WHAT IS CLAIMED IS:

- 1. An isolated soluble complex comprising at least 6 amino acids of the mature protein portion of SEQ ID NO: 2 or 4, and:
 - a) at least 6 amino acids of the mature protein portion of SEQ ID NO: 12 or 13; or
 - b) at least 6 amino acids of the mature protein portion of the CNTF-R.

10

15

20

35

- 2. The complex of Claim 1, wherein said complex:
 - a) comprises a recombinant polypeptide of mature SEQ ID NO: 2 or 4;
 - b) comprises a recombinant polypeptide of mature SEQ ID NO: 12 or 13;
 - c) comprises a recombinant polypeptide of mature CNTF-R;
 - d) comprises both a recombinant polypeptide of mature SEQ ID NO: 2 or 4, and a recombinant polypeptide of mature SEQ ID NO: 12 or 13;
 - e) comprises both a recombinant polypeptide of mature SEQ ID NO: 2 or 4, and a recombinant polypeptide of mature CNTF-R;
 - f) is detectably labeled;
- 25 g) is in a buffered solution; or
 - h) is in a sterile solution.
 - 3. The complex of Claim 1, which:
 - a) comprises a mature IL-B60 polypeptide;
- 30 b) comprises a mature CLF-1 polypeptide;
 - c) comprises a mature CNTF-R polypeptide;
 - d) exhibits at least four nonoverlapping segments of at least seven amino acids of SEQ ID NO: 2 or 4;
 - e) exhibits epitopes from both primate L-B60 and primate CLF-1;

5 .

20

25

30

- f) exhibits epitopes from both primate L-B60 and primate CNTF-R;
- g) is not glycosylated;
- h) is attached to a solid substrate;
- i) is conjugated to another chemical moiety; or
- j) comprises a detection or purification tag, including a FLAG, His6, or Ig sequence.
- 4. A kit comprising said complex of Claim 1, and:
- a) a compartment comprising said complex; or
 - b) instructions for use or disposal of reagents in said kit.
- 5. An isolated or recombinant polypeptide comprising:
 - a) a first segment comprising at least seven amino acids identical to segments of SEQ ID NO: 2 or 4, and a second segment comprising at least seven amino acids identical to segments of mature SEQ ID NO: 12 or 13;
 - b) at least two distinct nonoverlapping segments of at least five amino acids identical to segments of mature SEQ ID NO: 2 or 4, and a third segment comprising at least seven amino acids identical to segments of mature SEQ ID NO: 12 or 13;
 - c) at least one segment comprising at least seven amino acids identical to segments of mature SEQ ID NO: 2 or 4, and two distinct nonoverlapping segments of at least five amino acids identical to segments of mature SEQ ID NO: 12 or 13;
 - d) a first segment comprising at least seven amino acids identical to segments of SEQ ID NO: 2 or 4, and a second segment comprising at least seven amino acids identical to segments of mature primate CNTF-R;

- e) at least two distinct nonoverlapping segments of at least five amino acids identical to segments of mature SEQ ID NO: 2 or 4, and a third segment comprising at least seven amino acids identical to segments of mature primate CNTF-R; or
- f) at least one segment comprising at least seven amino acids identical to segments of mature SEQ ID NO: 2 or 4, and two distinct nonoverlapping segments of at least five amino acids identical to segments of mature primate CNTF-R.
- 6. The polypeptide of Claim 5, wherein said distinct nonoverlapping segments of identity:
 - a) include one of at least eight amino acids;
- b) include one of at least five amino acids and a second of at least six amino acids;
 - c) include at least three segments of at least four, five, and six amino acids, or
 - d) include one of at least twelve amino acids.

5

- 7. The polypeptide of Claim 5, which:
 - a) comprises a mature IL-B60 sequence;
 - b) comprises a mature CLF-1 sequence;
 - c) comprises a mature CNTF-R sequence;
- d) exhibits at least four nonoverlapping segments of at least seven amino acids of SEQ ID NO: 2 or 4;
 - e) has a length at least about 30 amino acids;
 - f) exhibits epitopes from both primate IL-B60 and primate CLF-1;
- g) exhibits epitopes from both primate IL-B60 and primate CNTF-R;
 - h) is not glycosylated;
 - i) has a molecular weight of at least 30 kD;
 - j) is a synthetic polypeptide;
- 35 k) is attached to a solid substrate;
 - 1) is conjugated to another chemical moiety; or

- m) comprises a detection or purification tag, including a FLAG, His6, or Ig sequence.
- 8. A composition comprising:
- 5 a) substantially pure combination of IL-B60 and CLF-1;
 - b) substantially pure combination of IL-B60 and CNTF-R;
 - c) a sterile polypeptide of Claim 5; or
- d) said polypeptide of Claim 5 and a carrier, wherein said carrier is:
 - i) an aqueous compound, including water, .
 saline, and/or buffer; and/or
 - ii) formulated for oral, rectal, nasal,
 topical, or parenteral administration.
 - 9. A kit comprising a polypeptide of Claim 5, and:
 - a) a compartment comprising said polypeptide; or
 - b) instructions for use or disposal of reagents in said kit.
 - 10. A method:

20

- a) of making an antibody which recognizes a complex of Claim 1, comprising inducing an immune response in an animal with said complex;
- b) of immunoselecting antibodies, comprising contacting a population of antibodies to a complex of Claim 1, and separating antibodies that bind from those which do not bind; or
- 30 c) of formulating a composition, comprising admixing a complex of Claim 1 with a carrier.
- 11. A binding compound comprising an antigen binding site from an antibody, which antibody specifically binds said complex of Claim 2d or 2e, but not to any of said mature polypeptides of SEQ ID NO: 2, 4, 12, 13, or CNTF-R.

35

said kit.

