. Normal 1-leight

Normal probability dist or Named Dist probability dust of Contineous random variable x, Known as nemal variable a normal variate If in given dy $-(x-x)^{2}$ $N(x|\sigma) - f(x) = p(x) = \sqrt{-\infty} / -\infty / x < \infty$

= Arillmotie mean. J= standard deviation are two parameters of Normal Dist so normal dist as Called It parametre dest. Normal dest is also (alleel Gaussian dist.

Propenties of Namual dist (i) The graph of Normal dust. y= f(x) in x-y plane is known as normal cause. is symmetric carre about y-assis · 50 /- · 50 / ·

Ja en Stell Shoped The mean, median and moste Coinlide

of inflexion points There are (i) 3 文ナイ

Nonnal ceuve in asymptotie & X-asies Losymptote

under the normal area $= 1 \int_{0}^{\infty} \int_{0}^{\infty}$

$$N(x^{10}) > 0$$

Probability that the contineous random variable x between XI and X2 ie $P(x_1 \leq x \leq x_2) = \int_{x_1}^{x_2} f(n) dn$ $= \int_{x_1}^{x_2} \int_{x_2}^{x_2} dn$ $= \int_{x_1}^{x_2} \int_{x_2}^{x_2} dn$

Nonnal distribution (Z) Standard when in normal distribution mean = 0 and standard deviation = 1 other normal dist Transfermed to standard nouved dist Z

given
$$N(x_{10}) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x_{1}-x_{1})^{2}}$$

$$N(1011) = \frac{1}{1(\sqrt{2}K)}$$

$$-(2-0)^{2}$$

$$N(011) = \frac{1}{\sqrt{2\pi}}$$

$$\begin{array}{c} \chi - \chi Z \\ \chi = \frac{1}{\sqrt{2}} & 0 & 2 \\ \chi = \frac{1}{\sqrt{2}} & 0 & 2 \end{array}$$

mean = median = mode = 0

point of implexion (Z = ±1) X 4 C 0+1 Z=0 Z=

Z - toansformation Z = X - X Whut transform nonnal variable a le standond nonnal variable Z

Mea uneler Monnel Curre 68.27/ 文ナと x-0 2:0 フ=+1 Z=-1

$$\rho(-1 \leq Z \leq 1) = 0.6827$$

$$x - 26$$
 $x + 28$ $z = 0$ $z = 2$

$$99.73\%$$
 \sqrt{x}
 \sqrt{x}

$$p(x-36 \le x \le x+36) = p(-3 \le z \le 3) = 0.9973$$

$$\rho(\times 7 \times) = 05$$

$$\rho(\times 2 \times) = 05$$

$$\rho(Z \leq 0) = 05$$

$$\rho(Z > 0) = 05$$

$$z = 0$$

En D Z in normally distributed with mean = 0 vanance = 1 Juid (a) P(Z7-(.64) $(13) p(-1.96 \leq Z \leq 1.96)$ p(-0-8 = Z = 1.53) (d) P(Z ≤ 1.83)

$$P(Z7-1.64) = P(1.64 \le Z \le \infty)$$

$$= p(-1.64 \le Z \le 0) + P(Z7,0)$$

$$= 0.4495$$

$$= 0.9495$$

0 1	0.5	-	- 1		-		-		- 1	11.5		-	- 1	20	
-3.5	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3	3.5	
							z							25	1.28
Transfer of	.00		.01	.02	.0	3	.04	.05	ĕ	.06	.07		.08	.09	
0.0	.0000	.0	040	.0080	.012	0	.0160	.0199		.0239	.0279		0319	.0359	
0.1	.0398	.0	438	.0478	.051	7	.0557	.0596		.0636	.0675		0714	.0753	
0.2	.0793	.0	832	.0871	.091	.0	.0948	.0987		.1026	.1064		1103	.1141	
0.3	.1179	1	217	.1255	.129	13	.1331	.1368		.1406	.1443		1480	.1517	
0.4	.1554	.1	591	.1628	.166	4	.1700	.1736		.1772	.1808		1844	.1879	
0.5	.1915	.1	950	.1985	.201	9	.2054	.2088		.2123	.2157		2190	.2224	
0.6	.2257	.2	291	.2324	.235	7	.2389	.2422		.2454	.2486		2517	.2549	
0.7	.2580	.2	611	.2642	.267	3	.2704	.2734		.2764	.2794		2823	.2852	
0.8	.2881	.2	910	.2939	.296	7	.2995	.3023		.3051	.3078		3106	.3133	
0.9	.3159	3	186	.3212	.323	18	.3264	.3289		.3315	.3340		3365	.3389	
														50.001600	-0.4
1.0	.3413		438	.3461	.348		.3508	.3531		.3554	.3577		3599	.3621	• 1
11	.3643	.3	665	.3686	.370	18	.3729	.3749		.3770	.3790		3813	.3830	
1.2	.3849		869	.3888	.390		.3925	.3944	_	.3962	.3980		3997	.4015	
1.3	4032		049	.4066	.408		.4099	.4115		.4131	.4147		4162	.4177	
1.4	.4192	.4	207	.4222	.423	16	.4251	.4265		.4279	.4292		4306	.4319	
1.5	.4332	.4	345	.4357	.437	0	.4382	.4394		.4406	.4418		4429	.4441	
1.6	.4452	.4	463	.4474	.448	14	.4495	.4505		.4515	.4525		4535	.4545	
1.7	.4554	.4	564	.4573	.458	12	.4591	.4599		.4608	.4616		4625	.4633	
1.8	.4641	.4	649	.4656	.466	4	.4671	.4678		.4686	.4693		4699	.4706	•
1.9	.4713	.4	719	.4726	.473	12	.4738	.4744		.4750	.4756		4761	.4767	
2.0	.4772	.4	778	.4783	.478	8	.4793	.4798		.4803	.4808		4812	.4817	
2.1	.4821	.4	826	.4830	.483	14	.4838	.4842		.4846	.4850		4854	.4857	

$$P(-1.96 \le Z \le 1.96) - \frac{Z^{2}}{2}$$

$$= \begin{cases} 1.96 \\ -1.96 \end{cases}$$

$$-1.96 = 0.4750 + 0.4750$$

$$= 0.95$$

$$-1.96 = 0.95$$

$$P(-0.3 \leq Z \leq 1.53) = \int_{5\pi}^{1.53} e^{-\frac{7^{2}}{2}} QZ$$

$$-0.8 = Z = 0$$

$$Z = 1.55$$

$$-0.8 = Z = 0$$

$$Z = 1.55$$

$$P(-0.8 \pm Z \pm (.53) = 0.2881 \pm 0.4370$$

= 0.7251

$$\rho(Z \leq 1.83) = \rho(-0 < Z \leq 1.83)$$

$$= \int_{1.83}^{1.83} \frac{1}{\sqrt{2\pi}} e^{-\frac{2^2}{2^2}} dZ$$

$$\rho(-0 < Z \leq 1.82) = 0.5 + 0.4664$$

$$\rho(-0 < Z \leq 1.82) = 0.9664$$

E(2) Determine the minimum marks a student must get in order do recive an A grade if the top 10% It student one awanded A groele un au oranimation where mean marks and standard deviation is 9.

Hany student is selected at random what is the prestability p (x \(\x \) \(\x \) p(60 = X = 90) (M) p (>/80) (C)

$$(a) \quad P(x \le 60) = P(-\alpha \le x \le 60)$$

$$x = 72$$

$$= \begin{cases} 60 & -(x - 72)^{2} \\ -(x - 72)^{2} \\ \sqrt{2(5)^{2}} & \sqrt{2}x \end{cases}$$

$$= \begin{cases} -(x - 7)^{2} \\ \sqrt{2}x \end{cases}$$

$$= \begin{cases} -(x - 7)^{2} \\ \sqrt{2}x \end{cases}$$

$$= \begin{cases} -(x - 7)^{2} \\ \sqrt{2}x \end{cases}$$

$$\sqrt{\frac{1082}{0.0082}}$$

$$Z = X - X = 1$$
 $Z = (60 - 72) = -12$
 $= -1.333$

$$\rho(x \le 60) = \rho(x \le 72) - \rho(60 \le x \le 72)$$

$$0.5 \quad 0.4082$$

$$= 0.0918$$

$$0.0918$$

$$\rho(60 \le \times \le 90) = \int_{9\sqrt{2}\pi}^{90} e^{-\frac{(x \cdot 72)^2}{2(9^2)}} dz$$

$$Z = \frac{90 - 72}{9}$$

$$Z = \frac{18}{9}$$

$$Z = \frac{18}{9}$$

$$P(x7/80) = \int_{9\sqrt{2\pi}}^{80} \frac{-(x-72)^{2}}{2(9)^{2}} dx$$

$$7 = \frac{80-72}{9} = \frac{8}{9} = 0.89$$

p(x7/88) = 0.5 - 0.3133

$$= \frac{10^{1/2}}{2^{1/2}}$$
 $= \frac{10^{1/2}}{2^{1/2}}$
 $= \frac{10^{1/2}}{2^{1/2}}$
 $= \frac{10^{1/2}}{2^{1/2}}$
 $= \frac{10^{1/2}}{2^{1/2}}$

$$7 = \frac{x - x}{5}$$

$$1.28 = \frac{x - 72}{9}$$

$$x = 1.28 \times 9$$

又 = 83.52

+72