# Computing Trajectories for Vertical Landing

Computational Control Project

Naoki Sean Pross

ETH Zürich

Spring Semester 2023





# **Current State**

#### Rocket Model

Non-linear dynamics linearised around  $z_s = 0$ ,  $u_s = \begin{bmatrix} mg & 0 & 0 \end{bmatrix}^T$ :

$$z_{n+1} = Az_n + Bu_n,$$

where

$$z = \begin{bmatrix} x & y & \dot{x} & \dot{y} & \theta & \dot{\theta} \end{bmatrix}^{\mathsf{T}},$$
$$u = \begin{bmatrix} F_E & F_S & \varphi \end{bmatrix}^{\mathsf{T}}.$$

#### Controller

Decoupled PID controllers for  $F_E$ ,  $F_S$  and  $\varphi$ , unaware of each other.



#### Behaviour

- Work well for "good" z<sub>0</sub>
- Breaks easily ~> need to retune
- Waits and high thrust near end



# Failure Mode

Plots: Trajectories on the xy plane, color is the y velocity (red is fast).





Not enough side thrust



# Bad y<sub>0</sub> Coordinate

Too little thrust



#### Intuition

Decoupled controllers cannot coordinate in difficult situations (far from set point) and fail hard.



#### Recommendation

# Proposed Controller

Relaxed linear MPC on linearised dynamics

#### Strengths

- Cutting edge, yet proven to be reliable
- Optimize fuel consumption
- "Easy" to specify constraints
- Possible to extend with more powerful theory if necessary (eg. sequential convex programming)

#### Weaknesses

- Computationally more expensive
- No theoretical stability guarantee (because of linearisation)

# Key Idea of MPC

Continuously predict future to decide next action.





# **Demonstration**

Plots: Trajectories on the xy plane, color is the y velocity (red is fast).







# Trajectories

MPC handles all situation where PID failed, because it is "aware" of what the other actuators are doing.

# Note

Performance does not come for free: it is computationally (a lot) more expensive, but worth it!



# **Deployment Plan**



Plot: CVXPY with time horizon of 10 s.

#### Hardware

Modern hardware is very powerful. Decision factors are sampling time and prediction time horizon.

# Computation

CPU cycles<sup>a</sup> needed to predict fixed amount of time into the future grows exponentially with the sampling frequency. Solve time is bounded by sampling time (need action before next sample comes).

#### Solver Software

There are countless options:

#### Commercial solutions

■ Embotech AG, MOSEK ApS

#### Free solutions

CVXgen, CVXPYgen, OSQP, OOQP, CVXOPT, ECOS

<sup>&</sup>lt;sup>a</sup>Computation time normalized wrt CPU freq. Plot f = 3.22 GHz.

# **Backup Slides**

If someone wants to know the details (they are not officially part of the presentation)



#### What is Relaxed Linear MPC

#### Relaxed Linear MPC

Non-linear dynamics linearised at  $(z_s, u_s)$  to get LTI system (A, B), target landing pad is at  $z_f$ . In state  $z_n$  compute

$$u^{\star} - u_{s} = \arg\min_{u_{0}} \left\{ z_{N}^{\mathsf{T}} S z_{N} + \sum_{k=0}^{N-1} z_{k}^{\mathsf{T}} Q z_{k} + u_{k}^{\mathsf{T}} R u_{k} + V \| \epsilon_{k} \|_{1} \right\}$$
subject to 
$$z_{k+1} = A z_{k} + B u_{k} \qquad \text{(dynamics)}$$

$$G_{z} z_{k} \leq g_{z} - G_{z} z_{s} + \epsilon_{k} \qquad \text{(relaxed state constr.)}$$

$$G_{u} u_{k} \leq g_{u} - G_{u} u_{s} \qquad \text{(input constr.)}$$

$$z_{N} = z_{f} - z_{s} \qquad \text{(terminal constr.)}$$

$$z_{0} = z_{n} - z_{s} \qquad \text{(parametrisation)}$$

Index n is real time, k is the prediction time. The  $\epsilon_k$  are linearly penalized slack variables, and N is the "horizon length" for the prediction.

# Model Uncertainty

The linearised model is very inaccurate in x and  $\theta$ . To take into account make future states more expensive:  $Q_k = \text{diag} \left[ q_0 + \varsigma_0 k / N \right] \dots q_{n_x} + \varsigma_{n_x} k / N \right]$ .