# Applied Linear Algebra in Data Analysis Matrix Inverses

#### Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

## Representation of vectors in a basis

▶ Consider the vector space  $\mathbb{R}^n$  with basis  $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$ . Any vector in  $\mathbf{b} \in \mathbb{R}^n$  can be represented as a linear combination of vectors  $\mathbf{v}_i$ ,

$$\mathbf{b} = \sum_{i=1}^{n} \mathbf{v}_{i} \mathbf{a}_{i} = \mathbf{V} \mathbf{a}; \ \mathbf{a} \in \mathbb{R}^{n}, \ \mathbf{V} = \begin{bmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \dots & \mathbf{v}_{n} \end{bmatrix} \in \mathbb{R}^{n \times n}$$



 $\{\mathbf{v}_1, \mathbf{v}_2\}$ ,  $\{\mathbf{u}_1, \mathbf{u}_2\}$  and  $\{\mathbf{e}_1, \mathbf{e}_2\}$  are valid basis for  $\mathbb{R}^2$ , and the presentation for  $\mathbf{b}$  in each one of them is different.

### **Matrix Inverse**

- ► Consider the equation Ax = y, where  $A \in \mathbb{R}^{n \times n}$  and  $x, y \in \mathbb{R}^n$ .
- Let us assume **A** is non-singular  $\implies$  columns of **A** represent a basis for  $\mathbb{R}^n$ .
- What does x represent? It is the representation of y in the basis consisting of the columns of A.

$$\mathbf{y} = \mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \sum_{i=1}^n \mathbf{a}_i x_i$$

$$\implies \mathbf{x} = \mathbf{A}^{-1}\mathbf{y} = \begin{bmatrix} \tilde{\mathbf{b}}_1^\top \\ \tilde{\mathbf{b}}_2^\top \\ \dots \\ \tilde{\mathbf{b}}_n^\top \end{bmatrix} \mathbf{y} = \begin{bmatrix} \tilde{\mathbf{b}}_1^\top \mathbf{y} \\ \tilde{\mathbf{b}}_2^\top \mathbf{y} \\ \dots \\ \tilde{\mathbf{b}}_n^\top \mathbf{y} \end{bmatrix}$$

## **Matrix Inverse**

► A<sup>-1</sup> is a matrix that allows change of basis to the columns of A from the standard basis!

### **Left Inverse**

▶ Consider a rectangular matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$ . There exists no inverse  $\mathbf{A}^{-1}$  for this matrix.

▶ But, there exist two matrices  $\mathbf{B}, \mathbf{C} \in \mathbb{R}^{n \times m}$ , such that,

$$CA = I_n$$
 or  $AB = I_m$ 

▶ Both cannot be true for a rectangular matrix, only one can be true when the matrix is full rank.

A rectangular matrix can only have either a left or a right inverse.

### Left Inverse

▶ Any non-zero  $\mathbf{a} \in \mathbb{R}^{n \times 1}$  is left invertible:  $\mathbf{ba} = 1, \ \mathbf{b} \in \mathbb{R}^{1 \times n}; \ \mathbf{b}^T = \frac{\mathbf{a}}{\|\mathbf{a}\|^2} + \alpha \mathbf{a}^{\perp}$ 

▶ This can be generalized to  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , m > n.

$$(\mathbf{C} + \hat{\mathbf{C}}) \mathbf{A} = \mathbf{I}_m \text{ where } \mathbf{C}, \hat{\mathbf{C}} \in \mathbb{R}^{n \times m}, \ \hat{\mathbf{C}} \mathbf{A} = \mathbf{0}$$

- Condition for left inverse of **A** to exist: *Colmuns of* **A** *must be independent.* 
  - $\longrightarrow$  rank (A) =  $n \longrightarrow Ax = 0 \implies x = 0$ .

ightharpoonup Ax = b can be solved, if and only if A(Cb) = b, where  $CA = I_n$ .

## **Right Inverse**

▶ For  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , n > m with full rank,  $\mathbf{AB} = \mathbf{I}_m \longrightarrow \mathbf{B}$  is the right inverse.

▶ Right inverse of **A** exists only if the rows of **A** are independent, i.e.  $rank(\mathbf{A}) = m \longrightarrow \mathbf{A}^T \mathbf{x} = \mathbf{0} \implies \mathbf{x} = \mathbf{0}$ 

ightharpoonup Ax = b can be solved for any b.  $x = Bb \implies A(Bb) = b$ .

ightharpoonup There are an infitnite number of  $Bs \implies$  an infinite number of solutions x.

