Ingenieursgrundlagen

$\pi \approx 3$	3.141 59	e	≈ 2.718	8 28	$\sqrt{2}$ \approx	≈ 1.414		$\overline{3} \approx 1.7$	732
10 [±]	21	18	15	12	9	6	3	2	1
+	Z	$\mathop{\rm E}_{exa}$	P peta	$\operatorname*{T}_{tera}$	G giga	$\mathop{\mathrm{M}}_{mega}$	k kilo	h hecto	da deca
-	Z zepto	$_{\rm atto}^{\rm a}$	f femto	p pico	n nano	μ micro	m milli	C centi	d deci

Dezibel: $L_{dB} = 1$								
$dB = 10 \lg \frac{x}{x_0}$	-20	-10	0	1	3	6	10	20
Leistung P	100	$\frac{1}{10}$	1	1.26	2	4	10	100
Leistung P Amplitude A	10	0.316	1	1.22	1.4	2	3.16	10
Binome, Trinome								
$(a \pm b)^2 = a^2 \pm 2ab + b^2$ $a^2 - b^2 = (a - b)(a + b)$								
$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$								
$(a+b+c)^2 =$	$a^2 + b^2$	$c^2 + c^2 + c^2$	2ab	+ 2ac	+2bc	:		

Folgen und Reihen

$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$	$\sum_{k=0}^{n} q^k = \frac{1 - q^{n+1}}{1 - q}$	$\sum_{n=0}^{\infty} \frac{z^n}{n!} = e^z$
Aritmetrische Summenformel	Geometrische Summenformel	Exponentialreihe
Taylorpolynom: $T(x) =$	$\sum_{i=0}^{m} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$	

Mittelwerte $(\sum \text{ von } i \text{ bis } N)$

Ungleichungen: Bernoulli-Ungleichung: $(1+x)^n \ge 1 + nx$ $\left|\underline{x}^{\top} \cdot \underline{y}\right| \leq \|\underline{x}\| \cdot \|\underline{y}\|$ $||x| - |y|| \le |x \pm y| \le |x| + |y|$ Dreiecksungleichung

 $\overline{A \uplus B} = \overline{A} \cap \overline{B}$

Mengen: De Morgan: $\overline{A \cap B} = \overline{A} \uplus \overline{B}$

1. Abbildungen $f: \mathbb{D}^n \to \mathbb{W}^m, \ \underline{x} \mapsto f(\underline{x})$

Bild $f(D) := \{ f(x) | x \in D \}$ $\operatorname{Kern} \ker f := \{ \boldsymbol{x} \mid \boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{0} \}$ Fixpunkt a := f(a)**Komposition** $f \circ g := f(g(x))$ Injektiv $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$ beides: Bijektiv Surjektiv $\forall y \in \mathbb{W} \exists x \in \mathbb{D} : f(x) = y$ $f'(x_0) \stackrel{!}{=} 0 \quad \begin{cases} f''(x_0) < 0 \ \to \ \text{Maximum (lokal)} \\ f''(x_0) > 0 \ \to \ \text{Minimum (lokal)} \end{cases}$ $f''(x_0) = 0$ und $f'''(x_0) \neq 0 \rightarrow x_0$ Wendepunkt $f'(x) \stackrel{\geq}{(>)}/\stackrel{\leq}{(<)} 0 \rightarrow f$ (streng) Monoton steigend/fallend. $x \in [a,b]$

1.1. Asymptoten und Grenzwerte von f Horizontal: $c_{\pm} = \lim_{\substack{x \to \pm \infty}} f(x)$ Vertikal: \exists Nullst. a des Nenners

1.2. Polynome $P(x) \in \mathbb{R}[x]_n = \sum_{i=1}^n a_i x^i$ vom Grad n

1.3. Partialbruchzerlegung $\frac{Z(x)}{N(x)} \stackrel{!}{=} P(x) + \sum_{i=1}^n \frac{A_i}{(x-x_i)^{r_i}}$

- 1. Ansatz: $N^*(x) = \sum\limits_{i=1}^n \sum\limits_{k=1}^{r_i} \frac{A_{ik}}{(x-x_i)^k}$
- 2. Koeffizientenvergleich: löse $Z(x) = N^*(x) \cdot N(x)$ nach A_{ik}

1.4. Exp. und Log. $e^x := \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$ $a^x = e^{x \ln a} \qquad \log_a x = \frac{\ln x}{\ln a}$ $\ln(x^a) = a \ln(x) \qquad \ln(\frac{x}{a}) = \ln x - \ln a$ $\ln x \le x - 1$ $\log(1) = 0$

1.5. Kurven ${\pmb{\gamma}}:[a,b]\to\mathbb{R}^n, t\mapsto {\pmb{\gamma}}(t)$ $L(\underline{\gamma}) = \int_{-}^{b} ||\underline{\dot{\gamma}}(t)|| dt$ $s:[a,b] \xrightarrow{\cdot} [0,L({m \gamma})], t \mapsto s(t)$ (nach Bogenlänge parametr.) \mathcal{C}^n -Kurve: n-mal stetig diffbar, \mathcal{C}^0 -Kurve: geschlossene Kurve regulär, falls $\forall t \in [a,b] : \dot{\gamma}(t) \neq \mathbf{0}$ (Keine Knicke), sonst singulär

