CS 39: Theory of Computation

Winter '23

PSET 4 — 02/06/2023

Prof. Chakrabarti Student: Amittai Siavava

Credit Statement

I discussed ideas for this homework assignment with Paul Shin.

I also referred to the following books:

- (a) Introduction to the Theory of Computation by Michael Sipser.
- (b) A Mathematical Introduction to Logic by Herbert Enderton.

Problem 1.

Draw a PDA that recognizes the language $L = \{x \in \{0,1\}^* : N_1(x) \ge 2N_0(x)\}$. Give a high-level proof that your PDA works correctly.

KEY:

Item	Meaning
\overline{A}	$\varepsilon, \varepsilon \to \$$
B	$1, p \rightarrow pp, 1, m \rightarrow \varepsilon, 1, \$ \rightarrow p\$$
C	$0, m \rightarrow mmm, 0, \$ \rightarrow mm\$$
D	$0,p\to\varepsilon$
E	$\varepsilon, p \to \varepsilon, \varepsilon, \$ \to m \$$

Figure 1. DFA for L

Problem 2.

In class, we wrote a formal construction of a PDA that proves that context-free languages are closed under union. Give similar constructions for PDAs to prove closure under:

- (a) concatenation.
- (b) Kleene star.

Problem 3.

Give an alternate proof, using CFGs alone (no PDAs), to prove that context-free grammars are closed under:

- (a) union.
- (b) concatenation.
- (c) Kleene star.

Problem 4.

A string $x \in \Sigma^*$ is called a *square* if $x = w^2$ for some $w \in \Sigma^*$. Let $L_{sq} = \{w^2 : w \in \{0,1\}^*\}$. Consider its complement:

$$\overline{L}_{sq} = \left\{ x \in \{0,1\}^* : x \text{ is not of the form } w^2 \text{ for any } w \in \{0,1\}^* \right\}.$$

- (a) Prove that every even-length string is in \overline{L}_{sq} can be decomposed as x = uv where the middle symbol of u differs from the middle symbol of v.
- (b) Using this property, design a context-free grammar that generates \overline{L}_{sq} .

Problem 5.

Let Σ be an alphabet, $L \subseteq \Sigma^*$, and $\# \notin \Sigma$. Define the language

Intersperse
$$(\#, L) := \{a_1 \# a_2 \# \dots \# a_n\}$$
, each $a_i \in \Sigma$ and $a_1 a_2 \dots a_n \in L$.

Let $M_1 = (Q, \Sigma, \Gamma, \delta, q_0, F)$ be a PDA that recognizes L. Formally describe a PDA that recognizes Intersperse (#, L). Also give a high-level proof that your PDA works correctly.

Problem 6.

Consider the following CFG:

$$S \rightarrow 1S00 \mid 00S1 \mid SS \mid 0S1S0 \mid \varepsilon$$

(a) Give a simple description of the language it generates using set-builder notation.

$$L = \left\{ x \in \{0, 1\}^* : N_1(x) = 2N_0(x) \right\}$$

(b) Now for the hard and fun part: prove the correctness of your answer.