28503

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

02071061

PUBLICATION DATE

09-03-90

APPLICATION DATE

07-09-88

APPLICATION NUMBER

63224066

APPLICANT: DAIKIN IND LTD;

INVENTOR:

HAMACHI NOBUO;

INT.CL.

F25B 29/00 F25B 1/00

TITLE

OIL RECOVERING DEVICE FOR AIR

CONDITIONER

ABSTRACT :

PURPOSE: To effectively recover lubricant not only staying in an air conditioning cycle but accumulating in a reheater by increasing refrigerant flowing amount to the reheater at the time of recovery of the staying lubricant.

CONSTITUTION: Capacity detecting means 25 for detecting the capacity state of a compressor 1 in the operating state of an unloading mechanism is composed. A control means 26 is constructed in the following manner. The means 26 receives the output for enhancing the capacity of the compressor 1 to 100% each time a set time T₁ is elapsed at the time of low capacity operation of 50% of the compressor 1. It forcibly set the opening of a reheating expansion valve 20 so as to increase the refrigerant flowing amount of a reheater 15 to control it to a set opening A at the time of stop of reheating operation, while to a fully opened value at the time of reheating operation.

COPYRIGHT: (C)1990,JPO&Japio

⑩日本国特許庁(JP)

① 特許出願公開

◎ 公開特許公報(A) 平2-71061

@Int.CI.5

. .

識別記号

庁内整理番号

❸公開 平成2年(1990)3月9日

F 25 B 29/00 1/00 411 E 387 L 7501-3L 7536-3L

審査請求 朱請求 請求項の数 2 (全6頁)

の発明の名称 空気調和装置の油回収装置

②特 頭 昭63-224066

多出 頭 昭63(1988) 9月7日

爾発明者 浜地

伸 郎

大阪府堺市金岡町1304番地 ダイキン工業株式会社堺製作

所金爾工場內

⑪出 願 人 ダイキン工業株式会社

大阪府大阪市北区中崎西2丁目4番12号 梅田センタービ

ル

個代理人 弁理士 前田 弘 外2名

明 钿 器

発明の名称
空気器和装置の油回収装置

2 特許請求の範囲

(1) 容量可変の圧縮膜(1)、凝縮器(3又は8) 、 能張機構(9)、羅羌器(8又は3)を開風路に接続 した冷媒循環系統(12)に対し、除湿用の腎熱器 (15)を接続すると共に、護再熱器(15)の冷葉の 流通反を調整し除濕能力を制御する影響弁(20) を備えた空気調和装置において、上記圧縮機(1) の容量状態を検出する容量検出手段(25)と、 披容盘接出手段(25)の出力を受け、圧縮機(1) の低容量通転時において設定時間経過する毎に 抜圧網級(1) の容量を高めると共に再急器(15) の冷媒流通量を増大させるよう上記摩脳弁(20) を強調的に糾弾する制御手段(20)とを備えたこ とを妨徴とする空気調剤装置の油回収装置。 [2] 制御手段(26)は、再熱器(15)による険磊運 転を停止し且つ冷房運転を行っている時には、 患張弁(28)を微小調度に閉動調するものである

請求項(1)記載の空気期和装置の油回収装型。

3. 発明の詳報な説明

(成衆上の利用分野)

本発明は、空気調和装置に踏える圧縮機の耐滑 液を冷球器関系統から回収する前回収装置の改良 に関する。

(従来の技術)

一般に、整気調和装置においては、容量可変の 圧縮機を備えた場合、その容量を延く設定した軽 負荷運転時には、整調サイクル中の冷域循環量が 減少するため、冷線と共に圧縮線から吐出された 圧縮機用の翻滑池が空調サイクル中に標溜し易く なり、その指果、圧縮機内の潤滑油量が減少して、 圧離機が過熱し、焼付きが生じる場合がある。

そこで、従来、例えば真公昭57-41416 号公報に関示されるものでは、圧縮機の孤容量運 転が所定時間難続した時には、強制的に圧縮限を 高容量で運転し冷媒循環型を増大させて、望調サ イクル中に潴縮した配滑油を回収するようにして いる。

特閒平2-71061(2)

(発明が解決しようとする課題)

₽.

ところで、精密な機械加工や食品加工を行う場 合には、空期週度を15~20での中週範囲に設定し 且つ煮内温度を精度臭く制御することが望まれる。 そして、この場合には圧縮機や凝縮器等に加えて 詹錄韓四系統に別途除退用の再熱器を設け、再應 器の冷波波通路を影響弁で透直斜御して、窓内を **車好に除足することが迎まれる。**

しかるに、上記の如く再熟器を設けた空気調和 袋置に対し、上記後来の刑滑油の回収技術を適用 した場合には、単に圧縮機を高容量に制御しても、 圧縮進への油回収量が少なく、空間サイクル中の 滔滑油を有効に面収できない欠点があることが利 った。

そこで、本務明者は、その思因を実験により究 明したところ、潤滑油は售熱器にも多く滞溜して おり、翌月サイクル中に帰還した潤滑油を回収し ても、再熟器に潮湿する風滑池の回収は困難であ ることに組閣していることが称った。このことは 再熱器による除限運転時及びその停止時に搾らな

い。即ち、除湿運転の停止時には、荷熱器に連進 する冷保配管は閉じられ、再熱器は空間サイクル に対し閉回路に接続されないから、再熱器に溶剤 した飛行油はそのまま滞漑し続ける。また、除得 運転時には、再熟器の冷媒液通量は膨盛弁の餘温 能力制御により所定量に制度保持されており、そ れ故、圧縮機を高容量に斜回しても、再無器の冷 群漏西量は均大せず、溶溶した潤滑油は有効には 回収されない。

本類明は斯かる点に鑑みてなされたものであり、 その区的は、潜海した間滑油の回収時には、腎熱 盟に対する冷奴流通量を指大させることにより、 空調テイクル中に環礁した潤滑油は勿論のこと、 再熱器に溜った超滑油も育効に回収することにあ

(深頸を解決するための手数)

その目的を達成するため、本強明では、滞溜し た孤没袖の回収時には、圧縮極を高骛低に刺繍す ると共に除湿能力制御用の影張弁の間度を拡大制 御して、再熟器に対する冷燥液流量をも光火させ

るようにしている。

つまり、本出願の請求項目に係る発明の具体的 な構成は、第1層に示す如く、容量可変の圧縮機 (1) 、凝縮器(3又は6)、膨張機器(i) 、減免器(8 又は3)を閉回路に接続した冷媒倫理系統(12)に対 し、除湿用の再熱器(15)を接続すると共に、該再 熱器(15)の冷媒の流過避を調整し除湿能力を制御 する施弘弁(26)を加えた空気調和装置を前還とす る。そして、上記匠宿康(1)の容置状態を検出す る整型輸出手段(25)と、護容量検出手段(25)の出 力を受け、圧縮跳(1)の低容量運転時において設 建時間経過する毎に被圧縮級(1)の容量を高める と共に再熱器(15)の冷媒族通過を増大させるよう 上記影優弁(15)を数制的に制御する糾獅手段(28) とを設ける耕成としている。

その場合、室内の冷勝運転のみが行われている (務熱器(15)による除湿運転は停止中の) 状況で は、視滑油を組収すべく、酵吸弁(15)の開度を金 謝にして再熱器(1\$)の冷媒施通量を設密に増大さ せると、再熱器(13)への冷媒流通に伴い案内空気 が加熱されて冷房能力が低下し、霎内快適能が損 われることになる。

そのため、本出職の額水項心に係る発明では、 再熱器(15)による除湿運転を停止し冷房運転のみ を行っている状況では、制御亨及(26)により必扱 弁(26)の原制額を後小潜産に制設している。

(作用)

