Progress

© 2016 Richel Bilderbeek www.github.com/richelbilderbeek/Wip

Research question

If speciation in nature takes time, what is the error BEAST2 makes in inferring a phylogeny?

- Under which conditions does it hurt?
- Are these conditions relevant and/or realistic?

Recap

Pipeline works

Average nLTT of posteriors

nLTT of species tree

True species tree

BEAST2 reps are reps

0.0

0.2

0.4

0.6

Normalized Time

8.0

1.0

• Two BEAST2 runs on the same alignment give very similary nLTT plots

0.2

0.4

0.6

0.8

1.0

Alignment reps are less rep

Two different alignments on the same species tree give similarish nLTT plots

BD = PBD?

No.

When speciation takes time (PBD), we can observe a difference in the shape of the phylogenies of the posterior

Error

• Sum of the difference between true species tree nLTT and average posterior nLTT

Error BD = error PBD?

• If speciation takes time, how big will the estimation errors be?

If speciation takes time (example_4), BEAST2 will have a threefold error in recovering a known phylogeny

Major cause

 Most of the differences comes from the sampling of the gene tree to obtain a species tree

Average nLTT of all species trees (red line)

All sampled species trees (grey lines)

Gene tree (black solid line)

Preliminary conclusions

- Speciation taking time causes bigger error
- The expected difference is now quantified

Preliminary conclusions

• BEAST2 always does a fine job

Preliminary conclusions

 Sampling species trees from gene trees has the biggest impact

Future work

- Quantify the errors
- Use *BEAST to do a multi-individual inference

