1	1.1 1.2 1.3	tions rationnelles. Le corps $\mathbb{K}(X)$. Fonction rationnelle associée, composée, dérivation. Degré et partie entière d'une fraction rationnelle. Zéros et pôles d'une fraction rationnelle.	2 3
2	2 Décomposition en éléments simples.		4
		Les deux théorèmes.	
	2.2	Coefficient relatif à un pôle simple	5
	2.3	Une décomposition importante : celle de $\frac{P'}{P}$	6
	2.4	Pratique de la décomposition en éléments simples	7
Ex	Exercices		

1 Fractions rationnelles.

1.1 Le corps $\mathbb{K}(X)$.

L'énoncé suivant (admis) a été donné à la fin du cours Structures algébriques.

Pour tout anneau intègre A, il existe un unique corps (commutatif) K contenant A et vérifiant

$$\forall x \in K \quad \exists a \in A \ \exists b \in A \setminus \{0_A\} \ x = ab^{-1}.$$

Le corps K est appelé **corps des fractions** de l'anneau A.

Par exemple, le corps \mathbb{Q} est le corps des fractions de l'anneau \mathbb{Z} .

Définition 1.

On note $\mathbb{K}(X)$ le corps des fractions de l'anneau $\mathbb{K}[X]$. Ses éléments, appelés **fractions rationnelles** sont de la forme

$$F = AB^{-1}$$
 (soit en notation fractionnaire $F = \frac{A}{B}$),

où A et B appartiennent à $\mathbb{K}[X]$ avec $B \neq 0$. Le couple (A, B) est appelé un **représentant** de F.

Remarque. Le théorème d'existence du corps des fractions dit que le corps $\mathbb{K}(X)$ contient l'anneau $\mathbb{K}[X]$. Cela signifie que la somme et le produit sur $\mathbb{K}(X)$ prolongent la somme et le produit de $\mathbb{K}[X]$. Autrement dit, $\mathbb{K}[X]$ est un sous-anneau de $\mathbb{K}(X)$.

Remarque. L'écriture B^{-1} désigne l'inverse de B dans le corps $\mathbb{K}(X)$. On verra que, sauf dans le cas où B est un polynôme constant non nul, B^{-1} n'est pas un polynôme.

Comme pour les polynômes, à la place de $F = \frac{A}{B}$, on pourra écrire $F(X) = \frac{A(X)}{B(X)}$.

Calculs dans $\mathbb{K}(X)$ Soient $A_1, B_1, A_2, B_2 \in \mathbb{K}(X)$ telles que $B_1 \neq 0$ et $B_2 \neq 0$.

1. Cas d'égalité

$$\frac{A_1}{B_1} = \frac{A_2}{B_2} \iff A_1 B_2 = A_2 B_1.$$

2. Produit et inverse.

$$\frac{A_1}{B_1} \cdot \frac{A_2}{B_2} = \frac{A_1 A_2}{B_1 B_2}$$
 Si $A_1 \neq 0$ alors $\left(\frac{A_1}{B_1}\right)^{-1} = \frac{B_1}{A_1}$.

3. Somme

$$\frac{A_1}{B_1} + \frac{A_2}{B_2} = \frac{A_1 B_2 + A_2 B_1}{B_1 B_2}.$$

Proposition 2.

Soit $F \in \mathbb{K}(X)$. Il existe un unique $(A, B) \in \mathbb{K}[X]^2$ tel que

B est unitaire (et non nul),
$$A \wedge B = 1$$
 et $F = \frac{A}{B}$.

C'est la forme irréductible de la fraction F.

Si P est un polynôme, alors P est a fortiori une fraction rationnelle. Sa forme irréductible est $P = \frac{P}{1}$.

1.2 Fonction rationnelle associée, composée, dérivation.

Définition 3 (Fonction rationnelle associée à une fraction rationnelle).

Soit $F \in \mathbb{K}(X)$ de forme irréductible $F = \frac{A}{B}$. On pose $D_F = \mathbb{K} \setminus \{\alpha \in \mathbb{K} \mid B(\alpha) = 0\}$. On appelle **fonction rationnelle** associée à F l'application $\widetilde{F} : \begin{cases} D_F \to \mathbb{K} \\ x \mapsto \frac{A(x)}{B(x)} \end{cases}$.

Il faudrait peut-être définir de manière formelle la composée de deux fractions rationnelles, ou encore sa dérivée. Pour alléger l'exposé, on se contentera d'exploiter les réflexes qu'on a sur les fonctions rationnelles.

Exemple 4.

Soit
$$F = \frac{X^4 + 1}{X^4 + X^2 + 1}$$
. Montrer que $F(-X) = F(X)$ et $F\left(\frac{1}{X}\right) = F(X)$.

Exemple 5.

Soit P un polynôme de $\mathbb{K}[X]$, non nul, de degré d. Justifier que $X^dP(\frac{1}{X})$ est un polynôme. Pourquoi l'appelle-t-on parfois polynôme symétrique de P?

1.3 Degré et partie entière d'une fraction rationnelle.

Définition-Proposition 6.

Soit $F = \frac{A}{B} \in \mathbb{K}(X)$. On définit le **degré** de F comme

$$\deg(F) = \deg(A) - \deg(B).$$

(ce nombre étant indépendant du représentant (A, B)). On a donc $\deg(F) \in \mathbb{Z} \cup \{-\infty\}$.

Remarque. Si $P \in \mathbb{K}[X]$, sa forme irréductible en tant que fraction rationnelle est $P = \frac{P}{1}$. Les degrés de P dans l'anneau $\mathbb{K}[X]$ et dans le corps $\mathbb{K}(X)$ sont donc égaux.

Proposition 7 (Degré et opérations).

Soient $F, G \in \mathbb{K}(X)$.

- 1. $\deg(F+G) \leq \max(\deg(F), \deg(G))$ avec égalité si $\deg(F) \neq \deg(G)$;
- 2. $\forall \lambda \in \mathbb{K} \operatorname{deg}(\lambda F) \leq \operatorname{deg}(F)$, avec égalité si $\lambda \neq 0$;
- 3. $\deg(FG) = \deg(F) + \deg(G)$.
- 4. Si $G \neq 0$, $\deg\left(\frac{F}{G}\right) = \deg(F) \deg(G)$.

Exemple 8.

$$\deg\left(\frac{X^4}{X^2+1}\right) = 4-2 = 2\,;\quad \deg\left(\frac{X-1}{X^3+1}\right) = 1-3 = -2\,;\quad \deg\left(\frac{X^2+1}{X^2-1}\right) = 2-2 = 0.$$

Proposition-Définition 9.

Soit $F = \frac{A}{B} \in \mathbb{K}(X)$. On note E le quotient dans la division euclidienne de A par B.

Il existe une unique fraction rationnelle $G \in \mathbb{K}(X)$ tels que

$$F = E + G$$
 et $\deg(G) < 0$.

3

Le polynôme E est appelé partie entière de F. Elle est nulle ssi $\deg(F) < 0$.

Exemple 10.

Soit $n \in \mathbb{N}^*$. Quelle est la partie entière de $\frac{X^n}{X-1}$?

1.4 Zéros et pôles d'une fraction rationnelle.

Définition 11.

Soit $F \in \mathbb{K}(X)$ de forme irréductible $F(X) = \frac{A(X)}{B(X)}$. Soient $\alpha \in \mathbb{K}$ et $m \in \mathbb{N}$.

- 1. α est un **zéro** (de multiplicité m) de F si α est racine de A (de multiplicité m).
- 2. α est un **pôle** (de multiplicité m) de F si α est racine de B (de multiplicité m).

On parlera de **pôle simple** au sujet d'un pôle de multiplicité 1.

Exemple 12.

Déterminer les pôles de $\frac{1}{X^2+1}$ dans $\mathbb R$ et dans $\mathbb C$.

Exemple 13.

Justifier qu'une fraction rationnelle de $\mathbb{C}(X)$ sans pôle ne peut être qu'un polynôme.

Proposition 14.

Soit $F \in \mathbb{R}(X)$ et $\alpha \in \mathbb{C}$.

Alors α est pôle de F de multiplicité m si et seulement si $\overline{\alpha}$ est pôle de F de multiplicité m.

2 Décomposition en éléments simples.

2.1 Les deux théorèmes.

Théorème 15 (Décomposition en éléments simples dans $\mathbb{C}(X)$).

Soit $F \in \mathbb{C}(X)$ que l'on écrit sous forme irréductible, le dénominateur étant décomposé en facteurs irréductibles :

$$F(X) = \frac{A(X)}{\prod_{k=1}^{r} (X - \alpha_k)^{m_k}}.$$

(les complexes α_k sont distincts deux à deux, les m_k sont des entiers naturels non nuls.) Alors il existe

- un unique polynôme $E \in \mathbb{C}[X]$ (la partie entière de F);
- une unique famille $(a_{k,j})_{\substack{1 \leq k \leq r \\ 1 \leq j \leq m_k}}$ de complexes

tels que

$$F(X) = E(X) + \sum_{k=1}^{r} \underbrace{\left(\sum_{j=1}^{m_k} \frac{a_{k,j}}{(X - \alpha_k)^j}\right)}_{\text{relatif à } (X - \alpha_k)^{m_k}}$$

Théorème 16 (Décomposition en éléments simples dans $\mathbb{R}(X)$).

Soit $F \in \mathbb{R}(X)$ que l'on écrit sous forme irréductible, le dénominateur étant décomposé en facteurs irréductibles:

$$F(X) = \frac{A(X)}{\prod_{k=1}^{r} (X - \alpha_k)^{m_k} \prod_{\ell=1}^{s} (X^2 + p_{\ell}X + q_{\ell})^{n_{\ell}}}.$$

(les réels α_k sont distincts deux à deux; les irréductibles de degré 2 $X^2 + p_\ell X + q_\ell$ sont distincts deux à deux, les m_k et les n_ℓ sont dans \mathbb{N}^*).

Alors il existe

- un unique polynôme $E \in \mathbb{R}[X]$ (la partie entière de F);
- une unique famille $(a_{k,j})_{\substack{1 \leq k \leq r \\ 1 \leq j \leq m_k}}$ de réels; une unique famille $(b_{\ell,j}X + c_{\ell,j})_{\substack{1 \leq \ell \leq s \\ 1 \leq j \leq n_{\ell}}}$ de polynômes de $\mathbb{R}_1[X]$

tels que

$$F(X) = E(X) + \sum_{k=1}^{r} \underbrace{\left(\sum_{j=1}^{n_k} \frac{a_{k,j}}{(X - \alpha_k)^j}\right)}_{\text{relatif à } (X - \alpha_k)^{m_k}} + \sum_{\ell=1}^{s} \underbrace{\left(\sum_{j=1}^{n_\ell} \frac{b_{\ell,j} X + c_{\ell,j}}{(X^2 + p_\ell X + q_\ell)^j}\right)}_{\text{relatif à } (X^2 + p_\ell X + q_\ell)^{n_\ell}}.$$

Exemple 17 (Forme d'une décomposition en éléments simples (sans calculer les coefficients)).

1. Donner la forme de la décomposition en éléments simples dans $\mathbb{C}(X)$ de

$$F(X) = \frac{X}{(X+1)^3(X^2+X+1)}.$$

2. Donner la forme de la décomposition en éléments simples dans $\mathbb{R}(X)$ de

$$F(X) = \frac{X^2 + 2}{(X - 1)^2(X + 2)(X^2 + X + 1)}.$$

2.2Coefficient relatif à un pôle simple

Proposition 18 (Calcul du coefficient relatif à un pôle simple).

Soit $F \in \mathbb{K}(X)$ et $\alpha \in \mathbb{K}$ un pôle simple de F.

La décomposition en éléments simples de F s'écrit donc

$$F = \frac{c}{X - \alpha} + G$$
 où α n'est pas un pôle de G .

5

- 1. Formule du cache (utilisation pour des calculs explicites) : $c = [(X \alpha)F(X)](\alpha)$
- 2. Formule théorique : si $F = \frac{A}{B}$ et $B'(\alpha) \neq 0$, alors $c = \frac{A(\alpha)}{B'(\alpha)}$

Exemple 19.

Décomposer en éléments simples dans $\mathbb{R}(X)$:

$$F = \frac{2X - 1}{X^3 + 3X^2 + 2X}$$

$$G = \frac{n!}{X(X-1)\dots(X-n)} \ (n \in \mathbb{N}^*)$$

Exemple 20 (Utilisation d'une décomposition en éléments simples).

Soit $P \in \mathbb{K}[X]$ de degré $n \geq 1$ admettant n racines distinctes non nulles z_1, \ldots, z_n .

- 1. Décomposer en éléments simples la fraction $\frac{1}{P}$.
- 2. En déduire la valeur de

$$\sum_{k=1}^{n} \frac{1}{z_k P'(z_k)}.$$

2.3 Une décomposition importante : celle de $\frac{P'}{P}$.

Lemme 21 (Dérivée logarithmique d'un produit).

