COL334 Assignment1

Ankit Mondal and Anish Banerjee

August 9, 2023

§1. Network Analysis

a. We ran tracert on iitd.ac.in outside IITD network and got the following output:

```
PS C:\Users\Anish> tracert iitd.ac.in
Tracing route to iitd.ac.in [103.27.9.24]
over a maximum of 30 hops:
              3 ms
                      9 ms dsldevice.lan [192.168.1.1]
     87 ms
             73 ms
                      26 ms abts-north-dynamic-255.187.69.182.airtelbroadband.in [182.69.187.255]
2
     34 ms
             28 ms
                      48 ms 125.18.240.153
     38 ms
             45 ms
                      38 ms 116.119.106.136
     47 ms
             53 ms
                      49 ms 49.44.220.188
                            Request timed out.
                            Request timed out.
     47
             43 ms
                      47 ms 136.232.148.178
       ms
9
                            Request timed out.
                            Request timed out.
10
                            Request timed out.
11
     45 ms
             59 ms
                     52 ms 103.27.9.24
12
    187 ms
             46 ms
                      61 ms 103.27.9.24
             48 ms
                     49 ms 103.27.9.24
     47 ms
Trace complete.
```

- b. TODO
- c. We observe that the maximum packet size that can be sent is 68 (to google.com)

```
root@IdeapadAB:/mnt/c/Users/Anish# ping -s 68 -c 5 google.com
PING google.com (142.250.194.238) 68(96) bytes of data.

76 bytes from del12s08-in-f14.1e100.net (142.250.194.238): icmp_seq=1 ttl=116 time=7.00 ms
76 bytes from del12s08-in-f14.1e100.net (142.250.194.238): icmp_seq=2 ttl=116 time=6.73 ms
76 bytes from del12s08-in-f14.1e100.net (142.250.194.238): icmp_seq=3 ttl=116 time=7.11 ms
76 bytes from del12s08-in-f14.1e100.net (142.250.194.238): icmp_seq=3 ttl=116 time=6.05 ms
76 bytes from del12s08-in-f14.1e100.net (142.250.194.238): icmp_seq=4 ttl=116 time=6.05 ms
76 bytes from del12s08-in-f14.1e100.net (142.250.194.238): icmp_seq=5 ttl=116 time=7.98 ms

--- google.com ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4007ms
rtt min/avg/max/mdev = 6.052/6.973/7.975/0.621 ms
root@IdeapadAB:/mnt/c/Users/Anish# ping -s 69 -c 5 google.com
PING google.com (142.250.194.238) 69(97) bytes of data.

--- google.com ping statistics ---
5 packets transmitted, 0 received, 100% packet loss, time 4009ms
```

However, we also observe that the max ping size depends on the site requested for. For example, we saw that for iitd.ac.in, it is 1472 bytes. We can run the following python code to find the maximum packet size for a given site:

```
#!/usr/bin/python3
import os
site=input("Enter the site: ")
l=1
r=65007
while l<r:
    mid=(l+r)//2
    if os.system("ping -c 1 -s "+str(mid)+" "+site)==0:
        l=mid+1
    else:
        r=mid
print("\n\nMax ping size is: "+str(l-1))</pre>
```

§2. traceroute using python

The code for traceroute can be found in traceroute.py.

§3. Internet Architecture

First we run a traceroute from our own IP address to the 5 different servers.

a. Here is the route to www.google.com

```
Ankits-MacBook-Air-6:~ ankitmondal$ traceroute google.com
traceroute to google.com (142.250.194.238), 64 hops max, 52 byte packets
1 10.184.0.13 (10.184.0.13) 3.999 ms 3.570 ms 3.506 ms
2 10.254.175.1 (10.254.175.1) 4.146 ms
10.254.175.5 (10.254.175.5) 3.675 ms 3.223 ms
3 10.255.1.34 (10.255.1.34) 3.562 ms 3.512 ms 3.357 ms
4 10.119.233.65 (10.119.233.65) 3.463 ms 3.959 ms 3.930 ms
5 * * *
6 10.119.234.162 (10.119.234.162) 12.045 ms 5.639 ms 5.675 ms
7 72.14.194.160 (72.14.194.160) 5.484 ms 5.647 ms 6.487 ms
8 108.170.251.113 (108.170.251.113) 7.106 ms
108.170.251.97 (108.170.251.97) 6.339 ms 6.480 ms
9 142.251.52.217 (142.251.52.217) 6.274 ms 6.749 ms 6.689 ms
10 del12s08-in-f14.1e100.net (142.250.194.238) 6.588 ms 6.423 ms 6.608 ms
```

