The lavaan tutorial

Yves Rosseel Department of Data Analysis Ghent University (Belgium)

January 26, 2022

Abstract

If you are new to lavaan, this is the place to start. In this tutorial, we introduce the basic components of lavaan: the model syntax, the fitting functions (cfa, sem and growth), and the main extractor functions (summary, coef, fitted, inspect). After we have provided two simple examples, we briefly discuss some important topics: meanstructures, multiple groups, growth curve models, mediation analysis, and categorical data. Along the way, we hope to give you just enough information to get you started (but no more).

Contents

1	Before you start	1
2	Installation of the package	2
3	The model syntax	2
4	A first example: confirmatory factor analysis (CFA)	4
5	A second example: a structural equation model (SEM)	7
6	More about the syntax	11
7	Bringing in the means	14
8	Multiple groups	16
9	Growth curve models	26
10	Using categorical variables	28
11	Using a covariance matrix as input	29
12	Estimators, standard errors and missing values	31
13	Indirect effects and mediation analysis	32
14	Modification Indices	33
15	Extracting information from a fitted model	34
16	Multilevel SEM	38

1 Before you start

Before you start, please read these points carefully:

• First of all, you must have a recent version (4.0.0 or higher) of R installed. You can download the latest version of R from this page: http://cran.r-project.org/.

- Some important features are NOT available (yet):
 - full support for hierarchical/multilevel datasets (multilevel cfa, multilevel sem); however version 0.6 supports two-level cfa/sem with random intercepts only, for continuous complete data
 - support for variable types other than continuous, binary and ordinal (for example: zero-inflated count data, nominal data, non-Gaussian continuous data)
 - support for discrete latent variables (mixture models, latent classes)

We hope to add these features to lavaan in the near future (but please do not ask when).

- The lavaan package is free open-source software. This means (among other things) that there is no warranty whatsoever. On the other hand, you can verify the source code yourself: https://github.com/yrosseel/lavaan/
- If you need help, you can (only) ask questions in the lavaan discussion group. Go to https://groups.google.com/d/forum/lavaan/ and join the group. Once you have joined the group, you can email your questions to lavaan@googlegroups.com. Please do not email me directly.
- If you think you have found a bug, or if you have a suggestion for improvement, you can either email me directly, or open an issue on github (see https://github.com/yrosseel/lavaan/issues). If you report a bug, always provide a minimal reproducible example (a short R script and some data).

2 Installation of the package

The lavaan package is available on CRAN. Therefore, to install lavaan, simply start up R, and type in the R console:

```
install.packages("lavaan", dependencies = TRUE)
```

You can check if the installation was successful by typing

```
library(lavaan)
```

```
This is lavaan 0.6-8 lavaan is FREE software! Please report any bugs.
```

A startup message will be displayed showing the version number (always report this in your papers), and a reminder that this is free software. If you see this message, you are ready to start.

3 The model syntax

At the heart of the lavaan package is the 'model syntax'. The model syntax is a description of the model to be estimated. In this section, we briefly explain the elements of the lavaan model syntax. More details are given in the examples that follow.

In the R environment, a regression formula has the following form:

```
y \sim x1 + x2 + x3 + x4
```

In this formula, the tilde ("~") is the regression operator. On the left-hand side of the operator, we have the dependent variable (y), and on the right-hand side, we have the independent variables, separated by the "+" operator. In lavaan, a typical model is simply a set (or system) of regression formulas, where some variables (starting with an 'f' below) may be latent. For example:

```
y \sim f1 + f2 + x1 + x2
f1 \sim f2 + f3
f2 \sim f3 + x1 + x2
```

If we have latent variables in any of the regression formulas, we must 'define' them by listing their (manifest or latent) indicators. We do this by using the special operator "="", which can be read as is measured by. For example, to define the three latent variables f1, f2 and f3, we can use something like:

```
f1 = y1 + y2 + y3
f2 = y4 + y5 + y6
f3 = y7 + y8 + y9 + y10
```

Furthermore, variances and covariances are specified using a 'double tilde' operator, for example:

```
y1 ~~ y1 # variance
y1 ~~ y2 # covariance
f1 ~~ f2 # covariance
```

And finally, intercepts for observed and latent variables are simple regression formulas with only an intercept (explicitly denoted by the number '1') as the only predictor:

```
y1 ~ 1
f1 ~ 1
```

Using these four *formula types*, a large variety of latent variable models can be described. The current set of formula types is summarized in the table below.

formula type	operator	mnemonic
latent variable definition	=~	is measured by
regression	~	is regressed on
(residual) (co)variance	~~	is correlated with
intercept	~ 1	intercept

A complete lavaan model syntax is simply a combination of these formula types, enclosed between *single* quotes. For example:

You can type this syntax interactively at the R prompt, but it is much more convenient to type the whole model syntax first in an external text editor. And when you are done, you can copy/paste it to the R console. If you are using RStudio, open a new 'R script', and type your model syntax (and all other R commands needed for this session) in the source editor of RStudio. And save your script, so you can reuse it later on.

The code piece above will produce a model syntax object, called myModel that can be used later when calling a function that actually estimates this model given a dataset. Note that formulas can be split over multiple lines, and you can use comments (starting with the # character) and blank lines within the single quotes to improve the readability of the model syntax.

If your model syntax is rather long, or you need to reuse the model syntax over and over again, you may prefer to store it in a separate text file called, say, myModel.lav. This text file should be in a human readable format (not a Word document). Within R, you can then read the model syntax from the file as follows:

```
myModel <- readLines("/mydirectory/myModel.lav")</pre>
```

The argument of readLines is the full path to the file containing the model syntax. Again, the model syntax object can be used later to fit this model given a dataset.

4 A first example: confirmatory factor analysis (CFA)

We start with a simple example of confirmatory factor analysis, using the cfa() function, which is a user-friendly function for fitting CFA models. The lavaan package contains a built-in dataset called HolzingerSwineford1939. See the help page for this dataset by typing

?HolzingerSwineford1939

at the R prompt. This is a 'classic' dataset that is used in many papers and books on Structural Equation Modeling (SEM), including some manuals of commercial SEM software packages. The data consists of mental ability test scores of seventh- and eighth-grade children from two different schools (Pasteur and Grant-White). In our version of the dataset, only 9 out of the original 26 tests are included. A CFA model that is often proposed for these 9 variables consists of three latent variables (or factors), each with three indicators:

- \bullet a *visual* factor measured by 3 variables: x1, x2 and x3
- a textual factor measured by 3 variables: x4, x5 and x6
- \bullet a speed factor measured by 3 variables: x7, x8 and x9

The figure below contains a graphical representation of the three-factor model.

The corresponding lavaan syntax for specifying this model is as follows:

```
visual = x1 + x2 + x3
textual = x4 + x5 + x6
speed = x7 + x8 + x9
```

In this example, the model syntax only contains three 'latent variable definitions'. Each formula has the following format:

latent variable = indicator1 + indicator2 + indicator3

We call these expressions *latent variable definitions* because they define how the latent variables are 'manifested by' a set of observed (or manifest) variables, often called 'indicators'. Note that the special "="" operator in the middle consists of a sign ("=") character and a tilde (""") character next to each other. The reason why this model syntax is so short, is that behind the scenes, the cfa() function will take care of several things. First, by default, the factor loading of the first indicator of a latent variable is fixed to 1, thereby fixing the scale of the latent variable. Second, residual variances are added automatically. And third, all exogenous latent variables are correlated by default. This way, the model syntax can be kept concise. On the other hand, the user remains in control, since all this 'default' behavior can be overriden and/or switched off.

We can enter the model syntax using the single quotes:

We can now fit the model as follows:

```
fit <- cfa(HS.model, data=HolzingerSwineford1939)</pre>
```

The cfa() function is a dedicated function for fitting confirmatory factor analysis models. The first argument is the user-specified model. The second argument is the dataset that contains the observed variables. Once the model has been fitted, the summary() function provides a nice summary of the fitted model:

```
summary(fit, fit.measures=TRUE)
```

The output should look familiar to users of other SEM software. If you find it confusing or esthetically unpleasing, please let us know, and we will try to improve it.

lavaan 0.6-8 ended normally after 35 iterations

iterations
ML NLMINB 21
301
85.306
24
0.000
918.852
36
0.000
0.931
0.896

Loglikelihood and Information Criteria:

Loglikelihood user model (H0) Loglikelihood unrestricted model (H1)	-3737.745 -3695.092
Akaike (AIC) Bayesian (BIC)	7517.490 7595.339
Sample-size adjusted Bayesian (BIC)	7528.739

Root Mean Square Error of Approximation:

RMSEA 90 Percent confi 90 Percent confi P-value RMSEA <=	idence inte			0.092 0.071 0.114 0.001			
Standardized Root	Mean Squar	e Residua	1:				
SRMR				0.065			
Parameter Estimate	es:						
Standard errors				Standard			
Information				Expected			
Information satu	irated (h1)	model	St	ructured			
Latent Variables:							
	Estimate	Std.Err	z-value	P(> z)			
visual =~							
x1	1.000						
x2	0.554	0.100	5.554	0.000			
x3	0.729	0.109	6.685	0.000			
textual =~							
x4	1.000						
x5	1.113	0.065		0.000			
x6	0.926	0.055	16.703	0.000			
-	speed =~						
x7	1.000						
x8	1.180	0.165	7.152	0.000			
х9	1.082	0.151	7.155	0.000			
Covariances:							
oovar rancob.	Estimate	Std.Err	z-value	P(> z)			
visual ~~	<u> </u>	Dourer	2 varao	1 (* 121)			
textual	0.408	0.074	5.552	0.000			
speed	0.262	0.056	4.660	0.000			
textual ~~	0.202	0.000	2.000	0.000			
speed	0.173	0.049	3.518	0.000			
Variances:							
. 41 14110 00 .	Estimate	Std.Err	z-value	P(> z)			
.x1	0.549	0.114	4.833	0.000			
.x2	1.134	0.102	11.146	0.000			
.x3	0.844	0.091	9.317	0.000			
.x4	0.371	0.048	7.779	0.000			
.x5	0.446	0.058	7.642	0.000			
.x6	0.356	0.043	8.277	0.000			
.x7	0.799	0.081	9.823	0.000			
.x8 0.488 0.074 6.573 0.000							
.x9	0.566	0.071	8.003	0.000			
visual	0.809	0.145	5.564	0.000			
textual	0.979	0.112	8.737	0.000			
speed	0.384	0.086	4.451	0.000			
-F	3.001						

The output consists of three parts. The first nine lines are called $the\ header$. The header contains the following information:

- $\bullet\,$ the lava an version number
- $\bullet\,$ did optimization end normally or not, and how many iterations were needed
- the estimator that was used (here: ML, for maximum likelihood)
- the optimizer that was used to find the best fitting parameter values for this estimator (here: NLMINB)

- the number of model parameters (here: 21)
- the number of observations that were effectively used in the analysis (here: 301)
- a section called Model Test User Model: which provides a test statistic, degrees of freedom, and a p-value for the model that was specified by the user.

The next section contains additional fit measures, and is only shown because we use the optional argument fit.measures = TRUE. It starts with the line Model Test Baseline Model: and ends with the value for the SRMR. The last section contains the parameter estimates. It starts with (technical) information Then, it tabulates all free (and fixed) parameters that were included in the model. Typically, first the latent variables are shown, followed by covariances and (residual) variances. The first column (Estimate) contains the (estimated or fixed) parameter value for each model parameter; the second column (Std.err) contains the standard error for each estimated parameter; the third column (Z-value) contains the Wald statistic (which is simply obtained by dividing the parameter value by its standard error), and the last column (P(>|z|)) contains the p-value for testing the null hypothesis that the parameter equals zero in the population.

Note that in the Variances: section, there is a dot before the observed variables names. This is because they are dependent (or endogenous) variables (predicted by the latent variables), and therefore, the value for the variance that is printed in the output is an estimate of the residual variance: the left-over variance that is not explained by the predictor(s). By contrast, there is no dot before the latent variable names, because they are exogenous variables in this model (there are no single-headed arrows pointing to them). The values for the variances here are the estimated total variances of the latent variables.

To wrap up this first example, we summarize the complete code that was needed to fit this three-factor model:

Simply copying this code and pasting it in R should work. The syntax illustrates the typical workflow in the lavaan package:

- 1. Specify your model using the lavaan model syntax. In this example, only *latent variable definitions* have been used. In the following examples, other formula types will be used.
- 2. Fit the model. This requires a dataset containing the observed variables (or alternatively the sample covariance matrix and the number of observations). In this example, we have used the cfa() function. Other functions in the lavaan package are sem() and growth() for fitting full structural equation models and growth curve models respectively. All three functions are so-called user-friendly functions, in the sense that they take care of many details automatically, so we can keep the model syntax simple and concise. If you wish to fit non-standard models or if you don't like the idea that things are done for you automatically, you can use the lower-level function lavaan() instead, where you have full control.
- 3. Extract information from the fitted model. This can be a long verbose summary, or it can be a single number only (say, the RMSEA value). In the spirit of R, you only get what you asked for. We try to not print out unnecessary information that you would ignore anyway.

5 A second example: a structural equation model (SEM)

In our second example, we will use the built-in PoliticalDemocracy dataset. This is a dataset that has been used by Bollen in his 1989 book on structural equation modeling (and elsewhere). To learn more about the dataset, see its help page and the references therein.

The figure below contains a graphical representation of the model that we want to fit.

The corresponding lavaan syntax for specifying this model is as follows:

```
model <- '
    # measurement model
    ind60 = x1 + x2 + x3
    dem60 = y1 + y2 + y3 + y4
    dem65 = y5 + y6 + y7 + y8
# regressions
    dem60 ~ ind60
    dem65 ~ ind60 + dem60
# residual correlations
    y1 ~ y5
    y2 ~ y4 + y6
    y3 ~ y7
    y4 ~ y8
    y6 ~ y8</pre>
```

In this example, we use three different formula types: latent variable definitions (using the = operator), regression formulas (using the operator), and (co)variance formulas (using the operator). The regression formulas are similar to ordinary formulas in R. The (co)variance formulas typically have the following form:

variable ~~ variable

The variables can be either observed or latent variables. If the two variable names are the same, the expression refers to the variance (or residual variance) of that variable. If the two variable names are different, the expression refers to the (residual) covariance among these two variables. The lavaan package automatically makes the distinction between variances and residual variances.

In our example, the expression y1 ~~ y5 allows the residual variances of the two observed variables to be

correlated. This is sometimes done if it is believed that the two variables have something in common that is not captured by the latent variables. In this case, the two variables refer to identical scores, but measured in two different years (1960 and 1965, respectively). Note that the two expressions y2 ~~ y4 and y2 ~~ y6, can be combined into the expression y2 ~~ y4 + y6, because the variable on the left of the ~~ operator (y2) is the same. This is just a shorthand notation.

We enter the model syntax as follows:

```
model <- '
    # measurement model
    ind60 = x1 + x2 + x3
    dem60 = y1 + y2 + y3 + y4
    dem65 = y5 + y6 + y7 + y8

# regressions
    dem60 ~ ind60
    dem65 ~ ind60 + dem60

# residual correlations
    y1 ~ y5
    y2 ~ y4 + y6
    y3 ~ y7
    y4 ~ y8
    y6 ~ y8</pre>
```

To fit the model and see the results we can type:

```
fit <- sem(model, data = PoliticalDemocracy)
summary(fit, standardized = TRUE)</pre>
```

lavaan 0.6-8 ended normally after 68 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	31
Number of observations	75
Model Test User Model:	
Test statistic	38.125
Degrees of freedom	35
P-value (Chi-square)	0.329

Parameter Estimates:

Standard errors	Standard
Information	Expected
Information saturated (h1) model	Structured

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
ind60 =~						
x1	1.000				0.670	0.920
x2	2.180	0.139	15.742	0.000	1.460	0.973
x3	1.819	0.152	11.967	0.000	1.218	0.872
dem60 =						
у1	1.000				2.223	0.850
у2	1.257	0.182	6.889	0.000	2.794	0.717
у3	1.058	0.151	6.987	0.000	2.351	0.722
у4	1.265	0.145	8.722	0.000	2.812	0.846
dem65 =						
у5	1.000				2.103	0.808

y6	1.186 1.280	0.169 0.160	7.024 8.002	0.000	2.493 2.691	0.746 0.824
у7 у8	1.266	0.158	8.007	0.000	2.662	0.828
Regressions:						
dem60 ~	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
ind60 dem65 ~	1.483	0.399	3.715	0.000	0.447	0.447
ind60	0.572	0.221	2.586	0.010	0.182	0.182
dem60	0.837	0.098	8.514	0.000	0.885	0.885
Covariances:						
.y1 ~~	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.y5 .y2 ~~	0.624	0.358	1.741	0.082	0.624	0.296
. y4	1.313	0.702	1.871	0.061	1.313	0.273
.y6 .y3 ~~	2.153	0.734	2.934	0.003	2.153	0.356
.y7 .y4 ~~	0.795	0.608	1.308	0.191	0.795	0.191
.y8 .y6 ~~	0.348	0.442	0.787	0.431	0.348	0.109
. y8	1.356	0.568	2.386	0.017	1.356	0.338
Variances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.x1	0.082	0.019	4.184	0.000	0.082	0.154
.x2	0.120	0.070	1.718	0.086	0.120	0.053
.x3	0.467	0.090	5.177	0.000	0.467	0.239
.y1	1.891	0.444	4.256	0.000	1.891	0.277
. y2	7.373	1.374	5.366	0.000	7.373	0.486
.y3	5.067	0.952	5.324	0.000	5.067	0.478
.y4	3.148	0.739	4.261	0.000	3.148	0.285
.y5	2.351	0.480	4.895	0.000	2.351	0.347
.y6	4.954	0.914	5.419	0.000	4.954	0.443
. y7	3.431	0.713	4.814	0.000	3.431	0.322
. y8	3.254	0.695	4.685	0.000	3.254	0.315
ind60	0.448	0.087	5.173	0.000	1.000	1.000
.dem60	3.956	0.921	4.295	0.000	0.800	0.800
.dem65	0.172	0.215	0.803	0.422	0.039	0.039

The function <code>sem()</code> is very similar to the function <code>cfa()</code>. In fact, the two functions are currently almost identical, but this may change in the future. In the <code>summary()</code> function, we omitted the <code>fit.measures = TRUE</code> argument. Therefore, you only get the basic chi-square test statistic. The argument <code>standardized = TRUE</code> augments the output with standardized parameter values. Two extra columns of standardized parameter values are printed. In the first column (labeled <code>Std.lv</code>), only the latent variables are standardized. In the second column (labeled <code>Std.all</code>), both latent and observed variables are standardized. The latter is often called the 'completely standardized solution'.

The complete code to specify and fit this model is printed again below:

```
library(lavaan) # only needed once per session
model <- '
    # measurement model
    ind60 = x1 + x2 + x3
    dem60 = y1 + y2 + y3 + y4
    dem65 = y5 + y6 + y7 + y8
# regressions
    dem60 ~ ind60</pre>
```

```
dem65 ~ ind60 + dem60
# residual correlations
y1 ~~ y5
y2 ~~ y4 + y6
y3 ~~ y7
y4 ~~ y8
y6 ~~ y8
'
fit <- sem(model, data=PoliticalDemocracy)
summary(fit, standardized=TRUE)</pre>
```

6 More about the syntax

Fixing parameters Consider a simple one-factor model with 4 indicators. By default, lavaan will always fix the factor loading of the first indicator to 1. The other three factor loadings are free, and their values are estimated by the model. But suppose that you have good reasons to fix all the factor loadings to 1. The syntax below illustrates how this can be done:

```
f = y1 + 1*y2 + 1*y3 + 1*y4
```

In general, to fix a parameter in a lavaan formula, you need to pre-multiply the corresponding variable in the formula by a numerical value. This is called the pre-multiplication mechanism and will be used for many purposes. As another example, consider again the three-factor Holzinger and Swineford CFA model. Recall that, by default, all exogenous latent variables in a CFA model are correlated. But if you wish to fix the correlation (or covariance) between a pair of latent variables to zero, you need to explicitly add a covariance-formula for this pair, and fix the parameter to zero. In the syntax below, we allow the covariance between the latent variables visual and textual to be free, but the two other covariances are fixed to zero. In addition, we fix the variance of the factor speed to unity. Therefore, there is no need anymore to set the factor loading of its first indicator (x7) equal to one. To force this factor loading to be free, we pre-multiply it with NA, as a hint to lavaan that the value of this parameter is 'missing' and therefore still unknown.

```
# three-factor model
  visual = x1 + x2 + x3
  textual = x4 + x5 + x6
  speed = NA*x7 + x8 + x9
# orthogonal factors
  visual ~ 0*speed
  textual ~ 0*speed
# fix variance of speed factor
  speed ~ 1*speed
```

If you need to constrain all covariances of the latent variables in a CFA model to be orthogonal, there is a shortcut. You can omit the covariance formulas in the model syntax and simply add an argument orthogonal = TRUE to the function call:

Similarly, if you want to fix the variances of *all* the latent variables in a CFA model to unity, there is again a shortcut. Simply add the argument std.lv = TRUE to the function call:

```
data = HolzingerSwineford1939,
std.lv = TRUE)
```

If the argument std.lv = TRUE is used, the factor loadings of the first indicator of each latent variable will no longer be fixed to 1.

Starting Values The lavaan package automatically generates starting values for all free parameters. Normally, this works fine. But if you prefer to provide your own starting values, you are free to do so. The way it works is based on the pre-multiplication mechanism that we discussed before. But the numeric constant is now the argument of a special function start(). An example will make this clear:

```
visual = x1 + start(0.8)*x2 + start(1.2)*x3
textual = x4 + start(0.5)*x5 + start(1.0)*x6
speed = x7 + start(0.7)*x8 + start(1.8)*x9
```

Parameter labels A nice property of the lavaan package is that all free parameters are automatically named according to a simple set of rules. This is convenient, for example, if equality constraints are needed (see the next subsection). To see how the naming mechanism works, we will use the model that we used for the Politcal Democracy data.

```
model <- '
  # latent variable definitions
    ind60 = x1 + x2 + x3
    dem60 = y1 + y2 + y3 + y4
    dem65 = y5 + y6 + y7 + y8
  # regressions
    dem60 ~ ind60
    dem65 ~ ind60 + dem60
  # residual (co)variances
    y1 ~~ y5
    y2 ~~ y4 + y6
    y3 ~~ y7
    y4 ~~ y8
    y6 ~~ y8
fit <- sem(model,</pre>
           data = PoliticalDemocracy)
coef(fit)
```

ind60=~x2	ind60=~x3	dem60=~y2	dem60=~y3	dem60=~y4	dem65=~y6
2.180	1.819	1.257	1.058	1.265	1.186
dem65=~y7	dem65=~y8	dem60~ind60	dem65~ind60	dem65~dem60	y1~~y5
1.280	1.266	1.483	0.572	0.837	0.624
y2~~y4	y2~~y6	у3~~у7	y4~~y8	y6~~y8	x1~~x1
1.313	2.153	0.795	0.348	1.356	0.082
x2~~x2	x3~~x3	y1~~y1	y2~~y2	y3~~y3	y4~~y4
0.120	0.467	1.891	7.373	5.067	3.148
y5~~y5	y6~~y6	y7~~y7	y8~~y8	ind60~~ind60	dem60~~dem60
2.351	4.954	3.431	3.254	0.448	3.956
dem65~~dem65					
0.172					

The function coef() extracts the estimated values of the free parameters in the model, together with their names. Each name consists of three parts and reflects the part of the formula where the parameter was involved. The first part is the variable name that appears on the left-hand side (lhs) of the formula. The middle part is the operator type (op) of the formula, and the third part is the variable in the right-hand side (rhs) of the formula that corresponds with the parameter.

Often, it is convenient to choose your own labels for specific parameters. The way this works is similar to fixing a parameter. But instead of pre-multiplying with a numerical constant, we use a character string (the

label) instead. In the example below, we 'label' the factor loading of the x3 indicator with the label myLabel:

```
model <- '
    # latent variable definitions
    ind60 =~ x1 + x2 + myLabel*x3
    dem60 =~ y1 + y2 + y3 + y4
    dem65 =~ y5 + y6 + y7 + y8

# regressions
    dem60 ~ ind60
    dem65 ~ ind60 + dem60

# residual (co)variances
    y1 ~~ y5
    y2 ~~ y4 + y6
    y3 ~~ y7
    y4 ~~ y8
    y6 ~~ y8</pre>
```

It is important that labels start with a letter (a-zA-Z), and certainly not with a digit. For example '13bis' is not a valid label, and will confuse the lavaan syntax parser. (Note: before version 0.4-8, it was necessary to use the modifier label() to specify a custom label. Although it is still supported, it is not recommended anymore. The only reason why it should be used in new syntax is if the label contains an operator like "="".)

Modifiers We have seen the use of the pre-multiplication mechanism (using the * operator) a number of times: to fix a parameter, to provide a starting value, and to label a parameter. We refer to these operations as *modifiers*, because they modify some properties of certain model parameters. More modifiers will be introduced later.

Each term on the right hand side in a formula can have one modifier only. If you want to specify more modifiers for the same parameter, you need to list the term multiple times in the same formula. For example:

```
f = y1 + y2 + myLabel*y3 + start(0.5)*y3 + y4
```

The indicator y3 was listed twice, each time with a different modifier. The parser will accumulate all the different modifiers, but still treat y3 as a single indicator.

Simple equality constraints In some applications, it is useful to impose equality constraints on one or more otherwise free parameters. Consider again the three-factor H&S CFA model. Suppose a user has a priori reasons to believe that the factor loadings of the x2 and x3 indicators are equal to each other. Instead of estimating two free parameters, lavaan should only estimate a single free parameter, and use that value for both factor loadings. The main mechanism to specify this type of (simple) equality constraints is by using labels: if two parameters have the same label, they will be considered to be the same, and only one value will be computed for them. This is illustrated in the following syntax:

```
visual = x1 + v2*x2 + v2*x3
textual = x4 + x5 + x6
speed = x7 + x8 + x9
```

Remember: all parameters having the same label will be constrained to be equal.

An alternative approach is to use the equal() modifier. This is useful if no custom label has been specified, and one needs to refer to the automatically generated label. For example:

```
visual = x1 + x2 + equal("visual=x2")*x3
textual = x4 + x5 + x6
speed = x7 + x8 + x9
```

Nonlinear equality and inequality constraints Consider the following regression:

```
y \sim b1*x1 + b2*x2 + b3*x3
```

where we have explicitly labeled the regression coefficients as b1, b2 and b3. We create a toy dataset containing these four variables and fit the regression model:

```
b1 b2 b3 y~~y
-0.052 0.084 0.139 0.970
```

Suppose that we need to impose the following two (nonlinear) constraints on b_1 : $b_1 = (b_2 + b_3)^2$ and $b_1 \ge \exp(b_2 + b_3)$. The first constraint is an equality constraint. The second is an inequality constraint. To specify these constraints, you can use the following syntax:

To see the effect of the constraints, we refit the model:

```
b1 b2 b3 y~~y
0.495 -0.405 -0.299 1.610
```

The reader can verify that the constraints are indeed respected. The equality constraint holds exactly. The inequality constraint has resulted in an equality between the left-hand side (b_1) and the right-hand side $(\exp(b_2 + b_3))$.

7 Bringing in the means

By and large, structural equation models are used to model the covariance matrix of the observed variables in a dataset. But in some applications, it is useful to bring in the means of the observed variables too. One way to do this is to explicitly refer to intercepts in the lavaan syntax. This can be done by including 'intercept formulas' in the model syntax. An intercept formula has the following form:

```
variable ~ 1
```

The left part of the expression contains the name of the observed or latent variable. The right part contains the number 1, representing the intercept. For example, in the three-factor H&S CFA model, we can add the intercepts of the observed variables as follows:

```
# three-factor model
  visual = ~ x1 + x2 + x3
  textual = ~ x4 + x5 + x6
  speed = ~ x7 + x8 + x9
# intercepts
  x1 ~ 1
  x2 ~ 1
  x3 ~ 1
  x4 ~ 1
  x5 ~ 1
  x6 ~ 1
```

```
x7 ~ 1
x8 ~ 1
```

However, it is more convenient to omit the intercept formulas in the model syntax (unless you want to fix their values), and to add the argument meanstructure = TRUE in the fitting function. For example, we can refit the three-factor H&S CFA model as follows:

lavaan 0.6-8 ended normally after 35 iterations

Estimator Optimization method Number of model parameters	ML NLMINB 30
Number of observations	301
Model Test User Model:	
Test statistic Degrees of freedom P-value (Chi-square)	85.306 24 0.000
Parameter Estimates:	

${\tt Parameter\ Estimates:}$

Standard errors	Standard
Information	Expected
Information saturated (h1) model	Structured

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)
visual =~				
x1	1.000			
x2	0.554	0.100	5.554	0.000
x3	0.729	0.109	6.685	0.000
textual =~				
x4	1.000			
x5	1.113	0.065	17.014	0.000
x6	0.926	0.055	16.703	0.000
speed =~				
x7	1.000			
x8	1.180	0.165	7.152	0.000
x9	1.082	0.151	7.155	0.000
Covariances:				
	Estimate	Std.Err	z-value	P(> z)
visual ~~				
textual	0.408	0.074	5.552	0.000
speed	0.262	0.056	4.660	0.000
textual ~~				
speed	0.173	0.049	3.518	0.000
Intercepts:				
-	Estimate	Std.Err	z-value	P(> z)
.x1	4.936	0.067	73.473	0.000
.x2	6.088	0.068	89.855	0.000
.x3	2.250	0.065	34.579	0.000

```
.x4
                     3.061
                               0.067
                                        45.694
                                                   0.000
.x5
                     4.341
                               0.074
                                        58.452
                                                   0.000
                               0.063
                                        34.667
                                                   0.000
.x6
                     2.186
.x7
                     4.186
                               0.063
                                        66.766
                                                   0.000
                                        94.854
                                                   0.000
.x8
                     5.527
                               0.058
.x9
                     5.374
                               0.058
                                        92.546
                                                   0.000
visual
                     0.000
                     0.000
textual
                     0.000
speed
```

Variances:

	Estimate	Std.Err	z-value	P(> z)
.x1	0.549	0.114	4.833	0.000
.x2	1.134	0.102	11.146	0.000
.x3	0.844	0.091	9.317	0.000
.x4	0.371	0.048	7.779	0.000
.x5	0.446	0.058	7.642	0.000
.x6	0.356	0.043	8.277	0.000
.x7	0.799	0.081	9.823	0.000
.x8	0.488	0.074	6.573	0.000
.x9	0.566	0.071	8.003	0.000
visual	0.809	0.145	5.564	0.000
textual	0.979	0.112	8.737	0.000
speed	0.384	0.086	4.451	0.000

As you can see in the output, the model includes intercept parameters for both the observed and latent variables. By default, the cfa() and sem() functions fix the latent variable intercepts (which in this case correspond to the latent means) to zero. Otherwise, the model would not be estimable. Note that the chisquare statistic and the number of degrees of freedom is the same as in the original model (without a mean structure). The reason is that we brought in some new data (a mean value for each of the 9 observed variables), but we also added 9 additional parameters to the model (an intercept for each of the 9 observed variables). The end result is an identical fit. In practice, the only reason why a user would add intercept-formulas in the model syntax, is because some constraints must be specified on them. For example, suppose that we wish to fix the intercepts of the variables x1, x2, x3 and x4 to, say, 0.5. We would write the model syntax as follows:

```
# three-factor model
 visual = x1 + x2 + x3
 textual = x4 + x5 + x6
        = x7 + x8 + x9
 speed
# intercepts with fixed values
 x1 + x2 + x3 + x4 \sim 0.5*1
```

where we have used the left-hand side of the formula to 'repeat' the right-hand side for each element of the left-hand side.

8 Multiple groups

The lavaan package has full support for multiple groups. To request a multiple group analysis, you need to add the name of the group variable in your dataset to the argument group in the fitting function. By default, the same model is fitted in all groups. In the following example, we fit the H&S CFA model for the two schools (Pasteur and Grant-White).

```
HS.model <- ' visual = x1 + x2 + x3
              textual = x4 + x5 + x6
                     =^{\sim} x7 + x8 + x9
              speed
fit <- cfa(HS.model,</pre>
           data = HolzingerSwineford1939,
           group = "school")
summary(fit)
```

lavaan 0.6-8 ended normally after 57 iterations

Estimator Optimization method Number of model parameters	ML NLMINB 60
Number of observations per group: Pasteur Grant-White	156 145
Model Test User Model:	
Test statistic Degrees of freedom P-value (Chi-square) Test statistic for each group:	115.851 48 0.000
Pasteur	64.309
Grant-White	51.542
Parameter Estimates:	
Standard errors	Standard

Group 1 [Pasteur]:

Information saturated (h1) model

 ${\tt Information}$

Latent Variables:				
Latent Variables:	Estimate	Std.Err	z-value	P(> z)
visual =~	Estimate	Stu.EII	Z varue	r (> 2)
x1	1.000			
x2	0.394	0.122	3.220	0.001
x3	0.570	0.122	4.076	0.001
textual =~	0.570	0.140	4.070	0.000
x4	1.000			
x4 x5	1.183	0 100	11.613	0 000
х5 х6	0.875	0.102 0.077	11.613	0.000
	0.875	0.077	11.421	0.000
speed =~	4 000			
x7	1.000	0 077	4 057	0 000
x8	1.125	0.277	4.057	0.000
х9	0.922	0.225	4.104	0.000
Covariances:				
	Estimate	Std.Err	z-value	P(> z)
visual ~~	Estimate	Std.Err	z-value	P(> z)
visual ~~ textual	Estimate 0.479	0.106	z-value 4.531	P(> z) 0.000
textual				
	0.479	0.106	4.531	0.000
textual speed	0.479	0.106	4.531	0.000
textual speed textual ~~ speed	0.479 0.185	0.106 0.077	4.531 2.397	0.000 0.017
textual speed textual ~~	0.479 0.185 0.182	0.106 0.077 0.069	4.531 2.397 2.628	0.000 0.017 0.009
textual speed textual ~~ speed Intercepts:	0.479 0.185 0.182 Estimate	0.106 0.077 0.069 Std.Err	4.531 2.397 2.628 z-value	0.000 0.017 0.009 P(> z)
textual speed textual ~~ speed Intercepts: .x1	0.479 0.185 0.182 Estimate 4.941	0.106 0.077 0.069 Std.Err 0.095	4.531 2.397 2.628 z-value 52.249	0.000 0.017 0.009 P(> z) 0.000
textual speed textual ~~ speed Intercepts: .x1 .x2	0.479 0.185 0.182 Estimate 4.941 5.984	0.106 0.077 0.069 Std.Err 0.095 0.098	4.531 2.397 2.628 z-value 52.249 60.949	0.000 0.017 0.009 P(> z) 0.000 0.000
textual speed textual ~~ speed Intercepts: .x1 .x2 .x3	0.479 0.185 0.182 Estimate 4.941 5.984 2.487	0.106 0.077 0.069 Std.Err 0.095 0.098 0.093	4.531 2.397 2.628 z-value 52.249 60.949 26.778	0.000 0.017 0.009 P(> z) 0.000 0.000 0.000
textual speed textual ~~ speed Intercepts: .x1 .x2 .x3 .x4	0.479 0.185 0.182 Estimate 4.941 5.984 2.487 2.823	0.106 0.077 0.069 Std.Err 0.095 0.098 0.093 0.092	4.531 2.397 2.628 z-value 52.249 60.949 26.778 30.689	0.000 0.017 0.009 P(> z) 0.000 0.000 0.000 0.000
textual speed textual ~~ speed Intercepts: .x1 .x2 .x3 .x4 .x5	0.479 0.185 0.182 Estimate 4.941 5.984 2.487 2.823 3.995	0.106 0.077 0.069 Std.Err 0.095 0.098 0.093 0.092 0.105	4.531 2.397 2.628 z-value 52.249 60.949 26.778 30.689 38.183	0.000 0.017 0.009 P(> z) 0.000 0.000 0.000 0.000
textual speed textual ~~ speed Intercepts: .x1 .x2 .x3 .x4 .x5 .x6	0.479 0.185 0.182 Estimate 4.941 5.984 2.487 2.823 3.995 1.922	0.106 0.077 0.069 Std.Err 0.095 0.098 0.093 0.092 0.105 0.079	4.531 2.397 2.628 z-value 52.249 60.949 26.778 30.689 38.183 24.321	0.000 0.017 0.009 P(> z) 0.000 0.000 0.000 0.000 0.000
textual speed textual ~~ speed Intercepts: .x1 .x2 .x3 .x4 .x5	0.479 0.185 0.182 Estimate 4.941 5.984 2.487 2.823 3.995	0.106 0.077 0.069 Std.Err 0.095 0.098 0.093 0.092 0.105	4.531 2.397 2.628 z-value 52.249 60.949 26.778 30.689 38.183	0.000 0.017 0.009 P(> z) 0.000 0.000 0.000 0.000

