# Predicción del precio de venta de vehículos de 2ª mano en función de sus características

Icia Carro Barallobre, Karen Salazar Gutiérrez, Laura Llorente Sanz



SAMSUNG

### Índice

Procesamiento de los datos

Ingeniería de características

Visualización

PCA

ElasticNet

**Redes Neuronales Densas** 

# Preprocesamiento de los datos (I)

| Nombre fichero | Núm coches x |           |          | _          |  |        |
|----------------|--------------|-----------|----------|------------|--|--------|
|                | Features     |           | Brand    |            |  |        |
| Audi.csv       | 10668 x 9    |           | Audi     |            |  |        |
| Bmw.csv        | 10781 x 9    |           | BMW      |            |  |        |
| Cclass.csv     | 3899 x 7     | 1         | Mayaadaa | 17018 x 10 |  |        |
| Merc.csv       | 13119 x 9    |           | Mercedes |            |  |        |
| Ford.csv       | 17965 x 9    |           | Ford     | 22440 ~ 40 |  | 108540 |
| Focus.csv      | 5454 x 7     | $\rfloor$ |          | 23419 x 10 |  |        |
| Hyundi.csv     | 4860 x 9     |           | Hyundi   |            |  |        |
| skoda.csv      | 6267 x 9     |           | Skoda    |            |  |        |
| toyota.csv     | 6738 x 9     |           | Toyota   |            |  |        |
| vauxhall.csv   | 13632 x 9    |           | Vauxhall |            |  |        |
| VW.CSV         | 15157 x 9    |           | VW       |            |  |        |

### Preprocesamiento de los datos (II)

price





# Ingeniería de características I

Variable Derivada: Antigüedad



| Model | Year | Price  | Transmission | Mileage | fuelType | Tax | Mpg | engineSize | Brand   | Old |
|-------|------|--------|--------------|---------|----------|-----|-----|------------|---------|-----|
|       |      |        |              |         |          |     |     |            |         |     |
|       |      |        |              |         |          |     |     |            |         |     |
|       |      |        |              |         |          |     |     |            |         |     |
|       |      |        |              |         |          |     |     |            |         |     |
|       | Drop |        |              |         |          |     |     | 10         | <b></b> |     |
| L     |      |        |              |         |          |     |     |            |         |     |
|       |      |        |              |         |          |     |     |            |         |     |
|       |      | 108540 |              |         |          |     |     |            |         |     |
|       |      |        |              |         |          |     |     |            |         |     |

**Dataset** 

# Exploración de la variable objetivo: Price

| count | 108540 |  |  |  |
|-------|--------|--|--|--|
| mean  | 16890  |  |  |  |
| std   | 9756   |  |  |  |
| min   | 450    |  |  |  |
| 25%   | 10229  |  |  |  |
| 50%   | 14698  |  |  |  |
| 75%   | 20940  |  |  |  |
| max   | 159999 |  |  |  |

### Matriz de correlación

(Variables No categóricas)



# Comparación price - old



El precio del vehículo disminuye a medida que el coche es más antiguo

# Comparación price - fuelType



El tipo de fuel no influye significativamente en el precio del vehículo

# Comparación price - brand



La marca del vehículo influye en el precio: Audi, BMW y Mercedes son las más caras

# Comparación price - engineSize



A mayor tamaño del motor del vehículo mayor precio

# Ingeniería de características II

#### Variables continuas

- old
- mileage
- tax
- mpg
- engineSize



Scale --> media=0, desv=1 (asumimos normalidad)

#### Variables categóricas

- model
- transmission
- fuelType
- brand



One-Hot-Encoding



### Reducción de dimensiones





Principal
Component
Analysis
(PCA)

Con 16 componentes explicamos el 90% de las variables



### Matriz de correlación





### División del dataset



### División del dataset



# Regresión: ElasticNet





### Regresión: ElasticNet

```
In [9]: alpha = [0.001, 0.0001, 0.00001]
         l1 ratio = [0.001, 0.0001, 0.00001, 0.000001]
         parameters = {'alpha': alpha, 'l1 ratio': l1 ratio}
In [10]: from sklearn.model selection import GridSearchCV
         from sklearn.linear model import ElasticNet
         gridCV = GridSearchCV(ElasticNet(), parameters, cv=5, n_jobs = -1) # "n_jobs = -1" means "use all the CPU cores".
         gridCV.fit(X train, Y train)
         best_alpha = gridCV.best_params ['alpha']
         best l1_ratio = gridCV.best_params ['l1 ratio']
         print("Best alpha : " + str(best_alpha))
         print("Best l1_ratio : " + str(best_l1_ratio))
         Best alpha: 0.0001
         Best 11 ratio : 1e-06
In [11]: elasticNet best = ElasticNet(alpha=best alpha, l1 ratio=best l1 ratio, random state=4815, fit intercept=False)
         elasticNet best.fit(X train, Y train)
         Y pred = elasticNet best.predict(X test)
         print( "Best RMSE : " + str(np.round(mean_squared_error(Y_test,Y_pred,squared=False, multioutput='raw_values'),3)))
         Best RMSE : [17525.614]
```

- ✓ Se puede probar con diferentes valores para alpha y l1\_ratio.
- ✓ Mediante el mismo proceso se pueden obtener los mejores hiperparámetros para este modelo y conjunto de datos.
- ✓ En esta ocasión son l2 igual a 0,0001 y l1\_ratio igual a 0,000001.

### Regresión: Redes Neuronales Densas (I)



#### **Input layer**

RMSE = 4344, MAE = 2901 RMSE = 4420, MAE = 2717 RMSE = 4113, MAE = 2644 RMSE = 3966, MAE = 2500

RMSE = 3875, MAE = 2418

5, 10, 25

#### 1 hidden layer

RMSE = 3911, MAE = 2476 RMSE = 3759, MAE = 2348 RMSE = 3500, MAE = 2244



#### 2 hidden layer

RMSE = 3533, MAE = 2196, RMSE = 3317, MAE = 2059,

## Regresión: Redes Neuronales Densas (II)











