ESCUELA DE CIENCIAS BÁSICAS, TECNOLOGÍA E INGENIERÍA -ECBTI

SISTEMAS OPERATIVOS – 301402A _952

PRESENTADO POR: ALEXANDER MANUEL SUAREZ CAMPO

TUTOR: JAIME JOSE VALDES

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA
–UNAD
2021

Momento intermedio

Unidad 2 – Administración de recursos

Tarea 3: Actividad intermedia trabajo colaborativo dos.

Actividad a Desarrollar

Individual: El estudiante realizar los aportes de la fase Individual, Respondiendo los siguientes puntos.

1. Definir los siguientes ítems.

Que son procesos: Procesos con Cada ejecución de un programa da lugar a un proceso es un conjunto de instrucciones y datos almacenados en un fichero. Cuando lo que tiene ese programa se carga en la memoria y se pone en ejecución, se convierte en un proceso.

Definir los 4 eventos que provocan la creación de procesos.

Definir los 4 eventos que provocan la creación de procesos.

- 1. El arranque del sistema: al iniciar se crean muchos procesos:
- procesos primer plano (foreground) que interactúan con el usuario (ejemplo: terminal, entorno gráfico, etc.).
- procesos segundo plano (background): actúan por detrás y la mayor parte del tiempo están a la espera (impresión de documentos, TCP/IP, recepción de correo, etc.).
- **2.** La ejecución desde un proceso, de una llamada al sistema para creación de procesos. Ejecución de un programa en Python, el cual ejecuta un programa para enviar un mail
- 3. Una petición de usuario para crear un proceso: Pulsar un "click" al reproductor de multimedia
- **4.** El inicio de un trabajo por lotes. Un programa que inicie todos los días a las 3:00 AM, el cual ejecute varios procesos (TAREA: estudie el comando crontab)

Por cuantos estados está conformado un proceso.

Los Estados del proceso son:

Nuevo (new): cuando el proceso es creado.

Ejecutando (**running**): El proceso tiene asignado un procesador y está ejecutando sus instrucciones.

Bloqueado (waiting): el proceso está pendiente de un evento externo que le ha hecho bloquear, tales como una operación de lectura/escrituro lo cual reacciona por alguna una señal, comprueba cuales son los procesos que fueron bloqueados por ese evento externo, cambiándolos al estado de preparado.

Listo (ready): El proceso está listo para ejecutar, solo necesita del recurso procesador.

Finalizado (terminated): El proceso finalizó su ejecución.

Definir las 4 condiciones para la terminación de un proceso.

El ciclo de vida de un proceso es fácil, depende de la creación, la ejecución de instrucciones y la terminación. Cabe señalar que un proceso en el transcurso de su ciclo puede estar en diferentes estados.

- Salida normal.
- Salida por error.
- Error fatal.
- Eliminado por otro proceso.

Realizar un cuadro comparativo entre los sistemas operativos Unix, Linux y Windows donde la finalidad sea definir las jerarquías de procesos.

JERARQUIA DE PROCESOS.			
UNIX	LINUX	WINDOWS	
Un sistema UNIX es multiproceso y establece una jerarquía de procesos a modo de árbol genealógico.	Linux (como la mayoría de sistemas operativos modernos) puede ejecutar múltiples procesos compartiendo CPU, memoria y otros recursos entre ellos.	Windows no tiene jerarquía de procesos, todos son iguales.	

Existen varias sub- jerarquías de directorios que poseen múltiples y diferentes funciones de almacenamiento y organización en todo el sistema.	Listar procesos en ejecución.	Sin embargo dicha jerarquía se simula con un indicador especial (token), llamado manejador que se usa para tener control de un proceso.
Estáticos: Contiene archivos que no cambian sin la intervención del administrador (root), sin embargo, pueden ser leídos por cualquier otro usuario.	Obtener información de procesos.	Se tiene libertad de pasar ese indicador a otros procesos (desheredar).
Dinámicos: Contiene archivos que son cambiantes, y pueden leerse y escribirse. Contienen configuraciones, documentos, etc. Para estos directorios, es recomendable una copia de seguridad con frecuencia.	Iniciar y detener procesos.	
Compartidos: Contiene archivos que se pueden encontrar en un ordenador y utilizarse en otro, o incluso compartirse entre usuarios.	Determinar y alterar la prioridad de ejecución de procesos.	
Restringidos: Contiene ficheros que no se pueden compartir, solo son modificables por el administrador.	Gestionar procesos en segundo plano.	

2. Realizar los siguientes ejemplos y evidenciar con imágenes el paso a paso: Ejecute 5 procesos en su computador, luego en una tabla describa la siguiente información:

Proceso	Descripción
Porcentaje en CPU	2%
Porcentaje en memoria	63%
Porcentaje en disco	1%
Porcentaje en red	0%
Porcentaje en GPU	0%

Porcentaje en CPU.

Porcentaje en Memoria.

Porcentaje en Disco.

Porcentaje en Red.

Porcentaje en GPU (Procesamiento gráfico)

Realizar el siguiente ejemplo: Desactivar las animaciones que trae por defecto Windows y que consume recurso del ordenador.

3. Realizar un mapa conceptual donde se pueda evidenciar como se realiza la comunicación y sincronización entre procesos en un sistema operativo.

El mapa conceptual debe contener (Condiciones de carrera, regiones críticas, exclusión mutua con espera ocupada, dormir y despertar, semáforo, monitores, transmisión de mensajes y barreras).

4. Realice un mapa metal donde se defina claramente como se realiza los procesos de planificación.

- ➤ Planificación en sistemas de procesamiento por lotes
- > Planificación en sistemas interactivos
- Planificación en sistema de tiempo real
- Planificación de Hilos.

Referencias Bibliográficas

Para abordar más conocimientos en el desarrollo de la tarea, tuve que requerir ayuda en los siguientes referentes bibliográfico.

Sol Llaven, D. (2016). Sistemas operativos: panorama para la ingeniería en computación e informática. Grupo Editorial Patria. https://elibro-net.bibliotecavirtual.unad.edu.co/es/lc/unad/titulos/40429

Muñoz López, F. J. (2013). Sistemas operativos monopuesto. McGraw-Hill España. https://elibro-net.bibliotecavirtual.unad.edu.co/es/lc/unad/titulos/50229

David Luis La Red Martínez. (2004). Sistemas operativos. El Cid Editor. https://elibro-net.bibliotecavirtual.unad.edu.co/es/lc/unad/titulos/77467