Les probabilités

Table des matières

1	\mathbf{Exp}	Expérience aléatoire						
	1.1	Vocabulaire sur un exemple						
	1.2	Définitions						
	1.3	Intersection et réunion de deux événements						
2	Loi de probabilité							
	2.1	Exemple avec un dé						
		2.1.1 Dé équilibré						
		2.1.2 Et si le dé est déséquilibré?						
	2.2	Définitions						
	2.3	Calculs de probabilités						

1 Expérience aléatoire

1.1 Vocabulaire sur un exemple

Comment modéliser un lancer de dé? On lance un dé à 6 faces, et on s'intéresse au résultat obtenu.

Il n'est pas possible de connaître le résultat de cette expérience avant d'avoir lancé le dé! On parle alors d'*expérience aléatoire*.

Il y a 6 issues "possibilités" : 1, 2, 3, 4, 5 et 6. ces "possibilités" s'appelent des *issues*

L'ensemble de toutes les issues possibles est appelé *univers*, et se note Ω . Ici, on a $\Omega = \{1; 2; 3; 4; 5; 6\}$.

 $A = \{2; 4; 6\}$ est une partie de Ω : C'est donc un **événement**. Soit $B = \{2; 4; 5; 6\}$ un autre événement.

L'évènement contraire de B est l'ensemble noté B constitué de toutes les issues qui ne réalisent pas B : Ici, $B = \{1, 3\}$

1.2 Définitions

Définition 7.1

Une expérience aléatoire est une expérience dont on ne peut pas prévoir le résultat à l'avance. Chaque résultat possible d'une expérience aléatoire est appelé « issue »

Définition 7.2

L'ensemble de toutes les issues est appelé l'univers de l'expérience aléatoire, et se note Ω .

Définition 7.3

On appelle événement toute partie de l'univers Ω .

Définition 7.4

L'événement contraire de A, noté \bar{A} , est l'ensemble de toutes les issues qui ne réalisent pas A

1.3 Intersection et réunion de deux événements

Définition 7.5

L'intersection de A et de B, noté $A \cap B$ est l'événement formé de toutes les issues appartenant à A et à B.

Définition 7.6

La réunion de A et de B, noté $A \cup B$ est l'événement formé de toutes les issues appartenant à A ou à B.

Exemples

Dans un lancers de dé à 6 faces, on a $A = \{1, 2, 3\}$ et $H = \{3, 4\}$ Donner $A \cup B$ et $A \cap B$.

Savoir-Faire 7.1

SAVOIR DÉCRIRE UN ÉVÉNEMENT

On considère un sac contenant 12 jetons numérotés de 1 à 12.

On tire au hasard un jeton du sac.

- Donner l'univers Ω .
- Donner deux exemples d'événements
- Soit C l'évènement « obtenir un multiple de 3 ». Donner l'évènement C sous forme d'ensemble.
- Exercicesexo 38 page 349
- Exercices
 | exo 47,48 page 350

Savoir-Faire 7.2

Savoir dénombrer en utilisant des arbres

Dans un sac, on dépose 4 cartes, chacune étant marquée par une lettre B, A, N et C. On tire au hasard, successivement et sans remise, deux cartes du sac. On forme ainsi un « mot » de 2 lettres.

Combien y a-t-il d'issues? Donner l'univers

Exercices

Exo 1,2 page 339 exo 36,37 page 349

2 Loi de probabilité

2.1 Exemple avec un dé

Comment modéliser un lancer de dé? On lance un dé à 6 faces, et on s'intéresse au résultat obtenu. Les probabilités dépendent de de la géométrie du dé.

2.1.1 Dé équilibré

Chaque issue à la même probabilité : on parle alors d'équiprobabilité.

Issue	1	2	3	4	5	6
Probabilité	1/6	1/6	1/6	1/6	1/6	1/6

2.1.2 Et si le dé est déséquilibré?

Est-t-il possible d'obtenir la probabilité de chaque face?

Oui, en réalisant un grand nombre de lancers. Les probabilités sont égales à la fréquence d'apparitions de chaque face.

Issue	1	2	3	4	5	6
Probabilité	0.2	0.1	0.1	0.15	0.15	?

Est-il possible de retrouver la probabilité de l'issue «6 »?

• Oui, car la somme des probabilités de toutes les issues est toujours égale à 1.

2.2 Définitions

Définition 7.7

Définir une loi de probabilité pour une expérience aléatoire, c'est :

- associer à chaque issue un nombre compris entre 0 et 1, appelé probabilité de l'issue,
- de sorte que la somme des probabilités de toutes les issues soit égale à 1.

Définition 7.8

Quand chaque issue a autant de chances de se produire qu'une autre, on parle alors d'équiprobabilité. Si une expérience aléatoire comporte n issues équiprobables, la probabilité de chacune d'elle est égale à $\frac{1}{n}$.

Savoir-Faire 7.3

SAVOIR CALCULER UNE PROBABILITÉ

Un dé truqué a 5 fois plus de chance de tomber sur "6" que sur toutes les autres faces. Donner la loi de probabilité de cette expérience aléatoire.

2.3 Calculs de probabilités

Propriété 7.1 (admise)

La probabilité d'un événement A, notée p(A) est la <u>somme</u> des probabilités des événements élémentaires qui composent A.

Exemple

On lance un dé bien truqué à 6 faces.

La probabilité d'obtenir 2 est 0.1, et la probabilité d'obtenir 5 est égale à 0.5.

Soit A l'événement "Obtenir 2 ou 5"

Quelle est la probabilité de A, noté p(A)?

Propriété 7.2 (admise)

En situation d'équiprobabilité sur un univers Ω , la probabilité d'un événement A, notée p(A) est donnée par :

$$p(A) = \frac{nombre\ d'issues\ dans\ A}{nombre\ total\ d'issues\ dans\ \Omega}$$

Exemple

On lance un dé bien équilibré à 6 faces.

Soit A l'événement "Obtenir 2 ou 5"

Quelle est la probabilité de A, noté p(A)?

Propriété 7.3 (admise)

Pour tous événements A et B, on a :

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

Exemple

On lance un dé bien équilibré à 6 faces. Soit A l'événement "Obtenir 2 ou 5" Soit B la probabilité d'obtenir un nombre pair. Calculer p(A), p(B) et $p(A \cap B)$. En déduire $p(A \cup B)$.

Propriété 7.4 (admise)

Pour tout événement A, on a :

$$p(\bar{A}) = 1 - p(A)$$

Exemple

On lance un dé bien équilibré à 6 faces. Soit A l'événement "Obtenir 2 ou 5" Quelle est la probabilité de \bar{A} ?

Savoir-Faire 7.4

SAVOIR CALCULER UNE PROBABILITÉS

Une urne contient trois boules rouges numérotées de 1 à 3 et deux boules vertes numérotées 1 et 2.

On tire au hasard, successivemen et avec remise, deux boules de l'urne.

- 1. Représenter la situation à l'aide d'un arbre
- 2. Soit A l'événement "La première boule est rouge" et B l'événement "La seconde boule porte le numéro 2". Calculer p(A) et p(B).