CÁLCULO PROPOSICIONAL

O Cálculo Proposicional (CP – também conhecido como Lógica Proposicional) é um dos mais simples formalismos lógicos existentes.

Este cálculo lida apenas com <u>enunciados ou sentenças declarativas</u>, que são chamadas de <u>proposições</u>.

As <u>sentenças exclamativas</u>, imperativas e interrogativas <u>não são proposições</u>, logo são excluídas.

PROPOSIÇÃO

É uma sentença que pode ser avaliada em **FALSO** ou **VERDADEIRO**. É uma frase **declarativa** (com sujeito e predicado) que representa uma <u>ideia completa</u>. Proposições são representadas por letras maiúsculas: **A**, **B**, ...

Exemplos de proposições atômicas (átomos):

- Napoleão morreu.
- A Lua é o satélite natural da Terra.
- Dez é menor do que sete.
- 3 + 4 = 7
- O Japão fica na África.

Não são proposições:

Valor-verdade ou valor lógico:

- VERDADEIRO (V)
- FALSO (**F**).

PRINCÍPIOS FUNDAMENTAIS DA LÓGICA

- **Princípio de identidade** enunciados do princípio de identidade:
 - I. Uma coisa é o que é.
 - II. O que é, é; o que não é, não é.
 - III. A é A ("A" designando qualquer objeto do pensamento).
 - IV. Em termos de proposições: uma proposição é equivalente a si mesma.
- Princípio da Não-Contradição: Uma proposição não pode ser simultaneamente verdadeira e falsa.
- Princípio do Terceiro Excluído: Toda proposição ou é verdadeira ou é falsa, nunca ocorrendo um terceiro caso.

PROPOSIÇÕES COMPOSTAS

É possível construir proposições compostas através do uso de conectivos, usados para construir proposições a partir de outras.

Os conectivos são:

Os primeiros elementos da tabela possuem maior precedência que os últimos.

O conectivo - é o que possui a maior precedência, isto é, deve ser avaliado primeiro que os outros.

<u>.</u>
ênc
ced
pre

	<u>C</u>	onectivos (o	peradores lógicos):	-At-
Nome:	Símbolo:	Utilização:	Leitura:	Variações:
negação	~	~A	"não A"	A', ¬ A
conjunção	٨	A∧B	"A e B"	&, &&
disjunção	v	A∨B	"A ou B"	11
implicação	→	$A \rightarrow B$	"A implica B" ("se A então B; "B é conseqüência de A")	ם
bicondicional	\leftrightarrow	A↔B	A se e somente se B	

Exemplos:

1) Napoleão não morreu.

Considerando que a proposição:

A é: "Napoleão morreu."

A frase acima é representada por: ¬ A

Que significa:

"não é verdade que Napoleão morreu" ou "é falso que Napoleão morreu".

2) Dois é primo e três é par.

Considerando as proposições:

B: Dois é primo.

C: Três é par.

A frase é representada por: (B \wedge C)

3) A resposta é dois ou três.

D: A resposta é dois.

E : A resposta é três.

Fórmula: (D v E)

Observe que neste caso, uma parte da proposição **E** está implícita na frase.

4) Se a chuva continuar, o rio vai transbordar.

F: A chuva continua.

G: O rio vai transbordar.

Fórmula: $(\mathbf{F} \rightarrow \mathbf{G})$

A palavra "então" está implícita

5) Os abacates estão maduros se e somente se estão escuros.

H: Os abacates estão maduros.

I : Os abacates estão escuros.

Fórmula: (H ↔ I)

Uma parte da proposição I está oculta na frase.

VARIÁVEIS PROPOSICIONAIS:

Podem assumir como valor <u>qualquer proposição</u> e, portanto, não possuem <u>valor-verdade</u> <u>definido</u>.

São representadas por letras minúsculas: p, q, ...

FÓRMULAS PROPOSICIONAIS:

São representadas por letras maiúsculas: A, B, C, ...

- 1) Qualquer variável proposicional é uma fórmula proposicional
- 2) Se $A \in B$ são fórmulas proposicionais, então: $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$ e $(A \leftrightarrow B)$ também são.
- 3) Nada mais é uma fórmula proposicional.

Ex. Fórmulas proposicionais bem-formadas - fbf (ou wff - well-formed formula):

Р

¬р

q

 $(p \wedge q)$

 $(\neg \neg p \lor q)$

 $\neg (p \land q)$

 $(\neg (p \land q) \rightarrow p)$

 $((p \land q) \rightarrow (\neg (q \lor r)))$

^{***}Este é um exemplo de definição indutiva.***

Exercícios

- 1. Identifique quais das frases abaixo são proposições:
 - a) Dez é um número primo.
 - b) Como vai você?
 - c) O número 16 é um quadrado perfeito.
 - d) Existem formas de vida em outros planetas do universo.
 - e) 2312 > (45 * 13) + 7
- 2. Identifique quais das expressões abaixo são fórmulas lógicas:
 - a) (p \((q \(v \(p \)))
 - b) $(p \land (q \neg p))$
 - c) (v p v q)
 - d) $(\neg (\neg p \rightarrow \neg (q \lor r)) \land \neg q)$
- 4. Sejam as proposições:
 - A: Pedro saiu.
 - B: Maria está aqui.

Forme sentenças na linguagem natural que correspondam às fórmulas:

- a) ¬A
- b) ¬B
- c) A A B
- d) AvB
- e) ¬A v B
- f) $\neg (A \land B)$
- g) ¬A ∧ ¬B
- h) ¬A v ¬B
- i) $A \rightarrow B$
- $j) \quad \neg B \rightarrow \neg A$
- k) $(A \wedge B) \rightarrow \neg A$
- I) $(A \rightarrow B) \land (B \rightarrow A)$
- m) ¬A ↔ B

- 5. Represente as frases abaixo através de fórmulas lógicas:
 - a) Se a demanda permaneceu constante e os preços subiram, então a oferta diminuiu.
 - b) Nós ganharemos a eleição somente se João for eleito o líder do partido.
 - c) Se João não for o líder do partido, então Manoel ou Joaquim deixarão o posto e perderemos a eleição.
 - d) Se x é um número racional e y é inteiro, então z não é real.
 - e) O assassino já deixou o país ou alguém o está escondendo.
 - f) Se o assassino não deixou o país, então alguém o está escondendo.
 - g) A soma de dois números é par se e somente se ambos forem pares ou ambos forem ímpares.
 - h) Se y é inteiro então z não é real, desde que x seja um número racional.
- 6. No exercício anterior, existem frases com o mesmo significado?

TABELA-VERDADE DE FÓRMULAS BEM-FORMADAS

Sintaxe de uma fbf: maneira que a fórmula é construída com os conectivos e, não, ou, ... Semântica de uma fbf: significado da fórmula; é o valor verdade a ela associado.

Para analisar o valor-verdade de uma fórmula proposicional em função dos valores das variáveis proposicionais, utiliza-se a tabela-verdade.

Existe uma tabela para cada conectivo:

Exemplos de TABELAS-VERDADE e seus CONECTIVOS:

р	~ p
٧	F
F	V

р	q	p∧q
V	V	V
٧	F	F
F	V	F
F	F	F

р	q	p∨q
V	V	V
V	F	V
F	V	V
F	F	F

1.0%	Ч	$p \rightarrow q$
V	V	V
V	F	F
F	٧	V
F	F	V

р	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F	F	V

→ <mark>NEGAÇÃO</mark>:

Napoleão não morreu

→ CONJUNÇÃO:

Neste fim-de-semana, vou estudar Lógica e Cálculo.

→ DISJUNÇÃO:

Neste fim-de-semana, vou estudar Lógica ou Cálculo.

- → CONDICIONAL ou IMPLICAÇÃO
 Se chover, então vou estudar Lógica.
- **→** BICONDICIONAL

Vou estudar Lógica somente se chover.

O objetivo é analisar o valor-verdade de uma fórmula para cada combinação possível de valores-verdade das variáveis que a compõem. Assim, é necessária uma linha para cada combinação de valores-verdade, e o total de linhas da tabela será **2**ⁿ, onde **n** é o número de variáveis diferentes que aparecem na fórmula.

Uma forma segura de não esquecer nenhuma combinação possível é começar, na primeira variável, colocando V na primeira metade das linhas, e F na segunda metade. Para a segunda variável, deve-se começar com a metade de valores V utilizados na primeira, e assim por diante.

Exemplos:

Fórmula ($p \rightarrow (q \lor r)$) na tabela-verdade abaixo:

р	q	Г	(qvr)	$(p \rightarrow (q \lor r))$
٧	٧	٧	V	V
٧	٧	F	٧	V
٧	F	٧	٧	V
V	F	F	F	F
F	V	V	٧	V
F	٧	F	٧	V
F	F	٧	٧	V
F	F	F	F	V

Observe que a tabela nos mostra que só há um caso em que a fórmula (p → (q ∨ r)) é falsa: quando a variável p é verdadeira e as variáveis q e r são falsas.

Outra forma de representar esta mesma tabela é:

(p	\rightarrow	(q	V	r))
V	V	V	V	V
٧	V	V	V	F
٧	V	F	٧	V
٧	F	F	F	F
F	٧	٧	٧	٧
F	V	٧	V	F
F	V	F	V	V
F	V	F	F	F

Nesta representação, o resultado de cada operação é escrito abaixo do próprio operador. Assim, o resultado de (q ∨ r) está abaixo do operador ∨, e o resultado da fórmula inteira está abaixo do operador principal, que é →. Em qualquer fórmula, denomina-se operador principal aquele que deve ser o último a ser resolvido, e o resultado da análise da fórmula sempre estará abaixo dele. Por isso, deve ser marcado de algum modo. Aqui, utilizamos o símbolo ⊎.

Outro exemplo:

$$\sim (p \leftrightarrow (\sim q \land \sim p))$$

~	(p	\leftrightarrow	(~	q	Λ	~	p))
٧	٧	F	F	٧	F	F	٧
٧	٧	F	٧	F	F	F	٧
F	F	٧	F	V	F	٧	F
٧	F	F	V	F	V	V	F

Observe que se deve deixar uma coluna separada para a negação. E também que quando se trata da mesma variável (no caso p), deve-se repetir a coluna dos valores-verdade. Nesta fórmula, o conectivo principal é a negação, na primeira coluna.

Mais um exemplo:

VALIDADE & INCONSISTÊNCIA

O valor-verdade (ou simplesmente *valor*) de uma fórmula diz respeito a uma <u>interpretação</u> <u>particular</u>. Assim, é possível encontrar as seguintes situações:

1. Se uma fórmula **A** tem o valor **VERDADEIRO** numa certa interpretação **I**, diz-se que "**A** é verdadeira na interpretação **I**".

No exemplo anterior, a fórmula $(p \lor q) \to (p \land q)$ é VERDADEIRA nas <u>interpretações</u> 1 e 4.

Se uma fórmula A é VERDADEIRA segundo alguma interpretação, diz-se que A é satisfatível (ou consistente).

A fórmula $(p \lor q) \rightarrow (p \land q)$ é consistente ou satisfatível.

Uma fórmula A é válida quando for VERDADEIRA em todas as suas interpretações.
 São chamadas de TAUTOLOGIA.

Exemplos:

b)
$$(p \rightarrow (q \vee p))$$

V	V	F	V		
F	٧	V	F		
	1	113	- 31	33	T
(p	\rightarrow	(~	q	V	p))
V	V	F	V	V	V
V	V	V	F	V	V
F	V	F	V	F	F
F	V	V	F	V	F

Observe que na coluna do conectivo principal (∨ para a primeira fórmula e → para a segunda) todas as linhas possuem o valor-verdade V. Isto significa que estas fórmulas nunca serão falsas. Isto pode ser compreendido quando se substitui as variáveis por uma proposição qualquer. A primeira fórmula é um ∨ de uma proposição com sua negação. É como: "Ou isto ocorre ou não ocorre." Esta frase sempre será verdadeira.

- **4.** Se uma fórmula **A** tem o valor **FALSO** numa certa interpretação **I**, diz-se que "**A** é falsa na interpretação **I**".
- 5. Se uma fórmula A é FALSA segundo alguma interpretação, diz-se que A é *inválida*. No exemplo anterior, a fórmula $(p \lor q) \to (p \land q)$ é FALSA nas interpretações 2 e 3.

