中 国 科 学 技 术 大 学 2018 - 2019学年第一学期期中考试试卷

考试科目: 线性代数B	得分:	
所在院、系:	学号:	_
一、填空题: 【共30分,每空5分】		
1. 设 \mathbf{A} 为三阶矩阵, 将 \mathbf{A} 的第二列加到第 $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix}$		
与第三行得到矩阵 \mathbb{C} , $P_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$,	$P_2 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 则C与A的关	系
为(矩阵等式).	(" " ")	
$2.$ 设 $\alpha_1, \alpha_2, \alpha_3$ 均为 3 维列向量,记矩阵		
$A = (\alpha_1, \alpha_2, \alpha_3), B = (\alpha_1 + \alpha_2 + \alpha_3, \alpha_1)$	$(1+2\alpha_2+4\alpha_3,\alpha_1+3\alpha_2+9\alpha_3)$	
如果 $ A = 1$,则 $ B =$		
3. 设矩阵 $\begin{pmatrix} 0 & a & b \\ 0 & c & d \\ e & 0 & 0 \end{pmatrix}$ 可逆,则其逆矩阵为		
4. 设 \mathbf{A} , $\mathbf{B} \in \mathbb{R}^{2 \times 2}$, \mathbf{A}^* , \mathbf{B}^* 分别为 \mathbf{A} , \mathbf{B} 的伴随		
阵 (O A) 的伴随矩阵为		
5. 从 \mathbb{R}^2 的基 $\alpha_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ 到基/	$eta_1=\left(egin{array}{c}1\\1\end{array} ight),eta_2=\left(egin{array}{c}1\\2\end{array} ight)$ 的过渡矩	阵

……蒙订线 答题时不要超过此线………

- 6. 设 $\alpha_1 = (1, 2, -1, 0)^T$, $\alpha_2 = (1, 1, 0, 2)^T$, $\alpha_3 = (2, 1, 1, a)^T$, 若由 $\alpha_1, \alpha_2, \alpha_3$ 所生成的向量空间的维数为2, 则 $a = \underline{\hspace{1cm}}$.
- 二、【20分】判断题:判断下列命题是否正确。正确的请简要说明理由,错误的请举出反例。
- 1. 设矩阵 $A, B, C \in \mathbb{R}^{n \times n}$,若AB = C 且B 可逆, 则C 的行向量与矩阵A 的行向量等价.
- 2. 若线性方程组有唯一解,则可用Cramer法则求解.
- 3. \mathbb{R}^n 中向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 生成的子空间维数比向量组 $\beta_1,\beta_2,\cdots,\beta_t$ 生成的子空间维数小,则 $s\leq t.$
- 4. V是 \mathbb{R} 上所有n阶奇异方阵的全体;V是定义加法为矩阵的加法,数乘为矩阵的数乘.则V可构成线性空间.

三、【12分】矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 3 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
,求矩阵 \mathbf{A} 的行列式和逆矩阵.

四、【14分】设A =
$$\begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ 0 & -4 & -2 \end{pmatrix}$$
, $\xi_1 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$.

- (1) 求满足 $\mathbf{A}\xi_2 = \xi_1$, $\mathbf{A}^2\xi_3 = \xi_1$ 的所有向量 ξ_2, ξ_3 ;
- (2) 对(1) 中的任意向量 ξ_2, ξ_3 , 证明 ξ_1, ξ_2, ξ_3 线性无关.

五、【12分】设 $\mathbf{A} \in \mathbb{R}^{4 \times 3}$, η_1, η_2, η_3 是非齐次线性方程组 $\mathbf{A}\mathbf{x} = \beta$ 的三个线性无关的解, 求 $\mathbf{A}\mathbf{x} = \beta$ 的通解.

六、【12分】 $\mathbf{A} = \mathbf{P}^{-1} diag(\lambda_1, \lambda_2, \cdots, \lambda_n) \mathbf{P}$, 其中 \mathbf{P} , \mathbf{A} 都是 \mathbb{R} 上n阶方阵, $\{\lambda_i\}_{1 \leq i \leq n}$ 两 两不等. $V = \{\mathbf{B} \in \mathbb{R}^{n \times n} : \mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A}\}$.

- (1)证明: V构成R上线性空间(加法与数乘分别是矩阵的加法与数乘).
- (2)求V的基与维数.