

SEQUENCE LISTINGS

5 SEQ ID NO. 1

SEQ ID NO. 1 is the amino acid sequence for HSPDE1B2. For comparative purposes the sequence for HSPDE1B1 is shown in as a comparison using CLUSTAL W (1.74) multiple sequence alignment

10	HSPDE1B1 HSPDE1B2	MELSPRSPPMLEESDCPSPLELKAPSKKMWIKLRSLLRYMVKQLENGEINIEELKKNL -----MANPVPVQRSHLQGPILRLR----YMKQLENGEINIEELKKNL ...: : : : : : * ****
15	HSPDE1B1 HSPDE1B2	EYTASLLEAVYIDETRQILDTEDELQELRSDAVPSEVRDWLASTFTQQARAKGRRRAEEKP EYTASLLEAVYIDETRQILDTEDELQELRSDAVPSEVRDWLASTFTQQARAKGRRRAEEKP *****
20	HSPDE1B1 HSPDE1B2	KFRSIVHAVQAGIFVERMFRRTYTSGPTYSTAVLNCLKNLDLWCFDFVFSLNQAADDHAL KFRSIVHAVQAGIFVERMFRRTYTSGPTYSTAVLNCLKNLDLWCFDFVFSLNQAADDHAL *****
25	HSPDE1B1 HSPDE1B2	RTIVFELLTRHNLIISRFKIPTVFLMSFLDALETGYGKYKNPYHNQIHAADVTQTVCFC RTIVFELLTRHNLIISRFKIPTVFLMSFLDALETGYGKYKNPYHNQIHAADVTQTVCFC *****
30	HSPDE1B1 HSPDE1B2	RTGMVHCLSEIELLAIIFAAAIHDYEHGTNSFHQTKSECAIVYNDRSVLENHHISSV RTGMVHCLSEIELLAIIFAAAIHDYEHGTNSFHQTKSECAIVYNDRSVLENHHISSV *****
35	HSPDE1B1 HSPDE1B2	FRLMQDDEMNIIFINLTKEFVELRALVIEMVLATDMSCHFQQVKTMKTALQQLERIDKPK FRLMQDDEMNIIFINLTKEFVELRALVIEMVLATDMSCHFQQVKTMKTALQQLERIDKPK *****
40	HSPDE1B1 HSPDE1B2	ALSLLLHAADISHPTKQWLHVSRWTKALMEEFFRQGDKEAEGLGPFSPLCDRTSTLVAQS ALSLLLHAADISHPTKQWLHVSRWTKALMEEFFRQGDKEAEGLGPFSPLCDRTSTLVAQS *****
45	HSPDE1B1 HSPDE1B2	QIGFIDFIVEPTFSVLTDAEKSVQPLADEDSKSKNQPSFQWRQPSLDVEVGDPNPDVVS QIGFIDFIVEPTFSVLTDAEKSVQPLADEDSKSKNQPSFQWRQPSLDVEVGDPNPDVVS *****

Sub B13

SEQ ID NO. 2

SEQ ID No. 2 is the nucleotide sequence for HSPDE1B2. For comparative purposes the sequence for HSPDE1B1 is shown in as a comparison using CLUSTAL W (1.74) multiple sequence alignment

PCS10350APME

	HSPDE1B1 HSPDE1B2	CATCAACCTCACCAAGGATGAGTTGTAGAACTCCGAGCCCTGGTCATTGAGATGGTGT *****
5	HSPDE1B1 HSPDE1B2	G GCCACAGACATGTCCTGCCATTCCAGCAAGTGAAGAACCATGAAGACAGCCTGCAACA GCCACAGACATGTCCTGCCATTCCAGCAAGTGAAGAACCATGAAGACAGCCTGCAACA *****
10	HSPDE1B1 HSPDE1B2	GCTGGAGAGGATTGACAAGCCAAGGCCCTGTCTACTGCTCCATGCTGCTGACATCAG GCTGGAGAGGATTGACAAGCCAAGGCCCTGTCTACTGCTCCATGCTGCTGACATCAG *****
15	HSPDE1B1 HSPDE1B2	CCACCCAACCAAGCAGTGGTGGTCCACAGCCGTTGGACCAAGGCCCTCATGGAGGAATT CCACCCAACCAAGCAGTGGTGGTCCACAGCCGTTGGACCAAGGCCCTCATGGAGGAATT *****
20	HSPDE1B1 HSPDE1B2	CTTCCGTCAAGGGTGACAAGGGAGGCAGAGTTGGGCTGCCCTTTCTCCACTCTGTGACCG CTTCCGTCAAGGGTGACAAGGGAGGCAGAGTTGGGCTGCCCTTTCTCCACTCTGTGACCG *****
25	HSPDE1B1 HSPDE1B2	CACTTCCACTCTAGTGGCACAGTCTCAGATAGGGTCATCGACTTCATTGTGGAGCCCAC CACTTCCACTCTAGTGGCACAGTCTCAGATAGGGTCATCGACTTCATTGTGGAGCCCAC *****
30	HSPDE1B1 HSPDE1B2	ATTCTCTGTGCTGACTGACGTGGCAGAGAAGAGTGTTCAGCCCTGGGGATGAGGACTC ATTCTCTGTGCTGACTGACGTGGCAGAGAAGAGTGTTCAGCCCTGGGGATGAGGACTC *****
35	HSPDE1B1 HSPDE1B2	CAAGTCTAAAACCAGCCCAGCTTCAGTGGGCCAGGCCCTCTCTGGATGTGAAAGTGG CAAGTCTAAAACCAGCCCAGCTTCAGTGGGCCAGGCCCTCTCTGGATGTGAAAGTGG *****
40	HSPDE1B1 HSPDE1B2	AGACCCCAACCCGTATGTGGTCAGCTTCGTTCCACCTGGGTCAAGCGCATTAGGAGAA AGACCCCAACCCGTATGTGGTCAGCTTCGTTCCACCTGGGTCAAGCGCATTAGGAGAA *****
45	HSPDE1B1 HSPDE1B2	CAAGCAGAAATGGAAGGAACGGGCAGCAAGTGGCATCACCACCAACAGATGTCCATTGACGA TAAGCAGAAATGGAAGGAACGGGCAGCAAGTGGCATCACCACCAACAGATGTCCATTGACGA *****
50	HSPDE1B1 HSPDE1B2	GCTGTCCCCCTGTGAAGAAAGGGCCCCCATCCCCCTGCCAGATGAACACAAACAGAA GCTGTCCCCCTGTGAAGAAAGGGCCCCCATCCCCCTGCCAGATGAACACAAACAGAA *****
55	HSPDE1B1 HSPDE1B2	TGGGAATCTGGATTAGCCCTGGGCTGGCCAGGTCTTCATTGAGTCAAAGTGTGAT TGGGAATCTGGATTAGCCCTGGGCTGGCCAGGTCTTCATTGAGTCAAAGTGTGAT *****
60	HSPDE1B1 HSPDE1B2	GTCATCAGCACCATCCATCAGGACTGGCTCCCCATCTGCTCCAAGGGAGCGTGGTCGTG GTCATCAGCACCATCCATCAGGACTGGCTCCCCATCTGCTCCAAGGGAGCGTGGTCGTG *****
65	HSPDE1B1 HSPDE1B2	GAAGAAACAACCCACCTGAAGGCCAAATGCCAGAGATTGGGTTGGGAAAGGGCCCT GAAGAAACAACCCACCTGAAGGCCAAATGCCAGAGATTGGGTTGGGAAAGGGCCCT *****
70	HSPDE1B1 HSPDE1B2	CCCCACCTGACACCCACTGGGTCACCTTAATGTTCCGGCAGCAAGACTGGGAACCTC CCCCACCTGACACCCACTGGGTCACCTTAATGTTCCGGCAGCAAGACTGGGAACCTC *****
75	HSPDE1B1 HSPDE1B2	AGGCTCCCAGGGTCACTGTGCCCATCCTCAGCCTCTGGATTCTTCATGGCCAGGTG AGGCTCCCAGGGTCACTGTGCCCATCCTCAGCCTCTGGATTCTTCATGGCCAGGTG *****
	HSPDE1B1 HSPDE1B2	GCTGCCAGGGAGCGGGAGCTTCCCTGGAGGCTTCCCAGGGCTTGGGAAGGGTCAGAGA GCTGCCAGGGAGCGGGAGCTTCCCTGGAGGCTTCCCAGGGCTTGGGAAGGGTCAGAGA *****
	HSPDE1B1 HSPDE1B2	TGCCAGCCCCCTGGGACCTCCCCCATCCTTTGCCCTCAAGTTCTAAGCAATACATT TGCCAGCCCCCTGGGACCTCCCCCATCCTTTGCCCTCAAGTTCTAAGCAATACATT *****
	HSPDE1B1 HSPDE1B2	TGGGGGTTCCCTCAGCCCCCACCCAGATCTTAGCTGGCAGGTGGGTGCCCTTTTC TGGGGGTTCCCTCAGCCCCCACCCAGATCTTAGCTGGCAGGTGGGTGCCCTTTTC *****

