

4 Banks x 1M x 16Bit Synchronous DRAM

DESCRIPTION

The Hynix HY57V641620HG is a 67,108,864-bit CMOS Synchronous DRAM, ideally suited for the main memory applications which require large memory density and high bandwidth. HY57V641620HG is organized as 4banks of 1,048,576x16.

HY57V641620HG is offering fully synchronous operation referenced to a positive edge of the clock. All inputs and outputs are synchronized with the rising edge of the clock input. The data paths are internally pipelined to achieve very high bandwidth. All input and output voltage levels are compatible with LVTTL.

Programmable options include the length of pipeline (Read latency of 2 or 3), the number of consecutive read or write cycles initiated by a single control command (Burst length of 1,2,4,8 or Full page), and the burst count sequence(sequential or interleave). A burst of read or write cycles in progress can be terminated by a burst terminate command or can be interrupted and replaced by a new burst read or write command on any cycle. (This pipelined design is not restricted by a `2N` rule.)

FEATURES

- Single 3.3±0.3V power supply Note)
- All device pins are compatible with LVTTL interface
- JEDEC standard 400mil 54pin TSOP-II with 0.8mm of pin pitch
- All inputs and outputs referenced to positive edge of system clock
- Data mask function by UDQM or LDQM
- Internal four banks operation

- Auto refresh and self refresh
- 4096 refresh cycles / 64ms
- Programmable Burst Length and Burst Type
 - 1, 2, 4, 8 or Full page for Sequential Burst
 - 1, 2, 4 or 8 for Interleave Burst
 - Programmable CAS Latency; 2, 3 Clocks

ORDERING INFORMATION

Part No.	CI ock Frequency	Power	Or gani zat i on	I nt er f ace	Package
HY57V641620HGT-5/55/6/7	200/183/166/143MHz				
HY57V641620HGT-K	133MHz				
HY57V641620HGT-H	133MHz	Normal			
HY57V641620HGT-8	125MHz	Norman			
HY57V641620HGT-P	100MHz				
HY57V641620HGT-S	100MHz		4Banks x 1Mbits	LVTTL	400mil 54pin TSOP II
HY57V641620HGLT-5/55/6/7	200/183/166/143MHz		x16		400mm 54pm 130F m
HY57V641620HGLT-K	133MHz				
HY57V641620HGLT-H	133MHz	Low power			
HY57V641620HGLT-8	125MHz	Low power			
HY57V641620HGLT-P	100MHz				
HY57V641620HGLT-S	100MHz				

Not e: VDD(M in) of HY57V641620HG(L) T-5/55/6 is 3.135V

This document is a general product description and is subject to change without notice. Hyundai Electronics does not assume any responsibility for use of circuits described. No patent licenses are implied.

PIN CONFIGURATION

PIN DESCRIPTION

PI N	PIN NAME	DESCRIPTION
CLK	Clock	The system clock input. All other inputs are registered to the SDRAM on the rising edge of CLK
CKE	Clock Enable	Controls internal clock signal and when deactivated, the SDRAM will be one of the states among power down, suspend or self refresh
CS	Chip Select	Enables or disables all inputs except CLK, CKE and DQM
BA0,BA1	Bank Address	Selects bank to be activated during RAS activity Selects bank to be read/written during CAS activity
A0 ~ A11	Address	Row Address: RA0 ~ RA11, Column Address: CA0 ~ CA7 Auto-precharge flag: A10
RAS, CAS, WE	Row Address Strobe, Column Address Strobe, Write Enable	RAS, CAS and WE define the operation Refer function truth table for details
LDQM, UDQM	Data Input/Output Mask	Controls output buffers in read mode and masks input data in write mode
DQ0 ~ DQ15	Data Input/Output	Multiplexed data input / output pin
VDD/VSS	Power Supply/Ground	Power supply for internal circuits and input buffers
VDDQ/VSSQ	Data Output Power/Ground	Power supply for output buffers
NC	No Connection	No connection

