

CMPS 460 – Spring 2022

MACHINE

LEARNING

Tamer Elsayed

Image hosted by WittySparks.com | Image source: Pixabay.com

Probabilistic Modeling: Naïve Bayes

Sec 9.3-9.4

personal_status	job	housing	savings_status	credit_class
male single	skilled	own	no known savings	good
female div/dep/mar	skilled	own	<100	bad
male single	unskilled resident	own	<100	good
male single	skilled	for free	<100	good
male single	skilled	for free	<100	bad
male single	unskilled resident	for free	no known savings	good
male single	skilled	own	500<=X<1000	good
male single	high qualif/self emp/mgm	rent	<100	good
male div/sep	unskilled resident	own	>=1000	good
male mar/wid	high qualif/self emp/mgm	own	<100	bad
female div/dep/mar	skilled	rent	<100	bad
female div/dep/mar	skilled	rent	<100	bad
female div/dep/mar	skilled	own	<100	good
male single	unskilled resident	own	<100	bad
female div/dep/mar	skilled	rent	<100	good
female div/dep/mar	unskilled resident	own	100<=X<500	bad
male single	skilled	own	no known savings	good
male single	skilled	own	no known savings	good
female div/dep/mar	high qualif/self emp/mgm	for free	<100	bad
male single	skilled	own	500<=X<1000	good
male single	skilled	own	<100	good
male single	skilled	rent	500<=X<1000	good
male single	unskilled resident	rent	<100	good
male single	skilled	own	100<=X<500	good
male mar/wid	skilled	own	no known savings	good
male single	unskilled resident	own	<100	good
male mar/wid	unskilled resident	own	<100	good

Naïve Bayes Models

Probability for a single data point

$$p_{\boldsymbol{\theta}}((y, \mathbf{x})) = p_{\boldsymbol{\theta}}(y, x_1, x_2, \dots, x_D)$$

$$p_{\theta}(x_{1}, x_{2}, \dots, x_{D}, y) = p_{\theta}(y)p_{\theta}(x_{1} \mid y)p_{\theta}(x_{2} \mid y, x_{1})p_{\theta}(x_{3} \mid y, x_{1}, x_{2})$$

$$\cdots p_{\theta}(x_{D} \mid y, x_{1}, x_{2}, \dots, x_{D-1}) \qquad (9.14)$$

$$= p_{\theta}(y) \prod_{d} p_{\theta}(x_{d} \mid y, x_{1}, \dots, x_{d-1}) \qquad (9.15)$$

Challenging!

Conditional Independence Assumption

Features are independent, conditioned on the label.

$$p(x_d \mid y, x_{d'}) = p(x_d \mid y)$$
 , $\forall d \neq d'$

$$p_{\boldsymbol{\theta}}((y, \boldsymbol{x})) = p_{\boldsymbol{\theta}}(y) \prod_{d} p_{\boldsymbol{\theta}}(x_d \mid y, x_1, \dots, x_{d-1})$$

$$= p_{\boldsymbol{\theta}}(y) \prod_{d} p_{\boldsymbol{\theta}}(x_d \mid y)$$

Model assumption

Start modeling now!

$$p_{\theta}((y,x)) = p_{\theta}(y) \prod_{d} p_{\theta}(x_d \mid y)$$
 e.g., Bernoulli distribution

$$= \left(\theta_0^{[y=+1]} (1 - \theta_0)^{[y=-1]}\right) \prod_{d} \theta_{(y),d}^{[x_d=1]} (1 - \theta_{(y),d})^{[x_d=0]}$$

$$\hat{\theta}_0 = \frac{1}{N} \sum_{n} [y_n = +1]$$

$$\hat{\theta}_{(+1),d} = \frac{\sum_{n} [y_n = +1 \land x_{n,d} = 1]}{\sum_{n} [y_n = +1]}$$

$$\hat{\theta}_{(-1),d} = \frac{\sum_{n} [y_n = -1 \land x_{n,d} = 1]}{\sum_{n} [y_n = -1]}$$

