第一章 单片机及MCS51基本结构

1.1 微型计算机系统(主机+外设)

单片微型计算机主机系统

1.2 MCS51单片机构成

1.2.1 MCS51的总体构成

1. 2. 2 MCS51单片机内部结构

1.2.3 MCS51单片机主要硬件资源配置(内部结构)

- 1. 高档8位CPU
- 2. 振动器和时钟电路
- 3. 内部程序存储器、数据存储器
- 4. 外部程序存储器、数据存储器,寻址空间分离,各达到64KB
- 5. 二十多个特殊功能寄存器
- 6. 32根线的并行双向I/O口
- 7. 2个16位定时器/计数器,支持4种工作模式
- 8. 1个全双工串行I/O口,支持4种工作模式
- 9. 5个中断源,分为两个优先级
- 10. 布尔处理机,支持灵活方便的位运算
- 11. MCS51兼容指令系统,支持5种寻址方式

1.2.4 MCS-51单片机的主要性能特点

MCS-51系列单片机是Intel公司1980推出的高档8位机

生产工艺有两种: HMOS工艺(高密度短沟道MOS工艺)

CHMOS工艺(互补金属氧化物的HMOS工艺)

产品型号中带 "C"的即为CHMOS芯片

分为二个子系列:

单片机类	_	字储器	掩膜ROM	EPROM	RAM
	51子	8031			128B
基本型	系列	8051	4kB		128B
	21/3	8751		4kB	128B
	52子	8032			256B
增强型	系列	8052	8kB		256B
	71/1	8752		8kB	256B

- HMOS电平与TTL电 平兼容
- CHMOS电平与TTL、 CMOS都兼容

1. 2. 4 MCS-51单片机的主要性能特点

1	内部程序存储器 (ROM)	4kB/8kB
2	内部数据存储器 (RAM)	128B/256B
3	输入/输出(I/O)端口	32口线, 4个端口
4	外部程序存储器寻址空间	64kB
5	外部数据存储器寻址空间	64kB
6	定时/计数器	51有2个,52有3个,16位
7	串行口	全双工,4种工作方式,可选
8	寄存器区	4个工作区,32个通用寄存器
9	中断	5个,2个优先级,可编程
10	堆栈	位置可编程,深度达128字节
11	布尔处理机	1个位处理机和1个指令集
12	指令系统	加、减、乘、除、堆栈和位操作等功能

1.3 MCS51的封装及引脚定义

1.3.1 MCS51的逻辑符号

表1.3.1 MCS-51单片机逻辑图

1.3.2 MCS51的实际封装图之一、二

图1.3.2 MCS-51单片机典型封装形式

MCS-51单片机的引脚介绍:

1. 主电源引脚 Vss和Vcc

Vss (20脚):接地

Vcc (40脚):接主电源+5V,正常操作和对EPROM编程及验证时均接+5V电源。

2. 外接晶振引脚 XTAL1和XTAL2

XTAL1 (19脚):接外部晶振的引脚,它是片内振荡电路输入端;

XTAL2 (18脚): 接外部晶振的引脚,它是片内振荡电路输出端。

图. 振荡时钟电路

3. 控制信号引脚

RST / VPD (9脚):

复位引脚RST,该引脚上2个机器周期的高电平使单片机复位。

备用电源引脚VPD,当Vcc掉电期间,VPD接备用电源,为RAM供电,以保持RAM内的数据。

ALE / PROG (30脚):

当访问片外存储器时,ALE(允许地址锁存)的输出用于锁存低字节地址信号。 当CPU不访问外部存储器时,ALE端以晶振频率的1/6频率,周期性地输出正脉冲信 号。

对于EPROM型单片机,该引脚在编程期间用于输入编程脉冲(PROG)。PSEN (29脚):

访问片外程序存储器的<mark>读选通</mark>信号,低电平有效。访问外部数据存储器和内部程序存储器,不产生此信号。

ALE和PSEN是外部扩展存储器访问的主要时序引脚。

3. 控制信号引脚

EA / Vpp (31脚):

当EA为高电平时,CPU可访问片内程序存储器4KB或8KB的地址范围。若PC值超出4KB/8KB地址时,将自动转向访问片外程序存储器。当EA为低电平时,则只能访问片外程序存储器,不论片内是否有程序存储器。

对于EPROM型单片机(8751),在对EPROM编程期间,此引脚用于施加+21V的编程电压Vpp。

4. 输入/输出引脚P0、P1、P2、P3

P0.0~P0.7 (39~32脚): P0口是一个8位漏极开路型双向I/O端口。 在访问片外存储器时,它分时做低8位地址总线和8位双向数据总线。P0口 能驱动8个LSTTL负载。

