Decision Trees

10 March 2024 22:06

Why decision trees?

1. Nonlinearity:

Unlike regression models, which assume a funai relationship between the predictors and the target, decision trees can handle complex interactions and non-linearties.

It can do without needing for any transformation of the features.

Decision trees can capture non-linear relationships between predictors and the target.

2. Interpretability:

Decision rules represented by the tree structure are
easy to understand and visualize, making them accessible
to executive who are non-experts:

(VP, Director) <= logif log(odds)

PIs are like a flow charf and business users love flow chart.

3. Scalability:

Decision trees are computionally efficient and scalable to large datasets,
making them suitable for real-time applications and large-scale
data processing
Toaining dataset = 50M 18 ws > a big data

Lines togistic

4. Handling Mixed Data Types

Dts can hardle both numerical and categorical data without the need for one-hot encoding

5. Robustness to outliers and irrelevant features

DIs can handle outliers & noise in the data along with irrelevant features without significantly impacting the model performance.

Gini impurity, Entropy

-> to evalute the important features

6. Automatic selection of Features

DIs perform automatic feature selection by identifying the most important features at each split.

Intuition behind Decision Trees

Decision trees are everywhere.

southil -> is trying to buy a lapstop.

PRICE

BRAND

RAM

ROM

CPV

GPU

DISPLAY

" By - he laptof"

Roof Node:

It represents entire population or sample and this further gets divided into two or homogeneous sets.

Splitting

It is a process of dividing a node into
two or more subnodes.

Decision Node:

When a sub-node splits into further sub-nodes, it is called a decision node.

Branch Sub-Tree

If is a sub-section of entire tree.

scatter Plot

Plsadvantage Cons.

Over Silling: One of most bractical difficulties for decision tree models.

4 Overfitting and Underfitting

Overfilling:

It itselfs when a model learns the Irrining data too well (too much), cop turing noise or random fluctuations as well that may not be representative of true underlying patterns in the data

signs of overfitting.

- Model performs exceptionally well on the training data however if fack to generalize to new unseen data. (performs poorly on the test set)

Reasons for overfilling

- Using a highly complex model with two many parameters
- having insufficient data to support the complexity of the model.

Mitigation:

- Use simpler models ⇒ less no. 9 features

6 so not overfull with the ho of training parameters

- Use increase the amount of straining data

- Regularization techniques to peralize overly complex models.

conclusion: X and Z are highly correlated but they are not related.

View details about correlation #1,369

https://www.tylervigen.com/spurious-correlations

Underfitting

- Underfilting accurs when a model is too
simple to capture the underlying batterns
in the training data, resulting in
for performance on both training of teeling.

4 signs of underfitting

- the model performs poorly on training data
- model is very simple, with almost no fatures
- It also performs foothy on test set.

Reasons for underfitting

- too simple made with too few parameters
- insufficient training or not allowing the model to learn enough during training.
- # Mitigation
- increasing the model complexity by adding more parameters
- ensure sufficient training teme and training data
- use a sophisticated model.
- cross-validation (cv)

to strike the right balance between underfitting.

- Insperparameter tuning to strike the right bolonce between underfitting & overfitting.

Where to split?

DIs use algorithmiss to decide to split a node in two or more subnodes basis a criterian - Gini algorithm

Gini algerifim

Want to group students based on target variable - playing cricket or not.

Variable # D Gender: Split on Gender

N=20 students — across the classes g and 10

Phy cricket = 15 (501.)

Total # stindents who play cnicker)

But-node-12

Female

20 students

10 temple students

12+2

10 temple students

20 x 100 = 65 1.

Calculate Gini for sub-nodes, using formula. (p^2+q^2)

where $\phi = \text{probability}$ of success and q = probability of failure

Gin, index for sub-node female =
$$(0.2 \times 0.2) + (0.8 \times 0.8)$$

 $b = 0.2$
 $1 = 1-b = 0.8$
 $1 = 0.68$

calculated weighted gin index for split at gender (# students in each M &F)
$$= \left(\frac{20}{20} \times 0.55 + \frac{10}{30} \times 0.68\right)$$

20*.55/30 + 10*.68/30=0.5933

split@ gender -> Gini index -> 0.5923.

Variable # 2 class

Play cricket = 6

$$N=30$$
 $N=30$
 $N=30$
 $N=30$
 $N=30$
 $N=30$
 $N=30$

$$\frac{6}{14}$$
 × 100 = $\frac{43}{14}$.

Girin-index for subnode class EX

9/16=0.5625

Giori-Indea for sub-node class X

weighted Giri Index is = 0.51

Conclusion: Gini index for Gender is higher than split on class, the node (root) split will take place on gerder.

Gini impurity = (1-Gini)

Gin, impurity) split on Gender =
$$(1-0.59)$$

= 0.41

