1. Introduction

- Basic encryption process:
 - A has a message (**plaintext**) which is **encrypted** using an **encryption key** to produce the **ciphertext**, which is sent to *B*.
 - B uses a **decryption key** (which depends on the encryption key) to **decrypt** the ciphertext and recover the original plaintext.
 - It should be computationally infeasible to determine the plaintext without knowing the decryption key.

• Caesar cipher:

• Add a constant to each letter in the plaintext to produce the ciphertext:

ciphertext letter = plaintext letter + $k \mod 26$

• To decrypt,

plaintext letter = ciphertext letter $-k \mod 26$

- The key is $k \mod 26$.
- Cryptosystem objectives:
 - Secrecy: the intercepted message should be not able to be decrypted
 - **Integrity**: a message should not allowed to be altered without the receiver knowing
 - Authenticity: the receiver should be certain of the identity of the sender
 - **Non-repudiation**: the sender should not be able to claim they sent a message; the receiver should be able to prove they did.
- **Kerckhoff's principle**: a cryptographic system should be secure even if the details of the system are known to an attacker.
- Types of attack:
 - **Ciphertext-only**: the plaintext is deduced from the ciphertext.
 - **Known-plaintext**: intercepted ciphertext and associated stolen plaintext are used to determine the key.
 - Chosen-plaintext: an attacker tricks a sender into encrypting various chosen plaintexts and observes the ciphertext, then uses this information to determine the key.
 - Chosen-ciphertext: an attacker tricks the receiver into decrypting various chosen ciphertexts and observes the resulting plaintext, then uses this information to determine the key.

2. Symmetric key ciphers

- Converting letters to numbers: treat letters as integers modulo 26, with $A=1, Z=0\equiv 26 \pmod{26}$. Treat a string of text as a vector of integers modulo 26.
- Symmetric key cipher: one in which encryption and decryption keys are equal.
- **Key size**: $\log_2(\text{number of possible keys})$.

- Substitution cipher: key is permutation of $\{a, ..., z\}$. Key size is $\log_2(26!)$. It is vulnerable to plaintext attacks and ciphertext-only attacks, since different letters (and letter pairs) occur with different frequencies in English.
- Stirling's formula:

$$n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

- One-time pad: key is uniformly, independently random sequence of integers mod 26, $(k_1, k_2, ...)$, it is known to the sender and receiver. If message is $(m_1, m_2, ..., m_r)$ then ciphertext is $(c_1, c_2, ..., c_r) = (k_1 + m_1, k_2 + m_2, ..., k_r + m_r)$. To decrypt the ciphertext, $m_i = c_i k_i$. Once $(k_1, ..., k_r)$ have been used, they must never be used again.
 - One-time pad is information-theoretically secure against ciphertext-only attack: $\mathbb{P}(M=m\mid C=c)=\mathbb{P}(M=m).$
 - Disadvantage is keys must never be reused, so must be as long as message.
 - Keys must be truly random.
- Chinese remainder theorem: let $m, n \in \mathbb{N}$ coprime, $a, b \in \mathbb{Z}$. Then exists unique solution $x \mod mn$ to the congruences

$$x \equiv a \mod m$$
$$x \equiv b \mod n$$

- Block cipher: group characters in plaintext into blocks of n (the block length) and encrypt each block with a key. So plaintext $p = (p_1, p_2, ...)$ is divided into blocks $P_1, P_2, ...$ where $P_1 = (p_1, ..., p_n), P_2 = (p_{n+1}, ..., p_{2n})$. Then ciphertext blocks are given by $C_i = f(\text{key}, P_i)$ for some encryption function f.
- Hill cipher:
 - Plaintext divided into blocks $P_1, ..., P_r$ of length n.
 - Each block represented as vector $P_i \in (\mathbb{Z}/26\mathbb{Z})^n$
 - Key is invertible $n \times n$ matrix M with elements in $\mathbb{Z}/26\mathbb{Z}$.
 - Ciphertext for block P_i is

$$C_i = MP_i$$

It can be decrypted with $P_i = M^{-1}C$.

