libspatialSEIR: Model, Algorithm, and Implementation Summer 2014

Grant Brown

1 The SEIR Compartmental Epidemic Model

1.1 Introduction

Compartmental epidemic modeling is a flexible and extensible method of describing epidemic behavior. Such techniques rely on the idea that individuals within a population undergoing an epidemic process can be categorized by disease state. The most common terms used to describe these disease states are:

- Susceptible: Individuals capable of contracting the disease of interest.
- Exposed: Individuals who have contracted the disease, but are not yet infectious.
- **Infectious**: Individuals who are capable of spreading the disease.
- **Recovered/Removed**: Individuals who have either recovered or been removed from the population.

Persons in a population are assumed to move through these disease categories sequentially according to the disease process, though in practice these disease states are combined in different ways. For example, a simple epidemic model might use an S-I-R structure in which individuals become immediately infectious (ie, there is no latent period), and are subsequently removed from the population (ie, assuming permanent immunity). For a disease which conferrs only temporary immunity, such as influenza, many researchers have employed S-I-R-S models, which include a potential for previously recovered individuals to be reintroduced to the susceptible population. Similarly, SEIR and SEIRS models introduce a latent period during which exposed individuals are not yet, but will become, infectious. In cases where the reintroduction process is either complicated, or data is sparse, researchers can employ a "Serial SEIR" model, which simply re-sets the susceptible population at regular intervals.

This diverse family temporal structures has been generalized to allow epidemics to be modeled over space, as well as time.

1.2 TL;DR - What is libsaptialSEIR for?

libspatialSEIR was designed to provide a computationally efficient and user friendly method to fit several important epidemic models in the Bayesian spatial SEIRS family. In particular, spatial and single location models are allowed to evolve through time via one of several SEIRS-like structures, with a particular effort to allow the inclusion of linear predictors to drive important model parameters. Notable examples include:

- Single location SEIR and SEIRS models.
- Spatial SEIR and SEIRS models, employing a user specified measure of distance between spatial locations.
- Serial SEIR models, both for single locations and spatially indexed data.

The focus on linear predictors provides an additional layer of flexibility to these models, as they can accommodate temporal basis functions for epidemic shape fitting, intervention indicators for public health efforts, demographic effects on population mixing, and anything else that can be expressed as a linear combination of unknown, normally distributed parameters.

Example code for each of these models is included in the *scripts* directory.

to do: Make a knitr walkthrough of one of the more interesting models (Google flu?)

1.3 SEIRS Model Family - Formal Development

Developed below is the most general member of the SEIRS family which can be fit with libspatialSEIR, namely the spatial SEIRS model. Important special cases are discussed in { to do: Add discussion of special cases. }

1.3.1 Compartments and Notation

Define the following components for each s_i and t_i :

Denote the spatial locations of interest $\{s_i: i=1,...,n\}$ Let $d(s_i,s_l)=d_{il}$ define a measure of distance between spatial locations. Note that s_i and s_l . $d(s_i,s_i)=0$, and $d(s_i,s_l)=d(s_l,s_i)$ Let time (in units appropriate to the data and disease process) be denoted $t_j: j=1,...,T$

- \bullet N_{ij} is the population size
- \bullet S_{ij} is the count of susceptible individuals
- \bullet E_{ij} is the count of exposed individuals
- \bullet I_{ij} is the count of infectious individuals
- \bullet R_{ij} is the count of recovered/removed individuals
- S_{ii}^* is the number of newly susceptible individuals
- \bullet $\mathbf{E}^*_{\mathbf{i}\mathbf{j}}$ is the number of newly exposed individuals
- \mathbf{I}_{ii}^* is the number of newly infectious individuals
- ullet $\mathbf{R}_{\mathbf{i}\mathbf{j}}^*$ is the number of newly recovered/removed individuals

Let $N_j = S_j + E_j + I_j + R_j$ for all j

In addition let S_0 , E_0 , I_0 , and R_0 denote the *n*-vectors of unknown compartment sizes at the start of the modeling period.

1.3.2 Disease Evolution Process Model

Given the values of the aforementioned parameters, the disease process evolves forward in time as one would expect based on the definitions.

$$\begin{split} S_{j+1} &= S_j - E_j^* + S_j^* \\ E_{j+1} &= E_j - I_j^* + E_j^* \\ I_{j+1} &= I_j - R_j^* + I_j^* \\ R_{j+1} &= R_j - S_i^* + R_i^* \end{split}$$

While models of this form are often fit using deterministic systems of differential equations, libspatialSEIR uses a heirarchical Bayesian framework in order to adequately capture the inherent variability in the model parameters. Thus, we begin by specifying the following likelihood components:

$$\{S_{ij}^* | \pi_i^{(RS)}, R_{ij}\} \sim (indep.) \ binom(R_{ij}, \pi_i^{(RS)})$$

$$\{E_{ij}^* | \pi_{ij}^{(SE)}, S_{ij}\} \sim (indep.) \ binom(S_{ij}, \pi_{ij}^{SE})$$

 $\{I_{ij}^* | \pi^{(EI)}, E_{ij}\} \sim (indep.) \ binom(E_{ij}, \pi^{(EI)})$
 $\{R_{ij}^* | \pi^{(IR)}, I_{ij}\} \sim (indep.) \ binom(I_{ij}, \pi^{(IR)})$

Moving on to the next level of the model, we must specify distribution for the probability terms. π^{EI} , and π^{IR} are easily modeled with standard prior distributions (indeed, beta prior distributions are both flexible and conjugate to the binomial likelihood). More care must be given to the development of a model for the $\{\pi_{ij}^{SE}\}$ and $\{\pi_j^{RS}\}$. The first of these describes the actual infection process and must account for predictor variables as well as the spatial structure of $\{s_i\}$. The second drives the reinfection process, which captures the effects of diminishing temporary immunity, disease strain mutation, and the introduction of new infectious agents. These important components are examined in the following sections.

1.4 Infection Process - CAR Model Motivation

Consider the process by which people become infected with a communicable disease. Namely, consider the situation in which a person 'A' has contacted another person, 'B', who is infectious (for some suitable definition of contacted). Let p be the probability that person 'A' becomes infected with the disease, and let q = 1 - p. Now we introduce a number of assumptions:

• Assume that the number of 'contacts' K_i between a person of interest and other individuals within a spatial unit s_i at a given time point follows a poisson distribution:

$$K_j \sim Po(\lambda_i)$$

- Assume that when individuals travel to other spatial locations, their contact behavior is well modeled by the contact behavior of that spatial unit (when in Rome).
- Contact between spatial locations is proportional to some known function $f(d_{il})$ of the chosen distance metric between the centroids of s_i and s_l

Define δ_{ij} to be the proportion of persons who are infectious in spatial unit s_i at time t_j . Then, letting $Inf(s_i, t_j)$ denote the event that a person becomes infected from contact within spatial unit s_i at time t_j , we can derive:

$$P(Inf(.,t_{j})) = 1 - P(!Inf(s_{i},t_{j})) \cdot P(!Inf(s_{-i},t_{j}))$$
where
$$P(!Inf(s_{i},t_{j})) = E(!Inf(s_{i},t_{j})) = E(E(!Inf(s_{i},t_{j})|K_{i} = k_{i}))$$

$$= E(((1 - \delta_{ij})q)^{k_{i}})$$

$$= \sum_{k=0}^{\infty} ((1 - \delta_{ij})q)^{k} (\frac{\lambda_{i}^{k}e^{-\lambda_{i}}}{k!})$$

$$= \sum_{k=0}^{\infty} q_{ij}^{k} (\frac{\lambda_{i}^{k}e^{-\lambda_{i}}}{k!})$$

$$= \sum_{k=0}^{\infty} q_{ij}^{k} (\frac{\lambda_{i}^{k}e^{-\lambda_{i}}}{k!})$$

$$= \frac{e^{-\lambda_{i}}}{e^{-q_{ij}\lambda_{i}}} (1) = e^{-\lambda_{i} \cdot (1 - q_{ij})} = e^{-\lambda_{i} \cdot p_{ij}} = e^{-\lambda_{i} \cdot (\delta_{ij}p)}$$
Therefore, $P(Inf(s_{i},t_{j})) = 1 - e^{-\lambda_{i} \cdot (\delta_{ij}p)}$
Similarly,
$$P(!Inf(s_{-i},t_{j})) = \prod_{\{l \neq i\}} [P(!Inf(s_{l},t_{j}))]$$

