

Logged in as Tan Michael Olsen.

Log Out [→

WeBWorK / W2024MATH267 / MATH 267 Term Exam 2 W2024 / v1

Gateway Quiz MATH 267 Term Exam 2 W2024,v1

Jump to Problem: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 1. (1 point)

Which of the following is a geometric series?

• A.
$$\sum_{n=1}^{\infty} (-1)^n \frac{3^{2n}}{5^n}$$

$$\bigcirc$$
 B. $\sum_{1}^{\infty} \frac{1}{n^2}$

$$\bigcirc \mathsf{c.} \sum_{n=1}^{\infty} \frac{(-2)^n}{n^n}$$

$$\bigcirc$$
 D. $\sum_{n=1}^{n=1} (-1)^n \frac{2^n}{n!}$

$$\bigcirc \ \mathsf{E}.\sum_{n=1}^{\infty}(-1)^n\frac{1}{2n}$$

preview answers

Entered	Answer Preview
А	A

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 2. (1 point)

Assume we are trying to determine the convergence or divergence of the series

$$\sum_{n=1}^{\infty} \frac{5n^2 + 6n^4}{n^8 - 7n^2} \ .$$

Which of the following statements accurately describes the series?

- **A.** The series converges by the Limit Comparison Test with the series $\sum_{n=1}^{\infty} \frac{1}{n^4}$.
- O **B.** The series diverges by the Divergence Test.
- \bigcirc **C.** The series converges by the Limit Comparison Test with the series $\sum_{n=1}^{\infty} \frac{5}{n^6}$.
- O **D.** The series converges conditionally.
- **E.** It is impossible to tell if the series converges or diverges.

preview answers

Entered	Answer Preview
А	A

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 3. (1 point)

Let $\{a_n\}_{n=1}^\infty$ and $\{c_n\}_{n=1}^\infty$ be sequences of non-negative real numbers.

For each of the following statements, determine if the statement is TRUE or FALSE.

Hint: A statement is true if and only if it is true for all choices of the sequences $\{a_n\}_{n=1}^{\infty}$ and/or $\{c_n\}_{n=1}^{\infty}$.

FALSE
$$\checkmark$$
 1. If $c_n \leq a_n$ for all n and $\sum_{n=1}^\infty c_n$ converges, then $\sum_{n=1}^\infty a_n$ converges.

FALSE
$$\checkmark$$
 2. If $\lim_{n\to\infty}a_n=0$, then $\sum_{n=1}^{\infty}(-1)^na_n$ converges to 0 .

TRUE
$$\checkmark$$
 3. If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{N \to \infty} \sum_{n=1}^{N} a_n$ exists.

Note: You can earn partial credit on this problem.

preview answers

Entered	Answer Preview
FALSE	FALSE

FALSE	FALSE
TRUE	TRUE

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 4. (1 point)

Which of the following series are **conditionally convergent**?

Select ALL correct answers.

✓ A.
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{5}{\sqrt{n}}$$
✓ B. $\sum_{n=1}^{\infty} (-1)^n \frac{n^2 - 5}{5^n}$
✓ C. $\sum_{n=4}^{\infty} (-1)^{n+1} \frac{4}{\sqrt{n^5}}$
✓ D. $\sum_{n=3}^{\infty} (-1)^n \frac{1}{4\sqrt[5]{n^7}}$

Z B.
$$\sum_{1}^{\infty} (-1)^n \frac{n^2 - 5}{5^n}$$

$$Arr$$
 C. $\sum_{n=4}^{\infty} (-1)^{n+1} \frac{4}{\sqrt{n^5}}$

$$Arr$$
 D. $\sum_{n=3}^{\infty} (-1)^n \frac{1}{4\sqrt[5]{n^7}}$

E.
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{7 + \sqrt[5]{n^4}}$$

preview answers

Entered	Answer Preview
ABCDE	ABCDE

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 5. (1 point)

Consider the series $\sum_{n=1}^{\infty} \frac{9n^3}{n^6+7}$.

Which of the following is the best test to use in order to determine the convergence/divergence of the series?

