A	disa	crete	rand	om V	arī	able	. C	(n)	X		has	F	ωb	abi	lite	
m	a s S	func	tion ((PM	(F)	g	1 N E	^ '	by	P	CX.	ا, (
		\mathcal{G}	(x):	2 0	r x / :	2 X \		_ 1	.4\0=		~ V	, (
		T										()				
			de	note	du	as	Λ'	VY	CX.)						
and	CL	mula	lin i	d ()-	tribi	dion		En	ا ل	(c	DF	(len	whec	1 FL	x)'.
			FL	: <i>(</i> x	=	PC	\ <u>\</u> <u>\</u> <u>\</u>	x)								
and	LO	mplen	ortan	C	DF	a'	lso	CO	illed	ί,	יועצ	riva	١ ,	Lin	ر)	
			5 L													
												-				
The	N	has	' '													
		3	DAPE	χ] :	2	₹x:	P	(x)	> 0), (χe	R ?				
		Sup	[X]q	14	l w	11 4.	e	Sin	rle	[c	Uh	tak	, ly	١٦	finia	e
		Vi.	mbe)				C 1	1 -					,1	/ .	
			f de	m		Set.	2 (st 1	hi)	51	te	arc	CC	e Hec	k dia	icrope
The	s up:	bort o	md 1	he P	MF	مرد	,	rela	tech	V	ia	Hc	, Î2	ten	tity:	
		•				<u> </u>									<i>O</i>	
			χ (2546												
The	nic	ost d					•	he	Bo	ry	1017	Hli				
			X ~ Be										F.	~ S) (X)	
						٠ ٤ ر			1		7			1		
، مادها	, ,	7 % =		777	,-3		- 1	3								
W	-0 17			V: 11		Pal	1 - T	76	^	MT	71	= R n				
				1 +	5	γι	17 +	, <u>)</u>	= /		25	NU				
Indi	cator	func:	Ma: =	\	<u> </u>	f A										

```
Lets say:
              X ~ Bern (P) = P 1 [1- P) -X I xe & D,13
                            = I PLX)=1
What if p=1?
              X ~ Bern W = 1 x (1-1) 1-x 11 x65013 = { 1
This is called a "degenerate" rv X ~ Deg (1)
              X ~ Bern(D) = Deg (O) = { O w. p 1
Generally X ~ Deg (c) = { C 2. p 1 = 11 = C
   What values of p are legal and non degenerate
                  PE(D.1) -> param space of the Bernoulli
If we have more than one r.v X1, X2, ... X1 we can group them together in col vect.
                    X = [x, ] X2, ... Xn]
Which has a joint mass fine (JMF) defined as
              Px (x) = Px1 ... Xn (X1, -1/2n)
                s.t \sum_{\bar{X} \in \mathbb{R}} P_{\bar{X}}(\bar{X}) = 1
If XI, ... , Xn are indep r.v then the JMF can be factored as
               Px (x) = Px (x1) Px (x2) = Px (Xn)
If X,, ... Xn are identically dustre denoted:
              X, = X2 = ... = Xn then
              P_{x}(x) = P_{x}(x) \forall x
but this offers no simplification of the JMF unless
    Xi, .. Xn " denotes indep and ident distr.
```

