EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

09278821

28-10-97

PUBLICATION DATE

APPLICATION DATE

08-04-96

APPLICATION NUMBER

08085449

APPLICANT: MITSUI PETROCHEM IND LTD;

INVENTOR: HAYASHI TETSUO;

INT.CL.

: C08F 4/70 C08F 10/00

TITLE

: OLEFIN POLYMERIZATION CATALYST

AND METHOD OF POLYMERIZATION

OF OLEFIN

П

ì

ABSTRACT: PROBLEM TO BE SOLVED: To obtain a polymerization catalyst which can give a spherical olefin polymer excellent in particle properties with a high polymerization activity by bringing a particulate carrier, an organoaluminum compound, and a transition metal compound into contact with each other.

> SOLUTION: This catalyst is obtained by mixing a particulate carrier (A) comprising an oxide of at least one element selected among groups 2 to 4 and groups 12 to 14 elements, having a mean particle diameter of 1-300µm and a specific surface of 50-1,000m²/g, and containing at least 1.0wt.% water, an organoaluminum compound (B), and a transition metal compound (C) represented by formula I [wherein M is any one of groups 8 to 10 transition metal atoms; X1 and X2 are each N or P: R¹ and R² are each H or a hydrocarbon group; m and n are each 1 or 2; R³ is a group of formula II (wherein R⁶,

 R^7 , R^{61} , R^{62} , R^{71} and R^{72} are each H or a hydrocarbon group); and R⁴ and R⁵ are each H,

halogeno, a hydrocarbon group, -OR8, -SR9,

 $-N(R^{10})_2$ or $-P(R^{11})_2$ (wherein R^8 to R^{11}

are each alkyl, cycloalkyl, aryl, aralkyl, or an organic silyl group)] to bring them into contact

with each other.

COPYRIGHT: (C)1997,JPO

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP) (12) 公 開 特 許 公 報 (A)

(11)特許出願公開番号

特開平9-278821

(43)公開日 平成9年(1997)10月28日

識別記号 庁内整理番号 FΙ (51) Int.Cl.8 技術表示箇所 C08F 4/70 MFG. C08F 4/70 MFG 10/00 10/00

審査請求 未請求 請求項の数3 OL (全 21 頁)

特願平8-85449 (71)出額人 000005887 (21)出願番号 三井石油化学工業株式会社 (22)出願日 東京都千代田区霞が関三丁目2番5号 平成8年(1996)4月8日 (72) 発明者 杉 村 健 司 山口県玖珂郡和木町和木六丁目1番2号 三井石油化学工業株式会社内 (72)発明者 萬 清 隆 山口県玖珂郡和木町和木六丁目1番2号 三井石油化学工業株式会社内 (72) 発明者 鈴 木 靖 彦 山口県玖珂郡和木町和木六丁目1番2号 三井石油化学工業株式会社内 (74)代理人 弁理士 鈴木 俊一郎 最終百に続く

(54) 【発明の名称】 オレフィン重合用触媒およびオレフィンの重合方法

(57)【要約】

【課題】懸濁重合や気相重合に適用することができ、高 い重合活性で粒子性状に優れたオレフィン重合体が得ら れるオレフィン重合用触媒を提供すること。

【解決手段】(A)1.0重量%以上の水を含有する微 粒子状担体と、(B)有機アルミニウム化合物と、

(C) 下記式で表される周期表第8~10族の遷移金属 化合物とを接触させてなるオレフィン重合用触媒。

【化1】

$$R^{1} - X^{1} X^{2} - R^{2}$$

$$R^{4} - M = R^{5}$$

(Mは周期表第8~10族の遷移金属原子、X¹ および X² は窒素原子またはリン原子、R¹ およびR² は水素 原子または炭化水素基、R6 およびR7 は水素原子また は炭化水素基、R4 およびR5 はハロゲン原子または炭 化水素基)

(A) 遷移金属成分

【特許請求の範囲】

【請求項1】(A)(i)周期表第2~4族、第12~14族から選ばれる少なくとも1種の元素の酸化物からなり、(ii)1.0重量%以上の水を含有する微粒子状担体と、

- (B) 有機アルミニウム化合物と、
- (C) 下記一般式(I)で表される周期表第8~10族の遷移金属化合物とを接触させて得られることを特徴とするオレフィン重合用触媒;

【化1】

 R^6

(ただし、 R^6 、 R^7 、 R^{61} 、 R^{62} 、 R^{71} およUR 7^2 は、互いに同一でも異なっていてもよく、水素原子または炭化水素基を示す。)を示し、

 R^4 および R^5 は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、 $-OR^8$ 、 $-SR^9$ 、-N (R^{10}) $_2$ または-P (R^{11}) $_2$ (ただし、 R^8 \sim R^{11} はアルキル基、シクロアルキル基、アリール基、アラルキル基または有機シリル基を示し、 R^{10} 同士または R^{11} 同士は互いに連結して環を形成していてもよい。)を示し、また R^4 および R^5 は互いに連結して環を形成していてもよく、

