Basic Electrical Engg. **ES/EE/T101B**

- DC Network Theorems
- AC fundamentals
- Electromagnetism
- Magnetically coupled circuits
- Three -phase A.C. circuits
- Non-sinusoidal periodic waves
- Electrostatics
- Electrical Machines

Course outcomes (CO)

After successful completion of this course, the students would be able to:

CO1	Describe fundamental theorems of electrostatics, electromagnetics and electrical circuits
CO2	Describe the operating principles of different ac and dc electrical machines and systems
CO3	Apply fundamental concepts of various electrical quantities related to single phase and 3 phase alternating current systems
CO4	Solve numerical problems on electrostatics, electromagnetics and electrical circuits and systems

DC circuits & circuit elements

- ILO Day1
 - Classify electric circuits & circuit elements
 - Describe passive circuit elements
 - Resistance
 - Inductance
 - Capacitance

DC Networks

Electrical Network

 Electrical network is a collection of different electrical elements and components connected in such a way that they perform a specific function.

Electrical circuit

 Electrical circuit is obtained when the electrical network is closed so that a current can flow through the network.

Electrical circuits classification

• Linear and non-linear circuit

Active and Passive circuit

• Bilateral and Unilateral circuit

Linear and non-linear circuit element

- A **Linear circuit element** is one for which the input vs. output characteristic is a straight line.
- For example, a resistor is a linear element for which the voltage vs. current relationship is linear over its entire operating range.

Linear and non-linear circuit element

- On the other hand, the input vs. output relationship is not linear in case of **non-linear circuit elements**.
- For example in semiconductors, diodes, transistors etc. the voltage vs. current relationship is not a straight line over the entire operating range.

Active and Passive circuit elements

- Active circuits are those that have elements which have some energy source within them or can amplify a signal
 - for example a battery
- Passive circuits are those that have elements do not have any energy source in them, neither they can amplify any signal
 - examples are resistance, capacitance etc.

Bilateral and Unilateral circuit

 Bilateral circuits are those whose performance does not change even when the supply source polarity is reversed.

Current ???

• Bilateral circuits mostly contain linear, passive elements in addition to the source.

Bilateral and Unilateral circuit

 Unilateral circuits are those whose performance varies when the supply source polarity is reversed.

 Unilateral circuits contain non-linear elements in addition to other linear elements, and also sometimes active elements as well in addition to the source.

Passive circuit elements

Resistance (R)

• Inductance (L)

Capacitance (C)

Resistance

- Electrical resistance is the property of a material by virtue of which it opposes the flow of electrons through the material.
- Thus, resistance restricts the flow of electric current through a material.
- Mathematically, resistance is defined as the ratio of voltage across it, to the current flowing through it:

• The unit of resistance (R) is "ohm" (Ω)

Resistance

- When an electric current flows through any conductor material, heat is generated due to collision of the free moving electrons with the atoms of the material.
- Power absorbed by the resistance:

$$P = V \times I = (IR) \times I = I^2R$$
 Watt
$$P = V \times I = V \times \frac{V}{R} = \frac{V^2}{R}$$
 Watt

$$R = \frac{V}{V}$$

Resistance

 The total energy absorbed by the resistance in the form of heat is then expressed as:

$$W = \int_{0}^{t} Pdt = P \int_{0}^{t} dt = Pt = I^{2}Rt = \frac{V^{2}}{R}t$$
 Joule

Energy = Power \times Time

Inductance

- Inductance is the property of a material by virtue of which is opposes any change of electric current passing through it.
- Mathematically, inductance is defined as the ratio of voltage across it, to the rate of change of current through it:

$$\begin{array}{ccc}
 & L \\
 & \downarrow \\
 & v \\
\hline
 & v
\end{array}
\qquad D = \frac{v}{\frac{di}{dt}} \Longrightarrow v = L \frac{di}{dt}$$

The unit of inductance (L) is "Henry" (H)

Inductance

 A conducting wire when twisted into a coil, it becomes a simple inductor.

Inductance

The power absorbed by an inductor is given by:

$$P = v \times i = L \frac{di}{dt} \times i = Li \frac{di}{dt}$$

Energy absorbed by the inductor will thus be given by:

$$W = \int_{0}^{t} Pdt = \int_{0}^{t} Li \frac{di}{dt} dt = \int_{0}^{I} Li di = \frac{1}{2} LI^{2}$$

Capacitance

- Capacitance is the property of a material to store electrical charge within it.
- Mathematically, capacitance is defined as the ratio of time integral of current through it, to the voltage across it.
- Note that time integral of current is nothing but the charge:

$$\int idt = q$$

Thus, we can express capacitance of an object as:

$$C = \frac{\int idt}{v} \implies C = \frac{q}{v}$$

Capacitance

• Quantitatively, capacitance is a measure of charge (q) per unit voltage (v) that can be stored in an element.

$$C = \frac{q}{v}$$
 or, $q = Cv$ $\therefore i = \frac{dq}{dt} = \frac{d(Cv)}{dt}$ $\Rightarrow i = C\frac{dv}{dt}$

$$dv = \frac{1}{C}idt \implies \int_{0}^{V} dv = \frac{1}{C}\int_{0}^{t} idt \implies V = \frac{1}{C}\int_{0}^{t} idt$$

• The unit of capacitance (C) is "Farad" (F)

Capacitance

 Power absorbed by the capacitor during the charging process is given by:

$$P = v \times i = v \times C \frac{dv}{dt} = Cv \frac{dv}{dt}$$

Energy stored by the capacitor will thus be given by:

$$W = \int_{0}^{t} P dt = \int_{0}^{t} Cv \frac{dv}{dt} dt = \int_{0}^{V} Cv dv = \frac{1}{2} CV^{2}$$