KEIPER

GT滑轨冲压——消除开档尺寸不良

项目背景

项目描述

When: 2019年——2020年

Where: AYM普冲GT3#成型线

Who: GT上滑轨

What:冲压GT3#线生产GT上滑轨时,多

次出现开档尺寸不稳定

Why: GT上轨开档尺寸与球道位置度强

相关,开档尺寸的稳定性直接影响配对

端作动力表现

How:普冲内部急需改善过程稳定性,彻底杜绝安全风险项,从而增加后续平台产品整个市场的竞争力,提高客户满意度。

Spec:

尺寸标准: 18.4 + 0.4/-0.1mm

尺寸极差: 单轨 < 0.15mm, 批次极差 < 0.30mm

不良状态: ①批次间极差 > 0.30mm

②超出尺寸上限至18.9-19.0mm

定义项目范围

GT3#停机时间中,"开档不良"停机时间占总停机时间的30%

项目范围:改善开档尺寸稳定性,重点改善开档尺寸

GT平台内部隔离分选中,"开档尺寸不良"分选的数量占总分选数量的42.2%

Project Schedule & Team 计划与小组成员

Schedule

开始时间

Definition: 2020/7/16

Measure: 2020/7/18

Analyze: 2020/7/27

Improve: 2020/8/27

Control: 2020/9/30

Team - function

项目拥有人: 王迎忠 项目负责人: 曹广雷 黑带: 夏惠青

团队成员:如右表格

实际开始时间 实际完成时间

2020/7/16 2020/7/17

2020/7/18 2020/7/20

2020/7/27 2020/9/20

2020/9/21 2020/10/07

2020/10/8 2021/10/12

	姓名	职务	联系方式
组长	曹广雷	冲压质量工程师	guanglei.cao@keiper.com
	张松	冲压模具工程师	song.zhang04@keiper.com
	朱伟江	冲压质检班组长	weijiang.zhu@keiper.com
	吴波波	冲压工艺工程师	bobo.wu@keiper.com
组员	黄辉	冲压生产主管	hui.huang03@keiper.com
	蒋桂林	冲压设备工程师	guilin.jiang@keiper.com
	潘浩	冲压模修班组长	hao.pan@keiper.com
	汪东晟	冲压高级质量工程师	dongsheng.wang@keiper.com
	王迎忠	冲压运作经理	yingzhong.wang@keiper.com
支持	0十り巾	冲压质量经理	shuai.ye@keiper.com
×14	王淳民	冲压生产/物料经理	chunmin.wang@keiper.com
	王斌	冲压工程经理	bin.wang21@keiper.com

SOW立项表

Project Title:	GT滑轨冲压一消除开档尺寸不良					
Location : AYM	Project ID:					
Type:6Sigma	Customer Quality Focus: AYM	Customer Quality Focus: AYM				
Originator:	Create Date: 2020-07-16					
PROJECT DESCRIPTION						
Process/Product Being Improved	冲压过程中不稳定性导致的开档尺寸不良缺陷					
Project Scope and Boundaries	上滑轨冲压-上下滑轨装配作动力、间隙合格率	5				
Customer Y(S)	Yc:开档尺寸不良率					
Business Y(S)	Yb:人工遏制成本(万元/年)					
Problem Statement	GT上滑轨在生产过程中频繁出现开档尺寸超出控制标准,整轨装配会出现作动力及间隙不良的风险,需对产品进行全检/返工。					
Problem Objective	不良率由15%降低到0%					
TEAM						
Process Owner	王迎忠	Black Belt	夏惠青			
CI	冯超 MBB MBB					
Controller	谈心怡	Quality Engineer	叶帅、汪东晟			
Other Team Leader	王迎忠、王淳民、黄辉、吴波波、蒋桂林、张 松、潘浩、朱伟江	Project Leader	曹广雷			

IPO Diagram

输入 <u>I</u>nput

钢卷

过程 <u>P</u>rocess

GT 开卷落料 过程 <u>P</u>rocess

输出 <u>O</u>utput

GT 上轨

过程流程图

How-How 图

识别Yp

□ 识别Yp

可衡量的Yp	有效测量?	容易测量?
开档尺寸	Yes	Yes

测量工具:测高仪+限位块

Yp (18.4+0.4/-0.1mm) -Yc 开档尺寸不良率

-Yb1 上轨分选返工遏制/报废成本

-Yb2 产线效率提升

Yp 开档尺寸

□ 量化当前表现和预估改进目标

	Metrics	Base line	target
Yc	开档尺寸不良率	15%	0.00%
Yb1	上轨分选返工遏制/报废成本	37, 849	0
Yb2	停机时间节约,MU提升	66%	75%
Υp	开档尺寸	18. 3-18. 8mm	18. 40−18. 55mm

MSA

尺寸 的量具 R&R

サスター・<

其他:

包含交互作用的双因子方差分析表

来源	自由度	SS	MS	F	Р
零件序号	9	1.40683	0.156314	1061.53	0.000
人员	2	0.00034	0.000168	1.14	0.341
零件序号 * 人员	18	0.00265	0.000147	5.13	0.000
重复性	60	0.00172	0.000029		
合计	89	1.41154			

用于删除交互作用项的 α = 0.05

量具 R&R

方差分量

		方差分量
来源	方差分量	率쳶贡
合计量具 R&R	0.0000689	0.40
重复性	0.0000287	0.16
再现性	0.0000402	0.23
人员	0.0000007	0.00
人员*零件序号	0.0000395	0.23
部件间	0.0173519	99.60
合计变异	0.0174208	100.00

量具评估

+ 107		研究变异	%研究变
合计量具 R&R	0.008302	0.049813	6.29
王友任	0.005555	0.032130	4.00
再现性	0.006341	0.038044	4.80
人员	0.000832	0.004995	0.63
人员*零件序号	0.006286	0.037715	4.76
部件间	0.131727	0.790360	99.80
合计变异	0.131988	0.791928	100.00

可区分的类别数 = 22

尺寸 的量具 R&R (方差分析) 报告 报表人: 曹广雷 量具名称: 测高仪+限位块 公差: 0.001 研究日期: 2020.06.10 其他: 变异分量 尺寸x零件序号 ■ % 贡献 ■ % 研究变异 五 分 元 18.4 18.2 -量具 R&R 重复性 再现性 部件间 零件序号 R 控制图 (按人员) 是人x 七只 UCL=0.02222 18.6-18.4 123 k5 61 69,0 123 k5 61 69,0 123 k5 61 69,0 18.2 -零件序号 黄会超 张元鹏 人员 Xbar 控制图 (按人员) 零件序号乘人员交互作用 18.6 **8€4±01€7±6**02 ______ 黄会超

> Y 18.4。 計

> > 18.2

1 2 3 4 5 6 7 8 9 10

零件序号

	判断项目	判断依据	实际
1	Gage R&R	<30%	6. 29%
2	可区分类别数(NDC)	≥ 5	22
3	R控制图	在上下控制限内	Υ

123 ks 61 69,0123 ks 61 69,0123 ks 61 69,0

零件序号

测量系统 可接受 Acceptable

____. 张涛

_ 🔷 _ 张元鹏

Xbar-R控制图

检验 6。5 点中有 4 点,距离中心线超过 1 个标准差(在中心线的同一侧) 检验出下列点不合格: 23, 24

整体

整体能力

潜在 (组内) 能力

Cpk 0.51

0.67

0.51

0.82

0.51

0.66

0.51

0.81

---·组内

PPL

PPU

Ppk

Cpm

Ср

CPL

CPU

过程能力分析

后端开档尺寸 的过程能力报告

18.4

18.5

18.6

18.7

18.8

 性能

 观测
 预期 整体
 预期 组内

 PPM < 规格下限</td>
 0.00
 62016.58
 64601.90

 PPM > 规格上限
 0.00
 6867.10
 7532.87

 合计 PPM
 0.00
 68883.68
 72134.77

18.2

结论:

前后端开档尺寸过程能力分别为0.49和0.51的低水平,需改善优化。

18.3

潜在原因分析 (头脑风暴)

钢卷来料

在通过SDT团队讨论后, 一些重要因子被识别出来

★ 落料&折弯工序都会对Yp造成不同程度的影响。 ★ 研究过程必须考虑右侧标记的工序中关键的因子。

OP10落料冲孔

OP20 U折

OP30几字折

OP40 下球道折弯成型

片平面度/料片基准孔至切断面尺寸/宽度

冲头长度/氮气弹簧气压/送料机精度/料

原材料化学成分/机械性能

模高参数/折弯刀垫片厚度/原材料机械性 能/基准孔导正销位置&料片基准孔及料

模高参数/折弯刀垫片厚度/原材料机械性 能/料片厚度/模具压料

模高参数/折弯刀垫片厚度/原材料机械性

能/模具压料

模高参数/折弯刀垫片厚度/原材料机械性

OP50 上球道折弯成型

OP60 打行程档点/球档点

模高参数/档点冲头长度/模具避位

OP70 折弯

模高参数/成型刀垫片厚度/模具让位/机械 手夹爪位置

提示: 我们根据冲压工艺的各个工序来确定因子的个数。 并通过筛除非重要工序来精确定义分析范围。

OP80翻转台 OP90冲底排孔

模高参数/翻转台夹紧位置/模具让位/机械 手夹爪位置/冲孔冲裁力

OP100自动收料

移载缸下降高度/ 收料箱位置/移栽缸气压

识别可能引起偏差和缺陷的原因 (Xs)

Ys	Xs	潜在原因	验证方法	数据类型	统计工具
	X1	原材料机械性能&化学成分	机械性能试验&化学成分与开裆尺寸的相关性	可变数据	相关性检验
	Х2	料片平面度	同一钢卷生产左右侧料片,使用相同模具状态成型,并计算其相关性	可变数据	2-SampleT
Yp: 开档尺寸	Х3	模高参数	使用红外温度枪检测冲床曲轴是否磨损,导致模高不稳定(吨位不稳定)	NA	现场检查
	X4 冲孔:	冲孔变形	冲孔前后开档尺寸对比	可变数据	2-SampleT
	X5	模具压料不稳	使用开档波动的料片,进行逐个工序分析(OP30/40/50),锁定波动工序	可变数据	2-SampleT

识别偏差和关键的原因 (X1) 因子分析

- ▶X1: 开档尺寸与原材料物化性能的验证
- (1) 收集100卷左右材料的物理&化学性能,并在落料时进行留样10件
- (2) 使用相同模具状态将留样件成型,测量并收集开档尺寸

▲相关: C%, Mn%, Si%, S%, P%, Al%, 屈服强度, 抗拉强度, ... 档, 后端开档 相关 屈服强度 抗拉强度 C% Mn% Mn96 -0.300 0.051 Si% 0.291 -0.0280.058 0.861 P% 0.047 -0.290-0.060 0.765 0.059 0.704 A196 -0.085 0.253 0.080 0.348 0.589 0.101 0.611 0.022 屈服强度 -0.2270.314 -0.072 -0.044 0.164 0.1440.040 0.645 0.782 0.294 抗拉强度 -0.036 -0.036 -0.013 0.738 -0.0860.160 0.818 0.582 0.820 0.933 0.305 0.000 屈强比 -0.294 -0.075 0.104 0.838 0.251 0.520 -0.056 0.056 0.000 0.634 0.722 0.508 0.000 0.104 延伸率 -0.079 0.059 -0.3890.037 -0.030 -0.245-0.1250.708 0.010 0.814 0.847 0.113 0.423 0.615 前端开档 0.264 0.181 0.085 0.151 -0.011 0.220 0.173 0.087 0.586 0.334 0.157 0.245 0.268 0.942 0.266 后端开档 -0.1480.078 -0.150-0.219 -0.0140.133 0.335 0.927 0.085 0.395 0.3440.617 0.158 屈强比 延伸率 前端开档 延伸率 -0.113 0.469 前端开档 0.120 -0.0570.443 0.717 后端开档 0.273 -0.002 -0.059 0.077 0.992 0.705 单元格内容 Pearson 相关系数