 R^1 、 R^2 、 R^6 (または R^{61} 、 R^{62})および R^7 (または R^{71} 、 R^{72})は、これらのうちの2個以上が互いに連結して環を形成していてもよい。)

【請求項2】前記一般式(I)で表される遷移金属化合物が、下記一般式(I')で表される化合物である請求項1に記載のオレフィン重合用触媒:

【化3】

(式中、Mは、周期表第8~10族の遷移金属原子を示し、

X¹ およびX² は、互いに同一でも異なっていてもよく、窒素原子またはリン原子を示し、

R1 およびR2 は、互いに同一でも異なっていてもよ

(式中、Mは、周期表第8~10族の遷移金属原子を示し、

X¹ およびX² は、互いに同一でも異なっていてもよ

く、窒素原子またはリン原子を示し、

R¹ およびR²、は、互いに同一でも異なっていてもよく、水素原子または炭化水素基を示し、

mおよびnは、互いに同一でも異なっていてもよく、1または2であって、それぞれ、 X^1 および X^2 の価数を満たす数であり、

R3 は、

【化2】

く、水素原子または炭化水素基を示し、

R6 およびR7 は、互いに同一でも異なっていてもよ

く、水素原子または炭化水素基を示し、

 R^4 および R^5 は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、 $-OR^8$ 、 $-SR^9$ 、 $-N(R^{10})_2$ または $-P(R^{11})_2$ (ただし、 R^8 ~ R^{11} はアルキル基、シクロアルキル基、アリール基、アラルキル基または有機シリル基を示し、 R^{10} 同士または R^{11} 同士は互いに連結して環を形成していてもよい。)を示し、また R^4 および R^5 は互いに連結して環を形成していてもよく、

 ${f R}^1$ 、 ${f R}^2$ 、 ${f R}^6$ および ${f R}^7$ は、これらのうちの2個以上が互いに連結して環を形成していてもよい。)

【請求項3】 請求項1または2に記載のオレフィン重合用触媒の存在下に、オレフィンを重合または共重合させることを特徴とするオレフィンの重合方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、オレフィン重合用 触媒およびこの触媒を用いたオレフィンの重合方法に関 し、さらに詳しくは、懸濁重合法や気相重合法に適用す ることができ、しかも高い重合活性で粒子性状に優れた オレフィン重合体を製造することができるオレフィン重 合用触媒およびこの触媒を用いたオレフィンの重合方法 に関するものである。

[0002]

【発明の技術的背景】従来からαーオレフィン重合体たとえばエチレン重合体またはエチレン・αーオレフィン 共重合体を製造するための触媒として、チタン化合物と 有情です。このこれに対しからなるチタン系触媒、バナ ジウム化して、石田でルコニウム化合物とからなるバナ ジウムを射撃し出ったでしる。

【10005】。 (こう) 中言活性でオレフィン重合体を 製造することによる神機としてジルコノセンなどのメ タロセン (しょび) こんじて 4 ミニウムオキシ化合物 (アル ミノモサン・ニー・テムチーグラー型触媒が知られてい 2

【①①① : 】 「「電影性新しいオレフィン重合触媒とし て、ニッケルに言わまたはパラジウム化合物と、アルミ ノキサン、イイ、11 化合わなどの助触媒とからなるオレ フィン重合用無智小程氣された (J.Am. Chem. Soc. 1995, 1 17.6414-6417

【0005】上記つよったニッケル化合物またはパラジ ウム化合われるとい時間はからむる触媒は、その大部分は 反応系に可需できた。 ほとんどの場合、製造プロセスが 溶液重合系に限えられ、ケテ量の高い重合体を製造しよ うとすると東言体をよた高水の粘度が著しく高くなって 生産性が低下する。上都合か生じたり、重合の後処理後に 得られた重合は小器比重が小さく、粒子性状に優れた球 状オレフィン中心はを製造するのが困難であるという問 題がある。

[0006]

【発明の目的】ト・中間は、上記のような従来技術に鑑み てなされたものできって、層面重合法や気相重合法に適 用することができ、しかも高い重合活性で粒子性状に優 れた球状オレフィン東合体を製造することができ、かつ 2種以上のモノマーを共重合させた際に、組成分布の狭 い共重合体を与えるイレフィン重合用触媒を提供するこ とを目的としている

【0012】(ただし、 R^{5} 、 R^{5} 、 R^{61} 、 R^{62} 、 R^{71} およびR7%は、互いに同一でも異なっていてもよく、水 素原子または炭化水素基を示す。)を示し、R4 および R⁵ は、互いに同一でも異なっていてもよく、水素原 子、ハロゲン原子、現化水素基、-OR%、-SR%、 -N(R¹⁰)。または P(R¹¹)。(ただし、R³ ~ R11はアルキル芸、シクロアルキル基、アリール基、ア ラルキル基または右続シリル基を示し、R10同士または R11同士は互いに連結して環を形成していてもよい。) を示し、また日。および日』は互いに連結して環を形成 していてもよく、 $R \in \mathbb{R}^n$ (または \mathbb{R}^{61}) R^{62}) および R^{\pm} (または $R^{\pm 1}$ 、 R^{72}) は、これらのう ちの2個以上が互いに連結して環を形成していてもよ ((()

