Regressão Linear Simples

Semana Temática da Biologia (USP) - 2016

Problema

 Existe relação entre a altura dos pais e a altura dos filhos?

Problema

 Existe relação entre a altura dos pais e a altura dos filhos?

Como visualizar?

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

$$\rho = \frac{cov(x, y)}{s_x s_y}$$

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

$$\rho = \frac{cov(x, y)}{s_x s_y}$$

O que o coeficiente de correlação nos informa?

Altura do filho = Altura média dos pais

Altura do filho = Altura média dos pais

 Explica como duas variáveis se relacionam por meio de uma função matemática

 Explica como duas variáveis se relacionam por meio de uma função matemática

$$y = \alpha + \beta x$$

Observação = parte previsível + erro aleatório

$$y_i = \alpha + \beta x_i + \epsilon_i$$

Modelo estatístico:

Observação = parte previsível + erro aleatório

Modelo da regressão linear:

$$y_i = \alpha + \beta x_i + \epsilon_i$$

Observação = parte previsível + erro aleatório

$$y_i = \alpha + \beta x_i + \epsilon_i$$
Intercepto

Modelo estatístico:

Observação = parte previsível + erro aleatório

Modelo da regressão linear:

$$y_i = \alpha + \beta x_i + \epsilon_i$$
Intercepto

Observação = parte previsível + erro aleatório

$$y_i = \alpha + \beta x_i + \epsilon_i$$
 Inclinação da reta

Modelo estatístico:

Observação = parte previsível + erro aleatório

Modelo da regressão linear:

$$y_i = \alpha + \beta x_i + \epsilon_i$$
 Inclinação da reta

Observação = parte previsível + erro aleatório

$$y_i = \alpha + \beta x_i + \epsilon_i$$

Modelo estatístico:

Observação = parte previsível + erro aleatório

· Modelo da regressão linear:

$$y_i = \alpha + \beta x_i + \epsilon_i$$

$$y_i = \alpha + \beta x_i + \epsilon_i$$

Significado dos parâmetros:

$$y_i = \alpha + \beta x_i + \epsilon_i$$

- Intercepto:
- Inclinação:
- Erro:

$$y_i = \alpha + \beta x_i + \epsilon_i$$

Significado dos parâmetros:

$$y_i = \alpha + \beta x_i + \epsilon_i$$

- Intercepto: valor médio de Y quando X = 0
- Inclinação: inclinação da reta. Para cada incremento de I unidade em X temos um incremento de B em Y.
- Erro: erro aleatório

$$y_i = \alpha + \beta x_i + \epsilon_i$$

$$y_i = \alpha + \beta x_i + \epsilon_i$$

O que precisamos estimar?

$$y_i = \alpha + \beta x_i + \epsilon_i$$

$$\beta = \frac{cov(x,y)}{s_x^2} \quad \bar{y} = \alpha + \beta \bar{x}$$

$$\bar{y} = \alpha + \beta \bar{x}$$

Fonte de variação	g.l.	Soma dos Quadrados	F	P-valor	
Regressão	1	18.56	49.78	<0,001	
Resíduo	28	10.44			
$R^2 = 0.64$					

Fonte de variação	g.l.	Soma dos Quadrados	F	P-valor	
Regressão	1	18.56	49.78	<0,001	
Resíduo	28	10.44			
$R^2 = 0.64$					

Fonte de variação	g.l.	Soma dos Quadrados	F	P-valor	
Regressão	1	18.56	49.78	<0,001	
Resíduo	28	10.44			
$R^2 = 0.64$					

Fonte de variação	g.l.	Soma dos Quadrados	F	P-valor	
Regressão	1	18.56	49.78	<0,001	
Resíduo	28	10.44			
$R^2 = 0.64$					

Fonte de variação	g.l.	Soma dos Quadrados	F	P-valor	
Regressão	1	18.56	49.78	<0,001	
Resíduo	28	10.44			
$R^2 = 0.64$					

Fonte de variação	g.l.	Soma dos Quadrados	F	P-valor	
Regressão	1	18.56	49.78	<0,001	
Resíduo	28	10.44			
$R^2 = 0.64$					

Conclusão?

Fonte de variação	g.l.	Soma dos Quadrados	F	P-valor	
Regressão	1	18.56	49.78	<0,001	
Resíduo	28	10.44			
$R^2 = 0.64$					

- Conclusão?
- Na ANOVA, testa-se a hipótese nula de que a inclinação da reta é igual a zero

$$R^2 = \frac{SQReg}{SQTot}$$

O que essa medida nos informa?

$$R^2 = \frac{SQReg}{SQTot}$$

- O que essa medida nos informa?
- Quanto menor o coeficiente de explicação, menor é o grau de explicação do modelo (i.e., o modelo não é adequado)

- Independência
- Normalidade
- Homogeneidade
- X é fixo

Normalidade

Homogeneidade

Homogeneidade