b. Here is the route to www.iitd.ac.in

```
Ankits-MacBook-Air-6:~ ankitmondal$ traceroute www.iitd.ac.in traceroute to www.iitd.ac.in (10.10.211.212), 64 hops max, 52 byte packets 1 10.184.0.13 (10.184.0.13) 4.675 ms 4.242 ms 3.512 ms 2 10.254.175.5 (10.254.175.5) 4.012 ms 10.254.175.1 (10.254.175.1) 4.016 ms 4.356 ms 3 10.254.236.6 (10.254.236.6) 3.285 ms 10.254.236.26 (10.254.236.26) 3.920 ms 10.254.236.2 (10.254.236.2) 5.730 ms 4 www.iitd.ac.in (10.10.211.212) 3.830 ms 4.643 ms 5.628 ms
```

c. Here is the route to www.utah.edu

```
Ankits-MacBook-Air-6: ankitmondal traceroute www.utah.edu
traceroute to www.utah.edu (155.98.186.21), 64 hops max, 52 byte packets
 1 \quad 10.184.0.13 \quad (10.184.0.13) \quad 5.480 \ \text{ms} \quad 3.898 \ \text{ms} \quad 3.338 \ \text{ms}
   10.254.175.1 (10.254.175.1) 3.602 ms
10.254.175.5 (10.254.175.5) 3.922 ms 3.769 ms
2
   10.255.1.34 (10.255.1.34) 5.116 ms 5.269 ms 5.756 ms
   10.119.233.65 (10.119.233.65) 64.339 ms 67.830 ms 65.010 ms
    10.1.207.69 (10.1.207.69) 80.742 ms 86.632 ms 93.759 ms
    10.1.200.137 \hspace{0.2cm} (10.1.200.137) \hspace{0.2cm} 84.119 \hspace{0.2cm} ms \hspace{0.2cm} 85.695 \hspace{0.2cm} ms \hspace{0.2cm} 70.847 \hspace{0.2cm} ms \\ 10.255.238.254 \hspace{0.2cm} (10.255.238.254) \hspace{0.2cm} 80.166 \hspace{0.2cm} ms \hspace{0.2cm}
    10.255.238.122 (10.255.238.122)
                                       78.281 ms
    10.255.238.254 (10.255.238.254) 86.918 ms
    180.149.48.18 (180.149.48.18) 71.995 ms 60.372 ms 58.199 ms
    180.149.48.6 (180.149.48.6) 244.512 ms 207.941 ms 197.721 ms
    180.149.48.20 (180.149.48.20) 182.712 ms
    180.149.48.13 (180.149.48.13) 337.379 ms
    180.149.48.20 (180.149.48.20) 173.159 ms
11 fourhundredge-0-0-0-2.4079.core1.ashb.net.internet2.edu (163.253.1.116) 340.584 ms
    180.149.48.13 (180.149.48.13) 270.570 ms
    fourhundredge-0-0-0-2.4079.core1.ashb.net.internet2.edu (163.253.1.116)
                                                                                    314.143 ms
12 fourhundredge-0-0-0-16.4079.core2.ashb.net.internet2.edu (163.253.1.3)
                                                                                   312.121 ms
    fourhundredge-0-0-0-2.4079.core1.ashb.net.internet2.edu (163.253.1.116)
                                                                                    417.111 ms
    fourhundredge-0-0-0-16.4079.core2.ashb.net.internet2.edu (163.253.1.3)
                                                                                   416.768 ms
    fourhundredge-0-0-0-16.4079.core2.ashb.net.internet2.edu (163.253.1.3)
                                                                                    313.367 ms
    fourhundredge-0-0-0-1.4079.core2.clev.net.internet2.edu (163.253.1.139)
                                                                                    319.440 ms
418.102 ms
14 fourhundredge -0-0-0-1.4079.core2.clev.net.internet2.edu (163.253.1.139)
                                                                                    417.208 ms
    fourhundredge-0-0-0-2.4079.core2.eqch.net.internet2.edu (163.253.2.17)
                                                                                   416.394 ms
    fourhundredge-0-0-0-1.4079.core2.clev.net.internet2.edu (163.253.1.139)
                                                                                    319.361 ms
  fourhundredge-0-0-0-2.4079.core2.eqch.net.internet2.edu (163.253.2.17)
                                                                                    410.326 ms
    fourhundredge-0-0-0-2.4079.core2.chic.net.internet2.edu (163.253.2.18)
                                                                                    416.659 ms
    fourhundredge-0-0-0-2.4079.core2.eqch.net.internet2.edu (163.253.2.17)
                                                                                   417.562 ms
