Locally-Linear Learning Machines (L3M)

Authors: Joseph Wang and Venkatesh Saligrama

Date: Apr 28th 2017

Analysis by:

Dundi Vinayak Doddipatla, Garlapati B M K Rao, Lalit Mohan (#201350896)

Agenda

- Abstract of the paper Understanding
- Introduction and Approach
- Formulae
- Algorithm
- Datasets
- Evaluation
- Questions and Threats to Validity
- Plan

Abstract

- Formulate a global Convex risk function to jointly learn linear feature space partitions and region specific linear classifiers.
- Features
 - Discriminant power similar to Kernel SVM and Adaboost
 - Tight control on generalization error
 - Low training time cost due to online training
 - Low test time due to local linearity
 - Low VC dimension and predictable generalization performance
- Tight convex surrogate by embedding empirical risk loss as an OP and then convexifying this resulting problems.

Introduction and approach

Alternative maximization $l_{G(x_i)<0}l_{y_i}f_1(x_i) \leq \max(1-G(x)-f(x)y,0)$

Proposition 1.1

•
$$R(G, f_1, f_2) = \sum_{i=1}^{n} [\ell_{G(x_i) < 0} \ell_{y_i f_1(x_i) \le 0} + \ell_{G(x_i) \ge 0} \ell_{y_i f_2(x_i) \le 0}]$$

Consider $f_1=f_1^*$, $f_2=f_2^*$ and $G=G^*$ minimizes empirical error

 $f_1 = f_2^*$, $f_2 = f_1^*$ and $G = -G^*$ induces decision boundaries and identical loss

This is not an optimal solution with respect to the indicator loss function. Symmetry of the loss function around the point G = 0 presents the fundamental limitation for all convex relaxations.

Break the symmetry.

Accomplish this choosing a random point, x_k and containing $G(x_k) >= \beta$

Convex Parameterization for Binary Partitioning & Binary classification

Empirical Loss can be expressed as

$$F(x) = \left(l_{G(x)<0}f_1(x) + l_{G(x)\geq 0}f_2(x)\right)$$

G(x) partitions the feature space into 2 regions and in each a local classifier $f_1(x)$ or $f_2(x)$ predicts a label for the observation

• Proposition 2.1:

$$l_{a<0}l_{b<0} = min_{\lambda \in [0,1]} \lambda l_{a<0} + (1-\lambda)l_{b<0}$$

Product of indicators to be separated into a linear combination of indicators. Change product of indicators to linear combination (add)

•
$$R(G, f_1, f_2) = \sum_{i=1}^{n} \min_{\lambda, \mathcal{E}[0,1]} \left[\lambda_1 \ell_{G(x_i) < 0} + (1 - \lambda_1) \ell_{y_i f_1(x_i) \le 0} + \lambda_2 \ell_{G(x_i) \ge 0} + (1 - \lambda_2) \ell_{y_i f_2(x_i) \le 0} \right]$$

• Proposition 2.2:

$$l_{F(x_i) \neq y_i} = (1 - l_{F(x_i) = y_i})$$

• Proposition 2.3:

$$R(G, f_1, f_2) = \sum_{i=1}^{N} \max[\left(l_{G(x_i) \ge 0} + l_{y_i f_2(x_i) \le 0}, l_{y_i f_2(x_i) \le 0} + l_{G(x_i) < 0}\right)] - 1$$

Convex surrogate

- Convexity is preserved in Preposition 2.3 equation unlike equation in Preposition 1.1
- Convex upper-bounding surrogate function by replacing indicator with hinge losses. This results in tightest convex relaxation

$$\hat{R}(G, f_1, f_2) = \sum_{i=1}^{n} \max \left[(1 - y_i f_1(x_i))_+ + (1 - G(x_i))_+, (1 + G(x_i))_+ + (1 - y_i f_2(x_i))_+ \right] - 1$$

- Preposition 2.4
 - Upper bound $\max \left[\frac{1_{a \ge 0} + 1_{b \le 0}, 1_{c \le 0} + 1_{d \le 0}}{1_{a \ge 0}} \right] 1$

$$\min_{G, f_1, f_2, G(x_k) \ge \beta} \sum_{i=1}^{n} \max \left[(1 - y_i f_1(x_i))_+ + (1 - G(x_i))_+, (1 + G(x_i))_+ + (1 - y_i f_2(x_i))_+ \right] + \frac{\lambda \left(\|f_1\|_2^2 + \|f_2\|_2^2 \right)}{\lambda \left(\|f_1\|_2^2 + \|f_2\|_2^2 \right)}$$

