Artificial Intelligence and Machine Learning (AIML)

- Last lecture: essential mathematical background
- **This lecture**: combinatorial optimization in AI, combinatorial explosion and computational complexity

Combinatorial optimization: overview

Good Old-Fashioned AI (GOFAI), or Symbolic AI

- Many **symbolic AI** (GOFAI) problems are **optimization** problems
- Minimize objective function over all possible configurations
- Exact vs. approximate methods
- Exact: guaranteed to find an optimal solution; approximate: not guaranteed to find an optimal solution, may come close ("good enough")
- Exact methods slow, approximate methods unreliable

Combinatorial optimization: overview

 Minimize objective function F with respect to configurations X from a set of possible configurations,

X* is the optimal set
$$X^\star = \mathop{\arg\min}_{X' \in \mathcal{X}} F\left(X'\right)$$
 Minimize objective function F $X' \in \mathcal{X}$ X' belongs to X

Globally optimal solution satisfies:

$$F\left(X'
ight) \geq F\left(X^{\star}
ight), \; \forall X' \in \mathcal{X} \;\; ext{For all X', they belong to X'}$$

• Locally optimal solution for neighbourhood of all configurations $F\left(X'\right) \geq F\left(X^{\star}\right), \ \forall X' \in \mathcal{N}$

Optimizing objective functions

Exhaustive solution

- Generate all possible configurations, compute objective function for each, select the best one
- Always applicable, always guaranteed to find an optimal solution
- Simple to formulate, often there are simple methods to systematically generate all possible configurations
- Often the starting point for more efficient, exact algorithms (see dynamic programming later)

Combinatorial explosion

- Size of the configuration <u>space</u>: typically <u>exponential</u> or worse complexity, <u>number of possible configurations</u> as a function of the **problem size** N
- Complexity orders: from constant time/space (tractable) to factorial (intractable)
- In general: polynomial and better are considered "practical", whereas exponential and worse are considered "impractical", when taking into account realistic computational resources
- Implication that exhaustive, although generally applicable, simple and exact, is rarely practical; justifies the need for Al: smart solutions to otherwise intractable problems

Complexity classes

constant	O(1)	
logarithmic	$O(\log N)$	
linear	O(N), $O(Nk)$	Tractable
log-linear	$O(N \log N)$	
polynomial	$O(N^k)$	
exponential	$O(k^N)$	Intractable
factorial	O(N!)	

Computational complexity

- Space versus time complexity
- Trading off time for space and vice-versa

References and further reading

- MLSP, Section 1.8, Section 2.6
- **CLRS**, Chapter 3
- · Machine Learning for Signal Processing
- · Introduction to Algorithms
- **R&N**, Section A.1 · Artificial Intelligence: A Modern Approach