Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

- 1. (Cancelled)
- 2. (Cancelled)
- 3. (Currently amended) A compound of formula (I)

in which

- X represents chlorine or bromine halogen,
- Y represents methyl or ethyl alkyl,
- Z represents ethyl or n-propyl $\underline{C_2}$ - $\underline{C_6}$ -alkyl,

and, if

- G represents hydrogen (a), then
- A represents hydrogen, or C_2 - C_8 [[C_6]]-alkyl, C_4 - C_2 -haloalkyl, C_4 - C_4 -alkoxy- C_4 - C_3 -alkyl or represents C_3 - C_6 -cycloalkyl which is optionally mono or disubstituted by fluorine, chlorine, C_4 - C_2 -alkyl or C_4 - C_2 -alkoxy,
 - B represents hydrogen, or C_1 - C_2 -alkyl or C_1 - C_4 -alkoxy- C_1 - C_2 -alkyl,
 - D represents hydrogen,

 C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_1 - C_4 -alkoxy C_2 - C_3 -alkyl or C_1 - C_4 -alkylthio- C_2 - C_3 -alkyl, each of which is optionally mono- to trisubstituted by fluorine or chlorine, represents or C_3 - C_6 -cycloalkyl which is optionally mono- or disubstituted by fluorine, chlorine, C_1 - C_2 -alkyl, C_1 - C_2 -alkoxy or trifluoromethyl, with the proviso that if D is not hydrogen,

then A only represents hydrogen or $[[C_1]]$ $\underline{C_2}$ - C_3 -alkyl, or .

A and D together represent a C₃-C₅-alkanediyl group in which optionally one methylene group is replaced by oxygen or sulphur and which is optionally mono- or disubstituted by C₁-C₂-alkyl or C₁-C₂-alkoxy,

or A and D together with the atoms to which they are attached represent one of the groups AD-1 to AD-10

AD-10

and, if

G represents one of the groups

$$R^{1}$$
 (b), R^{2} (c), R^{3} (d), R^{6} R^{6} (e), R^{6} (e), R^{7} (g),

in which

E represents a metal ion equivalent or an ammonium ion,

L represents oxygen or sulphur and

M represents oxygen or sulphur,

then

R¹—represents C₁ C₁₀ alkyl, C₂ C₁₀ alkenyl, C₁ C₄ alkoxy C₁ C₂ alkyl, C₄ C₄ alkylthio C₁ C₂ alkyl or poly C₁ C₃ alkoxy C₁ C₂ alkyl, each of which is optionally mono—to—pentasubstituted by fluorine—or—chlorine, monosubstituted by cyano, monosubstituted by CO R¹³, C=N OR¹³ or CO₂R¹³, or represents C₃ C₆ cycloalkyl which is optionally mono—or disubstituted by fluorine, chlorine, C₁ C₂ alkyl or C₁ C₂ alkoxy and in which optionally one or two not directly adjacent methylene groups are replaced by oxygen,

represents phenyl or benzyl, each of which is optionally mono or disubstituted by fluorine, chlorine, bromine, eyano, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkylsulphinyl, C_1 - C_4 -alkylsulphonyl, C_1 - C_4 -alkylsulphonyl, C_1 - C_4 -alkoxy, C_1 - C_2 -haloalkoxy,

represents pyrazolyl, thiazolyl, pyridyl, pyrimidyl, furanyl or thienyl, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine or C₁-C₂-alkyl,

R²—represents C₁-C₁₀-alkyl, C₂-C₁₀-alkenyl, C₁-C₄-alkoxy-C₂-C₄-alkyl or poly-C₁-C₄-alkoxy-C₂-C₄-alkyl, each of which is optionally monoto trisubstituted by fluorine or chlorine,

represents C_3 - C_7 -cycloalkyl which is optionally monosubstituted by C_4 - C_2 -alkyl or C_1 - C_2 -alkoxy, or

represents phenyl or benzyl, each of which is optionally mono or disubstituted by fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl, methoxy, trifluoromethyl or trifluoromethoxy,

R³ represents C₁-C₄-alkyl which is optionally mono to trisubstituted by fluorine or represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro,

R⁴ and R⁵ independently of one another each represent C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ alkylamino, di (C₁-C₆ alkyl)amino, C₁-C₆ alkylthio or C₃-C₄ alkenylthio, each of which is optionally mono to trisubstituted by fluorine or chlorine, or represent phenyl, phenoxy or phenylthio, each of which is optionally mono or disubstituted by fluorine,

ehlorine, bromine, nitro, cyano, C₁-C₃-alkoxy, trifluoromethoxy, C₁-C₃-alkylthio, C₁-C₃-alkyl or trifluoromethyl,

