Functional Dependencies

Goonjan Jain
Assistant Professor
Department of Applied Mathematics
Delhi Technological University

Functional Dependencies

- Motivation is create 'good' tables
- For example:

Table1(roll no, course id, grade, name, address)

Is this table good or bad?

Roll_no	Course_id	Grade	Name	Address
2017/MC/24	MC302	Α	Aman	Prime
2017/MC/24	MC304	A+	Aman	Prime
2017/MC/24	MC306	Α	Aman	Prime

- Table1 is bad. Why?
- Answer Redundancy-
 - Space
 - Inconsistency
 - Updation anomalies
- What caused the problem?
- Answer name depends on roll_no

Functional Dependencies

- Definition $-a \rightarrow b$
- a functionally determines b
- If you know 'a', there is only one 'b' to match

Formally:

$$X \rightarrow Y$$
 implies $(t1[x1] = t2[x1]$ then $t1[y1] = t2[y1])$

if two tuples agree on the "X" attribute, the *must* agree on the "Y" attribute, too

- 'X' and 'Y' can be set of attributes
- Other examples of functional dependencies:

Roll_no	Course_id	Grade	Name	Address
2017/MC/24	MC302	Α	Aman	Prime
2017/MC/24	MC304	A+	Aman	Prime
2017/MC/24	MC306	Α	Aman	Prime

Roll_no \rightarrow name, address Roll_no, course_id \rightarrow grade

Closure

- Closure of a set of FD: all implied FDs
- For example –
 Roll_no → name, address
 Roll_no, course_id → grade

Imply

Roll_no, course_id \rightarrow grade, name, address Roll_no, course_id \rightarrow roll_no

• How to find all the implied ones, systematically?

Armstrong's Axioms

- "Armstrong's axioms" guarantee soundness and completeness:
- Reflexivity:

$$Y \subseteq X \Rightarrow X \rightarrow Y$$

eg., roll_no, name -> roll_no

Augmentation

$$X \rightarrow Y \Rightarrow XW \rightarrow YW$$

• eg., roll_no → name then roll_no, grade-> name, grade

Armstrong's Axioms

Transitivity

$$X \rightarrow Y$$
 and $Y \rightarrow Z \Rightarrow X \rightarrow Z$

```
For example, roll_no → address, and address → HRA_rate

THEN:

roll no -> HRA rate
```

Armstrong's Axioms

Reflexivity:

$$Y \subseteq X \Rightarrow X \Rightarrow Y$$

Augmentation

$$X \rightarrow Y \Rightarrow XW \rightarrow YW$$

Transitivity

$$X \rightarrow Y$$
 and $Y \rightarrow Z \Rightarrow X \rightarrow Z$

'sound' and 'complete'

Armstrong's axioms

- Additional rules:
- Union

$$X \rightarrow Y$$
 and $X \rightarrow Z \Rightarrow X \rightarrow YZ$

Decomposition

$$X \rightarrow YZ \Rightarrow X \rightarrow Y$$
 and $X \rightarrow Z$

Pseudo-transitivity

$$X \rightarrow Y$$
 and $YW \rightarrow Z \Rightarrow XW \rightarrow Z$:

Prove 'Union', 'Decomposition' and 'pseudo-transitivity' from Armstrong's axioms.

Prove 'Union' from three axioms:

$$X \rightarrow Y$$
 (1)
 $X \rightarrow Z$ (2)
(1) + augm. $w/Z \Rightarrow XZ \rightarrow YZ$ (3)
(2) + augm. $w/X \Rightarrow XX \rightarrow XZ$ (4)
but XX is X ; thus
(3) + (4) and transitivity $\Rightarrow X \rightarrow YZ$

FDs – Closure F+

- Given a set F of FD (on a schema)
- F+ is the set of all implied FD. Eg.,
 table1(roll no, course id, grade, name, address)

```
roll_no, course_id \rightarrow grade roll_no \rightarrow name, address
```

Closure F+

```
Roll_no, course_id \rightarrow grade

Roll_no \rightarrow name, address

Roll_no \rightarrow roll_no

F+

Roll_no, course_id \rightarrow address

Course_id, address \rightarrow course_id
```

FDs – Closure A+

- Given a set F of FD (on a schema)
- A+ is the set of all attributes determined by A:

```
table1(roll_no, course_id, grade, name, address)
roll_no, course_id → grade
Roll_no → name, address
```

```
{roll_no}+ =??
{roll_no}+ = {roll_no, name, address}
```

```
{course_id}+ = ??
{course_id, roll_no}+ = ??
```

FDs – A+ closure

if A+ = {all attributes of table}
 then 'A' is a superkey

$$AB \rightarrow C(1)$$

$$A \rightarrow BC(2)$$

$$B \rightarrow C (3)$$

$$A \rightarrow B (4)$$

Canonical Cover F_c

```
Given a set F of FD (on a schema)
F_c \text{ is a minimal set of equivalent FD. Eg.,}
```

```
table1(roll_no, course_id, grade, name, address)
roll_no, course_id → grade
Roll_no → name, address
Roll_no,name → name, address
roll_no, course_id → grade, name
```

