An O-Tree Representation of Non-Slicing Floorplan and Its Applications

Pei-Ning Guo, Chung-Kuan Cheng, Takeshi Yoshimura

Mentor Graphics Corp. San Jose, CA

Department of Computer Science and Engineering University of California, San Diego

NEC Corp., Japan

Outlines

- 1. Introduction
- 2. Problem Statement
- 3. Admissible placement and constraint graph
- 4. O-tree and placement
- 5. Floorplan algorithms using O-tree
- 6. Experimental results
- 7. Conclusion

Previous Works

- 1. Slicing and non-slicing
- 2. Preas et al.: binary tree block as leaf, V/H relation as internal nodes $O(N!2^{3N-2}/N^{1.5})$ configurations (N: # of blocks)
- 3. Onedera et al.: non-slicing, branch-and-bound $O(2^{N(N+2)})$ configurations
- 4. Murata et al.: sequence pair $O((N!)^2)$ configurations
- 5. J. Xu et al: cluster refinement $O(N^{2+K/2})$ complexity/iteration
- 6. O-tree:

 $O(N! 2^{2N-2}/N^{1.5})$ configurations

Storage Needed for Individual Configuration

- 1. Preas et al.: binary tree block as leaf, V/H relation as internal nodes $N(3 + \lceil \lg N \rceil)$ bits (N: # of blocks)
- 2. Murata et al.: sequence pair2 N lg N bits
- 3. O-tree:

$$N(2 + \lceil \lg N \rceil)$$
 bits

Slicing Structure

a b	e	f	
С	d		

Polish Expression: (((abV)cV)((efH)dV)H)

Redundancy: (abV)cV or a(bcV)V

Non-slicing:

Sequence Pair

 π_1 : cghdbeaf

 π_2 : abcdefgh

Redundancy:

 π_1 : cghdbeaf

 π_2 : abcdegfh

Problem Statement

 $B = \{ B_1, B_2, \dots, B_n \}$: set of rectangular blocks

 (w_i, h_i) : width and height of block B_i

 $P = \{(x_i, y_i): i = 1, ..., n\}$: placement with block B_i at (x_i, y_i)

Assumptions:

- 1. known net list
- 2. known chip bounding and I/O pads information
- 3. known orientations

Goals:

Find a placement P to minimize a preset cost function

Constraint Graph

Fig. 1 constraint graph

Admissible Placement

Fig. 2 L-compact and B-compact

Tree Encoding

Fig. 3 encoding of an 8-node tree

Tree Storage and Its Configurations

Space needed to store a tree:

$$n (2 + \lceil \lg n \rceil)$$
-bits

Count of possible configurations:

Unlabeled tree

$$\frac{1}{n}\binom{2n-2}{n-1}$$

Stirling's approximation

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

After adding label permutation

$$O(n!2^{2n-2}/n^{1.5})$$

Horizontal O-Tree

Horizontal O-Tree (definition)

Definition:

The root of the O-tree represents the left boundary of the chip. Thus, we set its x-coordinate $x_{root} = 0$ and its width $w_{root} = 0$. The children are on the right side of their parent with zero separation distance in x-coordinate. Let B_i be the parent of B_i , we have

$$X_i = X_i + W_i$$

The permutation π determines the vertical position of the component when two blocks have proper overlap in their x-coordinate projections. For each block B_i , let $\psi(i)$ be the set of block B_k with its order lower than B_i in permutation π and interval $(x_k, x_k + w_k)$ overlaps interval $(x_i, x_i + w_i)$ by a non-zero length. If $\psi(i)$ is non-empty, we have

$$y_i = \max_{k \in \psi(i)} y_k + h_k$$

Otherwise,

$$y_i = 0$$

Admissible O-tree

(0011001101,adbec)

(0100101011,abdec)

admissible

not admissible

Fig. 5 admissible o-tree

O-Tree to Orthogonal Constraint Graph Algorithm

```
Algorithm OT2OCG
  Input: O-tree(T[0:2n-1], \Pi[0:n])
  Output: orthogonal constraint graph G=(V,E) and placement x[1:n], y[1:n]
   V = \Pi + \{V_s, V_t\};
  perm = 1:
  contour = NULL:
  current \ contour = 0;
  for code = 0 to 2n - 1
      if T[code] = 0
         current\_block = \Pi[perm];
         if current contour = 0
            then x[current \ block] = x[current \ contour] + w[current \ contour];
            else x[curent block] = 0;
         end if
         y[current_block] = find_max_y(contour, current_block)
         update_constraint_graph(G, contour, current_block)
         update contour(contour, current block)
         current contour = current block;
         perm = perm + 1
      else
         current contour = prev[current contour];
      end if
  end for
```

Contour Structure

blocks that determine the y pos of new block and edges pointing to new block added to constraint graph

Figure 6 updating constraint graph and contour

Example

- (a) OT_{h1} = (010100101011, abcdef)
- (b) $OT_{v1} = (000110001111, abcdef)$
- (c) OT_{h2} = (010011001101, abdcef)

(d) $OT_{v2} = (000011101011, abcfde)$

(e) $OT_{h3} = (010001110101, abdecf)$

Time Complexity

Theorem:

The time complexity for OT2OCG (O-Tree to Orthogonal Constraint Graph) is linear to the number of blocks.

