- 1.1.1. Seven students go on vacations. They decide that each will send a postcard to three of the others. Is it possible that every student receives postcards from precisely the three to whom he sent postcards?
- 1.1.2. a. Prove that for every even number  $n \ge 4$  there exists a graph with n vertices, all of which have degree 3, without using Theorem 1.1.2.
  - b. Prove that for every odd number  $n \ge 5$  there exists a graph with n+1 vertices such that exactly n vertices have degree 3.
- 1.1.3. Prove that for every number  $n \ge 5$  there exists a graph with n vertices, all of which have degree 4.

| 1.1.5. | Show that in a graph the number of vertices of odd degree is even. |
|--------|--------------------------------------------------------------------|
|        |                                                                    |



- a) (4, 3, 2, 2, 1)
- b) (4, 3, 3, 3, 1).

| 1.1.11. | Draw a graph<br>four of which h |  | of which | have degree | 4 and |
|---------|---------------------------------|--|----------|-------------|-------|
|         |                                 |  |          |             |       |

- 1.2.1. Find a graph with five vertices and with exactly
  - a. one cycle
  - b. three cycles
  - c. six cycles.
- 1.2.2. Find a graph with five vertices and exactly 22 cycles.
- 1.2.3. Find a graph with five vertices and exactly 13 cycles.
- 1.2.4. Find a graph G with six vertices and seven edges such that G does not contain a subgraph isomorphic to  $C_4$ . (There are several solutions.)
- 1.2.5. Find a graph G with p = 6 and q = 12 such that G has no subgraph isomorphic to  $K_4$ .

1.2.6. Tion would you communicate the graph of Figure 1.1.16

- 1.2.7. Prove that the two graphs in Figure 1.2.6 are isomorphic.
- 1.2.8. Consider the graphs in Figure 1.2.4. Are any two of them isomorphic? Prove that your answer is correct.



**Figure 1.2.6** 

1.2.9. Are any two of the graphs in Figure 1.2.7 isomorphic? Prove that your answer is correct.







Figure 1.2.4



**Figure 1.2.7** 



1.3.2. Let G be a connected graph with n vertices and n edges. How many cycles does G have?