- 1. Evaluate the following integrals.
 - (a) (5 points) $\int x\sqrt{x+5} dx$
 - (b) (5 points) $\int \frac{x-2}{x^2+6x+25} dx$
 - (c) (5 points) $\int x \cos(2x/5) \ dx$
 - (d) (5 points) $\int_0^{5/2} \frac{x^2}{\sqrt{25-x^2}} dx$
 - (e) (5 points) $\int \tan^2(x) \sec^4(x) dx$
 - (f) (5 points) $\int \frac{1}{e^x(e^{2x}+1)} dx$
- 2. Evaluate the following limits.
 - (a) (4 points) $\lim_{x\to 0} \frac{x-2\arctan(x)}{x+5\arcsin(x)}$
 - (b) (4 points) $\lim_{x \to \infty} \left(\sec \left(\frac{5}{x} \right) \right)^{x^2}$
- 3. Evaluate each improper integral or show it diverges.
 - (a) (5 points) $\int_1^e \frac{dx}{x \ln(x)}$
 - (b) (5 points) $\int_{1}^{\infty} \frac{dx}{x(2x+5)}$
- **4.** (4 points) Find the area of the region bounded by the curves given by $y = \frac{1}{x+1}$ and $y = \frac{1}{x^2+1}$.

- **5.** (5 points) Solve the differential equation $\frac{dy}{dx} = y^2 \ln(x)$ with y(1) = -1.
- **6.** In the figure a shaded rectangle is divided into two regions, R_1 and R_2 , by the curve $y = 1 x^2$. Write down, but do not evaluate, an integral for the volume of the solid of revolution obtained by
 - (a) (2 points) rotating R_1 about the x-axis
 - (b) (2 points) rotating R_1 about the line y=2
 - (c) (2 points) rotating R_2 about the line x = 2.

- 7. (5 points) Find the length of the curve given by $y = \sqrt{4 x^2}$ for $0 \le x \le 1$.
- **8.** (3 points) Determine the sum of the series $\sum_{n=1}^{\infty} \frac{2+5^n}{5^{2n}}$.
- 9. Determine whether the series converges or diverges.
 - (a) (3 points) $\sum_{n=1}^{\infty} \frac{\arctan(n)}{n}$
 - (b) (3 points) $\sum_{n=0}^{\infty} \frac{2^n}{5^n + n}$
 - (c) (3 points) $\sum_{n=1}^{\infty} n^2 \sin\left(\frac{1}{n^5}\right)$
- 10. Determine whether the series converges absolutely, converges conditionally, or diverges.
 - (a) (3 points) $\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{n+5}$
 - (b) (3 points) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^2+1}}$
 - (c) (3 points) $\sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)!}{5^n (n!)^2}$
- **11.** (5 points) Find the interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n}{2^n n} (x+1)^n$.
- 12. (5 points) Find the Taylor series for $f(x) = \frac{1}{(x+1)^2}$ centred at 4. Give your answer using sigma notation.
- **13.** (1 point) If $f(x) = \sum_{n=1}^{\infty} \frac{\cos(n\pi/2)}{n^2} x^n$, what is the coefficient of x^{25} in the Maclaurin series for f'(x)?

Answers:

1. (a)
$$\frac{2}{5}(x+5)^{5/2} - \frac{10}{3}(x+5)^{3/2} + C$$

(b)
$$\frac{1}{2}\ln(x^2+6x+25) - \frac{5}{4}\arctan\left(\frac{x+3}{4}\right) + C$$

(c)
$$\frac{5}{2}x\sin\left(\frac{2x}{5}\right) + \frac{25}{4}\cos\left(\frac{2x}{5}\right) + C$$

(d)
$$\frac{25}{24}(2\pi - 3\sqrt{3})$$

(e)
$$\frac{1}{3}\tan^3(x) + \frac{1}{5}\tan^5(x) + C$$

(f)
$$-e^{-x} - \tan(e^x) + C$$

2. (a)
$$-\frac{1}{6}$$

(b)
$$e^{25/2}$$

3. (a) diverges (to
$$\infty$$
)

(b)
$$\frac{1}{5} \ln \left(\frac{7}{2} \right)$$

4.
$$\frac{\pi}{4} - \ln(2)$$

5.
$$y = -\frac{1}{x\ln(x) - x + 2}$$
.

6. (a)
$$\int_0^1 \pi (1-x^2)^2 dx$$
 or $\int_0^1 2\pi y \sqrt{1-y} dy$

(b)
$$\int_0^1 \pi [4 - (1 + x^2)^2] dx$$
 or $\int_0^1 2\pi (2 - y) \sqrt{1 - y} dy$

(c)
$$\int_0^1 \pi (2 - \sqrt{1 - y})^2 dy$$

7.
$$\frac{\pi}{3}$$

8.
$$\frac{1}{3}$$

12.
$$\sum_{n=0}^{\infty} \frac{(-1)^n (n+1)}{5^{n+2}} (x-4)^n$$

13.
$$-\frac{1}{26}$$