

Decision Tree e Credit Scoring

Decision Tree and Credit Scoring

Considere o problema de avaliar o crédito de um tomador de empréstimo com base em informações pessoais e financeiras, como por exemplo

- Informações Pessoais
 - Nível de Escolaridade
 - Idade
 - Estado Civil, etc...
- Informações do Empréstimo
 - Duração
 - Montante, etc...
- Informações Financeiras
 - Montante de poupança
 - Patrimônio, etc...

Decision Tree and Credit Scoring

- Feito uma única vez
- Utilizar aplicativos interativos
- Normalmente não há necessidade de automatizar

Automatizar a execução no caso de Projetos ou Modelos em que este procedimento será recorrente ou o modelo esteja sujeito a alteração

Decision Tree and Credit Scoring

Base de Dados: German Credit Database

Referência:

- Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository
 http://www.ics.uci.edu/~mlearn/MLRepository.html
 . Irvine, CA: University of California, School of Information and Computer Science. Source of German Credit Data.
- Gayler, R (2008) Credit Risks Analystics Occasional newsletter. Retrieved from http://r.gayler.googlepages.com/CRAON01.pdf
- Guide to Credit Scoring in R CRAN
 https://www.google.com.br/search?q=Guide+to+Credit+Scoring+in+R&ie=utf-8&oe=utf-8&client=firefox-b-ab&gfe_rd=cr&ei=jVFYV8z6J--p8weckLsQ
- Analysis of German Credit Data The Pennsylvania State University <u>STAT 897D Applied Data Mining and Statistical Learning</u>

Objetivo:

Construir uma árvore de decisão para classificação <u>nominal</u> de crédito dos registros da base *German Credit Data* e avaliar a performance do modelo utilizando *confusion matrix*

Packages: rpart, caret, e1071

- 1. Carregar os dados: R/database/german_credit_2.csv
- 2. Fazer a análise exploratória dos dados : tipos das variáveis, histogramas, medidas decritivas, tabelas de contingencia, etc...
- 3. Preparar a base para a classificação nominal. Criar as categorias nominais:

Creditability: 1 = "good" e 0 = "bad"

CreditAmount: '0-2500'; '2500-5000'; '5000+'

4. Separar aleatoriamente a base em 2 conjuntos:

trainData: Base de Treinamento: 60% observações

testData: Base de Teste: 40% observações

Exercício 01 (continuação)

4. Utilizar a Base de Treinamento para construir uma árvore de decisão para classificação nominal da variável Creditability utilizando todas as demais variáveis

```
## Monta a árvore de treinamento por classificação
trainTree = rpart(Creditability~., data=trainData, method="class");
```

- 5. Utilizando a árvore construida no item anterior e a função predict (.) para prever a classificação nominal os registros da base de test: testData
- 6. Contrastruir a confusion matrix utilizando a função table (.) e em seguida com a função confusionMatrix (.) do pacote caret.
- 7. Utilizando a árvore construida no item anterior e a função predict (.) para prever a classificação probabilistica dos registros da base de test: testData e construir a curva ROC para avaliar a performance

testData = data[-ids,]


```
set.seed(0):
library(rpart);
library(ROCR);
library(caret);
## Carrega a base de dados
data = read.table("../database/german_credit_2.csv",sep=",",header = TRUE, stringsAsFactors = FALSE);
## -- Tratamento dos dados
## Criação da classe nominal
data$Creditability = ifelse(data$Creditability==1,"good","bad");
## Categorização do 'Credit Amount'
data$CreditAmount = (ifelse(data$CreditAmount<=2500,'0-2500',ifelse(data$CreditAmount<=5000,'2600-5000','5000+')))</pre>
## -- Separação da base aleatória em base de treinamento e test
## Base de treinamento e base de teste
ids = sort(sample(nrow(data),nrow(data)*0.6));
                                                                                Atenção: No data-frame cada coluna
                                                                                comporta um único tipo de dado.
## Train dataset
                                                                                Erro ao comparar se fizer conversão
trainData = data[ids,];
                                                                                parcial!
## Test dataset
```



```
## Previsão com probabilidades
testTree.predict.prob = predict(trainTree.testData.type='prob');
## Confusion Matrix
table(ifelse(testTree.predict.prob[,2]>0.5, "good", "bad"), testData$Creditability);
## Faz a previsão por florestas
testTree.prediction = prediction(testTree.predict.prob[,2], testData$Creditability);
testTree.performance = performance(testTree.prediction, "tpr", "fpr");
plot(testTree.performance)
> testTree.predict.prob
                                       bad good
           bad
                      good
                                                                 0
                                         60
                                              56
                                  bad
    0.76119403 0.23880597
                                             230
                                         54
                                  good
    0.17307692 0.82692308
    0.17307692 0.82692308
    0.09482759 0.90517241
    0.20000000 0.80000000
    0.17307692 0.82692308
    0.17307692 0.82692308
    0.31818182 0.68181818
    0.17307692 0.82692308
    0.31818182 0.68181818
                                                              True positive rate
    0.66666667 0.333333333
    0.17307692 0.82692308
    0.17307692 0.82692308
    0.76119403 0.23880597
    0.09482759 0.90517241
    0.09482759 0.90517241
    0.09482759 0.90517241
    0.09482759 0.90517241
    0.09482759 0.90517241
```

0.0

0.0

0.2

0.4

False positive rate

0.6

8.0

1.0

Confusion Matrix

		Predicted condition]	
	Total population	Predicted Condition positive	Predicted Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$	
True condition	condition positive	True positive	False Negative (Type II error)	True positive rate (TPR), Sensitivity, Recall $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False negative rate (FNR), Miss rate $= \frac{\Sigma \ False \ negative}{\Sigma \ Condition \ positive}$
	condition negative	False Positive (Type I error)	True negative	False positive rate (FPR), Fall-out $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	
	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	False omission rate (FOR) $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	Positive likelihood ratio $(LR+) = \frac{TPR}{FPR}$	Diagnostic odds ratio $(DOR) = \frac{LR+}{LR-}$
		False discovery rate (FDR) $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$	Negative predictive value (NPV) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}}$	Negative likelihood ratio $(LR-) = \frac{FNR}{TNR}$	

Exemplo: Confusion Matrix and Statistics

Reference Prediction bad good bad 60 56 good 54 230

Accuracy: 0.725

95% CI: (0.6784, 0.7682)

No Information Rate: 0.715 P-Value [Acc > NIR] : 0.3517 Kappa : 0.3288

Mcnemar's Test P-Value : 0.9240

Sensitivity: 0.5263 Specificity: 0.8042 Pos Pred Value : 0.5172 Neg Pred Value: 0.8099

Prevalence: 0.2850 Detection Rate: 0.1500

Detection Prevalence: 0.2900 Balanced Accuracy: 0.6653

'Positive' Class : bad

Ref: https://en.wikipedia.org/wiki/Receiver operating characteristic

Receiver Operating Characteristic (ROC)

- A Receiver Operation Characteristic (ROC) é uma representação gráfica da performance de classificadores binários construido a partir da variação do critério de aceitação ou corte (threshold).

- Para se construir uma ROC marcamos no plano cartesiano X x Y os pares (x,y) que representam para cada cada nível do critério de aceite a Taxa de Falso Positivo (eixo

x) e a Taxa de Verdadeiro Positivo (eixo y)

- A área do gráfico é $1.0 \times 1.0 = 1.0$.

A área abaixo da curva é uma medida da performace o classificador:

Área	Avaliação	
Igual 1.0	Perfeito	
mais próximo a 1.0	Melhor Performance	
Igual 0.5	Aleatório	
mais distante de 1.0	Pior Performance	

False Positive Rate

Ref: https://en.wikipedia.org/wiki/Receiver operating characteristic

Exercício 01 - Observação

- A inclusão de mais variáves ao modelo não garante que serão obtidos melhores resultados.
- Normalmente quando as variáveis do modelo estão muito correlacionadas os modelos obtidos são sub-ótimos.
- No exercício a construção da árvore de decisão poderia ser refeito incluindo apenas um subconjunto das variáveis.

```
## Monta a árvore de treinamento por classificação
trainTree = rpart(Creditability~AccountBalance+DurationOfCreditMonth+PaymentStatusOfPreviousCredit+
                                  CreditAmount+ValueSavingsOrStocks+Guarantors+DurationInCurrentAddress+
                                  Age+ConcurrentCredits+Occupation+NoOfDependents,
                                  data=trainData, method="class");
 Confusion Matrix and Statistics
           Reference
 Prediction bad good
       bad
             42
       good 72 257
                                                                      True positive rate
                Accuracy : 0.7475
                  95% CI: (0.7019, 0.7894)
     No Information Rate: 0.715
     P-Value [Acc > NIR] : 0.08189
```

1.0

8.0

0.2

0.4

False positive rate

Exercício 02 – Decison Tree and Random Forest

Objetivo:

Construir 2 classificadores crédito modelo de regressão:

- 1) Árvore de decisão
- 2) Random Forest (500 árvores aleatórias)
- Comparar a performance dos classificadores com a base German Credit Data.

Package: rpart, ROCR, randomForest

- 1. Carregar os dados: R/database/german_credit_2.csv
- 2. Separar aleatoriamente a base em 2 conjuntos:

trainData: Base de Treinamento: 60% observações

testData: Base de Teste: 40% observações

- 3. Utilizar a Base de Treinamento para construir os classificadores da variável Creditability utilizando todas as demais variáveis
- 4. Fazer a previsão para a base de teste e comparar a performance dos modelos utilizando a curva ROC.


```
## Monta o Modelo de RandomForest
## Monta Floresta a partir da base de treinamento
trainForest = randomForest(Creditability~., data=trainData, importance=TRUE, proximity=TRUE,
                           ntree=500, keep.forest=TRUE);
## Plota: num.árvores vs error
plot(trainForest);
## Gráfico de importância das variávesi
varImpPlot(trainForest);
## Faz a previsão e indica a probabilidade
testForest.predict = predict(trainForest,testData);
## Confusion Matrix
confusionMatrix(ifelse(testForest.predict>0.5,1,0), testData$Creditability);
## Faz a previsão por florestas
testForest.prediction = prediction(testForest.predict, testData$Creditability);
testForest.performance = performance(testForest.prediction, "tpr", "fpr");
plot(testTree.performance)
                                                                        0.28
plot(testForest.performance,col="Blue",add=TRUE)
                                                                         0.26
     Confusion Matrix and Statistics
                                                                        0.24
                Reference
      Prediction
                  0 1
                 57 35
                                                                        0.22
               1 57 251
                                                                         0.20
                     Accuracy: 0.77
                       95% CI: (0.7256, 0.8104)
          No Information Rate: 0.715
          P-Value [Acc > NIR] : 0.007691
                                                                             0
                                                                                    100
                                                                                            200
                                                                                                   300
                                                                                                          400
                                                                                                                  500
```

trees

Gráfico que expressa a importância de cada variável

Comparativo de Performance

