Don't Stop Pretraining:

Adapt Language Models to Domain and Tasks

Authors Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy,

Doug Downey, Noah A. Smith

Published in ACL 2020, Annual Meeting of the Association for Computational Linguistics (ACL)

Team 4

KAIST KAIST KAIST KAIST KAIST
Sangwook Lee Wenchao Dong Taeyeong Lee William Gyuho Suh

Introduction

Replication Approach

1. Baseline Model (RoBERTa)

- Large pre-training corpus
- 2. Domain Adaptive Pre-Training (DAPT)
 - Domain specific corpus (4 domains)
- 3. Task Adaptive Pre-Training (TAPT)
 - Task specific datasets (2 tasks/domain)

Replication Approach

Augmenting Training Data for TAPT

- 4. Human Curated-TAPT
 - Human finds task-relevant data
- 5. Automated Data Selection for TAPT
 - Automatically selects k candidates via nearest neighbors selection (kNN-TAPT)

Datasets

Baseline: RoBERTa

DAPT: 4 domain-specific datasets, TAPT: 8 task-specific datasets

Domain	Pretraining Corpus	Task	Label Type
BIOMED	2.68M full-text papers from S2ORC(Lo et al., 2019)	CHEMPROT(Kringelum et al., 2016) RCT(Dernoncourt and Lee, 2017)	relation classification abstract sent. roles
CS	2.22M full-text papers from S2ORC(Lo et al., 2019)	ACL-ARC(Jurgens et al., 2018) SCIERC(Luan et al., 2018)	citation intent relation classification
NEWS	11.90M atricles from REALNEWS(Zellers et al., 2020)	HYPERPARTISAN(Kiesel et al., 2019) AGNEWS(Zhang et al., 2015)	partisanship topic
REVIEWS	24.75M AMAZON reviews(He and McAuley, 2016)	HELPFULLNESS(McAuley et al., 2015) IMDB(Maas et al., 2011)	review helpfulness review sentiment

Table 1: List of 4 domain-specific unlabeled datasets sources and their corresponding task-specific datasets

Experiment Process and Results with 4 replication experiments and 2 improvements

Overview

- Replications
 - Domain Adaptive Pretraining
 - Task Adaptive Pretraining
 - Human-Curated TAPT
 - Automated Data Selection for TAPT
- Improvements
 - Youtube Misinformation
 - GLUE Benchmark

Domain Adaptive Pretraining

Pretrained on each of the four domains.

Selected two DAPT models with the lowest correlation between two of them.

 Measured the effect of irrelevant domain pre-training. For example, pretraining on Biomed domain-specific dataset and Reviews task-specific dataset.

Results - Domain Adaptive Pretraining

- DAPT outperforms ¬DAPT to varying degrees.
- It means that it is important to continue pretraining on domain-relevant data.

Dom.	Task	ROBA.	DAPT	¬DAPT
ВМ	CHEMPROT RCT	$81.4_{1.0}$ $79.6_{0.6}$	$84.3_{0.6}$ $82.5_{0.6}$	79.5 _{0.8} 77.3 _{0.5}
CS	ACL-ARC SCIERC	$63.8_{4.3} \\ 78.0_{3.7}$	75 .1 _{2.1} 80.1 _{0.7}	63.0 _{1.9} 81.0 _{1.0}
NEWS	HYP. AGNEWS	$92.3_{2.4} \\ 93.6_{0.2}$	$86.1_{10.1}$ $93.6_{0.2}$	$70.9_{3.0}$ $93.4_{0.2}$
REV.	HELPFUL. IMDB	$64.7_{0.4} \\ 94.5_{0.2}$	$68.8_{2.3} \\ 95.0_{0.1}$	$65.9_{2.2} \\ 94.0_{0.2}$

Task Adaptive Pretraining

- We compared the performance between DAPT, TAPT, and DAPT+TAPT.
- Experimented in 4 Domains and 8 corresponding Tasks.

Domain	Task	RoBERTa	Addit	aining Phases	
Domain	IUSK	Robbitta	DAPT	DAPT+TAPT	
BM	CHEMPROT RCT				
CS	ACL-ARC SCIERC				
NEWS	HYP. AGNEWS				
REV.	HELPFUL. IMDB			表 京	

Results - Task Adaptive Pretraining

- DAPT+TAPT improves the baseline model for all tasks except one task.
- DAPT+TAPT also outperformed TAPT on most tasks.

Domain	Task	RoBERTa	Additional Pretraining Phases		
20114111		RODERIA	DAPT	TAPT	DAPT+TAPT
ВМ	CHEMPROT RCT	$81.4_{1.0} \\ 79.6_{0.8}$	84.3 _{0.6} 76.2 _{0.6}	82.3 _{0.6} 80.3 _{0.6}	$84.1_{1.0}$ $82.9_{0.1}$
CS	ACL-ARC SCIERC	$63.8_{4.3}$ $78.0_{3.7}$	75 . 1 _{2.1} 80.1 _{0.7}	$69.4_{1.5} \\ 79.2_{0.8}$	$74.1_{3.8}$ 80.5 _{1.0}
NEWS	HYP. AGNEWS	92.3 _{2.4} 93.6 _{0.2}	$86.1_{10.1} \\ 93.5_{0.2}$	87.5 _{4.8} 94.1 _{0.1}	$82.9_{11.2}$ $94.2_{0.1}$
REV.	HELPFUL. IMDB	$64.7_{0.4} \\ 94.5_{0.2}$	69.9 _{1.7} 95.0 _{0.1}	$69.0_{1.8} \\ 95.0_{0.3}$	$68.6_{1.4}$ $95.3_{0.2}$

Cross Task Transfer

- Checked the result of pre-training LM using both same domain TAPTs.
- In the CS domain, for example, we pre-trained the Language Model on ACL-ARC unlabeled data and fine-tuned it using SCIERC labeled data.

Computer Science

Results - Cross Task Transfer

- Only one experiment resulted in a slight improvement in performance.
- The remaining **7 Transfer-TAPT**s did not perform as well as the **TAPT**s.
- It suggest that in most cases, the distribution of data for different tasks belonging to the same domain is different.

BIOMED	RCT	CHEMPROT
TAPT	80.3 _{0.6}	82.3 _{0.6}
Transfer-TAPT	$79.5_{0.4}(\downarrow 0.8)$	$81.9_{1.2}(\downarrow 0.4)$
NEWS	HYPERPARTISAN	AGNEWS
TAPT	87.54.8	$94.1_{0.1}$
Transfer-TAPT	$81.6_{6.5}(\downarrow 5.9)$	$93.6_{0.3}(\downarrow 0.5)$

CS	ACL-ARC	SCIERC
TAPT	69.4 _{1.5}	$79.2_{0.8}$
Transfer-TAPT	$70.3_{1.8} (\uparrow 0.9)$	$78.9_{1.7}(\downarrow 0.3)$
REVIEWS	HELPFULNESS	IMDB
TAPT	69.01.8	$95.0_{0.3}$
Transfer-TAPT	$65.2_{1.8}(\downarrow 3.8)$	$94.5_{0.1} (\downarrow 0.5)$

Human Curated TAPT

- Use human curated data for Curated-TAPT unlabeled data.
- Experiments are conducted on RCT-500, HYP., IMDB that includes a large unlabeled data.
- We compared Curated-TAPT with TAPT and DAPT+TAPT respectively.

Results - Human Curated TAPT

- Curated-TAPT produces better result compare to TAPT and DAPT+TAPT.
- On the RCT-500 and IMDB tasks, curating a data from the task distribution has a great influence on performance improvement.

Pretraining	BIOMED RCT-500	NEWS HYP.	REVIEWS IMDB
TAPT DAPT+TAPT	80.3 _{0.6} 82.9 _{0.1}	87.5 _{4.8} 82.9 _{11.2}	$95.0_{0.3}$ $95.3_{0.2}$
Curated-TAPT DAPT+Curated-TAPT	$83.1_{0.3}$ $83.5_{0.5}$	$82.3_{15.4} \\ 82.4_{8.9}$	95.6 _{0.1} 95.4 _{0.2}

Automatic Data selection for TAPT

- Human Curated TAPT is effective, but burdensome
- VAMPIRE variational methods for pretraining in resource-limited environment
- N-Gram model with unlabeled text
- Consist of three part
 - VAE pre-train network with word frequency representation of unlabeled corpus
 - VAMPIRE embedding : VAE + labeled text (world)
 - Classification : unlabeled -> label

Figure 1: VAMPIRE involves pretraining a deep variational autoencoder (VAE; displayed on left) on unlabeled text. The VAE, which consists entirely of feedforward networks, learns to reconstruct a word frequency representation of the unlabeled text with a logistic normal prior, parameterized by μ and σ . Downstream, the pretrained VAE's internal states are frozen and concatenated to task-specific word vectors to improve classification in the low-resource setting.

