Permit Numbers 86860 and PSDTX1188

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point	Source Name (2)	Air Contaminant	Emissio	n Rates
No. (1)		Name (3)	lbs/hour	TPY (4)
LWS	Lime Warehouse Baghouse and Alloy Aggregate	РМ	5.98	26.17
	Baghouse Stack FINs Description: Lime Silo and Flux Unloading and Storage Bin	PM ₁₀	5.98	26.17
LSTBS	LF and Stock Tank Baghouse Stack	PM	4.54	19.89
	FINs Description: EAF	PM ₁₀	4.54	19.89
	Elevated Bunker, LF Elevated Lime Bunker, and	Cd	<0.001	<0.004
	Ladle Furnace (6)	Cr	<0.006	0.02
		Pb	0.04	0.17
		Mn	0.03	0.15
		Hg	<0.0001	<0.0004
		Si	<0.005	0.02
		Zn	0.28	1.23

EBS	EAF Baghouse	NO _x	44.64	137.24
	Stack (6)	СО	595.24	1829.82
		VOC	44.64	137.24
		SO ₂	89.29	274.47
		PM_total	20.18	88.38
		PM _{10 total}	20.18	88.38
		PM _{front half}	15.13	66.28
		PM _{10 front half}	15.13	66.28
		Cd	<0.004	0.02
		Cr	0.02	0.11
		Pb	0.17	0.74
		Mn	0.15	0.67
		Hg	<0.0004	<0.002
		Si	0.02	0.08
		Zn	1.24	5.45
RHFS	Rotary Hearth Furnace Stack	NO _x	44.63	67.91
		СО	36.75	55.93
		VOC	2.41	3.66
		SO ₂	0.26	0.40
		РМ	3.33	5.06
		PM ₁₀	3.33	5.06
MPFS	Mandrel Preheat Furnace Stack	NO _x	1.33	5.83
	Stack	СО	1.12	4.90
		VOC	0.07	0.32
		SO ₂	<0.01	0.03

		PM	0.10	0.44
		PM ₁₀	0.10	0.44
QFS	Quench Furnace Stack	NO _x	6.85	11.89
		СО	5.75	9.99
		VOC	0.38	0.65
		SO ₂	0.04	0.07
		PM	0.52	0.90
		PM ₁₀	0.52	0.90
TFS	Tempering Furnace Stack	NO _x	5.71	9.51
		СО	4.79	7.99
		VOC	0.31	0.52
		SO ₂	0.03	0.06
		PM	0.43	0.72
		PM ₁₀	0.43	0.72
VDBS	VD Boiler Stack	NO_x	4.01	7.58
		СО	3.37	6.37
		VOC	0.22	0.42
		SO ₂	0.02	0.05
		PM	0.30	0.58
		PM ₁₀	0.30	0.58

SMWV	Steel Making Workshop Vent	NO _x	11.54	29.04
	Ladle Preheater, Tundish Preheater, and Ladle	СО	11.31	30.02
	Relining	VOC	1.24	4.01
	(6) and (7)	SO ₂	0.08	0.20
		PM	0.14	0.41
		PM ₁₀	0.14	0.39
		Cd	<0.00001	<0.0001
		Cr	<0.0022	<0.0087
		Cr VI	<0.002	<0.008
		Pb	<0.0001	<0.0002
		Mn	<0.01	<0.005
		Hg	<0.00001	<0.00001
		Si	<0.00001	<0.00001
		Zn	0.0001	<0.0005
AAWV	Alloy Aggregate Warehouse Vent	PM	<0.01	<0.01
	Volit	PM ₁₀	<0.01	<0.01
PCLWV	Premium Connecting Line Workshop Vent (7)	СО	1.27	5.22
	Tremenep vent (1)	VOC	0.90	3.86
		PM	0.09	0.38
		PM ₁₀	0.09	0.38
HRPPWV	Hot Rolling and Pipe Processing Workshop	СО	1.44	6.21
	Vent (6) and (7)	VOC	3.14	12.46
		РМ	0.22	0.90
		PM ₁₀	0.22	0.90
		Cr	<0.003	<0.012

		Cr VI	0.002	0.008
		Mn	<0.01	<0.006
HRLDS	Hot Rolling Line Sinter Plate Filter Stack, Piercing Mill,	PM	4.25	4.25
	Borax Spraying, PQF Pipe Mill, Extracting Mill, and PipeCutting FINs: HRL, BSCS, PM, EM, and SM	PM ₁₀	4.25	4.25
ODPSS1	Outdoor Drop Points, Scrap Steel by Truck 10	PM	0.03	0.10
	(5)	PM ₁₀	0.01	0.05
ODPSS2	Outdoor Drop Points Scrap Steel By	PM	0.03	0.10
	Train 4 (5)	PM ₁₀	0.01	0.05
ODPSR1	Outdoor Drop Point Spent Refractory and Other Waste	PM	<0.01	0.02
	Storage Pile-1 (5)	PM ₁₀	<0.01	<0.01
ODPS1	Outdoor Drop Point Slag-1 (5)	PM	<0.01	0.01
		PM ₁₀	<0.01	<0.01
ODPSR2	Outdoor Drop Point Spent Refractory and Other Waste	PM	0.05	0.03
	Storage Pile-2 (5)	PM ₁₀	0.02	0.02
ODPS2	Outdoor Drop Point Slag-2*2 (5)	PM	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
ODPSR3	Outdoor Drop Point Spent Refractory and Other Waste	PM	<0.01	0.02
	Storage Pile-3 (5)	PM ₁₀	<0.01	<0.01
ODPS3	Outdoor Drop Point Slag-3 (5)	PM	<0.01	<0.01
		PM ₁₀	<0.01	<0.01
OSPSS	Outdoor Storage Piles, Scrap Steel (5)	PM	0.23	1.00
	σοιαρ σισσι (σ)	PM ₁₀	0.11	0.50
OSPFST	Outdoor Storage Pile, First Sedimentation Tank (5)	PM	<0.01	<0.01

