3. INSIEMI

L'*insieme* è una struttura discreta utilizzata per rappresentare oggetti discreti.

Molte strutture discrete sono costruite a partire dagli insiemi:

- Combinazioni (insiemi usati nel conteggio)
- Relazioni (insiemi che rappresentano le relazioni tra gli oggetti)
- Grafi (insiemi di vertici e archi)
- .

Un *insieme* è una collezione non ordinata di oggetti, chiamati *elementi* dell'insieme.

Esempio:

■ Insieme delle vocali: V = {a, e, i, o, u}

■ Insieme dei primi 7 numeri primi: P = {1, 2, 3, 5, 7, 11, 13, 17}

Un insieme può essere rappresentato attraverso:

1. La *lista* (l'enumerazione) degli elementi che lo costituiscono: E= {50, 52, 54, 56, 58, 60, 62}

2. La definizione della **proprietà** che caratterizza i suoi elementi: $E = \{x \mid x \text{ è un intero pari e } 50 \leq x \leq 63 \}$

Se gli elementi dell'insieme sono molti si utilizza l'ellissi (...) nella rappresentazione dell'insieme attraverso l'enumerazione.

Esempio:

"insieme degli interi compresi tra 1 e 100"

→ A= {1, 2, ..., 100}

("..." sono chiamati ellissi)

INSIEMI IMPORTANTI

Numeri naturali:	\rightarrow	N = {0,1,2,3,}
Interi:	\rightarrow	Z = {, -2,-1,0,1,2,}
Interi positivi:	\rightarrow	Z ⁺ = {1,2, 3,}
Numeri razionali:	\rightarrow	$Q = \{p/q \mid p \in Z, q \neq 0\}$
Numeri reali:	\rightarrow	R

Esempio:

L' insieme dei numeri pari è $\{0, 2, 4, 6, 8, 10, ...\} = \{2n \mid n \in \mathbb{N}\}$

L' insieme dei numeri dispari è $\{1, 3, 5, 7, 9, 11, ...\} = \{2n+1 \mid n \in \mathbb{N}\}$

Es: Se P = $\{2n \mid n \in N\}$ allora $4 \in P$, ma $5 \notin P$.

3.1 UGUAGLIANZA TRA INSIEMI

Due insiemi sono *uguali* se e solo se sono costituiti dagli stessi elementi. Scriveremo $a \in A$ per indicare che a è un elemento di A.

Un *modo alternativo* per dire che $A = B \grave{e} \forall x (x \in A) \leftrightarrow (x \in B)$

Esempio:

- **1** {1, 2, 3} = {1, 2, 2, 3} = {3, 1, 2}
- Avere elementi duplicati in un insieme non dice nulla di più sull'insieme
- Avere elementi in un ordine diverso non dice nulla di più sull'insieme
- Sono {1, 2, 3, 4} e {1, 2, 2, 3} insiemi uguali? **NO**

3.2 INSIEMI SPECIALI

L'insieme universale è denotato con *U*, è l'insieme costituito da tutti gli elementi che si stanno considerando.

L'*insieme vuoto* è denotato con \emptyset , non contiene alcun elemento.

Un insieme può essere rappresentato visivamente usando i diagrammi di Venn.

$$V = \{a, b, c\}$$

3.3 SOTTOINSIEMI

Un insieme A è detto un *sottoinsieme* di un insieme B se e solo se ogni elemento di A è anche un elemento di B. Usiamo $A \subseteq B$ per indicare che A è un sottoinsieme di B.

Un *modo alternativo* per dire che $A \subseteq B \stackrel{\cdot}{e} \forall x (x \in A) \rightarrow (x \in B)$

PROPRIETÀ DEI SOTTOINSIEMI:

Teorema. $\emptyset \subseteq S$ cioè l'insieme vuoto è sottoinsieme di qualunque insieme.

Dim:

Dobbiamo far vedere che $\forall x (x \in \emptyset) \rightarrow (x \in S)$

Poiché Ø non contiene alcun elemento allora x∈Ø è sempre falsa

Ma una implicazione \rightarrow è sempre *vera* se l'ipotesi è *falsa*, quindi $\forall x (x∈\emptyset) \rightarrow (x∈S)$ è *vera*

3.3.1 SOTTOINSIEMI PROPRI

Un insieme A è detto un *sottoinsieme proprio* di un insieme B se e solo se $A \subseteq B$ e $A \ne B$. Usiamo $A \subseteq B$ per indicare che A è un sottoinsieme proprio di B.

