Church-Turing These Een nieuw paradijs

Pieter van Engelen

Radboud Universiteit Nijmegen

03-06-2022

De tijd

De protagonisten

De situatie

Entscheidungsproblem Berekenbaarheidsmodellen De kracht van berekenbaarheid

De these

Voorbij de these?

Hypercomputation Quantum computing

Radboud Universiteit Nijmegen

De These

Every effectively calculable function is computable

Church (1936), Turing (1937)

Alonzo Church (1903 - 1995) Princeton University, USA

- Logicus, wiskundige
- Van 1936 tot 1979 redacteur van Journal of Symbolic Logic
- 'Bedenker' van de λ -calculus
- Eerste-orde predicaat-logica is onbeslisbaar
- Peano-arithmetiek is onbeslisbaar

Alan Turing (1912 - 1954) Cambridge & Manchester

- Grondlegger van
 - Informatical
 - Artificiële intelligentie
 - Morphogenetica
- Legendarisch codebreaker
- Marathonloper

Stephen Kleene (1909-1994)

??? (1897 - 1954)

Das Entscheidungsproblem

Das Entscheidungsproblem

Vind een algoritme waarmee de waarheid van een uitspraak in de eerste orde predikaatlogica vast te stellen is.

(D. Hilbert & W. Ackermann, 1928, Grundzüge der theoretischen Logik)

Entscheidungsproblem

Eerste orde predikaatlogica

(extreem kort door de bocht)

Logica met

- variabelen
- de gebruikelijke operatoren $\land, \lor, \rightarrow, \neg, \ldots$
- predikaten P(x)
- universele en existentiële kwantificatie ∀,∃

Voorbeelden:

$$\forall_{n \in \mathbb{N}} \exists_{m \in \mathbb{N}} [m > n]$$
$$\forall_{p,q \in \mathbb{Q}} \exists_{r \in \mathbb{Q}} [p < r < q]$$

$$\exists_{x}[P(x) \land \forall_{y} \forall_{y'}[P(y) \land P(y') \rightarrow y = y']]$$

Entscheidungsproblem

Eerste orde predikaatlogica

Afspraak:

We hebben het alleen over predikaten en kwantificatie over de natuurlijke getallen $\mathbb N$

Gezocht:

Algoritme wat gegeven een uitspraak roept of die uitspraak WAAR of ONWAAR is.

Probleem:

Wat is een algoritme?

De λ -calculus

Recursietheorie

Turing machines

De equivalentie

 $\lambda - \text{definieerbaar} \stackrel{\text{(Turing 1937)}}{\Longrightarrow} \text{Turing berekenbaar}$

Turing berekenbaar $\overset{\text{(Turing 1937)}}{\Longrightarrow} \mu$ – recursief

 μ - recursief $\stackrel{(Kleene \ 1936)}{\Longrightarrow} \lambda$ - definieerbaar

Pieter van Engelen 03-06-2022 Church-Turing These 14 / 21

De equivalentie

De uitspraken:

- Een functie $f: \mathbb{N} \to \mathbb{N}$ is berekenbaar
- Er bestaat een λ -term F zdd $f(n) = m \Leftrightarrow F^{\Gamma}n^{\gamma} = {^{\Gamma}}m^{\gamma}$
- Er bestaat een μ -recursieve functie ϕ zdd $f(n) = m \Leftrightarrow \phi(n) = m$
- Er bestaat een T.M. zdd $f(n) = m \Leftrightarrow \mathsf{T.M.}_f$ geeft bij invoer $\lceil n \rceil$ uitvoer $\lceil m \rceil$

zijn synoniem met elkaar.

Halting Problem

Pieter van Engelen 03-06-2022 Church-Turing These 16 / 23

Universaliteits principe

De These

Every effectively calculable function is computable Church (1936), Turing (1937) Elke uitrekenbare functie is berekenbaar

Pieter van Engelen 03-06-2022 Church-Turing These 18 / 21

Hypercomputation

Quantum computing

Stephen Kleene (1909-1994)

Emil Post (1897 - 1954)