personal_status	job	housing	savings_status	credit_class
male single	skilled	own	no known savings	good
female div/dep/mar	skilled	own	<100	bad
male single	unskilled resident	own	<100	good
male single	skilled	for free	<100	good
male single	skilled	for free	<100	bad
male single	unskilled resident	for free	no known savings	good
male single	skilled	own	500<=X<1000	good
male single	high qualif/self emp/mgm	rent	<100	good
male div/sep	unskilled resident	own	>=1000	good
male mar/wid	high qualif/self emp/mgm	own	<100	bad
female div/dep/mar	skilled	rent	<100	bad
female div/dep/mar	skilled	rent	<100	bad
female div/dep/mar	skilled	own	<100	good
male single	unskilled resident	own	<100	bad
female div/dep/mar	skilled	rent	<100	good
female div/dep/mar	unskilled resident	own	100<=X<500	bad
male single	skilled	own	no known savings	good
male single	skilled	own	no known savings	good
female div/dep/mar	high qualif/self emp/mgm	for free	<100	bad
male single	skilled	own	500<=X<1000	good
male single	skilled	own	<100	good
male single	skilled	rent	500<=X<1000	good
male single	unskilled resident	rent	<100	good
male single	skilled	own	100<=X<500	good
male mar/wid	skilled	own	no known savings	good
male single	unskilled resident	own	<100	good
male mar/wid	unskilled resident	own	<100	good

Choice of distribution ...

• In case features are not binary, you need to choose a different model for $p_{\theta}(x_d \mid y)$.

 The choice of distribution is a form of inductive bias by which you can inject your knowledge of the problem into the learning algorithm.

Naïve Bayes Classifier

Naive Bayes Classifier

•
$$\hat{y} = argmax_y P(Y = y | X = x)$$

$$= argmax_y \frac{P(Y=y)P(X=x|Y=y)}{P(X=x)}$$

$$= argmax_y P(Y = y)P(X = x|Y = y)$$

$$= argmax_y P(Y = y) \prod_{i=1}^d P(X_i = x_i | Y = y)$$

Bayes rule + Conditional independence assumption

- Predict the credit
 behavior of a credit card
 applicant from
 applicant's attributes:
 - Personal status
 - Job type
 - Housing type
 - Savings amount

personal_status	job	housing	savings_status	credit_class
male single	skilled	own	no known savings	good
female div/dep/mar	skilled	own	<100	bad
male single	unskilled resident	own	<100	good
male single	skilled	for free	<100	good
male single	skilled	for free	<100	bad
male single	unskilled resident	for free	no known savings	good
male single	skilled	own	500<=X<1000	good
male single	high qualif/self emp/mgm	rent	<100	good
male div/sep	unskilled resident	own	>=1000	good
male mar/wid	high qualif/self emp/mgm	own	<100	bad
female div/dep/mar	skilled	rent	<100	bad
female div/dep/mar	skilled	rent	<100	bad
female div/dep/mar	skilled	own	<100	good
male single	unskilled resident	own	<100	bad
female div/dep/mar	skilled	rent	<100	good
female div/dep/mar	unskilled resident	own	100<=X<500	bad
male single	skilled	own	no known savings	good
male single	skilled	own	no known savings	good
female div/dep/mar	high qualif/self emp/mgm	for free	<100	bad
male single	skilled	own	500<=X<1000	good
male single	skilled	own	<100	good
male single	skilled	rent	500<=X<1000	good
male single	unskilled resident	rent	<100	good
male single	skilled	own	100<=X<500	good
male mar/wid	skilled	own	no known savings	good
male single	unskilled resident	own	<100	good
male mar/wid	unskilled resident	own	<100	good

- Class labels: {good, bad}
 - P(good)=
 - P(bad)=
- Conditional Probabilities
 - P(own|bad)=
 - P(own|good)=
 - P(rent|bad)=
 - P(rent|good)=
 - ... and so on

personal_status	job	housing	savings_status	credit_class
male single	skilled	own	no known savings	good
female div/dep/mar	skilled	own	<100	bad
male single	unskilled resident	own	<100	good
male single	skilled	for free	<100	good
male single	skilled	for free	<100	bad
male single	unskilled resident	for free	no known savings	good
male single	skilled	own	500<=X<1000	good
male single	high qualif/self emp/mgm	rent	<100	good
male div/sep	unskilled resident	own	>=1000	good
male mar/wid	high qualif/self emp/mgm	own	<100	bad
female div/dep/mar	skilled	rent	<100	bad
female div/dep/mar	skilled	rent	<100	bad
female div/dep/mar	skilled	own	<100	good
male single	unskilled resident	own	<100	bad
female div/dep/mar	skilled	rent	<100	good
female div/dep/mar	unskilled resident	own	100<=X<500	bad
male single	skilled	own	no known savings	good
male single	skilled	own	no known savings	good
female div/dep/mar	high qualif/self emp/mgm	for free	<100	bad
male single	skilled	own	500<=X<1000	good
male single	skilled	own	<100	good
male single	skilled	rent	500<=X<1000	good
male single	unskilled resident	rent	<100	good
male single	skilled	own	100<=X<500	good
male mar/wid	skilled	own	no known savings	good
male single	unskilled resident	own	<100	good
male mar/wid	unskilled resident	own	<100	good

