Algorithm Homework 05

Qiu Yihang

May 2022

1 Running Time of Randomized Algorithm

1.1 Expected Running Time of the Best Algorithm for Π

Proof. Define $\mathbf{A} \triangleq \{\overline{A} \mid \overline{A} \text{ is a randomized algorithm solving } \Pi.\}$ Note that $A \subset \mathbf{A}$.

CASE 01. \overline{A} is a deterministic algorithm, i.e. $\overline{A} \in \mathcal{A}$.

Obvious exists \mathcal{A} ,

$$\forall A \in \mathcal{A}, \quad \mathscr{A}(A) = \left\{ \begin{array}{ll} 1, & A = \overline{A} \\ 0, & \text{otherwise} \end{array} \right. \text{ s.t. } \mathbb{E}\left[T(\overline{A}, x)\right] = T(\overline{A}, x) = \mathbb{E}_{A \sim \mathscr{A}}\left[T(A, x)\right].$$

CASE 02. $\overline{A} \notin \mathcal{A}$.

Assume the running time of \overline{A} is only related to random variables $Y_1, Y_2, ... Y_{N_{\overline{A}}}$. In other words, if $Y_1, Y_2, ... Y_{N_{\overline{A}}}$ are given fixed values, $T(x, \overline{A})$ is deterministic for given x.

Let
$$\overline{A}(y_1, y_2, ... y_{N_{\overline{A}}})$$
 be the \overline{A} when $Y_1 = y_1, Y_2 = y_2, ... Y_{N_{\overline{A}}} = y_{N_{\overline{A}}}$.

Obvious for any $\overline{A} \in \mathbf{A}$, $N_{\overline{A}} < \infty$. (Otherwise, \overline{A} can not terminate in finite time, i.e. $\overline{A} \notin \mathbf{A}$.)

Then
$$\forall y_1, y_2, ... y_{N_{\overline{A}}}, \overline{A}(y_1, y_2, ... y_{N_{\overline{A}}}) \in \mathcal{A}$$
.

Thus, for a given input x,

$$\mathbb{E}\left[T(\overline{A},x)\right] = \mathbb{E}_{Y_1,Y_2,...Y_{N_{\overline{A}}}}\left[T\left(\overline{A}\left(Y_1,Y_2,...Y_{N_{\overline{A}}}\right),x\right)\right].$$

We can construct a distribution \mathcal{A} ,

$$\forall A \in \mathcal{A}, \quad \mathscr{A}(A) = \sum_{y_1, y_2, \dots y_{N_{\overline{A}}} \text{ s.t. } \overline{A}(y_1, y_2, \dots y_{N_{\overline{A}}}) = A} \mathbf{Pr} \left[Y_1 = y_1, Y_2 = y_2, \dots Y_{N_{\overline{A}}} = y_{N_{\overline{A}}} \right].$$

s.t.

$$\begin{split} \mathbb{E}_{A \sim \mathscr{A}} \left[T(A, x) \right] &= \sum_{A \in \mathcal{A}} \mathscr{A}(A) T(A, x) \\ &= \sum_{y_1, y_2, \dots y_{N_{\overline{A}}}} \mathbf{Pr} \left[Y_1 = y_1, Y_2 = y_2, \dots Y_{N_{\overline{A}}} = y_{N_{\overline{A}}} \right] T(\overline{A}(y_1, y_2, \dots y_{N_{\overline{A}}}), x) \end{split}$$

$$\begin{split} &= \mathbb{E}_{Y_1,Y_2,...Y_{N_{\overline{A}}}} \left[T \left(\overline{A} \left(y_1, y_2, ... y_{N_{\overline{A}}} \right), x \right) \right] \\ &= \mathbb{E} \left[T (\overline{A}, x) \right]. \end{split}$$

In conclusion, for any \overline{A} , we can find a distribution $\mathscr A$ over A s.t. the expected running time of \overline{A} on x is $T(\overline{A},x) = \mathbb{E}_{A \sim \mathscr A}[T(A,x)]$.

