MÈTODES NUMÈRICS I

Grau de Matemàtiques. Curs 2016/17. Semestre de tardor

PRÀCTICA 10

Integració numèrica

Exercici 1 [Fórmula dels trapezis composta, amb estalvi d'avaluacions de la funció] Sigui $I = \int_a^b f(x)dx$, amb $f \in C^2([a,b])$, $a,b \in R$, a < b.

La **fórmula dels trapezis composta** per a aproximar I és

$$T_n \equiv T(h) \equiv h\left(\frac{1}{2}f(x_0) + f(x_1) + f(x_2) + \dots + f(x_{n-2}) + f(x_{n-1}) + \frac{1}{2}f(x_n)\right)$$

on $n \geq 1$ és el nombre de subintervals, $h = \frac{b-a}{n}$ és la longitud dels subintervals i $x_i = a + ih$, $i = 0 \div n$ són les abscisses on s'avalua f. Observem que, en la fórmula de T_n , hi ha n + 1 avaluacions de f.

Respecte l'error, se sap que $T(h) = I + O(h^2)$. Així que, aproximadament, es verifica: si el pas h es divideix per 2, llavors l'error de la fórmula dels trapezis es divideix per 4.

En aplicacions reals pot passar que la funció f sigui molt cara d'avaluar, de manera que és convenient fer com menys avaluacions de f millor.

Des d'aquest punt de vista, quin cost extra té dividir el pas h per 2? En principi, equival a duplicar n, i en la fórmula de T_{2n} hi ha 2n + 1 avaluacions de f. Però resulta que n + 1 d'aquestes avaluacions són en les mateixes abscisses que ja sortien a T_n . Així que només n avaluacions són en abscisses noves. Vegem-ho amb més detall:

• Quan n = 1, h = (b - a) i hi ha abscisses x_i per a i = 0, 1. És

$$T_1 = h(\frac{1}{2}f(x_0) + \frac{1}{2}f(x_1))$$
.

Per a trobar l'aproximació T_1 inicial, cal fer dues avaluacions de f.

 \bullet Quan $n=2,\,h=(b-a)/2$ i hi ha abscisses x_i per a i=0,1,2. És

$$T_2 = h(\frac{1}{2}f(x_0) + f(x_1) + \frac{1}{2}f(x_2)) = \frac{1}{2}T_1 + hf(x_1)$$
.

Per a trobar T_2 , es pot usar T_1 i només cal fer una avaluació nova de f.

 \bullet Quan $n=4,\,h=(b-a)/4$ i hi ha abscisses x_i per a i=0,1,2,3,4. És

$$T_4 = h(\frac{1}{2}f(x_0) + f(x_1) + f(x_2) + f(x_3) + \frac{1}{2}f(x_4)) = \frac{1}{2}T_2 + h(f(x_1) + f(x_3)).$$

Per a trobar T_4 , es pot usar T_2 i només cal fer dues avaluacions noves de f.

• ...

Useu les explicacions anteriors per a fer un programa que calculi aproximacions de I. Tindrà les característiques següents:

- S'han de calcular aproximacions successives de I mitjançant la fórmula T_n dels trapezis amb n = 1, 2, 4, 8, 16, ...
- Excepte T_1 , per a la resta de valors T_k s'usarà una funció on es calcula T_{2n} a partir de T_n . O sigui, a la funció se li passen els valors 2n, a, b i T_n , i retorna T_{2n} . Dins de la funció es faran només n avaluacions de f.
- S'aturarà el procés quan, o bé $|T_{2n} T_n|$ sigui menor que una precisió demanada prec (per exemple 10^{-12}); o bé n s'ha anat duplicat una quantitat max de vegades (per exemple, 20).

Apliqueu-ho a algun cas que es pugui resoldre analíticament, per tal de comprovar que va bé. Per exemple, $I \equiv \int_0^1 \frac{1}{1+x} = log(2)$.

Comproveu també que els errors es comporten com s'ha explicat anteriorment.

Exercici 2 [Mètode de Romberg: trapezis i extrapolació repetida de Richardson] Quan f és suficientment diferenciable, l'error de la fórmula dels trapezis composta verifica

$$T(h) = I + a_1 h^2 + a_2 h^4 + a_3 h^6 + \cdots$$

Aquesta expressió mostra que el métode de trapezis és molt adequat per a aplicar-li el procés d'extrapolació, amb exponents $p_j = 2j$, $\forall j \geq 1$.

Feu una variació del programa anterior on s'hi afegeixi l'extrapolació de Richardson. O sigui, cal anar calculant aproximacions

$$T_0(h)$$

 $T_0(h/2)$ $T_1(h)$
 $T_0(h/4)$ $T_1(h/2)$ $T_2(h)$
...

S'avança per files i = 0, 1, 2, ...; i, en cada fila $i \ge 0$, per columnes j = 0, 1, ..., i. Concretament, si notem $n = 2^i$, llavors

- L'element de la columna 0 es calcula mitjançant trapezis: $T_0(h/2^i) = T_n$.
- Per a $j \geq 1$, l'element de la columna j es calcula a partir de dos elements de la columna anterior, mitjançant l'etapa j d'extrapolació:

$$T_j(h/2^i) = \frac{4^j T_{j-1}(h/2^{i+1}) - T_{j-1}(h/2^i)}{4^j - 1}$$
.

Abans d'iniciar el càlcul d'una nova fila, mireu si la diferència entre els elements de les dues últimes columnes calculades ja és menor que la precisió desitjada.

Observeu el comportament de l'error (diferència dels dos últims valors de cada fila). Fixada una precisió prec, s'estalvien avaluacions de la funció f? (respecte l'exercici 1).