Nota ai lettori

Questi appunti sono basati sulle lezioni dell A.A. 2023/2024 tenute dal Prof. Alessio Bottrighi, integrate con passi tratti dal libro "Linguaggi Formali e Compilazione" ed appunti forniti dal docente.

1 Alfabeto e linguaggio

Un alfabeto è un insieme finito di elementi chiamati simboli terminali o caratteri. Ad esempio

$$\Sigma = \{a, b, c\}$$

è un alfabeto composto da 3 elementi a, b, c (la sua cardinalità è 3).

Una **stringa** (o **parola**) è una sequenza, ovvero un insieme ordinato eventualmente con ripetizioni, di caratteri.

Un **linguaggio** è un insieme di stringhe di un alfabeto specifico. Dato un linguaggio, una stringa che gli appartiene è detta **frase**. Ad esempio, possiamo definire un linguaggio L

$$L = \{a, ab, bc, cccc\}$$

le cui parole al suo interno sono formate esclusivamente delle lettere dell'alfabeto specificato in precedenza.

La **cardinalità** di un linguaggio è definita dal numero di frasi che contiene. Se la cardinalità è finita, il linguaggio si dice **finito**.

Un linguaggio finito è una collezione di parole, solitamente chiamate **vocabolario**. Il linguaggio che non contiene frasi è chiamato **insieme vuoto** o **linguaggio** \emptyset .

La **lunghezza** |x| di una stringa x è il numero di caratteri che contiene.

1.1 Operazioni sulle stringhe

1.1.1 Stringa vuota

La stringa vuota (o nulla), denotata con ε , soddisfa l'identità:

$$x \cdot \varepsilon = \varepsilon \cdot x = x$$

La stringa vuota non deve essere confusa con l'insieme vuoto; infatti, l'insieme vuoto è un linguaggio che non contiene stringhe, mentre l'insieme $\{\varepsilon\}$ ne contiene una, la stringa vuota.

1.1.2 Sottostringa

Sia la stringa x = uyv il prodotto della concatenazione delle stringhe $u, y \in v$: le stringhe $u, y \in v$ sono **sottostringhe** di x. In questo caso, la stringa u è un **prefisso** di x e la stringa v è un **suffisso** di x. Una sottostringa non vuota è detta **propria** se non coincide con x.

1.1.3 Concatenazione

Date le stringhe

$$x = a_1 a_2 \dots a_h$$
 $y = b_1 b_2 \dots b_k$

la **concatenazione**, indicata con '.', è definita come:

$$x \cdot y = a_1 a_2 \dots a_h b_1 b_2 \dots b_k$$

La concatenazione non è commutativa, ma è associativa.

1.1.4 Inversione di stringa

L'**inverso** di una stringa $x = a_1 a_2 \dots a_h$ è la stringa $x^R = a_h a_{h-1} \dots a_1$.

1.1.5 Ripetizione

La potenza m-esima x^m di una stringa x è la concatenazione di x con se stessa per m-1 volte. Esempi:

$$x = ab$$

$$x^0 = \varepsilon$$

$$x^2 = (ab)^2 = abab$$

1.2 Operazioni sul linguaggio

1.2.1 Linguaggio neutro

1.2.2 Linguaggio vuoto

1.2.3 Inversione

L'inverso L^R di un linguaggio L è l'insieme delle stringhe che sono l'inverso di una frase di L.

1.2.4 Ripetizione

1.3 Operazioni sugli insiemi

1.3.1

2 Automi a pila e parsing

2.1 Automi a pila

Gli **automi a pila** sono automi a stati finiti che utilizzano una **pila** (stack) come memoria aggiuntiva. Un automa a pila è definito dalla 7-upla

$$\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$$

con:

- Q: insieme degli stati
- Σ : alfabeto che descrive il linguaggio
- \bullet Γ : alfabeto della pila
- δ : funzione di transizione
- q_0 : stato iniziale
- Z_0 : fondo della pila
- F: stato (o stati) finale

L'input è una tripla, denotata come:

$$(q, a, A) \rightarrow (x, XX)$$

con:

• q: stato corrente

- a: il simbolo della stringa da leggere
- A: il contenuto dello stack

Il simbolo di fine stringa è \checkmark .

2.1.1 Tipi di accettazione

Negli automi a pila ci sono due tipi di accettazione: l'accettazione per stato finale, quando è stato consumato tutto l'input e si giunge ad uno stato finale, e l'accettazione per pila vuota, quando è stato consumato tutto l'input e la pila è vuota (anche senza Z_0).

Essendo l'automa non deterministico, bisogna fare tutte le computazioni possibili (quindi esplorare tutte le possibilità).

2.1.2 Esempio di accettazione per stato finale

Processiamo una stringa nella forma ca^nb^n con $n \ge 1$, ad esempio $caabb \checkmark$.

$$\Gamma = \{Z_0, X\}$$

 Z_0 è sempre presente, X è il simbolo che gestisce il bilanciamento. Consumando c, si passa dallo stato q_0 allo stato q_1 .

$$(q_0, c, Z_0) \to (q_1, Z_0)$$

Ora non sarà più possibile incontrare c. Consumiamo a:

$$(q_1, a, Z_0) \to (q_1, Z_0X)$$

X serve a contare le a. La funzione (q_1, Z_0X) rimane in q_1 ; la testa della pila contiene X, quindi la funzione (q_1, a, Z_0) non può scattare. Bisogna definire una nuova:

$$(q_1, a, X) \rightarrow (q_1, XX)$$

Se la parola è corretta, prima o poi si incontrerà una b. Passiamo allo stato q_2 per non incontrare più a.

$$(q_1, b, X) \to (q_2, \varepsilon)$$

Non può esserci Z_0 , altrimenti sarebbe come se non avessimo mai incontrato nessuna a. Il passaggio a q_2 è obbligato.

$$(q_2, b, X) \to (q_2, \varepsilon)$$

$$(q_2, \checkmark, X) \rightarrow (q_3, Z_0)$$

Incontrerò il fine stringa quando aavrò rimosso tutti gli X dalla pila. Lo stato finale conterrà solo q_3 .

Input	Pila	Stato	Commenti	
$caabb \checkmark$	Z_0	q_0	devo consumare $c \in Z_0$	
$aabb \swarrow$	Z_0	q_1	devo consumare a	
$abb \swarrow$	Z_0X	q_1	devo trovare tripla (q_1, a, X)	
$bb \swarrow$	Z_0XX	q_1	ogni volta che incontro una a , metto X sulla pila	
$b \swarrow$	Z_0X	q_2	consumo la testa della pila, non scrivo nulla	
✓	Z_0	q_2		
	Z_0	q_3	la parola appartiene al linguaggio	

2.1.3 Regole di produzione

Una grammatica context free genera da un non terminale una sequenza di terminali e non terminali, combinati in qualunque modo; è una quadrupla nella forma

$$G = \langle V, \Sigma, P, S \rangle$$

È possibile usare l'automa a pila per simulare la fase di generazione: quando trovo un non terminale, posso sostituirlo con un terminale o un non terminale.

La costruzione della funzione di transizione viene guidata dalle regole di produzione. Il funzionamento dell'automa a pila è il seguente: controllo l'elemento in cima alla pila, individuo la regola di produzione corrispondente e la applico.

Esistono 4 categorie di regole di generazione: regola di **inizializzazione**, regola di **terminazione**, regole **derivate da** P e regole **derivate da** Σ . Per qualunque tripla, si può applicare più di una regola.

Inizializzazione Questa regola permette di far partire la generazione, corrisponde a mettere sulla pila l'assioma S.

$$(q_0, \varepsilon, Z_0) \rightarrow (q_0, \swarrow S)$$

Implico il trovarmi in q_0 e dover transizionare in q_0 . Non consumo nulla, ma modifico il contenuto della pila. Accettando per pila vuota, non bisogna includere Z_0 .

Terminazione Questa regola permette di terminare la generazione; l'ultimo simbolo in input è quello di fine stringa (\checkmark).

$$(q_0, \swarrow, \swarrow) \to (q_0, \varepsilon)$$

La generazione termina quando l'automa incontra il simbolo di fine stringa. Non viene scritto nulla sulla pila, ma si rimuove \checkmark , terminando la generazione.

Regole per Σ Esiste una regola per ogni simbolo dell'alfabeto ($\forall a \in \Sigma$).

$$(q_0, a, a) \rightarrow (q_0, \varepsilon)$$

Il simbolo in cima alla pila viene consumato. Esistono due tipi di regole di produzione per a, quelle che iniziano con un terminale

$$(q_0, a, A) \to (q_0, \beta^R) \quad per \quad A \to a\beta$$

e quelle che iniziano con un non terminale

$$(q_0, \varepsilon, A) \to (q_0, \beta^R X) \quad per \quad A \to X\beta$$

2.1.4 Esempio di accettazione per pila vuota

Creiamo un automa a stati finiti non deterministico che accetta per pila vuota:

- $Q = \{q_0\}$: perchè si può gestire il tutto con un solo stato (dato il non determinismo) e l'insieme degli stati finali è vuoto.
- $\Sigma = \Sigma$: l'alfabeto è quello del linguaggio
- $\Gamma = \{Z_0, \dots\}$: conterrà sicuramente il simbolo di fine pila, più tutti i simboli scrivibili sulla pila
- $F = {\emptyset}$: l'insieme degli stati finali è vuoto

L'alfabeto della pila è definito come

$$\{Z_0\} \cup \Sigma \cup V$$

ovvero l'unione del simbolo di fine pila e gli insiemi dei simboli terminali e non terminali.

