

Very low drop voltage regulators with inhibit

Datasheet - production data

Features

- Very low dropout voltage (0.4 V)
- Very low quiescent current
- Typ. 50 μA in OFF mode, 600 μA in ON mode
- Output current up to 250 mA
- Logic controlled electronic shutdown
- Output voltages: 3.3; 3.5; 5; 12 V
- Automotive-grade product: 3.3 V V_{OUT} in SO-8 package only
- Internal current and thermal limit
- Only 2.2 μF for stability
- Available in ± 1 % (AB) or 2 % (C) selection at 25 °C
- Supply voltage rejection: 70 dB typ. for 5 V version
- Temperature range: from -40 to 125 °C

Description

The L4931 is a very low drop regulator available in SO-8, DPAK, PPAK and TO-92 packages and in a wide range of output voltages.

The very low drop voltage (0.4 V) and the very low quiescent current make it particularly suitable for low noise, low power applications and especially in battery-powered systems.

A TTL compatible shutdown logic control function is available in PPAK and SO-8 packages. This means that when the device is used as a local regulator, a part of the board can be put in standby mode, decreasing the total power consumption. It requires only a 2.2 µF capacitor for stability allowing space and cost saving.

The L4931 is available as automotive-grade in SO-8 package only. This device is qualified according to the specification AEC-Q100 of the automotive market, in the temperature range from 40 °C to 125 °C, and the statistical tests: PAT, SYL, SBL are performed.

Contents L4931

Contents

1	Diagran	n	3
2		nfiguration	
3	Maximu	ım ratings	5
4	Applica	ation circuit	6
5	Electric	cal characteristics	7
6	Typical	application	16
6 7	Packag	e information	17
	7.1	TO-92 package information	17
	7.2	TO-92 Ammopak packing information	18
	7.3	PPAK package information	20
	7.4	DPAK package information	22
	7.5	PPAK and DPAK paking information	25
	7.6	SO-8 package information	27
	7.7	SO-8 packing information	29
8	Orderin	ng information	30
9	Revisio	n history	31

L4931 Diagram

1 Diagram

Figure 1: Schematic diagram

Pin configuration L4931

2 Pin configuration

Figure 2: Pin connections (top view)

L4931 Maximum ratings

3 Maximum ratings

Table 1: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vı	DC Input voltage	20	V
lo	Output current	Internally limited	mA
P _D	Power dissipation	Internally limited	mW
T _{STG}	Storage temperature range	-40 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2: Thermal data

Symbol	Symbol Parameter		DPAK	SO-8	Unit
RthJC	R _{thJC} Thermal resistance junction-case		8	20	°C/W
R _{thJA}	Thermal resistance junction-ambient	200	100	55	°C/W

Application circuit L4931

4 Application circuit

Figure 3: Test circuit

L4931 Electrical characteristics

5 Electrical characteristics

(Refer to the test circuits, $T_A = 25$ °C, $C_I = 0.1$ μF , $C_O = 2.2$ μF unless otherwise specified).

Table 3: L4931ABxx33 electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
Vo	Output voltage	Io = 5 mA, V _I = 5.3 V		3.267	3.3	3.333	V
		$I_0 = 5 \text{ mA}, V_1 = 5.3 \text{ V},$ $T_A = -25 \text{ to } 85 ^{\circ}\text{C}$		3.234		3.366	
Vı	Operating input voltage	Io = 250 mA				20	V
l _{out}	Output current limit				300		mA
ΔVo	Line regulation	V _I = 4 to 20 V, I _O = 0.5 mA			3	15	mV
ΔV_{O}	Load regulation ⁽¹⁾	$V_1 = 4.2 \text{ V}, I_0 = 0.5 \text{ to } 250 \text{ mA}$			3	15	mV
Id	Quiescent current ON mode	V _I = 4.2 to 20 V, I _O = 0 mA			0.6	1	mA
		V _I = 4.2 to 20 V, I _O = 250 mA			4	6	
	OFF mode	V _I = 6 V			50	100	μΑ
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}$ $V_I = 5.2 \pm 1 \text{ V}$	f = 120 Hz		73		dB
			f = 1 kHz		70		
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V_{d}	Dropout voltage(1)	I _O = 250 mA			0.4	0.6	V
		Io = 250 mA, T _A = -40 to 125 °C				0.8	V
VIL	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
lı	Control input current	V _I = 6 V, V _C = 6 V			10		μΑ
Со	Output bypass capacitance	ESR = 0.1 to 10 Ω, Io = 0 to 250 mA		2	10		μF

