MATH 11: Introduction to Discrete Structures

Homework 2

Problem 1. (20 points) Consider the set $A = \{a, b, c, d\}$, and relation

$$\mathcal{R} = \{(a, a), (a, b), (a, c), (b, d), (d, a), (b, c), (c, b), (b, b), (d, d)\}.$$

(a) (5 points) Draw the directed graph representing \mathcal{R} .

(b) (5 points) Find the reflexive closure of \mathcal{R} .

(c) (5 points) Find the symmetric closure of \mathcal{R} .

(d) (5 points) Find the transitive closure of ${\cal R}.$

(d) (5 points) ${\cal R}$ is transitive, reflexive and symmetric.

(e) (5 points) \mathcal{R} is not transitive, not reflexive and not symmetric.
Problem 4. (15 points) Consider the set $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ of residues modulo 10. Each relation on A below possesses the properties of being transitive, reflexive, and symmetric. Determine the corresponding partition of A into equivalence classes for each relation.
Example. The relation \mathcal{R} is defined as follows: $a\mathcal{R}b$ if and only if $a \equiv b \pmod{10}$. This relation consists of pairs of elements $\{(0,0),(1,1),\ldots,(9,9)\}$, indicating that each element is equivalent only to itself. The corresponding partition of A is a disjoint union of ten one-element sets:
$A = \{0\} \sqcup \{1\} \sqcup \{2\} \sqcup \{3\} \sqcup \{4\} \sqcup \{5\} \sqcup \{6\} \sqcup \{7\} \sqcup \{8\} \sqcup \{9\}.$
(a) (5 points) $\alpha \mathcal{R} b$ if and only if $\alpha \equiv b \pmod 5$.
(b) (5 points) $\alpha \mathcal{R} b$ if and only if $\alpha \equiv b \pmod 2$.
(c) (5 points) $\alpha \mathcal{R}b$ if and only if $\alpha \equiv b \pmod{3}$.