Paradigmas de Programación

Introducción a la materia

1er cuatrimestre de 2024 Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Presentación de la materia

Repaso

Introducción a la programación funciona

Docentes (turno noche)

Profesor

Pablo Barenbaum

Jefes de trabajos prácticos

- Daniel Grimaldi
- Daniela Marottoli
- Gabriela Steren

Ayudantes de segunda

- Damián Huaier
- Lucas Di Salvo
- Lautaro Bagnasco Muguillo
- Catalina Juarros

Días y horarios de cursada

- Martes de 17:00 a 22:00
- ▶ Viernes de 17:00 a 22:00

generalmente práctica generalmente teórica

Días y horarios de cursada

- Martes de 17:00 a 22:00
- ▶ Viernes de 17:00 a 22:00

generalmente práctica generalmente teórica

En general:

- Consultas de 17:00 a 17:30.
- Consultas desde el final de la clase hasta las 22:00.

Modalidad de evaluación

Parciales

- Primer parcial
- Segundo parcial
- Recuperatorio del primer parcial
- Recuperatorio del segundo parcial

martes 13 de mayo martes 1 de julio martes 15 de julio martes 22 de julio

Trabajos prácticos

- ► TP 1 (con su recuperatorio)
- ► TP 2 (con su recuperatorio)

Los TPs son en **grupos de 4 integrantes**.

Examen final

(Con posibilidad de promoción).

Materiales

Todo el material de la materia va a estar disponible en el campus: https://campus.exactas.uba.ar/course/view.php?id=159

- Diapositivas de las clases
- Guías de ejercicios
- Apuntes
- Enunciados de los trabajos prácticos
- Calendario
- **•** . .

Revisen la sección "útil".

Vías de comunicación

Docentes → alumnxs

Avisos a través del campus.

Alumnxs \rightarrow docentes

Lista de correo: plp-docentes@dc.uba.ar (para consultas administrativas)

Discusión entre estudiantes fuera del horario de la materia Servidor de Discord: https://tinyurl.com/plpdiscord (con eventual participación de docentes)

Contenidos

Tres aspectos de los lenguajes de programación:

Cronograma

Programación funcional	2 semanas		
Razonamiento ecuacional	1 semana		
Lógica proposicional	1 semana		
Cálculo- λ	2 semanas		
(Repaso / consultas)			
Primer parcial			
Unificación e inferencia de tipos	1 semana		
Lógica de primer orden	1 semana		
Resolución	1 semana		
Programación lógica	1,5 semanas		
Programación orientada a objetos	1 semana		
(Repaso / consultas)			
Segundo parcial			

En algunas clases les daremos algunas recomendaciones para poder sacar el máximo provecho de la materia. Por ejemplo:

¿Cómo trabajo en grupo para los TPs?

- ¿Cómo trabajo en grupo para los TPs?
- ¿Cómo me conviene abordar las guías de ejercicios?

- ¿Cómo trabajo en grupo para los TPs?
- ¿Cómo me conviene abordar las guías de ejercicios?
- ¿Cómo me preparo para los parciales?

- ¿Cómo trabajo en grupo para los TPs?
- ¿Cómo me conviene abordar las guías de ejercicios?
- ¿Cómo me preparo para los parciales?
- ¿Qué hago si tengo que reentregar un TP?

- ¿Cómo trabajo en grupo para los TPs?
- ¿Cómo me conviene abordar las guías de ejercicios?
- ¿Cómo me preparo para los parciales?
- ¿Qué hago si tengo que reentregar un TP?
- ¿Qué hago si tengo que recuperar un parcial?

- ¿Cómo trabajo en grupo para los TPs?
- ¿Cómo me conviene abordar las guías de ejercicios?
- ¿Cómo me preparo para los parciales?
- ¿Qué hago si tengo que reentregar un TP?
- ¿Qué hago si tengo que recuperar un parcial?
- ¿Qué hago con herramientas de IA basadas en modelos de lenguaje?

Los lenguajes de programación tienen distintas características.

- Etiquetado dinámico vs. tipado estático.
- Administración manual vs. automática de memoria.
- Funciones de primer orden vs. funciones de orden superior.
- Mutabilidad vs. inmutabilidad.
- ► Alcance dinámico vs. estático.
- Resolución de nombres temprana vs. tardía.
- Inferencia de tipos.
- Determinismo vs. no determinismo.
- Pasaje de parámetros por copia o por referencia.
- Evaluación estricta (por valor) o diferida (por necesidad).
- ► Tipos de datos inductivos, co-inductivos, GADTs, familias dependientes.
- Pattern matching, unificación.
- Polimorfismo paramétrico.
- Subclasificación, polimorfismo de subtipos, herencia simple vs. múltiple.
- Estructuras de control no local.
- . . .

CMXXIV	924
+ MCXLI	+ 1141

	CMXXIV		924
+	MCXLI	+	1141

$$C = \{(x, y) \mid x^2 + y^2 = r^2\}$$

$$C = \{(x,y) \mid x^2 + y^2 = r^2\}$$
 $C = \{(r\sin\theta, r\cos\theta) \mid 0 \le \theta < 2\pi\}$

CMXXIV

$$+$$
 MCXLI
 $C = \{(x,y) \mid x^2 + y^2 = r^2\}$ $C = \{(r \sin \theta, r \cos \theta) \mid 0 \le \theta < 2\pi\}$
 $C = \{(x,y) \mid x^2 + y^2 = r^2\}$ $C = \{(r \sin \theta, r \cos \theta) \mid 0 \le \theta < 2\pi\}$
 $C = \{(x,y) \mid x^2 + y^2 = r^2\}$ $C = \{(r \sin \theta, r \cos \theta) \mid 0 \le \theta < 2\pi\}$
 $C = \{(x,y) \mid x^2 + y^2 = r^2\}$ $C = \{(r \sin \theta, r \cos \theta) \mid 0 \le \theta < 2\pi\}$
 $C = \{(x,y) \mid x^2 + y^2 = r^2\}$ $C = \{(x,y) \mid x^2 + y^2 = r^2\}$
 $C = \{(x,y) \mid x^2 + y^2 = r^2\}$ $C = \{(x,y) \mid x^2 + y^2 = r^2\}$ $C = \{(x,y) \mid x^2 + y^2 = r^2\}$

$$\begin{array}{c} \mathsf{CMXXIV} \\ + \ \mathsf{MCXLI} \end{array} \qquad \begin{array}{c} 924 \\ + \ 1141 \end{array}$$

$$C = \{(x,y) \mid x^2 + y^2 = r^2\} \quad C = \{(r\sin\theta, r\cos\theta) \mid 0 \leq \theta < 2\pi\} \end{array}$$

$$\begin{array}{c} \mathsf{r} := 1 \\ \mathsf{while} \ \mathsf{n} > 0 \ \{ \\ \mathsf{r} := \mathsf{r} * \mathsf{n} \\ \mathsf{n} := \mathsf{n} - 1 \end{array} \qquad \begin{array}{c} \mathsf{foldl} \ (*) \ 1 \ [1..n] \end{array}$$

Dependemos del software en aplicaciones críticas.

- ▶ Telecomunicaciones.
- Procesos industriales.
- Reactores nucleares.
- Equipamiento médico.
- Previsión meteorológica.
- Aeronáutica.
- Vehículos autónomos.
- ► Transacciones monetarias.
- Análisis de datos en ciencia o toma de decisiones.
- **.**..

Las fallas cuestan recursos monetarios y vidas humanas.

¿Podemos confiar en que un programa hace lo que queremos?

```
¿Podemos confiar en que un programa hace lo que queremos?
¿Y si el programa está escrito por el enemigo?
¿Y si el programa está escrito por una IA?
```

```
¿Podemos confiar en que un programa hace lo que queremos?
¿Y si el programa está escrito por el enemigo?
¿Y si el programa está escrito por una IA?
```

Objetivo

- Probar teoremas sobre el comportamiento de los programas.
- ¿Cómo darle significado matemático a los programas?

```
¿Podemos confiar en que un programa hace lo que queremos?
¿Y si el programa está escrito por el enemigo?
¿Y si el programa está escrito por una IA?
```

Objetivo

- ▶ Probar teoremas sobre el comportamiento de los programas.
- ¿Cómo darle significado matemático a los programas?
- En AED vimos una manera de hacerlo (triplas de Hoare).
- En PLP veremos otras maneras de dar semántica.

Motivación: implementación

Una computadora física ejecuta programas escritos en un lenguaje. (El "código máquina").

Motivación: implementación

Una computadora física ejecuta programas escritos en un lenguaje. (El "código máquina").

¿Cómo es capaz de ejecutar programas escritos en otros lenguajes?

Motivación: implementación

Una computadora física ejecuta programas escritos en un lenguaje. (El "código máquina").

¿Cómo es capaz de ejecutar programas escritos en otros lenguajes?

- Interpretación (o evaluación).
- Chequeo e inferencia de tipos.
- Compilación (traducción de un lenguaje a otro).

Bibliografía (no exhaustiva)

Lógica proposicional y de primer orden

Logic and Structure

D. van Dalen.

Semántica y fundamentos de la implementación

Introduction to the Theory of Programming Languages

J.-J. Lévy, G. Dowek. Springer, 2010.

Types and Programming Languages

B. Pierce. The MIT Press, 2002.

Programación funcional

Thinking functionally with Haskell

R. Bird. Cambridge University Press, 2015.

Programación lógica

Logic Programming with Prolog

M. Bramer. Springer-Verlag, 2013.

Programación orientada a objetos

Smalltalk-80 the Language and its Implementation

A. Goldberg, D. Robson. Addison-Wesley, 1983.

Presentación de la materia

Repaso

Introducción a la programación funciona

Repaso de Haskell

Definir las siguientes funciones:

▶ factorial :: Int -> Int dado un entero $n \ge 0$, devuelve n!.

Definir las siguientes funciones:

- ▶ factorial :: Int -> Int dado un entero $n \ge 0$, devuelve n!.
- ▶ sumaN :: Int → [Int] → [Int] dado un entero k y una lista xs, devuelve la lista que resulta de sumarle k a cada elemento de xs.

Definir las siguientes funciones:

- ▶ factorial :: Int -> Int dado un entero $n \ge 0$, devuelve n!.
- sumaN :: Int -> [Int] -> [Int] dado un entero k y una lista xs, devuelve la lista que resulta de sumarle k a cada elemento de xs.
- aparece :: Int -> [Int] -> Bool
 dado un elemento x y una lista xs, devuelve un booleano que
 indica si x aparece en xs.

Definir las siguientes funciones:

- ▶ factorial :: Int -> Int dado un entero $n \ge 0$, devuelve n!.
- sumaN :: Int -> [Int] -> [Int] dado un entero k y una lista xs, devuelve la lista que resulta de sumarle k a cada elemento de xs.
- aparece :: Int -> [Int] -> Bool
 dado un elemento x y una lista xs, devuelve un booleano que
 indica si x aparece en xs.

Más en general:

```
aparece :: Eq a => a -> [a] -> Bool
```

Definir las siguientes funciones:

- ▶ factorial :: Int -> Int dado un entero $n \ge 0$, devuelve n!.
- sumaN :: Int -> [Int] -> [Int] dado un entero k y una lista xs, devuelve la lista que resulta de sumarle k a cada elemento de xs.
- aparece :: Int -> [Int] -> Bool dado un elemento x y una lista xs, devuelve un booleano que indica si x aparece en xs.

Más en general:

▶ ordenar :: [Int] → [Int] dada una lista, devuelve su permutación ordenada.

Definir las siguientes funciones:

- ▶ factorial :: Int -> Int dado un entero $n \ge 0$, devuelve n!.
- ▶ sumaN :: Int → [Int] → [Int] dado un entero k y una lista xs, devuelve la lista que resulta de sumarle k a cada elemento de xs.
- aparece :: Int -> [Int] -> Bool dado un elemento x y una lista xs, devuelve un booleano que indica si x aparece en xs.

Más en general:

ordenar :: [Int] -> [Int] dada una lista, devuelve su permutación ordenada. Más en general:

```
ordenar :: Ord a => a -> [a]
```

Definamos en Haskell las siguientes funciones:

Dado el siguiente tipo de datos:

```
data Direccion = Norte | Este | Sur | Oeste definir la función
```

opuesta :: Direccion \rightarrow Direccion que dada una dirección d, devuelve la dirección opuesta a d.

Definamos en Haskell las siguientes funciones:

Dado el siguiente tipo de datos:

data Direccion = Norte | Este | Sur | Oeste definir la función

opuesta :: Direccion \rightarrow Direccion que dada una dirección d, devuelve la dirección opuesta a d.

Dados los siguientes tipos de datos:

data Maybe a = Nothing | Just a data AB a = Nil | Bin (AB a) a (AB a) definir la función

buscar :: Eq a \Rightarrow a \Rightarrow AB (a, b) \Rightarrow Maybe b que dada una clave k y un árbol binario de pares clave/valor, devuelve el valor asociado a la clave k en caso de que exista.

Se asume que no hay claves repetidas.

No se asume ningún otro invariante sobre el árbol.

Presentación de la materia

Repaso

Introducción a la programación funcional

Un problema central en computación es el de procesar información:

pregunta

Un problema central en computación es el de procesar información:

La programación funcional consiste en definir funciones y aplicarlas para procesar información.

Un problema central en computación es el de procesar información:

La programación funcional consiste en definir funciones y aplicarlas para procesar información.

Las "funciones" son verdaderamente funciones (parciales):

- Aplicar una función no tiene efectos secundarios.
- A una misma entrada corresponde siempre la misma salida.
- Las estructuras de datos son inmutables.

Un problema central en computación es el de procesar información:

La programación funcional consiste en definir funciones y aplicarlas para procesar información.

Las "funciones" son verdaderamente funciones (parciales):

- ► Aplicar una función no tiene efectos secundarios.
- A una misma entrada corresponde siempre la misma salida.
- Las estructuras de datos son inmutables.

Las funciones son datos como cualquier otro:

- Se pueden pasar como parámetros.
- Se pueden devolver como resultados.
- Pueden formar parte de estructuras de datos.
 (Ej. árbol binario en cuyos nodos hay funciones).

Un programa funcional está dado por un conjunto de ecuaciones:

```
longitud [] = 0
longitud (x : xs) = 1 + longitud xs
```

Un programa funcional está dado por un conjunto de ecuaciones:

Un programa funcional está dado por un conjunto de ecuaciones:

Un programa funcional está dado por un conjunto de ecuaciones:

Un programa funcional está dado por un conjunto de ecuaciones:

Un programa funcional está dado por un conjunto de ecuaciones:

Un programa funcional está dado por un conjunto de ecuaciones:

Un programa funcional está dado por un conjunto de ecuaciones:

Un programa funcional está dado por un conjunto de ecuaciones:

```
= 0
longitud []
longitud (x : xs) = 1 + longitud xs
          longitud [10, 20, 30]
       \equiv longitud (10 : (20 : (30 : [])))
       = 1 + longitud (20 : (30 : []))
       = 1 + (1 + (longitud (30 : [])))
       = 1 + (1 + (1 + longitud []))
       = 1 + (1 + (1 + 0))
       = 1 + (1 + 1)
       = 1 + 2
```

Un programa funcional está dado por un conjunto de ecuaciones:

```
= 0
longitud []
longitud (x : xs) = 1 + longitud xs
          longitud [10, 20, 30]
       \equiv longitud (10 : (20 : (30 : [])))
       = 1 + longitud (20 : (30 : []))
       = 1 + (1 + (longitud (30 : [])))
       = 1 + (1 + (1 + longitud []))
       = 1 + (1 + (1 + 0))
       = 1 + (1 + 1)
       = 1 + 2
       = 3
```

Las **expresiones** son secuencias de símbolos que sirven para representar datos, funciones y funciones aplicadas a los datos.

Las **expresiones** son secuencias de símbolos que sirven para representar datos, funciones y funciones aplicadas a los datos. (Recordemos: las funciones también son datos).

Las **expresiones** son secuencias de símbolos que sirven para representar datos, funciones y funciones aplicadas a los datos. (Recordemos: las funciones también son datos).