- A. The Limit Comparison Test with the series $\sum_{i=1}^{\infty} \frac{1}{n^3}$.
- O B. The Root Test.
- C. The Integral Test.

$\overline{}$		[9]	1 00
\cup	D. The Limit Comparison Test with the sequence	-3	} .
		(n°)	J $n{=}1$

- \bigcirc **E.** The Comparison Test with the series $\sum_{n=1}^{\infty} \frac{9}{7n^6}$.
- F. The Ratio Test.

preview answers

Entered	Answer Preview
А	A

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 6. (1 point)

Consider the series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{4n^5 - 7}{7n + 16n^5}.$$

Which of the following statements accurately describes the series?

- **A.** The series converges conditionally.
- \bigcirc **B.** The series converges to $\frac{1}{4}$.
- C. The series diverges by the Divergence Test.
- **D.** The series diverges by the Alternating Series Test.
- **E.** The series converges absolutely by the Ratio Test.

preview answers

Entered	Answer Preview
D	D

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 7. (1 point)

Choose the correct conclusion that you can make after applying the **Ratio Test** to each of the given series.

The series converges absolutely

 \checkmark 2. $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{7^n}{n^2 \, 8^{n+2}}$

Note: You can earn partial credit on this problem.

preview answers

Entered	Answer Preview
DIV	DIV
ABS	ABS

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 8. (1 point)

Suppose that $\{a_n\}_{n=1}^{\infty}=\{a_1,a_2,a_3,\ldots\}$ is a sequence of positive real numbers.

Suppose that $a_{n+1} < a_n$ for all $n \geq 1$ and suppose that $\lim_{n o \infty} a_n = 0$.

Which of the following statements is always TRUE?

- \bigcirc **A.** The series $\sum_{n=1}^{\infty} a_n$ converges.
- \bigcirc **B.** The series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ diverges.
- \bigcirc **C.** The series $\sum_{n=1}^{\infty} a_n$ converges to 0.
- \bigcirc **D.** The series $\sum_{n=1}^{\infty} (-1)^n a_n$ converges absolutely.
- E. The series $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ converges.

preview answers

Entered	Answer Preview
E	E

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 9. (1 point)

Consider the series

$$\sum_{n=1}^{\infty} \frac{3n^2 + (-1)^n 2n + \cos(n)}{4n^3 - 2n + \sin(n)}.$$

Exactly which of the following statements is true?

- \bigcirc **A.** The series diverges by the Comparison Test with the series $\sum_{n=1}^{\infty} \frac{1}{5n}$
- O **B.** The series diverges by the Divergence Test.
- **C.** The series converges by the Alternating Series Test.
- O **D.** The series diverges by the Ratio Test.
- **E.** The series converges by the Limit Comparison Test with the series $\sum_{n=1}^{\infty} \frac{3n^2}{4n^3}$

preview answers

Entered	Answer Preview
E	E

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 10. (1 point)

Consider the power series

$$\sum_{n=1}^{\infty} \frac{n^8 + 3n + 1}{n^2 + 2n + 5} (4x - 5)^n$$

Which of the following is equal to the radius of convergence?

- \bigcirc A. R=4
- \bigcirc B. $R=\frac{1}{5}$
- \bigcirc **c**. R=0
- \bigcirc D. R=5
- \odot E. $R=\frac{1}{4}$
- \bigcirc F. $R=\infty$

preview answers

Entered Answer Preview

Ε

E

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 11. (1 point)

Consider the power series given by

$$\sum_{n=1}^{\infty} \frac{5^n (6x-2)^n}{n^2 + 3n}.$$

Find the centre of the series and the radius of convergence.

the centre is at $oldsymbol{c}=$

and the radius of convergence is $\mathbf{R} = \begin{bmatrix} \frac{1}{30} \end{bmatrix}$

Note: If your answer is a fraction, just enter the fraction.

