# Basi di Dati - Appunti

## Cristian Di Pietratonio

## 1 novembre 2014

ATTENZIONE! Questa dispensa è ancora in stesura e potrebbe non contenere gli ultimi argomenti visti a lezione. Qui saranno raccolti i contenuti di tutte le slide e dei vari materiali sparsi sul sito della prof M. Moscarini; a questi materiali saranno aggiunti appunti, esempi ed esercizi mostrati a lezione. I sorgenti LaTeX sono disponibili su GitHub QUI, dove troverete anche la versione più aggiornata di questo documento (main.pdf).

## Contents

| 1 | Intr              | roduzione                                                                     |
|---|-------------------|-------------------------------------------------------------------------------|
|   | 1.1               | Le basi di dati                                                               |
|   |                   | 1.1.1 Integrità                                                               |
|   |                   | 1.1.2 Sicurezza                                                               |
|   | 1.2               | Transazione                                                                   |
|   | 1.3               | Ripristino                                                                    |
|   | 1.4               | Compiti del DBA                                                               |
| 2 | Il n              | nodello relazionale                                                           |
|   | 2.1               | Relazioni e tabelle                                                           |
| 3 | $\mathbf{Alg}$    | ebra relazionale                                                              |
|   | 3.1               | Proiezione                                                                    |
|   | 3.2               | Selezione                                                                     |
|   | 3.3               | Unione                                                                        |
|   | 3.4               | Differenza                                                                    |
|   | 3.5               | Intersezione                                                                  |
|   | 3.6               | Prodotto cartesiano                                                           |
|   | 3.7               | Join naturale                                                                 |
|   | 3.8               | Theta Join                                                                    |
| 4 | Pro               | gettazione di una base di dati                                                |
| _ | 4.1               | Anomalie                                                                      |
|   | 4.2               | La Terza Forma Normale                                                        |
|   | 4.3               | Decomposizione di schemi di relazione                                         |
|   | 4.4               | Chiusura di un insieme di dipendenze funzionali                               |
|   |                   | 4.4.1 L'insieme $F^A$                                                         |
|   |                   | 4.4.2 Chiusura di un insieme di attributi                                     |
|   |                   | 4.4.3 Uguaglianza tra $F^A 	ext{ e } F^+ 	ext{$                               |
|   |                   | 4.4.4 Algoritmo per calcolare $X^+$                                           |
|   | 4.5               | Decomposizioni che preservano le dipendenze funzionali                        |
|   | 4.0               | 4.5.1 Equivalenza tra due insiemi di dipendenze funzionali                    |
|   |                   | 4.5.1 Equivalenza tra due insienn di dipendenze funzionari                    |
|   | 4.6               | Decomposizioni con Join senza perdita                                         |
|   | $\frac{4.6}{4.7}$ | Decomposizioni in 3NF che conservano la dipendenze funzionali e hanno un join |
|   | 4.1               | senza perdita                                                                 |
|   | 4.8               | La forma normale di Bovce-Codd                                                |

## 1 Introduzione

I sistemi di gestione di basi di dati (DBMS) sono strumenti software per la gestione di grandi masse di dati. Prima dell'avvento dei database, ogni programma aveva il suo file privato, organizzato sequenzialmente e la gestione dei dati era affidata al filesystem. Ciò causava problemi di:

- ridondanza: diversi files venivano replicati, dovendo essere condivisi con più applicazioni;
- inconsistenza: se un'informazione veniva aggiornata, tale aggiornamento poteva riguardare solo una copia del dato;
- dipendenza dei dati: i dati venivano strutturati dalle applicazioni, in base al loro utilizzo.

Per ovviare a questi problemi si iniziò a progettare le **basi di dati**, le quali videro una grande svolta quando alcuni ingegneri dell'IBM introdussero negli anni '70 il modello relazionale.

## 1.1 Le basi di dati

Le caratteristiche di una base di dati sono:

- multiuso e integrazione: la stessa base di dati può essere utilizzata da diverse applicazioni con diversi scopi;
- indipendenza e controllo centralizzato: i dati non sono gestiti dalle applicazioni ma da un software dedicato, il quale ne gestisce anche le regole di accesso.

I vantaggi che ne derivano sono la minima ridondanza, integrità dei dati e sicurezza.

## 1.1.1 Integrità

I dati devono rispettare dei vincoli che esistono nella realtà di interesse. Consideriamo ad esempio il database di InfoStud della Sapienza:

- uno studente risiede in una sola città (dipendenze funzionali);
- la matricola identifica univocamente uno studente (vincoli di chiave);
- un voto è un intero positivo tra 18 e 30 (vicoli di dominio).

#### 1.1.2 Sicurezza

I dati devono essere protetti da accessi non autorizzati. Il **DBA** (*Database Administrator*) deve considerare:

- valore corrente per accessi autorizzati;
- valore corrente per accessi non autorizzati;
- chi può accedere a quali dati e in quale modalità;
- definire regole di accesso ed effetti relativi a una violazione.

## 1.2 Transazione

#### Definizione 1.1

Si definisce **transazione** una sequenza di operazioni che costituiscono un'unica operazione logica.

## Esempio 1.1

"Trasferire €1000 da c/c1 al c/c2"

- 1. cerca c/c1;
- 2. modifica saldo in saldo 1000;
- 3. cerca c/c2;

## 4. modifica saldo in saldo + 1000;

Una transazione deve essere eseguita completamente (committed) o non deve essere eseguita affatto ( $rolled\ back$ ).

## 1.3 Ripristino

Può capitare che, a causa di un malfunzionamento del sistema (ad esempio sbalzi di tensione), la base di dati si trovi con delle informazioni corrotte. In questi casi, per ripristinare il valore corretto dei dati, si hanno due possibili modi di agire:

- sfruttare il **transaction log**, che contiene i dettagli di tutte le transazioni, tra cui valori precedenti e successivi alla modifica;
- ripristinare l'ultimo dump effettuato. Il dump è una copia periodica del database.

## 1.4 Compiti del DBA

Il Database Administrator ha vari compiti, tra i quali ricadono le scelte di progettazione della base di dati. Esse implicano la definizione di:

- schema logico
- schema fisico
- sottoschema o viste

inoltre al DBA spetta l'onere di mantenere il sistema.

## 2 Il modello relazionale

Il modello attualmente più diffuso e con il quale si organizzano i database è chiamato **modello** relazionale. Tale nome è dovuto al fatto che esso è basato sul concetto matematico di relazione.

#### Definizione 2.1

Dati n domini  $D_1, D_2, \ldots, D_n$  non necessariamente distinti, una relazione r su  $D_1, D_2, \ldots, D_n$  è un sottoinsieme del prodotto cartesiano  $D_1 \times D_2 \times \ldots \times D_n$ .

Ogni elemento di r è una n-pla  $(d_1, d_2, \dots, d_n) \ \forall \ d_i \in D_i$ 

## 2.1 Relazioni e tabelle

Una relazione r può essere rappresentata mediante una tabella: le righe corrispondono agli elementi della relazione (n-ple), le colonne corrispondono ai domini  $D_1 \dots D_n$ .

## Esempio 2.1

La seguente tabella rappresenta una relazione con due 4-ple sui domini String, String, Int e Real.

| String | String | Int | Real |
|--------|--------|-----|------|
| Paolo  | Rossi  | 2   | 26,5 |
| Mario  | Biachi | 10  | 28,7 |

A questo punto è poco chiaro cosa rappresenti tale relazione. Bisogna stabilire metodo per fornire un'interpretazione standard che rispecchi la realtà di interesse a cui essa si riferisce:a questo fine diamo nomi alle colonne e alla tabella stessa. La precedente tabella diverrà quindi:

| Nome  | Cognome | Esami | Media |
|-------|---------|-------|-------|
| Paolo | Rossi   | 2     | 26,5  |
| Mario | Biachi  | 10    | 28,7  |

Ora risulta più evidente che la realtà di interesse sono gli studenti di una data università. Daremo quindi il nome *Studenti* a tale tabella.

Il nome dato ad ogni colonna viene chiamato attributo.

## Definizione 2.2

Uno schema di relazione è un insieme di attributi.

#### Definizione 2.3

Uno schema di base di dati relazionale è un insieme  $\{R_1, R_2, \dots, R_n\}$  di schemi di relazione.

## Definizione 2.4

Una base di dati relazionale con schema  $\{R_1, R_2, \dots, R_n\}$  è un insieme  $\{r_1, r_2, \dots, r_n\}$  dove  $r_i$  è un'istanza di relazione con schema  $R_i$ .

## 3 Algebra relazionale

Data una base di dati, dobbiamo essere in grado di *interrogarla*. Interrogare una base di dati significa accedere a determinate informazioni tramite uno specifico linguaggio di interrogazione. Le specifiche essenziali di tale linguaggio sono formalizzate nell'algebra relazionale; essa consiste di un insieme di *operatori* che possono essere applicati a una (operatore unario) o due (operatore binario) istanze di relazione e *restituiscono* un'istanza di relazione. L'algebra relazionale è un linguaggio procedurale: l'interrogazione consiste in un'espressione in cui compaiono *operatori* e *istanze di relazione* della base di dati.

