01076010 เครือข่ายคอมพิวเตอร์ : 2/2563 ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

กิจกรรมที่ 11: Static and Dynamic Routing

ในกิจกรรมนี้จะเป็นพื้นฐานที่สำคัญของการทำงานด้านระบบเครือข่าย คือ การทำความเข้าใจกับการหา เส[้]นทางของ Router

การติดตั้งโปรแกรม Packet Tracer

ให้ Download โปรแกรม Packet Tracer จาก google classroom แล้วติดตั้งตามขั้นตอน ดังรูปจนเสร็จ

การใช้งาน Packet Tracer

จากนั้นให้เปิดโปรแกรม Packet Tracer ขึ้นมาทำงาน จะมีหน้า Login ให้เลือก Guest Login จะแสดงหน้าเว็บ ของ cisco ให้ปิดและกลับมาที่หน้า Login แล้วเลือก Confirm Guest

จากนั้นจะแสดงหน้าจอหลักของโปรแกรม

ให้เปิดไฟล์ static routing.pkt จะปรากฏเครือข่ายดังรูป

เครือข่ายนี้จะมี Router จำนวน 3 ตัว และ PC จำนวน 4 เครื่อง

1. ให้นักศึกษากำหนดจำนวน Subnet ที่ต้องใช้ ในเครือข่ายข้างต้น จากนั้นให้กำหนด Network ID ของเครือข่าย โดยให้ใช้รูปแบบ 192.168.x.0/24 โดย x คือ รหัสนักศึกษาตั้งแต่หลักสุดท้ายไล่ขึ้นมา เช่น สมมติรหัส นักศึกษา คือ 60011072 และต้องการ 5 Subnet ก็ให้ใช้ ตัวเลข 1, 1, 0, 7 ,2 ในกรณีที่ซ้ำ เช่น 1 กับ 1 ให้ เพิ่มค่าจนกว่าจะไม่ซ้ำ ดังนั้นก็จะได้ตัวเลข 1, 3, 0, 7, 2 ดังนั้น Network ID คือ 192.168,1.0, 192.168.3.0, 192.168.0.0, 192.168.7.0 และ 192.168.2.0

รหัส 62010619 ต้องการ 6 Subnet Network ID คือ 192.168.0.0 , 192.168.1.0 , 192.168.2.0 192.168.6.0 , 192.168.3.0 , 192.168.9.0

- 2. จาก Network ID ที่ได้จากข้อ 1 ให้กำหนด หมายเลข IP Address ให้กับทุก Interface (ทั้ง Router และ PC) โดย Router มี Interface ที่เชื่อมต่อดังนี้ (เอาเมาส์ไป over สายเชื่อมต่อ จะเห็นว่าเชื่อมต่อผ่านพอร์ตใด)
 - Router 1 SerialO/O/0, SerialO/O/1 และ FastEthernetO/O
 - Router 2 SerialO/O/0, FastEthernetO/0 และ FastEthernetO/1
 - Router 3 SerialO/O/O, FastEthernetO/O และ FastEthernetO/1

Router1 -> Serial0/0/0 IP: 192.168.0.1, Serial0/0/1 IP: 192.168.1.1, FastEthernet0/0 IP: 192.168.2.1

Router2 -> Serial0/0/0 IP: 192.168.1.2, FastEthernet0/0 IP: 192.168.6.1, FastEthernet0/1 IP: 192.168.3.1

Router3 -> Serial0/0/0 IP: 192.168.0.2 , FastEthernet0/0 IP: 192.168.9.1 , FastEthernet0/1 IP: 192.168.3.2

PC0 IP: 192.168.9.2, PC1 IP: 192.168.2.2, PC2 IP: 192.168.9.3, PC3 IP: 192.168.6.2

3. Double-Click ที่ PCO และเลือก Config -> FastEthernetO จากนั้นป้อนค่า IP Address และ Subnet Mask ของ PCO ตามที่กำหนดค่าไว้