Richtungsableitung: $\partial_v f(\boldsymbol{x}) = \nabla f(\boldsymbol{x})^\top \cdot \boldsymbol{v}$ mit $\|\boldsymbol{v}\| = 1$

2. Trigonometrie $e^{\alpha + i\beta} = e^{\alpha} (\cos(\beta) + i\sin(\beta))$

2.1. Sinus. Cosinus $\sin^2 x + \cos^2 x = 1$ $\sin(-x) = -\sin(x)$ $\cos(-x) = \cos(x)$

1.6. Skalarfelder $\varphi : \mathbb{D} \subseteq \mathbb{R}^n \to \mathbb{R}$

x φ	0°	π/6 30°	π/4 45°	π/3 60°	$\begin{array}{ c c }\hline \frac{1}{2}\pi \\ 90^{\circ}\end{array}$	π 180°	$1\frac{1}{2}\pi$ 270°	2π 360°
sin	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	-1 0 $\mp \infty$	1
$_{ m tan}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	±∞	0	∓∞	0

Additionstheoreme	Stammfunktionen
$\cos(x - \frac{\pi}{2}) = \sin x$	$\int x \cos(x) \mathrm{d}x = \cos(x) + x \sin(x)$
$\sin(x + \frac{\pi}{2}) = \cos x$	$\int x \sin(x) \mathrm{d}x = \sin(x) - x \cos(x)$
$\sin 2x = 2\sin x \cos x$	$\int \sin^2(x) \mathrm{d}x = \frac{1}{2} \left(x - \sin(x) \cos(x) \right)$
$\cos 2x = 2\cos^2 x - 1$	$\int \cos^2(x) \mathrm{d}x = \frac{1}{2} \left(x + \sin(x) \cos(x) \right)$
$\sin(x) = \tan(x)\cos(x)$	$\int \cos(x)\sin(x) = -\frac{1}{2}\cos^2(x)$
$\sin(x \pm y) = \sin x \cos y \pm $	
$\cos(x \pm y) = \cos x \cos y \mp$	$\sin x \sin y$ $\cos x = \frac{1}{2} (e^{\mathbf{i}x} + e^{-\mathbf{i}x})$

2.2. Sinus/Cosinus Hyperbolicus sinh, cosh

$$\begin{split} & \sinh x = \frac{1}{2}(e^x - e^{-x}) = -\mathrm{i}\,\sin(\mathrm{i}x) & \cosh x + \sinh x = e^x \\ & \cosh x = \frac{1}{2}(e^x + e^{-x}) = \cos(\mathrm{i}x) & \cosh^2 x - \sinh^2 x = 1 \\ & \mathrm{Kardinalsinus}\,\mathrm{si}(x) = \frac{\sin(x)}{x} & \mathrm{genormt:}\,\sin(x) = \frac{\sin(\pi x)}{\pi x} \end{split}$$

3. Lineare Algebra

3.1. Vektorräume $(V, +, \cdot)$ über Körper $(\mathbb{K}, +, \cdot), v \in \mathbb{K}^n$ Linear Unabhängig: Vektoren heißen linear unabhängig, wenn aus: $\alpha_1 \underline{v}_1 + \alpha_2 \underline{v}_2 + \ldots + \alpha_n \underline{v}_n = \underline{0}$ folgt, dass alle $\alpha_i = 0$ Basis $\underline{B} = \{\underline{b}_1, \underline{b}_2, ...\}$: n Vektoren, linear unabhängig, erzeugen V

Betrag (Norm): $\|\underline{a}\|=\sqrt{\langle\underline{a},\underline{a}\rangle}=\sqrt{a_1^2+a_2^2+\ldots+a_n^2}$

 $\text{Skalarprodukt: } \langle \underline{\boldsymbol{v}},\underline{\boldsymbol{w}}\rangle = \underline{\boldsymbol{v}}^{\top} \cdot \underline{\boldsymbol{w}} = \overset{\cdot}{\sum} v_i w_i = \|\underline{\boldsymbol{a}}\| \ \|\underline{\boldsymbol{b}}\| \cos(\measuredangle\underline{\boldsymbol{a}},\underline{\boldsymbol{b}})$ $\langle \underline{v}, \underline{w} \rangle_{\underline{A}} = \underline{v}^{\top} \underbrace{A}\underline{w}$ (quadr., symm., pos. definite Matrix \underbrace{A})

Kreuzprodukt(falls
$$\mathbb{K}^n = \mathbb{R}^3$$
): $\underline{v} \times \underline{w} = \begin{pmatrix} v_2 w_3 - v_3 w_2 \\ v_3 w_1 - v_1 w_3 \\ v_1 w_2 - v_2 w_1 \end{pmatrix}$

 $\underline{a} \times \underline{b} \perp \underline{a}, \underline{b}$ $\underline{a} \times \underline{b} = 0 \Leftrightarrow \underline{a}; \underline{b}$ linear abhängig. $||\underline{a} \times \underline{b}|| = ||\underline{a}|| \cdot ||\underline{b}|| \cdot \sin(\angle(\underline{a}; \underline{b})) \stackrel{\frown}{=} \text{Fläche des Parallelogramms}$ Graßmann-Identität: $\underline{a} \times (\underline{b} \times \underline{c}) \equiv \underline{b} \cdot (\underline{a} \cdot \underline{c}) - \underline{c} \cdot (\underline{a} \cdot \underline{b})$ $\textbf{Spatprodukt:} \ [\underline{a},\underline{b},\underline{c}] := \langle \underline{a} \times \underline{b},\underline{c} \rangle = \det(\underline{a},\underline{b},\underline{c}) \ \widehat{=} \ \mathsf{Spatvolumen}$ $[\underline{\pmb{a}},\underline{\pmb{b}},\underline{\pmb{c}}]>0 \Rightarrow \mathsf{Rechtssystem} \quad [\underline{\pmb{a}},\underline{\pmb{b}},\underline{\pmb{c}}]=0 \Rightarrow \mathsf{Vekt.} \ \mathsf{lin.} \ \mathsf{abhängig}$

3.2. Matrizen $A \in \mathbb{K}^{m \times n}$

 $\mathbf{A} = (a_{ij}) \in \mathbb{K}^{m \times n}$ hat m Zeilen (Index i) und n Spalten (Index j) $(\mathbf{A} + \mathbf{B})^{\top} = \mathbf{A}^{\top} + \mathbf{B}^{\top} \qquad (\mathbf{A} \cdot \mathbf{B})^{\top} = \mathbf{B}^{\top} \cdot \mathbf{A}^{\top}$ $(\mathbf{A}^{\top})^{-1} = (\mathbf{A}^{-1})^{\top} \qquad (\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$ $\dim K = n = \operatorname{rang} A + \dim \ker A$ $\operatorname{rang} A = \operatorname{rang} A^{\top}$

3.2.1 Quadratische Matrizen $A \in \mathbb{K}^{n \times n}$ regulär/invertierbar/nicht-singulär $\Leftrightarrow \det(\underline{A}) \neq 0 \Leftrightarrow \operatorname{rang} \underline{A} = n$ singulär/nicht-invertierbar $\Leftrightarrow \det(\mathbf{A}) = 0 \Leftrightarrow \operatorname{rang} \mathbf{A} \neq n$ orthogonal $\Leftrightarrow \mathbf{A}^{\top} = \mathbf{A}^{-1} \Rightarrow \det(\mathbf{A}) = \pm 1$

symmetrisch: $oldsymbol{A} = oldsymbol{A}^ op$ schiefsymmetrisch: $oldsymbol{A} = -oldsymbol{A}^ op$

3.2.2 Determinante von $A \in \mathbb{K}^{n \times n}$: $\det(A) = |A|$

$$\det \begin{bmatrix} \boldsymbol{A} & \boldsymbol{0} \\ \boldsymbol{C} & \boldsymbol{\mathcal{D}} \end{bmatrix} = \det \begin{bmatrix} \boldsymbol{A} & \boldsymbol{B} \\ \boldsymbol{0} & \boldsymbol{\mathcal{D}} \end{bmatrix} = \det(\boldsymbol{\mathcal{A}}) \det(\boldsymbol{\mathcal{D}})$$

$$\det(\boldsymbol{\mathcal{A}}) = \det(\boldsymbol{\mathcal{A}}^T) \qquad \det(\boldsymbol{\mathcal{A}}^{-1}) = \det(\boldsymbol{\mathcal{A}})^{-1}$$

$$\det(\boldsymbol{\mathcal{A}}, \boldsymbol{\mathcal{B}}) = \det(\boldsymbol{\mathcal{A}}) \det(\boldsymbol{\mathcal{B}}) \det(\boldsymbol{\mathcal{B}}) \det(\boldsymbol{\mathcal{A}}) = \det(\boldsymbol{\mathcal{B}}, \boldsymbol{\mathcal{A}})$$
Hat $\boldsymbol{\mathcal{A}}$ 2 linear abhäng. Zeilen/Spalten $\Rightarrow |\boldsymbol{\mathcal{A}}| = 0$

3.2.3 Eigenwerte (EW) λ und Eigenvektoren (EV) v

$$\underline{\underline{A}}\underline{\underline{v}} = \lambda \underline{\underline{v}} \quad \det \underline{\underline{A}} = \prod \lambda_i \quad \operatorname{Sp} \underline{\underline{A}} = \sum a_{ii} = \sum \lambda_i$$

