Problem 1.

In the standard Euclidean metric space, let the set A be uncountable. Prove that there is a sequence of distinct points converging to a point in A. Is this true for every metric space?

Solution

Note that this is equivalent to saying A contains a limit point. We will show the contrapositive: if every point of a set $A \subset \mathbb{R}^n$ is isolated, then it is at most countable.

For every $a \in A$, we can find some radius $r_a > 0$ such that $B_{r_a}(x) \cap A = \{a\}$. Further, the collection of sets $\left\{B_{\frac{r_a}{2}}(a) : a \in A\right\}$ are disjoint. Since \mathbb{Q}^n is dense in \mathbb{R}^n , we can find a unique $q_a \in \mathbb{Q}^n$ such that $q_a \in B_{\frac{r_a}{2}}(a)$ for every $a \in A$. This defines a one-to-one mapping from A into \mathbb{Q}^n , which implies A is at most countable.

This is not true in general: take [0,1] with the discrete metric. This set is uncountable but the only convergent sequences are (eventually) constant.

Problem 2.

For some metric space (X, d) take any two sets such that int $A = \text{int } B = \emptyset$ and A is closed. Prove that $\text{int}(A \cup B) = \emptyset$. What if A is not closed?

Solution

Towards contradiction, suppose $x \in \text{int}(A \cup B)$. So there is some open ball $B_{\varepsilon}(x) \subset A \cup B$. Consider the set $E = B_{\varepsilon}(x) \setminus A = B_{\varepsilon}(x) \cap A^{c}$. Note that since A is closed, A^{c} is open, and E is the finite intersection of two open sets and hence is also open. We have two cases:

- (a) $E = \emptyset$. So $B_{\varepsilon}(x) \subset A$ which means x is an interior point of A, which implies the interior of A is nonempty.
- (b) $E \neq \emptyset$. Then for any $y \in E$, $y \in B$, so we have $E \subset B$. But since E is open, this implies B has nonempty interior.

In both cases we reach a contradiction. This proves the claim.

If A is not closed, then the statement need not hold. For example: \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ (rationals and irrationals) both have empty interior, but their union is $\mathbb{R} = \operatorname{int} \mathbb{R}$.

Problem 3.

Prove that the set of cluster points of any sequence $\{x_n\}$ is closed.

Solution

Let K be the set of all cluster points of the sequence $\{x_n\}$ and suppose z is a limit point of K. So for any $\varepsilon > 0$ we know there is some $y \in K$ such that $d(y,z) < \frac{\varepsilon}{2}$. Since y is a cluster point of $\{x_n\}$ we know that for all $N \in \mathbb{N}$ we can find an n > N such that $d(x_n, y) < \frac{\varepsilon}{2}$. Then the triangle inequality gives us

$$d(x_n, z) \le d(x_n, y) + d(y, z) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

hence z is a cluster point of $\{x_n\}$. This is, $z \in K$. Thus K contains its limit points, so K is closed.

Problem 4.

Consider ℓ^{∞} , the vector space defined over \mathbb{R} of all bounded sequences. That is, $a \in \ell^{\infty}$ if $a = (a_1, a_2, \ldots)$ and $\exists M \in \mathbb{R}$ such that $|a_i| \leq M$ for every i.

- a) Show that $||a||_{\infty} = \sup_i |a_i|$ defines a norm on this space.
- b) Consider the subspace L_0 made up of sequences with only a finite number of nonzero elements. That is, $a \in L_0$ if $\exists N \in \mathbb{N}$ such that $i > N \implies a_i = 0$. Is L_0 a closed subspace of ℓ^{∞} ?

Solution

(a) First, because $|a_i| \ge 0$ always, it follows that $\sup_i |a_i| \ge 0$. Second, $||(0,0,\ldots)||_{\infty} = 0$, and if $a \ne 0$ then $\exists i$ such that $|a_i| > 0$ so $\sup_i |a_i| > 0$. Third, if $a,b \in l^{\infty}$ then $a+b=(a_1+b_1,a_2+b_2,\ldots)$ has norm given by

$$||a+b||_{\infty} = \sup_{i} \{|a_1+b_1|, |a_2+b_2|, \ldots\}$$

 $\leq \sup_{i} \{|a_1|+|b_1|, |a_2|+|b_2|, \ldots\}$
 $= ||a||_{\infty} + ||b||_{\infty}$

since the absolute value satisfies the triangle inequality. Finally, if $\alpha \in \mathbb{R}$ and $b \in l^{\infty}$, then $\alpha b = (\alpha b_1, \alpha b_2, \ldots)$ and $\sup_i |\alpha b_i| = \sup_i |\alpha| |b_i| = |\alpha| \sup_i |b_i| = |\alpha| ||b||_{\infty}$. Hence $||a||_{\infty}$ is a norm.

(b) The subspace L^0 is not a closed subspace of l^{∞} . To see this, consider the sequence given by $b_n = (1, \frac{1}{2}, \dots, \frac{1}{n}, 0, 0, \dots)$, where $n \in \mathbb{N}$. Clearly, $b_n \in L^0$ for all n. Consider $b = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots) \notin L^0$. Then $b_n - b = (0, 0, \dots, \frac{1}{n+1}, \frac{1}{n+2}, \dots)$ so that

$$\sup_{i} |b_n - b| = \sup \left\{ \left| \frac{1}{n+1} \right|, \left| \frac{1}{n+2} \right|, \left| \frac{1}{n+3} \right|, \dots \right\} = \frac{1}{n+1}$$

Hence for any $\varepsilon > 0$, if we choose $N > \frac{1}{\varepsilon}$ then n > N implies $||b_n - b||_{\infty} < \varepsilon$. This says exactly that $b_n \to b \notin L^0$, proving that the subspace is not closed.

