TMA947 Assignment Exercises 3

Edoardo Mangia

September 2024

Contents

1	HW 3.1	1
2	E 3.4	3
3	E 3.10	7
4	E 3.11	11

1 HW 3.1

Consider the problem

minimize
$$\frac{1}{2}x_1^2 + \frac{1}{2}x_2^2$$
 (3.1)

subject to
$$x_1 \le 4$$
, (3.2)

$$x_2 \le 4,\tag{3.3}$$

$$x_1 + x_2 \ge 4. (3.4)$$

Lagrangian relax constraint (3.4), and formulate the dual function $q(\mu)$ explicitly. State the dual problem, and verify that it is a convex optimization problem.

Solution

Lagrangian Relaxation

The constraint $x_1 + x_2 \ge 4$ is relaxed using a Lagrange multiplier $\mu \ge 0$. The Lagrangian function is:

$$L(x_1, x_2, \mu) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 + \mu(4 - x_1 - x_2).$$

Dual Function

The dual function $q(\mu)$ is obtained by minimizing the Lagrangian over the primal variables x_1 and x_2 subject to the remaining constraints:

$$q(\mu) = \inf_{x_1, x_2} \left\{ \frac{1}{2} x_1^2 + \frac{1}{2} x_2^2 + \mu(4 - x_1 - x_2) \text{ subject to } x_1 \le 4, \ x_2 \le 4 \right\}.$$

Partial derivatives of L with respect to x_1 and x_2 are taken and set to zero to find the stationary points:

$$\frac{\partial L}{\partial x_1} = x_1 - \mu = 0 \quad \Rightarrow \quad x_1 = \mu,$$

$$\frac{\partial L}{\partial x_2} = x_2 - \mu = 0 \quad \Rightarrow \quad x_2 = \mu.$$

Applying the Constraints

The conditions $x_1 = \mu$ and $x_2 = \mu$ are checked against the constraints $x_1 \le 4$ and $x_2 \le 4$.

- If $\mu \leq 4$, then $x_1 = \mu$ and $x_2 = \mu$ satisfy the constraints.
- If $\mu > 4$, then $x_1 = 4$ and $x_2 = 4$ are set.

Calculating $q(\mu)$

• Case 1: $\mu \le 4$

$$q(\mu) = \frac{1}{2}\mu^2 + \frac{1}{2}\mu^2 + \mu(4 - \mu - \mu) = -\mu^2 + 4\mu.$$

• Case 2: $\mu > 4$

$$q(\mu) = \frac{1}{2}(4)^2 + \frac{1}{2}(4)^2 + \mu(4-4-4) = 16 - 4\mu.$$

Thus, the dual function $q(\mu)$ is given by:

$$q(\mu) = \begin{cases} -\mu^2 + 4\mu & \text{if } \mu \le 4, \\ 16 - 4\mu & \text{if } \mu > 4. \end{cases}$$

Dual Problem

The dual problem is formulated as:

$$\text{Maximize} \quad q(\mu) = \min_{\mu \geq 0} \begin{cases} -\mu^2 + 4\mu & \text{if } \mu \leq 4, \\ 16 - 4\mu & \text{if } \mu > 4. \end{cases}$$

Convexity of the Dual Problem

The dual problem is verified to be a convex optimization problem based on the concavity of the dual function $q(\mu)$:

- For $\mu \le 4$, $q(\mu) = -\mu^2 + 4\mu$ is a concave quadratic function.
- For $\mu > 4$, $q(\mu) = 16 4\mu$ is a linear (and thus concave) function.

Since the dual function is concave and the dual problem involves maximizing $q(\mu)$ subject to $\mu \geq 0$, the dual problem is a convex optimization problem.

2 E 3.4

Consider the problem to

minimize
$$-x_1^3 + x_2^2 - 2x_1x_2x_3$$
, (1)

subject to
$$2x_1 + x_2^2 + x_3 = 5$$
, (2)

$$5x_1^2 - x_2^2 - x_3 \le 2, (3)$$

$$x_1, x_2, x_3 \ge 0. (4)$$

- (a) State the KKT conditions for the problem.
- (b) Verify that the KKT conditions are satisfied at $(1,0,3)^T$.

a)

The given optimization problem is:

Minimize
$$f(x) = -x_1^3 + x_2^2 - 2x_1x_2x_3$$

subject to:

$$g_1(x) = 2x_1 + x_2^2 + x_3 - 5 = 0$$

$$h_1(x) = 5x_1^2 - x_2^2 - x_3 - 2 \ge 0$$

$$x_1 \ge 0, \quad x_2 \ge 0, \quad x_3 \ge 0$$

Lagrangian Function

The Lagrangian function $\mathcal{L}(x,\lambda,\mu)$ is defined as:

$$\mathcal{L}(x, \lambda, \mu) = f(x) + \lambda g_1(x) - \mu h_1(x)$$

where:

- λ is the Lagrange multiplier for the equality constraint $g_1(x) = 0$.
- μ is the Lagrange multiplier for the inequality constraint $h_1(x) \geq 0$.

Substituting the given functions:

$$\mathcal{L}(x_1, x_2, x_3, \lambda, \mu) = -x_1^3 + x_2^2 - 2x_1x_3^2 + \lambda(2x_1 + x_2^2 + x_3 - 5) - \mu(5x_1^2 - x_2^2 - x_3 - 2)$$

KKT Conditions

The Karush-Kuhn-Tucker (KKT) conditions are necessary conditions for a solution $x = (x_1, x_2, x_3)$ to be optimal for a problem with equality and inequality constraints. The conditions include:

1. Stationarity:

The gradient of the Lagrangian with respect to x must be zero at the optimal point:

$$\nabla_x \mathcal{L}(x, \lambda, \mu) = \nabla f(x) + \lambda \nabla g_1(x) - \mu \nabla h_1(x) = 0$$

This condition can be broken down into components:

$$\begin{split} \frac{\partial \mathcal{L}}{\partial x_1} &= -3x_1^2 - 2x_3^2 + 2\lambda - 10\mu x_1 = 0\\ \frac{\partial \mathcal{L}}{\partial x_2} &= 2x_2 + 2\lambda x_2 + 2\mu x_2 = 0\\ \frac{\partial \mathcal{L}}{\partial x_3} &= -4x_1x_3 + \lambda + \mu = 0 \end{split}$$

2. Primal Feasibility:

The constraints must be satisfied at the optimal point:

$$g_1(x) = 2x_1 + x_2^2 + x_3 - 5 = 0$$

$$h_1(x) = 5x_1^2 - x_2^2 - x_3 - 2 \ge 0$$

$$x_1 \ge 0, \quad x_2 \ge 0, \quad x_3 \ge 0$$

3. Dual Feasibility:

The Lagrange multiplier μ associated with the inequality constraint must be non-negative:

$$\mu \geq 0$$

4. Complementary Slackness:

The product of the multiplier μ and the constraint $h_1(x)$ must be zero:

$$\mu \cdot h_1(x) = 0$$

This condition ensures that either the multiplier is zero, or the constraint is active (i.e., $h_1(x) = 0$).

b)

The point $(x_1, x_2, x_3) = (1, 0, 3)$ is verified against the KKT conditions.

1. Calculation of f(x), $g_1(x)$, and $h_1(x)$ at (1,0,3):

$$f(1,0,3) = -1^3 + 0^2 - 2(1)(3)^2 = -1 - 18 = -19$$

$$g_1(1,0,3) = 2(1) + 0^2 + 3 - 5 = 0$$

$$h_1(1,0,3) = 5(1)^2 - 0^2 - 3 - 2 = 0$$

Thus, $g_1(x) = 0$ and $h_1(x) = 0$.

2. Calculation of Gradients $\nabla f(x)$, $\nabla g_1(x)$, and $\nabla h_1(x)$:

$$\nabla f(x) = \left[-3x_1^2 - 2x_3^2, \ 2x_2, \ -4x_1x_3 \right]$$

At (1,0,3):

$$\nabla f(1,0,3) = \left[-3(1)^2 - 2(3)^2, \ 2(0), \ -4(1)(3) \right] = \left[-3 - 18, \ 0, \ -12 \right] = \left[-21, \ 0, \ -12 \right]$$

$$\nabla g_1(x) = [2, 2x_2, 1]$$

At (1,0,3):

$$\nabla g_1(1,0,3) = [2, 0, 1]$$

$$\nabla h_1(x) = [10x_1, -2x_2, -1]$$

At (1,0,3):

$$\nabla h_1(1,0,3) = [10, 0, -1]$$

3. Stationarity Condition:

$$\nabla f(x) + \lambda \nabla g_1(x) - \mu \nabla h_1(x) = 0$$

Substituting the values:

$$[-21, 0, -12] + \lambda [2, 0, 1] - \mu [10, 0, -1] = 0$$

This results in the following equations:

$$-21 + 2\lambda - 10\mu = 0 \quad (1)$$
$$0 + 0\lambda + 0\mu = 0 \quad (2)$$
$$-12 + \lambda + \mu = 0 \quad (3)$$

From equation (2), it is satisfied for any values of λ and μ . Solving equations (1) and (3) together:

From equation (1):

$$2\lambda - 10\mu = 21$$
 \Rightarrow $\lambda = \frac{21 + 10\mu}{2}$

Substituting λ into equation (3):

$$-12 + \left(\frac{21 + 10\mu}{2}\right) + \mu = 0$$

Simplifying:

$$-12 + 10.5 + 5\mu + \mu = 0 \implies -1.5 + 6\mu = 0 \implies \mu = 0.25$$

Substituting $\mu = 0.25$ back into the expression for λ :

$$\lambda = \frac{21 + 10(0.25)}{2} = \frac{21 + 2.5}{2} = 11.75$$

Thus, the values of the multipliers are:

$$\lambda = 11.75, \quad \mu = 0.25$$

4. Verification of Complementary Slackness:

The complementary slackness condition states:

$$\mu \cdot h_1(x) = 0$$

Given:

$$h_1(1,0,3) = 0$$
 and $\mu = 0.25$

Thus, the complementary slackness condition is satisfied because:

$$0.25 \cdot 0 = 0$$

3 E 3.10

A company produces loading pallets in two models: standard and extra long. Each model consists of three cross-sectional beams with a length corresponding to the length of the pallet. The details are as follows:

• Standard Model:

- Number of boards on top: 5

- Number of boards on bottom: 5

- Total boards: 5 + 5 = 10

- Time to assemble: 0.25 hours

- Total production time for boards: $10 \cdot 0.002 = 0.02$ hours

- Total production time for beams: $3 \cdot 0.005 = 0.015$ hours

- Total production time: 0.02 + 0.015 = 0.035 hours

• Extra Long Model:

- Number of boards on each side: 9 (on the top and bottom)

- Total boards: 9 + 9 = 18

- Time to assemble: 0.30 hours
- Total production time for boards: $18 \cdot 0.002 = 0.036$ hours
- Total production time for beams: $3 \cdot 0.007 = 0.021$ hours
- Total production time: 0.036 + 0.021 = 0.057 hours

LP Formulation

Decision Variables

Let:

 x_1 : Number of standard pallets produced x_2 : Number of extra long pallets produced

Objective Function

Maximize the profit:

Maximize
$$Z = 50x_1 + 70x_2$$

Constraints

Assembly Time Constraint:

$$0.25x_1 + 0.30x_2 \le 200$$

Production Time Constraint:

$$0.035x_1 + 0.057x_2 \le 40$$

Non-negativity Constraints:

$$x_1 \ge 0, \quad x_2 \ge 0$$

Complete LP Formulation

The complete LP problem is formulated as:

Maximize
$$Z = 50x_1 + 70x_2$$
 subject to
$$0.25x_1 + 0.30x_2 \le 200$$

$$0.035x_1 + 0.057x_2 \le 40$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

Lagrangian Dual Problem

The Lagrangian is defined as:

$$L(x_1, x_2, \lambda_1, \lambda_2) = 50x_1 + 70x_2 + \lambda_1(200 - 0.25x_1 - 0.30x_2) + \lambda_2(40 - 0.035x_1 - 0.057x_2)$$

Dual Problem

1. Differentiate L with respect to x_1 and x_2 and set the derivatives equal to zero:

$$\begin{split} \frac{\partial L}{\partial x_1} &= 50 - 0.25\lambda_1 - 0.035\lambda_2 = 0 \\ \frac{\partial L}{\partial x_2} &= 70 - 0.30\lambda_1 - 0.057\lambda_2 = 0 \end{split}$$

2. The dual problem is expressed as:

Minimize
$$W=200\lambda_1+40\lambda_2$$
 subject to
$$0.25\lambda_1+0.035\lambda_2\geq 50$$

$$0.30\lambda_1+0.057\lambda_2\geq 70$$

$$\lambda_1\geq 0$$

$$\lambda_2\geq 0$$

Global Primal-Dual Optimality Conditions

The global primal-dual optimality conditions state that:

- The primal and dual variables satisfy their respective constraints.
- The complementary slackness conditions:
 - If $x_1 > 0$, then λ_1 must satisfy $200 0.25x_1 0.30x_2 = 0$.
 - If $x_2 > 0$, then λ_2 must satisfy $40 0.035x_1 0.057x_2 = 0$.
- The duality gap is zero at optimality.

Primal-Dual Optimality Conditions

For a solution (x_1^*, x_2^*) of the primal problem and $(\lambda_1^*, \lambda_2^*)$ of the dual problem to be optimal, the following conditions must be satisfied:

1. Primal Problem

max
$$50x_1 + 70x_2$$

s.t. $0.25x_1 + 0.3x_2 \le 200$ (Constraint 1) $0.035x_1 + 0.057x_2 \le 40$ (Constraint 2) $x_1, x_2 \ge 0$.

2. Dual Problem

$$\begin{aligned} \min_{\lambda_1, \lambda_2} & 200\lambda_1 + 40\lambda_2 \\ \text{s.t.} & 0.25\lambda_1 + 0.035\lambda_2 \geq 50, \\ & 0.3\lambda_1 + 0.057\lambda_2 \geq 70, \\ & \lambda_1, \lambda_2 \geq 0. \end{aligned}$$

3. Primal-Dual Optimality Conditions (KKT Conditions)

• **Primal Feasibility:** The primal variables x_1^* and x_2^* must satisfy the constraints of the primal problem:

$$\begin{aligned} 0.25x_1^* + 0.3x_2^* &\leq 200, \\ 0.035x_1^* + 0.057x_2^* &\leq 40, \\ x_1^* &\geq 0, \\ x_2^* &\geq 0. \end{aligned}$$

• Dual Feasibility: The dual variables λ_1^* and λ_2^* must satisfy the constraints of the dual problem:

$$\begin{aligned} 0.25\lambda_1^* + 0.035\lambda_2^* &\geq 50, \\ 0.3\lambda_1^* + 0.057\lambda_2^* &\geq 70, \\ \lambda_1^* &\geq 0, \\ \lambda_2^* &\geq 0. \end{aligned}$$

• Complementary Slackness: For each inequality constraint, either the constraint is active (i.e., holds with equality) or the corresponding Lagrange multiplier is zero:

$$\lambda_1^* (200 - 0.25x_1^* - 0.3x_2^*) = 0,$$

$$\lambda_2^* (40 - 0.035x_1^* - 0.057x_2^*) = 0.$$

• Stationarity: The gradient of the Lagrangian with respect to x_1 and x_2 must be zero at the optimal points (x_1^*, x_2^*) :

$$\frac{\partial \mathcal{L}}{\partial x_1} = 50 - 0.25\lambda_1^* - 0.035\lambda_2^* = 0, \frac{\partial \mathcal{L}}{\partial x_2} = 70 - 0.3\lambda_1^* - 0.057\lambda_2^* = 0.$$

4 E 3.11

Consider the problem to minimize f(x) subject to $x \in S$, where $f: \mathbb{R}^n \to \mathbb{R}$ is a C^1 function, and S is some subset of \mathbb{R}^n . Assume that \bar{x} satisfies the geometric optimality condition, and let γ be an arbitrary smooth curve through S starting at $\bar{x} \in S$, i.e., $\gamma: [0,1] \to S$ is a differentiable function with $\gamma(0) = \bar{x}$. Show that

$$\left. \frac{d}{dt} f(\gamma(t)) \right|_{t=0} \le 0.$$

The definition of the tangent cone is:

$$T_S(x) := \{ p \mid \exists \{x_k\}_{k=1}^{\infty} \subset S, \{\lambda_k\}_{k=1}^{\infty} \subset (0, \infty), \text{ such that } \lim_{k \to \infty} x_k = x, \quad \lim_{k \to \infty} \lambda_k(x_k - x) = p \}$$

In simpler terms, it captures the directions in which one can move from the point x while remaining in the set S, scaled by small positive factors.

Then, $\gamma'(0) \in T_S(x)$ since the definition of the (one-sided) derivative is

$$\gamma'(0) = \lim_{t \to 0} \frac{\gamma(t) - \gamma(0)}{t}.$$
 (4)

Fixing any sequence $t_k \to 0$, and letting $x_k := \gamma(t_k)$, $\lambda_k = \frac{1}{t_k}$, the sequences required in the definition of $T_S(x)$ are defined.

A notion of descent directions to the objective function f can be formulated. The cone of descent directions is a concept used to describe the set of feasible directions in which one can move from a current point in order to decrease the objective function value.

$$\overset{\circ}{F}(x) := \{ p \in \mathbb{R}^n \mid \nabla f(x)^\top p < 0 \}$$

Theorem 1 (Geometric Optimality Conditions) Consider the problem (1), where $f \in C^1$. Then

$$x^*$$
 is a local minimum of f over $S \implies \mathring{F}(x^*) \cap T_S(x^*) = \emptyset$.

If the example with smooth curves is returned to, it is shown that for any smooth curve γ through S starting at x^* , $\gamma'(0) \in T_S(x^*)$. The geometric optimality condition reduces to the statement that

$$\left. \frac{d}{dt} \right|_{t=0} f(\gamma(t)) \ge 0$$

when applied to this tangent vector.