# **CIS 678 Machine Learning**

**ML Introduction**: Linear Regression (part 1)

### What we'd like to accomplish today

- General Concepts: Straight Line to Linear Regression
- Gradient Descent Algorithm
  - → A simple two parameter **Linear Regression** model
  - → Hands on **Notebook implementation**
- QA

#### What we have learned so far!

- k-Nearest neighbors (k-NN)

 You are given a set of data points of two classes: red triangles, and blue squares



- You are given a set of data points of two classes: red triangles, and blue squares
- And asked to develop a ML model that can classify (a new data point )between these two classes.



- k-Nearest neighbors (k-NN)
  - Supervised learning
  - Non parametric (Distance based method)
  - Both for Classification and Regression solutions

Circles are drawn using L2/Euclidean
Distance



- k-Nearest neighbors (k-NN)
  - Supervised learning
  - Non parametric (Distance based method)
  - Both for Classification and Regression solutions

This is a red triangle **A** vs blue square classification problem







What other classification problem you can think of?

- Email Spam filter:  $y \in \{0,1\}$
- Face recognition:  $y \in \{you, your friend, ...\}$
- Cancer detection:  $y \in \{0, 1\}$
- News topic detection: y ∈ { politics, sports, ...}
- Sentiment classification:  $y \in \{happy, sad, ...\}$



# We will be learning today about Regression

- Insurance cost:  $y \in R$
- House price:  $y \in R$
- Weather prediction:  $Y \in R$
- Energy consumption:  $y \in R$
- Sales forecasting:  $y \in R$

### We will be learning today about Regression

Person's weight : y ∈ R

$$f(y|x=height)$$



# Given these two data points



Given two known data points  $(x_1, y_1)$ , and  $(x_2, y_2)$ , and



Given two known data points  $(x_1, y_1)$ , and  $(x_2, y_2)$ , and



Given two known data points  $(x_1,y_1)$ , and  $(x_2,y_2)$ , and

- for test input x', you have to predict y(x').
- I.e. you have to plot  $(x^{/}, ?)$



Given two known data points  $(x_1, y_1)$ , and  $(x_2, y_2)$ , and

- for test input x', you have to predict y(x').
- I.e. you have to plot  $(x^{\prime}, ?)$
- To estimate the distances let's draw the vertical line



Given two known data points  $(x_1, y_1)$ , and  $(x_2, y_2)$ , and

- for test input x', you have to predict y(x').
- I.e. you have to plot  $(x^{\prime}, ?)$
- To estimate the distances let's draw the vertical line
- Horizontal dotted lines show the point distances (L1)



Given two known data points  $(x_1, y_1)$ , and  $(x_2, y_2)$ , and

- for test input x', you have to predict y(x').
- I.e. you have to plot  $(x^{i}, ?)$
- To estimate the distances let's draw the vertical line
- Horizontal dotted lines show the point distances (L1)
- We find the lighter green on is the closest one [k(1)-NN]

-



Given two known data points  $(x_1, y_1)$ , and  $(x_2, y_2)$ , and

- for test input x', you have to predict y(x').
- I.e. you have to plot  $(x^{/}, ?)$
- To estimate the distances let's draw the vertical line
- Horizontal dotted lines show the point distances (L1)
- We find the lighter green on is the closest one [k(1)-NN]
- We propagate the associated label(s), i.e.

$$y(x') = y_2$$

 If we have more data points we may go for a higher k, and take the average

# Our Second (Supervised) Model

A simple straight line

# Linear equation, a quick review



Given two data points

# Linear equation, a quick review



We can fit a linear equation



$$y = \beta_0 + \beta_1 x$$

- A simple model with parameters: **slope**, and **intercept**
- For any given X', this model can predict y(X') using the above equation.



$$y = \beta_0 + \beta_1 x$$

- A simple model with parameters: **slope**, and **intercept**
- For any given x', this model can predict y(x') using the above equation.



$$y = \beta_0 + \beta_1 x$$

- A simple model with parameters: **slope**, and **intercept**
- For any given X', this model can predict y(X') using the above equation.

# k-NN vs. Linear Equation

Model (class) comparison!







Failed to capture the LR relationship

Given two known data points  $(x_1, y_1)$ , and  $(x_2, y_2)$ , and

- for test input x', you have to predict y(x').
- I.e. you have to plot (x<sup>1</sup>, ?)
- To estimate the distances let's draw the vertical line
- Horizontal dotted lines show the point distances (L1)
- We find the lighter green on is the closest one [k(1)-NN]
- We propagate the associated label(s), i.e.

$$y(x') = y_2$$

 If we have more data points we may go for a higher k, and take the average



$$y = \beta_0 + \beta_1 x$$

- A simple model with parameters: **slope**, and **intercept**
- For any given x', this model can predict y(x') using the above equation.

QA