4

Lineer Dönüşümler ve Matrisler

 $\mathsf{Tanım} \ 4.1 \ V \ \mathsf{ve} \ W$ iki vektör uzayı olsun. $L: V \to W$ bir fonksiyon olsun. Eğer

- a) Her $\alpha, \beta \in V$ için $L(\alpha + \beta) = L(\alpha) + L(\beta)$ ve
- b) Her $c \in \mathbb{R}$ ve her $\alpha \in V$ için $L(c \cdot \alpha) = c \cdot L(\alpha)$ ise

L'ye V'den W'ya bir $\underline{\text{lineer dönüşüm}}$ denir. Eğer V=W ise L'ye V üzerinde bir $\underline{\text{lineer operatör}}$ denir.

Lemma 4.2 $L:V\longrightarrow W$ fonksiyonunun bir lineer dönüşüm olması için gerek ve yeter şart her $a,b\in\mathbb{R}$ ve her $\alpha,\beta\in V$ için $L(a\alpha+b\beta)=aL(\alpha)+bL(\beta)$ olmasıdır. İspat: (\Longrightarrow) L bir lineer dönüşüm olsun.

$$L(a\alpha + b\beta) = L(a\alpha) + L(b\beta) = aL(\alpha) + bL(\beta)$$

İspat: (\iff) Şimdi de her $a,b\in\mathbb{R}$ ve her $\alpha,\beta\in V$ için $L(a\alpha+b\beta)=aL(\alpha)+bL(\beta)$ olsun. a=1, b=1 alınırsa $L(\alpha+\beta)=L(\alpha)+L(\beta)$ elde edilir. Ayrıca b=0, a=c dersek $L(c\cdot\alpha)=c\cdot L(\alpha)$ bulunur.

Örnek 4.3 $L: \mathbb{R}^3 \to \mathbb{R}^2$, $L\left(\left[egin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right] \right) = \left[egin{array}{c} a_1 \\ a_2 \end{array} \right]$ olsun. $\alpha = \left[egin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right]$ ve $\beta = \left[egin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right]$ olsun.

$$L(\alpha+\beta) = L\left(\left[\begin{array}{c} a_1+b_1\\ a_2+b_2\\ a_3+b_3 \end{array}\right]\right) = \left[\begin{array}{c} a_1+b_1\\ a_2+b_2 \end{array}\right] = \left[\begin{array}{c} a_1\\ a_2 \end{array}\right] + \left[\begin{array}{c} b_1\\ b_2 \end{array}\right] = L(\alpha) + L(\beta).$$

Ayrıca

$$L(c\alpha) = L\left(\left[\begin{array}{c} ca_1\\ ca_2\\ ca_3 \end{array}\right]\right) = \left[\begin{array}{c} ca_1\\ ca_2 \end{array}\right] = c\left[\begin{array}{c} a_1\\ a_2 \end{array}\right] = cL(\alpha).$$

Yani L bir lineer dönüşümdür. L'ye bir <u>projeksiyon (izdüşüm)</u> denir. Çünkü $P(a_1, a_2, a_3)$ noktasının L altındaki görüntüsü; ucu bu nokta olan 3-boyutlu doğrunun \mathbb{R}^2 deki gölgesidir.

Örnek 4.4 $L: P_2 \longrightarrow P_1, L(at^2 + bt + c) = 2at + b$ olsun. L bir lineer dönüşümdür.

Örnek 4.5 $L:\mathbb{R}^3\longrightarrow\mathbb{R}^3$, $r\in\mathbb{R}$ bir skaler olmak üzere

$$L\left(\left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}\right]\right) = r\left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}\right]$$

olsun. L, \mathbb{R}^3 de bir lineer operatördür. (Kontrol ediniz) r>1 ise L'ye <u>uzama</u>, 0< r<1 ise <u>büzülme</u> denir. Çünkü; r>1 ise vektör uzar, 0< r<1 ise büzülür.

Örnek 4.7 $L:\mathbb{R}^3 o\mathbb{R}^2$,

$$L\left(\left[\begin{array}{c}a_1\\a_2\\a_3\end{array}\right]\right)=\left[\begin{array}{ccc}1&0&1\\0&1&-1\end{array}\right]\left[\begin{array}{c}a_1\\a_2\\a_3\end{array}\right]$$

şeklinde tanımlanan L bir lineer dönüşümdür. Gösteriniz.

