Análise Vibracional de Cadeias Unidimensionais: Homogênea vs Ternária

Frequências Naturais, Densidade de Estados e Modos Normais

Lucas Martin De Lucca

UNIVERSIDADE FEDERAL DO ABC Física Computacional

July 23, 2025

Sumário

- Introdução
- 2 Metodologia
- Resultados
 - Densidade de Estados
 - Modos Normais Homogênea
 - Modos Normais Ternária
- 4 Discussão
- Conclusão

Introdução

- Estudo de cadeias unidimensionais com massas conectadas por molas.
- Dois sistemas:
 - Cadeia Homogênea: todas as massas iguais (m).
 - Cadeia Ternária: massas alternadas (m, 3m, 5m).
- Objetivo:
 - Calcular frequências naturais e modos normais.
 - Analisar a densidade de estados.
 - Investigar presença de band gaps.

Metodologia

Construção da matriz dinâmica:

$$D_{ij} = \frac{1}{m_i} [(k_{i-1} + k_i)\delta_{ij} - k_{i-1}\delta_{i,j+1} - k_i\delta_{i,j-1}]$$

Resolução do problema de autovalores:

$$D\vec{u} = \lambda \vec{u}, \quad \omega = \sqrt{\lambda}$$

- Condições de contorno: extremidades livres.
- Análise para N = 100, 1000, 10000.

Densidade de Estados - Histogramas

Figure: Comparação da densidade de estados para cadeias homogênea e ternária, em $N=100,\ 1000,\ 10000.$

- Homogênea: espectro contínuo, sem lacunas de frequência.
- Ternária: band gaps claros entre as diferentes massas.
- Aumento de N: densificação das bandas, espectro tende ao contínuo

Modos Normais - Homogênea (N=100)

Figure: Cinco modos de menor energia (inferior) e maior energia (superior).

- Menores frequências: modos longos, quase ondas estacionárias.
- Maiores frequências: alternância rápida, nós múltiplos.

6/13

Modos Normais - Homogênea (N=1000)

Figure: Escalonamento: mais nós, padrões suaves mantidos.

Modos Normais - Homogênea (N=10000)

Figure: Aumento de N: continuidade clara, modos cada vez mais sinusoidais.

Modos Normais - Ternária (N = 100)

Figure: Cadeia ternária: deslocamentos localizados nas massas mais pesadas nos modos de alta energia.

UFABC

Modos Normais - Ternária (N = 1000)

Figure: Padrão ternário preservado, aumento da densidade de modos.

Modos Normais - Ternária (N = 10000)

Figure: Estrutura periódica \rightarrow bandas com lacunas bem definidas.

Discussão

- Cadeia homogênea:
 - Frequências distribuídas de forma contínua.
 - Modos semelhantes a ondas planas.
- Cadeia ternária:
 - Band gaps devido à alternância de massas.
 - Frequência variando com a massa.
- Aumento de N: mais modos, espectro tende ao contínuo, mas periodicidade mantém lacunas.

Conclusão

- Heterogeneidade (ternária) \to lacunas de frequência, efeito não visto na homogênea.
- Implicações: Determinação de capacidade térmica, condutividade térmica e estabilidade estrutural
- Método escalável para grandes N usando matriz dinâmica.