#### 3.1 Proiezione

La proiezione è un operatore che consente di effettuare un "taglio verticale" su una relazione, cioè di selezionare dolo alcune colonne (attributi). Viene indicata con il simbolo:

$$\pi_{A_1,A_2,\ldots,A_k}(r)$$

e seleziona le colonne di r che corrispondono agli attributi  $A_1,\,A_2,\,\ldots,\,A_k.$ 

## Esempio 3.1

Si consideri la seguente relazione Cliente:

| Nome    | C# | Città  |
|---------|----|--------|
| Rossi   | C1 | Roma   |
| Rossi   | C2 | Milano |
| Bianchi | C3 | Roma   |
| Verdi   | C4 | Roma   |

Interroghiamo la base di dati con l'operatore di proiezione nel seguente modo:  $\pi_{Nome}(Cliente)$ . Verrà restituita la seguente istanza:

| Nome    |
|---------|
| Rossi   |
| Bianchi |
| Verdi   |

Da notare come siano stati eliminati i valori doppi poiché viene restituito un insieme.

## 3.2 Selezione

L'operatore di *selezione* consente di effettuare un "taglio orizzontale" su una relazione, cioè di selezionare solo le righe (tuple) che soddisfano una data condizione. Si denota con il simbolo

$$\sigma_C(r)$$

dove C è detta condizione di selezione.

La condizione di selezione è un'espressione booleana in cui i termini semplici sono del tipo

$$A\Theta B$$
 oppure  $A\Theta'a'$ 

dove:

- $\Theta$  è un operatore di confronto  $\Theta \in \{<, =, >, \leq, \geq\};$
- $A \in B$  sono due attributi con lo stesso dominio, dom(A) = dom(B);
- $a \in dom(A)$

## Esempio 3.2

Si riprenda in considerazione la seguente tabella:

| Nome    | C# | Città  |
|---------|----|--------|
| Rossi   | C1 | Roma   |
| Rossi   | C2 | Milano |
| Bianchi | C3 | Roma   |
| Verdi   | C4 | Roma   |

Vogliamo ottenere i dati dei clienti che risiedono a Roma. La query si traduce in:  $\sigma_{Citt\grave{a}={}^{\circ}Roma'}(Cliente)$ . L'istanza di relazione che ci viene restituita è la seguente:

| Nome    | C# | Città |
|---------|----|-------|
| Rossi   | C1 | Roma  |
| Bianchi | C3 | Roma  |
| Verdi   | C4 | Roma  |

## Esempio 3.3

Facendo riferimento alla tabella dell'esempio precendente, vogliamo ottenere i dati dei clienti che si chiamano "Rossi" e risiedono a Roma. La query si traduce in:

 $\sigma_{Citt\grave{a}=`Roma', \land Nome=`Rossi'}(Cliente)$ . L'istanza di relazione che ci viene restituita è la seguente:

| Nome  | C# | Città |
|-------|----|-------|
| Rossi | C1 | Roma  |

## 3.3 Unione

L'operatore di *unione* consente di costruire una relazione contenente tutte le tuple che appartengono ad almeno uno dei due operandi. Si denota con  $r_1 \cup r_2$ . L'operazione di unione può essere applicata solo ad operandi **union compatibili**, cioè tali che:

- hanno lo stesso numero di attributi;
- gli attributi corrispondenti sono definiti sullo stesso dominio.

## 3.4 Differenza

L'operatore di differenza consente di costruire una relazione contenente tutte le tuple del primo operando che non appartengono al secondo operando. L'operatore è applicabile solo a operandi union compatibili.

## 3.5 Intersezione

L'operatore di *intersezione* consente di costruire una relazione contenente tutte le tuple che appartengono ad entrambi gli operandi. Si denota con  $r_1 \cap r_2 = (r_1 - (r_1 - r_2))$ .

## 3.6 Prodotto cartesiano

L'operatore prodotto cartesiano consente di costruire una relazione contenente tutte le tuple che si ottengono concatenando una tupla del primo operando con una tupla del secondo operando. Si denota con  $r_1 \times r_2$ .

## Esempio 3.4

Consideriamo le seguenti relazioni Cliente e Ordine:

| Nome  | С# | Città  | С# | A# | Num |
|-------|----|--------|----|----|-----|
| Rossi | C1 | Roma   | C1 | A1 | 100 |
| Rossi | C2 | Milano | C2 | A2 | 200 |
|       | '  | '      | C1 | A2 | 200 |

Il prodotto cartesiano tra queste due relazioni da come risultato la relazione che chiameremo per convenienza Risultato:

| Nome  | С# | Città  | С# | Α# | Num |
|-------|----|--------|----|----|-----|
| Rossi | C1 | Roma   | C1 | A2 | 100 |
| Rossi | C1 | Roma   | C2 | A2 | 200 |
| Rossi | C1 | Roma   | C1 | A2 | 200 |
| Rossi | C2 | Milano | C1 | A1 | 100 |
| Rossi | C2 | Milano | C2 | A2 | 200 |
| Rossi | C2 | Milano | C1 | A2 | 200 |

## Esempio 3.5

Riprendendo la relazione *Risultato* dall'esempio precendente, vogliamo effettuare una query che richieda i "dati dei clienti e dei loro ordini":

$$\pi_{Nome, Cliente.C\#, Citt\grave{a}, A\#, Num}(\sigma_{Cliente.C\# = Ordine.C\#}(Cliente \times Ordine))$$

La query viene eseguita in quest'ordine:

- 1. Viene effettuato il prodotto cartesiano  $Cliente \times Ordine$ ;
- 2. dal prodotto cartesiano vengono selezionate le tuple dove i corrispondenti attributi C# hanno lo stesso valore;
- 3. sulla relazione ricavata dalla selezione (punto 2) viene operata una proiezione per prendere le colonne volute, che andranno a formare la relazione che sarà il risultato finale della query.

| Nome  | С# | Città  | A# | Num |
|-------|----|--------|----|-----|
| Rossi | C1 | Roma   | A2 | 100 |
| Rossi | C1 | Roma   | A2 | 200 |
| Rossi | C2 | Milano | A2 | 200 |

## 3.7 Join naturale

L'operatore join naturale consente di selezionare le tuple del prodotto cartesiano dei due operandi che soddisfano la condizione

$$(R_1.A_1 = R_2.A_1) \land (R_1.A_2 = R_2.A_2) \land \ldots \land (R_1.A_k = R_2.A_k)$$

Dove  $R_1$  e  $R_2$  sono i nomi delle due relazioni operando e  $A_1 \dots A_k$  sono gli attributi comuni. Il join naturale è definito come

$$r_1 \bowtie r_2 = \pi_{XY}(\sigma_C(r_1 \times r_2))$$

dove

- $C = (R_1.A_1 = R_2.A_1) \land (R_1.A_2 = R_2.A_2) \land \dots \land (R_1.A_k = R_2.A_k);$
- X sono gli attributi di  $r_1$ ;
- Y sono gli attributi di  $r_2$  che non sono in  $r_1$ ;

## 3.8 Theta Join

Il  $\Theta$ -Join consente di selezionare le tuple del prodotto cartesiano di due operandi che soddisfano una condizione del tipo A  $\Theta$  B, dove:

- $\Theta$  è un operatore di confronto  $\Theta \in \{<, =, >, \leq, \geq\};$
- A è un attributo dello schema del primo operando e B uno del secondo;
- dom(A) = dom(B);

## 4 Progettazione di una base di dati

## 4.1 Anomalie

Si immagini di dover progettare una base di dati relazionale contenente i dati degli studenti e dei corsi di un'Università. La soluzione più immediata è di creare un'unica relazione

```
Universit\`{a}(Matr, Nome, Citt\`{a}, Prov, C\#, Titolo, Docente, C\_laurea, Data, Voto)
```

in cui una tupla (m, n, c, p, C, t, D, l, d, v) rappresenta il fatto che uno studente con matricola m e nome n, residente nella città c che si trova in provincia di p, ha sostenuto l'esame del corso, con codice C e titolo t, tenuto dal docente D, del corso di laurea l in data d riportando il voto v.

Adottando questa soluzione si avrebbero un certo numero di inconvenienti che vanno sotto il nome di **anomalia**. Un anomalia è essenzialmente un comportamento *inaspettato e indesiderato* da parte della base di dati, generato in risposta ad un'operazione. Le anomalie più comuni (spiegate relativamente all'esempio) sono:

- anomalie di inserimento: non si possono inserire i dati di uno studente se non ha sostenuto almeno un esame;
- anomalie di cancellazione: se si cancellano i dati di un corso (perché il corso è stato disattivato) e c'è uno studente che ha sostenuto solo l'esame relativo a quel corso, perdo le informazioni sullo studente;
- anomalie di aggiornamento: se devo modificare il docente di un corso devo farlo per ogni tupla in cui compare il corso;
- ridondanza dei dati: le informazioni anagrafiche di uno studente sono ripetute per ogni esame sostenuto dallo studente.

Queste anomalie sono dovute al fatto che si sono rappresentati in un'unica relazione più *concetti*: il concetto "Studente", "Corso" ed "Esame". Rappresentando i tre concetti in tre relazioni distinte

```
Studente(Matr, Nome, Città, Prov)

Corso(C\#, Titolo, Docente, C\_laurea)

Esame(Matr, C\#, Data, Voto)
```

tali anomalie vengono eliminate. Tuttavia è possibile riscontrare il permanere di simili anomalie concernenti le città:per eliminare queste ultime anomalie che hanno la stessa origine di quelle viste precedentemente, posso utilizzare lo *schema* seguente:

 $Studente(Matr, Nome, Citt\`{a}) \\ Comune(Citt\`{a}, Prov) \\ Corso(C\#, Titolo, Docente, C\_laurea) \\ Esame(Matr, C\#, Data, Voto)$ 

## 4.2 La Terza Forma Normale

Si è constatato che ci sono schemi migliori di altri. Esistono dunque regole e proprietà formali che ci permettono di costruire un buono schema?

