

EKSAMEN I KJ 2050, GRUNNKURS I ANALYTISK KJEMI (7,5 sp)

Tirsdag 20. desember 2011 kl. 9.00 – 13.00.

Oppgavesettet er på tre sider. Tillatte hjelpemidler: lommekalkulator.

Alle oppgaver skal besvares, men i *oppgave2e besvares et av de to alternativene "ENTEN" eller "ELLER". Tilsvarende besvares et av de to alternativene enten/eller i oppgave 3c.*

Sensurfrist 27. januar 2012 (3 uker + 10 dager).

Kontaktpersoner under eksamen: Øyvind Mikkelsen (928 99 450)

Oppgave 1. (5p + 7p + 2p + 3p + 3p = 20p totalt)

Vi har 50 mL løsning med 0,005 M strontium. Denne skal titrere mot en 0,01 M standard EDTA-løsning. Titreringen utføres ved pH 12,5 i en bufferløsning som holder Sr²⁺ i løsning, og med mureksid som indikator.

- a. Sett opp utrykket for titrerfeilen (T), og beregn den teoretiske gjenværende Sr²⁺ konsentrasjonen ved ekvivalenspunktet.
- b. Beregn titrerfeilen i prosent for denne titreringen hvis man antar at gjenværende strontiumkonsentrasjon er i området $1*10^{-5}$ til $1*10^{-7}$ M. Kommenter svarene.
- c) Vi tenker i et nytt tilfelle; prøven over kan i noen tilfeller også inneholde signifikante mengder av løste Li⁺ eller Cu²⁺ ioner. Dannelseskonstantene for EDTA kompleksene med Li⁺ og Cu²⁺ er på hhv 8,9 * 10² og 6,0 * 10¹⁸. Hvilket av disse ionene vil spesielt kunne interferere i en eventuell EDTA titrering under betingelsene gitt i a?
- d. Det finnes forskjellig måter å bestemme kationkonsentrasjonen ved EDTA-titreringer. Det skal bestemmes Ca²⁺ med EDTA titrering. Beskriv hvordan dette kan gjøres ved direkte titrering, tilbake-titrering, og "fortrengningsmetoden" (displacement method). Angi også i hvilke typiske tilfeller det er hensiktsmessig å velge den enkelte metode.
- e. Beskriv kort en alternativ metode for Ca²⁺ bestemmelse i konsentrasjonsområdet 1*10⁻² M til 1-10⁻⁵ M, og vurder denne metoden mot komplekstitreringen med hensyn på viktige feilkilder og interferenser.

Oppgave 2. (5p + 3p + 2p + 2p + 5p = 17p totalt)

- a. Fellingsgravimetri er basert på at prøveløsningen tilsettes et kjemisk reagens som danner en tungt løselig forbindelse med analytten. Medfelling er en mulig feilkilde i denne metoden. Gjør rede for ulike typer av medfelling, og forklar hvordan disse kan påvirke resultatet og hvordan man kan gå frem for å få et bedre resultat.
- b. Forklar kort prinsippet for elektrogravimetri (uten kontroll av katodepotensial), og gjør en kort evaluering av denne metoden mot fellingsgravimetri med hensyn på feilkilder, interferenser, nøyaktighet og presisjon.
- c. Hva slags katode- og anodemateriale vil være egnet for bestemmelse av henholdsvis kobber og sink i elektrogravimetri?
- d. Studer Figur 1 og forklar hva som observeres her i en elektrogravimetrisk analyse, og forklar videre hvorfor det tilsettes depolarisator som for eksempel nitrat i slike analyser.

Figur 1

ENTEN

e. Beskriv prosedyre og gjør en sammenligning av gravimetrisk og spektrofotometrisk bestemmelse av jern. Vurder viktige feilkilder og interferenser i de to metodene. Beskriv hvordan kvantifiseringen gjøres i de to metodene.

ELLER

e. Beskriv prosedyre og gjør en sammenligning av elektrogravimetrisk og iodometrisk bestemmelse av kobber. Vurder viktige feilkilder og interferenser i de to metodene. Beskriv hvordan kvantifiseringen gjøres i de to metodene.

Oppgave 3. (2p + 2p + 4p = 8p totalt)

- a. Hvilke krav stilles til en primærstandard i titreringsforsøk. Hva er forskjellen på endepunkt og ekvivalenspunkt i en titrering?
- b. Hvorfor har mange fargeindikatorer et omslagspunkt på ± 1 pH enhet i syre-base titreringer? Nevn noen andre metoder for å bestemme endepunktet i titreringer generelt.
- c. Beskriv en detaljert prosedyre for innstilling av *enten* en 0,1M HCl løsning *eller* en 0,1M NaOH løsning.

Oppgave 4. (10p + 5p = 15p totalt)

- a. Beskriv prinsippene for ICP-MS og atomabsorpsjonsspektroskopi. Angi deretter hva disse metodene brukes til og omtrentlig deteksjonsområde for metodene.
- b. Definer kort "speciering", og forklar deretter kort hva som er viktig med hensyn på valg av analytisk metode i forbindelse med specieringsstudier.

Oppgave 6. (10p)

Kryss av for riktig eller uriktig påstand

	Riktig	Galt
Jodid kan oksideres til jod i luft.		
Iod et viktig titreringsreagens fordi det er et sterkt oksidasjonsmiddel, og der-		
med kan brukes til å bestemme sterkt reduserende reagenser i nærvær av svake.		
$OCl^{-} + 2l^{-} + 2H^{+} = Cl^{-} + I_{2} + H_{2}O$		
$I_2 + OH^- = IO^- + I^- + H^+$		
Fellingstitrering med sølvnitrat brukes for å bestemme kationer som sink, mag-		
nesium og kalsium.		
Volhart titreringen går i korte trekk ut på at Fe ³⁺ bestemmes ved titrering med		
tiocyanat, med Ag ⁺ tilsatt som indikator.		
Potensiometri bygger på måling av potensial ved tilnærmet null strøm i den		
elektrokjemiske kretsen.		
Ioneselektive elektroder har en logaritmisk respons.		
Voltammetri et en analytisk metode som spesielt egner seg godt til å bestemme		
alkalie og jordalkaliemetaller.		
Voltammetri er en følsom teknikk med deteksjonsgrenser for flere viktige spor-		
og tungmetaller i ppt - ppb området.		