# Assignment 2: Motion Control Low-speed Lateral Control and Additional Plots

### Francesco Caligiuri Matr. 207688

Corso: Platforms and Algorithms for Autonomous Driving

 $AA\ 2024/2025 - Consegna:\ 13/01/2025$ 

## Contents

| 1        | Introduzione Generale                  | 2 |
|----------|----------------------------------------|---|
| <b>2</b> | Exercise 1: Longitudinal Control (PID) | 2 |
|          | 2.1 Descrizione e Setup                | 2 |
|          | 2.2 Risultati e Commenti               |   |
|          | 2.3 Conclusioni per Exercise 1         |   |
| 3        | Exercise 2: Low-speed Lateral Control  | 5 |
|          | 3.1 Descrizione e Setup                | 5 |
|          | 3.2 Risultati e Osservazioni           |   |
|          | 3.3 Conclusioni per Exercise 2         | 6 |
| 4        | Exercise 3: High-speed Lateral Control | 6 |
|          | 4.1 Descrizione e Setup                | 6 |
|          | 4.2 Risultati e Osservazioni           | 7 |
|          | 4.3 Conclusioni per Exercise 3         |   |
| 5        | Conclusioni                            | 7 |

#### 1 Introduzione Generale

In questo report vengono discussi i risultati relativi all'Assignment 2, incentrato sul *Motion Control* del veicolo. Le simulazioni hanno riguardato in particolare:

- Exercise 1: Controllo longitudinale (PID) a velocità costante
- Exercise 2: Controllo laterale a 10m/s e 20m/s (Low-speed Lateral Control), in cui si sono sperimentati i metodi PurePursuit e Stanley
- Exercise 3: Controllo laterale a 23 m/s e 25 m/s ed inserimento del curvature-based lookahead

Le simulazioni sono state sviluppate partendo dal modello di veicolo non lineare (single-track) già implementato nel codice simulation.py, in cui sono integrati i metodi **RK4** (per la dinamica del veicolo). Per il tracking del path oval\_trj.txt, si è fatto uso di **PurePursuit** e **Stanley** come controllori di sterzata, con l'obiettivo di mantenere un errore laterale inferiore a 1 m e un errore di velocità finale inferiore al 5% del target.

Di seguito sono riportate le simulazioni e i relativi risultati, suddivisi per esercizio, con i grafici salvati nella cartella Results/ per facilità di consultazione.

## 2 Exercise 1: Longitudinal Control (PID)

#### 2.1 Descrizione e Setup

In questo esercizio, l'obiettivo è far tracciare al veicolo una velocità riferimento di  $15\,\mathrm{m/s}$  (e poi  $25\,\mathrm{m/s}$ ) mediante un controllore PID longitudinale. Si è mantenuta la sterzata a zero, così da osservare soprattutto la dinamica longitudinale.

I parametri PID scelti sono:

- $\bullet$  kp = 1.5
- $\bullet$  ki = 0.6
- kd = 0.06
- output\_limits =  $[-2, +2] \text{ m/s}^2$  (per antiwindup).

Il tempo di simulazione è di 90 s, con passo 0.001 s (RK4, modello nonlineare).

#### 2.2 Risultati e Commenti

Dai grafici seguenti si nota come il controllore PID adegui l'accelerazione longitudinale  $a_x$  (vedi Figure 1) per far convergere la velocità verso il setpoint (vedi Figure 2).



Figure 1: Longitudinal Acceleration Command nel tempo.



Figure 2: Andamento della velocità longitudinale: si osserva che il PID raggiunge  $\pm 5\%$  dell'errore dopo pochi secondi.

Come atteso, il veicolo segue una traiettoria pressochè rettilinea, e il lateral error  $\approx 0\,\mathrm{m}$  (vedi Figure 3).



Figure 3: Errore laterale, sostanzialmente nullo poichè lo sterzo rimane a zero.

Per quanto riguarda gli angoli di slittamento ( $\alpha_f$  e  $\alpha_r$ ) e le forze laterali, in assenza di sterzata e con la velocità longitudinale stabilizzata, risultano quasi nulli (vedi Figure 4 e Figure 5).



Figure 4: Front e Rear Slip Angles: rimangono pressochè zero.



Figure 5: Forze laterali frontali e posteriori in funzione degli angoli di slittamento. Essendo  $\alpha \approx 0$ , i punti restano vicini all'origine.

### 2.3 Conclusioni per Exercise 1

Il controllore PID longitudinale, con i parametri sopra, consente di raggiungere la velocità desiderata in modo stabile, rispettando l'errore < 5%. L'errore laterale è irrilevante

(sterzata=0). In definitiva, la strategia di controllo proposta è efficace nel seguire un riferimento di velocità in un contesto stazionario.

## 3 Exercise 2: Low-speed Lateral Control

### 3.1 Descrizione e Setup

In questo esercizio, l'obiettivo è testare il controllo laterale a basse velocità  $(10 \,\mathrm{m/s}\ e\ 20 \,\mathrm{m/s})$  utilizzando due diversi metodi:

- 1. PurePursuit con parametri k\_pp=0.001 e look\_ahead=2.0.
- 2. Stanley con k\_stanley=1.0.

I criteri di successo includono:

- Errore laterale  $< 1 \,\mathrm{m}$ .
- $\bullet$  Errore di velocità <5% dopo un tempo di assestamento.
- Completamento del percorso almeno una volta.

#### 3.2 Risultati e Osservazioni



Figure 6: Traiettoria con **PurePursuit** a 10 m/s. L'errore laterale rimane sotto 1 m.



Figure 7: Errore laterale con **PurePursuit** a 10 m/s. L'errore massimo è inferiore a 1 m.

Le simulazioni per Stanley e a velocità di 20 m/s mostrano risultati simili, con oscillazioni leggermente più marcate nel caso di Stanley.

#### 3.3 Conclusioni per Exercise 2

Entrambi i metodi, PurePursuit e Stanley, rispettano i criteri di successo per il controllo laterale a basse velocità, con prestazioni leggermente migliori per Pure Pursuit.

### 4 Exercise 3: High-speed Lateral Control

#### 4.1 Descrizione e Setup

In questo esercizio, il controllo laterale è testato a velocità più elevate  $(23\,\mathrm{m/s}$  e  $25\,\mathrm{m/s})$ . Gli obiettivi includono:

- Mantenere un errore laterale  $< 1 \,\mathrm{m}$ .
- Minimizzare le oscillazioni del comando sterzante.

#### 4.2 Risultati e Osservazioni



Figure 8: Comando sterzante con **PurePursuit** a 25 m/s. Oscillazioni ampie osservate.



Figure 9: Comando sterzante con **Stanley** a 25 m/s. Oscillazioni più contenute rispetto a PurePursuit.

### 4.3 Conclusioni per Exercise 3

Alle alte velocità, entrambi i metodi mantengono l'errore laterale sotto i limiti prefissati, ma Stanley presenta oscillazioni minori nel comando sterzante, rendendolo più adatto per queste condizioni.

### 5 Conclusioni

In conclusione, i risultati mostrano che:

• Il PID longitudinale garantisce di tracciare con errore <5% la velocità target dopo un transitorio.

- ullet Per la guida laterale a bassa velocità, sia **PurePursuit** che **Stanley** rispettano l'errore  $< 1\,\mathrm{m}$  su tutto il loop.
- A velocità più alta, Stanley potrebbe mostrare oscillazioni leggermente minori nel  $\delta$ .

Si allegano tutti i plot generati nelle directory Results/ per consultazioni più dettagliate (front slip angle, rear slip angle, ecc.).