Application de la théorie des ondelettes *

Valérie Perrier

Laboratoire de Modélisation et Calcul de l'IMAG Institut National Polytechnique de Grenoble

Valerie.Perrier@imag.fr

^{*}Enseignement UNESCO Traitement du signal et des images numériques, Tunis, ENIT, 14-18 mars 2005

Application des bases à la compression d'image

 $\begin{array}{c} {\rm Image} \ 256 \times 256 \\ {\rm comprim\'ee} \ {\rm sur} \end{array}$

1024 coefficients

Compression d'image:

Figure de gauche : $Image\ 256 \times 256 = 65536\ valeurs,\ 256\ niveaux\ de\ gris$ Figure du milieu : $image\ échantillonnée\ un\ point\ sur\ 8 \to 1024\ valeurs.$ Figure de droite : $image\ moyennée\ sur\ des\ blocs\ de\ taille\ 8 \times 8 \to 1024\ moyennes.\ (compression\ JPEG\ sur\ 1024\ valeurs)$

Compression = (65536 - 1024)*100/65536 = 98,44 %

Principe du format de compression JPEG 2000:

Figure de gauche : $Image\ 256 \times 256 = 65536\ valeurs,\ 256\ niveaux\ de\ gris.$

Figure du milieu : image recomposée à partir de ses 1024 plus grands coefficients sur la base de Haar.

Figure de droite : image recomposée à partir de ses 1024 plus grands coefficients sur une base d'ondelettes à 4 moments nuls.

Compression = (65536 - 1024)*100/65536 = 98,44%

Cours 4 : Compression des images numériques Format JPEG et JPEG 2000

- I - Principe du format JPEG

- 1 La base de Fourier discrète 1D, 2D FFT
- 2 La base de cosinus discrets 1D, 2D DCT
- 3 Principe de JPEG.

- II - Principe du format JPEG2000

- 1 Base de Haar 1D, 2D. Algorithme de décomposition.
- 2 Bases orthogonales d'ondelettes 1D FWT.
- 3 Bases orthogonales d'ondelettes 2D FWT.
- 4 Propriétés d'approximation
- 5 Principe du format JPEG 2000

Codeur par transformée

Soit f = f[n] un signal numérique de taille N : f est un vecteur de \mathbb{R}^N ou \mathbb{C}^N .

Principe d'un codeur par transformée :

- 1. On se donne une base orthonormée de \mathbb{C}^N : $\{g_k \in \mathbb{R}^N \; ; \; k = 0, N-1\}$
- 2. On décompose f dans la base (g_k) :

$$\forall n \in \{0, \dots, N-1\}, \ f[n] = \sum_{k=0}^{N-1} c_k \ g_k[n]$$

avec

$$\forall k \in \{0, \dots, N-1\}, \ c_k = \sum_{n=0}^{N-1} f[n] \ \overline{g_k[n]}$$

3. La compression est effectuée sur les coefficients c_k : on remplace c_k par un vecteur \bar{c}_k dans lequel beaucoup de coefficients sont nuls.

Le signal comprimé est alors :

$$\bar{f}[n] = \sum_{k=0}^{N-1} \bar{c}_k \ g_k[n]$$

4. On mesure l'erreur $||f - \bar{f}||$ où :

$$||f - \bar{f}||^2 = \sum_{n=0}^{N-1} |f[n] - \bar{f}[n]|^2 = \sum_{k/\bar{c}_k=0} c_k^2$$

Bases discrètes bidimensionnelles

Soit $\{g_k \in \mathbb{R}^N ; k = 0, N - 1\}$ une base orthonormée de \mathbb{R}^N . On construit une base orthonormée de $\mathbb{R}^N \times \mathbb{R}^N$ par produit tensoriel : la famille $\{G_{p,q}; p, q = 0, N - 1\}$, avec

$$G_{p,q}[n,m] = g_p[n] \ g_q[m], \qquad \forall n, m = 0, N-1$$

est une base orthonormée de $\mathbb{C}^N \times \mathbb{C}^N$.

