centro

Indice

Indice	i
Sommario	ii
1 Implementazione Numerica della Formula di Bethe–Bloch	1
Bibliografia	

Sommario

In Questo documento sono raccolte le quattro relazioni brevi da svolgere durante il corso annuale di *Laboratorio di Fisica 3* del Corso di Laurea in *Fisica* presso l'Università degli Studi di Catania.

Le quattro espserienze sono esposte nei quattro capitoli seguenti.

1 Implementazione Numerica della Formula di Bethe–Bloch

La formula di Bethe–Bloch è un modello sperimentale che descrive la perdita di energia di particelle cariche come protoni e α nella materia:

$$\left\langle -\frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \log \frac{2m_e c^2 \beta^2 \gamma^2 W_{\text{max}}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right], \tag{1.1}$$

dove β e γ sono le usuali quantità relativistiche mentre il resto dei simboli sono esplicitati in Tab. 1.1 [1].

Simbolo	Definizione	Valore o unità di misura
$m_e c^2$	massa a riposo dell'elettrone $\times c^2$	$0.51099895000(15)\mathrm{MeV}$
r_e	raggio classico dell'elettrone $e^2/4\pi\epsilon_0 m_e c^2$	$2.8179403227(19)\mathrm{fm}$
$N_{ m A}$	numero di Avogadro	$6.022140857(74)\times10^{23}\mathrm{mol}^{-1}$
$\overline{ ho}$	densità	$g \mathrm{cm}^{-3}$
x	massa per unità di area	$ m gcm^{-2}$
M	massa della particella incidente	$MeV c^{-2}$
E	energia della particella incidente γMc^2	${ m MeV}$
$W_{\rm max}$	massima energia trasferibile per collisioni	MeV
z	numero di carica della particella incidente	
Z	numreo atomico del bersaglio	
A	numero di massa atomica del bersaglio	
K	$4\pi N_{\mathrm{A}} r_e^2 m_e c^2$	$0.307075{ m MeVmol^{-1}cm^2}$
I	energia media di eccitazione	${ m eV}$
$\delta(eta\gamma)$	correzione di ionizzazione	

Tabella 1.1: Notazione per la formula di Bethe–Bloch.

Bibliografia

[1] D. Groom e S. Klein. «Passage of Particles Through Matter». In: *Physical Revision D* 110.3 (2024). DOI: 10.1103/PhysRevD.110.030001.