第三章 导数的应用(3.1---3.6)

1.
$$d(x^2e^{x+1}) = (2x+x^2)e^{x+1} dx$$

2、函数
$$f(x) = (x^2 - 2)e^{x^2}$$
 的所有单调递增区间为[-1,0] \bigcup [1,+ ∞)

3、函数
$$f(x) = e^{\sin x}$$
 在 0 点处带佩亚诺型余项的 3 阶泰勒公式为 $1+x+\frac{1}{2}x^2+o(x^3)$

4、函数
$$f(x) = \frac{x}{2} - \sin x$$
 在区间 $\left[0, \frac{\pi}{2}\right]$ 上的最大值为 $\frac{0}{2}$,最小值为 $\frac{\pi}{6} - \frac{\sqrt{3}}{2}$

5、设点(1,3) 是曲线
$$y = ax^3 + bx^2$$
 的拐点,则参数 $a = -\frac{3}{2}, b = \frac{9}{2}$

6、函数
$$f(x) = \frac{1}{x}$$
 在 $x = -1$ 处的 3 阶带佩亚诺型余项的泰勒公式为

$$\frac{1}{x} = -1 - (x+1) - (x+1)^2 - (x+1)^3 + o[(x+1)^3]$$

7、函数
$$y = x + 2\cos x$$
 在区间 $\left[0, \frac{\pi}{2}\right]$ 上的最大值为 $\sqrt{3} + \frac{\pi}{6}$

8、函数
$$y = x^n e^{-x}$$
 $(n > 0, x \ge 0)$ 单调增加的区间是[0,n]

9,
$$\frac{d[(1-2x)^{100}]}{dx} = \frac{-200(1-2x)^{99}}{}$$

10、在函数
$$y = 3x^2e^x$$
 的麦克劳林公式中 x^n 项的系数是 $\frac{3}{(n-2)!}$

$$11$$
、已知 $f(x) = \ln(1+x)$,则在 $[0,1]$ 上满足拉格朗日中值定理的 $c = \frac{1}{\ln 2} - 1$

12、已知
$$f(x) = x^3 + 4x^2 - 7x - 10$$
,则在 $[-1,2]$ 上满足罗尔定理的 $c = \frac{-4 + \sqrt{37}}{3}$

13、设函数
$$y = f(x)$$
 在 $x = x_0$ 处可导,且 $\lim_{h \to 0} \frac{h}{f(x_0 - 2h) - f(x_0)} = \frac{1}{4}$,

则
$$f'(x_0) = ($$
 B $)$

$$(A) -4 (B) -2$$

14、函数 f((x) 在点 $x = x$	x_0 处连续是函数 f	f(x) 在该点	可导的(B)		
(A) 充分翁	条件 (B)必要条件	(C)充要	E条件	(D) ₹	己关条件	
15、下列结计	论正确的是((A)					
(A) x_0 是	: <i>f</i> (x) 的极值	I点,且 $f'(x_0)$ 存在	E,则必有 f'($(x_0) = 0$			
(B) x ₀ 是	: f(x) 的极值	I 点,则 x_0 必是 $f(x)$	c) 的驻点				
(C) 若 f'	$y'(x_0) = 0$,则 x	$_{0}$ 是 $f(x)$ 的极值。	点				
(D) 使.	f'(x)不存在	的点 x_0 ,一定是 f	(x) 的极值点	点			
16、设函数	f(x)在[0,1]	上可导, $f'(x)$	>0,并且 f	(0) < 0, f	f(1) > 0,	则 $f(x)$	在(0,1)内
(B (A) 至力) 少有两个零点		(p) 右目切	右一个雪	⇒占		
(C) 没有			(D)零点/				
17、下列函	数中在[0,3]。	上不满足拉格朗日	定理条件的	力是(С)	
(A) 2	$2x^2 + x + 1$	(B) co	s(1+x)	(C)	$\frac{x^2}{1-x^2}$	(D)	ln(1+x)
(A) 仅有 19、设二阶 ¹ 在 x ₀ 处 (A) 必	f(1,0) (B 可导函数 $f(x_0) \neq 0$, 定取得极大值	$\begin{pmatrix} \mathbf{C} \end{pmatrix}$ 拐点 \mathbf{G} (\mathbf{C}) 拐点 \mathbf{G} (\mathbf{C}) \mathbf{G} (\mathbf{G} (\mathbf{G}) \mathbf{G} (\mathbf{G}) \mathbf{G} (\mathbf{G} (\mathbf{G}) \mathbf{G} (\mathbf{G}) \mathbf{G} (\mathbf{G} (\mathbf{G}) \mathbf{G}	$f'(x) + f^2$ 生 x_0 处(A	(x)=0,) 得极小值			
20、设函数	$ \forall y = f(x) \exists $	日方程 $y^3 + xy^2 +$	$x^2y + 6 = 0$	确定,	求 $f(x)$ 自	内极值.	
解: 在方程	是两边同时对	$\forall x$ 求导一次,	得到				
		$(3y^2 + 2xy + x)$	$(x^2)y'+(y^2+$	+2xy) = ()		
即 $\frac{dy}{dx}$	$\frac{y}{x} = \frac{-y^2 - 2x}{3y^2 + 2xy}$	$\frac{2xy}{y+x^2}$					
ux		$y^2 + x^2y + 6 = 0$ 司时对 x 求导一		攸唯一驻	点 <i>x</i> = 1, :	y = -2.	
,		(+4y + 2xy' + 4x)		$2xy + x^2$)y"+2y=	=0	
把 <i>x</i> =	1, y = -2, y'	①=0代入,得	到 $y''(1) = \frac{2}{9}$	$\frac{4}{9} > 0$,	•		

所以函数 y = f(x) 在 x = 1 处取得极小值 y = -2.

21、试问: a 为何值时,函数 $f(x) = a\sin x + \frac{1}{4}\sin 4x$ 在 $x = \frac{\pi}{4}$ 处取到极值? 它是极小值还是极大值? 并求此极值.

解: $f'(x) = a\cos x + \cos 4x$

$$f'(\frac{\pi}{4}) = a\cos\frac{\pi}{4} + \cos(4\cdot\frac{\pi}{4}) = \frac{\sqrt{2}}{2}a + (-1) = 0 \qquad a = \sqrt{2}$$

$$f''(x) = -a\sin x - 4\sin 4x \qquad f''(\frac{\pi}{4}) = -\sqrt{2} \text{ s} \frac{\pi}{4} - 4\pi \sin \alpha < f(\frac{\pi}{4}) = 1$$
 是极大值.

22、在区间[0,8]上求曲线 $y = x^2$ 的切线,使该切线与 y = 0 及 x = 8 所围成的区域的面积为最大.

解: 设切点为 (t,t^2) ,切线的斜率为y=2t, 切线方程为 $y-t^2=2t(x-t)$, 为当y=0时, 推出 $x=\frac{t}{2}$, x=8时推出 $y=16t-t^2$,

所围区域面积为 $S = \frac{1}{2}(8 - \frac{t}{2})(16t - t^2) = 64t - 8t^2 + \frac{t^3}{4}$

$$S'(t) = 64 - 16t + \frac{3t^2}{4} = 0$$
 推出 $t = \frac{16}{3}$, $t = 16$ (舍去)

当 $t < \frac{16}{3}$ 时S'(t) > 0; 当 $t > \frac{16}{3}$ 时S'(t) < 0, 故当 $t = \frac{16}{3}$ 时区域面积最大,

对应切线方程为: $y = \frac{32}{3}x - \frac{256}{9}$.

23、讨论函数 $y = 2x^3 - 6x^2 - 18x - 7$ 单调区间与极值,上凸、下凸区间与拐点.

【解】:1)定义域: (-∞,+∞)

2)
$$y' = (2x^3 - 6x^2 - 18x - 7)' = 6x^2 - 12x - 18 = 6(x+1)(x-3)$$

 $y'' = (6x^2 - 12x - 18)' = 12x - 12 = 12(x-1)$

3)
$$f'(x)=0$$
, $f(x)=1$ $f(x)=3$.

х	$(-\infty,-1)$	-1	(-1,3)	3	(3,+∞)
<i>y</i> '	>0	0	< 0	0	>0
У	递增	极大值3	递减	极小值-61	递增

4)
$$f''(x) = 0$$
, 有 $x = 1$ 。

X	(-∞,1)	1	(1,+∞)
y"	< 0	0	>0
У	上凸	拐点(1,-29)	下凸

单增区间 $(-\infty,-1)$, $(3,+\infty)$ 单减区间 (-1,3) 极大值 f(-1)=3 极小值 f(3)=-61 上凸区间 $(-\infty,1)$ 下凸区间 $(1,+\infty)$ 拐点 (1,-29)

- 24、某建筑物的外形是圆柱体的上方接一半球体,其体积是 V,考虑材料和加工两方面的因素,半球顶表面每平方米的费用是圆柱体侧面每平方米的费用的2 倍.问圆柱体的底面半径 *R* 等于多少时,费用最省?
- 解:设侧面每平方米的费用为 k,

$$V = \frac{2}{3}\pi R^3 + \pi R^2 h \qquad h = \frac{V - \frac{2}{3}\pi R^3}{\pi R^2} = \frac{V}{\pi R^2} - \frac{2}{3}R$$
$$f = 2\pi R^2 \times 2k + 2\pi Rhk = 4k\pi R^2 + \frac{2kV}{R} - \frac{4}{3}k\pi R^2$$

$$f'(R) = 8k\pi R - \frac{2kV}{R^2} - \frac{8}{3}k\pi R = \frac{16}{3}k\pi R - \frac{2kV}{R^2} = \frac{\frac{16}{3}k\pi R^3 - 2kV}{R^2} = 0$$

$$\frac{16}{3}k\pi R^3 = 2kV$$
 $R = \frac{1}{2}\sqrt[3]{\frac{3V}{\pi}}$ $R > \frac{1}{2}\sqrt[3]{\frac{3V}{\pi}}$ 时导数大于 $0, R < \frac{1}{2}\sqrt[3]{\frac{3V}{\pi}}$ 时导数小于 0

故当
$$R = \frac{1}{2} \sqrt[3]{\frac{3V}{\pi}}$$
时费用最省.