

PUZZLERA

Some railway companies are planning to coat the windows of their commuter trains with a very thin layer of metal. (The coating is so thin you can see through it.) They are doing this in response to rider complaints about other passengers' talking loudly on cellular telephones. How can a metallic coating that is only a few hundred nanometers thick overcome this problem? (Arthur Tilley/FPG International)

Gauss's Law

24

Chapter Outline

- 24.1 Electric Flux
- 24.2 Gauss's Law
- 24.3 Application of Gauss's Law to Charged Insulators
- 24.4 Conductors in Electrostatic Equilibrium
- 24.5 (Optional) Experimental Verification of Gauss's Law and Coulomb's Law
- 24.6 (Optional) Formal Derivation of Gauss's Law

Figure 24.1 Field lines representing a uniform electric field penetrating a plane of area A perpendicular to the field. The electric flux Φ_E through this area is equal to EA.

n the preceding chapter we showed how to use Coulomb's law to calculate the electric field generated by a given charge distribution. In this chapter, we describe *Gauss's law* and an alternative procedure for calculating electric fields. The law is based on the fact that the fundamental electrostatic force between point charges exhibits an inverse-square behavior. Although a consequence of Coulomb's law, Gauss's law is more convenient for calculating the electric fields of highly symmetric charge distributions and makes possible useful qualitative reasoning when we are dealing with complicated problems.

24.1 ELECTRIC FLUX

The concept of electric field lines is described qualitatively in Chapter 23. We now use the concept of electric flux to treat electric field lines in a more quantitative way.

Consider an electric field that is uniform in both magnitude and direction, as shown in Figure 24.1. The field lines penetrate a rectangular surface of area A, which is perpendicular to the field. Recall from Section 23.6 that the number of lines per unit area (in other words, the *line density*) is proportional to the magnitude of the electric field. Therefore, the total number of lines penetrating the surface is proportional to the product EA. This product of the magnitude of the electric field E and surface area E perpendicular to the field is called the **electric flux** E (uppercase Greek phi):

$$\Phi_E = EA \tag{24.1}$$

From the SI units of E and A, we see that Φ_E has units of newton-meters squared per coulomb (N·m²/C). **Electric flux is proportional to the number of electric field lines penetrating some surface.**

EXAMPLE 24.1 Flux Through a Sphere

What is the electric flux through a sphere that has a radius of 1.00 m and carries a charge of + 1.00 μ C at its center?

Solution The magnitude of the electric field 1.00 m from this charge is given by Equation 23.4,

$$E = k_e \frac{q}{r^2} = (8.99 \times 10^9 \,\mathrm{N \cdot m^2/C^2}) \, \frac{1.00 \times 10^{-6} \,\mathrm{C}}{(1.00 \,\mathrm{m})^2}$$
$$= 8.99 \times 10^3 \,\mathrm{N/C}$$

The field points radially outward and is therefore everywhere

perpendicular to the surface of the sphere. The flux through the sphere (whose surface area $A = 4\pi r^2 = 12.6 \text{ m}^2$) is thus

$$\Phi_E = EA = (8.99 \times 10^3 \text{ N/C})(12.6 \text{ m}^2)$$

= $1.13 \times 10^5 \text{ N} \cdot \text{m}^2/\text{C}$

Exercise What would be the (a) electric field and (b) flux through the sphere if it had a radius of 0.500 m?

Answer (a) $3.60 \times 10^4 \text{ N/C}$; (b) $1.13 \times 10^5 \text{ N} \cdot \text{m}^2/\text{C}$.

If the surface under consideration is not perpendicular to the field, the flux through it must be less than that given by Equation 24.1. We can understand this by considering Figure 24.2, in which the normal to the surface of area A is at an angle θ to the uniform electric field. Note that the number of lines that cross this area A is equal to the number that cross the area A', which is a projection of area A aligned perpendicular to the field. From Figure 24.2 we see that the two areas are related by $A' = A \cos \theta$. Because the flux through A equals the flux through A', we

Figure 24.2 Field lines representing a uniform electric field penetrating an area A that is at an angle θ to the field. Because the number of lines that go through the area A' is the same as the number that go through A, the flux through A' is equal to the flux through A and is given by $\Phi_E = EA \cos \theta$.

OuickLab >

Shine a desk lamp onto a playing card and notice how the size of the shadow on your desk depends on the orientation of the card with respect to the beam of light. Could a formula like Equation 24.2 be used to describe how much light was being blocked by the card?

conclude that the flux through A is

$$\Phi_E = EA' = EA \cos \theta \tag{24.2}$$

From this result, we see that the flux through a surface of fixed area A has a maximum value EA when the surface is perpendicular to the field (in other words, when the normal to the surface is parallel to the field, that is, $\theta=0^{\circ}$ in Figure 24.2); the flux is zero when the surface is parallel to the field (in other words, when the normal to the surface is perpendicular to the field, that is, $\theta=90^{\circ}$).

We assumed a uniform electric field in the preceding discussion. In more general situations, the electric field may vary over a surface. Therefore, our definition of flux given by Equation 24.2 has meaning only over a small element of area. Consider a general surface divided up into a large number of small elements, each of area ΔA . The variation in the electric field over one element can be neglected if the element is sufficiently small. It is convenient to define a vector $\Delta \mathbf{A}_i$ whose magnitude represents the area of the *i*th element of the surface and whose direction is defined to be perpendicular to the surface element, as shown in Figure 24.3. The electric flux $\Delta \Phi_E$ through this element is

$$\Delta \Phi_E = E_i \, \Delta A_i \cos \theta = \mathbf{E}_i \cdot \Delta \mathbf{A}_i$$

where we have used the definition of the scalar product of two vectors $(\mathbf{A} \cdot \mathbf{B} = AB \cos \theta)$. By summing the contributions of all elements, we obtain the total flux through the surface.¹ If we let the area of each element approach zero, then the number of elements approaches infinity and the sum is replaced by an integral. Therefore, the general definition of electric flux is

$$\Phi_E = \lim_{\Delta A_i \to 0} \sum_{\mathbf{E}_i} \mathbf{E}_i \cdot \Delta \mathbf{A}_i = \int_{\text{surface}} \mathbf{E} \cdot d\mathbf{A}$$
 (24.3)

Equation 24.3 is a *surface integral*, which means it must be evaluated over the surface in question. In general, the value of Φ_E depends both on the field pattern and on the surface.

We are often interested in evaluating the flux through a *closed surface*, which is defined as one that divides space into an inside and an outside region, so that one cannot move from one region to the other without crossing the surface. The surface of a sphere, for example, is a closed surface.

Consider the closed surface in Figure 24.4. The vectors $\Delta \mathbf{A}_i$ point in different directions for the various surface elements, but at each point they are normal to

Figure 24.3 A small element of surface area ΔA_i . The electric field makes an angle θ with the vector $\Delta \mathbf{A}_i$, defined as being normal to the surface element, and the flux through the element is equal to $E_i \Delta A_i \cos \theta$.

Definition of electric flux

¹ It is important to note that drawings with field lines have their inaccuracies because a small area element (depending on its location) may happen to have too many or too few field lines penetrating it. We stress that the basic definition of electric flux is $\int \mathbf{E} \cdot d\mathbf{A}$. The use of lines is only an aid for visualizing the concept.

Figure 24.4 A closed surface in an electric field. The area vectors $\Delta \mathbf{A}_i$ are, by convention, normal to the surface and point outward. The flux through an area element can be positive (element ①), zero (element ②), or negative (element ③).

Karl Friedrich Gauss German mathematician and astronomer (1777–1855)

the surface and, by convention, always point outward. At the element labeled 1, the field lines are crossing the surface from the inside to the outside and $\theta < 90^\circ$; hence, the flux $\Delta \Phi_E = \mathbf{E} \cdot \Delta \mathbf{A}_i$ through this element is positive. For element 2, the field lines graze the surface (perpendicular to the vector $\Delta \mathbf{A}_i$); thus, $\theta = 90^\circ$ and the flux is zero. For elements such as 3, where the field lines are crossing the surface from outside to inside, $180^\circ > \theta > 90^\circ$ and the flux is negative because $\cos \theta$ is negative. The *net* flux through the surface is proportional to the net number of lines leaving the surface, where the net number means the number leaving the surface minus the number entering the surface. If more lines are leaving than entering, the net flux is positive. If more lines are entering than leaving, the net flux is negative. Using the symbol \oint to represent an integral over a closed surface, we can write the net flux Φ_E through a closed surface as

$$\Phi_E = \oint \mathbf{E} \cdot d\mathbf{A} = \oint E_n \, dA \tag{24.4}$$

where E_n represents the component of the electric field normal to the surface. Evaluating the net flux through a closed surface can be very cumbersome. However, if the field is normal to the surface at each point and constant in magnitude, the calculation is straightforward, as it was in Example 24.1. The next example also illustrates this point.

EXAMPLE 24.2 Flux Through a Cube

Consider a uniform electric field ${\bf E}$ oriented in the x direction. Find the net electric flux through the surface of a cube of edges ℓ , oriented as shown in Figure 24.5.

Solution The net flux is the sum of the fluxes through all faces of the cube. First, note that the flux through four of the

faces $(\mathfrak{J}, \mathfrak{A})$, and the unnumbered ones) is zero because \mathbf{E} is perpendicular to $d\mathbf{A}$ on these faces.

The net flux through faces ① and ② is

$$\Phi_E = \int_1 \mathbf{E} \cdot d\mathbf{A} + \int_2 \mathbf{E} \cdot d\mathbf{A}$$

Figure 24.5 A closed surface in the shape of a cube in a uniform electric field oriented parallel to the x axis. The net flux through the closed surface is zero. Side 4 is the bottom of the cube, and side 5 is opposite side 2.

For ①, **E** is constant and directed inward but $d\mathbf{A}_1$ is directed outward ($\theta = 180^{\circ}$); thus, the flux through this face is

$$\int_{1} \mathbf{E} \cdot d\mathbf{A} = \int_{1} E(\cos 180^{\circ}) dA = -E \int_{1} dA = -EA = -E\ell^{2}$$

because the area of each face is $A = \ell^2$.

For ②, **E** is constant and outward and in the same direction as $d\mathbf{A}_2(\theta = 0^\circ)$; hence, the flux through this face is

$$\int_{2} \mathbf{E} \cdot d\mathbf{A} = \int_{2} E(\cos 0^{\circ}) dA = E \int_{2} dA = +EA = E\ell^{2}$$

Therefore, the net flux over all six faces is

$$\Phi_E = -E\ell^2 + E\ell^2 + 0 + 0 + 0 + 0 = 0$$

24.2 GAUSS'S LAW

In this section we describe a general relationship between the net electric flux through a closed surface (often called a gaussian surface) and the charge enclosed by the surface. This relationship, known as Gauss's law, is of fundamental importance in the study of electric fields.

Let us again consider a positive point charge q located at the center of a sphere of radius r, as shown in Figure 24.6. From Equation 23.4 we know that the magnitude of the electric field everywhere on the surface of the sphere is $E = k_e q/r^2$. As noted in Example 24.1, the field lines are directed radially outward and hence perpendicular to the surface at every point on the surface. That is, at each surface point, \mathbf{E} is parallel to the vector $\Delta \mathbf{A}_i$ representing a local element of area ΔA_i surrounding the surface point. Therefore,

$$\mathbf{E} \cdot \Delta \mathbf{A}_i = E \Delta A_i$$

and from Equation 24.4 we find that the net flux through the gaussian surface is

$$\Phi_E = \oint \mathbf{E} \cdot d\mathbf{A} = \oint E \, dA = E \oint dA$$

where we have moved E outside of the integral because, by symmetry, E is constant over the surface and given by $E = k_e q/r^2$. Furthermore, because the surface is spherical, $\oint dA = A = 4\pi r^2$. Hence, the net flux through the gaussian surface is

$$\Phi_E = \frac{k_e q}{r^2} (4\pi r^2) = 4\pi k_e q$$

Recalling from Section 23.3 that $k_{\epsilon} = 1/(4\pi\epsilon_0)$, we can write this equation in the form

$$\Phi_E = \frac{q}{\epsilon_0} \tag{24.5}$$

We can verify that this expression for the net flux gives the same result as Example 24.1: $\Phi_E = (1.00 \times 10^{-6} \text{ C})/(8.85 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2) = 1.13 \times 10^5 \text{ N} \cdot \text{m}^2/\text{C}$.

