静电场中的导体与电介质(二)

一、选择题

- 1. 平行板电容器两极板(看作很大的平板)间的相互作用力F与两极板间的电压U的关系 是()
- (A) $F \propto U$;
- (B) $F \propto \frac{1}{U}$; (C) $F \propto \frac{1}{U^2}$;
- 2. 将平行板电容器的板间距缩小一倍,并将极板面积扩大一倍,请问电容 C
- (A) 不变 (B) 变为原来的 2 倍 (C) 变为原来的 4 倍
- (D) 变为原来的一半
- 三块互相平行的导体板,相互之间的距离 d1 和 d2 比板面积线度小得多,外 面两板用导线连接。中间板上带电,设左右两面上电荷面密度分别为 σ1 和 σ2, 如图所示。则比值为 $\sigma1/\sigma2$ ()

- 4. 将一带电量为Q的平行板电容器的板间距缩小一倍,则(
- (A)电容 C 加倍, 电场能量减半:
- (B)电容 C 加倍, 电场能量不变:
- (C) 电容 C 不变, 电场能量减半;
- (D) 电容 C 不变, 电场能量不变;
- 5. 一平行板电容器在连接电源的条件下将板间距缩小一倍,则()
- (A)电场能量减半,极板带电量减半;
- (B)电场能量不变,极板带电量不变;
- (C)电场能量加倍,极板带电量加倍;
- (D)电场能量加倍,极板带电量不变;

二、填空题

1. 将 2 个电容为 10 μF 的电容器串联后, 其等效电容为 ; 如果将其并联, 则 等效电容为。

2.	设球形电容器的两极板与	电源相连,	若将两极板间的间距减半	(内球半径	R_1 不变	,球
壳内	月径由 $1.2 R_1$ 变成 $1.1 R_1$),	则此时电容	紧 器的电容与原电容之比为	I	,	此时
电容	· · · · · · · · · · · · · ·	比为	0			

3.	设圆柱形电容器极板上的电荷	 方量保持不变,	若将两极板间的间距减半	$(内柱半径 R_1 不$
变,	外柱内径由 3 R_1 变成 2 R_1),	则此时电容器	B的电容与原电容之比为	
此时	电容器的储能与原来的能量之	上比为	0	

4.	用相对介电常数为	$\varepsilon_{\rm r}$ 的电介质充满	i带电量为	Q 的空气平	行板电容器	,此过程中电容器
的書	争电能	(变大/减小),	末状态与	初状态电容之	之比为 -	

5. 用导线将空气中相距无穷远的两个半径均为 R 的全同金属球壳连接起来,假设连接前一个球壳带电量为 Q,另一个球壳不带电,此过程中静电能的变化量为_____。

三、计算题

1. 一球形电容器由半径为 $R_{\rm A}$ 的金属球和内径为 $R_{\rm B}$ 的同心金属球壳组成,两球壳间的内部由相对介电常数为 ε_1 的各向均匀电介质填充,外部由相对介电常数为 ε_2 的各向均匀电介质填充,如下图所示,其中 $R_{\rm B}$ = $2R_{\rm A}$;, $R_{\rm C}$ = $1.5R_{\rm A}$; 求此球形电容器的电容 C 。

2. 球形电容器由半径为 R_A 的金属球和内径为 R_B 的同心金属球壳组成,其中金属球的外表面包覆一层相对介电常数为 ε_1 的各向均匀电介质,电介质层外半径为 R_C ,如下图所示。当此球形电容器的带电量为 q 时,求电容器储存的电场能量是多少。