PCS10350APME

	HSPDE1B1 HSPDE1B2	CTCCCCCTGGGAAGGGCTGGAATAGGATAGAAAGCTGGGGTTTCAGAGCCCTATGTGTG CTCCCCCTGGGAAGGGCTGGAATAGGATAGAAAGCTGGGGTTTCAGAGCCCTATGTGTG *****
5	HSPDE1B1 HSPDE1B2	GGGAGGGGAGTGGATTCCCTCAGGGCATGGTACCTTCTAGGACCTGGGAATGGGTGGA GGGAGGGGAGTGGATTCCCTCAGGGCATGGTACCTTCTAGGATCTGGGAATGGGTGGA *****
10	HSPDE1B1 HSPDE1B2	GAGGACATCCCTTCAACCCAGAATTGCGCTGCTTCAGCCCCATCTCCAGCCTGATCCTC GAGGACATCCCTTCAACCCAGAATTGCGCTGCTTCAGCCCCATCTCCAGCCTGATCCTC *****
15	HSPDE1B1 HSPDE1B2	TGAATCTTCCTTCCCTCCCTTCTGATATAGTGACTGGGCAAAGGAGCCATTGTGACC TGAATCTTCCTTCCCTCCCTTCTGATACAGTGACTGGGCAAAGGAGCCATTGTGACC *****
20	HSPDE1B1 HSPDE1B2	AGGGGCTGCAGGGAGGCCTTCCTGGACCTTCCTGGGACTGGTCTGGGCCCTGGGCT AGGGGCTGCAGGGAGGCCTTCCTGGACCTTCCTGGGACTGGTCTGGGCCCTGGGCT *****
25	HSPDE1B1 HSPDE1B2	TGTCGCCTGCCTGAGTCGGAGCCTTGCCTCCTTCCTCTCCCCCTGGGCTGGAGGC TGTCGCCTGCCTGAGTCGGAGCCTTGCCTCCTTCCTCTCCCCCTGGGCTGGAGGC *****
30	HSPDE1B1 HSPDE1B2	TGTATCGACACCAAGTCTGTAAGTGCTTGGAGGATCTCCCAGCAAAGCACCTTCAGAA TGTATCGACACCAAGTCTGTAAGTGCTTGGAGGATCTCCCAGCAAAGCACCTTCAGAA *****
35	HSPDE1B1 HSPDE1B2	TGCTAAAAGAGAGGGTCTGCCCCCTCTCCACGTCCCAGAACCTGGCCAGCTGCAGGC TGCTAAAAGAGAGGGTCTGCCCCCTCTCCACGTCCCAGAACCTGGCCAGCTGCAGGC *****
40	HSPDE1B1 HSPDE1B2	ACTAAGAAGCTCCTCCCTGAGACAAGTGAGGGTAGTCGGTAAAGGCAGATGGACAAG ACTAAGAAGCTCCTCCCTGAGACAAGTGAGGGTAGTCGGTAAAGGCAGATGGACAAG *****
45	HSPDE1B1 HSPDE1B2	GGGCTCAGGGCTGCTGCCTTCCTGTCCCTGGAGAGAACCCAGCCAGGCGCGGTGCCCC GGGCTCAGGGCTGCTGCCTTCCTGTCCCTGGAGAGAACCCAGCCAGGCGCGGTGCCCC *****
50	HSPDE1B1 HSPDE1B2	TCTCTCCTCAGGCTCCTCTTGCACCTTGCCCCACCTTGCCCCAGGAAGGCCAAAGTCCAGGTG TCTCTCCTCAGGCTCCTCTTGCACCTTGCCCCACCTTGCCCCAGGAAGGCCAAAGTCCAGGTG *****
55	HSPDE1B1 HSPDE1B2	ACTGCCCTCCTTCTTGTAAATACCAACCGTGCAATTGTACAGTGGCCCTGTTCAT ACTGCCCTCCTTCTTGTAAATACCAACCATGCAATTGTACAGTGGCCCTGTTCAT *****
60	HSPDE1B1 HSPDE1B2	CGCAAATCCACATCCATGGTCTCCTAGACCTGCTACCCCTGGTACTTCCACCC CGCAAATCCACATCCATGGTCTCCTAGACCTGCTACCCCTGGTACTTCCACCC *****
65	HSPDE1B1 HSPDE1B2	CCCGAGAAGGGCAGAGACGCATGTGACTCACCCCTGCCCTGGTTCCAGACCC CCCGAGAAGGGCAGAGACGCATGTGACTCACCCCTGCCCTGGTTCCAGACCC *****
		ACAGCCAGAGAACATAAGAAGGGAGACCAGGAAAAA ATAGCCAGAGAACATAAGAAGGGAGACCAGGAAAAA *****

