Basic Axioms and Examples

Note 1

co4f1027b2c4ee2a3123dbcf0680bc0

Given a set G, (c2:a binary operation \star on G) is (c1:a function

$$\star: G \times G \to G$$
.

}}

Note 2

7732d25ebb1e40dd9696c1c921803c13

Given a binary operation \star on a set G, for any $a,b\in G$ we shall write $\{(c2): a\star b\}$ for $\{(c1): \star(a,b),\}$

Note 3

4fc60827250f4af4ab6a669ac7632568

A binary operation \star on a set G is {c2-associative} if {c1-for all $a,b,c\in G$ we have

$$a \star (b \star c) = (a \star b) \star c.$$

}}

Note 4

192d8d86f22349cabcd9f4229fc4529(

If \star is a binary operation on a set G we say elements a and b of G (c1::commute) if (c2::

$$a \star b = b \star a$$
.

}}

Note 5

e5cbf512d6a54c91950c65450a07a501

A binary operation \star on a set G is <code>{{c2}}</code>-commutative} if <code>{{c1}}</code>-for all $a,b\in G$ we have

$$a \star b = b \star a$$
.

}}

Note 6

36b096eebd7f4264ab071a5fa4eefe13

Suppose that \star is a binary operation on a set G and $H \subseteq G$. If the restriction of \star to H is a binary operation on H, then H is said to be the closed under \star .

 $\{(G,\star)\}$ where $\{(G,\star)\}$ where $\{(G,\star)\}$ is a set and \star is a binary operation on G satisfying $\{(G,\star)\}$ group axioms.

Note 8

de4e717b4814adf8aed4f8d9a93322c

How many axiom are there in the definition of a group (G, \star) ?

Three.

Note 9

de690f5008a4b8c8691e36308e4429

What is the first axiom from the definition of a group (G, \star) ?

★ is associative.

Note 10

4fcc137e66a048459cc73d6735e4cce

Given a binary operation \star on a set G, (estan element $e \in G$) is called (lest an identity of G)) if (lest for all $a \in G$ we have

$$a \star e = e \star a = a$$
.

}}

Note 11

3cd125f152f432082757242096a76ef

What is the second axiom from the definition of a group (G, \star) ?

There exists an identity of G.

Note 12

5d438f0c3fb24b1a97507e81f868846

Given a binary operation \star on a set G and $a \in G$, we an element $\tilde{a} \in G_0$ is called we an inverse of a_0 if we have

$$a \star \tilde{a} = \tilde{a} \star a = e$$
.

11

Given a binary operation \star on a set G and $a \in G$, we an inverse of a_0 is usually denoted with a^{-1} .

Note 14

4c56a11c6f746b3ae287ee386b4e12b

What is the third axiom from the definition of a group (G, \star) ?

For all $a \in G$ there exists a^{-1} .

Note 15

e05e23d350d4f49a65602b65045f888

A group (G,\star) is called {c2:abelian} if {c1::*\star} is commutative.}

Note 16

978f23382d594a28a3de168b7f661c30

We shall say G is {{e2::a group under \star }} if {{e1:: (G, \star) is a group.}}

Note 17

497f01593d7f4ffabb546b455788b354

We shall say a set G is $\{\{c2\}: a \text{ group}\}\}$ if $\{\{c1\}: G\}$ is a group under an operation that is clear from the context.}

Note 18

61ea2504ca474fe4aae902eb1965576

 $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ and \mathbb{C} are {{c2::groups}} under {{c1::+.}}

Note 19

84b6a231d3934ab3b4f63226549a9589

$$\mathbb{Q}-\left\{0
ight\},\ \mathbb{R}-\left\{0
ight\},\ \mathbb{C}-\left\{0
ight\}$$
 are ((c2::groups)) under ((c1::×.))

Note 20

3051cd354f5040e2bdf0809e005635ed

 $\mathbb{Q}^+, \mathbb{R}^+$ are {{c2::groups}} under {{c1:: \times .}}

Note 21

21f924e833cd4e0bbae5f4588dff47b

Is $\mathbb{Z} - \{0\}$ a group under \times ?

No. (There is no inverse.)

Let V be a vector space. Then V is $\{\{e^2\} : a \text{ group}\}\}$ under $\{\{e^1\} : +.\}$

Note 23

47a03e2c688244b1b3a5126fd04a21c3

Let $n \in \mathbb{Z}^+$. Then $\{c3:\mathbb{Z}/n\mathbb{Z}\}\$ is $\{c2:a \text{ group}\}\$ under $\{c1:addition\}\$ of residue classes.

