

ສາທາລະນະລັດ ປະຊາທິປະໄຕ ປະຊາຊິນລາວ ສັນຕິພາບ ເອກະລາດ ປະຊາທິປະໄຕ ເອກະພາບ ວັດທະນະຖາວອນ

ກະຊວງສຶກສາທິການ ແລະ ກິລາ ກິມມັດທະຍິມສຶກສາ

ຫົວບົດສອບເສັງແຂ່ງຂັນນັກຮຽນເກັ່ງ ຊັ້ນມັດທະຍົມສຶກສາຕອນປາຍ ລະດັບຊາດ ປະຈຳສຶກຮຽນ 2016-2017

ວິຂາ ຄະນິດສາດ

ເວລາ: 120 ນາທີ

1. ໃຫ້ຈຳນວນຖ້ວນ \mathbf{x} ແລະ \mathbf{y} ຖ້າວ່າ: $\mathbf{5}|(\mathbf{x}+\mathbf{9}\mathbf{y})$ ຈົ່ງພິສຸດວ່າ: $\mathbf{5}|(\mathbf{8}\mathbf{x}+\mathbf{7}\mathbf{y})$

2. ຈຶ່ງຊອກຫາຄ່າຂອງ:
$$\left(\frac{1+i}{1-i}\right) + \left(\frac{1+i}{1-i}\right)^2 + \left(\frac{1+i}{1-i}\right)^3 + ... + \left(\frac{1+i}{1-i}\right)^{201}$$

- 3. ໃຫ້ (a_n) ເປັນອັນດັບທະວີບວກ ເຊິ່ງວ່າ $a_2 + a_3 + ... + a_9 = 100$ ຈຶ່ງຊອກຫາ $a_1 + a_2 + a_3 ... + a_{10}$
- 4. ຈຶ່ງຊອກຫາບັນດາໃຈຜົນຂອງສົມຜົນ: $\int\limits_0^x \cos \left(t-x^2\right) \! \mathrm{d}t = \sin x$

ຈຶ່ງຊອກຫາຄ່າຂອງ x ແລະ y

- 6. ຈົ່ງພິສຸດວ່າ: $\frac{1}{\sin 2x} + \frac{1}{\sin 4x} + \frac{1}{\sin 8x} + \ldots + \frac{1}{\sin 2^n x} = \cot x \cot 2^n x$; ສຳລັບ $n \in \mathbb{N}$
- 7. ຈຶ່ງຊອກຫາຕົວປະສານຂອງເມັດຕັດກັນລະຫວ່າງໜ້າພຽງ P: 2x + y 5z = 1 ແລະ ເສັ້ນຊື່ (AB) ເຊິ່ງວ່າ: A(1; -5; 0) ແລະ B(4; 1; 3)
- ຈະສາມາດສ້າງຈຳນວນທີ່ປະກອບດ້ວຍ 10 ຕີວເລກເຊິ່ງວ່າຕິວເລກທຸກຕິວແມ່ນ 2 ຫຼື 3 ໄດ້ຈັກຈຳນວນ?
 ໃນນັ້ນ ຕີວເລກ 3 ບໍ່ສາມາດຢູ່ຖັດກັນໄດ້.

ຄະນະກຳມະການອອກຫິວບິດ

ຂະໜານຕອບຫົວບົດສອບເສັງແຂ່ງຂັນນັກຮູງນເກັ່ງຊັ້ນມັດທະຍົມສຶກສາຕອນປາຍ ລະດັບຊາດປະຈຳສົກຮູງນ 2016-2017