 $^{^{(1)}}$ For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

Electrical characteristics L4931

(Refer to the test circuits, $T_A = 25$ °C, $C_I = 0.1$ μF , $C_O = 2.2$ μF unless otherwise specified).

Table 4: L4931Cxx33 electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
Vo	Output voltage	Io = 5 mA, V _I = 5.3 V		3.234	3.3	3.366	V
		$I_0 = 5 \text{ mA}, V_1 = 5.3 \text{ V},$ $T_A = -25 \text{ to } 85 ^{\circ}\text{C}$		3.168		3.432	
Vı	Operating input voltage	I _O = 250 mA				20	V
l _{out}	Output current limit				300		mA
ΔV_{O}	Line regulation	$V_1 = 4.1 \text{ to } 20 \text{ V}, I_0 = 0.5 \text{ mA}$			3	18	mV
ΔV_{O}	Load regulation ⁽¹⁾	$V_1 = 4.3 \text{ V}, I_0 = 0.5 \text{ to } 250 \text{ mA}$			3	18	mV
Id	Quiescent current ON mode	$V_1 = 4.3 \text{ to } 20 \text{ V}, I_0 = 0 \text{ mA}$			0.6	1	mA
		$V_1 = 4.3 \text{ to } 20 \text{ V}, I_0 = 250 \text{ mA}$			4	6	
	OFF mode	V _I = 6 V			50	100	μΑ
SVR	Supply voltage rejection	$I_0 = 5 \text{ mA}$ $V_1 = 5.3 \pm 1 \text{ V}$	f = 120 Hz		73		dB
			f = 1 kHz		70		
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V_d	Dropout voltage ⁽¹⁾	Io = 250 mA			0.4	0.6	V
		I _O = 250 mA, T _A = -40 to 125 °C				0.8	V
VIL	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
l ₁	Control input current	V _I = 6 V, V _C = 6 V			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, lo = 0 to 250 mA		2	10		μF

⁽¹⁾For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

L4931 Electrical characteristics

(Refer to the test circuits, T_A = -40 to 125 °C, C_I = 0.1 μF , C_O = 2.2 μF unless otherwise specified).

Table 5: L4931Cxx33-TRY (automotive-grade) electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
Vo	Output voltage	$I_O = 5 \text{ mA}, V_I = 5.3 \text{ V}$ $T_A = 25 \text{ °C}$		3.234	3.3	3.366	V
		$I_0 = 5 \text{ mA}, V_1 = 5.3 \text{ V}$		3.168		3.432	
Vı	Operating input voltage	Io = 250 mA				20	V
lout	Output current limit	T _A = 25 °C			300		mA
ΔV_{O}	Line regulation	$V_1 = 4.1 \text{ to } 20 \text{ V}, I_0 = 0.5 \text{ mA}$				20	mV
ΔVo	Load regulation	$V_1 = 4.3 \text{ V}, I_0 = 0.5 \text{ to } 250 \text{ mA}$				38	mV
I _d	Quiescent current ON mode	V _I = 4.3 to 20 V, I _O = 0 mA				1	mA
		$V_1 = 4.3 \text{ to } 20 \text{ V}, I_0 = 250 \text{ mA}$				6	
	OFF mode	V _I = 6 V				100	μΑ
SVR	Supply voltage rejection	$I_{O} = 5 \text{ mA}$ $V_{I} = 5.3 \pm 1 \text{ V}$ $T_{A} = 25 \text{ °C}$	f = 120 Hz		73		dB
			f = 1 kHz		70		
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kHz, $T_A = 25 ^{\circ}\text{C}$			50		μV
V _d	Dropout voltage	I _O = 250 mA, T _A = 25 °C			0.4	0.6	V
		Io = 250 mA				0.82	V
VIL	Control input logic low					0.82	V
V _{IH}	Control input logic high			2			V
lı	Control input current	V _I = 6 V, V _C = 6 V, T _A = 25 °C			10		μA
Со	Output bypass capacitance	ESR = 0.1 to 10 Ω , Io = 0 to 250 mA, $T_A = 25$ °C		2	10		μF

Electrical characteristics L4931

(Refer to the test circuits, $T_A = 25$ °C, $C_I = 0.1$ μF , $C_O = 2.2$ μF unless otherwise specified).

Table 6: L4931ABxx35 electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
Vo	Output voltage	Io = 5 mA, V _I = 5.5 V		3.465	3.5	3.535	V
		$I_0 = 5 \text{ mA}, V_1 = 5.5 \text{ V}$ $T_A = -25 \text{ to } 85 \text{ °C}$		3.43		3.57	
Vı	Operating input voltage	Io = 250 mA				20	V
l _{out}	Output current limit				300		mA
ΔVo	Line regulation	$V_1 = 4.2 \text{ to } 20 \text{ V}, I_0 = 0.5 \text{ mA}$			3	15	mV
ΔV_{O}	Load regulation ⁽¹⁾	$V_1 = 4.4 \text{ V}, I_0 = 0.5 \text{ to } 250 \text{ mA}$			3	15	mV
Id	Quiescent current ON mode	V _I = 4.4 to 20 V, I _O = 0 mA			0.6	1	mA
		$V_1 = 4.4 \text{ to } 20 \text{ V}, I_0 = 250 \text{ mA}$			4	6	
	OFF mode	V _I = 6 V			50	100	μΑ
SVR	Supply voltage rejection	I _O = 5 mA V _I = 5.4 ± 1 V	f = 120 Hz		73		dB
			f = 1 kHz		70		
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V_d	Dropout voltage ⁽¹⁾	Io = 250 mA			0.4	0.6	V
		I_{O} = 250 mA, T_{A} = -40 to 125 °C				0.8	V
VIL	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
lı	Control input current	V _I = 6 V, V _C = 6 V			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ to 250 mA		2	10		μF

⁽¹⁾For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

L4931 Electrical characteristics

(Refer to the test circuits, $T_A = 25$ °C, $C_I = 0.1$ μF , $C_O = 2.2$ μF unless otherwise specified).

Table 7: L4931Cxx35 electrical characteristics

Symbol	Parameter	Test conditio	ns	Min.	Тур.	Max.	Unit
Vo	Output voltage	$I_0 = 5 \text{ mA}, V_1 = 5.5 \text{ V}$		3.43	3.5	3.57	V
		I _O = 5 mA, V _I = 5.5 V T _A = -25 to 85 °C		3.36		3.64	
Vı	Operating input voltage	I _O = 250 mA				20	V
l _{out}	Output current limit				300		mA
ΔVo	Line regulation	V _I = 4.3 to 20 V, I _O = 0.5 mA			3	18	mV
ΔVo	Load regulation ⁽¹⁾	$V_1 = 4.5 \text{ V},$ $I_0 = 0.5 \text{ to } 250 \text{ mA}$			3	18	mV
	Quiescent current ON mode	$V_1 = 4.5 \text{ to } 20 \text{ V},$ $I_0 = 0 \text{ mA}$			0.6	1	mA
l _d		V _I = 4.5 to 20 V, I _O = 250 mA			4	6	
	OFF mode	V _I = 6 V			50	100	μΑ
			f = 120 Hz		73		
SVR	Supply voltage rejection	$I_0 = 5 \text{ mA}$ $V_1 = 5.5 \pm 1 \text{ V}$	f = 1 kHz		70		dB
		VI = 5.5 ± 1 V	f = 10 kHz		55]
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V _d	Dropout voltage(1)	I _O = 250 mA			0.4	0.6	V
		I _O = 250 mA, T _A = -40 to 125 °C				0.8	V
VIL	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
lı	Control input current	V _I = 6 V, V _C = 6 V			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , lo = 0 to 250 mA		2	10		μF