以上の樹皮により、木発明では、除湿運転の疼 止時には、影磁弁(20)が閉制部されて再熱盤(15) は冷媒循環系統(12)に対し一個のみで接続された 状況となり、調滑論は再熱器(15)に避り込む。ま た、陥岌運転時には膨張弁(20)の陽度制御により 再為器(15)の冷燥流過度が制限されるため、野熱 器(15)に潤滑絵が滞滑し続くなる。

今、圧縮機()) の低容量運転が設定時間続行し、 空間サイクル(冷媒循環系統)に関った期間池を 回収する状況になると、制御手段(26)が作動して、 圧縮機(1) が高智量に制御されると共に、尋覧弁 (15)の開度が強制的に関かれる。その結果、冷奴 觸舞型が増大して整調サイクルに濁った纒番油が

特期平2-71061(3)

圧縮機(1) に選収されると共に、除湿運転の停止 時では再熱器(15)に冷媒が液通し、緑湿運転時に は再熟器(15)の冷媒統通彙が増大して、除温運転 の有派に拘らず再為器(15)に確った週滑油が圧縮 機(į) に回収されることになる。

特に、室内の冷炭道転のみが行われている場合 には、再熱器(15)の冷雌流通難は少量に側限され るので、宝内空気の原理(解熱) 能力は小値に留 まり、煮内の冷房能力の低下を小さく密めること ができる。

(発明の効果)

•

以上説明したように、本発明の差気調和装置の 油回収装器によれば、空調器和装置に除湿用の再 熱器を作えた場合、冷線器線系統に滞縮した润滑 池の回収時には、除湿運転の有無に拘らず、再熱 器の冷保流通量をも均大制御して、丙熱器の浴っ た潤滑油を空調サイクルに綴った脚滑油と共に圧 権政に回収したので、旅沿油を確実に回収し圧縮 機内の肥層油量を確保して、圧縮機の開報性の向 上を図ることができる。しかも、冷媒協環系統に

油分離器を付設する必要がなく、圧縮機内の週冊 治療を低コストで確保できる。

特に、室内の冷房運転のみを行っている状況で 潤滑油の回収を行う場合には、異鳥器への冷媒流 通量を少なく制限すれば、冷屋能力の低下を小さ く留めて室内快適性を異好に破保しつつ、潤滑油 の回収が可能になる。

(実施例)

以下、本発明の実施例を第2回以下の図面に基 いて説明する。

第2図において、(A) は盆外機、(B) は窓内機 であって、上記室外機(4)の内部には、圧縮機(1) ど、四路切換弁(2) と、室外無交換器(3)と、 アキュムレータ(4) とが内蔵され、暖谷保疑(1) ~(4) は各々冷谋配管(5) …で冷峻の流道可能に 接続されている。上記圧縮級(1) は、その容量を 50%並に低減するアンロード選続(12)を育し、圧 精機(I) の容益を0.50.100%の三穀階に調整可能 としている。

また、上記室内機(B) は、室内熱交換器(8) と、

影張弁よりなる膨張機構(9) とを構え、該各機器 (8),(9) は冷燥起筒(10)…で冷媒の波通可能に放 挽されている。上記影量亦(8) は、その弁関度が 電気的に増減調整できる空調能力調整用の電崩撃 張弁で構成されている。

そして、上記室内機(B) は、冷謀配管(II)で上 記室外職(A) に冷媒の啓羅可能(閉回路)に接続 されて冷媒循牒系統(12)が形成されていて、冷閉 通短時には、四路切換弁(2)を関中実際の如く切 扱えて冷弱サイクルとし、冷談を図中実線矢印の 如く豁滅させることにより、各室内熱交換器(滋 発器}(8)で案内から販熱した熱量を室外熱交換器 (雌雑器){3}で外気に放然することを領域して氫 内を冷弱する。一方、慢房運転時には、四路切換 弁(2) を図中破線の如く切換えて破房サイクルと し、冷謀を國中破線矢印の如く循環させることに より、無道の投費を上記とは逆にして、室内を暇 **済するようにしている。また、上記冷房又は暖房** 運転時には、監内熱交換器(8) 前後の冷謀の温度 巻を設定値に保持するように膨張機構(9)の膀皮 が均益制御される。

