

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 7 по дисциплине «Теория Систем и Системный Анализ»

Тема: «Исследование стохастической фильтрации сигналов как задачи двухкритериальной оптимизации с использованием методов прямого пассивного поиска»

Вариант 13

Выполнил: Мусина К. Р., студент группы ИУ8-32

Проверил: Коннова Н. С., доцент каф. ИУ8

1. Цель работы

Изучить основные принципы многокритериальной оптимизации в комбинации с методами случайного и прямого пассивного поиска применительно к задаче фильтрации дискретного сигнала методом взвешенного скользящего среднего.

2. Постановка задачи

На интервале $[x_{min}, x_{max}]$ задан сигнал $f_k = f(x_k)$, где дискретная последовательность отсчетов $x_k = x_{min} + \frac{k(x_{max} - x_{min})}{K}$, $k = 0, \ldots, K, K$ количество отсчётов. На сигнал наложен дискретный равномерный шум с нулевым средним и амплитудой, равномерно распределенной на интервале. В зависимости от варианта работы необходимо осуществить фильтрацию сигнала одним из методов взвешенного скользящего среднего.

3. Условие задачи

$$f_k = \sin x_k + 0.5,$$

 $x_k = x_{min} + k(x_{max} - x_{min})/K,$

Метод взвешенного скользящего среднего: Среднее арифметическое.

Метрика: Евклидова.

4. Ход работы.

Рисунок 1. График заданной функции

Используя метод случайного поиска выполним поиск минимума $J(\alpha)$ и оптимальных значений весов, рассчитаем значения функционала J и критериев ω , δ для оптимальных значений весов. Используя метод пассивного поиска для всех значений $\lambda_l = l/L$, найдём оптимальный вес λ^* , при котором минимизируется расстояние от приближенно найденного оптимального значения интегрального критерия до идеальной точки.

Для скользящего окна r = 3:

```
dist
                       alpha
0.0
    0.2992
              [ 0.4887 0.0227 0.4887 ]
                                       0.2977
                                                 0.0298
0.1 0.2992
                                                 0.0298
               0.4887 0.0227 0.4887
                                       0.2977
              0.3094 0.3812 0.3094
0.2 0.2628
                                      0.2615
                                                 0.0261
    0.2628
              [ 0.3094 0.3812 0.3094
                                      0.2615
                                                 0.0261
    0.2628
               0.3094 0.3812 0.3094
                                       0.2615
                                                 0.0261
    0.2628
               0.3094 0.3812 0.3094
                                       0.2615
                                                 0.0261
    0.2628
               0.3094 0.3812 0.3094
                                       0.2615
                                                 0.0261
              [ 0.3094 0.3812 0.3094
    0.2628
                                       0.2615
                                                 0.0261
0.8
    0.2628
               0.3094 0.3812 0.3094
                                       0.2615
                                                 0.0261
0.9 0.2628
              [ 0.3094 0.3812 0.3094
                                     0.2615
                                                 0.0261
1.0 0.2628
              [ 0.3094 0.3812 0.3094 ] 0.2615
                                                 0.0261
                W
      0.0732
              0.2615
                       0.0261
```

Для скользящего окна $r^* = 5$:

```
dist
                      alpha
    0.2236
              [ 0.0018 0.0043 0.9879 0.0043 0.0018 ]
0.0
                                                      0.2225
                                                               0.0223
    0.2406
               0.1120 0.1055 0.5650 0.1055 0.1120
                                                      0.2394
                                                               0.0239
0.2 0.2375
              [ 0.0744 0.1074 0.6365 0.1074 0.0744 ]
                                                      0.2363
                                                               0.0236
    0.2238
              [ 0.0084 0.0015 0.9801 0.0015 0.0084 ]
                                                      0.2227
                                                               0.0223
    0.2234
               0.0021 0.0013 0.9933 0.0013 0.0021
                                                      0.2223
                                                               0.0222
    0.2293
               0.0806 0.0016 0.8355 0.0016 0.0806
                                                      0.2282
                                                               0.0228
    0.2246
               0.0078 0.0128 0.9586 0.0128 0.0078 ]
                                                      0.2234
                                                               0.0223
    0.2266
               0.0186 0.0323 0.8981 0.0323 0.0186
                                                               0.0226
                                                      0.2255
    0.2237
               0.0007 0.0061 0.9864 0.0061 0.0007
                                                      0.2226
                                                               0.0223
0.9 0.2233
             [ 0.0001 0.0002 0.9992 0.0002 0.0001 ]
                                                               0.0222
                                                      0.2222
    0.2296
              [ 0.0789 0.0085 0.8252 0.0085 0.0789 ] 0.2284
                                                               0.0228
h*
       J
                         d
                M
     0.2022
              0.2222
                       0.0222
```

5. Выводы

Результаты работы показали, что при использовании случайного и прямого пассивного поисков на выходе получается сигнал, который приближенно является отфильтрованной от наложенных шумов версией исходного сигнала.

6. Контрольный вопрос.

1. Объясните принцип прямого пассивного поиска на отрезке.

Принцип прямого пассивного поиска на отрезке заключается в вычислении всех пробных точек x_i отрезка, за ответ принимается та точка x_k , для которой значение функции в этой точке равно минимальному.