Day80 Intro. to Big Data By: Loga Aswin

What is Big Data?

- Big Data represents an extensive volume of diverse and continuously generated information, both structured and unstructured, that inundates organizations daily.
- It encompasses the substantial quantity of data sourced from multiple channels such as social media, sensors, business applications, and other avenues.

5Vs of Big Data

- **Volume:** Refers to the enormous amount of data being generated continuously. This data may include business transactions, social media interactions, sensor data, etc.
- **Velocity:** Focuses on the speed at which data is generated and the rapid rate at which it needs to be processed. Real-time data processing has become crucial in various industries.
- Variety: Indicates the different forms of data, including structured, unstructured, and semi-structured data. This includes text, images, videos, clickstreams, log files, etc.
- **Veracity:** Concerns the accuracy and trustworthiness of the data being collected. With data coming from various sources, ensuring data quality becomes critical.
- Value: Emphasizes the importance of deriving meaningful insights and value from the data collected. This is the ultimate goal of leveraging Big Data.

Types of Big Data

- **Structured Data**: Refers to highly organized and easily searchable information that fits neatly into databases. Examples include data stored in relational databases like customer information or transaction records.
- **Unstructured Data**: Represents raw and unorganized information that doesn't conform to a specific data model. It includes text, images, videos, social media posts, and more, posing challenges for traditional data processing methods.
- **Semi-Structured Data**: Falls between structured and unstructured data and has some organizational properties but

doesn't fit neatly into databases. Examples include XML files, JSON files, and NoSQL databases.

How Does Big Data Work?

- **Collection:** Involves gathering data from numerous sources. This could be through IoT devices, social media platforms, customer interactions, and more.
- **Storage:** Entails the management and storing of vast amounts of data. Technologies like Hadoop Distributed File System (HDFS), NoSQL databases, and cloud storage are commonly used.
- **Processing:** Analyzing data to derive valuable insights. Frameworks like Apache Hadoop, Apache Spark, and MapReduce help in processing data efficiently.
- **Visualization:** Presenting data in a comprehensible format through graphs, charts, and dashboards. Tools like Tableau, Power BI, and D3.js aid in visualizing complex data.

Use Cases

- **Healthcare:** Analyzing patient data to personalize treatment plans, predict disease outbreaks, or optimize hospital operations.
- **Retail:** Utilizing customer data to understand buying patterns, recommend products, and improve customer experience.
- **Finance:** Detecting fraudulent activities by analyzing transaction patterns and customer behavior.

How to Store and Process Big Data?

- **Storage:** Hadoop, a distributed file system, NoSQL databases like Cassandra and MongoDB, and cloud-based solutions like AWS S3 and Azure Blob Storage.
- **Processing:** Utilizing frameworks such as Apache Hadoop for distributed processing, Apache Spark for in-memory processing, and MapReduce for parallel processing.

Big Data Tools

- **Data Collection:** Tools like Apache Kafka for real-time data streaming, Apache Flume for log collection, and Sqoop for data transfer between databases and Hadoop.
- **Data Storage:** Hadoop Distributed File System (HDFS), Cassandra for distributed databases, MongoDB for NoSQL databases, and cloud-based solutions.
- **Data Processing:** Apache Spark for real-time analytics, Apache Flink for stream processing, and Apache Hive for data warehousing.
- **Data Visualization:** Tableau, Power BI, matplotlib, D3.js for creating interactive and insightful visualizations.

Big Data Best Practices

- **Data Quality:** Ensuring data accuracy, completeness, and consistency.
- **Security:** Implementing robust measures to protect data from breaches and unauthorized access.

• **Scalability:** Designing systems that can handle increasing data volumes and user loads.

Challenges

- **Privacy:** Balancing the utilization of data while respecting user privacy rights.
- **Data Management:** Handling the complexity of managing, storing, and processing large datasets efficiently.
- **Skill Gap:** Shortage of skilled professionals proficient in Big Data technologies and analytics.

Advantages and Disadvantages of Big Data

- **Advantages:** Improved decision-making based on data-driven insights, enhanced operational efficiency, innovation opportunities through predictive analytics and machine learning.
- **Disadvantages:** Concerns about data privacy and security, potential biases in data analysis, and the need for significant investments in technology and skill development.