

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

pH-metric Result

logP (XH2 2+) -2.38

logP (XH +) -4.96 ±2.15 (n=47) logP (neutral X) 1.92 ±0.01 (n=47)

18B-28002 Points 1 to 35

M15_octanol concentration factor 0.761
Carbonate 0.1910 mM
Acidity error 0.00862 mM

18B-28002 Points 36 to 72

M15_octanol concentration factor 0.839
Carbonate 0.2848 mM
Acidity error -0.02801 mM

18B-28002 Points 73 to 106

M15_octanol concentration factor 0.903
Carbonate 0.2174 mM
Acidity error 0.16739 mM

Warnings and errors

Errors None

Warnings One or more logP values out of range

Sample logD and percent species

рН	M15_octanol	M15_octanol	M15_octanol	M15_octanol	M15_octanol	M15_octanol	M15_octanol	Comment
	logD	M15_octanolH2	M15_octanolH	M15_octanol	M15_octanolH2*	M15_octanolH*	M15_octanol*	,
1.000	-2.38	97.03 %	2.55 %	0.00 %	0.40 %	0.00 %	0.01 %	
1.200	-2.37	95.59 %	3.98 %	0.00 %	0.40 %	0.00 %	0.03 %	Stomach pH
2.000	-1.92	78.23 %	20.58 %	0.01 %	0.33 %	0.00 %	0.86 %	•
3.000	-0.52	21.05 %	55.37 %	0.28 %	0.09 %	0.00 %	23.22 %	
4.000	0.59	0.72 %	18.93 %	0.95 %	0.00 %	0.00 %	79.40 %	
5.000	1.45	0.01 %	2.30 %	1.15 %	0.00 %	0.00 %	96.54 %	
6.000	1.84	0.00 %	0.24 %	1.18 %	0.00 %	0.00 %	98.59 %	
6.500	1.90	0.00 %	0.07 %	1.18 %	0.00 %	0.00 %	98.75 %	
7.000	1.91	0.00 %	0.02 %	1.18 %	0.00 %	0.00 %	98.80 %	
7.400	1.92	0.00 %	0.01 %	1.18 %	0.00 %	0.00 %	98.81 %	Blood pH
8.000	1.92	0.00 %	0.00 %	1.18 %	0.00 %	0.00 %	98.82 %	ļ
9.000	1.92	0.00 %	0.00 %	1.18 %	0.00 %	0.00 %	98.82 %	
10.000	1.92	0.00 %	0.00 %	1.18 %	0.00 %	0.00 %	98.82 %	ļ
11.000	1.92	0.00 %	0.00 %	1.18 %	0.00 %	0.00 %	98.82 %	ļ
12.000	1.92	0.00 %	0.00 %	1.18 %	0.00 %	0.00 %	98.82 %	

Sample name: M15_octanol Assay name: Assay ID:

Filename:

pH-metric high logP 18B-28002

Experiment start time: 2/28/2018 1:10:47 AM

Pion Analyst: Instrument ID: T312060

C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

Graphs (continued)

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

pH-metric high logP Titration 1 of 3 18B-28002 Points 1 to 35

Overall results

RMSD 0.336
Average ionic strength 0.158 M
Average temperature 25.0°C
Partition ratio 0.0208 : 1

Analyte concentration range 3493.3 µM to 3618.9 µM

Total points considered 33 of 35

Warnings and errors

Errors None

Warnings One or more logP values out of range

Four-Plus parameters

Alpha	0.130	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r
S	0.9970	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r
jΗ	8.0	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r
jΟΗ	-0.4	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r

Titrants

0.50 M HCI 0.993513 2/28/2018 1:10:47 AM C:\Sirius_T3\HCl18B27.t3r 0.50 M KOH 0.999845 2/28/2018 1:10:47 AM C:\Sirius_T3\KOH18B27.t3r

Sample

Φ	M15_octanol concentration factor	0.761
	Base pKa 1	2.58
	Base pKa 2	5.30
	logP (XH2 2+)	-2.38
₩	logP (XH +)	-9.58
₩	logP (neutral X)	1.85

Sample graphs

Assay ID:

Sample name: M15_octanol Experiment start time: 2/28/2018 1:10:47 AM

Assay name: pH-metric high logP Analyst: Pion Instrument ID: T312060 18B-28002

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

Sample graphs (continued)

Sample logD and percent species

рН	M15_octanol	M15_octanol	M15_octanol	M15_octanol	M15_octanol	M15_octanol	M15_octanol	Comment
	logD	M15_octanolH2	M15_octanolH	M15_octanol	M15_octanolH2*	M15_octanolH*	M15_octanol*	
1.000	-2.38	97.43 %	2.56 %	0.00 %	0.01 %	0.00 %	0.00 %	
1.200	-2.37	95.99 %	4.00 %	0.00 %	0.01 %	0.00 %	0.00 %	Stomach pH
2.000	-1.97	79.15 %	20.82 %	0.01 %	0.01 %	0.00 %	0.02 %	
3.000	-0.59	27.30 %	71.81 %	0.36 %	0.00 %	0.00 %	0.53 %	
4.000	0.51	3.27 %	86.11 %	4.32 %	0.00 %	0.00 %	6.30 %	
5.000	1.37	0.17 %	44.71 %	22.41 %	0.00 %	0.00 %	32.72 %	
6.000	1.77	0.00 %	7.50 %	37.60 %	0.00 %	0.00 %	54.90 %	
6.500	1.82	0.00 %	2.50 %	39.63 %	0.00 %	0.00 %	57.87 %	
7.000	1.84	0.00 %	0.80 %	40.32 %	0.00 %	0.00 %	58.87 %	
7.400	1.84	0.00 %	0.32 %	40.52 %	0.00 %	0.00 %	59.16 %	Blood pH
8.000	1.85	0.00 %	0.08 %	40.62 %	0.00 %	0.00 %	59.30 %	-
9.000	1.85	0.00 %	0.01 %	40.64 %	0.00 %	0.00 %	59.35 %	
10.000	1.85	0.00 %	0.00 %	40.65 %	0.00 %	0.00 %	59.35 %	
11.000	1.85	0.00 %	0.00 %	40.65 %	0.00 %	0.00 %	59.35 %	ļ
12.000	1.85	0.00 %	0.00 %	40.65 %	0.00 %	0.00 %	59.35 %	

Carbonate and acidity

Other graphs

Pion

T312060

Sample name: M15_octanol Experiment start time: 2/28/2018 1:10:47 AM

Assay name: pH-metric high logP Analyst:
Assay ID: 18B-28002 Instrument ID:

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

Other graphs (continued)

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

pH-metric high logP Titration 2 of 3 18B-28002 Points 36 to 72

Overall results

RMSD 0.387
Average ionic strength 0.166 M
Average temperature 25.0°C
Partition ratio 0.0581 : 1

Analyte concentration range 3113.6 µM to 3230.1 µM

Total points considered 36 of 37

Warnings and errors

Errors None

Warnings One or more logP values out of range

Four-Plus parameters

à	Alpha	0.130	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r
à	S	0.9970	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r
à	jΗ	8.0	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r
à	jОН	-0.4	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r

Titrants

Sample

$\mathbf{\nabla}$	M15_octanol concentration factor	0.839
a	Base pKa 1	2.58
	Base pKa 2	5.30
a	logP (XH2 2+)	-2.38
₩	logP (XH +)	-3.43
V	logP (neutral X)	1.98

Sample graphs

Assay ID:

Sample name: M15_octanol Experiment start time: 2/28/2018 1:10:47 AM
Assay name: pH-metric high logP Analyst: Pion

pH-metric high logP Analyst: Pion
18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

Sample graphs (continued)

Sample logD and percent species

рН	M15_octanol		M15_octanol	M15_octanol		M15_octanol	M15_octanol	
	logD	M15_octanolH2	M15_octanolH	M15_octanol	M15_octanolH2*	M15_octanolH*	M15_octanol*	
1.000	-2.38	97.41 %	2.56 %	0.00 %	0.02 %	0.00 %	0.00 %	
1.200	-2.36	95.97 %	4.00 %	0.00 %	0.02 %	0.00 %	0.00 %	Stomach pH
2.000	-1.88	79.11 %	20.81 %	0.01 %	0.02 %	0.00 %	0.06 %	
3.000	-0.46	26.91 %	70.78 %	0.35 %	0.01 %	0.00 %	1.95 %	,
4.000	0.64	2.79 %	73.34 %	3.68 %	0.00 %	0.00 %	20.19 %	ľ
5.000	1.50	0.09 %	23.48 %	11.77 %	0.00 %	0.00 %	64.66 %	ľ
6.000	1.90	0.00 %	2.98 %	14.94 %	0.00 %	0.00 %	82.08 %	
6.500	1.95	0.00 %	0.96 %	15.25 %	0.00 %	0.00 %	83.79 %	ļ
7.000	1.97	0.00 %	0.31 %	15.35 %	0.00 %	0.00 %	84.34 %	ļ
7.400	1.97	0.00 %	0.12 %	15.38 %	0.00 %	0.00 %	84.50 %	Blood pH
8.000	1.97	0.00 %	0.03 %	15.39 %	0.00 %	0.00 %	84.57 %	- 1
9.000	1.98	0.00 %	0.00 %	15.40 %	0.00 %	0.00 %	84.60 %	ļ
10.000	1.98	0.00 %	0.00 %	15.40 %	0.00 %	0.00 %	84.60 %	ļ
11.000	1.98	0.00 %	0.00 %	15.40 %	0.00 %	0.00 %	84.60 %	ļ
12.000	1.98	0.00 %	0.00 %	15.40 %	0.00 %	0.00 %	84.60 %	ļ

Carbonate and acidity

Other graphs

Assay ID:

Filename:

Sample name: M15_octanol Assay name:

pH-metric high logP

18B-28002

Experiment start time: 2/28/2018 1:10:47 AM

Analyst: **Pion** Instrument ID: T312060

C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

Other graphs (continued)

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

pH-metric high logP Titration 3 of 3 18B-28002 Points 73 to 106

Overall results

RMSD 0.501
Average ionic strength 0.172 M
Average temperature 25.0°C
Partition ratio 0.1616 : 1

Analyte concentration range 2625.5 µM to 2712.6 µM

Total points considered 32 of 34

Warnings and errors

Errors None

Warnings One or more logP values out of range

Four-Plus parameters

Alpha	0.130	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r
S	0.9970	2/28/2018 1:10:47 AM	C:\Sirius T3\HCl18B27.t3r
jΗ	8.0	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r
jОН	-0.4	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r

Titrants

0.50 M HCI 0.993513 2/28/2018 1:10:47 AM C:\Sirius_T3\HCl18B27.t3r 0.50 M KOH 0.999845 2/28/2018 1:10:47 AM C:\Sirius_T3\KOH18B27.t3r

Sample

₩	M15_octanol concentration factor	0.903
	Base pKa 1	2.58
	Base pKa 2	5.30
	logP (XH2 2+)	-2.38
₩	logP (XH +)	-3.95
₩	logP (neutral X)	1.91

Sample graphs

Assay ID:

Sample name: M15_octanol Experiment start time: 2/28/2018 1:10:47 AM
Assay name: pH-metric high logP Analyst: Pion

pH-metric high logP Analyst: Pion
18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

Sample graphs (continued)

