Languages and Grammars

10 Jan 2018

1. Let $\Sigma = \{a,b\}$. Find a grammar that generates the language $l = \{a^nb^{n-3}|n \ge 3\}$.

Solution The set of production rules P for the grammar would be

$$P = \{S \to aaaA, A \to aAb|\lambda\}$$

where the set of non-terminals is $V = \{S, A\}$ and S is the usual start symbol.

2. Give the description of the language generated by $S \to aSb|bSa|a$.

$$L = \{waw' \mid w, w' \in \{a, b\}^* \text{ and } w[i] \neq w'[|w'| - i + 1] \text{ for any i} \}$$

3. Let $\Sigma=\{a,b\}$. Find a grammar that generates the language $L=\{w|n_a(w)=2n_b(w)\}.$

Solution

The production rules for the grammar would be

$$S \rightarrow AaAaAbA|AaAbAaA|AbAaAaA|$$

$$A \rightarrow AaAaAbA|AaAbAaA|AbAaA|AbAaAaA|\lambda$$

where the set of non-terminals is $V = \{S, A\}$ and S is the usual start symbol.

4. Show that the grammars $S \to SS|aSb|bSa|a$ and $S \to aSb|bSa|\lambda$ are not equivalent.

Solution Let us call the grammars G_1 and G_2 . Note that every string $\sigma \in L(G_2)$ is of length 2n for some n, i.e. all strings in $L(G_2)$ are of even length. This is because a derivation of any length k using G_2 generates strings of length 2k-2 (the last step in the derivation will apply $S \to \lambda$). However G_1 can generate odd length strings, e.g. $S \to aSb \to aab$.