Eigenwerte: $\det(\mathbf{A} - \lambda \mathbf{1}) = 0$ Eigenvektoren: $\ker(\mathbf{A} - \lambda_i \mathbf{1}) = \underline{v}_i$ EW von Dreieck/Diagonal Matrizen sind die Elem. der Hauptdiagonale

3.2.4 Spezialfall 2×2 Matrix A

$$\frac{\det(\mathbf{A}) = ad - bc}{\operatorname{Sp}(\mathbf{A}) = a + d} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det \mathbf{A}} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\lambda_{1/2} = \frac{\operatorname{Sp} \mathbf{A}}{2} \pm \sqrt{\left(\frac{\operatorname{sp} \mathbf{A}}{2}\right)^{2} - \det \mathbf{A}}$$

$$\frac{\partial \underline{\underline{w}}^{\top} \underline{\underline{y}}}{\partial \underline{\underline{w}}} = \frac{\partial \underline{\underline{y}}^{\top} \underline{\underline{w}}}{\partial \underline{\underline{w}}} = \underline{\underline{y}} \qquad \frac{\partial \underline{\underline{w}}^{\top} \underline{\underline{A}} \underline{\underline{w}}}{\partial \underline{\underline{w}}} = (\underline{\underline{A}} + \underline{\underline{A}}^{\top}) \underline{\underline{x}}$$

$$\frac{\partial \underline{\underline{w}}^{\top} \underline{\underline{A}} \underline{\underline{y}}}{\partial \underline{\underline{A}}} = \underline{\underline{x}} \underline{\underline{y}}^{\top} \qquad \frac{\partial \det(\underline{\underline{B}} \underline{\underline{A}} \underline{\underline{C}})}{\partial \underline{\underline{A}}} = \det(\underline{\underline{B}} \underline{\underline{A}} \underline{\underline{C}}) \left(\underline{\underline{A}}^{-1}\right)^{\top}$$

3.2.6 Vektornormen: ($\underline{x} \in \mathbb{K}^n, \sum \text{von } i = 1 \text{ bis } n$) Summen $\|\underline{\boldsymbol{x}}\|_1 = \sum |x_i|$ Euklidische $\|\underline{\boldsymbol{x}}\|_2 = \sqrt{\sum |x_i|^2}$ Maximum $\|\underline{\boldsymbol{x}}\|_{\infty} = \max |x_i|$ Alg. p-Norm $\|\underline{\boldsymbol{x}}\|_p = (\sum |x_i|^p)^{1/p}$

3.2.7 Matrixnormen ($\mathbf{A} \in \mathbb{K}^{m \times n}, i \in [1, m], j \in [1, n]$)

$$\|\mathbf{A}\|_G = \sqrt{mn} \cdot \max_{i,j} \left| a_{ij} \right| \qquad \|\mathbf{A}\|_M = \frac{\|\mathbf{A}\|_G}{\sqrt{mn}}$$

$$\|\boldsymbol{A}\|_{1} = \max_{j} \sum_{i=1}^{m} |a_{ij}| \qquad \|\boldsymbol{A}\|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

$$\|\boldsymbol{A}\|_{\infty} = \sqrt{\sum_{i} \sum_{j=1}^{n} |a_{ij}|^{2}} \qquad \|\boldsymbol{A}\|_{\infty} = \sqrt{\lambda} \qquad (\boldsymbol{A}^{\top})$$

$$\begin{split} \|\boldsymbol{A}\|_1 &= \max_{\boldsymbol{a}} \sum_{i=1}^m \left| a_{ij} \right| & \|\boldsymbol{A}\|_{\infty} = \max_{\boldsymbol{a}} \sum_{j=1}^n \left| a_{ij} \right| \\ \|\boldsymbol{A}\|_{\text{Eukl.}} &= \sqrt{\sum_{i=1}^n \sum_{j=1}^n \left| a_{ij} \right|^2} & \|\boldsymbol{A}\|_{\lambda} = \sqrt{\lambda_{\max}(\boldsymbol{A}^\top \cdot \boldsymbol{A})} \\ & \text{Frobenius} & \text{Spektralnorm,/Hilbertnorm} \end{split}$$

Vektor \underline{r} zur Basis B: $B\underline{r} = r_x \underline{e}_x^B + r_y \underline{e}_y^B + r_z \underline{e}_z^B$ Basisvektor von B in i-Richtung Koordinate in i-Richtung i-Komponente bezüglich BBasis des Inertialsystems I

3.3. Koordinatensysteme $-\pi < \varphi \le \pi$, $0 \le \theta \le \pi$

Um einen karthesischen Vektor mit anderen Koordinaten darzustellen

yunderkoordinaten:
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \cdot \cos(\varphi) \\ r \cdot \sin(\varphi) \\ z \end{pmatrix} \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \cdot \cos(\varphi) \sin(\theta) \\ r \cdot \sin(\varphi) \sin(\theta) \\ r \cdot \cos(\theta) \end{pmatrix}$$

