

Sigurnost računalnih sustava

Osnove kriptografije i kriptoanalize

doc. dr. sc. Ante Đerek

doc. dr. sc. Stjepan Groš

izv. prof. dr. sc. Miljenko Mikuc

izv. prof. dr. sc. Marin Vuković

Osnove kriptografije i kriptoanalize

Asimetrična kriptografija

Problem: Sigurna komunikacija putem nesigurnog kanala

- Kako Ana i Branku mogu uspostaviti dijeljeni tajni ključ?
- Što ako je Branko na drugom kontinentu?

Laboratorij za informacijsku sigurnost i privatnost

Kako uspostaviti zajednički ključ s poslužiteljem na internetu?

•

Povijest asimetrični kriptografije

- 1973 Cocks, "A Note on Non-Secret Encryption"
- 1975 Merkle, "Secure Communications over Insecure Channels"
- 1976 Diffie, Hellman, "New Directions in Cryptography"
- 1977 Rivest, Shamir, Adelman, "A method for obtaining digital signatures and public key cryptosystems"
- 1985 ElGamal, "A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms"
- 2020 NIST Post-Quantum Cryptography Standardization Process

Osnove kriptografije i kriptoanalize

Asimetrične šifre (sustavi kriptiranja javnim ključem)

Javni i tajni ključevi

- Nova ideja: Primatelj ima dva ključa
 - Javni ključ pk_B : Javno poznat (npr. telefonski imenik)
 - Privatni ključ sk_B : Poznat samo Branku
 - Jasni tekst se šifrira s javnim ključem pk_B
 - Skriveni tekst se dešifrira s privatnim ključem sk_B

Primjena – PGP/GPG

```
$ gpg --list-keys Gledec
pub 1024D/800D81AC 1999-12-03
uid Gordan Gledec <gordan.gledec@tel.fer.hr>
uid Gordan Gledec <gordan@tel.fer.hr>
uid Gordan Gledec <gordan.gledec@fer.hr>
uid Gordan Gledec <gordan.gledec@fer.hr>
uid Gordan Gledec <gordan@kaktus.tel.fer.hr>
uid Gordan Gledec <gordan.gledec@zg.hinet.hr>
     1024g/7EBABF31 1999-12-03
$ cat poruka.txt
Napadamo u zoru
$ gpg --armor --encrypt --recipient 0x800D81AC --output poruka.pgp poruka.txt
gpq: 7EBABF31: There is no assurance this key belongs to the named user
pub 1024q/7EBABF31 1999-12-03 Gordan Gledec <qordan.qledec@tel.fer.hr>
 Primary key fingerprint: 8294 3615 5220 2F8A 9A70 3F7A 8B1B 4606 800D 81AC
       Subkey fingerprint: A240 91E6 80BB BFD0 920E B7AE CF09 55B2 7EBA BF31
It is NOT certain that the key belongs to the person named
in the user ID. If you *really* know what you are doing,
you may answer the next question with yes.
Use this key anyway? (y/N) y
$ cat poruka.pgp
 ----BEGIN PGP MESSAGE-----
Version: GnuPG v1
hQEOA88JVbJ+ur8xEAP+PhWVbvpYFuAVLoCBmkid8hPXUTInN0oYSafZ0rSFRQzo
JS+/qHMu24C8QzSQkyyV/9wLWQeyak6ApzCZozov3TlpFk9q10HqwfvY+F70T2Uz
3jVJKI0c9Y0k8AiFLYgqNogZZ84J45ra00KHSse7vhoJto3j1Rm+1qsTFChjGx0D
/ijAFyg+KdKKfjAUKc0Sm8GH3XHQVVrAjCz5Q4KfnTD90QqOOPgeAOMsqCri+gc9
5qx+dH3Ko9S9pjWPYNUAkD74evfrOL5cGUqI50wV7Xhf4eWWjXmewy1aZxECBjkv
NWDWFQRLm42oZ9wk7KkqDfzjALBV/BjDR7RYzH3m7XbQyTAqyQHuzsEP4kI6FjCU
P8TKqXci1Uq8eAnSCMkONdqMNYoLrSOzBwwPI4IHTj3RI7o=
 ----END PGP MESSAGE----
```

Search results for '0x8b1b4606800d81ac'

Primjena – TLS protocol

Laboratorij za informacijsku sigurnost i privatnost

Sustav kriptiranja javnim ključem – definicija

- Trojka efikasnih algoritama G, E i D
 - G algoritam koji generira par ključeva pk, sk
 - E(m, pk) algoritam enkripcije
 - D(c, sk) algoritam dekripcije
- Za svaki par ključeva (pk, sk) generiranih algoritmom G i za svaku poruku p vrijedi D(E(p, pk), sk) = p

Sustav kriptiranja javnim ključem – sigurnost

- SKJK je siguran ako je teško na temelju skrivenog teksta odrediti bilo što o izvornom tekstu ...
- ... čak i ako napadač ima na raspolaganju:
 - Javni ključ kojim je izvorni tekst šifriran (chosen-plaintext attack)
 - Mogućnost da dobije p=D(c,sk) za proizvoljni c (chosen-ciphertext attack)

Primjer definicije sigurnosti SKJK

Semantička sigurnost od napada odabranim skrivenim tekstom (*semantic security under chosen-ciphertext attack*): Niti jedan algoritam koji koristi razumne resurse ne može pobijediti u sljedećoj igri s vjerojatnošću nezanemarivo većom od jedne polovine.

pokušaj pogađanja $b' \in \{0,1\}$

Primjeri sustava kriptiranja javnim ključem

- Merkleove slagalice (1974)
 - građene pomoću simetrične šifre, nepraktično
- RSA (1978)
 - teorija brojeva, sigurnost povezana s problemom faktorizacije
- McEliece (1978)
 - teorija kodiranja, sigurnost povezana s problemom dekodiranja općenitog linearnog koda
- ElGamal (1985)
 - teorija brojeva ili eliptičke krivulje, sigurnost povezana s problemom diskretnog logaritma

Ne znamo izgraditi dobar sustav kriptiranja javnim ključem pomoću supstitucija, permutacija, operacije XOR _(ソ)_/

Cilj za ovaj predmet

- Usvojiti kako otprilike funkcionira RSA
- Potrebno malo teorije brojeva!

Laboratorij za informacijsku sigurnost i privatnost

Teorija brojeva – notacija

- N prirodni broj
- p, q prosti brojevi
- $\mathbb{Z}_N = \{0, 1, ..., N-1\}$ *prsten* u kojemu se zbraja, oduzima i množi modulo *N*
- Pišemo a = b u \mathbb{Z}_N umjesto $a \equiv b \pmod{N}$

Aritmetika u \mathbb{Z}_N

Laboratorij za informacijsku sigurnost i privatnost

$$9 + 8 = 5 \text{ u } \mathbb{Z}_{12}$$

 $5 \cdot 7 = 11 \text{ u } \mathbb{Z}_{12}$
 $7 - 9 = 10 \text{ u } \mathbb{Z}_{12}$

Propozicija: Za aritmetiku u \mathbb{Z}_N vrijede uobičajena svojstva komutativnosti, asocijativnosti i distributivnost (za sada nema dijeljenja u \mathbb{Z}_N).

Prosti brojevi i najveći zajednički djelitelj

- Prirodni broj je prost ako je veći od 1 i ako je djeljiv samo s brojem 1 i sa samim sobom.
- k = nzd(x, y) najveći zajednički djelitelj
 - Ako je nzd(x, y) = 1 onda kažemo da su x i y relativno prosti.

Propozicija: Neka su x i y cijeli brojevi i neka je k njihov najveći zajednički djelitelj, k = nzd(x, y). Postoje cijeli brojevi a i b tako da vrijedi ax + by = k. Brojevi a, b i k se mogu efikasno odrediti proširenim Euklidovim algoritmom.

