Departamento de Matemática da Universidade de Aveiro

CÁLCULO II - Agrupamento 2

13 de abril de 2016

1.º Teste de Avaliação Discreta

Duração: 2h

- Justifique as suas respostas e indique os cálculos efetuados.
- O formulário encontra-se no verso.
- 1. [25] Determine uma função cuja transformada de Laplace é dada por:

(a)
$$\frac{s+4}{s^2+6s+13}$$
; (b) $\frac{e^{-s}}{(s-1)^2}$.

(b)
$$\frac{e^{-s}}{(s-1)^2}$$

2. [30] Considere o seguinte problema de valores iniciais:

$$y'' - 2y' - 8y = 0$$
, $y(0) = 3$, $y'(0) = 6$.

Resolva-o usando transformadas de Laplace.

- 3. [60] Resolva as seguintes equações diferenciais de primeira ordem:
 - (a) xyy' 1 = 0;
 - (b) $x^2y' + xy = 1$. x > 0:
 - (c) $xy'-x=y+x\cos\left(\frac{2y}{x}\right)$ (se necessário, recorde que $1+\cos(2\alpha)=2\cos^2\alpha$).
- 4. [60] Considere a equação diferencial linear

$$y'' + y = f(x),$$

onde f é uma função contínua em $]0, \pi/2[$.

- (a) Determine a solução geral da equação homogénea associada.
- (b) Determine uma solução particular da EDO considerando $f(x) = -2\cos x$.
- (c) Encontre agora uma solução particular da EDO com $f(x) = -\frac{2}{\cos x}$.
- (d) Determine a solução geral da equação diferencial

$$y'' + y = -2\left(\cos x + \frac{1}{\cos x}\right).$$

5. [25] Considere uma equação diferencial da forma

$$y' = a(x)y^2 + b(x)y + c(x),$$

onde a(x), b(x) e c(x) são funções contínuas num dado intervalo.

Mostre que se y_p é uma solução particular da equação, então a mudança de variável dada por

$$y = y_p + \frac{1}{z} \quad (z \neq 0)$$

transforma a equação dada numa EDO linear.

Formulário (Transformadas de Laplace)

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace(s), \quad s > s_f; \qquad G(s) = \mathcal{L}\lbrace g(t)\rbrace(s), \quad s > s_g$$

c ~	
função	transformada
$t^n \ (n \in \mathbb{N}_0)$	$\frac{n!}{s^{n+1}}, \ s > 0$
$e^{at} \ (a \in \mathbb{R})$	$\frac{1}{s-a}, \ s > a$
	$\frac{a}{s^2 + a^2}, \ s > 0$
$\cos(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 + a^2}, \ s > 0$
$senh(at) \ (a \in \mathbb{R})$	$\frac{a}{s^2 - a^2}, \ s > a $
$\cosh(at) \ (a \in \mathbb{R})$	$\frac{s}{s^2 - a^2}, \ s > a $
$e^{\lambda t} f(t) \ (\lambda \in \mathbb{R})$	$F(s-\lambda)$
$H_a(t)f(t-a) (a>0)$	$e^{-as}F(s)$
$f(at) \ (a>0)$	$\frac{1}{a} F\left(\frac{s}{a}\right)$
$t^n f(t) \ (n \in \mathbb{N})$	$(-1)^n F^{(n)}(s)$
$f'(t) \ (n \in \mathbb{N})$	sF(s) - f(0)
$f''(t) \ (n \in \mathbb{N})$	$s^2 F(s) - sf(0) - f'(0)$
$f^{(n)}(t) \ (n \in \mathbb{N})$	$s^{n}F(s) - \sum_{k=1}^{n} s^{n-k} f^{(k-1)}(0)$
(f*g)(t)	F(s)G(s)
$\int_0^t f(\tau) d\tau$	$\frac{F(s)}{s}$

Nota: Em geral, nada é referido sobre as hipóteses que validam as fórmulas indicadas. Em alguns casos são omitidas as restrições ao domínio das transformadas.