

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА - Российский технологический университет»

РТУ МИРЭА

Институт Информационных Технологий Кафедра Вычислительной Техники (BT)

ОТЧЁТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 1

«Построение совершенных форм логических функций»

по дисциплине

«Архитектура вычислительных машин и систем»

Выполнил студент группы	Зырянов М.А.
ИВБО-01-22	
Принял ассистент	Дуксина И.И.
Практическая работа выполнена	«19» сентября 2023 г.
«Зачтено»	« _» 2023 г.

АННОТАЦИЯ

Данная работа включает в себя 3 рисунка, 1 таблицу и 2 формулы. Количество страниц в работе -10.

СОДЕРЖАНИЕ

1	ПОСТАНОВКА ЗАДАЧИ Ошибка! Закладка не определен	ıa.
2	ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ	. 5
2.1	Восстановленная таблица истинности	. 5
2.2	СДНФ	. 6
2.3	СКНФ	. 6
	РЕАЛИЗАЦИЯ И ПРОЕКТИРОВАНИЕ ЛОГИЧЕСКИХ СХЕМ В БОРАТОРНОМ КОМПЛЕКСЕ «LOGISIM»	
3.1	Схема СДНФ	. 7
3.2	Схема СКНФ	. 7
3.3	Верификация СДНФ И СКНФ	. 8
3Ak	СЛЮЧЕНИЕ	. 9
СПІ	ИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	10

ВВЕДЕНИЕ

Логическая функция от пяти переменных задана в 16-теричной векторной форме. Восстановить таблицу истинности. По таблице истинности построить аналитический вид для СДНФ и СКНФ функции. Построить схемы для каждой из форм в среде "Logisim". Произвести верификацию.

ПРОЕКТИРОВАНИЕ И РЕАЛИЗАЦИЯ

1.1 Восстановленная таблица истинности

В соответствии с вариантом функция, заданная в 16-теричной форме имеет следующий вид:

F(x1,x2,x3,x4,x5) = F049BD7E

Необходимо преобразовать ее в двоичную запись: 111100000100100110111110101111110 — столбец значений логической функции, который необходим для восстановления полной таблицы истинности: смотри Таблица 1.1

Таблица 1.1 - Таблица истинности для функции

X1	X2	X3	X4	X5	F
0	0	0	0	0	1
0	0	0	0	1	1
0	0	0	1	0	1
0	0	0	1	1	1
0	0	1	0	0	0
0	0	1	0	1	0
0	0	1	1	0	0
0	0	1	1	1	0
0	1	0	0	0	0
0	1	0	0	1	1
0	1	0	1	0	0
0	1	0	1	1	0
0	1	1	0	0	1
0	1	1	0	1	0
0	1	1	1	0	0
0	1	1	1	1	1
1	0	0	0	0	1
1	0	0	0	1	0
1	0	0	1	0	1
1	0	0	1	1	1
1	0	1	0	0	1
1	0	1	0	1	1
1	0	1	1	0	0
1	0	1	1	1	1
1	1	0	0	0	0
1	1	0	0	1	1
1	1	0	1	0	1
1	1	0	1	1	1
1	1	1	0	0	1
1	1	1	0	1	1
1	1	1	1	1	0

1.2 СДНФ

По таблице истинности построим СДНФ, для этого нужно найти все наборы аргументов, на которых функция принимает значение 1. Далее необходимо выписать все конъюнкции для этих наборов по правилу: если в наборе переменная принимает значение 0, то она входит в конъюнкцию с отрицанием, а иначе без отрицания. После необходимо объединить конъюнкции с помощью дизъюнкции.

```
F(x1, x2, x3, x4, x5)_{\text{CДH}\Phi}
= (\overline{x1} \& \overline{x2} \& \overline{x3} \& \overline{x4} \& \overline{x5}) + (\overline{x1} \& \overline{x2} \& \overline{x3} \& \overline{x4} \& x5) + (\overline{x1} \& \overline{x2} \& \overline{x3} \& x4 \& \overline{x5})
+ (\overline{x1} \& \overline{x2} \& \overline{x3} \& x4 \& x5) + (\overline{x1} \& x2 \& \overline{x3} \& \overline{x4} \& x5) + (\overline{x1} \& x2 \& x3 \& \overline{x4} \& \overline{x5})
+ (\overline{x1} \& x2 \& x3 \& x4 \& x5) + (x1 \& \overline{x2} \& \overline{x3} \& \overline{x4} \& \overline{x5}) + (x1 \& \overline{x2} \& \overline{x3} \& x4 \& \overline{x5})
+ (x1 \& \overline{x2} \& \overline{x3} \& x4 \& x5) + (x1 \& \overline{x2} \& x3 \& \overline{x4} \& \overline{x5}) + (x1 \& \overline{x2} \& x3 \& \overline{x4} \& x5)
+ (x1 \& \overline{x2} \& x3 \& x4 \& x5) + (x1 \& x2 \& \overline{x3} \& \overline{x4} \& x5) + (x1 \& x2 \& \overline{x3} \& x4 \& \overline{x5})
+ (x1 \& x2 \& \overline{x3} \& x4 \& x5) + (x1 \& x2 \& \overline{x3} \& \overline{x4} \& \overline{x5}) + (x1 \& x2 \& \overline{x3} \& x4 \& x5)
+ (x1 \& x2 \& \overline{x3} \& x4 \& x5) + (x1 \& x2 \& x3 \& \overline{x4} \& \overline{x5}) + (x1 \& x2 \& x3 \& \overline{x4} \& x5)
+ (x1 \& x2 \& \overline{x3} \& x4 \& x5) + (x1 \& x2 \& x3 \& \overline{x4} \& \overline{x5}) + (x1 \& x2 \& x3 \& \overline{x4} \& x5)
+ (x1 \& x2 \& x3 \& x4 \& x5) + (x1 \& x2 \& x3 \& \overline{x4} \& \overline{x5}) + (x1 \& x2 \& x3 \& \overline{x4} \& x5)
```

1.3 СКНФ

По таблице истинности построим СКНФ, для этого нужно найти все наборы аргументов, на которых функция принимает значение 0. Далее необходимо выписать все дизъюнкции для этих наборов по правилу: если в наборе переменная принимает значение 1, то она входит в дизъюнкцию с отрицанием, а иначе без отрицания. После необходимо объединить дизъюнкции с помощью конъюнкции.

```
F(x1, x2, x3, x4, x5)_{\text{CKH}\Phi}
= (x1 + x2 + \overline{x3} + x4 + x5)(x1 + x2 + \overline{x3} + x4 + \overline{x5})(x1 + x2 + \overline{x3} + \overline{x4} + x5)(x1 + x2 + \overline{x3} + \overline{x4} + x5)(x1 + \overline{x2} + x3 + x4 + x5)(x1 + \overline{x2} + x3 + \overline{x4} + x5)(x1 + x2 + x3 + x4 + x4 + x5)(x1 + x2 + x3 + x4 + x4 + x4 + x4 +
```

РЕАЛИЗАЦИЯ И ПРОЕКТИРОВАНИЕ ЛОГИЧЕСКИХ СХЕМ В ЛАБОРАТОРНОМ КОМПЛЕКСЕ «LOGISIM»

1.4 Схема СДНФ

Рисунок 3.1 – Схема СДНФ

1.5 Схема СКНФ

Рисунок 3.2 – Схема СКНФ

1.6 Верификация СДНФ И СКНФ

Рисунок 3.3 – Схема верификации

ЗАКЛЮЧЕНИЕ

Восстановлена таблица истинности, по логической функции от пяти переменных заданной в 16-теричной векторной форме. Построены аналитические виды для СДНФ и СКНФ функции. Построены схемы для каждой из форм в «Logisim». Выполнена верификация.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Методические указания по ПР № 1 URL: https://online-edu.mirea.ru/mod/resource/view.php?id=405132 (Дата обращения: 23.09.2022).
- 2. Методические указания по ПР № 2 URL: https://online-edu.mirea.ru/mod/resource/view.php?id=409130 (Дата обращения: 23.09.2022).
- 3. Смирнов С.С. Информатика [Электронный ресурс]: Методические указания по выполнению практических и лабораторных работ / С.С. Смирнов М., МИРЭА Российский технологический университет, 2018. 1 электрон. опт. диск (CD-ROM).
- 4. Тарасов И.Е. ПЛИС Xilinx. Языки описания аппаратуры VHDL и Verilog, САПР, приемы проектирования. М.: Горячая линия Телеком, 2021. 538 с.: ил.
- 5. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие / Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).
- 6. Антик М.И. Математическая логика и программирование в логике [Электронный ресурс]: Учебное пособие / Антик М.И., Бражникова Е.В.— М.: МИРЭА Российский технологический университет, 2018. 1 электрон. опт. диск (CD-ROM).
- 7. Жемчужникова Т.Н. Конспект лекций по дисциплине «Архитектура вычислительных машин и систем» URL: https://drive.google.com/file/d/12OAi2_axJ6mRr4hCbXs-mYs8Kfp4YEfj/view?us p=sharing (Дата обращения: 23.09.2022).
- 8. Антик М.И. Теория автоматов в проектировании цифровых схем [Электронный ресурс]: Учебное пособие / Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2020. 1 электрон. опт. диск (CD-ROM).

- 9. Орлов С.А. Организация ЭВМ и систем: Учебник для вузов. 4-е изд. СПб.: Питер, 2018. 688 с.: ил.
- 10. Шустов М.А. Цифровая схемотехника. Основы построения. СПб.: Наука и Техника, 2018. 320 с.: ил.
- 11. Рафиков Р. А. Электронные сигналы и цепи. Цифровые сигналы и устройства: Учебное пособие. СПб.: Издательство «Лань», 2016. 320 с., ил. (Учебники для вузов. Специальная литература).
- 12. Угрюмов Е. П. Цифровая схемотехника: учеб. пособие для вузов. 3-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2010. 816 с.: ил.