Giuseppe Prencipe giuseppe.prencipe@unipi.it

Paradigma della programmazione dinamica

- Altro paradigma fondamentale, come il divide et impera
- Calcolo efficiente di una funzione ricorsiva mediante la memorizzazione dei suoi valori intermedi in una tabella (detta di programmazione dinamica)

Programmazione dinamica: Fibonacci

Esempio: numeri di Fibonacci (0, 1, 1, 2, 3, 5, 8, 13,....)

$$\begin{cases} F_0 = 0 \\ F_1 = 1 \\ F_n = F_{n-1} + F_{n-2} \end{cases} \quad \text{per } n \ge 2$$

@2020 giuseppe.prencipe@unipi.it

Soluzione ricorsiva

Approccio top-down

•Fib(n) richiede $O(F_n) = O(\varphi^n)$ passi, dove $\varphi = (1+\sqrt{5})/2 = 1,6180339....$ è il rapporto aureo

Soluzione ricorsiva

Versione più efficiente?

Approccio top-down

•Fib(n) richiede $O(F_n) = O(\phi^n)$ passi, dove $\phi = (1+\sqrt{5})/2 = 1,6180339....$ è il rapporto aureo

@2020 giuseppe.prencipe@unipi.it

Fibonacci con programmazione dinamica

Approccio bottom-up

•
$$F(0) = 0$$

•
$$F(1) = 1$$

•
$$F(2) = 1+0 = 1$$

•
$$F(n-2) =$$

•
$$F(n-1) =$$

•
$$F(n) = F(n-1) + F(n-2)$$

0	1	1	 F(n-2)	F(n-1)	F(n)

Fibonacci con programmazione dinamica

- •L'array F è la tabella di programmazione dinamica
- ·Idea di base: F[k] si calcola utilizzando valori di F già calcolati

@2020 giuseppe.prencipe@unipi.it

Fibonacci con programmazione dinamica

- •L'array F è la tabella di programmazione dinamica
- ·Idea di base: F[k] si calcola utilizzando valori di F già calcolati

Fibonacci con programmazione dinamica

- •L'array F è la tabella di programmazione dinamica
- ·Idea di base: F[k] si calcola utilizzando valori di F già calcolati

@2020 giuseppe.prencipe@unipi.it

Fibonacci: programmazione dinamica vs ricorsione

- L'approccio bottom-up è Θ(n) →efficiente
- · Perché invece quello top-down è così inefficiente?

Fibonacci: programmazione dinamica vs ricorsione

- L'approccio bottom-up è Θ(n) →efficiente
- · Perché invece quello top-down è così inefficiente?
 - · Calcola più volte soluzioni dei sotto-problemi

@2020 giuseppe.prencipe@unipi.it

Fibonacci: programmazione dinamica vs ricorsione

Fibonacci: programmazione dinamica vs ricorsione

@2020 giuseppe.prencipe@unipi.it

Fibonacci: programmazione dinamica vs ricorsione

- La Programmazione Dinamica è una tecnica di progettazione di algoritmi utilizzata con problemi di ottimizzazione
- Come il divide et impera, risolve problemi combinando soluzioni di sotto-problemi
- A differenza del divide et impera, i sotto-problemi non sono indipendenti
 - · Sotto-problemi (tipicamente) condividono sotto-problemi

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica vs Divide et impera

- · Divide et impera
 - Partiziona il problema in sottoproblemi indipendenti
 - Risolvi i sotto-problemi ricorsivamente
 - Combina le soluzioni per risolvere il problema originale

- · Programmazione Dinamica
 - Partiziona il problema in sottoproblemi (non indipendenti)
 - Risolvi i sotto-problemi ricorsivamente
 - Combina le soluzioni per risolvere il problema originale

- Il termine Dynamic Programming viene dalla Teoria dei Controlli, non dall'Informatica
 - Termine introdotto negli anni '50 da Richard Bellman, che sviluppò metodi di Programmazione logistica per l'aeronautica.
 - Dinamica si riferisce al fatto che la tabella è riempita progressivamente
 - Programming si riferisce all'utilizzo di tabelle (array) per costruire una soluzione

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica

Nella programmazione dinamica tipicamente si **riduce** il tempo aumentando l'utilizzo di spazio

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica

- Nella programmazione dinamica tipicamente si riduce il tempo aumentando l'utilizzo di spazio
- Risolviamo il problema risolvendo sotto-problemi di dimensione crescente e **memorizzando** ognuna delle sotto-soluzioni (ottimali) in una tabella (tipicamente)

- Nella programmazione dinamica tipicamente si riduce il tempo aumentando l'utilizzo di spazio
- Risolviamo il problema risolvendo sotto-problemi di dimensione crescente e memorizzando ognuna delle sotto-soluzioni (ottimali) in una tabella (tipicamente)
- La tabella è poi usata per trovare la soluzione ottima ai problemi più grandi

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica

- Nella programmazione dinamica tipicamente si riduce il tempo aumentando l'utilizzo di spazio
- Risolviamo il problema risolvendo sotto-problemi di dimensione crescente e memorizzando ognuna delle sotto-soluzioni (ottimali) in una tabella (tipicamente)
- La tabella è poi usata per trovare la soluzione ottima ai problemi più grandi
- Si riduce il costo in tempo risolvendo ognuno dei sottoproblemi solo una volta

- Il modo migliore per comprendere questa tecnica è attraverso esempi — ragionamenti simili (ma leggermente diversi) per la stessa conclusione
 - · Taglio della corda
 - · Calcolo coefficienti binomiali
 - Matrix Chaining optimization
 - · Longest Common Subsequence
 - · Problema dello Zaino 0-1
 - · Chiusura transitiva di un grafo orientato

@2020 giuseppe.prencipe@unipi.it

Taglio della corda (rod-cutting)

Taglio della corda (rod-cutting)

- Ogni pezzo di corda ha un prezzo
- · Massimizzare il guadagno!

Possibili tagli?

giuseppe.prencipe@unipi.it

Taglio della corda (rod-cutting)

- Ogni pezzo di corda ha un prezzo
- Massimizzare il guadagno!

Taglio della corda (rod-cutting)

Definizione del problema

- Data una corda di lunghezza n centimetri e una tabella di prezzi p_i , i=1,2,...,n, trovare il massimo guadagno r_n ottenibile tagliando la corda e vendendo i singoli pezzi
 - · Lunghezze della corda sono interi
 - Per i=1,2,...,n conosciamo il prezzo p_i di un pezzo di corda lungo i cm

@2020 giuseppe.prencipe@unipi.it

Taglio della corda: esempio

lunghezza I	1	2	3	4	5	6	7	8	9	10
prezzo p _i	1	5	8	9	10	17	17	20	24	30

· Per una corda di lunghezza 4: quale taglio è ottimale?

lunghezza I	1	2	3	4	5	6	7	8	9	10
prezzo p _i	1	5	8	9	10	17	17	20	24	30

- Per una corda di lunghezza 4: 2+2 è ottimale (p₂+p₂=10)
- · In generale, ci sono 2n-1 modi per tagliare una corda di lunghezza n!

@2020 giuseppe.prendipe@unipi.it

- · Se la soluzione ottima taglia la corda in k pezzi, allora
 - Decomposizione ottima: n=i₁+i₂+...+i_k
 - Guadagno: $r_n=p_{i1}+p_{i2}+...+p_{ik}$

@2020 giuseppe.prencipe@unipi.it

- · Se la soluzione ottima taglia la corda in k pezzi, allora
 - Decomposizione ottima: n=i₁+i₂+...+i_k
 - Guadagno: $r_n=p_{i1}+p_{i2}+...+p_{ik}$
- · Come potremmo procedere?

- · Se la soluzione ottima taglia la corda in k pezzi, allora
 - Decomposizione ottima: $n=i_1+i_2+\ldots+i_k$
 - Guadagno: $r_n = p_{i1} + p_{i2} + \dots + p_{ik}$

@2020 giuseppe.prencipe@unipi.it

- · Se la soluzione ottima taglia la corda in k pezzi, allora
 - Decomposizione ottima: n=i₁+i₂+...+i_k
 - Guadagno: $r_n=p_{i1}+p_{i2}+...+p_{ik}$
- · Taglio iniziale della corda: due pezzi lunghi i e n-i

- · Se la soluzione ottima taglia la corda in k pezzi, allora
 - Decomposizione ottima: n=i₁+i₂+...+i_k
 - Guadagno: $r_n=p_{i1}+p_{i2}+...+p_{ik}$
- Taglio iniziale della corda: due pezzi lunghi i e n-i
 - Guadagno r_i e r_{n-i} derivati da questi due pezzi

@2020 giuseppe.prencipe@unipi.it

- · Se la soluzione ottima taglia la corda in k pezzi, allora
 - Decomposizione ottima: n=i₁+i₂+...+i_k
 - Guadagno: $r_n=p_{i1}+p_{i2}+...+p_{ik}$
- Taglio iniziale della corda: due pezzi lunghi i e n-i
 - Guadagno r_i e r_{n-i} derivati da questi due pezzi
 - · Bisogna considerare tutti i possibili valori di i

- · Se la soluzione ottima taglia la corda in k pezzi, allora
 - Decomposizione ottima: n=i₁+i₂+...+i_k
 - Guadagno: $r_n=p_{i1}+p_{i2}+...+p_{ik}$
- · Taglio iniziale della corda: due pezzi lunghi i e n-i
 - Guadagno r_i e r_{n-i} derivati da questi due pezzi
 - · Bisogna considerare tutti i possibili valori di i
 - Ovviamente va considerato anche il caso in cui la corda è venduta senza tagli

@2020 giuseppe.prencipe@unipi.it

- · Se la soluzione ottima taglia la corda in k pezzi, allora
 - Decomposizione ottima: n=i₁+i₂+...+i_k
 - Guadagno: $r_n=p_{i1}+p_{i2}+...+p_{ik}$
- Taglio iniziale della corda: due pezzi lunghi i e n-i
 - Guadagno r_i e r_{n-i} derivati da questi due pezzi
 - · Bisogna considerare tutti i possibili valori di i
 - Ovviamente va considerato anche il caso in cui la corda è venduta senza tagli
- In altre parole: r_n=max{p_n,????, ????,}

- · Se la soluzione ottima taglia la corda in k pezzi, allora
 - Decomposizione ottima: n=i₁+i₂+...+i_k
 - Guadagno: $r_n=p_{i1}+p_{i2}+...+p_{ik}$
- · Taglio iniziale della corda: due pezzi lunghi i e n-i
 - Guadagno r_i e r_{n-i} derivati da questi due pezzi
 - · Bisogna considerare tutti i possibili valori di i
 - Ovviamente va considerato anche il caso in cui la corda è venduta senza tagli
- In altre parole: $r_n = \max\{p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, \dots, r_{n-1} + r_1\}$

Una differente visione del problema

- · Decomponiamo in
 - · Un primo pezzo, a sx, di lunghezza i
 - · Il secondo pezzo, che resta a dx, di lunghezza n-i
 - · Si prova a dividere ulteriormente solo il pezzo a dx
 - · Questo per ogni i
 - · Quindi
 - $r_n = max\{p_i + ???? <= i <= n\}$
 - · Cerchiamo la soluzione solo a un sotto-problema

Una differente visione del problema

- · Decomponiamo in
 - · Un primo pezzo, a sx, di lunghezza i
 - · Il secondo pezzo, che resta a dx, di lunghezza n-i
 - · Si prova a dividere ulteriormente solo il pezzo a dx
 - · Questo per ogni i
 - · Quindi
 - $r_n = \max\{p_i + r_{n-i}, 1 \le i \le n\}$
 - · Cerchiamo la soluzione solo a un sotto-problema

@2020 giuseppe.prencipe@unipi.it

Taglio della corda: esempio

Corda da 4

Taglia(4)

p[] = [1, 5, 8, 9]

i = 1 **Taglia(4)** Costo????

Corda da 4 Taglia(4)

p[] = [1, 5, 8, 9]

i = 1 Taglia(4) Costo: $p_1 + Taglia(3)$

@2020 giuseppe.prencipe@unipi.it

Taglio della corda: esempio

Corda da 4 Taglia(4)

p[] = [1, 5, 8, 9]

i = 1 **Taglia(4)** Costo: p₁ + Taglia(3) Ricorsivamente, ripartiamo da i=1

Corda da 4 Taglia(4) p[] = [1, 5, 8, 9] $i = 1 Taglia(4) Costo: p_1 + Taglia(3)$ i = 1 Taglia(3)Ricorsivamente, ripartiamo da i=1 Taglia(3)

@2020 giuseppe.prencipe@unipi.it

Taglio della corda: esempio

Corda da 4 Taglia(4) p[] = [1, 5, 8, 9] $i = 1 Taglia(4) Costo: p_1 + Taglia(3)$ i = 1 Taglia(3) Costo????

Corda da 4 Taglia(4) p[] = [1, 5, 8, 9] $i = 1 Taglia(4) Costo: p_1 + Taglia(3)$ $i = 1 Taglia(3) Costo: p_1 + Taglia(2)$ Ricorsivamente, ripartiamo da i=1

@2020 giuseppe.prencipe@unipi.it

Taglio della corda: esempio

Corda da 4 Taglia(4) p[] = [1, 5, 8, 9] $i = 1 Taglia(4) Costo: p_1 + Taglia(3)$ $i = 1 Taglia(3) Costo: p_1 + Taglia(2)$ Ricorsivamente, ripartiamo da i=1
Ricorsivamente, ripartiamo da i=1

Corda da 4 Taglia(4) p[] = [1, 5, 8, 9] i = 1 Taglia(4) Costo: $p_1 + Taglia(3)$ Ricorsivamente, ripartiamo da i=1 i = 1 Taglia(3) Costo: $p_1 + Taglia(2)$ Ricorsivamente, ripartiamo da i=1 i = 1 Taglia(2)

@2020 giuseppe.prencipe@unipi.it

Corda da 4 Taglia(4) p[] = [1, 5, 8, 9] i = 1 Taglia(4) Costo: $p_1 + Taglia(3)$ Ricorsivamente, ripartiamo da i = 1 i = 1 Taglia(3) Costo: $p_1 + Taglia(2)$ Ricorsivamente, ripartiamo da i = 1 i = 1 Taglia(2) Costo: $p_1 + Taglia(1) = 1 + 1 = 2$ ORA????

@2020 giuseppe.prencipe@unipi.it

Corda da 4 Taglia(4)

p[] = [1, 5, 8, 9]

ORA????

i = 1 Taglia(4) Costo: $p_1 + Taglia(3)$ Ricorsivamente, ripartiamo da i = 1 i = 1

Taglia(3) Costo: p₁ + Taglia(2) Ricorsivamente, ripartiamo da i=1

i = 1 Taglia(2) Costo: $p_1 + Taglia(1) = 1 + 1 = 2$

i = 2 Taglia(2) Costo: $p_2 + \text{Taglia}(0) = 5 + 0 = 5$

@2020 giuseppe.prencipe@unipi.it

Taglio della corda: esempio

Corda da 4 Taglia(4)

p[] = [1, 5, 8, 9]

i = 1 Taglia(4) Costo: p₁ + Taglia(3) Ricorsivamente, ripartiamo da i=1

Taglia(3) Costo: p₁ + Taglia(2)

-Ricorsivamente, ripartiamo da i=1

i = 1 Taglia(2) Costo: $p_1 + Taglia(1) = 1 + 1 = 2$

i = 2 Taglia(2) Costo: $p_2 + \text{Taglia}(0) = 5 + 0 = 5$

Corda da 4 Taglia(4) p[] = [1, 5, 8, 9] i = 1 Taglia(4) Costo: $p_1 + Taglia(3)$ Ricorsivamente, ripartiamo da i = 1 i = 1 Ricorsivamente, ripartiamo da i = 1 i = 1 Taglia(2) Costo: $p_1 + Taglia(2)$ Ricorsivamente, ripartiamo da i = 1 i = 1 Taglia(2) Costo: $p_1 + Taglia(1) = 1 + 1 = 2$ i = 2 Ottimo Taglia(2) è ????

@2020 giuseppe.prencipe@unipi.it

Taglio della corda: esempio

Corda da 4 Taglia(4) p[] = [1, 5, 8, 9] i = 1 Taglia(4) Costo: $p_1 + Taglia(3)$ Ricorsivamente, ripartiamo da i = 1 i = 1 Ricorsivamente, ripartiamo da i = 1 i = 1 Ricorsivamente, ripartiamo da i = 1 i = 1 Taglia(2) Costo: $p_1 + Taglia(1) = 1 + 1 = 2$ i = 2 Ottimo Taglia(2) è quindi 5

Corda da 4 Taglia(4) p[] = [1, 5, 8, 9] i = 1 Taglia(4) Costo: $p_1 + Taglia(3)$ Ricorsivamente, ripartiamo da i = 1 i = 1 Taglia(3) Costo: $p_1 + Taglia(2) = 1 + 5 = 6$ Ricorsivamente, ripartiamo da i = 1 i = 1 Taglia(2) Costo: $p_1 + Taglia(1) = 1 + 1 = 2$ i = 2 Ottimo Taglia(2) è quindi 5

@2020 giuseppe.prencipe@unipi.it

```
Corda da 4 Taglia(4) p[] = [1, 5, 8, 9]
i = 1 Taglia(4) Costo: p_1 + Taglia(3) Ricorsivamente, ripartiamo da i = 1
i = 1 Ricorsivamente, ripartiamo da i = 1
i = 1 Ricorsivamente, ripartiamo da i = 1
i = 1 Taglia(2) Costo: p_1 + Taglia(1) = 1 + 1 = 2
i = 2 Ottimo Taglia(2) è quindi 5
i = 2 Taglia(2) Costo: p_2 + Taglia(0) = 5 + 0 = 5
Proseque analisi di Taglia(3)
```

Corda da 4 Taglia(4)
$$p[] = [1, 5, 8, 9]$$
 $i = 1$ Taglia(4) Costo: $p_1 + Taglia(3)$ Ricorsivamente, ripartiamo da $i = 1$
 $i = 1$ Taglia(3) Costo: $p_1 + Taglia(2) = 1 + 5 = 6$
Ricorsivamente, ripartiamo da $i = 1$
 $i = 1$ Taglia(2) Costo: $p_1 + Taglia(1) = 1 + 1 = 2$
 $i = 2$ Taglia(2) Costo: $p_2 + Taglia(0) = 5 + 0 = 5$
 $i = 2$ Prosegue analisi di Taglia(3)
Taglia(3)

@2020 giuseppe.prencipe@unipi.it

```
Taglia(4)
Corda da 4
                                                                         p[] = [1, 5, 8, 9]
                             Costo: p<sub>1</sub> + Taglia(3)
Ricorsivamente, ripartiamo da i=1
 i = 1
                       Costo: p_1 + Taglia(2) = 1 + 5 = 6

    Ricorsivamente, ripartiamo da i=1

 i = 1
                      Costo: p_1 + Taglia(1) = 1 + 1 = 2
                                                                Ottimo Taglia(2) è quindi 5
 i = 2
                       Costo: p_2 + Taglia(0) = 5 + 0 = 5
            Taglia(2)
                                                    - Prosegue analisi di Taglia(3)
  i = 2 per Taglia(3)
         Taglia(3)
                       Costo: ????
```

Corda da 4 Taglia(4)
$$p[] = [1, 5, 8, 9]$$
 $i = 1$ Taglia(4) Costo: $p_1 + Taglia(3)$ Ricorsivamente, ripartiamo da $i = 1$
 $i = 1$ Taglia(3) Costo: $p_1 + Taglia(2) = 1 + 5 = 6$
Ricorsivamente, ripartiamo da $i = 1$
 $i = 1$ Taglia(2) Costo: $p_1 + Taglia(1) = 1 + 1 = 2$
 $i = 2$ Taglia(2) Costo: $p_2 + Taglia(0) = 5 + 0 = 5$
 $i = 2$ Prosegue analisi di Taglia(3)
Taglia(3) Costo: $p_2 + Taglia(1) = 5 + 1 = 6$

@2020 giuseppe.prencipe@unipi.it

```
Taglia(4)
Corda da 4
                                                                        p[] = [1, 5, 8, 9]
                            Costo: p<sub>1</sub> + Taglia(3)
Ricorsivamente, ripartiamo da i=1
 i = 1
                      Costo: p_1 + Taglia(2) = 1 + 5 = 6
                                                   Ricorsivamente, ripartiamo da i=1
 i = 1
                      Costo: p_1 + Taglia(1) = 1 + 1 = 2
                                                               Ottimo Taglia(2) è quindi 5
 i = 2
                      Costo: p_2 + Taglia(0) = 5 + 0 = 5
            Taglia(2)
                                                  -- Prosegue analisi di Taglia(3)
  i = 2 per Taglia(3)
        Taglia(3) Costo: p_2 + Taglia(1) = 5 + 1 = 6
  i = 3 per Taglia(3)
         Taglia(3)
```

```
Corda da 4
                 Taglia(4)
                                                                        p[] = [1, 5, 8, 9]
                            Costo: p<sub>1</sub> + Taglia(3)
Ricorsivamente, ripartiamo da i=1
          Taglia(4)
 i = 1
                       Costo: p_1 + Taglia(2) = 1 + 5 = 6
                                                   Ricorsivamente, ripartiamo da i=1
 i = 1
                      Costo: p_1 + Taglia(1) = 1 + 1 = 2

    Ottimo Taglia(2) è quindi 5

                       Costo: p_2 + Taglia(0) = 5 + 0 = 5
 i = 2
            Taglia(2)
                                                    - Prosegue analisi di Taglia(3)
  i = 2 per Taglia(3)
         Taglia(3) Costo: p_2 + Taglia(1) = 5 + 1 = 6
  i = 3 per Taglia(3)
         Taglia(3)
                       Costo: ????
```

```
Taglia(4)
Corda da 4
                                                                       p[] = [1, 5, 8, 9]
                            Costo: p<sub>1</sub> + Taglia(3)
Ricorsivamente, ripartiamo da i=1
 i = 1
         Taglia(3)
                      Costo: p_1 + Taglia(2) = 1 + 5 = 6
                                                  Ricorsivamente, ripartiamo da i=1
 i = 1
                      Costo: p_1 + Taglia(1) = 1 + 1 = 2
            Taglia(2)
                                                              Ottimo Taglia(2) è quindi 5
                      Costo: p_2 + Taglia(0) = 5 + 0 = 5
 i = 2
            Taglia(2)
                                                  -- Prosegue analisi di Taglia(3)
  i = 2 per Taglia(3)
        Taglia(3) Costo: p_2 + Taglia(1) = 5 + 1 = 6
  i = 3 per Taglia(3)
         Taglia(3)
                       Costo: p_3 + Taglia(0) = 8 + 0 = 8
```

Corda da 4 Taglia(4)
$$p[] = [1, 5, 8, 9]$$
 $i = 1$ Taglia(4) Costo: $p_1 + Taglia(3)$ Ricorsivamente, ripartiamo da $i = 1$
 $i = 1$ Ricorsivamente, ripartiamo da $i = 1$
 $i = 1$ Taglia(2) Costo: $p_1 + Taglia(2) = 1 + 5 = 6$ Ricorsivamente, ripartiamo da $i = 1$
 $i = 1$ Taglia(2) Costo: $p_1 + Taglia(1) = 1 + 1 = 2$ Ottimo Taglia(2) è quindi 5
 $i = 2$ Taglia(3) Costo: $p_2 + Taglia(0) = 5 + 0 = 5$
 $i = 2$ per Taglia(3) Costo: $p_2 + Taglia(1) = 5 + 1 = 6$
 $i = 3$ per Taglia(3) Costo: $p_3 + Taglia(0) = 8 + 0 = 8$
Ottimo Taglia(3) è ????

```
Corda da 4
                  Taglia(4)
                                                                         p[] = [1, 5, 8, 9]
                            Costo: p<sub>1</sub> + Taglia(3)
Ricorsivamente, ripartiamo da i=1
 i = 1
                       Costo: p_1 + Taglia(2) = 1 + 5 = 6
                                                   Ricorsivamente, ripartiamo da i=1
 i = 1
                      Costo: p_1 + Taglia(1) = 1 + 1 = 2

    Ottimo Taglia(2) è quindi 5

                       Costo: p_2 + Taglia(0) = 5 + 0 = 5
 i = 2
            Taglia(2)
                                                  --- Prosegue analisi di Taglia(3)
  i = 2 per Taglia(3)
        Taglia(3) Costo: p_2 + Taglia(1) = 5 + 1 = 6
                                                                 Ottimo Taglia(3) è quindi 8
  i = 3 per Taglia(3)
         Taglia(3)
                       Costo: p_3 + Taglia(0) = 8 + 0 = 8
```

n	i	p[i]	CUT-ROD (p, n-i)	p[i]+CUT-ROD(p,n-i)	max
4	1	1	(p, 4-1) = (p, 3) = 8	1 + 8 = 9	
	2	5	(p, 4 - 2) = (p, 2) = 5	5 + 5 = 10	10
	3	8	(p, 4 - 3) = (p, 1) = 1	8 + 1 = 9	
	4	9	(p, 4 - 4) = (p, 0) = 0	9 + 0 = 9	
3	1	1	(p, 3 - 1) = (p, 2) = 5	1 + 5 = 6	
	2	5	(p, 3 - 2) = (p, 1) = 1	5 + 1 = 6	8
	3	8	(p, 3 - 3) = (p, 0) = 0	8 + 0 = 8	
2	1	1	(p, 2 - 1) = (p, 1) = 1	1 + 1 = 2	
	2	5	(p, 2 - 2) = (p, 0) = 0	5 + 0 = 5	5
1	1	1	(p, 1 - 1) = (p, 0) = 0	1 + 0 = 1	1

giuseppe.prencipe@unipi.it

Implementazione top-down

```
TAGLIO(p,n)

if n==0

return 0

q = -∞

for i=1 to n

q=max{q, p[i]+TAGLIO(p,n-i)}

return q
```

• Tempo: T(n)=1+????

@2020 giuseppe.prencipe@unipi.it

Implementazione top-down

```
TAGLIO(p,n)

if n==0

return 0

q = -∞

for i=1 to n

q=max{q, p[i]+TAGLIO(p,n-i)}

return q

• Tempo: T(n)=1+T(1)+T(2)+...+T(n-1)

• T(n)=O(2n)
```

@2020 giuseppe.prencipe@unipi.it

Implementazione top-down

Albero ricorsione di TAGLIO(p, n), n = 4.

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica — **bottom-up**

L'idea, come fatto per Fibonacci, è partire dai valori che già conosciamo, che sono quelli più piccoli

Su quelli più piccoli, che memorizziamo nella tabella di programmazione dinamica, calcoliamo quelli via via più grandi, fino a trovare la soluzione del problema

Attenzione ora!

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica —bottom-up

Taglia(4)

p = [1, 5, 8, 9]

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica — **bottom-up**

r = [0, 0, 0, 0, 0]

Taglia(4)

p = [1, 5, 8, 9]

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica — **bottom-up**

r = [0, 0, 0, 0, 0]

Taglia(4) p = [1, 5, 8, 9]

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica — **bottom-up**

r = [0, 1, 0, 0, 0]

Taglia(4)

$$p = [1, 5, 8, 9]$$

----- Iterativamente, passiamo a j=2

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica — **bottom-up**

r = [0, 1, 0, 0, 0]

Taglia(4)

$$p = [1, 5, 8, 9]$$

----- Iterativamente, passiamo a j=2

E ricordiamo anche la definizione generale del problema di ottimizzazione

 $r_n = max\{p_i + r_{n-i}, 1 <= i <= n\}$

Vanno sfruttati i valori ottimi calcolati per i sotto-problemi

Al momento conosciamo solo r[1]

r = [0, 1, 0, 0, 0]

Taglia(4)

p = [1, 5, 8, 9]

------Iterativamente, passiamo a j=2

E ricordiamo anche la definizione generale del problema di ottimizzazione

$$r_n = max\{p_i + r_{n-i}, 1 \le i \le n\}$$

Vanno sfruttati i valori ottimi calcolati per i sotto-problemi

Al momento conosciamo solo r[1]

Programmazione Dinamica —bottom-up

r = [0, 1, 0, 0, 0]

Taglia(4)

p = [1, 5, 8, 9]

-----Iterativamente, passiamo a i=2

E ricordiamo anche la definizione generale del problema di ottimizzazione

$$r_n = max\{p_i + r_{n-i}, 1 <= i <= n\}$$

Vanno sfruttati i valori ottimi calcolati per i sotto-problemi

Al momento conosciamo solo r[1]

E ricordiamo anche la definizione generale del problema di ottimizzazione

$$r_n = max\{p_i + r_{n-i}, 1 \le i \le n\}$$

@2020 nii isenne nrendine@unini it

Vanno sfruttati i valori ottimi calcolati per i sotto-problemi

Al momento conosciamo solo r[1]

Programmazione Dinamica —bottom-up

E ricordiamo anche la definizione generale del problema di ottimizzazione

$$r_n = max\{p_i + r_{n-i}, 1 \le i \le n\}$$

Al momento conosciamo solo r[1]

per i sotto-problemi

r = [0, 1, 0, 0, 0]

Taglia(4)

$$p = [1, 5, 8, 9]$$

------Iterativamente, passiamo a j=2

E ricordiamo anche la definizione generale del problema di ottimizzazione

$$r_n = max\{p_i + r_{n-i}, 1 \le i \le n\}$$

giuseppe.prencipe@unipi.it

Vanno sfruttati i valori ottimi calcolati per i sotto-problemi

Al momento conosciamo solo r[1]

Programmazione Dinamica —bottom-up

r = [0, 1, 0, 0, 0]

Taglia(4)

$$p = [1, 5, 8, 9]$$

------Iterativamente, passiamo a j=2

$$p_1 + r[1] = 1 + 1 = 2$$

2 possibilità
 $p_2 + r[0] = 5 + 0 = 5$

· + ∪ = ∪ Vanno sfruttati i valori ottimi calcolati

per i sotto-problemi

E ricordiamo anche la definizione generale del problema di ottimizzazione

$$r_n = max\{p_i + r_{n-i}, 1 <= i <= n\}$$

Al momento conosciamo solo r[1]

Taglia(4)

p = [1, 5, 8, 9]

----- Iterativamente, passiamo a j=2

E ricordiamo anche la definizione generale del problema di ottimizzazione

 $r_n = max\{p_i + r_{n-i}, 1 \le i \le n\}$

Vanno sfruttati i valori ottimi calcolati per i sotto-problemi

Al momento conosciamo solo r[1]

Programmazione Dinamica —bottom-up

r = [0, 1, 5, 0, 0]

-----i=1

Taglia(4)

p = [1, 5, 8, 9]

------Iterativamente, passiamo a i=2

$$p_1 + r[1] = 1 + 1 = 2$$
2 possibilità
 $p_2 + r[0] = 5 + 0 = 5$
Max

r = [0, 1, 5, 0, 0] Taglia(4) p = [1, 5, 8, 9] p = [1, 5, 8, 9]Iterativamente, passiamo a j=2 $p_1 + r[1] = 1 + 1 = 2$ $p_2 + r[0] = 5 + 0 = 5$ Iterativamente, passiamo a j=3

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica — **bottom-up**

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica — **bottom-up**

Programmazione Dinamica —bottom-up

Programmazione Dinamica —bottom-up

r = [0, 1, 5, 8, 0]

Taglia(4)

→ Ottimo = 1

p = [1, 5, 8, 9]

------Iterativamente, passiamo a j=2

$$p_1 + r[1] = 1 + 1 = 2$$
2 possibilità Max
 $p_2 + r[0] = 5 + 0 = 5$

----- Iterativamente, passiamo a j=3

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica —bottom-up

$$r = [0, 1, 5, 8, 0]$$

Taglia(4)

p = [1, 5, 8, 9]

----- Iterativamente, passiamo a j=3

3 possibilità
$$p_1 + r[2] = 1 + 5 = 6$$

 $p_2 + r[1] = 5 + 1 = 6$ Max $p_3 + r[0] = 8 + 0$

r = [0, 1, 5, 8, 0]

Taglia(4)

p = [1, 5, 8, 9]

----- Iterativamente, passiamo a j=3

----- Iterativamente, passiamo a j=4

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica — **bottom-up**

r = [0, 1, 5, 8, 0]

Taglia(4)

p = [1, 5, 8, 9]

