Projet IML

Présentation d'une pipeline de classification d'image hyperspectrales de champs

Dominique Michel

Alexandre Bourquelot

Alexandre Pedrosa

Le problème

- Classification des types de champs en fonction de leur spectre
- Les photos sont prises de différents angles et sur différentes bandes spectrales
- Données non-équilibrés

Les solutions envisagées

- 4Réduction de dimension (200+ caractéristique)
 - + Analyse par composantes principales

+Clustering et classification

- + Classification des zones segmentés
- + Classification des sous-zones par classification de la majorité des pixels
- + Watershed par gradient sur bandes spectrales

+Classification de chaque pixel et post-traitement

- + Classification basé voisins, vecteurs, densité, arbre de décision
- + Post-traitement utilisant résultat clustering ou morphologie

Classification: Les classes testés

- +DecisionTreeClassifier
- +RandomForestClassifier
- +ExtraTreesClassifier

- +SVC (rbf)
- +LinearSVC
- +KNeighborsClassifier

Clustering: Minibatch KMeans

Différentes informations:

- 1. Sans coordonnées, sans PCA
- 2. Sans coordonnées
- 3. Sans PCA
- 4. Avec coordonnées, avec PCA
- 5. Avec coordonnées, avec PCA et 32 clusters

Clustering: other methods

Birch (Clustering Feature Tree)

MeanShift (quantile)

GaussianMixture (covariance_type)

Clustering: Watershed

Les gradients

Les marqueurs

Protocole expérimental: Comment évaluer et mesurer l'efficacité de nos solutions

Comparer les outputs et la vérité terrain "à l'œil nu"

Matrice de confusion

Protocole expérimental: Comment évaluer et mesurer l'efficacité de nos solutions

$$\frac{\text{Precision} = \frac{\text{TP}}{\text{TP} + \text{FP}}}{\text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}}} F_1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$$

	DecisionTreeClassifier	RandomForestClassifier	ExtraTreesClassifier	SVC(rbf)	LinearSVC	KNeighborsClassifier
precision	0.61	0.78	0.77	0.62	0.75	0.71
recall	0.61	0.72	0.72	0.40	0.50	0.68
f1-score	0.61	0.74	0.74	0.40	0.56	0.69
fit_duration	0.24	1.41	0.55	0.57	35.42	0.11
predict_duration	0.03	0.34	0.39	2.62	0.03	1.30

Interpréter la Précision, le Recall et le Score F1

	Before	After
precision	0.78	0.83
recall	0.74	0.78
f1-score	0.75	0.79

Observer l'effet de méthodes de pré/post processing

Protocole Experimental: Grid Search

- Intégré à scikit-learn
- Automatise la recherche des paramètres optimaux

Source: scikit-learn.org

Information Spatiale

Information Spatiale

Résultats et Conclusion

Solution retenue:

- Pré-processing:
 - on applique un filtre médian sur les bandes
 - on applique une APC en conservant une grande partie de la variance
- Random Forest et Grid Search
- Post-Processing:
 - on ajoute de l'information spatiale