 ${\tt Expected}$

Structured

.x8	5.563	0.078	71.214	0.000
.x9	5.418	0.079	68.440	0.000
visual	0.000			
textual	0.000			
speed	0.000			
Variances:				
	Estimate	Std.Err	z-value	P(> z)
.x1	0.298	0.232	1.286	0.198
.x2	1.334	0.158	8.464	0.000
.x3	0.989	0.136	7.271	0.000
.x4	0.425	0.069	6.138	0.000
.x5	0.456	0.086	5.292	0.000
.x6	0.290	0.050	5.780	0.000
.x7	0.820	0.125	6.580	0.000
.x8	0.510	0.116	4.406	0.000
.x9	0.680	0.104	6.516	0.000
visual	1.097	0.276	3.967	0.000
textual	0.894	0.150	5.963	0.000
speed	0.350	0.126	2.778	0.005

Group 2 [Grant-White]:

Latent Variables:				
Eddollo Vallablob.	Estimate	Std.Err	z-value	P(> z)
visual =~				- (1-1)
x1	1.000			
x2	0.736	0.155	4.760	0.000
x3	0.925	0.166	5.583	0.000
textual =~				
x4	1.000			
x5	0.990	0.087	11.418	0.000
x6	0.963	0.085	11.377	0.000
speed =~				
x7	1.000			
x8	1.226	0.187	6.569	0.000
x9	1.058	0.165	6.429	0.000
Covariances:				
	Estimate	Std.Err	z-value	P(> z)
visual ~~				
textual	0.408	0.098	4.153	0.000
speed	0.276	0.076	3.639	0.000
textual ~~				
speed	0.222	0.073	3.022	0.003
Intercepts:				
-	Estimate	Std.Err	z-value	P(> z)
.x1	4.930	0.095	51.696	0.000
.x2	6.200	0.092	67.416	0.000
.x3	1.996	0.086	23.195	0.000
.x4	3.317	0.093	35.625	0.000
.x5	4.712	0.096	48.986	0.000
.x6	2.469	0.094	26.277	0.000
.x7	3.921	0.086	45.819	0.000
.x8	5.488	0.087	63.174	0.000
.x9	5.327	0.085	62.571	0.000
visual	0.000			
textual	0.000			

speed	0.000			
iances:				
	Estimate	Std.Err	z-value	

Var

	Estimate	Std.Err	z-value	P(> z)
.x1	0.715	0.126	5.676	0.000
.x2	0.899	0.123	7.339	0.000
.x3	0.557	0.103	5.409	0.000
.x4	0.315	0.065	4.870	0.000
.x5	0.419	0.072	5.812	0.000
.x6	0.406	0.069	5.880	0.000
.x7	0.600	0.091	6.584	0.000
.x8	0.401	0.094	4.249	0.000
.x9	0.535	0.089	6.010	0.000
visual	0.604	0.160	3.762	0.000
textual	0.942	0.152	6.177	0.000
speed	0.461	0.118	3.910	0.000

If you want to fix parameters, or provide starting values, you can use the same pre-multiplication techniques, but the single argument is now replaced by a *vector* of arguments, one for each group. If you use a single element instead of a vector (which is not recommended), that element will be applied for all groups. If you specify a single label, this will generate a warning as this would imply equality constraints across groups. For example:

In the definition of the latent factor visual, we have fixed the factor loading of the indicator x3 to the value '0.6' in the first group, and to the value '0.8' in the second group, while the factor loading of the indicator x2 is fixed to the value '0.5' in both groups. In the definition of the textual factor, two different starting values are provided for the x5 indicator; one for each group. In addition, we have labeled the factor loading of the x6 indicator as a1 in the first group, and a2 in the second group. It may be tempting to write a*x6. But using a single label in a multiple group setting has a double effect: it gives the label a to the factor loading of a in both groups, and as a result, those two parameters are now constrained to be equal. Because this may unintended, lavaan will produce a warning message about this. If this is really intended, it is much better to use a vector of labels: c(a, a)*x6.

To verify the effects of our modifiers, we refit the model:

lavaan 0.6-8 ended normally after 45 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	56
Number of observations per group:	
Pasteur	156
Grant-White	145
Model Test User Model:	
Test statistic	118.976
Degrees of freedom	52
P-value (Chi-square)	0.000
Test statistic for each group:	
Pasteur	64.901
Grant-White	54.075

Parameter Estimates:

Standard error	S		Standard
Information			Expected
Information sa	turated (h1)	model	Structured

Group 1 [Pasteur]:

_	
I 2+22+	Variables:
Latent	variables.

visual

Latent Variab	les:				- ()
		Estimate	Std.Err	z-value	P(> z)
visual =~					
x1		1.000			
x2		0.500			
x3		0.600			
textual =~					
x4		1.000			
x5		1.185	0.102	11.598	0.000
x6	(a1)	0.876	0.077	11.409	0.000
speed =~					
x7		1.000			
x8		1.129	0.279	4.055	0.000
х9		0.931	0.227	4.103	0.000
Covariances:					
		Estimate	Std.Err	z-value	P(> z)
visual ~~					
textual		0.460	0.103	4.479	0.000
speed		0.182	0.076	2.408	0.016
textual ~~					
speed		0.181	0.069	2.625	0.009
Intercepts:					
		Estimate	Std.Err	z-value	P(> z)
.x1		4.941	0.094	52.379	0.000
.x2		5.984	0.100	59.945	0.000
.x3		2.487	0.092	26.983	0.000
.x4		2.823	0.092	30.689	0.000
.x5		3.995	0.105	38.183	0.000
.x6		1.922	0.079	24.320	0.000
.x7		4.432	0.087	51.181	0.000
.x8		5.563	0.078	71.214	0.000
.x9		5.418	0.079	68.440	0.000
visual		0.000			
textual		0.000			
speed		0.000			
Variances:					
		Estimate	Std.Err	z-value	P(> z)
.x1		0.388	0.129	3.005	0.003
.x2		1.304	0.155	8.432	0.000
.x3		0.965	0.120	8.016	0.000
.x4		0.427	0.069	6.153	0.000
.x5		0.454	0.086	5.270	0.000
.x6		0.289	0.050	5.763	0.000
.x7		0.824	0.124	6.617	0.000
.x8		0.510	0.116	4.417	0.000
.x9		0.677	0.105	6.479	0.000
		4 004	0.470	F 000	0 000

1.001

0.172

0.000

5.803

textual	0.892	0.150	5.953	0.000
speed	0.346	0.125	2.768	0.006

Group 2 [Grant-White]:

Latent variab.	res:				_
		Estimate	Std.Err	z-value	P(> z)
visual =~					
x1		1.000			
x2		0.500			
x3		0.800			
		0.600			
textual =~					
x4		1.000			
x5		0.990	0.087	11.425	0.000
х6	(a2)	0.963	0.085	11.374	0.000
speed =~	(42)	0.000	0.000		0.000
_		1 000			
x7		1.000			
x8		1.228	0.188	6.539	0.000
x9		1.081	0.168	6.417	0.000
Covariances:					
covar rancos.		Estimate	Std.Err	z-value	P(> z)
		Estimate	Stu.EII	z-varue	F(> Z)
visual ~~					
textual		0.454	0.099	4.585	0.000
speed		0.315	0.079	4.004	0.000
textual ~~					
speed		0.222	0.073	3.049	0.002
bpcca		0.222	0.070	0.043	0.002
Intercepts:					
		Estimate	Std.Err	z-value	P(> z)
.x1		4.930	0.097	50.688	0.000
.x2		6.200	0.089	69.616	0.000
.x3		1.996	0.086	23.223	0.000
.x4		3.317	0.093	35.625	0.000
.x5		4.712	0.096	48.986	0.000
.x6		2.469	0.094	26.277	0.000
.x7		3.921	0.086	45.819	0.000
.x8		5.488	0.087	63.174	0.000
.x9		5.327	0.085	62.571	0.000
			0.000	02.071	0.000
visual		0.000			
textual		0.000			
speed		0.000			
Variances:					
		Estimate	Std.Err	z-value	P(> z)
.x1		0.637	0.115	5.539	0.000
		0.966			
.x2			0.120	8.076	0.000
.x3		0.601	0.091	6.591	0.000
.x4		0.316	0.065	4.877	0.000
.x5		0.418	0.072	5.805	0.000
.x6		0.407	0.069	5.887	0.000
.x7		0.609	0.091	6.658	0.000
.x8		0.411	0.094	4.385	0.000
.x9		0.522	0.089	5.887	0.000
visual		0.735	0.132	5.544	0.000
textual		0.942	0.152	6.177	0.000
speed		0.453	0.117	3.871	0.000
<u>r</u>					

Fixing parameters in some groups, but not all Sometimes, we wish to fix the value of a parameter in all groups, except for one particular group. In this group, we wish to freely estimate the value of that parameter. The modifier for this parameter is again a vector containing the fixed values for this parameter for each group, but we can use NA to force a parameter to be free in one (or more) group(s). Suppose for example we have four groups. We define a latent variable (say f) with three indicators. We wish to fix the factor loading of indicator item2 to 1.0 in all but the second group. We can write something like

```
f = "item1 + c(1,NA,1,1)*item2 + item3
```

Constraining a single parameter to be equal across groups If you want to constrain one or more parameters to be equal across groups, you need to give them the same label. For example, to constrain the factor loading of the indicator x3 to be equal across (two) groups, you can write:

Again, identical labels imply identical parameters, both within and across groups.

