Klassische Feldtheorie

1. Klausur

03.03.2017

Prof. Stefanie Walch

Inhaltsverzeichnis

1	Kurzfragen	2
2	Lange Drähte	2
3	Kapazität	3
4	Bildladung	3
5	Elektrischer Quadrupol	3
6	Magnetfeld einer Leiteranordnung	4
7	Lichtquelle	4
8	Lorentz-Transformation	5
9	Maxwellscher Spannungstensor (Modul IIIa)	5
10	Aberration (Modul IIIa)	5
11	Elektrische Dipolfelder (Modul IIIa)	6
12	Kurzfragen 2 (Modul IIIa)	6

1 Kurzfragen

- 1. Betrachte Laplace-Gleichung in Zylinderkoordinaten. Wie heißen die Funktionen, die die Radialkomponente der Gleichung lösen? (der Name genügt)
- 2. Betrachten Sie eine zylinderförmige Spule, die sich im Vakuum befindet und die eine magnetische Induktion erzeugt. Erläutern Sie, wie sich H sowie as magnetische Feld B ändern, wenn man im Inneren der Spule ein Material mit der Permeabilitätszahl μ einbringt. Betrachten Sie dabei sowohl H und B in der Spule, d. h. im Material, als auch außerhalb der Spule, d. h. weiterhin im Vakuum. Erläutern Sie kurz die zugrunde liegenden Prinzipien (Formeln).
- 3. Wie lautet allgemein die Energiedichte des elektromagnetischen Feldes?
- 4. Betrachten Sie einen Stab, der in seinem Ruhesystem die Länge l besitzt und entlang der x-Achse ausgerichtet ist. Wie lang erscheint der Stab einem Beobachter, wenn der Stab sich relativ zu diesem mit der Geschwindigkeit v
 - entlang der x-Achse bewegt
 - entlang der y-Achse bewegt?
- 5. Wie ist der relativistische Vierer-Impuls definiert?
- 6. Wie lassen sich das elektrische und das magnetische Feld aus dem [h!elektrischen Skalarpotential ϕ und dem Vektorpotential A bestimmen?

2 Lange Drähte

Betrachten Sie zwei unendlich lange, parallel angeordnete Drähte im Abstand d, die die gleiche Ladungsdichte pro Längeneinheit q besitzen.

- Berechnen Sie zunächst das elektrische Feld mit Hilfe des Gaußschen Satzes für einen Draht.
- 2. Berechnen Sie nun das gesamte elektrische Feld der Anordnung. Welches grundlegende physikalische Prinzip wenden Sie dabei an?
- 3. Berechnen Sie das Potential der Anordnung.

3 Kapazität

Berechnen Sie die Kapazität zweier konzentrisch angeordneter Kugelschalen mit den Radien R_1 und R_2 . Nehmen Sie an, dass die äußere der beiden Kugelschalen geerdet sei und sich die Anordnung im Vakuum befinde.

4 Bildladung

- 1. Erläutern Sie das Prinzip der Bildladungsmethode anhand einer Ladung, die sich vor einer unendlich ausgedehnten, leitenden, geerdeten Platte befindet (Skizze!).
- 2. Wie lautet die Green-Funktion für diesen Fall, die die dazugehörige Poisson-Gleichung löst? Verwenden Sie zur Erläuterung die zuvor angefertigte Skizze.

5 Elektrischer Quadrupol

Betrachten Sie eine Ladungsverteilung, die aus 4 Punktladungen besteht. Zwei Punktladungen mit der Ladung +q befinden sich an den Stellen (1,0,0) sowie (-1,0,0), zwei weitere Punktladungen mit der Ladung -q bei (0,1,0) und (0,-1,0).

- 1. Geben Sie zunächst die Ladungsverteilung an.
- 2. Berechnen Sie das Dipolmoment \vec{d} der Ladungsvertteilung.
- 3. Berechnen Sie das Quadrupolmoment
- 4. Berechnen Sie mit der unten angegebenen Näherung das Potential für die Ladungsverteilung.

Hinweise:

Quadrupolmoment
$$Q_{ij} = \int d^3x (3x_i x_j - r^2 \delta_{ij}) \rho(\vec{x})$$
 (1)

Potential
$$\phi(\vec{x}) = \frac{q_{gesamt}}{r} + \frac{\vec{d} \cdot \vec{x}}{r^3} + \frac{1}{2} \sum_{i,j} Q_{ij} \frac{x_i x_j}{r^5} + \dots$$
 (2)

wobei r der Betrag des Vektors \vec{x} ist.

6 Magnetfeld einer Leiteranordnung

Betrachten Sie die Leiteranordnung in Graphik 1. Diese bestehe aus einem Dreiviertelkreis mit Radius R sowie zwei radial ausgerichteten, geraden Drähten, die sich im Vakuum befinden. Die gesamte Anordnung führe den Strom I.

