Modèles linéaires en actuariat

Exercices et solutions

Modèles linéaires en actuariat

Exercices et solutions

Marie-Pier Côté

Vincent Mercier

École d'actuariat, Université Laval

© 2019 Marie-Pier Côté. « Modèles linéaires en actuariat : Exercices et solutions » est dérivé de la deuxième édition de « Modèles de régression et de séries chronologiques : Exercices et solutions » de Vincent Goulet, sous contrat CC BY-SA.

Cette création est mise à disposition selon le contrat Paternité-Partage des conditions initiales à l'identique 2.5 Canada disponible en ligne http://creativecommons.org/licenses/by-sa/2.5/ca/ ou par courrier postal à Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

Historique de publication

Septembre 2019: Première édition

Code source

Le code source LATEX de la première édition de ce document est disponible en communiquant directement avec les auteurs.

Introduction

Ce document contient les exercices proposés par Marie-Pier Côté pour le cours ACT-2003 Modèles linéaires en actuariat, donné à l'École d'actuariat de l'Université Laval. Certains exercices sont le fruit de l'imagination des auteurs ou de ceux des versions précédentes, alors que plusieurs autres sont des adaptations d'exercices tirés des ouvrages cités dans la bibliographie.

C'est d'ailleurs afin de ne pas usurper de droits d'auteur que ce document est publié selon les termes du contrat Paternité-Partage des conditions initiales à l'identique 2.5 Canada de Creative Commons. Il s'agit donc d'un document «libre» que quiconque peut réutiliser et modifier à sa guise, à condition que le nouveau document soit publié avec le même contrat.

Le document est séparé en deux parties correspondant aux deux sujets faisant l'objet d'exercices : d'abord la régression linéaire (simple, multiple et régularisée), puis les modèles linéaires généralisés.

L'estimation des paramètres, le calcul de prévisions et l'analyse des résultats sont toutes des procédures à forte composante numérique. Il serait tout à fait artificiel de se restreindre, dans les exercices, à de petits ensembles de données se prêtant au calcul manuel. Dans cette optique, plusieurs des exercices de ce recueil requièrent l'utilisation du logiciel statistique R. D'ailleurs, l'annexe A présente les principales fonctions de R pour la régression.

Le format de cet annexe est inspiré de ?] : la présentation des fonctions compte peu d'exemples. Par contre, le lecteur est invité à lire et exécuter le code informatique des sections d'exemples A.7.

L'annexe ?? contient quelques résultats d'algèbre matricielle utiles pour résoudre certains exercices.

Les réponses des exercices se trouvent à la fin de chacun des chapitres, alors que les solutions complètes sont regroupées à l'annexe B.

Tous les jeux de données mentionnés dans ce document sont disponibles en format électronique à l'adresse

```
???? à régler
```

Ces jeux de données sont importés dans R avec l'une ou l'autre des commandes scan ou read.table. Certains jeux de données sont également fournis avec R; la commande > data()

en fournit une liste complète.

Nous remercions d'avance les lecteurs qui voudront bien nous faire part de toute erreur ou omission dans les exercices ou leurs réponses.

Marie-Pier Côté <marie-pier.cote@act.ulaval.ca> Vincent Mercier <vincent.mercier.7@ulaval.ca> Québec, septembre 2019

Table des matières

In	troduction	V
Ι	Régression linéaire	1
2	Régression linéaire simple	3
3	Régression linéaire multiple	11
4	Sélection de modèle et régression régularisée	21
5	Modèles linéaires généralisés (GLM)	25
6	Modélisation de données de comptage	29
A	R et la régression linéaire A.1 Importation de données A.2 Formules A.3 Modélisation des données A.4 Analyse des résultats A.5 Diagnostics A.6 Mise à jour des résultats et prévisions A.7 Exemples A.8 Exercices	33 34 37 37 37 38
В	Solutions Chapitre 2 Chapitre 3 Chapitre 4 Chapitre 5 Chapitre 6	75 95 97

Première partie

Régression linéaire

2 Régression linéaire simple

2.1 Considérer les données suivantes et le modèle de régression linéaire $Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t$:

t	1	2	3	4	5	6	7	8	9	10
X_t	65	43	44	59	60	50	52	38	42	40
Y_t	12	32	36	18	17	20	21	40	30	24

- a) Placer ces points ci-dessus sur un graphique.
- b) Calculer les équations normales.
- c) Calculer les estimateurs $\hat{\beta}_0$ et $\hat{\beta}_1$ en résolvant le système d'équations obtenu en b).
- d) Calculer les prévisions \hat{Y}_t correspondant à X_t pour t = 1, ..., n. Ajouter la droite de régression au graphique fait en a).
- e) Vérifier empiriquement que $\sum_{t=1}^{10} e_t = 0$.
- 2.2 On vous donne les observations ci-dessous.

t	X_t	Y_t
1	2	6
2	3	4
3	5	6
4	7	3
5	4	6
6	4	4
7	1	7
8	6	4

- a) Calculer les coefficients de la régression $Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t$, $var[\varepsilon_t] = \sigma^2$.
- b) Construire le tableau d'analyse de variance de la régression en a) et calculer le coefficient de détermination R^2 . Interpréter les résultats.
- 2.3 Le jeu de données women.dat, disponible à l'URL mentionnée dans l'introduction et inclus dans R, contient les tailles et les poids moyens de femmes américaines âgées de 30 à 39 ans. Importer les données dans R ou rendre le jeu de données disponible avec data (women), puis répondre aux questions suivantes.
 - a) Établir graphiquement une relation entre la taille (height) et le poids (weight) des femmes.
 - b) À la lumière du graphique en a), proposer un modèle de régression approprié et en estimer les paramètres.
 - c) Ajouter la droite de régression calculée en b) au graphique. Juger visuellement de l'ajustement du modèle.

- d) Obtenir, à l'aide de la fonction summary la valeur du coefficient de détermination R^2 . La valeur est-elle conforme à la conclusion faite en c)?
- e) Calculer les statistiques SST, SSR et SSE, puis vérifier que SST = SSR + SSE. Calculer ensuite la valeur de R^2 et la comparer à celle obtenue en d).
- 2.4 Dans le contexte de la régression linéaire simple, démontrer que

$$\sum_{t=1}^{n} (\hat{Y}_t - \bar{Y})e_t = 0.$$

- **2.5** Considérer le modèle de régression linéaire par rapport au temps $Y_t = \beta_0 + \beta_1 t + \varepsilon_t$, t = 1, ..., n. Écrire les équations normales et obtenir les estimateurs des moindres carrés des paramètres β_0 et β_1 . Note: $\sum_{i=1}^n i^2 = n(n+1)(2n+1)/6$.
- **2.6** a) Trouver l'estimateur des moindres carrés du paramètre β dans le modèle de régression linéaire passant par l'origine $Y_t = \beta X_t + \varepsilon_t$, t = 1, ..., n, $E[\varepsilon_t] = 0$, $cov(\varepsilon_t, \varepsilon_s) = \delta_{ts}\sigma^2$.
 - b) Démontrer que l'estimateur en a) est sans biais.
 - c) Calculer la variance de l'estimateur en a).
- **2.7** Démontrer que l'estimateur des moindres carrés $\hat{\beta}$ trouvé à l'exercice 2.6 est l'estimateur sans biais à variance (uniformément) minimale du paramètre β . En termes mathématiques : soit

$$\beta^* = \sum_{t=1}^n c_t Y_t$$

un estimateur linéaire du paramètre β . Démontrer qu'en déterminant les coefficients c_1, \ldots, c_n de façon à minimiser

$$\operatorname{var}[\beta^*] = \operatorname{var}\left[\sum_{t=1}^n c_t Y_t\right]$$

sous la contrainte que

$$E[\beta^*] = E\left[\sum_{t=1}^n c_t Y_t\right] = \beta,$$

on obtient $\beta^* = \hat{\beta}$.

- 2.8 Dans le contexte de la régression linéaire simple, démontrer que
 - a) $E[MSE] = \sigma^2$
 - b) $E[MSR] = \sigma^2 + \beta_1^2 \sum_{t=1}^n (X_t \bar{X})^2$
- **2.9** Supposons que les observations $(X_1, Y_1), \dots, (X_n, Y_n)$ sont soumises à une transformation linéaire, c'est-à-dire que Y_t devient $Y_t' = a + bY_t$ et que X_t devient $X_t' = c + dX_t$, $t = 1, \dots, n$.
 - a) Trouver quel sera l'impact sur les estimateurs des moindres carrés des paramètres β_0 et β_1 dans le modèle de régression linéaire $Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t$.
 - b) Démontrer que le coefficient de détermination R^2 n'est pas affecté par la transformation linéaire.
- **2.10** On sait depuis l'exercice 2.6 que pour le modèle de régression linéaire simple passant par l'origine $Y_t = \beta X_t + \varepsilon_t$, l'estimateur des moindres carrés de β est

$$\hat{\beta} = \frac{\sum_{t=1}^{n} X_t Y_t}{\sum_{t=1}^{n} X_t^2}.$$

Démontrer que l'on peut obtenir ce résultat en utilisant la formule pour $\hat{\beta}_1$ dans la régression linéaire simple usuelle $(Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t)$ en ayant d'abord soin d'ajouter aux données un $(n+1)^e$ point $(m\bar{X}, m\bar{Y})$, où

$$m = \frac{n}{\sqrt{n+1} - 1} = \frac{n}{a}.$$

2.11 Soit le modèle de régression linéaire simple

$$Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2).$$

Construire un intervalle de confiance de niveau $1 - \alpha$ pour le paramètre β_1 si la variance σ^2 est connue.

2.12 Vous analysez la relation entre la consommation de gaz naturel *per capita* et le prix du gaz naturel. Vous avez colligé les données de 20 grandes villes et proposé le modèle

$$Y = \beta_0 + \beta_1 X + \varepsilon,$$

où Y représente la consommation de gaz *per capita*, X le prix et ε est le terme d'erreur aléatoire distribué selon une loi normale. Vous avez obtenu les résultats suivants :

$$\hat{\beta}_0 = 138,581 \qquad \sum_{t=1}^{20} (X_t - \bar{X})^2 = 10668$$

$$\hat{\beta}_1 = -1,104 \qquad \sum_{t=1}^{20} (Y_t - \bar{Y})^2 = 20838$$

$$\sum_{t=1}^{20} X_t^2 = 90048 \qquad \sum_{t=1}^{20} e_t^2 = 7832.$$

$$\sum_{t=1}^{20} Y_t^2 = 116058$$

Trouver le plus petit intervalle de confiance à 95 % pour le paramètre β_1 .

2.13 Le tableau ci-dessous présente les résultats de l'effet de la température sur le rendement d'un procédé chimique.

X	Υ
$\overline{-5}$	1
-4	5
-3	4
-2	7
-1	10
0	8
1	9
2	13
3	14
4	13
5	18

a) On suppose une relation linéaire simple entre la température et le rendement. Calculer les estimateurs des moindres carrés de l'ordonnée à l'origine et de la pente de cette relation.

- b) Établir le tableau d'analyse de variance et tester si la pente est significativement différente de zéro avec un niveau de confiance de 0,95.
- c) Quelles sont les limites de l'intervalle de confiance à 95 % pour la pente?
- d) Y a-t-il quelque indication qu'un meilleur modèle devrait être employé?
- 2.14 Y a-t-il une relation entre l'espérance de vie et la longueur de la «ligne de vie» dans la main? Dans un article de 1974 publié dans le *Journal of the American Medical Association*, Mather et Wilson dévoilent les 50 observations contenues dans le fichier lifeline.dat. À la lumière de ces données, y a-t-il, selon vous, une relation entre la «ligne de vie» et l'espérance de vie? Vous pouvez utiliser l'information partielle suivante:

$$\sum_{t=1}^{50} X_t = 3333$$

$$\sum_{t=1}^{50} X_t^2 = 231933$$

$$\sum_{t=1}^{50} X_t Y_t = 30549,75$$

$$\sum_{t=1}^{50} Y_t = 459,9$$

$$\sum_{t=1}^{50} Y_t^2 = 4308,57.$$

- **2.15** Considérer le modèle de régression linéaire passant par l'origine présenté à l'exercice 2.6. Soit X_0 une valeur de la variable indépendante, Y_0 la vraie valeur de la variable indépendante correspondant à X_0 et \hat{Y}_0 la prévision (ou estimation) de Y_0 . En supposant que
 - i) $\varepsilon_t \sim N(0, \sigma^2)$;
 - ii) $cov(\varepsilon_0, \varepsilon_t) = 0$ pour tout t = 1, ..., n;
 - iii) $var[\varepsilon_t] = \sigma^2$ est estimé par s^2 ,

construire un intervalle de confiance de niveau $1-\alpha$ pour Y_0 . Faire tous les calculs intermédiaires.

2.16 La masse monétaire et le produit national brut (en millions de *snouks*) de la Fictinie (Asie postérieure) sont reproduits dans le tableau ci-dessous.

Année	Masse monétaire	PNB
1987	2,0	5,0
1988	2,5	5,5
1989	3,2	6,0
1990	3,6	7,0
1991	3,3	7,2
1992	4,0	7,7
1993	4,2	8,4
1994	4,6	9,0
1995	4,8	9,7
1996	5,0	10,0

- a) Établir une relation linéaire dans laquelle la masse monétaire explique le produit national brut (PNB).
- b) Construire des intervalles de confiance pour l'ordonnée à l'origine et la pente estimées en a). Peut-on rejeter l'hypothèse que la pente est nulle? Égale à 1?
- c) Si, en tant que ministre des Finances de la Fictinie, vous souhaitez que le PNB soit de 12,0 en 1997, à combien fixeriez-vous la masse monétaire?
- d) Pour une masse monétaire telle que fixée en c), déterminer les bornes inférieure et supérieure à l'intérieur desquelles devrait, avec une probabilité de 95 %, se trouver le PNB moyen. Répéter pour la valeur du PNB de l'année 1997.

- **2.17** Le fichier house.dat contient diverses données relatives à la valeur des maisons dans la région métropolitaine de Boston. La signification des différentes variables se trouve dans le fichier. Comme l'ensemble de données est plutôt grand (506 observations pour chacune des 13 variables), répondre aux questions suivantes à l'aide de R.
 - a) Déterminer à l'aide de graphiques à laquelle des variables suivantes le prix médian des maisons (medv) est le plus susceptible d'être lié par une relation linéaire : le nombre moyen de pièces par immeuble (rm), la proportion d'immeubles construits avant 1940 (age), le taux de taxe foncière par 10000 \$ d'évaluation (tax) ou le pourcentage de population sous le seuil de la pauvreté (1stat).

Astuce : en supposant que les données se trouvent dans le data frame house, essayer les commandes suivantes :

```
plot(house)
attach(house)
plot(data.frame(rm, age, lstat, tax, medv))
detach(house)
plot(medv ~ rm + age + lstat + tax, data = house)
```

- b) Faire l'analyse complète de la régression entre le prix médian des maisons et la variable choisie en a), c'est-à-dire : calcul de la droite de régression, tests d'hypothèses sur les paramètres afin de savoir si la régression est significative, mesure de la qualité de l'ajustement et calcul de l'intervalle de confiance de la régression.
- c) Répéter l'exercice en b) en utilisant une variable ayant été rejetée en a). Observer les différences dans les résultats.
- **2.18** On veut prévoir la consommation de carburant d'une automobile à partir de ses différentes caractéristiques physiques, notamment le type du moteur. Le fichier carburant .dat contient des données tirées de *Consumer Reports* pour 38 automobiles des années modèle 1978 et 1979. Les caractéristiques fournies sont
 - mpg: consommation de carburant en milles au gallon;
 - nbcyl: nombre de cylindres (remarquer la forte représentation des 8 cylindres!);
 - cylindree : cylindrée du moteur, en pouces cubes ;
 - cv : puissance en chevaux vapeurs;
 - poids : poids de la voiture en milliers de livres.

Utiliser R pour faire l'analyse ci-dessous.

- a) Convertir les données du fichier en unités métriques, le cas échéant. Par exemple, la consommation de carburant s'exprime en $\ell/100$ km. Or, un gallon américain correspond à 3,785 litres et 1 mille à 1,6093 kilomètre. La consommation en litres aux 100 km s'obtient donc en divisant 235,1954 par la consommation en milles au gallon. De plus, 1 livre correspond à 0,45455 kilogramme.
- b) Établir une relation entre la consommation de carburant d'une voiture et son poids. Vérifier la qualité de l'ajustement du modèle et si le modèle est significatif.
- c) Trouver un intervalle de confiance à 95 % pour la consommation en carburant d'une voiture de 1 350 kg.
- **2.19** On s'intéresse à l'impact du sexe sur l'espérance de vie. On connaît les durées de vie de $n_F = 300$ femmes et $n_H = 200$ hommes. On choisit d'utiliser la variable indicatrice

$$x_i = \left\{ egin{array}{ll} 0 & ext{, si SEXE}_i = \mathtt{H} \ 1 & ext{, si SEXE}_i = \mathtt{F} \end{array}
ight. .$$

On note \bar{Y}_F la moyenne des durées de vie des femmes et \bar{Y}_H la moyenne des durées de vie des hommes.

- a) Montrer que l'estimateur des moindres carrés $\hat{\beta}_1$ (lié à la variable explicative x) est égal à $\bar{Y}_F \bar{Y}_H$. Indice : On peut exprimer \bar{Y} en termes de \bar{Y}_F et \bar{Y}_H .
- b) Ce résultat permet-il d'interpréter le coefficient relié à une variable catégorique binaire? Expliquer.
- c) Que représente $\hat{\beta}_0$ dans ce cas?
- 2.20 On s'intéresse à la covariance entre deux résidus.
 - a) D'abord, trouver $Cov(Y_i, \hat{Y}_i)$.
 - b) Puis, calculer $\mathbb{C}ov(\hat{Y}_i, \hat{Y}_i)$.
 - c) Déduire de a) et b) que

$$\operatorname{Cov}(\hat{\varepsilon}_{i},\hat{\varepsilon}_{j}) = -\sigma^{2} \left(\frac{1}{n} + \frac{(x_{i} - \bar{x})(x_{j} - \bar{x})}{S_{xx}} \right).$$

- **2.21** Dans un graphiques des résidus en fonction des valeurs prédites, on observe de l'hétéroscédasticité. Après une analyse plus poussée, on note que la variance de $\hat{\varepsilon}_i$ est approximativement proportionnelle à $E[Y_i]^4$. Proposer une transformation g de la variable réponse qui permettra de stabiliser la variance.
- **2.22** Les données suivantes présentent le nombre moyen de bactéries vivantes dans une boîte de conserve de nourriture et le temps (en minutes) d'exposition à une chaleur de 300° F. ¹

Nombre de bactéries	Temps d'exposition (min)
175	1
108	2
95	3
82	4
71	5
50	6
49	7
31	8
28	9
17	10
16	11
11	12

- a) Tracer un nuage de points des données. Est-ce qu'un modèle de régression linéaire semble adéquat?
- b) Ajuster aux données un modèle de régression linéaire. Calculer les statistiques sommaires et produire les graphiques de résidus. Interpréter les résultats. Quelles sont vos conclusions par rapport à la validité du modèle de régression?
- c) Identifier une transformation pour ces données afin d'utiliser adéquatement les méthodes de régression. Ajuster ce nouveau modèle et tester la validité de la régression.

^{1.} Source : D. Montgomery, E.A. Peck et G.G. Vining (2012). Introduction to Linear Regression Analysis. Fifth Edition. Wiley.

Réponses

2.1 c)
$$\hat{\beta}_0 = 66.44882$$
 et $\hat{\beta}_1 = -0.8407468$ d) $\hat{Y}_1 = 11,80, \hat{Y}_2 = 30,30, \hat{Y}_3 = 29,46, \hat{Y}_4 = 16,84, \hat{Y}_5 = 16,00, \hat{Y}_6 = 24,41, \hat{Y}_7 = 22,73, \hat{Y}_8 = 34,50, \hat{Y}_9 = 31,14, \hat{Y}_{10} = 32,82$

2.2 a)
$$\hat{\beta}_0 = 7$$
 et $\hat{\beta}_1 = -0.5$ b) SST = 14, SSR = 7, SSE = 7, MSR = 7, MSE = 7/6, $F = 6$, $R^2 = 0.5$

2.3 b)
$$\hat{\beta}_0 = -87,5167$$
 et $\hat{\beta}_1 = 3,45$ d) $R^2 = 0,991$ e) $SSR = 3332,7$ $SSE = 30,23$ et $SST = 3362,93$

2.5
$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1(n+1)/2$$
, $\hat{\beta}_1 = (12\sum_{t=0}^n tY_t - 6n(n+1)\bar{Y})/(n(n^2-1))$

2.6 a)
$$\hat{\beta} = \sum_{t=1}^{n} X_t Y_t / \sum_{t=1}^{n} X_t^2$$
 c) $var[\hat{\beta}] = \sigma^2 / \sum_{t=1}^{n} X_t^2$

2.9 a)
$$\hat{\beta}'_1 = (b/d)\hat{\beta}_1$$

2.11
$$\beta_1 \in \hat{\beta}_1 \pm z_{\alpha/2} \sigma \left(\sum_{t=1}^n (X_t - \bar{X})^2 \right)^{-1/2}$$

2.12
$$(-1,5,-0,7)$$

2.13 a)
$$\hat{\beta}_0 = 9,273$$
, $\hat{\beta}_1 = 1,436$ b) $t = 9,809$ c) $(1,105,1,768)$

2.14
$$F = 0.73$$
, valeur $p : 0.397$

2.15
$$\hat{Y}_0 \pm t_{\alpha/2}(n-1) s \sqrt{1 + X_0^2 / \sum_{t=1}^n X_t^2}$$

2.16 a) PNB = 1,168 + 1,716 MM b)
$$\beta_0 \in (0,060,2,276)$$
, $\beta_1 \in (1,427,2,005)$ c) 6,31 d) (11,20,12,80) et (10,83,13,17)

2.18 b)
$$R^2 = 0.858$$
 et $F = 217.5$ c) 10.57 ± 2.13

3 Régression linéaire multiple

3.1 Considérer le modèle de régression linéaire $\mathbf{y} = \mathbf{X}\mathbf{\beta} + \mathbf{\epsilon}$, où \mathbf{X} est une matrice $n \times (p+1)$. Démontrer, en dérivant

$$S(\beta) = \sum_{t=1}^{n} (Y_t - \mathbf{x}_t' \beta)^2$$
$$= (\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$$

par rapport à β , que les équations normales à résoudre pour obtenir l'estimateur des moindres carrés de β sont, sous forme matricielle,

$$(\mathbf{X}'\mathbf{X})\mathbf{\hat{\beta}} = \mathbf{X}'\mathbf{y},$$

Déduire l'estimateur des moindres carrés de ces équations. *Astuce* : utiliser le théorème ?? de l'annexe ??.

- 3.2 Pour chacun des modèles de régression ci-dessous, spécifier la matrice de schéma X dans la représentation $y = X\beta + \epsilon$ du modèle, puis obtenir, si possible, les formules explicites des estimateurs des moindres carrés des paramètres.
 - a) $Y_t = \beta_0 + \varepsilon_t$
 - b) $Y_t = \beta_1 X_t + \varepsilon_t$
 - c) $Y_t = \beta_0 + \beta_1 X_{t1} + \beta_2 X_{t2} + \varepsilon_t$
- **3.3** Vérifier, pour le modèle de régression linéaire simple, que les valeurs trouvées dans la matrice de variance-covariance $var[\hat{\boldsymbol{\beta}}] = \sigma^2(\boldsymbol{X}'\boldsymbol{X})^{-1}$ correspondent à celles calculées au chapitre 2.
- 3.4 Démontrer les relations ci-dessous dans le contexte de la régression linéaire multiple et trouver leur équivalent en régression linéaire simple. Utiliser $\mathbf{e} = \mathbf{y} \mathbf{\hat{y}}$.
 - a) X'e = 0
 - b) $\hat{\mathbf{v}}'\mathbf{e} = 0$
 - c) $\hat{\mathbf{v}}'\hat{\mathbf{v}} = \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{v}$
- **3.5** Considérer le modèle de régression linéaire multiple présenté à l'exercice 3.1. Soit \hat{Y}_0 la prévision de la variable dépendante correspondant aux valeurs du vecteur ligne $\mathbf{x}_0 = (1, X_{01}, \dots, X_{0p})$ des p variables indépendantes. On a donc

$$\hat{Y}_0 = \mathbf{x}_0 \hat{\boldsymbol{\beta}}.$$

- a) Démontrer que $E[\hat{Y}_0] = E[Y_0]$.
- b) Démontrer que l'erreur dans la prévision de la valeur moyenne de Y_0 est

$$E[(\hat{Y}_0 - E[Y_0])^2] = \sigma^2 \mathbf{x}_0 (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}'_0.$$

Construire un intervalle de confiance de niveau $1 - \alpha$ pour $E[Y_0]$.

c) Démontrer que l'erreur dans la prévision de Y₀ est

$$E[(Y_0 - \hat{Y}_0)^2] = \sigma^2 (1 + \mathbf{x}_0 (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_0').$$

Construire un intervalle de confiance de niveau $1 - \alpha$ pour Y_0 .

3.6 En ajustant le modèle

$$Y_t = \beta_0 + \beta_1 X_{t1} + \beta_2 X_{t2} + \beta_3 X_{t3} + \varepsilon_t$$

à un ensemble de données, on a obtenu les statistiques suivantes :

$$R^2 = 0.521$$

 $F = 5.438$.

Déterminer la valeur *p* approximative du test global de validité du modèle.

3.7 On vous donne les observations suivantes :

Υ	X_1	X_2
17	4	9
12	3	10
14	3	11
13	3	11

De plus, si X est la matrice de schéma du modèle

$$Y_t = \beta_0 + \beta_1 X_{t1} + \beta_2 X_{t2} + \varepsilon_t$$
, $t = 1, 2, 3, 4$

où $\varepsilon_t \sim N(0, \sigma^2)$, alors

$$(\mathbf{X}'\mathbf{X})^{-1} = \frac{1}{2} \begin{bmatrix} 765 & -87 & -47 \\ -87 & 11 & 5 \\ -47 & 5 & 3 \end{bmatrix}$$

et

$$(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' = \frac{1}{2} \begin{bmatrix} -6 & 34 & -13 & -13 \\ 2 & -4 & 1 & 1 \\ 0 & -2 & 1 & 1 \end{bmatrix}$$

- a) Trouver, par la méthode des moindres carrés, les estimateurs des paramètres du modèle mentionné ci-dessus.
- b) Construire le tableau d'analyse de variance du modèle obtenu en a) et calculer le coefficient de détermination.
- c) Vérifier si les variables X_1 et X_2 sont significatives dans le modèle.
- d) Trouver un intervalle de confiance à 95 % pour la valeur de Y lorsque $X_1 = 3.5$ et $X_2 = 9$.
- 3.8 Répéter l'exercice 2.18 en ajoutant la cylindrée du véhicule en litres dans le modèle. La cylindrée est exprimée en pouces cubes dans les données. Or, 1 pouce correspond à 2,54 cm et un litre est définit comme étant 1 dm³, soit 1000 cm³. Trouver un intervalle de confiance pour la consommation en carburant d'une voiture de 1 350 kg ayant un moteur de 1,8 litre.

- **3.9** Dans un exemple du chapitre 2 des notes de cours, nous avons tâché d'expliquer les sinistres annuels moyens par véhicule pour différents types de véhicules uniquement par la puissance du moteur (en chevaux-vapeur). Notre conclusion était à l'effet que la régression était significative rejet de H_0 dans les tests t et F mais l'ajustement mauvais R^2 petit.
 - Examiner les autres variables fournies dans le fichier auto-price.dat et choisir deux autres caractéristiques susceptibles d'expliquer les niveaux de sinistres. Par exemple, peut-on distinguer une voiture sport d'une minifourgonnette?

Une fois les variables additionnelles choisies, calculer les différentes statistiques propres à une régression en ajoutant d'abord une, puis deux variables au modèle de base. Quelles sont vos conclusions?