 $^{^{(1)}}$ For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

Electrical characteristics L4931

(Refer to the test circuits, $T_A = 25$ °C, $C_I = 0.1$ μF , $C_O = 2.2$ μF unless otherwise specified).

Table 8: L4931ABxx50 electrical characteristics

Symbol	Parameter	Test condition	ns	Min.	Тур.	Max.	Unit
Vo	Output voltage	Io = 5 mA, V _I = 7 V		4.95	5	5.05	V
		I _O = 5 mA, V _I = 7 V, T _A = -25 to 85 °C		4.9		5.1	
Vı	Operating input voltage	I _O = 250 mA				20	V
l _{out}	Output current limit				300		mA
ΔVo	Line regulation	V _I = 5.8 to 20 V, I _O = 0.5 mA			3.5	17.5	mV
ΔVo	Load regulation ⁽¹⁾	V _I = 6 V, I _O = 0.5 to 250 mA			3	15	mV
	Quiescent current ON mode	V _I = 6 to 20 V, I _O = 0 mA			0.6	1	mA
ld		V _I = 6 to 20 V, I _O = 250 mA			4	6	
	OFF mode	V _I = 6 V			50	100	μA
			f = 120 Hz		70		
SVR	Supply voltage rejection	$I_0 = 5 \text{ mA}$ $V_1 = 7 \pm 1 \text{ V}$	f = 1 kHz		67		dB
		VI=I±IV	f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V_{d}	Dropout voltage ⁽¹⁾	I _O = 250 mA			0.4	0.6	V
		I _O = 250 mA, T _A = -40 to 125 °C				0.8	>
VIL	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
l ₁	Control input current	V _I = 6 V, V _C = 6 V			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , Io = 0 to 250 mA		2	10		μF

 $^{^{(1)}}$ For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

L4931 Electrical characteristics

(Refer to the test circuits, $T_A = 25$ °C, $C_I = 0.1$ μF , $C_O = 2.2$ μF unless otherwise specified).

Table 9: L4931Cxx50 electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
Vo	Output voltage	Io = 5 mA, V _I = 7 V		4.9	5	5.1	V
		$I_0 = 5 \text{ mA}, V_1 = 7 \text{ V},$ $T_A = -25 \text{ to } 85 ^{\circ}\text{C}$		4.8		5.2	
Vı	Operating input voltage	Io = 250 mA				20	V
l _{out}	Output current limit				300		mA
ΔV_{O}	Line regulation	$V_1 = 5.8 \text{ to } 20 \text{ V}, I_0 = 0.5 \text{ mA}$			3.5	17.5	mV
ΔV_{O}	Load regulation ⁽¹⁾	$V_1 = 6 \text{ V}, I_0 = 0.5 \text{ to } 250 \text{ mA}$			3	15	mV
l _d	Quiescent current ON mode	V _I = 6 to 20 V, I _O = 0 mA			0.6	1	mA
		V _I = 6 to 20 V, I _O = 250 mA			4	6	
	OFF mode	V _I = 6 V			50	100	μΑ
SVR	Supply voltage rejection	$I_0 = 5 \text{ mA}$ $V_1 = 7 \pm 1 \text{ V}$	f = 120 Hz		70		dB
			f = 1 kHz		67		
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V_d	Dropout voltage(1)	Io = 250 mA			0.4	0.6	V
		$I_{O} = 250$ mA, $T_{A} = -40$ to 125 °C				0.8	V
VIL	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
l _l	Control input current	V _I = 6 V, V _C = 6 V			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 to 250 mA		2	10		μF

⁽¹⁾For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

Electrical characteristics L4931

(Refer to the test circuits, $T_A = 25$ °C, $C_I = 0.1$ μF , $C_O = 2.2$ μF unless otherwise specified).

Table 10: L4931ABxx120 electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
Vo	Output voltage	Io = 5 mA, V _I = 14 V		11.88	12	12.12	V
		$I_0 = 5 \text{ mA}, V_1 = 14 \text{ V},$ $T_A = -25 \text{ to } 85 ^{\circ}\text{C}$		11.76		12.24	
Vı	Operating input voltage	I _O = 250 mA				20	V
l _{out}	Output current limit				300		mA
ΔVo	Line regulation	V _I = 12.8 to 20 V, I _O = 0.5 mA			4	20	mV
ΔVo	Load regulation ⁽¹⁾	V _I = 13 V, I _O = 0.5 to 250 mA			3	15	mV
ld	Quiescent current ON mode	V _I = 13 to 20 V, I _O = 0 mA			0.8	1.6	mA
		$V_1 = 13 \text{ to } 20 \text{ V}, I_0 = 250 \text{ mA}$			4.5	7	
	OFF mode	V _I = 6 V			90	180	μA
SVR	Supply voltage rejection	I _O = 5 mA V _I = 14 ± 1 V	f = 120 Hz		64		dB
			f = 1 kHz		61		
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
Vd	Dropout voltage ⁽¹⁾	I _O = 250 mA			0.4	0.6	V
		I_{O} = 250 mA, T_{A} = -40 to 125 °C				0.8	V
VIL	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
lı	Control input current	V _I = 6 V, V _C = 6 V			10		μΑ
Со	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ to 250 mA		2	10		μF

⁽¹⁾For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

L4931 Electrical characteristics

(Refer to the test circuits, $T_A = 25$ °C, $C_I = 0.1~\mu F$, $C_O = 2.2~\mu F$ unless otherwise specified).

Table 11: L4931Cxx120 electrical characteristics

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
Vo	Output voltage	Io = 5 mA, V _I = 14 V		11.76	12	12.24	V
		$I_0 = 5 \text{ mA}, V_1 = 14 \text{ V},$ $T_A = -25 \text{ to } 85 ^{\circ}\text{C}$		11.52		12.48	
Vı	Operating input voltage	Io = 250 mA				20	٧
lout	Output current limit				300		mA
ΔVo	Line regulation	$V_1 = 12.9 \text{ to } 20 \text{ V}, I_0 = 0.5 \text{ mA}$			4	24	mV
ΔV_{O}	Load regulation ⁽¹⁾	$V_1 = 13.1 \text{ V}, I_0 = 0.5 \text{ to } 250 \text{ mA}$			3	18	mV
ld	Quiescent current ON mode	V _I = 13.1 to 20 V, I _O = 0 mA			0.8	1.6	mA
		V _I = 13.1 to 20 V, I _O = 250 mA			4.5	7	
	OFF mode	V _I = 6 V			90	180	μA
SVR	Supply voltage rejection	$I_0 = 5 \text{ mA}$ $V_1 = 14.1 \pm 1 \text{ V}$	f = 120 Hz		64		dB
			f = 1 kHz		61		
			f = 10 kHz		55		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V _d	Dropout voltage ⁽¹⁾	Io = 250 mA			0.4	0.6	V
		Io = 250 mA, T _A = -40 to 125 °C				0.8	V
VIL	Control input logic low	T _A = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _A = -40 to 125 °C		2			V
lı	Control input current	V _I = 6 V, V _C = 6 V			10		μA
Со	Output bypass capacitance	ESR = 0.1 to 10 Ω, lo = 0 to 250 mA		2	10		μF

 $^{^{(1)}}$ For SO-8 package the maximum limit of load regulation and dropout should be increased by 20 mV.

