CS 6501 Natural Language Processing

Feed-forward Neural Networks

Yangfeng Ji

October 3, 2018

Department of Computer Science University of Virginia

Overview

- 1. Introduction
- 2. Feed-forward Neural Networks
- 3. Back Propagation
- 4. Further Comments

Introduction

Classification

Decision function

$$\Psi(x,y) = w_y^{\mathsf{T}} f(x,\theta) \tag{1}$$

- x: data point
- ▶ *y*: label
- \triangleright w_y : classification weights with respect to label y
- $f(x, \theta)$: feature function
- \triangleright θ : parameter of feature function

Example: Feature engineering

How to construct $f(x, \theta)$?

Example sentence

I love drinking coffee

- ▶ Unigram: I, love, drinking, coffee
- ▶ Bigram: I love, love drinking, ...
- ► POS tags: ⟨ I, IN⟩, ...
- ▶ Production rules: $S \rightarrow NP VP, ...$
- **>** ...

Example: Feature engineering

How to construct $f(x, \theta)$?

Example sentence

I love drinking coffee

Vocab I love drinking hate coffee tea
$$x^{\mathsf{T}}$$
 [1 1 1 0 1 0]

$$f(x,\theta) = \mathbf{V}x$$

$$\Psi(x,y) = \mathbf{w}_{y}^{\top}(\mathbf{V}x)$$

where
$$\theta = \mathbf{V}$$

An Alternative View

Vocab	I	love	drinking	hate	coffee	tea
$x^{ op}$	[1	1	1	0	1	o]
\mathbf{V}	v_{I}	$v_{ m love}$	$v_{ m drinking}$	$v_{ m hate}$	$v_{ m coffee}$	$v_{\mathrm{tea}}]$

An Alternative View

$$f(x, \theta) = v_{\rm I} + v_{\rm love} + v_{\rm drinking} + v_{\rm coffee}$$
 (2)

Linear Functions

Looking for a more powerful model then $f(x, \theta) = \mathbf{V}x$? How about

$$f(x, \theta) = UVx$$

Linear Functions

Looking for a more powerful model then $f(x, \theta) = \mathbf{V}x$? How about

$$f(x, \theta) = UVx$$

= $(UV)x$

Not really, maybe a little. Essentially, it is still a linear function with a single matrix decomposed as **UV**.

Nonlinearity

Add a nonlinear function *h*

$$f(x, \theta) = h(\mathbf{V}x)$$

$$\Psi(x, y) = w_y^{\top} h(\mathbf{V}x)$$

Now, it is a neural network!

Example: Sigmoid function

$$h(t) = \frac{1}{1 - e^{-t}}$$

Feed-forward Neural Networks

A Simple Feed-forward Network

A fully-connected feed-forward neural network

$$\Psi(x, y) = w_y^{\top} h(\mathbf{V}x)$$
 (3)

Another Feed-forward Network

$$\Psi(x,y) = w_y^{\top} \cdot \underbrace{h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x))}_{f(x,\theta)}$$
(4)

where h_1 and h_2 are nonlinear functions without parameters (hidden units).

Softmax Function

Normalize the score function to make a probability

$$P(y \mid x) = \sigma(\Psi(x, y))$$

$$= \frac{\exp(\Psi(x, y))}{\sum_{y'} \exp(\Psi(x, y'))}$$
(5)

- ► Main advantage is on training
- ► This is **not** a probabilistic model

Binary classification on a single data point x with $y \in \{0, 1\}$

$$\ell = -y \log P(y = 1 \mid x) - (1 - y) \log(1 - P(y = 1 \mid x))$$
 (6)

Binary classification on a single data point x with $y \in \{0, 1\}$

$$\ell = -y \log P(y = 1 \mid x) - (1 - y) \log(1 - P(y = 1 \mid x))$$
 (6)

• if y = 1:

$$\ell = -\log P(y = 1 \mid x)$$

• if y = 0:

$$\ell = -\log(1 - P(y = 1 \mid x)) = -\log P(y = 0 \mid x)$$

K-class: convert label to *K*-dimensional one-hot vector with $y_k = 1$, if k is the label

$$\ell = -\sum_{k=1}^{K} y_k \log P(y_k = 1 \mid x)$$

$$= -\log P(y_k = 1 \mid x)$$
(7)

K-class: convert label to *K*-dimensional one-hot vector with $y_k = 1$, if k is the label

$$\ell = -\sum_{k=1}^{K} y_k \log P(y_k = 1 \mid x)$$

$$= -\log P(y_k = 1 \mid x)$$
(7)

Essentially, it is the same as negative log-likelihood (NLL) in logistic regression.

Back Propagation

Online Learning

Training NNs with one example at a time (redefine θ as $\{W, U, V\}$)

$$\ell(\boldsymbol{\theta}) = -\log P(\boldsymbol{y}_k = 1 \mid \boldsymbol{x}) \tag{8}$$

Gradient based Learning

Stochastic gradient descent

$$\theta \leftarrow \theta - \eta \cdot \frac{\partial \ell(\theta)}{\partial \theta} \tag{9}$$

For a subset of θ , e.g., w_k

$$w_k \leftarrow w_k - \eta \cdot \frac{\partial \ell(\theta)}{\partial w_k} \tag{10}$$

Gradient based Learning (cont.)

