2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

37. A method for controlling the texture of an alloy, comprising the steps of:

defining equal channel angular extrusion routes for defining predetermined shear planes and crystallographic directions in the alloy;

selecting at least a route from the defined routes for plastically deforming the alloy during equal channel angular extrusion; and

subjecting the alloy to a predetermined number of passes through the selected routes.

- 38. An alloy produced by the method of claim 37 comprising a randomized microstructure and a texture with a substantially uniform grain size.
- 39. An alloy produced by the method of claim 37 comprising a strong texture.
- 40. An alloy produced by the method of claim 37 comprising substantially random textures.

	ł
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	

41. A method for controlling the texture of an alloy, comprising the steps of:

defining equal channel angular extrusion routes for defining predetermined shear planes and crystallographic directions in the alloy;

selecting at least one route from the defined routes for processing the alloy;

processing the alloy through the selected at least one route; and recovery annealing the alloy at a temperature range and a time period determined for the alloy for obtaining substantially uniform grain size, global microstructure and texture.

42. A method for influencing the texture evolution of an alloy, comprising the steps:

defining equal channel angular extrusion routes for defining predetermined shear planes and crystallographic directions in the alloy;

selecting at least one route from the defined routes for processing the alloy;

processing the allow through the selected at least one route;

recovery annealing the alloy at a temperature range and a time period determined for the alloy; and

further recovery annealing the alloy at a temperature greater than maximum temperature of the temperature range.

43. A method for controlling the texture of an alloy, comprising the steps of:

defining equal channel angular extrusion routes for defining predetermined shear planes and crystallographic directions in the alloy;

selecting at least one route from the defined routes for processing the alloy;

processing the alloy through the selected at least one route; and post-extrusion processing the alloy to create a specific texture, a uniform grain size and a high texture strength for the alloy.

44. A method for controlling the texture of an alloy, which comprises the steps of:

defining equal channel angular extrusion routes for defining predetermined shear planes and crystallographic directions in the alloy;

selecting at least one route from the defined routes for processing the alloy;

further processing the alloy under equal channel angular extrusion in order to create a specific texture, a uniform grain size and a high texture strength for the alloy.