- Let $P = (P_1, ..., P_r), C = (C_1, ..., C_r),$ then C = MP.
- Confusion: each character of ciphertext depends on many characters of key.
- **Diffusion**: each character of ciphertext depends on many characters of plaintext. Ideal diffusion changes a proportion of (S-1)/S of the characters of the ciphertext, where S is the number of possible symbols.
- For Hill cipher, ith character of ciphertext depends on ith row of key this is medium confusion. If jth character of plaintext changes and $M_{ij} \neq 0$ then ith character of ciphertext changes. M_{ij} is non-zero with probability roughly 25/26 so good diffusion.
- Hill cipher is susceptible to known plaintext attack:

- If $P = (P_1, ..., P_n)$ are n blocks of plaintext with length n such that P is invertible and we know P and the corresponding C, then we can recover M, since $C = MP \Longrightarrow M = CP^{-1}$.
- If enough blocks of ciphertext are intercepted, it is very likely that n of them will produce an invertible matrix P.

3. Public key cryptography and the RSA algorithm

• Euler φ function:

$$\varphi: \mathbb{N} \to \mathbb{N}, \varphi(n) = |\{1 \le a \le n : \gcd(a, n) = 1\}| = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$$

- $\varphi(p^r) = p^r p^{r-1}$, $\varphi(mn) = \varphi(m)\varphi(n)$ for $\gcd(m, n) = 1$.
- Euler's theorem: if gcd(a, n) = 1, $a^{\varphi(n)} \equiv 1 \pmod{n}$.
- Public key cryptography:
 - Create two keys, k_D and k_E . k_E is public, k_D is private.
 - Plaintext m is encrypted as $c = f(m, k_E)$.
 - Ciphertext decrypted by $m = g(c, k_D)$.

• **RSA**:

- k_E is pair (n, e) where n = pq is product of two distinct primes and $e \in \mathbb{Z}$ is coprime to $\varphi(n)$.
- k_D is integer d such that $de \equiv 1 \pmod{\varphi(n)}$.
- m is an integer modulo n, m and n are coprime.
- Encryption: $c = m^e \pmod{n}$.
- Decryption: $m = c^d \pmod{n}$.
- RSA problem: given n = pq a product of two unknown primes, e and $m^e \pmod{n}$, recover m. If n can be factored, the RSA is solved.
- It is recommended that n have at least 2048 bits. A typical choice of e is $2^{16} + 1$.

• Attacks on RSA:

- If you can factor n, you can compute d, so can break RSA (as then you know $\varphi(n)$ so can compute $e^{-1} \pmod{\varphi(n)}$).
- If $\varphi(n)$ is known, then we have pq = n and $(p-1)(q-1) = \varphi(n)$ so $p+q=n-\varphi(n)+1$. Hence p and q are roots of $x^2-(n-\varphi(n)+1)+n=0$.
- **Known** d: we have de-1 is multiple of $\varphi(n)$. Look for a factor A of de-1 such that $(p-1) \mid A$, $(q-1) \nmid A$. Then try x^A-1 for random x, this satisfies x^A-1 is divisible by p, hence $\gcd(x^A-1,n)=p$.

• RSA signatures:

- Public key is (n, e) and private key is d.
- When sending a message m, message is **signed** by also sending $s = m^d \mod n$.
- (m, s) is received, **verified** by checking if $m = s^e \mod n$.
- Forging a signature on a message m would require finding s with $m = s^e \mod n$. This is the RSA problem.
- However, choosing signature s first then taking $m = s^e \mod n$.
- To solve this, (m, s) is sent where $s = h(m)^d$, h is **hash function**. Then the message receiver verifies $h(m) = s^e \mod n$.

- Now, for a signature to be forged, an attacker would have to find m with $h(m) = s^e \mod n$.
- Hash function is function $h : \{\text{messages}\} \to \mathcal{H}$ that:
 - Can be computed efficiently
 - Is preimage-resistant: can't quickly find m with given h(m).
 - Is collision-resistant: can't quickly find m, m' with h(m) = h(m').

