1 Réaction avec l'eau

Équation de l'autoprotolyse de l'eau :

$$2 H_2O (\ell) \rightleftharpoons H_3O^+ (aq) + HO^- (aq)$$

Produit ionique de l'eau K_e :

$$K_e = [H_3O^+(aq)]_f \cdot [HO^-(aq)]_f$$

Constante d'acidité Ka:

Soit l'équation AH (aq) + $H_2O(\ell) \Rightarrow A^-(aq) + H_3O^+(aq)$

$$\mathbf{K_{A}} = \frac{\left[\mathbf{A^{-}}\; (\mathbf{aq})\right]_{\mathbf{f}} \cdot \left[\mathbf{H_{3}O^{+}}\; (\mathbf{aq})\right]_{\mathbf{f}}}{\left[\mathbf{AH}\; (\mathbf{aq})\right]_{\mathbf{f}}}$$

Réaction d'un acide ou d'une base avec l'eau :

- si équilibre chimique $\,
 ightarrow\,$ acide faible ou base faible
- si la réaction est totale → acide fort ou base forte

Force des acides et des bases :

2 Solutions d'acide ou de base

Solution d'acide

forte

si
$$pH = -\log c$$

$$\begin{bmatrix} AH (aq) \end{bmatrix}_f = 0$$

$$\begin{bmatrix} A^- (aq) \end{bmatrix}_f = \begin{bmatrix} H_3O^+ (aq) \end{bmatrix}_f = c$$

si $pH \neq -\log c$

composition donnée par la résolution de l'équation $c \cdot \tau^2 + K_A \cdot \tau - K_A = 0$

c est la concentration en quantité de matière d'acide apporté

Solution de base

forte
$$\phi$$
 faible si ϕ faible si ϕ find ϕ si ϕ find ϕ faible

Solution tampon

Son pH varie peu par addition d'une petite quantité d'acide ou de base, et par dilution modérée.

3 Diagrammes d'un couple

Diagramme de prédominance

Application aux acides alpha-aminés

Diagramme de distribution

Application aux indicateurs colorés

Quelques valeurs de pKA à 25 °C

Couple acide/base	Nom des espèces conjuguées	pK _A à 25 °C
$H_3O^+(aq)/H_2O(\ell)$	ion oxonium/ eau	0,0
H ₃ PO ₄ (aq)/ H ₂ PO ₄ (aq)	acide phosphorique/ ion dihydro- génophosphate	2,1
HCOOH(aq)/ HCOO [–] (aq)	acide méthanoïque/ ion méthanoate	3,8
CH₃COOH(aq)/ CH₃COO⁻(aq)	acide éthanoïque/ ion éthanoate	4,8
NH ₄ (aq)/ NH ₃ (aq)	ion ammonium/ ammoniaque	9,3
H ₂ O(ℓ)/ HO [–] (aq)	eau/ ion hydroxyde	14,0

Mesures et Incertitudes

L'incertitude-type sur le pH mesurée est au mieux u(pH) = 0.1.

Cette incertitude-type entraîne une grande incertitude sur la concentration des ions oxonium.

Un pH = 2,5 correspond \hat{a} :

$$[H_3O^+] = c^{\circ} \times 10^{-pH} = 1 \times 10^{-2.5}$$

= 3.2 × 10⁻³ mol · L⁻¹

Un pH = 2,5 + 0,1 = 2,6 correspond à : $[H_3O^+] = c^{\circ} \times 10^{-pH} = 1 \times 10^{-2,6}$

$$[H_3O^+] = c^{\circ} \times 10^{-pH} = 1 \times 10^{-2.6}$$

= 2.5 × 10⁻³ mol · L⁻¹

L'écart relatif entre les deux concentrations vaut:

$$\left| \frac{(3.2 \times 10^{-3} - 2.5 \times 10^{-3})}{(3.2 \times 10^{-3})} \right| = 0.22$$

Une variation de 0,1 unité de pH correspond à une variation de plus de 22 % sur la concentration des ions oxonium en solution.

Évolution du pKe en fonction de la température

Le produit ionique de l'eau comme toutes les constantes d'équilibre dépend de la température.

θ (°C)	pK _e	
0	14,938	
25	13,995	
50	13,275	
100	12,265	

Expression simplifiée de K_e

Le produit ionique de l'eau n'ayant pas d'unité son expression réelle est :

$$K_e = \frac{[H_3O^+]_{\acute{e}q} \times [HO^-]_{\acute{e}q}}{(c^{\circ})^2}$$

Comme $c^{\circ} = 1 \text{ mol} \cdot L^{-1}$, la concentration standard c° est souvent sous-entendue et l'expression simplifiée du produit ionique de l'eau K_e est :

$$K_e = [H_3O^+]_{\acute{e}q} \times [HO^-]_{\acute{e}q}$$