Electricity Markets and Stochastic Producers

Salvador Pineda Morente Assist. Prof. At University of Copenhagen

Tutorial 3: Electricity markets for renewable based energy systems IEEE ISGT Europe 2013, Copenhagen, 6-9 October

Outline

Electricity markets: basic concepts

Electricity markets & uncertainty

Electricity markets & investment

Outline

Electricity markets: basic concepts

Electricity markets & uncertainty

Electricity markets & investment

What is a market?

People need certain products

People can produce such products

Place to trade the products

What is a market?

- A market is any structure that allows buyers and sellers to **exchange** any type of goods, services and information.
- Goods or services are exchange for money.
- Market participants consist of all the buyers and sellers of a good who influence its price.
- The market facilitates trade and enables the distribution and allocation of resources in a society.
- Markets allow any tradable item to be evaluated and priced.

Why is electricity different?

Product	Stored	Transportation	Demand
	 	PARIS (50Kg) ROME (80Kg)	\$4
		i_4 v_g i_3	

Electricity market

We need to know the characteristics of the players:

Large fuel-based units (economy of scale)

Technical constraints (required a schedule)

Far from consumption centers (transmission)

Demand level easily forecast

Known daily, weekly, and yearly patterns

High inflexibility

We need to know the characteristics of the players:

Day-ahead market

Power producers submit offers to sell electricity for the next 24 hours

The demand for the next day is forecast

The cheapest offers are accepted up to the forecast demand

Demand =
$$250x20 = 5000$$
\$

$$G1 = 20x200 = 4000$$
\$

$$G2 = 20x50 = 1000$$
\$

This is called marginal pricing

What about the network?

What about the network?

What should be the price?

Bus
$$1 = 20 \$/MWh$$

Bus
$$2 = 30 \$/MWh$$

Demand =
$$250x30 = 7500$$
\$

$$G1 = 20x200 = 4000$$
\$

$$G2 = 20x25 = 500$$
\$

$$G3 = 30x25 = 750$$
\$

2250\$ extra!!

What about the network?

Minimize
$$C^{D}(p_{G})$$

s.t. $h^{D}(p_{G}, \delta^{0}) - l = 0 : \lambda^{D}$
 $g^{D}(p_{G}, \delta^{0}) \leq 0$

- Large and inflexible units
- Predictable demand
- Day-ahead electricity market
- Generating unit schedules determined 24h ahead
- Electricity price equal to the marginal cost
- Locational marginal prices if the network is congested

09/11/2012 - Daily market hourly price

What about the wind?

Minimize
$$C^{D}(p_{G}, p_{W})$$

s.t. $h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0 : \lambda^{D}$
 $g^{D}(p_{G}, \delta^{0}) \leq 0$
 $p_{W} \leq \widehat{W}$

What about the wind?

Wind cannot be predicted 24-36 hours ahead!!

How do we deal with wind forecast errors?

Nowadays: balancing market

	4-5 p.m.				
Unit	Cost	Offers	Demand		
W	0	30@0			
G1	5	200@10	SEO MIM		
G2	15	100@20	250 MW		
G3	25	100@30			

4-5 p.m.		
DA Sc	hedule	
Unit	MW	
W	30	
G1 200		
G2 20		
G3	-	

4-5 p.m.			
DA Sc	hedule	Balancing	market
Unit	MW	UP	DOWN
W	30	-	1
G1	200	-	
G2	20	10@25	
G3	-	20@35	

4-5 p.m.			
DA Sc	hedule	Balancing	market
Unit	MW	UP	DOWN
W	30	-	ı
G1	200	-	
G2	20	10@25	
G3	-	20@35	

Wind power= 20 MW

4-5 p.m.			
DA Sc	hedule	Balancing	market
Unit	MW	UP	DOWN
W	30	-	-
G1	200	-	
G2	20	10@25	
G3	-	20@35	

Minimize
$$\mathcal{C}^{\mathrm{B}}(y_{\omega'})$$

s.t. $h^{\mathrm{B}}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega'} - p_W^* = 0 : \lambda_{\omega'}^{\mathrm{B}}$
 $g^{\mathrm{B}}(y_{\omega'}, \delta_{\omega'}, p_G^*; W_{\omega'}) \leq 0$

