Quantum divide and conquer

arXiv: 2210.06419, QIP 2023

University of Maryland

Robin Kothari Microsoft (→Google)

University of Maryland

Matt Kovacs-Deak Aarthi Sundaram Microsoft

Daochen Wang, University of British Columbia

Quantum BC Seminar: 12th March 2024

Examples of exponential quantum speedups

factoring

 $30743126349163 = 4210601 \times 7301363$

solving Pell's equation

$$x^2 - dy^2 = 1$$
, $d > 0$ non-square positive integer

simulating quantum dynamics

solving linear systems quantumly

EXIT-finding in glued-trees

Examples of polynomial quantum speedups

unstructured search (e.g., SAT)

maximum finding

Monte-Carlo mean estimation

element distinctness

triangle detection

$$(u_1 \vee \neg u_4 \vee u_3) \wedge (u_5 \vee \neg u_2 \vee \neg u_3) \wedge (u_1 \vee \neg u_2)$$

$$\max_{x} f(x)$$

$$\mathbb{E}[f(X)] \approx \frac{1}{N} \sum_{i=1}^{N} f(x_i)$$

 $1829457836 \rightarrow$ "not distinct!"

Frameworks for quantum algorithm design

factoring

solving Pell's equation

simulating quantum dynamics

solving linear systems quantumly

unstructured search

maximum finding

Monte-Carlo mean estimation

element distinctness

triangle detection

EXIT-finding in glued-trees

Divide and conquer

- 1. Divide a problem into subproblems
- 2. Recursively solve each subproblem
- 3. Combine the solutions of the subproblems to solve the full problem

Merge sort

Recurrence: Cost of solving auxiliary problem $C(n) = 2C(n/2) + O(n) \implies C(n) = O(n \log n)$

Cost of solving subproblem

From classical to quantum divide and conquer

$$x = x_1 x_2 ... x_n \in \{0,1\}^n$$
 unknown bitstring

Question: is there a bit of x that is equal to 1?

Answer denoted: OR(x)

Divide and conquer: $OR(x) = OR(OR(x_{left}), OR(x_{right}))$

Classical: $C(n) \le 2C(n/2) \to C(n) \le n$

Quantum: $C(n) \le 2C(n/2) \to C(n) \le \sqrt{n}$

From classical to quantum divide and conquer

Divide a problem of size n into a instances of size n/b each

• Typical classical divide-and-conquer recurrence:

$$C(n) \le aC(n/b) + C^{\mathsf{aux}}(n)$$

Corresponding quantum divide-and-conquer recurrence:

$$C(n) \le \sqrt{a}C(n/b) + C_Q^{\text{aux}}(n)$$

Query complexity

Let $f: \Sigma^n \to \{0,1\}$, suppose an algorithm \mathscr{A} computes f(x) correctly with probability $\geq 2/3$ for all $x \in \Sigma^n$

How many queries to (the oracle encoding) input x does \mathcal{A} need to make?

Answer denoted D(f), R(f), and Q(f), when \mathcal{A} is deterministic, randomized, and quantum, respectively

Quantum speedup $\iff Q(f) < R(f)$

Classical query $i \mapsto x_i$

Quantum query $|i\rangle|a\rangle\mapsto|i\rangle|a+x_i\rangle$

Example: OR_n: $\{0,1\}^n \to \{0,1\}$; $R(OR_n) = \Theta(n)$ and $Q(OR_n) = \Theta(\sqrt{n})$

Adversary quantity

Every $f: \Sigma^n \to \{0,1\}$ is associated with an adversary quantity

$$Adv(f) = \max_{\Gamma} \frac{\|\Gamma\|}{\max_{i \in [n]} \|\Gamma_i\|},$$

max over $|\Sigma|^n \times |\Sigma|^n$ real symmetric matrices Γ with $f(x) = f(y) \implies \Gamma_{xy} = 0$ and

$$(\Gamma_i)_{xy} = \begin{cases} \Gamma_{xy} & \text{if } x_i \neq y_i \\ 0 & \text{if } x_i = y_i \end{cases}$$

Adversary quantity

Theorem [Høyer, Lee, Špalek 07; Lee, Mittal, Reichardt, Špalek 10]

$$Q(f) = \Theta(Adv(f))$$

Composition theorems

AND: if $g(x, y) = f_1(x) \land f_2(y)$, then $Adv(g)^2 \le Adv(f_1)^2 + Adv(f_2)^2$ [LMRŠ 10]

OR: if $g(x, y) = f_1(x) \lor f_2(y)$, then $Adv(g)^2 \le Adv(f_1)^2 + Adv(f_2)^2$ [LMRŠ 10]

SWITCH-CASE: if $h(x) = g_{f(x)}(x)$, then $Adv(h) \le 2Adv(f) + \max_{s} Adv(g_s)$ [our work]

