SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ ĐÀ NĂNG

ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LÊ QUÝ ĐÔN NĂM HOC 2020 – 2021

Môn: TOÁN (chuyên)

Thời gian làm bài: 150 phút (không kể thời gian phát đề)

Câu 1. (2,0 điểm)

a) Chứng minh rằng với mọi giá trị dương, khác 1 của x thì biểu thức A không nhận giá trị nguyên, với:

$$A = \left(\frac{\sqrt{x} - 1}{\sqrt{x} + 1} - \frac{\sqrt{x} + 1}{\sqrt{x} - 1}\right) \left(\frac{1}{4\sqrt{x}} - \frac{\sqrt{x}}{4}\right) - \frac{3}{x - 2\sqrt{x} + 9}$$

b) Xét các bộ (x; y; z) thỏa mãn $\frac{x^2 + y^2 + z^2}{a^2 + b^2 + c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$ với a, b, c là các số thực khác 0.

Tính giá trị của biểu thức: $Q = \frac{x^{2020}}{b^2c^2} + \frac{y^{2020}}{c^2a^2} + \frac{z^{2020}}{a^2b^2}$.

Câu 2. (1,0 điểm) Trên đồ thị hàm số $y = -0.5x^2$, cho điểm M có hoành độ dương và điểm N có hoành độ âm. Đường thẳng MN cắt trục Oy tại C với O là gốc tọa độ. Viết phương trình đường thẳng OM khi C là tâm đường tròn ngoại tiếp tam giác OMN.

Câu 3. (2,0 điểm)

a) Giải phương trình: $3x^3 - x^2 + 2x - 28 + (x^3 - 4)\sqrt{x^3 - 7} = 0$.

b) Giải hệ phương trình:
$$\begin{cases} 3x + 4xy - x^2 = 3y(y+3) \\ \sqrt{x^2 - 6y + 1} + \sqrt{y^2 - 2x + 9} = \frac{8}{3} \end{cases}$$

Câu 4. (1,0 điểm) Tìm tất cả các giá trị của m để phương trình:

$$(2x^2 + x - m^2 + 2m - 15)(2x^2 + 3x - m^2 + 2m - 14) = 0$$

có bốn nghiệm phân biệt x_1 , x_2 , x_3 , x_4 thỏa mãn $x_1^2 + x_2^2 + x_3^2 + x_4^2 = 3x_2x_3$.

Câu 7. (2,0 điểm) Cho tam giác ABC nhọn $(\widehat{B} \neq \widehat{C})$, nội tiếp đường tròn tâm O. Các đường cao xuất phát từ B và C lần lượt cắt đường thẳng AO lần lượt tại D và E. Gọi H là trực tâm giác ABC và O' là tâm đường tròn ngoại tiếp tam giác HDE. Chứng minh rằng:

- a) Tam giác HDE đồng dạng với tam giác ABC và AH là tiếp tuyến của (O').
- b) Đường thẳng AO' đi qua trung điểm của đoạn BC.

Câu 6. (1,0 điểm) Cho tam giác ABC nhọn $(AB \neq AC)$, nội tiếp đường tròn tâm O. Kẻ đường phân giác AD, $(D \in BC)$ của tam giác đó. Lấy điểm E đối xứng với D qua trung điểm của đoạn BC. Đường thẳng vuông góc với BC tại D cắt AO ở H, đường thẳng vuông góc với BC tại E cắt ở E0 tại E1. Chứng minh rằng tứ giác E3. E4. Chứng minh rằng tứ giác E5.

Câu 7. (1,0 điểm) Cho các số thực dương x, y, z thỏa mãn $x + y + z \le 3$. Chứng minh rằng:

$$\sqrt{\frac{x^2 + y^2}{xy(x + y)}} + \sqrt{\frac{y^2 + z^2}{yz(y + z)}} + \sqrt{\frac{z^2 + x^2}{zx(z + x)}} + 3 \le \sqrt{2} \left(\sqrt{\frac{x + y}{xy}} + \sqrt{\frac{y + z}{yz}} + \sqrt{\frac{z + x}{zx}} \right).$$

------ HÉT -----

SỞ GIÁO DỤC VÀ ĐÀO TẠO THÀNH PHỐ ĐÀ NẪNG

ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN LÊ QUÝ ĐÔN NĂM HỌC 2020-2021

Môn: TOÁN (chuyên)

Thời gian làm bài: 150 phút (không kể thời gian phát đề)

Câu 1.

a) Với x > 0 và $x \ne 1$, ta có:

$$A = \left(\frac{\sqrt{x} - 1}{\sqrt{x} + 1} - \frac{\sqrt{x} + 1}{\sqrt{x} - 1}\right) \left(\frac{1}{4\sqrt{x}} - \frac{\sqrt{x}}{4}\right) - \frac{3}{x - 2\sqrt{x} + 9}$$

$$= \left[\frac{\left(\sqrt{x} - 1\right)^2 - \left(\sqrt{x} + 1\right)^2}{\left(\sqrt{x} + 1\right)\left(\sqrt{x} - 1\right)}\right] \cdot \frac{1 - x}{4\sqrt{x}} - \frac{1}{x - 2\sqrt{x} + 9}$$

$$= \frac{-4\sqrt{x}}{x - 1} \cdot \frac{1 - x}{4\sqrt{x}} - \frac{1}{x - 2\sqrt{x} + 9} = 1 - \frac{1}{x - 2\sqrt{x} + 9}.$$

Vậy
$$A = 1 - \frac{1}{x - 2\sqrt{x} + 9}$$
.

Nếu $A \in \mathbb{Z}$ thì 1: $\left(x - 2\sqrt{x} + 9\right)$ mà: $x - 2\sqrt{x} + 9 = \left(\sqrt{x} - 1\right)^2 + 8 > 1$ nên A không thể là số nguyên.

b) Ta có:
$$\frac{x^2}{a^2} \ge \frac{x^2}{a^2 + b^2 + c^2}, \frac{y^2}{b^2} \ge \frac{y^2}{a^2 + b^2 + c^2}$$
 và $\frac{z^2}{c^2} \ge \frac{z^2}{a^2 + b^2 + c^2}$.

Từ đó suy ra:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \ge \frac{x^2}{a^2 + b^2 + c^2} + \frac{y^2}{a^2 + b^2 + c^2} + \frac{z^2}{a^2 + b^2 + c^2} = \frac{x^2 + y^2 + z^2}{a^2 + b^2 + c^2}.$$

Do đó đẳng thức xảy ra khi và chỉ khi x = y = z = 0.

Từ đó Q=0.

Câu 2.

Ta gọi: $M(m;-0,5m^2)$, $N(n;-0,5n^2)$, $C(x_C;y_C)$ trong đó m>0.

Do C là tâm đường tròn ngoại tiếp tam giác OMN mà $C \in MN$ nên tam giác OMN vuông tại O và C là

trung điểm
$$MN$$
. Khi đó
$$\begin{cases} x_C = \frac{m+n}{2} \\ y_C = \frac{-0.5m^2 - 0.5n^2}{2} \end{cases}$$

Ta có: $C \in Oy$ nên $x_C = 0$ suy ra m = -n. Khi đó $C\left(0; -\frac{m^2}{2}\right)$. Suy ra: $OC = \frac{m^2}{2}$, OM = m.

Mặt khác C là tâm đường tròn ngoại tiếp tam giác OMN nên:

$$OC = OM \Leftrightarrow \frac{m^2}{2} = m \Leftrightarrow m = 2 \text{ do } m > 0.$$

Suy ra M(2;-2). Phương trình đường thẳng OM có dạng y=ax mà đi qua điểm M(2;-2) nên a=-1. Vậy y=-x là đường thẳng cần tìm.

Câu 3.

a) Điều kiện: $x \ge \sqrt[3]{7}$. Ta có phương trình tương đương:

$$x^{2}(x-1)+(2x^{3}+2x-28)+(x^{3}-4)\sqrt{x^{3}-7}=0$$

Nhận xét x = 2 là một nghiệm của phương trình.

Nếu
$$x > 2$$
, ta có: $x^2(x-1) + (2x^3 + 2x - 28) + (x^3 - 4)\sqrt{x^3 - 7} > 0$.

Nếu
$$\sqrt[3]{7} \le x < 2$$
, ta có: $x^2(x-1) + (2x^3 + 2x - 28) + (x^3 - 4)\sqrt{x^3 - 7} < 0$.

Vậy phương trình đã cho có nghiệm duy nhất x = 2.

b) Điều kiện $\begin{cases} x^2 - 6y + 1 \ge 0 \\ y^2 - 2x + 9 \ge 0 \end{cases}$. Phương trình thứ nhất của hệ tương đương:

$$x^{2} - 4xy + 3y^{2} - 3(x - 3y) = 0$$

$$\Leftrightarrow (x - 3y)(x - y) - 3(x - 3y) = 0$$

$$\Leftrightarrow (x - 3y)(x - y - 3) = 0$$

$$\Leftrightarrow \begin{bmatrix} x = 3y \\ x = y + 3 \end{bmatrix}$$

• Với x = 3y, thay vào phương trình thứ hai của hệ ta được:

$$\sqrt{9y^2 - 6y + 1} + \sqrt{y^2 - 6y + 9} = \frac{8}{3}$$

$$\Leftrightarrow |3y - 1| + |y - 3| = \frac{8}{3}$$

Nếu $y \ge 3$ thì $|3y-1|+|y-3| \ge 8 > \frac{8}{3}$.

Nếu $y \le \frac{1}{3}$ thì phương trình tương đương: $1 - 3y + 3 - y = \frac{8}{3} \Leftrightarrow y = \frac{1}{3} \Rightarrow x = 1$.

Nếu $\frac{1}{3} < y < 3$ thì phương trình tương đương: $3y - 1 + 3 - y = \frac{8}{3} \Leftrightarrow y = \frac{1}{3}$ không thỏa do $\frac{1}{3} < y < 3$.

• Với x = y + 3, thay vào phương trình thứ hai của hệ ta được:

$$\sqrt{(y+3)^2 - 6y + 1} + \sqrt{y^2 - 2(y+3) + 9} = \frac{8}{3}$$

$$\Leftrightarrow \sqrt{y^2 + 10} + \sqrt{y^2 - 2y + 3} = \frac{8}{3}$$

$$\Leftrightarrow \sqrt{y^2 + 10} + \sqrt{(y-1)^2 + 2} = \frac{8}{3}$$

Ta có $\sqrt{y^2 + 10} + \sqrt{(y-1)^2 + 2} \ge \sqrt{10} + \sqrt{2} > 3 + 1 = 4 > \frac{8}{3}$ nên phương trình này vô nghiệm.

Vậy hệ cho có nghiệm duy nhất $(x; y) = (1; \frac{1}{3})$.

Câu 4.

Phương trình (1) có $ac = 2(-m^2 + 2m - 15) = -2(m-1)^2 - 28 < 0$ nên có hai nghiệm phân biệt trái dấu.

Tương tự phương trình (2) cũng có hai nghiệm phân biệt trái dấu.

Mà $3x_2x_3 = x_1^2 + x_2^2 + x_3^2 + x_4^2 > 0$ nên x_2 và x_3 cùng dấu. Không mất tính tổng quát, giả sử x_1 , x_2 là nghiệm của phương trình (1) và x_3 , x_4 là nghiệm của phương trình (2).

Theo định lý Viete, ta có:
$$\begin{cases} x_1 + x_2 = -\frac{1}{2} \\ x_1 x_2 = -\frac{m^2 - 2m + 15}{2} \end{cases} \text{ và } \begin{cases} x_3 + x_4 = -\frac{3}{2} \\ x_3 x_4 = -\frac{m^2 - 2m + 14}{2} \end{cases}.$$

Khi đó

$$x_1^2 + x_2^2 + x_3^2 + x_4^2 = (x_1 + x_2)^2 + (x_3 + x_4)^2 - 2x_1x_2 - 2x_3x_4$$

$$= \left(-\frac{1}{2}\right)^2 + \left(-\frac{3}{2}\right)^2 - 2\left(-\frac{m^2 - 2m + 15}{2}\right) - 2\left(-\frac{m^2 - 2m + 14}{2}\right)$$

$$= 2m^2 - 4m + \frac{63}{2} = \frac{8m^2 - 16m + 126}{4} = \frac{\left(8m^2 - 16m + 121\right) + 5}{4}$$

$$= \frac{a + 5}{4}\left(a = 8m^2 - 16m + 121\right).$$

Chú ý rằng phương trình (1) và phương trình (2) có cùng:

$$\Delta = 1 - 4 \cdot 2(-m^2 + 2m - 15) = 9 - 4 \cdot 2(-m^2 + 2m - 14) = 8m^2 - 16m + 121 = a > 1.$$

Phương trình (1) có hai nghiệm $x = \frac{-1 + \sqrt{a}}{4}$ hoặc $x = \frac{-1 - \sqrt{a}}{4}$.

Phương trình (2) có hai nghiệm $x = \frac{-3 + \sqrt{a}}{4}$, $x = \frac{-3 - \sqrt{a}}{4}$

Xét trường họp
$$x_1 = \frac{-1 - \sqrt{a}}{4}$$
, $x_2 = \frac{-1 + \sqrt{a}}{4}$, $x_3 = \frac{-3 + \sqrt{a}}{4}$, $x_4 = \frac{-3 - \sqrt{a}}{4}$.

Ta có: $x_2x_3 = \frac{a-4\sqrt{a}+3}{16}$. Yêu cầu bài toán tương đương:

$$\frac{a+5}{4} = \frac{3(a-4\sqrt{a}+3)}{16} \Leftrightarrow 4(a+5)-3(a-4\sqrt{a}+3) = 0$$

\Rightarrow a+12\sqrt{a}+11=0

Phương trình này vô nghiệm.

Xét trường họp
$$x_1 = \frac{-1 + \sqrt{a}}{4}$$
, $x_2 = \frac{-1 - \sqrt{a}}{4}$, $x_3 = \frac{-3 - \sqrt{a}}{4}$, $x_4 = \frac{-3 + \sqrt{a}}{4}$.

Ta có: $x_2x_3 = \frac{a+4\sqrt{a}+3}{4}$. Yêu cầu bài toán tương đương:

$$\frac{a+5}{4} = \frac{3(a+4\sqrt{a}+3)}{16} \Leftrightarrow 4(a+5)-3(a+4\sqrt{a}+3) = 0$$

$$\Leftrightarrow a-12\sqrt{a}+11 = 0 \Leftrightarrow \sqrt{a} = 11(a>1)$$

$$\Leftrightarrow a = 121.$$

Với
$$a = 121$$
, ta có: $8m^2 - 16m + 121 = 121 \Leftrightarrow m^2 - 2m = 0 \Leftrightarrow \begin{bmatrix} m = 0 \\ m = 2 \end{bmatrix}$.

Vậy m = 0 hoặc m = 2 là các trị cần tìm.

Câu 5.

a) Gọi BB' và CC' là đường cao của tam giác ABC.

Tứ giác AC'HB' nội tiếp nên $\widehat{C'HB} = \widehat{C'AB'} = \widehat{BAC}$ do cùng bù với góc $\widehat{C'HB'}$.

Mà
$$\widehat{C'HB} = \widehat{DHE}$$
 nên $\widehat{DHE} = \widehat{BAC}$ (1).

Tam giác
$$OAC$$
 cân tại O nên $\widehat{OAC} = 90^{\circ} - \frac{\widehat{AOC}}{2} = 90^{\circ} - \widehat{ABC} = \widehat{BAH}$.

Mặt khác $\Delta C'AE$ vuông tại C' nên $\widehat{C'AE} + \widehat{AEC'} = 90^{\circ}$ hay $\widehat{DEH} + \widehat{BAE} = 90^{\circ}$.

Suy ra
$$\widehat{DEH} = 90^{\circ} - \widehat{BAE} = 90^{\circ} - \left(\widehat{BAH} + \widehat{HAE}\right) = 90 - \left(\widehat{OAC} + \widehat{HAE}\right) = 90^{\circ} - \widehat{HAC} = \widehat{ACB}.$$

Do đó $\widehat{DEH} = \widehat{ACB}$ (2).

Từ (1) và (2) suy ra tam giác HDE đồng dạng với tam giác ABC.

Ta có $\widehat{DEH} = \widehat{ACB} = 90^{\circ} - \widehat{HAC} = \widehat{AHB'}$ nên HA là tiếp tuyến của (O').

b) Gọi I, L lần lượt là trung điểm của BC và DE. Mà tam giác HDE đồng dạng với tam giác ABC mà O' là tâm đường tròn ngoại tiếp tam giác HDE, O là tâm đường tròn ngoại tiếp tam giác ABC nên hai tam giác LHO' và IAO đồng dạng với nhau nên $\widehat{LHO'} = \widehat{IAO}$ (3).

Ta có $O'L \perp DE$ và $AH \perp HO'$ nên tứ giác AHO'L nội tiếp $\Rightarrow \widehat{LHO'} = \widehat{LAO'}$ hay $\widehat{LHO'} = \widehat{O'AO}$ (4).

Từ (3) và (4) suy ra: $\widehat{IAO} = \widehat{O'AO}$ hay A, O', I thẳng hàng.

Do đó AO' đi qua trung điểm của BC.

Câu 6.

Gọi P là giao điểm của AD và (O) thì P là điểm chính giữa cung BC, X là giao điểm của EP và DH.

Ta có OP là trung trực của DE nên $OP \parallel DH$ dẫn đến $\widehat{DAH} = \widehat{APO} = \widehat{ADH}$ do đó $\triangle AHD$ cân tại H. Do M là trung điểm của DE mà $MP \parallel EK \parallel DX$ nên P là trung điểm của DK và EX.

Nên DEKX là hình bình hành, suy ra $\Delta BDX = \Delta CEK \Rightarrow \widehat{XBD} = \widehat{KCE}$.

Mà $\widehat{DEX} = 90^{\circ}$ nên DP = DX = DE.

Ta có: $XK \parallel BC$ nên BKXC là hình thang cân nội tiếp đường tròn (1).

Ngoài ra tứ giác AHPX nội tiếp do $\widehat{AHD} = \widehat{APX} \Rightarrow DH \cdot DX = DA \cdot DP$.

Mặt khác tứ giác ABPC nội tiếp nên $DA \cdot DP = DB \cdot DC$.

Suy ra $DH \cdot DX = DB \cdot DC$ hay BHCX nội tiếp (2).

Từ (1) và (2) suy ra BHCK là tứ giác nội tiếp.

Câu 7.

Áp dụng bất đẳng thức Cauchy - Schwars, ta có:

$$\sqrt{\frac{x^2 + y^2}{xy(x+y)}} + \sqrt{\frac{2}{x+y}} \le \sqrt{2\left(\frac{x^2 + y^2}{xy(x+y)} + \frac{2}{x+y}\right)} = \sqrt{\frac{2(x+y)^2}{xy(x+y)}} = \sqrt{\frac{2(x+y)^2}{xy}}$$

Viết hai bất đẳng thức tương tự rồi công lai theo vế ta được:

$$\sum \sqrt{\frac{x^2 + y^2}{xy(x+y)}} + \sum \sqrt{\frac{2}{x+y}} \le \sqrt{2} \cdot \sum \sqrt{\frac{(x+y)}{xy}}$$

Do đó ta chỉ cần chứng minh bất đẳng thức sau là bài toán hoàn tất.

$$\sqrt{\frac{2}{x+y}} + \sqrt{\frac{2}{y+z}} + \sqrt{\frac{2}{z+x}} \ge 3$$

Thật vậy, ta có: $\sqrt{\frac{2}{x+y}} = \frac{4}{2\sqrt{2(x+y)}} \ge \frac{4}{2+x+y}$.

Do đó:
$$\sum \sqrt{\frac{2}{x+y}} \ge 4\left(\frac{1}{x+y+2} + \frac{1}{y+z+2} + \frac{1}{z+x+2}\right) \ge \frac{4\cdot 9}{2(x+y+z)+6} \ge \frac{4\cdot 9}{2\cdot 3+6} = 3.$$

Đẳng thức xảy ra khi và chỉ khi x = y = z = 1.

Vậy ta có điều phải chứng minh.

