EECS340 - Algorithms - HW#4

Mark Schultz - mxs802

September 30, 2010

6.1-7

The nodes past n/2 are leaves because the children, found at 2n and 2n+1 would be past the end of the array. Therefore they must be leaves because they cannot have any children.

	A	В	С	D	Ε	F	G	Н	I	J	K	L
	1	2	3	4	5	6	7	8	9	10	11	12
ĺ	n	n	n	n	n	n	1	1	l	1	1	l

6.3-3

Assume there are $\lceil n/2 \rceil$ leaves with h = 0

f(T,h) is the number of nodes with height h in heap T.

n(T) is the number of nodes in heap T

Hypothesis: $f(T,h) \leq \lceil \frac{n(T)}{2^{h+1}} \rceil$ $f(n(T),h-1) \leq \frac{n(T)}{2^h}$ therefore, if the height of a node in T is h then the height of a node in T' is h-1.

$$f(n(T), h) = f(n(T\prime), h - 1)$$

$$\leq \lceil \frac{n(T\prime)}{2^h} \rceil$$

$$n(T\prime) = \lfloor \frac{n(T)}{2} \rfloor$$

$$\leq \lceil \frac{\lfloor \frac{n(T)}{2} \rfloor}{2^h} \rceil$$

$$\leq \lceil \frac{n(T)}{2^{h+1}} \rceil$$

6.5-6

- 1: while i > 1 and A[PARENT(i)] < key do
- 2: A[i] = A[PARENT(i)]
- 3: i = PARENT(i)
- 4: end while
- 5: A[i] = key