Alors une image $F = F[n, m] \in \mathbb{R}^N \times \mathbb{R}^N$ se décompose dans cette base :

$$F[n,m] = \sum_{p=0}^{N-1} \sum_{q=0}^{N-1} C_{p,q} g_p[n]g_q[m]$$

avec

$$C_{p,q} = \sum_{n=0}^{N-1} \sum_{m=0}^{N-1} F[n,m] \overline{g_p[n]g_q[m]}$$

Partie 1 Principe du format JPEG

1. Base de Fourier discrète

Cas 1D

Soit $N \in \mathbb{N}$. Pour $k = 0, \dots, N - 1$ on pose :

$$e_k[n] = \frac{1}{\sqrt{N}} e^{2i\pi \frac{kn}{N}}$$

<u>Théorème</u> : La famille $\{e_k \; ; \; k=0,N-1\}$ est une base orthonormée de \mathbb{C}^N .

Algorithme rapide de calcul des coefficients : FFT. Algorithme de synthèse IFFT.

Cas 2D

La base orthonormée de Fourier Discrète 2D est donnée par :

$$e_p[n]e_q[m] = \frac{1}{N} e^{2i\pi \frac{pn+qm}{N}}$$

2. Base de Cosinus I discrets

Cas 1D

Soit $N \in \mathbb{N}^*$. Pour $k = 0, \dots, N - 1$ on pose :

$$g_k[n] = \lambda_k \frac{2}{\sqrt{N}} \cos\left[\frac{\pi k}{N}(n + \frac{1}{2})\right]$$

avec $\lambda_0 = \frac{1}{\sqrt{2}}$ et $\lambda_k = 1$ si $k \neq 0$.

<u>Théorème</u>: La famille $\{g_k \; ; \; k=0,N-1\}$ est une base orthonormée de \mathbb{C}^N .

La transformée associée est la DCT-I (Discrete cosine transform I).

Cas 2D

La base de Cosinus I discrets 2D est donnée par :

$$G_{p,q}[n,m] = g_p[n]g_q[m] = \lambda_p \lambda_q \frac{2}{N} \cos\left[\frac{\pi p}{N}(n+\frac{1}{2})\right] \cos\left[\frac{\pi q}{N}(m+\frac{1}{2})\right]$$

3. Principe de JPEG

Standard JPEG de compression des images numérique : codage par transformée dans une base de Cosinus I sur des blocs de taille 8 × 8.

Soit F = F[n, m] une image numérique de taille $N \times N$. On suppose que N est divisible par 8. On découpe l'image en $\mathbb{N}^2/64$ blocs de taille 8×8 . Chaque bloc d'image est ensuite décomposé sur la base :

$$G_{p,q}[n,m] = g_p[n]g_q[m] = \lambda_p \lambda_q \frac{1}{4} \cos\left[\frac{\pi p}{8}(n+\frac{1}{2})\right] \cos\left[\frac{\pi q}{8}(m+\frac{1}{2})\right], \ p,q=0,7$$

Les coefficients $C_{p,q}^{(i)}$ provenant de la décomposition du *i*-ième bloc sont ensuite triés par l'algorithme en zig-zag (parcours des coefficients des basses vers les hautes fréquences).

Parcours en zigzag des coefficients de la DCT sur un bloc, des basses vers les hautes fréquences

DCT et DCT par blocs 8X8 d'une image

Image originale "Lenna".

Au centre : DCT sur l'image gloable (zoom au voisinage de (0,0)). A droite, décomposition DCT sur des blocs de taille 8×8 (base du format JPEG).

Compression sous JPEG

Image originale et images comprimées dans le format DCT par blocs.

Figure du milieu : en gardant 3 coefficients dans chaque bloc.

Figure de droite : en gardant 6 coefficients dans chaque bloc.

Partie 2

Principe du format JPEG 2000

1- Algorithme de décomposition d'une fonction en escalier sur la base de Haar

```
[2 \quad 4 \quad 8 \quad 12 \quad 14 \quad 0 \quad 2 \quad 1]
                                                           ↓(détails)
             \downarrow (moyennes)
          [3 \ 10 \ 7 \ 1.5] \qquad [-1 \ -2 \ 7 \ 0.5]
          \downarrow (moyennes) \downarrow (détails)
     [6.5 \quad 4.25] \qquad [-3.5 \quad 2.75]
\downarrow (moyennes) \downarrow (détails)
[5.375] [1.125]
\begin{bmatrix} 5.375 & 1.125 & -3.5 & 2.75 & -1 & -2 & 7 & 0.5 \end{bmatrix}
```