SEQ ID No. 1

5

-----MANPVPVQRSHLQGPILRLR-----YMVKQLENGEINIEELKKNL
 EYTASLLEAVYIDETRQILDTEDELQELRSDAVPSEVRDWLASTFTQQARAKGRRAEEKP
 KFRSIVHVAQAGIFVERMFRRTYTSVGPYSTAVLNCLKNLDLWCDFVFSLNQAADDHAL
 RTIVFELLTRHNLSRFKIPTVFLMSFLDALETGYGKYKNPYHNQIHAADVTQTVHCFLL
 RTGMVHCLSEIELLAIFI-AAIHDXEHTGTTMSFHIQTKSECAIVYNDRSVLENHHISSV
 FRLMQDDEMNIFINLTKDEFVELRALVIEMVLATDMSCHFQQVKTMKTALQQLERIDKPK
 ALSLLLHAADISHPTKOWLVLHSRWTKALMEEFFRQGDKEAELGLPFSPLCDRTSTLVAQS
 QIGFIDFIVEPTFSVLTDVAEKSVQPLADEDSKSKNQPSFQWRQPSLDVEVGDPNPDVVS
 FRSTWVKRIQENKQKWERAASGITNQMSIDEELSPCEEAPPSPAEDEHNQNGNLD

15

SEQ ID NO. 2

20

GTCGACCCACCGCTCCGGG-AGGAGGAAGGC--AGGGGCCAAAGAGGAAGTTGTCCCCCTC
 TTGGGG---CCCTGGG-GCTCCTGGG-T-C--AGGATTTGATACTCTGAAGCAGGA
 A-ACTTTGATTCCCAGGGCAAACCCCTGTTCTGTCAGAGGAGCCACCTCCAGG----
 GCCCATTCTCAGGCTCGCCTACATGGTAAGCAGTTGGAGAATGGGAGATAAA
 CATTGAGGAGCTGAAGAAAATCTGGAGTACACAGCTTCTCTGCTGGAAGCCGTCTACAT
 AGATGAGACAGGCAAATCTGGACACGGAGCAGCTGAGGAGCTGCGGTAGATGC
 CGTGCCTTCGGAGGTGCGGACTGGCTGGCCCTCACCTTCACCCAGCAGGCCGGGCAA
 AGGCCGCCAGCAGAGGAGAAGGCAAAGTCCGAAGCATTGTGACCGTGTGAGGCTGG
 GATCTCGTGGAACGGATGTTCCGGAGAACATACACCTCTGTGGGCCCCACTTACTCTAC
 TCGGGTTCTCAACTGTCTAAGAACCTGGATCTGGTGTGTTGATGTTCTTCTTGAA
 CCAGGCAGCAGATGACCATGCCAGGACCATGTTTGAGTTGCTGACTCGGCATAA
 CCTCATCAGCGCTTCAAGATTCCACTGTGTTTGAGTTGAGTTCTCTGGATGCCCTGG
 GACAGGCTATGGAAAGTACAAGAACATCCTAACACAACAGATCCACGAGCCGATGTTAC
 CCAGACAGTCATTGCTTCTGCTCCGACAGGGATGGTGCAGTCCTGTCGGAGATTGA
 GCTCCTGGCCATCATCTTGCTGCAAGCTTCTGATTATGAGCACACGGCACTACCAA
 CAGCTTCCACATCCAGAACAGTCAGATGTGCCATCGTGTACAATGATCGTCAGTGCT
 GGAGAACATCACACATCAGCTCTGGTGGATTGAGTGCAGGATGAGATGAACATT
 CATCAACCTCCAAGGATGAGTTGAGACTCCGAGCCCTGGTATTGAGATGGTGGT
 GCCCACAGACATGTCCTGCCATTCCAGCAAGTGAAGACCATGAAGACAGCCTTGC
 GCTGGAGAGGATTGACAAGGCCAAGGCCCTGTCCTACTGCTCCATGCTGTCGACATCAG
 CAACCCAAACCAAGCAGTGGTGGTCAAGGCCCTGGACCAAGGCCCTCATGGAGGAATT
