SM5M2

DESCRIPTION

The SM5M2 is a CMOS 4-bit single-chip microcomputer operated on 3.0 V single power supply. This microcomputer integrates 4-bit parallel processing function, ROM, RAM, display RAM, 15-stage divider, 2-kind of interrupt and 4-level of subroutine stack. With a built-in LCD drive circuit for a maximum of 136 elements, a 2-mode standby function, voice synthesizer and a melody generator circuit in a single chip, the SM5M2 permits the design of system configuration with a minimum of peripheral components. It can be used in a variety of products from handheld equipment to electrical appliances, such as hand held games with voice, and also achieves low power consumption.

FEATURES

• ROM capacity:

3 072 x 8 bits (For main program)

64k x 5 bits (For voice)

256 x 6 bits (For melody)

 RAM capacity: 130 x 4 bits (including 34 x 4 bits display RAM)

• Instruction sets: 51

• Subroutine nesting: 4 levels

• I/O port :

Input 1
Output 6
Input/output 7

• Interrupts :

Internal interrupt x = 1 (divider overflow)

External interrupt x 1 (INTA)

• Built-in voice synthesizer circuit (APCM) :

Number of phrases : 256

Voice ROM : 64 k x 5 bits
Bit rate : 25/35 kbps
Number of coded bit : 5 bits
Sampling frequency : 5/7 kHz
Generation period : 9.1 to 12.8 s

· Built-in main clock oscillator for system clock

· Built-in sub clock oscillator for real time clock

4-Bit Single-Chip Microcomputer (LCD Driver)

PIN CONNECTIONS

- Built-in 15 stages divider for real time clock
- · Built-in LCD driver :

136 segments, 1/2 bias, 1/4 duty cycle

• Built-in melody generator circuit :

Melody ROM: 256 steps

Generating time (at 32.768 kHz): 32 s (MAX.)

• Instruction cycle time :

25.9 μ s (MIN.) (at 70 kHz ± 10%) 61 μ s* (TYP.) (at 32.768 kHz)

*When using the clock with the system clock.

Standby function

Supply voltage: 2.4 to 3.3 V

• Package: 72-pin QFP (QFP072-P-1010)

BLOCK DIAGRAM

Nomenclature

Acc : Accumulator

ALU : Arithmetic logic unit

B : RAM address register

C : Carry flag

HC : Common signal generator circuit

IFA : External interrupt flag
IFD : Divider overflow flag
RC : Voice starting address

OSCIN,OSCOUT: Oscillator for LCD and real time clock

P0-P2 : Port registers

P33 : Voice flag port
PC : Program counter
RAM : Data memory
RD, RE, RF : Mode registers

ROM : Program memory
SB : Stack B register
SR : PC stack register

X : X register

CK₁,CK₂ : Oscillator for voice and system clock

PIN DESCRIPTION

PIN NAME	I/O	FUNCTION
GND, VDD, VDSP, VR	1	Power supply pins. The Vdd, Vdsp, VR pins apply a positive supply with respect
GIND, VDD, VDSP, VR	'	to the GND.
T, TOSC, VOSC	1	LSI chip test pins. Cannot be used by the user. Connect T and TOSC to GND.
1, 1030, 7030	'	Connect VOSC to VDD.
		Input pin with built-in pull-up resistor. Hardware-reset the LSI chip when a Low
RESET	ı	level signal is input. Normally, a capacitor is connected between it and GND to
		form a power-on reset circuit.
OSCIN, OSCOUT	I/O	Crystal oscillator pins. Connect a crystal oscillator accross [OSC _{IN} -OSC _{OUT}] to
USCIN, USCOUT	1/0	form a clock generator circuit.
CK ₁ , CK ₂	1	RC oscillator pins. Connect a resistor across [CK ₁ -V _{DD}] to form a clock generator
CM1, CM2	ı	circuit. CK2 is used to test its clock out.
Voice	0	Voice output pin. Output the contents of a voice ROM.
F	0	Melody output pin. Outputs the contents of a melody ROM with standard 12
	U	musical scales (555 to 2 114 Hz) in two octaves.
H ₀ -H ₃	0	Pins for the LCD's common signals.
So-S33	0	Pins for the LCD's segment signals.
INTA	ı	Input pin for external interrupt. The IFA flag is set at the rising edge of INTA.
P0 ₀ -P0 ₃	0	Output ports. The P0 ports are an output port. The accumulator Acc can be
P00-P03	U	transferred to this port by instruction.
		P1 and P2 are I/O pins which can switch to input or output pins in 4/3-bit units
D1. D1. D2. D2.	I/O	by instruction. They can be used as output pins when configured for a key
P1 ₀ -P1 ₃ , P2 ₀ -P2 ₂	1/0	matrix. The SM5M2 is forced to hardware-reset when all of P1 ₀ -P1 ₃ pins are High
		level. (By mask option)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V _{DD}	-0.3 to 4.0	V	
Input voltage	Vı	-0.3 to $V_{DD} + 0.3$	V	
Output voltage	Vo	-0.3 to $V_{DD} + 0.3$	V	
	l 01	2	mA	1
Source output ourrent for each nin	l _{O2}	2	mA	2
Source output current for each pin	Іоз	2	mA	3
	l 04	2	mA	4
	l ₀₅	2	mA	1
Sink output ourrent for each nin	l ₀₆	100	μA	2
Sink output current for each pin	I 07	2	mA	3
	l _{O8}	2	mA	4
Total source output current	Іон	10	mA	
Total sink output current	loL	10	mA	
Operating temperature	Topr	0 to 50	°C	
Storage temperature	Тѕтс	-55 to 150	°C	

NOTES:

1. Applicable pins: P00-P03

2. Applicable pins: P10-P13, P20-P22

3. Applicable pin : F

4. Applicable pins : H_0 - H_3 , S_0 - S_{33}

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	V _{DD}	2.4 to 3.3	V	
Instruction cycle	Tsys	Crystal+CR 25.9 to 31.7	110	
Instruction cycle	ISYS	Crystal 61.0	μs	
Oscillation starting voltage	Vosc	2.0	V	1

NOTE:

1. Use the crystal oscillation circuit

Oscillation Circuit

• Crystal oscillation (frequency = 32.768 kHz)

• CR oscillation (frequency = 70 kHz)

NOTE: In case of using RC resonator, crystal is also required.

