第11章 c: 积分路径无关; 格林公式

数学系 梁卓滨

2019-2020 学年 I

Outline

1. 保守向量场;积分路径无关性

2. 格林公式

We are here now...

1. 保守向量场;积分路径无关性

2. 格林公式

定义 设向量场 F = (P, Q) 定义在平面区域 D 上.

定义 设向量场 F = (P, Q) 定义在平面区域 $D \perp .$ 称 F 为 保守场 ,是指对 <math>F 的曲线积分是与路径无关.

定义 设向量场 F = (P, Q) 定义在平面区域 D 上. 称 F 为 **保守场**,是指对 F 的曲线积分是与路径无关.即:D 内的任意两条有向曲线 L_1 , L_2 ,只要具有相同的起点,和相同的终点,则

定义 设向量场 F = (P, Q) 定义在平面区域 D 上. 称 F 为 **保守场** ,是指对 F 的曲线积分是与路径无关.即:D 内的任意两条有向曲线 L_1 , L_2 ,只要具有相同的起点,和相同的终点,则

都成立

$$\int_{L_1} Pdx + Qdy = \int_{L_2} Pdx + Qdy.$$

定义 设向量场 F = (P, Q) 定义在平面区域 D 上. 称 F 为 **保守场** ,是指对 F 的曲线积分是与路径无关.即:D 内的任意两条有向曲线 L_1 , L_2 ,只要具有相同的起点,和相同的终点,则

都成立

$$\int_{L_1} Pdx + Qdy = \int_{L_2} Pdx + Qdy.$$

考虑对向量场 F 的曲线积分

$$I_i = \int_{L_i} (x + y + 1) dx + y dy, \qquad (i = 1, 2)$$

考虑对向量场 F 的曲线积分

$$I_i = \int_{L_i} (x + y + 1) dx + y dy, \qquad (i = 1, 2)$$

计算知

$$I_1 = -\frac{1}{2}\pi\alpha^2 - 2\alpha$$
, $I_2 = -2\alpha$

考虑对向量场 F 的曲线积分

$$I_i = \int_{L_i} (x + y + 1) dx + y dy, \qquad (i = 1, 2)$$

计算知

$$I_1 = -\frac{1}{2}\pi\alpha^2 - 2\alpha$$
, $I_2 = -2\alpha$

可见 $I_1 \neq I_2$.

考虑对向量场 F 的曲线积分

$$I_i = \int_{L_i} (x + y + 1) dx + y dy, \qquad (i = 1, 2)$$

计算知

$$I_1 = -\frac{1}{2}\pi a^2 - 2a$$
, $I_2 = -2a$

可见 $I_1 \neq I_2$. 所以 F 不是保守场

如图

考虑对向量场F的曲线积分

$$I_i = \int_{L_i} 2xydx + x^2dy$$
, $(i = 1, 2, 3)$

考虑对向量场 F 的曲线积分

$$I_i = \int_{L_i} 2xydx + x^2dy$$
, $(i = 1, 2, 3)$

计算知

$$I_1 = I_2 = I_3 = 1$$

考虑对向量场 F 的曲线积分

$$I_i = \int_{L_i} 2xy dx + x^2 dy$$
, $(i = 1, 2, 3)$

计算知

$$I_1 = I_2 = I_3 = 1$$

问题 F 是不是保守场?

11c 积分路径

定理 设 f(x, y) 是定义在区域 D 上的可微函数,则梯度向量场

$$F = \nabla f = (f_X, f_Y)$$

是保守场.

 $F = \nabla f = (f_X, f_Y)$

定理 设 f(x, y) 是定义在区域 D 上的可微函数,

则梯度向量场

$$F = \nabla f = (f_x, f_y)$$

是保守场.

证明 设A, B 是D 中任意两点,

 $L \neq D$ 中从 A 到 B 的任一条有向曲线,

 $F = \nabla f = (f_X, f_V)$

定理 设 f(x,y) 是定义在区域 D 上的可微函数,

则梯度向量场

$$F = \nabla f = (f_x, \, f_y)$$

是保守场.

证明 设 A, B 是 D 中任意两点,

 $L \neq D$ 中从 $A \neq B$ 的任一条有向曲线,

$$\int_{\mathcal{C}} f_X dx + f_Y dy$$

 $F = \nabla f = (f_X, f_Y)$

定理 设 f(x,y) 是定义在区域 D 上的可微函数,

则梯度向量场

$$F = \nabla f = (f_x, f_y)$$

是保守场.

证明 设A, B 是D 中任意两点,

L是D中从A到B的任一条有向曲线, *

$$\gamma(t) = (\varphi(t), \psi(t)), t: \alpha \rightarrow \beta 是 L$$
的参数方程,

$$\int_{\mathcal{L}} f_{x} dx + f_{y} dy$$

 $F = \nabla f = (f_X, f_V)$

定理 设 f(x,y) 是定义在区域 D 上的可微函数, $F = \nabla f = (f_x, f_y)$

则梯度向量场

$$F = \nabla f = (f_X, f_Y)$$

是保守场.

证明 设A, B 是D 中任意两点,

 $L \neq D$ 中从 $A \neq B$ 的任一条有向曲线,

$$\gamma(t) = (\varphi(t), \psi(t)), t: \alpha \rightarrow \beta 是 L$$
的参数方程,

$$\int_{I} f_{x} dx + f_{y} dy = \int_{\alpha}^{\beta} \left[f_{x}(\varphi(t), \psi(t)) \varphi'(t) + f_{y}(\varphi(t), \psi(t)) \psi'(t) \right] dt$$

定理 设 f(x, y) 是定义在区域 D 上的可微函数,

则梯度向量场

$$F = \nabla f = (f_X, f_Y)$$

是保守场.

证明 设A, B 是D 中任意两点,

 $L \neq D$ 中从 $A \neq B$ 的任一条有向曲线,

$$\gamma(t) = (\varphi(t), \psi(t)), t: \alpha \rightarrow \beta \in L$$
 的参数方程,

$$\int_{L} f_{X} dX + f_{Y} dY = \int_{\alpha}^{\beta} \left[f_{X}(\varphi(t), \psi(t)) \varphi'(t) + f_{Y}(\varphi(t), \psi(t)) \psi'(t) \right] dt$$

$$\frac{d}{dt}f(\varphi(t),\psi(t))$$

 $F = \nabla f = (f_X, f_V)$

定理 设 f(x,y) 是定义在区域 D 上的可微函数,

则梯度向量场

$$F = \nabla f = (f_X, f_Y)$$

是保守场.

