УДК 576.893.19: 595.787

КРУГ ХОЗЯЕВ ВОЗБУДИТЕЛЯ ПЕБРИНЫ (NOSEMA BOMBYCIS) ТУТОВОГО ШЕЛКОПРЯДА

Л. Ф. Кашкарова, А. И. Хаханов

Среднеазиатский научно-исследовательский институт шелководства САО ВАСХНИЛ, Ташкент

При изучении специфичности возбудителя пебрины тутового шелкопряда 6 видов насекомых из отряда чешуекрылых (Agrotis segetum, Chloridea obsoleta, Laphygma exigua, Plusia gamma, Pieris brassicae, Pieris rapae) оказались восприимчивыми к нему. В этих насекомых возбудитель пебрины размножался, вызывая гибель их на разных фазах метаморфоза, и передавался следующему поколению.

Пебрина — опасное заболевание тутового шелкопряда ($Bombyx\ mori\ L.$), наносящее большой экономический ущерб шелководству, вызывается одноклеточным организмом $Nosema\ bombycis\ Naegeli$, относящимся по классификации к простейшим, отряду микроспоридий.

На основе многолетних исследований ряда авторов (Штибен, 1939; Поярков, 1940; Михайлов, 1945; Хаханов, 1956, и др.) в настоящее время ведется интенсивная борьба с пебриной. Эта борьба включает санитарнопрофилактические обработки помещений и инвентаря и тщательный контроль грены, отложенной бабочками и используемой производством для племенных и промышленных выкормок тутового шелкопряда. Но, несмотря на указанные мероприятия, пебрина постоянно появляется в шелководческих хозяйствах, что заставляет шелководов усиленно искать источники сохранения ее.

Известно, что основными источниками пебрины являются зараженная грена, сам тутовый шелкопряд и отходы его выкормки. Вместе с тем болезнь одомашненного насекомого — тутового шелкопряда в течение многих десятилетий изучалась независимо от связей с внешней средой. Однако насекомое это, в силу своих биологических особенностей, ежедневно находится в прямом и косвенном контактах с внешней средой: во время проветривания помещения, через кормовое растение и т. д. Естественно, возникает вопрос: не может ли пебрина привноситься на выкормки тутового шелкопряда из природы и каким образом?

Анализ процесса выкормки тутового шелкопряда и знакомство с классическим учением Павловского о природной очаговости болезней и Громашевского (1958) о механизмах передачи инфекции позволили предположить, что пебринозная инфекция может привноситься из природы двумя путями: 1) из природного очага, существующего в популяции какого-либо насекомого независимо от деятельности человека; 2) из антропургических очагов, образующихся по принципу выплеска заразного начала от сельскохозяйственных животных в природу (в нашем случае это отходы червокормления).

В задачу наших исследований входило изучить роль природных насекомых в эпизоотологии пебрины тутового шелкопряда. Проблема эта очень широкая и для разрешения ее необходимо, во-первых, изучить комплекс насекомых, окружающих выкормки тутового шелкопряда.

Этот комплекс включает в себя вредителей выкормочного материала — шелковицы и вредителей сельскохозяйственных культур и плодовых деревьев, окружающих посадки шелковицы и выкормочные помещения. Во-вторых, найти возбудителя пебрины у местных видов насекомых. В-третьих, установить возможность заражения тутового шелкопряда нозематозами местных насекомых. И, в-четвертых, установить круг хозяев для возбудителя пебрины. Указанная проблема у нас в Союзе в области шелководства изучается впервые.

В предлагаемом сообщении излагаются результаты экспериментов по искусственному заражению ряда природных насекомых возбудителем пебрины тутового шелкопряда.

В экспериментах преследовалась цель — выяснить взаимоотношения возбудителя пебрины с местными видами насекомых, т. е. влияет ли сам возбудитель на организм насекомых или же последние не страдают от его присутствия? Изучение этих вопросов позволит выяснить эпизоотологическое значение различных видов насекомых в поддержании и распространении инфекции, а следовательно, и обосновать соответствующие мероприятия по предупреждению или ликвидации контактов тутового шелкопряда с природными насекомыми.

материал и методика

Работа проводилась с местными видами насекомых из отряда чешуекрылых. В опытах по заражению использовались гусеницы младших возрастов, размноженные в лабораторных условиях. Заражение проводилось перорально, путем скармливания гусеницам корма, обработанного суспензией спор пебрины с определенным титром. Споры возбудителя выделяли из больных пебриной гусениц тутового шелкопряда. Титр устанавливали с помощью камеры Горяева. Заражение каждого вида насекомого проводилось в 4 повторностях, по 20—30 особей в каждой. Учитывались следующие показатели: гибель насекомых на всех фазах развития, результаты микроскопирования погибших, процент окуклившихся и развившихся до имаго, зараженность полученного потомства.

В опытах использовали 7 видов насекомых: озимую совку (Agrotis segetum Schiff.), хлопковую совку (Chloridea obsoleta F.), карадрину (Laphygma exigua Hb.), совку-гамму (Plusia gamma L.), капустную (Pieris brassicae L.), репную белянку (P. rapae L.), непарного шелкопряда (Lymantria dispar L.). Эти насекомые выбраны неслучайно. Во-первых, они являются массовыми вредителями овощных, технических и плодовых культур, окружающих посадки шелковицы и выкормочные помещения; во-вторых, по систематическому положению они, как и тутовый шелкопряд, принадлежат к отряду чешуекрылых.

Всех перечисленных насекомых, кроме непарного шелкопряда, заражали суспензией с низкой концентрацией — 3000 спор/мл. Непарного шелкопряда заражали суспензией с титром в 10 раз выше (30 000 спор/мл). Контролем служили гусеницы, содержавшиеся на чистом необработанном корме.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты по заражению гусениц нескольких видов насекомых возбудителем пебрины представлены в таблице. Как показали полученные данные, из 7 видов насекомых только 1 — непарный шелкопряд оказался невосприимчивым к возбудителю пебрины. Причем для заражения его были взяты суспензии с титром в 10 раз выше, чем для остальных насекомых. Остальные виды насекомых были восприимчивыми к возбудителю пебрины тутового шелкопряда. От заражения пебриной происходила гибель гусениц и куколок. При микроскопировании погибших гусениц и деформированных куколок были обнаружены все стадии развития паразита Nosema bombycis. Оставшиеся в живых насекомые развивались до имагинальной стадии — бабочек, но часть вылетевших бабочек у всех видов насекомых

Результаты заражения гусениц различных видов насекомых спорами пебрины

ı

1

	% заражения потомства		80.0	1	70.0	1	95.0	1	1	1	1	1	85.0	1	0.0	1
Costantian actionary promit provided incoming onepasta incoming	0/0 заражения бабочек	уродливых	100.0	1	100.0	1	100.0	1	100.0	1	100.0	1	100.0	1	0.0	1
		нормальных	87.0	1	85.0	1	90.0	1	100.0	1	80.0	1	100.0	1	0.0	1
	Количество бабочек, в %о	уродливых	40.0	0.0	10.0	0.0	25.0	0.0	45.0	0.0	30.0	0.0	15.0	0.0	0.0	0:0
		нормальных	53.0	100.0	85.0	100.0	45.0	100.0	40.0	100.0	40.0	100.0	35.0	100.0	100.0	100.0
		общее	93.0	100.0	95.0	100.0	70.0	100.0	85.0	100.0	70.0	100.0	20.0	100.0	100.0	100.0
	Гибель насекомых, в %	общая	7.0	0.0	5.0	0.0	30.0	0.0	15.0	0.0	30.0	0.0	50.0	0.0	0.0	0.0
		куколок	6.0	0.0	0.0	0.0	10.0	0.0	0.0	0.0	5.0	0.0	25.0	0.0	0.0	0.0
		гусениц	3.0	0.0	5.0	0.0	20.0	0.0	15.0	0.0	25.0	0.0	25.0	0.0	0.0	0.0
0.7	Вид		Озимая совка	Контроль	Хлопковая совка	Контроль	Карадрина	Контроль	Капустная белянка	Контроль	Репная белянка	Контроль	Совка-гамма	Контроль	Непарный шелкопряд	Контроль

была уродливой, с недоразвитыми и деформированными крыльями. По данным ряда исследователей (Fisher, Sanborn, 1962), микроспоридии, развиваясь в насекомых, выделяют аналоги гормональных веществ, способные замедлять или ускорять метаморфоз и вызывать различные уродства.