		PM_{10}	<0.01	<0.01
OSPS1	Outdoor Storage Pile, Slag-1 (5)	РМ	0.06	0.26
	(0)	PM_{10}	0.03	0.13
OSPSR1	Outdoor Storage Pile Spent Refractory and Other Waste-	РМ	0.23	1.00
	1 (5)	PM_{10}	0.11	0.50
OSPS2	Outdoor Storage Pile, Slag-2 (5)	РМ	0.06	0.26
	(5)	PM ₁₀	0.03	0.13
OSPSR2	Outdoor Storage Pile, Spent Refractory and Other Waste- 2 (5)	РМ	0.23	1.00
		PM ₁₀	0.11	0.50
N6CCT	Contact Cooling Tower No. 6 (5)	РМ	0.03	0.14
		PM_{10}	0.03	0.14
N7CCT	Contact Cooling Tower No. 7 (5)	РМ	0.02	0.07
	(0)	PM_{10}	0.02	0.07
RSCCT	Rolling Steel Contact Cooling Tower (5)	РМ	0.03	0.14
	Cooling Towel (3)	PM ₁₀	0.03	0.14
PPCCT	Pipe Processing Contact Cooling Tower (5)	РМ	0.03	0.14
		PM ₁₀	0.03	0.14

C	C	 Maximum 	^ II ~ · · · ~ I~ I ~	□	D-+
=miccinn	SOURCES	- Mayimiim	Allowania	=miccinn	Parac

SMWTF	Steel Making Water Treatment Facility (5)	VOC	0.10	0.10
	Tredutient Facility (3)	PM	0.10	0.10
		PM_{10}	0.10	0.10
RSWTF	Rolling Steel Water Treatment Facility (5)	VOC	0.10	0.10
	Trodument demay (e)	PM	0.10	0.10
		PM_{10}	0.10	0.10
GWTF	Graphite Water Treatment Facility (5)	VOC	0.10	0.10
	r domey (e)	PM	0.10	0.10
		PM_{10}	0.10	0.10
CMSCS1	Caster Spray Chamber Stack 1	NOx	0.18	0.55
		СО	0.58	1.75
		VOC	0.02	0.07
		PM	0.07	0.22
		PM ₁₀	0.07	0.22
		Pb	0.001	0.002
CMSCS2	Caster Spray Chamber Stack 2	NOx	0.18	0.55
		СО	0.58	1.75
		VOC	0.02	0.07
		PM	0.07	0.22
		PM ₁₀	0.07	0.22
		Pb	0.001	0.002
UVCS1	UV Coating Stack 1	VOC	<0.01	0.01
		PM	0.01	0.04

			PM ₁₀	0.01	0.04
	UVCS2	UV Coating Stack 2	VOC	<0.01	0.01
			PM	0.01	0.04
			PM ₁₀	0.01	0.04
	UVCS3	UV Coating Stack 3	VOC	<0.01	0.01
(1)	Emission point ide plan.	entification - either specific equ	ipment designation or emis PM	sion point numbe 0.01	er from plot 0.04
(2) (3)	VOC - volatile	rce name. For fugitive sources organic compounds as define			<u>01.0</u> 4
		kides of nitrogen dioxide Coating Stack 4	VOC	<0.01	0.01
	PM - total parepres	articulate matter, suspended in ented	the atmosphere, including PM	PM_{10} and $PM_{2.5}$, 0.01	as 0.04
	repres		PM ₁₀	ter, including PN 0.01	_{2.5} , as 0.04
	PM ₂ DSS particu carbor	late matter egual to or less tha monoxide	n 2.5 microns in diameter NO _x	0.73	2.19
	Cd - cadmid Cr - chrom	ium	со	29.10	87.43
	Pb - lead	ium valence +6	VOC	0.09	0.26
	Mn - manga Hg - mercu	ry	SO ₂	0.02	0.04
	Si - silicon Zn - zinc		PM	0.29	0.87
	reueid	lous air pollutant as listed in § al Regulations Part 63, Subpar	· C		
(4) (5)	Compliance with a Emission rate is a	որըս emission limits (tons pe n estimate and is enforceable	r year) is based on a 12-mo through compliance with th	onth rolling period 60 45 e applicable spe	l. ≲1.92 ciai
(0)	condition(s) and p	permit application representation	ns.		

(6) Speciated metals/HAPS are included in the PM and PM₁₀ values.

(7) The PM/PM₁₀ may include trace amounts of non-speciated metals including, but not limited to Cr, Pb, and Mn.

Date:	Julv 31, 2012	