ĆWICZENIE 1 " Modelowanie systemów w programie MATLAB SIMULINK – podstawy"

1.1 Budowa nowego modelu w Simulinku

Otworzyć nowy model w Simulinku (z poziomu okna MATLAB nacisnąć przycisk *Simulink Library* a następnie w oknie, które się otworzy kliknąć przycisk *New Model*). Korzystając z dostępnych elementów bibliotecznych (rys. 1.2) zbudować układ jak na rys 1.1

Rysunek 1.1

Wprowadzić następujące parametry w układzie:

Opis elementu	Nazwa w bibliotece	Parametry
Generator sinusa	Sin Wave	Amlitude=1 $f=50$ HZ \rightarrow ($\omega=2*pi*f$)
Wzmocnienie	Gain	Gain=K gdzie K=2 – zmienna zdeklarowana w przestrzeni roboczej MATLABA

Ustawienie elementu SCOPE

Rysunek 1.2

ĆWICZENIE 1 " Modelowanie systemów w programie MATLAB SIMULINK – podstawy" 1.2 Ustawienie parametrów symulacji Uruchomić moduł *Model Configuration Parameters (ctrl + E))* MODELING Q Find ▼ 0 **(** CHO ---☐ Compare ▼ Model Data Model Model Workspace Advisor ▼ 🎁 Environment ▼ Editor Explorer Settings • EVALUATE & MANAGE DESIGN SETUP

Rysunek 1.3

Ustawić parametry symulacji:

Solver type:	Variable-step	Metoda
Solver:	Ode45	Typ metody
Max Step size:	auto	Maksymalny krok całkowania
Min Step size:	auto	Minimalny krok całkowania
Initial step:	auto	
Stop time	100e-3	Czas zakończenia symulacji

Zadanie 1.2.1

Uruchomić układ dla ustawienia Stop time=100e-3 oraz 300e-3. Porównać uzyskane przebiegi

Zadanie 1.2.2

Zmienić parametr *Max Step size* z wartości *auto* na odpowiednio dobraną wartość , tak aby uzyskać dokładne wyniki symulacji

ĆWICZENIE 1 " Modelowanie systemów w programie MATLAB SIMULINK – podstawy"

1.3 Pozyskiwanie i obróbka wyników symulacji

Do modelu dołożyć fragment pozwalające na zapisanie wyników do przestrzeni roboczej (wykorzystać elementy: *to workspace* i *mux*)

Rysunek 1.4

Ustawienie poszczególnych elementów to workspace:

Rysunek 1.5

Zadanie 1.3.1

Wykorzystując polecenie plot narysować przebiegi sygnału wejściowego i wyjściowego

Wskazówka:

Format polecenie plot dla danej wejściowej w formacie *Array*:

```
plot (out.ts, out.wyniki_array)
plot (out.ts, out.wyniki_array(:,1)) %% wydruk 1 kolumny macierzy
```

Format polecenie plot dla danej wejściowej w formacie Stucture with Time:

plot (out.wyniki_structure.time, out.wyniki_structure.signals.values(:,1))

ĆWICZENIE 1 " Modelowanie systemów w programie MATLAB SIMULINK – podstawy"

1.3 Cd..

Zadanie 1.3.2

Wykorzystując komendy matlaba napisać skrypt (w osobnym pliku) pozwalający na wydruk danych pomiarowych. Wykorzystać zmienną wyniki_structure

Wskazówka:

Przykładowy skrypt do wydruku danych w formacie Structure with time

```
figure();
                              % otwarcie nowego okna graficznego
subplot(2,1,1);
                             % otwarcie podokna (subplot)
plot (out.wyniki structure.time, out.wyniki structure.signals.values(:,1));
                             % wydruk wyników do aktywnego podokna
hold on;
                              % odblokowanie możliwości nadpisywania dodatkowych
                              % przebiegów w tym samym oknie
axis([0e-3 20e-3 -2 2]);
axis([0e-3 20e-3 -2 2]);
                             % ustalenie skali w osi x i osi y
grid on;
                             % aktywacja siatka
title('Przebieg');
                             % tytuł
legend('sinus');
                             % opis poszczególnych przebiegów
subplot(2,1,2);
plot (out.wyniki_structure.time, out.wyniki_structure.signals.values(:,2),'--r');
axis([0e-3 20e-3 -2 2]);
legend('K*sinus');
grid on;
```

Spodziewany rezultat:

