秋学期第三次作业

1. 钛和铁是相对较硬的金属,其熔点也较高。请预测它们的标准熔融焓变和标准熔融熵变,然后查数据确认。相比于正庚烷,这两种金属的标准熔融焓变很高吗?请对金属与正庚烷熔融焓比值加以解释。

物质	熔融焓/(kJ·mol ⁻¹)	熔融熵 $/(J \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$
钛	14.15	7.28
铁	13.81	7.63
正庚烷	14.0	76.9

表 1 金属的熔融焓和熔融熵

解 这些物质在熔点时的熔融焓和熔融熵如表 1 所示。

这两种金属的熔融焓与正庚烷相比并不很高,因为金属熔融过程中,并没有完全破坏金属键。但正庚烷熔融过程中,碳氢链紧密排列的构型被打破了,损失了一部分分子间相互作用能。因此,虽然金属键本身比分子间相互作用要强,但它们的熔融焓相近。

但是因为构象振动熵的释放,正庚烷的熔融熵比金属大得多,熔点也就低了很多。

Tips: CRC 上直接给了数值, NIST 上要自己算; 熔融熵可以用熔点和熔融焓计算。

2. 我们在课堂里讨论了液体的内能。请用 Br_2 、Ar、 H_2O 、苯、环己烷作为例子,结合能查到的蒸发相变数据,计算各自液体在该相变条件下的热能。给出一个计算步骤,计算结果列表给出。

提示:可以先用理想气体模型处理相变点的气体,判断各个气体分子是否有振动和电子热能贡献(气体平动、转动对热能贡献可以很好计算,因此可以得出对应的摩尔比热。如果该计算结果与实验值接近,则可以认为不涉及振动和电子贡献)。如果涉及振动和电子热能,可以把平动和转动的类振动热能算出来,然后结合气态的振动和电子热能就可以算得液态总热能。

解 各物质蒸发相变数据和计算得到的液态热能如表 2 所示,容易判断 Br_2 、苯和环己烷必须考虑振动热能贡献。下面以 Br_2 为例,计算沸点液态热能。

- 3个平动自由度转化为类振动, $Q_{\text{平动类振动}} = 3nRT = 8281 \text{ J}$ 。
- 2 个转动自由度转化为类振动, $Q_{$ 转动类振动} = 2nRT = 5520 J。

 ${
m Br}_2$ 振动频率为 323 cm⁻¹, $Q_{\bar{k}\bar{j}\bar{j}} = \frac{Nh\nu}{e^{h\nu/kT}-1} = 1265~{
m J}$ 。

因此 Br_2 的液态总热能 $Q = Q_{\text{平动类振动}} + Q_{\text{转动类振动}} + Q_{\text{振动}} = 15066 \text{ J}$ 。

提示 对于有多个振动模式的分子,振动热能是每个振动模式的加和,对称性为 E 的振动模式简并度为 2。以下是各物质沸点时的气态等压摩尔热容,数据来自 NIST 并作适当拟合,可用于估计振动热能和电子热能的贡献。

物质	Br_2	Ar	$\rm H_2O$	苯	环己烷
$\boxed{C_{P,\mathrm{mol}}/(\mathbf{J}\cdot\mathbf{mol^{-1}}\cdot\mathbf{K^{-1}})}$	36.3	20.8	34.0	98.2	128.6

表 2 各物质蒸发相变数据和液态热能

物质	沸点/K	蒸发焓/(kJ·mol ⁻¹)	液态热能/(kJ·mol ⁻¹)
Br_2	332.0	29.96	15.07
Ar	87.3	6.43	2.18
${ m H_2O}$	373.1	40.65	18.61
苯	353.2	30.72	25.06
环己烷	353.8	29.97	29.85

3. 液体到气体蒸发过程的内能改变包括热能和基态能两部分的改变,上面的结果可以求出热能的改变;这里计算以上液体蒸发过程基态能的改变,思考这一部分基态能量改变的来源。

表 3 蒸发过程能量变化(单位均为 kJ·mol-1)

物质	蒸发焓	蒸发内能	蒸发热能	蒸发基态能
Br_2	29.96	27.20	-6.90	34.10
Ar	6.43	5.70	-1.09	6.79
${\rm H_2O}$	40.65	37.55	-9.31	46.85
苯	30.72	27.78	-8.81	36.59
环己烷	29.97	27.03	-8.82	35.85

