

Original document

Bending device for thin-walled metal pipes has pivoted bending block and flexible thorn inserted in end of pipe fed along straight pipe guide

Publication number: DE10020727

2001-10-04

Inventor: FLEHMIG THOMAS (DE); KNEIPHOFF UWE (DE):

SCHEUVENS DIETER (DE)
Applicant: THYSSEN KRUPP STAHL AG (DE)

Classification:

Publication date:

- international: **B21D9/01; B21D9/00;** (IPC1-7): B21D9/01; B21D7/02

- European:

Application number: DE20001020727 20000427 Priority number(s): DE20001020727 20000427

View INPADOC patent family

View list of citing documents

Report a data error here

Also published as:

F) EP1149640 (A2)

EP1149640 (A3)

EP1149640 (B1)

Abstract of DE10020727

The pipe bending device has a straight pipe guide (1) leading to a relatively pivoted bending block (2) provided with a clamp rail (3) and a flexible thorn (4) with a thorn shaft (5) inserted in the end of the pipe. The flexible thorn is provided by a coil spring (4a) and a spherical clamp head (4b), with an internal tensioning cable (6) used for axially tensioning the clamp head, the coil spring and the thorn shaft

Data supplied from the esp@cenet database - Worldwide

DEUTSCHLAND

® BUNDESREPUBLIK ® Patentschrift _® DE 100 20 727 C 1

(f) Int. Cl.7:

PATENT- UND

MARKENAMT

- (2) Aktenzeichen:(2) Anmeldetag: 100 20 727.8-14 27. 4. 2000
- (8) Offenlegungstag:

(45) Veröffentlichungstag

der Patenterteilung: 4. 10. 2001

B 21 D 9/01 B 21 D 7/02

DE 100 20 727 C

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

- (3) Patentinhaber:
 - Thyssen Krupp Stahl AG, 40211 Düsseldorf, DE
- (4) Vertreter:

COHAUSZ & FLORACK, 40472 Düsseldorf

- (1) Erfinder:
 - Flehmig, Thomas, Dr.-Ing., 40885 Ratingen, DE; Kneiphoff, Uwe, Dipl.-Ing., 46535 Dinslaken, DE; Scheuvens, Dieter, 46147 Oberhausen, DE
- (6) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

197 07 228 A1 DE 38 24 312 A1 DE 11 30 84C

JP 1-299716 A Patent Abstracts of Japan, M-937, February 19, 1990, Vol. 14/No. 87; ÖHLER, G., Prof. Dr.-Ing.: Verhinderung von Faltenbildung und Einknicken dünnwandiger Rohre beim Biegen, In: Werkstatt und Betrieb 104 (1971) 4, S. 271-274;

- (5) Biegevorrichtung für dünnwandige Metallrohre
- Die Erfindung betrifft eine Biegevorrichtung für dünnwandige Rohre, die mit kleinem Biegeradius gebogen werden sollen. Die Biegevorrichtung besteht aus einer geraden Rohrführung (1) und einer sich daran anschließenden verschwenkbaren Kernschablone (2) mit Klemmleiste (3) sowie einem biegsamen Dorn (4) mit sich anschließendem Domschaft (5). Der biegsame Teil wird von einer Schraubenfeder (4a) und einem kugeligen Spannkopf (4b) gebildet. Der Spannkopf (4b), die Schraubenfeder (4a) und der Dornschaft (5) sind über ein inneres Spannseil (6) axial vorgespannt.

10041 Die Erindung betrifft eine Biegevorrichung für dinnwandige Metallrohre aus einer geruden Rohrführung, einer sich daran anschließenden und gegenüber der Rohrführung verschwenkbaren Kernschablore mit Klemmleiste, und einem Dorn, der einen Dornschaft (5) und einem Bereich der Kernschablore biegsamen Dornteil aufweist, der mittels eines inneren Spanneis imt dem Dornschaft federmittels eines inneren Spanneis imt dem Dornschaft federmittels (eine inneren Spanneis) mit dem Dornschaft feder-