$$= \prod_{\{l \neq i\}} [E(!Inf(s_{-i},t_{j}))] = \prod_{\{l \neq i\}} [E(E(!Inf(s_{-i},t_{j})|K_{i} = k_{i}))]$$

$$= \prod_{\{l \neq i\}} \sum_{k=0}^{\infty} (q_{lj}(i))^{k} \frac{(\lambda_{l} \cdot f(d_{il}))^{k}e^{-\lambda_{l} \cdot f(d_{il})}}{k!} = \prod_{\{l \neq i\}} \left[\frac{e^{-\lambda_{l} \cdot f(d_{il})}}{e^{-q_{ij}\lambda_{i}f(d_{il})}} (1) \right]$$

$$= \prod_{\{l \neq i\}} \left[e^{-\lambda_{l} \cdot f(d_{il})p_{ij}} \right] = \prod_{\{l \neq i\}} \left[e^{-\lambda_{l} \cdot f(d_{il}) \cdot (\delta_{ij}p)} \right]$$

$$= \exp \left\{ \sum_{l \neq i} [p\lambda_{l}\delta_{jl}f(d_{il})] \right\}$$

Thus, for the probabilty of infection for a person living in s_i at time t_i we have:

$$1 - \left(e^{-\lambda_i \cdot (\delta_{ij}p)}\right) \left(e^{\left\{\sum_{\{l \neq i\}} \left[p\lambda_l \delta_{jl} f(d_{il})\right]\right\}\right)}$$

$$= 1 - exp \left\{-\delta_{ij}e^{\theta_i} - \sum_{\{l \neq i\}} \left(f(d_{il})\delta_{il}e^{\theta_l}\right)\right\}, \text{ where } \theta_v = log(\lambda_v p)$$

Currently, libspatialSEIR supports distance functions of the form:

$$f(d_{il}) = \rho \cdot (d_{il})^{-\frac{1}{2}}$$

Support for other distance functions, such as the gravity model, is planned.

A few miscellaneous notes:

- 1. By defining $f(d_{ii})$ to be equal to 1 for all i, the above expression has a simple matrix form.
- 2. WLOG, we can make the mixing parameters dependent on space and time, defining λ_{v_1,v_2} , and correspondingly θ_{v_1,v_2}
- 3. When constructing full conditional distributions, it is important to keep in mind the constraint: S + E + I + R = N, as well as the fact that $p_{i,j}^{(SE)}$ does, in fact, depend on the value of I. This is easy to neglect and hard to debug.

This spatial probability structure belongs to the CAR, or Conditionally Auto-Regressive, class of spatial dependence structures, and can accommodate several different data types. For example, in the case where spatial data is indexed by discrete areal units, a neighborhood matrix may define the requisite 'distance' between spatial locations. On the opposite end of the spectrum, spatial locations may occur on a continuum (ie, latitude and longitude). In this case, a more usual distance definition of distance can be employed (with or without an explicit spatial range). libspatialSEIR is optomized for the second case (ie, sparse matrix methods are not employed), though is perfectly capable of fitting sparser spatial (or entirely non-spatial) models.

1.5 Re-infection Process

To model the π_j^{RS} , some structure of lower than T dimensions is desireable to reduce potential identifiability issues. A covariate structure constructed to capture natural variation in this quantity, a set of trigonometric basis functions with appropriate

period, for example, will do nicely. Let $X(\pi_j^{RS})$ and $\beta_{\pi^{RS}}$ denote the covariate vector and corresponding regression parameter estimates for the j'th R to S transition probability respectively. Any number of link functions would be appropriate here.

- 1. (Complimentary) Log Link $log(\pi_i^{RS}) = -X(\pi_i^{RS})\beta_{\pi^{RS}}$
- 2. Complimentary Log-Log Link $log(-log(\pi_i^{RS})) = X(\pi_i^{RS})\beta_{\pi^{RS}}$
- 3. Logit Link $log(\frac{\pi_j^{RS}}{1-\pi_j^{RS}}) = X(\pi_j^{RS})\beta_{\pi^{RS}}$

For simplicity, and to parallel the covariate scale used for $\{\pi_{ij}^{SE}\}$, the log link is used by default, though in the future this is to be modifiable.

