Quantum Error Correction

Receiver Noisy channel Sender Bob Alice Bito is sent ~ single bit error multiple bit error 10110010 100101 1 0 (Burst error (101100)10 Parity 62t 10100010 - not acceptable $\begin{cases} 0_{L} = \frac{000}{1} \\ 1_{L} = 111 \end{cases}$ Suppose you: 101 then correct it to 111 Errors in quantum communication Decoherence

Bit flips

continuous evolution of quartum states also introduce phase errors

Say, a phase perturbation converts it to

$$\begin{vmatrix}
|\psi'\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}}, \quad |\psi'\rangle = e^{\frac{i\omega}{2}} \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right)$$
A mosmit of $\frac{6}{2}$ will still give your

$$|0\rangle \text{ or } |1\rangle \text{ with probability } \frac{1}{2}$$
But if you make a mosmit of $\frac{6}{2}$ with probability

$$|\psi'\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \left(\frac{1}{2}\right)$$

$$|\psi'\rangle = \frac{1}{\sqrt{2}} \left(\frac{1$$

Cs 2 x

Sender

OL = 000

$$|\Psi\rangle = \propto 107 + \beta 17$$

- 2st bit & 2nd & 3rd

$$|\Psi\rangle_{L} = (\alpha |0\rangle + \beta |1\rangle) |0\rangle |0\rangle$$

$$= (\alpha |0\rangle + \beta |1\rangle) |0\rangle$$

$$|\Psi_{L}\rangle = \alpha |0\rangle + \beta |1\rangle$$

$$|\Psi_{L}\rangle = \alpha |0\rangle + \beta |1\rangle$$

Alice is sending 4L

Say, noise in the channel flips a tit with probability p and ceaving it unchanged is 7-p

The state received by Bob via the noisey channel is 1/2 >L

We will have the following possibilities

Bob receives

$$(1-\beta)^{3}$$

$$p(1-\beta)^{2}$$

$$p(1-\beta)^{2}$$

$$p(1-\beta)^{2}$$

$$(\alpha | 000) + \beta | 111)) | 00) = (\alpha | 000) + \beta | 111)) | 00)$$

$$\Rightarrow \text{ chille 6its are not affected}$$

$$\text{of all.}$$

$$| 42)_{L} = (\alpha | 100) + \beta | 011)) | 00)$$

Bob's action results in 1437L

BOC 3		
State received	After Bob's gate operation	Probability
1427 L	1437L	(1-1)3
	(x10007 + \$ 11117) 100)	p (1-p) 2
~ (100)+B(011)	(x(100) + B(011)) 11)	p(1-p)2
~ 1010) + p(101)	(x 1010) + B 1(01)) 1(0)	p(1-p)2
~ (001) +B[110)	(x 001) + B 110) 01)	p²(1-p)
α(1110) + β1001))	(~ (1110) + \$ (011)) 1017	
2/101) + B(010)	(0)	p ² (1-p)
× 10117 + B(100)	[11]	p ² (1-p)
α [111) + β [000)	[00)	þ ³
d (III) + P 1	a may yield	
	7, (107, 1117	
∠ ′	1111) + \$1000) with prob.	(1-p) (without errors) $p^{3} \text{ (errors)}$
Bole	take's no action	
Now, Say Bob gets & 00	1) + B 110) with prob. 07 + B 001) with prob.	p (1-P) (with orizens) p ² (1-P) (with two evers)

Then

Bob applies a 52 on we third qubit

σ₂ = (2 (001) + β (110)) - 2 (000) + β (11) one is getting corrected fully setting correct.

while he other one is fully setting correct.