Synthesis and Planning Under Environment Specifications

Antonio Di Stasio

distasio@diag.uniroma1.it

University of Rome "La Sapienza"

Reasoning Agents

Reactive Synthesis

Given a specification φ over inputs I and outputs O, expressed in:

LTL (Pnueli 1977) or LTL_f (De Giacomo, Vardi 2013)

Syntax:

Semantic:

A trace *trace* is an infinite (LTL) or finite (LTL_f) sequence over I and O. We write $trace \models \varphi$ to mean that τ satisfies φ .

Reactive Synthesis

Agent and Environment Strategies, and Traces

For an agent strategy $\sigma_{aq}: I^+ \to O$ and an environment strategy $\sigma_{env}: O^* \to I$, the trace

$$trace(\sigma_{aq}, \sigma_{env}) = (i_1 \cup o_1), (i_2 \cup o_2) \dots \in 2^{I \cup O}$$

denotes the unique trace induced by both σ_{ag} and σ_{env} .

Problem

Given an LTL/ LTL_f task *Goal* for the agent

Find agent strategy σ_{aq} such that $\forall \sigma_{env}.trace(\sigma_{aq},\sigma_{env}) \models Goal$

University of Rome "La Sapienza"

LTL and LTLf Synthesis

Algorithm for LTL synthesis

Given LTL formula φ

- 1: Compute corresponding NBA (Nondeterministic Buchi Aut.) (exponential)
- 2: Determinize NBA into DPA (Deterministic Parity Aut.) (exp in states, poly in priorities)
- 3: Synthesize winning strategy for Parity Game (poly in states, exp in priorities)

Algorithm for LTL_f synthesis

Given LTL_f formula ϕ

- 1: Compute corresponding NFA (Nondeterministic Finite Aut.) (exponential)
- 2: Determinize NFA to DFA (Deterministic Finite Aut.) (exponential)
- 3: Synthesize winning strategy for DFA game (linear)

Complexity

LTL and LTL_f synthesis are 2EXPTIME-complete

Planning (or Synthesis with a model of the world)

Domain

- Planning consider the agent acting in a (nondeterministic) domain
- The domain is a model of how the world (i.e. the environment) works
- That is, it is a specification of the possible environment strategies

$$[[Dom]] = \{\sigma_{env} | \sigma_{env} \text{ compliant with } Dom\}$$

Planning in nondeterministic domains

Given an LTL_f task *Goal* for the agent, and a domain *Dom* modeling the environment

Find agent behavior σ_{ag} such that $\forall \sigma_{env} \in [[Dom]].trace(\sigma_{ag}\sigma_{env}) \models Goal$

Specifying possible environment specifications in LTL/LTLf

Environment specifications in LTL/LTL_f

Let Env be an LTL/LTL_f formula over I and O.

$$[[\mathit{Env}]] = \{\sigma_{\mathit{env}} | \forall \sigma_{\mathit{ag}}.\mathit{trace}(\sigma_{\mathit{ag}}, \sigma_{\mathit{env}}) \models \mathit{Env}\}$$

i.e Env denotes all environment strategies that play according to the specification whatever is the agent strategy.

Synthesis under environment specifications in LTL/LTL_f

Given an LTL/LTL_f task Task for the agent, and an LTL/LTL_f environment specification Env:

Find agent strategy σ_{ag} such that $\forall \sigma_{env} \in [[Env]]$. $trace(\sigma_{ag}, \sigma_{env}) \models Goal$

Environment specifications in LTL/LTLf

LTL/LTL_f for modeling the environment

- 1. Nondeterministic planning domains
- 2. Forms fairness (□◊♦) and stability (◊□♦) [ZhuDeGiacomoPuVardiAAAl20]
- 3. Safety properties. [DeGiacomoDiStasioPerelliZhuSubmitted]
- 4. General LTL environment specifications.[DeGiacomoDiStasioVardiZhuKR2020]
- 5. ...

Environment specifications in LTL/LTLf

LTL/LTL_f for modeling the environment

- 1. Nondeterministic planning domains
- 2. Forms fairness (□◊♦) and stability (◊□♦) [ZhuDeGiacomoPuVardiAAAl20]
- 3. Safety properties. [DeGiacomoDiStasioPerelliZhuSubmitted]
- 4. General LTL environment specifications.[DeGiacomoDiStasioVardiZhuKR2020]
- 5. ...

Consistent environment specifications

Is any LTL/LTL_f formula a valid environment specification? No, *Env* needs to be "consistent"!:

$$[[\textit{Env}]] \neq \emptyset \hspace{1cm} \text{i.e. } \exists \sigma_e. \forall \sigma_{ag}. \textit{trace}(\sigma_{ag}, \sigma_e) \models \textit{Env}$$

Environment Specifications

Let *Env* be an LTL/LTL_f formula over $I \cup O$.

 $[[Env]] = {\sigma_{env} | \sigma_{env} \text{ satisfies } Env \text{ whatever is the agent strategy}}$

Synthesis with environment specifications in LTL/LTL_f

Given an LTL/ LTL_f task Goal for the agent, and an LTL/LTL_f environment specification Env:

Find agent strategy σ_{ag} such that $\forall \sigma_{env} \in [[Env]]$. $trace(\sigma_{ag}, \sigma_{env}) \models Goal$

Theorem [AminofDeGiacomoMuranoRubinICAPS2019]

To find agent strategy realizing *Goal* under the environment specification *Env*, we can use standard LTL/LTL_f synthesis for

Env → Goal

LTL_f Synthesis Under Safety Environment Specifications

Safety Properties

Definition

A safety property is a property which specifies that some (bad) behavior will never occur.

Examples:

- · "always at most one process is in its critical section"
- "money can only be withdrawn once a correct PIN has been provided"

Important property

Any infinite trace violating the property has a finite prefix that is "bad";

• ... two processes are in the critical section ...

Usually: □¬...

Safety Properties

Consider a language $\mathcal{L} \subseteq \Sigma^{\omega}$.

Bad Prefix

A finite word $x \in \Sigma^*$ is a **bad prefix** for \mathcal{L} if and only if for all infinite words $y \in \Sigma^{\omega}$, we have $x \cdot y \notin \mathcal{L}$.

Safety Languages and Formulas

A language \mathcal{L} is a **safety language** iff every $w \notin \mathcal{L}$ has a bad prefix. A formula ϕ is a **safety formula** iff $\mathcal{L}(\phi) = \{w \in \Sigma^{\omega} \mid w \models \phi\}$ is a safety language.

Safety Properties

Let $\mathcal{A} = (\Sigma, Q, q_0, \delta, F)$ be a NBA, we define its <u>looping automaton</u> $\mathcal{A}^{loop} = (\Sigma, Q \cup \{q_{sink}\}, q_0, \delta, Q)$, i.e., the automaton defined as \mathcal{A} in which every state has been made into an accepting state.

Theorem [KuperfmanVardiCAV99]

 \mathcal{A} specifies a safety formula if and only if $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}^{loop})$.

Properties of looping automata:

- 1. Looping automata recognize safety languages.
- 2. Looping automata can be determinized by using the standard subset construction.

Problem

Solve the synthesis problem for

Env → Goal

where *Env* is a safety environment specification expressed in LTL and *Goal* is an LTL_f formula.

Naive Solution

Translate to LTL and then do standard LTL synthesis for Env o Goal.

... we can do better, since:

• Env: Safety

Problem

Solve the synthesis problem for

where *Env* is a safety environment specification expressed in LTL and *Goal* is an LTL_f formula.

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env \rightarrow Goal$.

- ... we can do better, since:
- Env: Safety
- Goal: LTLf

1 ° Stage

1. Build the corresponding deterministic looping automaton $\mathcal{D}_{Env} = (\Sigma, S \cup \{s_{sink}\}, s_0, \delta, S)$ of Env.

1 ° Stage

- 1. Build the corresponding deterministic looping automaton $\mathcal{D}_{Env} = (\Sigma, S \cup \{s_{sink}\}, s_0, \delta, S)$ of Env.
- 2. Solve the safety game for the environment over \mathcal{D}_{Env} :

$$Safe_{env} = vZ.(S \cap Pre_{env}(Z))$$

 $Pre_{env}(Z) = \{s | \exists X \forall Y. \delta(s, X \cup Y) \in Z\}$

1 ° Stage

- 1. Build the corresponding deterministic looping automaton $\mathcal{D}_{Env} = (\Sigma, S \cup \{s_{sink}\}, s_0, \delta, S)$ of Env.
- 2. Solve the safety game for the environment over \mathcal{D}_{Env} :

$$Safe_{env} = vZ.(S \cap Pre_{env}(Z))$$

 $Pre_{env}(Z) = \{s | \exists X \forall Y.\delta(s, X \cup Y) \in Z\}$

3. Remove the winning region for the agent from \mathcal{D}_{Env} , say \mathcal{D}'_{Env} .

2 ° Stage

1. Build the corresponding DFA \mathcal{A}_{Goal}

2 ° Stage

- 1. Build the corresponding DFA \mathcal{A}_{Goal}
- 2. Do the cartesian product $G = \mathcal{D}'_{Env} \times \mathcal{A}_{Goal}$.

2 ° Stage

- 1. Build the corresponding DFA \mathcal{A}_{Goal}
- 2. Do the cartesian product $G = \mathcal{D}'_{Env} \times \mathcal{A}_{Goal}$.
- 3. Solve the reachability game for the agent over G.

2 ° Stage

- 1. Build the corresponding DFA \mathcal{A}_{Goal}
- 2. Do the cartesian product $G = \mathcal{D}'_{Env} \times \mathcal{A}_{Goal}$.
- 3. Solve the reachability game for the agent over G.
- 4. Return the winning strategy for the agent if one exists.

For example let the environment specifications be formed by $Env_1 \land Env_2$ where:

Env₁ is the LTL formula expressing the dynamics of the environment (as a planning domain):

- \Box (alive $\rightarrow \bigcirc$ (wait \rightarrow alive))
- \Box (alive $\rightarrow \bigcirc$ (shoot \rightarrow (alive $\lor \neg$ alive))
- $\Box(\neg alive \rightarrow \bigcirc(wait \rightarrow \neg alive))$
- $\Box(\neg alive \rightarrow \bigcirc(shoot \rightarrow \neg alive))$
- \Box ((wait \land shoot) \land (wait $\rightarrow \neg$ shoot))

For example let the environment specifications be formed by $Env_1 \wedge Env_2$ where:

*Env*₁ is the LTL formula expressing the dynamics of the environment (as a planning domain):

- \Box (alive $\rightarrow \bigcirc$ (wait \rightarrow alive))
- \Box (alive $\rightarrow \bigcirc$ (shoot \rightarrow (alive $\lor \neg$ alive))
- $\Box(\neg alive \rightarrow \bigcirc(wait \rightarrow \neg alive))$
- $\Box(\neg alive \rightarrow \bigcirc(shoot \rightarrow \neg alive))$
- \Box ((wait \land shoot) \land (wait $\rightarrow \neg$ shoot))

Env₂ is the LTL formula expressing some fairness over nondeterministic effects, e.g.,

$$\Box \Diamond shoot \rightarrow \Diamond \neg a$$

For example let the environment specifications be formed by $Env_1 \land Env_2$ where:

Env₁ is the LTL formula expressing the dynamics of the environment (as a planning domain):

- \Box (alive $\rightarrow \bigcirc$ (wait \rightarrow alive))
- \Box (alive $\rightarrow \bigcirc$ (shoot \rightarrow (alive $\lor \neg$ alive))
- $\Box(\neg alive \rightarrow \bigcirc(wait \rightarrow \neg alive))$
- $\Box(\neg alive \rightarrow \bigcirc(shoot \rightarrow \neg alive))$
- \Box ((wait \land shoot) \land (wait $\rightarrow \neg$ shoot))

Env₂ is the LTL formula expressing some fairness over nondeterministic effects, e.g.,

$$\Box \Diamond shoot \rightarrow \Diamond \neg a$$

Let Goal be an LTL_f formula which expresses an agent task, e.g.,

 $\Diamond \neg a$

Problem

Solve the synthesis problem for

$$Env_1 \wedge Env_2 \rightarrow Goal$$

Problem

Solve the synthesis problem for

$$Env_1 \wedge Env_2 \rightarrow Goal$$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

