Лабораторная работа №4

Линейная алгебра

Дурдалыев Максат

Содержание

1	Введение		6		
	1.1	Цели и задачи	. 6		
2	Выполнение лабораторной работы				
	2.1	Поэлементные операции над многомерными массивами	7		
	2.2	Транспонирование, след, ранг, определитель и инверсия матрицы	12		
	2.3	Вычисление нормы векторов и матриц, повороты, вращения	16		
	2.4	Матричное умножение, единичная матрица, скалярное произведение	22		
	2.5	Факторизация. Специальные матричные структуры	25		
	2.6	Общая линейная алгебра	48		
	2.7	Самостоятельная работа	50		
3	Вы	воды	65		
Cı	Список литературы				

Список иллюстраций

2.1	Поэлементные операции сложения и произведения элементов	
	матрицы	8
2.2	Поэлементные операции сложения и произведения элементов	
	матрицы	9
2.3	Использование возможностей пакета Statistics для работы со	
	средними значениями	11
2.4	Использование библиотеки LinearAlgebra для выполнения	
	определённых операций	13
2.5	Использование библиотеки LinearAlgebra для выполнения	
	определённых операций	14
2.6	Использование библиотеки LinearAlgebra для выполнения	
	определённых операций	15
2.7	Использование LinearAlgebra.norm(x)	17
2.8	Использование LinearAlgebra.norm(x)	18
2.9	Вычисление нормы для двумерной матрицы	20
2.10	Вычисление нормы для двумерной матрицы	21
2.11	Примеры матричного умножения, единичной матрицы и	
	скалярного произведения	23
2.12	Примеры матричного умножения, единичной матрицы и	
	скалярного произведения	24
2.13	Решение систем линейный алгебраических уравнений Ax = b	26
	Пример вычисления LU-факторизации и определение составного	
	типа факторизации для его хранения	28
2.15	Пример вычисления LU-факторизации и определение составного	
	типа факторизации для его хранения	29
2.16	Пример решения с использованием исходной матрицы и с	
	использованием объекта факторизации	31
2.17	Пример вычисления QR-факторизации и определение составного	
	типа факторизации для его хранения	33
2.18	Примеры собственной декомпозиции матрицы А	35
	Примеры собственной декомпозиции матрицы А	36
2.20	Примеры работы с матрицами большой размерности и специальной	
	структуры	38
2.21	Примеры работы с матрицами большой размерности и специальной	
	структуры	39
2.22	Пример добавления шума в симметричную матрицу	41

2.23	Пример явного объявления структуры матрицы	43
2.24	Использование пакета BenchmarkTools	45
2.25	Примеры работы с разряженными матрицами большой размерности	47
2.26	Решение системы линейных уравнений с рациональными	
	элементами без преобразования в типы элементов с плавающей	
	запятой	49
2.27	Решение задания «Произведение векторов»	51
2.28	Решение задания «Системы линейных уравнений»	53
2.29	Решение задания «Системы линейных уравнений»	54
2.30	Решение задания «Системы линейных уравнений»	55
2.31	Решение задания «Операции с матрицами»	57
2.32	Решение задания «Операции с матрицами»	58
2.33	Решение задания «Операции с матрицами»	59
2.34	Решение задания «Операции с матрицами»	60
2.35	Решение задания «Линейные модели экономики»	62
2.36	Решение задания «Линейные модели экономики»	63
2.37	Решение задания «Линейные модели экономики»	64

Список таблиц

1 Введение

1.1 Цели и задачи

Цель работы

Основной целью работы является изучение возможностей специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры[2].

Задание

- 1. Используя Jupyter Lab, повторите примеры.
- 2. Выполните задания для самостоятельной работы[1].

2 Выполнение лабораторной работы

2.1 Поэлементные операции над многомерными массивами

Для матрицы 4 × 3 рассмотрим поэлементные операции сложения и произведения её элементов (рис. [fig:001] - рис. [fig:002]):

```
# Массив 4х3 со случайными целыми числами (от 1 до 20):
   a = rand(1:20,(4,3))
                                                                                           Julia
4×3 Matrix{Int64}:
 11 1 20
  8 8 9
 1 4 12
 19 4 5
   # Поэлементная сумма:
   sum(a)
                                                                                           Julia
102
   # Поэлементная сумма по столбцам:
   sum(a,dims=1)
                                                                                           Julia
1×3 Matrix{Int64}:
 39 17 46
   # Поэлементная сумма по строкам:
   sum(a,dims=2)
                                                                                           Julia
4×1 Matrix{Int64}:
 32
 25
 17
 28
```

Рисунок 2.1: Поэлементные операции сложения и произведения элементов матрицы

```
# Поэлементное произведение:
   prod(a)
                                                                                              Julia
2311372800
   # Поэлементное произведение по столбцам:
   prod(a,dims=1)
                                                                                              Julia
1×3 Matrix{Int64}:
1672 128 10800
                              ♦ Создать + Code + Markdown
                                     Добавить ячейку кода
   # Поэлементное произведение по строкам:
   prod(a,dims=2)
                                                                                              Julia
4×1 Matrix{Int64}:
220
 576
 48
 380
```