Strategy - Automatic Data selection for TAPT

- Label text → RCT-500
- Unlabeled corpus → BioMed (100MB)
- Restriction
 - Hard Copyright for Domain corpus in latest ver. (X CS, Small BioMed)
 - A huge time for pre-training VAMPIRE
 - Limit Computing power (X Chemprot)

Strategy - Automatic Data selection for TAPT

Result of MRPC augment dataset with HC corpora news data as unlabeled

```
Source: At best, Davydenko's supporters were naively ignorant of tennis etiquette; at worst, they cheated - yet went without penality from umpire Lars Graf.
Neighbor 0: After being beaten Hunter left FAMU and gave up an 82 000 scholarship
Neighbor 1: As Lee took the basketball to the rim he glanced at Faried
Neighbor 2: And there you have the subtext that has made the 2012 redistricting so emotional that Lopez went home last week and still in his suit sat on his$
Neighbor_3: A ninth grade girl smiled shyly when asked about her school
Neighbor 4: A few days later Rutgers student Scott Xu testified Ravi told his ultimate Frisbee teammates that he had set up the webcam again
Neighbor 5: After the verdict was read Crockam was led away in handcuffs
Neighbor 6: Adomaitis woke up at 3 a m got his teammates up to run laps because he thought it was 6 in the morning
Neighbor 7: After winning the event Suhr took three unsuccessful attempts at 16 4 % which would have broken her own U S record
Neighbor 8: Akinyele turned the floor over to Thomas who cleared his throat and stood up straight. He scanned the young faces looking back at him
Neighbor 9: Asked by a prosecutor why she went along with it Young put her hands together pressed them to her chin and bowed her head as if in prayer As sh$
Neighbor 10: And sometimes a coach is tested with tears to earn the legitimacy of that title
Neighbor_11: After several minutes the dance ended I bowed to her pressing my hands together in a universally understood gesture of thanks. The crowd appla$
Neighbor 12: As LaBove held him next to the wreckage Kinison struggled out loud with the thought of dying then came to grips with it. And I realized he was
Neighbor_13: After her testimony Hudson clutching tissues walked slowly directly in front of the jury as she crossed the courtroom She then took a seat in$
Neighbor 14: And there was a brief tantalizingly sadistically brief shot of Batman and Bane finally going at it mano a mano
Neighbor 15: After the prosecution finished its opening statements Swor took to the podium and said Wow great show
Neighbor_16: After the final arguments had ended and after the courtroom had emptied Senser 45 of Edina was asked about her thoughts now that seven days of
Neighbor 17: Andrea said she and the other students were threatened with disciplinary action for walking out but we did it anyway
Neighbor 18: Anoka High counselor Barry Terrass said he wore the red T shirt Friday because a student asked him to
Neighbor_19: About a half dozen students watched a piece of the encounter in which Clementi and M B were seen kissing
Neighbor 20: Although still weak at times Kendall finished fifth As she walked down the 16th fairway during the final round she felt her eyes fill with teas
Neighbor 21: Actions speak louder than words Russell told jurors as she began her final argument. That is a phrase I would like you to keep in mind
Neighbor 22: Altman guestioned M B is appearance at the time of the meetings itrying to strengthen the defense s contention that Ravi watched the two men onlys
Neighbor 23: Asked how much he thought about defense while in high school Faust laughed
Neighbor 24: Applause broke out among several dozen onlookers on the street when Goodwin reached the balcony around 5 20 and waved before his arrest
```

Result - Automatic Data selection for TAPT

- Aug + TAPT improves the baseline model & only TAPT
- Even unlabeled corpus is small than the origin paper, the results are similar
- As K increases higher(50→500), the performance improve better except
 500NN-TAPT

Pretraining	BioMed, RCT-500			
1 retraining	Paper		Replication	
ROBERTA	79.3	0.6	79.6	0.6
TAPT	79.8	1.4	80.3	0.6
50NN-TAPT	80.8	0.4	80.7	0.7
150NN-TAPT	81.2	0.6	81.1	0.2
500NN-TAPT	81.7	0.8	80.3	0.4
DAPT	82.5	0.5	82.5	0.6

Result - Automatic Data selection for TAPT

- Too much Repetition in Small Unlabel Corpus
- Effect way to augment for small task data if we has appropriate corpus
 - → Use in Improvement part

```
The company added that it would reevaluate its commitment to the remaining New York show, which took place last month.
32 New York
6 New York
 05 04 09 35 PDT New York AP
                                      repetitions
 05 03 07 59 PDT New York AP
```

Why is it important?

