PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(21) International Application Number: PCT/IB97/00444 (22) International Filing Date: 28 April 1997 (28.04.97) (30) Priority Data:	DER THE PATENT COOPERATION TREATY (PC 1) International Publication Number: WO 97/4 3) International Publication Date: 6 November 1997 (06.1 (81) Designated States: AU, CA, JP, US, European patent (AT, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, PT, SE). Published With international search report.
(22) International Filing Date: 28 April 1997 (28.04.97) (30) Priority Data: 96810273.1 29 April 1996 (29.04.96) EP (34) Countries for which the regional or international application was filed: AT et al. (71)(72) Applicants and Inventors: ZURBRIGGEN, Andreas [CH/CH]; Mühlestrasse 158, CH-3053 Münchenbuchsee (CH), WITTEK, Riccardo [CH/CH]; Chemin de la Mésange (A, CH-1302 Vufflens-la-Ville (CH)	(81) Designated States: AU, CA, JP, US, European patent (AT, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, PT, SE).
71)(72) Applicants and Inventors: ZURBRIGGEN, Andreas (CH/CH); Mühlestrasse 158, CH-3053 Münchenbuchsee (CH). WITTEK, Riccardo (CH/CH); Chemin de la Mésange	mernational search report.
Title: POLYNUCLEOTIDE VACCINE AGAINST CANINE DISTER	

Disclosed are polynucleotide vaccines against the canine distemper virus, methods of preparation of the polynucleotides and the vaccines, and the use of the polynucleotides and the vaccines for prophylactic immunization of mammals susceptive to canine distemper.

CNV-I£

1

POLYNUCLEOTIDE VACCINE AGAINST CANINE DISTEMPER

Technical Field

5

The invention concerns polynucleotide vaccines against the canine distemper virus (CDV), methods of preparation of the polynucleotides and the vaccines comprising them, and the use of the polynucleotides as vaccines for prophylactic immunization of animals susceptible to canine distemper.

Background Art

15 Canine distemper is a highly infectious, acute or subacute, febrile viral disease of dogs and other carnivores, which occurs world-wide. Some dogs show primarily respiratory signs, others intestinal signs and at least 30% of the animals develop neurological symp-20 toms. All experimentally infected dogs have histopathological lesions in the central nervous system. The mortality rate ranges between 30 and 80%. In a minority of cases, dogs that have recovered continue to harbour the virus in brain cells where it replicates slowly and 25 eventually produces old dog encephalitis. The situation is analogous to that of subacute sclerosing panencephalitis in the corresponding human infection, measles. Dogs surviving distemper have life-long immunity to reinfection. Immunization is recommended for the control of 30 distemper in dogs, using attenuated live virus vaccines at the age of 8 weeks and again at 12 to 16 weeks. Annual re-vaccination is recommended.

The importance of effective vaccines against morbillivirus infections is emphasized by recent reports on the discovery of new members of this virus group, affecting both terrestrial and marine mammals (Kennedy et al. 1988; Domingo et al. 1991). There have been several

_

WO 97/41236 PCT/IB97/00444

outbreaks of canine distemper among lions of the Serengeti and lions, tigers and leopards in American zoos (Appel et al. 1994; Leary, 1994). It was surprising, that these big cats are susceptible to CDV. Furthermore, in 5 Australia a disease of horses, acute equine respiratory syndrome (AERS) occurred and it was shown, that the AERS virus belongs to the genus morbillivirus of the paramyxoviridae (Murray, 1994). This virus not only infects horses but is also transmissible to man. Morbil-10 liviruses thus seem to have expanded their host range. Increasing incidence of canine distemper has also been noted in Japan, Finland, Italy and Switzerland despite vaccination. The tested virus isolates were different from vaccine strains, in terms of reactivity with anti-15 bodies raised against the vaccine strains (Mori et al. 1994). In Germany and Switzerland CDV infections among wild carnivores have been reported, and mustelids may be a hidden reservoir of CDV (Alldinger et al. 1994). Recent experiments demonstrated CDV-RNA in bone tissues of hu-20 mans with a chronic bone illness characterized by excessive bone resorption, new bone formation and deformity, the so-called Paget's disease (Gordon et al. 1992). Therefore, CDV has been suggested to be involved in the pathogenesis of Paget's disease. It is well known that 25 CDV can infect bone cells of its natural host (Gordon et al. 1992; Mee et al. 1992). Moreover, bone lesions were observed in young dogs with experimental and spontaneous distemper (Baumgärtner et al. 1995). In addition to acute infections, two members of the morbilliviruses, measles 30 virus and canine distemper virus, also produce a persistent infection.

Canine distemper is caused by CDV, a member of the genus morbillivirus (family paramyxoviridae). CDV is closely related to the viruses of measles and rinderpest.

The canine distemper virions (Fig. 1) are enveloped and contain a negative-strand RNA genome of

3

15'616 nucleotides which has been entirely sequenced for the cell culture adapted Onderstepoort (OP-CDV) strain (Sidhu et al., 1993, and references therein). The viral genome encodes 6 proteins: the nucleocapsid (N) protein, the phosphoprotein (P), the matrix (M) protein, the fusion (F) protein, the hemagglutinine (H) protein, and the large (L) protein. The genes are arranged in the genomic RNA in the order (3'-5'): N, P, M, F, H, and L and each protein is translated from a unique mRNA transcribed from the negative strand RNA template.

The currently used vaccines against canine distemper have a number of drawbacks. They may induce immunosuppression (M. Vandevelde, University of Berne, pers. comm.) or neurological disorders (cited in Ham-15 burger et al., 1991). Even cases of vaccine-induced distemper have been reported (C. Green, University of Georgia; R. Higgins, University of Davis; R. Maes, University of Michigan, pers. comm.). Furthermore, these vaccines are not particularly satisfactory in terms of efficacy 20 since cases of canine distemper in vaccinated dogs are not rare. Thus, of 84 dogs with diagnosed neurologic distemper, 32 had complete, and 21 partial vaccine coverage (Tipold et al., 1994). The incomplete protection provided by the vaccine strains is most likely the consequence of 25 changes occurring in the virus upon cell culture adaptation. Such changes are demonstrated by the fact that after adaptation to cell lines the virus quickly loses its ability to cause disease (Bittle et al., 1962) and that loss of virulence is associated with structural altera-30 tions in the viral nucleocapsid protein (Hamburger et al., 1991). Similarly, the observation that radiolabelled hybridization probes derived from tissue culture-adapted virus failed to detect viral nucleic acids in the brain of animals infected with virulent virus is an indication 35 that the vaccine and virulent strains differ markedly (Mitchell et al., 1987). In view of these differences it is not surprising that immunity induced by vaccine

strains is not able to provide complete protection against virulent virus.

Since the first report of protection of mice against challenge with influenza virus following intra-5 muscular injection of DNA (Ulmer et al., 1993) it has been recognized that injection of naked nucleic acids encoding vaccine antigens represents a potent novel avenue in vaccine development (review: Montgomery et al., 1994). The advantages of nucleic acid vaccines are obvious. Such 10 vaccines should be safe, since no live organisms are used. Furthermore, plasmid DNA is easy and cheap to produce and is stable even in adverse climatic conditions which makes DNA vaccines particularly attractive for developing countries. An additional advantage is that new 15 plasmids can be constructed and tested in a relatively short time which is important for designing vaccines against pathogens for which the protective antigens have not yet been identified. Perhaps the most attractive feature of nucleic acid vaccines is that they induce both 20 antibody and cell-mediated immune responses (Ulmer et al., 1993).

Several methods for delivering DNA are currently available (review: Montgomery et al., 1994). The most convenient method is direct injection into muscle tissue (Wolff et al., 1992).

Disclosure of the invention

Object of the presented invention is to produce novel nucleic acid vaccines against canine distemper
which lack the drawbacks of hitherto vaccines against
this disease. In particular, said vaccine is a polynucleotide vaccine containing virulent canine distemper virus genes which are important for eliciting neutralizing
antibodies, and which are essential for cell-mediated immunity. These genes are to be inserted into expression
plasmids which after delivery to living tissues produce

an immunizing effect. It is believed that a nucleic acid vaccine containing genes of virulent distemper virus has significant advantages in terms of efficacy over conventional attenuated vaccine strains which differ markedly

- from virulent virus. Furthermore, no reversion to virulence, which has been demonstrated for distemper virus vaccine strains (Appel, 1978) and which may result in distemper outbreaks in vaccinated animals is possible (Bush et al., 1976; Carpenter et al., 1976; Hartley et al.,
- 10 1974). In addition, the inclusion of different genes in combination in the nucleic acid vaccine will generate both a humoral and a cellular immune response. A further advantage of a nucleic acid vaccine against canine distemper is that such a vaccine, in contrast to conven-
- tional live vaccine strains, will not induce immunesuppression. This is particularly important when the canine distemper vaccine is administered together with other components in a multivalent vaccine. In this situation, immunesuppression of the host renders other live vaccine
- components more virulent, possibly resulting in disease induced by these vaccine strains. Immunesuppression by canine distemper vaccine strains also reduces the immune response to inactivated components contained in a multivalent vaccine. A nucleic acid vaccine against canine
- 25 distemper will not have these undesirable side effects. Thus, the inventive vaccine is im many aspects superior to hitherto known vaccines.