Therefore, the expected running time of the best algorithm of Π is

$$\begin{split} T_{\text{best}} &= \min_{\text{randomized algorithm \overline{A} solving Π}} \max_{x \in \mathcal{X}} \mathbb{E}\left[T(\overline{A}, x)\right] \\ &= \min_{\overline{A} \in \mathbf{A}} \max_{x \in \mathcal{X}} \mathbb{E}\left[T(\overline{A}, x)\right] = \min_{\substack{\text{distribution \mathscr{A} over A}}} \max_{x \in \mathcal{X}} \mathbb{E}_{A \sim \mathscr{A}}\left[T(A, x)\right] \end{split}$$

1.2 Yao's Minimax Principle

Proof. Consider a game with two player, \mathcal{P}_A and \mathcal{P}_X .

Player \mathcal{P}_A can determine the algorithm A while player \mathcal{P}_X can determine the input X. Let \mathcal{P}_X be the row player and \mathcal{P}_A be the column player. When \mathcal{P}_A pick an algorithm $A \in \mathcal{A}$ and \mathcal{P}_X pick an input $X \in \mathcal{X}$, both of them can receive a payoff of T(A, X).

Then strategies of \mathcal{P}_A and \mathcal{P}_X are actually distribution \mathscr{A} over \mathcal{A} and distribution \mathscr{X} over \mathcal{X} . The goal of \mathcal{P}_X is to maximize the expected payoff of \mathcal{P}_X , i.e.

$$\max_{\text{distribution } \mathscr{X} \text{ over } \mathcal{X} \text{ distribution } \mathscr{A} \text{ over } \mathcal{A} \sum_{a \in \mathcal{A}, x \in \mathcal{X}} T(a, x) \mathscr{X}(x) \mathscr{A}(a) = \max_{\text{distribution } \mathscr{X} \text{ over } \mathcal{X} \text{ } a \in \mathcal{A}} \sum_{x \in \mathcal{X}} T(a, x) \mathscr{X}(x)$$

$$= \max_{\text{distribution } \mathscr{X} \text{ over } \mathcal{X} \text{ } a \in \mathcal{A}} \min_{x \in \mathcal{A}} \mathbb{E}_{X \sim \mathscr{X}} \left[T(a, X) \right]$$

The goal of \mathcal{P}_A is to minimize the expected payoff of \mathcal{P}_X , i.e.

$$\begin{aligned} \min_{\text{distribution } \mathscr{A} \text{ over } \mathcal{A} \text{ distribution } \mathscr{X} \text{ over } \mathcal{X} & \sum_{a \in \mathcal{A}, x \in \mathcal{X}} T(a, x) \mathscr{X}(x) \mathscr{A}(a) = \min_{\text{distribution } \mathscr{A} \text{ over } \mathcal{A}} \max_{x \in \mathcal{X}} \sum_{a \in \mathcal{A}} T(a, x) \mathscr{A}(a) \\ &= \min_{\text{distribution } \mathscr{A} \text{ over } \mathcal{A}} \max_{x \in \mathcal{X}} \mathbb{E}_{A \sim \mathscr{A}} \left[T(A, x) \right] \end{aligned}$$

By Von Neumann's Minimax Theorem, we have

$$\begin{aligned} & \max_{\text{distribution } \mathcal{X}} & \min_{\text{over } \mathcal{X}} & \sum_{a \in \mathcal{A}, x \in \mathcal{X}} T(a, x) \mathcal{X}(x) \mathcal{A}(a) \\ = & \min_{\text{distribution } \mathcal{A}} & \max_{\text{over } \mathcal{X}} & \sum_{a \in \mathcal{A}, x \in \mathcal{X}} T(a, x) \mathcal{X}(x) \mathcal{A}(a) \end{aligned}$$

i.e.

$$\max_{\text{distribution } \mathscr{X} \text{ over } \mathcal{X}} \min_{a \in \mathcal{A}} \mathbb{E}_{X \sim \mathscr{X}} \left[T(a, X) \right] = \min_{\text{distribution } \mathscr{A} \text{ over } \mathcal{A}} \max_{x \in \mathcal{X}} \mathbb{E}_{A \sim \mathscr{A}} \left[T(A, x) \right]$$

1.3 Locating Problem

Solution. In any deterministic algorithm, we probe A[i] in a fixed order of i.

