Examen 2do Parcial II/2019 Denis Brun De La Fuente

R.- A : 4 B: 5

C: 6

Pregunta 2
Incorrecta

Cual es el número mínimo de vértices que puede tener un grafo regular de 310 aristas?

R.- 1

Por qué con un solo vértice ya se puede considerar un grafo y puede tener cualquier número de aristas entre el mismo vértice.

Pregunta 3

Con cual concepto puede resolver un problema en el que necesita manejar la los costos de inversión de una empresa?

R.- Teoría de Juegos

Por qué manejar los costos de inversión es como hacer una estrategia para ganar.

Pregunta 4
Incorrecta
Puntúa 0,00 sobre
5.00

Supongamos que cada persona de un conjunto de 10 tiene una lista de 4 libros que desea tomar prestados de la biblioteca. Supongamos también que cada libro aparece en 4 listas exactamente. Que concepto utilizaría para poder indicar si cada persona puede tomar prestado un libro de su lista al mismo tiempo?

Escriba en concepto, en minúsculas, singular y sin acentos (solo una palabra):

R.- emparejamiento

Por qué si deben tomar un libro al mismo tiempo dos personas, ese libro aparece en las listas de ambas personas que están emparejadas.

Pregunta 5
Correcta

¿De cuántas maneras pueden ordenarse las letras de la palabra MINERA si las letras I y A deben ocupar solamente lugares impares ?

MINERA 123456

Para el resto => 4P4 = 24 Para A y para I => 3P2 = 6 } 24 * 6 = 144

R.- 144

Pregunta 6

Correcta

Puntúa 5,00 sobre 5.00 Son isomorfos los siguientes grafos?

G1=(V1,A1) y G2=(V2,A2)

V1 = {1; 2; 3; 4; 5; 6} y V2 = {a; b; c; d; e; f}

A1 = {{1; 2}; {1; 3}; {1; 4}; {2; 3}; {2; 6}; {3; 5}; {4; 5}; {4; 6}; {5; 6}}

A2 = {{a; b}; {a; d}; {a; f}; {b; c}; {b; e}; {c; d}; {c; f}; {d; e}; {e; f}}

Si
$$a = 1 -> f = 4$$
 -> $f = 4$ -> $c = 6$ -> $c = 6$ -> $f = 4$

$$d = 3 \qquad e = 5 \qquad b = 2$$

$$b = 2 \qquad d = 5$$

R.- Falso

Por qué no se puede encontrar una función de mapeo entre ambos grafos.

Pregunta 7 Correcta

Puntúa 5,00 sobre 5,00 Suponga el siguiente grafo:

G1=(V1,A1) V1 = {1; 2; 3; 4; 5; 6; 7; 8}

 $A1 = \{\{1;\,2\};\,\{1;\,3\};\,\{1;\,8\};\,\{2;\,3\};\,\{2;\,6\};\,\{3;\,4\};\,\{3;\,6\};\,\{4;\,5\};\,\{4;\,6\};\,\{5;\,6\};\,\{5;\,7\};\,\{6;\,7\};\,\{7;\,8\}\}$

El siguiente conjunto de aristas: {1,2}{3,6}{5,7} que tipo de emparejamiento son?

R.- Maximal

Por qué no están todos los vértices en el conjunto.

Pregunta 8

¿Para qué valores de n los grafos Cn, Kn, Kn,n y Qn son eulerianos?

R.- Ninguno de los anteriores

Por qué es muy complejo saberlo y en especial para valores pares o impares.

Pregunta 9

Es cierto que un emparejamiento es un grafo no conexo?

R.- Verdadero

Por qué en un emparejamiento no existen aristas entre algunos pares de vértices.

Pregunta 10

Correcta

Puntúa 5,00 sobre 5,00 En la isla de Wanda los lugares interesantes y los caminos que los unen están representados por el grafo cuya lista de adyacencia es:

0	1	2	3	4	5	6	7	8
1	0	1	0	3	0	1	0	1
3	2	3	2	5	4	5	2	3
5	6	7	4		6	7	6	5
7	8		8		8		8	7

Es posible que un visitante logre ir por todos los lugares turísticos?, que concepto

-0	4		4	-0	1	-0	4	-9
5	6	7	4		6	7	6	5
7	8		8		8		8	7

Es posible que un visitante logre ir por todos los lugares turísticos?, que concepto utilizaría para ayudarlo?

R.- Camino Hamiltoneano

Por qué solo interesa llegar a todos los lugares, no importa cómo llegar ni tampoco volver al primer lugar que comenzó.