3 possibilità
$$p_1 + r[2] = 1 + 5 = 6$$

 $p_2 + r[1] = 5 + 1 = 6$ Max $p_3 + r[0] = 8 + 0$

----- Iterativamente, passiamo a i=4

Taglia(4) r = [0, 1, 5, 8, 0]p = [1, 5, 8, 9]------Iterativamente, passiamo a j=3 3 possibilità $p_1 + r[2] = 1 + 5 = 6$ $p_2 + r[1] = 5 + 1 = 6$ $p_3 + r[0] = 8 + 0$ ·----Iterativamente, passiamo a j=4 4 possibilità $p_1 + r[3] = 1 + 8 = 9$ @2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica —bottom-up

Programmazione Dinamica —bottom-up

Taglia(4) r = [0, 1, 5, 8, 0]p = [1, 5, 8, 9]----- Iterativamente, passiamo a j=3 3 possibilità $p_1 + r[2] = 1 + 5 = 6$ $p_2 + r[1] = 5 + 1 = 6$ $p_3 + r[0] = 8 + 0$ --- Iterativamente, passiamo a j=4 4 possibilità $p_1 + r[3] = 1 + 8 = 9$ \rightarrow p₂ + r[2] = 5 + 5 = 10 Max 10 $p_3 + r[1] = 8 + 1 = 9$ $p_4 + r[0] = 9 + 0 = 9$

Programmazione Dinamica —bottom-up

 $p_3 + r[1] = 8 + 1 = 9$

 $p_4 + r[0] = 9 + 0 = 9$

```
TAGLIO-Dinamico(p,n)
r[0..n]
r[0]=0
for j=1 to n
q=-\infty
for i=1 to j
if q < p[i]+r[j-i]
q= p[i]+r[j-i]
r[j]=q
return r
```

E ricordiamo anche la definizione generale del problema di ottimizzazione

 $r_n = max\{p_i + r_{n-i}, 1 <= i <= n\}$

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica — **bottom-up**

Ogni sotto-problema viene risolto una volta sola, le sotto-soluzioni ottime memorizzate in un array, e utilizzate quando necessario

Il tempo **esponenziale** della soluzione ricorsiva diventa così **polinomiale**


```
TAGLIO-Dinamico(p,n)
r[0..n]
r[0]=0
for j=1 to n
q=-\infty
for i=1 to j
if q < p[i]+r[j-i]
q= p[i]+r[j-i]
r[j]=q
return r
```

L'array r ci permette di calcolare il valore ottimo

In quale posizione di r si trova l'ottimo del problema di dimensione n?

@2020 giuseppe.prencipe@unipi.it

Recuperare la soluzione ottima

```
TAGLIO-Dinamico(p,n)
r[0..n]
r[0]=0
for j=1 to n
q=-\infty
for i=1 to j
if q < p[i]+r[j-i]
q= p[i]+r[j-i]
r[j]=q
return r
```

L'array r ci permette di calcolare il valore ottimo

In quale posizione di r si trova l'ottimo del problema di dimensione n?

```
TAGLIO-Dinamico(p,n)
r[0..n]
r[0]=0
for j=1 to n
q=-\infty
for i=1 to j
if q < p[i]+r[j-i]
q= p[i]+r[j-i]
r[j]=q
return r
```

L'array r ci permette di calcolare il valore ottimo

In quale posizione di r si trova l'ottimo del problema di dimensione n?

Come facciamo se vogliamo sapere dove tagliare la corda per avere il valore ottimo?

@2020 giuseppe.prencipe@unipi.it

Recuperare la soluzione ottima

```
TAGLIO-Dinamico(p,n)
r[0..n]
r[0]=0
for j=1 to n
q=-\infty
for i=1 to j
if q < p[i]+r[j-i]
q= p[i]+r[j-i]
r[j]=q
return r
```

Come facciamo se vogliamo sapere dove tagliare la corda per avere il valore ottimo?

```
TAGLIO-Dinamico(p,n)
r[0..n]
r[0]=0
for j=1 \ to \ n
q=-\infty
for i=1 \ to \ j
if \ q < p[i]+r[j-i]
q= p[i]+r[j-i]
r[j]=q
return \ r
```

@2020 giuseppe.prencipe@unipi.it

Come facciamo se vogliamo sapere dove tagliare la corda per avere il valore ottimo?

Ogni volta che troviamo un ottimo per un sotto-problema, dobbiamo ricordarci la posizione del taglio

Come modifichiamo l'algoritmo?

Recuperare la soluzione ottima

```
TAGLIO-Dinamico(p,n)
r[0..n] \text{ and } s[0..n] \text{ arrays}
r[0]=0
for j=1 \text{ to n}
q=-\infty
for i=1 \text{ to j}
if q < p[i]+r[j-i]
s[j]=i; q=p[i]+r[j-i]
r[j]=q
return r \text{ and } s
```

Ogni volta che troviamo un ottimo per un sotto-problema, dobbiamo ricordarci la posizione del taglio

Come modifichiamo l'algoritmo?

Utilizziamo un secondo array, s[]

```
STAMPA-TAGLIO(n)

(r,s) = TAGLIO-Dinamico(p,n)

while n>0

print s[n]

n=n-s[n]
```

@2020 giuseppe.prencipe@unipi.it

Esempio:

$$p = [1, 5, 8, 9] \quad i \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$$

$$r[i] \quad 0 \quad 1 \quad 5 \quad 8 \quad 10$$

$$s[i] \quad 0 \quad 1 \quad 2 \quad 3 \quad 2$$

n = 4 →

@2020 giuseppe.prencipe@unipi.it

Recuperare la soluzione ottima

Esempio:

$$p = [1, 5, 8, 9] \quad i \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$$

$$r[i] \quad 0 \quad 1 \quad 5 \quad 8 \quad 10$$

$$s[i] \quad 0 \quad 1 \quad 2 \quad 3 \quad 2$$

@2020 giuseppe.prencipe@unipi.it

@2020 giuseppe.prencipe@unipi.it

@2020 giuseppe.prencipe@unipi.it

Coefficienti binomiali

- Il coefficiente binomiale C(n, k) è il numero di modi che si hanno per scegliere un sottoinsieme di k elementi da un insieme di n elementi
- · Per definizione,

@2020 giuseppe.prencipe@unipi.it

Coefficienti binomiali

- Il coefficiente binomiale C(n, k) è il numero di modi che si hanno per scegliere un sottoinsieme di k elementi da un insieme di n elementi
- · Per definizione,

C(n,k) = n! / ((n-k)!*k!)

Coefficienti binomiali

- Il coefficiente binomiale C(n, k) è il numero di modi che si hanno per scegliere un sottoinsieme di k elementi da un insieme di n elementi
- · Per definizione,

$$C(n,k) = n! / ((n-k)!*k!)$$

- Questa formula non viene utilizzata per il calcolo effettivo, perché, anche per piccoli valori di n, calcolare n! è estremamente costoso
- · Si utilizza invece la seguente formula per il calcolo di C(n,k)

@2020 giuseppe.prencipe@unipi.it

Coefficienti binomiali

- Il coefficiente binomiale C(n, k) è il numero di modi che si hanno per scegliere un sottoinsieme di k elementi da un insieme di n elementi
- · Per definizione,

$$C(n,k) = n! / ((n-k)!*k!)$$

- Questa formula non viene utilizzata per il calcolo effettivo, perché, anche per piccoli valori di n, calcolare n! è estremamente costoso
- · Si utilizza invece la seguente formula per il calcolo di C(n,k)

$$C(n,k)=C(n-1, k-1)+C(n-1, k)$$

 $C(n,0)=1$
 $C(n,n)=1$

```
C(n: int, k: int): float {
  if ((k==0) || (k==n))
    return 1;
  else
    return C(n - 1, k) + C(n - 1, k - 1);
}
```

@2020 giuseppe.prencipe@unipi.it

Coefficienti binomiali – albero ricorsione per C(5,2)

Coefficienti binomiali - analisi

$$T(n,k) = C(n,k) = \frac{n!}{k!(n-k)!}$$

Caso peggiore con k=n/2

$$T(n, n/2) = \frac{n!}{(n/2)!(n/2)!}$$
 $O(\frac{2^n}{\sqrt{n}})$

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica: Memoization

- Il primo passo che possiamo compiere è quello di evitare di calcolare più volte gli stessi valori
- · Usiamo una tabella di programmazione dinamica
 - · Questa tecnica viene chiamata anche memoization
 - Memoization (non memorization): il termine deriva da memo (memorandum)

Coefficienti binomiali - memoization

```
ResultEntry {
  done: boolean,
  value: float
}
ResultEntry[n+1][k+1] result;
```

Risultati sotto-problemi in una tabella:
result[i][j] rappresenta C(i,j)

Tutte le posizioni della tabella sono inizializzate
con result[i][j].done=false

@2020 giuseppe.prencipe@unipi.it

Coefficienti binomiali – memoization (sempre ricorsivo)

Coefficienti binomiali – memoization (sempre ricorsivo)

```
C(n: int, k: int): float {
    if (valore già in ResultEntry????)
        ????

if (valori n, k per cui C(n,k) si sa fare????) {
        ????

per gli altri casi?
```

Coefficienti binomiali – memoization (sempre ricorsivo)

```
C(n: int, k: int): float {
    if (result[n][k].done == true)
        return result[n][k].value;

if (valori n, k per cui C(n,k) si sa fare????) {
        ????

    per gli altri casi?

per gli altri casi?
```

Coefficienti binomiali – memoization (sempre ricorsivo)

```
C(n: int, k: int): float {
   if (result[n][k].done == true)
        return result[n][k].value;

if ((k == 0) || (k == n)) {
        ????
   per gli altri casi?

per gli altri casi?
```

```
C(n,k)=C(n-1, k-1)+C(n-1, k)
C(n,0)=1
C(n,n)=1
```

```
Coefficienti binomiali – memoization (sempre ricorsivo)
```

```
C(n: int, k: int): float {
   if (result[n][k].done == true)
        return result[n][k].value;

if ((k == 0) || (k == n)) {
        result[n][k].done = true;
        result[n][k].value = 1;
        return result[n][k].value;}

   per gli altri casi?

per gli altri casi?
```

```
C(n,k)=C(n-1, k-1)+C(n-1, k)
C(n,0)=1
C(n,n)=1
```

Coefficienti binomiali – memoization (sempre ricorsivo)

```
C(n: int, k: int): float {
    if (result[n][k].done == true)
        return result[n][k].value;

if ((k == 0) || (k == n)) {
        result[n][k].done = true;
        result[n][k].value = 1;
        return result[n][k].value;}

result[n][k].done = true;
    result[n][k].value;

result[n][k].value = C(n - 1, k) + C(n - 1, k - 1);
    return result[n][k].value;
}
```

Coefficienti binomiali - memoization (sempre ricorsivo)

```
C(n,k)=C(n-1, k-1)+C(n-1, k)
   C(n: int, k: int): float {
                                             C(n,0)=1
      if (result[n][k].done == true)
                                             C(n,n)=1
            return result[n][k].value;
      if ((k == 0) | | (k == n))
            result[n][k].done = true;
                                                  Non ricalcola, ma
            result[n][k].value = 1;
                                                    accede valori in tabella
            return result[n][k].value; }
      result[n][k].done = true;
      result[n][k].value = C(n - 1, k) + C(n - 1, k - 1);
      return result[n][k].value;
giuseppe.prencipe@unipi.it
```

Coefficienti binomiali – albero ricorsione con memoization

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica

- · Eliminiamo ora la ricorsione, e sostituiamola con iterazione
- Bisogna capire come inserire i valori in tabella in modo che la tabella sia utile
 - · Programmazione Dinamica

Coefficienti binomiali — bottom-up, riempire la tabella

- · result[i][j] memorizza il valore di C(i,j)
- La tabella ha n+1 righe and k+1 colonne, k<=n
- Inizializzazione: Quali valori possiamo inserire già all'inizio? In altre parole, di quali sotto-problemi conosciamo già la soluzione?

....definizione di C(n,k)

@2020 giuseppe.prencipe@unipi.it

Coefficienti binomiali — bottom-up, riempire la tabella

- · result[i][j] memorizza il valore di C(i,j)
- La tabella ha n+1 righe and k+1 colonne, k<=n
- Inizializzazione: Quali valori possiamo inserire già all'inizio? In altre parole, di quali sotto-problemi conosciamo già la soluzione?

C(n,k)=C(n-1, k-1)+C(n-1, k) C(n,0)=1 C(n,n)=1

Coefficienti binomiali — bottom-up, riempire la tabella

- result[i][j] memorizza il valore di C(i,j)
- La tabella ha n+1 righe and k+1 colonne, k<=n
- **Inizializzazione**: C(i,0)=1 e C(i,i)=1, per $1 \le i \le n$

@2020 giuseppe.prencipe@unipi.it

Coefficienti binomiali — bottom-up, riempire la tabella

- result[i][j] memorizza il valore di C(i,j)
- La tabella ha n+1 righe and k+1 colonne, k<=n
- **Inizializzazione**: C(i,0)=1 e C(i,i)=1, per $1 \le i \le n$

@2020 giuseppe.prencipe@unipi.it

Coefficienti binomiali — bottom-up, riempire la tabella

- result[i][j] memorizza il valore di C(i,j)
- · Gli altri elementi (i,j) come li calcoliamo?

C(n,k)=C(n-1, k-1)+C(n-1, k) C(n,0)=1 C(n,n)=1

@2020 giuseppe.prencipe@unipi.it

Coefficienti binomiali — bottom-up, riempire la tabella

- result[i][j] memorizza il valore di C(i,j)
- Il resto dei valori (i,j), $2 \le i \le n$ e $1 \le j \le i-1$ sono calcolati utilizzando i valori (i-1, j-1) e (i-1, j)

C(i,j)=C(i-1, j-1)+C(i-1, j)

```
result: float[][];

C(n: int, k: int): float {

result: float[n + 1][n + 1];
   int i, j;
   inizializzazione

riempimento tabella prog. din.

return result[n][k];

a2020 }
puseppp peropp@unipit
```

```
C(i,j)=C(i-1, j-1)+C(i-1, j)
C(n,k)=C(n-1, k-1)+C(n-1, k)
C(n,0)=1
C(n,n)=1
```

Coefficienti binomiali — bottom-up

```
result: float[][];

C(n: int, k: int): float {

result: float[n + 1][n + 1];
  int i, j;
  int i, j;
  for (i=0; i<=n; i++) {
     result[i][0]=1;
     result[i][i]=1;
     }

  riempimento tabella prog. din.

return result[n][k];

22020
}
guseppe prencipe@unipiit</pre>
```

```
C(i,j)=C(i-1, j-1)+C(i-1, j)
C(n,k)=C(n-1, k-1)+C(n-1, k)
C(n,0)=1
C(n,n)=1
```

```
result: float[][];

C(n: int, k: int): float {

result: float[n + 1][n + 1];
  int i, j;
  for (i=0; i<=n; i++) {
     result[i][0]=1;
     result[i][i]=1;
     }

riempimento tabella prog. din.

Completate!!!!

return result[n][k];
}</pre>
```

```
C(i,j)=C(i-1, j-1)+C(i-1, j)
C(n,k)=C(n-1, k-1)+C(n-1, k)
C(n,0)=1
C(n,n)=1

Valori da
calcolare
```

Coefficienti binomiali — bottom-up

```
C(i,j)=C(i-1, j-1)+C(i-1, j)
    result: float[][];
                                                      C(n,k)=C(n-1, k-1)+C(n-1, k)
    C(n: int, k: int): float {
                                                      C(n,0)=1
    result: float[n + 1][n + 1];
                                                      C(n,n)=1
       int i, j;
       for (i=0; i<=n; i++) {</pre>
           result[i][0]=1;
            result[i][i]=1;
       for (i=2; i<=n; i++)</pre>
         for(j=1; j<i; j++)
            result[i][j]=result[i-1][j-1]+result[i-1][j];
       return result[n][k];
    }
@2020 }
giuseppe.prendipe@unipi.it
```

```
result: float[][];

C(n: int, k: int): float {

result: float[n + 1][n + 1];
   int i, j;
   int i, j;
   for (i=0; i<=n; i++) {
      result[i][0]=1;
      result[i][i]=1;
      }

for (i=2; i<=n; i++)
      for(j=1; j<i; j++)
      result[i][j]=result[i-1][j-1]+result[i-1][j];

return result[n][k];

a2020 }
guespe prencip@unpit</pre>
```

Coefficienti binomiali — bottom-up

```
result: float[][];

C(n: int, k: int): float {

result: float[n + 1][n + 1];
   int i, j;
   for (i=0; i<=n; i++) {
      result[i][0]=1;
      result[i][i]=1;
      }

for (i=2; i<=n; i++)
      for(j=1; j<i; j++)
      result[i][j]=result[i-1][j-1]+result[i-1][j];

return result[n][k];

@2020 }

@2020 }
</pre>
```

Coefficienti binomiali — spazio

- · Di quanti valori c'è effettivamente bisogno per calcolare ogni (i,j)?
- · Abbiamo bisogno di tutta la tabella in ogni momento?

