DECISION TREE

Exercises

1. Consider the training examples shown in **Table 3.5** □ for a binary classification problem.

Table 3.5 □

Customer ID	Gender	Car Type	Shirt Size	Class
1	M	Family Small		C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	\mathbf{F}	Sports	Small	C0
8	\mathbf{F}	Sports	Small	C0
9	F	Sports	Medium	C0
10	\mathbf{F}	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	\mathbf{F}	Luxury	Small	C1
16	\mathbf{F}	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	${ m F}$	Luxury	Large	C1

- a. Compute the Gini index for the overall collection of training examples.
- b. Compute the Gini index for the Customer ID attribute.
- c. Compute the Gini index for the Gender attribute.
- d. Compute the Gini index for the car Type attribute using multiway split.
- e. Compute the Gini index for the Shirt Size attribute using multiway split.
- f. Which attribute is better, Gender, Car Type, or Shirt Size?
- g. Explain why Customer ID should not be used as the attribute test condition even though it has the lowest Gini.

it.

2. Consider the training examples shown in **Table 3.6** \square for a binary classification problem.

Table 3.6. Data set

Instance	a1	a2	а3	Target Class
1	Т	Т	1.0	+
2	Т	Т	6.0	+
3	Т	F	5.0	-
4	F	F	4.0	+
5	F	Т	7.0	-
6	F	Т	3.0	-
7	F	F	8.0	-
8	Т	F	7.0	+
9	F	Т	5.0	-

- a. What is the entropy of this collection of training examples with respect to the class attribute?
- b. What are the information gains of a1 and a2 relative to these training examples?
- c. For a3, which is a continuous attribute, compute the information gain for every possible split.
- d. What is the best split (among a1, a2, and a3) according to the information gain?
- e. What is the best split (between a1 and a2) according to the misclassification error rate?
- f. What is the best split (between a1 and a2) according to the Gini index?