Training

- Class labels: {good, bad}
 - P(good)=19/27=0.7
 - P(bad)=8/27=0.3
- Conditional Probabilities
 - P(own|bad)=4/8=0.5
 - P(own|good)=13/19=0.68
 - P(rent|bad)=2/8=0.25
 - P(rent|good)=4/19=0.21
 - ... and so on

personal_status	job	housing	savings_status	credit_class
male single	skilled	own	no known savings	good
female div/dep/mar	skilled	own	<100	bad
male single	unskilled resident	own	<100	good
male single	skilled	for free	<100	good
male single	skilled	for free	<100	bad
male single	unskilled resident	for free	no known savings	good
male single	skilled	own	500<=X<1000	good
male single	high qualif/self emp/mgm	rent	<100	good
male div/sep	unskilled resident	own	>=1000	good
male mar/wid	high qualif/self emp/mgm	own	<100	bad
female div/dep/mar	skilled	rent	<100	bad
female div/dep/mar	skilled	rent	<100	bad
female div/dep/mar	skilled	own	<100	good
male single	unskilled resident	own	<100	bad
female div/dep/mar	skilled	rent	<100	good
female div/dep/mar	unskilled resident	own	100<=X<500	bad
male single	skilled	own	no known savings	good
male single	skilled	own	no known savings	good
female div/dep/mar	high qualif/self emp/mgm	for free	<100	bad
male single	skilled	own	500<=X<1000	good
male single	skilled	own	<100	good
male single	skilled	rent	500<=X<1000	good
male single	unskilled resident	rent	<100	good
male single	skilled	own	100<=X<500	good
male mar/wid	skilled	own	no known savings	good
male single	unskilled resident	own	<100	good
male mar/wid	unskilled resident	own	<100	good

X _j	Yi	P(X _j Y _i)
female single	good	0.28
female single	bad	0.36
	•••••	••••
own	good	0.75
own	bad	0.62
	•••••	••••
self emp	good	0.14
self emp	bad	0.17
		•••••
savings>1K	good	0.06
savings>1K	bad	0.02

Given applicant attributes of
 A= {female single,
 owns home,
 self-employed,
 savings > \$1000}

Assume this is part of the trained model

X _j	Yi	P(X _j Y _i)
female single	good	0.28
female single	bad	0.36
own	good	0.75
own	bad	0.62
self emp	good	0.14
self emp	bad	0.17
savings>1K	good	0.06
savings>1K	bad	0.02

$$P(good|A) \sim (0.28*0.75*0.14*0.06)*0.7 = 0.0012$$

 $P(bad|A) \sim (0.36*0.62*0.17*0.02)*0.3 = 0.0002$

 Since P(good|A) > (bad|A), assign the applicant the label "good" credit

Hands-on Exercise

Consider the following training set.

• Learn a NB Model

Predict the label for X = (c, T, 0)

Training Set

X1	X2	Х3	Υ
b	Т	-1	0
b	Т	2	0
С	F	0	1
а	Т	0	1
b	F	-1	1
а	Т	2	1
С	Т	-1	0
b	F	-1	1
С	F	2	1
а	Т	0	0

Training a Naïve Bayes classifier

Assume discrete X_i and Y

TrainNaïveBayes (Data)

for each value y_k of Y

estimate
$$\pi_k = P(Y = y_k)$$

for each feature X_i

for each value x_{ij} of X_i

estimate
$$\theta_{ijk} = P(X_i = x_{ij}|Y = y_k)$$

$$\frac{N(X_i = x_{ij} \text{ and } Y = y_k)}{N(Y = y_k)}$$

Unobserved Feature/Class Pairs!

What happens if a feature value didn't co-occur with a class?

Zero probabilities due to unobserved (or rare) events!

Solution: Smoothing!

- Smoothing: adjusting each probability by a small value
- Add-one Smoothing

$$P(a) = \frac{N(a) + 1}{\sum_{a'} (N(a') + 1)}$$