Dijeljenje u \mathbb{Z}_N

- Inverz elementa $x \in \mathbb{Z}_N$ je element $y \in \mathbb{Z}_N$ takav da vrijedi $x \cdot y = 1$ u \mathbb{Z}_N .
- Inverz od x označavamo s x^{-1} (ako postoji)

Inverz od 2 u \mathbb{Z}_{17} ? 9 Inverz od 4 u \mathbb{Z}_{10} ? Ne postoji.

Propozicija: Broj x ima inverz u \mathbb{Z}_N ako i samo ako je nzd(x,N)=1.

Grupa \mathbb{Z}_N^*

• \mathbb{Z}_N^* je skup svih invertibilnih elementa $x \in \mathbb{Z}_N$

Laboratorij za informacijsku sigurnost i privatnost

- Drugim riječima $\mathbb{Z}_N^* = \{x \in \mathbb{Z}_N, nzd(x, N) = 1\}$
 - Svaki element u \mathbb{Z}_N^* ima inverz koji je također u \mathbb{Z}_N^*
 - Ako su x i y u \mathbb{Z}_N^* onda je i xy u \mathbb{Z}_N^*
 - Stoga je \mathbb{Z}_N^* grupa u odnosu na operaciju množenja

$$\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$$

Ako je p prost $\mathbb{Z}_p^* = \{1, 2, ..., p-1\}$

Eulerova funkcija

Laboratorij za informacijsku sigurnost i privatnost

• Eulerova funkcija $\varphi(N) = |\mathbb{Z}_N^*|$ je broj prirodnih brojeva manjih od N i relativno prostih s N.

$$\varphi(15) = 8$$

Ako je p prost onda $\varphi(p)=p-1$ Ako su p i q različiti prosti brojevi onda je $\varphi(pq)=(p-1)(q-1).$

Eulerov teorem

Teorem (Euler): Za svaki prirodni broj N i za svaki $a \in \mathbb{Z}_N^*$ vrijedi $a^{\varphi(N)} = 1$ u \mathbb{Z}_N .

Teorem (Fermat): Za svaki prosti broj p i za svaki $a \in \mathbb{Z}_p^*$ vrijedi $a^{p-1} = 1$ u \mathbb{Z}_p .

Računanje s velikim brojevima

- Radimo s brojevima veličine 1024-4096 bitova (300-1200 dekadskih znamenki)
- Broj veličine n bitova najčešće pohranjujemo u $\frac{n}{32}$ 32-bitna bloka

The integer value is stored in d, a malloc()ed array of words (BN_ULONG), least significant word first. A BN_ULONG can be either 16, 32 or 64 bits in size, depending on the 'number of bits' (BITS2) specified in openss1/bn.h.

Aritmetika / Modularna aritmetika

- Zbrajanje/oduzimanje?
 - *Školski* algoritam: O(n)
- Množenje?
 - *Školski* algoritam: $O(n^2)$
 - Karatsuba: $O(n^{\log_2 3}) \approx O(n^{1.58})$
 - Asimptotski bolji algoritmi?
- Dijeljenje s ostatkom?
 - *Školski* algoritam: $O(n^2)$
 - Optimizacijski trikovi estimacija kvocijenta, normalizacija
 - Asimptotski bolji algoritmi?

- Zbrajanje/oduzimanje modulo N?
 - Školski algoritam: O(n)
- Množenje modulo N?
 - Pomnoži pa izračunaj ostatak: O(M) + O(D)
 - Montgomery: $O(n^2)$
- Eksponenciranje modulo N?
 - Računamo $b^a \mod N$, gdje su a, b, i N n-bitni brojevi
 - For petlja: O(a M)
 - Uzastopno kvadriranje: O(n M)

RSA – generiranje ključeva

Algoritam G:

- 1. Odaberem velike slučajne proste brojeve *p* i *q*
- 2. Izračunam $N = p \cdot q$
- 3. Izračunam $\varphi(N) = (p-1)(q-1)$
- 4. Odaberem proizvoljni $e \in \mathbb{Z}_{\varphi(N)}^*$ (u praksi e = 65537)
- 5. Izračunam $d = e^{-1}$ u $\mathbb{Z}_{\varphi(N)}^*$
- 6. Javni ključ: pk = (e, N)
- 7. Privatni ključ: sk = (d, N)

RSA – generiranje ključeva

Laboratorij za informacijsku sigurnost i privatnost

Algoritam G:

- 1. Odaberem velike slučajne proste brojeve *p* i *q*
- 2. Izračunam $N = p \cdot q$
- 3. Izračunam $\varphi(N) = (p-1)(q-1)$
- 4. Odaberem proizvoljni $e \in \mathbb{Z}_{\varphi(N)}^*$ (u praksi e = 65537)
- 5. Izračunam $d = e^{-1}$ u $\mathbb{Z}_{\varphi(N)}^*$
- 6. Javni ključ: pk = (e, N)
- 7. Privatni ključ: sk = (d, N)

Ako je moguće N efikasno rastaviti na faktore onda je RSA nesiguran Ako je moguće efikasno izračunati $\varphi(N)$ onda je RSA nesiguran

RSA – enkripcija i dekripcija

Algoritam E:

• $E(m,(e,N)) = m^e \cup \mathbb{Z}_N$

Algoritam D:

• $D(c,(d,N)) = c^d \cup \mathbb{Z}_N$

e zovemo *javni eksponent* d zovemo *privatni eksponent* N zovemo *modul* Otvoreni i skriveni tekst su brojevi u \mathbb{Z}_N

RSA – Korektnost

Algoritam G:

- Veliki slučajni prosti brojevi p i q
- Izračunam $N = p \cdot q$
- Izračunam $\varphi(N) = (p-1)(q-1)$
- Odaberem $e \in \mathbb{Z}_{\varphi(N)}^*$
- Izračunam $d = e^{-1}$ u $\mathbb{Z}_{\varphi(N)}^*$
- Javni ključ: pk = (e, N)
- Privatni ključ: sk = (d, N)

Algoritam E:

• $E(m,(e,N)) = m^e \cup \mathbb{Z}_N$

Algoritam D:

• $D(c,(d,N)) = c^d \cup \mathbb{Z}_N$

$$D(E(m,(e,N)),(d,N)) = D(m^e,(d,N)) = (m^e)^d = m^{ed}$$

= $m^{1+k\varphi(N)} = m \cdot (m^{\varphi(N)})^k = m \cdot (1)^k = m \text{ u } \mathbb{Z}_N$

RSA – Implementacija

Algoritam G:

- 1. Veliki slučajni prosti brojevi *p* i *q*
- 2. Izračunam $N = p \cdot q$
- 3. Izračunam $\varphi(N) = (p-1)(q-1)$
- 4. Odaberem $e \in \mathbb{Z}_{\varphi(N)}^*$
- 5. Izračunam $d=e^{-1}$ u $\mathbb{Z}_{\varphi(N)}^*$
- 6. Javni ključ: pk = (e, N)
- 7. Privatni ključ: sk = (d, N)

Algoritam E:

• $E(m,(e,N)) = m^e \cup \mathbb{Z}_N$

Algoritam D:

• $D(c,(d,N)) = c^d \cup \mathbb{Z}_N$

- Množenje, zbrajanje, inverz, modularno eksponenciranje
- Složenost enkripcije i dekripcije? Općenito $O(n^3)$
- e = 65537?

RSA

- Obični RSA nije siguran sustav kriptiranja javnim ključem ☺
 - Niti od napada poznatim izvornim tekstom.
 - Niti od napada odabranim tekstom.