Problem 5.

Recall the diameter of a set is defined diam $A = \sup\{d(a,b) : a,b \in A\}$. Prove that the diameter of a set is equal to the diameter of its closure.

Solution

First let's show (similar to in section) that if we have any pair of convergent sequences $a_n \to a$, $b_n \to b$, then the sequence of real numbers $d(a_n, b_n) \to d(a, b)$. Note by repeated application of the triangle inequality, we get

$$d(a_n, b_n) \le d(a_n, a) + d(a, b) + d(b, b_n) \implies d(a_n, b_n) - d(a, b) \le d(a_n, a) + d(b, b_n)$$

$$d(a, b) \le d(a, a_n) + d(a_n, b_n) + d(b_n, b) \implies d(a_n, b_n) - d(a, b) \ge - [d(a_n, a) + d(b, b_n)]$$

and putting everything together we get

$$|d(a_n, b_n) - d(a, b)| \le d(a_n, a) + d(b_n, b)$$

Then for any $\varepsilon > 0$ we can find an N such that n > N implies $d(a_n, a) < \frac{\varepsilon}{2}$ and $d(b_n, b) < \frac{\varepsilon}{2}$. So $|d(a_n, b_n) - d(a, b)| < \varepsilon$, and $d(a_n, b_n)$ converges to d(a, b).

Now we turn to set diameters. First

$$A \subset \overline{A} \implies \sup\{d(a,b) : a,b \in A\} < \sup\{d(a,b) : a,b \in \overline{A}\}$$

so diam $A \leq \operatorname{diam} \overline{A}$. Now suppose diam $\overline{A} > \operatorname{diam} A$. Then we can find some $a', b' \in \overline{A}$ such that $d(a',b') > \operatorname{diam} A$. Of course this means either $a' \notin A$ or $b' \notin A$, so either a' or b' is a limit point of A. Either way, we can construct sequences $\{a_n\} \subset A$, $\{b_n\} \subset A$ (not necessarily distinct elements), such that $a_n \to a'$ and $b_n \to b'$. Now choose $\varepsilon = \frac{1}{2}(d(a',b') - \operatorname{diam} A) > 0$. Since for all n $a_n, b_n \in A$, we have $d(a_n, b_n) \leq \operatorname{diam} A < d(a',b')$. So

$$|d(a_n, b_n) - d(a', b')| = d(a', b') - d(a_n, b_n) \ge d(a', b') - \operatorname{diam} A > \varepsilon$$

which contradicts what we showed above, that $d(a_n, b_n) \to d(a', b')$. Hence diam $\overline{A} \leq \operatorname{diam} A$ so diam $\overline{A} = \operatorname{diam} A$.

Problem 6.

Call a metric space discrete if every subset is open.¹

- a) Give an example of a discrete metric space that is not complete.
- b) (Difficult!) Show that a metric space has the property that the closure of every open set is open if and only if the metric space is discrete.

Solution

(a) Counterexample: consider the metric space $X = \{\frac{1}{n} : n \in \mathbb{N}\}$ with the usual absolute value metric. First, for every $x = \frac{1}{n} \in X$, if $\varepsilon < \frac{1}{2n(n+1)}$ then $B_{\varepsilon}(x) = \{x\}$. Hence every singleton is open, and since every subset of X can be written as the union of singletons, every subset of X is open. So X is discrete. Further, the sequence $a_n = \frac{1}{n}$ is Cauchy in this metric space but is not convergent.

Remark: Using the same ambient space but the discrete metric induces the same topology (collection of open sets), but under the discrete metric the sequence defined above is not Cauchy!

(b) (\iff) This direction is easy: since every subset of a discrete metric space is open, the closure of an open set is still open.

(\Longrightarrow) Now we suppose for any open set V, \overline{V} is also open. First note this implies that if V and W are open and disjoint, then \overline{V} and \overline{W} are open and disjoint. Why? If $w \in W$ then there is some neighborhood $B(w) \subset W \Longrightarrow B(w) \cap V = \emptyset$ so $w \notin \overline{V}$ and we have $W \cap \overline{V} = \emptyset$. Now since \overline{V} is open, for any $v \in \overline{V}$ we can find a neighborhood $B(v) \subset \overline{V}$, and from above this means $B(v) \cap W = \emptyset$. So $v \notin \overline{W}$. Hence $\overline{V} \cap \overline{W} = \emptyset$.

Now suppose there is some subset A that is not closed. A must not be finite, so construct a sequence $\{a_n\} \subset A$ (distinct) such that $a_n \to a$ where $a \notin A$. Find neighborhoods $B^{(n)}(a_n)$ that are disjoint and define the following sets:

$$U = \bigcup_{i=1}^{\infty} B^{(2i)}(a_n), \ V = \bigcup_{i=1}^{\infty} B^{(2i+1)}(a_n)$$

Then U and V are disjoint, open sets. But a is a limit point of each set, implying $a \in \overline{V} \cap \overline{W}$, a contradiction. Hence every set in the metric space is closed (and taking complements, every set is open) so the metric space is discrete.

¹Every set equipped with the discrete metric forms a discrete metric space, but not all discrete metric spaces have the discrete metric.