4. คลิก Setting และป้อนค่า Gateway และทำกับ PC ทุกเครื่องในเครือข่าย

- 5. ไปที่ Tab Desktop ของ PCO แล้วเลือก Command Prompt แล้ว ping PC2 ถ้า ping ได้แสดงว่ากำหนดค่า ถูกต้อง ถ้า ping ไม่ได้ให้ตรวจสอบการกำหนดค่า
- 6. Double-Click ที่ Router3 แล้วเลือก Configs -> FastEthernet0/0 ป้อนค่า IP Address และ Subnet Mask ที่ ออกแบบไว้ แล้ว ใช้ PCO และ PC2 ping ไปที่ IP Address ของ FastEthernet0/0 ของ Router3 ถ้า ping ได้ แสดงว่ากำหนดค่าถูกต้อง ถ้า ping ไม่ได้ให้ตรวจสอบการกำหนดค่า
- 7. ให้ดำเนินการแบบเดียวกันกับ Router 2 และ PC3 (PC3 ต้อง ping FastEthernet0/0 ของ Router 2 ได้)
- 8. ให้ดำเนินการแบบเดียวกันกับ Router 1 และ PC1 (PC1 ต้อง ping FastEthernet0/0 ของ Router 1 ได้)
- 9. ให้เขียน Local Routing Table ณ เวลา t=0 สำหรับ Router 1, Router 2 และ Router 3 โดยนำเฉพาะ Network ที่ต่อกับ Router โดยตรงมาใส่ในช่อง Destination และ Next-Hop ใส่เป็น ซึ่งหมายถึงเป็น เครือข่ายที่เชื่อมต่อโดยตรง และค่า Cost เป็น 0

T=0

Router 1

Router			
Destination	Next-hop	Cost	
192.168.2.0	-	0	
192.168.1.0	-	0	
192.168.0.0	-	0	

Router 2

Destination	Next-hop	Cost	
192.168.6.0	-	0	
192.168.1.0	-	0	
192.168.3.0	-	0	

Router 3

Destination	Next-hop	Cost
192.168.9.0	-	0
192.168.3.0	-	0
192.168.0.0	-	0

10. จากนั้นให้มีการแลกเปลี่ยนตารางกัน ระหว่าง Router ข้างเคียง และ Update ตาราง Local Routing Table โดยให้เพิ่ม Network ที่ได้รับจากตารางของ Router ข้างเคียง โดยกรณีที่ได้รับ Network เดียวกันจาก เครือข่ายข้างเคียงให้ใช้ B-F Equation ในการเลือกค่า Cost และ Next-Hop และดำเนินการจนกว่าตาราง Routing จะคงที่

T=1

D -		4
ΚO	uter	-

Destination	Next-hop	Cost
192.168.2.0	1	0
192.168.1.0	-	0
192.168.0.0	-	0
192.168.6.0	192.168.1.2	
192.168.3.0	192.168.1.2	
192.168.9.0	192.168.0.2	

Router 2

Destination	Next-hop	Cost
192.168.6.0	1	0
192.168.1.0		0
192.168.3.0	-	0
192.168.2.0	192.168.1.1	
192.168.0.0	192.168.1.1	
192.168.9.0	192.168.3.2	

Router 3

Destination	Next-hop	Cost
192.168.9.0	1	0
192.168.3.0	-	0
192.168.0.0	-	0
192.168.1.0	192.168.0.1	
192.168.2.0	192.168.0.1	
192.168.6.0	192.168.3.1	

T=2

Router 1

Destination	Next-hop	Cost
192.168.2.0	1	0
192.168.1.0	1	0
192.168.0.0	-	0
192.168.6.0	192.168.1.2	
192.168.3.0	192.168.1.2	
192.168.9.0	192.168.0.2	

Router 2

Destination	Next-hop	Cost
192.168.6.0	-	0
192.168.1.0	-	0
192.168.3.0	-	0
192.168.2.0	192.168.1.1	
192.168.0.0	192.168.1.1	
192.168.9.0	192.168.3.2	

Router 3

Destination	Next-hop	Cost
192.168.9.0	-	0
192.168.3.0	1	0
192.168.0.0	-	0
192.168.1.0	192.168.0.1	
192.168.2.0	192.168.0.1	
192.168.6.0	192.168.3.1	

11. Double-Click ที่ Router1 แล้วเลือก Configs -> Routing -> Static จากนั้นใส่ Network ID, Subnet Mask และ IP ของ Next Hop Interface แล้วกด Add (ตามรูป) โดยให้ Add เฉพาะ เครือข่ายที่ไม่ใช่ network ที่ เชื่อมต่อโดยตรงกับ Router นั้นๆ และดำเนินการให้ครบทุก Router

- 12. ทดสอบการใช้งานโดยการ ping จากทุกเครื่อง โดยต้อง ping หากันได้หมด ให้ capture ผลการ ping มา แสดง คำตอบอยู่ด้านล่าง
- 13. คลิกที่ Tab CLI ของ Router3 (ถ้าแสดง Router> ให้พิมพ์คำสั่ง enable แต่ถ้าแสดง Router(Config)# ให้พิมพ์ exit) จากนั้นให้พิมพ์คำสั่ง show running-config แล้วให้ capture บริเวณที่มีคำสั่ง ip route แล้วอธิบาย ความหมาย คำตอบอยู่ด้านล่าง
- 14. ให้ลบค่า config ของ static routing ทั้งหมดออก ตรวจสอบด้วยคำสั่ง show running-config ว่าไม่มีข้อมูล routing อยู่แล้ว
- 15. ให้ไปที่ Configs -> Routing -> RIP แล้วเพิ่ม Network ID ที่ต่อกับ Router นั้นโดยตรง ทำให้ครบทุก Router
- 16. ทดสอบการใช้งานโดยการ ping จากทุกเครื่อง โดยต้อง ping หากันได้หมด ให้ capture ผลการ ping มา แสดง คำตอบอยู่ด้านล่าง
- 17. ทดสอบคำสั่ง tracert จาก PC ด้านหนึ่งไปอีกด้านหนึ่ง แล้ว Capture มาแสดง คำตอบอย่ด้นล่าง
- 18. คลิกที่ Tab CLI ของ Router2 จากนั้นให้พิมพ์คำสั่ง show running-config แล้วให้ capture บริเวณที่มีคำสั่ง router rip แล้วอธิบายความหมาย คำตอบอยู่ด้านล่าง

```
ข้อ 13 ip route คือคำสั่งที่ใช้ในการกำหนดค่า static route ip classless ip route 192.168.2.0 255.255.255.0 192.168.0.1 ip route 192.168.6.0 255.255.255.0 192.168.3.1 ip route 192.168.1.0 255.255.255.0 192.168.0.1 มีรูปแบบดังนี ip route network-ip subnet-mask next-hop
```

ข้อ 17 tracert จาก PCoไป PC3

```
C:\>tracert 192.168.6.2

Tracing route to 192.168.6.2 over a maximum of 30 hops:

1 1 ms 0 ms 1 ms 192.168.9.1
2 0 ms 0 ms 0 ms 192.168.3.1
3 0 ms 1 ms 0 ms 192.168.6.2
```

ข้อ 18 network คือคำสั่งที่ใช้ในการกำหนด RIP routing

```
router rip
network 192.168.1.0
network 192.168.3.0
network 192.168.6.0
```

มีรูปแบบดังนี้ network network-ip ที่เราเพิ่มเข้าไป

[งานกลุ่ม]

19. เครือข่ายจาก Home ไป Office ผ่าน Router ดังรูป จงหาเส้นทางที่สั้นที่สุดโดยใช้ Dijkstra's Algorithm และ แสดง Forwarding Table ของ Router แต่ละตัว (H = Home, O = Office)

Step	N'	D(a)	D(b)	D(c)	D(d)	D(e)	D(o)
		p(a)	p(b)	p(c)	p(d)	p(e)	p(o)
0	h	5,h	INF	INF	8,h	INF	INF
1	ha		14,a	8,a	8,h	INF	INF
2	hac		13,c		8,h	10,c	INF
3	hacd		13,c			10,c	INF
4	hacde		13,c				14,e
5	hacdeb						14,e
6	hacdebo						
7							

งานครั้งที่ 11

- การส่งงานข้อ 1–18 ให้ส่งเป็นไฟล์ PDF จำนวน 1 ไฟล์ เท่านั้น ตั้งชื่อไฟล์โดยใช้รหัสนักศึกษา ส่วนบนของหน้าแรกให้มี รหัสนักศึกษา และ ชื่อนักศึกษา
- การทำงานข้อ 19 ต้องทำเป็นกลุ่ม การส่งงานให้ทำในเอกสาร 1 หน้า และชื่อสมาชิกของกลุ่มทุกคน
 (PDF) พร้อมภาพแสดงการพูดคุยแบบกลุ่ม (เช่น google meet) ส่งใน google classroom โดยส่ง
 เพียงกลุ่มละ 1 ไฟล์เท่านั้น (มีคะแนนส่งเร็ว)
- กำหนดส่ง ภายในวันที่ 4 เมษายน 2564

