

16 Nov 2017 CS5234 Mini Project Yang Ruizhi, Chen Shaozhuang, Li Yuanda

Agenda

- 1. Introduction to Dimensionality Reduction
- 2. Experiments with Dimensionality Reduction
 - a. Text
 - b. Image
- 3. Experiments with K-Means and K-NN
 - a. Text
 - b. Image
- 4. Conclusion

Motivation for Dimensionality Reduction

- Many data mining/machine learning applications deal with high dimensional data
 - o E.g. text, image, etc.
- Project high dimensional data to lower dimensional space is desirable
 - \circ R^d \rightarrow R^k, where k << d

Dimensionality Reduction Techniques

- We consider 3 DR techniques
 - Principle Component Analysis
 - o (Gaussian) Random Projection
 - Sparse Random Projection

Principle Component Analysis (PCA)

Let $X_{d \times N}$ be the original data set, which contains N data points of dimension d. PCA requires **eigenvalue decomposition** of the data covariance matrix:

$$\frac{1}{N-1}XX^T = E\Lambda E^T$$

The N k-dimensional data matrix after PCA is:

$$X_{PCA} = E_k^T X$$

Where E_k contains k eigenvectors corresponding to the k largest eigenvalues in Λ .

Time Complexity: $O(d^2N + d^3)$

(Gaussian) Random Projection

Random projection is performed by simply multiply the original data matrix by a random matrix:

$$X_{RP}=RX$$

where the random matrix R is obtained by sampling each of entry from a Gaussian distribution N(0, 1/k).

Time Complexity: O(dkN)

Sparse Random Projection

Similar to Gaussian random projection, sparse random projection is done by simply multiply the original data matrix by a random matrix:

$$X_{RP}=RX$$

where the random matrix R is obtained by sampling each of entry using:

$$r_{ij} = \sqrt{3} \cdot \begin{cases} +1, \text{ with probability 1/6} \\ 0, \text{ with probability 2/3} \\ -1, \text{ with probability 1/6} \end{cases}$$

Time Complexity: O(dkN). But sparsity can be exploited.

Johnson-Lindenstrauss Lemma (J-L Lemma)

There are various proofs and interpretations. Our way to interpret J-L Lemma:

For a given error bound ϵ and a given size of data set N, as long as k is suitably big, we can always find a random projection, such that the pairwise distance after projection is ϵ -approximation of the original pairwise distance.

In human language:

- Pairwise distance between data points is nearly preserved.
- Performance guarantee for random projection.

Summary

Random Projection (RP)	X _{RP} =RX X: original data matrix R: projection matrix, Gaussian-sampled.
Sparse Random Projection (SRP)	r_{ij} sampled from: $r_{ij} = \sqrt{3}$ w.p. % $r_{ij} = 0$ w.p. $\frac{2}{3}$ $r_{ij} = -\sqrt{3}$ w.p. %
Principle Component Analysis (PCA)	X _{PCA} =E _K ^T X X: original data matrix E _k : contains k eigenvectores

Agenda

- 1. Introduction to Dimensionality Reduction
- 2. Experiments with Dimensionality Reduction
 - a. Text
 - b. Image
- 3. Experiments with K-Means and K-NN
 - a. Text
 - b. Image
- 4. Conclusion

Experimental Settings

- Objective: Justify the ability of different dimensionality reduction methods for preserving pairwise distance.
- Datasets (high-dimensional)
 - Text Data: 20 newsgroups dataset (10⁴ dimension)
 - Image Data: Olivetti faces dataset (10³ dimension)

comp of me-windows mice	rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey	sci.crypt sci.electronics sci.med sci.space
misc.forsale	talk.politics.misc talk.politics.guns talk.politics.mideast	talk.religion.misc alt.atheism soc.religion.christian

Histogram for RP, SPR, PCA on Text Data

SRP

RP

PCA

Histogram for RP, SPR, PCA on Image Data

Agenda

- 1. Introduction to Dimensionality Reduction
- 2. Experiments with Dimensionality Reduction
 - a. Text
 - b. Image
- 3. Experiments with K-Means and K-NN
 - a. Text
 - b. Image
- 4. Conclusion

Experimental Settings

We are particularly interested in data mining/machine learning algorithms that make heavy use of **pairwise distance** among data points:

- K-nearest neighbors (classification, supervised learning)
- K-means (clustering, unsupervised learning)

Number of categories:

- Text dataset: 5 categories considered.
- Image dataset: 10 categories considered.

Performance Metrics

Training/test data division for kNN:

• Hold-out, 6: 4. Stratified sampling.

Metrics:

- K-NN:
 - o Precision, recall, f1-score
 - Higher means better.
- K-Means:
 - Homogeneity, completeness, v-measure.
 - Higher means better.

Each experiment is performed 20 times. Mean is taken for evaluation.

K-Means on Text Data

	Original Text + K-Means	RP + K-Means	SRP + K-Means	PCA + K-Means
Time	77.56s	5.6s +16.89s	2.7s + 16.92s	73s + 15.92s
Homogeneity	0.467	0.470	0.465	0.461
Completeness	0.553	0.562	0.544	0.556
V-measure	0.506	0.517	0.501	0.504

K-Means on Image Data

	Original Image + K-Means	RP + K-Means	SRP + K-Means	PCA + K-Means
Time	0.381s	0.07s + 0.181s	0.05s + 0.174s	0.02s + 0.114s
Homogeneity	0.646	0.639	0.599	0.580
Completeness	0.675	0.667	0.620	0.603
V-measure	0.660	0.653	0.609	0.591

K-NN on Text Data

	Original Image + K-NN	RP + K-NN	SRP + K-NN	PCA + K-NN
Time	122.48s	8.23s + 6.15s	3.13s + 6.17s	111.72s + 6.20s
Precision	0.84	0.82	0.81	0.82
Recall	0.79	0.80	0.80	0.74
F1-Score	0.79	0.80	0.79	0.75

K-NN on Image Data

	Original Image + K-NN	RP + K-NN	SRP + K-NN	PCA + K-NN
Time	0.381s	0.07s + 0.181s	0.05s + 0.174s	0.02s + 0.114s
Precision	0.815	0.797	0.799	0.814
Recall	0.715	0.719	0.721	0.718
F1-Score	0.714	0.714	0.714	0.713

Agenda

- 1. Introduction to Dimensionality Reduction
- 2. Experiments with Dimensionality Reduction
 - a. Text
 - b. Image
- 3. Experiments with K-Means and K-NN
 - a. Text
 - b. Image
- 4. Conclusion

Conclusion

Our results show:

- All three DR techniques perform well on our datasets and applications.
- Gaussian RP outperforms others in most of our experiments.
- PCA is inefficient on large dataset with large dimensionality.

We conclude:

• RP and SRP are good alternatives to PCA, when pairwise distance is important, dimension is big, and time complexity is a concern.

References

- [1] Johnson, W. B., & Lindenstrauss, J. (1984). Extensions of Lipschitz mappings into a Hilbert space. *Contemporary mathematics*, *26*(189-206), 1.
- [2] Achlioptas, D. (2001, May). Database-friendly random projections. In *Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems* (pp. 274-281). ACM.
- [3] Dasgupta, S., & Gupta, A. (2003). An elementary proof of a theorem of Johnson and Lindenstrauss. *Random Structures & Algorithms*, *22*(1), 60-65.