K Means Segmentation Presentation

Monica Chan

Basic Premise of How I structured things

I essentially unzipped each image into a single image before I fed it to the Kmeans algorithm:

- If my image was m pixels long and n pixels tall, I'd unzip the image into a numpy array m*n rows long.
 - If we are interested in RGB features for example, and my image was 481×321 pixels, the shape of my numpy array would turn from (481,321,3) to (154401, 3).
 - The show_segmentation function provided to us automatically reshapes it

Performing on Blobs

How I structured my experiments

- Analyzed an elbow plot of HSV and RGB
 - Did not really find intensities helpful for what I could see these images needing segmentation for.
- If image had large color regions, weight in pixel location.
- Ran Kmeans++ on most tests

The Four Images I chose

Random Cluster vs Best of 10 vs Kmeans++

Random initial

Best of 10

KMeans++

Umbrella image Black and White

RGB Evolution

RGB

4 6 Number of clusters

Another interesting HSV vs RGB

RGB

HSV

RGB

K = 3

HSV

RGB

HSV

K = 4

Weighted equal

Divided Pixel Position by 2

Divided Pixel Positions by 3

Divide by 5

Divided by 10

Using Pixel Location and Color channels

Pixel Location weighed equal to Dividing pixel positions by 10 color channels

Conclusions

- Honestly, I did not notice a huge performance difference between the best of 10 vs Kmeans++ method for choosing initial clusters
- For the images I used, most of them were around the same size and most of them took less than 100 iterations to get the correct image.
- HSV was able to show more contours of big regions in images at a lower k value (Peep slide 9)
- Pixel Regioning was only helpful on images with large color blocking
- Note: I feel like the best segmentation depends on the purpose!