PHM 오일 진단 기능 사양

※ 색상 의미

• 빨간 글자 : 주요 사항

• 음영 글자 : 논의 및 컨펌 필요 사항

• 음영 글자 : 240102 협의 후 변경사항

1. 데이터 관리

A. 데이터 취득

- OPS3 (Oil Property Sensor 3) 센서의 CAN 메시지 4종 출력 주기는 30s이며, 각 센서의 Source Address는 3F(작동유), AE(엔진유)로 확정
 - o CAN ID 정보
 - 1CFD083Fx / 1CFD08AEx
 - SP1.1 2bytes Viscosity
 - SP3.1 2bytes Density
 - SP7.1 2bytes Dielectric Constant
 - 1CFA673Fx / 1CFA67AEx
 - SP1.1 4bytes Resistivity
 - 18FEEE3Fx / 18FEEEAEx
 - SP3.1 2bytes Temperature
 - 18FF313Fx / 18FF31AEx
 - SP1.1 3bytes Status Message Code
- 필터링된 데이터 3시간 치(360개)를 **버퍼A(작동유), 버퍼B(엔진유)**에 저장
 - 필터링(아래 4개 조건 and로 만족하는 데이터)

■ Engine RPM : 1500 이상

■ Oil Temperature : 40도 이상

■ Oil Viscosity: 50 이하

■ Status Code Message: 0xFC000

- 이 데이터 저장 구조 및 용량
 - Count: 2 bytes
 - Viscosity, Density, Dielectric Constant, Temperature : 각 2 bytes x 4 = 8 bytes
 - Resistivity: 4 bytes
 - Status code message : 3 bytes
 - Operating Hour: 2 bytes
 - Total: 19 bytes

- 3시간치: 19 x 2 x 60 x 3 = 약 7 kbytes
- 3시간치 총 Raw 데이터 : 작동유 약 7 kbytes + 엔진유 약 7 kbytes = 약 14 kbytes
- 버퍼A,B 저장 방법
 - 버퍼에 0부터 359까지 순서대로 저장하고, 꽉차면 0부터 overlap하여 저장
 - o Key-off 시,
 - 버퍼에 들어있는 데이터 전체를 EEPROM에 저장
 - 가장 최근에 입력된 데이터의 Count 값을 따로 EERPOM에 저장했다가, 다음 시동 시 버 퍼로 불러와서 Count+1에 해당하는 위치에서부터 저장
 - ex) A[200], B[201]까지 데이터가 쌓인 상태에서 Key-off 시,
 - A[0] ~ A[359], B[0] ~ B[359] 데이터 전체 EEPROM에 저장
 - 이후 시동 시 A[201], B[202]부터 쌓을 수 있도록 최종 Count 값(a_Count = 200, b_Count = 201)를 각각 저장

B. 데이터 저장

• (수정) Key-off 신호 관련 메시지 정보

- o SMK CAN 신호 활용
 - Smart Key unit이 1초마다 주기적으로 송신하는 Smart Key Info 메시지(18FFB334x) 내 SP1.1 2bits "Key Status Change"로 Key-off 판단

PGN		Acr	onym		FFB3	1000ms			
65459		SMKI							
R/S	Byte	te Bit Len			Description	States	Туре	SLOT	Note
	- 1	1 1 2 Key 5		Key	Status Change		Status	87	
					Key Off	0			
					ACC	1			
			Key On		Key On	2			
		Crank			Crank or Engine Running	3			

- 통합모델 굴착기/휠로더 에 "물리키 옵션"이 존재하므로, 해당 신호 활용하지 않음
- o TGU redis DB 내 신호 활용
 - VSS 형식에 맞추어 Redis DB에 저장되는 TGU 자체 센서 중, Key-on 신호 활용
 - ACC (DIN): TGU.VEHICLE-STATUS.ACC-STATUS
 - KEY_ON (DIN): TGU.VEHICLE-STATUS.KEYON-STATUS
 - IGN(ALT) (DIN): TGU.VEHICLE-STATUS.ALT-STATUS
 - 위 센서는 Redis DB에 주기적으로 기록되므로, 해당 기록을 정해진 주기마다 Get 하거나 해당 기록 변경(event) 발생을 subscribe하여 Key-off 판단
 - TMS 3.0의 경우 Key-off 발생 후 약 1분 30초 뒤 전원이 꺼지며, TGU는 현재 기준으로 바로 꺼지게끔 설정되어있음(추후에는 1분 30초 이상 유지 예정)
- EEPROM 저장 항목
 - o Address A (1-A절 관련)
 - 장비 Key-off 시, 버퍼 A,B에 들어있는 3시간치 데이터 저장
 - 장비 Key-on 시, 저장된 데이터를 버퍼 A,B로 복사

- 19 bytes x 360 EA x 2종 오일 = 약 13.7 kbytes 공간 필요
- o Address B (1-A절 관련)
 - 장비 Key-off 시, 버퍼A,B에 들어있는 가장 최신 Count 값(0~359 사이) 저장
 - 장비 Key-on 시, 저장된 데이터를 활용하여 버퍼A,B의 저장 시작점 설정
 - 2 bytes x 2종 오일 = 4 bytes 공간 필요

○ (수정) Address C (3-C절 관련)

■ Offset 설정을 위하여, 버퍼A 또는 버퍼B에 쌓인 필터링 데이터 3시간치 3번 연산 무시 후 5번 연산의 각 결과값을 별도로 저장하고 5개 연산값의 평균인 Offset 값 저장

연산 횟수	1회차	2회차	3회차	4회차	5회차	6회차	7회차	8회차
버퍼에 쌓인 데이터 개수	360EA	360EA	360EA	360EA	360EA	360EA	360EA	360EA
		무시		연산 결고	· 각각 따로	. 저장 후 힙	산하여 평	균값 계산

- Key-off / Key-on과 관련없음(버퍼 거치지 않고 바로 EEPROM에 저장)
- Offset 값 연산 방법 및 저장 공간 (아래 두 저장 방법 중 어떤 것 사용할지 확정 필요)
 - Regression graph의 x,y 값 전체 저장하여 그때그때 비교
 - Kr 소수점 첫째자리까지 표현
 - temp 40 ~ 80 (0.1도 단위) 에 해당되는 Regression graph의 y축 값 저장 필요 = 401개
 - temp, Kr 두 파라미터가 각각 401개 = 총 802개 데이터 필요 = 802 x 2 bytes = 약 1.6 kbytes
 - D.C 소수점 둘째자리까지 표현
 - temp 40 ~ 80 (0.1도 단위) 에 해당되는 Regression graph의 y축 값 저장 필요 = 401개
 - temp, D.C 두 파라미터가 각각 401개 = 총 802개 데이터 필요 = 802 x 2 bytes = 약 1.6 kbytes
 - Offset 필요 데이터 수 총 합 : (Kr 1.6 kbytes + D.C 1.6 kbytes) x 2종 오일 = 약 6.4 kbytes
 - 수식 상수값 저장하여 그때그때 연산 후 비교
 - regression 수행 시 아래와 같이 수식 도출
 - $Kr = aT^2 + bT + c$
 - D.C = dT + e
 - Kr에서 도출 된 a,b,c값, D.C에서 도출된 d,e값을 저장
 - 만약 1,000 + 소수점 여섯째자리까지 필요하다면, 각 파라미터 당 최소 4 bytes 필요
 - 만약 1,000 + 소수점 넷째자리만 있어도 괜찮다면, 각 파라미터 당 최소 3 bytes 필요
 - 소수점 여섯째짜리를 가정하여, 파라미터 5개 x 4 bytes = 20 bytes
 - Offset 필요 데이터 수 총 합 : 20 bytes x 2종 오일 = 40 bytes
 - x절편, y절편 둘 다 움직이는 것으로 확정
- (수정) Address D (3-C절 관련)

