Generalized estimating equation modeling on correlated microbiome sequencing data with longitudinal measures

Emily Palmer

Journal Club, Oregon State University

March 14, 2021

Overview

Introduction

Correlation strucutre

Taxonomic structure of OTUs Modelling correlations from repeated measures Integrative Correlation Matrix

Microbiome Taxonomic Longitudinal Correlation model GEE framework

Introduction

- Estimate correlations between multiple OTUs
- Encorporate correlations into models with longitudinal OTU measures
- Estimate predictors effects and OTU measures
- Two-part Microbiome Taxonomic Longitudinal Correlation (MLTC) model

Notation and Definitions

- ► N OTUs
- ► / levels:
 - ▶ 1st taxonomic level is the level at which all observed *N* OTUs belong to the same taxon but not at one level lower
- ▶ M_i : number of taxa at level i ($M_1 = 1, M_I = N$)
- $ightharpoonup t_{m_i,i}$: taxon at level i
- ▶ $n_{m_i,i}$: number of OTUs belonging to taxon $t_{m_i,i}$

Example

Correlation matrix of taxonomic structure - Assumptions

- Assume that OTUs that belong to the same taxa at some higher level have some correlation
- From taxonomic structure, all OTUs will belong to same taxa at hightest level, so there are $\binom{N}{2}$ possible correlations infeasible to model
- Clusters of OTUs (otus belonging to the same taxa)
- Assume that two pairs of OTUs have the same correlation if the first common taxa of both pairs are identical If \mathcal{P}^* and \mathcal{P}^\dagger are two pairs of OTUs, with correlation ρ^* and ρ^\dagger . $t_{m_i^*,i^*}$ is first common taxa of \mathcal{P}^* $t_{m_i^\dagger,i^\dagger}$ is first common taxa of \mathcal{P}^\dagger

$$\rho^* = \rho^\dagger \leftrightarrow t_{m_i^*,i^*} = t_{m_i^\dagger,i^\dagger}$$

Finding the taxonomic structure matrix

- ► The taxonomic structure matrix
- ► Go through algoritm...

Correlations of longitudinal data

Types of correlations between pairs of time points

- Exchangable
 - Assumes all correlations are equal to each other
- ► Toeplitz
 - Assumes time points with equal temporal distance have equal correlation
- Unstructured
 - Assumes each pair has a different correlations
 - Most complicated structure for correlation parameter estimation

Correlation structure matrix for the the same individual is dentoed $\Omega_{\mathcal{T}}$

Example

Multiple Columns

Examp Excha n		timepo structu i		Toeplitz structure				
	T_{1}	T_2	T_3		T_1	T_2	T_{z}	
T_1	\mathbb{D}	Î	Î	T_{1}	\mathbb{D}	Î	ÎÎ	
T_2	Î	\mathbb{D}	Î	T_{2}	Î	\mathbb{D}	Î	
T_3	Î	Î	\mathbb{D}	T_3		Î	\mathbb{D}	

Combining longitudinal and sample correlation

When both longitudinal and sample correlations exist, the repeated measure correlation matrix is all combinations of time points and repeated samples

	(T_1,S_1)	(T_2,S_1)	(T_3,S_1)	(T_1,S_2)	(T_2,S_2)	(T_3,S_2)
(T_1,S_1)	\mathbb{D}	å	å	00	000	000
(T_2,S_1)	å	\mathbb{D}	å	000	88	000
(T_3,S_1)	å	å	\mathbb{D}	000	000	88
(T_1,S_2)	00	000	000	\mathbb{D}	å	ů
(T_2,S_2)	000	ÕÕ	000	ů	\mathbb{D}	ů
(T_3,S_2)	888	000	åå	å	å	\mathbb{D}

Integrative Correlation Matrix

$$oldsymbol{\Omega}(\Gamma_{ab}) = egin{pmatrix}
ho_{(\Gamma_{ab},\Omega_{11})} & \cdots &
ho_{(\Gamma_{ab},\Omega_{1L})} \ dots & \ddots & dots \
ho_{(\Gamma_{ab},\Omega_{L1})} & \cdots &
ho_{(\Gamma_{ab},\Omega_{LL})} \end{pmatrix}.$$

$$m{R} = egin{pmatrix} m{\Omega}^{11} & \cdots & m{\Omega}^{1N} \ dots & \ddots & dots \ m{\Omega}^{N1} & \cdots & m{\Omega}^{NN} \end{pmatrix}$$

Dimention of $R=(N\times L)\times (N\times L)$ Diagonals of $R=\rho(\mathbb{D},\mathbb{D})$ are 1, off-diagonals need to be estimated

Introduction to MTLC:

MTLC:

- Estimate predictor effects
- Estimate correlation coefficients between OTUs, longitudinal measures and other repeated measures
- Perform hypothesis testing of predictor effects

Generalized estimating equation framework

- \triangleright y_k independent clusters $k = 1, \dots, K$
- ▶ J_k cluster length for cluster $y_k = (y_{k1}, ..., y_{kJ_k})$
- $ightharpoonup x_{kj}$ the vector of covariates with length p
- $\blacktriangleright \boldsymbol{\mu}_k = (\mu_{k1}, \dots, \mu_{kJ_k})$
- \triangleright Each observation y_{kj}

$$g(\mu_{kj}) = \mathsf{x}'_{kj}\boldsymbol{\beta}$$

 \triangleright Conditional variance of y_{kj}

$$Var(y_{kj}|\boldsymbol{x}_{kj}) = v(\boldsymbol{\mu}_{kj}\phi)$$

v is the variance function depending on the distribution of y_{kj} , ϕ is dispersion parameter

cont

lacktriangle Estimate eta by solving the generalized estimating equation

$$U(\beta) = \sum_{k=1}^K \boldsymbol{D}_k' \boldsymbol{V}_k^{-1} (\boldsymbol{y}_k - \boldsymbol{\mu}_k) = 0$$

- lacksquare $D_k = rac{d\mu_k}{deta}$, lacksquare $A_k^{1/2} R_k(
 ho) A_k^{1/2}$,
- ▶ $\mathbf{A}_k = diag(\mu_{k1}\phi, \dots, \mu_{kJ_k}\phi) \ \boldsymbol{\rho}$ collection of all correlation coefficients in \mathbf{R}_k
- $\triangleright \phi, \rho$ also need to be estimated

$$\hat{\phi} = \frac{1}{\sum_{k=1}^{K} J_k - p} \sum_{k=1}^{K} \sum_{j=1}^{J_k} e_{kj}^2$$

where e_{kj} is the pearson residual

 $\hat{\rho}$ is estimated as a funtion of ϕ and e_{kj} , depending on the correlation structure R

Hypothesis testing

In GEE theory, $\hat{\pmb{\beta}}$ is asymptotically normally distributed with mean $\pmb{\beta}$ and variance

Citation

An example of the \cite command to cite within the presentation:

This statement requires citation [Smith, 2012].

References

John Smith (2012)

Title of the publication

Journal Name 12(3), 45 - 678.