Discrete Optimization

Linear Programming: Part IV

Goals of the Lecture

- Linear programming
 - introduce matrix notations
 - -introduce the tableau
 - restate some of the results

$$3x_1 + 2x_2 + x_3$$
 = 1
 $2x_1 + x_4 + x_5 + x_6 = 2$
 $x_1 + x_5 + x_6 = 3$

Basis =
$$\{3,4,5\}$$

Basis = $\{3,4,5\}$

Basic variables = $\{x_3, x_4, x_5\}$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} + \begin{pmatrix} 3 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

Basic variables = $\{x_3, x_4, x_5\}$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} + \begin{pmatrix} 3 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

 A_{B}

 \mathbf{x}_{B}

XN

- ► Consider Ax = b
- Choose m linearly independent columns A_B

$$A_B x_B + A_N x_N = b$$

$$A_B x_B = b - A_N x_N$$

$$x_B = A_B^{-1} b - A_B^{-1} A_N x_N$$

$$x_B = b' - A'_N x_N$$

- ► Consider Ax = b
- Choose m linearly independent columns A_B

$$A_B x_B + A_N x_N = b$$

$$A_B x_B = b - A_N x_N$$

$$x_B = A_B^{-1} b - A_B^{-1} A_N x_N$$

$$x_B = b' - A'_N x_N$$

- ► Consider Ax = b
- Choose m linearly independent columns A_B

$$A_B x_B + A_N x_N = b$$

$$A_B x_B = b - A_N x_N$$

$$x_B = A_B^{-1} b - A_B^{-1} A_N x_N$$

$$x_B = b' - A'_N x_N$$

Feasible if $b' \ge 0$

- Consider Ax = b
- Choose m linearly independent columns A_B

$$A_B x_B + A_N x_N = b$$

$$A_B x_B = b - A_N x_N$$

$$x_B = A_B^{-1} b - A_B^{-1} A_N x_N$$

$$x_B = b' - A'_N x_N$$

- Feasible if $b' \ge 0$
- ► The matrix A_B is called a *basis*.

min cxsubject to Ax = b

Linear programming

min
$$cx$$
subject to $Ax = b$

Linear programming

min
$$cx$$
subject to
$$Ax = b$$

► Basic feasible solution: Basis B

$$x_B = A_B^{-1}b - A_B^{-1}A_N x_N$$

Linear programming

min
$$cx$$
subject to
$$Ax = b$$

► Basic feasible solution: Basis B

$$x_B = A_B^{-1}b - A_B^{-1}A_N x_N$$

► What is the cost for basis B?

$$cx = c_B x_B + c_N x_N$$

$$cx = c_B x_B + c_N x_N$$

$$= c_B (A_B^{-1}b - A_B^{-1}A_N x_N) + c_N x_N$$

$$= c_B A_B^{-1}b + (c_N - c_B A_B^{-1}A_N) x_N$$

$$= c_B A_B^{-1}b + (c_N - c_B A_B^{-1}A_N) x_N$$

$$+ (c_B - c_B A_B^{-1}A_B) x_B$$

$$= c_B A_B^{-1}b + (c - c_B A_B^{-1}A)x$$

► What is the cost for basis B?

$$cx = c_B x_B + c_N x_N$$

$$= c_B (A_B^{-1}b - A_B^{-1}A_N x_N) + c_N x_N$$

$$= c_B A_B^{-1}b + (c_N - c_B A_B^{-1}A_N) x_N$$

$$= c_B A_B^{-1}b + (c_N - c_B A_B^{-1}A_N) x_N$$

$$+ (c_B - c_B A_B^{-1}A_B) x_B$$

$$= c_B A_B^{-1}b + (c - c_B A_B^{-1}A)x$$

► What is the cost for basis B?

$$cx = c_B x_B + c_N x_N$$

$$= c_B (A_B^{-1}b - A_B^{-1}A_N x_N) + c_N x_N$$

$$= c_B A_B^{-1}b + (c_N - c_B A_B^{-1}A_N) x_N$$

$$= c_B A_B^{-1}b + (c_N - c_B A_B^{-1}A_N) x_N$$

$$+ (c_B - c_B A_B^{-1}A_B) x_B$$

$$= c_B A_B^{-1}b + (c - c_B A_B^{-1}A)x$$

► Define $\Pi = c_B A_B^{-1}$

► What is the cost for basis B?

$$cx = c_B x_B + c_N x_N$$

$$= c_B (A_B^{-1}b - A_B^{-1}A_N x_N) + c_N x_N$$

$$= c_B A_B^{-1}b + (c_N - c_B A_B^{-1}A_N) x_N$$

$$= c_B A_B^{-1}b + (c_N - c_B A_B^{-1}A_N) x_N$$

$$+ (c_B - c_B A_B^{-1}A_B) x_B$$

$$= c_B A_B^{-1}b + (c - c_B A_B^{-1}A)x$$

► Define
$$\Pi = c_B A_B^{-1}$$

$$cx = \Pi b + (c - \Pi A)x$$

$$cx = c_B A_B^{-1} b + (c - c_B A_B^{-1} A) x$$
$$cx = \Pi b + (c - \Pi A) x$$

What are the costs in the basic feasible solution?

