臺北區 109 學年度第二學期 指定科目第二次模擬考試

數學甲

-作答注意事項-

考試範圍:第一~四冊全、選修數學甲全

考試時間:80分鐘

作答方式: •選擇(填)題用 2B 鉛筆在「答案卡」上作答; 更正時,應以橡皮擦擦拭,切勿使用修正液(帶)。

- · 非選擇題用筆尖較粗之黑色墨水的筆在「答案卷」上作答;更正時,可以使用修正液(帶)。
- 未依規定畫記答案卡,致機器掃描無法辨識答案;或未使用黑色墨水的筆書寫答案卷,致評閱人員無法辨認機器掃描後之答案者,其後果由考生自行承擔。
- 答案卷每人一張,不得要求增補。

選填題作答說明:選填題的題號是A,B,C,……,而答案的格式每題可能不同,考生必須依各題的格式填答,且每一個列號只能在一個格子畫記。請仔細閱讀下面的例子。

例:若第 B 題的答案格式是 $\frac{\textcircled{18}}{\textcircled{19}}$,而依題意計算出來的答案是 $\frac{3}{8}$,則考 生必須分別在答案卡上的第 18 列的 $\overset{3}{\bigcirc}$ 與第 19 列的 $\overset{8}{\bigcirc}$ 畫記,如:

例:若第 C 題的答案格式是 $\frac{@@}{50}$,而答案是 $\frac{-7}{50}$ 時,則考生必須分別在答案卡的第 20 列的 \Box 與第 21 列的 \Box 畫記,如:

祝考試順利

版權所有·翻印必究

第壹部分:選擇題(單選題、多選題及選填題共占76分)

一、單選題(占18分)

說明:第1題至第3題,每題有5個選項,其中只有一個是正確或最適當的選項,請畫記在答案卡之「選擇(填)題答案區」。各題答對者,得6分;答錯、未作答或畫記多於一個選項者,該題以零分計算。

- 1. 對於正整數 n,已知空間中一直線 $\frac{x+1}{2} = \frac{y+3}{3} = \frac{z-1}{2}$ 與平面 2nx+3y+nz=8n 的唯一交點 為 (a_n,b_n,c_n) ,則 $\lim_{n\to\infty}a_n$ 之值為下列哪一個選項?
 - (1) 1
 - $(2)\frac{3}{2}$
 - (3)2
 - (4) 3
 - $(5)\frac{7}{2}$
- 2. 如右圖,一圓的內接四邊形 ABCD,若已知 $\overline{AB}=4$, $\overline{CD}=8$, $\angle ACB+\angle CAD=90^{\circ}$,則四邊形 ABCD 外接圓的面積是哪一個選項?

- (1) 15π
- (2) 16π
- (3) 18π
- (4) 20π
- $(5) 25\pi$
- 3. 已知兩複數 z_1 , z_2 滿足 $|z_1|=2$ 且 $|z_2+18|=|z_2-24i|$ 。若 $|z_1-z_2|=n$,且 n 為整數,則 n 的最小可能值為多少?
 - (1) 1
 - (2) 2
 - (3) 3
 - (4) 4
 - (5) 0

二、多選題(占40分)

說明:第4題至第8題,每題有5個選項,其中至少有一個是正確的選項,請將正確選項畫 記在答案卡之「選擇(填)題答案區」。各題之選項獨立判定,所有選項均答對者,得 8分;答錯1個選項者,得4.8分;答錯2個選項者,得1.6分;答錯多於2個選項或 所有選項均未作答者,該題以零分計算。

- 4. 設f(x) 是一個五次實係數多項式,已知 $f(i+2)=f(2)=f(2\sqrt{3})=0$ 且f(x)<0 的解為x<2, 試選出正確的選項。
 - (1) i+2、i-2、2、2√3 皆為方程式 f(x)=0 的根
 - (2)除了 $2 \times 2\sqrt{3}$ 外,其他實數都不是方程式 f(x)=0 的根
 - (3) f(x) 的領導係數必為正實數
 - (4)方程式 $f(x^2) = 0$ 不一定有實根
 - (5)若對於所有實數 x,g(20-x)=f(x) 皆成立,則 g(17)>0

5. 夜晚的天空有無數的星星閃爍其中,有些明亮耀眼,有些黯淡無光,因為星星和地球的距離各不相同,因此在地球所見恆星的亮度 (m) 受到本身的發光強度 (M) 及其與地球距離 (d) 兩因素影響。設一恆星本身發光的強度為絕對星等 M,而在地球所見恆星的亮度為視星等 m,恆星與地球距離為 d,d。是一個標準距離單位,約等於 32 光年,則 M、m、d 三者之間的關係是

$$M=m+5\log\left(\frac{d_0}{d}\right)$$
,

天文學家便是依此判斷實際恆星本身發光的強度 (M)。已知一般人的肉眼能夠分辨的極限大約為視星等 6.5 以下。試依此判斷選出正確的選項。

- (1)由地球測量出織女星視星等為0,且織女星距地球約為26光年,則織女星絕對星等M>0
- (2)若有一恆星 α 的絕對星等為 0 ,且視星等也為 0 ,則其與地球之距離約等於 32 光年
- (3)承(2),若有另一恆星 β 的絕對星等也為0 且與地球之距離比恆星 α 小,則其視星等會大於0
- (4)發光強度相等之兩恆星,於地球測得亮度分別為 m_1 、 m_2 ,兩恆星與地球距離分別為 d_1 、 d_2 ,若 $m_1-m_2=k$,則 $\frac{d_1}{d_2}=\frac{k}{5}$
- (5)在與地球相同距離之恆星,其絕對星等與視星等之差為定值

- 6. 西元 3030 年,某種新型 C 病毒造成一種新型傳染病 COVID-30。
 - 已知有一種檢測試劑可以對 99 %的 C 病毒感染者檢測出陽性,對於沒有感染 C 病毒的人,則有 99 %機率檢測出陰性。某 T 國的境內有一百萬人口,其中有「萬分之 8」的人口感染 C 病毒;在 T 國境之外則有「千分之 6」的人感染 C 病毒。若境外人士要入境,則必須接 受兩次篩檢,這兩次篩檢的結果是獨立的。試選出正確的選項。
 - (1)若針對境內人口進行普篩(每人檢測一次),則檢測結果為陽性的人數期望值不到10,000人
 - (2) 若針對境內人口進行普篩 (每人檢測一次),則偽陽性的人數期望值超過 8,000 人
 - ■:「偽陽性」是指檢測結果為陽性,但實際上並未感染 C 病毒
 - (3)若某境內人士檢測一次的結果為陽性,則他真的感染 C 病毒的機率超過 10 %
 - (4)若一境外人士感染 C 病毒,則他入境時所做的兩次篩檢中至少有一次是陽性的機率超過 99.9 %
 - (5)若一境外人士要入境,他所做的兩次篩檢都是陰性,則他其實感染了C病毒的機率低於「十萬分之一」

7. 聯立不等式 $\begin{cases} (x-15)^2 + (y+2)^2 \le 5 \\ -2y + y \le k \end{cases}$ 的解在坐標平面上形成的圖形面積為 A ,已知 $0 < A \le \frac{5\pi}{2}$,

試選出 k 可能的數值。

- (1)-40
- (2) 36
- (3) 32
- (4) 28
- (5) 24

- 8. 已知 f(x) 是一個四次實係數多項式,且 f'(x)=0 有 3 個實根 $a \cdot b \cdot c$ (a < b < c), f''(x)=0 有 2 個實根 $d \cdot e$ (d < e),則下列哪些選項是正確的?
 - (1) d < b 一定成立
 - (2) y=f(x) 的圖形對稱於直線 x=b
 - (3) y=f(x) 的圖形在 d 與 b 之間凹口向下
 - (4)當m 為任意實數,y=f(x)的圖形與直線y-f(c)=m(x-c)最多有三個交點
 - (5) y=f'(x) 的圖形在 x=d 處一定有相對極值

三、選填題(占18分)

說明:1.第A至C題,將答案畫記在答案卡之「選擇(填)題答案區」所標示的列號(9-16)。 2.每題完全答對給6分,答錯不倒扣,未完全答對不給分。

A. 對矩陣
$$\begin{bmatrix} 2 & 3 & a & c \\ 4 & 5 & b & d \end{bmatrix}$$
作列運算若干次後得到 $\begin{bmatrix} 1 & 0 & 5 & 4 \\ 0 & 1 & 3 & 2 \end{bmatrix}$,則 $a+b-c-d=$ ______。

B. 坐標平面上,O(0,0)、A(2,1)、B(1,3),已知 $\triangle OAP$ 面積為 8, $\triangle OBP$ 面積為 9,試求 $|\overrightarrow{OP}|$ 之最小值為 $\sqrt{20}$ 。 (化為最簡根式)

C. 某觀光勝地有名地標龍虎雙塔,其中天龍塔高 40 公尺,地虎塔高 20 公尺,兩塔距離 80 公尺。現在想要在平地上找尋一個「觀塔點」,並希望自觀塔點看兩塔頂的兩視線互相垂直,且看兩塔頂的仰角相同。為了方便計算觀塔點位置,建置一個空間直角坐標系,xy 平面為地面,天龍塔底在 A(0,40,0),地虎塔底在 B(0,-40,0),若符合條件的觀塔點在 P(x,y,0),則 y= ④⑤⑥。

第貳部分:非選擇題(占24分)

說明:本部分共有二大題,答案必須寫在「答案卷」上,並於題號欄標明大題號(一、二) 與子題號((1)、(2)、……),同時必須寫出演算過程或理由,否則將予扣分甚至零分。 作答務必使用筆尖較粗之黑色墨水的筆書寫,且不得使用鉛筆。每一子題配分標於題末。

- -、已知f(x) 為實係數多項式,且 $\lim_{x\to 5} \frac{f(x)}{(x-5)^2} = L$ 。
 - (1) 請證明: f(5)=0。(2分)
 - (2) 請證明:f'(5)=0。(2分)
 - (3) 若 $f(x)=x^4+ax^2+b$, 試求數對 (a,b) 以及L之值。(4分)
 - (4) 承(3),試求 y=f(x) 與 x 軸所圍成的封閉區域面積。(4 分)

二、已知函數 $f(x) = a \sin 2x + 3 \cos 2x + c$ 的部分圖形如右,函數 y = f(x) 圖形與 x 軸相切且通過點 $P(4\pi, 8)$,又設 f(x) = 2 的正實根 由小而大排列為 x_1 , x_2 , x_3 , x_4 , x_5 ,……,試回答下列問題。

- (2) |a| = ?(2 分)
- (3) a=?(4分)
- (4) $x_4 = ? (4 分)$

數學考科詳解

題號	1.	2.	3.	4.	5.	6.	7.	8.	
答案	(3)	(4)	(3)	(2)(3)(5)	(1)(2)(5)	(2)(4)(5)	(2)(3)	(1)(5)	

第壹部分:選擇題

一、單選題

1. (3)

難易度:易

出處:選修數學甲(下)第一章〈極限與函數〉、第四冊第二章〈空間中的平面與直線〉

目標:利用直線參數式求得一般式,並求得極限

解析:已知
$$\frac{x+1}{2} = \frac{y+3}{3} = \frac{z-1}{2}$$
,令
$$\begin{cases} x = -1 + 2t \\ y = -3 + 3t \end{cases}$$
,t 為實數,代入平面 $2nx + 3y + nz = 8n$ $z = 1 + 2t$

可得
$$2n(-1+2t)+3(-3+3t)+n(1+2t)=8n$$

整理後得
$$t=\frac{9n+9}{6n+9}$$

所以
$$x = a_n = -1 + 2 \times \frac{9n + 9}{6n + 9}$$
 , $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \left(-1 + 2 \times \frac{9n + 9}{6n + 9} \right) = -1 + 2 \times \frac{9}{6} = 2$

故骥(3)。

2. (4)

難易度:中

出處:第三冊第一章〈三角〉

目標:了解正弦定理的使用

解析:設四邊形 ABCD 外接圓的半徑為 R, $\angle ACB = \theta$, 則 $\angle CAD = 90^{\circ} - \theta$

同理,
$$\frac{\overline{CD}}{\sin \angle CAD} = 2R \Rightarrow \frac{8}{\sin(90^{\circ} - \theta)} = 2R$$

$$\Rightarrow R \cos \theta = 4 \cdots (2)$$

 $由①^2+②^2$ 得 $(R \sin \theta)^2+(R \cos \theta)^2=2^2+4^2 \Rightarrow R^2=20$

四邊形 ABCD 外接圓的面積為 $\pi R^2 = 20\pi$

故選(4)。

3. (3)

