Smartphone Addiction

Discription:

The study aims to assess prevalence of smartphone addiction symptoms, and to ascertain whether depression or anxiety, independently, contributes to smartphone addiction level among a sample of university students, while adjusting simultaneously for important sociodemographic, academic, lifestyle, personality trait, and smartphone-related variables.

Methodology:

A random sample of 688 undergraduate university students (mean age = 20.64 ±1.88 years; 53% men) completed a survey composed of a) questions about socio-demographics, academics, lifestyle behaviors, personality type, and smartphone use-related variables; b) 26- item Smartphone Addiction Inventory (SPAI) Scale; and c) brief screeners of depression and anxiety (PHQ-2 and GAD-2), which constitute the two core DSM-IV items for major depressive disorder and generalized anxiety disorder, respectively.

Importing Libraries

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   %matplotlib inline

In [2]: from plotly import __version__
   from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
   print(__version__) # requires version >= 1.9.0
   import cufflinks as cf
   init_notebook_mode(connected=True)
   cf.go_offline()

4.14.3
```

Exploring the Data

```
In [3]: df = pd.read_csv('final dataset.csv')
```

In [4]: rawdf = pd.read_csv('S1Dataset.csv')

In [5]: rawdf.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 688 entries, 0 to 687 Data columns (total 57 columns): ID 688 non-null int64 AGE 688 non-null object Gender 688 non-null object 688 non-null object Faculty 688 non-null object Class WrkHrs Wk 688 non-null object sty prsnt 688 non-null object Prsnlty type 688 non-null object 688 non-null object Smoking Alcohol drnk 688 non-null object 688 non-null object Rlgn_Prctces AgeStrt_useSmrtPhne 688 non-null object HrsSmrtPhnUse Wkday 681 non-null float64 CallFamMem 688 non-null object **CallFrnds** 688 non-null object Txtng 688 non-null object 688 non-null object Entertainment **RdNews** 688 non-null object OthRsns 688 non-null object Study_Purposes 688 non-null object ExcessveSmrtPhn_Use 688 non-null object TnseStp Smrtphn Use 688 non-null object hook smrtPhn 688 non-null object Rstlss NoSmrtphn 688 non-null object Vig SmrtPhnUse 688 non-null object SmrtPhnUse MreTmeMny 688 non-null object SlptLss4HrsMreTh1 SmrtPhnUse 688 non-null object SameTmeIntrnt Ngtv Relations 688 non-null object UpstStp SmrtPhnUse 688 non-null object RcntSigIncTime SmrtPhnUseWk 688 non-null object FailCntrlImplse smrtphnUse 688 non-null object FavorSmrtPhn SpndTimefrnds 688 non-null object 688 non-null object PainBckEye ExcSmrtPhnUse 688 non-null object FrstThghtSmrtphnUse WakeUp NgtveSchlJob SmrtPhnUse 688 non-null object MissStp SmrtPhnUse 688 non-null object DcreasdFmlyIntrction SmrtPhnUse 688 non-null object DcreasdHobbies SmrtPhnUse 688 non-null object UrgeSmrtPhnUse OnceStpUse 688 non-null object LifeJoylss NoSmrtPhn 688 non-null object NgtvePhysHlthEffcts SmrtPhnUse 688 non-null object Spnd LsstimeSmrtPhn EffortsUselss 688 non-null object DcreasdSlpTimeQulty SmrtPhnUse 688 non-null object IncrsdTimeSmrtPhnUse SameSatsfction 688 non-null object CannotHveMeal NosmrtPhn 688 non-null object TiredDaytime_latenightSmrtPhnUse 688 non-null object Compulsive Behavior 688 non-null object Functional Impairment 688 non-null object Withdrawal 688 non-null object Tolerance 688 non-null object 688 non-null object TotAddiction Score Lttl IntrstDoingThngs 688 non-null object Feel_Deprssd 688 non-null object Depression score 688 non-null object