$$cx = c_B A_B^{-1} b + (c - c_B A_B^{-1} A) x$$
$$cx = \Pi b + (c - \Pi A) x$$

What are the costs in the basic feasible solution?

$$cx = c_B A_B^{-1} b + (c - c_B A_B^{-1} A) x$$
$$cx = \Pi b + (c - \Pi A) x$$

What are the costs in the basic feasible solution?

$$cx = c_B A_B^{-1} b + (c - c_B A_B^{-1} A) x$$

 $cx = \Pi b + (c - \Pi A) x$

The basis is optimal if these costs are nonnegative

Let $c^* = c - \prod A$ and $c_0^* = \prod b$. Since the c^* are nonnegative,

$$c \geq \Pi A$$
.

Consider any feasible solution y. We have

$$Ay = b$$
.

Hence,

$$cy \ge \Pi Ay = \Pi b = c_0^*.$$

- Linear programming is often presented with a tableau
 - easier for pivoting

```
min x_1 + x_2 + x_3 + x_4 + x_5 = z subject to 3x_1 + 2x_2 + x_3 = 1 5x_1 + x_2 + x_3 + x_4 = 3 2x_1 + 5x_2 + x_3 + x_4 = 4
```

min	x_1	+	x_2	+	x_3	+	x_4	+	x_5	=	z
subject to											
	$3x_1$	+	$2x_2$	+	x_3					=	1
	$5x_1$	+	x_2	+	x_3	+	x_4			=	3
	$2x_1$	+	$5x_2$	+	x_3			+	x_5	=	4

X ₁	X 2	X 3	X 4	X 5	-Z
-3	-3	0	0	0	-6
3	2	1	0	0	1
2	-1	0	1	0	2
-1	3	0	0	1	3

min
$$x_1 + x_2 + x_3 + x_4 + x_5 = z$$
 subject to
$$3x_1 + 2x_2 + x_3 = 1$$
$$5x_1 + x_2 + x_3 + x_4 = 3$$
$$2x_1 + 5x_2 + x_3 + x_4 = 4$$

X ₁	X 2	Х3	X 4	X 5	-Z	
-3	-3	0	0	0	-6	→ -Z
3	2	1	0	0	1	
2	-1	0	1	0	2	
-1	3	0	0	1	3	

min
$$x_1 + x_2 + x_3 + x_4 + x_5 = z$$
 subject to
$$3x_1 + 2x_2 + x_3 = 1$$
$$5x_1 + x_2 + x_3 + x_4 = 3$$
$$2x_1 + 5x_2 + x_3 + x_4 = 4$$

X 1	X 2	X 3	X 4	X 5	Z	
-3	-3	0	0	0	-6	→ -Z
3	2	1	0	0	1	
2	-1	0	1	0	2	
-1	3	0	0	1	3	

the basis

min	x_1	+	x_2	+	x_3	+	x_4	+	x_5	=	z
subject to											
	$3x_1$	+	$2x_2$	+	x_3					=	1
	$5x_1$	+	x_2	+	x_3	+	x_4			=	3
	$2x_1$	+	$5x_2$	+	x_3			+	x_5	=	4

X ₁	X 2	Хз	X 4	X 5	-Z	
-3	-3	0	0	0	-6	
3	2	1	0	0	1	
2	-1	0	1	0	2	
-1	3	0	0	1	3	
		t	he basi	S	b	

X ₁	X 2	Х3	X 4	X 5	-Z
-3	-3	0	0	0	-6
3	2	1	0	0	1
2	-1	0	1	0	2
-1	3	0	0	1	3

entering variable

X 1	X 2	Х3	X 4	X 5	-Z
-3	-3	0	0	0	-6
3	2	1	0	0	1
2	-1	0	1	0	2
-1	3	0	0	1	3

entering variable

X 1	X 2	Х3	X 4	X 5	-Z
-3	-3	0	0	0	-6
3	2	1	0	0	1
2	-1	0	1	0	2
-1	3	0	0	1	3

entering variable

X ₁	X 2	X 3	X 4	X 5	- Z
-3	-3	0	0	0	-6
3	2	1	0	0	1
2	-1	0	1	0	2
-1	3	0	0	1	3

X ₁	X 2	X 3	X 4	X 5	- Z
3/2	0	3/2	0	0	-9/2
3/2	1	1/2	0	0	1/2
7/2	0	1/2	1	0	5/2
-11/2	0	-3/2	0	1	3/2

Until Next Time