CHAPTER 6

6.1 PHStat output:

Normal Probabilities			
Common Data			
Mean	0		
Standard Deviation	1		
		Probability for a Range	
Probability for X <=		From X Value	1.57
X Value	1.57	To X Value	1.84
Z Value	1.57	Z Value for 1.57	1.57
P(X<=1.57)	0.9417924	Z Value for 1.84	1.84
		P(X<=1.57)	0.9418
Probability for X >		P(X<=1.84)	0.9671
X Value	1.84	P(1.57<=X<=1.84)	0.0253
Z Value	1.84		
P(X>1.84)	0.0329	Find X and Z Given Cum. F	octage.
		Cumulative Percentage	95.00%
Probability for X<1.57	7 or X >1.84	Z Value	1.644854
P(X<1.57 or X >1.84)	0.9747	X Value	1.644854

- (a) P(Z < 1.57) = 0.9418
- P(Z > 1.84) = 1 0.9671 = 0.0329(b)
- P(1.57 < Z < 1.84) = 0.9671 0.9418 = 0.0253(c)
- P(Z < 1.57) + P(Z > 1.84) = 0.9418 + (1 0.9671) = 0.9747(d)

6.2 PHStat output:

1 113tat butput.			
Normal Probabilities			
Common Data			
Mean	0		
Standard Deviation	1		
		Probability for a Range	·
Probability for X <=		From X Value	1.57
X Value	-1.57	To X Value	1.84
Z Value	-1.57	Z Value for 1.57	1.57
P(X<=-1.57)	0.0582076	Z Value for 1.84	1.84
		P(X<=1.57)	0.9418
Probability for X >		P(X<=1.84)	0.9671
X Value	1.84	P(1.57<=X<=1.84)	0.0253
Z Value	1.84		
P(X>1.84)	0.0329	Find X and Z Given Cum. Pctage.	
		Cumulative Percentage	84.13%
Probability for X<-1.57 or X >1.84		Z Value	0.999815
P(X<-1.57 or X >1.84)	0.0911	X Value	0.999815

P(-1.57 < Z < 1.84) = 0.9671 - 0.0582 = 0.9089(a)

236 Chapter 6: The Normal Distribution and Other Continuous Distributions

- 6.2 (b) P(Z < -1.57) + P(Z > 1.84) = 0.0582 + 0.0329 = 0.0911
- cont. (c) If P(Z > A) = 0.025, P(Z < A) = 0.975. A = +1.96.
 - (d) If P(-A < Z < A) = 0.6826, P(Z < A) = 0.8413. So 68.26% of the area is captured between -A = -1.00 and A = +1.00.
- 6.3 (a) Partial PHStat output:

(a) Partiai Pristat C	տւքաւ.		
Normal			
Probabilities			
Common Data			
Mean	0		
Standard Deviation	1		
		Probability for a Range	
Probability for X <=		From X Value	1.57
X Value	1.08	To X Value	1.84
Z Value	1.08	Z Value for 1.57	1.57
P(X<=1.08)	0.8599289	Z Value for 1.84	1.84
-		P(X<=1.57)	0.9418
Probability for X >		P(X<=1.84) 0.967	
X Value	-0.21	P(1.57<=X<=1.84)	0.0253
Z Value	-0.21		
P(X>-0.21)	0.5832	Find X and Z Given Cum. Pctage.	
•		Cumulative Percentage	84.13%
Probability for X<1.0	8 or X >-0.21	Z Value	0.999815
P(X<1.08 or X >- 0.21)	1.4431	X Value	0.999815

$$P(Z < 1.08) = 0.8599$$

- (b) P(Z > -0.21) = 1.0 0.4168 = 0.5832
- (c) Partial PHStat output:

(+)	****	
Probability for X<-0.21 or X >0		
P(X<-0.21 or X >0)	0.9168	

$$P(Z < -0.21) + P(Z > 0) = 0.4168 + 0.5 = 0.9168$$

(d) Partial PHStat output:

Probability for X<-0.21 or X >1.08		
P(X<-0.21 or X>1.08)	0.5569	

$$P(Z < -0.21) + P(Z > 1.08) = 0.4168 + (1 - 0.8599) = 0.5569$$

6.4 PHStat output:

Named Brobabilities			
Normal Probabilities			
Common Data			
Mean	0		
Standard Deviation	1		
		Probability for a Range	
Probability for X <=		From X Value	-1.96
X Value	-0.21	To X Value	-0.21
Z Value	-0.21	Z Value for -1.96	-1.96
P(X<=-0.21)	0.4168338	Z Value for -0.21	-0.21
		P(X<=-1.96)	0.0250
Probability for X >		P(X<=-0.21)	0.4168
X Value	1.08	P(-1.96<=X<=-0.21)	0.3918
Z Value	1.08		
P(X>1.08)	0.1401	Find X and Z Given Cum. Pctage.	
		Cumulative Percentage	84.13%
Probability for X<-0.21 or X >1.08		Z Value	0.999815
P(X<-0.21 or X >1.08)	0.5569	X Value	0.999815

- (a) P(Z > 1.08) = 1 - 0.8599 = 0.1401
- P(Z < -0.21) = 0.4168(b)
- P(-1.96 < Z < -0.21) = 0.4168 0.0250 = 0.3918(c)
- P(Z > A) = 0.1587, P(Z < A) = 0.8413. A = +1.00. (d)

6.5 Partial PHStat output: (a)

Common Data	
Mean	100
Standard Deviation	10
Probability for X <=	
X Value	70
Z Value	-3
P(X<=70)	0.0013499
Probability for X >	
X Value	75
Z Value	-2.5
P(X>75)	0.9938
V ,, 7	5 100

$$Z = \frac{X - \mu}{\sigma} = \frac{75 - 100}{10} = -2.50$$

$$P(X > 75) = P(Z > -2.50) = 1 - P(Z < -2.50) = 1 - 0.0062 = 0.9938$$
b)
$$Z = \frac{X - \mu}{\sigma} = \frac{70 - 100}{10} = -3.00$$

$$P(X < 70) = P(Z < -3.00) = 0.00135$$

6.5 (c) Partial PHStat output:

cont.

