Luby's MIS Distributed Algorithm

Runs in time O (log d ·log n)
with high probability

This algorithm is asymptotically better than the previous one.

Lev) be the degree of node v

At each phase :k

Each node
$$\subseteq G_k$$
 elects itself
with probability $p(v) = \frac{1}{2d(v)}$

Elected nodes are candidates for the independent set $^{I}{\it k}$

If two neighbors are elected simultaneously, then the higher degree node wins

Example:

If both have the same degree, ties are broken arbitrarily

Example:

Using previous rules, problematic nodes are removed

The remaining elected nodes form independent set $\,I_{\,k}\,$

Analysis

Consider phase k

A good event for node V

 \mathcal{H}_v :

at least one neighbor enters

 I_{κ}

H_{V} is true, then $v \in \mathcal{N}(I_{Q})$ will disappear at the end of current phase

At the end of phase k

LEMMA 1:

At least one neighbor of V elects itself with probability at least

$$1 - e^{-\frac{d(v)}{2d(v)}}$$

$$\widetilde{d}(v) = \max_{z \in \mathcal{N}(v)} d(z)$$

maximum neighbor degree

PROOF:

No neighbor of elects itself with probability

$$\prod_{z \in \mathcal{N}(v)} (1 - p(z))$$

(the elections are independent)

$$\prod_{z \in \mathcal{N}(v)} (1 - p(z)) = \prod_{z \in \mathcal{N}(v)} \left(1 - \frac{1}{2d(z)} \right)$$

$$\leq \left(1 - \frac{1}{2\tilde{d}(v)}\right)^{d(v)} = \left(1 - \frac{1}{2\tilde{d}(v)}\right)^{\frac{2\tilde{d}(v)d(v)}{2\tilde{d}(v)}} \leq e^{-\frac{d(v)}{2\tilde{d}(v)}}$$

$$d(v) = \max_{z \in \mathcal{N}(v)} d(z)$$
 maximum neighbor degree

Therefore, at least one neighbor of Elects itself with probability at least

END OF PROOF

LEMMA 2:

If a node elects itself, then it enters I_k with probability at leas $\frac{1}{2}$

PROOF:

 \mathcal{K} ode enters I_k if no neighbor of same or higher degree elect itself

Probability that some neighbor of z with same or higher degree elects itself

 $P[\bigcup_{k} (\text{node } u_k \text{ elects itself})]$

$$\leq \sum_{i=1}^{\lambda} p(u_i) \leq \frac{\lambda}{2d(z)} \leq \frac{d(z)}{2d(z)} = \frac{1}{2}$$

Probability that that no neighbor of z with same or higher degree elects itself

$$\mathcal{P}[\bigcap_{k}(no \ node \ u_{k} \ elects \ itself)] =$$

$$1 - \mathcal{P}[\bigcup(\text{node } u_{k} \text{ elects } itself)] \geq 1 - \frac{1}{2} = \frac{1}{2}$$

Thux if elects itself, it enters I_{k} with probability at least $\frac{1}{2}$

$$\mathcal{P}[\mathcal{H}_v] \ge \frac{1}{2} \left(1 - e^{-\frac{d(v)}{2\tilde{d}(v)}} \right)$$

$$\mathcal{H}_{v}$$
:

at least one neighbor of Enters

PROOF:

New event \mathcal{Y}_i : neighbor z_i is in I_k and no node $z_1, z_2, \ldots, z_{i-1}$ is elected

The events
$$\mathcal{Y}_1, \mathcal{Y}_2, \ldots, \mathcal{Y}_{d(v)}$$

are mutually exclusive

$$\mathcal{P}\left[\bigcup_{1 \leq i \leq d \ (v)} \mathcal{Y}_i\right] = \sum_{i=1}^{d \ (v)} \mathcal{P}[\mathcal{Y}_i]$$

It holds:

$$\mathcal{P}[\mathcal{H}_v] \ge \mathcal{P} \left[\bigcup_{1 \le i \le \ell(v)} \mathcal{Y}_i \right]$$

Therefore:

$$\mathcal{P}[\mathcal{H}_{v}] \geq \mathcal{P}\left[\bigcup_{1 \leq i \leq d \ (v)} \mathcal{Y}_{i}\right] = \sum_{i=1}^{d \ (v)} \mathcal{P}[\mathcal{Y}_{i}]$$

$$\mathcal{P}[\mathcal{Y}_i] = \mathcal{P}[\mathcal{A}_i] \cdot \mathcal{P}[\mathcal{B}_i]$$