3.10 En bon étudiant(e), vous vous intéressez à la relation liant la demande pour la bière, Y, aux variables indépendantes X_1 (le prix de celle-ci), X_2 (le revenu disponible) et X_3 (la demande de l'année précédente). Un total de 20 observations sont disponibles. Vous postulez le modèle

$$Y_t = \beta_0 + \beta_1 X_{t1} + \beta_2 X_{t2} + \beta_3 X_{t3} + \varepsilon_t$$

où $E[\varepsilon_t] = 0$ et $\text{cov}(\varepsilon_t, \varepsilon_s) = \delta_{ts}\sigma^2$. Les résultats de cette régression, tels que calculés dans R, sont fournis ci-dessous.

```
> fit <- lm(Y \sim X1 + X2 + X3, data = biere)
> summary(fit)
Call: lm(formula = Y \sim X1 + X2 + X3, data = biere)
Residuals:
     Min. 1st Qu. Median 3rd Qu.
                                             Max.
-1.014e+04 -5.193e-03 -2.595e-03 4.367e-03 2.311e-02
Coefficients:
            Value Std. Error t value Pr(>|t|)
(Intercept) 1.5943 1.0138 1.5726 0.1354
        X1 -0.0480 0.1479 -0.3243 0.7499
        X2 0.0549 0.0306 1.7950 0.0916
        X3 0.8130 0.1160 7.0121 2.933e-06
Residual standard error: 0.0098 on 16 degrees of freedom
Multiple R-Squared: 0.9810 Adjusted R-squared: 0.9774
F-statistic: 275.49 on 3 and 16 degrees of freedom,
the p-value is 7.160e-14
```

- a) Indiquer les dimensions des matrices et vecteurs dans la représentation matricielle $y = X\beta + \epsilon$ du modèle.
- b) La régression est-elle significative? Expliquer.
- c) On porte une attention plus particulière au paramètre β_2 . Est-il significativement différent de zéro? Quelle est l'interprétation du test $H_0: \beta_2 = 0$ versus $H_1: \beta_2 \neq 0$?
- d) Quelle est la valeur et l'interprétation de R^2 , le coefficient de détermination? De manière générale, est-il envisageable d'obtenir un R^2 élevé et, simultanément, toutes les statistiques t pour les tests $H_0: \beta_1 = 0$, $H_0: \beta_2 = 0$ et $H_0: \beta_3 = 0$ non significatives? Expliquer brièvement.
- **3.11** Au cours d'une analyse de régression, on a colligé les valeurs de trois variables explicatives X_1 , X_2 et X_3 ainsi que celles d'une variable dépendante Y. Les résultats suivants ont par la suite été obtenus avec R.

- a) On considère le modèle complet $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \varepsilon$. À partir de l'information ci-dessus, calculer la statistique appropriée pour compléter chacun des tests suivants. Indiquer également le nombre de degrés de liberté de cette statistique. Dans tous les cas, l'hypothèse alternative H_1 est la négation de l'hypothèse H_0 .
 - i) $H_0: \beta_1 = \beta_2 = \beta_3 = 0$
 - ii) $H_0: \beta_1 = 0$
 - iii) $H_0: \beta_2 = \beta_3 = 0$
- b) À la lumière des résultats en a), quelle(s) variable(s) devrait-on inclure dans la régression? Justifier votre réponse.
- 3.12 Dans une régression multiple avec quatre variables explicatives et 506 données, on a obtenu :

$$SSR(X_1|X_4) = 21348$$

 $SSR(X_4) = 2668$
 $R^2 = 0,6903$
 $s^2 = 26,41$.

Calculer la statistique appropriée pour le test

$$H_0: \beta_2 = \beta_3 = 0$$

 $H_1: \beta_2 \neq 0 \text{ ou } \beta_3 \neq 0.$

- **3.13** En régression linéaire multiple, on a $\hat{\beta} \sim N(\beta, \sigma^2(\mathbf{X}'\mathbf{X})^{-1})$ et SSE/ $\sigma^2 \sim \chi^2(n-p-1)$.
 - a) Vérifier que

$$\frac{\hat{\beta}_i - \beta_i}{s\sqrt{c_{ii}}} \sim t(n-p-1), \quad i = 0, 1, \dots, p,$$

où c_{ii} est le $(i+1)^e$ élément de la diagonale de la matrice $(\mathbf{X}'\mathbf{X})^{-1}$ et $s^2 = \text{MSE}$.

- b) Que vaut c₁₁ en régression linéaire simple? Adapter le résultat ci-dessus à ce modèle.
- **3.14** Considérer le modèle de régression linéaire $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$, où \mathbf{X} est une matrice $n \times (p+1)$, $\operatorname{var}[\boldsymbol{\varepsilon}] = \sigma^2 \mathbf{W}^{-1}$ et $\mathbf{W} = \operatorname{diag}(w_1, \dots, w_n)$. Démontrer, en dérivant

$$S(\beta) = \sum_{t=1}^{n} w_t (\mathbf{y}_t - \mathbf{x}_t' \beta)^2$$
$$= (\mathbf{y} - \mathbf{X}\beta)' \mathbf{W} (\mathbf{y} - \mathbf{X}\beta)$$

par rapport à β , que les équations normales à résoudre pour obtenir l'estimateur des moindres carrés pondérés de β sont, sous forme matricielle,

$$(\mathbf{X}'\mathbf{W}\mathbf{X})\mathbf{\hat{\beta}}^* = \mathbf{X}'\mathbf{W}\mathbf{y},$$

puis en déduire cet estimateur. *Astuce* : cette preuve est simple si l'on utilise le théorème ?? de l'annexe ?? avec A = W et $f(\beta) = y - X\beta$.

- **3.15** Considérer le modèle de régression linéaire simple passant par l'origine $Y_t = \beta X_t + \varepsilon_t$. Trouver l'estimateur linéaire sans biais à variance minimale du paramètre β , ainsi que sa variance, sous chacune des hypothèses suivantes.
 - a) $var[\varepsilon_t] = \sigma^2$
 - b) $\operatorname{var}[\varepsilon_t] = \sigma^2 / w_t$

c)
$$var[\varepsilon_t] = \sigma^2 X_t$$

d)
$$var[\varepsilon_t] = \sigma^2 X_t^2$$

3.16 Proposer, à partir des données ci-dessous, un modèle de régression complet (incluant la distribution du terme d'erreur) pouvant expliquer le comportement de la variable Y en fonction de celui de X.

Υ	X
32,83	25
9,70	3
29,25	24
15,35	11
13,25	10
24,19	20
8,59	6
25,79	21
24,78	19
10,23	9
8,34	4
22,10	18
10,00	7
18,64	16
18,82	15

3.17 On vous donne les 23 données dans le tableau ci-dessous.

t	Y_t	X_t	t	Y_t	X_t	t	Y_t	X_t
12	2,3	1,3	19	1,7	3,7	6	2,8	5,3
23	1,8	1,3	20	2,8	4,0	10	2,1	5,3
7	2,8	2,0	5	2,8	4,0	4	3,4	5,7
8	1,5	2,0	2	2,2	4,0	9	3,2	6,0
17	2,2	2,7	21	3,2	4,7	13	3,0	6,0
22	3,8	3,3	15	1,9	4,7	14	3,0	6,3
1	1,8	3,3	18	1,8	5,0	16	5,9	6,7
11	3,7	3,7	3	3,5	5,3			

- a) Calculer l'estimateur des moindres carrés ordinaires $\boldsymbol{\hat{\beta}}.$
- b) Supposons que la variance de Y_{16} est $4\sigma^2$ plutôt que σ^2 . Recalculer la régression en a) en utilisant cette fois les moindres carrés pondérés.
- c) Refaire la partie b) en supposant maintenant que la variance de l'observation Y_{16} est $16\sigma^2$. Quelles différences note-t-on?
- 3.18 Une coopérative de taxi new-yorkaise s'intéresse à la consommation de carburant des douze véhicules de sa flotte en fonction de leur âge. Hormis leur âge, les véhicules sont identiques et utilisent tous le même type d'essence. La seule chose autre différence notable d'un véhicule à l'autre est le sexe du conducteur : la coopérative emploie en effet des hommes et des femmes. La coopérative a recueilli les données suivantes afin d'établir un modèle de régression pour la consommation de carburant :

Consommation (mpg)	Âge du véhicule	Sexe du conducteur
12,3	3	M
12,0	4	F
13,7	3	F
14,2	2	M
15,5	1	F
11,1	5	M
10,6	4	M
14,0	1	M
16,0	1	F
13,1	2	M
14,8	2	F
10,2	5	M

- a) En plaçant les points sur un graphique de la consommation de carburant en fonction de l'âge du véhicule, identifier s'il existe ou non une différence entre la consommation de carburant des femmes et celle des hommes. *Astuce* : utiliser un symbole (pch) différent pour chaque groupe.
- b) Établir un modèle de régression pour la consommation de carburant. Afin de pouvoir intégrer la variable qualitative «sexe du conducteur» dans le modèle, utiliser une variable indicatrice du type

$$X_{t2} = \begin{cases} 1, & \text{si le conducteur est un homme} \\ 0, & \text{si le conducteur est une femme.} \end{cases}$$

- c) Quelle est, selon le modèle établi en b), la consommation moyenne d'une voiture taxi de quatre ans conduite par une femme? Fournir un intervalle de confiance à 90 % pour cette prévision.
- 3.19 Le modèle de régression linéaire multiple

$$Y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \varepsilon_i$$
, pour $i = 1,...,n$

- a été ajusté à des données avec la méthode des moindres carrés.
- a) La figure 3.1 montre le QQ-plot des résidus studentisés. À la lumière de ce graphique, y a-t-il un postulat du modèle qui n'est pas vérifié? Si oui, lequel et pourquoi? S'il y a lieu, expliquer l'impact de la violation de ce postulat.
- b) La figure 3.2 montre les résidus studentisés en fonction de chacune des variables exogènes et en fonction des valeurs prédites. Utiliser ces graphiques pour commenter sur la validité des postulats du modèle. Y en a-t-il qui ne sont pas respectés? S'il y a lieu, expliquer l'impact de la violation de ce ou ces postulats.
- **3.20** La base de données OutlierExample.csv disponible sur le site du cours contient 19 observations de base, et trois observations supplémentaires, notées par les CODES 1, 2 et 3, qui sont aberrantes ou influentes.
 - a) Importez la base de données et tracez un nuage de points de Y en fonction de X.
 - b) Roulez les lignes de code suivantes pour observer le graphique avec les 3 points ajoutés

Fig. 3.1 – QQ-Plot des résidus studentisés

```
library(ggplot2)
ggplot(dat, aes(x= X, y= Y, label=CODES))+
  geom_point() +
  geom_text(aes(label=ifelse(CODES>0,CODES,'')),hjust=0,vjust=0)
```

- c) Ajustez un modèle linéaire en incluant seulement les 19 points dont le code est 0. Regardez l'ajustement et commentez.
- d) Ajustez un modèle linéaire en incluant les 19 points dont le code est 0 et le point de code 1. Quel est l'impact de l'inclusion de ce point sur le R^2 et sur les estimations des paramètres? Étudiez le résultat de la fonction influence.measures ().
- e) Ajustez un modèle linéaire en incluant les 19 points dont le code est 0 et le point de code 2. Quel est l'impact de l'inclusion de ce point sur le R^2 et sur les estimations des paramètres? Étudiez le résultat de la fonction influence.measures ().
- f) Ajustez un modèle linéaire en incluant les 19 points dont le code est 0 et le point de code 3. Quel est l'impact de l'inclusion de ce point sur le R^2 et sur les estimations des paramètres? Étudiez le résultat de la fonction influence.measures ().

Réponses

```
3.2 a) \hat{\beta}_0 = \bar{Y} b) \hat{\beta}_1 = (\sum_{t=1}^n X_t Y_t) / (\sum_{t=1}^n X_t^2)

3.6 p \approx 0.01

3.7 a) \hat{\beta} = (-22.5, 6.5, 1.5) b) F = 13.5, R^2 = 0.9643 c) t_1 = 3.920, t_2 = 1.732 d) 13.75 \pm 13.846

3.8 b) R^2 = 0.8927 et F = 145.6 c) 12.04 \pm 2.08
```

Fig. 3.2 – Nuage de points des résidus studentisés en fonction de chacune des variables exogènes et en fonction de la variable prédite

- **3.10** a) $\mathbf{y}_{20\times 1}$, $\mathbf{X}_{20\times 4}$, $\mathbf{\beta}_{4\times 1}$ et $\mathbf{\epsilon}_{20\times 1}$
- **3.11** a) i) 40,44, 3 et 21 degrés de liberté ii) 0,098, 1 et 21 degrés de liberté iii) 9,82, 2 et 21 degrés de liberté b) X_1 et X_3 , ou X_2 et X_3
- **3.12** 103,67

3.15 a)
$$\hat{\beta}^* = \sum_{t=1}^n X_t Y_t / \sum_{t=1}^n X_t^2$$
, $var[\hat{\beta}^*] = \sigma^2 / \sum_{t=1}^n X_t^2$

b)
$$\hat{\beta}^* = \sum_{t=1}^n w_t X_t Y_t / \sum_{t=1}^n w_t X_t^2$$
, $\operatorname{var}[\hat{\beta}^*] = \sigma^2 / \sum_{t=1}^n w_t X_t^2$

c)
$$\hat{\beta}^* = \bar{Y}/\bar{X}$$
, $var[\hat{\beta}^*] = \sigma^2/(n\bar{X})$

d)
$$\hat{\beta}^* = \sum_{t=1}^n Y_t / X_t$$
, $var[\hat{\beta}^*] = \sigma^2 / n$

3.16
$$Y_t = 18,12 + 29,68X_t + 4,09X_t^2 + \varepsilon_t, \, \varepsilon_t \sim N(0,1,373)$$

3.17 a)
$$\hat{\beta} = (1,4256,0,3158)$$
 b) $\hat{\beta}^* = (1,7213,0,2243)$ c) $\hat{\beta}^* = (1,808,0,1975)$

3.18 b) mpg =
$$16,687 - 1,04$$
 age $-1,206$ sexe c) $12,53 \pm 0,58$ mpg

4 Sélection de modèle et régression régularisée

- **4.1** Est-ce que les compagnies d'assurance utilisent la race comme un facteur déterminant dans leur décision de rendre de l'assurance disponible? Fienberg (1985) a rassemblé des données d'un rapport de la *U.S. Commission on Civil Rights* sur le nombre de polices d'assurance habitation émises à Chicago entre Décembre 1977 et Février 1978. Les polices d'assurance étaient placées dans 2 catégories :
 - polices émises dans le marché standard, volontaire
 - polices émises dans le marché sous-standard, involontaire

Les polices du marché sous-standard sont émises selon un programme gouvernemental d'accès à l'assurance. Les personnes qui contractent ce type d'assurance se sont vues refuser une police d'assurance sur le marché volontaire. On s'intéresse à l'accessibilité à l'assurance selon la race et on utilise le nombre de polices émises (ou renouvellées) sur le marché sous-standard comme mesure de "non-accessibilité".

La ville de Chicago a été divisée en 45 régions (selon le code postal). Pour chaque région, on a les informations suivantes :

Variable	Description
race	pourcentage de la population de la région provenant d'une minorité raciale
fire	Nombre d'incendies par millier de maisons
theft	Nombre de vols par millier de maisons
age	Pourcentage des maisons construites avant 1940
involact	Nouvelles polices et renouvellements dans le marché sous-standard, par centaine de maisons
income	Revenu familial moyen

On s'intéresse majoritairement à l'effet de la variable explicative race, mais on veut aussi tenir compte des autres facteurs qui pourraient être en cause, et des intéractions entre ces facteurs. Les modèles considérés sont :

Modèle A: involact∼race

Modèle B: involact∼race+I(log(income))

Modèle C: involact∼race+fire+age

Modèle D: involact~race+fire+theft+age

Modèle E: involact~race+I(log(income))+fire+theft+age
Modèle F: involact~race+I(log(income))*age+fire+theft
Modèle G: involact~I(log(income))*(age+race)+fire+theft

Modèle H: involact~I(log(income))*age+race*(fire+theft+I(log(income)))

Note : A*B représente A+B+A:B, c'est-à-dire les effets principaux et les intéractions entre les variables explicatives A et B.

On a les informations suivantes sur les modèles A à H:

Modèle	p'	PRESS	R_p^2	<i>C_p</i> de Mallows	AIC	BIC	R_a^2
A	2	9.6344	0.4735	63.24	-69.86	-66.25	0.5126
В	3	8.8248	0.5177	49.55	-75.20	-69.78	0.5761
C	4	5.2083	0.7154	8.58	-103.09	-95.87	0.7765
D	5	4.5727	0.7501	7.97	-103.75	<i>-</i> 94.71	0.7840
E	6	4.8985	0.7323	9.88	-101.84	-91.00	0.7790
F	7	4.8999	0.7322	9.64	-102.25	-89.61	0.7850
G	8	4.7528	0.7403	8.46	-103.92	-89.47	0.7964
Н	10	5.4817	0.7004	10.00	-102.98	-84.91	0.7989

Les facteurs d'inflation de la variance pour ces modèles sont présentés dans le tableau suivant :

	С	D	E	F	G	Н
race	1.73	1.81	3.81	3.83	2191	5449
fire	2.03	2.03	2.16	2.48	2.50	19
age	1.25	1.39	2.08	4070	5247	6316
theft		1.23	1.63	1.64	1.68	4.05
I(log(income))			4.66	21	21	22
I(log(income)):age				3793	4932	5919
<pre>I(log(income)):race</pre>					2064	5155
race:theft						24
race:fire						40

On sait également que les postulats de la régression linéaire multiple sont vérifiés.

- a) Quel est le meilleur modèle selon
 - i) le critère PRESS?
 - ii) le critère du coefficient de détermination de prévision R_p^2 ?
 - iii) le C_p de Mallows?
 - iv) le critère d'information d'Akaike?
 - v) le critère d'information de Bayes?
 - vi) le coefficient de détermination ajusté R_a^2 ?
- b) Que peut-on remarquer en regardant les facteurs d'inflation de la variance pour les modèles C à H?
- c) Selon vous, quel serait le meilleur modèle à utiliser pour ces données? Pourquoi?
- **4.2** Cet exercice est inspiré de James et al. (2013). Considérons le cas simplifié où n = p et la matrice d'incidence X est diagonale, avec des 1 sur la diagonale et des 0 pour tous les éléments hors-diagonale.

On ajuste une régression linéaire multiple passant par l'origine avec de telles données, c'està-dire que $\beta_0 = 0$ est connu et on ne l'estime pas.

Sous ces hypothèses,

- a) Trouvez les estimateurs des moindres carrés $\hat{\beta}_1, \dots, \hat{\beta}_p$.
- b) Écrivez l'expression à minimiser pour trouver les estimateurs sous la régression ridge.
- c) Trouvez l'expression de l'estimateur ridge.
- d) Écrivez l'expression à minimiser pour trouver les estimateurs sous la régression lasso.

e) Montrez que l'estimateur lasso a la forme

$$\hat{\beta}_j^{\rm lasso} = \left\{ \begin{array}{ll} y_j - \lambda/2, & \mathrm{si} \ y_j > \lambda/2 \\ y_j + \lambda/2, & \mathrm{si} \ y_j < -\lambda/2 \\ 0, & \mathrm{si} \ |y_j| < \lambda/2. \end{array} \right.$$

f) Interprétez les effets des pénalités ridge et lasso à la lumière de vos réponses aux sousquestions précédentes.

Réponses

5 Modèles linéaires généralisés (GLM)

- **5.1** Est-ce que les distributions suivantes font partie de la famille exponentielle linéaire? Si oui, écrire la densité sous la forme exponentielle linéaire, donner le paramètre canonique, le paramètre de dispersion, l'espérance et la variance de Y en termes de la fonction b() et la relation V() entre la moyenne et la variance.
 - a) Normale(μ , σ^2)
 - b) Uniforme $(0,\beta)$
 - c) Poisson(λ)
 - d) Bernoulli(π)
 - e) Binomiale(m, π), m > 0 est un entier et est connu (On considère $Y^* = Y/m$).
 - f) Pareto(α,λ)
 - g) Gamma(α , β)
 - h) Binomiale négative(r,π) avec r connu (On considère $Y^* = Y/r$).
- 5.2 Quelles fonctions de lien peut-on utiliser pour un GLM avec une loi de Poisson?
- 5.3 Quel est le lien canonique pour la loi gamma? Est-ce que ce lien est toujours approprié?
- **5.4** On suppose que $Y_1,...,Y_n$ sont des v.a.s indépendantes et $Y_i \sim Poisson(\mu_i)$. Pour chaque observation, on a une seule variable explicative x_i .
 - a) Quel est le lien canonique?
 - b) Trouver les fonctions de score (à résoudre pour l'estimation des paramètres par maximum de vraisemblance)
- 5.5 Montrer que la déviance pour le modèle binomial est

$$D(y,\hat{\mu}) = 2\sum_{i=1}^{n} m_i \left[y_i \ln \left(\frac{y_i}{\hat{\mu}_i} \right) + (1 - y_i) \ln \left(\frac{1 - y_i}{1 - \hat{\mu}_i} \right) \right].$$

- **5.6** Trouver les expressions des résidus de Pearson, d'Anscombe et de déviance pour la loi Gamma.
- **5.7** Les données suivantes représentent des données de comptage, du nombre d'échec pour trois appareils médicaux (M1, M2 et M3) lors de tests de résistance sur 1000 appareils de chaque type et pour quatre niveaux de résistance mécanique différents (I, II, III, IV).

Device\Stress Level	I			
M1	6	8	18	10
M2	13	18	18 29 21	20
М3	9	8	21	19

- À l'aide de la modélisation Poisson (lien canonique), évaluer s'il y a une différence significative entre les taux d'échec des appareils.
- 5.8 Les données pour cet exercice sot contenues dans le fichier BritishCar.csv (sep=";") disponible sur le site du cours. On y trouve les montants de réclamations moyens pour les dommages causés au véhicule du détenteur de la police pour les véhicules assurés au Royaume-Uni en 1975. Les moyennes sont en livres sterling ajustées pour l'inflation.

Variable	Description
OwnerAge	Âge du détenteur de la police (8 catégories)
Model	Type de voiture (4 groupes)
CarAge	Âge du véhicule, en années (4 catégories)
NClaims	Nombre de réclamations
AvCost	Coût moyen par réclamation, en livres sterling

On s'intéresse à la modélisation du coût moyen par réclamation.

- a) Ajuster un modèle de régression Gamma avec lien inverse pour la variable endogène AvCost. Inclure les effets principaux OwnerAge, Model et CarAge.
- b) Quelle est l'espérance du coût moyen de la réclamation pour un détenteur de police âgé entre 17 et 20 ans, avec une auto de type A âgée de moins de 3 ans?
- c) Interpréter brièvement les coefficients pour la variable exogène OwnerAge.
- d) Interpréter brièvement les coefficients pour la variable exogène Model.
- e) Interpréter brièvement les coefficients pour la variable exogène CarAge.
- f) Pour quelle combinaison de variables exogènes l'espérance du coût de réclamation est-elle la plus élevée ? Calculer sa valeur.
- g) Pour quelle combinaison de variables exogènes l'espérance du coût de réclamation est-elle la plus faible? Calculer sa valeur.
- h) Quelle est la déviance pour ce modèle? Est-ce que le modèle semble adéquat?
- i) Tracer le graphique des résidus de Pearson en fonction des valeurs prédites, des résidus d'Ascombe en fonction des valeurs prédites et des résidus de déviance en fonction des valeurs prédites.
- j) Obtient-on les mêmes conclusions aux sous-questions a) à h) si on utilise un lien logarithmique plutôt que le lien inverse?
- **5.9** On considère les données suivantes, qui contiennent le nombre Y_i de turbines sur m_i qui ont été fissurées après x_i heures d'opération.

x_i	m_i	Y_i
400	39	2
1000	53	4
1400	33	3
1800	73	7
2200	30	5
2600	39	9
3000	42	9
3400	13	6
3800	34	22
4200	40	21
4600	36	21

a) En utilisant un GLM binomial avec lien canonique, dériver les estimateurs des paramètres lorsque x_i est traité comme une variable exogène dichotomique avec 11 niveaux, et lorsque le prédicteur linéaire pour la donnée i est

$$\eta_i = \beta_0 + \beta_i$$
, pour $i = 1,...,11$,

avec la contrainte d'identifiabilité que $\beta_1 = 0$.

b) En utilisant R et un GLM binomial avec lien canonique, ajuster le modèle où le prédicteur linéaire est

$$\eta_i = \beta_0 + \beta_1 x_i$$
, pour $i = 1,...,11$.

Donner les estimations des paramètres et leur écart-type.

- c) Refaire (b) en utilisant un lien probit. Donner les estimations des paramètres et leur écarttype.
- d) Refaire (b) en utilisant un lien log-log complémentaire. Donner les estimations des paramètres et leur écart-type.
- e) Comparer les prévisions (et leurs mesures d'incertitude) sous les trois modèles ajustés en (b), (c) et (d) pour une turbine qui était en opération pour 2000 heures.
- f) Tracer un graphique pour montrer si les modèles en (b), (c) et (d) ajustent bien (ou non) les données. Commenter.

Réponses

6 Modélisation de données de comptage

- 6.1 Ajuster un modèle de Poisson avec lien logarithmique au données esoph du package datasets en R. À partir du modèle avec effets principaux et les interactions de second ordre agegp+alcgp+tobgp+agegp:alcgp+agegp:tobgp+alcgp:tobg, faire une analyse de déviance pour trouver le modèle le plus approprié. Y a-t-il une interaction qui est significative dans le modèle? Expliquer.
- **6.2** Montrer que si $Y|Z=z\sim Poisson(\mu z)$, et $Z\sim Gamma(\theta_z,\theta_z)$, alors $Y\sim BinNeg(\mu,\theta_z)$, soit

$$f(y) = \frac{\Gamma(\theta_z + y)}{\Gamma(\theta_z)y!} \left(\frac{\mu}{\mu + \theta_z}\right)^y \left(\frac{\theta_z}{\mu + \theta_z}\right)^{\theta_z}, y = 0, 1, \dots$$

- **6.3** On suppose que Y_i suit une Poisson avec $g(\mu_i) = \beta_0 + \beta_1 x_i$, où $x_i = 1$, pour $i = 1, ..., n_A$ (groupe A) et $x_i = 0$, pour $i = n_A + 1, ..., n_A + n_B$ (groupe B). Montrer que, pour toute fonction de lien g continue, l'estimation du GLM par maximum de vraisemblance implique que les moyennes ajustées $\hat{\mu}_A$ et $\hat{\mu}_B$ sont égales aux moyennes empiriques dans l'échantillon. *Indice*: La dérivée de la réciproque d'une fonction continue g est $\frac{1}{g' \circ g^{-1}}$.
- **6.4** Dans une expérience, on s'intéresse au taux d'imperfection pour deux procédés utilisés pour fabriquer des plaquettes de silicium dans des puces électroniques. Le traitement A a été appliqué pour dix plaquettes et les nombres d'imperfections sont

Le traitement B a été appliqué sur dix autres plaquettes et les nombres d'imperfections sont

On traite les données de comptage comme des variables Poisson indépendantes, avec moyennes μ_A et μ_B .¹

a) Ajuster le modèle

$$\log(\mu_i) = \beta_0 + \beta_1 x_i,$$

οù

$$x_i = \begin{cases} 0, & \text{si traitement A,} \\ 1, & \text{si traitement B.} \end{cases}$$

Montrer que $\exp(\beta_1) = \mu_B/\mu_A$ et interpréter la valeur de l'estimateur du paramètre.

- b) Tester $H_0: \mu_A = \mu_B$ avec le test de Wald. Iterpréter.
- c) Construire un intervalle de confiance à 95% pour μ_B/μ_A .

^{1.} Cet exercice est tiré de Agresti (2013).

	Hommes		Femmes	
Département	Admis	Non admis	Admis	Non admis
A	512	313	89	19
В	353	207	17	8
С	120	205	202	391
D	138	279	131	244
E	53	138	94	299
F	22	351	24	317

TAB. 6.1 – Données pour l'exercice sur les admissions aux études graduées. Source : P. Bickel et al. (1975). *Science* **187** : 398 – 403.

- d) Y a-t-il présence de surdispersion? Expliquer.
- e) Ajuster le modèle Binomiale Négative avec lien logarithmique. Que peut-on remarquer?
- f) Ajuster les modèles Poisson et Binomiale Négative aux 20 données sans inclure la variable explicative x. Comparer les résultats et comparer les intervalles de confiance pour la moyenne de la variable réponse. Commenter.
- **6.5** Le tableau 6.1 dénombre les applications aux études graduées à l'Université Berkeley en Californie, pour l'automne 1973. On y voit les décisions d'admission par sexe et par département.
 - a) Effectuer une régression Poisson avec lien canonique sur le nombre de personnes admises, en utilisant le logarithme du nombre total de personnes qui ont appliqué comme terme offset. Si on utilise seulement le sexe comme variable explicative, est-ce que le sexe a un impact significatif sur le taux d'acceptation?
 - b) Si on ajoute le département comme variable explicative dans le modèle en a), est-ce que le sexe a toujours un impact significatif sur le taux d'acceptation? Qu'est-ce que cela signifie?
 - c) Est-ce que l'intéraction entre le sexe et le département est une variable significative dans le modèle? Que peut-on conclure?
 - d) Est-ce que le modèle Poisson est adéquat pour ces données? Utiliser la déviance et la statistique de Pearson.
 - e) Refaire les questions a) à c) en utilisant un modèle binomial avec lien logistique, en supposant que m_i est le nombre total de personnes qui ont appliqué.
- **6.6** Le fichier de données MNLung.csv (séparé avec des virgules) contient des données sur le nombre de décès dûs au cancer du poumon dans 87 régions au Minnesota, pour les hommes et les femmes. L'objectif de l'étude pour laquelle les données ont été recueillies était d'examiner si l'exposition au gaz radon est relié à un changement dans le taux de morbidité standardisé. La base de données contient sept colonnes :

County: Nom de la région;

ID: Numéro d'identification de la région dans la base de données;

YM : Nombre de décès dûs au cancer du poumon chez les hommes sur une période de 5 ans ;

EM: Espérance du nombre de cas YM, basé sur des facteurs démographiques;

YF: Nombre de décès dûs au cancer du poumon chez les femmes sur une période de 5 ans;

EF: Espérance du nombre de cas YF, basé sur des facteurs démographiques;

Radon : Mesure moyenne de l'exposition au radon dans chaque région pour la période de 5 ans.