R⁶ and R⁷ independently of one another represent hydrogen, represent C₁-C₆-alkyl, C₂-C₆-alkyl, C₃-C₆-eycloalkyl, C₁-C₄-alkoxy, C₃-C₆-alkenyl or C₁-C₆-alkoxy C₂-C₆-alkyl, each of which is optionally monoto trisubstituted by fluorine or chlorine, represent phenyl which is optionally monotor disubstituted by fluorine, chlorine, bromine, trifluoromethyl, C₁-C₄-alkyl or C₁-C₄-alkoxy, or together represent a C₅-C₆-alkylene radical which is optionally monotor disubstituted by methyl and in which optionally one methylene group is replaced by oxygen,

R¹³—represents C₁-C₄-alkyl, C₃-C₄-alkenyl, C₃-C₄-alkynyl or C₁-C₄-alkoxy C₂-C₃-alkyl or C₃-C₄-cycloalkyl in which optionally one methylene group is replaced by oxygen,

A represents hydrogen, represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₁-C₄-alkoxy-C

1-C 3-alkyl or C₁-C₄-alkylthio C₁-C₃-alkyl, each of which is optionally mono to trisubstituted by fluorine or chlorine, or represents C₃-C₆-cycloalkyl which is optionally mono or disubstituted by fluorine, chlorine, C₁-C₂-alkyl or C₁-C₂-alkoxy,

B represents hydrogen, C₁-C₄-alkyl or C₁-C₄-alkoxy-C₁-C₂-alkyl.

D-represents hydrogen,

C₁-C₆-alkyl, C₃-C₆-alkenyl, C₁-C₄-alkoxy C₂-C₃-alkyl or C₁-C₄-alkylthio-C₂-C₃-alkyl, each of which is monoto-trisubstituted by fluorine or chlorine, represents C₃-C₆-cycloalkyl which is optionally monotor disubstituted by fluorine, chlorine, C₁-C₂-alkyl, C₄-C₂-alkoxy or trifluoromethyl, with the proviso that if D is not hydrogen,

then A only represents hydrogen or C1-C3-alkyl, or

A and D together represent a C₃-C₅-alkanediyl group in which optionally one methylene group is replaced by oxygen or sulphur and which is optionally mono or disubstituted by C₁-C₂-alkyl or C₁-C₂-alkoxy,

or A and D together with the atoms to which they are attached represent one of the groups AD-1 to AD-10

$$\bigcap_{N}$$

AD-1

$$\bigcup_{N_{i}}$$

AD-4

$$\bigcap_{N}$$

AD-7

AD-10.

4. (Currently amended) A compound of the formula (I) according to Claim 3, in which

X represents chlorine or bromine,

Y represents methyl,

Z represents ethyl,

and, if

G represents hydrogen (a), then

A represents hydrogen, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, or tert-butyl, trifluoromethyl, cyclopropyl, cyclopentyl or cyclohexyl,

B represents hydrogen, methyl or ethyl,

D represents hydrogen, or

methyl, ethyl, n propyl, isopropyl, n butyl, sec butyl, isobutyl, cyclopropyl, cyclopentyl or cyclohexyl, with the proviso that if D is not hydrogen,

then A only represents hydrogen, methyl or ethyl, or .

A and D together represent a C₃-C₄-alkanediyl group in which in each case optionally one methylene group is replaced by oxygen or sulphur and which is optionally mono- or disubstituted by methyl,

or A and D together with the atoms to which they are attached represent the group below:

AD-1

and, if

G represents one of the groups

in which

L represents oxygen and

M represents oxygen or sulphur,

then

R¹—represents—C₁—C₆—alkyl,—C₂—C₆—alkenyl,—C₁—C₂—alkoxy—C₁—C₂—alkyl,—C₁—C₂—alkyl,—cach—of—which—is—optionally mono—to trisubstituted by fluorine or chlorine, or represents cyclopropyl, cyclopentyl or cyclohexyl, each of which is optionally monosubstituted by fluorine, chlorine, methyl, ethyl or methoxy,

represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, cyano, nitro, methyl, ethyl, n propyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, methylsulphinyl, ethylsulphinyl, methylsulphonyl, ethylsulphonyl, trifluoromethyl or trifluoromethoxy,

represents furanyl, thienyl or pyridyl, each of which is optionally monosubstituted by chlorine, bromine or methyl,