Common Data		
Mean	100	
Standard Deviation	10	
Probability for X <=		
X Value	80	
Z Value	-2	
P(X<=80)	0.0227501	
Probability for X >		
X Value	110	
Z Value	1	
P(X>110)	0.1587	
Probability for X<80 or X >110		

P(X<80 or X > 110) 0.1814
$$Z = \frac{X - \mu}{\sigma} = \frac{80 - 100}{10} = -2.00 \qquad Z = \frac{X - \mu}{\sigma} = \frac{110 - 100}{10} = 1.00$$

$$Z = \frac{X - \mu}{\sigma} = \frac{110 - 100}{10} = 1.00$$

$$P(X < 80) = P(Z < -2.00) = 0.0228$$

$$P(X > 110) = P(Z > 1.00) = 1 - P(Z < 1.00) = 1.0 - 0.8413 = 0.1587$$

$$P(X < 80) + P(X > 110) = 0.0228 + 0.1587 = 0.1815$$

(d) $P(X_{\text{lower}} < X < X_{\text{upper}}) = 0.80$

$$P(-1.28 < Z) = 0.10$$
 and $P(Z < 1.28) = 0.90$

$$P(-1.28 < Z) = 0.10 \text{ and } P(Z < 1.28) = 0.90$$

$$Z = -1.28 = \frac{X_{\text{lower}} - 100}{10} \qquad Z = +1.28 = \frac{X_{\text{upper}} - 100}{10}$$

$$X_{\text{lower}} = 100 - 1.28(10) = 87.20 \text{ and } X_{\text{upper}} = 100 + 1.28(10) = 112.80$$

$$X_{\text{lower}} = 100 - 1.28(10) = 87.20$$
 and $X_{\text{upper}} = 100 + 1.28(10) = 112.80$

6.6 Partial PHStat output:

Common Data			
Mean	50		
Standard Deviation	4		
		Probability for a Range	
Probability for X <=		From X Value	42
X Value	42	To X Value	43
Z Value	-2	Z Value for 42	-2
P(X<=42)	0.0227501	Z Value for 43	-1.75
		P(X<=42)	0.0228
Probability for X >	Probability for X > P(X<=43)		0.0401
X Value	43	P(42<=X<=43)	0.0173
Z Value	-1.75		
P(X>43) 0.9599		Find X and Z Given Cur	n. Pctage.
		Cumulative Percentage	5.00%
Probability for X<42 or X >43		Z Value	-1.644854
P(X<42 or X >43)	0.9827	X Value	43.42059

$$P(X > 43) = P(Z > -1.75) = 1 - 0.0401 = 0.9599$$

6.6 (b)
$$P(X < 42) = P(Z < -2.00) = 0.0228$$

cont. (c)
$$P(X < A) = 0.05$$
,

$$Z = -1.645 = \frac{A - 50}{4}$$
 $A = 50 - 1.645(4) = 43.42$

(d) Partial PHStat output:

Find X and Z Given Cum. Pctage.		
Cumulative Percentage 80.00%		
Z Value	0.841621	
X Value	53.36648	

$$P(X_{\text{lower}} < X < X_{\text{upper}}) = 0.60$$

 $P(Z < -0.84) = 0.20$ and $P(Z < 0.84) = 0.80$
 $Z = -0.84 = \frac{X_{\text{lower}} - 50}{4}$ $Z = +0.84 = \frac{X_{\text{upper}} - 50}{4}$
 $X_{\text{lower}} = 50 - 0.84(4) = 46.64$ and $X_{\text{upper}} = 50 + 0.84(4) = 53.36$

$$X_{\text{lower}} = 50 - 0.84(4) = 46.64$$
 and $X_{\text{upper}} = 50 + 0.84(4) = 53.36$

6.7 (a)
$$P(X > 32) = P(Z > 0.12) = 0.4522$$

Probability for X>		
XValue	32	
Z Value	0.12	
P(X>32)	0.4522	

(b)
$$P(10 < X < 20) = P(-2.08 < Z < -1.08) = 0.1213$$

Probability for a Range		
FromXValue	10	
To X Value	20	
Z Value for 10	-2.08	
Z Value for 20	-1.08	
P(X<=10)	0.0188	
P(X<=20)	0.1401	
P(10<=X<=20)	0.1213	

(c)
$$P(X < 10) = P(Z < -2.08) = 0.0188$$

$\underline{P(X<10)} = P(Z<-2)$	(2.08) = 0.018	38_	
Probability	for X <i><</i> ≔		
X Value		10	
ZValue	-2.	08	
P(X<=10)	0.01876		
P(X < A) = 0.99	Z = 2.32	$263 = \frac{A - 30.8}{10}$	A = 54.0635
Find X and Z Giv	ven Cum. Po	tage.	
Cumulative Percen	tage	99.00%	

(d)
$$P(X < A) = 0.99$$
 $Z = 2.3263 = \frac{A - 30.8}{10}$ $A = 54.0635$

Find X and Z Given Cum. Pctage.	
Cumulative Percentage	99.00%
Z Value	2.326348
XValue	54.06348

Note: The above answers are obtained using PHStat. They may be slightly different when Table E.2 is used.

6.8 Partial PHStat output:

Common Data	
Mean	50
Standard	
Deviation	12

Probability for X <=	
X Value	30
Z Value	-1.666667
P(X<=30)	0.0477904

Probability for X >	
X Value	60
Z Value	0.8333333
P(X>60)	0.2023

	,	
Probability for X<30 or X >60		
P	(X<30 or X >60)	0.2501

Probability for a Range	
34	
50	
3333	
0	
0912	
5000	
4088	

Find X and Z Given Cum. Pctage.	
Cumulative Percentage 20.00%	
Z Value	-0.841621
X Value	39.90055

- (a) P(34 < X < 50) = P(-1.33 < Z < 0) = 0.4088
- (b) P(X < 30) + P(X > 60) = P(Z < -1.67) + P(Z > 0.83)= 0.0475 + (1.0 - 0.7967) = 0.2508

(c)
$$P(X > A) = 0.80$$
 $P(Z < -0.84) \cong 0.20$ $Z = -0.84 = \frac{A - 50}{12}$

A = 50 - 0.84(12) = 39.92 thousand miles or 39,920 miles

(d) Partial PHStat output:

Common Data	
Mean	50
Standard	
Deviation	10

Probability for X <=	
X Value	30
Z Value	-2
P(X<=30)	0.0227501

Probability for X >	
X Value	60
Z Value	1
P(X>60)	0.1587

Probability for X<30 or X >60		
P(X<30 or X >60)	0.1814	

Probability for a Range	
From X Value	34
To X Value	50
Z Value for 34	-1.6
Z Value for 50	0
P(X<=34)	0.0548
P(X<=50)	0.5000
P(34<=X<=50)	0.4452

Find X and Z Given Cum. Pctage.	
Cumulative Percentage	20.00%
Z Value	-0.841621
X Value	41.58379

The smaller standard deviation makes the *Z*-values larger.