1- La base de Haar sur $L^{2}(0,1)$

Soit
$$\varphi = 1$$
 sur $[0, 1]$, et $\psi(x) = \begin{cases} 1 & \text{si } x \in [0, \frac{1}{2}[\\ -1 & \text{si } x \in [\frac{1}{2}, 1[\\ \end{cases}] \end{cases}$

Pour $j \ge 0$ et $0 \le k \le 2^j - 1$, on pose : $\psi_{j,k}(x) = 2^{\frac{j}{2}} \psi(2^j x - k)$

donc
$$\psi_{j,k}(x) = \begin{cases} 2^{\frac{j}{2}} & si \ x \in [k2^{-j}, (k+\frac{1}{2})2^{-j}[\\ -(2^{\frac{j}{2}}) & si \ x \in [(k+\frac{1}{2})2^{-j}, (k+1)2^{-j}[\end{cases}$$

La famille $\{\varphi, \psi_{j,k}\}$ est une base Hilbertienne de $L^2(0,1)$, appelée **base** de **Haar**.

1- Les fonctions de la base de Haar

Les deux bases de l'espace des fonctions en escalier sur [0,1], associées à une subdivision $k/8, k=0,\ldots,7$

1- Intérêt de la décomposition

La décomposition d'une fonction $f \in L^2(0,1)$ s'écrit :

$$f = c_0 + \sum_{j=0}^{+\infty} \sum_{k=0}^{2^j - 1} d_{j,k} \psi_{j,k}$$

avec

$$c_0 = \langle f/\varphi \rangle = \int_0^1 f$$
 et $d_{j,k} = \langle f/\psi_{j,k} \rangle = \int_0^1 f \psi_{j,k}$

- Caractérisation de la régularité locale de f:
- (i) si $f \in C^1(I_{j,k})$ alors $|d_{j,k}| \le C \ 2^{-3j/2}$
- (ii) si $f \in C^{\alpha}(x_0)$ i.e. $|f(x) f(x_0)| \le k|x x_0|^{\alpha}$ $(0 < \alpha < 1)$ alors $|d_{j,k}| \le C 2^{-j(\alpha+1/2)}$
- → Propriété utile en vue de la compression

1- Démonstration de (i)

Pour $j \ge 0$ et $k \in \{0, \dots 2^j - 1\}$ fixés, on considère : $I_{j,k} =]k2^{-j}, (k+1)2^{-j}[$ qui correspond au support de $\psi_{j,k}$: $Supp(\psi_{j,k}) = [k2^{-j}, (k+1)2^{-j}] = \overline{I}_{j,k}$

Le coefficient d'ondelette sur $\psi_{j,k}$ d'une fonction f est donné par :

$$d_{j,k} = \int_{I_{j,k}} f\psi_{j,k}$$

Si $f \in C^1(I_{j,k})$ alors pour tout $x \in I_{j,k}$, on a: $f(x) = f((k + \frac{1}{2})2^{-j}) + (x - (k + \frac{1}{2})2^{-j})f'(\theta_x)$, avec $\theta_x \in I_{j,k}$

$$d_{j,k} = \int_{I_{j,k}} (x - (k + \frac{1}{2})2^{-j}) f'(\theta_x) \psi_{j,k}(x) dx$$

 $\operatorname{car} \int \psi_{j,k} = 0$

 et

donc

$$|d_{j,k}| \le \sup_{I_{j,k}} |f'| \int_{I_{j,k}} |2^{-j-1}| \ 2^{j/2} dx \le \frac{1}{2} \sup_{I_{j,k}} |f'| \ 2^{-3j/2}$$

1- Exemple : $f(x) = \sqrt{|\cos 2\pi x|}$

Figure de gauche : fonction f discrétisée sur $1024 = 2^{10}$ valeurs.

Figure du milieu : carte des coefficients sur la base de Haar

 $(abscisse: k2^{-j} \in [0,1], ordonn\'ee: -j, j = 1, ... 9).$

Figure de droite : fonction recomposée à partir des 80 plus grands coefficients (> 0.06) (compression=92.2 %, erreur relative $L^2 = 6.10^{-3}$).

