Элементы Теории Алгоритмов

1.1 Понятие алгоритма в интуитивном смысле слова

Рис. 1.1: Команда

 $A: X \to Y$

Признаки алгоритма:

- Признак детерминизированности (нет выбора в алгоритме)
- Признак массовости (работает для всех входных данных одного типа, например, квадратных уравнений)
- Признак результативности (ожидается какой-то результат)

Определение 1. алгоритм A применим к элементу x. (То есть останавливается за n шагов)

$$(x \in X)(!A(x))$$

Определение 2. $\neg ! A(x)$ - алгоритм A не применим к x.

Определение 3. Конструктивный объект - слово в конечном алфавите.

Определение 4. Вербальная, или словарная, функция - это

$$f:V^* \xrightarrow{\bullet} W^*$$

Вербальная функция (V, W).

Определение 5. Алгоритм можно записать так:

$$\mathcal{A}:V^*\to W^*$$

Определение 6. Функция $f:V^* \to W^*$ называется вычислимой в интуитивном смысле слова, если существует алгоритм $\mathcal{A}_f:V^* \to W^*$ такой, что

$$(\forall x \in V^*)((!\mathcal{A}_f(x) \iff x \in D(f)) \& (\mathcal{A}_f(x) = f(x)))$$

Рис. 1.2: Автомат

1.2 Машина Тьюринга.

Рис. 1.3: Машина Тьюринга

Команды следующего формата:

$$qa \rightarrow rb, \left\{\begin{matrix} S \\ L \\ R \end{matrix}\right\}; q,r \in Q; a,b \in V \cup \{\circledast,\Box\}$$

$$\biguplus \dots a \dots \vdash \begin{cases} \textcircled{\textcircled{@} \dots b \dots}, \text{ если } S \\ & & \uparrow_r \end{cases}, \text{ если } L \\ & & \uparrow_r \leftarrow \\ \textcircled{\textcircled{@} \dots b \ c \dots}, \text{ если } R \end{cases}$$

Рис. 1.4: Что к чему

Заметка. Мы считаем, что у нас не может быть команд с одинаковыми левыми частями.

Начальная конфигурация:

Заключительная конфигурация:

Пример программы:

$$\begin{split} q_0 \circledast &\to q_0 \circledast, R \\ q_0 a &\to q_0 a, R \\ q_0 b &\to q_0 b, R \\ q_0 c &\to q_1 c, R \\ q_1 a &\to q_2 a, R \\ q_1 b &\to q_0 b, R \\ q_1 c &\to q_1 c, R \\ q_2 a &\to q_0 a, R \\ q_2 b &\to q_3 b, R \\ q_2 c &\to q_1 c, R \\ q_3 \alpha &\to q_3 \alpha, R \ //\alpha \in \{a,b,c\} \\ q_3 \square &\to q_4 \square, R \\ q_i \square &\to q_5 \square, L \ //i = 0, 1, 2 \\ q_4 \circledast &\to q_5 \square, L \\ q_5 \varpi &\to q_5 \varpi, L \\ q_5 \varpi &\to q_5 \varpi, R \\ q_5 \square &\to q_f 0, L \end{split}$$

$$f(x) = \begin{cases} 1, \text{ если } cab \sqsubseteq x \in \{a,b,c\} \\ 0 \text{ иначе} \end{cases}$$

Определение 7. Машина Тьюринга (МТ):

$$\mathcal{J} = (V, Q, q_0, q_f, *, \square, S, L, R, \delta)$$

Конфигурация МТ:

$$C = (q, x, ay),$$

где
$$q \in Q$$
, а $x, y \in (V \cup \{*, \square\})^*, a \in V \cup \{*, \square\}$

Мы полагаем, что

$$(q,x,ay)$$
 $\vdash_{\mathcal{J}} \begin{cases} (r,x,by), \text{ если } qa \to rb, S \in \delta \\ (r,x',cby), \text{ где } x'c = x, \text{ если} qa \to rb, L \in \delta \\ (r,xb,dy'), \text{ где } y = dy', \text{ если } qa \to rb, R \in \delta \end{cases}$

Определение 8. Вывод на множестве конфигураций:

 K_0, K_1, \ldots, K_n , где $(\forall i \geq 0)(K_i \vdash K_{i+1}, \text{ если } K_{i+1} \text{ определен в последовательности})$

$$K\vdash_{\mathcal{J}}^*K',$$
 если существует вывод $K=K_0\vdash K_1\vdash\ldots\vdash K_n=K'$

Дано:

Начальная конфигурация $C_0 = (q_0, \lambda, \circledast x \square)$, где $x \in V^*$ Конечная конфигурация $C_f = (q_f, \lambda, \circledast y \square)$, где $y \in V^*$

Определение 9. Машина Тьюринга применима к слову х, то есть

$$!\mathcal{T}(x) \leftrightharpoons \leftrightharpoons C_0 = (q_0, \lambda, \circledast x \square) \vdash^* C_f = (q_f, \lambda, \circledast y \square);$$

при этом $y \leftrightharpoons \mathcal{T}(x)$

При этом если не применимо к машине тьюринга данное слово, то

$$\neg ! \mathcal{T}(x)$$

Определение 10. Конфигурация машины Тьюринга называется тупиковой, если она не является заключительной и при этом из нее не выводится ни одна конфигурация.

Пример.

$$f(x) = \begin{cases} \#, \text{ если } x = \lambda \\ \lambda, \text{ если } cab \sqsubseteq x \\ x, \text{ если } x \neq \lambda \text{ и } cab \not\sqsubseteq x \end{cases}$$

 λ - Пустое слово.

Тогда программа записывается так:

$$\begin{split} q_0 \circledast &\to q_0 \circledast, R \\ q_0 \square &\to q_f \#, L \\ q_0 a &\to q'_0 a, R \\ q_0 b &\to q'_0 b, R \\ q_0 c &\to q_1 c, R \\ q'_0 a &\to q'_0 a, R \\ q'_0 b &\to q'_0 b, R \\ q'_0 c &\to q_1 c, R \\ q_1 a &\to q_2 a, R \\ q_1 b &\to q'_0 b, R \\ q_1 c &\to q_1 c, R \\ q_2 a &\to a'_0 a, R \ // caa \\ q_2 b &\to q_3 b, R \ // cab \\ q_2 c &\to q_1 c, R \ // cac \\ q_3 \alpha &\to q_3 \alpha, R \ // \alpha \in \{a,b,c\} \\ q_3 \square &\to q_4 \square, L \\ q_4 \circledast &\to q_5 \varpi, L \\ q_5 \varpi &\to q_5 \varpi, L \\ q_5 \circledast &\to q_5 \circledast, S \end{split}$$

Для ошибочного решения (q'_0 не вводится):

$$(a_1,\lambda,\circledast ab\square) \vdash (q_0,\circledast,ab\square) \quad \vdash (q_0,\circledast a,b\square) \vdash (q_0,\circledast ab,\square) \vdash (q_f,\circledast a,b\#\square)$$

Определение 11. Машина Тьюринга называется детерминированной, если из каждой ее конфигурации непосредственно выводится не более одной конфигурации.

Теорема 1.1. Машина Тьюринга называется детерминированной тогда и только тогда, когда в ее программе (системе команд) нет двух (более) различных комманд с одинаковыми левыми частями.

Соглашение. Во всех дальнейших суждениях машина Тьюринга будет считаться детерминированной. ДМТ - детерминированная машина Тьюринга.

Допустим машина Тьюринга с алфавитом V, то мы говорим, что это машина Тьюринга в алфавите V. Но если $V\supset V'$, то мы говорим, что Машина Тьюринга над алфавитом V.

Определение 12. Вербальная функция $f: V^* \to V^*$ называется вычисломой по Тьюрингу, если может быть построена МТ \mathcal{T}_f над алфавитом V такая, что

$$(\forall x \in V^*)(!\mathcal{T}(x) \iff x \in D(f) \& \mathcal{T}_f(x) = f(x))$$

Тезис Тьюринга. Он гласит, что любая вербальная функция, вычислимая в интуитивном смысле слова, вычислима по Тьюрингу.

Общие разделы:

- 1. Основная модель.
- 2. Понятие вычислимой функциию. Основная гипотеза.
- 3. Эквивалентный алгоритм.
- 4. Теорема сочетания.
- 5. Универсальный алгоритм.
- 6. Разрешимые перечислимые множества (языки).
- 7. Анализ алгоритмически неразрешимых задач.