	12.	The binding compound of Claim 11, wherein:
	a)	said binding compound is:
		i) in a container;
5		ii) an Fv, Fab, or Fab2 fragment; or
		iii) conjugated to another chemical moiety; or
	b)	said antibody:
		i) is raised against a substantially pure
		complex of IL-B60 with CLF-1;
10		ii) is raised against a substantially pure
		complex of IL-B60 with CNTF-R;
		iii) is immunoselected;
		iv) is a polyclonal antibody;
		v) exhibits a Kd to antigen of at least 30 μ M;
15	•	vi) is attached to a solid substrate, including
		a bead or plastic membrane;
		vii) is in a sterile composition; or
		viii) is detectably labeled, including a
		radioactive or fluorescent label.
20		
	13.	A composition comprising:
	a)	a sterile binding compound of Claim 12, or
	b)	said binding compound of Claim 12 and a carrier,
		wherein said carrier is:
25		i) an aqueous compound, including water,
		saline, and/or buffer; and/or
		ii) formulated for oral, rectal, nasal,
		topical, or parenteral administration.
30	14.	A kit comprising said binding compound of Claim
	11, and:	
	a)	a compartment comprising said binding compound;
		or
	b)	instructions for use or disposal of reagents in

- 15. A method of producing an antigen:antibody complex, comprising contacting under appropriate conditions a primate complex comprising:
 - a) IL-B60 and CLF-1 polypeptides; or
- 5 b) IL-B60 and CNTF-R polypeptides; with an antibody of Claim 11, thereby allowing said complex to form.
 - 16. The method of Claim 15, wherein:
- 10 a) said complex is purified from other cytokines;
 - b) said complex is purified from other antibody;
 - c) said contacting is with a sample comprising a cytokine;
 - d) said contacting allows quantitative detection of said antigen;
 - e) said contacting is with a sample comprising said antibody; or
 - f) said contacting allows quantitative detection of said antibody.

25

- 17. An isolated or recombinant nucleic acid:
 - a) encoding said amino acid portions of Claim 5;
 - b) encoding said amino acid portions of Claim 5, and comprise a segment at least 30 contiguous nucleotides from SEQ ID NO: 1 or 3;
 - c) which will coexpress a segment of at least seven contiguous amino acids from SEQ ID NO: 2 or 4, and a segment of at least seven contiguous amino acids from SEQ ID NO: 12 or 13; or
- d) which will coexpress a segment of at least seven contiguous amino acids from SEQ ID NO: 2 or 4, and a segment of at least seven contiguous amino acids from CNTF-R.
- 35 18. The nucleic acid of Claim 17, which:
 - a) encodes IL-B60 from a human;

- b) encodes CLF-1 from a human;
- c) encodes CNTF-R from a human;
- d) is an expression vector;
- e) further comprises an origin of replication;
- 5 f) comprises a detectable label;
 - g) comprises synthetic nucleotide sequence; or
 - h) is less than 6 kb, preferably less than 3 kb.
- 19. A cell comprising said recombinant nucleic acid10 of Claim 18.
 - 20. The cell of Claim 19, wherein said cell is:
 - a) a prokaryotic cell;
 - b) a eukaryotic cell;
- 15 c) a bacterial cell;
 - d) a yeast cell;
 - e) an insect cell;
 - f) a mammalian cell;
 - g) a mouse cell;
- 20 h) a primate cell; or
 - i) a human cell.
 - 21. A kit comprising said nucleic acid of Claim 18, and:
- 25 a) a compartment comprising said nucleic acid;
 - b) a compartment further comprising a primate IL-B60 polypeptide;
 - c) a compartment further comprising a primate CLF-1 polypeptide;
- 30 d) a compartment further comprising a primate CNTF-R polypeptide; or
 - e) instructions for use or disposal of reagents in said kit.

25

- 22. A method:
 - a) of making a duplex nucleic acid, comprising contacting a nucleic acid of Claim 17 with a complementary nucleic acid under appropriate conditions, thereby forming said duplex;
 - b) of expressing a polypeptide, comprising expressing said nucleic acid of Claim 17, thereby producing said polypeptide; or
- c) of transfecting a cell, comprising contacting
 said cell under appropriate conditions with said
 nucleic acid of Claim 17.
 - 23. An isolated or recombinant nucleic acid which encodes at least 5 contiguous amino acids of SEQ ID NO:
- 15 12, 13, or primate CNTF-R and:
 - a) hybridizes under wash conditions of 30 minutes at 30° C and less than 2M salt to the coding portion of SEQ ID NO: 1; or
- b) exhibits identity over a stretch of at least about 30 nucleotides to a primate IL-B60.
 - 24. The isolated nucleic acid of Claim 23, wherein:
 - a) said contiguous amino acids number at least 8;
 - b) said wash conditions are at 45° C and/or 500 mM salt; or
 - c) said stretch is at least 55 nucleotides.
 - 25. The recombinant nucleic acid of Claim 23, wherein:
 - a) said contiguous amino acids number at least 12;
 - b) said wash conditions are at 55° C and/or 150 mM salt; or
 - c) said stretch is at least 75 nucleotides.
- 35 26. A method of modulating physiology or development of a cell or tissue culture cells comprising contacting

said cell with an agonist or antagonist of a complex comprising mammalian IL-B60 and:

- a) CLF-1; or
- b) CNTF-R.

5

- 27. A method of:
 - a) producing a complex of Claim 1, comprising coexpressing a recombinant IL-B60 with a recombinant CLF-1 or CNTF-R;
- b) increasing the secretion of an IL-B60 polypeptide comprising expressing said polypeptide with CLF-1; or
 - c) increasing the secretion of a CLF-1 polypeptide, comprising expressing said CLF-1 with an IL-B60.

15

20

- 28. The method of Claim 27, wherein:
 - a) said increasing is at least 3 fold; or
 - b) said expressing is of a recombinant nucleic acid encoding one or both of said polypeptide and CLF-1.
- 29. A method of screening for a receptor which binds said complex of Claim 1, comprising contacting said complex to a cell expressing said receptor under conditions allowing said complex to bind to said receptor, thereby forming a detectable interaction.
 - The method of Claim 29, wherein said interaction results in a physiological response in said cell.

SEQUENCE LISTING

```
SEQ ID NO: 1 is a primate IL-B60 natural nucleic acid sequence.
     SEQ ID NO: 2 is a primate IL-B60 natural amino acid sequence.
     SEQ ID NO: 3 is a rodent IL-B60 natural nucleic acid sequence.
     SEQ ID NO: 4 is a rodent IL-B60 natural amino acid sequence.
     SEQ ID NO: 5 is a rodent LIF.
     SEQ ID NO: 6 is a primate LIF.
10
     SEQ ID NO: 7 is a primate CT-1.
     SEQ ID NO: 8 is a rodent CT-1.
     SEQ ID NO: 9 is a primate CNTF.
     SEQ ID NO: 10 is a rodent CNTF.
     SEQ ID NO: 11 is a primate DNAX IL-40.
15
     SEQ ID NO: 12 is a primate CLF-1.
     SEQ ID NO: 13 is a rodent CLF-1.
     <110> Oppmann, Birgit
20
           Timans, Jacqueline C.
           Kastelein, Robert A.
           Bazan, J. Fernando
     <120> Mammalian Cytokines; Related Reagents and Methods
25
     <130> DX0935K
     <140> 09/xxx,xxx
     <141> 2000-03-09
30
     <160> 13
     <170> PatentIn Ver. 2.0
35
     <210> 1
     <211> 1790
     <212> DNA
     <213> primate
40
     <220>
     <221> CDS
     <222> (162)..(806)
     <220>
45
     <221> mat_peptide
     <222> (213)..(806)
     <400> 1
     ccgagcgaaa aaaacctgcg agtgggcctg gcggatggga ttattaaagc ttcgccggag 60
50
     ecgeggeteg ceeteceact eegecageet eegggagagg ageegeacee ggeeggeeeg 120.
     gccccagccc catggacctc cgagcagggg actcgtgggg g atg tta gcg tgc ctg 176
                                                    Met Leu Ala Cys Leu
55
     tgc acg gtg ctc tgg cac ctc cct gca gtg cca gct ctc aat cgc aca
                                                                        224
     Cys Thr Val Leu Trp His Leu Pro Ala Val Pro Ala Leu Asn Arg Thr
                                   -5
             -10
                                                   -1 1
```

· 5	ggg gac Gly Asp 5								_				_			272
J	cgc tac Arg Tyr	_		_						_				-		320
10	tác ctg Tyr Leu								_					_	_	368
15	ggg gca Gly Ala			_			_		-	_	_				_	416
20.	agc ctc Ser Leu 70	Asn							-				_		_	464
25	cac ctt His Leu 85	_	-		_	_				-	_	-	-		_	512
	gag ctg Glu Leu															5,60
30	ctg ggc Leu Gly	_							_	_				_		608
35	cag ccg Gln Pro															656
40	agt gac Ser Asp 150	Phe		_	-	-	-	-			_	-	_		-	704
45	cag acc Gln Thr 165															752
	aag atg Lys Met															800
50	ggc ttc Gly Phe	_	cttct	ga d	cctt	etect	c tt	cgct	cccc	ctt	caaa	accc	tgct	tccca	act	856
	ttgtgag	agc c	cagco	cctgt	a to	gccaa	acaco	tgt	tgaç	gcca	ggag	gacag	gaa g	gctgt	gagcc	916
55	tctggcc	ctt t	cctg	gaco	g g	tggg	gcgtg	g tga	atgco	gatc	agco	ctgt	ct o	cctcc	ccacc	976
	tcccaaa	ggt d	ctaco	gago	ct gg	ggag	ggagg	g tac	cagta	aggc	ccto	gtcct	gt d	cctgt	ttcta	1036
60	caggaag	tca t	gcto	gagg	gg ag	gtgtg	gaagt	ggt	tcag	gtt	ggtg	gcaga	agg o	cgcto	catggc	1096

	ctcctgct	tc t	tgcc	tacca	cttgg	ccagt	gco	ccac	ccag	ccc	ctcag	ggt	ggca	catctg	1156
	gagggcag	gg g	ttga	ggggc	cacca	.ccaca	a cat	tgcct	tttc	tggg	ggtga	aag	ccctt	tggct	1216
5	gccccact	ct c	cttg	gatgg	gtgtt	gctco	ctt	tatco	ccca	aato	cacto	cta	tacat	ccaat	1276
	tcaggaaa	.ca a	acat	ggtgg	caatt	ctaca	a caa	aaaa	gaga	tgag	gatta	aac	agtgo	cagggt	1336
10	tggggtct	gc a	ttgg	aggtg	cccta	taaac	cag	gaaga	agaa	aata	actga	aaa	gcaca	aggggc	1396
	agggacag	ac c	agac	cagac	ccagg	agtct	cca	aaago	caca	gagt	ggca	aaa	caaaa	acccga	1456
	gctgagca	tc a	ggac	cttgc	ctcga	attgt.	ctt	ccag	gtat	tacg	ggtgo	cct	cttct	ctgcc	1516
15	ccctttcc	ca g	ggta	tctgt	gggtt	gccag	g gct	gggg	gagg	gcaa	accat	ag	ccaca	accaca	1576
	ggatttcc	tg a	aagt	ttaca	atgca	gtago	att	ttgg	gggt	gtag	ggt	ggc	agcto	cccaa	1636
20	ggccctgc	cc c	ccag	cccca	cccac	tcato	g act	ctaa	agtg	tgtt	gtat	ta	atatt	tattt	1696
	atttggag	at g	ttat	ttatt	agatg	atatt	tat	tgca	agaa	tttc	ctatt	ct	tgtat	taaca	1756
	aataaaat	gc t	tgcc	ccaga	acaaa	aaaaa	aaa	aa							1.790
25	<210> 2 <211> 21 <212> PR <213> pr	T.	e												
30	<400> 2						•								•
	Met Leu	Ala -15	Cys I	Leu C	ys Thr	-10	Leu	Trp	His	Leu	Pro -5	Ala	Val	Pro	
35	Ala Leu -1 1	Asn .	Arg '	Thr G	ly Asp 5	Pro	Gly	Pro	Gly 10	Pro	Ser	Ile	Gln	Lys 15	
10	Thr Tyr	Asp :	Leu '	Thr A	rg Tyr	Leu	Glu	His 25	Gln	Leu	Arg	Ser	Leu 30	Ala	
	Gly Thr	Tyr	Leu 2 35	Asn T	yr Leu	Gly	Pro 40	Pro	Phe	Asn	Glu	Pro 45		Phe .	
1 5	Asn Pro	Pro . 50	Arg 1	Leu G	ly Ala	Glu 55	Thr	Leu	Pro	Arg	Ala 60	Thr	Val	Asp	
	Leu Glu 65	Val '	Trp /	Arg S	er Leu 70		Asp	Lys	Leu	Arg 75	Leu	Thr	Gln	Asn	
50	Tyr Glu 80	Ala '	Tyr		is Leu 85	Leu	Cys	Tyr	Leu 90	Arg	Gly	Leu	Asn	Arg 95	
55	Gln Ala	Ala		Ala G 100	lu Leu	Arg	Arg	Ser 105	Leu	Ala	His	Phe	Cys 110	Thr	
	Ser Leu		Gly 1 115	Leu L	eu Gly		Ile 120	Ala	Gly	Val	Met	Àla 125	Ala	Leu	
	Gly Tyr	Pro :	Leu 1	Pro G	ln Pro	Leu	Pro	Gly	Thr	Glu	Pro	Thr	Trp	Thr	

