Methodology

Data Selection via Reinforcement Learning - Action

- Then the action $a_i^{(k)}$ is sampled according to the output probability.
- The policy can be represented as:

$$\pi_{\theta_s}\left(s_i^{(k)}, a_i^{(k)}\right) = \begin{cases} p_i^{(k)} & \text{if } a_i^{(k)} = 1\\ 1 - p_i^{(k)} & \text{if } a_i^{(k)} = 0 \end{cases}$$

Methodology

Data Selection via Reinforcement Learning - Reward

- Use performance changes of detection model $D_n\left(\;\cdot\;; heta_n
 ight)$ as the reward function
- Given $\tilde{X}^{(k)}=\{x_1^{(k)},x_2^{(k)},\cdots,x_B^{(k)}\}$, the actions of retaining or removing are made based on the probability output from the policy network
 - To evaluate the performance changes, need to set a baseline accuracy acc
 - Calculate acc with $D_n\left(\cdot;\theta_n\right)$ on validation dataset
 - Then new accuracy acc_k can obtained with the retrained model
- . Finally, the reward R_k for k-th bag data $\left\{x_i^{(k)}\right\}_{i=1}^B$: $R_k = acc_k acc$