Computation with Absolutely No Space Overhead

Lane Hemaspaandra¹ Proshanto Mukherji¹ Till Tantau²

¹Department of Computer Science University of Rochester

²Fakultät für Elektrotechnik und Informatik Technical University of Berlin

Developments in Language Theory Conference, 2003

The Model of Overhead-Free Computation
The Standard Model of Linear Space
Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation
Palindromes
Linear Languages
Context-Free Languages with a Forbidden Subword
Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation Linear Space is Strictly More Powerful

The Model of Overhead-Free Computation

The Standard Model of Linear Space Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation

Palindromes

Linear Languages

Context-Free Languages with a Forbidden Subword

Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation Linear Space is Strictly More Powerful

The Model of Overhead-Free Computation

The Standard Model of Linear Space Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation

Palindromes Linear Languages

Context-Free Languages with a Forbidden Subword

Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation

Linear Space is Strictly More Powerful

The Model of Overhead-Free Computation
The Standard Model of Linear Space
Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation
Palindromes
Linear Languages
Context-Free Languages with a Forbidden Subword
Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation Linear Space is Strictly More Powerful

- ► Input fills fixed-size tape
- ► Input may be modified
- ► Tape alphabet is larger than input alphabet

The Standard Model of Linear Space

- ► Input fills fixed-size tape
- Input may be modified
- ► Tape alphabet is larger than input alphabet

- ► Input fills fixed-size tape
- ► Input may be modified
- ► Tape alphabet is larger than input alphabet

- ► Input fills fixed-size tape
- ► Input may be modified
- ► Tape alphabet is larger than input alphabet

The Standard Model of Linear Space

- ► Input fills fixed-size tape
- ► Input may be modified
- ► Tape alphabet is larger than input alphabet

- ► Input fills fixed-size tape
- ► Input may be modified
- ► Tape alphabet is larger than input alphabet

The Standard Model of Linear Space

- ► Input fills fixed-size tape
- ► Input may be modified
- ► Tape alphabet is larger than input alphabet

The Standard Model of Linear Space

- ► Input fills fixed-size tape
- ► Input may be modified
- ► Tape alphabet is larger than input alphabet

- ► Input fills fixed-size tape
- Input may be modified
- ► Tape alphabet is larger than input alphabet

The Standard Model of Linear Space

- ► Input fills fixed-size tape
- ► Input may be modified
- ► Tape alphabet is larger than input alphabet

- The Model of Overhead-Free Computation
 - The Standard Model of Linear Space

Linear Space is a Powerful Model

- ► Input fills fixed-size tape
- ► Input may be modified
- ► Tape alphabet equals input alphabet

- The Model of Overhead-Free Computation
 - Our Model of Absolutely No Space Overhead

Turing machine

- ► Input fills fixed-size tape
- ► Input may be modified
- ► Tape alphabet equals input alphabet

- The Model of Overhead-Free Computation
 - Our Model of Absolutely No Space Overhead

- ► Input fills fixed-size tape
- ► Input may be modified
- ► Tape alphabet equals input alphabet

- The Model of Overhead-Free Computation
 - Our Model of Absolutely No Space Overhead

- ► Input fills fixed-size tape
- ► Input may be modified
- ► Tape alphabet equals input alphabet

- The Model of Overhead-Free Computation
 - Our Model of Absolutely No Space Overhead

- ► Input fills fixed-size tape
- ► Input may be modified
- ► Tape alphabet equals input alphabet

- The Model of Overhead-Free Computation
 - Our Model of Absolutely No Space Overhead

Turing machine

- ► Input fills fixed-size tape
- ► Input may be modified
- ► Tape alphabet equals input alphabet

- The Model of Overhead-Free Computation
 - Our Model of Absolutely No Space Overhead

Turing machine

Intuition

► Tape is used like a RAM module.

- The Model of Overhead-Free Computation
 - Our Model of Absolutely No Space Overhead

Definition of Overhead-Free Computations

Definition

A Turing machine is overhead-free if

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet.

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

DOF_{poly} if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

NOF_{poly} is the nondeterministic version of DOF_{poly}

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

NOF_{poly} is the nondeterministic version of DOF_{poly}

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

NOF_{poly} is the nondeterministic version of DOF_{poly}

Definition

A language $L \subseteq \Sigma^*$ is in

DOF if L is accepted by a deterministic overhead-free machine with input alphabet Σ ,

 $\mathsf{DOF}_{\mathsf{poly}}$ if L is accepted by a deterministic overhead-free machine with input alphabet Σ in polynomial time.

NOF is the nondeterministic version of DOF,

NOF_{poly} is the nondeterministic version of DOF_{poly}.