	Pro	Gly 145	Pro	Ala	His	Ser	Asp 150	Phe	Leu	Gln	Lys	Met 155	Asp	Așp	Phe	Trp	
5	Leu 160	Leu	Lys	Glu	Leu	Gln 165	Thr	Trp	Leu	Trp	Arg 170	Ser	Ala	Lys	Asp	Phe 175	
1.0	Asn	Arg	Leu	Lys	Lys 180	Lys	Met	Gln	Pro	Pro 185	Ala	Ala	Ala	Val	Thr 190	Leu	
10	His	Leu	Gly	Ala 195	His	Gly	Phe										
15	<212	L> 64 2> DI		ce												•	
20 .		L> CI	os 1)	(645)													
25		L> ma	at_pe 52).	-													
30		tta							Leu		cac His						48
35											ggc Gly 10						96
40											caa Gln						144
											ttc Phe						192
45											ccc Pro						240
50											ctg Leu						288
55.											ttg Leu 90						33.
60											ctg Leu						384

•	OPE	PMAN	N,	et a	al.				1	L03							DX0935K
				ggc Gly 115													432
5				ctg Leu													480
10				gcc Ala												tgg Trp	528
15				gag Glu													576
20				aag Lys	_	Lys	_	_			_	_		_		_	624
		_		gcc Ala 195				tga	٠								648
25	<213 <213	0> 4 1> 2: 2> Pi 3> pi		te													
30		0> 4 Leu	Ala -15	Cys	Leu	Cys	Thr	Val -10	Leu	Trp	His	Leu	Pro -5	Ala	Val	Pro	·
35	Ala -1	Leu 1	Asn	Arg	Thr	Gly 5	Asp	Pro	Gly	Pro	Gly 10	Pro	Ser	Ile	Gln	Lys 15	
40	Thr	Tyr	Asp	Leu	Thr 20	Arg	Tyr	Leu	Glu	His 25	Gln	Leu	Arg	Ser	Leu 30	Ala	
	Gly	Thr	Tyr	Leu 35	Asn	Tyr	Leu	Gly	Pro 40	Pro	Phe	Asn	Glu	Pro 45	Asp	Phe	
45	Asn	Pro	Pro 50	Arg	Leu	Gly	Ala	Glu 55	Thr	Leu	Pro	Arg	Ala 60	Thr	Val	Asn	
	Leu	Glu 65	Val	Trp	Arg	Ser	Leu 70	Asn	Asp	Arg	Leu	Arg 75	Leu	Thr	Gln	Asn	
50	Туr 80	Glu	Ala	Tyr	Ser	His 85	Leu	Leu	Cys	Tyr	Leu 90	Arg	Gly	Leu	Asn	Arg 95	
55	Gln ·	Ala	Ala	Thr	Ala 100	Glu	Leu	Arg	Arg	Ser 105	Leu	Ala	His	Phe	Cys 110	Thr	
	Ser	Leu	Gln	Gly 115	Leu	Leu	Gly	Ser	Ile 120	Ala	Gly	Val	Met	Ala 125	Thr	Leu	

Gly Tyr Pro Leu Pro Gln Pro Leu Pro Gly Thr Glu Pro Ala Trp Ala 130 $$ 135 $$ 140

