1. 정규분포

1) 확률밀도함수

$$f(x) = \frac{\exp(-x^2/2)}{\sqrt{2\pi}}$$

for a real number x

2) 함수구성

- scipy.stats.norm
- norm.pdf(x, loc, scale)
- loc는 평균, scale은 표준편차

3) 적용

- scipy.stats.norm(loc=평균, scale=표준편차)

2. 감마분포

- 감마분포는 베타분포처럼 모수의 베이지안 추정에 사용된다. 다만 베타분포가 0부터 1 사잇값 을 가지는 모수를 베이지안 방법으로 추정하는데 사용되는 것과 달리 감마분포는 0부터 무한대 의 값을 가지는 양수 값을 추정하는데 사용된다.
- ※ 따라서 베타분포는 본 리스크 확률분포 생성 기술에서 제외함.
- 1) 확률밀도함수

$$f(x,a)=rac{x^{a-1}e^{-x}}{\Gamma(a)}$$
 for $x\geq 0, a>0$. Here $\Gamma(a)$ refers to the gamma function.

2) 함수구성

- scipy.stats.gamma
- gamma(a, loc, scale)
- gamma.pdf(x, a, loc, scale)

$$f(x,lpha,eta)=rac{eta^lpha x^{lpha-1}e^{-eta x}}{\Gamma(lpha)}$$

- a는 shape parameter, scale = $1/\beta$, β 는 inverse scale parameter, loc = mean
- mean = α/β (shape/inverse scale) : data set예 계산된 내용으로.
- variance = α/β^2
- \therefore shape parameter $\alpha = E[X]^2 / V[X]$ inverse scale parameter(rate parameter) $\beta = E[X]/V[X]$

3) 적용

- scipy.stats.gamma(a=shape parameter, loc=mean, scale = 1/beta)

3. 지수분포

1) 확률밀도함수

$$f(x)=\exp(-x)$$
 for $x\geq 0$ in "standardized" form.

A common parameterization for expon is in terms of the rate parameter lambda, such that pdf = lambda * exp(-lambda * x). This parameterization corresponds to using scale = 1 / lambda.

- 지수분포는 감마분포에서 shape parameter α 가 1인 함수이다.

2) 함수 구성

- scipy.stats.expon
- expon(loc, scale)
- expon.pdf(x, loc, scale)
- λ 는 inverse scale parameter 또는 rate parameter, scale = $1/\lambda$, loc = mean(dataset)
- mean = $1/\lambda$
- variance = $1/\lambda^2$

3) 적용

- scipy.stats.expon(loc=mean, scale= $1/\lambda$)

4. 카이제곱분포

1) 확률밀도함수

$$f(x,k)=rac{1}{2^{k/2}\Gamma\left(k/2
ight)}x^{k/2-1}\exp(-x/2)$$
 for $x\geq0,k>0$

- The chi-squared distribution is a special case of the gamma distribution, with gamma parameters a = df/2, loc = 0 and scale = 2.

2) 함수구성

- scipy.stats.chi2
- chi2(df, loc, scale)
- chi2.pdf(x, df, loc, scale)
- df는 자유도, loc=0, scale=2

3) 적용

- scipy.stats.expon(df=자유도(표본-1))

5. t분포

1) 확률밀도함수

$$f(x,
u)=rac{\Gamma((
u+1)/2)}{\sqrt{\pi
u}\Gamma(
u/2)}(1+x^2/
u)^{-(
u+1)/2}$$
 where

where x is a real number and the degrees of

freedom parameter ν .

2) 함수구성

- scipy.stats.t
- t(df, loc, scale)
- t.pdf(x, df, loc, scale)
- df는 자유도 ν , loc는 평균, scale은 표준편차.

3) 적용

- scipy.stats.t(df=자유도, loc=mean, scale=sigma)

※베타분포는 O과 1사이의 표본값만 가질 수 있기 때문에 적용안함. 푸아송분포는 단위 시간 안에 어떤 사건이 몇 번 발생할 것인지에를 표현하는 이산 확률 분포로써 적용 안함.

확률분포 종류	Param1	Param2	추가 param (dataset 기존 정보)
정규분포 (Normal)	E(x)	$\sigma(x)$	
감마분포 (Gamma)	lpha shape	eta inverse scale	E(x)
	$\alpha=rac{E(x)^2}{\sigma(x)^2}$, $\beta=rac{E(x)}{\sigma(x)^2}$, $E(x)$:기존 dataset 정보		
지수분포 (Exponential)		λ Inverse scale	E(x)
	$\lambda = \frac{1}{E(x)} , \ E(x)$		
카이제곱분포 (Chisq)	<i>df</i> 자유도		
t분포 (t)	<i>df</i> 자유도		$E(x)$, $\sigma(x)$