注:

- 1、R≤1, R>0.75时是强相关, R0.3~0.75时有相关性, R<0.3时相关性弱, R=0时不相关, R是负数时负相关。
- 2、P<0.05推翻H0支持H1,表明支持相关,P>0.05支持H0,表明不相关(相关系数此时高也要被推翻,P值是判断相关性的

A. PDF

第一次材料实验

第二次原材料实验

第三次原材料实验

第四次原材料实验

第五次原材料实验

下轨测量600个数 据

PDF

据

从相关性的研究来看开裆尺寸与C元素 &屈服强度&屈强比有一定的相关性,但 相关系数R < 0.3, 表明相关性较弱。 团队分析为数据量不足导致的

识别偏差和关键的原因 (X2) 因子分析

- ▶X2: 开档尺寸与料片平面度的验证
- (1) 选用同一钢卷,平面度不同的同侧料片各制样30pcs,使用相同状态的模具生产
- (2) 选用同一钢卷, 平面度 < 0.4mm的左右侧料片各制样30件, 使用相同状态模具生产

双样本 T 检验和置信区间: 右侧平面度<0.4, 右侧平面度0.4-0.8

方法

μ_s: 右侧平面度<0.4 的均值 μ_s: 右侧平面度0.4-0.8 的均值 差值: μ_s - μ_s

SE DE PI PE

未针对此分析假定等方差。

描述性统计量

样本	N	均值	标准差	均值标准误
右侧平面度<0.4	30	18.4960	0.0456	0.0083
右侧平面度0.4-0.8	30	18.4955	0.0652	0.012

差值的估计值

差値的 95% 置信 差値 区间 0.0005 (-0.0287, 0.0297)

检验

原假设 H₀: μ₁ - μ₂ = 0 各择假设 H₁: μ₂ - μ₂ ≠ 0 <u>T値 自由度 P値</u> 0.03 51 0.973 双样本 T 检验和置信区间: 右侧平面度<0.4, 左侧平面度<0.4

方法

μ₄: 右侧平面度<0.4 的均值 μ₂: 左侧平面度<0.4 的均值 差值: μ₁ - μ₂

未针对此分析假定等方差。

描述性统计量

[样本	N	均值	标准差	均值标准误
右侧平面度<0.4	30	18.4960	0.0456	0.0083
左侧平面度<0.4	30	18.2551	0.0336	0.0061

差值的估计值

差値的 95% 置差値信区间0.2409(0.2201, 0.2616)

检验

原假设 H₀: μ₁ - μ₂ = 0 备择假设 H₁: μ₁ - μ₂ ≠ 0 <u>T值 自由度 P值</u> 23.28 53 0.000

平面度:

结论:

①右侧不同平面度料片验证, P=0.973 > 0.05 开档尺寸与平面度无相关性(此项目研究) ②左右侧相同平面度料片验证, P=0 < 0.05 开档尺寸与料片平面度方向强相关(后续换型 调模大致方向)

识别偏差和关键的原因 (X4) 因子分析

▶X4: 冲孔后开档尺寸变形量 选取30根滑轨,在OP90冲孔前后,分别记录开档尺寸并分析

结论: P=0.883 > 0.05 开档尺寸不良与冲孔工序没有显著性差异

双样本 T 检验和置信区间: 冲孔前开档, 冲孔后开档

方法

μ₁: 冲孔前开档 的均值 μ₂: 冲孔后开档 的均值

差值: μ₁ - μ₂

未针对此分析假定等方差。

描述性统计量

样本	N	均值	标准差	均值标准误
冲孔前开档	30	18.3971	0.0548	0.010
冲孔后开档	30	18.3951	0.0519	0.0095

差值的估计值

差值的 95% 置信 差值 区间 0.0020 (-0.0256, 0.0296)

检验

原假设 H₀: μ₁ - μ₂ = 0 备择假设 H₁: μ₁ - μ₂ ≠ 0 T值 自由度 P值

识别偏差和关键的原因 (X5) 因子分析

▶X5: 模具压料不稳

使用开档波动的料片,进行逐个工序分析 (OP30/40/50),锁定波动工序

▲双样本 T 检验和置信区间: OP40工序件, OP50工序件

方法

μ₁: OP30工序件 的均值 μ₂: OP40工序件 的均值 差值: μ₁ - μ₂

未针对此分析假定等方差。

描述性统计量

样本	N	均值	标准差	均值标准误
OP30工序件	30	18.4184	0.0361	0.0066
OP40T 序件	30	18.529	0.131	0.024

KEIPER Template / Jan 2021

差值的估计值

	差值的 95% 置信
差值	区间
-0.1103	(-0.1608, -0.0599)

检验

原假设 H_0 : $\mu_1 - \mu_2 = 0$ $H_1: \mu_1 - \mu_2 \neq 0$ 自由度 P 值 -4.45 33 0.000

方法

μ₁: OP40工序件 的均值 μ₂: OP50工序件 的均值 差值: μ1 - μ2

未针对此分析假定等方差。

描述性统计量

				均值标
样本	N	均值	标准差	准误
OP40工序件	30	18.529	0.131	0.024
OP50工序件	30	18.525	0.126	0.023

差值的估计值

	差值的 95% 置信
差值	区间
0.0042	(-0.0623, 0.0706)

检验

原假设 H_0 : $\mu_1 - \mu_2 = 0$ 备择假设 H₁: μ₁ - μ₂ ≠ 0 自由度 P值 T値 0.13 57 0.901

结论:

OP30与OP40

P=0 < 0.05

开档尺寸在OP40工位冲压后与签

到工序变化较大

OP40与OP50

P=0.901 > 0.05

开档尺寸在OP50工位基本与前道

工序变化较小

因此锁定开档尺寸波动发生在

OP40工位

识别可能引起偏差和缺陷的原因 结论分析

Ys	Xs	潜在原因	验证方法	数据类型	统计工具	验证结果/P值	是否显著
	X1	原材料机械性能& 化学成分	机械性能试验&化学成分与开裆尺寸的相关性	可变数据	相关性检验	0.077及以上 (数据量不足)	N
Yp:	X2	料片平面度	同一钢卷生产左右侧料片,使用相同模具状态成型,并计算其相关性	可变数据	2-SampleT	0.973	N
开档尺寸 X3 OP30模高参数	OP30模高参数	使用红外温度枪检测冲床曲轴是否磨损,导致模高不稳定(吨位不稳定)	NA	现场检查	曲轴位置温度无明显 升高	N	
X4 冲孔变形 冲孔前后开档尺寸对比		可变数据	2-SampleT	0.883	N		
	X5	模具压料不稳	使用开档波动的料片,进行逐个工序分析 (OP30/40/50),锁定波动工序	可变数据	2-SampleT	OP40 P=0 OP50 P=0.901	OP40 Y

OP40压料不稳分析

通过双样本T检验,发现OP40工序对开档变化最显著 (P=0),团队使用工程经验对OP40模具进行研究

模具分析:

上两幅图为OP40模具截面图

该模具成型矮边压料依靠图2红圈位置缩小间隙来进行压料(其他位置为保证过程调试有足够的孔间,都留有一定的间隙),一旦同批产品出现压住料和压不住料两种情况,产品在成型过程中会出现材料流动不稳定,进而导致开档尺寸不稳定。

OP40压料不稳定分析

OP40压料不稳定分析

通过回归分析, 找出影响压料的主要因素

因子	要求范围
OP40合模高度	390.3-390.8mm
OP20工序件矮边折弯高度	12.4-13.4mm (模具设计)

回归分析: 开档尺寸 与 OP20工序件矮边折弯高度, 合模高度

方差分析

来源	自由度	Adj SS	Adj MS	F值	P值
回归	2	0.473495	0.236747	68.42	0.000
OP20工序件矮边折弯高度	1	0.241855	0.241855	69.90	0.000
合模高度	1	0.000123	0.000123	0.04	0.852
误差	27	0.093421	0.003460		
失拟	24	0.086226	0.003593	1.50	0.420
纯误差	3	0.007195	0.002398		
合计	29	0.566915			

模型汇总

		R-sq(调	R-sq(预
S	R-sq	整)	测)
0.0588221	83.52%	82.30%	80.02%

系数

_ 项	系数	系数标准误	T值	P值	方差膨 胀因子_
常里	15.8	32.5	0.49	0.630	
OP20工序件矮边折弯高度	0.6769	0.0810	8.36	0.000	2.02
合模高度	-0.0160	0.0851	-0.19	0.852	2.02

回归方程

开档尺寸 = 15.8 + 0.6769 OP20工序件矮边折弯高度 - 0.0160 合模高度

异常观测值的拟合和诊断

				标准化	
观测值	开档尺寸	拟合值	残差	残差	
15	18,4660	18.3255	0.1405	2.44	R

通过回归分析可知:

因子 OP20工序件矮边折弯高度 P值=0,与开档尺寸强相关 因子 OP40合模高度 P值=0.852,与开档尺寸不相关 通过单因子方差分析,寻找OP20工序件折弯高度最优方案 OP20工序件矮边折弯高度范围在12.4-13.4mm,通过调整OP20定位销调整尺寸,将产品分为高、低两个水平

因子水平	低	高
尺寸范围	12.4-12.9	12.9-13.4

单因子方差分析: 低水平, 高水平

因子信息

因子	水平数	值
因子	2	低水平, 高水平

方差分析

来源	自由度	Adj SS	Adj MS	F值	P值
因子	1	0.5031	0.503107	78.95	0.000
误差	28	0.1784	0.006372		
合计	29	0.6815			

模型汇总

		R-sq(调	R-sq(预
S	R-sq	整)	测)
0.0798269	73.82%	72.89%	69.95%

均值

因子	Ν	均值	标准差	95% 置信区间
低水平	15	18.2604	0.1047	(18.2182, 18.3026)
高水平	15	18.5194	0.0422	(18.4772, 18.5616)

合并标准差 = 0.0798269

通过单因子方差分析可知:

当OP20工序件矮边折弯高度处于高水平时,开档尺寸的标准差远远小于低水平的标准差,且95%置信区间在尺寸公差范围内因此可以锁定通过增大OP20矮边高度尺寸来解决开档尺寸不稳定的方案

改善方案锁定后,团队分析出两种改善方案,具体如下:

改善方案	改善效果	成本影响	改善方案选择
增加落料宽度	V	每片料片增加钢材 约2.66克	×
移动OP20定位	V	库存备件磨床加工, 新制备件改图	V

根据以上的分析,锁定改善方案:

通过打磨OP20定位块来达到增大OP20工序件矮边折弯高度尺寸 根据多批次检测OP20折弯高度为12.80-13.0mm之间,最低值距离验证的高水平相差

0.10mm

因此将OP20定位块打磨0.20mm,来保证OP20工序件矮边折弯高度尺寸在后续过程中始终处于12.9-13.4mm的高水平状态

After

改善效果跟踪

- ●通过OP20定位块的改善、调模方式优化后,进行了产品的尺寸跟踪,选取改善后的产品,每班取5个零件,共取125个零件,测量开档尺寸
- ●改善前后控制图如下图,从图中可以明显看出,改善后的产品过程稳定可控,且波动区间明显收缩改善,稳定性提高

