# Department of Computer Science and Engineering (CSE) BRAC University

CSE 251: Electronic Devices and Circuits

Fall 2023

Lecture 01: (i) Course Prologue

(ii) History of Electronics

(iii) Circuit Schematics & Representations

Md. Jahin Alam Lecturer, Department of CSE BRAC University



#### Timelines:

#### Important dates:

- Sept 23<sup>th</sup> (Saturday) Classes of Fall 2023 begin
- November 3<sup>rd</sup> (Friday) Midterm exam (4:30 PM 6:30 PM)
- December 24<sup>th</sup> (Sunday) Last class of Fall 2023
- December 26<sup>th</sup> (Tuesday) Final exam (4:30 PM –6:30 PM)

#### Distribution of Marks:

| Assessment | Percentage              | Total number of assessments | Number of assessment to be graded |
|------------|-------------------------|-----------------------------|-----------------------------------|
| Attendance | was 10%, <b>now 8%</b>  | -                           | -                                 |
| Assignment | was 10%, <b>now 12%</b> | 3-6                         | All 3 or [Best (n-1)]             |
| Quiz       | 15%                     | 4                           | Best 3 [Best (n-1)]               |
| Midterm    | 20%                     | 1                           | 1                                 |
| Final      | 20%                     | 1                           | 1                                 |
| Lab        | 25%                     | -                           | -                                 |

#### Things to remember:

- Quiz questions should help prepare the students for the midterm and final exams.
- ♦ Quiz, midterm, and final may contain bonus questions, but that will be at most 10% of the total marks of the assessment.
- Questions for quiz, midterm, and final are often modified versions of assignments

#### Remember:

♦ You can collab, but you cannot copy. Plagiarism will result in **null** marks.

#### Absence/Late Policies:

- ♦ Attendance will be recorded and shared
- ♦ Attendance: P/A/L. You can be 'Excused' if you show documents
- ♦ Attendance<70% won't qualify for Mid/Final
- Assignment deadlines won't change; will be set keeping tests in mind
- ♦ You can be late for a total of 4 days for assignments

#### DO NOT:

♦ Copy/Cheat. If so, negative/capped marks/suspension will be the outcome

### Why do we need Electronics?

- 1. Switches/Logics
- 2. Arithmetic Operations
- 3. IC design
- 4. Chip Design
- 5. Computers





### History of Electronics

- ♦ Electronics emerged with the discovery of the electron in 1897 and the invention of the vacuum tube, which amplified and rectified electrical signals.
- \* Vacuum tubes [Link] were the first active electronic components and revolutionized various industries, including radio, television, telephony, and music recording.
- ♦ The point-contact [Link] transistor was invented in 1947, marking a significant technological advancement, although vacuum tubes still dominated until the 1980s.
- ♦ The IBM 608 [Link] calculator in 1955 became the first commercial product to use transistors exclusively, leading to their widespread use in computer logic and peripherals.
- ♦ The MOSFET [Link], invented in 1959, revolutionized the electronics industry with its compact size, mass production capabilities, low power consumption, and versatility.
- ♦ The integrated circuit/IC, developed by Jack Kilby and Robert Noyce, solved the problem of circuit size and speed by integrating components onto a single semiconductor block.
- ♦ This led to advancements in small-scale integration (SSI), medium-scale integration (MSI), and very large-scale integration (VLSI), with billion-transistor processors becoming available in 2008.

# Circuit Schematics & Representations

#### **Schematic Symbols for sources:**



#### Example 1:



We need to simplify the circuit representation → why?

Before we simplify, what would be this circuit's current?

\*\* How did you get 3 Amps? \*\*

# Circuit Schematics & Representations

#### Simplification Method (Alternate Representation / Convert to Line Diagram)

- 1) Identify where the *ground* is/Take a *ground* as you find logical.
- 2) Write the *voltages* along each point of the circuit voltage sources
- *3) Detach* the ground from everything
- 4) Make all the active elements (dc/ac type, voltage/current sources) into single terminals (arrows/circles) using the voltages you wrote as much as you can [THERE MIGHT BE CASES WHERE YOU CAN'T DO THAT]
- 5) For passive elements (resistor, capacitor, inductors, etc.), draw them as they are
- 6) Treat the ground as a *single terminal* as well and connect everything to match the main schematic voltages (look at only the passive elements' voltages)

What are these 'single terminals' called?

### More Examples

Difficulty: 2/5



Difficulty: 3/5



Example: 2

Example: 3

### More Examples

Difficulty: 4/5



Example: 4

Step – (4) Make all the active elements (dc/ac type, voltage/eurrent sources) into single terminals (arrows/circles) using the voltages you wrote as much as you can [THERE MIGHT BE CASES WHERE YOU CAN'T DO THAT]

# More (Reverse) Examples

Difficulty: 3/5

Convert to Mesh/Loop Representation

