[No. of Printed Pages - 4]

CSE423

Enrol. No.

[ET]

END SEMESTER EXAMINATION: DECEMBER, 2022 PATTERN RECOGNITION

Time: 3 Hrs.

Maximum Marks: 60

Note: - Attempt questions from all sections as directed.

SECTION - A

(24 Marks)

Attempt any four questions out of five.

Each question carries 06 marks.

- Explain machine learning with respect to designing a spam classifier by identifying the tasks (T), experience (E), and performance measure (P). Explain the association of machine learning with pattern recognition. (5 + 1)
- 2. Explain the semi-supervised learning in the pattern recognition task. In which phase of Patten Recognition design we should use the semi-supervised approach. (4 + 2)
- Compare Hard Clustering approach with different Soft
 Clustering approaches. Describe how Fuzzy clustering can
 be converted into hard clustering. (4 + 2)

P.T.O.

7. III

fo

8

8. F

4. Using the KNN algorithm predict the class for the $T_{e_{St}}$ da set, Let, Test Set: (13,7) and K=2 and k=3, the t_{rainin} dataset is as follows-

X1	X2	Label	
17	7	Yes	
16	4	Yes	
13	4	No	
11	4	No	

5. "Bayes decision classifier follows parametric approach" comment. Explain the Bayes decision classifier with a example.

SECTION - B

(20 Marks)

Attempt any two questions out of three.

Each question carries 10 marks.

6. Consider the following dataset and build the confusion matrix and calculate Precision, Recall and F-Score. Analyze the performance of the classifier with respect to Precision, Recall and F-Score.

ID	Employee	Annual rating	Actual	Predicted
1	no	fair	no	yes
2	no	excellent	yes	yes
3	no	fair	yes	yes
4	yes	excellent	no	no
5	yes	excellent	yes	yes
6	no	fair	no	no
7	no	excellent	yes	yes
8	yes	fair	no	no
9	no	excellent	no	yes

(7 + 3)

- 7. Illustrate the Backward search technique and Filter approach for feature selection in detail.
- 8. For the below dataset find out the final clusters using K-Means algorithm. Note:(i) K=2;(ii) Use 'Euclidean distance'; Centroids are cl=[11.0, 1.0] and c2=[11.5,2.0] respectively. After two iterations comment on the convergence of the algorithm.

X	Y		
11.0	11.0		
11.5	12.0		
13.0	14.5		
15.0	17.0		
13.5	15.0		
14.5	15.0		
13.5	14.5		

SECTION - C

(16 Marks)

(Compulsory)

9. Describe different types of linkages present in agglomerative hierarchical clustering. Merge the clusters using the Basic agglomerative hierarchical clustering algorithm and construct the dendrogram. Use complete linkage.

0				
18	0			
6	14	0		
12	10	18	0	A MARIE
12 22	20	4	8	0

(6 + 10)