

 ${\underline{\sf Home}}$ Chemistry Organic Organic Reactions Alkenes with ${\overline{\sf HBr}}$

Alkenes with ${
m HBr}$

A Level

Part A 1-Methylcyclohexene with ${ m HBr}$

Which of the following structures represents the main organic compound produced when hydrogen bromide is added to 1-methylcyclohexene (shown below)?

Figure 1: 1-methylcyclohexene and possible products of reaction with $HB\ensuremath{\mathrm{Br}}$

- A
- R
- () D
- () E

Part B But-2-ene with HBr

But-2-ene has the structure shown below.

Figure 2: Structure of but-2-ene

What is the major product formed when but-2-ene reacts with HBr?

Use the structure editor to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part A adapted with permission from OCSEB, A-Level Chemistry, June 1998, Paper 1, Question 22; Part B created for Isaac Physics by R. Less

Home Chemistry Organic Organic Reactions Alkene bromination

Alkene bromination

Part A Bromination of C_4H_8

Which of the following compounds could be formed by the action of bromine on an alkene of formula $\mathrm{C_4H_8}$?

Figure 1: Possible products of C_4H_8 with bromine

- (A
- О в
- \bigcirc c

Part B Bromination of limonene

Limonene is an oil formed in the peel of citrus fruits.

Figure 2: Structure of limonene

Which product is formed when limonene reacts with excess molecular bromine at room temperature in the dark?

Figure 3: Possible products of limonene bromination

() A

() E

○ c			
_ D			

Part A adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 4, Question 22; Part B adapted with permission from UCLES, A-Level Chemistry, November 1996, Paper 4, Question 22

Home Chemistry

Organic

Organic Reactions

Alkene bromination mechanism

Alkene bromination mechanism

Part A Curly arrows

What is the sequence of curly arrows denoting movement of electrons in the first step of the reaction between ethene and bromine (below)?

Figure 1: Bromination mechanism

For example in the reaction below, if you think the mechanism is as shown, your answer would be cdef.

Figure 2: Sequence cdef

Ethene bromination sequence:

Part B Reaction type

What type of reaction is this?

Created for isaacphysics.org by R. Less

Home Chemistry Organic Organic Reactions Alkene reactions

Alkene reactions

Propene reacts under the following conditions to give compounds A, B and C.

Figure 1: Propene with bromine and steam in presence of an acid catalyst

Part A with Br_2

What is product A?

Use the structure editor to generate a SMILES string.

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part B with steam / acid catalyst

What are products **B** and **C**?

Use the <u>structure editor</u> to generate SMILES strings.

Give your answer in the format "B, C" (space after comma).

In the editor, after drawing your structure, click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Home Chemistry Organic Organic Reactions Epoxy precursor

Epoxy precursor

Epoxy resins are polymers which are used as adhesives. One monomer used in their manufacture has the displayed formula:

$$H_2C$$
 CH— CH_2CI

Figure 1: Epoxy resin monomer

This is manufactured from propene in three stages:

stage I

$$H_2C$$
 $=$ CH $=$ CH_3
 H_2C $=$ CH $=$ CH_2CI

stage II

 H_2C $=$ CH $=$ CH_2CI
 $=$ CH $=$ A $=$

Figure 2: Three stages of epoxy monomer manufacture from propene

Part A Stage I

What type of reaction mechanism takes place between propene and chlorine gas in stage I?

Suggest what conditions are necessary for this reaction.

Part B Stage II	
What type of reaction mechanism takes place when the aqueous chlorine reacts in stage II?	
Part C Stage III What type of organic reaction takes place in stage III?	
	_
Adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 3, Question 4 All materials on this site are licensed under the Creative Commons license , unless stated otherwise.	

Home Chemistry

Organic

Organic Reactions

Ethene Oxidation

Ethene Oxidation

Part A Ethene to ethanal

Aldehydes and ketones are produced industrially by the catalytic oxidation of alkenes, *e.g.* ethanal is manufactured from ethene as shown below:

$$H_2C{=}CH_2 + \frac{1}{2}O_2 \xrightarrow{catalyst} CH_3CHO$$

This process is also used industrially with but-2-ene.

Which of the following represents the structure of the compound which would be produced from but-2-ene?

- CH₃COCH₃
- CH₃CH₂CH₂CHO
- CH₃CH₂CHO
- CH₃COCH₂CH₃
- (CH₃)₂CHCHO

Part B Ethene with bromine and sodium nitrate

When ethene reacts with bromine in the presence of concentrated aqueous sodium nitrate, the product contains the following compound:

$$\begin{array}{cccc} H & H \\ \hline I & I \\ C & C \\ \hline I & I \\ ONO_2 & Br \end{array}$$

Figure 1: Reaction product

What is the intermediate formed in this reaction?

Figure 2: Possible intermediates

○ A

() E

() c

() E

Part A adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 4, Question 22; Part B adapted with permission from UCLES, A-Level Chemistry, November 1995, Paper 4, Question 22

<u>Home</u> Chemistry Organic Organic Reactions Free radical reactions

Free radical reactions

Part /	A C	FCs		
In the upper atmosphere, chlorofluoroalkanes (CFCs) are broken down to give chlorine radicals but not fluradicals.				
	What is the best explanation for this?			
	Fluorine has a lower atomic number.			
	Fluorine has a higher ionisation energy than chlorine.			
	Chlorine has a higher molecular weight.			
		The $C-F$ bond is stronger than the $C-Cl$ bond.		
Part	ВС	hlorination of methane		
	Metha	ne reacts with chlorine in the presence of sunlight. Which statement about the intermediates is correct?		
		They are more energetically stable than the reactants.		
		They contain an odd number of electrons.		
		They combine to form HCl.		
		They are positively charged ions.		

Part A adapted with permission from UCLES, A-Level Chemistry, November 1997, Paper 3, Question 25; Part B adapted with permission from UCLES, A-Level Chemistry, November 1998, Paper 3, Question 21

<u>Home</u> Chemistry

Organic

Organic Reactions

Haloalkane substitution

Haloalkane substitution

Part A 2-lodobutane and sodium ethoxide

What is the product of a nucleophilic substitution reaction between 2-iodobutane and sodium ethoxide (${ m NaOC_2H_5}$)?		
\bigcirc CH ₃ CH=CHCH ₃		
$\bigcirc (\mathrm{CH_3})_2\mathrm{CHCH_2OCH_2CH_3}$		
$\bigcirc \mathrm{CH_{3}CH_{2}CH}(\mathrm{OCH_{3}})\mathrm{CH_{2}CH_{3}}$		
$\bigcirc \mathrm{CH_{3}CH_{2}CH(CH_{3})OCH_{2}CH_{3}}$		

 $C_2H_5X+OH^-$ Part B

Why does the reaction

$$C_2H_5X + OH^- \longrightarrow C_2H_5OH + X^-$$

take place more rapidly in aqueous solution when X is I than when X is Br?

- The $C\!-\!Br$ bond is more polar than the $C\!-\!I$ bond. The I^- ion is less hydrated in solution than the $B\mathbf{r}^-$ ion.
- The I^- ion is a stronger nucleophile than the $B{\bf r}^-$ ion.

The $C{\rm -}Br$ bond is stronger than the $C{\rm -}I$ bond.

Part A adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 22; Part B adapted with permission from UCLES, A-Level Chemistry, June 1995, Paper 4, Question 20

Home Chemistry Organic Organic Reactions Haloalkane substitution mechanism

Haloalkane substitution mechanism

A Level

Part A Energy profile

Halogenoalkanes react with aqueous alkali. One mechanism of this reaction has the energy profile shown below.

Figure 1: Energy profile for haloalkane with aqueous alkali

Which of the following statements are correct?

- 1. The reaction is an example of nucleophilic substitution.
- 2. Between ${\bf X}$ and ${\bf Z}$ the $C{
 m -Hal}$ bond will be lengthening.
- 3. The energy difference between **X** and **Y** represents the activation energy.
 - 1, 2 and 3 are correct
 1 and 2 only are correct
 2 and 3 only are correct
 1 only is correct
 3 only is correct

Part B Curly arrow mechanism

Which diagram correctly represents the transfer of electrons when ammonia reacts with a chloroalkane (alkyl chloride)?

Figure 2: Possible mechanisms for ammonia with chloroalkane

() A

 \bigcirc c

O D

Part A adapted with permission from UCLES, A-Level Chemistry, June 1993, Paper 4, Question 37; Part B adapted with permission from UCLES, A-Level Chemistry, June 1994, Paper 4, Question 26

<u>Home</u>

Chemistry

Organic

Organic Reactions

More alkene bromination

More alkene bromination

Compound A undergoes the following reactions:

$$\mathbf{A} \xrightarrow[\text{bromine in trichloroethane}]{(I)} \mathbf{CH_3} \xrightarrow{(I)} \mathbf{CH_3} \mathbf{CHBrCHBrCH_3} \xrightarrow{(II)} \mathbf{CH_2} = \mathbf{CH} - \mathbf{CH} = \mathbf{CH_2}$$

Bromination of compound ${f A}$ Part A

What is compound A? (There are two possible isomers - give the structure of either)

Use the structure editor to generate a SMILES string.

Click on the round, yellow smiley face to generate a SMILES string. Copy the SMILES string and paste it in the answer box.

Using the structure editor

Part B Step (II)

What type of reaction is step (II)?

Part C Ethene with aqueous bromine

Ethene reacts with aqueous bromine to give the two products, CH_2BrCH_2Br and CH_2BrCH_2OH .

Which statement is correct for these products?

Both products are obtained in this reaction by nucleophilic addition.
Both products can be hydrolysed to form the same diol.
Both products possess an overall dipole.
Reaction of ethene with aqueous HBr gives the same products.

Both products are obtained in this reaction by electrophilic substitution.

Part A adapted with permission from UCLES, A-Level Chemistry, June1991, Paper 3, Question 8; Part B adapted with permission from UCLES, A-Level Chemistry, November 1993, Paper 4, Question 24

All materials on this site are licensed under the ${\color{red} \underline{\textbf{Creative Commons license}}}$, unless stated otherwise.