2 Basic Reproductive Number

The basic reproductive number, \mathcal{R}_0 , is an important quantity in epidemiology. While the interepretation must be adapted to the problem of interest, in general terms the basic reproductive number captures the expected number of secondary infections produced by a single infected individual in an entirely susceptible population.

Using the next generation matrix approach to \mathcal{R}_0 calculation, we first define the matrix G such that $G_{i,l}(t_j)$ is the expected number of infections in spatial location s_i caused by a single infected individual in location s_l at time t_j .

Defining the relevant infection event for a person indexed by k to be: $I_k(s_i, s_l, t_j)$, we see that the expected number of such infections is:

$$E\left[\sum_{k=0}^{N_{i,j}} (I_k(s_i, s_l, t_j))\right]$$

$$= \sum_{k=0}^{N_{i,j}} \cdot P(I_k(s_i, s_l, t_j)) = N_{i,j} \cdot P(I_k(s_i, s_l, t_j))$$
Where, as before:
$$P(I_k(s_i, s_l, t_j)) = 1 - exp\left\{-f(d_{il})\delta_{lj}e^{\theta_l}\right\}$$
This gives:
$$G_{i,l}(t_j) = \frac{N_{i,j}}{I_{l,j}} \cdot \left[1 - exp\left\{-f(d_{il})\delta_{lj}e^{\theta_l}\right\}\right]$$

Additionally recall the diagonal case, where $d_{ii} = 0$ and f(0) = 1:

$$G_{i,i}(t_j) = \frac{N_{i,j}}{T_{i,j}} \cdot \left[1 - exp\left\{-\delta_{ij}e^{\theta_i}\right\}\right]$$
$$= \delta_{ij}^{-1} \cdot \left[1 - exp\left\{-\delta_{ij}e^{\theta_i}\right\}\right]$$

With this matrix constructed, the basic reproductive number can be immediately calculated as the dominant eigenvalue.

3 Posterior Distribution and Full Conditionals

Bringing together the aforementioned spatio-temporal structures we can define the requisit prior distributions and deterministic relationships among parameters, and thus construct the requisit posterior distribution.

3.1 Summary of Distribution Components

$$\{S_{ij}^*|\pi_j^{(RS)}, R_{ij}\} \sim (indep.) \ binom(R_{ij}, \pi_j^{(RS)})$$

$$\{E_{ij}^*|\pi_{ij}^{(SE)}, S_{ij}\} \sim (indep.) \ binom(S_{ij}, \pi_{ij}^{SE})$$

$$\{I_{ij}^*|\pi^{(EI)}, E_{ij}\} \sim (indep.) \ binom(E_{ij}, \pi^{(EI)})$$

$$\{R_{ij}^*|\pi^{(IR)}, I_{ij}\} \sim (indep.) \ binom(I_{ij}, \pi^{(IR)})$$

$$\{\pi_{IR}\} \sim beta(0.5, 0.5)$$

$$\{\pi^{EI}\} \sim beta(0.5, 0.5)$$

$$\{\theta_{ij}\} \sim \mathcal{N}(\eta_{ij}, \sigma_{\theta}^2)$$

$$\{\beta\} \sim \mathcal{N}(0, \tau_{\beta}^2)$$

$$\{\beta_{\pi^{RS}}\} \sim \mathcal{N}(0, \tau_{RS}^2)$$

$$\sigma_{\theta}^2 \sim \Gamma(\alpha_{\theta}, \beta_{\theta})$$

$$\rho \sim U(0, 1)$$

3.2 Deterministic Functions

$$S = f_S(S_0, E_0^*, S_0^*, S^*, E^*)$$

$$E = f_E(E_0, I_0^*, E_0^*, E^*, I^*)$$

$$I = f_I(I_0, R_0^*, I_0^*, I^*, R^*)$$

$$R = f_R(R_0, S_0^*, R_0^*, R^*, S^*)$$

$$log(\pi_{ij}^{(SE)}) = -\delta_{ij}e^{\theta_{ij}} - \sum_{\{l \neq i\}} d_{il}\delta_{il}e^{\theta_{il}}$$

