

Efficient On-Device Machine Learning with a Biologically-Plausible Forward-Only Algorithm

Baichuan Huang, Amir Aminifar

Department of Electrical and Information Technology, Lund University, Sweden

This research has been partially supported by the Swedish Wallenberg AI, Autonomous Systems and Software Program (WASP), the Swedish Research Council (VR), Swedish Foundation for Strategic Research (SSF), the ELLIIT Strategic Research Environment, and the European Union (EU).

Introduction and Background

Global Warming

Global Warming

Europe: an average rise of 2.3°C compared to pre-industrial levels 1°C higher than the global average.

Energy Consumption of Training LLMs

GPT-3

GPT-4

Energy Consumption of Training LLMs

GPT-3

GPT-4

1,216,950 lbs

15,238,333 lbs

Energy Consumption of Training LLMs

GPT-3

1,216,950 lbs

 $\times 13$

15,238,333 lbs

1,287 Megawatt-Hour \times 48

62,318 Megawatt-Hour

Biologically Plausible Alternatives

Human Brain (~20 Watts)

Biologically Plausible Alternatives

Human Brain (~20 Watts)

Back-Propagation (Bio-Implausible)

Biologically Plausible Alternatives

Human Brain (~20 Watts)

Back-Propagation (Bio-Implausible)

Forward-Only Algorithm (Bio-Plausible)

The Process of Backpropagation

The Process of Backpropagation

The Process of Backpropagation

Bio-FO: a Biologically-Plausible Forward-Only Algorithm

B: Fixed Random Projection

B: Fixed Random Projection

S: Sparsity Mask

S: Sparsity Mask

Fully Connected

S: Sparsity Mask Fully 0

Fully Connected Local Connected

Fully Connected Local Connected CNN

Evaluation and Results

Dataset and Application

MNIST Grayscale Image

CIFAR-10(100) RGB Images

Mini-ImageNet Subset of ImageNet

Dataset and Application

MNIST Grayscale Image

CIFAR-10(100) RGB Images

Mini-ImageNet Subset of ImageNet

CHB-MIT Electroencephalogram (EEG)

MIT-BIH Electrocardiogram (ECG)

Real-world wearable applications: Complexity overhead/energy consumption is a major constraint.

Classification Performance

Bio-FO outperforms the state-of-the-art forward-only algorithms, with the potential to achieve comparable performance to BP.

Memory Efficiency

Bio-FO improves the memory efficiency and has approximately 3 times less memory overheads when compared to BP.

Convergence Rate (CIFAR-10)

Bio-FO enjoys faster convergence than PEPITA, and FF.

Energy Efficiency

Algorithms	Energy Overheads (Wh)			
	CIFAR-100	CHB-MIT	MIT-BIH	
DRTP	131.9	6.4	317.7	
PEPITA	123.9	5.9	<u>191.0</u>	
FF	753.5	4.8	221.9	
Our	37.9	3.5	121.1	

Bio-FO outperforms the state-of-the-art forward-only algorithms in terms of energy consumption.

Scalability (Architectures)

Datasets	Error (%)			
	Our-FC	Our-LC	Our-CNN	
MNIST	1.62	<u>1.36</u>	0.57	
CIFAR-10	45.12	<u>35.13</u>	26.08	
CIFAR-100	74.57	<u>64.06</u>	64.06	

The relevance of Bio-FO with LC and CNN shows the importance of architectures for improving classification performance.

Scalability (mini-ImageNet)

Datasets	Error (%)				
	DRTP	PEPITA	FF	Our	BP
mini-ImageNet	94.20 _{±0.49}	91.23 _{±0.18}	$93.64_{\pm 0.26}$	$67.39_{\pm 0.25}$	$53.49_{\pm 0.40}$

Bio-FO achieves the closest classification performance to BP, on relatively large-scale datasets such as mini-lmageNet.

Challenge

Bio-Implausibility

Incurs Inefficiency

00000

00000

00000

00000

Challenge

Bio-Implausibility

Incurs Inefficiency

- 00000
- 00000
- 00000
- 00000

Approach

A Biologically Plausible

Forward-Only

Algorithm

- 000 0
- 0000
- 0 0 0
- 00 00

Challenge

Bio-Implausibility

Incurs Inefficiency

00000

00000

00000

00000

Approach

A Biologically Plausible

Forward-Only

Algorithm

000 0

0000

0 0 0

00 00

Performance

Memory & Energy Efficiency

Maintain Performance

Challenge

Bio-Implausibility Incurs Inefficiency

00000

00000

00000

00000

Approach

A Biologically Plausible Forward-Only Algorithm

000 0

0000

0 0 0

00 00

Performance

Welcome to Our Poster Session

Thank you!