Работу выполнили

Бурнышев Павел и Борисов Никита, 676 гр.

Маршрут Х № 3

под руководством

30 сентября 2017 г.,

Алескерова И. А.

Лабораторная работа № 3.4.5:

Петля Гистерезиса(динамический метод)

Цель работы:

Изучение петель гистерезиса, ферромагнитных материалов с помощью осциллографа.

В работе используются:

Автотрансформатор, понижающий трансформатор, интегрирующая цепочка, амперметр, вольтметр, электронный осциллограф, делитель напряжения, тороидальные образцы с двумя обмотками.

Теория

Основные свойства ферромагнетиков: коэрцитивная сила, магнитная проницаемость, мощность рассеиваемая в виде тепла при перемагничивавании – зависят от частоты переманичивающего тока.

Измерение магнитной индукции в образцах

ЭДС магнитной индукции, возникающей при изменении потока Ф в катушке, намотанной на образец:

$$\varepsilon = -\frac{d\Phi}{dt}.\tag{1}$$

В случае, если катушка неплотно охватывает образец, и индукция B в образце однородна, то

$$\Phi = BSN_{\text{инд}},\tag{2}$$

где $N_{\text{инд}}$ – число витков, S – площадь витка. Подставим это значение Φ в формулу (1) и после интегрирования получим:

$$|B| = \frac{1}{SN_{\text{MHI}}} \int \varepsilon dt. \tag{3}$$

Для интегрирования сигнала применяют разные интегрирующие схемы, например, схему из соединенных последовательно резистора R и конденсатора C. Причем сопротивление резистора R должно заметно превышать сопротивление конденсатора, тогда ток в цепи пропорционален входному напряжению: $I \simeq \frac{U_{\rm BX}}{R}$.

Напряжение на конденсаторе равно

$$U_{\text{вых}} = \frac{1}{RC} \int U_{\text{вых}} dt. \tag{4}$$

В случае синусоидальных напряжений:

$$U_{\text{вых}} = \frac{U_{\text{вх}}}{RC\Omega},\tag{5}$$

Рис. 1: Интегрирующая ячейка *RC*-цепочка.

где Ω – частота сигнала.

Обозначим параметры интегрирующей ячейки через $R_{\rm u}$ и $C_{\rm u}$ и выразим индукцию с помощью (2) и (3) через $U_{\rm выx}$:

$$|B| = \frac{1}{SN_{\mathsf{u}}} \int \varepsilon dt = \frac{1}{SN_{\mathsf{u}}} \int U_{\mathsf{BX}} dt = \frac{R_{\mathsf{u}} C_{\mathsf{u}}}{SN_{\mathsf{u}}} U_{\mathsf{BMX}}. \tag{6}$$

Экспериментальная установка

Рис. 2: Схема установки для исследования намагничивания образцов

Для измерения магнитной индукции B с измерительной обмотки $N_{\rm u}$ на вход подается напряжение $U_{\rm bx}$. Замкнутая кривая, возникающая на экране осциллографа воспроизводит петлю гистерезиса. Чтобы придать этой кривой качественный смысл необходимо установить масштабы изображения, то есть произвести калибровку каналов X и Y ЭО.

Калибровка горизонтальной и вертикальной осей ЭО

Если известна чувствитльность K_x , то удвоенная амплитуда напряжения определеяется как:

$$2U_{x,0} = 2x \cdot K_x$$

Напряжение, подаваемое на O_y опредеим как:

$$2U_{y,0} = 2y \cdot K_y$$

При закороченной N_0 амперметр A измеряет эффективное значение синусоидального тока $I_{\text{эфф}}$. Сигнал подается на вход X ЭО. Измерив 2x – длину горизонтальной прямой на экране, можно рассчитать чувствительность канала $X-m_x$:

$$m_x = \frac{2R_0\sqrt{2}I_{\text{эфф}}}{2x} \frac{B}{\text{пел}}.$$
 (7)

Измерив 2y – длину вертикальной прямой на экране, рассчитаем чувствительность канала Y:

$$m_y = \frac{2\sqrt{2}KU_{9\Phi\Phi}}{2y} \frac{B}{\text{дел}}.$$
 (8)

Постоянная RC цепочки

Данная постоянная определяется экспериментально, измеряя амплитуды сигналов со входов X и Y. Константа времени высчитывается как $\tau = RC$. По (5) получаем:

$$\tau = RC = \frac{U_{\text{BX}}}{\Omega U_{\text{BX}}}.$$
 (9)