Örnek 4.9 $L: \mathbb{R}^2 \to \mathbb{R}^2$

$$L\left(\left[\begin{array}{c}a_1\\a_2\end{array}\right]\right)=\left[\begin{array}{c}a_1\\-a_2\end{array}\right]$$

 \mathbb{R}^2 de bir lineer operatördür. L'ye x-eksenine göre refleksiyon (yansıma) denir.

Örnek 4.10 $L: \mathbb{R}^2 \to \mathbb{R}^2$,

$$L\left(\left[\begin{array}{c} x \\ y \end{array}\right]\right) = \left[\begin{array}{cc} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

dönüsümü bir α vektörünü ϕ açısı kadar döndürmekle elde edilen dönüşümdür. Bu dönüşüme bir rotasyon (dönme) denir. Bu dönüşüm başlangıç noktası orjin ve uç noktası P(x,y) olan vektörü, uzunluğunu değiştirmeden, saatin ters yönünde ϕ açısı kadar döndürüp, başlangıç noktası orjin ve uç noktası P'(x',y') olan vektöre dönüştürür.

Örnek 4.11 $L: \mathbb{R}^3 o \mathbb{R}^3$,

$$L\left(\left[\begin{array}{c}a_1\\a_2\\a_3\end{array}\right]\right)=\left[\begin{array}{c}a_1+1\\2a_2\\a_3\end{array}\right] \text{ olsun.}$$

$$lpha = \left[egin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}
ight], eta = \left[egin{array}{c} b_1 \\ b_2 \\ b_3 \end{array}
ight] ext{ olsun.}$$

$$L(\alpha + \beta) = L\left(\begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{bmatrix}\right) = \begin{bmatrix} a_1 + b_1 + 1 \\ 2(a_2 + b_2) \\ a_3 + b_3 \end{bmatrix}$$

fakat

$$L(\alpha) + L(\beta) = \begin{bmatrix} a_1 + 1 \\ 2a_2 \\ a_3 \end{bmatrix} + \begin{bmatrix} b_1 + 1 \\ 2b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_1 + b_1 + 2 \\ 2(a_2 + b_2) \\ a_3 + b_3 \end{bmatrix} \neq L(\alpha + \beta)$$

olup bir L bir lineer dönüşüm değildir.

Örnek 4.12 $L: \mathbb{R}_2 \to \mathbb{R}_2, L[a_1 \ a_2] = \begin{bmatrix} a_1^2 \ 2a_2 \end{bmatrix}$ şeklinde verilen L bir lineer dönüşüm müdür? Neden?

Çözüm: Ödev

Teorem 4.13 $L:V\to W$ bir lineer dönüşüm ve V de n-boyutlu bir vektör uzayı olsun. $S=\{\alpha_1,\alpha_2,\ldots,\alpha_n\}$, V nin bir bazı olsun. $\alpha\in V$ ise $L(\alpha)$ elemanı $\{L(\alpha_1),L(\alpha_2),\ldots,L(\alpha_n)\}$ elemanları tarafından tamamem belirlenir.

Örnek 4.14 $L: \mathbb{R}_4 \longrightarrow \mathbb{R}_2$ bir lineer dönüşüm olsun. $\alpha_1 = [1 \ 0 \ 1 \ 0], \alpha_2 = [0 \ 1 \ -1 \ 2],$ $\alpha_3 = [0 \ 2 \ 2 \ 1], \alpha_4 = [1 \ 0 \ 0 \ 1]$ ve $S = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}, \mathbb{R}_4$ ün bir bazı olsun. Şimdi

$$L(\alpha_1) = [1 \ 2], \quad L(\alpha_2) = [0 \ 3], \quad L(\alpha_3) = [0 \ 0], \quad L(\alpha_4) = [2 \ 0]$$

verilsin. $\alpha=[3\ -5\ -5\ 0]$ ise $L(\alpha)$ nasıl hesaplanır? Bunun için önce α elemanı S'deki vektörlerin lineer kombinasyonu olarak yazılır. Bir takım hesaplamalardan sonra $\alpha=2\alpha_1+\alpha_2-3\alpha_3+\alpha_4$ elde edilir ve daha sonra:

$$L(\alpha) = L(2\alpha_1 + \alpha_2 - 3\alpha_3 + \alpha_4) = 2L(\alpha_1) + L(\alpha_2) - 3L(\alpha_3) + L(\alpha_4) = [4\ 7]$$

bulunur.

Teorem 4.15 $L:V \to W$ bir lineer dönüşüm olsun.

