

Faculty of Applied Sciences B.Sc. in Computing

Academic Year 2022/2023 2nd Semester

COMP123 - 121/122

Data Communications

Architectures and Protocols

The Need For Protocol Architecture

- 1.) the source must <u>activate</u> communications path or inform network of destination
- 2.) the source must make sure that destination is prepared to receive data

To transfer data several tasks must be performed:

- 3.) the file transfer application on source must confirm file management program at destination is prepared to accept and store file
- 4.) a format translation function may need to be performed if the formats on systems are different

A Communications Architecture Example

The parcel is carried from the source to the destination.

Functions of Protocol Architecture

- breaks logic into <u>subtask</u> modules which are implemented separately
- modules are arranged in a <u>vertical</u> stack
 - each layer in the stack performs a subset of functions
 - relies on **next** lower layer for primitive functions
 - changes in one layer should not require changes in other layers

Key Features of a Protocol

- A protocol is a <u>set of rules</u> or conventions that allow peer layers to communicate.
- The key features of a protocol are:

Communication Layers

- Within a network, communication tasks are organized into <u>three</u> relatively independent layers:
 - Application layer
 - Contains logic to support applications
 - Transport layer
 - provides reliable data transfer
 - Network access (or Data Link) layer
 - concerned with the exchange of data

Application Layer

contains the logic needed to support user applications separate module is needed for each type of application

Network Access (Data Link) Layer

- covers the exchange of data between an end system and the network that it is attached to
- concerned with issues like :
 - destination address provision
 - invoking specific services like priority
 - access to & routing data across a network for two end systems attached to the same network

Transport Layer

concerned with providing reliable delivery of data

essentially independent of the nature of the applications

Protocol Architecture and Networks

Protocols in a Simplified Architecture

Protocol Data Unit (PDU)

- the combination of data and control information is a PDU
- typically control information is contained in a PDU header
 - control information is used by the peer transport protocol at computer B
- headers (e.g. Transport PDU header) may include:
 - source port, destination port, sequence number, and error-detection code

Network Access Protocol

- after receiving segment from transport layer, the network access protocol must request transmission over the network
 - the network access protocol creates a network access PDU (packet) with control information
- header includes:
 - source computer address
 - destination computer address
 - facilities requests

Standardized Protocol Architectures

OSI Model

- International Standards Organization (ISO) developed Open Systems Interconnections (OSI) Model.
- OSI was started to be developed at 1977 but published in 1984.
- It breaks down the communication tasks into seven independent layers, each with its own tasks.
- Each layer represents a particular function, performed by hardware or software.
- Each layer relies on the next lower layer to perform more primitive functions.
- Each layer provides services to the next higher layer.

Layers of The OSI Model

OSI as Framework for Standardization

- The functions of each layer are well defined ⇒
 standards can be developed <u>independently</u>
 and <u>simultaneously</u>
 - This <u>speeds up</u> the standards-making process
- The boundaries between layers are well defined ⇒ changes in standards in one layer need not affect already existing software in another layer
 - This makes it easier to introduce new standards

The OSI Environment

18

Multiple Node Communications under OSI

The OSI Model

- Physical Layer
 - Bits physically transmitted
 - Typically defined by an interface specification
- Data link layer
 - Ensures error-free transmission
 - Requests retransmission as needed
- Network Layer
 - Determines route
 - Understands physical network topology

The OSI Model (Continued)

Transport Layer

- Isolates upper layers from lower layers
- Breaks message into blocks and reassembles as needed
- Converts addresses from local scheme to match actual network

Session Layer

- Establishes logical connection
- Permission to use resources
- Logons/passwords

The OSI Model (Continued)

- Presentation layer
 - Format conversion
 - Code conversion
- Application layer
 - User access
 - Allows applications to use the network

Lower Layers And Higher Layers

- Layers 1, 2, and 3 are lower layers.
 - Layer 1 is always implemented in hardware.
 - Layer 2 and layer 3 sometimes are implemented in hardware.
- Layers 4, 5, 6, and 7 are higher layers or upper layers.
 - They manipulate the data in some way, and are always implemented in software.

PDU in Different Layers

Application layer

message, record, file, envelope

Transport layer

block, segment

Network layer

packet, datagram

Data link layer

frame, cell, slot

Physical layer

frame, envelope

TCP/IP Protocol Architecture

Result of protocol research and development conducted on ARPANET

Referred to as TCP/IP protocol suite

TCP/IP
comprises a
large collection
of protocols
that are
Internet
standards

TCP/IP Layers and Example Protocols

Application

Provides ccess to the TCP/IP environment for users and also provides distributed information services.

Transport

Transfer of data between end points. May provide error control, flow control, congestion control, reliable delivery.

Internet

Shield higher layers from details of physical network configuration. Provides routing. May provide QoS, congestion control.

Network Access

Logical interface to actual network hardware. May be stream or packet oriented. May provide reliable delivery.

Physical

Transmission of bit stream, specifies medium, signal encoding technique, data rate, bandwidth, and physical connector.

2022/2023 2nd Semester

Physical Layer

- Covers the physical interface between computer and network
- Concerned with issues like:
 - Characteristics of transmission medium
 - Nature of the signals
 - Data rates

Network Access/Data Link Layer

- Covers the exchange of data between an end system and the network that it is attached to
- Concerned with:
 - Access to and routing data across a network for two end systems attached to the same network

Internet Layer

implements procedures needed to allow data to travel across multiple interconnected networks

uses the Internet Protocol
(IP) to provide routing
function

implemented in end systems and routers

Host-to-Host (Transport) Layer

 May provide reliable end-to-end service or merely an end-to-end delivery service without reliability mechanisms

Transmission
Control Protocol

TCP

 Most commonly used protocol to provide this functionality

Application Layer

- Contains the logic needed to support the various user applications
- A separate module is needed for each different type of application that is peculiar to that application

Operation of TCP/IP

TCP/IP Address Requirements

Two levels of addressing are needed:

each host on a subnetwork must have a unique global internet address, e.g. IP address

each process with a host must have an address (known as a port) that is unique within the host, e.g. Port Number

Operation of TCP/IP

Transmission Control Protocol (TCP)

- TCP is the transport layer protocol for most applications
- TCP provides a reliable connection for transfer of data between applications
- A TCP segment is the basic protocol unit
- TCP tracks segments between entities for duration of each connection

IPv6

- Provides enhancements over existing IP, i.e.
 IPv4
- Designed to accommodate higher speeds and the mix of graphic and video data
- Driving force was the need for more addresses due to growth of the Internet
- IPv4 has <u>32-bit</u> source and destination address fields while IPv6 has <u>128-bit</u>.

Figure 2.7 IP Headers

TCP/IP Protocols

BGP = Border Gateway Protocol OSPF = Open Shortest Path First

FTP = File Transfer Protocol RSVP = Resource ReSerVation Protocol HTTP = Hypertext Transfer Protocol SMTP = Simple Mail Transfer Protocol

ICMP = Internet Control Message Protocol SNMP = Simple Network Management Protocol

IGMP = Internet Group Management Protocol TCP = Transmission Control Protocol

UDP IΡ = Internet Protocol = User Datagram Protocol

MIME = Multi-Purpose Internet Mail Extension

Addressing

Two levels of addressing are needed:

each computer on the network has a unique network address

each application has an address that is unique with that computer

Logical Address

- An IP address of the system is called logical address.
- This address is the combination of Net ID and Host ID.
- This address is used by network layer.
- This address can be changed by changing the host position on the network. So it is called logical address.
- For example, 202.175.25.224 (IPv4, dot-decimal notation) and fe80::31b9:1da5:7d4d:9f22%15 (IPv6)

Physical Address

- Each system has a NIC (Network Interface Card)
 through which two systems physically connected
 with each other.
- The address of the NIC is called physical address, or MAC (Media Access Control) address, e.g. 40-61-86-37-BE-C2
- Media Access Control address (MAC address) is an unique identifier assigned to most network adapters or NICs by the manufacturer for identification.
- A MAC address usually encodes the manufacturer's registered identification number.
- This address is used by data link layer

Comparison of the OSI and TCP/IP Protocol Architectures

- Presentation and Session layer are not included in TCP/IP Suite
- Question: we don't need them in TCP/IP?

OSI	TCP/IP
Application	
Presentation	Application
Session	Transport (host-to-host)
Transport	
Network	Internet
	NI-4I
Data Link	Network Access
Physical	Physical

Summary

- Needs and key elements for protocol architecture
- OSI model & protocol architecture standardization
- TCP/IP protocol architecture