Задания

- 1. Для наблюдения петли гистерезиса на экране осциллографа собираем схему аналогично рисунку 2, после чего подключим цепь к сети питания, подберем ток и коэффициенты усиления так, чтобы предельная петля занимала большую часть экрана ЭО.
- 2. Для пермаллоя, кремнистого железа и феррита найдем предельную петлю Гистерезиса, указав для каждого объекта коэффициенты чувствительности по осям x и $y-K_x$ и K_y , а также ток $I_{•ф}$ в намагничивающей обмотке и параметры тороида.Плавно уменьшая ток намагничивания до нуля, для каждого из трех материалов восстановим начальную кривую Гистерезиса. Будем отмечать вершины наблюдаемых петель, они и образуют кривую.
 - Кроме того, для каждого образца восстановим предельную петлю с помощью данных с экрана Θ : измерим двойные амплитуды для коэрцитивной силы [2x(c)] и индукции насыщения [2y(s)]. Запишем соответствующие значения K_x и K_y .
- 3. Прокалибруем горизонтальную ось ЭО, для этого отключим намагничивающую обмотку N_0 от сети и снимем зависимость $2x[\text{дел}] = f(I_{\text{эфф}})$:

$$O_x:I_{eff}=1.74A;2x=8.8$$
дел $\Rightarrow m_x=rac{2R_0I_{eff}}{2x}=1.07\Rightarrow k_xpprox=1$

Для калибровки вертикальной оси осциллографа подключим вольтметр к обмотке 12.6 В. Не меняя K_y подберем напряжение U при котором стрелка вольтметра отклоняется максимально, после чего подадим на Y-вход напряжение с делителя, запишем получившиеся результаты $2y, U, k, k_y$.

$$O_y: U_{eff} = 130 \mathrm{mB}; 2y = 7.0$$
дел $\Rightarrow m_y = \frac{2\sqrt{2}U_{eff}}{2y} = 47.9 \mathrm{mB} \approx 50 \mathrm{mB}$

4. Определим τ – постоянную времени для RC-цепочки (1). Для этого разберем цепь тороида и подадим на вход RC-цепочки синусоидальное напряжение с обмотки 6.3 В трансформатора. Подобрав ток, при котором вертикальная прямая занимает большую часть экрана, мы можем найти входное напряжение $U_{\rm BX}=2yK_y$. По формуле (5) найдем выходное напряжение.

Запишем параметры RC-схемы: R=20 Ком, C=20мк Φ .

$$U_{\text{bx}} = 7.2 \text{B}, \ U_{\text{bbix}} = \frac{U_{\text{bx}}}{RC\Omega} = \frac{7.2}{2\Pi 50} = 0.056 \text{B}$$

Получаем, что по формуле (9):

$$\tau = \frac{U_{\text{вх}}}{\Omega U_{\text{вх}}} = 0.4 \text{сек}; \delta(\tau) = \tau \cdot \sqrt{(\frac{2 \cdot \delta(U_{\text{вх}})}{U_{\text{вх}}})^2} = 0.02 \Rightarrow \tau = 0.4 \pm 0.02 \text{сек}$$

5. Для каждого из трех материалов запишем H_c – коэрцитивную силу, B_s – индукцию насыщения, а также μ – дифференциальную магнитную проницаемость:

	Пермаллой (Fe-Ni)	Кремнистое железо(Fe-Si)	Феррит
$H_c, A/m$	37 ± 3	23 ± 4	320 ± 15
B_s , Тл	0.3 ± 0.04	0.8 ± 0.1	0.03 ± 0.05
$\mu, \frac{\mathrm{T}_{\mathrm{J}} \cdot \mathrm{M}}{\mathrm{A}}$	1	2	5

Вывод

С помощью экспериментальной установки мы исследовали процесс намагничивания ферромагнетиков: пермаллоя, кремнистого железа и феррита. Мы частично смогли смоделировать процесс появления петли Гистерезиса. Из нее мы смогли получить дифференциальную магнитную проницаемость исследуемых объектов. Возможно, что из-за плохих контактов проводов или же из-за неких других факторов не совсем точно удалось определить данные для кремнистого железа.

