Test#	X 1	X2	Х3	Average (kpsi)
1	-1	-1	-1	87.51
2	1	-1	-1	87.3
3	-1	1	-1	77.8
4	1	1	-1	87
5	-1	-1	1	79.1
6	1	-1	1	97.6
7	-1	1	1	78.6 \(\)
8	1	1	1	87.7

Main Effects

Ambient temperature (E₁) 9150 psi

Wind Velocity (E₂) - 5100 psi

Bar Size (E₃) 850 psi

Two-Variable Interactions

Ambient temperature-Wind Velocity (E_{12}) 0 psi

Ambient temperature-Bar Size (E₁₃) 4650 psi

Wind Velocity-Bar Size (E₂₃) -100 psi

Three-Variable Interaction

Ambient temperature-Wind Velocity-Bar Size (E₁₂₃) -4700 psi

What is the regression model?

$$y = f(\chi_1, \chi_2, \chi_3)$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{23} x_1 x_2 + \beta_{123} x_1 x_2 + \beta_{13} x_1 x_3 + \beta_{23} x_1 x_2 + \beta_{123} x_1 x_2 x_3$$

U, = Bo + B1 (-1) + B2 (-1) + B3 (-1) + B12 (+1) + B2 (+1) + B2 (+1) + B12 (-1)

we want to find & Bi /

Let's say that we want to fit the following model,

$$\hat{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

For each experimental data, we can find the error (ϵ_i) between the model predicted value (\hat{y}_i) and observed experimental value (y_i)

$$\epsilon_i = \underline{y_i} - \hat{\underline{y_i}}$$

With 'least square fit', the aim is to find such coefficients, that minimizes the total sum of squares of error.

The least square function,

$$L = \sum \epsilon_i^2 = \sum (y_i - \hat{y}_i)^2 = \sum [y_i - (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i})]^2$$

Goal is to minimize L with respect to each β_i

Test#	X1	X2	Х3	Average (kpsi)
1	-1	-1	-1	87.5
2	1	-1	-1	87.3
3	-1	1	-1	77.8
4	1	1	-1	87
5	-1	-1	1	79.1
6	1	-1	1	97.6
7	-1	1	1	78.6
8	1	1	1	87.7

$$\hat{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

The least square function,

$$L = \sum \epsilon_i^2 = \sum (y_i - \hat{y}_i)^2 = \sum [y_i - (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i})]^2$$

Goal is to minimize L with respect to each β_i

$$\begin{cases} exp \end{cases} = \begin{bmatrix} g_1 \\ g_2 \end{bmatrix}$$

$$\begin{bmatrix} \hat{Y} \end{bmatrix} = \begin{bmatrix} \hat{Y} \end{bmatrix}$$

Test#	X1	X2	Х3	Average (kpsi)
1	-1	-1	-1	87.5
2	1	-1	-1	87.3
3	-1	1	-1	77.8
4	1	1	-1	87
5	-1	-1	1	79.1
6	1	-1	1	97.6
7	-1	1	1	78.6
8	1	1	1	87.7

Let's say that we want to fit the following model,

$$\hat{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

The least square function,

$$L = \sum \epsilon_i^2 = \sum (y_i - \hat{y}_i)^2 = \sum [y_i - (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i})]^2$$

Goal is to minimize L with respect to each β_i

Thus,
$$L = \sum \mathcal{E}_{1}^{2} = [\mathcal{E}_{1}^{T}[\mathcal{E}_{1}]]$$

Test#	X1	X2	Х3	Average (kpsi)
1	-1	-1	-1	87.5
2	1	-1	-1	87.3
3	-1	1	-1	77.8
4	1	1	-1	87
5	-1	-1	1	79.1
6	1	-1	1	97.6
7	-1	1	1	78.6
8	1	1	1	87.7

$$\hat{y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3$$

The least square function,

$$L = \sum \epsilon_i^2 = \sum (y_i - \hat{y}_i)^2 = \sum [y_i - (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i})]^2$$

Goal is to minimize L with respect to each β_i

$$-2[\times]^T[Y_{exp}] + 2[\times]^T[\times][\beta] = 0$$

Test#	X1	X2	Х3	Average (kpsi)
1	-1	-1	-1	87.5
2	1	-1	-1	87.3
3	-1	1	-1	77.8
4	1	1	-1	87
5	-1	-1	1	79.1
6	1	-1	1	97.6
7	-1	1	1	78.6
8	1	1	1	87.7

What if we want to fit a model like
$$\hat{y} = \beta_0 + \beta_1 \alpha_1 + \beta_2 \alpha_2 + \beta_3 \alpha_3 + \beta_{123} \alpha_1 \alpha_2 \alpha_3 + \beta_{123} \alpha_1 \alpha_2 \alpha_3$$

thun, rename
$$7172 = 249$$
 $717273 = 75, $24 = 26$
 $1312 = 1349$ $133 = 135, 131 = 136$$

then do the same procedure as between

The yield from a certain chemical depends on either the chemical formulation of the input materials or the mixer speed, or both.

A 2-level factorial design was run with three replicates and the yield data are shown below.

Find main effects and interaction effects.

x ₁	X ₂	Уa	y _b	У _с	\overline{y}
-1	-1	10	20	30	20
1	-1	40	30	50	40
-1	1	60	30	60	50
1	1	40	45	50	45

Consider following factorial design with 2 variables (k = 2), and 3 levels each

Each combination replicated 4 times (n = 4)

Life (in hours) Data for the Battery Design Example

Material	Temperature (°F)									
Type	1	15	7	0	1	125				
1	130	155	34	40	20	70				
	74	180	80	75	82	58				
2	150	188	136	122	25	70				
	159	126	106	115	58	45				
3	138	110	174	120	96	104				
	168	160	150	139	82	60				

What is the effects model and hypothesis test?

In general, for 2-factor design, we could have 'a' levels of factor A, and 'b' levels of factor B.

Each combination is replicated 'n' times

General Arrangement for a Two-Factor Factorial Design

		Fac	etor B	
		2		b
	1 $y_{111}, y_{112}, y_{112}$	//) \ /		$y_{1b1}, y_{1b2}, \ldots, y_{1bn}$
Factor A	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$y_{2b1}, y_{2b2}, \dots, y_{2bn}$
	÷			
	$a \qquad y_{a11}, y_{a12}, \dots, y_{a1n}$			$y_{ab1}, y_{ab2}, \ldots, y_{abn}$

What is the effects model and hypothesis test?

Factor B 2 b $y_{111}, y_{112},$ $y_{121}, y_{122},$ $y_{1b1}, y_{1b2},$ \dots, y_{11n} \dots, y_{12n} \dots, y_{1bn} $y_{211}, y_{212},$ $y_{221}, y_{222},$ $y_{2b1}, y_{2b2},$ \dots, y_{21n} \dots, y_{22n} \dots, y_{2bn} $y_{ab1}, y_{ab2},$ $y_{a21}, y_{a22},$ $y_{a11}, y_{a12},$ \dots, y_{abn} \dots, y_{a1n} \dots, y_{a2n}

In the two-factor factorial, both row and column factors (or treatments), A and B, are of al interest. Specifically, we are interested in **testing hypotheses** about the equality of row treatment effects, say

$$H_0: \tau_1 = \tau_2 = \dots = \tau_a = 0$$

 $H_1:$ at least one $\tau_i \neq 0$ (5.2a)

and the equality of column treatment effects, say

$$H_0: \beta_1 = \beta_2 = \dots = \beta_b = 0$$

 $H_1: \text{at least one } \beta_j \neq 0$ (5.2b)

We are also interested in determining whether row and column treatments *interact*. Thus, we also wish to test

$$H_0: (\tau \beta)_{ij} = 0$$
 for all i, j
 $H_1: \text{at least one } (\tau \beta)_{ij} \neq 0$ (5.2c)

We now discuss how these hypotheses are tested using a **two-factor analysis of variance**.

NOTE: You do NOT have permission to share this file or any of its contents with anyone else, and/or upload it on internet or any of the platforms where it can be accessed by others.

Effects Model

Factor A

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \epsilon_{ijk} \begin{cases} i = 1, 2, \dots, a \\ j = 1, 2, \dots, b \\ k = 1, 2, \dots, n \end{cases}$$

Statistical Design of Experiments and Data Analysis

ANOVA for Two-Factor Factorial Design

The Analysis of	The Analysis of Variance Table for the Two-Factor Factorial, Fixed Effects Model								
Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	C				
A treatments	$SS_A \checkmark$	a-1	$MS_A = \frac{SS_A}{a-1}$	E	F1-0, a-1, abcn-1)				
B treatments	$SS_B \checkmark$	b-1	$MS_B = \frac{SS_B}{b-1}$	$F_0 = \frac{MS_B}{MS_E}$	F1-a, b-1, ab(n-1)				
Interaction	SS_{AB}	(a-1)(b-1)	$MS_{AB} = \frac{SS_{AB}}{(a-1)(b-1)}$	$F_0 = \frac{MS_{AB}}{MS_E}$	F1-a, (a-1)(b-1), ab(n-1)				
Error	$SS_E \checkmark$	ab(n-1)	$MS_E = \frac{SS_E}{ab(n-1)}$						
Total	$SS_T \checkmark$	abn-1							

Life Data (in	n hours) fo	or the Bat	tery Desig	n Experim	ent					
Material					Tempera	ture (°F)				
Туре		15		7()			125		<i>y</i> _i
	130	155	(520)	34	40	220	20	70	620)	
1	74	180	(539)	80	75	(229)	82	58	(230)	998
	150	188	(623)	136	122	(479)	25	70	(198)	
2	159	126	(023)	106	115	479)	58	45	(196)	1300
	138	110	(576)	174	120	(583)	96	104	(342)	
3	168	160	570	150	139	(303)	82	60	542)	1501
У. <i>j</i> .		1738			1291			770		$3799 = y_{}$

		Temperature (°F)		$N \subset AbW$
Material Type	15	70	125	<i>y_i</i>	= 2 x 3 x 4
	130 155 74 180 134	34 4 0 57.25 80 75	20 70 82 58 57.5	998	= 36
2	150 188 159 126 138 110	106 115 — 174 120 —	25 70 58 45 96 104	1300	36 terms
3 y.j.	168 160 1738	14 150 139 145.75 1291	82 60 770	1501 3799 = y	
>Tota(=	ZZZY	$\frac{2}{ijk} = \frac{2}{(130 + 100)}$	2 2 2 155 + 74 + 188	+ 34 + 40 ±	$\frac{2}{104+82+60}$
	478647		Grand Mean		
nean =	N = 2 = 36	(<u>3799</u>) = 4000		-	= 105.53
	` \	201		2	2] 3 tems
Smaterial =	_ 3 ×4 x (998 - 105.53 -	$-\left(\frac{1300}{12}-105.53\right)$	$+ \left(\frac{12}{12} - \frac{1}{12} \right)$.105.53)

Life Data (in	Life Data (in hours) for the Battery Design Experiment									
Material Temperature (°F)										
Туре		15		70)			125		y _i
<u> </u>	74	155 180	134.75	34	75	57.25	20 82	70 58	57.5	998
2	150 159	188 126	155.75	136 106 174	122 115 120	119.75	25 58	70 45 104	49.5	1300
3 y.j.	138 168	110 160 1738	144	150		45.75	96 82	60 770	85.5	1501 3799 = y

$$SS_{temp} = 3 \times 4 \times \left[\frac{1738}{12} - 105.53 + \left(\frac{1201}{12} - 105.53 \right) + \left(\frac{770}{12} - 105.53 \right) \right]$$

$$= 39118.72$$
For replicates,
$$= 21(4)18.72$$

$$= (130-134.75) + (155-134.75) + ... + (34-57.25) + (40-57.25)^{2}$$

$$= 51(4)18.72$$

NOTE: You do NOT where over poission to share the or any Spite Norms with any See Sugar to pload the or any of the patterns where it can be accessed by others.

