Formal Languages languages = sets of strings { string, array } ₹0,13* The set of all Python programs mat print "Hello, world!" programs ranguage? lengt/size? \emptyset yes 1 181=0 ξ. ND 1 2 2 3 \ = 1 ξε} | yes [] empty list empty string (in Python) L= { we {0,13*: w has an even number of 1's}

E E L 00 EL 01016L 1 & L Familiar set operations: L = AUB L=ANB L-AB Some new operators: (oncalenation: L=A·B= { x·y: XEA and yEB} A= {black, blue } B= {berry, fish, top} A·B= { blackberry, black fish, blockerry, block fish, black top, blockop), (A.B) = IA1 + IB1 unatis Ø. L. Hlanguages L? Ø Check your answer: unat is 10.L1? = 0.1L1=0 unat should we concatenate with L

unat is x? X·L=L x = { E } Kleene Star L=A*= concalenation of any strings $W \in L \subset \mathbb{Z}$ $W = \Sigma$ $W = X \cdot Y \text{ for } X \in A, Y \in A^*$ A = 2 ba, bar 3 how big is A*? barbaba EA* uny? EEA* $ba = ba \cdot E \in A^*$ in A $in A^*$ baba = ba·ba E A*

in A in A* E A* barbaba = bar · baba let L be a language. ? If L = { E}, men L* = { E}

Consider L= 2a3 matis L*?.

EE, a, aa, aaa, aaa, (f L= Ø, men 2* = { 2 2 3 Regular Languages languages sequencing L=A.B AjB for veg. lang-H,B repetition [L=A* for reg. eise AUB lang. A Are all languages regular? A.B Some new notation for regular expression: L= &W > L= &W > L= &UB note: * has highest precedence \mathcal{D} AtB L=A.B AB

>perator precedence:

* (concatenation)

+ Describe in English: 00000* (00000)* 00000000e) $((0+1)(0+1))_{\star}$ Give a regular expression for: the set of all binary strings that contain the substring 0000. (1+0)*(0000) (1+0)* 000000

Proof: Let Phe an arbitrary regular e	Varaccion	
expression is	perfectu	y cromulent.
Tribrem: er	eng regi	lay
Proofs about		

Proof: Let R be an arbitrary regular expression.	1#
Assume that every regular expression smaller than <i>R</i> is perfectly cromulent.	(1)
There are five cases to consider	

- Suppose $R = \emptyset$.
 - prove & is P. (
- Therefore, *R* is perfectly cromulent.

 Suppose *R* is a single string.

Therefore, R is perfectly cromulent.

• Suppose R = S + T for some regular expressions S and T.

The induction hypothesis implies that S and T are perfectly cromulent.

prove that f is P.C.

Therefore, R is perfectly cromulent.

Suppose $R = S \cdot T$ for some regular expressions S and T.

The induction hypothesis implies that *S* and *T* are perfectly cromulent.

prove pat Ris P.C.

Therefore, R is perfectly cromulent.

• Suppose $R = S^*$ for some regular expression. S.

The induction hypothesis implies that *S* is perfectly cromulent.

prove Mat Ris P.C.

Therefore, *R* is perfectly cromulent.

In all cases, we conclude that & is perfectly cromulent.