证明 设A, B 是D 中任意两点,

L 是 D 中从 A 到 B 的任一条有向曲线, *

$$\gamma(t) = (\varphi(t), \psi(t)), t: \alpha \rightarrow \beta 是 L$$
的参数方程,

$$\int_{L} f_{x} dx + f_{y} dy = \int_{\alpha}^{\beta} \left[f_{x}(\varphi(t), \psi(t)) \varphi'(t) + f_{y}(\varphi(t), \psi(t)) \psi'(t) \right] dt$$
$$= \int_{\alpha}^{\beta} \left[\frac{d}{dt} f(\varphi(t), \psi(t)) \right] dt$$

 $F = \nabla f = (f_X, f_V)$

定理 设 f(x,y) 是定义在区域 D 上的可微函数,

则梯度向量场

$$F = \nabla f = (f_X, f_Y)$$

是保守场.

证明 设A, B 是D 中任意两点,

L 是 D 中从 A 到 B 的任一条有向曲线,

$$\gamma(t) = (\varphi(t), \psi(t)), t : \alpha \rightarrow \beta \neq L$$
 的参数方程,

则

$$\int_{L}^{\beta} f_{x} dx + f_{y} dy = \int_{\alpha}^{\beta} \left[f_{x}(\varphi(t), \psi(t))\varphi'(t) + f_{y}(\varphi(t), \psi(t))\psi'(t) \right] dt$$

$$= \int_{\alpha}^{\beta} \left[\frac{d}{dt} f(\varphi(t), \psi(t)) \right] dt$$

$$= f(\varphi(\beta), \psi(\beta)) - f(\varphi(\alpha), \psi(\alpha))$$

 $F = \nabla f = (f_x, f_y)$

定理 设 f(x,y) 是定义在区域 D 上的可微函数,则梯度向量场

$$F = \nabla f = (f_x, f_y)$$

是保守场.

证明 设A, B 是D 中任意两点,

 $L \neq D$ 中从 A 到 B 的任一条有向曲线,

$$\gamma(t) = (\varphi(t), \psi(t)), t: \alpha \rightarrow \beta 是 L$$
的参数方程,

$$\int_{L} f_{X} dX + f_{Y} dY = \int_{\alpha}^{\beta} \left[f_{X}(\varphi(t), \psi(t)) \varphi'(t) + f_{Y}(\varphi(t), \psi(t)) \psi'(t) \right] dt$$

$$= \int_{\alpha}^{\beta} \left[\frac{d}{dt} f(\varphi(t), \psi(t)) \right] dt$$

$$= f(\varphi(\beta), \psi(\beta)) - f(\varphi(\alpha), \psi(\alpha)) = f(B) - f(A)$$

 $F = \nabla f = (f_X, f_V)$

是保守场.

则梯度向量场

 $F = \nabla f = (f_x, f_y)$

定理 设 f(x,y) 是定义在区域 D 上的可微函数,

证明 设 A, B 是 D 中任意两点,

则 $\int_{\mathbb{R}} f_X dx + f_Y dy = \int_{\mathbb{R}}^{\beta} \left[f_X(\varphi(t), \psi(t)) \varphi'(t) + f_Y(\varphi(t), \psi(t)) \psi'(t) \right] dt$

 $\gamma(t) = (\varphi(t), \psi(t)), t : \alpha \rightarrow \beta \in L$ 的参数方程,

 $= f(\varphi(\beta), \psi(\beta)) - f(\varphi(\alpha), \psi(\alpha)) = f(B) - f(A)$

 $F = \nabla f = (f_x, f_y)$

可见曲线积分与路径无关,所以 ∇f 是保守场. 11c 积分路径

 $= \int_{-\infty}^{\beta} \left[\frac{d}{dt} f(\varphi(t), \psi(t)) \right] dt$

如图

向量场 F 的曲线积分

$$I_i = \int_{L_i} 2xydx + x^2dy$$
, $(i = 1, 2, 3)$

成立
$$I_1 = I_2 = I_3 = 1$$

问题 F 是不是保守场?

如图

向量场 F 的曲线积分

$$I_i = \int_{I_i} 2xy dx + x^2 dy$$
, $(i = 1, 2, 3)$

成立
$$I_1 = I_2 = I_3 = 1$$

问题 F 是不是保守场?

回答 事实上,F 是保守场,证明如下:

如图

向量场 F 的曲线积分

$$I_i = \int_{-1}^{1} 2xydx + x^2dy$$
, $(i = 1, 2, 3)$

成立
$$I_1 = I_2 = I_3 = 1$$

问题 F 是不是保守场?

回答 事实上,
$$F$$
 是保守场,证明如下:令 $f(x, y) =$,则
$$\nabla f = (2xy, x^2) = F$$

如图

向量场 F 的曲线积分

$$I_i = \int_{-1}^{1} 2xydx + x^2dy$$
, $(i = 1, 2, 3)$

成立
$$I_1 = I_2 = I_3 = 1$$

问题 F 是不是保守场?

回答 事实上,
$$F$$
 是保守场,证明如下:令 $f(x, y) = x^2y$,则
$$\nabla f = (2xy, x^2) = F$$

如图

向量场 F 的曲线积分

$$I_i = \int_{-1}^{1} 2xydx + x^2dy$$
, $(i = 1, 2, 3)$

成立
$$I_1 = I_2 = I_3 = 1$$

问题 *F* 是不是保守场?

回答 事实上,
$$F$$
 是保守场,证明如下:令 $f(x, y) = x^2y$,则
$$\nabla f = (2xy, x^2) = F$$

所以 F 是梯度向量场,从而是保守场.

如图

向量场
$$F$$
 的曲线积分
$$I_i = \int_{I_i} 2xydx + x^2dy, (i = 1, 2, 3)$$

成立
$$I_1 = I_2 = I_3 = 1$$

问题 *F* 是不是保守场?

 $F = (2xy, x^2)$

回答 事实上,
$$F$$
 是保守场,证明如下:令 $f(x, y) = x^2y$,则
$$\nabla f = (2xy, x^2) = F$$

所以 F 是梯度向量场,从而是保守场.

例 设 $F = (2xy, x^2)$ 是平面上向量场,

$$注$$
 由于 $F = \nabla f$,所以

如图 向量场 F 的曲线积分

$$I_i = \int_{L_i} 2xy dx + x^2 dy$$
, $(i = 1, 2, 3)$
成立 $I_1 = I_2 = I_3 = 1$
问题 F 是不是保守场?

例 设 $F = (2xy, x^2)$ 是平面上向量场,

$$Vf = (2xy, x)$$

所以 F 是梯度向量场,从而是保守场.

$$注$$
 由于 $F = \nabla f$,所以

 $F = (2xy, x^2)$

例 设 $F = (2xy, x^2)$ 是平面上向量场, $F = (2xy, x^2)$ 如图 向量场 F 的曲线积分 $I_i = \int_{L_i} 2xy dx + x^2 dy, \ (i = 1, 2, 3)$ 成立 $I_1 = I_2 = I_3 = 1$

回答 事实上,
$$F$$
 是保守场,证明如下:令 $f(x, y) = x^2y$,则
$$\nabla f = (2xy, x^2) = F$$
 所以 F 是梯度向量场,从而是保守场.

