Tema 1: EL PLA COMPLEX

1. Passeu de forma rectangular a exponencial o viceversa, i representeu en el pla complex:

- (i) 3 3i.
- (ii) -2 4i.
- (iii) -8.
- (iv) $\sqrt{2}e^{i\frac{\pi}{4}}$.
- (v) $e^{i\frac{4\pi}{3}}$.
- (vi) $\frac{1}{\sqrt{3}}e^{-i\frac{5\pi}{6}}$

2. Calculeu els següents nombres complexes en forma exponencial:

- (i) $\frac{-4}{1+i}$.
- (ii) $\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^3$.
- (iii) $\frac{1}{\sqrt{2}+\sqrt{2}i}$.
- (iv) $i^{37} \overline{\left(\frac{2e^{i\frac{\pi}{7}}}{-3+3i}\right)}$.
- (v) $\frac{1+i}{1-i}$.
- (vi) $(2+2i)^8$.

3. Trobeu les arrels complexes que s'indiquen:

- (i) Les arrels cúbiques de 1.
- (ii) (ii) Les arrels quadrades de i.
- (iii) $(3\sqrt{3} 27i)^{\frac{1}{5}}$.
- (iv) $(-64)^{\frac{1}{6}}$.

4. Calculeu:

- (i) $\sqrt{\frac{1-i\sqrt{3}}{2}}$.
- (ii) $\sqrt[4]{-1}$.
- (iii) √√i.

- 5. Resoleu les equacions
- (i) $z^2 + (-5 + 4i)z + 11 7i = 0$.
- (ii) $z i\bar{z} = 1$.
- **6.** Useu la fórmula de Cardano per trobar la solució real de l'equació $x^3 + 15x 4 = 0$.
- 7. Descriviu els conjunts
- (i) |z + i| < 5.
- (ii) |2i z| = |z + 1 + 3i|.
- (iii) 2 > Re z > -3.
- (iv) Re [(3-4i)z] > 0.
- (v) |z + 2 i| = 3.
- (vi) |(1+i)z-4|=2.
- (vii) Re $\left(\frac{z-i}{1-i}\right) > 1$.
- 8. Proveu:
- (i) Si $a, b \in \mathbb{C}$, |a| < 1, $|b| < 1 \implies \left| \frac{a b}{1 \bar{b}a} \right| < 1$.
- (ii) Si $a, b \in \mathbb{C}$, |a| < 1, $|b| = 1 \implies \left| \frac{a b}{1 \bar{b}a} \right| = 1$.
- 9. $a_1,a_2,a_3\in\mathbb{C}$. Demostreu que són els vèrtexs d'un triangle equilàter sí, i només sí, $(a_1\neq a_2\neq a_3)$ $a_1^2+a_2^2+a_3^2=a_1a_2+a_2a_3+a_3a_1.$
- 10. Trobeu les condicions per tal que $az+b\bar{z}+c=0$ tingui una única solució i trobeu-la.
- 11. Si ω és un generador de les arrels n-èsimes de la unitat ($\omega^n = 1$ i $\omega^m \neq 1$ si m < n),

$$1 + \omega^h + \omega^{2h} + \dots + \omega^{(n-1)h} = 0,$$

sent $h \in \mathbb{Z}$, $h \neq \dot{n}$.

- 12. Per a quins valors de a, b i $c, az + b\bar{z} + c = 0$ és una recta?
- **13.** Comproveu que per $z_1, z_2 \in \mathbb{C}$ no nuls es té que $z_1 z_2 \in \mathbb{R} \iff z_2 = \lambda \bar{z_1}$ amb $\lambda \in \mathbb{R}$.

2

14. Resoleu el sistema d'equacions lineals

$$\begin{cases} (1+i)x - 2y = 4i \\ -x + (2+i)y = 0 \end{cases}$$

- **15.** Utilitzant la forma exponencial d'un nombre complex, expresseu les funcions trigonomètriques $\cos(\theta_1 \pm \theta_2)$, $\sin(\theta_1 \pm \theta_2)$, $\cos(n\theta)$, $\sin(n\theta)$ en termes de $\cos\theta$, $\cos\theta_1$, $\cos\theta_2$, $\sin\theta$, $\sin\theta_1$, $\sin\theta_2$.
- 16. Comproveu que si pensem dos nombres complexos z_1, z_2 com dos vectors del pla \mathbb{R}^2 , el seus producte escalar i determinant satisfan

$$\bar{z}_1 z_2 = \langle z_1, z_2 \rangle + i \det(z_1, z_2) .$$

17. Proveu la identitat de Lagrange: siguin $a_1, b_1, \ldots, a_n, b_n \in \mathbb{C}$. Aleshores es compleix

$$\left| \sum_{i=1}^{n} a_i b_i \right|^2 = \sum_{i=1}^{n} |a_i|^2 \sum_{i=1}^{n} |b_i|^2 - \sum_{1 \le i \le j \le n} |a_i \overline{b}_j - a_j \overline{b}_i|^2.$$

18. Projecció estereogràfica i l'esfera de Riemann.

Sigui $\mathbb{S}^2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}, N = (0, 0, 1) (pol nord)$ i identifiquem el pla $x_3 = 0$ amb \mathbb{C} . Considerem l'aplicació $\phi : \mathbb{S}^2 \setminus \{N\} \to \mathbb{C}$ (que anomenem projecció estereogràfica) tal que per cada punt $P \in \mathbb{S}^2 \setminus \{N\}, \phi(P)$ és el nombre complex obtingut de tallar la recta definida pels punts N i P amb el pla $x_3 = 0$.