```
Feel anxious
                                                  688 non-null object
         NotAble_Stpworry
                                                  688 non-null object
         Anxiety_score
                                                  688 non-null object
         dtypes: float64(1), int64(1), object(55)
         memory usage: 306.5+ KB
 In [6]: | df.info()
          <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 266 entries, 0 to 265
         Data columns (total 14 columns):
         Prsnlty type
                                               266 non-null int64
         HrsSmrtPhnUse_Wkday
                                               266 non-null int64
         CallFamMem
                                               266 non-null int64
         CallFrnds
                                               266 non-null int64
         Txtng
                                               266 non-null int64
         Entertainment
                                               266 non-null int64
         NgtvePhysHlthEffcts SmrtPhnUse
                                               266 non-null int64
         DcreasdSlpTimeQulty_SmrtPhnUse
                                               266 non-null int64
         TiredDaytime latenightSmrtPhnUse
                                               266 non-null int64
         Compulsive_Behavior
                                               266 non-null int64
         Functional_Impairment
                                               266 non-null int64
         TotAddiction_Score
                                               266 non-null int64
                                               266 non-null int64
         Depression score
         Anxiety_score
                                               266 non-null int64
         dtypes: int64(14)
         memory usage: 29.2 KB
 In [7]:
         df.head()
Out[7]:
                        HrsSmrtPhnUse_Wkday CallFamMem CallFrnds Txtng Entertainment NgtvePhy
             Prsnlty_type
          0
                      1
                                          1
                                                      1
                                                                      1
                                                                                  1
                      0
                                                                      1
          1
                                          1
                                                      1
                                                               1
                                                                                  1
          2
                      0
                                                                                  1
          3
                      0
                                                                      1
                                                                                  1
                                                      0
                                                               0
                                                                                  1
                      0
                                                                      1
         df['CallFamMem'] = df['CallFamMem']+df['CallFrnds']+df['Txtng']
 In [8]:
         df = df.rename(columns={'CallFamMem': 'Socializing'})
In [9]:
In [10]:
         df.drop('CallFrnds',axis=1,inplace=True)
         df.drop('Txtng',axis=1,inplace=True)
In [11]:
```

```
In [12]:
         df.head()
Out[12]:
             Prsnlty type HrsSmrtPhnUse Wkday Socializing Entertainment NgtvePhysHlthEffcts SmrtPhn
          0
                      1
                                           1
          1
                      0
                                           1
                                                     3
                                                                  1
          2
                      0
                                           1
                                                     3
                                                                  1
                                                     2
          3
                      0
                                                                  1
                                                     1
                      0
                                                                  1
In [ ]:
In [13]:
         df.info()
          <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 266 entries, 0 to 265
         Data columns (total 12 columns):
         Prsnlty type
                                               266 non-null int64
         HrsSmrtPhnUse_Wkday
                                               266 non-null int64
         Socializing
                                               266 non-null int64
         Entertainment
                                               266 non-null int64
         NgtvePhysHlthEffcts SmrtPhnUse
                                               266 non-null int64
         DcreasdSlpTimeQulty SmrtPhnUse
                                               266 non-null int64
         TiredDaytime latenightSmrtPhnUse
                                               266 non-null int64
         Compulsive Behavior
                                               266 non-null int64
          Functional_Impairment
                                               266 non-null int64
         TotAddiction Score
                                               266 non-null int64
                                               266 non-null int64
         Depression score
         Anxiety_score
                                               266 non-null int64
         dtypes: int64(12)
         memory usage: 25.0 KB
In [14]:
         df.columns
Out[14]: Index(['Prsnlty_type', 'HrsSmrtPhnUse_Wkday', 'Socializing', 'Entertainment',
                 'NgtvePhysHlthEffcts_SmrtPhnUse', 'DcreasdSlpTimeQulty_SmrtPhnUse',
                 'TiredDaytime_latenightSmrtPhnUse', 'Compulsive_Behavior',
                 'Functional Impairment', 'TotAddiction Score', 'Depression score',
                 'Anxiety_score'],
                dtype='object')
 In [ ]:
```

```
In [15]:
          df.tail()
Out[15]:
                 Prsnlty_type HrsSmrtPhnUse_Wkday Socializing
                                                               Entertainment NgtvePhysHlthEffcts SmrtPl
           261
                          0
                                                                          1
           262
                          1
                                                 1
                                                            3
                                                                          1
           263
                          1
                                                 0
                                                            3
                                                                          1
            264
                          1
                                                            3
                          0
                                                            3
           265
                                                 0
                                                                          1
 In [ ]:
In [16]:
          df.describe()
Out[16]:
                               HrsSmrtPhnUse_Wkday
                                                      Socializing Entertainment NgtvePhysHlthEffcts Smr
                  Prsnlty_type
                    266.000000
                                          266.000000
                                                      266.000000
                                                                    266.000000
                                                                                                   26
           count
                                                                     0.736842
            mean
                      0.364662
                                            0.819549
                                                        2.184211
                      0.482242
                                            0.385288
                                                        1.049661
                                                                      0.441177
             std
             min
                      0.000000
                                            0.000000
                                                        0.000000
                                                                      0.000000
             25%
                      0.000000
                                            1.000000
                                                        1.000000
                                                                      0.000000
             50%
                      0.000000
                                            1.000000
                                                        3.000000
                                                                      1.000000
             75%
                      1.000000
                                            1.000000
                                                        3.000000
                                                                      1.000000
                      1.000000
                                            1.000000
                                                        3.000000
                                                                      1.000000
             max
          df.columns
In [17]:
Out[17]: Index(['Prsnlty_type', 'HrsSmrtPhnUse_Wkday', 'Socializing', 'Entertainment',
                   'NgtvePhysHlthEffcts_SmrtPhnUse', 'DcreasdSlpTimeQulty_SmrtPhnUse',
                   'TiredDaytime_latenightSmrtPhnUse', 'Compulsive_Behavior',
                   'Functional Impairment', 'TotAddiction Score', 'Depression score',
                   'Anxiety_score'],
                  dtype='object')
```

Exploratory Data Analysis

