Algebra e calcolo relazionale

#algebra-relazionale #procedurali #ridenominazione #selezione #proiezione #join

I linguaggi possono essere distinti in:

- dichiarativi, specificano le proprietà del risultato ("che cosa")
 - calcolo relazionale
 - SQL
 - Query By Example (QBE)
- procedurali, specificano le modalità di generazione del risultato ("come")
 - algebra relazionale

Algebra relazionale

Insieme di operatori:

- su relazioni
- che producono relazioni
- possono essere composti

Con l'algebra relazionale lavoriamo con tabelle/relazioni e applichiamo operatori sulle stesse per produrre altre tabelle.

Operatori insiemistici

Le relazioni sono degli insiemi, con risultati relazioni.

Posso fare l'unione \cup di 2 relazioni con n-uple di entrambe? Sì, a condizione che le 2 relazioni siano definite sullo stesso insieme di attributi (non posso fare 15 \cup 5).

- $unione \cup$, unisce gli attributi delle tabelle, il risultato è un insieme di n-uple (relazione), i duplicati vengono eliminati
- ullet intersezione \cap , con le n-uple uguali tra entrambe le relazioni
- differenza —

Ridenominazione

Operatore monadico (su una tabella) che *modifica lo schema*, non l'istanza, cambiando il nome di 1 o più attributi.

Ridenominare 2 tabelle

L'unione tra 2 tabelle con attributi "Madre" e "Padre" non è possibile siccome il nome degli attributi è diverso, possiamo tuttavia ridenominare questi

 $REN_{qenitore \leftarrow padre}(Paternita) \cup REN_{qenitore \leftarrow madre}(Maternita)$

Selezione

Operatore monadico (su una sola tabella) che produce un risultato con lo stesso schema dell'operando e contiene una selezione delle n-uple che soddisfano un predicato (VERO o FALSO).

$\mathrm{SEL}_{Condizione}(\mathrm{Operando})$

dove condizione è una espressione booleana

😑 Impiegati che guadagnano più di 50

 $SEL_{stipendio} > 50$ (Impiegati)

Impiegati che guadagnano più di 50 e lavorano a 'Milano'

SEL_{stipendio} > 50 AND filiale = 'Milano' (Impiegati)

Proiezione

Decomposizione verticale, operatore ortogonale.

Anche lui operatore monadico, parametrico.

$$PROJ_{ListaAttributi}(Operando)$$

Cognome e filiale di tutti gli impiegati

PROJ_{cognome,nome}(Impiegati)

Una proiezione contiene al più tante n-uple quante l'operando e può contenerne di meno. Se X è una superchiave di R, allora $\mathrm{PROJ}_X(R)$ contiene esattamente tante n-uple quante R.

Possiamo usare selezione e proiezione insieme:

Matricola e cognome degli impiegati che guadagnano più di 50

PROJ_{matricola.cognome}(SEL_{stipendio} > 50(Impiegati))

Non possiamo correlare informazioni presenti in relazioni diverse, nè informazioni in n-upla diverse di una stessa relazione.

JOIN

Permette di correlare dati in relazioni diverse.

Cardinalita':

- ullet il join di R_1 e R_2 contiene un numero di n-uple:
 - ullet compreso fra 0 e il prodotto di $|R_1|$ e $|R_2|$
- ullet se coinvolge una chiave di R_2 allora il numero di n-uple è:
 - ullet compreso fra 0 e $|R_1|$
- ullet se il join coinvolge una chiave di R_2 e vincolo d'integrità referenziale, allora il numero di n-uple è
 - pari a $|R_1|$

$R_1 \ { m JOIN} \ R_2$ e' una relazione su $X_1 X_2$ (intesa come unione):

$$\{t ext{ su }X_1X_2\mid ext{ esistono }t_1\in R_1\wedge t_2\in R_2 ext{ con }t[X_1]=t_1\wedge t[X_2]=t_2\}$$

Per ogni riga che si trova nella tabella di sinistra, guardiamo quante di righe hanno un attributo in comune con la tabella di destra e uniamo nel caso in cui questa incidenza esista.