Рисунок 2.2: Поэлементные операции сложения и произведения элементов матрицы

Для работы со средними значениями можно воспользоваться возможностями пакета Statistics (рис. [fig:003]):

```
# Подключение пакета Statistics:
   import Pkg
   Pkg.add("Statistics")
   using Statistics
                                                                                                  Julia
Warning: could not download <a href="https://pkg.julialang.org/registries">https://pkg.julialang.org/registries</a>
    exception = Downloads.RequestError("https://pkg.julialang.org/registries", 6, "Could not res
Pkg.Registry C:\Users\durda\AppData\Local\Programs\Julia-1.11.7\share\julia\stdlib\v1.11\Pkg
    Updating registry at `C:\Users\durda\.julia\registries\General.toml`
   Resolving package versions...
    Updating `C:\Users\durda\.julia\environments\v1.11\Project.toml`
  [10745b16] + Statistics v1.11.1
  No Changes to `C:\Users\durda\.julia\environments\v1.11\Manifest.toml`
   # Вычисление среднего значения массива:
   mean(a)
                                                                                                  Julia
8.5
   # Среднее по столбцам:
   mean(a,dims=1)
                                                                                                  Julia
1×3 Matrix{Float64}:
9.75 4.25 11.5
   # Среднее по строкам:
   mean(a,dims=2)
                                                                                                  Julia
4×1 Matrix{Float64}:
10.66666666666666
  8.333333333333334
  5.6666666666667
  9.3333333333333334
```

Рисунок 2.3: Использование возможностей пакета Statistics для работы со средними значениями

2.2 Транспонирование, след, ранг, определитель и инверсия матрицы

Для выполнения таких операций над матрицами, как транспонирование, диагонализация, определение следа, ранга, определителя матрицы и т.п. можно воспользоваться библиотекой (пакетом) LinearAlgebra (рис. [fig:004] - рис. [fig:006]):

```
# Подключение пакета LinearAlgebra:
   import Pkg
   Pkg.add("LinearAlgebra")
   using LinearAlgebra
                                                                                        Julia
  Resolving package versions...
   Updating `C:\Users\durda\.julia\environments\v1.11\Project.toml`
  [37e2e46d] + LinearAlgebra v1.11.0
  No Changes to `C:\Users\durda\.julia\environments\v1.11\Manifest.toml`
   # Массив 4х4 со случайными целыми числами (от 1 до 20):
   b = rand(1:20,(4,4))
                                                                                        Julia
4×4 Matrix{Int64}:
  4 9 17 10
 19 17 16
 12 17 2 4
 10 5 8 7
   # Транспонирование:
   transpose(b)
                                                                                        Julia
4x4 transpose(::Matrix{Int64}) with eltype Int64:
 4 19 12 10
   17 17 5
 17 16 2 8
```

Рисунок 2.4: Использование библиотеки LinearAlgebra для выполнения определённых операций

```
# След матрицы (сумма диагональных элементов):
   tr(b)
                                                                                              Julia
30
   # Извлечение диагональных элементов как массив:
   diag(b)
                                                                                               Julia
4-element Vector{Int64}:
  4
 17
```

Рисунок 2.5: Использование библиотеки LinearAlgebra для выполнения определённых операций

```
# Ранг матрицы:
   rank(b)
                                                                                        Julia
4
   # Инверсия матрицы (определение обратной матрицы):
   inv(b)
                                                                                       Julia
4×4 Matrix{Float64}:
 -0.0701787 0.0271525 -0.0193084 0.0996519
 0.037967 -0.00278487 0.068647 -0.092272
 0.0372708 0.0510559 -0.0585287 -0.0416802
 0.0305407 -0.0951497 0.0454398 0.11404
   # Определитель матрицы:
   det(b)
                                                                                        Julia
21545.0
   # Псевдобратная функция для прямоугольных матриц:
   pinv(a)
                                                                                        Julia
3x4 Matrix{Float64}:
 0.0105221 -0.0131073 -0.0300566 0.0536406
 -0.0784612 0.113319
                         0.0477808 -0.00480308
  0.0436238 -0.00600186 0.0251503 -0.0240525
```

Рисунок 2.6: Использование библиотеки LinearAlgebra для выполнения определённых операций

2.3 Вычисление нормы векторов и матриц, повороты, вращения

Для вычисления нормы используется LinearAlgebra.norm(x) (рис. [$\mathbf{fig:007}$] - рис. [$\mathbf{fig:008}$]):

```
# Создание вектора Х:
   X = [2, 4, -5]
                                                                                              Julia
3-element Vector{Int64}:
  2
  4
 -5
   # Вычисление евклидовой нормы:
   norm(X)
                                                                                              Julia
6.708203932499369
   # Вычисление р-нормы:
   p = 1
   norm(X,p)
                                                                                              Julia
11.0
   # Расстояние между двумя векторами X и Y:
   X = [2, 4, -5];
   Y = [1,-1,3];
   norm(X-Y)
                                                                                              Julia
9.486832980505138
```

Рисунок 2.7: Использование LinearAlgebra.norm(x)

```
# Проверка по базовому определению:
   sqrt(sum((X-Y).^2))
                                                                                              Julia
9.486832980505138
   # Угол между двумя векторами:
   acos((transpose(X)*Y)/(norm(X)*norm(Y)))
                                                                                              Julia
2.4404307889469252
```

Рисунок 2.8: Использование LinearAlgebra.norm(x)

