Chapter 3 Determinants

David Robinson

Introduction to Determinants

A $n \times n$ matrix is invertible if and only if its determinant is nonzero. For $n \geq 2$, the **determinant** of an $n \times n$ matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ is the sum of n terms of the form $\pm a_{1j} \det A_{1j}$, with plus and minus signs alternating, where the entries $a_{11}, a_{12}, \ldots, a_{1n}$ are from the first row of A.

$$\det A = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A_{1j}$$

Theorem 1

The determinant of an $n \times n$ matrix A can be computed by a cofactor expansion across any row or down any column. The expansion across the ith row using the cofactor, $C_{ij} = (-1)^{i+j} \det A_{ij}$, is

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

The cofactor expansion down the jth column is

$$\det A = a_{1i}C_{1i} + a_{2i}C_{2i} + \dots + a_{ni}C_{ni}$$

Theorem 2

If A is a triangular matrix, then $\det A$ is the product of the entries on the main diagonal of A.

Properties of Determinants

Theorem 3

Let A be a square matrix.

- If a multiple of one row of A is added to another row to produce a matrix B, then $\det B = \det A$.
- If two rows of A are interchanged to produce B, then $\det B = -\det A$.
- If one row of A is multiplied by k to produce B, then $\det B = k \det A$.

Theorem 4

A square matrix A is invertible if and only if det $A \neq 0$.

Theorem 5

If A is an $n \times n$ matrix, then $\det A^T = \det A$.

Theorem 6

If A and B are $n \times n$ matrices, then $\det AB = (\det A)(\det B)$.

Key Notes

- 1. $\det A^n = (\det A)^n$
- 2. $det(rA) = r^n \cdot det A$