CLAIMS:

What is claimed is:

1. An N-substituted 3-hydroxy-4-pyridinone compound of the formula (I):

5

15

20

25

$$\mathbb{R}^2$$
 \mathbb{R}^3
 \mathbb{R}^4
 \mathbb{R}^4

or a pharmaceutically acceptable salt thereof, or prodrug thereof, wherein:

10 X is selected from the group: CH_2 , C(O), C(S), $P(O)R^3R^4$, SO_2 , C(=NH)NH, C(O)NH, and C(S)NH;

 R^1 and R^2 are independently selected from: H, C_1 - C_{10} alkyl substituted with 0-5 R^5 , C_2 - C_{10} alkenyl substituted with 0-5 R^5 , aryl substituted with 0-3 R^5 , and heteroaryl substituted with 0-3 R^5 ;

 R^3 and R^4 are independently selected from: C_1 - C_{10} alkyl substituted with 0-5 R^5 , C_2 - C_{10} alkenyl substituted with 0-5 R^5 , aryl substituted with 0-3 R^5 , heteroaryl substituted with 0-3 R^5 , or R^3 and R^4 may be taken together to form a C_5 - C_7 cyclic alkyl group optionally interrupted with 0 or NR^6 ;

 $\rm R^5$ is elected from: OH, C(=O)R^6, C(=O)OR^6, C(=O)NR^6R^7, PO(OR^6)(OR^7), S(O) $_2{\rm OR}^6;$

 R^6 and R^7 are independently selected from: H, C_1-C_{10} alkyl, or aryl.

2. The N-substituted 3-hydroxy-4-pyridinone compound according to claim 1 wherein:

X is selected from the group: CH_2 , C(O), and SO_2 ;

 R^1 and R^2 are independently selected from: H, C_1-C_3 alkyl substituted with 0-2 R^5 , and C_2-C_3 alkenyl substituted with 0-2 R^5 ;

 R^3 and R^4 are independently selected from: C_1 - C_6 alkyl substituted with 0-3 R^5 , C_2 - C_6 alkenyl substituted with 0-3 R^5 , aryl substituted with 0-3 R^5 , heteroaryl substituted with 0-3 R^5 , or R^3 and R^4 may be taken together to form a C_5 - C_7 cyclic alkyl group optionally interrupted with 0 or NR^6 ;

10 R^5 is elected from: OH, C(=0) OH, and C(=0) NR^6R^7 ; R^6 and R^7 are independently selected from: H and C_1 - C_6 alkyl.

3. The N-substituted 3-hydroxy-4-pyridinone compound according to claim 1 wherein:

15 X is selected from the group CH_2 , C(0), and SO_2 ; R^1 is H;

 R^2 is methyl or ethyl group;

 R^3 and R^4 are independently selected from: aryl, heteroaryl, or R^3 and R^4 may be taken together form a 5-7 membered cyclic alkyl.

4. The N-substituted 3-hydroxy-4-pyridinone compound according to claim 1 wherein:

X is CH₂;

 R^1 is H;

25 R^2 is methyl;

5

20

 ${\ensuremath{\mathsf{R}}}^3$ and ${\ensuremath{\mathsf{R}}}^4$ are taken together form a 6-membered cyclic piperidine ring.

5. The N-substituted 3-hydroxy-4-pyridinone compound according to claim 1 wherein:

30 $X \text{ is } CH_2;$

R¹ is H:

 R^2 is methyl;

 $\ensuremath{\text{R}^3}$ and $\ensuremath{\text{R}^4}$ are taken together form a 6-membered cyclic morphine ring.

6. The N-substituted 3-hydroxy-4-pyridinone compound according to claim 1 wherein:

5 $X \text{ is } CH_2;$

R¹ is H:

 R^2 is ethyl;

 $\ensuremath{\text{R}^3}$ and $\ensuremath{\text{R}^4}$ are taken together form a 6-membered cyclic morphine ring.

7. The N-substituted 3-hydroxy-4-pyridinone compound according to claim 1 wherein:

X is C(0);

R¹ is H;

 R^2 is methyl;

15 R^3 is H;

R4 is phenyl.

8. The N-substituted 3-hydroxy-4-pyridinone compound according to claim 1 wherein:

X is C(0);

20 R^1 is H;

 R^2 is ethyl;

 R^3 is H;

R⁴ is phenyl.

9. The N-substituted 3-hydroxy-4-pyridinone compound according to claim 1 wherein:

X is C(0);

R¹ is H;

 R^2 is methyl;

 R^3 is H;

30 R^4 is 3-pyridine.

10. The N-substituted 3-hydroxy-4-pyridinone compound according to claim 1 wherein:

X is C(0);

 R^1 is H;

5 R^2 is methyl;

 R^3 is H;

 R^4 is 4-pyridine.