Note 24

f6a5a40cfee6495dae0d36f7b3288cb2

Let $n\in\mathbb{Z}^+$. Then $\log \mathbb{Z}(\mathbb{Z}/n\mathbb{Z})^\times$ is $\log \mathbb{Z}$ a group) under $\log \mathbb{Z}$ multiplication of residue classes.

Note 25

3e94ca73ca344269bb98d94a22204fd9

If (A, \star) and (B, \diamond) are {calegroups,} then the group {cale} $A \times B$,} whose operation is {caledefined componentwise:

$$(a,b)(c,d) = (a \star c, b \diamond d),$$

)) is called (carthe direct product of the two groups.))

Note 26

e23d8e577b3948af9b0cadd5df7c9141

If (G,\star) is a group, then {c2: the identity of G} is {c1: unique.}

Note 27

5h5301086a0h40aa0a5f0f73813a050

If (G, \star) is a group, then the identity of G is unique. What is the key idea in the proof?

Consider the product of two arbitrary identities.

Note 28

0989a259fae446c48bb0f6c40394efd0

If (G,\star) is a group, then for every $a\in G$, $\{(c2:a^{-1})\}$ is $\{(c1:uniquely determined.)\}$

If (G, \star) is a group, then for every $a \in G$, a^{-1} is uniquely determined. What is the key idea in the proof?

Multiply an inverse on the right by $a \star a^{-1}$.

Note 30

4a6a6806d8874839bb7956d76e384333

If (G, \star) is a group and $a \in G$, then

$$(a^{-1})^{-1} = \{\{\mathrm{cl}::a.\}\}$$

Note 31

9ab0e972d6a24baea99f1577ebf03423

If (G, \star) is a group and $a, b \in G$, then

$$\{(\operatorname{c2::}(a \star b)^{-1})\} = \{(\operatorname{c1::}(b^{-1}) \star (a^{-1}).\}\}$$

Note 32

69b3db6e70ad4629aa55a855b8df8096

If (G, \star) is a group and $a_1, \ldots, a_n \in G$, then the value of

$$a_1 \star \cdots \star a_n$$

is {{c2:independent}} of {{c1:how the expression is bracketed.}}

«{{c3::The generalized associative law}}»

Note 33

05cc8fd523084650adb46704dde222a7

What is the key idea in the proof of the generalized associative law for a group (G, \star) ?

By induction.

Note 34

9ca193d1531c4c49b296732d7ff12fb5

Henceforth our abstract groups G, H, etc. will always be written with the operation as $\{(cinc.)\}$

Henceforth for an abstract group G (operation \cdot) an expression $\{(ca:a \cdot b)\}$ will always be written as $\{(ca:ab.)\}$

Note 36

0994e6080f3042ad81bc90d1ced0b747

Henceforth for an abstract group G (operation \cdot) we denote (c2: the identity of G) by (c1:1.)

Note 37

361c99f13a9b4304868fcdb350b45db

For any group G and $x\in G$ and $\{(c3):n\in\mathbb{Z}^+\}\}$ we shall denote by $\{(c2):x^n\}\}$ $\{(c1):the\ product\}$

$$\underbrace{xx\cdots x}_{n \text{ terms}}$$

}}

Note 38

5b7f3c41cf0147e2bffc3929ed9ec48

For any group G and $x\in G$ and $\{(c3):n\in\mathbb{Z}^+\}\}$ we shall denote by $\{(c2):x^{-n}\}\}$ $\{(c1):the\ product\}$

$$\underbrace{x^{-1}x^{-1}\cdots x^{-1}}_{n \text{ terms}}.$$

}}

Note 39

a7a44229ee0f4a44b11d1410dc0fab0f

For any group G and $\{(c3):x \in G, (c1):1\}$ $\stackrel{\text{def}}{=} \{(c1):1, \text{ the identity of } G\}$.

Note 40

b1be1b97f53c45fa9451eaa7112ca406

Let G be a group and let $a,u,v\in G$. Then au=av (c2) if and only if) (c1) u=v.)

«{{c3::Cancellation rule}}»

For G a group and $x \in G$ define we the order of x to be we the smallest positive integer n such that

$$x^{n} = 1$$
.

