PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K 31/70	A1	`	1) International Publication Numbe	·
·	<u> </u>	(4:	3) International Publication Date:	19 December 1996 (19.12.96)
(21) International Application Number: PCT/US (22) International Filing Date: 6 June 1996 (compared to the property of the pro				T, AT (Utility model), AU, AZ, I, CN, CZ, CZ (Utility model), K, DK (Utility model), EE, EE
	00.00.5		(Utility model), ES, FI, FI (US, JP, KE, KG, KP, KR, F	Utility model), GB, GE, HU, IL, KZ, LK, LR, LS, LT, LU, LV,
(30) Priority Data: 08/474,497 7 June 1995 (07.06.95)	τ	us	SD, SE, SG, SI, SK, SK (U UA, UG, US, UZ, VN, AR	MX, NO, NZ, PL, PT, RO, RU, Itility model), TJ, TM, TR, TT, IPO patent (KE, LS, MW, SD, M, AZ, BY, KG, KZ, MD, RU,
(60) Parent Application or Grant (63) Related by Continuation		١	FR, GB, GR, ÎE, IT, LU, N	AT, BE, CH, DE, DK, ES, FI, MC, NL, PT, SE), OAPI patent
US 08/474, Filed on 7 June 1995 ((BF, BJ, CF, CG, CI, CM, C TG).	BA, GN, ML, MR, NE, SN, TD,
(71) Applicant (for all designated States except US): EAS OLINA UNIVERSITY [US/US]; 210 Spilman Greenville, NC 27858-4353 (US).			Published With international search re	port.
(72) Inventors; and (75) Inventors/Applicants (for US only): NYCE, Jona [US/US]; 903-11 Treybrooke Circle, Greenville, N (US). METZGER, W., James [US/US]; 238 Greenville, NC 27858 (US).	NC 278	334		
(74) Agents: SIBLEY, Kenneth, D. et al.; Bell, Seltzer Gibson, P.O. Drawer 34009, Charlotte, NC 28234				
(54) Title: METHOD OF TREATMENT FOR LUNG DI	ISEASI	ES U	ISING ANTISENSE OLIGONUCLE	OTIDES

(57) Abstract

A method of treating airway disease in a subject in need of such treatment is disclosed. The method comprises topically administering to the subject an antisense oligonucleotide in an amount effective to treat the ariway disease, where the antisense oligonucleotide is essentially free of adenosine. Pharmaceutical formulations are also disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
ΑU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
СН	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ.	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

METHOD OF TREATMENT FOR LUNG DISEASES USING ANTISENSE OLIGONUCLEOTIDES

This invention was made with Government support under grant RO1CA47217-06 from the National Cancer Institute. The Government has certain rights to this invention.

Field of the Invention

5

This application concerns a method of administering antisense oligonucleotides essentially free of adenosine as a treatment for lung diseases.

Background of the Invention

have received 10 Antisense oligonucleotides considerable theoretical consideration as potentially useful pharmacologic agents in human disease. R. Wagner, practical (1994). However, 372. 333-335 applications of these molecules in actual models of human 15 disease have been elusive. One important consideration in the pharmacologic application of these molecules is Most experiments utilizing route of administration. antisense oligonucleotides in vivo have involved direct application to limited regions of the brain (see C. 20 Wahlestedt, Trends in Pharmacological Sciences 15, 42-46 (1994); J. Lai et al., Neuroreport 5, 1049-1052 (1994); K. Standifer et al., Neuron 12, 805-810 (1994); Akabayashi et al., Brain Research 21, 55-61 (1994)), or to spinal fluid (see e.g. L. Tseng et al., European J. 25 Pharmacol. 258, R1-3 (1994); R. Raffa et al., European J. Pharmacol. 258, R5-7 (1994); F. Gillardon et al., Neurosci. 6, 880-884 (1994)). J. European applications have limited clinical utility due to their invasive nature.

-2-

PCT/US96/09306

systemic administration of antisense The oligonucleotides also poses significant problems with respect to pharmacologic application, not the least of which is the difficulty in targeting disease-involved 5 tissues. In contrast, the lung is an excellent potential target for antisense oligonucleotide application since it may be approached noninvasively and in a tissue-specific manner. Additionally, the lung represents an exceptional target for antisense ODN therapeutics ascompared to other 10 in vivo target organs or tissues, possibly because the lung is lined with surfactant which consists primarily of cationic lipids, well known to enhance cellular uptake of ODNs in other systems. However, the technology involved in delivering antisense agents to the lung remains 15 relatively undeveloped, and potential problems related to the application of antisense agents to the lung remain unexplored.

a purine which contributes to Adenosine, the intermediary and participates metabolism 20 regulation of physiological activity, is a recognized This nucleoside is involved in many neuromodulator. local regulatory mechanisms, in particular at synapses in the CNS and at neuroeffector junctions in the periphery. In the CNS adenosine is known to inhibit the release of 25 a variety of neurotransmitters (noradrenaline, serotonin, acetylcholine, dopamine, glutamate, etc.), GABA, inhibit neurotransmission, depress neuronal firing, induce spinal analgesia, and to possess anxiolytic properties (E.S. Ben-Soreket al., Archives of Internal 30 Medicine 153, 2701-2702 (1993)). In the heart, adenosine is known to slow atrioventricular (AV) conduction, suppress pacemaker activity, possess antiarrhythmic effects, modulate autonomic control, and to trigger the synthesis and release of prostaglandins. M.K. Church et J. Allergy & Clinical Immunology 92, 190-194 It also possesses potent vasodilatory effects and modulates vascular tone. S.T. Holgate et al., Annals

-3-

of the New York Academy of Sciences 629, 227-236 (1991).

As a therapeutic agent, adenosine has achieved considerable recent success as an antiarryhthmic agent in 5 the treatment of supraventricular tachycardia. See C.G. DeGroff and M.J. Silka, Journal of Pediatrics 125, 822-823 (1994); I. Drake et al., Human and Exp. Toxicol. 13, However, many adverse effects of 263-265 (1994). adenosine treatment have been reported in the literature. 10 See, e.g., A. Aggarwal, et al., Anesthesiology 79, 1132-1135 (1993); K.K. Burkhart, American J. Emergency Med. 11, 249-250 (1993); S.K. Srinivasan and P.J. Iversen, J. Clin. Lab. Analysis 9, 129-137 (1995); C.A. Stein et al., Pharmacology & Therapeutics 52, 365-384 (1991); B.B. 15 Fredholm et al., Pharmacological Reviews 46, 143-156 (1994); H. Saito, et al., Blood 66, 1233-1240 (1985). In asthmatic individuals show an extreme particular, sensitivity to adenosine and adenosine monophosphate. See, J.H. Butterfield et al., Leukemia Res. 12, 345-355 20 (1988); CLONETICS: Normal Human Cell Systems Manual Nature 372, 333-335 Wagner, (1995); R.W. near-fatal induction of bronchospasm Serious, occurred in asthmatic individuals administered adenosine for supraventricular tachycardia. See, S. Tabor, in: 25 Current Protocols in Molecular Biology, Vol. 1, Section 3.10.2 (John Wiley & Sons, 1987); J.H. Weiss, Id., at Section 6.2.2.

Similarly, asthmatic rabbits produced using the dust mite allergic rabbit model of human asthma also were shown to respond to aerosolized adenosine with marked bronchoconstriction, while non asthmatic rabbits showed no response. S. Ali et al., Agents Actions 37, 165-176 (1992). Recent work using this model system has suggested that adenosine-induced bronchoconstriction and bronchial hyperresponsiveness in asthma are mediated primarily through the stimulation of adenosine receptors. S. Ali et

20

25

30

al., J. Pharmacol. Exp. Ther. 268, 1328-1334 (1994); S. Ali et al., Am. J. Physiol 266, L271-277 (1994).

Accordingly, adenosine is contraindicated in the lungs of asthmatics (who represent 10% of the adult 5 and 15% of the pediatric population in the United States). Since antisense ODNs are typically composed of all four base pairs, adenine, guanine, cytosine and thymidine, their breakdown products will produce free deoxyadenosine monophosphate in these hyperresponsive airways. Deoxyadenosine monophosphate differs from adenosine monophosphate only by the loss of an oxygen atom on the 3' carbon of the sugar moiety.

Summary of the Invention

A first aspect of the present invention is a method of treating airway disease in a subject in need of such treatment. The method comprises administering an antisense oligonucleotide essentially free of adenosine to the lungs of the subject in an amount effective to treat the airway disease.

A second aspect of the present invention is a pharmaceutical composition, comprising, together in a pharmaceutically acceptable carrier, an antisense oligonucleotide essentially free of adenosine in an amount effective to treat an airway disease.

A third aspect of the present invention is the use of an antisense oligonucleotide essentially free of adenosine as given above for the preparation of a medicament for treating airway disease in a subject in need of such treatment.

Brief Description of the Drawings

Figures 1-4 demonstrate that antisense oligonucleotides can be utilized as effective agents in the treatment or prevention of airway diseases.

Figure 1 illustrates the effects of A_1 adenosine receptor antisense oligonucleotides and mismatch control

-5-

PCT/US96/09306

antisense oligonucleotides on the dynamic compliance of the bronchial airway in a rabbit model. **Figure 2** illustrates the specificity of A₁ adenosine receptor antisense oligonucleotides as indicated by the A₁ and A₂ 5 adenosine receptor number present in A₁ adenosine receptor antisense oligonucleotide-treated airway tissue.

Figure 3 is a graphical representation illustrating that aerosolized deoxyadenosine monophosphate is a potent bronchoconstrictor in asthmatic pathways of allergic rabbits. Further, the figure shows that the effect of deoxyadenosine monophosphate is equipotent to that observed for adenosine monphosphate.

Figure 4 is a graphical representation illustrating that bronchoconstrictor effects occur with aerosolized phosphorothicate oligodeoxynucleotides containing adenosine, but not with oligodeoxynucleotides that are free of adenosine.

Detailed Description of the Invention

Nucleotide sequences are presented herein by 20 single strand only, in the 5' to 3' direction, from left to right. Nucleotides and amino acids are represented herein in the manner recommended by the IUPAC-IUB Biochemical Nomenclature Commission, or (for amino acids) by three letter code, in accordance with 37 CFR §1.822 25 and established usage. See, e.g., PatentIn User Manual, 99-102 (Nov. 1990) (U.S. Patent and Trademark Office, Office of the Assistant Commissioner for Patents, 20231); U.S. Patent No. 4,871,670 to Washington, D.C. Hudson et al. at Col. 3 · lines 20-43 (applicants 30 specifically intend that the disclosure of this and all other patent references cited herein be incorporated herein by reference).

The method of the present invention may be used to treat airway disease in a subject for any reason, with the intention that adenosine content of antisense compounds be eliminated or reduced so as to prevent its

liberation upon antisense degredation. Such liberation may cause serious, even life-threatening, bronchoconstriction in patients with hyperreactive airways. Examples of airway diseases that may be treated by the method of the present invention include cystic fibrosis, asthma, chronic obstructive pulmonary disease, bronchitis, and other airway diseases characterized by an inflammatory response.

-6-

Antisense oligonucleotides to the A1 and A3 10 receptors are shown to be effective in the downregulation of A_1 or A_3 in the cell. One novel feature of this treatment, as compared to traditional treatments for that adenosine-induced bronchoconstriction, administration is direct to the lungs. Additionally, a 15 receptor protein itself is reduced in amount, rather than merely interacting with a drug, and toxicity is reduced. Other proteins that may be targeted with antisense agents for the treatment of lung conditions include, but are not limited to: human A2a adenosine receptor, human A2b 20 adenosine receptor, human IgE receptor β , human Fchistidine antigen, human epsilon receptor CD23 decarboxylase, human beta tryptase, human tryptase-I, human prostaglandin D synthase, human cyclooxygenase-2, human eosinophil cationic protein, human eosinophil 25 derived neurotoxin, human eosinophil peroxidase, human molecule-1 (ICAM-1), human intercellular adhesion adhesion molecule 1 (VCAM-1), human vascular cell endothelial leukocyte adhesion molecule (ELAM-1), human P selectin, human endothelial monocyte activating factor, 30 human IL-3, human IL-4, human IL-5, human IL-6, human IL-8, human monocyte-derived neutrophil chemotactic factor, human neutrophil elastase, human neutrophil oxidase factor, human cathepsin G, human defensin 1, human defensin 3, human macrophage inflammatory protein-1alpha, human muscarinic acetylcholine receptor HM1, human muscarinic acetylcholine receptor HM3, human fibronectin, human GM-CSF, human tumor necrosis factor α , human

30

-7-

PCT/US96/09306

leukotriene C4 synthase, human major basic protein, and human endothelin 1. In these latter targets, and in target genes in general, it is particularly imperative to eliminate or reduce the adenosine content of the 5 corresponding antisense oligonucleotide to prevent their breakdown products from liberating adenosine.

As used herein, the term "treat" or "treating" a lung disease refers to a treatment which decreases the likelihood that the subject administered such treatment 10 will manifest symptoms of the lung disease. "downregulate" refers to inducing decrease а production, secretion or availability (and thus a decrease in concentration) of the targeted intracellular protein.

The present invention is concerned primarily 15 with the treatment of human subjects but may also be employed for the treatment of other mammalian subjects, such as dogs and cats, for veterinary purposes. proteins are preferably mammalian and more preferably of 20 the same species as the subject being treated.

In general, "antisense" refers to the use of small, synthetic oligonucleotides, resembling singlestranded DNA, to inhibit gene expression by inhibiting function of the target messenger RNA 25 Milligan, J.F. et al., J. Med. Chem. 36(14), 1923-1937 In the present invention, inhibition of gene expression of the A_1 or A_3 adenosine receptor is desired. Gene expression is inhibited through hybridization to coding (sense) sequences in a specific messenger RNA (mRNA) target by hydrogen bonding according to Watson-The mechanism of antisense Crick base pairing rules. exogenously applied the that inhibition is oligonucleotides decrease the mRNA or protein levels of the target gene or cause changes in the growth 35 characteristics or shapes of the cells. Id. See also Helene, C. and Toulme, J., Biochim. Biophys. Acta 1049, 99-125 (1990); Cohen, J.S., Ed., Oligodeoxynucleotides as

10

-8-

PCT/US96/09306

Antisense Inhibitors of Gene Expression; CRC Press: Boca Raton, FL (1987).

As used herein, "antisense oligonucleotide" is defined as a short sequence of synthetic nucleotides that 5 (1) hybridizes to any coding sequence in an mRNA which protein, according for the targeted hybridization conditions described below, and (2) upon hybridization causes a decrease in gene expression of the targeted protein.

The mRNA sequence of the A_1 or A_3 adenosine receptor is derived from the DNA base sequence of the gene expressing either the A, or A, adenosine receptor. The sequence of the genomic human A, adenosine receptor is known and is disclosed in U.S. Patent No. 5,320,963 to G. 15 Stiles et al. The A adenosine receptor has been cloned, sequenced and expressed in rat (see F. Zhou et al., Proc. Nat'l Acad. Sci. USA 89:7432 (1992)) and human (see M.A. Jacobson et al., U.K. Patent Application No. 9304582.1 oligonucleotides antisense Thus, 20 downregulate the production of the A₁ or A₃ adenosine receptor may be produced in accordance with standard techniques.

One aspect of this invention is an antisense oligonucleotide having a sequence capable of binding 25 specifically with any sequence of an mRNA molecule which encodes an airway disease-associated protein so as to prevent translation of the mRNA molecule.

Chemical analogs of oligonucleotides (e.g., oligonucleotides in which the phosphodiester bonds have 30 been modified, e.g., to the methylphosphonate, phosphorothioate, the the phosphotriester, phosphorodithicate, or the phosphoramidate, so as to render the oligonucleotide more stable in vivo) are also an aspect of the present invention. The naturally 35 occurring phosphodiester linkages in oligonucleotides are susceptible to degradation by endogenously occurring cellular nucleases, while many analogous linkages are

highly resistant to nuclease degradation. See Milligan et al., and Cohen, J.S., supra. Protection from degradation can be achieved by use of a "3'-end cap" strategy by which nuclease-resistant linkages are substituted for phosphodiester linkages at the 3' end of the oligonucleotide. See Tidd, D.M. and Warenius, H.M., Br. J. Cancer 60, 343-350 (1989); Shaw, J.P. et al., Nucleic Acids Res. 19, 747-750 (1991). Phosphoramidates, phosphorothioates, and methylphosphonate linkages all 10 function adequately in this manner. More extensive modification of the phosphodiester backbone has been shown to impart stability and may allow for enhanced affinity and increased cellular permeation oligonucleotides. See Milligan, et al., supra. Many 15 different chemical strategies have been employed to replace the entire phosphodiester backbone with novel analogues include Id. Backbone linkages. phosphorothioate, phosphorodithioate, methylphosphonate, boranophosphate, phosphotriester, phosphoramidate, 3'-thioformacetal, 5'-thioformacetal, 20 formacetal, thioether, carbonate, 5'-N-carbamate, sulfate, sulfonate, sulfamate, sulfonamide, sulfone, sulfite, sulfoxide, sulfide, hydroxylamine, methylene(methylimino) (MMI) or methyleneoxy(methylimino) linkages. (MOMI) methylphosphonate-modified 25 Phosphorothicate and oligonucleotides are particularly preferred due to their availability through automated oligonucleotide synthesis. Where appropriate, the antisense oligonucleotides may be administered in the form of their pharmaceutically 30 acceptable salts.

Antisense oligonucleotides may be of any suitable length (e.g., from about 10 to 60 nucleotides in length), depending on the particular target being bound and the mode of delivery thereof. Preferably the antisense oligonucleotide is directed to an mRNA region containing a junction between intron and exon. Where the antisense oligonucleotide is directed to an intron/exon

junction, it may either entirely overlie the junction or may be sufficiently close to the junction to inhibit splicing out of the intervening exon during processing of precursor mRNA to mature mRNA (e.g., with the 3' or 5' terminus of the antisense oligonucleotide being is positioned within about, for example, 10, 5, 3, or 2 nucleotides of the intron/exon junction).

When practicing the present invention, the antisense nucleotides administered may be related in origin to the species to which it is administered. When treating humans, human antisense may be used if desired.

Pharmaceutical compositions comprising antisense oligonucleotide as given above effective to reduce expression of an A1 or A3 adenosine receptor by 15 passing through a cell membrane and binding specifically with mRNA encoding an A1 or A3 adenosine receptor in the cell so as to prevent its translation are another aspect of the present invention. Such compositions are provided in a suitable pharmaceutically acceptable carrier (e.g., 20 sterile pyrogen-free saline solution). The antisense oligonucleotides may be formulated with a hydrophobic carrier capable of passing through a cell membrane (e.g., liposome, with the liposomes carried pharmaceutically acceptable aqueous carrier). The 25 oligonucleotides may also be coupled to a substance which mRNA, such as a ribozyme. inactivates oligonucleotides may be administered to a subject to inhibit the activation of A_1 or A_3 adenosine receptors, which subject is in need of such treatment for any of the herein. Furthermore, discussed 30 reasons pharmaceutical formulation may also contain chimeric molecules comprising antisense oligonucleotides attached to molecules which are known to be internalized by cells. These oligonucleotide conjugates utilize cellular uptake concentrations increase cellular 35 pathways to Examples of macromolecules used in oligonucleotides. this manner include transferrin, asialoglycoprotein

-11-

PCT/US96/09306

(bound to oligonucleotides via polylysine) and streptavidin.

In the pharmaceutical formulation the antisense compound may be contained within a lipid particle or 5 vesicle, such as a liposome or microcrystal. particles may be of any suitable structure, such as unilamellar or plurilamellar, so long as the antisense oligonucleotide is contained therein. Positively charged N-[1-(2,3-dioleoyloxi)propyl]-N,N,Nas such 10 trimethyl-ammoniumethylsulfate, or "DOTAP," particularly preferred for such particles and vesicles. The preparation of such lipid particles is well known. See, e.g., U.S. Patent Nos. 4,880,635 to Janoff et al.; 4,906,477 to Kurono et al.; 4,911,928 to Wallach; 15 4,917,951 to Wallach; 4,920,016 to Allen et al.;4,921,757 to Wheatley et al.; etc.

Subjects may be administered the active composition by any means which transports the antisense nucleotide composition to the lung. The antisense 20 compounds disclosed herein may be administered to the lungs of a patient by any suitable means, but are preferably administered by generating an aerosol comprised of respirable particles, respirable the particles comprised of the antisense compound, which 25 particles the subject inhales. The respirable particles may be liquid or solid. The particles may optionally contain other therapeutic ingredients.

Particles comprised of antisense compound for practicing the present invention should include particles of respirable size: that is, particles of a size sufficiently small to pass through the mouth and larynx upon inhalation and into the bronchi and alveoli of the lungs. In general, particles ranging from about .5 to 10 microns in size are respirable. Particles of non-respirable size which are included in the aerosol tend to deposit in the throat and be swallowed, and the quantity of non-respirable particles in the aerosol is preferably

minimized. For nasal administration, a particle size in the range of 10-500 μm is preferred to ensure retention in the nasal cavity.

Liquid pharmaceutical compositions of active compound for producing an aerosol can be prepared by combining the antisense compound with a suitable vehicle, such as sterile pyrogen free water. Other therapeutic compounds may optionally be included.

Solid particulate compositions containing 10 respirable dry particles of micronized antisense compound may be prepared by grinding dry antisense compound with a mortar and pestle, and then passing the micronized composition through a 400 mesh screen to break up or separate out large agglomerates. A solid particulate 15 composition comprised of the antisense compound may optionally contain a dispersant which serves facilitate the formation of an aerosol. A suitable dispersant is lactose, which may be blended with the antisense compound in any suitable ratio (e.g., a 1 to 1 20 ratio by weight). Again, other therapeutic compounds may also be included.

antisense compound of the The dosage administered will depend upon the disease being treated, the condition of the subject, the particular formulation, 25 the route of administration, the timing of administration In general, intracellular subject, etc. to concentrations of the oligonucleotide of from .05 to 50 μM , or more particularly .2 to 5 μM , are desired. administration to a subject such as a human, a dosage of 30 from about .01, .1, or 1 mg/Kg up to 50, 100, or 150 mg/Kg or more is typically employed. Depending on the solubility of the particular formulation of active compound administered, the daily dose may be divided administrations. dose several unit or one among 35 Administration of the antisense compounds may be carried out therapeutically (i.e., as a rescue treatment) or prophylactically.

20

-13-

PCT/US96/09306

Aerosols of liquid particles comprising the antisense compound may be produced by any suitable means, See, e.g., U.S. Patent No. such as with a nebulizer. 4,501,729. Nebulizers are commercially available devices 5 which transform solutions or suspensions of the active ingredient into a therapeutic aerosol mist either by means of acceleration of a compressed gas, typically air or oxygen, through a narrow venturi orifice or by means of ultrasonic agitation. Suitable formulations for use 10 in nebulizers consist of the active ingredient in a liquid carrier, the active ingredient comprising up to 40% w/w of the formulation, but preferably less than 20% w/w. the carrier is typically water or a dilute aqueous alcoholic solution, preferably made isotonic with body 15 fluids by the addition of, for example, sodium chloride. include preservatives Optional additives formulation is not prepared sterile, for example, methyl hydroxybenzoate, antioxidants, flavoring agents, volatile oils, buffering agents and surfactants.

Aerosols of solid particles comprising the active compound may likewise be produced with any solid particulate medicament aerosol generator. solid particulate administering for generators medicaments to a subject produce particles which are 25 respirable, as explained above, and generate a volume of aerosol containing a predetermined metered dose of a medicament at a rate suitable for human administration. One illustrative type of solid particulate aerosol generator is an insufflator. Suitable formulations for 30 administration by insufflation include finely comminuted powders which may be delivered by means of an insufflator or taken into the nasal cavity in the manner of a snuff. In the insufflator, the powder (e.g., a metered dose thereof effective to carry out the treatments described 35 herein) is contained in capsules or cartridges, typically made of gelatin or plastic, which are either pierced or opened in situ and the powder delivered by air drawn

-14-

PCT/US96/09306

through the device upon inhalation or by means of a manually-operated pump. The powder employed in the insufflator consists either solely of the ingredient or of a powder blend comprising the active 5 ingredient, a suitable powder diluent, such as lactose, and an optional surfactant. The active ingredient typically comprises from 0.1 to 100 w/w of A second type of illustrative aerosol formulation. generator comprises a metered dose inhaler. Metered dose 10 inhalers are pressurized aerosol dispensers, typically containing a suspension or solution formulation of the active ingredient in a liquified propellant. During use these devices discharge the formulation through a valve adapted to deliver a metered volume, typically from 10 to 15 150 μ l, to produce a fine particle spray containing the active ingredient. Suitable propellants include certain compounds, for example, chlorofluorocarbon trichlorofluoromethane, dichlorodifluoromethane, dichlorotetrafluoroethane and mixtures thereof. 20 formulation may additionally contain one or more cosolvents, for example, ethanol, surfactants, such as oleic acid or sorbitan trioleate, antioxidants and suitable flavoring agents.

The aerosol, whether formed from solid or liquid particles, may be produced by the aerosol generator at a rate of from about 10 to 150 liters per minute, more preferably from about 30 to 150 liters per minute, and most preferably about 60 liters per minute. Aerosols containing greater amounts of medicament may be administered more rapidly.

The following examples are provided to illustrate the present invention, and should not be construed as limiting thereon. In these examples, μM means micromolar, mL means milliliters, μM means micrometers, mm means millimeters, cm means centimeters, °C means degrees Celsius, μM means micrograms, mg means

PCT/US96/09306 WO 96/40162

-15-

milligrams, g means grams, kg means kilograms, M means molar, and h means hours.

EXAMPLE 1

Design and synthesis of antisense oligonucleotides

5

25

design of antisense oligonucleotides against the A, and A, adenosine receptors may require the solution of the complex secondary structure of the target A, receptor mRNA and the target A, receptor mRNA. After generating this structure, antisense nucleotides are 10 designed which target regions of mRNA which might be construed to confer functional activity or stability to the mRNA and which optimally may overlap the initiation Other target sites are readily usable. demonstration of specificity of the antisense effect, 15 other oligonucleotides not totally complementary to the identical nucleotide mRNA, but containing compositions on a w/w basis, are included as controls in antisense experiments.

Adenosine A, receptor mRNA secondary structure 20 was analyzed and used as described above to design a phosphorothioate antisense oligonucleotide. antisense oligonucleotide which was synthesized was designated HAdAlAS and had the following sequence:

5'-GAT GGA GGG CGG CAT GGC GGG-3' (SEQ ID NO:1)

As a control, a mismatched phosphorothioate antisense nucleotide designated HAdA1MM was synthesized with the following sequence:

5'-GTA GCA GGC GGG GAT GGG GGC-3' (SEQ ID NO:2)

Each oligonucleotide had identical base content and 30 general sequence structure. Homology searches in GENBANK (release 85.0) and EMBL (release 40.0) indicated that the antisense oligonucleotide was specific for the human and rabbit adenosine A_1 receptor genes, and that the

-16-

mismatched control was not a candidate for hybridization with any known gene sequence.

Adenosine A₃ receptor mRNA secondary structure was similarly analyzed and used as described above to design two phosphorothioate antisense oligonucleotides. The first antisense oligonucleotide (HAdA3AS1) synthesized had the following sequence:

5'-GTT GTT GGG CAT CTT GCC-3' (SEQ ID NO:3)

As a control, a mismatched phosphorothicate antisense oligonucleotide (HAdA3MM1) was synthesized, having the following sequence:

5'-GTA CTT GCG GAT CTA GGC-3' (SEQ ID NO:4)

A second phosphorothicate antisense oligonucleotide (HAdA3AS2) was also designed and synthesized, having the following sequence:

5'-GTG GGC CTA GCT CTC GCC-3' (SEQ ID NO:5)

Its control oligonucleotide (HAdA3MM2) had the sequence:

5'-GTC GGG GTA CCT GTC GGC-3' (SEQ ID NO:6)

Phosphorothicate oligonucleotides were 20 synthesized on an Applied Biosystems Model 396 Oligonucleotide Synthesizer, and purified using NENSORB chromatography (DuPont, MD).

EXAMPLE 2

Testing of Al-Adenosine Receptor Antisense Oligonucleotides in vitro

The antisense oligonucleotide against the human A_1 receptor (SEQ ID NO:1) described above was tested for

25

-17-

efficacy in an *in vitro* model utilizing lung adenocarcinoma cells HTB-54. HTB-54 lung adenocarcinoma cells were demonstrated to express the A₁ adenosine receptor using standard northern blotting procedures and receptor probes designed and synthesized in the laboratory.

HTB-54 human lung adenocarcinoma cells (106/100 mm tissue culture dish) were exposed to 5.0 μM HAdAlAS or HAdalMM for 24 hours, with a fresh change of media and 10 oligonucleotides after 12 hours of incubation. Following 24 hour exposure to the oligonucleotides, cells were harvested and their RNA extracted by standard procedures. A 21-mer probe corresponding to the region of mRNA targeted by the antisense (and therefore having the same 15 sequence as the antisense, but not phosphorothioated) was synthesized and used to probe northern blots of RNA prepared from HAdAlAS-treated, HAdAlMM-treated and non-These blots showed clearly that treated HTB-54 cells. HAdalas but not HAdalam effectively reduced human 20 adenosine receptor mRNA by >50%. This result showed that HAdalas is a good candidate for an anti-asthma drug since it depletes intracellular mRNA for the adenosine A, receptor, which is involved in asthma.

EXAMPLE 3

Efficacy of A₁-Adenosine Receptor Antisense Oligonucleotides in vivo

25

A fortuitous homology between the rabbit and human DNA sequences within the adenosine A_1 gene overlapping the initiation codon permitted the use of the phosphorothicate antisense oligonucleotides initially designed for use against the human adenosine A_1 receptor in a rabbit model.

Neonatal New Zealand white Pasteurella-free rabbits were immunized intraperitoneally within 24 hours of birth with 312 antigen units/mL house dustmite (D. farinae) extract (Berkeley Biologicals, Berkeley, CA),

15

30

-18-

PCT/US96/09306

Immunizations were repeated mixed with 10% kaolin. weekly for the first month and then biweekly for the next 2 months. At 3-4 months of age, eight sensitized rabbits were anesthetized and relaxed with a mixture of ketamine 5 hydrochloride (44 mg/kg) and acepromazine maleate (0.4 mg/kg) administered intramuscularly.

The rabbits were then laid supine in comfortable position on a small molded, padded animal board and intubated with a 4.0-mm intratracheal tube (Mallinkrodt, Inc., Glens Falls, NY). A polyethylene catheter of external diameter 2.4 mm with an attached latex balloon was passed into the esophagus maintained at the same distance (approximately 16 cm) from the mouth throughout the experiments. intratracheal tube was attached to a heated Fleisch pneumotachograph (size 00; DOM Medical, Richmond, VA), and flow was measured using a Validyne differential DP-45161927; transducer (Model Validyne pressure Engineering Corp., Northridge, CA) driven by a Gould 20 carrier amplifier (Model 11-4113; Gould Electronic, Cleveland, OH). The esophageal balloon was attached to one side of the differential pressure transducer, and the outflow of the intratracheal tube was connected to the opposite side of the pressure transducer to allow 25 recording of transpulmonary pressure. Flow integrated to give a continuous tidal volume, measurements of total lung resistance (RL) and dynamic compliance (Cdyn) were calculated at isovolumetric and flow zero points, respectively, using an automated respiratory analyzer (Model 6; Buxco, Sharon, CT).

1 were randomized and on Day Animals PC50 were obtained for values for pretreatment aerosolized adenosine. Antisense (HAdAlAS) or mismatched control (HAdalMM) oligonucleotides were dissolved in sterile physiological saline at a concentration of 5000 Animals were subsequently (5 mg) per 1.0 ml. administered the aerosolized antisense or mismatch

-19-

PCT/US96/09306

oligonucleotide via the intratracheal tube (approximately 5000 μg in a volume of 1.0 ml), twice daily for two days. Aerosols of either saline, adenosine, or antisense or mismatch oligonucleotides were generated by an ultrasonic nebulizer (DeVilbiliss, Somerset, PA), producing aerosol droplets 80% of which were smaller than 5 μm in diameter.

In the first arm of the experiment, four randomly selected allergic rabbits were administered antisense oligonucleotide and four the mismatched control oligonucleotide. On the morning of the third day, PC50 values (the concentration of aerosolized adenosine in mg/ml required to reduce the dynamic compliance of the bronchial airway 50% from the baseline value) were obtained and compared to PC50 values obtained for these animals prior to exposure to oligonucleotide.

Following a 1 week interval, animals were crossed over, with those previously administered mismatch oligonucleotide now administered antisense oligonucleotide, and those previously treated with 20 antisense oligonucleotide now administered mismatch Treatment methods and oligonucleotide. control measurements were identical to those employed in the first arm of the experiment. It should be noted that in the eight animals treated with antisense 25 oligonucleotide, adenosine-induced bronchoconstriction could not be obtained up to the limit of solubility of For the purpose of calculation, adenosine, 20 mg/ml. PC50 values for these animals were set at 20 mg/ml. values given therefore represent a minimum figure for Actual effectiveness was 30 antisense effectiveness. The results of this experiment are illustrated in both Figure 1 and Table 1.

-20-

TABLE 1. EFFECTS OF ADENOSINE A, RECEPTOR ANTISENSE OLIGONUCLEOTIDE UPON PC50 VALUES IN ASTHMATIC RABBITS.

A, receptor Antisense oligonucleotide

OLIGONUCLEOTIDE	UPON PCSU	VALUES	IN AS	HWIATIC	KABBITS.

Mismatch Control

5

Ш	Pre	Post	Pre	Post
	oligonucleotide	oligonucleotide	oligonucleotide	oligonucleotide
	3.56 ± 1.02	5.16 ± 1.93	2.36 ± 0.68	>19.5 ± 0.34**

Results are presented as the mean $(N = 8) \pm SEM$. Significance was determined by repeated-measures analysis of variance (ANOVA), and Tukey's protected t test. **Significantly different from all other groups, P < 0.01.

In both arms of the experiment, animals receiving the antisense oligonucleotide showed an order of magnitude increase in the dose of aerosolized adenosine required to reduce dynamic compliance of the lung by 50%. No effect of the mismatched control oligonucleotide upon PC50 values was observed. No toxicity was observed in any animal receiving either antisense or control inhaled oligonucleotide.

These results show clearly that the lung has potential as a target for antisense exceptional 20 oligonucleotide-based therapeutic intervention in lung They further show, in a model system which closely resembles human asthma, that downregulation of the adenosine A1 receptor largely eliminates adenosinein asthmatic airways. induced bronchoconstriction 25 Bronchial hyperresponsiveness in the allergic rabbit model of human asthma is an excellent endpoint for antisense intervention since the tissues involved in this response lie near to the point of contact with aerosolized oligonucleotides, and the model closely 30 simulates an important human disease.

-21-

EXAMPLE 4

Specificity of A1-adenosine receptor

Antisense oligonucleotide

At the conclusion of the crossover experiment of Example 3, airway muscle from all rabbits was quantitatively analyzed for adenosine A₁ receptor number. As a control for the specificity of the antisense oligonucleotide, adenosine A₂ receptors, which should not have been affected, were also quantified.

Airway smooth muscle tissue was dissected from 10 each rabbit and a membrane fraction prepared according to described methods (J. Kleinstein and H. Glossmann, Naunyn-Schmiedeberg's Arch. Pharmacol. 305, (1978), with slight modifications. Crude plasma membrane 15 preparations were stored at - 70°C until the time of assay. Protein content was determined by the method of Bradford (M. Bradford, Anal. 72, Biochem. Frozen plasma membranes were thawed at room (1976)). temperature and were incubated with 0.2 U/ml adenosine 20 deaminase for 30 minutes at 37°C to remove endogenous The binding of [3H] DPCPX (A1 receptorspecific) or [3H]CGS-21680 (A2 receptor-specific) was measured as previously described. S. Ali et al., J. Pharmacol. Exp. Ther. 268, 1328-1334 (1994); S. Ali et 25 al., Am. J. Physiol 266, L271-277 (1994).

As illustrated in both Figure 2 and Table 2, antisense \mathbf{A}_{1} with adenosine treated animals oligonucleotide in the crossover experiment had a nearly 75% decrease in A_1 receptor number compared to controls, 30 as assayed by specific binding of the A_1 -specific antagonist DPCPX. There was no change in adenosine ${\tt A}_2$ receptor number, as assayed by specific binding of the $\ensuremath{\mathtt{A}}_2$ 2-[p-(2-carboxyethyl)agonist receptor-specific phenethylamino]-5'-(N-ethylcarboxamido) adenosine (CGS-35 21680).

5

20

25

35

į

TABLE 2. SPECIFICITY OF ACTION OF ADENOSINE A, RECEPTOR ANTISENSE OLIGONUCLEOTIDE.

Mismatch Control A, Antisense oligonucleotide oligonucleotide

A ₁ -Specific Binding	1105 ± 48**	293 ± 18
A ₂ -Specific Binding	302 ± 22	442 ± 171

Results are presented as the mean $(N = 8) \pm SEM$. Significance was determined by repeatedmeasures analysis of variance (ANOVA), and Tukey's protected t test. **Significantly different from mismatch control, P < 0.01.

The above demonstrates the effectiveness of antisense 10 oligonucleotides in treating airway diseases. antisense oligonucleotides described above eliminate the receptor systems responsible for adenosine-mediated bronchoconstriction, it may be less imperative 15 eliminate adenosine from them. However, it would be preferable to eliminate adenosine from even these oligonucleotides. Examples of such adenosine-free oligonucleotides are provided below in Example 5.

EXAMPLE 5

The method of the present invention is also practiced with the following antisense oligonucleotides targeted to their corresponding proteins, in essentially the same manner as given above, for the treatment of various conditions in the lungs. Described below is a series of antisense oligonucleotides targetting the mRNA of proteins involved in inflammation. Adenosine has been eliminated from their nucleotide content to prevent its liberation during degradation.

In the following, the first sequence provided 30 after the name of the targeted inflammation-involved protein is the antisense sequence that targets the naturally-occurring wherein the initiation codon, adenosine is substituted by one of the following: (1) a universal base that is not adenosine; (2) a adenosine analog that lacks the ability to bind to the adenosine Al

15

-23-

PCT/US96/09306

and/or A3 receptors; or (3) a "spacer." Any one of these three is represented in the sequence as the letter "B," recognized by the IUPAC-IUB Nomenclature Commission as "not-A." See Patentin User Manual, p.99 (November 1990).

5 Listed following the antisense sequence targeted against the initation codon are additional antisense oligonucleotide sequences directed against other portions of the mRNA of the targeted protein. These additional sequences are the "des-adenosine antisense sequences," in that they do not contain adenosine within the sequence.

Fragments of the following sequences that are at least ten, and more preferably at least twelve, nucleotides in length are also an aspect of the presnet invention and are useful in carrying out the present invention. Fragments set forth below that span multiple lines of test indicate "5'-" at the beginning thereof, and "-3'" at the end thereof.

Human Al adenosine receptor:

5'-GGC GGC CTG GBB BGC TGB GBT GGB GGG CGG CBT

GGC GGG CBC BGG CTG GGC-3'

des-adenosine antisense sequences: TTT TCC TTC CTT TGT CTC TCT TC

GCT CCC GGC TGC CTG

CTC GGC CGT GCG GCT CTG TCG CTC CCG GT

25 CCG CCG CCC TCC GGG GGG TC

TGC TGC CGT TGG CTG CCC

CTT CTG CGG GTC GCC GG

TGC TGG GCT TGT GGC

GGC CTC TCT TCT GGG

30 CCT GGT CCC TCC GT

GGT GGC TCC TCT GC

GCT TGG TCC TGG GGC TGC

TGC TCT CCT CTC CTT

-24-

	Human	A2a	adenosine receptor:
			GTBCBCCGBGGGGCCCBTGBTGGGCBTGCCBCBGBCGBCBGGC
			des-adenosine antisense sequences:
			HSA2ARECAS1: TGC TTT TCT TTT CTG GGC CTC (SEQ
5			ID NO:7)
5			HSA2ARECAS2: TGT GGT CTG TTT TTT TCT G
			HSA2ARECAS3: GCC CTG CTG GGG CGC TCT CC
			HSA2ARECAS4: GCC GCC CGC CTG GCT CCC
			HSA2ARECAS5: GGB GCC CBT GBT GGG CBT GCC HSA2ARECAS6: GTG GTT CTT GCC CTC CTT TGG CTG HSA2ARECAS7: CCG TGC CCG CTC CCC GGC
10			HSA2ARECASS: GIG GII CII GCC CIC CII IGG CIG HSA2ARECASS: CCG TGC CCG CTC CCC GGC
			HSA2ARECAS8: CTC CTG GCG GGT GGC CGT TG
			HSA2ARECAS9: GGC CCG TGT TCC CCT GGG
_			HSA2ARECAS10: GCC TGG GGC TCC CTT CTC TC
15			HSA2ARECAS11: GCC CTT CTT GCT GGG CCT C
			HSA2ARECAS12: TGC TGC TGC TGC TGT GGC CCCC
	Viimon	a 2 h	adenosine receptor:
	numan	AZD	5'-BCBGCGCGTCCTGTGTCTCCBGCBGCBTGGCC
			GGGCCBGCTGGGCCCC-3'
			GGGCCBGC1GGGCCCC-3
20			des-adenosine antisense sequences:
20			HSA2BRECAS1: 5'-GGC GCC GTG CCG CGT CTT GGT GGC
			GGC GG-3' (SEQ ID NO:8)
			HSA2BRECAS2: 5'-GTT CGC GCC CGC GCG GGG CCC CTC
			CGG TCC-3'
25			HSA2BRECAS3: 5'-TTG GCC CGC GCG CCC GCC CGT CTC
23			GGG CTG GGC GG-3'
			HSA2BRECAS4: CGG GTC GGG GCC CCC CGC GGC C
			HSA2BRECAS5: 5'-GCC TCG GGG CTG GGG CGC TGG TGG
			CCG GG-3'
30			HSA2BRECAS6: CCG CGC CTC CGC CTG CCG CTT CTG
30			HSA2BRECAS7: GCT GGG CCC CGG GCG CCC CCT
			HSA2BRECAS8: CCC CTC TTG CTC GGG TCC CCG TG
			nonaphaonico de de la caracteria de la c
	Human	A3 8	adenosine receptor
			5'-BCB GBG CBG TGC TGT TGT TGG GCB TCT TGC CTT
35			CCC BGG G-3'
			des-adenosine antisense oligonucleotides:
			CCC TTT TCT GGT GGG GTG
			GTG CTG TTG GGC
			TTT CTT CTG TTC CC
40	Human	IgE	receptor β: 5'-BTTTGCTCTCTBTTBCTTTCTGTGTCCBTTTTTT
			CBTTBBCCGBGCTGT-3'
			des-adenosine antisense sequences:
			HUMIGE β rAS1: TTT CCC CTG GGT CTT CC (SEQ ID
4 =			NO:9)
45			HUMIGEβrAS2: CTC CTG CTC TTT TTT C
			HOMIGEPIANE. CIC CIC CIC III III C

-25-

Human	Fc-epsilon	receptor	CD23	antigen	(IgE	receptor):
	5'-TCT(CTGBBTBTT	GBCCT'	CCTCCBTC	GCGG	CCTGCTT
	GGB?	TCTCCCGB	-3′			

des-adenosine antisense sequences:
5 HUMIGERCD23AS1: GCC TGT GTC TGT CCT (SEQ

HUMIGERCD23AS2: GCT TCG TTC CTC TCG TTC
HUMIGERCD23AS3: CTG CTT GGT GCC CTT GCC G
HUMIGERCD23AS4: GTC CTG CTC CTC CGG GCT GTG G
HUMIGERCD23AS5: 5'-GTC GTG GCC CTG GCT CCG
GCTGGT GGG CTC CCC TGG-3'
HUMIGERCD23AS6: CCT TCG CTG GCT GGC GGC GTG C
HUMIGERCD23AS6: GGG TCT TGC TCT GGG CCT GGC TGT
HUMIGERCD23AS8: GGC CGT GGT TGG GGG TCT TC

HUMIGERCD23AS8: GGC CGT GGT TGG GGG TCT TC

HUMIGERCD23AS9: GCT GCC TCC GTT TGG GTG GC

Human IgE receptor, α subunit:

5'-BCBGTBGBGTBGGGGBTTCCBTGGCBGGBGCCBTC TTCTTCBTGGBCTCC-3'

and

5'-TTC BBG GBG BCC TTB GGT TTC TGB GGG BCT GCT BBC BCG CCB TCT GGB GC-3'

des-adenosine antisense sequences: $HUMIgEr\alpha AS1: GCCTTTCCTGGTTCTCTT$ (SEQ ID NO:11)

GTT GTT TTT GGG GTT TGG CTT

25 Human IgE receptor, Fc epsilon R: 5'-GBT CTC TGB BTB TTGB CCT TCC BTG GCG GTC CTG

CTT GGB-3'

des-adenosine antisense sequences:

HSJGEBFRAS1: GCC TGT GTC TGT CCT (SEQ ID NO:12)

HSJGEBFRAS2: GCT TCG TTC CTC TCG TTC
HSJGEBFRAS3: CTG CTT GGT GCC CTT GCC G
HSJGEBFRAS4: GTC CTG CTC CGG GCT GTG G
HSJGEBFRAS5: 5'-GTC CTC GCC CTG GCT CCG GCT

GGG CTC CCC TGG-3'
HSJGEBFRAS6: CCT TCG CTG GCT GGC GGC GTG C
HSJGEBFRAS7: CCC BGB BCG BGB CCC GGB CCG BCB
HSJGEBFRAS8: GGC CGT GGT TGG GGG TCT TC
HSJGEBFRAS9: GCT GCC TCC GTT TGG GTG GC

40 Human histidine decarboxylase:

5'-CTC TGT CCC TCT CTC TCT GTB CTC CTC BGG CTC CBT CBT CTC CCT TGG GC-3'

des-adenosine antisense sequences:

HUMHDCAS1: TCT CCC TTG GGC TCT GGC TCC TTC TC (SEQ ID NO:13)

45

35

10

-26-

HUMHDCAS2: TCT CTC TCC CTC TCT CTC TGT

HUMHDCAS3: CGCCTCCGCCCTGGCTGCTGGGGTGGTGCT

HUMHDCAS4: TTT TGT TCT TCC TTG CTG CC HUMHDCAS5: GCC CCG CTG CTT GTC TTC CTC G

5 Human beta tryptase:

des-adenosine antisense sequences:

10 HUMBTRYPAS1: CTTGCTCCTGGGGGCCTCCTG (SEQ ID NO:14)

HUMBTRYPAS2: GTC CCT CCG GGT GTT CCC GGC

Human tryptase-I:

5'-CCT GGB CTG GGG CBG GGG CCG CGT BGG CGC GGC

TCG CCB GGB CGG GCB GCB GCB GCB GCB GCC TCB
GCB TCC TGG CCB CGG BBT TCC-3'

des-adenosine antisense sequences: HUMTRYAS1: CTTGCTCCTGGGGGGCCTCCTG (SEQ ID NO:15) HUMTRYAS2: GTC CCT CTG GCT G TT CCC GGC

20 Human prostaglandin D synthase:

5'-CCC CBG CBG GBC CBG TCC CBT CCB CBG CGT GTG BTG BGT BGC CBT TCT CCT GCB GCC GBG-3'

des-adenosine antisense sequences:
HUMPROSYNAS1:GGTGTGCGGGGGCCTGGTGCC(SEQIDNO:16)
HUMPROSYNAS 2: CCT GGG CCT CGG GTG CTG CCT GT
HUMPROSYNAS 3: GCG CTG CCT TCT TCT CCT GG
HUMPROSYNAS 4: 5'-GTC CTC GCC GGG GCC CTT GCT
GCC CTG GCT GT -3'
HUMPROSYNAS 5: GCC CTG GGG GTC TGG GTT CGGCTGT

30 Human cyclooxygenase-2:

25

35

40

5'-TGB GCG CCB GGB CCG CGC BCB GCB GCB GGG CGC GGG CGB GCB TCG CBG CGG CGB GCB GGG-3'

des-adenosine antisense sequences:
HUMCYCLOXAS1: GGGCGCGGGCGBGCBTCGC(SEQ ID NO:17)
HUMCYCLOXAS2: TTT GGG CTT TTC TCC TTT GGT T

Human eosinophil cationic protein:

5'-CBG BCB BBT TTG GGB BGT GBB CBG TTT TGG BBC CBT GTT TCC CBG TCT CTG BGC TGT GGC-3'

des-adenosine antisense sequences:
HSECPAS1: CCTCCTTCC TGG TCT GTC TGC (SEQ ID
NO:18)

Human eosinophil derived neurotoxin:

5'-CCC CBB CBG BBG BBG CBG BCB BBT TTG GGB BGT GBB CBG TTT TGG BBC CBT GTT TCC TGT-3'

-27-

des-adenosine antisense sequences: HSEOSDNAS1: GCC CTG CTG CTC TTT CTG CT (SEQ ID NO:19) HSEOSDNAS 2: TCC CTT GGT GGG TTG GGC C HSEOSDNAS 3: GCT GGT TGT TCT GGG GTT C 5 HSEOSDNAS 4: TTG CTG CCC CTT CTG TCC C HSEOSDNAS 5: TGT TTG CTG GTG TCT GCG C Human eosinophil major basic protein: GGG GGB GTT TCB TCT TGG CTT T des-adenosine antisense sequences: 10 TCT CCC CTT GTT CCT CCC C TCT CCT GCT CTG GTG TCT CCT C TTC CCT CCC TCC CCT GCC GTG TTG TCT GTG GGT GTC C GTT TCG CTC TTG TTG CCC 15 TGG GCC CTT CCC TGC TGG Human eosinophil peroxidase: 5'-GCB CCG TCC BGT GBT GGT GCG GTB CTT GTC GCT GCB GCG CTC GGC CTG GTC CCG GBG BGC-3' des-adenosine antisense sequences: 20 HSEPAS1: GCGCTCGGCCTGGTCCCGG (SEQ ID NO:20) HSEPAS2: GGG TCT CCT CTT GTT GC HSEPAS3: TTG CGC CTC CTG CTG GGG GT CC HSEPAS4: CTC TGT TCT TGT TTT GGG GGC HSEPAS5: GGG CCC GGC CGT TGT CTT G 25 HSEPAS6: GTT TGG GGG TTT CCG TTG HSEPAS7: GGG TTC TCC TGG CCC GGG CCT TGC CC HSEPAS8: GGC CGT GGT CCC GGC TTC GTT GC HSEPAS9: CCT GTC TCC GTC TCG GCT CTT CTG HSEPAS10: GGG CCT TGC GCT GTC TTT GGT G 30 Human intercellular adhesion molecule-1 (CAM-1): 5'- CGG BGC CTC CCC GGG GCB GGB TGB CTT TTG BGG GGG BCB CBG BTG TCT GGG CBT TGC CBG GTC CTG GGB BCB GBG CCC CGB GCB GGB CCB GGB GTG CGG GCB GCG 35 CGG GCC GGG GGC TGC TGG GBG CCB TBG CGB GGC TGB G-3' des-adenosine antisense sequences: HSICAM1AS1: GCGCGGGCCGGGGGCTGCTGGG (SEQ ID NO:21) 40 HSICAM1AS2: GGT TGG CCC GGG GTG CCC C HSICAMIAS3: GCC GCT GGG TGC CCT CGT CCTCTGCGGTC HSICAM1AS4: GTG TCT CCT GGC TCT GGT TCC CC HSICAM1AS5: 5'-GCT GCG CCC GTT GTC CTC TGG GGT GGCCTTC-3' 45

-28-

HSICAMIAS6: GCT CCC GGG TCT GGT TCT TGT GT HSICAMIAS7: TGG GGG TCC CTT TTT GGG CCT GTT GT HSICAMIAS8: GGC GTG GCT TGT GTG TTC GGT TTC HSICAMIAS9: TGC CCT GTC CGG CGT CCC

5 Human vascular cell adhesion molecule 1 (VCAM-1):

5'-CTG BGC BBG BTB TCT BGB TTC TGG GGT GGT CTC GBT TTT BBBB GCT TGB GBB GCT GCB BBC BTT BTC CBB BGT BTB TTT GBG GCT CCB BGG BTC BCG BCC BTC TTC CCB GGC BTT TTB BGT TGC TGT CGT -3'

10 des-adenosine antisense sequences:

HSVCAM1AS1: CCTCTTTTCTGTTTTTCCC (SEQ ID NO:22)

HSVCAM1AS2: CTC TGC CTT TGT TTG GGT TCG
HSVCAM1AS3: CTT CCT TTC TGC TTC TTC C
HSVCAM1AS4: CTGTGTCTCCTGTCTCCGCTTTTTCTTC
HSVCAM1AS5: GTC TTT GTT GTT TTC TCT TCC TTG

Human endothelial leukocyte adhesion molecule (ELAM-1):
5'-BBG TGB GBG CTG BGB GBB BCT GTG BBG CBB TCB
TGB CTT CBB GBG TTC TTT TCB CCC -3'

des-adenosine antisense sequences:

HUMELAMIAAS1: GTTCTTGGCTTCTTCTGTC (SEQ ID NO:23)

HUMELAMIAAS2: CGT TGG CTT CTC GTT GTC CC HUMELAMIAAS3: TGT GGG CTT CTC GTT GTC CC HUMELAMIAAS4: CCC TTC GGG GGC TGG TGG HUMELAMIAAS5: GGC CGT CCT TGC CTG G

25 Human P Selectin:

des-adenosine antisense sequences:

HUMPSELECTAS1: CTCTGCTGGT TTTCTGCCTT CTGCCC

(SEQ ID NO:24)

Human endothelial monocyte activating factor:

des-adenosine antisense sequences:

HUMEMAPIIAS1: 5'-TTT TCT CTT TCG CTT TCT TTT CGTCTCCTGTTCCTCCTTTT-3' (SEQ ID

NO:25)

HUMEMAPIIAS2: 5'-TTG CTG TTT TTT CTC CTT CTT

35 CTC TCC TTT CTT TTC -3'

Human IL3:

des-adenosine antisense sequences:

HUMIL3AAS1: 5'-CTC TGT CTT GTT CTG GTC CTT CGT

GGG GCT CTG (SEQ ID NO:26)-3'

HUMIL3AAS2: TGT CGC GTG G GTG CGG CCG TGG CC

Human IL3 receptor:

5'-GCBGGBGBCBGGCCBGGGCGBTCBGGBGCBGCGT GBGCCBBBGGBGGBCCBTCGGGBBCGCBGCTCCG GBBCGCBGGBCBGBGGTGCC-3'

45

40

15

20

-29-

		des-adenosine antisense sequences: TCTGGGGTGTCCTG
		GCCTTCGTGGTTCC
5		TCTTCCTTCGTTTGC
		CGTCCGCGGGCCC
		GGCTGCGCTCCTGCCCCGC
		CTCTTTCCCGGGCTCTT
10		GCGCTGGGGGGTGCTCC
		CGTGTGTTTGCGCCCTCCTCCTGGTCGC
		GCTTGTCGTTTTGG
15		GGCCGGCTTTGCCCGCCTCCC
		GGCGCCTGGCCCGGCC
		TTCCTGGGCTGCGC
20		GTTCTGTTCTTCCTGGC
	Human IL4	: 5'-GCCGGCBCBTGCTBGCBGGBBGBBCBGBGGGGGB BGCBGTTGGGBGGTGBGBCCCBTTBBTBGGTGTCGB-3'
25		des-adenosine antisense sequences: HUMIL4AS1: CTC TGG TTG GCT TCC TTC-3' (SEQ ID NO:27)
30	Human IL4	receptor: 5'-GTTCCCBGBGCTTGCCBCCTGCBGCBGGCBGCCCGBGCTC BCBGGGBBCBGGBGCCCBGBGCBBBGCCBCCCCBTTGGGBG BTGCCBBGGCBCCBGGCTG-3'
		des-adenosine antisense sequences: TCTGCGCGCCCCTGCTCC
35		CGCCCGGCTTCTCT
		CGTGTGGGCTTCGG
40		CCCCGCGCCTCCGTTGTTCTC
		TGCTCGCTGGGCTTG
45		GGTTTCCTGGGGCCCTGGGTTTC
45		TCTGCCGGGTCGTTTTC
		GGGTGCTGCCG

	CTTGGTGCTGGGGCTCC
-	GGCGGCTGCGGCTTGGG
5	CTTGGCTGGTTCCTGGCCTCGGG
	CCTCCTCCTCCTC
10	GCTCCCTTTTCCTCCT
	TCCCTGCTCTC
	TGCCCTCCCTCCTGG
15	GGTGCCTCCTTGGGCCCTGC
	GGCTGCTCCTTGCCCC
20	CTCTGGGTCGGGCTGGC
	GGGGCGTCTCTGTGC
0.5	CTGGCCTGGGTGCC
25	GCCTCTCCTGGGGG
	GGTGGCTCCCTGTCC
20	CCTTTTCCCCCGGCTCC
30	GTGGGGCTTTGGC
	GGGGGTCTGTGGCCTGCTCCTGGGG
35	AGGGGTCTGGGGCCCTC
	TTTTGGGGGTCTGGCTTG
40	GCCTGGCTGCCTTCC
40	GGGGCCTGCCGTGGGGC
	TGTCCTCTGTTGCTCCCCTT
45	TGCCTGCTGTCTGG
	GGTTCCCGCCTTCCCT
	Human IL5: 5'-GTGGGBBTTTCTGTGGGGBTGGCBTBCBCGTBGGCB
50	GCTCCBBGBGCTBGCBBBCTCBBBTGCBGBBGCBTCCTCBTGGCTCTGBBBCG -3'

-31-

			des-adenosine antisense sequences: HUMIL5AS1: TCC CTG TTT CCC CCC TTT (SEQ ID
5			HUMIL5AS2: CGT TCT GCG TTT GCC TTT GGC HUMIL5AS3: GTT TTT TGT TTG TTT TCT HUMIL5AS4: CTC TCC GTC TTT CTC C HUMIL5AS5: CCT CCT GCC TGT GTC CCT GCT CCC C HUMIL5AS6: GAG GGT TTC TGG CTT CCT CTC T HUMIL5AS7: TGT CTC TCT GTC CTT TTG TT HUMIL5AS8: 5'-TGT TGT GCG GCC TGG TGC CCT GCCCCG GG-3'
	Human	IL5	receptor antisense oligonucleotide 5'-CTCBGTGGCCCCCBBBBGGBT
15			GBGTBTBCBTGCGCCBCBBT GBTCBTBTCCTTTTTBCTBTGBGG-3'
			des-adenosine antisense sequences: CCGTGTCTGTCGTGTCT
20			TTCCTTTGCTCTTG
			GTGTGTCTTTGCTGT
			GCCTGCCTCTCTGC
30	Human	Tho	5'-CTCCTGGGGGTBCTGGGGCBGGGBB GGCBGCBGCBBCBCCBGGBGCBGC CCCBGGBBBBGGCBBCTGGBCCGB BGGCGCTTGTGGBGBBGGBGTTCBT BGCTGGGCTCCTGGBGGGGBGBTBGBGC-3'
			des-adenosine antisense sequence: HUMIL6AS1: GCT TCT CTT TCG TTC CCG GTG GGC TCG (SEQ ID NO:29) HUMIL6AS2: GTG GCT GTC TGT GTG GGG CGG CT
35			HUMIL6AS3: GTG CCT CTT TGC TGC TTT C HUMIL6AS4: GAT TCT TTG CCT TTT TCT GC
40	Human	IL6	receptor antisense oligonucleotides 5'-GCBCGCCTCTTGCCBCCTCCTGCGCBGGCB GCGCCTTGGGGCCBGCGCCGCTCCCGGCGCG GCCBGCBGCCBGCCBGCCGCBGCCGB
40			CGGCCBGCBTGCTTCCTCCTCGGCTBCCBCT CCBTGGTCCCGCBGBGGCGGBCBGGC-3'
			des-adenosine antisense sequences: GGGGGTGGCTTCCTGCC
45			GCGTCTCTGGGCCGTCCC
			GTCCCTCGGCCCGCGCGCGCTCGGCTCCTCTCCC
			TCTGGCCCGGCTC

-32-

	GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
	GGCGCTGCCCTGCGC
5	GCGGCGCTGGCCCC
	TGCTGGCCGTCGGCTGCGCGCTGCCCT
	GCTGGCCGCGCGGG
10	GCCTGTCCGCCTCTGCGGG
	CGCTGTCTCCTGGC
	TTGTCTTCCGGCTCT
15	TCTGCTGGGGTGGG
15	GCTGGGCGGCCGGCT
	GCTGGGGCTCCTCGGGGGG
20	GGGGGCTCTTCCGG
	GCTGTCTCCCTCCGGG
25	GCGGGGTTTCTGGCC
25	GTGGGGGTCTTGCC
	TGGCCTCCGGGCTCC
30	TGCTTGTCTTGCCTTCCTTC
	TCTGGTCGGTTGTGGCTCG
35	GGGCTCCGTGGGTCCCTGGC
33	GCCCGTTTGTGTTTTGTC
	TTTTCCCCTGGCGT
40	CCCTGTGCCCCTCTCCTCTCCTTCCTCTCTCTC
	GCTCTCCTTTGTGGG
45	GCCCTCCCTGCTGCT
	CTTGGTTTTGGGCT
	TTTTTTCTCTTCCTCCTTTTTC
50	GTGCGTGGGCCTCC

-33-

	Human	monocyte-derived neutrophil chemotactic factor:
		5'-GGGGTGGBBBGGTTTGGBGTBTGTCTTTBTGCBCTGB
		CBTCTBBGTTCTTTBGCBCTCCTTGGCBBBBCTGCBC
		CTTCBCBCBGBGCTGCBGBBBTCBGGBBGGCTGCCBB
5		GBGBGCCBCGCCBGCTTGGBBGTCBTGTTTBCBCBC
		BGTGBGBTGGTTCCTTCCGG-3'
		des-adenosine antisense sequences:
		HSMDNCFAS1: GCT TGT GTG CTC TGC TGT CTC T (SEQ
		ID NO:30)
LO		HSMDNCFAS2: 5'-TGG TTC CTT CCG GTG GTT TCT TCC
		TGG CTC TTG TCC T -3'
		HSMDNCFAS3: TTC TCT TGG CCC TTG GC
	Human	neutrophil elastase (medullasin):
		5'-GGGCTCCCGCCGCGBGBGGTTBTGGGCTCCCBGGBCCBC
15		CCGCBCCGCGGBCGTTTBCBTTCGCCBCGCBGTGCGC
		GGCCGBCBTGBCGBBGTTGGGCGCBBTCBGGGTGGCGCC
		GCBGBBGTGGCCTCCGCGCBGCTGCBGGGBCBCCBTGBB
		GGGCCBCGCGTGGGGCCGCGCCCCCCBCBBT
		CTCCGBGGCCBGCGGTGCCCCCCBGCBGCBBGGCCGG
20		CBGGBCBCGGGGGGGGGGGCGGGCCGBG
20		GGTCBTGGTGGGGCTGGGGCTCCGGGGTCTCTGCCCCTC
		CGTGC-3'
		C010C 3
		des-adenosine antisense oligonucleotides:
		HSMEDURAS1: 5'-TGG TGG GGC TGG GGC TCC GGG GTC
25		TCT GCC CCT CCG TGC-3' (SEQ ID NO:31)
25		HSMEDURAS2: CGC GTG GGG CCG CGC TCG CCG GCCCCCC
		HSMEDURAS3: CCT GCC GGG TGG GCT CCC GCC GCG
		HSMEDURAS4: CGC CGG CCT GCC GGC CCC TC
		HSMEDURAS5: 5'-GTG GGT CCT GCT GGC CGG GTC CGG
- ^		GTC CCG GGG GTG GGG-3'
30		HSMEDURAS6: CGC GBG TCG GCC GBG GGT C
		ASMEDORADO. COC ODO 100 000 000 000 000
	Unman	neutrophil oxidase factor:
	пшан	5'-CGGGBGTGGGGGTCCTGGBCGCBCTGBBGGCBTCCBGGG
35		CTCCCTTCCBGTCCTTCTTGTCCGCTGCCBGCBCCCCTTC
33		BTTCCBGBGGCTGBTGGCCTCCBCCBGGGBCBTGBTTBGG
		TBGBBBCTBGGBGGCC-3'
		1000000100000000
		des-adenosine antisense sequence:
		HUMNOXFAS1: GGC CTC CBC CBG GGB CBT G (SEQ ID
40		NO:32)
40		HIMMOYFAS2: GTC CTT CTT GTC CGC TGC C
		HUMNOXFAS3: TCT CTG GGG TTT TCG GTC TGG GTG G
		HIMMOXFAS4: GCT TTC CTC CTG GGG CTG CTG
		HUMNOXFAS5: 5'-GGC TCT TCT TTT TGT TTC TGG CCT
45		GGTG-3'
40		HIMNOXFASE: CTC TCT CGT GCC CTT TCC
		HUMNOXFAS7: CTT GGG TGT CTT GTT TTT GT
		HUMNOXFAS8: 5'-GGCCTCCBCCBGGGBCBTGGTCCTTCTT
		GTCCGCTGCC -3'

PCT/US96/09306 WO 96/40162

-34-

	Human	cathepsin G:
		5'-CCCTCCBCBTCTGCTCTGBCCTGCTGGBCTCTG
		GBTCTGBBGBTBCGCCBTGTBGGGGCGGGBGTG
_		GGGCCTGCTCTCCCGGCCTCCGBTGBTCTCCCCT
5		GCCTCBGCCCCBGTGGGTBGGBGBBBGGCCBGCB
		GBBGCBGGBGTGCCTCCTTTCCTG -3'
		des-adenosine antisense sequences:
		HUMCTHGAS1: GTG GGG CCT GCT CTC CCG GCC TCC G
		(SEQ ID NO:33)
10		HUMCTHGAS2: TGTGTTGCTGGGTGTTTTCCCGTCTCTGG
		HUMCTHGAS3: TCT GCC TTC GGG GGT CGT
	Human	defensin 1:
		5'-CCGGGGCTGCBGCBBCCTCBTCBGCTCTTGCCT
		GGBGTGGCTCBGCCTGGGCCTGCBGGGCCBCCB GGBGBBTGGCBBGGBTGGCGBGGGTCCTCB
15		TGGCTGGGGTCBCBGBTCCTCTBGCTBGCCBGG
		GTGBCCBGBGGGC-3'
		0102003030000
		des-adenosine antisense sequences:
		HUMDEF1AAAS1: GGG TCC TCB TGG CTG GGG (SEQ ID
20		NO:34) HUMDEF1AAAS2: GCC TGG GCC TGC BGG GCC
		HUMDEFIAAAS2: GCC TGG GCC TGC BGG GCC HUMDEFIAAAS3: GCT CTT GCC TGG BGT GGC TC
		HUMDEF1AAAS4: GCC CBG BGT CTT CCC TGG T
	Human	defensin 3:
25		5'-CGCTGCBBTCTGCTCCGGGGCTGCBGCBBCCTCBTC BGCTCTTGCCTGGBGTGGCTCBGCCTGGGCCTGCBG
		GGCCBCCBGGBBTGGCBGCBGGBTGGCGBGGGT
		CCTCBTGGCTGGGGTCBCCTGGBGGBGGBGBGCBGG-3'
		des-adenosine antisense sequences:
30		HUMNTRIIIAS1: GGG TCC TCB TGG CTG GGG TC (SEQ
		ID NO:35) HUMNTRIIIAS2: CCT CTC TCC CGT CCT
		HOPMIRITIASZ. CCI CIC ICC COI CCI
		macrophage inflammatory protein-1-alpha: RANTES
	RECEP'	FOR 5'-GBGGGGGCBGCBGTTGGGCCCCBBBGGCCCTCTCGT
35		TCBCCTTCTGGCBCGGBGTTGCBTCCCCBTBGTCBB
		BCTCTGTGGTCGTGTCBTBGTCCTCTGTGGTGTTTG
		GBGTTTCCBTCCCGGCTTCTCTCTGGTTCCBBGGGB-3'
		des-adenosine antisense sequences:
40		HUMRANTESAS1: GTC TTT GTT TCT GGG CTC GTG CC (SEQ ID NO:36)
		HUMRANTESAS2: CCB TCC CGG CTT CTC TCT GGT TCC
		HUMRANTESAS3: GTC CTCTGT GGT GTT TGG
		HUMRANTESAS4: 5'-CCC TGC TTC CTT TTG CCT GTT
45		HUMRANTESAS4: 5'-CCC TGC TTC CTT TTG CCT GTT TCTTTGTTT CTGGGCTCGT GCC -3'

-35-

RANTES:

5	5'-GGGCBCGGGCBGTGGGCGGCBBTGTBGGC BBBGCBGCBGGTGTGGTCCGBGGBBTBTGGG GBGGCBGBTGCBGGBGCGCBGBGGCBGTBGCBB TGBGGBTGBCBGCGBGGCGTGCCGCGGBGBCCTTC BTGGTBCCTGTGGBGBGGCTGTCGGBGG-3'
	des-adenosine antisense sequences:
1.0	GGGTGTGCCG
10	CTTGGCGGTTCTTTCGGGTG
	TTTCTTCTGGGTTGGC
15	CTGCTGCTCGTCGTCGTC
	GCTCCGCGGGTTC
	GTCTCGCTCTGTCGCCC
20	CTTCCTTGTC
	GTGTTCCTCCCTTGCCTCT
	Human muscarinic acetylcholine receptor HM1:
25	des-adenosine antisense sequences:
25	HSHM1AS1: GTT CBT GGT GGC TBG GTG GGG C (SEQ ID NO:37)
	HSHM1AS2: GCT GCC CGG CGG GGT GTG CGC TTG GC
	HSHM1AS3: GCTCCCGTG CTC GGT TCT CTG TCTCCCGGT
20	HSHM1AS4: CCC CCT TTG CCT GGC GTC TCG G
30	HSHM1AS5: GCC TTC GTC CTC TTC TTC CTTCC
	HSHMIASS: GCC IIC GIC CIC IIC CIC IIC CITC CITC C
	GGCCTG TGC CTC GGG GTC C-3'
	HSHM1AS7: CGG GGC TTC TGG CCC TTG CC
35	Human muscarinic acetylcholine receptor HM3:
	des-adenosine antisense sequences:
	HSHM3AS1: GGG GTG GGT BGG CCG TGT CTG GGG (SEQ
	ID NO:38)
	HSHM3AS2: GTT GGC CBT GTT GGT TGC C
40	HSHM3AS3: TCT TGG TGG TGC GCC GGG C
40	HSHM3AS4: 5'-GCG TCT TGG CTT TCT TCT TCG
	GGC CCT CGG GCC GGT GCT TGT GG-3'
	HSHM3AS5: 5'-GCT CCT CCC GGG CGG CCT CCC CGG
	GCG GGG GCT TCT TG-3'
45	HSHM3AS6: GCG CTG GCG GGG GCG CCT CCT
	HSHM3AS7: 5'-GCT CTG TGG CTG GGC GTT CCT TGG
	TGT TCT GGG TGG C-3'
	HSHM3AS8: TGG CGG GCG TGG TGG CCT CTG TGG TGG
	HSHM3AS9: GGG CCC GCG GCT GCB GGG G
50	HSHM3AS10: TTG CCT GTC TGC TTC GTC
	HSHM3AS11: CTT TGC GCT CCC GGG CCG CC

-36-

Human fibronectin:

des-adenosine antisense sequences: HUMFNA/HSFIB1AS1: CGG TTT CCT TTG CGG TC (SEO ID NO:39) HUMFNA/HSFIB1AS2: TTG GCC CGG GCT CCG GGT G 5 HUMFNA/HSFIB1AS3: CCC GCC CGC CCG CCG GCC GCCGC HUMFNA/HSFIB1AS4: 5'-CCC GCC GGG CTG TCC CCG CCC CGC CCC-3' HUMFNA/HSFIB1AS5: GGC CCG GGG CGC GGG GG HUMFNA/HSFIB1AS6: CGG CCC TCC CGC CCC TCT GG 10 HUMFNA/HSFIB1AS7: GCC GGC GCG GGC GTC GG HUMFNA/HSFIB1AS9: 5'-CCG CTC GCG CCT GGG GTT CCC TCT CCT CCCCCTGTGC-3' HUMFNA/HSFIB1AS10: GCC TGC CTC TTG CTC TTC HUMFNA/HSFIB1AS11: TGC GTC CGC TGC CTT CTC CC 15 HUMFNA/HSFIB1AS12: CTC TCC TCG GCC GTT GCCTGTGC HUMFNA/HSFIB1AS13: 5'-TGT CCG TCC TGT CGC CCT TCC GTG GTG C-3' HUMFNA/HSFIB1AS14: TGT TGT CTC TTC TGC CCT C HUMFNA/HSFIB1AS15: GGT GTG CTG GTG CTGGTGGTGGTG 20 HUMFNA/HSFIB1AS16: CCT CTG CCC GTG CTC GCC HUMFNA/HSFIB1AS17: CTG CCT GGG CTG GCCTCTTCGGGT HUMFNA/HSFIB1AS18: 5'-GTG GCT TTG GGG CTC TCT TGG TTG CCC TTT-3' HUMFNA/HSFIB1AS19: 5'-CTT CTC GTG GTG CCT CTC 25 CTC CCT GGC TTG GTC GT-3' HUMFNA/HSFIB1AS20: TGT CTG GGG TGG TGCTCCTCTCCC HUMFNA/HSFIB1AS21: TTT CCC TGC TGG CCG TTT GT HUMFNA/HSFIB1AS22: CCT GTT TTC TGT CTT CCT CT HUMFNA/HSFIB1AS23: TTC CTC CTG TTT CTC CGT 30 HUMFNA/HSFIB1AS24: 5'-TTG GCT TGC TGC TTG CGG GGC TGT CTC C-3' HUMFNA/HSFIB1AS25: CTT GCC CCT GTG GGC TTT CCC HUMFNA/HSFIB1AS26: TGG TCC GGT CTTCTCCTTGGGGGTC HUMFNA/HSFIB1AS27: GCC CTT CTT GGT GGG CTG 35 HUMFNA/HSFIB1AS28: GCT CGT CTG TCT TTT TCC TTCC HUMFNA/HSFIB1AS29: 5'-TGG GGG TGG CCG TTG TGG GCG GTG TGG TCC GCC T-3' HUMFNA/HSFIB1AS30: TGC CTC TGC TGG TCT TTC Human interleukin 8: 5'-GBTGTTTGTTBCCBBBGCBTCBBGBBTBGCTTTGC TBTCTBBGGBTCBCBTTTBGBCBTBGGBBBBCGC TGTBGGTCBGBBBGBTGTGCTTBCCTTCBCBCBG BGCTGCBGBBBTCBGGBBGGCTGCCBBGBGBGCC BCGGCCBGCTTGGBGTCBTGTTTBCBCBCBGTGBG-3' 45 des-adenosine antisense sequences: HUMIL8AAS1: GTG CTC CGG TGG CTT TTT (SEQ ID NO:40) HUMIL8AAS2: GCT TGT GTG CTC TGC TGT CTC TG HUMIL8AAS3: 5'-TTC CTT CCG GTG GTT TCT TCC TGG 50 CTC TTG TCC T-3' HUMIL8AAS4: TTC TCT TGG CCC TTG GCC C

-37-

5	Human	IL-8 receptor-alpha 5'-BCBGGGGCTGTBBTCTTCBTCTGCBGGTGGCB TGCCBGTGBBBTTTBGBTCBTCBBBBTCCCBCBT CTGTGGBTCTGTBBTBTTTGBCBTGTCCTCTTC BGTTTCBGCBBTGGTTTGBTCTBBCTGBBGCBCCG GCCBGG-3'
		des-adenosine antisense sequences: TGGCTCGGTGCTTCTGCCCC
		TGTTGTTGCGGCGCTC .
10		GGTTGGTGTGGCCCCTG
		TGGTGCTTCGTTTCC
15		CCCTCTTTCTCTTTGTTC
		GGGGGTTCTTGTGGC
		GGGCTGCTTGTCTCGTTCC
20	Human	GM-CSF:
		5'-CTTGBGCBGGBBGCTCTGGGGCBGGGBGCTGGCBG GGCCCBGGGGGTGGCTTCCTGCBCTGTCCBGBGT GCBCTGTGCCBCBGCBGCBGCTGCBGGGCCBTCBG CTTCBTGGGGCTCTGGGTGGCBGGTCCBGCCBTGG
25		GTCTGGGTGGGGCTGCBGGCTCCGGGC-3'
		des-adenosine antisense sequences: HUMGCSFAS1:GGT CCB GCC BTG GGT CTG GG (SEQ ID NO:41) HUMGCSFAS2:GGC TGG GCT GCB GGC TCC GG
30		HUMGCSFAS3: GCG GGC GGG TGC GGG CTG CGT GCT GGG HUMGCSFAS4: GGC TGC CCC GCA GGC CCT GC
	Human	tumor necrosis factor α: 5'-CBCCGCCTGGBGCCCTGGGGCCCCCTGTCTTCTTGGG GBGCGCCTCCTCGGCCBGCTCCCGGBTCBTGCTTT
35		CBGTGCTCBTGGTGTCCTTTCCBGGGGBGBGBGGG-3'
		des-adenosine antisense sequences HSTNFAAS1: GCT GGT CCT CTG CTG TCC TTG CTG (SEQ ID NO:42)
40		HSTNFAAS2: GTG CTC BTG GTG TCC TTT CC HSTNFAAS3: GCC CTG GGG CCC CCC TGT CTT CTT GGGG HSTNFAAS4: CCT CTT CCC TCT GGG GGC CG HSTNFAAS5: TCT CTC TCC CTC TCT TGC GTC TCT C HSTNFAAS6: TCT TTC TCT CTC TCT CTT CCC C HSTNFAAS7: TTT CCC GCT CTT TCT GTC TC
45		HSTNFAAS8: GGT GTC TGG TTT TCT CTC TCC HSTNFAAS9: GCT GGC TGC CTG TCT GGC CTG CGC TCTT HSTNFAAS10: GGC CTG TGC TGT TCC TCC HSTNFAAS11: TCC GGT TCC TGT CCT CTC TGT CTG
50		HSTNFAAS12: GCC CCC TCT GGG GTC TCC CTC TGG C HSTNFAAS13: GTG GTG GTC TTG TTG CTT

-38-

HSTNFAAS14: GGG CTG GGC TCC GTG TCT C HSTNFAAS15: CBG TGC TCB TGG TGT CC HSTNFAAS16: GCT GBG GGB GCG TCT GCT GGC Human leukotriene C4 synthase: 5'-CTCGGTBGBCGCGCTCGBBCTCGGGTGGGCCGGTGGTG 5 BGCGGCGCGBCBCGCGGBBGGCCCTGCGCGCCGBGBTCBC CTGCBGGBGBBGTBGGCTTGCBGCBGGBCTCCCBGGBGGG TGBCBGCBGCCBGTBGBGCTBCCTCGTCCTTCBTGGTBCCG TCGGTGTGGCBCGGGCTGTGTGTGBBGGCGBGCTGG-3' des-adenosine antisense sequences: 10 HSU11552AS1:GCC CCG TCT GCT GCT CCT CGT GCC G (SEQ ID NO:43) HSU11552AS2: 5'-CCT CGT CCT TCA TGG TAC CGT CGGTGT GGT GGC-3' HSU11552AS3: CTC GGG TGG GCC GGT GGT G 15 HSU11552AS4: GGG CGC GCG CGC TCG CGT HSU11552AS5: 5'-GGC TCC GGC TCT TCT TTC CCG GCTCCG TCG GCC CGG GGG CCTTGGTCTC-3' HSU11551AS6:CCT CGT CCT TCB TGG TBC CG 20 Human Endothelin-1: 5'-BCCGGCGGBGCCGCCBGGGTGGBCTGGGBGTGGGTT TCTCCCCGCCGTTCTCBCCCBCCGCGCTGBGCTCBGCGC CTBBGBCTGCTGTTTCTGGBGCTCCTTGGCBBGCCBCBB BCBGCBGBGBBBBTCBTGBGCBBBTBBTCCBTTCTGB BBBBBBGGGBTCBBBBBCCTCCCGT-3' 25 des-adenosine antisense sequences: CCCGTTCGCCTGGCGC GCGCTGCGGGTTCCTC GTGGGTTTCTCCCCGCCGTTCTC CGGTCTGTTGCCTTTGTGGG 30 CTTCTTGTCTTTTTGGCT GTTCTTTTCCTGCTTGGC GTCTTTTCCTTTCTT TGTGCTCGGTTGTGGGTC 35 CGCTGGTCCTTTGCC CTGTGTGTTTCTGCTG Endothelin receptor ET-B antisense oligonucleotides 5'-GCCCTGTCGGGCGGBBGCCTCTCTCCCCCBG

BTCCGCGBCBGGCCGCBGGCBBCCBGCGCBBCCBGGGCGCGCTCCGCBCBGBCTTGGBGGCGGCTGCBTGCTGCTB

CCTGCTCCBGBBGCGTCCGGTGGCCGCCGC-3'

40

-39-

des-adenosine antisense sequences: GCGTCCGGTGGCCGCCGC GCCTCTCTCCTCTCCCC GTGGCCCTGTCGGGCGGG 5 TCCTGCCGTCCTGTCTCCTTT TCTTTTGCTGTCTTGT CTTCCCGTCTCTGCTTT Endothelin ETA receptor antisense oligonucleotides 5'-CBTCCBCBTGBTTGCTTBGBTTTGTGCTGTBTCTCTCB GGBTTBTCBCTGBTTBCBCBTCCBBCCBGTGCCBGCCBBBB 10 GGBTGCCCTGBGGCBBBGGGTTTCCBTCTTGBGGCBBBTTT GBGGB-3' des-adenosine antisense sequences: GTCTGTCCTCCCGTCTCCTCCC **ACTGCTTCTCCCGGGG** 15 GCTTCCCCGGCTTC GGGTGGCCGGTGTCCCGGGCTCCGGCGCGCGCGC GGCTTCGGCTGC 20 GGGTGGGTGGCGCGG GCTGCCGGGTCCGCGCGCGCCTGGGCC CTTGTGCTGCTTTT 25 TGCTTGTTCCGTTC TGGCTGCTCCGGTCTGTGTTGTGGTTGTTTTG TTTCTTCTTGGGTGTGGG 30 CCTTGCGGTTTTGG **CTGTGGGCCCTTTG** GGGCCTTGGCTTCTGGCTC 35 Substance P antisense oligonucleotide 5'-CTGCTGBGGCTTGGGTCTCCGGGCGBTTCTCTGCBGBBGBT GCTCBBBGGGCTCCGGCBGTTCCTCCTTGBTCTGGTCGCTGTCG TBCCBGTCGGBCCBGTBBTTCBGBTCBTCBTTGGCTCCTBTTTC TTCTGCBBBCBGCTGBGTGGBGBCBBGBBBBBBBGBCTGCCBBGG 40 CCBCGBGGBTTTTCBTGTTGGBTTTTGCGBCGGBCBGTCCCGCG GGGTGCTGAGTTTCTCTGGTTCCTCCGBGCGCB-3'

-40-

		des-adenosine antisense sequences: CGTGGTCGCTCCGC
		TTTCTCTGGTTCCTCCG
		GTCCCGCGGGGTGCTG
5		TCTGGTCGCTGTCGT
		GGCTTGGGTCTCCGGGCG
		GTTTCCTTTCCGC
10	Substance	P receptor antisense oligonucleotide 5'-GGCTBBGBTGBTCCBCBTCBCTBCCBCGTTGCCCBCCBCB GBGGTCBCCBCBBTGBCCGTGTBGGCBGCTGCCCBBBGGBCBB TTTGCCBGGCTGGTTGCBCGBBCTGBTTGGGTTCCGBGGTGTT BGTGGBGBTGTTTGGGGBGBGGTCTGBGTCCBCCGGGBGGBCG
15		TTBTCCBTTTCGBBGCTBGGCGGTBBBGCCCTBCTGTGCBCBCBCB
		des-adenosine antisense sequences: GTCCTGTCGTGGCGCCTGGGGCTC
20		TTCTTTTGTGGGCT
		CTTTGGTGGCTGTGGCTG
		TGGTCTCTGTGGTTG
25		CTGCCCTGGGTCTGG
		GGGTGTGGCCTTGGGGCCCCC
30	Chymase	5'-GGBGCTGBTBCTGCBGATTTCBGBGGGBBGBBCCCT GBTBCTCBCCBGCTTCBGCTCTGGBGCBCBBGBBBGB GCBGCBGGGGBGBGBBGBBGCBGCBTCTTCCCBGBGB GGCTGCCTGBGCBBBTGCTGGTTTTCCTTTCC
35		des-adenosine antisense sequences: CGTTTTCTCTCTC
		TGCTGGTTTTCCTTTCC
40		TGGCAGTGGGGGTGGGGTGGG
30		TTCCTTGTTCCTGGGGGTGTCCT
		CTTGCTCTGGGCTTTTCT
45		CCCCTTTCCTTCC
		ጥረ- ምር-ምር-ምር-ርርር

-41-

	CTCTCCTCTGTCTCTGTGT
	CCTTGCCCTGGCCC
5	TCTTCCCTCTCTCTGT
	CCCTGTGTTCCGCCC
	GTCTTCCCTCTCTG
10	ACCTCCTTTCCTCCG
	CTGGGTGGGCCCTG
	CCTGTTCTCTGCTCCC
	TGGCTTGGGGTTTCTTCTG
15	TGTGTCTTCCTCTGTT .
	GGCTGGCTTTCTCCTTC
	TTTTGTCTTCCTGGG
	TGCCCCTTCTTCCTTTCTTGGG
20	TCCTTGGTGCTTGGGCTGGG
25	Endothelial nitric oxide synthase 5'-GCGTCTTGGGGTGCBGGGCCCBTCCTGCTGCGCCTGGGCG CTGBGGGTGTCBTBGGTGBTGCTCCCCBCCTCCCBGTTCTTCB CBCGBGGGBBCTTGGGCCCCTCTGGGGGCTTBGCGGGB GCTCGGGGGGCTGTGTTCTGGCGCTGGTGGGBGTBGGGBTGCT GGGGCCCGGCTGGGCTCBGGGCCGGGTGGCCTGGT TGCCGCBCBGCCCBBGCCCCBGCCCCBGCCCCBGGCGCTGGC TGGCCCBGGCTCCTGGGCCBCGCTCTTCBBGTTGCCCBTGTTB CTGTGCGTCCGTCTGCTGGBGCBGGCBGGCBGGGBBTTC-3
25	5'-GCGTCTTGGGGTGCBGGGCCCBTCCTGCTGCGCCTGGGCG CTGBGGGTGTCBTBGGTGBTGCTCCCCBCCTCCCBGTTCTTCB CBCGBGGGBBCTTGGGCCCCTCTGGGGGCTTBGCGGGB GCTCGGGGGGCTGTGTTCTGGCGCTGGTGGGBGTBGGGBTGCT GGGGCCCGGCTGGGCTCBGGGCCGGGGTGGCTGGCT TGCCGCBCBCCCCBGGCCCCBGCCCCBGCCCCBGGCGCBGGG TGGCCCBGGCTCCTGGGCCBCGCTCTTCBBGTTGCCCBTGTTB CTGTGCGTCCGTCTGCTGGBGCBGCBGBGTGGGBBTTC-3 des-adenosine antisense sequences:
	5'-GCGTCTTGGGGTGCBGGGCCCBTCCTGCTGCGCCTGGGCG CTGBGGGTGTCBTBGGTGBTGCTCCCCBCCTCCCBGTTCTTCB CBCGBGGGBBCTTGGGCCCCTCTGGGGGCTTBGCGGGGB GCTCGGGGGGCTGTGTTCTGGCGCTGGTGGGBGTBGGGBTGCT GGGGCCCGGCTGGGCTCBGGGCCGGGGTGGCTGGCCCTGCT TGCCGCBCBCCCCBBGGCCCBGCCCCBGCCCCBGGCGCBGGG TGGCCCBGGCTCCTGGGCCBCGCTCTTCBBGTTGCCCBTGTTB CTGTGCGTCCGTCTGCTGGBGCBGGCBGGBGTGGGBBTTC-3
	5'-GCGTCTTGGGGTGCBGGGCCCBTCCTGCTGCGCCTGGGCG CTGBGGGTGTCBTBGGTGBTGCTCCCCBCCTCCCBGTTCTTCB CBCGBGGGBBCTTGGGCCCCTCTGGGGGCTTBGCGGGB GCTCGGGGGGCTGTGTTCTGGCGCTGGTGGGBGTBGGGBTGCT GGGGCCCGGCTGGGCTCBGGGCCGGGGTGGCTGGCT TGCCGCBCBCCCCBGGCCCCBGCCCCBGCCCCBGGCGCBGGG TGGCCCBGGCTCCTGGGCCBCGCTCTTCBBGTTGCCCBTGTTB CTGTGCGTCCGTCTGCTGGBGCBGCBGBGTGGGBBTTC-3 des-adenosine antisense sequences:
	5'-GCGTCTTGGGGTGCBGGGCCCBTCCTGCTGCGCCTGGGCG CTGBGGGTGTCBTBGGTGBTGCTCCCCBCCTCCCBGTTCTTCB CBCGBGGGBBCTTGGGCCCCTCTGGGGGCTGGGTTBGCGGGB GCTCGGGGGGCTGTGTTCTGGCGCTGGTGGGBGTBGGGBTGCT GGGGCCGGCTGGGCTCBGGGCCGGGTGGCCGGGCCTGCT TGCCGCBCBGCCCBGGCCCBGCCCCBGCCCCBGGCCGBGGG TGGCCCBGGCTCCTGGGCCBCGCTCTTCBBGTTGCCCBTGTTB CTGTGCGTCCGTCTGCTGGBGCBGCBGBGTGGGBBTTC-3 des-adenosine antisense sequences: CTGTGCGTCCGTCTGCTGG GGGGCCGGGGTGGCTGCTTGCCGC
30	5'-GCGTCTTGGGGTGCBGGGCCCBTCCTGCGCCTGGGCG CTGBGGGTGTCBTBGGTGBTGCTCCCCBCTTCCCBGTTCTTCB CBCGBGGGBBCTTGGGCCCCTCTGGGGGCTGGGTTBGCGGGB GCTCGGGGGGCTGTGTTCTGGCGCTGGTGGGBGTBGGGBTGCT GGGGCCCGGCTGGGCTCBGGCCCGGGCCCTGCT TGCCGCBCBGCCCBBGGCCCBGCCCCBGCCCCBGGCCGCBGG TGGCCCBGGCTCCTGGGCCBCGCTCTTCBBGTTGCCCBTGTTB CTGTGCGTCCGTCTGCTGGBGCBGGCBGBGBGTGGGBBTTC-3 des-adenosine antisense sequences: CTGTGCGTCCGTCTGCTGG GGGGCCGGGGTGGCTGCTTGCCGC ACGACCCCGGGCCGACCCGAG
30	5'-GCGTCTTGGGGTGCBGGGCCCBTCCTGCGCCTGGGCG CTGBGGGTGTCBTBGGTGBTGCTCCCCBCTTCCCBGTTCTTCB CBCGBGGGBBCTTGGGCCCTCTGGGGGCTTBGCGGGB GCTCGGGGGGCTGTGTTCTGGCGCTGGTTGGGGBTGCT GGGGCCCGGCTGGCTCBGGGCCCGGGTGGCCCTGCT TGCCGCBCBGCCCBGGCCCBGCCCCBGCCCCBGGC TGGCCCBGGCTCTGCTGGGCCBGCCCBGGCCCBGGC CTGTGCGTCCGTCTGCTGGBGCBGCBGGBGTGGGBBTTC-3 des-adenosine antisense sequences: CTGTGCGTCCGTCTGCTGG GGGCCCGGGCCTGCTTGCCGC ACGACCCCGGGCCGACCCGAG GCTCGGGGCCGACCCGAG
30	5'-GCGTCTTGGGGTGCBGGGCCCBTCCTGCGCCTGGGCG CTGBGGGTGTCBTBGGTGBTGCTCCCCBCTTCCCBGTTCTTCB CBCGBGGGBBCTTGGGCCCCTCTGGGGGCTTBGCGGGB GCTCGGGGGGCTGTGTTCTGGCGCTGGTTGGGGBTGCT GGGGCCCGGCTGGGCTCBGGGCCCGGGTGGCCCTGCT TGCCGCBCBGCCCBBGGCCCBGCCCCBGCCCCBGGCCCBGGC TGGCCCBGGCTCTGGGCCBCGCTCTTCBBGTTGCCCBTGTTB CTGTGCGTCCGTCTGCTGGBGCBGGCBGBGTGGGBBTTC-3 des-adenosine antisense sequences: CTGTGCGTCCGTCTGCTGG GGGCCGGGGTGGCCCTGCTTGCCGC ACGACCCCGGGCCGACCCGAG GCTCGGGGGCCGACCCGAG CTTGGGCCCCTCTGGGGGCCTGGTGGG CTTGGGCCCCTCTTGGGGGCCCTGCTTGCGG
30	5'-GCGTCTTGGGGTGCBGGGCCCBTCCTGCTGCGCCTGGGCG CTGBGGGTGTCBTBGGTGBTGCTCCCBCTTCCCBGTTCTTCB CBCGBGGGBBCTTGGGCCCCTCTGGGGGCTGGGTTBGCGGGB GCTCGGGGGGCTGTGTTCTGGCGCTGGTGGGBGTBGCGTT GGGGCCCGGCTGGGCTCBGGCCCCBGCCCTGCT TGCCGCBCBGCCCBBGGCCCBGCCCCBGCCCCBGCCCGBGGC TGGCCCBGCTCCTGGGCCBCGCTCTTCBBGTTGCCCBTGTTB CTGTGCGTCCGTCTGCTGGBGCBGGCBGGCBGGBGTGGBBTTC-3 des-adenosine antisense sequences: CTGTGCGTCCGTCTGCTGG GGGGCCGGGCTGGTTGCCGC ACGACCCCGGGCCGACCCGAG GCTCGGGGCCGACCCGAG CTTGGGCCCCTCTGGGGGCTTGTTCTGCGG CTTGGGCCCCTCTGGGGGCTTGTTCTGCCGC TCCTGCTGCGCCCTCTGGGGGCTTGTTCTGCCGC
30	5'-GCGTCTTGGGGTGCBGGGCCCBTCCTGCTGCGCCTGGGCG CTGBGGGTGTCBTBGGTGBTGCTCCCBCCTCCCBGTTCTTCB CBCGBGGGBBCTTGGGCCCTCTGGGGGCTGGGTBGCGGGB GCTCGGGGGGCTGTTCTTGGCGCTGGTGGGBGTBGCGGGB GCTCGGGGGCCCBGGCCCBGGCCCBGGCCCBGGCCTGCT TGCCGCBCGCCCBBGCCCCBGCCCCBGCCCCBGCCCBG

-42-

	GGTGCCTGTGGCTGCC
	GGTTGCCCCGGTTGGTGGC
	GCCGTCCTGCTGCCGGT
	CGTTGGCTGGGTCCCCCGC
5	CCGTTTCCTGGGGTCC
	GCGTGGGGTGCTCC
	GGTTCCTCGTGCCG
	CTGCTGCCTTGTCTTTCC
	GGCCGTGGCGGCGTGGTCC
10	GCCCCCCTGGCCTTCTGCTC
	GGGGTCTGGCTGGT
	TGCCGGTGCCCTTGGCGGC
	GGTCTTCTTCCTGGTG
	GCTCTGGGCCCGGCCGGTCTCGG
15	GCGTCTCGTGTTCG
	CTCTTGTGCTGTTCCGGCCG
	CTCCTTCCTCTTCCGCCGCC
	GCCGCTCCCCGCCC
20	GCTCGTCGCCCTGGCCC
	GGCCTCCTCCTGGCCGC
	TGTCTCGGGCGGCGGCCTTGGC
	GCTCCGTTTGGGGCTG
	CCTCTGGCGCTTCC
25	GGCCCTCGGCCTGGGCGCTC
	TCTTCCGCCTGTGC
	TGGTGGCCCTCGTGG
	GCCCTCCTGGCCTCCGGTGTCC
	ТОТОСТОСТОСТОВАТ

-43-

		-43-
		GGCCGGGCCGGTTGGGCGGGC
		GTGGGCGCGGGTCCTCC
		GGGCTGCCCTTCTCC
_		GCCGGGGTCCCGC
5		GCTCCTGCTGTTCCCTGGGCTCTTCTGCC
		TCTCTCCTGGGTGGGTGCCG
10		GGGTCTCCGGGCTTG
		CCCCGCGCTGCTGGGCGTTCTGC
- T		GGTCTTGGGGTTGTC
15		TGTGGCCCCGCTCG
		TGTCGCCCTCCGTCGCC
20		CGTCGCCGGCCTCGTCC
		CCTCCTGGGTGCGC
0.5		GGCGGGCTGGTCCT
25		GGCGTTTTGCTCCTTGG
	Inducible	nitric oxide synthase 5'-CTGCCCCBGTTTTTGBTCCTCBCBTGCCGTGGGGBGGB CBBTGGGGTTGCBTCCBGCTTGBCCBGBGBTTCTGGBG
30		BCTTCTTTCCCGTCTCCBCGBGGGGCTGCGGGGBCTCB TTCTGCTGCTTGCTGBGGTTGTGBTBCTGBGGTCBTCC TGTGTCBCTGGBCTGG
35		BCTGGTGGBBTTTGGTCTTGBBCBGBBBTTTCCBBGGB CBGGCCBTCTCTBTGGCTTTBCBBBGCBGGTCBCTTBT GTCBCTTBTCTGGBTTTGBGCTCBGBTGTTCTTCBCTG TGGGGCTTGCBGCTGGCTGCCTCCCCGGGGTB-3'
	Human majo	or basic protein: GTTTCATCTT GGCTTTATCC (SEQ ID NO:44)

40 EXAMPLE 6

Turning now to Figure 3, two asthmatic rabbits were adminstered adenosine, and two rabbits were adminstered dAMP, at the indicated concentrations, by inhalation as described above in Example 3. The results (shown in Figure 3 as change in compliance) indicate that dAMP, a breakdown product of antisense

WO 96/40162

-44-

PCT/US96/09306

oligodeoxynucleotides containing adenosine, is as potent in the induction of bronchoconstriction as adenosine in the hyperresponsive airways of asthmatic rabbits.

EXAMPLE 7

5 An aerosolized phosphorothioate antisense ODN consisting of 50% adenosine and 50% quanine plus cytosine in a random configuation was found to bronchoconstrictor effects produce potent in of hyperreactive airways asthmatic rabbits, as 10 illustrated in Figure 4. The control molecule used in this study, a phosphorothicate 21-mer antisense ODN consisting of 50% quanine and 50% thymidine plus cytosine (des-adenosine ODN) produced no bronchoconstrictor or any other effect in these same animals.

In this study, bronchoconstrictor effects were measured as a percentage change in bronchial compliance. Each group consisted of two allergic rabbits, and data shown are for the period following the second of two daily administrations of 5 mg aerosolized ODN by nebulizer.

These results indicate that antisense oligonucleotides, even when modified to slow degradation, produce adenosine metabolites capable of potent bronchoconstriction when adminstered in asthmatic airways.

The foregoing examples are illustrative of the present invention, and are not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.

PCT/US96/09306 WO 96/40162

-45-

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: Nyce, Jonathan W.
 - (ii) TITLE OF INVENTION: Method of Treatment of Lung Diseases Using Antisense Oligonucleotides
 - (iii) NUMBER OF SEQUENCES: 44
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Kenneth D. Sibley
 - (A) ADDRESSEE. Refine II D. STOTEY
 (B) STREET: Post Office Drawer 34009
 (C) CITY: Charlotte
 (D) STATE: NC
 (E) COUNTRY: USA
 (F) ZIP: 28234
 - (v) COMPUTER READABLE FORM:
 (A) MEDIUM TYPE: Floppy disk
 (B) COMPUTER: IBM PC compatible
 (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
 - (viii) ATTORNEY/AGENT INFORMATION:

 - (A) NAME: Sibley, Kenneth D. (B) REGISTRATION NUMBER: 31,665 (C) REFERENCE/DOCKET NUMBER: 5218-32
 - (ix) TELECOMMUNICATION INFORMATION: (A) TELEPHONE: (919) 881-3140 (B) TELEFAX: (919) 881-3175

 - (C) TELEX: 575102
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

GATGGAGGC GGCATGGCGG G

-	4	6	_
---	---	---	---

(2)	INFORMATION FOR SEQ ID NO:2:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
GTAG	SCAGGCG GGGATGGGGG C	21
(2)	INFORMATION FOR SEQ ID NO:3:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
GTT	STTGGGC ATCTTGCC	18
(2)	INFORMATION FOR SEQ ID NO:4:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
GTA	CTTGCGG ATCTAGGC	18
(2)	INFORMATION FOR SEQ ID NO:5:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	

WO 96/40162	PCT/US96/09306
WO 90/40102	101/05/0/05

-47-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
	GTGGGCCTAG CTCTCGCC	18
	(2) INFORMATION FOR SEQ ID NO:6:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
	GTCGGGGTAC CTGTCGGC	18
	(2) INFORMATION FOR SEQ ID NO:7:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
	TGCTTTTCTT TTCTGGGCCT C	21
	(2) INFORMATION FOR SEQ ID NO:8:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
,	GGCGCCGTGC CGCGTCTTGG TGGCGGCGG	29

-4	8	-
----	---	---

(2)	INFORMATION FOR SEQ ID NO:9:	•
٠	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
TTTC	CCCCTGG GTCTTCC	17
(2)	INFORMATION FOR SEQ ID NO:10:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
GCCT	rgtgtct ctcctcct	18
(2)	INFORMATION FOR SEQ ID NO:11:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
GCCT	гттсств вітстстт	18
(2)	INFORMATION FOR SEQ ID NO:12:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

PCT/US96/09306 WO 96/40162

-	4	9	_
---	---	---	---

(ii) MOLECULE TYPE: DNA (genomi

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
GCC ⁻	төтөтст өтсстсст	18
(2)	INFORMATION FOR SEQ ID NO:13:	

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

TCTCCCTTGG GCTCTGGCTC CTTCTC

26

- (2) INFORMATION FOR SEQ ID NO:14:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

CTTGCTCCTG GGGGCCTCCT G

21

- (2) INFORMATION FOR SEQ ID NO:15:
- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 21 base pairs

 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)