	Pro	Gly 145	Pro	Ala	His	Ser	Asp 150	Phe	Leu	Gln	Lys	Met 155	Asp	Asp	Phe	Trp
5	Leu 160	Leu	Lys	Glu		Gln 165	Thr	Trp	Leu	Trp	Arg 170	Ser	Ala	Lys	Asp	Phe 175
10	Asn	Arg	Leu	Lys	Lys 180	Lys	Met	Gln	Pro	Pro 185	Ala	Ala	Ser	Val	Thr 190	Leu
	His	Leu	Glu	Ala 195	His	Gly	Phe									
15	<212	L> 20 2> PF		=												
20)> 5 Lys	Val	Leu	Ala 5	Ala	Gly	Ile	Val	Pro 10	Leu	Leu	Leu	Leu	Val 15	Let
25	His	Trp	Lys	His 20	Gly	Ala	Gly	Ser	Pro 25	Leu	Pro	Ile	Thr	Pro 30	Val	Asr
	Ala	Thr	Cys 35	Ala	Ile	Arg	His	Pro 40	Суѕ	His	Gly		Leu 45	Met	Asn	Glr
30 ·	Ile	Lys 50	Asn	Gln	Leu	Ala	Gln 55	Leu	Asn	Gly	Ser	Ala 60	Asn	Ala	Leu	Phe
35	Ile 65	Ser	Tyr	Tyr	Thr	Ala 70	Gln	Gly	Glu	Pro	Phe 75	Pro	Asn	Asn	Val	Gl: 80
, ,	Lys	Leu	Cys	Ala	Pro 85	Asn	Met	Thr	Asp	Phe 90	Pro	Ser	Phe	His	Gly 95	Ası
40	Gly	Thr	Glu	Lys 100	Thr	Lys	Leu	Val	Glu 105	Leu	Tyr	Arg	Met	Val 110	Ala	Туз
	Leu	Ser	Ala 115	Ser	Leu	Thr	Asn	Ile 120	Thr	Arg	Asp	Gln	Lys 125	Val	Leu	Ası
45	Pro	Thr 130	Ala	Val	Ser	Leu	Gln 135	Val	Lys	Leu	Asn	Ala 140	Thr	Ile	Asp	Va:
50	Met 145	Arg	Gly	Leu	Leu	Ser 150	Asn	Val	Leu	Суѕ	Arg 155	Leu	Cys	Asn		Ту: .160
30	Arg	Val	Gly	His	Val 165	Asp	Val	Pro	Pro	Val 170	Pro	Asp	His	Ser	Asp 175	Lys
55	Glu	Ala	Phe	Gln 180	Arg	Lys	Lys	Leu	Gly 185	Cys	Gln	Leu	Leu	Gly 190	Thr	Ту
	Lys	Gln	Val 195	Ile	Ser	Val	Val	Val 200	Gln	Ala	Phe					

5	<212	l> 20 2> PI		:e												
J	<400 Met		Val	Leu	Ala 5	Ala	Gly	Val	Val	Pro 10	Leu	Leu	Leu	Val	Leu 15	His
10	Trp	Lys	His	Gly 20	Ala	Gly	Ser	Pro	Leu 25	Pro	Ile	Thr	Pro	Val 30	Asn	Ala
15	Thr	Суѕ	Ala 35	Ile	Arg	His	Pro	Cys 40	His	Asn	Asn	Leu	Met 45	Asn	Gln	Ile
	Arg	Ser 50	Gln	Leu	Ala	Gln	Leu 55	Asn	Gly	Ser	Ala	Asn 60	Ala	Leu	Phe	Île
20	Leu 65	Tyr	Tyr	Thr	Ala	Gln 70	Gly	Glu	Pro	Phe	Pro 75	Asn	Asn	Leu	Asp	Lys 80,
	Leu	Cys	Gly	Pro	Asn 85	Val	Thr	Asp	Phe	Pro 90	Pro	Phe	His	Ala	Asn 95	Gly
25	Thr	Glu	Lys	Ala 100	Lys	Leu	Val	Glu	Leu 105	Tyr	Arg	Ile	Val	Val 110	Tyr	Leu
30	Gly	Thr	Ser 115	Leu	Gly	Asn	Ile	Thr 120	Arg	Asp	Gln	Lys	Ile 125	Leu	Asn	Pro
	Ser	Ala 130	Leu	Ser	Leu	His	Ser 135	Lys	Leu	Asn	Ala	Thr 140	Ala	Asp	Ile	Leu
35	Arg 145	Gly	Leu	Leu	Ser	Asn 150	Val	Leu	Cys	Arg	Leu 155	Cys	Ser	Lys	Tyr	His 160
	Val-	Gly	His	Val	Asp 165	Val	Thr	Tyr	Gly	Pro 170	Asp	Thr	Ser	Gly	Lys 175	Asp
40	Val	Phe	Gln			Lys								Lys 190	Tyr	Lys
45	Gln	Ile	Ile 195	Ala	Val	Leu	Ala	Gln 200	Ala	Phe						
50	.<212	l> 20 2> Pi		:e												
•	<400	0> 7	Arg		Glu	Glv	Ser	Leu	Glu	Asp	Pro	Gln	Thr	Asp	Ser	Ser
55	1		Leu		5					10					15	•
				20					25					30		
60	ьeи	HIG	His 35	ьeu	ьeu	III	ьys	40	wig	GIU	GIII	ьeu	45	GIII	GIU	тÄI