lastisch verspannt ist. [0002] Biegevorrichtungen dieser und ähnlicher Art sind bekannt (Zeitschrift "Werkstatt und Betrieb 104 (1971) 4, Seiten 271 bis 274", "Verhinderung von Faltenbildung und Einknicken dünnwandiger Rohre beim Biegen" von Prof. Dr.-Ing. G. Öhler, Bad Dürkheim). Unter "dünnwandig" ver- 15 steht man in diesem Zusammenhang Rohre, deren Wandstärke bezogen auf den Durchmesser und den Biegeradius klein ist, z. B. Rohre mit einer Wandstärke von ca. 0,8 mm bei einem Durchmesser von ca. 80 mm und einem Biegeradius von ca. 120 mm. Um die beim Biegen solcher Rohre 20 mit kleinem Biegeradius auftretenden Probleme der Faltenbildung und der Abweichung vom Kreisprofil möglichst klein zu halten, hat man das Rohr an seiner Innenwand im Biegebereich von innen auf verschiedenene Art und Weise abgestützt. So gibt es abstützende Dorne in Form von 25 Schraubenfedern mit eng aneinanderliegenden Windungen oder Gliederdorne aus kugeligen Gelenkgliedern. Beide Arten von Dornen haben den Nachteil, daß sie das zu biegende Rohr nicht vollflächig abstützen. Bei Gliederdornen aus kugeligen Gelenkgliedern sind von Anfang an sowohl am In- 30 nenbogen als auch am Außenbogen Lücken vorhanden. Bei einer Schraubenfeder, die außen überschliffen sein kann, ergeben sich am Außenbogen mit zunehmender Biegung grö-Ber werdende Lücken.

[0003] Ein weiteres Problem bei den bekannten Biegevorichtungen besteht in der Einspannung des Rohranfanges. Die Abstitzung auf einem starren zylindrischen Dormkopf ist problematisch, weil sich ein solcher Dormkopf, der für eine feste Einspannung des Rohres eine verhältnismäßig große Binspannlänge benötigt, nicht durch das gebogene 40 Rohr zurückzichen ißt.

[0004] Ferner ist eine Biegevorrichtung der eingangs genannten Art bekannt (DE 197 07 228 A1), die allerdings nicht für dünnwandige Rohre im vorbeschriebenen Sinn, sondern für Rohre mit sehr kleinen Durchmessern bestimmt 45 ist. Bei dieser Biegevorrichtung besteht der biegsame Dornteil aus mehreren kugeligen Gelenkgliedern, die gemeinsam mit dem Dornschaft mittels des inneren Spannseils federelastisch verspannt sind. Bei dieser Biegevorrichtung wird das zu biegende Rohr in dem nicht zu biegenden, vor dem bieg- 50 samen Dornteil liegenden Abschnitt nur von außen zwischen der Kernschablone und der Klemmleiste eingespannt. Beim Biegevorgang wird der Dorn nicht mitgenommen, sondern ist axial fixiert. Würde man versuchen, mit einer solchen Biegevorrichtung dünnwandige Rohre zu biegen, 55 dann würde das Rohr infolge der notwendigen großen radia-Ien Einspannkräfte radial eingedrückt werden.

[0005] Der Erfindung liegt die Aufgabe zugrunde, eine Biegevorrichtung der eingangs genannten Art zu schaffen, die mit einer kurzen Einspannlänge des Rohranfanges auskommt und die die Herstellung einer Krümmung mit über die gesamte Linge kreisförnigem Querschnitt erlaubt.

[0006] Diese Äufgabe wird mit einer Biegevorrichtung der eingangs genannten Art dadurch gelöst, daß der Dorn als 65 begannen Dornteil eine Schraubenfeder aufweits, die axial 62 zwischen einem kugeligen Spannkopf und dem Dornschaft angeordnet ist, wobei das zu biegende Rohr zwischen dem Spannkopf und der Kernschablone mit ihrer Klemmleiste

kraftschlüssig einklemmbar ist.

