东南大学学生会 Students' Union of Southeast University

2002级(非电类)高等数学(下)期中试卷

单项选择题

在以下级数或反常积分后的括号内填入适当的字母, 各字母的含义是:

(A) 绝对收敛: (B) 条件收敛: (C) 发散: (D) 可能收敛, 可能发散。

1.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt[n]{\ln n}}$$
 ();

1.
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\sqrt[n]{\ln n}}$$
 (); 2. 设 $\sum_{n=1}^{\infty} u_n$ 条件收敛,则 $\sum_{n=1}^{\infty} u_n^2$ ();

3.
$$\sum_{n=1}^{\infty} \frac{n^3}{3^n} \sin \frac{n\pi}{3}$$
 ()

3.
$$\sum_{n=1}^{\infty} \frac{n^3}{3^n} \sin \frac{n\pi}{3}$$
 (); 4. 设 P 为任意实数,则 $\int_0^{+\infty} \frac{dx}{x^p}$ ()。

二、单项选择题(4'×4=16')

1. 设平面 π : 2x+7y+4z-1=0及直线 L_1 : x=3t, y=t+1, z=2t-3,

$$L_2: \frac{x-1}{-1} = \frac{y+1}{2} = \frac{z-3}{-3}, \text{ }$$

(A)
$$\pi /\!\!/ L_1$$
; (B) $\pi \bot L_1$; (C) $\pi /\!\!/ L_2$; (D) $\pi \bot L_2$.

(B)
$$\pi \perp L_1$$
:

(C)
$$\pi /\!\!/ L_2$$

(D)
$$\pi \perp L_2$$

2. 曲线 $\frac{x^2}{2} + \frac{y^2}{12} = 1$, z = 0绕 x 轴旋转而成的曲面方程为()

(A)
$$\frac{x^2}{a^2} + \frac{y^2 + z^2}{b^2} = 1$$
; (B) $\frac{x^2 + z^2}{a^2} + \frac{y^2}{b^2} = 1$; (C) $z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$; (D) $z = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1$.

3. 设
$$\vec{a}$$
={-1, 2, -1}, \vec{b} ={1, -1, 2}, \vec{c} ={3, -4, 5}, 则 ()

- (A) $\vec{a} \perp \vec{b}$; (B) $\vec{b} \perp \vec{c}$; (C) $\vec{c} \perp \vec{a}$; (D) \vec{a} , \vec{b} , \vec{c} 共面。

4. 两非零向量 \vec{a} 及 \vec{b} 的方向角分别为 α , β , γ 及 α' , β' , γ' , 则 $\cos(\vec{a},\vec{b})=$ ()

(A) $\cos \alpha \cos \beta \cos \gamma + \cos \alpha' \cos \beta' \cos \gamma'$; (B) $\cos \alpha \cos \alpha' + \cos \beta \cos \beta' + \cos \gamma \cos \gamma'$;

(C) $\cos(\alpha + \alpha') + \cos(\beta + \beta') + \cos(\gamma + \gamma')$; (D) $\cos(\alpha - \alpha') + \cos(\beta - \beta') + \cos(\gamma - \gamma')$.

三、填空题

1. $f(x)=3^x$ 在 $x_0=-1$ 处 的泰勒级数及收敛域为

东南大学学生会

Students' Union of Southeast University

2. 级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n+1)!}$$
的和为______。

3. 级数
$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$$
 的和函数及收敛域为______。

四、计算题

1. 求点 P(3,-1,2) 到直线 L: x=1, y=3t+2, z=3t+4的距离 d.

2. 求级数
$$\sum_{n=1}^{\infty} \frac{1}{(x+n)(x+n+1)}$$
 的和函数及收敛域。

3. 求级数
$$\sum_{n=1}^{\infty} (1 + \frac{1}{2} + \dots + \frac{1}{n}) x^n$$
 的收敛域。

五、计算题

1. 已知直线 L过点P(3,1,-2),且与两直线 L_1 : x-6=y+4=z+2 及 L_2 : $\frac{x-4}{5}=\frac{y+3}{2}=\frac{z}{1}$ 都相交,求L的方程。

2. 将函数
$$f(x)$$
 =
$$\begin{cases} 1, \ 0 \le x < \frac{\pi}{2} \\ \mathbb{R}$$
 展开成正弦级数,并写出该级数的和函数 $S(x)$ 的表达式。
$$0, \ \frac{\pi}{2} \le x \le \pi \end{cases}$$

3. 常数 P 取什么范围时,级数 $\sum_{n=1}^{\infty} (-1)^n \frac{\ln n}{n^p}$ 是(1)发散;(2)条件收敛;

(3) 绝对收敛。

六. 证明题

设在区间 [0,a] 上 $u_{\circ}(x)$ 连续,且 $u_{n}(x)=\int_{0}^{x}u_{n-1}(t)dt,\ x\in[0,a],\ n=1,2,\cdots$,

证明级数
$$\sum_{n=0}^{\infty} u_n(x)$$
 在 $[0,a]$ 上绝对收敛。