The worst case is that x will be probed in the last place of the order. Note that if the first (n-1) probing does not give x, we already know the only index not visited yet is the index of x.

Thus, the worst running time for a deterministic algorithm is n-1.

To improve the performance, we introduce randomization. Instead of probing A[i] in a fixed order of i, we uniformly pick an unvisited i, i.e. A[i] has not been probed yet, and probe A[i] to see if A[i] = x. Note that after at most (n-1) probings, we can determine the index of x.

For any fixed x, the expected time cost of the randomized algorithm is

$$T(n) = \frac{1}{n} \left(\sum_{k=1}^{n-1} k + (n-1) \right) = \frac{1}{n} \left[\left(\sum_{k=1}^{n} k \right) - 1 \right] = \frac{n+1}{2} - \frac{1}{n}.$$

1.4 The Lower Bound of Running Time on Locating Problem

Proof. By **1.1** and **1.2** (Yao's Minimax Principle), we know

$$\begin{split} T_{\text{best}} &= \min_{\text{distribution } \mathscr{X} \text{ over } A} \max_{x \in \mathscr{X}} \mathbb{E}_{A \sim \mathscr{A}} \left[T(A, x) \right] \\ &= \max_{\text{distribution } \mathscr{X} \text{ over } \mathscr{X}} \min_{a \in A} \mathbb{E}_{X \sim \mathscr{X}} \left[T(a, X) \right] \\ &= \max_{\text{distribution } \mathscr{X} \text{ over } \mathscr{X}} \left(\sum_{k=1}^{n-1} k \cdot \mathscr{X}(i_k) + (n-1) \cdot \mathscr{X}(i_n) \right) \\ &\qquad \qquad \text{where } \{i_1, i_2, \dots i_n\} = \{1, 2, \dots n\}, \mathscr{X}(i_1) \geq \mathscr{X}(i_2) \geq \dots \mathscr{X}(i_n) \\ &= \sum_{k=1}^{n-1} k \cdot \frac{1}{n} + (n-1) \frac{1}{n} \\ &= \frac{n+1}{2} - \frac{1}{n} \end{split}$$

Thus, any randomized algorithm for the problem in **1.3** costs at least $(\frac{n+1}{2} - \frac{1}{n})$ in expectation in the worst case.

Our algorithm in 1.3 also matches this lower bound.

2 Perfect Matching

2.1 Solution by Max-Flow

Solution. We can convert the problem into a max-flow problem as follows.

First consider $|V_1|$ and $|V_2|$. If $|V_1| \neq |V_2|$, obvious there does not exist a perfect matching.

When $|V_1| = |V_2|$, construct a graph G' = (V', E', capacity).

Construct source vertex s and sink vertex t. Then $V' = V1 \cup V_2 \cup \{s, t\}$.

Preserve all edges in E with capacity $+\infty$. Add edges from s to all $u \in V_1$ with capacity 1. Add edges from all $v \in V_2$ to t with capacity 1.

Then the original problem is equivalent to computing the max-flow on the graph G'. If the max-flow is exactly $|V_2|$ (which is also $|V_1|$), there exists a perfect matching.

2.2 Hall's Condition

Assumption. $|V_1| = |V_2|$.

Proof. Define $N_M(S) \triangleq \{u \in V_2 \mid \{u, v\} \in M \text{ for some } v \in S\}$.

Proof of Necessity. When graph G contains a perfect matching M, for any $v \in V_1$, exists exactly one edge in M, i.e. exists exactly one neighbor in V_2 . Thus, $\forall S \subset V_1$, $|N_M(S)| = |S|$.

We know
$$M \subset E \Longrightarrow \forall S \subset V_1, \ N_M(S) \subset N(S), \text{ i.e. } \forall S \subset V_1, \ |N(S)| \ge |N_M(S)| = |S|.$$

Proof of Sufficiency. Consider the min cut on the graph G'.