FUNCTIONAL BLOCK DIAGRAM

1Mbit x 4banks x 16 I/O Synchronous DRAM

Rev. 0.5/Jun.01 3

ABSOLUTE MAXIMUM RATINGS

Par ame t er	Symbol	Rat i ng	Uni t
Ambient Temperature	ТА	0 ~ 70	°C
Storage Temperature	TSTG	-55 ~ 125	°C
Voltage on Any Pin relative to VSS	VIN, VOUT	-1.0 ~ 4.6	V
Voltage on VDD relative to VSS	VDD, VDDQ	-1.0 ~ 4.6	V
Short Circuit Output Current	Io s	50	m A
Power Dissipation	PD	1	W
Soldering Temperature · Time	TSOLDER	260 · 10	°C · Sec

Note: Operation at above absolute maximum rating can adversely affect device reliability

DC OPERATING CONDITION (TA=0 to 70°C)

Par ame ter	Symbol	Min	Тур.	Ma x	Unit	N o te
Power Supply Voltage	VDD, VDDQ	3.0	3.3	3.6	V	1,2
Input High Voltage	VIH	2.0	3.0	VDDQ + 2.0	V	1,3
Input Low Voltage	VIL	VSSQ - 2.0	0	0.8	V	1,4

Note:

1.All voltages are referenced to VSS = 0V

 $2. {\tt VDD(min)} \ of \ {\tt HY57V641620HG(L)T-5/55/6} \ is \ 3.135{\tt V}$

3.VIH (max) is acceptable 5.6V AC pulse width with \leq 3ns of duration

4.VIL (min) is acceptable -2.0V AC pulse width with ≤3ns of duration

AC OPERATING CONDITION (TA=0 to 70°C, VDD= $3.3\pm0.3V^{Note2}$, VSS=0V)

Par ame ter	Symbol	Val ue	Unit	Not e
AC Input High / Low Level Voltage	V IH / V IL	2.4/0.4	V	
Input Timing Measurement Reference Level Voltage	Vtrip	1.4	V	
Input Rise / Fall Time	tR / tF	1	ns	
Output Timing Measurement Reference Level	Voutref	1.4	V	
Output Load Capacitance for Access Time Measurement	CL	50	pF	1

Note

Output load to measure access time is equivalent to two TTL gates and one capacitor (50pF)
 For details, refer to AC/DC output circuit

 $2. {\tt VDD(min)} \ of \ {\tt HY57V641620HG(L)T-5/55/6} \ is \ 3.135{\tt V} \\$

CAPACITANCE (TA=25°C, f=1MHz)

Par amet er	Pin	Symbol	Min	Ma x	Uni t
Input capacitance	CLK	C 11	2	4	pF
	A0 ~ A11, BA0, BA1, CKE, CS, RAS, CAS, WE, UDQM, LDQM	CI2	2.5	5	pF
Data input / output capacitance	DQ0 ~ DQ15	C 1/O	2	6.5	pF

OUTPUT LOAD CIRCUIT

DC Output Load Circuit

AC Output Load Circuit

DC CHARACTERISTICS I (TA=0 to 70°C, VDD=3.3±0.3VNote3)

Par ame ter	Symbol	Min.	Ma x	Uni t	Not e
Input Leakage Current	ILI	-1	1	u A	1
Output Leakage Current	ILO	-1	1	u A	2
Output High Voltage	Vон	2.4	-	V	IOH = -4 m A
Output Low Voltage	VOL	-	0.4	V	IOL = +4 m A

Note:

 $1.\,V\,\text{IN}$ = 0 to $3.6\,\text{V},\,\text{AII}$ other pins are not tested under V $\,\text{IN}\,$ =0 $\,\text{V}$

