Assignment V, Probability and Random Variables

พศวัต ถิ่นกาญจน์วัฒนา รหัสประจำตัวนิสิต 6410451199

1. หยิบไพ่ 2 ใบจากกองของไพ่ 8 ใบ ประกอบด้วย 4 queens และ 4 kings ถ้าไพ่อย่างน้อย 1 ใบ เป็น queen จงหาความน่าจะเป็นที่ไพ่ 2 ใบดังกล่าวเป็น queen ทั้งสองใบ

$$|E| = 3 |S| = 7 p(E) = \frac{|E|}{|S|}$$

$$= \frac{3}{7}$$

- 2. จงหาความน่าจะเป็นในการเลือกตัวเลข 6 ตัว ที่ตรงกับรางวัลที่หนึ่งทุกตัว โดยลำดับของตัวเลขไม่มีความสำคัญ กำหนดให้จำนวนเลขที่เลือกมีค่าตั้งแต่ 1 จนถึงค่าต่อไปนี้
 - 1) 40

$$|E| = 1$$
 $|S| = {}^{40}C_6$ $p(E) = \frac{|E|}{|S|}$ $= \frac{40!}{(40-6)! \cdot 6!}$ $= \frac{1}{3,838,380}$ $= 3,838,380$

2) 48

$$|E| = 1$$
 $|S| = {}^{48}C_6$ $p(E) = \frac{|E|}{|S|}$ $= \frac{48!}{(48-6)! \cdot 6!}$ $= 12,271,512$

3) 56

$$|E| = 1$$
 $|S| = {}^{56}C_6$ $p(E) = \frac{|E|}{|S|}$ $= \frac{56!}{(56-6)! \cdot 6!} = \frac{1}{32,468,436}$ $= 32,468,436$

4) 64

$$|E| = 1$$
 $|S| = {}^{64}C_6$ $p(E) = \frac{|E|}{|S|}$ $= \frac{64!}{(64-6)! \cdot 6!} = \frac{1}{74,974,368}$ $= 74,974,368$

3. จงหาความน่าจะเป็นในการเลือกไพ่ 5 ใบ ที่ประกอบด้วย 2 ข้าวหลามตัด 3 โพดำ 6 โพแดง 10 ดอกจิก และ King โพแดง

$$|E| = 51^4 \times 4$$
 $|S| = 52^5$ $p(E) = \frac{|E|}{|S|}$
= 27,060,804 $= 380,204,032$ $= \frac{27,060,804}{380,204,032}$
 ≈ 0.0711744266

4. จงหาความน่าจะเป็นในการทอยลูกเต๋าที่สมดุล 1 ลูก จำนวน 6 ครั้ง โดยไม่ปรากฏหน้าที่เป็นเลขคู่เลย

$$|E| = 3^{6}$$
 $|S| = 6^{6}$ $p(E) = \frac{|E|}{|S|}$
= 729 $= 46,656$ $= \mathbf{0.015625}$

5. จงหาความน่าจะเป็นแบบมีเงื่อนไขที่บิตสตริงความยาว 4 มีบิต 0 ติดกันอย่างน้อย 2 ตัว โดยกำหนดให้บิตแรกมีค่าเป็น 1

$$|E| = 2^{2}$$
 $|S| = 2^{4}$ $p(E) = \frac{|E|}{|S|}$
= 4 = 16 = $\frac{4}{16}$
= $\frac{1}{4}$
= **0.25**

- 6. ครอบครัวหนึ่งมีลูก 5 คน จงหาความน่าจะเป็นที่ลูกคนแรกเป็นผู้ชาย หรือสองคนสุดท้ายเป็นผู้หญิง เมื่อ
 - 1) ผู้ชายหรือผู้หญิงมีความน่าจะเป็นเท่ากัน

$$Define$$
 ความน่าจะเป็นของผู้ชาย $::= p(E_1)$ $Define$ ความน่าจะเป็นของผู้หญิง $::= p(E_2)$ Let $p(E_1) = p(E_2)$ $1 = p(E_1) + p(E_2)$ $1 = 2 \cdot p(E_1)$; (1) $p(E_1) = \frac{1}{2}$ $p(E_1) = p(E_2) = 0.5$ (2)

$$|E_1| = 2^4$$
 $|S_1| = 2^5$ $|E_2| = 2^3$ $|S_2| = 2^5$ $= 8$ $= 32$ $p(E_1) = \frac{16}{32}$ $p(E_2) = \frac{8}{32}$ $= 0.5$

$$p(E) = p(E_1) + p(E_2)$$

= 0.5 + 0.25
= **0.75**

2) ความน่าจะเป็นของผู้ชายเป็น 0.51

$$Define$$
 ความน่าจะเป็นของผู้หญิง ::= $p(E_1)$
 $Define$ ความน่าจะเป็นของผู้หญิง ::= $p(E_2)$
 Let $p(E_1) = 0.51$ (1)

 $1 = p(E_1) + p(E_2)$
 $1 = 0.51 + p(E_2)$; (1)