Basistrafo $A \rightarrow B$: Spalten von ${}_{B}\mathbf{T}_{A}$ ent- $|_{B}\boldsymbol{v} = {}_{B}\boldsymbol{T}_{A} \cdot {}_{A}\boldsymbol{v}|$ sprechen Basisvekt. von A in B dargestellt:

3.4. Ableitungsregeln ($\forall \lambda, \mu \in \mathbb{R}$)

 $(\lambda f + \mu g)'(x) = \lambda f'(x) + \mu g'(x_0)$ $(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$ $\left(\frac{f}{g}\right)'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2} \quad \left(\frac{\text{NAZ-ZAN}}{\text{N}^2}\right)$ Kettenregel (f(g(x)))' = f'(g(x))g'(x)

3.5. Integrale $\int e^x dx = e^x = (e^x)'$

Partielle Integration: $\int uw' = uw - \int u'w$ $\int f(g(x))g'(x) dx = \int f(t) dt$ Substitution:

F(x) - C	f(x)	f'(x)
$\frac{1}{q+1}x^{q+1}$	x^q	qx^{q-1}
$\frac{2\sqrt{ax^3}}{3}$ $x\ln(ax) - x$	\sqrt{ax} $\ln(ax)$	$\frac{\frac{a}{2\sqrt{ax}}}{\frac{1}{x}}$ $e^{ax}(ax+1)$
$\frac{\frac{1}{a^2}e^{ax}(ax-1)}{\frac{a^x}{\ln(a)}}$	$x \cdot e^{ax}$ a^x	$a^x \ln(a)$
$-\cos(x)$ $\cosh(x)$	$\sin(x)$ $\sinh(x)$	cos(x) $ cosh(x)$
$-\ln \cos(x) $	tan(x)	$\frac{1}{\cos^2(x)}$

$$\int e^{at} \sin(bt) dt = e^{at} \frac{a \sin(bt) + b \cos(bt)}{a^2 + b^2}$$

$$\int \frac{dt}{\sqrt{at + b}} = \frac{2\sqrt{at + b}}{a} \qquad \int t^2 e^{at} dt = \frac{(ax - 1)^2 + 1}{a^3} e^{at}$$

$$\int t e^{at} dt = \frac{at - 1}{a^2} e^{at} \qquad \int x e^{ax^2} dx = \frac{1}{2a} e^{ax^2}$$

3.5.1 Volumen und Oberfläche von Rotationskörpern um x-Achse $V=\pi\int_a^bf(x)^2\mathrm{d}x$ $O=2\pi\int_a^bf(x)\sqrt{1+f'(x)^2}\mathrm{d}x$

3.6. Differentialoperatoren $\operatorname{div}(\operatorname{rot} \mathbf{f}) \equiv 0$

 $\nabla f = \begin{pmatrix} \partial_1 f \\ \vdots \\ \partial_n f \end{pmatrix} \qquad \nabla \times \underline{f} = \begin{pmatrix} \partial_y f_3 - \partial_z f_2 \\ \partial_z f_1 - \partial_x f_3 \\ \partial_x f_2 - \partial_y f_1 \end{pmatrix}$

Laplace $\Delta f = \operatorname{Sp} \mathbf{H}_f(\underline{\mathbf{x}})$

 $\iint\limits_V \operatorname{div} \underline{\boldsymbol{v}} \, \mathrm{d}V = \iint\limits_{\partial V} \underline{\boldsymbol{v}} \cdot \mathrm{d}A$

Jacobimat. $\left[\partial_1 f_1 \cdots \partial_n f_1 \right]$ Hessematrix $\underline{\underline{J}}_{f}(\underline{\underline{x}}) =$

4. Frequenzanalyse

4.1. Fourier-/Laplacetrafo $f(t) \circ F(s)$

Fourier $s=\mathbf{i}\omega$	Laplace $oldsymbol{s} = lpha + \mathbf{i} \omega$
$F(s) := \int_{-\infty}^{\infty} f(t) \exp(-st) dt$	$F(s) := \int_{0}^{\infty} f(t) \exp(-st) dt$
1(1) + 0 (1) + 0 (2)	1 7(8)

$\alpha f(t) + \beta g(t) \bigcirc \bullet \alpha F(s) + \beta G(s)$	$f(ct) \circ - \frac{1}{ c } F(\frac{c}{c})$
$f(t-\tau) \bigcirc - e^{-s\tau} F(s)$	$e^{\tau t} \circ - F(s - \tau)$
$\int_{-\infty}^{t} \tau \mathrm{d}\tau \bigcirc \longrightarrow \frac{1}{s} F(s)$	$f^{(n)}(t) \circ - s^n F(s)$
$(f*g)(t) \bigcirc - F(s) \cdot G(s)$	

5. Stochastik

Kombinatorik: Mögliche Variationen/Kombinationen um k von maximal n Elemente zu wählen bzw. k Elemente auf n Felder zu verteilen:

	Mit Reihenfolge	Reihenfolge egal
Mit Wiederholung Ohne Wiederholung	$\frac{n^k}{\frac{n!}{(n-k)!}}$	$\binom{n+k-1}{k} \binom{n}{k}$

