

Aufgaben zur Algebra 2

Besprechungstermin Di. 18. März 2025

Aufgabe 1

Zeigen Sie, dass die Körpererweiterung $\mathbb{Q}\subseteq\mathbb{Q}\left(\sqrt[4]{2},i\right)$ normal ist.

Aufgabe 2

Bestimmen Sie sämtliche Zwischenkörper der Erweiterung

$$\mathbb{O} \subset \mathbb{O}(\sqrt{2}, \sqrt{3}).$$

Aufgabe 3

Für i = 1, ..., n definieren wir Polynome $s_i \in \mathbb{Q}[y_1, ..., y_n]$ durch

$$x^{n} + s_{1}x^{n-1} + \dots + s_{n-1}x + s_{n} = (x + y_{1}) \cdots (x + y_{n}).$$

Eine rationale Funktion $f \in \mathbb{Q}(y_1,...,y_n)$ heißt **symmetrisch**, wenn für jede Permutation $\pi \in S_n$

$$f(y_{\pi(1)},...,y_{\pi(n)}) = f(y_1,...,y_n)$$

gilt. Zeigen Sie:

- (i) Die Polynome s_i sind symmetrisch.
- (ii) Die Erweiterung $\mathbb{Q}(s_1,...,s_n) \subseteq \mathbb{Q}(y_1,...,y_n)$ ist galoissch.
- (iii) Die Galois-Gruppe der Erweiterung aus (ii) ist isomorph zu $\mathcal{S}_n.$

Was kann man mithilfe des Hauptsatzes der Galoistheorie über symmetrische rationale Funktionen aussagen?

Aufgabe 4

Zeigen Sie: Für jede endliche Gruppe G gibt es eine Galoiserweiterung $K\subseteq L$ mit $\operatorname{Gal}(L,K)\cong G$. (Tipp: Verwenden Sie Aufgabe 3.)