

INSTITUTE OF TECHNOLOGY TRALEE

Semester 2 Examinations 2010

Computer Architecture (CRN 43828)

Internal Examiners: Ms Mairead O'Sullivan

External Examiner: Dr Barry Feeney

Duration: 2 Hours

Instructions to Candidates: Answer any THREE Questions.

Question One 33 Marks

(a) Convert the decimal number 73 to its binary **and** hexadecimal equivalent.

(8 Marks)

(b) Show the logic symbol **and** the truth table for:

(8 Marks)

(i) NOR gate (2 input)

(ii) Inverter

(c) Complete the truth table for the expression below:

(9 Marks)

$$Z = (A + \overline{B}) + \overline{CD}$$

(d) Draw the circuit for the expression below:

(8 Marks)

$$Z = (A \oplus B) + \overline{B}(\overline{C + D})$$

Question Two (33 Marks)

(a) Write an expression for the circuit given below:

(10 Marks)

(b) Simplify the following expression:

$$Z = A(A.1 + AB + \overline{A}CD) + B(D + \overline{C}D + 1)$$
(1 Marks)

(c) Write an expression for Z below. Simplify the expression if possible and draw the circuit.

(12 *Marks*)

A	В	C	Z
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Question Three (33 Marks)

(a) Show the truth table for the Half-Adder. Hence or otherwise, write the equation for the Half-Adder and show the logic circuits required to implement it.

(12 *Marks*)

(b) How many locations in memory can be addressed by a CPU which has a 32-bit address bus.

(10 *Marks*)

(c) Write a short note on Random Access Memory (RAM), discussing Static-RAM and Dynamic-RAM and highlighting the differences between them. How does ROM differ from RAM?

(11 *Marks*)

Question Four (33 Marks)

(a) Name the buses associated with a CPU. Explain the function and direction of each bus.

(12 *Marks*)

(b) Draw a block diagram of a generic CPU, and write a short paragraph describing the function of each component.

(11 marks)

(c) Write a note on the *Instruction Cycle* of a CPU. Support your answer using a diagram. (10 Marks)

Rules of Boolean Algebra

1	A + O = A
2	A + 1 = 1
	A . O = O
	A . 1 = A
5	A + A = A
6	A + A = 1
7	A . A = A
8	A . A = O
9	— A = A
10	A + AB = A
11	 A + AB = A + B
12	(A + B)(A + C) = A + BC

Laws of Boolean Algebra

Commutative	A + B = B + A AB = BA
Associative	A + (B + C) = (A + B) + C A(BC) = (AB)C
Distributive	A(B + C) = AB + AC