Note: You can earn partial credit on this problem.

preview answers

Entered	Answer Preview
1/3	$\frac{1}{3}$
1/30	$\frac{1}{30}$

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 12. (1 point)

Given that a function f(x) has a tangent line at x=2 given by y=5(x-2)+11. Which of the following could be the Taylor Series representation for f(x)?

$$\bigcirc \text{ A. } \sum_{n=0}^{\infty} \frac{5}{n!} (x-2)^n$$

$$\bigcirc \text{ B. } \sum_{n=0}^{\infty} \frac{11}{n!} (x-2)^n$$

$$\bigcirc$$
 B. $\displaystyle\sum_{n=0}^{\infty}rac{11}{n!}(x-2)^n$

$$igotimes extsf{c.} \sum_{n=0}^{\infty} rac{10 + (-5)^n}{n!} (x-2)^n \ extsf{O}. \sum_{n=0}^{\infty} rac{11 + (5)^n}{n!} (x-2)^n$$

preview answers

Entered	Answer Preview
С	С

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 13. (1 point)

Consider the function

$$f(x) = \int_0^x \frac{\cos(t) - 1}{t^2} \ dt.$$

Which of the following is the Taylor Series for f(x) centred at x = 0?

$$\bigcirc$$
 A. $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n-1)(2n)!} x^{2n-1} + C.$

$$\bigcirc \text{ B. } \sum_{n=1}^{n-0} \frac{(-1)^n (2n-2)}{(2n)!} x^{2n-3}.$$

$$\bigcirc \text{ c. } \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n-2}.$$

$$\bigcirc$$
 c. $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n-2}$.

D.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)(2n)!} x^{2n-1}.$$

Remaining time: 00:08:46

preview answers

Entered	Answer Preview
D	D

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 14. (1 point)

Consider the power series

$$\sum_{n=1}^{\infty} (-1)^n \frac{2^n}{\sqrt{n} \, 3^n} (x-1)^n.$$

Determine the center and the interval of convergence of the given series.

- \bigcirc **A.** The center is $\frac{2}{3}$ and the interval of convergence is $\left(-\frac{1}{2}, \frac{5}{2}\right)$.
- **B.** The center is **1** and the interval of convergence is $\left[-\frac{1}{2}, \frac{5}{2}\right]$.
- C. The center is $\frac{2}{3}$ and the interval of convergence is $\left[-\frac{1}{2}, \frac{5}{2}\right]$.
- \bigcirc **D.** The center is 1 and the interval of convergence is $\left[-\frac{1}{2}, \frac{5}{2}\right]$.
- \bigcirc **E.** The center is **1** and the interval of convergence is $(-\frac{1}{2}, \frac{5}{2})$.
- \bigcirc **F.** The center is **1** and the interval of convergence is $\left(-\frac{1}{2}, \frac{5}{2}\right]$.

preview answers

Entered	Answer Preview
В	В

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 15. (1 point)

Suppose that the Taylor series of the function $m{f}$ centred at $m{3}$ is given by

$$\sum_{n=1}^{\infty} (-1)^n \frac{(3n)!}{5^n} (x-3)^{2n-1}.$$

Find the value of $f^{(17)}(3)$, that is, the order 17 derivative of f evaluated at x=3.

Answer:
$$\frac{(-1)^9(3(9))!}{5^9} \cdot 17!$$

preview answers

Entered	Answer Preview
-1.98299E+36	$\frac{(-1)^9((3\cdot 9)!)}{5^9}(17!)$

PREVIEW ONLY -- ANSWERS NOT RECORDED

Problem 16. (1 point)

Suppose that the sequence $\{c_n\}_{n=1}^\infty$ has the property that $\lim_{n o\infty}\sqrt[n]{|c_n|}=4$.

What is the radius of convergence of the power series $\sum_{n=1}^{\infty} (-6)^n c_n (x+6)^n$?

Answer: $\boxed{\frac{1}{24}}$ preview answers

Answer Preview

0.0416667 $\boxed{\frac{1}{24}}$

 Jump to Problem:
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

Preview Test Grade Test

Page generated at 03/12/2024 at 08:51pm MDT WeBWorK © 1996-2022 | theme: math4 | ww_version: 2.17 | pg_version 2.17 | The WeBWorK Project