1- La base de Haar en dimension 2

A partir de $\varphi(x)$ et $\psi(x)$ on définit les fonctions bidimensionnelles :

$$\Phi(x,y) = \varphi(x)\varphi(y) \quad \Psi^{1}(x,y) = \psi(x)\varphi(y)$$

$$\Psi^{2}(x,y) = \varphi(x)\psi(y) \quad \Psi^{3}(x,y) = \psi(x)\psi(y)$$

Les valeurs de Ψ^1 , Ψ^2 et Ψ^3 sur $[0,1] \times [0,1]$ sont :

Pour $i = 1, 2, 3, j \ge 0$ et $\vec{k} = (k_x, k_y), 0 \le k_x, k_y \le 2^j - 1$:

$$\Psi_{j,\vec{k}}^{i}(x,y) = 2^{\frac{j}{2}} \Psi^{i}(2^{j}x - k_{x}, 2^{j}y - k_{y})$$

La famille $\left\{\Phi, \Psi_{j,\vec{k}}^1, \Psi_{j,\vec{k}}^2, \Psi_{j,\vec{k}}^3\right\}$ est une base hilbertienne de $L^2\left([0,1]^2\right)$.

1- Décomposition d'une fonction 2D

$$f = C_0 + \sum_{j=0}^{+\infty} \sum_{k_x, k_y=0}^{2^j - 1} \left(D_{j, \vec{k}}^1 \Psi_{j, \vec{k}}^1 + D_{j, \vec{k}}^2 \Psi_{j, \vec{k}}^2 + D_{j, \vec{k}}^3 \Psi_{j, \vec{k}}^3 \right)$$

avec:

$$C_0 = \iint_{[0,1]^2} f \text{ et } D^i_{j,\vec{k}} = \iint_{[0,1]^2} f \Psi^i_{j,\vec{k}}$$

C_{J-2}	D_{J-2}^1	
D_{J-2}^2	D_{J-2}^{3}	D^1_{J-1}
D_{J-1}^2		D_{J-1}^3

1- Exemple sur un carré

Figure de gauche : *Image originale*.

Figure du milieu : Carte complète des coefficients sur la base de Haar.

Figure de droite : Coefficients des 2 dernières échelles.

Décomposition d'une image sur la base de Haar

 $Image\ originale\ (256^2\ valeurs)\ et\ sa\ d\'e composition\ sur\ la\ base\ de\ Haar\ :$

Figure du milieu : Carte complète des coefficients.

Figure de droite : Coefficients des 2 plus petites échelles.

Compression d'image sur la base de Haar

Image originale et images comprimées :

Figure du milieu : en gardant les 1024 plus grands coefficients (soit une compression de 98,4%).

Figure de droite: en gardant les 3467 plus grands coefficients (soit une compression de 94,7%).

2- Analyse Multirésolution (AMR)

Une analyse multirésolution de $L^2(\mathbb{R})$ est une suite de sous-espaces fermés $(V_j)_{j\in\mathbb{Z}}$ telle que :

- 1. $\forall j \in \mathbb{Z}, \ V_j \subset V_{j+1} \subset ... \subset L^2(\mathbb{R}),$
- 2. $\bigcap_{j\in\mathbb{Z}} V_j = \{0\} \text{ et } \overline{\bigcup_{j\in\mathbb{Z}} V_j} = L^2(\mathbb{R}),$
- 3. $f(x) \in V_j \iff f(2x) \in V_{j+1}$,
- 4. $f(x) \in V_0 \iff \forall n \in \mathbb{Z}, f(x-n) \in V_0,$
- 5. $\exists \varphi \in V_0 \text{ telle que } \{\varphi(x-n) : n \in \mathbb{Z}\}$ est une base orthonormée de V_0 .

 φ est appelée fonction d'échelle de l'analyse multirésolution.

2- Analyse Multirésolution - Exemples

Les espaces V_j se déduisent par dilatation de l'espace V_0 :

$$V_j = \operatorname{Vec}\{\varphi_{j,k} = 2^{\frac{j}{2}}\varphi(2^j x - k) ; k \in \mathbb{Z}\}\$$

Haar: $V_0 = \{ \text{Fonctions constantes sur } [k, k+1[, \forall k \in \mathbb{Z}] \}$

Splines de degré 1:

 $V_0 = \{ \text{Fonctions continues sur } \mathbb{R}, \text{ affines sur } [k, k+1[, \forall k \in \mathbb{Z}] \} \}$

Splines de degré n:

 $V_0 = \{ \text{Fonctions } C^{n-1} \text{ sur } \mathbb{R}, \text{polynômiales de degré n sur } [k, k+1[, \forall k] \}$

Shannon:

$$V_0 = \{ f \in L^2(\mathbb{R}) ; \hat{f} \text{ est à support dans } [1,2] \}$$

2- AMR - Construction des ondelettes

On a $V_j \subset V_{j+1}$. On introduit alors W_j , le complémentaire orthogonal de V_j dans V_{j+1} :

$$V_{j+1} = V_j \oplus W_j.$$

On cherche une fonction ψ t.q. $\{\psi(x-n): n \in \mathbb{Z}\}$ soit une base de W_0 .

Sous les hypothèses de l'AMR, on montre qu'une solution possible est :

$$\psi(x) = \sqrt{2} \sum_{n \in \mathbb{Z}} (-1)^{1-n} h_{1-n} \varphi(2x - n),$$

où les coefficients h_n sont donnés par la relation à deux échelles vérifiée par la fonction d'échelle φ

(provenant de $\varphi \in V_0 \subset V_1 = Vect\{\sqrt{2}\varphi(2x-n); n \in \mathbb{Z}\}\)$:

$$\varphi(x) = \sqrt{2} \sum_{n \in \mathbb{Z}} h_n \, \varphi(2x - n),$$

Une telle fonction ψ est appelée *ondelette* de l'AMR.

2- AMR - Récapitulatif

$$L^{2}(\mathbb{R}) = V_{0} \bigoplus_{j=0}^{+\infty} W_{j} = \bigoplus_{j=-\infty}^{+\infty} W_{j}$$

$$W_j = \text{Vec}\{\psi_{j,k}(x) = 2^{\frac{j}{2}}\psi(2^j x - k) ; k \in \mathbb{Z}\}$$

Soit $f \in L^2(\mathbb{R})$. Sa décomposition en ondelettes s'écrit :

$$f(x) = \sum_{k \in \mathbb{Z}} c_k \ \varphi(x - k) + \sum_{j=0}^{+\infty} \sum_{k \in \mathbb{Z}} d_{j,k} \ \psi_{j,k}(x) = \sum_{j=-\infty}^{+\infty} \sum_{k \in \mathbb{Z}} d_{j,k} \ \psi_{j,k}(x)$$

avec

$$c_k = \int_{\mathbb{R}} f \varphi(x - k)$$
 et $d_{j,k} = \int_{\mathbb{R}} f \psi_{j,k}$

2- Propriétés des bases d'ondelettes

- Moments nuls:

$$\int_{\mathbb{R}} \psi = 0$$

on cherche à avoir aussi N moments nuls :

$$\int_{\mathbb{R}} x^n \psi = 0, \quad \forall n = 0, \dots N - 1$$

- Caractérisation de la régularité locale de f : si $n \le N$, $\alpha < N$,

(i) si $f \in C^n(V_{x_0})$ alors $|d_{j,k}| \le C \ 2^{-j(n+1/2)}$ (pour $k2^{-j}$ "voisin" de x_0)

(ii) si $f \in C^{\alpha}(x_0)$ i.e. $|f^{[\alpha]}(x) - f^{[\alpha]}(x_0)| \le k|x - x_0|^{\alpha - [\alpha]}$ alors

$$|d_{j,k}| \le C \ 2^{-j(\alpha+1/2)}$$
 (pour $k2^{-j}$ "voisin" de x_0)

→ Propriété importante pour la compression

2- Exemples de fonctions d'échelles et d'ondelettes

Fonction d'échelle (gauche) et ondelettes (droite) :

1ère ligne : Fonctions de Meyer (de classe C^{∞} - nombre infini de moments nuls).

2ème ligne : Splines affines (2 moments nuls).

2- Exemples de fonctions d'échelles et d'ondelettes

Fonction d'échelle (gauche) et ondelettes (droite) à support compact :

1ère ligne : Daubechies D8 (4 moments nuls).

2ème ligne : Coifman C12 (4 moments nuls).

2- Algorithme rapide de décomposition en ondelettes. FWT

Soit f un signal discret 1D de longueur $N=2^J$ points. Le prolongement le plus simple est le prolongement périodique.