Primjer 1

- Kriptiramo glasove na izborima
 - sudjeluju dva kandidata označena s 1 i 2
 - izborno povjerenstvo objavi svoj javni ključ pk.
 - glasač A izračuna $c_A = E(g_A, pk)$ gdje je $g_A \in \{1, 2\}$
 - glasač A šalje c_A izbornom povjerenstvu

- E(1, pk) = 1
- $E(2,pk) \neq 1$
- Napadač može zaključiti za koga je glasač glasao!

Primjer 2

- Kriptiramo datoteku
 - Datoteka se sastoji se od n bajtova b_1, b_2, \dots, b_n
 - kriptiramo svaki bajt zasebno $c_k = E(b_k, pk)$
 - šaljemo $c_1, c_2, ..., c_n$ Wi-Fi mrežom
 - Napadač može za svaki mogući bajt b = 0, 1, ..., 255izračunati c = E(b, pk)
 - Kada vidi c_1, c_2, \dots, c_n lagano nalazi b_1, b_2, \dots, b_n

Ako je algoritam enkripcije deterministički onda sustav kriptiranja javnim ključem nikako ne može biti siguran!

RSA – Kombinacija sa simetričnom šifrom

- U praksi se RSA gotovo nikada ne koristi za kriptiranje podataka već za kriptiranje ključeva ili materijala za ključeve.
- 1 način: Digitalna omotnica: $E(Pad(k), pk), E_S(m, k)$
- 2 način: Kriptiranje materijala za ključ:

H je hash funkcija, E_{S} simetrična šifra

Algoritam E:

- 1. Izaberem slučajni $x \in \mathbb{Z}_N$
- 2. Izračunam k = H(x)
- 3. Izračunam $c_1 = E(x, pk)$
- 4. Izračunam $c_2 = E_s(m, k)$
- 5. Skriveni tekst je (c_1, c_2)

RSA – nadopunjavanje (Padding)

- Jasni tekst se uvijek nadopunjuje na zadanu veličinu!
- Postupak nadopunjavanja (padding) igra kritičnu ulogu i pažljivo je osmišljen.
 - PKCS#1 v1.5 (mnoštvo sigurnosnih problema)

Laboratorij za informacijsku sigurnost i privatnost

OAEP

EME-PKCS1-v1 5 encoding:

- a. Generate an octet string PS of length k mLen 3 consisting of pseudo-randomly generated nonzero octets. The length of PS will be at least eight octets.
- b. Concatenate PS, the message M, and other padding to form an encoded message EM of length k octets as

EM = 0x00 | | 0x02 | | PS | | 0x00 | | M.

RSA – Sigurnost

- Ako se RSA ispravno koristi smatramo ga sigurnim
 - Puno implementacijskih napada!
- Najbolji poznati općeniti napad
 - Faktorizacija modula
 - Na primjer, algoritmom GNFS (General Number Field Sieve)
 - U 2021. najveći faktorizirani modul je veličine 829 bitova

Simetrična vs asimetrična šifre – brzina

Table 1. Multi-Buffer Performance (Cycles/Byte)²

Laboratorij za informacijsku sigurnost i privatnost

Algorithm	i5-650	i7-2600	i7-2600 Gain
MD5	1.46	1.27	1.15
SHA1	2.96	2.2	1.35
SHA256	6.96	5.27	1.32
AES128-CBC-Encrypt	1.52	0.83	1.83

Table 2. Modular Exponentiation Performance (Cycles)²

Algorithm	i5-650	i7-2600	i7-2600 Gain
512-bit Modular Exponentiation	360,880	246,899	1.46
1024-bit Modular Exponentiation	2,722,590	1,906,555	1.43

Izvor: Cryptographic Performance on the 2nd Generation Intel® Core™ processor family(2011)

