

Video-LipReading-to-Script

대구 1기 박혜령 이창수 김선아 성은지 이동섭

Contents

01

Our Project

- 1. 팀원 소개
- 2. 프로젝트 소개
- 3. 개발 배경
- 4. 전체 프로세스
- 5. 개발 진행 상황

02

Literature Review

- 1. 논문 도표
- 2. Introduction
- 3. LipNet Summary
- 4. ShuffleNet-TCN
- 5. LRWR

03

Datasets

- 1. 한국어 데이터셋 구축
- 2. Preprocessing

Contents

04

Experiments

- 1. 모델 학습 결과 비교
- 2. Train 시각화
- 3. Test 결과

05

Demo

- 1. 데모실행
- 2. 데모분석

06

Future Works

- 1. 기대효과 및 활용방안
- 2. 향후 발전 가능성
- 3. 앞으로의 개발 일정
- 4. 서비스 구현 프로세스

Our Project

Video-LipReading-to-Script

01. 팀원 소개

뻐끔뻐끔

박혜령

- 팀장
- 논문 리뷰
- 모델링
- 총괄

이창수

- 팀원
- 논문 리뷰
- 모델링
- 개발 환경구축

김선아

- 팀원
- 논문 리뷰
- 모델링
- 발표

성은지

- 팀원
- 논문 리뷰
- 데이터셋 구축

이동섭

- 팀원
- 논문 리뷰
- 데이터셋 구축 보조
- 도메인조사

02. 프로젝트 소개

붕어립(Bung-eo-lip) 프로젝트

- 1. 영상의 **입 모양 모션을 인식**하는 모델 구현
- 2. 영상에 한국어 자막을 제공하는 서비스 개발

03. 개발 배경

장애인을 포함한 모든 사회의 구성원이 살기 좋은 사회를 만들기 위해 물리적·제도적·심리적 장벽을 허물자는 운동이다.

한국의 독순술 연구와 <u>배리어프리</u> 서비스 미흡

해외 독순술 연구 사례

한국 최초의 배리어프리 영화 박보검 주연의 '반짝반짝 두근두근'(2015)

04. 전체 프로세스

05. 개발 진행 상황

내용	주	M1	M2	Н1	H2	НЗ	H4	H5	H6
1단계	데이터셋 이해/제작								
	관련 논문 리뷰								
	모델 설정								
	검수								
2단계	서비스 개발								
	검수								
3단계	전체 유지보수								

Literature Review

Video-LipReading-to-Script

01. 논문 도표

01. 논문 도표

2016 2020 2021

LipNet ShuffleNet-TCN LRWR - - -

- 최초 문장 단위 립리딩 모델
- VGG, STCNN, Bi-Gru, CTC Loss

- 모델 경량화 (계산 비용 절감)
- MobileNet 에서 좀
 더 변형된 SuffleNet
- TCN

- 러시아어 데이터셋 구축
- D3D

02. Introduction - 립리딩 모델 구조

- 딥러닝 적용 방식 : 2단계 접근법을 따름
 - Frontend : 3D-CNN(3D conv layer + deep 2D conv)이 최근 연구에서 많이 쓰임
 - Backend: LSTM, Attention mechanisms, self-attention modules, Temporal Convolutional Networks (TCN)

02. Introduction - 립리딩 모델 I/O

I/O

Input

- Video → Crop → Lip Image Frames
- **Text Align** \rightarrow Label

Output

- Text
- Subtitle이 생성된 영상

03. LipNet Summary

Key Contributions

- 1. 최초의 end-to-end **문장** 단위의 모델
- 2. GRID Corpus dataset

Figure 5. Improved model

Process

- STCNN: 논문에 따르면 video에서 시간의 흐름과 공간의 차원을 모두 convolution
- **bi-LSTM**: STCNN의 output sequence 정보를 전파하기 위해 bi-LSTM사용, 정보 흐름을 제어 학습
- CTC Loss: Target sequence와 output sequence의 길이가 다를때 사용
- Label → UNICODE (encoding) → 한국어 (decoding)

04. ShuffleNet-TCN - 선정 이유

1. LipNet의 연산량 이슈

a. LipNet은 연산량이 매우 많음

tensorflow	3 epoch 진입 시,				
버전	메모리 부족으로 GCP 꺼짐				
pytorch 버전	10 epoch 798min 소요 (default : 1만 epoch로 설정되어 있었음)				

2. 경량 모델 사용

- a. Backbone 교체
- b. DS-MS-TCN 사용
- c. Knowledge Distillation

04. ShuffleNet-TCN - Summary

Towards Practical Lipreading with Distilled and Efficient Models

1-1. Backbone 교체 → ShuffleNetV2

1-2. Shuffle Grouped Convolution

그림 6-59 셔플 그룹 콘벌루션^[49]

- ShuffleNet에서 제안된 Shuffle Grouped Convolution

- 일반적인 Group Conv는 같은 채널그룹 안에서만 정보가 흐르고, 그룹 간에 서로 정보 교환 X
- 채널 그룹 간에 정보를 교환하면 표현이 강화될 수 있다는 아이디어
- 주기적으로 그룹 간에 채널을 섞어서 정보가 교환되도록 만든 Group Conv 방식

2-1. TCN (Temporal Convolution Network)

- 1D conv을 Sequence 데이터에 적용하는 방식
- TCN은 conv을 사용하므로 같은
 파라미터에 대해 병렬적으로 연산→ 직렬
 RNN 보다 빠름
- 모델의 깊이와 dilation으로 receptive field 크기를 조절 가능
- TCN은 하나의 layer에 대하여 같은
 파라미터가 공유 → 메모리 소요가 적음

RNN의 연산 처리 방향

2-2. **DS-TCN**

(Depthwise Separable Temporal Convolution Network)

- Depthwise Conv : 공간적 특징 추출
- Pointwise Conv : 채널간 특징 추출
- 표준 컨볼루션보다 **연산량이 8~9배 줄어든다.**
- 기존에 사용하던 MS-TCN의 헤드부분에 추가하여

DS-MS-TCN 을 최종적으로 사용

그림 6-57 깊이별 분리 콘벌루션

3. Knowledge Distillation

Fig. 1: The pipeline of knowledge distillation in generations

Knowledge Distillation:

큰 모델(Teacher Network)로부터 증류한 지식

→ 작은 모델(Student Network)로 transfer하는 과정

transfer learning : 서로 다른 도메인에서 지식을 전달하는 방식

knowledge distillation : 같은 도메인의 B모델에게 A모델이 가진 지식을 전달하는 방식(Model Compression 효과)

self-distillation 과정은 더 이상의 개선이 관찰되지 않을 때까지 반복된다.

05. LRWR

LRWR: Large-Scale Benchmark for Lip Reading in Russian language

Figure 1: Data collection pipeline

Datasets

Video-LipReading-to-Script

01. 한국어 데이터셋 구축 - 계기

ENGLISH MIRACL-VC1 Grid Corpus LRW

CHINESE CMLR LRW-1000

GERMAN GLips

KOREAN 신체 말단 움직임 영상

01. 한국어 데이터셋 구축 - 계기

신체 말단 움직임 영상

align

video

Grid Corpus

LRW

Disk reference: 6221443953311207281

Channel: BBC One HD

Program start: 2015-11-26 13:00:00 +0000

Clip start: 1428.12 seconds

Duration: 0.45 seconds

01. 한국어 데이터셋 구축 - 프로세스

STEP 3
포맷 맞춘 데이터 전처리

공정화 (Modularization)

01. 한국어 데이터셋 구축 - Google STT 자동화

STEP 1

- 1. 영상 다운받고 GCS 로 옮기기
- 2. STT(Speech-To-Text) 받아오기

 STEP 2

 STT 타임스탬프로

 단어별로 잘라내기

그리고_00036.avi 에 해당하는 그리고_00036.txt 파일

Disk reference: 1 Channel: Sejong

Program start: 2022-05-30 18:40:00 +0000

Clip start: 63.3 seconds Duration: 1.2 seconds

> STEP 3 alignment 포맷 txt

01. 한국어 데이터셋 구축 - 영상 선정

명확한 발음

정면

화면 전환 X

영상 효과

옆면

오프닝

02. Preprocessing - 총 데이터

02. Preprocessing - 데이터 선정

9999999999

단어 꾸러미에 담은 것: 16개 <face_recognition 영상 고르기 전>

"안녕하십니까:50" "이번:39" "확진자:33" "오늘:49" "함께:35" "여러분:45" "하지만:48" "어떤:34" "특히:38" "다른:36" "코로나:31" "뉴스에서:43" "코로나-19:41" "그리고:42"

(+이렇게, 한국, 한국어, 미국, 여러분)

High-frequency Words

02. Preprocessing - 사용 데이터

02. Preprocessing - Face Landmark → 입술 Crop

STEP 1

Video → Image(프레임 추출)