1.3 Нормальные алгорифмы Маркова

Предположим, что есть

$$V; x, y \in V^*; x \sqsubseteq y \leftrightharpoons (\exists y_1, y_2)(y = y_1 x y_2)$$

причем тройка слов (y1, x, y2) - вхождение слова x в слово y.

Некоторые свойства:

- $(\forall x)(\lambda \sqsubseteq x)$
- $(\forall x)(x \sqsubseteq x)$
- $(\forall x)(\forall y)(\forall z)(x \sqsubseteq y, y \sqsubseteq z \implies x \sqsubseteq z)$

Записывается иногда так: $y_1 * x * y_2 \ (x \notin V)$

Пример: y = входит; *вход*ит - корень

Еще один:
$$\underbrace{\text{абракадабра}}_{x}$$

Среди всех вхождений х в у выделяется первое, или главное, вхождение, а именно имеющую наименьшую длину левого крыла (самое левое вхождение).

Определение 13. Подстановка:

$$u,v \in V^* \underbrace{u}_{\text{\tiny JI.YI.}} \to \underbrace{v}_{\text{\tiny II.YI.}}; \to \not\in V$$

Определение 14. Омега применима, или подходит, если ее левая часть входит в слово x.

$$\omega: u \to v$$

Тогда вхождение:

$$x = x_1 u x_2$$
; $x_1 * u * x_2$ - 1-е вхождение и в х

Отсюда

$$y \leftrightharpoons \omega x \leftrightharpoons x_1 v x_2$$

Это можно представить так:

$$x = \begin{bmatrix} x_1 & \mathbf{u} & \mathbf{x}_2 \end{bmatrix}$$

$$y = \omega x = \begin{bmatrix} x_1 & \mathbf{v} & \mathbf{x}_2 \end{bmatrix}$$

Пример. Пусть дана замена:

$$\omega: B \to y$$

Тогда слово Входит превратится в слово уходит. $\omega x =$ уходит

Определение 15. Нормальный алгорифм $\mathcal{A} = (V, S, \mathcal{P})$

Пример.

$$\mathcal{A}: \begin{cases} \#a \to a(1) \\ \#b \to b\# \\ \# \to \cdot aba \\ \to \# \end{cases}$$

Рассматриваем систему сверху вниз и ищем первую подходящую формулу. Пусть

$$x = bbab$$

Отсюда получаем:

$$x = bbab \vdash \#bbab \vdash b\#bab \vdash bb\#ab \vdash bba\#b \vdash bbab\# \vdash \bullet bbab\underline{aba}$$

Общий вид:

$$\mathcal{A}: \begin{cases} u_1 \to [\bullet]v_1 \\ u_2 \to [\bullet]v_2 \\ \vdots \\ u_n \to [\bullet]v_n \end{cases}$$

Можно записать это в виде блок-схемы неформально:

Теперь формально опишем его. Распишем 5 разных ситуаций.

- 1) $\mathcal{A}: x \vdash y \leftrightharpoons$ непосредственно просто переводит слово х в слово у $\leftrightharpoons y = \omega x$, где ω 1-я в схеме \mathcal{A} формула, которая оказывается простой
- 2) $\mathcal{A}\vdash \cdot y \leftrightharpoons$ Алгорифм A непосредственно заключительно переводит слово x в слово y $\leftrightharpoons y = \omega x$, где ω 1-я в схеме \mathcal{A} , которая оказывается заключительной
- 3) $\mathcal{A}x \models y \leftrightharpoons \mathsf{A}$ лгорифм A переводит слово x в слово y, когда существует последовательность $x=x_0,x_1,\ldots,x_n=y$, где $(\forall i=\overline{0},n-1)(\mathcal{A}:x_i\vdash x_{i+1})$
- 4) $\mathcal{A}: x \models \cdot y \leftrightharpoons$ Алгорифм A заключительно переводит слово x в слово y $\leftrightharpoons \mathcal{A}: x \vdash \cdot y \lor (\exists z)(\mathcal{A}: x \models z \vdash \cdot y)$
- 5) $\sim \mathcal{A}(x) \leftrightharpoons$ в схеме A нет ни одной подходящей формулы для х.