Se si analizzano le anomalie nella relazione *Università* si nota che sono legate al fatto che

- Voto e Data sono determinati univocamente da Matr e C#;
- i dati di uno studente sono determinati univocamente da Matr;
- i dati di un corso sono determinati univocamente da C#.

Il concetto di "determina univocamente" è colto dal concetto formale di dipendenza funzionale.

#### Definizione 4.1

Dato uno schema di relazione R, una dipendenza funzionale su R è una coppia ordinata di sottoinsiemi non vuoti  $X, Y \in R$  e viene denotata come  $X \to Y$ .

## Proposizione 4.1

Un'istanza r di R soddisfa la dipendenza funzionale  $X \to Y$  se per ogni coppia di tuple  $t_1, t_2 \in r$  si ha che se  $t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]$ .

In simboli:

$$(\forall (t_1, t_2) \in r \ t.c. \ t_1[X] = t_2[X] \Rightarrow t_1[Y] = t_2[Y]) \Rightarrow (X \to Y \text{ soddisfa } r).$$

Sia F un insieme di dipendenze funzionali su R ed r un'istanza di R. Se r soddisfa tutte le dipendenze in F, diciamo che r è un'istanza legale di R.

#### Definizione 4.2

La chiusura di F, denotata con  $F^+$ , è l'insieme di dipendenze funzionali che sono soddisfatte da ogni istanza legale di R.

Banalmente si ha che  $F \subseteq F^+$ .

#### Definizione 4.3

Dato uno schema di relazione R, un insieme di dipendenze funzionali F su R e un sottoinsieme K di R, diciamo che K è una **chiave** per R se:

- $K \to R \in F^+$
- $\forall K' \subset K, \ K' \to R \notin F^+.$

In pratica una chiave è il minimo sottoinsieme di R che determina univocamente il valore dei restanti attributi di R (banalmente la chiave determina se stessa e i suoi sottoinsiemi) tale che, se prendessimo un suo sottoinsieme, esso non sarebbe chiave.

In futuro denoteremo con  $A_1, A_2, \ldots, A_n$  un insieme di attributi, con X e Y sottoinsiemi di R, con XY l'insieme  $X \cup Y$ .

## Esempio 4.1

Considerando il precendente schema Università, possiamo osservare che un'istanza di Università per rispecchiare la realtà di interesse deve soddisfare le seguenti dipendenze funzionali:

- Matr, C# → Nome, Città, Prov, Titolo, Docente, C\_laurea, Data, Voto;
- $C\# \to Titolo$ , Docente, C\_laurea
- $Matr \rightarrow Nome\,Citt\grave{a},\; Prov$
- $Città \rightarrow Prov$

Quindi  $\{Matr, C\#\}$  costituisce una *chiave* per Università.

Ci sono attributi che **dipendono parzialmente** dalla chiave. Nell'Esempio 4.1 {Titolo, Docente,  $C\_laurea$ } dipendono funzionalmente da C#; altri attributi invece **dipendono transitivamente** dalla chiave, ad esempio Prov dipende funzionalmente da Matr in quanto  $Matr \rightarrow Citt\grave{a} \rightarrow Prov$ .

Prendendo lo schema finale, vediamo che in nessuno schema di relazione ci sono attributi che dipendono parzialmente né transitivamente dalla chiave.

## Proposizione 4.2

Uno schema di relazione in cui non ci sono sono attributi che dipendono parzialmente né transitivamente dalla chiave è detto in **Terza Forma Normale** (3NF).

Formalizziamo i concetti appena introdotti:

#### Definizione 4.4

Dati uno schema di relazione R e un insieme di dipendenze funzionali F su R diciamo che:

- un attributo  $A \in R$  è **primo** se appartiene ad una chiave di R;
- un sottoinsieme  $X \subset R$  è una superchiave se contiene una chiave di R.

Nell'Esempio 4.1, considerando la relazione  $Universit\grave{a}, Matr$  è primo mentre  $\{Matr, C\#, Nome\}$  è una superchiave.

#### Definizione 4.5

Siano R uno schema di relazione ed F un insieme di dipendenze funzionali su R.

- $X \to A \in F^+$  è una dipendenza parziale su R se A non è primo e X è contenuto propriamente in una chiave di R.
- $X \to A \in F^+$  è una dipendenza transitiva su R se A non è primo e  $\forall K \subset R$  si ha che X non è contenuto propriamente in K e  $K X \neq \emptyset$ .

## Proposizione 4.3

Siano R uno schema di relazione ed F un insieme di dipendenze funzionali su R. R è in 3NF se,  $\forall (X \to A) \in F^+$  t.c.  $A \notin X$ , si ha che A è primo oppure X è una superchiave.

#### Teorema 4.1

Siano R uno schema di relazione e F un insieme di dipendenze funzionali su R. Uno schema R è in 3NF se e solo se non esistono né dipendenze parziali né dipendenze transitive in R.

**Dimostrazione.** La parte solo se deriva banalmente dalla definizione [4.5].

Parte se. Supponiamo per assurdo che R non sia in 3NF nonostante non ci siano dipendenze parziali o transitive; in tal caso esiste una dipendenza funzionale  $X \to A \in F^+$  t.c. A non è primo e X non è una superchiave. Poiché X non è una superchiave due casi (mutuamente esclusivi) sono possibili:

- o per ogni chiave K di R, X non è contenuto propriamente in K e  $K-X \neq \emptyset$ ; in tal caso  $X \to A$  è una dipendenza transitiva su R (contraddizione)
- oppure esiste una chiave K di R t.c.  $X \subset K$ ; in tal caso  $X \to A$  è una dipendenza parziale su R (contraddizione).

Un obbiettivo da tenere presente quando si progetta una base di dati è quello di produrre uno schema in cui ogni relazione sia in 3NF. Nella fase di progettazione concettuale si individuano i concetti che devono essere rappresentati nella base di dati. Se questo lavoro di individuazione è fatto accuratamente lo schema relazionale che può essere derivato in modo automatico con opportune regole, è in 3NF. Se tuttavia dopo tale processo ci trovassimo a produrre uno schema che non è in 3NF dovremmo procedere ad una fase di decomposizione.

## 4.3 Decomposizione di schemi di relazione

Uno schema che non è in 3NF può essere decomposto in più modi in un insieme di schemi in 3NF. Sia R = ABC con l'insieme di dipendenze funzionali  $F = \{A \to B, B \to C\}$ . R non è in 3NF per la presenza in  $F^+$  della dipendenza transitiva  $B \to C$ , ma può essere decomposto in:

$$R_1 = AB \text{ con } F_1 = \{A \to B\}$$

$$R_2 = BC \text{ con } F_2 = \{B \to C\}$$
oppure
$$R_1 = AB \text{ con } F_1 = \{A \to B\}$$

$$R_2 = AC \text{ con } F_2 = \{A \to C\}$$

Entrambi gli schemi sono in 3NF, tuttavia la seconda soluzione non è soddisfacente. Infatti, si consideri l'istanza della base di dati costituita dalle due istanze legali di  $R_1$  e  $R_2$ :

$$\begin{array}{c|ccccc} A & B & & A & C \\ \hline a_1 & b_1 & & a_1 & c_1 \\ a_2 & b_1 & & a_2 & c_2 \\ \end{array}$$

L'istanza di R che si può ricostruire da questa tramite join naturale è

$$\begin{array}{c|ccccc}
A & B & C \\
\hline
a_1 & b_1 & c_1 \\
a_2 & b_1 & c_2
\end{array}$$

non è un'istanza legale di R, in quanto non soddisfa la dipendenza funzionale  $B \to C$ .

## Esempio 4.2

Si consideri la relazione  $Studente = \{Matr, Com, Prov\}$ , con  $F = \{Matr \rightarrow Com, Matr \rightarrow Prov, Com \rightarrow Prov\}$ ; essa è in 3FN. Una decomposizione possibile è la seguente:

$$R_1 = \{Matr, Com\} \text{ con } F_1 = \{Matr \rightarrow Com\}$$
  
 $R_2 = \{Matr, Prov\} \text{ con } F_2 = \{Matr \rightarrow Prov\}$ 

entrabe sono in 3FN; si cosiderino le seguenti istanze di  $R_1$  e  $R_2$ 

| Matr  | Com    | Matr  | Prov   |
|-------|--------|-------|--------|
| $O_1$ | Marino | $O_1$ | Parma  |
| $O_2$ | Marino | $O_2$ | Latina |

e si provi a fare il join naturale per riottenere lo schema di partenza. Ecco il risultato:

| Matr  | Com    | Prov   |
|-------|--------|--------|
| $O_1$ | Marino | Parma  |
| $O_2$ | Marino | Latina |

chiaramente si perde la dipendenza funzionale  $Com \rightarrow Prov$ .

Una istanza di una relazione contiene i dati di una certa realtà che lo schema della base di dati intende rappresentare e si assumono come riferimenti veritieri. Pertanto quando si decompone uno schema si vuole che ogni sua istanza sia ricostruibile da un'istanza dello schema ottenuto dalla decomposizione.

