Problema 2

Ahora modele M contra INC, PL, VT y UR. Compare los resultados con (1)

Regresor	Estadístico T	p-value
Constante	-0.690164	0.4936
INC	3.05246	0.0038
PL	5.8149	0.0000
UR	3.49454	0.0011
VT	-5.1313	0.0000

Tabla de ANOVA					
Fuente	SS	Grados de libertad	MS	F	
(modelo) Regresión	79564.2	4	19891.0	44.21	
(error) Residual	20244.4	45	449.876	44.21	
Total	99808.6	49			

 $R^2 = 79.7168 \%$

 R^2 ajustada=77.9138 %

Dado que la R^2 ajustada es del 77.9138% y en la tercera regresión nos da una R^2 ajustada de 82.0232%, indica que ésta última es una mejor regresión para explicar la tasa de asesinatos.

Problema 3

Es posible que a los doctores les guste estar en las ciudades y en las zonas con más altos ingresos potenciales para ellos. (e.g. donde B y HT sean grandes) Pruebe esta hipótesis.

Regresor	Estadístico T	p-value
Constante	3.19668	0.0026
В	-3.64697	0.0007
DI	-0.871505	0.3884
HT	-0.664672	0.5099
INC	-0.968612	0.3383
MH	1.37838	0.1754
POP	-0.918651	0.3635
UR	4.11441	0.0002

Tabla de ANOVA					
Fuente	SS	Grados de libertad	MS	F	
(modelo) Regresión	47877.8	7	6839.69	9.23	
(error) Residual	31120.2	42	740.957	9.23	
Total	78998.0	49			

 R^2 ajustada = 54.0407

Dado que la R^2 ajustada es $54.0407\,\%$, se puede decir que el $54.0407\,\%$ de la variabilidad de la variable doctores por 100,000 se explica con el modelo. Como el p-value de la mayoría de las variables en mayor a 0.05, es recomendable quitar todas las variables que cumplen dicha característica.

Quitando los regresores no significativos en el modelo, se aplica un nuevo modelo como sigue: