## Escuela en Español Qiskit Fall Fest



## & Algoritmos Cuánticos

Claudia Zendejas-Morales





















## Algoritmo Cuántico



## Algoritmo Clásico



## Algoritmo Cuántico



## ¿Para qué?



# Quantum advantage (Quantum supremacy)

Demostrar que un dispositivo cuántico programable puede resolver un problema que ninguna computadora clásica puede resolver en cualquier cantidad de tiempo factible (independientemente de la utilidad del problema).

Octubre de 2019, Google clamó haber alcanzado la **supremacía cuántica** con su computadora cuántica llamada *Sycamore* [Arute, F., et. al.]



IBM no tardó en salir a cuestionar esa afirmación [Pednault, E., et. al.]

## Tiempo de ejecución



### The quantum stack

#### **CONTROL LOGIC**

Pulse & timing calibration
Optimal Control
Decoding

#### **CONTROL PLANE**

Crosstalk
Wiring/integration
Heat management

#### **QUANTUM PLANE**

Fidelity
Native gates
Connectivity
Interconnects

#### **SIMULATOR**

Verification & validation Performance



#### **APPLICATIONS**

Development mgt. Workflow mgt.

#### **ALGORITHMS**

High level languages Libraries

#### **FRAMEWORK**

Circuit model & alternatives Optimising compilers

#### **ARCHITECTURE**

QPU kernel
Quantum error correction
Magic state factories
QRAM

### Quantum pioneers

**APPLICATIONS** 

**ALGORITHMS** 

**FRAMEWORK** 

**ARCHITECTURE** 

**CONTROL** 

**QUANTUM** 

**SIMULATOR** 

Source: Fact Based Insight





### Early gate-model full-stack players



## Ejemplos de algoritmos cuánticos

- Algoritmos basados en la Transformada Cuántica de Fourier
  - Algoritmo Deutsch-Jozsa
  - Algorimto Bernstein-Vazirani
  - Algoritmo de Simon
  - Algoritmo de Estimación de Fase Cuántica
  - Algoritmo de Shor
- •Algoritmos basados en Amplificación de Amplitud
  - Algoritmo de Grover
  - Algoritmo de Conteo Cuántico
- •Algoritmos basados en Caminatas Cuánticas
  - Algoritmo de Distinción de Elementos
  - Problema de Búsqueda de Triángulos
- Algoritmos [Híbridos Cuánticos/Clásicos]
  - Algoritmo Cuántico de Optimización Aproximada (QAOA)
  - Algoritmo Solucionador Propio Variacional Cuántico (VOE)

## Sumador completo cuántico



## Sumador completo cuántico



| Estado | q3  | q2  | q1 | q0 | • | q3   | q2  | q1 | q0 |
|--------|-----|-----|----|----|---|------|-----|----|----|
| •      | aux | Cin | В  | A  | • | Cout | Sum | В  | A  |
| E1     | 0   | 0   | 0  | 0  | • | 0    | 0   | 0  | 0  |
| E2     | 0   | 0   | 0  | 1  | • | 0    | 1   | 0  | 1  |
| E3     | 0   | 0   | 1  | 0  | • | 0    | 1   | 1  | 0  |
| E4     | 0   | 0   | 1  | 1  | • | 1    | 0   | 1  | 1  |
| E5     | 0   | 1   | 0  | 0  | • | 0    | 1   | 0  | 0  |
| E6     | 0   | 1   | 0  | 1  | • | 1    | 0   | 0  | 1  |
| E7     | 0   | 1   | 1  | 0  |   | 1    | 0   | 1  | 0  |
| E8     | 0   | 1   | 1  | 1  |   | 1    | 1   | 1  | 1  |

## (Circuito cuántico) compuertas cuánticas qubits res barreras mediciones bits clásicos orden de ejecución

## Código de la implementación en Qiskit: Sumador completo cuántico

Presentación Notebook

https://github.com/fall-fest-latino/escuela-de-computacion-cuantica-2023/tree/main/dia03



Notebook (Google Colab)

<a href="https://colab.research.google.com/drive/14fdsjygDW-JDKU\_5nyjIeVkl6MrPCcG7?usp=sharing">https://colab.research.google.com/drive/14fdsjygDW-JDKU\_5nyjIeVkl6MrPCcG7?usp=sharing</a>



Asistencia: DG-756-UU

## Protocolo de teleportación



# Código de la implementación en Qiskit:

Protocolo de teleportación

Presentación Notebook

https://github.com/fall-fest-latino/escuela-de-computacion-cuantica-2023/tree/main/dia03



Notebook (Google Colab)

<a href="https://colab.research.google.com/drive/14fdsjygDW-JDKU\_5nyjIeVkl6MrPCcG7?usp=sharing">https://colab.research.google.com/drive/14fdsjygDW-JDKU\_5nyjIeVkl6MrPCcG7?usp=sharing</a>



Asistencia: DG-756-UU

## Algoritmo de Deutsch – Jozsa

$$fig(\{x_0,x_1,x_2,\cdots\}ig) o 0 ext{ o } 1, ext{donde } x_n ext{ es } 0 ext{ o } 1$$





balanceada constante

0,0,0, ..., 1, 1, 1

constante 0,0,0, ... ó 1, 1, 1,...

# Código de la implementación en Qiskit:

Algoritmo de Deutsch – Jozsa

Presentación Notebook

https://github.com/fall-fest-latino/escuela-de-computacion-cuantica-2023/tree/main/dia03



Notebook (Google Colab)

<a href="https://colab.research.google.com/drive/14fdsjygDW-JDKU\_5nyjIeVkl6MrPCcG7?usp=sharing">https://colab.research.google.com/drive/14fdsjygDW-JDKU\_5nyjIeVkl6MrPCcG7?usp=sharing</a>



Asistencia: DG-756-UU

## Algoritmo de Bernstein - Vazirani

$$fig(\{x_0,x_1,x_2,\cdots\}ig) o 0$$
 o 1, donde  $x_n$  es  $0$  o 1





# Código de la implementación en Qiskit:

Algoritmo de Bernstein – Vazirani

Presentación Notebook

https://github.com/fall-fest-latino/escuela-de-computacion-cuantica-2023/tree/main/dia03



Notebook (Google Colab)

<a href="https://colab.research.google.com/drive/14fdsjygDW-JDKU\_5nyjIeVkl6MrPCcG7?usp=sharing">https://colab.research.google.com/drive/14fdsjygDW-JDKU\_5nyjIeVkl6MrPCcG7?usp=sharing</a>



Asistencia: DG-756-UU