$$log(\pi_j^{RS}) = -X(\pi_j^{RS})\beta_{\pi^{RS}}$$

$$d_{il} = f(\rho, s_i, s_l)$$

$$\delta_{ij} = \frac{I_{ij}}{N_{ij}}$$

$$\eta_{ij} = X_{ij}\beta$$

3.3 Posterior Distribution

$$log(p(\theta, \beta, \rho, S^*, E^*, R^*|.)) \propto \left[\sum_{i=1}^n \left\{ \sum_{j=1}^T \left\{ (S_{ij}^* log(\pi_j^{(RS)}) + (R_{ij} - S_{ij}^*) log(1 - \pi_j^{(RS)}) \right\} \right. \\ + (E_{ij}^* log(\pi_{ij}^{(SE)})) + (S_{ij} - E_{ij}^*) log(1 - \pi_{ij}^{(SE)}) \\ + (I_{ij}^* log(\pi_{ij}^{(EI)})) + (E_{ij} - I_{ij}^*) log(1 - \pi_{ii}^{(EI)}) \\ + (R_{ij}^* log(\pi^{(EI)})) + (I_{ij} - R_{ij}^*) log(1 - \pi^{(IR)}) \\ - \frac{1}{2} log(\sigma_{\theta}^2) - \frac{(\theta_{ij} - \eta_{ij})^2}{2\sigma_{\theta}^2} \right\} \right\} \\ + \sum_{k=1}^K \left\{ -\frac{\beta_k^2}{10} \right\} + (log(\pi(\sigma_{\theta}^2))) + (log(\pi(\rho))) \\ + \left\{ -\frac{\tau_{RS}^2}{2} \|\beta_{\pi_j^{RS}}\| \right\} \\ + (\frac{1}{2} log(\pi^{(EI)}) + \frac{1}{2} log(1 - \pi^{(EI)})) \\ + (\frac{1}{2} log(\pi^{(IR)}) + \frac{1}{2} log(1 - \pi^{(IR)})) \right]$$

$$(1)$$

For simplicity, and because the model is sufficiently flexible without the added over-dispersion, set $\theta_{ij} = \eta_{ij}$ with probability 1. This gives the following simplified posterior distribution:

$$\begin{split} \log(p(\theta,\beta,\rho,S^*,E^*,R^*|.)) &\propto \\ &\left[\sum_{i=1}^n \left\{ \sum_{j=1}^T \left\{ log\left(\binom{R_{ij}}{S_{ij}^*} \right) + (S_{ij}^*log(\pi_j^{(RS)}) + (R_{ij} - S_{ij}^*)log(1 - \pi_j^{(RS)}) \right) \right. \\ &+ log\left(\binom{S_{ij}}{E_{ij}^*} \right) + (E_{ij}^*log(\pi_{ij}^{(SE)})) + (S_{ij} - E_{ij}^*)log(1 - \pi_{ij}^{(SE)}) \\ &+ log\left(\binom{E_{ij}}{I_{ij}^*} \right) + (I_{ij}^*log(\pi^{(EI)})) + (E_{ij} - I_{ij}^*)log(1 - \pi^{(EI)}) \\ &+ (log\left(\binom{I_{ij}}{R_{ij}^*} \right) + R_{ij}^*log(\pi^{(IR)})) + (I_{ij} - R_{ij}^*)log(1 - \pi^{(IR)}) \right\} \right\} \\ &+ \sum_{k=1}^K \left\{ -\frac{\beta_k^2}{10} \right\} + (log(\pi(\rho))) \\ &+ \left\{ -\frac{\tau_{RS}^2}{2} \|\beta_{\pi_j^{RS}}\| \right\} \\ &+ (\frac{1}{2}log(\pi^{(EI)}) + \frac{1}{2}log(1 - \pi^{(EI)})) \\ &+ (\frac{1}{2}log(\pi^{(IR)}) + \frac{1}{2}log(1 - \pi^{(IR)})) \right] \end{split}$$

Now define the fixed set $A_0 = \{S_0, E_0, I_0, R_0, S_0^*, E_0^*, I_0^*, R_0^*\}$, and reparameterize S, E, I, R as explicit functions of the transition matrices.

