Some notes on Serre's formula

Kadri İlker Berktav *

Abstract

This is a collection of notes from a seminar the Author gave a long time ago, in a galaxy far, far away. The main body of the text contains key ideas and standard results that are gathered from the literature. For technicalities, we just give a modest list of references. Be vigilant for typos and errors.

Contents

1	Intro	1
2	Preliminaries	3
3	Some computations	5
Re	References	

1 Intro

Given subvarieties $C, C' \subseteq \mathbb{P}^n_{\mathbb{K}}$ of degrees m, ℓ and dimensions a, b, respectively, we want to understand the content of the following formula (and that of (1.9) in general) that is used to compute the *intersection multiplicity* along the irreducible components P of $C \cap C'$:

$$\mathfrak{m}_{P}(C, C') = \sum_{i} (-1)^{i} \dim_{\mathbb{K}} \operatorname{Tor}_{i}^{\mathcal{O}_{\mathbb{P}^{n}, P}}(\mathcal{O}_{C, P}, \mathcal{O}_{C', P}), \tag{1.1}$$

such that $[C] \cdot [C'] = \sum_{P} \mathfrak{m}_{P}(C, C')[P]$, where the sum is over irred. comp.'s P of $C \cap C'$.

Classically, we have Bézout's theorem to deal with the intersection problem of certain plane curves. More precisely, we have:

Theorem 1.1. (Bézout's theorem) Let $C, C' \subseteq \mathbb{P}^2_{\mathbb{K}}$ be two smooth, projective algebraic curves of $\deg n$ and m. If C, C' meet transversely, then $C \cap C'$ has precisely $n \cdot m$ points; i.e., $\#(C \cap C') = n \cdot m$.

For the *non-transverse* intersections, we may use the *scheme-theoretical intersection* rather than a naive set-theoretical approach. This amounts to compute the *dimension of the local ring* $\mathcal{O}_{C \cap C',p}$, which records the *multiplicity* at p. Let us start with some terminology and examples.

Definition 1.2. Let $C, C' \subseteq \mathbb{P}^2_{\mathbb{K}}$ be two plane curves as above (meeting either transversely or non-transversely). The *intersection multiplicity* $m_p(C, C')$ at $p \in C \cap C'$ is defined by

$$m_p(C, C') = \dim_{\mathbb{K}} \mathcal{O}_{C \cap C', p} = \dim_{\mathbb{K}} \left(\mathcal{O}_{C, p} \otimes_{\mathcal{O}_{\mathbb{P}^2, p}} \mathcal{O}_{C', p} \right). \tag{1.2}$$

Example 1.3. Let $C = \{x = 0\}$ and $C' = \{y = 0\}$ in $\mathbb{A}^2_{\mathbb{C}}$. Then $C \cap C' = \{p = (0,0)\}$ and $\#(C \cap C') = 1$ (as Bézout's theorem suggested). We may obtain the same result using the scheme-theoretical approach: As $C = \operatorname{Spec}(\mathbb{C}[x,y]/(x))$ and $C' = \operatorname{Spec}(\mathbb{C}[x,y]/(y))$ and $C \cap C'$ is the fiber product, we have $C \cap C' = \operatorname{Spec}(\mathbb{C}[x,y]/(x)) \otimes_{\mathbb{C}[x,y]} \mathbb{C}[x,y]/(y)$. Thus we compute

$$m_p(C, C') = \dim_{\mathbb{C}} \left(\mathbb{C}[x, y]/(x) \otimes_{\mathbb{C}[x, y]} \mathbb{C}[x, y]/(y) \right)$$

$$= \dim_{\mathbb{C}} \left(\mathbb{C}[x, y]/(x, y) \right)$$

$$= \dim_{\mathbb{C}} (\mathbb{C} \cdot 1) = 1.$$
(1.3)

^{*}e-mail: kadri.berktav@bilkent.edu.tr.

Example 1.4. Let $C = \{y = x^2\}$ and $C' = \{y = 0\}$ in $\mathbb{A}^2_{\mathbb{C}}$. Now, we still have $C \cap C' = \{p = (0,0)\}$, which is zero-dimensional as a scheme. But, notice that the curves meet non-transversely with an obvious multiplicity (which cannot be detected by Bezout's theorem). As before, we compute

$$m_{p}(C, C') = \dim_{\mathbb{C}} \left(\mathbb{C}[x, y]/(y - x^{2}) \otimes_{\mathbb{C}[x, y]} \mathbb{C}[x, y]/(y) \right)$$

$$= \dim_{\mathbb{C}} \left(\mathbb{C}[x, y]/(y - x^{2}, y) \right)$$

$$= \dim_{\mathbb{C}} \left(\mathbb{C}[x]/(x^{2}) \right)$$

$$= \dim_{\mathbb{C}} \left(\mathbb{C} \cdot 1 \oplus \mathbb{C} \cdot x \right) = 2.$$
(1.4)

Remark 1.5. Scheme-theoretical intersections are still *not* good enough to deal with certain situations. Let us mention two important cases.

1. **Self-intersections:** Let $C = C' = \{x = 0\} = \operatorname{Spec}(\mathbb{C}[x,y]/(x))$. Then we get

$$C \cap C' = \operatorname{Spec}(\mathbb{C}[x, y]/(x) \otimes_{\mathbb{C}[x, y]} \mathbb{C}[x, y]/(x))$$

$$= \operatorname{Spec}(\mathbb{C}[y])$$

$$= \mathbb{A}^{1}_{\mathbb{C}}, \tag{1.5}$$

which is of $\dim 1$ as a scheme (but the expected dimension is 0). The problem is that the defining equations for C,C' are not independent. In this framework, "setting x=0 twice" is equivalent to "setting x=0 once". Thus, we need a new formalism sensitive enough to deal with these kinds of issues. That is, it should be such a formalism in which imposing some equation more than once must be regarded as being inequivalent to imposing it once.

2. **Intersections in higher dimensions:** Consider two 2-planes X_1, X_2 in $(\mathbb{P}^4_k; [v:w:x:y:z])$ given by

$$X_1: w = x = 0,$$

 $X_2: y = z = 0.$ (1.6)

In an affine chart ($v \neq 0$), we have

$$X_1 = \operatorname{Spec}(k[w, x, y, z]/(x, w))$$

$$X_2 = \operatorname{Spec}(k[w, x, y, z]/(y, z)),$$
(1.7)

such that we set $X := X_1 \cup X_2$ as a scheme coreprenseted by k[w,x,y,z]/(xy,xz,wy,wz). Using the coordinates above, let P be another plane given by $w=y,\ x=z$ such that $\#(X\cap P)=1$, with the point of intersection [1:0:0:0:0], as in Figure 1 below.

Figure 1: Triple intersection in \mathbb{P}^4_k

Now, let us compute the scheme-theoretical intersection number:

$$m_{[1:0:0:0:0]}(X,P) = k[w,x,y,z]/(xy,xz,wy,wz) \otimes_{k[w,x,y,z]} k[w,x,y,z]/(w-y,x-z)$$

$$= k[w,x,y,z]/(xy,xz,wy,wz,w-y,x-z)$$

$$= k[y,z]/(y^2,yz,z^2) = k \cdot 1 \oplus k \cdot y \oplus k \cdot z,$$
(1.8)

which has $\dim_k = 3$. However, the expected dimension must be 2 due to the Moving Lemma [2, App. A]. See also Figure 2.

