

Bill Cooke/Danielle Moser/Althea Moorhead NASA Meteoroid Environment Office william.j.cooke@nasa.gov

Showers vs. Sporadics

At sub-mm & mm sizes, the average flux of meteor showers is an order of magnitude below the sporadic (background) flux

Storms vs. Sporadics

- Instantaneous storm flux required to penetrate a surface can exceed the background by several orders of magnitude
- Penetrating fluence can range anywhere from a few days to a year's equivalent exposure to background meteors

Notes on meteoroid risk

- Sporadic meteoroid background is directional (not isotropic) and accounts for 90% of the meteoroid risk to a typical spacecraft
- Meteor showers get all the press, but account for only ~10% of spacecraft risk
 - Bias towards assigning meteoroid cause to anomalies during meteor showers
- Design to sporadic background, mitigate outbursts/ storms by operational means
- Gun tests/damage equations focus on physical damage

 hard to assess other anomaly causes, such as
 meteoroid generated plasma

Could it be a meteoroid hit?

- Are the anomaly characteristics consistent with a particle impact?
 - Sudden change in attitude most common
- Was there a meteor outburst or storm at the time of the anomaly?
 - If yes, was the shower radiant visible from the spacecraft?
 - If yes, did the affected surface "see" the shower radiant?
 - If yes, shower impact possible
- Compare meteoroid (sporadic + shower) flux to orbital debris flux at spacecraft location to establish likelihood.
 - If affected surface is sun-fixed, must use a directional meteoroid model to compute flux

Affected Panels

Presenter Jon Max Maynard

Date 08/12/2007

Page 2

7

Launch Time	MET	GMT	Possible Perseid?	Possible SDA?
8/8/07 22:36	02 08:49:14	8/11/07 7:25	5 Y	Υ
	02 06:17:53	8/11/07 4:54	N	Ν
	02 03:19:10	8/11/07 1:55	5 N	Ν
	02 21:46:13	8/11/07 20:22	2 Y	Ν
	02 22:51:46	8/11/07 21:28	B N	Υ
	00 21:51:50	8/9/07 20:28	8 Y	Υ
	00 20:46:20	8/9/07 19:22	2 N	Υ
	00 20:32:48	8/9/07 19:09	Y	Υ
	00 21:09:00	8/9/07 19:45	Y	Ν
	00 22:25:31	8/9/07 21:02	? N	N
	01 16:37:58	8/10/07 15:14	N	N
	01 12:03:15	8/10/07 10:39	N	Ν
	01 10:27:42	8/10/07 9:04	N	Ν
	01 15:53:58	8/10/07 14:30) Y	Υ
	01 16:45:12	8/10/07 15:21	N	N

Perseid Summary

- Parent comet: 109P/Swift-Tuttle
- Peak: Max. around Aug 11-13
- Activity range: Jul 17 Aug 24
- Speed: 59 km/s (2.5-3x average sporadic speed)
- Radiant: $\alpha = 48^{\circ}$, $\delta = +58^{\circ}$ at peak
- Typical ZHR: 100/hr
- Recent major displays: 1991-1995, 2004, 2009

Perseid fireball recorded Aug 12, 2012

Rich in bright meteors

The 1993 Perseids

- The Perseid parent, Comet Swift-Tuttle, reached perihelion in late 1992. High Perseid rates were also seen near the last perihelion passage of the comet, in the 1860's
- Many astronomers postulated a dense concentration of dust near the comet's orbit
- Perseids had never been observed to reach storm levels, but historical record showed outbursts of a few hundred per hour

- STS-51 launch, slated for late July delayed until after Perseid peak (August 12)
 - NASA unable to predict shower intensity
 - Head of astronaut office decided to delay launch
- Perseid outburst with ZHR of ~360 occurred, peaking at 03:30 UT on August 12.
- Cosmonauts aboard Mir space station reported hearing "pings" on outside of craft, and retreated to Soyuz (Science News, 1993)

Spacecraft struck by Perseids

Olympus
ESA communication satellite

Struck by a Perseid near the time of the shower peak in August 1993

Sent tumbling, fuel exhausted, end of mission

Landsat-5
NASA/USGS imaging satellite

Struck by a Perseid near the time of the shower peak in August 2009

Sent tumbling, stabilized, returned to normal operations

Olympus

- Technology demonstration satellite launched 12 July 1989; largest civilian comm satellite built up to that time
- South solar panel stopped tracking the Sun in January 1991 (particle impact?)
- 19 June 1991— attitude control issue; incorrect commands uplinked from ground resulted in tumbling and drift off station. Vehicle recovered and put back into service at 19W on 7 August 1992
- Olympus roll gyro stops at 23:32 UTC August 11 during 1993 Perseid outburst. Spacecraft enters Emergency Sun Acquisition (ESA) mode and fails to acquire the Sun

- Attempts to recover spacecraft exhausted most of remaining fuel, making it impossible to return the vehicle to service. Mission was terminated August 12, and the spacecraft was moved into a disposal orbit 200 km below GEO
- ESA anomaly investigation attributed the failure to a Perseid strike on the south solar array
 - South array had 8.5 m⁻² of area exposed to the stream.
 - There was a possible conducting path to the gyro though the spacecraft umbilical
 - Ground hypervelocity tests showed plasma generated by a meteoroid strike to be proportional to v^{3.5}

Olympus conclusion and recommendations

 Conclusion of investigation: "The impact by a small meteoroid may have generated a plasma triggering a discharge of charged surfaces entering the grounded spacecraft via the umbilical and an external sensor. Such a scenario is particularly interesting for other spacecraft since the Perseid shower is likely to be worse for the next few years."

Recommendations:

- Minimize the area cross-section as much as possible during the peak period of the shower.
- Prepare operational contingency plans for recovery from and for observation of impacts/plasmas.
- Provide total protection from plasmas through external electrical windows such as sun sensors.
- Ground and cover all interface points such as spacecraft umbilical connections.

Landsat-5

- USGS remote sensing satellite launched into sunsynchronous LEO orbit March, 1984
- Decommissioned June, 2013
- Began tumbling at 5:23 UTC on August 13 2009, just before 3rd and strongest peak of the Perseid shower

- Perseid radiant was 37° above Earth limb at time of anomaly
- Operations restored a week later (August 17)

Thoughts

- Plasma production (v^{3.5}) is >40x mass limited and 5x kinetic energy
- Drives affecting particle mass down the mass scale (e.g. 1 mg to 2.3x10⁻⁵ g), with corresponding increase in flux
- Both satellites aging at time of anomalies
- Neither OLYMPUS or Landsat showed momentum disturbances at the times of the anomalies

2016 Perseid model results: MSFC preliminary

Kinetic energy flux

2016 Perseid model results - Summary -

Modeler	Rev	Date	Time (UT)	λ _s (°)	ZHR	r _d -r _E (AU)
Maslov (web, undated)	1862	Aug 11	22:34	139.436	?	-0.00134
Vaubaillon (Jenniskens, 2006)	1862	Aug 11	22:36	139.438	1	-0.00327
MSFC single rev (June 2015)	1862	Aug 11	22:47	139.445	-	-0.00170
Maslov (Rao, 2012)	-	Aug 11	23:23	-	160-180	-
Maslov (web, undated)	1479	Aug 11	23:23	139.468	?	0.00008
Vaubaillon (Rao, 2012)	-	Aug 12	~00:00	-	"Unusually high activity"	-
Main MSFC (June 2015)	Combined 15 revs	Aug 12	00:32	139.515	210 ± 50	-
MSFC single rev (June 2015)	1079	Aug 12	04:36	139.678	-	0.00194
Vaubaillon (Jenniskens, 2006)	1079	Aug 12	04:43	139.683	580	0.00023
MSFC single rev (June 2015)	441	Aug 12	13:03	140.016	Comprises secondary peak?	-0.00046

Increased activity lasts about half a day, from late-Aug 11 to mid-Aug 12.

2016 Perseid model results: Vaubaillon

Conclusion

- A Perseid outburst in 2016 is predicted by numerous forecasters, similar in intensity to 2009
- Increased activity predicted late Aug 11 Aug 12, lasting ~half a day
- Peak rates predicted between 160 580 per hour
- Kinetic energy (physical damage) flux is elevated by a few 10's of % above sporadic background
- The outburst represents a time of increased potential for meteoroid-induced plasmas capable of causing spacecraft anomalies

References

- Caswell, D. R. et al. (1995) "Olympus end of life anomaly A Perseid meteoroid impact event?" Int. J. of Impact Engineering 17, 139-150.
- Cooke, W. J. (2009) "The 2009 Perseid meteoroid environment and Landsat 5." NASA MSFC: NASA MEO Internal Report, 5pp.
- Jenniskens, J. (2006) "Meteor showers and their parent comets." Cambridge: Cambridge University Press, p.657.
- Kronk, G. (n.d.) "Meteor showers online: Perseids." http://meteorshowersonline.com/perseids.html.
- Kronk, G. W. (2014) "Meteor showers: An annotated catalog." New York: Springer-Verlag, 362pp.
- Maslov, M. "Perseids 1901-2100: predictions of activity." http://feraj.narod.ru/Radiants/Predictions/1901-2100eng/Perseids1901-2100predeng.html.
- McBride, N., & McDonnell, J. A. (1999). Meteoroid impacts on spacecraft:sporadics, streams, and the 1999 Leonids. Planetary and Space Science, 47, 1005.
- Peterson, G. E. (1999) "Dynamics of meteor outbursts and satellite mitigation strategies." El Segundo, Calif.: Aerospace Press; Reston, Va.: American Institute of Aeronautics and Astronautics
- Rao, J. (2012) "August Perseid meteor shower has long legacy, bright future." Space.com, 3
 August 2012, http://www.space.com/16915-perseid-meteor-shower-2012-history.html.
- Vaubaillon, J. "Nodes (2016)" http://www.imcce.fr/langues/en/ephemerides/phenomenes/meteor/DATABASE/Perseids/BIN-tout/Noeuds-Earth2016.jpg