What is the total number of records in dataset?

Total_Customers 2216

List unique education levels present in the dataset.

Education	Customers
Graduation	1116
PhD	481
Master	365
2n Cycle	200
Basic	54

Calculate the average income of customers.

```
SELECT
   ROUND(AVG(Income),0) AS Avg_Income
FROM
   ecom;
           Avg_Income
          52247
```

Find the customer with the highest amount spent on clothes.

```
SELECT

ID AS Customer_ID, A_Clothes AS Amount_on_Clothes
FROM

ecom
ORDER BY A_Clothes DESC
LIMIT 1;
```

100

```
Customer_ID Amount_on_Clothes
737 1493
```

Count the number of customers who made a complaint.

```
SELECT
    COUNT(*) AS Number_Of_Customers
FROM
    ecom
WHERE
    Complain = 1;
```

Number_Of_Customers 21

Identify the most common payment method used by customers.

```
SELECT
Payment_Method, COUNT(*) AS count
FROM
ecom
GROUP BY Payment_Method
ORDER BY count DESC
LIMIT 1;
```

Payment_Method count
Cash 763

List the unique years of customer enrollment.

Retrieve the customer ID, education level, and income of top 5 customers who spent the most on furniture.

```
SELECT

ID as Customer_ID, Education, Income,
A_Furniture AS Amount_On_Furniture

FROM

ecom

ORDER BY A_Furniture DESC

LIMIT 5;
```

Customer_ID	Education	Income	Amount_On_Furniture
7342	2n Cycle	59184	259
3091	2n Cycle	75774	258
4676	Master	73705	258
762	2n Cycle	75774	258
0	Graduation	70951	254

Calculate the Recency, Frequency, and Monetary values for each customer (RFM analysis).

Customer_ID	Recency	Frequecy	Monetary
4619	9	27	277
10311	0	25	359
238	76	24	1082
6237	92	23	416
5430	0	21	684
8432	0	21	684
3594	74	21	747
8148	88	19	859
8581	4	19	751
5207	41	19	793

Determine the percentage of customers who have churned.

```
SELECT

CONCAT(ROUND((SUM(Churns) / COUNT(Churns)) * 100, 2),

'%') AS Cust_Churn_Percentage

FROM

ecom;
```

Cust_Churn_Percentage

19.04%

Retrieve the top 5 customers with the highest overall spending.

```
SELECT
    ID AS Customer_ID,
    A_Clothes + A_Tech_Electronics + A_Books + A_Furniture + A_Foods + A_Cosmetics
    AS Overall_Spending
FROM
    ecom
ORDER BY Overall_Spending DESC
LIMIT 5;
```

Customer_ID	Overall_Spending
5735	2525
5350	2525
1763	2524
4580	2486
4475	2440

Identify the most popular category (highest total spending) among customers.

Category	Spending
Clothes	676083
Books	370063
Cosmetics	97427
Furniture	83405
Foods	59896
Tech_Electronics	58405

Calculate the average satisfaction level for each education level.

```
SELECT

Education,

ROUND(AVG(CASE

WHEN Satisfaction_Level = 'Unsatisfied' THEN 1

WHEN Satisfaction_Level = 'Neutral' THEN 2

WHEN Satisfaction_Level = 'Satisfied' THEN 3

ELSE 0

END),

2) AS average_satisfaction_level

FROM

ecom

GROUP BY Education;
```

Education	average_satisfaction_level	•
Graduation	2.00	
Basic	2.00	
2n Cycle	2.02	
PhD	2.03	
Master	2.03	

List customers who made purchases on more than three websites

2114

Perform a cohort analysis based on the year of customer enrollment.

```
SELECT

YEAR(Dt_Customer) AS Enrollment_Year,

MONTH(Dt_Customer) AS Enrollment_Month,

ROUND(AVG(A_Clothes + A_Tech_Electronics + A_Books +

A_Furniture + A_Foods + A_Cosmetics),0)

AS Avg_monthly_Spending

FROM

ecom

GROUP BY Enrollment_Year , Enrollment_Month

ORDER BY Enrollment_Year , Enrollment_Month;
```

Enrollment_Year	Enrollment_Month	Avg_monthly_Spending
2012	7	679
2012	8	772
2012	9	880
2012	10	682
2012	11	798
2012	12	571
2013	1	667
2013	2	689
2013	3	666

Identify customers who have not made any purchases in the last six months.

Determine the correlation between the number of web visits and the amount spent on technology.

```
WITH CorrelationCalculation AS (
    SELECT
        AVG(NumWebVisitsMonth) AS
AvgWebVisits,
        AVG(A Tech Electronics) AS
AvgTechSpending,
        COUNT(*) AS N
    FROM
        ecom
SELECT
    SUM((NumWebVisitsMonth -
AvgWebVisits) * (A_Tech_Electronics -
AvgTechSpending)) /
    SQRT(SUM(POWER(NumWebVisitsMonth -
AvgWebVisits, 2)) *
SUM(POWER(A_Tech_Electronics -
AvgTechSpending, 2))) AS
PearsonCorrelation
FROM
    ecom, CorrelationCalculation;
```

Implement a query to calculate the Customer Lifetime Value (CLV) for each customer.

```
SELECT

ID AS Customer_ID,

(A_Clothes + A_Tech_Electronics + A_Books + A_Furniture + A_Foods + A_Cosmetics)

AS Spending,

YEAR(NOW()) - YEAR(Dt_Customer) AS Lifetime_Years,

ROUND(((A_Clothes + A_Tech_Electronics + A_Books + A_Furniture + A_Foods + A_Cosmetics) /

(YEAR(NOW()) - YEAR(Dt_Customer))),

2) AS Revenue_per_Year

FROM

ecom;
```

Customer_ID	Spending	Lifetime_Years	Revenue_per_Year
5524	1617	12	134.75
2174	27	10	2.70
4141	776	11	70.55
6182	53	10	5.30
5324	422	10	42.20
7446	716	11	65.09
965	590	12	49.17