

DMA: Proof Techniques

Laura Mančinska Institut for Matematiske Fag

Organization

Reading: Before, Tuesday's lecture read up on the asymptotic notation in weekly notes and CLRS.

Proofs

KBR: "Construction of proofs is an art and must be learned in part from observation and experience."

A proof is a series of statements, each of which follows logically from what has gone before.

- It starts with things we are assuming to be true.
- It ends with the thing we are trying to prove.

Task: Prove that for any $n \in \mathbb{Z}$, the number n + (n + 2) is even.

Proof. Assume that $n \in \mathbb{Z}$.

Then n + (n + 2) = 2n + 2 = 2(n + 1). By definition, a number is even, if it is an integer multiple of 2. Observe that n + 1 is an integer.

Therefore, n + (n + 2) is even.

How to think up a proof

- Understand what is given (start) and what we need to prove (end)
 - Write down the relevant definitions.
- Try to manipulate both the beginning and the end to make them look like one another.
- Take big unjustified steps and work on justifying them afterwards.
- Try using one of the common proof strategies

Strategies for proving specific types of statements

- Proving an implication $p \Rightarrow q$
 - by a direct proof
 - by proving the contrapositive
- Proving a biconditional statement $p \Leftrightarrow q$
- Proof by contradiction

Proving an implication $p \Rightarrow q$

Proving an implication: Direct proof

Task: Prove that $p \Rightarrow q$.

Proof template

- Assume p holds.
- Use relevant definitions and previously proven statements to argue that q must hold.

Proving an implication: Direct proof (example)

Task: Prove that if $x, y \in \mathbb{Z}$ are odd, then x + y is even.

By definition:

 $x \in \mathbb{Z}$ is even if we can write it as x = 2n for some $n \in \mathbb{Z}$. $x \in \mathbb{Z}$ is odd if we can write it as x = 2n + 1 for some $n \in \mathbb{Z}$.

Proof. Assume that x and y are odd integers.

So we can write them as x = 2n + 1 and y = 2m + 1 for some $n, m \in \mathbb{Z}$.

Then
$$x + y = (2n + 1) + (2m + 1) = 2(n + m + 1)$$
.
Hence, $x + y$ is even.

Proving an implication: via contrapositive

Task: Prove that $p \Rightarrow q$.

Recall:
$$(p \Rightarrow q) \equiv ((\sim q) \Rightarrow (\sim p))$$

If it rains, then I take my umbrella \equiv If I don't take my umbrella then it is not raining.

Proof template

- Write: "We prove the contrapositive:" and then state the contrapositive.
- Prove the contrapositive, (~q) ⇒ (~p), by a direct proof:
 - Assume ~q holds.
 - Use relevant definitions and previously proven statements to argue that ~p must hold.

Proving an implication: via contrapositive (example)

```
Task: Let a, b, n \in \mathbb{Z}. Prove that if n \nmid (ab), then n \nmid a and n \nmid b.
```

By definition: $d \mid k$ if k = cd for some $c \in \mathbb{Z}$.

```
Implication: n \nmid (ab) \Rightarrow (n \nmid a \text{ and } n \nmid b)
Contrapositive: (n \mid a \text{ or } n \mid b) \Rightarrow n \mid (ab)
```

Proof. We prove the contrapositive: If $n \mid a$ or $n \mid b$, then $n \mid (ab)$.

Assume that $n \mid a$ or $n \mid b$. Let us analyze the cases when $n \mid a$ and when $n \mid b$ separately.

(finish on the board)

Proving a biconditional

 $p \Leftrightarrow q$

Proving a biconditional

Task: Prove that $p \Leftrightarrow q$.

Recall:
$$(p \Leftrightarrow q) \equiv (p \Rightarrow q) \land (q \Rightarrow p)$$

Proof template

- Write: "We prove p implies q and vice versa".
- Write: "First we show $p \Rightarrow q$ ": prove the implication.
- Write: "Now we show $q \Rightarrow p$ ": prove the implication.

Note: A different proof technique can be used for each implication.

Proving a biconditional (example)

Task: Let $\alpha \in \mathbb{Z}$. Prove that α is even if and only if α^2 is even.

By definition:

 $b \in \mathbb{Z}$ is even if b = 2k for some $k \in \mathbb{Z}$.

 $b \in \mathbb{Z}$ is odd if b = 2k + 1 for some $k \in \mathbb{Z}$.

Proof. We prove that if α is even then α^2 is even and vice versa.

We first show that if α is even then α^2 is even.

Assume that α is even. Then $\alpha=2k$ for some $k\in\mathbb{Z}$. Hence, $\alpha^2=(2k)^2=4k^2=2(2k^2)$ which shows that α^2 is even.

(other direction on the board)

Proof by contradiction

Proof by contradiction

Task: Prove that q holds.

Note:
$$q \equiv (\sim q \Rightarrow \underbrace{(p \land (\sim p))}_{\text{absurdity}})$$
 (check!)

Proof template

- Write: "We use proof by contradiction."
- Assume ~q holds.
- Deduce something known to be false (a contradiction).
- Write: "We have reached a contradiction. Hence, q holds."

Proof by contradiction (example)

Task: Prove that $\sqrt{2}$ is an irrational number.

Definitions:

- $\sqrt{2}$ is a number such that $(\sqrt{2})^2 = 2$.
- We say that $x \in \mathbb{R}$ is rational if we can express it as $\frac{a}{b}$ for some $a, b \in \mathbb{Z}$. Otherwise, we say that x is irrational.

Proof. We use proof by contradiction.

Assume that $\sqrt{2}$ is rational. So by definition, this means that $\sqrt{2}=\frac{\alpha}{b}$ for some $\alpha,b\in\mathbb{Z}^+.$

(finish on the board)