STEP 2

Grayscale 변환

- **→ 프레임 29개로 맞추기**
- → Face Landmark 찾기

STEP 3

입술 crop (96,96) 크기

- \rightarrow numpy 변환
- → .npz 파일 저장

Experiments

Video-LipReading-to-Script

01. 모델 학습 결과 비교

1. LipNet

```
Epoch 0: Curriculum(train: False, sentence_length: -1, flip_probability: 0.5, jitter_probabili .05)
Epoch 0: Curriculum(train: False, sentence_length: -1, flip_probability: 0.5, jitter_probabili .05)
Epoch 0: Curriculum(train: False, sentence_length: -1, flip_probability: 0.5, jitter_probabili .05)
/root/.pyenv/versions/3.6.9/lib/python3.6/site-packages/nltk/translate/bleu_score.py:472: User ng:
Corpus/Sentence contains 0 counts of 3-gram overlaps.
BLEU scores might be undesirable: use SmoothingFunction().
    warnings.warn(_msg)

[Epoch 0] Out of 256 samples: [CER: 10.000 - 0.833] [WER: 4.000 - 1.000] [BLEU: 0.351 - 0.351]
['게 게', '게 게']
```

Input 단어 '함께' 라벨 -> Output 단어 '께 께' 텍스트

2. ShuffleNet-TCN

```
Model and log being saved in: ./train_logs/tcn/2022-06-04T16:30:01
2-norm of the neural network: 48.1286
Partition train loaded
Partition val loaded
Partition test loaded
Model has been successfully loaded from ./train_logs/tcn_backup/2022-06-04T12:13:35/ckpt.best.pth.tar
                                                                          0/2 [00:00<?, ?it/s]/home
eading using TCN running/Lipreading using Temporal Convolutional Networks-master/lipreading/dataset.py
rWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converti
t to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at
h/csrc/utils/tensor new.cpp:210.)
  data = torch.FloatTensor(data)
Prediction: 오늘
Confidence: 1.0
 50%
                                                                    1/2 [00:01<00:01, 1.13s/it]
Prediction: 오늘
Confidence: 1.0
 100%
                                                                  2/2 [00:01<00:00, 1.10it/s]
 Test Dataset 5 In Total
                                 CR: 1.0
Test-time performance on partition test: Loss: 0.0000 Acc:1.0000
```

Input 단어 '오늘' 영상 -> Output 단어 '오늘' 텍스트

02. Train 시각화

Using Wandb Tool

- 100 epochs
- Metrix: Acc, Loss
- 학습이 진행될 수록 Acc 는 높아지고 Loss 는 낮아지는 것을 확인함

03. Test 결과

- 100 epochs
- Acc Avg 0.4 로 낮은 수치를 보임
- 이후에 파라미터나 학습 횟수 변경을 통해 개선이 필요함

```
predict.txt M X
Lipreading_using_TCN_running > Lipreading_using_Temporal_Convolutional_Networks-master > result > 🖹 predict.txt
       Prediction: 오늘, Confidence: 0.2280000001192093
       Prediction: 뉴스에서, Confidence: 0.9549999833106995
       Prediction: 뉴스에서, Confidence: 0.902999997138977
       Prediction: 한국, Confidence: 0.3630000054836273
       Prediction: 이렇게, Confidence: 0.7570000290870667
       Prediction: 함께, Confidence: 0.7960000038146973
       Prediction: 다른, Confidence: 0.2770000100135803
       Prediction: 한국, Confidence: 0.5740000009536743
       Prediction: 오늘, Confidence: 0.2540000081062317
       Prediction: 그리고, Confidence: 0.515999972820282
  11
```

```
Prediction: 오늘
Confidence: 0.2540000081062317

90%|
Prediction: 그리고
Confidence: 0.515999972820282

100%|
Test Dataset 39 In Total CR: 0.41025641025641024
Test-time performance on partition test: Loss: 2.3401 Acc: 0.4103
```

Demo

Video-LipReading-to-Script

01. 데모 실행

Input: '함께' 단어 영상

START
FRAME 0
FRAME 1
FRAME 2
FRAME 3
FRAME 4
FRAME 5
FRAME 6
FRAME 7
FRAME 8
FRAME 9
FRAME 10
FRAME 11
FRAME 12
FRAME 13
FRAME 14
FRAME 15
FRAME 16
FRAME 17
FRAME 18
FRAME 19
FRAME 20
FRAME 21
FRAME 22
FRAME 23
FRAME 24
FRAME 25
FRAME 26
FRAME 27
FRAME 28
PREDICT
Prediction: 그리고
Prediction: 그디고 Confidence: 0.792999828338623
Com fuence. 0.7929999626556025
END
GIF OUTPUT
GIF DONE

Output: '그리고' 자막, 자막붙은 영상

39

1초 영상 처리 시간 ightarrow 15초

02. 데모 분석 - Bad Case Analysis

결과 원인 분석

- 1. 학습에 사용한 데이터가 적어서 데모 output 이 별로인 것으로 판단됨
- 2. Google STT API 가 불완전하기 때문에 구축한 영상 데이터의 Loss 존재
- 3. 하이퍼 파라미터의 최적값을 찾아내지 못함