 CTTCCGTCAGGTGACAAGGAGCAGATTGGCCCTGCCCTTCTCCACTCTGTGACCG
 CACTTCCACTCTAGTGGCAAGCTCACTGAGTTGTCATCGACTTATTGTGGAGGCCAC
 ATTCTCTGTCGACTGACGTGGCAGAGAAGAGTGGTCAGGCCCTGGGGATGAGGACTC
 CAAGTCTAAAAACCAGGCCAGCTTCAGTGGGCCAGCCCTCTGGATGTGGAAGTGGG
 AGACCCCAACCCCTGATGGTCAGCTTCTGGTCCACCTGGGTCAAGGCATTCAAGGAGAA
 TAAGCAGAAATGGAAGGAACGGCAGCAAGTGGCATTCAACCAACAGATGTCATTGACGA
 GCTGCCCCCTGTGAAGAAGAGGCCCTGGCCATTCCCTGCCGAAGATGAACACAAACAGAA
 TGGGAATCTGATTAGCCTGGGGCTGGCCAGGTCTTCAATTGAGTCCAAGTGTGAT
 GTCATCAGCACCATCCATCAGGACTGGCTCCCCCATCTGCTCCAAGGGAGCTGGTCGTG
 GAAGAAACAACCCACCTGAAGGCCAATGCCAGAGATTGGGGTTGGGAAAGGGCCCT
 CCCCACCTGACACCCACTGGGTGCACTTAAATGTTGGCAGCAAGACTGGGAACCTC
 AGGCTCCCAGGTGACTGTGCCCATCTCAGGCCCTGGATTCTCATGCCAGGTG
 GCTGCCAGGGAGGCCCTGGTGGCTTCCAGGGCTTCCAGGGCTTGGGGAAAGGGTCA
 TGCCAGCCCCCTGGGACCTCCCCCATCTTTTGCTCCAAGTTCTAAGCAATACATT
 TGGGGTTCCCTCAGCCCCCCCACCCAGATCTTAGCTGGCAGGTCTGGGTGCCCTTT
 CTCCCCCTGGGAAGGGCTGGAATAGGATAGAAAGCTGGGGTTTCAAGGCCCTATGTG
 GGGAGGGGGAGTGGATTCTCAGGGCATGGTACCTTCTAGGATCTGGGAATGGGTG
 GAGGACATCCTCTTCACCCAGAATTGGCCTGCTTCAGGCCCATCTCAGGCCATCT
 TGAATCTCTCCCTCCCTTCTGATACAGTGACTGGGCAAAGGAGCCATTGJACC
 AGGGGCTGGGGAGGCCTTCTGGGACCTTCTGGGACTGGTCTGGGCCCTGGGGCT
 TGTCGCTGGCTCTGAGTCGGAGGCCCTTGGCTCCCTCTCCTCTGGGGCTGGGAGGC
 TCCATCCGACCAATGCTGTAAGTGGTCAAGGGTGCTGGGGAGGGTGA
 TGATCGACACAGCTGGTTAGGGTCAAGGGTGCTGGGGAGGGTGA
 TGCTAAAAGAGGGTCTGCTCCCTCTCCACGTCCCAGAAGTGGCCAGCTGCAGGC
 ACTAAGAAGTCCTCCCTGAGACAAGTGAGGGTAGTCGGTGAAGAGCAGATGGACAAG
 GGGCTCAGGGCTGCTGCCCTCTGCTGGAGAGAACCCAGCCAGGCCGGTGGCCCT
 TCCCTCTCAGGCTCCCTTGGCCCCACCTTGGCCAGGGAAAGGCCAAAGTCCAGGTG
 ACTGCCCTCTTCTTCTGTAATACCAACCATGCAATTGTA
 GCGAAATCCACATCCATGGCTCTAGACCTGCTACCCCTGGTACTTCCACCCAC
 CCCGAGAAGGGCAGAGACGCACTGTGACTCACCCCTGCCCTGGTTCCAGACCCCTG
 ATAGCCAGAGAACATAAGAAGGGAGACCAGGAAAAAAAAAAAAAA

70