Roll	No.:	 	 	 	 •••

National Institute of Technology, Delhi

Name of the Examination: B. Tech.

Branch : Electrical & Electronics Engineering Semester : 3rd

Title of the Course : Electrical & Electronic Measurements Course Code : EEB 202

Time: 2 Hours Maximum Marks: 25

Note: 1. Answer all the questions.

- 2. Do not write anything on the question paper except Roll number.
- 3. Assume any data suitably if found missing.
- Q.1. The unknown inductance is determined by Anderson bridge and is given by the expression

$$L_x = \frac{CP \left[r(Q+S) + Q.S \right]}{S}$$

where $C = 1 \mu F \pm 1.0\%$; $P = 1000\Omega \pm 0.4\%$; $Q = 2000\Omega \pm 1.0\%$; $r = 200\Omega \pm 0.5\%$; and $S = 2000\Omega \pm 0.5\%$.

Determine the magnitude of unknown inductance in Henry and limiting error in percentage [5]

- Q.2. The law of deflection of a moving iron instrument is given by $I = 4\theta^n$ where θ is the deflection in radians and n is a constant. The self inductance of the coil is 10mH when the meter current is zero. The spring constant is .
 - (i) Determine the expression for self inductance of the meter as a function of θ and n.
 - (ii) With n = 0.75, calculate the meter current and the deflection that corresponds to a self inductance of $60 \, mH$
- Q.3. A moving coil instrument whose coil resistance is 5Ω and where full-scale deflection current is $15 \, mA$ is to be used with a manganin shunt to measure current up to $100 \, A$. Calculate the percentage error caused by a $15^{\circ}C$ rise in temperature. Take the temperature coefficient of the coil of copper as $0.004 \, \Omega/\Omega/^{\circ} \, C$ and manganin $0.00015 \, \Omega/\Omega/C$.
- Q.4. A wattmeter has a current coil of 0.1Ω resistance and a pressure coil of 6500Ω resistance. Calculate the percentage errors due to resistance only with each of the methods of connection (A-V & V-A), when reading the input to an apparatus which takes:
 - (i) 12A at 250V with unity power factor and (ii) 12A at 250V with 0.4 power factor [6]

Q.5. In a Carey-Foster bridge a resistance of 1.0125Ω is compared with a standard resistance of 1Ω , the slide wire has a resistance of 0.0250Ω in 100 divisions. The ratio arms nominally each 10Ω are actually 10.05Ω and 9.95Ω respectively. Calculate (in scale divisions) at which the balance is obtained.