## Proposizione 4.4

Una decomposizione di uno schema di relazione deve avere i seguenti requisiti:

- deve preservare le dipendenze funzionali che valgono su ogni istanza legale dello schema originario;
- deve permettere di ricostruire mediante join naturale ogni istanza legale dello schema originario.

## 4.4 Chiusura di un insieme di dipendenze funzionali

Quando si decompone uno schema di relazione in R su cui è definito un insieme di dipendenze funzionali F, le dipendenze funzionali che si vogliono preservare sono tutte quelle che sono soddisfatte da ogni istanza legale di R, cioè le dipendenze funzionali in  $F^+$ ; sarà quindi necessario calcolare tale insieme.

## 4.4.1 L'insieme $F^A$

#### Definizione 4.6

Sia R uno schema di relazione e F un insieme di dipendenze funzionali. Sia  $F^A$  l'insieme di dipendenze funzionali definito nel modo seguente:

- $f \in F \Rightarrow f \in F^A$ ;
- $Y \subseteq X \subseteq R \Rightarrow X \to Y \in F^A$  (assioma della riflessività);
- $X \to Y \in F^A \Rightarrow XZ \to YZ \in F^A$ ,  $\forall Z \subseteq R$  (assioma dell'aumento);
- $X \to Y \in F^A, Y \to Z \in F^A \Rightarrow X \to Z \in F^A$  (assioma della transitività).

Dimostreremo che  $F^+ = F^A$ , cioè che la chiusura di un insieme di dipendenze funzionali F può essere ottenuta a partire da F applicando ricorsivamente gli assiomi della riflessività, dell'aumento e della transitività, conosciuti come **assiomi di Armstrong**.

#### Teorema 4.2

Sia F un insieme di dipendenze funzionali. Valgono le seguenti implicazioni:

- regola dell'unione:  $X \to Y \in F^A$  e  $X \to Z \in F^A \Rightarrow X \to YZ \in F^A$
- regola della decomposizione:  $X \to Y \in F^A$  e  $Z \subseteq Y \Rightarrow X \to Z \in F^A$
- regola della pseudotransitività:  $X \to Y \in F^A$  e  $WY \to Z \in F^A \Rightarrow WX \to Z \in F^A$ .

## Dimostrazione.

- Regola dell'unione. Se  $X \to Y \in F^A$ , per l'assioma dell'aumento si ha  $X \to XY \in F^A$ . Analogamente, se  $X \to Z \in F^A$ , sempre per l'assioma dell'aumento si ha  $XY \to YZ \in F^A$ . Quindi, poiché  $X \to XY \in F^A$  e  $XY \to YZ \in F^A$ , per l'assioma della transitività si ha  $X \to YZ \in F^A$ .
- Regola della decomposizione. Se  $Z \subseteq Y$  allora, per l'assioma della riflessività, si ha  $Y \to Z \in F^A$ . Quindi, poiché  $X \to Y \in F^A$  e  $Y \to Z \in F^A$ , per l'assioma della transitività si ha  $X \to Z \in F^A$ .
- Regola della pseudotransitività. Se  $X \to Y \in F^A$ , per l'assioma dell'aumento si ha  $WX \to WY \in F^A$ . Quindi, poiché  $WX \to WY \in F^A$  e  $WY \to Z \in F^A$ , per l'assioma della transitività si ha  $WX \to Z \in F^A$ .

Si osservi che, per la regola dell'unione, se  $X \to A_i \in F^A, \forall i \in \{1, ..., n\}$ , allora  $X \to A_1, A_2, ..., A_n \in F^A$  e che, per la regola della decomposizione, se  $X \to A_1, A_2, ..., A_n \in F^A$  allora  $X \to A_i \in F^A, \forall i \in \{1, ..., n\}$ ; cioè:

$$X \to A_1, A_2, \dots, A_n \in F^A \Leftrightarrow X \to A_i \in F^A, \forall i \in \{1, \dots, n\}.$$

Pertanto, possiamo limitarci, quando necessario, a considerare solo dipendenze funzionali in cui il membro destro sia un *singleton* (ovvero un solo attributo).

## 4.4.2 Chiusura di un insieme di attributi

Allo scopo di dimostrare che  $F^+ = F^A$ , introduciamo il concetto di *chiusura* di un insieme di attributi rispetto ad un insieme di dipendenze funzionali.

## Definizione 4.7

Siano R uno schema di relazione, F un insieme di dipendenze funzionali su R e X un sottoinsieme di R. La chiusura di X rispetto ad F, denotata con  $X_F^+$  (o semplicemente  $X^+$ , se non sorgono ambiguità) è definita nel modo seguente:  $X_F^+ = \{A \ t.c. \ X \to A \in F^A\}$ .

In parole povere, la chiusura di un insieme di attributi X è l'insieme di tutti gli attributi determinati da X tramite dipendenze funzionali in  $F^A$ .

#### Lemma 4.1

Siano R uno schema di relazione ed F un insieme di dipendenze funzionali su R. Si ha che:  $Y \subseteq X^+ \Leftrightarrow X \to Y \in F^A$ .

**Dimostrazione.** Sia  $Y = A_1, A_2, \dots, A_n$ .

Parte se. Poiché  $Y \subseteq X^+$ , si ha che  $X \to A_i \in F^A, \forall i \in \{1, \dots, n\}$ . Pertanto, per la regola dell'unione,  $X \to Y \in F^A$ .

Parte solo se. Poiché  $X \to Y \in F^A$ , per la regola della decomposizione si ha che,  $X \to A_i \in F^A$ ,  $\forall i \in \{1, ..., n\}$ , cioè  $A_i \in X^+, \forall i \in \{1, ..., n\}$  e, quindi,  $Y \subseteq X^+$ .

## **4.4.3** Uguaglianza tra $F^A$ e $F^+$

Con le conoscenze acquisite finora siamo in grado di dimostrare che  $F^+ = F^A$ .

## Teorema 4.3

Siano R uno schema di relazione ed F un insieme di dipendenze funzionali su R. Si ha che  $F^+ = F^A$ .

**Dimostrazione.** Mostreremo che  $F^+ \subseteq F^A$  e contemporaneamente  $F^+ \subseteq F^A$ , equivalente a dire che i due insiemi sono uguali.

 $\mathbf{F}^+ \subseteq \mathbf{F}^{\mathbf{A}}$ . Sia  $X \to Y$  una dipendenza funzionale in  $F^A$ . Dimostriamo che  $X \to Y \in F^+$  per induzione sul numero i di applicazioni di uno degli assiomi di Armstrong.

Base dell'induzione: i=0. In tal caso  $X \to Y \in F$  e quindi, banalmente,  $X \to Y \in F^+$ . Ipotesi induttiva: Ogni dipendenza funzionale ottenuta a partire da F applicando gli assiomi di Armstrong un numero di volte minore o uguale a i-1, con i>0, è in  $F^+$ .

Passo induttivo: all'i-esimo passo si ha  $X \to Y$ , che è il risultato di uno dei seguenti tre casi:

- $X \to Y$  è stata ottenuta mediante l'assioma della riflessività, in tal caso  $Y \subseteq X$ . Sia r un'istanza di R e siano  $t_1$  e  $t_2$  due tuple di r tali che  $t_1[X] = t_2[X]$ ; banalmente si ha  $t_1[Y] = t_2[Y]$ .  $X \to Y$  è dunque una dipendenza funzionale soddisfatta da ogni istanza legale di R, e per definizione fa parte di  $F^+$ .
- $X \to Y$  è stata ottenuta applicando l'assioma dell'aumento ad una dipendenza funzionale  $V \to W \in F^A$ , quest'ultima già inclusa per ipotesi induttiva in  $F^+$ , in uno dei passaggi precenti all'attuale *i*-esimo; si ha quindi che X = VZ e Y = WZ, per qualche  $Z \subseteq R$ . Sia r un'istanza legale di R e siano  $t_1$  e  $t_2$  due tuple di r tali che:
  - 1.  $t_1[X] = t_2[X]$ ; banalmente si ha che  $t_1[V] = t_2[V]$  e  $t_1[Z] = t_2[Z]$
  - 2. per l'ipotesi induttiva da  $t_1[V] = t_2[V]$  segue  $t_1[W] = t_2[W]$
  - 3. da  $t_1[W] = t_2[W]$  e  $t_1[Z] = t_2[Z]$  segue  $t_1[Y] = t_2[Y]$
- $X \to Y$  è stata ottenuta applicando l'assioma della transitività a due dipendenze funzionali  $X \to Z$  e  $Z \to Y \in F^A$ , ottenute applicando ricorsivamente gli assiomi di Armstrong un numero di volte minore o uguale a i-1. Sia r un'istanza legale di R e siano  $t_1$  e  $t_2$  due tuple di r tali che  $t_1[X] = t_2[X]$ . Per l'ipotesi induttiva da  $t_1[X] = t_2[X]$  segue  $t_1[Z] = t_2[Z]$ ; da  $t_1[Z] = t_2[Z]$ , ancora per l'ipotesi induttiva, segue  $t_1[Y] = t_2[Y]$ .

 $\mathbf{F^A} \subseteq \mathbf{F^+}$ . Si supponga per assurdo che esista una dipendenza funzionale  $X \to Y \in F^+$  tale che  $X \to Y \notin F^A$ . Si mostrerà che esiste un'istanza legale di R che non soddisfa  $X \to Y$  (contraddicendo allora il fatto che  $X \to Y \in F^+$ ).