```
In [18]: sns.set_style('whitegrid')
sns.pairplot(df)
```

Out[18]: <seaborn.axisgrid.PairGrid at 0x1b29ab34978>

Considered Personality Types:

A personality are more competitive, ambitious, impatient, anxious, aggressive, and more likely to be workaholic. Individuals with type B personality are their counterparts

In [19]: | sns.pairplot(df, hue="Prsnlty_type")

C:\Users\Asus\Anaconda3\lib\site-packages\statsmodels\nonparametric\kde.py:48
7: RuntimeWarning:

invalid value encountered in true_divide

C:\Users\Asus\Anaconda3\lib\site-packages\statsmodels\nonparametric\kdetools.
py:34: RuntimeWarning:

invalid value encountered in double_scalars

Out[19]: <seaborn.axisgrid.PairGrid at 0x1b2a0dca9b0>


```
In [20]: plt.figure(figsize = (15,10))
sns.heatmap(df.corr(), annot = True,linewidths=1, linecolor='white',)
```

Out[20]: <matplotlib.axes._subplots.AxesSubplot at 0x1b2a7c93048>

Results (research paper):

- 1) Revalence rates of smartphone-related compulsive behavior, functional impairment, toler □ ance and withdrawal symptoms were substantial.
- 2) Depression and anxiety scores emerged as independent positive predictors of smartphone addiction, with depression score being a more powerful predictor compared to anxiety score
- 3) Whereas gender, residence, work hours per week, faculty, academic performance (GPA), lifestyle habits (smoking and alcohol drinking), and religious practice did not associate with smartphone addiction score;
- 4) Personality type A, class (year 2 vs. year 3), younger age at first smartphone use, excessive use during a weekday, using it for entertainment and not using it to call family members, and having depression or anxiety, showed statistically significant associations with smartphone addiction.

Conclusion

Several independent positive predictors of smartphone addiction emerged including depression and anxiety. It could be that young adults with personality type A experiencing high stress level and low mood may lack positive stress coping mechanisms and mood management techniques and are thus highly susceptible to smartphone addiction.

Training a Linear Regression Model

X and y arrays

Train Test Split

Now let's split the data into a training set and a testing set. We will train out model on the training set and then use the test set to evaluate the model.

```
In [23]: from sklearn.model_selection import train_test_split
In [24]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
```

Creating and Training the Model

```
In [25]: from sklearn.linear_model import LinearRegression
In [26]: lm = LinearRegression()
```

```
In [27]: lm.fit(X_train,y_train)
Out[27]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fals e)
```

Model Evaluation

```
# print the intercept
In [28]:
           print(lm.intercept_)
           0.4626167205767193
           coeff_df = pd.DataFrame(lm.coef_,X.columns,columns=['Coefficient'])
In [29]:
           coeff_df
Out[29]:
                                            Coefficient
                               Prsnlty_type
                                              0.355763
                      HrsSmrtPhnUse_Wkday
                                              0.150873
                                 Socializing
                                             -0.196556
                              Entertainment
                                              0.032964
            NgtvePhysHIthEffcts_SmrtPhnUse
                                              -0.119057
           DcreasdSlpTimeQulty_SmrtPhnUse
                                             -0.108522
           TiredDaytime_latenightSmrtPhnUse
                                             -0.255388
                       Compulsive_Behavior
                                             -0.004183
                      Functional_Impairment
                                              0.084442
                         TotAddiction_Score
                                              0.020787
```

Predictions from our Model

```
In [30]: predictions = lm.predict(X_test)
```

```
In [31]: plt.scatter(y_test,predictions)
```

Out[31]: <matplotlib.collections.PathCollection at 0x1b2a8975940>

Residual Histogram

Regression Evaluation Metrics

```
In [33]: from sklearn import metrics
```

In [34]: print('MAE:', metrics.mean_absolute_error(y_test, predictions))
 print('MSE:', metrics.mean_squared_error(y_test, predictions))
 print('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, predictions)))

MAE: 0.949056726936283 MSE: 1.55192857404979 RMSE: 1.2457642529988529

In []:	

A Suggestion:

--> Incentive-

As an incentive, we could communicate with people that at the end of the study they will be provided with a detailed report from some of the best doctors in this field free of cost. Like their data will be analysed and it will be like a free checkup of their mental health. Since this is a interdisciplinary thing, like if we could get some help from AIIMS also.

Tn [].	
TII 1 *	