PC0 -> PC1,PC2,PC3,Router1,Router2,Router3

```
C:\>ping 192.168.2.2
Pinging 192.168.2.2 with 32 bytes of data:
Reply from 192.168.2.2: bytes=32 time=5ms TTL=126
Reply from 192.168.2.2: bytes=32 time=lms TTL=126
Reply from 192.168.2.2: bytes=32 time=lms TTL=126
Reply from 192.168.2.2: bytes=32 time=lms TTL=126
Ping statistics for 192.168.2.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = 5ms, Average = 2ms
C:\>ping 192.168.9.3
Pinging 192.168.9.3 with 32 bytes of data:
Reply from 192.168.9.3: bytes=32 time<lms TTL=128
Reply from 192.168.9.3: bytes=32 time=lms TTL=128
Reply from 192.168.9.3: bytes=32 time<lms TTL=128
Reply from 192.168.9.3: bytes=32 time<lms TTL=128
                                                                PC<sub>2</sub>
Ping statistics for 192.168.9.3:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping 192.168.6.2
Pinging 192.168.6.2 with 32 bytes of data:
                                                                PC3
Reply from 192.168.6.2: bytes=32 time=2ms TTL=126
Reply from 192.168.6.2: bytes=32 time<lms TTL=126
Reply from 192.168.6.2: bytes=32 time=lms TTL=126
Reply from 192.168.6.2: bytes=32 time<1ms TTL=126
Ping statistics for 192.168.6.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 2ms, Average = 0ms
C:\>ping 192.168.0.1
Pinging 192.168.0.1 with 32 bytes of data:
Reply from 192.168.0.1: bytes=32 time=1ms TTL=254
Reply from 192.168.0.1: bytes=32 time=2ms TTL=254
                                                                   Router1
Reply from 192.168.0.1: bytes=32 time=1ms TTL=254
Reply from 192.168.0.1: bytes=32 time=1ms TTL=254
Ping statistics for 192.168.0.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = 2ms, Average = lms
C:\>ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=2ms TTL=254
                                                                Router2
Reply from 192.168.1.2: bytes=32 time=2ms TTL=254
Ping statistics for 192.168.1.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = 2ms, Average = lms
C:\>ping 192.168.3.2
Pinging 192.168.3.2 with 32 bytes of data:
Reply from 192.168.3.2: bytes=32 time<1ms TTL=255
                                                                Router3
Reply from 192.168.3.2: bytes=32 time<1ms TTL=255
Reply from 192.168.3.2: bytes=32 time<1ms TTL=255
Reply from 192.168.3.2: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.3.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

PC1 -> PC0,PC2,PC3,Router1,Router2,Router3

```
C:\>ping 192.168.9.2
Pinging 192.168.9.2 with 32 bytes of data:
Reply from 192.168.9.2: bytes=32 time=1ms TTL=126
Reply from 192.168.9.2: bytes=32 time=lms TTL=126
Reply from 192.168.9.2: bytes=32 time=lms TTL=126
Reply from 192.168.9.2: bytes=32 time=1ms TTL=126
 Ping statistics for 192.168.9.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = lms, Average = lms
 C:\>ping 192.168.9.3
                                                                 PC2
 Pinging 192.168.9.3 with 32 bytes of data:
Reply from 192.168.9.3: bytes=32 time=2ms TTL=126
Reply from 192.168.9.3: bytes=32 time=2ms TTL=126
Reply from 192.168.9.3: bytes=32 time=3ms TTL=126
Reply from 192.168.9.3: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.9.3:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = 3ms, Average = 2ms
C:\>ping 192.168.6.2
Pinging 192.168.6.2 with 32 bytes of data:
Reply from 192.168.6.2: bytes=32 time=1ms TTL=126
Reply from 192.168.6.2: bytes=32 time=1ms TTL=126
Reply from 192.168.6.2: bytes=32 time=1ms TTL=126
                                                                  PCS
Reply from 192.168.6.2: bytes=32 time=2ms TTL=126
Ping statistics for 192.168.6.2:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = lms, Maximum = 2ms, Average = lms
C:\>ping 192.168.0.1
Pinging 192.168.0.1 with 32 bytes of data:
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Reply from 192.168.0.1: bytes=32 time=1ms TTL=255
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.0.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=4ms TTL=254
Ping statistics for 192.168.1.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = 4ms, Average = lms
C:\>ping 192.168.3.2
Pinging 192.168.3.2 with 32 bytes of data:
Reply from 192.168.3.2: bytes=32 time=1ms TTL=254
Ping statistics for 192.168.3.2:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = lms, Average = lms
```

PC2 -> PC0,PC1,PC3,Router1,Router2,Router3

```
C:\>ping 192.168.9.2
Pinging 192.168.9.2 with 32 bytes of data:
Reply from 192.168.9.2: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.9.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = Oms, Maximum = Oms, Average = Oms
C:\>ping 192.168.2.2
Pinging 192.168.2.2 with 32 bytes of data:
Reply from 192.168.2.2: bytes=32 time=1ms TTL=126
Reply from 192.168.2.2: bytes=32 time=4ms TTL=126
Reply from 192.168.2.2: bytes=32 time=1ms TTL=126
Reply from 192.168.2.2: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.2.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
     Minimum = 1ms, Maximum = 4ms, Average = 1ms
C:\>ping 192.168.6.2
Pinging 192.168.6.2 with 32 bytes of data:
Reply from 192.168.6.2: bytes=32 time=1ms TTL=126
Reply from 192.168.6.2: bytes=32 time<1ms TTL=126
Reply from 192.168.6.2: bytes=32 time<1ms TTL=126
Reply from 192.168.6.2: bytes=32 time<1ms TTL=126
Ping statistics for 192.168.6.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping 192.168.0.1
Pinging 192.168.0.1 with 32 bytes of data:
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Reply from 192.168.0.1: bytes=32 time=1ms TTL=255
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.0.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=4ms TTL=254
Ping statistics for 192.168.1.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = lms, Maximum = 4ms, Average = lms
C:\>ping 192.168.3.2
Pinging 192.168.3.2 with 32 bytes of data:
Reply from 192.168.3.2: bytes=32 time=1ms TTL=254
Ping statistics for 192.168.3.2:
  Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = lms, Maximum = lms, Average = lms
```

PC3 -> PC0,PC1,PC2,Router1,Router2,Router3

```
C:\>ping 192.168.9.2
Pinging 192.168.9.2 with 32 bytes of data:
Reply from 192.168.9.2: bytes=32 time=1ms TTL=126
Reply from 192.168.9.2: bytes=32 time=2ms TTL=126 Reply from 192.168.9.2: bytes=32 time<1ms TTL=126
                                                                    PC0
 Reply from 192.168.9.2: bytes=32 time<1ms TTL=126
Ping statistics for 192.168.9.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 2ms, Average = 0ms
C:\>ping 192.168.2.2
Pinging 192.168.2.2 with 32 bytes of data:
Reply from 192.168.2.2: bytes=32 time=2ms TTL=126
Reply from 192.168.2.2: bytes=32 time=1ms TTL=126
Reply from 192.168.2.2: bytes=32 time=2ms TTL=126
Reply from 192.168.2.2: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.2.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = lms, Maximum = 2ms, Average = lms
C:\>ping 192.168.9.3
Pinging 192.168.9.3 with 32 bytes of data:
Reply from 192.168.9.3: bytes=32 time<1ms TTL=126
Reply from 192.168.9.3: bytes=32 time=lms TTL=126
Reply from 192.168.9.3: bytes=32 time<lms TTL=126
Reply from 192.168.9.3: bytes=32 time<lms TTL=126
Ping statistics for 192.168.9.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 1ms, Average = 0ms
  :\>ping 192.168.0.1
Pinging 192.168.0.1 with 32 bytes of data:
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Reply from 192.168.0.1: bytes=32 time=1ms TTL=255
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.0.1:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=4ms TTL=254
Ping statistics for 192.168.1.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = 4ms, Average = lms
C:\>ping 192.168.3.2
Pinging 192.168.3.2 with 32 bytes of data:
Reply from 192.168.3.2: bytes=32 time=1ms TTL=254 Reply from 192.168.3.2: bytes=32 time=1ms TTL=254
Reply from 192.168.3.2: bytes=32 time=1ms TTL=254
Reply from 192.168.3.2: bytes=32 time=1ms TTL=254
Ping statistics for 192.168.3.2:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = lms, Average = lms
```

PC0 -> PC1,PC2,PC3,Router1,Router2,Router3