Una expresión puede ser:

1. Un constructor:

```
True False [] (:) 0 1 2 ...
```

Las **expresiones** son secuencias de símbolos que sirven para representar datos, funciones y funciones aplicadas a los datos. (Recordemos: las funciones también son datos).

Una expresión puede ser:

1. Un constructor:

```
True False [] (:) 0 1 2 ...
```

2. Una variable:

```
longitud ordenar x xs (+) (*) ...
```

Las **expresiones** son secuencias de símbolos que sirven para representar datos, funciones y funciones aplicadas a los datos. (Recordemos: las funciones también son datos).

Una expresión puede ser:

1. Un constructor:

```
True False [] (:) 0 1 2 ...
```

2. Una variable:

```
longitud ordenar x xs (+) (*) ...
```

 La aplicación de una expresión a otra: ordenar lista

Las **expresiones** son secuencias de símbolos que sirven para representar datos, funciones y funciones aplicadas a los datos. (Recordemos: las funciones también son datos).

Una expresión puede ser:

1. Un constructor:

```
True False [] (:) 0 1 2 ...
```

2. Una variable:

```
longitud ordenar x xs (+) (*) ...
```

```
ordenar lista
not True
```

Las **expresiones** son secuencias de símbolos que sirven para representar datos, funciones y funciones aplicadas a los datos. (Recordemos: las funciones también son datos).

Una expresión puede ser:

1. Un constructor:

```
True False [] (:) 0 1 2 ...
```

2. Una variable:

```
longitud ordenar x xs (+) (*) ...
```

```
ordenar lista
not True
not (not True)
```

Las **expresiones** son secuencias de símbolos que sirven para representar datos, funciones y funciones aplicadas a los datos. (Recordemos: las funciones también son datos).

Una expresión puede ser:

1. Un constructor:

```
True False [] (:) 0 1 2 ...
```

2. Una variable:

```
longitud ordenar x xs (+) (*) ...
```

```
ordenar lista
not True
not (not True)
(+) 1
```

Las **expresiones** son secuencias de símbolos que sirven para representar datos, funciones y funciones aplicadas a los datos. (Recordemos: las funciones también son datos).

Una expresión puede ser:

1. Un constructor:

```
True False [] (:) 0 1 2 ...
```

2. Una variable:

```
longitud ordenar x xs (+) (*) ...
```

```
ordenar lista
not True
not (not True)
(+) 1
((+) 1) (alCuadrado 5)
```

Las **expresiones** son secuencias de símbolos que sirven para representar datos, funciones y funciones aplicadas a los datos. (Recordemos: las funciones también son datos).

Una expresión puede ser:

1. Un constructor:

```
True False [] (:) 0 1 2 ...
```

2. Una variable:

```
longitud ordenar x xs (+) (*) ...
```

3. La aplicación de una expresión a otra:

```
ordenar lista
not True
not (not True)
(+) 1
((+) 1) (alCuadrado 5)
```

4. También hay expresiones de otras formas, como veremos. Las tres de arriba son las fundamentales.

Convenimos en que la aplicación es asociativa a izquierda:

$$f x y \equiv (f x) y \not \equiv f (x y)$$

Convenimos en que la aplicación es asociativa a izquierda:

```
f x y \equiv (f x) y \times f (x y)

f a b c d \equiv (((f a) b) c) d
```

Ejemplo

[1, 2]

Convenimos en que la aplicación es asociativa a izquierda:

```
[1, 2]
\equiv 1 : [2]
```

Convenimos en que la aplicación es asociativa a izquierda:

Convenimos en que la aplicación es asociativa a izquierda:

Convenimos en que la aplicación es asociativa a izquierda:

Convenimos en que la aplicación es asociativa a izquierda:

```
 \begin{bmatrix} 1, 2 \\ \equiv 1 : [2] \\ \equiv (:) 1 [2] \\ \equiv ((:) 1) [2] \\ \equiv ((:) 1) (2 : []) \\ \equiv ((:) 1) ((:) 2 [])
```

Convenimos en que la aplicación es asociativa a izquierda:

```
Ejemplo
```

```
sumarUno = (+) 1
sumarUno (sumarUno 5)
```

Hay secuencias de símbolos que no son expresiones bien formadas.

Hay secuencias de símbolos que no son expresiones bien formadas.

Ejemplo

$$1,,2$$
)f x(

Hay expresiones que están bien formadas pero no tienen sentido.

Ejemplo

True + 1

Hay secuencias de símbolos que no son expresiones bien formadas.

Ejemplo

Hay expresiones que están bien formadas pero no tienen sentido.

```
True + 1
0 1
```

Hay secuencias de símbolos que no son expresiones bien formadas.

Ejemplo

Hay expresiones que están bien formadas pero no tienen sentido.

```
True + 1
0 1
[[], (+)]
```

Un **tipo** es una especificación del invariante de un dato o de una función.

Ejemplo

99 :: Int

Un **tipo** es una especificación del invariante de un dato o de una función.

Ejemplo

99 :: Int

not :: Bool -> Bool

Un **tipo** es una especificación del invariante de un dato o de una función.

Ejemplo

99 :: Int

not :: Bool -> Bool

not True :: Bool

Un **tipo** es una especificación del invariante de un dato o de una función.

Ejemplo

```
99 :: Int
```

not :: Bool -> Bool

not True :: Bool

(+) :: Int -> (Int -> Int)

Un **tipo** es una especificación del invariante de un dato o de una función.

