PH108

Lecture 08: Electrostatic energy and Conductors

Pradeep Sarin
Department of Physics

Reading: Griffiths 2.3.5 - 2.5.2

Our main focus so far: Have ρ , find V,E

to avoid confusing with $V \equiv voltage$ (an EE term, Note: I use Φ to denote potential,

Electric potential *leads* to potential energy

Electric potential $\Phi(\vec{r})$ is a scalar field

$$\vec{E} = -\vec{\nabla}\Phi$$
 is the electric *vector* field

 $\vec{F} = q\vec{E}$ is the *vector* force due to \vec{E} on q

Moving q against* a force requires work

Work requires *Energy*

Where is the energy stored?

 q_i or $\rho(r)$ charge distributions

For moving q_i around we spend energy or add energy

Where is the 'bag' in which we 'store' this energy?

Example: energy of a point charge

$$q_1$$
 q_2

 q_1 produces a scalar potential $\Phi(r)$, vector field $\vec{E}(r)$

Force on q_2 is $q_2\vec{E}(r)$. Suppose we want to move q_2

Work = Force * distance:
$$W = \int_{\infty}^{r} q_2 \vec{E} \cdot \vec{dl} = q_2 \Phi(r)$$

Energy =
$$\frac{Work}{q_2}$$
 = $\Phi(r)$

in this case, move q_2 from ∞ to r

Question: Generalize to multiple point charges

Three identical charges +q sit on an equilateral triangle with sides a.

What would be the final kinetic energy of the *top* charge if you released it (keeping the other two fixed)

$$A)\frac{1}{4\pi\epsilon_0}\frac{q^2}{a}$$

$$B)\frac{1}{4\pi\epsilon_0}\frac{2q^2}{3a}$$

$$C)\frac{1}{4\pi\epsilon_0}\frac{2q^2}{a}$$

$$(D)\frac{1}{4\pi\epsilon_0}\frac{3q^2}{a}$$

E) None of the above

+q

a

+q

+q

What does a 'conservative' field mean?

Can pick *any* path for $\int \vec{E} \cdot d\vec{l}$ break it into radial ($J\neq 0$), and tangential(J=0) pieces

 $\Phi(r)$ is *independent* of the path from reference (∞) to r

More generally, this is a result of $\vec{\nabla} \times \vec{E} = 0$ and Stokes theorem

What is the energy for arbitrary $\rho(r)$?

Remember: Split the problem in two pieces

- 1) Calculate the field due to a set of charges, without worrying about *other* charges nearby
- 2) Calculate the effect of a field on a set of charges, without worrying about what charges produced the field

Can show using
$$\vec{\nabla} \cdot \vec{E} = -\frac{\rho}{\epsilon}$$

Energy is stored in \vec{E}

Energy =
$$\frac{\epsilon_0}{2} \int E^2 d\tau$$

Limit of integral is tricky!

Where does $\rho(r)$ sit?

We have worked on problems like

- charge distributed on the surface of a sphere
- charge on an infinite line or plane surface etc...

What are these volumes, surfaces, lines *made of?*

Material places constraints on how the charge is distributed!

Conductor

Recall the light bulb problem – how does charge travel in a conductor wire?

Question

Two like sign charges repel and are free to move. As they get farther, the total field energy $\int E^2 d\tau$:

- A) Increases
- B) Decreases
- C) Stays the same

Charges in a conductor distribute themselves on the surface

What is the static configuration for a conductor?

$$\vec{\nabla} \cdot \vec{E} = \frac{\lambda}{\epsilon_0}$$

$$\vec{E} = 0$$

$$-\vec{\nabla} \Phi = 0$$

A conductor is an *equi*potential object

 $\Phi = constant$

What happens if I break the conductor in two?

Where does the free charge go?

What happens if I make a hole inside the conductor?

Logic thread of today's lecture

Any collection of charges has a potential energy

the charges generate an electric potential & field

work is needed to move a test charge in this field

Work costs energy – the energy is taken from or put into the electric field

Conductors

- minimize the potential energy for steady state by pushing free charge to the surface
- $-\vec{E} = 0$ inside a conductor in steady state