Esempio:

 $A=\{1,2,3\}$ B = $\{1,2,3,4,5\}$ A \subset B? SI

3.4 CARDINALITÀ

Sia S un insieme e sia n un intero non negativo. Se ci sono esattamente n distinti elementi in S, diciamo che n è la *cardinalità* di S. La cardinalità di S è denotata con *[S]*.

Esempio:

- A= $\{1,2,3\}$ \rightarrow |A| = 3 ■ B = $\{1,2,3,....,20\}$ \rightarrow |B| = 20
- $|\phi| = 0$

Un insieme infinito è un insieme non finito.

Esempio:

L'insieme dei numeri naturali è infinito: N={0, 1, 2, ...}
 L'insieme dei numeri reali R è infinito
 (R non è numerabile)

3.5 INSIEME POTENZA

Dato un insieme S, l'*insieme potenza* di S è l'insieme di tutti i sottoinsiemi di S.

L'insieme potenza di S è denotato con P(S).

Osservazione: Se S è un insieme con |S|=n allora $|P(S)|=2^n$.

Esempi:

- Consideriamo l'insieme vuoto, Ø
- Quale è l'insieme potenza di Ø?
 Quale è la cardinalità di P(Ø)?
 P(Ø) = {Ø}
 |P(Ø)| = 1
- Consideriamo l'insieme {1}
- Quale è l'insieme potenza di {1}?
 P({1}) = {Ø, {1}}
 Quale è la cardinalità di P({1})?
 P({1}) = 2
- Consideriamo l'insieme {1,2}
- Quale è l'insieme potenza di {1,2} ?
 Quale è la cardinalità di P({1,2}) ?
 P({1,2}) = { Ø, {1}, {2}, {1,2}}
 P({1,2}) = 4
- Consideriamo l'insieme {1,2,3}
- Quale è l'insieme potenza di {1,2,3}?
 P({1,2,3}) = { , {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}
- Quale è la cardinalità di $P(\{1,2,3\})$? $|P(\{1,2,3\})| = 8$

3.6 N-PLE (ENNUPLE)

Un insieme è usato per rappresentare una collezione non ordinata di oggetti.

Una *n-pla* è usata per rappresentare una *collezione ordinata* di oggetti.

Una *n-pla* ordinata $(x_1, x_2, ..., x_n)$ è una collezione ordinata che ha x_1 come primo elemento, x_2 come secondo elemento, ..., x_n come n-simo elemento, con $n \ge 2$.

Nota: In una n-pla l'ordine della collezione è importante.

Esempio:

Coordinate di un punto nel piano:

3.7 PRODOTTO CARTESIANO

Siano S e T due insiemi. Il **prodotto cartesiano di S e T** denotato con $S \times T$, è l'insieme di tutte le coppie ordinate (s,t) dove s \in S e t \in T. Quindi, S x T = { (s,t) | s \in S e t \in T}.

Esempio:

```
S = {1,2} and T = {a,b,c}

S x T = { (1,a), (1,b), (1,c), (2,a), (2,b), (2,c) }

T x S = { (a,1), (a, 2), (b,1), (b,2), (c,1), (c,2) }
```

Nota: $S \times T \neq T \times S$ Nota: La cardinalità di $S \times T \in |S \times T| = |S| * |T|$

3.8 OPERAZIONI SUGLI INSIEMI

3.8.1 UNIONE

Siano A e B due insiemi. L'*unione* di A e B, denotata con A ∪ B, è l'insieme che contiene gli elementi in A o quelli in B. Quindi $A \cup B = \{x \mid x \in A \lor x \in B\}$.

Esempio:

A =
$$\{1,2,6\}$$
 B = $\{2,4,6,7,9\}$
A U B = $\{1,2,4,6,7,9\}$

3.8.2 INTERSEZIONE

Siano A e B due insiemi. L'intersezione di A e B, denotata con A ∩ B, è l'insieme che contiene gli elementi in A e quelli in B. Quindi $A \cap B = \{x \mid x \in A \land x \in B\}$.

Esempio:

$$A = \{1,2,6\}$$
 $B = \{2,4,6,7,9\}$
 $A \cap B = \{2,6\}$

Due insiemi, si dicono **disgiunti** se la loro intersezione è vuota, cioè $A \cap B = \emptyset$.

