

# § 4.3幂级数的性质

- 一、收敛半径的求法
- 二、幂级数的性质

解



#### 一、求收敛半径的方法

对于幂级数  $\sum a_n z^n$ , 有

(1) 比值法 如果 
$$\lim_{n\to+\infty} \frac{|a_{n+1}|}{|a_n|} = \lambda$$
,则收敛半径为 $R = \frac{1}{\lambda}$ .

(2) 根值法 如果 
$$\lim_{n\to+\infty} \sqrt[n]{|c_n|} = \rho$$
,则收敛半径为 $R = \frac{1}{\rho}$ .



例 求幂级数  $\sum_{n=0}^{+\infty} \frac{z^n}{n^2}$  的收敛半径与收敛圆。

解 由 
$$\lim_{n\to+\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n\to+\infty} \frac{n^2}{(n+1)^2} = 1$$
,得

收敛半径为 R=1, 收敛圆为 |z|<1.



例 求幂级数  $\sum_{n=0}^{+\infty} (1+\frac{1}{n})^{n^2} (z-1)^n$  的收敛半径与收敛圆。

解 由于 
$$\lim_{n\to+\infty} \sqrt[n]{|a_n|} = \lim_{n\to+\infty} \sqrt[n]{(1+\frac{1}{n})^{n^2}}$$

$$=\lim_{n\to+\infty}(1+\frac{1}{n})^n=e,$$

 $=\lim_{n\to+\infty}(1+\frac{1}{n})^n=e,$  故级数的收敛半径为  $R=\frac{1}{e}$ ,收敛圆为  $|z-1|<\frac{1}{e}$ .



#### 二、幂级数的性质

1. 幂级数的运算性质 P86

性质 设 
$$f(z) = \sum_{n=0}^{+\infty} a_n z^n$$
,  $|z| < r_1$ ,  $g(z) = \sum_{n=0}^{+\infty} b_n z^n$ ,  $|z| < r_2$ , 令  $r = \min(r_1, r_2)$ , 则在  $|z| < r$  内有
$$f(z) \pm g(z) = \sum_{n=0}^{+\infty} a_n z^n \pm \sum_{n=0}^{+\infty} b_n z^n = \sum_{n=0}^{+\infty} (a_n \pm b_n) z^n;$$

$$f(z)g(z) = \sum_{n=0}^{+\infty} a_n z^n \cdot \sum_{n=0}^{+\infty} b_n z^n = \sum_{n=0}^{+\infty} (\sum_{k=0}^{n} a_k b_{n-k}) z^n$$

 $=\sum (a_0b_n+a_1b_{n-1}+\cdots+a_nb_0)z^n$ .



### 三、幂级数的性质

2. 幂级数的分析性质 P87

性质 设 
$$f(z) = \sum_{n=0}^{+\infty} a_n (z-z_0)^n$$
,  $|z-z_0| < R$ , 则

- (1) 函数 f(z) 在收敛圆  $|z-z_0| < R$  内解析。
- (2) 函数 f(z) 的导数可由其幂函数逐项求导得到,即

$$f'(z) = \sum_{n=1}^{+\infty} na_n (z-z_0)^{n-1}$$
.

(3) 在收敛圆内可以逐项积分,即

$$F(z) = \int_{z_0}^{z} f(z) dz = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} (z - z_0)^{n+1}.$$



## 三、幂级数的性质

3. 幂级数的代换(复合)性质

性质 设级数  $\sum_{n=0}^{+\infty} a_n z^n$  在 |z| < R 内收敛,和函数为  $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ ,

又设函数 g(z)在 |z| < r内解析,且满足 |g(z)| < R,则

当
$$|z| < r$$
 时,有 $f[g(z)] = \sum_{n=0}^{+\infty} a_n [g(z)]^n$ .

● 在把函数展开成幂级数时,上述三类性质有着重要的作用。



例 把函数  $\frac{1}{(1-z)^2}$  表示成形如  $\sum_{n=0}^{+\infty} a_n z^n$  的幂级数。

解 方法一 利用乘法运算性质

$$\frac{1}{(1-z)^2} = \frac{1}{1-z} \cdot \frac{1}{1-z} = (1+z+z^2+\cdots)(1+z+z^2+\cdots)$$
$$= 1+2z+3z^2+\cdots+(n+1)z^n+\cdots, |z|<1.$$

方法二 利用逐项求导性质

$$\frac{1}{(1-z)^2} = \left(\frac{1}{1-z}\right)' = (1+z+z^2+\cdots)'$$
$$= 1+2z+3z^2+\cdots+(n+1)z^n+\cdots, |z|<1.$$

\*HUT

第 四章 解 析 函 数 的 级 数 表 示



轻松一下吧 ……