03 Unsupervised Learning (无监督学习)

Classification (supervised learning)

training data D_{train}

Labeled data is expensive to obtain

Clustering (unsupervised learning)

Intuition: Want to assign nearby points to same cluster

Unlabeled data is very cheap to obtain

Supervision?

Supervised learning:

- Prediction: $\mathcal{D}_{ ext{train}}$ contains input-output pairs (x,y)
- Fully-labeled data is very expensive to obtain (we can get 10,000 labeled examples)

Unsupervised learning:

- ullet Clustering: $\mathcal{D}_{\mathrm{train}}$ only contains inputs x
- Unlabeled data is much cheaper to obtain (we can get 100 Million unlabeled examples)

Word clustering

Input: raw text (100 million words of news articles)...

Output:

```
Cluster 1: Friday Monday Thursday Wednesday Tuesday Saturday Sunday weekends Sundays Saturdays
Cluster 2: June March July April January December October November September August
Cluster 3: water gas coal liquid acid sand carbon steam shale iron
Cluster 4: great big vast sudden mere sheer gigantic lifelong scant colossal
Cluster 5: man woman boy girl lawyer doctor guy farmer teacher citizen
Cluster 6: American Indian European Japanese German African Catholic Israeli Italian Arab
Cluster 7: pressure temperature permeability density porosity stress velocity viscosity gravity tension
Cluster 8: mother wife father son husband brother daughter sister boss uncle
Cluster 9: machine device controller processor CPU printer spindle subsystem compiler plotter
Cluster 10: John George James Bob Robert Paul William Jim David Mike
Cluster 11: anyone someone anybody somebody
Cluster 12: feet miles pounds degrees inches barrels tons acres meters bytes
Cluster 13: director chief professor commissioner commander treasurer founder superintendent dean custodian
Cluster 14: had hadn't hath would've could've should've must've might've
Cluster 15: head body hands eyes voice arm seat eye hair mouth
```

Impact: used in many state-of-the-art NLP systems

Feature learning using neural Networks

Input: 10 million images (sampled frames from YouTube)

Output:

Impact: state-of-the-art results on object recognition (22,000 categories)

Key idea: the real learning objective

Data has lots of rich latent structures; want methods to discover this structure automatically.

Types of unsupervised learning

Clustering (e.g., K-means):

Dimensionality reduction (e.g., PCA):

Clustering

Definition: clustering

Input: training set of input points

$$\mathcal{D}_{\mathsf{train}} = \{x_1, \dots, x_n\}$$

Output: assignment of each point to a cluster

$$[z_1, ..., z_n]$$
 where $z_i \in \{1, ..., K\}$

Intuition: want similar points to be in same cluster, dissimilar points to be in different clusters

[blackboard]

Centroids

Each cluster k = 1, ..., K is represented by a **centroid** $\mu_k \in \mathbb{R}^d$

$$\boldsymbol{\mu} = [\mu_1, \dots, \mu_K]$$

Intuition: want each point $\varphi(x_i)$ to be close to its assigned centroid μ_{z_i}

K-means objective

$$\mathsf{Loss}_{\mathsf{kmeans}}(\mathbf{z}, \boldsymbol{\mu}) = \sum_{i=1}^{n} \|\phi(x_i) - \mu_{\boldsymbol{z_i}}\|^2$$

min min Loss_{kmeans}(
$$\mathbf{z}, \mu$$
)

K-means objective

Setup:

- Each cluster k = 1,...,K is represented by a centroid $\mu_k \in \mathbb{R}^d$
- Intuition: want each point close to its assigned centroid μ_{z_i}

Objective function:

Loss_{kmeans}
$$(z, \mu) = \sum_{i=1}^{n} \|\phi(x_i) - \mu_{z_i}\|^2$$

Need to choose centroids μ and assignments z jointly

K-means: simple example

Example: one-dimensional Input: $\mathcal{D}_{\mathsf{train}} = \{0, 2, 10, 12\}$ Output: K = 2 centroids $\mu_1, \mu_2 \in \mathbb{R}$

If know centroids $\mu_1 = 1$, $\mu_2 = 11$:

```
z_1 = \arg\min\{(0-1)^2, (0-11)^2\} = 1
z_2 = \arg\min\{(2-1)^2, (2-11)^2\} = 1
z_3 = \arg\min\{(10-1)^2, (10-11)^2\} = 2
z_4 = \arg\min\{(12-1)^2, (12-11)^2\} = 2
```

If know assignments $z_1 = z_2 = 1$, $z_3 = z_4 = 2$:

$$\mu_1 = \arg\min_{\mu} (0 - \mu)^2 + (2 - \mu)^2 = 1$$

$$\mu_2 = \arg\min_{\mu} (10 - \mu)^2 + (12 - \mu)^2 = 11$$

K-means algorithm

$$\min_{z} \min_{\mu} \operatorname{Loss_{kmeans}}(z, \mu)$$

Key idea: alternating minimization

Tackle hard problem by solving two easy problems.

Alternating minimization from random initialization

Initialize μ (0, 2):

Iteration 1:

Iteration 2:

Converged.

K-means algorithm (Step 1)

• Goal: given centroids μ_1, \ldots, μ_k , assign each point to the best centroid.

Algorithm: Step 1 of K-means

For each point i = 1, ..., n:

Assign i to cluster with closest centroid:

$$z_i \leftarrow \arg\min_{k=1,...,K} \|\phi(x_i) - \mu_k\|^2$$

K-means algorithm (Step 2)

• Goal: given cluster assignments z_1, \ldots, z_n , find the best centroid μ_1, \ldots, μ_k .

