Quantifying Sky Signals: Simulating Visibility Correlations in Radio Interferometry

Julia Zimmerman
Institute for Computing in Research
August 1st, 2025

Why Radio Interferometry?

How Does it Work?

How Does it Work?

$$\widetilde{E}[\vec{r},t] = \widetilde{E}_0 e^{i(\vec{k}\cdot\vec{r}-\omega t)}$$

$$\widetilde{E}[\vec{r},t] = \widetilde{E}_0 e^{i(\vec{k}\cdot\vec{r}-\omega t)}$$

$$complex-euler's formula$$

$$e^{ix} = \cos(x) + i\sin(x)$$

$$\widetilde{E}[\vec{r},t] = \widetilde{E_0} e^{i(\vec{k}\cdot\vec{r}-\omega t)} \quad \vec{r} = position \, vector \quad \vec{k} = wave \, vector = \frac{2\pi}{\lambda} \quad \omega = 2\pi v$$

$$complex - euler's \, formula$$

$$\widetilde{E_0} = E_0 e^{i\phi}$$

$$e^{ix} = \cos(x) + i \sin(x)$$

$$\widetilde{E}[\vec{r},t] = \widetilde{E}_0 e^{i\vec{k}\cdot\vec{r}-\omega t} \qquad \vec{r} = position \ vector \qquad \vec{k} = wave \ vector = \frac{2\pi}{\lambda} \quad \omega = 2\pi v$$

$$\widetilde{E}[\vec{z},t] = \widetilde{E}_0 e^{i\vec{k}\cdot\vec{r}-\omega t} \qquad \qquad \widetilde{E}[\vec{z},t] = \widetilde{E}_0 e^{i\vec{k}\cdot\vec{r}-\omega t}$$

$$\widetilde{E}_1 = \widetilde{E}_0 e^{2\pi i v} e^{i\vec{k}\cdot\vec{r}-\omega t} \qquad \qquad T_g = \frac{d}{c} = \frac{\vec{b}\cdot\hat{s}}{c}$$

$$\langle \widetilde{E}_1 \widetilde{E}_2^* \rangle = |\widetilde{E}_0|^2 e^{2\pi i v} e^{i\vec{k}\cdot\vec{s}-\omega t}$$

$$V_{total}(\vec{b},t) = \sum_n |\widetilde{E}_{0,n}|^2 e^{2\pi i v_n \vec{b}\cdot\hat{s}_n(t)}$$

ICRS Coordinate

How Does the Simulation Work?

How Does the Simulation Work?

Starting time, duration, total time points

How Does the Simulation Work?

How Does the Simulation Work?

Starting time, duration, total time points

Time Array

Offsets of antenna array location in East, North, Up
Coordinates

coordinates

dot product-ed, divided by speed of light

Amplitude, frequency information

Results

Limitations

Limitations

Simplification

Limitations

Simplification

Amplitudes

More Amplitudes

More Amplitudes Parallelization

More Amplitudes
Parallelization
User Input

Closing

- Radio waves / Radio interferometry lets us observe the sky in more detail
- Simulation inputs amplitude, time, frequency, antenna positions, source locations, array location. Computes visibility
- Use visibility for analysis, like geometric time delay analysis

Thank you!

Questions?

Image References

https://www.space.com/very-large-array.html

https://www.kent.ac.uk/news/science/20641/kent-researcher-helps-identify-young-star-caught-in-a-fit-of-growth

https://www.shineretrofits.com/lighting-center/faq/electromagne tic-spectrum/?srsltid=AfmBOormiM_ZT1GqbmNNV5AmbMJZt4 AyKo8LixdQTIG_hjR1Ttf5ahW7

https://www.satellitetoday.com/government-military/2024/10/04/telespazio-wins-italian-deep-space-antenna-contract/