【0007】また本発明は、このような良好な性質の触 媒を用いたオレフィンの重合方法を提供することを目的 としている。

[0008]

【発明の概要】本発明に係るオレフィン重合用触媒は、

- (A) (i) 周期表第2~4族、第12~14族から選 · ばれる少なくとも1種の元素の酸化物からなり、(ii) 1. 0重量%以上の水を含有する微粒子状担体と
- (B) 有機アルミニウム化合物と、
- (C)下記一般式(I)で表される周期表第8~10族 の遷移金属化合物とを接触させることにより得られるこ とを特徴としている。

[0009]

【化4】

$$(R^{1})_{m} \times_{n}^{1} R^{3} \times_{n}^{2} -(R^{2})_{n}$$

$$M \qquad \cdots \qquad (I)$$

【0010】(式中、Mは、周期表第8~10族の遷移 金属原子を示し、X1 およびX2 は、互いに同一でも異 なっていてもよく、窒素原子またはリン原子を示し、R 1 およびR2 は、互いに同一でも異なっていてもよく、 水素原子または炭化水素基を示し、mおよびnは、互い に同一でも異なっていてもよく、1または2であって、 それぞれ、X1 およびX2 の価数を満たす数であり、R 3 14

[0011]

【化5】

本発明では、前記一般式(I)で表される遷移金属化合 物が、下記一般式(I')で表される化合物であること が好ましい。

[0013]

【化6】

【0014】(式中、Mは、周期表第8~10族の遷移 金属原子を示し、X1 およびX2 は、互いに同一でも異 なっていてもよく、窒素原子またはリン原子を示し、R

 1 および R^2 は、互いに同一でも異なっていてもよく、水素原子または炭化水素基を示し、 R^6 および R^7 は、互いに同一でも異なっていてもよく、水素原子または炭化水素基を示し、 R^4 および R^5 は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、 $-OR^8$ 、 $-SR^9$ 、 $-N(R^{10})_2$ または $-P(R^{11})_2$ (ただし、 R^8 ~ R^{11} はアルキル基、シクロアルキル基、アリール基、アラルキル基または有機シリル基を示し、 R^{10} 同士または R^{11} 同士は互いに連結して環を形成していてもよい。)を示し、また R^4 および R^5 は 互いに連結して環を形成していてもよく、 R^1 、 R^2 、 R^6 および R^7 は、これらのうちの 2 個以上が互いに連結して環を形成していてもよい。)

本発明のオレフィン重合用触媒は、懸濁重合法や気相重合法に適用することができ、しかも高い重合活性で粒子性状に優れた球状オレフィン重合体を製造することができ、かつ2種以上のモノマーを共重合させた際に、組成分布の狭い共重合体を与える。

【0015】本発明に係るオレフィンの重合方法は、前 記のようなオレフィン重合触媒の存在下に、オレフィン を重合または共重合させることを特徴としている。

[0016]

【発明の具体的な説明】以下、本発明に係るオレフィン 重合触媒およびこの触媒を用いたオレフィンの重合方法 について具体的に説明する。なお、本明細書において 「重合」という語は、単独重合だけでなく、共重合をも 包含した意味で用いられることがあり、「重合体」とい う語は、単独重合体だけでなく、共重合体をも包含した 意味で用いられることがある。

【0017】本発明い係るオレフィン重合用触媒は、

(A) 微粒子状担体と、(B) 有機アルミルウム化合物と、(C) 周期表第8~10族の遷移金属化合物とを接触させて得られる。

【0018】まず、本発明のオレフィン重合用触媒を形 成する各成分について説明する。

(A) 微粒子状担体

本発明で用いられる(A)微粒子状担体としては、周期表第2~4族、第12~14族から選ばれる少なくとも 1種の元素の酸化物からなる微粒子状無機化合物が用い られる。

【 0019】微粒子状無機化合物としては多孔質酸化物が好ましく、具体的には SiO_2 、 Al_2O_3 、MgO、ZrO、 TiO_2 、 B_2O_3 、CaO、ZnO、BaO、 ThO_2 など、またはこれらの混合物、たとえば SiO_2 -MgO、 SiO_2 - Al_2O_3 、 SiO_2 - TiO_2 、 SiO_2 - V_2O_5 、 SiO_2 - Cr_2O_3 、 SiO_2 - TiO_2 -MgOなどを例示することができる。これらの中で SiO_2 および Al_2O_3 からなる群から選ばれた少なくとも1種の成分を主成分とするものが好ましい。