NOTE: Mount the R, C and crystal as close to the LSI chip as possible to minimize the effects of stray capacitance.

DC CHARACTERISTICS

 $(V_{DD} = 2.4 \text{ to } 3.3 \text{ V}, T_{OPR} = 0 \text{ to } +50^{\circ}\text{C})$

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
	V _{IH1}		0.8 x VDD		V _{DD}	V	1
Input voltage	V _{IL1}		0		0.2 x V _{DD}	V	'
I input voitage	V _{IH2}		VDD-0.25		V _{DD}	V	2
	V _{IL2}		0		0.25	v	
	I _{IH1}	$V_{IH} = V_{DD}$			30.0		3
Input current	I _{IH2}	$V_{IH} = V_{DD}$			30.0	μA	4
	I _{IL1}	V1L = 0 V			25.0		5
	-l OH1	$V_{OH} = V_{DD} - 0.5 V$	500	1 300			6
	l _{OL1}	Vol = 0.5 V	1 000	2 000			0
	- I OH2	$V_{OH} = V_{DD} - 0.5 V$	500	1 300			7
Output current	l _{OL2}	Vol = 0.5 V	25	90.0		μA	'
	lo1	D = 1Fн		980			
	lo2	D = 0Fн		740			8
	lo3	D = 01н		200			
	lop11	CRRUN1		120	150		
	lop12	CRRUN2		110	130		
	Ist11	CRSTOP1		15.0	40.0		
	Ist12	CRSTOP2		4.00	15.0		
	Ist13	CRSTOP3		3.00	13.0		
Supply current	lop21	XTALRUN1		50.0	100.0	μA	9
	lop22	XTALRUN2		40.0	80.0		
	Ist 21	XTALHALT1		30.0	60.0		
	Ist 22	XTALHALT2		26.0	52.0		
	Ist 23	XTALHALT3		26.0	52.0		
	Ist 24	XTALSTOP		4.0	15.0		
Output impedance	Осом	V _{DD} =3.0 V		15		kΩ	10
Output impedance	Ds	VDD=3.0 V		30		1122	11

NOTES:

Applicable pins: P1₀-P1₃, P2₀-P2₂
 Applicable pins: OSC_{IN}, RESET, T, INTA

Applicable pins: P2o-P2z
 Applicable pins: P1o-P13
 Applicable pin: RESET
 Applicable pins: P0o-P03, F
 Applicable pins: P1o-P13, P2o-P2z

8. Applicable pins : VOICE, value of external resistor = 2 $k\Omega$ 9. Measurement conditions in detail are mentioned in the

tables next page.

10. Applicable pins : H_0 - H_3 11. Applicable pins : S_0 - S_{33}

CR + X'TAL Standby Mode

STATUS	STOP	P3 ₃	RF1	RD2	CR	X'TAL	CPU	Voice	LCD	Divider
CRRUN1	0	1	1	0	ON	ON	ON	ON	ON	ON
CRRUN2	0	0	1	0	ON	ON	ON	OFF	ON	ON
CRSTOP1	1	0	1	0	OFF	ON	OFF	OFF	ON	ON
CRSTOP2	1	0	0	0	OFF	ON	OFF	OFF	OFF	ON
CRSTOP3	1	0	0	1	OFF	ON	OFF	OFF	OFF	OFF

NOTES:

- When CR = OFF, CPU and Voice are OFF.
- When Divider = OFF, neither LCD nor Melody is in operation (undefined).
- STOP = 1 stands for executing STOP instruction.

Only X'TAL Standby Mode

STATUS	STOP	HALT	P3 ₃	RF1	RD2	CR	X'TAL	CPU	Voice	LCD	Divider
XTALRUN1	0	0	1	1	0	OFF	ON	ON	ON	ON	ON
XTALRUN2	0	0	0	1	0	OFF	ON	ON	OFF	ON	ON
XTALHALT1	0	1	0	1	0	OFF	ON	OFF	OFF	ON	ON
XTALHALT2	0	1	0	0	0	OFF	ON	OFF	OFF	OFF	ON
XTALHALT3	0	1	0	0	1	OFF	ON	OFF	OFF	OFF	OFF
XTALSTOP	1	0	0	0	0	OFF	OFF	OFF	OFF	OFF	OFF

NOTES:

- When CR = OFF, CPU and Voice are OFF.
- When Divider = OFF, neither LCD nor Melody is in operation (undefined).
- STOP = 1 stands for executing STOP instruction.
- HALT = 1 stands for executing HALT instruction.

SM5M2

SYSTEM CONFIGURATION A Resister and X Register

The A register (or accumulator: Acc) is a 4-bit general purpose register. The register is mainly used in conjunction with the ALU, C flag and RAM to transfer numerical value and data to perform various operations. The A register is also used to transfer data between input and output pins.

