Megoldások (B csoport)

2011/12/1 Formális nyelvek és automaták évfolyamzárthelyi

1. feladat: Építsen az m = papapp mintához KMP automatát, majd döntse el, hogy az u = papaapapapapapap szóban megtalálható-e a minta az automata működésének az u bemeneten történő bemutatásával (azaz töltse ki az alábbi táblázatot, az első cellába az automata kezdőállapota kerüljön)!

Megoldás:

		a	p
\rightarrow	0	0	1
	1	2	1
	2	0	3
	3	4	1
	4	0	5
	1 2 3 4 5 6	4	6
_	6	6	6

	m	a	m	a	- 0	m	a		a	m	- 0	m	n	-	m
	P	α	P	a	a	P	a	p	a	P	$ $ $ $	P	P	a	p
0	1	2	3	4	0	1	2	3	4	5	4	5	6	6	6

2. feladat: Hozza 3-as normálformára az alábbi G nyelvtant (grammatikát), majd készítsen a tanult algoritmussal olyan *véges determinisztikus automatát* a nyelvtanhoz, mely a G által generált nyelvet ismeri fel! $G = \langle \{a,b,c\}, \{S,A,B\}, \mathcal{P}, S \rangle$, ahol a \mathcal{P} szabályrendszer a következő:

$$S \to abB \mid A \mid c$$

$$A \to ab \mid cB \mid \varepsilon$$

$$B \to bB \mid a \mid bA$$

Megoldás:

Láncmentesítés:

Hosszredukció (+ univerzális ε szabály):

$$S \to abB \mid ab \mid cB \mid \varepsilon \mid c$$

$$S \to aZ \mid aY \mid cB \mid \varepsilon \mid cF$$

$$Z \rightarrow bB$$

$$A \to ab \, | \, cB \, | \, \varepsilon$$

$$A \to aY \mid cB \mid \varepsilon$$

$$Y \to bF$$

$$B \to bB \mid a \mid bA$$

$$B \rightarrow bB \mid aF \mid bA$$

$$F\to\varepsilon$$

NDA:

VDA:

v 10.	41.			
		a	b	c
$\stackrel{\longleftarrow}{\longrightarrow}$	$\{S\}$	$\{Y,Z\}$	{}	$\{B,F\}$
	$\{Y,Z\}$	{}	$\{B,F\}$	{}
	{}	{}	{}	{}
\leftarrow	$\{B,F\}$	$\{F\}$	$\{A,B\}$	{}
\leftarrow	$\{F\}$	{}	{}	{}
\leftarrow	$\{A,B\}$	$\{F,Y\}$	$\{A,B\}$	$\{B\}$
\leftarrow	$\{F,Y\}$	{}	$\{F\}$	{}
	$\{B\}$	$\{F\}$	$\{A,B\}$	{}

<u>3. feladat:</u> Készítse el az alábbi \mathcal{A} véges determinisztikus automata *minimális automatáját* a tanult algoritmus alapján (összefüggővé alakítás, redukció)!

 $\mathcal{A} = \langle \{q_0, q_1, q_2, q_3, q_4, q_5, q_6, q_7, q_8, q_9\}, \{0, 1\}, \delta, q_0, \{q_2, q_3, q_7, q_8\} \rangle, \text{ a δ állapotátmenet függvény táblázattal:}$

		0	1
\rightarrow	q_0	q_1	q_1
	q_1	q_2	q_3
\leftarrow	q_2	q_3	q_4
\leftarrow	q_3	q_4	q_2
	q_4	q_6	q_6
	q_5	q_9	q_6
	q_6	q_7	q_8
\leftarrow	q_7	q_8	q_0
\leftarrow	q_8	q_0	q_7
	q_9	q_0	q_5

Megoldás: $H_0 = \{q_0\}, H_1 = \{q_0, q_1\}, H_2 = \{q_0, q_1, q_2, q_3\}, H_3 = \{q_0, q_1, q_2, q_3, q_4\},$ $\overline{H_4 = \{q_0, q_1, q_2, q_3, q_4, q_6\}}, \ H_5 = \{q_0, q_1, q_2, q_3, q_4, q_6, q_7, q_8\}, \ H_6 = H_5.$ Elhagyható q_5, q_9 . $\stackrel{0}{\sim}$: $\{q_2, q_3, q_7, q_8\} (=: F), \{q_0, q_1, q_4, q_6\} (=: N);$

