$$3.1.\{3,\ 10,\ 17\},\ 3.2.\{1,\ 4,\ 13\},\ 3.3.\{9,\ 18,\ 20\}$$

3.1.3 In Exercises 1-6, sketch the images of the following paths, using arrows to indicate the direction in which the parameter increases:

$$\begin{cases} x = t \cos t \\ y = t \sin t \end{cases}, \quad -6\pi \le t \le 6\pi$$

3.1.10 Calculate the velocity, speed, and acceleration of the paths given in Exercises 7-10.

$$\mathbf{x}(t) = (e^t, e^{2t}, 2e^t)$$

3.1.17 In Exercises 15-18, find an equation for the line tangent to the given path at the indicated value for the parameter.

$$\mathbf{x}(t) = (t^2, t^3, t^5), t = 2$$

3.2.1 Calculate the length of each of the paths given in Exercises 1-6.

$$\mathbf{x}(t) = (2t+1, 7-3t), -1 \le t \le 2$$

3.2.4 Calculate the length of each of the paths given in Exercises 1-6.

$$\mathbf{x}(t) = 7\mathbf{i} + t\mathbf{j} + t^2\mathbf{k}, 1 \le t \le 3$$

- **3.2.13** This problem concerns the path $\mathbf{x} = |t 1|\mathbf{i} + |t|\mathbf{j}, -2 \le t \le 2$.
 - (a) Sketch this path.
 - (b) The path fails to be of class C^1 but is piecewise C^1 . Explain.
 - (c) Calculate the length of the path.

3.3.9 In Exercises 7-12, sketch the given vector field on \mathbb{R}^3 . *Note:* describe in addition to sketch.

$$\mathbf{F} = (0, z, -y)$$

3.3.18 In Exercises 17-19, verify that the path given is a flow line of the indicated vector field. Justify the result geometrically with an appropriate sketch.

$$\mathbf{x}(t) = (\sin t, \cos t, 2t), \mathbf{F} = (y, -x, 2)$$

3.3.20 In Exercises 20-22, calculate the flow line $\mathbf{x}(t)$ of the given vector field \mathbf{F} that passes through the indicated point at the specified value of t.

$$\mathbf{F}(x,y) = -x\mathbf{i} + y\mathbf{j}; \quad \mathbf{x}(0) = (2,1)$$