Typical application L4931

6 Typical application

Figure 5: Dropout voltage vs temperature

V_d(V)

0.7

0.6

0.5

0.4

0.3

0.2

-40

0

40

80

120

T_J(°C)

AMG050320171504MT

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

7.1 TO-92 package information

O102782_E

Figure 10: TO-92 package outline

Table 12: TO-92 mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
А	4.32		4.95	
b	0.36		0.51	
D	4.45		4.95	
Е	3.30		3.94	
е	2.41		2.67	
e1	1.14		1.40	
L	12.70		15.49	
R	2.16		2.41	
S1	0.92		1.52	
W	0.41		0.56	
V		5°		

Package information L4931

7.2 TO-92 Ammopak packing information

Figure 11: TO-92 Ammopak tape and reel outline

Table 13: TO-92 Ammopak tape and reel mechanical data

- Tubic	mm			
Dim.	Min.	Тур.	Max.	
A1			4.80	
Т			3.80	
T1			1.60	
T2			2.30	
d	0.45	0.47	0.48	
P0	12.50	12.70	12.90	
P2	5.65	6.35	7.05	
F1, F2	2.40	2.50	2.94	
F3	4.98	5.08	5.48	
delta H	-2.00		2.00	
W	17.50	18.00	19.00	
W0	5.5	6.00	6.5	
W1	8.50	9.00	9.25	
W2			0.50	
Н		18.50	21	
H3	0.5	1	2	
H0	15.50	16.00	18.8	
H1		25.0	27.0	
D0	3.80	4.00	4.20	
t			0.90	
L			11.00	
I1	3.00			
delta P	-1.00		1.00	

Package information L4931

7.3 PPAK package information

Figure 12: PPAK package outline

Table 14: PPAK mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
А	2.2		2.4	
A1	0.9		1.1	
A2	0.03		0.23	
В	0.4		0.6	
B2	5.2		5.4	
С	0.45		0.6	
C2	0.48		0.6	
D	6		6.2	
D1		5.1		
E	6.4		6.6	
E1		4.7		
е		1.27		
G	4.9		5.25	
G1	2.38		2.7	
Н	9.35		10.1	
L2		0.8	1	
L4	0.6		1	
L5	1			
L6		2.8		
R		0.20		
V2	0°		8°	

Package information L4931

7.4 DPAK package information

Figure 13: DPAK package outline

Table 15: DPAK mechanical data

	2 2 2 2 1 2 1 2 1 2 1 2 1	mm		
Dim.	Min.	Тур.	Max.	
A	2.20	- 76.	2.40	
A1	0.90		1.10	
A2	0.03		0.23	
b	0.64		0.90	
b4	5.20		5.40	
С	0.45		0.60	
c2	0.48		0.60	
D	6.00		6.20	
D1		5.10		
E	6.40		6.60	
E1		4.70		
е		2.28		
e1	4.40		4.60	
Н	9.35		10.10	
L	1.00		1.50	
(L1)		2.80		
L2		0.80		
L4	0.60		1.00	
R		0.20		
V2	0°		8°	

Package information L4931

Figure 14: DPAK recommended footprint (dimensions are in mm)

7.5 PPAK and DPAK paking information

Figure 15: PPAK and DPAK tape

Package information L4931

REEL DIMENSIONS

T

Access hole

At slot location

At slot location

T

T

Amount in core for tape start 25 mm min. width

Amount in core for tape start 25 mm min.

Figure 16: PPAK and DPAK reel

Table 16: PPAK and DPAK tape and reel mechanical data

Таре		Reel			
Dim	mm		Dim	mm	
Dim.	Min.	Max.	Dim.	Min.	Max.
A0	6.8	7	А		330
B0	10.4	10.6	В	1.5	
B1		12.1	С	12.8	13.2
D	1.5	1.6	D	20.2	
D1	1.5		G	16.4	18.4
Е	1.65	1.85	N	50	
F	7.4	7.6	Т		22.4
K0	2.55	2.75			
P0	3.9	4.1	Base qty. 2		2500
P1	7.9	8.1	Bulk	qty.	2500
P2	1.9	2.1			
R	40				
Т	0.25	0.35			
W	15.7	16.3			