(a)
$$L(\theta_V) = \theta_W$$

(b)
$$L(\alpha - \beta) = L(\alpha) - L(\beta)$$
 dir. (Her $\alpha, \beta \in V$ için.)

4.2 Bir Lineer Dönüşümün Çekirdeği ve Görüntüsü

Tanım 4.16 Eğer bir lineer dönüşüm, fonksiyon olarak 1–1 ise, bu dönüşüme 1–1 lineer dönüşüm denir. $L:V\longrightarrow W$ bir lineer dönüşüm olsun.

$$\alpha_1 \neq \alpha_2 \Longrightarrow L(\alpha_1) \neq L(\alpha_2)$$
 veya $L(\alpha_1) = L(\alpha_2) \Longrightarrow \alpha_1 = \alpha_2$

önermesi doğru ise (her $\alpha_1, \alpha_2 \in V$ için) L 1–1 dir deriz.

Örnek 4.17
$$L: \mathbb{R}^2 \longrightarrow \mathbb{R}^2, L\left(\left[\begin{array}{c} a_1 \\ a_2 \end{array}\right]\right) = \left[\begin{array}{c} a_1 + a_2 \\ a_1 - a_2 \end{array}\right]$$
olsun. $\alpha_1 = \left[\begin{array}{c} a_1 \\ a_2 \end{array}\right], \alpha_2 = \left[\begin{array}{c} b_1 \\ b_2 \end{array}\right]$

olsun. $L(\alpha_1) = L(\alpha_2)$ olduğunu kabul edelim: Buradan

$$\begin{vmatrix} a_1 + a_2 = b_1 + b_2 \\ a_1 - a_2 = b_1 - b_2 \end{vmatrix} \Longrightarrow 2a_1 = 2b_1 \Longrightarrow a_1 = b_1 \Longrightarrow a_2 = b_2$$

olup $\alpha_1 = \alpha_2$ dir. Yani L, 1–1 dir.

1-1 değildir.

 $\mathsf{Tanım} \ 4.19 \ L:V o W$ bir lineer dönüşüm olsun L nin çekirdeği

$$\operatorname{Qek}(L) = \{\alpha \in V : L(\alpha) = \theta_W\}$$

kümesi olarak tanımlanır. $L(\theta_V) = \theta_W$ olduğundan (Teorem 4.15) $\theta_V \in \operatorname{Çek}(L)$ olup, çekirdek en az bir elemanlıdır; yani $\operatorname{Çek}(L) \neq \emptyset$.

Örnek 4.20 $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, Örnek 4.18'deki dönüşüm olsun.

$$L\left(\left[\begin{array}{c}0\\0\\2\end{array}\right]\right)=\left[\begin{array}{c}0\\0\end{array}\right] \text{ olup } \left[\begin{array}{c}0\\0\\2\end{array}\right] \in \operatorname{\mathsf{Çek}}(L). \text{ Fakat } \left[\begin{array}{c}3\\2\\-1\end{array}\right] \not\in \operatorname{\mathsf{Çek}}(L).$$

Acaba Cek(L) kümesini nasıl bulabiliriz?

$$L\left(\left[\begin{array}{c}a_1\\a_2\\a_3\end{array}\right]\right) = \left[\begin{array}{c}a_1\\a_2\end{array}\right] = \left[\begin{array}{c}0\\0\end{array}\right] \Longrightarrow a_1 = a_2 = 0$$

bulunur. $a_3 \in \mathbb{R}$ keyfi seçilebilir. O halde

$$\operatorname{\mathsf{Çek}}(L)\left\{\left[\begin{array}{c}0\\0\\a\end{array}\right]:a\in\mathbb{R}\right\}\quad (\operatorname{Yani}\operatorname{\mathsf{Qek}}(L),z\text{-ekseninin kendisidir.})$$

Teorem 4.21 $L:V\longrightarrow W$ bir lineer dönüşüm olsun

(a) Cek(L), V nin bir alt uzayıdır.

(b)
$$L$$
 1-1 dir \iff $Cek(L) = \{\theta_V\}$

Ispat (a) $\alpha, \beta \in \text{Cek}(L)$ ve $c \in \mathbb{R}$ olsun. $\alpha + \beta \in \text{Cek}(L)$ ve $c\alpha \in \text{Cek}(L)$ olduğunu gösterelim. $\alpha, \beta \in \text{Cek}(L)$ olduğundan $L(\alpha) = L(\beta) = \theta_W$ dur. Şimdi:

$$L(\alpha+\beta)=L(\alpha)+L(\beta)=\theta_W+\theta_W=\theta_W\Longrightarrow \alpha+\beta\in\operatorname{\mathsf{Çek}}(L)$$

$$L(c\alpha)=cL(\alpha)=c\theta_W=\theta_W\implies c\alpha\in\operatorname{\mathsf{Çek}}(L)$$

olup Cek(L), V nin bir alt uzayıdır.

