MIPS Reference Data

1	

CORE INSTRUCTI	ON SE	Т			OPCODE
		FOR-			/ FUNCT
NAME, MNEMO		MAT	- (6)	(1)	(Hex)
Add	add	R	R[rd] = R[rs] + R[rt]		0 / 20 _{hex}
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8 _{hex}
Add Imm. Unsigned		Ι	R[rt] = R[rs] + SignExtImm	(2)	9 _{hex}
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		$0 / 21_{hex}$
And	and	R	R[rd] = R[rs] & R[rt]		$0/24_{hex}$
And Immediate	andi	Ι	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}
Branch On Not Equa	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	5 _{hex}
Jump	j	J	PC=JumpAddr	(5)	2_{hex}
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3 _{hex}
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}
Load Byte Unsigned	lbu	Ι	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}
Load Halfword Unsigned	lhu	Ι	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	$25_{ m hex}$
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)	$23_{ m hex}$
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}
Or	or	R	R[rd] = R[rs] R[rt]		0 / 25 _{hex}
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	d _{hex}
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0	(-)	0 / 2a _{hex}
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) $? 1: 0$	(2,6)	b _{hex}
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2b _{hex}
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$	(-)	0 / 00 _{hex}
Shift Right Logical	srl	R	R[rd] = R[rt] >>> shamt		0 / 02 _{hex}
			M[R[rs]+SignExtImm](7:0) =		
Store Byte	sb	I	R[rt](7:0)	(2)	28 _{hex}
Store Conditional	sc	Ι	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	$38_{ m hex}$
Store Halfword	sh	Ι	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}
Subtract	sub	R	R[rd] = R[rs] - R[rt]	(1)	0 / 22 _{hex}
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]		0 / 23 _{hex}
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{ib^0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic					2'b0 }
DACIO INICEDITORI	ONLEC	DIA	TC		

BASIC INSTRUCTION FORMATS

R	opcode	rs	rt	rd	shamt	funct
	31 26	25 21	20 16	15 11	10 6	5 0
I	opcode	rs	rt		immediate	
	31 26	25 21	20 16	15		0
J	opcode			address		
	31 26	25				0

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

ARITHMETIC CORE INSTRUCTION SET

		FOR-		/ FUNCT
NAME, MNEMO		MAT		(Hex)
Branch On FP True		FI	if(FPcond)PC=PC+4+BranchAddr (4)	
			. ,	
Branch On FP False		FI	if(!FPcond)PC=PC+4+BranchAddr(4)	
Divide	div	R	Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt]	0//-1a
Divide Unsigned	divu	R	$Lo=R[rs]/R[rt]; Hi=R[rs]\%R[rt] \qquad (6)$	
FP Add Single	add.s	FR	F[fd] = F[fs] + F[ft]	11/10//0
FP Add	add.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} +$	11/11//0
Double	add.d	110	{F[ft],F[ft+1]}	11/11//0
FP Compare Single	c.x.s*	FR	FPcond = (F[fs] op F[ft]) ? 1 : 0	11/10//y
FP Compare	c.r.d*	FR	$FPcond = ({F[fs],F[fs+1]}) op$	11/11//v
Double			{F[ft],F[ft+1]})?1:0	11/11//y
			==, <, or <=) (y is 32, 3c, or 3e)	
FP Divide Single	div.s	FR	F[fd] = F[fs] / F[ft]	11/10//3
FP Divide	div.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} /$	11/11//3
Double	aiv.a	110	{F[ft],F[ft+1]}	11/11//3
FP Multiply Single	mul.s	FR	F[fd] = F[fs] * F[ft]	11/10//2
FP Multiply	mul.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} *$	11/11//2
Double	mu1.a	гк	{F[ft],F[ft+1]}	11/11//2
FP Subtract Single	sub.s	FR	F[fd]=F[fs]-F[ft]	11/10//1
FP Subtract	sub.d	FR	${F[fd],F[fd+1]} = {F[fs],F[fs+1]} -$	11/11/ /1
Double	sub.a	FK	{F[ft],F[ft+1]}	11/11//1
Load FP Single	lwc1	I	F[rt]=M[R[rs]+SignExtImm] (2)	31//
Load FP		ī	F[rt]=M[R[rs]+SignExtImm]; (2)	35//
Double	ldc1	1	F[rt+1]=M[R[rs]+SignExtImm+4]	35//
Move From Hi	mfhi	R	R[rd] = Hi	0 ///10
Move From Lo	mflo	R	R[rd] = Lo	0 ///12
Move From Control	mfc0	R	R[rd] = CR[rs]	10 /0//0
Multiply	mult	R	$\{Hi,Lo\} = R[rs] * R[rt]$	0///18
Multiply Unsigned		R	$\{Hi,Lo\} = R[rs] * R[rt] $ $\{6\}$	
Shift Right Arith.	sra	R	$R[rd] = R[rt] \gg \text{shamt}$	0///3
Store FP Single	swc1	I	M[R[rs]+SignExtImm] = F[rt] (2)	
Store FP	SWCI	1	M[R[rs]+SignExtImm] = F[rt]; (2)	
Double	sdc1	I	M[R[rs]+SignExtImm] - F[rt], (2) M[R[rs]+SignExtImm+4] = F[rt+1]	3d//
Double			w[K[is]+SignExtillIII+4] = F[II+1]	

OPCODE

/ FMT /FT

FLOATING-POINT INSTRUCTION FORMATS

FR	opcode	fmt	ft	fs	fd	funct
	31 26	25 21	20 16	15 11	10 6	5 0
FI	opcode	fmt	ft		immediate	
	31 26	25 21	20 16	15		0

PSEUDOINSTRUCTION SET

NAME	MNEMONIC	OPERATION
Branch Less Than	blt	if(R[rs] < R[rt]) PC = Label
Branch Greater Than	bgt	if(R[rs]>R[rt]) PC = Label
Branch Less Than or Equal	ble	$if(R[rs] \le R[rt]) PC = Label$
Branch Greater Than or Equal	bge	$if(R[rs] \ge R[rt]) PC = Label$
Load Immediate	li	R[rd] = immediate
Move	move	R[rd] = R[rs]

REGISTER NAME, NUMBER, USE, CALL CONVENTION

NAME NUMBE	NILIMBED	USE	PRESERVEDACROSS
	NUMBER	USE	A CALL?
\$zero	0	The Constant Value 0	N.A.
\$at	1	Assembler Temporary	No
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No
\$a0-\$a3	4-7	Arguments	No
\$t0-\$t7	8-15	Temporaries	No
\$s0-\$s7	16-23	Saved Temporaries	Yes
\$t8-\$t9	24-25	Temporaries	No
\$k0-\$k1	26-27	Reserved for OS Kernel	No
\$gp	28	Global Pointer	Yes
\$sp	29	Stack Pointer	Yes
\$fp	30	Frame Pointer	Yes
\$ra	31	Return Address	Yes