Material Type		Temperature (°F)										
		15		70	0			125		<i>y</i> _i		
	130	155		34	40		20	70				
1	74	180	134.75	80	75	57.25	82	58	57.5	998		
	150	188	155.75	136	122	110.75	25	70	40.5			
2	159	126	155.75	106	115	119.75	58	45	49.5	1300		
	138	110	144	174	120		96	104	OF F			
3	168	160	144	150	139	145.75	82	60	85.5	1501		
У. <i>j</i> .		1738			1291			770		3799 =		

Analysis of	Variance	for	Battery	Life	Data
-------------	----------	-----	----------------	------	------

Source of	Sum of	Degrees of	Mean		
Variation	Squares	Freedom	Square	$\boldsymbol{F_0}$	P-Value
Material types	10,683.72	2	5,341.86	7.91	0.0020
Temperature	39,118.72	2	19,559.36	28.97	< 0.0001
Interaction	9,613.78	4	2,403.44	3.56	0.0186
Error	18,230.75	27	675.21		
Total	77,646.97	35			

cessed by others.

How would you check Model Adequacy?

Material Type		Temperature (°F)								
	1	15		70			125		<i>y</i> _i	
	130	(155)	34	4 40		20	70	_		
1	74	180	84.75	0 75	57.25	82	58	57.5	998	
	150	188	130	6 122	110.75	25	70	40.5		
2	(159)	126	100	6 115	119.75	58	45	49.5	1300	
	138	110	174	4 120	445.75	96	104	85.5		
3	168	160	150	0 139	145.75	82	60	05.5	1501	
У. _j .		1738		1291			770		3799 = 1	

- With 2-factor ANOVA, we can check if the factors or their interaction have a significant effect on the response
- But what about the statistical significance of main and interaction effect values?
 - For example, if we calculate the main effect of a variable to be 500.
 - Our attitude towards this average effect of say, 500, would not be the same if the 95% confidence interval were 500 ± 2 as it would be if the interval were 500 ± 2000 .
 - If it is 500 \pm 2, we would feel that the existence of an average effect has been rather convincingly demonstrated and we could assert with some confidence that its true magnitude is probably fairly close to 500.
 - If it is 500 \pm 2000, this is not the case at all, because considerable uncertainty is associated with the effect and its magnitude.
- How to find out the uncertainty (via confidence intervals) in the calculated values of main and interaction effects?

- To obtain a quantitative measure of the uncertainty in our calculated average effects and interactions, we proceed as follows:
 - 1. Estimate the variance S² of an individual observation
 - 2. Estimate the variances associated with the average effects and interactions
 - 3. Calculate the appropriate 95% confidence intervals for the "true" average effects and interactions
 - From the 95% confidence intervals, we may be able to interpret the significance of each average effect and interaction, and draw conclusions regarding the experimental study.

- Recall that in the previous welding example, we had 16 observations (8 combinations with 2 replications)
- It is the variance of each of these 16 observations that we will now estimate.
- We shall assume that the true variance σ^2 is the same for all sixteen observations and that the observations are independent.

For Test #1, the sample variance can be calculated as

$$S_1^2 = \frac{(y_{aI} - \bar{y}_I)^2 + (y_{bI} - \bar{y}_I)^2}{(2 - 1)}$$
$$= (84.0 - 87.5)^2 + (91.0 - 87.5)^2$$
$$= 24.50$$

Test#	X1	X2	ХЗ	Y _{ai} (kpsi)	Y _{bi} (kpsi)	Average (kpsi)
-1	-1	-1	-1	(84)	(91)	(87.5)
2	1	-1	-1	90.6	84	87.3
3	-1	1	-1	69.6	86	77.8
4	1	1	-1	76	98	87
5	-1	-1	1	77.7	80.5	79.1
6	1	-1	1	99.7	95.5	97.6
7	-1	1	1	82.7	74.5	78.6
8	1	1	1	93.7	81.7	87.7

Similarly, we can find 8 sample variances for 8 combinations, S_1^2 , S_2^2 ,, S_8^2 , one for each test.