Esempio:

$$A = \{1,2,6\}$$
 $B = \{0,5,3,8\}$

 $A \cap B = \emptyset$

Cardinalità dell'insieme unione:

La cardinalità dell'insieme unione è $|A \cup B| = |A| + |B| - |A \cap B|$.

Se si considera |A| + |B| allora si conta $|A \cap B|$ due volte.

Vale il Principio di inclusione ed esclusione.

Se A e B sono disgiunti allora la cardinalità dell'insieme unione è $|A \cup B| = |A| + |B|$.

3.8.3 DIFFERENZA

Siano A e B due insiemi. La differenza tra A e B, denotata con A - B, è l'insieme che contiene quegli elementi che sono in A ma non sono in B. Quindi $A - B = \{x \mid x \in A \land x \notin B\}$.

Esempio:

$$A = \{1,2,6\}$$
 $B = \{2,4,6,7,9\}$

 $A - B = \{ 1 \}$

3.8.4 COMPLEMENTO

Sia U insieme universale ed A un insieme. Il complemento di A, denotato con A, è l'insieme di tutti gli elementi di U che non appartengono ad A. Quindi $\overline{A} = \{x \mid x \in U \land x \notin A\}$.

Esempio:

$$U=\{1,2,3,4,5,6,7,8\} A = \{1,3,5,7\}$$
 $\overline{A} = \{2,4,6,8\}$

Esempio:

$$A = \{ 2n \mid n N \}$$

A = { 2n+1 | n N } = insieme dei numeri dispari

3.8.5 OPERAZIONI ED IDENTITÀ

 $\forall x \ (x \in A) \leftrightarrow (x \in B)$ A = B

 $A \subseteq B$ $\forall x (x \in A) \rightarrow (x \in B)$

 $A \cup B = \{x \mid x \in A \lor x \in B\}$

 $A \cap B = \{x \mid x \in A \land x \in B\}$

 $A - B = \{x \mid x \in A \land x \notin B\}$

 $\overline{A} = \{ x \mid x \in U \land x \notin A \}$

Identità

A U Ø = A

• A∩U=A

Dominazione

A U U = U

• $A \cap \emptyset = \emptyset$

Idempotenza

 $\bullet \quad A \cup A = A$

 \bullet A \cap A = A

Doppio complemento

\(\overline{A}\) = A

Commutativa

A U B = B U A

• $A \cap B = B \cap A$

Associativa

• (A U B) U C = A U (B U C)

• $(A \cap B) \cap C = A \cap (B \cap C)$

Distributiva

• $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

• $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

De Morgan

• $A \cup B = \overline{A} \cap \overline{B}$

• $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Leggi dell'assorbimento

A ∪ (A ∩ B) = A

• A∩(A∪B)=A

Leggi del complemento

A U Ā = U

• $A \cap \overline{A} = \emptyset$

Le identità tra insiemi possono essere provate utilizzando le tavole di appartenenza.

- Elencare gli insiemi che costituiscono l'identità.
- Elencare le diverse combinazioni di appartenenza degli elementi agli insiemi.
- Assegna 1 se un elemento appartiene all'insieme, 0 altrimenti.

Altrimenti possono essere utilizzate le equivalenze logiche.

$\overline{A \cap B} = \{ x \mid x \notin A \cap B \}$	def di complemento		
$= \{ x \mid \neg (x \in A \cap B) \}$	def di non appartenenza		
$= \{ x \mid \neg (x \in A \land x \in B) \}$	def di intersezione		
$= \{ x \mid \neg (x \in A) \lor \neg (x \in B) \}$	da Legge di DeMorgan		
$= \{ x \mid x \notin A \lor x \notin B \}$	def di non appartenenza		
$=\{x\mid x\in\overline{A}\vee x\in\overline{B}\}$	def di complemento		
$= \{ x \mid x \in \overline{A} \cup \overline{B} \}$	def di unione		
$= \overline{A} \cup \overline{B}$			

Provare che $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Α	В	Ā	В	$\overline{A \cap B}$	ĀUB
1	0	0	1	1	1
1	1	0	0	0	0
0	0	1	1	1	1
0	1	1	0	1	1

3.9 FUNZIONI

Una *funzione* mette in relazione oggetti appartenenti ad un insieme con oggetti appartenenti ad un altro insieme (non necessariamente diverso dal primo).

Siano A e B due insiemi. Una *funzione* da A in B, denotata f : A → B , associa ciascun elemento di A ad esattamente un elemento di B.