- (a) P(34 < X < 50) = P(-1.60 < Z < 0) = 0.4452
- (b) P(X < 30) + P(X > 60) = P(Z < -2.00) + P(Z > 1.00)= 0.0228 + (1.0 - 0.8413) = 0.1815
- (c) A = 50 0.84(10) = 41.6 thousand miles or 41,600 miles

6.9 Partial PHStat output:

Probability for X>	
XValue	15
ZValue	0.6
P(X>15)	0.2743

P(X > 15) = PZ > 0.6) = 0.2743

Partial PHStat output:

Probability for a Range	
FromXValue	10
To X Value	12
Z Value for 10	-1.9
Z Value for 12	-0.9
P(X<=10)	0.0287
P(X<=12)	0.1841
P(10<=X<=12)	0.1553

P(10 < X < 12) = P(-1.9 < Z < -0.9) = 0.1553

Partial PHStat output:

Find X and Z Given Cum. Pctage.	
Cumulative Percentage	97.50%
Z Value	1.9600
XValue	17.71993

(c)
$$P(X_{\text{lower}} < X < X_{\text{upper}}) = 0.95$$

 $P(Z < -1.96) = 0.0250 \text{ and } P(Z < 1.96) = 0.9750$
 $Z = -1.96 = \frac{X_{\text{lower}} -13.8}{2}$ $Z = +1.96 = \frac{X_{\text{upper}} -13.8}{2}$
 $X_{\text{lower}} = 9.8801$ and $X_{\text{upper}} = 17.7199$

6.10 PHStat output:

Common Data	
Mean	73
Standard Deviation	8

Probability for X <=	
X Value	91
Z Value	2.25
P(X<=91)	0.9877755

Probability for X >	
X Value	81
Z Value	1
P(X>81)	0.1587

Probability for X<91 or X >81	
P(X<91 or X >81)) 1.1464

Probability for a Range	
From X Value	65
To X Value	89
Z Value for 65	-1
Z Value for 89	2
P(X<=65)	0.1587
P(X<=89)	0.9772
P(65<=X<=89)	0.8186

Find X and Z Given Cum. Pctage.	
Cumulative Percentage	95.00%
Z Value	1.644854
X Value	86.15883

242 Chapter 6: The Normal Distribution and Other Continuous Distributions

6.10 (a)
$$P(X < 91) = P(Z < 2.25) = 0.9878$$

cont. (b)
$$P(65 < X < 89) = P(-1.00 < Z < 2.00) = 0.9772 - 0.1587 = 0.8185$$

(c)
$$P(X>A) = 0.05$$
 $P(Z<1.645) = 0.9500$
 $Z = 1.645 = \frac{A-73}{9}$ $A = 73 + 1.645(8) = 86.16\%$

(c)
$$P(X > A) = 0.03$$
 $P(Z < 1.043) = 0.9300$
 $Z = 1.645 = \frac{A - 73}{8}$ $A = 73 + 1.645(8) = 86.16\%$
(d) Option 1: $P(X > A) = 0.10$ $P(Z < 1.28) \cong 0.9000$
 $Z = \frac{81 - 73}{8} = 1.00$

Since your score of 81% on this exam represents a Z-score of 1.00, which is below the minimum Z-score of 1.28, you will not earn an "A" grade on the exam under this grading option.

Option 2:
$$Z = \frac{68-62}{3} = 2.00$$

Since your score of 68% on this exam represents a Z-score of 2.00, which is well above the minimum Z-score of 1.28, you will earn an "A" grade on the exam under this grading option. You should prefer Option 2.

6.11 PHStat output:

(a)
$$P(X < 321) = P(Z < -1.50) = 0.0668$$

Probability for X <=	
XValue	321
Z Value	-1.5
P(X<=321)	0.0668

(b)
$$P(320 < X < 471) = P(-1.52 < Z < 1.50) = 0.8689$$

Probability for a Range	
FromXValue	320
To X Value	471
Z Value for 320	-1.52
Z Value for 471	1.5
P(X<=320)	0.0643
P(X<=471)	0.9332
P(320<=X<=471)	0.8689

(c)
$$P(X > 471) = P(Z > 1.50) = 0.0668$$

Probability for X>	
XValue	471
ZValue	1.5
P(X>471)	0.0668

(d)
$$P(X < A) = 0.01$$
 $P(Z < -2.3263) = 0.01$
 $A = 396 - 50(2.3263) = 279.6826$

Find X and Z Given Cum. Pctage.	
Cumulative Percentage	1.00%
ZValue	-2.3263
XValue	279.6826

6.12 (a) P(X > 60) = P(Z > 1.1429) = 0.1265

Probability for X>	
XValue	60
Z Value	1.1428571
P(X>60)	0.1265

(b) P(15 < X < 30) = P(-2.0714 < Z < -1) = 0.1395

Probability for a Range	
FromXValue	15
To X Value	30
Z Value for 15	-2.0714
Z Value for 30	-1
P(X<=15)	0.0192
P(X<=30)	0.1587
P(15<=X<=30)	0.1395

(c) P(X < 15) = P(Z < -2.0714) = 0.0192

Probability for X <=	
XValue	15
Z Value	-2.0714
P(X<=15)	0.0192

P(X < A) = 0.99 Z = 2.3263 A = 76.5689(d)

Find X and Z Given Cum. Pctage.	
Cumulative Percentage	99.00%
Z Value	2.3263
XValue	76.5689

6.13 (a) Partial PHStat output:

Probability for a Range	
From X Value	21.99
To X Value	22
Z Value for 21.99	-2.4
Z Value for 22	-0.4
P(X<=21.99)	0.0082
P(X<=22)	0.3446
P(21.99<=X<=22)	0.3364

P(21.99 < X < 22.00) = P(-2.4 < Z < -0.4) = 0.3364

(b) Partial PHStat output:

Probability for a Range	
From X Value	21.99
To X Value	22.01
Z Value for 21.99	-2.4
Z Value for 22.01	1.6
P(X<=21.99)	0.0082
P(X<=22.01)	0.9452
P(21.99<=X<=22.01)	0.9370

P(21.99 < X < 22.01) = P(-2.4 < Z < 1.6) = 0.9370

244 Chapter 6: The Normal Distribution and Other Continuous Distributions

6.13 (c) Partial PHStat output: cont.