 \mathcal{A}_i : z_i elects itself and no nod z_1, z_2, \dots, z_{i-1} elects itself

 \mathcal{B}_{i} : after elects itself, it enters I_{k}

$$\mathcal{B}_{i}$$
:

aster elects itself, it enters

 I_{k}

$$\mathcal{P}[\mathcal{B}_i] \ge \frac{1}{2}$$

(from Lemma 2)

$$\mathcal{P}[\mathcal{H}_{v}] \geq \sum_{i=1}^{d} \mathcal{P}[\mathcal{Y}_{i}] = \sum_{i=1}^{d} \mathcal{P}[\mathcal{A}_{i}] \mathcal{P}[\mathcal{B}_{i}] \geq \frac{1}{2} \sum_{i=1}^{d} \mathcal{P}[\mathcal{A}_{i}]$$

$$\left(\mathcal{P}/\mathcal{B}_{i}/\geq\frac{1}{2}\right)$$

$$\mathcal{A}_i$$
: z_i elects itself and no nod z_1, z_2, \dots, z_{i-1} elects itself

The events, $A_2, \ldots, A_{d(v)}$ are mutually exclusive

$$P[\text{at least one neighbor of } v \text{ is elected}]$$

$$= P[\bigcup_{1 \leq i \leq d(v)} \mathcal{A}_i] = \sum_{i=1}^{d} P[\mathcal{A}_i]$$

We showed earlier (Lemma 1) that:

$$P[at \ least \ one \ neighbor \ of \ v \ is \ elected] \geq 1 - e^{-\frac{d \ (v)}{2d\widetilde{\ell} \ (v)}}$$

Therefore:

$$\sum_{i=1}^{d(v)} \mathcal{P}[\mathcal{A}_i] \geq 1 - e^{-\frac{d(v)}{2\tilde{d}(v)}}$$

Therefore node V disappears in phase with probability at least

$$\mathcal{P}[\mathcal{H}_v] \ge \frac{1}{2} \sum_{i=1}^{d} \mathcal{P}[\mathcal{A}_i] \ge \frac{1}{2} \left[1 - e^{-\frac{d(v)}{2\tilde{d}(v)}} \right]$$

END OF PROOF

det be the maximum node degree in the graph G_k

Suppose that in
$$G_k$$
 $d(v) \ge \frac{d_k}{2}$

Then,
$$\widetilde{d}(v) \leq 2d(v)$$

$$\mathcal{P}[\mathcal{H}_v] \ge \frac{1}{2} \left(1 - e^{-\frac{d(v)}{2\tilde{d}(v)}} \right) \ge \frac{1}{2} \left(1 - e^{-\frac{1}{4}} \right) = c$$

$$d(v) \ge \frac{d_{k}}{2}$$

disappears

with probability at least

(thus, nodes with high degree will disappear fast)

G

Consider a node
$$v$$
 which in initial graph has degree $d(v) \ge \frac{d}{2}$

Node does not disappear with probability at most $(1-c)^{\phi}$

Take
$$\phi = 3 \log_{1-c} \frac{1}{n}$$

Node does not disappear within phases with probability at most

$$(1-c)^{\phi} = (1-c)^{3\log_{1-c}\frac{1}{n}} = \frac{1}{n^3}$$

Thus, within
$$3 \log_{1-c} \frac{1}{n}$$
 phases

with probability at least
$$1 - \frac{1}{n^3}$$

Therefore,

by the end of
$$3 \log_{1-c} \frac{1}{p}$$
 hases

$$\frac{d}{2}$$

with probability at least (ineq. 2)

$$\left(1 - \frac{1}{n^3}\right)^n \geq 1 - \frac{1}{n^2}$$

In every 3
$$\log_{1-c} \frac{1}{n}$$
 phases,

the maximum degree of the graph reduces by at least half, with probability at least $1 - \frac{1}{n^2}$

Maximum number of phases until degree drops to 0 (MIS has formed)

$$\log d \cdot 3 \log_{1-c} \frac{1}{n} = O (\log d \cdot \log n)$$

with probability at least (ineq. 2)

$$\left(1 - \frac{1}{n^2}\right)^{\log d} \ge \left(1 - \frac{1}{n^2}\right)^n \ge 1 - \frac{1}{n}$$

Total number of phases:

 $O(\log d \cdot \log n)$

with high probability

Time duration of each phase: O (1)

Total time: $O(\log d \cdot \log n)$