難易度:中

出處:選修數學甲(上)第二章〈三角函數〉

目標:了解複數平面的幾何意涵

解析:在複數平面所對應的坐標平面上,因為 $|z_1|=2$

所以 z_1 代表的點會在圓 $x^2+y^2=4$ 上

 $\Rightarrow A(-18, 0) \cdot B(0, 24)$

因為 $|z_2+18|=|z_2-24i|$,所以 z_2 代表的點會在 \overline{AB} 的中垂線

L: 3x+4y-21=0 \perp

$$|z_1-z_2| \ge d(O,L)-r = \frac{21}{5}-2 = 2\frac{1}{5}$$

所以n的最小整數值為3

故選(3)。

二、多選題

4. (2)(3)(5)

難易度:易

出處:第一冊第二章〈多項式函數〉

目標:求方程式的解、判斷根的屬性

解析:因f(x) 為實係數多項式,且f(2+i)=0 由虛根成對定理得f(x)=0 有 2+i、2-i 兩虛根又f(x)<0 的解為x<2,各區間正負如下:

得
$$f(x) = a(x - (2+i))(x - (2-i))(x - 2)(x - 2\sqrt{3})^2$$
,a 為實數

$$(1)$$
 ×: 應為 $2+i \cdot 2-i \cdot 2 \cdot 2\sqrt{3}$ 皆為 $f(x)=0$ 的根

(2)
$$\bigcirc$$
: $f(x) = 0$ 的實根僅 2、 $2\sqrt{3}$ (重根)三個

(4)
$$\times$$
: 方程式 $f(x^2) = 0 \Rightarrow a(x^4 - 4x^2 + 5)(x^2 - 2)(x^2 - 2\sqrt{3})^2 = 0$
其中 $x^2 - 2 = (x + \sqrt{2})(x - \sqrt{2})$ 可知 $\sqrt{2}$ 必為 $f(x^2) = 0$ 的一根

(5) 〇:對於所有實數,
$$g(20-x)=f(x)$$
 皆成立
則當 $x=3$ 時, $g(20-3)=f(3)\Rightarrow g(17)=f(3)$
因為 $2<3<2\sqrt{3}$,故 $g(17)=f(3)>0$

故選(2)(3)(5)。

5. (1)(2)(5)

難易度:中

出處:第一冊第三章〈指數、對數函數〉

目標:應用對數律進行運算

解析:
$$(1)$$
〇: $M=0+5\log\frac{32}{26}>0$

$$(2)\bigcirc:0=0+5\log\frac{32}{d_{\alpha}}\Rightarrow\log\frac{32}{d_{\alpha}}=0\Rightarrow\frac{32}{d_{\alpha}}=1\Rightarrow d_{\alpha}=32$$

$$(3) \times : 0 = m_{\beta} + 5 \log \frac{32}{d_{\beta}} \Rightarrow m_{\beta} = -5 \log \frac{32}{d_{\beta}}$$

所以
$$m_{\beta} = -5 \log \frac{32}{d_{\beta}} < 0$$

(4)
$$\times$$
: $M = m_1 + 5 \log \frac{32}{d_1} = m_2 + 5 \log \frac{32}{d_2}$

$$\Rightarrow m_1 - m_2 = 5 \log \frac{32}{d_2} - 5 \log \frac{32}{d_1}$$

$$\Rightarrow k = 5 \left[\log \frac{32}{d_2} - \log \frac{32}{d_1} \right]$$

$$\Rightarrow 5 \log \frac{d_1}{d_2} = k$$

$$\Rightarrow \log \frac{d_1}{d_2} = \frac{k}{5}$$

$$\Rightarrow \frac{d_1}{d_2} = 10^{\frac{k}{5}}$$

(5)○:設某星的絕對星等為 M_t ,視星等為 m_t

當距離
$$d$$
 為定值,則 $M_t = m_t + 5 \log \frac{32}{d} \Rightarrow M_t - m_t = 5 \log \frac{32}{d}$ 為定值

故選(1)(2)(5)。

6. (2)(4)(5)

難易度:中

出處:第二冊第三章〈機率〉、選修數學甲(上)第一章〈機率統計〉

目標: 貝氏定理、獨立事件、期望值、機率的估算

解析:

	境內(人數期望值)	檢測結果為陽性	檢測結果為陰性	合計	
ſ	真的感染 C 病毒	792	8	800	
Ī	沒有感染 C 病毒	9992	989208	999200	
	合計	10784	989216	1000000	

(1) ×: 根據上表,檢測結果為陽性的人數期望值為 10784 人

(2)○:根據上表,偽陽性人數期望值為9992人

(3) \times : 根據上表,若境內人士被檢測為陽性,則他真的罹患該傳染病的機率為 $\frac{792}{10784}$ < 10%

境外(機率)	至少一次為陽性	兩次皆為陰性	合計
真的感染 C 病毒	0.0059994	$0.006 \times 0.01 \times 0.01 = 0.00000006$	0.006
沒有感染 C 病毒	0.0197806	$0.994 \times 0.99 \times 0.99 = 0.9742194$	0.994
合計	0.0257800	0.9742200	1.000

(4) 〇:若一境外人士感染 C 病毒,則他入境時所做的兩次篩檢皆為陰性的機率為 $0.01 \times 0.01 = 0.01$ %,所以兩次篩檢中至少有一次是陽性的機率 1-0.01 % = 99.99 %,超過 99.9 %

(5) 〇:若一境外人士要入境,他所做的兩次篩檢都是陰性,則他其實感染了 C 病毒的機率為

$$\begin{split} &\frac{0.006\times0.01\times0.01}{0.006\times0.01\times0.01+0.994\times0.99\times0.99} < \frac{0.006\times0.01\times0.01}{0.994\times0.99\times0.99} \\ \approx &\frac{6}{1000} \times \frac{1}{100} \times \frac{1}{100} < \frac{1}{100} \times \frac{1}{100} \times \frac{1}{100} = \frac{1}{1000000} < \frac{1}{1000000} \end{split}$$

故選(2)(4)(5)。

7. (2)(3)

難易度:中

出處:第三冊第二章〈直線與圓〉

目標:判斷圓與直線的關係

解析: $(x-15)^2+(y+2)^2 \le 5$ 的圖形為一圓及其內部

圓心為 (15,-2),圓半徑為 $\sqrt{5}$ 、面積為 5π

而 $-2x+y \le k$ 的圖形為直線-2x+y=k的右側

又
$$A$$
 的範圍為 $0 \le A \le \frac{5\pi}{2}$

當
$$A = \frac{5\pi}{2}$$
 時,直線 $-2x+y=k$ 過圓心 (15,-2)

此時直線為右圖中 $L_1: -2x+y=-32$

當直線-2x+y=k 與圓相切時

圓心 (15,-2) 與直線的距離為半徑
$$\sqrt{5} \Rightarrow \frac{|-2\times15+1\times(-2)-k|}{\sqrt{(-2)^2+1^2}} = \sqrt{5}$$

當 k < -32 時圓的切線為右圖中 $L_2: -2x + y = -37$

此時
$$\begin{cases} (x-15)^2 + (y+2)^2 \le 5 \\ -2x + y \le -37 \end{cases}$$
 的解圖形面積為 0

所以符合範圍 $0 < A \le \frac{5\pi}{2}$ 的 k 值為 $-37 < k \le -32$ 故選(2)(3)。

8. (1)(5)

難易度:難

出處:選修數學甲(下)第二章〈多項式函數的微積分〉

目標:導數、二階導數與函數圖形的關係

解析:f'(x) 為三次多項式,f'(x)=0 有三個相異實根

⇒ x=a,b,c 處有極值

f''(x) 為二次多項式,f''(x)=0 有兩個相異實根

⇒ x=d, e 處有反曲點, y=f(x) 的圖形有兩種, 如右示意圖

(1)○:必定會 a<d<b<e<c

(2) × : 只有在 b-a=c-b 時,圖形才會對稱於直線 x=b

(3) \times : 當 4 次項係數為負時,y=f(x) 的圖形在 d 與 b 之間凹口向上

(4) \times : 當 $m \neq 0$ 時,有可能有四個交點

(5) 〇:多項式 y=f(x) 圖形的反曲點是 y=f'(x) 圖形的極值點

故撰(1)(5)。

三、撰填題

A. 14

難易度:易

出處:第四冊第三章〈矩陣〉

目標:了解矩陣列運算意義

解析:
$$\begin{bmatrix} 2 & 3 & a & c \\ 4 & 5 & b & d \end{bmatrix} \times (-2) \rightarrow \begin{bmatrix} 2 & 3 & a & c \\ 0 & -1 & b - 2a & d - 2c \end{bmatrix} \times 3$$
$$\rightarrow \begin{bmatrix} 2 & 0 & -5a + 3b & -5c + 3d \\ 0 & -1 & b - 2a & d - 2c \end{bmatrix} \times \frac{1}{2}$$
$$\rightarrow \begin{bmatrix} 1 & 0 & \frac{-5a + 3b}{2} & \frac{-5c + 3d}{2} \\ 0 & 1 & 2a - b & 2c - d \end{bmatrix} = \begin{bmatrix} 1 & 0 & 5 & 4 \\ 0 & 1 & 3 & 2 \end{bmatrix}$$

可得
$$\left\{ egin{aligned} -5a+3b \ 2 \ 2a-b=3 \end{aligned}
ight.$$
 , $\left\{ egin{aligned} -5c+3d \ 2 \ 2c-d=2 \end{aligned}
ight.$

解聯立得知 a=19, b=35, c=14, d=26

故 a+b-c-d=14。

B. $2\sqrt{13}$

難易度:易

出處:第三冊第三章〈平面向量〉

目標:使用行列式值計算面積

解析: 設P(x,y)

$$\triangle OAP = \frac{1}{2} \begin{vmatrix} x & y \\ 2 & 1 \end{vmatrix} = \frac{1}{2} |x - 2y| = 8$$

$$\Rightarrow x-2y=\pm 16$$

$$\triangle OBP = \frac{1}{2} \begin{vmatrix} x & y \\ 1 & 3 \end{vmatrix} = \frac{1}{2} |3x - y| = 9$$

 $\Rightarrow 3x-v=\pm 18$

解聯立方程式
$$\begin{cases} x-2y=\pm 16\\ 3x-y=\pm 18 \end{cases}$$
 得:

$$P$$
點可為 $\pm \left(\frac{52}{5}, \frac{66}{5}\right)$ 或 $\pm (-4, 6)$,如右圖中 P_1, P_2, P_3, P_4

故當 P 點為 $\pm (-4, 6)$ 時, $|\overrightarrow{OP}|$ 有最小值為 $2\sqrt{13}$ 。

4 次項係數為負

C. -18

難易度:中

出處:第四冊第一章〈空間向量〉、第三冊第一章〈三角〉

目標:空間坐標、向量、測量

解析:令天龍塔頂 C(0,40,40), 地虎塔頂 D(0,-40,20)

$$\angle CPD = 90^{\circ} \Rightarrow \overrightarrow{CP} \cdot \overrightarrow{DP} = 0 \Rightarrow (x, yP_140, -40) \cdot (x, y+40, -20) = 0$$

 $\Rightarrow x^2 + y^2 - 800 = 0$ (1)

看兩塔頂的仰角相同且塔高 \overline{AC} : \overline{BD} = 2:1 \Rightarrow \overline{PA} : \overline{PB} = 2:1

$$\Rightarrow \sqrt{x^2 + (y - 40)^2} = 2\sqrt{x^2 + (y + 40)^2}$$

$$\Rightarrow 3x^2 + 3y^2 + 400y + 4800 = 0 \cdots 2$$

由①x3-②得 y=-18。

第貳部分:非選擇題

— 、(1)略;(2)略;(3)
$$(a,b)=(-50,625)$$
, $L=100$;(4) $\frac{10000}{3}$

難易度:中

出處:選修數學甲(下)第一章〈極限與函數〉、選修數學甲(下)第二章〈多項式函數的微積分〉

目標:多項式函數極限的性質、多項式的積分

解析:
$$(1) f(5) = \lim_{x \to 5} f(x) = \lim_{x \to 5} \frac{f(x)}{(x-5)^2} \cdot (x-5)^2 = \lim_{x \to 5} \frac{f(x)}{(x-5)^2} \cdot \lim_{x \to 5} (x-5)^2 = L \cdot 0 = 0$$

(2)因為f(5)=0,所以可假設f(x)=(x-5)Q(x),其中 Q(x) 也是實係數多項式於是f'(x)=Q(x)+(x-5)Q'(x)

$$f'(5) = Q(5) + 0 \cdot Q'(5) = Q(5) = \lim_{x \to 5} Q(x) = \lim_{x \to 5} \frac{f(x)}{x - 5}$$
$$= \lim_{x \to 5} \frac{f(x)}{(x - 5)^2} \cdot (x - 5) = \lim_{x \to 5} \frac{f(x)}{(x - 5)^2} \cdot \lim_{x \to 5} (x - 5) = L \cdot 0 = 0 \circ 0$$

$$\lim_{x \to 5} (x-5)^2 \qquad \lim_{x \to 5} (x-5)^2 \qquad \lim_{x$$

由(1)與(2)可知
$$\begin{cases} f(5) = 0 \\ f'(5) = 0 \end{cases} \Rightarrow \begin{cases} 625 + 25a + b = 0 \\ 500 + 10a = 0 \end{cases} \Rightarrow \begin{cases} a = -50 \\ b = 625 \end{cases}$$

所以
$$f(x)=x^4-50x^2+625=(x^2-25)^2=(x-5)^2(x+5)^2$$

$$L = \lim_{x \to 5} \frac{f(x)}{(x-5)^2} = \lim_{x \to 5} (x+5)^2 = 100 \circ$$

(4)
$$y=f(x)=x^4-50x^2+625=(x^2-25)^2=(x-5)^2(x+5)^2$$
,略圖如右

所求面積為 $\int_{-5}^{5} f(x)dx$

$$= \int_{-5}^{5} (x^4 - 50x^2 + 625) dx$$
$$= \left(\frac{1}{5}x^5 - \frac{50}{3}x^3 + 625x\right) \Big|_{-5}^{5} = \frac{10000}{3} .$$

$$\equiv \cdot (1) 5 ; (2) 4 ; (3) -4 ; (4) \frac{3\pi}{2}$$

出處:選修數學甲(上)第二章〈三角函數〉

目標:函數圖形、正餘弦疊合公式、週期

解析:(1) y = f(x) 圖形通過點 $P(4\pi, 8)$

$$\Rightarrow a \sin 8\pi + 3 \cos 8\pi + c = 8$$

$$\Rightarrow 3+c=8$$

 $\Rightarrow c=5$

(2)由疊合公式可得 $f(x) = a \sin 2x + 3 \cos 2x + c$

$$= \sqrt{a^2+9} \sin(2x+\theta) + c$$

可知 y=f(x) 週期為 π , 圖形如右

極小值
$$-\sqrt{a^2+9}+5=0$$

 $\Rightarrow |a| = 4$

(3)①當
$$a=4$$
 時, $f(x)=4\sin 2x+3\cos 2x+5$

$$f(x)$$
 在 $0 < x < \frac{\pi}{4}$ 有極大值,不合

$$f(x)$$
 在 $\frac{\pi}{4}$ < x < $\frac{\pi}{2}$ 有極小值,符合

所以
$$a=-4$$
。

$$(4)$$
 $= 4 $$ $= 2 $$ ~ = 2 $= 2 $$ $= 2 $$ ~ = 2 $= 2 $$ ~ = 2 $= 2 $$ ~ = 2 $= 2 $$ ~ = 2 ~ = 2 $= 2 $$ ~ = 2$$

$$\Rightarrow$$
 $(3 \cos 2x)^2 = (4 \sin 2x - 3)^2$

$$\Rightarrow$$
 9-9 sin² 2x=16 sin² 2x-24 sin x+9

$$\Rightarrow$$
 25 sin² 2x-24 sin 2x=0

$$\Rightarrow$$
 sin 2x(25 sin 2x-24)=0

$$\Rightarrow \sin 2x = 0 \ \vec{\boxtimes} \frac{24}{25}$$

①當
$$\sin 2x = \frac{24}{25}$$
 , $\cos 2x = \frac{7}{25}$, 比較圖形 , 可知解為 $x = x_1$, x_3 , x_5 , ,

②當
$$\sin 2x = 0$$
, $\cos 2x = -1$

$$\Rightarrow 2x = (2n+1) \pi$$

$$\Rightarrow x = \frac{2n+1}{2}\pi (n \text{ Ass})$$

比較圖形,可知
$$x_2=\frac{\pi}{2}$$
 , $x_4=\frac{3\pi}{2}$ 。

非選擇題批改原則

第貳部分:非選擇題

— 、(1)略;(2)略;(3)
$$(a,b)=(-50,625)$$
, $L=100$;(4) $\frac{10000}{3}$

難易度:中

出處:選修數學甲(下)第一章〈極限與函數〉、選修數學甲(下)第二章〈多項式函數的微積分〉

目標:多項式函數極限的性質、多項式的積分

解析:(1)
$$f(5) = \lim_{x \to 5} f(x) = \lim_{x \to 5} \frac{f(x)}{(x-5)^2} \cdot (x-5)^2 = \lim_{x \to 5} \frac{f(x)}{(x-5)^2} \cdot \lim_{x \to 5} (x-5)^2 = L \cdot 0 = 0 \circ (2 分)$$