解 各相变能量很容易计算。蒸发热能 $\Delta Q_{\rm m} = -\frac{1}{2}(F_{\rm Ph} + F_{\rm kh})RT$,蒸发内能 $\Delta U_{\rm m} = \Delta H_{\rm m} - RT$,蒸发基态能 $\Delta U_{\rm m}(0) = \Delta U_{\rm m} - \Delta Q_{\rm m}$ 。蒸发能量变化列于表 3 中。蒸发基态能,主要来源于蒸发过程分子从周围分子的相互作用势阱中离开,这部分能量从一个很大的负值变为 0。还有很小一部分是类振动基态能的释放。

4. 查 NIST 数据库,确定正丁烷和环丁烷的振动频率,并将频率低于 1000 cm⁻¹ 的振动列表。在表中计算列出这些低频振动在室温条件下对热能和熵的贡献。在表的最后一栏,请列出两个分子总的振动熵和振动热能。

表 4 正丁烷的热能和熵

波数/ cm^{-1}	热能/(J·mol ⁻¹)	熵/ $(J \cdot mol^{-1} \cdot K^{-1})$
837	180	0.75
425	751	3.66
948	118	0.48
731	265	1.14
194	1498	9.16
102	1919	14.29
803	204	0.86
225	1373	8.03
964	111	0.45
271	1202	6.65
总和	7620	45.49

表 5 环丁烷的热能和熵

波数/cm ⁻¹	简并度	热能/(J·mol ⁻¹)	熵/ $(J \cdot \text{mol}^{-1} \cdot \text{K}^{-1})$
199	1	1477	8.97
941	1	121	0.50
928	1	128	0.52
883	1	151	0.63
625	1	385	1.71
893	2	146	0.60
746	2	251	1.07
总和		3056	15.67

5. 查数据求正丁烷和环丁烷的标准熔点、熔融焓变,并利用焓变、熔点、熵变之间关系计算对应的熔融熵变。两个分子的标准熔点符合预期吗? 你的标准焓变和标准熵变数据符合预期吗?与上题求得的总振动熵与振动热能数据相符合吗?

解 正丁烷的标准熔点 $T_{\rm fus}=136~{
m K}$,熔点时熔融焓变 $\Delta_{\rm fus}H_{\rm m}^{\ominus}=4.66~{
m kJ/mol}$,因此熔融熵变 $\Delta_{\rm fus}S_{\rm m}^{\ominus}=\frac{\Delta_{\rm fus}H_{\rm m}^{\ominus}}{T_{\rm fus}}=34.3~{
m J\cdot mol^{-1}\cdot K^{-1}}$ 。

正丁烷的标准熔点 $T_{\rm fus}=183$ K,熔点时熔融焓变 $\Delta_{\rm fus}H_{\rm m}^{\rm e}=1.09$ kJ/mol,熔融熵变 $\Delta_{\rm fus}S_{\rm m}^{\rm e}=5.96$ J·mol $^{-1}$ ·K $^{-1}$ 。

正丁烷因为晶体中分子之间排列更紧密,熔化焓更大;同时因为多构象振动模式,熔化熵也更大。仔细一看,把正丁烷最低3个振动频率的热能和熵加起来,与熔化焓和熔化熵很接近;而环丁烷的熔化焓和熔化熵来自于从晶格振动到类振动的频率变化。

6. 细胞膜分子为带亲水端的长链烷烃,但分子间相互作用能的主要贡献未必是 亲水端官能团,碳氢链的贡献不可忽视。请查数据来考察这个推测。具体地, 用正长链羧酸的熔融过程作为细胞膜熔化的模型,用正烷烃的熔融过程作为无 亲水端层状结构的熔化模型,对比两个系列的熔融焓变和熔融熵变。请考察 14、 16、18、20 个碳的。

表 6 长链酸和烷的熔化焓和熔化熵

物质	熔化焓/(kJ·mol ⁻¹)	熔化熵/(J·mol ⁻¹ ·K ⁻¹)
十四酸	45.8	137.8
十六酸	53.9	163.5
十八酸	61.3	178.8
二十酸	71.6	198.7
十四烷	45.1	161.5
十六烷	53.4	183.2
十八烷	61.5	201.9
二十烷	69.0	219.6

解 长链酸和长链烷烃的熔化焓和熔化熵列于表 6 中。可发现,同样碳数量的酸和烷,熔化焓基本相同。因此,细胞膜分子间相互作用的主要贡献来自于长链碳氢链。

烷比酸的熔化熵高约 $20 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$,可能是因为羧基不利于分子内转动,以及液态中形成氢键增加电子熵,形成二聚体阻碍自由转动等。