Le taux de morbidité standardisé (SMR) pour la région *i* est défini comme

$$SMR_i = \frac{Y_i}{E_i}.$$

En utilisant un modèle linéaire généralisé Poisson approprié, répondre aux question suivantes :

- a) Y a-t-il des preuves dans ces données que le radon est associé avec un changement dans le SMR?
- b) Y a-t-il une différence entre le SMR pour les hommes et les femmes, lorsque l'on inclut ou pas la variable explicative radon dans le modèle?
- c) Donner les prévisions pour le SMR, avec la mesure d'incertitude, pour des hommes dans une région hypothétique où l'exposition moyenne au radon est de 6 unités.
- d) Commenter sur la validité du modèle de Poisson pour ces données.

Réponses

A R et la régression linéaire

Comme tous les grands logiciels statistiques — et même plusieurs calculatrices scientifiques — R comporte des fonctions permettant de calculer les coefficients d'une régression simple ou multiple. Les outils disponibles vont toutefois bien au-delà de ce calcul relativement simple. Ainsi, par l'entremise de quelques fonctions génériques simples à utiliser, il est possible de générer différents graphiques relatifs à la régression, d'en calculer le tableau ANOVA et d'en extraire les informations principales, de calculer des prévisions ainsi que des intervalles de confiance. Bref, l'analyse complète d'un ensemble de données tient en quelques lignes de code; il suffit de connaître les fonctions à utiliser.

Cette annexe présente les principales fonctions — dont la liste se trouve au tableau A.1 — utiles lors de l'analyse de données et la modélisation par régression. Il n'a cependant aucune prétention d'exhaustivité. Consulter l'aide en ligne de R, ainsi que ?] pour de plus amples détails.

A.1 Importation de données

La modélisation statistique en R — par exemple, l'analyse de régression — repose souvent sur l'utilisation de *data frames* pour le stockage des données. On se reportera à la section 2.7 de ?] pour une présentation de ce type d'objet.

La principale fonction utilisée pour importer des données dans R en vue d'une analyse de régression est read.table. Celle-ci retourne un *data frame*. Les arguments de read.table les plus souvent utilisés sont :

file le nom ou l'URL du fichier de données à importer;

header TRUE si la première ligne du fichier à être lue contient les étiquettes des colonnes; comment.char le caractère (# par défaut) représentant le début d'un commentaire dans le fichier; skip le nombre de lignes à sauter au début du fichier.

A.2 Formules

Lorsque l'on fait une régression, il faut informer R des variables que l'on entend inclure dans celle-ci et leurs relations entre elles. La convention utilisée dans le langage S est celle dite des «formules». Le tableau A.2 présente quelques exemples de formulation de modèles linéaires simples en S.

Pour une utilisation de base des fonctions de régression, la connaissance des règles suivantes

- 1. Les opérateurs + et prennent une nouvelle signification dans les formules : + signifie «inclusion» et -, «exclusion».
- 2. Le terme constant d'une régression est inclus implicitement. Pour l'exclure explicitement (pour la régression passant par l'origine), il faut donc ajouter un terme –1 du côté droit de la formule.

Phase de l'analyse	Fonctions
Création et manipulation de data frames	data.frame as.data.frame read.table cbind rbind names, colnames row.names, rownames attach detach
Modélisation	lm add1, addterm ¹ drop1, dropterm ¹ step, stepAIC ¹
Analyse des résultats et diagnostics	summary anova coef, coefficients confint residuals fitted deviance df.residual
Mise à jour et prévisions	update predict
Graphiques	plot abline matplot matlines

¹ Dans le package MASS.

Tab. A.1 – Principales fonctions R pour la régression linéaire

3. Dans une régression multiple, on peut soit lister toutes les variables à inclure du côté droit de la formule, soit ne spécifier qu'une matrice contenant ces variables (dans les colonnes).

Consulter les sections 6.2 de ?] et 11.1 de ?] pour plus de détails.

A.3 Modélisation des données

Supposons que l'on souhaite étudier la relation entre la variable indépendante x1 et la variable dépendante (ou réponse) y1 du jeu de données anscombe. La première étape de la modélisation des données en régression linéaire simple consiste habituellement à représenter celles-ci graphiquement.

La fonction plot est une fonction générique comportant des méthodes pour un grand nombre de classes d'objets différentes. Puisqu'il existe une méthode pour les objets de classe formula, on peut tracer un graphique de y1 en fonction de x1 avec

Modèle mathématique	Formule S
$y_t = \alpha + \beta x_t + \varepsilon_t$	y ~ x y ~ 1 + x
$y_t = \beta x_t + \varepsilon_t$	y ~ -1 + x y ~ x - 1
$y_t = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + \varepsilon_t$	$y \sim x1 + x2$ $y \sim x \circ u \times (-cbind(x1, x2))$

Tab. A.2 – Modèles linéaires simples et leur formulation en S

```
plot(y1 ~ x1, data = anscombe)
```

ou, si les colonnes du data frame anscombe sont visibles, simplement avec

```
plot (y1 ~ x1)
```

Le résultat de ces commandes se trouve à la figure A.1.

Le graphique nous montre qu'il est raisonnable de postuler une relation linéaire entre les éléments de y1 et x1. On pose donc le modèle

$$y_t = \beta_0 + \beta_1 x_t + \varepsilon_t,$$

où y_t et x_t , t = 1,...,11 sont les éléments des vecteurs y_1 et x_1 , respectivement, et ε_t est le terme d'erreur.

C'est avec la fonction lm (pour *linear model*) que l'on calcule les estimateurs des coefficients de la régression β_0 et β_1 . De façon simplifiée, cette fonction prend en arguments une formule et un *data frame* comprenant les données relatives aux termes de la formule. La fonction lm retourne un objet de classe lm, classe pour laquelle il existe de nombreuses méthodes.

Lorsque plusieurs variables explicatives sont disponibles, l'analyste doit souvent choisir les variables les plus significatives pour la régression. Les techniques d'élimination successive, de sélection successive et de sélection pas à pas, qui reposent toutes sur les tests F partiels, sont alors populaires pour parvenir au modèle le plus utile. Ces techniques sont mises en œuvre, respectivement, dans les fonctions dropterm, addterm et stepAIC du package MASS [?].

Fig. A.1 – Relation entre y1 et x1 des données anscombe

A.4 Analyse des résultats

Le résultat de la fonction 1m est une liste dont on peut extraire manuellement les différents éléments (consulter la rubrique d'aide). Grâce à quelques fonctions génériques disposant d'une méthode pour les objets de classe 1m, il est toutefois facile et intuitif d'extraire les principaux résultats d'une régression :

- 1. coef ou coefficients extraient les coefficients $\hat{\beta}_0$ et $\hat{\beta}_1$ de la régression;
- 2. fitted extrait les valeurs ajustées $\hat{y}_t = \hat{\beta}_0 + \hat{\beta}_1 x_t$;
- 3. residuals extrait les résidus $y_t \hat{y}_t$;
- 4. deviance retourne la somme des carrés des résidus SSR = $\sum_{t=1}^{n} (y_t \hat{y}_t)^2$;
- 5. df.residual extrait le nombre de degrés de liberté de la somme des carrés des résidus.

La fonction générique summary présente les informations ci-dessus de manière facile à consulter. Plus précisément, le sommaire de la régression contient, outre le modèle utilisé et les estimateurs des coefficients de la régression : les résultats des tests t, la valeur du coefficient de détermination

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

et celle du coefficient de détermination ajusté

$$R_a^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

ainsi que le résultat du test F global.

La fonction confint calcule les intervalles de confiance des paramètres de la régression.

D'autre part, le tableau d'analyse de variance (séquentiel, en régression multiple) est calculé avec la fonction générique anova.

Pour ajouter la droite de régression au graphique créé au début de l'analyse, utiliser la fonction abline, qui dispose elle aussi d'une méthode pour les objets de classe lm.

A.5 Diagnostics

Les statistiques servant à mesurer la qualité d'un modèle de régression (R^2 , R^2 ajusté, statistiques t et F) sont calculées par les fonctions summary et anova.

La méthode de la fonction plot pour les objets de classe lm produit une série de six graphiques (quatre dans R avant la version 2.2.0) permettant de juger de la qualité d'une régression. Consulter la rubrique d'aide de la fonction plot.lm pour plus de détails.

A.6 Mise à jour des résultats et prévisions

Il peut arriver que, une fois la modélisation d'un ensemble de données effectuée, l'on doive ajouter ou modifier une ou plusieurs données ou variables. Plutôt que de reprendre toute la modélisation avec la fonction lm, il peut alors s'avérer plus simple et élégant d'utiliser la fonction update :

```
update(fit, ~ . + x4)
##
## Call:
```

Le calcul de prévisions et d'intervalles de confiance pour la régression et pour les prévisions se fait avec la fonction générique predict et sa méthode pour les objets de classe lm. Par défaut, predict calculera les prévisions pour les valeurs x_t , t = 1, ..., n. Par conséquent, le résultat de predict sera le même que celui de fitted:

```
all.equal(predict(fit), fitted(fit))
## [1] TRUE
```

Comme on souhaite généralement prévoir la réponse pour d'autres valeurs de la variable indépendante, on spécifiera celles-ci par le biais d'un data frame passé à predict avec l'option newdata.

La fonction predict peut également servir au calcul des bornes d'intervalles de confiance et de prévision. Pour calculer les bornes d'un intervalle de confiance, on ajoutera l'argument interval = "confidence", alors que pour les bornes d'un intervalle de prévision on utilise interval = "prediction". Le niveau de confiance est déterminé avec l'argument level (0,95 par défaut). Le résultat est une matrice de trois colonnes dont la première contient les prévisions et les deux autres les bornes inférieures (lwr) et supérieures (upr) des intervalles de confiance.

On ajoute les limites des intervalles de confiance au graphique des données avec les fonctions matlines ou matplot. Consulter les rubriques d'aide et les exemples pour de plus amples détails.

A.7 Exemples

```
### IMPORTATION DE DONNÉES
###
## On importe les données du fichier anscombe.dat. On peut
## lire le fichier directement depuis Internet. De plus, les
## lignes débutant par # sont automatiquement reconnues comme
## des lignes de commentaires.
anscombe <- read.table(
  "http://vgoulet.act.ulaval.ca/pub/donnees/anscombe.dat")
## Ce jeu de données se trouve en fait déjà dans R et il est
## chargé en mémoire avec 'data'.
data(anscombe)
## Le résultat est un data frame, soit
                  # ... une liste...
mode (anscombe)
                          # ... de classe "data.frame"
class(anscombe)
## Extraction des étiquettes des colonnes et des lignes.
names (anscombe)
                  # étiquettes des colonnes
                         # étiquettes des lignes
row.names(anscombe)
```

A.7. Exemples

```
###
### MODÉLISATION DES DONNÉES
###
## Relation graphique entre les variables y1 et x1 des données
## anscombe.
plot(y1 \sim x1, data = anscombe)
## On peut aussi rendre les colonnes du data frame visibles
## dans l'espace de travail et référer ensuite à celles-ci
## directement.
attach (anscombe)
plot(y1 \sim x1)
## Estimation des coefficients de la régression. Il est
## recommandé de sauvegarder les résultats dans un objet (de
## classe "lm") puisqu'il existe de multiples méthodes pour de
## tels objets.
( fit <- lm(y1 \sim x1, data = anscombe) )
class(fit)
###
### ANALYSE DES RÉSULTATS
###
## Le sommaire de la régression contient, outre le modèle
## utilisé, les résultats des tests t, la valeur des
## coefficients de détermination et de détermination ajusté,
## ainsi que le résultat du test F global.
summary (fit)
## Calcul du coefficient de détermination à la main.
attach (anscombe)
1 - sum(residuals(fit)^2)/sum((y1 - mean(y1))^2)
1 - deviance(fit)/sum((y1 - mean(y1))^2)
detach (anscombe)
## Intervalles de confiance pour les paramètres de la
## régression.
confint (fit)
## Le tableau d'analyse de variance (séquentiel, en régression
## multiple) est calculé avec la fonction générique 'anova'.
anova(fit)
## Pour ajouter la droite de régression au graphique créé
## précédemment, utiliser la fonction générique
## 'abline'. L'ordonnée à l'origine et la pente sont extraites
## de l'objet 'fit'.
abline(fit)
### MISE À JOUR DES RÉSULTATS ET PRÉVISION
###
```

```
## La fonction 'update' est utilisé pour modifier une ou
## plusieurs données dans le modèle ou pour enlever ou ajouter
## une ou plusieurs variables dans le modèle.
anscombe$x1[11] <- 6
                         # modification d'une donnée
                           # modèle mis à jour
update(fit)
update(fit, \sim . + x4)
                         # ajout de la variable "x4"
## Retour au modèle d'origine
fit <-lm(y1 \sim x1, data = anscombe)
## Prévisions du modèle pour des valeurs de la variables "x1"
## de 3 et 15:
predict(fit, newdata = data.frame(x1 = c(3, 15)))
## Calcul des intervalles de confiance et de prévision pour
## les prévisions ci-dessus avec un niveau de confiance de
## 90%.
predict(fit, newdata = data.frame(x1 = c(3, 15)),
       interval = "confidence", level = 0.90)
predict(fit, newdata = data.frame(x1 = c(3, 15)),
        interval = "prediction", level = 0.90)
## Ajout des limites supérieures et inférieures des
## intervalles de confiance au graphique des données. On
## utilise la fonction 'matplot' qui prend en argument deux
## matrices 'x' et 'y' et produit un graphique des coordonnées
## de la première colonne de 'x' avec la première colonne de
## 'y', la seconde de 'x' avec la seconde de 'y', etc.
##
## Afin d'obtenir un beau graphique, il faut s'assurer de
## mettre les valeurs de 'x' en ordre croissant et de classer
## celles de 'y' en conséquence.
## En fait, on utilise la fonction 'matlines' qui ajoute à un
## graphique existant. La fonction 'matplot' créerait un
## nouveau graphique. (Note: il est possible de combiner les
## deux commandes matlines() ci-dessous en une seule.)
##
## Rendre les colonnes visibles.
attach (anscombe)
## Calcul des prévisions et des intervalles pour toutes les
## valeurs de "x1".
pred.ci <- predict(fit, interval = "confidence")</pre>
pred.pi <- predict(fit, interval = "prediction")</pre>
matlines(sort(x1), pred.ci[order(x1), -1],
        lty = 2, col = "red")
matlines(sort(x1), pred.pi[order(x1), -1],
         lty = 2, col = "green")
## Pour éviter que des lignes ne dépassent à extérieur du
## graphique, il faut trouver, avant de faire le graphique,
## les limites inférieure et supérieure des ordonnées. La
## fonction 'matplot' peut combiner des lignes et des points,
## ce qui permet de faire tout le graphique avec une seule
```

A.8. Exercices 41

A.8 Exercices

- 1.1 Importer dans S-Plus ou R le jeu de données steam.dat à l'aide de la fonction read.table. Les trois première lignes du fichier sont des lignes de commentaires débutant par le caractère #. La quatrième ligne contient les étiquettes des colonnes.
- 1.2 Rendre les colonnes individuelles de l'ensemble de données steam visibles dans l'espace de travail.
- **1.3** Faire (même à l'aveuglette) l'analyse de régression de la variable Y en fonction de la variable X1 des données steam.
 - a) Évaluer visuellement le type de relation pouvant exister entre Y et X1.
 - b) Évaluer les coefficients d'une régression linéaire entre Y et X1 et ajouter la droite de régression ainsi obtenue au graphique créé en a).
 - c) Répéter la partie b) en forçant la droite de régression à passer par l'origine (0,0). Quel modèle semble le plus approprié?
 - d) Le coefficient de détermination R^2 mesure la qualité de l'ajustement d'une droite de régression aux données. Calculer le R^2 pour les modèles en b) et c). Obtient-on les mêmes résultats que ceux donnés par summary? Semble-t-il y avoir une anomalie?
 - e) Calculer les bornes d'intervalles de confiance pour la droite de régression des deux modèles.
 - f) Calculer les prévisions de chaque modèle pour toutes les valeurs de X1 ainsi que les bornes d'intervalles de confiance pour ces prévisions.
 - g) Ajouter au graphique créé précédemment les bornes inférieures et supérieures des intervalles de confiance calculées en e) et f). Utiliser des types de lignes (option lty) et des couleurs (option col) différents pour chaque ensemble de limites.
- **1.4** Répéter l'exercice précédent en ajoutant la variable X5 à l'analyse, transformant ainsi le modèle de régression linéaire simple en un modèle de régression multiple.

B Solutions

Chapitre 2

- **2.1** a) Voir la figure B.1. Remarquer que l'on peut, dans la fonction plot, utiliser une formule pour exprimer la relation entre les variables.
 - b) Les équations normales sont les équations à résoudre pour trouver les estimateurs de β_0 et β_1 minimisant la somme des carrés

$$S(\beta_0, \beta_1) = \sum_{t=1}^{n} \varepsilon_t^2$$

= $\sum_{t=1}^{n} (Y_t - \beta_0 - \beta_1 X_t)^2$.

Or,

$$\frac{\partial S}{\partial \beta_0} = -2 \sum_{t=1}^n (Y_t - \beta_0 - \beta_1 X_t)$$
$$\frac{\partial S}{\partial \beta_1} = -2 \sum_{t=1}^n (Y_t - \beta_0 - \beta_1 X_t) X_t,$$

d'où les équations normales sont

$$\sum_{t=1}^{n} (Y_t - \hat{\beta}_0 - \hat{\beta}_1 X_t) = 0$$
$$\sum_{t=1}^{n} (Y_t - \hat{\beta}_0 - \hat{\beta}_1 X_t) X_t = 0.$$

c) Par la première des deux équations normales, on trouve

$$\sum_{t=1}^{n} Y_t - n\hat{\beta}_0 - \hat{\beta}_1 \sum_{t=1}^{n} X_t = 0,$$

soit, en isolant $\hat{\beta}_0$,

$$\hat{\beta}_0 = \frac{\sum_{t=1}^n Y_t - \hat{\beta}_1 \sum_{t=1}^n X_t}{n} = \bar{Y} - \hat{\beta}_1 \bar{X}.$$

De la seconde équation normale, on obtient

$$\sum_{t=1}^{n} X_t Y_t - \hat{\beta}_0 \sum_{t=1}^{n} X_t - \hat{\beta}_1 \sum_{t=1}^{n} X_t^2 = 0$$

```
x<-c(65, 43, 44, 59, 60, 50, 52, 38, 42, 40)
y<-c(12, 32, 36, 18, 17, 20, 21, 40, 30, 24)
plot(y ~ x, pch = 16)
```


Fig. B.1 – Relation entre les données de l'exercice 2.1

puis, en remplaçant $\hat{\beta}_0$ par la valeur obtenue ci-dessus,

$$\hat{\beta}_1 \left(\sum_{t=1}^n X_t^2 - n \bar{X}^2 \right) = \sum_{t=1}^n X_t Y_t - n \bar{X} \bar{Y}.$$

Par conséquent,

$$\hat{\beta}_1 = \frac{\sum_{t=1}^n X_t Y_t - n\bar{X}\bar{Y}}{\sum_{t=1}^n X_t^2 - n\bar{X}^2}$$

$$= \frac{11654 - (10)(49,3)(25)}{25103 - (10)(49,3)^2}$$

$$= -0.8407$$

et

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$
= 25 - (-0,8407)(49,3)
= 66,4488.

d) On peut calculer les prévisions correspondant à $X_1, ..., X_{10}$ — ou valeurs ajustées — à partir de la relation $\hat{Y}_t = 66,4488 - 0,8407X_t$, t = 1,2,...,10. Avec R, on crée un objet de type modèle de régression avec lm et on en extrait les valeurs ajustées avec fitted:

Pour ajouter la droite de régression au graphique de la figure B.1, il suffit d'utiliser la fonction abline avec en argument l'objet créé avec lm. L'ordonnée à l'origine et la pente de la droite seront extraites automatiquement. Voir la figure B.2.

e) Les résidus de la régression sont $e_t = Y_t - \hat{Y}_t$, t = 1,...,10. Dans R, la fonction residuals extrait les résidus du modèle :

```
residuals(fit)
## 1 2 3 4 5
## 0.1997243 1.7032953 6.5440421 1.1552437 0.9959905
## 6 7 8 9 10
## -4.4114773 -1.7299837 5.4995615 -1.1374514 -8.8189450
```

On vérifie ensuite que la somme des résidus est (essentiellement) nulle :

```
sum(residuals(fit))
## [1] -4.440892e-16
```

abline(fit)

Fig. B.2 – Relation entre les données de l'exercice 2.1 et la droite de régression

2.2 a) Nous avons le modèle de régression usuel. Les coefficients de la régression sont

$$\hat{\beta}_1 = \frac{\sum_{t=1}^8 X_t Y_t - n\bar{X}\bar{Y}}{\sum_{t=1}^8 X_t^2 - n\bar{X}^2}$$

$$= \frac{146 - (8)(32/8)(40/8)}{156 - (8)(32/8)^2}$$

$$= -0.5$$

et

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$
= $(40/8) - (-0.5)(32/8)$
= 7

b) Les sommes de carrés sont

$$SST = \sum_{t=1}^{8} (Y_t - \bar{Y})^2$$

$$= \sum_{t=1}^{8} Y_t^2 - n\bar{Y}^2$$

$$= 214 - (8)(40/8)^2$$

$$= 14,$$

$$SSR = \sum_{t=1}^{8} (\hat{Y}_t - \bar{Y})^2$$

$$= \sum_{t=1}^{8} \hat{\beta}_1^2 (X_t - \bar{X})^2$$

$$= \hat{\beta}_1^2 (\sum_{t=1}^{8} X_t^2 - n\bar{X}^2)$$

$$= (-1/2)^2 (156 - (8)(32/8)^2)$$

$$= 7$$

et SSE = SST - SSR = 14 - 7 = 7. Par conséquent, $R^2 = SSR/SST = 7/14 = 0,5$, donc la régression explique 50 % de la variation des Y_t par rapport à leur moyenne \bar{Y} . Le tableau ANOVA est le suivant :

Source	SS	d.l.	MS	Ratio F
Régression Erreur	7 7	1 6	7 7/6	6
Total	14	7		

- **2.3** a) Voir la figure B.3.
 - b) Le graphique montre qu'un modèle linéaire serait excellent. On estime les paramètres de ce modèle avec lm:

```
data(women)
plot(weight ~ height, data = women, pch = 16)
```


Fig. B.3 – Relation entre la taille et le poids moyen de femmes américaines âgées de 30 à 39 ans (données women)

```
(fit <- lm(weight ~ height, data = women))
##
## Call:
## lm(formula = weight ~ height, data = women)
##
## Coefficients:
## (Intercept) height
## -87.52 3.45</pre>
```

- c) Voir la figure B.4. On constate que l'ajustement est excellent.
- d) Le résultat de la fonction summary appliquée au modèle fit est le suivant :

```
summary(fit)
##
## Call:
## lm(formula = weight ~ height, data = women)
##
## Residuals:
## Min 1Q Median 3Q
                                   Max
## -1.7333 -1.1333 -0.3833 0.7417 3.1167
##
## Coefficients:
    Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -87.51667 5.93694 -14.74 1.71e-09 ***
## height 3.45000 0.09114 37.85 1.09e-14 ***
## ---
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
##
## Residual standard error: 1.525 on 13 degrees of freedom
## Multiple R-squared: 0.991, Adjusted R-squared: 0.9903
## F-statistic: 1433 on 1 and 13 DF, p-value: 1.091e-14
```

Le coefficient de détermination est donc $R^2 = 0.991$, ce qui est près de 1 et confirme donc l'excellent ajustement du modèle évoqué en c).

e) On a

```
attach(women)
SST <- sum((weight - mean(weight))^2)
SSR <- sum((fitted(fit) - mean(weight))^2)
SSE <- sum((weight - fitted(fit))^2)
all.equal(SST, SSR + SSE)
## [1] TRUE
all.equal(summary(fit)$r.squared, SSR/SST)
## [1] TRUE</pre>
```

2.4 Puisque $\hat{Y}_t = (\bar{Y} - \hat{\beta}_1 \bar{X}) + \hat{\beta}_1 X_t = \bar{Y} + \hat{\beta}_1 (X_t - \bar{X})$ et que $e_t = Y_t - \hat{Y}_t = (Y_t - \bar{Y}) - \hat{\beta}_1 (X_t - \bar{X})$,

abline(fit)

Fig. B.4 – Relation entre les données women et droite de régression linéaire simple

alors

$$\sum_{t=1}^{n} (\hat{Y}_t - \bar{Y}) e_t = \hat{\beta}_1 \left(\sum_{t=1}^{n} (X_t - \bar{X})(Y_t - \bar{Y}) - \hat{\beta}_1 \sum_{t=1}^{n} (X_t - \bar{X})^2 \right)$$
$$= \hat{\beta}_1 \left(S_{XY} - \frac{S_{XY}}{S_{XX}} S_{XX} \right)$$
$$= 0$$

2.5 On a un modèle de régression linéaire simple usuel avec $X_t = t$. Les estimateurs des moindres carrés des paramètres β_0 et β_1 sont donc

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \frac{\sum_{t=1}^n t}{n}$$

et

$$\hat{\beta}_1 = \frac{\sum_{t=1}^n t Y_t - \bar{Y} \sum_{t=1}^n t}{\sum_{t=1}^n t^2 - n^{-1} (\sum_{t=1}^n t)^2}.$$

Or, puisque $\sum_{t=1}^n t = n(n+1)/2$ et $\sum_{t=1}^n t^2 = n(n+1)(2n+1)/6$, les expressions ci-dessus se simplifient en

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \frac{n+1}{2}$$

et

$$\hat{\beta}_1 = \frac{\sum_{t=1}^n tY_t - n(n+1)\bar{Y}/2}{n(n+1)(2n+1)/6 - n(n+1)^2/4}$$
$$= \frac{12\sum_{t=1}^n tY_t - 6n(n+1)\bar{Y}}{n(n^2 - 1)}.$$

2.6 a) L'estimateur des moindres carrés du paramètre β est la valeur $\hat{\beta}$ minimisant la somme de carrés

$$S(\beta) = \sum_{t=1}^{n} \varepsilon_t^2$$
$$= \sum_{t=1}^{n} (Y_t - \beta X_t)^2.$$

Or,

$$\frac{d}{d\beta}S(\beta) = -2\sum_{t=1}^{n}(Y_t - \hat{\beta}X_t)X_t,$$

d'où l'unique équation normale de ce modèle est

$$\sum_{t=1}^{n} X_t Y_t - \hat{\beta} \sum_{t=1}^{n} X_t^2 = 0.$$

L'estimateur des moindres carrés de β est donc

$$\hat{\beta} = \frac{\sum_{t=1}^{n} X_t Y_t}{\sum_{t=1}^{n} X_t^2}.$$

b) On doit démontrer que $E[\hat{\beta}] = \beta$. On a

$$E[\hat{\beta}] = E\left[\frac{\sum_{t=1}^{n} X_{t} Y_{t}}{\sum_{t=1}^{n} X_{t}^{2}}\right]$$

$$= \frac{1}{\sum_{t=1}^{n} X_{t}^{2}} \sum_{t=1}^{n} X_{t} E[Y_{t}]$$

$$= \frac{1}{\sum_{t=1}^{n} X_{t}^{2}} \sum_{t=1}^{n} X_{t} \beta X_{t}$$

$$= \beta \frac{\sum_{t=1}^{n} X_{t}^{2}}{\sum_{t=1}^{n} X_{t}^{2}}$$

$$= \beta.$$

c) Des hypothèses du modèle, on a

$$\begin{aligned} \text{var}[\hat{\beta}] &= \text{var}\left[\frac{\sum_{t=1}^{n} X_{t} Y_{t}}{\sum_{t=1}^{n} X_{t}^{2}}\right] \\ &= \frac{1}{(\sum_{t=1}^{n} X_{t}^{2})^{2}} \sum_{t=1}^{n} X_{t}^{2} \text{var}[Y_{t}] \\ &= \frac{\sigma^{2}}{(\sum_{t=1}^{n} X_{t}^{2})^{2}} \sum_{t=1}^{n} X_{t}^{2} \\ &= \frac{\sigma^{2}}{\sum_{t=1}^{n} X_{t}^{2}}. \end{aligned}$$

