Digital Logic Design, CT:01

≡ Contributor	ASH2101008M
Created	@May 23, 2023 5:04 AM
Last edited time	@May 23, 2023 9:57 PM
∷ Tags	

Drawing Circuit Figure:

- + ⇒ OR
- * ⇒ AND

Writing output from input waveform:

https://www.youtube.com/watch?v=hkbFfFjZvv8&ab_channel=UndergradAcademy

De Morgan's Law:

Α	В	Ā	В	A·B	A·B	$\overline{A} + \overline{B}$
0	0	1	1	0	1	1
0	1	1	0	0	1	1
1	0	0	1	0	1	1
1	1	0	0	1	0	0

Α	В	Ā	В	A+B	A+B	$\overline{A} \cdot \overline{B}$
0	0	1	1	0	1	1
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	0	0	1	0	0

Parity:

1. Even Parity : Number of 1 is even, example : 101

2. Odd Parity: Number of 1 is odd, example: 100

Determine Even Parity code for D P3 P2 P1 P0

1) 1001

Binary to Gray Code Conversion

https://www.youtube.com/watch?v=cF-Q5j7RUEw&ab channel=NesoAcademy

- Print the MSB as it is
- i th bit = (i-1) bit + i th bit (Neglect the Carry)
- Repeat the process 2

OR

- MSB = MSB
- i th bit = (i) XOR (i-1)

Binary to Gray Code:

- Print the MSB and Previous Sum = MSB
- i th bit = Previous Sum + i th bit (neglecting the carry)
- Update Previous Sum

Boolean Constants & Variables

- $0/False \Rightarrow 0 0.8V$
- $1/True \Rightarrow 2 5V$

(11)
$$x + (y + z) = (x + y) + z = x + y + z$$

(12) $x(yz) = (xy)z = xyz$
(13a) $x(y + z) = xy + xz$
(13b) $(w + x)(y + z) = wy + xy + wz + xz$
(14) $x + xy = x$
(15a) $x + \overline{x}y = x + y$
(15b) $\overline{x} + xy = \overline{x} + y$

M-Graph:

https://www.youtube.com/watch? v=lw1STgKUpW0&ab_channel=ALLABOUTELECTRONICS

ullet We can always make the group of 2^n

Design Logic Circuit corresponding to the truth table

- \bullet Truth table \rightarrow Expression \rightarrow Simplification the expression
- Design Logic Circuit according to the simplified expression