Project Description

ISA description:

Consider a 16 bit ISA with the following instructions and opcodes, along with the syntax of an assembly language which supports this ISA.

The ISA has 6 encoding types of instructions. The description of the types is given later.

0pcode	Instruction	Semantics	Syntax	Туре
00000	Addition	Performs reg1 = reg2 + reg3. If the computation overflows, then the overflow flag is set	add reg1 reg2 reg3	A
00001	Subtraction	Performs reg1 = reg2 sub reg1 reg2 reg3 - reg3. In case reg3 > reg2, 0 is written to reg1 and overflow flag is set.		A
00010	Move Immediate	Performs reg1 = \$Imm where Imm is a 8 bit value.	mov reg1 \$Imm	В
00011	Move Register	Performs reg1 = reg2.	mov reg1 reg2	С
00100	Load	Loads data from mem_addr into reg1.	ld reg1 mem_addr	D
00101	Store	Stores data from reg1 to mem_addr.	st reg1 mem_addr	D
00110	Performs reg1 = reg2 mul reg1 reg2 reg3 x reg3. If the computation overflows, then the overflow flag is set.		A	
00111	Divide	Performs reg3/reg4. Stores the quotient in R0 and the remainder in R1.	div reg3 reg4	С

01000	Right Shift	Right shifts reg1 by \$Imm, where \$Imm is an 8 bit value.	rs reg1 \$Imm	В
01001	Left Shift	Left shifts reg1 by \$Imm, where \$Imm is an 8 bit value.	ls reg1 \$Imm	В
01010	Exclusive OR	Performs bitwise XOR of reg2 and reg3. Stores the result in reg1.	xor reg1 reg2 reg3	A
01011	Or	Performs bitwise OR of reg2 and reg3. Stores the result in reg1.	or reg1 reg2 reg3	A
01100	And	Performs bitwise AND of reg2 and reg3. Stores the result in reg1.	and reg1 reg2 reg3	A
01101	Invert	Performs bitwise NOT of reg2. Stores the result in reg1.	not reg1 reg2	С
01110	Compare	Compares reg1 and reg2 and sets up the FLAGS register.	cmp reg1 reg2	С
01111	Unconditional Jump	Jumps to mem_addr, where mem_addr is a memory address.	jmp mem_addr	Е
10000	Jump If Less Than	Jump to mem_addr if the less than flag is set (less than flag = 1), where mem_addr is a memory address.	jlt mem_addr	Е

10001	Jump If Greater Than	Jump to mem_addr if the greater than flag is set (greater than flag = 1), where mem_addr is a memory address.	jgt mem_addr	Е
10010	Jump If Equal	Jump to mem_addr if the equal flag is set (equal flag = 1), where mem_addr is a memory address.	je mem_addr	Е
10011	Halt	Stops the machine from executing until reset	hlt	F

where reg(x) denotes register, mem_addr is a memory address (must be an 8-bit binary number), and Imm denotes a constant value (must be an 8-bit binary number). The ISA has 7 general purpose registers and 1 flag register. The ISA supports an address size of 8 bits, which is double byte addressable. Therefore, each address fetches two bytes of data. This results in a total address space of 512 bytes. This ISA only supports whole number arithmetic. If the subtraction results in a negative number; for example "3 - 4", the reg value will be set to 0 and overflow bit will be set. All the representations of the number are hence unsigned.

The registers in assembly are named as R0, R1, R2, ..., R6 and FLAGS. Each register is 16 bits.

Note: "mov reg \$Imm": This instruction copies the Imm(8bit) value in the register's lower 8 bits. The upper 8 bits are zeroed out.

Example:

Suppose R0 has 1110_1010_1000_1110 stored, and **mov R0 \$13** is executed.

The final value of R0 will be 0000_0000_0000_1101.

FLAGS semantics

The semantics of the flags register are:

- Overflow (V): This flag is set by add, sub and mu1, when the result of the operation overflows. This shows the overflow status for the last executed instruction.
- Less than (L): This flag is set by the "cmp reg1 reg2" instruction if reg1 < reg2
- Greater than (G): This flag is set by the "cmp reg1 reg2" instruction if the value of reg1 > reg2
- Equal (E): This flag is set by the "cmp reg1 reg2" instruction if reg1 = reg2
 The default state of the FLAGS register is all zeros. If an instruction does not affect the FLAGS register, then the state of the FLAGS register is reset to 0 upon the execution.

The structure of the FLAGS register is as follows:

The only operation allowed in the FLAGS register is "mov reg1 FLAGS", where reg1 can be any of the registers from R0 to R6. This instruction reads FLAGS register and writes the data into reg1. All other operations on the FLAGS register are prohibited.

The cmp instruction can implicitly write to the FLAGS register. Similarly, conditional jump instructions can implicitly read the FLAGS register.

Example:

R0 has 5, R1 has 10

Implicit write: cmp R0 R1 will set the L (less than) flag in the FLAGS register.

Implicit read: **jlt 10001001** will read the FLAGS register and figure out that the L flag was set, and then jump to address 10001001.

Binary Encoding

The ISA has 6 types of instructions with distinct encoding styles. However, each instruction is of 16 bits, regardless of the type.

