Politechnika Śląska w Gliwicach Wydział Automatyki, Elektroniki i Informatyki

Projektowanie przemysłowych systemów komputerowych

Projekt-Sprawozdanie

Gas Analyzer

Autorzy: Damian Karbowiak, Grzegorz Powała Informatyka, SSM3, grupa ISP1 Prowadzący: dr inż. Jacek Stój Konsultant: mgr inż. Tomasz Kress

10 lipca 2013

Spis treści

1	$\mathbf{W}\mathbf{s}\mathbf{t}$	tęp	2					
	1.1	Geneza	2					
	1.2	Temat	2					
	1.3	Stanowisko	2					
		1.3.1 Stanowisko prototypowe	2					
		1.3.2 Stanowisko docelowe	3					
	1.4	Analiza tematu	3					
	1.5	Założenia	4					
	1.6	Plan pracy	5					
2	Specyfikacja wewnętrzna							
	2.1	Oprogramowanie	6					
	2.2	Specyfikacja zewnętrzna	7					
	2.3	Baza danych	7					
3	Instrukcja użytkownika							
		3.0.1 Ekran powitalny	8					
4	Podsumowanie 12							
	4.1	Perspektywy rozwoju	12					
	4.2	Wnioski	12					
5	Bib	liografia	13					
6	Spis rysunków, tablic i kodów źródłowych							
	6.1		14					
	6.2		14					
	6.3		14					
7	Zała	aczniki	15					

1 Wstęp

1.1 Geneza

Tematem projektu, którego dotyczy to sprawozdanie jest: Gas Analyzer". Pomysł na projekt pojawił się w wyniku nawiązania przez nas współpracy z Zakładem Kotłów i Wytwornic Pary, a dokładnie Panem Tomaszem Kressem.

1.2 Temat

Głównymi celami pracy było napisanie oprogramowania umożliwiającego gromadzenie danych pomiarowych z kilku urządzeń firmy Siemens.

1.3 Stanowisko

W czasie realizacji projektu wykorzystywaliśmy 2 różne stanowiska. W pierwszej fazie projektu korzystaliśmy z uproszczonego stanowiska, które wyglądało jak na Rysunku 1. W dalszej fazie projektu, kiedy mieliśmy już przygotowaną i przetestowaną wersję podstawową współpracującą z jednym urządzeniem pomiarowym rozpoczęliśmy pracę na stanowisku docelowym składającym się z 4 urządzeń, które wyglądało jak na Rysunku 2.

1.3.1 Stanowisko prototypowe

Rysunek 1: Schemat stanowiska prototypowego

Na potrzeby realizacji projektu stworzono stanowisko laboratoryjne, którego schemat przedstawia Rysunek 1. Składa się ono z:

- Komputera,
- Konwertera ATC-850,
- ULTRAMAT 23.

Komputery na, których powstała wersja rozwojowa projekty pracowały na systemach operacyjnych Linux Ubuntu w wersji 32 oraz 64 bitowej. Do połączenia komputera z urządzeniem ULTRAMAT 23 zastosowano izolowany konwerter USB do RS-232/422/485, moduł ATC-850 jest automatycznie wykrywany i instalowany jako standardowy port COM. Stosowane w tej fazie projektu urządzenie pomiarowe potrafiło mierzyć zawartość CO, CO_2 , NO oraz O_2 .

Rysunek 2: Schemat stanowiska docelowego

1.3.2 Stanowisko docelowe

Docelowo zrealizowany projekt ma być uruchamiany na stanowisku, którego schemat przedstawia Rysunek 2. Składa się ono z:

- Komputera,
- Konwertera ATC-850,
- 3x ULTRAMAT 23,
- ULTRAMAT 6.

Stanowisko docelowe różni się od stanowiska prototypowego po pierwsze systemem operacyjnym, który pracuje na komputerze i jest to Windows XP. Po drugie stanowisko docelowe posiada więcej urządzeń pomiarowych, a jest ich dokładnie cztery i mierzą wartości przedstawione w Tabeli 1.

