Produit scalaire - Phase 5

Exercice 1:

Rappel:

En physique, une force s'exprime en newton (N), un travail W s'exprime en joule (J) et une distance s'exprime en mètres (m).

Le travail d'une force constante \vec{F} qui s'exerce sur un wagon W qui se déplace de A vers B en suivant un mouvement rectiligne est donné par la formule suivante : $W = \overline{AB} \cdot \overline{F}$

Un enfant tire une luge sur un sol horizontal par l'intermédiaire d'une corde formant un angle $\alpha = 45^{\circ}$ avec le sol. Il exerce ainsi sur la luge une force \vec{F} constante et il parcourt la distance AB. On pose $\|\vec{F}\| = 100 \text{ N}$ et AB = 10m.

Calculer le travail (en J) de la force \vec{F} lors du déplacement de A jusqu'en B.

Exercice 2:

On se place dans un repère orthonormé.

1) Déterminer le produit scalaire $\vec{u} \cdot \vec{v}$ dans chacun des cas suivants

a)
$$\vec{u} \begin{pmatrix} -3 \\ 4 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -1 \\ 5 \end{pmatrix}$ \rightarrow Correction vidéo :

b)
$$\vec{u} \begin{pmatrix} \frac{2}{3} \\ 12 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -\frac{1}{10} \\ -\frac{9}{5} \end{pmatrix}$

2) Calculer la norme du vecteur \vec{v} dans chacun des cas précédents.

Exercice 3:

Calculer \overline{AB} . \overline{AC} , où les points A, B, C sont tels que :

1) AB = 3, AC = 8 et
$$\widehat{BAC}$$
 = 30°.

2) AB = 2 et
$$\widehat{ABC} = \widehat{ACB} = 45^{\circ}$$

Exercice 4:

1) Soit ABC un triangle équilatéral de côté 5. Calculer le produit scalaire de AB.AC.

→ Correction vidéo :

2) ABCD est un carré de côté 4. Déterminer le produit scalaire de AB. AC.

→ Correction vidéo :

Exercice 5:

ABCD est un parallélogramme.

- 1) Calculer le produit scalaire de
 - a) \overrightarrow{DC} , \overrightarrow{DB}
 - b) $\overrightarrow{AD}.\overrightarrow{BC}$

→ Correction vidéo :

Exercice 6: On a dans un repère orthonormé: A(2;-1), B(4;2), C(4;0) et D(1;2)

- 1) Calculer \overrightarrow{AB} . \overrightarrow{CD} .
- 2) Qu'en déduit-on pour les droites (AB) et (CD)?

Exercice 7: (correction en classe entière)

Dans un repère orthonormé, on a : A(0; 2), B(-1; -1) et C(4; 0).

En exprimant le produit scalaire \overrightarrow{AB} . \overrightarrow{AC} de deux façons différentes, calculer la mesure de l'angle \widehat{BAC} .

Exercice 8: Pour faire le point

Pour chacune des figures ci-dessous, calculer $\vec{u}.\vec{v}$ en choisissant l'expression du produit scalaire qui vous semble la mieux adaptée :

Figure 2

Figure 3

Exercice A:

Dans un repère orthonormé, on donne les points A(1;-3) et B(-3;2). Calculer AB.

Exercice B:

Calculer le produit scalaire $\vec{u} \cdot \vec{v}$:

a)
$$\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
, $\vec{v} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

b)
$$\vec{u} \begin{pmatrix} -3 \\ -3 \end{pmatrix}$$
, $\vec{v} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

Exercice C:

ABC est un triangle isocèle en A tel que AB = 3 cm et BC = 4 cm. O est le milieu de [BC].

- a) Calculer le produit scalaire $\overrightarrow{BA} \cdot \overrightarrow{BC}$.
- b) I est le projeté orthogonal du point C sur la droite (AB). Calculer la longueur BI.

Exercice D :

- 1) Montrer que $\overrightarrow{AB} \cdot \overrightarrow{AD} = \frac{11}{2}$
- 2) Utiliser une autre expression de $\overrightarrow{AB} \cdot \overrightarrow{AD}$ pour calculer BD.

Exercice E:

A l'aide des informations ci-contre calculer :

- a) $\overrightarrow{AB} \cdot \overrightarrow{AC}$
- b) $\overline{BC} \cdot \overline{BA}$ Aide: décomposer le vecteur \overline{BC}

Exercice F:

Dans chaque cas, utiliser l'expression du produit scalaire la plus adaptée pour calculer $\overline{AB} \cdot \overline{AC}$.

Exercice G:

ABCD est un rectangle tel tel que AB = 5 et AD = 2.

- a) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- b) En déduire la valeur approchée de la mesure de l'angle $\widehat{\mathit{BAC}}$.

Exercice H:

Soient A(0; 1), B(-1; 2) et C(2; 3).

Montrer que ABC est un triangle rectangle.

Exercice I:

ABCD est un rectangle. O est le milieu de [DC].

La perpendiculaire en O à [DC] coupe le demi-cercle de centre O en E. \longrightarrow

Calculer le produit scalaire $\overrightarrow{DB} \cdot \overrightarrow{DE}$.

Exercice 9:

Calculer le produits scalaire $\vec{u} \cdot \vec{v}$ avec $\vec{u} = \begin{pmatrix} 3 - \sqrt{2} \\ \sqrt{2} \end{pmatrix}$ et $\vec{v} = \begin{pmatrix} \sqrt{2} - 1 \\ -4 \end{pmatrix}$

Exercice 10:

On considère la figure ci-contre.

Calculer les produits scalaires suivants :

- a) \overrightarrow{CD} . \overrightarrow{DE}
- b) $\overrightarrow{AF}.\overrightarrow{CB}$
- c) FC.FA

- d) $\overrightarrow{EC}.\overrightarrow{BF}$
- e) DA.FC
- f) DE.CB

→ Correction vidéo :

Exercice 11:

- 1) Montrer que $\|\vec{u} + \vec{v}\|^2 + \|\vec{u} \vec{v}\|^2 = 2 \times (\|\vec{u}\|^2 + \|\vec{v}\|^2)$.
- 2) Soit ABCD un parallélogramme. Appliquer l'égalité précédente avec $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AD}$. Qu'obtient-on?

Exercice 12: Intensité de la résultante

Soit un point O soumis à deux forces $\vec{F_1}$ et $\vec{F_2}$ qui forme un angle de 50°. Les intensités des deux forces $\vec{F_1}$ et $\vec{F_2}$ sont respectivement 300 N et 200 N. Par définition, la résultante des forces est le vecteur $\vec{R} = \vec{F_1} + \vec{F_2}$ Calculer l'intensité de la résultante, à un newton près.

Exercice 13:

 $ABCD \ est \ un \ carr\'e \ de \ c\^{o}t\'e \ 1, \ M \ et \ N \ sont \ des \ points \ des \ segments \ [AB] \ et \ [AD]$

tels que : AM = AN.

Le point I est le milieu du segment [DM].

Démontrer que les droites (AI) et (BN) sont perpendiculaires.

Exercice 14:

On considère le damier coloré ci-contre.

Montrer que les droites (AG) et (ID) sont orthogonales.

→ Correction vidéo :

Exercice 15:*

ABCD est un carré de côté 4. Le triangle ABE est isocèle en E et EH = 3.

- 1) Calculer le produit scalaire \overline{AC} . \overline{AE} .
- 2) Quelle longueur faut-il donner à HE pour que (AC) et (AE) soient perpendiculaires ?

Exercice 16:*

Trois triangles rectangles isocèles, OAB, OCD et DAE sont disposés comme l'indique la figure ci-contre à droite, avec OA = a et OC = c.

Les points I, J et K sont les milieux respectifs des segments [AB], [DE] et [DC].

Démontrer que les droites (IJ) et (AK) sont perpendiculaires.

Préciser les différentes étapes de votre démarche.

Exercice 17:*

- 1) Calculer la mesure des angles \widehat{ABC} et \widehat{BAC}
- 2) Calculer la longueur de la diagonale [BD].

Exercice 18:*

On souhaite calculer sur l'exemple ci-contre la longueur du troisième côté du triangle ABC.

- 1) a) Calculer le produit scalaire AB. AC
 - b) Donner une expression de $\overrightarrow{AB} \cdot \overrightarrow{AC}$ qui fait intervenir la longueur BC.
 - c) En déduire la longueur BC.

2) On généralise :

a) En s'inspirant de l'exemple précédent, démontrer la formule de **Pythagore généralisée** ou **formule d'Al-Kachi** :

$$BC^2 \!=\! AB^2 \!+\! AC^2 \!-\! 2 \!\!\times\! AB \!\!\times\! \! AC \!\!\times\! \! \cos(\widehat{BAC})$$

b) Écrire les deux autres formules.

Exercice 19:*

Calculer l'aire de ABCD.

