Llista de problemes 6

Víctor Ballester Ribó NIU: 1570866

Anàlisi Harmònica Grau en Matemàtiques Universitat Autònoma de Barcelona Maig de 2023

Exercici 2. Sigui p(x) un polinomi. Llavors existeix una distribució $T \in \mathcal{D}^*(\mathbb{R})$ tal que p(x)T = 1.

Resolució. Recordem d'un seminari anterior les distribucions $T_m = \frac{(-1)^{m-1}}{(m-1)!} \partial^m \log |x| \in \mathcal{D}^*(\mathbb{R})$ que satisfan $x^m T_m = 1$, $m \in \mathbb{N}$. Fent una translació tenim que les distribucions $S_{m,\alpha} := \frac{(-1)^{m-1}}{(m-1)!} \partial^m \log |x-\alpha|$ satisfan $(x-\alpha)^m S_m = 1$ per a tot $\alpha \in \mathbb{R}$. Aleshores, fent la descomposició per fraccions simples de p(x) tenim que

$$\frac{1}{p(x)} = \sum_{i=0}^{n} \frac{q_i(x)}{(x - \alpha_i)^{n_i}}$$

per a certs polinomis q_i tals que deg $q_i < n_i$. Ara definim $T := \sum_{i=0}^n q_i(x) S_{n_i,\alpha_i}$. Aleshores tenim que:

$$p(x)T = p(x)\sum_{i=0}^{n} q_i(x)S_{n_i,\alpha_i} = p(x)\sum_{i=0}^{n} \frac{q_i(x)}{(x-\alpha_i)^{n_i}} = 1$$

Exercici 3. Sigui $T \in \mathcal{D}^*(\mathbb{R})$. El suport de T es defineix com la intersecció de tots els tancats K amb la propietat següent: $si \varphi \in \mathcal{D}(\mathbb{R})$ té suport a $\mathbb{R}^n \setminus K$, aleshores $\langle T, \varphi \rangle = 0$. Considerem l'espai $\mathcal{E}(\mathbb{R}^n) := \mathcal{C}^{\infty}(\mathbb{R}^n)$ i el seu dual $\mathcal{E}^*(\mathbb{R}^n)$. És fàcil veure que $T \in \mathcal{E}^*(\mathbb{R}^n)$ si i només si existeixen C > 0 i $N, m \in \mathbb{N}$ tals que

$$|\langle T, \varphi \rangle| \leq C \sum_{|\alpha| \leq m} \sup_{|x| \leq N} |(\partial^{\alpha} \varphi)(x)| \quad per \ a \ tota \ \varphi \in \mathcal{E}(\mathbb{R}^n).$$

- a. Demostreu que T és una distribució amb suport compacte si i només si $T \in \mathcal{E}^*(\mathbb{R}^n)$.
- b. Si $T \in \mathcal{S}^*(\mathbb{R}^n)$ està suportada en un punt x_0 , llavors:

$$T = \sum_{|\alpha| \le k} a_{\alpha} \partial^{\alpha} \delta_{x_0}$$

- c. Deduïu que si $T \in \mathcal{S}^*(\mathbb{R}^n)$ és tal que \widehat{T} està suportada en ξ_0 , llavors T és combinació lineal finita de funcions $(-2\pi \mathrm{i}\xi)^{\alpha}\mathrm{e}^{2\pi i\langle \xi, \xi_0 \rangle}$. En particular, si \widehat{T} està suportada a l'origen, llavors T és un polinomi.
- d. Deduïu que si $u \in \mathcal{S}^*(\mathbb{R}^n)$ és tal que $\Delta u = 0$, llavors u és un polinomi.

Resolució.

a. Suposem primer que T és una distribució amb suport compacte K. Per definició si $\varphi \in \mathcal{E}(\mathbb{R}^n)$ té suport a $\mathbb{R}^n \setminus K$, tenim que $\langle T, \varphi \rangle = 0$. Ara per a una $\varphi \in \mathcal{E}(\mathbb{R}^n)$ general, considerem una funció $\psi \in \mathcal{D}(\mathbb{R}^n)$ tal que $\psi(x) = 1$ per a tot $x \in K$. Aleshores, per a tota $\varphi \in \mathcal{E}(\mathbb{R}^n)$ tenim que:

$$|\langle T, \varphi \rangle| = |\langle T, \varphi \psi \rangle + \langle T, \varphi (1 - \psi) \rangle| = |\langle T, \varphi \psi \rangle| \le C \sum_{|\alpha| \le m} \sup_{|x| \le N} |(\partial^{\alpha} (\varphi \psi))(x)|$$

per certes $C>0,\ m,N\in\mathbb{N}$. La segona igual tat es deu al fet que $\varphi(1-\psi)$ té support contingut en $\mathbb{R}^n\setminus K$ i l'última desigual tat bé del fet que $\varphi\psi\in\mathcal{D}(\mathbb{R}^n)$ i, per tant, sobre aquestes funcions tenim continuïtat.

Ara suposem que $T \in \mathcal{E}^*(\mathbb{R}^n)$. Com que $\mathcal{D}(\mathbb{R}^n) \subset \mathcal{E}(\mathbb{R}^n)$, tenim que $\mathcal{E}^*(\mathbb{R}^n) \subset \mathcal{D}^*(\mathbb{R}^n)$. Per tant, T és una distribució i a més el seu suport K és tancat, perquè és intersecció de tancats. Cal veure que K és acotat. Si no

Víctor Ballester NIU: 1570866

ho fos, aleshores podríem trobar una successió $(x_n) \in K$ tal que $x_n \to \infty$. Per a construir aquesta φ , considerem una $(\phi_n) \in \mathcal{S}(\mathbb{R}^n)$

aleshores podríem trobar una $\varphi \in \mathcal{E}(\mathbb{R}^n)$ que tendís a ∞ dins de K, i per tant, tindríem que T no podria estar en $\mathcal{E}^*(\mathbb{R}^n)$, que és una contradicció.

b. Tenim que:

$$\langle T, \varphi \rangle = \langle T, \varphi \mathbf{1}_{\{x_0\}} + (1 - \mathbf{1}_{\{x_0\}}) \varphi \rangle = \langle T, \varphi \mathbf{1}_{\{x_0\}} \rangle$$

c. De l'apartat anterior tenim que:

$$\widehat{T} = \sum_{|\alpha| \le k} c_{\alpha} \widehat{\partial^{\alpha} \delta_{\xi_{0}}} = \sum_{|\alpha| \le k} c_{\alpha} (2\pi i \xi)^{\alpha} \widehat{\delta_{\xi_{0}}} = \sum_{|\alpha| \le k} c_{\alpha} (2\pi i \xi)^{\alpha} e^{-2\pi i \xi \cdot \xi_{0}}$$

En particular si $\xi_0 = 0$, aleshores $\widehat{T} = \sum_{|\alpha| \le k} c_{\alpha} (2\pi i \xi)^{\alpha}$, que és un polinomi en ξ .

d. Fent transformada de Fourier a l'equació obtenim:

$$0 = \widehat{\Delta u} = \sum_{i=0}^{n} \widehat{\partial_i^2 u} = \sum_{i=0}^{n} (2\pi i \xi_i)^2 \widehat{u} = -4\pi^2 |\xi|^2 \widehat{u}$$