"Drzewo binarne, tablica haszujaca"

Martyna Bandura

09 kwietnia 2014

1. Wstęp:

Celem ćwiczenia jest przetestowanie czasu implementacji takich struktur danych jak:

- drzewo binarne poszukiwań;
- tablica haszująca.

2. Opis wykorzystanych algorytmow:

• Drzewo binarne poszukiwań:

- Drzewo poszukiwań binarnych BST (ang. Binary Search Tree) jest dynamiczną strukturą danych zbudowaną z węzłów (ang. node). Każdy węzeł może posiadać dwóch potomków (left lewy i right prawy) oraz jednego przodka (p parent). Z każdym węzłem dodatkowo związany jest klucz (key).
- Dla każdego węzła w drzewie BST zachodzą następujące własności:
 - * Wartości kluczy węzłów leżących w lewym poddrzewie węzła są mniejsze lub równe wartości klucza danego węzła.
 - * Wartości kluczy węzłów leżących w prawym poddrzewie węzła są większe lub równe wartości klucza danego węzła.

• Tablica haszująca:

Tablice haszujące stosuje się do zmniejszenia czasu przeszukiwania i dostępu do danych zawartych w strukturze liniowej jak np. lista czy tablica. Zbiór danych dzieli się na rozłączne podzbiory, których adresy utożsamiane są z poszczególnymi komórkami tablicy haszującej h. To, z jakim podzbiorem danych związana jest komórka tablicy h[k] określa się za pomocą tzw. funkcji haszującej. Funkcję tą określamy na całym dopuszczalnym zbiorze danych, jej wartością jest indeks w tablicy haszującej, który wyznacza niejako pewien podzbiór, do którego powinien należeć poszukiwany element zbioru danych.

3. Testy wydajności:

• Drzewo binarne:

Rozmiar	Czas dodania	Czas szukania	Czas usuwania
10	0	0	0
100	0,003	0	0,01
1000	0,028	0,003	0,013
10000	0,356	0,031	0,188
100000	4,372	0,363	3,152
1000000	70,941	3,899	49,165

• Tablica haszująca:

N	Czas dodawania	Czas szukania	Czas usuwania
10	0	0	0
100	0	0,001	0,001
1000	0,009	0,002	0,02
10000	0,093	0,025	0,42
100000	0,938	0,262	4,537
1000000	10,616	3,159	47,892

Wnioski:

- Algorytmy cechują się duża szybkością. Dla danych, które są rzędów milionowych czas wyszukiwań jest odpowiedni.
- \bullet Drzewo binarne posiada złożoność obliczeniową $\mathcal{O}(log_2n).$ Istnieje jednak ryzyko złożoności pesymistycznej $\mathcal{O}(n).$
- Tablica haszująca posiada złożoność obliczeniową równą O(1). Można to zauważyć podczas testów dla rzedów powyżej miliona. Przypadek pesymistyczny wynosi O(n).
- Tablica haszująca jest o wiele szybszym przypadkiem niż drzewo binarne. Najbardziej zauważelne jest to przy większych rozmiarach problemu.