

Digital signal processing Course description sheet

Basic information

Field of study

Electronics and Telecommunications

Major

-

Organisational unit

Faculty of Computer Science, Electronics and Telecommunications

Study level

First-cycle (engineer) programme

Form of study

Full-time studies

Profile

General academic

Didactic cycle

2023/2024

Course code

IETPS.li80.01177.23

Lecture languages

Polish

Mandatoriness

Obligatory

Block

General Modules

Course related to scientific research

Yes

Course coordinator	Konrad Kowalczyk
Lecturer	Konrad Kowalczyk, Szymon Woźniak

Period Semester 4	Method of verification of the learning outcomes Exam	Number of ECTS credits
	Activities and hours	
	Lectures: 28	
	Laboratory classes: 28	

Course's learning outcomes

Code	Outcomes in terms of	Learning outcomes prescribed to a field of study	Methods of verification
Knowledge - Student knows and understands:			

Generated: 2025-03-25 10:54 1 / 7

Code	Outcomes in terms of	Learning outcomes prescribed to a field of study	Methods of verification
W1	Student zna podstawowe definicje i pojęcia oraz algorytmy z zakresu cyfrowego przetwarzania sygnałów	ETP1A_W03, ETP1A_W10, ETP1A_U07	Execution of laboratory classes, Test, Examination
Skills - 9	Student can:		
U1	Student umie stosować narzędzia i algorytmy przetwarzania sygnałów cyfrowych	ETP1A_W03, ETP1A_U07	Execution of laboratory classes, Test, Examination
U2	Student potrafi analizować sygnały i systemy w dziedzinie czasu i częstotliwości	ETP1A_W03, ETP1A_W10, ETP1A_U07	Execution of laboratory classes, Test, Examination
U3	Student potrafi projektować podstawowe systemy cyfrowego przetwarzania sygnałów	ETP1A_W03, ETP1A_W10	Execution of laboratory classes, Test, Examination
U4	Student potrafi interpretować informacje z literatury na temat przetwarzania sygnałów	ETP1A_U02, ETP1A_K01	Execution of laboratory classes, Test, Examination
Social co	ompetences - Student is ready to:		
K1	Student rozumie potrzebę formułowania i przekazywania społeczeństwu w sposób zrozumiały — m.in. poprzez środki masowego przekazu — informacji i opinii dotyczących przetwarzania sygnałów multimedialnych	ETP1A_K05	Participation in a discussion

Program content ensuring the achievement of the learning outcomes prescribed to the module

Przedmiot pozwala zrozumieć działanie podstawowych metod przetwarzania sygnałów cyfrowych oraz uczy umiejętności stosowania metod analizy i przetwarzania sygnałów cyfrowych w praktyce

Student workload

Activity form	Average amount of hours* needed to complete each activity form
Lectures	28
Laboratory classes	28
Preparation for classes	42
Realization of independently performed tasks	32
Student workload	Hours 130
Workload involving teacher	Hours 56

^{*} hour means 45 minutes

Generated: 2025-03-25 10:54 2 / 7

Program content

No.	Program content	Course's learning outcomes	Activities
1.	Ćwiczenia laboratoryjne	U1, U2, U3, U4, K1	Laboratory classes
	1. Próbkowanie i dyskretna transformacja Fouriera – przykłady zastosowania twierdzenia o próbkowaniu oraz podpróbkowaniu, interpretacja uzyskanych wyników. Właściwości oraz interpretacja wyników dyskretnej transformacji Fouriera, w szczególności w odniesieniu do ciągłej transformacji Fouriera.		
	2. Filtry o skończonej i nieskończonej odpowiedzi impulsowej – dyskretny splot liniowy i kołowy, filtracja z wykorzystaniem dyskretnej transformacji Fouriera. Transformacja z – przykłady zastosowań i interpretacji. Projektowanie i właściwości oraz przykłady zastosowań dla filtrów o skończonej i nieskończonej odpowiedzi impulsowej.		
	3. Dyskretne transformacje i kodowanie – podpróbkowanie i nadpróbkowanie, banki filtrów, transformacja kosinusowa, dyskretna transformacja falkowa, przykłady, interpretacja wyników. Zastosowania poznanych transformacji w kodowaniu stratnym, efekty kwantyzacji wartości współczynników transformat dla sygnałów akustycznych i obrazów. Kodowanie kompresyjne bezstratne i stratne – metoda predykcyjna, kodowanie Huffmana i arytmetyczne. 4. Podsumowanie wiedzy i umiejętności praktycznych dla każdego z ww. punktów w formie kolokwium.		