Etape 0 de l'algorithme : on introduit les coefficients $c_J = (c_{J,k})$

$$c_{J,k} \approx 2^{-\frac{J}{2}} f(2^{-J}), \quad k = 0, 2^{J} - 1,$$

(utilisation de $\int \varphi = 1$). On considère alors la fonction f_J de V_J :

$$f_J = \sum_{k=0}^{2^J - 1} c_{Jk} \varphi_{Jk}$$

Décomposition : $V_J = V_0 \oplus W_0 \oplus \cdots \oplus W_{J-1}$

Pour j = J, ..., 1 on utilise $V_j = V_{j-1} \oplus W_{j-1}$.

$$\forall k = 0 \cdots 2^{j-1} - 1 :$$

$$c_{j-1,k} = \sum_{n=0}^{2^{j}-1} c_{j,n} h_{n-2k}$$

$$d_{j-1,k} = \sum_{n=0}^{2^{J}-1} c_{j,n} \ g_{n-2k}$$

En terme de convolution circulaire de période 2^{j} , ces égalités se réécrivent : $(c_{j-1} = (c_{j-1,k})_{k=0\cdots 2^{j-1}-1}, \ldots)$

<u>convolution - décimation :</u>

$$c_{j-1}[k] = (c_j \star \bar{h})[2k] \quad \forall k = 0..2^{j-1} - 1$$

$$d_{j-1}[k] = (c_j \star \bar{g})[2k] \quad \forall k = 0..2^{j-1} - 1$$

avec $\bar{h}[n] = h[-n]$ et $\bar{g}[n] = g[-n]$.

Figure 1: analyse et synthèse : banc de filtrage

Recomposition A partir des coefficients d'ondelettes et de la valeur moyenne de la fonction : $[c_{00}, \{d_{jk}\}_{j=0\cdots J-1, k=0\cdots 2^{j-1}}]$, on veut retrouver les coefficients $c_J = [(c_{Jk})_{k=0\ldots N-1}]$. On utilise dans ce sens : $V_{j-1} \oplus W_{j-1} = V_j$, pour $j = 0, \ldots, J-1$. $\forall k = 0 \cdots 2^j - 1$

$$c_{jk} = \sum_{n=0}^{2^{j-1}-1} c_{j-1,n} h_{k-2n} + \sum_{n=0}^{2^{j-1}-1} d_{j-1,n} g_{k-2n}$$

Ce qui s'écrit aussi, sous forme vectorielle, en intruisant la notation (interlaçage avec des zéros) : $\widetilde{x_n} = x_p$ si n = 2p, $\widetilde{x_n} = 0$ si n = 2p + 1 :

$$c_j[k] = (\widetilde{c_{j-1}} \star h)[k] + (\widetilde{d_{j-1}} \star g)[k].$$

Exemple d'utilisation de la FWT de WaveLab

```
% Decomposition d'une fonction y, declaree avant
% la longueur de y doit etre une puissance de 2
% Utilise la bibliotheque WaveLab (gratuite)
% declaration des filtres (Daubechies, 4 moments nuls)
qmf = MakeONFilter('Daubechies',8);
% Calcul des coefficients d'ondelettes
wc = FWT_PO(y, 0, qmf);
% Trace des coefficients
PlotWaveCoeff(abs(wc),0,0)
% Recomposition d'une fonction yy
yy = IWT_PO(wc, 0, qmf);
```

2- Exemple de décomposition : $f(x) = \sqrt{|\cos 2\pi x|}$

Figure de gauche : fonction f discrétisée sur $1024 = 2^{10}$ valeurs.

Figure du milieu : carte des coefficients d'ondelettes D8

 $(abscisse: k2^{-j} \in [0,1], ordonn\'ee: -j, j = 1, ... 9).$

Figure de droite : fonction recomposée à partir des 80 plus grands coefficients (> 10^{-3}) (compression=92.2 %, erreur relative $L^2 = 3.10^{-7}$).