P1.0~P1.7 (1~8脚): **P1**口是一个带内部上拉电阻的8位双向I / O口。 **P1**能驱动4个LSTTL负载。

在8032/8052子系列单片机中,P1.0还相当于专用功能端T2,即定时器2的计数触发输入端; P1.1还相当于专用功能端T2EX,即定时器T2的外部控制端。

4. 输入 / 输出引脚P0、P1、P2、P3

P2.0~P2.7 (21~28脚): P2口是一个带内部上拉电阻的8位双向I/O口。在访问外部存储器时,由它输出高8位地址($A8 \sim A15$)。P2可以驱动4个LSTTL负载。

P3.0~P3.7 (10~17脚): P3口是一个带内部上拉电阻的双向I/O口。在MCS-51/52中,这8个引脚还用于专门的第二功能,见下表。P3口能驱动4个LSTTL负载。

P3口的第二功能表

引脚	第二功能
P3.0	RxD(串口输入)
P3.1	TxD (串口输出)
P3.2	INTO (外部中断0输入)
P3.3	INT1 (外部中断1输入)
P3.4	T0 (定时器0计数输入)
P3.5	T1(定时器1计数输入)
P3.6	WR (外部数据存储器写选通)
P3.7	RD (外部数据存储器读选通)

总结: MCS-51的40条引脚中,有2条主电源引脚,2条外接晶体引脚,4条控制或其它电源复用引脚,32条I/O引脚。

MCS-51单片机的CPU

MCS-51单片机的CPU由运算器和控制器组成。

运算器主要用来对操作数进行算术、逻辑运算和 位操作,由算术逻辑单元ALU、累加器ACC、B寄存器、 暂存器、程序状态字寄存器PSW、BCD码运算调整电 路等组成。

运算器

ALU(Arithmetic and Logic Unit): 算术逻辑单元

ALU是由专门执行算术和逻辑运算的数字电路组成的,它用于对数据进行算术四则运算(加、减、乘、除)和逻辑运算(与、或、异或、求补、清零等)、移位操作(循环)等功能。

MCS-51的ALU还具有独特的位处理功能:置位、清位、反位、位与、位或、测试转移等。

ALU的两个操作数,一个由A通过暂存器2输入,另一个由暂存器1输入,运算结果的状态送PSW。

运算器

累加器ACC

ACC是一个8位的寄存器,简称为A,它通过暂存器与ALU相连。它是CPU执行指令时使用最频繁的寄存器。

累加器的作用:

- 1) ALU单元的输入数据源之一,又是ALU运算结果的存放单元;
- 2)数据传输大多通过累加器完成。

累加器A的进位标志是Cy

运算器

通用寄存器B

通用寄存器B常用于乘除操作。

- 乘法指令的两个操作数分别取自A和B, 其乘积结果存放在B和A两个8位寄存器中;
- 除法指令中,被除数取自A, 除数取自B, 商数存放于A, 余数存放于B;
- 在其它指令中, B寄存器可作为通用寄存器或RAM的一个单元 使用。

控制器的主要任务是识别指令,并根据指令的性质去控制单片机各功能部件,从而保证单片机各部分能自动而协调地工作

控制器由程序计数器PC、程序地址寄存器、指令寄存器IR、指令译码器ID、时序控制电路等组成。

程序计数器PC

程序计数器PC中存放即将执行的下一条指令的地址。 改变PC中的内容就可改变程序执行的方向。它是一个16位 寄存器,可对64KB程序存储器直接寻址。PC是一个独立 的寄存器,随时指向将要执行的指令的地址,并有内容自 动加1的功能,但没有给用户提供它的物理地址。

程序计数器PC

程序计数器的基本工作方式有以下几种:

- 1) 当程序顺序执行时,程序计数器自动加1。
- **2**) 执行有条件或无条件转移指令时,程序计数器将被置入新的数值,从而使程序的流向发生变化。
 - 3) 在执行调用子程序指令或响应中断时,单片机自动完成如下操作:
 - a) 将PC的现行值,即下一条将要执行指令的地址,也就是断点值,自动压入堆 栈,保护起来;
 - b) 将子程序的入口地址或中断向量的地址送入PC,程序流向发生变化,去执行子程序或中断服务子程序。子程序或中断服务子程序执行完毕,遇到返回指令RET或RETI时,将栈顶的断点值弹到程序计数器PC中,程序的流向又返回到断点处,从断点处继续执行原来的程序。