So.t	Carentas IMCa I
1	ຂະໜານຕອບ ໃຫ້ຈຳນວນຖ້ວນ \mathbf{x} ແລະ \mathbf{y} ຖ້າວ່າ :5 $ (\mathbf{x}+9\mathbf{y})$ ຈົ່ງພິສູດວ່າ 5 $ (8\mathbf{x}+7\mathbf{y})$
	8x+7y
	= 3x + 5x + 27y - 20y $= 3(-10x) + 5(-10x)$
	=3(x+9y)+5(x-4y)
	ຍ້ອນວ່າ 5 (x+9y) ແລະ 5 5(x-4y)
	ດັ່ງນັ້ນ $5 (8x+7y)$
2	ຈົ່ງຊອກຫາຄ່າຂອງ: $\left(\frac{1+i}{1-i}\right) + \left(\frac{1+i}{1-i}\right)^2 + \left(\frac{1+i}{1-i}\right)^3 + \dots + \left(\frac{1+i}{1-i}\right)^{2017}$
	$\frac{1+i}{1-i} = \frac{(1+i)^2}{2} = i$
	ດັ່ງນັ້ນ; $\left(\frac{1+i}{1-i}\right) + \left(\frac{1+i}{1-i}\right)^2 + \left(\frac{1+i}{1-i}\right)^3 + \dots + \left(\frac{1+i}{1-i}\right)^{2017}$
	$= \mathbf{i} + \mathbf{i}^{2} + \mathbf{i}^{3} + \dots + \mathbf{i}^{2017} = \frac{\mathbf{i}(1 - \mathbf{i}^{2017})}{1 - \mathbf{i}} = \mathbf{i}$
3	ໃຫ້ $(\mathbf{a_n})$ ເປັນອັນດັບທະວີບວກ ເຊິ່ງວ່າ $\mathbf{a_2} + \mathbf{a_3} + \ldots + \mathbf{a_9} = 100$ ຈົ້ງຊອກຫາ
	$a_1 + a_2 + a_3 \dots + a_{10}$
	$\mathbf{a}_2 = \mathbf{a}_1 + \mathbf{d}$
	$\mathbf{a}_3 = \mathbf{a}_1 + 2\mathbf{d}$
	$\mathbf{a}_9 = \mathbf{a}_1 + 8\mathbf{d}$
	$\Rightarrow a_2 + a_3 + + a_9 = 8a_1 + 36d = 100$
	$\Leftrightarrow 2a_1 + 9d = 25$
	$a_1 + a_2 + a_3 \dots + a_{10} = \frac{10}{2} (2a_1 + 9d) = 5.25 = 125$
4	ຈົ່ງຊອກຫາບັນດາໃຈຜົນຂອງສົມຜົນ: $\int\limits_0^{\mathbf{x}} \mathbf{cos} ig(\mathbf{t} - \mathbf{x}^2ig) \mathbf{d}t = \mathbf{sinx}$
	ຈາກຟາກຊ້າຍຂອງສົມຜົນໄດ້ $\int\limits_0^x \cosig(t-x^2ig) \mathrm{d}t = \left[\sinig(t-x^2ig) ight]_0^x = \sinig(x-x^2ig) + \sinig(x^2ig)$
	ສົມຜົນຜັນປ່ຽນເປັນ:
	$\sin(x-x^2)+\sin(x^2)=\sin x$

$$\Leftrightarrow 2\sin\left(\frac{x-x^2+x^2}{2}\right)\cos\left(\frac{x-x^2-x^2}{2}\right) = \sin x$$

$$\Leftrightarrow 2\sin\frac{x}{2}\cos\left(\frac{x}{2}-x^2\right) - 2\sin\frac{x}{2}\cos\frac{x}{2}$$

$$\Leftrightarrow \sin\frac{x}{2}\left[\cos\left(\frac{x}{2}-x^2\right) - \cos\frac{x}{2}\right] = 0$$

$$\Leftrightarrow \sin\frac{x}{2}\left[-2\sin\left(\frac{x-x^2+x}{2}\right)\sin\left(\frac{x-x^2-x}{2}\right)\right] = 0$$

$$\Leftrightarrow \sin\frac{x}{2}\sin\frac{x^2}{2}\sin\frac{x^2}{2}\sin\left(\frac{x-x^2}{2}\right) = 0$$

$$\sin\frac{x}{2} = 0 \Leftrightarrow \sin\frac{x}{2} = \sin 0 \Rightarrow x = 2k\pi \qquad \text{where } k = 0$$

$$\sin\frac{x-x^2}{2} = 0 \Leftrightarrow \sin\frac{x^2-x^2}{2} = \sin 0 \Leftrightarrow \frac{x^2}{2} = k\pi \Rightarrow x = \sqrt{2k\pi} \qquad \text{where } k = 0,1,2,3,...)$$

$$\sin\frac{x-x^2}{2} = 0 \Leftrightarrow \sin\frac{x-x^2}{2} = \sin 0$$

$$\Rightarrow x-x^2 = 2k\pi \Leftrightarrow x^2-x+2k\pi = 0$$

$$\Delta = 1-8k\pi$$

$$\sin\frac{x^2}{2} = 0 \Leftrightarrow k \leq \frac{1}{8\pi} \text{ where } k = 0$$

$$\Delta = 1-8k\pi$$

$$\sin\frac{x^2}{2} = 0 \Leftrightarrow k \leq \frac{1}{8\pi} \text{ where } k = 0$$

$$\Delta = 1-8k\pi$$

$$\sin\frac{x^2}{2} = 0 \Leftrightarrow k \leq \frac{1}{8\pi} \text{ where } k = 0$$

$$\sin\frac{x^2}{2} = 0 \Leftrightarrow k \leq \frac{1}{8\pi} \text{ where } k = 0$$

$$\sin\frac{x^2}{2} = 0 \Leftrightarrow \sin\frac{x^2}{2} = \sin 0$$

$$\Rightarrow x-x^2 = 2k\pi \Leftrightarrow x^2-x+2k\pi = 0$$

$$\Delta = 1-8k\pi \geq 0 \Leftrightarrow k \leq \frac{1}{8\pi} \text{ where } k = 0$$

