

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	Фундаментальные науки	
КАФЕДРА	Прикладная математика	

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Исследование устойчивости некоторых течений вязкой жидкости

Студент	ФН2-41Б		Ю.А. Измайлова
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Руководитель курсовой работы			И.К. Марчевский
		(Подпись, дата)	(И.О. Фамилия)

Оглавление 2

Оглавление

В	ведение	3	
1.	Постановка задачи	3	
2.	. Стационарные одномерные задачи для уравнения Навье — Стокса		
	2.1. Течение Пуазейля в плоском слое	5	
	2.2. Течение Пуазейля в круглой цилиндрической трубе	7	
Ст	Список использованных источников		

Введение 3

Введение

Найти, аналитически решение системы дифференциальных уравнений, описывающей течение вязкой жидкости [1], в общем случае невозможно. Только в некоторых простейших частных случаях, соответствующих довольно простым течениям, эти уравнения допускают аналитические решения. Задачи, имеющие практическое значение, решаются в основном с помощью приближенных численных методов на ЭВМ.

Основная трудность аналитического решения этих уравнений обусловлена наличием нелинейного члена, который имеет вид $(V \cdot \nabla)V$, где V — векторное поле скоростей жидкости. В данной работе будут рассмотрены простейшие стационарные течения, для которых нелинейный член тождественно равен нулю: $meчeнus\ \Pi yase uns ^1$ и $mevehus\ Kyəmma^2$.

Традиционно к *течениям Пуазейля* относят такие стационарные течения вязкой жидкости, которые возникают в результате действия внешних сил (объемных сил или сил давления), например, при создании разности давления на концах горизонтальной трубки. Стационарные течения, вызванные перемещением стенок, ограничивающих жидкость, называют *течениями Куэта*.

1. Постановка задачи

Течение вязкой несжимаемой жидкости описывается системой дифференциальных уравнений в частных производных. Уравнения движения представляют собой закон сохранения массы, который для несжимаемой среды принимает вид

$$\nabla \cdot \boldsymbol{V} = 0, \tag{1}$$

где $m{V} = m{V}(m{r},\,t)$ — поле скоростей, и *закон сохранения импульса*, выражение для которого называют *уравнениями Навъе*^3 — $Cmo\kappa ca^4$ [1]:

$$\frac{\partial \mathbf{V}}{\partial t} + (\mathbf{V} \cdot \nabla) \mathbf{V} = -\frac{\nabla p}{\rho} + \nu \Delta \mathbf{V}. \tag{2}$$

Здесь $p=({m r},t)$ — поле давления; ${m \rho}$ — плотность среды, которую будем считать постоянной; ${m v}$ — постоянный коэффициент кинематической вязкости.

 $^{^1}$ Жан Луи Мари Пуазейль (ϕp . Jean Léonard Marie Poiseuille, 1797–1869) — французский врач и физик.

 $^{^2}$ Морис Мари Альфред Куэтт (ϕp . Maurice Marie Alfred Couette, 1858–1943) — французский механик.

 $^{^3}$ Клод Луи Мари Анри Навье (ϕp . Claude Louis Marie Henri Navier, 1785–1836) — французский механик и инженер.

 $^{^4}$ Джордж Габриель Стокс (*англ.* George Gabriel Stokes, 1819–1903) — английский математик, механик и физик-теоретик ирландского происхождения.

В данной работе будем рассматривать только установившиеся, или стационарные течения, т. е. такие, у которых параметры остаются неизменными во времени, поэтому в уравнениях (2) будут присутствовать только производные по пространственным координатам, входящие в дифференциальные операторы, а зависимость всех величин от времени в дальнейшем упоминать не будем.

Поэтому для корректной постановки задачи систему уравнений (1)–(2) следует дополнить граничными условиями, которыми являются *условия прилипания* жидкости к твердой стенке (границе области течения):

$$V(r) = V_K(r), \quad r \in K,$$
 (3)

где $V_K(r)$ — скорость движения точки с радиус-вектором r на границе области течения K.

В поставленной задаче давление в уравнении (2) входит только под знаком градиента, что означает невозможность его определения с точностью до константы. Поэтому задачу можно рассматривать двояко:

- задать произвольное значение давления в любой (одной) точке области течения;
- полагать, что неизвестной величиной является не само давление, а компоненты его градиента.

<u>Целью</u> настоящей работы является получение точных решений уравнений движения вязкой несжимаемой жидкости в тех случаях, когда течение оказывается одномерным, т. е. его характеристики зависят от одной пространственной переменной. К таковым относятся так называемые течения Пуазейля и Куэтта. Также требуется рассмотреть задачу об исследовании устойчивости течения Куэтта в упрощенном безынерционном приближении.

2. Стационарные одномерные задачи для уравнения Навье — Стокса

Под одномерными задачами далее будем понимать такие, в которых искомая величина зависит только от одной пространственной переменной. При этом с «геометрической» точки зрения такие задачи могут быть также и двумерными, и трехмерными. Далее рассмотрим четыре таких задачи: течение в плоском слое, течение в трубе, течение в полой трубе, течение между соосными вращающимися цилиндрами. Для каждого из рассматриваемых случаев требуется найти решение для поля скоростей и распределение давления в области течения, а также вычислить необходимые характеристики течения: расход среды, суммарную силу трения о стенки.

2.1. Течение Пуазейля в плоском слое

Рассмотрим стационарное течение несжимаемой жидкости, описываемое уравнениями (1)–(2), в плоском слое, как указано на рис. 1, т.е. в зазоре между двумя неподвижными плоскостями.

Рис. 1. Течение Пуазейля в плоском слое

Направления осей координат показаны на рис. 1; течение предполагается плоскопараллельным, т.е. компонента скорости V_z равна нулю и все характеристики течения не зависят от координаты z.

Предположим, что на левой и правой границах области течения задано постоянное давление, и будем дополнительно считать, что давление зависит лишь от координаты x, т.е. остается постоянным в любом поперечном сечении канала, p = p(x). Вместе с этим, считаем, что поле скоростей во всех сечениях одинаково, значит,

$$\frac{\partial V_x}{\partial x} = \frac{\partial V_y}{\partial x} = 0.$$

Последнее означает, что V_x и V_y если зависят, то только от одной переменной y. Таким образом, можно записать граничные условия для данной задачи:

$$p|_{x=0} = p_1, \quad p|_{x=L} = p_2, \quad V_x|_{y=-H/2} = V_x|_{y=H/2} = 0, \quad V_y|_{y=-H/2} = V_y|_{y=H/2} = 0.$$

С учетом сделанных предположений уравнения (1)–(2) принимают вид

$$\begin{cases}
\frac{1}{\rho} \frac{dp}{dx} = v \frac{d^2 V_x}{dy^2}, \\
0 = v \frac{d^2 V_y}{dy^2}, \\
\frac{dV_y}{dy} = 0.
\end{cases} \tag{4}$$

Поскольку $\frac{dV_y}{dy} = 0$, то $V_y = \text{const.}$ Принимая во внимание граничные условия

$$V_y|_{y=-H/2} = V_y|_{y=H/2} = 0,$$

получаем, что $V_y \equiv 0$.

Отличная от нуля компонента скорости направлена вдоль оси Ox, так же направлен и градиент давления. Соответственно, получим следующие зависимости:

$$V_x = V_x(y);$$
 $V_y = V_z \equiv 0;$ $p = p(x).$

Продифференцируем первое из системы уравнений (4) по x:

$$\frac{d^2p}{dx^2} = 0.$$

Решая его, получаем $p = C_1 x + C_2$; а с учетом граничных условий для давления находим

$$p(x) = p_1 + \frac{p_2 - p_1}{L}x, \qquad \frac{dp}{dx} = \frac{p_2 - p_1}{L} = \text{const.}$$
 (5)

Решая теперь первое из уравнений (4) относительно $V_x = V_x(y)$ с учётом (5), получаем:

$$V_x(y) = \frac{1}{\rho v} \frac{p_2 - p_1}{L} \frac{y^2}{2} + C_3 y + C_4.$$

Значения констант C_3 и C_4 находим из граничных условий $V_x|_{-H/2} = V_x|_{-H/2} = 0$:

$$\begin{cases} 0 = \frac{1}{\rho \nu} \frac{p_2 - p_1}{L} \frac{H^2}{8} + C_3 \frac{H}{2} + C_4, \\ 0 = \frac{1}{\rho \nu} \frac{p_2 - p_1}{L} \frac{(-H)^2}{8} - C_3 \frac{H}{2} + C_4, \end{cases}$$

откуда находим

$$C_3 = 0,$$
 $C_4 = -\frac{1}{\rho \nu} \frac{p_2 - p_1}{L} \frac{H^2}{8}$

Окончательно решение исходной системы (1)–(2) с учетом граничных условий и принятого обозначения $\mu = \rho \nu$ для динамической вязкости имеет вид

$$V_x(y) = \frac{1}{2\mu} \frac{p_1 - p_2}{L} \left(\frac{H^2}{4} - y^2 \right), \tag{6}$$

$$p(x) = p_1 + \frac{p_2 - p_1}{L}x. (7)$$

Такое поле скоростей называется плоским течением Пуазейля и применяется для описания ламинарного течения в плоских прямоугольных каналах, в которых один поперечный размер много больше другого.

