Aufgabe 3

(a) Behauptung: Die Folge $\ker(\phi') \xrightarrow{\overline{\alpha'}} \ker(\phi) \xrightarrow{\alpha} \ker(\phi'')$ ist exakt.

Beweis. Dazu definieren wir zunächst $\overline{\alpha'}$: $\ker(\phi') \to \ker(\phi)$, $x \mapsto \alpha'(x)$ und $\overline{\alpha}$: $\ker(\phi) \to \ker(\phi'')$, $x \mapsto \alpha(x)$.

- (i) Die Abbildungen sind wohldefiniert. Sei dazu $x \in \ker(\phi')$. Dann gilt $0 = \phi'(x) \implies 0 = \beta'(\phi'(x)) = \phi(\alpha'(x)) \implies \alpha'(x) \in \ker(\phi)$. Analog erhalten wir auch $x \in \ker(\phi) \implies \alpha(x) \in \ker(\phi'')$.
- (ii) Wegen $\alpha \circ \alpha' = 0$ folgt auch $\overline{\alpha} \circ \overline{\alpha'} = 0$ und damit im $\overline{\alpha'} \subset \ker \overline{\alpha}$.
- (iii) Sei nun $x \in \ker \overline{\alpha} \subset \ker \alpha$. Aufgrund der Exaktheit von $M' \xrightarrow{\alpha'} M \xrightarrow{\alpha} M''$ existiert ein $x_1 \in M'$ mit $\alpha'(x_1) = x$. Es gilt $0 = \phi(x_0) = \phi(\alpha'(x_1)) = \beta'(\phi'(x_1))$. Da β' injektiv ist, folgt $x_1 \in \ker \phi'$. Daher gilt $\overline{\alpha'}(x_1) = x_0$ und damit $\ker \overline{\alpha} \subset \operatorname{im} \overline{\alpha'}$.

Insgesamt folgt $\ker \overline{\alpha} = \operatorname{im} \overline{\alpha'}$.

(b) Behauptung: Die Folge $\operatorname{coker}(\phi') \xrightarrow{\overline{\beta'}} \operatorname{coker}(\phi) \xrightarrow{\overline{\beta}} \operatorname{coker}(\phi'')$ ist exakt.

Beweis. (i)

Sei $x \in \operatorname{im} \phi'$, d.h. $x = \phi'(x_0)$. Dann gilt $\pi(\beta'(x_1)) = \pi(\beta'(\phi'(x_0))) = \pi(\phi(\alpha'(x_0))) = 0$, da $\pi \circ \phi = 0$ aufgrund der Definition des Cokerns. Es gilt also im $\phi' \subset \ker \pi \circ \beta'$. Folglich faktorisiert $\pi \circ \beta'$ über $N/\operatorname{im} \phi' = \operatorname{coker} \phi'$ und es existiert eine eindeutig bestimmte Abbildung $\overline{\beta'}$: $\operatorname{coker} \phi' \to \operatorname{coker} \phi$, sodass die linke Hälfte des obigen Diagramms kommutiert. Analog folgern wir die Existenz einer eindeutig bestimmten Abbildung $\overline{\beta}$: $\operatorname{coker} \phi \to \operatorname{coker} \phi''$, sodass die rechte Hälfte des obigen Diagramms kommutiert.

(ii) Sei $x \in \operatorname{coker} \phi'$. Dann existiert aufgrund der Surjektivität der kanonischen Projektion π' ein $x_0 \in N'$ mit $\pi'(x_0) = x$. Es gilt

$$(\overline{\beta} \circ \overline{\beta'})(x) = \overline{\beta}(\overline{\beta'}(\pi'(x_0))) = \pi''((\beta \circ \beta')(x_0)) = \pi''(0) = 0.$$

aufgrund der Kommutativität des Diagramms und der Exaktheit der mittleren Zeile. Insbesondere ist $\overline{\beta} \circ \overline{\beta'} = 0$ und damit im $\overline{\beta'} \subset \ker \overline{\beta}$.

(iii) Sei nun $x \in \ker \overline{\beta}$. Wie oben bereits gezeigt, gilt $x = \pi'(x_0)$ für ein $x_0 \in N'$. Es folgt

$$0 = \overline{\beta}(x) = \overline{\beta}(\pi(x_0)) = \pi''(\beta(x_0)) \implies \beta(x_0) \in \operatorname{im} \phi''$$

nach Definition des Cokerns bzw. der Projektion $\pi'': N'' \to \operatorname{coker} \phi''$, also $\beta(x_0) = \phi''(x_1)$ für ein $x_1 \in M''$. Aufgrund der Surjektivität von α existiert ein $x_2 \in M$ mit $\alpha(x_2) = x_1$, insgesamt erhalten wir dann unter Ausnutzung der Linearität von β

$$\beta(x_0 - \phi(x_2)) = \beta(x_0) - \beta(\phi(x_2)) = \beta(x_0) - \phi''(\alpha(x_2)) = \beta(x_0) - \phi''(x_1) = \beta(x_0) - \beta(x_0) = 0.$$

