جمعية أصدقاء الرياضيات

ASSOCIATION DES AMIS DE MATHEMATIQUES

Epreuve de maths

Niveau: 4AS Proposée le 20 mars 2014 de 8h à 10h

Exercice 1 (5 points)

Choisir la bonne réponse, en justifiant ton choix.

www amimath mr					
- 1	N°	Question	Réponse A	Réponse B	Réponse C
	1	$\frac{\sqrt{3-\sqrt{3}}\times\sqrt{3+\sqrt{3}}}{\sqrt{6}} =$	0	6	_ 1
	2	Dans un repère orthonormé, Si A(2; -4)	w.ar	ni#nai	th.1_
		et B(-1;0) alors la distance AB =	$\sqrt{17}$	5	$\sqrt{7}$
	3	Si A(1;4); B(4;1) et C(-1;6)	Les points A;B et	ABC est un triangle	ABC est un
1	V	ww.alors:mima	Ć sont alignés. 7	isocèle en C .	triangle rectangle en B
	4	Si ABCD un rectangle de centre O,			
		$\widehat{AOD} = 80^{\circ}$ et O est le milieu de [BC]	40°	50°	- 80°
		Alors : $\widehat{CDB} =$	23/12 017	nima	thin
	5	Les solutions de l'inéquation	v > 1-4/	<i>x</i> <	
		$x-1 \ge x\sqrt{2}$ sont les réels x tel que :	$x \geq \frac{1-\sqrt{2}}{1-\sqrt{2}}$	$x \le -\frac{1}{\sqrt{2}}$	$x \leq -1 - \sqrt{2}$

Exercice 2 (4 points) 1111 at 1111 Exercice 2 (4 points) 1111 exercice 2 (4 points qui n'ont aucun sommet commun.

- 1. Combien de sommets compterait-on s'il y avait 8 triangles et 6 rectangles, soit 14 figures
- 2. En fait, 21 figures sont dessinées et on peut compter 79 sommets en Combien y a t-il de triangles et de rectangles sur cette couverture de livre ?

Exercice 3 (5 points)

1. Construire un triangle RST tel que : RS = 4,5 cm ; TR = 7,5 cm ; ST = 6 cm.

Ce triangle est-il rectangle? Pourquoi?

- 2. a. Tracer le cercle c de centre R et de rayon 4,5. Le cercle c coupe le segment [RT] en K.
- b. Tracer la droite (d) passant par le point K et parallèle à la droite (RS). Cette droite (d) coupe le segment [TS] en un point L. Placer ce point sur la figure. v.amumulli
 - c. Calculer KL.
- 3. Soit B le point de (d) tel que KB = 2,7 cm et K ∈ [BL]. Prouver que (BR) et (TS) sont parallèles et Calculer BR.

Exercice 4 (5 points)

- **1.** Développer et réduire l'expression : P = (x + 12)(x + 2).
- 2. Factoriser l'expression : $E = (x + 7)^2 25$.
- 3. ABC est un triangle rectangle en A tel que AB = 5 et BC = x +7 où x est un nombre réel positif. Montrer que AC² = $x^2 + 14x + 24$.
- 4. Si AC = 12, calculer x.
- 5. Si $x = 7 \sqrt{7}$, calculer AC².

Présentation : 1pt