Jednostka wykonawcza z interfejsem SPI

Opis ogólny

Spi_exe_unit_1 to jednostka wykonawcza przetwarzające dwuargumentowe dane. Układ posiada flagi BF informującą o tym że w wyniku jest tylko jedna jedynka,, NF uzupełniającą do nieparzystej liczby jedynek, OF oznaczającą że w wyniku są tylko jedynki, SF oznaczającą że wynik operacji jest liczbą ujemną.

Spi exe unit 1 może przetwarzać dane za pomącą następujących operacji:

- Odejmowanie
- XOR
- NAND
- Logiczne przesunięcie w lewo oraz w prawo
- Wyznaczanie kodu CRC-4 oraz jego weryfikacja
- Konwersja z kodu nkb do onehot
- Wyznaczanie liczby 0
- Konwersja kodu U2 na znak moduł i odwrotnie
- Konwersja na kod priorytetowy

PRZESYŁ DANYCH SPI

OPIS WYPROWADZEŃ

CLK – jest to pin wejściowy. Komunikacja odbywa się względem tego pinu.

CS – aktywny w stanie niskim. W momencie gdy pojawi się zbocze opadające rozpoczyna się komunikacja

MISO – pin używany do przesyłania danych z urządzenia nadrzędnego do spi exe unit

MOSI – pin używany do przesyłania danych z spi exe unit do urządzenia nadrzędnego

FORMAT RAMKI DANYCH WEJŚCIOWYCH

Dane wysyłane do jednostki wykonawczej powinny wyglądać w następujący sposób:

argA 0 argB 0 oper 0000

FORMAT DANYCH Z EXE_UNIT

Wynik obliczeń dokonanych przez exe unit podawany jest w następujący sposób:

result	BF	NF	OF	SF	16'b0

INTERFEJS SZEREGOWY

Interfejs szeregowy zawiera piny Chip Select (CS), Clock (CLK), Master Input Slave Out (MISO), Master Output Slave Input(MOSI), Jednostka wykonawcza pracuje jako SLAVE i jest kompatybilna z interfejsem SPI. Chip Select służy do wybrania spi_exe_unit_1 z urządzeń, które uczestniczą w komunikacji. Chip Select jest aktywny w stanie niskim i dane są wpisywane do exe_unit oraz odbierane w tym samym czasie. Sygnał CLK jest generowany przez urządzenie MASTER. Wejście SCK jest używane do synchronizacji danych na liniach MISO i MOSI. Wejście MOSI wpisuje dane do rejestrów exe_unit. Wyjście MISO wysyła dane do urządzenia MASTER. Spi_exe_unit reaguje na zbocze narastające sygnału CLK.

STRUKTURA WEWNĘTRZNA REJESTRÓW

Rejestr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
argA	A7	A6	A5	A4	A3	A2	A1	A0
argB	В7	B6	B5	B4	В3	B2	B1	B0
oper	O3	O2	01	O0	0	0	0	0

Rejestr argA

Rejestr argA jest write-only przechowuje pierwszy argument operacji jednostki wykonawczej.

Rejestr argB

Rejestr argB jest write-only przechowuje drugi argument operacji jednostki wykonawczej.

Rejestr oper

Rejestr oper jest write-only i wybiera operację jednostki wykonawczej.