100071 Bei der erfindungsgemäßen Biegevorrichtung ermöglicht der Spannhoof eine freist Elinspanung dess Rehanfanges auf verhältlistmäßig kurzer Länge, well sich wegen
der kugeligen Form des Spannkopfes eine hohe Klemnkraft
problemliss auffuringen läßt. Da im Bereich des Rohranflanges eine Biegung nicht erfolgt, spielt hier das Problem der
Binschnätung, wie se beim Stand der Technik mit im Biegebereich eingesetzten, kugeligen Gelenkgliedern, auflirtt,
keine Rolle. Die kugelige Form des Spannkopfes erfaubt es

bereich eingesetzlen, kugeligen Gelenkgliedern, auftratt, Ickiene Rolle. Die kugelige Form des Spannkopfes erlaubt es allerdings, daß der Spannkopf über das gekrümmte Rohr ohne Klemmung zurückgezogen werden und dabei eine Glättungswirkung und Nachprofillerung insbesondere am Außenbogen des gekrümmten Bereichs ausüben kann, wo 15 wegen der sich beim Biegevorgang leicht öffeneden Schraubenfeder die Fintstehung kleiner Einschnftungen zwischen den geöffneten Windungen naturgemiß nicht vollstündig verhindet werden kann. Insgesam läßt sich ab som üt der erfindungsgemißen Biegevorrichtung bei kurzer Einspan-Dinge des Rohrnafunges ein dämwardiges Rohr biegen,

ohne daß im Endprodukt vom kreisförmigen Querschnitt abweichende Querschnitte vorhanden sind. [0008] Um sowohl am Innenbogen als auch am Außenbogen die Bildung von Falten und Einschnürungen so gering 25 wie möglich zu halten, sollte die Schraubenfleder im unge-

bogenen Zustand zumindest außenseitig eine glatte zylindrische Stützfläche bilden.

[0009] Die axiale Vorspannung der Schraubenfeder läßt sich dadurch einstellen, daß das Druckstück an einer Druckfeder abgestützt ist, die ihrerseits an einer am Spannseil widergelagerten Stellschraube abgestützt ist.

[0010] Für die Ausbildung des Spannkopfes gibt es mehnem Möglichkeien. Der Spannkopf kann aus einem geschlitzten Außenring und einem inneren Stütz- und Spannkonns bestehen, der beim Biegevongan gelbstspannend auf
den Außenring wirkt. Bei dieser Alternative wird die auf das
Rohr beim Biegevorgan gelbstspannend auf
den Spanning und den Spannikonus übertragen und im Sinneeiner Spreizung des Außenringes und damt einer festeren
10 Klemmwirkung ausgenutzt, wilhrend die vom Zugmittel
beim Bückholen des Spannkopfes ausgelübte Kraft im Lösungssinne wirkt. Alternativ dazu kann der Spannkopf auch
aus mehreen, innbesonder zweit kuzeligen Gliedern besteund werden der Spannkopfes uns gelte Stützten der Spannkopf auch
aus mehreen, innbesonder zweit kuzeligen Gliedern beste-

aus mehreren, insbesondre zwei kugeligen Glöden bestene, die eine stare Bautenheit blichen. Wegen der mittigen Einschnitzung und der Abrundungen kormnt es auch in diesem Fall zu keinen Verklemmungen im Rohrbogen beim Zurückziehen des Spannkopfes. Diese Lösung zeichent sich ei darinchem konstruktiven Auffau vor allem durch eine optimale Führung und besonders gute Nachprofilierungseigenschaften aus.

[0011] Nach einer Ausgestaltung der Erfindung verläuft das Spannseil exzentrisch durch das Rohr am Innenbogen entlang. Auf diese Art und Weise wird sichergestellt, daß der zu biegende Abschnitt des Rohres fest gegen die Innenseite 5 des Innenbogens der Schraubenfeder gedrückt wird.

[0012] Im folgenden wird die Erfindung anhand einer zwei Ausführungsbeispiele darstellenden Zeichnung n\u00e4her erf\u00e4utert. Die Zeichnung zeigt die Biegevorrichtung nach dem Biegevorgang im axialen Halbschnitt.