4-5 p.m.		
DA Sc	DA Schedule	
Unit	MW	
W	20	
G1	200	
G2	30	
G3	-	

Let's check the profits

	4-5 p.m.			
Unit	DA market	B market	Fuel cost	Total
W	20×30=600	-25x10=-250	0	350
G1	20x200=4000	0	5x200=1000	3000
G2	20x20=400	25x10=250	15x30=450	200
G3	0	0	0	0

Let's check the profits

	4-5 p.m.			
Unit	DA market	B market	Fuel cost	Total
W	20x30=600	-25x10=-250	0	350
G1	20x200=4000	0	5x200=1000	3000
G2	20x20=400	25x10=250	15x30=450	200
G3	0	0	0	0

Wind producers are paying for forecast errors!!

4-5 p.m.			
DA Sc	hedule	Balancing	market
Unit	MW	UP	DOWN
W	30	-	1
G1	200	-	-
G2	20	10@25	10@15
G3	ı	20@35	1

4-5 p.m.			
DA Schedule		Balancing	market
Unit	MW	UP	DOWN
W	30	-	-
G1	200	-	1
G2	20	10@25	10@15
G3	-	20@35	-

4-5 p.m.		
DA Sc	DA Schedule	
Unit	MW	
W	40	
G1	200	
G2	10	
G3	-	

Let's check the profits

4-5 p.m.						
Unit	DA market	B market	Fuel cost Total			
W	20×30=600	15x10=150	0	750		
G1	20x200=4000	0	5x200=1000	3000		
G2	20x20=400	-15x10=150	15x10=150	100		
G3	0	0	0	0		
L	20x250=5000	0	-	5000		

Let's check the profits

4-5 p.m.						
Unit	DA market	B market	Fuel cost	Total		
W	20x30=600	15x10=150	0	750		
G1	20x200=4000	0	5x200=1000	3000		
G2	20x20=400	-15x10=150	15x10=150	100		
G3	0	0	0	0		
L	20x250=5000	0	-	5000		

Wind producers are paying for forecast errors!!

- Is this fair?
- Is it necessary to clear the market 24-36h ahead?

24-36h ahead

Shorter horizon

Low values of wind penetration!!

- What would happen if wind capacity increases?
- Wind forecast = 100 MW

4-5 p.m.						
Unit	Cost	Offers	Demand			
W	0	100@0	250 MW			
G1	5	200@10				
G2	15	100@20	250 MW			
G3	25	100@30				

What would happen if wind capacity increases?

4-5 p.m.			
DA Schedule			
Unit	Unit MW		
W 100			
G1 150			
G2 -			
G3 -			

What would happen if wind capacity increases?

3 p.m. Wind power = 50 MW

4-5 p.m.			
DA Schedule Regulating market		g market	
Unit	MW	UP DOWN	
W	100		
G1	150	-	
G2	1	10@25	
G3	-	20@35	

What would happen if wind capacity increases?

3 p.m. Wind power = 50 MW

4-5 p.m.			
DA Schedule Regulating m		g market	
Unit	MW	UP DOWN	
W	100		
G1	150	-	
G2	1	10@25	
G3	-	20@35	

What would happen if wind capacity increases?

3 p.m. Wind power = 50 MW

4-5 p.m.			
DA Sc	DA Schedule		g market
Unit	MW	UP DOWN	
W	100	-	ı
G1	150	-	
G2	-	10@25	
G3	-	20@35	

What would happen if wind capacity increases?

3 p.m. Wind power = 150 MW

4-5 p.m.			
DA Schedule		Regulating market	
Unit	MW	UP DOWN	
W	100		
G1	150		
G2	1	10@25	10@15
G3	-	20@35	20@25

What would happen if wind capacity increases?