	Val	Gln 50	Leu	Gln	Gly	Asp	Pro 55	Phe	Gly	Leu	Pro	Ser 60	Phe	Ser	Pro	Pro
5	Arg 65	Leu	Pro	Val	Ala	Gly 70	Leu	Ser	Ala	Pro	Ala 75	Pro	Ser	His	Ala	Gly 80
10	Leu	Pro	Val	His	Glu 85	Arg	Leu	Arg	Leu	Asp 90	Ala	Ala	Ala	Leu	Ala 95	Ala
10	Leu	Pro	Pro	Leu 100	Leu	Asp	Ala	Val	Cys 105	Arg	Arg	Gln	Ala	Glu 110	Leu	Asn
15	Pro	Arg	Ala 115	Pro	Arg	Leu	Leu	Arg 120	Arg	Leu	Glu	Asp	Ala 125	Ala	Arg	Gln
	Ala	Arg 130	Ala	Leu	Gly	Ala	Ala 135	Val	Glu	Ala	Leu	Leu 140	Ala	Ala	Leu	Gly
20	Ala 145	Ala	Asn	Arg	Gly	Pro 150	Arg	Ala	Glu	Pro	Pro 155	Ala	Ala	Thr	Ala	Ser 160
25	Ala	Ala	Ser	Ala	Thr 165	Gly	Val	Phe	Pro	Ala 170	Lys	Val	Leu	Gly	Leu 175	Arg
	Val	Суѕ	Gly	Leu 180	Tyr	Arg	Glu	Trp	Leu 185	Ser	Arg	Thr	Glu	Gly 190	Asp	Leu
30	Gly	Gln	Leu 195	Leu	Pro	Gly	Gly	Ser 200	Ala			٠				
35	<213 <212	0> 8 1> 20 2> PI 3> ro		Ė.											. *	
40		0> 8 Ser	Gln	Arg	Glu 5	Gly	Ser	Leu	Glu	Asp 10	His	Gln	Thr	Asp	Ser 15	Ser
	Ile	Ser	Phe	Leu 20	Pro	His	Leu	Glu	Ala 25	Lys	Ile	Arg	Gln	Thr 30	His	Asn
45	Leu	Ala	Arg 35	Leu	Leu	Thr	Lys	Tyr 40	Ala	Glu	Gln	Leu	Leu 45	Glu	Glu	Tyr
50	Val	Gln 50	Gln	Gln	Gly	Glu	Pro 55	Phe	Gly	Leu	Pro	Gly 60	Phe	Ser	Pro	Pro
30	Arg 65	Leu	Pro	Leu	Ala	Gly 70	Leu	Ser	Gly	Pro	Ala 75	Pro	Ser	His	Ala	Gly 80
55 .	Leu	Pro	Val	Ser	Glu 85	Arg	Leu	Arg	Gln	Asp 90	Ala	Ala	Ala	Leu	Ser 95	Val
	Leu	Pro	Ala	Leu 100	Leu	Asp	Ala	Val	Arg	Arg	Arg	Gln	Ala	Glu 110	Leu	Asn

•																
	Pro	Arg	Ala 115	Pro	Arg	Leu	Leu	Arg 120	Ser	Leu	Glu	Asp	Ala 125	Ala	Arg	Gln
5	Val	Arg 130	Ala	Leu	Gly	Ala	Ala 135	Val	Glu	Thr	Val	Leu 140	Ala	Ala	Leu	Gly
	Ala 145	Ala	Ala	Arg	Gly	Pro 150	Gly	Pro	Glu	Pro	Val 155	Thr	Val	Ala	Thr	Leu 160
10	Phe	Thr	Ala	Asn	Ser 165	Thr	Ala	Gly	Ile	Phe 170	Ser	Ala	Lys	Val	Leu 175	Gly
15	Phe	His	Val	Cys 180	Gly	Leu	Tyr	Gly	Glu 185	Trp	Val	Ser	Arg	Thr 190	Glu	Gly
	Asp	Leu	Gly 195	Gln	Leu	Val	Pro	Gly 200	Gly	Val	Ala					
20	<213 <213	0> 9 1> 20 2> PI 3> pi		:e	٠.											
25		0> 9 Ala	Phe	Thr	Glu 5	His	Ser	Pro	Leu	Thr 10	Pro	His	Arg	Arg	Asp 15	Leu
30	Суѕ	Ser	Arg	Ser 20	Ile	Trp	Leu	Ala	Arg 25	Lys	Ile	Arg	Ser	Asp 30	Leu	Thr
	Ala	Leu	Thr 35	Glu	Ser	Tyr	Val	Lys 40	His	Gln	Gly	Leu	Asn 45	Lys	Asn	Ile
35	Asn	Leu 50	Asp	Ser	Ala	Asp	Gly 55	Met	Pro	Val	Ala	Ser 60	Thr	Asp	Gln	Trp
40	Ser 65	Glu	Leu	Thr	Glu	Ala 70	Glu	Arg	Leu	Gln	Glu 75	Asn	Leu	Gln	Ala	Туr 80
	Arg	Thr	Phe	His	Val 85	Leu	Leu	Ala	Arg	Leu 90	Leu	Glu	Asp	Gln	Gln 95	Val
45	His	Phe	Thr	Pro 100	Thr	Glu	Gly	Asp	Phe 105	His	Gln	Ala	Ile	His 110	Thr	Leu
	Leu	Leu	Gln 115	Val	Ala	Ala	Phe	Ala 120	Туr	Gln	Ile	Glu	Glu 125	Leu	Met	Ile
50	Leu	Leu 130	Glu	Tyr	Lys	Ile	Pro 135	Arg	Asn	Glu	Ala	Asp 140	Gly	Met	Pro	Ile
55	Asn 145	Val	Gly	Asp	Gly	Gly 150	Leu	Phe	Glu	Lys	Lys 155	Leu	Trp	Gly	Leu	Lys 160
-	Val	Leu	Gln	Glu	Leu 165	Ser	Gln	Trp	Thr	Val 170	Arg	Ser	Ile	His	Asp 175	Leu
60	Arg	Phe	Ile	Ser 180	Ser	His	Gln	Thr	Gly 185	Ιle	Pro	Ala	Arg	Gly 190	Ser	His

```
Tyr Ile Ala Asn Asn Lys Lys Met
195 200

5

<210> 10
<211> 198
<212> PRT
<213> rodent

10
```

<400> 10

Met Ala Phe Ala Glu Gln Ser Pro Leu Thr Leu His Arg Arg Asp Leu 1 5 10 15

Cys Ser Arg Ser Ile Trp Leu Ala Arg Lys Ile Arg Ser Asp Leu Thr 20 25 30

Ala Leu Met Glu Ser Tyr Val Lys His Gln Gly Leu Asn Lys Asn Ile 35 40 45

20
Ser Leu Asp Ser Val Asp Gly Val Pro Val Ala Ser Thr Asp Arg Trp
50
55
60

Ser Glu Met Thr Glu Ala Glu Arg Leu Gln Glu Asn Leu Gln Ala Tyr 25 65 70 75 80

Arg Thr Phe Gln Gly Met Leu Thr Lys Leu Glu Asp Gln Arg Val 85 90 95

30 His Phe Thr Pro Thr Glu Gly Asp Phe His Gln Ala Ile His Thr Leu 100 105 110

Thr Leu Gln Val Ser Ala Phe Ala Tyr Gln Leu Glu Glu Leu Met Ala 115 120 125

Leu Leu Glu Gln Lys Val Pro Glu Lys Glu Ala Asp Gly Met Pro Val

Thr Ile Gly Asp Gly Gly Leu Phe Glu Lys Lys Leu Trp Gly Leu Lys 40 145 150 155 160