Find X and Z Given Cum. Pctage.	
Cumulative Percentage	98.00%
Z Value	2.05375
X Value	22.0123

P(X > A) = 0.02 Z = 2.05

A = 22.0123

(d) (a) Partial PHStat output:

	- P
Probability for a Range	
From X Value	21.99
To X Value	22
Z Value for 21.99	-3
Z Value for 22	-0.5
P(X<=21.99)	0.0013
P(X<=22)	0.3085
P(21.99<=X<=22)	0.3072

$$P(21.99 < X < 22.00) = P(-3.0 < Z < -0.5) = 0.3072$$

(d) (b) Partial PHStat output:

Probability for a Range	
From X Value	21.99
To X Value	22.01
Z Value for 21.99	-3
Z Value for 22.01	2
P(X<=21.99)	0.0013
P(X<=22.01)	0.9772
P(21.99<=X<=22.01)	0.9759

$$P(21.99 < X < 22.01) = P(-3.0 < Z < 2) = 0.9759$$

(c) Partial PHStat output:

Find X and Z Given Cum. Pctage.		
Cumulative Percentage 98.00%		
Z Value	2.05375	
X Value	22.0102	

$$P(X>A) = 0.02$$
 $Z = 2.05$ $A = 22.0102$

- 6.14 With 39 values, the smallest of the standard normal quantile values covers an area under the normal curve of 0.025. The corresponding Z value is -1.96. The middle (20th) value has a cumulative area of 0.50 and a corresponding Z value of 0.0. The largest of the standard normal quantile values covers an area under the normal curve of 0.975, and its corresponding Z value is +1.96.
- 6.15 Area under normal curve covered: $0.1429 \ 0.2857 \ 0.4286 \ 0.5714 \ 0.7143 \ 0.8571$ Standardized normal quantile value: $-1.07 \ -0.57 \ -0.18 \ +0.18 \ +0.57 \ +1.07$

6.16 Excel output: (a)

MPG		
Mean	22.52941	
Standard Error	0.446536	
Median	22	
Mode	22	
Standard Deviation	1.841115	
Sample Variance	3.389706	
Kurtosis	0.340209	
Skewness	0.525947	
Range	7	
Minimum	19	
Maximum	26	
Sum	383	
Count	17	
First Quartile	21.5	
Third Quartile	23.5	
Interquartile Range	2	
CV	8.17%	
6*std.dev	11.04669	
1.33*std.dev	2.448683	

The mean is about the same as the median. The range is smaller than 6 times the standard deviation and the interquartile range is smaller than 1.33 times the standard deviation.

The normal probability plot indicates departure from normal distribution. The kurtosis is 0.3402, indicating a distribution that is slightly more peaked than a normal distribution, with more values in the tails. The skewness of 0.5259 indicates a slightly right-skewed distribution.

6.17 Excel output:

Cost(\$)	
Mean	207.6667
Standard Error	8.912388
Median	197
Mode	225
Standard Deviation	48.81516
Sample Variance	2382.92
Kurtosis	1.160659
Skewness	1.141341
Range	191
Minimum	146
Maximum	337
Sum	6230
Count	30
First Quartile	172
Third Quartile	225
Interquartile Range	53
6 * std.dev	292.8909
1.33 * std.dev	64.92416

(a) The mean is higher than the median. The range is smaller than 6 times the standard deviation. The interquartile range is smaller than 1.33 times the standard deviation.

(b)

According to the normal probability plot, the data appear to be right skewed. The kurtosis is 1.1607 indicating a distribution that is slightly more peaked than a normal distribution, with more values in the tails. The skewness of 1.1413 indicates a right-skewed distribution.

6.18 Excel output:

Property Taxes Per Capita (\$)		
Mean	1332.235	
Standard Error	80.91249	
Median	1230	
Mode	#NA	
Standard Deviation	577.8308	
Sample Variance	333888.4	
Kurtosis	0.539467	
Skewness	0.918321	
Range	2479	
Minimum	506	
Maximum	2985	
Sum	67944	
Count	51	
First Quartile	867	
Third Quartile	1633	
Interquartile Range	766	
6 * std.dev	3466.985	
1.33 * std.dev	768.515	
	11 1 1 1	

Because the mean is slightly larger than the median, the interquartile range is slightly less (a) than 1.33 times the standard deviation, and the range is much smaller than 6 times the standard deviation, the data appear to deviate from the normal distribution.

(b)

The normal probability plot suggests that the data appear to be right-skewed. The kurtosis is 0.5395 indicating a distribution that is slightly more peaked than a normal distribution, with more values in the tails. A skewness of 0.9183 indicates a right-skewed distribution.

248 Chapter 6: The Normal Distribution and Other Continuous Distributions

6.19 Excel output:

Market Cap (\$billions)	
Mean	142.93
Median	121.6
Mode	#NA
Standard Deviation	86.86023
Range	394.6
Minimum	9.1
Maximum	403.7
Sum	4287.9
Count	30
First Quartile	73.4
Third Quartile	210.5
Interquartile Range	137.1
6 * std.dev	521.1614
1.33 * std.dev	115.5241

(a) The mean is greater than the median; the range is smaller than 6 times the standard deviation and the interquartile range is greater than 1.33 times the standard deviation. The data do not appear to be normally distributed.

(b)

The normal probability plot suggests that the data are skewed to the right.

(c)

The histogram suggests that the data are skewed to the right.

6.20 Excel output:

	2.1001 0 4.10 4.1.	
Error		
Mean	-0.00023	
Median	0	
Mode	0	
Standard Deviation	0.001696	
Sample Variance	2.88E-06	
Range	0.008	
Minimum	-0.003	
Maximum	0.005	
First Quartile	-0.0015	
Third Quartile	0.001	
1.33 Std Dev	0.002255	
Interquartile Range	0.0025	
6 Std Dev	0.010175	

Because the interquartile range is close to 1.33S and the range is also close to 6S, the data (a) appear to be approximately normally distributed.

(b)

Normal Probability Plot

The normal probability plot suggests that the data appear to be approximately normally distributed.

6.21 Excel output:

	One-Year	Five-Year
Mean	0.645652	1.276087
Standard Error	0.064859	0.085282
Median	0.8	1.41
Mode	0.9	1.2
Standard Deviation	0.311051	0.408998
Sample Variance	0.096753	0.167279
Kurtosis	-1.34232	0.635713
Skewness	-0.51054	-1.11364
Range	0.95	1.5
Minimum	0.1	0.35
Maximum	1.05	1.85
Sum	14.85	29.35
Count	23	23
First Quartile	0.3	1.05
Third Quartile	0.9	1.54
Interquartile Range	0.6	0.49
CV	48.18%	32.05%
6 * std.dev	1.866308	2.453989
1.33 * std.dev	0.413698	0.543967

One-year CD:

(a) The mean is smaller than the median; the range is smaller than 6 times the standard deviation and the interquartile range is slightly greater than 1.33 times the standard deviation. The data do not appear to be normally distributed.

The normal probability plot suggests that the data are left skewed. The kurtosis is -1.3423 indicating a distribution that is less peaked than a normal distribution, with fewer values in the tails. The skewness of -0.5105 indicates that the distribution is left-skewed.

6.21 **Five-Year CD:**

(b)

The mean is slightly smaller than the median; the range is smaller than 6 times the cont. standard deviation and the interquartile range is roughly equal to 1.33 times the standard deviation. The data appear to deviate from the normal distribution.

(b) **Normal Probability Plot** 2 1.8 1.6 1.4 1.2 1 1 0.8 0.6 0.4 0.2 0

> The normal probability plot suggests that the data are left skewed. The kurtosis is 0.6357 indicating a distribution that is slightly more peaked than a normal distribution, with more values in the tails. The skewness of -1.1136 indicates that the distribution is leftskewed.