- 1. Berechnen Sie das Magnetfeld im Mittelpunkt P des Dreiviertelkreises. Wie lautet der Name des Gesetzes, das Sie dazu verwendet haben?
- 2. Vergleichen Sie das Ergebnis mit dem für eine kreisförmige Leiterschleife, die den gleichen Strom I führt.

7 Lichtquelle

Betrachten Sie eine punktförmige Lichtquelle im Ursprung, die nur während eines kurzen Zeitintervalls Δt um die Zeit t=0 herum Strahlung aussendet. Diese breitet sich gemäß der Wellengleichung

$$\Delta\psi(\vec{x},t) = \frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} + 4\pi f(\vec{x},t)$$
 (3)

aus.

- 1. Geben Sie die Quellfunktion f der Lichtquelle mit Hilfe der Theta-Funktion (auch Heaviside-Funktion genannt) an.
- 2. Geben Sie die Greensche Funktion für diesen Fall an. Wie lautet der Name dieser speziellen Green-Funktion?
- 3. Berechnen Sie die Strahlung $\psi(\vec{x},t)$, die zu jedem beliebigen Ort- und Zeitpunkt beobachtet wird. Diskutieren Sie das Ergebnis kurz.

8 Lorentz-Transformation

Betrachten Sie ein Objekt O, das sich mit der Geschwindigkeit $\vec{v} = (v_x, v_y)$ im Inertialsystem L bewegt. Zur Zeit t = 0 befindet sich das Objekt im Ursprung. Das Inertialsystem L' bewegt sich relativ zu L mit der Geschwindigkeit $(v_{L,x}, 0)$, d. h. entlang der x-Richtung. Hinweis: In dieser Aufgabe können Sie die z-Komponente in den Rechnungen vernachlässigen.

- 1. Wie lautet die Matrix für die entsprechende Lorentz-Transformation, um von L nach L' zu wechseln?
- 2. Welche Koordinaten hat das Objekt O in L' zu jedem beliebigen Zeitpunkt? Berechnen Sie dazu zunächst die Koordinaten in L und transformieren Sie diese dann nach L'.
- 3. Überprüfen Sie die Korrektheit des Ergebnisses für die Koordinaten, indem Sie den nichtrelativistischen Grenzfall betrachten.
- 4. Wie lautet die Vierer-Geschwindigkeit des Objekts O in L? Berechnen Sie damit (und mit Hilfe der Lorentz-Trafo) dessen Vierer-Geschwindigkeit in L'.

9 Maxwellscher Spannungstensor (Modul IIIa)

Berechnen Sie den Feldstärketensor für einen elektrischen Dipol \vec{d} , der entlang der y-Achse ausgerichtet ist und im Ursprung sitzt.

Hinweis: Falls das elektrische Feld eines Dipols unbekannt ist, kann man es auch aus dem Potential, welches in der Aufgabe 5 gegeben ist, herleiten.

10 Aberration (Modul IIIa)

Erläutern Sie den Effekt der Aberration (Formel!) einer sich mit hoher (relativistischer) Geschwindigkeit auf einen Beobachter zubewegenden Lichtquelle.

11 Elektrische Dipolfelder (Modul IIIa)

Betrachten Sie die Felder eines oszillierenden, elektrischen Dipols \vec{d} :

$$\vec{B} = k^2 \frac{e^{ikr}}{r} (1 - \frac{1}{ikr}) (\vec{n} \times \vec{d}) \tag{4}$$

$$\vec{E} = \frac{e^{ikr}}{r}k^2(\vec{n} \times \vec{d}) \times \vec{n} + (3\vec{n}(\vec{n} \cdot \vec{d}) - \vec{d})(\frac{1}{r^3} - \frac{ik}{r^2})e^{ikr}$$
 (5)

wobei \vec{n} der Einheitsvektor zum Ortsvektor \vec{r} ist.

- 1. Leiten Sie die Näherung für das elektrische und magnetische Feld in der Nahzone her.
- 2. Vergleichen Sie beide Felder. Begründen Sie, welches Feld dominant ist.
- 3. Welche zwei weiteren Zonen neben der Nahzone gibt es?

Erläutern Sie kurz die Eigenschaften der Felder in den beiden Zonen.

12 Kurzfragen 2 (Modul IIIa)

- 1. Erläutern Sie kurz die Ursache dafür, dass der Himmel blau ist.
- 2. Skizzieren und beschreiben Sie (kurz) das Beugungsbild hinter einer quadratischen Lochblende.
- 3. Notieren und erläutern Sie die beiden Terme in der Euler-Gleichung, die Magnetfelder beinhalten.
- 4. Beschreiben und benennen Sie eine transversale Welle im Rahmen der Magnetohydrodynamik.