Ejemplo

```
99 :: Int
```

not :: Bool -> Bool

not True :: Bool

(+) :: Int -> (Int -> Int)

(+) 1 :: Int -> Int

Un **tipo** es una especificación del invariante de un dato o de una función.

```
99 :: Int
not :: Bool -> Bool
not True :: Bool
(+) :: Int -> (Int -> Int)
(+) 1 :: Int -> Int
((+) 1) 2 :: Int
```

Un **tipo** es una especificación del invariante de un dato o de una función.

Ejemplo

```
99 :: Int
not :: Bool -> Bool
not True :: Bool
(+) :: Int -> (Int -> Int)
(+) 1 :: Int -> Int
((+) 1) 2 :: Int
```

El tipo de una función expresa un contrato.

Condiciones de tipado

Para que un programa esté bien tipado:

1. Todas las expresiones deben tener tipo.

Condiciones de tipado

- 1. Todas las expresiones deben tener tipo.
- 2. Cada variable se debe usar siempre con un mismo tipo.

Condiciones de tipado

- 1. Todas las expresiones deben tener tipo.
- 2. Cada variable se debe usar siempre con un mismo tipo.
- 3. Los dos lados de una ecuación deben tener el mismo tipo.

Condiciones de tipado

- 1. Todas las expresiones deben tener tipo.
- 2. Cada variable se debe usar siempre con un mismo tipo.
- 3. Los dos lados de una ecuación deben tener el mismo tipo.
- 4. El argumento de una función debe tener el tipo del dominio.

Condiciones de tipado

- 1. Todas las expresiones deben tener tipo.
- 2. Cada variable se debe usar siempre con un mismo tipo.
- 3. Los dos lados de una ecuación deben tener el mismo tipo.
- 4. El argumento de una función debe tener el tipo del dominio.
- 5. El resultado de una función debe tener el tipo del codominio.

Condiciones de tipado

- 1. Todas las expresiones deben tener tipo.
- 2. Cada variable se debe usar siempre con un mismo tipo.
- 3. Los dos lados de una ecuación deben tener el mismo tipo.
- 4. El argumento de una función debe tener el tipo del dominio.
- 5. El resultado de una función debe tener el tipo del codominio.

$$\frac{f :: a \rightarrow b \qquad x :: a}{f x :: b}$$

Condiciones de tipado

Para que un programa esté bien tipado:

- 1. Todas las expresiones deben tener tipo.
- 2. Cada variable se debe usar siempre con un mismo tipo.
- 3. Los dos lados de una ecuación deben tener el mismo tipo.
- 4. El argumento de una función debe tener el tipo del dominio.
- 5. El resultado de una función debe tener el tipo del codominio.

$$\frac{f :: a \rightarrow b \qquad x :: a}{f x :: b}$$

Sólo tienen sentido los programas bien tipados.

No es necesario escribir explícitamente los tipos. (Inferencia).

Convenimos en que "->" es asociativo a derecha:

$$a \rightarrow b \rightarrow c$$
 $\equiv a \rightarrow (b \rightarrow c)$ $\times (a \rightarrow b) \rightarrow c$

Convenimos en que "->" es asociativo a derecha:

$$a \rightarrow b \rightarrow c$$
 $\equiv a \rightarrow (b \rightarrow c)$ $\not\succeq (a \rightarrow b) \rightarrow c$
 $a \rightarrow b \rightarrow c \rightarrow d \equiv a \rightarrow (b \rightarrow (c \rightarrow d))$

Convenimos en que "->" es asociativo a derecha:

```
a \rightarrow b \rightarrow c \equiv a \rightarrow (b \rightarrow c) \not\succeq (a \rightarrow b) \rightarrow c

a \rightarrow b \rightarrow c \rightarrow d \equiv a \rightarrow (b \rightarrow (c \rightarrow d))
```

```
suma4 :: Int -> Int -> Int -> Int -> Int suma4 a b c d = a + b + c + d
```

Tipos

Convenimos en que "->" es asociativo a derecha:

$$a \rightarrow b \rightarrow c$$
 $\equiv a \rightarrow (b \rightarrow c)$ $\not\succeq (a \rightarrow b) \rightarrow c$
 $a \rightarrow b \rightarrow c \rightarrow d \equiv a \rightarrow (b \rightarrow (c \rightarrow d))$

```
suma4 :: Int -> Int -> Int -> Int
suma4 a b c d = a + b + c + d

Se puede pensar así:
suma4 :: Int -> (Int -> (Int -> Int)))
(((suma4 a) b) c) d = a + b + c + d
```

Hay expresiones que tienen más de un tipo.

```
id ::
[] ::
(:) ::
fst ::
snd ::
```

Hay expresiones que tienen más de un tipo.

```
id :: a -> a
[] ::
(:) ::
fst ::
snd ::
```

Hay expresiones que tienen más de un tipo.

```
id :: a -> a
[] :: [a]
(:) ::
fst ::
snd ::
```

Hay expresiones que tienen más de un tipo.

```
id :: a -> a
[] :: [a]
(:) :: a -> [a] -> [a]
fst ::
snd ::
```

Hay expresiones que tienen más de un tipo.

```
id :: a -> a
[] :: [a]
(:) :: a -> [a] -> [a]
fst :: (a, b) -> a
snd :: (a, b) -> b
```

Hay expresiones que tienen más de un tipo.