* + T = = C (C)

问题 *F* 是不是保守场?

$$注 由于 $F = \nabla f$,所以$$

例 设 $F = (2xy, x^2)$ 是平面上向量场, $F = (2xy, x^2)$ 如图 向量场 F 的曲线积分 $I_i = \int_{-1}^{1} 2xydx + x^2dy$, (i = 1, 2, 3)成立 $I_1 = I_2 = I_3 = 1$ **问题** *F* 是不是保守场?

回答 事实上,
$$F$$
 是保守场,证明如下:令 $f(x, y) = x^2y$,则
$$\nabla f = (2xy, x^2) = F$$

所以 F 是梯度向量场,从而是保守场.

 \mathbf{H} 注意到向量场 F = (y, x)

$$\mathbf{F} = (y, x)$$
是 $f(x, y) =$ 梯度向量:
$$F = (y, x) = \nabla f$$

解 注意到向量场
$$F = (y, x)$$
是 $f(x, y) =$ 梯度向量:
$$F = (y, x) = \nabla f$$

$$\int_{L} y dx + x dy = f() - f()$$

解 注意到向量场
$$F = (y, x)$$
是 $f(x, y) = xy$ 梯度向量:

$$F = (y, x) = \nabla f$$

$$\int_{L} y dx + x dy = f() - f()$$

解 注意到向量场
$$F = (y, x)$$
是 $f(x, y) = xy$ 梯度向量:

$$F = (y, x) = \nabla f$$

而 L 是从点 (0,0) 到点 (1,1) 的曲线,所以

$$\int_{L} y dx + x dy = f() - f()$$

解 注意到向量场 F = (y, x)是 f(x, y) = xy梯度向量:

$$F = (y, x) = \nabla f$$

而 L 是从点 (0,0) 到点 (1,1) 的曲线,所以

$$\int_{L} y dx + x dy = f(1, 1) - f(0, 0)$$

解 注意到向量场 F = (y, x)是 f(x, y) = xy梯度向量:

$$F = (y, x) = \nabla f$$

而 L 是从点 (0,0) 到点 (1,1) 的曲线,所以

$$\int_{L} y dx + x dy = f(1, 1) - f(0, 0) = 1.$$

解 注意到向量场 F = (y, x)是 f(x, y) = xy梯度向量:

$$F = (y, x) = \nabla f$$

而 L 是从点 (0,0) 到点 (1,1) 的曲线,所以

$$\int_{1} y dx + x dy = f(1, 1) - f(0, 0) = 1.$$

定义 给定向量场 F,如果函数 f(x, y) 满足 $F = \nabla f$,则称 f 为向量场 F 的一个**势函数**.

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 "(2) ⇒ (1)"已证,只需再证"(1) ⇒ (2)"…

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

推论 设
$$F = (P, Q)$$
 是保守场,则 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$,

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

推论 设
$$F = (P, Q)$$
 是保守场,则 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$,等价地, $\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

推论 设
$$F = (P, Q)$$
 是保守场,则 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$,等价地, $\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

推论 设
$$F = (P, Q)$$
 是保守场,则 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$,等价地, $\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$P = f_X$$
, $Q = f_Y$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

推论 设
$$F = (P, Q)$$
 是保守场,则 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$,等价地, $\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$P = f_x$$
, $Q = f_y$ \Rightarrow $\frac{\partial P}{\partial y} =$, $\frac{\partial Q}{\partial x} =$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

推论 设
$$F = (P, Q)$$
 是保守场,则 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$,等价地, $\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$P = f_x$$
, $Q = f_y$ \Rightarrow $\frac{\partial P}{\partial y} = f_{xy}$, $\frac{\partial Q}{\partial x} =$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

推论 设
$$F = (P, Q)$$
 是保守场,则 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$,等价地, $\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$P = f_x$$
, $Q = f_y$ \Rightarrow $\frac{\partial P}{\partial v} = f_{xy}$, $\frac{\partial Q}{\partial x} = f_{yx}$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

推论 设
$$F = (P, Q)$$
 是保守场,则 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$,等价地, $\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$P = f_x$$
, $Q = f_y$ \Rightarrow $\frac{\partial P}{\partial v} = f_{xy}$, $\frac{\partial Q}{\partial x} = f_{yx}$ \Rightarrow $\frac{\partial P}{\partial v} = \frac{\partial Q}{\partial x}$.

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

推论 设
$$F = (P, Q)$$
 是保守场,则 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$,等价地, $\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

证明 由定理,存在势函数 f(x, y) 使得 $F = \nabla f$,所以

$$P = f_X$$
, $Q = f_Y$ \Rightarrow $\frac{\partial P}{\partial y} = f_{XY}$, $\frac{\partial Q}{\partial x} = f_{YX}$ \Rightarrow $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

MF = (x + y + 1, y) 不是保守场.

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

推论 设
$$F = (P, Q)$$
 是保守场,则 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$,等价地, $\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$P = f_x$$
, $Q = f_y$ \Rightarrow $\frac{\partial P}{\partial y} = f_{xy}$, $\frac{\partial Q}{\partial x} = f_{yx}$ \Rightarrow $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

例
$$F = (x + y + 1, y)$$
 不是保守场.这是 $\frac{\partial}{\partial y}(x + y + 1)$ $\frac{\partial}{\partial x}(y)$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

推论 设
$$F = (P, Q)$$
 是保守场,则 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$,等价地, $\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$P = f_x$$
, $Q = f_y$ \Rightarrow $\frac{\partial P}{\partial y} = f_{xy}$, $\frac{\partial Q}{\partial x} = f_{yx}$ \Rightarrow $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

例
$$F = (x + y + 1, y)$$
 不是保守场.这是 $\frac{\partial}{\partial y}(x + y + 1) \neq \frac{\partial}{\partial x}(y)$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 "(1) ⇒ (2)":

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 "(1) \Rightarrow (2)":如图,定义 D 中任意点 P(x, y) 的函数值为

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 "(1) \Rightarrow (2)":如图,定义 D 中任意点 P(x,y) 的函数值为

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 "(1) \Rightarrow (2)":如图,定义 D 中任意点 P(x, y) 的函数值为

- (1) *F* 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 " $(1) \Rightarrow (2)$ ":如图,定义 D 中任意点 P(x, y) 的函数值为

$$f(x,y) = \int_{1}^{1} Pdx + Qdy$$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 "(1) \Rightarrow (2)":如图,定义 D 中任意点 P(x, y) 的函数值为

$$f(x,y) = \int_{1}^{1} Pdx + Qdy$$

$$f_x(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 " $(1) \Rightarrow (2)$ ":如图,定义 D 中任意点 P(x, y) 的函数值为

$$f(x,y) = \int_{1}^{1} Pdx + Qdy$$

$$f_X(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 "(1) \Rightarrow (2)":如图,定义 D 中任意点 P(x, y) 的函数值为

$$f(x,y) = \int_{1}^{1} Pdx + Qdy$$

$$f_X(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 "(1) \Rightarrow (2)":如图,定义 D 中任意点 P(x, y) 的函数值为

$$f(x,y) = \int_{1}^{1} Pdx + Qdy$$

$$f_X(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$
$$\int_{\overrightarrow{AB}} Pdx + Qdy$$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 "(1) \Rightarrow (2)": 如图,定义 D 中任意点 P(x, y) 的函数值为

$$f(x,y) = \int_{1}^{1} Pdx + Qdy$$

$$f_{x}(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{\overrightarrow{AB}} Pdx + Qdy$$