The X register (or auxiliary accumulator) is a 4-bit register and can be used as a temporary register. It loads contents of the A register or its content is transferred to the A register.

When the table reference instruction PAT is used, the X and A registers load ROM data.

A pair of A and X registers can accommodate 8-bit data.

Fig. 1 Data Transfer Example Between A Register and X Register

Arithmetic and Logic Unit (ALU) and Carry Signal Cy

The ALU performs 4-bit parallel operation.

Fig. 2 ALU

The ALU operates binary addition in conjunction with RAM, C flag and A register. The carry signal Cy is generated if a carry occurs during ALU operation. Some instructions use Cy: ADC instruction sets/clears the content of the C flag; ADX instruction causes the program to skip the next instruction. Note that Cy is the symbol for carry signal and not for C flag.

B Register and SB Register

• B register (BM, BL)

The B register is an 8-bit register that is used to specify the RAM address.

The upper 4-bit section is called B_M register and lower 4-bit B_L.

SB register

The SB register is an 8-bit register used as the save register for the B register. The contents of B register and SB register can be exchanged through EX instruction.

Fig. 3 B Register and SB Register

Data Memory (RAM)

The data memory (RAM) is used for data storage. The RAM capacity consists of 130 \times 4-bit (include 34 \times 4-bit display RAM).

Display RAM, which outputs data to an external pin for driving the segments of the LCD. Therefore, by writing data to the display RAM, the LCD can be driven at 1/4 duty (1/2 bias) to enable automatic display of the LCD.

As shown in Fig. 5 the display RAM is connected to segment outputs port from S_0 to S_{33} which correspond to the LCD common outputs H_0 to H_3 . Data M_0 to M_3 for one column of the display RAM is output pins as a LCD drive waveform which corresponds to outputs H_0 to H_3 . As a RAM, the display RAM operates exactly the same as other RAMs.

B _M B _L	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0																
1																
2																
3																
4																
5																
8	S ₀	S ₂	S ₄	S ₆	S ₈	S ₁₀	S ₁₂	S ₁₄	S ₁₆	S ₁₈	S ₂₀	S ₂₂	S ₂₄	S ₂₆	S ₂₈	S 30
9	S ₁	S₃	S 5	S ₇	S ₉	S ₁₁	S 13	S 15	S ₁₇	S 19	S ₂₁	S ₂₃	S ₂₅	S ₂₇	S ₂₉	S 31
Α	S ₃₂															
В	S ₃₃															

^{*} The area surrounded by the thick line represents the display RAM where S₀ to S₃₃ corresponds to the segment output.

Fig. 4 RAM Organization

Fig. 5 Relationship between The Display RAM and LCD Segment Outputs/Common Outputs

Program Counter PC and Stack Register SR

A ROM address is specified by the program counter (PC). The PC comprises 12-bit where 6-bit (Pu) are used to specify the page (see Fig. 6) and 6-bit (PL) are used to specify the step. Pu is a register and PL is a binary counter.

The table reference instruction PAT executes a similar operation to that of the subroutine jump and uses one level of the stack register.

Program Memory (ROM)

The ROM is used for program storage. The ROM capacity of the SM5M2 is 3 072-step. The ROM is organized into 48-page where one page is organized into 64-step.

Fig. 6 Program Counter PC and Stack Register SR

Page	00н	01н	02н	03н	04н	05н	06н	07н	08н	09н	0Ан	0Вн	0Сн	0Dн	0Ен	0Fн
Pυ	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111
	Program start	First page of subroutine TRS	Interrupt	Standby release	Table reference page PAT											
Page	10н	11н	12н	13н	14н	15н	16н	17н	18н	19н	1Ан	1Вн	1Сн	1Dн	1Ен	1Fн
Pυ	010000	010001	010010	010011	010100	010101	010110	010111	011000	011001	011010	011011	011100	011101	011110	011111
Page	20н	21н	22н	23н	24н	25н	26н	27н	28н	29н	2Ан	2Вн	2Сн	2D _H	2Ен	2F _H
Pυ	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111
																Last page

Fig. 7 ROM Organization

SHARP

Flags

The SM5M2 provides 4-flag (C flag and interrupt request flag <IFA, IFD, P3₃>) which can be used to set or determine conditions.

Output Latch Registers and Mode Registers

The output latch registers are connected to the P0, P1 and P2 pins. By instruction, the contents of the Acc can be transferred to the output latch registers. The SM5M2 also contains mode registers RC, RD, RE and RF. Setting the value of each register enables the voice start address, divider, LCD, melody or interrupt to be controlled. Setting a register is performed in the same way as the other output pins. The functions of the mode registers are shown in Table 1.

• INTA pin

INTA level can be loaded to Acc (bit 0), as follows.

LBLX 4 IN

INTA level does not through the noise debounce circuit.

CAUTION:

Connecting considerations of I/O port

When using an I/O port as bidirectional bus such as data bus, avoid setting the I/O port to output when the target pin is also set output.

Whenever the both output data conflict each other, system failure will be caused due to damaged circuits or instantaneous supply voltage drop.

