(<u>a</u>

Some function (rows, cols)	Steps/exec	Areq	Total
for (i=1; i & rows ; i++)	2	(ous+1	2*(rows+1)
for (i=1; je cols ; i++)	2	lows+(cols+1)	e a nows a (colu)
brint (A)	_ (cous & cols	rows & cols
Print (newline)		rous	t ows
me f in the			3#rous & cols + Trows +2

```
T (rows, cols) = B. rows.cols + F. rows + 2

T (rows, cols) = O (rows.cols) = D (rows.cols) = O (rows.cols)

T (rows, cols) + O (rows.cols)

C1. (rows.cols) + B rows.cols + B. rows + 2 + Cn. (rows.cols)
```

 $C_1 = C_2 = 6$ $C_3 = C_4 = 6$ $C_4 = 6$ $C_{10} = C_{10} = 2$ $C_{10} = C_{10} = 2$ $C_{10} = C_{10} = 2$ $C_{10} = C_{10} = 2$

TRest (rous, cds) = Twast (rous, cols) = 10 (rous, cds)

Total Stopslexec 14=9 Sometunction (a, b) if (b == 0) return on swel =a Increment = a for (i=1: icb ;i++) 2 26 2 for (j=1 ; iLa; i+) (b-1).a neb - ga onswer += increment ab-5-a+1 (5-1), (0-1) (b-1) 5-1 increment = ensurer return ensurer 3 ab + 16 + 5

T(a,b) = 3.a.b + 5b + 7 $C_{1}.(b,b) \leq 3ab + 2b + 7 \leq C_{1}.(c.b)$ $C_{1} = 3$ $C_{1} = 3$ $C_{0} = 3$

Some function (arr[], arr-lan)	stepsterec	freq	Total
for (i=0; iLorr-len/2; i++) Val = Val + orr [i] for (i=011-len/2; iLorr-len; i++) Val = Val - orr [i] if (Val) = 0) return 1. else return -1		teillore-lente)+1 teillore-lente)+1 tloor(ore-lente)+1 tloor(ore-lente) 1	2* (cuil (on loals) 21) cellor loals arthodor loals Lloor (on loals)
			3 u Collen -lanh) + 3 u Hoodenila

$$T(c_{11}-ld_{1})=3$$
. $c_{21}l(c_{11}-le_{1}/2)+3$. $f(c_{21}-le_{1}/2)+3$.

4	Some function (n)	Sleps/ exec	Fieg	Total
	C = 0	1	1	1
	for (i=1 fo n&n)	2	(n, & n)+1	(n&n)+1).2
*	for (j=1 to n)	2	(U+V) * (U+1)	[(n+n) & (n+1)].2
	for (\(= 1 +0 2 \div j \)	2	(n * n) * n * (n + n)	(n×n)*n ×(n+2)*2
	C=C+1	2	(+1) x (1 x (1+1)	(n*n) k n v (n+1)*2
-	return c	1	4.	1
			1	404+803+407+4

$$\hat{\sum}_{2j+1}^{2j+1} = 3 + \epsilon + \cdots + 2n+1 = n \cdot (n+2) \qquad \hat{\sum}_{2j}^{2j} = 2 + \mu + \cdots + 2n = n \cdot (n+1)$$

$$T(\nu) = \mu n^{\mu} + 8 n^{3} + \mu n^{2} + \mu = O(n^{\mu}) = N(n^{\mu}) = O(n^{\mu})$$

$$T(\nu) = O(n^{\mu})$$

```
Some function (n)
                105 20
                 1=1
                if (n 210)
                       return ntio
                tor (1=9 ) i) 1) 1--)
                        while(10% 1==0)
                                n=n/i
                                res= restjeti
                17 (n>10)
                     return -1
                return res
           Port 2 - 1 (Points[], siee, oPoint)
                     distance = find Distance (Points[0], a Point) | O(1)
min Distance = distance
index = D
                      for (1=0; ilsine; i++)
                     B(1) { distance = find Distance (Point Ei], apoint) } = since . 1

It (min Distance ) distance)
min Distance = distance
                      return points[index]
           find Distance (P.1, P2)
                                                                     There is 9 operation for all P1, and P2
                   Dx = Pa.x - Pa.x
                   Dy = P1. y - P2.4
                   distance = sqrt (pow(px, 1) + fow(py, 2))
return distance
             Port 2-20 (OLICI, sine)
Pert 2.20
                      if (size > 2)
                              for(i=1; iLsine-1; it+)
                                   { if (onti-i) >= ontij & & ontij L= ontin) 
return i
                                                        [TW/N] = O(N) TW1 - B(N) (TB) + (W) = O(1)
                       return -1
Port 2.26)
           Port2-nb (or [], size)
                if (size > 2)
                      for (i=1; ilsine-1; itt)
                   Oll) { If (arti-1)= ortil 88 artil = ortil) } D(N)
Print (newline)
            TB(N) = TW(N) = O(N)
```