Da die mittlere Zeile exakt ist, $\ker \beta = \operatorname{im} \beta'$ existiert ein $x_4 \in N'$ mit $\beta'(x_4) = x_0 - \phi(x_2)$. Sei nun $y = \pi'(x_4) \in \operatorname{coker} \phi'$. Dann folgt mit Linearität der Abbildungen und Kommutativität des Diagramms

$$\overline{\beta'}(y) = \overline{\beta'}(\pi'(x_4)) = \pi(\beta'(x_4)) = \pi(x_0 - \phi(x_2)) = \pi(x_0) - \underbrace{\pi \circ \phi}_{=0}(x_2) = \pi(x_0) = x$$

Für ein beliebiges $x \in \ker \overline{\beta}$ existiert also ein $y \in \operatorname{coker} \phi'$ mit $\overline{\beta'}(y) = x$, also $\ker \overline{\beta} \subset \operatorname{im} \overline{\beta'}$.

(c) Behauptung: Die Folge $\ker(\phi) \xrightarrow{\overline{\alpha}} \ker(\phi'') \xrightarrow{\delta} \operatorname{coker}(\phi') \xrightarrow{\overline{\beta'}} \operatorname{coker}(\phi)$ ist exakt.

Beweis. Wir haben bereits gezeigt, dass $\overline{\alpha}$ und $\overline{\beta'}$ wohldefiniert sind, in der VL wurde bewiesen, dass δ wohldefiniert ist.

- (i) Sei $m \in \ker \phi$ gegeben. Dann lässt sich $\delta(\overline{\alpha})(m)$) nach Vorlesung konstruieren, indem $n = \phi(m)$ gewählt wird. Nun ist aber $\phi(m) = 0$. Insbesondere ist das eindeutige Urbild von n unter β' auch 0 und damit auch $\delta(\alpha(m)) = 0 + \operatorname{im} \phi'$. Daraus folgt $\delta \circ \overline{\alpha} = 0$, $\operatorname{im} \overline{\alpha} \subset \ker \delta$.
- (ii) Sei $x \in \ker \delta$. Z.Z.: $\exists m \in \ker \phi$ mit $x = \overline{\alpha}(m)$. Betrachte zunächst ein beliebiges $m \in M$ mit $\alpha(m) = x$. Es gilt $\beta(\phi(m)) = \phi''(\alpha(m)) = \phi''(x) = 0$. Daher existiert ein $n' \in N'$ mit $\phi(m) = \beta'(n')$. Per Definition der Abbildungsvorschrift von δ in der VL und wegen $\alpha(m) = x \in \ker \delta$ gilt $n' \in \operatorname{im} \phi'$, also $n' = \phi'(m')$ für ein $m' \in M'$. Betrachte nun $\tilde{m} = m \alpha'(m')$. Wegen $\alpha(\tilde{m}) = \alpha(m) \alpha(\alpha'(m')) = \alpha(m)$ ist mit m auch \tilde{m} ein Urbild von x. Es gilt

$$\phi(\tilde{m}) = \phi(m) - \phi(\alpha'(m')) = \phi(m) - \beta'(\phi'(m')) = \phi(m) - \beta'(n') = 0,$$

also $\tilde{m} \in \ker \phi$. Daher folgt $\ker \delta \subset \operatorname{im} \overline{\alpha}$.

(iii) Sei $x \in \ker \phi''$. Wir betrachten nun $\overline{\beta'(\delta(x))}$. In der Vorlesung wurde die Abbildungsvorschrift von δ angegeben als $n' + \operatorname{im} \phi'$ mit $\beta'(n') = n = \phi(m)$ und $\alpha(m) = x$. Da das obige Diagramm kommutativ ist, gilt

$$\overline{\beta'}(n' + \operatorname{im} \phi) = \beta'(n') + \operatorname{im} \phi = n + \operatorname{im} \phi = \phi(m) + \operatorname{im} \phi = 0 + \operatorname{im} \phi.$$

also $\overline{\beta'} \circ \delta = 0$ und damit im $\delta \subset \ker \overline{\beta'}$.

(iv) Sei $x \in \ker \overline{\beta'}$. Es gilt $x = \pi'(n')$ und

$$0 = \overline{\beta'}(\pi'(n')) = \pi(\beta'(n')) \implies \beta'(n') \in \operatorname{im} \phi$$

Sei also $m \in M$ mit $\phi(m) = \beta'(n')$ und sei $y = \alpha(m)$. Wir nutzen nun die Konstruktion aus der VL, um $\delta(y)$ zu berechnen. Zunächst gilt $\alpha(m) = y$. Dann nutzen wir $\phi(m) = \beta'(n')$ und erhalten $\delta(y) = n' + \operatorname{im} \phi' = \pi'(n') = x$. Es gilt also $\ker \overline{\beta'} \subset \operatorname{im} \delta$.

Insgesamt folgt im $\overline{\alpha} = \ker \delta$ und im $\delta = \ker \overline{\beta'}$ und damit die Exaktheit der Folge.

