| INSTITUTO FEDERAL  Maranhão Campus Caxias | Curso: Ciência da Computação<br>Professor: Luís Fernando Maia | Nota |  |  |  |  |
|-------------------------------------------|---------------------------------------------------------------|------|--|--|--|--|
| Nome:                                     |                                                               |      |  |  |  |  |
| Disciplina:                               | Data:/_                                                       | /    |  |  |  |  |

## Lista de Exercícios - Pilhas

1. Considere que você está implementando o histórico de links visitados em um navegador utilizando uma pilha. Neste caso, você deve implementar uma pilha dinâmica que armazene o struct apresentado abaixo. Um recurso importante do navegador permite que o usuário volte para qualquer site do histórico (elemento no meio da pilha) e, para isso, você deve implementar o método site\* voltar(Pilha \*p, int n) que recebe uma pilha de sites, juntamente com um determinado número n que indica quantos sites devemos voltar. Portanto, o método irá desempilhar n elementos da pilha e retornar o novo topo.

```
typedef struct reg_site{
    char nome[50];
    char link[100];
} site;
```

 Desenvolva um método que receba como parâmetro uma pilha cujos elementos são números inteiros e retorne como resultado uma nova pilha cujos os elementos estão empilhados na posição inversa à pilha original.



3. Suponha que um programa requer o uso de duas pilhas, onde cada pilha suporta no máximo 20 elementos e em nenhum momento as duas pilhas terão juntas mais do que 30 elementos. Assim, é possível implementar as duas pilhas em um único vetor usando apenas 30 posições ao invés de 40. Implemente a estrutura de dados e as funções de empilhar e desempilhar para estas duas pilhas.

| Pilha1 |   | topo=2 |   |   | topo=28 |    | Pilha2 |  |
|--------|---|--------|---|---|---------|----|--------|--|
|        | 4 | 9      | 6 |   |         | 7  | 5      |  |
|        | 0 | 1      | 2 | 3 | <br>27  | 28 | 29     |  |