 R^2 —represents— C_1 — C_8 -alkyl,— C_2 - C_6 -alkenyl—or— C_1 - C_3 -alkoxy- C_2 - C_3 -alkyl, cyclopentyl or cyclohexyl,

or represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, cyano, nitro, methyl, methoxy, trifluoromethyl or trifluoromethoxy,

R³ represents C₁-C₄-alkyl which is optionally mono to trisubstituted by fluorine or chlorine or represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, trifluoromethyl, trifluoromethoxy, cyano or nitro,

R⁶—represents hydrogen, represents C₁-C₄-alkyl, C₃-C₆-cycloalkyl or allyl, represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, methyl, methoxy or trifluoromethyl,

R⁷ represents methyl, ethyl, n propyl, isopropyl or allyl,

R⁶ and R⁷ together represent a C₅-C₆-alkylene radical in which optionally one methylene group is replaced by oxygen,

A represents hydrogen, methyl, ethyl, n propyl, isopropyl, n butyl, isobutyl, sec butyl, tert butyl, trifluoromethyl, cyclopropyl, cyclopentyl or cyclohexyl,

B represents hydrogen, methyl or ethyl,

D represents hydrogen,

methyl, ethyl, n propyl, isopropyl, n butyl, sec butyl, isobutyl, cyclopropyl, eyclopentyl or cyclohexyl, with the proviso that if D is not hydrogen,

then A only represents hydrogen, methyl or ethyl, or

A and D together represent a C₃-C₄-alkanediyl group in which in each case optionally one methylene group is replaced by oxygen or sulphur and which is optionally mono- or disubstituted by methyl, or

A-and D together with the atoms to which they are attached represent the group below:

5. (Currently amended) A compound of the formula (I) according to Claim 3, in which

X represents bromine,

Y represents methyl,

Z represents ethyl,

and, if

G represents hydrogen (a), then

A represents hydrogen, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, or tert-butyl or cyclopropyl,

B represents hydrogen, methyl or ethyl,

D represents hydrogen,

methyl, ethyl or cyclopropyl, with the proviso that if D is not hydrogen,

then A only represents hydrogen, methyl or ethyl, or .

A and D together represent a C₃-C₄-alkanediyl group,

or A and D together with the atoms to which they are attached represent the group below:

AD-1

and, if

G represents one of the groups

in-which

L represents oxygen and

M represents oxygen,

then

R¹—represents C₁ C₆ alkyl or C₁ C₂ alkoxy C₁ C₂ alkyl, each of which is optionally monoto trisubstituted by fluorine or chlorine,

 R^2 represents C_1 - C_8 -alkyl,

 R^3 represents C_1 - C_4 -alkyl,

A represents hydrogen, methyl, ethyl, n propyl, isopropyl, n butyl, isobutyl, sec butyl, tert butyl or cyclopropyl,

B represents hydrogen, methyl or ethyl,

D represents hydrogen,

methyl, ethyl or cyclopropyl, with the provise that if D is not hydrogen,

then A only represents hydrogen, methyl or ethyl, or

A and D together represent a C₃-C₄-alkanediyl group, or

A and D together with the atoms to which they are attached represent the group below:

- 6. (Currently amended) A process for preparing a compound of the formula (I) according to Claim 3, wherein said compound is (I-a), (I-b), (I-c), (I-d), (I-e), (I-f) or (I-g), characterized in that,
 - (A) in order to obtain

a compound of the formula (I-a),

in which

A, B, D, X, Y and Z are as defined in Claim 3, a compound of the formula (II),

$$A \xrightarrow{CO_2R^8} B$$

$$D \xrightarrow{N} Q$$

$$Z$$

$$Y$$
(II)

in which

A, B, D, X, Y and Z are as defined in Claim 3,

and

R⁸ represents alkyl,

is condensed intramolecularly in the presence of a diluent and in the presence of a base[[;]].

