Radiation Damage and Activation of ILC Positron Source Target

A. Ushakov and S. Riemann (DESY, Zeuthen)

06.03.2007 / DPG-2007, Heidelberg

ILC Positron Source Scheme

Helical Undulator. Source Model. Target Issues.

Undulator parameter	for study	baseline
E _{e−} , GeV	150	150
K-value	1	0.92
Undulator period, mm	10	11.5
Magnetic field, T	1.07	0.86
E ₁ , MeV	10.7	10.1

Target compound	Ti6Al4V
Target thickness, X ₀	0.4
rms size of photon beam, mm	0.7

Positron Beam at IP

 $2 \cdot 10^{10} \text{ e}^+/\text{bunch}$ 2820 bunch/pulse 5 Hz

Photon Beam

 $\sim 150 \; kW$

Energy Deposited in Target $\sim 10 \text{ kW}$

Target Issues:

- Thermal Damage
- Radiation Damage
- Activation

Simulation Outline and Used Tools

<u>Fixed for simulations</u>: electron drive beam energy, target compound and thickness, optical matching device.

Varied:

- undulator K value between 0.2 and 1.4 ($\lambda_u = 1$ cm)
- undulator period λ_u between 0.1 and 1.4 cm (K = 1)

Tools

Positron yield, energy deposited in target, target activation have been calculated by

FLUKA

Positron capture has been calculated by

ASTRA

Target damage (dpa) has been estimated by combining of

- FLUKA (neutron fluence and energy distribution) and
- SPECTER (displacement cross sections)

Photon Energy Distribution

Positron Yield and Capture Efficiency ($\lambda_u = 1$ cm) Varying of K

Note:

Red point is for the present baseline undulator parameters

Longitudinal Cut:

Energy Spread is 1%

Tranverse Cut:

 $\epsilon_{\emph{i}, \emph{x}} + \epsilon_{\emph{i}, \emph{y}} < 0.04\pi$ m rad

Required Number of Photons and Energy Deposited in Target (per Positron at IP). $\lambda_u = 1$ cm

Present Baseline Design

Photon Beam Power 93.1 kW Power Deposited in Target 7.45 kW

Neutron Production and Target Damage ($\lambda_u = 1$ cm)

Example of Neutron Energy Distribution

Displacement Cross Section (SPECTER)

Target Damage by Neutrons after 5000 Hours of

Target Activity and Dose Rate ($\lambda_u = 1$ cm)

Dose rate after 5000 h of source operation and 1 week decay

Positron Yield and Capture Efficiency (K = 1) Varying of λ

Required Number of Photons and Energy Deposited in Target (per Positron at IP). K = 1

Neutron Production and Target Damage (K = 1)

Target Damage by Neutrons after 5000 Hours of Target Irradiation

Target Activity and Dose Rate (K = 1)

Dose rate after 5000 h of source operation and 1 week decay

Summary and Outlook

- Undulator K value above 0.6 is recommended to use (higher K is better for the target heat load).
- Smaller undulator period is more effective.

Future plan

- Beam time structure will be taken into account.
- Polarization of beam will be considered.