Процесс работы НА $\mathcal{A}=(S,S,P)$ со словом $x\in V^*$: это последовательность слов $x=x_0,x_1,\ldots,x_n,\ldots$ такая, что $(\forall i\geq 0)(\mathcal{A}:x_i\vdash x_{i+1}$ или $\mathcal{A}:x_i\vdash \cdot x_{i+1})$, если x_{i+1} определено в последовательности.

Слово x_{i+1} и каждое слово $x_n n > i+1$ считается неопределенным, если $\mathcal{A}: x_{i-1} \vdash •x_i$ или $\sim \mathcal{A}(x_i)$

Если процесс работы НА \mathcal{A} со словом конечный, то есть $x = x_0, x_1, \ldots, x_n, n \geq 0$, то $!\mathcal{A}(x)$ и $x_n \leftrightharpoons \mathcal{A}(x)$. В противном случае пишем $\neg !\mathcal{A}(x)$, то есть алгоритм со словом х будет бесконечный, или не останавливается.

Об алфавитах в **НА.** Пусть НА алгорифм $\mathcal{A} = (V, S, P)$. Тогда мы говорим, что это НА в алфавите V. Пусть $\mathcal{A}_1 = (V_1 \subset V, S_1, P_1)$ - нормальный алгорифм над алфавитом V.

Определение 16. Вербальная функция $f:V^* \to V^*$ называется вычислимой по Маркову, если может быть построен нормальный алгорифм \mathcal{A}_f над алфавитом V такой, что

$$(\forall x \in V^*)(!\mathcal{A}_f(x) \iff x \in D(f)) \& (\mathcal{A}_f(x) = f(x))$$

Гипотеза НА (Принцип нормализации). Любая вербальная функция, вычислимая в интуитивном смысле слова, вычислима по Маркову.

Примеры НА. Первый пример.

$$\mathcal{J}\alpha:\Big\{
ightarrowullet$$

Получаем вот что: $(\forall x)(\mathcal{J}\alpha(x)=x)$, то есть вычисляет тождественную функцию в любом алфавите.

Второй пример.

$$Null:\Big\{ \rightarrow$$

Для любого слова будет работать бесконечно: $(\forall x) \neg !Null(x)$

Третий пример.

$$Lc:\Big\{
ightarrow \cdot x_0,$$
 где $x_0\in V^*$ - фиксированное слово

Получим: $x \in V^*$: $x \vdash \cdot x_0 x$, то есть $Lc(x) = x_0 x$

Четвертый пример.

$$Rc: \begin{cases} \#\xi \to \xi \# \\ \# \to {}^{\bullet}x_0(x_0 \in V^* - \Phi$$
иксированное слово) $\to \#$

$$x \in V^*, x = x(1)x(2)\dots x(k) \vdash \#x(1)x(2)\dots x(k) \vdash x(1)\#x(2)\dots x(k) \models^{k-1} x\# \vdash \cdot xx_0$$

Пятый пример.

$$Double : \begin{cases} \alpha \xi \to \xi \beta \xi \alpha \\ \beta \xi \eta \to \eta \beta \xi \\ \beta \to \\ \alpha \to \bullet \\ \to \alpha \end{cases}$$

Причем $\alpha, \beta \notin V; \xi, \eta \in V$.

Первый тест: $\lambda \vdash \alpha \vdash \bullet \lambda$.

Второй тест: $a \vdash \alpha a \vdash a\beta a\alpha \vdash aa\alpha \vdash \bullet aa$

Третий тест:

$$abca \vdash \alpha abca \vdash a\beta a\alpha bca \vdash a\beta ab\beta b\alpha ca \vdash$$

$$\vdash a\beta ab\beta bc\beta c\alpha a \vdash a\beta ab\beta bc\beta ca\beta a\alpha \vdash$$

$$\vdash ab\beta a\beta bc\beta ca\beta a\alpha \vdash ab\beta ac\beta b\beta ca\beta a\alpha \vdash$$

$$\vdash abc\beta a\beta b\beta ca\beta a\alpha \vdash abc\beta a\beta ba\beta c\beta a\alpha \vdash$$

$$\vdash abc\beta aa\beta b\beta c\beta a\alpha \vdash abca\beta a\beta b\beta c\beta a\alpha \models^{4}$$

$$\models^{4} abcaabca\alpha \vdash \bullet abcaabca$$

Можно строго доказать, что

$$(\forall x \in V^*)(Double(x) = xx = x^2)$$

1.4 Эквивалентность нормальных алгоритмов. Теорема о переводе.