Coefficienti binomiali — spazio

- · Di quanti valori c'è effettivamente bisogno per calcolare ogni (i,j)?
- · Abbiamo bisogno di tutta la tabella in ogni momento?

@2020 giuseppe.prencipe@unipi.it

Programmazione Dinamica — migliorare uso memoria

- In molti algoritmi di Programmazione Dinamica, non è davvero necessario memorizzare TUTTI i valori della tabella
- Ogni passo (sotto-problema) generalmente dipende sono da un ridotto insimeme di sotto-problemi (e non da tutti)
- Quindi, è possibile in genere sostituire la tabella intera con un buffer di memoria più piccolo che viene aggiornato durante la computazione

Coefficienti binomiali — spazio

- Ad ogni iterazione for i, per calcolare i valori della riga corrente abbiamo bisogno solo dei valori della riga precedente
- · Quindi, 2 righe sono sufficienti come buffer di memoria
- · Questi buffer sono *riutilizzati* ad ogni iterazione

@2020 giuseppe.prencipe@unipi.it

Coefficienti binomiali — bottom-up, spazio efficiente

Coefficienti binomiali — bottom-up, spazio efficiente

Coefficienti binomiali — bottom-up, spazio efficiente

```
C(n: int, k: int): float {
     result1: float[n + 1];
                                                     Tempo: ????
     result2: float[n + 1];
    result1[0] = 1;
                                                     Spazio: ????
     result1[1] = 1;
     for (int i = 2; i <= n; i++) {</pre>
        result2[0] = 1;
        for (int j = 1; j < i; j++)
             result2[j] = result1[j - 1] + result1[j];
       result2[i] = 1;
       auxi: float[] = result1;
       result1 = result2;
       result2 = auxi;
    return result1[k];
@2020 }
giuseppe.prencipe@unipi.it
```

Coefficienti binomiali — bottom-up, spazio efficiente

```
C(n: int, k: int): float {
    result1: float[n + 1];
                                                      Tempo: O(n*n) (or O(n*k))
    result2: float[n + 1];
    result1[0] = 1;
                                                      Spazio: O(n) (or O(k))
     result1[1] = 1;
     for (int i = 2; i <= n; i++) {</pre>
        result2[0] = 1;
        for (int j = 1; j < i; j++)</pre>
             result2[j] = result1[j - 1] + result1[j];
       result2[i] = 1;
       auxi: float[] = result1;
       result1 = result2;
       result2 = auxi;
    return result1[k];
@2020 }
giuseppe.prencipe@unipi.it
```

Programmazione Dinamica in 4 passi

- 1. Caratterizzare la struttura di una soluzione ottima
- 2. Ricorsivamente definire il valore di una soluzione ottima
- 3. Calcolare il valore di una soluzione ottima in modo bottom-up
- 4. **Costruire** gli elementi della soluzione ottima dalle informazioni calcolate (non sempre richiesto)

Concatenazione del prodotto di matrici

Sequenza ottima di moltiplicazioni di matrici

Moltiplicazione di matrici

Sequenza ottima di moltiplicazioni di matrici

Vogliamo calcolare il prodotto di n matrici A_i di taglia d_i x d_{i+1}

$$A^* = A_0 \times A_1 \times \cdots \times A_{n-1}$$

Hp. semplificativa: il costo di moltiplicazione di due matrici di taglia rxs e sxt è pari a **r** x **s** x **t**

@2020 giuseppe.prencipe@unipi.it

Sequenza ottima di moltiplicazioni di matrici

- · Sequenza di moltiplicazione di matrici:
 - Calcolare $A=A_0^*A_1^*...^*A_{n-1}$
 - $A_i \stackrel{.}{e} d_i \times d_{i+1}$
 - · Problema: come moltiplicare efficientemente?
- Esempio
 - Bè3×100
 - · Cè100 × 5
 - Dè5×5
 - (B*C)*D abbiamo quante operazioni????
 - B*(C*D) abbiamo quante operazioni????

Sequenza ottima di moltiplicazioni di matrici

· Sequenza di moltiplicazione di matrici:

- Calcolare A=A₀*A₁*...*A_{n-1}
- $A_i \stackrel{.}{e} d_i \times d_{i+1}$
- · Problema: come moltiplicare efficientemente?

· Esempio

- Bè3×100
- · Cè 100 × 5
- · Dè5×5
- (B*C)*D abbiamo 1500 + 75 = 1575 operazioni
- B*(C*D) abbiamo quante operazioni????

@2020 giuseppe.prencipe@unipi.it

Sequenza ottima di moltiplicazioni di matrici

· Sequenza di moltiplicazione di matrici:

- Calcolare $A=A_0^*A_1^*...^*A_{n-1}$
- $A_i \stackrel{.}{e} d_i \times d_{i+1}$
- · Problema: come moltiplicare efficientemente?

· Esempio

- Bè3×100
- · Cè100 × 5
- Dè5×5
- (B*C)*D abbiamo 1500 + 75 = 1575 operazioni
- B*(C*D) abbiamo 1500 + 2500 = 4000 operazioni

Sequenza ottima di moltiplicazioni di matrici

Vogliamo calcolare il prodotto di n matrici Ai di taglia di x di+1

$$A^* = A_0 \times A_1 \times \cdots \times A_{n-1}$$

Hp. semplificativa: il costo di moltiplicazione di due matrici di taglia rxs e sxt è pari a r x s x t

Esempio: $d_0=100$, $d_1=20$, $d_2=1000$, $d_3=2$, $d_4=50$

$$\begin{array}{ll} (A_0\times (A_1\times (\overline{A_2\times A_3})) & d_2d_3d_4+d_1d_2d_4+d_0d_1d_4=1.200.000\\ (A_0\times ((A_1\times A_2)\times A_3)) & d_1d_2d_3+d_1d_3d_4+d_0d_1d_4=142.000\\ ((A_0\times A_1)\times (A_2\times A_3)) & d_0d_1d_2+d_2d_3d_4+d_0d_2d_4=7.100.000\\ (((A_0\times A_1)\times A_2)\times A_3) & d_0d_1d_2+d_0d_2d_3+d_0d_3d_4=2.210.000\\ ((A_0\times (A_1\times A_2))\times A_3) & d_1d_2d_3+d_0d_1d_3+d_0d_3d_4=54.000 \end{array}$$

Approccio enumerativo

Algoritmo:

- Prova tutti i possibili modi per moltiplicare A=A₀*A₁*...*A_{n-1}
- · Calcola il numero di operazioni per ogni possibile modo
- Scegli il migliore

Costo:

- · Il numero di possibili modi è uguale al numero di alberi binari con n nodi
- · Questo è esponenziale!
- Si chiama numero di Catalan, ed è circa 4ⁿ
- · Pessimo algoritmo!

Sequenza ottima di moltiplicazioni

- Il costo varia a seconda di come associamo il prodotto utilizzando la moltiplicazione tra due matrici: in generale, qual è il costo minimo?
- Nuovo problema:
 - input: sequenza di interi positivi d₀, d₁, ..., d_n
 (dove d_i x d_{i+1} è la taglia della matrice A_i)
 - output: minimo numero di operazioni per calcolare

$$A^* = A_0 \times A_1 \times \cdots \times A_{n-1}$$

- (detto **costo minimo** per A*) con l'ipotesi che la moltiplicazione di due matrici di taglia rxs e sxt richieda r x s x t operazioni
- Nota: il tutto si applica anche con algoritmi più veloci

@2020 giuseppe.prencipe@unipi.it

1. Caratterizzare i sotto-problemi ottimi

· Metodo più efficiente: per 0 ≤ i ≤ j ≤ n-1, sia

$$M(i,j) = costo minimo per A_i x A_{i+1} x x A_j$$

(la cui taglia risultante è d_i x d_{i+1})

· Il costo minimo per A* è quindi dato da....????

- 1. Caratterizzare i sotto-problemi ottimi
- · Metodo più efficiente: per 0 ≤ i ≤ j ≤ n-1, sia

$$M(i,j) = costo minimo per A_i x A_{i+1} x x A_j$$

(la cui taglia risultante è $d_i \times d_{j+1}$)

· Il costo minimo per A* è quindi dato da M(0,n-1)

@2020 giuseppe.prencipe@unipi.it

- 1. Caratterizzare i sotto-problemi ottimi
- · Quali sono i sotto-problemi "banali"? Per quali valori di i e j?????

- 1. Caratterizzare i sotto-problemi ottimi
- M(i,i) = 0 per 0 ≤ i ≤ n-1 (per ottenere A_i non dobbiamo moltiplicare)

@2020 giuseppe.prencipe@unipi.it

- 1. Caratterizzare i sotto-problemi ottimi
- M(i,i) = 0 per $0 \le i \le n-1$ (per ottenere A_i non dobbiamo moltiplicare)
- · Caso generale: come possiamo definire i sotto-problemi?

Come definire **ricorsivamente** A_ixA_{i+1}x....xA_j in termini di **problemi** più piccoli?

- 1. Caratterizzare i sotto-problemi ottimi
- M(i,i) = 0 per $0 \le i \le n-1$ (per ottenere A_i non dobbiamo moltiplicare)
- Caso generale: per ogni i ≤ r < j, vale

Come possiamo dividere A_ixA_{i+1}x....xA_j ????

@2020 giuseppe.prencipe@unipi.it

2. Definire la struttura ricorsiva

- M(i,i) = 0 per $0 \le i \le n-1$ (per ottenere A_i non dobbiamo moltiplicare)
- Caso generale: per ogni i ≤ r < j, vale

2. Definire la struttura ricorsiva

- M(i,i) = 0 per $0 \le i \le n-1$ (per ottenere A_i non dobbiamo moltiplicare)
- Caso generale: per ogni i ≤ r < j, vale

@2020 giuseppe.prencipe@unipi.it

2. Definire la struttura ricorsiva

- M(i,i) = 0 per $0 \le i \le n-1$ (per ottenere A_i non dobbiamo moltiplicare)
- · Caso generale: per ogni i ≤ r < j, vale

2. Definire la struttura ricorsiva

- M(i,i) = 0 per $0 \le i \le n-1$ (per ottenere A_i non dobbiamo moltiplicare)
- Caso generale: per ogni i ≤ r < j, vale

@2020 giuseppe.prencipe@unipi.it

2. Definire la struttura ricorsiva

- M(i,i) = 0 per $0 \le i \le n-1$ (per ottenere A_i non dobbiamo moltiplicare)
- · Caso generale: per ogni i ≤ r < j, vale

2. Definire la struttura ricorsiva

- M(i,i) = 0 per $0 \le i \le n-1$ (per ottenere A_i non dobbiamo moltiplicare)
- Caso generale: per ogni i ≤ r < j, vale

$$\begin{array}{c} A_{i}xA_{i+1}x....xA_{j} \\ \hline \\ dim: d_{i} \times d_{j+1} \end{array} = \underbrace{ \begin{array}{c} \left(A_{i}xA_{i+1}x....xA_{r}\right) \\ \\ dim: d_{i} \times d_{r+1} \end{array}}_{ \begin{array}{c} \\ \\ \\ \end{array}} \underbrace{ \begin{array}{c} \left(A_{r+1}xA_{r+2}x....xA_{j}\right) \\ \\ \\ \end{array}}_{ \begin{array}{c} \\ \\ \end{array}} \underbrace{ \begin{array}{c} \left(A_{r+1}xA_{r+2}x....xA_{j}\right) \\ \\ \\ \end{array}}_{ \begin{array}{c} \\ \\ \end{array}} \underbrace{ \begin{array}{c} \left(A_{r+1}xA_{r+2}x....xA_{j}\right) \\ \\ \\ \end{array}}_{ \begin{array}{c} \\ \\ \end{array}} \underbrace{ \begin{array}{c} \left(A_{r+1}xA_{r+2}x....xA_{j}\right) \\ \\ \\ \end{array}}_{ \begin{array}{c} \\ \\ \end{array}} \underbrace{ \begin{array}{c} \left(A_{r+1}xA_{r+2}x....xA_{j}\right) \\ \\ \\ \end{array}}_{ \begin{array}{c} \\ \end{array}}_{ \begin{array}{c} \\ \end{array}}_{ \begin{array}{c} \\ \\ \end{array}}_{ \begin{array}{c} \\ \\ \end{array}}_{ \begin{array}{c} \\ \\ \end{array}}_{ \begin{array}{c} \\ \end{array}}_{ \begin{array}{c} \\ \\ \end{array}}_{ \begin{array}{c} \\ \\ \end{array}}_{ \begin{array}{c} \\ \end{array}}_{ \begin{array}{c} \\ \end{array}}_{ \begin{array}{c} \\ \end{array}}_{ \begin{array}{c} \\ \\ \end{array}}_{ \begin{array}{c} \\ \\ \end{array}}_{ \begin{array}{c} \\ \end{array}}_{ \begin{array}{c} \\ \end{array}}_{ \begin{array}{c} \\ \end{array}}_{ \begin{array}{c} \\ \\ \end{array}}_{ \begin{array}{c} \\ \end{array}}_{$$

Per ottenere il minimo per M(i,j), bisogna trovare r che lo minimizza

@2020 giuseppe.prencipe@unipi.it

2. Definire la struttura ricorsiva

```
CostoMinimoRicorsivo(i, j):
                                                           (pre:
      IF (i >= j) RETURN 0;
2
      minimo = +\infty;
3
      FOR (r = i; r < j; r = r+1) {
        costo = CostoMinimoRicorsivo( i, r );
        costo = costo + CostoMinimoRicorsivo( r+1, j );
        costo = costo + d[i] \times d[r+1] \times d[i+1];
        IF (costo < minimo) minimo = costo;</pre>
8
9
10
      RETURN minimo;
      M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{j+1}
```

Per ottenere il minimo per M(i,j), bisogna trovare r che lo minimizza

@2020 aiuseppe.prencine@unipi.

2. Definire la struttura ricorsiva — top-down (overlap delle soluzioni)

@2020 giuseppe.prencipe@unipi.it

2. Definire la struttura ricorsiva — top-down (overlap delle soluzioni)

Numero esponenziale di chiamate ricorsive, ciascuna invocata molte volte con gli stessi parametri d'ingresso

@2020 giuseppe.prencipe@unipi.it 2. Definire la struttura ricorsiva — top-down (overlap delle soluzioni)

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{j+1}$$

- · Quindi, indicando con T(n) la complessità del calcolo di M(0,n-1),
 - Qual è l'equazione di ricorrenza? (ricordate che M(i,j) prova tutti gli r)

@2020 giuseppe.prencipe@unipi.it

2. Definire la struttura ricorsiva — top-down (overlap delle soluzioni)

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{j+1}$$

- · Quindi, indicando con T(n) la complessità del calcolo di M(0,n-1),
 - Qual è l'equazione di ricorrenza? (ricordate che M(i,j) prova tutti gli r)

$$T(n) = c' + \sum_{r=0,..,n-2} (T(r+1) + T(n-r-1) + c")$$

- Esponenziale!!

- · Il problema, come visto, è che i valori vengono calcolati più volte
- · Ricorriamo alla programmazione dinamica
 - Memorizziamo i risultati parziali in una matrice
 - Il calcolo di M[i,i] si basa su valori di M già calcolati
 - Cerchiamo di capire quali sono i valori base
 - Domanda: In questo caso, quali elementi della matrice possiamo riempire subito?

@2020 giuseppe.prencipe@unipi.it

3. Calcolare valore ottimo della soluzione - bottom-up

- · Il problema, come visto, è che i valori vengono calcolati più volte
- · Ricorriamo alla programmazione dinamica
 - · Memorizziamo i risultati parziali in una matrice
 - Il calcolo di M[i,i] si basa su valori di M già calcolati
 - Cerchiamo di capire quali sono i valori base
 - M[i,i]=0 (era il caso base della ricorsione)
 - Calcolare il prodotto della sequenza composta da una sola matrice ha costo nullo

- · Il problema, come visto, è che i valori vengono calcolati più volte
- · Ricorriamo alla programmazione dinamica
 - · Memorizziamo i risultati parziali in una matrice
 - Il calcolo di M[i,i] si basa su valori di M già calcolati
 - Cerchiamo di capire quali sono i valori base
 - M[i,i]=0 (era il caso base della ricorsione)
 - Calcolare il pro sola matrice h

Quindi, al passo 0, possiamo riempire con 0 la diagonale della matrice M

@2020 giuseppe.prencipe@unipi.it

3. Calcolare valore ottimo della soluzione - bottom-up

tabella: costi[i][j] = M(i,j)

i — j	0	1	2	3
0	0			
1		0		
2			0	
3				0

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$$

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare? In altre parole, quali elementi della matrice riempire al passo 1?

i — j	0	1	2	3
0	0			
1		0		
2			0	
3				0

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$$

@2020 giuseppe.prencipe@unipi.it

3. Calcolare valore ottimo della soluzione — bottom-up

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare?
In altre parole, quali elementi della matrice riempire al passo 1?

M[0,3] di quali valori ha bisogno?

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$$

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare? In altre parole, quali elementi della matrice riempire al passo 1?

M[0,3] di quali valori ha bisogno?

@2020 giuseppe.prencipe@unipi.it

i — j	0	1	2	3
0				
1		0		
2			0	
3				0

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$$

3. Calcolare valore ottimo della soluzione — bottom-up

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare?
In altre parole, quali elementi della matrice riempire al passo 1?

M[0,3] di quali valori ha bisogno?

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$$

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare? In altre parole, quali elementi della matrice riempire al passo 1?

M[0,3] di quali valori ha bisogno?

@2020 giuseppe.prencipe@unipi.it

i — j	0	1	2	3
0				
1		0		
2			0	
3				

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$$

3. Calcolare valore ottimo della soluzione — bottom-up

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare?
In altre pa NON possibile elementi dal passo 1!!!!
riempire ai passo 1?

M[0,3] di quali valori ha bisogno?

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$$

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare?
In altre parole, quali elementi della matrice riempire al passo 1?

i — j	0	1	2	3
0	0			
1		0		
2			0	
3				0

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$$

@2020 giuseppe.prencipe@unipi.it

3. Calcolare valore ottimo della soluzione — bottom-up

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare?
In altre parole, quali elementi della matrice riempire al passo 1?

M[2,3] di quali valori ha bisogno?

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$$

@2020 giuseppe.prencipe@unipi.it

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare? In altre parole, quali elementi della matrice riempire al passo 1?

M[2,3] di quali valori ha bisogno?

@2020 giuseppe.prencipe@unipi.it

i — j	0	1	2	3
0	0			
1		0		
2				
3				

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$$

3. Calcolare valore ottimo della soluzione — bottom-up

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare?
In altre pa elementi della riempire ai passo 1?

M[2,3] di quali valori ha bisogno?

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$$

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare? In altre parole, quali elementi della matrice riempire al passo 1?

In generale, come è possibile riempire la matrice?

i — j	0	1	2	3
0	0			
1		0		
2			0	
3				0

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$$

@2020 giuseppe.prencipe@unipi.it

3. Calcolare valore ottimo della soluzione — bottom-up

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare?
In altre parole, quali elementi della matrice riempire al passo 1?

In generale, come è possibile riempire la matrice?

i — j	0	1	2	3
0	0			
1		0		
2			0	
3				0

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{j+1}, i < j$$

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare? In altre parole, quali elementi della matrice riempire al passo 1?

In generale, come è possibile riempire la matrice?

 $M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$

3. Calcolare valore ottimo della soluzione - bottom-up

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare?
In altre parole, quali elementi della matrice riempire al passo 1?

In generale, come è possibile riempire la matrice?

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$$

@2020 giuseppe.prencipe@unipi.it

@2020 giuseppe.prencipe@unipi.it

tabella: costi[i][j] = M(i,j)

Domanda: noti i valori della diagonale (tutti 0), quali elementi della matrice possiamo calcolare? In altre parole, quali elementi della matrice riempire al passo 1?

i — j	0	1	2	3
0	0			
1		0		
2			0	
3				0

Per diagonali!!!!

 $M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{i+1}, i < j$

giuseppe.prencipe@unipi.it

3. Calcolare valore ottimo della soluzione - bottom-up

- · L'approccio bottom-up riempie la matrice per diagonali
- · Valore [i,j] calcolato con i valori precedenti in riga i-esima e colonna i-esima

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{j+1}, i < j$$

giuseppe.prencipe@unipi.i

- · L'approccio bottom-up riempie la matrice per diagonali
- · Valore [i,j] calcolato con i valori precedenti in riga i-esima e colonna j-esima

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{j+1}, i < j$$

3. Calcolare valore ottimo della soluzione — bottom-up

- · L'approccio bottom-up riempie la matrice per diagonali
- · Valore [i,j] calcolato con i valori precedenti in riga i-esima e colonna i-esima

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{j+1}, i < j$$

giuseppe.prencipe@unipi.i

3. Calcolare valore ottimo della soluzione — bottom-up

- · L'approccio bottom-up riempie la matrice per diagonali
- · Valore [i,j] calcolato con i valori precedenti in riga i-esima e colonna j-esima

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{j+1}, i < j$$

3. Calcolare valore ottimo della soluzione — bottom-up

- · L'approccio bottom-up riempie la matrice per diagonali
- · Valore [i,j] calcolato con i valori precedenti in riga i-esima e colonna j-esima

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{j+1}, i < j$$

giuseppe.prencipe@unipi.i

3. Calcolare valore ottimo della soluzione — bottom-up

- · L'approccio bottom-up riempie la matrice per diagonali
- · Valore [i,j] calcolato con i valori precedenti in riga i-esima e colonna j-esima

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{j+1}, i < j$$

3. Calcolare valore ottimo della soluzione - bottom-up

- · L'approccio bottom-up riempie la matrice per diagonali
- · Valore [i,j] calcolato con i valori precedenti in riga i-esima e colonna i-esima

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{j+1}, i < j$$

giuseppe.prencipe@unipi.

3. Calcolare valore ottimo della soluzione — bottom-up

- · L'approccio bottom-up riempie la matrice per diagonali
- · Valore [i,j] calcolato con i valori precedenti in riga i-esima e colonna j-esima

$$M(i,j) = M(i,r) + M(r+1,j) + d_i d_{r+1} d_{j+1}, i < j$$

Soluzione

```
CostoMinimoIterativo():
      FOR (i = 0; i < n; i = i+1) {
        costi[i][i] = 0;
 3
4
      FOR (diagonale = 1; diagonale < n; diagonale = diagonale+1)
 5
        FOR (i = 0; i < n-diagonale; i = i+1) {
6
          j = i + diagonale;
          costi[i][j] = +\infty;
8
          FOR (r = i; r < j; r = r+1) {
9
                                                         Sostituiscono le
             costo = costi[i][r] + costi[r+1][j];-
10
                                                         chiamate ricorsive
             costo = costo + d[i] \times d[r+1] \times d[j+1];
             IF (costo < costi[i][j]) {</pre>
               costi[i][j] = costo;
13
                                                         Serve a ricostruire la
               indice[i][j] = r;
14
                                                         soluzione ottima
15
          }
16
17
18
      }
      RETURN costi[0][n-1];
```


Analisi di complessità

Quanto costa riempire ogni casella della tabella?

```
CostoMinimoIterativo():
                                                          3
                                                                        0
     FOR (i = 0; i < n; i = i+1) {
        costi[i][i] = 0;
4
     FOR (diagonale = 1; diagonale < n; diagonale = diagonale+1) {</pre>
        FOR (i = 0; i < n-diagonale; i = i+1) {
6
          j = i + diagonale;
          costi[i][j] = +\infty;
8
9
          FOR (r = i; r < j; r = r+1) {
            costo = costi[i][r] + costi[r+1][j];
            costo = costo + d[i] \times d[r+1] \times d[j+1];
            IF (costo < costi[i][j]) {</pre>
13
               costi[i][j] = costo;
14
               indice[i][j] = r;
15
          }
17
        }
     }
18
     RETURN costi[0][n-1];
```

Domanda: complessità??

@2020 giuseppe.prencipe@unipi.it

Analisi di complessità

i — j	0		2	3
0	0			
1		0		
2			0	
3				0

- La tabella costi ha taglia n x n e il calcolo di ciascuno dei suoi elementi richiede O(n) tempo (ciclo for più interno)
- CostoMinimoIterativo richiede O(n³) tempo (laddove la versione ricorsiva è esponenziale in n)
- Lo spazio occupato è O(n²) celle
- Anche qui ottimizzazione in spazio possibile

```
CostoMinimoIterativo():
    FOR (i = 0; i < n; i = i+1) {
        costi[i][i] = 0;
    }
FOR (diagonale = 1; diagonale < n; diagonale = diagonale+1) {
    FOR (i = 0; i < n-diagonale; i = i+1) {
        j = i + diagonale;
        costi[i][j] = +∞;
        FOR (r = i; r < j; r = r+1) {
        costo = costi[i][r] + costi[r+1][j];
        costo = costo + d[i] × d[r+1] × d[j+1];
        IF (costo < costi[i][j]) {
            costi[i][j] = costo;
            indice[i][j] = r;
        }
    }
}
RETURN costi[0][n-1];</pre>
```

4. Costruire la soluzione ottima

- Utilizzando la tabella indice, si ricava la sequenza ottima di moltiplicazioni per il calcolo di A*
 - Scrivere una procedura StampaSequenza(indice,i,j) che restituisca la sequenza di prodotti di costo minimo per moltiplicare le matrici in A_i,...,A_i

```
CostoMinimoIterativo( ):
     FOR (i = 0; i < n; i = i+1) {
        costi[i][i] = 0;
      FOR (diagonale = 1; diagonale < n; diagonale = diagonale+1) {
         FOR (i = 0; i < n-diagonale; i = i+1) {
           j = i + diagonale;
           costi[i][j] = +\infty;
          FOR (r = i; r < j; r = r+1) {
    costo = costi[i][r] + costi[r+1][j];
    costo = costo + d[i] × d[r+1] × d[j+1];
             IF (costo < costi[i][j]) {</pre>
                 costi[i][j] = costo;
                indice[i][j] = r;
             }
18
      }
19
      RETURN costi[0][n-1];
```

CostoMinimoIterativo(): FOR (i = 0; i < n; i = i+1) {
 costi[i][i] = 0;

FOR (diagonale = 1; diagonale < n; diagonale = diagonale+1) {

@2020 giuseppe.prencipe@unipi.it

4. Costruire la soluzione ottima

```
FOR (i = 0; i < n-diagonale; i = i+1) {
    j = i + diagonale;</pre>
                                                                                        j = 1 + diagonate,
costi[i][j] = +∞;
FOR (r = i; r < j; r = r+1) {
   costo = costi[i][r] + costi[r+1][j];
   costo = cost + d[i] × d[r+1] × d[j+1];
   costo = cost + d[i] × d[r+1] × d[j+1];</pre>
StampaSequenza(indice,i,j)
                                                                                           IF (costo < costi[i][j]) {
  costi[i][j] = costo;</pre>
    IF (i==j) {
                                                                                             indice[i][j] = r;
          STAMPA A; ;
                                                                                        }
    }
                                                                                    RETURN costi[0][n-1];
    else {
          STAMPA "("
          r=indice[i][j];
          STAMPA StampaSequenza(indice,i,r);
          STAMPA StampaSequenza(indice,r+1,j);
          STAMPA ")"
       }
```

@2020 giuseppe.prencipe@unipi.it

Paradigma della programmazione dinamica

Similitudine con divide et impera:

- · Decomposizione di problemi in sotto-problemi
- definizione ricorsiva della soluzione

Differenza rispetto al divide et impera:

- Utile in problemi di ottimizzazione in cui ogni soluzione ammissibile ha un costo: soluzione di costo ottimo
- · uno stesso sotto-problema può rientrare come componente nella definizione di

diversi altri

@2020 giuseppe.prencipe@unipi.it

Regole auree per la programmazione dinamica

- 1. Soluzione **ottima** di un problema deriva dalla **ottimalità** delle soluzioni dei suoi **sotto-problemi**: Definizione di una **regola ricorsiva** di calcolo della soluzione ottima (punto 1.)
- 2. **Tabella di programmazione dinamica** da riempire **iterativamente** con la regola ricorsiva (punto 2.)
- 3. **Ordine di riempimento** della tabella (punto 3.)
- 4. Cercare eventualmente la soluzione di costo ottimo

Esercizio

A₀: 30 X 35

A₁: 35 X15

A₂: 15X5

A₃: 5X10

A₄: 10X20

A₅: 20 X 25

@2020 giuseppe.prencipe@unipi.it

Esercizio

A₀: 30 X 35; A₁: 35 X15; A₂: 15X5;
 A₃: 5X10; A₄: 10X20; A₅: 20 X 25

Esempio per calcolo M[1,4]

Esercizio

 $(A_0^*(A_1^*A_2))^*((A_3^*A_4)^*A_5)$

@2020 giuseppe.prendipe@unipi.it

Longest Common Subsequence

Sicurezza dei sistemi e sotto-sequenza comune più lunga (LCS)

- Traccia dei comandi eseguiti (file di *log*) per monitorare eventuali intrusioni (*intrusion detection*)
- · Intrusione: sotto-sequenza di un file di log

Operazioni rappresentate come etichette: A, B, ...

Esempio:

log = F =

B, A, A, B, D, C, D, C, A, A, C, A, C, B, A

intrusione = S =

A, D, C, A, A, B

@2020 giuseppe.prencipe@unipi.it

Sotto-sequenza comune più lunga

 Una sequenza S di lunghezza k è sotto-sequenza di una sequenza A di lunghezza n se e solo se può essere ottenuta da A cancellando alcuni elementi

- Una sequenza S di lunghezza k è sotto-sequenza di una sequenza A di lunghezza n se e solo se può essere ottenuta da A cancellando alcuni elementi
- **Più formalmente**, se esistono delle posizioni $0 \le i_0 < i_1 < \ldots < i_{k-1} \le n-1$ in A tali che $S[j] = A[i_j] \text{ per } j = 0, 1, \ldots, k-1$

@2020 giuseppe.prencipe@unipi.it

Sotto-sequenza comune più lunga

- Una sequenza S di lunghezza k è sotto-sequenza di una sequenza A di lunghezza n se e solo se può essere ottenuta da A cancellando alcuni elementi
- **Più formalmente**, se esistono delle posizioni $0 \le i_0 < i_1 < \dots < i_{k-1} \le n-1$ in A tali che $S[j] = A[i_i] \text{ per } j = 0, 1, \dots, k-1$

$$A = \langle A, B, C, B, D, A, B \rangle$$
 $A = \langle A, B, C, B, D, A, B \rangle$ $S = \langle B, D, A \rangle$ $S = \langle A, B, D, A \rangle$

- Una sequenza S di lunghezza k è sotto-sequenza di una sequenza A di lunghezza n se esistono delle posizioni 0 ≤ i₀ < i₁ < < i_{k-1} ≤ n-1 in A tali che S[j] = A[i_j] per j = 0, 1, ..., k-1
- S è sotto-sequenza comune ad A e B, se è sotto-sequenza comune sia di A che di B

$$A = \langle A, B, C, B, D, A, B \rangle$$
 $A = \langle A, B, C, B, D, A, B \rangle$

$$B = \langle B, D, C, A, B, A \rangle$$
 $B = \langle B, D, C, A, B, A \rangle$

@2020 giuseppe.prencipe@unipi.it

Sotto-sequenza comune più lunga

- Una sequenza S di lunghezza k è **sotto-sequenza** di una sequenza A di lunghezza n se esistono delle posizioni $0 \le i_0 < i_1 < \ldots < i_{k-1} \le n-1$ in A tali che S[j] = A[i_j] per j = 0, 1, ..., k-1
- S è sotto-sequenza comune ad A e B, se è sotto-sequenza comune sia di A che di B

$$A = \langle A, \mathbf{B}, \mathbf{C}, B, D, \mathbf{A}, B \rangle \qquad A = \langle A, \mathbf{B}, \mathbf{C}, \mathbf{B}, D, \mathbf{A}, B \rangle$$

$$S = \langle B, C, A \rangle \qquad S' = \langle B, C, B, A \rangle$$

$$B = \langle \mathbf{B}, D, \mathbf{C}, \mathbf{A}, B, A \rangle \qquad B = \langle \mathbf{B}, D, \mathbf{C}, A, \mathbf{B}, \mathbf{A} \rangle$$

- Una sequenza S di lunghezza k è sotto-sequenza di una sequenza A di lunghezza n se esistono delle posizioni 0 ≤ i₀ < i₁ < < i_{k-1} ≤ n-1 in A tali che S[j] = A[i_j] per j = 0, 1, ..., k-1
- S è **sotto-sequenza comune** ad A e B, se è sotto-sequenza comune sia di A che di B
- LCS(A, B) = lunghezza della sotto-sequenza comune più lunga (longest common subsequence)

@2020 giuseppe.prencipe@unipi.it

Sotto-sequenza comune più lunga

 LCS(A, B) = lunghezza della sotto-sequenza comune più lunga (longest common subsequence)

 LCS(A, B) = lunghezza della sotto-sequenza comune più lunga (longest common subsequence)

$$A = \langle A, \mathbf{B}, \mathbf{C}, B, D, \mathbf{A}, B \rangle \qquad A = \langle A, \mathbf{B}, \mathbf{C}, \mathbf{B}, D, \mathbf{A}, B \rangle$$

$$S = \langle B, C, A \rangle \qquad S' = \langle B, C, B, A \rangle$$

$$B = \langle \mathbf{B}, D, \mathbf{C}, \mathbf{A}, B, A \rangle \qquad B = \langle \mathbf{B}, D, \mathbf{C}, A, \mathbf{B}, \mathbf{A} \rangle$$

SèLCS di A e B?

