stroke prediction

Ayala Bouhnik-Gelbord 206654873 Maayan Sulimani 313563009 This project has been done as part of `Machine Learning' course, led by Prof. Lee-Ad Gottleib

What is stroke?

Stroke is a **disease that affects the arteries leading to and within the brain**. It is the number 5 cause of death and a leading cause of disability in the United States. A stroke occurs when a blood vessel that carries oxygen and nutrients to the brain is either blocked by a clot or bursts (or ruptures).

What are the effects of stroke?

The brain is an extremely complex organ that controls various body functions. If a stroke occurs and blood flow can't reach the region that controls a particular body function, that part of the body won't work as it should.

project target-

In order to try to reduce the death from stroke, we will try to predict which people are more likely to have stroke.

For this project we used Kaggle dataset that includes 11 clinical features for predicting stroke events.

The features are-

- Gender
- 2. Age
- 3. Hypertension binary feature
- 4. Heart disease binary feature
- 5. Has the patient ever been married?
- 6. Work type of the patient
- 7. Residence type of the patient
- 8. Average glucose level in blood
- 9. Body Mass Index
- 10. Smoking status of the patient
- 11. Stroke event

A little bit about our data...


```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data = pd.read_csv("/content/healthcare-dataset-stroke-data.csv")
data.head()
```

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1

Lets Explore Our Data-

```
<bound method DataFrame.info of</pre>
                                            id gender
                                                        age ...
                                                                  bmi smoking status stroke
                  Male 67.0 ...
                                   36.6 formerly smoked
          51676 Female 61.0
                                            never smoked
                Female 49.0 ... 34.4
                                                  smokes
                Female 79.0 ... 24.0
                                            never smoked
                                            never smoked
                                            never smoked
                Female 35.0
                                            never smoked
                  Male 51.0 ... 25.6
                                        formerly smoked
          44679 Female 44.0 ... 26.2
                                                 Unknown
    [5110 rows x 12 columns]>
[34] data.isnull().sum()
    id
    gender
    hypertension
    heart disease
    ever married
    work type
    Residence type
    avg glucose level
                         201
    smoking status
    stroke
    dtype: int64
```

As we can see 'bmi' column holds some missing values.

So we need to fill the null values:

data['bmi'].fillna(data['bmi'].mean(), inplace = True)

After we explorer the data, we decided to remove two columns- 'id' and 'ever married'.

So now we have 10 attributes.

We will use subplot function to find the outliers in our data.

Algorithms-

We would want to know, based on the 11 features, what are the chances to have a stroke.

We will use the following technics:

- Logistic Regression
- SVM
- Decision Trees
- K- nearest neighbour

Logistic Regression-

SVM-

Decision tree-

K- Nearest Neighbour-

results-

Algorithms-	Logistic regression	SVM	Decision Tree	K- Nearest Neighbour
Accuracy-	94.891443 16730524 %	94.891443 16730524 %	92.3371647 5095785 %	94.6360153 256705 %

מקורות וחומרי עזר-

- https://www.kaggle.com/fedesoriano/stroke-prediction-dataset
- https://github.com/riddhi-jain