Dániel Darvas (CERN / BME)

PLCverif: Model checking PLC programs

Formal Methods course, BME 22/02/2017

Contains joint work with B. Fernández Adiego, E. Blanco Viñuela, S. Bliudze, J.O. Blech, J-C. Tournier, T. Bartha, A. Vörös, R. Speroni, I. Majzik

CERN European Org. for Nuclear Research

- Largest particle physics laboratory
- Accelerator complex, incl. Large Hadron Collider (LHC)
 - Proton beams with high energies

PLCs

- Programmable Logic Controllers: robust industrial computers, specially designed for process control tasks
- 1000+ PLCs at CERN
 - Including many critical systems

Cryogenics

Vacuum

Detector control

© Siemens AG 2014, All rights reserved

PLC programming

- 5 standard PLC programming languages
 - Base building block: function block

Siemens SCL language

"Equivalent" Java code

```
final class Test {
 public boolean in1 = false;
 public boolean out1 = false;
  public void execute (boolean in1) {
    this.in1 = in1;
    execute();
  public void execute () {
    out1 = !in1;
public Test inst = new Test();
```


Motivation for formal verification

PLCs are often not safety-critical

but

- Expensive equipment is operated by PLCs
- Update of PLC programs difficult
- The cost of downtime is high

Using formal methods

 Formal verification (model checking) may complement testing to find more complex faults

but

- Model checking has to be accessible to the PLC developers
- Required effort has to be in balance with the benefits
 - The method has to be adapted to the available knowledge
 - Formal details should be hidden
 - Recurring tasks should be automated or facilitated

Model checking of PLC programs

Challenges

Formal models

Creation of formal models require lots of effort and knowledge

Formal requirements

 Formalizing requirements in e.g. CTL/LTL is difficult, they are inconvenient and ambiguous without strong knowledge

Model size and model checking performance

- "Naïve modelling" often leads to complex, large models requiring excessive resources to verify;
- Optimization of models is difficult and tedious

Model checker development

 CERN is not a computer science research centre, development of a custom model checker would need to much effort

Can we use external tools?

- General-purpose formal modelling and verification tools (e.g. UPPAAL, NuSMV)
 - Usage is too difficult for control engineers
 - Too much repetitive tasks in modelling
- Software model checkers (e.g. CBMC)
 - PLCs use special programming languages and execution scheme
- PLC-specific model checkers
 - No industrial solution yet
 - Some academic tools (e.g. Arcade.PLC)

Formal modelling

Formal models (~automata) automatically generated
 from the source code of the PLC programs (via AST)

Formalizing the requirements

- Use of CTL/LTL is too difficult for most control engineers
- Typical requirements were captured as textual requirement patterns
 - Placeholders to be filled by the users (using simple expressions)

If α and β are true, then α shall stay true until β becomes true.

$$AG((\alpha \wedge \beta) \rightarrow A[\alpha U \neg \beta])$$

Model size and performance

- Size of the generated formal model is often huge,
 verification often impossible (memory bottleneck)
- Automated reductions reduce the resource needs
 - General-purpose, structural reductions
 - Domain-specific reductions
 - Exploit the extra knowledge about the domain, the execution schema, etc.
 - Requirement-specific reductions
 - Removes the parts of the model which do not influence the satisfaction of the current requirement

External model checkers

- Development of a custom model checker would need excessive effort
- Instead, we reuse (wrap) existing general-purpose model checkers as generic verification engines
 - UPPAAL
 - NuSMV / nuXmv
 - ITS
 - •
- Input (model+requirement) mapping +
 Output (counterexample) mapping needed

Intermediate model

- Simple, automata-based formalism
- Describes the behaviour of the PLC program

- Advantages:
 - Helps to use model reductions (on the IM)
 - Helps to use various model checkers with different syntaxes
 - Simplifies (decouples) the PLC program → Model checker model transformation, thus reduces the risk of faults

Overview of the workflow

PLC program Requirement patterns

Based on the implementation

User-friendly requirem't specification

Heavily automated reductions

Replaceable external model checker

Self-contained **report** with counterexample

Tool hiding the formal details

Verification report

The PLCverif tool

The PLCverif tool

Defining **verification cases** (requirement, fine-tuning, etc.)

