Examenul de bacalaureat national 2014 Proba E. d) - 4 iulie 2014 **Fizică**

Filiera teoretică – profilul real, Filiera vocaţională – profilul militar

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore.

Varianta 4 A. MECANICA

Se consideră accelerația gravitațională $g = 10 \,\mathrm{m/s}^2$.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Mărimea fizică a cărei unitate de măsură în S.I. poate fi scrisă în forma kg·m²·s² este:

2. În graficul din figura alăturată este reprezentată dependența alungirii unui resort elastic, fixat la unul din capete, de forța deformatoare aplicată la

- a. acceleratia
- **b.** lucrul mecanic

celălalt capăt. Valoarea constantei elastice k a resortului este:

- c. forta
- d. impulsul

(3p) F(N)

a. 0,01 N/m

- **b.** 2 N/m
- **c.** 10N/m
- **d.** 100N/m

- (3p)
- 3. Dacă asupra unui punct material având masa m acţionează o forţă rezultantă de modul F, atunci accelerația imprimată punctului material este direct proporțională cu:

a. *m*

- **b.** m^{-1}

- (3p)
- 4. Lucrul mecanic efectuat de greutate la deplasarea unui punct material între două puncte date:
- a. este egal cu variația energiei potențiale gravitaționale
- b. depinde de viteza punctului material
- c. este egal cu energia cinetică a punctului material
- d. este independent de forma traiectoriei punctului material

- (3p)
- **5.** O bilă cu masa $m = 160 \,\mathrm{g}$ se lovește de manta mesei de biliard cu viteza $v = 0.5 \,\mathrm{m/s}$ și se întoarce cu viteză egală în modul. Traiectoria bilei este simetrică fată de normala la suprafată în punctul respectiv, formând unghiul $\alpha = 53^{\circ} (\cos \alpha = 0.6)$ în raport cu normala. În urma lovirii mantei, variația impulsului bilei are valoarea:

$$a = 16 \cdot 10^{-2} \text{ kg m s}^{-1}$$

a.
$$16 \cdot 10^{-2} \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$$
 b. $48 \cdot 10^{-3} \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$ **c.** $96 \cdot 10^{-3} \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$ **d.** $0 \text{ kg} \cdot \text{m} \cdot \text{s}^{-1}$

(3p)

(15 puncte)

II. Rezolvaţi următoarea problemă:

Un corp de masă $m_1 = 4 \,\mathrm{kg}$, aflat pe suprafața unui plan înclinat cu unghiul $\alpha = 30^\circ$ față de orizontală, este legat de o găleată cu masa $m_2 = 500\,\mathrm{g}\,$ prin intermediul unui fir inextensibil și de masă neglijabilă. Firul este trecut peste un scripete fără frecări și lipsit de inerție, ca în figura alăturată. Dacă în găleată se toarnă o masă $m_3 = 0.5 \,\mathrm{kg}$ de nisip, corpul de masă m_1 coboară uniform de-a lungul planului.

- a. Reprezentati fortele care actionează asupra corpului de masă m_1 în timpul coborârii.
- b. Calculati valoarea coeficientului de frecare la alunecare dintre corp si suprafata planului înclinat.
- c. În găleată se toarnă suplimentar o masă $m_4 = 5 \,\mathrm{kg}$ de nisip. Determinați accelerația sistemului, considerând că valoarea coeficientului de frecare la alunecare este $\mu = 0.29 \approx 1/(2\sqrt{3})$.
- d. Calculați valoarea forței de apăsare în axul scripetelui, în cazul punctului c.

III. Rezolvaţi următoarea problemă:

Un autoturism de masă $m = 1000 \,\mathrm{kg}$ se deplasează din localitatea A, situată la altitudinea $h_{A} = 360 \,\mathrm{m}$, în localitatea B, situată la altitudinea $h_B = 310 \,\mathrm{m}$. Altitudinile sunt măsurate în raport cu nivelul mării. La ieşirea din localitatea B autoturismul își continuă mișcarea pe un drum orizontal. În timpul deplasării pe porţiunea orizontală, puterea dezvoltată de motor este $P = 50 \,\mathrm{kW}$, iar viteza este constantă. Rezultanta forțelor de rezistență ce acționează asupra autoturismului reprezintă o fracțiune f = 0.25 din greutatea acestuia și rămâne tot timpul constantă. Considerând energia potențială gravitațională nulă la nivelul mării, determinați:

- a. lucrul mecanic efectuat de greutate la deplasarea autoturismului între cele două localități;
- **b.** viteza autoturismului pe portiunea orizontală;
- c. lucrul mecanic efectuat de forța de tracțiune pentru deplasarea autoturismului pe porțiunea orizontală a drumului, pe distanța d = 2 km;
- d. distanța x parcursă de autoturism până la oprire, pe porțiunea orizontală, după întreruperea alimentării motorului. Considerați că viteza autoturismului în momentul întreruperii alimentării a fost $v = 20 \,\mathrm{m/s}\,$ și că nu se actionează frâna.