



# Applied Cryptography CPEG 472/672 Lecture 10B

Instructor: Nektarios Tsoutsos

## Diffie-Hellman (D-H) Key Exchange

- 1976: New Directions in Cryptography
  - First notion of public key protocol to establish a shared key between 2 parties
    - Establishing a shared key enables parties to create a secure communication channel
    - E.g., use the shared secret as AEAD or RSA key
  - All communication visible to attackers Before D-H parties had to exchange envelopes
- Turing Award in 2015
- CryptoWars
  - https://stanfordmag.org/contents/keeping-secrets ,

## Computing a shared key with D-H

- We have two parties: Alice and Bob
- $\odot$  We need two random integers  $a,b \in \mathbb{Z}_p^*$ 
  - Each party selects their integer secretly
- $\odot$  Alice sends  $A = g^a \mod p$  to Bob
- $\odot$  Bob sends  $B = g^b \mod p$  to Alice
- $\odot$  Both compute  $A^b = (g^a)^b = (g^b)^a = B^a \mod p$
- $\odot$  The shared key is now KDF( $g^{ab} \mod p$ )
  - The Key Derivation Function acts like a hash

#### Key Agreement Protocols

- Build secure communication between two or more parties over a network
  - Allows establishing a secret key
  - Shared secret is converted into session keys
- Attack models (what an attacker can do)
  - Eavesdropper: Observe exchanged msgs, and record, modify, drop, inject msgs
  - Data leak: Acquire session keys and temp secrets, but not any long-term secrets
  - Breach: Learn long-term secrets, can impersonate one or both parties
    - Cannot recover session secrets before breach

#### Key Agreement Protocols

- Security Goals (security guarantees)
  - Authentication: Mutual authentication
  - Key control: No party has full control on the share secret; all parties should contribute
  - Forward secrecy: Even if long-term secrets are exposed, the shared secrets of prior communications cannot be recovered
  - Resist impersonation: The attacker cannot impersonate a party even if the long-term key is compromised (KCI)
- Other goals: Performance, efficiency
  - Number of round trips (send + revc msgs)
  - Precomputations can save time

#### Example: Key Exchange without D-H

Authenticated key agreement for 3G/4G communications



- Replay attacks? Ensure R is not reused
- ⊙ If K leaked: MitM, decrypt msgs (needs R)
- No key control, no forward secrecy, KCI

#### Anonymous D-H



- Simple attack: MitM
  - To prevent MitM we need to authenticate the parties (each one will prove their ID)

# MitM Attack on Anonymous D-H



#### **D-H Problems**

- Security lev. of D-H depends on size of p
   Like RSA: 2048-bit p gives 90 bits of security
- Security of D-H based on DLP hardness
  - $\odot$  We break DLP if we find a given  $b = g^a$  in  $\mathbb{Z}_p^*$
  - ⊙ We break D-H if we recover private value a
- Computational Diffie-Hellman (CDH)
  - $\odot$  Compute  $g^{ab}$  given only  $g^a$  and  $g^b$
  - DLP is at least as hard as CDH
    - ⊙ If we can solve DLP we can also solve CDH

#### D-H Problems (2)

- Decisional Diffie-Hellman (DDH)
  - Stronger than CDH hardness assumption
    - $\odot$  What if we get half bits of  $g^{ab}$  given only  $g^a$ ,  $g^b$ ?
    - This is bad, but does not qualify as solving CDH
  - $\odot$  The attacker should learn nothing about  $g^{ab}$ 
    - $\circ g^{ab}$  must be indistinguishable from random
  - © Given  $g^a$ ,  $g^b$  and d, an attacker can't decide if  $d = g^{ab}$  or  $d = g^c$  for a random integer c
  - CDH is at least as hard as DDH
    - ⊙ If you can solve CDH you can solve DDH

#### Math Background: D-H Function

- $\odot$  We work in group  $\mathbb{Z}_p^*$  where p is a prime
  - The group Z<sub>p</sub><sup>\*</sup> is cyclic of order φ(p) = p 1 The group has p 1 integers

```
y_i = x^2 \mod p for some x \in \mathbb{Z}_p^*
```

- The number of  $y_i$  integers is q = (p 1)/2 and form a subgroup of  $\mathbb{Z}_p^*$  with q elements
  - If that subgroup had a prime order, then each element would be a generator of the subgroup
  - $\odot$  Can q be a prime number?

