THE BUILDING BLOCKS: COMPUTING WITH GATES

WHAT HAVE YOU LEARNT SO FAR?

- hexadecimal arithmetic
- binary arithmetic
- logic gate and, or, not
- encoding of data signed, unsigned integers, floating point, text, compression, audio, pictures
- boolean expressions
- circuits
- transistors
- truth tables

LEARNING OBJECTIVES

- Designing useful circuits
 - Comparing n-bit values
 - Adding n-bit values
 - Subtracting n-bit values

A USEFUL CIRCUIT

Compare-for-equality (CE) circuit

- Input is two unsigned binary numbers n-bits
- Output is 1 if inputs are identical and 0 otherwise.
- Start with 1-bit version (1-CE) and build general version from that.

What is useful about a compare-for-equality circuit?

THE TRUTH TABLE AND EXPRESSION

- 1-CE circuit: compare two input bits for equality
- Truth table

а	Ь	Output
0	0	1 ← case 1 (both numbers equal to 0)
0	1	0
1	0	0
1	1	1 ← case 2 (both numbers equal to 1)

Boolean expression: $(a \cdot b) + (\overline{a} \cdot \overline{b})$

COMPARE ONE BIT VALUES CIRCUIT

COMBINING LOTS OF BITS

- N-bit CE circuit
- Input: $a_{n-1}...a_2a_1a_0$ and $b_{n-1}...b_2b_1b_0$, where a_i and b_i are individual bits
- Pair up corresponding bits: a_0 with b_0 , a_1 with b_1 , etc.
- Run a 1-CE circuit on each pair
- AND the results

AN N-BIT COMPARISON CIRCUIT

ADDING

Full adder circuit

- Input is two unsigned N-bit numbers
- Output is one unsigned N-bit number, the result of adding inputs together
- Example

carry	0	0	0	1	
	0	0	1	0	1
+	0	1	0	0	1
sum	0	1	1	1	0

Start with 1-bit adder (1-ADD)

TRUTH TABLE ...

The 1-ADD circuit and truth table

... AND EXPRESSIONS

Inputs Outputs s_i(sum digit) 1-ADD ci+1 (new carry digit)

Inputs			Outpu		
aį	b _i	c _i	s _i	c _{i+1}	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

The 1-ADD circuit and truth table

Sum digit, s_i, has the Boolean expression

$$(\sim a_i \bullet \sim b_i \bullet c_i) + (\sim a_i \bullet b_i \bullet \sim c_i) + (a_i \bullet \sim b_i \bullet \sim c_i) + (a_i \bullet b_i \bullet c_i)$$

Carry digit, c_{i+1}, has the Boolean expression

$$(\sim a_i \bullet b_i \bullet c_i) + (a_i \bullet \sim b_i \bullet c_i) + (a_i \bullet b_i \bullet \sim c_i) + (a_i \bullet b_i \bullet c_i)$$

The ~ symbol is another way of showing NOT.

TEXTBOOK

TEXTBOOK SUM AND CARRY CIRCUITS

ALTERNATE VERSION

• N.B. The middle AND gate is shared between the carry and sum circuits. (What do those little circles mean?)

FULL ADDER TO N-BITS

- N-bit adder circuit
- Input: $a_{n-1}...a_2a_1a_0$ and $b_{n-1}...b_2b_1b_0$, where a_i and b_i are individual bits
- a₀ and b₀ are least significant digits: ones place
- Pair up corresponding bits: a_0 with b_0 , a_1 with b_1 , etc.
- Run 1-ADD on a_0 and b_0 , with fixed carry in $c_0 = 0$
- Feed carry out c₁ to next 1-ADD and repeat

N-BIT ADDER CIRCUIT

SUBTRACTION

- We can easily make a subtraction circuit (for two's complement)
 - e.g. a b
 - take the one's complement of b what circuit does this?
 - add the answer to a (using a carry in to the least significant bit adder of 1)
- Why does this work?

SUBTRACTION CIRCUIT

Output of the adder is A - B

EXAMPLE

- 4 bit numbers
- 6 2

6: 0110

2: 0010 C: 1

invert 2: 1101

0110 inv 2 1101 carry

1 0100 The carry out in the 5th column is ignored. 4

EXAMPLE

- 4 bit numbers
- 5 (-2)

5: 0101

-2: 1110 C: 1

invert -2: 0001

0101 inv -2 0001 carry