Since $(\{s\}, V_1 \cup V_2 \cup \{t\})$ is a cut with capacity $((\{s\}, V_1 \cup V_2 \cup \{t\})) = \text{degree}(s) = |V_1|$, we know the min cut is no larger than $|V_1|$. Now we prove that the min cut is exactly $|V_1|$ by contradiction.

Assume exists a cut $\mathtt{cut}^* \triangleq (\{s\} \cup A_2 \cup B_2, \{s\} \cup A_1 \cup B_1) \text{ s.t. } \mathtt{capacity}(\mathtt{cut}^*) < |V_1|, \text{ where } A_1 \cap A_2 = \varnothing, A_1 \cup A_2 = V_1, B_1 \cap B_2 = \varnothing, B_1 \cup B_2 = V_2.$

Obvious, $\forall e \in \mathsf{cut}^*, \ e \notin E$. Otherwise, $\mathsf{capacity}(\mathsf{cut}^*) \ge +\infty > |V_1|$.

Thus, any edge in cut* is either from s to some $v \in V_1$ or from some $u \in V_2$ to t. Then we know there are no edges between A_2 and B_1 . Also, capacity(cut*) = $|A_1| + |B_2| < |V_1| = |V_2|$.

This yields
$$|B_2| - |A_2| = |B_2| - |V_1| + |A_1| < |V_1| - |V_1| = 0 \Longrightarrow |B_2| < |A_2|$$
.

There are no edges between A_2 and $B_1 \Longrightarrow N(A_2) \subset V_2 \setminus B_1 = B_2$, i.e. $|N(A_2)| \le |B_2| < |A_2|$.

Thus, exists $S = A_2 \subset V_1$ s.t. |N(S)| < |S|. Contradiction to $\forall S \subset V_1, |N(S)| \ge |S|$.

Therefore, the min cut on graph G' is exactly $|V_1|$. By **Max-flow Min-cut Thm.**, we know the max flow on graph G' is $|V_1|$. By **2.1**, we know exists a perfect matching.

In conclusion, graph G contains a perfect matching iff. $\forall S \subset V_1, |N(S)| \geq |S|$.

3 Debt Network

Proof. Inspired by the process of **Fold-Fulkerson** Algorithm, we design the following algorithm to remove cycles from the debt network to convert it into one with (n-1) edges.

- 1. Initialization: $G^{(0)} = G, t \leftarrow 0.$
- 2. Regard $G^{(t)} = (V, E^{(t)}, w^{(t)})$ as an undirected graph. Try to find a cycle C_t on $G^{(t)}$. If cannot find such cycle, jump to step 6.
- 3. Find the edge $e^* = \{u^*, v^*\} \in C_t$ with minimum weight. Let $w^* = w^{(t)}(u^*, v^*)$. Let the direction of C_t be the same as the direction of e^* , i.e. $C: v_0 = u^* \to v_1 = v^* \to v_2 \to \dots \to v_k = u$.
- 4. Update the weight of all edges in C_t . $G^{(t+1)} \leftarrow G^{(t)} = (V, E^{(t)}, w^{(t)})$. For each edge e in the cycle C_t ,
 - If $e = \{v_i, v_{i+1}\}$ for some $i, w^{(t+1)}(v_i, v_{i+1}) \leftarrow w^{(t)}(v_i, v_{i+1}) w^*$. If $w^{(t+1)}(v_i, v_{i+1})$ is 0 after the update, remove edge $\{v_i, v_{i+1}\}$ from $G^{(t+1)}$.
 - If $e = \{v_{i+1}, v_i\}$ for some $i, w^{(t+1)}(v_{i+1}, v_i) \leftarrow w^{(t)}(v_{i+1}, v_i) + w^*$.
- 5. $t \leftarrow t + 1$. Jump to step 2.

Repeat step 2-5 on the updated graph $G^{(t)}$ (here t is already incremented).

6. Suppose t = T when the algorithm arrives at step 6.

We know $G^{(T)}$ contains no cycle when regarded as an undirected graph.

Obvious there are at most (n-1) edges in $G^{(T)}$.