2.7 On veut trouver les coefficients c_1, \ldots, c_n tels que $E[\beta^*] = \beta$ et $var[\beta^*]$ est minimale. On cherche donc à minimiser la fonction

$$f(c_1,...,c_n) = \text{var}[\beta^*]$$

$$= \sum_{t=1}^n c_t^2 \text{var}[Y_t]$$

$$= \sigma^2 \sum_{t=1}^n c_t^2$$

sous la contrainte $E[\beta^*] = \sum_{t=1}^n c_t E[Y_t] = \sum_{t=1}^n c_t \beta X_t = \beta \sum_{t=1}^n c_t X_t = \beta$, soit $\sum_{t=1}^n c_t X_t = 1$ ou $g(c_1, ..., c_n) = 0$ avec

$$g(c_1,...,c_n) = \sum_{t=1}^n c_t X_t - 1.$$

Pour utiliser la méthode des multiplicateurs de Lagrange, on pose

$$\mathcal{L}(c_1,\ldots,c_n,\lambda) = f(c_1,\ldots,c_n) - \lambda g(c_1,\ldots,c_n),$$

= $\sigma^2 \sum_{t=1}^n c_t^2 - \lambda \left(\sum_{t=1}^n c_t X_t - 1\right),$

puis on dérive la fonction \mathcal{L} par rapport à chacune des variables c_1, \ldots, c_n et λ . On trouve alors

$$\frac{\partial \mathcal{L}}{\partial c_u} = 2\sigma^2 c_u - \lambda X_u, \quad u = 1, ..., n$$

$$\frac{\partial \mathcal{L}}{\partial \lambda} = -\sum_{t=1}^n c_t X_t + 1.$$

En posant les n premières dérivées égales à zéro, on obtient

$$c_t = \frac{\lambda X_t}{2\sigma^2}.$$

Or, de la contrainte,

$$\sum_{t=1}^{n} c_t X_t = \frac{\lambda}{2\sigma^2} \sum_{t=1}^{n} X_t^2 = 1,$$

d'où

$$\frac{\lambda}{2\sigma^2} = \frac{1}{\sum_{t=1}^n X_t^2}$$

et, donc,

$$c_t = \frac{X_t}{\sum_{t=1}^n X_t^2}.$$

Finalement,

$$\beta^* = \sum_{t=1}^n c_t Y_t$$
$$= \frac{\sum_{t=1}^n X_t Y_t}{\sum_{t=1}^n X_t^2}$$
$$= \hat{\beta}.$$

2.8 a) Tout d'abord, puisque MSE = SSE/ $(n-2) = \sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2/(n-2)$ et que $E[Y_t] = E[\hat{Y}_t]$, alors

$$E[MSE] = \frac{1}{n-2} E\left[\sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2\right]$$

$$= \frac{1}{n-2} \sum_{t=1}^{n} E[(Y_t - \hat{Y}_t)^2]$$

$$= \frac{1}{n-2} \sum_{t=1}^{n} E[((Y_t - E[Y_t]) - (\hat{Y}_t - E[\hat{Y}_t]))^2]$$

$$= \frac{1}{n-2} \sum_{t=1}^{n} (var[Y_t] + var[\hat{Y}_t] - 2cov(Y_t, \hat{Y}_t)).$$

Or, on a par hypothèse du modèle que $cov(Y_t, Y_s) = cov(\varepsilon_t, \varepsilon_s) = \delta_{ts}\sigma^2$, d'où $var[Y_t] = \sigma^2$ et $var[\bar{Y}] = \sigma^2/n$. D'autre part,

$$var[\hat{Y}_t] = var[\bar{Y} + \hat{\beta}_1(X_t - \bar{X})]$$

= $var[\bar{Y}] + (X_t - \bar{X})^2 var[\hat{\beta}_1] + 2(X_t - \bar{X})cov(\bar{Y}, \hat{\beta}_1)$

et l'on sait que

$$\operatorname{var}[\hat{\beta}_1] = \frac{\sigma^2}{\sum_{t=1}^n (X_t - \bar{X})^2}$$

et que

$$\begin{aligned}
\cos(\bar{Y}, \hat{\beta}_{1}) &= \cos\left(\frac{\sum_{t=1}^{n} Y_{t}}{n}, \frac{\sum_{s=1}^{n} (X_{s} - \bar{X}) Y_{s}}{\sum_{t=1}^{n} (X_{t} - \bar{X})^{2}}\right) \\
&= \frac{1}{n \sum_{t=1}^{n} (X_{t} - \bar{X})^{2}} \sum_{t=1}^{n} \sum_{s=1}^{n} \cos(Y_{t}, (X_{s} - \bar{X}) Y_{s}) \\
&= \frac{1}{n \sum_{t=1}^{n} (X_{t} - \bar{X})^{2}} \sum_{t=1}^{n} (X_{s} - \bar{X}) var[Y_{t}] \\
&= \frac{\sigma^{2}}{n \sum_{t=1}^{n} (X_{t} - \bar{X})^{2}} \sum_{t=1}^{n} (X_{t} - \bar{X}) \\
&= 0,
\end{aligned}$$

puisque $\sum_{i=1}^{n} (X_i - \bar{X}) = 0$. Ainsi,

$$var[\hat{Y}_t] = \frac{\sigma^2}{n} + \frac{(X_t - \bar{X})^2 \sigma^2}{\sum_{t=1}^{n} (X_t - \bar{X})^2}.$$

De manière similaire, on détermine que

$$\begin{aligned} \operatorname{cov}(Y_t, \hat{Y}_t) &= \operatorname{cov}(Y_t, \bar{Y} + \hat{\beta}_1(X_t - \bar{X})) \\ &= \operatorname{cov}(Y_t, \bar{Y}) + (X_t - \bar{X})\operatorname{cov}(Y_t, \hat{\beta}_1) \\ &= \frac{\sigma^2}{n} + \frac{(X_t - \bar{X})^2 \sigma^2}{\sum_{t=1}^n (X_t - \bar{X})^2}. \end{aligned}$$

Par conséquent,

$$E[(Y_t - \hat{Y}_t)^2] = \frac{n-1}{n}\sigma^2 - \frac{(X_t - \bar{X})^2\sigma^2}{\sum_{t=1}^n (X_t - \bar{X})^2}$$

et

$$\sum_{t=1}^{n} E[(Y_t - \hat{Y}_t)^2] = (n-2)\sigma^2,$$

d'où $E[MSE] = \sigma^2$.

b) On a

$$\begin{split} E[\text{MSR}] &= E[\text{SSR}] \\ &= E\left[\sum_{t=1}^{n} (\hat{Y}_{t} - \bar{Y})^{2}\right] \\ &= \sum_{t=1}^{n} E[\hat{\beta}_{1}^{2} (X_{t} - \bar{X})^{2}] \\ &= \sum_{t=1}^{n} (X_{t} - \bar{X})^{2} E[\hat{\beta}_{1}^{2}] \\ &= \sum_{t=1}^{n} (X_{t} - \bar{X})^{2} (\text{var}[\hat{\beta}_{1}] + E[\hat{\beta}_{1}]^{2}) \\ &= \sum_{t=1}^{n} (X_{t} - \bar{X})^{2} \left(\frac{\sigma^{2}}{\sum_{t=1}^{n} (X_{t} - \bar{X})^{2}} + \beta_{1}^{2}\right) \\ &= \sigma^{2} + \beta_{1}^{2} \sum_{t=1}^{n} (X_{t} - \bar{X})^{2}. \end{split}$$

2.9 a) Il faut exprimer $\hat{\beta}'_0$ et $\hat{\beta}'_1$ en fonction de $\hat{\beta}_0$ et $\hat{\beta}_1$. Pour ce faire, on trouve d'abord une expression pour chacun des éléments qui entrent dans la définition de $\hat{\beta}'_1$. Tout d'abord,

$$\bar{X}' = \frac{1}{n} \sum_{t=1}^{n} X'_t$$
$$= \frac{1}{n} \sum_{t=1}^{n} (c + dX_t)$$
$$= c + d\bar{X}_t,$$

et, de manière similaire, $\bar{Y}' = a + b\bar{Y}$. Ensuite,

$$S'_{XX} = \sum_{t=1}^{n} (X'_t - \bar{X}')^2$$
$$= \sum_{t=1}^{n} (c + dX_t - c - d\bar{X})^2$$
$$= d^2 S_{XX}$$

et $S'_{YY} = b^2 S_{YY}$, $S'_{XY} = b d S_{XY}$. Par conséquent,

$$\hat{\beta}'_1 = \frac{S'_{XY}}{S'_{XX}}$$

$$= \frac{bdS_{XY}}{d^2S_{XX}}$$

$$= \frac{b}{d}\hat{\beta}_1$$

et

$$\begin{split} \hat{\beta}_0' &= \bar{Y}' - \hat{\beta}_1' \bar{X}' \\ &= a + b \bar{Y} - \frac{b}{d} \, \hat{\beta}_1(c + d\bar{X}) \\ &= a - \frac{bc}{d} \, \hat{\beta}_1 + b(\bar{Y} - \hat{\beta}_1 \bar{X}) \\ &= a - \frac{bc}{d} \, \hat{\beta}_1 + b \hat{\beta}_0. \end{split}$$

b) Tout d'abord, on établit que

$$\begin{split} R^2 &= \frac{\text{SSR}}{\text{SST}} \\ &= \frac{\sum_{t=1}^{n} (\hat{Y}_t - \bar{Y})^2}{\sum_{t=1}^{n} (Y_t - \bar{Y})^2} \\ &= \hat{\beta}_1^2 \frac{\sum_{t=1}^{n} (X_t - \bar{X})^2}{\sum_{t=1}^{n} (Y_t - \bar{Y})^2} \\ &= \hat{\beta}_1^2 \frac{S_{XX}}{S_{YY}}. \end{split}$$

Maintenant, avec les résultats obtenus en a), on démontre directement que

$$(R^2)' = (\hat{\beta}_1')^2 \frac{S_{XX}'}{S_{YY}'}$$

$$= \left(\frac{b}{d}\right)^2 \hat{\beta}_1^2 \frac{d^2 S_{XX}}{b^2 S_{YY}}$$

$$= \hat{\beta}_1^2 \frac{S_{XX}}{S_{YY}}$$

$$= R^2.$$

2.10 Considérons un modèle de régression usuel avec l'ensemble de données $(X_1,Y_1),\ldots,(X_n,Y_n),(m\bar{X},m\bar{Y}),$ où $\bar{X}=n^{-1}\sum_{t=1}^n X_t, \ \bar{Y}=n^{-1}\sum_{t=1}^n Y_t, \ m=n/a$ et $a=\sqrt{n+1}-1$. On définit

$$\bar{X}' = \frac{1}{n+1} \sum_{t=1}^{n+1} X_t$$

$$= \frac{1}{n+1} \sum_{t=1}^{n} X_t + \frac{m}{n+1} \bar{X}$$

$$= k\bar{X}$$

et, de manière similaire,

$$\bar{Y}' = k\bar{Y},$$

οù

$$k = \frac{n+m}{n+1}$$
$$= \frac{n(a+1)}{a(n+1)}.$$

L'expression pour l'estimateur des moindres carrés de la pente de la droite de régression pour cet ensemble de données est

$$\begin{split} \hat{\beta}_1 &= \frac{\sum_{t=1}^{n+1} X_t Y_t - (n+1) \bar{X}' \bar{Y}'}{\sum_{t=1}^{n+1} X_t^2 - (n+1) (\bar{X}')^2} \\ &= \frac{\sum_{t=1}^{n} X_t Y_t + m^2 \bar{X} \bar{Y} - (n+1) k^2 \bar{X} \bar{Y}}{\sum_{t=1}^{n} X_t^2 + m^2 \bar{X}^2 - (n+1) k^2 \bar{X}^2}. \end{split}$$

Or,

$$m^{2} - k^{2}(n+1) = \frac{n^{2}}{a^{2}} - \frac{n^{2}(a+1)^{2}}{a^{2}(n+1)}$$
$$= \frac{n^{2}(n+1) - n^{2}(n+1)}{a^{2}(n+1)}$$
$$= 0.$$

Par conséquent,

$$\hat{\beta}_{1} = \frac{\sum_{t=1}^{n} X_{t} Y_{t}}{\sum_{t=1}^{n} X_{t}^{2}}$$

$$= \hat{\beta}.$$

Interprétation : en ajoutant un point bien spécifique à n'importe quel ensemble de données, on peut s'assurer que la pente de la droite de régression sera la même que celle d'un modèle passant par l'origine. Voir la figure B.5 pour une illustration du phénomène.

2.11 Puisque, selon le modèle, $\varepsilon_t \sim N(0, \sigma^2)$ et que $Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t$, alors $Y_t \sim N(\beta_0 + \beta_1 X_t, \sigma^2)$. De plus, on sait que

$$\hat{\beta}_1 = \frac{\sum_{t=1}^n (X_t - \bar{X})(Y_t - \bar{Y})}{\sum_{t=1}^n (X_t - \bar{X})^2}$$
$$= \frac{\sum_{t=1}^n (X_t - \bar{X})Y_t}{\sum_{t=1}^n (X_t - \bar{X})^2},$$

donc l'estimateur $\hat{\beta}_1$ est une combinaison linéaire des variables aléatoires Y_1, \ldots, Y_n . Par conséquent, $\hat{\beta}_1 \sim N(E[\hat{\beta}_1], \text{var}[\hat{\beta}_1])$, où $E[\hat{\beta}_1] = \beta_1$ et $\text{var}[\hat{\beta}_1] = \sigma^2/S_{XX}$ et, donc,

$$\Pr\left[-z_{\alpha/2} < \frac{\hat{\beta}_1 - \beta_1}{\sigma / \sqrt{S_{XX}}} < z_{\alpha/2}\right] = 1 - \alpha.$$

Un intervalle de confiance de niveau $1 - \alpha$ pour le paramètre β_1 lorsque la variance σ^2 est connue est donc

$$\beta_1 \in \hat{\beta}_1 \pm z_{\alpha/2} \frac{\sigma}{\sqrt{\sum_{t=1}^n (X_t - \bar{X})^2}}.$$

2.12 L'intervalle de confiance pour β_1 est

$$\beta_1 \in \hat{\beta}_1 \pm t_{\alpha/2}(n-2)\sqrt{\frac{\hat{\sigma}^2}{S_{XX}}}$$

$$\in \hat{\beta}_1 \pm t_{0,025}(20-2)\sqrt{\frac{MSE}{S_{XX}}}.$$

Fig. B.5 – Illustration de l'effet de l'ajout d'un point spécial à un ensemble de données. À gauche, la droite de régression usuelle. À droite, le même ensemble de points avec le point spécial ajouté (cercle plein), la droite de régression avec ce nouveau point (ligne pleine) et la droite de régression passant par l'origine (ligne pointillée). Les deux droites sont parallèles.

On nous donne SST = S_{YY} = 20838 et S_{XX} = 10668. Par conséquent,

$$SSR = \hat{\beta}_1^2 \sum_{t=1}^{20} (X_t - \bar{X})^2$$

$$= (-1,104)^2 (10668)$$

$$= 13002,33$$

$$SSE = SST - SSR$$

$$= 7835,67$$

et

$$MSE = \frac{SSE}{18}$$
$$= 435,315.$$

De plus, on trouve dans une table de quantiles de la loi de Student (ou à l'aide de la fonction qt dans R) que $t_{0.025}(18) = 2,101$. L'intervalle de confiance recherché est donc

$$eta_1 \in -1,104 \pm 2,101 \sqrt{\frac{435,315}{10668}}$$

 $\in (-1,528,-0,680).$

2.13 a) On trouve aisément les estimateurs de la pente et de l'ordonnée à l'origine de la droite de régression :

$$\hat{\beta}_{1} = \frac{\sum_{t=1}^{n} X_{t} Y_{t} - n \bar{X} \bar{Y}}{\sum_{t=1}^{n} X_{t}^{2} - n \bar{X}^{2}}$$

$$= 1,436$$

$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1} \bar{X}$$

$$= 9,273.$$

b) Les sommes de carrés sont

$$SST = \sum_{t=1}^{n} Y_t^2 - n\bar{Y}^2$$

$$= 1194 - 11(9,273)^2$$

$$= 248,18$$

$$SSR = \hat{\beta}_1^2 \left(\sum_{t=1}^{n} X_t^2 - n\bar{X}^2 \right)$$

$$= (1,436)^2 (110 - 11(0))$$

$$= 226,95$$

et SSE = SST - SSR = 21,23. Le tableau d'analyse de variance est donc le suivant :

Source	SS	d.l.	MS	Ratio F
Régression Erreur	226,95 21,23	1 9	226,95 2,36	96,21
Total	248,18	10		

Or, puisque $t = \sqrt{F} = 9,809 > t_{\alpha/2}(n-2) = t_{0,025}(9) = 2,26$, on rejette l'hypothèse H_0 : $\beta_1 = 0$ soit, autrement dit, la pente est significativement différente de zéro.

c) Puisque la variance σ^2 est inconnue, on l'estime par $s^2 = MSE = 2,36$. On a alors

$$\beta_1 \in \hat{\beta}_1 \pm t_{\alpha/2}(n-2)\sqrt{\widehat{\operatorname{Var}}[\hat{\beta}_1]}$$
 $\in 1,436 \pm 2,26\sqrt{\frac{2,36}{110}}$
 $\in (1,105,1,768).$

- d) Le coefficient de détermination de la régression est $R^2 = SSR/SST = 226,95/248,18 = 0,914$, ce qui indique que l'ajustement du modèle aux données est très bon. En outre, suite au test effectué à la partie b), on conclut que la régression est globalement significative. Toutes ces informations portent à conclure qu'il n'y a pas lieu d'utiliser un autre modèle.
- **2.14** On doit déterminer si la régression est significative, ce qui peut se faire à l'aide de la statistique *F*. Or, à partir de l'information donnée dans l'énoncé, on peut calculer

$$\hat{\beta}_{1} = \frac{\sum_{t=1}^{50} X_{t} Y_{t} - 50 \bar{X} \bar{Y}}{\sum_{t=1}^{50} X_{t}^{2} - 50 \bar{X})^{2}}$$

$$= -0.0110$$

$$SST = \sum_{t=1}^{50} Y_{t}^{2} - 50 \bar{Y}^{2}$$

$$= 78.4098$$

$$SSR = \hat{\beta}_{1}^{2} \sum_{t=1}^{50} (X_{t} - \bar{X})^{2}$$

$$= 1.1804$$

$$SSE = SST - SSR$$

$$= 77.2294$$

d'où

$$MSR = 1,1804$$

$$MSE = \frac{SSE}{50 - 2}$$

$$= 1,6089$$

et, enfin,

$$F = \frac{MSR}{MSE}$$
$$= 0.7337$$

Soit F une variable aléatoire ayant une distribution de Fisher avec 1 et 48 degrés de liberté, soit la même distribution que la statistique F sous l'hypothèse $H_0: \beta_1=0$. On a que $\Pr[F>0,7337]=0,3959$, donc la valeur p du test $H_0: \beta_1=0$ est 0,3959. Une telle valeur p est généralement considérée trop élevée pour rejeter l'hypothèse H_0 . On ne peut donc considérer la relation entre la ligne de vie et l'espérance de vie comme significative. (Ou on ne la considère significative qu'avec un niveau de confiance de 1-p=60,41 %.)

2.15 Premièrement, selon le modèle de régression passant par l'origine, $Y_0 = \beta X_0 + \varepsilon_0$ et $\hat{Y}_0 = \hat{\beta} X_0$. Considérons, pour la suite, la variable aléatoire $Y_0 - \hat{Y}_0$. On voit facilement que $E[\hat{\beta}] = \beta$, d'où $E[Y_0 - \hat{Y}_0] = E[\beta X_0 + \varepsilon_0 - \hat{\beta} X_0] = \beta X_0 - \beta X_0 = 0$ et

$$var[Y_0 - \hat{Y}_0] = var[Y_0] + var[\hat{Y}_0] - 2cov(Y_0, \hat{Y}_0).$$

Or, $cov(Y_0, \hat{Y}_0) = 0$ par l'hypothèse ii) de l'énoncé, $var[Y_0] = \sigma^2$ et $var[\hat{Y}_0] = X_0^2 var[\hat{\beta}]$. De plus,

$$\operatorname{var}[\hat{\beta}] = \frac{1}{(\sum_{t=1}^{n} X_t^2)^2} \sum_{t=1}^{n} X_t^2 \operatorname{var}[Y_t]$$
$$= \frac{\sigma^2}{\sum_{t=1}^{n} X_t^2}$$

d'où, finalement,

$$var[Y_0 - \hat{Y}_0] = \sigma^2 \left(1 + \frac{X_0^2}{\sum_{t=1}^n X_t^2} \right).$$

Par l'hypothèse de normalité et puisque $\hat{\beta}$ est une combinaison linéaire de variables aléatoires normales,

$$Y_0 - \hat{Y}_0 \sim N\left(0, \sigma^2\left(1 + \frac{X_0^2}{\sum_{t=1}^n X_t^2}\right)\right)$$

ou, de manière équivalente,

$$\frac{Y_0 - \hat{Y}_0}{\sigma \sqrt{1 + X_0^2 / \sum_{t=1}^n X_t^2}} \sim N(0, 1).$$

Lorsque la variance σ^2 est estimée par s^2 , alors

$$\frac{Y_0 - \hat{Y}_0}{s\sqrt{1 + X_0^2 / \sum_{t=1}^n X_t^2}} \sim t(n-1).$$

La loi de Student a n-1 degrés de liberté puisque le modèle passant par l'origine ne compte qu'un seul paramètre. Les bornes de l'intervalle de confiance pour la vraie valeur de Y_0 sont donc

$$\hat{Y}_0 \pm t_{\alpha/2}(n-1) s \sqrt{1 + \frac{X_0^2}{\sum_{t=1}^n X_t^2}}.$$

2.16 a) Soit X_1, \ldots, X_{10} les valeurs de la masse monétaire et Y_1, \ldots, Y_{10} celles du PNB. On a $\bar{X}=3,72,\ \bar{Y}=7,55,\ \sum_{t=1}^{10}X_t^2=147,18,\ \sum_{t=1}^{10}Y_t^2=597,03$ et $\sum_{t=1}^{10}X_tY_t=295,95$. Par conséquent,

$$\hat{\beta}_1 = \frac{\sum_{t=1}^{10} X_t Y_t - 10\bar{X}\bar{Y}}{\sum_{t=1}^{10} X_t^2 - 10\bar{X}^2}$$
$$= 1,716$$

et

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{X}$$
$$= 1.168.$$

On a donc la relation linéaire PNB = 1,168 + 1,716 MM.

b) Tout d'abord, on doit calculer l'estimateur s^2 de la variance car cette quantité entre dans le calcul des intervalles de confiance demandés. Pour les calculs à la main, on peut éviter de calculer les valeurs de $\hat{Y}_1, \ldots, \hat{Y}_{10}$ en procédant ainsi :

$$SST = \sum_{t=1}^{10} Y_t^2 - 10\bar{Y}^2$$

$$= 27,005$$

$$SSR = \hat{\beta}_1^2 \left(\sum_{t=1}^{10} X_t^2 - 10\bar{X}^2 \right)$$

$$= 25,901,$$

puis SSE = SST - SSR = 1,104 et $s^2 = MSE = SSE/(10-2) = 0,1380$. On peut maintenant construire les intervalles de confiance :

$$\beta_{0} \in \hat{\beta}_{0} \pm t_{\alpha/2}(n-2) s \sqrt{\frac{1}{n} + \frac{\bar{X}^{2}}{S_{XX}}}$$

$$\in 1,168 \pm (2,306)(0,3715) \sqrt{\frac{1}{10} + \frac{3,72^{2}}{8,796}}$$

$$\in (0,060,2,276)$$

$$\beta_{1} \in \hat{\beta}_{1} \pm t_{\alpha/2}(n-2) s \sqrt{\frac{1}{S_{XX}}}$$

$$\in 1,716 \pm (2,306)(0,3715) \sqrt{\frac{1}{8,796}}$$

$$\in (1,427,2,005).$$

Puisque l'intervalle de confiance pour la pente β_1 ne contient ni la valeur 0, ni la valeur 1, on peut rejeter, avec un niveau de confiance de 95 %, les hypothèses $H_0: \beta_1 = 0$ et $H_0: \beta_1 = 1$.

c) Par l'équation obtenue en a) liant le PNB à la masse monétaire (MM), un PNB de 12,0 correspond à une masse monétaire de

$$MM = \frac{12,0 - 1,168}{1,716}$$
$$= 6.31.$$

d) On cherche un intervalle de confiance pour la droite de régression en $MM_{1997}=6,31$ ainsi qu'un intervalle de confiance pour la prévision PNB = 12,0 associée à cette même valeur de la masse monétaire. Avec une probabilité de $\alpha=95$ %, le PNB moyen se trouve dans l'intervalle

$$12,0 \pm t_{\alpha/2}(n-2) s \sqrt{\frac{1}{n} + \frac{(6,31 - \bar{X})^2}{S_{XX}}} = (11,20,12,80),$$

alors que la vraie valeur du PNB se trouve dans l'intervalle

$$12.0 \pm t_{\alpha/2}(n-2) \, s \, \sqrt{1 + \frac{1}{n} + \frac{(6.31 - \bar{X})^2}{S_{XX}}} = (10.83.13.17).$$

```
par(mfrow = c(2, 2))
plot(medv ~ rm + age + lstat + tax, data = house, ask = FALSE)
```


Fig. B.6 - Relation entre la variable medv et les variables rm, age, 1stat et tax des données house.dat

2.17 a) Les données du fichier house.dat sont importées dans R avec la commande

```
house <- read.table("data/house.dat", header = TRUE)</pre>
```

La figure B.6 contient les graphiques de medv en fonction de chacune des variables rm, age, 1stat et tax. Le meilleur choix de variable explicative pour le prix médian semble être le nombre moyen de pièces par immeuble, rm.

b) Les résultats ci-dessous ont été obtenus avec R.

```
fit1 <- lm (medv ~ rm, data = house)</pre>
summary(fit1)
##
## Call:
## lm(formula = medv ~ rm, data = house)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.346 -2.547 0.090 2.986 39.433
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -34.671 2.650 -13.08 <2e-16 ***
       9.102
## rm
                         0.419 21.72 <2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.616 on 504 degrees of freedom
## Multiple R-squared: 0.4835, Adjusted R-squared: 0.4825
## F-statistic: 471.8 on 1 and 504 DF, p-value: < 2.2e-16
```

On peut voir que tant l'ordonnée à l'origine que la pente sont très significativement différentes de zéro. La régression est donc elle-même significative. Cependant, le coefficient de détermination n'est que de $R^2 = 0.4835$, ce qui indique que d'autres facteurs pourraient expliquer la variation dans medv.

On calcule les bornes de l'intervalle de confiance de la régression avec la fonction predict :

```
pred.ci <- predict(fit1, interval = "confidence", level = 0.95)</pre>
```

La droite de régression et ses bornes d'intervalle de confiance inférieure et supérieure sont illustrée à la figure B.7.

c) On reprend la même démarche, mais cette fois avec la variable age :

```
fit2 <- lm(medv ~ age, data = house)</pre>
summary(fit2)
##
## Call:
## lm(formula = medv ~ age, data = house)
##
## Residuals:
## Min 1Q Median 3Q
                                  Max
## -15.097 -5.138 -1.958 2.397 31.338
##
## Coefficients:
##
    Estimate Std. Error t value Pr(>|t|)
## (Intercept) 30.97868 0.99911 31.006 <2e-16 ***
## age -0.12316 0.01348 -9.137 <2e-16 ***
## ---
```


Fig. B.7 – Résultat de la régression de la variable rm sur la variable medv des données house.dat

```
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.527 on 504 degrees of freedom
## Multiple R-squared: 0.1421, Adjusted R-squared: 0.1404
## F-statistic: 83.48 on 1 and 504 DF, p-value: < 2.2e-16
pred.ci <- predict(fit2, interval = "confidence", level = 0.95)</pre>
```

La régression est encore une fois très significative. Cependant, le R^2 est encore plus faible qu'avec la variable rm. Les variables rm et age contribuent donc chacune à expliquer les variations de la variable medv (et rm mieux que age), mais aucune ne sait le faire seule de manière satisfaisante. La droite de régression et l'intervalle de confiance de celle-ci sont reproduits à la figure B.8. On constate que l'intervalle de confiance est plus large qu'en b).

