Yuchong Pan

CONTACT Information +1 (604) 782-7439 panyuchong@gmail.com http://ypan.me

RESEARCH INTERESTS Algorithms, combinatorics, optimization, theoretical computer science — especially combinatorial optimization, submodular optimization, network flow theory, network design, graph algorithms, data structures, graph theory, complexity theory.

EDUCATION

University of British Columbia

B.Sc., Computer Science and Mathematics, Combined Honours, expected 2021 $\,\circ\,$ Minor in Arts, Philosophy

EMPLOYMENT

University of British Columbia

Undergraduate Teaching Assistant, 2021 Undergraduate Teaching Assistant, 2020 Undergraduate Academic Assistant, 2019–2020 Undergraduate Teaching Assistant, 2019 Student Assistant, 2019 Undergraduate Teaching Assistant, 2018

Microsoft Corporation

Software Engineer Intern, 2020 Software Engineer Intern, 2019 Software Engineer Intern, 2018

Jisuanke

Teaching Researcher, 2018–2019 Lecturer, 2018–2019

Sogou, Inc.

Software Engineer Intern, 2017

InitialView

Software Engineer Intern, 2016–2017

RESEARCH EXPERIENCE

University of British Columbia

Optimization problems on network flows with side constraints (thesis), 2020–2021

- Advisor: F. Bruce Shepherd
- \circ Studied several optimization problems on network flows with side constraints (i.e., unsplittable, confluent, and d-furcated flows), including the *minimum congestion*, *maximum routable demands*, and *minimum number of rounds* problems.
- Studied several classical algorithms on these optimization problems, including
 - the 2-approximation algorithm for the *minimum congestion* problem on single-sink unsplittable flows by Dinitz et al. (1999),
 - the $O(1 + \log k)$ -approximation algorithm for the minimum congestion problem on confluent flows by Chen et al. (2004),

- the 3-approximation algorithm for the *maximum demands* problem on confluent flows by Chen et al. (2004), and
- the $(1 + \frac{1}{d-1})$ -approximation algorithm for the minimum congestion problem on d-furcated flows with $d \ge 2$ by Donovan et al. (2007).
- \circ Studied several open questions relevant to these optimization problems, including Michel Goemans' 2-congestion conjecture for the cost version of the *minimum congestion* problem on single-sink unsplittable flows, O(1)-congestion for bifurcated flows, and O(1) confluent rounds to route all demands.
- o Documents: [Proposal]

Gradual typing of recursive types, 2019–2020

- o Advisor: Ronald Garcia
- Applied the Abstract Gradual Typing (AGT) approach, based upon abstract interpretation, to iso-recursive and equi-recursive types to obtain static and dynamic semantics for gradual typing in terms of pre-existing static types, which enables programming languages to seamlessly combine dynamic and static checking. In particular, the dynamic semantics of the gradual language are induced from an internal runtime language whose terms represent corresponding source gradual typing derivations.
- Proved that the gradual language with recursive types induced by the AGT approach satisfies the refined criteria for gradual typing of Siek et al. (2015), including type safety, static guarantee and dynamic guarantee.
- Wrote a tutorial that demonstrates the AGT approach on a toy language BA (Boolean and Arithmetic Language), which produces TBA, GBA and MBA (Typed/Gradual/Mixed Boolean and Arithmetic Language, respectively).

TEACHING EXPERIENCE

University of British Columbia

Teaching Assistant

CPSC 420 Advanced Algorithms Design and Analysis, Spring 2021
CPSC 311 Definition of Programming Languages, Fall 2020
CPSC 421/501 Introduction to Theory of Computing (graduate), Fall 2019
CPSC 121 Models of Computation, Fall 2018

_

 $Academic\ Assistant$

CPSC 411 Introduction to Compiler Construction, Fall 2019–Spring 2020

Involved in the redesign of the course, supervised by William J. Bowman.

Jisuanke

Lecturer

Competitive Programming, Level 6 Spring 2019

Topics: network flows and bipartite graphs, data structures (splay tree, treap, link-cut tree), string algorithms (the Aho-Corasick algorithm, suffix array), bitmask DP, probability, computational geometry, query decomposition techniques

Competitive Programming, Level 5 Fall 2018

Topics: graph connectivity, segment tree and binary indexed tree, string algorithms (the Knuth-Morris-Pratt algorithm, trie), hashing, elementary game theory, dynamic programming (tree DP, space-time optimization techniques), elementary number theory, divide-and-conquer techniques

Competitive Programming, Level 3 Summer 2018

Topics: C++, dynamic programming (longest increasing subsequence, maximum subarray, longest common subsequence, edit distance, knapsack problems), search techniques (BFS, DFS, pruning, state representation)

Teaching Researcher

Competitive Programming, Level 6 Spring 2019

Topics: network flows and bipartite graphs, data structures (splay tree, treap, link-cut tree), string algorithms (the Aho-Corasick algorithm, suffix array), bitmask DP, probability, computational geometry, query decomposition techniques

VOLUNTEER EXPERIENCE

THE Hack (InnoCat Technology Co., Ltd.)

Co-Founder, Chief Technology Officer, & Co-Director of Corporate Relations, 2017–2018.