指令寄存器IR和译码器ID

指令寄存器IR中存放指令代码。CPU执行指令时,由程序存储器中读取的指令代码经指令寄存器IR送入译码器ID,经译码后由时序控制电路发出相应的控制信号,以完成指令所规定的操作。

时序控制电路

时序控制电路产生CPU的操作时序。MCS-51单片机根据PC中的内容从程序存储器中取出指令操作码,放至指令寄存器中,该指令操作码经译码器分析译码形成各种控制信息,在CPU内部协调各寄存器之间的数据传送,完成运算器ALU的各种算术或逻辑运算操作;对外部发出地址锁存信号ALE、外部程序存储器选通信号PSEN以及读、写控制信号等。

1.4 MCS51/52的存储器空间配置

MCS51的64K程序存储器和64K数据存储器空间独立编址

MCS-51内部集成一定容量的程序存储器(ROM)和数据存储器(RAM),并且还具有强大的外部存储器扩展能力,可以扩大至64KB。

访问这3个不同的逻辑空间时,采用不同形式的指令。

1.4.1 程序存储器

程序存储器用于存放编好的程序、表格和常数。程序存储器分为片内和片外两部分。8031片内无程序存储器,必须扩展片外程序存储器。由EA引脚的电平状态决定程序执行片内/片外存储器中的程序。

寻址范围: 0000H~FFFFH 容量64KB, 地址长度: 16位, 存放在(PC)中。

EA = 1 , 寻址内部ROM;

当PC值超过片内ROM容量时会自动转向 外部存储器空间。

EA = 0 , 寻址外部ROM。

8031单片机 EA 接低电平。

MCS-51的程序存储器,64KB的地址空间是统一编址的。

1.4.1 程序存储器

程序存储器

程序存储器

程序存储器以16位的程序计数器PC作地 址指针,通过16根地址总线,可以寻址64KB 的地址空间,片内、外程序存储器统一编址。

当EA=1时,PC在0~0FFFH范围内执行 片内程序存储器中的程序,超出片内程序存 储器容量后,自动转向片外存储器空间执行 程序。当EA=0时,PC在0~FFFFH,64k范 围内执行片外程序存储器中的程序。

程序存储器

程序存储器中有7个特殊地址单元:

0000H: 复位后PC=0000H, 即程序从0000H开始执行指令。

0003H:外部中断0入口地址

000BH: 定时器0溢出中断入口地址

0013H:外部中断1入口地址

001BH: 定时器1溢出中断入口地址

0023H: 串行口中断入口地址

002BH: 定时器2溢出中断入口地址(针对8032系列)

说明:

0000H单元:单片机复位后,(**PC**)=**0000H**,它是系统执行程序的起始地址,通常在该单元处放一条绝对跳转指令,而用户程序从跳转地址开始安放。

其它6个特殊单元:分别对应6种中断服务子程序入口地址,通常在这些入口地址处都放一条绝对跳转指令,而真正的中断服务子程序都从跳转地址开始安放。

1.4.2 数据存储器

内部数据存储器在物理上分为3个不同的块:

- 低128字节块
- 高128字节块
- 专用寄存器块

其中,高128字节块和专用寄存器块的地址重合,高128字节块,采用寄存器间址寻址方式访问;专用寄存器块,采用直接寻址方式访问;低128字节块,采用两种方式都可以访问。

内、外RAM空间重叠:

内部RAM的访问,用MOV指令; 外部RAM的访问,用MOVX指令。

外部扩展I/0口或外部功能 部件接口寄存器:

同外部RAM统一编址,用 MOVX指令进行访问.

内部数据存储器

内部RAM容量较小,用于存放程序运行时所需要的常数和变量,它的存取速度一般比ROM快。

内部数据存储器

低128字节块(00H—7FH)

- ▶ **00H**—**1FH**: 4个通用工作寄存器区,每区8个R(R0—R7),当前区的选 择由PSW(程序状态字)的RS1、RS0组合决定;可使用寄存器寻址方式 访问;
- ▶ **00H**—**7FH**:可全部用作程序堆栈区(硬件复位后堆栈指针SP为07H,即 在工作R区,通常设在30H以上,避开R区和位寻址区)
- ➤ **20H**—**2FH**: 位寻址区16个单元(16×8)共128位,以及SFR块中可位寻址的12个单元(单元地址可整除以8)共93位(12×8-3(IP中2位和IE中1位除外)),这28个单元总共有221位可位地址;它们构成了布尔(位)处理机的存储空间。