L3M for Multiple Regions and Multiclass Data

• From Proposition 2.3

$$R(G, f_1, \dots, f_r) = \sum_{i=1}^{n} \max_{k \in \{1, \dots, r\}} \left[\mathbb{1}_{f_k(x_i) \neq y_i} + \mathbb{1}_{G(x_i) = k} - 1 \right]$$

$$\phi(G, k, x_i) = \max \left[(1 + g_k(x_i))_+, \max_{j \neq k} (1 - g_j(x_i))_+ \right]$$

Maximum hinge-loss over the one vs all classifiers

Region and local Classification

Theorem 4.1

VC-dimension of local linear classifier with 3 regions can be bounded

$$2(\frac{(r-1)^2+2}{2})\log\left(e(\frac{(r-1)^2+2}{2})\right)(d+1)$$

r to minimize a high-probability bound on the generalization error Computational Complexity \rightarrow O(dr+d), multi-class - O(dr+dc)

Space Partitioning G(x)

```
Algorithm 1 Space Partitioning Classifier
Input: Training data, \{(x_i, y_i)\}_{i=1}^n, number of classification regions, r
Output: Composite function, F(\cdot)
Initialize: Assign points randomly to r regions
while F not converged do
  for j = 1, 2, ..., r do
     Train region functions f_i(x) to optimize empirical loss of Eq. (3.7).
  end for
  for k = r - 1, r - 2, \dots, 2, 1 do
     Train reject classifier g_k(x) to optimize empirical loss of Eq. (3.8).
  end for
end while
```

Algorithm – Online Training of L3Ms

Input: Observation and label, x_t, y_t , current partitioning classifier, α , and local classifiers β_1, β_2

Output: Updated partitioning classifier, α , updated local classifiers β_1, β_2

1. Find active region

$$r_{t} = \begin{cases} 1 & \text{if } \log(1 + e^{\alpha^{T} x_{t}}) + \log(1 + e^{-y_{t}\beta_{1}^{T} x_{t}}) > \\ & \log(1 + e^{-\alpha^{T} x_{t}}) + \log(1 + e^{-y_{t}\beta_{2}^{T} x_{t}}) \\ 2 & \text{otherwise} \end{cases}$$

2. Calculate the subgradient for the partitioning classification functions:

3. Return updated functions:

$$\alpha = \alpha - \frac{\nabla \alpha}{\sqrt{t}}, \ \beta_1 = \beta_1 - \frac{\nabla \beta_1}{\sqrt{t}}, \ \beta_2 = \beta_2 - \frac{\nabla \beta_2}{\sqrt{t}}$$

Datasets

Dataset	Dimension	Classes	Training Set	Test Set
Banana	2	2	400	4900
DNA	180	3	2000	1186
Landsat	36	7	4435	2000
Vowel	10	11	528	462
Optdigit	64	10	3823	1797
Pendigit	16	10	7494	3498
Image Seg.	19	7	210	2100

Evaluation

Performed action for SVM, Adaboost and GDI

Algorithm	Banana	DNA	Landsat	Vowel	Optdigit	Pendigit	Image Segmentation
One vs All Linear SVM	39.55%	7.08%	17.90%	59.09%	7.63%	10.92%	8.24%
One vs All RBF SVM	11.86%	5.48%	9.70%	37.23%	2.34%	1.86%	11.30%
One vs All AdaBoost	32.98%	8.35%	16.10%	69.70%	12.24%	11.29%	10.38%
GDI Tree	14.33%	9.36%	14.45%	56.93%	14.58%	8.78%	9.71%
MDA	20.45%	12.14%	36.45%	67.32%	9.79%	7.75%	15.43%
L3M	11.84%	5.31%	17.50%	40.69%	7.12%	10.52%	10.76%

Our results using EM (for region separation) and Logistic Regression (for classification)

Algorithm	Banana	DNA	Landsat	Vowel	Optdigit	Pendigit	ImageSeg
SVM – Poly	44.9% 0.8 sec	49.15% 50.3 sec	44.9%	80.51%	85.14%	19.01% 35.01 sec	85.85% 0.52 sec
SVM – RBF Gaussian	44.9% 1.145 sec	33.47%	14.9% 18.85 sec	54.76%	2.44%	4.31% 14.91 sec	16.52% 2.08 sec
Adaboost	30.9%	21.4%	58.25%	87.22%	80.63%	79.33%	71.76%
	0.615 sec	1.19 sec	0.63 sec	0.36 sec	0.39 sec	0.52 sec	035 sec
Decision Tree	16.34%	7.5%	14.65%	64.71%	14.2%	7.94%	9.23%
	0.25 sec	1.509 sec	1.92 sec	0.30 sec	0.56 sec	1.71 sec	0.28 sec
Our Mixture	1.02%	21.75%	4.7%	67.97%	6.51%	1.17%	7.23%
Model	4.32 sec	48.99 sec	17.52 sec	2.6 sec	25.69 sec	10.53 sec	4.79 sec

Questions?