TOPICS IN MATHEMATICAL SCIENCE VIII

Autumn 2023

Introduction to quiver representations and homological algebras

AARON CHAN

Last update: October 11, 2025

Convention

Throughout the course, k will always be a field. All rings are unital and associative. We only really work with artinian rings (but sometimes noetherian is also OK). We always compose maps from right to left.

1 Reminder on some basics of rings and modules

Definition 1.1. Let R be a ring. A right R-module M is an abelian group (M, +) equipped with a (linear) R-action on the right of $M \cdot : M \times R \to M$, meaning that for all $r, s \in R$ and $m, n \in M$, we have

- $m \cdot 1 = m$,
- $(m+n) \cdot r = m \cdot r + n \cdot r$,
- $m \cdot (r+s) = m \cdot r + m \cdot s$,
- m(sr) = (ms)r.

Dually, a left R-module is one where R acts on the left of M (details of definition left as exercise). Sometimes, for clarity, we write M_A for right A-module and AM for left A-module.

Note that, for a commutative ring, the class of left modules coincides with that of right modules.

Example 1.2. R is naturally a left, and a right, R-module. Both are free R-module of rank 1. Sometimes this is also called regular modules but it clashes with terminology used in quiver representation and so we will avoid it.

In general, a free R-module F is one where there is a basis $\{x_i\}_{i\in I}$ such that for all $x\in F$, $x=\sum_{i\in I}x_ir_i$ with $r_i\in R$. We only really work with free modules of finite rank, i.e. when the indexing set I is finite. In such a case, we write R^n .

Convention. All modules are right modules unless otherwise specified.

Definition 1.3. Suppose R is a commutative ring. A ring A is called an R-algebra if there is a (unital) ring homomorphism $\theta: R \to A$ with image $\theta(R)$ being in the center $Z(A) := \{z \in A \mid za = az \ \forall a \in A\}$ of A. In such a case, A is an R-module and so we simply write ar for $a \in A$, $r \in R$ instead of $a\theta(r)$.

An (unital) R-algebra homomorphism $f: A \to A'$ is a (unital) ring homomorphism f that intertwines R-action, i.e. f(ar) = f(a)r.

The dimension of a k-algebra A is the dimension of A as a k-vector space; we say that A is finite-dimensional if $\dim_k A < \infty$.

Note that commutative ring theorists usually use dimension to mean Krull dimension, which has a completely different meaning.

Example 1.4. Every ring is a \mathbb{Z} -algebra.

The matrix ring $M_n(R)$ given by n-by-n matrices with entries in R is an R-algebra.

We will only really work with k-algebras, where k is a field. Most of the time, we will also assume k is algebraically closed for simplicity. But it worth reminding there are many interesting R-algebras for different R, such as group algebra. Recall that the *characteristic* of R, denoted by char R, is 0 if the additive order of the identity 1 is infinite, or else the additive order itself.

Example 1.5. Let G be a finite (semi)group and R a commutative ring. Let A := R[G] be the free R-module with basis G, i.e. every $a \in A$ can be written as the formal R-linear combination $\sum_{g \in G} \lambda_g g$ with $\lambda_g \in R$. Then group multiplication extends (R-linearly) to a ring multiplication on R[G], making A an R-algebra.

Example 1.6. Recall that the direct product of two rings A, B is the ring $A \times B = \{(a, b) \mid a \in A, b \in B\}$ with unit $1_{A \times B} = (1_A, 1_B)$. It is straightforward to check that if A, B are R-algebras, then $A \times B$ is also an R-algebra.

Example 1.7. Suppose that A is a k-algebra and B is a k-subspace of A containing 1_A and closed under multiplication. Then B is also a k-algebra. We call such a B a subalgebra of A. For a concrete example, the space of diagonal matrices forms a subalgebra of $M_n(k)$.

Definition 1.8. A map $f: M \to N$ between right R-modules M, N is a homomorphism if it is a homomorphism of abelian groups (i.e. f(m+n) = f(m) + f(n) for all $m, n \in M$) that intertwines R-action (i.e. f(mr) = f(m)r for all $m \in M$ and $r \in R$). Denote by $\operatorname{Hom}_R(M, N)$ the set of all R-module homomorphisms from M to N. We also write $\operatorname{End}_R(M) := \operatorname{Hom}_R(M, M)$.

Lemma 1.9. Hom_R(M,N) is an abelian group with (f+g)(m)=f(m)+g(m) for all $f,g \in \operatorname{Hom}_R(M,N)$ and all $m \in M$. If R is commutative, then $\operatorname{Hom}_R(M,N)$ is an R-module, namely, for a homomorphism $f: M \to N$ and $r \in R$, the homomorphism fr is given by $m \mapsto f(mr)$.

Definition 1.10. End_R(M) is an associative ring where multiplication is given by composition and identity element being id_M. We call this the endomorphism ring of M.

Lemma 1.11. If A is an R-algebra over a commutative ring R, then any right A-module is also an R-module, and $\text{Hom}_A(M, N)$ is also an R-module (hence, $\text{End}_R(M)$ is an R-algebra).

Example 1.12. $A \cong \operatorname{End}_A(A)$ given by $a \mapsto (1_A \mapsto a)$ is an isomorphism of rings (or of R-algebras if A is an R-algebra). Note that if we work with left modules, then $A \cong \operatorname{End}_A(AA)^{\operatorname{op}}$, where $(-)^{\operatorname{op}}$ denotes the opposite ring given by the same underlying set with reverse direction of multiplication, i.e. $a \cdot_{\operatorname{op}} b := b \cdot a$.

Recall that an R-module M is finitely generated if there exists as surjective homomorphism $R^n \to M$, or equivalently, there is a finite set $X \subset M$ such that for any $m \in M$, we have $m = \sum_{x \in X} xr_x$ for some $r_x \in R$.

Notation. We write mod A for the collection of all finitely generated right A-modules.

2 Indecomposable modules and Krull-Schmidt property

We recall two types of building blocks of modules. The first one is indecomposability.

Definition 2.1. Let M be a R-module and N_1, \ldots, N_r be submodules. We say that M is the direct $\sup N_1 \oplus \cdots \oplus N_r$ of the N_i 's if $M = N_1 + \cdots + N_r$ and $N_j \cap (N_1 + \cdots + N_{\hat{j}} + \cdots + N_r) = 0$. Equivalently, every $m \in M$ can be written uniquely as $n_1 + n_2 + \cdots + n_r$ with $n_i \in N_i$ for all i. In such a case, we write $M \cong N_1 \oplus \cdots \oplus N_r$. Each N_i is called a direct summand of M.

M is called indecomposable if $M \cong N_1 \oplus N_2$ implies $N_1 = 0$ or $N_2 = 0$.

We say that $M = \bigoplus_{i=1}^{m} M_i$ is an indecomposable decomposition (or just decomposition for short if context is clear) of M if each M_i is indecomposable.

Convention. We write (n_1, \ldots, n_r) instead of $n_1 + \cdots + n_r$ with $n_i \in N_i$ for a direct sum $N_1 \oplus \cdots \oplus N_r$.

We will only work with direct sum with finitely many indecomposable direct summands.

Example 2.2. Suppose that R_R is indecomposable as an R-module. If F is a free R-module of rank n, then $R^{\oplus n} := R \oplus R \oplus \cdots \oplus R$ (with n copies of R) is a decomposition of F.

Example 2.3. Consider the matrix ring $A := \operatorname{Mat}_n(\mathbb{k})$ over a field \mathbb{k} . Let V be the 'row space', i.e. $V = \{(v_j)_{1 \leq j \leq n} \mid v_j \in \mathbb{k}\}$ where $X \in \operatorname{Mat}_n(\mathbb{k})$ acts on $v \in V$ by $v \mapsto vX$ (matrix multiplication from the right). Since for any pair $u, v \in V$, there always exist X so that v = uX, we see that there is no other A-submodule of V other than 0 or V itself. Hence, V is an indecomposable A-module. In particular, the n different ways of embedding a row into an n-by-n-matrix yields an A-module isomorphism between $V^{\oplus n} \cong A_A$, which is the decomposition of the free A-module A_A .

The above example shows indecomposability by showing that V is a *simple A*-module, which is a stronger condition that we will come back later. Let us give an example of a different type of indecomposable (but non-simple) modules.

Example 2.4. Let $A = \mathbb{k}[x]/(x^k)$ the truncated polynomial ring for some $k \geq 2$. This is an algebra generated by (1_A and) x, and an A-module is just a \mathbb{k} -vector space V equipped with a linear transformation $\rho_x \in \operatorname{End}_{\mathbb{k}}(V)$ (representing the action of x) such that $\rho_x^k = 0$.

Consider a 2-dimensional space $V = \mathbb{k}\{v_1, v_2\}$ and a linear transformation

$$\rho_x = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

By definition $(av_1 + bv_2)x = (a + b)v_2$, and so any submodules must contains kv_2 , i.e. v_2 spans a unique non-zero submodules. If, on the contrary, V is not indecomposable, then we have $V = U_1 \oplus U_2$ for (at least) two non-zero submodules U_1, U_2 . But v_2 must be contained in any submodule of V, hence, we have $v_2 \in U_1 \cap U_2$, i.e. $U_1 \cap U_2 \neq 0$ – a contradiction not decomposability.

Proposition 2.5. There is a canonical R-module isomorphism

$$\operatorname{Hom}_{A}(\bigoplus_{j=1}^{m} M_{j}, \bigoplus_{i=1}^{n} N_{i}) \xrightarrow{\cong} \bigoplus_{i,j} \operatorname{Hom}_{A}(M_{j}, N_{i})$$
$$f \longmapsto (\pi_{i} f \iota_{j})_{i,j}$$

where $\iota_j: N_j \to \bigoplus_j N_j$ is the canonical inclusion for all j and $\pi_i: \bigoplus_i M_i \to M_i$ is the canonical projection for all i.

One can think of the right-hand space above as the space of m-by-n matrix with entries in each corresponding Hom-space.

Recall that an *idempotent* $e \in R$ is an element with $e^2 = e$. For example, the identity map $id_M \in End_A(M)$ (the unit element of the endomorphism ring) is an idempotent. From the previous proposition, we see that for a decomposition $M = N_1 \oplus N_2$, we have idempotents

$$e_i: M \xrightarrow{\pi_i} N_i \xrightarrow{\iota_i} M$$

for both i = 1, 2. Hence, being decomposable implies existence of multiple idempotents; this turns out characterise indecomposability completely.

Proposition 2.6. Let A be a finite-dimensional algebra and M be a finite-dimensional non-zero A-module. Then the following hold.

- (1) (Fitting's lemma) For any $f \in \operatorname{End}_A(M)$, there exists $n \geq 1$ such that $M \cong \operatorname{Ker}(f^n) \oplus \operatorname{Im}(f^n)$.
- (2) The following are equivalent.
 - M is indecomposable.
 - The endomorphism algebra $\operatorname{End}_A(M)$ does not contain any idempotents except 0 and id_M .
 - Every homomorphism $f \in \text{End}_A(M)$ is either an isomorphism or is nilpotent.
 - $\operatorname{End}_A(M)$ is local (see below).

Remark 2.7. It is known that if M is only artinian or only noetherian, then Fitting's lemma (and hence part (2)) fails. Nevertheless, in general, the proposition still hold for M that is both artinian and noetherian.

Let us briefly recall various characterisation of local rings.

Definition 2.8. A ring R is local if it has a unique maximal right (equivalently, left; equivalently, two-sided) ideal.

Remark 2.9. When R is non-commutative, the 'non-invertible elements' are the ones that do not admit (right) inverses.

Lemma 2.10. The following are equivalent for a finite-dimensional algebra A.

- A is local (i.e. has a unique maximal right ideal).
- Non-invertible elements of A form a two-sided ideal.
- For any $a \in A$, one of a or 1 a is invertible.
- 0 and 1_A are the only idempotents of A.
- $A/J(A) \cong \mathbb{R}$ as rings, where J(A) is the two-sided ideal of A given by the intersection of all maximal right (equivalently, left) ideals.

Example 2.11. Consider the upper triangular 2-by-2 matrix ring

$$A = \begin{pmatrix} \mathbb{k} & \mathbb{k} \\ 0 & \mathbb{k} \end{pmatrix} = \left\{ (a_{i,j})_{1 \leq i \leq j \leq 2} \middle| \begin{array}{l} a_{i,j} \in \mathbb{k} \ \forall i \leq j \\ a_{i,j} = 0 \ \forall i > j \end{array} \right\}.$$

Let $M = \{(x,y) \in \mathbb{k}^2\}$ be the 2-dimensional space where A acts as matrix multiplication (on the right). Suppose $f \in \operatorname{End}_A(M)$, say, f(x,y) = (ax+by,cx+dy) for some $a,b,c,d \in \mathbb{k}$. Then being an A-module homomorphisms means that

$$(ax + by, cx + dy)\begin{pmatrix} u & v \\ 0 & w \end{pmatrix} = f\left((x, y)\begin{pmatrix} u & v \\ 0 & w \end{pmatrix}\right) = (aux + bvx + wy, cux + dvx + dwy)$$

for all $u, v, w, x, y \in \mathbb{k}$. This means that

$$\begin{cases} buy = bvx + bwy \\ avx + bvy + cxw = cux + dvx \end{cases}.$$

The first line yields b = 0, and the second line yields c = 0 = b and a = d. In other words, $\operatorname{End}_A(M) \cong \mathbb{k}$ which is clearly a local algebra. Hence, M is indecomposable.

A natural question is to ask when is a decomposition of modules, if it exists, unique up to permuting the direct summands.

Definition 2.12. We say that an indecomposable decomposition $M = \bigoplus_{i=1}^m M_i$ is unique if any other indecomposable decomposition $M = \bigoplus_{j=1}^n N_j$ implies that m = n and there is a permutation σ such that $M_i \cong N_{\sigma(i)}$ for all $1 \leq i \leq m$. mod A is said to be Krull-Schmidt if every (finitely generated) A-module M admits a unique indecomposable decomposition.

Theorem 2.13. For a finite-dimensional algebra A, mod A is Krull-Schmidt.

Remark 2.14. This is a special case of the Krull-Schmidt theorem - whose proof we will omit to save time.

Theorem 2.15 (Krull-Schmidt). Suppose $M = \bigoplus_{i=1}^m M_i$ is an indecomposable decomposition of M. If $\operatorname{End}_A(M_i)$ is local for all $1 \leq i \leq m$, then the decomposition of M is unique.

Remark 2.16. Some people refer to this result as Krull-Remak-Schmidt theorem.

3 Simple modules, Schur's lemma

Definition 3.1. Let M be an R-module.

- (1) M is simple if $M \neq 0$, and for any submodule $L \subset M$, we have L = 0 or L = M.
- (2) M is semisimple if it is a direct sum of simples.

Remark 3.2. In the language of representations, simple modules are called *irreducible* representations, and semisimple modules are called *completely reducible* representations.

Remark 3.3. Note that a module is semisimple if and only if every submodule is a direct summand.

Example 3.4. Consider the matrix ring $A := \operatorname{Mat}_n(\mathbb{k})$ over a field \mathbb{k} . Then the row-space representation V is an n-dimensional simple module. Since $A_A \cong V^{\oplus n}$, we have that A_A is a semisimple module.

Example 3.5. The ring of dual numbers is $A := \mathbb{k}[x]/(x^2)$. The module (x) is simple. The regular representation A is non-simple (as (x) = AxA is a non-trivial submodule). It is also not semisimple. Indeed, (x) is a submodule of A, and the quotient module can be described by $\mathbb{k}v$ where v = 1 + (x). If A is semisimple, then the 1-dimensional space $\mathbb{k}v$ is isomorphic to a submodule of A. Such a submodule must be generated by a + bx (over A) for some $a, b \in \mathbb{k}$. If $a \neq 0$, then (a + bx)A = A. So a = 0, and $\mathbb{k}v \cong (x)$, a contradiction.

Lemma 3.6. S is a simple A-module if and only if for any non-zero $m \in S$, we have $mA := \{ma \mid a \in A\} = S$. In particular, simple modules are cyclic (i.e. generated by one element).

Let us see how one can find a simple module.

Definition 3.7. Let M be an A-module and take any $m \in M$. The annihilator of m (in A) is the set $\operatorname{Ann}_A(m) := \{a \in A \mid ma = 0\}.$

Note that $Ann_A(m)$ is a right ideal of A - hence, a right A-module.

Lemma 3.8. For a simple A-module S and any non-zero $m \in S$, we have $S \cong A/\operatorname{Ann}_A(m)$ as A-module. In particular, if A is finite-dimensional, then every simple A-module is also finite-dimensional.

Suppose I is a two-sided ideal of A. Then we have a quotient algebra B := A/I. For any B-module M, we have a canonical A-module structure on M given by ma := m(a+I). This is (somewhat confusingly) the restriction of M along the algebra homomorphism $A \to A/I$.

Lemma 3.9. Suppose B := A/I is a quotient algebra of A by a strict two-sided ideal $I \neq A$. If $S \in \text{mod } B$ is simple, then S is also simple as A-module

Proof This follows from the easy observation that any a B-submodule of S_B is also a A-submodule of S_A under restriction.

The following easy, yet fundamental, lemma describes the relation between simple modules. Recall that a division ring is one where every non-zero element admits an inverse (but the ring is not necessarily commutative).

Lemma 3.10 (Schur's lemma). Suppose S, T are simple A-modules, then

$$\operatorname{Hom}_A(S,T) = \begin{cases} a & \text{division ring,} & \text{if } S \cong T; \\ 0, & \text{otherwise.} \end{cases}$$

Remark 3.11. Note that if A is an R-algebra, then the division ring appearing is also an R-algebra (since it is the endomorphism ring of an A-module). In particular, if R is an algebraically closed field $\mathbb{k} = \overline{\mathbb{k}}$, then any division \mathbb{k} -algebra is just \mathbb{k} itself.