Table 1 Mode Register Setting

REGI	STER	SET VALUE	MODE DESCRIPTION							
TYPE	BIT	SEI VALUE	WODE DESCRIPTION							
RC	RC0 RC7	-	Sets voice synthesizer starting address.							
	RD0	0	Clears the ME F/F to stop a melody.							
	ND0	1	Sets the ME F/F to start a melody from a ROM pointer address.							
	RD1		Sets by stop instruction (of melody code) and reset by TPB instruction.							
RD	RD RD2 0		Accepts divider clock-in.							
	1		Masks divider clock-in.							
	RD3 0		Sets voice synthesizer to 7 kHz sampling rate.							
	KD3	1	Sets voice synthesizer to 5 kHz sampling rate.							
	RE0	0	Masks the interrupt based on the IFA flag.							
	REU		Accepts the interrupt based on the IFA flag.							
RE	RE1	_	Sets "0" only.							
NE	RE2	0	Masks the interrupt based on the IFD flag.							
	NEZ	1	Accepts the interrupt based on the IFD flag.							
	RE3	_	No setting.							
	RF0	0	Turns off the LCD.							
	KFU	1	Turns on the LCD.							
	RF1	0	Stops the function of a bleeder circuit.							
	IXI I	1	Operates the function of a bleeder circuit.							
RF		0	Creates the system clock frequency by dividing two the main oscillation							
	RF2	0	frequency.							
	RFZ	1	Creates the system clock frequency by dividing four the main oscillation							
		l I	frequency.							
	RF3	_	Sets "0" only.							

System Clock Generator and Dividers

The main oscillation frequency (CR oscillator) which is input through CK₁ is divided into 2 or 4 to generate the system clock fsys (Fig. 8).

System clock fsys determines the execution instruction cycle so that the system clock period is the same as the instruction cycle.

However, the instruction execution cycle of twoword instruction is twice that of one-word instructions. Use of a CR oscillating element or a crystal oscillating element for the oscillator circuit is determined by the mask option. The crystal oscillator which is input through "OSC_{IN}-OSC_{OUT}" can be used as both real time clock and display signal of LCD. On the final stage of the divider, fc can be set 1 Hz or 2 Hz (in case of 32 kHz crystal oscillation) depending on the mask option.

Fig. 8 System Clock Generator and Divider

Either of the system clock frequencies 35 kHz or 17.5 kHz (in case of CR oscillation) can be selected by the RF2 flag (See Table 2). The 17.5 kHz clock has slower command execution speed, but uses less power for the same function.

The system clock is initialized to 35 kHz after hardware reset operation.

The Table 2 shows the relationship between the contents of RF2 flag for OSC resonator and the generated frequency, fsys.

FOR OSC RESONATOR	CONTENTS OF RF2 FLAG	GENERATED FREQUENCY fsys
70 kHz CR oscillation	0	35 kHz
70 KHZ CK OSCIIIAIIOH	1	17.5 kHz
22.760 kHz onyotal	0	16.384 kHz
32.768 kHz crystal	1	8.192 kHz

Table 2 OSC Resonator and Frequency fsys

FUNCTIONAL DESCRIPTION Voice Synthesizer

How to select a voice start address

There is a voice start address and RC, composed of 8-bit to select a voice start address. Voice start address is 16 bits. However, RC register can points only upper 8 bits in voice start address in partial. Lower 8-bit is always fixed "0". Refer to "RC register".

Minimum unit (shortest block) is equal voice ROM capacity. Each minimum unit is composed of 256 steps. Refer to Fig.9.

Core CPU detects the status whether voice synthesizer run or not, by reading the content of P3₃ flag. (P3₃ flag is "1" during voice generation.) Terminator (11111B) can be set as a voice data in the voice ROM.

When controller found a terminator, immediately stops voice and reset a flag.

When reached the bottom of the voice data address, voice data address automatically becomes 0000_H and voice continuously generates until come across a terminator.

CPU can reset the P3₃ flag and stop voice generation by force.

NOTE:

Voice ROM data "11111" means terminator of voice data. That is, an encoder must encode voice data except "11111".

Voice sampling frequency (5 kHz / 7 kHz)

In case of sampling frequency is 5 kHz, total generation period becomes 12.8 s. In case of 7 kHz, it's 9.1 s.

Voice sampling frequency (5 kHz or 7 kHz) is selected by RD3 register. In case of RD3 is "0", voice sampling frequency becomes 7 kHz. In case of RD3 is "1", it's 5 kHz.

RC register

The RC register is composed of 8-bit. It can points only upper 8 bits in the voice start address as shown below. The data is filled with both A and X registers.

NOTE:

A voice start address is corresponding to the RC register (8 bits). Maximum 256 (SM5M2) pieces of voice start address can be selected. Each voice start address is based on multiple number of 100H. When voice generates, P33 flag becomes "1".

· Voice start address

Fig. 9 Voice ROM Configuration

First set the sampling rate of the voice synthesizer. The voice synthesizer start address is corresponding to the RC register and the 8 bits in the RC register are obtained by A and X register. After setting the P3₃ voice flag High, the voice synthesizer would start playing. After detect P3₃ Low, the voice synthesizer could play the next section of voice.

Melody Output Function

The built-in melody generation circuit provides a variety of sound signals. Fig. 10 shows the block diagram of the melody generating circuit.

The melody ROM can store notes, rest and stop

commands in 256-step (1 step consists of 6-bit), allowing the generation of 12-scale over two octaves (555 to 2 097 Hz) and the section of the time base for notes (125/62.5 ms).

Fig. 10 Melody Generating Circuit

L1

OUT

CONTROL PROCEDURE

The binary counter for designating the address of the melody ROM can be arbitrarily set using the PRE instruction. A performance is started and stopped by the RD0-flag to "1" and "0".

The stop code generates a "rest tell signal", and at the same time, sets the RD1 flag. The end of the melody can be found by testing the RD1 flag.

Accordingly, to stop a performance at the end of melody, the RD0 flag must be clear upon detection of RD1 flag = 1.

Next step of PRE instruction, put the NOP instruction.