Permutation von n mit jeweils k gleichen Elementen: $\frac{n!}{k_1! \cdot k_2! \cdot ...}$

Binomialkoeffizient $\binom{n}{k} = \binom{n}{n-k} = \frac{n!}{k! \cdot (n-k)!}$ $\binom{n}{0} = 1$ $\binom{n}{1} = n$ $\binom{4}{2} = 6$ $\binom{5}{2} = 10$ $\binom{6}{2} = 15$

5.1. Der Wahrscheinlichkeitsraum (Ω, \mathbb{F}, P)

Ergebnismenge	$\Omega = \left\{\omega_1, \omega_2, \ldots\right\}$	Ergebnis $\omega_j\in\Omega$
Ereignisalgebra	$\mathbb{F} = \big\{A_1, A_2, \ldots\big\}$	Ereignis $A_i \subseteq \Omega$
Wahrscheinlichkeitsmaß	$P:\mathbb{F}\to[0,1]$	$P(A) = \frac{ A }{ \Omega }$

Es gilt: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Bedingte Wahrscheinlichkeit für A falls B bereits eingetreten ist: $P_B(A) = P(A|B) = \frac{P(A \cap B)}{P(B)}$

Multiplikationssatz: $P(A \cap B) = P(A|B) P(B) = P(B|A) P(A)$

Erwartungswert: $E[X] = \mu = \sum x_i P(x_i) = \int_{\mathbb{D}} x \cdot f_X(x) dx$ Varianz: $Var[X] = E[X - E[X])^2 = E[X^2] - E[X]^2$ Standard Abweichung $\sigma = \sqrt{Var[X]}$

Covarianz: Cov[X, Y] = E[(X - E[X])(Y - E[Y])] = Cov[Y, X]

Binomialverteilung $\mathcal{B}(n,p,k)$ (diskret, n Versuche, k Treffer): $P(X = k) = {n \choose k} p^k (1-p)^{n-k} \quad \mu = np \quad \sigma^2 = np(1-p)$

Normalverteilung $\mathcal{N}(\mu, \sigma^2)$: $f_X(x) = \frac{1}{\sqrt{2-\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$

5.2. Hypothesen / Klassifizierung

Nullhypothese H_0 wird (zur Sicherheit) zu erst als wahr angenommen. Alternativhypothese H_1 soll überprüft/gezeigt werden.

Decision Reality	H_1 false (H_0 true)	H_1 true (H_0 false)
H_1 rejected $(H_0$ accepted)	True Negative $\mathbf{P} = 1 - \alpha$	False Negative (Type 2) $P = \beta$
H_1 accepted $(H_0$ rejected)	False Positive (Type 1) $P = \alpha$	True Positive $P = 1 - \beta$
Sensitivity: TP (Hit Rate)	$=1-\beta$ Spe	ecificity: $\frac{\text{TN}}{\text{FP+TN}} = 1 - \alpha$
Precision: $\frac{TP}{TP+FP}$		racy: $\frac{TP + TN}{P + N} = \frac{2 - \alpha - \beta}{2}$

6. Geometrie

Allg. Dreieck $\triangle ABC$ mit Seiten a, b, c und Winkel α, β, γ :

Rechtwinkliges Dreieck $\triangle ABC$ mit $\gamma=90^\circ$ bei C

Pythagoras: $a^2 + b^2 = c^2$ $h^2 = pq a^2 = pc$ $a=c\sin\alpha=c\cos\beta=b\tan\alpha$

Zylinder/Prisma ${\bf Pyramide} \ {\bf mit} \ {\bf beliebiger} \ {\bf Grundfläche} \ G$ $V = G \cdot h$ $V = \frac{1}{2}G \cdot h$ SP: liegt auf h mit $y_S = h/4$ $M = U \cdot h$

Kreis: $A = \pi r^2$, $U = 2\pi r$ Kugel: $V = \frac{4}{3}\pi r^3$, $O = 4\pi r^2$

7. Physik

Lichtgeschwindigkeit	$c_0 \equiv \frac{1}{\sqrt{\epsilon_0 \mu_0}} := 299792458 \frac{m}{s}$
Elementarladung	$e \approx 1.602177 \times 10^{-19} \mathrm{C}$
Planck-Konst.	$h \approx 6.62606957 \times 10^{-34}\mathrm{Js}$
	$\hbar \equiv \frac{h}{2\pi} \approx 1.05457 \times 10^{-34} \mathrm{J}\mathrm{s}$
Elektr. Feldkonst.	$\varepsilon_0 = 8.854188 \times 10^{-12} \frac{\text{F}}{\text{m}}$
Magn. Feldkonst.	$\mu_0 := 4\pi \times 10^{-7} \frac{H}{m}$
Avogadro-Konst.	$N_{\rm A} \approx 6.022141 \times 10^{23}\frac{1}{\rm mol}$
Atomare Masse	$u \approx 1.660539 \times 10^{-27} \text{ kg}$
Elektronenmasse	$m_e \approx 9.109383 \times 10^{-31} \mathrm{kg}$
Protonenmasse	$m_p \approx 1.674927 \times 10^{-27}\mathrm{kg}$
Neutronenmasse	$m_n \approx 1.672622 \times 10^{-27} \text{ kg}$
Gravitationskonst.	$G \approx 6.67384 \times 10^{-11} \frac{\text{kg}}{2}$
BOLTZMANN-Konst.	$k_{\rm B} \approx 1.380655 \times 10^{-2{1 \over 3}^2} {\rm J}_{\rm K}$