}}

Note 42

8c334a6360be4bee8fae7f712ab2c4ee

For G a group and $x \in G$, if $\{(c2) \text{ no positive power of } x \text{ is the identity,} \}$

Note 43

ba4143a322564f8383f6e7d91ca32a75

For G a group and $x \in G$, denote {{c2: the order of } x}} by {{c1:}|x|.}}

Note 44

d7fee5bcbdbd47bcb6f4a2ba086fa2ed

For G a group and $x \in G$, if we the order of x is an integer n, is said to be well of order n.

Note 45

db12c606699d40e89d499d554bd52b28

For G a group and $x \in G$, if we the order of x is infinite, x is said to be well of infinite order.

Note 46

2e514c62ce4e48eb9c6bd3b5de1d7c4

An element of a group has order 1 (c2:if and only if) (c1:it is the identity.)

Note 47

babeb7cf1b394be6a4f8d86e1a099cda

Let $G=\{g_1,g_2,\ldots,g_n\}$ be {call finite group} with {call $g_1=1$.} The {call multiplication table} or {call group table} of G is {call the matrix

 $\left[g_ig_j\right] \sim n \times n.$

}}

Let $G=\{\{x\in\mathbb{R}\mid x\in[0,1)\}\}$ and for $x,y\in G$ let $x\star y$ be $\{(x,y)\}$ the fractional part of x+y. Then the group $\{(x,y)\}$ is called $\{(x,y)\}$ real numbers mod $\{(x,y)\}$.

Note 49

3664191737c844f38816547b7acd64c1

Let $G=\{z\in\{0.1:\mathbb{C}\}\mid\{0.2:\mathbb{Z}^n=1\text{ for some }n\in\mathbb{Z}^+\}\}$. Then the group (G,+) is called $\{0.1:\mathbb{C}\}$ group of roots of unity in \mathbb{C} .

Note 50

85c981d4f1564164bb547096829d245b

A finite group is (c3:abelian) (c2:if and only if) its group table is (c1:a symmetric matrix.)

Note 51

859ef5188ad14b35b58dc9428333e5a

Let G a group and $x \in G$ and $a, b \in \{\{c2a, \mathbb{Z}\}\}$. Then $x^{a+b} = \{\{c1a, x^a x^b\}\}$.

Note 52

0c6c419e61fc48139ff6afd4a8e28het

Let G a group and $x \in G$. Then $|x^{-1}| = (|x|)$.

Note 53

221410dc76e4c7881175d62226ecdf4

Let G a group and $x, g \in G$. Then $|g^{-1}xg| = \{\{c1: |x|\}\}$.

Note 54

9951f3d62ec841df9c6f8cfc07f3c04f

Let G a group and $a,b\in G$. Then $|ba|=\{|ab|\}$.

Note 55

b30a94de99fe4c2f91b5417fdbb3e99d

Let G a group, $x\in G$, $|x|=n<\infty$ and $s\in\mathbb{Z}.$ Then $\{(c3:x^s=1)\}$ $\{(c2:if \text{ and only if})\}$ $\{(c1:n\mid s.)\}$

Note 56

5a0539b7021242e2a9a5769a1c156889

Let G a group, $x\in G$, $|x|=\{(c3)^n n<\infty\}\}$ and $s\in\{(c4)^n \mathbb{Z}\}$. Then

$$\{ (c2:: \left| x^s \right| \} = \{ (c1:: \frac{n}{(n,s)}.) \}$$

Let G a group, $x \in G$, $|x| = n < \infty$ and $s \in \mathbb{Z}$. Then $|x^s| = \frac{n}{(n,s)}$. What is the key idea in the proof?

 $(x^s)^k = 1$ if and only if $n \mid sk$.

Note 58

00c58492691e442b9a8c0a5ba21a0c7f

Let G a group, $x \in G$. If $x^2 = 1$ then

$$x^{-1} = \{\{c1:: x.\}\}$$

Note 59

89199067c84244c094af347afff31c8a

Let G a group. If $\{(ab)^n \mid a \text{ and } b \text{ are commuting elements of } G\}$ then $\{(ab)^n \mid a \text{ } \{(ab)^n \mid a \text{ } \{(ab)$

Note 60

87374145922242e3a5bc43fa952448dc

Let G a group. If $x^2=1$ for all $x\in G$ then G is ((c):abelian.))