-50-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	•
СТТ	GCTCCTG GGGGCCTCCT G	21
(2)	INFORMATION FOR SEQ ID NO:16:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
GGT(GTGCGGG GCCTGGTGCC	20
(2)	INFORMATION FOR SEQ ID NO:17:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 12 (D) OTHER INFORMATION: /standard_name= "Reduced A"</pre>	
	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 15 (D) OTHER INFORMATION: /standard_name= "Reduced A"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
GGG	CGCGGGC GAGCATCGC	19
(2)	INFORMATION FOR SEQ ID NO:18:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 21 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
CCTCCTTCCT GGTCTGTCTG C	21
(2) INFORMATION FOR SEQ ID NO:19:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
GCCCTGCTGC TCTTTCTGCT	20
(2) INFORMATION FOR SEQ ID NO:20:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
GCGCTCGGCC TGGTCCCGG	19
(2) INFORMATION FOR SEQ ID NO:21:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
GCGCGGGCCG GGGGCTGCTG GG	22

- 5	52	-
-----	----	---

(2) INF	ORMATION FOR SEQ ID NO:22:	
(i)) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)) MOLECULE TYPE: DNA (genomic)	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:22:	
ССТСТТТ	TCT GITTITCCC	19
(2) INFO	DRMATION FOR SEQ ID NO:23:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)) MOLECULE TYPE: DNA (genomic)	
	A CEQUENCE DESCRIPTION, SEC ID NO.22.	
	SEQUENCE DESCRIPTION: SEQ ID NO:23:	19
	GCT TCTTCTGTC	13
	DRMATION FOR SEQ ID NO:24:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii)) MOLECULE TYPE: DNA (genomic)	
(xi)) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
CTCTGCTC	GGT TTTCTGCCTT CTGCCC	26
(2) INFO	ORMATION FOR SEQ ID NO:25:	
(i)) SEQUENCE CHARACTERISTICS: (A) LENGTH: 41 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

	0	T	л	IC	96	'n	01	06
1		. 1	/ L	JJ	7 U	/ U	7.	vuu

wo	96	40	1	62
----	----	----	---	----

-53-

	(ii) MOLECULE TYPE: DNA (genomic)	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
ПП	TETETTT CGETTTETTT TEGTETEETG TTEETEETTT T	41
(2)	INFORMATION FOR SEQ ID NO:26:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
CTC	TGTCTTG TTCTGGTCCT TCGTGGGGCT CTG	33
(2)	INFORMATION FOR SEQ ID NO:27:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
СТС	TGGTTGG CTTCCTTC	18
(2)	INFORMATION FOR SEQ ID NO:28:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

(ii) MOLECULE TYPE: DNA (genomic)

WO 96/40162	PCT/US96/09306

_	5	4	_
---	---	---	---

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
TCCCTGTTTC CCCCCTTT	18
(2) INFORMATION FOR SEQ ID NO:29:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
GCTTCTCTTT CGTTCCCGGT GGGCTCG	27
(2) INFORMATION FOR SEQ ID NO:30:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
GCTTGTGTGC TCTGCTGTCT CT	22
(2) INFORMATION FOR SEQ ID NO:31:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 39 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
TGGTGGGGCT GGGGCTCCGG GGTCTCTGCC CCTCCGTGC	39
(2) INFORMATION FOR SEQ ID NO:32:	

-	5	5	-
---	---	---	---

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 19 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
GTCC	CTTCTTG TCCGCTGCC	19
(2)	INFORMATION FOR SEQ ID NO:33:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
0.700	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:	25
	GGGCCTG CTCTCCCGGC CTCCG	20
(2)	INFORMATION FOR SEQ ID NO:34:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:	
GGGT	TCCTCAT GGCTGGGG	18
(2)	INFORMATION FOR SEQ ID NO:35:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	

	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 9 (D) OTHER INFORMATION: /standard_name= "Reduced A"</pre>	
	_	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:	
GGGT	CCTCAT GGCTGGGGTC	20
(2)	INFORMATION FOR SEQ ID NO:36:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 23 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36;	
GTCT	TTTGTTT CTGGGCTCGT GCC	23
(2)	INFORMATION FOR SEQ ID NO:37:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 22 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 5 (D) OTHER INFORMATION: /standard_name= "Reduced A"</pre>	
	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 14 (D) OTHER INFORMATION: /standard_name= "Redcued A"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
GTT	CATGGTG GCTAGGTGGG GC	22

(2) INFORMATION FOR SEQ ID NO:38:

_	5	7	_

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 10 (D) OTHER INFORMATION: /standard_name= "Reduced A"</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
GGGGTGGGTA GGCCGTGTCT GGGG	24
(2) INFORMATION FOR SEQ ID NO:39:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 17 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
CGGTTTCCTT TGCGGTC	17
(2) INFORMATION FOR SEQ ID NO:40:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 18 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
GTGCTCCGGT GGCTTTTT	18
(2) INFORMATION FOR SEQ ID NO:41:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	

-58-

	(ii) MOLECULE TYPE: DNA (genomic)	٠
	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 6 (D) OTHER INFORMATION: /standard_name= "Reduced A"</pre>	
	<pre>(ix) FEATURE: (A) NAME/KEY: misc_feature (B) LOCATION: 10 (D) OTHER INFORMATION: /standard_name= "Reduced A"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
GGTC	CCAGCCA TGGGTCTGGG	20
(2)	INFORMATION FOR SEQ ID NO:42:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
GCTG	GGTCCTC TGCTGTCCTT GCTG	24
(2)	INFORMATION FOR SEQ ID NO:43:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
GCCC	CCGTCTG CTGCTCCTCG TGCCG	25
(2)	INFORMATION FOR SEQ ID NO:44:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	

-59-

- (ii) MOLECULE TYPE: DNA (genomic)
- (ix) FEATURE:

 - (A) NAME/KEY: misc_feature
 (B) LOCATION: 6
 (D) OTHER INFORMATION: /standard_name= "Reduced A"
- (ix) FEATURE:
 (A) NAME/KEY: misc_feature
 (B) LOCATION: 17
 (D) OTHER INFORMATION: /standard_name= "Reduced A"
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

GTTTCATCTT GGCTTTATCC

20

-60-

THAT WHICH IS CLAIMED IS:

1. A method of treating airway disease in a subject in need of such treatment, comprising:

topically administering an antisense oligonucleotide to the airway epithelium of said subject in an amount effective to treat said disease;

said antisense oligonucleotide being essentially free of adenosine.

- A method according to claim 1 wherein said airway disease is a lung disease and said airway
 epithelium is a lung airway epithelium.
- 3. A method according to claim 1 wherein said antisense oligonucleotide comprises nucleotides in which at least one phosphodiester linkage is replaced with a linkage selected from the group consisting of methylphosphonate linkages, phosphotriester linkages, phosphorothicate linkages, and phosphoramidate linkages.
- 4. A method according to claim 1 wherein said airway disease is selected from the group consisting of cystic fibrosis, asthma, chronic obstructive pulmonary disease, bronchitis, and other airway diseases characterized by an inflammatory response.
- A method according to claim 1 wherein said 5. antisense oligonucleotide is targeted against an mRNA 25 encoding a protein selected from the group consisting of human A2a adenosine receptor, human A2b adenosine receptor, human IgE receptor β , human Fc-epsilon receptor CD23 antigen, human histidine decarboxylase, human beta human tryptase-I, human prostaglandin D tryptase, human eosinophil human cyclooxygenase-2, 30 synthase, cationic protein, human eosinophil derived neurotoxin, human eosinophil peroxidase, human intercellular adhesion

-61-

(ICAM-1), human vascular cell adhesion molecule-1 molecule 1 (VCAM-1), human endothelial leukocyte adhesion molecule (ELAM-1), human P selectin, human endothelial monocyte activating factor, human IL-3, human IL-4, human 5 IL-5, human IL-6, human IL-8, human monocyte-derived neutrophil chemotactic factor, human neutrophil elastase, human neutrophil oxidase factor, human cathepsin G, human defensin 3, human macrophage 1, human defensin human muscarinic protein-1-alpha, inflammatory muscarinic receptor HM1, human 10 acetylcholine acetylcholine receptor HM3, human fibronectin, human GM-CSF, human tumor necrosis factor \alpha, human leukotriene C4 synthase, human major basic protein, and endothelin 1.

PCT/US96/09306

- 6. A method according to claim 1 wherein said antisense oligonucleotide is delivered by administering an aerosol of respirable particles containing said antisense oligonucleotide to the lungs of said subject.
- 7. A method according to claim 6, wherein said particles are selected from the group consisting of solid particles and liquid particles.
 - 8. A method according to claim 6, wherein said aerosol is comprised of particles having a particle size within the range of about 0.5 to 10 microns.
- A method according to claim 8 wherein said
 particles are liposomes containing said antisense oligonucleotide.
- 10. A method according to claim 6 wherein said antisense oligonucleotide is administered in amount sufficient to achieve intracellular concentrations of said antisense oligonucleotide in said subject from about 0.1 to 10 μM .

-62-

11. A pharmaceutical composition, comprising, together in a pharmaceutically acceptable carrier:

an antisense oligonucleotide in an amount effective to treat an airway disease;

- 5 said antisense oligonucleotide being essentially free of adenosine.
 - 12. A pharmaceutical composition according to claim 11 wherein said airway disease is a lung disease and said airway epithelium is a lung airway epithelium.
- 13. A pharmaceutical composition according to claim 11 wherein said antisense oligonucleotide comprises nucleotides in which at least one phosphodiester linkage is replaced with a linkage selected from the group consisting of methylphosphonate linkages, phosphorotiester linkages, phosphorothicate linkages, phosphorodithicate linkages, and phosphoramidate linkages.
 - 14. A pharmaceutical composition according to claim 11 wherein said airway disease is cystic fibrosis.
- A pharmaceutical composition according to 20 claim 11 wherein said antisense oligonucleotide is targeted against an mRNA encoding a protein selected from the group consisting of human A2a adenosine receptor, human A2b adenosine receptor, human IgE receptor β , human Fc-epsilon receptor CD23 antigen, human histidine 25 decarboxylase, human beta tryptase, human tryptase-I, human prostaglandin D synthase, human cyclooxygenase-2, human eosinophil cationic protein, human eosinophil derived neurotoxin, human eosinophil peroxidase, human intercellular adhesion molecule-1 (ICAM-1), human 30 vascular cell adhesion molecule 1 (VCAM-1), human endothelial leukocyte adhesion molecule (ELAM-1), human P selectin, human endothelial monocyte activating factor, human IL-3, human IL-4, human IL-5, human IL-6, human IL-

- 8, human monocyte-derived neutrophil chemotactic factor, human neutrophil elastase, human neutrophil oxidase factor, human cathepsin G, human defensin 1, human defensin 3, human macrophage inflammatory protein-1-alpha, human muscarinic acetylcholine receptor HM1, human muscarinic acetylcholine receptor HM3, human fibronectin, human GM-CSF, human tumor necrosis factor α, human leukotriene C4 synthase, and human major basic protein.
- 16. A pharmaceutical composition according to claim 11 wherein said antisense oligonucleotide is delivered by administering an aerosol of respirable particles containing said antisense oligonucleotide to the lungs of said subject.
- 17. A pharmaceutical composition according to claim 16, wherein said particles are selected from the group consisting of solid particles and liquid particles.
- 18. A pharmaceutical composition according to claim 16, wherein said aerosol is comprised of particles having a particle size within the range of about 0.5 to 10 microns.
 - 19. A pharmaceutical composition according to claim 16 wherein said particles are liposomes containing said antisense oligonucleotide.
- 20. A pharmaceutical composition according to claim 11 wherein said antisense oligonucleotide is administered in amount sufficient to achieve intracellular concentrations of said antisense oligonucleotide in said subject from about 0.1 to 10 μ M.
- 21. A pharmaceutical composition according to 30 claim 11, wherein said antisense oligonucleotide is conjugated to a molecule capable of cellular uptake.

FIG. 1.

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 4.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/09306

A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :A61K 31/70				
US CL : 514/44: 536/23.1				
	According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED			
	ocumentation searched (classification system followed	by class	ification symbols)	
U.S. : 5	514/44; 536/23.1			
Documentat	ion searched other than minimum documentation to the	extent th	at such documents are included	in the fields searched
	ata base consulted during the international search (na	me of dat	a base and, where practicable	, search terms used)
C. DOC	UMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where ap	propriate	of the relevant passages	Relevant to claim No.
X 	US 5,514,788 A (BENNETT E (07.05.93), see entire document, es	special	ly Abstract, column	1-6, 11-13, 15, 16
Υ	3, lines 15-18, column 5, lines 21 and 3.	-29, c	olumn 9, Figures 2	7-10, 14, 17- 20, 21
X Y	WO 94/02605 A1 (DUKE UNIVER (03.02.94), see entire document, (15, page 18, line 28, page 20, lipage 21, lines 2-5.	especi	ally page 5, lines 9-	
Y	US 5,264,618 A (FELGNER ET (23.11.93), see entire document, 40-42 and 54-56, column 8, lines 12-15.	especi	ally column 7, lines	7-10, 17-20
X Furti	ner documents are listed in the continuation of Box C		See patent family annex.	
'A' do	Special categories of cited documents: To later document published after the international filing date or priority date and not in conflict with the application but cited to understand the			
	be of particular relevance rlier document published on or after the international filing date	-x-	document of particular relevance; the considered novel or cannot be considered.	
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) when the document is taken alone document of particular relevance; the claimed invention cannot be considered to invente an inventive step, when the document is				
•0• do	to the desired with any or more other such documents, such combination			
th	*P* document published prior to the international filing date but later than the priority date claumed date claumed			
Date of the actual completion of the international search Date of mailing of the international search report 18 AUGUST 1996 Date of mailing of the international search report 03 SEP 1996				
Name and	Name and mailing address of the ISA/US Authorized officer			
Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231				
Facsimile 1	No. (703) 305-3230	Telepho	ne No. (703) 308-0196	
Form PCT/	ISA/210 (second sheet)(July 1992)*			_ (

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US96/09306

			
C (Continua	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant		Relevant to claim No	
KNIGHT, V et al. Antiviral therapy with small particle aerosols. European Journal of Clinical Microbiology and Infectious Diseases. December 1988, Vol. 7, No. 6, pages 721-731, Abstract only.			-10, 17-20
Y	SCHREIER, H. The new frontier: gene and oligonucleotide therapy. Pharmaceutica Acta Helvetiae. January 1994, Vo. No. 3, pages 145-159, Abstract only.	- 1	4
Y	US 5,521,291 A (CURIEL ET AL.) 15 December 1993 (15.12.93), see entire document, especially column 13, line 54, column 25, lines 17-19, 46-50, 50-62.	es 49-	1
		ļ	
:			
į			

INTERNATIONAL SEARCH REPORT

International application No. PCT/US96/09306

	B. FIELDS SEARCHED Electronic data bases consulted (Name of data base and where practicable terms used):
	Medline, Biosis, Biotechds, Caplus, CJACS, Embase, Toxlit Terms: (antisense or anti-sense); therap?; (lung disease or asthma or airway disease or bronchial?); adenosine; (cystic fibrosis or CF); liposome; (micron# or microm?); aerosol; Nyce J?/au; Metzger, w J?/au
1	

Form PCT/ISA/210 (extra sheet)(July 1992)*