$$\begin{split} \log(p(\theta,\beta,\rho,S^*,E^*,R^*|.)) &\propto \\ \left[\sum_{j=1}^{T} \sum_{i=1}^{n} \left\{ log\left(\binom{R_{ij}}{S_{ij}^*} \right) + log(\pi_j^{(RS)}) \{S_{ij}^*\} + log(1-\pi_j^{(RS)}) \{f_R(R^*,S^*,A_0)_{ij}-S_{ij}^*\} \right\} \\ &+ \sum_{i=1}^{n} \sum_{j=1}^{T} \left\{ log\left(\binom{S_{ij}}{E_{ij}^*} \right) + (E_{ij}^*log(\pi_{ij}^{(SE)})) + (f_S(S^*,E^*,A_0)_{ij}-E_{ij}^*) log(1-\pi_{ij}^{(SE)}) \right\} \\ &+ \sum_{i=1}^{n} \sum_{j=1}^{T} \left\{ log\left(\binom{E_{ij}}{I_{ij}^*} \right) \right\} + log(\pi^{(EI)}) \sum_{i=1}^{n} \sum_{j=1}^{T} \{I_{ij}^*\} + log(1-\pi^{(EI)}) \sum_{i=1}^{n} \sum_{j=1}^{T} \{f_E(E^*,I^*,A_0)_{ij}-I_{ij}^*\} \right\} \\ &+ \sum_{i=1}^{n} \sum_{j=1}^{T} \left\{ log\left(\binom{I_{ij}}{R_{ij}^*} \right) \right\} + log(\pi^{(IR)}) \sum_{i=1}^{n} \sum_{j=1}^{T} \{R_{ij}^*\} + log(1-\pi^{IR}) \sum_{i=1}^{n} \sum_{j=1}^{T} \{f_I(I^*,R^*,A_0)_{ij}-R_{ij}^*\} \right\} \\ &+ \sum_{k=1}^{K} \left\{ -\frac{\beta_k^2}{10} \right\} + (log(\pi(\rho))) \\ &+ \left\{ -\frac{\tau_{RS}^2}{2} \|\beta_{\pi_j^{RS}}\| \right\} \\ &+ (\frac{1}{2}log(\pi^{(EI)} + \frac{1}{2}log(1-\pi^{(EI)}))) \right] \end{split}$$

3.4 Full Conditional Distributions

• Full Conditional For S^*

$$log(p(S^*|.)) \propto \sum_{j=1}^{T} \sum_{i=1}^{n} \left\{ log\left(\binom{R_{ij}}{S_{ij}^*}\right) + log(\pi_j^{(RS)}) \left\{S_{ij}^*\right\} + log(1 - \pi_j^{(RS)}) \left\{f_R(R^*, S^*, A_0)_{ij} - S_{ij}^*\right\} + log\left(\binom{S_{ij}}{E_{ij}^*}\right) + f_S(S^*, E^*, A_0)_{ij} log(1 - \pi_{ij}^{(SE)}) \right\}$$
(4)

• Full Conditional for E^*

$$log(p(E^*|.)) \propto \sum_{i=1}^{n} \sum_{j=1}^{T} \left\{ log\left(\binom{S_{ij}}{E_{ij}^*}\right) + (E_{ij}^* log(\pi_{ij}^{(SE)})) + (f_S(S^*, E^*, A_0)_{ij} - E_{ij}^*) log(1 - \pi_{ij}^{(SE)}) \right\}$$

$$+ log\left(\binom{E_{ij}}{I_{ij}^*}\right) + log(1 - \pi^{(EI)}) \sum_{i=1}^{n} \sum_{j=1}^{T} \left\{ (f_E(E^*, I^*, A_0)_{ij}) \right\}$$

$$(5)$$

• Full Conditional for R^*

$$log(p(R^*|.)) \propto \sum_{i=1}^{n} \sum_{j=1}^{T} \left\{ log\left(\binom{I_{ij}}{R_{ij}^*}\right) + log(\pi^{(IR)}) \left\{ R_{ij}^* \right\} + log(1 - \pi^{IR}) \left\{ f_I(I^*, R^*, A_0)_{ij} - R_{ij}^* \right\} \right.$$

$$+ log\left(\binom{R_{ij}}{S_{ij}^*}\right) + log(1 - \pi_j^{(RS)}) \left\{ f_R(R^*, S^*, A_0)_{ij} \right\}$$

$$+ log(\pi_{ij}^{(SE)}) \left\{ E_{ij}^* \right\} + log(1 - \pi_{ij}^{SE}) \left\{ f_S(S^*, E^*, A_0)_{ij} - E_{ij}^* \right\} \right\}$$

$$(6)$$

• Full Conditional for $\{\theta\}$

$$log(p(\{\theta\}|.)) \propto \sum_{i=1}^{n} \left\{ \sum_{j=1}^{T} \left\{ (E_{ij}^{*}log(\pi_{ij}^{(SE)})) + (f_{S}(S^{*}, E^{*}, A_{0})_{ij} - E_{ij}^{*}) log(1 - \pi_{ij}^{(SE)}) \right\} \right\}$$