Пусть даны $\mathcal{A}, \mathcal{B}: V^* \to V^*$ над алфавитом V.

Определение 17. Алогрифмы \mathcal{A}, \mathcal{B} называются эквивалентными относительно алфавита V, если

$$(\forall x \in V^*)(!\mathcal{A}(x) \iff !\mathcal{B}(x) \& (\mathcal{A}(x) = \mathcal{B}(x)))$$

Это называется условным равенством:

$$\mathcal{A}(x) \simeq \mathcal{B}(x)$$

Рассмотрим такую конструкцию, называемую замыканием HA.

$$\mathcal{A}: \begin{cases} u_1 \to [\bullet]v_1 \\ \vdots \\ u_n \to [\bullet]v_n \end{cases}$$

$$\mathcal{A}^{\bullet}: \begin{cases} \text{Схема } \mathcal{A} \\ \to \bullet \end{cases}$$

То есть

$$(\forall x \in V^*) \mathcal{A}^{\bullet}(x) \simeq \mathcal{A}(x)$$

Рассмотрим преобразования:

$$\mathcal{A}: x \models \cdot y$$
, то есть $\mathcal{A}(x) = y$; $\mathcal{A}^{\cdot}: x \models y = \mathcal{A}(x)$. $\mathcal{A}: x \models y$, то есть $y = \mathcal{A}(x)$; $\mathcal{A}^{\cdot}: x \models y \vdash \cdot y = \mathcal{A}(x)$

Заметка. Переход к замыканию НА позволяет без ограничения общности не рассматривать ситуацию естественного обрыва процесса работы.

Если $!\mathcal{A}(x)$, то $x \models \cdot \mathcal{A}(x)$ (система \mathcal{A} замкнутая)

Естественное распространение НА на более широкий алгорифм. $\mathcal{A} = (V, S, P)$ и пусть $V' \supset V$. Тогда $\mathcal{A}' = (V', S, P)$. То есть просто означает, что рассматриваем тот же алгоритм в более широком алфавите. Из этого следует, что

$$(\forall x \in V^*)(\mathcal{A}(x) \simeq \mathcal{A}(x))$$

Формальное распространение НА на более широкий алфавит. $\mathcal{A}=(V,S,P)$ в алфавите V.

$$\mathcal{A}^f: egin{cases} \eta o \eta \ //\eta \in V' \setminus V \ \mathrm{Cxema} \ \mathcal{A} \end{cases}$$

Получаем:

$$(\forall x \in V^*)(\mathcal{A}^f(x) = \mathcal{A}(x))$$
, но если $x \notin V^*$, то $\neg ! \mathcal{A}^f(x)$

Нам нужно расширить алфавит. Как это делается? Рассмотрим алфавиты $V=\{a_1,a_2,\ldots,a_n\}, V_\alpha=\{\alpha,\beta\}$ и $V\cap V_\alpha=\varnothing$ Тогда считается

$$[a_i \leftrightharpoons \alpha \beta^i \alpha; \quad [\lambda = \lambda; \quad [x = [x(1)x(2) \dots x(k) \leftrightharpoons [x(1)[x(2) \dots [x(k)$$

Пример.

$$[\underbrace{abca}_{V_0} = \underbrace{010}_{a} \underbrace{0110}_{b} \underbrace{0111}_{c} \underbrace{010}_{a}$$

$$V_{\alpha} = \{\alpha, \beta\}$$

Чаще всего будет рассматривать такой алфавит: $V_0 = \{0,1\}$

Теорема 1.2. (О переводе). Каков бы ни был нормальный алгорифм $\mathcal{A} = (V', S, P)$ над алфавитом $V \subset V'$, может быть построен НА \mathcal{B} в алфавите $V \cup V_{\alpha}$ так, что $(\forall x \in V^*)(\mathcal{B}(x) \simeq \mathcal{A}(x))$