Proof:

Without loss of generality, assume we can construct a vertical constraint graph from a horizontal O-Tree by OT2OCG. Suppose we have *n* blocks.

- 1) The loop executes exactly 2*n* times.
- 2) In the loop, we perform *find_max_y*, *update_contour*, and *update_constraint_graph* for any block *B_i* inserted.
- 3) With maintaining contour structure and *current_contour* pointing to the current starting point in the contour, we can keep tracing the contour until the *y*-coordinate $> x_i + w_i$.
- 4) By (3), we need only to pass a limited set of blocks to three operations in
- (2). The number of blocks is equal to the number of edges inserted in vertical constraint graph.
- 5) The constraint graph is planar, so the number of edges is less then 3*n*-6. The overall complexity for OT2OCG is linear because we add each vertical edge exactly once.

Constraint Graph to O-Tree Algorithm

```
Algorithm CG2OT
  Input: constraint graph G=(V,E)
  Output: O-tree(T[0:2n-1], \Pi[0:n])
  set all mark to false
  perm = 0;
  code = 0:
  DFS traverse on the graph G
     n = current \ node
     p = parent[n]
     if not mark[n] and the weight[edge(p,n)] = 0 then
       mark[n] = true
        \Pi[perm++] = 0;
        T[code++]=n;
       for c in children[n]
          traverse(c);
       end for
       \Pi | perm + + 1 = 1;
     end if
```

Admissible O-Tree Algorithm

```
Algorithm AOT
  Input: O-tree T
  Output: Admissible O-tree
  set changed = true
  while changed
    set changed = false
    set Gy = OT2OCG(T)
    set Ty = CG2OT(Gy)
    set Gx = OT2OCG(Ty)
    set Tx = CG2OT(Gx)
    if (T is not equal to Tx) then
      set T = Tx
      set changed = true
    end if
  end while
  output(T)
```

Perturbing the O-tree

Fig. 7 possible inserting positions as an external node

Deterministic Algorithm

```
for each block b
  set min_cost = infinite
  remove (T, b)
  for each possible position p of b in T and T's orthogonal
     set T_1 = new O-tree and placement for p
     get admissible T_1 using AOT
     set c = cost(T_1)
     if c < min_cost then
       set min\_cost = c
       set min_T = T_1
     end if
  end for
  set T = min_T
end for
```

Experimental Result

circuit (area/w.l./cpu)	cluster refinement	initial placement	deterministic algorithm
apte	48.4/321/224*	63.3/330/0.14	63.3/330/0.65
xerox	20.3/477/18.8*	25.9/506/0.44	23.8/478/0.99
hp	9.58/185/18.0*	14.3/178/0.26	9.91/167/6.32
ami33	1.21/64/603*	1.69/61.9/2.83	1.34/50.9/24.3
ami49	37.7/764/1860*	54.6/676/11.2	45.5/673/177.5

Area/Wirelengh/CPU comparison
Use original input sequence for initialization
Cost function is mainly by wirelength

^{*} CPU time measured on Sparc-20

Experimental Results (Cont'd)

circuit (min/ avg)	$w_1=0, w_2=1$		$w_1 = w_2 = 0.5$		$w_1 = 1, w_2 = 0$		improve over CR
	area	wire	area	wire	area	wire	(area/wire)
apte	48.3/56.9	317/347	47.6/53.2	317/370	47.1/50.6	343/544	3% / 1%
xerox	20.4/24.1	368/426	20.4/22.4	367/447	20.1/21.4	444/702	1% / 23%
hp	9.71/11.2	153/163	9.21/10.5	153/167	9.21/9.97	162/226	4% / 17%
ami33	1.26/1.41	51.5/57.2	1.26/1.34	51.6/59.8	1.25/1.32	61.1/87.4	-3% / 20%
ami49	41.3/49.8	636/734	39.1/42.0	671/777	37.6/39.9	819/1375	0% / 17%

Cost function = w_1 * area + w_2 * wire Min/Avg for 100 runs of randomized initial sequences Independent comparison for area and wirelength

Various Cost Functions

Fig. 8 randomized sequence with different weights (ami49)

Fig. 9 placements before and after deterministic improvement for ami49

Conclusions

- Floorplan and placement problem becomes more important for larger VLSI circuit design (IP blocks, SoC, ...)
- Interconnection is the key issue for the performance in Very Deep Sub Micron (VDSM) technology
- O-tree provides a very effective and efficient representation of building block placement in 2D plane
- The experimental results using O-tree show that much better interconnection (in term of wire length) is achieved in less CPU time