2.18 a) On importe les données dans R, puis on effectue les conversions demandées. La variable consommation contient la consommation des voitures en $\ell/100$ km et la variable poids le poids en kilogrammes.

```
carburant <- read.table("carburant.dat", header = TRUE)
consommation <- 235.1954/carburant$mpg
poids <- carburant$poids * 0.45455 * 1000</pre>
```

b) La fonction summary fournit l'information essentielle pour juger de la validité et de la qualité du modèle :

```
fit <- lm(consommation ~ poids)</pre>
summary(fit)
##
## Call:
## lm(formula = consommation ~ poids)
##
## Residuals:
## Min 10 Median 30
                                        Max
## -2.07123 -0.68380 0.01488 0.44802 2.66234
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0146530 0.7118445 -0.021 0.984
## poids 0.0078382 0.0005315 14.748 <2e-16 ***
## ---
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.039 on 36 degrees of freedom
## Multiple R-squared: 0.858, Adjusted R-squared: 0.854
## F-statistic: 217.5 on 1 and 36 DF, p-value: < 2.2e-16
```

Le modèle est donc le suivant : $Y_t = -0.01465 + 0.007838X_t + \varepsilon_t$, $\varepsilon_t \sim N(0.1.039^2)$, où Y_t est la consommation en litres aux 100 kilomètres et X_t le poids en kilogrammes. La faible valeur p du test F indique une régression très significative. De plus, le R^2 de 0,858 confirme que l'ajustement du modèle est assez bon.

Fig. B.8 – Résultat de la régression de la variable age sur la variable medv des données house. dat

c) On veut calculer un intervalle de confiance pour la consommation en carburant prévue d'une voiture de 1 350 kg. On obtient, avec la fonction predict :

```
predict(fit, newdata = data.frame(poids = 1350), interval = "prediction")
## fit lwr upr
## 1 10.5669 8.432089 12.7017
```

2.19 a) On a

$$\bar{Y} = \frac{\sum_{i=1}^{500} Y_i}{500} = \frac{300\bar{Y}_F + 200\bar{Y}_H}{500}.$$

Aussi,

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{\sum_{i=1}^{500} x_i Y_i - 500\bar{x}\bar{Y}}{\sum_{i=1}^{500} x_i^2 - 500\bar{x}^2}.$$

Or,

$$\bar{x} = \frac{\sum_{i=1}^{500} x_i}{500} = \frac{300}{500},$$

$$\sum_{i=1}^{500} x_i^2 = 300,$$

$$\sum_{i=1}^{500} x_i Y_i = 300\bar{Y}_F$$

Donc,

$$\begin{split} \hat{\beta}_1 &= \frac{300\bar{Y}_F - 500 \times \frac{300}{500} \times \frac{300\bar{Y}_F + 200\bar{Y}_H}{500}}{300 - 500\left(\frac{300}{500}\right)^2} \\ &= \frac{500\bar{Y}_F - 300\bar{Y}_F - 200\bar{Y}_H}{500 - 300} \\ &= \bar{Y}_F - \bar{Y}_H. \end{split}$$

b) Oui, le coefficient relié à la variable indicatrice qui vaut 1 si le sexe est F représente la différence etre la moyenne de l'espérance de vie pour les femmes et la moyenne de l'espérace de vie pour les hommes.

c)

$$\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x} = \bar{Y} - (\bar{Y}_F - \bar{Y}_H) \frac{300}{500} = \bar{Y}_H.$$

 \Rightarrow \hat{eta}_0 est la moyenne de l'espérance de vie pour les hommes.

2.20 a)

$$\begin{aligned} \mathbb{C}\text{ov}(Y_i, \hat{Y}_j) &= \mathbb{C}\text{ov}(Y_i, \hat{\beta}_0 + \hat{\beta}_1 x_j) \\ &= \mathbb{C}\text{ov}(Y_i, \bar{Y} - \hat{\beta}_1 \bar{x} + \hat{\beta}_1 x_j) \\ &= \mathbb{C}\text{ov}(Y_i, \bar{Y}) + (x_j - \bar{x})\mathbb{C}\text{ov}(Y_i, \hat{\beta}_1) \text{ par indépendance des observations} \\ &= \frac{\sigma^2}{n} + \frac{(x_j - \bar{x})}{S_{xx}} \sum_{l=1}^n (x_l - \bar{x})\mathbb{C}\text{ov}(Y_i, Y_l) \\ &= \frac{\sigma^2}{n} + \frac{(x_j - \bar{x})(x_i - \bar{x})}{S_{xx}} \sigma^2 \text{ par indépendance des observations.} \end{aligned}$$

b)

$$\begin{split} \mathbb{C}\mathrm{ov}(\hat{Y}_i, \hat{Y}_j) &= \mathbb{C}\mathrm{ov}(\hat{\beta}_0 + \hat{\beta}_1 x_i, \hat{\beta}_0 + \hat{\beta}_1 x_j) \\ &= \mathrm{var}[(]\hat{\beta}_0) + (x_i + x_j) \mathbb{C}\mathrm{ov}(\hat{\beta}_0, \hat{\beta}_1) + x_i x_j \mathrm{var}[(]\hat{\beta}_1) \\ &= \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}}\right) - (x_i + x_j) \frac{\bar{x}\sigma^2}{S_{xx}} + x_i x_j \frac{\sigma^2}{S_{xx}} \\ &= \dots \\ &= \sigma^2 \left(\frac{1}{n} + \frac{(x_j - \bar{x})(x_i - \bar{x})}{S_{xx}}\right). \end{split}$$

c)

$$\begin{split} \operatorname{Cov}(\hat{\varepsilon}_i, \hat{\varepsilon}_j) &= \operatorname{Cov}(Y_i - \hat{Y}_i, Y_j - \hat{Y}_j) \\ &= \operatorname{Cov}(Y_i, Y_j) - \operatorname{Cov}(Y_i, \hat{Y}_j) - \operatorname{Cov}(\hat{Y}_i, Y_j) + \operatorname{Cov}(\hat{Y}_i, \hat{Y}_j) \\ &= 0 - 2\sigma^2 \left(\frac{1}{n} + \frac{(x_j - \bar{x})(x_i - \bar{x})}{S_{xx}} \right) + \left(\frac{1}{n} + \frac{(x_j - \bar{x})(x_i - \bar{x})}{S_{xx}} \right) \\ &= -\sigma^2 \left(\frac{1}{n} + \frac{(x_i - \bar{x})(x_j - \bar{x})}{S_{xx}} \right). \end{split}$$

- **2.21** Utiliser l'approximation de Taylor de premier ordre pour montrer que la variance de g(Y) = 1/Y est approximativement constante.
- **2.22** a) Figure B.9 shows a scatter plot of the number of bacteria versus the minutes of exposure. The plot shows a straight line would be a reasonable model, but an even better model would capture the curvature. In fact, the plot shows that when the canned food is exposed to 300° F for a long time, there is ultimately no bacteria left. This suggests a model that would capture the asymptotic behavior of the number of bacteria when the number of minutes of exposure increases. A linear model would continue to drive down the number of bacteria, eventually leading to negative values, which is nonsensical in this context.
 - b) A simple linear model is fitted to the data using R. Here is a summary of the model:

Fig. B.9 – Scatter Plot of the Number of Bacteria versus the Minutes of Exposure to 300° F

```
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.3 on 10 degrees of freedom
## Multiple R-squared: 0.8693, Adjusted R-squared: 0.8562
## F-statistic: 66.51 on 1 and 10 DF, p-value: 9.944e-06
```

The fitted model is

$$\hat{y} = 142.20 - 12.48x,$$

where the parameters of the model are estimated by the best linear unbiased estimators. The ANOVA table is obtained using R :

Fig. B.10 – Q-Q Plot for Simple Linear Model in Problem 5 b)

In order to test for the significance of regression, we use the F-statistic. The F-statistic is 66.512, and it has 1 and 10 degrees of freedom, so the *p*-value is

$$P[F_{(1,10)} > 66.512] = 9.944 \times 10^{-6}$$
.

Since the *p*-value is much smaller than 1%, there is enough evidence to reject the null hypothesis that $\beta_1 = 0$ at the 1% level. The simple linear model is significant.

The value of R^2 is 86.93%. This is a high coefficient of correlation, it means that about 87% of the variation in the number of bacteria in the canned food is explained by the minutes of exposure to 300°F. The model seems to perform well.

The Q-Q Plot of the studentized residuals is shown in Figure ??. The line represents when the empirical quantiles are exactly equal to the standard normal quantiles. The normality assumption is seriously violated as the dots are clearly not on a straight line. This means there are serious flaws in the model, including the fact that the hypothesis tests are not reliable.

Figure B.11 shows a plot of the studentized residuals versus the fitted values. The plot suggests a clear curve, which is usually an indicator of non-linearity. This is in line with the previous comments.

Finally, this model is inadequate and transformations on the response variables are required.

Fig. B.11 – Residuals versus the Fitted Values for Simple Linear Model in Problem 5 b)

c) The Box-Cox method is used to determine which transformation is optimal. Figure B.12 shows the plot of the log-likelihood function in terms of λ , for two different ranges of λ . It was obtained with the R commands :

```
boxCox(bact~min, lambda = seq(-2, 2, len = 20), plotit = TRUE)
boxCox(bact~min, lambda = seq(-0.2, 0.5, len = 20), plotit = TRUE)
```

Note that the maximum is around 0.1 and 0 is included in the 95% confidence interval for λ . Therefore, it is preferable to use 0 as this is a common transformation, it represents the logarithm transformation. Let $y^* = \ln(y)$. A simple linear model is fitted to the transformed data. The output is the following :

Fig. B.12 – Log-likelihood versus λ in the Box-Cox method for Problem 5 c)

The fitted model is

$$\hat{y}^* = 5.33878 - 0.23617x,$$

where the parameters of the model are estimated by the best linear unbiased estimators. Figure B.13 is a scatter plot of the transformed response variable versus the covariate, along with the fitted line. The scatter plot looks much more linear now than in (a). The ANOVA table is obtained using R :

Fig. B.13 – Scatter Plot of the Logarithm of the Number of Bacteria versus the Minutes of Exposure to 300° F

```
## Signif. codes:
## 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

The F-statistic for the test of significance of regression is 550.33, and it has 1 and 10 degrees of freedom, so the *p*-value is

$$P[F_{(1,10)} > 550.33] = 4.489 \times 10^{-10}.$$

Since the *p*-value is much smaller than 1%, there is enough evidence to reject the null hypothesis that $\beta_1 = 0$ at the 1% level. This model is significant.

The value of R^2 is very high at 98.22%. This means that about 98% of the variation in the log of the number of bacteria in the canned food is explained by the minutes of exposure to 300°F. The model seems to perform very well, better than the model proposed in (b).

The Q-Q Plot of the studentized residuals is shown in Figure B.14. The dots are beautifully aligned with the standard normal quantiles. The normality assumption is appropriate. Figure B.15 shows a plot of the studentized residuals versus the fitted values. The dots can be contained in horizontal bands and looks randomly scattered.

Finally, this model is adequate and the transformation used on the response variables fixed the problems in the model.

Normal Q-Q Plot

Fig. B.14 – Q-Q Plot of Model for the Logarithm of the Number of Bacteria in Problem 5 c)

Chapitre 3

3.1 Tout d'abord, selon le théorème ?? de l'annexe ??,

$$\frac{d}{d\mathbf{x}}f(\mathbf{x})'\mathbf{A}f(\mathbf{x}) = 2\left(\frac{d}{d\mathbf{x}}f(\mathbf{x})\right)'\mathbf{A}f(\mathbf{x}).$$

Il suffit, pour faire la démonstration, d'appliquer directement ce résultat à la forme quadratique

$$S(\beta) = (\mathbf{y} - \mathbf{X}\beta)'(\mathbf{y} - \mathbf{X}\beta)$$

avec $f(\beta) = \mathbf{y} - \mathbf{X}\boldsymbol{\beta}$ et $\mathbf{A} = \mathbf{I}$, la matrice identité. On a alors

$$\frac{d}{d\beta}S(\beta) = 2\left(\frac{d}{d\beta}(\mathbf{y} - \mathbf{X}\beta)\right)'\mathbf{y} - \mathbf{X}\beta$$
$$= 2(-\mathbf{X})'(\mathbf{y} - \mathbf{X}\beta)$$
$$= -2\mathbf{X}'(\mathbf{y} - \mathbf{X}\beta).$$

En posant ces dérivées exprimées sous forme matricielle simultanément égales à zéro, on obtient les équations normales à résoudre pour calculer l'estimateur des moindres carrés du vecteur β , soit

$$X'X\hat{\beta} = X'y$$
.

Fig. B.15 – Residuals versus the Fitted Values for Model for the Logarithm of the Number of Bacteria in Problem 5 c)

En isolant $\hat{\beta}$ dans l'équation ci-dessus, on obtient, finalement, l'estimateur des moindres carrés :

$$\boldsymbol{\hat{\beta}} = (\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}'\boldsymbol{y}.$$

3.2 a) On a un modèle sans variable explicative. Intuitivement, la meilleure prévision de Y_t sera alors \bar{Y} . En effet, pour ce modèle,

$$\mathbf{X} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}_{n \times 1}$$

et

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$= \begin{pmatrix} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}$$

$$= n^{-1} \sum_{t=1}^{n} Y_t$$

$$= \bar{Y}$$

b) Il s'agit du modèle de régression linéaire simple passant par l'origine, pour lequel la matrice de schéma est

$$\mathbf{X} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}_{n \times 1}$$
.

Par conséquent,

$$\hat{\boldsymbol{\beta}} = \begin{pmatrix} \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix} \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix} \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}$$

$$= \begin{pmatrix} \sum_{t=1}^n X_t^2 \end{pmatrix}^{-1} \sum_{t=1}^n X_t Y_t$$

$$= \frac{\sum_{t=1}^n X_t Y_t}{\sum_{t=1}^n X_t^2},$$

tel qu'obtenu à l'exercice 2.6.

c) On est ici en présence d'un modèle de régression multiple ne passant pas par l'origine et ayant deux variables explicatives. La matrice de schéma est alors

$$\mathbf{X} = \begin{bmatrix} 1 & X_{11} & X_{12} \\ \vdots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} \end{bmatrix}_{n \times 3}.$$

Par conséquent,

$$\hat{\beta} = \begin{pmatrix} \begin{bmatrix} 1 & \cdots & 1 \\ X_{11} & \cdots & X_{n1} \\ X_{12} & \cdots & X_{n2} \end{bmatrix} \begin{bmatrix} 1 & X_{11} & X_{12} \\ \vdots & \vdots & \vdots \\ 1 & X_{n1} & X_{n2} \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 1 & \cdots & 1 \\ X_{11} & \cdots & X_{n1} \\ X_{12} & \cdots & X_{n2} \end{bmatrix} \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}$$

$$= \begin{bmatrix} n & n\bar{X}_1 & n\bar{X}_2 \\ n\bar{X}_1 & \sum_{t=1}^n X_{t1}^2 & \sum_{t=1}^n X_{t1} X_{t2} \\ n\bar{X}_2 & \sum_{t=1}^n X_{t1} X_{t2} & \sum_{t=1}^n X_{t2}^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum_{t=1}^n Y_t \\ \sum_{t=1}^n X_{t1} Y_t \\ \sum_{t=1}^n X_{t2} Y_t \end{bmatrix}.$$

L'inversion de la première matrice et le produit par la seconde sont laissés aux bons soins du lecteur plus patient que les rédacteurs de ces solutions.

3.3 Dans le modèle de régression linéaire simple, la matrice schéma est

$$\mathbf{X} = \begin{bmatrix} 1 & X_1 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}.$$

Par conséquent,

$$\operatorname{var}[\hat{\boldsymbol{\beta}}] = \sigma^{2}(\boldsymbol{X}'\boldsymbol{X})^{-1}$$

$$= \sigma^{2} \left(\begin{bmatrix} 1 & \cdots & 1 \\ X_{1} & \cdots & X_{n} \end{bmatrix} \begin{bmatrix} 1 & X_{1} \\ \vdots & \vdots \\ 1 & X_{n} \end{bmatrix} \right)^{-1}$$

$$= \sigma^{2} \begin{bmatrix} n & n\bar{X} \\ n\bar{X} & \sum_{t=1}^{n} X_{t}^{2} \end{bmatrix}^{-1}$$

$$= \frac{\sigma^{2}}{n\sum_{t=1}^{n} X_{t}^{2} - n^{2}\bar{X}^{2}} \begin{bmatrix} \sum_{t=1}^{n} X_{t}^{2} & -n\bar{X} \\ -n\bar{X} & n \end{bmatrix}$$

$$= \frac{\sigma^{2}}{\sum_{t=1}^{n} (X_{t} - \bar{X}^{2})} \begin{bmatrix} n^{-1} \sum_{t=1}^{n} X_{t}^{2} & -\bar{X} \\ -\bar{X} & 1 \end{bmatrix},$$

d'où

$$\operatorname{var}[\hat{\beta}_{0}] = \sigma^{2} \frac{\sum_{t=1}^{n} X_{t}^{2}}{n \sum_{t=1}^{n} (X_{t} - \bar{X})^{2}}$$
$$= \sigma^{2} \frac{\sum_{t=1}^{n} (X_{t} - \bar{X}^{2}) + n \bar{X}^{2}}{n \sum_{t=1}^{n} (X_{t} - \bar{X})^{2}}$$

et

$$\operatorname{var}[\hat{\beta}_1] = \frac{\sigma^2}{\sum_{t=1}^n (X_t - \bar{X})^2}.$$

Ceci correspond aux résultats antérieurs.

- **3.4** Dans les démonstrations qui suivent, trois relations de base seront utilisées : $\mathbf{e} = \mathbf{y} \hat{\mathbf{y}}$, $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ et $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$.
 - a) On a

$$X'e = X'(y - \hat{y})$$

$$= X'(y - X\hat{\beta})$$

$$= X'y - (X'X)\hat{\beta}$$

$$= X'y - (X'X)(X'X)^{-1}X'y$$

$$= X'y - X'y$$

$$= 0.$$

En régression linéaire simple, cela donne

$$\mathbf{X}'\mathbf{e} = \begin{bmatrix} 1 & \cdots & 1 \\ X_1 & \cdots & X_n \end{bmatrix} \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix}$$
$$= \begin{bmatrix} \sum_{t=1}^n e_t \\ \sum_{t=1}^n X_t e_t \end{bmatrix}.$$

Par conséquent, $\mathbf{X}'\mathbf{e} = \mathbf{0}$ se simplifie en $\sum_{t=1}^{n} e_t = 0$ et $\sum_{t=1}^{n} X_t e_t = 0$ soit, respectivement, la condition pour que l'estimateur des moindres carrés soit sans biais et la seconde équation normale obtenue à la partie b) de l'exercice 2.1.

b) On a

$$\begin{split} \hat{\mathbf{y}}' \mathbf{e} &= (\mathbf{X}\hat{\boldsymbol{\beta}})'(\mathbf{y} - \hat{\mathbf{y}}) \\ &= \hat{\boldsymbol{\beta}}' \mathbf{X}'(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}) \\ &= \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} - \hat{\boldsymbol{\beta}}'(\mathbf{X}' \mathbf{X}) \hat{\boldsymbol{\beta}} \\ &= \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} - \hat{\boldsymbol{\beta}}'(\mathbf{X}' \mathbf{X}) (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \mathbf{y} \\ &= \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} - \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} \\ &= 0. \end{split}$$

Pour tout modèle de régression cette équation peut aussi s'écrire sous la forme plus conventionnelle $\sum_{t=1}^n \hat{Y}_t e_t = 0$. Cela signifie que le produit scalaire entre le vecteur des prévisions et celui des erreurs doit être nul ou, autrement dit, que les vecteurs doivent être orthogonaux. C'est là une condition essentielle pour que l'erreur quadratique moyenne entre les vecteurs \mathbf{y} et $\hat{\mathbf{y}}$ soit minimale. (Pour de plus amples détails sur l'interprétation géométrique du modèle de régression, consulter ?, chapitres 20 et 21].) D'ailleurs, on constate que $\hat{\mathbf{y}}'\mathbf{e} = \hat{\boldsymbol{\beta}}'X'\mathbf{e}$ et donc, en supposant sans perte de généralité que $\hat{\boldsymbol{\beta}} \neq \mathbf{0}$, que $\hat{\mathbf{y}}'\mathbf{e} = \mathbf{0}$ sont des conditions en tous points équivalentes.

c) On a

$$\begin{split} \mathbf{\hat{y}}'\mathbf{\hat{y}} &= (\mathbf{X}\mathbf{\hat{\beta}})'\mathbf{X}\mathbf{\hat{\beta}} \\ &= \mathbf{\hat{\beta}}'(\mathbf{X}'\mathbf{X})\mathbf{\hat{\beta}} \\ &= \mathbf{\hat{\beta}}'(\mathbf{X}'\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} \\ &= \mathbf{\hat{\beta}}'\mathbf{X}'\mathbf{y}. \end{split}$$

Cette équation est l'équivalent matriciel de l'identité

$$SSR = \hat{\beta}_1^2 \sum_{t=1}^n (X_t - \bar{X})^2$$
$$= \frac{S_{XY}^2}{S_{XX}}$$

utilisée à plusieurs reprises dans les solutions du chapitre 2. En effet, en régression linéaire simple, $\hat{\mathbf{y}}^t\hat{\mathbf{y}} = \sum_{t=1}^n \hat{Y}_t^2 = \sum_{t=1}^n (\hat{Y} - \bar{Y})^2 + n\bar{Y}^2 = \mathrm{SSR} + n\bar{Y}^2$ et

$$\hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{y} = \hat{\beta}_0 n \bar{Y} + \hat{\beta}_1 \sum_{t=1}^n X_t Y_t$$

$$= (\bar{Y} - \hat{\beta}_1 \bar{X}) n \bar{Y} + \hat{\beta}_1 \sum_{t=1}^n X_t Y_t$$

$$= \hat{\beta}_1 \sum_{t=1}^n (X_t - \bar{X}) (Y_t - \bar{Y}) + n \bar{Y}^2$$

$$= \frac{S_{XY}^2}{S_{XX}} + n \bar{Y}^2,$$

d'où SSR = S_{XY}^2/S_{XX} .

3.5 a) Premièrement, $Y_0 = \mathbf{x}_0 \boldsymbol{\beta} + \varepsilon_0$ avec $E[\varepsilon_0] = 0$. Par conséquent, $E[Y_0] = E[x_0 \boldsymbol{\beta} + \varepsilon_0] = \mathbf{x}_0 \boldsymbol{\beta}$. Deuxièmement, $E[\hat{Y}_0] = E[\mathbf{x}_0 \hat{\boldsymbol{\beta}}] = \mathbf{x}_0 E[\hat{\boldsymbol{\beta}}] = x_0 \boldsymbol{\beta}$ puisque l'estimateur des moindres carrés de $\boldsymbol{\beta}$ est sans biais. Ceci complète la preuve.

b) Tout d'abord, $E[(\hat{Y}_0 - E[Y_0])^2] = \mathbf{V}[\hat{Y}_0] = \text{var}[\hat{Y}_0]$ puisque la matrice de variance-covariance du vecteur aléatoire \hat{Y}_0 ne contient, ici, qu'une seule valeur. Or, par le théorème ??,

$$var[\hat{Y}_0] = \mathbf{V}[\mathbf{x}_0\hat{\boldsymbol{\beta}}]$$

$$= \mathbf{x}_0 \mathbf{V}[\hat{\boldsymbol{\beta}}] \mathbf{x}'_0$$

$$= \sigma^2 \mathbf{x}_0 (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}'_0.$$

Afin de construire un intervalle de confiance pour $E[Y_0]$, on ajoute au modèle l'hypothèse $\varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$. Par linéarité de l'estimateur des moindres carrés, on a alors $\hat{Y}_0 \sim N(E[Y_0], \text{var}[\hat{Y}_0])$. Par conséquent,

$$\Pr\left[-z_{\alpha/2} \le \frac{\hat{Y} - E[\hat{Y}_0]}{\sqrt{\operatorname{var}[\hat{Y}_0]}} \le z_{\alpha/2}\right] = 1 - \alpha$$

d'où un intervalle de confiance de niveau $1 - \alpha$ pour $E[Y_0]$ est

$$E[Y_0] \in \hat{Y}_0 \pm z_{\alpha/2} \sigma \sqrt{\mathbf{x}_0(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_0'}.$$

Si la variance σ^2 est inconnue et estimée par s^2 , alors la distribution normale est remplacée par une distribution de Student avec n-p-1 degrés de liberté. L'intervalle de confiance devient alors

$$E[Y_0] \in \hat{Y}_0 \pm t_{\alpha/2}(n-p-1)s\sqrt{\mathbf{x}_0(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_0'}$$

c) Par le résultat obtenu en a) et en supposant que $cov(\varepsilon_0, \varepsilon_t) = 0$ pour tout t = 1, ..., n, on a

$$E[(Y_0 - \hat{Y}_0)^2] = var[Y_0 - \hat{Y}_0]$$

$$= var[Y_0] + var[\hat{Y}_0]$$

$$= \sigma^2 (1 + \mathbf{x}_0 (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}'_0).$$

Ainsi, avec l'hypothèse sur le terme d'erreur énoncée en b), $Y_0 - \hat{Y}_0 \sim N(0, \text{var}[Y_0 - \hat{Y}_0])$. En suivant le même cheminement qu'en b), on détermine qu'un intervalle de confiance de niveau $1 - \alpha$ pour Y_0 est

$$Y_0 \in \hat{Y}_0 \pm z_{\alpha/2} \sigma \sqrt{1 + \mathbf{x}_0 (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}'_0}.$$

ou, si la variance σ^2 est inconnue et estimée par s^2 ,

$$Y_0 \in \hat{Y}_0 \pm t_{\alpha/2}(n-p-1) s \sqrt{1 + \mathbf{x}_0(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}'_0}$$

3.6 On a la relation suivante liant la statistique F et le coefficient de détermination R^2 :

$$F = \frac{R^2}{1 - R^2} \frac{n - p - 1}{p}$$

La principale inconnue dans le problème est n, le nombre de données. Or,

$$n = pF\left(\frac{1-R^2}{R^2}\right) + p + 1$$
$$= 3(5,438)\left(\frac{1-0,521}{0,521}\right) + 3 + 1$$
$$= 19.$$

Soit F une variable aléatoire dont la distribution est une loi de Fisher avec 3 et 19-3-1=15 degrés de liberté, soit la même distribution que la statistique F du modèle. On obtient la valeur p du test global de validité du modèle dans un tableau de quantiles de la distribution F ou avec la fonction pf dans R:

$$Pr[F > 5,438] = 0,0099$$

3.7 a) On a

$$\hat{\beta} = (X'X)^{-1}X'y$$

$$= \frac{1}{2} \begin{bmatrix} -6 & 34 & -13 & -13 \\ 2 & -4 & 1 & 1 \\ 0 & -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 17 \\ 12 \\ 14 \\ 13 \end{bmatrix}$$

$$= \frac{1}{2} \begin{bmatrix} -45 \\ 13 \\ 3 \end{bmatrix} = \begin{bmatrix} -22,5 \\ 6,5 \\ 1,5 \end{bmatrix}$$

b) Avec les résultats de la partie a), on a

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{\beta}} = \begin{bmatrix} 17\\12\\13.5\\13.5 \end{bmatrix},$$

$$\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 0\\0\\0.5\\-0.5 \end{bmatrix}$$

et $\bar{Y} = 14$. Par conséquent,

$$SST = \mathbf{y}'\mathbf{y} - n\bar{Y}^2 = 14$$

$$SSE = \mathbf{e}'\mathbf{e} = 0.5$$

$$SSR = SST - SSR = 13.5.$$

d'où le tableau d'analyse de variance est le suivant :

Source	SS	d.l.	MS	F
Régression	13,5	2	6,75	13,5
Erreur	0,5	1	0,5	
Total	14			

Le coefficient de détermination est

$$R^2 = 1 - \frac{\text{SSE}}{\text{SST}} = 0.9643.$$

c) On sait que $\text{var}[\hat{\beta}_i] = \sigma^2 c_{ii}$, où c_{ii} est l'élément en position (i+1,i+1) de la matrice $(\mathbf{X}'\mathbf{X})^{-1}$. Or, $\hat{\sigma}^2 = s^2 = \text{MSE} = 0,5$, tel que calculé en b). Par conséquent, la statistique t du test $H_0: \beta_1 = 0$ est

$$t = \frac{\hat{\beta}_1}{s\sqrt{c_{11}}} = \frac{6.5}{\sqrt{0.5(\frac{11}{2})}} = 3.920,$$

alors que celle du test $H_0: \beta_2 = 0$ est

$$t = \frac{\hat{\beta}_2}{s\sqrt{c_{22}}} = \frac{1.5}{\sqrt{0.5(\frac{3}{2})}} = 1.732.$$

À un niveau de signification de 5 %, la valeur critique de ces tests est $t_{0,025}(1) = 12,706$. Dans les deux cas, on ne rejette donc pas H_0 , les variables X_1 et X_2 ne sont pas significatives dans le modèle.

d) Soit $\mathbf{x}_0 = \begin{bmatrix} 1 & 3.5 & 9 \end{bmatrix}$ et Y_0 la valeur de la variable dépendante correspondant à \mathbf{x}_0 . La prévision de Y_0 donnée par le modèle trouvé en a) est

$$\hat{Y}_0 = \mathbf{x}_0 \hat{\mathbf{\beta}}$$

= -22,5 + 6,5(3,5) + 1,5(9)
= 13,75.

D'autre part,

$$\widehat{\text{Var}}[Y_0 - \hat{Y}_0] = s^2 (1 + \mathbf{x}_0 (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}'_0)$$

= 1.1875.

Par conséquent, un intervalle de confiance à 95 % pour Y₀ est

$$E[Y_0] \in \hat{Y}_0 \pm t_{0,025}(1)s\sqrt{1 + \mathbf{x}_0(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_0'}$$

$$\in 13,75 \pm 12,706\sqrt{1,1875}$$

$$\in (-0,096,27,596).$$

3.8 a) On importe les données dans R, puis on effectue les conversions nécessaires. Comme précédemment, la variable consommation contient la consommation des voitures en $\ell/100$ km et la variable poids le poids en kilogrammes. On ajoute la variable cylindree, qui contient la cylindrée des voitures en litres.