3 p.m. Wind power = 150 MW

4-5 p.m.			
DA Sc	hedule	Regulating market	
Unit	MW	UP DOWN	
W	100	-	ı
G1	150	1	-
G2	1	10@25	10@15
G3	1	20@35	20@25

Low wind power penetration

24-36h ahead

Shorter horizon

High wind power penetration

Shorter horizon

Electricity market: basic concepts

Outline

Electricity markets: basic concepts

Electricity markets & uncertainty

Electricity markets & investment

Coordination between day-ahead and balancing

Conventional MC

Day-ahead dispatch compute disregarding balancing operation

Stochastic MC

Day-ahead dispatch takes into account balancing operation

Coordination between day-ahead and balancing

Coordination between day-ahead and balancing

Conv MC

Minimize
$$\mathcal{C}^{D}(p_{G}, p_{W})$$

s.t. $h^{D}(p_{G}, p_{W}, \delta^{0}) - l = 0 : \lambda^{D}$
 $g^{D}(p_{G}, \delta^{0}) \leq 0$
 $p_{W} \leq \widehat{W}$

Minimize
$$C^{\mathrm{B}}(y_{\omega'})$$

s.t. $h^{\mathrm{B}}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega'} - p_W^* = 0 : \lambda_{\omega'}^{\mathrm{B}}$
 $g^{\mathrm{B}}(y_{\omega'}, \delta_{\omega'}, p_G^*; W_{\omega'}) \leq 0$

$$\underset{p_{G}, p_{W}, \delta^{0}; y_{\omega}, \delta_{\omega}, \forall \omega}{\operatorname{Minimize}} \quad \mathcal{C}^{D} \left(p_{G}, p_{W} \right) + \mathbb{E}_{\omega} \left[\mathcal{C}^{B} \left(y_{\omega} \right) \right] \\
\text{s.t.} \quad h^{D} \left(p_{G}, p_{W}, \delta^{0} \right) - l = 0 : \lambda^{D} \\
g^{D} \left(p_{G}, \delta^{0} \right) \leq 0 \\
p_{W} \leq \overline{W} \\
h^{B} \left(y_{\omega}, \delta_{\omega}, \delta^{0} \right) + W_{\omega} - p_{W} = 0 , \quad \forall \omega \in \Omega \\
g^{B} \left(y_{\omega}, \delta_{\omega}, p_{G}; W_{\omega} \right) \leq 0 , \quad \forall \omega \in \Omega$$

Minimize
$$\mathcal{C}^{\mathrm{B}}(y_{\omega'})$$

s.t. $h^{\mathrm{B}}(y_{\omega'}, \delta_{\omega'}, \delta^{0*}) + W_{\omega'} - p_W^* = 0 : \lambda_{\omega'}^{\mathrm{B}}$
 $g^{\mathrm{B}}(y_{\omega'}, \delta_{\omega'}, p_G^*; W_{\omega'}) \leq 0$

Coordination between day-ahead and balancing

Coordination between day-ahead and balancing

Conv MC Stoc MC

Agent	Day-ahead
G1	0
G2	86
G3	50
WP	34

Rest of the units dispatched following least-cost merit order

Wind dispatched to its expected production

Coordination between day-ahead and balancing

Conv MC

Agent	Day-ahead	
G1	0	
G2	86	
G3	50	
WP	34	

Rest of the units dispatched following least-cost merit order

Agent	Day-ahead	
G1	40	
G2	70	
G3	50	
WP	10	

G1 dispatched out-of-merit

Wind dispatched to its expected production

Wind dispatched below its expected production

Coordination between day-ahead and balancing

Conv MC

Agent Day aboas		Balancing	
Agent	Day-ahead	High	Low
G1	0		
G2	86		
G3	50		
WP	34		

Agent	Day aband	Balancing		
	Day-ahead	High	Low	
G1	40			
G2	70			
G3	50			
WP	10			

Coordination between day-ahead and balancing

Conv MC

Agont	Day about	Balancing	
Agent	Day-ahead	High	Low
G1	0	0	
G2	86	0	
G3	50	0	
WP	34	16	