Urządzenie	Wielkości mierzone
ULTRAMAT 6	$NH_3[vpm]$
ULTRAMAT 23	$CH_4[\%], CO[\%], CO_2[\%], O_2[\%]$
ULTRAMAT 23	$CO[ppm], CO_2[\%], NO[ppm], O_2[\%]$
ULTRAMAT 23	

Tablica 1: Urządzenia docelowe wraz z wartościami mierzonymi

1.4 Analiza tematu

Analiza tematu polegała przede wszystkim na zapoznaniu się z dokumentacjami urządzeń [1, 2]. Szczególnie istotnym, a w zasadzie najważniejszym punktem całej analizy

były interfejsy i protokoły dostępne w obu typach urządzeń oraz w ewentualnych kolejnych urządzeniach tego producenta. Analiza pozwoliła wytypować do dalszej analizy dwa protokoły:

- 1. PROFIBUS-DP/-PA
- 2. ELAN Network

Szczegółowa analiza rozwiązań opartych o oba protokoły komunikacyjne w dokumentacjach producenta [3, 4, 5] pozwoliła ustalić, że w przypadku PROFIBUSA można zastosować sterownik przemysłowy wyposażony w odpowiednie złącze komunikacyjne lub rozszerzony o odpowiedni moduł. Poznanie tych podstaw pozwoliło dobrać technologię odpowiednia do realizacji projektu zgodnie z założeniami.

1.5 Założenia

Oprogramowanie do zbierania danych pomiarowych powinno zostać stworzone przy użyciu technologii pozwalającej działać na różnych systemach operacyjnych bez skomplikowanych zabiegów. Funkcjonalności wchodzące w skład projektu, to:

- wykorzystanie jednego z dostępnych w urządzeniach protokołów,
- automatyczne wykrywanie podłączonych urządzeń,
- zarządzanie użytkownikami, tytułami naukowymi, miejscami, obiektami itd.
- wizualizacja bieżących pomiarów,
- wykrywanie i sygnalizacja problemów z urządzeniem,
- zapisywanie bieżących pomiarów ze wszystkich urządzeń jednocześnie do bazy danych,
- regulowany krok zapisu pomiarów do bazy,
- możliwość dodania komentarza do zapisywanego pomiaru,
- generowanie raportu z pomiaru jako plik arkusza kalkulacyjnego,
- generowanie raportu z pomiaru jako plik do wydruku z wynikami np. format PDF,
- konfiguracja nazwa urządzeń widocznych w aplikacji,
- ustawianie precyzji pomiarów, tzn. określenie ilość miejsc po przecinku dla danej wielkości mierzonej.

Powyżej zostały wymienione założenia podstawowe, jednak autorzy nie wykluczają zrealizowania dodatkowych zadań, które nie zostały zamieszczone w pierwotnej koncepcji realizacji projektu.

1.6 Plan pracy

Realizacja projektu została podzielona na następujące etapy:

- Przygotowanie stanowiska, zebranie odpowiednich materiałów i literatury,
- Analiza wymagań funkcjonalnych aplikacji,
- Projektowanie struktury oprogramowania i interfejsów wymiany danych,
- Implementacja,
- Testowanie i uruchamianie,
- Przedstawienie projektu i ewentualne korekty.

Powyższy plan pracy stanowił dla autorów wyznacznik kolejnych działań. Jednak powszechnie wiadomo, że w praktyce poszczególne punkty są wymienne i wpływają na siebie wzajemnie. Dodatkowo na potrzeby realizacji projektu powstał szczegółowy plan wraz z terminami oraz osobami odpowiedzialnymi za poszczególne zadania przedstawiony w Tabeli 2

Termin	Osoba	Zadanie
11.03 - 17.03	Wszyscy	Wybór tematu.
18.03 - 20.03	Wszyscy	Określenie celu i zakresu, przygotowanie harmonogramu, po-
		dział zadań.
21.03	Wszyscy	Analiza sprzętu oraz dokumentacji.
22.03 - 23.03	Wszyscy	Analiza oraz porównanie dopuszczalnych rozwiązań z wyko-
		rzystaniem protokołu ELAN lub Profibus.
24.03 - 25.03	Wszyscy	Analiza wybranego protokołu oraz potrzebnego sprzętu do po-
		łączenia z komputerem (np. konwerter RS-485 $\Leftrightarrow\Leftrightarrow$ USB).
25.03 - 02.04	Wszyscy	Implementacja wybranych fragmentów protokołu.
29.03 - 17.04	Damian	Przygotowanie podstawowej wersji interfejsu użytkownika,
		umożliwiającej przetestowanie implementacji protokołu.
03.04 - 18.04	Grzegorz	Rozwinięcie podstawowej wersji protokołu – interpretacja
		i przetwarzanie odbieranych danych.
20.04 - 01.05	Grzegorz	Stworzenie modelu bazy danych i połączenia ORM.
19.04 - 05.05	Damian	Wykrycie i wizualizacja struktury sieci oraz odbieranych da-
		nych.
03.05 - 06.05	Damian	Generowanie PDF.
04.05 - 10.05	Grzegorz	Generowanie XLS.
13.05 - 22.05	Grzegorz	Zarządzanie ustawieniami urządzeń.
27.05 - 05.06	Damian	Poprawki w GUI.
01.06 - 08.06	Wszyscy	Instrukcja użytkownika oraz dokumentacja.