$$\sin\frac{x^2}{2} = 0 \Leftrightarrow k \leq \frac{1}{8\pi} \text{ where } k = 0$$

$$\sin\frac{x^2}{2} = 0 \Leftrightarrow \sin\frac{x^2}{2} = \sin 0$$

$$\Rightarrow x-x^2 = 2k\pi \Leftrightarrow x^2-x+2k\pi = 0$$

$$\Delta = 1-8k\pi \geq 0 \Leftrightarrow k \leq \frac{1}{8\pi} \text{ where } k = 0$$

$$\sin\frac{x}{2} = 0 \Leftrightarrow \sin\frac{x}{2} = \sin 0$$

$$\Rightarrow x-x^2 = 2k\pi \Leftrightarrow x^2-x+2k\pi = 0$$

$$\Delta = 1-8k\pi \geq 0 \Leftrightarrow k \leq \frac{1}{8\pi} \text{ where } k = 0$$

$$\sin\frac{x}{2} = 0 \Leftrightarrow \sin\frac{x}{2} = \sin 0$$

$$\Rightarrow x-x^2 = 2k\pi \Leftrightarrow x^2-x+2k\pi = 0$$

$$\Rightarrow x-x^2 = 2k\pi \Leftrightarrow x^2-x+2k\pi =$$

	$\Leftrightarrow \begin{pmatrix} 2\sin x\cos x & \sin x\sin(x+y) \\ \cos x & \sin(x+y) \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{\sqrt{3}}{2} & 1 \end{pmatrix}$
	ເຮົາໄດ້: $2\sin x \cos x = \frac{\sqrt{3}}{2}$ (1)
	$\sin x \sin (x + y) = \frac{1}{2} \qquad (2)$
	$\cos x = \frac{\sqrt{3}}{2} \tag{3}$
	$\sin(x+y)=1 \tag{4}$
	ເອົາ (4) ແທນໃສ່ (2) ໄດ້ $\sin x = \frac{1}{2} \Leftrightarrow \sin x = \sin 30^\circ \Rightarrow x = 30^\circ$
	ເອົາຄ່າຂອງ $\mathbf{x} = 30^\circ$ ແຫນໃສ່ $\mathbf{(4)}$ ໄດ້ $\sin\left(30^\circ + \mathbf{y}\right) = 1 \Leftrightarrow \sin\left(30^\circ + \mathbf{y}\right) = \sin 90^\circ$
	$\Leftrightarrow 30^{\circ} + y = 90^{\circ} \Rightarrow y = 90^{\circ} - 30^{\circ} = 60^{\circ}$
6	ຈົ່ງພິສູດວ່າ: $\frac{1}{\sin 2x} + \frac{1}{\sin 4x} + \frac{1}{\sin 8x} + \ldots + \frac{1}{\sin 2^n x} = \cot x - \cot 2^n x$; ສຳລັບ $n \in \mathbb{N}$
	ສຳລັບ $\mathbf{x} eq \frac{\pi \mathbf{Z}}{\mathbf{2^k}}$ $\mathbf{k} \in \mathbb{N}$ $\mathbf{n} \in \mathbb{N}$
	ພວກເຮົາພຽງແຕ່ພິສູດວ່າ: $\frac{1}{\sin 2^k x} = \cot 2^{k-1} x - \cot 2^k x$
	• ເມື່ອ $k = 1$ ເຮົາໄດ້: $\cot x - \cot 2x = \frac{\cos x}{\sin x} - \frac{\cos 2x}{\sin 2x} = \frac{2\cos^2 x - \cos 2x}{\sin 2x}$
	$=\frac{2\cos^2 x - 2\cos^2 x + 1}{1} = \frac{1}{1}$
	sin2x sin2x
	$ullet$ ສົມມຸດວ່າ $\dfrac{1}{(\sin 2^k x)} = \cot 2^{(k-1)} x - \cot 2^k x$ ເປັນຈິງສຳລັບ $\mathbf{k} \in \mathbb{N}$
	• $\mathfrak{S} \cap \mathfrak{J}$: $\cot 2^k x - \cot 2^{(k+1)} x = (\cos 2^k x) / (\sin 2^k x) - (\cos 2^{(k+1)} x) / (\sin 2^{(k+1)} x)$
	$= \frac{\cos 2^{k} x \sin 2^{k+1} x - \cos 2^{k+1} x \sin 2^{k} x}{\sin 2^{k} x \sin 2^{k+1} x}$
	$= \frac{\sin(2^{k+1}-2^k)x}{\sin^22^kx\sin^22^{k+1}x} = \frac{1}{\sin^22^{k+1}x}$
	ດັ່ງນັ້ນ: $\frac{1}{\sin 2x} + \frac{1}{\sin 4x} + \frac{1}{\sin 8x} + \dots + \frac{1}{\sin 2^n x} = \cot x - \cot 2^n x$ ສຳລັບ $n \in \mathbb{N}$
7	ຈົງຊອກຫາຕົວປະສານຂອງເມັດຕັດກັນລະຫວ່າງໜ້າພຽງ $P: 2x + y - 5z = 1$ ແລະ ເສັ້ນຊື່ (AB)
	ເຊິ່ງວ່າ: A(1;-5;0) ແລະ B(4;1;3)
je.	ເວັກເຕີຕັ້ງສາກຂອງໜ້າພຽງ P ແມ່ນ : $\vec{\mathbf{n}}(2;1;-5)$
	ເວັກເຕີກຳນົດລວງຂອງເສັ້ນຊື່ $(\mathbf{A}\mathbf{B})$ ແມ່ນ: $ar{\mathbf{u}}(1;2;1)$

