

Trabalho Substituto da Prova Substitutiva de 2020

PERÍODO NOTURNO

Prof^o Marcelo Porto Trevizan

r ioi- iv	Tarcelo Forto Trevizan
Nome:	RA:
Assinatura:	Data: 17.12.2020 (19h a 23h59)
	Orientações
• Este trabalho substituto de prov	va é individual ;
• este trabalho substituto será válabaixo estiverem assinados;	lido apenas se o cabeçalho acima e o Acordo de Ética
• a tentativa identificada de plágic na prova inteira;	o ou fraude poderá acarretar em nota zero na questão ou
• por favor, resolver de forma orga	anizada e destacar as respostas;
• contém 6 questões;	
• não é obrigatória a resolução de	todas as questões;
• o prazo para entrega é até as 23	h59 da data final apontada no cabeçalho acima;
• o arquivo de entrega deverá esta	ur em formato PDF;
• o enunciado deverá fazer parte de entre uma questão e outra;	o arquivo enviado; folhas avulsas poderão ser intercaladas
• pontuação máxima de 10,0 pont	os.

Acordo de Ética

A ética nasce no berço, caminha pela escola e acompanha toda a vida pessoal e profissional de cada pessoa.

Ciente da questão ética que nos permeia e de que <u>este trabalho</u> <u>substituto de prova é individual</u>, declaro que não cometerei qualquer tipo fraude ou plágio em sua resolução.

Assinatura

Nota sobre o Acordo de Ética

É possível interagir com um colega a respeito do conteúdo do trabalho e este **pode** dar uma dica para sua resolução. Todavia **não poderá fornecer a resolução** das questões, total ou parcial, seja por qual forma for.

Por exemplo, o colega poderá dizer "use o conceito de divisor de tensão", ou "consulte o capítulo N do livro X", mas não poderá ditar ou fornecer uma cópia da expressão que ele usou para resolver o exercício.

Boa Prova!!!

Questão 1 (2,0). Dado o circuito abaixo, pede-se $v_x(t)$ e $i_x(t)$ para t = 0 s (1,0) e $t \to \infty$ (1,0). 2,0 Considerar capacitores e indutores descarregados em t = 0 s.

Questão 2 (3,0). Inicialmente, L encontra-se descarregado. Nos instantes t_1 , t_2 e t_3 , a chave é comutada para os pontos indicados, permanecendo lá até o próximo instante. Pede-se traçar o esboço de $i_L(t) \times t$ (1,0), $v_L(t) \times t$ (1,0) e $v_R(t) \times t$ (1,0), para $0 \le t \le 24 \, \mu s$, indicando os valores dos pontos notáveis. Ainda, indicar, no local reservado, os valores dos cálculos auxiliares. (Nota1: considerar as referências de tensão e corrente no capacitor de acordo com o apresentado nas aulas de teoria. Nota2: superpor as curvas de tensão sobre os resistores, mas manter a clareza do traçado.)

2,75

2,5

2,25

Cálculos auxiliares (usar 4 A.S.):

$$\tau 1 = 5 \quad \tau 1 =$$

$$\tau 2 = 5 \tau 2 =$$

$$\tau 3 = 5 \tau 3 =$$

if1 =

if2 =

if3 =

Questão 4 (1,5). Para o circuito abaixo, deseja-se obter V_x . Para tanto:

1,25 a) (1,0) Obter o sistema de equações *literais* que resolve o circuito, por *Análise Nodal*. (Nota: a resposta há de ser na forma $V_A = \ldots$)

1,0

1,5

b) (0,5) Determinar o valor de V_x .

Questão 5 (1,5). Considere-se o circuito abaixo:

Pede-se:

a) (0,75) Sistema de **equações literais** que o descreve, por *Análise de Malhas*. Escreva a resposta final no espaço reservado.

$$\begin{cases} \alpha : & I_{\alpha} + I_{\beta} = I_{\beta$$

b) (0,25) Sistema de **equações numéricas**.

c) (0,5) Os valores de I_{α} e I_{β} .

Questão 6 (1,0). No circuito abaixo, sabe-se que $V_A = -1,65\,\mathrm{V}$. Pede-se realizar o balanço de 1,0 potência.