Soient $P_1, \ldots, P_r \in \mathbb{K}[X] \setminus \{0\}$. Alors

$$\frac{\left(\prod_{k=1}^r P_k\right)'}{\prod_{k=1}^r P_k} = \sum_{k=1}^r \frac{P_k'}{P_k}.$$

Théorème 22 (Décomposition en éléments simples de $\frac{P'}{P}$).

Soit P un polynôme scindé sur \mathbb{K} :

$$P = \lambda \prod_{k=1}^{r} (X - \alpha_k)^{m_k}.$$

Alors

$$\frac{P'}{P} = \sum_{k=1}^{r} \frac{m_k}{X - \alpha_k}.$$

6

Exemple 23 (Utilisation d'une décomposition en éléments simples).

Soit $n \in \mathbb{N}$, $n \geq 2$. Déterminer la forme irréductible de

$$F = \sum_{k=1}^{n-1} \frac{1}{X - e^{\frac{2ik\pi}{n}}}.$$

En déduire la valeur de

$$\sum_{k=1}^{n-1} \frac{1}{1 - e^{\frac{2ik\pi}{n}}}.$$

2.4 Pratique de la décomposition en éléments simples

Méthode (comment aborder un calcul de décomposition en éléments simples).

Soit $F \in \mathbb{K}(X)$ dont on cherche la décomposition en éléments simples.

i) On écrit F sous forme irréductible.

On décompose le dénominateur en facteurs irréductibles.

- ii) On cherche la partie entière de F (si deg F < 0, la partie entière est nulle).
- iii) On écrit a priori la décomposition en éléments simples de ${\cal F}.$

Elle fait intervenir des coefficients qu'il reste à calculer.

- iv) On calcule les coefficients relatifs aux pôles simples (formule du cache).
- v) On calcule les autres coefficients comme on peut.

Pour cela on peut s'aider de la parité, de la conjugaison complexe, de l'évaluation en quelques valeurs, des limites en $\pm \infty$...

Exemple 24.

Décomposer en éléments simples dans $\mathbb{C}(X)$.

$$F = \frac{X^2 + 2}{X^2(X^2 + 1)}$$
 et $G = \frac{1}{X^n - 1} \ (n \in \mathbb{N}^*)$

Exemple 25.

Décomposer en éléments simples dans $\mathbb{R}(X)$.

$$F = \frac{1}{X^3 + 1}$$
 et $G = \frac{4X^2}{X^4 + 1}$.

7

Exercices

26.1 $[\phi \diamondsuit \diamondsuit]$ Décomposer en éléments simples dans $\mathbb{C}[X]$ la fraction rationnelle

$$\frac{X}{(X^2+X+1)^2}.$$

26.2 [$\Diamond \Diamond \Diamond$] Décomposer en éléments simples dans $\mathbb{R}[X]$ la fraction rationnelle

$$\frac{X^2 - 2X - 1}{(X^2 + 1)^2}.$$

26.3 [♦♦♦]

- 1. Décomposer en éléments simples la fraction rationnelle $\frac{1}{X(X+1)(X+2)}$.
- 2. Calculer la limite quand n tend vers $+\infty$ de

$$\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}.$$

$$\sum_{i=1}^{n} \frac{1}{P'(x_i)} = 0.$$

26.5 [♦♦♦]

Pour chacune des fonctions ci-dessous, proposer une primitive sur un intervalle que vous préciserez :

$$f: x \mapsto \frac{1}{1-x^4}$$
 et $g: x \mapsto \frac{x^2}{x^3-1}$.

26.6] $[\spadesuit \spadesuit]$ Racines multiples de P'

Soit $P \in \mathbb{R}[X]$ un polynôme non constant.

- 1. On suppose que P est scindé sur \mathbb{R} .
 - (a) Donner la décomposition en éléments simples de $\frac{P'}{P}$.
 - (b) En déduire que

$$\forall x \in \mathbb{R} \quad P'(x)^2 \ge P(x)P''(x),$$

avec égalité si et seulement si x est une racine multiple de P.

- (c) Rappeler pourquoi P' est scindé sur \mathbb{R} , puis montrer que toute racine multiple de P' est racine de P.
- 2. (a) Est-il vrai en général que toute racine multiple de P' est racine de P.
 - (b) Est-il vrai, sous l'hypothèse que P est scindé sur \mathbb{R} , que toute racine de P' est racine de P?
- **26.7** $[\blacklozenge \blacklozenge \blacklozenge]$ Calculer la limite lorsque x tend vers $\frac{\pi}{2}$ par valeurs inférieures de

$$\int_0^x \sqrt{\tan(t)} dt.$$