Consideriamo la seguente istanza r di R:

| X+ |   |  | R-X <sup>+</sup> |   |   |  |   |
|----|---|--|------------------|---|---|--|---|
| 1  | 1 |  | 1                | 1 | 1 |  | 1 |
| 1  | 1 |  | 1                | 0 | 0 |  | 0 |

Mostriamo che:

• r è un'istanza legale di R. Sia  $V \to W$  una dipendenza funzionale in F e supponiamo per assurdo che non sia soddisfatta da r. In tal caso le due tuple di r devono avere gli stessi valori per V e differenti valori per W; ciò implica che  $V \subseteq X^+$  e  $W \cap (R - X^+) \neq \emptyset$ . Poiché  $V \subseteq X^+$ , per il Lemma 4.1, si ha che  $X \to V \in F^A$ ; pertanto, per l'assioma della transitività,  $X \to W \in F^A$  e, quindi, per il Lemma 4.1,  $W \subseteq X^+$  (che contraddice  $W \cap (R - X^+) \neq \emptyset$ ).

• r non soddisfa  $X \to Y$ . Supponiamo per assurdo che r soddisfi  $X \to Y$ . Poiché  $X \subseteq X^+$  (per l'assioma della riflessività), le due tuple di r coincidono sugli attributi X e quindi, poiché rsoddisfa  $X \to Y$ , devono coincidere anche sugli attributi Y. Questo implica che  $Y \subseteq X^+$  e quindi, per il Lemma 4.1, che  $X \to Y \in F^A$ .

## 4.4.4 Algoritmo per calcolare $X^+$

Per stabilire se una decomposizione preserva  $F^+$ , quest'ultimo va calcolato. Tale operazione potrebbe tuttavia richiedere tempo esponenziale dipendente da |F|; se  $F = \{A \rightarrow B_1, A \rightarrow B_2, A \rightarrow B_3, A \rightarrow B_4, A \rightarrow B$  $B_2, \ldots, A \rightarrow B_n$ , con |F| = n, per le regole della decomposizione e dell'unione si ha che  $F^+ \supseteq \{A \to Z \text{ t.c. } Z \subseteq B_1B_2...B_n\}$  e quindi  $|F^+| = 2^n - 1$ . D'altra parte, per sapere se una decomposizione preserva le dipendenze, è sufficiente poter decidere se una dipendenza funzionale  $X \to Y \in F^+$ ; ciò può essere fatto calcolando  $X^+$  e verificando se  $Y \subseteq X^+$ . Il calcolo di  $X^+$  può essere fatto mediante il seguente algoritmo polinomiale.

```
Algoritmo 4.1
```

```
INPUT: uno schema di relazione R, un insieme F di dipendenze funzionali su R, un sottoin-
sieme X di R.
```

Output:  $X_F^+$  nella variabile Z

```
BEGIN
Z := X;
S := \{ A \ t.c. \ Y \to V \in F \land A \in V \land Y \subseteq Z \};
WHILE S \not\subseteq Z
    BEGIN
    Z := Z \cup S;
    S := \{ A \ t.c. \ Y \to V \in F \land A \in V \land Y \subseteq Z \};
END
```

## Teorema 4.4

L'Algoritmo 4.1 calcola correttamente la chiusura di un insieme di attributi X rispetto ad un insieme F di dipendenze funzionali.

**Dimostrazione.** Si indichi con  $Z^{(0)}$  il valore iniziale di Z (ovvero  $Z^{(0)} = X$ ) e con  $Z^{(i)}$  ed  $S^{(i)}$ , i > 1, i valori di Z ed S dopo l'i-esima esecuzione del corpo del ciclo; è facile vedere che  $Z^{(i)} \subseteq Z^{(i+1)}, \forall i$ . Sia j tale che  $S^{(j)} \subseteq Z^{(j)}$  (cioè  $Z^{(j)}$  è il valore di Z quando l'algoritmo termina); si proverà che:

$$A \in X^+ \Leftrightarrow A \in Z^{(j)}$$

**Parte solo se.** Verrà dimostrato per induzione su i che  $Z^{(i)} \subseteq X^+$ ,  $\forall i$ , e quindi, in particolare  $Z^{(j)} \subseteq X^+$ .

Base dell'induzione: i=0. Poiché  $Z^{(0)}=X$  e  $X\subseteq X^+$ , si ha  $Z^{(0)}\subseteq X^+$ . Induzione: i>0. Per l'ipotesi induttiva  $Z^{(i-1)}\subseteq X^+$ . Sia A un attributo in  $Z^{(i)}-Z^{(i-1)}$ ; deve esistere una dipendenza  $Y \to V \in F$  tale che  $Y \subseteq Z^{(i-1)}$  e  $A \in V$ . Poiché  $Y \subseteq Z^{(i-1)}$ , per l'ipotesi induttiva si ha che  $Y\subseteq X^+$ ; pertanto, per il <u>LEMMA 4.1</u>,  $X\to Y\in F^A$ . Poiché  $X\to Y\in F^A$ e  $Y \to V \in F$ , per l'assioma della transitività si ha  $X \to V \in F^A$  e quindi, per il Lemma 4.1,  $V \subseteq X^+$ . Pertanto,  $\forall A \in Z^{(i)} - Z^{(i-1)}$  si ha  $A \in X^+$ . Da ciò segue, per l'ipotesi induttiva, che

**Parte se.** Sia A un attributo in  $X^+$ . Mostreremo che  $A \in Z^{(j)}$ . Poiché  $A \in X^+$ , si ha  $X \to A \in Z^{(j)}$  $F^+$  (per il Teorema 4.3); pertanto  $X \to A$  deve essere soddisfatta da ogni istanza legale di R. Si consideri la seguente istanza r di R:

|   | Z(i) — |  |   | R-Z <sup>(j)</sup> —— |   |  |   |
|---|--------|--|---|-----------------------|---|--|---|
| 1 | 1      |  | 1 | 1                     | 1 |  | 1 |
| 1 | 1      |  | 1 | 0                     | 0 |  | 0 |

Mostriamo che r è un'istanza legale di R. Infatti, se, per assurdo, esistesse in F una dipendenza funzionale  $V \to W$  non soddisfatta da r, si dovrebbe avere  $V \subseteq Z^{(j)}$  e  $W \cap (R - Z^{(j)}) \neq \emptyset$ ; ma, in tal caso, si avrebbe  $S^{(j)} \not\subseteq Z^{(j)}$  (contraddizione). Poiché r è un'istanza legale di R deve soddisfare  $X \to A$ ; ma, allora, poiché  $X = Z^{(0)} \subseteq Z^{(j)}$ , A deve essere in  $Z^{(j)}$ .

## 4.5 Decomposizioni che preservano le dipendenze funzionali

Si vuole ora formalizzare il concetto di decomposizione che "preserva un insieme di dipendenze funzionali". A tal fine, cominciamo con l'introdurre i concetti di decomposizione di uno schema di relazione ed equivalenza tra due insiemi di dipendenze funzionali.

## Definizione 4.8

Sia R uno schema di relazione. Una decomposizione di R è una famiglia  $\rho = \{R_1, R_2, \dots, R_k\}$  di sottoinsiemi di R che ricopre R ( $\bigcup_{i=1}^k R_i = R$ ).

## 4.5.1 Equivalenza tra due insiemi di dipendenze funzionali

#### Definizione 4.9

Siano F e G due insiemi di dipendenze funzionali. F e G sono equivalenti, in simboli  $F \equiv G$ , se  $F^+ = G^+$ .

Verificare l'equivalenza di due insiemi F e G di dipendenze funzionali richiede dunque che venga verificata l'uguaglianza di  $F^+$  e  $G^+$ , cioè che  $F^+ \subseteq G^+$  e contemporaneamente  $F^+ \supseteq G^+$ . Come detto in precedenza, calcolare la chiusura di un insieme di dipendenze funzionali può richiedere tempo esponenziale. Il seguente lemma ci permette tuttavia di verificare l'equivalenza dei due insiemi di dipendenze funzionali in tempo polinomiale.

#### Lemma 4.2

Siano  $F \in G$  due insiemi di dipendenze funzionali.  $F \subseteq G^+ \Rightarrow F^+ \subseteq G^+$ .

**Dimostrazione.** Sia  $f \in (F^+ - F)$ . Poiché, per il <u>Teorema 4.3</u>, f è derivabile da F mediante gli assiomi di Armstrong e ogni dipendenza funzionale in F è derivabile da G mediante gli assiomi di Armstrong, f è derivabile da G mediante gli assiomi di Armstrong.

## Definizione 4.10

Sia R uno schema di relazione, F un insieme di dipendenze funzionali su R e  $\rho = \{R_1, R_2, \ldots, R_k\}$  una decomposizione di R. Diciamo che  $\rho$  preserva F se  $F \equiv \bigcup_{i=1}^k \pi_{R_i}(F)$ , dove  $\pi_{R_i}(F) = \{X \to Y \ t.c. \ X \to Y \in F^+ \land XY \subseteq R_i\}$ .