(7)

• Full Conditional for $\{\beta\}$

$$log(p(\{\beta\}|.)) \propto \sum_{i=1}^{n} \left\{ \sum_{j=1}^{T} \left\{ (E_{ij}^{*}log(\pi_{ij}^{(SE)})) + (f_{S}(S^{*}, E^{*}, A_{0})_{ij} - E_{ij}^{*})log(1 - \pi_{ij}^{(SE)}) \right\} \right\} + \sum_{k=1}^{K} \left\{ -\frac{\beta_{k}^{2}}{10} \right\}$$
(8)

• Full Conditional for ρ

$$log(p(\rho|.)) \propto \sum_{i=1}^{n} \left\{ \sum_{j=1}^{T} \left\{ (E_{ij}^{*}log(\pi_{ij}^{(SE)})) + (f_{S}(S^{*}, E^{*}, A_{0})_{ij} - E_{ij}^{*})log(1 - \pi_{ij}^{(SE)}) \right\} \right\} + (log(\pi(\rho)))$$

$$(9)$$

• Full Conditional for $\{\beta_{\pi_j^{(RS)}}\}$

$$log(p(\{\pi_{j}^{(RS)}\}|.)) \propto \sum_{j=1}^{T} \left\{ log(\pi_{j}^{(RS)}) \left[\sum_{i=1}^{n} \{S_{ij}^{*}\} \right] + log(1 - \pi_{j}^{(RS)}) \left[\sum_{i=1}^{n} \{f_{R}(R^{*}, S^{*}, A_{0})_{ij} - S_{ij}^{*}\} \right] \right\} + \left\{ -\frac{\tau_{RS}^{2}}{2} \|\beta_{\pi_{j}^{RS}}\| \right\}$$

$$(10)$$

• Full Conditional for $\pi^{(EI)}$

$$log(p(\pi^{(EI)})) \propto log(\pi^{(EI)}) \left[\frac{1}{2} + \sum_{i=1}^{n} \sum_{j=1}^{T} \{I_{ij}^{*}\} \right]$$

$$+ log(1 - \pi^{(EI)}) \left[\frac{1}{2} + \sum_{i=1}^{n} \sum_{j=1}^{T} \{(f_{E}(E^{*}, I^{*}, A_{0})_{ij} - I_{ij}^{*})\} \right]$$

$$\Rightarrow \pi^{(EI)} \sim beta(\frac{3}{2} + \sum_{j=1}^{T} \sum_{i=1}^{n} \{I_{ij}^{*}\}, \frac{3}{2} + \sum_{j=1}^{T} \sum_{i=1}^{n} \{f_{E}(E^{*}, I^{*}, A_{0})_{ij}\} - \sum_{j=1}^{T} \sum_{i=1}^{n} \{I_{ij}^{*}\})$$

$$(11)$$

• Full Conditional for $\pi^{(IR)}$

$$log(p(\pi^{(IR)})) \propto log(\pi^{(IR)}) \left[\frac{1}{2} + \sum_{i=1}^{n} \sum_{j=1}^{T} \{R_{ij}^*\} \right] + log(1 - \pi^{(IR)}) \left[\frac{1}{2} + \sum_{i=1}^{n} \sum_{j=1}^{T} \{f_I(I^*, R^*, A_0)_{ij} - R_{ij}^*\} \right]$$

$$\Rightarrow \pi^{(IR)} \sim beta(\frac{3}{2} + \sum_{j=1}^{T} \sum_{i=1}^{n} \{R_{ij}^*\}, \frac{3}{2} + \sum_{j=1}^{T} \sum_{i=1}^{n} \{f_I(I^*, R^*, A_0)_{ij}\} - \sum_{j=1}^{T} \sum_{i=1}^{n} \{R_{ij}^*\})$$

$$(12)$$

- 4 MCMC Samplers: Current and Future Work
- 5 OpenCL: Performance Tradeoffs
- 6 R Level API Summary