SIMULATION AS A METHOD

Carelia Gaxiola

OUTLINE

- The logic of simulation
- Research steps
- Validity and validation
- Practical issues in doing simulation research

TERMINOLOGY

THE LOGIC OF SIMULATION

THE LOGIC OF STATISTICAL MODELLING

RESEARCH STEPS

- Define topic and problem
- Specify hypothesis
- List assumptions
- Design and build model
- Verify model
- Validate model
- Draw conclusions

MINIMALITY AND ABSTRACTION

- There are many possible models of a given target
- All models abstract from (ignore) some features of the target
- The more complex the model, the harder it is to build and validate
- The more complex the model, the closer it is to the target
 - the "trap of verisimilitude"

ASSUMPTIONS

- ➤ Complex models require the setting of many parameters (inputs), each of which may have unforeseen consequences on the outputs
- Most input values will have to be assumed, not measured

INTERPRETATION

A working simulation is not the end of the research

UNDERSTANDING AND PREDICTION

- ➤ Possible questions
 - What happened?
 - Model a past process
 - What might happen?
 - Predict the future
 - What are the sufficient conditions for it to happen?
 - Explain a process

BUILDING MODELS

- ➤ What to simulate
- ➤ Size of simulation
 - number of parameters
 - number of agents
- ➤ Type of model
- ➤ Availability of data
- ➤ Programming experience and effort

TOOLS

- Special purpose 'toolkits' and 'packages'
 - ➤ adaptability? complexity?
- ➤ Special purpose simulation language
 - ➤ flexibility?
- ➤ General purpose programming language
 - ➤ C++, Lisp, Smaltalk, Java
 - ➤ development tools?
 - ➤ graphics?

REQUIREMENTS

- ➤ Permit exploratory programming and incremental development
- Good debugging facilities
- ➤ Efficient, for multiple runs
- ➤ Easy to learn and in widespread use
- ➤ Easy to use input and output
 - Input: buttons, sliders, text input, read from databases
 - Output: plots, files

TOOLS

M A S O N

VALTDATTON

- ➤ A model which can be relied on to reflect the behavior of the target is "valid"
- ➤ Invalidity may result from:
 - generation of spurious outputs.
 - failure to generate required outputs.

VALIDITY

- ➤ Other related questions
 - sensitivity to values of the input parameters
 - ➤ do small changes in the values of the inputs result in large changes in the outputs?
 - repeatability
 - ➤ is he output similar on every run?
 - simplicity
 - ➤ could the model be simplified without affecting its validity?

VALIDITY

➤ Sensitivity analysis

- repeatedly run the model with small variations in input parameters and observe outputs
- ➤ but space of possible input values exceedingly large
- ➤ Compare outputs with observed data
 - 'observations' may be impossible
 - ➤ too abstract (e.g. segregation model)
 - ➤ inaccessible (e.g. social complexity in 20,000 B.C.)
 - differences may be due to any or all of:
 - ➤ bad model
 - ➤ bad data
 - ➤ model is an abstraction of the target
 - ➤ 'random' variations, but sampling distribution is unknown

RANDOMNESS

- > Functions of randomness:
 - Substitute or all the external and environmental processes which are not being modeled (i.e. exogenous factors) such as effects of the job market
- ➤ Substitute for agents' internal processes
 - preferences, emotions, etc.
- ➤ Avoid spurious sequential or temporal effects
 - e.g. updating procedures in CA models
- ➤ Demonstrate robustness of results
 - varying initial conditions and parameters

RECOMMENDATIONS

- Start with some 'stylized facts'
- ➤ Be deductive, not inductive
- Consider 'crucial experiments'
- ➤ Use simulation to develop theories not toys

JOURNALS

➤ JASS

Journal of Artificial Societies and Social Simulation

➤ CMOT

Computational and Mathematical Organization Theory