6.22 Five-number summary: 82 127 148.5 168 213 mean = 147.06(a) range = 131interquartile range = 41 standard deviation = 31.69 The mean is very close to the median. The five-number summary suggests that the distribution is quite symmetrical around the median. The interquartile range is very close to 1.33 times the standard deviation. The range is about \$50 below 6 times the standard deviation. In general, the distribution of the data appears to closely resemble a normal distribution.

Note: The quartiles are obtained using PHStat without any interpolation.

Normal Probability Plot of Electricity Cost

The normal probability plot confirms that the data appear to be approximately normally distributed.

252 Chapter 6: The Normal Distribution and Other Continuous Distributions

6.23 (a)
$$P(5 < X < 7) = (7 - 5)/10 = 0.2$$

(b)
$$P(2 < X < 3) = (3 - 2)/10 = 0.1$$

(c)
$$\mu = \frac{0+10}{2} = 5$$
 (d) $\sigma = \sqrt{\frac{(10-0)^2}{12}} = 2.8868$

6.24 (a)
$$P(0 < X < 20) = (20 - 0)/120 = 0.1667$$

(b)
$$P(10 < X < 30) = (30 - 10)/120 = 0.1667$$

(c)
$$P(35 < X < 120) = (120 - 35)/120 = 0.7083$$

(d)
$$\mu = \frac{0+120}{2} = 60$$
 $\sigma = \sqrt{\frac{(120-0)^2}{12}} = 34.6410$

6.25 (a)
$$P(25 < X < 30) = (30 - 25)/(40 - 20) = 0.25$$

(b)
$$P(X < 35) = (35 - 20)/(40 - 20) = 0.75$$

(c)
$$\mu = \frac{20+40}{2} = 30$$
 $\sigma = \sqrt{\frac{(40-20)^2}{12}} = 5.7735$

6.26 (a)
$$P(X < 19) = (19 - 18)/(24 - 18) = 0.1667$$

(b)
$$P(X < 23) = (23 - 18)/(24 - 18) = 0.8333$$

(c)
$$P(20 < X < 22) = (22 - 20)/(24 - 18) = 0.3333$$

(d)
$$\mu = \frac{(18+24)}{2} = 21$$
 $\sigma = \sqrt{\frac{(24-18)^2}{12}} = 1.7321$

6.27 (a)
$$P(X < 70) = (70 - 64)/(74 - 64) = 0.6$$

(b)
$$P(65 < X < 70) = (70 - 65)/(74 - 64) = 0.5$$

(c)
$$P(X > 65) = (74 - 65)/(74 - 64) = 0.9$$

(d)
$$\mu = \frac{(64+74)}{2} = 69$$
 $\sigma = \sqrt{\frac{(74-64)^2}{12}} = 2.8868$

6.28 (a) PHStat output:

Exponential

Probabilities

Data	
Mean	10
X Value	0.1

Results	
P(<=X)	0.6321

$$P(\text{arrival time} < 0.1) = 1 - e^{-\lambda x} = 1 - e^{-(10)(0.1)} = 0.6321$$
(b) $P(\text{arrival time} > 0.1) = 1 - P(\text{arrival time} \le 0.1) = 1 - 0.6321 = 0.3679$

6.28 (c) PHStat output: cont.

Exponential Probabilities

Data	
Mean	10
X Value	0.2

Results	
P(<=X)	0.8647

P(0.1 < arrival time < 0.2) = P(arrival time < 0.2) - P(arrival time < 0.1)= 0.8647 - 0.6321 = 0.2326

P(arrival time < 0.1) + P(arrival time > 0.2) = 0.6321 + 0.1353 = 0.7674(d)

6.29 (a) PHStat output:

Exponential **Probabilities**

Data	
Mean	30
X Value	0.1

Results	
P(<=X)	0.9502

 $P(\text{arrival time} < 0.1) = 1 - e^{-\lambda x} = 1 - e^{-(30)(0.1)} = 0.9502$

- $P(\text{arrival time} > 0.1) = 1 P(\text{arrival time} \le 0.1) = 1 0.9502 = 0.0498$ (b)
- (c) PHStat output:

Exponential Probabilities

Data	
Mean	30
X Value	0.2

Results	
P(<=X)	0.9975

 $\overline{P(0.1 < \text{arrival time} < 0.2)} = P(\text{arrival time} < 0.2) - P(\text{arrival time} < 0.1)$ = 0.9975 - 0.9502 = 0.0473

P(arrival time < 0.1) + P(arrival time > 0.2) = 0.9502 + 0.0025 = 0.9527(d)

6.30 (a) PHStat output:

Data	
Mean	5
X Value	0.3
Results	
P(<=X)	0.7769

 $P(\text{arrival time} < 0.3) = 1 - e^{-(5)(0.3)} = 0.7769$

- (b) P(arrival time > 0.3) = 1 P(arrival time < 0.3) = 0.2231
- (c) PHStat output:

Data	
Mean	5
X Value	0.5
Results	
P(<=X)	0.9179

P(0.3 < arrival time < 0.5) = P(arrival time < 0.5) - P(arrival time < 0.3)= 0.9179 - 0.7769 = 0.1410

- (d) P(arrival time < 0.3 or > 0.5) = 1 P(0.3 < arrival time < 0.5) = 0.8590
- 6.31 (a) PHStat output:

Exponential Probabilities

Data	
Mean	50
X Value	0.05

1	Results	
	เรอนแอ	
	P(<=X)	0.9179

 $P(\text{arrival time} \le 0.05) = 1 - e^{-(50)(0.05)} = 0.9179$

(b) PHStat output:

Exponential

Probabilities

Data	
Mean	50
X Value	0.0167

Results	
P(<=X)	0.5661

 $P(\text{arrival time} \le 0.0167) = 1 - 0.4339 = 0.5661$

PHStat output: 6.31 (c) cont.