   fourhundredge-0-0-0-2.4079.core2.chic.net.internet2.edu (163.253.2.18)
                                                                                   415.580 ms
417.440 ms
    fourhundredge-0-0-0-1.4079.core1.kans.net.internet2.edu (163.253.1.245)
                                                                                     418.242 ms
    fourhundredge-0-0-0-1.4079.core1.kans.net.internet2.edu (163.253.1.245)
                                                                                     418.728 ms
    fourhundredge-0-0-0-1.4079.core1.denv.net.internet2.edu (163.253.1.242)
                                                                                     416.527 ms
18 fourhundredge-0-0-0-1.4079.core1.denv.net.internet2.edu (163.253.1.242)
                                                                                     416.455 ms
    fourhundredge-0-0-0-3.4079.core1.salt.net.internet2.edu (163.253.1.171)
                                                                                     418.388 ms
    fourhundredge-0-0-0-1.4079.core1.denv.net.internet2.edu (163.253.1.242)
                                                                                     314.445 ms
19 fourhundredge -0-0-0-3.4079.core1.salt.net.internet2.edu (163.253.1.171)
                                                                                     315.540 ms
    fourhundredge-0-0-0-1.4079.core1.lasv.net.internet2.edu (163.253.1.152)
                                                                                     411.072 ms
    fourhundredge-0-0-0-3.4079.core1.salt.net.internet2.edu (163.253.1.171)
                                                                                     417.062 ms
   163.253.5.7 (163.253.5.7) 319.476 ms 319.171 ms
    fourhundredge-0-0-0-1.4079.core1.lasv.net.internet2.edu (163.253.1.152) 410.432 ms
   {\tt tdc-beibr-b-170-int.uen.net~(140.197.249.81)} \quad {\tt 415.347~ms} \quad {\tt 322.845~ms} \quad {\tt 404.272~ms}
21
    tdc-beibr-b-170-int.uen.net (140.197.249.81)
                                                      363.062 ms
    ddc-pep-c-123-int.uen.net (140.197.251.32) 318.119 ms
    tdc-beibr-b-170-int.uen.net (140.197.249.81) 322.820 ms
   ddc-pep-c-123-int.uen.net (140.197.251.32)
                                                    346.374 ms
    ddc-pep-b-129-int.uen.net (140.197.253.97)
                                                    416.809 ms
    ddc-pep-c-123-int.uen.net (140.197.251.32)
                                                     411.102 ms
    ddc-pep-b-129-int.uen.net (140.197.253.97)
                                                     416.736 ms
    ebc-pep-b-179-int.uen.net (140.197.252.76)
                                                     416.798 ms
    ddc-pep-b-129-int.uen.net (140.197.253.97)
                                                    412.609 ms
   ebc-pep-a-178-int.uen.net (140.197.252.84)
ebc-pep-b-179-int.uen.net (140.197.252.76)
                                                    416.708 ms
                                                                 411.943 ms
                                                    419.376 ms
    * ebc-pep-a-178-int.uen.net (140.197.252.84) 319.891 ms *
26
    * 199.104.93.22 (199.104.93.22) 337.648 ms *
   199.104.93.22 (199.104.93.22)
                                     321.654 ms
    199.104.93.29 (199.104.93.29)
                                      343.305 ms
    199.104.93.22 (199.104.93.22)
                                      345.169 ms
   155.99.130.57 (155.99.130.57)
                                      416.730 ms
```


§4. Packet Analysis

§5. Appendix: Preparatory Tasks

Here, we provide information about the various tools available for network analysis

5.1. if config/ipconfig

This is used to find the following for the network interfaces on the computer:

- IP address An IP (Internet Protocol) address is a numerical label assigned to each device connected to a computer network that uses the Internet Protocol for communication. It serves two main purposes: identifying the host or network interface and providing the location of the host in the network. IP addresses can be either IPv4 (32-bit) or IPv6 (128-bit) and are written in a dotted-decimal format (e.g., 172.31.225.222 for IPv4 or fe80::215:5dff:feeb:19f7 for IPv6).
- Gateway A gateway, often referred to as a default gateway, is a network device (usually a router) that serves as an access point to other networks. It acts as an intermediary between devices within a local network and devices on other networks, including the internet. When a device on a local network wants to communicate with a device on another network, it sends the data to the gateway, which then forwards it to the appropriate destination.
- Network mask A network mask, also known as a subnet mask, is used in conjunction with an IP address to determine the network portion and the host portion of the address. It is a binary pattern of bits that help divide an IP address into a network address and a host address. The network mask is typically represented in decimal format as four octets (e.g., 255.255.255.0 for IPv4). It is used in the process of subnetting to identify which part of the IP address identifies the network and which part identifies the individual host within that network.
- Hardware address A hardware address, also known as a MAC (Media Access Control) address, is a unique identifier assigned to a network interface card (NIC) by its manufacturer. It is a 48-bit address expressed in hexadecimal format and is used to identify a specific device on a local network. Each NIC in the world has its own unique MAC address, allowing devices to communicate with each other at the data link layer of the networking model.
- DNS server A DNS (Domain Name System) server translates human-readable domain names, like www.google.com, into IP addresses that machines can understand. When you enter a URL in a web browser or try to access any internet resource, your device sends a DNS query to a DNS server. The DNS server then looks up the corresponding IP address associated with the domain name and returns it to your device, allowing it to establish a connection to the desired resource.

Running if config on our system connected to Wifi gives the following output:

```
root@IdeapadAB: "# ifconfig
eth0: flags=4163 < UP, BROADCAST, RUNNING, MULTICAST > mtu 1500
  inet 172.31.225.222 netmask 255.255.240.0 broadcast 172.31.239.255
  inet6 fe80::215:5dff:feeb:19f7 prefixlen 64 scopeid 0x20<link>
  ether 00:15:5d:eb:19:f7 txqueuelen 1000 (Ethernet)
 RX packets 149 bytes 20663 (20.6 KB)
 RX errors 0 dropped 0 overruns 0
                                     frame 0
  TX packets 13 bytes 1006 (1.0 KB)
  TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
  inet 127.0.0.1 netmask 255.0.0.0
  inet6 ::1 prefixlen 128 scopeid 0x10<host>
  loop txqueuelen 1000 (Local Loopback)
  RX packets 0 bytes 0 (0.0 B)
 RX\ errors\ 0 dropped 0 overruns 0 frame 0
  TX packets 0 bytes 0 (0.0 B)
  TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

And on running it on mobile hotspot, we get the following output:

```
root@IdeapadAB:~# ifconfig
eth0: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 1500
    inet 172.31.225.222 netmask 255.255.240.0 broadcast 172.31.239.255
    inet6 fe80::215:5dff:feeb:19f7 prefixlen 64 scopeid 0x20<link>
    ether 00:15:5d:eb:19:f7 txqueuelen 1000
                                            (Ethernet)
   RX packets 1035 bytes 154375 (154.3 KB)
    RX errors 0 dropped 0 overruns 0
   TX packets 103 bytes 8962 (8.9 KB)
   TX errors 0 dropped 0 overruns 0
                                     carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
    inet 127.0.0.1 netmask 255.0.0.0
    inet6 ::1 prefixlen 128 scopeid 0x10<host>
    loop txqueuelen 1000 (Local Loopback)
   RX packets 0 bytes 0 (0.0 B)
   RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 0 bytes 0 (0.0 B)
   TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

eth0 and 10 are two different network interfaces. eth0 is associated with the Ethernet connection and 10 is the loopback(localhost) interface.

Here is a description of the various fields in the output:

flags A set of flags that indicate the status of the network interface.

mtu The Maximum Transmission Unit (MTU) is the size of the largest packet that can be transmitted over the network interface without being fragmented. The MTU is typically measured in bytes and can range from 64 to 65535 bytes.

inet The IPv4 address assigned to the network interface.

netmask The subnet mask for the IPv4 address. It helps determine the network and host portions of the IP address.

broadcast The broadcast address for the network. It is used to send data to all devices on the local network.

inet6 The IPv6 link-local address with a prefix length of 64 bits. IPv6 addresses are written in hexadecimal format and are longer than IPv4 addresses.

ether The unique hardware address (MAC address) of the network interface card.

txqueuelen The length of the transmit queue.