6. Uma fórmula **A** é **insatisfatível** (ou **inconsistente**) quando for FALSA em todas as suas interpretações. São chamadas de **CONSTRADIÇÕES**. <u>Exemplos:</u>

- a) $(p \land \neg p)$
- **b)** $\neg (p \rightarrow (\neg q \lor p))$

	1					
(p	^	~	P)			
٧	F	F	V			
F	F	٧	F			
1	d d	30	***			
~	(p	\rightarrow	(~	q	V	p))
F	V	V	F	٧	V	V
F	٧	٧	٧	F	V	V
F	F	٧	F	٧	F	F
F	E	V	V	F	V	F

Observe que na coluna do conectivo principal (para a primeira fórmula e ~ para a segunda) todas as linhas possuem o valor-verdade F. Isto significa que estas fórmulas sempre serão falsas. Um exemplo de proposição deste tipo é: "Três é ímpar e três não é ímpar." Esta frase sempre será falsa. Observe a segunda fórmula: a negação de uma tautologia é sempre uma contradição, e vice-versa.

7. Uma fórmula que não é TAUTOLOGIA nem CONTRADIÇÃO é denominada fórmula CONTINGENTE ou CONTINGÊNCIA.

Exemplos:

- **a)** p ∧ q
- **b)** $p \vee q$
- c) $p \rightarrow q$

RESUMO: VALIDADE E INCONSISTÊNCIA						
I.	Uma fórmula A é satisfatível (ou consistente) = ao menos 1 VERDADEIRO					
II.	Uma fórmula A é <i>válida</i> = tudo VERDADE = TAUTOLOGIA					
III.	Uma fórmula A é <i>inválida</i> = ao menos 1 FALSO					
IV.	Uma fórmula A é <i>insatisfatível</i> (ou <i>inconsistente</i>) = tudo FALSO = CONTRADIÇÃO					

As seguintes observações podem então ser constatadas:

- Uma fórmula é inconsistente se, e somente se, sua negação for válida.
- Uma fórmula é inválida se, e somente se, existe pelo menos uma interpretação na qual ela é FALSA.
- Uma fórmula é consistente se, e somente se, existe pelo menos uma interpretação na qual ela é VERDADEIRA.
- Se uma fórmula é válida então ela é consistente, mas não vice-versa.
- Se uma fórmula é inconsistente, então ela é inválida, mas a não vice-versa.

Pode ser facilmente verificado através do uso de tabelas-verdade que:

- a) (p ∧ ¬ p) é inconsistente (contradição), portanto inválida (pelo menos uma interpretação F);
- b) (p ∨ ¬ p) é válida (tautologia), portanto consistente (pelo menos uma interpretação V);
- c) $(p \rightarrow \neg p)$ é inválida, ainda que consistente.

CONSEQUÊNCIA LÓGICA (OU IMPLICAÇÃO LÓGICA)

Diz-se que uma fórmula A implica logicamente B (ou B é implicada logicamente por A, ou ainda que B é consequência lógica de A), se e somente se a fórmula $(A \rightarrow B)$ é uma TAUTOLOGIA.

Se **A implica logicamente B** (ou **B é consequência lógica de A**), isso significa que sempre que **A** for VERDADE, **B** também será VERDADE. A fórmula $(\mathbf{p} \wedge \mathbf{q}) \rightarrow (\mathbf{p} \vee \mathbf{q})$ é uma tautologia.

			1			
((p	Λ	q)	\rightarrow	(p	V	q))
٧	٧	٧	V	٧	٧	V
٧	F	F	٧	V	٧	F
F	F	V	V	F	٧	V
F	F	F	V	F	F	F

Exemplo:

Fórmulas (p \(\bar{q} \)) e (p \(\bar{q} \))

Logo: $(p \land q) \models (p \lor q)$

EQUIVALÊNCIA LÓGICA

Diz-se que duas fórmulas A e B são logicamente equivalentes ($A \equiv B$) se e somente se a fórmula ($A \leftrightarrow B$) é uma tautologia.