- (1) *F* 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 "(1) \Rightarrow (2)": 如图,定义 D 中任意点 P(x, y) 的函数值为

$$f(x,y) = \int_{I} Pdx + Qdy$$

$$f_{x}(x, y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{\overrightarrow{AB}} Pdx + Qdy$$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 "(1) \Rightarrow (2)":如图,定义 D 中任意点 P(x, y) 的函数值为

$$f(x,y) = \int_{L} Pdx + Qdy$$

所以

$$f_X(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{\overrightarrow{AB}} Pdx + Qdy$$
$$\int_0^{\Delta x} P(x + t, y)dt$$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 "(1) \Rightarrow (2)":如图,定义 D 中任意点 P(x, y) 的函数值为

$$f(x,y) = \int_{L} Pdx + Qdy$$

所以

$$f_X(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{\overrightarrow{AB}} Pdx + Qdy$$
$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{0}^{\Delta x} P(x + t, y)dt$$

- (1) F 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 "(1) \Rightarrow (2)":如图,定义 D 中任意点 P(x, y) 的函数值为

$$f(x,y) = \int_{1}^{1} Pdx + Qdy$$

所以

$$f_X(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{\overrightarrow{AB}} Pdx + Qdy$$
$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{0}^{\Delta x} P(x + t, y)dt$$
$$= P(x, y)$$

- (1) *F* 是保守场,
- (2) F 是梯度向量场,即存在势函数 f(x, y) 使得 $F = \nabla f$.

证明 下面证 "(1) \Rightarrow (2)":如图,定义 D 中任意点 P(x,y) 的函数值为

所以
$$f(x,y) = \int_{L} Pdx + Qdy$$
所以
$$f_{x}(x,y) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{\overrightarrow{AB}} Pdx + Qdy$$

$$= \lim_{\Delta x \to 0} \frac{1}{\Delta x} \int_{0}^{\Delta x} P(x + t, y) dt$$

$$= P(x,y)$$

同理可证, $f_v(x,y) = Q(x,y)$. 所以 $F = (f_x, f_v)$. 11c 积分路径

$$F$$
是保守向量场 $\Rightarrow \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$F$$
是保守向量场 $\Rightarrow \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0 \implies F$$
是保守向量场

$$F$$
是保守向量场 $\Rightarrow \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0 \implies F$$
是保守向量场

例 设向量场
$$F = (P, G) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

$$F$$
是保守向量场 $\Rightarrow \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & O \end{vmatrix} = 0 \implies F$$
是保守向量场

例 设向量场
$$F = (P, G) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

• 定义域
$$D = \mathbb{R}^2 \setminus (0, 0)$$

$$F$$
是保守向量场 $\Rightarrow \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & O \end{vmatrix} = 0 \Rightarrow F$$
是保守向量场

例 设向量场
$$F = (P, G) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

• 定义域
$$D = \mathbb{R}^2 \setminus (0, 0)$$

$$F$$
是保守向量场 $\Rightarrow \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & O \end{vmatrix} = 0 \implies F$$
是保守向量场

例 设向量场
$$F = (P, G) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

• 定义域
$$D = \mathbb{R}^2 \setminus \{0, 0\}$$

$$F$$
是保守向量场 $\Rightarrow \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & O \end{vmatrix} = 0 \Rightarrow F$$
是保守向量场

例 设向量场
$$F = (P, G) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

• 定义域
$$D = \mathbb{R}^2 \setminus \{0, 0\}$$

● 定义域
$$D = \mathbb{R}^2 \setminus \{0, 0\}$$

• $\left| \frac{\partial}{\partial x} \frac{\partial}{\partial y} \right| = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \frac{y^2 - x^2}{x^2 + y^2} - \frac{y^2 - x^2}{x^2 + y^2} = 0$

• $\left| \frac{\partial}{\partial x} \frac{\partial}{\partial y} \right| = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \frac{y^2 - x^2}{x^2 + y^2} = 0$

$$F$$
是保守向量场 $\Rightarrow \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & O \end{vmatrix} = 0 \implies F$$
是保守向量场

例 设向量场
$$F = (P, G) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

- 定义域 $D = \mathbb{R}^2 \setminus (0, 0)$
- 曲线积分

$$I_i = \int_{1}^{\infty} \frac{-y dx + x dy}{x^2 + y^2}, \quad (i = 1, 2)$$

$$F$$
是保守向量场 $\Rightarrow \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

但反过来不成立:

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & O \end{vmatrix} = 0 \implies F$$
是保守向量场

- 曲线积分

$$I_i = \int_{I_i} \frac{-ydx + xdy}{x^2 + y^2}, \quad (i = 1, 2)$$

的值是: $I_1 = \pi$, $I_2 = -\pi$.

$$F$$
是保守向量场 $\Rightarrow \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0$

但反过来不成立:

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0 \Rightarrow F$$
是保守向量场

例 设向量场 $F = (P, G) = \left(\frac{x}{x^2 + v^2}, \frac{-y}{x^2 + v^2}\right)$

• 曲线积分

• 定义域
$$D = \mathbb{R}^2 \setminus \{0, 0\}$$

• $\left| \frac{\partial}{\partial x} \frac{\partial}{\partial y} \right| = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \frac{y^2 - x^2}{x^2 + y^2} - \frac{y^2 - x^2}{x^2 + y^2} = 0$
• 曲线积分

$$I_i = \int_{-\infty}^{\infty} \frac{-y dx + x dy}{x^2 + y^2}, \quad (i = 1, 2)$$

的值是: $I_1 = \pi$, $I_2 = -\pi$.故 F 不是保守场.

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0 \Rightarrow F$$
是保守向量场

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0 \quad \Rightarrow \quad F$$
是保守向量场

(即此时存在 D 上二元函数 f(x, y) 使得 $F = \nabla f$)

$$\left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{array} \right| = 0 \quad \Rightarrow \quad F$$
是保守向量场

(即此时存在 D 上二元函数 f(x, y) 使得 $F = \nabla f$)

定义 平面区域 D 是 **单连通**,是指: D 中任意一条闭曲线,都能在 D 中收缩成一点

$$\left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{array} \right| = 0 \quad \Rightarrow \quad F$$
是保守向量场

(即此时存在 D 上二元函数 f(x, y) 使得 $F = \nabla f$)

定义 平面区域 D 是 **单连通**,是指: D 中任意一条闭曲线,都能在 D 中收缩成一点(也就是,曲线在收缩过程保持在 D 中).

$$\left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{array} \right| = 0 \quad \Rightarrow \quad F$$
是保守向量场

(即此时存在 D 上二元函数 f(x, y) 使得 $F = \nabla f$)

定义 平面区域 D 是 单连通,是指: D 中任意一条闭曲线,都能在 D 中收缩成一点(也就是,曲线在收缩过程保持在 D 中).