No model checker-related things or temporal logic expressions

The PLCverif tool

PLCverif — Verification report

Generated at Mon Jul 07 15:19:22 CEST 2014 | PLCverif v2.0.1 | (C) CERN EN-ICE-PLC | Show/hide expert details

ID:	Demo001							
Name:	If A is false, C cannot be true.							
Description:	If A is false, C cannot be true. As this function block models an AND-gate, if any of the inputs (A or B) is false, the output should be false too. The requirement is based on the documentation of the function block and the following Jira case: https://icecontrols.its.cern.ch/jira/browse/UCPC-1111							
Source file:	DemoSource.scl							
Requirement:	3. A = false & C = true is impossible at the end of the PLC cycle.							
Result:	Not satisfied							

Tool: nusmv

Total runtime (until getting the verification results): 212 ms

Total runtime (incl. visualization): 361 ms

Counterexample

	Variable	End of Cycle 1			
Input	a	FALSE			
Input	b	TRUE			

Output c TRU

Click-button verification, verification report with the analysed counterexample

Example verification metrics

Each line represents the verification of a PLC program with a specific requirement.

	Source code lines	Unreduced model	Reduced model	Verification time (NuSMV)
(1)	12	24	24	0.04 s
(2)	1000	3.8×10^{242}	2.2 × 10 ⁸	0.24 s
(3)	1000	3.8×10^{242}	5.8 × 10 ⁶	0.23 s
(4)	17,700	1032446	7.9×10^{35}	21.7 s
(5)	10,000	10 ⁹⁷⁸	1.6 × 10 ⁸⁴	~7 min

Scaling

- Providing acceptable performance is a continuous challenge
- However, many successful industrial applications,
 e.g.:
 - Module library of CERN's in-house PLC framework (UNICOS)
 - ~1000 lines of code
 - Unreduced potential state space: up to ~10²⁵⁰
 - Verification time: typically in the range of seconds
 - Safety logic of magnet testing facility (see later)
 - ~10,000 lines of code
 - Unreduced potential state space: up to ~10¹⁰⁰⁰
 - *Verification time:* in the range of 1..10 minutes

Case study: SM18 magnet testing facility

SM18 PLCSE safety controllers

Goal: ensuring safety by allowing/forbiddin

Core:

selected test ——
switch statuses ——
current voltages ——
cryo conditions ——
selected test ——
SM18 PLCSE
safety logic

Safety-critical, can be dangerous:

14 kA, liquid He, –271°C, vacuum

→ test allowed

Challenges in the verification

- Complex, semi-formal (ambiguous) requirements

Semi-formal specification

Allowed tests described by a simple table

Input	Selected test	1	2				
	Voltage	>100 V	>50 V				
	Overheating	FALSE	don't care				
	Cryo OK	TRUE	TRUE				
Output	TestEnabled	TRUE	TRUE				
Out	SpecialTest	TRUE	FALSE				

- If SelTest=1 and Voltage>100 and not Overh and CryoOk, then TestEnabled shall be true, SpecialTest shall be true.
- Not bad, but ambiguous
 - Colours have undefined additional meanings
 - Some ambiguous values in cells, e.g. "1 / NA / NA / 0"

			2	2	Decision 1	D	YPE OF TEST			· .	-			Davis - 1		TYPE OF TEST	145.70			
<i>i</i>			Power All	Power Main Magnet	Power Aux Magnet CD	Power Aux Magnet EF	IAP @ Warm Initial	IAP @ Cold & Warm Final	RRR, AC TF	Lyre, MM warm	HV Tests	Power All	Power Main Magnet	Power Aux Magnet CD	Power Aux Magnet EF	IAP @ Warm Initial	IAP @ Cold & Warm Final	RRR, ACTF	Lyre, MM warm	HV Tests
TEST CONFIG.		TBC ACTIVE BENCH 1			3	4	3				, , , , , , , , , , , , , , , , , , ,				4	3	°		-	
8	SS SS	TBC POLARITY MAIN 3 TBC SWITCH CD 4													==					
TS	PARAMETERS	TBC SWITCH EF 5. TBC HV TEST 6.			_					_		_							_	
프	PAR	TBC SWITCH GH 7 TBC MAGNET PHASE 8																		
_	_	TEC FLASHEOX AGU PLOVER 10 TBC_V_QH1 11				_												_		
		TBC_V_QH2 12 TBC_V_QH3 13 TBC_V_QH4 14																		
	10/0	TBC_V_DH4 14 TBC_V_LEAD_A 15			_	_	-	_		_	_			_	_	_	_	_	_	_
	TS (0.	TBC V LEAD A 15 TBC V LEAD B 16 TBC V LEAD C 17 TBC V LEAD D 18	-===	-3-	ᆖ	===	==	=	⊨≋≓	≔	=	-35-	==	-31-	===	==	==	==	≕	===
	13 ANALOG INPUTS (0.10V)	TBC V LEAD E 19 TBC V LEAD F 20		=	-11-	-99		=		=		-11	==		-69-		=	-1-	\rightarrow	-8-
	MALOG																			
	13 A	TBC_I_MAIN 21		THE STATE OF									THE STATE OF							
		TBC I_CD 22 TBC_I_EF 23		_	_	-								_	_	_	_	_		_
╽┟	\dashv	TECT_SWITCH_MAIN 24			_		_	_	_	_	_		_	_	_	_	_	_	_	_
		TBC1_CABLE_TEMP 25 TBC1_CABLE_WATER 26 TBC1_INTERC_QH_CONN 27					-							-	- 5	- 0			_	- 2
		TBC1_INTERC_QH_CONN							==											
INPUT VALUES TO BE CHECKED	S	TBC2_SMTCH_MAIN 30 TBC2_CABLE_TEMP 31 TBC2_CABLE_WATER 32					-							-				_		
포	22 DIGITAL INPUTS	TECZ INTERC QH CONN 33 TECZ SMITCH CD 34			_	-0-					_					_				
S E C	IGITA	TBC2_SMITCH_EF 35 TBCRSWITCH_MAIN_CC 36																		
OE		TBC SWITCH CD CC 37 TBC SWITCH EF CC 38			-															
ES 1		TBC_POWER_QH_HF 40 TBC_SWITCH_QH_HF 40 TBC_SWITCH_QH_LF 41						==			===							=		
I C	-	TBC STATUS PC MAIN 42 TBC STATUS PC AUX 43	=	=	-4-	7	-	\rightarrow		=				=			=	-11-	\rightarrow	-1-
>	_	TBC_POL_MAIN_B 45				-	==	==			_			==	==	==	==	==	_	_
J. I		TBC_WATCHDOG TBC1_FT_LEAD_A 46 TBC1_FT_LEAD_B 47.	THE ST	一百戸田	=	-3-	-3-	-3-	-3-	=	-1-	-8-	=	==	-3-	==	=	-8-	-3-	-8-
=	- 1	TBC1_LEAD_AUX 48 TBC1_T_MAG 49 TBC1_ANTICRYO 50		-9-	-	-	-3-	-1-	-3-	=				==	-3-	-9-	=	-1-	-3-	-8-
		TBC1 ANTICRYO 50 TBC1 GRYO 1 9K 51							-33-										_	_
		TBC1 CRYO HV 53 TBC1 CRYO 20K 54	==	==	==	-	==			-	==	_	_	==	==	==	==	==	==	
	INPUTS FROM CTH	TBC1_CRYO_300K		==	==		==							==	==	==	==	==		_
	SFRO	TBC2_FT_LEAD_A 57 TBC2_FT_LEAD_B 58 TBC2_LEAD_AUX 59 TBC2_T_MAG 60		=	=3=	-8-1	==	==	=8=	\Rightarrow	=	-010	1000	==	-9-	-3-	=	-3-	\Rightarrow	_:
	NPCT.	TBC2 T MAG 60 TBC2_ANTICRYO 61	-1-	===	==	-8-1	==	==	-8-	===	-1-		7	=	-0-	===	-3-	-3-	=	-3-
	-	TBC2_CRYO_1_9K					==	==										-		
		TBC2 CRYO HV 84 TBC2 CRYO 20K 65 TBC2 CRYO 300K 56	= $=$	==	==	==	==	==		==	==			33	==	==	===	_	===	
		TBC2 CRYO 300KAIR 67 TBC1 CRYO W TBC2 CRYO W		==	_	_	==	_	_	_	_	_	_	==	==	=	==	==	_	_
		TBC2_CRYO_W TBC1_CRYO_AUX_W TBC2_CRYO_AUX_W			=		=				=			=	=	=	=	=	=	
\dashv	8 8	TECT INTERC POWER 59												_	_	_	_	_		
ALS TO INTERC	NER NER NER	TECS INTERC 70 TECS INTERC FOWER 71																		
		TEIC INTERC ICC 72 TEIC FLASHEIOX ADJUDN 73																		_
IGN	SEE.	TBC_WATCHDOG TBC_CRYO_I_BELOW_2KA 74 TBC1_CRYO_ACTIVE_BENCH 75		_	_	_	_	_	_	_		_	_	_	_	_	_	_	$\overline{}$	_
OUTPUT SIGNA		TBC2_CRYO_ACTIVE_BENCH			_	-					277				_					
JTP	45 E	TBC1_HV_OK_COLD 78 TBC2_HV_OK_300KAIR 79 TBC2_HV_OK_COLD 95			=	=	==		=	=	_				==	==		==	=	- 12
2	S.X	TBC2 HV OK 300KAIR 79 TBC2 HV OK COLD 80 TBC OK CD POWER 81 TBC OK EF POWER 82			==	=	==	==	==	=	=		=	==	=	==	=	==	=	=
	FORC	TBC_OK_MAIN_POWER 83 TBC1_OK_FOR_TEST 84 TBC2_OK_FOR_TEST 85			=	=	-		==					==	=	==				
	_	TBCZ_OK_FOR_TEST 85							1 1	* 1		7	7	7 7	1 1				7 7	Ŧ
																_	- 1/			1.5

From M. Charrondiere

Challenges in the verification

- Complex, semi-formal (ambiguous) requirements
- 'LD' programming language
 - Due to development restrictions for safety PLC programs
 - Has to be exported to 'STL' language first
 - Semantics of 'STL' is not precisely defined

Ladder Diagram (LD) example

Siemens Statement List (STL) example

```
NETWORK
                                              0
TITLE =POWER CD
                                              Α(
                                                    #SEL_ACTIVE_BENCH;
      Α(
                                                    2;
             #SEL_ACTIVE_BENCH;
                                              ==I
             1;
                                              Α(
      ==T
                                              0(
      Α(
                                                    #SEL_TYPE_TEST_X2;
      0(
             #SEL_TYPE_TEST_X1;
                                              ==I
             1;
      ==I
                                              0(
                                                    #SEL TYPE TEST X2;
      0(
                                                     3;
             #SEL TYPE TEST X1;
                                              ==I
             3;
      ==I
                                                    #AI X2 I CUM;
                                                    #DI_X2_I_CUM;
                                                    #CTH_X2_I_CUM;
             #AI_X1_I_CUM;
             #DI_X1_I_CUM;
                                                    #DO OK CD POWER;
             #CTH X1 I CUM;
```


Challenges in the verification

- Complex, semi-formal (ambiguous) requirements
- 'LD' programming language
 - Due to development restrictions for safety PLC programs
 - Has to be exported to 'STL' language first
 - Semantics of 'STL' is not precisely defined
- Complex safety logic
 - Many inputs and outputs