【0020】なお、上記無機酸化物には少量のNa2 С

 O_3 、 K_2 CO_3 、 $CaCO_3$ 、 $MgCO_3$ 、 Na_2 S O_4 、 Al_2 (SO_4) $_3$ 、 $BaSO_4$ 、 KNO_3 、Mg (NO_3) $_2$ 、Al (NO_3) $_3$ 、 Na_2 O、 K_2 O、L i_2 Oなどの炭酸塩、硫酸塩、硝酸塩、酸化物成分を含有していても差しつかえない。

【0021】このような(A) 微粒子状担体は種類および製法によりその性状は異なるが、本発明に好ましく用いられる担体は、平均粒径が通常 $1\sim300\,\mu\mathrm{m}$ 、好ましくは $10\sim200\,\mu\mathrm{m}$ 範囲にあり、、比表面積が $50\sim1000\,\mathrm{m}^2$ / g、好ましくは $100\sim700\,\mathrm{m}^2$ / gの範囲にあり、細孔容積が $0.3\sim2.5\,\mathrm{cm}^3$ / g の範囲にあることが望ましい。

【0022】このような(A) 微粒子状担体は、通常 1.0重量%以上、好ましくは1.2~20重量%、より好ましくは1.4~15重量%の水を含有している。 本発明において(A) 微粒子状担体が含有する水とは、 微粒子状担体表面に吸着した吸着水を示す。

【0023】特定量の水を含有した微粒子状担体を得る方法としては、例えば下記のような方法が挙げられる。

- (1)水分を含む空気中に担体を保存し、該担体の水含量が特定量となるまで放置する方法。
- (2)担体に水を吸着させ、次いで該担体の水含量が特定量となるまで乾燥する方法。
- (3) 充分乾燥した担体に所定量の水、水蒸気、溶液、 懸濁液等を加え攪拌する方法。

【0024】微粒子状担体が含有する水を定量するには加熱減量法を用いることができる。本発明では、空気や窒素等の乾燥気体の流通下、200℃にて4時間乾燥させたときの重量減を求め、乾燥前の重量に対する百分率を微粒子状担体が含有する水の割合(吸着水分量)とする。

【0025】<u>(B)有機アルミニウム化合物</u>

本発明で用いられる(B)有機アルミニウム化合物として具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソプロピルアルミニウム、トリーブチルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリセンチルアルミニウム、トリヘキシルアルミニウム、トリインチルアルミニウム、トリデシルアルミニウム、トリデシルアルミニウム、トリシクロスキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリアルキルアルミニウムが挙げられる。

【0026】これらのうち、トリメチルアルミニウムが好ましく用いられる。上記のような(B)有機アルミニウム化合物は、1種単独でまたは2種以上組み合せて用いられる。

【0027】<u>(C)周期表第8~10族の遷移金属化合</u>物

本発明で用いられる(C)周期表第8~10族の遷移金 属化合物は、下記一般式(I)で表される遷移金属化合 物である。

[0028]

【化7】

$$(R^{1})_{m} X_{1}^{1} R^{3} X^{2} \longrightarrow (R^{2})_{n}$$

$$M \qquad \cdots \qquad (I)$$

$$R^{4} R^{5}$$

【0029】式中、Mは、周期表第8~10族の遷移金 国原子を示し、好ましくはニッケル、パラジウム、白金 である N¹ およびN² は、互いに同一でも異なってい てもよく、窒素原子またはリン原子を示す。

【10030】R¹ およびR² は、互いに同一でも異なっていてもよく、水素原子または炭化水素基を示す。炭化

【0033】を示す。ただし、R⁶、R⁷、R⁶¹、 R⁶、R⁷ およびR⁷ は、互いに同一でも異なっていて もよく、水型原子または前記R¹ およびR² 同様の炭化 水素基を示す

【0.0.54】前記 R^{1} 、 R^{6} (または R^{61} 、 R^{6+})および R^{7+} (または R^{71} 、 R^{72})は、これらのうちの2個以上、好ましくは隣接する基が互いに連結して環を形成していてもよい。

【0035】R: およびR[®] は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基を示す、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。

【0036】炭化水素基として具体的には、前記R¹ およびR² 同様の炭素原子数が1~20のアルキル基および炭素原子数が6~20のアリール基、ベンジル基などの炭素原子数が7~20のアラルキル基などが挙げられる。これらのアリール基、アラルキル基には前記炭素原子数が1~20のアルキル基などの置換基が1個以上置換していてもよい。

【0037】また、 R^{ϵ} および R^{ϵ} として、 $-OR^{\epsilon}$ 、 $-SR^{\epsilon}$ 、 $-N(R^{10})_2$ または $-P(R^{11})_2$ で表される基も示される。 R^{ϵ} ~ R^{11} は、前記 R^{1} および R^{2} 同様の炭素原子数が1~20のアルキル基および炭素原子数が6~20のアリール基、シクロヘキシル基などの炭素原子数が6~20のシクロアルキル基;ベンジル基などの炭素原子数が7~20のアラルキル基;メチルシリル基、ジメチルシリル基、エチ