Figure 2: Perturbing non-transversal intersections

What is happening and how to handle this situation will be clear later (see Example 3.1). However, this example shows that the scheme-theoretical formulation of the intersection multiplicity may fail to capture the right number for the case of higher dimensional subvarieties (meeting non-transversely). This is where Serre's formula comes into play. The upshot is that the formula encodes the scheme-theoretical intersection as its *leading term* along with certain correction terms (cf. [2]). More precisely, we have:

Theorem 1.6. Suppose $A, B \subset X$ are dimensionally transverse¹ subschemes of a smooth scheme X and Z is an irred. component of $A \cap B$. The intersection multiplicity of A and B along Z is given by

$$\mathfrak{m}_{Z}(A,B) = \sum_{i=0}^{\dim X} (-1)^{i} lenght_{\mathcal{O}_{A\cap B},Z} \left(\operatorname{Tor}_{i}^{\mathcal{O}_{X,Z}} (\mathcal{O}_{A,Z}, \mathcal{O}_{B,Z}) \right).$$
(1.9)

Observation 1.7. 1. When we have *k*-vector spaces, $lenght_{\mathcal{O}_{A\cap B},Z}(\cdots) = \dim_k(\cdots)$. (cf. [2])

2. The leading term is precisely the scheme-theoretical multiplicity of Z in $A \cap B$:

$$lenght_{\mathcal{O}_{A\cap B},Z}\left(\operatorname{Tor}_{0}^{\mathcal{O}_{X,Z}}(\mathcal{O}_{A,Z},\mathcal{O}_{B,Z})\right) = lenght_{\mathcal{O}_{A\cap B},Z}\left(\mathcal{O}_{A,Z}\otimes_{\mathcal{O}_{X,Z}}\mathcal{O}_{B,Z}\right). \tag{1.10}$$

Therefore, in the case of k-vector spaces, we may write the intersection multiplicity as

$$\mathfrak{m}_Z(A,B) = \dim_k \left(\mathcal{O}_{A,Z} \otimes_{\mathcal{O}_{X,Z}} \mathcal{O}_{B,Z} \right) + \text{correction/higher terms}$$
 (1.11)

Note that in the language of derived algebraic geometry, we also have an analogous notation. In fact, we introduce and use the *derived tensor product* $\cdot \otimes^{\mathbb{L}} \cdot$ instead of the naive one so that the intersection multiplicity becomes

$$\mathfrak{m}_{Z}(A,B) = \dim_{k} \left(\mathcal{O}_{A,Z} \otimes_{\mathcal{O}_{X,Z}}^{\mathbb{L}} \mathcal{O}_{B,Z} \right). \tag{1.12}$$

3. All higher terms vanish in the Cohen-Macaulay case (in which all intersections have the expected dimension). See [2].

2 Preliminaries

Some remarks on $\cdot \otimes_{\mathcal{O}_X}^{\mathbb{L}} \cdot W$ briefly discuss $\cdot \otimes_{\mathcal{O}_X}^{\mathbb{L}} \cdot$, and for details, we refer to Chapter 0 of [4] or Intro. of [3]. Let R be a commutative ring, B a R-module. Then the *derived tensor product* $\cdot \otimes_R^{\mathbb{L}} B$ arises from the construction of the *left-derived functor* associated to the right-exact functor

$$\cdot \otimes_R B: Mod_R \to Mod_R. \tag{2.1}$$

Let A, B be two commutative algebras over R. Then the definition of $A \otimes_R^{\mathbb{L}} B$ naturally appears in the construction of the i^{th} Tor groups $\operatorname{Tor}_i^R(A,B)$ given by the i^{th} homology of the *tensor product complex* $(P_{\bullet} \otimes_R B, \operatorname{d}')$:

$$\cdots \longrightarrow P_2 \otimes_R B \longrightarrow P_1 \otimes_R B \xrightarrow{d'} P_0 \otimes_R B \longrightarrow 0, \tag{2.2}$$

where P_{\bullet} is a projective resolution of A equipped with a differential d such that (P_{\bullet}, d) becomes a commutative dg-algebra over R and $d' = d \otimes_R id_B$.

¹By which, we mean codim $Z = \operatorname{codim} A + \operatorname{codim} B$ for all irred. comps. Z of $A \cap B$.

