Table of Contents

Continuous-time transfer function.

 $s^2 + s + 25$


```
%Stable CL for k < 1/Re(H(jw)) adica -4.14 K = 1/4.16;
Hol = K * tf(30,[1 1 25],'IODelay',2) w = logspace(-2,2,1e3);
nyquist(Hol)
```

%%Homework find all the k such that is stable in cl

Hol =

Exercise a

Exercise b

Exercise c

Exercise d

```
k = 1;
Hol = tf(k*[1 9], [1 -5])
w = logspace(2,2,1e3);
nyquist(Hol)
% for k from (5/9, infinity) CL stable

Hol =
    s + 9
    ----
    s - 5
```


Exercise e

```
k = -2;
Hol = tf(k*[-1 9], [1 5])
w = logspace(2,2,1e3);
nyquist(Hol)
% CL stable for k = 1

Hol =

2 s - 18
------
s + 5
```


Exercise f

```
k = 1;
Hol = tf(k*[1 9], [-1 5])
w = logspace(2,2,1e3);
nyquist(Hol)
% CL stable for k = 1

Hol =
    -s - 9
    -----
s - 5
```


Exercise g

```
k = 1;
Hol = tf(k*[-1 9], [1 -5])
w = logspace(2,2,1e3);
nyquist(Hol)
% CL stable for k = 1;

Hol =
    -s + 9
    -----
s - 5
```


Published with MATLAB® R2022b