水素基として具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基などの炭素原子数が1~20の直鎖もしくは分岐状のアルキル基:フェニル基、ナフチル基などの炭素原子数が6~20のアリール基:これらのアリール基に前記炭素原子数が1~20のアルキル基などの置換基が1~5個置換した置換アリール基などが挙げられる。

【0031】mおよびnは、互いに同一でも異なっていてもよく、1または2であって、それぞれ、 X^1 および X^2 の価数を満たす数である。 R^3 は、

[0032]

【化8】

ルシリル基、ジエチルシリル基、トリエチルシリル基などの有機シリル基を示す。なお、上記アリール基、アラルキル基には、前記炭素原子数が1~20のアルキル基などの置換基が1個以上置換していてもよい。そしてR¹⁰同士またはR¹¹同士は互いに連結して環を形成していてもよい。

【0038】前記 R^4 および R^5 は、互いに連結して環を形成していてもよい。前記-般式(I)で表される遷移金属化合物としては、下記-般式(I)で表される化合物が好ましい。

[0039]

【化9】

$$\begin{array}{c}
R^{6} & R^{7} \\
R^{1} - X^{1} & X^{2} - R^{2} \\
R^{4} & R^{5}
\end{array}$$
... (I')

【 O O 4 O 】 (式中、M、X¹ 、X² 、R¹ 、R² 、R 4 、R⁵ 、R⁶ およびR⁷ は、前記一般式(I)と同じである。)

このような一般式(I')で表される遷移金属化合物の 具体的なものとしては、次の化合物などが挙げられる。 下記式中、iPrはイソプロピル基を示す。

[0041]

【化10】

[0042]

DOCID: <JP_409278821A__J_>

[0043]

[0044]

DOCID: <JP_409278821A__J_>

[0045]

OOCID: <JP_409278821A__J_>

[0046]

[0047]

[0048]

[0049]

DOCID: <JP_409278821A__J_>

[0050]

【0051】上記以外にも、前記一般式(11)で表される遷移金属化合わとして、上記化合物中のパラジウムまたはニッケルが日本に置き代わった化合物などが挙げられる。

【0052】また、前記一般式(1)で表される化合物

としては、上記以外に次の化合物などが挙げられる。下記式中、iPrはイソプロピル基を示す。

【0053】 【化20】

)OCID: <JP_409278821A__J_>

DOCID: <JP_409278821A__J_>

[0054]

【0055】上記以外にも、前記一般式(I)で表される遷移金属化合物として、上記化合物中のパラジウムまたはニッケルが白金に置き代わった化合物などが挙げられる。

【0056】上記のような遷移金属化合物は、1種単独でまたは2種以上組み合せて用いられる。本発明に係るオレフィン重合触媒は、上記(A)微粒子状担体、

(B)有機アルミニウム化合物、(C)遷移金属化合物 を不活性炭化水素溶媒中で混合接触させることにより調 製することができる。

【0057】図1に、本発明に係るオレフィン重合触媒の調製工程の一例を示す。この際、混合順序は任意に選ばれるが、成分(A)と成分(B)とを混合接触させ、次いでこの成分(A)と成分(B)との混合接触物と、成分(C)とを混合接触させることが好ましい。なお、混合接触は攪拌下に行うことが望ましい。

【0058】各成分を混合接触させる際の温度は、通常 -100~200℃、好ましくは-70~100℃であ ることが望ましい。成分(A)と成分(B)との混合順 序は任意であるが、後に添加する成分を5分~2時間か けて添加することが望ましい。成分(A)および成分 (B)は前記条件で混合接触させた後、さらに-30~ 200℃、好ましくは0~120℃の温度で、10分~ 10時間、好ましくは1~6時間で混合接触させ、その 後成分(A)と成分(B)との混合接触物と、成分 (C)を混合接触させることが望ましい。

【0059】成分(A)~(C)を混合接触させるに際して、成分(A)が含有する水(H_2O)と、成分(B)のアルミニウム原子(AI)とのモル比(H_2O /AI)は、通常0.02~10.0、好ましくは0.05~5.0である。

【0060】成分(C)は成分(A)1g当り、該成分(C)中に遷移金属原子に換算して、通常10-8~5×10-3グラム原子、好ましくは5×10-7~10-3グラム原子の量で用いられ、成分(C)の濃度は、該成分(C)中の遷移金属原子に換算して約10-6~2×10-2グラム原子/リットル、好ましくは2×10-5~10-2グラム原子/リットルの範囲である。

【 0 0 6 1 】成分(B) 中のアルミニウム原子(A 1) と、成分(C) 中の遷移金属原子(M) との原子比(A 1 / M) は、通常10~3000、好ましくは20~200である。

【0062】上記のようにして得られた本発明のオレフィン重合触媒は、成分(A)1g当り約 $5\times10^{-7}\sim10^{-3}$ グラム原子、好ましくは $10^{-7}\sim3\times10^{-4}$ グラム原子の遷移金属原子が担持され、また約 $10^{-5}\sim10^{-1}$ グラム原子、好ましくは $2\times10^{-4}\sim5\times10^{-2}$ グラム原子のアルミニウム原子が担持されていることが望ましい。

【0063】本発明に係るオレフィン重合用触媒の調製

に用いれたと言は単化水主媒体として具体的には、プロハン、ファー、ション、ヘキサン、ヘプタン、オクタン、チャン。 トーケン、打曲などの脂肪族炭化水素;シクロペンタ。 ションなどの脂類原産化水素:ペンゼン、トルエン、キシレンなどの名者を応じれま:エチレンクロリド、クロルベンゼン、ションによって、などのハロゲン化炭化水素あるいはこれのの最近和などを挙げることができる。

【①①①1】上記つようなオレフィン重合触媒を用いてオレフィンを申請するに隠して、前記オレフィン重合用触媒は、申請品は1リットル当り該触媒中の遷移金属原子に換算して連ぶは10~~10億グラム原子、好ましくは10~~10~20八原子の量で用いられることが望ましい。これ、こかに応じて(D)有機金属化合物やアルミノキサンを用いてもよい。(D)有機金属化合物は、オレフ・1年に開煙媒中の遷移金属原子1グラム原子当り0~500セル、好ましくは5~200モルの範囲で用いるれることが望ましい

【0065】(い)有標金属化合物

本発明で必要に応りて用いられる(D)有機金属化合物 として、具体的には1.d.つような周期表第1、2族および第12、13種の有情が国化合物が用いられる。

[0066]

【0067】(D-2) 一般式 M¹ A 1 R^a₄ (式中、M¹ はしi、N a、Kを示し、R^a は炭素原子 数が1~15、好ましくは1~4の炭化水素基を示 す。)で表される 1 版金属とアルミニウムとの錯アルキ ル化物。

【0068】(D-3) - 般式 R® Rb M² (式中、R® およひお は、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、M はMg、ZnまたはCdである。)で表される2族または12族金属のジアルキル化合物。

【0069】前記(0-1) に属する有機アルミニウム化合物としては、次のような化合物などを例示できる。

①一般式 Ra, A 1 (OR5) 3-a

(式中、R^a およびR^c は、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、mは好ましくは1.5≤m≤3の数である。)で表される有機アルミニウム化合物、

②一般式 Ram AlNam

(式中、Ra は炭素原子数が1~15、好ましくは1~

4の炭化水素基を示し、Xはハロゲン原子を示し、mは好ましくは0 < m < 3である。)で表される有機アルミニウム化合物、

③─般式 Ram AlH3-m

(式中、 R^a は炭素原子数が $1\sim15$ 、好ましくは $1\sim4$ の炭化水素基を示し、mは好ましくは $2\leq m < 3$ である。) で表される有機アルミニウム化合物、

Φ 一般式 R^{a}_{m} Al(ORb) $_{n}X_{q}$

(式中、 R^a および R^b は、互いに同一でも異なっていてもよく、炭素原子数が $1\sim15$ 、好ましくは $1\sim4$ の炭化水素基を示し、Xはハロゲン原子を示し、mは $0\leq m\leq3$ 、nは $0\leq n<3$ 、qは $0\leq q<3$ の数であり、かつm+n+q=3である。)で表される有機アルミニウム化合物。

【 O O 7 O 】 (D-1) に属するアルミニウム化合物として より具体的にはトリエチルアルミニウム、トリn-ブチル アルミニウムなどのトリーアルキルアルミニウム;トリ イソプロピルアルミニウム、トリイソブチルアルミニウ ム、トリsec-ブチルアルミニウム、トリ tert-ブチルア ルミニウム、トリ2-メチルブチルアルミニウム、トリ3-メチルブチルアルミニウム、トリ2-メチルペンチルアル ミニウム、トリ3-メチルペンチルアルミニウム、トリ4-メチルペンチルアルミニウム、トリ2-メチルヘキシルア ルミニウム、トリ3-メチルヘキシルアルミニウム、トリ 2-エチルヘキシルアルミニウムなどのトリ分岐鎖アルキ ルアルミニウム;トリシクロヘキシルアルミニウムなど のトリシクロアルキルアルミニウム; トリフェニルアル ミニウム,トリトリルアルミニウムなどのトリアリール アルミニウム : ジイソブチルアルミニウムハイドライド などのジアルキルアルミニウムハイドライド;トリイソ プレニルアルミニウムなどのトリアルケニルアルミニウ ム;イソブチルアルミニウムメトキシド、イソブチルア ルミニウムエトキシド、イソブチルアルミニウムイソプ ロポキシドなどのアルキルアルミニウムアルコキシド; ジエチルアルミニウムエトキシド、ジブチルアルミニウ ムブトキシドなどのジアルキルアルミニウムアルコキシ ド;エチルアルミニウムセスキエトキシド、ブチルアル ミニウムセスキブトキシドなどのアルキルアルミニウム セスキアルコキシド; R^a 2.5 A 1 (OR^b) 0.5 など で表される平均組成を有する部分的にアルコキシ化され たアルキルアルミニウム ; ジエチルアルミニウムクロリ ド、ジブチルアルミニウムクロリド、ジエチルアルミニ ウムブロミドなどのジアルキルアルミニウムハライド; エチルアルミニウムセスキクロリド、ブチルアルミニウ ムセスキクロリド、エチルアルミニウムセスキブロミド などのアルキルアルミニウムセスキハライド;エチルア ルミニウムジクロリド、プロピルアルミニウムジクロリ ド、ブチルアルミニウムジブロミドなどのアルキルアル ミニウムジハライドなどの部分的にハロゲン化されたア ルキルアル ミニウム ; ジエチルアルミニウムヒドリド、

ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド: エチルアルミニウムジヒドリド、プロヒルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドなどその他の部分的に水素化されたアルキルアルミニウム: エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムなどを挙げることができる。

【0071】また(D-1) に類似する化合物も使用することができ、たとえば窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物を挙げることができる。このような化合物として具体的には、

 $(C_1, H_0)_1$ AIN $(C_2, H_5)_1$ AI $(C_2, H_5)_2$ などを挙げることができる。

【ロロテ2】前記(D-2) に属する化合物としては、 Li A L (C_H-)。

LiAL (C- II」)。などを挙げることができる。

【101073】その他にも、有機金属化合物(D)としては、一般式

 $(i-C_{5},H_{10})_{c},A_{1v},(C_{5},H_{10})_{z}$

(式中、ヽ、) および2は正の数であり、z≧2×である。) で表されるイソプレニルアルミニウムを使用する こともできる

【0074】さらにその他にも、有機金属化合物(D)としては、メチルリチウム、エチルリチウム、プロピルリチウム、ブチルリチウム、プロピルリチウム、ブチルリチウム、ブロミド、メチルマグネシウムクロリド、エチルマグネシウム ブロミド、エチルマグネシウムクロリド、ブロピルマグネシウムブロミド、フロビルマグネシウムクロリド、ブチルマグネシウムブロミド、ブチルマグネシウム、ジブチルマグネシウム、ジブチルマグネシウム、ジブチルマグネシウム、ブチルエチルマグネシウムなどを使用することもできる。

【0075】また重合系内で上記有機アルミニウム化合物が形成されるような化合物、たとえばハロゲン化アルミニウムとアルキルリチウムとの組合せ、またはハロゲン化アルミニウムとアルキルマグネシウムとの組合せなどを使用することもできる。

【0076】本発明で用いる有機金属化合物(D)としては、分岐鎖状のアルキル基を有する金属化合物が好まして、特にイソブチル基を有する金属化合物、中でもトリイソブチル金属化合物が好ましい。また金属としてはアルミニウムが好ましく、トリイソブチルアルミニウムが最も好ましい。

【0077】このような有機金属化合物(D)はアルキル化剤として作用し、前記一般式(1)で表される遷移金属化合物(C)中の遷移金属(M)に結合しているR および/またはR⁵がアルキル基以外の原子または基、たとえば塩素、臭素などのハロゲン原子;メトキシ

基、エトキシ基、ブトキシ基などのアルコキシ基などの 基である場合に、これらをアルキル基に置換する。

【0078】また、(D)有機金属化合物は、スカベンジャーとしても作用し、水その他の不純物を系内から除去して反応系を清浄に保つので、安定的に触媒の高活性を発現させることができるという効果が得られる。この作用は遷移金属化合物(C)中の遷移金属(M)に結合しているR4 および/またはR5 がアルキル基の場合にも発現する。このため有機金属化合物(D)を、前記一般式(I)で表される遷移金属化合物(C)中の遷移金属(M)に結合しているR4 および/またはR5 がアルキル基である遷移金属化合物(C)と併用した場合にも、上記と同様の効果が得られる。

【0079】上記のような(D)有機金属化合物は、1種単独でまたは2種以上組み合わせて用いられる。なお、本発明では、オレフィン重合用触媒は、上記のような各成分以外にもオレフィン重合に有用な他の成分を含むことができる。

【0080】本発明において重合は懸濁重合などの液相 重合法あるいは気相重合法いずれにおいても実施でき る。液相重合法においては、溶媒として触媒調製の際に 用いた不活性炭化水素溶媒と同じものを用いることがで き、オレフィン自身を溶媒として用いることもできる。 【0081】このようなオレフィン重合触媒を用いたオ レフィンの重合温度は、スラリー重合法を実施する際に は、通常-50~150℃、好ましくは0~100℃の 範囲であることが望ましく、気相重合法を実施する際に は、通常、0~120℃、好ましくは20~100℃の 範囲であることが望ましい。重合圧力は、通常、常圧~ 100kg/cm²、好ましくは常圧~50kg/cm 2 の条件下であり、重合反応は、回分式、半連続式、連 続式のいずれの方法においても行うことができる。さら に重合を反応条件の異なる2段以上に分けて行うことも 可能である。