```
carburant <- read.table("carburant.dat", header = TRUE)
consommation <- 235.1954/carburant$mpg
poids <- carburant$poids * 0.45455 * 1000
cylindree <- carburant$cylindree * 2.54^3/1000</pre>
```

b) La fonction summary fournit l'information essentielle pour juger de la validité et de la qualité du modèle :

```
fit <- lm(consommation ~ poids + cylindree)
summary(fit)

##
## Call:
## lm(formula = consommation ~ poids + cylindree)
##
## Residuals:
## Min  1Q Median  3Q Max
## -1.8799 -0.5595 0.1577 0.6051 1.7900
##</pre>
```

Le modèle est donc le suivant :

```
Y_t = -3.049 + 0.01268X_{t1} + -1.123X_{t2} + \varepsilon_t, \varepsilon_t \sim N(0.09156^2 I)
```

où Y_t est la consommation en litres aux 100 kilomètres, X_{t1} le poids en kilogrammes et X_{t2} la cylindrée en litres. La faible valeur p du test F indique une régression globalement très significative. Les tests t des paramètres individuels indiquent également que les deux variables du modèle sont significatives. Enfin, le R^2 de 0,8927 confirme que l'ajustement du modèle est toujours bon.

c) On veut calculer un intervalle de confiance pour la consommation prévue d'une voiture de 1350 kg ayant un moteur d'une cylindrée de 1,8 litres. On obtient, avec la fonction predict :

3.9 Il y a plusieurs réponses possibles pour cet exercice. Si l'on cherche, tel que suggéré dans l'énoncé, à distinguer les voitures sport des minifourgonnettes (en supposant que ces dernières ont moins d'accidents que les premières), alors on pourrait s'intéresser, en premier lieu, à la variable peak.rpm. Il s'agit du régime moteur maximal, qui est en général beaucoup plus élevé sur les voitures sport. Puisque l'on souhaite expliquer le montant total des sinistres de différents types de voitures, il devient assez naturel de sélectionner également la variable price, soit le prix du véhicule. Un véhicule plus luxueux coûte en général plus cher à faire réparer à dommages égaux. Voyons l'effet de l'ajout, pas à pas, de ces deux variables au modèle précédent ne comportant que la variable horsepower:

```
autoprice <- read.table("data/auto-price.dat", header = TRUE)
fit1 <- lm(losses ~ horsepower + peak.rpm, data = autoprice)
summary(fit1)

##
## Call:
## lm(formula = losses ~ horsepower + peak.rpm, data = autoprice)
##
## Residuals:
## Min 1Q Median 3Q Max
## -67.973 -24.074 -6.373 18.049 130.301</pre>
```

```
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.521414 29.967570 0.184 0.854060
## horsepower 0.318477 0.086840 3.667 0.000336 ***
## peak.rpm
             ## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 33.44 on 156 degrees of freedom
## Multiple R-squared: 0.1314, Adjusted R-squared: 0.1203
## F-statistic: 11.8 on 2 and 156 DF, p-value: 1.692e-05
anova (fit1)
## Analysis of Variance Table
##
## Response: losses
##
   Df Sum Sq Mean Sq F value Pr(>F)
## horsepower 1 16949 16948.5 15.1573 0.0001463 ***
## peak.rpm 1 9437 9437.0 8.4397 0.0042049 **
## Residuals 156 174435 1118.2
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

La variable peak.rpm est significative, mais le R^2 demeure faible. Ajoutons maintenant la variable price au modèle :

```
fit2 <- lm(losses ~ horsepower + peak.rpm + price, data = autoprice)
summary(fit2)
##
## Call:
## lm(formula = losses ~ horsepower + peak.rpm + price, data = autoprice)
##
## Residuals:
##
   Min 1Q Median 3Q
## -66.745 -25.214 -5.867 18.407 130.032
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.6972172 31.3221462 -0.022 0.98227
## horsepower 0.2414922 0.1408272 1.715 0.08838.
## peak.rpm 0.0181386 0.0061292 2.959 0.00357 **
## price
             0.0005179 0.0007451 0.695 0.48803
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 33.49 on 155 degrees of freedom
```

Du moins avec les variables horsepower et peak.rpm, la variable price n'est pas significative. D'ailleurs, l'augmentation du \mathbb{R}^2 suite à l'ajout de cette variable est minime. À ce stade de l'analyse, il vaudrait sans doute mieux reprendre tout depuis le début avec d'autres variables. Des méthodes de sélection des variables seront étudiées plus avant dans le chapitre.

- **3.10** a) On a p=3 variables explicatives et, du nombre de degrés de liberté de la statistique F, on apprend que n-p-1=16. Par conséquent, n=16+3+1=20. Les dimensions des vecteurs et de la matrice de schéma dans la représentation $\mathbf{y}=\mathbf{X}\boldsymbol{\beta}+\boldsymbol{\epsilon}$ sont donc : $n\times 1=20\times 1$ pour les vecteurs \mathbf{y} et $\boldsymbol{\epsilon}$, $n\times (p+1)=20\times 4$ pour la matrice \mathbf{X} , $(p+1)\times 1$ pour le vecteur $\boldsymbol{\beta}$.
 - b) La valeur *p* associée à la statistique *F* est, à toute fin pratique, nulle. Cela permet de rejeter facilement l'hypothèse nulle selon laquelle la régression n'est pas significative.
 - c) On doit se fier ici au résultat du test t associé à la variable X_2 . Dans les résultats obtenus avec R, on voit que la valeur p de la statistique t du paramètre β_2 est 0,0916. Cela signifie que jusqu'à un seuil de signification de 9,16 % (ou un niveau de confiance supérieur à 90,84 %), on ne peut rejeter l'hypothèse $H_0: \beta_2 = 0$ en faveur de $H_1: \beta_2 \neq 0$. Il s'agit néanmoins d'un cas limite et il est alors du ressort de l'analyste de décider d'inclure ou non le revenu disponible dans le modèle.
 - d) Le coefficient de détermination est de $R^2 = 0.981$. Cela signifie que le prix de la bière, le revenu disponible et la demande de l'année précédente expliquent plus de 98 % de la variation de la demande en bière. L'ajustement du modèle aux données est donc particulièrement bon. Il est tout à fait possible d'obtenir un R^2 élevé et, simultanément, toutes les statistiques t non significatives : comme chaque test t mesure l'impact d'une variable sur la régression étant donné la présence des autres variables, il suffit d'avoir une bonne variable dans un modèle pour obtenir un R^2 élevé et une ou plusieurs autres variables redondantes avec la première pour rendre les tests t non significatifs.
- **3.11** a) L'information demandée doit évidemment être extraite des deux tableaux d'analyse de variance fournis dans l'énoncé. Il importe, ici, de savoir que le résultat de la fonction anova de R est un tableau d'analyse de variance séquentiel, où chaque ligne identifiée par le nom d'une variable correspond au test *F* partiel résultant de l'ajout de cette variable au modèle. Ainsi, du premier tableau on obtient les sommes de carrés

$$SSR(X_2) = 45,59085$$

 $SSR(X_3|X_2) = 8,76355$

alors que du second tableau on a

$$SSR(X_1) = 45,59240$$

 $SSR(X_2|X_1) = 0,01842$
 $SSR(X_3|X_1,X_2) = 8,78766,$

ainsi que

$$MSE = \frac{SSE(X_1, X_2, X_3)}{n - p - 1}$$
$$= 0.44844.$$

i) Le test d'hypothèse H_0 : $\beta_1 = \beta_2 = \beta_3 = 0$ est le test global de validité du modèle. La statistique F pour ce test est

$$F = \frac{\text{SSR}(X_1, X_2, X_3)/3}{\text{MSE}}$$

$$= \frac{(\text{SSR}(X_1) + \text{SSR}(X_2|X_1) + \text{SSR}(X_3|X_1, X_2))/3}{\text{MSE}}$$

$$= \frac{(45,5924 + 0,01842 + 8,78766)/3}{0,44844}$$

$$= 40.44$$

Puisque la statistique MSE a 21 degrés de liberté, la statistique *F* en a 3 et 21.

ii) Pour tester cette hypothèse, il faut utiliser un test F partiel. On teste si la variable X_1 est significative dans la régression globale. La statistique du test est alors

$$F^* = \frac{\text{SSR}(X_1|X_2, X_3)/1}{\text{MSE}}$$

$$= \frac{\text{SSR}(X_1, X_2, X_3) - \text{SSR}(X_2, X_3)}{\text{MSE}}$$

$$= \frac{\text{SSR}(X_1, X_2, X_3) - \text{SSR}(X_2) - \text{SSR}(X_3|X_2)}{\text{MSE}}$$

$$= \frac{54,39848 - 45,59085 - 8,76355}{0,44844}$$

$$= 0.098,$$

avec 1 et 21 degrés de liberté.

iii) Cette fois, on teste si les variables X_2 et X_3 (les deux ensemble) sont significatives dans la régression globale. On effectue donc encore un test F partiel avec la statistique

$$F^* = \frac{\text{SSR}(X_2, X_3 | X_1)/2}{\text{MSE}}$$

$$= \frac{(\text{SSR}(X_1, X_2, X_3) - \text{SSR}(X_1))/2}{\text{MSE}}$$

$$= \frac{(54,39848 - 45,5924)/2}{0,44844}$$

$$= 9,819,$$

avec 2 et 21 degrés de liberté.

b) À la lecture du premier tableau d'analyse de variance que tant les variables X_2 que X_3 sont significatives dans le modèle. Par contre, comme on le voit dans le second tableau, la variable X_2 devient non significative dès lors que la variable X_1 est ajoutée au modèle. (L'impact de la variable X_3 demeure, lui, inchangé.) Cela signifie que les variables X_1 et X_2 sont redondantes et qu'il faut choisir l'une ou l'autre, mais pas les deux. Par conséquent, les choix de modèle possibles sont X_1 et X_3 , ou X_2 et X_3 .

3.12 La statistique à utiliser pour faire ce test *F* partiel est

$$F^* = \frac{\text{SSR}(X_2, X_3 | X_1, X_4) / 2}{\text{MSE}}$$

$$= \frac{\text{SSR}(X_1, X_2, X_3, X_4) - \text{SSR}(X_1, X_4)}{2 \text{MSE}}$$

$$= \frac{\text{SSR} - \text{SSR}(X_4) - \text{SSR}(X_1 | X_4)}{2 s^2}$$

où $SSR = SSR(X_1, X_2, X_3, X_4)$. Or,

$$R^{2} = \frac{\text{SSR}}{\text{SST}}$$
$$= \frac{\text{SSR}}{\text{SSR} + \text{SSE}}$$

d'où

$$SSR = \frac{R^2}{1 - R^2} SSE$$

$$= \frac{R^2}{1 - R^2} MSE(n - p - 1)$$

$$= \frac{0,6903}{1 - 0,6903} (26,41)(506 - 4 - 1)$$

$$= 29492.$$

Par conséquent,

$$F^* = \frac{29492 - 2668 - 21348}{(2)(26,41)}$$
$$= 103.67.$$

3.13 a) Tout d'abord, si $Z \sim N(0,1)$ et $V \sim \chi^2(r)$ alors, par définition,

$$\frac{Z}{\sqrt{V/r}} \sim t(r).$$

Tel que mentionné dans l'énoncé, $\hat{\beta}_i \sim N(\beta_i, \sigma^2 c_{ii})$ ou, de manière équivalente,

$$\frac{\hat{\beta}_i - \beta_i}{\sigma \sqrt{c_{ii}}} \sim N(0,1).$$

Par conséquent,

$$\frac{\frac{\beta_i - \beta_i}{\sigma \sqrt{c_{ii}}}}{\sqrt{\frac{\text{SSE}}{\sigma^2(n-p-1)}}} = \frac{\hat{\beta}_i - \beta_i}{s\sqrt{c_{ii}}} \sim t(n-p-1).$$

b) En régression linéaire simple, $c_{11}=1/\sum_{t=1}^n(X_t-\bar{X})^2=1/S_{XX}$ et $\sigma^2c_{11}=\text{var}[\hat{\beta}_1]$. Le résultat général en a) se réduit donc, en régression linéaire simple, au résultat bien connu du test t sur le paramètre β_1

$$\frac{\hat{\beta}_1 - \beta_1}{s\sqrt{1/S_{XX}}} \sim t(n-1-1).$$

3.14 En suivant les indications donnée dans l'énoncé, on obtient aisément

$$\frac{d}{d\beta}S(\beta) = 2\left(\frac{d}{d\beta}(\mathbf{y} - \mathbf{X}\beta)\right)'\mathbf{W}(\mathbf{y} - \mathbf{X}\beta)$$
$$= -2\mathbf{X}'\mathbf{W}(\mathbf{y} - \mathbf{X}\beta)$$
$$= -2(\mathbf{X}'\mathbf{W}\mathbf{y} - \mathbf{X}'\mathbf{W}\mathbf{X}\beta).$$

Par conséquent, les équations normales à résoudre pour trouver l'estimateur $\hat{\beta}^*$ minimisant la somme de carrés pondérés $S(\beta)$ sont $(X'WX)\hat{\beta}^* = X'Wy$ et l'estimateur des moindres carrés pondérés est

$$\mathbf{\hat{\beta}}^* = (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}\mathbf{y}.$$

3.15 De manière tout à fait générale, l'estimateur linéaire sans biais à variance minimale dans le modèle de régression linéaire $\mathbf{y} = \mathbf{X}\mathbf{\beta} + \mathbf{\epsilon}$, $\mathrm{var}[\mathbf{\epsilon}] = \sigma^2 \mathbf{W}^{-1}$ est

$$\mathbf{\hat{\beta}}^* = (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}\mathbf{y}$$

et sa variance est, par le théorème ??,

$$\mathbf{V}[\hat{\boldsymbol{\beta}}^*] = (\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}\mathbf{V}[\mathbf{y}]\mathbf{W}'\mathbf{X}(\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}$$
$$= \sigma^2(\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}\mathbf{W}^{-1}\mathbf{W}\mathbf{X}(\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}$$
$$= \sigma^2(\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}$$

puisque les matrices \mathbf{W} et $\mathbf{X}'\mathbf{W}\mathbf{X}$ sont symétriques. Dans le cas de la régression linéaire simple passant par l'origine et en supposant que $\mathbf{W} = \operatorname{diag}(w_1, \dots, w_n)$, ces formules se réduisent en

$$\hat{\beta}^* = \frac{\sum_{t=1}^n w_t X_t Y_t}{\sum_{t=1}^n w_t X_t^2}$$

et

$$\operatorname{var}[\hat{\beta}^*] = \frac{\sigma^2}{\sum_{t=1}^n w_t X_t^2}.$$

a) Cas déjà traité à l'exercice 2.6 où $\mathbf{W} = \mathbf{I}$ et, donc,

$$\hat{\beta}^* = \frac{\sum_{t=1}^n X_t Y_t}{\sum_{t=1}^n X_t^2}$$

et

$$\operatorname{var}[\hat{\beta}^*] = \frac{\sigma^2}{\sum_{t=1}^n w_t X_t^2}.$$

- b) Cas général traité ci-dessus.
- c) Si $var[\varepsilon_t] = \sigma^2 X_t$, alors $w_t = X_t^{-1}$. Le cas général se simplifie donc en

$$\hat{\beta}^* = \frac{\sum_{t=1}^n Y_t}{\sum_{t=1}^n X_t}$$

$$= \frac{\bar{Y}}{\bar{X}'}$$

$$\operatorname{var}[\hat{\beta}^*] = \frac{\sigma^2}{\sum_{t=1}^n X_t}$$

$$= \frac{\sigma^2}{n\bar{X}}.$$

d) Si $var[\varepsilon_t] = \sigma^2 X_t^2$, alors $w_t = X_t^{-2}$. On a donc

$$\hat{\beta}^* = \frac{1}{n} \sum_{t=1}^n \frac{Y_t}{X_t}$$

$$\operatorname{var}[\hat{\beta}^*] = \frac{\sigma^2}{n}.$$

3.16 Le graphique des valeurs de *Y* en fonction de celles de *X*, à la figure B.16, montre clairement une relation quadratique. On postule donc le modèle

$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 X_t^2 + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2).$$

Par la suite, on peut estimer les paramètres de ce modèle avec la fonction lm de R :

```
fit \leftarrow lm(Y \sim poly(X, 2), data = donnees)
summary(fit)
##
## Call:
\#\# lm(formula = Y \sim poly(X, 2), data = donnees)
##
## Residuals:
## Min
              1Q Median
                               3Q
## -1.9123 -0.6150 -0.1905 0.6367 1.6921
##
## Coefficients:
     Estimate Std. Error t value Pr(>|t|)
## (Intercept) 18.1240 0.3025 59.91 3.10e-16 ***
## poly(X, 2)1 29.6754
                         1.1717 25.33 8.72e-12 ***
## poly(X, 2)2 4.0899 1.1717 3.49 0.00446 **
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.172 on 12 degrees of freedom
## Multiple R-squared: 0.982, Adjusted R-squared: 0.979
## F-statistic: 326.8 on 2 and 12 DF, p-value: 3.434e-11
anova (fit)
```

plot(Y ~ X, data = donnees)

Fig. B.16 – Graphique des données de l'exercice 3.16

Tant le test F global que les tests t individuels sont concluants, le coefficient de détermination est élevé et l'on peut constater à la figure B.17 que l'ajustement du modèle est bon. On conclut donc qu'un modèle adéquat pour cet ensemble de données est

$$Y_t = 18,12 + 29,68X_t + 4,09X_t^2 + \varepsilon_t$$
, $\varepsilon_t \sim N(0,1,373)$.

- **3.17** Comme on peut le constater à la figure B.18, le point (X_{16}, Y_{16}) est plus éloigné des autres. En b) et c), on diminue son poids dans la régression.
 - a) On calcule d'abord l'estimateur des moindres carrés ordinaires :

b) Si l'on suppose que la variance de la données (X_{16}, Y_{16}) est quatre fois plus élevée que la variance des autres données, alors il convient d'accorder un point quatre fois moins grand à cette donnée dans la régression. Cela requiert les moindres carrés pondérés. Pour calculer les estimateurs avec lm dans R, on utilise l'argument weights :

c) On répète la procédure en b) avec un poids de encore plus petit pour la donnée (X_{16}, Y_{16}) :

```
w[16] <- 0.0625
(fit3 <- update(fit1, weights = w))</pre>
```

```
plot(Y ~ X, data = donnees)
x <- seq(min(donnees$X), max(donnees$X), length = 200)
lines(x, predict(fit, data.frame(X = x), lwd = 2))</pre>
```


Fig. B.17 – Graphique des données de l'exercice 3.16 et courbe obtenue par régression

```
plot(Y ~ X, data = donnees)
points(donnees$X[16], donnees$Y[16], pch = 16)
```


Fig. B.18 – Graphique des données de l'exercice 3.17. Le cercle plein représente la donnée (X_{16},Y_{16}) .

Plus le poids accordé à la donnée (X_{16}, Y_{16}) est faible, moins la droite de régression est attirée vers ce point (voir la figure B.19).

- **3.18** a) Voir la figure B.20 pour le graphique. Il y a effectivement une différence entre la consommation de carburant des hommes et des femmes : ces dernières font plus de milles avec un gallon d'essence.
 - b) Remarquer que la variable sexe est un facteur et peut être utilisée telle quelle dans lm:

```
(fit <- lm(mpg ~ age + sexe, data = donnees))
##
## Call:
## lm(formula = mpg ~ age + sexe, data = donnees)
##
## Coefficients:
## (Intercept) age sexeM
## 16.687 -1.040 -1.206</pre>
```

c) Calcul d'une prévision pour la valeur moyenne de la variable mpg :

3.19 a) Le postulat de normalité semble violé.

La distribution des résidus a une queue inférieure plus épaisse que la loi normale, ce que l'on voit à gauche du Q-Q plot, puisque les poits ne sont pas alignés.

Le postulat de normalité n'est pas critique, parce que les estimateurs des moindres carrés ont un sens quand même. Toutefois, les tests d'hypothèses et les intervalles de confiance ne sont pas valides.

b) Le graphique des résidus en fonction de x_2 montre que le postulat de linéarité semble violé. Cela implique que le modèle n'est pas valide.

On observe de l'hétéroscédasticité (par exemple, dans les graphiques 1, 3 ou 4) puisque les résidus ne semblent pas avoir une variance constante.

Cela signifie que les variances des paramètres ne sont pas calculées de façon appropriée OU il faudrait effectuer une transformation sur les variables pour régler ces problèmes.

3.20 On pourrait croire qu'un point sur 20, ça ne change rien, mais ce n'est pas le cas! Le point 1 a un impact sur la pente et la qualité de l'ajustement. Le point 2 a un grand levier mais n'affecte pas beaucoup les estimations, le point 3 a un grand levier et un gros impact.

```
dat <- read.csv("OutlierExample.csv")
dim(dat)</pre>
```

```
summary (dat)
library(ggplot2)
ggplot(dat, aes(x= X, y= Y, label=CODES))+
  geom_point() +
  geom_text(aes(label=ifelse(CODES>0, CODES, '')), hjust=0, vjust=0)
fit0 <- lm(Y~X, dat, subset=(CODES==0))</pre>
summary(fit0)
plot(dat[,1:2],pch=16)
points (dat[match(1:3, dat$CODES), 1:2], col=2:4, pch=16:18, cex=1.2)
abline(fit0)
fit1 <- lm(Y~X, dat, subset=(CODES<=1))</pre>
summary(fit1)
abline (fit1, col=2, lty=2)
fit2 <- lm(Y~X, dat, subset=(CODES%in%c(0,2)))</pre>
summary(fit2)
abline(fit2,col=3,lty=3)
fit3 <- lm(Y~X, dat, subset=(CODES%in%c(0,3)))</pre>
summary(fit3)
abline (fit3, col=4, lty=4)
influence.measures(fit0)
influence.measures(fit1)
influence.measures(fit2)
influence.measures(fit3)
```

Chapitre 4

- **4.1** a) i) modèle D
 - ii) modèle D
 - iii) modèle G
 - iv) modèle G
 - v) modèle C
 - vi) modèle H
 - b) Il y a un très gros problème de multicolinéarité pour les modèle F, G et H, car certains VIFs sont beaucoup plus grands que 10. Ce problème augmente inutilement la variance des paramètres estimés.
 - c) On évite les modèles F G et H pour ne pas avoir de problème de multicolinéarité. Le modèle D est préférable selon les critères PRESS et R_p^2 . De plus, ses critères AIC et BIC sont les deuxièmes plus petits. Le C_p est 8, donc 8-5=3. Ce n'est pas parfait, mais ce n'est pas si mal, etc.

4.2 a) Puisque n = p, $\beta_0 = 0$ et que la matrice d'incidence est diagonale, on a $\hat{y}_i = \hat{\beta}_i$ pour i = 1, ..., n. On minimise $S(\beta) = \sum_{i=1}^n (y_i - \beta_i)^2$ et on trouve pour $i \in \{1, ..., n\}$,

$$\left. \frac{\partial}{\partial \beta_i} S(\beta) \right|_{\hat{\beta}_i} = -2(y_i - \hat{\beta}_i) = 0 \quad \Rightarrow \quad \hat{\beta}_i = y_i.$$

b) On minimise, pour une valeur $\lambda > 0$,

$$S^{\text{ridge}}(\beta) = \sum_{i=1}^{n} (y_i - \beta_i)^2 + \lambda \sum_{i=1}^{n} \beta_i^2.$$

c) On a

$$\frac{\partial}{\partial \beta_i} S^{\text{ridge}}(\beta) = -2(y_i - \beta_i) + 2\lambda \beta_i.$$

On pose égal à 0 et on trouve

$$y_i - \hat{\beta}_i^{\text{ridge}} = \lambda \hat{\beta}_i^{\text{ridge}} \quad \Rightarrow \quad \hat{\beta}_i^{\text{ridge}} = \frac{y_i}{1+\lambda}.$$

d) On minimise, pour une valeur $\lambda > 0$,

$$S^{\text{lasso}}(\beta) = \sum_{i=1}^{n} (y_i - \beta_i)^2 + \lambda \sum_{i=1}^{n} |\beta_i|.$$

e) On a

$$\frac{\partial}{\partial \beta_i} S^{\text{lasso}}(\beta) = -2(y_i - \beta_i) + \lambda \operatorname{signe}(\beta_i).$$

On utilise les EMV trouvés en a) pour définir le signe. Supposons d'abord que $\hat{\beta}_i = y_i > 0$. Alors, on a aussi $\hat{\beta}_i^{\text{lasso}} > 0$ (sinon, changer le signe donnera une valeur plus petite de l'équation à minimiser). On pose la dérivée égale à 0 et on trouve

$$2(y_i - \hat{\beta}_i^{\text{lasso}}) = \lambda \quad \Rightarrow \quad \hat{\beta}_i^{\text{ridge}} = y_i - \lambda/2,$$

ce qui tient seulement si $\hat{\beta}_i^{\text{lasso}} > 0$, alors on a $\hat{\beta}_i^{\text{ridge}} = \max(0, y_i - \lambda/2)$. Supposons ensuite que $\hat{\beta}_i = y_i < 0$. Alors, on a aussi $\hat{\beta}_i^{\text{lasso}} < 0$. On pose la dérivée égale à 0 et on trouve

$$2(y_i - \hat{\beta}_i^{\text{lasso}}) = -\lambda \quad \Rightarrow \quad \hat{\beta}_i^{\text{ridge}} = y_i + \lambda/2$$

sous la contrainte que ce soit négatif, donc dans ce cas, $\hat{\beta}_i^{\text{ridge}} = \min(0, y_i + \lambda/2)$. On combine les deux cas et on obtient l'équation donnée.

f) On peut voir que la façon de rapetisser les paramètres est bien différente pour les deux méthodes. Avec ridge, chaque coefficient des moindres carrés est réduit par la même proportion. Avec lasso, chaque coefficient des moindres carrés est réduit vers 0 d'un montant constant $\lambda/2$; ceux qui sont plus petits que $\lambda/2$ en valeur absolue sont mis exactement égaux à 0. C'est de cette façon que le lasso permet de faire la sélection des variables explicatives.

