T4

- 1. Bosqueja los siguientes campos vectoriales.
 - (a) $F(x,y) = e^{x^2 + y^2}(-y,x)$.
 - (b) F(x,y) = (x+1, y-2).
 - (c) $F(x,y) = log(x^2 + y^2)(x,y)$.
 - (d) $F(x,y) = (\cos(x), \sin(x))$.
- 2. Calcula los siguientes límites, si es que existen, si no prueba que no existen.
 - (a) $\lim_{(x,y)\to(0,0)} \frac{(x+y)^2-(x-y)^2}{xy}$
 - (b) $\lim_{(x,y)\to(0,0)} \frac{\text{sen}(xy)}{y}$
 - (c) $\lim_{(x,y)\to(0,0)} \frac{x^3-y^3}{x^2+y^2}$
- 3. Calcula los siguientes límites, si es que existen, si no prueba que no existen.
 - (a) $\lim_{(x,y,z)\to(0,0,0)} \frac{\operatorname{sen}(xyz)}{xyz}$
 - (b) $\lim_{(x,y,z)\to(0,0,0)} \frac{x^2+3y^2}{x+1}$
 - (c) $\lim_{(x,y,z)\to(0,0,0)} \frac{2x^2y\cos(z)}{x^2+y^2}$
- 4. Calcula $\lim_{(x,y)\to(0,0)} (2x^2 + 2y^2) \log(x^2 + y^2)$.

Sugerencia: usa coordenadas polares.

- 5. Demuestra que $\lim_{(x,y,z)\to(0,0,0)} \frac{xyz}{x^2+y^2+z^2} = 0$.
- 6. Asi como el campo F(x,y)=(-y,x) es perpendicular a las curvas $x^2+y^2=$ constante, encuentra un campo vectorial F(x,y), tal que es perpendicular a las curvas $2x^2+3y^2=$ constante.
- 7. Sea $\{U_{\alpha}\}_{{\alpha}\in\Lambda}$ una colección de abiertos de \mathbb{R}^n . Demuestra que $\cup_{{\alpha}\in\Lambda}U_{\alpha}$ es abierto de \mathbb{R}^n .
- 8. (a) Fija $p_0 \in \mathbb{R}^n$. Prueba que si s < r entonces $B_s(p_0) \subseteq B_r(p_0)$.
 - (b) Sean U, V abiertos de \mathbb{R}^n . Demuestra que $U \cap V$ es abierto.
- 9. Considera el rectángulo $[a, b] \times [c, d]$ en \mathbb{R}^2 . Encuentra sus puntos frontera.
- 10. Si A es un subconjunto de \mathbb{R}^n , por A^o denotamos a la unión de todos los subconjuntos abiertos que están contenidos en A (si A no contienen abiertos, $A^o = \emptyset$).
 - (a) Prueba que A^o es un conjunto abierto.
 - (b) Prueba $A^o \subseteq A$.

- (c) $(A^o)^o = A^o$.
- (d) $(A \cap B)^o = A^o \cap B^o$.
- (e) Da un ejemplo que muestre que $(A \cup B)^o = A^o \cup B^o$ no siempre se da