Machine Learning Systems Design

Lecture 5: Scaling Up Training

CS 329S | Karan Goel

Motivation

Credit: Scaling Laws for Neural Language Models

OpenAl recently published GPT-3, the largest language model ever trained. GPT-3 has 175 billion parameters and would require 355 years and \$4,600,000 to train even with the lowest priced GPU cloud on the market.^[1]

need distributed training!

Main Ingredients

- Parameters
- ComputeData

Parameters: Pre-training with Self-Supervision

Parameters: Pre-training with Self-Supervision

Storing Parameters

Parameter Representation

32 bit float (float32, fp32)

16 bit float (float16, fp16)

8 bit int unsigned (uint8)

1B parameters @ fp16

 $= 10^9 \times 2 \text{ bytes}$

= 1.86 GB

175B parameters @ fp16

 $= 175 \times 10^9 \times 2 \text{ bytes}$

= 316.2 GB

Note: some parameters must be in float32 for numerical stability

Monday, November 16, 2020

NVIDIA today unveiled the NVIDIA® A100 80GB GPU

80 GB < 316.2 GB

Mixed-Precision Training: Loss Scaling

Solution: Model Parallelism for Large Model Training

split the model across devices

each device runs a fragment of the model

Distributed Tensor Computation

key idea: split mini-batch into sequential micro-batches

Storing Activations

Forward activations

major source of memory usage

memory usage = minibatch size x # parameters

Solution 1: Gradient Checkpointing

key idea: trade-off memory for compute

Solution 1: Gradient Checkpointing

don't store some activations in forward pass

GPU1

backpropagate

don't have activations!

GPU1

recompute activations from checkpoint

GPU1

backpropagate

backpropagate

GPU1

backpropagate

GPU1

GPU1

backpropagate

GPU1

backpropagate

backpropagate

GPU1

Credit: https://github.com/cybertronai/gradient-checkpointing

"For feed-forward models we were able to fit more than 10x larger

models onto our GPU, at only a 20% increase in computation time."

Solution 2: Data Parallelism for Large Batch Training

split the data across devices

each device sees a fraction of the batch

each device replicates the model

each device replicates the optimizer

replicate model across devices

GPUs could be on same or multiple nodes

to push in a batch of data

split batch across devices

parallel forward passes

parallel forward passes

backpropagate gradients

backpropagate gradients

all devices do the same gradient updates

all parameters stay synchronized!

Trick: Gradient Bucketing

interleave communication with computation

synchronize buckets of gradients

Collective Communication

single- and multi-node communication

Collective Communication

single- and multi-node communication

Message Passing Interface (MPI)

Sets standard + CPU-CPU communication

synchronization, data movement, reduction

nVidia Collective Communications Library (nccl)

Follows MPI standard for GPU-GPU communication

Facebook Gloo

Optimized for ML: CPU-CPU/GPU-GPU communication

Inter-Process Communication: The All-Reduce

all-reduce operation

p processes

each process has tensor of size n

tensors aggregated (e.g. sum)

result returned to each process

GPU1

tensor 1

GPU 3

tensor 3

GPU 2

tensor 2

GPU1

tensor 1

GPU 3

tensor 3

GPU 2

tensor 2

everyone sends everyone their tensor

GPU1

tensor 1

tensor 3

tensor 2

GPU 3

tensor 3

tensor 2

tensor 1

GPU 2

tensor 2

tensor 1

tensor 3

GPU 3 tensor 1

GPU₁

total work = p senders x (p - 1) receivers x o(n) tensor = $o(np^2)$

everyone does o(np) work

CCTTOOT

CCTTOOT O

GPU₁

tensor 1

GPU 3

tensor 3

GPU 2

tensor 2

everyone sends their tensor to a designated manager

tensor 3
tensor 2

GPU 3

GPU 2

manager does the reduce

manager sends result back to everyone else

GPU 3

GPU₁

total work = (p-1) x 2 transfers x o(n) tensor = **o(np)**

manager does o(np) work

tensor 1

tensor 3

GPU1

tensor 1

GPU 3

tensor 3

GPU 2

tensor 2

GPU1

1 2 3

GPU 3

1 | 2 | 3

GPU 2

1][2][3

split tensor into *p* chunks

GPU1 GPU 2 reduce locally

GPU 3

GPU 3

GPU1

total work = p senders x 1 receiver x o(n/p) tensor x (p-1) rounds x 2 phases = o(np) everyone does <u>equal</u> o(n) work (independent of p!)

1 2 3

nVidia Collective Communications Library (nccl)

Horovod distributed training

How the *model weights* are split over cores

How the data is split over cores

Credit: Fedus et al. (Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity)

Large-Scale Data in Language Modeling

Dataset	Quantity (tokens)	Weight in training mix	Epochs elapsed when training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1 Books2	12 billion 55 billion	8% 8%	1.9 0.43
Wikipedia	3 billion	3%	3.4

Large-Scale Data in Visual Learning

3. The JFT-300M Dataset

We now introduce the JFT-300M dataset used throughout this paper. JFT-300M is a follow up version of the dataset introduced by [7, 17]. The JFT-300M dataset is closely related and derived from the data which powers the Image Search. In this version, the dataset has 300M images and 375M labels, on average each image has 1.26 labels. These images are labeled with 18291 categories: e.g., 1165 type of animals and 5720 types of vehicles are labeled in the dataset. These categories form a rich hierarchy with the maximum depth of hierarchy being 12 and maximum number of child for parent node being **2876**.

Feed Data Fast

Columnar Data

Apache Parquet (Disk)

Apache Arrow (In-Memory)

Parallel Workers

Apache Spark

Multiprocessing

Multithreading

Libraries

HuggingFace Datasets

Uber Petastorm

Tensorflow Datasets

Warning: primary memory is a bottleneck!

Lots More To Read

Exploring the Limits of Weakly Supervised Pretraining

MegatronLM: Training Billion+ Parameter Language Models Using GPU Model Parallelism

Ξ

Machine Learning Systems Design

Next class: Model evaluation