```
C:\>ping 192.168.2.2
Pinging 192.168.2.2 with 32 bytes of data:
Reply from 192.168.2.2: bytes=32 time=5ms TTL=126
Reply from 192.168.2.2: bytes=32 time=lms TTL=126
Reply from 192.168.2.2: bytes=32 time=lms TTL=126
Reply from 192.168.2.2: bytes=32 time=lms TTL=126
Ping statistics for 192.168.2.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = 5ms, Average = 2ms
C:\>ping 192.168.9.3
Pinging 192.168.9.3 with 32 bytes of data:
Reply from 192.168.9.3: bytes=32 time<lms TTL=128
Reply from 192.168.9.3: bytes=32 time=lms TTL=128
Reply from 192.168.9.3: bytes=32 time<lms TTL=128
Reply from 192.168.9.3: bytes=32 time<lms TTL=128
                                                                  PC<sub>2</sub>
Ping statistics for 192.168.9.3:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping 192.168.6.2
Pinging 192.168.6.2 with 32 bytes of data:
                                                                  PC3
Reply from 192.168.6.2: bytes=32 time=2ms TTL=126
Reply from 192.168.6.2: bytes=32 time<lms TTL=126
Reply from 192.168.6.2: bytes=32 time=lms TTL=126
Reply from 192.168.6.2: bytes=32 time<1ms TTL=126
Ping statistics for 192.168.6.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 2ms, Average = 0ms
C:\>ping 192.168.0.1
Pinging 192.168.0.1 with 32 bytes of data:
Reply from 192.168.0.1: bytes=32 time=1ms TTL=254 Reply from 192.168.0.1: bytes=32 time=2ms TTL=254
                                                                    Router1
Reply from 192.168.0.1: bytes=32 time=1ms TTL=254
Reply from 192.168.0.1: bytes=32 time=1ms TTL=254
Ping statistics for 192.168.0.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = 2ms, Average = lms
C:\>ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=2ms TTL=254
                                                                  Router2
Reply from 192.168.1.2: bytes=32 time=2ms TTL=254
Ping statistics for 192.168.1.2:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = 2ms, Average = lms
C:\>ping 192.168.3.2
Pinging 192.168.3.2 with 32 bytes of data:
Reply from 192.168.3.2: bytes=32 time<1ms TTL=255
                                                                  Router3
Reply from 192.168.3.2: bytes=32 time<1ms TTL=255
Reply from 192.168.3.2: bytes=32 time<1ms TTL=255
Reply from 192.168.3.2: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.3.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

PC1 -> PC0,PC2,PC3,Router1,Router2,Router3

```
C:\>ping 192.168.9.2
Pinging 192.168.9.2 with 32 bytes of data:
Reply from 192.168.9.2: bytes=32 time=1ms TTL=126
Reply from 192.168.9.2: bytes=32 time=lms TTL=126
Reply from 192.168.9.2: bytes=32 time=lms TTL=126
Reply from 192.168.9.2: bytes=32 time=1ms TTL=126
 Ping statistics for 192.168.9.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = lms, Average = lms
 C:\>ping 192.168.9.3
                                                                 PC2
 Pinging 192.168.9.3 with 32 bytes of data:
Reply from 192.168.9.3: bytes=32 time=2ms TTL=126
Reply from 192.168.9.3: bytes=32 time=2ms TTL=126
Reply from 192.168.9.3: bytes=32 time=3ms TTL=126
Reply from 192.168.9.3: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.9.3:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = 3ms, Average = 2ms
C:\>ping 192.168.6.2
Pinging 192.168.6.2 with 32 bytes of data:
Reply from 192.168.6.2: bytes=32 time=1ms TTL=126
Reply from 192.168.6.2: bytes=32 time=1ms TTL=126
Reply from 192.168.6.2: bytes=32 time=1ms TTL=126
                                                                  PCS
Reply from 192.168.6.2: bytes=32 time=2ms TTL=126
Ping statistics for 192.168.6.2:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = lms, Maximum = 2ms, Average = lms
C:\>ping 192.168.0.1
Pinging 192.168.0.1 with 32 bytes of data:
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Reply from 192.168.0.1: bytes=32 time=1ms TTL=255
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.0.1:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=4ms TTL=254
Ping statistics for 192.168.1.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = 4ms, Average = lms
C:\>ping 192.168.3.2
Pinging 192.168.3.2 with 32 bytes of data:
Reply from 192.168.3.2: bytes=32 time=1ms TTL=254
Ping statistics for 192.168.3.2:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = lms, Average = lms
```