Shaoxing No.1 High School

Summer Coach (Competitive Programming), 2016 Student Lecturer (Competitive Programming), 2013–2015

Manuscripts

Unsplittable Flow Problem on Paths and Trees: Closing the LP Relaxation Integrality Gap (with A. Jozefiak). UBC CPSC 531F Survey, 2019. [Link]

Talks and Presentations

- Are we responsible if we have no choice? (in Chinese). No Nap Seminars. Online. 2020. [Slides][Video]
- The Single-Source Unsplittable Flow Problem. UBC Computer Science. University of British Columbia. Online. 2020. [Scribe] [Note]
- Perturbation-Stable Maximum Cuts. Algorithms Reading Group, UBC Computer Science. University of British Columbia. Online. 2020. [Slides]
- Unsplittable Flow Problem on Paths and Trees: Closing the LP Relaxation Integrality Gap (with A. Jozefiak). UBC CPSC 531F Survey. University of British Columbia. Vancouver, BC. 2019. [Slides]
- Introduction to Communication Complexity. Quantum Club Seminar. University of California, Santa Barbara. Santa Barbara, CA. 2019.
- o Gradual Typing for Octave Language (with A. Li, K. Wang, and P. Wang). UBC CPSC 311 Project. University of British Columbia. Vancouver, BC. 2018. [Report]
- Some Math Notes (in Chinese). Competitive Programming Summer School. Shaoxing No. 1 High School. Shaoxing, China. 2016. [Slides]
- Graph Algorithms (in Chinese). Competitive Programming Summer School. Shaoxing No. 1 High School. Shaoxing, China. 2016. [Slides]
- o Miller-Rabin Primality Test and Pollard's ρ Integer Factorization Algorithm (in Chinese). Competitive Programming Seminar. Shaoxing No. 1 High School. Shaoxing, China. 2015. [Slides]

Honors and Awards

- Faculty of Science International Student Scholarship (CAD \$7,500), University of British Columbia, 2020.
- J Fred Muir Memorial Scholarship in Science (CAD \$200), University of British Columbia, 2020.
- o Trek Excellence Scholarship (CAD \$4,000), University of British Columbia, 2020.
- o Science Scholar, University of British Columbia, 2020.
- o Dean's Honour List, University of British Columbia, 2020.
- Faculty of Science International Student Scholarship (CAD \$5,000), University of British Columbia, 2019.
- o Dean of Science Scholarship (CAD \$350), University of British Columbia, 2019.
- o Trek Excellence Scholarship (CAD \$4,000), University of British Columbia, 2019.
- Stanley M Grant Scholarship in Mathematics (CAD \$1,500), University of British Columbia, 2019.
- o Programming Language Implementation Summer School Fellowship (€400), 2019.

- Science Scholar, University of British Columbia, 2019.
- o Dean's Honour List, University of British Columbia, 2019.
- Faculty of Science International Student Scholarship (CAD \$10,000), University of British Columbia, 2018.
- o Dean of Science Scholarship (CAD \$425), University of British Columbia, 2018.
- Trek Excellence Scholarship (CAD \$4,000), University of British Columbia, 2018.
- Marie Kendall Memorial Scholarship in Science (CAD \$925), University of British Columbia, 2018.
- Joel Harold Marcoe Memorial Scholarship (CAD \$150), University of British Columbia, 2018.
- o Science Scholar, University of British Columbia, 2018.
- o Dean's Honour List, University of British Columbia, 2018.
- 27th Place (out of 118 teams), North American Invitational Programming Contest,
 Open Division (USA + Canada), 2018.
- 11th Place (out of 67 teams), ACM International Collegiate Programming Contest, Pacific Northwest Regional (Division 1), 2017.
- 1st Place, Microsoft College Code Competition, University of British Columbia, 2017.
- 1st Place, i-Lab Hackathon, 2017.
- 6th Place & Best Award for Creativity and Innovation, Unique Hackday, Huazhong University of Science and Technology, 2017.
- o 2nd Place, HackNanjing, 2017.
- $\circ\,$ Outstanding International Student Award (CAD \$6,000), University of British Columbia, 2017
- o Top 9 & InnoSpring Award, HACKxFDU, Fudan University, 2016.
- 1st Place, Programming Ability Test (Advanced Division), Zhejiang University, 2016.
- Silver Medal, China Team Selection Competition for International Olympiad in Informatics, China Computer Federation, 2015.
- Bronze Medal, Asia Pacific Informatics Olympiad, China Computer Federation, 2015.
- First Prize, National Olympiad in Informatics in Provinces (Advanced Division), China Computer Federation, 2014.
- First Prize, National Olympiad in Informatics in Provinces (Advanced Division), China Computer Federation, 2013.

Professional

Journal Review

SERVICE

SIAM Journal on Discrete Mathematics (SIDMA)

Selected Coursework Mathematics

Probability (graduate)

Stochastic Processes (graduate)

Submodular Optimization (graduate)

Combinatorial Optimization (graduate)

Measure Theory and Integration (graduate)

Introduction to Theory of Computing (graduate) Tools for Modern Algorithm Analysis (graduate)

Beyond Worst-Case Analysis (seminar)

Real Variables I & II

Numerical Linear Algebra

Introduction to Group Theory

Introduction to Rings and Modules

Ordinary/Partial Differential Equations

Probabilistic Graphical Models (Coursera, Stanford CS228, graduate, honors track)

Computer Science and Engineering

Introduction to Software Engineering Definition of Programming Languages Introduction to Compiler Construction Computer Hardware and Operating Systems Intermediate Algorithm Design and Analysis

Machine Learning (Coursera, Stanford)

Programming Languages (Coursera, University of Washington CSE 341)

Philosophy

Metaphysics

Philosophy of Law Philosophy of Religion

Philosophy After 1800 (Russell & Wittgenstein)

Academic

o Second Programming Language Implementation Summer School. Bertinoro, Italy.

Training

2019.

Relevant Skills Languages:

English, Mandarin

Programming: LATEX, Racket, Standard ML, JavaScript, C/C++, Java, C#, Python,

Ruby, MATLAB, Go, MySQL

LAST UPDATED January 5, 2021