Ispat (b) (\Longrightarrow) L 1–1 olsun. $\operatorname{Cek}(L) = \{\theta_V\}$ olduğunu göstereceğiz. $\alpha \in \operatorname{Cek}(L)$ alalım. $L(\alpha) =$ θ_W dur. $L(\theta_V) = \theta_W$ olduğundan ve L 1–1 olduğundan $\alpha = \theta_V$ olmalıdır. O halde Çek(L) = $\{\theta_V\}.$

Ispat (b) (\iff) $Cek(L) = \{ \theta_V \}$ olsun. L nin 1–1 olduğunu göstereceğiz.

$$L(\alpha_1) = L(\alpha_2) \Longrightarrow L(\alpha_1) - L(\alpha_2) = \theta_W$$

 $\Longrightarrow L(\alpha_1 - \alpha_2) = \theta_W$
 $\Longrightarrow \alpha_1 - \alpha_2 \in \operatorname{Çek}(L)$
 $\Longrightarrow \alpha_1 - \alpha_2 = \theta_V$
 $\Longrightarrow \alpha_1 = \alpha_2$

olup L 1–1 dir.

 $\mathsf{Tanım}\ 4.23\ L\ :\ V\ \longrightarrow\ W$ bir lineer dönüşüm olsun. L nin görüntüsü (veya V nin L altındaki görüntüsü)

$$G(L) = \{ w \in W : \operatorname{Bir} v \in V \text{ için } L(v) = w \}$$

kümesi olarak tanımlanır. Yani $\beta \in G(L)$ ise bir $\alpha \in V$ bulunabilir; öyle ki $L(\alpha) = \beta$ dır. Eğer G(L) = W ise L'ye örten (üzerine) lineer dönüşüm denir.

Teorem 4.24 $L:V\to W$ bir lineer dönüşüm olsun. G(L),W nun alt uzayıdır.

Örnek 4.25
$$L: \mathbb{R}^3 \longrightarrow \mathbb{R}^2, L\left(\left[egin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right] \right) = \left[egin{array}{c} a_1 \\ a_2 \end{array} \right]$$
 olsun. L örten midir?

Örnek 4.25
$$L:\mathbb{R}^3\longrightarrow\mathbb{R}^2, L\left(\left[egin{array}{c}a_1\\a_2\\a_3\end{array}
ight]
ight)=\left[egin{array}{c}a_1\\a_2\end{array}
ight]$$
 olsun. L örten midir? Çözüm: $\beta=\left[egin{array}{c}c\\d\end{array}
ight]\in\mathbb{R}^2 \text{ alalım. } \alpha=\left[egin{array}{c}a_1\\a_2\\a_3\end{array}
ight] \text{ve }L(\alpha)=\beta \text{ olacak şekilde }\alpha\in\mathbb{R}^3 \text{ arıyoruz (her }c,d \text{ icin)}.$

$$L(\alpha) = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix} \Longrightarrow a_1 = c, a_2 = d$$

seçilirse $L(\alpha)=\beta$ olur. $(a_3$ herhangi bir sayı seçilebilir). Yani L örtendir. Bu durumda $G(L)=\mathbb{R}^2$ olup $\mathrm{boy}(G(L))=2$ dir.

Örnek 4.27
$$L:\mathbb{R}^3\longrightarrow\mathbb{R}^3,\;\;L\left(\left[egin{array}{c}a_1\\a_2\\a_3\end{array}\right]\right)=\left[egin{array}{ccc}1&0&1\\1&1&2\\2&1&3\end{array}\right]\left[egin{array}{c}a_1\\a_2\\a_3\end{array}\right]$$
 ile tanımlanan dönüşüm örten midir? boy $(G(L)=?$

Çözüm: Verilen her $\beta = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3$ için $L(\alpha) = \beta$ olacak şekilde $\alpha \in \mathbb{R}^3$ bulunabilir mi? $\alpha = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ olsun.

$$L(\alpha) = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} a_1 + a_3 \\ a_1 + a_2 + 2a_3 \\ 2a_1 + a_2 + 3a_3 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