Aufgabe 3

- (a) $0 \neq A[T] \cong \bigoplus_{n \in \mathbb{N}_0} A \cdot T^n$ ist frei mit Erzeugendensystem $(1, T, T^2, \dots)$ und damit nach Beispiel 5.11 treuflach.
- (b) \mathbb{Q} ist offensichtlich ein flacher \mathbb{Z} -Modul. Sei $\phi \colon M' \hookrightarrow M$ eine injektive Abbildung. Z.Z.: $M' \otimes_{\mathbb{Z}} \mathbb{Q} \to M \otimes_{\mathbb{Z}} \mathbb{Q}$ ist injektiv.

Beweis. Sei M ein \mathbb{Z} -Modul. Dann ist auf $M \times \mathbb{Z}^{\times}$ durch

$$(x_1, r_1) \sim (x_2, r_2) \Leftrightarrow \exists s \in \mathbb{Z}^\times : sr_1x_2 = sr_2x_1$$

eine Äquivalenzrelation gegeben. Wir definieren $Q(M) := M \times \mathbb{Z}^{\times}/\sim$ und schreiben $\frac{x}{r}$ für die Äquivalenzklasse von (x,r). Es gilt $\frac{x}{r} = 0 \Leftrightarrow (x,r) \sim (0,1) \Leftrightarrow \exists s \in \mathbb{Z}^{\times} \colon sx = 0$. Via $r \cdot \frac{x}{t} := \frac{rx}{t}$ wird Q(M) zu einem \mathbb{Z} -Modul. Betrachte die offensichtlich bilineare Abbildung $\beta \colon \mathbb{Q} \times M \to Q(M)$ mit $\left(x, \frac{r}{s}\right) \mapsto \frac{rx}{s}$. Die UE des Tensorprodukts liefert einen eindeutigen \mathbb{Z} -Modulhomomorphismus $f_M \colon M \otimes_{\mathbb{Z}} \mathbb{Q} \to Q(M)$ mit $f_M(x \otimes r/s) = \frac{rx}{s}$. f ist offensichtlich surjektiv mit $\frac{x}{r} = f_M\left(x \otimes \frac{1}{r}\right)$. Da sich jedes Element aus $M \otimes_{\mathbb{Z}} \mathbb{Q}$ schreiben lässt als $x \otimes \frac{1}{s}$,

$$\sum_{i=1}^{k} x_i \otimes \frac{r_i}{s_i} = \sum_{i=1}^{k} x_i \otimes \frac{r_i s_1 \cdots \widehat{s_i} \cdots s_k}{s_1 \cdots s_k} = \sum_{i=1}^{k} \sum_{i=1}^{k} r_i s_1 \cdots \widehat{s_i} \cdots s_k \otimes \frac{1}{s_1 \cdots s_k}$$

können wir OE schreiben

$$x \otimes \frac{1}{s} \in \ker f_M \implies \frac{x}{s} = 0 \implies \exists \tilde{s} \colon \tilde{s}x = 0 \implies x \otimes \frac{1}{s} = \underbrace{\tilde{s}x}_{=0} \otimes \frac{1}{s\tilde{s}}$$

Insgesamt erhalten wir einen Isomorphismus $f_M: M \otimes_{\mathbb{Z}} \mathbb{Q} \xrightarrow{\sim} Q(M)$.

Betrachte die Abbildung $g\colon Q(M')\to Q(M),\ \frac{x}{r}\mapsto \frac{\phi(x)}{r}.$ Es gilt für $\frac{x}{r}\in\ker g$

$$0 = g\left(\frac{x}{r}\right) = \frac{\phi(x)}{r} \implies \exists s \in \mathbb{Z}^{\times} : 0 = sf(x) \stackrel{\text{linear}}{=} \phi(sx) \stackrel{\text{injektiv}}{=} sx = 0,$$

was wiederum äquivalent dazu ist, dass bereits $\frac{x}{r}=0$ sein muss. g ist also injektiv. Insgesamt erhalten wir eine injektive Abbildung $\psi:=f_M^{-1}\circ g\circ f_{M'}\colon M'\otimes_{\mathbb{Z}}\mathbb{Q}\to M\otimes_{\mathbb{Z}}\mathbb{Q}$. Diese erfüllt auf reinen Tensoren

$$\psi\left(x\otimes\frac{r}{s}\right)=f_M^{-1}\circ g\left(\frac{rx}{s}\right)=f_M^{-1}\left(\frac{\phi(rx)}{s}\right)=f_M^{-1}\left(\frac{r\phi(x)}{s}\right)=\phi(x)\otimes\frac{r}{s},$$

es gilt also $\psi = \phi \otimes id_{\mathbb{Q}}$.

(2) ist ein maximales Ideal in \mathbb{Z} . \mathbb{Q} wird zur \mathbb{Z} -Algebra via $f: \mathbb{Z} \to \mathbb{Q}, z \mapsto z$. Daher ist $0.5 \cdot f(2) = 0.5 \cdot 2 = 1 \in (2)^e$, es folgt $2^e = (1)$. Daher kann \mathbb{Q} keine treuflache \mathbb{Z} -Algebra sein.