Вычислим нормы для двумерной матрицы (рис. [fig:009] - рис. [fig:010]):

```
# Создание матрицы:
   d = [5 -4 2; -1 2 3; -2 1 0]
                                                                                        Julia
3×3 Matrix{Int64}:
  5 -4 2
 -1 2 3
 -2 1 0
   # Вычисление Евклидовой нормы:
   opnorm(d)
                                                                                        Julia
7.147682841795258
   # Вычисление р-нормы:
   p=1
   opnorm(d,p)
                                                                                        Julia
8.0
   # Поворот на 180 градусов:
   rot180(d)
                                                                                        Julia
3×3 Matrix{Int64}:
 0 1 -2
   2 -1
 2 -4 5
```

Рисунок 2.9: Вычисление нормы для двумерной матрицы

```
# Переворачивание строк:
   reverse(d,dims=1)
                                                                                        Julia
3x3 Matrix{Int64}:
 -2 1 0
 5 -4 2
   # Переворачивание столбцов
   reverse(d,dims=2)
                                                                                        Julia
3x3 Matrix{Int64}:
 3 2 -1
0 1 -2
```

Рисунок 2.10: Вычисление нормы для двумерной матрицы

2.4 Матричное умножение, единичная матрица, скалярное произведение

Выполним примеры матричного умножения, единичной матрицы и скалярного произведения (рис. [fig:011] - рис. [fig:012]):

```
# Матрица 2x3 со случайными целыми значениями от 1 до 10:
   A = rand(1:10,(2,3))
                                                                                        Julia
2×3 Matrix{Int64}:
5 1 6
 7 9 1
   # Матрица 3х4 со случайными целыми значениями от 1 до 10:
   B = rand(1:10,(3,4))
                                                                                        Julia
3×4 Matrix{Int64}:
2 2 5 8
7 7 6 8
2 3 1 10
   # Произведение матриц А и В:
   A*B
                                                                                        Julia
2×4 Matrix{Int64}:
29 35 37 108
79 80 90 138
   # Единичная матрица 3х3:
   Matrix{Int}(I, 3, 3)
                                                                                        Julia
3×3 Matrix{Int64}:
1 0 0
 0 1 0
 0 0 1
```

Рисунок 2.11: Примеры матричного умножения, единичной матрицы и скалярного произведения

```
# Скалярное произведение векторов X и Y:
  X = [2, 4, -5]
  Y = [1,-1,3]
   dot(X,Y)
                                                                                             Julia
-17
   # тоже скалярное произведение:
   χιγ
                                                                                             Julia
-17
```

Рисунок 2.12: Примеры матричного умножения, единичной матрицы и скалярного произведения

2.5 Факторизация. Специальные матричные структуры

Рассмотрим несколько примеров. Для работы со специальными матричными структурами потребуется пакет LinearAlgebra.

Решение систем линейный алгебраических уравнений Ax = b (рис. [fig:013]):

```
# Задаём квадратную матрицу 3х3 со случайными значениями:
   A = rand(3, 3)
                                                                                     Julia
3×3 Matrix{Float64}:
0.00262414 0.892017 0.871027
0.479004 0.508546 0.0166509
  # Задаём единичный вектор:
  x = fill(1.0, 3)
   # Задаём вектор b:
   b = A*x
   # Решение исходного уравнения получаем с помощью функции \
   # (убеждаемся, что х - единичный вектор):
   A\b
                                                                                     Julia
3-element Vector{Float64}:
1.000000000000000000
1.0
1.0
```

Рисунок 2.13: Решение систем линейный алгебраических уравнений Ax = b

Julia позволяет вычислять LU-факторизацию и определяет составной тип факторизации для его хранения (рис. [fig:014] - рис. [fig:015]):

```
# LU-факторизация:
   Alu = lu(A)
                                                                                      Julia
LU{Float64, Matrix{Float64}, Vector{Int64}}
L factor:
3×3 Matrix{Float64}:
1.0
            0.0
                     0.0
 0.00547834 1.0
                     0.0
0.769963 0.548242 1.0
U factor:
3×3 Matrix{Float64}:
0.479004 0.508546 0.0166509
         0.889231 0.870935
 0.0
          0.0 -0.445061
   # Матрица перестановок:
   Alu.P
                                                                                      Julia
3×3 Matrix{Float64}:
0.0 0.0 1.0
 0.0 1.0 0.0
1.0 0.0 0.0
   # Вектор перестановок:
   Alu.p
                                                                                      Julia
3-element Vector{Int64}:
 2
 1
```

Рисунок 2.14: Пример вычисления LU-факторизации и определение составного типа факторизации для его хранения

```
# Матрица L:
  Alu.L
                                                                                 Julia
3x3 Matrix{Float64}:
1.0
           0.0
                    0.0
0.00547834 1.0 0.0
0.769963 0.548242 1.0
  # Матрица U:
   Alu.U
                                                                                 Julia
3x3 Matrix{Float64}:
0.479004 0.508546 0.0166509
         0.889231 0.870935
0.0
0.0
         0.0
                  -0.445061
```

Рисунок 2.15: Пример вычисления LU-факторизации и определение составного типа факторизации для его хранения

