WHAT IS CLAIMED IS:

1	1.	An apparatus for use on a bottom hole assembly (BHA) for conveying in a
2		borehole in an earth formation, the apparatus comprising:
3		(a) an orientation sensor making measurements indicative of a toolface angle
4		of said BHA during rotation of the BHA;
5		(b) at least one resistivity sensor for making measurements of a resistivity of
6		said earth formation during said continued rotation; and
7		(c) a processor for determining from said resistivity measurements and said
8		orientation sensor measurements a apparent dip angle between an
9		axis of said borehole and an interface in said earth ormation
10		wherein said BHA has a non-uniform rate of rotation.
11		
1	2.	The apparatus of claim 1 wherein said interface is a bed boundary.
2		
1	3.	The apparatus of claim 1 wherein said interface is an oil-water contact.
2		
1	4.	The apparatus of claim 1 wherein said at least one resistivity sensor comprises
2		two axially spaced apart resistivity sensors.
3		
1	5.	The apparatus of claim 1 wherein the at least one resistivity sensor comprises a
	414-29494USCP	

2		galvanic sensor.		
3				
1	6.	The apparatus of claim 5 wherein said galvanic sensor comprises a focused		
2		sensor.		
3				
1	7.	The apparatus of claim 1 wherein said at least one sensor comprises an induction		
2		sensor.		
3				
1	8.	The apparatus of claim 7 wherein said induction sensor comprises a sensor having		
2		a coil with an axis inclined to an axis of said BHA.		
3				
1	9.	The apparatus of claim 1 wherein said resistivity sensor comprises a plurality of		
2		transmitter-receiver spacings and further comprises circuitry for measuring at		
3		least one of (i) an amplitude difference, and, (ii) a phase difference of signals		
4		measured at said plurality of spacings.		
5				
1	10.	The apparatus of claim 1 wherein said orientation sensor is associated with a first		
2		processor and said at least one resistivity sensor is associated with a second		
3		processor, said first and second processors being on a common bus.		
4				
1	11.	The apparatus of claim 1 wherein said orientation sensor comprises a		
2		magnetometer.		
	414-29	9494US		

3		
1	12.	The apparatus of claim 1 wherein said orientation sensor comprises an
2		accelerometer.
3		
1	13.	The apparatus of claim 1 further comprising a gyroscope for providing a
2		measurement indicative of an inclination and azimuth of said borehole.
3		
1	14.	The apparatus of claim 1 wherein said processor further determines a bias in said
2		orientation measurements.
3		
1	15.	The apparatus of claim 1 wherein said orientation sensor comprises a pair of
2		magnetometers, and wherein said processor further determines a scale factor
3		relating the outputs of the two magnetometers.
4		
1	16.	The apparatusof claim 1 wherein said resistivity sensor is mounted on one of (i) a
2		pad, (ii) a rib, and, (iii) a stabilizer.
3		
1	17.	The apparatus of claim 1 wherein said processor further corrects an image of said
2		borehole.
3		
1	18.	The apparatus of claim 1 wherein said processor further controls a drilling
2		direction of said borehole based on said apparent dip angle.
	414-294	194US

3				
1	19.	The a	pparatus of claim 1 wherein said processor determines said apparent dip	
2		angle	based on an apparent rate of penetration.	
3				
1	20.	A met	thod of determining a dip characteristic of an earth formation, the method	
2		comprising:		
3		(a)	conveying a bottom hole assembly (BHA) into a borehole in an earth	
4			formation;	
5		(b)	using an orientation sensor on said BHA for making measurements	
6			indicative of a toolface angle of said BHA during rotation of the	
7			BHA;	
8		(c)	using at least one resistivity sensor on said BHA for making	
9			measurements of a resistivity of said earth formation during said continued	
10			rotation; and	
11		(d)	determining from said resistivity measurements and said	
12			orientation sensor measurements said dip characteristic of said earth	
13			formation, said determination correcting for a non-uniform rate of	
14			rotation of said BHA.	
15				
1	21.	The m	nethod of claim 20 further comprising using said determined dip	
2		charac	cteristic for controlling a drilling direction of said borehole.	
3				

1	22.	The method of claim 20 wherein said dip characteristic comprises a apparent dip
2		angle between an axis of said borehole and a bed boundary in said earth
3		formation.
4		
1	23.	The method of claim 20 wherein determining said dip characteristic further
2		comprises using measurements from an additional resistivity sensor spaced apart
3		axially from said at least one resistivity sensor.
4		
1	24.	The method of claim 20 wherein the at least one resistivity sensor comprises a
2		galvanic sensor.
3		
1	25.	The method of claim 24 wherein said galvanic sensor comprises a focused sensor.
2		
1	26.	The method of claim 20 wherein said at least one resistivity sensor comprises an
2		induction sensor.
3		
1	27.	The metod of claim 26 wherein said induction sensor comprises a sensor having
2		a coil with an axis inclined to an axis of said BHA.
3		
1	28.	The method of claim 20 wherein said resistivity sensor comprises a plurality of
2		transmitter-receiver spacings, and using said resistivity sensor further comprises a
3	414-294	making measurements of at least one of (i) and amplituded difference, and, (ii) a

4		phase difference of signals measured at said plurality of spacings.
5		
1	29.	The method of claim 20 further comprising coupling a first processor associated
2		with said orientation sensor and a second processor associated with the at least
3		one resistivity sensor to a common bus.
4		
1	30.	The method of claim 20 wherein said orientation sensor comprises a
2		magnetometer.
3		
1	31.	The method of claim 20 wherein said orientation sensor comprises an
2		accelerometer.
3		
1	32.	The method of claim 20 further comprising using a gyroscope for providing a
2		measurement indicative of an inclination and azimuth of said borehole.
3		
1	33.	The method of claim 20 further comprising determining a bias in said
2		orientation measurements.
3		
1	34.	The method of claim 20 wherein said orientation sensor comprises a pair of
2		magnetometers, the method further comprising determining a scale factor
3		relating the outputs of the two magnetometers.
4		

- 1 35. The method claim 20 wherein said resistivity sensor is mounted on one of (i) a
- 2 pad, (ii) a rib, and, (iii) a stabilizer.

3

1 36. The method of claim 20 further comprising obtaining an image of said borehole.

2

1 37. The method of claim 36 further comprising correcting said image.

2

38. The method of claim 36 further comprising identifying tool face angles associated with a sticking of the BHA.