[9.1]

degeneras I can't distingus between n, l, m,

What about for E

$$L = \frac{2m_e}{T} A \implies A = \frac{TL}{2m_e}$$

$$M = \frac{9}{T} \frac{TL}{2m_e} \implies M = \frac{9}{2m_e} \frac{T}{L}$$

[] = to [(1+1

1 = 0, 1, 2, ... n-1

2.27 X10 J= Bohr magneton

$$\vec{L}$$
 is quanized, and \vec{R} is quanized. $L_7 = M_1 \vec{h}$

 $\int_{2}^{M} = \frac{e}{2me} L_{2}$

 $M_z = \frac{(et)}{2me}; ml$

there are 5 orentions for M. you can see them When you apply

Magnatic field

tours!

$$\overline{T} = \overline{M} \times \overline{\beta}_{ext} = |\overline{\delta I}|$$
 Latinor Precession

$$|T| = M \operatorname{Rext} \operatorname{Sin} O = L \operatorname{Sin} O \frac{\partial \phi}{\partial t}$$

$$= \frac{e}{2me} + B \operatorname{Sin} O = \frac{1}{2me} \operatorname{Sin} O \frac{\partial \phi}{\partial t}$$

$$\frac{d\phi}{dt} = \frac{eB}{2me} = \text{angular Velocity}$$

Larmor Legurey

$$U = - R \cdot B$$

$$V = - \frac{eL}{2me} \cdot B = \frac{eL_2B}{2me} = \frac{eR}{2me} + \frac{1}{2me} + \frac{1}{2me}$$

 $n = 2, \ell = 1 -$

 $(\hbar\omega_0 - \hbar\omega_1)$ –

On

Magnetic field present

 $m_{\ell} = 1$ $m_{\ell} = 0$

 $(\hbar \omega_0 + \hbar \omega_L)$

oft

No magnetic field

I Break

Δης | ξ Δl=± | ξ Δml= 0, + | you only will see three lines!
for any value of 1

How many Starte you half?

L=5, then you half 11 Substrate

21+1= number of Substate

Normal Zeeman Effect

$$\Delta E = \hbar W_L = \hbar \frac{eB}{2me}$$

increas B to get big SX

intrinsic (mass)

e has two motions

Spin angular monetum

this Property is called internsic Property (like the mass)

for 2 compount
$$2L_2 = \frac{1}{2} m_1$$
, $m_1 = 0, \pm 1, \pm 2.... l$

$$2S^2 = t^2 \delta(S+1) \longrightarrow 2S = t \sqrt{S(S+1)}$$

$$S_2 = t_1 m_8, m_s = -5, -5+1, -5+2.......S$$

ms # 0

$$e/P/n \Longrightarrow always$$
 $S = \frac{1}{2} \mid m_s = -\frac{1}{2}, \frac{1}{2}$ Only

$$\angle S > = t_0 \frac{\sqrt{3}}{2}$$

then
$$S_{z} = \pm \frac{t_{0}}{2}$$

the Projection Spin up
$$e/P/N$$

The angle $e/P/N$

$$\mathcal{A} = \frac{9}{2m} \mathbf{I}$$

$$E = E_0 \pm \hbar \mathbf{W}_L \mathbf{W}_L$$

$$\text{text} = h \cdot 55 \text{ betion of } t$$

$$E = E_0 \pm h W_L M_L$$

$$V = -M_S B = -9 \frac{e}{2m_e} S \cdot B$$

$$= 2 \frac{e}{2m_e} S \cdot B$$

$$= 2 \frac{e}{2m_e} S \cdot B$$

= = M B

$$\frac{1}{M_{+}} = \frac{1}{M_{0}} + \frac{1}{M_{0}} = \frac{-e}{2m_{e}} \left(\vec{L} + 0 \vec{S} \right)$$

you have 5 lines in the spectrum

for
$$e$$
, $\vec{S} = \frac{1}{2}$

if
$$L'=0$$
, $J=\frac{1}{2}$ S State $= nS_{\frac{1}{2}}$

$$mj = -j, -j+1, ..., j-1, j = -\frac{1}{2}, \frac{1}{2} = m_{j}$$

if
$$\overline{L}'=1$$
, $m_S=\frac{1}{2}$, P State

$$j = l - S$$

$$= l - \frac{1}{2}$$

$$= l + \frac{1}{2}$$

$$J = \frac{3}{7}, \quad m_{i} = \frac{1}{7}, \quad \frac{1}{7},$$

Spin - orbit interaction

$$\beta = 0$$
 ex_{4}

*there is L

$$\overrightarrow{M} = \overrightarrow{M} + \overrightarrow{K} = -\frac{e}{2me} \left(\overrightarrow{L} + 9\overrightarrow{S}\right)$$

$$U = -M - B = \frac{e}{2me} \left(\overrightarrow{L} + 9 \overrightarrow{S} \right) - \overrightarrow{B} = \frac{e}{all} \text{ parallel},$$

35, 30 are described, but because of

the Spin, you can see the difference

the Energy of $35 \neq$ the Energy of 3p

B -> Strong (Bext)

Nonmal Deeman effect

it Kills the degenercy

4.4 No spin esset n, L, m, m, 4

there is a spin essect

n, l, j, mj

 $\frac{J=3/2}{j=3/2} = \frac{3}{3}, \frac{1}{3}, \frac{1}{2}, \frac{-1}{2}, \frac{-3}{2}, \frac{-5}{2}$ $\frac{j=3/2}{3}, \frac{3}{2}, \frac{1}{2}, \frac{-1}{2}, \frac{-3}{2}$

* No two electrons can have the same four

EX

$$h = 1$$
 , $l = 0$

Without spin esset

With spin esset

$$y = 0$$
 $y = 0$
 $y =$

It means that we have $2n^2$ electrons which they have the Same E, but different wave functions.

electron configuration

He
$$\longrightarrow$$
 (1) \longrightarrow 15

He \longrightarrow (2) \longrightarrow 15

Li \longrightarrow (3) \longrightarrow 15² 25

 $l=0$ $l=1$

$$\beta \longrightarrow (5) \longrightarrow 15^2 25^2 2 \beta$$

Hund's Rule

Figure 9.17 Origin of x-ray spectra. The K series $(K_{\alpha}, K_{\beta}, K_{\gamma}, \ldots)$ originates with electrons in higher-lying shells making a downward transition to fill a vacancy in the K shell. In the same way, the filling of vacancies created in higher shells produces the L series, the M series, and so on.

each elemen - x-rays - finger Prints