An Overarching YOLO Performance Analysis

X

Groups: A, F, G, I

TABLE OF CONTENTS

×

- O1 ABSTRACT / INTRODUCTION
- O2 HARDWARE & SOFTWARE
- **03** METHODOLOGY
- **04** RESULTS
- **05** FUTURE WORK

ABSTRACT

Object Detection is Critical for Robotics, Surveillance, and Autonomous Systems

This Study Benchmarks YOLOv5 and YOLOv8 on CPUs, GPUs, and Edge Devices

Objective: Provide Insights into Trade-Offs for Hardware and Model Selection

Key Results:

- YOLOv8 Excels in Speed & Accuracy, Especially on Edge Devices
- Discrete GPUs are the Most Efficient, up to 27.23x Better than CPUs

Introduction

×

Object Detection: Identifying Objects in Images or Video

Importance: Applications in Robotics, Autonomous Systems, Surveillance Research Question: How do YOLOv5 & v8

Perform on Different Hardware Platforms

HARDWARE CONFIGURATIONS

×

HIGHPERFORMANC E SYSTEMS

System 1: Intel i7-12700KF, NVIDIA RTX 4080

System 2: AMD Ryzen 9 5950X, AMD Radeon RX 6900 XT

INTEGRATED GRAPHICS

Intel i5-11400H (UHD Graphics), AMD Ryzen 5 5600G (Vega 7 Graphics)

X

EDGE DEVICES

NVIDIA Jetson Orin Nano, NVIDIA Jetson Nano

SOFTWARE FRAMEWORKS

Operating Systems:

- Windows 10
- Ubuntu 20.04 LTS

Frameworks:

- YOLOv5 (Exported to ONNX for Compatibility)
- YOLOv8 (Native Framework, PyTorch 1.12.0)
- OpenCV and Roboflow for Dataset Handling

Monitoring Tools: HWiNFO64, psutil

METHODOLOGY

Dataset: COCO 2017 Val (128 Images, Batch Size 16)

Metrics:

- Throughput: Images/Sec
- Inference Time: Processing Time/Image
- Power Efficiency: Watts per Image/Sec
- Memory Utilization: CPU & GPU Memory Usage

Process:

- GPU Testing First to Avoid Interference
- Removed Any Unnecessary Background Processes
- Metrics Tracked During Each Test

× Results - Throughput

Observation:

- GPUs Outperform CPUs Significantly; Integrated GPUs see Lesser Performance Uplift versus CPUs
- RTX4080 (System 1) Achieves over 50 Images/Sec
- Jetson Nano (<5 Images/Sec) Limited by Processing Power

Results - Power Efficiency

System	Power Efficiency (Watts Per Image)	
Intel i7-12700KF + RTX 4080	1.5	
AMD Ryzen 9 + RX 6900 XT	1.8	
Intel i9-11900H + RTX 3060	2.2	
Intel i5-11400H + UHD Graphics	6.0	
AMD Ryzen 5 + Vega 7	8.0	
Jetson Orin Nano	4.0	

Observation:

- Discrete GPUs Most Efficient (1.5-2W/Image/Sec)
- Jetson Orin Nano is Efficient for Edge Devices (~4 W/Image/Sec)
- Integrated GPUs Consume More Power for Lower Throughput

YOLOv5 vs YOLOv8 Comparison

Metric	YOLOv5	YOLOv8
Throughput	Lower (Robust in Varying Environments)	Higher (Suited for Real-Time Applications)
Inference Time	Higher (Slower Processing)	Lower (Faster Processing)
Detection Confidence	Higher at Longer Distances	Slightly Lower at Longer Distances
Power Efficiency ×	Moderate (Less Efficient)	Higher (More Efficient on Edge Devices)

CONCLUSION

- Discrete GPUs Excel in Performance, Suitable for Large Scale Tasks
- YOLOv8 is Optimal for Real-Time Detection and Edge Devices
- YOLOv5 Remains Reliable for Scenarios Requiring Robust Confidence
- Key Insight: Model & Hardware
 Selection Depend on use Case
 Priorities

FUTURE WORK

×

×

