Weierstrass-Enneperjeva konstrukcija minimalnih ploskev

Jon Pascal Miklavčič

Mentor: doc. dr. Uroš Kuzman

31. oktober 2024

Minimalne ploskve

Definicija

Ploskev $M\subset\mathbb{R}^3$ je minimalna natanko tedaj, ko za vsako točko $p\in M$ obstaja okolica, omejena z enostavno povezano krivuljo, ki ima najmanjšo ploščino izmed vseh ploskev z isto robno krivuljo.

Geometrijska definicija je lokalna. Povezava z milnimi mehurčki.

Srednja ukrivljenost

Definicija

Naj bo $\gamma:t\mapsto (x(t),y(t))$ regularna C^2 parametrizacija krivulje. Potem polarni kot $\phi(t):=\arg(\dot{x}(t),\dot{y}(t))$ obstaja za vse t. Predznačeno ukrivljenost definiramo kot:

$$\kappa := \frac{d\phi}{ds} = \frac{\ddot{y}\dot{x} - \ddot{x}\dot{y}}{\left(\dot{x}^2 + \dot{y}^2\right)^{3/2}}$$

Naj bo S ploskev v \mathbb{R}^3 in p točka na S. Vsaka ravnina skozi p, ki vsebuje normalo na ploskev na S odreže krivuljo. Ko to ravnino vrtimo za kot θ , se ukrivljenost krivulje spreminja.

Definicija

Za točko $p \in S$ definiramo srednjo ukrivljenost kot:

$$H = \frac{1}{2\pi} \int_0^{2\pi} \kappa(\theta) \, d\theta$$

Srednja ukrivljenost

Alternativne karakterizacije srednje ukrivljenosti:

- $H = \frac{1}{2} (\kappa_1 + \kappa_2)$, kjer sta κ_1 in κ_2 glavni ukrivljenosti;
- $2H = \operatorname{sl}(\operatorname{II}(\operatorname{II}),\operatorname{I}(\operatorname{I}^{-1}))$, kjer sta I in II prva in druga fundamentalna forma.

Trditev

Minimalne ploskve so tiste, ki imajo srednjo ukrivljenost 0, t.j. H = 0.

Naj bo r=r(u,v) regularna parametrizacija ploskve S.

Definicija

Prvo fundamentalno formo definiramo kot:

$$I = Edu^2 + 2Fdudv + Gdv^2$$

Koeficienti E, F in G so definirani kot:

$$E(u,v) = r_u \cdot r_u, \quad F(u,v) = r_u \cdot r_v, \quad G(u,v) = r_v \cdot r_v$$

Srednja ukrivljenost

Definicija

Drugo fundamentalno formo definiramo kot:

$$II = Ldu^2 + 2Mdudv + Ndv^2$$

Koeficiente L,M in N dobimo kot projekcije drugih parcialnih odvodov r na enostki normalni vektor $n=\frac{r_u\times r_v}{|r_u\times r_v|}$. Torej:

$$L = \langle r_{uu}, n \rangle, \quad M = \langle r_{uv}, n \rangle, \quad N = \langle r_{vv}, n \rangle$$

Matrika prve fundamentalne forme je $\begin{bmatrix} E & F \\ F & G \end{bmatrix}$.

Matrika druge fundamentalne forme v bazi $\{r_u, r_v\}$ je $\begin{bmatrix} L & M \\ M & N \end{bmatrix}$.

Srednjo ukrivljenost lahko tako izrazimo kot:

$$H = \frac{1}{2} \frac{EN - 2FM + GL}{EG - F^2}$$

Weierstrass-Enneperjeva parametrizacija

Izrek

Naj bosta f in g funkciji enotskem disku ali kompleksni ravnini taki, da je f holomorfna, g meromorfna in fg^2 holomorfna. Naj bodo c_1, c_2, c_3 kompleksne konstante. Potem je ploskev, podana s spodnjo parametrizacijo minimalna:

$$r_k(\zeta) = \operatorname{Re}\left\{ \int_0^{\zeta} \varphi_k(z) \, dz \right\} + c_k, \quad k = 1, 2, 3$$
$$\varphi_1 = f \left(1 - g^2 \right) / 2$$
$$\varphi_2 = i f \left(1 + g^2 \right) / 2$$
$$\varphi_3 = f g$$

Še več, vsaka minimalna ploskev, ki ima parametrizacijo, se da lokalno predstaviti na tak način.