Definition (Subcategory). A *subcategory* **D** of a category **C** is a category for which:

- 1. All the objects in $Ob_{\mathbf{D}}$ are in $Ob_{\mathbf{C}}$;
- 2. For any objects $X, Y \in \mathrm{Ob}_{\mathbf{D}}$, $\mathrm{Hom}_{\mathbf{D}}(X; Y) \subseteq \mathrm{Hom}_{\mathbf{C}}(X; Y)$;
- 3. If $X \in \mathrm{Ob}_{\mathbf{D}}$, then $\mathrm{Id}_X \in \mathrm{Hom}_{\mathbf{C}}(X;X)$ is in $\mathrm{Hom}_{\mathbf{D}}(X;X)$ and acts as its identity morphism;
- 4. If $f: X \to Y$ and $g: Y \to Z$ in **D**, then the composite $f \, \, \, \, \, \, \, g$ in **C** is in **D** and represents the composite in **D**.