MA2104 AY24/25 Sem 2 Final

Solution by Malcolm Tan Jun Xi Audited by Thang Pang Ern

Question 1: Let

$$f(x, y, z) = z\sqrt{x^2 + y^2}$$

Let *E* be the solid which is bounded by two cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$ and two planes z = 0 and z = 6. Evaluate

$$\iiint_E f(x, y, z) \ dV$$

Solution: By considering cylindrical coordinates, we let

$$x = r\cos\theta, \quad y = r\sin\theta, \quad z = z$$

such that we have

$$\iiint_E f(x, y, z) = \int_0^{2\pi} \int_1^2 \int_0^6 zr^2 \, dz dr d\theta$$
$$= 84\pi$$

Question 2: Consider the surface

$$S := \{(x, y, z) \in \mathbb{R}^3 \mid z^2 = x^2 + y^2, 1 \le z \le 3\}$$

which is part of the cone $z^2 = x^2 + y^2$ between z = 1 and z = 3. Let

$$f(x, y, z) = e^{-x^2 - y^2}$$

Evaluate

$$\iint_{S} f(x, y, z) dS$$

Solution: By considering cylindrical coordinates, we let

$$x = r\cos\theta$$
, $y = r\sin\theta$, $z = r$

such that we have

$$\mathbf{r}(r,\theta) = (r\cos\theta, r\sin\theta, r)$$

By Jacobian transformation, we have

$$dS = |\mathbf{r}_r(r,\theta) \times \mathbf{r}_{\theta}(r,\theta)| dr d\theta = \sqrt{2}r dr d\theta$$

Hence

$$\iint_{S} f(x, y, z) dS = \int_{0}^{2\pi} \int_{1}^{3} e^{-r^{2}} \cdot \sqrt{2}r dr d\theta$$
$$= \sqrt{2}\pi (e^{-1} - e^{-9})$$

Question 3:

a) Let C_1 be the positively oriented closed curve consisting of the upper half of the unit circle from (-1,0) to (1,0), and the line segments from (1,0) to (2,0), from (2,0) to (2,2), from (2,2) to (-2,2), from (-2,2) to (-2,0) and from (-2,0) to (-1,0). Evaluate

$$\int_{C_1} y(\cos x - 1) \ dx + \sin x \ dy$$

b) Recall that for a curve C with position vector \mathbf{r} , denote $d\mathbf{r} = \mathbf{T}ds$ where \mathbf{T} is the unit tangent vector (with the given orientation) at a point of C. Let $\mathbf{F}(x,y) = \langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2} \rangle$. Let C_2 be the unit circle which is positively oriented (i.e. anticlockwise), and let C_3 be the positively oriented ellipse $\{(x,y) \in \mathbb{R}^2 \mid \frac{x^2}{4} + \frac{y^2}{9} = 1\}$. Evaluate

$$\int_{C_2} \mathbf{F} . d\mathbf{r}$$
 and $\int_{C_2} \mathbf{F} . d\mathbf{r}$

Solution:

(a) By Green's Theorem, we have

$$\int_{C_1} y(\cos x - 1) dx + \sin x dy = \iint \cos x - (\cos x - 1) dA = \iint dA = \text{Area of } C_1$$

As such we have

$$\int_{C_1} y(\cos x - 1) \, dx + \sin x \, dy = (2)(4) - \frac{1}{2}\pi(1)^2 = 8 - \frac{\pi}{2}$$

(b) Note that **F** is not defined at it origin which lies inside the circle. Therefore Green's Theorem cannot be applied here. Let

$$\mathbf{r}(t) = \langle \cos t, \sin t \rangle$$

then

$$\mathbf{F}(\mathbf{r}(t)) = \langle -\sin t, \cos t \rangle$$
 and $\mathbf{r}'(t) = \langle -\sin t, \cos t \rangle$

As such

$$\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \langle -\sin t, \cos t \rangle \cdot \langle -\sin t, \cos t \rangle \, dt = \int_0^{2\pi} dt = 2\pi$$

(b) Similarly as (a). **F** is not defined at it origin which lies inside the circle. Therefore Green's Theorem cannot be applied here. Some may opt to parametrize the vector and will end up having

$$\int_0^{2\pi} \frac{6}{4\cos^2 t + 9\sin^2 t} \, dt$$

which is messy. Instead, we can observe that

$$|\mathbf{F}| = \frac{1}{r}$$

Hence it form a closed loops around the origin, the circulation around any simple closed curve enclosing the origin exactly once and oriented clockwise is 2π . Hence

$$\int_{C_3} \mathbf{F} . d\mathbf{r} = 2\pi$$

Question 4: Recall that for a surface S, denote $d\mathbf{S} = \mathbf{n} \, dS$ where \mathbf{n} is the unit normal vector (with the given orientation) at a point of S; for a curve C with position vector \mathbf{r} , denote $d\mathbf{r} = \mathbf{T} \, ds$ where \mathbf{T} is

- a) Calculate curl **F**
- b) Let $S_1 := \{(x, y, 0) \in \mathbb{R}^3 \mid x^2 + y^2 \le 1\}$ be the unit disk in the xy-plane of \mathbb{R}^3 , which is upward pointing. Calculate

the unit tangent (with the given orientation) at a point of C. Let $\mathbf{F}(x,y,z) = \langle z^2, -2x, y^5 \rangle$

$$\iint_{S_1} \operatorname{curl} \mathbf{F}.d\mathbf{S}$$

c) Let $C_1 := \{(x, y, 0) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$ be the positively oriented (i.e. anticlockwise) unit circle in the xy-plane of \mathbb{R}^3 . Calculate

$$\int_{C_1} \mathbf{F} . d\mathbf{r}$$

d) Let $S_2 := \{(x, y, z) \in \mathbb{R}^3 \mid z \ge 0, x^2 + y^2 + z^2 = 1\}$ be the upper half of the unit sphere which is positively oriented (i.e. outward pointing). Calculate

$$\iint_{S_2} \operatorname{curl} \mathbf{F}.d\mathbf{S}$$

e) Let $\mathbf{G}(x,y,z) = \langle U,V,W \rangle$ where U,V,W have continuous partial derivatives in an open set $D \subset \mathbb{R}^3$. If $\mathbf{G}(x,y,z) = \nabla(H(x,y,z))$ for a function H(x,y,z) defined in D, is it true that $\operatorname{curl} \mathbf{G} = \langle 0,0,0 \rangle$? (Justify your answer). Conversely, if $\operatorname{curl} \mathbf{G} = \langle 0,0,0 \rangle$ at every point in D, is it true that $\mathbf{G} = \nabla H(x,y,z)$ for some function H in the open set D?(No justification is needed)

Solution:

(a) It is straight forward that

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \langle 5y^4, -2z, -2 \rangle$$

(b) Since S_1 lies in xy-plane with upward normal, then

$$\boldsymbol{n}=\langle 0,0,1\rangle$$

as such

$$\iint_{S_1} \operatorname{curl} \mathbf{F} . d\mathbf{S} = -2 \iint dA = -2\pi$$

(c) By Stokes' Theorem,

$$\int_{C_1} \mathbf{F} . d\mathbf{r} = \iint_{S_1} \operatorname{curl} \mathbf{F} . d\mathbf{S} = -2\pi$$

(d) Let C_2 be the boundary of S_2 . By Stokes' Theorem,

$$\iint_{S_2} \operatorname{curl} \mathbf{F}.d\mathbf{S} = \int_{C_2} \mathbf{F}.d\mathbf{r}$$

At z = 0, $x^2 + y^2 = 1$ which is the same circle as C_1 . Therefore

$$\iint_{S_2} \operatorname{curl} \mathbf{F} . d\mathbf{S} = -2\pi$$

(e) Suppose $\mathbf{G}(x,y,z) = \nabla(H(x,y,z))$, then \mathbf{G} is conservative. Hence it is true that $\operatorname{curl} \mathbf{G} = \langle 0,0,0 \rangle$. Conversely it is false as the domain needs to be simply connected but the context does not mention that the domain is simply connected Hence it is not necessarily true.

Question 5: Let $\mathbf{F}(x, y, z) = \frac{\langle x, y, z \rangle}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$

- a) calculate divF
- b) Let $S_a := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = a^2\}$ be the sphere of radius a > 0 which is positively oriented (i.e outward pointing). Calculate $\iint_{S_a} \mathbf{F} \cdot d\mathbf{S}$ [N.B you may use, without proof, the fact that the sphere S_a has area $4\pi a^2$]
- c) Let S be the positively oriented surface which is bounded above by the paraboloid $z = 1 x^2 y^2$ and is bounded below by the paraboloid $z = -1 + x^2 + y^2$. Calculate $\iint_S \mathbf{F} . d\mathbf{S}$

Solution:

(a) We have

$$\operatorname{div} \mathbf{F} = \frac{x^2 + y^2 + z^2 - 3x^2}{\sqrt{(x^2 + y^2 + z^2)^5}} + \frac{x^2 + y^2 + z^2 - 3y^2}{\sqrt{(x^2 + y^2 + z^2)^5}} + \frac{x^2 + y^2 + z^2 - 3z^2}{\sqrt{(x^2 + y^2 + z^2)^5}}$$

$$= 0$$

(b) Note that since $\mathbf{F}(x, y, z)$ is not defined at (0, 0, 0), divergence theorem cannot be directly applied. Consider

$$\mathbf{n} = \frac{1}{a} \langle x, y, z \rangle$$

As such

$$\iint_{S_a} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_a} \frac{\mathbf{r}}{a^3} \cdot \frac{\mathbf{r}}{a} dS = \iint_{S_a} \frac{-\mathbf{r} - 2}{a^4} dS = \frac{1}{a^2} \iint_{S_a} dS = 4\pi$$

(c) From (b) we know that $\iint_{S_a} \mathbf{F} \cdot dS$ is independent of the radies a. Therefore

$$\iint_{S} \mathbf{F} . d\mathbf{S} = 4\pi$$