University of California, Merced

ENGR 057 Statics and Dynamics: Assignment #5

Summer - 2022

Due: August 4, 2022

Problem 1. Two particles *A* and *B* start from rest at the origin s = 0 and move along a straight line such that $a_A = (6t - 3)$ ft/s² and $a_B = (12t^2 - 8)$ ft/s², where *t* is in seconds. Determine the distance between them when t = 4 s and the total distance each has traveled in t = 4 s.

Problem 2. The v–t graph for the motion of a car as it moves along a straight road is shown. Draw the s–t and a–t graphs. Also determine the average speed and the distance traveled for the 15-s time interval. When t = 0, s = 0.

Problem 3. The ball at A is kicked with a speed $v_A = 80$ ft/s and at an angle $\theta_A = 30^\circ$. Determine the point (x, -y) where it strikes the ground. Assume the ground has the shape of a parabola as shown.

Problem 4. The velocity of a particle is given by $v = \{16t^2\hat{\mathbf{i}} + 4t^3\hat{\mathbf{j}} + (5t+2)\hat{\mathbf{k}}\}$, where t is in seconds. If the particle is at the origin when t = 0, determine the magnitude of the particle's acceleration when t = 2s. Also, what is the x, y, z coordinate position of the particle at this instant?

Problem 5. The van travels over the hill described by $y = (1.5(10^3)x^2 + 15)$ ft. If it has a constant speed of 75 ft/s, determine the x and y components of the van's velocity and acceleration when x = 50 ft.

Problem 6. The car travels around the portion of a circular track having a radius of r = 500 ft such that when it is at point A it has a velocity of 2 ft/s, which is increasing at the rate of $\dot{v} = (0.002t)$ ft/s2, where t is in seconds. Determine the magnitudes of its velocity and acceleration when it has traveled three-fourths the way around the track.

Problem 7. The car travels around the circular track with a constant speed of 20 m/s. Determine the car's radial and transverse components of velocity and acceleration at the instant $\theta = \pi/4$ rad.

Problem 8. If the slotted arm AB rotates counterclockwise with a constant angular velocity of $\dot{\theta} = 2$ rad/s, determine the magnitudes of the velocity and acceleration of peg P at $\theta = 30^{\circ}$. The peg is constrained to move in the slots of the fixed bar CD and rotating bar AB.

Problem 9. If the end *A* of the cable is moving at $v_A = 3$ m>s, determine the speed of block B. (Note: there are two cords in the system).

