VGG-16_Keras_HappyHouse

April 9, 2019

1 Keras - the Happy House

```
In [1]: import numpy as np
        from keras import layers
        from keras.layers import Input, Dense, Activation, ZeroPadding2D, BatchNorr
        from keras.layers import AveragePooling2D, MaxPooling2D, Dropout, GlobalMax
        from keras.models import Model
        from keras.preprocessing import image
        from keras.utils import layer_utils
        from keras.utils.data_utils import get_file
        from keras.applications.imagenet_utils import preprocess_input
        import pydot
        from IPython.display import SVG
        from keras.utils.vis_utils import model_to_dot
        from keras.utils import plot_model
        from kt_utils import *
        import keras.backend as K
        K.set_image_data_format('channels_last')
        import matplotlib.pyplot as plt
        from matplotlib.pyplot import imshow
        %matplotlib inline
Using TensorFlow backend.
In [2]: X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_datase
        # Normalize image vectors
        X_train = X_train_orig/255.
        X_{\text{test}} = X_{\text{test}} = 7.5
        # Reshape
        Y_train = Y_train_orig.T
        Y_test = Y_test_orig.T
```

```
print ("number of training examples = " + str(X_train.shape[0]))
        print ("number of test examples = " + str(X_test.shape[0]))
        print ("X_train shape: " + str(X_train.shape))
        print ("Y_train shape: " + str(Y_train.shape))
        print ("X_test shape: " + str(X_test.shape))
        print ("Y_test shape: " + str(Y_test.shape))
number of training examples = 600
number of test examples = 150
X_train shape: (600, 64, 64, 3)
Y_train shape: (600, 1)
X_test shape: (150, 64, 64, 3)
Y_test shape: (150, 1)
In [15]: def HappyModel(input_shape):
             Implementation of the HappyModel.
             Arguments:
             input_shape -- shape of the images of the dataset
             Returns:
             model -- a Model() instance in Keras
             m m m
             X_input = Input(input_shape)
             \#X = ZeroPadding2D((3,3))(X_input)
             X = Conv2D(64, (3, 3), strides = (1, 1), padding='same', name = 'z1')
             X = BatchNormalization(axis = 3 , name = 'bn1')(X)
             X = Activation('relu')(X)
             X = Conv2D(64, (3, 3), strides = (1, 1), padding='same', name = 'z2')
             X = BatchNormalization(axis = 3 , name = 'bn2')(X)
             X = Activation('relu')(X)
             X = MaxPooling2D((2, 2), name = 'max_pool1')(X)
             X = Conv2D(128, (3, 3), strides = (1, 1), padding='same', name = 'z3')
             X = BatchNormalization(axis = 3 , name = 'bn3')(X)
             X = Activation('relu')(X)
             X = Conv2D(128, (3, 3), strides = (1, 1), padding='same', name = 'z4')
             X = BatchNormalization(axis = 3 , name = 'bn4')(X)
             X = Activation('relu')(X)
             X = MaxPooling2D((2, 2), name = 'max_pool2')(X)
             X = Conv2D(256, (3, 3), strides = (1, 1), padding='same', name = 'z5')
             X = BatchNormalization(axis = 3, name = 'bn5')(X)
             X = Activation('relu')(X)
             X = Conv2D(256, (3, 3), strides = (1, 1), padding='same', name = 'z6')
             X = BatchNormalization(axis = 3 , name = 'bn6')(X)
             X = Activation('relu')(X)
```

```
X = Conv2D(512, (3, 3), strides = (1, 1), padding='same', name = 'z9')
           X = BatchNormalization(axis = 3 , name = 'bn9')(X)
           X = Activation('relu')(X)
           X = Conv2D(512, (3, 3), strides = (1, 1), padding='same', name = 'z10')
           X = BatchNormalization(axis = 3, name = 'bn10')(X)
           X = Activation('relu')(X)
           X = MaxPooling2D((2, 2), name = 'max_pool4')(X)
           X = Conv2D(512, (3, 3), strides = (1, 1), padding='same', name = 'z11'
           X = BatchNormalization(axis = 3 , name = 'bn11')(X)
           X = Activation('relu')(X)
           X = Conv2D(512, (3, 3), strides = (1, 1), padding='same', name = 'z12')
           X = BatchNormalization(axis = 3 , name = 'bn12')(X)
           X = Activation('relu')(X)
           X = Conv2D(512, (3, 3), strides = (1, 1), padding='same', name = 'z13'
           X = BatchNormalization(axis = 3 , name = 'bn13')(X)
           X = Activation('relu')(X)
           X = MaxPooling2D((2, 2), name = 'max_pool5')(X)
           X = Flatten()(X)
           X = Dense(4096, activation='sigmoid', name = 'fc1')(X)
           X = Dense(4096, activation='sigmoid', name = 'fc2')(X)
           X = Dense(1, activation='sigmoid', name = 'fc3')(X)
           model = Model(inputs = X_input, outputs = X, name = 'HappyModel')
            return model
In [18]: happyModel = HappyModel(X_train.shape[1:])
        #print(X_train.shape[1:])
In [19]: happyModel.compile(optimizer = "adam", loss='binary_crossentropy', metrics
In [20]: happyModel.fit(x = X_train , y = Y_train, epochs = 2, batch_size = 16)
Epoch 1/2
Epoch 2/2
Out [20]: <keras.callbacks.History at 0x7fc13b9127b8>
                                3
```