Chapitre 5

5.1 a) Normale(μ , σ^2) : oui,

$$f_Y(y) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right), y \in \mathbb{R}$$
$$= \exp\left(\frac{y\mu - \mu^2/2}{\sigma^2} - \frac{y^2}{2\sigma^2} - \frac{\ln(2\pi\sigma^2)}{2}\right), y \in \mathbb{R}.$$

- Paramètre canonique : $\theta = \mu$
- Paramètre de dispersion : $\phi = \sigma^2$
- $b(\theta) = \frac{\theta^2}{2}$
- $E[Y] = \dot{b}(\theta) = \frac{\partial}{\partial \theta} \frac{\theta^2}{2} = \theta = \mu$
- $\operatorname{var}[(]Y) = \phi \ddot{b}(\theta) = \sigma^2 \frac{\partial}{\partial \theta} \theta = \sigma^2$
- $V(\mu) = 1$.
- b) Uniforme $(0,\beta)$: non. Le domaine dépend du paramètre β .
- c) Poisson(λ):

$$f_Y(y;\lambda) = \frac{\lambda^y e^{-\lambda}}{y!}, \text{ pour } y \in \mathbb{N}^+$$
$$= \exp\{y \ln \lambda - \lambda - \ln y!\}$$
$$f_Y(y;\theta,\phi) = \exp\left\{\frac{y\theta - e^{\theta}}{\phi} - \ln y!\right\}.$$

- Paramètre canonique : $\theta = \ln \lambda$
- Paramètre de dispersion : $\phi = 1$
- $b(\theta) = e^{\theta}$
- $E[Y] = \dot{b}(\theta) = \frac{\partial}{\partial \theta} e^{\theta} = e^{\theta} = \lambda$
- $\operatorname{var}[(]Y) = \phi \ddot{b}(\theta) = \frac{\partial}{\partial \theta} e^{\theta} = e^{\theta} = \lambda$
- $V(\mu) = \mu$.
- d) Bernoulli(π)

$$f_Y(y;\pi) = \pi^y (1-\pi)^{1-y} 1(y \in \{0,1\})$$

= $\exp\left\{y \ln\left(\frac{\pi}{1-\pi}\right) + \ln(1-\pi)\right\} 1(y \in \{0,1\}).$

- Paramètre canonique : $\theta = \ln \left(\frac{\pi}{1-\pi} \right)$
- Paramètre de dispersion : $\phi = 1$
- $b(\theta) = \ln(1 + e^{\theta})$
- $E[Y] = \dot{b}(\theta) = \frac{\partial}{\partial \theta} \ln(1 + e^{\theta}) = \frac{e^{\theta}}{1 + e^{\theta}} = \pi$
- $\operatorname{var}[(]Y) = \phi \ddot{b}(\theta) = \frac{\partial}{\partial \theta} \frac{e^{\theta}}{1 + e^{\theta}} = \frac{e^{\theta}}{(1 + e^{\theta})^2} = \pi(1 \pi)$
- $V(\mu) = \mu(1 \mu)$.

e) Binomiale(m, π), m > 0 est un entier et est connu.

$$f_Y(y;\pi) = {m \choose y} \pi^y (1-\pi)^{m-y} 1(y \in \{0,1,...,m\})$$

$$= \exp\left\{y \ln\left(\frac{\pi}{1-\pi}\right) + m \ln(1-\pi) + \ln\binom{m}{y}\right\} 1(y \in \{0,1,...,m\}).$$

Dans cette représentation, on a

$$E[Y] = m\pi$$
 et $Var(Y) = m\pi(1 - \pi)$.

Cette forme est moins utilisée car l'espérance de Y dépend de m, le paramètre de dispersion. Souvent, on transforme les données. On utilise plutôt $Y^* = Y/m$. Alors, pour ces données transformées,

$$f_{Y^*}(y;\pi) = \exp\left\{my\ln\left(\frac{\pi}{1-\pi}\right) + m\ln(1-\pi) + \ln\binom{m}{my}\right\}, y \in \{0,1/m,...,1\}$$
$$= \exp\left\{\frac{y\ln\left(\frac{\pi}{1-\pi}\right) + \ln(1-\pi)}{1/m} + \ln\binom{m}{my}\right\}, y \in \{0,1/m,...,1\}.$$

- Paramètre canonique : $\theta = \ln\left(\frac{\pi}{1-\pi}\right)$
- Paramètre de dispersion : $\phi = 1/m$
- $b(\theta) = \ln(1 + e^{\theta})$
- $E[Y^*] = \dot{b}(\theta) = \frac{\partial}{\partial \theta} \ln(1 + e^{\theta}) = \frac{e^{\theta}}{1 + e^{\theta}} = \pi$
- $\operatorname{var}[(]Y^*) = \phi \ddot{b}(\theta) = \frac{1}{m} \frac{\partial}{\partial \theta} \frac{e^{\theta}}{1 + e^{\theta}} = \frac{e^{\theta}}{m(1 + e^{\theta})^2} = \frac{\pi(1 \pi)}{m}$
- $V(\mu) = \mu(1 \mu)$.
- f) Pareto(α , λ) : non.
- g) $Gamma(\alpha,\beta)$ Soit $Y \sim Gamma(\alpha,\beta)$. Alors, avec un peu de travail, la densité peut être écrite sous la forme exponentielle linéaire.

$$f_Y(y;\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} y^{\alpha-1} e^{-\beta y},$$

pour y > 0. On reparamétrise : $\mu = \alpha/\beta = E[Y]$ et α , on a donc $\beta = \alpha/\mu$ et

$$f_Y(y;\alpha,\mu) = \frac{1}{y\Gamma(\alpha)} \left(\frac{\alpha y}{\mu}\right)^{\alpha} \exp\left\{-\frac{\alpha y}{\mu}\right\}.$$

Posons $\theta = -1/\mu$, et $a(\phi) = 1/\alpha$, alors on trouve

$$f_Y(y;\theta,\phi) = \exp\left\{\frac{y\theta + \ln(-\theta)}{\phi} + \alpha \ln \alpha + (\alpha - 1) \ln y - \ln \Gamma(\alpha)\right\}.$$

Donc, $b(\theta) = -\ln(-\theta)$ et $a(\phi) = 1/\alpha \Rightarrow \dot{b}(\theta) = \frac{-1}{\theta} = \mu$ et $\ddot{b}(\theta) = \frac{1}{\theta^2} = \mu^2$. Finalement,

$$E[Y] = \frac{-1}{\theta} = \mu \text{ et } Var(Y) = \frac{1}{\alpha}\mu^2.$$

h) Binomiale négative (r,π) avec r connu. On considère $Y^* = Y/r$:

$$f_Y^*(y) = {r+ry-1 \choose ry} \pi^r (1-\pi)^{ry}, \text{ pour } y \in \{0, \frac{1}{r}, \frac{2}{r}, \dots\}$$
$$= \exp\left(ry\ln(1-\pi) + r\ln\pi + \ln\binom{r+ry-1}{ry}\right).$$

- Paramètre canonique : $\theta = \ln(1 \pi)$
- Paramètre de dispersion : $\phi = 1/r$
- $b(\theta) = -\ln(1 e^{\theta})$
- $E[Y^*] = \dot{b}(\theta) = \frac{\partial}{\partial \theta} \ln(1 e^{\theta}) = \frac{e^{\theta}}{1 e^{\theta}} = \frac{1 \pi}{\pi}$
- $\operatorname{var}[(]Y^*) = \phi \ddot{b}(\theta) = \frac{1}{r} \frac{\partial}{\partial \theta} \frac{e^{\theta}}{1 e^{\theta}} = \frac{e^{\theta}}{r(1 e^{\theta})^2} = \frac{(1 \pi)}{r\pi^2}$
- $V(\mu) = \mu(\mu + 1)$.
- **5.2** Le lien canonique est le lien $\log : \eta = \ln(\mu)$. On pourrait aussi utiliser d'autres fonctions de lien, telle que le lien identité $\eta = \mu$, le lien inverse $\eta = \frac{1}{\mu}$, mais le lien log est le plus approprié parce que son utilisation garantit une moyenne μ positive, ce qui est nécessaire pour la loi de Poisson.
- **5.3** Le lien canonique pour la loi Gamma est le lien inverse $\eta = 1/\mu$. Comme la moyenne d'une loi Gamma est toujours positive, ce lien n'est pas toujours approprié parce qu'il ne restreint pas le domaine de μ aux réels positifs. Le lien log serait plus approprié dans certains cas.
- **5.4** a) $\eta = g(\mu) = \ln(\mu)$
 - b) On a

$$\ln(\mu_i) = \eta_i = \beta_0 + \beta_1 x_i.$$

La densité de la loi Poisson est

$$f_{Y_i}(y_i; \mu_i) = \exp(y_i \ln \mu_i - \mu_i - \ln y_i!)$$

$$f_{Y_i}(y_i; \beta_0, \beta_1) = \exp(y_i (\beta_0 + \beta_1 x_i) - e^{\beta_0 + \beta_1 x_i} - \ln y_i!).$$

La fonction de vraisemblance et la log-vraisemblance sont donc :

$$\mathcal{L}(\beta_0, \beta_1) = \prod_{i=1}^n f_{Y_i}(y_i; \beta_0, \beta_1) = \prod_{i=1}^n \exp\left(y_i(\beta_0 + \beta_1 x_i) - e^{\beta_0 + \beta_1 x_i} - \ln y_i!\right)$$
$$\ell(\beta_0, \beta_1) = \sum_{i=1}^n y_i(\beta_0 + \beta_1 x_i) - e^{\beta_0 + \beta_1 x_i} + \text{constante.}$$

On maximise la log-vraisemblance :

$$\frac{\partial}{\partial \beta_0} \ell(\beta_0, \beta_1) = \sum_{i=1}^n y_i - e^{\beta_0 + \beta_1 x_i}$$
$$\frac{\partial}{\partial \beta_1} \ell(\beta_0, \beta_1) = \sum_{i=1}^n y_i x_i - x_i e^{\beta_0 + \beta_1 x_i}$$

Donc, les équations à résoudre sont

$$\sum_{i=1}^{n} y_i - e^{\beta_0 + \beta_1 x_i} = 0$$
$$\sum_{i=1}^{n} x_i (y_i - e^{\beta_0 + \beta_1 x_i}) = 0.$$

5.5 La déviance est

$$D(y; \hat{\mu}) = 2(\ell_n(\tilde{\theta}) - \ell_n(\hat{\theta})).$$

Pour le modèle Binomial, on a que

$$\ell_n(\theta) = \sum_{i=1}^n \frac{y_i \ln\left(\frac{\mu_i}{1-\mu_i}\right) + \ln(1-\mu_i)}{1/m_i}.$$

Alors, dans le modèle complet, $\mu_i = y_i$ et on trouve

$$\ell_n(\tilde{\theta}) = \sum_{i=1}^n \frac{y_i \ln\left(\frac{y_i}{1 - y_i}\right) + \ln(1 - y_i)}{1/m_i}.$$

Dans le modèle développé avec le lien log, $\mu_i = \hat{\mu}_i$ et on trouve

$$\ell_n(\hat{\theta}) = \sum_{i=1}^n \frac{y_i \ln\left(\frac{\hat{\mu}_i}{1-\hat{\mu}_i}\right) + \ln(1-\hat{\mu}_i)}{1/m_i}.$$

Finalement, la déviance est

$$D(y; \hat{\mu}) = \sum_{i=1}^{n} \frac{y_i \ln\left(\frac{y_i}{1 - y_i}\right) + \ln(1 - y_i)}{1/m_i} - \frac{y_i \ln\left(\frac{\hat{\mu}_i}{1 - \hat{\mu}_i}\right) + \ln(1 - \hat{\mu}_i)}{1/m_i}$$
$$= \sum_{i=1}^{n} m_i \left[y_i \ln\left(\frac{y_i}{\hat{\mu}_i}\right) + (1 - y_i) \ln\left(\frac{1 - y_i}{1 - \hat{\mu}_i}\right) \right].$$

5.6 Pour la distribution Gamma, on a $V(t) = t^2$ et $b(t) = -\ln(-t)$. Résidus de Pearson :

$$r_{P_i} = rac{y_i - \hat{\mu}_i}{\sqrt{\hat{\mu}_i^2}} = rac{y_i - \hat{\mu}_i}{\hat{\mu}_i}.$$

Résidus d'Anscombe:

$$\begin{split} A(t) &= \int_0^t \frac{\mathrm{d}s}{s^{2/3}} = 3t^{1/3} \\ \dot{A}(t) &= \frac{1}{s^{2/3}} \\ r_{A_i} &= \frac{A(y_i) - A(\hat{\mu}_i)}{\dot{A}(\hat{\mu}_i)\sqrt{V(\hat{\mu}_i)}} = \frac{3(y_i^{1/3} - \hat{\mu}_i^{1/3})}{\hat{\mu}_i^{1/3}}. \end{split}$$

Résidus de déviance :

$$D_{i} = 2\left(-\frac{y_{i}}{y_{i}} - \ln(y_{i}) + \frac{y_{i}}{\hat{\mu}_{i}} + \ln(\hat{\mu}_{i})\right)$$

$$= 2\left(\ln\left(\frac{\hat{\mu}_{i}}{y_{i}}\right) + \frac{y_{i} - \hat{\mu}_{i}}{\hat{\mu}_{i}}\right)$$

$$r_{D_{i}} = sign(y_{i} - \hat{\mu}_{i})\sqrt{2\left(\ln\left(\frac{\hat{\mu}_{i}}{y_{i}}\right) + \frac{y_{i} - \hat{\mu}_{i}}{\hat{\mu}_{i}}\right)}.$$

5.7 Cette solution est en anglais, vous pouvez poser vos questions sur le forum, s'il y a lieu. This is a two-factor model, «Device» takes three levels (M1, M2 and M3) and «Stress» takes 4 levels. The baseline group is M1 device at stress level I. An analysis of deviance is carried out to assess if the parameters for the devices are significant.

```
qlm <- qlm (Failures~Level*Machine, family=poisson, data=stresstest)
anova (glm)
## Analysis of Deviance Table
## Model: poisson, link: log
## Response: Failures
## Terms added sequentially (first to last)
             Df Deviance Resid. Df Resid. Dev
##
## NULL
               11 35.844
              3 20.8567 8 14.987
## Level
## Machine 2 12.2154
                              6 2.772
                         0
## Level:Machine 6 2.7719
                                      0.000
qchisq(0.95, 6)
## [1] 12.59159
qchisq(0.95, 2)
## [1] 5.991465
```

The model

Stress+Device+Stress.Device

is fitted first. The change in deviance from the simpler model Stress+Device is 2.7719 on 6 degrees of freedom, which is not significant when compared to $\chi^2_{(6,0.95)} = 12.59$. Hence, the model Stress+Device is an adequate simplification of the more complex model. If we then test for the significance of the Device parameters, we find that the change in deviance from the simpler model Stress is 12.2154 on 2 degrees of freedom, which is significant because $\chi^2_{(2,0.95)} = 5.99$. From this analysis, we can conclude that there is a significant difference between the failure rates of the different devices.

5.8 a) En R, on obtient

```
modinv <- glm (AvCost~OwnerAge+Model+CarAge, family=Gamma, data=Bcar)</pre>
summary (modinv)
##
## Call:
## qlm(formula = AvCost ~ OwnerAge + Model + CarAge, family = Gamma,
## data = Bcar)
##
## Deviance Residuals:
     Min 1Q
                       Median
                                     3Q
## -1.85536 -0.13930 -0.00821 0.07444 1.49969
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0033233 0.0004038 8.230 4.42e-13
## OwnerAge21-24 0.0006043 0.0004159 1.453 0.14908
## OwnerAge25-29 0.0003529 0.0003933 0.897 0.37163
## OwnerAge30-34 0.0011783 0.0004572 2.577 0.01130
## OwnerAge35-39 0.0016372 0.0004990 3.281 0.00139
## OwnerAge40-49 0.0012039 0.0004592 2.622 0.01000
## OwnerAge50-59 0.0010998 0.0004511 2.438 0.01638
## OwnerAge60+ 0.0012390 0.0004619 2.682 0.00845
## ModelB
                -0.0002817 0.0004049 -0.696 0.48806
## ModelC
               -0.0006502 0.0003906 -1.664 0.09893
## ModelD
               -0.0018235 0.0003481 -5.239 7.96e-07
## CarAge10+ 0.0033776 0.0004747 7.115 1.24e-10
## CarAge4-7 0.0003393 0.0002723 1.246 0.21539
## CarAge8-9 0.0017423 0.0003575 4.873 3.75e-06
##
## (Intercept) ***
## OwnerAge21-24
## OwnerAge25-29
## OwnerAge30-34 *
## OwnerAge35-39 **
## OwnerAge40-49 **
## OwnerAge50-59 *
## OwnerAge60+ **
## ModelB
## ModelC
## ModelD
               * * *
## CarAge10+
## CarAge4-7
## CarAge8-9
                ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for Gamma family taken to be 0.1074529)
##
##
     Null deviance: 27.841 on 122 degrees of freedom
## Residual deviance: 11.511 on 109 degrees of freedom
```

```
## (5 observations deleted due to missingness)
## AIC: 1400.7
##
## Number of Fisher Scoring iterations: 5
```

b) On a utilisé un lien inverse, alors $E[Y_i] = \frac{1}{\eta_i}$. Puisque les variables explicatives prennent toutes leur niveau de base, on a que $\hat{\eta}_i = \hat{\beta}_0 = 0.0033233$ et

$$\widehat{E[Y_i]} = 0.0033233^{-1} = 300.91.$$

- c) Puisqu'on a utilisé un lien inverse, un coefficient plus élevé implique une diminution de l'espérance du coût de la réclamation, alors qu'un coefficient négatif signifie une augmentation de cette espérance. Ici on observe que les sept coefficients sont positifs, alors la catégorie d'âge ayant une espérance de coût la plus élevée est la catégorie de base, 17-20 ans. Le coût moyen semble ensuite relativement élevé pour les jeunes entre 21 et 29 ans. La catégorie d'âge avec coût de réclamation minimal est 35-39 ans, puis la moyenne semble relativement stable pour les détenteurs de police plus âgés.
- d) Les trois coefficients pour la variable modèle sont négatifs, ce qui signifie que les réclamations pour les véhicules de type A (niveau de base) sont moins élevées en moyenne que celles pour les autres types de véhicule. Les réclamatios pour les véhicules du modèle D semblent particulièrement coûteuse car le coefficient est beaucoup plus grand en valeur absolue que les autres.
- e) De la même façon, on observe que d'augmenter l'âge du véhicule diminue le coût moyen des réclamations.
- f) Pour un détenteur de police entre 17 et 20 ans, avec un véhicule de type D âgé de un à 3 ans, on trouve que

$$\widehat{E[Y_i]} = \frac{1}{\hat{\beta}_0 + \hat{\beta}_D^{MODEL}} = \frac{1}{0.0033233 - 0.0018235} = 666.76.$$

g) Pour un détenteur de police entre 35 et 39 ans, avec un véhicule de type A âgé de plus de 10 ans, on trouve que

$$\widehat{E[Y_i]} = \frac{1}{\hat{\beta}_0 + \hat{\beta}_{35-39}^{OWNERAGE} + \hat{\beta}_{10+}^{CARAGE}} = \frac{1}{0.0033233 + 0.0016372 + 0.0033776} = 119.93.$$

h) La déviance $D(y,\hat{\mu})=11.511$ est donnée dans la sortie R pour la sous-question a). On a que

$$\frac{D(y,\hat{\mu})}{\hat{\phi}} = \frac{11.511}{0.1074529} = 107.126,$$

ce qui est très près de n - p' = 109. Le modèle semble donc adéquat.

- i) Les résidus sont calculés avec les formules trouvées à la question 6. Il faut d'abord enlever les données manquantes du vecteur contenant les coûts moyens. On obtient les graphiques de la Figure B.21.
- j) a. Le modèle avec le lien logarithmique est

```
modlog <- glm(AvCost~OwnerAge+Model+CarAge, family=Gamma(link=log), data=Bcar)
summary(modlog)</pre>
```

```
##
## Call:
## qlm(formula = AvCost ~ OwnerAge + Model + CarAge, family = Gamma(link = log),
## data = Bcar)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.84819 -0.12796 -0.00834 0.08552 1.20066
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.711739 0.103835 55.008 < 2e-16
## OwnerAge21-24 -0.108159   0.114547   -0.944   0.3471
## OwnerAge25-29 0.005223 0.113170 0.046 0.9633
## OwnerAge30-34 -0.288090 0.113170 -2.546 0.0123
## OwnerAge35-39 -0.331420 0.114547 -2.893 0.0046
## OwnerAge40-49 -0.280775 0.113170 -2.481 0.0146
## OwnerAge50-59 -0.238136  0.113170 -2.104  0.0377
## OwnerAge60+ -0.283521 0.113170 -2.505 0.0137
                0.057951 0.075447 0.768 0.4441
## ModelB
## ModelD 0.472290 0.076115 2.031 0.0447

## CarAge10+ -0.735513 0.078497 -9.370 1.17e-15

## CarAge4-7 -0.111412 0.075447 -1.477 0.1426

## CarAge8-9 -0.422538 0.076115 -5.551 2 020-07
##
## (Intercept) ***
## OwnerAge21-24
## OwnerAge25-29
## OwnerAge30-34 *
## OwnerAge35-39 **
## OwnerAge40-49 *
## OwnerAge50-59 *
## OwnerAge60+ *
## ModelB
## ModelC
## ModelD
                 ***
## CarAge10+
## CarAge4-7
## CarAge8-9
## ---
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Gamma family taken to be 0.0910768)
##
## Null deviance: 27.841 on 122 degrees of freedom
## Residual deviance: 11.263 on 109 degrees of freedom
## (5 observations deleted due to missingness)
## AIC: 1398
```

##
Number of Fisher Scoring iterations: 7

b. Avec ce modèle $E[Y_i] = e^{\eta_i}$. Puisque les variables explicatives prennent toutes leur niveau de base, on a que $\hat{\eta}_i = \hat{\beta}_0 = 5.711739$ et

$$\widehat{E[Y_i]} = e^5.711739 = 302.39.$$

Cela ne diffère pas beaucoup du résultat trouvé en b).

c-d-e. Puisqu'on a utilisé un lien logarithmique, on a un modèle multiplicatif. Si $e^{\beta} > 1$, alors l'espérance du coût augmente, alors que si $e^{\beta} < 1$ alors l'espérance du coût diminue. On peut donc tirer des conclusions similaires à celles en c), d) et e).

f. Pour un détenteur de police entre 17 et 20 ans, avec un véhicule de type D âgé de un à 3 ans, on trouve que

$$\widehat{E[Y_i]} = \exp \hat{\beta}_0 + \hat{\beta}_D^{MODEL} = \exp 5.711739 + 0.472290 = 484.94.$$

On note que cette valeur est beaucoup moins élevée que celle obtenue en f).

g. Pour un détenteur de police entre 35 et 39 ans, avec un véhicule de type A âgé de plus de 10 ans, on trouve que

$$\widehat{E[Y_i]} = \exp \hat{\beta}_0 + \hat{\beta}_{35-39}^{OWNERAGE} + \hat{\beta}_{10+}^{CARAGE} = \exp 5.711739 - 0.331420 - 0.735513 = 104.04.$$

h. La déviance $D(y,\hat{\mu})=11.263$ est donnée dans la sortie R pour la sous-question a). On a que

$$\frac{D(y,\hat{\mu})}{\hat{\phi}} = \frac{11.263}{0.0910768} = 123.66,$$

ce qui est moins près de n-p'=109 que pour le modèle avec le lien inverse. Le modèle semble donc moins adéquat.

5.9 a) If x_i is treated as a factor predictor with 11 levels, the linear predictor is written as

$$\eta_i = \beta_0 + \beta_i$$
, $i = 1,...,11$

and $\beta_1 = 0$. The binomial density is the following :

$$f_Y(y_i) = \binom{m_i}{y_i} \pi_i^{y_i} (1 - \pi_i)^{m_i - y_i},$$

which can be rewritten in a exponential family representation as:

$$f_Y(y_i) = \exp\left[y_i \ln\left(\frac{\pi_i}{1-\pi_i}\right) + m \ln(1-\pi_i) + \ln\left(\frac{m_i}{y_i}\right)\right].$$

Hence, the canonical parameter is $\theta_i = \ln\left(\frac{\pi_i}{1-\pi_i}\right)$ and the canonical link is the logit link. Thus,

$$\eta_i = \ln\left(\frac{\pi_i}{1 - \pi_i}\right) = \beta_0 + \beta_i$$
$$\pi_i = \frac{e^{\eta_i}}{1 + e^{\eta_i}} = \frac{e^{\beta_0 + \beta_i}}{1 + e^{\beta_0 + \beta_i}}$$

The expression of the density in the reparametrization is then

$$f_Y(y_i) = \binom{m_i}{y_i} \left(\frac{e^{\beta_0 + \beta_i}}{1 + e^{\beta_0 + \beta_i}}\right)^{y_i} \left(\frac{1}{1 + e^{\beta_0 + \beta_i}}\right)^{m_i - y_i}$$
$$= \binom{m_i}{y_i} \frac{e^{y_i(\beta_0 + \beta_i)}}{(1 + e^{\beta_0 + \beta_i})^{m_i}}$$

The likelihood L and the log-likelihood l are shown below :

$$L(\beta_0,...,\beta_{11};y_1,...,y_{11}) = \prod_{i=1}^{11} {m_i \choose y_i} \frac{e^{y_i(\beta_0 + \beta_i)}}{(1 + e^{\beta_0 + \beta_i})^{m_i}}$$

$$\ell(\beta_0,...,\beta_{11};y_1,...,y_{11}) = \sum_{i=1}^{11} \left[\ln {m_i \choose y_i} + y_i(\beta_0 + \beta_i) - m_i \ln(1 + e^{\beta_0 + \beta_i}) \right]$$

We have

$$\begin{split} \frac{\partial \ell}{\partial \beta_0} &= \sum_{i=1}^{11} \left[y_i - m_i \frac{e^{\beta_0 + \beta_i}}{1 + e^{\beta_0 + \beta_i}} \right] \\ \frac{\partial \ell}{\partial \beta_i} &= y_i - m_i \frac{e^{\beta_0 + \beta_i}}{1 + e^{\beta_0 + \beta_i}}, i = 2,...,11, \end{split}$$

and $\beta_1=0$ by constraint of the model. The maximum likelihood estimators for the parameters are derived by solving the system of equations $\frac{\partial \ell}{\partial \beta_i}=0$, i=0,...,11:

$$\begin{split} \sum_{i=1}^{11} \left[y_i - m_i \frac{e^{\hat{\beta}_0 + \hat{\beta}_i}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_i}} \right] &= 0 \\ y_i - m_i \frac{e^{\hat{\beta}_0 + \hat{\beta}_i}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_i}} &= 0, i = 2, ..., 11, \\ \Rightarrow \hat{\beta}_0 + \hat{\beta}_i &= \ln\left(\frac{y_i}{m_i - y_i}\right), i = 2, ..., 11, \end{split}$$

Using the first equation and replacing $\hat{\beta}_0 + \hat{\beta}_i$ by $\ln \left(\frac{y_i}{m_i - y_i} \right)$,

$$\begin{split} y_1 - m_1 \frac{e^{\hat{\beta}_0}}{1 + e^{\hat{\beta}_0}} + \sum_{i=2}^{11} \left[y_i - m_i \frac{\left(\frac{y_i}{m_i - y_i} \right)}{1 + \left(\frac{y_i}{m_i - y_i} \right)} \right] &= 0 \\ y_1 - m_1 \frac{e^{\hat{\beta}_0}}{1 + e^{\hat{\beta}_0}} + \sum_{i=2}^{11} \left[y_i - m_i \frac{y_i}{m_i} \right] &= 0 \\ y_1 - m_1 \frac{e^{\hat{\beta}_0}}{1 + e^{\hat{\beta}_0}} &= 0 \\ \hat{\beta}_0 &= \ln \left(\frac{y_1}{m_1 - y_1} \right) \\ \hat{\beta}_i &= \ln \left(\frac{y_i}{m_i - y_i} \right) - \hat{\beta}_0 &= \ln \left(\frac{y_i / (m_i - y_i)}{y_1 / (m_1 - y_1)} \right), i = 2, \dots, 11. \end{split}$$

The estimates of the model parameters are easily found in R as follows:

```
(beta0 <- log(y[1]/(m[1]-y[1])))

## [1] -2.917771

(beta <- c(0,log(y[-1]/(m[-1]-y[-1]))-beta0))

## [1] 0.0000000 0.4122448 0.6151856 0.6740261 1.3083328

## [6] 1.7137979 1.6184877 2.7636201 3.5239065 3.0178542

## [11] 3.2542430
```

Hence, here

$$\hat{\beta} = (-2.9178, 0, 0.4122, 0.6152, 0.6740, 1.3083, 1.7138, 1.6185, 2.7636, 3.5239, 3.0179, 3.2542)^{T}.$$

As a consistency check following from the invariance property of maximum likelihood estimation, we can verify that the estimates of π_i using the expit function are equal to the MLE estimates $\hat{\pi}_i = \frac{y_i}{m_i}$:

```
(pi <- exp(beta0+beta)/(1+exp(beta0+beta)))
## [1] 0.05128205 0.07547170 0.09090909 0.09589041
## [5] 0.16666667 0.23076923 0.21428571 0.46153846
## [9] 0.64705882 0.52500000 0.58333333

y/m
## [1] 0.05128205 0.07547170 0.09090909 0.09589041
## [5] 0.16666667 0.23076923 0.21428571 0.46153846
## [9] 0.64705882 0.52500000 0.583333333</pre>
```

b) The Binomial GLM model with logit link and the linear predictor $\eta_i = \beta_0 + \beta_1 x_i$, i = 1,...,11 is fitted to the data using R and the command:

```
glm(cbind(y,m-y)~x, family=binomial)
```

The estimates of the parameters are $\hat{\beta}_0 = -3.6070615$ and $\hat{\beta}_1 = 0.0009121$, with standard error $SE(\hat{\beta}_0) = 0.3533875$ and $SE(\hat{\beta}_1) = 0.0001084$.

c) The Binomial GLM model with probit link and the linear predictor $\eta_i = \beta_0 + \beta_1 x_i$, i = 1,...,11 is fitted to the data using \mathbb{R} and the command :

```
glm(cbind(y,m-y)~x, family=binomial(link=probit))
```

The estimates of the parameters are $\hat{\beta}_0 = -2.080$ and $\hat{\beta}_1 = 5.230 \times 10^{-4}$, with standard error $SE(\hat{\beta}_0) = 0.1852$ and $SE(\hat{\beta}_1) = 5.973 \times 10^{-5}$.

d) The Binomial GLM model with complementary log-log link and the linear predictor $\eta_i = \beta_0 + \beta_1 x_i$, i = 1,...,11 is fitted to the data using R and the command:

```
glm(cbind(y,m-y)~x, family=binomial(link=cloglog))
```

The estimates of the parameters are $\hat{\beta}_0 = -3.360$ and $\hat{\beta}_1 = 7.480 \times 10^{-4}$, with standard error $SE(\hat{\beta}_0) = 0.3061$ and $SE(\hat{\beta}_1) = 8.622 \times 10^{-5}$.

e) Predictions can be found using the inverse of the link function. For the model with canonical link (model from b), we find that

$$\hat{y}_{2000} = \frac{e^{\hat{\beta}_0 + 2000\hat{\beta}_1}}{1 + e^{\hat{\beta}_0 + 2000\hat{\beta}_1}} = 0.1439472.$$

Alternatively, the command predict (modelb, data.frame (x=2000), type="response", se.fit=TRUE) can be used to calculate the predictions and associated standard errors. The resulting predictions and standard errors are presented in Table B.1. The probability of developing fissures after 2000 hours of operations is 14.39% according to model b, and the standard deviation is 2.08%. This prediciton is quite comparable with the complementary log-log model (d), for which the estimated probability of developing fissures is 14.36%, with a standard error of 2.03%. The precision is slightly better in this model than the two others due to a smaller variance. The estimated probability with Model c, using the probit link, is higher at 15.06%, with standard error of 2.06%.