Generated: 2025-03-25 10:54 3 / 7

No.	Program content	Course's learning outcomes	Activities
2.	Zajęcia w ramach modułu prowadzone są w postaci wykładu (28 godzin) oraz ćwiczeń laboratoryjnych (28 godzin).	W1, U3, U4, K1	Lectures
	Wykłady		
	Wprowadzenie do cyfrowego przetwarzania sygnałów		
	Próbkowanie sygnałów, twierdzenie Shanona, aliasing. Konwersja analogowo-cyfrowa i cyfrowo-analogowa.		
	2. Analiza częstotliwościowa sygnałów cyfrowych		
	Porównanie analizy częstotliwościowej sygnałów analogowych i dyskretnych. Dyskretna transformacja Fouriera i jej własności. Odwrotna dyskretna transformacja Fouriera obrazów cyfrowych. Szybka transformacja Fouriera. Schemat motylkowy. Okresowość widm dyskretnych. Efektywność algorytmów.		
	3. Filtry cyfrowe		
	Definicja i własności z-transformacji. Związki pomiędzy z-transformacją i transformacją Fouriera. Kształtowanie widm przez systemy liniowe. Filtry o skończonej odpowiedzi impulsowej (FIR), ich własności i charakterystyki częstotliwościowe. Filtry z liniową i afiniczną charakterystyką fazową. Metody projektowania filtrów FIR. Filtry z nieskończoną odpowiedzią impulsową (IIR). Stabilność filtrów IIR. Projektowania filtrów IIR w oparciu o metody projektowania filtrów analogowych. Optymalizacyjne metody projektowania filtrów IIR. Filtracja obrazów cyfrowych.		
	4. Banki filtrów		
	Filtracja podpasmowa i banki filtrów. Podpróbkowanie i nadprobkowanie. Dyskretna transformacja falkowa oraz jej zastosowanie do częstotliwościowej analizy obrazów.		
	5. Podstawowe metody kompresji sygnałów, kompresja dźwięku i obrazu		
	Definicje kompresji bezstratnej i stratnej. Kodowanie predykcyjne i entropowe. Sprawność kodowania. Kodowanie Huffmana. Kodowanie arytmetyczne. Kwantyzacja skalarna i wektorowa. Szum kwantyzacji. Kodowanie transformatowe. Dyskretna transformacja kosinusowa. Metody kompresji dźwięku i obrazu (np. jpeg, mp3)		

Extended information/Additional elements

Teaching methods and techniques:

Lectures

Generated: 2025-03-25 10:54 4 / 7

Activities	Methods of verification	Credit conditions
Lectures	Participation in a discussion, Execution of laboratory classes, Test, Examination	
Lab. classes	Participation in a discussion, Execution of laboratory classes, Test, Examination	

Additional info

Classes are conducted using innovative teaching methods developed during 2017-2019 in the POWR.03.04.00-00-D002/16 project, carried out by the Faculty of Computer Science, Electronics and Telecommunications under the Smart Growth Operational Programme 2014-2020.

Method of determining the final grade

1. Warunkiem uzyskania pozytywnej oceny końcowej jest uzyskanie pozytywnej oceny z laboratorium oraz z egzaminu. 2. Ocena końcowa jest równa ocenie z egzaminu, jeżeli ocena z laboratorium jest co najwyżej różna o 0.5 od oceny z egzaminu. W przeciwnym wypadku ocena końcowa jest średnią arytmetyczną oceny z laboratorium i egzaminu. Jeżeli wartość średnia nie odpowiada obowiązującej skali ocen, ocena końcowa jest zaokrągleniem wartości średniej w kierunku oceny z egzaminu.