Constraining groups of parameters to be equal across groups Although providing identical labels is a very flexible method to specify equality constraints for a few parameters, there is a more convenient way to impose equality constraints on a whole set of parameters (for example: all factor loadings, or all intercepts). We call these type of constraints group equality constraints and they can be specified by the argument group.equal in the fitting function. For example, to constrain (all) the factor loadings to be equal across groups, you can proceed as follows:

lavaan 0.6-8 ended normally after 42 iterations

Estimator Optimization method Number of model parameters Number of equality constraints	ML NLMINB 60 6
Number of observations per group: Pasteur Grant-White	156 145
Model Test User Model:	
Test statistic Degrees of freedom P-value (Chi-square) Test statistic for each group: Pasteur Grant-White	124.044 54 0.000 68.825 55.219
Parameter Estimates:	
Standard errors Information	Standard Expected

Information saturated (h1) model

Structured

Group 1 [Pasteur]:

T - 4 4	V
Latent	Variables

Latent Variables:					
		Estimate	Std.Err	z-value	P(> z)
visual =~					
x1		1.000			
x2	(.p2.)	0.599	0.100	5.979	0.000
x3	(.p3.)	0.784	0.108	7.267	0.000
textual =	_	0.704	0.100	1.201	0.000
		4 000			
x4	\	1.000			
x5	(.p5.)	1.083	0.067	16.049	0.000
x6	(.p6.)	0.912	0.058	15.785	0.000
speed =~					
x7		1.000			
x8	(.p8.)	1.201	0.155	7.738	0.000
x9	(.p9.)	1.038	0.136	7.629	0.000
	. 1 - /				
Covariances					
oovar rancos		Estimate	Std.Err	z-value	P(> z)
visual ~~		LSCIMACE	btd.LII	z varue	1 (> 2)
		0 446	0 007	4 071	0 000
textual		0.416	0.097	4.271	0.000
speed		0.169	0.064	2.643	0.008
textual ~~	•				
speed		0.176	0.061	2.882	0.004
Intercepts:					
_		Estimate	Std.Err	z-value	P(> z)
.x1		4.941	0.093	52.991	0.000
.x2		5.984	0.100	60.096	0.000
.x3		2.487	0.094	26.465	0.000
.x4		2.823	0.093	30.371	0.000
.x5		3.995	0.101	39.714	0.000
.x6		1.922	0.081	23.711	0.000
.x7		4.432	0.086	51.540	0.000
.x8		5.563	0.078	71.087	0.000
.x9		5.418	0.079	68.153	0.000
visual		0.000			
textual		0.000			
speed		0.000			
•					
Variances:					
, 41 1 411 6 6 7 .		Estimate	Std.Err	z-value	P(> z)
.x1		0.551	0.137	4.010	0.000
.x2		1.258	0.157	8.117	
					0.000
.x3		0.882	0.128	6.884	0.000
. x4		0.434	0.070	6.238	0.000
.x5		0.508	0.082	6.229	0.000
.x6		0.266	0.050	5.294	0.000
.x7		0.849	0.114	7.468	0.000
.x8		0.515	0.095	5.409	0.000
.x9		0.658	0.096	6.865	0.000
visual		0.805	0.171	4.714	0.000
textual		0.913	0.137	6.651	0.000
speed		0.305	0.078	3.920	0.000
speed		0.505	0.010	0.920	0.000

Group 2 [Grant-White]:

Latent Variables:

		Estimate	Std.Err	z-value	P(> z)
visual =~					
x1	- \	1.000			
	p2.)	0.599	0.100	5.979	0.000
	p3.)	0.784	0.108	7.267	0.000
textual =~					
x4		1.000			
	p5.)	1.083	0.067	16.049	0.000
x6 (. _]	p6.)	0.912	0.058	15.785	0.000
speed =~					
x7		1.000			
x8 (. _]	p8.)	1.201	0.155	7.738	0.000
x9 (. ₁	p9.)	1.038	0.136	7.629	0.000
Covariances:					
		Estimate	Std.Err	z-value	P(> z)
visual ~~					
textual		0.437	0.099	4.423	0.000
speed		0.314	0.079	3.958	0.000
textual ~~					
speed		0.226	0.072	3.144	0.002
Spood		0.220	0.012	0.111	0.002
Intercepts:					
•		Estimate	Std.Err	z-value	P(> z)
.x1		4.930	0.097	50.763	0.000
.x2		6.200	0.091	68.379	0.000
.x3		1.996	0.085	23.455	0.000
.x4		3.317	0.092	35.950	0.000
.x5		4.712	0.100	47.173	0.000
.x6		2.469	0.091	27.248	0.000
.x7		3.921	0.086	45.555	0.000
.x8		5.488	0.087	63.257	0.000
.x9		5.327	0.085	62.786	0.000
visual		0.000	0.000	02.700	0.000
textual		0.000			
		0.000			
speed		0.000			
Variances:		_		_	- ()
		Estimate	Std.Err	z-value	P(> z)
.x1		0.645	0.127	5.084	0.000
.x2		0.933	0.121	7.732	0.000
.x3		0.605	0.096	6.282	0.000
.x4		0.329	0.062	5.279	0.000
.x5		0.384	0.073	5.270	0.000
.x6		0.437	0.067	6.576	0.000
.x7		0.599	0.090	6.651	0.000
.x8		0.406	0.089	4.541	0.000
.x9		0.532	0.086	6.202	0.000
visual		0.722	0.161	4.490	0.000
textual		0.906	0.136	6.646	0.000
speed		0.475	0.109	4.347	0.000
-					

The .p2., .p3., .p5, ... labels which appear in the output have been auto-generated to impose the equality constraints. More 'group equality constraints' can be added. In addition to the factor loadings, the following keywords are supported in the group.equal argument:

- intercepts: the intercepts of the observed variables
- means: the intercepts/means of the latent variables
- residuals: the residual variances of the observed variables
- residual.covariances: the residual covariances of the observed variables
- lv.variances: the (residual) variances of the latent variables

- lv.covariances: the (residual) covariances of the latent varibles
- regressions: all regression coefficients in the model

If you omit the group.equal argument, all parameters are freely estimated in each group (but the model structure is the same).

But what if you want to constrain a whole group of parameters (say all factor loadings and intercepts) across groups, except for one or two parameters that need to stay free in all groups. For this scenario, you can use the argument group.partial, containing the names of those parameters that need to remain free. For example:

Measurement invariance testing Before we compare, say, the values of latent means across multiple groups, we first need to establish measurement invariance. When data is continuous, testing for measurement invariance involves a fixed sequence of model comparison tests. A typical sequence involves three models:

- 1. Model 1: configural invariance. The same factor structure is imposed on all groups.
- 2. Model 2: weak invariance. The factor loadings are constrained to be equal across groups.
- 3. Model 3: strong invariance. The factor loadings and intercepts are constrained to be equal across groups.

In lavaan, we can proceed as follows:

Chi-Squared Difference Test

```
Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
fit1 48 7484.4 7706.8 115.85
fit2 54 7480.6 7680.8 124.04 8.192 6 0.2244
fit3 60 7508.6 7686.6 164.10 40.059 6 4.435e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The lavTestLRT() function can be used for model comparison tests. Because we provided three model fits, it will produce two tests: the first test compares the first model versus the second model, while the second test compares the second model versus the third model. Because the first p-value is non-significant, we may conclude that weak invariance (equal factor loadings) is supported in this dataset. However, because the second p-value is significant, strong invariance is not. Therefore, it is unwise to directly compare the values of the latent means across the two groups.

Growth curve models 9

Another important type of latent variable models are latent growth curve models. Growth modeling is often used to analyze longitudinal or developmental data. In this type of data, an outcome measure is measured on several occasions, and we want to study the change over time. In many cases, the trajectory over time can be modeled as a simple linear or quadratic curve. Random effects are used to capture individual differences. The random effects are conveniently represented by (continuous) latent variables, often called growth factors. In the example below, we use an artifical dataset called Demo.growth where a score (say, a standardized score on a reading ability scale) is measured on 4 time points. To fit a linear growth model for these four time points, we need to specify a model with two latent variables: a random intercept, and a random slope:

```
# linear growth model with 4 timepoints
# intercept and slope with fixed coefficients
i = 1*t1 + 1*t2 + 1*t3 + 1*t4
s = 0*t1 + 1*t2 + 2*t3 + 3*t4
```

In this model, we have fixed all the coefficients of the growth functions. If i and s are the only 'latent variables' in the model, we can use the growth() function to fit this model:

```
model <- ' i =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
           s = 0*t1 + 1*t2 + 2*t3 + 3*t4
fit <- growth(model, data=Demo.growth)</pre>
summary(fit)
```

lavaan 0.6-8 ended normally after 29 iterations

Estimator Optimization method Number of model parameters	ML NLMINB 9
Number of observations	400
Model Test User Model:	
Test statistic Degrees of freedom P-value (Chi-square)	8.069 5 0.152
Parameter Estimates:	

Standard errors	Standard
Information	Expected
Information saturated (h1) model	Structured

Latent Variables:

		Estimate	Std.Err	z-value	P(> z)
i	=~				
	t1	1.000			
	t2	1.000			
	t3	1.000			
	t4	1.000			
s	=~				
	t1	0.000			
	t2	1.000			
	t3	2.000			
	t4	3.000			

Covariances:

	Estimate	Std.Err	z-value	P(> z)
i ~~				
s	0.618	0.071	8.686	0.000

Intercepts:				
	Estimate	Std.Err	z-value	P(> z)
.t1	0.000			
.t2	0.000			
.t3	0.000			
.t4	0.000			
i	0.615	0.077	8.007	0.000
S	1.006	0.042	24.076	0.000
Variances:				
	Estimate	Std.Err	z-value	P(> z)
.t1	0.595	0.086	6.944	0.000
.t2	0.676	0.061	11.061	0.000
.t3	0.635	0.072	8.761	0.000
.t4	0.508	0.124	4.090	0.000
i	1.932	0.173	11.194	0.000
S	0.587	0.052	11.336	0.000

Technically, the <code>growth()</code> function is almost identical to the <code>sem()</code> function. But a mean structure is automatically assumed, and the observed intercepts are fixed to zero by default, while the latent variable intercepts/means are freely estimated. A slightly more complex model adds two regressors (x1 and x2) that influence the latent growth factors. In addition, a time-varying covariate c that influences the outcome measure at the four time points has been added to the model. A graphical representation of this model is presented below.

The complete R code needed to specify and fit this linear growth model with a time-varying covariate is given below:

```
# a linear growth model with a time-varying covariate
model <- '
    # intercept and slope with fixed coefficients
    i = ~ 1*t1 + 1*t2 + 1*t3 + 1*t4
    s = ~ 0*t1 + 1*t2 + 2*t3 + 3*t4
# regressions
    i ~ x1 + x2
    s ~ x1 + x2
# time-varying covariates
    t1 ~ c1
    t2 ~ c2
    t3 ~ c3
    t4 ~ c4
'
fit <- growth(model, data = Demo.growth)
summary(fit)</pre>
```

10 Using categorical variables

Binary, ordinal and nominal variables are considered categorical (not continuous). It makes a big difference if these categorical variables are exogenous (independent) or endogenous (dependent) in the model.

Exogenous categorical variables If you have a binary exogenous covariate (say, gender), all you need to do is to recode it as a dummy (0/1) variable. Just like you would do in a classic regression model. If you have an exogenous ordinal variable, you can use a coding scheme reflecting the order (say, 1,2,3,...) and treat it as any other (numeric) covariate. If you have a nominal categorical variable with K > 2 levels, you need to replace it by a set of K - 1 dummy variables, again, just like you would do in classical regression.

Endogenous categorical variables The lavaan 0.5 series can deal with binary and ordinal (but not nominal) endogenous variables. There are two ways to communicate to lavaan that some of the endogenous variables are to be treated as categorical:

1. declare them as 'ordered' (using the ordered function, which is part of base R) in your data.frame before you run the analysis; for example, if you need to declare four variables (say, item1, item2, item3, item4) as ordinal in your data.frame (called Data), you can use something like:

2. use the ordered argument when using one of the fitting functions (cfa/sem/growth/lavaan), for example, if you have four binary or ordinal variables (say, item1, item2, item3, item4), you can use:

If all the (endogenous) variables are to be treated as categorical, you can use ordered = TRUE as a shortcut.

When the ordered= argument is used, lavaan will automatically switch to the WLSMV estimator: it will use diagonally weighted least squares (DWLS) to estimate the model parameters, but it will use the full weight matrix to compute robust standard errors, and a mean- and variance-adjusted test stastistic. Other options are unweighted least squares (ULSMV), or pairwise maximum likelihood (PML). Full information maximum likelihood is currently not supported.

11 Using a covariance matrix as input

If you have no full dataset, but you do have a sample covariance matrix, you can still fit your model. If you wish to add a mean structure, you need to provide a mean vector too. Importantly, if only sample statistics are provided, you must specify the number of observations that were used to compute the sample moments. The following example illustrates the use of a sample covariance matrix as input. First, we read in the lower half of the covariance matrix (including the diagonal):

