Chapter 7

Probability.

7.1 Probability Spaces.

Definition 7.1.1. A probability space defined by a tuple (Ω, P) such that:

- 1. Ω is a set, called the sample space. Any element $\omega \in \Omega$ is named an atomic event. Conceptually, we think of atomic events as possible outcomes of our experiment. Any subset $A \subset \Omega$ is an event.
- 2. P, called the probability function, is a function that assigns a number in [0,1] to any event, denoted as $P:2^{\Omega} \to [0,1]$, and satisfies:
 - (a) For any event $A \subset \Omega$, $P(A) = \sum_{w \in A} P(w)$.
 - (b) Normalization, over the atomic events, to 1, which means $\sum_{\omega \in \Omega} P(\omega) = 1$.

Example 7.1.1. [COMMENT] Add dice roll, as an example.

Claim 7.1.1. *Probability function satisfies the following properties:*

- 1. $P(\emptyset) = 0$.
- 2. Monotonic, If $A \subset B \subset \Omega$ then $P(A) \leq P(B)$.
- 3. Union Bound, $P(A \cup B) \leq P(A) + P(B)$.
- 4. Additivity for disjointness events. If $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$.
- 5. Denote by \bar{A} the complementary event of A, which means $A \cup \bar{A} = \Omega$. Then, $P(\bar{A}) = 1 P(A)$.

Example 7.1.2. Let's proof the additivity of disjointness property. Let A, B disjointness events, so $A \cap B = \emptyset$ then

$$\begin{split} P(A \cup B) &= \sum_{w \in A \cup B} P(w) \\ &= \underbrace{\sum_{w \in A, w \notin B} P(w)}_{P(A)} + \underbrace{\sum_{w \in B, w \notin A} P(w)}_{P(B)} + \underbrace{\sum_{w \in A, w \in B} P(w)}_{Q(A)} \\ &= P(A) + P(B) \end{split}$$

Definition 7.1.2. Let (Ω, P) be a probability space. A random variable X on (Ω, P) is a function $X: \Omega \to \mathbb{R}$. An indicator, is a random variable defined by an event $A \subset \Omega$ as follows

$$X(\omega) = \begin{cases} 1 & \omega \in A \\ 0 & \omega \notin A \end{cases}$$

Sometimes, we will use the notation $\{X = x\}$ to denote the event A such:

$$A = \{\omega : X(\omega) = x\} := \{X = x\}$$

Example 7.1.3. [COMMENT] Add dice roll, as an example.

Definition 7.1.3. We will say that two random variable $X,Y:\Omega\to\mathbb{R}$ are independent if for any $x\in\operatorname{Im} X$ and $y\in\operatorname{Im} Y$:

$$P(X = x \cap Y = y) = P(X = x) \cdot P(Y = y)$$

7.2 [COMMENT] Throw Keys to Cells.

[COMMENT] Add the description of throwing keys to cells. Define the random variable X_i^j .

Definition 7.2.1. Let $X : \Omega \to \mathbb{R}$ be a random variable, the expectation of X is

$$\mathbf{E}[X] = \sum_{\omega \in \Omega} X(\omega) P(\omega) = \sum_{x \in \operatorname{Im} X} x P(X = x)$$

Observes that if P is distributed uniformly, then the expectation of X is just the arithmetic mean:

$$\mathbf{E}[X] = \sum_{\omega \in \Omega} X(\omega) P(\omega) = \frac{1}{|\Omega|} \sum_{\omega \in \Omega} X(\omega)$$

Claim 7.2.1. *The expectation satisfies the following properties:*

- 1. Monotonic, If $X \leq Y$ (for any $\omega \in \Omega$) then $\mathbf{E}[X] \leq \mathbf{E}[Y]$.
- 2. Linearity, for $a, b \in \mathbb{R}$ it holds that $\mathbf{E}[aX + by] = a\mathbf{E}[X] + b\mathbf{E}[Y]$.
- 3. Independently, if X, Y are independent, then $\mathbf{E}[X \cdot Y] = \mathbf{E}[X] \cdot \mathbf{E}[Y]$.
- 4. For any constant $a \in \mathbb{R}$ we have that $\mathbf{E}[a] = a$.

Proof. 1. Monotonic, if $X \leq Y$ then:

$$\mathbf{E}\left[X\right] = \sum_{\omega \in \Omega} X(\omega) P(\omega) \le \sum_{\omega \in \Omega} Y(\omega) P(\omega) = \mathbf{E}\left[Y\right]$$

2. Linearity,

$$\mathbf{E}[aX + bY] = \sum_{\omega \in \Omega} (aX(\omega) + bY(\omega)) P(\omega)$$
$$= a \sum_{\omega \in \Omega} X(\omega) P(\omega) + b \sum_{\omega \in \Omega} Y(\omega) P(\omega)$$

3. Independently,

$$\begin{split} \mathbf{E}\left[XY\right] &= \sum_{x,y \in \operatorname{Im} X \times \operatorname{Im} Y} xy P(X = x \cap Y = y) \\ &= \sum_{x,y \in \operatorname{Im} X \times \operatorname{Im} Y} xy P(X = x) P(Y = y) \\ &= \sum_{x \in \operatorname{Im} X} \sum_{y \in \operatorname{Im} Y} xy P(X = x) P(Y = y) \\ &= \sum_{x \in \operatorname{Im} X} x P(X = x) \sum_{y \in \operatorname{Im} Y} y P(Y = y) \\ &= \sum_{x \in \operatorname{Im} X} x P(X = x) \mathbf{E}\left[Y\right] \\ &= \mathbf{E}\left[X\right] \mathbf{E}\left[Y\right] \end{split}$$

4. Let X be the random variable which is also the constant function $X(\omega) = a$ for any $\omega \in \Omega$. Then we have that

$$\begin{split} \mathbf{E}\left[X\right] &= \sum_{\omega \in \Omega} X(\omega) P(\omega) \\ &= \sum_{\omega \in \Omega} a P(\omega) = a \cdot 1 = a \end{split}$$

Example 7.2.1. [COMMENT] Expectation of indicators and their multiplication.

Example 7.2.2. [COMMENT] How many keys trowed into the same cell as the first key thrown to?

```
1 let B[0:n-1] be a new array 2 for i \leftarrow [0,n-1] do 3 | make B_i an empty list 4 end 5 for i \leftarrow [1,n] do 6 | insert A_i into list B_{\lfloor nA_i \rfloor}] 7 end 8 for i \leftarrow [0,n-1] do 9 | sort list B_i 10 end 11 concatenate the lists B_0,B_1,...,B_{n-1} together and 12 return the concatenated lists Algorithm 1: bucket-sort(A,n)
```

Denote by $X_i:[n]\to[n]$ then random variable that counts the number of elements fallen in the *i*th bucket. The Expectation of the sorting running time is: