

RTOS Scheduling Analysis

By:

Alaa Hisham

Date:

10.7.2023

Table of Contents

Table of Contents	. 1
Overview	. 1
Scheduling Analysis	. 1
Rate Monotonic Utilization Bound (URM)	1
Time Demand Analysis	3
Task 1	
Task 2	3
Task 3	3
Hyper Period	3
SimSo System Model	

Overview

A scheduling analysis of the following task set using rate-monotonic scheduler:

- TI {P: 5, E: 2.5, D: 5}
- T2 {P: 15, E: 4.5, D: 15}
- T3 {P: 20, E: 3.5, D: 20}

Scheduling Analysis

Rate Monotonic Utilization Bound (URM)

Total Utilization (U) =
$$\sum_{i=1}^{n} \frac{C_i}{P_i} \le n(2^{\frac{1}{n}} - 1)$$

Where 'C' is the Execution Time, 'P' is the Periodicity and 'n' is the number of tasks.

$$U = \frac{2.5}{5} + \frac{4.5}{15} + \frac{3.5}{20} = 0.975$$

$$URM = 3 \times (2^{\frac{1}{3}} - 1) = 0.779$$

... The system needs further testing.

Time Demand Analysis

$$W_{i}(t) = E_{i} + \sum_{k=1}^{i-1} (\frac{t}{P_{k}}) E_{k}$$
 for $0 < t \le p_{i}$

Where:

- W: Worst response time
- E: execution time
- P: periodicity
- t:time instance

Task 1

(highest priority)

Time Provided
$$(T_n) = Task deadline = 5 ms$$

Time Needed
$$(T_n) = W(5) = 2.5 + 0 = 2.5 ms$$

$$T_p > T_n \rightarrow Task \ 1 \ is schedulable$$

Task 2

$$Time\ Provided\ (T_n) = Task\ deadline = 15\ ms$$

Time Needed
$$(T_n) = W(15) = 4.5 + (\frac{15}{5}) \times 2.5 = 12 \text{ ms}$$

$$T_p > T_n \rightarrow Task \ 2 \ is schedulable$$

Task 3

Time Provided $(T_n) = Task deadline = 20 ms$

Time Needed
$$(T_n) = W(20) = 3.5 + (\frac{20}{5}) \times 2.5 + (\frac{20}{15}) \times 4.5 = 22.5 \, ms$$

(by rounding $(\frac{20}{15})$ up to 2)

$$T_{p} < T_{n} \rightarrow Task 3 is not schedulable$$

 T_3 is not schedulable \rightarrow System is not schedulable

Hyper Period

 $Hyper\ period = LCM(All\ task\ periodicities) = LCM(5,\ 15,\ 20) = 60\ ms$

SimSo System Model

Gene	ral Sd	neduler	Proc	essors Ta	sks							
id	Name	Task ty	/pe	Abort on m	iss	Act. Date (ms)	Period (ms)	ct. da	Deadline (ms)	WCET (ms)	Followed by	priority
1	TASK T1	Periodic	-	✓ Yes		0	5.0	-	5.0	2.5	•	0
2	TASK T2	Periodic	•	✓ Yes		0	15	-	15	4.5	-	0
3	TASK T3	Periodic	•	✓ Yes		0	20	-	20	3.5	-	0

Results

From the SimSo results, we can see that task 3 will miss its deadline at some point which matches the results manually calculated above.

	Total load	Payload	System load
CPU 1	0.9667	0.9667	0.0000
Average	0.9667	0.9667	0.0000