1.5 Теорема сочетания

1.5.1 Композиция

Теорема 1.3. (О композиции). Каковы бы ни были НА \mathcal{A} , \mathcal{B} в алфавите V может быть построен НА алгорифм \mathcal{C} над алфавитом V такой, что

$$(\forall x \in V^*)(\mathcal{C}(x) \simeq \mathcal{B}(\mathcal{A}(x)))$$

Доказательство. Вводится алфавит двойников.

$$V = \{a_1, a_2, \dots, a_n\} \ \overline{V} = \{\overline{a_1}, \overline{a_2}, \dots, \overline{a_n}\}$$

Вводятся две буквы α,β такие, что $\alpha,\beta\not\in V\cup\overline{V}$

$$\mathcal{C}: \begin{cases} \xi\alpha \to \alpha\xi \ //\xi \in V \\ \alpha\xi \to \alpha\overline{\xi} \\ \overline{\xi}\eta \to \overline{\xi}\overline{\eta} \ //\xi, \eta \in V \\ \overline{\xi}\beta \to \beta\overline{\xi} \\ \beta\overline{\xi} \to \beta\xi \\ \xi\overline{\eta} \to \xi\eta \\ \alpha\beta \to \bullet \\ \mathcal{B}^{\beta}_{\alpha} \\ \mathcal{A}^{\alpha} \end{cases}$$

A·	A^{α}
$u \to v$	$u \rightarrow v$
$u \rightarrow \bullet v$	$u \rightarrow \alpha v$

В.	$\overline{\mathcal{B}_{lpha}^{eta}}$
$u \rightarrow v$	$\overline{u} \to \overline{v}$
$u \neq \lambda$	
$\rightarrow v$	$\alpha \to \alpha \overline{v}$
$u \rightarrow \bullet v$	$\overline{u} \to \beta \overline{v}$
$\rightarrow \bullet v$	$\alpha \to \alpha \beta \overline{v}$

Примерно идея доказательства. $x \in V^*$

$$\mathcal{C}:x\models_{(9)}^{!\mathcal{A}^{\boldsymbol{\cdot}}(x)}y_1lpha y_2,$$
 где $y_1y_2=\mathcal{A}^{\boldsymbol{\cdot}}(x)$

Если $\neg!\mathcal{A}^{\centerdot}(x)$, то и $\neg!\mathcal{C}(x)$, заметим. Отсюда

$$y_1 \alpha y_2 \models_{(1)} \alpha y_1 y_2 = \alpha y = \alpha y(1)y(2) \dots y(m),$$

где $y_1y_2 = y$. Далее получаем

$$\alpha y(1)y(2)\dots y(m) \vdash_{(2)} \alpha \overline{y(1)}y(2)\dots y(m) \models_{(3)} \alpha \overline{y(1)y(2)}\dots \overline{y(m)} = \alpha \overline{y}$$

Следующий, третий шаг

$$\alpha \overline{y} \models_{(8)} \alpha \overline{z_1}, \beta \overline{z_2}_z$$
, где $z_1, z_1 = z = \mathcal{B}^{\bullet}(y)$, если ! $\mathcal{B}(y)$

Заметим, что если $\neg !\mathcal{B}^{\bullet}(y) \implies \neg !\mathcal{C}(y) \implies \neg !\mathcal{C}(x)$. Получаем

$$\alpha\overline{z_1}\beta\overline{z_2}\models_{(4)}\alpha\beta\overline{z_1}\overline{z_2}=\alpha\beta\overline{z}\models_{(5),(6)}\alpha\beta z\vdash \cdot z=\mathcal{B}^{\scriptscriptstyle\bullet}(y)=\mathcal{B}^{\scriptscriptstyle\bullet}(\mathcal{A}^{\scriptscriptstyle\bullet}(x))=\mathcal{B}(\mathcal{A}(x))$$

Пример.

$$\mathcal{A}^{\cdot}: \begin{cases} \#\alpha \to \alpha \# \\ \#\beta \to \beta \# \\ \# \to \cdot aba \\ \to \# \\ \to \cdot \end{cases}$$

$$\mathcal{B}^{\bullet}: \left\{ egin{array}{l}
ightarrow \bullet babb \\
ightarrow \bullet \end{array}
ight.$$