Usamos variables de tipo a, b, c para denotar tipos desconocidos:

```
id :: a -> a
[] :: [a]
(:) :: a -> [a] -> [a]
fst :: (a, b) -> a
snd :: (a, b) -> b
```

```
flip f x y = f y x \geq Qué tipo tiene flip?
```

Hay expresiones que tienen más de un tipo.

Usamos variables de tipo a, b, c para denotar tipos desconocidos:

```
id :: a -> a
[] :: [a]
(:) :: a -> [a] -> [a]
fst :: (a, b) -> a
snd :: (a, b) -> b
```

Hay expresiones que tienen más de un tipo.

Usamos variables de tipo a, b, c para denotar tipos desconocidos:

```
id :: a -> a
[] :: [a]
(:) :: a -> [a] -> [a]
fst :: (a, b) -> a
snd :: (a, b) -> b
```

Hay expresiones que tienen más de un tipo.

Usamos variables de tipo a, b, c para denotar tipos desconocidos:

```
id :: a -> a
[] :: [a]
(:) :: a -> [a] -> [a]
fst :: (a, b) -> a
snd :: (a, b) -> b
```

Hay expresiones que tienen más de un tipo.

Usamos *variables de tipo* a, b, c para denotar tipos desconocidos:

```
id :: a -> a
[] :: [a]
(:) :: a -> [a] -> [a]
fst :: (a, b) -> a
snd :: (a, b) -> b
```

```
flip f x y = f y x
¿Qué tipo tiene flip?

flip (:) [2, 3] 1
= (:) 1 [2, 3]
\equiv 1 : [2, 3]
= [1, 2, 3]
```

Dada una expresión, se computa su valor usando las ecuaciones:

Dada una expresión, se computa su valor usando las ecuaciones:

Hay expresiones bien tipadas que no tienen valor. Ej.: 1 / 0.

Dada una expresión, se computa su valor usando las ecuaciones:

Hay expresiones bien tipadas que no tienen valor. Ej.: 1 / 0. Decimos que dichas expresiones se indefinen o que tienen valor \bot .

Un programa funcional está dado por un conjunto de ecuaciones.

Un programa funcional está dado por un conjunto de ecuaciones. Más precisamente, por un conjunto de **ecuaciones orientadas**.

Un programa funcional está dado por un conjunto de ecuaciones. Más precisamente, por un conjunto de **ecuaciones orientadas**.

Una ecuación e1 = e2 se interpreta desde dos puntos de vista:

- Punto de vista denotacional.
 Declara que e1 y e2 tienen el mismo significado.
- Punto de vista operacional.
 Computar el valor de e1 se reduce a computar el valor de e2.

El lado izquierdo de una ecuación no es una expresión arbitraria.

El lado *izquierdo* de una ecuación no es una expresión arbitraria. Debe ser una función aplicada a **patrones**.

El lado *izquierdo* de una ecuación no es una expresión arbitraria. Debe ser una función aplicada a **patrones**.

Un patrón puede ser:

- 1. Una variable.
- 2. Un comodín _.
- 3. Un constructor aplicado a patrones.

El lado izquierdo no debe contener variables repetidas.

El lado *izquierdo* de una ecuación no es una expresión arbitraria. Debe ser una función aplicada a **patrones**.

Un patrón puede ser:

- 1. Una variable.
- 2. Un comodín _.
- 3. Un constructor aplicado a patrones.

El lado izquierdo no debe contener variables repetidas.

Ejemplo

¿Cuáles ecuaciones están sintácticamente bien formadas?

```
sumaPrimeros (x : y : z : _) = x + y + z
predecesor (n + 1) = n
iguales x x = True
```

Evaluar una expresión consiste en:

- 1. Buscar la subexpresión más externa que coincida con el lado izquierdo de una ecuación.
- Reemplazar la subexpresión que coincide con el lado izquierdo de la ecuación por la expresión correspondiente al lado derecho.
- 3. Continuar evaluando la expresión resultante.

Evaluar una expresión consiste en:

- 1. Buscar la subexpresión más externa que coincida con el lado izquierdo de una ecuación.
- Reemplazar la subexpresión que coincide con el lado izquierdo de la ecuación por la expresión correspondiente al lado derecho.
- 3. Continuar evaluando la expresión resultante.

La evaluación se detiene cuando se da uno de los siguientes casos:

1. La expresión es un constructor o un constructor aplicado.

True (:) 1 [1, 2, 3]