【0082】得られるオレフィン重合体の分子量は、重 合系に水素を存在させるか、あるいは重合温度を変化さ せることによって調節することができる。このようなオ レフィン重合触媒により重合することができるオレフィ ンとしては、炭素原子数が2~20のα-オレフィン、 たとえばエチレン、プロピレン、1-ブテン、1-ペンテ ン、1-ヘキセン、3-メチル-1-ブテン、4-メチル-1-ペン テン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1 -ドデセン、1-テトラデセン、1-ヘキサデセン、1-オク タデセン、1-エイコセン;炭素数が3~20の環状オレ フィン、たとえば、シクロペンテン、シクロヘプテン、 ノルボルネン、5-メチル-2-ノルボルネン、テトラシク ロドデセン、2-メチル1,4.5,8-ジメタノ-1,2,3,4.4a,5. 8,8a-オクタヒドロナフタレンなどを挙げることができ る。さらにスチレン、ビニルシクロヘキサン、ジエンな どを用いることもできる。

100831

【発明の効果】本発明のオレフィン重合用触媒は、懸濁重合法や気相重合法に適用することができ、しかも高い重合活性で粒子性状に優れた球状オレフィン重合体を製造することができ、かつ2種以上のモノマーを共重合させた際に、組成分布の狭い共重合体を与える。

【0084】本発明に係るオレフィンの重合方法は、高 い重合活性でオレフィン重合体を製造することができ る。

[0085]

【実施例】以下、本発明を実施例に基づいてさらに具体 的に説明するが、本発明はこれら実施例に限定されるも のではない。

[0086]

【実施例1】

【0087】得られた懸濁液62m1(A1;30ミリモル)を充分に窒素置換した別の200m1のガラス製フラスコへ移し、下記式(A)で表される遷移金属化合物0.4ミリモルを加えて、5分間攪拌した。この操作によりシリカ1gに対してニッケルを3.4mg含有する固体触媒(a)が得られた。

[0088]

【化22】

【0089】[重合] 充分に窒素置換した内容量2リットルのステンレス製オートクレーブに精製へキサン1リットルを装入した後、トリイソブチルアルミニウムを 0.5ミリモル加え、40℃に保持した。次いで、上記 で得られた固体触媒(a)を、ニッケル原子換算で0.05 m g 原子を加えた後、エチレンを導入し、全圧を8 k g / c m^2 –6 として重合を開始した。さらに、全圧が8 k g / c m^2 –6 となるようにエチレンを連続的に供給し、40で1時間重合を行った。

【0090】重合終了後、ポリマースラリーを沪別し、 80℃で10時間減圧乾燥した。嵩密度0.34g/c m³のポリマー31.7gが得られた。

[0091]

【実施例2】

[重合] 充分に窒素置換した内容量 2リットルのステンレス製オートクレーブに精製へキサン1リットルを装入した後、トリイソブチルアルミニウムを0. 5ミリモル加え、40 \mathbb{C} に保持した。次いで、実施例 1 で調製した固体触媒(a)を、ニッケル原子換算で0. 0 3 m g 原子を加えた後、エチレンと1-ブテンとの混合ガス(1-ブテン含量 2. 3 モル%)を導入し、全圧を8 k g / c m 2 - G として重合を開始した。さらに、全圧が8 k g / c m 2 - G となるように上記のエチレンと1-ブテンとの混合ガスを連続的に供給し、40 \mathbb{C} \mathbb{C} 1 時間重合を行った。【0 0 9 2 】重合終了後、ポリマースラリーを沪別し、8 0 \mathbb{C} \mathbb{C} \mathbb{C} 0 時間減圧乾燥した。嵩密度 \mathbb{C} \mathbb{C}

[0093]

【実施例3】充分に窒素置換した内容積2リットルのステンレス製オートクレーブに、塩化ナトリウム(和光純薬特級)150gを装入し、90℃で1時間減圧乾燥した。その後、エチレンと1-ブテンとの混合ガス(1-ブテン含量2.3モル%)の導入により常圧に戻し、系内を40℃とした。次いで、実施例1で調製した固体触媒(a)をニッケル原子換算で0.02ミリグラム原子およびトリイソブチルアルミニウムを0.5ミリグラム原子、オートクレーブに添加した後、上記エチレンと1-ブテンとの混合ガスを導入し、全圧を8kg/сm²-Gとして重合を開始した。さらに、全圧が8kg/сm²-Gとなるように上記のエチレンと1-ブテンとの混合ガスを連続的に供給し、40℃で1時間重合を行った。

【0094】重合終了後、水洗により塩化ナトリウムを除き、残ったポリマーをメタノールで洗浄した後、80 ℃で10時間減圧乾燥した。その結果、嵩密度が0.3 1g/cm³のポリマー12.4gが得られた。

【図面の簡単な説明】

【図1】 本発明に係るオレフィン重合用触媒の調製工程の一例を示す説明図である。