开档尺寸的整体标准差由0.124mm降低到0.053mm,过程能力从原来0.49提升至1.17,过程更加稳定可控

改善后,开档尺寸不良率降低至0%,后续过程未发现开档尺寸不稳定的现象;同时减少异常停机时间,MU提高10%

节点	MU
改善前	66%
改善后	76%
改善结果	+10%

经过OP20定位块的改善,生产过程中该项目的不良率为0.02%(过程能力推算,实际抽检未发现不良)。

- 一: 2020年4/6/7月,一共隔离分选24425件
- ① 分选工时237.5h, 分选费用为Y11, 400;
- ② 返工工时25 h, 分选费用为Y1, 440;
- ③ 报废金额为Y25, 249
- 以上三项按照全年12月计算为: Y152, 356
- 二:该问题解决减少了大量停机时间,MU 提升10%,全年累计节约金额: Y49,766.4
- 三:问题期间模具异常损耗共计: Y84,709

以上共计节约金额: Y 286, 831.4

每班节约时间:	12x10%x1.5人/线=1.8H
每天双班节约金额:	1.8H x 2 x 48元/H=172.8元
按照每月开班24天, 全年节约金额:	172.8元 x 24 x 12 =49766.4元

名称	数量	单价	小计	PR
OP30上模内托(模具中心加工费用3次)	3	300	900	模具中心
OP30上模成型刀(材料费)		5157	5157	1000431493
OP30上模成型刀(加工费2pcs)	2	9768	19536	模具中心
OP30上模成型刀(涂层费2pcs)	2	2229	4458	
OP30下模芯(模具中心加工费用4次)	4	300	1200	模具中心
OP30整体式模芯	1	15500	15500	1000389805
OP40矮边上刀 异常消耗-	1	13000	13000	1000376815
OP40矮边上刀 (涂层) 开书/月代	1	2229	2229	
OP50矮边上刀(模具中心加工费用1次)	1	124	124	模具中心
OP40矮边下刀	1	12000	12000	1000376815
OP40矮边下刀 (涂层)	1	2229	2229	
返工模具材料费1	1	5167	5167	1000412545
返工模具材料费2	1	1133	1133	1000412500
返工模加工费用	1	2076	2076	1000412903

季度	报废金额	隔离分选数量	分选节拍	分选工时	分选费用
	25249	24425	35S	237.5H	11400
		返工数量	返工节拍	返工工时	返工费用
		2672	40S	30H	1440
全年	报废金额	全年分选费用	全年返工费用	MU	模具备件节约费用
	100996	45600	5760	49766.4	84709

共计节约: 286, 831.4元

控制及经验推广

验证成功后,对调模ODS及备件图纸进行更改

需更新的文件	责任人	完成时间	完成状态
调模ODS	张松	2020年10月7日	100%
备件图纸	张松	2020年10月12日	100%

调模ODS

OP20定位块图纸

- ◆ 这是一项跨部门合作项目,在项目推进过程中,质量部、设备部、模修部、工艺部、生产部各部门朝着共同的目标去努力,增进了团队成员的凝聚力,为以后其他项目的攻关打下了坚实的基础。
- ◆ 开档不良是滑轨成型过程中常见的不良情况。在改善GT滑轨开档不良的过程中,团队成员有效利用各种质量工具,例如:柏拉图、 头脑风暴、2-SampleT、回归、单因子方差分析等识别关键因子加以改进,并有效利用MSA使得测量数据更准确有效,利用SPC统 计学知识归纳整理试验数据,最终消除了开档尺寸的不良。
- ◆ 关于本次原材料与实际产品的相关,因数据量不足,未能彻底分析出。但为后续GTS/Track3000等平台数字化钢卷提供了相关的数据收集方式及关注点。
- ◆ 滑轨的稳定性对滑道配对作动力的一次合格率有很大的贡献,减少调试可提高滑轨的稳定性。本次改善,同时针对关键工位模具参数进行锁定,减少调试,从而提高混批次配对一次合格率,据滑道反馈,GT平台装配一次合格率由70%提升到目前的85%左右。

KEIPER