Feynman Rules - Quantum Electrodynamics

The Lagrangian density for a Quantum Electrodynamics (QED) is given by

$$\mathcal{L} = \frac{1}{2} i \bar{\psi} \mathcal{D} \psi + \text{h.c.} - m \bar{\psi} \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{2\xi} (\partial^{\mu} A_{\mu})^{2}$$
 (1)

where m is the mass of the fermion, D_{μ} is the gauge covariant derivative is $D_{\mu} = \partial_{\mu} + iqA_{\mu}$, and the field strength tensor is $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. The charge of the fermion is q, e.g., for the electron q = -e while the up-quark has q = +2e/3, where $e = \sqrt{4\pi\alpha}$ is the magnitude of the electron charge in natural units, and α is the fine-structure constant. The CODATA value for the fine-structure constant is $\alpha = 7.2973525693(11) \times 10^{-3}$. The gauge fixing parameter ξ is arbitrary, and physical observables must be independent of ξ . The Fermi-Feynman gauge, $\xi = 1$, is a common choice especially for tree-level calculations. Note below we use indices α , β for spinor space, while μ , ν for Lorentz space.

Feynman Rules

Here we give the Feynman rules for the scattering amplitude \mathcal{M} ,

 $i\mathcal{M} = \text{sum of all connected, amputated diagrams,}$

where the diagrams are evaluated according to the following rules:

- Draw all topologically distinct diagrams at a given order;
- For each internal photon line, attach a propagator

$$\stackrel{\mu}{\longrightarrow} \stackrel{\nu}{\longrightarrow} \qquad = \frac{-i}{p^2 + i\epsilon} \left(g_{\mu\nu} - (1 - \xi) \frac{p_{\mu}p_{\nu}}{p^2} \right) ;$$

• For each internal spinor line, attach a propagator

$$\begin{array}{ccc} \alpha & & & \beta \\ & & & \end{array} & = \frac{i(\not p + M)_{\alpha\beta}}{p^2 - M^2 + i\epsilon} \, ;$$

• For each vertex, assign

$$\mu \sim -iq(\gamma^{\mu})_{\beta\alpha};$$

• For each external line, place the particle on the mass-shell, $p^2=m^2$ for the fermion and $p^2=0$ for the

photon, and attach a wavefunction factor

- Impose momentum conservation at each vertex;
- For each internal loop momentum k not fixed by momentum conservation, integrate $\int \frac{\mathrm{d}^4 k}{(2\pi)^4}$;
- For each fermion loop, multiply the diagram by (-1);
- For each set of diagram which are only distinguished by interchanging two external fermion lines, multiply one of the diagrams by (-1);