# Math Background: D-H Function (2)

- $\odot$  So far: q = (p-1)/2, p is prime
  - $\odot$  If q is also prime, every  $y_i$  in the subgroup would be a generator of that subgroup
    - Why we want to have a prime-order subgroup?
    - Because the DLP is hard in these subgroups
      - The Pohlig-Hellman algorithm cannot break DLP
    - Finding a generator is easy (any element works)
- $\odot$  If both p,q are primes then p=2q+1
  - $\odot$  Such p is called a safe prime
  - More complex search vs finding RSA primes
    - ⊙ Takes 1000x longer to find them

#### Math Background: Subgroups example

#### $\odot$ Cyclic group $\mathbb{Z}_{23}^*$ where $23 = 2 \cdot 11 + 1$

g: #order(g): Generated integers  $m{g^0}$  ,  $m{g^1}$  , ... ,  $m{g^{order}}$ 

```
1: # 1:
 2: #11:
         1, 2, 4, 8, 16, 9, 18, 13, 3, 6, 12, 1
           3. 9, 4, 12, 13, 16, 2, 6, 18, 8, 1
 3: #11:
           4, 16, 18, 3, 12, 2, 8, 9, 13,
 4: #11:
 5: #22:
           5, 2, 10, 4, 20, 8, 17, 16, 11, 9, 22, 18, 21, 13, 19, 3, 15, 6, 7, 12, 14, 1
6: #11:
           6, 13, 9, 8, 2, 12, 3, 18, 16, 4, 1
7: #22:
                3, 21, 9, 17, 4, 5, 12, 15, 13, 22, 16, 20, 2, 14, 6, 19, 18, 11, 8, 10, 1
8: #11:
         1, 8, 18, 6, 2, 16, 13, 12, 4, 9, 3, 1
         1, 9, 12, 16, 6, 8, 3, 4, 13, 2, 18, 1
9: #11:
         1, 10, 8, 11, 18, 19, 6, 14, 2, 20, 16, 22, 13, 15, 12, 5, 4, 17, 9, 21, 3, 7, 1
10: #22:
11: #22:
         1, 11, 6, 20, 13, 5, 9, 7, 8, 19, 2, 22, 12, 17, 3, 10, 18, 14, 16, 15, 4, 21, 1
12: #11:
         1, 12, 6, 3, 13, 18, 9, 16, 8, 4, 2, 1
         1, 13, 8, 12, 18, 4, 6, 9, 2, 3, 16,
13: #11:
         1, 14, 12, 7, 6, 15, 3, 19, 13, 21, 18, 22, 9, 11, 16, 17, 8, 20, 4, 10, 2, 5, 1
14: #22:
15: #22:
         1, 15, 18, 17, 2, 7, 13, 11, 4, 14, 3, 22, 8, 5, 6, 21, 16, 10, 12, 19, 9, 20, 1
         1, 16, 3, 2, 9, 6, 4, 18, 12, 8, 13, 1
16: #11:
17: #22:
         1, 17, 13, 14, 8, 21, 12, 20, 18, 7, 4, 22, 6, 10, 9, 15, 2, 11, 3, 5, 16, 19, 1
         1, 18, 2, 13, 4, 3, 8, 6, 16, 12,
18: #11:
19: #22:
         1, 19, 16, 5, 3, 11, 2, 15, 9, 10, 6, 22, 4, 7, 18, 20, 12, 21, 8, 14, 13, 17,
20: #22:
         1, 20, 9, 19, 12, 10, 16, 21, 6, 5, 8, 22, 3, 14, 4, 11, 13, 7, 2, 17, 18, 15,
21: #22:
         1, 21, 4, 15, 16, 14, 18, 10, 3, 17, 12, 22, 2, 19, 8, 7, 9, 5, 13, 20, 6, 11,
22: # 2:
         1, 22, 1
```

## Math Background: D-H Function (3)

- $\odot$  Select one of the  $y_i$  values as g
  - $\odot$  With a safe prime p, each  $y_i$  is a generator
  - $\odot$  The order of each  $y_i$  element is q
  - $\odot g$  is public along with p
- $\odot$  If p is safe we can also choose g = 2
  - Why this is ok?
  - - $\odot$  The divisors of 2q are 1, 2, q, 2q
    - $\odot$  If  $x \neq 1$  and  $x \neq p-1$ , its order is either q or 2q

#### Hands-on exercises

- Anonymous D-H key exchange
- MitM attack on anonymous D-H

#### Reading for next lecture

- Aumasson: Chapter 11 until the end
  - We will have a short quiz on the material