Then $G^{(T)}$ provides how debts can be settled with at most (n-1) person-to-person payments, i.e. u pays v money with w(u,v) amount if $\{u,v\} \in E^{(T)}$.

Now we prove the correctness of the algorithm above, i.e. to prove that for any person, his or her total payment according to $G^{(T)}$ is exactly the same as the total payment according to G.

Define $\mathsf{pay}_t(u) \triangleq \sum_{v:\{u,v\} \in E^{(t)}} w(u,v) - \sum_{v:\{v,u\} \in E^{(t)}} w(v,u)$. The first term is the money u owes other people and the second term is the money u should receive from other people.

Then we only need to prove that $\forall u \in V, pay_0(u) = pay_T(u)$.

By the process of our algorithm, the change of $pay(\cdot)$ only happens in step 4.

Obvious for $u \notin C_t$, $pay_{t+1}(u) = pay_{t+1}(u)$.

For $u \in C_t$,

CASE 01. In C_t , the two edges adjacent to u are both from u to others, i.e. $\{u, u_1\}$, $\{u, u_2\}$. Obvious exactly one of these two edges is in the inverse direction of C_t . Thus,

$$\begin{split} \operatorname{pay}_{t+1}(u) &= \operatorname{pay}_t(u) - w^{(t)}(u,u_1) - w^{(t)}(u,u_2) + w^{(t+1)}(u,u_1) + w^{(t+1)}(u,u_2) \\ &= \operatorname{pay}_t(u) - w^* + w^* = \operatorname{pay}_t(u). \end{split}$$

CASE 02. In C_t , the two edges adjacent to u are both from other vertices to u.

Similar to CASE 01,
$$pay_{t+1}(u) = pay_t(u) - w^* + w^* = pay_t(u)$$
.

CASE 03. Exists $u_1, u_2 \in V$ s.t. $\{u, u_1\}, \{u_2, u\} \in C_t$.

1) When $\{u, u_1\}$ and $\{u_2, u\}$ are in the same direction as C_t 's.

$$\begin{split} \mathsf{pay}_{t+1}(u) &= \mathsf{pay}_t(u) - w^{(t)}(u,u_1) + w^{(t)}(u_2,u) + w^{(t+1)}(u,u_1) - w^{(t+1)}(u_2,u) \\ &= \mathsf{pay}_t(u) + \left(w^{(t+1)}(u,u_1) - w^{(t)}(u,u_1) \right) - \left(w^{(t+1)}(u_2,u) - w^{(t)}(u_2,u) \right) \\ &= \mathsf{pay}_t(u) - w^* + w^* = \mathsf{pay}_t(u). \end{split}$$

2) When $\{u, u_1\}$ and $\{u_2, u\}$ are in the inverse direction of C_t 's.

$$\begin{split} \operatorname{pay}_{t+1}(u) &= \operatorname{pay}_t(u) - w^{(t)}(u,u_1) + w^{(t)}(u_2,u) + w^{(t+1)}(u,u_1) - w^{(t+1)}(u_2,u) \\ &= \operatorname{pay}_t(u) + \left(w^{(t+1)}(u,u_1) - w^{(t)}(u,u_1) \right) - \left(w^{(t+1)}(u_2,u) - w^{(t)}(u_2,u) \right) \\ &= \operatorname{pay}_t(u) + w^* - w^* = \operatorname{pay}_t(u). \end{split}$$

 $\text{In conclusion, } \forall t \in \left\{0,1,...,T-1\right\}, \forall u \in V, \ \mathtt{pay}_{t+1}(u) = \mathtt{pay}_t(u).$

Thus,
$$\forall u \in V$$
, $pay_0(u) = pay_1(u) = \dots = pay_T(u)$.

Therefore, our algorithm is correct.

In other words, all debts can be settled with at most (n-1) person-to-person payments.

4 Rating and Feedback

The completion of this homework takes me three days, about 18 hours in total. Still, writing a formal solution is the most time-consuming part.

The ratings of each problem is as follows.

Problem	Rating
1.1	4
1.2	3
1.3	2
1.4	2
2.1	2
2.2	3
3	4

Table 1: Ratings.

This time I finish all problems on my own.