Приложение

Для каждого из объектов рассчитаем чувствительности каналов по формулам (7) и (8), после чего рассчитаем τ через параметры $R_{\rm u}$ и $C_{\rm u}$. Приняв ток $I=\sqrt{2}I_{\rm sph}$, рассчитаем напряженность поля H по формуле $H=\frac{IN_0}{2\Pi R}$, где N_0 – число витков намагничивающей обмотки. Теперь возможно будет построить график H=f(x) и рассчитать наклон калибровочной прямой $\alpha=\frac{\Delta H}{\Delta x}\frac{[{\rm A/m}]}{{\rm дел}}$. Рассчитаем $H_c,\,B_s,\,\mu_{\rm диф},$ взяв значения $2x(c),\,R_{\rm u},\,C_{\rm u}$. Для определения $\mu_{\rm диф}$ нам необходимо найти скорость подъема кривой в графике начальной кривой намагничивания.

Пермаллой (Fe-Ni)

Рис. 3: Предельная петля для пермаллоя

В ходе эксперимента мы плавно увеличиваем ток, попутно снимая процесс на видео, восстановим по видео координаты точек вершин начальной кривой, получим таблицу:

№	х, дел	у, дел
1	1.9	1.9
2	1.5	1.9
3	1.2	1.8
4	1.1	1.6
5	0.9	1.2
6	0.8	0.9
7	0.7	0.5
8	0.5	0.3
9	0.2	0.1

Таблица 1: Координаты вершин частных петель

$$K_x=0.5V; K_y=50 rac{mV}{\mathrm{дел}}; N_o=15$$
 витков ; $N_U=300$ витков ; $S=0.66~\mathrm{cm}^2; 2\Pi R=14.1~\mathrm{cm}$; $2x(c)=4~\mathrm{дел}$; $2y(s)=3.8~\mathrm{дел}$.

По данным установки рассчитаем следующие величины:
$$H = \frac{IN_0}{2\Pi R} = 18.7 \frac{A}{m}; \ B = \frac{R_{\text{и}}C_{\text{и}}U_{\text{внеш}}}{SN_U} = \frac{0.4 \cdot 7.2}{0.66 \cdot 300} = 0.15\text{Тл}; \ H_c = \frac{4 \cdot 0.187}{2} = 0.37 \frac{A}{\text{см}}; \ B_S = \frac{3.8 \cdot 0.15}{2} = 0.37 \text{ Tл}; \ \mu = 1 \frac{\text{Тл} \cdot \text{м}}{A}.$$

Кремнистое железо(Fe-Si)

Рис. 4: Предельная петля для кремнистого железа

Стоит отметить, что для данного случая петля гистерезиса сформировалась в предельном виде очень быстро – практически в самом начале эксперимента при наращивании напряженности магнитного поля у нас перестали меняться величины остаточной индукции B и коэрцитивной силы H_c .

Nº	х, дел	у, дел
1	0.7	0.6
2	0.6	0.55
3	0.5	0.5
4	0.4	0.4
5	0.3	0.2
6	0.15	0.1

Таблица 2: Координаты вершин частных петель

 $K_x=1V; K_y=50 rac{mV}{{
m дел}}; N_o=20$ витков ; $N_U=200$ витков ; S=2 см²; $2\Pi R=11$ см ; 2x(c)=1.4 дел ; 2y(s)=1.2 дел.

По данным установки рассчитаем следующие величины:
$$H = \frac{IN_0}{2\Pi R} = 32 \; \frac{A}{m}; \; B = \frac{R_u C_U U_{\rm внеш}}{SN_U} = 0.3 \; {\rm Tл}; \; H_c = 0.23 \frac{A}{\rm cm}; \; B_S = 0.8 \; {\rm Tл}; \; \mu = 2 \frac{{\rm Tn} \cdot {\rm m}}{\rm A}.$$

Феррит

Рис. 5: Предельная петля для феррита

№	х, дел	у, дел
1	1	1.9
2	0.9	1.7
3	0.8	1.6
4	0.7	1.4
5	0.6	0.8
6	0.4	0.2

Таблица 3: Координаты вершин частных петель намагничивания феррита

$$K_x=1V; K_y=50\frac{mV}{\text{дел}}; N_o=45 \text{ витков }; N_U=400 \text{ витков }; S=3 \text{ см}^2; 2\Pi R=25 \text{ см };$$
 $2x(c)=2$ дел $;2y(s)=3.8$ дел.

По данным установки рассчитаем следующие величины:
$$H=3.2\frac{IN_0}{2\Pi R}=\frac{A}{m};\;B=\frac{R_uC_UU_{\rm BHeIII}}{SN_U}=0.024\;{\rm Tr};\;H_c=0.04\;\frac{A}{\rm cm};\;B_S=0.05{\rm Tr};\;\mu=5\;\frac{{\rm Tr}\cdot{\rm m}}{{\rm A}}.$$