Linguagens não regulares e Lema do Bombeamento

Prof. Hamilton José Brumatto

CIC-UESC

21 de dezembro de 2024

- 1 Linguagens Não Regulares
 - Exemplos
 - Lema do Bombeamento
 - Exemplos

Linguagens Não Regulares

- No contexto da Teoria da Computação, uma "Expressão Regular" reconhece uma linguagem regular.
- Mas nem todas expressões podemos chamar de Regular.
- Por exemplo: $NR = 0^n 1^n | n \ge 0$
- NR não é regular, não representa uma linguagem regular, ou seja, não é possível construir um autômato finito que reconheça a linguagem

Limites dos autômatos finitos

- A expressão NR é um exemplo para os limites dos autômatos.
- Ao construir autômatos, usamos os estados como "memória" para informações que precisam ser armazenadas.
- Aparentemente, na linguagem NR como precisamos ter o mesmo número de 0s e 1s, então precisamos armazenar a quantidade de 0s.
- Como a quantidade é ilimitada, então fica difícil construir um autômato "finito" com quantidade ilimitada de estados.
- Mas este argumento não é suficiente para demonstrar que *NR* não é regular.

Lema do Bombeamento para Linguagens Regulares

- Sabemos que um autômato finito tem um número limitado de estados, vamos considerar p estados.
- A computabilidade do autômato diz que dada uma cadeia w, saindo do estado inicial s₀, cada w_i leva do estado s_{i-1} para o estado w_i até o estado de aceitação final s_f.
- Se a cadeia tiver p caracteres, então falamos de p+1 estados de transições.
- Pelo princípio da casa dos pombos, se o autômato possui apenas p estados então ao menos 1 estado se repete na sequência computável.

Lema do Bombeamento - Definição

• Seja N um autômato com p estados, q_i o estado inicial, q_f o estado de aceitação e uma cadeia com p caracteres de transição de forma que o estado q_r se repete:

Lema do Bombeamento

Se A é uma linguagem regular, então existe um número p (o comprimento de bombeamento) tal que, se s é qualquer cadeia de A de comprimento no mínimo p, então s pode ser dividida em três partes: s=xyz, satisfazendo as seguintes condições:

- $oldsymbol{0}$ para cada $i \geqslant 0, xy^i z \in A$
- |y| > 0, e
- $|xy| \leq p$.

Lema do Bombeamento - Prova

Prova

Seja $D=(Q,\Sigma,\delta,q_i,F)$ um AFD que reconhece A e p o número de estados de M sendo $q_f \in F$. Seja $w=w_1w_2\cdots w_n$ uma cadeia de comprimento n, onde $n \geqslant p$, e $q_i=q_0,q_1,\ldots,q_n=q_f$ a sequência de estados nos quais M pass enquanto processa w, de forma que $q_i=\delta(q_{i-1},w_i)$ para $1\leqslant i\leqslant n$.

Como a sequência tem ao menos p+1 estados (n+1), pelo princípio da casa dos pombos ao menos um estado entre os primeiros p+1, vamos chamar de q_r , se repete, como q_u e q_v , sendo u < v e $v \le p+1$. Podemos escrever w = xyz, onde $x = w_1w_2\cdots w_u$, $y = w_{u+1}\cdots w_v$ e $z = w_v\cdots w_n$. Como $u \ne v$, |y| > 0, como $v \le p+1$, |xy| < p. A cadeia x leva do estado q_i ao estado q_r , y leva do estado q_r ao estado q_r e z leva do estado q_r ao estado de aceitação q_f . Portanto a cadeia xy^iz é aceita para $i \ge 0$.

Aplicação do Lema do Bombeamento

- O lema de bombeamento é usado para demonstrar que uma linguagem não é regular.
- A prova se dará por contra-exemplo, ou seja, vamos tomar uma cadeia e demonstrar que ela não atende ao lema do bombeamento.
- Para demonstra que uma linguagem é regular, precisamos de um autômato que a reconheça.
- É preciso cuidado na escolha da cadeia, pois mesmo linguagens não regulares podem vir a ter cadeias que atendam ao lema do bombeamento.

$$R=0^k1^k|k\geqslant 0$$

Seja p o número de estados do AFD. Vamos tomar a cadeia $w = 0^p 1^p$:

- Seja w = xyz: Considere y composto por 0s, no lema do bombeamento $w = xy^iz$, sendo $i \neq 1$ então w não pertence à linguagem.
- Como |xy| < p então y só poderia conter 0s. Logo a linguagem não é regular.
- Poderíamos também considerar y só de 1s, onde haveria desbalanceamento de 1s ou y = 0..01..1 neste caso no bombeamento teríamos 1s seguidos de 0s que não está na formação da linguagem.

R = w | w contém o mesmo número de 0s e 1s

Seja p o número de estados do AFD. Vamos tomar a cadeia $w = 0^p 1^p$:

- Poderíamos pensar como y = 01, aí o lema de bombeamento funcionaria.
- Mas na escolha acima, $|xy| \not< p$ então não serve.
- Por conta da condição acima, y precisa conter só 0s, e irá falhar no bombeamento

$R = ww | w \in \{0, 1\}^*$

Seja p o número de estados do AFD. Vamos tomar a cadeia $w = 0^p 10^p 1$

- Queremos no bombeamento desbalancear um lado da cadeia para deixá-la fora da linguagem.
- Aqui temos uma cadeia repetida, se a primeira metade ficar diferente da segunda, então resolvemos.
- A escolha de 0^p é interessante pois y deve conter só 0s. Assim ao bombear teremos um número maior que p de 0s antes do primeiro 1, e p zeros antes do segundo 1 e a cadeia não pertence à linguagem.
- A escolha de 0^p0^p não serviria, pois mesmo que escolhemos y que não permita bombear, ainda assim existe um y que permite, y = 00, por exemplo.

$$R=1^{n^2}|n\geqslant 0$$

Seja p o número de estados do AFD. Vamos tomar a cadeia 1^{p^2}

- Aqui precisamos provar que no bombeamento o tamanho da cadeia será diferente de um quadrado perfeito.
- $xyz = 1^{p^2}$: $|xyz| = p^2$, |xy| .
- $|xyyz| \le p^2 + p \le p^2 + 2p + 1 \to |xyyz| < (p+1)^2$.
- $p^2 < |xyyz| < (p+1)^2$, então esta cadeia não tem tamanho de quadrado perfeito e não pertence à linguagem.

$$R = \{0^i 1^j | i > j\}$$

Seja p o número de estados do AFD. Vamos tomar a cadeia $o^{p+1}1^p$.

- Obviamente, y deve ser composto de 0s, pois |xy| < p.
- Mas bombeando y continuamos tendo mais 0s que 1s.
- Observe que xy^iz deve pertencer à linguagem para $i \ge 0$.
- Neste caso para i = 0, xy deveria pertencer à cadeia. Mas $xy = 0^i 1^p$ com $i \leq p$.
- Ou seja, no máximo temos o mesmo número de 0s que 1s, mas deveria haver mais. Logo esta cadeia não pertence à linguagem. E a linguagem não é regular.

Atividades

- Concluir a leitura do capítulo 1: lendo a seção 1.4
- Fazer os seguintes exercícios: 1.29 e 1.30.
- Fazer os problemas do capítulo.