(B) in order to obtain a compound of the formula (I-b)

in which A, B, D, R¹, X, Y and Z are as defined in Claim 3, a compound of the formula (I a) in which A, B, D, X, Y and Z are as defined in Claim 3 is reacted

α) with an acid halide of the formula (III),

in which

R¹ is as defined in Claim 3 and

Hal represents halogen

or

B) with a carboxylic anhydride of the formula (IV),

$$R^{1}$$
-CO-O-CO- R^{1} (IV)

in which

R¹ is as defined,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder;

(C) in order to obtain a compound of the formula (I-c)

$$\begin{array}{c|c}
 & A & D \\
\hline
 & B & N & O \\
\hline
 & R^2-M & X \\
 & L & Z & Y \\
\end{array}$$
(I-c)

in which A, B, D, R², M, X, Y and Z are as defined in Claim 3 and L represents oxygen, a compound of the formula (I-a) in which A, B, D, X, Y and Z are as defined above are in Claim 3 is in each case reacted

with a chloroformic esters ester or a chloroformic thioesters thioester of the formula (V),

$$R^2$$
-M-CO-Cl (V)

in which

R² and M are as defined above in Claim 3,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder,

(D) in order to obtain a compound of the formula (I c) in which Λ, B, D, R², M,
X, Y and Z are as defined in Claim 3 and L represents sulphur, a compound of the formula
(I a) in which Λ, B, D, X, Y and Z are as defined in Claim 3 is in each case reacted

α) with a chloromonothioformic ester or a chlorodithioformic ester of the formula (VI),

$$\frac{\text{CI} + \text{M-R}^2}{\text{S}}$$

in which

M and R² are as defined in Claim 3,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder

or

B) with carbon disulphide and then with a compound of the formula (VII),

R²-Hal

(VII)

in which

R² is as defined in Claim 3 and

Hal represents chlorine, bromine or iodine,

if appropriate in the presence of a diluent and if appropriate in the presence of a base;

(E) in order to obtain a compound of the formula (I-d)

in which A, B, D, R³, X, Y and Z are as defined in Claim 3, a compound of the formula (I a) in which A, B, D, X, Y and Z are as defined in Claim 3 is in each case reacted

with a sulphonyl chloride of the formula (VIII),

$$\mathbb{R}^3$$
-SO₂-Cl (VIII)

in which

R³ is as defined in Claim 3,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder:

(F) in order to obtain a compound of the formula (I-e)

$$\begin{array}{c|c}
 & A & D \\
\hline
 & B & N & O \\
\hline
 & R^5 & H & Z & Y
\end{array}$$
(I-e)

in which A, B, D, L, R⁴, R⁵, X, Y and Z are as defined in Claim 3, a compound of the formula (I-a) in which A, B, D, X, Y and Z are as defined in Claim 3 is in each case reacted

with a phosphorus compound of the formula (IX),

in which

L, R⁴ and R⁵ are as defined in Claim 3 and

Hal represents halogen,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder;

(G) in order to obtain a compound of the formula (I-f)

in which A, B, D, E, X, Y and Z are as defined in Claim 3, a compound of the formula (I a) in which A, B, D, X, Y and Z are as defined in Claim 3 is in each case reacted

with a metal compound or an amine of the formulae (X) and (XI), respectively,

$$\frac{R^{10} \setminus R^{11}}{R^{12}}$$
Me(OR¹⁰)_t (X) (XI)

in which

Me represents a mono or divalent metal,

t represents the number 1 or 2 and

R¹⁰, R¹¹, R¹² independently of one another represent hydrogen or alkyl, if appropriate in the presence of a diluent;

(H) in order to obtain a compound of the formula (I-g)

$$\begin{array}{c|c}
 & A & D \\
 & A & D \\$$

in which A, B, D, L, R⁶, R⁷, X, Y and Z are as defined in Claim 3, a compound of the formula (I-a) in which A, B, D, X, Y and Z are as defined in Claim 3 is in each case reacted

 α) with an isocyanate or an isothiocyanate of the formula (XII),

$$R^6$$
-N-C-L (XII)

in which

R⁶ and L are as defined in Claim 3,

if appropriate in the presence of a diluent and if appropriate in the presence of a catalyst, or

B) with a carbamoyl chloride or a thiocarbamoyl chloride of the formula (XIII).

$$\frac{R^6}{R^7} \stackrel{L}{\text{N}} CI \qquad (XIII)$$

in which

L, R⁶ and R⁷— are as defined in Claim 3,

if appropriate in the presence of a diluent and if appropriate in the presence of an acid binder.