			U.				
((p	\rightarrow	q)	\leftrightarrow	(~	р	V	q))
٧	٧	٧	٧	F	٧	٧	٧
٧	F	F	V	F	٧	F	F
F	V	٧	V	V	F	٧	٧
F	٧	F	V	٧	F	٧	F

Exemplo:

Fórmulas
$$(p \rightarrow q)$$
 e $(\neg p \lor q)$

Logo:
$$(p \rightarrow q) \equiv (\neg p \lor q)$$

FORMAS NORMAIS

Algumas vezes, pode-se desejar expressar diversas fórmulas em um mesmo formato – um formato único, padronizado. Para isso, existem diversos procedimentos. Um deles consiste em encontrar o equivalente da fórmula na **Forma Normal Disjuntiva** ou na **Forma Normal Conjuntiva**.

Forma Normal Disjuntiva (FND):

- 1. Contém, no máximo, os conectivos ¬, ∧ e ∨ .
- 2. Não contém negação sobre ∧ nem sobre ∨.
- 3. Não contém ∧ sobre ∨ .

Exemplos:

р

¬р

 $(p \lor q)$

 $(p \lor q) \lor r$

 $(p \land q) \lor r$

 $(p \wedge q) \vee (p \wedge r)$

Não estão na FND:

$$(p \rightarrow q)$$
 $(não é FND, pois contém \rightarrow)$ $\neg (p \lor q)$ $(não é FND, pois contém ¬ sobre ∨)$ $r \lor \neg (p \land q)$ $(não é FND, pois contém ¬ sobre ∧)$ $(p \lor q) \land r$ $(não é FND, pois contém ∧ sobre ∨)$ $(p \lor q) \land (p \lor r)$ $(não é FND, pois contém ∧ sobre ∨)$

Para encontrar a fórmula **FND** equivalente a uma fórmula dada, partimos de sua tabelaverdade. Seja, por exemplo, a tabela-verdade a seguir, da qual <u>não se conhece a fórmula</u>. O objetivo é encontrar uma fórmula **FND** que possua <u>na coluna do resultado</u> os valores abaixo.

	р	q	r	Resultado desejado
10	>	>	>	V
20	>	>	F	F
30	>	F	>	F
40	>	F	F	F
50	F	>	>	F
6°	F	٧	F	V
70	F	F	٧	F
80	F	F	F	V

Para encontrar a **FND**, <u>parte-se das linhas em que o valor do resultado é V</u> (verdadeiro). Para esta fórmula, são as linhas 1, 6 e 8. Para cada uma destas linhas será necessário escrever uma <u>componente FND</u>, encontrada com base nos valores das variáveis (\mathbf{p} , \mathbf{q} e \mathbf{r}). Na primeira linha, os valores são: $\mathbf{p} = \mathbf{V}$, $\mathbf{q} = \mathbf{V}$ e $\mathbf{r} = \mathbf{V}$. Assim, a componente FND fica simplesmente ($\mathbf{p} \land \mathbf{q} \land \mathbf{r}$).

Já na linha 6, os valores são: $\mathbf{p} = \mathbf{F}$, $\mathbf{q} = \mathbf{V}$ e $\mathbf{r} = \mathbf{F}$. Para esta linha, a componente **FND** será ($\neg \mathbf{p} \land \mathbf{q} \land \neg \mathbf{r}$). Observa-se que quando o valor da variável aparece falso em determinada linha, esta aparecerá negada na componente FND.

Na linha 8, que possui todos os valores falsos, a componente FND = $(\neg p \land \neg q \land \neg r)$

	р	q	r	Resultado desejado	Componente FND
10	V	٧	V	٧	(p ∧ q ∧ r)
20	V	٧	F	F	
30	V	F	٧	F	
40	٧	F	F	F	
50	F	٧	٧	F	
6°	F	٧	F	V	(¬p ∧ q ∧ ¬r)
7°	F	F	٧	F	
80	F	F	F	V	(¬p ∧ ¬q ∧ ¬r)

Componente FND: é uma conjunção de literais, ou apenas um único literal.