Exponential Probabilities

Data	
Mean	60
X Value	0.05

Results	
P(<=X)	0.9502

Exponential **Probabilities**

Data	
Mean	60
X Value	0.0167

Γ	Results	
Ī	P(<=X)	0.6329

If $\lambda = 60$, $P(\text{arrival time} \le 0.05) = 0.9502$, $P(\text{arrival time} \le 0.0167) = 0.6329$

(d) PHStat output:

Exponential Probabilities

Data	
Mean	30
X Value	0.05

Results	
P(<=X)	0.7769

Exponential **Probabilities**

Data	
Mean	30
X Value	0.0167

Results	
P(<=X)	0.3941

If $\lambda = 30$, $P(\text{arrival time} \le 0.05) = 0.7769$ $P(\text{arrival time} \le 0.0167) = 0.3941$

6.32 (a) PHStat output:

Exponential Probabilities

Data	
Mean	2
X Value	1

Results		
	P(<=X)	0.8647

 $\overline{P(\text{arrival time} \le 1)} = 0.8647$

(b) PHStat output:

Exponential Probabilities

Data	
Mean	2
X Value	5

Results	
P(<=X)	0.999955

 $\overline{P(\text{arrival time} \le 5)} = 0.99996$

(c) PHStat output:

Exponential Probabilities

Data	
Mean	1
X Value	1

Results	
P(<=X)	0.6321

Exponential Probabilities

Data	
Mean	1
X Value	5

Results	
P(<=X)	0.993262

If $\lambda = 1$, $P(\text{arrival time } \le 1) = 0.6321$, $P(\text{arrival time } \le 5) = 0.9933$

6.33 (a) PHStat output:

Exponential Probabilities **Probabilities**

Data	
Mean	15
X Value	0.05

Results	
P(<=X)	0.5276

P(<=X) 0.5276 P(arrival time ≤ 0.05) = $1 - e^{-(15)(0.05)} = 0.5276$

PHStat output: (b)

Exponential Probabilities

Data	
Mean	15
X Value	0.25

Results	
P(<=X)	0.9765

 $\overline{P(\text{arrival time} \le 0.25)} = 0.9765$

PHStat output: (c)

Exponential **Probabilities**

Data	
Mean	25
X Value	0.05

Results	
P(<=X)	0.7135

Exponential **Probabilities**

Data	
Mean	25
X Value	0.25

If $\lambda = 25$, $P(\text{arrival time} \le 0.05) = 0.7135$, $P(\text{arrival time} \le 0.25) = 0.9981$

6.34 (a) PHStat output:

> **Exponential Probabilit** Data Mean 0.2 X Value Results

P(next call arrives in < 3) = 0.4512

0.4512

(b) PHStat output:

P(<=X)

Exponential Probabilit

Dat	a
Mean	0.2
X Value	6
Results	

P(<=X) 0.6988 $\overline{P(\text{next call arrives in } > 6)} = 1 - 0.6988 = 0.3012$

(c) PHStat output:

Exponential Probabilit

Dat	Data	
Mean	0.2	
XValue	1	
Results		
P(<=X)	0.1813	

 $\overline{P(\text{next call arrives in } < 1)} = 0.1813$

6.35 (a) PHStat output:

Exponential

Probabilities **Probabilities**

Data	
Mean	0.05
X Value	14

$$\overline{P(X < 14)} = 1 - e^{-(1/20)(14)} = 0.5034$$

6.35 (b) PHstat output: cont.

> **Exponential Probabilities**

Data	
Mean	0.05
X Value	21

Results	
P(<=X) 0.6501	

$$P(X > 21) = 1 - (1 - e^{-(1/20)(21)}) = 0.3499$$

PHStat output: (c)

Exponential **Probabilities**

Data	
Mean	0.05
X Value	7

Results	
P(<=X)	0.2953

$$P(X < 7) = 1 - e^{-(1/20)(7)} = 0.2953$$

6.36 (a) PHStat output:

Exponential **Probabilities**

Data	
Mean	8
X Value	0.25

Results	
P(<=X)	0.8647

 $P(\text{arrival time} \le 0.25) = 0.8647$

(b) PHStat output:

Exponential **Probabilities**

Data	
Mean	8
X Value	0.05

Results	
P(<=X)	0.3297

 $P(\text{arrival time} \le 0.05) = 0.3297$

6.36 (c) PHStat output: cont.

Exponential Probabilities

Data	
Mean	15
X Value	0.25

Results	
P(<=X)	0.9765

Exponential Probabilities

Data	
Mean	15
X Value	0.05

Results	
P(<=X)	0.5276

If $\lambda = 15$, $P(\text{arrival time} \le 0.25) = 0.9765$, $P(\text{arrival time} \le 0.05) = 0.5276$

6.37 (a) PHStat output:

r 115tat output.	
Exponential Probabilities	
Data	
Mean	0.6944
X Value	1
Results	
P(<=X)	0.5006

$$P(X < 1) = 1 - e^{-(0.6944)(1)} = 0.5006$$

(b) PHStat output:

Exponential Probabilities	
Data	
Mean	0.6944
X Value	2
Results	
P(<=X)	0.7506

$$P(X<2) = 1 - e^{-(0.6944)(2)} = 0.7506$$

6.37 (c) PHStat output: cont.

Exponential Probabilities	
Data	
Mean	0.6944
X Value	3
Results	
P(<=X)	0.8755

$$P(X > 3) = 1 - (1 - e^{-(0.6944)(3)}) = 0.1245$$

- (d) The time between visitors is similar to waiting line (queuing) where the exponential distribution is most appropriate.
- 6.38 Using the tables of the normal distribution with knowledge of μ and σ along with the transformation formula, we can find any probability under the normal curve.
- 6.39 Using Table E.2, first find the cumulative area up to the larger value, and then subtract the cumulative area up to the smaller value.
- Find the Z value corresponding to the given percentile and then use the equation $X = \mu + z\sigma$. 6.40
- 6.41 The normal distribution is bell-shaped; its measures of central tendency are all equal; its middle 50% is within 1.33 standard deviations of its mean; and 99.7% of its values are contained within three standard deviations of its mean.
- 6.42 Both the normal distribution and the uniform distribution are symmetric but the uniform distribution has a bounded range while the normal distribution ranges from negative infinity to positive infinity. The exponential distribution is right-skewed and ranges from zero to infinity.
- 6.43 If the distribution is normal, the plot of the Z values on the horizontal axis and the original values on the vertical axis will be a straight line.
- 6.44 The exponential distribution is used to determine the probability that the next arrival will occur within a given length of time.

6.45 (a) Partial PHStat output:

Probability for a Range	
From X Value	0.75
To X Value	0.753
Z Value for 0.75	-0.75
Z Value for 0.753	0
P(X<=0.75)	0.2266
P(X<=0.753)	0.5000
P(0.75<=X<=0.753)	0.2734

$$P(0.75 < X < 0.753) = P(-0.75 < Z < 0) = 0.2734$$

(b) Partial PHStat output:

Probability for a Range	
From X Value	0.74
To X Value	0.75
Z Value for 0.74	-3.25
Z Value for 0.75	-0.75
P(X<=0.74)	0.0006
P(X<=0.75)	0.2266
P(0.74<=X<=0.75)	0.2261

$$P(0.74 < X < 0.75) = P(-3.25 < Z < -0.75) = 0.2266 - 0.00058 = 0.2260$$

(c) Partial PHStat output:

Probability for X >	
X Value	0.76
Z Value	1.75
P(X>0.76)	0.0401

$$P(X > 0.76) = P(Z > 1.75) = 1.0 - 0.9599 = 0.0401$$

(d) Partial PHStat output:

Probability for X <=	
X Value	0.74
Z Value	-3.25
P(X<=0.74)	0.000577

$$P(X < 0.74) = P(Z < -3.25) = 0.00058$$

(e) Partial PHStat output:

Find X and Z Given Cum. Pctage.	
Cumulative Percentage	7.00%
Z Value	-1.475791
X Value	0.747097

$$\frac{100}{P(X < A) = P(Z < -1.48) = 0.07}$$

$$A = 0.753 - 1.48(0.004) = 0.7471$$

6.46 Partial PHStat output: (a)

Probability for a Range	
From X Value	1.9
To X Value	2
Z Value for 1.9	-2
Z Value for 2	0
P(X<=1.9)	0.0228
P(X<=2)	0.5000
P(1.9<=X<=2)	0.4772

$$P(1.90 < X < 2.00) = P(-2.00 < Z < 0) = 0.4772$$

Partial PHStat output: (b)

Probability for a Range	
From X Value	1.9
To X Value	2.1
Z Value for 1.9	-2
Z Value for 2.1	2
P(X<=1.9)	0.0228
P(X<=2.1)	0.9772
P(1.9<=X<=2.1)	0.9545

$$P(1.90 < X < 2.10) = P(-2.00 < Z < 2.00) = 0.9772 - 0.0228 = 0.9544$$

(c) Partial PHStat output:

Probability for X<1.9 or X >2.1	
P(X<1.9 or X >2.1)	0.0455

$$P(X < 1.90) + P(X > 2.10) = 1 - P(1.90 < X < 2.10) = 0.0456$$

(d) Partial PHStat output:

Find X and Z Given Cum. Pctage.	
Cumulative Percentage	1.00%
Z Value	-2.326348
X Value	1.883683

$$P(X>A) = P(Z>-2.33) = 0.99$$

$$A = 2.00 - 2.33(0.05) = 1.8835$$

(e) Partial PHStat output:

Find X and Z Given Cum. Pctage.	
Cumulative Percentage 99.50	
Z Value	2.575829
X Value	2.128791

$$P(A < X < B) = P(-2.58 < Z < 2.58) = 0.99$$

 $A = 2.00 - 2.58(0.05) = 1.8710$ $B = 2.00 + 2.58(0.05) = 2.1290$

264 Chapter 6: The Normal Distribution and Other Continuous Distributions

6.47 (a) Partial PHStat output:

Probability for a Range		
From X Value	1.9	
To X Value	2	
Z Value for 1.9	-2.4	
Z Value for 2	-0.4	
P(X<=1.9)	0.0082	
P(X<=2)	0.3446	
P(1.9<=X<=2)	0.3364	

$$P(1.90 < X < 2.00) = P(-2.40 < Z < -0.40) = 0.3446 - 0.0082 = 0.3364$$

(b) Partial PHStat output:

Probability for a Range	
From X Value	1.9
To X Value	2.1
Z Value for 1.9	-2.4
Z Value for 2.1	1.6
P(X<=1.9)	0.0082
P(X<=2.1)	0.9452
P(1.9<=X<=2.1)	0.9370

$$P(1.90 < X < 2.10) = P(-2.40 < Z < 1.60) = 0.9452 - 0.0082 = 0.9370$$

(c) Partial PHStat output:

Probability for a Range	
From X Value	1.9
To X Value	2.1
Z Value for 1.9	-2.4
Z Value for 2.1	1.6
P(X<=1.9)	0.0082
P(X<=2.1)	0.9452
P(1.9<=X<=2.1)	0.9370

$$P(X < 1.90) + P(X > 2.10) = 1 - P(1.90 < X < 2.10) = 0.0630$$

(d) Partial PHStat output:

Find X and Z Given Cum. Pctage.			
Cumulative Percentage 1.00			
Z Value	-2.326348		
X Value	1.903683		

$$P(X>A) = P(Z>-2.33) = 0.99$$
 $A = 2.02 - 2.33(0.05) = 1.9035$

(e) Partial PHStat output:

Find X and Z Given Cum. Pctage.	
Cumulative Percentage	99.50%
Z Value	2.575829
X Value	2.148791

$$P(A < X < B) = P(-2.58 < Z < 2.58) = 0.99$$

 $A = 2.02 - 2.58(0.05) = 1.8910$ $B = 2.02 + 2.58(0.05) = 2.1490$

6.48 (a) Partial PHStat output:

Probability for X <=	
XValue	1000
Z Value	-1.0780
P(X<=1000)	0.1405

P(X < 1000) = P(Z < -1.0780) = 0.1405

(b)

Probability for a Range	
From X Value	2500
To X Value	3000
Z Value for 2500	1.9220
Z Value for 3000	2.922
P(X<=2500)	0.9727
P(X<=3000)	0.9983
P(2500<=X<=3000)	0.0256

P(2500 < X < 3000) = P(1.9220 < Z < 2.922) = 0.0256

(c)

Find X and Z Given Cum. Pctage.	
Cumulative Percentage	90.00%
Z Value	1.2816
XValue	2179.7758

P(X < A) = P(Z < 1.2816) = 0.90 A = 1539 + 500(1.2816) = \$2,179.7758

(d)

Find X and Z Given Cum. Pctage.	
Cumulative Percentage 90.00%	
Z Value	1.2816
XValue	2179.7758

$$P(A < X < B) = P(-1.2816 < Z < 1.2816) = 0.80$$

 $A = 1539 - 1.28(500) = 898.2242

$$B = 1539 + 1.28(500) = $2,179.7758$$

6.49 Excel output:

	Alcohol %	Calories	arbohydrate
Mean	5.235592	154.3092	11.96395
Standard Error	0.115999	3.616004	0.399234
Median	4.9	150	12.055
Mode	4.2	110	12
Standard Deviation	1.430127	44.58109	4.922091
Sample Variance	2.045263	1987.473	24.22698
Kurtosis	4.370843	2.960631	1.238173
Skewness	1.434988	1.211924	0.478508
Range	11.1	275	30.2
Minimum	0.4	55	1.9
Maximum	11.5	330	32.1
Sum	795.81	23455	1818.52
Count	152	152	152
First Quartile	4.4	129	8.3
Third Quartile	5.6	166	14.5
Interquartile Range	1.2	37	6.2
6 * std dev	8.580762	267.4865	29.53255
1.33 * std dev	1.902069	59.29285	6.546381

Alcohol %:

The mean is slightly greater than the median; the range is larger than 6 times the standard deviation and the interquartile range is smaller than 1.33 times the standard deviation.

The data appear to deviate from the normal distribution.

The normal probability plot suggests that data are not normally distributed. The kurtosis is 4.3708 indicating a distribution that is more peaked than a normal distribution, with more values in the tails. The skewness of 1.4350 suggests that the distribution is right-skewed.