Val Leu Gln Glu Leu Ser Gln Trp Thr Val Arg Ser Ile His Asp Leu 165 170 175

45 Arg Val Ile Ser Ser His His Met Gly Ile Ser Ala His Glu Ser His 180 185 190

Tyr Gly Ala Lys Gln Met 195

50

35

<210> 11 <211> 208

<212> PRT 55 <213> primate

<400> 11

Met Thr His Leu Ser Leu Leu Gly Pro Leu Pro Cys Val Arg Thr Ser 1 5 10 15

60 .

65

	Gln	Gln	Leu	Pro 20	Glu	Thr	Gln	Gln	Val 25	Thr	Thr	Pro	Gly	Lys 30	Lys	Pro
5	Val	Ser	Val 35	Gly	Arg	Arg	Glu	Val 40	Arg	Val	Pro	Gly	Thr 45	Ala	Leu	Val
	Pro	Ser 50	Leu	Leu	Ser	Val	Ser 55	Val	Leu	Leu	Gln	Leu 60	Gln	Tyr	Gln	Gly
10	Ser 65	Pro	Phe	Ser	Asp	Pro 70	Gly	Phe	Ser	Ala	Pro 75	Glu	Leu	Gln	Leu	Ser 80
15	Ser	Leu	Pro	Pro	Ala 85	Thr	Ala	Phe	Phe	Lys 90	Thr	Trp	His	Ala	Leu 95	Asp
	Asp	Gly	Glu	Arg 100	Leu	Ser	Leu	Ala	Gln 105	Arg	Ala	Ile	Asp	Pro 110	His	Leu
20	Gln	Leu	Val [*] 115	Glu	Asp	Asp	Gln	Ser 120	Asp	Leu	Asn	Pro	Gly 125	Ser	Pro	Ile
	Leu	Pro 130	Ala	Gln	Leu	Gly	Ala 135	Ala	Arg	Leu	Arg	Ala 140	Gln	Gly	Pro	Leu
25	Gly 145	Asn	Met	Ala	Ala	Ile 150	Met	Thr	Ala	Leu	Gly 155	Leu	Pro	Ile	Pro	Pro 160
30	Glu	Glu	Asp	Thr	Pro 165	Gly	Leu	Ala	Ala	Phe 170	Gly	Ala	Ser	Ala	Phe 175	Glu
50	Arg	Lys	Cys	Arg 180	Gly	Tyr	Val	Val	Thr 185	Arg	Glu	Tyr	Gly	His 190	Trp	Thr
35	Asp	Arg	Ala 195	Val	Arg	Asp	Leu	Ala 200	Leu	Leu	Lys	Ala	Lys 205	Tyr	Ser	Ala
				. *												
40	<211 <212	0> 12 l> 42 2> PI	10	- 0												
45	<400	- 0> 12	2													
	Met 1	Pro	Ala	Gly	Arg. 5	Arg	Gly	Pro	Ala	Ala 10	Gln	Ser	Ala	Arg	Arg 15	Pro
50	Pro	Pro	Leu	Leu 20	Pro	Leu	Leu	Leu	Leu 25	Leu	Cys	Val	Leu	Gly 30	Ala	Pro
55	Arg	Ala	Gly 35	Ser	Gly	Ala	His	Thr 40	Ala	Val	Ile	Ser	Pro 45	Gln	Asp	Pro
<i>.</i>	Thr	Leu 50	Leu	Ile	Gly	Ser	Ser 55	Leu	Leu	Ala	Thr	Cys 60	Ser	Val	His	Gly

Asp Pro Pro Gly Ala Thr Ala Glu Gly Leu Tyr Trp Thr Leu Asn Gly 65 70 75 80

	Arg	Arg	Leu	Pro	Pro 85	Glu	Leu	Ser	Arg	Val 90	Leu	Asn	Ala	Ser	Thr 95	Leu
5	Ala	Leu	Ala	Leu 100	Ala	Asn	Leu	Asn	Gly 105	Ser	Arg	Gln	Arg	Ser 110	Gly	Asp
10	Asn	Leu	Val 115	Cys	His	Ala	Arg	Asp 120	Gly	Ser	Ile		Ala 125	Gly	Ser	Суѕ
	Leu	Tyr 130	Val	Gly	Leu	Pro	Pro 135	Glu	Lys	Pro	Val	Asn 140	Ile	Ser	Cys	Trp
15	Ser 145	Lys	Asn	Met	Lys	Asp 150	Leu	Thr	Cys	Arg	Trp 155	Thr	Pro	Gly	Ala	His 160
	Gly	Glu	Thr	Phe	Leu 165	His	Thr	Asn	Tyr	Ser 170	Leu	Lys	Tyr	Lys	Leu 175	
20	Trp	Tyr	Gly	Gln 180	Asp	Asn	Thr	Cys	Glu 185	Glu	Tyr	His	Thr	Val 190	Gly	Pro
25	His	Ser	Cys 195	His	Ile	Pro	Lys	Asp 200	Leu	Ala	Leu	Phe	Thr 205	Pro	Tyr	Glu
	Ile	Trp 210	Val	Glu	Ala	Thr	Asn 215	Arg	Leu	Gly	Ser	Ala 220	Arg	Ser	Asp	Val
30	Leu 225	Thr	Leu	Asp	Ile	Leu 230	Asp	Val	Val	Thr	Thr 235	Asp	Pro	Pro	Pro	Asp 240
	Val	His	Val	Ser	Arg 245	Val	Gly	Gly	Leu	Glu 250	Asp	Gln	Leu	Ser	Val 255	Arg
35	Trp	Val	Ser	Pro 260	Pro	Ala	Leu	Lys	Asp 265	Phe	Leu	Phe	Gln	Ala 270	Lys	Tyr
40	Gln	Ile	Arg 275	Tyr	Arg	Val	Glu	Asp 280	Ser	Val	Asp	Trp	Lys 285	Val	Val	Ąsp
,	Asp	Val 290	Ser	Asn	Gln	Thr	Ser 295	Cys	Arg	Leu	Ala	Gly 300	Leu	Lys	Pro	Gly
45	Thr 305	Val	Tyr	Phe	Val	Gln 310	Val	Arg	Cys	Asn	Pro 315	Phe	Gly	Île	Tyr	Gly 320
	Ser	Lys	Lys	Ala	Gly 325	Ile	Trp	Ser	Glu	Trp 330	Ser	His	Pro	Thr	Ala 335	Ala
50	Ser	Thr	Pro	Arg 340	Ser	Glu	Arg	Pro	Gly 345	Pro	Gly	Gly	Gly	Ala 350	Суѕ	Glu
55	Pro	Arg	Gly 355	Gly	Glu	Pro	Ser	Ser 360	Gly	Pro	Val	Arg	Arg 365	Glu	Leu	Lys
	Gln	Phe 370	Leu	Gly	Trp	Leu	Lys 375	Lys	His	Ala	Tyr	Cys 380	Ser	Asn	Leu	Ser
60	Phe 385	Arg	Leu	Tyr	Asp	Gln 390	Trp	Arg	Ala	Trp	Met 395	Gln	Lys	Ser	His	Lys 400

Thr Arg Asn Gln Val Leu Pro Asp Lys Leu 405 410

5								•								
10	<211 <212)> 13 L> 40 2> PI 3> ro)7 RT	E .												٠
10)> 13 Pro		Ser	Ser 5	Leu	Trp	Ser	Pro	Leu 10	Leu	Leu	Cys	Val	Leu 15	Gly
15	Val	Pro	Arg	Gly 20	Gly	Ser	Gly	Ala	His 25	Thr	Ala	Val	Ile	Ser 30	Pro	Gln
20	Asp	Pro	Thr 35	Leu	Leu	Ile	Gly	Ser 40	Ser	Leu	Gln	Ala	Thr 45	Cys	Ser	Ile
	His	Gly 50	Asp	Thr	Pro	Gly	Ala 55	Thr	Ala	Glu	Gly	Leu 60	Tyr	Trp	Thr	Leu
25	Asn 65	Gly	Arg	Arg	Leu	Pro 70	Ser	Leu	Ser	Arg	Leu 75	Leu	Asn	Thr	Ser	Thr 80
	Leu	Ala	Leu	Ala	Leu 85	Ala	Asn	Leu	Asn	Gly 90	Ser	Arg	Gln	Gln	Ser 95	Gly
30	Asp	Asn	Leu	Val 100	Cys	His	Ala	Arg	Asp 105	Gly	Ser	Ile	Leu	Ala 110	Gly	Ser.
35	Cys	Leu	Туг 115	Val	Gly	Leu	Pro	Pro 120	Glu	Lys	Pro	Phe	Asn 125	Ile	Ser	Суз
	Trp	Ser 130	Arg	Asn	Met	Lys	Asp 135	Leu	Thr	Суѕ	Arg	Trp 140	Thr	Pro	Gly	Ala
40	His 145	Gly	Glu	Thr	Phe	Leu 150	His	Thr	Asn	Tyr	Ser 155	Leu	Lys	Tyr	Lys	Leu 160
	Arg	Trp	Tyr	Gly	Gln 165	Asp	Asn	Thr	Cys	Glu 170	Glu	Tyr	His	Thr	Val 175	Gly
45				Cys 180					185					190		
50	Glu	.Ile	Trp 195	Val	Glu	Ala	Thr	Asn 200	Arg	Leu	Gly	Ser	Ala 205	Arg	Ser	Asp
		210		Leu			215					220				-
55	225			Val		230					235					240
	Arg	Trp	Val	Ser	Pro	Pro	Ala	Leu	Lys	Asp	Phe	Leu	Phe	Gln	Ala 255	Lys

	Tyr	Gln	Ile	Arg 260	Tyr	Arg	Val	Glu	Asp 265	Ser	Val	Asp	Trp	Lys 270	Val	Val
5	Asp	Asp	Val 275	Ser	Asn	Gln	Thr	Ser 280	Cys	Arg	Leu	Ala	Gly 285	Leu	Lys	Pro
	Gly	Thr 290	Val	Tyr	Phé [.]	Val	Gln 295	Val	Arg	Cys	Asn	Pro 300	Phe	Gly	Ile	Tyr
10	Gly 305	Ser	Lys	Lys	Ala	Gly 310	Ile	Trp	Ser	Glu	Trp 315	Ser	His	Pro	Thr	Ala 320
15	Ala	Ser	Thr	Pro	Arg 325	Ser	Glu	Arg	Pro	Gly 330	Pro	Gly	Gly	Gly	Val 335	Cys
	Glu	Pro	Arg	Gly 340	Gly	Glu	Pro	Ser	Ser 345	Gly	Pro	Val	Arg	Arg 350	Glu	Leu
20	Lys	Gln	Phe 355	Leu	Gly	Trp	Leu	Lys 360	Lys	His	Ala	Tyr	Cys 365	Ser	Asn	Leu
	Ser	Phe 370	Arg	Leu	Tyr	Asp	Gln 375	Trp	Arg	Ala	Trp	Met 380	Gln	Lys	Ser	His
25	Lys 385	Thr	Arg	Asn	Gln	Asp 390	Glu	Gly	Ile	Leu	Pro 395	Ser	Gly	Arg	Arg	Gly 400
	Ala	Ala	Arg	Gly	Pro	Ala	Gly									