

ITA - Instituto Tecnológico de Aeronáutica AE-245 - Método dos Elementos Finitos

Lista de Exercícios 03 Prof. Flávio Bussamra – 2008 Data de entrega: 12/nov/08

- 1) Obter o vetor de carga nodal equivalente para o elemento CST de nós i, j e k, nos casos:
 - a) t_x=cte, sendo t_x=força por unidade de comprimento na direção x, entre nós i e j.
 - b) $t_x=t_i$ no nó 1 e $t_x=t_i$ no nó j, variando linearmente entre os dois nós.

- 2) Obter explicitamente a matriz de rigidez de um elemento CST, sujeito a um estado plano de tensão.
- 3) Seja uma chapa quadrada, com os seguintes valores adimensionais (lado $\overline{L}=1, \overline{E}=1, v=0,3,$ espessura $\overline{t}=1$), fixa em uma extremidade, sujeita a duas cargas concentradas $\overline{P}=1$ (adimensional), conforme desenho 3a abaixo.

- a) Utilizando dois elementos CST, conforme figura 3b, obtenha os deslocamentos nos pontos de aplicação das cargas, e as tensões ao longo da chapa.
- b) Utilizando um *software* de elementos finitos, faça uma análise de convergência para resolver o problema 3a, utilizando elementos triangulares apropriados. Desenhe curvas de convergência para deslocamentos e tensões máximas em função da malha. Informe o *software* e o elemento utilizado.
- c) Repita b, utilizando elementos retangulares.
- d) Comente os resultados.

4) Usando um *software* de elementos finitos, obtenha o <u>fator de concentração de tensões</u> k_t da chapa com um furo de diâmetro φ=a/3. Faça análise de convergência. Adote valores de dimensões, propriedades e carga (σ) que julgar adequados.

 $K_{t} = \sigma_{\text{máx}} \: / \: \sigma_{\text{nominal}}$

onde: $\sigma_{nominal}$ =3/2 σ

ESTA É OPCIONAL:

5) Obter a aproximação das integrais abaixo, com 4 pontos de quadratura de Gauss e, se possível, comparar com a solução exata:

a)
$$\int_{1.0}^{1.5} x^2 \ln(x) dx$$

b) $\iiint \frac{x^2y^2}{z} dxdydz$, no paralelepípedo dado por: $1,0 \le x \le 1,2$; $1,0 \le y \le 1,3$; $1,0 \le z \le 1,4$

c) $\iint \frac{\sin(xy)}{\sqrt{3x+2y}} dxdy$, no triângulo ao lado:

