Controlled K-theory, part II

H. Oyono Oyono

October 29, 2021

Séminaire Kervaire 2021: Baum-Connes Conjecture 24 - 29 Octobre 2021 Les Diablerets

Recall: Controlled K-theory

Let $A = (A_r)_{r>0}$ be a unital filtered C^* -algebra, r>0 (propagation) and $0 < \varepsilon < 1/4$ (control):

- $p \in A$ is an ε -r-projection if $p \in A_r$, $p = p^*$ and $||p^2 p|| < \varepsilon$.
- $u \in A$ is an ε -r-unitary if $u \in A_r$, $||u^* \cdot u 1|| < \varepsilon$ and $||u \cdot u^* 1|| < \varepsilon$.

Replacing in the definition of K-theory projections by ε -r-projections and unitaries by ε -r-unitaries we obtain controlled K-theory

$$K_*^{\varepsilon,r}(A) = K_0^{\varepsilon,r}(A) \oplus K_*^{\varepsilon,r}(A)$$

with structure maps

$$\iota_*^{\varepsilon,r,r'}:K_*^{\varepsilon,r}(A){\longrightarrow}K_*^{\varepsilon,r'}(A)$$

and

$$\iota_*^{\varepsilon,r}$$
: $K_*^{\varepsilon,r}(A) \longrightarrow K_*(A)$.

Recall: controlled index

Let X be a compact metric space.

- A non degenerated representation (\mathcal{H}_X, ρ_X) of C(X) is an X-standard module if $\rho_X(f)$ compact implies f = 0
- If A is a C^* -algebra, we set $K_*(X, A) = KK_*(C(X), A)$.
- Let us fix a non degenerated standard X-module (ρ_X, \mathscr{H}_X) . For any $0 < \varepsilon < 1/100$ and any r > 0, there exists a controlled index map $\operatorname{Ind}_{X,A}^{\varepsilon,r} : K_*(X,A) \to K_*^{\varepsilon,r}(\mathscr{K}(\mathscr{H}_X) \otimes A)$ such that

 - 2 the composition

$$K_*(X,A) \longrightarrow K_*^{\varepsilon,r}(\mathscr{K}(\mathscr{H}_X) \otimes A) \xrightarrow{\iota_*^{\varepsilon,r}} K_*(\mathscr{K}(\mathscr{H}_X) \otimes A) \cong K_*(A)$$

is the index map $\operatorname{Ind}_{X,A}: K_*(X,A) \to K_*(A)$ (induced by $X \mapsto \{pt\}$).

Next steps

• For Σ a finite metric space and \mathcal{H}_d a non degenerated $P_d(\Sigma)$ -standard module, complete

$$K_*(P_d(\Sigma), A) \stackrel{\operatorname{Ind}_{P_d(\Sigma), A}^{\varepsilon, r}}{\longrightarrow} K_*^{\varepsilon, r_0}(\mathscr{K}(\mathscr{H}_d) \otimes A) \longrightarrow K_*^{\varepsilon, r}(\mathscr{K}(\ell^2(\Sigma)) \otimes A)$$

in a controlled assembly map for r_0 small and r > 2d. The right arrow is obtained by conjugation by a covering isometry

$$V_{\Sigma,d}:\mathscr{H}_d{\longrightarrow}\ell^2(\Sigma,\mathscr{H}_d)=\ell^2(\Sigma){\otimes}\mathscr{H}_d$$

- State a uniformly controlled version of the Coarse Baum-Connes assembly map for families of finite metric spaces;
- show that it is stable under "cut-and pasting".

The covering isometry

- Let Σ be a finite metric space. Recall that the Rips complex of degree d is the set $P_d(\Sigma)$ of probability measures on Σ with support of diameter less than d.
- Let $(\lambda_{\sigma})_{\sigma \in \Sigma}$ be the family of coordinate functions for $P_d(\Sigma)$, i.e $\nu = \sum_{\sigma \in \Sigma} \lambda_{\sigma}(\nu) \delta_{\sigma}$ for any ν in $P_d(\Sigma)$.
- Fix a non degenerated $P_d(\Sigma)$ -standard module \mathscr{H}_d and define $V_{\Sigma,d}: \mathscr{H}_d \longrightarrow \ell^2(\Sigma, \mathscr{H}_d)$ by $V_{\Sigma,d} \cdot \xi(\sigma) = \lambda_{\sigma}^{1/2} \cdot \xi$ ($\xi \in \mathscr{H}_d$ and $\sigma \in \Sigma$);
- Since $\sum \lambda_{\sigma} = 1$ then $V_{\Sigma,d}$ is an isometry;
- If $T \in A \otimes \mathcal{K}(\mathcal{H}_d)$ has propagation r then $Ad_{V_{\Sigma,d}} \cdot T = (1 \otimes V_{\Sigma,d}) \cdot T \cdot (1 \otimes V_{\Sigma,d}^*)$ has propagation r' = 2d(r+1) and hence induces a morphism

$$K_*^{\varepsilon,r}(A\otimes \mathscr{K}(\mathscr{H}_d))\stackrel{Ad_{V_{\Sigma,d},*}}{\longrightarrow} K_*^{\varepsilon,r'}(A\otimes \mathscr{K}(\ell^2(\Sigma,\mathscr{H}_d)))$$

$$\cong K_*^{\varepsilon,r'}(A\otimes \mathscr{K}(\ell^2(\Sigma))).$$

Quantitative coarse assembly maps

The composition

$$\mathsf{Ind}_{P_d(\Sigma),A}^{arepsilon,r}: \mathit{K}_*(P_d(\Sigma),A) o \mathit{K}_*^{arepsilon,r}(A \otimes \mathscr{K}(\mathscr{H}_d))$$

and

$$Ad_{V_{\Sigma,d},*}: K_*^{\varepsilon,r}(A \otimes \mathscr{K}(\mathscr{H}_d)) \longrightarrow K_*^{\varepsilon,2d(r+1)}(A \otimes \mathscr{K}(\ell^2(\Sigma)))$$

give rise to a family of quantitative coarse assembly maps

$$\mu_{\Sigma,A,*}^{\varepsilon,r,d}: K_*(P_d(\Sigma),A) \longrightarrow K_*^{\varepsilon,r}(A \otimes \mathscr{K}(\ell^2(\Sigma)))$$

for r > 2d.

These maps are compatible with

$$q_{d,d'}^*: K_*(P_d(\Sigma), A) \longrightarrow K_*(P_{d'}(\Sigma), A)$$
 induced by inclusions $P_d(\Sigma) \hookrightarrow P_{d'}(\Sigma)$ and with structure maps $\iota_*^{\varepsilon,r,r'}: K_*^{\varepsilon,r}(A \otimes \mathcal{K}(\ell^2(\Sigma))) \to K_*^{\varepsilon,r'}(A \otimes \mathcal{K}(\ell^2(\Sigma)));$

• $\mu_{\Sigma,A,*}^{\varepsilon,r,d}$ induces the index map in K-theory.

Quantitative statement

We consider for Σ a finite metric space and A a C^* -algebra the statements :

$$Ql_{\Sigma,A}(d,d',r,\varepsilon)\colon \quad K_*(P_d(\Sigma))\ni x\longmapsto 0\in K_*^{\varepsilon,r}(A\otimes \mathscr{K}(\ell^2(\Sigma)))$$

$$K_*(P_{d'}(\Sigma))\ni 0$$

$$\mu_{\Sigma,A,*}^{\varepsilon,r,d}(x)=0 \text{ in } K_*^{\varepsilon,r}(A\otimes \mathscr{K}(\ell^2(\Sigma))) \text{ implies } q_{d,d'}^*(x)=0 \text{ in }$$

$$K_*(P_{d'}(\Sigma),A), \ \forall x\in K_*(P_d(\Sigma),A).$$

$$QS_{\Sigma,A}(d,r,r',\varepsilon)\colon K_*(P_d(\Sigma))\ni x\longmapsto \iota_*^{\varepsilon,r,r'}(y)\in K_*^{\varepsilon,r'}(A\otimes \mathscr{K}(\ell^2(\Sigma)))$$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

For every y in $K_*^{\varepsilon,r}(A\otimes \mathcal{K}(\ell^2(\Sigma)))$, there exists $x\in K_*(P_d(\Sigma),A)$ such that $\mu_{\Sigma,A,*}^{\varepsilon,r',d}(x)=\iota_*^{\varepsilon,r,r'}(y)$.

Uniform Quantitative Assembly Map (QAM) estimates

Definition

Let $(\Sigma_i)_{i\in I}$ be a family of finite metric spaces. We say that $(\Sigma_i)_{i\in \mathbb{N}}$ satisfies uniformly the QAM-estimates if

- of for any d > 0, $0 < \varepsilon < 1/200$ and r > 2d, there exists d' with $d' \ge d$ such that $QI_{\Sigma_i,A}(d,d',r,\varepsilon)$ is satisfied for any i in I and any C^* -algebra A.
- Por any $0 < \varepsilon < 1/200$ and r > 0, there exist positive numbers d and $r' > \sup\{2d, r\}$, such that $QS_{\Sigma_i, A}(d, r, r', \varepsilon)$ is satisfied for any i in i and any i

 $(\Sigma_i)_{i\in I}$ has uniformly bounded geometry if $\forall r > 0 \ \exists N_r > 0$ such that in all Σ_i , balls of radius r have cardinal less than N_r .

Example

A family $(\Sigma_i)_{i \in I}$ of uniformly bounded finite metric spaces with uniformly bounded geometry satisfies uniformly the QAM-estimates.

Examples

 $(\Sigma_i)_{i\in I}$ uniformly coarsely embeds into a Hilbert space \mathscr{H} if \exists proper maps $\rho_{\pm}: \mathbb{R}^+ \to \mathbb{R}^+$ and $\forall i \in I$ maps $f_i: \Sigma_i \to \mathscr{H}$ s.t $\rho_{-}(\|f_i(x) - f_i(y)\|) \leqslant d(x, y) \leqslant \rho_{+}(\|f_i(x) - f_i(y)\|)$ for all x, y in Σ_i .

Theorem (O-Yu)

Let $(\Sigma_i)_{i\in I}$ be a family of finite metric spaces. Assume $(\Sigma_i)_{i\in I}$ has uniformly bounded geometry and uniformly coarsely embeds into a Hilbert space. Then $(\Sigma_i)_{i\in I}$ satisfies uniformly the QAM-estimates.

Theorem (O-Yu)

Let Γ be a finitely generated group provided with any word metric. Assume Γ satisfies the Baum-Connes conjecture with coeff. Then the family of all finite subsets of Γ satisfies uniformly the QAM-estimates.

Application to Novikov conjecture

Theorem (O-Yu)

Let Σ be a discrete space with bounded geometry. Assume that the family of all finite subsets of Σ satisfies uniformly the QAM-estimates. Then Σ satisfies the coarse Baum-Connes conjecture.

Corollary (Descent principle of Higson/Roe)

Let Γ be a finitely generated group equipped with any word metric whose classifying space B_{Γ} has homotopy type of a finite CW-complex. Assume that the family of all finite subsets of Γ satisfies uniformly the QAM-estimates. Then Γ satisfies the Novikov conjecture.

QAM-ESTIMATES AND COARSE DECOMPOSITIONS ("cut-and-pasting")

Coarse decomposability

Definition

Let \mathcal{X} and \mathcal{Y} be families of discrete proper metric spaces and R > 0. We say that \mathcal{X} is R-decomposable relatively to \mathcal{Y} if for every X in \mathcal{X} there exist two subsets $X^{(1)}$ and $X^{(2)}$ of X such that

- $X = X^{(1)} \cup X^{(2)}$;
- $X^{(i)}$ is a R-disjoint union of spaces in \mathcal{Y} , i.e $\exists (X_k^{(i)})_{k \in \mathbb{N}}$ family of spaces in \mathcal{Y} s.t $X^{(i)} = \bigsqcup_{k \in \mathbb{N}} X_k^{(i)}$ and $d(X_k^{(i)}, X_l^{(i)}) > R$ if $k \neq l$;

Remark

The single element family $\{X\}$ is R-decomposable for every R>0 relatively to a family of uniformly bounded metric spaces $\stackrel{def}{\Longleftrightarrow} X$ has asymptotic dimension 1.

