

https://alexkashi.github.io/ akashi@berkeley.edu | aakashi@stanford.edu | 408-431-1273

EDUCATION

UC BERKELEY

BS IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCES

Expected May 2017 | Berkeley, CA Cum Laude

College of Engineering Cum. GPA: 3.85 / 4.0 Major GPA: 3.84 / 4.0

LINKS

Personal Website: AlexKashi Github:// AlexKashi LinkedIn:// AlexKashi

COURSEWORK

UNDERGRADUATE CS

Introduction to Machine Learning Operating Systems Artificial Intelligence Internet Architecture and Protocols Computer Security Efficient Algorithms

UNDERGRADUATE EE

Feedback Control Systems
Analog Integrated Circuits
Introduction to Robotics
Introduction to Embedded Systems
Signals and Systems
Microelectronic Devices and Circuits

SKILLS

PROGRAMMING

Professional Proficiency
Java • Python • C++ • Android
High Proficiency
C • Matlab • Lua • ŁTĘX
Working Proficiency
Assembly • C# • Qt

FRAMEWORKS

Spark • Android • Theano Intel SSE Intrinsics • Allegro OpenMP • Pthread • Git

TOOLS

Cadence • Unix • Vim • Eclipse

AWARDS

National Intel Scholarship
Regional Silicon Valley Eng. Council
Regional Top Senior Thesis - FHS

EXPERIENCE

STANFORD GENOME LAB | RESEARCH ASISTANT, DEPARTMENT OF BIOCHEMESTRY

September 2017 - Present | Stanford, CA | Advisor: Ron Davis Python

- Researched ways how nanosensors can help diagnose and treat people with chronic fatigue syndrome (ME/CFS)
- Generated and analyzed impedance data from our biosensor to classify ME/CFS patients vs healthy controls
- Developed and validated circuit models to explain the bio-electric system
- In process of writing paper to publicly share findings

ZSPACE | Software Engineering Research Intern

May 2016 – Aug 2016 | Sunnyvale, CA Python • C++ • C#

- Utilized deep convolutional neural networks to design a gaze tracking system compatible with polarized 3D glasses
- GPU optimized using the Theano machine learning framework
- Trained on over 10GB of data after instructing 36 participants on proprietary data collection application
- Configured infrared cameras to classify images based on 2D pupillary angle

INTEL | Undergraduate Technical Intern - Client R&D

May 2015 – Aug 2015 | Santa Clara, CA Java • C++ • C

- Implemented a general solution to local big data processing on Android devices
- Realized an application of the generalized map reduce framework with k-means clustering to reduce the local data footprint on servers
- Full stack development from the NDK to IPC to UI
- Parallelized using Pthreads and insured thread safety using mutexes

PROJECT EXPERIENCE

LOW COST RELIABLE LOCALIZATION OF DRONE

Python

- Objective to create a low cost alternative to a Vicon Motion capture system to enable indoor aerial delivery via quadrotor drone
- Only requires a standard HD webcam and an array of AR tags, thereby facilitating total cost reduction
- Multiple AR tags rigidly connected to an origin tag provide redundancy, allowing for rigid body transforms to locate the quadrotor in global coordinates
- Acquired a single pose estimation with the ROS package ar_track_alvar and used Mavros to communicate to the Pixhawk PX4 2.4.8 flight controller

ARTIFICIAL INTELLIGENCE | Various Techniques for a Pacman AI Python

- Q-learning, value iteration, policy iteration, and policy extraction to determine which action Pacman should take given state-actions pairs
- Bayes nets for inferring data about ghosts with super powers
- Hidden Markov models used to track invisible ghosts using particle filtering
- Minimax with alpha-beta pruning and A* path finding with consistent heuristics

AFFILIATIONS

2016 National Camp Kesem

2015 Top 25% Eta Kappa Nu Electrical Engineering Honor Society Member

2013 National Academic All American (Water Polo)