Array Optimization of Marine Hydrokinetic (MHK) Turbines Using the Blade Element Momentum Theory

Teymour Javaherchi
Oskar Thulin
Alberto Aliseda

Goals

- Develop a general numerical methodology for array optimization of horizontal axis MHK turbines.
- Address and investigate the key variables in Marine
 Hydrokinetic (MHK) turbine array optimization (i.e. different
 operating conditions and spacing between devices)
- Maximize energy extraction from a very concentrated resource in estuaries and rivers.

Numerical Methodology

- This model is an implementation of Blade Element Momentum Theory (BEM) in ANSYS FLUENT.
- Lift and Drag forces are calculated for each blade element based on their lift and drag coefficients as input for the model.
- Calculated forces are averaged over a cycle of rotation.
- Effect of rotating blades is simulated on the fluid through a body force.

Computational Domain for a Single Turbine

COLLEGE OF ENGINEERING

UNIVERSITY of WASHINGTON

Normalized Centerline Velocity Deficit in the Turbulent Wake

$$V_d = \frac{\left| V_0 - V_y \right|}{V_0}$$

$$\dot{M}_{y} = \int_{0}^{3R} 2\pi r \rho V_{y}^{2} dr$$

$$\dot{M}_{d} = \frac{\left| \dot{M}_{\infty} - \dot{M}_{y} \right|}{\dot{M}_{\infty}}$$

Normalized Momentum Deficit in the Turbulent Wake

UNIVERSITY of WASHINGTON

Normalized Centerline Velocity Deficit in the HAHT Turbulent Wake Modeled via the VBM.

COLLEGE OF ENGINEERING

UNIVERSITY of WASHINGTON

	Thrust [kN]	Torque [Nm]	Max. AOA [°]	Min. AOA [°]	Calculated Power by VBM [kW]	Available Kinetic Energy Flux on Turbine Plane [kW]	Efficiency []
Turbine 1	75.739	54.042	10.246	6.561	96.207	327.848	0.294
Turbine 2	75.451	53.640	10.231	6.522	95.493	327.488	0.292
Turbine 7	67.443	43.297	8.150	5.838	77.080	226.572	0.340
Turbine 8	72.631	50.022	10.203	5.175	89.052	268.899	0.331

Turbine Efficiency vs. Local Tip Speed Ratio

W

Efficiency of Downstream Turbines at constant Tip Speed Ratio (T.S.R=4.9)

Available Kinetic Energy Flux at a Plane 2R Turbine Upstream [kW]

Effect of Lateral Offset

Conclusions

- A general numerical methodology was developed to study the key parameters in array optimization of MHK turbine.
- Computed a constant efficiency for turbines operating in arrays above a certain TSR (linear behavior), as well as the efficiency decay consistent with separated flow at low TSR (non-linear regime).
- Tip-Tip distance has very small effect on efficiency of neighbor and downstream turbines.
- Offset distance plays an important role in an array of turbine. A lateral offset of 1.75-2 radii provides optimum spacing and minimum loading stress on the device.

Acknowledgment

Research fellows from French Naval Academy:

Mario Beweret Florian Riesemann