Assignment 2

Design Direction and Target Predictors

Anshuman Barnwal · 200259

Homework Assignment of CS422

Monday 9th October, 2023

BACKGROUND

In this design assignment, you will implement and evaluate a number of direction predictors for conditional branches and target predictors for indirect control transfer using a portion of the PIN tool that you developed in the first homework. This assignment is not meant to observe the performance advantage that can come from a good direction predictor or target predictor. Instead, you will only evaluate the predictor accuracy and not use any of the predictions.

- a) Do not update any tables speculatively.
- b) Initialize all tables to zero.
- c) Do not shift out the least significant two bits of the PC before indexing because x86 instructions are not necessarily word-aligned.
- d) All index functions are simple modulo hashes.

Benchmarks:

- 1. 400.perlbench
- 2. 401.bzip2
- 3. 403.gcc
- 4. 429.mcf
- 5. 450.soplex
- 6. 456.hmmer
- 7. 471.omnetpp
- 8. 483.xalancbmk

Results for all predictions need to be reported for the above benchmarks belonging to SPEC 2006 Benchmark Suite.

TASKS

Part 1

Implement the following conditional branch predictors and count the number of mispredictions.

- 1. Static forward not-taken and backward taken (FNBT) [5 points]
- 2. Bimodal: 512x2-bit PHT
- 3. SAg: 1024x9-bit BHT, 512x2-bit PHT
- 4. GAg: 9-bit global history, 512x3-bit PHT
- 5. gshare: 9-bit global history, 512x3-bit PHT
- 6. Hybrid of SAg and GAg: Same configuration of SAg and GAg as above. The tournament meta-predictor is a table of 512x2-bit saturating counters indexed by 9-bit global history.
- 7. Hybrid of SAg, GAg, and gshare: Same configuration of SAg, GAg, and gshare as above, but with 2 types:
 - (a) Majority Vote Meta-predictor
 - (b) Tournament Meta-predictor

Solution.

Below are the tables for each benchmark corresponding to all direction predictors v/s total, forward and backward branches mis-prediction rates. Some observations:

- 400.perlbench [1] FNBT performs nearly randomly, which implies the heuristic of loops dominant conditional flow is invalid in this benchmark. SAg shows huge improvement over GAg (and gshare) implying global correlations between branches is non-dominant, and local history of a particular branch decides the next condition with less than 4% miss-predictions. Ensemble predictors have their results similar to SAg, implying metapredictors preferring SAg over others.
- 401.bzip2 [3] Again the heuristic assumed by *FNBT* fails. Each of *Bimodal*, *SAg* and *GAg* performance are similar, leading to all ensembles having similar predictions as well. The performance of *SAg* and *GAg* are similar (*SAg* outperforms by 3%) due to large number of data-dependence for branch operations, which couldn't be captured just by patterns in history of branches.
- 403.gcc [5] FNBT performs better than random choice, so loop heuristic works more in favour for this benchmark. Other results are similar to 400.perlbench.

• 429.mcf [7] Performance of predictors is similar to 401.bzip2, except that SAg leads to 3% more mis-predictions than GAg, implying higher inter-branch conditional dependence than specific branch's history dependence.

- 450.soplex [9] FNBT is a good heuristic in this case, and all other predictors perform similar to each other with high accuracies. This is mainly due to possibly simple history-pattern-dependence conditional branches.
- 456.hmmer [11] FNBT gives lower accuracy than random choice! From the data, 76% of forward branches are taken unlike the heuristic, due to possibly more else statements being executed. Other predictors performance are on-par with each other, betraying that there is higher global correlation between branches than usual.
- 471.omnetpp [13] FNBT and Bimodal both show similar performance, while all other predictors show near 0 mis-predictions. This implies high-correlations between branches as well as history-pattern dependence.
- 483.xalanc [15] FNBT and GAg (and gshare) have similar results, while the rest of direction predictors give similar results. This implies high inter-branch correlations, with working FNBT heuristic.

Table 1: 400.perlbench #branches

Total	Forward	Backward
129991027	103900130	26090897

Table 2: 400.perlbench Miss-rates

Predictor	Total	Forward	Backward
FNBT	41.2919	37.562	56.1451
Bimodal	9.53699	9.95926	7.85545
SAg	3.65683	3.75314	3.27332
GAg	12.1096	12.8332	9.22766
gshare	10.1866	10.3049	9.7154
T_SAgGAg	3.13967	3.23221	2.77112
M_SAgGAgGshare	4.96942	5.13221	4.32115
T_SAgGAgGshare	2.79987	2.92081	2.31825

Table 3: 401.bzip2 #branches

Total	Forward	Backward
129923149	63177353	66745796

Table 4: 401.bzip2 Miss-rates

Predictor	Total	Forward	Backward
FNBT	46.892	30.9892	61.9445
Bimodal	9.99839	10.7903	9.24878
SAg	10.1409	11.4242	8.92617
GAg	13.2202	15.722	10.8522
gshare	11.3094	12.1152	10.5467
T_SAgGAg	9.85796	11.1365	8.64775
M_SAgGAgGshare	9.39338	10.3249	8.51166
T_SAgGAgGshare	9.25029	10.2208	8.33171

Table 5: 403.gcc #branches

Total	Forward	Backward
145808191	114547462	31260729

Table 6: 403.gcc Miss-rates

Predictor	Total	Forward	Backward
FNBT	36.5864	31.8035	54.1121
Bimodal	12.9408	14.7196	6.42318
SAg	5.09598	5.36649	4.10474
GAg	16.7859	17.5679	13.9204
gshare	9.73661	9.13438	11.9433
T_SAgGAg	4.28374	4.57834	3.20424
M_SAgGAgGshare	5.46378	5.46159	5.47183
T_SAgGAgGshare	2.98034	2.95794	3.06245

Table 7: 429.mcf #branches

Total	Forward	Backward
178242897	89125970	89116927

Table 8: 429.mcf Miss-rates

<u> </u>	120.11101 1	VIIDD I GUCD	
Predictor	Total	Forward	Backward
FNBT	31.9495	35.7086	28.19
Bimodal	18.0195	16.2872	19.7519
SAg	13.0497	15.0971	11.002
GAg	10.0859	10.209	9.96275
gshare	10.2192	10.3475	10.0909
T_SAgGAg	9.45551	9.80084	9.11014
M_SAgGAgGshare	8.92204	9.07397	8.77008
T_SAgGAgGshare	8.61069	8.78472	8.43664

Table 9: 450.soplex #branches

	1 //	
Total	Forward	Backward
103254426	33692475	69561951

Table 10: 450.soplex Miss-rates

Predictor	Total	Forward	Backward
FNBT	16.9548	19.9305	15.5134
Bimodal	4.82514	0.912735	6.72012
SAg	4.01566	0.658447	5.64174
GAg	3.84076	0.920947	5.25497
gshare	3.97118	1.3007	5.26464
T_SAgGAg	3.61228	0.673969	5.03545
M_SAgGAgGshare	3.69067	0.782534	5.09923
T_SAgGAgGshare	3.58002	0.660489	4.9941

Table 11: 456.hmmer #branches

200010 11.	1001111111111	/ 5161161165	
Total	Forward	Backward	
144361279	120193490	24167789	

Table 12: 456.hmmer Miss-rates

	1001111111	1 111100 1000	2
Predictor	Total	Forward	Backward
FNBT	63.914	76.6308	0.669726
Bimodal	8.5551	10.2042	0.353682
SAg	9.12531	10.8636	0.48023
GAg	11.6455	13.6352	1.7501
gshare	10.2738	11.7955	2.70597
T_SAgGAg	8.89633	10.5382	0.730973
M_SAgGAgGshare	8.45636	10.0604	0.478976
T_SAgGAgGshare	8.38702	9.97782	0.475492