И нормальные, и уродливые бабочки всех видов насекомых после откладки яиц были тщательно промикроскопированы. Оказалось, что все уродливые бабочки были буквально «нафаршированы» спорами пебрины. Нормальные бабочки тоже содержали споры возбудителя, но не в таком количестве; у некоторых видов (озимой, хлопковой совок и карадрины) часть бабочек была незараженной.

Все зараженные насекомые, кроме капустной и репной белянок, дали потомство. От капустной и репной белянок потомства получить не удалось, так как они очень трудно поддаются разведению в лабораторных условиях. Микроскопирование гусениц, отродившихся из яиц, отложенных зараженными бабочками, показало на передачу возбудителя потомству. Следовательно, в перечисленных видах насекомых возбудитель пебрины тутового шелкопряда размножался, вызывая гибель их на разных фазах метаморфоза, и передавался следующему поколению.

Как уже указывалось, из всех подвергавшихся заражению насекомых непарный шелкопряд оказался невосприимчивым к возбудителю пебрины тутового шелкопряда. В течение всего опыта не наблюдалось гибели насекомых ни на одной из фаз метаморфоза. Тщательное микроскопирование бабочек не выявило заражения их пебриной. Невосприимчивость непарного шелкопряда к возбудителю пебрины может объясняться либо ингибирующими веществами, содержащимися в кормовом растении этого насекомого, либо антибиотическими веществами, встречающимися в содержимом кишечника и гемолимфе некоторых видов насекомых. Среди прочих факторов не последняя роль отводится биохимизму клеток хозяина. Вопрос этот несомненно заслуживает самого серьезного внимания и требует самостоятельного изучения.

На данной стадии изучения поставленной проблемы проведенные исследования показывают, что возбудитель пебрины тутового шелкопряда Nosema bombycis — паразит с широким кругом хозяев.

Специфичность паразита, как известно, важный фактор в эпизоотологии любого заболевания. Если паразит строго специфичен, его выживаемость связана с выживанием хозяина. Паразит, который может заражать несколько хозяев, естественно, имеет больше шансов на выживание и распространение.

Полученные в экспериментах результаты дают основания предположить, что возбудитель пебрины может сохраняться во многих насекомых, независимо от деятельности человека. Конкретный ответ может быть получен в результате многолетних исследований «диких» насекомых, окружающих посадки шелковицы и выкормочные помещения в шелководческих хозяйствах.

Литература

- Громашевский Л. В. 1958. Механизмы передачи инфекции. УССР, Киев: 3 - 332.
- М и х а й л о в Е. Н. 1945. Болезни тутового шелкопряда. Госиздат УзССР, Ташкент: 3—185. Поярков Э. Ф.
- 1940. Шелководство. Сельхозгиз, М.: 82-96.
- X а x а н о в А. И. 1956. Цикл развития Nosema bombycis Nageli в гусенице, куколке и грене тутового шелкопряда. — В кн.: Инфекционные и протозойные болезни полезных и вредных насекомых. Госиздат с.-х. литературы, М.: 130-153.
- Штибен В.Д. 1939. Болезни шелковичных червей и борьба с ними. Госиздат, М.: 3-60.

 Fisher F. M., Sanborn R. C. 1962. Production of insect juvenile hormone by the microsporidian parasite Nosema. Nature, 194, (4834): 1193.

THE RANGE OF HOSTS OF THE AGENT OF MICROSPORIDIOSIS (NOSEMA BOMBYCIS) OF THE SILKWORM

L. F. Kaschkarova, A. I. Khakhanov

SUMMARY

Biological interrelations between the agent of microsporidiosis of the silkworm and local species of insects were studied. 7 species of Lepidoptera (Agrotis segetum, Chloridea obsoleta, Laphygma exigua, Plusia gamma, Pieris brassicae, P. rapae, Lymantria dispar) were infected with the suspension of Nosema bombycis spores. Results have shown that 6 species of insects are susceptible to Nosema bombycis excluding only the gipsy moth. So, N. bombycis can be considered to be a parasite with a wide range of hosts.