RFI Monitoring and Mitigation for the Allen Telescope Array

Geoffrey C. Bower UC Berkeley

Strategy Overview

- Know the enemy
- Put many arrows in the quiver
 - No Magic Bullets
- Exploit large N capability
- Implement at all levels

Available Tools

- Modeling of environment
- Measurement
- Real time strategies

RFI Modeling: Hat Creek Terrain

RFI Modeling

- Visualyse simulation
- Free space model
- ITU-R P.526
 - Model includes topography, diffraction, tropospheric scatter, ducting/layer reflection, fade
- Future modeling: frequency, scale, model parameters, Longley-Rice
- Calibrated test measurements

Hat Creek: Total Path Loss

Hat Creek: Terrain Loss

VLA: Total Path Loss

VLA: Terrain Loss

Green Bank: Total Path Loss

Green Bank: Terrain Loss

RFI Monitor

- Simple design
 - Discone antenna
 - Broadband amp
 - Spectrum analyzer
 - Linux PC on 'net
- 0.1 to 10 GHz
 - 0.3 to 3 GHz currently
- Isotropic sensitivity

... (One of) the Enemies is Us

Moved the RFIM

Moved the RFIM Low Frequency Spectrum

Is Glonass Present at 1612 MHz?

Tracking Glonass

...The Enemy is Us, Part 2

Aircraft DME

RFI Sources Detected at Hat Creek

- Self-interference
- Satellites --- GPS, Iridium, DARS, etc.
- Aircraft
- Radar
- TV, cell phone, pager
- Microwave ovens

Real Time RFI Mitigation

- Monitoring
- Artificial horizons around known interferers

- Time Blanking
- Adaptive canceling
- Interferometric Nulling
- Postcorrelation Analysis

Artificial Horizons

		GPS	Iridium	Satellite	Radarsat
				radio	
Power density (dBm/m ²)		-95	-60	- 76	0
МВ	Power available	-83	-48	-64	+12
	at LNA (dBm)				
	Dynamic range (dB)	2.5	34	18	111
	Source equivalent in	2.9 kJy	9MJy	230 kJy	9 TJy
	11 GHz band	140 Hyd A	3.5 Quiet Suns	212 Cas A	39k Active Suns
10dBi	Power available	-110	-75	- 91	-26
	at LNA (dBm)				
	Source equivalent in	5 Jy	16 kJy	455 Jy	13 MJy
	11 GHz band		15 Cas A	5 Vir A	6 Active Suns

Time Blanking: Radar

Time Blanking: DME

Time Blanking Implementation

- Done in backends
- Correlator will have
 - 100 μsec precision
 - External & Internal Triggers
 - Channel, Antenna Configuration
 Undetermined

Adaptive Canceling

Rapid Prototyping Array

Cancellation of Glonass

Cancellation of GPS

ATA Implementation of Canceling

- Multiple reference antennas (~10)
- Correlator/black box operating on phasedarray signal
- Wiener or LMS solutions

Interferometric Nulling

Nulls with the ATA

Multiple Nulls

Nulls in Frequency Space

100 kHz

10 MHz

The Wages of Nulling

- Requires large-N to be effective
- Loss in SNR with number of nulls
- Must be able to update complex gains at ~100 Hz
- Matrix inversion is computationally expensive

Postcorrelation Analysis

- Examine output of correlator/visibility matrix
- ~100 element PC cluster
- Data rate:
 - 350x349/2
 - 4 Stokes
 - 1024 Channels
 - 32 bit
 - complex
 - 100 Hz sampling
 - → 1.600 Tbits/sec: too much!

How to Use the Tools

- Blanking
 - Radar, Aircraft, intermittent signals
- Adaptive Canceling
 - Reference antenna(s) on transmitter
- Interferometric Nulling
 - Predictable trajectories: satellites, fixed transmitters
- Postcorrelation Analysis
 - Broadly adaptable

Future Steps

- Algorithm development
- More modeling of environment
- Angle of arrival methods

Implementation!

