统计基础---样本估计总体(总体均值和标准差已知)

已知总体均值为 μ ,标准差为 σ 。经过一些实验测试之后,评估实验是否有效,即总体均值是否有提高或者降低。

实际情况中通常无法对整个总体均做实验,然后计算总体的均值和标准差,看是否有提高或者降低。 常用的做法是从总体中抽取数量为 n 的一个样本,对其测试,然后计算样本均值。例如计算后的均值为 $\bar{\mathbf{x}}$.

新的总体分布情况是未知的,假设新的均值为 μ_{new} ,根据正态分布的特性,有 95%的值位于 $\mu_{new}\pm 2\sigma/\sqrt{n}$ 范围内。 \bar{x} 的获取不是偶然的,所以应该落于这个范围内。即:

 μ_{new} -2 σ / \sqrt{n} <x< μ_{new} +2 σ / \sqrt{n} , 求解 μ_{new} 为: [x-2 σ / \sqrt{n} , x + 2 σ / \sqrt{n}], 称为 95%的置信区间 (CI). 也就是说,抽样 100 次,有 95 次这个区间是包含真值的。 以上计算过程假定实验前 后总体均值改变,但标准差没有变化。

