Scaling EqProp to Deep ConvNets by reducing its gradient estimator bias

Axel Laborieux*, Maxence Ernoult*, Benjamin Scellier, Yoshua Bengio, Julie Grollier, Damien Querlioz

* Corresponding authors:

{axel.laborieux, maxence.ernoult}@universite-paris-saclay.fr

Summary

- Equilibrium Propagation (EP) is a biologically-inspired counterpart of Backpropagation Through Time (BPTT). However:
- 1. Only shown to work on MNIST
- 2. Optimizes the squared error loss
- This work: identify and cancel a bias in the gradient estimate
- 1. Scale to deeper architectures and closely match BPTT on CIFAR10
- 2. Adapt the model to optimize the cross-entropy loss
- 3. Still works with untied weights provided an alignment mechanism

Equilibrium Propagation [1]

Convolutional Architecture [2]

 $\begin{cases} s_{t+1}^n &= \sigma\left(\mathcal{P}\left(w_{n-1}\star s_t^{n-1}\right) + \tilde{w}_{n+1}\star \mathcal{P}^{-1}\left(s_t^{n+1}\right)\right), & \text{for convolutional layers,} \\ s_{t+1}^n &= \sigma\left(w_{n-1}\cdot s_t^{n-1} + w_{n+1}^\top \cdot s_t^{n+1}\right), & \text{for fully connected layers.} \end{cases}$

Symmetric estimate of the loss gradient

$$\widehat{\nabla}^{\mathrm{EP}}(\beta) = -\frac{\partial \mathcal{L}^*}{\partial \theta} + O(\beta)$$
 : first order bias in β

$$\widehat{\nabla}_{\text{sym}}^{\text{EP}}(\beta) \stackrel{\triangle}{=} \frac{\widehat{\nabla}^{\text{EP}}(\beta) + \widehat{\nabla}^{\text{EP}}(-\beta)}{2} = -\frac{\partial \mathcal{L}^*}{\partial \theta} + O(\beta^2)$$
Third phase: $s_*^{-\beta}$

Squared Error Estimate 1est 1rain 1est 1rain 2-Phase / $\hat{\nabla}^{EP}$ 86.7 (5.8) 84.9 Random Sign 21.6 (20.0) 20.0 11.1 (0.1) 3.7	Loss Function	EP Gradient	EP Error (%)		BPTT Error (%)	
Squared Error Random Sign 21.6 (20.0) 20.0 11.1 (0.1) 3.7 3 Physic / $\hat{\nabla}^{EP}$ 12.5 (0.2) 7.8	2000 1 011001011	Estimate	Test	Train	Test	Train
/ by m	Squared Error	Random Sign	$21.6\ (20.0)$	20.0	11.1 (0.1)	3.7

Optimize the cross-entropy loss with EqProp

Output units in the system : difficult to define logits

 $\widehat{y}_{t+1}^{\beta:\,\text{hidden}} \quad \widehat{y}_{t+1}^{\beta} = \frac{\partial \Phi}{\partial \widehat{y}}(x,h_t^{\beta},\widehat{y}_t^{\beta},\theta) + \beta\;(y-\widehat{y}_t^{\beta})$ layer

$$s_{t+1}^{\beta} = \frac{\partial \Phi}{\partial s}(x, s_t^{\beta}, \theta) + \beta \ w_{\text{out}}^{\top} \cdot \left(y - \hat{y}_t^{\beta}\right)$$

Loss Function	EP Gradient Estimate	EP Error Test	(%) Train	BPTT Err Test	or (%) Train
Cross-Ent.	3-Phase / $\hat{\nabla}_{\mathrm{sym}}^{\mathrm{EP}}$	11.7 (0.2)	5.0	11.1 (0.2)	2.2
Cross-Ent. (Dropout)		11.9(0.3)	6.5	10.7(0.1)	2.9

Distinct forward and backward weights

Generalized framework [3]: $s_{t+1} = F(x, s_t, \theta)$

$$\widehat{\nabla}_{\text{sym}}^{\text{VF}}(\beta) \stackrel{\Delta}{=} \frac{1}{2\beta} \frac{\partial F}{\partial \theta} (x, s_*, \theta)^{\top} \cdot \left(s_*^{\beta} - s_*^{-\beta} \right)$$

Need for an alignment mechanism, we take inspiration from [4]:

$$\begin{cases} \Delta \theta_{\rm f} = \eta \left(\widehat{\nabla}_{\rm sym}^{\rm KP-VF}(\beta) - \lambda \theta_{\rm f} \right) \\ \Delta \theta_{\rm b} = \eta \left(\widehat{\nabla}_{\rm sym}^{\rm KP-VF}(\beta) - \lambda \theta_{\rm b} \right) \end{cases}$$

$$\theta_{\rm f}(t) - \theta_{\rm b}(t) = (1 - \eta \lambda)^t \left(\theta_{\rm f}(0) - \theta_{\rm b}(0)\right)$$

Loss Function	EP Gradient	EP Error (%)		BPTT Error (%)	
LOSS FullCuon	Estimate	Test	Train	Test	Train
Cross-Ent.	3-Phase / $\widehat{\nabla}_{\mathrm{sym}}^{\mathrm{VF}}$	75.5(4.7)	78.0	9.5 (0.2)	0.8
	3-Phase / $\widehat{\nabla}_{\mathrm{sym}}^{\mathrm{KP-VF}}$	$13.2 \; (0.5)$	8.9	5.5 (0.2)	0.0

We observe that weights do not align (dashed) without the alignment mechanism (solid)

References

Scellier, B. Bengio, Y. (2017). "Equilibrium propagation: Bridging the gap between energy-based models and backpropagation" In: Frontiers in computational neuroscience 11, 24

Ernoult, M. et al. (2019). "Updates of equilibrium prop match backprop through time in an RNN with static input." In: Advances in Neural Information Processing Systems 7081-7091

Scellier, B. et al. (2018). "Generalization of Equilibrium Propagation to vector fields dynamics." arXiv:1808.04873

Kolen, J. F. and Pollack J. B. (1994). "Backpropagation without weight transport". In: IEEE ICCN'94.