	Model b (logit link)	Model c (probit link)	Model d (compl. log-log link)
\hat{y}_{2000}	0.1439472	0.150615	0.1436447
$SE(\hat{y}_{2000})$	0.02080256	0.02062154	0.02030803

TAB. B.1 – Predictions and Standard Errors for Predictions for the 3 Models

f) Figure B.22 shows a plot of the data points along with the three fitted lines. It was obtained using the following code in R, where <code>ilogit</code>, <code>iprobit</code> and <code>icloglog</code> are the inverse of the corresponding link functions:

It is easy to observe that the fit is better when the number of hours of operations is lower, it seems that the variance of the observations is increasing with the predictor. This is expected in a generalized linear model framework. The three fitted lines are slightly

different. The probit link produces lower estimates in the tails and higher estimates in the middle of the range of the predictors. It seems like this model is less representative of the data than the others. The complementary log-log model (d) predicts higher probabilities of failures in the extremes of the range of the predictors. This seems to fit the data well, and recall that the variance of the predictions where also smaller than other models in this case, which is a desirable property. The line for the model with canonical link is between the two others. It could also be a reasonable model for the data.

Chapitre 6

6.1 On ajuste d'abord le modèle avec les effets principaux et les interactions.

```
library (datasets)
fit1 <- glm(ncases~factor(agegp)*(factor(alcgp)+factor(tobgp))+factor(alcgp):factor(tobgp),f
## Warning: glm.fit: fitted rates numerically 0 occurred
anova (fit1)
## Warning: glm.fit: fitted rates numerically 0 occurred
## Analysis of Deviance Table
##
## Model: poisson, link: log
##
## Response: ncases
##
## Terms added sequentially (first to last)
##
##
##
                             Df Deviance Resid. Df
## NULL
## factor(agegp)
                             5 138.256
                                               82
## factor(alcgp)
                             3 24.106
                                               79
                3 22.169
## factor(tobgp)
                                               76
## factor(agegp):factor(alcgp) 15 32.417
                                               61
## factor(agegp):factor(tobgp) 15 18.109
                                               46
## factor(alcgp):factor(tobgp) 9 7.658
                                               37
##
                            Resid. Dev
## NULL
                               262.926
## factor(agegp)
                               124.670
## factor(alcgp)
                                100.564
## factor(tobgp)
                                78.395
## factor(agegp):factor(alcgp) 45.979
                               27.870
## factor(agegp):factor(tobgp)
## factor(alcgp):factor(tobgp)
                               20.212
qchisq(0.95,9) ## rejette alcgp:tobgp
## [1] 16.91898
qchisq(0.95,15) ## rejette agegp:tobgp mais conserve agegp:alcgp
## [1] 24.99579
```

On trouve donc que l'interaction entre la consommation d'alcool et de tabac n'est pas significative parce que

$$\Delta Deviance = 7.658 < \chi^2_{(9;0.95)} = 16.92.$$

Cela signifie que le modèle agegp* (alcgp+tobgp) est une simplification adéquate du modèle agegp+alcgp+tobgp+agegp.tobgp+alcgp.tobgp. De plus, on peut enlever l'interaction entre l'âge et la consommation de tabac :

$$\Delta Deviance = 18.109 < \chi^2_{(15;0.95)} = 25.$$

Cela signifie que le modèle agegp*alcgp+tobgp est une simplification adéquate du modèle agegp*(alcgp+tobgp). Toutefois, on ne peut pas enlever l'autre terme d'interaction car

$$\Delta Deviance = 32.417 > \chi^2_{(15;0.95)} = 25.$$

Si on tente de remettre l'interaction entre la consommation d'alcool et de tabac dans le modèle, on trouve qu'elle n'est toujours pas significative :

```
fit2 <- glm(ncases ~ agegp * alcgp + tobgp, family=poisson, data=esoph)
fit3 <- update(fit1, ~.-factor(agegp):factor(tobgp))
anova(fit2, fit3)

## Analysis of Deviance Table
##
## Model 1: ncases ~ agegp * alcgp + tobgp
## Model 2: ncases ~ factor(agegp) + factor(alcgp) + factor(tobgp) + factor(alcgp):factor(alcgp) +
## factor(alcgp):factor(tobgp)
## Resid. Df Resid. Dev Df Deviance
## 1 61 45.979
## 2 52 38.973 9 7.006</pre>
```

Par conséquent, le modèle final est agegp*alcgp+tobgp. Cela signifie que l'effet de consommer de l'alcool sur l'occurence du cancer de l'oesophage est différent pour chaque groupe d'âge.

- **6.2** Intégrer la densité conditionnelle Poisson sur *z*. Comme c'est plus agréable à faire à la main qu'à taper, je vous laisse le soin de réussir par vous-même.
- **6.3** On note $n = n_A + n_B$. La vraisemblance pour ce GLM est

$$\mathcal{L}(\beta_0, \beta_1) = \prod_{i=1}^{n} \exp(y_i \log(\mu_i) - \mu_i + \text{cte})$$

= $\prod_{i=1}^{n} \exp(y_i \log(g^{-1}(\eta_i)) - g^{-1}(\eta_i) + \text{cte}).$

La log-vraisemblance est donc :

$$\ell(\beta_0, \beta_1) = \sum_{i=1}^n (y_i \log(g^{-1}(\eta_i)) - g^{-1}(\eta_i) + \text{cte}).$$

On dérive par rapport à β_0 et β_1 :

$$\begin{split} \frac{\partial \ell(\beta_0, \beta_1)}{\partial \beta_0} &= \sum_{i=1}^n (y_i \frac{1}{g^{-1}(\eta_i)g'(g^{-1}(\eta_i))} - \frac{1}{g'(g^{-1}(\eta_i))}) \\ &= \sum_{i=1}^n \frac{(y_i - g^{-1}(\eta_i))}{g^{-1}(\eta_i)g'(g^{-1}(\eta_i))} \\ \frac{\partial \ell(\beta_0, \beta_1)}{\partial \beta_1} &= \sum_{i=1}^n (y_i \frac{x_i}{g^{-1}(\eta_i)g'(g^{-1}(\eta_i))} - \frac{x_i}{g'(g^{-1}(\eta_i))}) \\ &= \sum_{i=1}^n \frac{x_i(y_i - g^{-1}(\eta_i))}{g^{-1}(\eta_i)g'(g^{-1}(\eta_i))}. \end{split}$$

On égalise à 0 pour obtenir le système d'équations à résoudre.

$$0 = \sum_{i=1}^{n} \frac{(y_i - g^{-1}(\hat{\eta}_i))}{g^{-1}(\hat{\eta}_i)g'(g^{-1}(\hat{\eta}_i))}$$
$$0 = \sum_{i=1}^{n} \frac{x_i(y_i - g^{-1}(\hat{\eta}_i))}{g^{-1}(\hat{\eta}_i)g'(g^{-1}(\hat{\eta}_i))}$$

On utilise que $x_i = 0 \forall i \in (n_A + 1,...,n_A + n_B)$:

$$0 = \sum_{i=1}^{n_A + n_B} \frac{(y_i - g^{-1}(\hat{\eta}_i))}{g^{-1}(\hat{\eta}_i)g'(g^{-1}(\hat{\eta}_i))}$$
$$0 = \sum_{i=1}^{n_A} \frac{(y_i - g^{-1}(\hat{\eta}_i))}{g^{-1}(\hat{\eta}_i)g'(g^{-1}(\hat{\eta}_i))}$$
$$\Rightarrow 0 = \sum_{i=n_A+1}^{n_A + n_B} \frac{(y_i - g^{-1}(\hat{\eta}_i))}{g^{-1}(\hat{\eta}_i)g'(g^{-1}(\hat{\eta}_i))}.$$

Aussi, $\forall i \in (1,...,n_A)$, $\hat{\eta}_i = \hat{\beta}_0 + \hat{\beta}_1$, ce qui ne dépend pas de i. Le dénominateur ne dépend pas de i et peut sortir de la somme et s'annuler. De même, $\forall i \in (n_A+1,...,n_A+n_B)$, $\hat{\eta}_i = \hat{\beta}_0$, ce qui ne dépend pas de i. Le dénominateur ne dépend pas de i et peut sortir de la somme et s'annuler. On obtient donc les équations :

$$0 = \sum_{i=1}^{n_A} (y_i - g^{-1}(\hat{\eta}_i))$$
$$0 = \sum_{i=n_A+1}^{n_A+n_B} (y_i - g^{-1}(\hat{\eta}_i)).$$

Finalement, $g^{-1}(\hat{\eta}_i) = \hat{\mu}_i$ par définition. Alors

$$0 = \sum_{i=1}^{n_A} (y_i - \hat{\mu}_A) \Rightarrow \sum_{i=1}^{n_A} y_i = n_A \hat{\mu}_A \Rightarrow \frac{\sum_{i=1}^{n_A} y_i}{n_A} = \hat{\mu}_A$$
$$0 = \sum_{i=n_A+1}^{n_A+n_B} (y_i - \hat{\mu}_B) \Rightarrow \sum_{i=n_A+1}^{n_A+n_B} y_i = n_B \hat{\mu}_B \Rightarrow \frac{\sum_{i=n_A+1}^{n_A+n_B} y_i}{n_B} = \hat{\mu}_B.$$

6.4 a) Avec ce modèle, on a que

$$\mu_A = \exp(\beta_0)$$

$$\mu_B = \exp(\beta_0 + \beta_1) = \mu_A \exp(\beta_1),$$

ce qui implique que $\exp(\beta_1) = \mu_B/\mu_A$. On ajuste le modèle en R, et on vérifie que cela est bien vrai :

```
y \leftarrow c(8,7,6,6,3,4,7,2,3,4,9,9,8,14,8,13,11,5,7,6)
x <- rep(0:1,each=10)
fit1 <- glm(y~x, family=poisson)</pre>
summary(fit1)
##
## Call:
## glm(formula = y \sim x, family = poisson)
## Deviance Residuals:
## Min 1Q Median 3Q
                                      Max
## -1.5280 -0.7622 -0.1699 0.6938 1.5399
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.6094 0.1414 11.380 < 2e-16 ***
## x
              ## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
      Null deviance: 27.857 on 19 degrees of freedom
## Residual deviance: 16.268 on 18 degrees of freedom
## AIC: 94.349
##
## Number of Fisher Scoring iterations: 4
log(mean(y[which(x==1)])/mean(y[which(x==0)]))
## [1] 0.5877867
```

- b) Puisque $\exp(\beta_1) = \mu_B/\mu_A$, alors si $H_0: \mu_A = \mu_B$ est vraie, $\beta_1 = 0$. On peut utiliser la statistique de Wald directement, on trouve que le seuil observé du test est 0.000861. On rejette donc l'hypothèse nulle à un niveau de confiance de 99%, ce qui implique que les moyennes diffèrent de façon significative.
- c) Un I.C. à 95% pour β_1 est

```
fit1$coef[2]+c(-1,1)*qnorm(0.975)*summary(fit1)$coefficients[2,2]
## [1] 0.2420820 0.9334913
```

Alors, un I.C. pour μ_B/μ_A est $(\exp(0.2421), \exp(0.93349)) = (1.273899, 2.543373)$.

d) Il n'y a pas d'indications de sur dispersion, puisque la déviance est 16.26 sur 18 degrés de liberté, et 16.26/18 < 1.

e) Quand on ajuste une binomiale négative à ces données, on trouve que θ_z tend vers l'infini, donc le modèle Poisson est une simplification adéquate du modèle NB. En fait, les estimations des paramètres β_0 et β_1 sont exactement les mêmes que celles obtenues dans le modèle Poisson.

```
library (MASS)
fit2 <- qlm.nb(y~x)
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace
> : iteration limit reached
## Warning in theta.ml(Y, mu, sum(w), w, limit = control$maxit, trace = control$trace
> : iteration limit reached
summary(fit2)
##
## Call:
## qlm.nb(formula = y \sim x, init.theta = 113420.3107, link = log)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5280 -0.7622 -0.1699 0.6937 1.5398
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.6094 0.1414 11.380 < 2e-16 ***
              ## X
## ---
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
##
## (Dispersion parameter for Negative Binomial(113420.3) family taken to be 1)
##
## Null deviance: 27.855 on 19 degrees of freedom
## Residual deviance: 16.267 on 18 degrees of freedom
## AIC: 96.349
##
## Number of Fisher Scoring iterations: 1
##
##
              Theta: 113420
##
##
          Std. Err.: 4076965
## Warning while fitting theta: iteration limit reached
##
## 2 x log-likelihood: -90.349
```

f) Dans ce cas, on remarque que, bien que l'estimation du paramètre est égale pour les deux modèles, l'écart-type diffère. Aussi, le modèle de Poisson ne semble plus adéquat, car *Deviance/dl* = 27.857/19 > 1, alors que le modèle NB s'ajuste bien aux données. Cela montre que lorsqu'une variable explicative importante n'est pas observée, le modèle de Poisson peut perdre sa validité pour des données de comptage. La variable explicative manquante introduit de la sur-dispersion dans les données, ce qui est capturé efficacement avec la loi NB.

```
fit3 <- glm(y~1, family=poisson)</pre>
fit4 <- glm.nb(y~1)
summary(fit3)
##
## Call:
## glm(formula = y \sim 1, family = poisson)
## Deviance Residuals:
## Min 1Q Median 3Q
## -2.2336 -0.9063 0.0000 0.4580 2.3255
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.94591 0.08451 23.02 <2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
    Null deviance: 27.857 on 19 degrees of freedom
## Residual deviance: 27.857 on 19 degrees of freedom
## AIC: 103.94
##
## Number of Fisher Scoring iterations: 4
summary(fit4)
##
## Call:
## glm.nb(formula = y \sim 1, init.theta = 18.2073559, link = log)
## Deviance Residuals:
## Min 1Q Median 3Q
## -1.9810 -0.7836 0.0000 0.3859 1.9033
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.94591 0.09944 19.57 <2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for Negative Binomial(18.2074) family taken to be 1)
##
##
    Null deviance: 20.279 on 19 degrees of freedom
## Residual deviance: 20.279 on 19 degrees of freedom
## AIC: 104.77
##
## Number of Fisher Scoring iterations: 1
##
```

```
##
## Theta: 18.2
## Std. Err.: 21.0
##
## 2 x log-likelihood: -100.767

exp(fit3$coef[1]+c(-1,1)*qnorm(0.975)*summary(fit3)$coefficients[1,2])
## [1] 5.931421 8.261090

exp(fit4$coef[1]+c(-1,1)*qnorm(0.975)*summary(fit4)$coefficients[1,2])
## [1] 5.760386 8.506374
```

6.5 a) On y va

```
sex <- rep(0:1, each=6)
Dep <- rep(0:5,2)
y <- c(512,353,120,138,53,22,89,17,202,131,94,24)
no <- c(313,207,205,279,138,351,19,8,391,244,299,317)
nb <- y+no
fitpSex <- glm(y~factor(sex)+offset(log(nb)), family=poisson)</pre>
summary(fitpSex)
##
## Call:
## glm(formula = y ~ factor(sex) + offset(log(nb)), family = poisson)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -14.1129 -3.6826 -0.2719 3.7437 8.0834
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## ---
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 551.69 on 11 degrees of freedom
## Residual deviance: 493.56 on 10 degrees of freedom
## AIC: 573.76
##
## Number of Fisher Scoring iterations: 4
```

On trouve donc que la valeur-p du test de Wald $H_0: \beta^{SEX} = 0$ est 8.15×10^{-14} ce qui est hautement significatif. Puisque le coefficient est négatif et que le niveau de base utilisé est "hommes", cela signifie que les femmes ont moins de chance d'être acceptées aux études graduées que les hommes.

b) On ajoute le département :

```
fitp2 <- glm(y~factor(sex)+factor(Dep)+offset(log(nb)), family=poisson)</pre>
summary(fitp2)
##
## Call:
## glm(formula = y ~ factor(sex) + factor(Dep) + offset(log(nb)),
## family = poisson)
##
## Deviance Residuals:
                   3 4 5
## 1 2
## -0.68882 -0.01474 0.96655 0.02569 0.97713
## 6 7 8 9 10
## -0.28371 1.77895 0.06756 -0.71131 -0.02632
## 11 12
## -0.68503 0.28254
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.44677 0.04148 -10.771 <2e-16 ***
## factor(sex)1 0.05859 0.06166 0.950 0.342
## factor(Dep)1 -0.01391 0.06625 -0.210 0.834
## factor(Dep)2 -0.63911 0.07660 -8.344 <2e-16 ***
## factor(Dep)4 -0.97250 0.09836 -9.887 <2e-16 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for poisson family taken to be 1)
##
##
   Null deviance: 551.6926 on 11 degrees of freedom
## Residual deviance: 6.6698 on 5 degrees of freedom
## AIC: 96.868
##
## Number of Fisher Scoring iterations: 3
```

Dans ce modèle, le résultat du test de Wald pour le coefficient de la variable Sexe est différent. Puisque le seuil observé du test est 34.5%, on ne peut pas rejeter l'hypothèse nulle que $\beta^{SEX}=0$. Cela signifie que le sexe n'est pas un facteur qui influence le taux d'admission aux études graduées lorsqu'on prend en considération le département. Il en est ainsi car les femmes appliquent plus souvent que les hommes dans des départements où il est plus difficile d'être admis.

c) À l'aide de l'analyse de la déviance, on trouve que l'interaction n'est pas significative :

$$\Delta Deviance = 6.67 < \chi^2(0.95,5) = 11.07.$$

```
fitp <- glm(y~factor(sex)*factor(Dep)+offset(log(nb)), family=poisson)
anova(fitp)</pre>
```

```
## Analysis of Deviance Table
## Model: poisson, link: log
##
## Response: y
##
## Terms added sequentially (first to last)
##
##
##
                 Df Deviance Resid. Df
## NULL
## factor(sex) 1 58.13
## factor(Dep) 5 486.89
                                         10
                                          5
## factor(sex):factor(Dep) 5 6.67
                                          0
## Resid. Dev
## NULL 551.69
## factor(sex)
                            493.56
## factor(Dep)
                             6.67
## factor(sex):factor(Dep)
                             0.00
qchisq(0.95,5) ## reject interaction
## [1] 11.0705
```

d) Le modèle final est celui avec une seule variable explicative dichotomique : le département. La déviance pour ce modèle est 7.5706, ce qui est légèrement supérieur à 6, le nombre de degrés de liberté. Toutefois, puisque $Deviance/dl \approx 1.26$, cela n'est pas très alarmant, et il n'y a pas de raison de supposer que le modèle de Poisson est inadéquat. La statistique de Pearson est 8.03, ce qui est aussi une valeur attendue pour la loi chi-carrée avec 6 degrés de liberté.

```
fitpDep <- glm(y~factor(Dep)+offset(log(nb)),family=poisson)</pre>
summary(fitpDep)
##
## Call:
## qlm(formula = y ~ factor(Dep) + offset(log(nb)), family = poisson)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.8481 -0.4187 0.1160 0.4595 2.2321
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.43981 0.04079 -10.782 <2e-16 ***
## factor(Dep)1 -0.01830 0.06608 -0.277 0.782
## factor(Dep)2 -0.60784 0.06906 -8.801 <2e-16 ***
## factor(Dep)3 -0.64004 0.07336 -8.725 <2e-16 ***
## factor(Dep)4 -0.93966 0.09201 -10.212 <2e-16 ***
## ---
## Signif. codes:
```

```
## 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 551.6926 on 11 degrees of freedom
## Residual deviance: 7.5706 on 6 degrees of freedom
## AIC: 95.769
##
## Number of Fisher Scoring iterations: 4
sum((y-fitted(fitpDep))^2/fitted(fitpDep))
## [1] 8.025236
pchisq(8.025236,6)
## [1] 0.7637397
```

e) On recommence et on obtient exactement les mêmes conclusions :

```
fitbSex <- glm(cbind(y,nb-y)~factor(sex),family=binomial)</pre>
summary(fitbSex)
##
## Call:
## glm(formula = cbind(y, nb - y) ~ factor(sex), family = binomial)
##
## Deviance Residuals:
## Min 10
                    Median
                                 30
                                           Max
## -16.7915 -4.7613 -0.4365 5.1025 11.2022
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -0.22013 0.03879 -5.675 1.38e-08 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
    Null deviance: 877.06 on 11 degrees of freedom
## Residual deviance: 783.61 on 10 degrees of freedom
## AIC: 856.55
##
## Number of Fisher Scoring iterations: 4
fitb2 <- glm(cbind(y,nb-y)~factor(sex)+factor(Dep), family=binomial)
summary(fitb2)
##
## Call:
\#\# qlm(formula = cbind(y, nb - y) ~ factor(sex) + factor(Dep), family = binomial)
##
```

```
## Deviance Residuals:
## 1 2 3 4 5 6
## -1.2487 -0.0560 1.2533 0.0826 1.2205 -0.2076
## 7 8 9 10 11 12
## 3.7189 0.2706 -0.9243 -0.0858 -0.8509 0.2052
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.58205 0.06899 8.436 <2e-16 *** ## factor(sex)1 0.09987 0.08085 1.235 0.217
## factor(Dep)1 -0.04340 0.10984 -0.395 0.693
## factor(Dep)2 -1.26260 0.10663 -11.841 <2e-16 ***
## factor(Dep)3 -1.29461 0.10582 -12.234 <2e-16 ***
## ---
## Signif. codes:
## 0 '*** 0.001 '** 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
## Null deviance: 877.056 on 11 degrees of freedom
## Residual deviance: 20.204 on 5 degrees of freedom
## AIC: 103.14
## Number of Fisher Scoring iterations: 4
fitb <- glm(cbind(y,nb-y)~factor(sex)*factor(Dep), family=binomial)
anova (fitb)
## Analysis of Deviance Table
## Model: binomial, link: logit
##
## Response: cbind(y, nb - y)
##
## Terms added sequentially (first to last)
##
##
##
                 Df Deviance Resid. Df
## NULL
                       11
## factor(sex)
## factor(Dep)
                     1 93.45
                                    10
                     5 763.40
                                     5
## factor(sex):factor(Dep) 5 20.20
## Resid. Dev
## NULL
                        877.06
## factor(sex)
                        783.61
                        20.20
## factor(Dep)
## factor(sex):factor(Dep) 0.00
qchisq(0.95, 5)
## [1] 11.0705
```

6.6 If $Y_i \sim Poisson(E_i \lambda_i)$, then, using the canonical link,

$$\log(\mu_i) = \log(E_i) + \log(\lambda_i),$$

where λ_i is the mean SMR for observation i. $log(E_i)$, the natural logarithm of the expected count of lung cancer based on the demographics of the county, is passed to the glm function as an offset factor.

The data for males and females are concatenated to create a model with one covariate, Radon exposure, and one factor predictor, Sex, which takes 2 levels (0 for males and 1 for females).

```
Ytot <- c(YM, YF)
Etot <- c(EM, EF)
Sex <- c(rep(0,length(YM)),rep(1,length(YF))) ## 1 if female
Radontot <- rep (Radon, 2)
modsex <- glm(Ytot~Sex+offset(log(Etot)), family=poisson)</pre>
modsexrad <- glm(Ytot~Radontot+Sex+offset(log(Etot)), family=poisson)</pre>
anova (modsex, modsexrad)
## Analysis of Deviance Table
##
## Model 1: Ytot ~ Sex + offset(log(Etot))
## Model 2: Ytot ~ Radontot + Sex + offset(log(Etot))
## Resid. Df Resid. Dev Df Deviance
     172 410.27
## 1
## 2
         171
                  364.05 1 46.22
qchisq(0.99,1)
## [1] 6.634897
```

As shown above, the analysis of deviance shows strong evidence that the radon exposure influences the number of lung cancer in a particular county :

$$\Delta Deviance = 46.22 > \chi^2_{(1;0.99)} = 6.6349.$$

The null model and the model including sex only are fitted.

```
a) modtot <- qlm(Ytot~1+offset(log(Etot)), family=poisson)
  modsex <- glm(Ytot~Sex+offset(log(Etot)), family=poisson)</pre>
  anova (modtot, modsex)
  ## Analysis of Deviance Table
  ##
  ## Model 1: Ytot ~ 1 + offset(log(Etot))
  ## Model 2: Ytot ~ Sex + offset(log(Etot))
  ## Resid. Df Resid. Dev Df Deviance
  ## 1
         173
                  410.28
  ## 2
            172
                     410.27 1 0.0093398
  qchisq(0.95,1)
  ## [1] 3.841459
```

The analysis of deviance shows that $\Delta Deviance = 0.0093398 < \chi^2_{(1;0.95)} = 3.8415$. Hence, the null model is an appropriate simplification of the model including the factor Sex, so the factor is not significant. However, below is the R output for the analysis of deviance when the covariate Radon (known to be significant from a) is included in the model. If we first consider the model with main effects and interactions, we see that $\Delta Deviance = 8.823 > \chi^2_{(1;0.99)}$, meaning that the model with main effects only is not an adequate simplification of the model with main effects and interactions. Thus, the factor predictor Sex is significant in the model through its interaction with the covariate Radon. Note that even if the main effect of the Sex does not appear to be significant, it is kept in the model by convention.

```
modtotrad <- glm(Ytot~Radontot+offset(log(Etot)), family=poisson)</pre>
modsexrad <- glm(Ytot~Radontot+Sex+offset(log(Etot)),family=poisson)</pre>
modsexradINT <- glm(Ytot~Radontot*Sex+offset(log(Etot)), family=poisson)</pre>
anova (modtot, modtotrad, modsexrad, modsexradINT)
## Analysis of Deviance Table
## Model 1: Ytot ~ 1 + offset(log(Etot))
## Model 2: Ytot ~ Radontot + offset(log(Etot))
## Model 3: Ytot ~ Radontot + Sex + offset(log(Etot))
## Model 4: Ytot ~ Radontot * Sex + offset(log(Etot))
     Resid. Df Resid. Dev Df Deviance
## 1
          173
               410.28
                   364.06 1 46.219
## 2
           172
## 3
           171
                   364.05 1 0.011
       170
               355.23 1 8.823
```

b) The predictions are obtained using the command

```
predict (modsexradINT, data.frame (Radontot=6, Sex=0, Etot=1), type="response", se.fit=TRUE)
```

If the model Sex*Radon is used, we find

$$S\hat{M}R_{Sex=0,Radon=6} = 0.9708183,$$

with a standard error of 0.01415307.

c) The model Sex*Radon has a deviance of 355.23 on 170 degrees of freedom. A heuristic check for the validity of the model is to calculate the estimated dispersion parameter

$$\hat{\phi} = \frac{355.23}{170} = 2.089$$

and to compare it with 1, the dispersion parameter implied in the Poisson model. This check suggests the presence of overdispersion in the data as $\hat{\phi}$ is greater than 1. Fitting the quasipoisson model also leads to the same conclusion: the estimated dispersion parameter is 1.98311, closer to 2. Thus, we can conclude that the Poisson model is not adequate, we might consider fitting a Negative Binomial model to capture the overdispersion.

Fig. B.19 – Graphique des données de l'exercice 3.17 avec les droites de régression obtenues à l'aide des moindres carrés pondérés.

Fig. B.20 – Graphique des données de l'exercice 3.18

Fig. B.21 – Résidus pour GLM Gamma

Fig. B.22 – Logistic, Probit and Complementary Log-Log Model Fit