2.DOUT is disabled, $\mbox{VOUT=0}$ to 3.6

DC CHARACTERISTICS II (TA=0 to 70°C, VDD=3.3±0.3VNote5, VSS=0V)

								Speed						
Parameter	Symbol	Test Condition	١ .	-5	- 55	-6	-7	-к	-н	-8	-P	-S	Uni t	N o te
Operating Current	IDD1	Burst length=1, One bank $tRC \ge tRC(min)$, $IOL=0 mA$	active	100	95	90	85	85	85	80	80	80	m A	1
Precharge Standby Current	IDD2P	CKE ≤ VIL(max), tCK = min	l					2					m A	
in Power Down Mode	IDD2PS	CKE ≤ VIL(max), tCK = ∞						2					m A	
Precharge Standby Current in Non Power Down Mode	IDD2N	CKE \geq VIH(min), $\overline{CS} \geq$ VIH = min Input signals are changed during 2clks. All other pins 0.2V or \leq 0.2V	ged one time 15								m A			
	IDD2NS	CKE \geq VIH(min), tCK = ∞ Input signals are stable.						12					m A	
Active Standby Current	IDD3P	CKE ≤ VIL(max), tCK = min	l					6					m A	
in Power Down Mode	IDD3PS	CKE ≤ VIL(max), tCK = ∞						5					m A	
Active Standby Current in Non Power Down Mode	IDD3N	CKE \geq VIH(min), $\overline{CS} \geq$ VIH = min Input signals are changed during 2clks. All other pins 0.2V or \leq 0.2V	one time					30					m A	
	IDD3NS	CKE \geq VIH (min), tCK = ∞ Input signals are stable.						20				m A	m A	
Burst Mode Operating	IDD4	$tCK \ge tCK(min), IOL=0 mA$	CL=3	170	160	150	150	150	150	120	120	120	m A	1
Current	1004	All banks active	C L = 2	N A	NA	NA	NA			120			m A	
Auto Refresh Current	IDD5	tRRC ≥ tRRC(min), All bank	ks active					160					m A	2
Self Refresh Current	IDD6	CKE ≤ 0.2V						1					m A	3
								400				u A	4	

Note

1.IDD1 and IDD4 depend on output loading and cycle rates. Specified values are measured with the output open

2.Min. of tRRC (Refresh RAS cycle time) is shown at AC CHARACTERISTICS II

Rev. 0.5/Jun.01 6

^{3.}HY57V641620HGT-6/7/K/H/P/S

^{4.}HY57V641620HGLT-6/7/K/H/P/S

$\textbf{AC CHARACTERISTICS I} \ (\textbf{AC operating conditions unless otherwise noted})$