- 센서 간 오차로 인해 발생할 수 있는 오류 방지를 목적으로, 센서 교체 트리거 발동 시 Offset 값을 재설정하기 위하여 트리거 시점에 보유하고있던 버퍼A 또는 버퍼B 내 3시간 치 데이터의 연산값 저장
- 센서 교체 트리거 발동에 따라 필터링 데이터 3시간(360EA)치 3번 연산 무시 후 5번 연산 의 평균 값이 Address C에 저장된 값과 동일하도록 Offset 값 보정하여 저장
- Key-off / Key-on과 관련없음(버퍼 거치지 않고 바로 EEPROM에 저장)
- Offset 값 연산 방법 및 저장 공간 (아래 두 저장 방법 중 어떤 것 사용할지 확정 필요)
 - Regression graph의 x,y 값 전체 저장하여 그때그때 비교
 - Kr 소수점 첫째자리까지 표현
 - temp 40 ~ 80 (0.1도 단위) 에 해당되는 Regression graph의 y축 값 저장 필요 = 401개
 - temp, Kr 두 파라미터가 각각 401개 = 총 802개 데이터 필요 = 802 x 2 bytes = 약 1.6 kbytes
 - D.C 소수점 둘째자리까지 표현
 - temp 40 ~ 80 (0.1도 단위) 에 해당되는 Regression graph의 y축 값 저장 필요 = 401개
 - temp, D.C 두 파라미터가 각각 401개 = 총 802개 데이터 필요 = 802 x 2 bytes = 약 1.6 kbytes
 - Offset 필요 데이터 수 총 합 : (Kr 1.6 kbytes + D.C 1.6 kbytes) x 2종 오일 = 약 6.4 kbytes
 - 수식 상수값 저장하여 그때그때 연산 후 비교
 - regression 수행 시 아래와 같이 수식 도출
 - $Kr = aT^2 + bT + c$
 - D.C = dT + e
 - Kr에서 도출 된 a,b,c값, D.C에서 도출된 d,e값을 저장
 - 만약 1,000 + 소수점 여섯째자리까지 필요하다면, 각 파라미터 당 최소 4 bytes 필요
 - 만약 1,000 + 소수점 넷째자리만 있어도 괜찮다면, 각 파라미터 당 최소 3 bytes 필요
 - 소수점 여섯째짜리를 가정하여, 파라미터 5개 x 4 bytes = 20 bytes
 - Offset 필요 데이터 수 총 합: 20 bytes x 2종 오일 = 40 bytes
 - x절편, y절편 둘 다 움직이는 것으로 확정
- 최종 Offset 값 도출
 - 센서 교체 트리거 발동시 저장해둔 기존 연산값과, 새 Offset 값 기반으로 도출된 첫 연산값이 동일하게 출력될 수 있도록 새 Offset 값을 보정
- o (추가) Address E (3-D절 관련)
 - 장비 Key-off 시, 버퍼C 또는 버퍼D에 데이터가 들어있을 경우 해당 데이터 저장
 - 장비 Key-on 시, 저장된 데이터를 버퍼C 또는 버퍼D로 복사
 - 3 bytes x 120 EA x 2종 오일 = 약 720 bytes 공간 필요
- Address A ~ E 도합 약 xx kbytes 공간 필요

