OPIS RAČUNARSKOG SISTEMA

Računarski sistem se sastoji od procesora, operativne memorije, tajmera i terminala. Sve komponente računarskog sistema su međusobno povezane preko sistemske magistrale. Tajmer i terminal, kao periferije, su povezani sa procesorom i preko linija za slanje zahteva za prekid. Slika 1. predstavlja uprošćen šematski prikaz posmatranog računarskog sistema.

Slika 1. Šematski prikaz računarskog sistema

Opis procesora

U nastavku je opisan deo 16-bitnog dvoadresnog procesora sa Von-Neuman arhitekturom. Adresibilna jedinica je jedan bajt, a raspored bajtova u reči je little-endian. Veličina memorijskog adresnog prostora je 2^{16} B. Počev od adrese $0 \times FF00$ memorijskog adresnog prostora nalazi se prostor veličine 256 bajtova rezervisan za memorijski mapirane registre (registri kojima se pristupa instrukcijama za pristup memorijskom adresnom prostoru). Počev od adrese 0×0000 memorijskog adresnog prostora nalazi se IVT (interrupt vector table) sa osam ulaza. Svaki ulaz zauzima dva bajta i sadrži adresu odgovarajuće prekidne rutine. Ulazi u IVT odgovaraju sledećim prekidnim rutinama:

- ulaz 0 sadrži adresu <u>prekidne rutine koja se izvršava prilikom pokretanja odnosno resetovanja</u>
 <u>čitavog procesora</u> (ne izvodi se kompletna sekvenca obrade prekida već se samo vrši skok na
 adresu koja se nalazi u okviru datog ulaza),
- ulaz 1 sadrži adresu prekidne rutine koja se izvršava ukoliko se pokuša izvršavanje nekorektne instrukcije (nepostojeći operacioni kod, neispravan način adresiranja itd.),
- ulaz 2 sadrži adresu prekidne rutine koja se izvršava kada stigne zahtev za prekid od tajmera (opis principa rada tajmera i način njegove konfiguracije dat je u zasebnom poglavlju),
- ulaz 3 sadrži adresu prekidne rutine koja se izvršava kada stigne zahtev za prekid od terminala (opis principa rada terminala dat je u zasebnom poglavlju) i
- ostali ulazi su slobodni za korišćenje od strane programera.

Procesor poseduje osam opštenamenskih 16-bitnih registara označenih sa r<num> gde <num> može imati vrednosti od nula do sedam. Moguće je zasebno koristiti viših ili nižih osam bita svakog od opštenamenskih registara kao 8-bitni registar označen sa r<num>h ili r<num>1, respektivno. Registar r7

se koristi kao pc registar (pokazuje na instrukciju koja se u memoriji nalazi neposredno iza trenutno izvršavane instrukcije). Registar r6 se koristi kao sp registar (pokazuje na zauzetu lokaciju na vrhu steka, a stek raste ka nižim adresama). Pored opštenamenskih registara postoji psw registar (statusna reč procesora).

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
I	Tl	Tr										N	С	0	Z	

Značenje flegova u psw registru:

- Z (Zero) rezultat prethodne operacije je nula,
- O(Overflow) prekoračenje,
- C (Carry) prenos,
- N (Negative) rezultat je negativan,
- Tr (Timer) maskiranje prekida od tajmera (0 omogućen, 1 maskiran),
- Tl (Terminal) maskiranje prekida od terminala (0 omogućen, 1 maskiran) i
- I (Interrupt) globalno maskiranje spoljašnjih prekida (0 omogućeni, 1 maskirani).

Instrukcije mogu biti veličine od jedan do sedam bajtova. Instrukcija u najopštijem slučaju ima sledeći format:

I	ΙΙ	III	IV	V	VI	VII		
InstrDescr	Op1Descr	Im/Di/Ad	Im/Di/Ad	Op2Descr	Im/Di/Ad	Im/Di/Ad		

Prvi bajt instrukcije sadrži operacioni kod i dodatne informacije o instrukciji. Naredni bajtovi instrukcije koriste se za kodiranje operanada. Pojedinačni operand može zahtevati jedan, dva ili tri bajta za kodiranje u zavisnosti od načina adresiranja. Detaljan opis InstrDescr i Op<num>Descr bajtova instrukcije dat je u nastavku.

