Seric 3, Aufgabe 1

a)
$$\Im(a) = 2 \cdot \int_{1}^{a} x \cdot \ln(x^{2}) \cdot dx$$

A $a = e^{-\frac{1}{2}}$

Anzohi der Statzpuntta = $\frac{1}{4} = 2$ $\frac{1}{4} = 1$ $\frac{1}{4} = 2$

Polynom Lisustens 3. Gradus

Pol(x) = $\frac{x}{2}$ $Li(x)yi$
 $x = a$
 $y = \Im(a)$

Pol(x) - $\frac{x}{2}$ $Li(x)yi$
 $x = a$
 $y = \Im(a)$

Pol(x) - $\frac{x}{2}$ $Li(x)yi$
 $x = a$
 $y = \Im(a)$
 $x = a$
 $x = a$

= 1 - 1

$$I_{1}(e) = \frac{(x-y_{0})(x-x_{2})(x-x_{3})}{(x_{1}-x_{0})(x_{1}-x_{2})(x_{1}-x_{3})} = \frac{(e-e+\frac{1}{4})(e-e+\frac{1}{4})(e-e-\frac{1}{4})}{(e-\frac{1}{4}-e+\frac{1}{2})(e-\frac{1}{4}-e-\frac{1}{4})(e-e-\frac{1}{4})} = \frac{(e-\frac{1}{4}-e+\frac{1}{2})(e-\frac{1}{4}-e-\frac{1}{4})(e-e-\frac{1}{4})}{(e-\frac{1}{4}-e+\frac{1}{2})(e-\frac{1}{4}-e-\frac{1}{4})(e-e+\frac{1}{4})(e-e+\frac{1}{4})(e-e+\frac{1}{4})(e-e+\frac{1}{4})(e-e+\frac{1}{4})(e-e+\frac{1}{4})(e+\frac{1}{4}-e-\frac{1}{4})} = \frac{(e-e+\frac{1}{4})(e-e+\frac{1}{4})(e+\frac{1}{4}-e-\frac{1}{4})}{(e+\frac{1}{4}-e+\frac{1}{4})(e-e+\frac{1$$

b) Exayter belti

berechnet mithilte von Matlab s. smipt "dubelbog_nuredeld_go_Senie_g_Aufgabe16"

2. In (x'). dx = 8.38905610

 $error_{255} | P_3(e) - \int_{1}^{e} 2(e) | = | 8.38945 - 8.38305610 |$ = 0.0003339

() Siehe Script => Powberg schneidet bener ab

(Berechnung siehe script)

enortelativ =

Autasor	- 4					
Autgabe Vauc	10	11	2 866	3	4	5
m	0	1250	2500	3750	5000	10000
A-Druch	1013	? 872	747	638	540	226
	×。		× ₁		×z	×3
. =						

$$Pij = \frac{(x, -x) \cdot p_{i-1}, j-1 + (x-x_{i-j}) \cdot p_{i}, j-1}{}$$

×i -×i-j

Polynom howstons 3. Grades.

gesuchte matrix

$$\times$$
 Y
 \times Y
 \times

$$P_{11} = \frac{(x_1 - x) \cdot p_{00} + (x - x_0) \cdot p_{10}}{x_1 - x_0}$$

$$= \frac{(x_2 - x) \cdot p_{10} + (x - x_1) \cdot p_{20}}{x_2 - x_1}$$

$$= \frac{(x_3 - x) \cdot p_{10} + (x - x_2) \cdot p_{30}}{x_3 - x_2}$$

$$= \frac{(x_2 - x) \cdot p_{11} + (x - x_0) \cdot p_{21}}{x_3 - x_2}$$

$$P_{32} = \frac{(x_3 - x) \cdot p_{21} + (x - x_1) \cdot p_{31}}{x_3 - x_1}$$

$$P_{55} = \frac{(x_3 - x) \cdot p_{22} + (x - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{55} = \frac{(x_3 - x) \cdot p_{22} + (x - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{55} = \frac{(x_3 - x) \cdot p_{22} + (x - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{55} = \frac{(x_3 - x) \cdot p_{22} + (x - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{55} = \frac{(x_3 - x) \cdot p_{22} + (x - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{55} = \frac{(x_3 - x) \cdot p_{22} + (x - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{51} = \frac{(x_3 - x) \cdot p_{22} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{51} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{51} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{52} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{53} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{53} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{53} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{53} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{53} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{53} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{54} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{55} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{51} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{51} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{51} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{51} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{51} = \frac{(x_3 - x) \cdot p_{52} + (x_3 - x_2) \cdot p_{52}}{x_3 - x_2}$$

$$P_{51} = \frac{(x_3 - x) \cdot p_{52}}{x_3 - x_2}$$

$$P_{51} = \frac{(x_3 - x) \cdot p_{52}}{x_3 - x_2}$$

$$P_{51} = \frac{(x_3 - x) \cdot p_{52}}{x_3 - x_2}$$

$$P_{51} = \frac{(x_3 - x) \cdot p_{52}}{x_3 - x_2}$$

$$P_{52} = \frac{(x_3 - x) \cdot p_{52}}{x_3 - x_2}$$

$$P_{53} = \frac{(x_3 - x) \cdot p_{52}}{x_3 - x_2}$$

$$P_{54} = \frac{(x_3 - x) \cdot p_{52}}{x_3 - x_2}$$

$$P_{55} = \frac{(x_3 - x) \cdot p_{52}}{x_3 - x_2}$$

$$P_{55} = \frac{(x_3 - x) \cdot p_{52}}{x_3 - x_2}$$

$$P_{55} = \frac{(x_3 - x) \cdot p_{52}}{x_3 - x_2}$$

$$P_{55} = \frac$$

$$\rho_{77} = \frac{(5000 - 31750) \cdot 614 + (31750 - 0) \cdot 644}{5000 - 0} = 636.5\% 637$$

$$P_{32} = \frac{(10000 - 31750) \cdot 644 + (31750 - 2500) \cdot 613}{10000 - 21500} = 639.833... = 640$$

$$\rho_{53} = \frac{(10'000 - 3'750) \cdot 644637 + (3'750 - 0) \cdot 640}{10'000 - 0} = 638.125 c 638$$