60 [0013] Die Biegevorrichtung besteht aus einer feststehenden geraden Konfrührung 1, einer sich daram anschileßenden verschwenkbaren Kernschablone 2 mit einer Klemmleiste 3 und einem im Bereich der Kernschablone 2 angeordneten Dorn 4 mit sich daran anschließendem, im Bereich der 68 Rohrführung 1 befindlichen Dornschaft 5. Der Dorn 4 besteht aus einem biegsamen Dornteil 4 ai in Form einer Schraubenfeder und einem kugeligen Spannkopf 46 aus vorzugsweise zwei kuseligen (Biedem, die eine starer Bauein-

heit bilden. Der biegsame Tell 4a des Doms 4, sein Spannberg 4b und der Domschaff 5 ind aus ill über ein Spannseil 6 mit Kopfstück 6a vorgespannt. Dazu dient eine zwischen dem als Druckstück dienenden Domschaff 5 und einer am Spannseil 6 angeschlagenen Spannsehraube 7 angeordnete Druckfeder 8. Am Spannseil 6 gerit ein Zugelennen 9 an, über das der Dom 3 nach dem Biegevorgang zurückgezogen werden kann.

[0014] Die Arbeitsweise der erfindungsgemäßen Biege-

vorrichtung ist folgende:

[0015] Bei um 90° gegenüber der in der Zeichnung dargestellten Stellung zurückgeschwenkter Kernschablone 2 fluchten die Rohrführung 1 und die Kernschablone 2 miteinander. In diesem Zustand wird ein zu biegendes Rohr R in die Rohrführung 1 eingeschoben, bis es mit seinem Anfang 15 im geraden Auslaufteil der Kernschablone 2 liegt. Anschließend wird der Dorn 4 mit seinem Dornschaft 5 eingeschoben, bis der Spannkopf 4b im Bereich des geraden Auslaufteiles der Kernschablone 2 liegt. Dann wird das Rohrende mittels der Klemmleiste 3 zwischen dem Spannkopf 4b, 20 dem geraden Auslaufteil der Kernschablone 2 und der Klemmleiste 3 eingespannt. In dieser Phase bildet die Schraubenfeder 4a eine geschlossene zylindrische Stützfläche. Dann wird die Kernschablone 2 verschwenkt und dabei das Rohr R gebogen. Wie die Zeichnung zeigt, wird wäh- 25 rend des Biegevorganges die Schraubenfeder 4a durch das Spannseil 6 gegen den Innenbogen der Kernschablone 2 gedrückt. Deshalb bleiben die einzelnen Windungen des als Schraubenfeder ausgebildeten Dornteils 4a am Innenbogen lückenlos aneinander liegen. Am Außenbogen tun sich da- 30 gegen Schlitze auf, was für die Formgebung des Rohres R von Nachteil ist, weil das Rohr R sich in diesem Bereich leicht einschnüren kann

[9016] Nach Absehluß der Phase des Biegevorganges wird nach Lisen der Klemmleiste der Dom't unter Beibe38 wird nach Lisen der Klemmleiste der Dom't unter Beibe38 haltung der Stellung der Kernschablone 2 zurückgezogen. Die Zugkzert wird vom Zuggließ 99 in das Zugseiß ein geleitet. Zu einem Werklemmen im Rohrhogen kann es torz der
stamen Baunichtet der kugeligen Gilseder wegen ihmer guten
axialen Pührung an axial versetzten Stellen und ihrer Form 40 micht kommen. Dhra Abruhung geben einerseits genügend Freiraum für das gebogene Rohr und wirden andereseits beim Zurückbolnen
anachprofilierend auf das Rohr R ein. Es versteht sich, daß
bei mehr als zweis kugeligen Gilcedern, z. B der Gilcedern das 45 mittlere Gilcel mit seiner Kontur zumindest am Innenbogen
studiespringen mit.

[0017] Nachdem die Klemmleiste 3 gelöst ist, werden der Dom 6 mit dem Dornschaft 5 aus dem Rohr R herausgezogen und das gebogene Rohr R der Biegevorrichtung entonnemen. Nach Zurückschwenken der Kernschablone 2 in ihre Ausgangsstellung kann ein neues Rohr in die Biegevorrichtung eingeschoben werden.