Sample logD and percent species

M15_octanol	M15_octanol	M15_octanol	M15_octanol	M15_octanol	M15_octanol	M15_octanol	Comment
logD	M15_octanolH2	M15_octanolH	M15_octanol	M15_octanolH2*	M15_octanolH*	M15_octanol*	
-2.38	97.37 %	2.56 %	0.00 %	0.07 %	0.00 %	0.00 %	
-2.37	95.93 %	4.00 %	0.00 %	0.06 %	0.00 %	0.00 %	Stomach pH
-1.93	79.02 %	20.78 %	0.01 %	0.05 %	0.00 %	0.14 %	
-0.53	26.20 %	68.91 %	0.35 %	0.02 %	0.00 %	4.53 %	
0.57	2.18 %	57.29 %	2.87 %	0.00 %	0.00 %	37.65 %	
1.43	0.05 %	12.38 %	6.21 %	0.00 %	0.00 %	81.37 %	
1.83	0.00 %	1.39 %	6.99 %	0.00 %	0.00 %	91.62 %	
1.88	0.00 %	0.45 %	7.05 %	0.00 %	0.00 %	92.50 %	
1.90	0.00 %	0.14 %	7.08 %	0.00 %	0.00 %	92.78 %	
1.91	0.00 %	0.06 %	7.08 %	0.00 %	0.00 %	92.86 %	Blood pH
1.91	0.00 %	0.01 %	7.08 %	0.00 %	0.00 %	92.90 %	
1.91	0.00 %	0.00 %	7.09 %	0.00 %	0.00 %	92.91 %	
1.91	0.00 %	0.00 %	7.09 %	0.00 %	0.00 %	92.91 %	
1.91	0.00 %	0.00 %	7.09 %	0.00 %	0.00 %	92.91 %	
1.91	0.00 %	0.00 %	7.09 %	0.00 %	0.00 %	92.91 %	
	-DogD -2.38 -2.37 -1.93 -0.53 0.57 1.43 1.83 1.88 1.90 1.91 1.91 1.91 1.91	logD M15_octanolH2 -2.38 97.37 % -2.37 95.93 % -1.93 79.02 % -0.53 26.20 % 0.57 2.18 % 1.43 0.05 % 1.83 0.00 % 1.90 0.00 % 1.91 0.00 % 1.91 0.00 % 1.91 0.00 % 1.91 0.00 % 1.91 0.00 % 1.91 0.00 % 1.91 0.00 % 1.91 0.00 %	logD M15_octanolH2 M15_octanolH -2.38 97.37 % 2.56 % -2.37 95.93 % 4.00 % -1.93 79.02 % 20.78 % -0.53 26.20 % 68.91 % 0.57 2.18 % 57.29 % 1.43 0.05 % 12.38 % 1.83 0.00 % 0.45 % 1.90 0.00 % 0.14 % 1.91 0.00 % 0.01 % 1.91 0.00 % 0.00 % 1.91 0.00 % 0.00 % 1.91 0.00 % 0.00 % 1.91 0.00 % 0.00 % 1.91 0.00 % 0.00 % 1.91 0.00 % 0.00 %	logD M15_octanolH2 M15_octanolH M15_octanolH -2.38 97.37 % 2.56 % 0.00 % -2.37 95.93 % 4.00 % 0.00 % -1.93 79.02 % 20.78 % 0.01 % -0.53 26.20 % 68.91 % 0.35 % 0.57 2.18 % 57.29 % 2.87 % 1.43 0.05 % 12.38 % 6.21 % 1.83 0.00 % 1.39 % 6.99 % 1.88 0.00 % 0.45 % 7.05 % 1.90 0.00 % 0.14 % 7.08 % 1.91 0.00 % 0.06 % 7.08 % 1.91 0.00 % 0.00 % 7.09 % 1.91 0.00 % 0.00 % 7.09 % 1.91 0.00 % 0.00 % 7.09 % 1.91 0.00 % 0.00 % 7.09 %	logD M15_octanolH2 M15_octanolH M15_octanol M15_octanolH2* -2.38 97.37 % 2.56 % 0.00 % 0.07 % -2.37 95.93 % 4.00 % 0.00 % 0.06 % -1.93 79.02 % 20.78 % 0.01 % 0.05 % -0.53 26.20 % 68.91 % 0.35 % 0.02 % 0.57 2.18 % 57.29 % 2.87 % 0.00 % 1.43 0.05 % 12.38 % 6.21 % 0.00 % 1.83 0.00 % 1.39 % 6.99 % 0.00 % 1.88 0.00 % 0.45 % 7.05 % 0.00 % 1.90 0.00 % 0.14 % 7.08 % 0.00 % 1.91 0.00 % 0.06 % 7.08 % 0.00 % 1.91 0.00 % 0.00 % 7.09 % 0.00 % 1.91 0.00 % 0.00 % 7.09 % 0.00 % 1.91 0.00 % 0.00 % 7.09 % 0.00 % 1.91 0.00 % 0.00 % <	logD M15_octanolH2 M15_octanolH M15_octanol M15_octanolH2* M15_octanolH4* -2.38 97.37 % 2.56 % 0.00 % 0.07 % 0.00 % -2.37 95.93 % 4.00 % 0.00 % 0.06 % 0.00 % -1.93 79.02 % 20.78 % 0.01 % 0.05 % 0.00 % -0.53 26.20 % 68.91 % 0.35 % 0.02 % 0.00 % 0.57 2.18 % 57.29 % 2.87 % 0.00 % 0.00 % 1.43 0.05 % 12.38 % 6.21 % 0.00 % 0.00 % 1.83 0.00 % 1.39 % 6.99 % 0.00 % 0.00 % 1.88 0.00 % 0.45 % 7.05 % 0.00 % 0.00 % 1.90 0.00 % 0.14 % 7.08 % 0.00 % 0.00 % 1.91 0.00 % 0.01 % 7.08 % 0.00 % 0.00 % 1.91 0.00 % 0.00 % 7.09 % 0.00 % 0.00 % 1.91 0.00 % <td< td=""><td>logD M15_octanolH2 M15_octanolH M15_octanol M15_octanolH2* M15_octanolH* M15_octanol* -2.38 97.37 % 2.56 % 0.00 % 0.07 % 0.00 % 0.00 % -2.37 95.93 % 4.00 % 0.00 % 0.06 % 0.00 % 0.00 % -1.93 79.02 % 20.78 % 0.01 % 0.05 % 0.00 % 0.14 % -0.53 26.20 % 68.91 % 0.35 % 0.02 % 0.00 % 4.53 % 0.57 2.18 % 57.29 % 2.87 % 0.00 % 0.00 % 37.65 % 1.43 0.05 % 12.38 % 6.21 % 0.00 % 0.00 % 81.37 % 1.83 0.00 % 1.39 % 6.99 % 0.00 % 0.00 % 91.62 % 1.88 0.00 % 0.45 % 7.05 % 0.00 % 0.00 % 92.50 % 1.90 0.00 % 0.14 % 7.08 % 0.00 % 0.00 % 92.78 % 1.91 0.00 % 0.06 % 7.08 % 0.00 % <td< td=""></td<></td></td<>	logD M15_octanolH2 M15_octanolH M15_octanol M15_octanolH2* M15_octanolH* M15_octanol* -2.38 97.37 % 2.56 % 0.00 % 0.07 % 0.00 % 0.00 % -2.37 95.93 % 4.00 % 0.00 % 0.06 % 0.00 % 0.00 % -1.93 79.02 % 20.78 % 0.01 % 0.05 % 0.00 % 0.14 % -0.53 26.20 % 68.91 % 0.35 % 0.02 % 0.00 % 4.53 % 0.57 2.18 % 57.29 % 2.87 % 0.00 % 0.00 % 37.65 % 1.43 0.05 % 12.38 % 6.21 % 0.00 % 0.00 % 81.37 % 1.83 0.00 % 1.39 % 6.99 % 0.00 % 0.00 % 91.62 % 1.88 0.00 % 0.45 % 7.05 % 0.00 % 0.00 % 92.50 % 1.90 0.00 % 0.14 % 7.08 % 0.00 % 0.00 % 92.78 % 1.91 0.00 % 0.06 % 7.08 % 0.00 % <td< td=""></td<>

Carbonate and acidity

Other graphs

Analyst:

Instrument ID:

Experiment start time: 2/28/2018 1:10:47 AM

Pion

T312060

Assay ID:

Filename:

Sample name: M15_octanol

Assay name: pH-metric high logP 18B-28002

C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

Other graphs (continued)

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

Assay Model

Settings	Value	Date/Time changed	Imported from
Sample name	M15_octanol	2/27/2018 5:03:03 PM	User entered value
Sample by	Weight		Default value
Sample weight	0.001780 g	2/27/2018 6:41:09 PM	User entered value
Formula weight	209.25 g/mol	2/27/2018 5:03:03 PM	User entered value
Solubility	Unknown		Default value
Molecular weight	209.25	2/27/2018 5:03:03 PM	User entered value
Individual pKa ionic environments	No		Default value
Number of pKas	2	2/27/2018 5:03:03 PM	User entered value
Sample is a	Base	2/27/2018 5:03:03 PM	User entered value
pKa 1	2.58	2/27/2018 5:03:03 PM	User entered value
pKa 2	5.30	2/27/2018 5:03:03 PM	User entered value
logP (XH2 2+)	-2.38	2/27/2018 5:03:37 PM	User entered value
logp (XH +)	-1.38	2/27/2018 5:03:29 PM	User entered value
logP (neutral X)	1.33	2/27/2018 5:03:21 PM	User entered value

Events

Time	Event	Water	Acid	Base	Octanol	рН	dpH/dt	pH R-squared	pH SD	dpH/dt time
9:12.2	Initial pH = 6.77									
12:12.8	Data point 1	2.20002 mL	0.09175 mL	0.00884 mL	0.05000 mL	2.005	-0.01157	0.40408	0.00090	10.0 s
12:59.2	Data point 2	2.20002 mL	0.09175 mL	0.03187 mL	0.05000 mL	2.209	-0.00700	0.51322	0.00048	10.0 s
13:35.0	Data point 3	2.20002 mL	0.09175 mL	0.04760 mL	0.05000 mL	2.439	-0.01430	0.68245	0.00086	10.5 s
14:11.1	Data point 4	2.20002 mL	0.09175 mL	0.05788 mL	0.05000 mL	2.658	-0.01104		0.00063	10.0 s
14:46.7	Data point 5				0.05000 mL		-0.00268	0.03532	0.00070	10.0 s
15:32.6	Data point 6				0.05000 mL		0.00003	0.00001	0.00060	10.0 s
16:08.1	Data point 7	2.20002 mL	0.09175 mL	0.07300 mL	0.05000 mL	3.347	-0.00484	0.65284	0.00030	10.0 s
16:43.6	Data point 8	2.20002 mL	0.09175 mL	0.07516 mL	0.05000 mL	3.559	-0.01288	0.80904	0.00071	10.0 s
17:19.1	Data point 9				0.05000 mL		-0.00362	0.61081	0.00023	10.0 s
17:54.5	Data point 10	2.20002 mL	0.09175 mL	0.07787 mL	0.05000 mL	3.912	-0.00298	0.56183	0.00020	10.0 s
	Data point 11	2.20002 mL	0.09175 mL	0.07909 mL	0.05000 mL	4.125	0.00402	0.19132	0.00045	10.0 s
19:36.3	Data point 12	2.20002 mL	0.09175 mL	0.08008 mL	0.05000 mL	4.341	-0.00621	0.78463	0.00035	10.5 s
	Data point 13				0.05000 mL		-0.01069	0.76499	0.00060	10.0 s
	Data point 14				0.05000 mL		-0.00334	0.62508	0.00021	10.5 s
	Data point 15				0.05000 mL		0.00455	0.39258	0.00036	10.5 s
22:25.5	Data point 16				0.05000 mL		-0.00496		0.00048	
23:16.5					0.05000 mL		-0.01087		0.00073	
	Data point 18				0.05000 mL		-0.00304		0.00072	10.5 s
24:38.7	Data point 19				0.05000 mL		-0.00868		0.00049	
25:14.1	Data point 20				0.05000 mL		-0.01451		0.00079	
25:49.5	Data point 21				0.05000 mL		-0.01920		0.00097	
26:35.7	Data point 22				0.05000 mL		-0.01748		0.00088	
27:11.6	Data point 23				0.05000 mL		-0.01570		0.00097	
	Data point 24				0.05000 mL		-0.01716		0.00090	
29:21.8	Data point 25				0.05000 mL		-0.01947		0.00100	
30:41.9	Data point 26	2.20002 mL	0.09175 mL	0.09196 mL	0.05000 mL	8.043	-0.03436	0.98140	0.00171	Timed out
00.47.0	Data = aint 07	0.000001	0.00475!	0.000001	0.05000!	0.040	0.04004	0.00470	0 00000	at 59.5 s
32:17.6	Data point 27				0.05000 mL		-0.01934		0.00096	
	Data point 28				0.05000 mL		-0.01948		0.00098	
34:50.5	•				0.05000 mL		-0.01977		0.00099	
35:42.1	Data point 30				0.05000 mL		-0.01861		0.00096	
36:41.7	Data point 31				0.05000 mL		-0.01864		0.00094	
37:28.2	Data point 32				0.05000 mL		-0.01908		0.00095	
38:23.1	Data point 33				0.05000 mL		-0.01982		0.00100	
39:09.4	Data point 34				0.05000 mL		-0.01284		0.00072	
39:45.3	Data point 35				0.05000 mL		-0.01383			10.0 s
40:51.5	Data point 36				0.15000 mL		-0.01118	0.80408	0.00062	
41:38.0	Data point 37	2.20002 mL	0.19015 mL	0.12041 mL	0.15000 mL	2.180	0.01132	0.58782	0.00073	10.0 s