	N !
	$\vec{n}.\vec{u}=2\times1+1\times2+1\times(-5)=-1\neq0$ ສະນັ້ນ ໜ້າພຽງ ແລະ ເສັ້ນຊື່ຕັດກັນ
	$\int \mathbf{x} = 1 + \mathbf{k}$
	ເສັ້ນຊື່ (AB) ຊຽນໃນຮູບຮ່າງພາຣາແມທຣິກ $\left\{ \mathbf{y} = -5 + 2\mathbf{k} \;\;\; ; \;\; k \in \mathbb{R} \right\}$
	$\mathbf{z} = \mathbf{k}$
	ເມື່ອເອົາໄປແທນເຂົ້າສົມຜົນໜ້າພຸງງໄດ້ $\mathbf{k}=-4$ ຖອນໄດ້ $\mathbf{x}=-3; \mathbf{y}=-13\; \mathbf{z}=-4$
	ຕົວປະສານຂອງເມັດຕັດກັນລະຫວ່າງໜ້າພຸເງ ${f P}$ ແລະ ເສັ້ນຊື່ ${f (AB)}$ ແມ່ນ $(-3;-13;-4)$
8	ຈະສາມາດສ້າງຈຳນວນທີ່ປະກອບດ້ວຍ 10 ຕົວເລກເຊິ່ງວ່າຕົວເລກທຸກຕົວແມ່ນ 2 ຫຼື 3 ໄດ້ຈັກ
	ຈຳນວນ? ໃນນັ້ນ ຕົວເລກ 3 ບໍ່ສາມາດຢູ່ຖັດກັນໄດ້
	• ສົມມຸດເປັນຈຳນວນທີ່ມີ 1 ຕົວເລກທີ່ສ້າງຈາກ 2 ຫຼື 3; ເຮົາສ້າງໄດ້ 2 ຈຳນວນ ຄື: 2 ຫຼື 3
	• ສົມມຸດເປັນຈຳນວນທີ່ມີ 2 ຕົວເລກທີ່ສ້າງຈາກ 2 ຫຼື 3; ເຮົາສ້າງໄດ້ 3 ຈຳນວນ ຄື: 22 ຫຼື
	23 🖞 32
	• ສົມມຸດເປັນຈຳນວນທີ່ມີ 3 ຕົວເລກທີ່ສ້າງຈາກ 2 ຫຼື 3; ເຮົາສ້າງໄດ້ 5 ຈຳນວນ ຄື: 222 ;
	223 ; 232 ; 322
	ສົມມຸດເປັນຈຳນວນທີ່ມີ 4 ຕົວເລກທີ່ສ້າງຈາກ 2 ຫຼື 3; ເຮົາສ້າງໄດ້ 8 ຈຳນວນ ຄື: 2222 ;
	2223 ; 2232 ; 2322 ; 3222 ; 3232 ; 3223 ຫຼື 2323
	ສັງເກດເຫັນວ່າການເພີ່ມຂຶ້ນຂອງຈຳນວນທີ່ສ້າງໄດ້ເປັນໄປຕາມອັນດັບຂອງ Fibonacci
	• ຄື: 2 ;3 ;5 ;8 ;13 ;21 ;34 ;55 ;89 ;144 ທີ່ມີພິດທີ 10 ເທົ່າ 144
	ສະນັ້ນ; ຈຳນວນທີ່ປະກອບດ້ວຍ 10 ຕົວເລກເຊິ່ງວ່າຕົວເລກທຸກຕົວແມ່ນ 2 ຫຼື 3 ໄດ້ 144 ຈຳນວນ
	ໃນນັ້ນ ຕົວເລກ 3 ບໍ່ຢູ່ຖັດກັນ.