Figure 24.6 A spherical gaussian surface of radius r surrounding a point charge q. When the charge is at the center of the sphere, the electric field is everywhere normal to the surface and constant in magnitude.

Figure 24.7 Closed surfaces of various shapes surrounding a charge q. The net electric flux is the same through all surfaces.

Figure 24.8 A point charge located outside a closed surface. The number of lines entering the surface equals the number leaving the surface.

The net electric flux through a closed surface is zero if there is no charge inside Note from Equation 24.5 that the net flux through the spherical surface is proportional to the charge inside. The flux is independent of the radius r because the area of the spherical surface is proportional to r^2 , whereas the electric field is proportional to $1/r^2$. Thus, in the product of area and electric field, the dependence on r cancels.

Now consider several closed surfaces surrounding a charge q, as shown in Figure 24.7. Surface S_1 is spherical, but surfaces S_2 and S_3 are not. From Equation 24.5, the flux that passes through S_1 has the value q/ϵ_0 . As we discussed in the previous section, flux is proportional to the number of electric field lines passing through a surface. The construction shown in Figure 24.7 shows that the number of lines through S_1 is equal to the number of lines through the nonspherical surfaces S_2 and S_3 . Therefore, we conclude that the net flux through any closed surface is independent of the shape of that surface. The net flux through any closed surface surrounding a point charge q is given by q/ϵ_0 .

Now consider a point charge located *outside* a closed surface of arbitrary shape, as shown in Figure 24.8. As you can see from this construction, any electric field line that enters the surface leaves the surface at another point. The number of electric field lines entering the surface equals the number leaving the surface. Therefore, we conclude that **the net electric flux through a closed surface that surrounds no charge is zero.** If we apply this result to Example 24.2, we can easily see that the net flux through the cube is zero because there is no charge inside the cube.

Quick Quiz 24.1

Suppose that the charge in Example 24.1 is just outside the sphere, 1.01 m from its center. What is the total flux through the sphere?

Let us extend these arguments to two generalized cases: (1) that of many point charges and (2) that of a continuous distribution of charge. We once again use the superposition principle, which states that **the electric field due to many charges is the vector sum of the electric fields produced by the individual charges.** Therefore, we can express the flux through any closed surface as

$$\oint \mathbf{E} \cdot d\mathbf{A} = \oint (\mathbf{E}_1 + \mathbf{E}_2 + \cdots) \cdot d\mathbf{A}$$

where \mathbf{E} is the total electric field at any point on the surface produced by the vector addition of the electric fields at that point due to the individual charges.

Consider the system of charges shown in Figure 24.9. The surface S surrounds only one charge, q_1 ; hence, the net flux through S is q_1/ϵ_0 . The flux through S due to charges q_2 and q_3 outside it is zero because each electric field line that enters S at one point leaves it at another. The surface S' surrounds charges q_2 and q_3 ; hence, the net flux through it is $(q_2+q_3)/\epsilon_0$. Finally, the net flux through surface S'' is zero because there is no charge inside this surface. That is, all the electric field lines that enter S'' at one point leave at another.

Gauss's law, which is a generalization of what we have just described, states that the net flux through *any* closed surface is

$$\Phi_E = \oint \mathbf{E} \cdot d\mathbf{A} = \frac{q_{\rm in}}{\epsilon_0}$$
 (24.6)

where $q_{\rm in}$ represents the net charge inside the surface and ${\bf E}$ represents the electric field at any point on the surface.

A formal proof of Gauss's law is presented in Section 24.6. When using Equation 24.6, you should note that although the charge $q_{\rm in}$ is the net charge inside the gaussian surface, ${\bf E}$ represents the *total electric field*, which includes contributions from charges both inside and outside the surface.

In principle, Gauss's law can be solved for **E** to determine the electric field due to a system of charges or a continuous distribution of charge. In practice, however, this type of solution is applicable only in a limited number of highly symmetric situations. As we shall see in the next section, Gauss's law can be used to evaluate the electric field for charge distributions that have spherical, cylindrical, or planar symmetry. If one chooses the gaussian surface surrounding the charge distribution carefully, the integral in Equation 24.6 can be simplified. You should also note that a gaussian surface is a mathematical construction and need not coincide with any real physical surface.

Quick Quiz 24.2

For a gaussian surface through which the net flux is zero, the following four statements could be true. Which of the statements must be true? (a) There are no charges inside the surface. (b) The net charge inside the surface is zero. (c) The electric field is zero everywhere on the surface. (d) The number of electric field lines entering the surface equals the number leaving the surface.

Gauss's law is useful for evaluating E when the charge distribution has high symmetry

Gauss's law

Figure 24.9 The net electric flux through any closed surface depends only on the charge *inside* that surface. The net flux through surface S is q_1/ϵ_0 , the net flux through surface S' is $(q_2+q_3)/\epsilon_0$, and the net flux through surface S'' is zero.

CONCEPTUAL EXAMPLE 24.3

A spherical gaussian surface surrounds a point charge q. Describe what happens to the total flux through the surface if (a) the charge is tripled, (b) the radius of the sphere is doubled, (c) the surface is changed to a cube, and (d) the charge is moved to another location inside the surface.

Solution (a) The flux through the surface is tripled because flux is proportional to the amount of charge inside the surface.

(b) The flux does not change because all electric field

lines from the charge pass through the sphere, regardless of its radius.

- (c) The flux does not change when the shape of the gaussian surface changes because all electric field lines from the charge pass through the surface, regardless of its shape.
- (d) The flux does not change when the charge is moved to another location inside that surface because Gauss's law refers to the total charge enclosed, regardless of where the charge is located inside the surface.

24.3 APPLICATION OF GAUSS'S LAW TO CHARGED INSULATORS

As mentioned earlier, Gauss's law is useful in determining electric fields when the charge distribution is characterized by a high degree of symmetry. The following examples demonstrate ways of choosing the gaussian surface over which the surface integral given by Equation 24.6 can be simplified and the electric field determined. In choosing the surface, we should always take advantage of the symmetry of the charge distribution so that we can remove E from the integral and solve for it. The goal in this type of calculation is to determine a surface that satisfies one or more of the following conditions:

- The value of the electric field can be argued by symmetry to be constant over the surface.
- 2. The dot product in Equation 24.6 can be expressed as a simple algebraic product *E dA* because **E** and *dA* are parallel.
- 3. The dot product in Equation 24.6 is zero because \mathbf{E} and $d\mathbf{A}$ are perpendicular.
- The field can be argued to be zero over the surface.

All four of these conditions are used in examples throughout the remainder of this chapter.

EXAMPLE 24.4 The Electric Field Due to a Point Charge

Starting with Gauss's law, calculate the electric field due to an isolated point charge q.

Solution A single charge represents the simplest possible charge distribution, and we use this familiar case to show how to solve for the electric field with Gauss's law. We choose a spherical gaussian surface of radius r centered on the point charge, as shown in Figure 24.10. The electric field due to a positive point charge is directed radially outward by symmetry and is therefore normal to the surface at every point. Thus, as in condition (2), \mathbf{E} is parallel to $d\mathbf{A}$ at each point. Therefore, $\mathbf{E} \cdot d\mathbf{A} = E \, dA$ and Gauss's law gives

$$\Phi_E = \oint \mathbf{E} \cdot d\mathbf{A} = \oint E \, dA = \frac{q}{\epsilon_0}$$

By symmetry, E is constant everywhere on the surface, which satisfies condition (1), so it can be removed from the integral. Therefore,

$$\oint E \, dA = E \oint dA = E(4\pi r^2) = \frac{q}{\epsilon_0}$$

where we have used the fact that the surface area of a sphere is $4\pi r^2$. Now, we solve for the electric field:

$$E = \frac{q}{4\pi\epsilon_0 r^2} = -k_\epsilon \frac{q}{r^2}$$

This is the familiar electric field due to a point charge that we developed from Coulomb's law in Chapter 23.

Figure 24.10 The point charge q is at the center of the spherical gaussian surface, and \mathbf{E} is parallel to $d\mathbf{A}$ at every point on the surface.

EXAMPLE 24.5 A Spherically Symmetric Charge Distribution

An insulating solid sphere of radius a has a uniform volume charge density ρ and carries a total positive charge Q (Fig. 24.11). (a) Calculate the magnitude of the electric field at a point outside the sphere.

Solution Because the charge distribution is spherically symmetric, we again select a spherical gaussian surface of radius *r*, concentric with the sphere, as shown in Figure 24.11a. For this choice, conditions (1) and (2) are satisfied, as they

were for the point charge in Example 24.4. Following the line of reasoning given in Example 24.4, we find that

$$E = k_e \frac{Q}{r^2} \qquad \text{(for } r > a\text{)}$$

Note that this result is identical to the one we obtained for a point charge. Therefore, we conclude that, for a uniformly charged sphere, the field in the region external to the sphere is *equivalent* to that of a point charge located at the center of the sphere.

(b) Find the magnitude of the electric field at a point inside the sphere.

Solution In this case we select a spherical gaussian surface having radius r < a, concentric with the insulated sphere (Fig. 24.11b). Let us denote the volume of this smaller sphere by V'. To apply Gauss's law in this situation, it is important to recognize that the charge $q_{\rm in}$ within the gaussian surface of volume V' is less than Q. To calculate $q_{\rm in}$, we use the fact that $q_{\rm in} = \rho V'$:

$$q_{\rm in}=\rho V'=\rho(\tfrac{4}{3}\pi r^3)$$

By symmetry, the magnitude of the electric field is constant everywhere on the spherical gaussian surface and is normal

Figure 24.11 A uniformly charged insulating sphere of radius a and total charge Q. (a) The magnitude of the electric field at a point exterior to the sphere is k_rQ/r^2 . (b) The magnitude of the electric field inside the insulating sphere is due only to the charge *within* the gaussian sphere defined by the dashed circle and is k_rQr/a^3 .

to the surface at each point—both conditions (1) and (2) are satisfied. Therefore, Gauss's law in the region r < a gives

$$\oint E\,dA = E \oint dA = E(4\pi r^2) = \frac{q_{\rm in}}{\epsilon_0}$$

Solving for E gives

$$E = \frac{q_{\rm in}}{4\pi\epsilon_0 r^2} = \frac{\rho_3^4\pi r^3}{4\pi\epsilon_0 r^2} = \frac{\rho}{3\epsilon_0} \; r$$

Because $\rho = Q/\frac{4}{3}\pi a^3$ by definition and since $k_{\epsilon} = 1/(4\pi\epsilon_0)$, this expression for E can be written as

$$E = \frac{Qr}{4\pi\epsilon_0 a^3} = -\frac{k_e Q}{a^3} r \qquad \text{(for } r < a\text{)}$$

Note that this result for E differs from the one we obtained in part (a). It shows that $E \rightarrow 0$ as $r \rightarrow 0$. Therefore, the result eliminates the problem that would exist at r = 0 if E varied as $1/r^2$ inside the sphere as it does outside the sphere. That is, if $E \propto 1/r^2$ for r < a, the field would be infinite at r = 0, which is physically impossible. Note also that the expressions for parts (a) and (b) match when r = a.

