Домашние задания по курсу машинного обучения

Dmitry Mukhutdinov

10 октября 2016 г.

Содержание

1	Зад	дание 1.
	1.1	Постановка задачи
	1.2	Датасет
	1.3	Hints
	1.4	FAQ
2	Зал	дание 2
		Постановка задачи
		Датасет
	2.3	Hints
	2.4	FAQ

1 Задание 1.

1.1 Постановка задачи

- 1. Реализовать метрический классификатор kNN
- 2. Сделать кросс-валидацию; обосновать выбор числа фолдов для нее
- 3. Выполнить визуализацию данных
- 4. Настроить классификатор с 2-3 метриками и 2-3 пространственными преобразованиями
- 5. Для оценки качества можно использовать метрику accuracy, но лучше f1-measure

1.2 Датасет

Ссылка: https://www.dropbox.com/s/lolwyijk22xu7na/chips.txt?dl=0 Датасет представляет собой набор 2d-точек, разбитых на 2 класса.

1.3 Hints

- 1. Нарисуйте график, изображающий точки из разных классов разными цветами. Сразу станет понятно, где примерно должна проходить граница разделения классов.
- 2. Добавьте пространственные преобразования, которые хорошо разделяют датасет. Таким, например, является параболоид с центром в среднем арифметическом всех точек.

1.4 FAQ

1. Вопрос: Что такое метрический классификатор?

Ответ: Это алгоритм классификации, который основан на понятии **сходства** между объектами. При классификации очередного объекта решение принимается на основе известных ответов для объектов, схожих с данным. Обычно функция сходства является **метрикой**, но необязательно (например, может нарушаться равенство треугольника).

2. Вопрос: Что будет, если k = 0? А если $k \approx N$? (N - размер датасета)

Ответ: Первый случай - вырожденный, в этом случае классификатор просто не работает.

Во втором случае классификатор любой объект будет относить к тому классу, представителей которого в исходном датасете большинство.

3. Вопрос: Как выбиралось количество фолдов для кросс-валидации? Почему именно такое?

Ответ: Около 5 фолдов. Датасет очень маленький, поэтому в ином случае фолды будут слишком мелкие. Сослаться на слайды первой лекции¹, стр. 18.

4. **Bonpoc:** Как правильно подобрать k - количество ближайших соседей, на которых мы ориентируемся?

Ответ: Аналогично с Leave-One-Out кросс-валидацией (Первая лекция¹, стр. 24)

5. **Вопрос:** Что можно делать для улучшения качества классификации, кроме подбора гиперпараметров (т. е. числа k, выбора метрики и ядра)?

Ответ: Prototype selection и распознавание аномалий (упоминалось в лекции¹), чтобы почистить датасет от кривых данных. Как именно это делать, не спрашивают.

6. Вопрос: Как устроено k-d tree? Как работают kNN-запросы в нем?

Ответ: Вспоминаем вычгеом u/или читаем статью². Обычно достаточно помахать руками и ляпнуть что-нибудь про разделение точек по медианам при построении и отсекание квадратиков при запросе.

2 Задание 2

2.1 Постановка задачи

- 1. Реализовать линейную регрессию
- 2. Настраивать вектор коэффициентов двумя способами градиентным спуском и генетическим алгоритмом
- 3. Для оценки качества использовать MSE (среднеквадратичную ошибку)
- 4. Выбирать гиперпараметры можно произвольным образом, но придется обосновать свое решение
- 5. Модель должна уметь дообучаться по произвольным точкам (с консоли, если у вас консольное приложение)

2.2 Датасет

Cсылка: https://www.dropbox.com/s/eoyz1uvis41xgrw/prices.txt?dl=0

Датасет представляет собой зависимость цен на жилье от площади и количества комнат.

2.3 Hints

- 1. Нормализуйте свой датасет (сдвиньте точки по каждой оси на среднее значение и разделите на стандартное отклонение). Если вы пишете на Python, можно воспользоваться готовым инструментом 'sklearn.preprocessing.StandardScaler'³. Это сильно упростит работу как градиентного спуска, так и эволюционного алгоритма.
- При реализации эволюционного алгоритма особью является вектор коэффициентов Θ. Для хорошего результата достаточно делать один вид мутации - добавление к вектору коэффициентов случайного, нормально распределенного шума (в Python сгенерировать случайный вектор из нормального распределения можно с помощью функции 'numpy.random.randn'⁴). Можно даже без

 $^{^1}$ Слайды первой лекции: https://www.dropbox.com/sh/0fk38jg1f5ty1oz/AAD8Z_Hf8Gs6EsE3WNCBh2bWa/02-Distance.pdf?dl=0

 $^{^2{\}rm Nearest}$ Neighbor with k-d trees: http://courses.cs.washington.edu/courses/cse599c1/13wi/slides/lsh-hashkernels-annotated.pdf

 $^{{\}rm ^3Scikit\text{-}learn\ documentation\ -\ StandardScaler:\ http://scikit\text{-}learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html}$

⁴NumPy documentation - numpy.random.randn: http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randn.html

скрещивания. С размером потомства и процентом выживаемости можно поэкспериментировать, экспериментально хорошо работает увеличение популяции в 6 раз и выживаемость 1/6 популяции.

3. Если вы чувствуете в себе силы, в качестве эволюционного алгоритма можно выбрать алгоритм дифференциальной эволюции 5 . Он сходится лучше, чем наивная эволюция.

2.4 FAQ

1. Вопрос: Как работает градиентный спуск?

Ответ: См. презентацию 6 .

Вкратце: мы минимизируем функцию оппибки Q(w), аргументом которой является $w=(w_1,w_2,...w_k)$ - вектор коэффициентов линейной модели. Мы делаем это, вычисляя функцию в какой-либо начальной точке, и сдвигая эту точку в направлении, противоположном градиенту Q(w). Постоянно перемещаясь в направлении антиградиента, мы приходим к минимуму.

2. Вопрос: Какое у вас условие сходимости?

Ответ: Алгоритм сошелся, когда разница в значениях функции ошибки между шагами перестала превышать некоторый маленький порог: $Q(w^{[k+1]}) - Q(w^{[k]}) \leqslant \varepsilon$.

3. **Вопрос:** Как подбирать размер шага α и количество итераций?

Ответ: Максимальное количество итераций можно сразу выставить каким-то разумно большим (в районе нескольких тысяч), и перебирать α от больших (5-10) к маленьким, пока алгоритм не начнет сходиться. Особо продвинутые могут сделать динамическую зависимость α от номера итерации и/или других условий.

На деле же датасет таков, что заходит просто потыкать несколько значений α руками, особенно если предварительно его нормализовать.

4. Вопрос: Как работает ваш эволюционный алгоритм? Как вы подбирали параметры для него?

Ответ: Как написали, так и отвечайте. Задача может решаться всевозможными эволюционными алгоритмами, описание одного из вариантов реализации можно увидеть в подпункте Hints. Гиперпараметры (размер потомства, процент выживаемости и пр.) можно попытаться подобрать с помощью кросс-валидации, но на деле лучше всего работает метод "от фонаря".

⁵Wikipedia - Differential evolution: https://en.wikipedia.org/wiki/Differential_evolution

⁶Слайды второй лекции: https://www.dropbox.com/sh/0fk38jg1f5ty1oz/AABrd0gBrCJPEI5fQt1L5GHja?dl=0&preview= 03-Linear.pdf