Größe	Definition	Einheit	SI-Notation
Frequenz	$f = \frac{c}{\lambda}$	Hertz	$Hz = \frac{1}{s}$
Kraft	$\underline{F} := m \cdot \underline{a}$	Newton	$N = \frac{kg m}{s^2}$
Druck	$p := \frac{\underline{F}_{\perp}}{A}$	Pascal	$Pa = \frac{N}{m^2} = \frac{kg}{m s^2}$
Arbeit, Energie	$W:=\int \underline{\pmb{F}}\mathrm{d}\underline{\pmb{s}}$	Joule	$J = N m = \frac{kg m^2}{s^2}$
Leistung	$P := \frac{\mathrm{d}W}{\mathrm{d}t}$	Watt	$W = \frac{J}{s} = \frac{kg m^2}{s^3}$
Spannung	$U := \frac{W}{Q}$	Volt	$V = \frac{W}{A} = \frac{kg m^2}{\Lambda a^3}$
Ladung	$Q := \int I dt$	Coulomb	C = As
Resistivität	$R := \frac{dU}{dI}$	Ohm	$\Omega = \frac{V}{A} = \frac{\text{kg m}^2}{\Lambda^2 s^3}$
Kapazität	$C := \frac{\mathrm{d}Q}{\mathrm{d}U}$	Farad	$F = \frac{C}{V} = \frac{A^2 s^4}{kg m^2}$
Induktivität	$L := \frac{\mathrm{d}\Phi}{\mathrm{d}I}$	Henry	$H = \frac{V_s}{A} = \frac{kg m^2}{A^2 s^2}$
Magnetischer Fluss	$\Phi_{M} := \int \underline{\boldsymbol{B}} \mathrm{d}\underline{\boldsymbol{A}}$	Weber	$Wb = Vs = \frac{kg m}{\Delta s^2}$
Magnetische Flussdichte	$\underline{\boldsymbol{B}} := \mu_0 \underline{\boldsymbol{H}}$	Tesla	$T = \frac{Wb}{m^2} = \frac{kg}{As^2}$
1 in = 2.54	cm 1 ft =	30.5 cm	$J \cdot e = eV$
$1\mathrm{bar}=10^5$	$Pa \hspace{1cm} 1 \: \mathring{A} =$	10^{-10} m	$1 L = 10^{-3} m$

Mechanik	Translation	Rotation (Radius r)
Strecke/Winkel	$\underline{\boldsymbol{x}}$	$\underline{oldsymbol{arphi}}=rac{oldsymbol{x}}{r}$
Geschwindigkeit	$\underline{oldsymbol{v}}=\dot{oldsymbol{x}}$	$\underline{\boldsymbol{\omega}} = \dot{\underline{\boldsymbol{\varphi}}} = \frac{\underline{\boldsymbol{v}}}{r}$
Beschleunigung	$\underline{oldsymbol{a}} = \underline{\dot{oldsymbol{v}}} = \underline{\ddot{oldsymbol{x}}}$	$\underline{lpha}=\dot{\underline{\omega}}=\ddot{\underline{arphi}}=\frac{ar{ar{arphi}}}{r}=rac{ar{ar{a}}}{r}$
Masse/Trägh.	m	$\Theta = \int_V \overline{oldsymbol{r}_\perp^2} \mathrm{d} m$
Impuls/Drall	$oldsymbol{p}=moldsymbol{v}$	$\underline{m{L}} = m{\Theta} \underline{m{\omega}} = \underline{m{r}} imes m{p}$
Kraft/Moment	$\underline{F} = \dot{p} = m\underline{a}$	$\underline{M} = \underline{\dot{L}} = \underline{\Theta}\underline{\alpha} = \underline{r} \times \underline{F}$
Energie	$E_{kin} = \frac{1}{2} m v^2$	$E_{rot} = \frac{1}{2}\Theta\omega^2$
Leistung	$P = \underline{F} \cdot \underline{v}$	$P = \underline{M} \cdot \underline{\omega}$
$v = v_0 + at$		$\omega = \omega_0 + \alpha t$
$x(t) = \frac{1}{2}at^2 +$	$-v_0t + x_0$	$\varphi(t) = \frac{1}{2}\alpha t^2 + \omega_0 t + \varphi_0$
$2ax = v^2 - v_0^2$	2	$2\alpha\varphi = \omega^2 - \omega_0^2$
$F_g = -G \frac{m_1 m_2}{r^2}$ $F_z = -m \frac{v^2}{r} =$	$E pprox \underline{g}m \qquad F_{el} =$	$= \frac{1}{4\pi\varepsilon} \frac{q_1 q_2}{r^2}$
$F_z = -m \frac{v^2}{r} =$	$-m\omega^2 r$ $F_R =$	$= \mu F_{N}$ $F_{H} \le \mu_0 F_{N}$
Energie: $E=\int \underline{\textbf{\textit{F}}}$	$E^{\top} \cdot d\underline{s}$ $E_{pot} =$	$mgh = \frac{1}{2}kx^2$