I want to make a NLP model for classifying sociology papers

Why is it important?

I want to make a NLP model for classifying sociology papers

Improvement Approaches and Results

Overview

- Conduct statistical tests for identifying the effects of adaptive pretraining
- Task Adaptive Pretraining for a task to classify YouTube comments
- Domain and Task Adaptive Pretraining for the GLUE benchmark

Approach - Statistical test

Dom.	Task	RoBA.	DAPT	$\neg DAPT$
D14	СнемРкот	81.91.0	84.20.2	79.41.3
ВМ	†RCT	$87.2_{0.1}$	$87.6_{0.1}$	$86.9_{0.1}$
GC.	ACL-ARC	63.0 _{5.8}	75.4 _{2.5}	66.44.1
CS	SCIERC	$77.3_{1.9}$	$80.8_{1.5}$	$79.2_{0.9}$
	HYP.	86.6 _{0.9}	88.2 _{5.9}	76.44.9
News	†AGNEWS	$93.9_{0.2}$	$93.9_{0.2}$	$93.5_{0.2}$
Dev	†HELPFUL.	65.13.4	66.5 _{1.4}	65.12.8
REV.	†IMDB	$95.0_{0.2}$	95.4 _{0.2}	$94.1_{0.4}$

Table 3: Comparison of ROBERTA (ROBA.) and DAPT to adaptation to an *irrelevant* domain (\neg DAPT). Reported results are test macro- F_1 , except for CHEMPROT and RCT, for which we report micro- F_1 , following Beltagy et al. (2019). We report averages across five random seeds, with standard deviations as subscripts. \dagger indicates high-resource settings. Best task performance is boldfaced. See §3.3 for our choice of irrelevant domains.

- In the original paper, they report averages across five random seeds, with standard deviations.
- However, if the standard deviation is large, we cannot affirm whether there is a statistically significant improvement.
- So, we trained and tested the models 30 times per each experiment and conducted Two sample T-Test.

Improvement Approaches and Results

Overview

- Conduct statistical tests for identifying the effects of adaptive pretraining
- Task Adaptive Pretraining for a task to classify YouTube comments
- Domain and Task Adaptive Pretraining for the GLUE benchmark

Motivation - YouTube comments

During the COVID periods, viral conspiracy videos spread misinformation through YouTube and Facebook

→ We want to check whether adaptive pretraining is helpful to build a classifier of COVID conspiracy comments on YouTube

Datasets - YouTube comments

- Baseline Model (RoBERTa)
- 2. Task Adaptive Pre-Training (TAPT)
 - labeled comments <u>dataset</u>
- 3. Human Curated-TAPT
 - unlabeled comments dataset
- 4. Automatic Data Selection for TAPT
 - Task: labeled comments
 - Domain: YouTube <u>comments</u>

Results - YouTube comments

	ROBERTA	TAPT	Curated-TAPT	10NN-TAPT	25NN-TAPT
avg	74.26	75.59	75.88	74.03	75.97
std	1.82	1.88	2.13	2.18	1.82

- TAPT and Curated-TAPT improves the model performance compared to the pure ROBERTA model.
 - \circ vs. TAPT : p = 0.007
 - \circ vs. Curated-TAPT: p = 0.002
- No significant difference between TAPT and Curated-TAPT (p = 0.57)
- 10NN-TAPT is not helpful for the model performance.
- 25NN-TAPT has better performance than 10NN-TAPT (p = 0.0004)

Interpretation - YouTube comments

	ROBERTA	TAPT	Curated-TAPT	10NN-TAPT	25NN-TAPT
avg	74.26	75.59	75.88	74.03	75.97
std	1.82	1.88	2.13	2.18	1.82
data size	0 B	660 KB	5.9 MB	5.6 MB	12.4 MB

9x. large

Pretraining	Steps	Docs.	Storage	F_1
Roberta	130	- 5	ā	79.30.6
TAPT	0.2K	500	80KB	79.81.4
50nn-tapt	1.1K	24		30.6
150nn-tapt	3.2K	66 3	37x. lar	qe 2 _{0.8}
500nn-tapt	9.0K	185		70.4
Curated-TAPT	8.8K	180K	27MB	83.40.3
DAPT	12.5K	25M	47GB	82.50.5
DAPT + TAPT	12.6K	25M	47GB	83.00.3

- TAPT and Curated-TAPT improves the model performance compared to the pure ROBERTA model.
 - No significant difference between TAPT and Curated-TAPT
 - There is not much difference in the size of the dataset.
- 10NN-TAPT is not helpful for the model performance.
 - Domain dataset for YouTube comments is much smaller.