```
lower <- '
11.834
 6.947
         9.364
 6.819
        5.091 12.532
                7.495 9.986
 4.783
        5.028
        -3.889 -3.841 -3.625 9.610
 -3.839
-21.899 -18.831 -21.748 -18.775 35.522 450.288 '
wheaton.cov <-
   getCov(lower, names = c("anomia67", "powerless67",
                           "anomia71", "powerless71",
                           "education", "sei"))
```

The getCov() function makes it easy to create a full covariance matrix (including variable names) if you only have the lower-half elements (perhaps pasted from a textbook or a paper). Note that the lower-half elements are written between two single quotes. Therefore, you have some additional flexibility. You can add comments, and blank lines. If the numbers are separated by a comma, or a semi-colon, that is fine too. For more information about getCov(), see the online manual page.

Next, we can specify our model, estimate it, and request a summary of the results:

```
# classic wheaton et al. model
wheaton.model <- '
 # latent variables
   ses = education + sei
   alien67 = anomia67 + powerless67
   alien71 = anomia71 + powerless71
 # regressions
   alien71 ~ alien67 + ses
   alien67 ~ ses
 # correlated residuals
   anomia67 ~~ anomia71
   powerless67 ~~ powerless71
fit <- sem(wheaton.model,</pre>
           sample.cov = wheaton.cov,
           sample.nobs = 932)
summary(fit, standardized = TRUE)
```

lavaan 0.6-8 ended normally after 84 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	17
Number of observations	932
Model Test User Model:	
Test statistic	4.735
Degrees of freedom	4
P-value (Chi-square)	0.316

Parameter Estimates:

Stallaufa Cff	CID			Dodinaara		
Information				Expected		
Information	saturated (h1)	model	St	ructured		
Latent Variabl	logi					
Lacenc variable		C+ -1 E		D(> -)	C+1 1	C+ 3 - 1 1
_	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
ses =~						
education	1.000				2.607	0.842
sei	5.219	0.422	12.364	0.000	13.609	0.642
alien67 =~						
anomia67	1.000				2.663	0.774
powerless6		0.062	15.895	0.000	2.606	0.852
alien71 =~		0.002	10.000	0.000	_,,,,,	0.002
anomia71	1.000				2.850	0.805
		0.050	45 400	0 000		
powerless?	71 0.922	0.059	15.498	0.000	2.628	0.832
Regressions:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
alien71 ~						
alien67	0.607	0.051	11.898	0.000	0.567	0.567
ses	-0.227	0.052	-4.334	0.000	-0.207	-0.207
	0.221	0.002	1.001	0.000	0.201	0.201
alien67 ~	0 575	0.050	40 405	0 000	0 500	0 500
ses	-0.575	0.056	-10.195	0.000	-0.563	-0.563
Covariances:						
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.anomia67 ~~						
.anomia71	1.623	0.314	5.176	0.000	1.623	0.356
.powerless67	~~					
.powerless7		0.261	1.298	0.194	0.339	0.121
.powciicss	0.005	0.201	1.250	0.154	0.005	0.121
Vaniana.						
Variances:	.	G. 1 F	-	D(>)	G. 1 1	G. 1 11
	Estimate	Std.Err	z-value	P(> z)	Std.lv	Std.all
.education	2.801	0.507	5.525	0.000	2.801	0.292
.sei	264.597	18.126	14.597	0.000	264.597	0.588
.anomia67	4.731	0.453	10.441	0.000	4.731	0.400
.powerless6	2.563	0.403	6.359	0.000	2.563	0.274
.anomia71	4.399	0.515	8.542	0.000	4.399	0.351
.powerless7		0.434	7.070	0.000	3.070	0.308
ses	6.798	0.649	10.475	0.000	1.000	1.000
.alien67	4.841	0.467	10.359	0.000	0.683	0.683
.alien71	4.083	0.404	10.104	0.000	0.503	0.503

Standard

Standard errors

The sample.cov.rescale argument If the estimator is ML (the default), then the sample variance-covariance matrix will be rescaled by a factor (N-1)/N. The reasoning is the following: the elements in a sample variance-covariance matrix have (usually) been divided by N-1. But the (normal-based) ML estimator would divide the elements by N. Therefore, we need to rescale. If you don't want this to happen (for example in a simulation study), you can provide the argument sample.cov.rescale = FALSE.

Multiple groups If you have multiple groups, the sample.cov argument must be a list containing the sample variance-covariance matrix of each group as a separate element in the list. If a mean structure is needed, the sample.mean argument must be a list containing the sample means of each group. Finally, the sample.nobs argument can be either a list or an integer vector containing the number of observations for each group.

12 Estimators, standard errors and missing values

Estimators If all data is continuous, the default estimator in the lavaan package is maximum likelihood (estimator = "ML"). Alternative estimators available in lavaan are:

- "GLS": generalized least squares. For complete data only.
- "WLS": weighted least squares (sometimes called ADF estimation). For complete data only.
- "DWLS": diagonally weighted least squares
- "ULS": unweighted least squares
- "DLS": distributionally-weighted least squares
- "PML": pairwise maximum likelihood

Many estimators have 'robust' variants, meaning that they provide robust standard errors and a scaled test statistic. For example, for the maximum likelihood estimator, lavaan provides the following robust variants:

- "MLM": maximum likelihood estimation with robust standard errors and a Satorra-Bentler scaled test statistic. For complete data only.
- "MLMVS": maximum likelihood estimation with robust standard errors and a mean- and variance adjusted test statistic (aka the Satterthwaite approach). For complete data only.
- "MLMV": maximum likelihood estimation with robust standard errors and a mean- and variance adjusted test statistic (using a scale-shifted approach). For complete data only.
- "MLF": for maximum likelihood estimation with standard errors based on the first-order derivatives, and a conventional test statistic. For both complete and incomplete data.
- "MLR": maximum likelihood estimation with robust (Huber-White) standard errors and a scaled test statistic that is (asymptotically) equal to the Yuan-Bentler test statistic. For both complete and incomplete data.

For the DWLS and ULS estimators, lavaan also provides 'robust' variants: WLSM, WLSMVS, WLSMV, ULSMV, ULSMVS, ULSMV. Note that for the robust WLS variants, we use the diagonal of the weight matrix for estimation, but we use the full weight matrix to correct the standard errors and to compute the test statistic.

ML estimation: Wishart versus Normal If maximum likelihood estimation is used ("ML" or any of its robusts variants), the default behavior of lavaan is to base the analysis on the so-called *biased* sample covariance matrix, where the elements are divided by N instead of N-1. This is done internally, and should not be done by the user. In addition, the chi-square statistic is computed by multiplying the minimum function value with a factor N (instead of N-1). If you prefer to use an unbiased covariance matrix, and N-1 as the multiplier to compute the chi-square statistic, you need to specify the likelihood = "wishart" argument when calling the fitting functions. For example:

lavaan 0.6-8 ended normally after 35 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	21
Number of observations	301

Model Test User Model:

Test statistic	85.022
Degrees of freedom	24
P-value (Chi-square)	0.000

The value of the test statistic will be closer to the value reported by programs like EQS, LISREL or AMOS, since they all use the 'Wishart' approach when using the maximum likelihood estimator. The program Mplus, on the other hand, uses the 'normal' approach to maximum likelihood estimation.

Missing values If the data contain missing values, the default behavior is listwise deletion. If the missing mechanism is MCAR (missing completely at random) or MAR (missing at random), the lavaan package provides case-wise (or 'full information') maximum likelihood estimation. You can turn this feature on, by using the argument missing = "ML" when calling the fitting function. An unrestricted (h1) model will automatically be estimated, so that all common fit indices are available.

Standard errors Standard errors are (by default) based on the expected information matrix. The only exception is when data are missing and full information ML is used (via missing = "ML"). In this case, the observed information matrix is used to compute the standard errors. The user can change this behavior by using the information argument.

Robust standard errors can be requested explicitly by using se = "robust". Similarly, robust test statistics can be requested explicitly by using test = "robust". Many more options are possible. See the help page:

```
?lavOptions
```

Bootstrapping There are two ways for using the bootstrap in lavaan. Either you can set se = "bootstrap" or test = "bootstrap" when fitting the model (and you will get bootstrap standard errors, and/or a bootstrap based p-value respectively), or you can you the bootstrapLavaan() function, which needs an already fitted lavaan object. The latter function can be used to 'bootstrap' any statistic (or vector of statistics) that you can extract from a fitted lavaan object.

13 Indirect effects and mediation analysis

Consider a classical mediation setup with three variables: Y is the dependent variable, X is the predictor, and M is a mediator. For illustration, we create a toy dataset containing these three variables, and fit a path analysis model that includes the direct effect of X on Y and the indirect effect of X on Y via M.

```
set.seed(1234)
X <- rnorm(100)
M < -0.5*X + rnorm(100)
Y < -0.7*M + rnorm(100)
Data <- data.frame(X = X, Y = Y, M = M)
model <- ' # direct effect</pre>
             Y ~ C*X
           # mediator
             M ~ a*X
             y ~ b∗M
           # indirect effect (a*b)
             ab := a*b
           # total effect
             total := c + (a*b)
fit <- sem(model, data = Data)</pre>
summary(fit)
```

lavaan 0.6-8 ended normally after 12 iterations

Estimator Optimization method Number of model parameters	ML NLMINB 5
Number of observations	100
Model Test User Model:	
Test statistic Degrees of freedom	0.000

Parameter Estimates:

Standard e Information	n	rated (h1)	model		Standard Expected ructured
Regressions:					
		Estimate	Std.Err	z-value	P(> z)
γ~					
X	(c)	0.036	0.104	0.348	0.728
м ~					
X	(a)	0.474	0.103	4.613	0.000
γ~					
M	(b)	0.788	0.092	8.539	0.000
Variances:					
		Estimate	Std.Err	z-value	P(> z)
. Y		0.898	0.127	7.071	0.000
. M		1.054	0.149	7.071	0.000
Defined Para	meters	:			
		Estimate	Std.Err	z-value	P(> z)
ab		0.374	0.092	4.059	0.000
total		0.410	0.125	3.287	0.001

The example illustrates the use of the ":=" operator in the lavaan model syntax. This operator 'defines' new parameters which take on values that are an arbitrary function of the original model parameters. The function, however, must be specified in terms of the parameter *labels* that are explicitly mentioned in the model syntax. By default, the standard errors for these defined parameters are computed by using the so-called Delta method. As with other models, bootstrap standard errors can be requested simply by specifying se = "bootstrap" in the fitting function.

14 Modification Indices

Modification indices can be requested by adding the argument modindices = TRUE in the summary() call, or by calling the function modindices() directly. By default, modification indices are printed out for each nonfree (or fixed-to-zero) parameter. The modification indices are supplemented by the expected parameter change (EPC) values (column epc). The last three columns contain the standardized EPC values (sepc.lv: only standardizing the latent variables; sepc.all: standardizing all variables; sepc.nox: standardizing all but exogenous observed variables).

A typical use of the modindices() function is as follows:

```
fit <- cfa(HS.model,</pre>
           data = HolzingerSwineford1939)
modindices(fit, sort = TRUE, maximum.number = 5)
       lhs op rhs
                              epc sepc.lv sepc.all sepc.nox
                       mi
                           0.577
30
    visual =~
                x9 36.411
                                    0.519
                                              0.515
                                                        0.515
76
        x7
                x8 34.145
                           0.536
                                    0.536
                                              0.859
                                                        0.859
28
    visual =~
                x7 18.631 -0.422
                                   -0.380
                                             -0.349
                                                       -0.349
        x8 ~~
                x9 14.946 -0.423
                                   -0.423
                                             -0.805
                                                      -0.805
33 textual =~
                   9.151 -0.272
                                   -0.269
                                             -0.238
                xЗ
                                                       -0.238
```

This will print out the top 5 parameters (that can be added to the model) that result in the largest modification index, sorted from high to low.

The modindices() function returns a data frame, which you can sort or filter to extract what you want. For example, to see only the modification indices for the factor loadings, you can use something like this:

```
mi[mi$op == "=~",]
```

```
lhs op rhs
                       mi
                              epc sepc.lv sepc.all sepc.nox
25
    visual =~
                    1.211
                           0.077
                                    0.069
                                              0.059
                                                        0.059
               x4
    visual =~
26
                x5
                    7.441 - 0.210
                                   -0.189
                                             -0.147
                                                      -0.147
    visual =~
27
                    2.843
                           0.111
                                    0.100
                                              0.092
                                                        0.092
28
    visual =~
               x7 18.631 -0.422
                                   -0.380
                                             -0.349
                                                       -0.349
    visual =~
29
                    4.295 -0.210
                                             -0.187
                                                       -0.187
               х8
                                   -0.189
30
    visual =~
               x9
                   36.411
                           0.577
                                    0.519
                                              0.515
                                                        0.515
31 textual =~
               x1
                    8.903
                           0.350
                                    0.347
                                              0.297
                                                        0.297
32 textual =~
                    0.017 -0.011
                                   -0.011
                                             -0.010
                                                      -0.010
               x2
33 textual =~
               xЗ
                    9.151 -0.272
                                   -0.269
                                             -0.238
                                                      -0.238
34 textual =~
                    0.098 -0.021
                                   -0.021
                                             -0.019
                                                      -0.019
               x7
35 textual =~
                    3.359 -0.121
                                   -0.120
                                             -0.118
                                                       -0.118
               x8
36 textual =~
               x9
                    4.796
                           0.138
                                    0.137
                                              0.136
                                                        0.136
37
     speed =~
                    0.014
                           0.024
                                              0.013
                                                        0.013
                                    0.015
               x1
     speed =~
38
               x2
                    1.580 -0.198
                                   -0.123
                                             -0.105
                                                       -0.105
39
     speed =~
                           0.136
                                              0.075
                                                        0.075
               xЗ
                    0.716
                                    0.084
               x4
40
     speed =~
                    0.003 -0.005
                                   -0.003
                                             -0.003
                                                      -0.003
     speed =~
41
               x5
                    0.201 - 0.044
                                   -0.027
                                             -0.021
                                                      -0.021
42
     speed =~
               x6
                    0.273
                           0.044
                                    0.027
                                              0.025
                                                        0.025
```

It is important to realize that the modindices() function will only consider fixed-to-zero parameters. If you have equality constraints in the model, and you wish to examine what happens if you release all (or some) of these equality constraints, use the lavTestScore() function.

15 Extracting information from a fitted model

The summary() function gives a nice overview of a fitted model, but is for display only. If you need the actual numbers for further processing, you may prefer to use one of several 'extractor' functions. We have already seen the coef() function which extracts the estimated parameters of a fitted model. Other extractor functions are discussed below.

parameterEstimates The parameterEstimates() function returns a data.frame containing all the model parameters in the rows:

```
fit <- cfa(HS.model, data=HolzingerSwineford1939)
parameterEstimates(fit)</pre>
```

	lhs	ор	rhs	est	se	z	pvalue	<pre>ci.lower</pre>	ci.upper
1	visual	=~	x1	1.000	0.000	NA	NA	1.000	1.000
2	visual	=~	x2	0.554	0.100	5.554	0	0.358	0.749
3	visual	=~	x3	0.729	0.109	6.685	0	0.516	0.943
4	textual	=~	x4	1.000	0.000	NA	NA	1.000	1.000
5	textual	=~	x 5	1.113	0.065	17.014	0	0.985	1.241
6	${\tt textual}$	=~	x6	0.926	0.055	16.703	0	0.817	1.035
7	speed	=~	x7	1.000	0.000	NA	NA	1.000	1.000
8	speed	=~	x8	1.180	0.165	7.152	0	0.857	1.503
9	speed	=~	x9	1.082	0.151	7.155	0	0.785	1.378
10	x1	~ ~	x1	0.549	0.114	4.833	0	0.326	0.772
11	x2	~ ~	x2	1.134	0.102	11.146	0	0.934	1.333
12	x3	~ ~	x3	0.844	0.091	9.317	0	0.667	1.022
13	x4	~ ~	x4	0.371	0.048	7.779	0	0.278	0.465
14	x 5	~ ~	x 5	0.446	0.058	7.642	0	0.332	0.561
15	x6	~ ~	x6	0.356	0.043	8.277	0	0.272	0.441
16	x7	~ ~	x7	0.799	0.081	9.823	0	0.640	0.959
17	x8	~ ~	x8	0.488	0.074	6.573	0	0.342	0.633
18	x9	~ ~	x9	0.566	0.071	8.003	0	0.427	0.705
19	visual	~ ~	visual	0.809	0.145	5.564	0	0.524	1.094
20	textual	~ ~	textual	0.979	0.112	8.737	0	0.760	1.199

```
speed ~~
21
                speed 0.384 0.086
                                                0
                                                     0.215
                                                               0.553
                                    4.451
   visual ~~ textual 0.408 0.074
22
                                    5.552
                                                0
                                                     0.264
                                                               0.552
   visual ~~
                speed 0.262 0.056
                                    4.660
                                                0
                                                     0.152
                                                               0.373
24 textual ~~
                speed 0.173 0.049
                                    3.518
                                                0
                                                     0.077
                                                               0.270
```

The lhs (left-hand side), op (operator) and rhs (right-hand side) columns define the parameter. The est, se, z and pvalue columns provide the point estimate, the standard error, the z-value and the p-value for this parameter. The last two columns are the lower and upper bounds of a 95% confidence interval around the point estimate.

standardizedSolution The standardizedSolution() function is similar to the parameterEstimates() function, but only shows the standardized parameter estimates and corresponding standard errors, z-values, p-values and confidence intervals.

fitted.values The fitted() and fitted.values() functions return the model-implied (fitted) covariance matrix (and mean vector) of a fitted model:

```
fit <- cfa(HS.model, data = HolzingerSwineford1939)</pre>
fitted(fit)
$cov
   x1
         x2
               хЗ
                      x4
                            x5
                                  x6
                                         x7
                                               x8
                                                     x9
x1 1.358
x2 0.448 1.382
x3 0.590 0.327 1.275
x4 0.408 0.226 0.298 1.351
x5 0.454 0.252 0.331 1.090 1.660
x6 0.378 0.209 0.276 0.907 1.010 1.196
x7 0.262 0.145 0.191 0.173 0.193 0.161 1.183
x8 0.309 0.171 0.226 0.205 0.228 0.190 0.453 1.022
x9 0.284 0.157 0.207 0.188 0.209 0.174 0.415 0.490 1.015
```

residuals The resid() or residuals() functions return (unstandardized) residuals of a fitted model. This is simply the difference between the observed and implied covariance matrix and mean vector.

```
fit <- cfa(HS.model, data = HolzingerSwineford1939)
resid(fit)</pre>
```

```
[1] "raw"
$cov
  x1
         x2
                xЗ
                       x4
                              x5
                                     x6
                                            x7
                                                   x8
                                                         x9
x1 0.000
x2 -0.041 0.000
x3 -0.010 0.124 0.000
x4 0.097 -0.017 -0.090
                       0.000
x5 -0.014 -0.040 -0.219 0.008
                              0.000
  0.077
          0.038 -0.032 -0.012
                               0.005 0.000
x7 -0.177 -0.242 -0.103 0.046 -0.050 -0.017
                                             0.000
x8 -0.046 -0.062 -0.013 -0.079 -0.047 -0.024
                                             0.082 0.000
x9 0.175 0.087 0.167 0.056 0.086 0.062 -0.042 -0.032 0.000
```

\$type

The lawResiduals() gives more extensive information about the residuals. Per default, it will print both raw and standardized residuals, as well as several summary statistics (including the SRMR and the unbiased SRMR).

vcov The function vcov() returns the estimated covariance matrix of the parameter estimates.

AIC and BIC The AIC() and BIC() functions return the AIC and BIC values of a fitted model.

fitMeasures The fitMeasures() function returns all the fit measures computed by lavaan as a named numeric vector.

```
fit <- cfa(HS.model, data=HolzingerSwineford1939)
fitMeasures(fit)</pre>
```

npar	fmin	chisq	df
21.000	0.142	85.306	24.000
pvalue	baseline.chisq	baseline.df	baseline.pvalue
0.000	918.852	36.000	0.000
cfi	tli	nnfi	rfi
0.931	0.896	0.896	0.861
nfi	pnfi	ifi	rni
0.907	0.605	0.931	0.931
logl	unrestricted.logl	aic	bic
-3737.745	-3695.092	7517.490	7595.339
ntotal	bic2	rmsea	rmsea.ci.lower
301.000	7528.739	0.092	0.071
rmsea.ci.upper	rmsea.pvalue	rmr	rmr_nomean
0.114	0.001	0.082	0.082
srmr	srmr_bentler	<pre>srmr_bentler_nomean</pre>	crmr
0.065	0.065	0.065	0.073
crmr_nomean	srmr_mplus	srmr_mplus_nomean	cn_05
0.073	0.065	0.065	129.490
cn_01	gfi	agfi	pgfi
152.654	0.943	0.894	0.503
mfi	ecvi		
0.903	0.423		

If you only want the value of a single fit measure, say, the CFI, you give the name (in lower case) as the second argument:

```
fit <- cfa(HS.model, data=HolzingerSwineford1939)
fitMeasures(fit, "cfi")</pre>
```

cfi 0.931

Or you can provide a vector of fit measures, as in

```
fitMeasures(fit, c("cfi","rmsea","srmr"))
```

```
cfi rmsea srmr
0.931 0.092 0.065
```

lavInspect If you want to peek inside a fitted lavaan object (the object that is returned by a call to cfa(),
sem()or growth()), you can use the lavInspect() function, with a variety of options. By default, calling
lavInspect() on a fitted lavaan object returns a list of the model matrices that are used internally to represent
the model. The free parameters are nonzero integers.