11. The N-substituted 3-hydroxy-4-pyridinone compound according to claim 1 wherein:

10 X is C(0);

R¹ is H;

 R^2 is ethyl;

 R^3 is H;

 R^4 is 2-thiophene.

15 12. The N-substituted 3-hydroxy-4-pyridinone compound according to claim 1 wherein:

X is SO_2 ;

R¹ is H;

 R^2 is methyl;

20 R^3 is H;

R4 is phenyl.

- 13. A method for the preparation of an N-substituted 3-hydroxy-4-pyridinone compound according to claim 1.
- 25 14. A pharmaceutical composition comprising a therapeutic effective amount of an N-substituted 3-hydroxy-4-pyridinone according to claim 1 for the treatment of iron overload.
- 15. A pharmaceutical composition comprising a
 30 therapeutic effective amount of an N-substituted 3hydroxy-4-pyridinone compound according to claim 1 and a

therapeutic metal for the treatment of diseases, such as parasitic and viral infections, conditions associated with inflammation and infection, and conditions mediated by collagen formation.

5 16. A radiopharmaceutical of the formula:

 $M(C_h)_n$,

and pharmaceutically acceptable salt thereof, wherein:

M is a radionuclide selected from: 64 Cu, 67 Cu, 67 Ga, 68 Ga, 99m Tc, 111 In, 90 Y, 149 Pr, 153 Sm, 159 Gd, 166 Ho, 169 Yb, 177 Lu, 186 Re, and 188 Re;

n is 2 or 3;

X is CH₂;

10

 R^1 is H;

 R^2 is methyl;

 R^3 and R^4 are taken together form a 6-membered cyclic piperidine ring.

17. The radiopharmaceutical according to claim 16 wherein:

M is a radionuclide selected from: 67 Ga, 68 Ga, 99m Tc, and 111 In;

n is 3.

18. The radiopharmaceutical according to claim 16 wherein:

M is 111 In;

25 n is 3.

19. The radiopharmaceutical according to claim 16 wherein:

M is ¹¹¹In;

n is 3;

30 X is CH_2 ;

R¹ is H;

 R^2 is methyl;

 ${\ensuremath{\mathsf{R}}}^3$ and ${\ensuremath{\mathsf{R}}}^4$ are taken together form a 6-membered cyclic piperidine ring.

20. The radiopharmaceutical according to claim 16 wherein:

M is ¹¹¹In;

n is 3;

X is CH2;

R¹ is H;

10 R^2 is methyl;

 ${\ensuremath{\mathsf{R}}}^3$ and ${\ensuremath{\mathsf{R}}}^4$ are taken together form a 6-membered cyclic morphine ring.

21. An MRI contrast agent of the formula:

 $M(C_h)_n$,

15 and pharmaceutically acceptable salt thereof, wherein:

M is a paramagnetic metal ion of atomic number 21-29, 42-44, or 58-70;

n is 2 or 3;

 C_h is an N-substituted 3-hydroxy-4-pyridinone according to claim 1.

22. The MRI contrast agent according to claim 21 wherein:

M is selected from: Fe^{3+} and Mn^{2+} and Gd^{3+} ;

n is 2 or 3;

 C_h is an N-substituted 3-hydroxy-4-pyridinone according to claim 1.

23. The MRI contrast agent according to claim 21 wherein:

M is Fe^{3+} and Mn^{2+} ;

30 n is 2 or 3;

20

 C_h is an N-substituted 3-hydroxy-4-pyridinone according to claim 1.

24. The MRI contrast agent according to claim 21 wherein:

5 M is Fe^{3+} ;

n is 3;

 C_h is an N-substituted 3-hydroxy-4-pyridinone according to claim 1.

- 25. A method of preparing a radiopharmaceutical of 10 claim 16.
 - 26. A method of preparing an MRI contrast agent of claim 21.
 - 27. A pharmaceutical composition comprising a metal chelate of the formula:

15 $M(C_h)_n$,

and pharmaceutically acceptable salt thereof, wherein:

M is a metal ion or a metal-containing core selected from: Ca^{2+} , Sn^{2+} , Cu^{2+} , Zn^{2+} , V^{3+} , $V^{5+}(0)$, or $V^{5+}(0)$ -O- $V^{5+}(0)$;

20 n is 2 or 3;

 C_h is an N-substituted 3-hydroxy-4-pyridinone according to claim 1.

27. A method of treating of a disease such as viral infections, conditions associated with inflammation and infection, and conditions mediated by cell-proliferation or collagen formation, comprising administering a patient in need of such treatment a therapeutically effective amount of a pharmaceutical composition according to claim 26.