A Review on SAR ADC's

Fig. 1. SAR-ADC diagram and its time trellis operation

Fig. 2. Charge redistribution SAR-ADC

ADVANTAGES:

- (+)Low power consumption!
- (+)MOM capacitor

(Good Layout density & Matching accuracy [10-bit])

DISADVANTAGES:

- (-)Higher conversion time (n+2 or 3 cycles).
- (-)Limited precision

(Comparator Decision Error, Noise and Capacitor/DAC Matching)

Fig. 3. Power efficiency (*P/fs*) vs. SNDR with ADC architecture. (Modified from B. Murmann "ADC Performance Survey 1997-2015," [Online] http://web.stanford.edu/~murmann/adcsurvey.html)

Conventional Switching SAR ADC

- -> At sampling phase bottom plate of capacitor Charged to Vip/in. Top plates reset to Vcm.
- -> During Comparison, C1 switched to Vref and rest to Gnd. If Vip > Vin, B1 =1 else B1=0.
- -> Similarly other comparisons are performed.

Monotonic Switching SAR ADC

- -> Switching procedure can be upwards or Downwards.
- -> Samples Vip/in onto top plate of capacitor via switches. Bottom plates are reset to Vref.
- -> During Comparison, the capacitor on higher Potential is switched to gnd.
- -> Similarly other comparisons are performed.

Fig. Conventional Switching Procedure

Fig. Monotonic Switching Procedure

Operation speed improvement

Fig. 4. Asynchronous SAR-ADC control (Proposed, 2006)

Fig. 6. 2-Bit per cycle conversion SAR ADC (Multi cycle)

Fig.5. Time Interleaving (Use of Sub SAR ADC's)

Difficulty- Performance of interleaving. (offset, gain & timing mismatch)

Fig. 7. Pipelined SAR ADC (Sub-ranging)

Limited Resolution & Precision improvement (Nyquist sampling)

Fig. 8. Split Capacitor + Error Correction!

Parasitics causes mismatches to binary weights

Fig.9. Binary Scale Redundant Capacitor Array + DEC Accounts only comp. decision errors (Not mismatch errors)

<u>Limited Resolution & Precision improvement (By Oversampling)</u>

Fig. 10. SFD of Noise-shaping SAR ADC

(+)Good for suppressing comparator Thermal and Quantization noise by distributing it over wider spectrum.

- 1) Delayed residue ($L(Z) = z^{-1}$)
- 2) Integrator (L(Z)= $z^{-1}/(1-z^{-1})$)
- 3) FIR-IIR filter

*Ref -J.A. Fredenberg & Y.-S. Shu papers (ISSCC)

Limited Resolution & Precision improvement (By Oversampling)

modulate harmonic distortion and flicker noise out of signal bandwidth

Ref- A Low-Noise Chopper-Stabilized Differential Switched-Capacitor Filtering Technique (P.R. Gray, 1982)

Fig. 11. Chopper Stabilization and Dither Logic*

Dithering randomizes Q.N. making it more uniform
Here it provides SNDR improvement (from mismatch!)

Fig. 12. CL programmable Data Driven Noise reduction (DDNR) Technique

Limited Resolution & Precision improvement (By Oversampling)

Fig. 13. DAC Mismatch Error Shaping (MES)

(-) input range reduction (DR reduced by 6dB)

Need for i/p range compensation techniques

- -> DWA
- -> Prediction
- -> Detection (Analog,2023 P. Harpe)

Current Trends:-

-> Mixing and matching with improvements of techniques discussed so far.

A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure

Chun-Cheng Liu, Student Member, IEEE, Soon-Jyh Chang, Member, IEEE, Guan-Ying Huang, Student Member, IEEE, and Ying-Zu Lin, Student Member, IEEE

Building Blocks

- Bootstrapped Switches
- Comparator
- Control Logic
- DAC Capacitor Array

Bootstrapped Switch

-> constant VGS (turn on)

(Eliminates Sampling distortion)

-> reduces effect of Capacitive

Coupling(turn off)

Dynamic Comparator

- -> Clkc low (compares)
- -> Clkc high (o/p's reset to High)
- -> Generates a Valid signal

<u>Asynchronous Control signal Generation</u>

DAC Control Logic

- -> At ↑edge (clk_i), sampling of comparator o/p
- -> If O/p is High Cap_i switched from VREF to gnd and vice-versa.
- -> At $\sqrt{\text{edge(clk}_i)}$ all Cap's are reconnected to VREF.