Teorema de Vizing

• Graph Theory (Bondy & Murty), 2008, cap. 17, seção 2

Coloração fracionária

Proposição. $\chi'_{\operatorname{LP}}(G) \geq \Delta(G)$

Explicação da prova. Arestas que incidem sobre um mesmo vértice estão, necessariamente, em emparelhamentos diferentes. Nesse caso, se temos $\Delta(G)$ arestas, necessariamente temos $\Delta(G)$ emparelhamentos diferentes.

Desigualdades válidas

Intuição

As desigualdades dizem que o número de emparelhamentos que "tocam" E' tem que ser maior ou igual ao teto do tamanho de E' sobre o chão de metade do tamanho de U.

Como cada emparelhamento cobre no máximo $\lfloor \frac{1}{2}|U|\rfloor$ vértices, para cobrir |E'| arestas, precisamos de

 $\left\lceil \frac{|E'|}{\lfloor \frac{1}{2}|U| \rfloor} \right\rceil$

emparelhamentos.

Facetas

Difícil conseguir acesso à citação (tese de doutorado do autor). Menciona o caso em que G é completo ou um ciclo ímpar > 3 (segundo pesquisa no Google Books).

Uma condição necessário é que C tenha tamanho > 3: no caso em que C tem tamanho 3 podemos notar que a inequação é combinação cônica das inequações das arestas do ciclo.

Separação para grafos 3-regulares

Teorema. Se G é 3-regular e $\chi'(G) = 4$, então $\chi'_{ALP}(G) > 3$. **Prova**.

- Suponha que $\chi_{\text{ALP}}(G) = 3$, e seja x^* uma solução ótima.
- Como $\chi'(G) = 4$, x^* é fracionário.
- Por hipótese, $\mathbf{1}x^* = 3$.
- Como G é 3-regular, $|E| = \frac{3}{2}|V|$.
 - Segue do lema do aperto de mão
- $\bullet\,$ Segue que cada emparelhamento com $x_j^*>0$ cobre $\frac{1}{2}|V|$ arestas, e portanto é perfeito.
 - Intuição: como precisamos cobrir $\frac{3}{2}|V|$ arestas, cada emparelhamento cobre no máximo $\frac{1}{2}|V|$ arestas, e $\mathbf{1}x^*=3$, se escolhermos um emparelhamento que não seja perfeito, fica faltando.
 - Argumento de contagem: como combinação cônica das desigualdades das linhas de A $(A_{e*}x \geq 1)$,temos $1^{\top}Ax \geq |E| = \frac{3}{2}|V|$. Mas $1^{\top}A \leq \frac{1}{2}|V|$ (número de arestas em um emparelhamento), então

$$1^{\top} Ax \le \sum_{j} \frac{|V|}{2} x_{j} = \frac{|V|}{2} \sum_{j} x_{j} = \frac{3|V|}{2}$$

Mas então
$$1^{\top}Ax = \frac{3|V|}{2}$$
.

- ullet Seja G' um subgrafo de G com um tal emparelhamento removido.
- Todo vértice em G' tem grau 2. Além disso, $\sum_{j \in E(G')} x_j^* < 3$ (porque tiramos um emparelhamento que tinha x_j^* positivo).
- Temos dois casos:
 - 1. Se todo ciclo em G' é par, então $\chi'(G')=2$ e podemos colorir o emparelhamento removido de uma terceira cor, logo $\chi'(G)=3$, uma contradição.
 - 2. Se existe pelo menos um ciclo ímpar em G', a soma dos valores x_j^* dos emparelhamentos que cobrem o ciclo é estritamente menor que 3, e portanto a solução viola a restrição de ciclo ímpar correspondente, também uma contradição.
- Logo, $\chi_{ALP}(G) > 3$.

Generalização

• Podemos notar que ciclos ímpares são casos especiais de grafos com grau máximo $\Delta-1$ (no caso, 2) e que precisam de Δ (no caso, 3) cores.