1.2.4 高次圏における対象, 射, 同値

通常の圏と同様に、高次圏における対象や射を定義する. Ĉ が単体的圏か位相的圏のとき、対象や射はそれぞれの圏における通常の対象や射とすればよい. Ĉ が ∞ 圏のときは次のように定義する.

S を単体的集合とする. S の点 $\Delta^0 \to S$ を S の対象 (object) という. S の辺 $\Delta^1 \to S$ を S の射 (morphism) という. S の対象 X に対して, $s_0(X): X \to X$ を X 上の恒等射 (identity morphism) といい, id_X と表す.

 \mathbb{C} を ∞ 圏, h \mathbb{C} を \mathbb{C} のホモトピー圏, $f:X\to Y$ を \mathbb{C} の射とする. f が h \mathbb{C} における同型射のとき, f を同値 (equivalence) という. \mathbb{C} の対象 X,Y が同値で結ばれるとき, X と Y は同値 (equivalent) であるという.

位相的圏 \mathcal{C} における射 f が同値であることは, f が同型であることよりも次の意味で弱い.

命題 1.2.4.1. \mathcal{C} を位相的圏, $f: X \to Y$ を \mathcal{C} の射とする. このとき, 次はすべて同値である.

- (1) *f* は C における同値である.
- (2) f はホモトピー同値 $g: Y \to X$ を持つ.
- (3) $\mathfrak C$ の任意の対象 W に対して、写像 $f\circ -: \mathrm{Map}_{\mathfrak C}(W,X) \to \mathrm{Map}_{\mathfrak C}(W,Y)$ はホモトピー同値である.
- (4) $\mathfrak C$ の任意の対象 W に対して、写像 $f\circ -: \mathrm{Map}_{\mathfrak C}(W,X) \to \mathrm{Map}_{\mathfrak C}(W,Y)$ は弱ホモトピー同値である.
- (5) $\mathfrak C$ の任意の対象 Z に対して、写像 $-\circ f: \mathrm{Map}_{\mathfrak C}(Y,Z) \to \mathrm{Map}_{\mathfrak C}(X,Z)$ はホモトピー同値である.
- (6) $\mathcal C$ の任意の対象 Z に対して、写像 $-\circ f: \mathrm{Map}_{\mathcal C}(Y,Z) o \mathrm{Map}_{\mathcal C}(X,Z)$ は弱ホモトピー同値である.

Proof. (2) は (1) の言いかえである. (2)⇒(3)⇒(4)⇒(1) を示す. (2)⇒(5)⇒(6)⇒(1) も同様である. (2) から (3) を示す. g を f のホモトピー逆射とする. このとき, g から定まる写像 $-\circ g$: $\mathrm{Map}_{\mathfrak{C}}(Z,Y) \to \mathrm{Map}_{\mathfrak{C}}(Z,X)$ は (3) の $f\circ -$ のホモトピー逆射である. (3) から (4) は古典的なホモトピー論から従う. (4) から (1) を示す. (4) を満たすとき, $f\circ -: \mathrm{Map}_{\mathfrak{C}}(W,X) \to \mathrm{Map}_{\mathfrak{C}}(W,Y)$ は $\mathfrak{h}\mathfrak{C}$ における同型である. つまり, $\mathfrak{h}\mathfrak{C}$ において X と Y は同型である. よって, f は \mathfrak{C} における同値である.

例 1.2.4.2. $\mathfrak C$ を $\mathfrak CW$ 複体の圏とし、各射集合 $\operatorname{Map}_{\mathfrak C}(X,Y)$ にコンパクト開位相によって位相空間を入れることで、 $\mathfrak C$ を位相的圏とみなす。 $\mathfrak C$ の対象 X,Y が同値であることと、X,Y がホモトピー同値であることと同値である。

次の命題は ∞ 圏の枠組みにおける同値を特徴づける定理である. 証明は 2.1.2 節で行う.

命題 1.2.4.3 (Joyal). ${\mathbb C}$ を ∞ 圏, $\phi:\Delta^1\to{\mathbb C}$ を ${\mathbb C}$ の射とする. このとき, 次は同値である.

- (1) ϕ は同値である.
- (2) 任意の $n\geq 2$ と $f_0|_{\Delta^{\{0,1\}}}=\phi$ を満たす射 $f_0:\Lambda_0^n\to \mathbb{C}$ に対して, f_0 から Δ^n への拡張が存在する.
- ∞ 圏における同値は外部角体の拡張条件で表せる.

補題 1.2.4.4. \mathcal{C} を ∞ 圏, $f: x \to y$ を \mathcal{C} の射とする. このとき, 次は同値である.

- (1) f は同値である.
- (2) 次のように表せる外部角体 $\sigma_0^L:\Lambda_0^2 o \mathcal{C}$ と $\sigma_0^R:\Lambda_2^2 o \mathcal{C}$

はそれぞれ 2 単体 $\sigma^L: \Delta^2 \to \mathcal{C}$ と $\sigma^R: \Delta^2 \to \mathcal{C}$ に拡張できる.

Proof. (2) を満たすと仮定する. σ_0^L が σ^L に拡張できるとき, f は h $\mathcal C$ において左逆射を持つ. σ_0^R が σ^R に拡張できるとき, f は h $\mathcal C$ において右逆射を持つ. よって, f は $\mathcal C$ における同値である.

(1) を満たすと仮定する. このとき, ある 1 単体 $g:y\to x$ が存在して, [fg] と [gf] はそれぞれ $\mathrm{h}\mathfrak{C}$ における恒等射である. つまり, 次のような 2 単体がそれぞれ存在する.

また, g の退化する 2 単体 $s_1(g)$ から, 次のように表せる射 $\Lambda_2^3 \to \mathcal{C}$ が存在する.

 $\mathfrak C$ は ∞ 圏なので、これは $\Delta^3\to\mathfrak C$ に拡張できる.このとき、2 単体 $\Delta^{\{0,1,3\}}$ は σ^L とみなせる. σ^R に 対しても同様である.