Теперь найдем объемный расход жидкости, т.е. объем среды, протекающий через поперечное сечение канала между пластинами в единицу времени (в расчете на единицу длины вдоль направления Oz), по формуле

$$Q = \int_{-H/2}^{H/2} V_x(y) \, dy = \int_{-H/2}^{H/2} \frac{1}{2\mu} \frac{p_1 - p_2}{L} \left(\frac{H^2}{4} - y^2 \right) dy =$$

$$= \frac{p_1 - p_2}{2\mu L} \left(\frac{H^2 y}{4} - \frac{y^3}{3} \right) \Big|_{-H/2}^{H/2} = \frac{p_1 - p_2}{\mu L} \frac{H^3}{12}.$$

Напряжение трения (т. е. сила трения протекающей жидкости о стенку в расчете на единицу площади стенки) вычисляется по формуле

$$au = \left. \mu rac{\partial V_x}{\partial m{n}}
ight|_w,$$

где n — орт нормали, направленный от стенки в сторону жидкости; нижний индекс w означает, что производная вычисляется на стенке. Тогда на нижней стенке

$$\tau|_{y=-H/2} = \mu \frac{\partial V_x}{\partial y} \bigg|_{y=-H/2} = \frac{p_1 - p_2}{2L} H,$$

и на верхней стенке

$$\tau|_{y=H/2} = -\mu \frac{\partial V_x}{\partial y}\bigg|_{y=H/2} = \frac{p_1 - p_2}{2L}H.$$

Суммарная сила трения:

$$F_{vis} = (\tau|_{y=H/2} + \tau|_{y=-H/2})L = (p_1 - p_2)H.$$

Видно, что сила трения в данной задаче представляет разность силы давления, которое оказывается на жидкость на входе в канал слева, и силы давления, которое оказывает жидкость при выходе из канала справа.

2.2. Течение Пуазейля в круглой цилиндрической трубе

В данном разделе рассматривается стационарное течение несжимаемой жидкости, описываемое уравнениями (1)–(2), в сечении круглой цилиндрической трубы длиной L, во много раз превышающей ее радиус R, т.е. $L \gg R$ (рис. 2).

Рис. 2. Течение Пуазейля в круглой трубе

Поскольку течение в круглой трубе симметрично относительно оси цилиндра, то удобно перейти в цилиндрическую систему координат с осью Ox, направленной вдоль оси цилиндра. Из соображений симметрии следует, что все параметры течения не зависят от полярного угла φ , и кроме того условимся рассматривать т. н. незакрученные течения, в которых $V_{\varphi} \equiv 0$.

В связи с тем, что $L\gg R$, трубу можно считать бесконечно длинной. Тогда течение во всех поперечных сечениях будет одинаковым и компоненты скорости не будут зависеть от пространственной координаты x, а производные по x от этих компонент обращаются в ноль.

Труба представляет собой круговой цилиндр, поэтому рационально предположить, что радиальная компонента скорости V_r равна нулю, $V_r \equiv 0$. Тогда для скорости V справедлива следующая зависимость:

$$V_x = V_x(r), \quad V_{\varphi} = V_r \equiv 0.$$

Из-за осевой симметрии течения давление p тоже не будет зависеть от угловой компоненты φ . Дополнительно считаем, что давление остается постоянным в любом поперечном сечении канала и меняется только по его длине: p = p(x).

Запишем граничные условия для данной задачи с учетом того, что течение создается и поддерживается постоянной разностью давлений:

$$p|_{x=0} = p_1, \quad p|_{x=L} = p_2, \quad V_x(R) = 0.$$

В уравнении (2) нелинейное слагаемое $(V \cdot \nabla)V = 0$, потому что данное выражение имеет смысл производной векторного поля V в направлении этого же вектора V, умноженной на норму $\|V\|$; выше было отмечено, что V имеет только продольную компоненту, которая при этом не зависит от продольной координаты. Тогда система уравнений (1)–(2) примет вид:

$$\begin{cases} \nabla \cdot \mathbf{V} = 0, \\ \frac{\nabla p}{\Omega} = \nu \Delta \mathbf{V}. \end{cases}$$
 (8)

Воспользуемся формулами, через которые выражаются дифференциальные операторы ∇ и Δ в цилиндрической системе координат.

• Оператор градиента:

$$\nabla \Phi = \frac{\partial \Phi}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial \Phi}{\partial \varphi} \mathbf{e}_{\varphi} + \frac{\partial \Phi}{\partial x} \mathbf{e}_x. \tag{9}$$

• Лапласиан скалярной функции:

$$\Delta \Phi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \varphi^2} + \frac{\partial^2 \Phi}{\partial x^2}. \tag{10}$$

• Лапласиан векторной функции:

$$\Delta \mathbf{F} = \left(\Delta F_r - \frac{F_r}{r^2} - \frac{2}{r^2} \frac{\partial F_{\varphi}}{\partial \varphi}\right) \mathbf{e}_r + \left(\Delta F_{\varphi} - \frac{F_{\varphi}}{r^2} + \frac{2}{r^2} \frac{\partial F_r}{\partial \varphi}\right) \mathbf{e}_{\varphi} + (\Delta F_x) \mathbf{e}_x.$$
(11)

Здесь e_r , e_{φ} и e_x — базисные векторы в цилиндрической системе координат в соответствующей точке.