Исходная система уравнений Ax = b может быть решена или с использованием исходной матрицы, или с использованием объекта факторизации (рис. [fig:016]):

```
# Решение СЛАУ через матрицу А:
   A\b
                                                                                         Julia
3-element Vector{Float64}:
 1.0
 1.0
   # Решение СЛАУ через объект факторизации:
   Alu\b
                                                                                         Julia
3-element Vector{Float64}:
 1.000000000000000000
 1.0
 1.0
   # Детерминант матрицы А:
   det(A)
                                                                                         Julia
0.18957141617226508
   # Детерминант матрицы А через объект факторизации:
   det(Alu)
                                                                                         Julia
0.18957141617226508
```

Рисунок 2.16: Пример решения с использованием исходной матрицы и с использованием объекта факторизации

Julia позволяет вычислять QR-факторизацию и определяет составной тип факторизации для его хранения (рис. [fig:017]):

```
# QR-факторизация:
   Aqr = qr(A)
                                                                                       Julia
LinearAlgebra.QRCompactWY{Float64, Matrix{Float64}, Matrix{Float64}}
Q factor: 3x3 LinearAlgebra.QRCompactWYQ{Float64, Matrix{Float64}, Matrix{Float64}}
R factor:
3×3 Matrix{Float64}:
-0.604546 -0.943109 -0.0445756
 0.0 -0.968315 -0.808798
 0.0
          0.0 0.323837
  # Матрица Q:
   Aqr.Q
                                                                                       Julia
3×3 LinearAlgebra.QRCompactWYQ{Float64, Matrix{Float64}, Matrix{Float64}}
  # Матрица R:
   Aqr.R
                                                                                       Julia
3×3 Matrix{Float64}:
-0.604546 -0.943109 -0.0445756
 0.0 -0.968315 -0.808798
 0.0
          0.0 0.323837
   # Проверка, что матрица Q - ортогональная:
   Aqr.Q'*Aqr.Q
                                                                                       Julia
3×3 Matrix{Float64}:
1.0
           0.0 2.22045e-16
5.72459e-17 1.0 0.0
2.22045e-16 0.0 1.0
```

Рисунок 2.17: Пример вычисления QR-факторизации и определение составного типа факторизации для его хранения

Примеры собственной декомпозиции матрицы A (рис. [fig:018] - рис. [fig:019]):

```
# Симметризация матрицы А:
   Asym = A + A'
                                                                                          Julia
3×3 Matrix{Float64}:
0.73763 0.8817 0.524247
0.8817 1.78403 1.37957
0.524247 1.37957 0.0333019
   # Спектральное разложение симметризованной матрицы:
   AsymEig = eigen(Asym)
                                                                                          Julia
Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}
values:
3-element Vector{Float64}:
-0.7262364206842493
 0.2752585513733541
 3.005944564298855
vectors:
3×3 Matrix{Float64}:
-0.0302759 0.910727 -0.411899
-0.473221 -0.376038 -0.796654
 0.880423 -0.1708 -0.44236
   # Собственные значения:
   AsymEig.values
                                                                                          Julia
3-element Vector{Float64}:
 -0.7262364206842493
 0.2752585513733541
  3.005944564298855
```

Рисунок 2.18: Примеры собственной декомпозиции матрицы А

```
#Собственные векторы:
   AsymEig.vectors
                                                                                     Julia
3x3 Matrix{Float64}:
-0.0302759 0.910727 -0.411899
-0.473221 -0.376038 -0.796654
 0.880423 -0.1708 -0.44236
   # Проверяем, что получится единичная матрица:
   inv(AsymEig)*Asym
                                                                                     Julia
3x3 Matrix{Float64}:
 1.0
             -1.66533e-15 1.4936e-15
 9.4369e-16 1.0 -4.41661e-15
-1.16573e-15 -3.10862e-15 1.0
```

Рисунок 2.19: Примеры собственной декомпозиции матрицы А

Далее рассмотрим примеры работы с матрицами большой размерности и специальной структуры (рис. [fig:020] - рис. [fig:021]):

```
# Матрица 1000 х 1000:
   n = 1000
   A = randn(n,n)
                                                                                          Julia
1000×1000 Matrix{Float64}:
  0.0630126 -0.251197
                           0.0796325 ... -0.442978
                                                       1.17073
                                                                  -2.14755
  0.781128
            -1.16548
                          -0.90138
                                         -0.171808
                                                       1.45133
                                                                  -0.115162
 -0.809731
            -0.157451
                           0.188144
                                          0.304195
                                                      -0.206724
                                                                  -0.54274
                                         -1.26302
                                                                  1.32781
 -0.131096
            1.63867
                           0.190479
                                                       0.944059
 -0.772695
            1.9824
                           0.18503
                                         -0.202502
                                                      -0.138186
                                                                  -0.146277
  0.281455
            -0.791349
                          -0.366522
                                      ... -0.127131
                                                       0.542581
                                                                  1.19349
  0.849647
             0.507622
                           1.1247
                                          0.00268168
                                                       0.345812
                                                                  1.18034
            -0.000618445
                           0.391949
  0.213123
                                         -0.280991
                                                       0.41326
                                                                  -0.836027
                                                                  -0.831115
 -0.34615
             -0.465263
                           0.269673
                                          1.47107
                                                      -0.330542
                                                                  -0.829088
  0.899631
             0.265446
                           0.681958
                                         -0.567342
                                                      -2.63383
 -1.16336
             -0.163909
                           0.0220217
                                          2.64269
                                                       2.60257
                                                                   0.0110421
  0.785781
            -0.403412
                          -1.9101
                                         -0.44775
                                                      -0.912201
                                                                  -1.23919
 -1.27575
            -0.190804
                           0.943246
                                          0.00440055 -2.48584
                                                                  -0.3126
 -0.438087
            1.56486
                           2.05873
                                         -0.927722
                                                      -0.497803
                                                                   0.961073
  0.692842
            -0.710121
                           0.647931 ... -0.878701
                                                      -1.26014
                                                                   0.293938
 -0.327984
            -0.248704
                          -1.11658
                                          1.13316
                                                      -0.0670483 -0.204474
  1.58454
             0.824155
                           1.4003
                                         -0.0667545
                                                      -0.206113
                                                                  -0.309062
  0.204904
             1.63432
                          -0.206898
                                         -1.03844
                                                      -0.895325
                                                                  -0.945538
 -0.0334818 -0.662197
                          -0.49606
                                         -0.793992
                                                      -0.705627
                                                                  -0.871199
```