2. 주기능

A. 이상감지

- 로직
 - 작동유/엔진유의 연산값(동점도 또는 유전상수)이 정해놓은 Threshold 값을 연속으로 120개 (60분) 초과하는 경우, 이상 상태 정보를 GP/서버로 전달
 - ㅇ 이상감지 발생 시
 - 버퍼에 쌓여있는 데이터 전체를 서버로 전달(count로 오름차순 \rightarrow operating hour로 오름차순 적용하여 시간 순서대로 정렬)
 - 버퍼 데이터 전체를 서버로 전달 후, 추세선 모니터링 그래프에 3시간치의 연산값 대신 이상이 감지된 데이터(Threshold를 벗어난 연속 데이터 120개)의 연산값을 업로드하여 표시(2-B절 참조)
 - 이상이 감지된 데이터 연산값 업로드 후 버퍼는 초기화되며, 초기화 이후 입력되는 첫 데이터는 count를 0으로 저장(버퍼 개수는 각각 360개 고정)
 - 알람 송신
 - 장비
 - GP에 19FF904Ax 메시지 송신
 - 작동유 이상감지 시, SP1.1 3bits 를 단계에 맞게 전송 (현 시점에서 경고 2단계는 무시)
 - 엔진유 이상감지 시, SP1.4 3bits 를 단계에 맞게 전송 (현 시점에서 경고 2단계는 무시)

PGN		Acro	nym		1FF90	200ms			
130960		PHN	1WG						
R/S	Byte	Bit	Len		Description	States	Type	SLOT	Note
	-1	1	3	Warn	ing Pop-up; PHM - Hydraulic Oil Quality		Status	88	
					Off	0			
					경고 1단계	1			
					경고 2단계	2			
					Reserved	3~7			
	-1	4	3	Warn	ing Pop-up; PHM - Engine Oil Quality			88	
					Off	0			
					경고 1단계	1			
					경고 2단계	2			
					Reserved	3~7			
				Reser	ved				

- GP는 경고등/팝업을 띄우며, 팝업은 한번 닫으면 당일에는 더이상 뜨지 않음(프로토콜, 팝업 메시지 등 협의 완료)
- 서버
 - Timestamp와 함께 경고 알람 및 레벨 표시(추후 사양 보완 필요)
- o Threshold는 이상감지 로직에만 적용

■ 작동유 : 동점도 ±20% / 유전상수 ±2%

■ 엔진유: 동점도 ±20% / 유전상수 ±3%

B. 추세선 모니터링

- 로직
 - o Operating hour 단위가 아닌, 필터링 거친 데이터의 count가 360이 되는 순간 **버퍼 내 데이터** 전체를 대상으로 regression 연산 후 60도 기준에 해당하는 동점도, 유전상수 값을 도출하여 서버로 전달
 - 연산 후 count는 0으로 초기화하고, 버퍼에 0번째부터 데이터를 overlap하여 적재 restart
 - ㅇ 이상감지 발생 시
 - 버퍼 내 이상이 감지된 데이터 120개만 연산해서 추세선 모니터링에 표시
 - 연산 방법
 - 작동유 : (추후 보완)
 - 엔진유 : (추후 보완)
 - 이상이 감지된 데이터 120개를 대상으로 regression 연산 후 60도 기준이 되는 값을 연산
 - (추가) 버퍼에 3시간치 데이터가 가득 차는 시점과 이상이 감지된 데이터 120개가 차는 시점이 동시에 발생하면 이상 감지 데이터 연산값만 추세선 모니터링에 표시하고, 3시간 치의 연산값은 추세선 모니터링에 표시하지 않음

(ex. Count가 0부터 시작되었다고 가정하면, Count 0부터 240까지는 정상 / Count 241 부터 360까지 이상 데이터 입력된 경우)

o Threshold는 추세선 모니터링 로직에는 미적용되며, 그래프에 표시용으로만 활용

3. 보조기능

A. 오일 교환 트리거

- 로직
 - o GP 상 유지보수 탭의 작동유/엔진유 교환 버튼 클릭
 - ㅇ 오일 교환 트리거 발생 시 통신 프로토콜
 - GP → TGU: 18EF4A28x SPN 516282(작동유), 516281(엔진유) 로 센서 교체 명령 송신

PGN		Acro	nym		EF4A					
61258		GPSN	ITMS							
R/S	Byte	Bit	Len		Description	States	Type	SLOT	SPN	Note
	1	1	19	Susp	oect Parameter Number		Status	214	1214	
	3	4	5	Rese	erved					
	4	1	48	Data	Field		Status		516261	
			1	Rese	et CMD; Engine Oil		Status	86	516281	
					No	0				
					Yes	1				
			1	Rese	et CMD; Hyd. Oil		Status	86	516282	
					No	0				
					Yes	1				

■ TGU → Broadcast: 18E8FF4Ax SPN 516282(작동유), 516281(엔진유) 로 Ack 송신

B. 센서 교체 트리거

- 로직
 - ㅇ 관리자 메뉴 내에 '오일 진단(가제)' 탭 만들어서 관련 메뉴 클릭
 - 센서 교체 (Offset 재설정 트리거용)
- 오일 진단 전용 탭 아닌 다른 곳에 메뉴 구현 항목
 - 센서 데이터 모니터링 (센서 교체 후 데이터 정상 취득 확인용) 모니터링 탭에 구현
 - ㅇ 점도 등급 선택 유저 메뉴 구현
- 센서 교체 트리거 발생 시 통신 프로토콜
 - o GP → TGU: 18EF4A28x SPN 517481(작동유), 517482(엔진유) 로 센서 교체 명령 송신

PGN		Acro	nym		EF4A					
61258	(GPSN	ITMS	;						
R/S	Byte	Bit	Len		Description	States	Type	SLOT	SPN	Note
	1	1	19	Susp	ect Parameter Number		Status	214	1214	
	3	4	5	Rese	erved					
	4	1	48	Data	Field		Status		516261	
			2	작동	유 퀼리티 센서 교체 Command			86	517481	
					No	0				
					Yes	1				
			2	엔진	오일 퀼리티 센서 교체 Command			86	517482	
					No	0				
					Yes	1				

o TGU → Broadcast: 18E8FF4Ax SPN 517481(작동유), 517482(엔진유) 로 Ack 송신

C. Offset 설정

- (수정) 장비 출하 또는 오일 교환 트리거 발생 시 Offset 설정
 - o 동점도와 유전상수 모두 데이터 안정화를 위해 처음 3번의 연산을 무시한 이후 5번의 연산 수행 시, 연산값의 총합을 개수로 나누어 최종 평균값 계산
 - 작동유 : (추후 보완)
 - 엔진유 : (추후 보완)
 - 센서 교체 후 처음 3번의 연산을 무시한 이후 5번의 연산 값을 각각 저장 후 그에 대한 평균값을 계산하여 Offset 값 도출 및 저장

• (수정) 센서 교체 트리거 발생 시 Offset 설정

- 센서 교체 트리거 발동 시, 직전까지 버퍼(작동유 센서 교체 시 버퍼A, 엔진유 센서 교체 시 버퍼B)에 보유하고있던 필터링 된 데이터 360개를 연산하여 저장
- 센서 교체 후 처음 3번의 연산을 무시한 이후 5번의 연산 값을 각각 저장 후 그에 대한 평균값을 계산하고, 먼저 저장되어있던 기존 데이터 360개 기반의 연산값과 동일하게 출력되도록
 Offset 값 도출 및 저장
- Offset 공백기(처음 3번의 연산을 무시한 이후 5번의 연산 수행에 걸리는 시간) 대응
 - ㅇ 점도 등급에 대한 레퍼런스 수식 기반으로 진단
 - 점도 등급
 - 작동유: VG32, VG46, VG68 (바이오 오일 검토 예정)

■ 엔진유: 10W-40

■ 작동유 점도 등급 변경 발생 시 통신 프로토콜

■ GP → TGU: 18EF4A28x SPN 517479 로 작동유 점도 등급 변경 명령 송신

PGN		Acro	nym		EF4A						
61258			ATM S								
R/S	Byte	Bit	Len		Description	States	Туре	Unit	SLOT	SPN	Note
	1	1	19	Susp	ect Parameter Number		Status		214	1214	
	3	4	5	Rese	rved						
	4	1	48	Data	Field		Status			516261	
			4	작동	유 점도 등급 선택				89	517479	
					VG 32	0					
					VG 46	1					
					VG 68	2					
					Reserved	3~15					

- TGU → Broadcast: 18E8FF4Ax SPN 517479 로 Ack 송신
- 점도 등급별 레퍼런스 수식
 - 작동유 : (추후 보완)
 - 엔진유 : (추후 보완)
- ㅇ 다른 점도 등급 오일로 교환 수행한 경우
 - 교환 후 시동건 시점으로부터 30분 내에 '오일교환 버튼'과 '점도등급 변경 설정' 필요
- 오일 교환 트리거와 센서 교체 트리거 중, 하나의 트리거가 먼저 발생하여 그에 따른 로직 동작 중에 나머지 하나의 트리거가 발생할 경우, **오일 교환 로직만 동작**
 - ㅇ 오일 교환 트리거 로직 동작 중 센서 교체 트리거 발생 시
 - 센서교체 신호 무시하고 오일교환 로직 계속 진행
 - ㅇ 센서 교체 트리거 로직 동작 중 오일 교환 트리거 발생 시
 - 센서교체 로직 수행되다가 오일교환 로직으로 전환

D. DM 코드 생성

- 판단 기준
 - (수정) 센서 자체 고장 판단 센서 자가 진단 데이터인 Status Code Message가 0xFC000이 아 닌 다른 값이 들어오는 경우
 - Status Code Message 값 누적 시작
 - 작동유 센서에서 발생했을 경우 버퍼A가 아닌 버퍼C에 저장
 - 엔진유 센서에서 발생했을 경우 버퍼B가 아닌 버퍼D에 저장
 - 0xFC000이 아닌 Status Code Message 값이 1시간(120개)동안 유지된 시점에, 버퍼C 또는 버퍼D에 쌓인 Status Code Message 값을 서버로 전달 후 해당 버퍼 초기화
 - 0xFC0000이 아닌 다른 값이 들어오던 도중 정상 값인 0xFC0000가 입력되면, 해당 버퍼 초기화
 - 센서 통신 불가 5분(10개)간 센서 데이터 출력이 감지되지 않을 경우
 - 센서 고장으로 판단하여 DM코드 생성
- DM1 메시지 송신
 - o 작동유: SPN 518754 FMI 11, 12

o 엔진유: SPN 518755 - FMI 11, 12

Index (From EPOS to GP)	Index (Hex)	FMI	//	Korean	심각도	SPN(Dec)	SPN(Hex)
1851	73B	11	P518754-11	작동유 품질 센서 고장	1	518754	7EA62
1851	73B	12	P518754-12	작동유 품질 센서 통신 불가	1	518754	7EA62
1852	73C	11	P518755-11	엔진 오일 품질 센서 고장	1	518755	7EA63
1852	73C	12	P518755-12	엔진 오일 품질 센서 통신 불가	1	518755	7EA63

ID: 18FFCA4Ax

ID - TOI LCA	4/1/			
	SPN(dec)	SPN(hex)	FMI	
작동유	518754	7 EA 62	11	
Ποπ	310734	7 LA 02	12	
엔진유	518755	7 EA 63	11	
전인규	310/33	/ EA 03	12	

	결과							
	1	2	3	4	5	6	7	8
	FF	FF	62	EA	EB	FF		
•	FF	FF	62	EA	EC	FF		
•	FF	FF	63	EA	EB	FF		
-	FF	FF	63	EA	EC	FF		

○ FMI 11 관련, 센서가 보내는 메시지 18종 각각에 대한 DM 코드 생성 필요

Diagnostic frame output:

- PGN number: 0xFF31
 Priority: 6
 Source address (by default): 0x3F
 Update period (s): 30
 Frame:

Ву	rte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
	Diag	Diag		0xFF	0xFFFF		0xFFFF	
		LSB	MSB					

Data format:

Status message code	Bit pos. (Diag)	Description	Potential root cause and issue
Tuning fork – Impedance below normal or shorted to ground	1	Impedance below normal or shorted to ground	Over stress conditions Internal short circuit due to bad integration
Tuning fork – Impedance above normal or sensor damaged	2	Impedance above normal or shorted to high source	Broken tuning fork: -Operator misused -Fluid velocity or viscosity too high Open circuit Welding degradation (high Temp. of the fluid)
Tuning fork – ASIC over temperature conditions	3	Internal Temp. above 125°C	Bad integration (heat source close to sensor) Machine overtemperature issue
Fit – Algorithm failed to converge	4	Sensor not able to calculate parameters of the fluid	First measure after powered Out of parameters ranges: -Air bubbles -Water bubbles -Particles -Temp. ramp up too high -Conductive fluid Broken tuning fork Welding degradation
RTD – Resistance below normal or shorted to ground	5	RTD shorted to ground or damaged	Over stress conditions Internal short circuit due to bad integration
RTD – Resistance above normal or sensor damaged	6	RTD shorted to high source or damaged	Broken RTD: - Operator misused - Short circuit Open circuit Welding degradation, (high Temp)
RTD – Sensor temperature over temperature conditions	7	Measured Temp. by the RTD above 150°C	Temp. above 150°C (bad integration)
Internal – System error	8	Internal short circuit Electronic Board degradation	Electronics damaged
ADC I2C communication error	9	Internal short circuit Electronic boards degradation (ADC)	Electronics damaged
ASIC I2C communication error	10	Internal short circuit Electronic boards degradation (ASIC)	Electronics damaged
Instable sensor supply voltage	11	Input voltage applied on the OPS3 is unstable	- 12/24V input voltage dips or spikes - OPS3 Power regulation stage is damaged by excessive environment (ESD, EMC, temperature, vibration)
Oil temperature slope too high	12	Oil Temperature is changing too fast during one measurement cycle for the sensor to be accurate	Bad integration (heat source close to sensor) Very fast temperature increase a t key-on (cold start)
Tolerance criteria not reached	13	Fit convergence (tolerance) criteria not reached	Incorrect system grounding, voltage applied on body Fluid velocity too high Fluid viscosity too high
Noisy signal, GOF too low	14	Fit algorithm converged on a low R ²	- Air bubbles - Water bubbles - Particles - Tuning Fork not fully immersed in oil - Partially Broken tuning fork - Soldering degradation
Measurement out of sensor range	15	Dynamic viscosity, density, dielectric or Rp output is out of physical range	Sensor in any non-oil fluid (air, coolant, etc.) Important EMC perturbation
Instable temperature	16	Oil temperature is changing too fast during one measurement cycle, not possible from a physical standpoint	_ Important FMC perturbation
Instable TF measurement	17	Dynamic viscosity, density, dielectric, Rp output is changing too fast between two measurements compared to what is possible from a physical standpoint in a system	Important EMC perturbation Electronics problem (ADC, RTD, Ref resistor, power regulation stage)
RTD Voltage reference out of range	18	Reference voltage for temperature measurement is below or above normal	
Not used – Always set to 1	19 to 24	Not Applicable	

Diagnostic bit is set to '1' when error is detected. Nominal functioning diagnostic frame:

Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7
0x00	0xFC00		0xFF	0xF	FFF	0xF	FFF

LSB	MSB			ı

E. (검증용) CAN 주기메시지 송신

• 작동유 Threshold 값

PGN	N Acronym		nym	1FF9F	3000ms						
130975		TH	10	Threshold of Hydraulic Oil							
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	SLOT
	1	1	16	Upper Threshold Dieletric Constant of Hydraulic Oil		Measured	0.000 122 070 312 5	0	0	7.84362793	307
	3	1	16	Lower Threshold Dieletric Constant of Hydraulic Oil		Measured	0.000 122 070 312 5	0	0	7.84362793	307
	5	1	16	Upper Threshold Kinematic Viscosity of Hydraulic Oil		Measured					
	7	5	16	Lower Threshold Kinematic Viscosity of Hydraulic Oil		Measured					

• 엔진유 Threshold 값

PGN	Acronym		nym	1FFA0	3000ms						
130976		TE	0	Threshold of Engine Oil							
R/S	Byte	Bit	Len	Description	States	Type	Res.	Offset	Min	Max	SLOT
	1	1	16	Upper Threshold Dieletric Constant of Engine Oil		Measured	0.000 122 070 312 5	0	0	7.84362793	307
	3	1	16	Lower Threshold Dieletric Constant of Engine Oil		Measured	0.000 122 070 312 5	0	0	7.84362793	307
	5	1	16	Upper Threshold Kinematic Viscosity of Engine Oil		Measured					
	7	5	16	Lower Threshold Kinematic Viscosity of Engine Oil		Measured					

• 동점도 변환값

PGN		Acro	nym	1FFA1	3000ms						
130977	30977 KVO Kinematic Viscosity of Oil										
R/S	Byte	Bit	Len	Description	States	Туре	Res.	Offset	Min	Max	SLOT
	1	1	16	Kinematic Viscosity of Hydraulic Oil		Measured					
	3	1	16	Kinematic Viscosity of Engine Oil		Measured					
	5	1	32	Reserved							

4. 서비스 요구사양 (추후 보완)

A. 데이터 취득

• Kinematic Viscosity와 Dielectric Constant 대상 연산값 서버에 업로드

B. 이상감지 기능

- 오일이 이상 상태일 경우
 - ㅇ 장비
 - TGU에서 CAN Msg 생성하여 진단 정보 공유

PGN	Acronym			1FF90	200ms				
130960	0 PHMWG								
R/S	Byte	Bit	Len		Description	States	Type	SLOT	Note
	1	1	3	Warr	ning Pop-up; PHM - Hydraulic Oil Quality		Status	88	
					Off	0			
					경고 1단계	1			
					경고 2단계	2			
					Reserved	3~7			
	1	4	3	Warr	ning Pop-up; PHM - Engine Oil Quality			88	
					Off	0			
					경고 1단계	1			
					경고 2단계	2			
					Reserved	3~7			
				Rese	rved				

- ㅇ 서버(웹/앱)
 - - 1: Red
 - 2 : Yellow
 - 3:Green
 - 통합 모델 양산 타이밍에는 '경고(1)', '정상(3)'만 사용
 - 추후 기능 고도화에 따라 '주의(2)' 활용
- 센서가 이상 상태일 경우
 - o 장비
 - CAN 통신을 통해 해당 신호를 수신한 TGU에서 DM 코드를 생성하여 고장 정보 공유
 - 2가지(센서 고장, 센서 통신 불가) 상태일 경우 DM 코드 통해서 SPN-FMI 송신

Index (From EPOS to GP)	Index (Hex)	FMI	//	Korean	심각도	SPN(Dec)	SPN(Hex)
1851	73B	11	P518754-11	작동유 품질 센서 고장	1	518754	7EA62
1851	73B	12	P518754-12	작동유 품질 센서 통신 불가	1	518754	7EA62
1852	73C	11	P518755-11	엔진 오일 품질 센서 고장	1	518755	7EA63
1852	73C	12	P518755-12	엔진 오일 품질 센서 통신 불가	1	518755	7EA63

ID: 18FECA4Ax

	SPN(dec)	SPN(hex)	FMI
작동유	518754	7 EA 62	11
ਜਨਜ	310/34	7 EA 62	12
엔진유	518755	7 EA 63	11
건간규	210/33	/ EA 63	12

결과

1	2	3	4	5	6	7	8
FF	FF	62	EA	EB	FF		
FF	FF	62	EA	EC	FF		
FF	FF	63	EA	EB	FF		
FF	FF	63	EA	EC	FF		

- ㅇ 서버
 - DTC 표시 논의 필요

C. 추세선 모니터링 기능

• 추세선 모니터링 웹/앱 페이지 그래프 표시 논의 필요