Vertiefung Analysis Hausaufgabenblatt Nr. 12

Jun Wei Tan* and Lucas Wollmann

Julius-Maximilians-Universität Würzburg

(Dated: January 31, 2024)

Problem 1. (Parametrisierung) Sei $M \subseteq \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit der Klasse C^{α} und $f \in \mathcal{L}^1(\lambda_M)$. Außerdem existieren offene Mengen $U, V \subseteq \mathbb{R}^k$ und lokale Parameterdarstellungen $\varphi: U \to \mathbb{R}^n$ und $\psi: V \to \mathbb{R}^n$ von M mit $\varphi(U) \cup \psi(V) = M$ und $\varphi(U) = M \setminus A$, wobei $A = \psi(N)$ mit einer λ_k -Nullmenge $N \subseteq V$ gilt. Zeigen Sie, dass A messbar ist und

$$\int_{M} f \, d\lambda_{M} = \int_{M \setminus A} f \, d\lambda_{M} = \int_{U} f \circ \varphi \cdot \sqrt{\det \varphi'^{T} \varphi'} \, d\lambda_{k} \,.$$

Problem 2. (Nullmengen) Sei $M \subseteq \mathbb{R}^n$ eine k-dimensionale Untermannigfaltigkeit.

- (a) Sei $N \in \mathcal{L}_m$ mit $\lambda_M(N) = 0$. Dann gilt $\lambda_{M,V}(N) = 0$ für alle in M offenen Mengen $V \subseteq \mathbb{R}^n$ für die eine lokale Parameterdarstellung $\varphi : T \to V$, mit $T \subseteq \mathbb{R}^k$ offen, existiert.
- (b) Zeigen Sie, dass M eine λ_n -Nullmenge ist.

Hinweis: Satz 3.5

Problem 3. Seien 0 < r < R und

$$T := \left\{ (x, y, z) \in \mathbb{R}^3 | (R - \sqrt{x^2 + y^2})^2 + z^2 - r^2 = 0 \right\}$$

die 2-dimensionale Untermannigfaltigkeit aus Präzenzaufgabe 10.1. Definiere außerdem die Funktion

$$\varphi: U := (0, 2\pi) \times (0, 2\pi) \to \mathbb{R}^3, \varphi(\alpha, \beta) := \begin{pmatrix} \cos \alpha \cdot (R + r \cos \beta) \\ \sin \alpha \cdot (R + r \cos \beta) \\ r \sin \beta \end{pmatrix}.$$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

- (a) Zeigen Sie, dass eine Menge $A\subseteq T$, eine offene Menge $V\subseteq \mathbb{R}^2$, ein Homömorphismus $\psi:V\to \psi(V)\subseteq T$ und eine λ_2 -Nullmenge $N\subseteq V$ existiert, sodass $\varphi:U\to T\setminus A$ ein Homömorphismus ist und $\psi(N)=A$ gilt.
- (b) Zeigen Sie, dass $\lambda_T(T) = 4\pi^2 Rr$ gilt.