• Type A: 3 register type

	opcode (5 bits)	unused (2 bits)	reg1 (3 bits)	reg2 (3 bits)	reg3 (3 bits)	
15	<u> </u>	10	8	5	2	7

• Type B: register and immediate type

	opcode	reg1	Immediate Value
	(5 bits)	(3 bits)	(8 bits)
15		10	7 0

• Type C: 2 registers type

	opcode (5 bits)	_	nused bits)	reg1 (3 bits)	reg2 (3 bits)	
1:	5	10		5	2	0

• Type D: register and memory address type

	opcode (5 bits)	reg1 (3 bits)	Mei	mory Address (8 bits)
15		10	7	0

• Type E: memory address type

opcode	unused	Memory Address
(5 bits)	(3 bits)	(8 bits)
15	10	

• Type F: halt

	opcode (5 bits)	unused (11 bits)	
15	5	10	

Binary representation for the register are given as follows:-

Register	Address
R0	000
R1	001
R2	010
R3	011
R4	100
R5	101
R6	110
FLAGS	111

Executable binary syntax

The machine exposed by the ISA starts executing the code provided to it in the following format, until it reaches hlt instruction. There can only be one hlt instruction in the whole program, and it must be the last instruction. The execution starts from the 0th address. The ISA follows von-neumann architecture with a unified code and data memory.

The variables must be allocated in the binary in the program order.

Assembler:

The input to the assembler is a text file containing the assembly instructions. Each line of the text file may be of one of 3 types:

- Empty line: Ignore these lines
- A label followed by an instruction
- An instruction
- A variable definition

Each of these entities have the following grammar:

- The syntax of all the supported instructions is given above. The fields of an instruction are whitespace separated. The instruction itself might also have whitespace before it. An instruction can be one of the following:
 - The opcode must be one of the supported mnemonic.
 - A register can be one of R0, R1, ... R6, and FLAGS.
 - A mem_addr in jump instructions must be a label.
 - A Imm must be a whole number <= 255 and >= 0.
 - A mem_addr in load and store must be a variable.
- A label marks a location in the code and must be followed by a colon (:). No spaces are allowed between label name and colon(:). A label name consists of alphanumeric characters and underscores.

A label followed by the instruction may looks like:

mylabel: add R1 R2 R3

A variable definition is of the following format:

var xyz

which declares a 16 bit variable called xyz. This variable name can be used in place of mem_addr fields in load and store instructions. **All variables must be defined at the very beginning of the assembly program.** A variable name consists of alphanumeric characters and underscores.

Each line may be preceded by whitespace.

The assembler is capable of handling the following:

- 1. Handling all supported instructions
- 2. Handling labels
- 3. Handling variables
- 4. Making sure that any illegal instruction (any instruction (or instruction usage) which is not supported) results in a syntax error. In particular you must handle:
 - a. Typos in instruction name or register name
 - b. Use of undefined variables
 - c. Use of undefined labels
 - d. Illegal use of FLAGS register
 - e. Illegal Immediate values (less than 0 or more than 255)
 - f. Misuse of labels as variables or vice-versa
 - g. Variables not declared at the beginning
 - h. Missing hlt instruction
 - i. hlt not being used as the last instruction
 - j. Wrong syntax used for instructions (For example, add instruction being used as a type B instruction)

If the code is error free, then the corresponding binary is generated. The binary file is a text file in which each line is a 16bit binary number written using 0s and 1s in ASCII. The assembler can write less than or equal to 256 lines.

Input/Output format:

- The assembler reads the assembly program as an input text file (stdin).
- The assembler generates the binary (if there are no errors) as an output text file (stdout).
- The assembler generates the error notifications along with line number on which the
 error was encountered (if there are errors) as the output text file (stdout). In case of
 multiple errors, the assembler may print any one of the errors.

Example of an assembly program

var X mov R1 \$10 mov R2 \$100 mul R3 R1 R2 st R3 X hlt

The above program will be converted into the following machine code

0001000100001010

0001001001100100

0011000011001010

0010101100000101

10011000000000000

Simulator:

Simulator is for the given ISA. The input to the simulator is a binary file (the format is the same as the format of the binary file generated by the assembler). The simulator loads the binary in the system memory at the beginning, and then start executing the code at address 0. The code is executed until hlt is reached. After execution of each instruction, the simulator output is one line containing an 8 bit number denoting the program counter. This is followed by 8 space separated 16 bit binary numbers denoting the values of the registers (R0, R1, ... R6 and FLAGS).

<PC (8 bits)><space><R0 (16 bits)><space>...<R6 (16 bits)><space><FLAGS (16 bits)>. The output written to stdout. Similarly, the input read from stdin. After the program is halted, prints the memory dump of the whole memory. Which is 256 lines, each having a 16 bit value

```
<16 bit data>
<16 bit data>
.....
<16 bit data>
```

Simulator has the following distinct components:

- 1. Memory (MEM): MEM takes in an 8 bit address and returns a 16 bit value as the data. The MEM stores 512bytes, initialized to 0s.
- 2. Program Counter (PC): The PC is an 8 bit register which points to the current instruction.
- 3. Register File (RF): The RF takes in the register name (R0, R1, ... R6 or FLAGS) and returns the value stored at that register.
- 4. Execution Engine (EE): The EE takes the address of the instruction from the PC, uses it to get the stored instruction from MEM, and executes the instruction by updating the RF and PC.

The simulator follows roughly the following pseudocode:

```
initialize(MEM);  // Load memory from stdin
                         // Start from the first instruction
PC = 0;
halted = false;
white(not halted)
{
      Instruction = MEM.getData(PC);
                                                   // Get current instruction
      halted, new_PC = EE.execute(Instruction);
                                                  // Update RF compute new_PC
      PC.dump();
                                                   // Print PC
      RF.dump();
                                                   // Print RF state
      PC.update(new_PC);
                                                    // Update PC
}
MEM.dump()
                                                    // Print memory state
```

Simulator generates a scatter plot with the cycle number on the x-axis and the memory address on the y-axis. Plots which memory address is accessed at what time.