 F_{c}

roll_no, course_id → grade

Roll_no → name, address

Roll_no,name → name, address

roll_no, course_id → grade, name

FDs – Canonical cover F_c

- Why do we need it?
- define it properly
- compute it efficiently

FDs – Canonical cover F_c

- Why do we need it?
 - easier to compute candidate keys
- Define it properly three properties
 - 1) the RHS of every FD is a single attribute
 - 2) the closure of F_c is identical to the closure of F
 - i.e., F_c and F are equivalent
 - 3) F_c is minimal
 - i.e., if we eliminate any attribute from the LHS or RHS of a FD, property #2 is violated
 - we need to eliminate 'extraneous' attributes.
- An attribute is 'extraneous' if
 - the closure is the same, before and after its elimination
 - or if F-before implies F-after and vice-versa

Canonical cover F_c

```
roll_no, course_id → grade

Roll_no → name, address

Roll_no,name → name, address

roll_no, course_id → grade, name
```

Algorithm for Canonical cover F_c

- examine each FD; drop extraneous LHS or RHS attributes; or redundant FDs
- make sure that FDs have a single attribute in their RHS
- repeat until no change

For example: Trace algorithm for

$$AB \rightarrow C$$
 (1)

$$A \rightarrow BC$$
 (2)

$$B \rightarrow C$$
 (3)

$$A \rightarrow B$$
 (4)

Canonical cover F_c

• Step 1: Split (2)

$$AB \rightarrow C$$
 (1)

$$A \rightarrow B$$
 (2')

$$A \rightarrow C$$
 (2")

$$B \rightarrow C$$
 (3)

$$A \rightarrow B$$
 (4)

Step 2: Delete redundant FDs

$$AB \rightarrow C$$
 (1)

$$A \rightarrow B$$
 (2')

$$A \rightarrow C$$
 (2")

$$B \rightarrow C$$
 (3)

$$A \rightarrow B$$
 (4)

$$AB \rightarrow C$$
 (1)

$$A \rightarrow C$$
 (2")

$$B \rightarrow C$$
 (3)

$$A \rightarrow B$$
 (4)

• Step 3: (2") is redundant (implied by (4), (3) and transitivity)

$$AB \rightarrow C$$
 (1)

$$AB \rightarrow C$$
 (1)

 $A \rightarrow C$ (2")

$$B \rightarrow C$$
 (3)

$$A \rightarrow B$$
 (4)

$$B \rightarrow C$$

$$A \rightarrow B$$
 (4)

(3)

• Step 4: in (1), 'A' is extraneous:

$$AB \rightarrow C$$
 (1)

$$B \rightarrow C$$
 (1')

$$B \rightarrow C$$
 (3)

$$3 \rightarrow C \qquad (3)$$

$$A \rightarrow B$$
 (4)

$$B \rightarrow C$$
 (3)

(4)

$$A \rightarrow B$$

Canonical Cover F_c

• Step 5: (1') is redundant

$$B \rightarrow C (1')$$

$$B \rightarrow C$$
 (3)

$$A \rightarrow B$$
 (4)

$$B \rightarrow C$$
 (3)
 $A \rightarrow B$ (4)

- nothing is extraneous
- all RHS are single attributes
- final and original set of FDs are equivalent (same closure)

Before

$$AB \rightarrow C$$
 (1)

$$A \rightarrow BC$$
 (2)

$$B \rightarrow C$$
 (3)

$$A \rightarrow B$$
 (4)

After

$$B \rightarrow C$$
 (3)

$$A \rightarrow B$$
 (4)

Equivalence of set of FDs

- Given 2 sets of FDs, E and F
- If every dependency of E can be inferred from F, then E is covered by F, and vice versa.
- If E⁺ = F⁺, E covers F and F covers E
- Check F covers E
 - For all X → Y in E, calculate X⁺
 - Check if X⁺ includes the attributes in Y.
- For example: $E = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$ $F = \{A \rightarrow CD, E \rightarrow AH\}$

Check – F covers E?

E ={A
$$\rightarrow$$
 C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H}
F = {A \rightarrow CD, E \rightarrow AH}
In E:

$$A \rightarrow C$$
Compute A^+ using FDs in F
 $A^+ = \{A, C, D\}$

$$AC \rightarrow D$$

Compute $\{AC\}^+$ using FDs in F
 $\{AC\}^+ = \{A, C, D\}$

$$E \rightarrow H$$

Compute $\{E\}^+$ using FDs in F
 $\{E\}^+ = \{E, A, H, C, D\}$

• Thus, F covers E.

 $E \rightarrow AD$ Compute $\{E\}^+$ using FDs in F $\{E\}^+ = \{E, A, H, C, D\}$

Check – E covers F?

$$E = \{A \rightarrow C, AC \rightarrow D, E \rightarrow AD, E \rightarrow H\}$$
$$F = \{A \rightarrow CD, E \rightarrow AH\}$$

In F:

$$A \rightarrow CD$$

Compute A^+ using FDs in E
 $A^+ = \{A, C, D\}$

Thus, E covers F.

 $E \rightarrow AH$ Compute $\{E\}^+$ using FDs in E $\{E\}^+ = \{E, A, D, H, C\}$

Is E equivalent to F?

- E is covered by F, and
- F is covered by E

• Thus, E is equivalent to F.

Question 1:

- Find canonical cover for the following sets of dependencies:
 - $E = \{B \rightarrow A, D \rightarrow A, AB \rightarrow D\}$
 - $F = \{A \rightarrow BCDE, CD \rightarrow E\}$