### **Pseudo Inverse**

▶ Consider a tall matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$  with independent columns. It turns out the Gram matrix  $\mathbf{A}^{\top} \mathbf{A} \in \mathbb{R}^{n \times n}$  is invertible. If that is the case then,

$$(\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{A} = \mathbf{I}_n; \quad (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}$$
 is a left inverse.

- Arr  $\mathbf{A}^{\dagger} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}$  is called the *pseudo inverse* or the *Moore-Penrose inverse*.
- For the case of a fat, wide matrix, we have  $\mathbf{A}^{\dagger} = \mathbf{A}^{\top} (\mathbf{A} \mathbf{A}^{\top})^{-1}$ .
- ▶ When **A** is square and invertible,  $\mathbf{A}^{\dagger} = \mathbf{A}^{-1}$ .

## Matrix Inverse and Pseudo Inverse through QR factorization

ightharpoonup Consider an invertible, square matrix  $\mathbf{A} \in \mathbb{R}^{n \times n}$ .

$$\mathbf{A} = \mathbf{Q}\mathbf{R} \implies \mathbf{A}^{-1} = (\mathbf{Q}\mathbf{R})^{-1} = \mathbf{R}^{-1}\mathbf{Q}^{-1} = \mathbf{R}^{-1}\mathbf{Q}^{\top}$$

where,  $\mathbf{R}, \mathbf{Q} \in \mathbb{R}^{n \times n}$ . **R** is upper triangular, and **Q** is an orthogonal matrix.

▶ In the case of a left invertible rectangular matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , we can factorize  $\mathbf{A} = \mathbf{Q}\mathbf{R}$ , with  $\mathbf{Q} \in \mathbb{R}^{m \times n}$  and  $\mathbf{R} \in \mathbb{R}^{n \times n}$ .

$$\mathbf{A}^\dagger = \left(\mathbf{A}^\top \mathbf{A}\right)^{-1} \mathbf{A}^\top = \left(\mathbf{R}^\top \mathbf{Q}^\top \mathbf{Q} \mathbf{R}\right)^{-1} \mathbf{R}^\top \mathbf{Q}^\top = \left(\mathbf{R}^\top \mathbf{R}\right)^{-1} \mathbf{R}^\top \mathbf{Q}^\top = \mathbf{R}^{-1} \mathbf{Q}^\top$$

## Matrix Inverse and Pseudo Inverse through QR factorization

For a right invertible wide, fat matrix, we can find out the pseudo-inverse of A<sup>⊤</sup>, and then take the transpose of the pseudo-inverse.

$$\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{I} \implies \left(\mathbf{A}^{\dagger}\right)^{\top} \mathbf{A}^{\top} = \left(\mathbf{A}^{\top}\right)^{\dagger} \mathbf{A}^{\top} = \mathbf{I}$$

$$\mathbf{A}^{\top} = \mathbf{Q}\mathbf{R} \implies \left(\mathbf{A}^{\top}\right)^{\dagger} = \mathbf{R}^{-1}\mathbf{Q}^{\top} = \left(\mathbf{A}^{\dagger}\right)^{\top} \implies \mathbf{A}^{\dagger} = \mathbf{Q}\mathbf{R}^{-T}$$

## What about when A is not full rank?

► There is no left or right inverse for  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , when  $rank(\mathbf{A}) = r < \min(m, n)$ .

$$\nexists \mathbf{B} \in \mathbb{R}^{n \times m}$$
, s.t.  $\mathbf{B} \mathbf{A} = \mathbf{I}_n$  or  $\mathbf{A} \mathbf{B} = \mathbf{I}_m$ 

▶ **A is tall**: First *r* columns of **A** are linear independent, then  $\exists$  **B**  $\in$   $\mathbb{R}^{n \times m}$ , *s.t.* 

$$\mathbf{BA} = \begin{bmatrix} \mathbf{I}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

▶ **A is fat**: First *r* rows of **A** are linear independent, then  $\exists$  **B**  $\in$   $\mathbb{R}^{n \times m}$ , *s.t.* 

$$\mathbf{AB} = \begin{bmatrix} \mathbf{I}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

## What about when A is not full rank?

▶ What if we have a linear system of equations with a non-full rank matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$ ?

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

**b**  $\mathbf{b} \in \mathcal{C}(\mathbf{A})$   $\implies$  There are infinitely many solutions to the above equation.

▶  $\mathbf{b} \notin \mathcal{C}(\mathbf{A}) \implies$  There is no solution to the above equation. But there are infinitely many solutions  $\hat{\mathbf{x}}$  that minimize  $\|\mathbf{b} - \mathbf{A}\hat{\mathbf{x}}\|_2$ .

Siyakumar Balasubramanian