[0018] Das Ausführungsbeispiel der Fig. 2 unterscheidet sich von dem der Fig. 1 nur im Spannkopf. Soweit Übereinstimmungen bestehen, sind dieselben Bezugszeichen für die Einzelteile wie bei Fig. 1 verwendet.

[0019] Der Spannkopf 14a, 14b besteht aus einem geschlitzten, kugeligen Außenring 14a und einem Stütz- und Spannkonus 14b, auf den das federbelastete Kopfstück 6a 60 des inneren Spannseils 6 einwirkt.

[0020] Die Arbeitsweise der Biegeworrichtung des Austührungsbeispieles der Fig. 2 entspricht weitgebend derjenigen des Ausführungsbeispiels der Fig. 1, so daß nur noch auf die unterschiedliche Wirkung des Spannkopfes eingegangen wird.

[0021] Wird nach Einklemmen des Rohranfangs zwischen dem Spannkopf 14a, 14b und der Klemmleiste 3 die Kemschablone 2 entgegen dem Uhrzeigersinn verschwenkt, dann wird das von der Kemschabblone 2 und der Klemmleiste 3 gehaltene Rohr R mitgenommen und über den stäl festliegenden Dom 4 hinweggezogen. Wegen des konischen Sitzes des Spannkopfes 14 sorgen die dabei wirksamen Zugkräfte dafür, kaß die Klemmkraft verstärkt wird.

[0022] Nach vollendetem Biegevorgang wird die Klemmleiste 3 gelost und der Dorn mit dem Spannkopf 14 durch das gebogene Rohr R zurückgezogen. Dabei wird die Klemmwirkung des Spannkopfes 14a, 14b aufgrund des konischen Sitzes wegen der jetzt entgegengesetzt wirkenden Kräfte aufgehoben.

Patentansprüche

1. Biegevorrichtung für diinnwandige Metallrohme (R) aus einer geraden Rohrführung (I), einer sich dann anschießenden und gegenüber der Rohrführung (I) verschwenkbaren Kernschablone (2) mit Kleimnleiste (S), und einem Dorn d), der einen Dornschaft (S) und einen Dornteil (46) aufweist, der mittels eines inneren Syannseils (6) mit dem Dornschaft (5) federellsstisch verspannt ist, dadurch gekennzeichnet, daß der Dorn (4) als biegsamen Dornteil (4a) eine Schraubenfieder aufweist, die aufülz wisschen einem kugeligen Spannkopf (4b, 14a, 14b) und dem Dornschaft (5) angeorintei ist, wobei das zu biegende Rohr (3) zwisschen dem Spannkopf (4b, 14a, 14b) und der Kernschablone (2) mit ihrer Klemmleiste (3) kraftselblüssig einklemmbar ist.

Angenmeiste (3) Acatachinussge interantional ist.

2. Biegevorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Schraubenfeder (4a) im ungebogenen Zustand zu mindest außenseitig eine glatte zylindrische Stützfläche bildet.

 Biegevorrichtung nach Anspruch 1 oder 2 dadurch gekennzeichnet, daß das Druckstück (5) an einer Druckfeder (8) abgestützt ist, die ihrerseits an einer am Spannseil (6) widergelagerten Spannschraube (7) abgestürzt ist.

4. Biegevorrichtung nach einem der Ansprüche 1 bis 3 dadurch gekennzeichnet, daß der Spannkopf (14a, 14h) aus einem geschlitzten Außenring (14a) und einem inneren Stütz- und Spannkonus (14b) besteht, der beim Biegevorgang selbstspannend auf den Außenring (14a)

 Biegevorrichtung nach einem der Anspruche 1 bis 3, dadurch gekennzeichnet, daß der Spannkopf (4b) aus mehreren kugeligen Gliedern besteht, die eine starre Baueinheit bilden.

 Biegevorrichtung nach einem der Anspruche 1 bis 5 dadurch gekennzeichnet, daß das Spannseil (6) exzentrisch durch das Rohr (R) am Rohrinnenbogen entlang verlauft.

Hierzu 2 Seite(n) Zeichnungen

- Leerseite -

Nummer: Int. Cl.⁷: Veröffentlichungstag: DE 100 20 727 C1 B 21 D 9/01 4. Oktober 2001