TBC_ACTIVE_BENCH TBC_SWITCH_MAIN TBC_POLARITY_MAIN TBC_POLARITY_MAIN TBC_SWITCH_CD TBC_SWITCH_EF TBC_HV_TEST TBC_SWITCH_QH TBC_MAGNET_PHASE TBC_INTERCON TBC_MAGNET_PHASE TBC_INTERCON TBC_FLASHBOX_ADJ_POWER TBC_V_QH1 TBC_V_QH2 TBC_V_QH3 TBC_V_QH4 TBC_V_LEAD_A TBC_V_LEAD_B TBC_V_LEAD_D TBC_V_LEAD_D TBC_V_LEAD_D TBC_V_LEAD_E TBC_V_LEAD_E TBC_I_CD	SM18 PLCSE safety logic	TBC1_INTERC TBC1_INTERC_POWER TBC2_INTERC TBC2_INTERC_POWER TBC_INTERC_CC TBC_INTERC_CC TBC_FLASHBOX_ADJ_ON TBC_CRYO_I_BELOW_2KA TBC1_CRYO_ACTIVE_BENCH TBC2_CRYO_ACTIVE_BENCH TBC1_HV_OK_300KAIR TBC1_HV_OK_COLD TBC2_HV_OK_GOLD TBC2_HV_OK_COLD TBC_OK_EF_POWER TBC_OK_EF_POWER TBC_OK_MAIN_POWER TBC1_OK_FOR_TEST TBC2_OK_FOR_TEST
--	----------------------------	---

Problems found (before putting in production!)

Requirement misunderstanding

Recognised while specifying requirements formally

Functionality problems

"The [magnet] test should start, but it doesn't."

Safety problems

- "The [magnet] test **should NOT start**, but it does."

Problems found

In total 14 issues found

- 4 requirement misunderstandings
- 6 problems could not be found using our typical testing methods

Summary

Where are we now?

- Model checking: more and more used for real cases
 - Sometimes non-expert users use PLCverif autonomously
 - Integration into the development process is in progress
- Several successful case studies
 - Model checking revealed interesting and potentially critical problems
 - Counterexample is a huge advantage
- Improvements are always possible
 - New reduction methods
 - Support for new model checkers
 - Support for additional PLC languages

For more information...

- Project website (with publication list)
 http://cern.ch/project-plc-formalmethods/
- PLCverif tool's website http://cern.ch/plcverif
- CERN website http://home.cern

Model checking at CERN

- D. Darvas et al. Formal verification of complex properties on PLC programs. Formal Techniques for Distributed Objects, Components, and Systems (LNCS 8461), pp. 284-299, Springer, 2014.
- B. Fernández et al. Bringing automated model checking to PLC program development A CERN case study. Proc. of the 12th Int. Workshop on Discrete Event Systems, pp. 394-399, 2014.
- D. Darvas et al. PLCverif: A tool to verify PLC programs based on model checking techniques. Proc. of the 15th Int. Conf. on Accelerator & Large Experimental Physics Control Systems, pp. 911-914, JaCoW, 2015. http://doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF092
- B. Fernández et al. Applying model checking to industrial-sized PLC programs. IEEE Transactions on Industrial Informatics, 11(6):1400-1410, 2015. http://doi.org/10.1109/TII.2015.2489184
- D. Darvas et al. Formal verification of safety PLC based control software. Integrated Formal Methods (LNCS 9681), pp. 508-522, Springer, 2016. http://doi.org/10.1007/978-3-319-33693-0_32

Formal specification at CERN

- D. Darvas et al. Requirements towards a formal specification language for PLCs. 2014. http://doi.org/10.5281/zenodo.14907
- D. Darvas et al. A formal specification method for PLC-based applications. Proc. of the 15th Int. Conf. on Accelerator & Large Experimental Physics Control Systems, pp. 907-910, JaCoW, 2015. http://dx.doi.org/10.18429/JACoW-ICALEPCS2015-WEPGF091
- D. Darvas et al. Syntax and semantics of PLCspecif. CERN Report, EDMS 1523877, 2015. https://edms.cern.ch/document/1523877
- D. Darvas et al. Formal verification of safety PLC based control software. Integrated Formal Methods (LNCS 9681), pp. 508-522, Springer, 2016. http://doi.org/10.1007/978-3-319-33693-0_32