The following is an example of a melody generating program.

MELO LAX 2
ATX
LAX 1
PRE ; Set the starting address of the melody at the 21st.

Hexadecimal step.

NOP ; Dummy command

:

LBLX 0DH LAX 1 OUT ; Start the melody TPB : Executed for clear the RD1 flag NOP ; Dummy command LBLX 0DH TPB : Test the RD1 flag TR L1 ; Loop for detect the stop code LAX 0

Using these functions, the user can generate music, sound effects, alarm signals, etc. as desired, and any portion of the music can be repeated. Table 3 lists the melody output frequencies. The output frequency can be halved by making bit 5 (OCT) of the melody ROM Low (0). In Table 3, mo to m₃ show data in bits 1 to 4 of the melody ROM.

; Stop the melody

Table 3 Melody Output Frequency

	m ₃ m ₂ m ₁ m ₀	OUTPUT FREQUENCY (Hz)	CLOCK NUMBER *1	*2
do	0010	2114.1	15.5	7 8 8 8
si	0 0 1 1	1985.9	16.5	8 8 9
la#	0 1 0 0	1872.4	17.5	8 9 9 9
la	0 1 0 1	1771.2	18.5	9 9 9 10
sol#	0110	1680.4	19.5	9 10 10 10
sol	0 1 1 1	1560.4	21.0	10 11 10 11
fa#	1000	1489.5	22.0	11 11 11 11
fa	1 0 0 1	1394.4	23.5	11 12 12 12
mi	1010	1310.7	25.0	12 13 12 13
re#	1011	1236.5	26.5	13 13 14
re	1100	1170.3	28.0	14 14 14 14
do#	1101	1110.8	29.5	14 15 15 15

^{*1} Number of clocks for one cycle

^{*2} The number (n) in the waveforms represents the number of periods of the oscillation frequency (32.768 kHz) from the crystal oscillator for the duration in that particular part of the waveform.

MELODY ROM INSTRUCTION

The melody ROM instruction is composed of 6-bit. This 6-bit instruction (1 set), corresponding to a musical note, generates a sound signal.

I : Control the tone length. When "1",

125 ms; when "0", 62.5 ms.

OCT : When the octave is "1", the frequency

is determined by m₃-m₀.

When the octave is "0", 1/2 of the frequency determined by m_3 - m_0 .

m₃ - m₀ : Frequency as shown in Table 3.

Pause when $m_3 = m_2 = m_1 = m_0 = 0$, stop instruction when $m_3 = m_2 = m_1$

 $= 0, m_0 = 1.$

EXAMPLE OF WRITING ON THE MELODY ROM

An example of writing a tone such as the following, on the melody ROM will be shown.

MUSICAL SCALE	TONE LENGTH (ms)	OCT	тз	m ₂	m ₁	mo
sol	375	0	0	1	1	1
la	125	0	0	1	0	1
sol	250	0	0	1	1	1
mi	250	0	1	0	1	0
do	375	1	0	0	1	0
re	125	1	1	1	0	0
do	250	1	0	0	1	0
la	250	0	0	1	0	1

ADDRESS	DATA	MUSICAL NOTE INSTRUCTION
00	00	pause
01	27	sol
02	27	sol
03	27	sol
04	25	la
05	27	sol
06	27	sol
07	2A	mi
08	2A	mi
09	22	do
0A	22	do
0B	22	do
0C	3C	re
0D	22	do
0E	22	do
0F	25	la
10	25	la
11	01	stop

The tone length of an initial musical note which is generated from ROM addressed data assigned by a PRE instruction has an error of maximum ±4 ms. Therefore, by applying a pause as an initial note, a melody performs with a precisely regulated tone length.

Standby Function

A standby function is available which temporarily stops program execution to conserve power consumption. The state during which a program is in execution is called the operation mode and the state during which the execution is temporarily stopped is called the standby mode.

Either CR or X'TAL oscillator can be selected to a

system clock generator circuit of SM5M2. Each standby mode between CR+X'TAL and only X'TAL is entirely different as tables shown below.

In case of CR+X'TAL oscillator, HALT instruction can NOT be used, only STOP instruction is available.

On the other hand, in case of only X'TAL oscillator, both HALT and STOP instruction are available.

Table 4	CR + X'TAL	Standby	Mode
---------	------------	---------	------

	Standb	y mode	Re	gister sta	itus			Chip's	status		
STATUS	STOP	HALT	P3 ₃	RF1	RD2	CR	X'TAL	CPU	Voice	LCD	Divider
CRSTOP1	1		0	1	0	OFF	ON	OFF	OFF	ON	ON
CRSTOP2	1		0	0	0	OFF	ON	OFF	OFF	OFF	ON
CRSTOP3	1		0	0	1	OFF	ON	OFF	OFF	OFF	OFF

NOTES:

- When CR = OFF, CPU and Voice are OFF.
- When Divider = OFF, neither LCD nor Melody is in operation (undefined).
- STOP=1 stands for executing STOP instruction.

Table 5 Only X'TAL Standby Mode

	Standby mode		Re	Register status Chip's status							
STATUS	STOP	HALT	P3 ₃	RF1	RD2	CR	X'TAL	CPU	Voice	LCD	Divider
XTALHALT1	0	1	0	1	0	OFF	ON	OFF	OFF	ON	ON
XTALHALT2	0	1	0	0	0	OFF	ON	OFF	OFF	OFF	ON
XTALHALT3	0	1	0	0	1	OFF	ON	OFF	OFF	OFF	OFF
XTALSTOP	1	0	0	0	0	OFF	OFF	OFF	OFF	OFF	OFF

NOTES:

- When CR = OFF. CPU and Voice are OFF.
- When Divider = OFF, neither LCD nor Melody is in operation (undefined).
- STOP = 1 stands for executing STOP instruction.
- HALT = 1 stands for executing HALT instruction.