Problem

Solve the synthesis problem for

$$Env_1 \wedge Env_2 \rightarrow Goal$$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

... but we can exploit the simplicity of dealing with LTL_f given:

Problem

Solve the synthesis problem for

$$Env_1 \wedge Env_2 \rightarrow Goal$$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

... but we can exploit the simplicity of dealing with LTL_f given:

• Env₁: LTL

Problem

Solve the synthesis problem for

$$Env_1 \wedge Env_2 \rightarrow Goal$$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

... but we can exploit the simplicity of dealing with LTL_f given:

• Env_1 : LTL \rightarrow LTL $_f$

Problem

Solve the synthesis problem for

$$Env_1 \wedge Env_2 \rightarrow Goal$$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

... but we can exploit the simplicity of dealing with LTL_f given:

- Env_1 : $LTL \rightarrow LTL_f$
- Env₂: LTL

Problem

Solve the synthesis problem for

$$Env_1 \wedge Env_2 \rightarrow Goal$$

Naive Solution

Translate to LTL and then do standard LTL synthesis for $Env_1 \wedge Env_2 \rightarrow Goal$.

... but we can exploit the simplicity of dealing with LTL $_f$ given:

- $Env_1: LTL \rightarrow LTL_f$
- Env₂: LTL
- Goal: LTLf

Separating LTL_f environment specifications

$$(Env_1 \land Env_2 \rightarrow Goal) \iff (Env_2 \rightarrow Env_1 \rightarrow Goal) \iff (Env_2 \rightarrow \neg Env_1 \lor Goal)$$

where $Goal' = \neg Env_1 \lor Goal$ is expressed in LTL_f and Env_2 in LTL.

Separating LTL_f environment specifications

$$(\mathit{Env}_1 \land \mathit{Env}_2 \to \mathit{Goal}) \iff (\mathit{Env}_2 \to \mathit{Env}_1 \to \mathit{Goal}) \iff (\mathit{Env}_2 \to \neg \mathit{Env}_1 \lor \mathit{Goal})$$

where $Goal' = \neg Env_1 \lor Goal$ is expressed in LTL_f and Env_2 in LTL.

Problem

Solve the synthesis problem for

$$Env_2 o Goal'$$

Separating LTL_f environment specifications

$$(\mathit{Env}_1 \land \mathit{Env}_2 \to \mathit{Goal}) \iff (\mathit{Env}_2 \to \mathit{Env}_1 \to \mathit{Goal}) \iff (\mathit{Env}_2 \to \neg \mathit{Env}_1 \lor \mathit{Goal})$$

where $Goal' = \neg Env_1 \lor Goal$ is expressed in LTL_f and Env_2 in LTL.

Problem

Solve the synthesis problem for

$$Env_2 o Goal'$$

How can we exploit that Goal' is LTL_f?

LTLf Synthesis Under LTL Environment Specifications

Separating LTL_f environment specifications

$$(\mathit{Env}_1 \land \mathit{Env}_2 \to \mathit{Goal}) \iff (\mathit{Env}_2 \to \mathit{Env}_1 \to \mathit{Goal}) \iff (\mathit{Env}_2 \to \neg \mathit{Env}_1 \lor \mathit{Goal})$$

where $Goal' = \neg Env_1 \lor Goal$ is expressed in LTL_f and Env_2 in LTL.

Problem

Solve the synthesis problem for

$$Env_2 o Goal'$$

How can we exploit that Goal' is LTL_f?

Two-stage technique!

1 ° Stage

1. Compute the corresponding DFA $\mathcal A$ of $\neg Env_1 \lor Goal$.

1 ° Stage

- 1. Compute the corresponding DFA \mathcal{A} of $\neg Env_1 \lor Goal$.
- 2. Solve the reachability game for the agent over \mathcal{A} .

Antonio Di Stasio

1 ° Stage

- 1. Compute the corresponding DFA \mathcal{A} of $\neg Env_1 \lor Goal$.
- 2. Solve the reachability game for the agent over \mathcal{A} .
- Check whether the initial state is winning for the agent.