6.49 **Calories:**

cont.

The mean is approximately equal to the median; the range is slightly greater than 6 times the standard deviation and the interquartile range is much smaller than 1.33 times the standard deviation. The data appear to deviate away from the normal distribution.

The normal probability plot suggests that the data are somewhat right-skewed. The kurtosis is 2.9606 indicating a distribution that is more peaked than a normal distribution, with more values in the tails. The skewness of 1.2119 suggests that the distribution is right-skewed.

Carbohydrates:

The mean is approximately equal to the median; the range is approximately equal to 6 (a) times the standard deviation and the interquartile range is approximately equal to 1.33 times the standard deviation. The data appear to be normally distributed.

The normal probability plot suggests that the data are approximately normally distributed. The kurtosis is 1.2382 indicating a distribution that is slightly more peaked than a normal distribution, with more values in the tails. The skewness of 0.4785 indicates that the distribution deviates slightly from the normal distribution.

- 6.50 (a) Waiting time will more closely resemble an exponential distribution.
 - (b) Seating time will more closely resemble a normal distribution.
 - (c)

Normal Probability Plot

Both the histogram and normal probability plot suggest that waiting time more closely resembles an exponential distribution.

(d)

6.50 cont.

Normal Probability Plot

Both the histogram and normal probability plot suggest that seating time more closely resembles a normal distribution.

6.51 (a) PHStat output:

Probability for X>	
XValue	0
ZValue	-0.6705
P(X>0)	0.7487

$$P(X > 0) = P(Z > 0) = 0.7487$$

PHStat output: (b)

Probability for X>	
XValue	10
Z Value	-0.1705
P(X>10)	0.5677

$$P(X > 10) = P(Z > -0.1705) = 0.5677$$

(c)

Probability for X <=	
XValue	-20
Z Value	-1.6705
P(X<=-20)	0.0474102

$$P(X < -20) = P(Z < -1.6705) = 0.0474$$

(d)

Probability for X <=	
XValue	-30
Z Value	-2.1705
P(X<=-30)	0.0150

$$P(X < -30) = P(Z < -2.1705) = 0.0150$$

6.51 (e) (a) cont.

PHStat output:

Probability for X>	
X Value	0
ZValue	-0.530333
P(X>0)	0.7021

$$P(X > 0) = P(Z > -0.5303) = 0.7021$$

(b) PHStat output:

Probability for X>	
XValue	10
Z Value	-0.1970
P(X>10)	0.5781

$$P(X > 10) = P(Z > -0.1970) = 0.5781$$

(c)

Probability for X <=	
XValue	-20
Z Value	-1.1970
P(X<=-20)	0.1157

$$P(X < -20) = P(Z < -1.1970) = 0.1157$$

(d)

Probability for X <=	
XValue	-30
Z Value	-1.5303
P(X<=-30)	0.0630

$$P(X < -30) = P(Z < -1.5303) = 0.0630$$

6.52 (a) Partial PHStat output:

Probability for X <=	
XValue	2
Z Value	-1.720769
P(X<=2)	0.0426464

$$P(X < 2) = P(Z < -1.7208) = 0.0426$$

(b) Partial PHStat output:

Probability for a Range		
From X Value	1.5	
To X Value	2.5	
Z Value for 1.5	-2.105385	
Z Value for 2.5	-1.336154	
P(X<=1.5)	0.0176	
P(X<=2.5)	0.0907	
P(1.5<=X<=2.5)	0.0731	

$$P(1.5 < X < 2.5) = P(-2.1054 < Z < -1.3362) = 0.0731$$

6.52 Partial PHStat output: (c)

cont.

Probability for X>	
XValue	1.8
Z Value	-1.874615
P(X>1.8)	0.9696

P(X > 1.8) = P(Z > -1.8746) = 0.9696

(d) Partial PHStat output:

Find X and Z Given Cum. Pctage.			
Cumulative Percentage			
ZValue	-2.326348		
XValue	1.212748		

$$P(A < X) = 0.01$$
 $Z = -2.3263$ $A = 1.2127$

Partial PHStat output: (e)

Find X and Z Given Cum.	Pctage.	Find X and Z Given Cum.	Pctage.
Cumulative Percentage	2.50%	Cumulative Percentage	97.50%
Z Value	-1.959964	Z Value	1.959964
XValue	1.689047	XValue	6.784953

$$P(A < X < B) = 0.95$$
 $Z = -1.9600$ $A = 1.6890$
 $Z = 1.96$ $B = 6.7850$

- (f) P(X < 2) = (2 - 1)/(9 - 1) = 0.125(a)
 - P(1.5 < X < 2.5) = (2.5 1.5)/(9 1) = 0.125(b)
 - P(X > 1.8) = (9 1.8)/(9 1) = 0.9(c)

6.53 (a) Partial PHStat output:

Probability for X <=	
X Value	2
Z Value	-3.249412
P(X<=2)	0.0005782

$$P(X < 2) = P(Z < -3.2494) = 0.0006$$

(b) Partial PHStat output:

Probability for a Range		
From X Value	1.5	
To X Value	2.5	
Z Value for 1.5	-3.543529	
Z Value for 2.5	-2.955294	
P(X<=1.5)	0.0002	
P(X<=2.5)	0.0016	
P(1.5<=X<=2.5)	0.0014	

$$P(1.5 < X < 2.5) = P - 3.5435 < Z < -2.9553) = 0.0014$$

272 Chapter 6: The Normal Distribution and Other Continuous Distributions

6.53 (c) Partial PHStat output: cont.

Probability for X >	
X Value	1.8
Z Value	-3.367059
P(X>1.8)	0.9996

$$P(1.8 < X) = P - 3.3671 < Z) = 0.9996$$

(d) Partial PHStat output:

Find X and Z Given Cum. Pctage.	
Cumulative Percentage	1.00%
Z Value	-2.326348
XValue	3.569209

$$P(A < X) = 0.99$$
 $Z = -2.3263$ $A = 3.5692$

(e) Partial PHStat output:

Find X and Z Given Cum. Pctage.	
Cumulative Percentage	2.50%
Z Value	-1.959964
XValue	4.192061

Find X and Z Given Cum. Pctage.	
Cumulative Percentage	97.50%
ZValue	1.959964
XValue	10.85594

$$P(A < X < B) = 0.99$$
 $Z = -1.9600$ $A = 4.192$ $Z = 1.9600$ $B = 10.8559$

- (f) (a) P(X < 2) = (2-1)/(14-1) = 0.0769
 - (b) P(1.5 < X < 2.5) = (2.5 1.5)/(14 1) = 0.0769
 - (c) P(1.8 < X) = (14 1.8)/(14 1) = 0.9385
 - (d) A = 1 + (14 1)*0.01 = 1.13