This Lecture ...

- Right-continuity of CDF
- Mixed random variables
- Multiple random variables

For a r.v. X, its CDF satisfies the following

- ▶ $F_X(\infty) = 1$ and $F_X(-\infty) = 0$ when $P(-\infty < X < \infty) = 1$.
- $ightharpoonup F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.
- At point of discontinuity x we have
 - 1. right hand limit $F_X(x+) := \lim_{\epsilon \downarrow 0} F_X(x+\epsilon)$
 - 2. left hand limit $F_X(x-) := \lim_{\epsilon \uparrow 0} F_X(x-\epsilon)$
 - 3. $F_X(x-) \neq F_X(x+)$.
 - 4. $F_X(x)$ could be set to either of the two. Which one?
- Right continuity mandates that at point of discontinuity, we have $F_X(x) = F_X(x+)$.
- ▶ By default, $F_X(x) = F_X(x+) = F_X(x-)$ if $F_X(x)$ is continuous at x.

Right-continuity

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

Proof

- Consider a < b where a and b are arbitrary. We want to show that $F_X(a) \le F_X(b)$.
- ▶ Define $A := \{\omega \in \Omega : X(\omega) \le a\}, B := \{\omega \in \Omega : X(\omega) \le b\}.$
- ▶ Easy to see that $A \subseteq B$ and hence $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- $F_X(a) = P_X((-\infty, a]) = \mathbb{P}(A) \leq \mathbb{P}(B) = F_X(b).$
- This proves the non-decreasing part.

Right-continuity

 $F_X: \mathbb{R} \to [0,1]$ is non-decreasing and right continuous.

Proof for right-continuity

- ▶ We want to prove that $F_X(x) = F_X(x+)$.
- Consider a sequence of numbers $\{x_n\}$ decreasing to x. In this case, we have $F_X(x+) = \lim_{x_n \downarrow x} F_X(x_n)$.
- ▶ Define $A_n := \{\omega : X(\omega) \le x_n\}$ and $A := \{\omega : X(\omega) \le x\}$.
- ▶ Is $A_n \uparrow A$ or $A_n \downarrow A$? Clearly, $A_n \downarrow A$.
- From continuity of probability, $\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(A)$.
- This implies $\lim_{x_n \downarrow x} F_X(x_n) = F_X(x)$.
- You cannot prove the other way by considering $x_n \uparrow x$ because $\bigcup_n (-\infty, x_n] = (-\infty, x)$ and $P_X(-\infty, x) \neq F_X(x)$.

Mixed random variables

Mixed Random variables

- Random variables that are neither continuous nor discrete are called as mixed random variables.
- Their CDF is partly continuous and partly piece-wise continuous.
- Example: X is a U[0,1] random variable and Y=X if $X \le 0.5$ and Y=0.5 if X>0.5.
- ► What is the CDF and PDF of Y?

Mixed Random variables

Let $F_Y(y) = C(y) + D(y)$ where C(y) corresponds to the continuous part and D(y) for the discontinuous part.

$$E[Y] = \int_{-\infty}^{\infty} xc(x)dx + \sum_{y_k} y_k P(Y = y_k)$$

where $\{y_1, y_2, ...\}$ are jump points of D(y) where $P(Y = y_k) > 0$.

- See section 4.3.1 from probabilitycourse.com for more examples
- Amount of workload (pending) on a server! A server on a cluster may be idle with a finite probability. If busy, the pending work is a continuous random variable.

Multiple random variables

A running example

- Consider an experiment of tossing a coin and a dice together.
- $\Omega = \{0,1\} \times \{1,2,3,4,5,6\}.$ $\mathcal{F} = 2^{\Omega}.$ $\mathbb{P}(\omega) = \frac{1}{12}.$
- Let X and Y denote the random variables depicting outcome of a coin and dice respectively.
- ▶ For $\omega = (1,5)$ we have $X(\omega) = 1$ and $Y(\omega) = 5$.
- We are now interested in the joint PMF $p_{XY}(x, y)$ and joint CDF $F_{XY}(x, y)$ of X and Y together.

An example

- We are now interested in the joint PMF $p_{XY}(x, y)$ and joint CDF $F_{XY}(x, y)$ of X and Y together.
- $ho_{XY}(x,y) := \mathbb{P}\{\omega \in \Omega : X(w) = x \text{ and } Y(\omega) = y\}.$
- $ightharpoonup F_{XY}(x,y) := \mathbb{P}\{\omega \in \Omega : X(w) \leq x \text{ and } Y(\omega) \leq y\}.$
- ▶ We can use PMF to calculate $P((X, Y) \in A)$.
- ► $P((X, Y) \in A) = \mathbb{P}\{\omega \in \Omega : (X(\omega), Y(\omega)) \in A\}$. Therefore $P((X, Y) \in A) = \sum_{(x,y)\in A} p_{XY}(x,y)$.
- Suppose A is the event that you get a head and the roll is even. What is $P((X, Y) \in A)$?

Marginals

- ▶ What is $p_{XY}(1, i)$? $(= \frac{1}{12})$.
- Similarly, $p_{XY}(1, i) + p_{XY}(0, i) = \frac{1}{6} = p_Y(i)$.

The marginal PMF's p_X and p_Y can be obtained from the joint PMF as follows:

$$p_X(x) = \sum_y p_{XY}(x, y)$$
 and $p_Y(y) = \sum_x p_{XY}(x, y)$.

This is true in general, and requires a proof.