Universidade Federal de Santa Catarina CENTRO TECNOLÓGICO - DEPTO DE INFORMÁTICA E ESTATÍSTICA

INE5403-FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS

Cap. 0 – Apresentação

- 0.0) Apresentação
- 0.1) Conjuntos e Sub-conjuntos
- 0.2) Següências e somas

0.2) SEOÜÊNCIAS E SOMAS:

1)	(Rosen-seção 2.4-ex.3)) Quais são os termos a ₀ ,a ₁ ,a	₂ e a ₃ da seqüência {a _n },	, aonde a _n é dado por:
	a) 2 ⁿ +1?	b) (n+1) ⁿ⁺¹ ?	c)	d) _n/2\]+\[n/2\] ?

- 2) (Rosen-secão 2.4-ex.5) Liste os 10 primeiros termos de cada uma das seguintes següências:
 - a) a següência que começa com 2 e na qual cada termo sucessivo é 3 a mais do que o seu precedente
 - b) a sequência que lista cada inteiro positivo 3 vezes, em ordem crescente
 - c) a seqüência que lista os inteiros positivos ímpares em ordem crescente, listando cada inteiro ímpar duas vezes
 - d) a sequência cujo n-ésimo termo é n!-2ⁿ
 - e) a sequência que começa com 3, aonde cada termo sucessivo é duas vezes o seu precedente
 - a següência cujos dois primeiros termos são 1 e em que cada termo sucessivo é a soma dos dois precedentes (esta é a famosa següência de Fibonacci)
 - a següência aonde o n-ésimo termo é o número de letras na palavra em português para o índice n
- (Rosen-seção 2.4-ex.9) Para cada uma das listas abaixo, obtenha uma fórmula simples (ou regra) que gere os termos de uma sequência de inteiros que inicia com a lista dada:
 - a) 1,0,1,1,0,0,1,1,1,0,0,0,1,...
 - b) 1,2,2,3,4,4,5,6,6,7,8,8,...
 - c) 1,0,2,0,4,0,8,0,16,0,...
 - d) 3,6,12,24,48,96,192,...
 - e) 15,8,1,-6,-13,-20,-27,...
 - 3,5,8,12,17,23,30,38,47,...
 - g) 2,16,54,128,250,432,686,...
 - h) 2,3,7,25,121,721,5041,40321,...
- 4) (Rosen-seção 2.4-ex.13) Quais são os valores destas somas?

a)
$$\sum_{k=1}^{5} (k+1)$$
 b) $\sum_{j=0}^{4} (-2)^{j}$

b)
$$\sum_{i=0}^{4} (-2)^{i}$$

c)
$$\sum_{i=1}^{10} 3^{i}$$

d)
$$\sum_{i=0}^{8} (2^{j+1} - 2^{j})$$

5) (Rosen-seção 2.4-ex.14) Quais são os valores destas somas, aonde S={1,3,5,7}?

a)
$$\sum_{i \in S} j$$

b)
$$\sum_{i \in S} j^2$$

c)
$$\sum_{i=0}^{\infty} (1/j)^{i}$$

$$d) \sum_{j \in S} i$$

6) (Rosen-seção 2.4-ex.15) Qual é o valor de cada uma destas somas de termos de uma PG?

a)
$$\sum_{i=0}^{8} 3.2^{i}$$

b)
$$\sum_{i=1}^{8} 2^{j}$$

c)
$$\sum_{i=2}^{8} (-3)^{i}$$

d)
$$\sum_{i=0}^{8} 2 \cdot (-3)^{i}$$

7) (Rosen-seção 2.4-ex.17) Compute cada uma destas somas duplas.

a)
$$\sum_{i=1}^{2} \sum_{j=1}^{3} (i + j)^{2}$$

a)
$$\sum_{i=1}^{2} \sum_{i=1}^{3} (i+j)$$
 b) $\sum_{i=0}^{2} \sum_{i=0}^{3} (2i+3j)$ c) $\sum_{i=1}^{3} \sum_{i=0}^{2} i$

c)
$$\sum_{i=1}^{3} \sum_{j=0}^{2} i^{j}$$

d)
$$\sum_{i=1}^{2} \sum_{i=1}^{3} i.j$$