Şimdi ek matrisi indirgenmiş satır eşelon forma getirelim:

$$\begin{bmatrix} 1 & 0 & 1 & \vdots & a \\ 1 & 1 & 2 & \vdots & b \\ 2 & 1 & 3 & \vdots & c \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 & \vdots & a \\ 0 & 1 & 1 & \vdots & b - a \\ 0 & 0 & 0 & \vdots & c - b - a \end{bmatrix}$$

Yani sadece c-b-a=0 olduğundan bir çözüm vardır. O zaman L örten değildir. Şimdi G(L) için bir baz bulalım:

$$L\left(\left[\begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}\right]\right) = \left[\begin{array}{c} a_1 + a_3 \\ a_1 + a_2 + 2a_3 \\ 2a_1 + a_2 + 3a_3 \end{array}\right] = a_1 \left[\begin{array}{c} 1 \\ 1 \\ 2 \end{array}\right] + a_2 \left[\begin{array}{c} 0 \\ 1 \\ 1 \end{array}\right] + a_3 \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array}\right]$$

olur. Yani

$$\left\{ \begin{bmatrix} 1\\1\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}$$

kümesi G(L)'yi doğurur. Üçüncü vektör ilk iki vektörün toplamı ve ilk iki vektör lineer bağımsız olduğu için (biri diğerinin katı değil), ilk iki vektör bir baz oluşturur. O halde boy(G(L)) = 2 olur.

Not 4.28 Son örnekte boy(Çek
$$(L)$$
) = 1 bulunur ve $\begin{bmatrix} -a \\ -a \\ a \end{bmatrix}$ $(a \in \mathbb{R})$ şeklindeki vektörlerden oluşur. (Kontrol edin.)

Örnek 4.29 $L: \mathbb{R}_4 \longrightarrow \mathbb{R}_3, L([a_1, a_2, a_3, a_4]) = [a_1 + a_2, a_3 + a_4, a_1 + a_3]$ olarak tanımlansın. G(L) için bir baz bulunuz.

Çözüm:
$$L\left([a_1,a_2,a_3,a_4]\right)=a_1[1,0,1]+a_2[1,0,0]+a_3[0,1,1]+a_4[0,1,0]$$
 olup
$$\left\{\,[1,0,1],[1,0,0],[0,1,1],[0,1,0]\,\right\}$$

kümesi G(L) yi doğurur. Bu kümedeki vektörlerden lineer bağımsız olanları bulalım:

$$\{[1,0,0],[0,1,0],[0,0,1]\}$$

kümesi G(L) için bir bazdır. boy(G(L)) = 3 olup L örtendir.

$$\operatorname{boy}(\operatorname{\mathsf{Çek}}(L)) + \operatorname{boy}(G(L)) = \operatorname{boy}(L'\operatorname{\mathsf{nin}}\operatorname{\mathsf{tanım}}\operatorname{\mathsf{kümesi}})$$

Teorem 4.30 $L:V\longrightarrow W$ bir lineer dönüşüm ve V, n-boyutlu bir uzay ise

$$boy(Cek(L)) + boy(G(L)) = n.$$

 $\mathsf{Tanım}\ 4.31\ L:V\longrightarrow W$ lineer dönüşüm ise $\mathsf{boy}(\mathsf{Qek}(L))$ sayısına L'nin sıfırlığı denir.

Sonuç 4.32 $L:V\longrightarrow W$ bir lineer dönüşüm ve $\mathrm{boy}(V)=\mathrm{boy}(W)$ olsun.

- (a) L 1–1 ise örtendir.
- (b) L örten ise 1-1 dir.

Teorem 4.33 $L:V\longrightarrow W$ lineer dönüşümünün tersi vardır $\iff L$, 1–1 ve örtendir. Ayrıca L^{-1} de bir lineer dönüşümdür ve $(L^{-1})^{-1}=L$.

Örnek 4.34
$$L:\mathbb{R}^3\longrightarrow\mathbb{R}^3$$
, $L\left(\left[egin{array}{c}a_1\\a_2\\a_3\end{array}
ight]
ight)=\left[egin{array}{ccc}1&1&1\\2&2&1\\0&1&1\end{array}\right]\left[egin{array}{c}a_1\\a_2\\a_3\end{array}
ight]$ olarak tanımlansın. Çek $(L)=$

 $\{\theta\}$ olduğu kolaylıkla gösterilebilir. Yani L, 1–1 dir. Ayrıca örten olup (Sonuç 4.32) tersi vardır. L^{-1} fonksiyonunu bulalım.

