# Standardisierte kompetenzorientierte schriftliche Reifeprüfung

**AHS** 

16. Jänner 2018

# Mathematik

Teil-1-Aufgaben

Korrekturheft



## Anzahl der Personen in einem Autobus

## Lösungserwartung:

| $M+1=2\cdot F$ | $\boxtimes$ |
|----------------|-------------|
|                |             |
|                |             |
|                |             |
|                |             |

## Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn ausschließlich die laut Lösungserwartung richtige Gleichung angekreuzt ist.

## Fahrzeit von Zügen

### Lösungserwartung:

Mögliche Gleichung:

$$100 \cdot t + 150 \cdot (t - 0.5) = 124$$
  
 $t = 0.796 \implies t \approx 0.8 \text{ h}$ 

### Lösungsschlüssel:

Ein Punkt für eine korrekte Gleichung und die richtige Lösung. Äquivalente Gleichungen sind als richtig zu werten.

Toleranzintervall: [0,7 h; 0,8 h]

## Lösungen einer quadratischen Gleichung

## Lösungserwartung:

| ①                 |             |
|-------------------|-------------|
|                   |             |
| a > 0 und $c < 0$ | $\boxtimes$ |
|                   |             |

| 2                                 |          |
|-----------------------------------|----------|
| zwei verschiedene reelle Lösungen | $\times$ |
|                                   |          |
|                                   |          |

## Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn für jede der beiden Lücken ausschließlich der laut Lösungserwartung richtige Satzteil angekreuzt ist.

## Orthogonale Vektoren

## Lösungserwartung:

Mögliche Vorgehensweise:

$$\overrightarrow{d} \cdot \overrightarrow{c} = 0 \implies (2 - x) - 6 = 0 \implies x = -4$$

### Lösungsschlüssel:

Ein Punkt für die richtige Lösung.

## Gefälle einer Regenrinne

Lösungserwartung:

 $h = l \cdot \sin(\alpha)$ 

## Lösungsschlüssel:

Ein Punkt für eine korrekte Formel. Äquivalente Formeln sind als richtig zu werten.

## Winkel im Einheitskreis

## Lösungserwartung:



## Lösungsschlüssel:

Ein Punkt für eine korrekte Ergänzung des Winkels  $\beta$ . Toleranzintervall: [140°; 146°]

## Stefan-Boltzmann-Gesetz

### Lösungserwartung:

| ①                           |             |
|-----------------------------|-------------|
|                             |             |
| der Oberflächentemperatur T | $\boxtimes$ |
|                             |             |

| 2              |             |
|----------------|-------------|
|                |             |
| Potenzfunktion | $\boxtimes$ |
|                |             |

## Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn für jede der beiden Lücken ausschließlich der laut Lösungserwartung richtige Satzteil angekreuzt ist.

## Schnittpunkte

### Lösungserwartung:

Mögliche Vorgehensweise:

$$x^{2} - 4 \cdot x - 2 = x - 6$$
  
 $x^{2} - 5 \cdot x + 4 = 0 \implies a = -5, b = 4$ 

## Lösungsschlüssel:

Ein Punkt für die Angabe der beiden richtigen Werte.

## Steigung einer linearen Funktion

## Lösungserwartung:

$$k = -\frac{b}{a}$$

### Lösungsschlüssel:

Ein Punkt für die richtige Lösung. Andere Schreibweisen des Ergebnisses sind ebenfalls als richtig zu werten.

# Änderungsprozess

| Lösungserv | vartung:                                                      |             |
|------------|---------------------------------------------------------------|-------------|
|            |                                                               |             |
|            |                                                               |             |
|            |                                                               |             |
|            |                                                               |             |
|            |                                                               |             |
|            | Pro Zeiteinheit nimmt die Temperatur eines Körpers um 2 % ab. | $\boxtimes$ |

### Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn ausschließlich der laut Lösungserwartung richtige Änderungsprozess angekreuzt ist.

## Halbwertszeiten

### Lösungserwartung:



| Α | 1 Tag            |
|---|------------------|
| В | 2 Tage           |
| С | 3 Tage           |
| D | 5 Tage           |
| Е | 10 Tage          |
| F | mehr als 10 Tage |

#### Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn jedem der vier Graphen ausschließlich der laut Lösungserwartung richtige Buchstabe zugeordnet ist.

## Parameter einer Sinusfunktion

### Lösungserwartung:

a = 2b = 1,5

## Lösungsschlüssel:

Ein Punkt für die Angabe der korrekten Werte beider Parameter.

Toleranzintervall für a: [1,9; 2,1] Toleranzintervall für b: [1,4; 1,6]

## Radioaktiver Zerfall

## Lösungserwartung:

| $\frac{m(3) - m(0)}{m(0)}$ | X |
|----------------------------|---|
|                            |   |
|                            |   |

## Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn ausschließlich der laut Lösungserwartung richtige Ausdruck angekreuzt ist.

## Ableitung

## Lösungserwartung:

| $f(x)=e^{k\cdot x}$ | $\boxtimes$ |
|---------------------|-------------|
|                     |             |

## Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn ausschließlich die laut Lösungserwartung richtige Funktionsgleichung angekreuzt ist.

## Flächeninhalt

### Lösungserwartung:

Mögliche Vorgehensweise:

$$F(4) - F(0) = 7 - 1 = 6$$

Flächeninhalt dieses Flächenstücks: 6 FE

### Lösungsschlüssel:

Ein Punkt für die richtige Lösung, wobei die Maßeinheit "FE" nicht angeführt sein muss. Toleranzintervall: [5,8; 6,2]

### Wendestelle

#### Lösungserwartung:

Die Funktion f hat an der Stelle x = 6 keine Wendestelle.