A plot of Eversus r is shown in Figure 24.12.

Figure 24.12 A plot of Eversus r for a uniformly charged insulating sphere. The electric field inside the sphere (r < a) varies linearly with r. The field outside the sphere (r > a) is the same as that of a point charge Q located at r = 0.

EXAMPLE 24.6 The Electric Field Due to a Thin Spherical Shell

A thin spherical shell of radius a has a total charge Q distributed uniformly over its surface (Fig. 24.13a). Find the electric field at points (a) outside and (b) inside the shell.

Solution (a) The calculation for the field outside the shell is identical to that for the solid sphere shown in Example 24.5a. If we construct a spherical gaussian surface of radius r > a concentric with the shell (Fig. 24.13b), the charge inside this surface is Q. Therefore, the field at a point outside

the shell is equivalent to that due to a point charge Q located at the center:

$$E = k_e \frac{Q}{r^2} \qquad \text{(for } r > a\text{)}$$

(b) The electric field inside the spherical shell is zero. This follows from Gauss's law applied to a spherical surface of radius r < a concentric with the shell (Fig. 24.13c). Because

of the spherical symmetry of the charge distribution and because the net charge inside the surface is zero—satisfaction of conditions (1) and (2) again—application of Gauss's law shows that E=0 in the region r < a. We obtain the same results using Equation 23.6 and integrating over the charge distribution. This calculation is rather complicated. Gauss's law allows us to determine these results in a much simpler way.

Figure 24.13 (a) The electric field inside a uniformly charged spherical shell is zero. The field outside is the same as that due to a point charge Q located at the center of the shell. (b) Gaussian surface for r > a. (c) Gaussian surface for r < a.

EXAMPLE 24.7 A Cylindrically Symmetric Charge Distribution

0

Find the electric field a distance r from a line of positive charge of infinite length and constant charge per unit length λ (Fig. 24.14a).

Solution The symmetry of the charge distribution requires that \mathbf{E} be perpendicular to the line charge and directed outward, as shown in Figure 24.14a and b. To reflect the symmetry of the charge distribution, we select a cylindrical gaussian surface of radius r and length ℓ that is coaxial with the line charge. For the curved part of this surface, \mathbf{E} is constant in magnitude and perpendicular to the surface at each point—satisfaction of conditions (1) and (2). Furthermore, the flux through the ends of the gaussian cylinder is zero because \mathbf{E} is parallel to these surfaces—the first application we have seen of condition (3).

We take the surface integral in Gauss's law over the entire gaussian surface. Because of the zero value of $\mathbf{E} \cdot d\mathbf{A}$ for the ends of the cylinder, however, we can restrict our attention to only the curved surface of the cylinder.

The total charge inside our gaussian surface is $\lambda \ell$. Applying Gauss's law and conditions (1) and (2), we find that for the curved surface

$$\Phi_E = \oint \mathbf{E} \cdot d\mathbf{A} = E \oint dA = EA = \frac{q_{\text{in}}}{\epsilon_0} = \frac{\lambda \ell}{\epsilon_0}$$

Figure 24.14 (a) An infinite line of charge surrounded by a cylindrical gaussian surface concentric with the line. (b) An end view shows that the electric field at the cylindrical surface is constant in magnitude and perpendicular to the surface.

The area of the curved surface is $A = 2\pi r \ell$; therefore,

$$E(2\pi r\ell) = \frac{\lambda \ell}{\epsilon_0}$$

$$E = \frac{\lambda}{2\pi \epsilon_0 r} = 2k_{\epsilon} \frac{\lambda}{r}$$
(24.7)

Thus, we see that the electric field due to a cylindrically symmetric charge distribution varies as 1/r, whereas the field external to a spherically symmetric charge distribution varies as $1/r^2$. Equation 24.7 was also derived in Chapter 23 (see Problem 35[b]), by integration of the field of a point charge.

If the line charge in this example were of finite length, the result for E would not be that given by Equation 24.7. A finite line charge does not possess sufficient symmetry for us to make use of Gauss's law. This is because the magnitude of the electric field is no longer constant over the surface of the gaussian cylinder—the field near the ends of the line would be different from that far from the ends. Thus, condition (1) would not be satisfied in this situation. Furthermore, **E** is not perpendicular to the cylindrical surface at all points—the field vectors near the ends would have a component parallel to the line. Thus, condition (2) would not be satisfied. When there is insufficient symmetry in the charge distribution, as in this situation, it is necessary to use Equation 23.6 to calculate **E**.

For points close to a finite line charge and far from the ends, Equation 24.7 gives a good approximation of the value of the field.

It is left for you to show (see Problem 29) that the electric field inside a uniformly charged rod of finite radius and infinite length is proportional to r.

EXAMPLE 24.8 A Nonconducting Plane of Charge

Find the electric field due to a nonconducting, infinite plane of positive charge with uniform surface charge density σ .

Solution By symmetry, E must be perpendicular to the plane and must have the same magnitude at all points equidistant from the plane. The fact that the direction of E is away from positive charges indicates that the direction of E on one side of the plane must be opposite its direction on the other side, as shown in Figure 24.15. A gaussian surface that reflects the symmetry is a small cylinder whose axis is perpendicular to the plane and whose ends each have an area A and are equidistant from the plane. Because E is parallel to the curved surface—and, therefore, perpendicular to $d\mathbf{A}$ everywhere on the surface-condition (3) is satisfied and there is no contribution to the surface integral from this surface. For the flat ends of the cylinder, conditions (1) and (2) are satisfied. The flux through each end of the cylinder is EA; hence, the total flux through the entire gaussian surface is just that through the ends, $\Phi_E = 2EA$.

Noting that the total charge inside the surface is $q_{in} = \sigma A$, we use Gauss's law and find that

$$\Phi_E = 2EA = \frac{q_{\rm in}}{\epsilon_0} = \frac{\sigma A}{\epsilon_0}$$

$$E = \frac{\sigma}{2\epsilon_0}$$
 (24.8)

Because the distance from each flat end of the cylinder to the plane does not appear in Equation 24.8, we conclude that $E = \sigma/2\epsilon_0$ at any distance from the plane. That is, the field is uniform everywhere.

An important charge configuration related to this example consists of two parallel planes, one positively charged and the other negatively charged, and each with a surface charge density σ (see Problem 58). In this situation, the electric fields due to the two planes add in the region between the planes, resulting in a field of magnitude σ/ϵ_0 , and cancel elsewhere to give a field of zero.

Figure 24.15 A cylindrical gaussian surface penetrating an infinite plane of charge. The flux is *EA* through each end of the gaussian surface and zero through its curved surface.

CONCEPTUAL EXAMPLE 24.9

Explain why Gauss's law cannot be used to calculate the electric field near an electric dipole, a charged disk, or a triangle with a point charge at each corner. **Solution** The charge distributions of all these configurations do not have sufficient symmetry to make the use of Gauss's law practical. We cannot find a closed surface surrounding any of these distributions that satisfies one or more of conditions (1) through (4) listed at the beginning of this section.

24.4 CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

As we learned in Section 23.2, a good electrical conductor contains charges (electrons) that are not bound to any atom and therefore are free to move about within the material. When there is no net motion of charge within a conductor, the conductor is in electrostatic equilibrium. As we shall see, a conductor in electrostatic equilibrium has the following properties:

- 1. The electric field is zero everywhere inside the conductor.
- 2. If an isolated conductor carries a charge, the charge resides on its surface.
- 3. The electric field just outside a charged conductor is perpendicular to the surface of the conductor and has a magnitude σ/ϵ_0 , where σ is the surface charge density at that point.
- 4. On an irregularly shaped conductor, the surface charge density is greatest at locations where the radius of curvature of the surface is smallest.

We verify the first three properties in the discussion that follows. The fourth property is presented here without further discussion so that we have a complete list of properties for conductors in electrostatic equilibrium.

We can understand the first property by considering a conducting slab placed in an external field E (Fig. 24.16). We can argue that the electric field inside the conductor must be zero under the assumption that we have electrostatic equilibrium. If the field were not zero, free charges in the conductor would accelerate under the action of the field. This motion of electrons, however, would mean that the conductor is not in electrostatic equilibrium. Thus, the existence of electrostatic equilibrium is consistent only with a zero field in the conductor.

Let us investigate how this zero field is accomplished. Before the external field is applied, free electrons are uniformly distributed throughout the conductor. When the external field is applied, the free electrons accelerate to the left in Figure 24.16, causing a plane of negative charge to be present on the left surface. The movement of electrons to the left results in a plane of positive charge on the right surface. These planes of charge create an additional electric field inside the conductor that opposes the external field. As the electrons move, the surface charge density increases until the magnitude of the internal field equals that of the external field, and the net result is a net field of zero inside the conductor. The time it takes a good conductor to reach equilibrium is of the order of 10-16 s, which for most purposes can be considered instantaneous.

We can use Gauss's law to verify the second property of a conductor in electrostatic equilibrium. Figure 24.17 shows an arbitrarily shaped conductor. A gaussian surface is drawn inside the conductor and can be as close to the conductor's surface as we wish. As we have just shown, the electric field everywhere inside the conductor is zero when it is in electrostatic equilibrium. Therefore, the electric field must be zero at every point on the gaussian surface, in accordance with condition (4) in Section 24.3. Thus, the net flux through this gaussian surface is zero. From this result and Gauss's law, we conclude that the net charge inside the gaussian sur-

Properties of a conductor in electrostatic equilibrium

Figure 24.16 A conducting slab in an external electric field E. The charges induced on the two surfaces of the slab produce an electric field that opposes the external field, giving a resultant field of zero inside the slab.

Figure 24.17 A conductor of arbitrary shape. The broken line represents a gaussian surface just inside the conductor.

Electric field pattern surrounding a charged conducting plate placed near an oppositely charged conducting cylinder. Small pieces of thread suspended in oil align with the electric field lines. Note that (1) the field lines are perpendicular to both conductors and (2) there are no lines inside the cylinder (E = 0).

face is zero. Because there can be no net charge inside the gaussian surface (which is arbitrarily close to the conductor's surface), **any net charge on the conductor must reside on its surface.** Gauss's law does not indicate how this excess charge is distributed on the conductor's surface.

We can also use Gauss's law to verify the third property. We draw a gaussian surface in the shape of a small cylinder whose end faces are parallel to the surface of the conductor (Fig. 24.18). Part of the cylinder is just outside the conductor, and part is inside. The field is normal to the conductor's surface from the condition of electrostatic equilibrium. (If \mathbf{E} had a component parallel to the conductor's surface, the free charges would move along the surface; in such a case, the conductor would not be in equilibrium.) Thus, we satisfy condition (3) in Section 24.3 for the curved part of the cylindrical gaussian surface—there is no flux through this part of the gaussian surface because \mathbf{E} is parallel to the surface. There is no flux through the flat face of the cylinder inside the conductor because here $\mathbf{E} = 0$ —satisfaction of condition (4). Hence, the net flux through the gaussian surface is that through only the flat face outside the conductor, where the field is perpendicular to the gaussian surface. Using conditions (1) and (2) for this face, the flux is EA, where E is the electric field just outside the conductor and A is the area of the cylinder's face. Applying Gauss's law to this surface, we obtain

$$\Phi_E = \oint E \, dA = EA = \frac{q_{\rm in}}{\epsilon_0} = \frac{\sigma A}{\epsilon_0}$$

where we have used the fact that $q_{in} = \sigma A$. Solving for E gives

$$E = \frac{\sigma}{\epsilon_0}$$
 (24.9)

Figure 24.18 A gaussian surface in the shape of a small cylinder is used to calculate the electric field just outside a charged conductor. The flux through the gaussian surface is E_nA . Remember that **E** is zero inside the conductor.

Electric field just outside a charged conductor

EXAMPLE 24.10 A Sphere Inside a Spherical Shell

A solid conducting sphere of radius a carries a net positive charge 2Q. A conducting spherical shell of inner radius b and outer radius c is concentric with the solid sphere and carries a net charge -Q. Using Gauss's law, find the electric field in the regions labeled \mathbb{O} , \mathbb{O} , \mathbb{O} , and \mathbb{O} in Figure 24.19 and the charge distribution on the shell when the entire system is in electrostatic equilibrium.

Solution First note that the charge distributions on both the sphere and the shell are characterized by spherical symmetry around their common center. To determine the electric field at various distances r from this center, we construct a spherical gaussian surface for each of the four regions of interest. Such a surface for region ② is shown in Figure 24.19.

To find E inside the solid sphere (region ①), consider a

Figure 24.19 A solid conducting sphere of radius a and carrying a charge 2Q surrounded by a conducting spherical shell carrying a charge -Q.

gaussian surface of radius r < a. Because there can be no charge inside a conductor in electrostatic equilibrium, we see that $q_{\rm in} = 0$; thus, on the basis of Gauss's law and symmetry, $E_1 = 0$ for r < a.

In region 2—between the surface of the solid sphere and the inner surface of the shell—we construct a spherical gaussian surface of radius r where a < r < b and note that the charge inside this surface is +2Q (the charge on the solid sphere). Because of the spherical symmetry, the electric field lines must be directed radially outward and be constant in magnitude on the gaussian surface. Following Example 24.4 and using Gauss's law, we find that

$$\begin{split} E_2 A &= E_2 (4\pi r^2) = \frac{q_{\rm in}}{\epsilon_0} = \frac{2Q}{\epsilon_0} \\ E_2 &= \frac{2Q}{4\pi \epsilon_0 r^2} = \frac{2k_e Q}{r^2} \end{split} \qquad \text{(for } a < r < b\text{)}$$

In region ①, where r > c, the spherical gaussian surface we construct surrounds a total charge of $q_{\rm in} = 2Q + (-Q) = Q$. Therefore, application of Gauss's law to this surface gives

$$E_4 = \begin{array}{c} \frac{k_e Q}{r^2} & \text{(for } r > c) \end{array}$$

In region ③, the electric field must be zero because the spherical shell is also a conductor in equilibrium. If we construct a gaussian surface of radius r where b < r < c, we see that $q_{\rm in}$ must be zero because $E_3 = 0$. From this argument, we conclude that the charge on the inner surface of the spherical shell must be -2Q to cancel the charge +2Q on the solid sphere. Because the net charge on the shell is -Q, we conclude that its outer surface must carry a charge +Q.

Quick Quiz 24.3

How would the electric flux through a gaussian surface surrounding the shell in Example 24.10 change if the solid sphere were off-center but still inside the shell?

Optional Section

24.5 EXPERIMENTAL VERIFICATION OF GAUSS'S LAW AND COULOMB'S LAW

When a net charge is placed on a conductor, the charge distributes itself on the surface in such a way that the electric field inside the conductor is zero. Gauss's law shows that there can be no net charge inside the conductor in this situation. In this section, we investigate an experimental verification of the absence of this charge.

We have seen that Gauss's law is equivalent to Equation 23.6, the expression for the electric field of a distribution of charge. Because this equation arises from Coulomb's law, we can claim theoretically that Gauss's law and Coulomb's law are equivalent. Hence, it is possible to test the validity of both laws by attempting to detect a net charge inside a conductor or, equivalently, a nonzero electric field inside the conductor. If a nonzero field is detected within the conductor, Gauss's law and Coulomb's law are invalid. Many experiments, including

early work by Faraday, Cavendish, and Maxwell, have been performed to detect the field inside a conductor. In all reported cases, no electric field could be detected inside a conductor.

Here is one of the experiments that can be performed.² A positively charged metal ball at the end of a silk thread is lowered through a small opening into an uncharged hollow conductor that is insulated from ground (Fig. 24.20a). The positively charged ball induces a negative charge on the inner wall of the hollow conductor, leaving an equal positive charge on the outer wall (Fig. 24.20b). The presence of positive charge on the outer wall is indicated by the deflection of the needle of an electrometer (a device used to measure charge and that measures charge only on the outer surface of the conductor). The ball is then lowered and allowed to touch the inner surface of the hollow conductor (Fig. 24.20c). Charge is transferred between the ball and the inner surface so that neither is charged after contact is made. The needle deflection remains unchanged while this happens, indicating that the charge on the outer surface is unaffected. When the ball is removed, the electrometer reading remains the same (Fig. 24.20d). Furthermore, the ball is found to be uncharged; this verifies that charge was transferred between the ball and the inner surface of the hollow conductor. The overall effect is that the charge that was originally on the ball now appears on the hollow conductor. The fact that the deflection of the needle on the electrometer measuring the charge on the outer surface remained unchanged regardless of what was happening inside the hollow conductor indicates that the net charge on the system always resided on the outer surface of the conductor.

If we now apply another positive charge to the metal ball and place it near the outside of the conductor, it is repelled by the conductor. This demonstrates that $\mathbf{E} \neq 0$ outside the conductor, a finding consistent with the fact that the conductor carries a net charge. If the charged metal ball is now lowered into the interior of the charged hollow conductor, it exhibits no evidence of an electric force. This shows that $\mathbf{E} = 0$ inside the hollow conductor.

This experiment verifies the predictions of Gauss's law and therefore verifies Coulomb's law. The equivalence of Gauss's law and Coulomb's law is due to the inverse square behavior of the electric force. Thus, we can interpret this experiment as verifying the exponent of 2 in the $1/r^2$ behavior of the electric force. Experiments by Williams, Faller, and Hill in 1971 showed that the exponent of r in Coulomb's law is $(2+\delta)$, where $\delta=(2.7\pm3.1)\times10^{-16}$!

In the experiment we have described, the charged ball hanging in the hollow conductor would show no deflection even in the case in which an external electric field is applied to the entire system. The field inside the conductor is still zero. This ability of conductors to "block" external electric fields is utilized in many places, from electromagnetic shielding for computer components to thin metal coatings on the glass in airport control towers to keep radar originating outside the tower from disrupting the electronics inside. Cellular telephone users riding trains like the one pictured at the beginning of the chapter have to speak loudly to be heard above the noise of the train. In response to complaints from other passengers, the train companies are considering coating the windows with a thin metallic conductor. This coating, combined with the metal frame of the train car, blocks cellular telephone transmissions into and out of the train.

Figure 24.20 An experiment showing that any charge transferred to a conductor resides on its surface in electrostatic equilibrium. The hollow conductor is insulated from ground, and the small metal ball is supported by an insulating thread.

QuickLab >

aluminum foil and see if it still works. Does it matter if the foil touches the antenna?

² The experiment is often referred to as Faraday's ice-pail experiment because Faraday, the first to perform it, used an ice pail for the hollow conductor.

Optional Section

24.6 FORMAL DERIVATION OF GAUSS'S LAW

One way of deriving Gauss's law involves *solid angles*. Consider a spherical surface of radius r containing an area element ΔA . The solid angle $\Delta \Omega$ (uppercase Greek omega) subtended at the center of the sphere by this element is defined to be

$$\Delta\Omega = \frac{\Delta A}{r^2}$$

From this equation, we see that $\Delta\Omega$ has no dimensions because ΔA and r^2 both have dimensions L^2 . The dimensionless unit of a solid angle is the **steradian.** (You may want to compare this equation to Equation 10.1b, the definition of the radian.) Because the surface area of a sphere is $4\pi r^2$, the total solid angle subtended by the sphere is

$$\Omega = \frac{4\pi r^2}{r^2} = 4\pi \text{ steradians}$$

Now consider a point charge q surrounded by a closed surface of arbitrary shape (Fig. 24.21). The total electric flux through this surface can be obtained by evaluating $\mathbf{E} \cdot \Delta \mathbf{A}$ for each small area element ΔA and summing over all elements. The flux through each element is

$$\Delta \Phi_E = \mathbf{E} \cdot \Delta \mathbf{A} = E \Delta A \cos \theta = k_e q \frac{\Delta A \cos \theta}{r^2}$$

where r is the distance from the charge to the area element, θ is the angle between the electric field ${\bf E}$ and $\Delta {\bf A}$ for the element, and $E=k_eq/r^2$ for a point charge. In Figure 24.22, we see that the projection of the area element perpendicular to the radius vector is $\Delta A \cos \theta$. Thus, the quantity $\Delta A \cos \theta/r^2$ is equal to the solid angle $\Delta \Omega$ that the surface element ΔA subtends at the charge q. We also see that $\Delta \Omega$ is equal to the solid angle subtended by the area element of a spherical surface of radius r. Because the total solid angle at a point is 4π steradians, the total flux

Figure 24.21 A closed surface of arbitrary shape surrounds a point charge *q*. The net electric flux through the surface is independent of the shape of the surface.

Figure 24.22 The area element ΔA subtends a solid angle $\Delta\Omega = (\Delta A \cos \theta)/r^2$ at the charge q.

Summary 759

through the closed surface is

$$\Phi_E = k_e q \oint \frac{dA \cos \theta}{r^2} = k_e q \oint d\Omega = 4\pi k_e q = \frac{q}{\epsilon_0}$$

Thus we have derived Gauss's law, Equation 24.6. Note that this result is independent of the shape of the closed surface and independent of the position of the charge within the surface.

SUMMARY

Electric flux is proportional to the number of electric field lines that penetrate a surface. If the electric field is uniform and makes an angle θ with the normal to a surface of area A, the electric flux through the surface is

$$\Phi_E = EA\cos\theta \tag{24.2}$$

In general, the electric flux through a surface is

$$\Phi_E = \int_{\text{surface}} \mathbf{E} \cdot d\mathbf{A} \tag{24.3}$$

You need to be able to apply Equations 24.2 and 24.3 in a variety of situations, particularly those in which symmetry simplifies the calculation.

Gauss's law says that the net electric flux Φ_E through any closed gaussian surface is equal to the *net* charge inside the surface divided by ϵ_0 :

$$\Phi_E = \oint \mathbf{E} \cdot d\mathbf{A} = \frac{q_{\rm in}}{\epsilon_0}$$
 (24.6)

Using Gauss's law, you can calculate the electric field due to various symmetric charge distributions. Table 24.1 lists some typical results.

TABLE 24.1 Typical Electric Field Calculations Using Gauss's Law		
Charge Distribution	Electric Field	Location
Insulating sphere of radius R, uniform charge density, and total charge Q	$\begin{cases} k_e \frac{Q}{r^2} \\ k_e \frac{Q}{R^3} r \end{cases}$	r > R
	$k_e \frac{Q}{R^3} r$	$r \le R$
Thin spherical shell of radius R and total charge Q	$\begin{cases} k_{\epsilon} \frac{Q}{r^2} \end{cases}$	r > R
	l o	$r \le R$
Line charge of infinite length and charge per unit length λ	$2k_e \frac{\lambda}{r}$	Outside the line
Nonconducting, infinite charged plane having surface charge density σ	$\frac{\sigma}{2\epsilon_0}$	Everywhere outside the plane
Conductor having surface charge density σ	$\begin{cases} \frac{\sigma}{\epsilon_0} \\ 0 \end{cases}$	Just outside the conductor Inside the conductor

CHAPTER 24 Gauss's Law

760

A conductor in **electrostatic equilibrium** has the following properties:

- 1. The electric field is zero everywhere inside the conductor.
- 2. Any net charge on the conductor resides entirely on its surface.
- 3. The electric field just outside the conductor is perpendicular to its surface and has a magnitude σ/ϵ_0 , where σ is the surface charge density at that point.
- On an irregularly shaped conductor, the surface charge density is greatest where the radius of curvature of the surface is the smallest.