また、室内膜(B) 内には、図中矢印で示す風吹 出し方向で室内無交換器(4) 下流側に除湿用の再 熱器(15)が配置されている。该再熱器(15)は、そ の一端が冷城配管(18)~(18)を介して冷線器以系 総(12)における四路切換弁(2)と置外熱交換器(3)との間に連通機能されていると共に、他端は冷 数配管(19)を介して冷媒的環系統(12)における室 内熱交換製(8) と膨脹機構(3) との間に逃逸接続 きれている。また、後君の冷越配質(18)の途中に は、その通路面積を超整して再熱器(15)の冷媒液 議機を調整する膨膜弁(20)が配置されていて、袋 **感弧弁(20)により、再級器(15)を夜辺する高温の** 冷銰が室内空気に与える熱震、つまり除屋能力を 銀御するようにしている。而して、絃再熱器(15) による除湿運転は、単独で又は塞内の冷筋運転と 共に行われる。また、この除涯運転は、吸込焦気 選症が設定型になるよう降浸能力を制御して行わ

さらに、第2図において、(Thi) は塞内の空気

舞開平2-71061(4)

の湿度(吸込空気温度)を輸出する窓温センサ、 《Tii2》及び(Tii3) は名々巡内熱交換器(8) 胸欲で 冷難の温度を検出する温度センサであって、該各 温度センサ(THI) ~(THA) の温度信号は、内部に CPU等を備えたコントローラ(22)に入力され、 **返コントコーラ(22)により上記圧線提(I)のアン** ロード機器(la)及び2個の膨張弁(9), (20)を開 度制御するように指載されている。

40

次に、冷謀循環系統(12)に滞溜した圧陥機(1) 用の超滑油の回収制器を築る図の制御フローに基 いて説明する。

該制御フローは窓内の冷房運転又は円熱(除湿) 運転時にスタートし、ステップS:で頭軽機(i)の50%容型の磁転組織時間でが設定時間です。 例えば3時間)以上経道したか資かを判別し、T くて、の場合にはそのまま冷原運転又は再熱運転 を統行する。

~方、TaT: の場合には、冷房サイクル中又 は再熱器(15)中に溜った圧縮膜(1) 県の超游油を 回収すべく、ステップS。で圧縮跳(1)のアンロ

ード機構(1e)の作動を終止させて100%容量運転と する。更に、再熟遺転の有無に応じて再熱盟(15) の冷健派通量を増大制御すべく、先ずステップS 」で再無所の膨張弁(20)の開度を判別し、全間時 (冷農運転のみを行っている場合) には、険湿道 転に起因する冷房池力の低下を少なく仰えるべく、 ステップS』で再曲用の影張弁(20)の開度を設定 脳皮組入(例えば全閉紐の1/5 期度値) に開製師 して、ステップS:でこの協利額を設定時間T: (例えば5分)の間だけ維持してステップS」に 灰る。

一方、再無用の認過弁(20)の関度が全関でない (再熱運転時) の場合には、ステップSi で餌熱 用の膨張弁(29)の関度を全関に制硬し、この状態 をステップS, で改定時間で, (何えば1分) の 間だけ維持して、ステップS;に戻る。

よって、上記第3図の前額フローにおいて、ス テップミ:により、アンロード既構(1a)の作動状 想でもって圧縮鍵(1)の容量状態を吸出するよう にした尊貴焓出手段(25)を構成している。また。

強制部フローのステップSi~Siにより、上記 容益校出手段(25)の出力を受け、圧縮機(1)の50 1. の低容量運転時において設定時間T1 の間だけ 経過する舒に護圧額機(1) の容費を100%容量に高 めると我に、郭熱器(15)の冷媒流通道を増大させ るよう可熱用の膨延弁(26)の開度を強制的に、再 島道転の停止時には設定関度人に、再熟道転時に は金開徳に制御するようにした制御予政(28)を批 成している。