To get a condition mentioned in the first to the sixth boxes from right hand side, one of STOP or HALT instruction must be executed under the condition mentioned in the fourth to the sixth boxes from left hand side.

For instance, to get the status of XTALHALT1, of which contents are CR = OFF, X'TAL = ON, CPU = OFF, Voice = OFF, LCD = ON, and Divider = ON in the only

X'tal standby mode, HALT instruction must be executed under the condition of $P3_3 = 0$, RF1 = 1 and RD2 = 0.

NOTE:

The halt mode stops only system clock generator circuit. This mode is used to activate the system immediately after a condition causes a release to the operation mode.

During the standby mode, the contents of the RAM and stack RAM are retained. The contents of the flags, registers and output latches shown below are also retained.

FLAG	
IFA flag	
IFD flag	
IME flag	
C flag	
P33 flag	

REGISTER
Acc
X register
Вм, BL register
SB register
SP
SR
RC, RD, RE, RF

OUTPUT LATCH REGISTER
P0 register
P1 register
P2 register

A release from the standby mode to the operation mode is performed by a reset port input, an interrupt from the nonmaskable INTA, any port High in Port 1, and divider. A maskable interrupt request cannot become a factor in releasing back to the operation mode. The mask setting is performed with RE register. (see Table 1)

CAUTION:

When all of P1₀ to P1₃ level are High, the SM5M2 is performed to release the standby mode and enter normally hardware reset operation. (Mask option)

TRANSITION FROM THE OPERATION MODE TO THE STANDBY MODE

The HALT instruction is executed to set the halt mode and the STOP instruction is executed to set the stop mode.

Since the interrupt is used to release from the standby mode, the mode does not transfer to the standby mode if any of the following conditions are satisfied during execution of the STOP or HALT instruction.

- a) RE0 is set and the INTA level is High.
- b) RE2 is set and the IFD flag is set.

If any of the conditions above is satisfied, the mode does not transfer to the standby mode even if the STOP or HALT instruction is executed and the instruction at the address following that of the STOP or HALT instruction is executed. Therefore, place the JUMP instruction which specifies step 0 on page 3 to the location at the address following that of the STOP or HALT instruction.

RELEASE FROM THE STANDBY MODE TO THE OPERATION MODE

Release based on an interrupt request from the INTA pin or divider overflow. However, the reset or any port High in Port 1 is limited to a nonmaskable interrupt request.

The program restarts from step 0 on page 3. However, if the IME flag is set, the instruction at step 0 on page 3 is executed and a subroutine jump is performed to the interrupt processing routine specified on page 2 according to the type of interrupt.

Even if Low level input on INTA pin is removed before 900 command cycles, the stop mode is released.

However, the program will not jump to 20_H page (interrupt process routine).

Interrupt request flag IFA is not set: the program continues at step 0 of page 3.

Interrupts

Interrupts originate from an INTA input or divider overflow. The IFA and IFD flags become interrupt request flags.

The interrupt block is composed of mask flags (RE0, RE2), the IME flag and interrupt processing circuit.

As shown in Fig. 11, resetting a mask flag enables the interrupt request flag to be independently masked. Thus, the mask flags can be used in a program to establish the interrupt priority. The priority for interrupts generated simultaneously is shown in Table 6.

Fig. 11 Interrupt Block

Table 6 Interrupt Event Summary

INTERRUPT REQUEST	JUMP DESTINATION PAGE STEP		PRIORITY	INTERRUPT ENABLE FLAG	
(REQUEST FLAG)			ORDER		
INTA input (IFA)	2	0	1	RE0	
Divider overflow (IFD)	2	4	2	RE2	

When the IME flag is set, the interrupt circuit activates according to the interrupt request and a subroutine jump is performed to the specified address. The jump destinations according to interrupt origin are shown in Table 6. When the IME flag is cleared, an interrupt is not accepted even if an interrupt request is generated. The interrupt timing is shown in Fig. 12 and Fig. 13. The timing chart shown in Fig. 12 shows the interrupt enable state when an interrupt request has been generated. In this case, the interrupt processing signal INT goes High, one instruction cycle after the interrupt request flag is set. When INT goes High, the contents of the program counter are pushed into the stack register and execution jumps to the specified address. At this time, the INT signal and the IME flag are cleared to establish the interrupt disable mode. The IME flag is set again when the RTNI instruction is executed

to establish the interrupt enable mode.

The timing chart shown in Fig. 13 shows the state when interrupts are enabled while multiple interrupts are generated. In this case, a subroutine jump is performed according to the interrupt having the highest priority. When returning from the subroutine by executing the RTNI instruction, the instruction (two words are executed for a two-word instruction) at the location of return is executed and the interrupt for the next highest priority is accepted.

If an interrupt request is generated during execution of a two-cycle instruction, the instruction is executed after which interrupt processing is performed. If consecutive LAX instructions are skipped or if the SKIP conditions are satisfied, the skip operation is terminated after which interrupt processing is performed.

Fig. 12 Interrupt Timing Chart

Fig. 13 Interrupt Timing Chart

NOTE:

Fig. 12 and Fig. 13 show the case where the interrupt request flags are not masked.

SHARP

Hardware Reset Function

The hardware reset function mode activated two instruction cycles after the falling edge from the RESET pin. When the RESET pin is changed from High to Low, the pulse which is input by the OSC_{IN} pin is counted 2¹⁵ times after which the reset mode clears and the program counter starts from address 0 on page 0.

