Lab of IOT Project

Healthcare Monitoring System

Project by Mohamed Aziz Khitmi Supervised by Professor FICCO MASSIMO

Content

01 Overview

02 Hardware & Architecture

03 Software

04

Node Red Dashboard

Project Overview

Healthcare Monitoring System

- This IoT healthcare monitoring system is designed for nonintrusive, continuous monitoring of patients' vital signs. It is particularly beneficial for remote patient monitoring and can be integrated into telehealth platforms.
- This system allows the user to monitor electrocardiogram signals and heart rate.

Hardware Components

Arduino Uno Rev2

- The Arduino Uno WiFi Rev2 is an evolution of the classic Arduino Uno board, enhanced with integrated Wi-Fi connectivity. As a member of the Arduino family, it inherits the simplicity and versatility that Arduino is known for, while adding new capabilities that are crucial for modern IoT projects.
- The project employs an Arduino Uno WiFi Rev2 as the central processing unit for this main reason.

AD8232 ECG Sensor

- The AD8232 ECG Sensor is designed to measure the **electrical activity of the heart over time**. It provides an analog signal representing the electrical impulses generated by the heart during each cardiac cycle.
- The sensor helps in monitoring the patient's heart rate and detecting irregularities or abnormalities in the ECG signal.

KY-039 Heartbeat Sensor

- The KY-039 Heartbeat Sensor utilizes infrared light to detect variations in blood volume as the heart beats. It translates these variations into electrical signals, allowing the measurement of the heart rate.
- This sensor complements the ECG monitoring by providing an alternative method for tracking heart
 rate. It is particularly useful for scenarios where ECG readings might be challenging to obtain.

Architecture

Architecture

AD8232 ECG Sensor

KY-039 Heartbeat Sensor

Software

Software

- The program continually reads data from both sensors, performs necessary calculations, and sends the results to the Serial Monitor and Serial Plotter for real-time visualization.
- Data is formatted in JSON format to be read from a dashboard.

```
// Pin configuration
const int ad8232Pin = A0; // Analog pin to which AD8232 OUT pin is connected
const int ky039Pin = A1; // Analog pin to which KY-039 OUT pin is connected
const int minValue = 100; // Adjust based on your observations
const int maxValue = 900; // Adjust based on your observations
void setup() {
  Serial.begin (9600);
void loop() {
  // Read data from AD8232 Heart Rate Monitor
  int ad8232Value = analogRead(ad8232Pin);
  float ad8232Voltage = (ad8232Value / 1024.0) * 5.0;
  // Read data from KY-039 Heartbeat Sensor
  int ky039Value = analogRead(ky039Pin);
 // Print the values to the Serial Monitor
Serial.print("{\"AD8232 val\":");
Serial.print (ad8232Value);
 Serial.print(",");
 Serial.print("\"AD8232_volt\":");
 Serial.print (ad8232Voltage);
 Serial.print(",");
// Map the sensor value to a realistic heart rate range
int heartRate = map(ky039Value, minValue, maxValue, 75, 85);
// Print the values to the Serial Monitor
Serial.print("\"KY039 val\":");
 Serial.print(ky039Value);
 Serial.print(",");
 Serial.print("\"Heart rate\":");
 Serial.print(heartRate);
 Serial.println("}");
```

NODERED DASHBOARD

Node Red Dashboard

- Node Red is used to display data received from sensors.
- It reads parsed data from serial and displays into a dashboard.
- A workflow is implemented for this reason.

Node Red Dashboard

Thank you!