Antonio Di Stasio

- 1. Compute the corresponding DFA \mathcal{A} of $\neg Env_1 \lor Goal$.
- 2. Solve the reachability game for the agent over \mathcal{A} .
- 3. Check whether the initial state is winning for the agent.
- 4. If the initial state is not winning go to Stage 2, otherwise return the agent winning strategy.

2 ° Stage

1. Remove from $\mathcal A$ the agent winning set of Stage 1, say $\mathcal A'$.

2 ° Stage

- 1. Remove from \mathcal{A} the agent winning set of Stage 1, say \mathcal{A}' .
- 2. Compute the corresponding DPA \mathcal{B} of Env_2 .

Antonio Di Stasio

2 ° Stage

- 1. Remove from \mathcal{A} the agent winning set of Stage 1, say \mathcal{A}' .
- 2. Compute the corresponding DPA \mathcal{B} of Env_2 .
- 3. Do the cartesian product between \mathcal{A}' and \mathcal{B} .

- 1. Remove from \mathcal{A} the agent winning set of Stage 1, say \mathcal{A}' .
- 2. Compute the corresponding DPA \mathcal{B} of Env_2 .
- 3. Do the cartesian product between \mathcal{A}' and \mathcal{B} .
- Solve the parity game for the environment over \(\mathcal{B}' \times \mathcal{B} \).

- 1. Remove from \mathcal{A} the agent winning set of Stage 1, say \mathcal{A}' .
- 2. Compute the corresponding DPA \mathcal{B} of Env_2 .
- 3. Do the cartesian product between \mathcal{A}' and \mathcal{B} .
- 4. Solve the parity game for the environment over $\mathcal{A}' \times \mathcal{B}$.
- Check if the initial state is winning for the agent; if not return "Unrealizable".

- 1. Remove from $\mathcal A$ the agent winning set of Stage 1, say $\mathcal A'$.
- 2. Compute the corresponding DPA \mathcal{B} of Env_2 .
- 3. Do the cartesian product between \mathcal{A}' and \mathcal{B} .
- 4. Solve the parity game for the environment over $\mathcal{A}' \times \mathcal{B}$.
- Check if the initial state is winning for the agent; if not return "Unrealizable".
- 6. Return the agent winning strategy by combing the agent winning strategies in Stage 1 and 2.

Experimental Analysis

We have

- implemented the two-stage technique in a new tool called **2SLS**, written in C++, that exploits CUDD package as library for the manipulation of Binary Decisions Diagrams (BDDs);
- compared 2SLS to a direct reduction to LTL synthesis by employing the LTLf -to-LTL translator SPOT and Strix (Meyer, Sickert, and Luttenberger 2018) as the LTL synthesis solver;
- compared 2SLS with FSyft and StSyft (Zhu et al. 2020) in special cases where environment specifications are LTL formulas of the form □◊a (fairness) and ◊□a (stability), with a propositional.

Experiments on Fairness and Stability

- Given a counter game where the environment chooses whether to increment the counter or not and the agent can choose to grant the request or ignore it;
- The fairness specification is □♦ *increment*; the stability specification is ♦□ *increment*;
- The goal is to get the counter having all bits set to 1.

Figure 1: LTL $_f$ synthesis under fairness specifications.

Figure 2: LTL $_f$ synthesis under stability specifications.

Experiments of General LTL Environment Specifications

- Given Goal as a conjunction of increasing size of random LTL_f formulas of the form
 □(p_j → ◊q_j) with p_j and q_j propositions under the control of the environment and the agent, respectively;
- *Env* is a conjunction of formulas of the form $(\Box \Diamond p_i \lor \Diamond \Box q_i)$, where we start with one conjunct and introduce a new conjunct every 10 conjuncts in *Goal*.

Figure 3: LTL_f synthesis under general LTL environment specifications.

University of Rome "La Sapienza"

Project

Develop LTL_f synthesis under safety environment specifications where you can use:

- Spot (spot.lrde.epita.fr) for building the looping determinstic automaton
- LTLf2DFA (ltlf2dfa.diag.uniroma1.it) for constructing the DFA.