Recall the defition of $P(y \mid x)$

$$\log P(y_k \mid x) = w_k^{\top} \cdot h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x))$$
$$-\log \sum_{k'} \exp(w_{k'}^{\top} \cdot h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x)))$$
(11)

Gradient based Learning (cont.)

Recall the defition of $P(y \mid x)$

$$\log P(y_k \mid x) = w_k^{\top} \cdot h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x))$$
$$-\log \sum_{k'} \exp(w_{k'}^{\top} \cdot h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x)))$$
(11)

Gradient wrt w_k

$$\frac{\partial \ell}{\partial w_k} = -\frac{\partial}{\partial w_k} \log P(y \mid x)$$

$$= -h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x)))$$

$$+ P(y_k \mid x) \cdot h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x))$$
(12)

Basic Derivatives

Basic Derivatives

► Chain rule:
$$\frac{df(g(z))}{dz} = \frac{df(g(z))}{dg(z)} \cdot \frac{dg(z)}{dz}$$

One More Example

Given

$$\ell = -\log P(y \mid x)$$

= -\log \sigma(\mathbf{W} \cdot h_2(\mathbf{U} \cdot h_1(\mathbf{V} \cdot x)))

with the chain rule, we have

$$\frac{\partial \ell}{\partial \mathbf{V}} = \frac{\partial \ell}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial \mathbf{V}}$$

Back Propagation

$$\frac{\partial \ell}{\partial \mathbf{V}} = \frac{\partial \ell}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial \mathbf{V}} \tag{13}$$

Problems of Gradients

$$\frac{\partial \ell}{\partial \mathbf{V}} = \frac{\partial \ell}{\partial \sigma} \cdot \frac{\partial \sigma}{\partial h_2} \cdot \frac{\partial h_2}{\partial h_1} \cdot \frac{\partial h_1}{\partial \mathbf{V}} \tag{14}$$

Vanishing gradients, if $\|\frac{\partial \cdot}{\partial \cdot}\| \ll 1$

$$\|\frac{\partial \ell}{\partial \mathbf{V}}\| \to 0$$
 (15)

Solution: initialize the parameters carefully

Problems of Gradients (cont.)

Exploding gradients, if
$$\|\frac{\partial \cdot}{\partial \cdot}\| > 1$$

$$\|\frac{\partial \ell}{\partial \mathbf{V}}\| > M \tag{16}$$

Problems of Gradients (cont.)

Exploding gradients, if $\|\frac{\partial \cdot}{\partial \cdot}\| > 1$

$$\|\frac{\partial \ell}{\partial \mathbf{V}}\| > M \tag{16}$$

Solution: norm clipping [Pascanu et al., 2013]

$$\tilde{g} \leftarrow \lambda \frac{g}{\|g\|} \tag{17}$$

where $g = \frac{\partial \ell}{\partial \mathbf{V}}$ and $1 < \lambda \le 5$.

Further Comments

Choices of Hidden Units

Tanh function

$$tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Sigmoids

- 1. Symmetric sigmoids such as hyperbolic tangent often converge faster than the standard logistic function.
- 2. A recommended sigmoid [19] is: $f(x) = 1.7159 \tanh\left(\frac{2}{3}x\right)$. Since the tanh function is sometimes computationally expensive, an approximation of it by a ratio of polynomials can be used instead.
- 3. Sometimes it is helpful to add a small linear term, e.g. $f(x) = \tanh(x) + ax$ so as to avoid flat spots.

Choices of Hidden Units (cont.)

Rectified linear unit

$$g(z) = \max\{0, z\}$$

Comparison

- ► Gradient
- ► Input range

Mini-batch

Mini-batch size *K*

$$\theta \leftarrow \theta - \eta \cdot \frac{1}{K} \sum_{k=1}^{K} \frac{\partial \ell_k(\theta)}{\partial \theta}$$
 (18)

- ► Typically $10 \le K \le 100$ [Hinton, 2012]
- ► Larger *K*
 - gives more reliable estiamte of gradient
 - takes advantage of matrix-vector muptiplies on GPU
- Should work together with learning late η

XOR Problem

Summary

- 1. Introduction
- 2. Feed-forward Neural Networks
- 3. Back Propagation
- 4. Further Comments

Reference

Hinton, G. E. (2012).

A practical guide to training restricted boltzmann machines. In *Neural networks: Tricks of the trade*, pages 599–619. Springer.

LeCun, Y. A., Bottou, L., Orr, G. B., and Müller, K.-R. (2012). Efficient backprop.

In Neural networks: Tricks of the trade, pages 9–48. Springer.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013).

On the difficulty of training recurrent neural networks.

 $In\ International\ Conference\ on\ Machine\ Learning,\ pages\ 1310-1318.$