Não é necessário adotar procedimento com as outras linhas, as de resultado falso. A fórmula FND resultante será: $(p \land q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land \neg r)$. Esta fórmula, se resolvida, apresentará os valores da tabela na coluna do resultado.

Forma Normal Conjuntiva (FNC):

- 1. Contém, no máximo, os conectivos ¬, ∧ e ∨ .
- 2. Não contém negação sobre ∧ nem sobre ∨.
- 3. Não contém ∨ sobre ∧ .

Exemplos:

р

¬р

 $(p \vee q)$

 $(p \lor q) \lor r$

 $(p \land q) \land r$

 $(p \lor q) \land r$

 $(p \lor q) \land (p \lor r)$

Não estão na FNC:

$$(p \leftrightarrow q)$$
 (não é FNC, pois contém \leftrightarrow)

 $\neg (p \lor q)$ (não é FNC, pois contém \neg sobre \lor)

 $r \vee \neg (p \wedge q)$ (não é FNC, pois contém ¬ sobre \wedge)

 $(p \land q) \lor r$ (não é FNC, pois contém \lor sobre \land)

 $(p \land q) \lor (p \land r)$ (não é FNC, pois contém \lor sobre \land)

Para encontrar a fórmula **FNC** equivalente a uma fórmula dada, o procedimento é semelhante ao da FND. Também partimos de sua tabela-verdade.

Para a tabela-verdade a seguir, da qual <u>não se conhece a fórmula</u>, agora as linhas <u>selecionadas são as de resultado falso (F)</u>. Elas é que terão uma <u>componente FNC</u>.

	р	q	r	Resultado desejado
10	>	>	>	V
20	>	>	F	F
30	>	F	>	V
40	>	F	F	V
50	F	>	>	V
6°	F	>	F	F
70	F	F	>	F
80	F	F	F	V

Para encontrar a **FNC**, <u>parte-se das linhas em que o valor do resultado é **F** (falso)</u>. Para esta fórmula, são as linhas **2**, **6** e **7**. Para cada uma destas linhas será necessário escrever uma componente **FNC**, encontrada com base nos valores das variáveis (**p**, **q** e **r**).

Na linha 2, os valores são: $\mathbf{p} = \mathbf{V}$, $\mathbf{q} = \mathbf{V}$ e $\mathbf{r} = \mathbf{F}$. Agora, o procedimento é o contrário do anterior: as variáveis com valor \mathbf{V} é que ficam negadas na componente FNC. Assim, a componente FNC será: $(\neg \mathbf{p} \lor \neg \mathbf{q} \lor \mathbf{r})$. Observe também que agora utiliza-se o conectivo \lor entre as variáveis.

Já na linha 6, os valores são: $\mathbf{p} = \mathbf{F}$, $\mathbf{q} = \mathbf{V}$ e $\mathbf{r} = \mathbf{F}$. Para esta linha, a componente FNC será $(\mathbf{p} \vee \neg \mathbf{q} \vee \mathbf{r})$.

Para a linha 7, então, que possui p e q falsos, a componente FNC = $(p \lor q \lor \neg r)$

	р	q	r	Resultado	Componente FNC
				desejado	FING
10	٧	V	V	V	
20	٧	V	F	F	$(\neg p \lor \neg q \lor r)$
30	>	F	V	V	
40	>	F	F	V	
5°	F	٧	V	V	
6°	F	٧	F	F	(p ∨ ¬q ∨ r)
7°	F	F	V	F	(p∨q∨¬r)
80	F	F	F	V	

Componente FNC: é uma disjunção de literais, ou apenas um único literal.

A fórmula **FNC** resultante será: $(\neg p \lor \neg q \lor r) \land (p \lor \neg q \lor r) \land (p \lor q \lor \neg r)$. Esta fórmula, se resolvida, apresentará os valores da tabela na coluna do resultado.

As fórmulas **FNC** e **FND** <u>podem ser maiores ou menores</u>, dependendo da quantidade de valores <u>verdadeiros</u> (para a FND) e <u>falsos</u> (para a FNC) na coluna do resultado.

Também é possível calcular as fórmulas **FND** e **FNC** para uma dada fórmula qualquer, bastando para isso <u>construir sua tabela-verdade</u> e seguir o procedimento aqui descrito.