

Urea Nitrogen (BUN) Reagent Set

Intended Use

For the quantitative determination of urea nitrogen in serum.

Method History

Urea has been determined by the direct method¹ where urea condenses with diacetyl to form a chromagen and an indirect method where ammonia is measured as a product of Urease action on urea.² The liberated ammonia has been measured using Nessler's reagent³ and by the Berthelot reaction.⁴ Talke and Schubert introduced a totally enzymatic procedure in 1965 utilizing Urease and Glutamate Dehydrogenase.⁵ The present procedure is based on a modification of their method.

Principle

Urea + H_2O -----> 2 NH_3 + CO_2 GD NH_3 + α -Ketoglutarate + NADH + H^+ -----> L-glutamate + NAD^+ + H_2O

Urea is hydrolyzed by Urease to produce ammonia and carbon dioxide. The liberated ammonia reacts with a-Ketoglutarate in the presence of NADH to yield glutamate. An equimolar quantity of NADH undergoes oxidation during the reaction resulting in a decrease in absorbance that is directly proportional to the urea nitrogen concentration in the sample.

Reagents

(Concentrations refer to reconstituted reagent)

NADH 0.3mM, Urease 1,500 U/L, Glutamate Dehydrogenase > 1500 U/L, $\alpha\textsc{-}$ Ketoglutarate 4.0 mM, Buffer pH 8.2 \pm 0.1, Activators and non-reactive stabilizers.

Reagent Preparation

Reconstitute reagent with the volume of distilled water stated on the vial label, swirl to dissolve.

Reagent Storage

- Store reagent at 2-8°C.
- 2. Store reconstituted reagent at 2-8°C.
- Reconstituted reagent is stable 2 days at 18-25°C and 30 days at 2-8°C.

Reagent Deterioration

Do not use if:

- 1. Moisture has penetrated the vial and caking has occurred.
- The reconstituted reagent has a reagent blank absorbance less than 1.0 at 340 nm.

Precautions

- 1. This reagent is for *in vitro* diagnostic use only.
- 2. Avoid ingestion of reagent as toxicity has not yet been determined.

Specimen Collection and Storage

- 1. Serum is recommended.
- 2. Plasma containing anticoagulants should not be used.
- All material coming in contact with the sample must be free of ammonia and heavy metals.⁶

 Urea in serum is reported stable for seventy-two hours refrigerated at 2-8°C. Unrefrigerated sera should be used within eight hours.

Interferences

- 1. Urease action is inhibited by fluoride.
- 2. Samples with abnormal ammonia levels give falsely elevated BUN results.
- 3. For a comprehensive review of drug interference see Young, et al.7

Materials Provided

Urea Nitrogen reagent.

Materials Required but not Provided

- Accurate pipetting devices
- 2. Timer
- Test tubes/rack
- 4. Spectrophotometer with a temperature controlled cuvette

Procedure (Automated)

Refer to specific instrument application instructions.

Procedure (Manual)

- 1. Reconstitute reagent according to instructions.
- 2. Zero spectrophotmeter with water at 340 nm.
- Pipette 1.0ml of reagent into test tubes and allow reagent to come to room temperature.
- Add 0.01ml (10ul) of sample to test tube and immediately place in the spectrophotometer.
- 5. After thirty seconds read and record the absorbance (A₁).
- 6. Sixty seconds after the first reading take another reading (A2).
- 7. Determine the absorbance change between the two readings (A_1-A_2) .
- 8. Repeat procedure for each sample.
- 9. See "Calculations" for determination of results.

Alternative Volumes

If the spectrophotmeter being used requires a final volume greater than 1.0ml for accurate reading, use 0.025ml (25ul) of sample to 3.0ml of reagent. Perform the test as described above.

Limitations

Samples with values above 80 mg/dl should be diluted with 0.9% saline 1:1, reassayed and the results multiplied by two.

Calibration

Use an aqueous BUN standard (20 mg/dl) or an appropriate serum calibrator.

alculations

 (A_1-A_2) = Absorbance change between readings

 $(A_1 - A_2)$ unknown x concentration = BUN (mg/dl) $(A_1 - A_2)$ standard of standard

Example: If the unknown had an $A_1 = 1.5$ and $A_2 = 1.0$,

the standard $A_1 = 1.5$ and $A_2 = 0.9$ and

the concentration of the standard = 20 mg/dl then:

 $\frac{(1.5-1.0)}{(1.5-0.9)} = \frac{0.5}{0.6} \times 20 = 17 \text{ mg/dl}$

Phone: 734-487-8300 • Toll Free: 800-445-9853 • Fax: 734-483-1592 • www.pointescientific.com

Urea Nitrogen (BUN) Reagent Set

NOTE: To obtain results in SI units multiply by 10 to convert dl to liters

and divide by 28, the molecular weight of nitrogen.

Example: 17 mg/dl x 10/28 = 6.06 mmol/L.

To convert mg/dl Urea Nitrogen to mmol Urea/L, multiply the mg/dl Urea Nitrogen value by 0.357.

To convert mg/dl Urea Nitrogen to mg/dl Urea, multiply the mg/dl Urea Nitrogen value by 2.14.

Quality Control

Serum controls with known normal and abnormal values should be run routinely to monitor the validity of the reaction.

Expected Values

7-18 mg/dl6

It is strongly recommended that each laboratory establish its own reference range.

Performance

- 1. Linearity: 80 mg/dl
- Comparison: A study performed using another enzymatic procedure yielded a correlation coefficient of 0.999 with a regression equation of y = 0.98 + 0.64.
- 3. Precision:

Within Run			Run to Run		
<u>Mean</u>	<u>S.D.</u>	C.V.%	<u>Mean</u>	<u>S.D.</u>	C.V.%
14	0.5	3.6	14	0.6	4.3
46	0.8	1.7	49	1.8	3.7

References

- 1. Fearon, W.R., Biochem J. 331:902 (1939).
- 2. Marshall, E.K., Jr., J. Biol. Chem. 15:487 (1913).
- 3. Gentzkow, C.J., J. Biol. Chem. 143:531 (1952).
- 4. Fawcett, J.K., Scott, J.E., J. Clin. Path. 13:156 (1960).
- 5. Talke, H., Schubert, G.E., Klin. Wschr. 43:174 (1965).
- Tietz, N.W., Fundamentals of Clinical Chemistry, Philadelphia W.B. Saunders, p991 (1976).
- 7. Young, D.S., et al, Clin. Chem. 21:1D (1975).

Manufactured by Pointe Scientific, Inc. 5449 Research Drive Canton, MI 48188

"European Authorized Representative" (O.E.A.R.C.) Av. De Tervueren 34 bte 44 B-1040 Brussels, Belgium

Rev. 12/03 P803-B7550-01

Phone: 734-487-8300 • Toll Free: 800-445-9853 • Fax: 734-483-1592 • www.pointescientific.com