例

$$\left| egin{array}{ccc} rac{\partial}{\partial x} & rac{\partial}{\partial y} \\ P & Q \end{array}
ight| = 0 \quad \Rightarrow \quad F$$
是保守向量场

(即此时存在 D 上二元函数 f(x, y) 使得 $F = \nabla f$)

定义 平面区域 D 是**单连通**,是指: D 中任意一条闭曲线,都能在 D 中收缩成一点(也就是,曲线在收缩过程保持在 D 中).

$$\left| egin{array}{ccc} rac{\partial}{\partial x} & rac{\partial}{\partial y} \\ P & Q \end{array}
ight| = 0 \quad \Rightarrow \quad F$$
是保守向量场

(即此时存在 D 上二元函数 f(x, y) 使得 $F = \nabla f$)

定义 平面区域 D 是**单连通**,是指: D 中任意一条闭曲线,都能在 D 中收缩成一点(也就是,曲线在收缩过程保持在 D 中).

$$\left| egin{array}{ccc} rac{\partial}{\partial x} & rac{\partial}{\partial y} \\ P & Q \end{array}
ight| = 0 \quad \Rightarrow \quad F$$
是保守向量场

(即此时存在 D 上二元函数 f(x, y) 使得 $F = \nabla f$)

定义 平面区域 D 是**单连通**,是指: D 中任意一条闭曲线,都能在 D 中收缩成一点(也就是,曲线在收缩过程保持在 D 中).

$$\left| egin{array}{ccc} rac{\partial}{\partial x} & rac{\partial}{\partial y} \\ P & Q \end{array}
ight| = 0 \quad \Rightarrow \quad F$$
是保守向量场

(即此时存在 D 上二元函数 f(x, y) 使得 $F = \nabla f$)

定义 平面区域 D 是**单连通**,是指: D 中任意一条闭曲线,都能在 D 中收缩成一点(也就是,曲线在收缩过程保持在 D 中).

$$\left| egin{array}{ccc} rac{\partial}{\partial x} & rac{\partial}{\partial y} \\ P & Q \end{array}
ight| = 0 \quad \Rightarrow \quad F$$
是保守向量场

(即此时存在 D 上二元函数 f(x, y) 使得 $F = \nabla f$)

定义 平面区域 $D \in \hat{\mathbf{p}}$ 是指: D 中任意一条闭曲线,都能在 D 中收缩成一点(也就是,曲线在收缩过程保持在 D 中).

 \mathbf{M} 如图, D_1 是单连通,而 D_2 不是

注 直观上,单连通区域是指不含"洞"、"孔"的区域

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0 \quad \Rightarrow \quad F$$
是保守向量场

(即此时存在 D 上势函数
$$f(x, y)$$
 使得 $F = \nabla f$)

注 上述定理中条件 "D 是单连通"是必须的.

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0 \quad \Rightarrow \quad F$$
是保守向量场

(即此时存在 D 上势函数 f(x, y) 使得 $F = \nabla f$)

注 上述定理中条件"D 是单连通"是必须的.

例 设向量场
$$F = (P, G) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$
.

$$\left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{array} \right| = 0 \quad \Rightarrow \quad F$$
是保守向量场

(即此时存在 D 上势函数 f(x, y) 使得 $F = \nabla f$)

注 上述定理中条件"D 是单连通"是必须的.

例 设向量场
$$F = (P, G) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$
.

• 定义域
$$D = \mathbb{R}^2 \setminus \{0, 0\}$$

• 定义域
$$D = \mathbb{R}^2 \setminus (0, 0)$$

• $\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = \frac{y^2 - x^2}{x^2 + y^2} - \frac{y^2 - x^2}{x^2 + y^2} = 0$

但 F 不是保守场:

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0 \Rightarrow F$$
是保守向量场

(即此时存在 D 上势函数 f(x, y) 使得 $F = \nabla f$)

注 上述定理中条件 "D 是单连通" 是必须的.

例 设向量场
$$F = (P, G) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$
.

• 定义域
$$D = \mathbb{R}^2 \setminus (0, 0)$$

$$I_i = \int_{-1}^{1} \frac{-ydx + xdy}{x^2 + y^2}, \quad (i = 1, 2)$$

的值是: $I_1 = \pi$, $I_2 = -\pi$.

$$\begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{vmatrix} = 0 \quad \Rightarrow \quad F$$
是保守向量场

(即此时存在 D 上势函数 f(x, y) 使得 $F = \nabla f$)

注 上述定理中条件 "D 是单连通" 是必须的.

例 设向量场
$$F = (P, G) = \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$
.

• 定义域
$$D = \mathbb{R}^2 \setminus (0, 0)$$
 (并不是单连通)

● 但 F 不是保守场:

$$I_i = \int_{1}^{1} \frac{-ydx + xdy}{x^2 + y^2}, \quad (i = 1, 2)$$

的值是: $I_1 = \pi$, $I_2 = -\pi$.

性质 设 F = (P, Q) 是定义在平面区域 D 上的向量场. 则以下说法等价:

- (1) F 是保守场
- (2) F在D中任意有向闭曲线C上的曲线积分为0

性质 设 F = (P, Q) 是定义在平面区域 D 上的向量场. 则以下说法等价:

- (1) F 是保守场
- (2) F在D中任意有向闭曲线C上的曲线积分为0

证明

性质 设 F = (P, Q) 是定义在平面区域 D 上的向量场. 则以下说法等价:

- (1) F 是保守场
- (2) F在D中任意有向闭曲线C上的曲线积分为0

证明

性质 设 F = (P, Q) 是定义在平面区域 D 上的向量场. 则以下说法等价:

- (1) F 是保守场
- (2) F在D中任意有向闭曲线C上的曲线积分为0

证明

性质 设 F = (P, Q) 是定义在平面区域 D 上的向量场. 则以下说法等价:

- (1) F 是保守场
- (2) F在D中任意有向闭曲线C上的曲线积分为0

证明

F是保守场

$$\Leftrightarrow \int_{L_1} P dx + Q dy = \int_{L_2} P dx + Q dy$$

性质 设 F = (P, Q) 是定义在平面区域 D 上的向量场. 则以下说法等价:

- (1) F 是保守场
- (2) F在D中任意有向闭曲线C上的曲线积分为0

证明

F是保守场

$$\iff \int_{L_1} P dx + Q dy = \int_{L_2} P dx + Q dy$$

$$\Leftrightarrow \int_{L_1} P dx + Q dy - \int_{L_2} P dx + Q dy = 0$$

性质 设 F = (P, Q) 是定义在平面区域 D 上的向量场. 则以下说法等价:

- (1) F 是保守场
- (2) F在D中任意有向闭曲线C上的曲线积分为0

证明

F是保守场

$$\Leftrightarrow \int_{L_1} Pdx + Qdy = \int_{L_2} Pdx + Qdy$$

$$\Leftrightarrow \int_{L_1} P dx + Q dy - \int_{L_2} P dx + Q dy = 0$$

$$\int_{-L_2} P dx + Q dy$$

性质 设 F = (P, Q) 是定义在平面区域 D 上的向量场. 则以下说法等价:

- (1) F 是保守场
- (2) F在D中任意有向闭曲线C上的曲线积分为0

证明

$$\Leftrightarrow \int_{L_1} P dx + Q dy = \int_{L_2} P dx + Q dy$$

$$\Leftrightarrow \int_{L_1} Pdx + Qdy - \int_{L_2} Pdx + Qdy = 0$$

$$\int_{-L_2} P dx + Q dy$$

性质 设 F = (P, Q) 是定义在平面区域 D 上的向量场. 则以下说法等价:

- (1) F 是保守场
- (2) F在D中任意有向闭曲线C上的曲线积分为0

证明

$$\Leftrightarrow \int_{L_1} P dx + Q dy = \int_{L_2} P dx + Q dy$$

$$\Leftrightarrow \int_{L_1} P dx + Q dy - \int_{L_2} P dx + Q dy = 0$$

$$\Leftrightarrow \int_{L_1} P dx + Q dy + \int_{-L_2} P dx + Q dy = 0$$

性质 设 F = (P, Q) 是定义在平面区域 D 上的向量场. 则以下说法等价:

- (1) F 是保守场
- (2) F在D中任意有向闭曲线C上的曲线积分为0

证明

$$\Leftrightarrow \int_{L_1} P dx + Q dy = \int_{L_2} P dx + Q dy$$

$$\Leftrightarrow \int_{L_1} P dx + Q dy - \int_{L_2} P dx + Q dy = 0$$

$$\Leftrightarrow \int_{L_1} P dx + Q dy + \int_{-L_2} P dx + Q dy = 0$$

$$\Leftrightarrow \int_{L_1 + (-L_2)} P dx + Q dy = 0$$

性质 设 F = (P, Q) 是定义在平面区域 D 上的向量场. 则以下说法等价:

- (1) *F* 是保守场
- (2) F在D中任意有向闭曲线C上的曲线积分为0

证明

$$\Leftrightarrow \int_{L_1} P dx + Q dy = \int_{L_2} P dx + Q dy$$

$$\Leftrightarrow \int_{L_1} P dx + Q dy - \int_{L_2} P dx + Q dy = 0$$

$$\Leftrightarrow \int_{L_1} P dx + Q dy + \int_{-L_2} P dx + Q dy = 0$$

$$\Leftrightarrow \int_{I_1+(-I_2)} Pdx + Qdy = 0$$

$$\Leftrightarrow \int_C Pdx + Qdy = 0$$

• 设 F = (P, Q) 是定义在平面区域 D 上的向量场,则

F是梯度向量场(势场),即 $F = \nabla f$

F是保守向量场

F在任意闭曲线上的曲线积分为0

$$\left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{array} \right| = 0$$

• 设 F = (P, Q) 是定义在平面区域 D 上的向量场,则

• 当 F = (P, Q) 是保守场时,成立 $F = \nabla f$,

• 设 F = (P, Q) 是定义在平面区域 D 上的向量场,则

• 当 F = (P, Q) 是保守场时,成立 $F = \nabla f$,并且

$$\int_{1}^{1} Pdx + Qdy$$

• 设 F = (P, Q) 是定义在平面区域 D 上的向量场,则

• 当 F = (P, Q) 是保守场时,成立 $F = \nabla f$,并且

$$\int_{A} Pdx + Qdy = f(B) - f(A)$$

• 设F = (P, Q)是定义在平面区域D上的向量场,则

• 当 F = (P, Q) 是保守场时,成立 $F = \nabla f$,并且

$$\int_{I} Pdx + Qdy = f(B) - f(A)$$

这里 B 是有向曲线 L 的终点,A 是起点

● 三维空间的向量场 F = (P, Q, R)

• 三维空间的向量场 F = (P, Q, R)称为保守向量场,指其曲线积分与路径无关

- 三维空间的向量场 F = (P, Q, R) 称为保守向量场,指其曲线积分与路径无关
- F = (P, Q, R) 是保守场,当且仅当 $\exists f(x, y, z)$ 使得 $F = \nabla f$,

- 三维空间的向量场 F = (P, Q, R) 称为保守向量场,指其曲线积分与路径无关
- F = (P, Q, R) 是保守场,当且仅当 $\exists f(x, y, z)$ 使得 $F = \nabla f$,此时

$$\int_{L} Pdx + Qdy + Rdz = f(\$ - f(\$$$

- 三维空间的向量场 F = (P, Q, R)称为保守向量场,指其曲线积分与 路径无关
- F = (P, Q, R) 是保守场,当且仅当 $\exists f(x, y, z)$ 使得 $F = \nabla f$,此时

$$\int_L Pdx + Qdy + Rdz = f(终点) - f(起点)$$
• 如果 $F = (P, Q, R)$ 是保守向量场,则

$$\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = 0$$

- 三维空间的向量场 F = (P, Q, R)称为保守向量场,指其曲线积分与 路径无关
- F = (P, Q, R) 是保守场,当且仅当 $\exists f(x, y, z)$ 使得 $F = \nabla f$,此时

$$\int_L Pdx + Qdy + Rdz = f(终点) - f(起点)$$
• 如果 $F = (P, Q, R)$ 是保守向量场,则

$$\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = 0$$

但反过来不一定成立

- 三维空间的向量场 F = (P, Q, R)称为保守向量场,指其曲线积分与 路径无关
- F = (P, Q, R) 是保守场,当且仅当 $\exists f(x, y, z)$ 使得 $F = \nabla f$,此时

$$\int_L Pdx + Qdy + Rdz = f(终点) - f(起点)$$
• 如果 $F = (P, Q, R)$ 是保守向量场,则

$$\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = 0$$

但反过来不一定成立

如果 F 的定义域是单连通区域,则上述命题的逆命题也成立(从而 是充分必要条件)

11c 积分路径

We are here now...

1. 保守向量场;积分路径无关性

2. 格林公式

定义 假设曲线 C 是平面区域 D 的边界.

格林公式 设有界闭区域 D 是由分段光滑曲线 C 围成,若函数 P(x, y) 及 Q(x, y) 在 D 上具有一阶连续偏导数,则成立

$$\iint_{D} \left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{array} \right| dxdy = \int_{C} Pdx + Qdy$$

格林公式 设有界闭区域 D 是由分段光滑曲线 C 围成,若函数 P(x, y) 及 O(x, y) 在 D 上具有一阶连续偏导数,则成立

$$\iint_{D} \left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q \end{array} \right| dxdy = \int_{C} Pdx + Qdy$$

其中C的定向取:作为区域D的边界的正向.

