Approximate inference and learning Bayesian Statistics and Machine Learning

Dominik Endres

January 21, 2016

Outline

- Learning in Bayesian networks
 - Example: how loaded is my coin?
 - Digression: continuous random variables
 - Evaluating the parameter posterior
- Inference as optimization
 - Deriving a lower bound on P(D).
 - Jensen's inequality for convex (or concave) functions
 - Kullback-Leibler divergence
 - A lower bound on P(D)
- Variational inference and learning
 - Choosing an approximation
 - ullet The E-step: maximizing ${\cal L}$
 - Interim summary: variational approximations
- 4 The M step: learning with exponential family distributions
 - Exponential family distributions
 - Maximizing L
 - Summary

Learning example: how loaded is my coin, and how often ?

You are given a (new?) coin for each toss.

- Possible outcomes $C \in \{h, t\}$.
- Possible coins types: $F \in \{f, I\}$
- You toss N times.
- You observe sequence S = (t, h, ..., t).

Questions

- Is the coin loaded at toss n? $P(F_n|C_n)$.
- How often is it loaded ?
- How loaded is it ?

Learning example: how loaded is my coin, and how often?

Reminder:

You are given a (new?) coin for each toss. You toss N times, observing S = (t, h, ..., t)Possible outcomes $C_n \in h, t$. Possible coins types: $F_n \in f, l$.

Ques.: How often is the coin loaded?

Ques.: What is P(F) given <u>S?</u>

Learning example: how loaded is my coin, and how often?

Reminder:

You are given a (new?) coin for each toss. You toss N times, observing $S=(t,h,\ldots,t)$ Possible outcomes $C_n\in h,t$. Possible coins types: $F_n\in f,l$.

Ques.: How often is the coin loaded?

Ques.: What is P(F) given S?

- \Rightarrow we are uncertain about P(F).
- \Rightarrow represent P(F) as a random variable.

$$P(F) = \begin{cases} F = f : P_f \\ F = I : P_I \end{cases}$$

 $\mathbf{P}_F = (P_f, P_I)$ such that $P_f + P_I = \mathbf{1}$

Learning example: how loaded is my coin, and how often ?

Reminder:

You are given a (new?) coin for each toss. You toss N times, observing $S=(t,h,\ldots,t)$ Possible outcomes $C_n\in h,t$. Possible coins types: $F_n\in f,l$.

Ques.: How often is the coin loaded?

Ques.: What is P(F) given S?

- \Rightarrow we are *uncertain* about P(F).
- \Rightarrow represent P(F) as a random variable.

$$P(F) = \begin{cases} F = f : P_f \\ F = I : P_I \end{cases}$$

 $\mathbf{P}_F = (P_f, P_I)$ such that $P_f + P_I = 1$

Likewise $P_C = (P_h, P_t), P_h + P_t = 1$

Learning example: how loaded is my coin, and how often?

Reminder:

You are given a (new?) coin for each toss. You toss N times, observing $S=(t,h,\ldots,t)$ Possible outcomes $C_n\in h,t$. Possible coins types: $F_n\in f,I$.

Ques.: How often is the coin loaded?

Ques.: What is P(F) given S?

 \Rightarrow we are *uncertain* about P(F).

 \Rightarrow represent P(F) as a random variable.

$$P(F) = \begin{cases} F = f : P_f \\ F = I : P_I \end{cases}$$

 $\mathbf{P}_F = (P_f, P_I)$ such that $P_f + P_I = 1$

Likewise
$$P_{C} = (P_{h}, P_{t}), P_{h} + P_{t} = 1$$

Reminder: C_n : data

 F_n : hidden/latent vars.

 \mathbf{P}_F , \mathbf{P}_C : parameters.

Evaluating the parameter posterior

Reminder:

You are given a (new?) coin for each toss. You toss N times, observing $S=(t,h,\ldots,t)$ Possible outcomes $C_n\in h,t$. Possible coins types: $F_n\in f,I$. P_F and P_C parameterize the distributions of F and P(C|F=I).

Ques.: What is P(F) given S?

Ques.: What is $P(P_F|S)$?

Evaluating the parameter posterior

Reminder:

You are given a (new?) coin for each toss. You toss N times, observing $S=(t,h,\ldots,t)$ Possible outcomes $C_n\in h,t$. Possible coins types: $F_n\in f,I$. P_n and P_n parameterize the distributions of F and P(C|F=I).

Ques.: What is P(F) given S?

Ques.: What is $P(\mathbf{P}_F|S)$?

Can we use conditioning:

$$P(\mathbf{P}_F|S) = \frac{P(S|\mathbf{P}_F)P(\mathbf{P}_F)}{P(S)}$$

Evaluating the parameter posterior

Reminder:

You are given a (new?) coin for each toss. You toss N times, observing $S=(t,h,\ldots,t)$ Possible outcomes $C_n\in h,t$. Possible coins types: $F_n\in f,t$. P_n and P_n parameterize the distributions of F and P(C|F=I).

Ques.: What is P(F) given S?

Ques.: What is $P(\mathbf{P}_F|S)$?

Can we use conditioning:

$$P(\mathbf{P}_F|S) = \frac{P(S|\mathbf{P}_F)P(\mathbf{P}_F)}{P(S)}$$

But: P_F is a *continuous* random variable.

What is $P(\mathbf{P}_F)$? Does it exist?

Question: What is P(X), where $X \in \mathbb{R}$ is a continuous RV?

Question: What is P(X), where $X \in \mathbb{R}$ is a continuous RV?

We know: **Probability distribution**

Definition: Let Y be a (discrete) random variable with range Z. A probability distribution is a function $P:Z\to [0,1]$ such that

$$\sum_{y\in \mathbf{Z}} P(Y=y) = \mathbf{1}.$$

Question: What is P(X), where $X \in \mathbb{R}$ is a continuous RV?

We know: Probability distribution

Definition: Let Y be a (discrete) random variable with range Z. A *probability distribution* is a function $P:Z\to [0,1]$ such that $\sum_{y\in Z} P(Y=y)=1$.

Probability density (informal definition)

Definition: Let X be a (continuous) random variable whose range is an interval $Z \subseteq \mathbb{R}$. A probability density p(X) is a function $p:Z \to \mathbb{R}$ such that

- **1** $p(X) \ge 0$
- $P(x_0 \le X < x_0 + dx) = p(x_0) dx$

Question: What is P(X), where $X \in \mathbb{R}$ is a continuous RV?

We know: Probability distribution

Definition: Let Y be a (discrete) random variable with range Z. A probability distribution is a function $P:Z\to [0,1]$ such that $\sum_{y\in Z} P(Y=y)=1$.

Probability density (informal definition)

Definition: Let X be a (continuous) random variable whose range is an interval $Z \subseteq \mathbb{R}$. A *probability density* p(X) is a function $p: Z \to \mathbb{R}$ such that

- **1** $p(X) \ge 0$
- $P(x_0 \le X < x_0 + dx) = p(x_0) dx$
- $\int_{Z} dx \, p(x) = 1$

Note: I will use a lowercase p(Y) for a density, an uppercase P(Y) for a distribution.

Probability densities

Probability density (informal definition)

Definition: Let X be a (continuous) random variable whose range is an interval $Z \subseteq \mathbb{R}$. A probability density p(X) is a function $p: Z \to \mathbb{R}$ such that

- **1** $p(X) \geq 0$
- 2 $P(x_0 < X < x_0 + dx) = p(x_0) dx$
- $\int_{7} dx \, p(x) = 1$

Notes:

- p(X) does **not** have to be ≤ 1 .
- $p(x_0) dx$ is the probability that $x \in [x_0, x_0 + dx)$ where dx is infinitesimally small and > 0.
- $P(X \in [a,b]) = \int_a^b dx \, p(x)$

Probability densities

Probability density (informal definition)

Definition: Let X be a (continuous) random variable whose range is an interval $Z \subseteq \mathbb{R}$. A probability density p(X) is a function $p: Z \to \mathbb{R}$ such that

- **1** $p(X) \ge 0$
- 2 $P(x_0 < X < x_0 + dx) = p(x_0) dx$
- $\int_{7} dx \, p(x) = 1$

Notes:

- p(X) does **not** have to be < 1.
- $p(x_0) dx$ is the probability that $x \in [x_0, x_0 + dx)$ where dx is infinitesimally small and > 0.
- $P(X \in [a, b]) = \int_a^b dx \, p(x)$

- Not all continuous random variables have a density.
- There is a proper measure-theoretic definition of probability densities.

Probability density: graphical interpretation

Probability density: graphical interpretation

$$P(x_0 \le X < x_0 + dx) = p(x_0) dx$$

$$P(X \in [a,b]) = \int_a^b dx \, p(x)$$

Definition: A probability space is a tuple (W, \mathcal{F}, P) , where \mathcal{F} is a σ -algebra over W and probability measure $P: \mathcal{F} \to [0,1]$, with the properties:

P1
$$P(W) = 1$$

P2 If
$$U, V \in \mathcal{F}$$
 and $U \cap V = \emptyset$, then $P(U \cup V) = P(U) + P(V)$.

- W may have continuously many elements, e.g. points in a 2D plane
- $A \in \mathcal{F}$: measurable set

Reminder:

Definition: A probability space is a tuple (W, \mathcal{F}, P) , where \mathcal{F} is a σ -algebra over W and probability measure $P: \mathcal{F} \to [0, 1]$, with the properties: (P1) P(W) = 1; (P2) If $U, V \in \mathcal{F}$ and $U \cap V = \emptyset$, then $P(U \cup V) = P(U) + P(V)$.

Definition: a *measure* is a function $\mu: \mathcal{F} \to \mathbb{R}_0^+$. The elements of the σ -algebra \mathcal{F} are the measurable sets. μ has the properties

M1
$$P(\emptyset) = 0$$

M2 If
$$U, V \in \mathcal{F}$$
 and $U \cap V = \emptyset$, then $P(U \cup V) = P(U) + P(V)$.

- $A \in \mathcal{F}$: measurable sets
- μ some measure on \mathcal{F} , e.g. Lebesgue measure (volume)
- $\mu(A)$: e.g. volume of A

Reminder:

Definition: A probability space is a tuple (W, \mathcal{F}, P) , where \mathcal{F} is a σ -algebra over W and probability measure $P: \mathcal{F} \to [0, 1]$, with the properties: (P1) P(W) = 1; (P2) If $U, V \in \mathcal{F}$ and $U \cap V = \emptyset$, then $P(U \cup V) = P(U) + P(V)$.

Definition: a measure is a function $\mu: \mathcal{F} \to \mathbb{R}_0^+$. The elements of the σ -algebra \mathcal{F} are the measurable sets. μ has the properties (M1) $P(\emptyset) = 0$; (M2) If $U, V \in \mathcal{F}$ and $U \cap V = \emptyset$, then $P(U \cup V) = P(U) + P(V)$.

- $A, B \in \mathcal{F}$: measurable set
- $\rightarrow \mu(B) \bullet \mu$ Lebesgue measure (volume)
 - $\mu(A), \mu(B)$: e.g. volumes of A, B
 - $dA = B A = B \cap \bar{A}$
 - dP = P(B) P(A) = P(dA)
 - $d\mu = \mu(B) \mu(A) = \mu(dA)$

Reminder:

Definition: A probability space is a tuple (W, \mathcal{F}, P) , where \mathcal{F} is a σ -algebra over W and probability measure $P: \mathcal{F} \to [0, 1]$, with the properties: (P1) P(W) = 1; (P2) If $U, V \in \mathcal{F}$ and $U \cap V = \emptyset$, then $P(U \cup V) = P(U) + P(V)$.

Definition: a *measure* is a function $\mu: \mathcal{F} \to \mathbb{R}_0^+$. The elements of the *σ*-algebra \mathcal{F} are the measurable sets. μ has the properties (M1) $P(\emptyset) = 0$; (M2) If $U, V \in \mathcal{F}$ and $U \cap V = \emptyset$, then $P(U \cup V) = P(U) + P(V)$.

- $A, B \in \mathcal{F}$: measurable set
- $ightharpoonup \mu(B)$ μ Lebesgue measure (volume)
 - $\mu(A), \mu(B)$: e.g. volumes of A, B
 - $dA = B A = B \cap \bar{A}$
 - dP = P(B) P(A) = P(dA)
 - $\bullet \ d\mu = \mu(B) \mu(A) = \mu(dA)$

 $dP, d\mu \geq 0$ follows from definition of measure

Question: is there a *direct* connection between P and μ ?

Reminder:

Definition: A probability space is a tuple (W, \mathcal{F}, P) , where \mathcal{F} is a σ -algebra over W and probability measure $P: \mathcal{F} \to [0, 1]$, with the properties: (P1) P(W) = 1; (P2) If $U, V \in \mathcal{F}$ and $U \cap V = \emptyset$, then $P(U \cup V) = P(U) + P(V)$.

Definition: a measure is a function $\mu: \mathcal{F} \to \mathbb{R}^1_0$. The elements of the σ -algebra \mathcal{F} are the measurable sets. μ has the properties (M1) $P(\emptyset) = 0$; (M2) If $U, V \in \mathcal{F}$ and $U \cap V = \emptyset$, then $P(U \cup V) = P(U) + P(V)$.

Radon-Nikodym theorem: given a measurable space (W, \mathcal{F}) and measures P,μ where P is absolutely continuous with respect to μ ($\mu(A) = 0 \Rightarrow P(A) = 0$), there exists (measurable) function $f: W \to \mathbb{R}_0^+$ such that for all $A \in \mathcal{F}$, $a \in A$

$$P(A) = \int_A f(a) d\mu$$

where f is called the Radon-Nikodym derivate of P w.r.t. μ and is denoted as $\frac{dP}{d\mu}$

- If P is a probability measure, then f is a probability density, which we will denote with (lowercase) p
- 1D-Continuous random variables are functions $X:W \to \mathbb{R}$

Probability densities of multivariate random variables

Probability density (informal generalization)

Definition: Let X be a continuous, multivariate random variable whose range is a volume $Z \subseteq \mathbb{R}^n$. A *probability density* is a function $p: Z \to \mathbb{R}$ such that

$$P(X \in d\mathbf{x}(\mathbf{x}_0)) = p(\mathbf{x}_0) \, d\mathbf{x}$$

Notes:

For our purposes, think of Z as a n-dimensional cuboid.

Conditioning, marginalization and chain rules for densities

Key properties of probability distributions also apply to densities. Let X and Y be continuous random variables. Then:

- Joint density of X, Y: p(X, Y)
- Marginal density: $p(X) = \int dy \, p(X, y)$
- Conditional density: $p(X|Y) = \frac{p(X,Y)}{p(X)}$

Conditioning, marginalization and chain rules for densities

Key properties of probability distributions also apply to densities. Let X and Y be continuous random variables. Then:

- Joint density of X, Y: p(X, Y).
- Marginal density: $p(X) = \int dy \, p(X, y)$
- Conditional density: $p(X|Y) = \frac{p(X,Y)}{p(X)}$
- Bayes' rule: $p(X|Y) = p(Y|X) \frac{p(X)}{p(Y)}$
- Independence btw. X and Y iff p(X,Y) = p(X)p(Y)
- Chain rule: p(X, Y, Z) = p(X|Y, Z)p(Y|Z)p(Z).

Key properties of probability distributions also apply to densities. Let X and Y be continuous random variables. Then:

- Joint density of X, Y: p(X, Y).
- Marginal density: $p(X) = \int dy \, p(X, y)$
- Conditional density: $p(X|Y) = \frac{p(X,Y)}{p(X)}$
- Bayes' rule: $p(X|Y) = p(Y|X) \frac{p(X)}{p(Y)}$
- Independence btw. X and Y iff p(X, Y) = p(X)p(Y)
- Chain rule: p(X, Y, Z) = p(X|Y, Z)p(Y|Z)p(Z).

Note: densities and probability distribution can appear together in one expression.

Reminder:

You are given a (new?) coin for each toss. You toss N times, observing $S=(t,h,\ldots,t)$ Possible outcomes $C_n\in h,t$. Possible coins types: $F_n\in f,l$.

 \mathbf{P}_F and \mathbf{P}_C parameterize the distributions of F and P(C|F=I). If $X \in Z$ is continuous, then p(X) is a density, if $p(X) \ge 0$ and $\int_{\mathcal{T}} d\vec{x} \, p(\vec{x}) = 1$.

Ques.: What is P(F) given S?

Ques.: Density $p(P_F|S)$?

Reminder:

You are given a (new?) coin for each toss. You toss N times, observing $S = (t, h, \dots, t)$

Possible outcomes $C_n \in h$, t. Possible coins types: $F_n \in f$, l.

 P_F and P_C parameterize the distributions of F and P(C|F=I). If $X \in Z$ is continuous, then p(X) is a density, if $p(X) \ge 0$ and $\int_{\mathcal{T}} d\vec{x} \, p(\vec{x}) = 1$.

Ques.: What is P(F) given S?

Ques.: Density $p(\mathbf{P}_F|S)$?

We can use conditioning:

$$p(\mathbf{P}_F|S) = \frac{P(S|\mathbf{P}_F)p(\mathbf{P}_F)}{P(S)}$$

Likewise, for P_C

$$p(\mathbf{P}_C|S) = \frac{P(S|\mathbf{P}_C)p(\mathbf{P}_C)}{P(S)}$$

Reminder:

You are given a (new?) coin for each toss. You toss N times, observing $S = (t, h, \dots, t)$

Possible outcomes $C_n \in h$, t. Possible coins types: $F_n \in f$, l.

 P_F and P_C parameterize the distributions of F and P(C|F=I). If $X \in Z$ is continuous, then p(X) is a density, if $p(X) \ge 0$ and $\int_{\mathcal{T}} d\vec{x} \, p(\vec{x}) = 1$.

Ques.: What is P(F) given S?

Ques.: Density $p(\mathbf{P}_F|S)$?

We can use conditioning:

$$p(\mathbf{P}_F|S) = \frac{P(S|\mathbf{P}_F)p(\mathbf{P}_F)}{P(S)}$$

Likewise, for P_C

$$p(\mathbf{P}_C|S) = \frac{P(S|\mathbf{P}_C)p(\mathbf{P}_C)}{P(S)}$$

How can we evaluate the marginals? Can we

use the sum-product algorithm?

Reminder:

You are given a (new?) coin $\in \{f, I\}$ for each toss $\in \{h, t\}$. You toss N times, observing $S = (t, h, \dots, t)$ $P(F) = P_F$ and $P(C|F = I) = P_C$. We want: posterior densitites $p(P_F|S)$ and $p(P_C|S)$.

Bayesian network

Reminder:

You are given a (new?) coin $\in \{f, I\}$ for each toss $\in \{h, t\}$. You toss N times, observing $S = (t, h, \dots, t)$ $P(F) = P_F$ and $P(C|F = I) = P_C$. We want: posterior densitites $p(P_F|S)$ and $p(P_C|S)$.

Bayesian network

Factor graph

Reminder:

You are given a (new?) coin $\in \{f, I\}$ for each toss $\in \{h, t\}$. You toss N times, observing $S = (t, h, \dots, t)$ $P(F) = P_F$ and $P(C|F = I) = P_C$. We want: posterior densitites $p(P_F|S)$ and $p(P_C|S)$.

Bayesian network

Factor graph

 \Rightarrow lots of loops!

We need another approach!

Reminder:

You are given a (new?) coin $\in \{f, I\}$ for each toss $\in \{h, t\}$. You toss N times, observing $S = (t, h, \dots, t)$ $P(F) = P_F$ and $P(C|F = I) = P_C$. We want: posterior densitites $p(P_F|S)$ and $p(P_C|S)$.

Prob. 1: loopy graph.

Factor graph

We need another approach!

Reminder:

You are given a (new?) coin $\in \{f, I\}$ for each toss $\in \{h, t\}$. You toss N times, observing $S = (t, h, \dots, t)$ $P(F) = P_F$ and $P(C|F = I) = P_C$. We want: posterior densitites $p(P_F|S)$ and $p(P_C|S)$.

Prob. 1: loopy graph.

Prob. 2: Messages

from factors to \mathbf{P}_C :

$$\mu_{f(F_1,\mathbf{P}_F)\to\mathbf{P}_F}(\mathbf{P}_F)$$

are *infinitely* long,

because $\mathbf{P}_F \in \mathbb{R}^2$.

actually, $\mathbf{P}_F \in [0,1]$, but still...

We need another approach!

Reminder:

You are given a (new?) coin $\in \{f, I\}$ for each toss $\in \{h, t\}$. You toss N times, observing $S = (t, h, \dots, t)$ $P(F) = P_F$ and $P(C|F = I) = P_C$. We want: posterior densitites $p(P_F|S)$ and $p(P_C|S)$.

Prob. 1: loopy graph. **Prob. 2:** Messages from factors to P_C :

$$\mu_{f(F_1,\mathbf{P}_F)\to\mathbf{P}_F}(\mathbf{P}_F)$$

are *infinitely* long, because $\mathbf{P}_F \in \mathbb{R}^2$.

actually, $\mathbf{P}_F \in [0, 1]$, but still...

⇒ We need a different approach!

Restating the problem: inference as optimization

Reminder:

You are given a (new?) coin $\in \{f,I\}$ for each toss $\in \{h,t\}$. You toss N times, observing $S=(t,h,\ldots,t)$ $P(F)=P_F$ and $P(C|F=I)=P_C$. We want: posterior densitites $p(P_F|S)$ and $p(P_C|S)$.

We would like : $p(\mathbf{P}_F|S)$ and $p(\mathbf{P}_C|S)$

Direct approach too difficult. Instead, we will

- restate inference as an optimization problem with $p(\mathbf{P}_F|S)$ and $p(\mathbf{P}_C|S)$ as solution, and
- constrain the solutions until we can solve it.
- No longer exact, but at least an approximate solution may be possible.

Reminder:

```
You are given a (new?) coin \in \{f, I\} for each toss \in \{h, t\}. You toss N times, observing S = (t, h, \dots, t) P(F) = P_F and P(C|F = I) = P_C. We want: posterior densitites p(P_F|S) and p(P_C|S).
```

We would like : $p(\mathbf{P}_F|S)$ and $p(\mathbf{P}_C|S)$ Direct approach too difficult. Instead, we will

- restate inference as an **optimization problem** with $p(\mathbf{P}_F|S)$ and $p(\mathbf{P}_C|S)$ as solution, and
- constrain the solutions until we can solve it.
- No longer exact, but at least an approximate solution may be possible.

What should be optimized?

Question: what is a good model for the data?

Answer: marginal probability P(S) is high.

Reason: good explanation for observations, it controlled the contr

General optimization problem statement:

$$\frac{\mathsf{maximize}}{\mathsf{P}(D)} = \sum_{\mathsf{H}} \mathsf{P}(D,\mathsf{H})$$

where

- D are observable data.
- *H* are hidden variables/parameters
- P(D,H) = P(D|H)P(H)
- either of *D* or *H* could be continuous, in which case we work with densitites (and integrals).

General optimization problem statement:

$$\mathsf{maximize}\ P(D) = \sum_{H} P(D,H)$$

where

- D are observable data.
- H are hidden variables/parameters

- P(D, H) = P(D|H)P(H)
- either of D or H could be continuous, in which case we work with densitites (and integrals).

Problem: Since $P(H|D) = \frac{P(D,H)}{P(D)}$ is too difficult to evaluate directly

 $\Rightarrow P(D)$ is too difficult to evaluate directly.

General optimization problem statement:

$$maximize P(D) = \sum_{H} P(D, H)$$

where

- D are observable data.
- H are hidden variables/parameters
- P(D, H) = P(D|H)P(H)
- either of *D* or *H* could be continuous, in which case we work with densitites (and integrals).

Problem: Since $P(H|D) = \frac{P(D,H)}{P(D)}$ is too difficult to evaluate directly

 $\Rightarrow P(D)$ is too difficult to evaluate directly.

Making the optimization problem tractable

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize $P(D) = \sum_{H} P(D, H) = \sum_{H} P(D|H)P(H)$. Either of D or H could be continuous \Rightarrow densities and integrals instead of sums and distributions.

Question 1: if P(D) is too difficult to evaluate, what do we maximize instead?

Answer 1: maximum-a-posteriori, MAP:

maximize
$$P(D, H) = P(D|H)P(H)$$

 \Rightarrow ignore all summands in $P(D) = \sum_{H} P(D|H)P(H)$ except for the largest one.

Making the optimization problem tractable

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize $P(D) = \sum_{H} P(D, H) = \sum_{H} P(D|H)P(H)$. Either of D or H could be continuous \Rightarrow densities and integrals instead of sums and distributions.

Question 1: if P(D) is too difficult to evaluate, what do we maximize instead? Instead of

maximize P(D, H)

we can maximize any strictly monotonically increasing function of P(D, H). Popular choice:

$$\log(P(D,H))$$

Why log():

- avoid underflows.
- simplify functional form.
- information-theoretical reasons, minimal codelength of data.

Making the optimization problem tractable

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize $P(D) = \sum_{H} P(D, H) = \sum_{H} P(D|H)P(H)$. Either of D or H could be continuous \Rightarrow densities and integrals instead of sums and distributions.

Question 1: if P(D) is too difficult to evaluate, what do we maximize instead?

Answer 2: maximum-likelihood, ML:

maximize
$$P(D|H)$$

 \Rightarrow ignore prior P(H) and all summands in $P(D) = \sum_{H} P(D|H)P(H)$ except for the largest one.

In practical applications:

- maximize log(P(D|H))
- or minimize $-\log(P(D|H))$

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize $P(D) = \sum_{H} P(D,H) = \sum_{H} P(D|H)P(H)$, or alternatively $\log(P(D))$ Either of D or H could be continuous \Rightarrow densities and integrals instead of sums and distributions.

Question 1: if P(D) is too difficult to evaluate, what do we maximize instead?

Answer 3: variational approximation derive a lower bound $\mathcal{L}(D)$ on $\log(P(D))$, and maximize this bound.

$$\log(P(D)) \ge \mathcal{L}(D)$$

maximize $\mathcal{L}(D)$

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize $P(D) = \sum_{H} P(D, H) = \sum_{H} P(D|H)P(H)$, or alternatively $\log(P(D))$ Either of D or H could be continuous \Rightarrow densities and integrals instead of sums and distributions.

Question 1: if P(D) is too difficult to evaluate, what do we maximize instead?

Answer 3: variational approximation derive a *lower bound* $\mathcal{L}(D)$ on $\log(P(D))$, and maximize this bound.

$$\log(P(D)) \geq \mathcal{L}(D)$$

$$\text{maximize } \mathcal{L}(D)$$

Question 2: With respect to what should $\mathcal{L}(D)$ be maximized? Answer: We want to compute an approximating distribution to P(H|D), call it $Q(H) \Rightarrow \mathcal{L}(D)$ should also depend on Q(H).

maximize $\mathcal{L}(D, Q(H))$ with respect to Q(H).

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize a lower bound $\mathcal{L}(D, Q(H))$ on P(D): $P(D) \geq \mathcal{L}(D, Q(H))$ with respect to Q(H). Either of D or H could be continuous \Rightarrow densities and integrals instead of sums and distributions.

(New) optimization problem:

maximize
$$\mathcal{L}(\mathcal{L}, \mathcal{Q}(H))$$
 with respect to $\mathcal{Q}(H)$.

To derive $\mathcal{L}(D, Q(H))$, we need two ingredients:

- Jensen's inequality for convex (or concave) functions
- Kullback-Leibler divergence, or relative entropy.

Jensen's inequality for convex (or concave) functions

Definition: a function f(x) is *convex* over an interval [a, b] if $\forall 0 \le \lambda \le 1$ and $\forall x_1, x_2 \in [a, b]$:

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$$

Jensen's inequality for convex (or concave) functions

Definition: a function f(x) is *convex* over an interval [a, b] if $\forall 0 \le \lambda \le 1$ and $\forall x_1, x_2 \in [a, b]$:

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2)$$

Definition: a function f(x) is concave if -f(x) is convex. Then

$$f(\lambda x_1 + (1-\lambda)x_2) \ge \lambda f(x_1) + (1-\lambda)f(x_2)$$

Jensen's inequality for convex (or concave) functions

Definition: a function f(x) is **convex** over an interval [a, b] if $\forall 0 < \lambda < 1 \text{ and } \forall x_1, x_2 \in [a, b]$:

$$f(\lambda x_1 + (1-\lambda)x_2) \leq \lambda f(x_1) + (1-\lambda)f(x_2)$$

Definition: a function f(x) is concave if -f(x) is convex. Then

$$f(\lambda x_1 + (1-\lambda)x_2) \ge \lambda f(x_1) + (1-\lambda)f(x_2)$$

Example: $\log(x)$ is concave.

Let
$$P(X) = \begin{cases} X = x_1 : \lambda \\ X = x_2 : (1 - \lambda) \end{cases}$$

Then

$$f(E(X)) \geq E(f(X))$$

Jensen's inequality for convex functions

Reminder:

Let $X \in \{x_1, x_2\}$ be a random variable with distribution P(X). Function f(x) is convex (concave), if $f(E(X)) \le (\ge)E(f(X))$.

Jensen's inequality: let f(x) be a convex function, and $X \in \{x_1, \dots, x_N\}$ be a random variable with distribution P(X). Then

$$f(E(X)) \leq E(f(X))$$

Proof: by induction over N.

The inequality holds for N=2. Let $P(X=x_i)=p_i$. Since $\sum_{i=1}^{N-1}p_i=(1-p_N)$, $P(X=x_i)=\frac{p_i}{1-p_N}=p_i'$ is a probability distribution over $X'\in\{x_1,\ldots,x_{N-1}\}$

Jensen's inequality for convex functions, contd.

Reminder:

Let $X \in \{x_1, x_2\}$ be a random variable with distribution P(X). Function f(x) is convex (concave) , if $f(E(X)) \le (\ge)E(f(X))$. If $P(X = x_i) = p_i$ for $X \in \{x_1, \dots, X_N\}$, then $P(X' = x_i) = p_i' = \frac{p_i}{1 - p_N}$ is a distribution over $X \in \{x_1, \dots, X_{N-1}\}$

$$E(f(X)) = \sum_{i=1}^{N} p_i f(x_i) = p_N f(x_N) + \sum_{i=1}^{N-1} p_i f(x_i)$$

$$= p_N f(x_N) + (1 - p_N) \sum_{i=1}^{N-1} p_i' f(x_i)$$

$$\geq p_N f(x_N) + (1 - p_N) f\left(\sum_{i=1}^{N-1} p_i' x_i\right)$$

$$\geq f\left(p_N x_N + (1 - p_N) \sum_{i=1}^{N-1} p_i' x_i\right)$$

$$= f\left(\sum_{i=1}^{N} x_i\right) = f(E(X)) \square$$

Jensen's inequality for convex functions

Jensen's inequality: let f(x) be a convex function, and $X \in \{x_1, \ldots, x_N\}$ be a random variable with distribution P(X). Then

$$f(E(X)) \leq E(f(X))$$

Moreover, if f(x) is *strictly convex*, then f(E(X)) = E(f(X)) implies that X is constant.

Likewise, if f(x) is a concave function, then

$$f(E(X)) \geq E(f(X))$$

Note: Jensen's inequality also holds for continuous random variables!

Kullback-Leibler divergence

Reminder:

Jensen's inequality: let f(x) be a convex (concave) function, and $X \in \{x_1, \dots, x_N\}$ be a random variable with distribution P(X). Then f(E(X)) < (>)E(f(X)).

Definition: Let Q(X) and P(X) be probability distributions over X. The *Kullback-Leibler divergence* or *relative entropy* is given by

$$D(Q||P) = \sum_{X} Q(x) \log \left(\frac{Q(x)}{P(x)}\right)$$

Important property: $D(Q||P) \ge 0$ with equality if Q(X) = P(X). **Note:** D(Q||P) is not symmetric.

Proof: Kullback-Leibler divergence is non-negative

Reminder:

Jensen's inequality: let f(x) be a convex (concave) function, and $X \in \{x_1, \dots, x_N\}$ be a random variable with distribution P(X). Then $f(E(X)) \le (\ge)E(f(X))$.

Important property: $D(Q||P) \ge 0$ with equality if Q(X) = P(X). **Proof**:

$$-D(Q||P) = -\sum_{X} Q(x) \log \left(\frac{Q(x)}{P(x)}\right) = \sum_{X} Q(X) \log \left(\frac{P(x)}{Q(x)}\right)$$

$$= \log \left(\log \left(\frac{P(x)}{P(x)}\right)\right) \leq \log \left(E_Q\left(\frac{P(X)}{Q(X)}\right)\right)$$

$$= \log \left(\sum_{X} P(x)\right) = \log(1) = 0 \quad \Box$$

Note: D(P||Q) = 0 if (and only if) P(X) = Q(X).

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize a lower bound $\mathcal{L}(D,Q(H))$ on P(D): $P(D) \geq \mathcal{L}(D,Q(H))$ with respect to Q(H). Kullback-Leibler divergence: $D(Q||P) = E_Q\left(\log\left(\frac{Q(X)}{P(X)}\right)\right)$ Jensen's inequality: $\log(E(X)) \geq E(\log(X))$

We derive a lower bound $\mathcal{L}(D, Q(H))$ on $\log(P(D))$ via:

$$\log(P(D)) = \log\left(\sum_{H} P(D, H)\right) = \log\left(\sum_{H} \frac{Q(H)}{Q(H)} P(D, H)\right)$$

$$= \log\left(\sum_{H} Q(H) \frac{P(D, H)}{Q(H)}\right) = \log\left(E_{Q(H)} \left(\frac{P(D, H)}{Q(H)}\right)\right)$$

$$= E_{Q(H)} \left(\log\left(\frac{P(D, H)}{Q(H)}\right)\right) = \sum_{H} Q(H) \left(\log\left(\frac{P(D, H)}{Q(H)}\right)\right)$$

$$=: \mathcal{L}(D, Q(H))$$

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize a lower bound $\mathcal{L}(D,Q(H))$ on P(D): $P(D) \geq \mathcal{L}(D,Q(H))$ with respect to Q(H). Kullback-Leibler divergence: $D(Q||P) = E_Q\left(\log\left(\frac{Q(X)}{P(X)}\right)\right)$ Jensen's inequality: $\log(E(X)) \geq E(\log(X))$

We derive a lower bound $\mathcal{L}(D, Q(H))$ on log(P(D)) via:

$$\log(P(D)) = \log\left(\sum_{H} P(D, H)\right) = \log\left(\sum_{H} \frac{Q(H)}{Q(H)} P(D, H)\right)$$

$$= \log\left(\sum_{H} Q(H) \frac{P(D, H)}{Q(H)}\right) = \log\left(E_{Q(H)} \left(\frac{P(D, H)}{Q(H)}\right)\right)$$

$$\geq E_{Q(H)} \left(\log\left(\frac{P(D, H)}{Q(H)}\right)\right) = \sum_{H} Q(H) \left(\log\left(\frac{P(D, H)}{Q(H)}\right)\right)$$

$$=: \mathcal{L}(D, Q(H))$$

Those are the **key steps** in constructing the lower bound. Works with densities, too!

When is $\mathcal{L}(D, Q(H))$ tight?

Reminder:

```
Given: observable data D and hidden variables/parameters H. We'd like to maximize a lower bound \mathcal{L}(D,Q(H)) on P(D): P(D) \geq \mathcal{L}(D,Q(H)) with respect to Q(H). Kullback-Leibler divergence: D(Q||P) = E_Q\left(\log\left(\frac{Q(X)}{P(X)}\right)\right). Jensen's inequality: \log(E(X)) \geq E(\log(X)) Lower bound \mathcal{L}(D,Q(H)) = E_{Q(H)}\left(\log\left(\frac{P(D,H)}{Q(H)}\right)\right) \leq \log(P(D))
```

Ques.: When is $\mathcal{L}(D, Q(H)) = \log(P(D))$?

When is $\mathcal{L}(D, Q(H))$ tight?

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize a lower bound $\mathcal{L}\left(D,Q\left(H\right)\right)$ on $P(D):P(D)\geq\mathcal{L}\left(D,Q\left(H\right)\right)$ with respect to $Q\left(H\right)$. Kullback-Leibler divergence: $D(Q||P)=E_Q\left(\log\left(\frac{Q(X)}{P(X)}\right)\right)$. Jensen's inequality: $\log(E(X))\geq E(\log(X))$ Lower bound $\mathcal{L}\left(D,Q\left(H\right)\right)=E_{Q(H)}\left(\log\left(\frac{P(D,H)}{P(X)}\right)\right)\leq \log(P(D))$

Ques.: When is $\mathcal{L}(D, Q(H)) = \log(P(D))$?

Answer: P(D, H) = P(H|D)P(D). Thus, if Q(H) = P(H|D):

$$\mathcal{L}(D, Q(H)) = E_{Q(H)} \left(\log \left(\frac{P(H|D)P(D)}{Q(H)} \right) \right)$$

$$= E_{Q(H)} \left(\log \left(\frac{P(H|D)P(D)}{P(H|D)} \right) \right)$$

$$= E_{Q(H)} \left(\log (P(D)) \right) = \log(P(D))$$

 \Rightarrow the bound is tight if (and only if) Q(H) = P(H|D), i.e. when the approximation is exact.

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize a lower bound $\mathcal{L}(D,Q(H))$ on P(D): $P(D) \geq \mathcal{L}(D,Q(H))$ with respect to Q(H). Kullback-Leibler divergence: $D(Q||P) = E_Q\left(\log\left(\frac{Q(X)}{P(X)}\right)\right)$. Jensen's inequality: $\log(E(X)) \geq E(\log(X))$ Lower bound $\mathcal{L}(D,Q(H)) = E_{Q(H)}\left(\log\left(\frac{P(D,H)}{Q(H)}\right)\right) \leq \log(P(D))$

Consequence of $\mathcal{L}(D, Q(H)) \leq \log(P(D))$:

no overfitting!

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize a lower bound $\mathcal{L}\left(D,Q\left(H\right)\right)$ on $P(D):P(D)\geq\mathcal{L}\left(D,Q\left(H\right)\right)$ with respect to $Q\left(H\right)$. Kullback-Leibler divergence: $D(Q||P)=E_Q\left(\log\left(\frac{Q\left(X\right)}{P\left(X\right)}\right)\right)$. Jensen's inequality: $\log(E(X))\geq E(\log(X))$ Lower bound $\mathcal{L}\left(D,Q\left(H\right)\right)=E_{Q\left(H\right)}\left(\log\left(\frac{P\left(D,H\right)}{P\left(X\right)}\right)\leq \log(P(D))$

Consequence of $\mathcal{L}(D, Q(H)) \leq \log(P(D))$:

no overfitting!

Question: does that mean we don't have to cross-validate? Answer: no. Need to check how "underfitted" the solution is.

An interpretation of $\mathcal{L}(D, Q(H))$

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize a lower bound $\mathcal{L}(D,Q(H))$ on P(D): $P(D) \geq \mathcal{L}(D,Q(H))$ with respect to Q(H). Kullback-Leibler divergence: $D(Q||P) = E_Q\left(\log\left(\frac{Q(X)}{P(X)}\right)\right)$. Jensen's inequality: $\log(E(X)) \geq E(\log(X))$ Lower bound $\mathcal{L}(D,Q(H)) = E_{Q(H)}\left(\log\left(\frac{P(D,H)}{P(X)}\right)\right) \leq \log(P(D))$

Question: can $\mathcal{L}(D, Q(H))$ be interpreted? **Answer 1:** Note that P(D, H) = P(D|H)P(H). Thus

$$\mathcal{L}(D, Q(H)) = E_{Q(H)}\left(\log\left(\frac{P(D, H)}{Q(H)}\right)\right) = E_{Q(H)}\left(\log\left(\frac{P(D|H)P(H)}{Q(H)}\right)\right)$$

$$= E_{Q(H)}\left(\log(P(D|H)) + \log\left(\frac{P(H)}{Q(H)}\right)\right)$$

$$= E_{Q(H)}\left(\log(P(D|H))\right) - E_{Q(H)}\left(\log\left(\frac{Q(H)}{P(H)}\right)\right)$$

$$= E_{Q(H)}\left(\log(P(D|H))\right) - D(Q(H)||P(H))$$

An interpretation of $\mathcal{L}(D, Q(H))$, contd.

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize a lower bound $\mathcal{L}(D,Q(H))$ on $P(D):P(D) \geq \mathcal{L}(D,Q(H))$ with respect to Q(H). Kullback-Leibler divergence: $D(Q||P) = E_Q\left(\log\left(\frac{Q(X)}{P(X)}\right)\right)$. Jensen's inequality: $\log(E(X)) \geq E(\log(X))$ Lower bound $\mathcal{L}(D,Q(H)) = E_{Q(H)}\left(\log\left(\frac{P(D,H)}{P(X)}\right)\right) \leq \log(P(D))$

We found:

$$\mathcal{L}(D,Q(H)) = \underbrace{E_{Q(H)}(\log(P(D|H)))}_{\text{log-likelihood of data D}} \underbrace{D(Q(H)||P(H))}_{\text{divergence from prior}}$$

Maximizing $\mathcal{L}(D, Q(H))$ therefore means:

- find a good explanation for D (large log-likelihood), and
- maintain prior beliefs as much as possible.

Another interpretation of $\mathcal{L}(D, Q(H))$

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize a lower bound $\mathcal{L}(D,Q(H))$ on P(D): $P(D) \geq \mathcal{L}(D,Q(H))$ with respect to Q(H). Kullback-Leibler divergence: $D(Q||P) = E_Q\left(\log\left(\frac{Q(X)}{P(X)}\right)\right)$. Jensen's inequality: $\log(E(X)) \geq E(\log(X))$ Lower bound $\mathcal{L}(D,Q(H)) = E_{Q(H)}\left(\log\left(\frac{P(D,H)}{Q(H)}\right)\right) \leq \log(P(D))$

Question: can $\mathcal{L}(D, Q(H))$ be interpreted? **Answer 2:**

$$\mathcal{L}(D, Q(H)) = E_{Q(H)} \left(\log \left(\frac{P(D, H)}{Q(H)} \right) \right)$$

$$= E_{Q(H)} \left(\log(P(D, H)) - \log(Q(H)) \right)$$

$$= E_{Q(H)} \left(\log(P(D, H)) - E_{Q(H)} \left(\log(Q(H)) \right) \right)$$

$$= -U(D, Q(H)) - S(Q(H))$$

$$= -U(D, Q(H)) + S(Q(H))$$

U(D, Q(H)): expected 'energy' or 'cost' of H under Q(H) S(Q(H)): Shannon entropy (uncertainty) of H under Q(H).

Another interpretation of $\mathcal{L}(D, Q(H))$, contd.

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize a lower bound $\mathcal{L}(D,Q(H))$ on $P(D):P(D) \geq \mathcal{L}(D,Q(H))$ with respect to Q(H). Kullback-Leibler divergence: $D(Q||P) = E_Q\left(\log\left(\frac{Q(X)}{P(X)}\right)\right)$. Jensen's inequality: $\log(E(X)) \geq E(\log(X))$ Lower bound $\mathcal{L}(D,Q(H)) = E_{Q(H)}\left(\log\left(\frac{P(D,H)}{Q(H)}\right)\right) \leq \log(P(D))$

We found:

$$\mathcal{L}(D, Q(H)) = -U(D, Q(H)) + Q(H)$$

Maximizing $\mathcal{L}(D, Q(H))$ therefore means:

- minimize expected cost/energy, and
- maximize posterior uncertainty about H

Another interpretation of $\mathcal{L}(D, Q(H))$, contd.

Reminder:

Given: observable data D and hidden variables/parameters H. We'd like to maximize a lower bound $\mathcal{L}(D,Q(H))$ on $P(D):P(D) \geq \mathcal{L}(D,Q(H))$ with respect to Q(H). Kullback-Leibler divergence: $D(Q||P) = E_Q\left(\log\left(\frac{Q(X)}{P(X)}\right)\right)$. Jensen's inequality: $\log(E(X)) \geq E(\log(X))$ Lower bound $\mathcal{L}(D,Q(H)) = E_{Q(H)}\left(\log\left(\frac{P(D,H)}{P(X)}\right)\right) \leq \log(P(D))$

We found:

$$\mathcal{L}(D, Q(H)) = -U(D, Q(H)) + S(Q(H))$$

Maximizing $\mathcal{L}(D, Q(H))$ therefore means:

- minimize expected cost/energy, and
- maximize posterior uncertainty about H

Back to the example: how loaded is my coin, and how often?

Reminder: Lower bound $\mathcal{L}\left(D,Q\left(H\right)\right)=E_{Q\left(H\right)}\left(\log\left(\frac{P\left(D,H\right)}{O\left(H\right)}\right)\right)\leq\log(P(D))$

To construct $\mathcal{L}(D, Q(H))$, we need

- Joint density: $p(C_i, F_i, P_F, P_C)$
- Approximating density: $q(C_i, F_i, P_F, P_C)$

$$p(C_i, F_i, \mathbf{P}_F, \mathbf{P}_C) = \left[\prod_{i=1}^N P(C_i|F_i, \mathbf{P}_C)P(F_i|\mathbf{P}_F)\right]p(\mathbf{P}_F)p(\mathbf{P}_C)$$

Breaking the loops

Reminder: Lower bound $\mathcal{L}\left(D,Q\left(H\right)\right) = E_{Q(H)}\left(\log\left(\frac{P(D,H)}{Q(H)}\right)\right) \leq \log(P(D))$ $p(C_i,F_i,P_F,P_C) = \left[\prod_{i=1}^N P(C_i|F_i,P_C)P(F_i|P_F)\right]p(P_F)p(P_C)$

Question: how to choose $q(C_i, F_i, \mathbf{P}_F, \mathbf{P}_C)$? Hard part are the loops.

Breaking the loops

Reminder:

Lower bound
$$\mathcal{L}(D, Q(H)) = E_{Q(H)}\left(\log\left(\frac{P(D, H)}{Q(H)}\right)\right) \le \log(P(D))$$

 $p(C_i, F_i, P_F, P_C) = \left[\prod_{i=1}^N P(C_i|F_i, P_C)P(F_i|P_F)\right]p(P_F)p(P_C)$

Question: how to choose $q(C_i, F_i, \mathbf{P}_F, \mathbf{P}_C)$? Hard part are the loops.

Let's break them:

$$\bigcirc$$

$$q(F_i, \mathbf{P}_F, \mathbf{P}_C) = \left[\prod_{i=1}^N Q_i(F_i)\right] q(\mathbf{P}_F) q(\mathbf{P}_C)$$

Breaking the loops

Reminder:

Lower bound
$$\mathcal{L}(D, Q(H)) = E_{Q(H)}\left(\log\left(\frac{P(D, H)}{Q(H)}\right)\right) \le \log(P(D))$$

 $p(C_i, F_i, P_F, P_C) = \left[\prod_{i=1}^N P(C_i|F_i, P_C)P(F_i|P_F)\right]p(P_F)p(P_C)$

Question: how to choose $q(C_i, F_i, \mathbf{P}_F, \mathbf{P}_C)$? Hard part are the loops.

Let's break them:

$$q(F_i, \mathbf{P}_F, \mathbf{P}_C) = \left[\prod_{i=1}^N Q_i(F_i)\right] q(\mathbf{P}_F) q(\mathbf{P}_C)$$

But this looks like the parameters P_F , P_C are disconnected from the data C_i !

Connecting the parameters to the data via $\mathcal{L}(D, Q(H))$

⇒ the bound contains both the exact joint density, and the approximating one. Parameters are connected to the data.

Computing the **bound**

Reminder: Lower bound $C(D, Q(H)) = E_{Q(H)} \left(\log \left(\bigcup_{Q(H)} \right) \right) \le \log(P(D))$ Exact joint density $p(C_i, F_i, P_F, P_C) = \left[\prod_{i=1}^N P(C_i | F_i, P_C) P(F_i | P_F) \right] p(P_F) p(P_C)$ Approximating density $\left[\prod_{i=1}^N Q_i(F_i) \right] q(P_F) q(P_C)$

In our example (E_q is expectation w.r.t approximating density):

$$\mathcal{L} = E_{q} \left[\log \left(\frac{\left[\prod_{i=1}^{N} P(C_{i}|F_{i}, \mathbf{P}_{C}) P(F_{i}|\mathbf{P}_{F}) \right] p(\mathbf{P}_{F}) p(\mathbf{P}_{C})}{\left[\prod_{i=1}^{N} Q_{i}(F_{i}) \right] q(\mathbf{P}_{F}) q(\mathbf{P}_{C})} \right) \right]$$

$$= \sum_{i=1}^{N} E_{q} \left[\log \left(\frac{P(C_{i}|F_{i}, \mathbf{P}_{C}) P(F_{i})}{Q(\mathbf{P}_{F})} \right) \right]$$

$$-E_{q} \left[\log \left(\frac{q(\mathbf{P}_{F})}{p(\mathbf{P}_{F})} \right) \right] - E_{q} \left[\log \left(\frac{q(\mathbf{P}_{C})}{p(\mathbf{P}_{C})} \right) \right]$$

Computing the bound, contd.

Reminder: Approximating density $\prod_{i=1}^{N} Q_i(r_i) \mid q(P_F)q(P_C)$

$$E_q\left[\log\left(\frac{q(\mathbf{P}_F)}{p(\mathbf{P}_F)}\right)\right] = E_{q(\mathbf{P}_F)}\left[\log\left(\frac{q(\mathbf{P}_F)}{p(\mathbf{P}_F)}\right)\right] = D(q(\mathbf{P}_F)||p(\mathbf{P}_F))$$

$$E_q\left[\log\left(\frac{q(\mathbf{P}_C)}{p(\mathbf{P}_C)}\right)\right] = E_{q(\mathbf{P}_C)}\left[\log\left(\frac{q(\mathbf{P}_C)}{p(\mathbf{P}_C)}\right)\right] = D(q(\mathbf{P}_C)||p(\mathbf{P}_C))$$

Computing the bound, contd.

Reminder:

Approximating density
$$\left[\prod_{i=1}^{N} Q_i(F_i)\right] q(P_F)q(P_C)$$

$$L_{i} = E_{q} \left[\log \left(\frac{P(C_{i}|F_{i}, \mathbf{P}_{C})P(F_{i}|\mathbf{P}_{F})}{Q_{i}(F_{i})} \right) \right]$$

$$= E_{q} \left[\log \left(P(C_{i}|F_{i}, \mathbf{P}_{C})P(F_{i}|\mathbf{P}_{F}) \right) \right] - E_{q} \left[\log \left(Q_{i}(F_{i}) \right) \right]$$

$$= E_{Q_{i}(F_{i})} \left[E_{q}(\mathbf{P}_{F})q(\mathbf{P}_{C}) \left[\log \left(P(C_{i}|F_{i}, \mathbf{P}_{C})P(F_{i}|\mathbf{P}_{F}) \right) \right] - \log \left(Q_{i}(F_{i}) \right) \right]$$

$$=: E_{Q_{i}(F_{i})} \left[\log \left(U_{i}(F_{i}) \right) - \log \left(Q_{i}(F_{i}) \right) \right]$$

Computing the bound, contd.

Reminder:

Approximating density $\left[\prod_{i=1}^{N} Q_i(F_i)\right] q(\mathbf{P}_F)q(\mathbf{P}_C)$

$$L_{i} = E_{q} \left[\log \left(\frac{P(C_{i}|F_{i}, \mathbf{P}_{C})P(F_{i}|\mathbf{P}_{F})}{Q_{i}(F_{i})} \right) \right]$$

$$= E_{q} \left[\log \left(P(C_{i}|F_{i}, \mathbf{P}_{C})P(F_{i}|\mathbf{P}_{F}) \right) \right] - E_{q} \left[\log(Q_{i}(F_{i})) \right]$$

$$= E_{Q_{i}(F_{i})} \left[E_{q(\mathbf{P}_{F})q(\mathbf{P}_{C})} \left[\log \left(P(C_{i}|F_{i}, \mathbf{P}_{C})P(F_{i}|\mathbf{P}_{F}) \right) \right] - \log(Q_{i}(F_{i})) \right]$$

$$=: E_{Q_{i}(F_{i})} \left[\log(U_{i}(F_{i})) - \log(Q_{i}(F_{i})) \right]$$
Let $Z_{i} = \sum_{F_{i}} U_{i}(F_{i})$. Then $\tilde{Q}_{i}(F_{i}) = \frac{U_{i}(F_{i})}{Z_{i}}$ is a probability distribution over F_{i} . Thus

Computing the bound, contd.

Reminder:

Approximating density $\left[\prod_{i=1}^{N} Q_i(F_i)\right] q(\mathbf{P}_F)q(\mathbf{P}_C)$

$$L_{i} = E_{q} \left[\log \left(\frac{P(C_{i}|F_{i}, \mathbf{P}_{C})P(F_{i}|\mathbf{P}_{F})}{Q_{i}(F_{i})} \right) \right]$$

$$= E_{q} \left[\log \left(P(C_{i}|F_{i}, \mathbf{P}_{C})P(F_{i}|\mathbf{P}_{F}) \right) \right] - E_{q} \left[\log(Q_{i}(F_{i})) \right]$$

$$= E_{Q_{i}(F_{i})} \left[E_{q}(\mathbf{P}_{F})q(\mathbf{P}_{C}) \left[|\mathbf{Q}_{i}(F_{i})| - |\mathbf{Q}_{i}(F_{i})| \right] \right] - \log(Q_{i}(F_{i})) \right]$$

$$= E_{Q_{i}(F_{i})} \left[\log(U_{i}(F_{i})) - \log(Q_{i}(F_{i})) \right]$$

$$= E_{Q_{i}(F_{i})} \left[\log(Z_{i}) + \log(\tilde{Q}_{i}(F_{i})) - \log(Q_{i}(F_{i})) \right]$$

$$= \log(Z_{i}) - E_{Q_{i}(F_{i})} \left[\log \left(\frac{\log(Q_{i}(F_{i}))}{\log(\tilde{Q}_{i}(F_{i}))} \right) \right]$$

$$\log(Z_{i}) - D(Q_{i}(F_{i})||\tilde{Q}_{i}(F_{i}))$$

Putting it all together

Thus, we find for the bound

$$\mathcal{L} = \sum_{i=1}^{N} \left(\log(Z_i) - D(Q_i(F_i)||\tilde{Q}_i(F_i)) \right)$$
$$-D(q(\mathbf{P}_F)||p(\mathbf{P}_F)) - D(q(\mathbf{P}_C)||p(\mathbf{P}_C))$$

- For fixed $q(\mathbf{P}_F)$ and $q(\mathbf{P}_C)$, \mathcal{L} is maximized by setting $Q_i(F_i) = \tilde{Q}_i(F_i)$.
- 2 \mathcal{L} can be increased further by fixing the $Q_i(F_i)$ and maximizing w.r.t. $q(\mathbf{P}_F)$ and $q(\mathbf{P}_C)$.

Iterating these two steps will keep increasing \mathcal{L} . This is an example of a variational *expectation-maximization (EM)* algorithm. We derive the *E*-step so far.

Summary 1: variational approximations

- Computing the parameter posterior ('learning') can be difficult even in simple models.
- Instead of evaluating the posterior directly, restate inference as an optimization problem.
- Introduces an approximating posterior instead of the correct one.
- It's called "variational" because the approximating posterior is varied until optimal.

Summary 2: variational approximations

- **Jensen's inequality**: let f(x) be a convex function, and $X \in \{x_1, \dots, x_N\}$ be a random variable with distribution P(X). Then $f(E(X)) \leq E(f(X))$.
- Kullback-Leibler divergence veen 2 distributions (or densities): $D(Q||P) = \sum_{X} Q(x) \log \left(\frac{Q(x)}{P(x)}\right)$
- $D(Q||P) \ge 0$ with equality only if Q = P.
- Approximate inference/learning can be done by maximizing $\mathcal{L}\left(D,Q\left(H\right)\right)=E_{Q\left(H\right)}\left(\log\left(\frac{P\left(D,H\right)}{Q\left(H\right)}\right)\right)\leq\log(P(D))$
- Bound becomes tight when inference is exact.
- Interpretation of variational learning: explain data well while keeping prior beliefs as much as possible.

Learning the loadedness of the coin \mathbf{P}_{C}

Reminder: Lower bound $\mathcal{L}(D, Q(H)) = E_{Q(H)}\left(\log\left(\frac{P(D, H)}{Q(H)}\right)\right) \leq \log(P(D))$

- How do we learn P_C ?
- ② Can variational approximations avoid infinitely long messages?

Learning the loadedness of the coin P_C

Reminder:

Reminder:
Lower bound
$$\mathcal{L}(D, Q(H)) = E_{Q(H)}\left(\log\left(\frac{P(D, H)}{Q(H)}\right)\right) \le \log(P(D))$$

$$\mathbf{P}_C = (P_h, P_t)$$
 such that $P_h + P_t = 1$

$$P(C|F = f, \mathbf{P}_C) = \begin{cases} C = h : 0.5 \\ C = t : 0.5 \end{cases}$$

$$(C|F = I, \mathbf{P}_C) = \begin{cases} C = h : P_h \\ C = t : P_t \end{cases}$$

 \Rightarrow difficult part: $p(\mathbf{P}_C)$ is the infintely long message.

Learning the loadedness of the coin P_C

Reminder:

Reminder:
Lower bound
$$\mathcal{L}(D, Q(H)) = E_{Q(H)}\left(\log\left(\frac{P(D, H)}{Q(H)}\right)\right) \le \log(P(D))$$

$$\mathbf{P}_C = (P_h, P_t)$$
 such that $P_h + P_t = 1$

$$P(C|F = f, \mathbf{P}_C) = \begin{cases} C = h : 0.5 \\ C = t : 0.5 \end{cases}$$

$$(C|F = I, \mathbf{P}_C) = \begin{cases} C = h : P_h \\ C = t : P_t \end{cases}$$

 \Rightarrow difficult part: $p(\mathbf{P}_C)$ is the infintely long message.

Solution: reparameterization with exponential family distributions/densities.

Exponential family distributions

A distribution/density is said to belong to the exponential family, if it can be written in the form:

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x}))$$

- The random variates **x** may be discrete or continuous.
- The sufficient statistics u are functions of the x .
- The η are the *natural parameters*, one for each sufficient statistic.
- $g(\eta)$ is the normalization constant:

$$g(\eta) \int d\mathbf{x} \ h(\mathbf{x}) \exp(\eta^T \mathbf{u}(\mathbf{x})) = 1$$

Example: coin toss distribution for loaded coin

Reminder:

$$\mathbf{P}_C = (P_h, P_t) \text{ such that } P_h + P_t = 1, \ P(C|F = I, \mathbf{P}_C) = \left\{ \begin{array}{c} C = h : P_h \\ C = t : P_t \end{array} \right.$$

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x}))$$

Sufficient statistic:
$$u(c) = \begin{cases} c = h : 1 \\ c = t : 0 \end{cases}$$

Example: coin toss distribution for loaded coin

Reminder:

$$\mathbf{P}_C = (P_h, P_t) \text{ such that } P_h + P_t = 1, \ P(C|F = I, \mathbf{P}_C) = \left\{ \begin{array}{c} C = h : P_h \\ C = t : P_t \end{array} \right.$$

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x}))$$

Sufficient statistic:
$$u(c) = \begin{cases} c = h : 1 \\ c = t : 0 \end{cases}$$

Then the distribution can be written as:

$$P(C = c | F = I, \mathbf{P}_C) = P_h^{u(c)} (1 - P_h)^{1 - u(c)}$$

$$= \exp(u(c) \log(P_h) + (1 - u(c)) \log(1 - P_h))$$

$$= \exp\left(u(c) \log\left(\frac{P_h}{1 - P_h}\right) + \log(1 - P_h)\right)$$

Example: coin toss distribution for loaded coin

Reminder:

$$\mathbf{P}_C = (P_h, P_t) \text{ such that } P_h + P_t = 1, \ P(C|F = I, \mathbf{P}_C) = \begin{cases} C = h : P_h \\ C = t : P_t \end{cases}$$

$$p(\mathbf{x}|\mathbf{y}) = h(\mathbf{x})g(\mathbf{y}) \exp(\mathbf{y}^T \mathbf{u}(\mathbf{x}))$$

Sufficient statistic:
$$u(c) = \begin{cases} c = h: 1 \\ c = t: 0 \end{cases}$$

Then the distribution can be written as:

$$P(C = c | F = I, \mathbf{P}_C) = P_h^{u(c)} (1 - P_h)^{1 - u(c)}$$

$$= \exp(u(c) \log(P_h) + (1 - u(c)) \log(1 - P_h))$$

$$= \exp\left(u(c) \log\left(\frac{P_h}{1 + P_h}\right) + \log(1 + P_h)\right)$$

Identify
$$\eta = \log\left(\frac{P_h}{1-P_h}\right)$$
 ("logit") and thus $1-P_h = \frac{1}{1-\exp(\eta)} = \sigma(\frac{1}{1-\exp(\eta)})$

$$P(C = c|F = I, \eta) = \underbrace{1}_{h(c)} \underbrace{\sigma(-\eta)}_{g(\eta)} \exp(\eta u(c))$$

Properties of exponential family distributions

Reminder: $p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x}))$ $g(\boldsymbol{\eta}) \int d\mathbf{x} \ h(\mathbf{x}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x})) = 1$

Expectations can be computed from the normalization constant:

$$\underbrace{\int \eta \, g(\eta) \underbrace{\int d\mathbf{x} \, h(\mathbf{x}) \exp(\eta^{\mathsf{T}} \mathbf{u}(\mathbf{x}))}_{=\frac{1}{g(\eta)}} + \underbrace{g(\eta) \int d\mathbf{x} \, h(\mathbf{x}) \mathbf{u}(\mathbf{x}) \exp(\eta^{\mathsf{T}} \mathbf{u}(\mathbf{x}))}_{\langle \mathbf{u}(\mathbf{x}) \rangle} = \mathbf{0}}_{\mathbf{u}(\mathbf{x})}$$

and thus the expectation $\langle \mathbf{u}(\mathbf{x}) \rangle$ is:

$$\langle \mathsf{u}(\mathsf{x}) \rangle = -\frac{\nabla \mathcal{D}(\eta)}{\mathcal{E}(\eta)} = -\nabla \log(g(\eta))$$

Likewise, by differentiating again we find:

$$\mathsf{Cov}(\mathsf{u}(\mathsf{x})) = -
abla_{oldsymbol{\eta}}
abla_{oldsymbol{\eta}} \mathsf{log}(g(oldsymbol{\eta}))$$

where $\nabla_{\eta}\nabla_{\eta}$ computes the Hessian matrix.

Conjugate priors on exp. fam. distributions

Reminder:

```
p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x}))
P(C = c|F = I, \mathbf{P}_C) = \sigma(-\eta) \exp(\eta u \mathbf{u})
```

So far we reparameterized $P(C|F = I, \mathbf{P}_C)$. But the difficult part was $p(\mathbf{P}_C)$.

We'd like to

• keep that parametric form after observing data.

Solution: a conjugate prior. A prior is conjugate to a likelihood, if the posterior after observing data has the same form as the prior.

Conjugate priors on exp. fam. distributions

Reminder: $p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x}))$

The conjugate prior for

$$\rho(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta})\exp(\boldsymbol{\eta}^T\mathbf{u}(\mathbf{x}))$$

is given by:

$$p(\boldsymbol{\eta}|\boldsymbol{\lambda}, \nu) = f(\boldsymbol{\lambda}, \nu)g(\boldsymbol{\nu}, \boldsymbol{\eta}^T \boldsymbol{\lambda})$$

where

- λ are the parameters of the p(oste)rior,
- ν is the concentration parameter,
- $g(\eta)$ is the same function as before, and
- $f(\lambda, \nu)$ is the normalization constant.

Proof of conjugacy

Reminder:

```
distribution/density: p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x}))
conjugate prior: p(\boldsymbol{\eta}|\boldsymbol{\lambda}, \nu) = f(\boldsymbol{\lambda}, \nu)g(\boldsymbol{\eta})^{\nu} \exp(\nu \boldsymbol{\eta}^T \boldsymbol{\lambda})
```

Proof: assume we observed N datapoints $\mathbf{x}_{1:N}$.

$$\begin{split} \rho(\boldsymbol{\eta}|\boldsymbol{\lambda},\boldsymbol{\nu},\mathbf{x}_{1:N}) &= \frac{\rho(\mathbf{x}_{1:N},\boldsymbol{\eta}|\boldsymbol{\lambda},\boldsymbol{\nu})}{\rho(\mathbf{x}_{1:N}|\boldsymbol{\lambda},\boldsymbol{\nu})} \\ &= \frac{\prod_{n=1}^{N} \rho(\mathbf{x}_{n}|\boldsymbol{\eta}) \ \rho(\boldsymbol{\eta}|\boldsymbol{\lambda},\boldsymbol{\nu})}{\int d\boldsymbol{\eta} \prod_{n=1}^{N} \rho(\mathbf{x}_{n}|\boldsymbol{\eta}) \ \rho(\boldsymbol{\eta}|\boldsymbol{\lambda},\boldsymbol{\nu})} \\ &= \frac{\prod_{n=1}^{N} g(\boldsymbol{\eta}) h(\mathbf{x}_{n}) \exp(\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x}_{n})) \cdot f(\boldsymbol{\lambda},\boldsymbol{\nu}) g(\boldsymbol{\eta})^{\boldsymbol{\nu}} \exp(\boldsymbol{\nu} \boldsymbol{\eta}^{T} \boldsymbol{\lambda})}{\int d\boldsymbol{\eta} \prod_{n=1}^{N} g(\boldsymbol{\eta}) h(\mathbf{x}_{n}) \exp(\boldsymbol{\eta}^{T} \mathbf{u}(\mathbf{x}_{n})) \cdot f(\boldsymbol{\lambda},\boldsymbol{\nu}) g(\boldsymbol{\eta})^{\boldsymbol{\nu}} \exp(\boldsymbol{\nu} \boldsymbol{\eta}^{T} \boldsymbol{\lambda})} \\ &= \frac{\prod_{n} h(\mathbf{x}_{n}) f(\boldsymbol{\lambda},\boldsymbol{\nu}) g(\boldsymbol{\eta})^{\boldsymbol{\nu}+N} \exp(\boldsymbol{\eta}^{T} (\boldsymbol{\nu} \boldsymbol{\lambda} + \sum_{n} \mathbf{u}(\mathbf{x}_{n})))}{\prod_{n} h(\mathbf{x}_{n}) f(\boldsymbol{\lambda},\boldsymbol{\nu}) \int d\boldsymbol{\eta} \ g(\boldsymbol{\eta})^{\boldsymbol{\nu}+N} \exp(\boldsymbol{\eta}^{T} (\boldsymbol{\nu} \boldsymbol{\lambda} + \sum_{n} \mathbf{u}(\mathbf{x}_{n})))} \\ &= \frac{g(\boldsymbol{\eta})^{\boldsymbol{\nu}+N} \exp(\boldsymbol{\eta}^{T} (\boldsymbol{\nu} \boldsymbol{\lambda} + \sum_{n} \mathbf{u}(\mathbf{x}_{n})))}{\int d\boldsymbol{\eta} \ g(\boldsymbol{\eta})^{\boldsymbol{\nu}+N} \exp(\boldsymbol{\eta}^{T} (\boldsymbol{\nu} \boldsymbol{\lambda} + \sum_{n} \mathbf{u}(\mathbf{x}_{n})))} \end{split}$$

Proof of conjugacy, cont.

Reminder:

distribution/density: $p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp(\boldsymbol{\eta}^T\mathbf{u}(\mathbf{x}))$ conjugate prior: $p(\boldsymbol{\eta}|\boldsymbol{\lambda}, \nu) = f(\boldsymbol{\lambda}, \nu)g(\boldsymbol{\eta})^{\nu} \exp(\nu\boldsymbol{\eta}^T\boldsymbol{\lambda})$

Proof: assume we observed N datapoints $\mathbf{x}_{1:N}$.

$$p(\boldsymbol{\eta}|\boldsymbol{\lambda}, \nu, \mathbf{x}_{1:N}) = \frac{g(\boldsymbol{\eta})^{\nu+N} \exp\left(\boldsymbol{\eta}^{T} \left(\nu \boldsymbol{\lambda} + \sum_{n} \mathbf{u}(\mathbf{x}_{n})\right)\right)}{\int d\boldsymbol{\eta} \ g(\boldsymbol{\eta})^{\nu+N} \exp\left(\boldsymbol{\eta}^{T} \left(\nu \boldsymbol{\lambda} + \sum_{n} \mathbf{u}(\mathbf{x}_{n})\right)\right)}$$

Define the posterior parameters as

$$\tilde{\lambda} = \nu + N$$

$$\tilde{\lambda} = \frac{\nu \lambda + \sum_{n} \mathbf{u}(\mathbf{x}_{n})}{\tilde{\nu}}$$

and identify $f(\tilde{\boldsymbol{\lambda}}, \tilde{\nu}) = \left(\int d\boldsymbol{\eta} \; g(\boldsymbol{\eta})^{\nu+N} \exp\left(\boldsymbol{\eta}^T \left(\nu \boldsymbol{\lambda} + \sum_n \mathbf{u}(\mathbf{x}_n)\right)\right)\right)^{-1}$

$$\Rightarrow \ p(\boldsymbol{\eta}|\boldsymbol{\lambda},\boldsymbol{\nu},\mathbf{x}_{1:N}) = f(\tilde{\boldsymbol{\lambda}},\tilde{\boldsymbol{\nu}})g(\boldsymbol{\eta})^{\tilde{\boldsymbol{\nu}}}\exp\left(\tilde{\boldsymbol{\nu}}\boldsymbol{\eta}^T\tilde{\boldsymbol{\lambda}}\right) = p(\boldsymbol{\eta}|\tilde{\boldsymbol{\lambda}},\tilde{\boldsymbol{\nu}})$$

Example: density of P_C

Reminder:

distribution/density: $p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp(\boldsymbol{\eta}^T\mathbf{u}(\mathbf{x}))$ conjugate prior: $p(\boldsymbol{\eta}|\boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\boldsymbol{\lambda}, \boldsymbol{\nu})g(\boldsymbol{\eta})^{\boldsymbol{\nu}} \exp(\boldsymbol{\nu}\boldsymbol{\eta}^T\boldsymbol{\lambda})$ natural parameter: $\boldsymbol{\eta} = \log\left(\frac{P_h}{1-P_r}\right)$, $\sigma(-\boldsymbol{\eta}) = 1 - P_h$

We found for the coin toss distribution:

$$P(C = c|F = I, \eta) = \underbrace{1}_{h(c)} \underbrace{\sigma(-\eta)}_{g(\eta)} \exp(\eta u(c))$$

Thus, the exponential family conjugate prior is:

$$p(\eta|\lambda,\nu) = f(\lambda,\nu)\sigma(-\eta)^{\nu}\exp(\nu\eta\lambda)$$

Question: how to compute $f(\lambda, \nu)$?

Example: density of P_C , contd.

Reminder:

distribution/density: $p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp(\boldsymbol{\eta}^T\mathbf{u}(\mathbf{x}))$ conjugate prior: $p(\boldsymbol{\eta}|\boldsymbol{\lambda}, \nu) = f(\boldsymbol{\lambda}, \nu)g(\boldsymbol{\eta})^{\nu} \exp(\nu \boldsymbol{\eta}^T\boldsymbol{\lambda})$ natural parameter: $\eta = \log\left(\frac{P_h}{1-P_L}\right)$, $\sigma(-\eta) = 1 - P_h$

To transform this into a "textbook form" and compute the normalization constant, note that

$$\begin{split} p(\eta|\lambda,\nu) &= f(\lambda,\nu)(1-P_h)^{\nu} \exp\left(\nu\lambda\log\left(\frac{P_h}{1-P_h}\right)\right) \\ &= f(\lambda,\nu) \exp\left(\nu\lambda\log(P_h) + \nu(1-\lambda)\log(1-P_h)\right) \\ &= f(\lambda,\nu) \exp\left(\nu\lambda\log(P_h) + \nu(1-\lambda)\log(1-P_h)\right) \\ &= \int_{P_h}^{P_h} f(\lambda,\nu) P_h^{\nu\lambda} (1-P_h)^{\nu(1-\lambda)} \\ &= \int_{P_h}^{P_h} f(\lambda,\nu) P_$$

$$p(P_h|\alpha,\beta) = B(\alpha,\beta)^{-1}P_h^{\alpha-1}(1-P_h)^{\beta-1}$$

Properties of exponential family conjugate priors

Reminder:

distribution/density: $p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp(\boldsymbol{\eta}^T \mathbf{u}(\mathbf{x}))$ conjugate prior: $p(\boldsymbol{\eta}|\boldsymbol{\lambda}, \nu) = f(\boldsymbol{\lambda}, \nu)g(\boldsymbol{\eta})^{\nu} \exp(\nu \boldsymbol{\eta}^T \boldsymbol{\lambda})$

Similar to exponential family distribution $(\langle \eta \rangle \text{ w.r.t } p(\eta | \lambda, \nu))$:

$$raket{\langle oldsymbol{\eta}
angle = -rac{
abla_{oldsymbol{\lambda}} \log(f(oldsymbol{\lambda},
u))}{
u}}$$

$$\langle \log(g(\boldsymbol{\eta}))
angle + oldsymbol{\lambda}^T \langle oldsymbol{\eta}
angle = -rac{\partial \log(f(oldsymbol{\lambda},
u))}{\partial
u}$$

Important for variational learning: KL-divergence between p(osteri)ors with different parameters

$$\boxed{D(p(\boldsymbol{\eta}|\tilde{\boldsymbol{\lambda}},\tilde{\nu})||p(\boldsymbol{\eta}|\boldsymbol{\lambda},\nu)) = \log\left(\frac{f(\tilde{\boldsymbol{\lambda}},\tilde{\nu})}{f(\boldsymbol{\lambda},\nu)}\right) - (\tilde{\nu}-\nu)\frac{\partial\log(f(\tilde{\boldsymbol{\lambda}},\tilde{\nu}))}{\partial\tilde{\nu}} + (\tilde{\boldsymbol{\lambda}}^T - \boldsymbol{\lambda}^T)\nu\langle\boldsymbol{\eta}\rangle}$$

(where
$$\langle \boldsymbol{\eta} \rangle = \langle \boldsymbol{\eta} \rangle_{p(\boldsymbol{\eta} | \tilde{\boldsymbol{\lambda}}, \tilde{\nu})}$$
)

Learning P_C and P_F

Reminder:

 P_C : probability that coin shows 'heads' when loaded. P_F : probability that coin is fair $\in [0,1]$. Approximating density $\left[\prod_{i=1}^N Q_i(F_i)\right]q(P_F)q(P_C)$

We wish to maximize (E_q is expectation w.r.t approximating density):

$$\mathcal{L} = \sum_{i=1}^{N} E_{q} \left[\log \left(\frac{P(C_{i}|F_{i}, \mathbf{P}_{C})P(F_{i}|\mathbf{P}_{F})}{Q_{i}(F_{i})} \right) \right] - E_{q} \left[\log \left(\frac{q(\mathbf{P}_{F})}{p(\mathbf{P}_{F})} \right) \right] - E_{q} \left[\log \left(\frac{q(\mathbf{P}_{C})}{p(\mathbf{P}_{C})} \right) \right]$$

Learning P_C and P_F

Reminder:

 P_C : probability that coin shows 'heads' when loaded. P_F : probability that coin is fair $\in [0,1]$. Approximating density $\left[\prod_{i=1}^N Q_i(F_i)\right]q(P_F)q(P_C)$

We wish to maximize (E_q is expectation w.r.t approximating density):

$$\mathcal{L} = \sum_{i=1}^{N} E_{q} \left[\log \left(\frac{P(C_{i}|F_{i}, \mathbf{P}_{C})P(F_{i}|\mathbf{P}_{F})}{Q_{i}(F_{i})} \right) \right] - E_{q} \left[\log \left(\frac{q(\mathbf{P}_{C})}{p(\mathbf{P}_{C})} \right) \right] - E_{q} \left[\log \left(\frac{q(\mathbf{P}_{C})}{p(\mathbf{P}_{C})} \right) \right]$$

- We saw how to maximize \mathcal{L} w.r.t. $Q_i(F_i)$
- We will now maximize w.r.t. P_F (and P_C as an exercise)
- for this, we only consider parts of \mathcal{L} depending on $q(\mathbf{P}_F)$.

Maximizing \mathcal{L}

Reminder:

 P_C : probability that coin shows 'heads' when loaded. P_F : probability that coin is fair $\in [0,1]$. Approximating density $\left[\prod_{i=1}^N Q_i(F_i)\right]q(P_F)q(P_C)$

$$\mathcal{L} = \sum_{i=1}^{N} E_q \left[\log \left(P(F_i | \mathbf{P}_F) \right) \right] - E_q \left[\log \left(\frac{q(\mathbf{P}_F)}{p(\mathbf{P}_F)} \right) \right] + C$$

$$= \sum_{i=1}^{N} E_q \left[\log \left(P(F_i | \mathbf{P}_F) \right) \right] - D \left(q(\mathbf{P}_F) || p(\mathbf{P}_F) \right) + C$$

$$= \mathcal{L}_F + C$$

- Maximize $\mathcal{L}_{\mathcal{F}}$ w.r.t. $\mathbf{P}_{\mathcal{F}} \Rightarrow$ maximize \mathcal{L} w.r.t. $\mathbf{P}_{\mathcal{F}}$.
- C contains all parts of \mathcal{L} not depending on \mathbf{P}_F
- P_F and P_C do not interact when $Q_i(F_i)$ is fixed \Rightarrow can optimize independently!

Maximizing \mathcal{L} , contd.

Reminder:

 P_C : probability that coin shows 'heads' when loaded. P_F : probability that coin is fair $\in [0,1]$. Approximating density $\left[\prod_{i=1}^N Q_i(F_i)\right]q(P_F)q(P_C)$ $\mathcal{L}_F = \sum_{i=1}^N E_g\left[\log\left(P(F_i|P_F)\right)\right] - D\left(q(P_F)\right)|p(P_F)\right)$

To make this maximization tractable (and more general), assume that likelihoods and p(oste)riors are in the exponential family:

$$\eta = \eta(\mathbf{P}_F)
P(F_i|\mathbf{P}_F) = p(F_i|\eta) = h(F_i)g(\eta) \exp(\eta^T \mathbf{u}(F_i))
p(\mathbf{P}_F) = p(\eta|\lambda, \tilde{\nu}) = f(\lambda, \nu)g(\eta)^{\nu} \exp(\nu \eta^T \lambda)
q(\mathbf{P}_F) = p(\eta|\tilde{\lambda}, \tilde{\nu}) = f(\tilde{\lambda}, \tilde{\nu})g(\eta)^{\tilde{\nu}} \exp(\tilde{\nu} \eta^T \tilde{\lambda})$$

Maximizing \mathcal{L} , contd.

Reminder:

$$\begin{split} & P_C \text{: probability that coin shows 'heads' when loaded. } P_F \text{: probability that coin is fair } \in [0,1]. \\ & \text{Approximating density } \left[\prod_{i=1}^N Q_i(F_i)\right] q(P_F)q(P_C) \\ & \mathcal{L}_{\mathcal{F}} = \sum_{i=1}^N E_q \left[\log\left(P(F_i|P_F)\right)\right] - D\left(q(P_F)||p(P_F)\right) \\ & P(E_i|P_F) = p(F_i|\eta) = h(F_i)g(\eta) \exp(\eta^T \mathbf{u}(F_i)) \\ & p(P_F) = p(\eta|\lambda,\tilde{\nu}) = f(\lambda,\nu)g(\eta)^{\nu} \exp(\nu\eta^T\lambda) \\ & q(P_F) = p(\eta|\tilde{\lambda},\tilde{\nu}) = f(\tilde{\lambda},\tilde{\nu})g(\eta)^{\tilde{\nu}} \exp(\tilde{\nu}\eta^T\tilde{\lambda}) \end{split}$$

Computing the terms of $\mathcal{L}_{\mathcal{F}}$:

$$E_{q} \left[\log \left(P(F_{i} | \mathbf{P}_{F}) \right) \right] = \langle \log(h(F_{i})) \rangle_{Q_{i}(F_{i})} + \langle \log(g(\eta)) \rangle_{q(\mathbf{P}_{F})}$$

$$= \langle \eta \rangle_{q(\mathbf{P}_{F})} \langle \mathbf{u}(F_{i}) \rangle_{Q_{i}(F_{i})}$$

$$D \left(q(\mathbf{P}_{F}) || p(\mathbf{P}_{F}) \right) = \log \left(\frac{f(\tilde{\lambda}, \tilde{\nu})}{f(\lambda, \nu)} \right) - (\tilde{\nu} - \nu) \frac{\partial \log(f(\tilde{\lambda}, \tilde{\nu}))}{\partial \tilde{\nu}}$$

$$+ (\tilde{\lambda}^{T} - \lambda^{T}) \nu \langle \eta \rangle_{q(\mathbf{P}_{F})}$$

Maximizing \mathcal{L} , contd.

Reminder:

$$\begin{array}{l} \mathcal{L}_{\mathcal{T}} = \sum_{i=1}^{N} E_{q} \left[\log \left(P(F_{i} | \mathbf{P}_{F}) \right) \right] - D \left(q(\mathbf{P}_{F}) | | p(\mathbf{P}_{F}) \right) \\ E_{q} \left[\log \left(P(F_{i} | \mathbf{P}_{F}) \right) \right] = \left(\log (h(F_{i})) \right)_{Q_{i}(F_{i})} + \left(\log (g(\eta)) \right)_{q(\mathbf{P}_{F})} + \left\langle \eta \right\rangle_{q(\mathbf{P}_{F})} \left\langle \mathbf{u}(F_{i}) \right\rangle_{Q_{i}(F_{i})} \\ D \left(q(\mathbf{P}_{F}) | | p(\mathbf{P}_{F}) \right) = \log \left(\frac{f(\tilde{\lambda}, \tilde{\nu})}{f(\tilde{\lambda}, \nu)} \right) - (\tilde{\nu} - \nu) \frac{\partial \log(f(\tilde{\lambda}, \tilde{\nu}))}{\partial \tilde{\nu}} + (\tilde{\lambda}^{T} - \lambda^{T}) \nu \langle \eta \rangle_{q(\mathbf{P}_{F})} \end{aligned}$$

Extremum of $\mathcal{L}_{\mathcal{F}}$ can be found with (convex) optimizer or by setting derivatives to zero:

$$\nabla_{\tilde{\lambda}} \mathcal{L}_{\mathcal{F}} = \sum_{i=1}^{N} \nabla_{\tilde{\lambda}} E_{q} \left[\log \left(P(F_{i}|\mathbf{P}_{F}) \right) \right] - \nabla_{\tilde{\lambda}} D \left(q(\mathbf{P}_{F}) || p(\mathbf{P}_{F}) \right) = \mathbf{0}$$

$$\frac{\partial \mathcal{L}_{\mathcal{F}}}{\partial \tilde{\nu}} = \sum_{i=1}^{N} \frac{\partial E_{q} \left[\log \left(P(F_{i}|\mathbf{P}_{F}) \right) \right]}{\partial \tilde{\nu}} - \frac{\partial D \left(q(\mathbf{P}_{F}) || p(\mathbf{P}_{F}) \right)}{\partial \tilde{\nu}} = \mathbf{0}$$

The derivatives of $\mathcal{L}_{\mathcal{F}}$

```
Reminder: \begin{split} &\nabla_{\tilde{\lambda}}\mathcal{L}_{\mathcal{F}} = \sum_{i=1}^{N} \nabla_{\tilde{\lambda}} E_q \left[\log\left(P(F_i|\mathbf{P}_F))\right] - \nabla_{\tilde{\lambda}} D\left(q(\mathbf{P}_F)||p(\mathbf{P}_F)\right) \\ &\frac{\partial \mathcal{L}_{\mathcal{F}}}{\partial \tilde{\nu}} = \sum_{i=1}^{N} \frac{\partial E_q \left[\log\left(P(F_i|\mathbf{P}_F))\right]}{\partial \tilde{\nu}} - \frac{\partial D(q(\mathbf{P}_F)||p(\mathbf{P}_F))}{\partial \tilde{\nu}} \\ &E_q \left[\log\left(P(F_i|\mathbf{P}_F))\right] = \left\langle \log(h(F_i))\right\rangle_{Q_i(F_i)} + \left\langle \log(g(\eta))\right\rangle_{q(\mathbf{P}_F)} + \left\langle \eta\right\rangle_{q(\mathbf{P}_F)} \left\langle \mathbf{u}(F_i)\right\rangle_{Q_i(F_i)} \\ &D\left(q(\mathbf{P}_F)||p(\mathbf{P}_F)\right) = \log\left(\frac{f(\tilde{\lambda},\tilde{\nu})}{f(\tilde{\lambda},\nu)}\right) - (\tilde{\nu} - \nu) \frac{\partial \log(f(\tilde{\lambda},\tilde{\nu}))}{\partial \tilde{\nu}} + (\tilde{\lambda}^T - \lambda^T)\nu\langle\eta\rangle_{q(\mathbf{P}_F)} \\ &\text{Exponential family expectations: } \langle \eta \rangle = -\frac{\nabla \lambda \log(f(\tilde{\lambda},\nu))}{\nu}, \left\langle \log(g(\eta))\right\rangle + \lambda^T\langle\eta\rangle = -\frac{\partial \log(f(\tilde{\lambda},\nu))}{\partial \tilde{\nu}} \end{split}
```

Using the properties of exponential family distributions:

$$\begin{array}{lcl} \nabla_{\tilde{\boldsymbol{\lambda}}} E_{q} \left[\log \left(P(F_{i} | \mathbf{P}_{F}) \right) \right] & = & - \frac{\partial^{2} \log \left(f(\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}}) \right)}{\partial \tilde{\boldsymbol{\lambda}} \partial \tilde{\boldsymbol{\nu}}} - \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})} - \tilde{\boldsymbol{\lambda}}^{T} \nabla_{\tilde{\boldsymbol{\lambda}}} \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})} \\ & + \nabla_{\tilde{\boldsymbol{\lambda}}} \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})} \langle \mathbf{u}(F_{i}) \rangle_{Q_{i}(F_{i})} \\ \nabla_{\tilde{\boldsymbol{\lambda}}} D \left(q(\mathbf{P}_{F}) || p(\mathbf{P}_{F}) \right) & = & - \tilde{\boldsymbol{\nu}} \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})} - (\tilde{\boldsymbol{\nu}} - \boldsymbol{\nu}) \frac{\partial^{2} \log \left(f(\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}}) \right)}{\partial \tilde{\boldsymbol{\lambda}} \partial \tilde{\boldsymbol{\nu}}} \\ & + \boldsymbol{\nu} \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})} + (\tilde{\boldsymbol{\lambda}}^{T} - \boldsymbol{\lambda}^{T}) \boldsymbol{\nu} \nabla_{\tilde{\boldsymbol{\lambda}}} \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})} \end{array}$$

The derivatives of $\mathcal{L}_{\mathcal{F}}$

```
Reminder:  \nabla_{\tilde{\lambda}} \mathcal{L}_{\mathcal{F}} = \sum_{i=1}^{N} \nabla_{\tilde{\lambda}} \mathcal{E}_{q} \left[ \log \left( P(F_{i} | \mathbf{P}_{F}) \right) \right] - \nabla_{\tilde{\lambda}} D \left( q(\mathbf{P}_{F}) | | p(\mathbf{P}_{F}) \right) \\ \frac{\partial \mathcal{L}_{\mathcal{F}}}{\partial \tilde{\nu}} = \sum_{i=1}^{N} \frac{\partial \mathcal{E}_{q} \left[ \log \left( P(F_{i} | \mathbf{P}_{F}) \right) \right] - \frac{\partial D(q(\mathbf{P}_{F}) | | p(\mathbf{P}_{F}))}{\partial \tilde{\nu}} \right] }{\partial \tilde{\nu}} \\ \mathcal{E}_{q} \left[ \log \left( P(F_{i} | \mathbf{P}_{F}) \right) \right] = \left\langle \log(h(F_{i})) \right\rangle_{Q_{i}(F_{i})} + \left\langle \log(g(n)) \right\rangle_{q(\mathbf{P}_{F})} + \left\langle \eta \right\rangle_{q(\mathbf{P}_{F})} \left\langle \mathbf{u}(F_{i}) \right\rangle_{Q_{i}(F_{i})} \\ \mathcal{D} \left( q(\mathbf{P}_{F}) | | p(\mathbf{P}_{F}) \right) = \log \left( \frac{f(\tilde{\lambda}, \tilde{\nu})}{f(\tilde{\lambda}, \nu)} \right) - (\tilde{\nu} - \nu) \frac{\partial \log(f(\tilde{\lambda}, \tilde{\nu}))}{\partial \tilde{\nu}} + (\tilde{\lambda}^{T} - \lambda^{T}) \nu \left\langle \eta \right\rangle_{q(\mathbf{P}_{F})} \\ \text{Exponential family expectations: } \langle \eta \rangle = -\frac{\nabla \lambda \log(f(\tilde{\lambda}, \nu))}{\nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu}, \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\tilde{\lambda}, \nu))}{\partial \nu},
```

Using the properties of exponential family distributions:

$$\begin{array}{lcl} \nabla_{\tilde{\boldsymbol{\lambda}}} E_{q} \left[\log \left(P(F_{i} | \mathbf{P}_{F}) \right) \right] & = & - \frac{\partial^{2} \log \left(f(\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}}) \right)}{\partial \tilde{\boldsymbol{\lambda}} \partial \tilde{\boldsymbol{\nu}}} - \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})} - \tilde{\boldsymbol{\lambda}}^{T} \nabla_{\tilde{\boldsymbol{\lambda}}} \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})} \\ & + \nabla_{\tilde{\boldsymbol{\lambda}}} \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})} \langle \mathbf{u}(F_{i}) \rangle_{Q_{i}(F_{i})} \\ \nabla_{\tilde{\boldsymbol{\lambda}}} D \left(q(\mathbf{P}_{F}) || p(\mathbf{P}_{F}) \right) & = & - \tilde{\boldsymbol{\nu}} \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})} - (\tilde{\boldsymbol{\nu}} - \boldsymbol{\nu}) \frac{\partial^{2} \log \left(f(\tilde{\boldsymbol{\lambda}}, \tilde{\boldsymbol{\nu}}) \right)}{\partial \tilde{\boldsymbol{\lambda}} \partial \tilde{\boldsymbol{\nu}}} \\ & + \boldsymbol{\nu} \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})} + (\tilde{\boldsymbol{\lambda}}^{T} - \boldsymbol{\lambda}^{T}) \boldsymbol{\nu} \nabla_{\tilde{\boldsymbol{\lambda}}} \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})} \end{array}$$

Note: for N observations/datapoints, there are N many $\nabla_{\tilde{\lambda}} E_q[]$ terms.

When is $\nabla_{\tilde{\lambda}} \mathcal{L}_{\mathcal{F}} = 0$?

Reminder:

$$\begin{split} &\nabla_{\hat{\Lambda}}\mathcal{L}\mathcal{F} = \sum_{i=1}^{N} \nabla_{\hat{\lambda}}\mathcal{E}_{q} \left[\log\left(P(F_{i}|P_{F})\right)\right] - \nabla_{\hat{\lambda}}D\left(q(P_{F})||p(P_{F})\right) \\ &\frac{\partial \mathcal{L}}{\partial \hat{\nu}} = \sum_{i=1}^{N} \frac{\partial \mathsf{E}_{q} \left[\log\left(P(F_{i}|P_{F})\right)\right]}{\partial \hat{\nu}} - \frac{\partial D(q(P_{F})||p(P_{F}))}{\partial \hat{\nu}} \\ &E_{q} \left[\log\left(P(F_{i}|P_{F})\right)\right] = \left(\log h(F_{i})\right)\right)_{Q_{i}(F_{i})} + \left(\log h(F_{i})\right)_{Q_{i}(F_{i})} + \left(\log h(F_{i})\right)_{Q_{i}(F_{i})} + \left(\log h(F_{i})\right)_{Q_{i}(F_{i})} + \left(\frac{1}{N}\nabla_{\lambda}\nabla_{\mu}(F_{F})\right) + \left(\frac{1}{N}\nabla_{\mu}(F_{F})\nabla_{\mu}(F_{F})\right) \\ &D\left(q(P_{F})||p(P_{F})\right) = \log\left(\frac{f(\hat{\lambda},\hat{\nu})}{f(\hat{\lambda},\nu)}\right) - (\tilde{\nu} - \nu)\frac{\partial \log(f(\hat{\lambda},\tilde{\nu}))}{\partial \tilde{\nu}} + (\tilde{\lambda}^{T} - \lambda^{T})\nu\langle\eta\rangle_{q(P_{F})} \\ &\text{Exponential family expectations: } \langle\eta\rangle = -\frac{\nabla_{\lambda}\log(f(\hat{\lambda},\nu))}{\nu}, \langle\log(g(\eta))\rangle + \lambda^{T}\langle\eta\rangle = -\frac{\partial \log(f(\hat{\lambda},\nu))}{\partial \nu} \end{split}$$

In total, after collecting terms:

$$\nabla_{\tilde{\mathbf{\lambda}}} \mathcal{L}_{\mathcal{F}} = \frac{\partial^{2} \log(f(\tilde{\mathbf{\lambda}}, \tilde{\nu}))}{\partial \tilde{\mathbf{\lambda}} \partial \tilde{\nu}} (\tilde{\nu} - (\nu + N)) + \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})} (\tilde{\nu} - (\nu + N)) + \left(-\tilde{\mathbf{\lambda}}^{T} (N + \nu) + \nu \boldsymbol{\lambda}^{T} + \sum_{i} \langle \mathbf{u}(F_{i}) \rangle_{Q(F_{i})} \right) \nabla_{\tilde{\mathbf{\lambda}}} \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})}$$

When is $abla_{ ilde{oldsymbol{\lambda}}} \mathcal{L}_{\mathcal{F}} = 0$?

Reminder:

$$\begin{split} &\nabla_{\tilde{\Lambda}}\mathcal{L}_{\mathcal{F}} = \sum_{i=1}^{N} \nabla_{\tilde{\lambda}} \mathcal{E}_{q} \left[\log \left(P(F_{i} | \mathbf{P}_{F}) \right) \right] - \nabla_{\tilde{\lambda}} D \left(q(\mathbf{P}_{F}) || p(\mathbf{P}_{F}) \right) \\ &\frac{\partial \mathcal{L}_{\mathcal{F}}}{\partial \tilde{\nu}} = \sum_{i=1}^{N} \frac{\partial \mathcal{E}_{q} \left[\log \left(P(F_{i} | \mathbf{P}_{F}) \right) \right]}{\partial \tilde{\nu}} - \frac{\partial D(q(\mathbf{P}_{F}) || p(\mathbf{P}_{F}))}{\partial \tilde{\nu}} \\ &\mathcal{E}_{q} \left[\log \left(P(F_{i} | \mathbf{P}_{F}) \right) \right] = \left\langle \log h(F_{i}) \right\rangle_{Q_{i}(F_{i})} + \left\langle \log(g(\eta)) \right\rangle_{q(\mathbf{P}_{F})} + \left\langle \eta \right\rangle_{q(\mathbf{P}_{F})} \left\langle u(F_{i}) \right\rangle_{Q_{i}(F_{i})} \\ &D \left(q(\mathbf{P}_{F}) || p(\mathbf{P}_{F}) \right) = \log \left(\frac{f(\tilde{\lambda}, \tilde{\nu})}{f(\lambda, \nu)} \right) - (\tilde{\nu} - \nu) \frac{\partial \log(f(\tilde{\lambda}, \tilde{\nu}))}{\partial \tilde{\nu}} + (\tilde{\lambda}^{T} - \lambda^{T}) \nu \langle \eta \rangle_{q(\mathbf{P}_{F})} \\ &Exponential family expectations: \left\langle \eta \right\rangle = -\frac{\nabla \lambda \log(f(\tilde{\lambda}, \nu))}{\nu} , \left\langle \log(g(\eta)) \right\rangle + \lambda^{T} \langle \eta \rangle = -\frac{\partial \log(f(\lambda, \nu))}{\partial \nu} \end{split}$$

In total, after collecting terms:

$$\nabla_{\tilde{\lambda}} \mathcal{L}_{\mathcal{F}} = \frac{\partial^{2} \log(f(\tilde{\lambda}, \tilde{\nu}))}{\partial \tilde{\lambda} \partial \tilde{\nu}} (\tilde{\nu} - (\nu + N)) + \langle \eta \rangle_{q(P_{F})} (\tilde{\nu} - (\nu + N)) + \left(-\tilde{\lambda}^{T} (N + \nu) + \nu \lambda^{T} + \sum_{i} \langle \mathbf{u}(F_{i}) \rangle_{Q(F_{i})} \right) \nabla_{\tilde{\lambda}} \langle \eta \rangle_{q(P_{F})}$$

Hence for $abla_{\tilde{\lambda}} \mathcal{L}_{\mathcal{F}} = 0$, it is sufficient (and generally necessary) that

$$\tilde{\lambda} = \frac{\nu + N}{\tilde{\lambda}^T + \sum_i \langle \mathbf{u}(F_i) \rangle_{Q(F_i)}}{\nu + N}$$

When is $rac{\partial \mathcal{L}_{\mathcal{F}}}{\partial ilde{ u}} = 0$

Reminder:

$$\begin{split} &\frac{\partial \mathcal{L}_{F}}{\partial \tilde{\nu}} = \sum_{i=1}^{N} \frac{\partial \mathcal{E}_{q}[\log(P(F_{i}|P_{F}))]}{\partial \tilde{\nu}} - \frac{\partial D(q(P_{F})||P(P_{F}))}{\partial \tilde{\nu}} \\ &E_{q}\left[\log(P(F_{i}|P_{F}))\right] = \langle \log(h(F_{i}))\rangle_{Q_{i}(F_{i})} + \langle \log(g(\eta))\rangle_{q(P_{F})} + \langle \eta\rangle_{q(P_{F})} \langle u(F_{i})\rangle_{Q_{i}(F_{i})} \\ &D\left(q(P_{F})||P(P_{F})\right) = \log\left(\frac{f(\tilde{\lambda},\tilde{\nu})}{f(\lambda,\nu)}\right) - (\tilde{\nu}-\nu)\frac{\partial \log(f(\tilde{\lambda},\tilde{\nu}))}{\partial \tilde{\nu}} + (\tilde{\lambda}^{T}-\lambda^{T})\nu\langle\eta\rangle_{q(P_{F})} \\ &\text{Exponential family expectations: } \langle \eta\rangle = -\frac{\nabla\lambda\log(f(\lambda,\nu))}{\nu}, \langle \log(g(\eta))\rangle + \lambda^{T}\langle\eta\rangle = -\frac{\partial\log(f(\lambda,\nu))}{\partial \nu} \end{split}$$

Using the properties of exponential family distributions:

$$\frac{\partial E_{q} \left[\log \left(P(F_{i} | \mathbf{P}_{F}) \right) \right]}{\partial \tilde{\nu}} = -\frac{\partial^{2} \log \left(f(\tilde{\lambda}, \tilde{\nu}) \right)}{\partial \tilde{\nu}^{2}} - \tilde{\lambda}^{T} \frac{\partial \langle \eta \rangle_{q(\mathbf{P}_{F})}}{\partial \tilde{\nu}} \\
+ \frac{\langle \eta \rangle_{q(\mathbf{P}_{F})}}{\partial \tilde{\nu}} \langle \mathbf{u}(F_{i}) \rangle_{Q_{i}(F_{i})} \\
\frac{\partial D \left(q(\mathbf{P}_{F}) || p(\mathbf{P}_{F}) \right)}{\partial \tilde{\nu}} = \frac{\partial \log \left(f(\tilde{\lambda}, \tilde{\nu}) \right)}{\partial \tilde{\nu}} - \frac{\partial \log \left(f(\tilde{\lambda}, \tilde{\nu}) \right)}{\partial \tilde{\nu}} - (\tilde{\nu} - \nu) \frac{\partial^{2} \log \left(f(\tilde{\lambda}, \tilde{\nu}) \right)}{\partial \tilde{\nu}^{2}} \\
+ (\tilde{\lambda}^{T} - \lambda^{T}) \nu \frac{\partial \langle \eta \rangle_{q(\mathbf{P}_{F})}}{\partial \tilde{\nu}}$$

When is $rac{\partial \mathcal{L}_{\mathcal{F}}}{\partial ilde{ u}} = 0$

Reminder:

$$\begin{array}{l} \frac{\partial \mathcal{L}_{\mathcal{F}}}{\partial \tilde{\nu}} = \sum_{i=1}^{N} \frac{\partial \mathcal{E}_{q}[\log(P(F_{i}|P_{F}))]}{\partial \tilde{\nu}} - \frac{\partial D(q(P_{F})|P(P_{F}))}{\partial \tilde{\nu}} \\ \mathcal{E}_{q}\left[\log(P(F_{i}|P_{F}))\right] = \left\langle \log(h(F_{i}))\right\rangle_{Q_{i}(F_{i})} + \left\langle \log(g(\eta))\right\rangle_{q(P_{F})} + \left\langle \eta\right\rangle_{q(P_{F})} \left\langle u(F_{i})\right\rangle_{Q_{i}(F_{i})} \\ D\left(q(P_{F})||p(P_{F})\right) = \log\left(\frac{f(\tilde{\lambda},\tilde{\nu})}{f(\lambda,\nu)}\right) - (\tilde{\nu}-\nu)\frac{\partial \log(f(\tilde{\lambda},\tilde{\nu}))}{\partial \tilde{\nu}} + (\tilde{\lambda}^{T}-\lambda^{T})\nu\langle\eta\rangle_{q(P_{F})} \\ \text{Exponential family expectations: } \langle\eta\rangle = -\frac{\nabla\lambda\log(f(\lambda,\nu))}{\nu}, \left\langle \log(g(\eta))\right\rangle + \lambda^{T}\langle\eta\rangle = -\frac{\partial\log(f(\lambda,\nu))}{\partial \nu} \end{array}$$

Using the properties of exponential family distributions:

$$\frac{\partial E_{q} \left[\log \left(P(F_{i} | \mathbf{P}_{F}) \right) \right]}{\partial \tilde{\nu}} = -\frac{\partial^{2} \log \left(f(\tilde{\lambda}, \tilde{\nu}) \right)}{\partial \tilde{\nu}^{2}} - \tilde{\lambda}^{T} \frac{\partial \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})}}{\partial \tilde{\nu}} \\
+ \frac{\langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})}}{\partial \tilde{\nu}} \langle \mathbf{u}(F_{i}) \rangle_{Q_{i}(F_{i})} \\
\frac{\partial D \left(q(\mathbf{P}_{F}) || p(\mathbf{P}_{F}) \right)}{\partial \tilde{\nu}} = \frac{\partial \log \left(f(\tilde{\lambda}, \tilde{\nu}) \right)}{\partial \tilde{\nu}} - \frac{\partial \log \left(f(\tilde{\lambda}, \tilde{\nu}) \right)}{\partial \tilde{\nu}} - (\tilde{\nu} - \nu) \frac{\partial^{2} \log \left(f(\tilde{\lambda}, \tilde{\nu}) \right)}{\partial \tilde{\nu}^{2}} \\
+ (\tilde{\lambda}^{T} - \lambda^{T}) \nu \frac{\partial \langle \boldsymbol{\eta} \rangle_{q(\mathbf{P}_{F})}}{\partial \tilde{\nu}}$$

Note: for *N* observations/datapoints, there are *N* many $\frac{\partial E_q[]}{\partial \tilde{\nu}}$ terms.

When is $rac{\partial \mathcal{L}_{\mathcal{F}}}{\partial ilde{ u}} = 0$?

Reminder:

$$\begin{split} &\frac{\partial \mathcal{L}_{\mathcal{F}}}{\partial \tilde{\nu}} = \sum_{i=1}^{N} \frac{\partial E_{q}[\log(P(F_{i}|P_{F}))]}{\partial \tilde{\nu}} - \frac{\partial D(q(P_{E})||P(P_{E}))}{\partial \tilde{\nu}} \\ &E_{q}\left[\log(P(F_{i}|P_{F}))\right] = \left\langle \log(h(F_{i}))\right\rangle_{Q_{i}(F_{i})} + \left\langle \log(g(\eta))\right\rangle_{q(P_{F})} + \left\langle \eta\right\rangle_{q(P_{F})} \left\langle u(F_{i})\right\rangle_{Q_{i}(F_{i})} \\ &D\left(q(P_{F})||P(P_{F})\right) = \log\left(\frac{f(\tilde{\lambda},\tilde{\nu})}{f(\lambda,\nu)}\right) - (\tilde{\nu}-\nu)\frac{\partial \log(f(\tilde{\lambda},\tilde{\nu}))}{\partial \tilde{\nu}} + (\tilde{\lambda}^{T}-\lambda^{T})\nu\langle\eta\rangle_{q(P_{F})} \\ &\text{Exponential family expectations: } \langle\eta\rangle = -\frac{\nabla\lambda\log(f(\lambda,\nu))}{\nu}, \left\langle \log(g(\eta))\right\rangle + \lambda^{T}\langle\eta\rangle = -\frac{\partial\log(f(\lambda,\nu))}{\partial \nu} \end{split}$$

In total, after collecting terms:

$$\frac{\partial \mathcal{L}_{\mathcal{F}}}{\partial \tilde{\nu}} = \frac{\partial^{2} \log(f(\tilde{\lambda}, \tilde{\nu}))}{\partial \tilde{\nu}^{2}} (\tilde{\nu} - (\nu + N)) + \left(\tilde{\lambda}^{T} (-N - \nu) + \sum_{i} \langle \mathbf{u}(F_{i}) \rangle_{Q_{i}(F_{i})} + \nu \tilde{\lambda}\right)$$

When is $\frac{\partial \mathcal{L}_{\mathcal{F}}}{\partial ilde{ u}} = 0$?

Reminder:

The initial initial initial initial expectations:
$$\begin{aligned} & \frac{\partial \mathcal{L}_F}{\partial \tilde{\nu}} = \sum_{i=1}^{N} \frac{\partial \mathcal{E}_q[\log(P(F_i|P_F))]}{\partial \tilde{\nu}} - \frac{\partial D(q(P_F)||P(P_F))}{\partial \tilde{\nu}} \\ & \mathcal{E}_q[\log(P(F_i|P_F))] = \langle \log(h(F_i)) \rangle_{Q_i(F_i)} + \langle \log(g(\eta)) \rangle_{q(P_F)} + \langle \eta \rangle_{q(P_F)} \langle u(F_i) \rangle_{Q_i(F_i)} \\ & D\left(q(P_F)||P(P_F)\right) = \log\left(\frac{f(\tilde{\lambda},\tilde{\nu})}{f(\tilde{\lambda},\nu)}\right) - (\tilde{\nu} - \nu) \frac{\partial \log(f(\tilde{\lambda},\tilde{\nu}))}{\partial \tilde{\nu}} + (\tilde{\lambda}^T - \lambda^T)\nu \langle \eta \rangle_{q(P_F)} \\ & \text{Exponential family expectations: } \langle \eta \rangle = -\frac{\nabla \lambda \log(f(\lambda,\nu))}{\nu}, \ \langle \log(g(\eta)) \rangle + \lambda^T \langle \eta \rangle = -\frac{\partial \log(f(\lambda,\nu))}{\partial \nu} \end{aligned}$$

In total, after collecting terms:

$$\frac{\partial \mathcal{L}_{\mathcal{F}}}{\partial \tilde{\nu}} = \frac{\partial^{2} \log(f(\tilde{\lambda}, \tilde{\nu}))}{\partial \tilde{\nu}^{2}} (\tilde{\nu} - (\nu + N)) + \left(\tilde{\lambda}^{T}(-N - \nu) + \sum_{i} \langle \mathbf{u}(F_{i}) \rangle_{Q_{i}(F_{i})} + \nu \tilde{\lambda}\right)$$

Hence, as before, for $\frac{\partial \mathcal{L}_{\mathcal{F}}}{\partial \ddot{\nu}}=0$, it is sufficient (and generally necessary) that

$$\tilde{\lambda} = \frac{\nu + N}{\tilde{\lambda} + \sum_{i} \langle \mathbf{u}(F_{i}) \rangle_{Q(F_{i})}} = \frac{\nu \lambda + \sum_{i} \langle \mathbf{u}(F_{i}) \rangle_{Q(F_{i})}}{\nu + N}$$

Summary: maximizing \mathcal{L} w.r.t. $q(\mathbf{P}_F)$

Both gradient conditions required that

$$\tilde{\lambda} = \nu + N$$

$$\tilde{\lambda} = \frac{\nu \lambda + \sum_{i} \langle \mathbf{u}(F_{i}) \rangle_{Q(F_{i})}}{\nu + N}$$

- $\tilde{\lambda}, \tilde{\nu}$: parameters of approximating posterior
- λ, ν : parameters of prior
- This is the M (maximize) step of an EM-algorithm
- works in this form for any conjugate p(oste)rior pairs in the exponential family.
- compare to exact exponential family updates!

Summary: the expectation-maximization algorithm

- Variational inference/learning maximizes a lower bound on the marginal P(D).
- Maximization procedure can be decomposed into groups of variables:
 - Latent variables: (approximating) distributions of coin loadedness
 - **'Parameters'**: distribution over probability of drawing a fair coin
- Maximization is done for each group separately:
 - Latent variables: effectively compute expections, hence 'E-step'
 - 'Parameters': maxmimize bound, hence 'M-step'.
- In Bayesian treatment, both steps similar: compute expectation and maximize
- Can be generalized to more groups of variables (deep models etc.)
- If EM is not possible (or one is too lazy to derive it..): just run optimizer on L