## 4.5.2 Algoritmo per verificare l'equivalenza tra F e G

Verificare se una decomposizione preserva un insieme di dipendenze funzionali F richiede, dunque, che venga verificata l'equivalenza dei due insiemi di dipendenze funzionali F e  $G = \bigcup_{i=1}^k \pi_{R_i}(F)$ ; poiché, per definizione,  $F^+ \supseteq G$ , per il Lemma 2 è sufficiente verificare che  $F \subseteq G^+$ ; ciò può essere fatto con il seguente algoritmo (la cui correttezza è una banale conseguenza del Lemma 4.1 e del Teorema 3).

## Algoritmo 4.2

```
Input: due insiemi F e G di dipendenze funzionali su R;

Output: la variabile successo che avrà valore true se F \subseteq G^+, false altrimenti;

Begin successo := true;

For each X \to Y \in F

Begin calcola\ X_G^+;

If Y \not\subseteq X_G^+ then successo = false;

End
```

END

L'Algoritmo 2 richiede che venga calcolato  $X_G^+$ ; se si volesse utilizzare a tale scopo l'Algoritmo 1 si dovrebbe prima calcolare G, ma, per la definizione di G, ciò richiederebbe il calcolo di  $F^+$  che richiede tempo esponenziale. Il seguente algoritmo permette di calcolare  $X_G^+$  a partire da F.

```
Algoritmo 4.3
INPUT: uno schema di relazione R, un insieme F di dipendenze funzionali su R, una decom-
posizione \rho = \{R_1, R_2, \dots, R_k\} di R, un sottoinsieme X di R;
OUTPUT: la chiusura di X rispetto a G = \bigcup_{j=1}^k \pi_{R_j}(F), (nella variabile Z);
Begin Z := X;
S := \emptyset;
FOR j := 1 TO k
   S := S \cup (Z \cap R_j)_F^+ \cap R_j;
WHILE S \not\subseteq Z
   BEGIN
   Z := Z \cup S:
   FOR j := 1 TO k
       S := S \cup (Z \cap R_j)_F^+ \cap R_j;
```

#### Teorema 4.5

END

Sia R uno schema di relazione, F un insieme di dipendenze funzionali su R,  $\rho = \{R_1, R_2, \dots, R_k\}$ una decomposizione di R e X un sottoinsieme di R. L'Algoritmo 4.3 calcola correttamente  $X_G^+$ , dove  $G = \bigcup_{j=1}^k \pi_{R_j}(F)$ .

**Dimostrazione.** Indichiamo con  $Z^{(0)}$  il valore iniziale di  $Z(Z^{(0)} = X)$  e con  $Z^{(i)}$ ,  $i \ge 1$ , il valore di Z dopo l'i-esima esecuzione dell'assegnazione  $Z := Z \cup S$ ; è facile vedere che  $Z^{(i)} \subseteq Z^{(i+1)}$ ,  $\forall i$ . Sia  $Z^{(f)}$  il valore di Z quando l'algoritmo termina; proveremo che:

$$A \in X_G^+ \Leftrightarrow A \in Z^{(f)}$$

**Parte solo se.** Mostreremo per induzione su i che  $Z^{(i)} \subseteq X_G^+, \forall i$ . Base dell'induzione: i=0. Poiché  $Z^{(0)}=X$  e  $X\subseteq X^+,$  si ha  $Z^{(0)}\subseteq X_G^+$ . Induzione: i>0. Per l'ipotesi induttiva  $Z^{(i-1)}\subseteq X_G^+$ . Sia A un attributo in  $Z^{(i)}-Z^{(i-1)}$ ; in tal caso deve esistere un indice j tale che  $A\in (Z^{(i-1)}\cap R_j)_F^+\cap R_j$ . Poiché  $A\in (Z^{(i-1)}\cap R_j)_F^+$  si ha  $(Z^{(i-1)} \cap R_j) \to A \in F^+$  (per il Teorema 4.3).

Poiché  $(Z^{(i-1)} \cap R_j) \to A \in F^+$ ,  $A \in R_j$  e  $Z^{(i-1)} \cap R_j \subseteq R_j$  si ha, per la definizione di G, che  $(Z^{(i-1)} \cap R_j) \to A \in G$ . Poiché per l'ipotesi induttiva si ha che  $X \to Z^{(i-1)} \in G^+$ , per la regola di decomposizione si ha anche che  $X \to (Z^{(i-1)} \cap R_j) \in G^+$  e, quindi, per l'assioma della transitività, che  $X \to A \in G^+$ , cioè  $A \in X_G^+$ . Quindi  $Z^{(i)} \subseteq X_G^+$ . **Parte se.** Mostreremo che  $X_G^+ \subseteq Z^{(f)}$  tenendo conto anche della seguente proposizione:

## Proposizione 4.5

Presi comunque due insiemi di attributi X ed Y e un insieme di dipendenze funzionali F si ha, per la definizione di chiusura di un insieme di attributi,  $X \subseteq Y \Rightarrow X_F^+ \subseteq Y_F^+$ .

Poichè  $X=Z^{(0)}\subseteq Z^{(f)}$ , dalla Proposizione 4.5 segue che  $X_G^+\subseteq (Z^{(f)})_G^+$ . Mostreremo che  $Z^{(f)}=(Z^{(f)})_G^+$  da cui segue  $X_G^+\subseteq Z^{(f)}$ . Supponiamo per assurdo che  $Z^{(f)}\neq (Z^{(f)})_G^+$ . Consideriamo l'Algoritmo 4.1 che, per evitare ambi-

guità, riscriviamo sostituendo la variabile W alla variabile Z e la variabile U alla variabile S:

INPUT: uno schema di relazione R, un insieme F di dipendenze funzionali su R, un sottoinsieme  $X \operatorname{di} R$ .

OUTPUT:  $X_F^+$  nella variabile W

```
\begin{aligned} & \text{Begin} \\ & W := X; \\ & U := \{A \ t.c. \ Y \to V \in F \land A \in V \land Y \subseteq W\}; \\ & \text{while} \ U \not\subseteq W \\ & \text{Begin} \\ & W := W \cup U; \\ & U := \{A \ t.c. \ Y \to V \in F \land A \in V \land Y \subseteq W\}; \\ & \text{end} \\ & \text{end} \end{aligned}
```

Se eseguiamo tale algoritmo fornendo in input l'insieme di attributi  $Z^{(f)}$  e l'insieme di dipendenze funzionali G, al termine la variabile W conterrà  $(Z^{(f)})_G^+$ . Se, come abbiamo supposto per assurdo,  $Z^{(f)} \neq (Z^{(f)})_G^+$ , deve esistere un attributo B che appartiene a  $U^{(0)}$  e non appartiene a  $W^{(0)} = Z^{(f)}$  (altrimenti si avrebbe  $Z^{(f)} = (Z^{(f)})_G^+$ ). D'altra parte si ha:

$$U^{(0)} = \{ A \ t.c. \ Y \to V \in G \land A \in V \land Y \subseteq W^{(0)} \}$$

e quindi, per la definizione di G, deve esistere j tale che:

$$B \in \{A \ t.c. \ Y \to V \in F^+ \land A \in V \land Y \subseteq W^{(0)} \land YV \subseteq R_i\}$$

Da  $Y \subseteq W^{(0)} \wedge YV \subseteq R_i$  segue che:

$$[a] Y \subseteq W^{(0)} \cap R_j = Z^{(f)} \cap R_j$$

Inoltre dal fatto che  $Y \to V \in F^+$  segue, per il LEMMA 4.1, che  $V \subseteq Y_F^+$  e, quindi, per la [a] e per la Proposizione 4.5 si ha che  $V \subseteq (Z^{(f)} \cap R_j)_F^+$ . Infine poichè  $YV \subseteq R_j$  si ha:

$$V \subseteq (Z^{(f)} \cap R_j)_F^+ \cap R_j$$

Poiché  $B \in V$  si ha che  $B \in (Z^{(f)} \cap R_j)_F^+ \cap R_j$  e quindi  $B \in S^{(f)}$ . Poiché B non appartiene a  $Z^{(f)}$  (per l'ipotesi per assurdo),  $Z^{(f)}$  non può essere il valore finale di Z (contraddizione).

## 4.6 Decomposizioni con Join senza perdita

Come è stato ribadito nel paragrafo 4.3, se si decompone uno schema di relazione R che non è in 3NF si vuole che la decomposizione  $\{R_1, R_2, \ldots, R_k\}$  ottenuta sia tale che ogni istanza legale r di R sia ricostruibile mediante join naturale (il cui simbolo ricordiamo essere  $\bowtie$ ) da un istanza legale  $\{r_1, r_2, \ldots, r_k\}$  dello schema decomposto  $\{R_1, R_2, \ldots, R_k\}$ . Poiché per ricostruire una tupla t di r è necessario che  $t[R_i] \in R_i, \forall i \in \{1, \ldots, k\}$ , si deve avere  $r_i = \pi_{R_i}(r), \forall i \in \{1, \ldots, k\}$ .

## Definizione 4.11

Sia R uno schema di relazione. Una decomposizione  $\rho = \{R_1, R_2, \dots, R_k\}$  di R ha un join senza perdita se per ogni istanza legale r di R si ha  $r = \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \dots \bowtie \pi_{R_k}(r)$ .