Algorithm: Step 2 of K-means

For each cluster k = 1, ..., K: set μ_k to the average of points assigned to cluster k:

$$\mu_k \to \frac{1}{|\{i: z_i = k\}|} \sum_{i: z_i = k} \phi(x_i)$$

K-means algorithm

Objective:

$$\min_{z} \min_{\mu} \operatorname{Loss_{kmeans}}(z, \mu)$$

Algorithm: K-means

Initialize μ_1, \ldots, μ_K randomly

For t = 1, ..., T:

Step 1: set assignments z given $\,\mu$

Step 2: set centroids $\,\mu\,$ given z

K-means: simple example

Example: one-dimensional Input: $\mathcal{D}_{\mathsf{train}} = \{0, 2, 10, 12\}$ Output: K = 2 centroids $\mu_1, \mu_2 \in \mathbb{R}$

Initialization (random): $\mu_1 = 0, \mu_2 = 2$

Iteration 1:

- Step 1: $z_1 = 1, z_2 = 2, z_3 = 2, z_4 = 2$
- Step 2: $\mu_1 = 0, \mu_2 = 8$

Iteration 2:

- Step 1: $z_1 = 1, z_2 = 1, z_3 = 2, z_4 = 2$
- Step 2: $\mu_1 = 1, \mu_2 = 11$

K-means: demo

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Local minima

K-means is guaranteed to converge to a local minimum, but is not guaranteed to find the global minimum.

Solutions:

- Run multiple times from different random initializations
- Initialize with a heuristic (K-means++)

Density-based Clustering

Basic idea

- Clusters are dense regions in the data space, separated by regions of lower object density
- A cluster is defined as a maximal set (最大 集合) of density- connected points
- Discovers clusters of arbitrary shape

Method

- DBSCAN

Density Definition

ε-Neighborhood – Objects within a radius of ε from an object

$$N_{\varepsilon}(p): \{q \mid d(p,q) \leq \varepsilon\}$$

• "High density" - ε-Neighborhood of an object contains at least *MinPts* of objects.

 ϵ -Neighborhood of p ϵ -Neighborhood of qDensity of p is "high" (MinPts = 4)

Density of q is "low" (MinPts = 3)

Core, Border & Outlier

 ε = 1unit, MinPts = 5

Given ε and *MinPts*, categorize the objects into three exclusive groups.

A point is a core point if it has more than a specified number of points (MinPts) within Eps—These are points that are at the interior of a cluster.

A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point.

A noise point is any point that is not a core point nor a border point.

Example

Original Points

Point types: core, border and outliers

 ϵ = 10, MinPts = 4

Density-reachability

- Directly density-reachable
 - An object q is directly density-reachable from object p
 if p is a core object and q is in p's ε-neighborhood.

- q is directly density-reachable from p
- p is not directly density-reachable from q
- Density-reachability is asymmetric

MinPts = 4

Density-reachability

- Density-Reachable (directly and indirectly):
 - A point p is directly density-reachable from p_2
 - p_2 is directly density-reachable from p_1
 - $-p_1$ is directly density-reachable from q
 - $p \leftarrow p_2 \leftarrow p_1 \leftarrow q$ form a chain

- *p* is (indirectly) density-reachable from *q*
- q is not density-reachable from p

DBSCAN Algorithm: Example

Parameter

- $\varepsilon = 2$ cm
- *MinPts* = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```

DBSCAN Algorithm: Example

Parameter

- $\varepsilon = 2$ cm
- *MinPts* = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```

DBSCAN Algorithm: Example

Parameter

- $\varepsilon = 2 \text{ cm}$
- *MinPts* = 3


```
for each o \in D do

if o is not yet classified then

if o is a core-object then

collect all objects density-reachable from o

and assign them to a new cluster.

else

assign o to NOISE
```

DBSCAN: Sensitive to Parameters

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

DBSCAN: Determining EPS and MinPts

- Idea is that for points in a cluster, their kth nearest neighbors are at roughly the same distance
- Noise points have the kth nearest neighbor at farther distance
- So, plot sorted distance of every point to its kth nearest neighbor (for example, k=4 as blew)

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

- Cannot handle varying densities
- sensitive to parameters—hard to determine the correct set of parameters

(MinPts=4, Eps=9.92).

(MinPts=4, Eps=9.75)

Summary of DBSCAN

- The basic idea of density-based clustering
- The two important parameters and the definitions of neighborhood and density in DBSCAN
- Core, border and outlier points
- DBSCAN algorithm
- DBSCAN's pros and cons

Unsupervised learning summary

Leverage tons of unlabeled data

Difficult optimization:

latent variables

parameters

 μ

Unsupervised learning use cases:

- Data exploration and discovery
- Providing representations to downstream supervised learning

Summary so far

- Feature extraction (think hypothesis classes) [modeling]
- Prediction (linear, neural network, k-means) [modeling]
- Loss functions (compute gradients) [modeling]
- Optimization (stochastic gradient, alternating minimization) [algorithms]
- Generalization (think development cycle) [modeling]

Challenges

Capabilities:

- More complex prediction problems (translation, generation)
- Unsupervised learning: automatically discover structure

Responsibilities:

- Feedback loops: predictions affect user behavior, which generates data
- Fairness: build classifiers that don't discriminate?
- Privacy: can we pool data together
- Interpretability: can we understand what algorithms are doing?

Acknowledgement

Reference and thanks to:

Stanford University CS221 Course:

Artificial Intelligence: Principles and Techniques

https://stanford-cs221.github.io/autumn2022/

• CMU 10-701/15-781 Course:

Machine Learning

https://www.cs.cmu.edu/~aarti/Class/10701/

SUNY Buffalo CSE601 Course:

Data Mining and Bioinformatics

https://cse.buffalo.edu/~jing/cse601