2. La expresión es una función parcialmente aplicada.

(+) (+) 5

 Se alcanza un estado de error.
 Un estado de error es una expresión que no coincide con las ecuaciones que definen a la función aplicada.

```
Ejemplo: resultado — constructor
```

```
tail :: [a] -> [a]
tail (_ : xs) = xs
    tail (tail [1, 2, 3])
```

```
Ejemplo: resultado — constructor
```

```
tail :: [a] -> [a]
tail (_ : xs) = xs

tail (tail [1, 2, 3]) → tail [2, 3]
```

```
Ejemplo: resultado — constructor
tail :: [a] -> [a]
tail (_ : xs) = xs
     tail (tail [1, 2, 3]) \rightsquigarrow tail [2, 3] \rightsquigarrow [3]
Ejemplo: resultado — función parcialmente aplicada
const :: a -> b -> a
const x y = x
              const (const 1) 2
```

```
Ejemplo: resultado — constructor
tail :: [a] -> [a]
tail (_ : xs) = xs
      tail (tail [1, 2, 3]) \rightsquigarrow tail [2, 3] \rightsquigarrow [3]
Ejemplo: resultado — función parcialmente aplicada
const :: a -> b -> a
const x y = x
               const (const 1) 2 \rightsquigarrow const 1
```

```
Ejemplo: indefinición — error
```

```
head :: [a] -> a
head (x : _) = x
head (head [[], [1], [1, 1]])
```

```
Ejemplo: indefinición — error
```

```
head :: [a] -> a head (x : _) = x head (head [[], [1], [1, 1]]) \leadsto head []
```

```
Ejemplo: indefinición — error
head :: [a] -> a
head (x : _) = x
      head (head [[], [1], [1, 1]]) \rightsquigarrow head []
Ejemplo: indefinición — no terminación
loop :: Int -> a
loop n = loop (n + 1)
           loop 0
```

```
Ejemplo: indefinición — error
head :: [a] -> a
head (x : _) = x
       head (head [[], [1], [1, 1]]) \rightsquigarrow head []
Ejemplo: indefinición — no terminación
loop :: Int -> a
loop n = loop (n + 1)
           loop 0 \rightsquigarrow loop (1 + 0)
```

```
Ejemplo: indefinición — error
head :: [a] -> a
head (x : _) = x
       head (head [[], [1], [1, 1]]) \rightsquigarrow head []
Ejemplo: indefinición — no terminación
loop :: Int -> a
loop n = loop (n + 1)
            loop 0 \rightsquigarrow loop (1 + 0)
                     \rightarrow loop (1 + (1 + 0))
```

```
Ejemplo: indefinición — error
head :: [a] -> a
head (x : _) = x
       head (head [[], [1], [1, 1]]) \rightsquigarrow head []
Ejemplo: indefinición — no terminación
loop :: Int -> a
loop n = loop (n + 1)
            loop 0 \rightsquigarrow loop (1 + 0)
                     \rightarrow loop (1 + (1 + 0))
                     \rightarrow loop (1 + (1 + (1 + 0)))
```

```
Ejemplo: indefinición — error
head :: [a] -> a
head (x : _) = x
       head (head [[], [1], [1, 1]]) \rightsquigarrow head []
Ejemplo: indefinición — no terminación
loop :: Int -> a
loop n = loop (n + 1)
            loop 0 \rightsquigarrow loop (1 + 0)
                     \rightarrow loop (1 + (1 + 0))
                     \rightarrow loop (1 + (1 + (1 + 0)))
```

```
Ejemplo: evaluación no estricta
```

```
Ejemplo: listas infinitas
```

```
desde :: Int -> [Int]
desde n = n : desde (n + 1)
```

desde 0

 \rightsquigarrow 0 : desde 1

```
Ejemplo: listas infinitas  \begin{tabular}{ll} desde :: Int $->$ [Int] \\ desde n = n : desde (n + 1) \\ \\ & desde 0 \\ \\ & \leadsto 0 : desde 1 \\ \\ & \leadsto 0 : (1 : desde 2) \\ \end{tabular}
```

```
Ejemplo: listas infinitas
desde :: Int -> [Int]
desde n = n : desde (n + 1)
                  desde 0
             \rightsquigarrow 0 : desde 1
             \rightsquigarrow 0 : (1 : desde 2)
             \rightsquigarrow 0 : (1 : (2 : desde 3)) \rightsquigarrow ...
                      head (tail (desde 0))
```

```
Ejemplo: listas infinitas
desde :: Int -> [Int]
desde n = n : desde (n + 1)
                 desde 0
             \rightsquigarrow 0 : desde 1
             \rightsquigarrow 0 : (1 : desde 2)
             \rightsquigarrow 0 : (1 : (2 : desde 3)) \rightsquigarrow ...
                     head (tail (desde 0))
                → head (tail (0 : desde 1))
```

```
Ejemplo: listas infinitas
desde :: Int -> [Int]
desde n = n : desde (n + 1)
                 desde 0
            \rightsquigarrow 0 : desde 1
            \rightsquigarrow 0 : (1 : desde 2)
            \rightsquigarrow 0 : (1 : (2 : desde 3)) \rightsquigarrow ...
                     head (tail (desde 0))
                → head (tail (0 : desde 1))
                → head (desde 1)
```

```
Ejemplo: listas infinitas
desde :: Int -> [Int]
desde n = n : desde (n + 1)
                  desde 0
             \rightsquigarrow 0 : desde 1
             \rightarrow 0 : (1 : desde 2)
             \rightsquigarrow 0 : (1 : (2 : desde 3)) \rightsquigarrow ...
                     head (tail (desde 0))
                 \rightarrow head (tail (0 : desde 1))
                 → head (desde 1)
                 \rightsquigarrow head (1 : desde 2)
```

```
Ejemplo: listas infinitas
desde :: Int -> [Int]
desde n = n : desde (n + 1)
                  desde 0
             \rightsquigarrow 0 : desde 1
             \rightarrow 0 : (1 : desde 2)
             \rightsquigarrow 0 : (1 : (2 : desde 3)) \rightsquigarrow ...
                     head (tail (desde 0))
                 \rightarrow head (tail (0 : desde 1))
                 → head (desde 1)
                 \rightsquigarrow head (1 : desde 2)

√
1
```

Nota. En Haskell, el orden de las ecuaciones es relevante. Si hay varias ecuaciones que coinciden se usa siempre la primera.

```
esCorta (_ : _ : _) = False
esCorta _ = True
esCorta []
```

Nota. En Haskell, el orden de las ecuaciones es relevante. Si hay varias ecuaciones que coinciden se usa siempre la primera.

```
esCorta (_ : _ : _) = False
esCorta _ = True
esCorta [] -->> True
```

Nota. En Haskell, el orden de las ecuaciones es relevante. Si hay varias ecuaciones que coinciden se usa siempre la primera.