Since B is a commutative R-algebra, the tensor product complex inherits the structure of a commutative dg-algebra over R as well, and we denote this tensor product complex by $A \otimes_R^{\mathbb{L}} B$. That is, we set

$$A \otimes_R^{\mathbb{L}} B := (P_{\bullet} \otimes_R B, \mathbf{d}'). \tag{2.3}$$

Remark 2.1. The resulting commutative dg-algebra $A \otimes_R^{\mathbb{L}} B$ is independent of the choice of $(P_{\bullet} \otimes_R B, \mathbf{d}')$ up to a quasi-isomorphism.

Construction of the Tor groups. Let A be a commutative ring, and M, N be two A-modules. Define the ith Tor group $\operatorname{Tor}_i^A(M, N)$ as follows:

1. Take any resolution R of N by free modules

$$R: \cdots \to A^{\oplus n_2} \to A^{\oplus n_1} \to A^{\oplus n_0} \to N \to 0. \tag{2.4}$$

Recall that we can get such a resolution by choosing generators of N and getting a surjective map $A^{\oplus n_0} \twoheadrightarrow N$; and next choosing generators of $\ker(A^{\oplus n_0} \twoheadrightarrow N)$; and so on...

2. Truncate the resolution and apply $M \otimes_A -:$

$$R': \cdots \to A^{\oplus n_2} \to A^{\oplus n_1} \to A^{\oplus n_0} \to 0,$$
 (2.5)

$$R'': \cdots \to M^{\oplus n_2} \to M^{\oplus n_1} \to M^{\oplus n_0} \to 0,$$
 (2.6)

where $M \otimes_A A^{\oplus n_i} = M^{\oplus n_i}$. Here, tensoring with M does not preserve the exactness.

3. Define the ith Tor group by

$$\operatorname{Tor}_{i}^{A}(M,N)_{R} := H_{i}(R''),$$

where $d_i: M^{\oplus n_{i+1}} \to M^{\oplus n_i}$ for $i \geq 0$.

Let us list some facts about the Tor groups. More details can be found in [1].

Observation 2.2. 1. $\operatorname{Tor}_0^A(M,N)_R \simeq M \otimes_A N$.

- 2. $\operatorname{Tor}_{i}^{A}(M, -)$ does not depend on the choice of resolution R.
- 3. $\operatorname{Tor}_{i}^{A}(M,-)$ is a covariant functor $Mod_{A} \to Mod_{A}, N \mapsto \operatorname{Tor}_{i}^{A}(M,N)$.
- 4. $\operatorname{Tor}_i^A(M,-)$ provides a necessary condition for flatness: If M is a flat A-module, then $\operatorname{Tor}_i^A(M,N)=0$ for i>0.
- 5. $\operatorname{Tor}_{i}^{A}(M, -)$ extends a short exact sequence of A-modules

$$0 \to N' \to N \to N'' \to 0$$

to a long exact sequence

$$\cdots \to \operatorname{Tor}_{i}^{A}(M, N') \to \operatorname{Tor}_{i}^{A}(M, N) \to \operatorname{Tor}_{i}^{A}(M, N'')$$
$$\cdots \to \operatorname{Tor}_{1}^{A}(M, N') \to \operatorname{Tor}_{1}^{A}(M, N) \to \operatorname{Tor}_{1}^{A}(M, N'')$$
$$\to M \otimes_{A} N' \to M \otimes_{A} N \to M \otimes_{A} N'',$$

where $\operatorname{Tor}_0^A(M,-)=M\otimes_A-$. (Recall: this part is only right exact.)

- 6. Let *M* be an *A*-module. TFAE:
 - (a) M is flat.
 - (b) $\operatorname{Tor}_{i}^{A}(M, N) = 0$ for all i > 0 and A-modules N.
 - (c) $\operatorname{Tor}_{1}^{A}(M, N) = 0$ for all A-modules N.