Note 61

cdf7b8b7731c4e619920d66f7520b423

Let G a group. If $x^2=1$ for all $x\in G$ then G is abelian. What is the key idea in the proof?

 $1 = (ab)^2$ and multiply by a on the left and by b on the right.

Note 62

48695948e6a4cf69846a629c6b45cb5

Let (G,\star) be a group and $\{(G,\star) \mid G \in H \text{ is a group under the operation }\star \text{ restricted to } H\}$ then $\{(G,\star) \mid H\}$ is called $\{(G,\star) \mid G \in G\}$.

Note 63

39703ef9887d48e9b763bea0c6519b19

Let G a group and $\{x^n \mid n \in \mathbb{Z}\}$ of G is called $\{x^n \mid n \in \mathbb{Z}\}$ of G is called $\{x^n \mid n \in \mathbb{Z}\}$

Let A and B be groups. Then $A \times B$ is **(c3:abelian) (c2:if and only if) (c1:both** A and B are abelian.)

Note 65

:048d6c9ce83411c94e040e5991b3524

Let A and B be groups, $(a,b) \in A \times B$. Then the order of (a,b) is weak the least common multiple of |a| and |b|.

Note 66

de71dcf7adc64bcd9b53502c90a0cefa

Let A and B be groups, $(a, b) \in A \times B$. Then

$$(a,b)^k = \{ (a^k,b^k) \}$$

for all $k \in \{\{c2: \mathbb{Z}\}\}$.

Note 67

e672cc6907124507a4fd998675844d02

Let A and B be groups, $(a,b) \in A \times B$. Then the order of (a,b) is the least common multiple of |a| and |b|. What is the key idea in the proof?

$$(a,b)^k = (a^k, b^k).$$

Note 68

e6f9e981e45d4f55a3aafa3eb6d77ef1

Any finite group of $\{(c2, even)\}$ order contains an element of order $\{(c1, 2, 1)\}$

Note 69

d13862b410194166829309d8ea4880a6

Any finite group of even order contains an element of order 2. What is the key idea in the proof?

Show that the set $\{g \in G \mid g \neq g^{-1}\}$ has an even number of elements.

Let G a group, $x \in G$ and $|x| = n < \infty$. Then the elements ((c2))

$$1, x, x^2, \dots, x^{n-1}$$

}} {{c1::are distinct.}}

Note 71

1bf4e9f92f854544bf96f1364e0064ed

Let G a group, $x \in G$ and $|x| < \infty$. Then $|x| \in \mathbb{R}$ is $|G| \in \mathbb{R}$.

Note 72

5f4f77e21f2b4052979906547275dfd9

Let G a group, $x \in G$ and $|x| < \infty$. Then $|x| \le |G|$. What is the key idea in the proof?

The elements $1, x, \dots, x^{n-1}$ are the only powers of x.

Note 73

4f07acc87f6949e092c057cb5a580c77

Let G a group, $x \in G$ and $|x| = \infty$. Then the elements (c2):

$$x^n, n \in \mathbb{Z}$$

}} {{c1::are distinct.}}

Dihedral Groups

Note 1

895ff9d20ae4a2286hh783680h3cee8

(c) A symmetry) of a regular n-gon is (c) any rigid motion of the n-gon) which can be effected by (c) taking a copy of the n-gon, moving this copy in any fashion in 3-space) and then (c) placing the copy back on the original n-gon so it exactly covers it.)

Note 2

3a08bb223d9241bbb5cd4dae15a4a23d

Each symmetry of a regular n-gon can be described uniquely by the corresponding permutation of $\{1,2,\ldots,n\}$, representing the permutation of the vertices.

Note 3

c0d6e6d3d60b45058b7957002e045102

Given $n\in\mathbb{Z}^+$ and $n\geq 3$, we the group of symmetries of a regular n-gon, is called we the dihedral group of order 2n.

Note 4

7a77331a22e144ceaf6ca7c1b475a99a

Given {[c3: $n \in \mathbb{Z}^+$ and $n \geq 3$,]] {[c1: the dihedral group of order 2n]] is denoted {[c2: D_{2n} .]]

Note 5

a81873dbe4e6432f93bb1d8c3c5978f1

Given $n \in \mathbb{Z}^+$, $n \geq 3$ and $s, t \in D_{2n}$, (real-the product st) is defined to be (left-the symmetry obtained by first applying t then s to the n-gon.))