$$S_1^2 = 24.5$$
, $S_2^2 = 21.78$, $S_3^2 = 134.48$, $S_4^2 = 242.0$, $S_5^2 = 3.92$, $S_6^2 = 8.82$, $S_7^2 = 33.62$, $S_8^2 = 72.00$

• Since we are assuming same true variance σ^2 for all sixteen observations, an estimate for σ^2 is the pooled sample variance S_p^2 of the eight estimated variances S_1^2 , S_2^2 ,, S_8^2 .

$$S_1^2 = 24.5$$
, $S_2^2 = 21.78$, $S_3^2 = 134.48$, $S_4^2 = 242.0$, $S_5^2 = 3.92$, $S_6^2 = 8.82$, $S_7^2 = 33.62$, $S_8^2 = 72.00$

Here

$$S_{p}^{2} = \frac{\left[\left(y_{a1} - \overline{y}_{1} \right)^{2} + \left(y_{b1} - \overline{y}_{1} \right)^{2} + \dots + \left(y_{a8} - \overline{y}_{8} \right)^{2} + \left(y_{b8} - \overline{y}_{8} \right)^{2} \right]}{(2-1) + \dots + (2-1)}$$

$$= \frac{24.50 + 21.78 + \dots + 72}{8}$$

$$= 67.64.$$

• It should be pointed out that when the number of replications are not the same for all eight tests, the pooled sample variance S_p^2 has to be modified properly.

$$Sp^{2} = \frac{SS}{v} = \frac{SS_{1} + SS_{2} + SS_{3} - SS_{8}}{v_{1} + v_{2} - v_{8}} = \frac{(h_{1}) S_{1}^{2} + (h_{2} - 1) S_{1}^{2} - \cdots + (h_{8} - 1) S_{8}^{2}}{(h_{1} - 1) + (h_{2} - 1) + (h_{2} - 1) + (h_{3} - 1)}$$

Estimation of the Variances Associated with the Average Effects and Interactions

• The average effect of ambient temperature, E1 is

$$E_{1} = \frac{1}{4} (\bar{y}_{2} - \bar{y}_{1} + \bar{y}_{4} - \bar{y}_{3} + \bar{y}_{6} - \bar{y}_{5} + \bar{y}_{8} - \bar{y}_{7})$$

ullet But since each term $\overline{y_i}$ is an average of two observations,

$$E_{1} = \frac{1}{4} \left[\frac{(y_{a2} + y_{b2})}{2} - \frac{(y_{a1} + y_{b1})}{2} + \dots + \frac{(y_{a8} + y_{b8})}{2} - \frac{(y_{a7} + y_{b7})}{2} \right]$$
or

$$E_{1} = \frac{1}{8} \left[y_{a2} + y_{b2} - y_{a1} - y_{b1} + \dots - y_{a7} - y_{b7} \right]$$

$$V(R) = \frac{1}{64} \left(V(Y_{0}) + V(Y_{0}) - \frac{1}{64} \right)$$

$$= \frac{1}{64} \left(V(Y_{0}) + V(Y_{0}) - \frac{1}{64} \right)$$

- Thus we can show that $V(E_1) = \sigma^2/4$
- In fact, we can show, $V(E_1) = V(E_2) = V(E_3) = V(E_{12}) = V(E_{13}) = V(E_{23}) = V(E_{123}) = \sigma^2/4$

Estimation of the Variances Associated with the Average Effects and Interactions

- $V(E_1) = V(E_2) = V(E_3) = V(E_{12}) = V(E_{13}) = V(E_{23}) = V(E_{123}) = \sigma^2/4$
- Substituting pooled variance in place of true variance, we can obtain confidence intervals
- The confidence interval for the average and interaction effects can be obtained as:

$$E_i \pm t \sqrt{\frac{S_p^2}{4}}$$
 $i = 1, 2, ...$

- We already have the values of E1, E2, ..., E12,.... and S_p^2 ; what is left to be determined is the value of t.
- We have a total of sixteen tests, and we used up eight degrees of freedom in calculating the eight averages,
- Therefore, the appropriate t-value is the value associated with eight degrees of freedom and corresponding to a 95% confidence level, which is $t_{8,0.025} = 2.306$.