Université de Lorraine DIPLOME: Telecom Nancy 3A Épreuve: MCFSI	Durée du sujet : 2 heures Date : Lundi 29 novembre 2021 de 10h00 à 12h00 Nom du rédacteur : Dominique Méry Documents personnels autorisés
Nom: Prénom:	
	Écrit
Nous considérons la machine Q1 et le con considère plusieurs cas pour l'invariant.	texte C se trouvant dans les pages suivantes de l'annexe On
Question 1 Ecrire la condition de vérification e6.	a (obligation de preuve) de préservation de l'invariant par l'événemen
Question 2 Déterminer la condition vérifiée l'événement e6 soit valide.	e par a et b pour que la condition de vérification précédente de
Question 3 Comment peut-on compléter la vérification soient prouvées.	$machine \ Q1 \ et \ le \ contexte \ C \ pour \ que \ toutes \ les \ conditions \ de$

Durée du sujet : 2 heures

$\textbf{Question 4} \ On suppose qu'un algorithme ou un programme est annotée au point de contrôle ℓ par la propre$	\dot{i} été
$P_{\ell}(v)$ où v est la variable du programme. On suppose que les conditions de vérification ont été vérifiées.	La
propriété $pc = \ell \Rightarrow P_{\ell}(v)$ est une propriété de sûreté.	

Vous mettez une croix dans les cases appropriées.

vrai	faux

Question 5 La propriété énonçant qu'aucune porte du métro ou du RER ne peut s'ouvrir au cours du transport 'est une propriété de sûreté.

Vous mettez une croix dans les cases appropriées.

vrai	faux

On considère la machine Q2 et on pose des questions sur cette machine.

Question 6 La propriété suivante est un invariant de Q2:

 $\begin{aligned} &inv1: x \in \mathbb{Z} \\ &inv2: -45 \leq x \\ &inv3: x \leq -3 \end{aligned}$

Vous mettez une croix dans les cases appropriées.

vrai	faux

Question 7 La propriété suivante est un invariant de Q2:

 $\begin{array}{l} inv1: x \in \mathbb{Z} \\ inv2: -45 \leq x \\ inv3: x \leq -10 \end{array}$

Vous mettez une croix dans les cases appropriées.

vrai	faux

Question 8 La propriété suivante est un invariant de Q2:

 $inv1: x \in \mathbb{Z}$ $inv2: -40 \le x$ $inv3: x \le -3$

Vous mettez une croix dans les cases appropriées.

vrai	faux

Question 9 La propriété suivante est un invariant de Q2:

 $\begin{aligned} &inv1: x \in \mathbb{Z} \\ &inv2: -41 \leq x \\ &inv3: x \leq -13 \end{aligned}$

Vous mettez une croix dans les cases appropriées.

vrai	faux

Question 10 La propriété suivante est un invariant de Q2:

 $inv1: x \in \mathbb{Z}$ $inv2: -41 \le x$ $inv3: x \le -15$

Vous mettez une croix dans les cases appropriées.

vrai	faux

Dans les questions suivantes, on utilise quatre variables et on demande d'écrire des événements répondant à une certaine observation.

```
MACHINE Q3
SEES C3
VARIABLES
   x, y, z, t
INVARIANTS
   inv1:x\in\mathbb{Z}
   inv1: y \in \mathbb{Z}
   inv1:z\in\mathbb{Z}
   inv1:t\in 1..n\to \mathbb{Z}
{\bf EVENTS}
INITIALISATION
   begin
       act1:t:=t0
       act1: x, y, z: |(x' \in \mathbb{Z} \land y' \in \mathbb{Z} \land z' \in \mathbb{Z})
   \quad \mathbf{end} \quad
\quad \mathbf{end} \quad
```

```
CONTEXT C3

CONSTANTS

n, t0, a

AXIOMS

ax1: n \in \mathbb{N}1

ax2: t0 \in 1..n \to \mathbb{Z}

ax3: a \in \mathbb{Z}

ax4: a \neq 0

end
```

Question 11 Ecrire un événement obs1 qui observe deux indices x et y correspondant aux indices respectives de la valeur minimale de t et la valeur maximale de t.

Question 12 Ecrire un événement obs2 qui observe le calcul du nombre de valeurs de t divisibles par a. La fonction de division est / et la fonction du reste de la division est mod.