

Features

- ♦ Low On-Resistance
- ♦ Fast Switching
- ♦ 100% Avalanche Tested
- ◆ Repetitive Avalanche Allowed up to Tjmax
- ◆ Lead-Free, RoHS Compliant

Description

VS3060AD designed by the trench processing techniques to achieve extremely low on-resistance. Additional features of this design are a 150°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Motor applications and a wide variety of other applications.

V _{DS}	30	٧
$R_{DS(on),Typ}$	9.0	$m\Omega$
/ _D	60	Α

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.

Symbol	Parameter	Rating	Unit					
Common Ratings (Tc=25°C Unless Otherwise Noted)								
Vgs	Gate-Source Voltage	±20	V					
V _{(BR)DSS}	Drain-Source Breakdown Voltage	30	V					
T _J	Maximum Junction Temperature	150	°C					
T _{STG}	Storage Temperature Range	-55 to 150	°C					
I _s	Diode Continuous Forward Current T_{C} =25°C		50	А				
Mounted o	Mounted on Large Heat Sink							
I _{DM}	Pulse Drain Current Tested (Sillicon Limit) T _C =25°C		200	А				
I _D	Continuous Drain current@Vgs=10V (See Fig2) T _C =25°C		60	А				
P_{D}	Maximum Power Dissipation T _c =25°C		50	W				
$R_{ hetaJC}$	Thermal Resistance-Junction to Case	2.4	°C/W					
Drain-Source Avalanche Ratings								
EAS	Avalanche Energy, Single Pulsed ②			mJ				

30V/60A N-Channel Advanced Power MOSFET

Symbol	Paramete	Condition	Min.	Тур.	Max.	Unit		
Static Ele	Static Electrical Characteristics @ T _J = 25°C (unless otherwise stated)							
V _{(BR)DSS}	Drain-Source Breakdown Voltage		Vgs=0V lp=250µA	30			V	
١,	Zero Gate Voltage Drain Current(Tc=25℃)		VDS=24V,VGS=0V			1	μΑ	
DSS	Zero Gate Voltage Drain Cu	rrent(Tc=125℃)	VDS=24V,VGS=0V			100	μΑ	
I _{GSS}	Gate-Body Leakage Current	t	Vgs=±20V,Vps=0V			±100	nA	
$V_{GS(TH)}$	Gate Threshold Voltage		Vps=Vgs,Ip=250μA	1.0	1.8	3.0	V	
R _{DS(ON)}	Drain-Source On-State Resi	stance①	Vgs=10V, ID=20A		9.0	11	mΩ	
R _{DS(ON)}	Drain-Source On-State Resistance①		Vgs=5V, ID=10A		12	15	mΩ	
	Electrical Characteristic	s @ T」= 25°C	(unless otherwise	stated)				
C _{iss}	Input Capacitance				1550		pF	
C _{oss}	Output Capacitance		Vps=15V,Vgs=0V, f=1MHz		190		pF	
C _{rss}	Reverse Transfer Capacitan	ce			135		pF	
Q_g	Total Gate Charge	Vgs=10V			32		nC	
□ Q g	Total Gate Charge	Vgs=4.5V	VDS=15V,ID=20A,		15.5		nC	
Q_{gs}	Gate-Source Charge		Vgs=10V		3.5		nC	
Q_{gd}	Gate-Drain Charge				6.8		nC	
	Switching Characteristics							
t _{d(on)}	Turn-on Delay Time		\/pp=1 5 \/		10.5		nS	
t,	Turn-on Rise Time		VDD=15V, ID=10A,		13		nS	
t _{d(off)}	Turn-Off Delay Time Turn-Off Fall Time		Rg=6.8Ω, Vgs=10V		12		nS	
t _f			VGS-10V	-	10		nS	
	Source- Drain Diode Characteristics@ T _J = 25°C (unless otherwise stated)							
I _{SD}	Source-drain current(Body Diode)		Tc=25℃			60	А	
V _{SD}	Forward on voltage		Isp=30A,Vgs=0V	-1	-	1.3	V	
t _{rr}	Reverse Recovery Time		Tj=25°C,Isd=10A,	-1	18		nS	
Q _{rr}	Reverse Recovery Charge		VGS=0V di/dt=100A/µs		10		nC	

NOTE:

Part not recommended for use above this value

① Pulse width ≤ 300µs; duty cycle≤ 2%.

② Limited by Tjmax, starting TJ = 25° C, L = 0.5mH,RG = 25Ω , IAS = 16A, VGS =10V.

③ Repetitive rating; pulse width limited by max. junction temperature.

Typical Characteristics

Fig1. Typical Output Characteristics

Fig3. Typical Transfer Characteristics

Fig5. On Resistance Vs. Gate -Source Voltage

Fig2. Maximum Drain Current Vs.Case Temperature

Fig4. Normalized On-Resistance Vs. Temperature

Fig6. Maximum Safe Operating Area

Typical Characteristics

Fig7. Typical Source-Drain Diode Forward Voltage

Fig9. Threshold Voltage Vs. Temperature

Fig11. Unclamped Inductive Test Circuit and waveforms

Fig8. Typical Gate Charge Vs.Gate-Source Voltage

Fig10. Typical Capacitance Vs.Drain-Source Voltage

Fig12. Switching Time Test Circuit and waveforms

TO-252 Package Outline

TO-252	Dimension	ıs (Uı	nit:mm)	
Symbol	Min	Nom	Max	
Α	2.25	2.3	2.35	
A1	0.96	1.01	1.06	
A2	0.05	0.1	0.15	
В	6.05	6.6	6.65	
С	0.46	0.508	0.580	
C1	0.508	0.508	0.508	
D	5.31	5.32	5.33	
E	2.186	2.286	2.386	
F	0.075	0.085	0.095	
F1	F1 0.660 0.76		0.860	
L	9.80	9.825	10.40	
L1 2.9REF				
L2 6.05		6.1	6.15	
L3	0.79	0.8	0.81	
θ	7°	7°	7°	

Order Information

Product	Marking	Package	Packaging	Min Unit Quantity
VS3060AD	VS3060AD	TO-252	2500PCS/Reel	5000PCS
VS3060AD	VS3060AD	TO-252	80PCS/Tube	2000PCS

Customer Service

Sales and Service:

sales@vgsemi.com

Shen Zhen Vangaurd Semiconductor CO., LTD

TEL: (86-755) -26902410 **FAX**: (86-755) -26907027 **WEB**: www.vgsemi.com