Prerequisites and additional requirements

- · Umiejętność samodzielnego poszukiwania informacji w literaturze
- · Znajomość podstaw analizy matematycznej i algebry.
- · Znajomość metod analogowego przetwarzania sygnałów (teorii sygnałów)
- · Umiejetność posługiwania się Matlabem

Rules of participation in given classes, indicating whether student presence at the lecture is obligatory

Lectures: Studenci uczestniczą w zajęciach poznając kolejne treści nauczania zgodnie z syllabusem przedmiotu. Studenci winni na bieżąco zadawać pytania i wyjaśniać wątpliwości. Rejestracja audiowizualna wykładu wymaga zgody prowadzącego. Laboratory classes: Studenci wykonują ćwiczenia laboratoryjne zgodnie z materiałami udostępnionymi przez prowadzącego. Student jest zobowiązany do przygotowania się w przedmiocie wykonywanego ćwiczenia, co może zostać zweryfikowane kolokwium w formie ustnej lub pisemnej. Zaliczenie zajęć odbywa się na podstawie zaprezentowania rozwiązania postawionego problemu. Zaliczenie modułu jest możliwe po zaliczeniu wszystkich zajęć laboratoryjnych.

Literature

Obligatory

- 1. Tomasz Zieliński: Cyfrowe przetwarzanie sygnałów. WKŁ 2005.
- 2. Richard G. Lyons: Wprowadzenie do cyfrowego przetwarzania sygnałów. Wydawnictwa Komunikacji i Łączności, WKŁ 1999, 2000.
- 3. Jacek Izydorczyk, Grzegorz Płonka, Grzegorz Tyma: Teoria Sygnałów. Helion 1999.
- 4. Włodzimierz Kwiatkowski: Wstęp do cyfrowego przetwarzania sygnałów. Warszawa 2003.
- 5. Marian Pasko, Janusz Walczak: Teoria sygnałów. Wydawnictwo Politechniki Śląskiej, Gliwice 1999.

Optional

1. A. V. Oppenheim, R. W. Schafer, "Digital Signal Processing, 3rd Edition," Pearson 2010

Scientific research and publications

Publications

1. [1] K. Kowalczyk, O. Thiergart, M. Taseska, G. Del Galdo, and V. Pulkki, E.A.P. Habets, "Parametric spatial sound processing: a flexible and efficient solution to sound scene acquisition, modification and reproduction," IEEE Signal Processing Magazine, vol. 32, No. 2, pp. 31-42, Mar. 2015

Generated: 2025-03-25 10:54 5 / 7

- 2. [2] K. Kowalczyk, E.A.P. Habets, W. Kellermann, and P.A. Naylor, "Blind system identification using sparse learning for TDOA estimation of room reflections," IEEE Signal Processing Letters, vol. 20, No. 7, pp. 653-656, Jul. 2013
- 3. [3] K. Kowalczyk and M. van Walstijn, "Modeling frequency-dependent boundaries as digital impedance filters in FDTD and K-DWM room acoustics simulations," J. Audio Engineering Society, vol. 56, No. 7/8, pp. 569-583, Jul./Aug. 2008

Generated: 2025-03-25 10:54 6 / 7

Learning outcomes prescribed to a field of study

Code	Content	
ETP1A_K01	understands the need and knows the possibilities of continuous training (study of the second and third degree, postgraduate courses) — raising the competence of the professional, personal and social skills;	
ETP1A_K05	ma świadomość roli społecznej absolwenta uczelni technicznej, a zwłaszcza rozumie potrzebę formułowania i przekazywania społeczeństwu — m.in. poprzez środki masowego przekazu — informacji i opinii dotyczących osiągnięć elektroniki, telekomunikacji i innych aspektów działalności inżyniera; podejmuje starania, aby przekazać takie informacje i opinie w sposób powszechnie zrozumiały;	
ETP1A_U02	potrafi pozyskiwać informacje z literatury, baz danych i innych źródeł; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie; ma umiejętność samokształcenia się, m.in. w celu podnoszenia kompetencji zawodowych;	
ETP1A_U07	potrafi dokonać analizy sygnałów i prostych systemów przetwarzania sygnałów w dziedzinie czasu i częstotliwości, stosując techniki analogowe i cyfrowe oraz odpowiednie narzędzia sprzętowe i programowe	
ETP1A_W03	ma uporządkowaną wiedzę w zakresie teorii obwodów elektrycznych, teorii sygnałów (metod ich przetwarzania)	
ETP1A_W10	zna podstawowe pojęcia z zakresu przesyłania danych, potrafi określić cechy transmisji analogowych i cyfrowych, zna właściwości kanału transmisyjnego, rolę kodowania, modulacji i kryptografii, zna metody kodowania dźwięków, obrazów i tekstu w multimediach	

Generated: 2025-03-25 10:54 7 / 7