Example is SHA-256.

- **Theorem**: it is no easier to find $\varphi(n)$ than to factorise n.
- **Theorem**: it is no easier to find d than to factor n.
- Miller-Rabin algorithm:
 - 1. Choose random $x \mod n$.
 - 2. Let $n-1=2^r s$, $y=x^s$.
 - 3. Compute $y, y^2, ..., y^{2^r} \mod n$.
 - 4. If 1 isn't in this list, n is **composite** (with witness x).
 - 5. If 1 is in list preceded by number other than ± 1 , n is **composite** (with witness a).
 - 6. Other, n is **possible prime** (to base x).

3.1. Factorisation

- Trial division algorithm: for p = 2, 3, 5, ... test whether $p \mid n$.
- Fermat's method:
 - Let $a = \lceil \sqrt{n} \rceil$. Compute $a^2 \mod n$, $(a+1)^2 \mod n$ until a square $x^2 \equiv (a+i)^2 \mod n$ appears. Then compute $\gcd(a+i-x,n)$.
 - Works well under special conditions on the factors: if $|p-q| \le 2\sqrt{2}\sqrt[4]{n}$ then Fermat's method takes one step: $x = \lceil \sqrt{n} \rceil$ works.
- An integer is B-smooth if all its prime factors are $\leq B$.
- Quadratic sieve:
 - Choose B and let m be number of primes < B.
 - Look at integers $x = \lceil \sqrt{n} \rceil + k$, k = 1, 2, ... and check whether $y = x^2 n$ is B-smooth.
 - Once $y_1 = x_1^2 n, ..., y_t = x_t^2 n$ are all B-smooth with t > m, find some product of them that is a square.
 - Deduce a congruence between the squares.
- Other factorisation algorithms:
 - Pollard's ρ algorithm.
 - Pollard's p-1 algorithm.
 - Lenstra's algorithm using elliptic curves.
 - General number field sieve
 - Shor's algorithm: $\ln(N)^2 \ln(\ln(N))$.

3.2. Primitive roots

• Let p prime, $g \in \mathbb{F}_p^{\times}$. Order of g is smallest $a \in \mathbb{N}_0$ such that $g^a = 1$. g is **primitive root** if its order is p - 1.

- Let p prime, $g \in \mathbb{F}_p^{\times}$ primitive root. If $x \in \mathbb{F}_p^{\times}$ then $x = g^L$ for some $0 \le L .$ Then <math>L is **discrete logarithm** of x to base g. Write $L = L_g(x)$. It satisfies:
 - $\bullet \ \ g^{L_g(x)} \equiv x \pmod{p} \ \text{and} \ g^a \equiv x \pmod{p} \Longleftrightarrow a \equiv L_g(x) \ \ (\bmod{\,p}-1).$
 - $L_q(1) = 0, L_q(g) = 1.$
 - $\bullet \ \ L_g(xy) \equiv L_g(x) + L_g(y) \quad (\operatorname{mod} p 1).$
 - h is primitive root mod p iff $L_g(h)$ coprime to p-1. So number of primitive roots mod p is $\varphi(p-1)$.
- Discrete logarithm problem: given p, g, x, compute $L_q(x)$.
- Diffie-Hellman key exchange:
 - Two parties agree on prime p and primitive root $q \mod p$.
 - Alice chooses secret $\alpha \mod (p-1)$ and sends $g^{\alpha} \mod p$ to Bob.
 - Bob chooses secret $\beta \mod (p-1)$ and sends $g^{\beta} \mod p$ to Alice.
 - Alice and Bob both compute $\kappa = g^{\alpha\beta} = (g^{\alpha})^{\beta} = (g^{\beta})^{\alpha} \mod p$.
- Diffie-Hellman problem: given $p, g, g^{\alpha}, g^{\beta}$, compute $g^{\alpha\beta}$.
- If discrete logarithm problem cna be solved, so can Diffie-Hellman problem (since could compute $\alpha=L_g(g^a)$ or $\beta=L_g(g^\beta)$).
- Elgamal public key encryption:
 - Alice chooses prime p, primitive root q, private key $\alpha \mod(p-1)$.
 - Her public key is $y = g^{\alpha}$.
 - Bob chooses random $k \mod (p-1)$
 - To send message m (integer mod p), he sends the pair $(r, m') = (g^k, my^k)$.
 - To descript the message, Alice computes $r^{\alpha} = g^{\alpha k} = y^k$ and then $m = m'y^{-k} = m'r^{-\alpha}$.
 - If Diffie-Hellman problem is hard, then Elgamal encryption is secure against known plaintext attack.
 - Key k must be random and different each time.
- Decision Diffie-Hellman problem: given g^a, g^b, c in \mathbb{F}_p^{\times} , decide whether $c = g^{ab}$.
 - This problem is not always hard, as can tell if g^{ab} is square or not. Can fix this by taking g to have large prime order $q \mid (p-1)$. p = 2q + 1 is a good choice.
- Elgamal signatures:
 - Public key is (p, g), $y = g^{\alpha}$ for private key α .
 - Valid Elgamal signature on m is pair (r, s), $r \ge 0$, s such that