- The Model of Overhead-Free Computation
 - Our Model of Absolutely No Space Overhead

Simple Relationships among Overhead-Free Computation Classes

The Model of Overhead-Free Computation
The Standard Model of Linear Space
Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation
Palindromes
Linear Languages
Context-Free Languages with a Forbidden Subword
Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation Linear Space is Strictly More Powerful

- Palindromes

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

The Power of Overhead-Free Computation

Palindromes

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit
Place left end marker
Place right end marker

Phase 2:

The Power of Overhead-Free Computation
- Palindromes

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

The Power of Overhead-Free Computation

- Palindromes

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Compare bits next to end markers

Find left end marker Advance left end marker Find right end marker Advance right end marker

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

The Power of Overhead-Free Computation
- Palindromes

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

The Power of Overhead-Free Computation

Palindromes

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

The Power of Overhead-Free Computation

☐ Palindromes

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

The Power of Overhead-Free Computation

Palindromes

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

The Power of Overhead-Free Computation

Palindromes

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

The Power of Overhead-Free Computation

☐ Palindromes

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

Palindromes Can be Accepted in an Overhead-Free Way

Algorithm

Phase 1:

Compare first and last bit Place left end marker Place right end marker

Phase 2:

The Power of Overhead-Free Computation

- Palindromes

Relationships among Overhead-Free Computation Classes

A Review of Linear Grammars

Definition

A grammar is linear if it is context-free and there is only one nonterminal per right-hand side.

Example

$$\textit{G}_1 \colon \textit{S} \rightarrow 00\textit{S}0 \mid 1 \text{ and } \textit{G}_2 \colon \textit{S} \rightarrow 0\textit{S}10 \mid 0.$$

Definition

A grammar is deterministic if "there is always only one rule that can be applied."

Example

 $G_1: S \to 00S0 \mid 1$ is deterministic. $G_2: S \to 0S10 \mid 0$ is not deterministic.

A Review of Linear Grammars

Definition

A grammar is linear if it is context-free and there is only one nonterminal per right-hand side.

Example

$$G_1: S \to 00S0 \mid 1 \text{ and } G_2: S \to 0S10 \mid 0.$$

Definition

A grammar is deterministic if "there is always only one rule that can be applied."

Example

 $G_1: S \rightarrow 00S0 \mid 1$ is deterministic.

 $G_2: S \rightarrow 0S10 \mid 0 \text{ is not deterministic.}$

The Power of Overhead-Free Computation
 Linear Languages

Deterministic Linear Languages Can Be Accepted in an Overhead-Free Way

Theorem

Every deterministic linear language is in DOF_{poly}.

The Power of Overhead-Free Computation
 Linear Languages

Metalinear Languages Can Be Accepted in an Overhead-Free Way

Definition

A language is metalinear if it is the concatenation of linear languages.

Example

TRIPLE-PALINDROME = $\{uvw \mid u, v, \text{ and } w \text{ are palindromes}\}$

Theorem

Every metalinear language is in NOF_{poly}.

The Power of Overhead-Free Computation
 Linear Languages

Metalinear Languages Can Be Accepted in an Overhead-Free Way

Definition

A language is metalinear if it is the concatenation of linear languages.

Example

TRIPLE-PALINDROME = { $uvw \mid u, v, \text{ and } w \text{ are palindromes}$ }.

Theorem

Every metalinear language is in NOF_{poly}.

The Power of Overhead-Free Computation

Linear Languages

Metalinear Languages Can Be Accepted in an Overhead-Free Way

Definition

A language is metalinear if it is the concatenation of linear languages.

Example

TRIPLE-PALINDROME = { $uvw \mid u, v, \text{ and } w \text{ are palindromes}$ }.

Theorem

Every metalinear language is in NOF_{poly}.

The Power of Overhead-Free Computation

Linear Languages

Relationships among Overhead-Free Computation Classes

- The Power of Overhead-Free Computation
 - Context-Free Languages with a Forbidden Subword

Definition of Almost-Overhead-Free Computations

Definition

A Turing machine is almost-overhead-free if

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet plus one special symbol.

- The Power of Overhead-Free Computation
 - Context-Free Languages with a Forbidden Subword

Definition of Almost-Overhead-Free Computations

Definition

A Turing machine is almost-overhead-free if

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet plus one special symbol.

- The Power of Overhead-Free Computation
 - Context-Free Languages with a Forbidden Subword

Definition of Almost-Overhead-Free Computations

Definition

A Turing machine is almost-overhead-free if

- it has only a single tape,
- writes only on input cells,
- writes only symbols drawn from the input alphabet plus one special symbol.

- The Power of Overhead-Free Computation
 - Context-Free Languages with a Forbidden Subword

Context-Free Languages with a Forbidden Subword Can Be Accepted in an Overhead-Free Way

Theorem

Let L be a context-free language with a forbidden word. Then $L \in \mathsf{NOF}_{\mathsf{poly}}$.

- The Power of Overhead-Free Computation
 - Context-Free Languages with a Forbidden Subword

Context-Free Languages with a Forbidden Subword Can Be Accepted in an Overhead-Free Way

Theorem

Let L be a context-free language with a forbidden word.

Then $L \in NOF_{poly}$.

Proof.

Every context-free language can be accepted by a nondeterministic almost-overhead-free machine in polynomial time.