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

Events (continued)

Events ((continued)									
Time	Event	Water	Acid	Base	Octanol	pH	dpH/dt	pH R-squared		dpH/dt time
42:13.9	Data point 38						-0.00623	0.18166	0.00072	
42:49.6 43:25.2	Data point 39 Data point 40						-0.00443 -0.00869	0.19218 0.46386	0.00050 0.00063	
43.23.2 44:00.8	Data point 41						0.00047	0.00116	0.00068	
44:00.8 44:36.3	Data point 42						0.00047	0.00016	0.00083	
45:11.8	Data point 43							0.43409	0.00003	
45:47.3	Data point 44						-0.01083		0.00060	
46:33.1	Data point 45						0.01106	0.77170	0.00062	
47:24.1	Data point 46						-0.00395		0.00027	
48:15.0	Data point 47						-0.00655		0.00068	
49:06.0	Data point 48						0.00748	0.59754	0.00048	10.0 s
49:57.1	Data point 49	2.20002 mL	0.19015 mL	0.18123 mL	0.15000 mL	4.555	0.00753	0.36418	0.00062	10.0 s
50:42.9	Data point 50						-0.00461	0.27683	0.00043	
51:18.3	Data point 51						-0.00646	0.54035	0.00043	10.5 s
51:59.5	Data point 52						-0.00205		0.00078	
52:45.2	Data point 53						0.00304	0.03920	0.00076	
53:20.6	Data point 54						-0.01570		0.00086	
53:57.1	Data point 55						-0.01657		0.00088	
54:33.0	Data point 56						-0.01364		0.00098	
55:09.9	Data point 57						-0.01837		0.00099	
55:56.4	Data point 58						-0.01620		0.00090	
56:42.0	Data point 59						-0.01910		0.00097	
57:38.4 59:08.1	Data point 60 Data point 61						-0.01967 -0.03741		0.00097	Timed out at
39.00.1	Data point of	2.20002 IIIL	0.19013 IIIL	0.10990 IIIL	0.15000 IIIL	7.551	-0.03741	0.97375	0.00107	59.5 s
1:00:33.4	Data point 62	2.20002 mL	0.19015 mL	0.19001 mL	0.15000 mL	7.625	-0.01967	0.98081	0.00098	53.5 s
	Data point 63						-0.01881	0.97922	0.00094	58.0 s
	Data point 64						-0.01820	0.91738	0.00094	45.0 s
	Data point 65						-0.01854		0.00099	
	Data point 66						-0.01878		0.00096	
	Data point 67						-0.01850		0.00093	
	Data point 68						-0.01772		0.00097	
	Data point 69						-0.01583		0.00097	
1:09:33.1							-0.01460		0.00097	
	Data point 71						-0.00681	0.21656	0.00072	
1:11:11.1	Data point 72 Data point 73						0.00087 -0.01003	0.01530 0.70683	0.00035 0.00059	
	Data point 74						0.00579	0.71483	0.00039	
	Data point 75						-0.00579		0.00034	
	Data point 76						-0.01002		0.00071	
	Data point 77							0.08255	0.00070	
	Data point 78						0.01417	0.79174	0.00079	
	Data point 79						0.00428	0.28164	0.00040	
	Data point 80						0.00870	0.54657	0.00058	
	Data point 81							0.72331	0.00096	
	Data point 82						0.00239	0.04126	0.00058	10.0 s
1:19:11.2	Data point 83	2.20002 mL	0.29403 mL	0.28074 mL	0.45000 mL	3.931	-0.00851	0.21217	0.00091	10.0 s
1:20:02.2	Data point 84	2.20002 mL	0.29403 mL	0.28311 mL	0.45000 mL	4.112	0.00633	0.50236	0.00044	10.0 s
	Data point 85						0.00616	0.42147	0.00047	
	Data point 86						0.00653	0.41686	0.00050	
	Data point 87						-0.01024		0.00067	
	Data point 88						-0.00504		0.00045	
	Data point 89						-0.00661		0.00089	
	Data point 90						-0.00338		0.00100	
	Data point 91						-0.00970		0.00078	
	Data point 92 Data point 93						-0.01048 -0.01816		0.00094 0.00096	
1.20.04.3	Data Politi 93	2.20002 IIIL	U.234U3 IIIL	U.28331 IIIL	0.40000 IIIL	0.110	-0.01010	0.00037	0.00090	51.05

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

Events (continued)

Time	Event	Water	Acid	Base	Octanol	pН	dpH/dt	pH R-squared	pH SD	dpH/dt time
1:27:00.8	Data point 94	2.20002 mL	0.29403 mL	0.29353 mL	0.45000 mL	6.366	-0.01843	0.94543	0.00094	42.0 s
1:28:13.4	Data point 95	2.20002 mL	0.29403 mL	0.29370 mL	0.45000 mL	6.669	-0.01870	0.98301	0.00093	56.0 s
1:29:40.0	Data point 96	2.20002 mL	0.29403 mL	0.29379 mL	0.45000 mL	6.935	-0.02391	0.96793	0.00120	Timed out at 59.5 s
1:31:10.7	Data point 97	2.20002 mL	0.29403 mL	0.29386 mL	0.45000 mL	7.222	-0.03766	0.98462	0.00187	Timed out at 59.5 s
1:32:41.3	Data point 98	2.20002 mL	0.29403 mL	0.29403 mL	0.45000 mL	8.270	-0.03076	0.99007	0.00153	Timed out at 59.5 s
1:34:16.9	Data point 99	2.20002 mL	0.29403 mL	0.29417 mL	0.45000 mL	8.626	-0.01455	0.55806	0.00096	17.5 s
1:35:10.1	Data point 100	2.20002 mL	0.29403 mL	0.29433 mL	0.45000 mL	8.885	0.00677	0.11530	0.00099	21.5 s
1:36:12.4	Data point 101	2.20002 mL	0.29403 mL	0.29454 mL	0.45000 mL	9.111	-0.00911	0.28833	0.00084	11.5 s
1:36:59.8	Data point 102	2.20002 mL	0.29403 mL	0.29473 mL	0.45000 mL	9.302	-0.01144	0.38459	0.00091	12.0 s
1:37:52.6	Data point 103	2.20002 mL	0.29403 mL	0.29501 mL	0.45000 mL	9.516	-0.01706	0.74556	0.00098	11.0 s
1:38:44.4	Data point 104	2.20002 mL	0.29403 mL	0.29534 mL	0.45000 mL	9.718	-0.01826	0.87768	0.00096	10.0 s
1:39:35.4	Data point 105	2.20002 mL	0.29403 mL	0.29574 mL	0.45000 mL	9.922	-0.00385	0.15864	0.00048	10.5 s
1:40:16.4	Data point 106	2.20002 mL	0.29403 mL	0.29598 mL	0.45000 mL	10.023	-0.00776	0.63643	0.00048	10.5 s
1:40:36.1	Assay volumes	2.20002 mL	0.29403 mL	0.29598 mL	0.45000 mL					

Reported at: 2/28/2018 12:41:17 PM

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius T3\Mehtap\20180227 exp27 logP T3-2\18B-28002 M15 octanol pH-metric high logP.t3r

Filename: C:\Sirius_T3\Meh	tap\20180227_exp2	7_logP_T3-2\18E	3-28002_M15_octano	I_pH-metric high logF
Assay Settings				
Setting	Value	Original Value	Date/Time changed	Imported from
General Settings Analyst name	Pion			
Standard Experiment Settings	FIUII			
Number of titrations	3			
	2.000			
Minimum pH	10.000			
Maximum pH pH step between points of	0.200			
Minimum titrant addition	0.200 0.00002 mL			
Maximum titrant addition	0.100002 IIIL 0.10000 mL			
	100%			
Argon flow rate				
Start titration using	Cautious pH adjust			
Advanced General Settings	Nama			
Detect turbidity using	None			
Collect turbidity sensor data	No			
Collect UV spectra	No Faccando			
Stir after titrant addition for	5 seconds			
For titrant addition, stir at	10%			
Titrant Pre-Dose	None			
Titrant pre-dose	None			
Assay Medium	2 20 ml			
ISA water volume	2.20 mL			
Water added	Automatic			
Partition solvent type	Octanol			
Partition volume	0.050 mL			
Partition solvent added	Automatic			
After partition addition, stir for	1 seconds			
Sample Sonication Sonicate	Voc			
	Yes No			
Adjust pH for sonication Sonicate for	300 seconds			
After sonication stir for	5 seconds			
Sample Dissolution	J 36conus			
Perform a dissolution stage	Yes			
Adjust and hold pH for dissolution				
Stir to dissolve for	120 seconds			
For dissolve for	10%			
Carbonate purge	10 /0			
Perform a carbonate purge	No			
Temperature Control	110			
Wait for temperature	Yes			
Required start temperature	25.0°C			
Acceptable deviation	0.5°C			
Time to wait	60 seconds			
Stir speed of	50%			
Titration 1	0070			
Titrate from	Low to high pH			
Adjust to start pH	Yes			
After pH adjust stir for	30 seconds			
Stir to allow partitioning for	15 seconds			
Stirrer speed for partitioning	50%			
Titration 2				
Titrate from	Low to high pH			
Add additional water	0.00 mL			
Additional partition solvent volume				
Additional partition solvent added	Automatic			
After nH adjust stir for	30 seconds			

Reported at: 2/28/2018 12:41:17 PM

30 seconds

15 seconds

55%

After pH adjust stir for

Stir to allow partitioning for

Stirrer speed for partitioning

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

Assay Settings (continued)

Value	Original Value	Date/Time changed	Imported from
	•	_	•
Low to high pH			
0.00 mL			
0.300 mL			
Automatic			
30 seconds			
15 seconds			
60%			
No			
0 seconds			
20 points			
0.50 seconds			
0.00100 dpH/dt			
60 seconds			
	Low to high pH 0.00 mL 0.300 mL Automatic 30 seconds 15 seconds 60% No 0 seconds 20 points 0.50 seconds 0.00100 dpH/dt	Low to high pH 0.00 mL 0.300 mL Automatic 30 seconds 15 seconds 60% No 0 seconds 20 points 0.50 seconds 0.00100 dpH/dt	Low to high pH 0.00 mL 0.300 mL Automatic 30 seconds 15 seconds 60% No 0 seconds 20 points 0.50 seconds 0.00100 dpH/dt

Calibration Settings

Setting	Value	Date/Time changed	Imported from
Four-Plus alpha	0.130	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r
Four-Plus S	0.9970	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r
Four-Plus jH	8.0	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r
Four-Plus jOH	-0.4	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r
Base concentration factor	1.000	2/28/2018 1:10:47 AM	C:\Sirius_T3\KOH18B27.t3r
Acid concentration factor	0.994	2/28/2018 1:10:47 AM	C:\Sirius_T3\HCl18B27.t3r

Instrument Settings

Setting Instrument owner Instrument ID Instrument type	Value Merck T312060 T3 Simulator	Batch Id	Install date
Software version Dispenser module Dispenser 0 Syringe volume Firmware version	1.1.3.0 Water 2.5 mL 1.2.1(r2)	T3DM1200361	3/31/2009 5:24:52 AM 3/31/2009 5:25:05 AM
Titrant Dispenser 2 Syringe volume Firmware version	Water (0.15 M KCI) Acid 0.5 mL 1.2.1(r2)	02-06-2018	2/27/2018 10:05:59 AM 3/31/2009 5:25:11 AM
Titrant Dispenser 1 Syringe volume Firmware version	Acid (0.5 M HCI) Base 0.5 mL 1.2.1(r2)	02-27-2018	2/27/2018 10:27:22 AM 3/31/2009 5:25:21 AM
Titrant Dispenser 5 Syringe volume Firmware version	Base (0.5 M KOH) Cosolvent 2.5 mL 1.2.1(r2)	9/22/2017	2/27/2018 10:21:22 AM 3/31/2009 5:26:24 AM
Distribution valve 5 Firmware version	Distribution Valve 1.1.3		3/31/2009 5:28:19 AM
Port A Port B Dispenser 3 Syringe volume	Methanol (80%, 0.15 M KCI) Cyclohexane Buffer 0.5 mL	09-26-17 11-01-17	2/7/2018 9:42:01 AM 2/27/2018 10:37:57 AM 8/3/2010 5:05:16 AM
Firmware version Titrant Dispenser 6	1.2.1(r2) Dodecane Octanol	2018/01/31	1/31/2018 12:26:26 PM 10/22/2010 10:52:43 AM

Reported at: 2/28/2018 12:41:17 PM

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

Instrument Settings (continued)

O. W	Malan	D-4-b-1-l	In a fall of a fa
Setting Swings volume	Value 0.5 mL	Batch Id	Install date
Syringe volume Firmware version	1.2.1(r2)		
Titrant	Octanol	01-31-2018	2/27/2018 9:59:35 AM
Titrator	Octanol		3/31/2009 5:24:17 AM
Horizontal axis firmware version	1.17 Al1Dl2DO2 Stepper 2	1011111200101	0,01,2000 0.21.11 7.111
Vertical axis firmware version	1.17 Al1Dl2DO2 Stepper 2		
Chassis I/O firmware version	1.11 Al1Dl0DO4 Norgren I/O		
Probe I/O firmware version	1.1.1		
Electrode	T3 Electrode	T3E0923	1/23/2018 2:01:00 PM
E0 calibration	+2.60 mV		2/28/2018 1:11:15 AM
Filling solution	3M KCI	KCL097	2/27/2018 9:49:43 AM
Liquids	500/ IDA 500/ NA/ /		0/07/00/00 00 00 50 444
Wash 1	50% IPA:50% Water		2/27/2018 9:49:58 AM
Wash 2	0.5% Trition X-100 in H20		2/27/2018 9:50:01 AM
Buffer position 1	pH7 Wash		2/27/2018 9:50:04 AM
Buffer position 2	pH 7		2/27/2018 9:50:06 AM 2/27/2018 9:55:12 AM
Storage position Wash water	9.1e+003 mL	02-27-2018	2/27/2018 9:54:39 AM
Waste	6.3e+003 mL	02-21-2010	11/28/2017 10:36:29 AM
Temperature controller	0.56 · 005 IIIL		8/5/2010 6:35:13 AM
Turbidity detector			3/31/2009 5:24:45 AM
Spectrometer		074811	11/23/2010 11:22:28 AM
Dip probe		10196	
Wavelength coefficient A0	183.333		
Wavelength coefficient A1	2.21568		
Wavelength coefficient A2	-0.000289308		
Total lamp lit time	110:52:56		11/23/2010 11:22:28 AM
Calibrated on	2/27/2018 10:40:38 AM		
Integration time	40		
Scans averaged	10		
Autoloader	4.47.414.010.00.00	T3AL1200345	11/10/2015 9:34:13 AM
Left-right axis firmware version	1.17 Al1DI2DO2 Stepper 2		
Front-back axis firmware version	1.17 Al1Dl2DO2 Stepper 2		
Vertical axis firmware version Chassis I/O firmware version	1.17 Al1Dl2DO2 Stepper 2 1.11 Al1Dl0DO4 Norgren I/O		
Configuration	1.11 ATDIODO4 Norgien I/O		
Alternate titration position	Titration position		
Alternate titration position	Reference position		
Maximum standard vial volume	3.50 mL		
Maximum alternate vial volume	25.00 mL		
Automatic action idle period	5 minute(s)		
Titrant tube volume	1.3 mL		
Syringe flush count	3.50		
Flowing wash pump volume	20.0 mL		
Flowing wash stir duration	5 s		
Flowing wash stir speed	30%		
Solvent wash stir duration	5 s		
Solvent wash stir speed	30%		
Surfactant wash stir duration	5 s		
Surfactant wash stir speed	30%		
E0 calibration minimum number of points	10		
E0 calibration maximum standard deviation			
E0 calibration timeout period	60 s		
E0 calibration stir duration	5 s		
E0 calibration preparation stir speed	30%		
E0 calibration buffer wash stir duration	5 s		
E0 calibration buffer wash stir speed E0 calibration reading stir speed	30% 0%		
Lo calibration readility still speed	U / U		

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

Instrument Settings (continued)

Setting Spectrometer calibration stir duration Spectrometer calibration stir speed Spectrometer calibration wash pump volume Spectrometer calibration wash stir duration Spectrometer calibration wash stir speed Overhead dispense height	Value 5 s 30% 20.0 mL 5 s 30% 10000	Batch Id	Install date			
--	---	----------	--------------	--	--	--

Refinement Settings

Setting	Value	Default value
Turbidity detection method	None	None
Turbidity wavelength to assess	500.0 nm	500.0 nm
Turbidity maximum absorbance	0.100	0.100
Turbidity probe threshold	50.00	50.00

Experiment Log

- [2:37] Air gap created for Water (0.15 M KCl)
- [2:37] Air gap created for Acid (0.5 M HCl)
- [2:38] Air gap created for Base (0.5 M KOH)
- [2:38] Air gap released for Water (0.15 M KCI)
- [2:42] Titrator arm moved over Titration position
- [2:42] Titration 1 of 3
- [2:42] Adding initial titrants
- [2:42] Automatically add 2.20000 mL of water
- [3:19] Dispensed 2.200024 mL of Water (0.15 M KCI)
- [3:23] Titrator arm moved over Drain
- [9:05] Titrator arm moved to Titration position
- [9:05] Argon flow rate set to 100
- [9:05] Stirrer speed set to 10
- [9:10] Automatically add 0.05000 mL of Octanol
- [9:11] Dispensed 0.050000 mL of Octanol
- 9.11] Dispensed 0.000000 IIIL Of Octahor
- [9:12] Initial pH = 6.77
- [9:12] Iterative adjust 6.77 -> 2.00
- [9:12] pH 6.77 -> 2.00
- [9:15] Air gap released for Acid (0.5 M HCl)
- [9:15] Dispensed 0.091745 mL of Acid (0.5 M HCI)
- 9:21] Holding pH 2.00
- [11:21] Stirrer speed set to 0
- [11:21] Stirrer speed set to 50
- [11:21] Iterative adjust 1.95 -> 2.00
- [11:21] pH 1.95 -> 2.00
- [11:21] Air gap released for Base (0.5 M KOH)
- [11:22] Dispensed 0.008843 mL of Base (0.5 M KOH)
- [12:13] Stirrer speed set to 0
- [12:23] Datapoint id 1 collected
- [12:23] Stirrer speed set to 50
- [12:28] pH 2.01 -> 2.21
- [12:28] Using cautious pH adjust
- [12:28] Dispensed 0.012112 mL of Base (0.5 M KOH)
- [12:33] Stepping pH = 2.10
- [12:34] Dispensed 0.008631 mL of Base (0.5 M KOH)
- [12:39] Stepping pH = 2.18
- [12:39] Dispensed 0.002281 mL of Base (0.5 M KOH)
- [12:44] Stepping pH = 2.21
- [12:59] Stirrer speed set to 0
- [13:09] Datapoint id 2 collected
- [13:09] Charge balance equation is out by 4.9%
- [13:09] Stirrer speed set to 50

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [13:14] pH 2.22 -> 2.42
- [13:14] Using charge balance adjust
- [13:15] Dispensed 0.015734 mL of Base (0.5 M KOH)
- [13:35] Stirrer speed set to 0
- [13:45] Datapoint id 3 collected
- [13:45] Charge balance equation is out by 9.6%
- [13:45] Stirrer speed set to 50
- [13:50] pH 2.44 -> 2.64
- [13:50] Using charge balance adjust
- [13:51] Dispensed 0.010278 mL of Base (0.5 M KOH)
- [14:11] Stirrer speed set to 0
- [14:21] Datapoint id 4 collected
- [14:21] Charge balance equation is out by 6.7%
- [14:21] Stirrer speed set to 50
- [14:26] pH 2.66 -> 2.86
- [14:26] Using charge balance adjust
- [14:26] Dispensed 0.007032 mL of Base (0.5 M KOH)
- [14:47] Stirrer speed set to 0
- [14:57] Datapoint id 5 collected
- [14:57] Charge balance equation is out by 19.7%
- [14:57] Stirrer speed set to 50
- [15:02] pH 2.91 -> 3.11
- [15:02] Using cautious pH adjust
- [15:02] Dispensed 0.002305 mL of Base (0.5 M KOH)
- [15:07] Stepping pH = 2.99
- [15:07] Dispensed 0.002023 mL of Base (0.5 M KOH)
- [15:12] Stepping pH = 3.08
- [15:12] Dispensed 0.000517 mL of Base (0.5 M KOH)
- [15:17] Stepping pH = 3.11
- [15:32] Stirrer speed set to 0
- [15:42] Datapoint id 6 collected
- [15:42] Charge balance equation is out by -4.8%
- [15:42] Stirrer speed set to 50
- [15:48] pH 3.12 -> 3.32
- [15:48] Using charge balance adjust
- [15:48] Dispensed 0.003246 mL of Base (0.5 M KOH)
- [16:08] Stirrer speed set to 0
- [16:18] Datapoint id 7 collected
- [16:18] Charge balance equation is out by 13.6%
- [16:18] Stirrer speed set to 50
- [16:23] pH 3.35 -> 3.55
- [16:23] Using charge balance adjust
- [16:23] Dispensed 0.002164 mL of Base (0.5 M KOH)
- [16:43] Stirrer speed set to 0
- [16:53] Datapoint id 8 collected
- [16:53] Charge balance equation is out by 3.6%
- [16:53] Stirrer speed set to 50
- [16:59] pH 3.56 -> 3.76
- [16:59] Using charge balance adjust
- [16:59] Dispensed 0.001529 mL of Base (0.5 M KOH)
- [17:19] Stirrer speed set to 0
- [17:29] Datapoint id 9 collected
- [17:29] Charge balance equation is out by -14.3%
- [17:29] Stirrer speed set to 50
- [17:34] pH 3.75 -> 3.95
- [17:34] Using charge balance adjust
- [17:34] Dispensed 0.001176 mL of Base (0.5 M KOH)
- [17:54] Stirrer speed set to 0
- [18:04] Datapoint id 10 collected

pH-metric high logP **Pion** Assay name: Analyst: Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [18:04] Charge balance equation is out by -20.3%
- [18:04] Stirrer speed set to 50
- [18:09] pH 3.92 -> 4.12
- [18:09] Using cautious pH adjust
- [18:10] Dispensed 0.000517 mL of Base (0.5 M KOH)
- [18:15] Stepping pH = 4.00
- [18:15] Dispensed 0.000470 mL of Base (0.5 M KOH)
- [18:20] Stepping pH = 4.09
- [18:20] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [18:25] Stepping pH = 4.10
- [18:25] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [18:30] Stepping pH = 4.12
- [18:45] Stirrer speed set to 0
- [18:55] Datapoint id 11 collected
- [18:55] Charge balance equation is out by -18.7%
- [18:55] Stirrer speed set to 50
- [19:00] pH 4.13 -> 4.33
- [19:00] Using cautious pH adjust
- [19:00] Dispensed 0.000517 mL of Base (0.5 M KOH)
- [19:05] Stepping pH = 4.26
- [19:06] Dispensed 0.000259 mL of Base (0.5 M KOH)
- [19:11] Stepping pH = 4.31
- [19:11] Dispensed 0.000071 mL of Base (0.5 M KOH)
- [19:16] Stepping pH = 4.32
- [19:16] Dispensed 0.000141 mL of Base (0.5 M KOH)
- [19:21] Stepping pH = 4.35
- [19:36] Stirrer speed set to 0
- [19:47] Datapoint id 12 collected
- [19:47] Charge balance equation is out by 3.7%
- [19:47] Stirrer speed set to 50
- [19:52] pH 4.35 -> 4.55
- [19:52] Using charge balance adjust
- [19:52] Dispensed 0.001152 mL of Base (0.5 M KOH)
- [20:12] Stirrer speed set to 0
- [20:22] Datapoint id 13 collected
- [20:22] Charge balance equation is out by 17.7%
- [20:22] Stirrer speed set to 50
- [20:27] pH 4.59 -> 4.79
- [20:27] Using cautious pH adjust
- [20:27] Dispensed 0.000729 mL of Base (0.5 M KOH)
- [20:32] Stepping pH = 4.71
- [20:33] Dispensed 0.000400 mL of Base (0.5 M KOH)
- [20:38] Stepping pH = 4.77
- [20:38] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [20:43] Stepping pH = 4.77
- [20:43] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [20:48] Stepping pH = 4.79
- [21:03] Stirrer speed set to 0
- [21:14] Datapoint id 14 collected
- [21:14] Charge balance equation is out by 8.9%
- [21:14] Stirrer speed set to 50
- [21:19] pH 4.78 -> 4.98
- [21:19] Using charge balance adjust
- [21:19] Dispensed 0.001740 mL of Base (0.5 M KOH)
- [21:39] Stirrer speed set to 0
- [21:50] Datapoint id 15 collected
- [21:50] Charge balance equation is out by 16.6%
- [21:50] Stirrer speed set to 50
- [21:55] pH 5.02 -> 5.22

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [21:55] Using cautious pH adjust
- [21:55] Dispensed 0.000988 mL of Base (0.5 M KOH)
- [22:00] Stepping pH = 5.14
- [22:00] Dispensed 0.000494 mL of Base (0.5 M KOH)
- [22:05] Stepping pH = 5.20
- [22:05] Dispensed 0.000188 mL of Base (0.5 M KOH)
- [22:10] Stepping pH = 5.21
- [22:25] Stirrer speed set to 0
- [22:35] Datapoint id 16 collected
- [22:35] Charge balance equation is out by 15.1%
- [22:35] Stirrer speed set to 50
- [22:40] pH 5.20 -> 5.40
- [22:40] Using cautious pH adjust
- [22:41] Dispensed 0.001011 mL of Base (0.5 M KOH)
- [22:46] Stepping pH = 5.32
- [22:46] Dispensed 0.000517 mL of Base (0.5 M KOH)
- [22:51] Stepping pH = 5.39
- [22:51] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [22:56] Stepping pH = 5.39
- [22:56] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [23:01] Stepping pH = 5.41
- [23:16] Stirrer speed set to 0
- [23:27] Datapoint id 17 collected
- [23:27] Charge balance equation is out by 12.5%
- [23:27] Stirrer speed set to 50
- [23:32] pH 5.40 -> 5.60
- [23:32] Using charge balance adjust
- [23:32] Dispensed 0.001858 mL of Base (0.5 M KOH)
- [23:52] Stirrer speed set to 0
- [24:03] Datapoint id 18 collected
- [24:03] Charge balance equation is out by 72.8%
- [24:03] Stirrer speed set to 50
- [24:08] pH 5.75 -> 5.95
- [24:08] Using cautious pH adjust
- [24:08] Dispensed 0.000659 mL of Base (0.5 M KOH)
- [24:13] Stepping pH = 5.93
- [24:13] Dispensed 0.000071 mL of Base (0.5 M KOH)
- [24:18] Stepping pH = 5.93
- [24:18] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [24:23] Stepping pH = 5.97
- [24:38] Stirrer speed set to 0
- [24:49] Datapoint id 19 collected
- [24:49] Charge balance equation is out by 34.9%
- [24:49] Stirrer speed set to 50
- [24:54] pH 5.97 -> 6.17
- [24:54] Using cautious pH adjust
- [24:54] Dispensed 0.000494 mL of Base (0.5 M KOH)
- [24:59] Stepping pH = 6.20
- [25:14] Stirrer speed set to 0
- [25:24] Datapoint id 20 collected
- [25:24] Charge balance equation is out by 50.0%
- [25:24] Stirrer speed set to 50
- [25:29] pH 6.20 -> 6.40
- [25:29] Using cautious pH adjust
- [25:29] Dispensed 0.000329 mL of Base (0.5 M KOH)
- [25:34] Stepping pH = 6.42
- [25:49] Stirrer speed set to 0
- [26:00] Datapoint id 21 collected
- [26:00] Charge balance equation is out by 50.0%

pH-metric high logP **Pion** Assay name: Analyst: Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [26:00] Stirrer speed set to 50
- [26:05] pH 6.42 -> 6.62
- [26:05] Using cautious pH adjust
- [26:05] Dispensed 0.000212 mL of Base (0.5 M KOH)
- [26:10] Stepping pH = 6.60
- [26:10] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [26:15] Stepping pH = 6.61
- [26:15] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [26:20] Stepping pH = 6.62
- [26:36] Stirrer speed set to 0
- [26:46] Datapoint id 22 collected
- [26:46] Charge balance equation is out by 37.9%
- [26:46] Stirrer speed set to 50
- [26:51] pH 6.62 -> 6.82
- [26:51] Using cautious pH adjust
- [26:51] Dispensed 0.000141 mL of Base (0.5 M KOH)
- [26:56] Stepping pH = 6.84
- [27:11] Stirrer speed set to 0
- [27:45] Datapoint id 23 collected
- [27:45] Charge balance equation is out by 50.0%
- [27:45] Stirrer speed set to 50
- [27:51] pH 6.85 -> 7.05
- [27:51] Using cautious pH adjust
- [27:51] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [27:56] Stepping pH = 7.02
- [27:56] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [28:01] Stepping pH = 7.06 [28:16] Stirrer speed set to 0
- [28:51] Datapoint id 24 collected
- [28:51] Charge balance equation is out by 39.1%
- [28:51] Stirrer speed set to 50
- [28:56] pH 7.08 -> 7.28
- [28:56] Using cautious pH adjust
- [28:56] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [29:01] Stepping pH = 7.19
- [29:01] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [29:07] Stepping pH = 7.28
- [29:22] Stirrer speed set to 0
- [30:11] Datapoint id 25 collected
- [30:11] Charge balance equation is out by 23.6%
- [30:11] Stirrer speed set to 50
- [30:16] pH 7.30 -> 7.50
- [30:16] Using cautious pH adjust
- [30:16] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [30:21] Stepping pH = 7.31
- [30:22] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [30:27] Stepping pH = 8.01
- [30:42] Stirrer speed set to 0
- [31:42] Datapoint id 26 collected
- [31:42] Charge balance equation is out by -92.6%
- [31:42] Stirrer speed set to 50
- [31:47] pH 8.09 -> 8.29
- [31:47] Using cautious pH adjust
- [31:47] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [31:52] Stepping pH = 8.11
- [31:52] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [31:57] Stepping pH = 8.18
- [31:57] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [32:02] Stepping pH = 8.30

pH-metric high logP Assay name: Analyst: Pion Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [32:17] Stirrer speed set to 0
- [33:00] Datapoint id 27 collected
- [33:00] Charge balance equation is out by -279.3%
- [33:00] Stirrer speed set to 50
- [33:05] pH 8.36 -> 8.56
- [33:05] Using cautious pH adjust
- [33:05] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [33:10] Stepping pH = 8.38
- [33:10] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [33:15] Stepping pH = 8.46
- [33:15] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [33:21] Stepping pH = 8.56
- [33:36] Stirrer speed set to 0
- [34:15] Datapoint id 28 collected
- [34:15] Charge balance equation is out by -251.0%
- [34:15] Stirrer speed set to 50
- [34:20] pH 8.60 -> 8.80
- [34:20] Using cautious pH adjust
- [34:20] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [34:25] Stepping pH = 8.62
- [34:25] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [34:30] Stepping pH = 8.79
- [34:30] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [34:35] Stepping pH = 8.85
- [34:50] Stirrer speed set to 0
- [35:11] Datapoint id 29 collected
- [35:11] Charge balance equation is out by -177.5%
- [35:11] Stirrer speed set to 50
- [35:16] pH 8.86 -> 9.06
- [35:16] Using cautious pH adjust
- [35:17] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [35:22] Stepping pH = 8.87
- [35:22] Dispensed 0.000071 mL of Base (0.5 M KOH)
- [35:27] Stepping pH = 9.07
- [35:42] Stirrer speed set to 0
- [36:11] Datapoint id 30 collected
- [36:11] Charge balance equation is out by -92.2%
- [36:11] Stirrer speed set to 50
- [36:16] pH 9.08 -> 9.28
- [36:16] Using cautious pH adjust
- [36:16] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [36:21] Stepping pH = 9.12
- [36:21] Dispensed 0.000071 mL of Base (0.5 M KOH)
- [36:26] Stepping pH = 9.27 [36:41] Stirrer speed set to 0
- [36:58] Datapoint id 31 collected
- [36:58] Charge balance equation is out by -49.9%
- [36:58] Stirrer speed set to 50
- [37:03] pH 9.28 -> 9.48
- [37:03] Using cautious pH adjust
- [37:03] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [37:08] Stepping pH = 9.30
- [37:08] Dispensed 0.000141 mL of Base (0.5 M KOH)
- [37:13] Stepping pH = 9.51
- [37:28] Stirrer speed set to 0
- [37:42] Datapoint id 32 collected
- [37:42] Charge balance equation is out by -87.7%
- [37:42] Stirrer speed set to 50
- [37:47] pH 9.52 -> 9.72

pH-metric high logP **Pion** Assay name: Analyst: Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [37:47] Using cautious pH adjust
- [37:47] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [37:52] Stepping pH = 9.58
- [37:52] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [37:57] Stepping pH = 9.69
- [37:58] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [38:03] Stepping pH = 9.70
- [38:03] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [38:08] Stepping pH = 9.71
- [38:23] Stirrer speed set to 0
- [38:33] Datapoint id 33 collected
- [38:33] Charge balance equation is out by -52.5%
- [38:33] Stirrer speed set to 50
- [38:39] pH 9.71 -> 9.91
- [38:39] Using cautious pH adjust
- [38:39] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [38:44] Stepping pH = 9.80
- [38:44] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [38:49] Stepping pH = 9.88
- [38:49] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [38:54] Stepping pH = 9.91
- [39:09] Stirrer speed set to 0
- [39:20] Datapoint id 34 collected
- [39:20] Charge balance equation is out by -10.0%
- [39:20] Stirrer speed set to 50
- [39:25] pH 9.91 -> 10.05
- [39:25] Using charge balance adjust
- [39:25] Dispensed 0.000235 mL of Base (0.5 M KOH)
- [39:45] Stirrer speed set to 0
- [39:55] Datapoint id 35 collected
- [39:55] Charge balance equation is out by -45.0%
- [39:55] Titration 2 of 3
- [39:55] Adding initial titrants
- [39:55] Automatically add 0.10000 mL of Octanol
- [39:58] Dispensed 0.100000 mL of Octanol
- [39:58] Stirrer speed set to 10
- [39:59] Stirrer speed set to 55
- [39:59] Iterative adjust 10.03 -> 2.00
- [39:59] pH 10.03 -> 2.00
- [40:01] Dispensed 0.098401 mL of Acid (0.5 M HCI)
- [40:51] Stirrer speed set to 0
- [41:01] Datapoint id 36 collected
- [41:01] Stirrer speed set to 55
- [41:06] pH 1.97 -> 2.17
- [41:06] Using cautious pH adjust
- [41:07] Dispensed 0.014111 mL of Base (0.5 M KOH)
- [41:12] Stepping pH = 2.07
- [41:12] Dispensed 0.010278 mL of Base (0.5 M KOH)
- [41:17] Stepping pH = 2.15
- [41:18] Dispensed 0.002658 mL of Base (0.5 M KOH)
- [41:23] Stepping pH = 2.18
- [41:38] Stirrer speed set to 0
- [41:48] Datapoint id 37 collected
- [41:48] Charge balance equation is out by 4.2%
- [41:48] Stirrer speed set to 55
- [41:53] pH 2.19 -> 2.39
- [41:53] Using charge balance adjust
- [41:53] Dispensed 0.018062 mL of Base (0.5 M KOH)
- [42:14] Stirrer speed set to 0

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [42:24] Datapoint id 38 collected
- [42:24] Charge balance equation is out by 5.1%
- [42:24] Stirrer speed set to 55
- [42:29] pH 2.40 -> 2.60
- [42:29] Using charge balance adjust
- [42:29] Dispensed 0.011900 mL of Base (0.5 M KOH)
- [42:49] Stirrer speed set to 0
- [42:59] Datapoint id 39 collected
- [42:59] Charge balance equation is out by 11.2%
- [42:59] Stirrer speed set to 55
- [43:05] pH 2.63 -> 2.83
- [43:05] Using charge balance adjust
- [43:05] Dispensed 0.007926 mL of Base (0.5 M KOH)
- [43:25] Stirrer speed set to 0
- [43:35] Datapoint id 40 collected
- [43:35] Charge balance equation is out by 3.5%
- [43:35] Stirrer speed set to 55
- [43:40] pH 2.84 -> 3.04
- [43:40] Using charge balance adjust
- [43:40] Dispensed 0.005503 mL of Base (0.5 M KOH)
- [44:01] Stirrer speed set to 0
- [44:11] Datapoint id 41 collected
- [44:11] Charge balance equation is out by 1.6%
- [44:11] Stirrer speed set to 55
- [44:16] pH 3.05 -> 3.25
- [44:16] Using charge balance adjust
- [44:16] Dispensed 0.003857 mL of Base (0.5 M KOH)
- [44:36] Stirrer speed set to 0
- [44:46] Datapoint id 42 collected
- [44:46] Charge balance equation is out by 10.8%
- [44:46] Stirrer speed set to 55
- [44:51] pH 3.28 -> 3.48
- [44:51] Using charge balance adjust
- [44:51] Dispensed 0.002611 mL of Base (0.5 M KOH)
- [45:12] Stirrer speed set to 0
- [45:22] Datapoint id 43 collected
- [45:22] Charge balance equation is out by -10.7%
- [45:22] Stirrer speed set to 55
- [45:27] pH 3.46 -> 3.66
- [45:27] Using charge balance adjust
- [45:27] Dispensed 0.001952 mL of Base (0.5 M KOH)
- [45:47] Stirrer speed set to 0
- [45:57] Datapoint id 44 collected
- [45:57] Charge balance equation is out by -21.3%
- [45:57] Stirrer speed set to 55
- [46:02] pH 3.63 -> 3.83
- [46:02] Using cautious pH adjust
- [46:02] Dispensed 0.000776 mL of Base (0.5 M KOH)
- [46:07] Stepping pH = 3.70
- [46:07] Dispensed 0.000729 mL of Base (0.5 M KOH)
- [46:13] Stepping pH = 3.78
- [46:13] Dispensed 0.000306 mL of Base (0.5 M KOH)
- [46:18] Stepping pH = 3.82
- [46:33] Stirrer speed set to 0
- [46:43] Datapoint id 45 collected
- [46:43] Charge balance equation is out by -17.3%
- [46:43] Stirrer speed set to 55
- [46:48] pH 3.82 -> 4.02
- [46:48] Using cautious pH adjust

pH-metric high logP **Pion** Assay name: Analyst: Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [46:48] Dispensed 0.000659 mL of Base (0.5 M KOH)
- [46:53] Stepping pH = 3.90
- [46:53] Dispensed 0.000588 mL of Base (0.5 M KOH)
- [46:58] Stepping pH = 3.98
- [46:58] Dispensed 0.000282 mL of Base (0.5 M KOH)
- [47:04] Stepping pH = 4.01
- [47:04] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [47:09] Stepping pH = 4.02
- [47:24] Stirrer speed set to 0
- [47:34] Datapoint id 46 collected
- [47:34] Charge balance equation is out by -25.1%
- [47:34] Stirrer speed set to 55
- [47:39] pH 4.01 -> 4.21
- [47:39] Using cautious pH adjust
- [47:39] Dispensed 0.000611 mL of Base (0.5 M KOH)
- [47:44] Stepping pH = 4.09
- [47:44] Dispensed 0.000588 mL of Base (0.5 M KOH)
- [47:49] Stepping pH = 4.16
- [47:49] Dispensed 0.000306 mL of Base (0.5 M KOH)
- [47:55] Stepping pH = 4.20
- [47:55] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [48:00] Stepping pH = 4.20
- [48:15] Stirrer speed set to 0
- [48:25] Datapoint id 47 collected
- [48:25] Charge balance equation is out by -30.8%
- [48:25] Stirrer speed set to 55
- [48:30] pH 4.20 -> 4.40
- [48:30] Using cautious pH adjust
- [48:30] Dispensed 0.000659 mL of Base (0.5 M KOH)
- [48:35] Stepping pH = 4.27
- [48:35] Dispensed 0.000682 mL of Base (0.5 M KOH)
- [48:40] Stepping pH = 4.34
- [48:40] Dispensed 0.000376 mL of Base (0.5 M KOH)
- [48:46] Stepping pH = 4.38
- [48:46] Dispensed 0.000141 mL of Base (0.5 M KOH)
- [48:51] Stepping pH = 4.39
- [49:06] Stirrer speed set to 0
- [49:16] Datapoint id 48 collected
- [49:16] Charge balance equation is out by -41.1%
- [49:16] Stirrer speed set to 55
- [49:21] pH 4.38 -> 4.58
- [49:21] Using cautious pH adjust
- [49:21] Dispensed 0.000753 mL of Base (0.5 M KOH)
- [49:26] Stepping pH = 4.45
- [49:26] Dispensed 0.000800 mL of Base (0.5 M KOH)
- [49:31] Stepping pH = 4.54
- [49:32] Dispensed 0.000353 mL of Base (0.5 M KOH)
- [49:37] Stepping pH = 4.56
- [49:37] Dispensed 0.000165 mL of Base (0.5 M KOH)
- [49:42] Stepping pH = 4.57
- [49:57] Stirrer speed set to 0
- [50:07] Datapoint id 49 collected
- [50:07] Charge balance equation is out by -36.8%
- [50:07] Stirrer speed set to 55
- [50:12] pH 4.56 -> 4.76
- [50:12] Using cautious pH adjust
- [50:12] Dispensed 0.000870 mL of Base (0.5 M KOH)
- [50:17] Stepping pH = 4.66
- [50:17] Dispensed 0.000659 mL of Base (0.5 M KOH)

pH-metric high logP **Pion** Assay name: Analyst: Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [50:22] Stepping pH = 4.74
- [50:22] Dispensed 0.000212 mL of Base (0.5 M KOH)
- [50:28] Stepping pH = 4.75
- [50:43] Stirrer speed set to 0
- [50:53] Datapoint id 50 collected
- [50:53] Charge balance equation is out by 0.1%
- [50:53] Stirrer speed set to 55
- [50:58] pH 4.74 -> 4.94
- [50:58] Using charge balance adjust
- [50:58] Dispensed 0.001929 mL of Base (0.5 M KOH)
- [51:18] Stirrer speed set to 0
- [51:29] Datapoint id 51 collected
- [51:29] Charge balance equation is out by 29.5%
- [51:29] Stirrer speed set to 55
- [51:34] pH 5.00 -> 5.20
- [51:34] Using cautious pH adjust
- [51:34] Dispensed 0.001011 mL of Base (0.5 M KOH)
- [51:39] Stepping pH = 5.17
- [51:39] Dispensed 0.000188 mL of Base (0.5 M KOH)
- [51:44] Stepping pH = 5.20
- [51:59] Stirrer speed set to 0
- [52:09] Datapoint id 52 collected
- [52:09] Charge balance equation is out by 41.1%
- [52:09] Stirrer speed set to 55
- [52:14] pH 5.19 -> 5.39
- [52:14] Using cautious pH adjust
- [52:14] Dispensed 0.000941 mL of Base (0.5 M KOH)
- [52:20] Stepping pH = 5.37
- [52:20] Dispensed 0.000071 mL of Base (0.5 M KOH)
- [52:25] Stepping pH = 5.37
- [52:25] Dispensed 0.000165 mL of Base (0.5 M KOH)
- [52:30] Stepping pH = 5.41
- [52:45] Stirrer speed set to 0
- [52:55] Datapoint id 53 collected
- [52:55] Charge balance equation is out by 37.1%
- [52:55] Stirrer speed set to 55
- [53:00] pH 5.40 -> 5.60
- [53:00] Using cautious pH adjust
- [53:00] Dispensed 0.000800 mL of Base (0.5 M KOH)
- [53:05] Stepping pH = 5.62
- [53:20] Stirrer speed set to 0
- [53:31] Datapoint id 54 collected
- [53:31] Charge balance equation is out by 50.0%
- [53:31] Stirrer speed set to 55
- [53:37] pH 5.62 -> 5.82
- [53:37] Using cautious pH adjust
- [53:37] Dispensed 0.000611 mL of Base (0.5 M KOH)
- [53:42] Stepping pH = 5.83
- [53:57] Stirrer speed set to 0
- [54:07] Datapoint id 55 collected
- [54:07] Charge balance equation is out by 50.0%
- [54:07] Stirrer speed set to 55
- [54:13] pH 5.84 -> 6.04
- [54:13] Using cautious pH adjust
- [54:13] Dispensed 0.000447 mL of Base (0.5 M KOH)
- [54:18] Stepping pH = 6.07
- [54:33] Stirrer speed set to 0
- [54:44] Datapoint id 56 collected
- [54:44] Charge balance equation is out by 50.0%

pH-metric high logP Assay name: Analyst: Pion Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [54:44] Stirrer speed set to 55
- [54:49] pH 6.07 -> 6.27
- [54:49] Using cautious pH adjust
- [54:50] Dispensed 0.000306 mL of Base (0.5 M KOH)
- [54:55] Stepping pH = 6.34
- [55:10] Stirrer speed set to 0
- [55:26] Datapoint id 57 collected
- [55:26] Charge balance equation is out by 50.0%
- [55:26] Stirrer speed set to 55
- [55:31] pH 6.34 -> 6.54
- [55:31] Using cautious pH adjust
- [55:31] Dispensed 0.000188 mL of Base (0.5 M KOH)
- [55:36] Stepping pH = 6.51
- [55:36] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [55:41] Stepping pH = 6.54
- [55:56] Stirrer speed set to 0
- [56:11] Datapoint id 58 collected
- [56:11] Charge balance equation is out by 43.1%
- [56:11] Stirrer speed set to 55
- [56:16] pH 6.54 -> 6.74
- [56:16] Using cautious pH adjust
- [56:16] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [56:22] Stepping pH = 6.69
- [56:22] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [56:27] Stepping pH = 6.73
- [56:42] Stirrer speed set to 0 [57:13] Datapoint id 59 collected
- [57:13] Charge balance equation is out by 37.4%
- [57:13] Stirrer speed set to 55
- [57:18] pH 6.75 -> 6.95
- [57:18] Using cautious pH adjust
- [57:18] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [57:23] Stepping pH = 7.12
- [57:38] Stirrer speed set to 0
- [58:37] Datapoint id 60 collected
- [58:37] Charge balance equation is out by 50.0%
- [58:37] Stirrer speed set to 55
- [58:42] pH 7.14 -> 7.34
- [58:42] Using cautious pH adjust
- [58:42] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [58:47] Stepping pH = 7.20
- [58:48] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [58:53] Stepping pH = 7.55
- [59:08] Stirrer speed set to 0
- [1:00:08] Datapoint id 61 collected
- [1:00:08] Charge balance equation is out by -6.7%
- [1:00:08] Stirrer speed set to 55
- [1:00:13] pH 7.60 -> 7.80
- [1:00:13] Using charge balance adjust
- [1:00:13] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:00:33] Stirrer speed set to 0
- [1:01:27] Datapoint id 62 collected
- [1:01:27] Charge balance equation is out by -85.7%
- [1:01:27] Stirrer speed set to 55
- [1:01:32] pH 7.69 -> 7.89
- [1:01:32] Using cautious pH adjust
- [1:01:32] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:01:37] Stepping pH = 7.73
- [1:01:37] Dispensed 0.000024 mL of Base (0.5 M KOH)

Experiment start time: 2/28/2018 1:10:47 AM Sample name: M15_octanol

Assay name: pH-metric high logP Analyst: Pion Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [1:01:42] Stepping pH = 7.88
- [1:01:42] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:01:47] Stepping pH = 8.02
- [1:02:02] Stirrer speed set to 0
- [1:03:01] Datapoint id 63 collected
- [1:03:01] Charge balance equation is out by -137.8%
- [1:03:01] Stirrer speed set to 55
- [1:03:06] pH 8.09 -> 8.29
- [1:03:06] Using cautious pH adjust
- [1:03:06] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:03:11] Stepping pH = 8.15
- [1:03:11] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:03:16] Stepping pH = 8.22
- [1:03:16] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:03:21] Stepping pH = 8.32 [1:03:36] Stirrer speed set to 0
- [1:04:21] Datapoint id 64 collected
- [1:04:21] Charge balance equation is out by -239.8%
- [1:04:21] Stirrer speed set to 55
- [1:04:26] pH 8.40 -> 8.60
- [1:04:26] Using cautious pH adjust
- [1:04:27] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:04:32] Stepping pH = 8.43
- [1:04:32] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:04:37] Stepping pH = 8.48
- [1:04:37] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:04:42] Stepping pH = 8.55
- [1:04:42] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:04:47] Stepping pH = 8.62
- [1:05:02] Stirrer speed set to 0
- [1:05:20] Datapoint id 65 collected
- [1:05:20] Charge balance equation is out by -340.7%
- [1:05:20] Stirrer speed set to 55
- [1:05:25] pH 8.67 -> 8.87
- [1:05:25] Using cautious pH adjust
- [1:05:25] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:05:30] Stepping pH = 8.68
- [1:05:30] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [1:05:36] Stepping pH = 8.75
- [1:05:36] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [1:05:41] Stepping pH = 8.85
- [1:05:41] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:05:46] Stepping pH = 8.89
- [1:06:01] Stirrer speed set to 0
- [1:06:22] Datapoint id 66 collected
- [1:06:22] Charge balance equation is out by -302.4%
- [1:06:22] Stirrer speed set to 55
- [1:06:28] pH 8.90 -> 9.10
- [1:06:28] Using cautious pH adjust
- [1:06:28] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:06:33] Stepping pH = 8.91
- [1:06:33] Dispensed 0.000071 mL of Base (0.5 M KOH)
- [1:06:38] Stepping pH = 9.05
- [1:06:38] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:06:43] Stepping pH = 9.08
- [1:06:43] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:06:48] Stepping pH = 9.11
- [1:07:03] Stirrer speed set to 0
- [1:07:18] Datapoint id 67 collected

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [1:07:18] Charge balance equation is out by -180.0%
- [1:07:18] Stirrer speed set to 55
- [1:07:23] pH 9.12 -> 9.32
- [1:07:23] Using cautious pH adjust
- [1:07:23] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [1:07:28] Stepping pH = 9.16
- [1:07:29] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [1:07:34] Stepping pH = 9.30
- [1:07:34] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:07:39] Stepping pH = 9.31
- [1:07:54] Stirrer speed set to 0
- [1:08:04] Datapoint id 68 collected
- [1:08:04] Charge balance equation is out by -73.1%
- [1:08:04] Stirrer speed set to 55
- [1:08:10] pH 9.32 -> 9.52
- [1:08:10] Using cautious pH adjust
- [1:08:10] Dispensed 0.000071 mL of Base (0.5 M KOH)
- [1:08:15] Stepping pH = 9.36
- [1:08:15] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [1:08:20] Stepping pH = 9.47
- [1:08:20] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [1:08:25] Stepping pH = 9.50
- [1:08:25] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:08:30] Stepping pH = 9.51
- [1:08:45] Stirrer speed set to 0
- [1:09:02] Datapoint id 69 collected
- [1:09:02] Charge balance equation is out by -116.1%
- [1:09:02] Stirrer speed set to 55
- [1:09:07] pH 9.52 -> 9.72
- [1:09:07] Using cautious pH adjust
- [1:09:07] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [1:09:13] Stepping pH = 9.53
- [1:09:13] Dispensed 0.000259 mL of Base (0.5 M KOH)
- [1:09:18] Stepping pH = 9.76
- [1:09:33] Stirrer speed set to 0
- [1:09:49] Datapoint id 70 collected
- [1:09:49] Charge balance equation is out by -89.8%
- [1:09:49] Stirrer speed set to 55
- [1:09:55] pH 9.76 -> 9.96
- [1:09:55] Using cautious pH adjust
- [1:09:55] Dispensed 0.000141 mL of Base (0.5 M KOH)
- [1:10:00] Stepping pH = 9.82
- [1:10:00] Dispensed 0.000212 mL of Base (0.5 M KOH)
- [1:10:05] Stepping pH = 9.94
- [1:10:05] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [1:10:10] Stepping pH = 9.95
- [1:10:10] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:10:15] Stepping pH = 9.96
- [1:10:30] Stirrer speed set to 0
- [1:10:40] Datapoint id 71 collected
- [1:10:40] Charge balance equation is out by -51.5%
- [1:10:40] Stirrer speed set to 55
- [1:10:45] pH 9.96 -> 10.05
- [1:10:45] Using cautious pH adjust
- [1:10:46] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [1:10:51] Stepping pH = 9.99
- [1:10:51] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [1:10:56] Stepping pH = 10.02
- [1:11:11] Stirrer speed set to 0

Experiment start time: 2/28/2018 1:10:47 AM Sample name: M15_octanol

Assay name: pH-metric high logP Analyst: Pion Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [1:11:21] Datapoint id 72 collected
- [1:11:21] Charge balance equation is out by -8.6%
- [1:11:21] Titration 3 of 3
- [1:11:21] Adding initial titrants
- [1:11:21] Automatically add 0.30000 mL of Octanol
- [1:11:28] Dispensed 0.300000 mL of Octanol
- [1:11:28] Stirrer speed set to 10
- [1:11:29] Stirrer speed set to 60
- [1:11:29] Iterative adjust 10.02 -> 2.00
- [1:11:29] pH 10.02 -> 2.00
- [1:11:32] Dispensed 0.100000 mL of Acid (0.5 M HCl)
- [1:11:37] pH 2.02 -> 2.00
- [1:11:37] Dispensed 0.003881 mL of Acid (0.5 M HCl)
- [1:12:27] Stirrer speed set to 0
- [1:12:37] Datapoint id 73 collected
- [1:12:37] Stirrer speed set to 60
- [1:12:42] pH 1.98 -> 2.18
- [1:12:42] Using cautious pH adjust
- [1:12:43] Dispensed 0.015122 mL of Base (0.5 M KOH)
- [1:12:48] Stepping pH = 2.07
- [1:12:48] Dispensed 0.010160 mL of Base (0.5 M KOH)
- [1:12:53] Stepping pH = 2.15
- [1:12:54] Dispensed 0.002775 mL of Base (0.5 M KOH)
- [1:12:59] Stepping pH = 2.18
- [1:13:14] Stirrer speed set to 0
- [1:13:24] Datapoint id 74 collected
- [1:13:24] Charge balance equation is out by 7.3%
- [1:13:24] Stirrer speed set to 60
- [1:13:29] pH 2.19 -> 2.39
- [1:13:29] Using charge balance adjust
- [1:13:30] Dispensed 0.019450 mL of Base (0.5 M KOH)
- [1:13:50] Stirrer speed set to 0
- [1:14:00] Datapoint id 75 collected
- [1:14:00] Charge balance equation is out by 6.0%
- [1:14:00] Stirrer speed set to 60
- [1:14:05] pH 2.40 -> 2.60
- [1:14:05] Using charge balance adjust
- [1:14:06] Dispensed 0.012700 mL of Base (0.5 M KOH)
- [1:14:26] Stirrer speed set to 0
- [1:14:36] Datapoint id 76 collected
- [1:14:36] Charge balance equation is out by 11.5%
- [1:14:36] Stirrer speed set to 60
- [1:14:41] pH 2.63 -> 2.83
- [1:14:41] Using charge balance adjust
- [1:14:41] Dispensed 0.008443 mL of Base (0.5 M KOH)
- [1:15:01] Stirrer speed set to 0
- [1:15:11] Datapoint id 77 collected
- [1:15:11] Charge balance equation is out by -0.8%
- [1:15:11] Stirrer speed set to 60
- [1:15:17] pH 2.83 -> 3.03
- [1:15:17] Using charge balance adjust
- [1:15:17] Dispensed 0.005974 mL of Base (0.5 M KOH)
- [1:15:37] Stirrer speed set to 0
- [1:15:47] Datapoint id 78 collected
- [1:15:47] Charge balance equation is out by -2.6%
- [1:15:47] Stirrer speed set to 60
- [1:15:52] pH 3.03 -> 3.23
- [1:15:52] Using charge balance adjust
- [1:15:52] Dispensed 0.004280 mL of Base (0.5 M KOH)

Assay name: pH-metric high logP Analyst: Pion Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [1:16:12] Stirrer speed set to 0
- [1:16:22] Datapoint id 79 collected
- [1:16:22] Charge balance equation is out by 6.7%
- [1:16:22] Stirrer speed set to 60
- [1:16:28] pH 3.25 -> 3.45
- [1:16:28] Using charge balance adjust
- [1:16:28] Dispensed 0.003010 mL of Base (0.5 M KOH)
- [1:16:48] Stirrer speed set to 0
- [1:16:59] Datapoint id 80 collected
- [1:16:59] Charge balance equation is out by -9.4%
- [1:16:59] Stirrer speed set to 60
- [1:17:04] pH 3.43 -> 3.63
- [1:17:04] Using charge balance adjust
- [1:17:04] Dispensed 0.002305 mL of Base (0.5 M KOH)
- [1:17:24] Stirrer speed set to 0
- [1:17:39] Datapoint id 81 collected
- [1:17:39] Charge balance equation is out by -27.6%
- [1:17:39] Stirrer speed set to 60
- [1:17:44] pH 3.57 -> 3.77
- [1:17:44] Using cautious pH adjust
- [1:17:44] Dispensed 0.000988 mL of Base (0.5 M KOH)
- [1:17:49] Stepping pH = 3.65
- [1:17:49] Dispensed 0.000917 mL of Base (0.5 M KOH)
- [1:17:55] Stepping pH = 3.73
- [1:17:55] Dispensed 0.000423 mL of Base (0.5 M KOH)
- [1:18:00] Stepping pH = 3.76
- [1:18:00] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [1:18:05] Stepping pH = 3.77
- [1:18:20] Stirrer speed set to 0
- [1:18:30] Datapoint id 82 collected
- [1:18:30] Charge balance equation is out by -24.4%
- [1:18:30] Stirrer speed set to 60
- [1:18:35] pH 3.76 -> 3.96
- [1:18:35] Using cautious pH adjust
- [1:18:35] Dispensed 0.000870 mL of Base (0.5 M KOH)
- [1:18:40] Stepping pH = 3.85
- [1:18:40] Dispensed 0.000706 mL of Base (0.5 M KOH)
- [1:18:46] Stepping pH = 3.91
- [1:18:46] Dispensed 0.000400 mL of Base (0.5 M KOH)
- [1:18:51] Stepping pH = 3.94
- [1:18:51] Dispensed 0.000188 mL of Base (0.5 M KOH)
- [1:18:56] Stepping pH = 3.95
- [1:19:11] Stirrer speed set to 0
- [1:19:21] Datapoint id 83 collected
- [1:19:21] Charge balance equation is out by -24.7%
- [1:19:21] Stirrer speed set to 60
- [1:19:26] pH 3.94 -> 4.14
- [1:19:26] Using cautious pH adjust
- [1:19:26] Dispensed 0.000847 mL of Base (0.5 M KOH)
- [1:19:31] Stepping pH = 4.01
- [1:19:31] Dispensed 0.000917 mL of Base (0.5 M KOH)
- [1:19:37] Stepping pH = 4.09
- [1:19:37] Dispensed 0.000447 mL of Base (0.5 M KOH)
- [1:19:42] Stepping pH = 4.12
- [1:19:42] Dispensed 0.000165 mL of Base (0.5 M KOH)
- [1:19:47] Stepping pH = 4.13
- [1:20:02] Stirrer speed set to 0
- [1:20:12] Datapoint id 84 collected
- [1:20:12] Charge balance equation is out by -41.6%
- Reported at: 2/28/2018 12:41:17 PM

pH-metric high logP Assay name: Analyst: Pion Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [1:20:12] Stirrer speed set to 60
- [1:20:17] pH 4.11 -> 4.31
- [1:20:17] Using cautious pH adjust
- [1:20:17] Dispensed 0.000894 mL of Base (0.5 M KOH)
- [1:20:22] Stepping pH = 4.19
- [1:20:22] Dispensed 0.000823 mL of Base (0.5 M KOH)
- [1:20:28] Stepping pH = 4.27
- [1:20:28] Dispensed 0.000329 mL of Base (0.5 M KOH)
- [1:20:33] Stepping pH = 4.30
- [1:20:33] Dispensed 0.000141 mL of Base (0.5 M KOH)
- [1:20:38] Stepping pH = 4.30
- [1:20:53] Stirrer speed set to 0
- [1:21:03] Datapoint id 85 collected
- [1:21:03] Charge balance equation is out by -23.0%
- [1:21:03] Stirrer speed set to 60
- [1:21:08] pH 4.29 -> 4.49
- [1:21:08] Using cautious pH adjust
- [1:21:08] Dispensed 0.000964 mL of Base (0.5 M KOH)
- [1:21:13] Stepping pH = 4.39
- [1:21:14] Dispensed 0.000706 mL of Base (0.5 M KOH)
- [1:21:19] Stepping pH = 4.47
- [1:21:19] Dispensed 0.000188 mL of Base (0.5 M KOH)
- [1:21:24] Stepping pH = 4.49
- [1:21:39] Stirrer speed set to 0
- [1:21:49] Datapoint id 86 collected
- [1:21:49] Charge balance equation is out by 3.5%
- [1:21:49] Stirrer speed set to 60
- [1:21:55] pH 4.47 -> 4.67
- [1:21:55] Using charge balance adjust
- [1:21:55] Dispensed 0.002046 mL of Base (0.5 M KOH)
- [1:22:15] Stirrer speed set to 0
- [1:22:25] Datapoint id 87 collected
- [1:22:25] Charge balance equation is out by 40.8%
- [1:22:25] Stirrer speed set to 60
- [1:22:31] pH 4.75 -> 4.95
- [1:22:31] Using cautious pH adjust
- [1:22:31] Dispensed 0.001035 mL of Base (0.5 M KOH)
- [1:22:36] Stepping pH = 4.93
- [1:22:36] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [1:22:41] Stepping pH = 4.94
- [1:22:56] Stirrer speed set to 0
- [1:23:07] Datapoint id 88 collected
- [1:23:07] Charge balance equation is out by 45.1%
- [1:23:07] Stirrer speed set to 60
- [1:23:12] pH 4.93 -> 5.13
- [1:23:12] Using cautious pH adjust
- [1:23:12] Dispensed 0.000941 mL of Base (0.5 M KOH)
- [1:23:17] Stepping pH = 5.13
- [1:23:32] Stirrer speed set to 0
- [1:23:42] Datapoint id 89 collected
- [1:23:42] Charge balance equation is out by 50.0%
- [1:23:42] Stirrer speed set to 60
- [1:23:47] pH 5.11 -> 5.31
- [1:23:47] Using cautious pH adjust
- [1:23:47] Dispensed 0.000800 mL of Base (0.5 M KOH)
- [1:23:52] Stepping pH = 5.34
- [1:24:07] Stirrer speed set to 0
- [1:24:24] Datapoint id 90 collected
- [1:24:24] Charge balance equation is out by 50.0%

Assay name: pH-metric high logP Analyst: Pion Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [1:24:24] Stirrer speed set to 60
- [1:24:30] pH 5.32 -> 5.52
- [1:24:30] Using cautious pH adjust
- [1:24:30] Dispensed 0.000611 mL of Base (0.5 M KOH)
- [1:24:35] Stepping pH = 5.57
- [1:24:50] Stirrer speed set to 0
- [1:25:01] Datapoint id 91 collected
- [1:25:01] Charge balance equation is out by 50.0%
- [1:25:01] Stirrer speed set to 60
- [1:25:06] pH 5.56 -> 5.76
- [1:25:06] Using cautious pH adjust
- [1:25:06] Dispensed 0.000423 mL of Base (0.5 M KOH)
- [1:25:11] Stepping pH = 5.85
- [1:25:26] Stirrer speed set to 0
- [1:25:39] Datapoint id 92 collected [1:25:39] Charge balance equation is out by 50.0%
- [1:25:39] Stirrer speed set to 60
- [1:25:44] pH 5.85 -> 6.05
- [1:25:44] Using cautious pH adjust
- [1:25:44] Dispensed 0.000259 mL of Base (0.5 M KOH)
- [1:25:49] Stepping pH = 6.16
- [1:26:04] Stirrer speed set to 0
- [1:26:35] Datapoint id 93 collected
- [1:26:35] Charge balance equation is out by 50.0%
- [1:26:35] Stirrer speed set to 60
- [1:26:40] pH 6.11 -> 6.31
- [1:26:40] Using cautious pH adjust
- [1:26:40] Dispensed 0.000165 mL of Base (0.5 M KOH)
- [1:26:46] Stepping pH = 6.42
- [1:27:01] Stirrer speed set to 0
- [1:27:43] Datapoint id 94 collected
- [1:27:43] Charge balance equation is out by 50.0%
- [1:27:43] Stirrer speed set to 60
- [1:27:48] pH 6.39 -> 6.59
- [1:27:48] Using cautious pH adjust
- [1:27:48] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [1:27:53] Stepping pH = 6.50
- [1:27:53] Dispensed 0.000071 mL of Base (0.5 M KOH)
- [1:27:58] Stepping pH = 6.74
- [1:28:13] Stirrer speed set to 0
- [1:29:09] Datapoint id 95 collected
- [1:29:09] Charge balance equation is out by 21.9%
- [1:29:09] Stirrer speed set to 60
- [1:29:14] pH 6.69 -> 6.89
- [1:29:14] Using cautious pH adjust
- [1:29:14] Dispensed 0.000071 mL of Base (0.5 M KOH)
- [1:29:20] Stepping pH = 6.88
- [1:29:20] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:29:25] Stepping pH = 6.99
- [1:29:40] Stirrer speed set to 0
- [1:30:40] Datapoint id 96 collected
- [1:30:40] Charge balance equation is out by 34.4%
- [1:30:40] Stirrer speed set to 60
- [1:30:45] pH 7.00 -> 7.20
- [1:30:45] Using cautious pH adjust
- [1:30:45] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [1:30:50] Stepping pH = 7.14
- [1:30:50] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:30:55] Stepping pH = 7.32

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [1:31:11] Stirrer speed set to 0
- [1:32:11] Datapoint id 97 collected
- [1:32:11] Charge balance equation is out by 22.4%
- [1:32:11] Stirrer speed set to 60
- [1:32:16] pH 7.20 -> 7.40
- [1:32:16] Using cautious pH adjust
- [1:32:16] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:32:21] Stepping pH = 7.16
- [1:32:21] Dispensed 0.000141 mL of Base (0.5 M KOH)
- [1:32:26] Stepping pH = 8.36
- [1:32:41] Stirrer speed set to 0
- [1:33:41] Datapoint id 98 collected
- [1:33:41] Charge balance equation is out by -248.0%
- [1:33:41] Stirrer speed set to 60
- [1:33:46] pH 8.32 -> 8.52
- [1:33:46] Using cautious pH adjust
- [1:33:46] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:33:51] Stepping pH = 8.32
- [1:33:51] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:33:56] Stepping pH = 8.34
- [1:33:57] Dispensed 0.000094 mL of Base (0.5 M KOH)
- 1.00.07] Disperised 0.00003
- [1:34:02] Stepping pH = 8.63
- [1:34:17] Stirrer speed set to 0
- [1:34:34] Datapoint id 99 collected
- [1:34:34] Charge balance equation is out by -554.6%
- [1:34:34] Stirrer speed set to 60
- [1:34:39] pH 8.67 -> 8.87
- [1:34:39] Using cautious pH adjust
- [1:34:39] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:34:45] Stepping pH = 8.67
- [1:34:45] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [1:34:50] Stepping pH = 8.72
- [1:34:50] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [1:34:55] Stepping pH = 8.88
- [1:35:10] Stirrer speed set to 0
- [1:35:31] Datapoint id 100 collected
- [1:35:31] Charge balance equation is out by -321.4%
- [1:35:31] Stirrer speed set to 60
- [1:35:37] pH 8.92 -> 9.12
- [1:35:37] Using cautious pH adjust
- [1:35:37] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:35:42] Stepping pH = 8.92
- [1:35:42] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [1:35:47] Stepping pH = 9.04
- [1:35:47] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [1:35:52] Stepping pH = 9.08
- [1:35:52] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [1:35:57] Stepping pH = 9.13
- [1:36:12] Stirrer speed set to 0
- [1:36:24] Datapoint id 101 collected
- [1:36:24] Charge balance equation is out by -240.5%
- [1:36:24] Stirrer speed set to 60
- [1:36:29] pH 9.12 -> 9.32
- [1:36:29] Using cautious pH adjust
- [1:36:29] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [1:36:34] Stepping pH = 9.14
- [1:36:34] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [1:36:39] Stepping pH = 9.30
- [1:36:39] Dispensed 0.000024 mL of Base (0.5 M KOH)

Assay name: pH-metric high logP Analyst: Pion
Assay ID: 18B-28002 Instrument ID: T312060

Filename: C:\Sirius_T3\Mehtap\20180227_exp27_logP_T3-2\18B-28002_M15_octanol_pH-metric high logP.t3r

- [1:36:44] Stepping pH = 9.31
- [1:37:00] Stirrer speed set to 0
- [1:37:12] Datapoint id 102 collected
- [1:37:12] Charge balance equation is out by -99.8%
- [1:37:12] Stirrer speed set to 60
- [1:37:17] pH 9.31 -> 9.51
- [1:37:17] Using cautious pH adjust
- [1:37:17] Dispensed 0.000071 mL of Base (0.5 M KOH)
- [1:37:22] Stepping pH = 9.35
- [1:37:22] Dispensed 0.000141 mL of Base (0.5 M KOH)
- [1:37:27] Stepping pH = 9.48
- [1:37:27] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [1:37:32] Stepping pH = 9.50
- [1:37:32] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:37:37] Stepping pH = 9.52
- [1:37:52] Stirrer speed set to 0
- [1:38:03] Datapoint id 103 collected
- [1:38:03] Charge balance equation is out by -92.7%
- [1:38:03] Stirrer speed set to 60
- [1:38:09] pH 9.52 -> 9.72
- 1:38:09 Using cautious pH adjust
- [1:38:09] Dispensed 0.000094 mL of Base (0.5 M KOH)
- [1:38:14] Stepping pH = 9.59
- [1:38:14] Dispensed 0.000141 mL of Base (0.5 M KOH)
- [1:38:19] Stepping pH = 9.68
- [1:38:19] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [1:38:24] Stepping pH = 9.70
- [1:38:24] Dispensed 0.000047 mL of Base (0.5 M KOH)
- [1:38:29] Stepping pH = 9.72
- [1:38:44] Stirrer speed set to 0
- [1:38:54] Datapoint id 104 collected
- [1:38:54] Charge balance equation is out by -63.5%
- [1:38:54] Stirrer speed set to 60
- [1:38:59] pH 9.73 -> 9.93
- [1:38:59] Using cautious pH adjust
- [1:38:59] Dispensed 0.000141 mL of Base (0.5 M KOH)
- [1:39:05] Stepping pH = 9.81
- [1:39:05] Dispensed 0.000165 mL of Base (0.5 M KOH)
- [1:39:10] Stepping pH = 9.90
- [1:39:10] Dispensed 0.000071 mL of Base (0.5 M KOH)
- [1:39:15] Stepping pH = 9.92
- [1:39:15] Dispensed 0.000024 mL of Base (0.5 M KOH)
- [1:39:20] Stepping pH = 9.93
- [1:39:35] Stirrer speed set to 0
- [1:39:46] Datapoint id 105 collected
- [1:39:46] Charge balance equation is out by -32.3%
- [1:39:46] Stirrer speed set to 60
- [1:39:51] pH 9.93 -> 10.05
- [1:39:51] Using cautious pH adjust
- [1:39:51] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [1:39:56] Stepping pH = 9.98
- [1:39:56] Dispensed 0.000118 mL of Base (0.5 M KOH)
- [1:40:01] Stepping pH = 10.03
- [1:40:16] Stirrer speed set to 0
- [1:40:27] Datapoint id 106 collected
- [1:40:27] Charge balance equation is out by 0.6%
- [1:40:27] Argon flow rate set to 0
- [1:40:31] Titrator arm moved over Titration position