- 7. (Canceled)
- 8. (Previously presented) A pesticide, a herbicide or a combination thereof, comprising at least one compound of the formula (I) according to Claim 3.
- 9. (Withdrawn) A method for controlling animal pests, unwanted vegetation, or a combination thereof, comprising allowing a compound of the formula (I) according to Claim 3 to act on pests, their habitat, or a combination thereof.
 - 10. (Canceled)

- 11. (Withdrawn) A process for preparing a pesticide, a herbicide or a combination thereof, comprising mixing a compound of the formula (I) according to Claim 3 with at least one extender, surfactant or a combination thereof.
- 12. (Withdrawn) A composition, comprising an effective amount of a combination of active compound comprising
- (a') at least one substituted cyclic ketoenol of the formula (I) according to Claim 3 in which A, B, D, G, X, Y and Z are as defined in Claim 3, or at least one compound of the formula I-1-a-45, I-1-a-46, I-1-b-73

I-a-1-45,

$$CH_3$$
 C_2H_5

I-a-1-46,

I-1-b-73,

or a combination thereof

and

(b') at least one crop plant compatibility-improving compound from the following group of compounds:

4-dichloroacetyl-1-oxa-4-azaspiro[4.5]decane (AD-67, MON-4660), 1dichloroacetylhexahydro-3,3,8a-trimethylpyrrolo[1,2-a]pyrimidin-6(2H)-one (dicyclonon, BAS-145138), 4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine (benoxacor), 1-methylhexyl 5-chloroquinoline-8-oxyacetate (cloquintocet-mexyl), 3-(2chlorobenzyl)-1-(1-methyl-1-phenylethyl)urea (cumyluron), α-(cyanomethoximino)phenylacetonitrile (cyometrinil), 2,4-dichlorophenoxyacetic acid (2,4-D), 4-(2,4-dichlorophenoxy)butyric acid (2,4-DB), 1-(1-methyl-1-phenylethyl)-3-(4methylphenyl)urea (daimuron, dymron), 3,6-dichloro-2-methoxybenzoic acid (dicamba), S-1-methyl 1-phenylethyl piperidine-1-thiocarboxylate (dimepiperate), 2,2-dichloro-N-(2-oxo-2-(2-propenylamino)ethyl)-N-(2-propenyl)acetamide (DKA-24), 2,2-dichloro-N,N-di-2-propenylacetamide (dichlormid), 4,6-dichloro-2-phenylpyrimidine (fenclorim), ethyl 1-(2,4-dichlorophenyl)-5-trichloromethyl-1H-1,2,4-triazole-3-carboxylate (fenchlorazole-ethyl, phenylmethyl 2-chloro-4-trifluoromethylthiazole-5-carboxylate 4-chloro-N-(1,3-dioxolan-2-yl-methoxy)-α-trifluoroacetophenone (flurazole), (fluxofenim), 3-dichloroacetyl-5-(2-furanyl)-2,2-dimethyloxazolidine (furilazole, MON-13900), ethyl 4,5-dihydro-5,5-diphenyl-3-isoxazolecarboxylate (isoxadifen-ethyl), 1-(ethoxycarbonyl)ethyl 3,6-dichloro-2-methoxybenzoate (lactidichlor), (4-chloro-otolyloxy)acetic acid (MCPA), 2-(4-chloro-o-tolyloxy)propionic acid (mecoprop), diethyl 1-(2,4-dichorophenyl)-4,5-dihydro-5-methyl-1H-pyrazole-3,5-dicarboxylate (mefenpyrdiethyl), 2-dichloromethyl-2-methyl-1,3-dioxolane (MG-191), 2-propenyl-1-oxa-4azaspiro[4.5]decane-4-carbodithioate (MG-838), 1,8-naphthalic anhydride, α -(1,3dioxolan-2-ylmethoximino)phenylacetonitrile (oxabetrinil), 2,2-dichloro-N-(1,3dioxolan-2-yl-methyl)-N-(2-propenyl)acetamide (PPG-1292), 3-dichloroacetyl-2,2dimethyloxazolidine (R-28725), 3-dichloroacetyl-2,2,5-trimethyloxazolidine (R-29148), 4-(4-chloro-o-tolyl)butyric acid, 4-(4-chlorophenoxy)butyric acid, diphenylmethoxyacetic acid, methyl diphenylmethoxyacetate, ethyl diphenylmethoxyacetate, methyl 1-(2-chlorophenyl)-5-phenyl-1H-pyrazole-3carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-methyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichlorophenyl)-5-isopropyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4dichlorophenyl)-5-(1,1-dimethylethyl)-1H-pyrazole-3-carboxylate, ethyl 1-(2,4dichlorophenyl)-5-phenyl-1H-pyrazole-3-carboxylate, ethyl 5-(2,4-dichlorobenzyl)-2isoxazoline-3-carboxylate, ethyl 5-phenyl-2-isoxazoline-3-carboxylate, ethyl 5-(4fluorophenyl)-5-phenyl-2-isoxazoline-3-carboxylate, 1,3-dimethylbut-1-yl 5-chloroquinoline-8-oxyacetate, 4-allyloxybutyl 5-chloroquinoline-8-oxyacetate, 1-allyloxyprop-2-yl 5-chloroquinoline-8-oxyacetate, methyl 5-chloroquinoxaline-8-oxyacetate, ethyl 5-chloroquinoline-8-oxyacetate, allyl 5-chloroquinoxaline-8-oxyacetate, 2-oxoprop-1-yl 5-chloroquinoline-8-oxyacetate, diethyl 5-chloroquinoline-8oxymalonate, diallyl 5-chloroquinoxaline-8-oxymalonate, diethyl 5-chloroquinoline-8oxymalonate, 4-carboxychroman-4-ylacetic acid (AC-304415), 4-chlorophenoxyacetic acid, 3,3'-dimethyl-4-methoxybenzophenone, 1-bromo-4chloromethylsulphonylbenzene, 1-[4-(N-2-methoxybenzoylsulphamoyl)phenyl]-3methylurea (also known N-(2-methoxybenzoyl)-4-[(methylaminocarbonyl)as amino]benzenesulphonamide), 1-[4-(N-2-methoxybenzoylsulphamoyl)phenyl]-3,3-dimethylurea, 1-[4-(N-4,5-dimethylbenzoylsulphamoyl)phenyl]-3-methylurea, 1-[4-(N-naphthylsulphamoyl)phenyl]-3,3-dimethylurea,