## Teorema 4.6

Sia R uno schema di relazione e  $\rho = \{R_1, R_2, \dots, R_k\}$  una decomposizione di R. Per ogni istanza legale r di R, indicato con  $m_{\rho}(r) = \pi_{R_1}(r) \bowtie \pi_{R_2}(r) \bowtie \dots \bowtie \pi_{R_k}(r)$ , si ha:

- 1.  $r \subseteq m_{\rho}(r)$
- 2.  $\pi_{R_i}(m_{\rho}(r)) = \pi_{R_i}(r)$
- 3.  $m_{\rho}(m_{\rho}(r)) = m_{\rho}(r)$

#### Dimostrazione.

Prova di [1]. Sia t una tupla di r.  $\forall i \in \{1, \dots, k\}, t[R_i] \in \pi_{R_i}(r)$  e quindi  $t \in m_\rho(r)$ .

Prova di [2]. Per il punto [1] si ha  $r \subseteq m_{\rho}(r)$  e, quindi,  $\pi_{R_i}(r) \subseteq \pi_{R_i}(m_{\rho}(r))$ . E' sufficiente, pertanto, mostrare che  $\pi_{R_i}(r) \supseteq \pi_{R_i}(m_{\rho}(r))$ . Banalmente, per ogni tupla  $t \in m_{\rho}(r)$  e per ogni  $i \in \{1, \ldots, k\}$ , deve esistere una tupla  $t' \in r$  t.c.  $t[R_i] = t'[R_i]$ .

*Prova di* [3]. Per il punto [2] si ha  $\pi_{R_i}(m_{\rho}(r)) = \pi_{R_i}(r)$ . Pertanto

```
m_{\rho}(m_{\rho}(r)) = \pi_{R_1}(m_{\rho}(r)) \bowtie \ldots \bowtie \pi_{R_k}(m_{\phi}(r)) = \pi_{R_1}(r) \bowtie \ldots \bowtie \pi_{R_k}(r) = m_{\rho}(r).
```

Il seguente algoritmo permette di decidere in tempo polinomiale se una decomposizione di uno schema di relazione ha un join senza perdita.

## Algoritmo 4.4

INPUT: uno schema di relazione R, un insieme F di dipendenze funzionali su R, una decomposizione  $\rho = \{R_1, R_2, \dots, R_k\}$  di R;

Output: decide se  $\rho$  ha un join senza perdita;

#### BEGIN

Costruisci una tabella r nel modo seguente:

- r ha |R| colonne e  $|\rho|$  righe
- all'incrocio dell'i-esima riga e della j-esima colonna si metta:
  - il simbolo  $a_j$  se l'attributo  $A_j \in R_i$ ;
  - il simbolo  $b_{i,j}$  altrimenti;

```
REPEAT
```

```
FOR EACH X \to Y \in F DO IF \exists \{t_1, t_2\} \in r \ t.c. \ t_1[X] = t_2[X] \land t_1[Y] \neq t_2[Y] THEN FOR EACH A_j \in Y IF t_1[A_j] = `a_j' THEN t_2[A_j] := t_1[A_j]; ELSE t_1[A_j] := t_2[A_j];
```

UNTIL r ha una riga con tutte 'a' OR r non è cambiato; IF r ha una riga con tutte 'a' THEN  $\rho$  ha un join senza perdita; ELSE  $\rho$  non ha un join senza perdita; END

#### Teorema 4.7

Sia R uno schema di relazione, F un insieme di dipendenze funzionali su R e  $\rho = \{R_1, R_2, \dots, R_k\}$  una decomposizione di R. L'Algoritmo 4.4 decide correttamente se  $\rho$  ha un join senza perdita.

**Dimostrazione.** Occorre dimostrare che: quando l'algoritmo termina la tabella r ha una tupla con tutte 'a'  $\Leftrightarrow \rho$  ha un join senza perdita. Verrà dimostrata solo la parte "solo se" (per uno sketch della prova della parte "se" consultare il testo di Ullman).

Parte solo se. Supponiamo per assurdo  $\rho$  abbia un join senza perdita e che quando l'algoritmo termina la tabella r non abbia una tupla con tutte 'a'. La tabella r può essere interpretata come un'istanza legale di R (basta sostituire ai simboli 'a' e 'b' valori presi dai domini dei corrispondenti attributi in modo tale che ad uno stesso simbolo venga sostituito lo stesso valore) in quanto l'algoritmo termina quando non ci sono più violazioni delle dipendenze in F. Poiché nessun simbolo 'a' che compare nella tabella costruita inizialmente viene mai modificato dall'algoritmo, per ogni  $i \in \{1, \ldots k\}, \, \pi_{R_i}(r)$  contiene una tupla con tutte 'a'; pertanto  $m_{\rho}(r)$  contiene una tupla con tutte 'a' e, quindi,  $m_{\rho}(r) \neq r$  (contraddizione).

## Corollario 4.1

Sia R uno schema di relazione, F un insieme di dipendenze funzionali su R e  $\rho = \{R_1, R_2\}$  una decomposizione di R.

# 4.7 Decomposizioni in 3NF che conservano la dipendenze funzionali e hanno un join senza perdita

In questo paragrafo mostreremo che:

## Proposizione 4.6

Dato uno schema di relazione R e un insieme di dipendenze funzionali F su R esiste sempre una decomposizione  $\rho = \{R_1, R_2, \dots, R_k\}$  di R tale che:

- $\forall i, i \in \{1, \dots, k\}, R_i \text{ è in 3NF};$
- preserva F;
- $\rho$  ha un join senza perdita

e che una tale decomposizione può essere calcolata in tempo polinomiale.

A tal fine abbiamo bisogno di introdurre il concetto di copertura minimale di un insieme di dipendenze funzionali.

#### Definizione 4.12

Sia F un insieme di dipendenze funzionali. Una copertura minimale di F è un insieme G di dipendenze funzionali equivalente ad F tale che:

- 1. per ogni dipendenza funzionale in G la parte destra è un singleton, cioè è costituita da un unico attributo (ogni attributo nella parte destra è non ridondante);
- 2.  $\not\exists X \to A \in G \ t.c. \ \exists X' \subseteq X \ t.c. \ G \equiv G \{X \to A\} \cup \{X' \to A\}$  (ogni attributo nella parte sinistra è non ridondante);
- 3.  $\not\exists X \to A \in G \ t.c. \ G \equiv G \{X \to A\}$  (ogni dipendenza è non ridondante).

Per ogni insieme di dipendenze funzionali F esiste una copertura minimale che può essere ottenuta in tempo polinomiale a partire dall'insieme G equivalente ad F in cui per ogni dipendenza funzionale la parte destra è un singleton (G esiste sempre per la regola della decomposizione)

- prima sostituendo ricorsivamente ogni dipendenza funzionale  $A_1,\ldots,A_{i-1},A_i,A_{i+1},\ldots,A_n \to A$  tale che  $G\equiv G-\{A_1,\ldots,A_{i-1},A_i,A_{i+1},\ldots,A_n\to A\}\cup\{A_1,\ldots,A_{i-1},A_{i+1},\ldots,A_n\to A\}$  con la dipendenza funzionale  $\{A_1,\ldots,A_{i-1},A_{i+1},\ldots,A_n\to A\}$
- e successivamente eliminando ricorsivamente ogni dipendenza funzionale  $X \to A$  t.c.  $G \equiv G \{X \to A\}$ .

Il seguente algoritmo, dato uno schema di relazione R e un insieme di dipendenze funzionali F su R, che è una copertura minimale, permette di calcolare in tempo polinomiale una decomposizione  $\rho = \{R_1, R_2, \ldots, R_k\}$  di R tale che:

- $\forall i \in \{1, \ldots, k\}, R_i \text{ è in 3NF};$
- $\rho$  preserva F.

## Algoritmo 4.5

INPUT: uno schema di relazione R e un insieme F di dipendenze funzionali su R, che è una copertura minimale;

OUTPUT: una decomposizione  $\rho$  di R che preserva F e tale che per ogni schema di relazione in è in 3NF;

BEGIN

 $S := \emptyset;$ 

FOR EACH  $A \in R$  tale che A non è coinvolto in nessuna dipendenza funzionale in F do  $S := S \cup \{A\};$ 

```
IF S \neq \emptyset THEN R := R - S; \rho := \rho \cup \{S\}; END \text{IF esiste una dipendenza funzionale in } F \text{ che coinvolge tutti gli attributi in } R \text{ THEN } \rho := \rho \cup \{R\}; ELSE \text{FOR EACH } X \to A \in F \text{ DO } \rho := \rho \cup \{XA\} END
```

## Teorema 4.8

Sia R uno schema di relazione ed F un insieme di dipendenze funzionali su R, che è una copertura minimale. L'Algoritmo 4.5 permette di calcolare in tempo polinomiale una decomposizione  $\rho$  di R tale che:

- 1. ogni schema di relazione in  $\rho$  è in 3NF
- 2. preserva F.

#### Dimostrazione.

 $\rho$  preserva F. Sia  $G = \bigcup_{i=1}^k \pi_{R_i}(F)$ . Poiché per ogni dipendenza funzionale  $X \to A \in F$  si ha che  $XA \in \rho$ , si ha che  $G \supseteq F$  e, quindi  $G^+ \supseteq F^+$ . L'inclusione  $G^+ \subseteq F^+$  è banalmente verificata in quanto per definizione,  $G \subseteq F$ ?+.

Ogni schema di relazione in  $\rho$  è in 3NF. Se  $S \in \rho$ , ogni attributo in S fa parte della chiave e quindi, banalmente, S è in 3NF. Se  $R \in \rho$  esiste una dipendenza funzionale in F che coinvolge tutti gli attributi in R. Poiché F è una copertura minimale tale dipendenza avrà la forma  $R-A \to A$ ; poiché F è una copertura minimale, non ci può essere una dipendenza funzionale  $X \to A \in F^+$  t.c.  $X \subset R-A$  e, quindi, R-A è chiave in R. Sia  $Y \to B$  una qualsiasi dipendenza in  $F^+$ ; se B=A allora, poiché F è una copertura minimale, Y=R-A (cioè, Y è una superchiave); se  $B \ne A$  allora  $B \in R-A$  e quindi B è primo. Se  $XA \in \rho$ , poiché F è una copertura minimale, non ci può essere una dipendenza funzionale  $X' \to A \in F^+$  t.c.  $X' \subset X$  e, quindi, X è chiave in XA. Sia  $Y \to B$  una qualsiasi dipendenza in  $F^+$  tale che  $YB \subseteq XA$ ; se B=A allora, poiché F è una copertura minimale, Y=X (cioè, Y è una superchiave); se  $B \ne A$  allora  $B \in X$  e quindi B è primo.

## Teorema 4.9

Sia R uno schema di relazione, F un insieme di dipendenze funzionali su R, che è una copertura minimale e  $\rho$  la decomposizione di R prodotta dall'Algoritmo 4.5. La decomposizione  $\sigma = \rho \cup \{K\}$ , dove K è una chiave per R, è tale che:

- 1. ogni schema di relazione in  $\sigma$  è in 3NF
- 2.  $\sigma$  preserva F
- 3.  $\sigma$  ha un join senza perdita.

## Dimostrazione.

σ preserva F. Sia  $σ = \{R_1, R_2, \ldots, R_k, R_{k+1}\}$  dove  $ρ = \{R_1, R_2, \ldots, R_k\}$  è la decomposizione ottenuta mediante l'Algoritmo 4.5 e  $R_{k+1} = K$ . Sia  $G' = \bigcup_{i=1}^{k+1} \{X \to Y \in F^+ \ t.c. \ XY \in R_i\}$ . Poiché per il Teorema 4.8  $F \equiv G$ , dove  $G = \bigcup_{i=1}^k \{X \to Y \in F^+ \ t.c. \ XY \in R_i\}$ , è sufficiente dimostrare che  $G \equiv G'$ , cioè, per il LEMMA 2, che  $G \subseteq (G')^+$  e  $G' \subseteq G^+$ . Infatti,  $G \subseteq G'$  e quindi  $G \subseteq (G')^+$ . Inoltre, per definizione,  $G' \subseteq F^+$ ; poiché  $F^+ = G^+$ , si ha che  $G' \subseteq G^+$ . Ogni schema di relazione in σ è in 3NF. Poiché  $σ = ρ \cup \{K\}$ , è sufficiente verificare che lo schema di relazione K è in 3NF. Mostriamo che K è chiave per lo schema K. Supponiamo per assurdo che K non sia chiave per lo schema K; allora esiste un sottoinsieme proprio  $K' \subseteq K$  tale che  $K' \to K \in F^+$ ; poiché K è chiave per lo schema R,  $K \to R \in F^+$ ; pertanto per transitività  $K' \to R \in F^+$ , che contraddice il fatto che K è chiave per lo schema R. Pertanto, è chiave per lo schema K e quindi per ogni dipendenza funzionale  $K \to K \in K^+$  con  $K \to K \to K \in K$  è primo.  $K \to K \to K \to K \to K$  e primo.

a Z dall'Algoritmo 4.1 quando calcola  $K^+$  sia  $A_1, A_2, \ldots, A_n$ , e supponiamo che per ogni  $i \in \{1, \ldots, n\}$ , l'attributo  $A_i$  venga aggiunto a Z a causa della presenza in F della dipendenza  $Y_i \to A_i$  dove

$$Y_i \to Z^{(i-1)} = KA_1A_2 \dots A_{i-1} \subseteq K^+.$$

Per dimostrare che  $\rho$  ha un join senza perdita mostreremo che quando l'Algoritmo 4.4 è applicato a  $\rho$  viene prodotta una tabella che ha una riga con tutte 'a'. Senza perdita di generalità, supponiamo che l'Algoritmo 4.4 esamini le dipendenze funzionali  $Y_1 \to A_1, Y_2 \to A_2, \dots, Y_n \to A_n$  in questo ordine. Dimostreremo per induzione su i che dopo che è stata considerata la dipendenza funzionale  $Y_i \to A_i$  nella riga che corrisponde allo schema di relazione K c'è una 'a' in ogni colonna j con i < i.

Base dell'induzione: i=1. Poiché  $Y_1 \subseteq Z^{(0)} = K$ , sia nella riga che corrisponde allo schema di relazione  $Y_1A_1$  che in quella che corrisponde allo schema di relazione K ci sono tutte 'a' in corrispondenza agli attributi in  $Y_1$ ; inoltre nella riga che corrisponde allo schema di relazione  $Y_1A_1$  c'è una 'a' in corrispondenza ad  $A_1$ . Pertanto l'Algoritmo 4.4 pone una 'a' in corrispondenza ad  $A_1$  nella riga che corrisponde allo schema di relazione K.

Induzione: i > 1. Per l'ipotesi induttiva, nella riga che corrisponde allo schema di relazione K c'è una 'a' in corrispondenza ad ogni attributo  $A_j$  con  $j \leq i-1$ . Poiché  $Y_i \subseteq KA_1A_2...A_{i-1}$ , sia nella riga che corrisponde allo schema di relazione  $Y_iA_i$  che in quella che corrisponde allo schema di relazione K ci sono tutte 'a' in corrispondenza agli attributi in  $Y_i$ ; inoltre nella riga che corrisponde allo schema di relazione  $Y_iA_i$  c'è una 'a' in corrispondenza ad  $A_i$ . Pertanto l'Algoritmo 4.4 pone una 'a' in corrispondenza ad  $A_i$  nella riga che corrisponde allo schema di relazione K.

## 4.8 La forma normale di Boyce-Codd

Successivamente alla terza forma normale sono state definite altre forme normali per gli schemi di relazione, alcune delle quali sono basate su vincoli (dipendenze multivalore e dipendenze di join) più generali delle dipendenze funzionali. Una forma normale che ancora si basa sul concetto di dipendenza funzionale è la cosidetta forma normale di Boyce-Codd.

## Definizione 4.13

Siano R uno schema di relazione e F un insieme di dipendenze funzionali su R. R è in forma normale di Boyce-Codd se per ogni dipendenza funzionale  $X \to A \in F^+$  tale che  $A \notin X$  si ha che X è una superchiave.

Come è evidente dalla definizione, la forma normale di Boyce-Codd è più restrittiva della terza forma normale: ogni schema di relazione in forma normale di Boyce-Codd è in terza forma normale, ma non è vero il viceversa. Infatti, consideriamo il seguente schema di relazione,

$$Orario\_lezioni = \{Aula, Giorno, Ora, Corso\}$$

su cui sono definite le seguenti dipendenze funzionali

 $Aula \rightarrow Giorno, Ora \rightarrow Corso$  (in una certa aula in un certo giorno ad una certa ora viene tenuto un solo corso)

 $Corso \rightarrow Aula$  (un corso viene tenuto sempre nella stessa aula).

Poiché la chiave di  $Orario\_lezioni$  è  $\{Aula\ Giorno\ Ora\}$ , nella dipendenza funzionale  $Corso \rightarrow Aula$  la parte sinistra non è una superchiave e, quindi, lo schema di relazione  $Orario\_lezioni$  non è in forma normale di Boyce-Codd pur essendo in terza forma normale. In uno schema che non è in forma normale di Boyce-Codd si presenta ancora il problema della ridondanza nella rappresentazione dei dati (ad esempio in  $Orario\_lezioni$  il fatto che un corso si tiene in una certa aula è ripetuto per ogni ora in cui il corso viene tenuto). Sorge quindi il problema di capire se per la forma normale di Boyce-Codd valgono risultati analoghi a quelli visti nei paragrafi precedenti per la terza forma normale, vale a dire se è valida la seguente affermazione:

"Dato uno schema di relazione R e un insieme di dipendenze funzionali F su R esiste sempre una decomposizione  $\rho = \{R_1, R_2, \dots, R_k\}$  di R tale che:

•  $\forall i \in \{1, \dots, n\}, R_i$  è in forma normale di Boyce-Codd

- $\rho$  preserva F
- ha un join senza perdita"

La risposta a questa domanda è negativa. Infatti, è evidente che qualsiasi decomposizione di  $Orario\_lezioni$  che non contenga lo schema di relazione  $\{Aula\ Giorno\ Ora\ Corso\}$ , non permette di rappresentare la dipendenza funzionale  $\{Aula\ Giorno\ Ora\} \to Corso$ . Tuttavia è possibile dimostrare che dato uno schema di relazione R e un insieme di dipendenze funzionali F su R esiste sempre una decomposizione  $\rho = \{R_1, R_2, \ldots, R_k\}$  di R tale che:

- $\forall i \in \{1, \dots k\}, R_i$ è in forma normale di Boyce-Codd
- $\rho$ ha un join senza perdita

e che esiste un algoritmo che produce una tale decomposizione in tempo polinomiale. Tale algoritmo fornirebbe nel caso dell'esempio esaminato la decomposizione:  $\{R_1 = Aula\ Corso, R_2 = Giorno\ Ora\ Corso\}$ .