```
fit <- cfa(HS.model, data=HolzingerSwineford1939)
lavInspect(fit)</pre>
```

\$lambda

	visual	textul	speed
x1	0	0	0
x2	1	0	0
хЗ	2	0	0
x4	0	0	0
x5	0	3	0
x6	0	4	0
x7	0	0	0
x8	0	0	5
x9	0	0	6

```
$theta
   x1 x2 x3 x4 x5 x6 x7 x8 x9
x1
   7
x2 0 8
xЗ
   0 0 9
   0
       0
         0 10
x4
x5 0 0 0 0 11
x6 0 0 0 0 0 12
x7 0 0 0 0 0 0 13
   0 0 0
            0 0 0
x9
   0 0 0
            0 0 0
                     0 0 15
$psi
        visual textul speed
visual
       16
textual 19
               17
speed
               21
                      18
To see the starting values of parameters in each model matrix, type
lavInspect(fit, what = "start")
$lambda
   visual textul speed
x1 1.000 0.000 0.000
x2 0.778
          0.000 0.000
x3 1.107
          0.000 0.000
x4 0.000 1.000 0.000
x5 0.000 1.133 0.000
x6 0.000 0.924 0.000
x7 0.000 0.000 1.000
x8 0.000 0.000 1.225
x9 0.000 0.000 0.854
$theta
                                                   x9
                           x5
                                 x6
                                       x7
                                             x8
   x1
         x2
               x3
                     x4
x1 0.679
x2 0.000 0.691
x3 0.000 0.000 0.637
x4 0.000 0.000 0.000 0.675
x5 0.000 0.000 0.000 0.000 0.830
x6 0.000 0.000 0.000 0.000 0.000 0.598
x7 0.000 0.000 0.000 0.000 0.000 0.000 0.592
x8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.511
x9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.508
$psi
        visual textul speed
visual
        0.05
textual 0.00
               0.05
        0.00
               0.00
                      0.05
speed
To see how lavaan internally represents a model, you can type
lavInspect(fit, what = "list")
                     rhs user block group free ustart exo label plabel start
   id
          lhs op
      visual =~
                                  1
                                             0
                                                    1
                                                        0
                      x1
                            1
                                        1
                                                                  .p1. 1.000
2
    2 visual =~
                      x2
                                                   NA
                                                        0
                                                                  .p2. 0.778
                            1
                                  1
                                        1
                                             1
```

2

0

NA

1

0

0

.p3. 1.107

.p4. 1.000

3

3 visual =~

4 textual =~

xЗ

x4

1

1

1

1

1

1

```
5
    5 textual =~
                                                     3
                                                                   0
                          x5
                                 1
                                         1
                                                1
                                                             NA
                                                                               .p5. 1.133
6
    6
      textual =~
                          x6
                                 1
                                         1
                                                1
                                                      4
                                                             NA
                                                                   0
                                                                               .p6. 0.924
7
         speed =~
                                                      0
                                                                   0
    7
                          x7
                                 1
                                         1
                                                1
                                                              1
                                                                               .p7. 1.000
8
    8
         speed =~
                          8x
                                                     5
                                                             NA
                                                                   0
                                                                               .p8. 1.225
                                 1
                                         1
                                                1
         speed =~
                                                                               .p9. 0.854
9
    9
                                                      6
                                                                   0
                          x9
                                 1
                                         1
                                                1
                                                             NA
10 10
             x1
                          x1
                                 0
                                         1
                                                1
                                                     7
                                                             NA
                                                                   0
                                                                              .p10. 0.679
             x2
                          x2
                                                                   0
11 11
                                 0
                                         1
                                                1
                                                     8
                                                             NA
                                                                              .p11. 0.691
            хЗ
                                 0
                                                     9
                                                                   0
12 12
                          xЗ
                                         1
                                                1
                                                             NA
                                                                              .p12. 0.637
13 13
             x4
                                 0
                                         1
                                                1
                                                    10
                                                             NA
                                                                   0
                                                                              .p13. 0.675
                          x4
14 14
             x5
                          x5
                                 0
                                         1
                                                1
                                                    11
                                                             NA
                                                                   0
                                                                              .p14. 0.830
             x6
                                                                              .p15. 0.598
15 15
                          x6
                                 0
                                         1
                                                1
                                                    12
                                                             NA
                                                                   0
            x7
                                                    13
16 16
                          x7
                                 0
                                         1
                                                1
                                                             NA
                                                                   0
                                                                              .p16. 0.592
             8x
                                 0
                                                                              .p17. 0.511
17 17
                          x8
                                         1
                                                1
                                                    14
                                                             NA
                                                                   0
18 18
             x9
                          x9
                                 0
                                         1
                                                1
                                                    15
                                                             NA
                                                                   0
                                                                              .p18. 0.508
19 19
        visual
                                 0
                                         1
                                                1
                                                    16
                                                             NA
                                                                   0
                                                                              .p19. 0.050
                     visual
20 20 textual ~~
                    textual
                                 0
                                         1
                                                1
                                                             NA
                                                                   0
                                                    17
                                                                              .p20. 0.050
         speed ~~
                                 0
                                                                   0
21 21
                      speed
                                         1
                                                1
                                                    18
                                                             NA
                                                                              .p21. 0.050
        visual ~~
                                                                              .p22. 0.000
22 22
                                 0
                                                1
                                                                   0
                    textual
                                         1
                                                    19
                                                             NA
       visual ~~
23 23
                      speed
                                 0
                                         1
                                                1
                                                    20
                                                             NA
                                                                   0
                                                                              .p23. 0.000
24 24 textual
                                 0
                                                1
                                                    21
                                                                   0
                                                                              .p24. 0.000
                      speed
                                         1
                                                             NA
      est
   1.000 0.000
1
   0.554 0.100
```

2

3 0.729 0.109

4 1.000 0.000

5 1.113 0.065

0.926 0.055 6

7 1.000 0.000

8 1.180 0.165

9 1.082 0.151 10 0.549 0.114

11 1.134 0.102

12 0.844 0.091

13 0.371 0.048

14 0.446 0.058

15 0.356 0.043

16 0.799 0.081 17 0.488 0.074

18 0.566 0.071

19 0.809 0.145

20 0.979 0.112

21 0.384 0.086

22 0.408 0.074

23 0.262 0.056

24 0.173 0.049

This is equivalent to the parTable(fit) function. The table that is returned here is called the 'parameter

For more lavInspect options, see the help page:

?lavInspect

16 Multilevel SEM

If the data is clustered, one way to handle the clustering is to use a multilevel modeling approach. In the SEM framework, this leads to multilevel SEM. The multilevel capabilities of lavaan are still limited, but you can fit a two-level SEM with random intercepts (note: only when all data is continuous and complete; listwise deletion is currently used for cases with missing values).

Multilevel SEM model syntax To fit a two-level SEM, you must specify a model for both levels, as follows:

```
model <- '
level: 1
    fw = " y1 + y2 + y3
    fw " x1 + x2 + x3
level: 2
    fb = " y1 + y2 + y3
    fb " w1 + w2</pre>
```

This model syntax contains two blocks, one for level 1, and one for level 2. Within each block, you can specify a model just like in the single-level case. To fit this model, using a toy dataset Demo.twolevel that is part of the lavaan package, you need to add the cluster= argument to the sem/lavaan function call:

```
fit <- sem(model = model, data = Demo.twolevel, cluster = "cluster")</pre>
```

The output looks similar to a multigroup SEM output, but where the two groups are now the within and the between level respectively.

```
summary(fit)
```

lavaan 0.6-8 ended normally after 36 iterations

Estimator	ML
Optimization method	NLMINB
Number of model parameters	20
Number of observations	2500
Number of clusters [cluster]	200

Model Test User Model:

Test statistic	8.092
Degrees of freedom	10
P-value (Chi-square)	0.620

Parameter Estimates:

Standard errors	Standard
Information	Observed
Observed information based on	Hessian

Level 1 [within]:

Latent Variables:

	Estimate	Std.Err	z-value	P(> z)
fw =~				
y1	1.000			
у2	0.774	0.034	22.671	0.000
у3	0.734	0.033	22.355	0.000

Regressions:

	Estimate	Std.Err	z-value	P(> z)
fw ~				
x1	0.510	0.023	22.037	0.000
x2	0.407	0.022	18.273	0.000
x3	0.205	0.021	9.740	0.000

Intercepts:

.y1 .y2 .y3 .fw	Estimate 0.000 0.000 0.000 0.000	Std.Err	z-value	P(> z)
Variances:				
	Estimate	Std.Err	z-value	P(> z)
.y1	0.986	0.046	21.591	0.000
. y2	1.066	0.039	27.271	0.000
. y3	1.011	0.037	27.662	0.000
.fw	0.546	0.040		0.000
Level 2 [cluster]:				
Istant Vanishlas.				
Latent Variables:	Patimata	O+ 1 F		D(> I=1)
£L _~	Estimate	Std.Err	z-value	P(> Z)
fb =~	1 000			
y1	1.000	0 050	12 004	0 000
y2	0.717	0.052		0.000
у3	0.587	0.048	12.329	0.000
Regressions:				
	Estimate	Std.Err	z-value	P(> z)
fb ~				
w1	0.165	0.079	2.093	0.036
w2	0.131	0.076	1.715	0.086
Intercepts:		~	_	56.1.13
	Estimate	Std.Err		
. y1	0.024	0.075	0.327	0.743
. y2	-0.016	0.060	-0.269	0.788
. y3	-0.042	0.054	-0.777	0.437
.fb	0.000			
Variances:				
	Estimate	Std.Err		P(> z)
.y1	0.058	0.047	1.213	0.225
.y2	0.120	0.031	3.825	0.000
. уЗ	0.149	0.028	5.319	0.000

After fitting the model, you can inspect the intra-class correlations:

0.899

lavInspect(fit, "icc")

The see the unrestricted (h1) within and between means and covariances, you can use

0.118

7.592

0.000

lavInspect(fit, "h1")

\$within

.fb

\$within\$cov

y1 y2 y3 x1 x2 x3 y1 2.000 y2 0.789 1.674 y3 0.749 0.564 1.557 x1 0.489 0.393 0.376 0.982 x2 0.416 0.322 0.299 0.001 1.011

```
x3 0.221 0.160 0.155 -0.006 0.008 1.045
$within$mean
          у2
                 уЗ
                               x2
                                      xЗ
   у1
                        x1
0.001 -0.002 -0.001 -0.007 -0.003
                                   0.020
```

```
$cluster
$cluster$cov
  у1
                уЗ
                       w1
                              w2
         у2
  0.992
y2 0.668
          0.598
          0.391
y3 0.548
                0.469
  0.125
          0.119
                 0.036 0.870
  0.086
          0.057 0.130 -0.128
                              0.931
$cluster$mean
```

```
y1
         y2
                 yЗ
                        w1
0.019 -0.017 -0.043 0.052 -0.091
```

Important notes

- note that in level: 1 the colon follows the level keyword; if you type level 1:, you will get an error
- you must specify a model for each level; the following syntax is not allowed and will produce an error:

```
model <- '
    level: 1
        fw = y1 + y2 + y3
        fw \sim x1 + x2 + x3
    level: 2
```

• if you do not have a model in mind for level 2, you can specify a saturated level by adding all variances and covariances of the endogenous variables (here: y1, y2 and y3):

```
model <- '
    level: 1
        fw = y1 + y2 + y3
        fw \sim x1 + x2 + x3
    level: 2
        y1 ~~ y1 + y2 + y3
        y2 ~~ y2 + y3
        y3 ~~ y3
```

Convergence issues and solutions By default, the current version of lavaan (0.6) uses a quasi-Newton procedure to maximize the loglikelihood of the data given the model (just like in the single-level case). For most model and data combinations, this will work fine (and fast). However, every now and then, you may experience convergence issues.

Non-convergence is typically a sign that something is not quite right with either your model, or your data. Typical settings are: a small number of clusters, in combination with (almost) no variance of an endogenous variable at the between level.

However, if you believe nothing is wrong, you may want to try another optimization procedure. The current version of lavaan allows for using the Expectation Maximization (EM) algorithm as an alternative. To switch to the EM algorithm, you can use:

```
fit <- sem(model = model, data = Demo.twolevel, cluster = "cluster",
           verbose = TRUE, optim.method = "em")
```

As the EM algorithm is not accelerated yet, this may take a long time. It is not unusual that more than 10000

iterations are needed to reach a solution. To control when the EM algorithm stops, you can set the stopping criteria as follows:

The em.fx.tol argument is used to monitor the change in loglikelihood between the current step and the previous step. If this change is smaller than em.fx.tol, the algorithm stops. The em.dx.tol argument is used to monitor the (unscaled) gradient. When a solution is reached, all elements of the gradient should be near zero. When the largest gradient element is smaller than em.dx.tol, the algorithm stops.

A word of caution: the EM algorithm can always be forced to 'converge' (perhaps after changing the stopping criteria), but that does not mean you have a model/dataset combination that deserves to converge.