

青风带你玩蓝牙 nRF51822 系列教程

-----作者: 青风

出品论坛: www.qfv8.com 青风电子社区

nrf51822蓝牙4.0开发板

青风出品

作者: 青风

出品论坛: www.qfv8.com

淘宝店: http://qfv5.taobao.com

QQ 技术群: 346518370

硬件平台: 青云 QY-nRF51822 开发板

1.1 硬件介绍

QY-nRF51822 是一个功能强大的蓝牙开发套件,支持蓝牙低功耗(BLE)协议和私有协议。它为广大的产品开发人员提供了一个平台,帮助工程师进行产品的开发、评估、测试。nRF51822 属于挪威 NORDIC 公司推出的 nRF51 系列 2.4G 无线低功耗片上方案解决系统中的一员,已 cortex M0内核为基础,结合 BLE4.0的 SoC。凭借超低的功耗、优越的性能、卓越的设计、nRF51822 得到了越来越广泛的应用。

QY-nRF51822 系列目前出了两套硬件,后续会有大量新的硬件开发出来。这两套硬件分别为: nRF51822_EK 主板和 USB DONGLE。下面就来详细进行介绍:

1.1.1 青云 nRF51822 EK 主板介绍:

青云 nRF51822 开发板小巧便捷,有锂电池供电,可以随身携带。方便易用。板子功能如下图 所示:

主要特性:

- 兼容官方 nRF51822-EK PCA10001 的外围接口.
- 兼容 2.4 GHz nRF24L 系列芯片 (on-the-air)
- 支持 Bluetooth low energy (低功耗蓝牙 4.0)
- PCB 印制天线 (Inverted FAntenna)
- 板载仿真器,直接调试
- 具有引出 SWD 调试接口
- 仿真器接口隔离,可以对外 arm 器件进行仿真
- 3 个独立可编程 LED (共阴极)
- 两个用户按键
- CP2102 调试接口(USB 转串口)
- 支持 iOS/安卓应用,提供源码

下面来详细介绍板子硬件部分:

1.核心 nrf51822, 板载天线。VDD 部分未供电,需要供电的时候把节点 SB1 连接上。主时钟为 16MHZ 晶振, 休眠 RTC 时钟为 32.768KHZ 晶振。RTC 时钟晶振可以隔开, 如果 P0.26 和 P0.27 想要当做普通 I/O 使用, 可以割断短接焊盘 SB2 和 SB3, 然后焊接 SB4 和 SB5。如下图所示:

注意: 使用 SDK 提供的 BLE 例程时,必须使用 32.768 kHz 晶体才能工作。

2. 电源部分: 电源个可以通过多种供电方式,直接外部引出 3.3V 电压可以。或者通过锂电池供电,或者直接 USB 提供 5.0V 电,然后降压为 3.3V。

3.usb 转串口部分,通过高质量芯片 CP2102 把串口信号转换成 usb 输出:

4: 用户按键和用户 led 灯;设置了 2 个用户按键 sw1 和 sw2.3 个用户 led 灯: LD1, LD2, LD3.如下图所示, SB6, SB7, SB8 在需要把端口使用其他功能的时候可以割断开来:

5: nRF51822 的所有 IO 端口都引出,下面的图为引出端口:

P0.26 和 P0.27 默认是用来连接 32.768 kHz crystal , 所以 P6 的这两个 GPIO 不可用。

	P3			P6			
P0.00	1	2	P0.01	VCC	10	9	GND
P0.02	3	4	P0.03		8	7	P0.30
P0.04	5	6	P0.05	P0.29	6	5	P0.28
P0.06	7	8	P0.07	P0.27	4	3	P0.26
GND	9	10	vcc	P0.25	2	1	P0.24
P4				P5			
D0 00		2	P0.09	vcc		9	CND
P0.08	1	9.5			10	82	GND
P0.10	3	4	P0.11	P0.23	8	7	P0.22
P0.12	5	6	P0.13	P0.21	6	5	P0.20
P0.14	7	8	P0.15	P0.19	4	3	P0.18
GND	9	10	VCC	P0.17	2	1	P0.16

6: 仿真器部分: 把 usb 插入前方的 minUSB,可以直接在线仿真,下载。并且给开发板供电。如下图所示:

隔离部分:如果采用电池供电或者要把仿真器用于外部仿真,可以拔掉隔离跳线帽,使得仿真器完全隔离开来,可以直接对外仿真。如下图所示:

1.1.2 nRF_USB DONGLE 介绍:

USB Dongle 的主要功能是进行通信协议的抓包,通过分析数据包,来验证信号是否发送正确。 它的详细功能将在后面一篇专门介绍 USB Dongle 的文章内进行介绍。

由于 nRF51822 官方的 USB Dongle 有元器件无法购买,因此放弃了采用 nRF51822 的 USB Dongle。直接采用 TI 的 USB Dongle。如下图所示,可以方便的进行数据抓包。

抓包软件如下,详细使用方法请见: USB Dongle 的使用:

淘宝地址: http://qfv5.taobao.com/