RX packets The number of received packets.

TX packets The number of transmitted packets.

RX errors The number of receive errors.

TX errors The number of transmit errors.

dropped The number of dropped packets due to errors.

overruns The number of packets that had data sent beyond their allowed length.

frame The number of packets with framing errors.

collisions The number of packet collisions (i.e., when two devices transmit data at the same time).

The IP address of the smartphone can be found by "Settings→About phone→Status→IP address"

5.2. ping

This is used to discover if a particular IP address is online or not. For example, in the following code we are pinging www.google.com with packets of size 10 bytes and varying the TTL. We observe that as the TTL decreases, the packet doesn't reach the destination. This is because the TTL is decremented by 1 at each hop and when it reaches 0, the packet is dropped and an ICMP error message is sent back to the source. The source then knows that the packet didn't reach the destination and hence the destination is not online.

```
root@IdeapadAB:~# ping -c 3 -s 50 -t 10 www.google.com
PING www.google.com (142.250.195.4) 50(78) bytes of data.
58 bytes from del12s09-in-f4.1e100.net (142.250.195.4): icmp_seq=1 ttl=55 time=82.3 ms
58 bytes from del12s09-in-f4.1e100.net (142.250.195.4): icmp_seq=2 ttl=55 time=67.1 ms
58 bytes from del12s09-in-f4.1e100.net (142.250.195.4): icmp_seq=3 ttl=55 time=33.1 ms
--- www.google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2004ms
rtt min/avg/max/mdev = 33.130/60.834/82.271/20.545 ms
root@IdeapadAB:~# ping -c 3 -s 50 -t 9 www.google.com
PING www.google.com (142.250.195.4) 50(78) bytes of data.
From 142.251.52.213 (142.251.52.213) icmp_seq=1 Time to live exceeded
From 142.251.52.213 (142.251.52.213) icmp_seq=2 Time to live exceeded
From 142.251.52.213 (142.251.52.213) icmp_seq=3 Time to live exceeded
--- www.google.com ping statistics ---
3 packets transmitted, 0 received, +3 errors, 100% packet loss, time 2299ms
pipe 2
```

5.3. traceroute

This gives you the sequence of routers that a packet traverses to get to a particular destination.

```
C:\Users\Anish>tracert iitd.ac.in
Tracing route to iitd.ac.in [103.27.9.24]
over a maximum of 30 hops:
      3 ms
                                192.168.107.98
                4 ms
                         3 ms
2
     39 ms
               29 ms
                        21 ms
                                10.50.97.29
3
     54 ms
               46 ms
                        23 ms
                                10.50.97.223
4
     58 ms
               25 ms
                         34 ms
                                10.50.97.77
5
    190 ms
               30 ms
                        46 ms
                                dsl-ncr-dynamic-017.24.23.125.airtelbroadband.in [125.23.24.17]
               37 ms
                        27 ms
                                116.119.109.76
6
     63 ms
                         26 ms
                                49.44.187.164
     51 ms
               38 ms
8
                *
                         *
                                Request timed out.
                                Request timed out.
9
10
      38 ms
                27 ms
                         27 ms
                                 136.232.148.178
                                 Request timed out.
11
       *
                 *
                          *
                                 Request timed out.
12
13
       *
                 *
                          *
                                 Request timed out.
                          60 ms
14
      53 ms
                36 ms
                                 103.27.9.24
15
      85 ms
                35 ms
                         36 ms
                                 103.27.9.24
16
     148 ms
               101 ms
                         86 ms
                                 103.27.9.24
Trace complete.
```

5.4. nslookup

This command helps you communicate with DNS servers to get the IP address for a particular hostname.

5.5. nmap

This is a handy network diagnostics tool that you can use to discover which hosts are online in the network, and even try to infer what operating system the hosts might be running.

5.6. wireshark

This is a very useful tool to sniff packets on the wire (or wireless medium). Sniffed data is parsed by wireshark and presented in an easily readable format with details of the protocols being used at different layers.