3- Décomposition d'une image

Les bases 2D sont construites par produit tensoriel de bases d'ondelettes 1D. Soit φ et ψ la fonction déchelle et l'ondelette provenant d'une AMR. On a deux constructions possibles :

(1) Les bases d'ondelettes tensorielles ou anisotropes :

$$\Psi_{k,k'}^{j,j'}(x,y) = \psi_{j,k}(x)\psi_{j',k'}(y), \quad j,j' \in \mathbb{Z}, k,k' \in \mathbb{Z}$$

La transformée en ondelette 2D associée utilise la FWT 1D sur les lignes puis sur les colonnes de l'images.

(2) Ondelettes issues d'Analyse Multirésolution de $L^2(\mathbb{R}^2)$:

$$\mathcal{V}_j = V_j \otimes V_j$$

- Espace de détail (ondelettes) $W_j: V_{j+1} = V_j \bigoplus W_j$

On a:

$$\mathcal{V}_{j+1} = V_{j+1} \otimes V_{j+1}
= (V_j \oplus W_j) \otimes (V_j \oplus W_j)
= (V_j \otimes V_j) \oplus (W_j \otimes V_j) \oplus (V_j \otimes W_j) \oplus (W_j \otimes W_j)$$

Donc

$$W_{j} = \text{Vec}\{\psi_{j,k}(x)\varphi_{j,k'}(y) ; \varphi_{j,k}(x)\psi_{j,k'}(y) ; \psi_{j,k}(x)\psi_{j,k'}(y) / (k,k') \in \mathbb{Z}^{2}\}$$

Figure 2: Représentation de la transformée en ondelettes orthogonale d'une image.

3- Exemples

Figure de gauche : *Image originale*.

Figure du milieu : Carte complète des coefficients d'ondelettes.

Figure de droite : Coefficients d'ondelettes (2 dernières échelles).

3- Exemples

Figure de gauche : $Image\ 256 \times 256 = 65536\ valeurs,\ 256\ niveaux\ de\ gris.$

Figure du milieu : coefficients d'ondelettes (2 dernières échelles)

Figure de droite : image recomposée à partir de ses 4000 plus grands

coefficients sur une base d'ondelettes à 4 moments nuls.

Compression = (65536 - 4000)*100/65536 = 93.9 %

4- Ordre d'approximation des bases d'ondelettes

Approximation linéaire

• Projection sur un espace V_j

$$P_j : L^2(\mathbb{R}) \to V_j$$

$$f \to \sum_{k=0}^{+\infty} \langle f/\varphi_{j,k} \rangle \varphi_{j,k}$$

• Condition de Strang-Fix à l'ordre N $(x^n \in V_j)$:

$$\forall n = 0, \dots, N - 1, 2^{j/2} (2^j x)^n = \sum_{k=0}^{+\infty} a_k^n \varphi_{j,k}(x)$$

 $(\Leftrightarrow \psi \text{ a } N \text{ moments nuls})$

• Erreur de projection : Si $u \in H^s(\mathbb{R})$ avec $s \leq N$, alors :

$$||u - P_j u||_{L^2} \le C2^{-js} ||u||_{H^s}$$

(cf éléments finis avec $h = 2^{-j}$)

4- Ordre d'approximation des bases d'ondelettes Approximation non linéaire

Soit $N \in \mathbb{N}$. Soit $u \in L^2(\mathbb{R})$, et sa décomposition en ondelettes :

$$u = u_{j_{min}} + \sum_{j=0}^{+\infty} \sum_{k=0}^{2^{j}-1} d_{j,k} \psi_{j,k}$$

On trie alors les coefficients d'ondelettes $d_{j,k}$ en valeur absolue par valeur décroissante :

$$|d_{j_1,k_1}| > |d_{j_2,k_2}| > \dots > |d_{j_N,k_N}| > \dots$$

et on note:

$$\Sigma_N(u) = u_{j_{min}} + \sum_{i=1}^N d_{j_i, k_i} \psi_{j_i, k_i}$$

Si $u \in B_q^{s,q}$ avec $\frac{1}{q} = \frac{1}{2} + s$, alors

$$||u - \Sigma_N(u)||_{L^2} \le C \left(\frac{1}{N}\right)^s ||u||_{B_q^{s,q}}$$

(en dimension n on remplace s par $\frac{s}{n}$).

Compression d'un champ de vorticité turbulent2D

Analyse d'un champ turbulent 2D : champ de vorticité, coefficients d'ondelettes de la vorticité et calcul de l'erreur de compression, en fonction du nombre de coefficients d'ondelettes retenus