- 1. $\int_C y dx x dy$, C 是半径为 r 的圆周,定向取逆时针方向
- 2. $\int_C (y^4 + x^3) dx + 2x^6 dy$,C 是矩形 $[0, 1] \times [0, 1]$,逆时针方向

- 1. $\int_C y dx x dy$, C 是半径为 r 的圆周,定向取逆时针方向
- 2. $\int_C (y^4 + x^3) dx + 2x^6 dy$,C 是矩形 $[0,1] \times [0,1]$,逆时针方向

$$\int_{C} y dx - x dy$$

1. $\int_C y dx - x dy$,C 是半径为r 的圆周,定向取逆时针方向

2.
$$\int_C (y^4 + x^3) dx + 2x^6 dy$$
, C 是矩形 $[0, 1] \times [0, 1]$,逆时针方向

$$\int_{C} y dx - x dy$$

- 1. $\int_C y dx x dy$,C 是半径为r 的圆周,定向取逆时针方向
- 2. $\int_C (y^4 + x^3) dx + 2x^6 dy$,C 是矩形 $[0, 1] \times [0, 1]$,逆时针方向

$$\int_{C} y dx - x dy = \iint_{D} \left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ \end{array} \right| dx dy$$

- 1. $\int_C y dx x dy$, C 是半径为 r 的圆周,定向取逆时针方向
- 2. $\int_C (y^4 + x^3) dx + 2x^6 dy$,C 是矩形 $[0, 1] \times [0, 1]$,逆时针方向

$$\int_{C} y dx - x dy = \iint_{D} \left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ y & -x \end{array} \right| dx dy$$

- 1. $\int_C y dx x dy$, C 是半径为 r 的圆周,定向取逆时针方向
- 2. $\int_C (y^4 + x^3) dx + 2x^6 dy$,C 是矩形 $[0, 1] \times [0, 1]$,逆时针方向

$$\int_{C} y dx - x dy = \iint_{D} \left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ y & -x \end{array} \right| dx dy$$
$$= \iint_{D} -2 dx dy$$

- 1. $\int_C y dx x dy$, C 是半径为 r 的圆周,定向取逆时针方向
- 2. $\int_C (y^4 + x^3) dx + 2x^6 dy$,C 是矩形 $[0, 1] \times [0, 1]$,逆时针方向

$$\int_{C} y dx - x dy = \iint_{D} \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ y & -x \end{vmatrix} dx dy$$
$$= \iint_{D} -2 dx dy$$
$$= -2|D|$$

- 1. $\int_C y dx x dy$,C 是半径为r 的圆周,定向取逆时针方向
- 2. $\int_C (y^4 + x^3) dx + 2x^6 dy$,C 是矩形 $[0, 1] \times [0, 1]$,逆时针方向

解 1.

$$\int_{C} y dx - x dy = \iint_{D} \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ y & -x \end{vmatrix} dx dy$$
$$= \iint_{D} -2 dx dy$$
$$= -2|D| = -2\pi r^{2}$$

1. $\int_C y dx - x dy$, C 是半径为 r 的圆周,定向取逆时针方向

2.
$$\int_C (y^4 + x^3) dx + 2x^6 dy$$
, C 是矩形 $[0,1] \times [0,1]$,逆时针方向

$$\int_C (y^4 + x^3) dx + 2x^6 dy$$

1. $\int_C y dx - x dy$, C 是半径为 r 的圆周,定向取逆时针方向

2.
$$\int_C (y^4 + x^3) dx + 2x^6 dy$$
, C 是矩形 $[0,1] \times [0,1]$,逆时针方向

$$\int_C (y^4 + x^3) dx + 2x^6 dy$$

1. $\int_C y dx - x dy$, C 是半径为 r 的圆周,定向取逆时针方向

2.
$$\int_C (y^4 + x^3) dx + 2x^6 dy$$
, C 是矩形 $[0, 1] \times [0, 1]$,逆时针方向

$$\int_{C} (y^{4} + x^{3}) dx + 2x^{6} dy$$

$$= \iiint_{D} \frac{\partial}{\partial x} \frac{\partial}{\partial y} dx dy$$

1. $\int_C y dx - x dy$, C 是半径为 r 的圆周,定向取逆时针方向

2.
$$\int_C (y^4 + x^3) dx + 2x^6 dy$$
, C 是矩形 $[0, 1] \times [0, 1]$,逆时针方向

$$\int_{C} (y^{4} + x^{3}) dx + 2x^{6} dy$$

$$= \iint_{D} \begin{vmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ y^{4} + x^{3} & 2x^{6} \end{vmatrix} dx dy$$

- 1. $\int_C y dx x dy$, C 是半径为 r 的圆周,定向取逆时针方向
- 2. $\int_C (y^4 + x^3) dx + 2x^6 dy$,C 是矩形 $[0, 1] \times [0, 1]$,逆时针方向

$$\int_{C} (y^{4} + x^{3}) dx + 2x^{6} dy$$

$$= \iint_{D} \left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ y^{4} + x^{3} & 2x^{6} \end{array} \right| dx dy$$

$$= \iint_{D} (12x^{5} - 4y^{3}) dx dy$$

- 1. $\int_C y dx x dy$, C 是半径为 r 的圆周,定向取逆时针方向
- 2. $\int_C (y^4 + x^3) dx + 2x^6 dy$,C 是矩形 $[0,1] \times [0,1]$,逆时针方向

$$\int_{C} (y^{4} + x^{3}) dx + 2x^{6} dy$$

$$= \iint_{D} \left| y^{4} + x^{3} \right|_{2x^{6}} dx dy$$

$$= \iint_{D} (12x^{5} - 4y^{3}) dx dy = \int_{0}^{\infty} \left[\int_{0}^{\infty} (12x^{5} - 4y^{3}) dx \right] dy$$

- 1. $\int_C y dx x dy$, C 是半径为 r 的圆周,定向取逆时针方向
- 2. $\int_C (y^4 + x^3) dx + 2x^6 dy$,C 是矩形 $[0,1] \times [0,1]$,逆时针方向

$$\int_{C} (y^4 + x^3) dx + 2x^6 dy$$

$$= \iint_{D} \left| y^4 + x^3 \right|_{2x^6} dx dy$$

$$= \iint_{D} (12x^5 - 4y^3) dx dy = \int_{0}^{1} \left[\int_{0}^{1} (12x^5 - 4y^3) dx \right] dy$$

- 1. $\int_C y dx x dy$, C 是半径为 r 的圆周,定向取逆时针方向
- 2. $\int_C (y^4 + x^3) dx + 2x^6 dy$,C 是矩形 $[0,1] \times [0,1]$,逆时针方向

$$\int_{C} (y^{4} + x^{3}) dx + 2x^{6} dy$$

$$= \iint_{D} \left| y^{4} + x^{3} \right|_{2x^{6}} dx dy$$

$$= \iint_{D} (12x^{5} - 4y^{3}) dx dy = \int_{0}^{1} \left[\int_{0}^{1} (12x^{5} - 4y^{3}) dx \right] dy$$