7	6	5	4	3	2	1	0
OC ₄	OC ₃	OC ₂	OC ₁	OC ₀	S	Un	Un

Značenje bitova InstrDescr bajta instrukcije:

- OC4OC3OC2OC1OC0 operacioni kod instrukcije,
- S (Size) veličina operanada instrukcije (0 jedan bajt; 1 dva bajta) i
- Un (Unused) neiskorišćeni bitovi koji imaju fiksnu vrednost nula.

7	6	5	4	3	2	1	0
AM_2	AM_1	AM_0	R ₃	R ₂	R_1	R ₀	L/H

Značenje bitova Op<num>Descr bajta instrukcije:

- AM₂AM₁AM₀ kodiran način adresiranja pri čemu adresiranje može biti:
 - o 0x0 neposredno; vrednost operanda je kodirana u okviru instrukcije pomoću jednog ili dva Im/Di/Ad bajta u zavisnosti od veličine operanda; neposredno adresiranje nije validan način adresiranja za destinacioni operand,

- o 0x1 <u>registarsko direktno</u>; vrednost operanda nalazi se u registru čiji je broj kodiran u okviru instrukcije (nema Im/Di/Ad bajtova),
- 0x2 <u>registarsko indirektno bez pomeraja</u>; vrednost operanda nalazi se u memoriji na adresi ukazanoj vrednošću registra čiji je broj kodiran u okviru instrukcije (nema Im/Di/Ad bajtova),
- o 0x3 <u>registarsko indirektno sa 8-bitnim označenim pomerajem</u>; vrednost operanda nalazi se u memoriji na adresi ukazanoj zbirom vrednosti registra, čiji je broj kodiran u okviru instrukcije, i vrednosti koja se nalazi u jednom Im/Di/Ad bajtu,
- o 0x4 <u>registarsko indirektno sa 16-bitnim označenim pomerajem</u>; vrednost operanda nalazi se u memoriji na adresi ukazanoj zbirom vrednosti registra, čiji je broj kodiran u okviru instrukcije, i vrednosti koja se nalazi u dva Im/Di/Ad bajta i
- 0x5 memorijsko; vrednost operanda nalazi se u memoriji na adresi ukazanoj vrednošću koja se nalazi u dva Im/Di/Ad bajta,
- $R_2R_1R_0$ kodiran broj korišćenog registra (psw registar se kodira vrednošću $0 \times F$) i
- L/H (Low/High) naznaka da li se koristi nižih ili viših osam bita registra (0 nižih; 1 viših) u slučaju registarskog direktnog adresiranja za operand veličine jednog bajta.

Mnemonik	ОС	Efekat	Flegovi koji se menjaju
halt	1	Zaustavlja izvršavanje instrukcija	-
xchg dst, src		<pre>temp<=dst; dst<=src; src<=temp;</pre>	-
int dst	3	<pre>push psw; pc<=mem16[(dst mod 8)*2];</pre>	-
mov dst, src 4		dst<=src;	Z N
add dst, src	5	dst<=dst+src;	Z O C N
sub dst, src	6	dst<=dst-src;	Z O C N
mul dst, src	7	dst<=dst*src;	Z N
div dst, src	8	dst<=dst/src;	Z N
cmp dst, src	9	temp<=dst-src;	Z O C N
not dst	10	dst<=~dst;	Z N
and dst, src	11	dst<=dst&src	Z N
or dst, src	12	dst<=dst src;	Z N
xor dst, src	13	dst<=dst^src;	Z N
test dst, src	14	temp<=dst&src	Z N

shl dst, src	15	dst<=dst< <src;< th=""><th>Z C N</th></src;<>	Z C N
shr dst, src	16	dst<=dst>>src;	Z C N
push src	17	<pre>sp<=sp-2; mem16[sp]<=src;</pre>	-
pop dst	18	<pre>dst<=mem16[sp]; sp<=sp+2;</pre>	-
jmp dst	19	pc<=dst;	-
jeq dst	20	<pre>if (equal_condition_is_met) pc<=dst; end_if</pre>	-
jne dst	21	<pre>if (not_equal_condition_is_met) pc<=dst; end_if</pre>	-
jgt dst	22	<pre>if (signed_greater_condition_is_met) pc<=dst; end_if</pre>	-
call dst	23	<pre>push pc; pc<=dst;</pre>	-
ret	24	pop pc;	-
iret	25	pop psw; pop pc;	psw

Dodatne napomene:

- sve aritmetičke operacije se izvode tako da odgovaraju označenim celim brojevima,
- iza mnemonika asemblerske naredbe, bez belih znakova, može se navesti sufiks b ili w kako bi se naznačila veličina operanada date instrukcije,
- instrukcije cmp i test nigde ne čuvaju direktni rezultat odgovarajuće operacije, već samo u skladu sa rezultatom postavljaju nove vrednosti flegova u psw registru i
- kombinacije instrukcija i operanada, za koje ne postoji razumno tumačenje, smatrati greškom.

Sintaksa operanada u okviru asemblerskih naredbi:

- <val> neposredno adresiranje vrednosti <val>
- &<symbol_name> neposredno adresiranje vrednosti simbola <symbol_name>
- r<num> registarsko direktno adresiranje
- r<num>[<val>] registarsko indirektno sa označenim pomerajem
- r<num>[<symbol name>] registarsko indirektno sa označenim pomerajem
- \$<symbol name> pc relativno adresiranje simbola <symbol name>
- <symbol name> apsolutno adresiranje simbola <symbol name>
- *<val> apsolutno adresiranje podatka u memoriji na adresi ukazanoj vrednošću <val>

Primer kodirane instrukcije movw sp[0], 0x1234 jeste:
0x24 0x4C 0x00 0x34 0x12

Opis terminala

Terminal predstavlja ulazno/izlaznu periferiju koja se sastoji od displeja i tastature. Terminal poseduje dva memorijski mapirana registra. Na adresi <code>0xFF00</code> memorijskog adresnog prostora nalazi se <code>data_out</code> registar izlaznih podataka. Upisom vrednosti u <code>data_out</code> registar na tekućoj poziciji displeja ispisuje se znak koji prema ASCII tabeli odgovara upisanoj vrednosti. Na adresi <code>0xFF02</code> memorijskog adresnog prostora nalazi se <code>data_in</code> registar ulaznih podataka. Kada se pritisne neki taster (1) upisuje se ASCII kod pritisnutog tastera u <code>data_in</code> registar i (2) terminal, kao periferija posmatranog procesora, generiše zahtev za prekid (u okviru prekidne rutine, koja obrađuje ovaj zahtev za prekid, čitanjem vrednosti <code>data_in</code> registra može se saznati koji taster je pritisnut).

Opis tajmera

Tajmer kao periferija periodično generiše zahtev za prekid. Perioda generisanja zahteva za prekid definisana je sadržajem $timer_cfg$ konfiguracionog registra tajmera. Registar $timer_cfg$ je memorijski mapiran registar i nalazi se na adresi 0xFF10 memorijskog adresnog prostora. Njegova inicijalna vrednost nakon pokretanja odnosno resetovanja računarskog sistema jeste 0x0000.

15	14	_		-	-	-	-	_	2		-
									T_2	$\overline{\mathtt{T}}_{1}$	T_0

Perioda generisanja zahteva za prekid u zavisnosti od $\mathbb{T}_2\mathbb{T}_1\mathbb{T}_0$ vrednosti je sledeća: $0 \times 0 \rightarrow 500$ ms, $0 \times 1 \rightarrow 1000$ ms, $0 \times 2 \rightarrow 1500$ ms, $0 \times 3 \rightarrow 2000$ ms, $0 \times 4 \rightarrow 500$ 0ms, $0 \times 5 \rightarrow 10$ s, $0 \times 6 \rightarrow 30$ s i $0 \times 7 \rightarrow 60$ s.