Agent	Day-ahead	Balancing	
		High	Low
G1	40		
G2	70		
G3	50		
WP	10		

Coordination between day-ahead and balancing

Conv MC

Agent	Day-ahead	Balancing	
		High	Low
G1	0	0	
G2	86	0	
G3	50	0	
WP	34	16	

Agent	Day-ahead	Balancing	
		High	Low
G1	40	-40	
G2	70	0	
G3	50	0	
WP	10	0	

Coordination between day-ahead and balancing

Conv MC

Agent	Day-ahead	Balancing	
		High	Low
G1	0	0	20
G2	86	0	0
G3	50	0	0
WP	34	16	0

Agent	Day-ahead	Balancing	
		High	Low
G1	40	-40	0
G2	70	0	0
G3	50	0	0
WP	10	0	0

Coordination between day-ahead and balancing

Conv MC

Agent	Day-ahead	Balancing	
		High	Low
G1	0	0	20
G2	86	0	0
G3	50	0	0
WP	34	16	0

Day-ahead cost	3080	
Balancing cost	320	
Load curtailment	320	
Total	3720	

Agont	Day about	Balancing	
Agent	Day-ahead	High	Low
G1	40	-40	0
G2	70	0	0
G3	50	0	0
WP	10	0	0

Day-ahead cost	4000
Balancing cost	-816
Load curtailment	0
Total	3184

Coordination between day-ahead and balancing

Conv MC

Agent Expected	Typootod	Per-scenario	
	High	Low	
G1	1320	0	3300
G2	0	0	0
G3	1000	1000	1000
WP	-900	1020	-3780

Stoc MC

Agent	Agent Expected	Per-scenario	
Agent		High	Low
G1	24	174	-200
G2	0	0	0
G3	1000	1000	1000
WP	916	1326	300

Higher profit of wind producers under Stoc MC

Flexible units may incur losses under Stoc MC

Coordination between day-ahead and balancing

Conv MC

Balancing

- DA dispatch: cheaper go first
- Balancing operation not included
- Minimizes day-ahead cost
- Higher imbalance cost

Day-ahead

- All units obtain profits

- DA dispatch: out of merit-order
- Balancing operation included
- Minimizes total cost
- Reduces imbalance cost
- Flexible units may incur losses

Outline

Electricity markets: basic concepts

Electricity markets & uncertainty

Electricity markets & investment

Power producer

 $\underset{p_{G}^{max}}{\operatorname{Maximize}} \quad \Pi^{\mathrm{D}}\left(p_{G}, \lambda^{\mathrm{D}}\right) - \mathcal{C}^{\mathrm{I}}\left(p_{G}^{max}\right)$

s.t. $i\left(p_G^{max}\right) \leq 0$

 p_G^{max}

Market operator

 $\operatorname{Min}_{p_G,\delta^0} \quad \mathcal{C}^{\mathrm{D}}\left(p_G\right)$

s.t. $h^{\mathrm{D}}(p_G, \delta^0) - l = 0 : \lambda^{\mathrm{D}}$ $g^{\mathrm{D}}(p_G, \delta^0, p_G^{max}) \leq 0$

Bilevel programming

 $\underset{p_{G}^{max}}{\operatorname{Maximize}} \quad \Pi^{D}\left(p_{G}, \lambda^{D}\right) - \mathcal{C}^{I}\left(p_{G}^{max}\right)$

s.t. $i\left(p_G^{max}\right) \leq 0$

$$(p_{G}, \lambda^{D}) \in \arg \begin{cases} \min_{p_{G}, \delta^{0}} & \mathcal{C}^{D}(p_{G}) \\ \text{s.t.} & h^{D}(p_{G}, \delta^{0}) - l = 0 : \lambda^{D} \\ & g^{D}(p_{G}, \delta^{0}, p_{G}^{max}) \leq 0 \end{cases}$$

Solve replacing lower-level problem by its KKT conditions

- Where would you locate new wind generating units?
- What about wind forecast errors?
- We need to model both day-ahead and balancing markets
- Will the coordination between DA-B affect investment?

Investment under Conv MC

Investment under Stoc MC

Investment under Conv MC

Investment under Stoc MC

Thanks for your attention! Questions?