7.6 SO-8 package information

Figure 17: SO-8 package outline

Table 17: SO-8 mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
А			1.75	
A1	0.10		0.25	
A2	1.25			
b	0.28		0.48	
С	0.17		0.23	
D	4.80	4.90	5.00	
Е	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е		1.27		
h	0.25		0.50	
L	0.40		1.27	
L1		1.04		
k	0°		8°	
ccc			0.10	

Package information L4931

Figure 18: SO-8 recommended footprint

7.7 SO-8 packing information

Figure 19: SO8-batwing tape and reel outline

Table 18: SO8-batwing mechanical data

Dim.	mm			
Diiii.	Min.	Тур.	Max.	
А			330	
С	12.8		13.2	
D	20.2			
N	60			
Т			22.4	
A0	8.1		8.5	
В0	5.5		5.9	
K0	2.1		2.3	
P0	3.9		4.1	
Р	7.9		8.1	

Ordering information L4931

8 Ordering information

Table 19: Order codes

Package					
TO-92	PPAK	DPAK	SO-8	SO-8 (automotive-grade)	Output voltage
			L4931CD27-TR	L4931CD27-TRY (1)	2.7 V
L4931CZ33-AP		L4931CDT33-TR	L4931CD33-TR	L4931CD33-TRY ⁽¹⁾	3.3 V
		L4931ABDT33-TR	L4931ABD33-TR		3.3 V
			L4931CD35-TR		3.5 V
		L4931ABDT35TR	L4931ABD35-TR		3.5 V
L4931CZ50-AP	L4931CPT50-TR	L4931CDT50-TR	L4931CD50-TR		5 V
		L4931ABDT50-TR	L4931ABD50-TR		5 V
			L4931CD80-TR		8 V
		L4931ABDT80-TR			8 V
			L4931CD120-TR		12 V
			L4931ABD120TR		12 V

 $^{^{(1)}}$ Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.

L4931 Revision history

9 Revision history

Table 20: Document revision history

Date	Revision	Changes	
21-Jun-2004	11	Document updating.	
14-Jun-2006	12	Order codes updated.	
31-Jan-2008	13	Added: Table 1 and new order codes for Automotive grade products.	
20-Feb-2008	14	Modified: Table 23 on page 36.	
11-Mar-2008	15	Modified: Table 1 on page 1 and Table 23 on page 36.	
15-Jul-2008	16	Modified: Table 1 on page 1 and Table 23 on page 36.	
18-Aug-2008	17	Modified: Table 23 on page 36.	
30-Oct-2013	18	Changed the L4931ABxx and L4931Cxx to L4931. Updated: Description in cover page. Deleted table1: Device summary. Updated Figure 2: Pin connections (top view), Table 2: Thermal data, Section 5: Electrical characteristics and Section 7: Package mechanical data. Added Section 8: Packaging mechanical data. Minor text changes.	
02-Aug-2017	19	Updated features in cover page. Deleted table 3: L4931Cxx27 electrical characteristics, table 4: L4931Cxx27- TRY (automotive-grade) electrical characteristics, table 12:L4931ABxx80 electrical characteristics, table 13: L4931Cxx80 electrical characteristics. Updated <i>Table 19: "Order codes"</i> . Minor text changes.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics:

<u>L4931CD27-TR</u> <u>L4931CZ50-AP</u> <u>L4931CD120-TR</u> <u>L4931CD50-TR</u> <u>L4931CD33-TR</u> <u>L4931CD750-TR</u> <u>L4931CD750-TR</u> <u>L4931ABD33-TR</u> <u>L4931ABD735-TR</u> <u>L4931ABD735-TR</u> <u>L4931ABD750-TR</u> <u>L4931CD750-TR</u> <u>L4931CD750-TR</u> <u>L4931CD733-TR</u> <u>L4931CD733-TR</u>