de CH₄ --- 12 g de C

300 g de CH₄ --- x g de C

$$x = \frac{300 \times 12}{44}$$

$$x = 225 g de C$$

Para C₂H₂:
$$\overline{M} = 2 \times 12 + 2 \times 1 = 26 \frac{g}{mol}$$

1 mol CH₄ --- 1 mol C

26 g de CH₄ --- 24 g de C

260 g de CH₄ --- **y g de C**

$$y = \frac{260 \times 24}{26}$$

$$y = 240 g de C$$

Entonces:

 $m_{T(C)} = 465 g$

¿Cuántas moléculas hay en una gota de agua ,sabiendo que 20 gotas tiene un volumen de 1cm³?

$$Dato:D_{H_2O} = 1 \frac{g}{cm^3}$$

RESOLUCI

Hallamos la masa de H₂O:

$$m = \frac{1}{20} g$$

$$\overline{M} = 18 \frac{g}{mol}$$

RECUER

1 mol de moléculas --- $\overline{M}_{(a)}$ --- 6×10^{23} moléculas

$$\overline{M} = \sum m.A.$$

$$\mathsf{D} = \frac{\mathsf{m}}{\mathsf{V}}$$

De la relación masa - número de moléculas:

1 mol de
$$H_2O$$
 --- 18 g --- $6 \cdot 10^{23}$ moléculas de H_2O
$$\frac{1}{20} \text{ g --- N moléculas de } H_2O$$

$$N = \frac{\frac{1}{20} \times 6 \cdot 10^{23}}{18}$$

$$N = 0,0167 \cdot 10^{23} \text{ moléculas}$$

$$N = \frac{1 \times 6 \cdot 10^{23}}{20 \times 18}$$

$$N = 0.0167 \cdot 10^{23}$$
 moléculas

$$N = 1,67 \cdot 10^{21}$$
 moléculas de H_2O

Dato: m.A.(uma): Au =196,97

Hallamos la masa de Au:

$$m = \frac{82 \times 40\%}{100\%}$$

$$m = 32,8 g$$

$$\overline{M} = 196,97 \frac{g}{mol}$$

RECUER

1 mol de átomos --- $\overline{M}_{(q)}$ --- 6×10^{23} átomos

$$\overline{M} = \sum m.A.$$

De la relación masa – número de átomos:

1 mol de Au --- 196,97 g --- 6 · 10²³ átomos de Au

32,8 g --- N átomos de Au

$$N = \frac{32,8 \times 6 \cdot 10^{23}}{196,97}$$

 $N = 1.0 \cdot 10^{21}$ átomos de Au

Determinar la composición centesimal para el dicromato de potasio $K_2Cr_2O_7$ m.A.(uma): K=39, Cr=52, O=16

RECUERDA

$$\overline{M} = \sum m.A.$$

$$\%E = \frac{m_{\text{ELEMENTO}}}{m_{\text{COMPUESTO}}} \times 100\%$$

RESOLUCIÓN

Para el K₂Cr₂O₇:

$$\overline{M} = 2 \times 39 + 2 \times 52 + 7 \times 16 = 294 \frac{g}{mol}$$

Hallamos la C.C.:

$$\%$$
K = $\frac{2 \times 39}{294} \times 100\% = 26,53\%$

$$%Cr = \frac{2 \times 52}{294} \times 100\% = 35,37\%$$

$$%O = \frac{7 \times 16}{294} \times 100\% = 38,10\%$$

$$\overline{M} = \sum m.A.$$

$$k = \frac{\overline{M}_{F.M}}{\overline{M}_{F.E}}$$

RESOLUCIÓN

Hallamos la FÓRMULA EMPÍRICA:

Elemento	С	Н
Masa(g)	85,71	14,29
M (g/mol)	12	1
$n = \frac{m}{\overline{M}}$	7,14	14,29
Dividimos entre el menor	1	2
F.E	C_1H_2	
$\overline{M}_{F.E}$	$12 + 2 \times 1 = 14$	

Luego, hallamos la relación:

$$k = \frac{56}{14}$$
 $k = 4$

Por lo tanto la Fórmula Molecular es:

$$F.M = (C_1H_2)_4$$

$$F.M$$

$$= C_4H_8$$

Para tratar las infecciones bacterianas se usa la sulfadiazina de fórmula:

¿Qué prorcentaje en peso de azufre tiene este compuesto?

m.A.(uma): C=12, H=1, O=16, N=14, S=32

$$\overline{M} = \sum m.A.$$

F. Semidesarrollada:

F. Global:

 $C_{10}H_{10}N_4O_2S$

Entonces:

$$\overline{M} = 10 \times 12 + 10 \times 1 + 4 \times 14 + 2 \times 16 + 32 = 250 \frac{g}{mol}$$

Hallamos la C.C.(S):

$$%S = \frac{32}{250} \times 100\%$$

%S = 12,8%

¿Qué presión ejercen 3×10²⁴ moléculas de amoniaco gaseoso (NH₃)sabiendo que se encuentran a 27°C y ocupa un volumen de 18,72 L.

Datos: m.A.(uma): N=14, H=1R=62.4 mmHg·L/mol·K

$$T(K) = T(^{\circ}C) + 273$$

1 mol de moléculas --- 6×10²³ moléculas

EUGI:
$$P \cdot V = R \cdot T \cdot n$$

De la relación moles – número de moléculas:

1 mol de $NH_3 - - 6 \cdot 10^{23}$ moléculas de NH_3

n mol de NH_3 --- 3×10^{24} moléculas de NH_3

$$n = \frac{3 \cdot 10^{24}}{6 \cdot 10^{23}} \qquad \qquad n = 5 \text{ mol de NH}_3$$

Por la EUGI:

$$P = \frac{R \cdot T \cdot n}{V} \qquad P = \frac{62,4 \cdot 300 \cdot 5}{82}$$

Cuándo la presión de un gas se incrementa de 3 a 8 atm y la temperatura de 27°C a 127°C ¿Cuál será el % de variación del volumen?

$$T(K) = T(^{\circ}C) + 273$$

Proceso Isomásico:

$$\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2}$$

Estado 1	Estado 2	
P ₁ = 3 atm	P ₂ = 8 atm	
$T_1 = 300 \text{ K}$	$T_2 = 400 \text{ K}$	
$\bigvee_1 = \bigvee$	V ₂ = ??	
m = cte		

$$\frac{3 \cdot V}{300} = \frac{8 \cdot V_2}{400}$$

$$0,5V = V_2$$

Hallamos el % de variación del volumen:

$$= \frac{\sqrt[8]{\Delta V}}{V_1} \times 100\%$$

$$= \frac{V_1 - V_2}{V_1} \times 100\%$$

$$\%\Delta V = \frac{V - 0.5V}{V} \times 100\%$$

Se dispone de gas helio a 2400 mmHg contenido en un recipiente cubico. Si dicho gas se traslada a otro cubo cuya arista es la cuarta parte de la arista del primero y si su temperatura se reduce al 60% ¿Cuál será su presión final en mmHg?

$$V_{cubo} = (arista)^3$$

Proceso Isomásico:
$$\frac{P_1 \cdot V_1}{T_1} = \frac{P_2 \cdot V_2}{T_2}$$

Estado 1	Estado 2	
P ₁ = 2400 mmHg	P ₂ = ??	
$T_1 = 100T$	T ₂ = 40T	
$V_1 = (4a)^3$	$V_1 = (a)^3$	
m = cte		

Entonces:

$$\frac{2400 \cdot (4a)^3}{100T} = \frac{P_2 \cdot (a)^3}{40T}$$

$$\frac{2400 \cdot 64a^3}{100T} = \frac{P_2 \cdot a^3}{40T}$$

$$P_2 = 61440 \text{ mmHg}$$

Determinar la fórmula molecular de la vitamina C ,si se conoce que su masa molar es 176 y tiene la siguiente composición porcentual en masa:

C = 40,90%, H = 4,55%, O = 54,55%,

Dato: m.A.(uma): C=12, H=1, O=16

RESOLUCI ÓN

Hallamos la FÓRMULA EMPÍRICA:

Elemento	С	Н	О
Masa(g)	40,90	4,55	54,55
M (g/mol)	12	1	16
$n = \frac{m}{\overline{M}}$	3,41	4,55	3,41
÷ menor	1	1,33	1
× 3	3	4	3
F.E	$C_3H_4O_3$		
$\overline{M}_{F.E}$	$3 \times 12 + 4 \times 1 + 3 \times 16 = 88$		

Luego, hallamos la relación:

$$k = \frac{176}{88}$$
 $k = 2$

Por lo tanto la Fórmula Molecular es:

$$F.M = (C_3H_4O_3)_2$$

$$F.M$$

$$= C_6H_8O_6$$