Derivative Free Optimization and Evolutionary Strategies

Solution 1: Coordinate Descent I

$$\mathcal{R}_{emp}(\boldsymbol{\theta}) = \frac{1}{2} \|\mathbf{X}\boldsymbol{\theta} - \mathbf{y}\|_{2}^{2} + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_{2}^{2} = \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \mathbf{y}^{\top} \mathbf{X} \boldsymbol{\theta} + \frac{1}{2} \boldsymbol{\theta}^{\top} \boldsymbol{\theta} + \frac{\lambda}{2} \boldsymbol{\theta}^{\top} \boldsymbol{\theta}$$

$$= \frac{1}{2} \mathbf{y}^{\top} \mathbf{y} - \sum_{j=1}^{d} \mathbf{y}^{\top} \mathbf{x}_{j} \theta_{j} + \frac{1}{2} (1 + \lambda) \boldsymbol{\theta}^{\top} \boldsymbol{\theta}$$

$$\frac{\partial \mathcal{R}_{emp}}{\theta_{j}} = (1 + \lambda) \theta_{j} - \mathbf{y}^{\top} \mathbf{x}_{j} \stackrel{!}{=} 0$$

$$\Rightarrow \theta_{j}^{*} = \frac{\mathbf{y}^{\top} \mathbf{x}_{j}}{1 + \lambda}$$

Solution 2: Coordinate Descent II

(a) Update x_1 while fixing x_2 : We fix $x_2 = c$ (constant). The function then states as

$$q(x_1, c) = |x_1 - c| + 0.1(x_1 + c).$$

We want to choose x_1 to minimize this. Due to the absolute value, there are two cases.

- (i) Case 1: $x_1 \ge c$: Then $|x_1 c| = x_1 c$. So $g(x_1, c) = (x_1 c) + 0.1x_1 + 0.1c = 1.1x_1 0.9c$. As a function of x_1 this is strictly increasing (derivative of 1.1 > 0). Therefore, the minimizer given $x_1 \ge c$ is at the left boundary, i.e., $x_1 = c$.
- (ii) Case 2: $x_1 < c$: Then $|x_1 c| = c x_1$. So $g(x_1, c) = (c x_1) + 0.1x_1 + 0.1c = 1.1c 0.9x_1$. As a function of x_1 this is strictly decreasing (derivative of -0.9 < 0). Thereore, the minimizer given $x_1 < c$ is at the right boundary, i.e., $x_1 = c$.

In both cases, the best choice is $x_1^* = c$. Note that x_2 was fixed to be c, i.e., the function is minimized exactly when $x_1 = x_2$.

After updating x_1 while holding x_2 constant, we arrive at $(x_1^{[1]}, x_2^{[0]}) = (x_2^{[0]}, x_2^{[0]})$.

Update x_2 while fixing x_1 : We now fix $x_1 = c$ (constant). The function then states as

$$g(c, x_2) = |c - x_2| + 0.1(c + x_2).$$

Note that g is symmetric in its arguments, therefore based on the first analysis, we conclude that again $x_2^* = c$.

After updating x_2 while holding x_1 constant, we arrive at $(x_1^{[1]}, x_2^{[1]}) = (x_1^{[1]}, x_1^{[1]}) = (x_2^{[0]}, x_2^{[0]})$.

We observe that coordinate updates will set the respective coordinate to the value of the other constant held coordinate value and once the algorithm arrives at $x_1 = x_2 = c$, neither coordinate update will move the point.

(b) Along the diagonal $x_1 = x_2 = t$, the function simplifies to

$$g(t,t) = |t-t| + 0.1(t+t) = 0.2t.$$

As $t \to -\infty$, $0.2t \to -\infty$, hence the infimum of g is $-\infty$. No finite (x_1, x_2) can achieve that infimum, i.e., there is no global minimizer, but the values of g can be made arbitrarly negative by letting x_1 , x_2 be arbitrarly negative.

Solution 3: CMA-ES

Pick $\mu=3$ parents with highest fitness values, i.e., Id = 1, 2, 5 which we denote with $\mathbf{x}_{1:\mu}$ and respective weights $w_i = \frac{f_i}{\sum_{i=1}^{\mu} f_i} \approx (0.432, 0.265, 0.303)$.

$$\begin{split} \mathbf{m}^{[1]} &= \mathbf{m}^{[0]} + 0.5 \sum_{i=1}^{3} w_{i} (\mathbf{x}_{i} - \mathbf{m}^{[0]}) \approx (1.140, 0.515)^{\top} \\ \mathbf{C}_{\mu} &= \frac{1}{3-1} \sum_{i=1}^{3} (\mathbf{x}_{i} - \mathbf{m}^{[0]})) (\mathbf{x}_{i} - \mathbf{m}^{[0]}))^{\top} \\ &\approx \begin{pmatrix} 0.187 & -0.617 \\ -0.617 & 2.139 \end{pmatrix} \\ \mathbf{C}^{[1]} &= 0.9 \cdot \mathbf{I}_{d} + 0.1 \cdot \mathbf{C}_{\mu} \\ &\approx \begin{pmatrix} 0.919 & -0.062 \\ -0.062 & 1.114 \end{pmatrix} \end{split}$$