位地址的访问只能采用直接寻址,且用在位操作指令中(从而区别高128B的RAM直接寻址)。

内部数据存储器

专用寄存器块(SFR)(80H~FFH)

SFR(Special Function Register)是各功能部件的状态及控制寄存器,反映了单片机的内部工作状态及工作方式。

MCS-51系列单片机内部共有21个具有特殊功能寄存器<u>(8031以上的系列有更多的SFR)</u>,它们离散地分布在内部RAM 80H~FFH的地址范围内,采用直接寻址访问。

- 在80H~FFH 共128个字节单元中,特殊功能寄存器只离散地占用了部分字节,特殊功能寄存器以外的存储单元没有定义,用户不能对这些没有定义的单元进行读/写操作,若对其进行访问,则将得到一个不确定的随机数。
- 部分SFR可进行位寻址,可位寻址的SFR的字节地址的末位只能是X0H或X8H (SFR块中可位寻址的12个单元(单元地址可整除以8))。

高128字节块(80H~FFH)

52子系列,使用寄存器间址方式访问。

外部数据存储器

外部RAM(或扩展I/O口):

采用MOVX指令,硬件自动访问最大64KB空间,采用R0或R1间址(寻址最低256字节),或DPTR间址(寻址整个64K范围)。

内部RAM(低128字节块中的位寻址区: 20H—2FH)

	I								
字节地址	位地址								
	D ₇	De	Ds	D۵	D₃	D ₂	D ₁	Do	
2FH	7FH	7EH	7DH	7CH	7BH	7AH	79H	78H	
2EH	77H	76H	75H	74H	73H	72H	71H	70H	
2DH	6FH	6EH	6DH	6CH	6BH	6AH	69H	68H	
2CH	67H	66H	65H	64H	63H	62H	61H	60H	
2BH	5FH	5EH	5DH	5CH	5BH	5AH	59H	58H	
2AH	57H	56H	55 H	54H	53H	52H	51H	50H	
29H	4FH	4EH	4DH	4CH	4BH	4AH	49H	48H	
28H	47H	46H	45H	44H	43H	42H	41H	40H	
27H	3FH	3EH	3DH	3CH	звн	3AH	39H	38H	
26H	37H	36H	35H	34H	33H	32H	31H	30H	
25H	2FH	2EH	2DH	2CH	2BH	2AH	29H	28H	
24H	27H	26H	25H	24H	23H	22H	21H	20H	
23H	1FH	1EH	1DH	1CH	1BH	1AH	19H	18H	
22H	17H	16H	15H	14H	13H	12H	11H	10H	
21H	0FH	0EH	0DH	0CH	0BH	0AH	09H	08H	
20H	07H	06H	05H	04H	03H	02H	01H	00H	

位寻址区(20H—2FH)16个字节。

16*8=128位,每一位都有一个位地址,范围为: 00H—7FH,位地址区也可作为一般RAM使用。

内部RAM(专用寄存器块(SFR)中的位寻址区)

寄存器	位地址/位定义								地址
В	F7	F6	F5	F4	F3	F2	F1	F0	F0H
ACC	E7	E6	E5	E4	E3	E2	E1	E0	E0H
PSW	D7	D6	D5	D4	D3	D2	D1	D0	D0H
	CY	AC	F0	RS1	RS0	OV	/	Р	
IP	-	-	BD	ВС	BB	BA	B9	B8	B8H
P3	B7	B6	B5	B4	B3	B2	B1	В0	вон
	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0	
IE	AF	-	AD	AC	AB	AA	A9	A8	A8H
P2	A7	A6	A5	A4	A3	A2	A1	A0	A0H
	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	
SBUF									99H

内部RAM(专用寄存器块(SFR)中的位寻址区)

SCON	9F	9E	9D	9C	9B	9A	99	98	98H
P1	97H	96H	95H	94H	93H	92H	91H	90H	90H
	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0	
TH1									8DH
TH0				如今共	寄存器				8CH
TL1				双子口	可什价				8BH
TL0									8AH
TMOD	GATE	C/T	M1	MO	GATE	C/T	M1	MO	89H
TCON	8F	8E	8D	8C	8B	8A	89	88	88H
	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
PCON	SMOD	1	1	1	GF1	GF0	PD	IDL	87H
DPH									83H
DPL				双字节	方寄存器				82H
SP									81H
P0	87	86	85	84	83	82	81	80	80H
	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	

内部RAM的可位寻址区

