高等数学 II	
2018-2019 学年	(下)

姓名: 专业: 学号:

第 04 周作业

练习 1. 设平面 Σ 过直线 ℓ_1 : $\frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{-1}$, 且平行于直线 ℓ_2 : $\frac{x+2}{2} = \frac{y-1}{1} = \frac{z}{1}$, 求出 Σ 的点法式方程。

练习 2. 与平面 Σ_1 : 4x - y + 2z - 8 = 0 垂直且过原点及点 $M_0(6, -3, 2)$ 的平面方程是什么?

练习 3. 过原点且与直线 ℓ_1 : $\begin{cases} x=1\\ y=-1+t & \text{与 } \ell_2: \frac{x+1}{1}=\frac{y+2}{2}=\frac{z-1}{1} \text{ 都平行的平面方程是什么?}\\ z=2+t \end{cases}$

练习 4. 设直线 ℓ 过点 $M_0(-1,2,3)$,且垂直于直线 $\ell_1:\frac{x}{4}=\frac{y}{5}=\frac{z}{6}$,及平行于平面 $\Sigma:7x+8y+9z+10=0$ 。求直线 ℓ 的点向式方程。

练习 5. 设有两直线 $\ell_1: \frac{x-1}{1} = \frac{y-5}{-2} = \frac{z+8}{1}$ 及 $\ell_2: \begin{cases} x-y-6=0\\ 2y+z-3=0 \end{cases}$ 。求 ℓ_2 的一个方向向量,及求 ℓ_1 与 ℓ_2 的夹角。

练习 6. 求直线 $\ell_1:$ $\begin{cases} x+y-z-1=0 \\ x-y+z+1=0 \end{cases}$ 在平面 $\Sigma_1: x+y+z=0$ 上的投影直线 ℓ 的方程。

练习 7. 1. 建立以点 (1, 3, -2) 为球心,且通过坐标原点的球面方程。

2. 方程 $x^2 + y^2 + z^2 - 2x + 4y + 2z = 0$ 表示什么曲面。

练习 8. 将 xoy 坐标面上的抛物线 $y = 5x^2$ 绕 y 轴旋转一周,求所生成的旋转面的方程。

练习 9. 将 xoz 坐标面上的圆周 $x^2 + (z-2)^2 = 1$ 绕 x 轴旋转一周,所生成的旋转面是一个环面,求该环面的方程。

练习 10. 写出下列旋转曲面的旋转轴:

曲面	$z = 2(x^2 + y^2)$	$\frac{x^2}{36} + \frac{y^2}{9} + \frac{z^2}{36} = 1$	$z^2 = 3(x^2 + y^2)$	$x^2 - \frac{y^2}{4} - \frac{z^2}{4} = 1$
旋转轴				

练习 11. 求球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 在 xoy 坐标面上的投影曲线方程。

练习 12. 分别求母线平行于 x 轴及 y 轴,而且通过曲线 $\begin{cases} 2x^2 + y^2 + z^2 = 16 & (1) \\ x^2 - y^2 + z^2 = 0 & (2) \end{cases}$ 的柱面。

练习 13. 化曲线的一般方程 $\begin{cases} x^2 + y^2 + z^2 = 9 \\ y = z \end{cases}$ 为参数方程。

练习 14. 尝试在 https://www.math3d.org/ 或 https://www.monroecc.edu/faculty/paulseeburger/calcnsf/CalcPlot3D/ 上,画出作业及书上的感兴趣的图形。这两个 graphing calculator 各有各的有优点,互补不足。它们可以但不限于画: 曲面 (包括 implicit surface, parametric surface; 也就是一般方程及参数方程的曲面),多个曲面的交,空间曲线 (parametric curves in 3D),向量场,三维空间区域。如果找到更好的在线画图器,欢迎告知。喜欢折腾的同学也可以尝试编一个画图器 ② ,如果弄出来请告诉我。