Prescrivint que la imatge de N sigui ∞ , la projecció estereogràfica estén a una aplicació $\phi: \mathbb{S}^2 \to \overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, que continuarem denotant ϕ . En aquest context, a \mathbb{S}^2 se l'anomena esfera de Riemann.

- (i) Trobeu les expressions en coordenades de ϕ^{-1} i de ϕ .
- (ii) Demostreu que els cercles que passen per N són en correspondència bijectiva amb les rectes de $\mathbb C.$
- (iii) Demostreu que els cercles que no passen per N són en correspondència bijectiva amb els cercles de \mathbb{C} .
- (iv) Si definim la distància entre dos punts de $\overline{\mathbb{C}}$ com la distància entre les seves corresponents antiimatges en \mathbb{S}^2 , trobeu $d(z_1, z_2)$ si $z_1, z_2 \in \overline{\mathbb{C}}$, i $d(z, \infty)$, si $z \in \mathbb{C}$.
- (v) Demostreu que si z_1 i z_2 es corresponen a punts diametralment oposats en \mathbb{S}^2 segons ϕ^{-1} , aleshores $z_1\bar{z}_2=-1$.

3

19. Transformacions de Möbius.

Sigui $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ una matriu amb coeficients complexos, $a, b, c, d \in \mathbb{C}$, i determinant no nul, $ad - bc \neq 0$. Definim la transformaci'o de M"obius associada a A com $T = T_A : \overline{\mathbb{C}} \to \overline{\mathbb{C}}$:

$$T(z) = \frac{az+b}{cz+d}$$

(i) Demostreu que tota transformació de Möbius T és una bijecció de $\overline{\mathbb{C}}$ i trobeu T^{-1} .

(ii) Demostreu que donats $z_1, z_2, z_3 \in \overline{\mathbb{C}}$, diferent dos a dos, existeix una única transformació de Möbius S tal que $S(z_1) = 1$, $S(z_2) = 0$ i $S(z_3) = \infty$, donada per $S(z) = \frac{z-z_2}{z-z_3} \cdot \frac{z_1-z_3}{z_1-z_2}$.

(iii) Donades dues ternes z_1, z_2, z_3 i z_1', z_2', z_3' com les de (ii) proveu existeix una única transformació de Möbius T tal que $T(z_j) = z_j'$, $\forall j = 1, 2, 3$.

(iv) Donats quatre punts $z, z_1, z_2, z_3 \in \overline{\mathbb{C}}$, diferents dos a dos, la seva raó doble és defineix com $(z, z_1, z_2, z_3) = S(z)$, on S és la transofrmació de (ii) (calculada en termes de z_1, z_2, z_3). Demostreu si T és una transformació de Möbius, llavors T preserva el valor de la raó doble: $(T(z), T(z_1), T(z_2), T(z_3)) = (z, z_1, z_2, z_3)$.

(v) Si T és una transformació de Möbius i denotem $\bar{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$, llavors és té:

$$T(\bar{\mathbb{R}}) = \bar{\mathbb{R}} \iff \exists a, b, c, d \in \mathbb{R} \text{ tals que } T = T_A.$$

(vi) Si T és una transformació de Möbius llavors $T(\bar{\mathbb{R}}) = C$, on C és un "cercle de $\bar{\mathbb{C}}$ ", això és, C és un cercle de \mathbb{C} o una recta de \mathbb{C} a la que afegim ∞ .

(vii) Proveu que $(z,z_1,z_2,z_3) \in \bar{R} \iff z,z_1,z_2,z_3$ són sobre un "cercle".

(viii) Proveu que si T és una transformació de Möbius llavors transforma "cercles" en "cercles".

(ix) Si T és una transformació de Möbius que envia el cercle unitat C(0;1) en ell mateix, llavors $T(z)=\mathrm{e}^{\mathrm{i}\theta}\frac{z-z_0}{\overline{z}_0z-1}$, sent $\theta\in\mathbb{R}$ i $z_0\not\in C(0;1)$.

(x) Si T és una transformació de Möbius que envia $\bar{\mathbb{R}}$ en C(0;1), llavors $T(z)=\mathrm{e}^{\mathrm{i}\theta}\frac{z-z_0}{z-\bar{z}_0}$, sent $\theta\in\mathbb{R}$ i $z_0\in\mathbb{C}\setminus\mathbb{R}$.