Рассмотрим ∇p с учётом (9) и p = p(x):

$$\nabla p = \underbrace{\frac{\partial p}{\partial r}}_{0} \boldsymbol{e}_{r} + \frac{1}{r} \underbrace{\frac{\partial p}{\partial \varphi}}_{0} \boldsymbol{e}_{\varphi} + \frac{\partial p}{\partial x} \boldsymbol{e}_{x} = \frac{\partial p}{\partial x} \boldsymbol{e}_{x}. \tag{12}$$

Рассмотрим ΔV с учётом (10)–(11), а также $V_x = V_x(r), V_r = V_{\varphi} \equiv 0$:

$$\Delta \mathbf{V} = (\Delta V_x) \mathbf{e_x} = \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V_x}{\partial r}\right) + \frac{1}{r^2} \underbrace{\frac{\partial^2 V_x}{\partial \varphi^2}}_{0} + \underbrace{\frac{\partial^2 V_x}{\partial x^2}}_{0}\right) \mathbf{e_x} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V_x}{\partial r}\right) \mathbf{e_x}.$$
(13)

Тогда второе из системы уравнений (8), исходя из (12) и (13), будет иметь вид (далее производные обозначаем полными, т. к. соответствующие величины зависят только от одной переменной)

$$\frac{1}{\rho} \frac{dp}{dx} = \nu \frac{1}{r} \frac{d}{dr} \left(r \frac{dV_x}{dr} \right). \tag{14}$$

Поскольку давление остается постоянным в любом поперечном сечении канала, а скорость жидкости не зависит от координаты x, значит, аналогично предыдущей задаче, можно установить, что

$$p(x) = p_1 + \frac{p_2 - p_1}{L}x, \qquad \frac{dp}{dx} = \frac{p_2 - p_1}{L} = \text{const.}$$
 (15)

Таким образом, задача свелась к решению обыкновенного дифференциального уравнения. Решая (14) относительно $V_x = V_x(r)$ с учетом (15), получаем:

$$V_x(r) = \frac{p_2 - p_1}{4\mu L}r^2 + C_3 \ln r + C_4.$$

Постоянную C_3 следует положить равной нулю, т.к. иначе будет нарушаться понятное из физического смысла задачи условие конечности скорости жидкости $V_x(0) < \infty$.

Постоянную C_4 находим из условия $V_x(R) = 0$:

$$0 = \frac{p_2 - p_1}{4 \mathfrak{u} L} R^2 + C_4,$$
 откуда $C_4 = \frac{p_1 - p_2}{4 \mathfrak{u} L} R^2.$

Окончательно получаем решение уравнения (14):

$$V_x(r) = \frac{p_1 - p_2}{4\mu L} (R^2 - r^2), \tag{16}$$

$$p(x) = p_1 + \frac{p_2 - p_1}{L}x. (17)$$

Аналогично предыдущей задаче найдем основные характеристики течения.

Объемный расход жидкости:

$$Q = \int_{0}^{R} V_x(r) \cdot 2\pi r dr = \frac{\pi(p_1 - p_2)}{2\mu L} \left(\frac{R^4}{2} - \frac{R^4}{4}\right) = \frac{\pi(p_1 - p_2)}{8\mu L} R^4.$$
 (18)

Из формулы видно, что расход жидкости прямо пропорционален перепаду давления, радиусу трубы в 4-ю степень, и обратно пропорционален коэффициенту динамической вязкости μ. Формулу (18) используют для экспериментального определения коэффициента μ.

Напряжение трения на стенке трубы:

$$\tau = -\rho v \left. \frac{dV_x}{dr} \right|_R = \frac{(p_1 - p_2)}{2L} R.$$

Сила вязкого трения на стенке трубы:

$$F = \tau \cdot 2\pi RL = \frac{(p_1 - p_2)}{2L}R \cdot 2\pi RL = (p_1 - p_2)\pi R^2.$$

Как и при рассмотрении течения в плоском канале, сила трения равна разности силы давления на входе и на выходе из трубы. Иными словами, сила, приложенная к жидкости слева, «распределяется» между силой давления жидкости на выходе из трубы и силой трения жидкости о стенки трубы.

Список использованных источников

1. Лойцянский Л. Г. Механика жидкости и газа. М.: Дрофа, 2003. 846 с.