@2020 giuseppe.prencipe@unipi.it

Sotto-sequenza comune più lunga

 LCS(A, B) = lunghezza della sotto-sequenza comune più lunga (longest common subsequence)

$$A = \langle A, \mathbf{B}, \mathbf{C}, B, D, \mathbf{A}, B \rangle \qquad A = \langle A, \mathbf{B}, \mathbf{C}, \mathbf{B}, D, \mathbf{A}, B \rangle$$

$$S = \langle B, C, A \rangle \qquad S' = \langle B, C, B, A \rangle$$

$$B = \langle \mathbf{B}, D, \mathbf{C}, \mathbf{A}, B, A \rangle \qquad B = \langle \mathbf{B}, D, \mathbf{C}, A, \mathbf{B}, \mathbf{A} \rangle$$

SèLCS di A e B?

 LCS(A, B) = lunghezza della sotto-sequenza comune più lunga (longest common subsequence)

$$A = \langle A, \mathbf{B}, \mathbf{C}, B, D, \mathbf{A}, B \rangle \qquad A = \langle A, \mathbf{B}, \mathbf{C}, \mathbf{B}, D, \mathbf{A}, B \rangle$$

$$S = \langle B, C, A \rangle \qquad S' = \langle B, C, B, A \rangle$$

$$B = \langle \mathbf{B}, D, \mathbf{C}, \mathbf{A}, B, A \rangle \qquad B = \langle \mathbf{B}, D, \mathbf{C}, A, \mathbf{B}, \mathbf{A} \rangle$$

S' è LCS di A e B?

@2020 giuseppe.prencipe@unipi.it

Sotto-sequenza comune più lunga

 LCS(A, B) = lunghezza della sotto-sequenza comune più lunga (longest common subsequence)

$$A = \langle A, \mathbf{B}, \mathbf{C}, B, D, \mathbf{A}, B \rangle \qquad A = \langle A, \mathbf{B}, \mathbf{C}, \mathbf{B}, D, \mathbf{A}, B \rangle$$

$$S = \langle B, C, A \rangle \qquad S' = \langle B, C, B, A \rangle$$

$$B = \langle \mathbf{B}, D, \mathbf{C}, \mathbf{A}, B, A \rangle \qquad B = \langle \mathbf{B}, D, \mathbf{C}, A, \mathbf{B}, \mathbf{A} \rangle$$

S' è LCS di A e B?

- LCS(A, B) = lunghezza della sotto-sequenza comune più lunga (longest common subsequence)
- Questa formulazione generica del problema copre anche il problema (definito inizialmente) di scoprire se S di lunghezza k compare come sotto-sequenza (intrusione) di un file di log F
- Domanda: perché?

@2020 giuseppe.prencipe@unipi.it

Sotto-sequenza comune più lunga

- LCS(A, B) = lunghezza della sotto-sequenza comune più lunga (longest common subsequence)
- Questa formulazione generica del problema copre anche il problema (definito inizialmente) di scoprire se S di lunghezza k compare come sotto-sequenza (intrusione) di un file di log F
- Domanda: perché?

È sufficiente verificare che k = LCS(S,F)

Altre applicazioni di LCS

· Biologia

 Sequenze di DNA sono rappresentate come sequenze di sottomolecole, ognuna appartenente a un tipo: A C G T. In genetica, è di forte interesse calcolare le similarità tra due DNA mediante LCS

· Confronto tra file

 Sistemi di versionamento: esempio - "diff" è utilizzato per confrontare due differenti versioni dello stesso file, per determinare quali cambiamenti sono stati fatti al file. Funziona trovando la LCS delle righe dei due file

@2020 giuseppe.prencipe@unipi.it

Soluzione di forza brut(t)a

· Come potremmo procedere?

Soluzione di forza brut(t)a

@2020 giuseppe.prendipe@unipi.it

Soluzione di forza brut(t)a

- · Siano A e B due sequenze
 - LCS(A,B) = L(m,n), dove m = |A| e n = |B|

Soluzione di forza brut(t)a

- · Siano A e B due sequenze
 - LCS(A,B) = L(m,n), dove m = |A| e n = |B|
- · Per ogni sotto-sequenza di A, controlla se è sotto-sequenza di B
 - · Ci sono 2^m sotto-sequenze di A da controllare
- Per controllare ogni sotto-sequenza, si impiega $\Theta(n)$ tempo
 - Scandisci B per cercare la prima lettera della sotto-sequenza in esame, e da lì cerca la seconda lettera, e così via
- Tempo: Θ(n2^m)

1. e 2. Struttura ricorsiva

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

@2020 giuseppe.prencipe@unipi.it

1. e 2. Struttura ricorsiva

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

- Immaginiamo di aver trovato l'ottimo tra due sotto-problemi
 - Prefisso x di A e prefisso y di B
 - |x| = i, |y| = j

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

- Immaginiamo di aver trovato l'ottimo tra due sotto-problemi
 - · Prefisso x di A e prefisso y di B
 - |x| = i, |y| = j

Conosciamo LCS(x,y) = 3

1. e 2. Struttura ricorsiva

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

- Immaginiamo di aver trovato l'ottimo tra due sotto-problemi
 - Prefisso x di A e prefisso y di B

•
$$|x| = i, |y| = j$$

Conosciamo LCS(x,y) = 3

Ora, cosa facciamo per andare avanti nella ricerca di LCS(A,B)?

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

- Immaginiamo di aver trovato l'ottimo tra due sotto-problemi
 - Prefisso x di A e prefisso y di B
 - |x| = i, |y| = j

Conosciamo LCS(x,y) = 3
x
y

Analizziamo il carattere successivo ad entrambi i prefissi....

1. e 2. Struttura ricorsiva

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

- Immaginiamo di aver trovato l'ottimo tra due sotto-problemi
 - Prefisso x di A e prefisso y di B
 - |x| = i, |y| = j

Quali sono i possibili casi?

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

- Immaginiamo di aver trovato l'ottimo tra due sotto-problemi
 - Prefisso x di A e prefisso y di B
 - |x| = i, |y| = j

c==c' oppure c!= c'

1. e 2. Struttura ricorsiva

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

- Immaginiamo di aver trovato l'ottimo tra due sotto-problemi
 - Prefisso x di A e prefisso y di B

•
$$|x| = i, |y| = j$$

Se c==c' qual è il nuovo LCS()?

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

- Immaginiamo di aver trovato l'ottimo tra due sotto-problemi
 - Prefisso x di A e prefisso y di B
 - |x| = i, |y| = j

Se c==c' qual è il nuovo LCS()?

1. e 2. Struttura ricorsiva

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

- Immaginiamo di aver trovato l'ottimo tra due sotto-problemi
 - Prefisso x di A e prefisso y di B
 - |x| = i, |y| = j

Conosciamo LCS(x,y) = 4

Se c==c' qual è il nuovo LCS()?

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

- Immaginiamo di aver trovato l'ottimo tra due sotto-problemi
 - · Prefisso x di A e prefisso y di B
 - |x| = i, |y| = j

Conosciamo LCS(x,y) = ?

x

c

y

c'

Se c!=c' qual è il nuovo LCS()?

1. e 2. Struttura ricorsiva

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

- Immaginiamo di aver trovato l'ottimo tra due sotto-problemi
 - Prefisso x di A e prefisso y di B
 - |x| = i, |y| = j

Dobbiamo considerare i due possibili scenari

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

- Immaginiamo di aver trovato l'ottimo tra due sotto-problemi
 - · Prefisso x di A e prefisso y di B
 - |x| = i, |y| = j

1. e 2. Struttura ricorsiva

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

- Immaginiamo di aver trovato l'ottimo tra due sotto-problemi
 - Prefisso x di A e prefisso y di B
 - |x| = i, |y| = j

LCS(A,B) può essere ricavato analizzando i prefissi di A e B....

- Immaginiamo di aver trovato l'ottimo tra due sotto-problemi
 - · Prefisso x di A e prefisso y di B
 - |x| = i, |y| = j

Provate a definire la formulazione ricorsiva (prima i casi facili e poi gli altri)....

1. e 2. Struttura ricorsiva

$$LCS(i,j) = \begin{cases} & \text{se i=0 o j=0} \\ & \text{se i,j>0 e } x_i = y_j \end{cases}$$

$$\text{se i,j>0 e } x_i != y_j$$

@2020 giuseppe.prencipe@unipi.it

1. e 2. Struttura ricorsiva

@2020 giuseppe.prencipe@unipi.it

3. Calcolo bottom-up

Come definiamo la tabella di programmazione dinamica?

Come definiamo la tabella di programmazione dinamica?

$$LCS(i,j) = LCS(x, y) + 1$$

$$LCS(i,j) = max(S1, S2)$$

@2020 giuseppe.prencipe@unipi.it

3. Calcolo bottom-up

Come definiamo la tabella di programmazione dinamica?

$$LCS(i,j) = LCS(x, y) + 1$$

$$LCS(i,j) = max(S1, S2)$$

Matrice L di dimensione **mxn** dove L(i,j) rappresenta LCS(A[0, i-1], B[0, j-1])

_	\sim	
ני		bottom-up
·)	()(())	()()()()()(()()
\sim .		NOLLOIII MP

Quali sono i casi base (cioè i valori che posso già inserire in L)?

Matrice L di dimensione **mxn** dove L(i,j) rappresenta LCS(A[0, i-1], B[0, j-1])

@2020 giuseppe.prencipe@unipi.it

3. Calcolo bottom-up

Quali sono i casi base (cioè i valori che posso già inserire in L)?

Se una delle due sequenze è vuota....e quindi?

Matrice L di dimensione **mxn** dove L(i,j) rappresenta LCS(A[0, i-1], B[0, j-1])

Quali sono i casi base (cioè i valori che posso già inserire in L)?

Se una delle due sequenze è vuota....e quindi?

Se
$$i = 0$$
 o $j = 0 \rightarrow ????$

Matrice L di dimensione **mxn** dove L(i,j) rappresenta LCS(A[0, i-1], B[0, j-1])

@2020 giuseppe.prencipe@unipi.it

3. Calcolo bottom-up

Quali sono i casi base (cioè i valori che posso già inserire in L)?

Se una delle due sequenze è vuota....e quindi?

Se
$$i = 0$$
 o $j = 0 \rightarrow L(i,j) = 0$

Matrice L di dimensione **mxn** dove L(i,j) rappresenta LCS(A[0, i-1], B[0, j-1])

Quali sono i casi base (cioè i valori che posso già inserire in L)?

Se una delle due sequenze è vuota....e quindi?

Se
$$i = 0$$
 o $j = 0 \rightarrow L(i,j) = 0$

	0	1	2			n
0	0	0	0	0	0	0
1	0					
2	0					
	0					
	0					
m	0					

Matrice L di dimensione mxn

dove L(i,j) rappresenta LCS(A[0, i-1], B[0, j-1])

@2020 giuseppe.prencipe@unipi.it

3. Calcolo bottom-up

Quali sono i casi base (cioè i valori che posso già inserire in L)?

Se una delle due sequenze è vuota....e quindi?

Se
$$i = 0$$
 o $j = 0 \rightarrow L(i,j) = 0$

$$[A[0,-1] = B[0,-1] = sequenza vuota]$$

Matrice L di dimensione mxn

dove L(i,j) rappresenta LCS(A[0, i-1], B[0, j-1])

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } a[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } a[i-1] \neq b[j-1] \end{array} \right.$$

_	0	1	2			n
0	0	0	0	0	0	0
1	0					
2	0					
	0					
	0					
m	0					

@2020 giuseppe.prencipe@unipi.it

3. Calcolo bottom-up

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } a[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } a[i-1] \neq b[j-1] \end{array} \right.$$

Tabella di programmazione dinamica di taglia (m+1)*(n+1)

$$L[i][j] = LCS(i,j)$$

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } a[i-1] = b[j-1] \\ \max \left\{ \, L(i,j-1), L(i-1,j) \, \right\} & \text{se } i,j > 0 \text{ e } a[i-1] \neq b[j-1] \end{array} \right.$$

Tabella di programmazione dinamica di taglia (m+1)*(n+1)

L[i][j] = LCS(i,j)

Ordine riempimento?

0	1	2			n
0	0	0	0	0	0
0					
0					
0					
0					
0					
	0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0

@2020 giuseppe.prencipe@unipi.it

3. Calcolo bottom-up

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } a[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } a[i-1] \neq b[j-1] \end{array} \right.$$

Tabella di programmazione dinamica di taglia (m+1)*(n+1)

$$L[i][j] = LCS(i,j)$$

Ordine riempimento?

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } a[i-1] = b[j-1] \\ \max \left\{ \, L(i,j-1), L(i-1,j) \, \right\} & \text{se } i,j > 0 \text{ e } a[i-1] \neq b[j-1] \end{array} \right.$$

Tabella di programmazione dinamica di taglia (m+1)*(n+1)

L[i][j] = LCS(i,j)

Ordine riempimento?

@2020 giuseppe.prencipe@unipi.it

3. Calcolo bottom-up

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } a[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } a[i-1] \neq b[j-1] \end{array} \right.$$

Tabella di programmazione dinamica di taglia (m+1)*(n+1)

$$L[i][j] = LCS(i,j)$$

Ordine riempimento?

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } a[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } a[i-1] \neq b[j-1] \end{array} \right.$$

Tabella di programmazione dinamica di taglia (m+1)*(n+1)

L[i][j] = LCS(i,j)

Ordine riempimento?

per riga o colonna

@2020 giuseppe.prencipe@unipi.it

3. Calcolo bottom-up

```
LCS( a, b ):
                                           (pre: a e b sono di lunghezza m e n)
     FOR (i = 0; i \le m; i = i+1)
3
        lunghezza[i][0] = 0;
     FOR (j = 0; j \le n; j = j+1)
4
        lunghezza[0][j] = 0;
     FOR (i = 1; i \le m; i = i+1)
6
        FOR (j = 1; j \le n; j = j+1) {
          IF (a[i-1] == b[j-1]) {
8
            lunghezza[i][j] = lunghezza[i-1][j-1] + 1;
9
          } ELSE IF (lunghezza[i][j-1] > lunghezza[i-1][j]) {
            lunghezza[i][j] = lunghezza[i][j-1];
          } ELSE {
            lunghezza[i][j] = lunghezza[i-1][j];
13
          }
14
15
     RETURN lunghezza[m][n];
```

```
L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.
```

Complessità

Domanda: (solita)....complessità??

```
LCS( a, b ):
                                            (pre: a e b sono di lunghezza m e n)
     FOR (i = 0; i \le m; i = i+1)
2
3
        lunghezza[i][0] = 0;
      FOR (j = 0; j \le n; j = j+1)
5
        lunghezza[0][j] = 0;
6
     FOR (i = 1; i \le m; i = i+1)
7
        FOR (j = 1; j \le n; j = j+1) {
          IF (a[i-1] == b[j-1]) {
8
            lunghezza[i][j] = lunghezza[i-1][j-1] + 1;
9
10
          } ELSE IF (lunghezza[i][j-1] > lunghezza[i-1][j]) {
            lunghezza[i][j] = lunghezza[i][j-1];
11
12
            lunghezza[i][j] = lunghezza[i-1][j];
13
14
15
     RETURN lunghezza[m][n];
16
```

Complessità

• Domanda: (solita)....complessità??

```
(pre: a e b sono di lunghezza m e n)
   LCS( a, b ):
2
     FOR (i = 0; i \le m; i = i+1)
        lunghezza[i][0] = 0;
3
     FOR (j = 0; j \le n; j = j+1)
4

    Tempo O(mn)

5
        lunghezza[0][j] = 0;

    Spazio O(mn)

     FOR (i = 1; i \le m; i = i+1)
6
        FOR (j = 1; j \le n; j = j+1) {
8
          IF (a[i-1] == b[j-1]) {
9
            lunghezza[i][j] = lunghezza[i-1][j-1] + 1;
          } ELSE IF (lunghezza[i][j-1] > lunghezza[i-1][j]) {
10
            lunghezza[i][j] = lunghezza[i][j-1];
11
12
13
            lunghezza[i][j] = lunghezza[i-1][j];
14
15
     RETURN lunghezza[m][n];
```

Complessità

Domanda: (solita)....complessità??

```
LCS( a, b ):
                                            (pre: a e b sono di lunghezza m e n)
     FOR (i = 0; i \le m; i = i+1)
2
3
        lunghezza[i][0] = 0;
     FOR (j = 0; j \le n; j = j+1)
4
                                                                         Tempo O(mn)
5
        lunghezza[0][j] = 0;
                                                                         Spazio O(mn)
6
     FOR (i = 1; i \le m; i = i+1)
7
        FOR (j = 1; j \le n; j = j+1) {
          IF (a[i-1] == b[j-1]) {
8
            lunghezza[i][j] = lunghezza[i-1][j-1] + 1;
9
          } ELSE IF (lunghezza[i][j-1] > lunghezza[i-1][j]) {
10
            lunghezza[i][j] = lunghezza[i][j-1];
11
            lunghezza[i][j] = lunghezza[i-1][j];
13
14
                                                    È possibile ridurre lo spazio ????
15
        }
     RETURN lunghezza[m][n];
16
```

Complessità

· Domanda: (solita)....complessità??

```
LCS( a, b ):
                                            (pre: a e b sono di lunghezza m e n)
2
     FOR (i = 0; i \le m; i = i+1)
        lunghezza[i][0] = 0;
3
     FOR (j = 0; j \le n; j = j+1)
4

    Tempo O(mn)

5
        lunghezza[0][j] = 0;
                                                                         Spazio O(mn)
     FOR (i = 1; i \le m; i = i+1)
6
        FOR (j = 1; j \le n; j = j+1) {
8
          IF (a[i-1] == b[j-1]) {
9
            lunghezza[i][j] = lunghezza[i-1][j-1] + 1;
          } ELSE IF (lunghezza[i][j-1] > lunghezza[i-1][j]) {
10
            lunghezza[i][j] = lunghezza[i][j-1];
11
12
            lunghezza[i][j] = lunghezza[i-1][j];
13
                                                   È possibile ridurre lo spazio a O(n),
14
                                                    usando solo le ultime due righe (o
15
     RETURN lunghezza[m][n];
                                                    colonne)
```

4. Come ricostruire la sequenza più lunga?

Bisogna utilizzare una matrice indice simile a quella utilizzata per la sequenza ottima di moltiplicazioni

@2020 giuseppe.prencipe@unipi.it

Domanda: dove inseriamo il calcolo di indice nel codice visto?

Calcolo di indice

```
LCS( a, b ):
                                            (pre: a e b sono di lunghezza m e n)
     FOR (i = 0; i \le m; i = i+1)
        lunghezza[i][0] = 0;
3
     FOR (j = 0; j \le n; j = j+1)
4
        lunghezza[0][j] = 0;
     FOR (i = 1; i \le m; i = i+1)
6
        FOR (j = 1; j \le n; j = j+1) {
          IF (a[i-1] == b[j-1]) {
            lunghezza[i][j] = lunghezza[i-1][j-1] + 1;
9
          } ELSE IF (lunghezza[i][j-1] > lunghezza[i-1][j]) {
10
            lunghezza[i][j] = lunghezza[i][j-1];
11
          } ELSE {
            lunghezza[i][j] = lunghezza[i-1][j];
          }
14
15
     RETURN lunghezza[m][n];
16
```

Domanda: dove inseriamo il calcolo di indice nel codice visto?

Calcolo di indice

```
LCS(a, b):
                                              (pre: a e b sono di lunghezza m e n)
      FOR (i = 0; i \le m; i = i+1)
        lunghezza[i][0] = 0;
3
      FOR (j = 0; j \le n; j = j+1)
4
5
        lunghezza[0][j] = 0;
      FOR (i = 1; i \le m; i = i+1)
6
                                                    indice[i][i]=<i-1,j-1>
        FOR (j = 1; j \le n; j = j+1) {
          IF (a[i-1] == b[j-1]) {
8
             lunghezza[i][j] = lunghezza[i-1][j-1] + 1;
9
          } ELSE IF (lunghezza[i][j-1] > lunghezza[i-1][j]) {
10
             lunghezza[i][j] = lunghezza[i][j-1];
11
          } ELSE {
12
             lunghezza[i][j] = lunghezza[i-1][j];
13
                                                            indice[i][j]=<i,j-1>
          }
14
        }
15
                                                        indice[i][j]=<i-1,j>
      RETURN lunghezza[m][n];
16
```

Procedura di Stampa

```
Stampa_LCS(i,j) {
    IF ((i>0)&&(j>0)) {
        <i',j'>=indice[i][j];
        Stampa_LCS(i',j');
        IF((i'==i-1)&&(j'==j-1)) PRINT a[i-1];
    }
}
```

Caso in cui i caratteri sono uguali!

@2020 giuseppe.prencipe@unipi.it

Esempio

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If
$$x_i = y_j$$

indice[i, j] = "\"
Else if L[i - 1, j] \geq L[i, j-1]
indice[i, j] = "\tau\"
else
indice[i, j] = "\tau\"

$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$

Riempiamo per righe....

		-	•		- 1			
		0	1	2	3	4	5	6
		Уj	В	D	<u></u>	Α	В	Α
0	x i							
1	Α							
2	В							
3	С							
4	В							
5	D							
6	Α							
7	В							

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y_j$	
indice[i,	j] = "\"
Else if L[i -	$1,j]\geq L[i,j\text{-}1]$
indi	ce[i, j] = " ↑ "
else	
indi	$ce[i, j] = " \leftarrow "$

					•				
		0	1	2	3	4	5	6	
		Уj	В	D	<u></u>	Α	В	Α	
0	X i	0							
1	Α	0							
2	В	0							
3	С	0							
4	В	0							
5	D	0							
6	Α	0							
7	В	0							

@2020 giuseppe.prencipe@unipi.it

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y$	y j
indi	ce[i, j] = "\"
Else if	$L[i-1,j] \geq L[i,j-1]$
	$indice[i, j] = " \uparrow "$
else	
	$indice[i, j] = " \leftarrow "$

		О У _ј	1 B	2 D	3 <i>C</i>	4 <i>A</i>	5 B	6 <i>A</i>
0	×i	0	0	0	0	0	0	0
1	Α	0						
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y_j$	
indice[i, j] = "\"	
Else if L[i - 1, j] \geq L[i, j	-1]
indice[i, j] = " 1	• 11
else	
indice[i, j] = " ◆	_ "

					•			
		0	1	2	3	4	5	6
		Уj	В	D	С	Α	В	<u> </u>
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	↑ O					
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

@2020 giuseppe.prencipe@unipi.it

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y_j$	
indice[i	, j] = "\"
Else if L[i	$-1, j] \ge L[i, j-1]$
ind	lice[i, j] = " ↑ "
else	
ind	$lice[i, j] = " \leftarrow "$

		0	1	2	3	4	5	6
		Уj	В	<u>D</u>	<u></u>	_ <u>A</u>	В	Α
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	↑ 0	↑ 0				
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y$	/ j
indi	ce[i, j] = "\"
Else if	$L[i-1,j] \geq L[i,j-1]$
	indice[i, j] = " ↑ "
else	
	$indice[i, j] = " \leftarrow "$

		•							
		0	1	2	3	4	5	6	
		Уj	В	D	С	Α_	В	_ <u>A</u>	
0	\mathbf{x}_{i}	0	0	0	0	0	0	0	
1	Α	0	↑ 0	↑ 0	↑ O				
2	В	0							
3	С	0							
4	В	0							
5	D	0							
6	Α	0							
7	В	0							

@2020 giuseppe.prencipe@unipi.it

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

$f x_i = y_j$
indice[i, j] = "\"
Else if $L[i - 1, j] \ge L[i, j-1]$
indice[i, j] = " ↑ "
else
$indice[i, j] = " \leftarrow "$

		0	1	2	3	4	5	6
		Уj	В	<u>D</u>		A	В	Α
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	↑ O	↑ 0	↑ 0	1		
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	٥						

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y_j$	
indice[i, j] = "\"	
Else if L[i - 1, j] \geq L[i,	j-1]
indice[i, j] = "	↑ "
else	
indice[i, j] = "	← "

		•			•			
		0	1	2	3	4	5	6
		Уj	В	D	<u></u>	Α	В	Α
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	↑ 0	↑ 0	1 O	1	← 1	
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

@2020 giuseppe.prencipe@unipi.it

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y$	y j
indi	ce[i, j] = "\"
Else if	$L[i-1,j] \geq L[i,j-1]$
	$indice[i, j] = " \uparrow "$
else	
	$indice[i, j] = " \leftarrow "$

		О У _ј	1 B	2 D	3 <i>C</i>	4 <i>A</i>	5 B	6 <i>A</i>
0	×i	0	0	0	n	0	0	0
1	A	0	↑ 0	↑ 0	↑ 0	1	<u>-1</u>	1
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y_j$	
indice[i,	j] = "\"
Else if L[i -	$1,j]\geq L[i,j\text{-}1]$
indi	ce[i, j] = " ↑ "
else	
indi	$ce[i, j] = " \leftarrow "$

		О У _ј	1 B	2 D	3 <i>C</i>	4 <i>A</i>	5 B	6 <i>A</i>
0	×i	0	0	0	0	0	0	0
1	Α	0	↑ O	1 O	↑ O	1	←1	1
2	В	0	1					
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

@2020 giuseppe.prencipe@unipi.it

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y$	√ j
indi	ce[i, j] = "\\"
Else if	$L[i-1,j] \ge L[i,j-1]$
	indice[i, j] = " ↑ "
else	
	$indice[i, j] = " \leftarrow "$

		0	1	2	3	4	5	6	
		Уj	В	D	<u></u>	Α	В	Α	
0	\mathbf{x}_{i}	0	0	0	0	0	0	0	
1	Α	0	↑ O	↑ O	↑ O	1	←1	1	
2	В	0	1	←1					
3	С	0							
4	В	0							
5	D	0							
6	Α	0							
7	В	0							

$$L(i,j) = \begin{cases} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1)+1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{cases}$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y_j$	If $x_i =$
indice[i, j] = "\"	ind
Else if $L[i - 1, j] \ge L[i, j-1]$	Else
indice[i, j] = " ↑ "	
else	else
$indice[i, j] = " \leftarrow "$	

		О У _ј	1 B	2 D	3 <i>C</i>	4 A	5 B	6 <i>A</i>
0	x i	0	0	0	0	0	0	0
1	Α	0	↑ O	1 O	1 O	1	← 1	1
2	В	0	1	← 1	← 1			
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

@2020 giuseppe.prencipe@unipi.it

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y$	y j
indi	ce[i, j] = "\"
Else if	$L[i-1,j] \geq L[i,j-1]$
	indice[i, j] = " ↑ "
else	
	$indice[i, j] = " \leftarrow "$

		0	1	2	3	4	5	6
		Уj	В	D	С	Α	В	Α
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	↑ 0	↑ 0	↑ 0	1	←1	1
2	В	0	1	←1	←1	↑ 1		
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

$$L(i,j) = \begin{cases} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1)+1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{cases}$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

$f x_i = y_j$	
indice[i, j] = "\"	
Else if L[i - 1, j] \geq L[i, j-1]
indice[i, j] = " 1 "	
else	
indice[i, j] = " \leftarrow	"

		О У _ј	1 B	2 D	3 <i>C</i>	4 <i>A</i>	5 B	6 <i>A</i>
0	×i	0	0	0	0	0	0	0
1	Α	0	↑ O	1 O	↑ O	1	← 1	1
2	В	0	1	← 1	← 1	↑ 1	2	
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

@2020 giuseppe.prencipe@unipi.it

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y_j$	
indice[i, j] = "\"	
Else if $L[i - 1, j] \ge L[i, j]$	j-1]
indice[i, j] = "	† "
else	
indice[i, j] = "	← "

		0	1	2	3	4	5	6
		Уj	В	D	<u></u>	Α	В	<u> </u>
0	\boldsymbol{x}_{i}	0	0	0	0	0	0	0
1	Α	0	Î O	↑ O	↑ O	1	←1	1
2	В	0	1	← 1	←1	↑ 1	2	← 2
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	R	١٠						

$$L(i,j) = \begin{cases} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1)+1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{cases}$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y_j$	
indice[i, j] = "\"	
Else if L[i - 1, j] \geq L[i, j-	1]
indice[i, j] = " ↑	"
else	
$indice[i, j] = " \leftarrow$	"

					1 0			
		0	1	2	3	4	5	6
		Уj	В	D	<u></u>	Α	В	<u> </u>
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	↑ O	↑ 0	↑ 0	1	← 1	1
2	В	0	1	←1	← 1	↑ 1	2	← 2
3	С	0	↑ 1	↑ 1	2	← 2	↑ 2	↑ 2
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

@2020 giuseppe.prencipe@unipi.it

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y_j$	
indice[i	, j] = "\"
Else if L[i	$-1, j] \ge L[i, j-1]$
ind	lice[i, j] = " ↑ "
else	
ind	$lice[i, j] = " \leftarrow "$

					. •			
		0	1	2	3	4	5	6
		Уj	В	D	С	Α	В	_ <u>A</u>
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	↑ O	↑ O	↑ 0	1	← 1	1
2	В	0	1	←1	← 1	↑ 1	2	← 2
3	С	0	↑ 1	↑ 1	2	← 2	↑ 2	↑ 2
4	В	0	1	↑ 1	↑ 2	↑ 2	3	← 3
5	D	0						
6	Α	0						
7	В	0						

$$L(i,j) = \begin{cases} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1)+1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{cases}$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y$	/ j
indi	ce[i, j] = "\"
Else if	$L[i-1,j] \ge L[i,j-1]$
	indice[i, j] = " \uparrow "
else	
	$indice[i, j] = " \leftarrow "$

		О Уј	1 B	2 D	3 <i>C</i>	4 A	5 B	6 <i>A</i>
0	×i	0	0	0	0	0	0	0
1	Α	0	↑ O	1 O	↑ O	1	← 1	1
2	В	0	1	←1	←1	↑ 1	2	← 2
3	С	0	↑ 1	↑ 1	2	← 2	↑ 2	↑ 2
4	В	0	1	↑ 1	↑ 2	↑ 2	3	← 3
5	D	0	↑ 1	2	↑ 2	↑ 2	↑ 3	↑ 3
6	Α	0						
7	В	0						