Interpretation - YouTube comments

	ROBERTA	TAPT	Curated-TAPT	10NN-TAPT	25NN-TAPT
avg	74.26	75.59	75.88	74.03	75.97
std	1.82	1.88	2.13	2.18	1.82
data size	0 B	660 KB	5.9 MB	5.6 MB	12.4 MB

Pretraining	Steps	Docs.	Storage	F_1	
Roberta	130	5	ā	79.30.6	
TAPT	0.2K	500	80KB	79.81.4	
50nn-tapt	1.1K	24K	3MB	80.80.6	
150nn-tapt	3.2K	66K	8MB	81.20.8	
500nn-tapt	9.0K	185K	24MB	81.70.4	
Curated-TAPT	8.8K	180K	27MB	83.40.3	
DAPT	12.5K	25M	47GB	82.50.5	
DAPT + TAPT	12.6K	25M	47GB	83.00.3	

- TAPT and Curated-TAPT improves the model performance compared to the pure ROBERTA model.
- No significant difference between TAPT and Curated-TAPT
 - There is little difference in data size.
- 10NN-TAPT is not helpful for the model performance.
 - Domain dataset for YouTube comments is much smaller.

Interpretation - YouTube comments

Suggestions for Task adaptive pretraining

- If you try human-curated TAPT, you need to use sufficiently large dataset.
 - Though you use human-curated TAPT, if the dataset is not large,
 you may not see a significant improvement.
- When you try to extract the data for TAPT from a domain dataset,
 use as large domain dataset as possible.
 - If the domain dataset is small, it can rather reduce the performance.

Improvement Approaches and Results

Overview

- Conduct statistical tests for identifying the effects of adaptive pretraining
- Task Adaptive Pretraining for a task to classify YouTube comments
- Domain and Task Adaptive Pretraining for the **GLUE benchmark**

Motivation - GLUE Benchmark

Is adaptive pretraining effective in GLUE benchmark?

GLUE Tasks

Corpus	Train	Test	Task	Metrics	Domain					
Single-Sentence Tasks										
CoLA SST-2	8.5k 67k	1k 1.8k	1				misc. movie reviews			
Similarity and Paraphrase Tasks										
MRPC STS-B QQP	3.7k 7k 364k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questions					
			Infere	ence Tasks						
MNLI QNLI RTE WNLI	393k 105k 2.5k 634	20k 5.4k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia news, Wikipedia fiction books					

Table 1: Task descriptions and statistics. All tasks are single sentence or sentence pair classification, except STS-B, which is a regression task. MNLI has three classes; all other classification tasks have two. Test sets shown in bold use labels that have never been made public in any form.

Datasets - GLUE Benchmark

data	train	dev	test	domain	input	task	metrics	
Stanford Sentiment Treebank (SST-2)	67k	872	1.8k	movie reviews	single- sentence	- sentiment - binary classification (positive / negative)	acc.	
Microsoft Research Paraphrase Corpus (MRPC)	3.7k	408	1.7k	news	two sentences	paraphrase	acc./F1	
The Recognizing Textual Entailment (RTE)	2.5k	276	3.0k	news wikipedia	two sentences	binary classification (entailment / not_entailment)	acc.	

DAPT models

Available DAPT models:

allenai/cs_roberta_base allenai/biomed_roberta_base allenai/reviews_roberta_base allenai/news_roberta_base

This download consists of data only: a text file containing 5800 pairs of sentences which have been extracted from news sources on the web, along with human annotations indicating whether each pair captures a paraphrase/semantic equivalence relationship. Last published: March 3, 2005.