3 Some computations

Example 3.1. Let I = (xy, xz, wz, wy), J = (w - y, x - z), and R = k[w, x, y, z]. Write down a resolution for R/J:

$$0 \to k[w,x,y,z] \xrightarrow{\psi} k[w,x,y,z]^{\oplus 2} \xrightarrow{\phi} k[w,x,y,z] \xrightarrow{\pi} k[w,x,y,z]/(w-y,x-z) \to 0,$$

where π is the quotient map; ϕ maps the basis elements e_1, e_2 to $e_1 \mapsto w - y$ and $e_2 \mapsto x - z$; and ψ sends the basis element $f_1 \mapsto (x - z)e_1 + (y - w)e_2$. Note that $\ker \phi = \langle (x - z)e_1 + (y - w)e_2 \rangle$ is of dim 1 and ψ is injective.

After truncating from the last term, where $\operatorname{Tor}_0^R(R/I,R/J)=R/I\otimes_R R/J=k[y,z]/(y^2,yz,z^2)$, apply $R/I\otimes_R$ — to the truncated resolution and get

$$0 \to R/I \xrightarrow{\overline{\psi}} (R/I)^{\oplus 2} \xrightarrow{\overline{\phi}} R/I \to 0,$$

where $\overline{\phi}$ maps $\overline{e_1} \mapsto w - y + I$ and $\overline{e_2} \mapsto x - z + I$; and $\overline{\psi}$ sends the basis element $\overline{f_1} \mapsto (x - z + I)\overline{e_1} + (y - w + I)\overline{e_2}$.

Observe that since $\overline{\psi}$ is injective, it follows that $\operatorname{Tor}_2(\cdots) = 0$ (same for the higher ones). Let us compute $\operatorname{Tor}_1(\cdots)$. Notice that

$$\phi(xe_1 - we_2) = wz - xy \in I$$

$$\phi(ze_1 - ye_2) = zw - xy \in I$$

Thus, both $\xi := xe_1 - we_2$ and $\eta := ze_1 - ye_2$ are in ker ϕ . Also, $\xi - \eta = (x - z)e_1 - (w - y)e_2 \in \text{Im}\phi$. So, $[\xi] = [\eta]$ in ker $\phi/\text{Im}\psi = \text{Tor}_1^R(R/I, R/J)$. We left details to the reader. In brief, we get:

Lemma 3.2. Let R, I, J be as in Example 3.1. Then $\operatorname{Tor}_1^R(R/I, R/J) = \langle [xe_1 - we_2] \rangle$, and hence $\dim_k \operatorname{Tor}_1(\cdots) = 1$. Moreover, $\operatorname{Tor}_i(\cdots) = 0$ for all i > 1.

Computing the correct intersection multiplicity. Let us revisit Remark 1.5/Case-2 and correct the corresponding intersection multiplicity using the Serre formula in (1.9) and Exampe 3.1.

Let X, X₁, X₂, P be as in Remark 1.5/Case-2 and Z := [1:0:0:0:0:0] the point of intersection. Then using Lemma 3.2, we have

$$\mathfrak{m}_{Z}(X,P) = \sum_{i=0}^{\dim X} (-1)^{i} \operatorname{lenght}_{\mathcal{O}_{X\cap P},Z} \left(\operatorname{Tor}_{i}^{\mathcal{O}_{X,Z}}(\mathcal{O}_{A,Z},\mathcal{O}_{P,Z}) \right)$$

$$= \dim_{k} \operatorname{Tor}_{0}^{R}(R/I,R/J) - \dim_{k} \operatorname{Tor}_{1}^{R}(R/I,R/J) + 0$$

$$= \dim_{k} \left(k[y,z]/(y^{2},yz,z^{2}) \right) - 1$$

$$= \dim_{k} \left(k \cdot 1 \oplus k \cdot y \oplus k \cdot z \right) - 1$$

$$= 3 - 1 = 2,$$

which is the desired multiplicity.

References

- [1] Weibel CA. An Introduction to Homological Algebra. Cambridge University Press; 1994.
- [2] Eisenbud D, Harris J. 3264 and All That: A Second Course in Algebraic Geometry. Cambridge University Press; 2016.
- [3] J. Lurie. Derived algebraic geometry, Ph.D. Thesis, Massachusetts Institute of Technology, 2004.
- [4] J. Lurie, Spectral algebraic geometry, available at author's website.