

New Store Sales Forecasting

Team Presentation

Sampoornaa Ghosh

Christopher Porter

Samruddhi Supekar

Business Problem

- > Optimizing New Store Performance
- > Enhancing Operational Efficiency
- ➤ Measuring Success through Metrics

Purpose

- ➤ Correct Prediction of the First Year Annual Sales
- ➤ Correct Prediction of Daily Sales

Day 0 Performance Metrics

Metric	Inside Sales	Food Service	Diesel (gal)	Unleaded (gal)
Daily MAE	\$688.27	\$222.90	875	761
Daily MAPE	24.15%	27.96%	66.25%	54.71%
Annual Average Error per Store	-\$140,468.76	-\$69,233.33	251,607	109,111
Annual Cumulative Error %	-12.79%	-22.97%	45.22%	15.52%
Minimum Annual Cumulative Error % (Store)	1.54%	-15.84%	-3.61%	1.53%
Maximum Annual Cumulative Error % (Store)	-28.78%	-32.00%	68.54%	144.20%

Data Explanation

37 Stores in total

- > 1 Store (21980) is so different it was excluded
- 5 Stores (22925, 22680, 23415, 22785, 23380) were selected at random as test stores
- > 31 Stores for Training Data

Exploratory Data Analysis

Exploratory Data Analysis

XGBoost creates naive prediction of sales prior to store opening

Prophet predicts future sales based on actual sales data

Model Architecture

Model Performance

XGBoost (Naive) Model
can accurately predict
Annual Sales in many
instances

Model Performance

XGBoost (Naive) Model can accurately predict Annual Sales in many instances.

But not in every case.

Two Models with different strengths

XGBoost

- ♦ Good prediction capability.
- No previous data needed
- Data Hungry
- No Temporal Awareness
- Stagnant Accuracy

Two Models with different strengths

XGBoost

- Good prediction capability.
- No previous data needed
- Data Hungry
- No Temporal Awareness
- Stagnant Accuracy

Prophet

- Temporal Awareness
- Needs prior data to be accurate
- Gets less accurate the longer the horizon
- Improving Accuracy

Two Models with different strengths

XGBoost

- Good prediction capability.
- No previous data needed
- Data Hungry
- No Temporal Awareness
- Stagnant Accuracy

Prophet

- Temporal Awareness
- Needs prior data to be accurate
- Gets less accurate the longer the horizon
- ♦ Improving Accuracy

Composite Model

- Can predict with no prior data
- Can use prior data to refine predictions
- Gets more accurate over time

A picture is worth a thousand words

Strengths

- ♦ Can be very accurate
- ♦ Fulfills Use Case

Strengths

- ♦ Can be very accurate
- ♦ Fulfills Use Case

Weaknesses

- Holidays
- ♦ Small Sample Size Issues
- 1 of 5 types of store not included

Strengths

- ♦ Can be very accurate
- ♦ Fulfills Use Case

Opportunities

- 400 Stores & Multiple Years
- Opportunities to improve sensitivity to Seasonality
- Better Forecasting Models

Weaknesses

- Holidays
- Small Sample Size Issues
- 1 of 5 types of store not included

Strengths

- ♦ Can be very accurate
- ♦ Fulfills Use Case

Opportunities

- 400 Stores & Multiple Years
- Opportunities to improve sensitivity to Seasonality

Weaknesses

- Holidays
- Small Sample Size Issues
- 1 of 5 types of store not included

Threats

- ♦ Kum 'n' Go
- Regionality

Business Value

- ➤ Accurately Predict Annual and Daily Sales prior to store opening within 25% of actual performance in key sales segments
- ➤ Improve Predictions throughout the year as actual sales data becomes available
- Provide very accurate 7 day, 2 week, and 1 month forecasts to benchmark store performance

Thank You!

Extra Resources

Benchmark Comparison

	Inside Sales	Food Service	Diesel	Unleaded
14-day MSE	661003	80331	1600325	831857
14-day RMSE	793	265	996	835
21-day MSE	646277	79586	1450307	824445
21-day RMSE	784	263	951	826
Minimum MSE	241722	40325	5316	150815

Daily Prediction Error

Test Store XGBoost Performance

Test Store

XGBoost

2022-03-07 2022-04-22 2022-04-10 2022-07-02

Date

Inside Sales

Prediction

800000

10000

Actual Sales

Food Service

Date

Unleaded

2022-03-07 2022-04-22 2022-04-10 2022-07-02 Date

Prediction

Actual Sales

200000

175000

200000

Test Store XGBoost Performance

Performance

Food Service

Inside Sales

1e6