 $p(E_2) = 1 - 0.51$
 $= 0.49$
 $|E_1| = 2^4 \quad |S_1| = 2^5$
 $= 4 \quad = 32$
 $p(E_1) = \frac{16}{32}$
 $= 0.5$
 $p(E_2) = \frac{8}{32}$
 $= 0.25$

$$p(E) = 0.51(p(E_1)) + p(E_2)$$

$$= 0.51(0.5) + 0.25$$

$$= 0.255 + 0.25$$

$$= 0.505$$

7. สมมติให้ 2% ของคนที่ไม่ใช้ฝิ่นมีผลทดสอบการใช้ฝิ่นเป็น positive (หรือเรียกอีกอย่างหนึ่งว่า 2% เป็น false positive) และ 5% ของคนที่ใช้ฝิ่นมีผลทดสอบการใช้ฝิ่นเป็น negative (หรือเรียกอีกอย่างหนึ่งว่า 5% เป็น false negative) และมีคน 1% ที่เป็นผู้ใช้ฝิ่น จงหา

กำหนดให้	$\mathbb U$ เป็น $universe$ และ $ \mathbb U $	= 100
กำหนดให้	เซตของคนที่ใช้ฝิ่น	::= A
กำหนดให้	เซตของคนที่ไม่ใช้ฝิ่น	::= B
กำหนดให้	เซตของคนที่ได้ผลการทดสอบเป็น positive	::= C
กำหนดให้	เซตของคนที่ได้ผลการทดสอบเป็น negative	::= D
โจทย์กำหนด	2% เป็น $false\ positive$:	$ B \cap C = 2$
โจทย์กำหนด	5% เป็น $false\ negative$:	$ A \cap D = 5$
โจทย์กำหนด	1% เป็นคนที่ใช้ฝิ่น :	A = 1

1) ความน่าจะเป็นที่คนที่ทดสอบการใช้ฝิ่นได้ผล negative ไม่ได้ใช้ฝิ่น

true negative =
$$B \cap D$$

 $|A| = 1$
 $|A'| = |\mathbb{U} - A|$
= $100 - 1$
= 99

- 2) ความน่าจะเป็นที่คนที่ทดสอบการใช้ฝิ่นได้ผล positive เป็นผู้ใช้ฝิ่น
- 8. สมมติให้คนไข้ 8% เป็นผู้ติดเชื้อไวรัสสายพันธุ์ใหม่กว่า นอกจากนี้พบว่า 98% ของคนไข้ที่เป็นผู้ติดเชื้อไวรัส สายพันธุ์ใหม่กว่ามีผลการทดสอบเป็น positive และ 3% ของคนไข้ที่ไม่เป็นผู้ติดเชื้อไวรัสสายพันธุ์ใหม่กว่า มีผลการทดสอบเป็น positive จงหา
 - 1) ความน่าจะเป็นที่คนไข้ที่มีผลการทดสอบ positive เป็นผู้ติดเชื้อ
 - 2) ความน่าจะเป็นที่คนไข้ที่มีผลการทดสอบ positive ไม่เป็นผู้ติดเชื้อ
 - 3) ความน่าจะเป็นที่คนไข้ที่มีผลการทดสอบ negative เป็นผู้ติดเชื้อ
 - 4) ความน่าจะเป็นที่คนไข้ที่มีผลการทดสอบ negative ไม่เป็นผู้ติดเชื้อ

9.	. จงหา $\operatorname{expected}$ value ของผลรวมของการโยนลูกเต๋า 2 ลูก โดยลูกเต๋าแต่ละลูกมี biased ที่จะก	ออกเลข 3
	เป็นสองเท่าของเลขอื่น ๆ	

- 10. ในการสอบวิชา 01418000 ข้อสอบประกอบด้วยคำถามแบบถูก/ผิด จำนวน 50 ข้อ ข้อละ 2 คะแนน และคำถามแบบเลือกตอบ 4 ตัวเลือก จำนวน 25 ข้อ ข้อละ 4 คะแนน ความน่าจะเป็นที่แป่งตอบคำถาม แบบ ถูก/ผิดได้ถูกต้องคิดเป็น 0.9 และความน่าจะเป็นที่จะตอบคำถามแบบเลือกตอบได้ถูกต้องคิดเป็น 0.8 จงหา expected value ของคะแนนที่แป่งจะได้
- 11. ป๋องใส่ลูกบอล ${\bf m}$ ลูกลงในถัง ${\bf n}$ ใบแบบสุ่มและกระจายไปในถังทุก ๆ ใบเท่า ๆ กัน จงหา
 - 1) ความน่าจะเป็นที่ถังใบแรกไม่มีลูกบอล
 - 2) Expected value ของจำนวนถังที่ไม่มีลูกบอล
- 12. จงหาค่า variance ของจำนวน success ในการทำ Bernoulli trials จำนวน n ครั้งที่แต่ละครั้งมีความน่าจะเป็น ของ success เป็น p และความน่าจะเป็นของ failure เป็น ${\bf q}$