CS 5720 Design and Analysis of Algorithms Homework #4

Raja Kantheti

October 8, 2024

Question 1: Solving Recurrence Relations Using Master Theorem

- (a) T(n) = 5T(n/3) + n
 - This recurrence fits the form T(n) = aT(n/b) + f(n), where a = 5, b = 3, and f(n) = n.
 - Calculate $\log_b a = \log_3 5 \approx 1.46497$.
 - Compare f(n) = n with $n^{\log_b a}$.
 - Since $f(n) = O(n^{\log_b a \epsilon})$ for some $\epsilon > 0$ (specifically, n^1 vs. $n^{1.46497}$), by the Master Theorem (Case 1):
 - $T(n) = \Theta(n^{\log_3 5}) \approx \Theta(n^{1.46497})$
- (b) $T(n) = 2.7T(n/5) + n^2$
 - This recurrence fits the form T(n) = aT(n/b) + f(n), where a = 2.7, b = 5, and $f(n) = n^2$.
 - Calculate $\log_b a = \log_5 2.7 \approx 0.58975$.
 - Compare $f(n) = n^2$ with $n^{\log_b a}$.
 - Since $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$ (specifically, n^2 vs. $n^{0.58975}$), by the Master Theorem (Case 3):
 - $T(n) = \Theta(n^2)$
- (c) T(n) = 2T(n-1) + n
 - This recurrence does not fit the Master Theorem directly because T(n) is based on T(n-1), not T(n/b).
 - However, this can be solved by iteration or substitution. This is a linear homogeneous recurrence with additional term:
 - T(n) = 2T(n-1) + n

• Using iteration:

$$T(n) = 2(2T(n-2) + (n-1)) + n = 4T(n-2) + 2(n-1) + n$$

$$T(n) = 4(2T(n-3) + (n-2)) + 2(n-1) + n = 8T(n-3) + 4(n-2) + 2(n-1) + n$$

- Continuing this pattern and summing the series, we get:
- $T(n) = 2^n T(0) + \sum_{k=0}^{n-1} 2^k k$
- $\bullet \ T(n) = 2^n + n \cdot 2^n$
- The dominant term is 2^n , so:
- $T(n) = \Theta(2^n)$
- (d) T(n) = 1.1T(0.2n) + 1
 - This recurrence fits the form T(n) = aT(n/b) + f(n), where a = 1.1, b = 0.2, and f(n) = 1.
 - Calculate $\log_{0.2} 1.1$.
 - ullet Since b < 1, this doesn't fit the typical Master Theorem format directly, making it difficult to apply the theorem directly.
- (e) $T(n) = 2T(n/2) + n \log_2 n$
 - This recurrence fits the form T(n) = aT(n/b) + f(n), where a = 2, b = 2, and $f(n) = n \log_2 n$.
 - Calculate $\log_b a = \log_2 2 = 1$.
 - Compare $f(n) = n \log_2 n$ with $n^{\log_b a} = n^1$.
 - Since $f(n) = \Theta(n \log n)$, which is polynomially larger than n^1 :
 - $T(n) = \Theta(n \log^2 n)$
- (f) $T(n) = 2T(n/2) + \sqrt{n}$
 - This recurrence fits the form T(n) = aT(n/b) + f(n), where a = 2, b = 2, and $f(n) = \sqrt{n}$.
 - Calculate $\log_b a = \log_2 2 = 1$.
 - Compare $f(n) = \sqrt{n}$ with $n^{\log_b a} = n^1$.
 - Since $f(n) = O(n^{1-\epsilon})$:
 - $T(n) = \Theta(n)$
- (g) $T(n) = 4T(n/2) + \sqrt{n^4 n + 10}$
 - This recurrence fits the form T(n) = aT(n/b) + f(n), where a = 4, b = 2, and $f(n) = \sqrt{n^4 n + 10}$.
 - Calculate $\log_b a = \log_2 4 = 2$.

- Compares $f(n) = \sqrt{n^4} = n^2$ with $n^{\log_b a} = n^2$.
- Since $f(n) = \Theta(n^2)$:
- $T(n) = \Theta(n^2 \log n)$
- (h) $T(n) = 7T(n/3) + \sum_{i=1}^{n} i$
 - This recurrence fits the form T(n) = aT(n/b) + f(n), where a = 7, b = 3, and $f(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} = \Theta(n^2)$.
 - Calculate $\log_b a = \log_3 7 \approx 1.77124$.
 - Compare $f(n) = n^2$ with $n^{\log_b a}$.
 - Since $f(n) = \Theta(n^2)$, and $n^2 > n^{\log_b 7}$:
 - $T(n) = \Theta(n^2)$
- (i) $T(n) = 4T(n/2) + n^n$
 - This recurrence cannot be solved by the Master Theorem because the function $f(n) = n^n$ is super-polynomial and does not fit the form required for the Master Theorem application.
- (j) $T(n) = 8T(n/3) + n^3$
 - This recurrence fits the form T(n) = aT(n/b) + f(n), where a = 8, b = 3, and $f(n) = n^3$.
 - Calculate $\log_b a = \log_3 8 \approx 1.89279$.
 - Compare $f(n) = n^3$ with $n^{\log_b a}$.
 - Since $f(n) = \Omega(n^{\log_b a + \epsilon})$:
 - $T(n) = \Theta(n^3)$

Question 2: Divide-and-Conquer Algorithms

(a) Algorithm 1

Need to check this agian.

- Worst-Case Order of Growth:
 - -T(n) = T(n/3) + O(1)
 - Using Master Theorem: a = 1, b = 3, f(n) = O(1)
 - Since $f(n) = O(n^c)$ for c = 0, and $c < \log_b a$ (i.e., 0; 0), case 1 applies.
 - Thus, $T(n) = \Theta(\log n)$.
- Worst-Case Input:

- An input where Rec1 always takes the second recursive call, causing maximum depth recursion.

• Best-Case Complexity:

- The best-case occurs when the input array has only one element (n = 1), and the algorithm returns A[0] immediately.
- then the complexity would be O(1)

• Best-Case Input:

- input array has only one element (n = 1).

(b) Algorithm 2

• Worst-Case Order of Growth:

- -T(n) = 2T(n/2) + O(1)
- Using Master Theorem: a = 2, b = 2, f(n) = O(1)
- Since $f(n) = O(n^c)$ for c = 0, and $c < \log_b a$ (i.e., $0 \nmid 1$), case 1 applies.
- Thus, $T(n) = \Theta(n)$.

• Worst-Case Input:

 Any input of length n, as the algorithm splits the array and recurses into both halves.

• Best-Case Complexity:

- The best-case occurs when the input array has only one element (n = 1), and the algorithm returns A[0] immediately.
- then the complexity would be O(1)

• Best-Case Input:

- input array has only one element (n = 1).