Nota. En Haskell, el orden de las ecuaciones es relevante. Si hay varias ecuaciones que coinciden se usa siempre la primera.

Nota. En Haskell, el orden de las ecuaciones es relevante. Si hay varias ecuaciones que coinciden se usa siempre la primera.

Nota. En Haskell, el orden de las ecuaciones es relevante. Si hay varias ecuaciones que coinciden se usa siempre la primera.

Definamos la composición de funciones ("g . f").

Definamos la composición de funciones ("g . f").

Definamos la composición de funciones ("g . f").

Otra forma de definirla (usando la notación "lambda"):

(.) ::
$$(b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c$$

g . f = $\ x \rightarrow g \ (f \ x)$

```
¿Qué tienen en común las siguientes funciones?

dobleL :: [Float] \rightarrow [Float]

dobleL [] = []

dobleL (x : xs) = x * 2 : dobleL xs
```

```
¿Qué tienen en común las siguientes funciones?

dobleL :: [Float] -> [Float]

dobleL [] = []

dobleL (x : xs) = x * 2 : dobleL xs

esParL :: [Int] -> [Bool]

esParL [] = []

esParL (x : xs) = x 'mod' 2 == 0 : esParL xs
```

```
¿Qué tienen en común las siguientes funciones?
dobleL :: [Float] -> [Float]
dobleL [] = []
dobleL(x:xs) = x * 2 : dobleLxs
esParL :: [Int] -> [Bool]
esParL [] = []
esParL (x : xs) = x 'mod' 2 == 0 : esParL xs
longitudL :: [[a]] -> [Int]
longitudL [] = []
longitudL (x : xs) = length x : longitudL xs
```

```
¿Qué tienen en común las siguientes funciones?
dobleL :: [Float] -> [Float]
dobleL [] = []
dobleL(x:xs) = x * 2 : dobleLxs
esParL :: [Int] -> [Bool]
esParL [] = []
esParL (x : xs) = x 'mod' 2 == 0 : esParL xs
longitudL :: [[a]] -> [Int]
longitudL [] = []
longitudL (x : xs) = length x : longitudL xs
Todas ellas siguen el esquema:
g[] = []
g(x:xs) = fx:gxs
```

¿Cómo se puede abstraer el esquema?

```
¿Cómo se puede abstraer el esquema? map :: (a \rightarrow b) \rightarrow [a] \rightarrow [b] map f [] = [] map f (x : xs) = f x : map f xs
```

```
¿Cómo se puede abstraer el esquema?
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs
dobleL xs = map(\x -> x * 2) xs
esParL xs = map (\ x \rightarrow x \ mod' 2 == 0) xs
longitudL xs = map length xs
Otra manera:
dobleL = map (* 2)
esParL = map ((== 0) . ('mod' 2))
longitudL = map length
```

```
¿Qué relación hay entre las siguientes funciones?
negativos :: [Int] -> [Int]
negativos [] = []
negativos (x : xs) = if x < 0
                      then x : negativos xs
                      else negativos xs
noVacias :: [[a]] -> [[a]]
noVacias [] = []
noVacias (x : xs) = if not (null x)
                     then x : noVacias xs
                     else noVacias xs
```

g(x:xs) = if p x

```
¿Qué relación hay entre las siguientes funciones?
negativos :: [Int] -> [Int]
negativos [] = []
negativos (x : xs) = if x < 0
                      then x : negativos xs
                      else negativos xs
noVacias :: [[a]] -> [[a]]
noVacias [] = []
noVacias (x : xs) = if not (null x)
                     then x : noVacias xs
                     else noVacias xs
Ambas siguen el esquema:
```

then x : g xs else g xs

¿Cómo se puede abstraer el esquema?

```
¿Cómo se puede abstraer el esquema?

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x : xs) = if p x

then x : filter p xs

else filter p xs
```

```
¿Cómo se puede abstraer el esquema?

filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x : xs) = if p x

then x : filter p xs

else filter p xs

negativos = filter (< 0)

noVacias = filter (not . null)
```

Ejercicio

```
merge :: (a -> a -> Bool) -> [a] -> [a] -> [a] mergesort :: (a -> a -> Bool) -> [a] -> [a]
```

El primer parámetro es una función que determina una relación de orden total entre los elementos de tipo a.

Lectura recomendada

Capítulo 4 del libro de Bird.

Richard Bird. Thinking functionally with Haskell.

Cambridge University Press, 2015.

Comentarios: tipos

Ojo. Dijimos:

"Cada variable se debe usar siempre con un mismo tipo."

Comentarios: tipos

Ojo. Dijimos:

"Cada variable se debe usar siempre con un mismo tipo."

¿Está bien tipado el siguiente programa?

```
sucesor :: Int -> Int
sucesor x = x + 1
```

opuesto :: Bool -> Bool

opuesto x = not x

Comentarios: tipos

Ojo. Dijimos:

"Cada variable se debe usar siempre con un mismo tipo."

¿Está bien tipado el siguiente programa?

```
sucesor :: Int -> Int
sucesor x = x + 1
```

opuesto :: Bool -> Bool
opuesto x = not x

Sí. Hay dos "x" con distinto tipo pero son variables distintas. El programa se podría reescribir así:

```
sucesor x = x + 1 opuesto y = not y
```