The initialized status of the system after reset is shown in Table 7.

The following reset functions are available.

- The I/O port is set as an input port and the mode register RC, RD, RE and RF are cleared. The output only port (P0) is cleared and output Low.
- The interrupt request flags (IFA, IFD) and the interrupt enable flag (IME) are cleared and all interrupts become disabled.
- The program counter start from step 0 on page 0.

For activate reset function, when power is turned on, you must connect a capacitor (0.1 μ F, TYP.) across the RESET pin and GND.

	- Nood Guide
FLAG OR REGISTER, X-REGISTER	STATUS (in reset mode and at program start)
PC	0
SP	Level 1
RAM	Undefined
Acc	Undefined
X-register	Undefined
P0-P2 output latch registers	0
Divider	0
IFA flag	0
IFD flag	0
IME flag	0
P3₃ flag	0
C flag	Undefined
B _M , B _L registers	Undefined
Register RC (bit 7-0)	0
Register RD (bit 1)	Undefined
Register RD (bit 0)	0
Register RD (bit 3)	0
Register RD (bit 2)	0
Register RE (bit 2, 1, 0)	0
Register RF (bit 3, 2, 1, 0)	0

Table 7 Reset Status

NOTES:

- Undefined flags and registers should be initialized by software.
- When all of P1 pins (P1o to P13) level goes to High, the SM5M2 is performed to reset operation. (Mask option)

LCD Function

Display segment

The SM5M2 contains a built-in circuit which directly drive a 1/4 duty, 1/2 bias LCD.

A sample LCD pattern is shown in Fig. 14.

Fig. 14 LCD Pattern

A segment of the LCD can be turned on or off by setting the corresponding bit in the display RAM (see Fig. 5) to "1" or "0". The displayed segments can assume any configuration containing up to a maximum of 136 segments. An example of a 7-segment numeric display is shown in Fig. 15.

Fig. 15 Sample LCD Pattern for 7-Segment Numeric Display

· LCD drive waveforms

The LCD drive waveforms for the LCD pattern of Fig. 15 displaying a "5" are shown in Fig. 16 (the segment output uses S_0 and S_1). For Fig. 16, 3 V is applied to the V_{DD} pin, and 1.5 V is applied to the V_{OA} pin.

Fig. 16 LCD Drive Waveforms (frame frequency = 1/T = 64 Hz or 128 Hz)

* Frame frequency is selectable by mask option.

Voa pin

Bleeder resistors are built-in to drive the LCD at 1/2 bias. The bieeder resistors have the configuration shown in Fig. 17. When bit 1 of the RF registor is set and V_{DD} is 3 V, V_{OA} output 1.5 V.

Normally, the V_{OA} pin is used in its open state. To drive an LCD with a large display area, the leading edge of the LCD drive waveform can be improved by connecting capacitor across the V_{OA} pin and V_{DD} . The same effect can be obtained by connecting capacitor across the V_{OA} pin and GND. When bit 1 of the RF register is set "0", V_{OA} drop to GND level to reduce power consumption. At the same time, the H_0 - H_3 and S_0 - S_{33} pin are GND level.

Booster circuit

It is necessary to apply external capacitors between V_{DD} pin and V_{OA} pin. (see Fig. 18)

Fig. 17 Booster Circuit

Fig. 18 Externally Connected Capacitor Circuit

Blank display

There are two way to blank the entire display to match the purpose.

- (a) Blanking the display for a short time.
 - Set bit 0 of the RF register to "1" : Display
 - Set bit 0 of the RF register to "0": Blank state
- (b) Blanking the display for a long period mainy to reduce supply current.
 - Set bit 0 and 1 of the RF register to "1": Display
 - Set bit 0 and 1 of the RF register to "0": Blank state

When bit 1 of the RF register is set "0", the voltage (V_{DD}) applied to the bleeder resistors is turned off and common outputs and segment outputs are dropped to GND level so that the display blanks. By cutting off the bleeder supply, the current consumption can be greatly reduced. However, when the display is blanked using method (b), the response speed of the LCD returning to the display state drops slightly. The RF register is in the blank state after initialization (reset state) from hardware reset.

INSTRUCTION SET Definition of Symbols

The following symbols are used in descriptions for the instructions.

M : Contents of RAM at the address

specified by the B register

 \leftarrow : Transfer direction

U : Logical OR
∩ : Logical AND
⊕ : Logical XOR
Ai : ith bit of the Acc

Push : Content of the PC are decremented to

the stack register.

Pop : The decremented contents are

transferred back to the PC.

Pj : Pj register (j = 3, 2, 1, 0) Rj : Rj register (j = F, E, D)

ROM (): ROM contents for address within ()
Cy: Carry of ALU (different from the C flag)

- Each bit of a register can be represented.
 For example, the ith bit of X register and R(0) register are represented as Xi and R(0) i. (i = 0, 1, 2, 3, ...)
- Increment and decrement denote the binary addition of 1_H and F_H, respectively.
- To skip a certain instruction means that the instruction is ignored and that no operation is performed until the execution transfers to the next instruction. In other words, the instruction is regarded as a NOP instruction. Therefore, one cycle is required to skip a one-word instruction and two cycles are required to skip a two-word instruction.

