Homework 6

Due: Wednesday, November 18, 2020

Question 1. (AF 4.1.1) . Evaluate the integrals

$$\frac{1}{2\pi i} \oint_C f(z) dz$$

where C is the unit circle centered at the origin with f(z) given below. (a) $\frac{z+1}{2z^3-3z^2-2z}$ (b) $\frac{\cosh(1/z)}{z}$ (c) $\frac{e^{-\cosh z}}{4z^2+\pi^2}$ (d) $\frac{\ln(z+2)}{2z+1}$, $-\pi < \arg(z+2) \le \pi$ (e) $\frac{(z+1/z)}{z(2z-1/2z)}$

(a) $\frac{z+1}{2z^3-3z^2-2z} = \frac{z+1}{z(2z+1)(z-2)}$, simple poles at 0 and $-\frac{1}{2}$ in C.

$$\frac{1}{2\pi i} \oint_C f(z)dz = \sum_j \text{Res} \{f(z); z_j\}$$

$$= \left(\frac{z+1}{6z^2 - 6z - 2}\right)_0 + \left(\frac{z+1}{6z^2 - 6z - 2}\right)_{-\frac{1}{2}}$$

$$= -\frac{1}{2} + \frac{1}{5}$$

$$= -\frac{3}{10}$$

(b) Consider the pole at infinity

$$\frac{1}{2\pi i} \oint_C f(z)dz = \text{Res} \{f(z); z = \infty\}$$

$$= \text{Res} \left\{ \frac{\cosh(t)}{t}; t = 0 \right\}$$

$$= (\cosh(t))_0$$

$$= 1$$

(c) $\frac{e^{-\cosh z}}{4z^2+\pi^2} = \frac{e^{-\cosh z}}{(2z+i\pi)(2z-i\pi)}$, simple poles at $\pm \frac{i\pi}{2}$, which are not in C. Thus the integral is 0 by Cauchy's theorem.

(d)

$$\frac{1}{2\pi i} \oint_C f(z)dz = \operatorname{Res}\left\{f(z); z = -\frac{1}{2}\right\}$$
$$= \left(\frac{\ln(z+2)}{2}\right)_{-\frac{1}{2}}$$
$$= \frac{1}{2}\ln\frac{3}{2}$$

(e) Consider the pole at infinity

$$\begin{split} \frac{1}{2\pi i} \oint_C f(z) dz &= \text{Res} \left\{ f(z); z = \infty \right\} \\ &= \text{Res} \left\{ \frac{1}{t^2} \frac{\frac{1}{t} + t}{\frac{1}{t} (\frac{2}{t} - \frac{t}{2})}; t = 0 \right\} \\ &= \text{Res} \left\{ \frac{2(t + t^3)}{t^2 (4 - t^2)}; t = 0 \right\} \\ &= \lim_{t \to 0} \frac{d}{dz} \left(\frac{2(t + t^3)}{4 - t^2} \right) \\ &= \lim_{t \to 0} \frac{(4 - t^2)(2 + 6t^2) + 2t(2t + 2t^3)}{(4 - t^2)^2} \\ &= \frac{1}{2} \end{split}$$

Question 2. Show that $\int_0^\infty \frac{\sin x}{x(x^2+1)} dx = \frac{\pi}{2} \left(1 - \frac{1}{e}\right)$

Since the integrand is even, we have

$$I = \int_0^\infty \frac{\sin x}{x(x^2 + 1)} dx = \frac{1}{2} \int_{-\infty}^\infty \frac{\sin x}{x(x^2 + 1)} dx$$
$$= \frac{1}{2} \text{Im} \int_{-\infty}^\infty \frac{e^{ix}}{x(x^2 + 1)} dx$$

Let $f(z) = \frac{1}{z(z^2+1)}$. Since $|f(z)| \to 0$ as $|z| \to \infty$, by Jordan's lemma we can complete the contour in UHP

$$I = \frac{1}{2} \operatorname{Im} \oint \frac{e^{iz}}{z (z^2 + 1)} dz$$

$$= \frac{1}{2} \operatorname{Im} 2\pi i \operatorname{Res} \left\{ \frac{e^{iz}}{z (z^2 + 1)}; z = i \right\} + \pi i \operatorname{Res} \left\{ \frac{e^{iz}}{z (z^2 + 1)}; z = 0 \right\}$$

$$= \frac{1}{2} \operatorname{Im} 2\pi i \left(\frac{e^{iz}}{3z^2 + 1} \right)_i + \pi i \left(\frac{e^{iz}}{3z^2 + 1} \right)_0$$

$$= \frac{1}{2} \operatorname{Im} 2\pi i (-\frac{1}{2e}) + \pi i$$

$$= \frac{\pi}{2} \left(1 - \frac{1}{e} \right)$$

Question 3. Consider the function

$$f(z) = \ln\left(z^2 - 1\right)$$

made single-valued by restricting the angles in the following ways, with $z_1 \equiv z - 1 = r_1 e^{i\theta_1}$, $z_2 \equiv z + 1 = r_2 e^{i\theta_2}$ (a) $-\frac{3\pi}{2} < \theta_1 \le \frac{\pi}{2}$, $-\frac{3\pi}{2} < \theta_2 \le \frac{\pi}{2}$ (b) $0 < \theta_1 \le 2\pi$, $0 < \theta_2 \le 2\pi$ (c) $-\pi < \theta_1 \le \pi$, $0 < \theta_2 \le 2\pi$ Find where the branch cuts are for each case by locating where the function is discontinuous. Use the AB tests and show your results.

We have $f(z) = \ln(z^2 - 1) = \ln r_1 r_2 e^{i(\theta_1 + \theta_2)} = \ln r_1 r_2 + i(\theta_1 + \theta_2)$. We draw our AB points in Figure 1.

- (a) At A, $\theta_1 = -\frac{3\pi}{2}$. At B, $\theta_1 = \frac{\pi}{2}$. θ_2 is the same at A and B. $f(A) = \ln r_1 r_2 + i(\theta_2 \frac{3\pi}{2})$, $f(B) = \ln r_1 r_2 + i(\theta_2 + \frac{\pi}{2})$, then f(z) is discontinuous across z = 1. At C, $\theta_2 = -\frac{3\pi}{2}$. At D, $\theta_2 = \frac{\pi}{2}$. θ_1 is the same at C and D. $f(C) = \ln r_1 r_2 + i(\theta_1 \frac{3\pi}{2})$, $f(D) = \ln r_1 r_2 + i(\theta_2 + \frac{\pi}{2})$, then f(z) is discontinuous across z = -1.
- (b) At A, $\theta_1 = \theta_2 = 0$. At B, $\theta_1 = \theta_2 = 2\pi$. $f(A) = \ln r_1 r_2$, $f(B) = \ln r_1 r_2 + 4\pi i$, then f(z) is discontinuous across z > 1. At C, $\theta_1 = \pi$, $\theta_2 = 0$. At D, $\theta_1 = \pi$, $\theta_2 = 2\pi$. $f(C) = \ln r_1 r_2 + \pi i$, $f(D) = \ln r_1 r_2 + 3\pi i$, then f(z) is discontinuous across -1 < z < 1.
- (c) At A, $\theta_1 = \theta_2 = 0$. At B, $\theta_1 = 0$, $\theta_2 = 2\pi$. $f(A) = \ln r_1 r_2$, $f(B) = \ln r_1 r_2 + 2\pi i$, then f(z) is discontinuous across z > 1. At C, $\theta_1 = \pi$, $\theta_2 = 0$. At D, $\theta_1 = -\pi$, $\theta_2 = 2\pi$. $f(C) = \ln r_1 r_2 + \pi i = f(D)$, then f(z) is continuous across -1 < z < 1. At E, $\theta_1 = \pi$, $\theta_2 = \pi$. At F, $\theta_1 = -\pi$, $\theta_2 = \pi$. $f(E) = \ln r_1 r_2 + 2\pi i$, $f(F) = \ln r_1 r_2$, then f(z) is discontinuous across z < -1.

Figure 1: Branch cuts of f(z) in Question 3