	0	1		0	1
q_2	F	N	q_0	N	N
q_3	N	F	q_1	F	F
q_7	F	N	q_4	N	N
q_8	N	F	q_6	F	F

$$\stackrel{1}{\sim}: \{q_2, q_7\}(=: A), \overline{\{q_3, q_8\}(=: B)}, \overline{\{q_0, q_4\}(=: C)}, \overline{\{q_1, q_6\}(=: D)};$$

 $\stackrel{2}{\sim} = \stackrel{1}{\sim} = \sim$, tehát a minimális automata:

$$\begin{array}{c|cccc}
 & 0 & 1 \\
 & D & D & D \\
 & D & A & B \\
 \leftarrow & A & B & C \\
 \leftarrow & B & C & A
\end{array}$$

4. feladat: A CYK-algoritmus segítségével döntse el, hogy a bababa szó levezethető-e a $G = \langle \{a,b\}, \{S,X,Y,Z\}, \mathcal{P}, S \rangle$ nyelvtanban, ahol a \mathcal{P} szabályrendszer a következő:

$$S \rightarrow XZ \mid ZZ \mid a$$

$$X \rightarrow SS \mid YY \mid a$$

$$Y \rightarrow XY \mid b$$

$$Z \rightarrow SS \mid SY$$

Megoldás:

<u>5. feladat:</u> Legyen $L = \{a^i b^j \mid i, j \in \mathbb{N}_0 \land i > j\}$. Bizonyítsuk be, hogy $L \in \mathcal{L}_2 \setminus \mathcal{L}_3$!

Megoldások:

 $L \in \mathcal{L}_2$ bizonyításához megadjuk a nyelvet kettes típusú nyelvleíró eszközzel, pl (vagylagosan)

- környezetfüggetlen nyelvtannal: $S \to aSb \mid A, A \to a \mid aA$,
- EBNF-fel: $\langle L \rangle := a \langle L \rangle b \mid \{a\}_1^{\infty}$

(Más jelöléssel: $\langle L \rangle ::= a \langle L \rangle b \mid a@a$)

– egy vermes, üres veremmel elfogadó automatával:

$$\begin{array}{l} (S,a,\#) \rightarrow (S,a\#), \ (S,a,a) \rightarrow (S,aa), \ (S,\varepsilon,a) \rightarrow (V,\varepsilon), \\ (V,b,a) \rightarrow (V,\varepsilon), \ (V,\varepsilon,a) \rightarrow (V,\varepsilon), \ (V,\varepsilon,\#) \rightarrow (V,\varepsilon) \end{array}$$

 $L \notin \mathcal{L}_3$ bizonyításához a Myhill-Nerode tétel szerint elég belátni, hogy végtelen sok maradéknyelve van. Ez utóbbi állítás pedig következik abból, hogy az $\{L_{a^i} | i \in \mathbb{N}_+\}$ maradéknyelv halmaz végtelen, aminek elégséges feltétele, hogy i>k esetén $L_{a^i}\neq L_{a^k}$. Ez viszont közvetlenül adódik abból, hogy i>k esetén $b^{i-1} \in L_{a^i}$, de $b^{i-1} \notin L_{a^k}$. A $b^{i-1} \in L_{a^i}$ pedig a maradéknyelv fogalma alapján következik az $a^i b^{i-1} \in L_{a^i}$ állításból, ami nyilvánvaló i>(i-1) alapján. Hasonlóan, $b^{i-1}\notin L_{a^k}$ a maradéknyelv fogalma alapján következik az $a^k b^{i-1} \notin L$ állításból, ami nyilvánvaló $k \leq (i-1)$, azaz k < i alapján.

 $L \notin \mathcal{L}_3$ a "Kis" Bar-Hillel lemmából is következik. Tegyük fel ugyanis, hogy $L \in \mathcal{L}_3$ és tekintsük az $a^ib^{i-1}\in L$ szót! Ha i elég nagy, akkor a lemma szerint az a^i prefixben van nemüres, beiterálható részszó. Ez a^k alakú, ahol k pozitív egész szám. A nulladik iteráltat tekintve $a^{i-k}b^{i-1} \in L$, ahonnét L definíciója szerint i-k>i-1. Innét az egyenlőtlenség mindkét oldalához k-i+1-et hozzáadva 1>k adódik, ami ellentmond annak, hogy k pozitív egész szám.