### Lightning Talk

Low Rank Mixup Augmentations for Contrastive Learning of Phenotypes from Functional Connectivity

Anton Orlichenko, Gang Qu, Ziyu Zhou, Yu-Ping Wang

 $^{1}$ Department of Biomedical Engineering, Tulane University, New Orleans, LA

MCBIOS 2024, Emory University, March 22-24



## fMRI Machine Learning Pipeline



- How can we improve the accuracy of phenotype predictions?
- Try contrastive learning
  - Maximize similarity between positive pairs
  - Minimize similarity between negative pairs



### Motivation

#### **Problem**

Most contrastive learning frameworks require large numbers of subjects or data augmentations

- Most fMRI studies recruit fewer than 100 subjects
- Not clear how to augment fMRI-derived metrics such as functional connectivity (FC)

#### Solution

We create an augmentation strategy for FC based on mixup of the rank-1 approximation of FC (first component)

• First component is not effective for phenotype prediction



### Idea

- Construct low rank approximation to FC X using the eigendecomposition
- Only keep the top N eigenvalues; set the rest to zero
- Since FC is a symmetric (PSD) matrix, it is orthogonally diagonalizable

$$\mathbf{X} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}}$$

$$\hat{\lambda}_{ii} = \begin{cases} \lambda_{ii}, & i \leq N \\ 0, & \text{otherwise} \end{cases}$$

$$\mathbf{X}^{(N)} = \mathbf{V} \hat{\mathbf{\Lambda}} \mathbf{V}^{\mathsf{T}}$$

$$(1)$$





## Removing the First Component

- Removing the first component doesn't reduce prediction accuracy (at all)
- Green curve at left in all graphs





## Mixup Augmentations

 Use the ineffective first component in mixup augmentations to create positive pairs



### Moderately Improved Prediction Results

- Prediction results are improved 2-10% over MLP and GCN models not using augmentations
- Using PNC and BSNIP datasets

| Dataset                          | Phenotype                | Metric                                        | MLP                                                                                           | GCN                                                                                           | CL+LRAug                                                                                      | p-value                           |
|----------------------------------|--------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------|
| BSNIP<br>BSNIP<br>BSNIP<br>BSNIP | Age<br>Sex<br>Race<br>SZ | RMSE (yr)<br>Accuracy<br>Accuracy<br>Accuracy | $\begin{array}{c} 11.82 \pm 0.62 \\ 68.1 \pm 4.6 \\ 76.0 \pm 3.8 \\ 75.2 \pm 3.6 \end{array}$ | $\begin{array}{c} 11.07 \pm 0.67 \\ 66.4 \pm 6.1 \\ 72.4 \pm 6.1 \\ 71.2 \pm 6.7 \end{array}$ | $\begin{array}{c} 10.25 \pm 0.64 \\ 71.7 \pm 5.1 \\ 77.7 \pm 4.4 \\ 76.9 \pm 4.4 \end{array}$ | <0.001<br>0.003<br>0.026<br>0.017 |
| PNC<br>PNC<br>PNC                | Age<br>Sex<br>Race       | RMSE (yr)<br>Accuracy<br>Accuracy             | $2.62 \pm 0.14$ $77.9 \pm 2.0$ $87.7 \pm 1.6$                                                 | $\begin{array}{c} 2.44 \pm 0.12 \\ 73.7 \pm 9.8 \\ 86.6 \pm 3.8 \end{array}$                  | $\begin{array}{c} 2.18 \pm 0.07 \\ 79.7 \pm 2.2 \\ 89.8 \pm 1.9 \end{array}$                  | <0.001<br><0.001<br><0.001        |



# Additional Application to Brain Network Fingerprinting

- Removing the first component of FC helps identify same subject from different scan better than raw FC
- 97.3% identification accuracy versus 62.5%