N-(2-methoxy-5-

methylbenzoyl)-4-(cyclopropylaminocarbonyl)benzenesulphonamide,

one of the following compounds, defined by general formulae, of the general formula (IIa)

$$(X^1)_m$$
 O O O (IIa)

or of the general formula (IIb)

$$X^3$$
 X^2
 A^2
 A^{15}
(IIb)

or of the formula (IIc)

$$\begin{array}{c}
O \\
R^{16}
\end{array}$$

$$\begin{array}{c}
N \\
R^{18}
\end{array}$$
(IIc)

where

m represents a number 0, 1, 2, 3, 4 or 5,

A¹ represents one of the divalent heterocyclic groupings shown below,

$$R^{19}$$
 OR^{20}
 R^{19}
 OR^{20}
 R^{19}
 OR^{20}
 R^{19}
 OR^{20}
 OR^{20}

n represents a number 0, 1, 2, 3, 4 or 5,

- A² represents optionally C₁-C₄-alkyl- and/or C₁-C₄-alkoxy-carbonyl- and or alkenyloxy-carbonyl-substituted alkanediyl having 1 or 2 carbon atoms,
- R^{14} represents hydroxyl, mercapto, amino, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylamino or di- $(C_1$ - C_4 -alkyl)amino,
- R^{15} represents hydroxyl, mercapto, amino, C_1 - C_7 -alkoxy, C_1 - C_6 -alkenyloxy, C_1 - C_6 -alkenyloxy- C_1 - C_6 -alkylthio, C_1 - C_6 -alkylamino or di- $(C_1$ - C_4 -alkyl)-amino,
- R^{16} represents in each case optionally fluorine-, chlorine- and/or bromine-substituted $C_1\text{-}C_4\text{-}alkyl$,
- R¹⁷ represents hydrogen, in each case optionally fluorine-, chlorine- and/or bromine-substituted C₁-C₆-alkyl, C₂-C₆-alkenyl or C₂-C₆-alkynyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, dioxolanyl-C₁-C₄-alkyl, furyl, furyl-C₁-C₄-alkyl, thienyl, thiazolyl, piperidinyl, or optionally fluorine-, chlorine- and/or bromine- or C₁-C₄-alkyl-substituted phenyl,
- R^{18} represents hydrogen, in each case optionally fluorine-, chlorine- and/or bromine-substituted C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl or C_2 - C_6 -alkynyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, dioxolanyl- C_1 - C_4 -alkyl, furyl, furyl- C_1 - C_4 -alkyl, thienyl, thiazolyl, piperidinyl, or optionally fluorine-, chlorine- and/or bromine- or C_1 - C_4 -alkyl-substituted phenyl, R^{17} and R^{18} also together optionally represent C_3 - C_6 -alkanediyl or C_2 - C_5 -oxaalkanediyl, each of which is optionally substituted by C_1 - C_4 -alkyl, phenyl, furyl, a fused benzene ring or by two substituents which, together with the C atom to which they are attached, form a 5- or 6-membered carbocycle,
- R^{19} represents hydrogen, cyano, halogen, or represents in each case optionally fluorine-, chlorine- and/or bromine-substituted C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl or phenyl,