3.9.1 FUNZIONE INIETTIVA

Una funzione è detta *iniettiva* se e solo se $f(x) = f(y) \Rightarrow x = y$ per ogni x ed y nel dominio di f. Alternativamente, $x \neq y \Rightarrow f(x) \neq f(y)$.

3.9.2 FUNZIONE SURIETTIVA

Una funzione da A a B è detta *suriettiva* se e solo se $\forall b \in \mathbb{B} \exists a \in \mathbb{A}$ tale che f(a) = b. Alternativamente, f(A) = B.

3.9.3 FUNZIONE BIETTIVA

Una funzione è detta biettiva se è sia iniettiva che suriettiva.

3.9.4 CARDINALITÀ

Sia S un insieme e sia n un intero non negativo. Se ci sono esattamente n distinti elementi in S, diciamo che n è la *cardinalità* di S. La cardinalità di S è denotata con /S/.

Definizione alternativa di cardinalità di un insieme:

Due insiemi A e B hanno la *stessa cardinalità* se esiste una corrispondenza uno-a-uno tra gli elementi di A e quelli di B. Alternativamente se esiste una *biezione* tra A e B

Esempio:

 $A=\{a,b,c\}$ $B=\{\alpha,\beta,\gamma\}$

Consideriamo la funzione f definita come:

- a $\rightarrow \alpha$
- b $\rightarrow \beta$
- c $\rightarrow \gamma$

f definisce una biezione, quindi A e B hanno la stessa cardinalità, cioè |A| = |B| = 3.

3.10 INSIEMI NUMERABILI

Un insieme che è *finito* o ha la *stessa cardinalità di Z*⁺ è detto *numerabile*. Cioè i suoi elementi possono essere enumerati.

Dimostrazione:

A={0,2,4,6, ...} cioè A è l'insieme dei numeri pari. Dimostriamo che A è numerabile:

Dalla definizione dovremmo far vedere che c'è una funzione **biettiva** f: $Z^+ \rightarrow A$. Ricordiamo che $Z^+ = \{1, 2, 3, 4, ...\}$.

Definiamo la funzione f: $x \in Z^+ \rightarrow 2x-2 \in A$

 $-1 \rightarrow 2*1-2 = 0$

- 2 → 2*2-2 = 2

- 3 → 2*3-2 = 4 ...

f è *iniettiva* perché: f è *suriettiva* perché: f(x) = f(y)

2x-2 = 2y-2

=>

٧a

 $\forall a \in A \exists x \in Z^+ \ a = 2x-2$

=>

(a+2)/2 è un intero positivo

Perciò $|A| = |Z^+|$

Teorema: L'insieme degli interi Z è numerabile

Dimostrazione:

Dalla definizione dovremmo far vedere che c'è una funzione biettiva f: $Z^+ \rightarrow Z$. Ricordiamo che $Z^+ = \{1, 2, 3, 4, ...\}$.

Definiamo la funzione:

f:
$$x \in \mathbb{Z}^+ \to \begin{cases} x/2 & \text{se } x \text{ è pari} \\ -(x-1)/2 & \text{se } x \text{ è dispari} \end{cases}$$

f è *iniettiva* perché:

f(x) = f(y) => x/2 = y/2 => x = y (se x e y sono pari)

f(x) = f(y) = -(x-1)/2 = -(y-1)/2 = x=y (se x e y sono *dispari*)

f è *suriettiva* perché:

∀z∈Z 2z è un intero pari positivo se z=*positivo*

−2z+1 è un intero dispari positivo se z=*negativo*

Perciò $|Z| = |Z^+|$

Teorema: I numeri razionali positivi sono numerabili

Dimostrazione:

Vedremo che è possibile formare una sequenza con tutti i p/q

Disponiamo p/q per riga,

- nella 1a riga i p/q con q=1

- nella 2a i p/q con q= 2, etc.

Notate che tutti i p/q lungo la medesima "diagonale" hanno p+q dello stesso valore.

Mettiamo in una lista i p/q

- prima i p/q con p+q=2 (cioè il solo 1/1)

- poi i p/q con p+q=3 (cioè 1/2 e 2/1)

- etc

Ogni volta che si incontra un p/q già incontrato non lo si inserisce

- (per esempio 2/2=1/1, 2/4=1/2, ...)

Siccome

- ogni numero razionale è stato inserito esattamente una volta nella lista

- gli elementi di una lista possono essere contati

=> I numeri razionali positivi sono numerabili

Teorema: L'insieme dei numeri reali R non è numerabile

