Link Prediction of an Academic Knowledge Graph

Mengdie Zhou, Shanghai Jiao Tong University

Background

Terminologies

Head - an anonymous id unique to an entity, which is the head of a triplet.

Relation - a string unique to a relation, which is the relation of a triplet.

Tail - an anonymous id unique to an entity, which is the tail of a triplet.

Task

Our Approach

Translating Embedding(TransE)

Vectorize Triplet

Using vector h,r to predict new tail t'

Learning Entity and Relation Embeddings(TransR)

Vector Space: The TransR regard that vector of relation lies on different space of that of entity.

Mapping Metrix: Metrix M_r transfers the vector in entity space to relation space.

Voter

Mechanism: The performance of different classifiers differs with regard to their prerequisites of data. When combined together using voter, the result can be compensated.

$$scores(e_i) = \sum_{j} r_j(e_i)$$

- e_i is expected entity
- r_i is a function that calculate the score of e_i in classifier r_i
- $r_{j}(e_{i}) = \begin{cases} 2 i & i \text{ is the rank of } e_{i} \text{ in } r_{j} \\ 0 & where } e_{i} \text{ is not in } r_{j} \end{cases}$

Experiments

Setup

Dataset: given by Kaggle, concludes:train.csv, test.csv **Evaluation**: Submissions are evaluated according to the Mean Average Precision @ 3 (MAP@3):

$$MAP@3 = rac{1}{|U|} \sum_{n=1}^{|U|} \sum_{k=1}^{min(3,n)} P(k)$$

Compared Models

Predict top 3 possible tails, given head and corresponding relation • N: the dimension of vector space.

• Margin: the distance between true triplets and corrupted triplets.

Challenges

Text Prediction: not a traditional vector that used in classifiers. **Unique Triplet:** all 3 attributes of (head,relation,tail) should be considered when predicting.

Rank of Prediction: after predicting expected tails, the rank of tails also matter in this case.

Results

Approach	Public accuracy scores			Private accuracy socres		
Margin	m=1	m=2	m=3	m=1	m=2	m=3
TransE (n=150)	0.23304	0.25853	0.28487	0.23364	0.24179	0.28208
TransE (n=200)	0.25107	0.28984	0.23909	0.25709	0.28935	0.24661
TransE (n=215)	0.24587	0.28687	0.28815	0.25298	0.28883	0.28829
TransE (n=225)	0.25684	0.28724	0.28333	0.26201	0.28802	0.29247
TransR(n=200)	0.22035	0.23453		0.23112	0.23298	
number of mixer	num=5	num=6	num=7	num=5	num=6	num=7
vote	0.40308	0.41179	0.41257	0.41431	0.41431	0.41298