This may be thought of as a function which associates each square matrix with a unique number (real or complex). If M is the set of square matrices, K is the set of numbers (real or complex) and $f: M \to K$ is defined by f(A) = k, where $A \in M$ and $k \in K$, then f(A) is called the determinant of A. It is also denoted by |A| or det A or Δ .

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then determinant of A is written as $|A| = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = \det(A)$

Remarks

- (i) For matrix A, |A| is read as determinant of A and not modulus of A.
- (ii) Only square matrices have determinants.

4.2.1 Determinant of a matrix of order one

Let A = [a] be the matrix of order 1, then determinant of A is defined to be equal to a

4.2.2 Determinant of a matrix of order two

Let

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 be a matrix of order 2 × 2,

then the determinant of A is defined as:

$$\det (A) = |A| = \Delta = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

Example 1 Evaluate
$$\begin{bmatrix} 2 & 4 \\ -1 & 2 \end{bmatrix}$$
.

Solution We have
$$\begin{vmatrix} 2 & 4 \\ -1 & 2 \end{vmatrix} = 2(2) - 4(-1) = 4 + 4 = 8.$$

Example 2 Evaluate
$$\begin{vmatrix} x & x+1 \\ x-1 & x \end{vmatrix}$$

Solution We have

$$\begin{vmatrix} x & x+1 \\ x-1 & x \end{vmatrix} = x(x) - (x+1)(x-1) = x^2 - (x^2-1) = x^2 - x^2 + 1 = 1$$

4.2.3 Determinant of a matrix of order 3×3

Determinant of a matrix of order three can be determined by expressing it in terms of second order determinants. This is known as expansion of a determinant along a row (or a column). There are six ways of expanding a determinant of order

$$|A| = a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{21} a_{12} a_{33} + a_{21} a_{13} a_{32} + a_{31} a_{12} a_{23} - a_{31} a_{13} a_{22} = a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33} + a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{31} a_{22}$$
 ... (3)

Clearly, values of |A| in (1), (2) and (3) are equal. It is left as an exercise to the reader to verify that the values of |A| by expanding along R_3 , C_2 and C_3 are equal to the value of |A| obtained in (1), (2) or (3).

Hence, expanding a determinant along any row or column gives same value.

Remarks

- (i) For easier calculations, we shall expand the determinant along that row or column which contains maximum number of zeros.
- (ii) While expanding, instead of multiplying by $(-1)^{i+j}$, we can multiply by +1 or -1 according as (i+j) is even or odd.

(iii) Let
$$A = \begin{bmatrix} 2 & 2 \\ 4 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 \\ 2 & 0 \end{bmatrix}$. Then, it is easy to verify that $A = 2B$. Also $|A| = 0 - 8 = -8$ and $|B| = 0 - 2 = -2$.

Observe that, $|A| = 4(-2) = 2^2|B|$ or $|A| = 2^n|B|$, where n = 2 is the order of square matrices A and B.

In general, if A = kB where A and B are square matrices of order n, then $|A| = k^n$ |B|, where n = 1, 2, 3

Example 3 Evaluate the determinant
$$\Delta = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 3 & 0 \\ 4 & 1 & 0 \end{bmatrix}$$
.

Solution Note that in the third column, two entries are zero. So expanding along third column (C_3) , we get

$$\Delta = 4 \begin{vmatrix} -1 & 3 \\ 4 & 1 \end{vmatrix} - 0 \begin{vmatrix} 1 & 2 \\ 4 & 1 \end{vmatrix} + 0 \begin{vmatrix} 1 & 2 \\ -1 & 3 \end{vmatrix}$$
$$= 4 (-1 - 12) - 0 + 0 = -52$$

Example 4 Evaluate
$$\Delta = \begin{bmatrix} 0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0 \end{bmatrix}$$
.

Solution Expanding along R₁, we get

$$\Delta = 0 \begin{vmatrix} 0 & \sin \beta \\ -\sin \beta & 0 \end{vmatrix} - \sin \alpha \begin{vmatrix} -\sin \alpha & \sin \beta \\ \cos \alpha & 0 \end{vmatrix} - \cos \alpha \begin{vmatrix} -\sin \alpha & 0 \\ \cos \alpha & -\sin \beta \end{vmatrix}$$
$$= 0 - \sin \alpha (0 - \sin \beta \cos \alpha) - \cos \alpha (\sin \alpha \sin \beta - 0)$$
$$= \sin \alpha \sin \beta \cos \alpha - \cos \alpha \sin \alpha \sin \beta = 0$$

Example 5 Find values of x for which $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$.

Solution We have
$$\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$$

i.e. $3 - x^2 = 3 - 8$
i.e. $x^2 = 8$
Hence $x = \pm 2\sqrt{2}$

EXERCISE 4.1

Evaluate the determinants in Exercises 1 and 2.

1.
$$\begin{vmatrix} 2 & 4 \\ -5 & -1 \end{vmatrix}$$

2. (i)
$$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix}$$
 (ii) $\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix}$

3. If
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$$
, then show that $|2A| = 4 |A|$

4. If
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$
, then show that $| 3 A | = 27 | A |$

5. Evaluate the determinants

(i)
$$\begin{vmatrix} 3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0 \end{vmatrix}$$
 (ii) $\begin{vmatrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \end{vmatrix}$

(iii)
$$\begin{vmatrix} 0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0 \end{vmatrix}$$
 (iv) $\begin{vmatrix} 2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0 \end{vmatrix}$

6. If
$$A = \begin{bmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{bmatrix}$$
, find $|A|$

7. Find values of x, if

(i)
$$\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$$
 (ii) $\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = \begin{vmatrix} x & 3 \\ 2x & 5 \end{vmatrix}$

8. If
$$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = \begin{vmatrix} 6 & 2 \\ 18 & 6 \end{vmatrix}$$
, then x is equal to

(A) 6 (B) ± 6 (C) -6 (D) (

4.3 Area of a Triangle

In earlier classes, we have studied that the area of a triangle whose vertices are (x_1, y_1) , (x_2, y_2) and (x_3, y_3) , is given by the expression $\frac{1}{2}[x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)]$. Now this expression can be written in the form of a determinant as

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \dots (1)$$

Remarks

- (i) Since area is a positive quantity, we always take the absolute value of the determinant in (1).
- (ii) If area is given, use both positive and negative values of the determinant for calculation.
- (iii) The area of the triangle formed by three collinear points is zero.

Example 6 Find the area of the triangle whose vertices are (3, 8), (-4, 2) and (5, 1). **Solution** The area of triangle is given by

$$\Delta = \frac{1}{2} \begin{vmatrix} 3 & 8 & 1 \\ -4 & 2 & 1 \\ 5 & 1 & 1 \end{vmatrix}$$

$$= \frac{1}{2} [3(2-1)-8(-4-5)+1(-4-10)]$$
$$= \frac{1}{2} (3+72-14) = \frac{61}{2}$$

Example 7 Find the equation of the line joining A(1,3) and B(0,0) using determinants and find k if D(k, 0) is a point such that area of triangle ABD is 3sq units.

Solution Let P(x, y) be any point on AB. Then, area of triangle ABP is zero (Why?). So

$$\frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ 1 & 3 & 1 \\ x & y & 1 \end{vmatrix} = 0$$

$$\frac{1}{2} (y - 3x) = 0 \text{ or } y = 3x,$$

This gives

which is the equation of required line AB.

Also, since the area of the triangle ABD is 3 sq. units, we have

$$\frac{1}{2} \begin{vmatrix} 1 & 3 & 1 \\ 0 & 0 & 1 \\ k & 0 & 1 \end{vmatrix} = \pm 3$$

This gives, $\frac{-3k}{2} = \pm 3$, i.e., $k = \mp 2$.

EXERCISE 4.2

- 1. Find area of the triangle with vertices at the point given in each of the following:
 - (i) (1,0), (6,0), (4,3)
- (ii) (2,7),(1,1),(10,8)
- (iii) (-2, -3), (3, 2), (-1, -8)
- 2. Show that points

A (a, b + c), B (b, c + a), C (c, a + b) are collinear.

- 3. Find values of k if area of triangle is 4 sq. units and vertices are
 - (i) (k, 0), (4, 0), (0, 2)
- (ii) (-2, 0), (0, 4), (0, k)
- 4. (i) Find equation of line joining (1, 2) and (3, 6) using determinants.
 - (ii) Find equation of line joining (3, 1) and (9, 3) using determinants.
- 5. If area of triangle is 35 sq units with vertices (2, -6), (5, 4) and (k, 4). Then k is
 - (A) 12
- (B) -2
- (C) -12, -2 (D) 12, -2

4.4 Minors and Cofactors

In this section, we will learn to write the expansion of a determinant in compact form using minors and cofactors.

Definition 1 Minor of an element a_{ij} of a determinant is the determinant obtained by deleting its *i*th row and *j*th column in which element a_{ij} lies. Minor of an element a_{ij} is denoted by M_{ij} .

Remark Minor of an element of a determinant of order $n(n \ge 2)$ is a determinant of order n - 1.

Example 8 Find the minor of element 6 in the determinant $\Delta = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$

Solution Since 6 lies in the second row and third column, its minor M_{23} is given by

$$M_{23} = \begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix} = 8 - 14 = -6$$
 (obtained by deleting R_2 and C_3 in Δ).

Definition 2 Cofactor of an element a_{ij} , denoted by A_{ij} is defined by $A_{ij} = (-1)^{i+j} M_{ij}$, where M_{ij} is minor of a_{ij} .

Example 9 Find minors and cofactors of all the elements of the determinant $\begin{bmatrix} 1 & -2 \\ 4 & 3 \end{bmatrix}$

Solution Minor of the element a_y is M_y Here $a_{11} = 1$. So $M_{11} = M$ inor of $a_{11} = 3$ $M_{12} = M$ inor of the element $a_{12} = 4$ $M_{21} = M$ inor of the element $a_{21} = -2$ $M_{22} = M$ inor of the element $a_{22} = 1$ Now, cofactor of a_y is A_y . So $A_{11} = (-1)^{1+1} M_{11} = (-1)^2 (3) = 3$ $A_{12} = (-1)^{1+2} M_{12} = (-1)^3 (4) = -4$ $A_{21} = (-1)^{2+1} M_{21} = (-1)^3 (-2) = 2$ $A_{22} = (-1)^{2+2} M_{22} = (-1)^4 (1) = 1$ **Example 10** Find minors and cofactors of the elements a_{11} , a_{21} in the determinant

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Solution By definition of minors and cofactors, we have

Minor of
$$a_{11} = M_{11} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = a_{22} a_{33} - a_{23} a_{32}$$

Cofactor of $a_{11} = A_{11} = (-1)^{1+1} M_{11} = a_{22} a_{33} - a_{23} a_{32}$

Minor of
$$a_{21} = M_{21} = \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} = a_{12} a_{33} - a_{13} a_{32}$$

Cofactor of $a_{21} = A_{21} = (-1)^{2+1}$ $M_{21} = (-1) (a_{12} a_{33} - a_{13} a_{32}) = -a_{12} a_{33} + a_{13} a_{32}$

Remark Expanding the determinant Δ , in Example 21, along R₁, we have

$$\Delta = (-1)^{1+1} a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + (-1)^{1+2} a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + (-1)^{1+3} a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

= $a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13}$, where A_{ij} is cofactor of a_{ij}

= sum of product of elements of R₁ with their corresponding cofactors

Similarly, Δ can be calculated by other five ways of expansion that is along R_2 , R_3 , C_1 , C_2 and C_3 .

Hence $\Delta = \text{sum of the product of elements of any row (or column)}$ with their corresponding cofactors.

Note If elements of a row (or column) are multiplied with cofactors of any other row (or column), then their sum is zero. For example,

$$\Delta = a_{11} A_{21} + a_{12} A_{22} + a_{13} A_{23}$$

$$= a_{11} (-1)^{1+1} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} (-1)^{1+2} \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} (-1)^{1+3} \begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = 0 \text{ (since } R_1 \text{ and } R_2 \text{ are identical)}$$

Similarly, we can try for other rows and columns.

Example 11 Find minors and cofactors of the elements of the determinant

$$\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$$
 and verify that $a_{11} A_{31} + a_{12} A_{32} + a_{13} A_{33} = 0$

Solution We have
$$M_{11} = \begin{vmatrix} 0 & 4 \\ 5 & -7 \end{vmatrix} = 0$$
 $-20 = -20$; $A_{11} = (-1)^{1+1} (-20) = -20$
 $M_{12} = \begin{vmatrix} 6 & 4 \\ 1 & -7 \end{vmatrix} = -42 - 4 = -46$; $A_{12} = (-1)^{1+2} (-46) = 46$

$$M_{13} = \begin{vmatrix} 6 & 0 \\ 1 & 5 \end{vmatrix} = 30 - 0 = 30;$$
 $A_{13} = (-1)^{1+3} (30) = 30$

$$M_{21} = \begin{vmatrix} -3 & 5 \\ 5 & -7 \end{vmatrix} = 21 - 25 = -4;$$
 $A_{21} = (-1)^{2+1}(-4) = 4$

$$M_{22} = \begin{vmatrix} 2 & 5 \\ 1 & -7 \end{vmatrix} = -14 - 5 = -19;$$
 $A_{22} = (-1)^{2+2} (-19) = -19$

$$M_{23} = \begin{vmatrix} 2 & -3 \\ 1 & 5 \end{vmatrix} = 10 + 3 = 13;$$
 $A_{23} = (-1)^{2+3}(13) = -13$

$$M_{31} = \begin{vmatrix} -3 & 5 \\ 0 & 4 \end{vmatrix} = -12 - 0 = -12;$$
 $A_{31} = (-1)^{3+1}(-12) = -12$

$$M_{32} = \begin{vmatrix} 2 & 5 \\ 6 & 4 \end{vmatrix} = 8 - 30 = -22;$$
 $A_{32} = (-1)^{3+2}(-22) = 22$

and
$$M_{33} = \begin{vmatrix} 2 & -3 \\ 6 & 0 \end{vmatrix} = 0 + 18 = 18;$$
 $A_{33} = (-1)^{3+3} (18) = 18$

Now
$$a_{11} = 2$$
, $a_{12} = -3$, $a_{13} = 5$; $A_{31} = -12$, $A_{32} = 22$, $A_{33} = 18$
So $a_{11} A_{31} + a_{12} A_{32} + a_{13} A_{33}$

$$= 2(-12) + (-3)(22) + 5(18) = -24 - 66 + 90 = 0$$

Then
$$adj A = Transpose of \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}$$

Example 12 Find *adj* A for A =
$$\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$$

Solution We have $A_{11} = 4$, $A_{12} = -1$, $A_{21} = -3$, $A_{22} = 2$

Hence

$$adj A = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ -1 & 2 \end{bmatrix}$$

Remark For a square matrix of order 2, given by

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

The adj A can also be obtained by interchanging a_{11} and a_{22} and by changing signs of a_{12} and a_{21} , i.e.,

$$adj A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Change sign Interchange

We state the following theorem without proof.

Theorem 1 If A be any given square matrix of order n, then

$$A(adj A) = (adj A) A = |A|I$$

where I is the identity matrix of order n

Verification

Let

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \text{ then } adj \quad \mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{21} & \mathbf{A}_{31} \\ \mathbf{A}_{12} & \mathbf{A}_{22} & \mathbf{A}_{32} \\ \mathbf{A}_{13} & \mathbf{A}_{23} & \mathbf{A}_{33} \end{bmatrix}$$

Since sum of product of elements of a row (or a column) with corresponding cofactors is equal to |A| and otherwise zero, we have

i.e.
$$|(adj A)| |A| = |A|^3 (1)$$

i.e. $|(adj A)| = |A|^2$

In general, if A is a square matrix of order n, then $|adj(A)| = |A|^{n-1}$.

Theorem 4 A square matrix A is invertible if and only if A is nonsingular matrix.

Proof Let A be invertible matrix of order *n* and I be the identity matrix of order *n*.

Then, there exists a square matrix B of order n such that AB = BA = I

Now
$$AB = I$$
. So $|AB| = |I|$ or $|A| |B| = 1$ (since $|I|=1, |AB|=|A||B|$)

This gives $|A| \neq 0$. Hence A is nonsingular.

Conversely, let A be nonsingular. Then $|A| \neq 0$

Now
$$A (adj A) = (adj A) A = |A| I$$
 (Theorem 1)

or
$$A \left(\frac{1}{|A|} adj A \right) = \left(\frac{1}{|A|} adj A \right) A = I$$

or
$$AB = BA = I$$
, where $B = \frac{1}{|A|} adj A$

Thus A is invertible and
$$A^{-1} = \frac{1}{|A|} adj A$$

Example 13 If $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$, then verify that $A \text{ adj } A = |A| \text{ I. Also find } A^{-1}$.

Solution We have $|A| = 1 (16 - 9) - 3 (4 - 3) + 3 (3 - 4) = 1 \neq 0$ Now $A_{11} = 7$, $A_{12} = -1$, $A_{13} = -1$, $A_{21} = -3$, $A_{22} = 1$, $A_{23} = 0$, $A_{31} = -3$, $A_{32} = 0$, $A_{33} = 1$

Therefore
$$adj A = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$A (adj A) = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 7 - 3 - 3 & -3 + 3 + 0 & -3 + 0 + 3 \\ 7 - 4 - 3 & -3 + 4 + 0 & -3 + 0 + 3 \\ 7 - 3 - 4 & -3 + 3 + 0 & -3 + 0 + 4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (1) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = |A| \cdot I$$

$$\begin{bmatrix} 7 & -3 & -3 \end{bmatrix} \begin{bmatrix} 7 & -3 & -3 \end{bmatrix}$$

Also

$$A^{-1} = \frac{1}{|A|} a dj A = \frac{1}{1} \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

Example 14 If $A = \begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$, then verify that $(AB)^{-1} = B^{-1}A^{-1}$.

Solution We have AB = $\begin{bmatrix} 2 & 3 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 5 & -14 \end{bmatrix}$

Since, $|AB| = -11 \neq 0$, $(AB)^{-1}$ exists and is given by

$$(AB)^{-1} = \frac{1}{|AB|} adj (AB) = -\frac{1}{11} \begin{bmatrix} -14 & -5 \\ -5 & -1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix}$$

Further, $|\mathbf{A}| = -11 \neq 0$ and $|\mathbf{B}| = 1 \neq 0$. Therefore, \mathbf{A}^{-1} and \mathbf{B}^{-1} both exist and are given by

$$A^{-1} = -\frac{1}{11} \begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix}, B^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$$

Therefore $B^{-1}A^{-1} = -\frac{1}{11}\begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} -4 & -3 \\ -1 & 2 \end{bmatrix} = -\frac{1}{11}\begin{bmatrix} -14 & -5 \\ -5 & -1 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 14 & 5 \\ 5 & 1 \end{bmatrix}$

Hence $(AB)^{-1} = B^{-1} A^{-1}$

Example 15 Show that the matrix $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$ satisfies the equation $A^2 - 4A + I = O$, where I is 2×2 identity matrix and O is 2×2 zero matrix. Using this equation, find A^{-1} .

Solution We have
$$A^2 = A \cdot A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix}$$

Hence
$$A^2 - 4A + I = \begin{bmatrix} 7 & 12 \\ 4 & 7 \end{bmatrix} - \begin{bmatrix} 8 & 12 \\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$$

Now
$$A^2 - 4A + I = O$$

Therefore $AA - 4A = -I$

or A A (A⁻¹) – 4 A A⁻¹ = – I A⁻¹ (Post multiplying by A⁻¹ because
$$|A| \neq 0$$
)

or
$$A(AA^{-1}) - 4I = -A^{-1}$$

or
$$AI - 4I = -A^{-1}$$

or
$$A^{-1} = 4I - A = \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

Hence
$$A^{-1} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

EXERCISE 4.4

Find adjoint of each of the matrices in Exercises 1 and 2.

1.
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 2. $\begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 5 \\ -2 & 0 & 1 \end{bmatrix}$

Verify A (adj A) = (adj A) A = |A| I in Exercises 3 and 4

3.
$$\begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$$
 4.
$$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

Find the inverse of each of the matrices (if it exists) given in Exercises 5 to 11.

5.
$$\begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}$$
 6. $\begin{bmatrix} -1 & 5 \\ -3 & 2 \end{bmatrix}$ 7. $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 4 \\ 0 & 0 & 5 \end{bmatrix}$

If (adj A) B = O, then system may be either consistent or inconsistent according as the system have either infinitely many solutions or no solution.

Example 16 Solve the system of equations

$$2x + 5y = 1$$
$$3x + 2y = 7$$

Solution The system of equations can be written in the form AX = B, where

$$A = \begin{bmatrix} 2 & 5 \\ 3 & 2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$$

Now, $|A| = -11 \neq 0$, Hence, A is nonsingular matrix and so has a unique solution.

Note that $A^{-1} = -\frac{1}{11} \begin{bmatrix} 2 & -5 \\ -3 & 2 \end{bmatrix}$ Therefore $X = A^{-1}B = -\frac{1}{11} \begin{bmatrix} 2 & -5 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 7 \end{bmatrix}$ $\begin{bmatrix} x \\ \end{bmatrix} = 1 \begin{bmatrix} -33 \\ \end{bmatrix} \begin{bmatrix} 3 \\ \end{bmatrix}$

i.e. $\begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{11} \begin{bmatrix} -33 \\ 11 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ Hence x = 3, y = -1

Example 17 Solve the following system of equations by matrix method.

$$3x - 2y + 3z = 8$$
$$2x + y - z = 1$$
$$4x - 3y + 2z = 4$$

Solution The system of equations can be written in the form AX = B, where

$$A = \begin{bmatrix} 3 & -2 & 3 \\ 2 & 1 & -1 \\ 4 & -3 & 2 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$$

We see that

$$|A| = 3(2-3) + 2(4+4) + 3(-6-4) = -17 \neq 0$$

Hence, A is nonsingular and so its inverse exists. Now

$$A_{11} = -1,$$
 $A_{12} = -8,$ $A_{13} = -10$
 $A_{21} = -5,$ $A_{22} = -6,$ $A_{23} = 1$
 $A_{31} = -1,$ $A_{32} = 9,$ $A_{33} = 7$

Therefore
$$A^{-1} = -\frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix}$$
So
$$X = A^{-1}B = -\frac{1}{17} \begin{bmatrix} -1 & -5 & -1 \\ -8 & -6 & 9 \\ -10 & 1 & 7 \end{bmatrix} \begin{bmatrix} 8 \\ 1 \\ 4 \end{bmatrix}$$
i.e.
$$\begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{17} \begin{bmatrix} -17 \\ -34 \\ 51 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

Hence

$$x = 1, y = 2 \text{ and } z = 3.$$

Example 18 The sum of three numbers is 6. If we multiply third number by 3 and add second number to it, we get 11. By adding first and third numbers, we get double of the second number. Represent it algebraically and find the numbers using matrix method.

Solution Let first, second and third numbers be denoted by x, y and z, respectively. Then, according to given conditions, we have

$$x + y + z = 6$$

$$y + 3z = 11$$

$$x + z = 2y \text{ or } x - 2y + z = 0$$

This system can be written as AX = B, where

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 1 & 2 & 1 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 6 \\ 11 \\ 0 \end{bmatrix}$$

Here
$$|A| = 1(1+6) - (0-3) + (0-1) = 9 \neq 0$$
. Now we find $adj A$

$$A_{11} = 1(1+6) = 7, \qquad A_{12} = -(0-3) = 3, \qquad A_{13} = -1$$

$$A_{21} = -(1+2) = -3, \qquad A_{22} = 0, \qquad A_{23} = -(-2-1) = 3$$

$$A_{31} = (3-1) = 2, \qquad A_{32} = -(3-0) = -3, \qquad A_{33} = (1-0) = 1$$
Hence
$$adj A = \begin{bmatrix} 7 & -3 & 2 \\ 3 & 0 & -3 \\ 1 & 3 & 1 \end{bmatrix}$$

Hence

$$A^{-1} = \frac{1}{|A|} adj (A) = \frac{1}{9} \begin{bmatrix} 7 & -3 & 2 \\ 3 & 0 & -3 \\ -1 & 3 & 1 \end{bmatrix}$$

Since

$$X = A^{-1} B$$

$$7 \quad -3$$

$$X = \frac{1}{9} \begin{bmatrix} 7 & -3 & 2 \\ 3 & 0 & -3 \\ -1 & 3 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 11 \\ 0 \end{bmatrix}$$

or

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 42 - 33 + 0 \\ 18 + 0 + 0 \\ -6 + 33 + 0 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 9 \\ 18 \\ 27 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
$$x = 1, y = 2, z = 3$$

Thus

EXERCISE 4.5

Examine the consistency of the system of equations in Exercises 1 to 6.

1.
$$x + 2y = 2$$

 $2x + 3y = 3$

2.
$$2x - y = 5$$

3.
$$x + 3y = 5$$

$$2x + 3y = 3$$

$$x + y = 4$$

$$2x + 6y = 8$$

$$2x + 3y = 3$$
 $x + y = 4$ $2x + 6y = 8$
4. $x + y + z = 1$ **5.** $3x - y - 2z = 2$ **6.** $5x - y + 4z = 5$ $2x + 3y + 2z = 2$ $2y - z = -1$ $2x + 3y + 5z = 2$ $2x + 3y + 5z = 2$ $2x + 3y + 5z = 2$

$$3x-y-2z = 2y-z = -1$$
$$3x-5y = 3$$

6.
$$5x - y + 4z = 5$$

 $2x + 3y + 5z = 2$
 $5x - 2y + 6z = -1$

Solve system of linear equations, using matrix method, in Exercises 7 to 14.

7.
$$5x + 2y = 4$$

 $7x + 3y = 5$

8.
$$2x - y = -2$$

 $3x + 4y = 3$

9.
$$4x - 3y = 3$$

10.
$$5x + 2y = 3$$

$$3x + 4y = 3$$

1. $2x + y + z =$

$$3x - 5y = 7$$

$$3x + 2y = 5$$

10.
$$5x + 2y = 3$$

 $3x + 2y = 5$
11. $2x + y + z = 1$
 $x - 2y - z = \frac{3}{2}$
 $3y - 5z = 9$
12. $x - y + z = 4$
 $2x + y - 3z = 0$
 $x + y + z = 2$

$$2x + y - 3z =$$

x + y + z = 2

13.
$$2x + 3y + 3z = 5$$

 $x - 2y + z = -4$
 $3x - y - 2z = 3$
14. $x - y + 2z = 7$
 $3x + 4y - 5z = 2$
 $2x - y + 3z = 3$

$$2x + 3y + 3z = 5$$

 $x - 2y + z = -4$
14. $x - y + 2z = 7$
 $3x + 4y - 5z = -5$

2x - v + 3z = 12

15. If $A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}$, find A^{-1} . Using A^{-1} solve the system of equations

$$2x - 3y + 5z = 11$$
$$3x + 2y - 4z = -5$$
$$x + y - 2z = -3$$

The cost of 4 kg onion, 3 kg wheat and 2 kg rice is ₹60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is ₹90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is ₹70. Find cost of each item per kg by matrix method.

Miscellaneous Examples

Example 19 Use product $\begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 3 \\ 3 & 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 & 1 \\ 9 & 2 & 3 \\ 6 & 1 & 2 \end{bmatrix}$ to solve the system of equations

$$x-y+2z = 1$$
$$2y-3z = 1$$
$$3x-2y+4z = 2$$

x - y + 2z = 1 2y - 3z = 1 3x - 2y + 4z = 2Solution Consider the product $\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix} \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$

$$= \begin{bmatrix} -2 - 9 + 12 & 0 - 2 + 2 & 1 + 3 - 4 \\ 0 + 18 - 18 & 0 + 4 - 3 & 0 - 6 + 6 \\ -6 - 18 + 24 & 0 - 4 + 4 & 3 + 6 - 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Hence

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{bmatrix}$$

Now, given system of equations can be written, in matrix form, as follows

$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$

99

$$x \\ y = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 1 \\ 9 & 2 & 3 \\ 6 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} -2 + 0 + 2 \\ 9 + 2 - 6 \\ 6 + 1 - 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 5 \\ 3 \end{bmatrix}$$
$$x = 0, y = 5 \text{ and } z = 3$$

Hence

Miscellaneous Exercises on Chapter 4

- $\sin\theta \cos\theta$ 1. Prove that the determinant $-\sin\theta$ -x $\begin{bmatrix} 1 \\ x \end{bmatrix}$ is independent of θ . $\cos\theta$
- $|\cos \alpha \cos \beta \cos \alpha \sin \beta \sin \alpha|$ 2. Evaluate $-\sin\beta$ $\cos\beta$ $\sin \alpha \cos \beta \sin \alpha \sin \beta$
- 3. If $A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$, find $(AB)^{-1}$
- 4. Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$. Verify that
 - (i) $[adj A]^{-1} = adj (A^{-1})$ (ii) $(A^{-1})^{-1} = A$
- 5. Evaluate $\begin{vmatrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{vmatrix}$
- 6. Evaluate $\begin{vmatrix} 1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y \end{vmatrix}$