Android Pentesting

Cristian Rodríguez

01/12/2018

Sobre mí...

• Ingeniería en Computación. (2007)

• OSCP. (2015)

Maestría en Ciberseguridad. (2017)

Penetration Tester (4+ años) ISETV.

Agenda

- Porqué Mobile Pentesting?
- Porqué Android?
 - Modelo de Seguridad.
 - Android Package Kit (apk).
- Análisis Estático vs. Análisis Dinámico.
- OWASP Mobile Top 10
 - M1 Insecure Platform Usage.
 - M2 Insecure Data Storage.
 - M3 Insecure Communication.
- Conclusión.

Porqué Mobile Pentesting?

- Cada vez más queremos tener todo al alcance de nuestras manos:
 - Transporte, alimentación, entrenemiento, banca, salud, etc.

Porqué Android?

Quienes aquí utilizan Android?

Operating System	1Q18	1Q18 Market Share (%)	1Q17	1Q17 Market Share (%)
	Units	, ,	Units	
Android	329,313.9	85.9	325,900.9	86.1
iOS	54,058.9	14.1	51,992.5	13.7
Other OS	131.1	0.0	607.3	0.2
Total	383,503.9	100.0	378,500.6	100.0

Source: Gartner (May 2018)

Android

- Modelo de Seguridad:
 - SO Robusto y establecido (primera versión basado en el Kernel de Linux 2.6.27).
 - DALVIK VM individuales.
 - Cada app corre aislada es su VM (sandbox).
 - Usuario único por aplicación.
 - Controles de seguridad a nivel de OS y aplicación.
 - Apps firmadas digitalmente.

Android

Android Package Kit (apk):

Análisis Estático vs Dinámico

- Estático: Se analiza el apk sin instalarla ni ejecutarla.
 - Ingeniería reversa, análisis de archivos de configuración, código descompilado, ofuscación, etc.
- Dinámico: Se analiza la aplicación al instalarla y ejecutarla.
 - Analizar folders, archivos, bases de datos locales, comunicación, componentes, etc.

OWASP Mobile Top 10

M1 - Improper Platform Usage

M2 - Insecure Data Storage M3 - Insecure Communication M4 - Insecure Authentication

M5 - Insufficient Cryptography M6 - Insecure Authorization M7 - Client Code Quality M8 - Code Tampering

M9 - Reverse Engineering M10 - Extraneous Functionality

M1 - Improper Platform Usage.

 Descripción: Cubre el mal uso de la plataforma o no utilizar correctamente controles de seguridad existentes.

M1 - Improper Platform Usage

• Herramientas:

- Apktool (Androidmanifest.xml)
 - Activities, permissions, allowBackup, debuggable.
- Drozer framework.

M2 - Insecure Data Storage.

• **Descripción**: Cubre el almacenamiento inseguro de datos o la fuga no intencional de los mismos.

M2 - Insecure Data Storage

• Herramientas:

- d2j-dex2jar
- jd-gui
- sqlite3
- logcat

M3 - Insecure Communication.

M3 - Insecure Communication

- **Descripción**: Cubre configuraciones incorrectas a nivel de SSL/TLS.
 - Pinning.
 - Versiones vulnerables.
 - Negociación débil.

• Herramientas:

- Burpsuite.
- Frida.
- SSLyze/SSL Labs

Conclusión

- Los dispositivos móviles toman cada vez más protagonismo en nuestra vida digital.
- Garantizar que los canales de comunicación y aplicaciones móviles sean seguras es de vital importancia para la estrategia de Ciberseguridad.

Gracias

https://securitygrind.com/blog/