Teorem 4.35 $L:V\longrightarrow W$ lineer dönüşümünün 1–1 olması için gerek ve yeter şart V deki lineer bağımsız her kümenin görüntüsünün W da lineer bağımsız olmasıdır.

Sonuç 4.36 $L:V\longrightarrow W$ lineer dönüşüm ve $\mathrm{boy}(V)=\mathrm{boy}(W)$ olsun.

L 1–1 dir (yani tersi vardır) $\iff V$ deki bir bazın görüntüsü, W da bir bazdır.

Not: $A n \times n$ matris olsun. Buna göre aşağıdakiler denktir.

- A singüler değildir.
- 2. AX = 0 'ın sadece trivial çözümü vardır.
- 3. A, I_n 'in satır (sütun) eşdeğeridir.
- 4. AX = B sistemi her $n \times 1$ $B \in \mathbb{R}^n$ matrisi için tek çözüme sahiptir.
- A, elementer matrislerin bir çarpımıdır.
- 6. A'nın rankı n dir.
- 7. A'nın satırları (sütunları) \mathbb{R}_n de (\mathbb{R}^n de) lineer bağımsızdır.
- AX = O'ın çözüm uzayının boyutu sıfırdır.
- 9. $L: \mathbb{R}^n \longrightarrow \mathbb{R}^n, L(X) = AX, (X \in \mathbb{R}^n)$ ile tanımlanan lineer dönüşüm 1–1 ve örtendir.

4.3 Bir Lineer Dönüşümün Matrisi

Örnek 4.38 $L: P_2 \longrightarrow P_1, L(p(t)) = p'(t)$ olsun. $S = \{t^2, t, 1\}$ ve $T = \{t, 1\}$ de P_2 ve P_1 için sıralı bazlar olsunlar. Şimdi L için A matrisini bulalım.

$$\begin{split} L(t^2) &= 2t = 2 \cdot t + 0 \cdot 1 &\implies [L(t^2)]_T = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \\ L(t) &= 1 = 0 \cdot t + 1 \cdot 1 &\implies [L(t)]_T = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ L(1) &= 0 = 0 \cdot t + 0 \cdot 1 &\implies [L(1)]_T = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{split} \\ \Longrightarrow A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{ bulunur.}$$

Örneğin; $p(t)=5t^2-3t+2\Longrightarrow L(p(t))=10t-3$ dür. Ayrıca L(p(t))'yi A matrisini kullanarak bulabiliriz.

$$[p(t)]_S = \begin{bmatrix} 5 \\ -3 \\ 2 \end{bmatrix}$$

olup

$$\begin{split} [L(p(t))]_T &= A \cdot [p(t)]_S = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right] \cdot \left[\begin{array}{c} 5 \\ -3 \\ 2 \end{array} \right] = \left[\begin{array}{c} 10 \\ -3 \end{array} \right] \\ \Longrightarrow L(p(t)) = 10t - 3 \text{ bulunur}. \end{split}$$

Örnek 4.40 $L: P_2 \longrightarrow P_1$ Örnek 4.38'deki dönüşüm olsun. $S = \{t^2, t, 1\}$ ve $T = \{t+1, t-1\}$ 'de P_2 ve P_1 için sıralı bazlar olsunlar.

$$\begin{split} L(t^2) &= 2t = 1 \cdot (t+1) + 1 \cdot (t-1) &\implies [L(t^2)]_T = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ L(t) &= 1 = \frac{1}{2}(t+1) - \frac{1}{2}(t-1) &\implies [L(t)]_T = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} \\ L(1) &= 0 = 0 \cdot (t+1) + 0 \cdot (t-1) &\implies [L(1)]_T = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \end{split}$$

bulunur. Şimdi $p(t)=5t^2-3t+2$ alalım. L(p(t))=10t-3 tür.

$$[L(p(t))]_T = \begin{bmatrix} 1 & 1/2 & 0 \\ 1 & -1/2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} 7/2 \\ 13/2 \end{bmatrix}$$

olmalıdır. Gerçekten: $L(p(t)) = \frac{7}{2}(t+1) + \frac{13}{2}(t-1) = 10t-3$ bulunur.

Not 4.48 5. $L:V\longrightarrow W$ lineer dönüşüm ve $\mathrm{boy}(V)=\mathrm{boy}(W)$ olsun. Aşağıdakiler denktir.

- 1. L tersi alınabilirdir.
- 2. L 1-1 dir.
- 3. L örtendir.
- 4. L'nin, S ve T'ye göre temsil matrisi olan A singüler değildir.