FIRST()

In parsers and compilers, the FIRST() set of a variable (non-terminal) in a grammar is used in syntax analysis, particularly in **LL(1)** parsing and predictive parsing. The FIRST() set of a non-terminal contains all the terminal symbols that can appear at the beginning of some string derived from that non-terminal. It helps in constructing parsing tables.

Rules to Compute FIRST() Set

To compute FIRST(A) for a non-terminal A, apply the following rules:

1. If A is a terminal, then:

$$FIRST(A) = \{A\}$$

(A terminal's FIRST set is the terminal itself.)

2. If $A
ightarrow \epsilon$ (A can derive an empty string):

$$\epsilon \in FIRST(A)$$

(If A can directly derive ϵ , then ϵ is in FIRST(A).)

- 3. If A has a production $A o X_1 X_2 X_3 ... X_n$, then:
 - Add FIRST(X₁) to FIRST(A) (excluding ε).
 - If X₁ can derive ε, then add FIRST(X₂) to FIRST(A).
 - · Continue this process until:
 - A non-terminal that cannot derive ε is found.
 - If all X_i (for all i) can derive ε, then add ε to FIRST(A).
- 4. Handling multiple productions:

If A has multiple productions:

$$A o X_1 X_2 | Y_1 Y_2$$

Compute FIRST() for each right-hand side and take the union.

Example

Given the grammar:

```
less

S → A B

A → a | ε

B → b | ε
```

Compute FIRST():

```
• FIRST(a) = { a } (Rule 1)
```

- FIRST(S):
 - A can derive a or ϵ , so add a to FIRST(S).
 - A can be ϵ , so check B. B can derive b or ϵ , so add b.
 - Since both A and B can derive ϵ , add ϵ to FIRST(S).
 - FIRST(S) = { a, b, ε }.

These rules help in constructing predictive parsing tables and determining whether a grammar is LL(1).

Here's a summarized table of the FIRST() rules:

Rule	Condition	Effect
1	\boldsymbol{A} is a $\operatorname{terminal}$	FIRST(A) = { A }
2	$A ightarrow \epsilon$	Add ε to FIRST(A)
3	$egin{aligned} A ightarrow \ X_1 X_2 X_3 X_n \end{aligned}$	Add FIRST(X ₁) - {ε} to FIRST(A)
4	X_1 can derive ϵ	Add FIRST(X2) - $\{\epsilon\}$ to FIRST(A), continue until a non- ϵ -producing symbol is found
5	If all X_i can derive ϵ	Add ε to FIRST(A)

Follow()

Rules to Compute FOLLOW() Set in Parsers and Compilers

The FOLLOW() set of a non-terminal A contains all the terminals that can appear immediately after A in some derivation. It is useful for constructing LL(1) parsing tables and determining where to apply productions.

Rules for Computing FOLLOW(A)

To compute FOLLOW(A), apply these rules:

- 1. Start Symbol Rule
 - If S is the start symbol of the grammar, then add $\$ (end-of-input marker) to FOLLOW(S):

$$FOLLOW(S) = \{\$\}$$

- 2. Rule for $A \rightarrow \alpha B\beta$ (B is followed by β)
 - · If a production is of the form:

Then:

$$FIRST(\beta) - \{\epsilon\} \subseteq FOLLOW(B)$$

(Add everything in FIRST(β) except ϵ to FOLLOW(B).)

- 3. Rule for A $\rightarrow \alpha B$ (B is at the end of a production)
 - · If a production is of the form:

$$A o \alpha B$$

Then:

$$FOLLOW(A) \subseteq FOLLOW(B)$$

(Everything in FOLLOW(A) is added to FOLLOW(B).)

- 4. Rule for A \rightarrow $\alpha B\beta$ where β can derive ϵ
 - If B is followed by β and β can derive ε:

$$FOLLOW(A) \subseteq FOLLOW(B)$$

(Because B can be the last symbol due to eta being nullable.)

Example

Given the grammar:

```
less

S → A B

A → a | ε

B → b | ε
```

Step 1: Compute FIRST Sets

We already computed these earlier:

- FIRST(A) = { a, ε }
- FIRST(B) = { b, ε }
- FIRST(S) = { a, b, ε }

Step 2: Compute FOLLOW Sets

- 1. Start Symbol Rule:
 - FOLLOW(S) = { \$ } (Rule 1)
- 2. From S → A B:
 - FOLLOW(A) includes FIRST(B) { ε } → FOLLOW(A) = { b }
 - B is at the end, so FOLLOW(S) ⊆ FOLLOW(B) → FOLLOW(B) = {\$}
- From A → ε:
 - A can be ε, so FOLLOW(S) ⊆ FOLLOW(A) → FOLLOW(A) = { b, \$ }
- 4. From B → ε:
 - B can be ε, so FOLLOW(S) ⊆ FOLLOW(B) → FOLLOW(B) = {\$} (already included)

Final FOLLOW Sets

- FOLLOW(S) = { \$ }
- FOLLOW(A) = { b, \$ }
- FOLLOW(B) = { \$ }

Summary of FOLLOW() Rules

Rule	Condition	Effect
1	Start symbol	Add \$ to FOLLOW(S)
2	A o lpha Beta	Add FIRST(β) - {ε} to FOLLOW(B)
3	A ightarrow lpha B (B is at the end)	Add FOLLOW(A) to FOLLOW(B)
4	$A ightarrow lpha B eta$ where $eta ightarrow \epsilon$	Add FOLLOW(A) to FOLLOW(B)

These rules help in **LL(1) parsing table construction** and ensure correct handling of **nullable** productions.