Fortgeschrittenenpraktikum Kernreaktor

Toni Ehmcke

TU Dresden

28. Januar 2016

Toni Ehmcke TU Dresden

Warum wir nukleare Kräfte freisetzen wollen

- ▶ Betrachte eine Masse von $m_U = 1$ g des Uran-Nuklids ²³⁵U.
- ▶ Zahl der Atome in dieser Masse $N_{Atom} = \frac{m_U \cdot N_A}{M_{mol}} = 2,562 \cdot 10^{21}$
- ▶ Pro Kernspaltung freiwerdende Wärme $Q \approx 200 \; \mathrm{MeV}$
- Summa summarum ergibt das eine maximale Energieabgabe von $Q_{ges} = N_{Atom} \cdot Q = 0.997 \text{ MWd}$
- ▶ Spalten von $m_U = 1 \text{ g}$ Uran-235 entspricht somit dem Verbrennen von $m_{BB} = 4{,}39 \text{ t}$ Braunkohlebriketts

Toni Ehmcke

Aufbau und Maßnahmen zur nuklearen Sicherheit

Quelle: TUD Institut für Energietechnik. AKR-2 Bau und Inbetriebnahme, Dresden. Juli 2005

AKR-2: Aufbau (Querschnitt)

Disussion

Aufbau und Maßnahmen zur nuklearen Sicherheit

AKR-2: Aufbau (Azimutalebene)

Quelle: TUD Institut für Energietechnik. AKR-2 Bau und Inbetriebnahme, Dresden. Juli 2005

AKR-2: Maßnahmen zur nuklearen Sicherheit

- Unterdruck im Reaktortank
- Paraffin und Barytbeton für biologische Abschirmung
- Spaltzone in zwei Hälften geteilt
- mehrfach redundantes RESA-System, welches auslöst falls
 - $ightharpoonup P_{Reaktor} \notin [0,25;2,4] \text{ W}$
 - ▶ Reaktorperiode $T_s < 10 \text{ s}$ bzw. $T_2 < 7 \text{ s}$
 - ▶ Temperaturmessung $T < 18~^{\circ}\mathrm{C}$
 - ▶ Druckmessung $p > p_{max}$
 - Fehlermeldung oder Ausfall im System

Disussion

Aufbau und Maßnahmen zur nuklearen Sicherheit

Dosimetrische Messungen

Gemessen wurde die mit Strahlungsart gewichtete Dosisleistung an verschiedenen Orten und bei verschiedenen Leistungen im kritischen Reaktorzustand der Neutronen- und γ -Strahlung:

Ort	bei 1W		bei 2W	
	$\dot{D}_{\gamma} \left[\frac{\mu S v}{h} \right]$	$\dot{D}_n \left[\frac{\mu S v}{h} \right]$	$\dot{D}_{\gamma} \left[\frac{\mu S v}{h} \right]$	$\dot{D}_n \left[\frac{\mu S v}{h} \right]$
Reaktortankwand ($pprox 0 \mathrm{m}$)	12	2,5	27,5	4,3
Operatortisch ($pprox 3\mathrm{m}$)	1,4	0,2	2,5	0,6
Ecke ($\approx 6\mathrm{m}$)	0,6	0,14	0,5	0,13

Wirkungsquerschnitt für Neutroneneinfang

- Spaltbarriere von ²³⁸U: $E_R^{238} = 5.7 \text{ MeV}$
- ightharpoonup Änderung der Bindungsenergie $\Delta B^{238} = 4.9 \ \mathrm{MeV} < E_B^{238}$ ightharpoonup "schnelle" Neutronen notwendig
- Spaltbarriere von 235 U: $E_R^{235} = 6.2 \text{ MeV}$
- ▶ Änderung der Bindungsenergie $\Delta B^{235} = 6.5 \text{ MeV} > E_B^{238}$ → thermische Neutronen genügen

Quelle: A. Ganczarczyk: Physikalische Grundlagen der Energieumwandlung. https://www.uni-due.de. Duisburg, 01/2006, zuletzt geöffnet: 10.01.2016

Reaktorkinetische Grundbegriffe

 Entscheidend für den Zustand eines Reaktors ist die Bilanz der zwischen den Spaltprozessen entstandenen und vernichteten Neutronen

•00

Definiere den Multiplikationsfaktor

$$k := \frac{N(t+I)}{N(t)} = \frac{N_{erzeugt}}{N_{absorbiert} + N_{leck}}$$

ightharpoonup sowie die relative Abweichung vom kritischen Zustand (k=1), die **Reaktivität**:

$$\rho := \frac{k-1}{k}$$

Als Messgröße wird die Reaktorperiode T_s, die der Zeit entspricht, in der die Neutronendichte um den e-ten Teil zugenommen hat, genutzt. Reaktorkinetische Grundlagen

Neutroneninduzierte Spaltung von ²³⁵U und prompte Neutronen

Quelle: https://de.wikipedia.org/wiki/Kernspaltung, zuletzt geöffnet: 28.01.16

Problem: Ein Reaktionszyklus findet auf einer Zeitskala von $I_p = 10^{-4}$ s

→ Kettenreaktion nicht kontrollierbar

Disussion

Wie man die Reaktion dennoch Steuern kann: Verzögerte Neutronen

- ▶ Tochterkerne zerfallen weiter, wobei höher angeregte Tochterkerne höherer Generation entstehen können
- ► Abregung durch Emission von verzögerten Neutronen
- ightharpoonup Lebensdauer (Zeitskala) dieser Neutronen wird durch HWZ der Mutterkerne im Mittel zu $I_{\rm v}=13~{
 m s}$
- ▶ Diese machen einen Anteil von $\beta = 0.64$ % aus
- ► Effektive Lebensdauer $I_{eff} = \beta \cdot I_{v} + (1 \beta) \cdot I_{p} = 0$ 083 s
 - → Reaktion wird erst durch verzögerte Neutronen kontrollierbar

Disussion

Reaktorkinetische Grundlagen

Zeitverhalten eines verzögert überkritischen Reaktors

▶ Lösung der **reaktorkinetischen Gleichungen** für eine zur Zeit t = 0 zugeführte Reaktivität $\rho(t) = \rho_0 \cdot \Theta(t)$:

$$N(t) = N(0) \left[c_1 e^{\frac{\lambda \cdot \rho_0}{\beta - \rho_0} \cdot t} - c_2 e^{-k \frac{\beta - \rho_0}{l_p} \cdot t} \right]$$

Falls $0 < \rho_0 < \beta$, klingt der zweite Summand schnell ab und mit $T_s = (\beta - \rho_0)/\lambda \cdot \rho_0$ erhält man die im Experiment genutzte Beziehung $P(t) \propto N(t) \propto \mathrm{e}^{t/T_s} = 2^{t/T_2}$

Quelle: Technische Universität Dresden, Institut für Energietechnik Ausbildungskernreaktor: Reaktorpraktikum Versuch Reaktorstart". Dresden, 05/2011

Wie man Reaktivität misst: Die Inhour-Gleichung

▶ setzt man bestimmte Lösungen der reaktorkinetischen Gleichungen in die DGI ein, erhält man die Inhour-Gleichung:

$$\rho' = \frac{\rho}{\beta} = \frac{I_p}{k \cdot \beta \cdot T_s} + \sum_{i=1}^{6} \frac{a_i}{1 + \lambda_i \cdot T_s}$$

- diese liefert bei Messung der Verdopplungszeit (oder stabilen Reaktorperiode) die zugeführte Reaktivität nach Verlassen des kritischen Zustandes
- ▶ als Einheit von ρ definiert man $[\rho l] = 1 \$ = 100 \ \diamondsuit$
- ▶ solange ρ < 1, befindet sich der Reaktor nicht im prompt überkritischen Zustand, welcher dringendst zu vermeiden ist

Disussion

Neutronenflussdichte

- ➤ Ziel: Ermitteln des Einflusses der Steuer- und Regeleinrichtungen auf die Neutronenbilanz (Reaktivität)
- Annahme: Da Spaltzone zylindersymmetrisch, betrachte die Neutronenflussdichte Φ(z) ebenfalls als axialsymmetrisch
- Ein möglicher analytischer Ausdruck, um die Verteilung einer Spaltzone der Länge H zu modellieren ist:

$$\Phi(z) = \Phi_{max} \cdot \sin\left(\frac{\pi \cdot z}{H}\right)$$

Quelle: Technische Universität Dresden, Institut für Energietechnik Ausbildungskernreaktor: Reaktorpraktikum Versuch "Steuerstabkalibrierung". Dresden, 05/2011