## Mögliche Begründung:

$$f''(x) = 24 \cdot x - 4$$

 $f''(6) = 140 \neq 0 \Rightarrow \text{Die Funktion } f \text{ kann an der Stelle } x = 6 \text{ keine Wendestelle haben.}$ 

#### Lösungsschlüssel:

Ein Punkt für die Angabe, dass die Funktion f an der Stelle x = 6 keine Wendestelle hat, und eine korrekte Begründung.

## Bestimmtes Integral

Lösungserwartung:

| $\int_{a}^{c} f(x) dx$ | $\boxtimes$ |
|------------------------|-------------|
|                        |             |
|                        |             |
| $\int_a^b f(x) dx$     | $\boxtimes$ |
|                        |             |

### Lösungsschlüssel:

Ein Punkt ist genau dann zu geben, wenn ausschließlich die beiden laut Lösungserwartung richtigen bestimmten Integrale angekreuzt sind.

## Schadstoffausstoß

### Lösungserwartung:

Der Ausdruck gibt den gesamten Schadstoffausstoß (in Gramm) von 7 Uhr bis 15 Uhr an.

### Lösungsschlüssel:

Ein Punkt für eine (sinngemäß) korrekte Deutung, wobei die Einheit "Gramm" nicht angeführt sein muss.

## Statistische Darstellungen

## Lösungserwartung:



## Lösungsschlüssel:

Ein Punkt für ein korrekt dargestelltes Kastenschaubild.

## Arithmetisches Mittel

### Lösungserwartung:

Mögliche Berechnung:

$$25 \cdot 12,6 - 24 \cdot 12,5 = 15$$

Die als außerordentlich geführte Schülerin hat 15 Punkte erreicht.

## Lösungsschlüssel:

Ein Punkt für die richtige Lösung.

## Prüfung

### Lösungserwartung:

Der Ausdruck beschreibt die Wahrscheinlichkeit, dass der zufällig ausgewählte Prüfungsakt ein positives Prüfungsergebnis aufweist.

## Lösungsschlüssel:

Ein Punkt für eine (sinngemäß) korrekte Deutung.

## Wahrscheinlichkeit

## Lösungserwartung:

$$P(X \ge 2) = 1 - (P(X = 0) + P(X = 1)) = 0.27$$

### Lösungsschlüssel:

Ein Punkt für die richtige Lösung. Andere Schreibweisen des Ergebnisses sind ebenfalls als richtig zu werten.

#### Rosenstöcke

#### Lösungserwartung:

Der Vergleich trifft zu.

#### Mögliche Begründung:

Erwartungswert:  $\mu$  = 32, Standardabweichung:  $\sigma$  = 4

unter Einbeziehung der Wahrscheinlichkeiten für  $\sigma$ -Umgebungen (bei Approximation durch die normalverteilte Zufallsvariable Y):

$$P(28 \le X \le 36) \approx P(\mu - \sigma \le Y \le \mu + \sigma) \approx 0,683$$
  
 $P(X > 32) \approx P(Y > \mu) = 0,5$   $\Rightarrow P(28 \le X \le 36) > P(X > 32)$ 

#### Weitere Begründungsvarianten:

n ... Anzahl der Rosenstöcke

p... Wahrscheinlichkeit für einen gelbblühenden Rosenstock

$$\mu = 32 = n \cdot p, \ \sigma^2 = 16 = n \cdot p \cdot (1 - p) \Rightarrow n = 64, p = 0.5$$

• mittels Binomialverteilung:

$$P(28 \le X \le 36) \approx 0.7396$$
  
 $P(X > 32) \approx 0.4503$ 

$$\Rightarrow P(28 \le X \le 36) > P(X > 32)$$

• mittels Approximation mit Stetigkeitskorrektur durch die normalverteilte Zufallsvariable Y:

$$P(28 \le X \le 36) \approx P(27,5 \le Y \le 36,5) \approx 0,7394$$
  
 $P(X > 32) \approx P(Y > 32,5) \approx 0,4503 \Rightarrow P(28 \le X \le 36) > P(X > 32)$ 

• mittels Approximation ohne Stetigkeitskorrektur durch die normalverteilte Zufallsvariable Y:

$$P(28 \le X \le 36) \approx P(28 \le Y \le 36) \approx 0,6827$$
  
 $P(X > 32) \approx P(Y > 32) = 0,5$   $\Rightarrow P(28 \le X \le 36) > P(X > 32)$ 

#### Lösungsschlüssel:

Ein Punkt für die Angabe, dass der Vergleich zutrifft, und eine korrekte Begründung.

#### Sicherheit eines Konfidenzintervalls

#### Lösungserwartung:

Mögliche Vorgehensweise:

$$n = 1000$$
,  $h = \frac{30}{1000} = 0.03$  Intervallbreite des Konfidenzintervalls = 0.02

aus 
$$z \cdot \sqrt{\frac{h \cdot (1-h)}{n}} = 0.01$$
 folgt:  $z \approx 1.85$  mit  $\phi(1.85) \approx 0.9678$ 

$$\Rightarrow \quad \gamma = 2 \cdot \phi(1.85) - 1 \approx 0.9356$$

Somit liegt die Sicherheit dieses Konfidenzintervalls bei ca. 93,56 %.

#### Lösungsschlüssel:

Ein Punkt für die richtige Lösung. Andere Schreibweisen der Lösung sind ebenfalls als richtig zu werten.

Toleranzintervall: [93 %; 94 %]

Die Aufgabe ist auch dann als richtig gelöst zu werten, wenn bei korrektem Ansatz das Ergebnis aufgrund eines Rechenfehlers nicht richtig ist.