Table 13: 471.omnetpp #branches

Total	Forward	Backward
144361279	120193490	24167789

Table 14: 471.omnetpp Miss-rates

Predictor	Total	Forward	Backward
FNBT	24.9853	25.0424	15.065
Bimodal	24.7716	24.8756	6.70223
SAg	0.102834	0.0592631	7.67444
GAg	0.184697	0.127685	10.0921
gshare	0.184254	0.121447	11.0987
T_SAgGAg	0.110858	0.0610949	8.7585
M_SAgGAgGshare	0.136062	0.0863449	8.7757
T_SAgGAgGshare	0.114107	0.063917	8.83593

Table 15: 483.xalanc #branches

	rabic ro.	100.11010110 //	STATION
	Total	Forward	Backward
ĺ	176657397	130391813	46265584

Table 16: 483.xalanc Miss-rates

	100.24010110	_ 1V1155-1 a (C)	Ų
Predictor	Total	Forward	Backward
FNBT	7.98427	8.9646	5.2214
Bimodal	3.71057	4.25039	2.18917
SAg	1.93878	2.19565	1.21484
GAg	5.38099	5.94853	3.7815
gshare	4.16752	4.55032	3.08867
T_SAgGAg	1.47013	1.61294	1.06766
M_SAgGAgGshare	2.31175	2.47906	1.84021
T_SAgGAgGshare	1.33369	1.47087	0.947078

Part 2

The branch target buffer (BTB) can offer nearly 100% accurate target prediction for direct calls and unconditional jumps because the targets of these control transfer instructions do not change. This may not be true for indirect control transfer instructions. Particularly, the target of an indirect control transfer may have high correlation with the control flow path from which the branch is made. We will evaluate the following two target predictors for indirect control transfer instructions in terms of the number of mis-predictions.

- a) Branch target buffer (BTB) indexed with PC
- b) Branch target buffer (BTB) indexed with a hash of PC and ghr

Solution.

Table 17: BTB and BTBP performance in %

Application	#Jumps	BTB		BTBP	
Application		Accuracy	Miss	Accuracy	Miss
400.perlbench	28113355	64.4209	0.729852	87.8113	3.56937
401.bzip2	791933	51.7064	0.00745013	52.4765	0.0270225
403.gcc	7047066	63.9846	0.732844	86.7383	2.19991
429.mcf	12556568	99.3865	7.16756e-05	99.5898	0.00111495
450.soplex	6333664	99.9745	0.00271565	99.9654	0.0104995
456.hmmer	201471	93.3732	0.300291	96.9757	0.807064
471.omnetpp	30294875	69.8068	1.14926	87.1636	2.12404
483.xalancbmk	33225542	66.8726	8.80345	67.4221	20.515

A clear result from the above is BTBP, aka BTB indexed with hash of PC and ghr has better accuracy, while having more miss-rates per benchmark as well.

This can be accounted by noting that the same PC arrived from a different set of conditional flow will be mapped to a new set, leading to a miss for the same PC, while leading to saving the target of PC with different possible paths instead of over-writing them, which increases the accuracy.

Also low accuracy of ~ 65% for both 400.perlbench and 483.xalancbmk arise from different situations, as indicated by entirely different miss-rates. 400.perlbench low miss-rates implies pc gets hit in cache, but target mis-matches, implies global branches flow isn't indicative about the target as well as in the case of 483.xalancbmk. This is also shown in Q1 by lower performance of GAg in perlbench v/s xalancbmk.

Sidenotes

- 1. TARGE_IA32 is a preprocessor directive that is true when building for ia32
- 2. LRU states were captured using positioning of a linked list, that represented a set in BTB cache. The head of the set represents the most recently-used block, while the tail represents least recently-used.

#Jumps	Number of Jumps
FNBT	Forward Not-taken, Backward Taken
T_SAgGAg	Hybrid of SAg and GAg using Tournament Meta-predictor
M_SAgGAg	Hybrid of SAg and GAg using Majority Vote Meta-predictor
T_SAgGAgGshare	Hybrid of SAg, GAg, gshare using Tournament Meta-predictor

Table 18: Abbreviations

Please find more information regarding the submission in README.md in the submission directory.