Instruction Summary

MNEMONIC	MACHINE CODE	OPERATION
		s Control Instructions
TR x	80 to BF	P _L ← x (I ₅ -I ₀)
IN X	E0 to EF	$P_{U} \leftarrow X (15-10)$ $P_{U} \leftarrow X (111-16)$
TL xy	00 to FF	$P_{L} \leftarrow X (111-16)$ $P_{L} \leftarrow y (15-16)$
	00 to FF	Push, Pu ← 01н
TRS x	C0 to DF	Pusii, Pu \leftarrow 01H PL \leftarrow X (I ₄ , I ₃ , I ₂ , I ₁ , I ₀ , 0)
	F0 1. FF	Push,
CALL xy	F0 to FF	P∪ ← x (I₁₁-I₅)
	00 to FF	P _L ← y (I ₅ -I ₀)
RTN	7D	Pop
RTNS	7E	Pop, Skip the next step
RTNI	7F	Pop, IME ← 1
	Data Tra	nsfer Instructions
LAX x	10 to 1F	Acc ← x (I₃-I₀)
LBMX x	30 to 2F	B _M ← x (I₃-I₀)
LBLX x	20 to 2F	B _L ← x (I ₃ -I ₀)
104	50 to 53	Acc ← M
LDA x		Вмі \leftarrow Вмі \oplus х (І1, Іо) (і = 1, 0)
EXC x	54 to 57	$M \leftrightarrow Acc$
		Вмі \leftarrow Вмі \oplus х (І1, Іо) (і = 1, 0)
	58 to 5B	$M \leftrightarrow Acc, BL \leftarrow BL+1$
EXCI x		Вмі \leftarrow Вмі \oplus х (І ₁ , І ₀) (і = 1, 0)
		Skip if Cy = 1 (B _L = 0F _H \rightarrow 0)
		$M \leftrightarrow Acc, BL \leftarrow BL+0FH$
EXCD x	5C to 5F	Вмі \leftarrow Вмі \oplus х (І1, Іо) (і = 1, 0)
		Skip if Cy = 1 (B _L = $0 \rightarrow 0$ F _H)
EXAX	64	$Acc \leftrightarrow X$
ATX	65	x ← Acc
EXBM	66	$B_M \leftrightarrow Acc$
EXBL	67	$BL \leftrightarrow Acc$
EX	68	$B \leftrightarrow SB$
	Arithm	etic Instructions
ADX x	00 to 0F	Acc ← Acc+x (I₃-I₀),
	30 10 01	Skip if Cy = 1
ADD	7A	Acc ← Acc+M
ADC	7B	$Acc \leftarrow Acc + M+C, C \leftrightarrow Cy$
	, 5	Skip if Cy = 1
COMA	79	Acc ← Acc
INCB	78	$B_L \leftarrow B_L+1$, Skip if $B_L = 0F_H$
DECB	7C	$B_L \leftarrow B_L-1$, Skip if $B_L = 0$

MNEMONIC	MACHINE CODE	OPERATION					
Test Instructions							
TAM	6F	Skip if Acc = M					
TC	6E	Skip if C = 1					
TM x	48 to 4B	Skip if Mi = 1 (i = 3 to 0)					
TABL	6B	Skip if A = B _L					
TPB x	4C to 4F	Skip if P (R) i = 1 (i = I ₁ , I ₀)					
TA	6C	Skip if IFA = 1, and (IFA \leftarrow 0)					
TD	69	Skip if IFD = 1, and (IFD \leftarrow 0)					
ID	02	Skip ii ii D = 1, and (ii D (= 0)					
		ulation Instructions					
SM x	44 to 47	$Mi \leftarrow 1 \ (i = 3 \text{ to } 0)$					
RM x	40 to 43	$Mi \leftarrow 0 \ (i = 3 \text{ to } 0)$					
SC	61	C ← 1					
RC	60	C ← 0					
IE	63	IME ← 1					
ID	62	IME ← 0					
	I/O Control Instructions						
INL	70	$Acc \leftarrow P1i (i = 3 to 0)$					
OUTL	71	P0i ← Acc (i = 3 to 0)					
ANP	72	$Pj \leftarrow Pj \cap Acc (j = 3 to 0)$					
ORP	73	$Pj \leftarrow Pj \cup Acc (j = 3 to 0)$					
IN	74	$Acc \leftarrow Pj (j = 3, 2, 1)$					
OUT	75	$Pj \leftarrow Acc (j = 3 \text{ to } 0)$					
	10	$Rj \leftarrow Acc (j = F \text{ to } D)$					
	Table Re	ference Instruction					
		Push					
PAT	6A	$P_{U} \leftarrow (0, 4), P_{L} (X_{1}, X_{0}, A_{CC})$					
. ,	00 to FF	(X, Acc) ← I ₇ -I ₀					
		Pop					
	Divid	er Instructions					
DR	69	DIV (f ₇ -f ₀) Reset					
	03	Div (ii is) redec					
DTA	69	Acc ← Divider (f₃ to f₀)					
	04						
	Melody (Control Instruction					
PRE	6D	Melody ROM pointer preset					
		Melody ROM pointer ← X, A					
		ial Instructions					
STOP	76	Standby mode (STOP)					
HALT	77	Standby mode (HALT)					
NOP	00	No operation					

SYSTEM CONFIGURATION EXAMPLE

• Handheld LCD game

72 QFP (QFP072-P-1010) ⊕ 0.08 M 0.5TYP. $0.2^{\pm 0.08}$ 0.15 ± 0.05 55 ⊒36 10.0 ± 0.2 12.0 ± 0.3 11.0 ± 0.2 0.1 1 19 (0) 1 18 0.65 ± 0.2 10.0±0.2 (1.0)(1.0) 12.0± 0.3 1.45 ± 0.2 Package base plane