Brief Description of the Sequence Listings and the Figures:

SEQU ID NO 1 shows the primer sequence corresponding to the leader of CDV strain A75/17;

SEQU ID NO 2 shows the primer sequence corre-35 sponding to the end of the N gene of CDV strain A75/17;

SEQU ID NO 3 shows the primer sequence corresponding to the M gene at position M 116 of strain OP-CDV;

SEQU ID NO 4 shows the primer sequence corre-5 sponding to the F gene at position F 1092 of strain OP-CDV;

SEQU ID NO 5 shows the primer sequence corresponding to the F gene at position F 177 of strain OP- CDV:

SEQU ID NO 6 shows the primer sequence corresponding to the F gene at position F 2058 of strain OP-CDV;

SEQU ID NO 7 shows the primer sequence corresponding to the F gene at position F 2002 of strain OP-

SEQU ID NO 8 shows the primer sequence corresponding to the H gene at position H 716 of strain OP-CDV;

SEQU ID NO 9 shows the primer sequence corre-20 sponding to the H gene at position H 675 of strain OP-CDV;

SEQU ID NO 10 shows the primer sequence corresponding to the L gene at position L 78 of strain OP-CDV;

SEQU ID NO 11 shows the primer sequence for generating the 5' end of the N gene with a Kpn I restriction site;

SEQU ID NO 12 shows the primer sequence for generating the 3' end of the N gene with a Sal I restriction site:

SEQU ID NO 13 shows the primer sequence F1 corresponding to the F gene of strain OP-CDV at position 1 with a Mlu I restriction site;

SEQU ID NO 14 shows the primer sequence F2 35 corresponding to the F gene of strain OP-CDV at position 2033;

30

SEQU ID NO 15 shows the primer sequence F3 corresponding to the F gene of strain OP-CDV at position 2014;

SEQU ID NO 16 shows the primer sequence F4

5 corresponding to the F gene of strain OP-CDV at position 2095 with a Sal I restriction site;

SEQU ID NO 17 shows the primer sequence H1 corresponding to the H gene of strain OP-CDV at position 18 with a Kpn I restriction site;

SEQU ID NO 18 shows the primer sequence H2 corresponding to the H gene of strain OP-CDV at position 705;

SEQU ID NO 19 shows the primer sequence H3 corresponding to the H gene of strain OP-CDV at position 684;

SEQU ID NO 20 shows the primer sequence H4 corresponding to the H gene of strain OP-CDV at position 1835 with a Sal I restriction site:

SEQU ID NO 21 shows the sequence corresponding to the N gene of virulent CDV strain A75/17. Position 1 corresponds to 5' end of the N mRNA. The translation initiation (ATG) and termination (TAA) codons are underlined;

SEQU ID NO 22 shows the sequence corresponding to the F gene of virulent CDV strain A75/17. Position corresponds to 5' end of the F mRNA.

SEQU ID NO 23 shows the sequence corresponding to the H gene of virulent CDV strain A75/17. Position 1 corresponds to 5' end of the H mRNA.

Figure 1 shows a schematic representation of the CDV particle. The location of the viral M, H, F, N, P and L proteins are indicated.

Figure 2 shows the expression plasmid H/CMV5 for the CDV H gene of strain A75/17.

Figure 3 shows the expression plasmid H/pCI for the CDV H gene of strain A75/17.

Figure 4 shows the expression plasmid N/CMV5 for the CDV N gene of strain A75/17.

Figure 5 shows the expression plasmid N/pCI for the CDV N gene of strain A75/17.

Figure 6 shows the expression plasmid F/CMV5 for the CDV F gene of strain A75/17.

Figure 7 shows the expression plasmid F/pCI for the CDV F gene of strain A75/17.

Figure 8 shows CTL assays of mice immunized with plasmid N/pCI or empty vector after 2nd immunization.

Figure 9 shows CTL assays of mice immunized with plasmid N/pCI or empty vector after 3rd immunization.

Figure 10 shows anti-N antibody titers of dogs immunized with standard vaccine or with plasmid N/pCI.

20

Modes for Carrying out the Invention

In one embodiment the invention concerns a nucleic acid construct comprising a canine distemper virus gene, wherein said nucleic acid construct is capable of inducing the expression of an antigenic canine distemper virus gene product which induces a canine distemper virus specific immune response upon introduction of said nucleic acid construct into animal tissue in vivo and resultant uptake of the nucleic acid construct by the cells which express the encoded canine distemper virus gene.

The nucleic acid construct is a DNA or RNA construct, preferably a DNA construct.

The invention concerns in particular a nucleic acid construct, wherein the canine distemper virus gene encodes the nucleocapsid (N) protein, the phosphoprotein (P), the matrix (M) protein, the fusion (F)

WO 97/41236

PCT/IB97/00444

9

protein, the hemagglutinin (H) protein, or the large (L) protein.

The nucleic acid construct is in particular such, wherein the canine distemper virus gene encodes the nucleocapsid (N) protein, the fusion (F) protein, or the hemagglutinin (H) protein.

Prefered DNA constructs are the plasmids H/CMV5 and H/pCI, which encode the hemagglutinin (H) protein, the plasmids F/CMV5 and F/pCI, which encode the fusion (F) protein of canine distemper virus strain A75/17, and in particular the plasmids N/CMV5 and N/pCI, which encode the nucleocapsid (N) protein,.

Nucleic acids coding for polypeptides of the wild-type strain A75/17 and expression vectors for the expression of such polypeptides *in vivo* are of particular importance because this strain induces distemper.

The present nucleic acid constructs are in particular expression plasmids comprising at least one and preferably one of the canine distemper genes operatively linked to a promotor and optionally to other sequences improving the expression of the gene, e.g. such as an enhancer, as well as an appropriate terminator sequence. Expression plasmids comprising such functional sequences necessary for expression of the gene are known in the art, and are e.g. plasmids CMV5 and pCI.

In another embodiment the invention concerns a polynucleotide vaccine comprising an effective amount of a nucleic acid construct, e.g. a DNA or RNA construct, and a physiologically acceptable carrier. Said vaccine induces neutralizing antibodies against canine distemper virus, canine distemper virus specific cytotoxic lymphocytes, or protective immune reponses upon introduction thereof into animal tissue in vivo, wherein said animal is a mammal, a human, and in particular a dog.

In particular preferred is a polynucleotide vaccine comprising one or more of the plasmids selected from N/CMV5 or N/pCI, which encode the nucleocapsid (N)

35

protein, H/CMV5 or H/pCI, which encode the hemagglutinin (H) protein, or F/CMV5 or F/pCI which encode the fusion (F) protein of the virulent canine distemper virus strain A75/17, and a physiologically acceptable carrier.

Physiologically acceptable vaccine carriers are known in the art and are e.g. physiologically acceptable injectable fluids, such as buffer solutions, e.g. phosphate-buffered saline (PBS) of appropriate pH, preferably of between about 7 to about 7.4, or injectable liposome preparations. The vaccine may also contain an adjuvant or a transfection facilitating agent. The vaccine comprises an effective, that is an immunizing amount of a nucleic acid construct of the present invention, or a combination of two or more constructs, e.g. in a concentration of about 0.01 to 100, preferably about 0.1 to 1 mg/ml.

In yet another aspect of the invention one or more inventive constructs, each of which is carrying at least one of the canine distemper genes, are components of a multivalent vaccine. The components of said multivalent vaccine can be packed in admixed form or one or more components can be packed separatedly from other components but are administered either together, i.e. after mixing, or separatedly but almost simultaneously, i.e. a second administration directly after a first one.

In another embodiment the invention concerns a method for protecting an animal susteptible to infection by canine distemper virus which comprises immunization of said animal with a prophylactically effective amount of at least one polynucleotide construct comprising a gene of canine distemper virus optionally together or simultaneously with at least one other component as a multivalent vaccine.

A number of animals are known as being sus-35 ceptible to canine distemper virus. Such animals are in particular mammals, such as carnivors, in particular dogs, and also humans.

In particular prefered is the method, wherein the polynucleotide is administered directly into tissue, preferably into muscle tissue, in vivo. The polynucleotide may be administered either in naked form in a physiologically acceptable solution, or contained in a liposome, or in a mixture with an adjuvant or a transfection facilitating agent. In particular prefered ist the method of using a vaccine according to the present inven-

In another embodiment the invention concerns a method for using a canine distemper virus gene to induce an immune response in vivo which comprises:

a) isolating the gene

tion.

- b) linking the gene to regulatory sequences

 such that the gene is operatively linked to control sequences which, when introduced into a living tissue, direct the transcription of the gene and subsequent translation of the mRNA, and
 - c) introducing the gene into a living tissue.
- In particular preferred is the method, which comprises multiple introduction of the canine distemper gene for boosting the immune response.

In particular preferred is the method, wherein the canine distemper gene encodes the nucleocapsid (N)
25 protein, the hemagglutinin (H) protein, or the fusion (F) protein of canine distemper virus strain A75/17.

In particular prefered is the method, wherein the canine distemper gene product for immunization is selected from the plasmids F/CMV5 or F/pCI, H/MCV5 or H/pCI, N/CMV5 or N/pCI which encode proteins of the wild type canine distemper virus strain A75/17, or a combination of those plasmids.

In another embodiment the invention concerns a composition of nucleic acid constructs encoding CDV

35 genes from more than one canine distemper virus strain.

In another embodiment the invention concerns the use of an isolated canine distemper gene operatively

12

linked to one or more control sequences for the preparation of a vaccine for use in immunization against infection by CDV.

The following examples serve to further describe the invention, however, they should not be construed as a limitation thereof.

Example 1: Preparation of cDNA clones from canine distemper virus strain A75/17 (wild type) infected primary dog brain cell cultures

a) Preparation of cytoplasmic RNA

Primary dog brain cell cultures (DBCC) were prepared as described by Zurbriggen and Vandevelde, 1984.

DBCC were infected 10-14 days after seeding, when confluency was reached, with the virulent canine distemper virus strain A75/17 (Zurbriggen et al., 1993).

About 40 days after infection, RNA was prepared from infected DBCC grown in 9-cm diameter cell cul-20 ture petri dishes as follows: The medium was removed and replaced by 1ml of ice-cold buffer A (150 mM NaCl, 1.5 mM MgCl2, 10mM Tris, pH 7.8) The cells were scraped off with a rubber policeman and transferred to a centrifuge tube. The tube was kept on ice for 10 min and then centrifuged 25 for 3 min at 1000 x g. The supernatant was transferred to a new tube. The pellet was resuspended in 1ml of ice-cold buffer A and again centrifuged for 3 min at 1000 x g. The supernatant was combined with the first. To the combined supernatants, 2 ml of 7 M urea, 350 mM NaCl, 10 mM EDTA, 30 10 mM Tris pH 7.9, 1% SDS was added. The obtained mixture was extracted with 4 ml of phenol-chloroform (1:1) and the resulting aqueous phase treated with 3 volumes of EtOH. The precipitated RNA was centrifuged and suspended in 100 µl of PBS.

35

15

b) Synthesis of cDNA

A series of overlapping cDNA clones from the CDV genome was obtained as outlined below. The procedure is described for generating clones containing the entire N, F and H gene sequences. The M, P and L genes may be isolated in the same manner using specific primers for these genes.

c) First strand cDNA

Primers used for first strand cDNA synthesis
were selected on the basis of the published sequence of
the OP-CDV vaccine strain (Sidhu et al., 1993). They are
located in regions which are highly conserved in Morbilliviruses. The 10 primers used and their sequence identification numbers SEQ ID NO 1 to 10 are given hereinafter.

Reaction mixtures for cDNA synthesis contained: 24.5 μl H₂O, 10 μl 5X AMV reverse transcription buffer, 1 μl of a 75 μM dNTP solution, 2,5 μl of a 40 μM primer solution, 1 μl RNAse inhibitor, 1 μl AMV reverse transcriptase (5 units/μl), 10 μl of the above obtained RNA/PBS solution. Samples were incubated for 2 h at 42°C and then heated at 75°C for 10 min.

e) Synthesis of double stranded cDNA

Double stranded cDNA was synthesized using polymerase chain reaction (PCR). Reaction mixtures for amplification of a specific region of the CDV genome contained both the 3' and 5' primers (see SEQ ID NOs). Synthesis was performed in a volume of 100 µl and contained the following: 77.4 µl H₂O, 10 µl 10X Taq buffer, 1.1 µl of a solution containing all 4 dNTPs at 20 µM each, 0.5 µl of a 40 µM primer solution, 1 µl of Taq polymerase (0.5 units/µl) and 10 µl of first strand cDNA, heated to 75°C for 10 min and then cooled on ice. PCR reactions were performed for 30 cycles under standard conditions.

f) Cloning of cDNA

PCR amplified cDNA was cloned into the pCR II vector (Invitrogen) using standard conditions (Sambrook et al., 1989).

g) Assembly of contiguous genes

The procedure described above for producing cDNA clones resulted in the isolation of the complete N gene.

For the F and H genes, a series of overlap-10 ping clones was obtained. To assemble these genes into contiguous DNA segments, recombinant PCR (Ho et al., 1989) was used.

Example 2: Preparation of the N Gene

Appropriate 5' and 3' ends for insertion of the N gene into expression plasmids were generated by PCR. The following primers were used:

20

N1, SEQ ID NO 11: 5' GGG GTA CCT CAG GGT TCA GAC CTA CCA 3', for generating the 5' end of the gene; and

N2, SEQ ID NO 12: 5' GCG TCG ACG ACT GAT GTA ACA CTG GTC T 3', for generating the 3' end.

This created KpnI and SalI sites at the 5' and 3' ends, respectively. PCR reactions were performed under standard conditions.

Example 3: Preparation of the F Gene

The primers F1-F4 used in this experiment were designed according to partial sequences of the A75/17. However, the positions of the underlined nucleotides correspond to the positions of the of the OP-CDV genes according to Barrett et al., 1987. The primers were synthesized with a nucleic acid synthesizer machine.

F1, SEQ ID NO 13: 5' CGA CGC GTA GGG TCC AGG ACG TAG CA 3', position 1;

F2, SEQ ID NO 14: 5' $\underline{\text{CAG}}$ GTT TAA ATG TCG GAT CG 3', position 2033;

F3, SEQ ID NO 15: 5' $\underline{\text{CGA}}$ TCC GAC ATT TAA ACC TG 3', position 2014;

F4, SEQ ID NO 16: 5' GCGTCG ACA AGA CGT GTG ACC AGA GTG 3', position 2095.

The F gene was isolated as 3 overlapping clones. First, the 5' portion of the gene was assembled. 10 A first cDNA clone containing parts of the M and F genes was cleaved with SacI in the vector DNA and with HindIII at position 687 in the F gene and the fragment of 2035 bp was isolated. A second cDNA clone, containing most of the F gene coding sequences in reverse orientation with re-15 spect to the first clone, was also cleaved with HindIII and SacI. The 1405 bp fragment was isolated. Both fragments were ligated into the pBluescript (Stratagene, La Jolla, CA) plasmid cleaved with SacI. To add the 3' end of the F gene, and to generate correct 5' and 3' ends for 20 cloning into expression plasmids, PCR was used. The 5' portion of the gene was amplified by PCR using primers F1 (5' CGA CGC GTA GGG TCC AGG ACG TAG CA 3') and F2 (5' CAG GTT TAA ATG TCG GAT CG 3') and the DNA fragment was purified by gel electrophoresis on an agarose gel. Similarly, 25 the 3' portion of the gene was amplified by PCR with primers F3 (5' CGA TCC GAC ATT TAA ACC TG 3') and F4 (5' GCGTCG ACA AGA CGT GTG ACC AGA GTG 3') and purified. Finally, the two parts of the gene were assembled by recombinant PCR using the gel purified 5' and 3' portions of 30 the gene and primers F1 and F4. This allowed to synthesize the entire F gene as 1 contiguous DNA segment with Mlu I and Sal I sites at the 5' and 3' ends, respectively, for cloning into expression plasmids.

Example 4: Preparation of the H Gene
The primers H1-H4 used in this experiment
were designed according to partial sequences of the

A75/17 genome. However, the positions of the underlined nucleotides correspond to the positions of the OP-CDV genes according to Curran et al., 1991. The primers were synthesized with a nucleic acid synthesizer machine.

5

H1, SEQ ID NO 17: 5' GCG GTA CCA CAA TGC TCT CCT ACC AG 3', position 18;

H2, SEQ ID NO 18: 5' CAT ACA CTC CGT CTG AGA TAG C 3', position 705;

H3, SEQ ID NO 19: 5' GCT ATC TCA GAC GGA GTG TAT G 3', position 684;

H4, SEQ ID NO 20: 5' GCG TCG ACT TAA CGG TTA CAT GAG AAT CT 3', position 1835:

The H gene coding sequences were cloned as 2 1.5 overlapping cDNA clones. The gene was assembled by PCR technology. First, the 5' portion of the gene was amplified by PCR using primers H1 (5' GCG GTA CCA CAA TGC TCT CCT ACC AG 3') and H2 (5' CAT ACA CTC CGT CTG AGA TAG C 20 3') and the resulting DNA fragment was isolated. The 3' portion of the gene was amplified with primers H3 (5' GCT ATC TCA GAC GGA GTG TAT G 3') and H4 (5' GCG TCG ACT TAA CGG TTA CAT GAG AAT CT 3') and the DNA fragment was also isolated. The two portions of the gene were fused in a 25 recombinant PCR reaction containing both DNA fragments and primers H1 and H4. This resulted in the synthesis of a DNA fragment containing the entire H gene coding sequences with a KpnI site at the 5' end and a SalI site at the 3' end for cloning into expression plasmids.

30

Example 5: Cloning into eukaryotic expression plasmids

The recombinant PCR products were purified by gel electrophoresis on an agarose gel. The ends were rendered blunt by Klenov polymerase and the fragments were cloned into the EcoRV site of the plasmid pBluescript (Stratagene, La Jolla, CA) and amplified. The inserts

were isolated from plasmids containing the F gene by digestion with MluI and SalI and from plasmids harboring the N and H genes by KpnI and SalI.

The fragments were then cloned either into the plasmid pCI (Promega) or into plasmid pCMV-5 (Andersson et al., 1989). The obtained expression plasmids F/CMV5, F/pCI, H/CMV5, HCPI, N/MCV5 and N/pCI were purified according to standard methods and are shown in Figures 2 to 7.

10

Example 6: Preparation of vaccines

Vaccines are prepared by dissolving one or more of the obtained expression plasmids in sterilized PBS of pH 7.4 in a concentration of 1 mg/ml. The vaccine solution may be freshly prepared just before use or filled under sterile conditions in vials of appropriate size.

Example 7: Antibody response in mice immunized with N/pCI

The immune response following intramuscular injection of plasmid N/pCI was tested in mice. Two independent experiments were performed. In the first one 25 (Table 1, Experiment No. I), 5 Balb-c mice were injected with plasmid N/pCI purified by the Qiagen procedure (Qiagen Inc, Chatsworth, CA, USA) according to the instructions of the supplier. Five mice were injected with empty vector DNA purified in the same manner. As a fur-30 ther control, 5 animals were injected with PBS alone. In the second experiment (Experiment No. II) 5 mice were injected with plasmid pCI/N purified by cesium chloride gradient centrifugation (Sambrook et al., 1989) and 5 mice with empty vector DNA purified by the same proce-35 dure. In both experiments each animal was injected with 100 µg of DNA in PBS at a concentration of 1 mg/ml, receiving 50 µg in each quadriceps muscle per inoculation.

A total of 4 inoculations were performed at biweekly intervals. Two weeks after the last injection the animals were sacrificed and the serum was collected.

Antibody titers were determined by ELISA us-5 ing serially diluted mouse sera. Maxisorp ELISA plates (Nunc, Roskilde, Denmark) were coated with 50 ng of recombinant N protein per well in carbonate/bicarbonate buffer (15 mM Na₂CO₃, 35 mM NaHCO₃, 0,02% NaN₃, pH 9.6) at 4°C for 16 hours. After 3 washes with TBS-T (137 mM NaCl, 10 2.68 mM KCl, 24.7 mM Tris, 0.05 % Tween-20; pH 7.5) the plates were blocked at room temperature for 60 min with PBS-T/LM (PBS containing 0.05% Tween-20 and 2% low fat milk powder. The plates were subsequently washed 3 times with TBS-T before adding 50 µl of the mouse sera diluted 15 in PBS-T/LM. After incubation at 37°C for 60 min. and 3 washes with TBS-T, horseradish peroxidase-labelled goat anti-mouse IgG (Sigma, St. Louis, MO, USA), diluted 1000-fold in PBS-T/LM was added as the secondary antibody. The plates were incubated at 37°C for 60 min and 20 then washed 3 times with TBS-T. Finally, 50 µl of a solution of 1 mg/ml of 1,2 phenylene-diamine in 0.1 M Nacitrate, pH 5.0, containing 0.001 volumes of 30% H_2O_2 was added per well. The reaction was stopped with 50 µl of 4 M H₂SO₄ per well, and the optical density was read at a 25 wave length of 490 nm in a Microplate reader 3550 (Bio-Rad Laboratories, Hercules, CA, USA).

The results (Table 1) show that in contrast to control animals, all animals injected with plasmid N/pCI had significant anti-N antibody titers of up to 1:25'600. Intramuscular injection of plasmid N/pCI thus induces a good immune response, demonstrating the usefulness of the proposed vaccine for protecting animals against canine distemper.

Table 1: Anti-N antibody titers in mice injected with plasmid N/pCI

Experiment No.	Treatment	ExpMousie No.	Titer
		l - 1	< 1 : 50
		l-2	< 1:50
I	PBS	I 3	< 1:50
	-]4	< 1 : 50
	reconstruction	15	< 1:50
		I - 6	1:200
		, II- 7	1:200
I	pCi	I- 8	1:200
		I. 9	1 : 200
THE NAMES FOR STOLEN AND ADMINISTRATION OF THE RESIDENCE OF THE PARTY	· · · · · · · · · · · · · · · · · · ·	1-110	I : 200
		[-] I	1: 800
		I-1:2	1: 1600
I	N/pCl	I-1.3	l : 3200
		I-1.4	I: 6400
		I-1.5	1 : 25600
		II- 1	< 1 : 50
	***************************************	II- :2	< 1:50
II	pCl	II-3	< 1:50
777		II-4	< 1:50
		11-5	< 1:50
		II-6	l : 3200
		II-7	1: 1600
11	N/pCl	II- 8	1: 200
A CONTRACTOR OF THE CONTRACTOR	West state of the control of the con	[]- 9	1:12800
**************************************	***************************************	II-30	1: 3200

Example 8: CTL response in mice immunized with N/pCI

Groups of 4 mice were immunized by either 1, 5 2, or 3 intramuscular injections at 21-day intervals with a total of 100 µg of plasmid N/pCI. Control animals were injected with empty vector. Twelve days after the first, second, or third injection the mice were sacrificed and the spleen was removed. Splenocytes were isolated using a 10 cell strainer and resuspended in DMEM supplemented with 5% heat-inactivated fetal calf serum, 100 µg/ml penicillin, 100 U/ml streptomycin, 0.05 mM β -mercaptoethanol, 10 mM HEPES, and non-essential amino acids. The cells were then stimulated by incubation with a synthetic 9 amino 15 acid peptide (YPALGLHEF) which has been shown to represent a CTL epitope in the measles virus N protein (Beauverger et al., 1993) and which is conserved in CDV strains Onderstepoort and A75/17. The peptide was used at a concentration of 10 μM . After 5-7 days the cells were 20 counted in Trypan blue and adjusted to 2 x 106 viable cells/ml. The cells were then diluted into microtiter plates to yield effector to target cell ratios ranging from 100:1 to 0.1:1.

P 815 mastocytoma cells were used as targets
for the CTL assay. Briefly, 10⁶ cells were incubated for
1 hour at room temperature with the CTL peptide at a final concentration of 1 μM. Control cells were incubated
in the absence of the peptide. After incubation, the
cells were centrifuged and resuspended in 100 μl of medium. Then, 100-150 μCi of ⁵¹Cr was added and the cells
were incubated for 1 hour at 37°C with occasional shaking. The cells were then washed extensively before adding
2 x 10³ target cells per well of effector cells. Target
and effector cells were incubated 37°C for 4-5 hours. The
plates were then centrifuged and from each well 100 μl of
medium was removed and the radioactivity was counted in a
gamma counter. The radioactivity released by control

21

cells incubated without the CTL peptide was subtracted from the value obtained from cells incubated with the peptide. The resulting value was used to calculate percentage specific lysis.

immunization (not shown). Importantly, however, after 2 and 3 injections of plasmid N/pCI all mice showed high CTL activity. In contrast, control mice immunized with the empty vector showed very little CTL activity (Fig. 8). Fig. 8 represents CTL assay of mice immunized with plasmid N/pCI or with empty plasmid. Per cent specific lysis was obtained by subtracting the value of non specific lysis of target cells incubated with effector cells in the absence of the CTL peptide. Each curve represents the values obtained with splenocytes from one mouse. Solid line: mice immunized with plasmid N/pCI; broken line: mice immunized with empty vector. The effector (E) to target (T) cell ratio is indicated.

20

Example 9: Immunization of dogs with N/pCI

Beagle dogs of 6 weeks of age were used for immunization experiments. Five control animals (Fig. 9, dogs 1-5) received intramuscular injections of a commercially available multivalent vaccine (standard vaccine) containing inactivated canine adenovirus, parainflunza virus, parvovirus, leptospira and live CDV Onderstepoort strain. Ten dogs (dogs 6-15) were injected into one quadriceps muscle with 100 µg of plasmid N/pCI. Standard vaccine lacking the CDV component was injected into the other quadriceps. A total of 3 injections were performed at 2-week intervals. Before the first, and 2 weeks after each injection (I-III) blood samples were drawn and anti-Nantibody levels were determined by ELISA using recombinant CDV N protein as antigen as described for ELISA assays in mice. With standard vaccine, anti-Nantibody

PCT/IB97/00444

22

titers were already elevated with respect to the preimmune serum after the first vaccination and then reached
a plateau. With plasmid N/pCI, in most animals the titers
were low after the first and second injection. However,
after the third injection, the titers increased and in
some animals reached values similar to those obtained
with standard vaccine.

The results obtained are visualized in Figure 9. Titers were determined 2 weeks after the first (I), second (II), or third (III) immunization and are represented as the highest serum dilution in which the OD value measured in the ELISA assay was at least twice as high as the value of the corresponding pre-immune serum at the same dilution.

15

A toxicity test was performed according to the description of the European Pharmacopoeia. Five healthy mice and two healthy guinea pigs were injected with the polynucleotide vaccine as described above. The animals were observed for 7 days. None of the animals showed local or systemic reactions.

REFERENCES

25

Alldinger, S., van Moll, P., Baumgärtner, W. and Adami, M. (1994): Distemper in wild carnivors: an epidemiological, histological and immunocytochemical study. Int. Symposium on Morbillivirus Infections, Han-

Andersson, S., Davis, D. N., Dahlback, H., Jornvall, H. and Russel, D. W. (1989): Cloning, structure, and expression of the mitochondrial cytochrome P-450 sterol 26-hydroxylase, a bile acid biosynthetic enzyme. J. Biol Chem. 264, 8222-8229.

Appel, M. J. G. (1978): Reversion to virulence of attenuated canine distemper virus in vivo and in vitro. J. gen. Virol. 41, 385-393.

Appel, M. J. G., Yates, R. A. and Foley, G. 5 L. (1994): Canine distemper epizootic in lions, tigers and leopards in North America. J. Vet Diagn. Invest 6, 277-288.

Barrett, T., Clarke, D. K., Evans, S. A. and Rima, B. K. (1987): The nucleotide sequence of the gene encoding the F protein of canine distemper virus: a comparison of the deduced amino acid sequence with other paramyxoviruses. Virus. Res. 8:373-386.

Baumgärtner, W., Boyce, R. W., Weisbrode, S. E., Alldinger, S., Axthelm, M. K. and Krakowka, S.

15 (1995): Histological and immunocytochemical characterization of canine distemper-associated metaphyseal bone lesions in young dogs following experimental infection. J. Bone Miner. Res. submitted.

Beauverger, P., Buckland, R. and Wild, T.F. (1993): Measles virus antigens induce both type-specific and canine distemper virus cross-reactive cytotoxic T lymphocytes in mice: localization of a common Ldrestricted nucleoprotein epitope. J. gen. Virol. 74, 2357-2363.

Bittle, J., York, Ch. and Newberne, J. (1961): Modification of a strain of canine distemper virus in tissue culture. Cornell Vet. 51, 359-369.

Bush, M., Montali, R. J., Brownstein, D., James, A. E., Jr. and Appel, M. J. (1976): Vaccine-

induced canine distemper in a lesser panda. J. Am. Vet. Med. Assoc. 169, 959-960.

Carpenter, J. W., Appel, M. J., Erickson, R. C. and Novilla, M. N. (1976): Fatal vaccine-induced canine distemper virus infection in black-footed ferrets.

35 J. Am. Vet. Med. Assoc. 169, 961-964.

Curran, M. D., Clarke, D. K. and Rima, B. K. (1991): The nucleotide sequence of the gene encoding the

attachment protein H of canine distemper virus. J. gen. Virol. 72:443-447.

Domingo, M., Ferrer, L., Pumarola, M., Marco, A., Plana, J., Kennedy, S., Mc., Aliskey, M. and Rima, B.

- Gordon, M. T., Mee, A. P., Anderson, D. C. and Sharpe, P. T. (1992): Canine distemper virus transcripts sequenced from pagetic bone. J. Bone Miner. Res. 19 (2), 159-174.
- Hamburger, D., Griot, C., Zurbriggen, A., Örvell, C. and Vandevelde, M. (1991): Loss of virulence of canine distemper virus is associated with a structural change recognized by a monoclonal antibody. Experientia 47, 842-845.
- Hartley, W. J.(1974): A post-vaccinal inclusion body encephalitis in dogs. Vet. Pathol. 11, 301-312.

 Ho, S. N., Hunt, H. D., Horton R. M., Pullen, J., K. and Pease, L., R. (1989): Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-59.

Kennedy, S., Smyth, J. A., Cush, P. F., McCullough, S. J., Allan, G. M. and McQuaid, S. (1988): Viral distemper now found in porpoises. Nature 336, 21.

Leary, W.E. (1994): A mysterious disease

25 strikes Serengeti lions. N.Y. Times, June 1994.

30

Mee, A. P., Webber, D. M., May, C., Bennett, D., Sharpe, P. T. and Anderson, D. C. (1992): Detection of canine distemper virus in bone cells in the metaphyses of distemper-infected dogs. J. Bone Miner. Res. 7, 829-834.

Mitchell, W. J., Russel, S. E., Clark, D. K., Rima, B. K. and Appel, M. J. (1987): Identification of negative strand and positive strand RNA of canine distemper virus in animal tissues using single stranded RNA probes. J. Virol. Methods 18, 121-131.

Montgomery, D. L., Donnelly, J.J., Shiver, J. J., Liu, M. A. and Ulmer, J. B. (1994): Protein expres-

sion in vivo by injection of polynucleotides. Current Opinion in Biotechnology, 5, 505-510.

Mori, T., Shin, Y.-S., Okita, M., Hirayama, N., Miyashita, N., Gemma, T., Kai, C. and Mikami, T.

5 (1994): The biological characterization of field isolates of canine distemper virus from Japan. J. gen. Virol. 75, 2403-2408.

Murray, G. (1994): New equine respiratory disease in Brisbane, Australia. Australian Animal Health Laboratory (AAHL).

Sambrook, J., Fritsch, E. F. and Maniatis T. (1989): Molecular cloning: a laboratory manual, 2nd ed., Cold Spring Harbor Laboratory, Cold spring Harbor, N. Y. Sidhu, M. S., Husar, W., Cook, S. D., Dowl-

ing, P. C. and Udem, S. A. (1993): Canine distemper terminal and intergenic non-protein coding nucleotide sequences: Completion of the entire CDV genome sequence. Virology 193, 66-72.

Tipold, A., Jaggi, A., Zurbriggen, A. and
Vandevelde, M. (1994): Neurologische Symptome bei Hundestaupe-eine klinische Studie. Wien. Tierärztl. Mschr. 81,
274-279.

Ulmer, J. B., Donnelly, J. J., Parker, S. E., Rhodes, G. H., Felgner, P. L., Dwarki V. J., Gromkowski,

- 25 S. H., Deck, R. R., DeWitt, C. M., Friedman, A., Hawe, L. A., Leander, K. R., Martinez, D. Perry, H. C., Shiver, J. W., Montgomery, D. L. and Liu, M. A. (1993): Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745-1749.
- Vandevelde, M., Zurbriggen, A., Steck, A. and Bichsel, P.(1986): Studies on the intrathecal humoral immune response in canine distemper encephalitis. J. Neuro-immunol. 11, 41-51.

Wolff, J. A., Ludtke, J. J., Ascadi, P., Wil35 liams, P. and Jani, A. (1992): Long-term persistence of
plasmid DNA and foreign gene expression in mouse muscle.
Hum. Mol. Genet. 1, 363-369.

WO 97/41236

26

PCT/IB97/00444

Zurbriggen, A. and Vandevelde, M. (1984): Morphological and immunocytochemical characterisation of mixed glial cell cultures derived from neonatal canine brain. Res. Vet. Science 36, 270-275.

Zurbriggen, A. Yamawaki, M. and Vandevelde, M. (1993): Restricted canine distemper virus infection of oligodendrocytes. Laboratory investigation 68, 277-284.

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	(i) APPLICANT: (A) NAME: Wittek, Riccardo (B) STREET: Ch. de la mésange lA (C) CITY: Vufflens-la-Ville (E) COUNTRY: Switzerland (F) POSTAL CODE (ZIP): 1302 (i) APPLICANT: (A) NAME: Zurbriggen, Andreas (B) STREET: Mühlestrasse 158 (C) CITY: Münchenbuchsee (E) COUNTRY: Switzerland (F) POSTAL CODE (ZIP): 3053
20	(ii) TITLE OF INVENTION: Polynucleotide Vaccine against Canine Distemper
	(iii) NUMBER OF SEQUENCES: 23
25	(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
30	(D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
	(V) CURRENT APPLICATION DATA: APPLICATION NUMBER:
35	(2) INFORMATION FOR SEQ ID NO:1:
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 nucleotides (B) TYPE: deoxyoligonucleotide (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA
45	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
50	(VI) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:

. 5	(VII) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1
10	5': ACC AGA CAA AGT TGG CTA AG
	(2) INFORMATION FOR SEQ ID NO:2:
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 nucleotides (B) TYPE: deoxyoligonucleotide (C) STRANDEDNESS: single (D) TOPOLOGY: linear
20	(ii) MOLECULE TYPE: DNA
	(iii) HYPOTHETICAL: NO
25	(iv) ANTI-SENSE: NO
30	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:</pre>
35	<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES</pre>
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
40	5': ATA ATG AGT TTA GAA GGA GA
	(2) INFORMATION FOR SEQ ID NO:3:
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 nucleotides (B) TYPE: deoxyoligonucleotide (C) STRANDEDNESS: single (D) TOPOLOGY: linear
50	(ii) MOLECULE TYPE: DNA
	(iii) HYPOTHETICAL: NO

29

	(iv) ANTI-SENSE: NO
5	(vi) ORIGINAL SOURCE: _(A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:
10	(vii) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3
20	(2) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS:
25	(A) LENGTH: 20 nucleotides (B) TYPE: deoxyoligonucleotide (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA
30	(iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO
35	(VI) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:
10	(vii) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4: 5': GGG TCA CGT AAA CTC GGG CC
0	(2) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS:
,	(A) LENGTH: 20 nucleotides (B) TYPE: deoxyoligonucleotide

PCT/IB97/00444

30

	(C) STRANDEDNESS: single(D) TOPOLOGY: linear
_	(ii) MQLECULE TYPE: DNA
5	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
10	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:</pre>
15	<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES</pre>
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
	5': GGA CCT CCC GAG CAC GAC AC
25	(2) INFORMATION FOR SEQ ID NO:6:
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 nucleotides (B) TYPE: deoxyoligonucleotide (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA
35	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
40	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:</pre>
45	(U) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
	5': TAG GAT TTC GAA GTT CCA GT

	(2) INFORMATION FOR SEQ ID NO:7:
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 nucleotides (B) TYPE: deoxyoligonucleotide (C) STRANDEDNESS: single (D) TOPOLOGY: linear
10	(ii) MOLECULE TYPE: DNA
	(iii) HYPOTHETICAL: NO
15	(iv) ANTI-SENSE: NO
20	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:</pre>
25	(vii) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7
30	5': GCA TAC TAA GGT CGA TCC GG
	(2) INFORMATION FOR SEQ ID NO:8:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 30 nucleotides (B) TYPE: deoxyoligonucleotide (C) STRANDEDNESS: single (D) TOPOLOGY: linear
10	(ii) MOLECULE TYPE: DNA
	(iii) HYPOTHETICAL: NO
5	(iv) ANTI-SENSE: NO
0	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:</pre>
	(vii) IMMEDIATE SOURCE:

PCT/IB97/00444 WO 97/41236 32

•	(A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES
5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8
	5': CTG AGG ATC AGA AGT TTT GCC ATA CAC GCC
10	(2) INFORMATION FOR SEQ ID NO:9:
15	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 nucleotides(B) TYPE: deoxyoligonucleotide(C) STRANDEDNESS: single(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA
	(iii) HYPOTHETICAL: NO
20	(iv) ANTI-SENSE: NO
25	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:</pre>
30	(vii) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9 5': TGC TGA CCG CTA TCT CAG AC
40	(2) INFORMATION FOR SEQ ID NO:10:(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 nucleotides
45	(B) TYPE: deoxyoligonucleotide (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA
50	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
	(vi) ORIGINAL SOURCE:

33

	(A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:
10	(vii) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10 5': GGG CTA TCT AGA TGG ACC TC
15	(2) INFORMATION FOR SEQ ID NO:11:
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 nucleotides (B) TYPE: deoxyoligonucleotide (C) STRANDEDNESS: single (D) TOPOLOGY: linear
25	(ii) MOLECULE TYPE: DNA (iii) HYPOTHETICAL: NO
30	<pre>(iv) ANTI-SENSE: NO (vi) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:</pre>
35	(vii) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES
10	
-	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11
5	5' GGG GTA CCT CAG GGT TCA GAC CTA CCA 3'
0	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 nucleotides(B) TYPE: deoxyoligonucleotide(C) STRANDEDNESS: single(D) TOPOLOGY: linear

PCT/IB97/00444

	(ii) MOLECULE TYPE: DNA
•	(iii) HYPOTHETICAL: NO
5	(iv) ANTI-SENSE: NO
10	<pre>(vi) ORIGINAL SOURCE:</pre>
15	(VII) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12
20	5' GCG TCG ACG ACT GAT GTA ACA CTG GTC T 3'
	(2) INFORMATION FOR SEQ ID NO:13:
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 nucleotides (B) TYPE: deoxyoligonucleotide (C) STRANDEDNESS: single (D) TOPOLOGY: linear
30	(ii) MOLECULE TYPE: DNA
	(iii) HYPOTHETICAL: NO
35	(iv) ANTI-SENSE: NO
40	<pre>(vi) ORIGINAL SOURCE:</pre>
	(Vii) IMMEDIATE SOURCE: (A) LIBRARY:
45	(B) CLONE: (C) SYNTHETIC: YES
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13
50	5' CGA CGC GTA GGG TCC AGG ACG TAG CA 3'
	(2) INFORMATION FOR SEQ ID NO:14:

5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 nucleotides (B) TYPE: deoxyoligonucleotide (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA
10	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
15	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:</pre>
20	(vii) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14
	5' CAG GTT TAA ATG TCG GAT CG 3'
30	(2) INFORMATION FOR SEQ ID NO:15:
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 nucleotides (B) TYPE: deoxyoligonucleotide (C) STRANDEDNESS: single (D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA
0	(iii) HYPOTHETICAL: NO
	(iv) ANTI-SENSE: NO
S	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:</pre>
0	<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES</pre>

•	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15
5	5' CGA TCC GAC ATT TAA ACC TG 3'
	(2) INFORMATION FOR SEQ ID NO:16:
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 nucleotides (B) TYPE: deoxyoligonucleotide (C) STRANDEDNESS: single (D) TOPOLOGY: linear
15	(ii) MOLECULE TYPE: DNA
	(iii) HYPOTHETICAL: NO
20	(iv) ANTI-SENSE: NO
25	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:</pre>
	(vii) IMMEDIATE SOURCE:
30	(A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16
35	5' GCG TCG ACA AGA CGT GTG ACC AGA GTG 3'
	(2) INFORMATION FOR SEQ ID NO:17:
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 nucleotides (B) TYPE: deoxyoligonucleotide (C) STRANDEDNESS: single (D) TOPOLOGY: linear
45	(ii) MOLECULE TYPE: DNA
	(iii) HYPOTHETICAL: NO
50	(iv) ANTI-SENSE: NO
	(vi) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE:

	(F) TISSUE TYPE: (G) CELL TYPE:
5	(vii) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17
15	(2) INFORMATION FOR SEQ ID NO:18: (i) SEQUENCE CHARACTERISTICS:
20	(A) LENGTH: 22 nucleotides(B) TYPE: deoxyoligonucleotide(C) STRANDEDNESS: single(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: DNA
25	(iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO
30	(vi) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:
35	<pre>(vii) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES</pre>
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18 5' CAT ACA CTC CGT CTG AGA TAG C 3'
45	(2) INFORMATION FOR SEQ ID NO:19: (i) SEQUENCE CHARACTERISTICS:
50	(A) LENGTH: 22 nucleotides(B) TYPE: deoxyoligonucleotide(C) STRANDEDNESS: single(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE, DNA

	(iii) HYPOTHETICAL: NO
•	(iv) ANTI-SENSE: NO .
5	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:</pre>
10	(vii) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE: (C) SYNTHETIC: YES
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19
	5' GCT ATC TCA GAC GGA GTG TAT G 3'
20	(2) INFORMATION FOR SEQ ID NO:20:
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 nucleotides(B) TYPE: deoxyoligonucleotide(C) STRANDEDNESS: single(D) TOPOLOGY: linear
30	(ii) MOLECULE TYPE: DNA
	(iii) HYPOTHETICAL: NO
•	(iv) ANTI-SENSE: NO
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: (D) DEVELOPMENTAL STAGE: (F) TISSUE TYPE: (G) CELL TYPE:</pre>
40	(vii) IMMEDIATE SOURCE: (A) LIBRARY: (B) CLONE:
45	(C) SYNTHETIC: YES (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20
	5' GCG TCG ACT TAA CGG TTA CAT GAG AAT CT 3'
50	(2) INFORMATION FOR SEQ ID NO:21:
	(i) SEQUENCE CHARACTERISTICS:

```
(A) LENGTH: 1678 nucleotides
                                               (B) TYPE: cDNA
                                               (C) STRANDEDNESS: single
                                               (D) TOPOLOGY: linear
    5
                                    (ii) MOLECULE TYPE: DNA
                                  (iii) HYPOTHETICAL: NO
  10
                                    (iv) ANTI-SENSE: NO
                                    (vi) ORIGINAL SOURCE:
                                              (A) ORGANISM: CANINE DISTEMPER VI-
        RUS, STRAIN CDV A75/17
  15
                                              (D) DEVELOPMENTAL STAGE:
                                              (F) TISSUE TYPE:
                                              (G) CELL TYPE:
                                  (vii) IMMEDIATE SOURCE:
 20
                                              (A) LIBRARY:
                                              (B) CLONE: N/CMV5 OR N/PCI
                                   (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21
      AGGGTCAATG ATCCTACCTT AGAGAACAAG GTCAGGGTTC AGACCTACCA ATATGGCTAG
       CCTTCTTAAG AGCCTCACAT TATTCAAGAG GACTCGGGAC CAACCCCCAC TTGCCTCGGG
       CTCCGGAGGA GCAATCAGAG GGATAAAGCA TGTCATTATA GTCCTAATCC CGGGTGACTC
       AAGCATTGTT ACAAGATCTC GACTATTGGA TAGACTTGTT AGATTGGTCG GTGATCCGGA
                                                                                                240
       AATCAACGGG CCTAAATTAA CTGGGATTTT AATCAGTATC CTCTCCTTGT TCGTGGAATC
       CCCTGGACAG TTGATCCAGA GGATCATAGA CGACCCTGAT ATAAGCATCA AGTTAGTAGA
                                                                                                360
       GGTAATCCCA AGCATCAACT CTGTTTGCGG TCTTACATTT GCATCCAGAG GAGCAAGTTT
                                                                                                420
       GGATTCTGAG GCAGATGAGT TCTTCAAAAT TGTAGACGAA GGGTCGAAAG CTCAAGGACA
                                                                                                480
       ATTAGGCTGG TTGGAGAATA AGGATATTGT AGACATAGAA GTTGATGATG CTGAGCAATT
                                                                                                540
       CAATATATTG CTAGCTTCCA TCTTGGCCCA AATTTGGATC CTGCTAGCTA AAGCGGTGAC
                                                                                                600
       TGCTCCTGAT ACTGCAGCCG ACTCGGAGAT GAGAAGGTGG ATTAAGTATA CCCAACAGAG
                                                                                                660
       ACGTGTGGTC GGGGAATTCA GAATGAACAA AATATGGCTT GATATTGTTA GAAACAGAAT
       TGCTGAGGAC TTATCTTTGA GGCGGTTCAT GGTGGCACTC ATCTTGGATA TCAAACGATC CCCAGGGAAC AAGCCTAGAA TTGCTGAAAT GATTTGTGAT ATAGATAACT ACATTGTGGA
                                                                                                720
                                                                                                780
                                                                                                840
       AGCTGGATTA GCTAGTTTCA TCTTAACTAT CAAATTTGGC ATTGAAACTA TGTATCCGGC
                                                                                                900
       TCTTGGGTTG CATGAGTTTT CCGGAGAGTT AACAACTATT GAATCCCTTA TGATGCTATA
      TCARGAGATT CATGAGATTT CCCGAGAGTT AACAACTATT GAATCCTTA TGATGCTATA 960
TCARGAGATG GGTGAAACAG CACCGTACAT GGTTATTCTG GAAAATTCTG TTCAGAACAA 1020
ATTTAGTGCA GGATCCTACC CATTGCTCTG GAGTTATGCT ATGGGAGTTG GTGTTGAACT 1080
TGAAAACTCC ATGGGAGGGT TAAATTTCGG TAGATCCTAC TTTGATCCAG CTTATTTCAG 1140
GCTCGGCATC ACCAAGGAAG AAGATCTGC CGGCAAAGTA AGCTCTGCAC TTGCCGCCGA 1200
CCACCGACG ATTGCCCCTA CACCACTA AGGTCTCACAA ATAGCATCCA AGACAACGGA 1260
                                                                                                960
      GGACCGGACG ATTCGCGCTG CTGGTCCCAA GCAATCTCAA ATAGCATCCA AGACAACGGA 1220
GGACCGGACG ATTCGCGCTG CTGGTCCCAA GCAATCTCAA ATCACTTTTC TGCACTCAGA 1320
AAGATCCGAA GTCACTAATC AACAACCCCC AACCATCAAC AAGAGGTCCG AAAACCAAGG 1380
AGGAGACAAA TACCCCCATCC ACTTCAGTGA TGAACGGTTT CCAGGGTATA CCCCCAGATGT 1440
      CAACAGCTCC GAATGGAGTG AATCACGCTA TGATACCCAA ACTATTCAAG ATGATGGAAA 1500
      CGACGATGAC CGGAAATCGA TGGAAGCAAT CGCCAAGATG AGAATGCTTA CTAAGATGCT 1560
CAGTCAACCT GGGACCAGTG AAGAGAGTTC TCCTGTCTAT AATGATAGAG AGCTACTCAA 1620
TTAAATATTC AAGACCAGTG TTACATCAGT CAACGATTCT CCTTCTAAAC TCATTATA 1678
               INFORMATION FOR SEQUENCE ID NO: 22
55
      (2)
                       SEQUENCE CHARACTERISTICS:
                        (A) LENGTH: 2198
                        (B) TYPE: nucleic acid
                       (C) STRANDENESS: single
60
                       (D) TOPOLOGY: linear
```

```
(ii) MOLECULAR TYPE: other nucleic acid
                         (A) DESCRIPTION: /desc = "deoxynucleotide"
  5
                (iii)
                                 HYPOTHETICAL: NO
                (iv) ANTI-SENSE: NO
                (v) FRAGMENT TYPE: internal
10
                (vi) ORIGINAL SOURCE:
                         (A) ORGANISM: Canine distemper virus
                         (B) STRAIN: A75/17
15
                (viii) POSITION IN GENOME:
                         (B) MAP POSITION: F gene position is 5'end of F
      mRNA
                         (C) UNITS: bp
20
                (ix) FEATURE:
                         (A) NAME/KEY: mRNA
                         (B) LOCATION: complement (1....2198)
25 AGGGTCCAGG ACGTAGCAAG CCTACAGGCC AACCAAGTCC ACCAACTCTA GGCCGGGCAG
      GAACCCCCAC GAACAGACAA GCCCCATGCA CAACAAAATC CCCAAAAAGGT CCAACACCCG 120
      AAAACACACC CAACAAGACC TCCCCCCACA ACACAGCACC AAATCCGCCG AGACCAAGAC 180
CTCCCAAGCA CGACACAGCA CAACATCGGC TCGGCGATCC ACGCACCATG GTCCTCTAAC 240
      ATCGGACAGG CCCATCCACT ACATCATGAA CAGGATCAGG TCCTGCAAGC AAGCCAGCCA 300
      CAGATCGGAT AACATCCCGG CTCACGGAGA CCATGAGGGC ACCATCCATC ACACCAGG 360
      GAGTGTCTCC CAAGGAGCGG GATCCCGGCT CAAAAGGCGG CAATCCAATG CAACCAACTC 420
      AGGCTCTCAG TGCACCTGGT TAGTCCTATG GTGCATTGGA ATAGCCAGTC TCTTTCTTTG 480
      TTCTAAGGCT CAGATACATT GGAATAATTT GTCAACTATT GGGATTATCG GGACTGACAG 540
TGTCCATTAT AAGATCATGA CTAGACCCAG TCACCAGTAC TTGGTCATAA AACTAATGCC 600
      TAATGTTTCA CTTATAGATA ATTGTACCAA AGCAGAATTA GGTGAGTATG AGAAATTATT 660
AAATTCAGTC CTCGAGCCAA TCAATCAAGC TTTGACTCTA ATGACCAAGA ATGTGAAGCC 720
      CCTACAGTCA GTAGGGTCAG GTAGGAGACA AAGGCGTTTT GCAGGAGTGG TGCTTGCAGG 780
      TGCAGCTTTA GGAGTAGCCA CAGCTGCACA AATCACTGCA GGGATAGCTT TACATCAATC 840
      CAACCTCAAT GCTCAAGCAA TCCAATCTCT GAGAACTAGC CTTGAACAGT CCAACAAGGC 900
      TATAGAAGAA ATTAGGGAGG CAACCCAGGA AACCGTCATT GCCGTTCAGG GAGTTCAGGA 960
      TTACGTCAAT AATGAACTCG TCCCTGCTAT GCAACATATG TCGTGTGAAT TAGTTGGGCA 1020
      GAGATTAGGG TTAAAACTGC TTAGGTATTA TACCGAGTTG TTGTCAATAT TTGGCCCGAG1080
TTTACGTGAT CCTATTTCAG CCGAGATATC AATTCAAGCA CTGAGTTATG CTCTTGGGGG1140
      AGAAATTCAT AAGATACTTG AGAAGTTGGG ATATTCTGGA AATGATATGA TTGCAATTTT 1200
GGAGAGTCGG GGGATAAAAA CAAAAATAAC CCATGTTGAT CTCCCCGGGA AACTCATCAT 1260
      CTTAAGTATC TCATACCCAA CTTTATCAGA AGTCAAGGGG GTCATAGTCC ACAGACTGGA 1320
AGCAGTTTCT TATAATATAG GGTCACAGGA GTGGTACACC ACTGTCTCGA GGTATGTTGC 1380
      AACTAATGGT TACTTAATAT CTAATTTTGA TGAGTCACCC TGTGTATTCG TCTCAGAATC1440
AGCCATTTGT AGCCAGAACT CCCTATACCC CATGAGCCCG CTTCTACAAC AATGCATTAG1500
      GGGTGACACT TCATCTTGTG CTCGGACCTT GGTGTCTGGG ACGATGGGCA ACAAGTTTAT 1560
TCTGTCAAAA GGTAATATCG TCGCAAATTG TGCTTCTATA CTGTGTAAGT GTTATAGCAC 1620
     AGGCACAATT ATCAATCAGA GTCCTGATAA ATTGCTGACA TTTATTGCCT CCGGTACCTG1680
CCCCACTGGTT GAGATAGATG GTGTAACATA CCAGGTTGGA GGGAGGCAAT ACCCTGATAT1740
GGTATACCAA AGCCAAAGTTG CCTTAGGCCC TGCTATATCA CTTGAGAGGT TAGATGTAGG1800
TACAAATTTA GGGAACGCCC TTAAGAAACT GGATGATGCT AAGGTACTGA TAGACTCCTC1860
TAACCAGATC CTTGAGACGG TTAGGCGCTC TTCCTTTAAT TTTGGCAGTC TTCTCAGCGT1920
TCCCATATTA ATATGTACAG CCCTGGCTTT GTTGTTGCTG ATTTACTGCT GTAAAAGACG1980
      CTACCAACAG ACACTCAAGC AGAATGCTAA GGTCGATCCG ACATTTAAAC CTGATTTGAC 2040
TGGAACTTCG AAATCCTATG TAAGATCACT CTAAAGCACT CTGGTCACAC GTCTTACCCG2100
60 ATTGTCAGGC TTGAAATCTA TAAATCCCCC CCAATTTTCT TCAAAAGCTA TCAAACTACA2160
      ACAAATAGTG GAGAGGACTG ACTACGATTA TCGTAATT
```

```
(2) INFORMATION FOR SEQUENCE ID NO: 23
                                             SEQUENCE CHARACTERISTICS:
                                             (A) LENGTH: 1969
                                             (B) TYPE: nucleic acid
                                             (C) STRANDENESS: single
                                             (D) TOPOLOGY: linear
                                    (ii) MOLECULAR TYPE: other nucleic acid
  10
                                             (A) DESCRIPTION:
                                                                                /desc =
         "deoxynucleotide"
                                    (iii)
                                                  HYPOTHETICAL: NO
  15
                                   (iv) ANTI-SENSE: NO
                                   (v) FRAGMENT TYPE: internal
                                   (vi) ORIGINAL SOURCE:
 20
                                            (A) ORGANISM: Canine distemper virus
                                            (B) STRAIN: A75/17
                                   (viii)
                                                  POSITION IN GENOME:
                                           (B) MAP POSITION: H gene position is
 25 5'end of H mRNA
                                           (C) UNITS: bp
                                  (ix) FEATURE:
                                           (A) NAME/KEY: mRNA
30
                                           (B) LOCATION: complement (1....1969)
      AGGGCTCAGG TAGTCCAACA ATGCTCTCCT ACCAGGACAA GGTGAGTGCC TTCTATAAGG
      AGGGCTCAGG TAGTCCAACA ATGCTCTCT ACCAGGACAA GGTGAGTGCC TTCTATAAGG
ATAATGCAAG AGCTAATTCA TCCAAGCTAT CCTTAGTGAC AGAAGAGCAA GGGGGCAGGA
GACCACCCTA TTTGCTGTTT GTCCTTCTCA TCCTACTGGT TGGAATCATG GCCTTGCTTG
CTATCACTGG AGTTCGATTT CACCAAGTAT CAACTAGCAA TATGGAATTT AGCAGATTGC
TGAAAGAGGA TATGGAGAAA TCAGAGGCCG TACATCACCA AGTCATAGAT GTCTTGACAC
CGCTCTTCAA AATTATTGGA GATGAGATTG GGTTACGGTT GCCACAAAAA CTAAACGAGA
TCAAACAATT TATCCTTCAA AAGCAGAA
                                                                                                       60
                                                                                                      120
                                                                                                      180
                                                                                                     240
                                                                                                     300
      TCAAACAATT TATCCTTCAA AAGACAAACT TCTTCAATCC GAACAGGGAG TTCGACTTCC GCGATCTCCA CTGGTGCATT AACCCACCTA GTAAGATCAA AGTGAATTT ACTAATTACT
                                                                                                     360
40
                                                                                                     420
      GCGATACAAT TGGGATCAGA AAATCTATTG CATCGGCAGC AAATCCTATC CTTTTATCAG CACCTCTCCGG AGGCAGAGGT GACATATTCC CACCATACAG ATGCAGTGGA GCTACTACTT CATTGAGCAG AGTTTTCCCC CTATCAGTAT CATTGTCCAT GTCTTTGATC TCAAGAACAT
                                                                                                     480
                                                                                                     540
                                                                                                     600
      CAGAGATAAT CAATATGCTA ACCGCTATCT CAGACGGAGT GTATGGTAAA ACTTATTTGC
                                                                                                     660
```

	TAGTTCATGA	TTATATTGAA	GGGGGGTTCG	ACACGCAAAA	GATTCGAGTC	TTTGAGATAG	780
	GGTTCATCAA	ACGGTGGCTG	AATGACATGC	CATTACTCCA	GACAACCAAC	TATATGGTCC	B40
•	TCCCGGAGAA	TTCCAAAGCC	AAGGTATGTA	CTATAGCGGT	GGGCGAGTTG	ACACTGGCTT	900
	CCTTGTGTGT	AGATGAGAGC	ACCGTATTGT	TATATCATGA	CAGCGATGGT	TCACAAGATG	. 960
5	GTATTCTAGT	GGTGACGCTG	GGAATATTTG	GGGCAACACC	TATGGATCAA	GTTGAAGAGG	1020
	TGATACCTGT	TGCTCACCCA	TCAGTAGAAA	AAATACATAT	AACAAATCAC	CGTGGGTTCA	1080
	TAAAAGATTC	AATAGCAACC	TGGATGGTGC	CTGCATTGGT	ATCTGAGAAA	CAAGAGGAAC	1140
	AAAAAAATTG	TCTGGAGTCG	GCTTGTCAAA	GAAAATCCTA	CCCTATGTGC	AACCAAACGT	1200
	CATGGGAACC	CTTTGGAGGA	GGACAGTTGC	CATCTTATGG	GCGGTTGACA	TTACCTCTAG	1260
10	ATCCAAGCAT	TGACCTTCAA	CTTAACATCT	CGTTTACATA	CGGTCCGGCT	ATACTGAATG	1320
	GAGACGGTAT	GGATTATTAT	GAAAGCCCAC	TTTTGGACTC	CGGATGGCTT	ACCATTCCCC	1380
	CCAAGAACGG	AACAGTCCTT	GGATTGATAA	ACAAAGCAAG	TAGAGGAGAC	CAATCCACTG	1440
	TAATCCCCCA	TGTGTTCACA	TTTGCGCCCA	GGGAATCAAG	TGGAAATTGT	TATTTACCTA	1500
	TTCAAACATC	CCAGATTATG	GATAAAGATG	TCCTTACTGA	GTCCAATTTA	GTGGTGTTGC	1560
15	CTACACAGAA	TTTTAGATAT	GTCATAGCAA	CATATGATAT	ATCCCGGGGC	GATCATGCGA	1620
	TTGTTTATTA	TGTTTATGAC	CCAATCCGGG	CGATTTCTTA	TACGTACCCA	TTTAGACTAA	1680
	CTACCAAGGG	TAGACCTGAT	TTCCTAAGGA	TTGAATGTTT	TGTGTGGGAT	GACGATTTGT	1740
	GGTGTCACCA	ATTTTACCGA	TTCGAGGCTG	ACAGCACCAA	CTCTACAACC	AGTGTTGAGA	1800
	ATTTAGTCCG	TATAAGATTC	TCATGTAATC	GTTCAAAACC	TTGACAGTAT	GATGATACAC	1860
20	ATTTCAATTG	GACTTAGGTA	TGATGACTGT	GGTGAGAAAT	TCCTTACCGA	CGATTGAATT	1920
	AAACCATCTC	CAGCATTATA	AAAAAACTAA	GGATCCAGGA	TCCTTTTAG		1969

CLAIMS

- 1. A nucleic acid construct comprising one or more canine distemper virus gene, wherein said nucleic acid construct is capable of inducing the expression of an antigenic canine distemper virus gene product which induces a canine distemper virus specific immune response upon introduction of said nucleic acid construct into animal tissue in vivo and resultant uptake of the nucleic acid construct by the cells which express the encoded canine distemper virus gene.
- 2. A nucleic acid construct according to

 15 Claim 1, wherein the canine distemper virus gene encodes
 the nucleocapsid (N) protein, the phosphoprotein (P), the
 matrix (M) protein, the fusion (F) protein, the hemagglutinin (H) protein, or the large (L) protein.
- 20 3. A nucleic acid construct according to Claim 1 or 2, wherein the canine distemper virus gene encodes the nucleocapsid (N) protein, the fusion (F) protein, or the hemagglutinin (H) protein.
- 25
 4. A DNA construct according to anyone of Claims 1 to 3, which is the plasmid N/CMV5 or N/pCI, which encode the nucleocapsid (N) protein, the plasmid H/CMV5 or H/pCI, which encode the hemagglutinin (H) protein, or the plasmid F/CMV5 or F/pCI which encode the fusion (F) protein of canine distemper virus strain A75/17.
 - 5. A polynucleotide vaccine comprising an effective amount of a DNA or RNA construct according to anyone of Claims 1 to 4 and a physiologically acceptable carrier.

WO 97/41236 PCT/IB97/00444

- 6. A polynucleotide vaccine according to Claim 5 which induces neutralizing antibodies against canine distemper virus, canine distemper virus specific cytotoxic lymphocytes, or protective immune responses upon introduction of said vaccine into animal tissue in vivo, wherein the animal is a mammal, carnivor, in particular a dog, or a human.
- 7. A polynucleotide vaccine according to

 10 Claim 5 or 6 comprising one or more of the plasmids selected from N/CMV5 or N/pCI, which encode the nucleocapsid (N) protein, H/CMV5 or H/pCI, which encode the hemagglutinin (H) protein, or F/CMV5 or F/pCI which encode the fusion (F) protein of canine distemper virus strain

 15 A75/17 and a vaccine carrier.
 - 8. A polynucleotide vaccine according to anyone of Claims 5 to 7 additionally comprising further components to form a multivalent vaccine.

9. A method for protecting an animal susceptible to canine distemper infection against disease by canine distemper virus which comprises immunization of said animal with a prophylactically effective amount of a polynucleotide vaccine of anyone of claims 5 to 8.

20

- 10. A method according to Claim 9, wherein the animal is a mammal, such as a carnivor, in particular a dog.
- 11. A method according to Claim 9 or 10, wherein at least one polynucleotide is administered directly into the animal tissue in vivo.
- 12. A method according to Claims anyone of 9 to 11, wherein the polynucleotide is administered either in naked form in a physiologically acceptable solution,

WO 97/41236 PCT/IB97/00444

or contained in a liposome, or in a mixture with an adjuvant or a transfection facilitating agent.

- 13. A method for using a canine distemper vi-5 rus gene to induce an immune response in vivo which comprises:
 - a) isolating the gene
- b) linking the gene to regulatory sequences such that the gene is operatively linked to control sequences which, when introduced into a living tissue, direct the transcription initiation and subsequent translation of the gene, and
 - c) introducing the gene into a living tissue cf an animal suceptible to canine distemper.

15

- 14. A method according to Claim 13, which comprises multiple introduction of the canine distemper virus gene for boosting the immune response.
- 15. A method according to Claim 13 or 14, wherein the canine distemper virus gene encodes the nucleocapsid (N) protein, the hemagglutinin (H) protein, or the fusion (F) protein of canine distemper virus strain A75/17.

- 16. A method according to anyone of Claims 13 to 15, wherein the canine distemper virus gene product for immunization is selected from the plasmids F/CMV5 or F/pCI, which encode the fusion (F) protein, H/CMV5 or H/pCI, which encode the hemagglutinin (H) protein, or N/CMV5 or N/pCI which encode the nucleocapsid protein of canine distemper virus strain A75/17.
- 17. A composition of nucleic acid constructs encoding canine distemper genes from more then one canine distemper strain.

18. The use of an isolated canine distemper virus gene operatively linked to one or more control sequences for the preparation of a vaccine for use in immunization against disease by canine distemper virus.

Fig. 1

CTL assays

after 2nd immunization

after 3rd immunization

x-----x mice immunized with empty vector

mice immunized with plasmid N/pCl Fig. 9

SUBSTITUTE SHEET (RULE 26)

Standard vaccine

☐ Plasmid N/pCI

Fig. 10

Inten and Application No PCT/IB 97/0044

4 61 1			PC1/16 9//00444
ÎPC 6	ssification of subject matter C12N15/45 A61K31/70 A61	.K39/175	
According	g to international Patent Classification (IPC) or to both nation	nal classification and IDC	·
B. FIELE	DS SEARCHED	THE CHARACTER OF THE CASE	
IPC 6	documentation searched (classification system followed by c C12N A61K C07K	classification symbols)	
Document	tation searched other than minimum documentation to the ext		
	the ext	ent that such documents are incl	uded in the fields searched
Electronic	data base consulted during the international search (name of	data base and, where practical,	search terms used)
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category *			
	Citation of document, with indication, where appropriate,	of the relevant passages	Relevant to claim No.
A	WO 95 27780 A (VIROGENETICS C 19 October 1995		1-18
	see page 108, line 19 - page	121, line 16	1
A	VETERINARY MICROBIOLOGY, vol. 44, no. 2-4, 1995,		1-18
-	pages 211-217, XP000601698 M.STETTLER AND A.ZURBRIGGEN:	"Nucleotide	
	and deduced amino acid sequen- nucleocapsidprotein of the vi A75/17-CDV strain of canine d	ces of the	
	virus" see the whole document		
		-/	
	er documents are listed in the continuation of box C.	X Patent family men	nbers are listed in annex.
documen	gories of cited documents: It defining the general state of the art which is not	or priority date and ne	ned after the international filing date of in conflict with the application but
carlier do	ocument but published on or after the international te	"X" document of particular	e principle or theory underlying the relevance; the claimed invention
citation o	t which may throw doubts on priority claim(s) or cited to establish the publication date of another or other special reason (as specified)	"Y" document of particular	novel or cannot be considered to the power the document is taken alone relevance; the claimed invention
document	t referring to an oral disclosure, use, exhibition or ans published prior to the international filing date but the priority date claimed	ments, such combinate in the art.	o involve an inventive step when the with one or more other such docu- on being obvious to a person skilled
	tual completion of the international search	"A" document member of the	
	August 1997	1 4. 08, 97	nternational search report
ne and mai	ling address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax (+31-70) 340-3016	Cupido, M	

Form PCT/ISA/210 (second sheet) (July 1992)

Inte. July Application No PCT/18 97/00444

	ion) DOCUMENTS CONSIDERED TO BE RELEVANT	
aregory		
	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	SCHWEIZER ARCHIV FÜR TIERHEILKUNDE, vol. 138, no. 2, February 1996, pages 99-103, XP000601356 H.U.GRABER ET AL.: "RT-PCR:Ein Hilfsmittel zur Herstellung von Klonen für die Staupeforschung" see the whole document	1-18
	AMERICAN JOURNAL OF VETERINARY RESEARCH, vol. 54, no. 9, September 1993, pages 1457-1461, XP000601924 A.ZURBRIGGEN ET AL.: "In situ hybridization of virulent canine distemper virus in brain tissue, using digoxigenin-lebeled probes" see the whole document	1-18
	DNA AND CELL BIOLOGY, vol. 12, no. 9, November 1993, pages 777-783, XP000565708 D.L.MONTGOMERY ET AL.: "Heterologous and homologous protection against influenza A by DNA vaccination: Optimizing of DNA vectors" see the whole document	1-16

Form PCT/ISA/218 (continuation of second sheet) (July 1992)

1 ...rnational application No.

PCT/IB 97/00444

Box I Observations where certain claims were found	unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in	respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to Remark: Although claim(s) 9-16	be searched by this Authority, namely:
is(are) directed to a m	ethod of treatment of the human/animal en carried out and based on the alleged /composition.
2. Claims Nos.:	lication that do not comply with the prescribed requirements to such
Claims Nos.: because they are dependent claims and are not drafter	d in accordance with the second and third sentences of Rule 6.4(a).
Box 11 Observations where unity of invention is lacking	(Continuation of item 2 of first sheet)
This International Searching Authority found multiple invention	ons in this international application, as follows:
As all required additional search fees were timely paid searchable claims.	by the applicant, this International Search Report covers all
2. As all searchable claims could be searched without effort of any additional fee.	ort justifying an additional fee, this Authority did not invite payment
As only some of the required additional search fees we covers only those claims for which fees were paid, spec	ere timely paid by the applicant, this International Search Report cifically claims Nos.:
No required additional search fees were timely paid by restricted to the invention first mentioned in the claims .	the applicant. Consequently, this International Search Report is; it is covered by claims Nos.:
Remark on Protest	additional search fees were accompanied by the applicant's protest.
☐ No	protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

Information on patent family members

thte const Application No PCT/IB 97/00444

	Information on patent family members		PCT/IB 97/00444	
Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9527780 A	19-10-95	AU 2283395 CA 2187207 EP 0759072	A	30-10-95 19-10-95 26-02-97
•				
•				