

MARKETING CAMPAIGN

Insight and Prediction

Jonathan Lampkin

Special Thanks to: Yuxuan Xin

Metric Definition

Recall

Out of those who would've made a deposit, how many did we correctly target?

Precision

How many of those predicted to subscribe to a term-deposit, did?

F1 - Score

Harmonic mean of Recall and Precision

Quick look at the data

Imbalance of classes

In [4]: df[['age','job','marital','education','duration','euribor3m','cons.conf.idx','y']].sample(5)
Out[4]:

	age	job	marital	education	duration	euribor3m	cons.conf.idx	У
11678	36	admin.	single	high.school	16	4.959	-41.8	no
7557	33	technician	single	professional.course	613	4.864	-36.4	no
20621	32	admin.	married	university.degree	1842	4.965	-36.1	yes
1734	25	technician	single	professional.course	156	4.855	-36.4	no
34043	29	admin.	single	high.school	230	1.281	-46.2	no

Feature Importance

Data Prepared for Machine Learning

Normalizing feature matrix using Z-score
X = (X - X.mean()) / X.std()

	age	campaign	pdays	previous	emp.var.rate	cons.price.idx	cons.conf.idx	euribor3m	nr.employed	job_admin.	job_blue- collar	job_entrepreneur	j
13944	-0.194224	-0.204906	0.195412	-0.349490	0.839050	0.591417	-0.474785	0.773566	0.845160	-0.582016	1.857619	-0.191428	
27405	0.573438	-0.565915	0.195412	-0.349490	-0.115780	-0.648995	-0.323538	0.230453	0.398110	-0.582016	-0.538310	-0.191428	
21139	1.149185	-0.204906	0.195412	-0.349490	0.839050	-0.227462	0.951256	0.773566	0.845160	-0.582016	-0.538310	-0.191428	
29500	-0.865929	1.239130	0.195412	-0.349490	-1.197921	-0.864944	-1.425479	-1.277808	-0.940270	-0.582016	-0.538310	-0.191428	
4459	-0.769971	-0.565915	0.195412	-0.349490	0.648084	0.722714	0.886436	0.711875	0.331676	-0.582016	-0.538310	-0.191428	
3417	0.573438	1.600139	0.195412	-0.349490	0.648084	0.722714	0.886436	0.714181	0.331676	-0.582016	-0.538310	-0.191428	
9145	-0.769971	-0.204906	0.195412	-0.349490	0.839050	1.536410	-0.280325	0.775872	0.845160	1.718125	-0.538310	-0.191428	
17060	-0.769971	4.849221	0.195412	-0.349490	0.839050	0.591417	-0.474785	0.772989	0.845160	-0.582016	-0.538310	5.223772	
10602	1.341100	-0.565915	0.195412	-0.349490	0.839050	1.536410	-0.280325	0.772413	0.845160	-0.582016	-0.538310	-0.191428	
32994	1.341100	-0.204906	-5.095879	1.671116	-1.197921	-1.179366	-1.231019	-1.338923	-0.940270	-0.582016	1.857619	-0.191428	
4)	>

Machine Learning Algorithms

Random Forest

Tree Based Ensemble using Bagging

K Nearest Neighbor

Distance Based Clustering Algorithm

Logistic Regression

Probabilistic Linear Function

Extreme Gradient Boosting

Gradient Boosting algorithm using parallel processing

Light Gradient Boosting

 Computationally conservative version of Gradient Boosting

Categorical Boosting

 Gradient Boosting Algorithm designed for handling categorical features

Adaptive Boosting

Early version of Boosting that doesn't use a loss function

Default Performance

Optimized Performance

ROC and PR Curve

Performance Result