$$y^r r^s = q^m \pmod{p}$$

- Alice computes $r = g^k$, $k \in (\mathbb{Z}/(p-1))^{\times}$ random.
- Then $g^{\alpha r}g^{ks}\equiv g^m\mod p$ so $\alpha r+ks\equiv m\pmod {p-1}$ so $s=k^{-1}(m-\alpha r)\mod p-1.$
- Elgamal signature problem: given p, g, y, m, find r, s such that $y^r r^s = m$.
- Discrete logarithm problem: given prime p, primitive root $g \mod p$, $x \in \mathbb{F}_p^{\times}$, calculate $L_g(x)$.

- Baby-step giant-step algorithm for solving DLP:
 - Let $N = \lceil \sqrt{p-1} \rceil$.
 - Baby-steps: compute $g^j \mod p$ for $0 \le j < N$.
 - Giant-steps: compute $xg^{-Nk} \mod p$ for $0 \le k < N$.
 - Look for a match between baby-steps and giant-steps lists: $g^j = xg^{-Nk} \Longrightarrow x = g^{j+Nk}$.
 - Always works since if $x = g^L$ for $0 \le L , so <math>L$ can be written as j + Nk with $j, k \in \{0, ..., N 1\}$.

4. Elliptic curves

- Definition: abelian group (G, \circ) satisfies:
 - Associativity: $\forall a, b, c \in G, a \circ (b \circ c) = (a \circ b) \circ c$.
 - Identity: $\exists e \in G : \forall g \in G, e \times g = g$.
 - Inverses: $\forall g \in G, \exists h \in G: g \circ h = h \circ g = e$
 - Commutativity: $\forall a, b \in G, a \circ b = b \circ a$.
- Notation: for $g \in G$, write [n]g for $g \circ \cdots \circ g$ n times if n > 0, e if n = 0, [-n]g if n < 0.
- **DLP for abelian groups**: given G a cyclic abelian group, $g \in G$ a generator of $G, x \in G$, find L such that [L]g = x. L is well-defined modulo |G|.
- Fundamental theorem of finite abelian groups: let G finite abelian group, then there exist unique integers $2 \le n_1, ..., n_r$ with $n_i \mid n_{i+1}$ for all i, such that

$$G \simeq (\mathbb{Z}/n_1) \times \cdots \times (\mathbb{Z}/n_r)$$

In particular, G is isomorphic to a product of cyclic groups.

• **Definition**: let K field, char(K) > 3. An **elliptic curve** over K is defined by the equation

$$y^2 = x^3 + ax + b$$

where $a, b \in K$, $\Delta_E = 4a^3 + 27b^2 \neq 0$.

- Remark: elliptic curve over $\mathbb Q$ is also elliptic curve over $\mathbb R$ or $\mathbb C$.
- Remark: $\Delta_E \neq 0$ is equivalent to $x^3 + ax + b$ having no repeated roots (i.e. E is smooth).
- **Definition**: for elliptic curve E defined over K, a K-point (point) on E is either:
 - A normal point: $(x,y) \in K^2$ satisfying the equation defining E.
 - The **point at infinity** \overline{O} which can be thought of as infinitely far along the y-axis (in either direction).

