Análise Matemática III (Semestral) - LICENCIATURA EM ENG. INFORMÁTICA

Ano lectivo 2020/2021 19.01.22

Mini-teste 2-R Duração: 30min Nome: Número:

Em cada questão deve assinalar a resposta correta. Cada questão vale 0,8 valores. Por cada questão errada é penalizado em 0,2 valores. Não é penalizado se não responder a uma questão.

- 1. Suponhamos que f(z) = ya(x,y) + ixb(x,y), z = x + iy, onde $a \in b$ são funções reais de duas variáveis reais com derivadas parciais de primeira ordem contínuas numa vizinhança de (x_0, y_0) . Então, a derivada de f em $z_0 = x_0 + iy_0$ é dada por
 - (A) $f'(z_0) = y_0 a_x(x_0, y_0) ix_0 b_x(x_0, y_0)$ (B) $f'(z_0) = y_0 a_x(x_0, y_0) + i(b(x_0, y_0) + x_0 b_x(x_0, y_0))$
 - (C) $f'(z_0) = y_0 a_x(x_0, y_0) + i x_0 b_x(x_0, y_0)$ (**D**) $f'(z_0) = y_0 a_x(x_0, y_0) - i(b(x_0, y_0) + x_0 b_x(x_0, y_0))$
 - (**E**) $f'(z_0) = i(b(x_0, y_0) + x_0b_x(x_0, y_0))$
- 2. O raio de convergência da série de potências $\sum_{i=1}^{+\infty} \frac{(z+i)^n}{n^2 6^n}$ é
 - (**A**) 1 (\mathbf{B}) 2 (<u>C</u>) 6 (**D**) 12 $(\mathbf{E}) + \infty$
- ${f 3.}$ Considere a função f definida por

$$f(z) = \sum_{n=0}^{+\infty} (-1)^n \frac{2^{2n}}{(2n)!} z^{2n+1}, \quad z \in \mathbb{C}.$$

Então,

- ntao, $(\mathbf{A}) \ f^{(21)}(0) = \frac{2^{20}}{21}$ (B) $f^{(21)}(0) = \frac{2^{20}}{211}$ (C) $f^{(21)}(0) = -\frac{2^{20}}{21!}$ (**D**) $f^{(21)}(0) = -\frac{2^{20}}{21}$ (E) $f^{(21)}(0) = 2^{20} \times 21$
- 4. O desenvolvimento em série de Laurent, em potências de z, da função f definida por

$$f(z) = \frac{1}{z^7(z+1)}, \quad z \in D = \{z \in \mathbb{C} : 0 < |z| < 1\},$$

no domínio indicado é dado por

$$(\mathbf{A}) \ f(z) = -\sum_{n=7}^{+\infty} z^{n-7}, \quad z \in D$$

$$(\mathbf{B}) \ f(z) = \sum_{n=0}^{+\infty} (-1)^{n-6} z^{n-7}, \quad z \in D$$

$$(\mathbf{C}) \ f(z) = -\sum_{n=0}^{+\infty} z^{n-7}, \quad z \in D$$

$$(\mathbf{D}) \ f(z) = \sum_{n=0}^{+\infty} (-1)^{n-7} z^{n-7}, \quad z \in D$$

(E)
$$f(z) = \sum_{n=7}^{+\infty} z^{n-7}, \quad z \in D$$

5. Seja t > 0. Considere a função f_t definida por

$$f_t(z) = \frac{e^{-tz}}{(1-z)^2(z+1)}, \quad z \in \mathbb{C} \setminus \{-1, 1\}.$$

Então, o resíduo de f_t em z=1 é dado por

(A)
$$e^{-t}(2t+1)$$
 (B) $-\frac{1}{4}e^{-t}(2t+1)$

(C)
$$\frac{1}{2}e^{-t}$$
 (D) $-\frac{1}{4}e^{t}(t-1)$

$$(\mathbf{E}) - \frac{1}{2}e^{-t}$$