개선 방법

- 1. 학습에 사용할 데이터셋을 더 많이 늘려서 train, test 시도
- 2. 음성 데이터와 대조하여 영상 데이터의 Loss 를 줄여서 구축
- 3. 모델 학습에 사용한 하이퍼 파라미터 변경 및 학습 횟수 변경을 통해 개선

Future Works

Video-LipReading-to-Script

01. 기대효과 및 활용방안

외국 상용 서비스

- 외국 독순술 딥러닝 서비스 X
- 독순술은 대부분 사람이 투입됨
- Deep learning Framework AV-HuBERT 공개되어 있음

한국어 서비스 기대효과

- 소리가 겹치는 상황에서 도움됨
- 인건비절감
- 한국어 독순술 컨텐츠 실현
 - 음성인식 기술과의 시너지
 - 한국어 발음 교육 사업
- 장애인들의 불편함 해소

02. 향후 발전 가능성

- 1. BentoML을 통한 Web Service, 앱 개발을 통한 App Service 제공
- 2. 실시간 자막 생성 서비스도 기대해 볼 수 있음
- 3. 음성인식 자막 서비스와 결합
- 4. 소리 없는 영상에 대한 자막 출력
- 5. Face Detection Module을 변경하여 다양한 각도에서의 Detection 성능 개선

03. 앞으로의 개발 일정

내용	주	M1	M2	H1	H2	НЗ	H4	H5	H6
1단계	데이터셋 이해/제작								
	관련 논문 리뷰								
	모델 설정								
	검수								
2단계	서비스 개발								
	검수								
3단계	전체 유지보수								

04. 서비스 구현 프로세스

Our Links

- 1. Our Figma
- 2. Our Notion
- 3. Our GitHub
- 4. Our PPT

References

- 1. LipNet: End-to-End Sentence-level Lipreading [Paper] [GitHub 1] [GitHub 2]
- Towards Practical Lipreading with Distilled and Efficient Models [Paper] [GitHub]
- 3. LRWR: Large-Scale Benchmark for Lip Reading in Russian language [Paper]

Q&A

Thank you

뻐끔뻐끔

부록

02. ShuffleNet-TCN - Key Contribution

3. Knowledge Distillation

Method	Top-1 Acc. (%)		
3D-CNN [23]	61.1		
Seq-to-Seq [9]	76.2		
ResNet34 + BLSTM [6]	83.0		
ResNet34 + BGRU [24]	83.4		
2-stream 3D-CNN + BLSTM [25]	84.1		
ResNet-18 + BLSTM [26]	84.3		
ResNet-18 + BGRU + Cutout [27]	85.0		
ResNet-18 + MS-TCN [21]	85.3		
ResNet-18 + MS-TCN - Teacher	85.3		
ResNet-18 + MS-TCN - Student 1	87.4		
ResNet-18 + MS-TCN - Student 2	87.8		
ResNet-18 + MS-TCN - Student 3	87.9		
ResNet-18 + MS-TCN - Student 4	87.7		
Ensemble	88.5		

Born-Again Distillation

동일 모델을 사용한 self-distillation 방식

Student Backbone (Width mult.)	Student Back-end (Width mult.)	Distillation	Top-1 Acc.	Params ×10 ⁶	FLOPs ×10 ⁹
ResNet-18 [21]	MS-TCN(3×)	-	41.4	36.7	15.78
3D DenseNet [20]	BGRU (256)	-	34.8	15.0	30.32
Clased Nation (1.1)	TCN (1×)	X	40.7	3.9	1.73
ShuffleNet v2 $(1\times)$	TCN (1×)	1	41.4	3.9	1.73
Charge Net 2 (1)	DS-TCN (1×)	X	39.1	2.5	1.68
ShuffleNet v2 $(1\times)$	DS-TCN (1×)	1	40.4	2.5	1.68
Classification 2 (0 Early	TCN (1×)	X	40.5	3.0	0.89
ShuffleNet v2 $(0.5\times)$	TCN (1×)	1	41.1	3.0	0.89
Charge-Net - 2 (0 5)	DS-TCN (1×)	X	39.1	1.6	0.84
ShuffleNet v2 $(0.5\times)$	DS-TCN (1×)	/	40.2	1.6	0.84

Sequential Distillation

Ablation Study를 통해 성능이 높은 모델을 차용 하기 위해, Standard distillation을 진행한다.

ResNet-18
$$\rightarrow$$
 ShuffleNet V2 \rightarrow ShuffleNet V2 (MS-TCN) (DS-MS-TCN)

⁵¹