したがって、上記実施阀においては、円熟運転 は停止し且つ圧縮媒(1)の50% 容益での冷屏運転 のみが行われている場合には、四路切換弁(2) は 異線の如く切換わり、除延能力制御(再熟) 用の 能張弁(20)は閉胡御される。それ放、狂竊機(1) から吐出された冷盛は実象矢印の如く循環し、こ の冷蔵中に含まれる個滑油は冷房サイクル中に溜 り込み募くなると共に、財務器(15)下流頭が筋弧 弁(20)で閉じられているので、上記婚額する冷媒 の一部が冷峻配置(18)~(16)及び再熱器(15)に紹 り込み島くなる状況である。

しかし、50% 容量週報が設定時間T: 単続する と、圧縮機(() の容量が190%に高く側部されて冷 媒循環盤が溶血するので、冷冽サイクル中に溜っ た酒澄油が圧縮機(1)に回収されると共に、再熟 府の総選弁(20)が設定認定Aに関制即されるので、 再熱器(15)に冷螺が流通して、その内部に渡った 潤滑柏が室内熱交換器(S) を経て圧縮機(1) に回 収されることになる。しから、膨慢外(20)の開度 は設定関度人であるので、窓内空気の再熱による 冷房能力の低下は少なく抑えられる。

また、冷房運転中での再熱運転時には、西熱用 の彫選弁(20)が関連制御されて、圧縮機(1)から の冷媒は窓外熱交換器(凝縮器)(ま)上爽側から分 流して再熱器(15)に流れ、冷媒配質(19)を経て筮 内熱交換器(療発器)(8)に渡入する。この際、再 熱用の応張弁(20)の開度は、吸込空気温度が設定 雄未満の場合には大開産になるので、再熟獎(15) に流れる冷球流逝量が増進して除退能力が高まる 一方、設定磁を越える場合には小開度になり冷災 流通量が減難して除湿能力は低く無疑されること

特图平2-71061(5)

になるが、この冷峻流通量は再熱用の膨張弁(20) で制版された小量の所定流量であるので、冷珠は この再熟器(15)及び配替(14)~(19)部分に削り易

しかし、この再熱運転時には、再熱用の膨張症 (20)が全間に制御されるので、再熱器((6)の冷燥 流通量が増量して、その内部に滞滞した潤滑油が この流過する冷痰と共に再熱器(15)から液れ出て 窓内熱交換器(8) を経て圧縮線(1) に戻ることに なる。

よって、再無(論温)運転の有無に拘らず、再 熱器([5]に精溜した潤滑油を冷房サイクル中に滞 激した恐滑油と共に圧縮機(!) に回収できるので、 圧縮機(i) 内の潤滑流量を確保して迅縮機(1) の は親性の向上を図ることができる。しかも、冷解 循環系統(12)に地分離器を可設する必要がなく、 低コストに済む。

尚、上記実稿例では、再熱用の膨張弁(20)を再 熱器(15)下流側の冷媒配管(19)に介設したが、上 液硼の冷燃配管(16)に介設してもよい。この場合

には、脳滑油は塩外熱交換器(3) を流通した後の 冷域が冷域配管(19)を経て再熱器(1) に渝り込む ことになる。

4. 磁面の間単な説明

第1因は本発明の構成を承すプロック図である。 第2回及び第3回は本発明の実施所を示し、第2 図は全体構成を示す冷戦配管系統図、印3図は潤 滑油の値収制御を示すフローティート図である。

(1) … 圧縮機、(1a)…アンロード級術、(8) … 室外熱交換器、(8) … 置内熱交換器、(9) … 膨脹 根梢、(12)…冷燥循環系统、(15)…再熱器、(20) …影張弁、(22)…コントローラ、(23)…容改検出 孚良、(26)…制御孚艮。

> 特群出新人 タイキンII SZ 非影 ほかて社

第1図

第 3 図

特閒平2-71061(6)