Tablica 2: Szczegółowy plan pracy wraz z harmonogramem i osobami odpowiedzialnymi

2 Specyfikacja wewnętrzna

2.1 Oprogramowanie

Oprogramowanie zostało stworzone w całości Javie. Dla ułatwienia kompilacji, zarządzanie zależnościami oraz wersjami zastosowano Apache Maven, które jest narzędziem automatyzującym budowę oprogramowania. Najważniejszymi bibliotekami wykorzystywanymi w projekcie są:

1. RXTX

W zasadzie najważniejsza biblioteka w całym projekcie wykorzystywana do komunikacji poprzez port szeregowy.

2. SWT: The Standard Widget Toolkit

Biblioteka wykorzystana do stworzenia GUI (graficzny interfejs użytkownika) aplikacji. Dostarcza sporą ilość gotowych komponentów, które trzeba odpowiednio oprogramować. Biblioteka jest zależna od architektury i systemu operacyjnego co zostało uwzględnione jako profile Mavena.

3. iText

Biblioteka iText służy głównie do tworzenia dokumentów PDF przez programy napisane w Javie. Jej dodatkowe możliwości to obsługa formatów RTF i HTML. Biblioteka została zastosowana do generowania raportu z pomiaru w formacie PDF.

4. Apache POI

Zbiór bibliotek do obsługi plików w formacie Microsoft OLE 2 z poziomu języka programowania Java. W naszym projekcie wykorzystujemy tylko HSSF, który umożliwia obsługę plików Microsoft Excel. Biblioteka została zastosowana do generowania raportu z pomiaru w formacie XLS.

5. Hibernate

Framework do realizacji warstwy dostępu do danych (ang. persistance layer). Zapewnia on przede wszystkim translację danych pomiędzy relacyjną bazą danych, a światem obiektowym (ang. O/R mapping). Opiera się na wykorzystaniu opisu struktury danych za pomocą języka XML, dzięki czemu można żzutowaćóbiekty, stosowane w obiektowych językach programowania, takich jak Java bezpośrednio na istniejące tabele bazy danych.

6. dom4j

dom4j to kolejny projekt typu open-source. Jego API oparte jest na interfejsach. Korzysta z parsera SAX. Jego motywacja jest podobna jak JDOM: prostsze i lżejsze od DOM API, stworzone specjalnie dla języka Java. W projekcie wykorzystywany do odczytu oraz zapisu pliku zawierającego konfigurację urządzeń oraz precyzję pomiarów.

Maven umożliwia stworzenie profili, które wykonują różne zadania lub pozwalają rozróżnić odrębne niezależne przebiegi kompilacji. W naszym projekcie wykorzystaliśmy je do pobrania i dołączenia do pliku końcowego biblioteki SWT w wersji dla wybranego systemu operacyjnego i architektury. Dostępne profile Mavena:

- 1. win32 Windows 32-bitowy
- 2. win64 Windows 64-bitowy
- 3. lin32 Linux 32-bitowy
- 4. lin64 Linux 64-bitowy
- 5. mac32 Mac OSX Cocoa 32-bitowy
- 6. mac64 Mac OSX Cocoa 64-bitowy

Struktura projektu w formie diagramu:

[node distance=2cm] (GasAnalyzer) [abstract, rectangle split, rectangle split parts=2] GasAnalyzer secondwersja 0.1.0; (AuxNode01) [text width=4cm, below=of GasAnalyzer]; (ELANNetwork) [abstract, rectangle split, rectangle split parts=2, left=of AuxNode01] ELANNetwork secondwersja 0.1.0; (GasAnalyzerGUI) [abstract, rectangle split, rectangle split parts=2, right=of AuxNode01] GasAnalyzerGUI secondwersja 0.1.0; [myarrow] (ELANNetwork.north) - ++(0,0.8) --- (GasAnalyzer.south); [line] (ELANNetwork.north) - ++(0,0.8) --- (GasAnalyzer.guI.north);

Rysunek 3: Struktura projektu

2.2 Specyfikacja zewnętrzna

2.3 Baza danych

W programie wykorzystujemy bazę PostgreSQL. Do obsługi w aplikacji wykorzystujemy omówioną już wcześniej bibliotekę Hibernate. Schemat bazy danych został stworzony w pgDesignerze i wygląda jak na Rysunku 4.

Rysunek 4: Schemat bazy danych

3 Instrukcja użytkownika

Rysunek 5: Okno ładowania

3.0.1 Ekran powitalny

Bezpośrednio po uruchomieniu wizualizacji użytkownik zobaczy ekran powitalny taki jak na Rysunku 13 zawierający informacje o

Rysunek 6: Okno główne

Rysunek 7: Dodawanie nowego pomiaru

Rysunek 8: Okno wyboru daty

Rysunek 9: Dodawanie nowego miejsca

Rysunek 10: Błąd przy dodawaniu nowego miejsca

Rysunek 11: Edytowanie istniejącego miejsca

Rysunek 12: Otwieranie istniejącego pomiaru

Rysunek 13: Wysyłanie sugestii

4 Podsumowanie

4.1 Perspektywy rozwoju

Projekt jest bardzo perspektywiczny głównie dlatego, że w bieżącej części została zaimplementowana tylko znikoma część protokołu ELAN, a co za tym idzie można cały proces pomiarowy uskutecznić, uprościć oraz zautomatyzować w jeszcze większym stopniu.

4.2 Wnioski

Głównymi celami pracy było napisanie oprogramowania gromadzącego dane z urządzeń pomiarowych.

5 Bibliografia

Literatura, która została wykorzystana przez autorów w czasie powstawania projektu, którą opisuje niniejsza dokumentacja.

- [1] Dokumentacja producenta: "ULTRAMAT 23 Analizatory gazu dla tlenu i gazów pochłaniających podczerwień", luty 2001
- [2] Dokumentacja producenta: "ULTRAMAT 6, OXYMAT6 Analizatory dla gazów absorbujących podczerwień i tlenu", styczeń 2001
- [3] Dokumentacja producenta: "ELAN Interface Description", sierpień 2006
- [4] Dokumentacja producenta: "STEP 7 AGA Gas Library Applications Tools", listopad 2010
- [5] Dokumentacja producenta: "GasAnalyzersCommunication", ?? 2012

6 Spis rysunków, tablic i kodów źródłowych

6.1 Spis rysunków

Rysunek 1:	Schemat stanowiska prototypowego	4					
Rysunek 2:	Schemat stanowiska docelowego	3					
Rysunek 3:	Struktura projektu	7					
Rysunek 4:	Schemat bazy danych	7					
Rysunek 5:	Okno ładowania	8					
Rysunek 6:	Okno główne	8					
Rysunek 7:	Dodawanie nowego pomiaru	9					
Rysunek 8:	Okno wyboru daty	9					
Rysunek 9:	Dodawanie nowego miejsca	9					
Rysunek 10:		10					
Rysunek 11:		10					
Rysunek 12:		10					
Rysunek 13:		11					
6.2 Spis ta	ablic						
Tablica 1:	Urządzenia docelowe wraz z wartościami mierzonymi						
Tablica 2:	Szczegółowy plan pracy wraz z harmonogramem i osobami odpo-						
wiedzialnymi							

6.3 Spis kodów źródłowych

7 Załączniki

- Oświadczenie o autorstwie,
- Płyta CD, na której znajdują się:
 - Kod oprogramowania wewnętrznego oraz pliki projektu Step7,
 - Kod wizualizacji oraz pliki projektu WinCC flexible,
 - Plik wykonywalny wizualizacji typu WinCC flexible RT document,
 - Projekt magazynu wykonany w programie Blender,
 - LaTeXowe pliki pracy inżynierskiej,
 - Zdjęcia magazynu oraz robota,
 - Filmy prezentujące działanie projektu.