Note 6

1457d2279c1d432a9d371d8797d9b62

Given $n \in \mathbb{Z}^+$ and $n \geq 3$,

$$|D_{2n}| = \{\{c1::2n.\}\}$$

Given $n \in \mathbb{Z}^+$ and $n \geq 3$, $|D_{2n}| = 2n$. What is the key idea in the proof?

Every symmetry is uniquely determined by how it affects some two adjacent vertices.

Note 8

la3443407b8641c5adc691e47eef2f1e

For convenience, the regular n-gon viewed in D_{2n} is fixed (centered at the origin.)

Note 9

b85d695a3fff47fbafbff07b7a341cd0

For convenience, the vertices of the regular n-gon viewed in D_{2n} are labeled (consecutively from 1 to n in a clockwise manner.)

Note 10

8005824717e34f4a8e154dfa84d25f17

In the context of the D_{2n} group, let $\{c_2, r\}$ be $\{c_1, t\}$ be $\{c_2, r\}$ be $\{c_1, t\}$ rotation clockwise about the origin through $2\pi/n$ radian.

Note 11

8439aae412044be9bf8f6c59334cd570

In the context of the D_{2n} group, let $\{(c_2,s)\}$ be $\{(c_1,t)$ the reflection about the line of symmetry through vertex 1 and the origin.

Note 12

d46303ae65e74f2e8f610b873f4e559b

In the context of the D_{2n} group, is it possible that $s = r^i$ for some i?

No.

Note 13

5aaf 131bef 484c 89b 455ce 9f 5b 4a 2ea

In the context of the D_{2n} group, is it possible that $sr^i = sr^j$ for some $i \not\equiv j \pmod{n}$?

Note 14

79c14b3dba52416f934c9d820acb0be7

Each element of D_{2n} can be written (c2: uniquely) in the form (c1: $s^k r^i$ for some k=0 or 1 and $0 \le i \le n-1$.)

Note 15

f3a7147f62d84c53b1eec4f7da081eba

In the context of the D_{2n} group,

$$r^i s = \{\{c1:: sr^{-i}, \}\} \text{ for } \{\{c2:: all \ 0 \le i \le n\}\}.$$

Note 16

2600f25fd1ec408h8e47e341dc6cdb64

In the context of the D_{2n} group,

$$r^i s = s r^{-i}$$
, for all $0 \le i \le n$.

What is the key idea in the proof?

 $rs = sr^{-1}$ and by induction.

Note 17

f56559b6eae841cea409f8438221c1b

(Case A subset S of elements) of a group G with the property that (Case element of G can be written as a (finite) product of elements of S and their inverses) is called (Case a set of generators of G.)

Note 18

d72e348121f94214980378f08a5e45a3

If S is ((c2: a set of generators)) of a group G, we shall write ((c1:

$$G = \langle S \rangle$$
.

}}

Note 19

7bc8f288fd5d45e0a89eb59abdc9581

If S is $\{\{c2: a \text{ set of generators}\}\}$ of a group G, we shall say G is $\{\{c1: a \in S\}\}$

In terms of generators, the group $D_{2n} = \{\{c\}: \langle r, s \rangle\}$.

Note 21

4fd6980a252a486980db01306accceef

In a $\{(c): finite\}$ group G a set S generates G if every element of G is $\{(c): a \text{ finite product of elements of } S.\}$

Note 22

90b6154b7aaa48398ddeeb91083d71ac

In the D_{2n} group, the relations $r^n = 1$, $s^2 = 1$ and $rs = sr^{-1}$ have the additional property that period any other relation between elements of the group may be derived from these three.

Note 23

1681975ee07c4032a3ced2de0ccfa63

In the D_{2n} group, the relations $r^n = 1$, $s^2 = 1$ and $rs = sr^{-1}$ have the additional property that any any other relation between elements of the group may be derived from these three. What is the key idea in the proof?

We can determine exactly when two group elements are equal by using only these three relations.

Note 24

b0bcc70704c64cccba8d832a4540749b

Let G be a group. (Calcal Any equations in G that the generators satisfy) are called (Calcal Relations in G.)