Bara	meter	Symbol	-:	5	- :	55	-	6	-	7	-1	(-1	н	-:	В	-1	P	-S		Uni t	Not e
Faia	met er	Symbol.	Min	Мах	Min	Мах	M in	Мах	Min	Мах	Min	Мах	M in	Мах	Min	Мах	M in	Мах	Min	Мах	Oiii t	Note
System clock	CAS Latency =	tCK3	55	1000	5 5	1000	6	100	7	1000	7.5	1000	7.5	1000	8	1000 .	10	1000	10	1000	ns	
cycle time	CAS Latency = 2	tCK2	10	1000	10	1000	10	0	10	1000	7.5	1000	10	1000	10	1000	10	1000	12	1000	ns	
Clock high pulse	width	tCHW	2.5		2.75	-	2.5	-	2.5	-	2.5	1	2.5	-	3	,	3	-	3	-	ns	1
Clock low pulse	width	tCLW	2.5	-	2.75	-	2.5	-	2.5	-	2.5	-	2.5	-	3	-	3	-	3	-	ns	1
Access time	CAS Latency = 3	tAC3	,	5.4	,	5.4	-	5.4	-	5.4	1	5.4		5.4	,	6		6	,	6	ns	2
from clock	CAS Latency = 2	tAC2	-	6	-	6	-	6	-	6		5.4		6	-	6	-	6	-	8	ns	_
Data-out hold ti	m e	tOH	2.5		2.5	-	2.7	-	2.7	-	2.7	1	2.7	-	3	,	3	-	3	-	ns	
Data-Input setu	p time	tDS	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	2	-	2	-	2	-	ns	1
Data-Input hold	time	tDH	0.8	1	0.8	-	0.8	-	0.8	-	0.8	1	0.8	-	1		1	-	1	-	ns	1
Address setup t	ime	tAS	1.5	1	1.5	-	1.5	-	1.5	-	1.5	1	1.5	-	2		2	-	2	-	ns	1
Address hold ti	me	tAH	0.8		0.8	-	0.8	-	0.8	-	0.8	•	0.8	-	1	-	1	-	1	-	ns	1
CKE setup time		tCKS	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	1.5	-	2	-	2	-	2	-	ns	1
CKE hold time		tCKH	0.8	1	0.8	-	0.8	-	0.8	-	0.8	1	0.8	-	1		1	-	1	-	ns	1
Command setu	time	tCS	1.5		1.5	-	1.5	-	1.5	-	1.5	•	1.5	-	2	-	2	-	2	-	ns	1
Command hold	time	tCH	0.8	1	0.8	-	0.8	-	0.8	-	0.8	1	0.8	-	1		1	-	1	-	ns	1
CLK to data out	put in low Z-time	tOLZ	1	-	1	-	1	-	1.5	-	1.5	-	1.5	-	1	-	1	-	2	-	ns	
CLK to data	CAS Latency =	tOHZ3		5.4		5.4		5.4		5.4		5.4		5.4	3	6		6		6	ns	
Z-time	CAS Latency = 2	tOHZ2		3.7		0.4		0.4		0.4		0.7		0.4	3	6					ns	

Not e:

Rev. 0. 5/ Jun. 01 7

^{1.}Assume tR / tF (input rise and fall time) is 1ns

 $^{2.\}mbox{Access times}$ to be measured with input signals of $\mbox{1v/ns}$ edge rate

AC CHARACTERISTICS I

Parameter		Symbo		5	- (55	-	6	-	7	-	к	-1	Н	-	8	-	Р	-S		Uni t	Not e
Faia	ineter	1	Min	Мах	Min	Мах	M in	Мах	M in	Мах	Min	Мах	M in	Мах	M in	Мах	Min	Мах	M in	Мах	OIII t	Not e
RAS Cycle	Operation	tRC	55	-	55	-	60	-	62	-	65	-	65	-	68	-	7 0	-	70	-	ns	
Time	Auto Refresh	tR R C	60	-	60	-	60	-	62	-	65	-	65	-	68	-	7 0	-	70	-	ns	
RAS to CAS D	Delay	tR C D	15	-	16.5	-	18	-	20	-	15	-	20	-	20	-	2 0	-	20	-	ns	
RAS Active Ti	me	tr a s	38.5	100K	38.5	100K	42	100 K	42	120K	45	120K	45	120K	48	100 K	5 0	120K	50	120K	ns	
RAS Precharg	ge Time	tRP	15	-	16.5	-	18	-	20	-	15	-	20	-	20	-	2 0	-	20	-	ns	
RAS toRAS E Delay	Bank Active	tRRD	10	-	11	-	12	-	14	-	15	-	15	-	16	-	20	-	20	-	ns	
CAS to CAS D	Delay	tC C D	1	-	1	-	1	-	1	-	1	-	1	-	1	-	1	-	1	-	CLK	
Write Commar Delay	nd to Data-In	tWTL	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-	CLK	
Data-In to Pre Command	charge	tDPL	2	-	2	-	2	-	1	-	1	-	1	-	2	-	1	-	1	-	CLK	
Data-In to Act	ive Command	tD A L	5	-	5	-	5	-	4	-	4	-	4	-	5	-	3	-	3	-	CLK	
DQM to Data-0	Out Hi-Z	tD Q Z	2	-	2	-	2	-	2	-	2	-	2	-	2	-	2	-	2	-	CLK	
DQM to Data-	In Mask	tD Q M	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-	0	-	CLK	
MRS to New C	Command	tM R D	2	-	2	-	2	-	1	-	1	-	1	-	2	-	1	-	1	-	CLK	
Precharge to Data Output	CAS Latency = 3	tPROZ 3	3	-	3	-	3	-	3	-	3	-	3	-	3	-	3	-	3	-	CLK	
Hi-Z	CAS Latency = 2	tPROZ 2	2	-	2	-	2	-	2	-	2	-	2	-	2	-	2	-	2	-	CLK	
Power Down E	xit Time	tP D E	1	-	1	-	1	-	1	-	1	-	1	-	1	-	1	-	1	-	CLK	
Self Refresh E	xit Time	tS R E	1	-	1	-	1	-	1	-	1	-	1	-	1	-	1	-	1	-	CLK	1
Refresh Time		tREF	-	64	-	64	-	64	-	6 4	-	64	-	6 4	-	64	-	64	-	64	m s	