Steuerstabkennlinien

Verschiebung des Steuerstabes um dz ergibt die differentielle Steuerstabkennlinie:

$$\mathrm{d}
ho \propto -\sigma_{abs} \cdot \Phi^2(z) \cdot \mathrm{d}z$$

Integration über eine endliche Länge z liefert die integrale Steuerstabkennlinie:

$$\frac{\rho(z)}{\rho_{\max}} = \frac{z}{H} - \frac{1}{2\pi} \sin\left(\frac{2\pi z}{H}\right)$$

Quelle: Technische Universität Dresden, Institut für Energietechnik Ausbildungskernreaktor: Reaktorpraktikum Versuch "Steuerstabkalibrierung". Dresden, 05/2011

Differentielle und integrale Steuerstabkennlinie

Messung: Kompensationsverfahren

Zustand	z_1 [digit]	z_2 [digit]	z_3 [digit]	T_2 [s]	T_s [s]
Kritisch	0	4.000	2.924	-	-
ÜK	827	4.000	2.924	127	183
Kritisch	827	3.371	2.924	-	-
ÜK	1.609	3.371	2.924	97	140
Kritisch	1.609	2.626	2.924	-	-
ÜK	2.389	2.626	2.924	72	104
Kritisch	2.389	1.926	2.924	-	-
ÜK	3.245	1.926	2.924	96	139
Kritisch	3.245	804	2.924	-	-
ÜK	4.000	804	2.924	121	175
Kritisch	4.000	0	2.802	-	-

Messergebnis: differentielle Steuerstabkennlinie

Toni Ehmcke Fortgeschrittenenpraktikum Differentielle und integrale Steuerstabkennlinie

Messergebnis: integrale Steuerstabkennlinie

Differentielle und integrale Steuerstabkennlinie

Charakteristische Reaktivitätswerte für den AKR-2

maximale Reaktivität aller 3 Stäbe:

$$\rho_{max} = \rho_{1,max} + \rho_{2,max} + \rho_{3,max} = (1.12 \pm 0.03)$$

Überschussreaktität aller Stäbe:

$$\rho_{\ddot{\textit{U}}\textit{berschuss}} = \rho_{1,\ddot{\textit{U}}\textit{berschuss}} + \rho_{2,\ddot{\textit{U}}\textit{berschuss}} + \rho_{3,\ddot{\textit{U}}\textit{berschuss}} = (0.64 \pm 0.03) \, \$$$

Abschaltreaktivität:

$$\rho_{Abschalt} = \rho_{max} - \rho_{\ddot{U}berschuss} = (0.48 \pm 0.04) \$$$

Disussion

Bestimmung der Reaktivität einer Cadmium-Probe

- ▶ ausgehend vom kritischen Zustand $(z_1, z_2, z_3) = (2\,406, 2\,251, 2\,513) \, \mathrm{digit}$ wird Probe in Experimentierkanal eingebracht
- unterkritischer Zustand wird durch Ausfahren von Stab 1 kompensiert
- neuer kritischer Zustand $(z_1', z_2', z_3') = (3888, 2251, 2513)$ digit
- ▶ Reaktivität der Probe ergibt sich aus integraler Steuerstabkennlinie:

$$\rho_{Cd}' = \rho_1'(z_1') - \rho_1'(z_1) = (0.13 \pm 0.02) $$$

Diskussion

- die vorliegenden (biologischen) Strahlenschutzmaßnahmen genügen den geforderten Grenzwerten
- Dosisleistung skaliert in etwa linear mit der Reaktorleistung
 Leistungs-Reaktoren müssen noch stärker geschirmt werden
- Abstandsquadratsgesetz wurde bestätigt (so gut das mit so wenigen Messwerten möglich war)
- ▶ da $\rho_{\ddot{U}berschuss}$ < 1 \$, besteht weder bei technischen noch bei personellen Fehlern die Möglichkeit, den Reaktor aus dem kritischen in einen prompt überkritischen Zustand zu versetzen