Two-Way Tables

Gaston Sanchez

Creative Commons Attribution Share-Alike 4.0 International CC BY-SA

Two-way tables, crosstables, contingency tables

Example

Suppose we observe 2 qualitative binary variables:

Gender

male, female

Condition

smoker, non-smoker

Example of crosstable 2x2

Table formed by crossing Gender and Condition

	smoker	non-smoker
male	20	35
female	15	40

Example of crosstable 2x2

Table formed by crossing Gender and Condition

		В	Bc
		smoker	non-smoker
A	male	20	35
Ac	female	15	40

note that these are absolute frequencies

Example of crosstable 2x2

Table formed by crossing Gender and Condition

		В	Bc	
		smoker	non-smoker	Total
A	male	20	35	55
Ac	female	15	40	<i>55</i>
	Total	35	75	110 grand total

note that these are absolute frequencies

Crosstable 2x2: general case

	В	B ^c	Total
Α	A and B	A and B ^c	# A
Ac	A ^c and B	A ^c and B ^c	# A ^c
Total	# B	# B ^c	# N

In order to get probabilities...

Table formed by crossing Gender and Condition

Table formed by crossing Gender and Condition

		В	Bc	
		smoker	non-smoker	Total
A	male	20/110	35/110	55/110
Ac	female	15/110	40/110	55/110
	Total	35/110	75/110	110/110 grand total

note that these are relative frequencies

Table formed by crossing Gender and Condition

		В	Bc	
		smoker	non-smoker	Total
A	male	0.1818	0.3181	0.5
Ac	female	0.1363	0.3636	0.5
	Total	0.3181	0.6818	1.0 grand total

note that these are relative frequencies

	В	B ^c	Total
Α	P(A and B)	P(A and B ^c)	P(A)
Ac	P(A ^c and B)	P(A ^c and B ^c)	P(A ^c)
Total	P(B)	$P(B^c)$	1

	В	B ^c	Total
Α	P(A and B)	P(A and B ^c)	P(A)
Ac	P(A ^c and B)	P(A ^c and B ^c)	$P(A^c)$
Total	P(B)	P(B ^c)	1
	$P(A \mid B) = P$	(A & B) / P(B)	

	В	B ^c	Total		
Α	P(A and B)	P(A and B ^c)	P(A)		
Ac	P(A ^c and B)	P(A ^c and B ^c)	$P(A^c)$		
Total	P(B)	P(B ^c)	1		
$P(A^c \mid B) = P(A^c \& B) / P(B)$					
	$\Gamma(A \mid D) - I$	$P(A \otimes D) / P(D)$			

	В	B ^c	Total		
Α	P(A and B)	P(A and B ^c)	P(A)		
Ac	P(A ^c and B)	P(A ^c and B ^c)	$P(A^c)$		
Total	P(B)	$P(B^c)$	1		
$P(A \mid B^c) = P(A \& B^c) / P(B^c)$					

	В	B ^c	Total
Α	P(A and B)	P(A and B ^c)	P(A)
Ac	P(A ^c and B)	P(A ^c and B ^c)	P(A ^c)
Total	P(B)	$P(B^c)$	1
	$P(A^c \mid B^c) = P$	P(Ac & Bc) / P(Bc)

General Crosstable pxq

Crosstables pxq

We observe 2 qualitative

variables (nominal or ordinal)

$$A_1, A_2, A_3, ..., A_p$$

Crosstable *p*x*q*: general case

	B ₁	B_2	 B_q	Total
A ₁	A ₁ and B ₁	A_1 and B_2	 A_1 and B_q	# A ₁
A_2	A ₂ and B ₁	A_2 and B_2	 A_2 and B_q	# A ₂
A_3	A_3 and B_1	A_3 and B_2	 A_3 and B_q	# A ₃
A_p	A_p and B_1	A_{p} and B_{2}	 A_{p} and B_{q}	# A _p
Total	# B ₁	# B ₂	 $\# B_q$	# N

Example

Crosstable for current enrollment in public and private schools by level of education

	Public	Private	Total
Elementary	20%	30%	50%
High School	15%	20%	35%
College	10%	5%	15%
Total	45%	55%	100%

Probability that a student randomly selected is enrolled in Elementary and High School?

P(enrolled in Elementary and HS) = ?

	Public	Private	Total
Elementary	20%	30%	50%
High School	15%	20%	35%
College	10%	5%	15%
Total	45%	55%	100%

Independent?
Mutually Exclusive?
None of the above?

P(enrolled in Elementary and HS) = ?

	Public	Private	Total
Elementary	20%	30%	50%
High School	15%	20%	35%
College	10%	5%	15%
Total	45%	55%	100%

mutually exclusive events

Keep in mind ...

Mut. Exclusive events

Independent events

typically has to do with outcomes of same experiment

typically has to do with outcomes of different experiments