Рисунок 2.20: Примеры работы с матрицами большой размерности и специальной структуры

```
# Симметризация матрицы:
   Asym = A + A'
                                                                                   Julia
1000×1000 Matrix{Float64}:
 0.126025
            0.529932 -0.730099 ... 1.14156
                                             1.37564
                                                       -2.18103
 0.529932
          -2.33096 -1.05883
                                   0.652347 3.08565
                                                       -0.777359
           -1.05883
                    0.376287
                                   1.7045
 -0.730099
                                            -0.413621 -1.0388
 0.598695
           1.71362 -1.28131
                                  -1.88954
                                             2.86089
                                                       3.23633
           1.90243 -1.46164
 -1.65874
                                   0.859204 -0.585901 1.01309
 -0.0616244 -0.577444 0.111719 ... -0.11823
                                            0.107333 1.73984
 3.83262
           1.03285 0.58751
                                   1.51281 0.477174 0.423242
 0.410881 -1.14214
                    0.436089
                                  -1.04592
                                            -0.0280401 0.0638841
 -0.518718 -0.734764 -0.720482
                                   0.447524 -1.34249
                                                      -0.966866
 1.15758
           -0.980827 2.00434
                                  -0.502093 -1.04615
                                                       -1.60159
 0.482351
           1.01696
                      1.09086
                                   2.37937
                                           1.40549
                                                       -1.26286
 -0.0184439 -0.572385 0.204972
                                  -1.10517
                                            -0.727063 -0.653867
 -0.311058 -2.31479
                     1.39357
                                   1.50967
                                           -3.21651
                                                       2.69152
 -0.494673
           2.02499
                    2.05656
                                  -1.66158
                                             0.491459
                                                       2.12003
 0.313642
          -1.22436
                     3.01635
                              ... -0.395011 -3.01268
                                                      -2.07821
 -0.179699 -0.144436 -2.93768
                                   0.350628   0.240106   -0.0677784
           0.652347 1.7045
                                  -0.133509 -1.24456
 1.14156
                                                     -1.10305
 1.37564
                                  -1.24456 -1.79065
           3.08565 -0.413621
                                                      -1.65117
 -2.18103
           -0.777359 -1.0388
                                                      -1.7424
                                  -1.10305
                                            -1.65117
   # Проверка, является ли матрица симметричной:
   issymmetric(Asym)
                                                                                   Julia
true
```

Рисунок 2.21: Примеры работы с матрицами большой размерности и специальной структуры

Пример добавления шума в симметричную матрицу (матрица уже не будет симметричной) (рис. [fig:022]):

```
# Добавление шума:
   Asym_noisy = copy(Asym)
   Asym_noisy[1,2] += 5eps()
                                                                                             Julia
0.529931640365225
   # Проверка, является ли матрица симметричной:
   issymmetric(Asym_noisy)
                                                                                              Julia
false
```

Рисунок 2.22: Пример добавления шума в симметричную матрицу

В Julia можно объявить структуру матрица явно, например, используя Diagonal, Triangular, Symmetric, Hermitian, Tridiagonal и SymTridiagonal (рис. [fig:023]):

```
# Явно указываем, что матрица является симметричной:
  Asym_explicit = Symmetric(Asym_noisy)
                                                                                    Julia
1000×1000 Symmetric{Float64, Matrix{Float64}}:
 0.126025
            0.529932 -0.730099 ... 1.14156
                                             1.37564
                                                       -2.18103
                     -1.05883
                                   0.652347 3.08565
 0.529932
           -2.33096
                                                       -0.777359
-0.730099
           -1.05883
                     0.376287
                                   1.7045
                                            -0.413621
                                                      -1.0388
           1.71362 -1.28131
                                  -1.88954
                                             2.86089
 0.598695
                                                        3.23633
           1.90243
                     -1.46164
-1.65874
                                   0.859204 -0.585901
                                                      1.01309
 -0.0616244 -0.577444 0.111719 ... -0.11823
                                             0.107333
                                                        1.73984
            1.03285
                     0.58751
                                             0.477174
                                                        0.423242
                                   1.51281
 3.83262
 0.410881
           -1.14214
                      0.436089
                                  -1.04592
                                            -0.0280401
                                                        0.0638841
           -0.734764 -0.720482
                                   0.447524 -1.34249
 -0.518718
                                                        -0.966866
           -0.980827 2.00434
                                  -0.502093 -1.04615
                                                       -1.60159
 1.15758
                      1.09086
                                            1.40549
                                                       -1.26286
 0.482351
            1.01696
                                   2.37937
-0.0184439 -0.572385 0.204972
                                  -1.10517
                                            -0.727063 -0.653867
                      1.39357
-0.311058
           -2.31479
                                   1.50967
                                            -3.21651
                                                        2.69152
-0.494673
            2.02499
                     2.05656
                                  -1.66158
                                             0.491459
                                                        2.12003
 0.313642
           -1.22436
                      3.01635
                               ... -0.395011 -3.01268
                                                       -2.07821
           -0.144436 -2.93768
                                   0.350628
                                            0.240106
                                                      -0.0677784
-0.179699
 1.14156
           0.652347 1.7045
                                  -0.133509 -1.24456
                                                       -1.10305
                                                       -1.65117
 1.37564
           3.08565 -0.413621
                                  -1.24456
                                            -1.79065
-2.18103
           -0.777359 -1.0388
                                            -1.65117
                                  -1.10305
                                                       -1.7424
```