Simetrična vs asimetrična šifre – veličina ključa

Table 2: Comparable strengths

Laboratorij za informacijsku sigurnost i privatnost

Bits of	Symmetric	FFC	IFC	ECC
security	key algorithms	(e.g., DSA, D-H)	(e.g., RSA)	(e.g., ECDSA)
80	2TDEA ¹⁸	L = 1024	k = 1024	f=160-223
		N = 160		
112	3TDEA	L = 2048	k = 2048	f = 224-255
		N = 224		
128	AES-128	L = 3072	k = 3072	f = 256-383
		N = 256		
192	AES-192	L = 7680	k = 7680	f=384-511
		N = 384		
256	AES-256	L = 15360	k = 15360	f= 512+
		N = 512		

Izvor: NIST Recommendation for Key Management (2011)

Osnove kriptografije i kriptoanalize

Digitalni potpisi

Javni i tajni ključevi

- Stara ideja: Svatko ima dva ključa
 - Javni ključ pk_A : Javno poznat (npr. telefonski imenik)
 - Privatni ključ sk_A : Poznat samo Ani
 - ullet Ana *generira* potpis svojim privatnim ključem sk_A
 - Branko provjerava potpis Aninim javnim ključem pk_A

Digitalni vs analogni potpis – autentičnost

	243
MR. JOHN JONES 1645 DUNDAS ST. W, APT. 27 TORONTO, ON M6K 1V2	DATE Y Y Y M M D D
Zvonko K.	\$ 4.00
four	100 DOLLARS Security features included - Details on back
FIRST BANK OF WIKI Victoria Main Branch 1425 James St., P.O. Box 4001 Victoria (B.C.) V8X 3X4	212
MEMO	John Jones MP
"243" 1:00005"1231: 123"	4 56 ··· 7 ···

Izvor: wikipedia.org

- Svatko može provjeriti ispravnost digitalnog potpisa ako ima na raspolaganju javni ključ tobožnjeg potpisnika.
- Provjera ispravnosti je garancija da je potpis stvarno generiran odgovarajućim privatnim ključem.
- Veza između ključeva i identiteta?

Sigurnost računalnih sustava

Digitalni vs analogni potpis – integritet

MR. JOHN JONES	243
645 DUNDAS ST. W, APT. 27	DATE Y Y Y M M D D
ORONTO, ON M6K 1V2	Y Y Y Y M M D D
Zvonko K.	\$ 44.00
RDER OF	44.00
fourtyfour	100 DOLLARS Security features
FIRST BANK OF WIKI	Details on back
Victoria Main Branch 1425 James St., P.O. Box 4001 Victoria (B.C.) V8X 3X4	~ ~ ~
Victoria (B.C.) V8X 3X4	Take Tongs
	TOTAL MP
	V

Izvor: wikipedia.org

- Digitalni potpis je vezan uz dokument.
- Ispravan potpis garantira integritet dokumenta.

Digitalni potpis vs MAC – neporecivost (non-repudiation)

Laboratorij za informacijsku sigurnost i privatnost

- Moguće je trećoj strani dokazati da je pošiljatelj potpisao poruku!
- Veza između ključeva i identiteta?
- "Netko me je hakirao" obrana?

Sustav digitalnog potpisa

- Trojka efikasnih algoritama G, S i V
 - G algoritam koji generira par ključeva pk, sk
 - S(m, sk) algoritam potpisivanja
 - $V(m, \sigma, pk)$ algoritam verifikacije
- Za svaki par ključeva (pk, sk) generiranih algoritmom G i za svaki jasni tekst p vrijedi V(p, S(p, sk), pk) = 1

Sustav digitalnog potpisa – sigurnost

- SDP je siguran ako je teško odrediti bilo koju poruku p i bilo koji potpis (niz bitova) σ takav da
 - $V(p, \sigma, pk) = 1$
 - p nikad nije potpisan s privatnim ključem sk
- ... čak i ako napadač ima na raspolaganju:
 - Javni ključ pk
 - Mogućnost da dobije potpis S(p, sk) za proizvoljnu poruku p (chosen message attack)

Digitalni potpis – primjene

- Potpisivanje digitalnih dokumenata
- Sigurnosni protokoli (TLS, ...)
- Autentifikacija email-a
- Provjera autentičnosti softvera (apk, exe, firmware, ...)
- Kriptovalute
- •