Note:

1. A new command can be given tRRC after self refresh exit

DEVICE OPERATING OPTION TABLE

HY57V641620HG(L)T-5

	CAS Latency	t RCD	t RAS	t RC	t RP	t AC	tO H
200 MHz (5 ns)	3CLKs	3CLKs	7 C L K s	10CLKs	3CLKs	5.4ns	2.5ns
183 MHz (5.5 ns)	3CLKs	3CLKs	7CLKs	10CLKs	3 C L K s	5.4ns	2.5ns
166 MHz (6 ns)	3CLKs	3CLKs	7CLKs	10CLKs	3CLKs	5.4ns	2.7ns

HY57V641620HG(L)T-55

	CAS Latency	t RCD	t RAS	t RC	t RP	t AC	tO H
183 MHz (5.5 ns)	3CLKs	3CLKs	7CLKs	10CLKs	3 C L K s	5.4ns	2.5ns
166MHz(6ns)	3CLKs	3CLKs	7CLKs	10CLKs	3 C L K s	5.4ns	2.7ns
143 MHz (7 ns)	3CLKs	3CLKs	7CLKs	10CLKs	3 C L K s	5.4ns	2.7ns

HY57V641620HG(L)T-6

	C A S Lat ency	t RCD	t RAS	t RC	t RP	t AC	tO H
166MHz(6ns)	3CLKs	3CLKs	7CLKs	10CLKs	3CLKs	5.4ns	2.7ns
143 MHz (7 ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns
133 MHz (7.5 ns)	2CLKs	3CLKs	6CLKs	9CLKs	3 C L K s	5.4ns	2.7ns

HY57V641620HG(L)T-7

	CAS Latency	t RCD	t RAS	t RC	t RP	t AC	tO H
143 MHz (7 ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns
133 MHz (7.5 ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns
100MHz(10ns)	2CLKs	2CLKs	5 C L K s	7CLKs	2CLKs	6 n s	3 n s

HY57V641620HG(L)T-K

	CAS Lat ency	t RCD	t RAS	t RC	t RP	t AC	tO H
133 MHz (7.5 ns)	2CLKs	2CLKs	6CLKs	8CLKs	2 C L K s	5.4ns	2.7ns
125 MHz (8 ns)	3 C L K s	3CLKs	6CLKs	9CLKs	3 C L K s	6 n s	3 n s
100MHz(10ns)	2CLKs	2CLKs	5 C L K s	7CLKs	2CLKs	6 n s	3 n s

