ACT-11302 Calculo Actuarial III

Sesion 10 - Agregacion de Riesgos - Parte 1/4

Juan Carlos Martinez-Ovando

Departamento Academico de Actuaria y Seguros

Supuesto

Tradicionalmente se supone en cada periodo de tiempo t los reclamos X_{tj} s son independientes y homogeneos en distribucion (i.i.d.), con distribucion marginal data por la distribucion tipo mezcla,

$$F_X(x) = \theta \delta_{\{0\}}(x) + (1 - \theta)F_X^c(x),$$

donde

$$\theta = \mathbb{P}(\mathsf{no} \; \mathsf{siniestro})$$

y

$$F_X^c(x) = \mathbb{P}(X \le x | \text{siniestro})$$

representa la parte continua de la distribucion, con soporte en $(0, \infty)$.

Monto agregado

Asi, para el periodo de tiempo t, el monto agregado de reclamos del portafolio de tamano J_t se define como

$$S_t = \sum_{j=1}^{J_t} X_{tj}.$$

Siendo que J_t se considera como un parametro fijo en el modelo, tenemos que

$$\mathbb{E}(S_t) = J_t \mathbb{E}(X)$$

 $var(S_t) = J_t var(X),$

Denotando los primeros dos momentos de los montos individuales de siniestros como

$$\mu_X = \mathbb{E}\left(X|\text{siniestro}\right)$$

У

$$\sigma_X^2 = var(X|siniestro),$$

se obtiene una simplificacion de las ecuaciones enteriores.

Siendo las severidades individuales X_{tj} variables aleatorias del tipo mixta, se tiene que

$$\mathbb{E}(S_t) = J_t(1-\theta)\mu_X$$

$$var(S_t) = J_t\left(\mu_X^2\theta(1-\theta) + (1-\theta)\sigma_X^2\right).$$

Aunque el calculo del primer y segundo momentos de S_t es simple, **necesitamos** cuantificar la incertidumbre completa de S_t a traves de su distribucion exacta,

$$extstyle F_{\mathcal{S}_t}(s) = \mathbb{P}\left(\sum_{j=1}^{J_t} X_{tj} \leq s
ight),$$

inducida por $F_X(x)$.

Procedimientos

Hemos visto que esta puede calcularse a traves del siguientes metodos:

- 1. Convolucion directa
- 2. Metodo de momentos
- 3. Simulacion estocastica
- 4. Aproximacion analitica
- 5. Recursion

1. Convoluciones

Supongamos que $(X_{tj})_{j=1}^{J_t}$ son variables aleatorias independientes e identicamente distribuidas, con funcion de distribucion $F_X(x)$ y soporte en $\mathcal{X}=(0,\infty)$.

Caso N=2

Consideremos el caso donde definimos

$$S_t = X_{t1} + X_{t2}$$
.

De manera general, para soportes de \mathcal{X} en \Re , se tiene que,

$$\mathbb{P}(S_t \leq s) = \mathbb{P}(X_{t1} + X_{t2} \leq s)$$

$$= \int_{\mathcal{X}} \mathbb{P}(X_{t1} + X_{t2} \leq s | X_{t2} = x) \mathbb{P}(X_{t2} \in dx)$$

$$= \int_{\mathcal{X}} F_X(s - x) F_X(dx)$$

$$= \int_{\mathcal{X}} F_X(s - x) f_X(x) dx$$

$$= F_X * F_X(s)$$

$$= F_X^{*(2)}(s).$$

(1)

Ahora bien, si X tiene soporte en $(0,\infty)$, entonces $F_X(x)$ est'a determinada por la funci'on indicadora $\mathbb{I}_{(0,\infty)}(x)$, mientras que $F_X(s-x)$ estar'a determinada por $\mathbb{I}_{(0,\infty)}(s-x)$, en cuyo caso la integral (1) se convierte en,

$$\mathbb{P}(S_t \leq s) = \mathbb{P}(X_{t1} + X_{t2} \leq s)$$

$$= \int_0^s F_X(s - x) f_X(x) dx$$

$$= F_X * F_X(s)$$

$$= F_X^{*(2)}(s). \tag{2}$$

Siguiendo lo anterior se tiene que en el *ejemplo* donde X_{t1} y X_{t2} son variables aleatorias i.i.d. con distribucion marginal $\text{Exp}(x|\theta)$, con $\theta > 0$, se sigue

$$\mathbb{P}(S_t \leq s) = \mathbb{P}(X_{t1} + X_{t2} \leq s)
= F_X^{*(2)}(s)
= Ga(s|2, \theta).$$
(3)

Caso N general

En el caso donde

$$S_t = \sum_{i=1}^{J_t} X_{ti},$$

se sigue (por induccion), bajo los supuestos mencionados antes, que

$$\mathbb{P}(S_t \leq s) = F_X^{*(J_t)}(s|\theta). \tag{4}$$

NOTA 1: Solo en casos específicos de $F_X(\cdot)$ pertenecientes a distribuciones en la familia exponencial se pueden obtener expresiones analíticas cerradas para las convoluciones.

