Синхронизиране на успоредно изпълниение

Прегред

- Успоредно изпълнение на транзакции
- Проблеми
 - Dirty read, unrepeatable read, phantom
 - Решения заключване на ресурси
- Прецизност на заключването
 - Управление на конкуренцията в В+ дървета
- Още проблеми застой
 - Решения
- Алтернативи на заключването на ресурси

Успоредно изпълниение на транзакции

> Защо? - За да се повиши продуктивността на базата.

T1	T2
R(A)	
W(A)	
	R(B)
	W(B)
R(C)	
W(C)	

Транзакции в SQL

- Характеристики
- Access mode
 - ► READ ONLY | READ WRITE
- Isolation level
- Проблеми

Level	Dirty Read	Unrepeatable Read	Phantom
READ UNCOMMITTED	Maybe	Maybe	Maybe
READ COMMITTED	No	Maybe	Maybe
REPEATABLE READ	No	No	Maybe
SERIALIZABLE	No	No	No

Dirty read и Unrepeatable read

Име	Години	Ранг
Тодор	78	1
Стамат	54	1
Пешо	56	2
Минчо	66	2
Жоро	72	1

Име	Години	Ранг
Тодор	78	1
Стамат	54	1
Пешо	56	2
Минчо	66	2
Жоро	72	1

Име	Години	Ранг
Тодор	78	1
Стамат	54	1
Пешо	56	2
Минчо	66	2
Жоро	72	1
Харалампи	88	1

Име	Години	Ранг
Тодор	78	1
Стамат	54	1
Пешо	56	2
Минчо	66	2
Жоро	72	1
Харалампи	88	1

Резултат = 78

Заключване на ресурси

- Как се осъществява заключването?
- ▶ Процесът се ръководи от Lock manager
 - ► Lock table -> lock table entry
 - ► Transaction table
- Атомарност

Level	Dirty Read	Unrepeatable Read	Phantom
READ UNCOMMITTED	Maybe	Maybe	Maybe
READ COMMITTED	No	Maybe	Maybe
REPEATABLE READ	No	No	Maybe
SERIALIZABLE	No	No	No

Прецизност на заключването

- Ниво/детайлност на заключването
- Използване на йерархията на базата

Застой

Какво е застой в сферата на бази данни?

- Избягване
 - Чрез даване на приоритет на всяка транзакция спрямо времето на пристигане
- Разпознаване
 - Waits-for graphs
 - ► Timeout механизъм
- Избягване срещу разпознаване

Алтернативи на закючването - никакво заключване

- Оптимистичен подход
 - ▶ Четене, валидация и писане
- Timestamp
- ► Thomas write rule

T1	T2	T1	T2
R(A)		R(A)	
	W(A)		Commit
	Commit	W(A)	
W(A)		Commit	
Commit			