Asymptotic dimension 1

Definition

A metric space X has asymptotic dimension 1 if for every R > 0, there exist two subsets $X^{(1)}$ and $X^{(2)}$ of X such that

- $X = X^{(1)} \cup X^{(2)}$;
- $X^{(i)}$ is a R-disjoint union of a family of uniformly bounded subsets

 $\ensuremath{\mathbb{Z}}$ has asymptotic dimension 1.In the same way, free groups have asymptotic dimension 1

QAM-estimates and coarse decomposability

For $\mathcal Y$ a family of finite sets, let $\widetilde{\mathcal Y}$ be the family of all subsets of all sets in $\mathcal Y$.

Theorem (O-Yu)

Let \mathcal{X} be a family of finite metric spaces. Assume that for every R > 0, there exists \mathcal{Y} with uniformly bounded geometry such that

- \mathcal{X} is R-decomposable with respect to \mathcal{Y} ;
- ullet $\widetilde{\mathcal{Y}}$ satisfies uniformly the QAM-estimates;

Then X satisfies uniformly the QAM-estimates.

Corollary

The family of finite subsets of a tree satisfies uniformly the QAM-estimates.

Example:

Definition

Let X be a proper discrete metric space. Then X has asymptotic dimension m if for every r > 0 there exist m + 1 subsets $X^{(1)}, \ldots X^{(m+1)}$ of X such that

- $X = \bigcup_{i=1}^{m+1} X^{(i)};$
- $X^{(i)}$ is a r-disjoint union of a uniformly bounded family of subsets, i.e $X^{(i)} = \bigsqcup_{k \in \mathbb{N}} X_k^{(i)}$ with $(diam X_k^{(i)})_{k \in \mathbb{N}}$ bounded and $d(X_k^{(i)}, X_l^{(i)}) > r$ if $k \neq l$;

Example

- \mathbb{Z}^n has asymptotic dimension n;
- @ Gromov hyperbolic spaces have finite asymptotic dimension;
- Oiscrete subgroups in Lie groups have finite asymptotic dimension.

QAM and finite asymptotic dimension

Theorem (Dranishnikov-Zarichnyi)

Let Σ be a proper discrete metric space with bounded geometry. If X has finite asymptotic dimension, then Σ admit a coarse embedding into a product of trees $T_1 \times \cdots \times T_n$

```
(i.e there exists proper maps \rho_{\pm} : \mathbb{R}^+ \to \mathbb{R}^+ and a map f : \Sigma \to T_1 \times \cdots \times T_n such that \rho_{-}(d(f(x), f(y))) \leq d(x, y) \leq \rho_{+}(d(f(x), f(y))) for all x, y in \Sigma).
```

Corollary

Let Σ be a discrete metric space with bounded geometry and finite asymptotic dimension. Then the family of all finite subsets of Σ satisfies uniformly the QAM-estimates.

Finite decomposition complexity

Definition

A class C of families of proper discrete metric spaces is closed under coarse decomposability if the following is satisfied:

let \mathcal{X} be a family of proper discrete metric spaces. Assume that for any R > 0, there exists \mathcal{Y} in \mathcal{C} such that \mathcal{X} is R-decomposable with respect to \mathcal{Y} . Then \mathcal{X} is in \mathcal{C} .

Consider C_{fdc} the smallest class of families of proper discrete metric spaces which is closed under coarse decomposability and which contains uniformly bounded families of metric spaces.

Definition

A proper discrete metric space X has **finite decomposition complexity** if the single element family $\{X\}$ is in \mathcal{C}_{fdc} .

Examples : countable subgroups in $GL_n(\mathbb{F})$ (Guentner-Tessera-Yu).

QAM-estimates and coarse decomposability

Theorem (O-Yu)

Let \mathcal{X} be a family of finite metric spaces in \mathcal{C}_{fdc} with uniformly bounded geometry. Then \mathcal{X} satisfies uniformly the QAM-estimates.

Corollary

If X has finite decomposition complexity and bounded geometry, the family of all finite subsets of X satisfies the QAM-estimates.

Corollary (Guentner-Tessera-Yu)

If Γ is a finitely generated group whose classifying space B_{Γ} has homotopy type of a finite CW-complex and with finite decomposition complexity with respect to any word metric, then Γ satisfies the Novikov conjecture.

THANK YOU FOR YOUR ATTENTION!!!