INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA - CAMPUS CAMPINA GRANDE BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO

ANDERSON LUCAS DIOGO SANTOS GABRIEL LOPES JACKSON PLATINY

SISTEMAS EMBARCADOS PROJETO FINAL

Campina Grande 2025

INTRODUÇÃO

Este projeto consiste no desenvolvimento de um sistema embarcado de jogos interativos utilizando um sensor de movimento MPU6050, display OLED SSD1306, botões físicos para navegação e um módulo SD Card para armazenamento persistente de dados. O sistema integra múltiplos recursos de entrada e saída, comunicação I2C e SPI, além de processamento em tempo real no microcontrolador ESP32.

O objetivo principal é criar uma plataforma com quatro minigames controlados por inclinação, oferecendo interação física e experiência de jogo intuitiva. O sistema inicia com um menu de seleção e permite que o usuário navegue entre os jogos e selecione a opção desejada utilizando dois botões físicos. Os recordes de cada jogo são armazenados no cartão SD, garantindo persistência mesmo após desligar o sistema.

O projeto também explora conceitos de sistemas embarcados como multitarefas, debounce de botões, PWM para sons simulados e comunicação com múltiplos periféricos.

Funcionamento:

O sistema embarcado inicia exibindo um menu principal no display OLED com as quatro opções de jogos. O Botão 1 é utilizado para navegar entre as opções, enquanto o Botão 2 confirma a seleção.

Cada jogo implementa uma lógica independente, controlada por inclinação, e possui um sistema de pontuação. Ao final da partida, se o jogador atingir um recorde, este é salvo no SD Card.

Lista de Jogos:

- 1. Dodge the Blocks Desviar de obstáculos com movimento lateral.
- 2. Tilt Maze Conduzir uma esfera virtual por um labirinto.
- 3. Snake Tilt Versão do clássico Snake controlada por inclinação.
- 4. Paddle Pong Rebater a bola com uma raquete controlada por inclinação.

Componentes:

Descrição	Função	Quantidade
ESP32	MCU Principal	1
MPU6050	Controle por movimento (I2C)	1
SSD1306	Interface gráfica (I2C)	1
Módulo SD Card	Armazenamento persistente (SPI)	1
Buzzer	Efeitos sonoros (PWM)	1

Botões	Navegação no menu e seleção de jogo (GPIO)	2
--------	--	---

1. Hardware:

Diagrama de bloco do dispositivo:

Esquema elétrico:

Protótipo do dispositivo:

2. Bibliotecas

. Divilotecas		
stdio.h	Biblioteca padrão de entrada/saída em C.	
string.h	Biblioteca padrão de manipulação de strings em C.	
stdlib.h	Biblioteca de funções utilitárias de propósito geral (ex.: rand() para posições aleatórias nos jogos).	
stdbool.h	Usada para definição do tipo booleano bool e valores true/false.	
stdint.h	Biblioteca de tipos de dados inteiros com tamanho fixo.	
freertos/FreeRTOS.h e freertos/task.h	Bibliotecas relacionadas ao FreeRTOS, um sistema operacional em tempo real para sistemas embarcados. Elas são usadas para criar tarefas e gerenciar o sistema de tempo real (multithread no ESP32).	
driver/gpio.h	Biblioteca para operações GPIO no ESP-IDF. Usada para configurar e controlar pinos GPIO.	
driver/ledc.h	Biblioteca para controle de PWM via módulo LEDC para gerar tons no buzzer.	
driver/i2c.h	Biblioteca para comunicação I2C com MPU6050 (acelerômetro) e SSD1306 (display OLED).	
driver/sdmmc_types.h	Biblioteca que contém estruturas e definições para interface com cartão SD.	

esp_log.h	Biblioteca de registro de logs para depuração durante a execução.
esp_err.h	Biblioteca para a manipulação de códigos de erro e status de funções da ESP-IDF.
"font5x7.h"	Biblioteca de fonte bitmap personalizada desenvolvida pela equipe do projeto para renderizar caracteres no display.

"display.h"	Biblioteca desenvolvida pela equipe do projeto que contém as funções próprias para inicializar e desenhar no display OLED SSD1306.
"mpu6050.h"	Biblioteca desenvolvida pela equipe do projeto que contém as funções próprias para inicialização e leitura de dados do sensor de movimento MPU6050.
"sdcard.h"	Biblioteca desenvolvida pela equipe do projeto que contém as funções próprias para inicializar, ler e gravar dados no cartão SD (recordes).

Essas bibliotecas são essenciais para o desenvolvimento do sistema embarcado de jogos no ESP32 utilizando o framework ESP-IDF, proporcionando funcionalidades como manipulação de GPIO, comunicação I2C e SPI, controle de PWM para geração de sons, gerenciamento de tarefas com FreeRTOS, exibição gráfica no display OLED, leitura de dados do sensor MPU6050 e armazenamento persistente de informações no cartão SD.