Results - GLUE Benchmark

	mrpc(ne	ws)	rte(news, wikipedia)		sst(reviews)	
	avg	std	avg	std	avg	std
base	84.50	1.26	58.63	7.60	93.92	0.31
news	83.73	0.86	53.65	1.72	93.85	0.34
cs	83.82	1.46	53.29	0.75	91.58	0.37
review	82.23	0.84	53.00	2.58	93.67	0.29
biomed	84.87	0.70	60.58	5.02	91.74	0.42

	mrpc	(news)	sst(reviews)		
	base	TAPT	base	TAPT	
avg	86.22	77.20	93.96	93.90	
std	2.30	1.02	0.36	0.26	

- News DAPT models are less effective on MRPC and RTE.
- Review DAPT models are effective on SST.
- The model pretrained by MRPC datasets reduce the task performance.
- The model pretrained by SST-2 datasets doesn't affect the performance.
 (p = 0.506)

Interpretation - GLUE benchmark

	mrpc(ne	ws)	rte(news, wiki	ipedia)	sst(reviews)	
	avg	std	avg	std	avg	std
base	84.50	1.26	58.63	7.60	93.92	0.31
news	83.73	0.86	53.65	1.72	93.85	0.34
cs	83.82	1.46	53.29	0.75	91.58	0.37
review	82.23	0.84	53.00	2.58	93.67	0.29
biomed	84.87	0.70	60.58	5.02	91.74	0.42

	Senten	ce #1		Sentence	e #2
		mrpc(news	s)	sst(reviews)
	base	TAPT	New-TAPT	base	TAPT
avg	86.22	77.20	89.23	93.96	93.90
std	2.30	1.02	0.58	0.36	0.26
Microsoft Research Paraphrase Corpus (MRPC)			408 1.7k г	ews two	o paraphrase ntences

- DAPT models are not always effective for the task in the same domain.
 - The distribution of task data may be far from news datasets used for pretraining our DAPT model.
- The model pretrained by MRPC datasets reduce the task performance.
 - MRPC is different with previous tasks: two sentence input, paraphrase
 - \circ The model pretrained with the first sentences improve the performance (p = 0.00)

Interpretation - GLUE benchmark

Suggestions for Task adaptive pretraining

- When you use a DAPT model, check the dataset used for pretraining.
 - Even in the same field, it might not help improving the model.
- For a task with two sentence inputs, pretrain the model with the task dataset made of only first sentence.

Don't Stop Pretraining:

Adapt Language Models to Domain and Tasks

References

References

- Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert: A pretrained language model for scientific text. arXiv preprint arXiv:1903.10676.
- Franck Demoncourt and Ji Young Lee. 2017. Pubmed 200k rct: a dataset for sequential sentence classification in medical abstracts. arXiv preprint arXiv:1710.06071.
- Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, and Noah A Smith. 2020. Don't stop pretraining: adapt language models to domains and tasks. arXiv preprint arXiv:2004.10964.
- Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual evolution of fashion trends with one-class collaborative filtering. In proceedings of the 25th international conference on world wide web, pages 507–517.
- Jeremy Howard and Sebastian Ruder. 2018. Universal language model fine-tuning for text classification. arXiv preprint arXiv:1801.06146.
- David Jurgens, Srijan Kumar, Raine Hoover, Dan Mc-Farland, and Dan Jurafsky. 2018. Measuring the evolution of a scientific field through citation frames. Transactions of the Association for Computational Linguistics, 6:391–406.
- Johannes Kiesel, Maria Mestre, Rishabh Shukla, Emmanuel Vincent, Payam Adineh, David Corney,

- Benno Stein, and Martin Potthast. 2019. Semeval-2019 task 4: Hyperpartisan news detection. In Proceedings of the 13th International Workshop on Semantic Evaluation, pages 829–839.
- Jens Kringelum, Sonny Kim Kjaerulff, Søren Brunak, Ole Lund, Tudor I Oprea, and Olivier Taboureau. 2016. Chemprot-3.0: a global chemical biology diseases mapping. *Database*, 2016.
- Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. 2020. Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4):1234–1240.
- Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.
- Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Dan S Weld. 2019. S2orc: The semantic scholar open research corpus. arXiv preprint arXiv:1911.02782.
- Lajanugen Logeswaran, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, Jacob Devlin, and Honglak Lee. 2019. Zero-shot entity linking by reading entity descriptions. arXiv preprint arXiv:1906.07348.
- Yi Luan, Luheng He, Mari Ostendorf, and Hannaneh Hajishirzi. 2018. Multi-task identification of entities, relations, and coreference for scientific knowledge graph construction. arXiv preprint arXiv: 1808.09602.

- Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts. 2011. Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting of the association for computational linguistics: Human language technologies, pages 142–150.
- Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. 2015. Image-based recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval, pages 43–52.
- Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. 2018. Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461.
- Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk, Ali Farhadi, Franziska Roesner, and Yejin Choi. 2020. Defending against neural fake news. Neurips.
- Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional networks for text classification. Advances in neural information processing systems, 28:649–657.
- Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. In Proceedings of the IEEE intermational conference on computer vision, pages 19–27.