JOIN NATURALE

Immaginiamo di avere una due tabelle e volessimo unire le due, seguendo un criterio: numero deve essere contenuto in entrambe.

Possiamo farlo con il **join naturale** dove i miei attributi coincidono su un attributo. Noi non dobbiamo fare nulla, il join e' automatico se l'attributo comune esiste.

≡ JOIN N	ATURALE	
numero	voto	
1	25	
2	13	
3	27	
4	28	
numero	candidato	
1	mario rossi	
2	nicola russo	
3	mario bianchi	
4	remo neri	
numero	candidato	voto
1	mario rossi	25
2	nicola russo	13
3	mario bianchi	27
4	remo neri	28

Produce un risultato:

- sull'unione degli attributi degli operandi
- ullet con n-uple costruite ciascuna a partire da una n-upla di ognuno degli operandi

JOIN COMPLETO

Ogni n-upla contribuisce al risultato. Nessuna viene eliminata.

Tuttavia se non troviamo attributi uguali, il join diventa incompleto.

≡ JOIN COM	ИPLETO t
impiegato	reparto
Rossi	Α
Neri	В

impiega	to reparto)
Binachi	В	
reparto	саро	
В	Mori	
С	Bruni	
impiega	to reparto	саро

JOIN ESTERNO

Estende con *valori NULL* le n-uple che verrebbero tagliate fuori da un join interno, si può fare sulla sinistra, destra o completo: tutte le n-uple dell'argomento di sinistra vengono prese e per gli argomenti di destra, se non ci sono, vanno a NULL (*outer left join*).

- ullet sinistro mantiene tutte le n-uple del primo operando, estendendo con NULL se necessario;
- destro del secondo operando;
- completo su entrambi gli operandi

JOIN LEFT con le tabelle di prima

impiegat	to	reparto
Rossi		Α
Neri		В
Binachi		В
reparto	C	аро
В	Mori	
С	В	runi

impiegati JOIN_{LEFT} reparti

impiegato	reparto	capo
neri	В	mori
bianchi	В	mori
rossi	Α	NULL

impiegati JOIN_{RIGHT} reparti

impiegato	reparto	саро
neri	В	mori
bianchi	В	mori
NULL	С	bruni

impiegati $JOIN_{FULL}$ reparti

impiegato reparto capo

neri B mori bianchi B mori rossi A NULL
rossi A NULL
NULL C bruni

JOIN E PROIEZIONI

Se prendessimo due tabelle e facessimo INNER JOIN (JOIN NATURALE), con una successiva PROIEZIONE, non e' detto che si ritorni alla tabella originale. Quando il JOIN non e' completo, allora accade.

$$\operatorname{PROJ}_{X_1}(R_1 \operatorname{JOIN} R_2) \subseteq R_1$$

Se facessimo l'operazione inversa (prima due PROIEZIONI e poi il JOIN), otterremmo piu' n-uple di quelle di partenza.

$$(\operatorname{PROJ}_{X_1}(R)) \operatorname{JOIN} (\operatorname{PROJ}_{X_2}(R)) \supseteq R$$

PRODOTTO CARTESIANO

Sarebbe un JOIN NATURALE su relazioni senza attributi in comune.

Contiene sempre un numero di n-uple pari al prodotto delle cardinalita' degli operandi (tutte combinabili).

Di solito viene susseguito con un SELECT se vogliamo dargli un senso:

$$\mathrm{SEL}_{condizione}(R_1 \ \mathrm{JOIN} \ R_2)$$

L'operazione viene chiamata theta-join, JOIN con condizione:

$$R_1 \text{ JOIN}_{condizione} R_2$$

Se l'operazione di confronto (condizione) nel theta-join e' sempre l'uguaglianza (=) allora di parla di equi-join:

Impiegati		Reparti	
Impiegato	Reparto	Codice	Capo
Rossi	Α	Α	Mori
Neri	В	В	Bruni
Bianchi	В		
Impiegati J	OIN _{Reparto=Coo}	_{lice} Reparti	
Impiegati Jo	OIN _{Reparto=Coo}		Саро
Impiegato Rossi			Capo Mori
Impiegato	Reparto	Codice	

up to: 30-09