HY57V641620HG(L)T-H

	CAS Lat ency	t RCD	t RAS	t RC	t RP	t AC	tO H
133 MHz (7.5 ns)	3CLKs	3CLKs	6CLKs	9CLKs	3CLKs	5.4ns	2.7ns
125 MHz (8 ns)	3 C L K s	3CLKs	6CLKs	9CLKs	3CLKs	6 n s	3 n s
100MHz(10ns)	2CLKs	2CLKs	5 C L K s	7CLKs	2CLKs	6 n s	3 n s

HY57V641620HG(L)T-8

	CAS Latency	t RCD	t RAS	t RC	t RP	t AC	tO H
125 MHz (8 ns)	3 C L K s	3CLKs	7CLKs	10CLKs	3 C L K s	6 n s	3 n s
100 MHz (10 ns)	2CLKs	2CLKs	5 C L K s	7CLKs	3 C L K s	6 n s	3 n s
83 MHz (12 ns)	3CLKs	3CLKs	6CLKs	9CLKs	2CLKs	6 n s	3 n s

HY57V641620HG(L)T-P

	CAS Lat ency	t RCD	t RAS	t RC	t RP	t AC	tO H
100MHz(10ns)	2CLKs	2CLKs	5 C L K s	7CLKs	2CLKs	6 n s	3 n s
83 MHz (12 ns)	2CLKs	2CLKs	5 C L K s	7CLKs	2 C L K s	6 n s	3 n s
66 MHz (15 ns)	2CLKs	2CLKs	4CLKs	6CLKs	2 C L K s	6 n s	3 n s

HY57V641620HG(L)T-S

	CAS Latency	t RCD	t RAS	t RC	t RP	t AC	tO H
100 MHz (10 ns)	3CLKs	2CLKs	5 C L K s	7CLKs	2 C L K s	6 n s	3 n s
83 MHz (12 ns)	2CLKs	2CLKs	5 C L K s	7CLKs	2CLKs	6 n s	3 n s
66 MHz (15 ns)	2CLKs	2CLKs	4CLKs	6CLKs	2 C L K s	6 n s	3 n s

COMMAND TRUTH TABLE

C o mma r	n d	CKEn- 1	CKEn	c s	RAS	CAS	WE	DQM	ADDR	A10/ AP	ВА	Not e	
Mode Register S	Set	Н	Х	L	L	L	L	Х	OP code				
No Operation		н	х	Н	Х	Х	Х	Х		Х			
				L	Н	Н	Н						
Bank Active		Н	Х	L	L	Н	Н	Х	R	A	V		
Read		н	x	L	н	L	н	X	C A	L	V		
Read with Autop	recharge									Н			
Write		н	X	L	н	L	L	X	C A	L	V		
Write with Autoprecharge			X	_	"	_	_	^	CA	Н	v		
Precharge All Banks		н	п	X	L	L	н	L	X	X	Н	Х	
Precharge selected Bank			^		_	.,	_	^	^	L	>		
Burst Stop		Н	Х	L	Н	Н	L	Х	X				
DQM		н	x v x										
Auto Refresh		Н	Н	L	L	L	Н	Х	х				
	Entry	н	L	L	L	L	Н	Х					
Self Refresh ¹				Н	Х	Х	Х	.,		х			
	Exit	L	Н	L	Н	Н	Н	X					
	_			Н	Х	Х	Х						
Precharge	Entry	Н	L	L	Н	Н	Н	X					
power down				н	х	х	Х		X				
	Exit	L	Н	L	Н	Н	Н	X					
Clock Suspend	_			Н	Х	Х	Х						
	Entry	Н	L	L	V	V	V	X	×				
	Exit	L	Н)	<		Х					

Note

^{1.} Exiting Self Refresh occurs by asynchronously bringing CKE from low to high

^{2.} X = Don't care, H = Logic High, L = Logic Low. BA =Bank Address, RA = Row Address, CA = Column Address, Opcode = Operand Code, NOP = No Operation

PACKAGE INFORMATION

400 mil 54 pin Thin Small Outline Package