X = Conv2D(256, (3, 3), strides = (1, 1), padding='same', name = 'z7')

X = Conv2D(512, (3, 3), strides = (1, 1), padding='same', name = 'z8')

X = BatchNormalization(axis = 3, name = 'bn7')(X)

X = BatchNormalization(axis = 3 , name = 'bn8')(X)

 $X = MaxPooling2D((2, 2), name = 'max_pool3')(X)$

X = Activation('relu')(X)

X = Activation('relu')(X)

In [23]: happyModel.summary()

Layer (type) 	Output	Shape		Param #
input_5 (InputLayer)	(None,	64, 64,	3)	0
z1 (Conv2D)	(None,	64, 64,	64)	1792
bn1 (BatchNormalization)	(None,	64, 64,	64)	256
activation_42 (Activation)	(None,	64, 64,	64)	0
z2 (Conv2D)	(None,	64, 64,	64)	36928
bn2 (BatchNormalization)	(None,	64, 64,	64)	256
activation_43 (Activation)	(None,	64, 64,	64)	0
max_pool1 (MaxPooling2D)	(None,	32, 32,	64)	0
z3 (Conv2D)	(None,	32, 32,	128)	73856
bn3 (BatchNormalization)	(None,	32, 32,	128)	512
activation_44 (Activation)	(None,	32, 32,	128)	0
z4 (Conv2D)	(None,	32, 32,	128)	147584
bn4 (BatchNormalization)	(None,	32, 32,	128)	512
activation_45 (Activation)	(None,	32, 32,	128)	0
max_pool2 (MaxPooling2D)	(None,	16, 16,	128)	0
z5 (Conv2D)	(None,	16, 16,	256)	295168
bn5 (BatchNormalization)	(None,	16, 16,	256)	1024
activation_46 (Activation)	(None,	16, 16,	256)	0
z6 (Conv2D)	(None,	16, 16,	256)	590080
bn6 (BatchNormalization)	(None,	16, 16,	256)	1024
activation_47 (Activation)	(None,	16, 16,	256)	0
z7 (Conv2D)	(None,	16, 16,	256)	590080
bn7 (BatchNormalization)	(None,	16, 16,	256)	1024

activation_48 (Activation)	(None, 16, 16, 256)	0
max_pool3 (MaxPooling2D)	(None, 8, 8, 256)	0
z8 (Conv2D)	(None, 8, 8, 512)	1180160
bn8 (BatchNormalization)	(None, 8, 8, 512)	2048
activation_49 (Activation)	(None, 8, 8, 512)	0
z9 (Conv2D)	(None, 8, 8, 512)	2359808
bn9 (BatchNormalization)	(None, 8, 8, 512)	2048
activation_50 (Activation)	(None, 8, 8, 512)	0
z10 (Conv2D)	(None, 8, 8, 512)	2359808
bn10 (BatchNormalization)	(None, 8, 8, 512)	2048
activation_51 (Activation)	(None, 8, 8, 512)	0
max_pool4 (MaxPooling2D)	(None, 4, 4, 512)	0
z11 (Conv2D)	(None, 4, 4, 512)	2359808
bn11 (BatchNormalization)	(None, 4, 4, 512)	2048
activation_52 (Activation)	(None, 4, 4, 512)	0
z12 (Conv2D)	(None, 4, 4, 512)	2359808
bn12 (BatchNormalization)	(None, 4, 4, 512)	2048
activation_53 (Activation)	(None, 4, 4, 512)	0
z13 (Conv2D)	(None, 4, 4, 512)	2359808
bn13 (BatchNormalization)	(None, 4, 4, 512)	2048
activation_54 (Activation)	(None, 4, 4, 512)	0
max_pool5 (MaxPooling2D)	(None, 2, 2, 512)	0
flatten_5 (Flatten)	(None, 2048)	0
fc1 (Dense)	(None, 4096)	8392704

fc2 (Dense)	(None, 4096)	16781312
fc3 (Dense)	(None, 1)	4097

Total params: 39,909,697 Trainable params: 39,901,249 Non-trainable params: 8,448

In []: