

Forecasting the age structure of the scientific workforce in Australia

Rob J Hyndman & Kelly Nguyen

2 December 2025

Labour force model

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + G_{i,x,t} + E_{i,x,t}$$

$$i = Discipline$$
 $x = Age$ $t = Year$

 $P_{i,x,t}$ = number of equivalent full-time workers

 $D_{i,x,t}$ = number of deaths \sim Binomial($P_{i,x,t}, q_{x,t}$)

 $R_{i,x,t}$ = number of retirements \sim Binomial($P_{i,x,t} - D_{i,x,t}, r_x$)

 $G_{i,x,t} = g_x G_{i,t}$ = number of graduates who work in discipline i

 $E_{i,x,t}$ = other changes (career changes, migration, etc.)

Labour force model

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + G_{i,x,t} + E_{i,x,t}$$

$$i = Discipline$$
 $x = Age$ $t = Year$

$$P_{i,x,t}$$
 = number of equivalent full-time workers $D_{i,x,t}$ = number of deaths \sim Binomial($P_{i,x,t}, q_{x,t}$) $R_{i,x,t}$ = number of retirements \sim Binomial($P_{i,x,t} - D_{i,x,t}, r_x$) $G_{i,x,t} = g_x G_{i,t}$ = number of graduates who work in discipline i $E_{i,x,t}$ = other changes (career changes, migration, etc.)

Simulate future sample paths of $P_{i,x,t}$ by simulating future $q_{x,t}$, $D_{i,x,t}$, $R_{i,x,t}$, $G_{i,t}$ and $E_{i,x,t}$

Working population: $P_{i,x,t}$

Working population: $P_{i,x,t}$

Retirement rates: r_{x}

Retirement rates: r_{x}

Retirement rates: r_x

Graduate completions: g_X $P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_X G_{i,t} + E_{i,x,t}$

Graduate completions: g_x

Graduate completions: $G_{i,t}$ $P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} + Q_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$

Graduate completions: $G_{i,t}$ $P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$

Graduate completions: $G_{i,t}$ $P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$

Remainder: $E_{x,t}$

Remainder:
$$E_{x,t}$$
 $P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$

$$E_{i,x,t} = P_{i,x+1,t+1} - P_{i,x,t} + D_{i,x,t} + R_{i,x,t} - g_x G_{i,t}$$

Remainder: $E_{x,t}$

Labour force model

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + G_{i,x,t} + E_{i,x,t}$$

$$i = Discipline$$
 $x = Age$ $t = Year$

 $P_{i,x,t}$ = number of equivalent full-time workers

$$D_{i,x,t}$$
 = number of deaths \sim Binomial($P_{i,x,t}, q_{x,t}$)
 $R_{i,x,t}$ = number of retirements \sim Binomial($P_{i,x,t} - D_{i,x,t}, r_x$)
 $G_{i,x,t} = g_x G_{i,t}$ = number of graduates who work in discipline i

Simulate future sample paths of $P_{i,x,t}$ by simulating future $q_{x,t}$, $D_{i,x,t}$, $R_{i,x,t}$, $G_{i,t}$ and $E_{i,x,t}$

 $E_{i,x,t}$ = other changes (career changes, migration, etc.)

Population: $P_{i,x,t}$

$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$

Working population by discipline

Population: $P_{i,x,t}$

$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$

Working population by discipline

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$$

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$$

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$$

$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$$

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$$

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$$

$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$$

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$$

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$$

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$$

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$$

$$P_{i,x+1,t+1} = P_{i,x,t} - D_{i,x,t} - R_{i,x,t} + g_x G_{i,t} + E_{i,x,t}$$

More information

robjhyndman.com/asc2025