(2)因為
$$f(5)=0$$
,所以可假設 $f(x)=(x-5)Q(x)$,其中 $Q(x)$ 也是實係數多項式於是 $f'(x)=Q(x)+(x-5)Q'(x)$ (1分)

$$f'(5) = Q(5) + 0 \cdot Q'(5) = Q(5) = \lim_{x \to 5} Q(x) = \lim_{x \to 5} \frac{f(x)}{x - 5}$$

$$= \lim_{x \to 5} \frac{f(x)}{(x-5)^2} \cdot (x-5) = \lim_{x \to 5} \frac{f(x)}{(x-5)^2} \cdot \lim_{x \to 5} (x-5) = L \cdot 0 = 0 \cdot (1 \%)$$

(3)
$$f(x) = x^4 + ax^2 + b \Rightarrow f'(x) = 4x^3 + 2ax$$

所以
$$f(x) = x^4 - 50x^2 + 625 = (x^2 - 25)^2 = (x - 5)^2(x + 5)^2$$

$$L = \lim_{x \to 5} \frac{f(x)}{(x-5)^2} = \lim_{x \to 5} (x+5)^2 = 100 \circ (2 \text{ }\%)$$

$$(4)$$
 $y=f(x)=x^4-50x^2+625=(x^2-25)^2=(x-5)^2(x+5)^2$, 略圖如右

所求面積為 $\int_{-5}^{5} f(x)dx$ (1分)

$$=\int_{-5}^{5} (x^4 - 50x^2 + 625) dx$$
 (1 $\frac{1}{12}$)

$$= \left(\frac{1}{5}x^5 - \frac{50}{3}x^3 + 625x\right)\Big|_{-5}^5 = \frac{10000}{3} \circ (2 \%)$$

$$=$$
 \(\cap(1)\) 5 ; \((2)\) 4 ; \((3)\) -4 ; \((4)\) $\frac{3\pi}{2}$

難易度:難

出處:選修數學甲(上)第二章〈三角函數〉

目標:函數圖形、正餘弦疊合公式、週期

解析:(1) y = f(x) 圖形通過點 $P(4\pi, 8)$

$$\Rightarrow a \sin 8\pi + 3 \cos 8\pi + c = 8 (1 \%)$$

$$\Rightarrow 3+c=8$$

$$\Rightarrow c=5 \circ (1 \%)$$

(2)由疊合公式可得 $f(x)=a \sin 2x+3 \cos 2x+c$ = $\sqrt{a^2+9} \sin (2x+\theta)+c$

可知
$$y=f(x)$$
 週期為 π , 圖形如右

極小值
$$-\sqrt{a^2+9}+5=0$$
 (1分)

$$\Rightarrow |a|=4 \circ (1 \%)$$

(3)①當 a=4 時, $f(x)=4\sin 2x+3\cos 2x+5$

$$f(x)$$
 在 $0 < x < \frac{\pi}{4}$ 有極大值,不合 (2 分)

$$f(x)$$
 在 $\frac{\pi}{4}$ < x < $\frac{\pi}{2}$ 有極小值,符合 (1分)

所以
$$a = -4 \circ (1 \, \text{分})$$

$$(4)$$
解 $-4\sin 2x+3\cos 2x+5=2$ (1分)

$$\Rightarrow$$
 $(3 \cos 2x)^2 = (4 \sin 2x - 3)^2$

$$\Rightarrow 9-9 \sin^2 2x = 16 \sin^2 2x - 24 \sin x + 9$$

$$\Rightarrow$$
 25 sin² 2x - 24 sin 2x = 0

$$\Rightarrow$$
 sin $2x(25 \sin 2x - 24) = 0$

$$\Rightarrow \sin 2x = 0 \stackrel{\text{deg}}{\Rightarrow} (1 \stackrel{\text{deg}}{\Rightarrow})$$

①當
$$\sin 2x = \frac{24}{25}$$
 , $\cos 2x = \frac{7}{25}$, 比較圖形 , 可知解為 $x = x_1$, x_3 , x_5 , ,

②當
$$\sin 2x = 0$$
, $\cos 2x = -1$

$$\Rightarrow 2x = (2n+1) \pi$$

$$\Rightarrow x = \frac{2n+1}{2}\pi (n \, \, \text{為整數})$$

比較圖形,可知
$$x_2=\frac{\pi}{2}$$
 , $x_4=\frac{3\pi}{2}$ 。(2 分)

