# Credit Exploratory Data Analysis

By: Vignesh Kumar

#### **Problem Statement**

- To identify patterns which indicate if a client has difficulty paying their instalments.
- To understand the driving factors (or driver variables) behind loan default, the variables which are strong indicators of default.
- To Identify the missing data and use appropriate method to deal with it. (Remove columns/or replace it with an appropriate value)
- To Identify if there are outliers in the dataset and to mention why it is an outlier.
- To Identify if there is data imbalance in the data. Find the ratio of data imbalance.
- To provide univariate and bivariate analysis w.r.t to 'Target variable' in the dataset (clients with payment difficulties and all other cases).
- To brief the results of univariate, segmented univariate, bivariate analysis, etc. in business terms.
- To Find the top 10 correlation for the Client with payment difficulties and all other cases (Target variable)

# Steps Performed part of EDA

#### DATA CLEANING

- Missing value Imputation/ Deletion
- Data Standardization
- DATA ANALYSIS
  - Feature Engineering
  - Dimensionality reductions
- DATA VISUALIZATION
  - Plots / Graphs using python libraries
  - Univariate / Bivariate / Correlations
- OBSERVATIONS AND FEEDBACK
  - Reasoning based on the Insights

## Data Cleaning Highlights

#### **Columns Analysis**

- The application data.csv contains many (~40+) columns that have null percentage greater than or equal to 50%.
- Therefore we drop all columns with null values greater than 50%

```
1 check_cols_null_pct(curr_appl_data)

v 0.1s

COMMONAREA_MEDI 69.872
COMMONAREA_AVG 69.872
COMMONAREA_MODE 69.872
NONLIVINGAPARTMENTS_MODE 69.433
NONLIVINGAPARTMENTS_AVG 69.433
NONLIVINGAPARTMENTS_MEDI 69.433
```

#### Missing Values imputation

Those columns that has null values below 50%, are imputed based on the missing type (MAR, MNAR, MCAR)

for most categorical/discrete columns, considered using Mode if the frequency of the topmost value is above 50%. (\* refer Notebook for details)

for most numerical columns – considered either Mean, Median, based on distribution and skewness.

```
curr_appl_data1["EMERGENCYSTATE_MODE"].fillna(
curr_appl_data1["EMERGENCYSTATE_MODE"].mode()[0])
```

### **Data Cleaning Highlights**

#### DATA STANDARDISATION

- DAYS\_COLS Is a list of days type columns, represented in days count,
- There were inconsistencies in these columns, therefore made all values absolute, then converted it to years format.

```
1 curr_appl_data1[DAYS_COLS] = (abs(curr_appl_data1[DAYS_COLS]) / 365).astype(int)
```

 Some categorical column values are replaced with more apt and common terms as part of standardization

```
curr_appl_data1["FLAG_OWN_CAR"] = curr_appl_data1["FLAG_OWN_CAR"].replace(to_replace=["Y", "N"], value=["Yes", "No"])
curr_appl_data1["FLAG_OWN_REALTY"] = curr_appl_data1["FLAG_OWN_REALTY"].replace(to_replace=["Y", "N"], value=["Yes", "No"])
curr_appl_data1["NAME_HOUSING_TYPE"] = curr_appl_data1["NAME_HOUSING_TYPE"].replace(to_replace="House / apartment", value="House")
```

### **Outlier Analysis**

There are many columns that contains <u>outliers</u>:

AMT\_ANNUITY, AMT\_APPLICATION, AMT\_CREDIT, AMT\_INCOME\_TOTAL, CNT\_CHILDREN, CNT\_FAM\_MEMBERS, CNT\_PAYMENT, DAYS \_TERMINATION, DAYS\_LAST\_DUE, YEARS\_EMPLOYED



#### **Data Binning**

In order to minimize the outliers, we used binning approach for some of the columns:

curr\_appl\_data1["AMT\_CREDIT\_BINS"] = pd.cut(curr\_appl\_data1['AMT\_CREDIT'], bins=[0,200000,400000,600000,800000,10000000,10000000], labels=["0-200K","200-400k"
curr\_appl\_data1["YEARS\_EMPLOYED\_BINS"] = pd.cut(curr\_appl\_data1['YEARS\_EMPLOYED'], bins=[-100,10,20,30,40,50,60,1000], labels=["0-10","10-20","20-30","30-40"
curr\_appl\_data1['AGE\_Category'] = pd.cut(curr\_appl\_data1['YEARS\_BIRTH'], [0,30,40,50,60,200], labels=["<30","30-40","40-50","50-60","60+"])
curr\_appl\_data1</pre>

## **Univariate Analysis**

#### Key insights from application data.csv







Name\_Contract\_Type:
Almost 90% of the loan applicants applied for Cash Loans

Code Gender: 67.6% of the Loan Applicants are female

Name\_Income\_Type: 51% of the applicants are working citizens.

## **Univariate Analysis**







- AMT\_GOODS\_PRICE, CNT\_FAM\_MEMBERS columns have outliers and the distribution is slightly skewed towards right.
   whereas the HOUR\_APPR\_PROCESS\_START is normally distributed

## Univariate, Segmented Univariate



# Univariate, Segmented Univariate and Bivariate Analysis



- Client who are Secondary educated have mostly applied for the loan,
- They have the greater chance of paying their installments on time without difficulties among the given categories.
- They also have higher risk of default

# Univariate, Segmented Univariate and Bivariate Analysis



- Most loan applicants are Repeaters
- Also Most loan applicants who do not have difficulty in paying their installments are Repeaters, among the given categories.



Some of the high linear relationships observed as below:

- 'AMT\_CREDIT','AMT\_ANNUITY','AMT\_GOODS\_PRICE',
  Therefore More the price of the goods, higher the credit amount
- 'CNT\_FAM\_MEMBERS','CNT\_CHILDREN',
- 'YEARS\_REGISTRATION','YEARS\_BIRTH',
- 'AMT\_CREDIT vs 'AMT\_REQ\_CREDIT\_BUREAU\_YEAR',

#### **Data Imbalance Ratio**

Upon analyzing the Target variable, we can conclude that the Data is **Highly Imbalanced.**The <u>Imbalance ratio</u> for 'Client with Payment difficulties' [Target] == 1 and 'All other cases' [Target] == 0 is **11.387.** 



### **Correlation Matrix**



A common Heatmap comprising of all numerical columns It is more or less similar for both targets classes [0 & 1]

- AMT\_CREDIT is high for Youngsters 'YEARS\_BIRTH'
- · AMT CREDIT is high for low 'CNT CHILDREN



A Heatmap comprising of Most critical features

### **Top 10 Correlations**



From this analysis we can infer some of the features:

- There is a high correlation between AMT GOODS PRICE and AMT CREDIT
- Therefore More the price of the goods, higher the credit amount
- Correlation between CNT\_FAM\_MEMBERS and CNT\_CHILDREN denotes more the count of family members there is a higher chance that the count of children's will be higher
- There is also a strong correlation between REGION\_RATING\_CLIENT and REGION\_RATING\_CLIENT\_W\_CITY ,
- · Which denotes both of the metrics are more or less aligned to each other

# Thank You