Scheduling Problem and Local Search

Jianhong Li

MSTC, Sun Yat-sen Univ.

March 5, 2014

Outline

Table of Contents

Determine a work schedule for assistants that is both reasonable and efficient.

- Determine a work schedule for assistants that is both reasonable and efficient.
- Entities:

- Determine a work schedule for assistants that is both reasonable and efficient.
- Entities:
 - □ Assistants set *A*

- Determine a work schedule for assistants that is both reasonable and efficient.
- Entities:
 - Assistants set A
 - □ Time period set *T*

- Determine a work schedule for assistants that is both reasonable and efficient.
- Entities:
 - □ Assistants set *A*
 - \Box Time period set T
- Requirements:

- Determine a work schedule for assistants that is both reasonable and efficient.
- Entities:
 - □ Assistants set *A*
 - □ Time period set *T*
- Requirements:
 - efficient: There should be sufficient assistants in any specific time periods.

- Determine a work schedule for assistants that is both reasonable and efficient.
- Entities:
 - □ Assistants set *A*
 - □ Time period set *T*
- Requirements:
 - efficient: There should be sufficient assistants in any specific time periods.
 - reasonable:

- Determine a work schedule for assistants that is both reasonable and efficient.
- Entities:
 - Assistants set A
 - \Box Time period set T
- Requirements:
 - efficient: There should be sufficient assistants in any specific time periods.
 - reasonable:
 - Assistants should not work when they are having courses.

- Determine a work schedule for assistants that is both reasonable and efficient.
- Entities:
 - Assistants set A
 - □ Time period set *T*
- Requirements:
 - efficient: There should be sufficient assistants in any specific time periods.
 - reasonable:
 - Assistants should not work when they are having courses.
 - Assistants should not work at multiple places in the meantime.

- Determine a work schedule for assistants that is both reasonable and efficient.
- Entities:
 - Assistants set A
 - □ Time period set *T*
- Requirements:
 - efficient: There should be sufficient assistants in any specific time periods.
 - reasonable:
 - Assistants should not work when they are having courses.
 - Assistants should not work at multiple places in the meantime.
 - Work times among students should not vary widely.

How can we describe the problem in mathematical model?

■ Let's review the problem again.

- Let's review the problem again.
 - UARIABLES: assistant set A consisting of n assistants, time period set T consisting of m time period, the i-th assistant A_i has some free time period F_i , where $F_i \in T$

- Let's review the problem again.
 - □ VARIABLES: assistant set A consisting of n assistants, time period set T consisting of m time period, the i-th assistant A_i has some free time period F_i , where $F_i \in T$
 - \square OPERATION: select a certain free time F, and discard the others

- Let's review the problem again.
 - □ VARIABLES: assistant set A consisting of n assistants, time period set T consisting of m time period, the i-th assistant A_i has some free time period F_i , where $F_i \in T$
 - □ OPERATION: select a certain free time *F*, and discard the others
 - TARGET: Work time for an assistant and quantity of assistant of a time period are in a specific range. No assistant will simultaneously work in overlapping time period.

- Let's review the problem again.
 - □ VARIABLES: assistant set A consisting of n assistants, time period set T consisting of m time period, the i-th assistant A_i has some free time period F_i , where $F_i \in T$
 - \square OPERATION: select a certain free time F, and discard the others
 - TARGET: Work time for an assistant and quantity of assistant of a time period are in a specific range. No assistant will simultaneously work in overlapping time period.
- Method: construct a matrix, with assistants as rows, time periods as column.

Matrix Notation

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

- A matrix *M* representing the free time period.
- OPERATION: change a certain entries from 1 to 0.
- TARGET: $\forall j \in [1, m], \sum_{i=1}^{n} M_{ij}$ and $\forall i \in [1, n], \sum_{j=1}^{m} M_{ij}$

Table of Contents

Brainstorm

What will you probably do to solve this problem?

Evaluation

How to evaluate an algorithm?

■ Efficiency?

Evaluation

How to evaluate an algorithm?

- Efficiency?
- Flexibility

Evaluation

How to evaluate an algorithm?

- Efficiency?
- Flexibility
- Extendability

First Attempt: Genetic Algorithm

- An algorithm adapting Darwin's evolution theory by natural selection
- Steps
 - Initialization
 - Evaluation
 - Selection
 - Crossover
 - Mutation
 - Termination
- Pros & Cons

■ A constraint satisfaction problem is defined as a triple $\langle X, D, C \rangle$, where

- A constraint satisfaction problem is defined as a triple $\langle X, D, C \rangle$, where
 - \square $X = \{X_1, \dots, X_n\}$ is a set of variables,

- A constraint satisfaction problem is defined as a triple $\langle X, D, C \rangle$, where

 - $D = \{D_1, \dots, D_n\}$ is a set of the respect domains of values, and

- A constraint satisfaction problem is defined as a triple $\langle X, D, C \rangle$, where

 - \square $D = \{D_1, \dots, D_n\}$ is a set of the respect domains of values, and
 - \Box $C = \{C_1, \ldots, C_m\}$ is a set of constraints.

- A constraint satisfaction problem is defined as a triple $\langle X, D, C \rangle$, where

 - \square $D = \{D_1, \dots, D_n\}$ is a set of the respect domains of values, and
 - \Box $C = \{C_1, \ldots, C_m\}$ is a set of constraints.
- Now we can encode sceduling problem into CSP.

- A constraint satisfaction problem is defined as a triple $\langle X, D, C \rangle$, where

 - \square $D = \{D_1, \dots, D_n\}$ is a set of the respect domains of values, and
 - \Box $C = \{C_1, \ldots, C_m\}$ is a set of constraints.
- Now we can encode sceduling problem into CSP.
- Typically, There are two type of algorithms.

- A constraint satisfaction problem is defined as a triple $\langle X, D, C \rangle$, where

 - \square $D = \{D_1, \dots, D_n\}$ is a set of the respect domains of values, and
- Now we can encode sceduling problem into CSP.
- Typically, There are two type of algorithms.
 - complete search

- A constraint satisfaction problem is defined as a triple $\langle X, D, C \rangle$, where

 - \square $D = \{D_1, \dots, D_n\}$ is a set of the respect domains of values, and
- Now we can encode sceduling problem into CSP.
- Typically, There are two type of algorithms.
 - complete search
 - □ incomplete search, or local search

Local Search

A general framework of local search:

- Randomly generate a solution.
- find a possible better variable to flip.
- if stuck in a local optima, restart the procedure.

Local search has cycling problem!

Table of Contents

Extensions

■ Nurse Scheduling Problem

Extensions

- Nurse Scheduling Problem
- Course Scheduling Problem