Рисунок 2.23: Пример явного объявления структуры матрицы

Далее для оценки эффективности выполнения операций над матрицами большой размерности и специальной структуры воспользуемся пакетом BenchmarkTools (рис. [fig:024]):

```
import Pkg
   Pkg.add("BenchmarkTools")
   using BenchmarkTools
                                                                                            Julia
  Resolving package versions...
  Installed Compat ---- v4.18.1
  Installed BenchmarkTools - v1.6.0
   Updating `C:\Users\durda\.julia\environments\v1.11\Project.toml`
 [6e4b80f9] + BenchmarkTools v1.6.0
   Updating `C:\Users\durda\.julia\environments\v1.11\Manifest.toml`
 [6e4b80f9] + BenchmarkTools v1.6.0
  [34da2185] + Compat v4.18.1
  [9abbd945] + Profile v1.11.0
Precompiling project...
   938.9 ms  

✓ Compat
   448.3 ms ✓ Compat → CompatLinearAlgebraExt
  1183.2 ms ✓ BenchmarkTools
 3 dependencies successfully precompiled in 3 seconds. 50 already precompiled.
   # Оценка эффективности выполнения операции по нахождению
   # собственных значений симметризованной матрицы:
   @btime eigvals(Asym);
                                                                                            Julia
 42.408 ms (21 allocations: 7.99 MiB)
   # Оценка эффективности выполнения операции по нахождению
   # собственных значений зашумлённой матрицы:
   @btime eigvals(Asym noisy);
 275.570 ms (27 allocations: 7.93 MiB)
   # Оценка эффективности выполнения операции по нахождению
   # собственных значений зашумлённой матрицы,
   # для которой явно указано, что она симметричная:
   @btime eigvals(Asym_explicit);
                                                                                            Julia
 43.117 ms (21 allocations: 7.99 MiB)
```

Рисунок 2.24: Использование пакета BenchmarkTools

Далее рассмотрим примеры работы с разряженными матрицами большой размерности. Использование типов Tridiagonal и SymTridiagonal для хранения трёхдиагональных матриц позволяет работать с потенциально очень большими трёхдиагональными матрицами (рис. [fig:025]):

```
# Трёхдиагональная матрица 1000000 х 1000000:
   n = 1000000;
   A = SymTridiagonal(randn(n), randn(n-1))
                                                                                        Julia
1000000×1000000 SymTridiagonal{Float64, Vector{Float64}}:
            -0.0463764 ·
 1.30813
 -0.0463764 -0.310195 0.412643
            0.412643 0.51616
                      -1.2908
                                   -1.26107
                                   1.00623 -0.416394
                                    -0.416394 -0.577406 -1.69633
                                             -1.69633
                                                         1.36805
   # Оценка эффективности выполнения операции по нахождению
   # собственных значений:
   @btime eigmax(A)
                                                                                        Julia
  363.988 ms (44 allocations: 183.11 MiB)
```

Рисунок 2.25: Примеры работы с разряженными матрицами большой размерности

2.6 Общая линейная алгебра

В примере показано, как можно решить систему линейных уравнений с рациональными элементами без преобразования в типы элементов с плавающей запятой (для избежания проблемы с переполнением используем BigInt) (рис. [fig:026]):

```
# Матрица с рациональными элементами:
   Arational = Matrix{Rational{BigInt}}(rand(1:10, 3, 3))/10
                                                                                         Julia
3×3 Matrix{Rational{BigInt}}:
1//5 9//10 3//5
 7//10 3//10 3//10
2//5 1 3//10
   # Единичный вектор:
   x = fill(1, 3)
   # Задаём вектор b:
   b = Arational*x
                                                                                         Julia
3-element Vector{Rational{BigInt}}:
17//10
13//10
 17//10
   # Решение исходного уравнения получаем с помощью функции \
   # (убеждаемся, что х - единичный вектор):
   Arational\b
                                                                                         Julia
3-element Vector{Rational{BigInt}}:
1
   # LU-разложение:
   lu(Arational)
                                                                                         Julia
LU{Rational{BigInt}, Matrix{Rational{BigInt}}, Vector{Int64}}
L factor:
3×3 Matrix{Rational{BigInt}}:
 1 0 0
4//7 1
2//7 57//58 1
U factor:
3×3 Matrix{Rational{BigInt}}:
7//10 3//10 3//10
```

Рисунок 2.26: Решение системы линейных уравнений с рациональными элементами без преобразования в типы элементов с плавающей запятой 49

2.7 Самостоятельная работа

Выполнение задания «Произведение векторов» (рис. [fig:027]):

Задания для самостоятельного выполнения Произведение векторов 1. Задайте вектор v. Умножьте вектор v скалярно сам на себя и сохраните результат в dot_v. # Задаем вектор v v = [7, 12, 17]# Скалярное произведение $dot_v = dot(v, v)$ Julia 482 2. Умножьте v матрично на себя (внешнее произведение), присвоив результат переменной outer_v. # Матричное (внешнее) произведение outer v = v * v' Julia 3×3 Matrix{Int64}: 84 119 84 144 204 119 204 289

Рисунок 2.27: Решение задания «Произведение векторов»

Выполнение задания «Системы линейных уравнений» (рис. [fig:028] - рис. [fig:030]):

```
Системы линейных уравнений
  1. Решить СЛАУ с двумя неизвестными:
    function res(A, b)
        if (det(A) == 0)
           println("Нет решения")
        else
           println(A\b)
        end
    end
                                                                                        Julia
 res (generic function with 1 method)
    A1 = [1 1; 1 -1]
    b1 = [2; 3]
    res(A1, b1)
                                                                                        Julia
 [2.5, -0.5]
    A2 = [1 1; 2 2]
    b2 = [2; 4]
    res(A2, b2)
                                                                                        Julia
 Нет решения
```

Рисунок 2.28: Решение задания «Системы линейных уравнений»

```
A3 = [1 1; 2 2]
  b3 = [2; 5]
  res(A3, b3)
                                                                                 Julia
Нет решения
  A4 = [1 1; 2 2; 3 3]
  b4 = [1; 2; 3]
  println(A4\b4)
                                                                                 Julia
[0.49999999999999, 0.5]
  A5 = [1 1; 2 1; 1 -1]
  b5 = [2; 1; 3]
  println(A5\b5)
                                                                                 Julia
[1.5000000000000000, -0.99999999999999]
  A6 = [1 1; 2 1; 3 2]
  b6 = [2; 1; 3]
  println(A6\b6)
                                                                                 Julia
```

Рисунок 2.29: Решение задания «Системы линейных уравнений»

```
2. Решить СЛАУ с тремя неизвестными:
   A1 = [1 \ 1 \ 1; \ 1 \ -1 \ -2]
   b1 = [2; 3]
    println(A1\b1)
                                                                                                           Julia
[2.2142857142857144, 0.35714285714285704, -0.5714285714285712]
   A2 = [1 \ 1 \ 1; \ 2 \ 2 \ -3; \ 3 \ 1 \ 1]
   b2 = [2; 4;1]
    res(A2, b2)
                                                                                                           Julia
[-0.5, 2.5, 0.0]
   A3 = [1 \ 1 \ 1; \ 1 \ 1 \ 2; \ 2 \ 2 \ 3]
   b3 = [1; 0; 1]
   res(A3, b3)
                                                                                                           Julia
Нет решения
   A4 = [1 \ 1 \ 1; \ 1 \ 1 \ 2; \ 2 \ 2 \ 3]
   b4 = [1; 0; 0]
    res(A4, b4)
                                                                                                           Julia
Нет решения
```

Рисунок 2.30: Решение задания «Системы линейных уравнений»

Выполнение задания «Операции с матрицами» (рис. $[\mathbf{fig:031}]$ - рис. $[\mathbf{fig:034}]$):

```
Операции с матрицами
  1. Приведите приведённые ниже матрицы к диагональному виду:
    A = [1 -2; -2 1]
    eigen_A = eigen(A) # Собственные значения и векторы
    diag_matrix = Diagonal(eigen_A.values) # Диагональная матрица
                                                                                        Julia
2×2 Diagonal{Float64, Vector{Float64}}:
 -1.0 ·
   · 3.0
    B = [1 -2; -2 3]
    eigen_B = eigen(B) # Собственные значения и векторы
    diag_matrix = Diagonal(eigen_B.values) # Диагональная матрица
                                                                                        Julia
2×2 Diagonal{Float64, Vector{Float64}}:
 -0.236068
   4.23607
    C = [1 -2 0; -2 1 2; 0 2 0]
    eigen_C = eigen(C) # Собственные значения и векторы
    diag_matrix = Diagonal(eigen_C.values) # Диагональная матрица
                                                                                        Julia
3×3 Diagonal{Float64, Vector{Float64}}:
 -2.14134 ·
         0.515138 ·
          . 3.6262
```