- The Power of Overhead-Free Computation
 - Context-Free Languages with a Forbidden Subword

Relationships among Overhead-Free Computation Classes

The Power of Overhead-Free Computation

Languages Complete for Polynomial Space

Some PSPACE-complete Languages Can Be Accepted in an Overhead-Free Way

Theorem

DOF contains languages that are complete for PSPACE.

▶ Proof details

- The Power of Overhead-Free Computation
 - Languages Complete for Polynomial Space

Relationships among Overhead-Free Computation Classes

Outline

The Model of Overhead-Free Computation
The Standard Model of Linear Space
Our Model of Absolutely No Space Overhead

The Power of Overhead-Free Computation

Palindromes

Linear Languages

Context-Free Languages with a Forbidden Subword

Languages Complete for Polynomial Space

Limitations of Overhead-Free Computation Linear Space is Strictly More Powerful Limitations of Overhead-Free Computation

Linear Space is Strictly More Powerful

Some Context-Sensitive Languages Cannot be Accepted in an Overhead-Free Way

Theorem

 $DOF \subseteq DLINSPACE$.

Theorem

 $NOF \subseteq NLINSPACE$.

The proofs are based on old diagonalisations due to Feldman, Owings, and Seiferas.

- Limitations of Overhead-Free Computation
 - Linear Space is Strictly More Powerful

Relationships among Overhead-Free Computation Classes

Linear Space is Strictly More Powerful

Candidates for Languages that Cannot be Accepted in an Overhead-Free Way

Conjecture

DOUBLE-PALINDROMES ∉ DOF.

Conjecture

$$\{ww \mid w \in \{0,1\}^*\} \notin NOF.$$

Proving the first conjecture would show DOF \subseteq NOF.

Summary

- Overhead-free computation is a more faithful model of fixed-size memory.
- ▶ Overhead-free computation is less powerful than linear space.
- Many context-free languages can be accepted by overhead-free machines.
- We conjecture that all context-free languages are in NOF_{poly}.
- Our results can be seen as new results on the power of linear bounded automata with fixed alphabet size.

- A. Salomaa.
 - Formal Languages.

Academic Press, 1973.

- E. Dijkstra.

 Smoothsort, an alternative for sorting in situ.

 Science of Computer Programming, 1(3):223–233, 1982
- E. Feldman and J. Owings, Jr. A class of universal linear bounded automata Information Sciences, 6:187–190, 1973.
- P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata.
 - FCT Conference 1995, LNCS 985, pages 282-292. 1995

Formal Languages.

Academic Press, 1973.

- E. Dijkstra.
 - Smoothsort, an alternative for sorting in situ. *Science of Computer Programming*, 1(3):223–233, 1982.
- E. Feldman and J. Owings, Jr. A class of universal linear bounded automata Information Sciences, 6:187–190, 1973.
- P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata.
 - FCT Conference 1995, LNCS 985, pages 282-292. 1995

Formal Languages.

Academic Press, 1973.

Smoothsort, an alternative for sorting in situ. *Science of Computer Programming*, 1(3):223–233, 1982.

- E. Feldman and J. Owings, Jr. A class of universal linear bounded automata. *Information Sciences*, 6:187–190, 1973.
- P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata. FCT Conference 1995, LNCS 985, pages 282–292. 19

Formal Languages.

Academic Press, 1973.

Smoothsort, an alternative for sorting in situ. *Science of Computer Programming*, 1(3):223–233, 1982.

E. Feldman and J. Owings, Jr. A class of universal linear bounded automata. *Information Sciences*, 6:187–190, 1973.

P. Jančar, F. Mráz, M. Plátek, and J. Vogel. Restarting automata.

FCT Conference 1995, LNCS 985, pages 282-292. 1995.

Appendix Outline

Appendix

Overhead Freeness and Completeness Improvements for Context-Free Languages Abbreviations

Overhead-Free Languages can be PSPACE-Complete

Theorem

DOF contains languages that are complete for PSPACE.

Proof.

- ▶ Let A ∈ DLINSPACE be PSPACE-complete. Such languages are known to exist.
- ▶ Let M be a linear space machine that accepts $A \subseteq \{0,1\}^*$ with tape alphabet Γ .
- ▶ Let $h: \Gamma \to \{0,1\}^*$ be an isometric, injective homomorphism.
- ▶ Then h(L) is in DOF and it is PSPACE-complete.

Improvements

Theorem

- ${\bf 1.} \ \ \mathsf{DCFL} \subseteq \mathsf{DOF}_{\mathsf{poly}}.$
- 2. CFL \subseteq NOF_{poly}.

Appendix

- Abbreviations

Explanation of Different Abbreviations

DOF	Deterministic Overhead-Free.
NOF	Nondeterministic Overhead-Free.
DOF _{poly}	Deterministic Overhead-Free, polynomial time.
DOF _{poly}	Nondeterministic Overhead-Free, polynomial time.

Table: Explanation of what different abbreviations mean.