NOTA 2: En el caso general donde $F_X(\cdot)$ tenga uno o más átomos, la expresión analítica de la convolución es bastante compleja y, en muchos casos, imposible de obtener; aun cuando la parte absolutamente continua de F_X pertenezca a la familia exponencial.

De esta forma, se puede descansar en otros métodos descritos a continuación.

2. Método de momentos

El método de momentos se basa en la identificación de $F_{S_t}(s)$ a través de su correspondiente función generadora de momentos, $M_{S_t}(w)$ definida como

$$M_{S_t}(w) = \mathbb{E}_{F_{S_t}}(\exp\{wS_t\}).$$

La identificación es única pues la relación entre ambas funciones es 1 : 1. Bajo el supuesto de *independencia y homogeneidad en distribución* se sigue que

$$M_{S_t}(w) = \left[M_X(w)\right]^{J_t},$$

donde $M_X(w)$ es la función generadora de momentos genérica para las X_{tj} s.

Ejercicio: ¿Cómo sería la expresión de $M_X(w)$ bajo el supuesto de intercambiabilidad en las X_{tj} S? De esta forma, **identificando** la forma estructural de $M_X(w)$ puede identificarle la forma funcional asociada con $F_{S_t}(s)$.

Supuestos

El procedimiento descansa en el supuesto que $M_X(w)$ existe y que ésta elevada a una cierta potencia tiene una forma analítica cerrada y conocida.

Nota:

El resultado se generaliza al uso de la función característica, $\phi_X(w)$, y la función generadora de probabilidades, $\rho_X(w)$.

El reto analitico fundamental de este procedimiento reside en que $F_X(x)$ tiene típicamente al menos un punto de discontinuidad en $\{0\}$ (no reclamo por no siniestro), i.e.

$$F_X(x) = \theta \mathbb{I}_{\{0\}}(x) + (1 - \theta) F_X^c(x),$$

donde $F_X^c(x)$ corresponde a la parte (absolutamente) continua de $F_X(\cdot)$. En este caso, la función generadora de momentos asociada puede verse como la comosición de:

a. Distribución continua para el reclamo, sujeto a un siniestro, i.e.

$$M_X^c(w) = \mathbb{E}_{F_X^c}(\exp\{wX\}),$$

b. Distriución Bernoulli asociada con el eveneto de tener siniestro o no, i.e.

$$M_{\text{Siniestro}}(w) = \theta + (1 - \theta) \exp\{w\}.$$

Así, la expresión general para $M_X(w)$ es la siguiente,

$$M_X(w) = \theta + (1 - \theta) \exp\{M_X^c(w)\}.$$

Esta expresión tendrá una forma anlítica anipulable en función de que $M_X^c(w)$ sea simple y compatible con $\exp(\cdot)$.

Empleando la expresión anterior, se sigue (bajo el supuesto de independencia y homogeneidad distribucional en las X_{tj}), la función generadora de momentos para $F_{S_t}(s)$ está asociada con

$$M_{S_t}(w) = [\theta_t + (1 - \theta_t) \exp\{M_{X_t}^c(w)\}]^{J_t}.$$

Al rededor de esta expresión debemos anotar dos cosas:

- 1. La distribución para la ocurrencia de siniestros para un tiempo t dado presupone homogeneidad entre las $\{X_{tj}\}_{j=1}^{J_t}$. Sin embargo, podría hacerce alusión a homogeneidad distribucional a través de t.
- 2. El comentario anterior aplica análogamente a $F_{X_t}^c(x)$.

Como podrán anticipar, sólo pocos casos particulares será posible identificar $F_{S_t}(s)$ a través de $M_{S_t}(w)$.

3. Método basado en simulación estocástica

Un método alternativo de calculo/aproximación de $F_{S_t}(s)$ consiste en generar muestras (pseudo) aleatorias de $\{X_{tj}\}_{j=1}^{J_t}$, agregándolas en cada caso descansando en el método de Monte Carlo. Así, el algoritmo se resume en los siguientes pasos:

- a. Fijar K número de simulaciones deseadas de $F_{S_r}(s)$ (entre mayor sera K la aproximación será más precisa, pero menos eficiente computacionalente).
- b. Para $k=1,\ldots,K$ generar J_t variables pseudo aleatorias de $F_{X_t}(x)$, denottadas por

$$\left\{x_{tj}^{(k)}\right\}_{j=1}^{J_t}$$

c. Para cada k, generar la muestra de $F_{S_t}(s)$ correspondiente mediante la agregación de las $x_{tj}^{(k)}$ s correspondientes, i.e.

$$s_t^{(k)} = \sum_{i=1}^{J_t} x_{tj}^{(k)}.$$

d. la colección de datos simulados $\{s_t^{(k)}\}_{k=1}^K$ corresponde a una muestra aleatoria de $F_{S_k}(s)$.

Table of Contents

I. Modelo de riesgo individual