ML For Business II Final Project

Predicting YouTube Spam Comments

Group Members:

Elie LAFORGE

Yunan WANG

Introduction

- Objective: Predict whether a YouTube comment is spam (1) or not (0).
- Dataset sourced from Kaggle, labeled in the CLASS column.

Dataset Overview

- Dataset contains labeled comments from YouTube.
- Key features include comment_id, author, date, content and video name.
- Target column: class (1 = spam, 0 = not spam).

Exploratory Data Analysis (EDA)

Label Distribution

Analyze distribution of spam vs. non-spam comments.

How is the labelled data distribution?

Exploratory Data Analysis (EDA)

Word Cloud

• Visualizing common words in spam comments

Data Preprocessing

- Data cleaning steps:
 - Handling missing values.
 - Removing duplicates.
 - Text vectorization using TF-IDF.

Model Selection

- Tried different models:
 - Logistic Regression (tested with both TF-IDF and Count Vectorizer)
 - Bernoulli Naive Bayes
 - XGBoost

Model Evaluation

- Metrics used:
 - Accuracy
 - Precision
 - Recall
 - F1 Score
 - ROC-AUC (Receiver Operating Characteristic Area Under the Curve)
- Compared performance across models.

Best Model: XGBoost

- Best performance observed with XGBoost.
- TF-IDF vectorization + hyperparameter tuning.
- Performance metrics:
 - Accuracy on test: 0.95
 - F1 Score: 0.95
 - ROC-AUC: 0.98

Results Visualization

- Confusion matrix of the best model.
- Hyperparameters tuned:
 - ∘ learning rate = 0.2
 - \circ max depth = 6
 - n estimators = 150

Recap

- XGBoost + TF-IDF gave the best performance.
- Spam detection accuracy: 90%.

DevOps Structure: Chrome Extension

Frontend PoC with Chrome Extension

- Connect to backend API server deployed on Heroku.
- Dynamically insert a pill into the comment section to indicate the spam probability.

DevOps Structure: Testing

Unit testing with pytest on API server, covering all the endpoints and edge cases; For example:

- requests with empty content;
- malformed requests;
- internal server errors (model loading failure, etc.)

DevOps Structure: CI/CD

Main tool: GitHub Actions

- Code quality check on commits
 & PRs (format, linting, unit testing)
- Build Docker image and push to GitHub Container Registry
- Deploy to Heroku worker
- Compile this Marp deck and publish to GitHub Pages

DevOps Structure: Experiment Tracking

- MLFlow for experiment tracking on Databricks
 - Two environments: staging and production
 - Log parameters, metrics, and model artifacts.
- Leverage mlflow.autolog() to automatically log parameters, metrics, and model artifacts.

Live demo time!

Next Steps

- Potential improvements:
 - Use deep learning models (e.g., LSTM, BERT).
 - Experiment with more feature engineering.
 - Use an even larger dataset to have an even more general model
- Sell it to Youtube and live off the profits!