Exercise 9: Summation and Sequences (Solution)

Problem 1: Summation

1. Write the following expressions explicitly:

(a)
$$\sum_{n=1}^{5} (n^2 - 2n)$$

Answer:

$$\sum_{n=1}^{5} (n^2 - 2n) = (1^2 - 2) + (2^2 - 4) + (3^2 - 6) + (4^2 - 8) + (5^2 - 10)$$
$$= -1 + 0 + 3 + 8 + 15$$
$$= 25.$$

(b) $\sum_{n=-3}^{3} 2^n$

Answer:

$$\sum_{n=-3}^{3} 2^n = 2^{-3} + 2^{-2} + 2^{-1} + 2^0 + 2^1 + 2^2 + 2^3$$

$$= \frac{1}{2^3} + \frac{1}{2^2} + \frac{1}{2^1} + \frac{1}{2^0} + 2^1 + 2^2 + 2^3$$

$$= \frac{1}{8} + \frac{1}{4} + \frac{1}{2} + 1 + 2 + 4 + 8$$

$$= 15.875.$$

(c) $\sum_{i=1}^{3} \sum_{j=1}^{4} a_{ij}$

Answer:
$$\sum_{i=1}^{3} \sum_{j=1}^{4} a_{ij} = \sum_{j=1}^{4} a_{1j} + \sum_{j=1}^{4} a_{2j} + \sum_{j=1}^{4} a_{3j}$$

$$= \underbrace{a_{11} + a_{12} + a_{13} + a_{14}}_{=11} + \underbrace{a_{21} + a_{22} + a_{23} + a_{24}}_{=21} + \underbrace{a_{31} + a_{32} + a_{33} + a_{34}}_{=32}$$

2. Use the summation form to write the product of two matrices $C = A \cdot B$, with dimensions $M \times N$ and $N \times K$, respectively.

Answer

Let's define a_{ij} as the elements of matrix A, b_{ij} the elements of matrix B and c_{ij} the elements of the resulting matrix C = AB. The element c_{ij} is the result of the dot product between the i-th

row of matrix A and the j-th column of matrix B:

$$c_{ij} = \vec{a}_{\text{row}=i} \cdot \vec{b}_{\text{column}=j}$$
$$= \sum_{k=1}^{N} a_{ik} b_{kj}$$

Let's look at a specific example: $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, B = \begin{bmatrix} 10 & 9 \\ 8 & 7 \\ 6 & 5 \end{bmatrix}$. The element c_{12} of the resulting

matrix C is a product of the first row of A: $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$, and the second column of B: $\begin{bmatrix} 9 & 1 & 1 \\ 5 & 1 & 1 \end{bmatrix}$

We therefore set i = 1, j = 2 in the resulting general sum above, and get

$$c_{12} = \sum_{k=1}^{3} a_{1k} b_{k2}$$

$$= a_{11}b_{12} + a_{12}b_{22} + a_{13}b_{32}$$

$$= 1 \times 9 + 2 \times 7 + 3 \times 5.$$

3. Write in summation form the general real polynomial of order n: $P_n(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, where a_0, a_1, \ldots, a_n are real numbers and $a_n \neq 0$.

Answer:

$$P_n(x) = \sum_{i=1}^n a_i x^i, \quad \{a_i\} \in \mathbb{R}, \quad a_n \neq 0.$$

4. The binomial coefficient $\binom{n}{k}$ is defined as $\binom{n}{k} = \frac{n!}{k!(n-k)!}$, where n! is defined as $n! = 1 \times 2 \times 3 \cdots \times (n-1) \times n$. What is $\binom{4}{2}$?

Answer:

5. The general expension formula for $(x+y)^n$ (where $x,y\in\mathbb{R}$ and $n\in\mathbb{N}$) is:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Show that for n = 2 the formula yields the known expression $(x + y)^2 = x^2 + 2xy + y^2$, and write the full formula for $(x + y)^4$.

Answer:

For n=2 we get:

$$\begin{split} (x+y)^2 &= \sum_{k=0}^2 \binom{2}{k} x^{2-k} y^k \\ &= \binom{2}{0} x^2 y^0 + \binom{2}{1} x^1 y^1 + \binom{2}{2} x^0 y^2 \\ &= \frac{2!}{0!2!} x^2 + \frac{2!}{1!1!} xy + \frac{2!}{2!0!} y^2 \\ &= \frac{1}{0!} x^2 + 2xy + \frac{1}{0!} y^2 \\ &= x^2 + 2xy + y^2. \end{split}$$

For n = 4 we get:

$$(x+y)^4 = \sum_{k=0}^4 {4 \choose k} x^{4-k} y^k$$

$$= {4 \choose 0} x^4 y^0 + {4 \choose 1} x^{4-1} y^1 + {4 \choose 2} x^{4-2} y^2 + {4 \choose 3} x^{4-3} y^3 + {4 \choose 4} x^{4-4} y^4$$

$$= x^4 + 4x^3 y + 6x^2 y^2 + 4xy^3 + y^4.$$

Problem 2: Sequences

1. Write the first 10 elements of the following sequences:

$$a_n = 3n - 2$$
, $b_n = 1$, $c_n = \frac{1}{n}$, $d_n = (-1)^n$, $e_n = \begin{cases} 2^{-n} & \text{if } n \text{ is odd} \\ n & \text{if } n \text{ is even} \end{cases}$

Answer:

- (a) a = 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, ...
- (b) $b = 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \dots$
- (c) $c = 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{9}, \frac{1}{10}, \dots$
- (d) $d = -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, \dots$
- (e) $e = \frac{1}{2}$, 2, $\frac{1}{8}$, 4, $\frac{1}{32}$, 6, $\frac{1}{128}$, 8, $\frac{1}{512}$, 10, ...
- 2. Which of the above sequences are bounded from above and what are their upper boundaries? Which are bounded from below and what are their lower boundaries?

Answer:

- $\{a_n\}$ has a lower boundary equal to 1, and no upper boundary.
- $\{b_n\}$ has both a lower and an upper boundaries, and they are both equal to 1.
- $\{c_n\}$ has a lower boundary equal to 0 and an upper boundary equal to 1.
- $\{d_n\}$ has a lower boundary equal to -1 and an upper boundary equal to 1.
- $\{e_n\}$ has a lower boundary equal to 0 and no upper boundary.

3. Which of the above sequences converge for $n \longrightarrow \infty$? For those that don't, find a sub-sequence that does.

Answer:

The sequences b and c converge. The rest don't. Subsequences convergence:

- $\{a_n\}$: does not have any converging subsequence.
- $\{d_n\}$: there are infinite converging subsequences, e.g. if one takes only the elements with even indices.
- $\{e_n\}$: an example of a converging subsequence would be only the elements with odd indices.
- 4. Prove that the following sequences converge to the given limits:
 - $a_n = \frac{1}{n} \longrightarrow 0.$

Answer

Let $\varepsilon > 0$ be a real number. For an $n > n_{\varepsilon} = \lceil \frac{1}{\varepsilon} \rceil$ (where $\lceil x \rceil$ of some $x \in \mathbb{R}$ is the smallest integer n that is bigger than x) we get

$$a_n = \frac{1}{n} < \frac{1}{n_{\varepsilon}} = \frac{1}{\lceil \frac{1}{\varepsilon} \rceil} \le \frac{1}{\frac{1}{\varepsilon}} = \varepsilon,$$

$$\downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \qquad \downarrow$$

meaning that for each real $\varepsilon > 0$, there is an $n_{\varepsilon} = \lceil \frac{1}{\varepsilon} \rceil$ for which for any $n > n_{\varepsilon}$ the sequence values are within ε of 0, and therefore this is the limit of the sequence.

• $a_n = \frac{n+2}{n} \longrightarrow 1$.

Answer:

Let $\varepsilon > 0$ be a real number. Then for $n \neq 0$,

$$\frac{n+2}{n} = \frac{\frac{n!}{n} + \frac{2}{n}}{\frac{n!}{n}} = \frac{1+\frac{2}{n}}{1} = 1 + \frac{2}{n}.$$

Then, similarly to the previous sequence, for

$$n_{\varepsilon} = \lceil \frac{2}{\varepsilon} \rceil,$$

we get that any $n > n_{\varepsilon}$ will confirm to the following:

Thus, for any real number $\varepsilon > 0$, there exists an integer n_{ε} such that for each $n > n_{\varepsilon}$

$$|a_n-1|<\varepsilon$$
,

and $a_n \longrightarrow 1$.

Note: during this proof it is claimed that $a_{n+1} < a_n$. Let us show this by calculating the

ratio $\frac{a_{n+1}}{a_n}$:

$$\frac{a_{n+1}}{a_n} = \frac{\frac{n+1+2}{n+1}}{\frac{n+2}{n}}$$

$$= \frac{\frac{n+3}{n+1}}{\frac{n+2}{n}}$$

$$= \frac{n(n+3)}{(n+1)(n+2)}$$

$$= \frac{n^2 + 3n}{n^2 + 3n + 2}.$$

For $n \ge 0$, as we have here, $\frac{n^2 + 3n}{n^2 + 3n + 2} < 1$, i.e. $a_{n+1} < a_n$.

• $a_n = \frac{\sin(n)}{n} \longrightarrow 0.$

Answer:

For any $x \in \mathbb{R}$, and thus any $n \in \mathbb{N}$,

$$\sin(x) \in [-1, 1],$$

and therefore

$$\left|\frac{\sin(n)}{n}\right| \le \left|\frac{1}{n}\right|.$$

Since we already proved that $\frac{1}{n} \longrightarrow 0$, this is true for $\frac{\sin(n)}{n}$ as well.

Problem 3: Series

Calculate the following expressions:

 $1. \sum_{n=0}^{\infty} \frac{5}{2^n}.$

Answer:

This is a geometric series with first time a=5 and ratio $r=\frac{1}{2}$. Thus,

$$\sum_{n=0}^{\infty} \frac{5}{2^n} = \frac{a}{1-r}$$

$$= \frac{5}{1-\frac{1}{2}}$$

$$= \frac{5}{\frac{1}{2}}$$

$$= 5 \cdot 2$$

$$= 10.$$

 $2. \sum_{n=2}^{\infty} \frac{1}{n^2 - n}.$

Answer:

$$\begin{split} \sum_{n=2}^{\infty} \frac{1}{n^2 - n} &= \sum_{n=2}^{\infty} \frac{1}{n(n-1)} \\ &= \sum_{n=2}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n} \right) \\ &= \lim_{n \to \infty} \left(\frac{1}{1} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n} \right). \end{split}$$

Note how in each term the last element is cancelling the first element of the next term, i.e.

$$\left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right),$$

and thus

$$\sum_{n=2}^{\infty}\frac{1}{n^2-n}=\lim_{n\to\infty}\left(1-\frac{1}{n}\right)=1.$$

$$3. \sum_{n=0}^{\infty} \frac{n!}{2^n}.$$

Answer:

Note that

$$2^n = 2 \cdot 2 \cdot 2 \cdots 2,$$

while

$$n! = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n.$$

For any n > 2, $n! > 2^n$, and thus

$$\lim_{n\to\infty}\frac{n!}{2^n}=\infty,$$

meaning that

$$\sum_{n=0}^{\infty} \frac{n!}{2^n} = \infty.$$