Рисунок 2.31: Решение задания «Операции с матрицами»

```
2. Вычислите:
   A = [1 -2; -2 1]
   display(A^10)
                                                                                           Julia
2×2 Matrix{Int64}:
  29525 -29524
 -29524 29525
   A = [5 -2; -2 5]
   display(sqrt(A))
                                                                                           Julia
2×2 Matrix{Float64}:
  2.1889 -0.45685
 -0.45685 2.1889
   A = [1 -2; -2 1]
   display(A^{(1/3)})
                                                                                           Julia
2×2 Symmetric{ComplexF64, Matrix{ComplexF64}}:
  0.971125+0.433013im -0.471125+0.433013im
 -0.471125+0.433013im 0.971125+0.433013im
   A = [1 2; 2 3]
   display(sqrt(A))
                                                                                           Julia
2×2 Matrix{ComplexF64}:
 0.568864+0.351578im 0.920442-0.217287im
 0.920442-0.217287im 1.48931+0.134291im
```

Рисунок 2.32: Решение задания «Операции с матрицами»

```
3. Найдите собственные значения матрицы А. Создайте диагональную матрицу из
   собственных значений матрицы A. Создайте нижнедиагональную матрицу из матрицы A.
   Оцените эффективность выполняемых операций.
   A = [
      140 97 74 168 131;
      97 106 89 131 36;
      74 89 152 144 71;
      168 131 144 54 142;
      131 36 71 142 36
   # 1. Нахождение собственных значений и векторов
  A_eigen = eigen(A)
                                                                                 Julia
Eigen{Float64, Float64, Matrix{Float64}, Vector{Float64}}
values:
5-element Vector{Float64}:
-128.49322764802145
 -55.887784553057
  42.752167279318854
  87.16111477514488
 542.467730146614
vectors:
5×5 Matrix{Float64}:
-0.147575 0.647178 0.010882 0.548903 -0.507907
-0.256795 -0.173068 0.834628 -0.239864 -0.387253
0.819704 -0.247506 -0.0273194 0.0366447 -0.514526
-0.453805 -0.657619 -0.352577 0.322668 -0.364928
```

Рисунок 2.33: Решение задания «Операции с матрицами»

```
# 2. Создание диагональной матрицы из собственных значений
   # Прямое создание переменной и вывод без использования @btime
   diagm(A_eigen.values)
                                                                                       Julia
5×5 Matrix{Float64}:
-128.493
            0.0
                    0.0
                             0.0
                                       0.0
   0.0
        -55.8878 0.0
                             0.0
                                       0.0
   0.0
            0.0
                   42.7522 0.0
                                       0.0
   0.0
            0.0
                            87.1611
                    0.0
                                       0.0
   0.0
            0.0
                    0.0
                            0.0
                                    542.468
   # 3. Создание нижнедиагональной матрицы из А
   LowerTriangular(A)
                                                                                       Julia
5×5 LowerTriangular{Int64, Matrix{Int64}}:
140
 97 106
 74
     89 152
168 131 144 54
131 36
          71 142 36
   # 4. Оценка эффективности
   @btime diagm(A_eigen.values)
   @btime LowerTriangular(A)
                                                                                       Julia
 59.045 ns (2 allocations: 272 bytes)
 107.945 ns (1 allocation: 16 bytes)
5×5 LowerTriangular{Int64, Matrix{Int64}}:
140
 97 106
     89 152
168 131 144 54 ·
131 36
           71 142 36
```

Рисунок 2.34: Решение задания «Операции с матрицами»

Выполнение задания «Линейные модели экономики» (рис. [fig:035] - рис. [fig:037]):

```
Линейные модели экономики
    A1 = [1 2; 3 4]
    A2 = (1/2) * A1
    A3 = (1/10) * A1
    E = Matrix(I, 2, 2)
                                                                                   Julia
 2x2 Matrix{Bool}:
  1 0
  0 1
    inv(E-A1) # не продуктивная
                                                                                   Julia
 2x2 Matrix{Float64}:
   0.5 -0.333333
  -0.5 0.0
```

Рисунок 2.35: Решение задания «Линейные модели экономики»

```
inv(E-A2) # не продуктивная
                                                                                               Julia
2×2 Matrix{Float64}:
 0.5 -0.5
 -0.75 -0.25
   inv(E-A3) # продуктивная
                                                                                               Julia
2×2 Matrix{Float64}:
 1.25 0.416667
 0.625 1.875
   A4 = [0.1 \ 0.2 \ 0.3; \ 0 \ 0.1 \ 0.2; \ 0 \ 0.1 \ 0.3]
                                                                                               Julia
3×3 Matrix{Float64}:
0.1 0.2 0.3
 0.0 0.1 0.2
 0.0 0.1 0.3
   abs.(eigen(A1).values).<1 # не продуктивная
                                                                                               Julia
2-element BitVector:
 0
```

Рисунок 2.36: Решение задания «Линейные модели экономики»

```
abs.(eigen(A2).values).<1 # не продуктивная
                                                                                              Julia
2-element BitVector:
 1
 0
   abs.(eigen(A3).values).<1 # продуктивная
                                                                                              Julia
2-element BitVector:
 1
 1
   abs.(eigen(A4).values).<1 # продуктивная
                                                                                              Julia
3-element BitVector:
 1
 1
 1
```

Рисунок 2.37: Решение задания «Линейные модели экономики»

3 Выводы

В результате выполнения данной лабораторной работы я изучил возможности специализированных пакетов Julia для выполнения и оценки эффективности операций над объектами линейной алгебры.

Список литературы

- [1] Julia 1.11 Documentation. URL: https://docs.julialang.org/en/v1/.
- [2] JuliaLang. URL: https://julialang.org/.