PC2 -> PC0,PC1,PC3,Router1,Router2,Router3

```
C:\>ping 192.168.9.2
Pinging 192.168.9.2 with 32 bytes of data:
Reply from 192.168.9.2: bytes=32 time<1ms TTL=128
Ping statistics for 192.168.9.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = Oms, Maximum = Oms, Average = Oms
C:\>ping 192.168.2.2
Pinging 192.168.2.2 with 32 bytes of data:
Reply from 192.168.2.2: bytes=32 time=1ms TTL=126
Reply from 192.168.2.2: bytes=32 time=4ms TTL=126
Reply from 192.168.2.2: bytes=32 time=1ms TTL=126
Reply from 192.168.2.2: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.2.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:
     Minimum = 1ms, Maximum = 4ms, Average = 1ms
C:\>ping 192.168.6.2
Pinging 192.168.6.2 with 32 bytes of data:
Reply from 192.168.6.2: bytes=32 time=1ms TTL=126
Reply from 192.168.6.2: bytes=32 time<1ms TTL=126
Reply from 192.168.6.2: bytes=32 time<1ms TTL=126
Reply from 192.168.6.2: bytes=32 time<1ms TTL=126
Ping statistics for 192.168.6.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping 192.168.0.1
Pinging 192.168.0.1 with 32 bytes of data:
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Reply from 192.168.0.1: bytes=32 time=1ms TTL=255
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.0.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=4ms TTL=254
Ping statistics for 192.168.1.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = lms, Maximum = 4ms, Average = lms
C:\>ping 192.168.3.2
Pinging 192.168.3.2 with 32 bytes of data:
Reply from 192.168.3.2: bytes=32 time=1ms TTL=254
Ping statistics for 192.168.3.2:
  Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = lms, Maximum = lms, Average = lms
```

PC3 -> PC0,PC1,PC2,Router1,Router2,Router3

```
C:\>ping 192.168.9.2
Pinging 192.168.9.2 with 32 bytes of data:
Reply from 192.168.9.2: bytes=32 time=1ms TTL=126
Reply from 192.168.9.2: bytes=32 time=2ms TTL=126 Reply from 192.168.9.2: bytes=32 time<1ms TTL=126
                                                                    PC0
 Reply from 192.168.9.2: bytes=32 time<1ms TTL=126
Ping statistics for 192.168.9.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 2ms, Average = 0ms
C:\>ping 192.168.2.2
Pinging 192.168.2.2 with 32 bytes of data:
Reply from 192.168.2.2: bytes=32 time=2ms TTL=126
Reply from 192.168.2.2: bytes=32 time=1ms TTL=126
Reply from 192.168.2.2: bytes=32 time=2ms TTL=126
Reply from 192.168.2.2: bytes=32 time=1ms TTL=126
Ping statistics for 192.168.2.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = lms, Maximum = 2ms, Average = lms
C:\>ping 192.168.9.3
Pinging 192.168.9.3 with 32 bytes of data:
Reply from 192.168.9.3: bytes=32 time<1ms TTL=126
Reply from 192.168.9.3: bytes=32 time=lms TTL=126
Reply from 192.168.9.3: bytes=32 time<lms TTL=126
Reply from 192.168.9.3: bytes=32 time<lms TTL=126
Ping statistics for 192.168.9.3:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 1ms, Average = 0ms
  :\>ping 192.168.0.1
Pinging 192.168.0.1 with 32 bytes of data:
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Reply from 192.168.0.1: bytes=32 time=1ms TTL=255
Reply from 192.168.0.1: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.0.1:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = 0ms, Maximum = 1ms, Average = 0ms
C:\>ping 192.168.1.2
Pinging 192.168.1.2 with 32 bytes of data:
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=1ms TTL=254
Reply from 192.168.1.2: bytes=32 time=4ms TTL=254
Ping statistics for 192.168.1.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = 4ms, Average = lms
C:\>ping 192.168.3.2
Pinging 192.168.3.2 with 32 bytes of data:
Reply from 192.168.3.2: bytes=32 time=1ms TTL=254 Reply from 192.168.3.2: bytes=32 time=1ms TTL=254
Reply from 192.168.3.2: bytes=32 time=1ms TTL=254
Reply from 192.168.3.2: bytes=32 time=1ms TTL=254
Ping statistics for 192.168.3.2:
     Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
     Minimum = lms, Maximum = lms, Average = lms
```