- 1. $\int_C y dx x dy$, C 是半径为 r 的圆周,定向取逆时针方向
- 2. $\int_C (y^4 + x^3) dx + 2x^6 dy$,C 是矩形 $[0, 1] \times [0, 1]$,逆时针方向

$$\int_{C} (y^{4} + x^{3}) dx + 2x^{6} dy$$

$$= \iint_{D} \left| y^{4} + x^{3} \frac{\partial}{\partial x} \frac{\partial}{\partial y} dx dy \right|_{D}$$

$$= \iint_{D} (12x^{5} - 4y^{3}) dx dy = \int_{0}^{1} \left[\int_{0}^{1} (12x^{5} - 4y^{3}) dx \right] dy$$

$$= \int_{0}^{1} \left[2x^{6} - 4y^{3}x \Big|_{0}^{1} \right] dy$$

- 1. $\int_C y dx x dy$, C 是半径为 r 的圆周,定向取逆时针方向
- 2. $\int_C (y^4 + x^3) dx + 2x^6 dy$,C 是矩形 $[0,1] \times [0,1]$,逆时针方向

$$\int_{C} (y^{4} + x^{3}) dx + 2x^{6} dy$$

$$= \iint_{D} \left| y^{4} + x^{3} \right|_{\partial X} \frac{\partial}{\partial y} dx dy$$

$$= \iint_{D} (12x^{5} - 4y^{3}) dx dy = \int_{0}^{1} \left[\int_{0}^{1} (12x^{5} - 4y^{3}) dx \right] dy$$

$$= \int_{0}^{1} \left[2x^{6} - 4y^{3}x \Big|_{0}^{1} \right] dy = \int_{0}^{1} \left[2 - 4y^{3} \right] dy$$

- 1. $\int_C y dx x dy$, C 是半径为 r 的圆周,定向取逆时针方向
- 2. $\int_C (y^4 + x^3) dx + 2x^6 dy$,C 是矩形 $[0,1] \times [0,1]$,逆时针方向

$$\int_{C} (y^{4} + x^{3}) dx + 2x^{6} dy$$

$$= \iint_{D} \left| \frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial y} \right| dx dy$$

$$= \iint_{D} (12x^{5} - 4y^{3}) dx dy = \int_{0}^{1} \left[\int_{0}^{1} (12x^{5} - 4y^{3}) dx \right] dy$$

$$= \int_{0}^{1} \left[2x^{6} - 4y^{3}x \Big|_{0}^{1} \right] dy = \int_{0}^{1} \left[2 - 4y^{3} \right] dy = 1$$

$$D$$
的面积 = $\frac{1}{2} \int_{C} -y dx + x dy$

$$D$$
的面积 = $\frac{1}{2} \int_{C} -y dx + x dy$

其中C的定向取:作为区域D的边界的正向.

$$D$$
的面积 = $\frac{1}{2} \int_{C} -y dx + x dy$

其中 C 的定向取:作为区域 D 的边界的正向.

$$\frac{1}{2} \int_{C} -y dx + x dy$$

$$D$$
的面积 = $\frac{1}{2} \int_{C} -y dx + x dy$

其中 C 的定向取: 作为区域 D 的边界的正向.

$$\frac{1}{2} \int_{C} -y dx + x dy = \frac{1}{2} \int \int_{D} \left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \end{array} \right| dx dy$$

$$D$$
的面积 = $\frac{1}{2} \int_{C} -y dx + x dy$

其中 C 的定向取:作为区域 D 的边界的正向.

$$\frac{1}{2} \int_{C} -y dx + x dy = \frac{1}{2} \int \int_{D} \left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ -y & x \end{array} \right| dx dy$$

$$D$$
的面积 = $\frac{1}{2} \int_{C} -y dx + x dy$

其中C的定向取:作为区域D的边界的正向.

$$\frac{1}{2} \int_{C} -y dx + x dy = \frac{1}{2} \iiint_{D} \left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ -y & x \end{array} \right| dx dy = \int_{D} 1 dx dy$$

$$D$$
的面积 = $\frac{1}{2}\int_{C} -ydx + xdy$

其中 C 的定向取: 作为区域 D 的边界的正向.

$$\frac{1}{2} \int_{C} -y dx + x dy = \frac{1}{2} \iiint_{D} \left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ -y & x \end{array} \right| dx dy = \int_{D} 1 dx dy = D$$
的面积

$$D$$
的面积 = $\frac{1}{2}\int_{C} -ydx + xdy$

其中 C 的定向取: 作为区域 D 的边界的正向.

证明

$$\frac{1}{2} \int_{C} -y dx + x dy = \frac{1}{2} \iint_{D} \left| \begin{array}{cc} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ -y & x \end{array} \right| dx dy = \int_{D} 1 dx dy = D \text{ in } D$$

例 利用上述公式计算椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 所围成的面积.

解

$$D$$
的面积 = $\frac{1}{2} \int_{C} -y dx + x dy$

解

$$D$$
的面积 = $\frac{1}{2} \int_{C} -y dx + x dy$

解 椭圆
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 按逆时针的参数方程是

$$D$$
的面积 = $\frac{x}{2} = a \cos \theta, \quad y = b \sin \theta \quad (\theta : 0 \to 2\pi)$

解 椭圆
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 按逆时针的参数方程是

所以
$$x = a\cos\theta, \quad y = b\sin\theta \quad (\theta: 0 \to 2\pi)$$

$$D的面积 = \frac{1}{2} \int_{C} -ydx + xdy$$

$$= \frac{1}{2} \int_{0}^{2\pi} \left[(-b\sin\theta)(a\cos\theta)' + (a\cos\theta)(b\sin\theta)' \right] d\theta$$

解 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ 按逆时针的参数方程是

所以
$$x = a\cos\theta, \quad y = b\sin\theta \quad (\theta: 0 \to 2\pi)$$
 D的面积 $= \frac{1}{2} \int_C -y dx + x dy$ $= \frac{1}{2} \int_0^{2\pi} \left[(-b\sin\theta)(a\cos\theta)' + (a\cos\theta)(b\sin\theta)' \right] d\theta$

$$=\frac{1}{2}\int_{0}^{2\pi} \left[ab\right]d\theta$$

解 椭圆
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 按逆时针的参数方程是

$$x = a\cos\theta, \quad y = b\sin\theta \quad (\theta: 0 \to 2\pi)$$

$$D$$
的面积 = $\frac{1}{2} \int_{C} -y dx + x dy$

$$= \frac{1}{2} \int_0^{2\pi} \left[(-b \sin \theta) (a \cos \theta)' + (a \cos \theta) (b \sin \theta)' \right] d\theta$$

$$=\frac{1}{2}\int_{0}^{2\pi}\left[ab\right]d\theta=ab\pi$$

