Question 1: ADMM (30 points)

Solve the following optimization problem using the scaled form of alternating direction method of multipliers (ADMM).

$$\min_{x} \frac{1}{2} x^T P x + q^T x + \frac{\lambda}{2} ||z||_2^2 \qquad s.t. \qquad \begin{cases} x = z \\ a \le z \le b \end{cases}$$

Where $P \in \mathbb{R}^{n \times n}$ and, $a, b, x, q \in \mathbb{R}^n$.

Part1. Write the augmented Lagrangian function (the scaled form) and drive the ADMM updates (Show your work).

Part 2. "Question1.mat" dataset contains variables P, q, a and b. Set $\lambda = 0.5$ and $\rho = 1.1$. Plot the value of $\frac{1}{2}x^TPx + q^Tx$ per iteration. Plot $||x - z||_2$ per iteration. Plot your final value of x.

Question 2: Coordinate Descent (35 points)

Part 1: Solve the following optimization problem using coordinate descent algorithm.

$$\min_{w} \frac{1}{2} \|y - Xw\|_{2}^{2} + \frac{\lambda}{2} \|w\|_{2}^{2}$$

Where $y, w \in \mathbb{R}^n$ and $X \in \mathbb{R}^{n \times n}$. Consider $\lambda = 0.1$. Drive a closed form solution for w.

Part 2: Solve the following optimization problem using coordinate descent algorithm.

$$\min_{w} \frac{1}{2} ||y - Xw||_{2}^{2} + \lambda_{1} |w|_{1} + \frac{\lambda_{2}}{2} ||w||_{2}^{2}$$

Drive a closed form solution for w. Consider $\lambda_1 = 0.05$ and $\lambda_2 = 0.01$.

Part 3. In this part, you implement your own regression algorithm using your solution in part 1 and 2 to predict the performance decay over time of the Gas Turbine (GT) compressor. The range of decay of compressor has been sampled with a uniform grid of precision 0.001. The compressor decay coefficient is in the range of [0.95,1]. The dataset is provided as "Question2.csv". The last column of the datasets corresponds to the output we want to predict.

- The 13 features are:

Lever position (lp)

Ship speed (v) [knots]

Gas Turbine (GT) shaft torque (GTT) [kN m]

GT rate of revolutions (GTn) [rpm]

Gas Generator rate of revolutions (GGn) [rpm]

Port Propeller Torque (Tp) [kN]

Hight Pressure (HP) Turbine exit temperature (T48) [C]

GT Compressor outlet air temperature (T2) [C]

HP Turbine exit pressure (P48) [bar]

GT Compressor outlet air pressure (P2) [bar]

GT exhaust gas pressure (Pexh) [bar]

Turbine Injection Control (TIC) [%] Fuel flow (mf) [kg/s] GT Compressor decay state coefficient

- Use the first 2000 samples to learn w_{opt} . Report your coefficients (w_{opt}) for each method. Plot the function $||y Xw||_2^2$ versus iterations.
- Report your Sum of Absolute Errors on the test set (data samples 2001-2387) for each method.

Question 3: Proximal Gradient Descent (35 points)

Solve the following optimization problem using proximal gradient method.

$$f(\boldsymbol{\theta}) = \min_{\boldsymbol{\theta} \in \mathbb{R}^d} \frac{1}{m} \sum_{i=1}^m \left[\log \left(1 + \exp(\boldsymbol{x}_i \boldsymbol{\theta}) \right) - y_i \boldsymbol{x}_i \boldsymbol{\theta} \right] + \frac{\lambda_2}{2} \|\boldsymbol{\theta}\|_2^2 + \lambda_1 \|\boldsymbol{\theta}\|_1$$

Where $\log(\cdot)$ is the natural logarithm; $\mathbf{x}_i \in \mathbb{R}^{1 \times d}$ is sample i; $\mathbf{\theta} \in \mathbb{R}^d$, $y_i \in \{0,1\}$ is label for sample i and $\lambda > 0$.

Decomposed $f(\theta)$ into a convex and differentiable function g and a convex but not differentiable function h.

Part 1: Derive the proximal gradient method updates for the objective function. (Show your work)

Part 2: "Question3.csv" contains 2000 data. There are two classes "0" and "1". The last column represents the labels. Use the first 1000 data samples to learn θ , and the rest to evaluate the accuracy of your classifier. Use your learned θ to predict the labels on the test set (Predict labels = $\frac{1}{1 + \exp(-x\theta)}$). Set $\lambda_1 = 10$ and $\lambda_2 = 5$. Build your own classifier using your equations (part 1).

- Plot accuracy per iteration on the training set.
- Report $\|\boldsymbol{\theta}\|_0$.
- Report your classification accuracy on the test set.