Строим систему:

$$\mathcal{A}^{\alpha}: \begin{bmatrix} a \to a\# \\ \#b \to b\# \\ \# \to \alpha aba \\ \to \# \\ \to \alpha \end{bmatrix}$$
$$\overline{B}^{\beta}_{\alpha}: \begin{bmatrix} \alpha \to \alpha \beta \overline{babb} \\ \alpha \to \alpha \beta \end{bmatrix}$$

$$x = bab \vdash \#bab \models bab\# \vdash bab\alpha aba \models \alpha bababa \vdash \\ \vdash \alpha \overline{b}ababa \models \alpha \overline{bababa} \vdash \\ \vdash \alpha \beta \overline{babbbababa} \vdash \alpha \beta \alpha \beta b\overline{abbbababa} \models \\ \models \alpha \beta babbbababa \vdash \bullet babbbababa$$

Отсюда видно:

$$\mathcal{C} \leftrightharpoons \mathcal{B} \circ \mathcal{A};$$

$$\mathcal{B} \circ \mathcal{A}(x) \simeq \mathcal{B}(\mathcal{A}(x));$$

$$\mathcal{A}_n \circ \mathcal{A}_{n-1} \circ \dots \circ \mathcal{A}_1 \leftrightharpoons \mathcal{A}_n \circ (\mathcal{A}_{n-1} \circ \dots \circ \mathcal{A}_1), n \ge 1;$$

Определение 18. Степень алгорифма:

$$\mathcal{A}^n \leftrightharpoons \mathcal{A} \circ \mathcal{A}^{n-1}, n \ge 1$$
, где $\mathcal{A}^0 \leftrightharpoons \mathcal{J} \alpha$

1.5.2 Объединение

Теорема 1.4. (Объединения). Каковы бы ни были НА A, B в алфавите V, может быть построен НА A над алфавитом V так, что

$$(\forall x \in V^*)(\mathcal{C}(x) \simeq \mathcal{A}(x)\mathcal{B}(x))$$

Можно представить это так:

$$\overline{\mathcal{C}(x\$y)} \simeq \mathcal{A}(x)\$\mathcal{B}(y)$$

\$\neq V

1.5.3 Разветвление

Записать в виде псевдокода можно так:

$$if(\mathcal{C}(x) = \lambda) \ \underline{then} \ y := \mathcal{A}(x) \ \underline{else} \ y := \mathcal{B}(x);$$

Теорема 1.5. (О разветвлении). Каковы бы ни были HA \mathcal{A} , \mathcal{B} , \mathcal{C} в алфавите V, может быть построен HA D над алфавитом V так, что

$$(\forall x \in V^*)(D(x) = \mathcal{A}(x), \ ecnu \ \mathcal{C}(x) = \lambda) \ u \ (D(x) = \mathcal{B}(x), \ ecnu \ \mathcal{C}(x) \neq \lambda)$$

$$D \leftrightharpoons \mathcal{C}(\mathcal{A} \lor \mathcal{B})$$

1.5.4 Повторение

В виде псевдокода:

• Для цикла с условием, пока правда:

while
$$\mathcal{B}(x) = \lambda \, \underline{do} \, x := \mathcal{A}(x) \, \underline{end};$$
 Записывается так: $\beta \{\mathcal{A}\}$

• Для цикла с условием, пока неправда:

$$\underline{while} \ \mathcal{B}(x)! = \lambda \ \underline{do} \ x := \mathcal{A}(x) \ \underline{end};$$
Записывается так: $\beta \langle \mathcal{A} \rangle$

Теорема 1.6. (Повторения). Каковы бы ни были НА \mathcal{A} , \mathcal{B} в алфавите V, может быть построен НА \mathcal{C} над алфавитом V такой, что $!\mathcal{C}(x) \leftrightharpoons (\mathcal{B}(x) \neq \lambda)$ и тогда $\mathcal{C}(x) = x$ или существует последовательность $x = x_0, x_1, \ldots, x_n$, где $(\forall i = \overline{0, n-1})$ $(\mathcal{B}(x_i) = \lambda)$ и $x_{i+1} = \mathcal{A}(x_i)$; $\mathcal{B}(x_n) \neq \lambda$ и $\mathcal{C}(x) = x_n$