Denote set of all K-points on E as E(K).

- Any elliptic curve E(K) is an abelian group, with group operation \oplus is defined as:
 - We should have $P \oplus Q \oplus R = \overline{O}$ iff P, Q, R lie on straight line.
 - In this case, $P \oplus Q = -R$.
 - To find line ℓ passing through $P=(x_0,y_0)$ and $Q=(x_1,y_1)$:
 - If $x_0 \neq x_1$, then equation of ℓ is $y = \lambda x + \mu$, where

$$\lambda = \frac{y_1 - y_0}{x_1 - x_0}, \quad \mu = y_0 - \lambda x_0$$

Now

$$y^{2} = x^{3} + ax + b = (\lambda x + \mu)^{2}$$

$$\implies 0 = x^{3} - \lambda^{2}x^{2} + (a - 2\lambda\mu)x + (b - \mu^{2})$$

Since sum of roots of monic polynomial is equal to minus the coefficient of the second highest power, and two roots are x_0 and x_1 , the third root is $x_2=\lambda^2-x_0-x_1.$ Then $y_2=\lambda x_2+\mu$ and $R=(x_2,y_2).$

• If $x_0 = x_1$, then using implicit differentiation:

$$y^{2} = x^{3} + ax + b$$

$$\Rightarrow \frac{dy}{dx} = \frac{3x^{2} + a}{2y}$$

- and the rest is as above, but instead with $\lambda = \frac{3x_0^2 + a}{2y_0}$.

 Definition: **group law** of elliptic curves: let $E: y^2 = x^3 + ax + b$. For all normal points $P = (x_0, y_0), Q = (x_1, y_1) \in E(K)$, define
 - \overline{O} is group identity: $P \oplus \overline{O} = \overline{O} \oplus P = P$.
 - If P = -Q, $P \oplus Q = \overline{Q}$
 - Otherwise, $P \oplus Q = (x_2, -y_2)$, where

$$\begin{split} x_2 &= \lambda^2 - (x_0 + x_1), \\ y_2 &= \lambda x_2 + \mu, \\ \lambda &= \begin{cases} \frac{y_1 - y_0}{x_1 - x_0} \text{ if } x_0 \neq x_1 \\ \frac{3x_0^2 + a}{2y_0} \text{ if } x_0 = x_1, \end{cases} \\ \mu &= y_0 - \lambda x_0 \end{split}$$

- Example:
 - Let E be given by $y^2 = x^3 + 17$ over \mathbb{Q} , $P = (-1, 4) \in E(\mathbb{Q})$, $Q = (2, 5) \in E(\mathbb{Q})$. To find $P \oplus Q$

$$\lambda = \frac{5-4}{2-(-1)} = \frac{1}{3}, \quad \mu = 4 - \lambda(-1) = \frac{13}{3}$$

So $x_2 = \lambda^2 - (-1) - 2 = -\frac{8}{9}$ and $y_2 = -(\lambda x_2 + \mu) = -\frac{109}{27}$ hence

$$P \oplus Q = \left(-\frac{8}{9}, -\frac{109}{27}\right)$$

To find [2]P,

$$\lambda = \frac{3(-1)^2 + 0}{2 \cdot 4} = \frac{3}{8}, \quad \mu = 4 - \frac{3}{8} \cdot (-1) = \frac{35}{8}$$

so
$$x_3 = \lambda^2 - 2 \cdot (-1) \frac{137}{64}$$
, $y_3 = -(\lambda x_3 + \mu) = -\frac{2651}{512}$ hence

$$[2]P=(x_3,y_3)=\left(\frac{137}{64},-\frac{2651}{512}\right)$$

• Hasse's theorem: let $|E(\mathbb{F}_p)| = N$, then

$$|N - (p+1)| \le 2\sqrt{p}$$

- Elliptic curve Elgamal signatures:
 - Use agreed elliptic curve E over \mathbb{F}_p , point $P \in E(\mathbb{F}_p)$ of prime order n.
 - Alice wants to sign message m, encoded as integer mod n.
 - Alice generates private key $\alpha \in \mathbb{Z}/n$ and public key $Q = [\alpha]P$.
 - A valid signature is (R, s) where $R = (x_R, y_R) \in E(\mathbb{F}_p)$, $s \in \mathbb{Z}/n$, $[\widetilde{x_R}]Q \oplus [s]R = [m]P$.
 - To generate a valid signature, Alice chooses random $k \in \mathbb{Z}/n$ and sets R = [k]P, $s = k^{-1}(m \widetilde{x_R}\alpha)$.
 - k must be randomly generated for each message.
- Baby-step giant-step algorithm for elliptic curve DLP: given P and $Q = [\alpha]P$, find α :
 - Let $N = \lceil \sqrt{n} \rceil$, n is order of P.
 - Compute P, [2]P, ..., [N-1]P.
 - Compute $Q \oplus [-N]P$, $Q \oplus [-2N]P$, ..., $Q \oplus [-(N-1)N]P$ and find a match between these two lists: $[i]P = Q \oplus [-jN]P$, then [i+jN]P = Q so $\alpha = i+jN$.
- For well-chosen elliptic curves, the best algorithm is the baby-step giant-step algorithm, with run time $O(\sqrt{n}) \approx O(\sqrt{p})$. This is much slower than the index-calculus method for the DLP in \mathbb{F}_p^{\times} .
- Pollard's p-1 algorithm to factorise n:
 - Choose smoothness bound B.
 - Choose random $2 \le a \le n-2$. Set $a_1 = a$, i = 1.
 - Compute $a_{i+1} = a_i^i \mod n$, increment i by 1. Find $d = \gcd(a_{i+1} 1, n)$. If 1 < d < n, we have found a nontrivial factor of n. If d = n, pick new a and retry. If d = 1, repeat this step.
 - A variant is instead of computing $a_{i+1} = a_i^i$, compute $a_{i+1} = a_i^{m_i}$ where $m_1, ..., m_r$ are the prime powers $\leq B$.
 - The algorithm works if p-1 is B-powersmooth (all prime power factors are $\leq B$).
- **Lenstra's algorithm** to factorise *n*:
 - Choose smoothness bound B.
 - Choose random elliptic curve E over \mathbb{Z}/n and P=(x,y) a point on E.
 - Set $P_1 = P$, attempt to compute P_i , $2 \le i \le B$ by $P_i = [i]P_{i-1}$. If this fails, a divisor of n has been found (by failing to compute an inverse mod n). If this divisor is trivial, restart with new curve and point.
 - If i = B is reached, restart with new curve and point.
- Lenstra's algorithm works if $|E(\mathbb{Z}/p)|$ is B-powersmooth. Since we can vary E, it is very likely to work eventually.

• Running time depends on p:

$$O\!\left(\exp\!\left(\sqrt{2\log(p)\log\log(p)}\right)\right)$$

Compare this to the general number field sieve running time:

$$O\left(\exp\left(C(\log n)^{2/3}(\log\log n)^{2/3}\right)\right)$$

4.1. Torsion points

- **Definition**: let G abelian group. $g \in G$ is a **torsion** if it has finite order. If order divides n, then [n]g = e and g is n-torsion.
- Definition: *n*-torsion subgroup is

$$G[n]\coloneqq\{g\in G:[n]g=e\}$$

• Definition: torsion subgroup of G is

$$G_{\mathrm{tors}} = \{g \in G : g \text{ is torsion}\} = \bigcup_{n \in \mathbb{N}} G[n]$$

- Example:
 - In \mathbb{Z} , only 0 is torsion.
 - In $(\mathbb{Z}/10)^{\times}$, by Lagrange's theorem, every point is 4-torsion.
 - For finite groups G, $G_{tors} = G = G[|G|]$ by Lagrange's theorem.