@2020 giuseppe.prencipe@unipi.it

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y$	/ j
indi	ce[i, j] = "\"
Else if	$L[i - 1, j] \ge L[i, j-1]$
	indice[i, j] = " ↑ "
else	
	$indice[i, j] = " \leftarrow "$

	riidiripiairio pei rigile									
		0	1	2	3	4	5	6		
		Уj	В	D	С	Α	В	Α		
0	x i	0	0	0	0	0	0	0		
1	Α	0	↑ 0	↑ 0	↑ 0	1	← 1	1		
2	В	0	1	←1	←1	↑ 1	/2	← 2		
3	С	0	↑ 1	↑ 1	2	← 2	↑ 2	↑ 2		
4	В	0	1	↑ 1	↑ 2	↑ 2	/m	← 3		
5	D	0	↑ 1	2	1 2	1 2	~ო	1 3		
6	Α	0	↑ 1	↑ 2	↑ 2	3	↑ 3	4		
7	В	0								

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

If $x_i = y$	′ j
indic	ce[i, j] = "\"
Else if	$L[i-1,j] \ge L[i,j-1]$
	indice[i, j] = " ↑ "
else	
	$indice[i, j] = " \leftarrow "$

					•			
		0	1	2	3	4	5	6
		Уj	В	D	С	Α	В	<u> </u>
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	← 0	↑ 0	↑ 0	1	←1	1
2	В	0	1	←1	←1	↑ 1	2	← 2
3	С	0	↑ 1	1 1	2	← 2	↑ 2	1 2
4	В	0	1	↑ 1	↑ 2	↑ 2	3	← 3
5	D	0	↑ 1	2	1 2	↑ 2	↑ 3	1 3
6	Α	0	↑ 1	↑ 2	↑ 2	3	↑ 3	4
7	В	0	1	↑ 2	↑ 2	↑ 3	4	↑ 4

@2020 giuseppe.prencipe@unipi.it

Esempio

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

$$\begin{split} &\text{If } x_i = y_j \\ &\text{indice}[i,\,j] = \text{``}\text{`'} \\ &\text{Else if } L[i-1,\,j] \geq L[i,\,j-1] \\ &\text{indice}[i,\,j] = \text{``}\text{`'} \end{split}$$

else

 $indice[i, j] = " \leftarrow "$

	Riempiamo per rigne										
	0 1 2 3 4 5 6										
		Уj	В	D	<u></u>	Α	В	Α			
0	\mathbf{x}_{i}	0	0	0	0	0	0	0			
1	Α	0	← 0	↑ 0	↑ O	1	← 1	1			
2	В	0	1	←1	←1	↑ 1	/2	← 2			
3	С	0	↑ 1	↑ 1	2	← 2	1 2	↑ 2			
4	В	0	1	↑ 1	↑ 2	1 2	/3	← 3			
5	D	0	↑ 1	2	↑ 2	1 2	↑ 3	1 3			
6	Α	0	↑ 1	↑ 2	↑ 2	<u>\</u> 3	1 3	4			
7	В	0	1	↑ 2	↑ 2	↑ 3	4	↑ 4			

Dove si trova la **lunghezza LCS**?

Esempio
$$L(i,j) = \begin{cases} 0 \\ L(i-1,j-1) \end{cases}$$

$$L(i,j) = \left\{ \begin{array}{ll} 0 & \text{se } i = 0 \text{ o } j = 0 \\ L(i-1,j-1) + 1 & \text{se } i,j > 0 \text{ e } \alpha[i-1] = b[j-1] \\ \max \left\{ L(i,j-1), L(i-1,j) \right\} & \text{se } i,j > 0 \text{ e } \alpha[i-1] \neq b[j-1] \end{array} \right.$$

$$X = \langle A, B, C, B, D, A \rangle$$

 $Y = \langle B, D, C, A, B, A \rangle$

Dove si trova la lunghezza

$$\begin{split} &\text{If } x_i = y_j \\ &\text{indice}[i,\,j] = \text{``}\text{`'} \\ &\text{Else if } L[i-1,\,j] \geq L[i,\,j-1] \\ &\text{indice}[i,\,j] = \text{``}\uparrow\text{''} \\ &\text{else} \\ &\text{indice}[i,\,j] = \text{``}\leftarrow\text{''} \end{split}$$

		0	1	2	3	4	5	6
		Уj	В	<u>D</u>	С	<u> </u>	В	A
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	← 0	↑ 0	← 0	1	← 1	1
2	В	0	1	← 1	← 1	↑ 1	2	← 2
3	С	0	↑ 1	1 1	2	← 2	↑ 2	↑ 2
4	В	0	1	↑ 1	^ 2	1 2	3	← 3
5	D	0	↑ 1	2	^ 2	1 2	^ 3	1 3
6	Α	0	↑ 1	↑ 2	^ 2	3	^ 3	4
7	В	0	1	↑ 2	↑ 2	↑ 3	4	(4)

@2020 giuseppe.prencipe@unipi.it

Procedura di Stampa

		О У _ј	1 B	2 D	3 <i>C</i>	4 <i>A</i>	5 B	6 <i>A</i>
0	x i	0	0	0	0	0	0	0
1	Α	0	↑ O	↑ O	↑ O	1	←1	1
2	В	0	1	←1	← 1	↑ 1	2	← 2
3	С	0	↑ 1	1 1	2	← 2	↑ 2	↑ 2
4	В	0	1	↑ 1	↑ 2	↑ 2	3	← 3
5	D	0	↑ 1	2	↑ 2	↑ 2	↑ 3	1 3
6	Α	0	1 1	↑ 2	↑ 2	3	↑ 3	4
7	В	0	1	↑ 2	↑ 2	↑ 3	4	↑ 4

- · Inizia da indice[m, n] e segui le frecce
- Quando si incontra un " \" in indice[i, j]
 ⇒ x_i = y_j è un elemento della LCS

LCS:

@2020 giuseppe.prencipe@unipi.it

		0	1	2	3	4	5	6
		Υj	В	_ D	С	<u> </u>	В	_ A
0	X i	0	0	0	0	0	0	0
1	Α	0	↑ O	1 0	↑ O	1	←1	1
2	В	0	1	←1	←1	↑ 1	2	← 2
3	С	0	↑ 1	1 1	2	← 2	↑ 2	1 2
4	В	0	1	↑ 1	1 2	1 2	3	← 3
5	D	0	↑ 1	2	^ 2	1 2	↑ 3	↑ 3
6	Α	0	↑ 1	1 2	↑ 2	√3	↑ 3	4
7	В	0	1	1 2	1 2	↑ 3	4	↑ 4

Procedura di Stampa

- · Inizia da indice[m, n] e segui le frecce
- Quando si incontra un " \" in indice[i, j]
 ⇒ x_i = y_j è un elemento della LCS

LCS:

		О У _ј	1 B	2 D	3 <i>C</i>	4 <i>A</i>	5 B	6 <i>A</i>
0	x i	0	0	0	0	0	0	0
1	Α	0	↑ O	1 O	↑ O	1	← 1	1
2	В	0	1	←1	←1	↑ 1	2	← 2
3	С	0	↑ 1	1 1	2	← 2	↑ 2	↑ 2
4	В	0	1	↑ 1	1 2	↑ 2	3	← 3
5	D	0	↑ 1	2	1 2	1 2	↑ 3	↑ 3
6	Α	0	↑ 1	1 2	↑ 2	3	↑ 3	4
7	В	0	1	↑ 2	↑ 2	↑ 3	4	4

- · Inizia da indice[m, n] e segui le frecce
- Quando si incontra un " \" in indice[i, j]
 ⇒ x_i = y_j è un elemento della LCS

LCS: $A = \begin{bmatrix} 5 & D & 0 & \frac{1}{1} & \frac{2}{2} & \frac{2}{2} \\ 6 & A & 0 & \frac{1}{1} & \frac{2}{2} & \frac{2}{2} \\ 7 & B & 0 & \frac{1}{1} & \frac{2}{2} & \frac{2}{2} \end{bmatrix}$

Procedura di Stampa

- · Inizia da indice[m, n] e segui le frecce
- Quando si incontra un " \ " in indice[i, j]
 ⇒ x_i = y_j è un elemento della LCS

LCS:

		0	1	2	3	4	5	6
		Υj	В	D	C	Α	В	Α
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	↑ O	1 0	1 O	1	←1	1
2	В	0	1	←1	←1	↑ 1	2	← 2
3	С	0	↑ 1	↑ 1	2	← 2	1 2	↑ 2
4	В	0	1	↑ 1	1 2	1 2	3	← 3
5	D	0	↑ 1	2	1 2	^ 2	3	↑ 3
6	Α	0	↑ 1	↑ 2	↑ 2	∕ ઝ	3	4
7	В	0	1	↑ 2	↑ 2	1 3	4	(1)

1

В

0

0

1 A

2 B

3 C4 B

 \mathbf{x}_{i}

2

D

0

5

0

@2020 giuseppe.prencipe@unipi.it

- · Inizia da indice[m, n] e segui le frecce
- Quando si incontra un " \ " in indice[i, j]
 ⇒ x_i = y_j è un elemento della LCS

LCS: BA

В D 0 0 0 0 \mathbf{x}_{i} 1 Α 2 В 3 4 В D 5 6 Α 7 В

1

2

5

@2020 giuseppe.prencipe@unipi.it

Procedura di Stampa

- · Inizia da indice[m, n] e segui le frecce
- Quando si incontra un " \ " in indice[i, j]
 ⇒ x_i = y_j è un elemento della LCS

LCS: BA

		^	4	_	_	4	-	,
		0	1	2	3	4	5	6
		Уj	В	<u>D</u>		_ <u>A</u>	В	<u> </u>
0	\mathbf{x}_{i}	0	0	0	0	0	0	0
1	Α	0	↑ O	1 0	↑ O	1	←1	1
2	В	0	1	← 1	← 1	↑ 1	2	← 2
3	С	0	↑ 1	1 1	2	€(2)	1 2	1 2
4	В	0	1	↑ 1	↑ 2	↑ 2	3	← 3
5	D	0	↑ 1	2	↑ 2	↑ 2	3	1 3
6	Α	0	1 1	↑ 2	↑ 2	3	3	4
7	В	0	1	↑ 2	↑ 2	↑ 3	4	4

- · Inizia da indice[m, n] e segui le frecce
- Quando si incontra un " \" in indice[i, j]
 ⇒ x_i = y_j è un elemento della LCS

LCS: CBA

@2020 giuseppe.prencipe@unipi.it

		0	1	2	3	4	5	6
		Υj	В	D	С	Α	В	Α
0	X i	0	0	0	0	0	0	0
1	Α	0	↑ O	1 O	↑ O	1	← 1	1
2	В	0	1	← 1	←1	1	2	← 2
3	С	0	↑ 1	1 1	(2)	€(2)	1 2	1 2
4	В	0	1	↑ 1	↑ 2	1 2	(3)	← 3
5	D	0	↑ 1	2	1 2	1 2	3	1 3
6	Α	0	↑ 1	↑ 2	↑ 2	∕ ઝ	თ →((4)
7	В	0	1	↑ 2	1 2	↑ 3	/4	4

Procedura di Stampa

- · Inizia da indice[m, n] e segui le frecce
- Quando si incontra un " \" in indice[i, j]
 ⇒ x_i = y_j è un elemento della LCS

LCS: CBA

		О У _ј	1 B	2 D	3 <i>C</i>	4 <i>A</i>	5 B	6 <i>A</i>
0	\boldsymbol{x}_{i}	0	0	0	0	0	0	0
1	Α	0	↑ O	1 0	↑ O	1	← 1	1
2	В	0	1	(1)	←1	↑ 1	2	← 2
3	С	0	↑ 1	↑ 1	(2)	(2)	^ 2	↑ 2
4	В	0	1	1 1	^ 2	^ 2	(3)	← 3
5	D	0	↑ 1	2	↑ 2	← 2	√ 3	↑ 3
6	Α	0	↑ 1	^ 2	^ 2	<u>/</u>)←ო	4
7	В	0	1	↑ 2	↑ 2	↑ 3	4	4

- · Inizia da indice[m, n] e segui le frecce
- Quando si incontra un " \" in indice[i, j]
 ⇒ x_i = y_j è un elemento della LCS

LCS: B C B A

@2020 giuseppe.prencipe@unipi.it

		0	1	2	3	4	5	6
		Υj	В	D	С	Α	В	Α
0	x _i	0	0	0	0	0	0	0
1	Α	0	↑ O	1 O	↑ O	1	← 1	1
2	В	0	1	<1	←1	↑ 1	2	← 2
3	С	0	↑ 1	1 1	(2)	€(2)	1 2	↑ 2
4	В	0	1	1 1	↑ 2	1 2	(3)	← 3
5	D	0	↑ 1	2	↑ 2	1 2	√ 3	↑ 3
6	Α	0	↑ 1	↑ 2	↑ 2	/ 3) 3	4
7	В	0	1	↑ 2	1 2	↑ 3	/4	(4)

Procedura di Stampa

- · Inizia da indice[m, n] e segui le frecce
- Quando si incontra un " \" in indice[i, j]
 ⇒ x_i = y_j è un elemento della LCS

LCS: B C B A

		О У _ј	1 B	2 D	3 <i>C</i>	4 <i>A</i>	5 B	6 <i>A</i>
0	x i	0	0	0	0	0	0	0
1	Α	0	↑ O	↑ O	↑ O	1	← 1	1
2	В	0	1	(1)	←1	↑ 1	2	← 2
3	С	0	↑ 1	1	(2)	€(2)	1 2	1 2
4	В	0	1	↑ 1	↑ 2	↑ 2	(3)	← 3
5	D	0	↑ 1	/2	^ 2	↑ 2	^ 3	↑ 3
6	Α	0	1 1	^2	↑ 2	3)←ო	4
7	В	0	1	↑ 2	↑ 2	↑ 3	4	4

Procedura di Stampa Alternativa

```
1. if i = 0 or j = 0
```

2. then return

3. **if** b[i, j] = "\"

4. then Stampa_LCS(indice, A, i - 1, j - 1)

5. print x_i

6. **elseif** indice[i, j] = "↑"

7. **then** Stampa_LCS(indice, A, i - 1, j)

8. **else** Stampa_LCS(indice, A, i, j - 1)

@2020 Chiamata iniziale: Stampa_LCS(indice, A, length[X], length[Y])

Procedura di Stampa Alternativa

```
    if i = 0 or j = 0
```

2. then return

3. **if** b[i, j] = "\"

4. then Stampa_LCS(indice, A, i - 1, j - 1)

5. print **x**;

elseif indice[i, j] = "↑"

7. **then** Stampa_LCS(indice, A, i - 1, j)

8. **else** Stampa_LCS(indice, A, i, j - 1)

Tempo: Θ(m+n)

Tempo: $\Theta(????)$

Migliorare il	codice
---------------	--------

@2020 giuseppe.prencipe@unipi.it

Migliorare il codice

· Necessario tenere tutta la tabella L per calcolare LCS?

Migliorare il codice

 Anche qui possiamo tenere solo le ultime due righe/colo 	olonne	colo	e/	righe	due	ultime	le	solo	tenere	possiamo	jui	Anche d	•
---	--------	------	----	-------	-----	--------	----	------	--------	----------	-----	---------	---

@2020 giuseppe.prencipe@unipi.it

Migliorare il codice

Migliorare il codice

· Non è necessario tenere tutta la tabella L, ma solo le ultime due righe/colonne
prencipe@unipl.it
Migliorare il codice
 Non è necessario tenere tutta la tabella L, ma solo le ultime due righe/colonne

· Ma la tabella **L** serve per restituire la sequenza!

Migliorare il codice

- · Non è necessario tenere tutta la tabella L, ma solo le ultime due righe/colonne
- Ma la tabella **L** serve per restituire la sequenza!
- · In questo caso, possiamo risparmiare qualcosaCome calcoliamo ogni L[i, j]?
 - L[i, j] dipende solo da L[i -1, j 1], L[i 1, j], e L[i, j 1]
 - Quindi, possiamo eliminare la tabella indice e calcolare in tempo costante quale dei tre valori è stato utilizzato per calcolare L[i, j], durante la procedura di stampa stessa
 - Si risparmia lo spazio della tabella indice
 - In ogni caso la necessità di spazio non è ridotta **asintoticamente**: infatti, c'è sempre bisogno della tabella L

@2020 giuseppe.prencipe@unipi.it