R²⁰ represents hydrogen, optionally hydroxyl-, cyano-, halogen- or C₁-C₄-alkoxy-substituted C₁-C₆-alkyl, C₃-C₆-cycloalkyl or tri-(C₁-C₄-alkyl)silyl,

R²¹ represents hydrogen, cyano, halogen, or represents in each case optionally fluorine-, chlorine- and/or bromine-substituted C₁-C₄-alkyl, C₃-C₆-cycloalkyl or phenyl,

 X^1 represents nitro, cyano, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy,

 X^2 represents hydrogen, cyano, nitro, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy,

 X^3 represents hydrogen, cyano, nitro, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -haloalkoxy,

the following compounds, defined by general formulae, of the general formula (IId)

$$O \bigvee_{R^{24}} (X^5)_v \bigvee_{SO_2} (X^4)_t$$
(IId)

or the general formula (IIe)

$$R^{25} \xrightarrow{N} (X^5)_v$$

$$SO_2$$

$$(IIe)$$

where

t represents a number 0, 1, 2, 3, 4 or 5,

- v represents a number 0, 1, 2, 3, 4 or 5,
- R²² represents hydrogen or C₁-C₄-alkyl,
- R^{23} represents hydrogen or C_1 - C_4 -alkyl,
- R^{24} represents hydrogen, in each case optionally cyano-, halogen- or C_1 - C_4 -alkoxy-substituted C_1 - C_6 -alkyl, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylthio, C_1 - C_6 -alkylamino or di- $(C_1$ - C_4 -alkyl)amino, or in each case optionally cyano-, halogen- or C_1 - C_4 -alkyl-substituted C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkyloxy, C_3 - C_6 -cycloalkylthio or C_3 - C_6 -cycloalkylamino,
- R^{25} represents hydrogen, optionally cyano-, hydroxyl-, halogen- or C_1 - C_4 -alkoxy-substituted C_1 - C_6 -alkyl, in each case optionally cyano-, or halogen-substituted C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, or optionally cyano-, halogen- or C_1 - C_4 -alkyl-substituted C_3 - C_6 -cycloalkyl,
- R^{26} represents hydrogen, optionally cyano-, hydroxyl-, halogen- or C_1 - C_4 -alkoxy-substituted C_1 - C_6 -alkyl, in each case optionally cyano- or halogen-substituted C_3 - C_6 -alkenyl or C_3 - C_6 -alkynyl, optionally cyano-, halogen- or C_1 - C_4 -alkyl-substituted C_3 - C_6 -cycloalkyl, or optionally nitro-, cyano-, halogen-, C_1 - C_4 -alkyl-, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy- or C_1 - C_4 -haloalkoxy-substituted phenyl, or together with R^{25} represents in each case optionally C_1 - C_4 -alkyl-substituted C_2 - C_6 -alkanediyl or C_2 - C_5 -oxaalkanediyl,
- X^4 represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy, and
- X^5 represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy or C_1 - C_4 -haloalkoxy, or combinations thereof.

13. (Previously presented) A composition according to Claim 12, where the crop plant compatibility-improving compound is selected from the group consisting of cloquintocet-mexyl, fenchlorazole-ethyl, isoxadifen-ethyl, mefenpyr-diethyl, furilazole, fenclorim, cumyluron, dymron, the compounds

and

- 14. (Withdrawn) A composition according to Claim 12 or 13, where the crop plant compatibility-improving compound is cloquintocet-mexyl or mefenpyr-diethyl.
- 15. (Withdrawn) A method for controlling unwanted vegetation, comprising allowing a composition according to Claim 12 to act on the plants or their habitat.
 - 16. (Canceled)
 - 17. (Canceled)
 - 18. (Canceled)
 - 19. (Canceled)