Primjena – TLS protokol

Laboratorij za informacijsku sigurnost i privatnost

Primjena – e-Dokumenti

Laboratorij za informacijsku sigurnost i privatnost

- ovisno o razvoju situacije, razmotrit će se uvo
- II. Ova odluka je privremenog karaktera, donosi se i okolnosti navedenih u točki I., stupa na snagu dar

Primjeri sustava digitalnog potpisa

- RSA (1978)
 - teorija brojeva, sigurnost povezana s problemom faktorizacije
- McEliece (1978)
 - teorija kodiranja, sigurnost povezana s problemom dekodiranja općenitog linearnog koda
- ElGamal (1985)
 - teorija brojeva ili eliptičke krivulje, sigurnost povezana s problemom diskretnog logaritma
- Schnorr (1991)
 - Jednostavan i efikasan sustav, sigurnost povezana s problemom diskretnog logaritma
- DSA (1992)
 - vrlo slično ElGamalovim potpisima

Digitalni potpisi i asimetrične šifre

Alice signs a message—"Hello
Bob!"—by appending to the original
message a version encrypted with her
private key. Bob receives both the
message and signature. He uses
Alice's public key to verify the
authenticity of the message, i.e. that
the message, decrypted using the
public key, exactly matches the original
message.

Izvor: https://en.wikipedia.org/wiki/Digital_signature (ožujak 2021.)

- Digitalni potpis nije enkripcija sažetka poruke privatnim ključem!
- Često (ali ne i uvijek) se ista matematička ideja može iskoristiti za izgradnju asimetrične šifre i digitalnog potpisa.
 - RSA šifra i RSA potpis
 - Diffie-Hellman: ElGamal šifra, DSA potpis

"Obični RSA" digitalni potpis (nesiguran)

Algoritam S:

• $S(m,(d,N)) = m^d \cup \mathbb{Z}_N$

Algoritam V:

• $V(m, \sigma, (e, N)) = (\sigma^e = m \cup \mathbb{Z}_N) ? 1 : 0$

Primjer 1

 Može li napadač na temelju javnog ključa (e, N) pronaći bilo koju poruku i njen ispravan potpis?

- Odaberem proizvoljni $x \in \mathbb{Z}_N$
- Izračunam $y = x^e$ u \mathbb{Z}_N
- x je ispravan potpis za poruku y.

RSA digitalni potpis

Laboratorij za informacijsku sigurnost i privatnost

 H – kriptografska funkcija sažetka Pad – funkcija nadopunjavanja

Algoritam S:

• $S(m,(d,N)) = Pad(H(m))^d u \mathbb{Z}_N$

Algoritam V:

• $V(m, \sigma, (e, N)) = (Unpad(\sigma^e u \mathbb{Z}_N) == H(m)) ? 1 : 0$

RSA digitalni potpis – Padding

- Hash poruke se uvijek nadopunjuje na zadanu veličinu!
- Postupak nadopunjavanja (padding) igra kritičnu ulogu i pažljivo je osmišljen.
 - PKCS#1 v1.5 (mnoštvo sigurnosnih problema)

Laboratorij za informacijsku sigurnost i privatnost

PSS

00 01 FF FF ... FF FF 00 DI H(m)

PKCS#1 nadopunjavanje za RSA potpise

RSA digitalni potpis – sigurnost

Algoritam S:

• $S(m,(d,N)) = Pad(H(m))^d u \mathbb{Z}_N$

Algoritam V:

• $V(m, \sigma, (e, N)) = (Unpad(\sigma^e u \mathbb{Z}_N) == H(m)) ? 1 : 0$

Napad iz Primjera 1.

- Odaberem proizvoljni $x \in \mathbb{Z}_N$
- Izračunam $y = x^e u \mathbb{Z}_N$
- x je ispravan potpis za poruku y.

Sigurnost računalnih sustava

Hvala!