

DEPARTAMENTO DE INFORMÁTICA UNIVERSIDAD CARLOS III DE MADRID

Grado en Matemática Aplicada y Computación

Grado en Ingeniería Informática

Formal Languages and Automata Theory Exercises Languages and Formal Grammars Unit 4 – Part 1

- 1. Create a grammar to generate the following languages:
 - a. { a, aa, aaa }
 - b. { a, aa, aaa, aaaa, aaaaa, ...)
 - c. $\{\lambda, a, aa, aaa\}$
 - d. $\{\lambda, a, aa, aaa, aaaa, aaaaa, ...\}$

The notation used to represent each language is:

- a. $\{a^n \mid n \in [1, 3]\}$
- b. $\{a^n | n > 0\}$
- c. $\{a^n \mid n \in [0, 3]\}$
- d. $\{ a^n | n \ge 0 \}$
- 2. Given the grammars $G=(\{c,d\}, \{S,A,T\}, S, Pi\}$ where:

$P_1: S \to \lambda \mid A$	$P_2: S \rightarrow \lambda \mid A$	$P_3: S \rightarrow \lambda \mid A$	$P_4: S \rightarrow cA$	$P_5: S \to \lambda \mid A$
$A \rightarrow AA \mid c$	$A \rightarrow cAd \mid cd$	$A \rightarrow AcA \mid c$	$A \rightarrow d \mid cA \mid Td$	$A \rightarrow Ad \mid cA \mid cd$
			$T \rightarrow Td \mid d$	

Determine the associated languages.

- 3. Create a grammar to generate the following languages:
 - a. $\{a^n b^n | n > 0\}$
 - b. $\{a^n b^m \mid n > 0, 0 \le m \le n\}$
 - c. $\{a^n b^m \mid n > 0, 0 \le m \le n\}$

- 4. Determine the type of the following grammars in the Chomsky Hierarchy. Justify your answer.
 - a. $G=(\{a,b\}, \{A,B,S\}, S, P), P=\{S::=aA, A::=bB, A::=aA, A::=a, B::=\lambda\}$
 - b. G=({a,b,c}, {A,B,C,S}, S, P), P={S::=aAb, S::=Ba, S::=λ, aAbC::=aAbB, aAbC::=aabC, BCc::=AaCc, BCc::=BaAbc, C::=Ca, C::=a}
 - c. G=({house, garden, cat}, {S, CASTLE, FOREST, TIGER}, S, P),
 P={ S::=TIGER garden, S::=FOREST CASTLE, FOREST::=λ, garden
 CASTLE TIGER house::=garden FOREST TIGER house, cat CASTLE
 FOREST ::=cat FOREST house TIGER FOREST, FOREST::=TIGER house,
 FOREST::=garden}
 - d. $G=(\{x,y\}, \{C,A,B,S\}, S, P), P=\{S::=Cx, S::=Cy, S::=By, S::=Ax, S::=x, S::=y, A::=Ax, A::=Cx, A::=x, B::=By, B::=yA, C::=xA\}$
 - e. G=({a,b,c}, {S,B}, S, P), P={S::=abc, S::=aBSc, Ba::=aB, Bb::=bb}
- 5. Given the grammar G,

$$G=(\{a,b,c\}, \{S,A,B\}, S, P), P=\{S::=\lambda, S::=aAc, A::=aA, A::=Ac, A::=B, B::=b, B::=Bb\}$$

It is required:

- a. Specify the type of G in the Chomsky Hierarchy. Justify your answer.
- b. Determine the language L generated by the grammar.
- c. Construct two different derivation trees for a word in L(G).
- d. Verify if the following sentential forms are valid in G, and write a derivation chain to generate the valid ones.
 - 1) aaAcc
 - 2) ac
 - 3) ababBcc
 - 4) abbccc
- 6. Obtain the grammar corresponding to the language $L=\{a^nb^mc^pa^qb^n$, such that q=p+m; $n,m\geq 1$; $p\geq 0\}$
- 7. Obtain a grammar for the language with alphabet {a, b, c, d} that consists of all the strings that can be formed by combining these symbols excluding those that contain the substring"bc".
- 8. Obtain a grammar for the language $L = \{x^ny^mz^k \mid m, n, k \ge 0, k=m+n \}$
- 9. Obtain a grammar for the language $\{ab^na / n=0, 1, ...\}$
- 10. Obtain a type-0 grammar for the language $L=\{a^nb^nc^n\}$ where $n\geq 1$.
- 11. Obtain the language generated by the grammar G=({0,1},{S,A,B,C},S,P), where P:

S → BAB BA →BC CA → AAC CB → AAB A→0

B **→**1

12. Design a grammar to generate natural numbers.