DESCRIÇÃO DAS ATIVIDADES

Este projeto visa o desenvolvimento de um sistema embarcado de jogos com quatro minigames controlados via sensor de movimento MPU6050, com interface gráfica em display OLED SSD1306, controle de menu por botões físicos e armazenamento persistente de dados em SDCard. O sistema deve iniciar com um menu de seleção dos jogos, permitindo ao usuário navegar e selecionar nas opções de minigames utilizando dois botões.

Atividades Realizadas:

Configuração do Ambiente de Desenvolvimento:

• Instalação e configuração do ambiente de desenvolvimento ESP-IDF (Espressif IoT Development Framework).

Implementações e Configurações Relativas a Comunicação dos Dispositivos:

- Implementação da comunicação I2C para o MPU6050 e SSD1306.
- Implementação da comunicação SPI para o módulo SD Card.
- Desenvolvimento de bibliotecas para leitura do acelerômetro, interface gráfica, controle do buzzer e manipulação do SD Card.

Implementação dos jogos:

- Implementação dos quatro jogos independentes, cada um com sua lógica de controle por inclinação.
- Criação do menu inicial e navegação com botões físicos.

• Salvamento e recuperação de recordes de pontuação no SD Card.

Realização de Testes para Comprovação e Validação:

• Testes no hardware real com ajuste fino da jogabilidade.

3. Código (Link do Repositório)

RESULTADOS

Durante o desenvolvimento do projeto, obtivemos resultados positivos em várias frentes, destacando conquistas significativas em áreas-chave. A seguir, apresento uma visão geral dos resultados obtidos:

Configurações iniciais do Framework e dos dispositivos:

A configuração do framework apesar de inicialmente ter sido um pouco conturbada devido a diferenças de versão e erros de instalação, terminou sendo bem sucedida ao optar por uma versão robusta e estável, permitindo dar continuidade no desenvolvimento das ferramentas e garantindo o correto funcionamento da comunicação entre dispositivos.

Implementação dos jogos:

A implementação dos jogos teve momentos desafiadores e momentos amenos, onde alguns jogos exigiram mais tempo e esforço que outros, como foi o caso do Tilt Maze, mas de maneira geral conseguimos alcançar os objetivos estabelecidos. A interface dos jogos foi projetada seguindo à risca o esperado de cada jogo, atendendo aos requisitos do projeto. Em alguns jogos foi necessário realizar experimentações e testes quanto a velocidade de resposta e velocidade do jogo em si, para fins de encontrar a melhor experiência de jogatina para o usuário final do sistema embarcado.

Implementação das bibliotecas dos dispositivos:

A implementação das bibliotecas dos dispositivos foi uma etapa tranquila e atendeu às expectativas. Essa etapa foi essencial para garantir o correto funcionamento da comunicação entre dispositivos, conforme as necessidades do projeto.

Aplicação de testes no ambiente de simulação Wokwi:

Nesta etapa, fizemos os testes iniciais para validar a construção do nosso código, reparando erros e ajustando parâmetros para garantir que o código estivesse adequado com as diretrizes e objetivos traçados no documento do projeto e rodando sem erros. Encontramos algumas dificuldades para chegar na versão final do código, mas nada fora do esperado. Como resultado final, conseguimos desenvolver um código robusto e funcional, que possui todas as funcionalidades esperadas para o projeto.

Aplicação de testes no Hardware definitivo:

Devido a limitações na ferramenta Wokwi com relação a simulação da escrita e leitura de arquivos no cartão SD, acabamos tendo um pouco de dificuldade em acertar no hardware real as configurações adequadas que permitiam o correto salvamento dos recordes dos jogos no cartão SD, porém, após algumas modificações e testes, foi possível realizar o salvamento da maneira esperada, garantindo assim o cumprimento dos requisitos solicitados para este projeto e o funcionamento esperado desse sistema embarcado.

De maneira geral, o projeto atendeu aos objetivos propostos, resultando em um sistema funcional com os quatro minigames operacionais. A interação via MPU6050 apresentou boa responsividade e a interface gráfica no SSD1306 foi clara e objetiva. O salvamento e recuperação de recordes no SD Card, apesar das dificuldades iniciais encontradas, após pequenos ajustes acabou funcionando conforme esperado também. Os efeitos sonoros simulados com PWM complementam a experiência de jogo do usuário.

CONSIDERAÇÕES FINAIS

Este projeto demonstrou a viabilidade de integrar múltiplos dispositivos e protocolos em um sistema embarcado compacto. O projeto pode ser expandido com novos jogos, melhorias gráficas e maior complexidade na lógica de jogabilidade. A abordagem modular adotada facilita futuras atualizações e reutilização de componentes em outros projetos de sistemas embarcados.