Note 25

b8f9a5669c634d39ac14a6115f6b142d

Let G be a group. If $\{|ca| : G$ is generated by a subset $S_{||}$ and $\{|ca| : there$ is some collection of relations such that any relation among the elements of S can be deduced from these, $\|$ we shall call $\|ca| : these$ generators and relations $\|$ $\|ca| : a$ presentation of G. $\|$

Let G be a group. If $\{(cd): a \text{ subset } S\} \}$ and $\{(cd): a \text{ collection of relations } R_1, \ldots, R_m\} \}$ form $\{(cd): a \text{ presentation of } G_s\} \}$ we shall write $\{(cd): a \text{ collection of } G_s\} \}$

$$G = \langle S \mid R_1, \dots, R_m \rangle.$$

}}

Note 27

b8acfa74c7df4502a3b76c59342afbac

One presentation for {case the dihedral group D_{2n} } is

$$\text{(c3::}D_{2n}\text{)} = \left\langle \text{(c2::}r,s\text{)} \mid \text{(c1::}r^n = s^2 = 1, \ rs = sr^{-1}\text{)} \right\rangle.$$

Note 28

06f27cb1fae140be909a72d4d52162a8

If n=2k is even and $n\geq 4$ then (c^3-r^k) is the only (c^2-n) onidentity (c^3-r^k) element of D_{2n} which (c^3-r^k) with all elements of D_{2n} .

Symmetric Groups

Note 1

5103f7401374322997a41574a878c47

Given a set Ω , we the set of all bijections from Ω to itself is denoted from Ω .

Note 2

190a5ea3cc542a09f5d22434fd383e7

Let Ω be a {{cd:nonempty}} set. Then the group ({{c2::}S_{\Omega}}), {{c3::} \circ }) is called {{c1:the symmetric group on the set Ω .}}

Note 3

1b5292492ba47c2b0c6733f4d86e86

Let $n \in \mathbb{Z}^+$. ([62]) The symmetric group on the set $\{1,2,\ldots,n\}$) is called ([61]) the symmetric group of degree n.)

Note 4

b7fae74ed3df4e71b785bd65d2e5e42b

Let $n \in \mathbb{Z}^+$. ((c2): The symmetric group of degree n)) is denoted ((c1): S_{n} .))

Note 5

40a80f61353b460c9200ea835050fc6d

Let $n \in \mathbb{Z}^+$. Then

$$|S_n| = \{\{c1:: n!.\}\}$$

Note 6

971a7ee9395248c3ad6b53fc7e57223c

Gas-A cycle is Gas a string of integers, which represents the element of S_n which Gas cyclically permutes these integers (and fixes all other integers).

Note 7

0d979e8f5d444cd2b20479e738e3b244

Here the cycle $(a_1\ a_2\ \dots\ a_m)$ H in S_n is Helethe permutation

$$a_i \mapsto a_{i+1} \qquad a_m \mapsto a_1.$$

}}

The length) of a cycle in S_n is (clothe number of integers that appear in it.)

Note 9

d53a85a6dc624da7b74414131a5c9b0b

 $\{\{c2:A \text{ cycle of length } t\}\}\$ in S_n is called $\{\{c1:a \text{ } t\text{-cycle.}\}\}\}$

Note 10

59e31cdb5b8644e790c3368b3b37f9fc

Two cycles in S_n are called $\{(c2)\}$ disjoint $\{(c1)\}$ they have no numbers in common. $\{(c1)\}$

Note 11

d1990b072a9244dca0f3ae3ea60a5bf0

Let $\sigma \in S_n$. The representation of σ as the products of pairwise disjoint cycles is called described decomposition of σ .

Note 12

562293a2603f483ab79fd4e9cbd6d36e

{{c2::The identity permutation}} of S_n will be written as {{c1::1.}}

Note 13

2e6d113b0fdf478f9cacb6d733a989c3

 S_n is a {{c2::non-abelian}} group for {{c1::all $n \geq 3.}}}$

Note 14

3ff49b43f20f4b3390f3e555c41492a1

 ${\text{cycles in } S_n \in \mathcal{S}_n \in \mathcal{S}_n$

Note 15

ic2a6cc5ad27457db08cdcca242f5353

Here the cycle decomposition of each permutation in S_n is the Hermitian way of expressing a permutation as Hermitian product of disjoint cycles (up to rearrangement.)

Note 16

f1f1d98922ba4affa25f8a1500989973

The order of a permutation in S_n is the (c2-l.c.m.) of (c1-the lengths of the cycles in its cycle decomposition.)