Quantum divide and conquer

AND-OR: suppose f is computed as $f_1 \square f_2 \square ... \square f_a \square f_{aux}$, $\square \in \{ \land, \lor \}$

$$Adv(f)^{2} \le O(Q(f_{\text{aux}})^{2}) + \sum_{i=1}^{a} Adv(f_{i})^{2}$$

SWITCH-CASE: Suppose f is computed by first computing $s = f_{aux}(x)$ and then some function $g_s(x)$, then

$$Adv(f) \le O(Q(f_{aux})) + \max_{s} Adv(g_s)$$

→ Divide and conquer recurrences in the quantum setting

Applications

- Recognizing regular languages [Aaronson, Grier, Schaeffer 19]

- String rotation [Akmal, Jin 22]

- Longest increasing subsequence New!

- Longest common subsequence New!

Recognizing regular languages

Let $\Sigma = \{0,1,2\}, f_n \colon \Sigma^n \to \{0,1\}$ such that $f_n(x) = 1$ iff $x \in \Sigma^* 20^* 2\Sigma^*$

02102112

Observation. Let
$$g_n(x)=\left(x_{\mathrm{left}}\in\Sigma^*20^*\right)\wedge\left(x_{\mathrm{right}}\in0^*2\Sigma^*\right)$$
, then
$$f_n(x)=f_{n/2}(x_{\mathrm{left}})\vee f_{n/2}(x_{\mathrm{right}})\vee g_n(x)$$

Let
$$a(n) = \text{Adv}(f_n)$$
, then $a(n)^2 \le 2a^2(n/2) + O(Q(g_n)^2)$

But
$$Q(g_n) = O(\sqrt{n})$$
, so $a(n) = O(\sqrt{n \log n})$

Longest common subsequence

k-common subsequence (k-CS). Given $x, y \in \Sigma^n$, do x and y share a subsequence of length k?

E i n s t e i n
$$k \le 4$$

E n t w i n e d $k > 4$

- $R(k\text{-CS}) = \Theta(n)$ for $k \ge 1$
- $Q(1\text{-CS}) = \Theta(n^{2/3})$ \leftarrow bipartite element distinctness [Aaronson, Shi 04; Ambainis 03]
- $Q(k\text{-CS}) = O(n^{2k/(2k+1)}) \leftarrow \text{using [Ambainis 03]}$

Can we do better?

Simple and composite k-CS

Theorem. Let $a_k(n) =$ adversary quantity for k-CS on input length n. Then $a_k(n) = O(n^{2/3} \log^{k-1} n)$

Divide the two input strings x and y into m parts each. Then, a k-CS can either be simple or composite

- A simple k-CS is a k-CS formed by symbols within a single part of x and a single part of y
- A composite k-CS is any k-CS that is not simple

Simple

$$k = 2, m = 3$$

Composite

Detecting composite k-CS

$$k = 10, m = 7$$

Only a constant number of possible configurations!

Cost:
$$O\left(\sum_{j=1}^{k-1} a_j(n) \log n\right)$$

Detecting simple k-CS

Only need to detect if there exists a simple k-CS between $\leq 2m-1$ pairs of length-(n/m) substrings!

Line between parts = parts share common symbol

Cost of computing lines = $m^2 \cdot O(n^{2/3}) = O(n^{2/3})$

Cost:
$$O(n^{2/3}) + \sqrt{2m-1} \ a_k(n/m)$$

Putting it together

Theorem. Let $a_k(n) =$ adversary quantity for k-CS on input length n. Then $a_k(n) = O\left(n^{2/3} \log^{k-1} n\right)$ **Proof.**

- Detecting composite
$$k$$
-CS costs: $O\left(\sum_{j=1}^{k-1} a_j(n) \log(n)\right)$

- Detecting simple k-CS costs: $O(n^{2/3}) + \sqrt{2m-1} \cdot a_k(n/m)$

Induction on
$$k \implies a_k(n) \le \sqrt{2m - 1} \ a_k(n/m) + O(n^{2/3} \log^{k-1} n)$$

Solves to
$$a_k(n) = O(n^{2/3} \log^{k-1} n)$$
, provided $\log_m(\sqrt{2m-1}) < 2/3 \iff m \ge 7$

Conclusion

Framework for designing quantum query algorithms using divide-and-conquer intuition

Applications:

- Simpler analysis for recognizing regular languages and string rotation with tighter bounds
- Quantum algorithm for k-IS using $\tilde{O}(\sqrt{n})$ queries
- Quantum algorithm for k-CS using $\tilde{O}\!\left(n^{2/3}\right)$ queries

Open questions

- Can we find other applications of quantum divide and conquer using combining functions other than AND-OR and SWITCH-CASE?
- Can we obtain super-quadratic speedups using quantum divide and conquer?
- What about **time complexity**? Follow-up works by [Allcock, Bao, Belovs, Lee, Santha 23] and [Jeffery, Pass 24] partly resolve this