Regole di produzione:

$$S \to aBA$$
 $S \to bcS$ $B \to Ba$ $B \to A$ $A \to ac$ $A \to AA$

La funzione di transizione è composta da 11 regole. Le seguenti regole di inizializzazione e terminazione

$$(q_0, \varepsilon, Z_0) \to (q_0, \swarrow S)$$
 $(q_0, \checkmark, \checkmark) \to (q_0, \varepsilon)$

sono comuni a tutti i linguaggi.

Le regole

$$(q_0, a, a) \to (q_0, \varepsilon)$$
 $(q_0, b, b) \to (q_0, \varepsilon)$ $(q_0, c, c) \to (q_0, \varepsilon)$

non scrivono nulla sulla pila.

Infine

$$\begin{aligned} (q_0,a,S) &\to (q_0,AB) & (q_0,b,S) &\to (q_0,Sc) & (q_0,\varepsilon,B) &\to (q_0,aB) \\ (q_0,\varepsilon,B) &\to (q_0,A) & (q_0,a,A) &\to (q_0,c) & (q_0,\varepsilon,A) &\to (q_0,AA) \end{aligned}$$

Generiamo la stringa *aacac* sequendo le regole di produzione ed esaminiamola.

$$S \rightarrow aBA \rightarrow aAA \rightarrow aacA \rightarrow aacac$$

Input	Pila	Stato	Regola di produzione
aacac 🗸	Z_0	q_0	$(q_0, \varepsilon, Z_0) \to (q_0, \swarrow S)$
aacac √	$\swarrow S$	q_0	$(q_0, a, S) \to (q_0, AB)$
$acac \checkmark$	$\swarrow AB$	q_0	$(q_0, \varepsilon, B) \to (q_0, A)$
acac √	$\swarrow AA$	q_0	$(q_0, a, A) \to (q_0, c)$
cac 🗸	$\angle Ac$	q_0	$(q_0, c, c) \to (q_0, \varepsilon)$
$ac \checkmark$	$\swarrow A$	q_0	$(q_0, a, A) \to (q_0, c)$
$c \swarrow$	$\swarrow c$	q_0	$(q_0, c, c) \to (q_0, \varepsilon)$
~	∠	q_0	$(q_0, \swarrow, \swarrow) \to (q_0, \varepsilon)$

2.2 Parsing

L'albero di derivazione è creato durante la parsificazione.

Si possono avere due politiche diverse durante la derivazione di un albero: dall'alto verso il basso e dal basso verso l'alto. Parser di questo tipo sono automi a pila.

2.2.1 Parser di tipo LR(0)

Vediamo un parser di tipo LR(0).

Con 0 intendiamo che, oltre a consumare un simbolo in input, legge 0 altri simboli.

Con L intendiamo left: il parser parte da sinistra con la lettura.

Con R intendiamo **rightmost**: il parser cerca la regola della grammatica da utilizzare partendo da quella più a destra.

Si inseriscono nodi nell'albero ogni volta che si effettua una riduzione. Ad esempio, date le seguenti regole di produzione

$$E \to id$$
 $S \to E + E$

si ottiene l'albero

LR(0) è un'automa a pila deterministico: in ogni momento della parsificazione è possibile compiere una sola azione (o nessuna). Il suo compito è accettare o rifiutare una stringa in input. Sono inoltre possibili due operazioni:

- SHIFT: leggo input e lo trascrivo sulla pila
- REDUCE: operazione legata ad una regola grammaticale; consuma simboli dalla pila e li sostituisce

L'operazione di REDUCE non modifica la pila, fa una serie di pop e poi fa una push.

Finora, gli stati sono stati identificati per label. In LR(0) gli stati sono etichettati con "SHIFT" o "REDUCE" e contengono informazioni utili a determinare il tipo di operazione da svolgere.

Un parser LR(0) non gestisce tutte le grammatiche context free, ma è possibile costruire un parser a partire da una di queste.

Durante la parsificazione di possono verificare due problemi:

- il comportamento non è deterministico: alcuni stati hanno due o più comandi
- si possono avere più operazioni di reduce, ognuna legata ad una regola diversa (qual è quella corretta)

Inoltre, **non** è possibile fare contemporaneamente operazioni di SHIFT e REDUCE oppure due operazioni di REDUCE in parallelo.

Un automa a pila deterministico ha all'interno dei suoi stati dei candidati legati alla regola di produzione. $A \to a^{\beta}$