Phasensprung um π bei (Total-)Reflexion am optisch dichteren Medium!

Relativitätstheorie $E=$	mc^2	
$\gamma = 1 \bigg/ \sqrt{1 - \frac{v^2}{c^2}}$	$E = mc^2$ $E_0^2 = E^2 - c^2 p^2$	$m^* = \gamma \cdot m_0$ $t_0 = \gamma \cdot t^*$

7.3. Elektrotechnik $U = R \cdot I$ $P = U \cdot I$

Wirkleistung $P = UI \cdot \cos(\Delta \varphi)$ Blindleistung $Q = UI \cdot \sin(\Delta \varphi)$ [Var] Scheinleistung $S = P + iQ = U \cdot I^*$ [VA]

Serienschalt: $R = \sum R_i$ $\frac{1}{C} = \sum \frac{1}{C_i}$ $L = \sum L_i$ Parallelschalt: $\frac{1}{R} = \sum \frac{1}{R_i}$ $\frac{1}{C} = \sum \frac{1}{C_i}$ $\frac{1}{L} = \sum \frac{1}{L_i}$

7.4. Thermodynamik 0 °C = 273.15 K

$$\frac{\mathrm{d}U}{\mathrm{innere\;Energie}} = \frac{\delta Q}{\mathrm{W\"{a}rmeenergie}} + \frac{\delta W}{\mathrm{Volumenarbeit}} = T\,\mathrm{d}S - p\,\mathrm{d}V$$

$$\begin{array}{ll} \overline{\Delta U} = U_2 - U_1 = Q_{1,2} + W_{1,2} \\ \text{Wärme } Q = C \cdot \Delta T = \int T \, \mathrm{d}S & W_{1,2} = -\int_1^2 p \, \mathrm{d}V \\ \text{Wärmekapazität: } C = c \cdot m = c_m \cdot n \end{array}$$

Thermische Energie eines Teilchens mit f Freiheitsgraden:

$$E_{\rm therm} = \frac{f}{2} k_{\rm B} T \qquad {\rm Thermische~Rauschenergie~bei~300K:} \\ \Delta E_{\rm therm} = k T = 25.85~{\rm meV}$$

Jede Wärmekraftmaschine: $\eta < \eta_{\rm Carnot} = 1 - \frac{T_{\rm kalt}}{T_{\rm bail}}$

Zustandsgleichung ideales Gas: $pV = nT \cdot N_{\rm A} k_{\rm B}$

7.5. Chemie

Masse $m = n_{mol} \cdot m_M = V \cdot \rho = m_x \cdot N$ Teilchenzahl NStoffmenge $n_{\mathrm{mol}}=\frac{N}{N_{\mathrm{A}}}=\frac{m}{m_{\mathrm{M}}}=\frac{V}{V_{\mathrm{M}}}$ Molare Masse m_{M} Molares Volumen $V_{\rm M}$, bei Gasen: $V_{\rm M} \approx 22.4 \, \frac{\rm L}{\rm mol}$

Luft: $25 \,^{\circ}\text{C}$: $\rho = 1.2 \,\text{kg/m}^3$, $p = 1013 \,\text{hPa}$ Luftdruck/Temperatur sinkt mit $0.125~\frac{hPa}{m}~/~0.01~\frac{^{\circ}C}{m}$ Höhe Wasser: $25\,^{\circ}\text{C}$: $\rho = 1000\,\text{kg/m}^3$ Druck steigt mit $0.1\,\frac{\text{bar}}{\text{m}}$ Tiefe

 β^{\mp} – Zerfall ${}^{m}X^{0} \longrightarrow {}^{m}Y^{\pm} + {}^{0}_{\mp}e^{\mp} + {}^{0}_{0}\overline{\nu}_{e}$ γ -Zerfall $\stackrel{m}{n}X^* \longrightarrow \stackrel{m}{n}X + \stackrel{0}{0}\gamma$

138,906	140,116	140,908	144,24	145	150,36	151,964	157,25	158,925	162,50	164,930	167,26	168,934	173,04	174,967
57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
Lanthan	Cer	Praseodym	Neodym	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
227	232	231	238	237	244	243	247	247	251	252	257	258	259	262
89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100Fm	101Md	102 No	103 Lr
Actinium	Thorium	Protactinium	Uran	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14	d1