Convertitore di impedenza negativa

Studio di un circuito ad "impedenza negativa" realizzato con un op-amp

S. Bottaro¹ L.M. Perrone¹

¹Dipartimento di Fisica Universita' di Pisa

Recitation - Week04, 2015

- Convertitore ad impedenza negativa NIC
 - Analisi del comportamento del circuito
 - Simulazioni e progetti di circuito
 - Dimensionamento del circuito

- Generatore di corrente Howland Circuit
 - Analisi del circuito
 - Corrente sul carico

- Convertitore ad impedenza negativa NIC
 - Analisi del comportamento del circuito
 - Simulazioni e progetti di circuito
 - Dimensionamento del circuito

- Generatore di corrente Howland Circuit
 - Analisi del circuito
 - Corrente sul carico

Figura: Convertitore di impedenza negativa

Resistenza equivalente I

- Usando le regole d'oro dell'op-amp (non passa corrente nell'integrato, tensione agli ingressi uguale) e' possibile scrivere la resistenza equivalente vista dal generatore:
- Op-amp in configurazione non-invertente ⇒:

Definition

$$V_{out} = V_G(1 + \frac{R_2}{R_1})$$

• Assegnando un verso arbitario antiorario alla corrente che passa per il ramo con $R_3 \Rightarrow$:

Definition

$$V_{out} - V_G = R_3 I$$

Da cui si ottiene:

Theorem

$$V_G = -\frac{R_1 R_3}{R_2} I$$

Quindi la resistenza equivalente R del circuito e' pari a $R=-\frac{R_1R_3}{R_2}$, impedenza negativa! (Cioe' la corrente scorre dal nodo V_{out} a V_G).

Resistenza equivalente II

• Nel caso di un generatore reale con resistenza interna R_G possiamo ulteriormente perfezionare la formula precedente operando la sostituzione $V_G \to V_R = V_G - I R_G$, dove V_R e' indicata in figura. Quindi:

Theorem

$$V_G = \left(R_G - \frac{R_1 R_3}{R_2}\right)I$$

- Convertitore ad impedenza negativa NIC
 - Analisi del comportamento del circuito
 - Simulazioni e progetti di circuito
 - Dimensionamento del circuito

- Generatore di corrente Howland Circuit
 - Analisi del circuito
 - Corrente sul carico

Come si vede?

- Per verificare che quanto visto abbia senso e' possibile procedere in diversi modi:
 - Montare un Ohmetro;
 - Mettere un amperometro in serie a R₃;
 - Collegare un voltmetro in parallelo a R_3 .
- ATTENZIONE! La corrente *I* che passa per la resistenza *R*₃ viene fornita dall'op-amp, quindi il carico complessivo andra' dimensionato in modo tale che questa non superi mai i 25mA di corrente di output del nostro op-amp.

- Convertitore ad impedenza negativa NIC
 - Analisi del comportamento del circuito
 - Simulazioni e progetti di circuito
 - Dimensionamento del circuito

- Generatore di corrente Howland Circuit
 - Analisi del circuito
 - Corrente sul carico

Dimensionamento di R₃

G -1	R3 (Ohm)
10	380
9	230
8	150
7	110
6	80
5	60

Figura : Valori indicativi delle resistenze minime per il corretto funzionamento del circuito in funzione di G, per $V_{in}=1\ V$

a : Simulazione del pramento a $\mathsf{G}=11$ e 1k ($V_{CC}=\pm15$)

Figura : Simulazione di funzionamento a G = 11 e $R_3 = 300 \ (V_{CC} = \pm 15)$

Dimensionamento R₃ II

Figura : Dipendenza di V_{out} da R_3 - ipotesi di lavoro

Figura : Limite del guadagno in funzione di V_{in}

- Convertitore ad impedenza negativa NIC
 - Analisi del comportamento del circuito
 - Simulazioni e progetti di circuito
 - Dimensionamento del circuito

- Generatore di corrente Howland Circuit
 - Analisi del circuito
 - Corrente sul carico

Figura : Circuito generatore di corrente

Generatore di corrente

• Avendo trovato la resistenza equivalente del convertitore ad impedenza negativa, per risolvere il nuovo circuito possiamo modellizzarlo come un parallelo fra la resistenza di carico R_L e quella equivalente stessa $R_{eq} = -R$.

Figura: Circuito equivalente con R in parallelo

• Risolviamo dunque le equazioni delle maglie:

Definition

$$V_G - R_G I_1 - R_L I_1 + R_L I_2 = 0$$

Definition

$$-R_L I_2 + R_L I_1 - R_{eq} I_2 = 0$$

• Da cui si ricavano le correnti I_1 e I_2 :

Definition

$$I_1 = \frac{V_G(R_L + R_{eq})}{R_G R_L + R_L R_{eq} - R_G R_{eq}}$$

Definition

$$I_2 = \frac{V_G R_L}{R_G R_L + R_L R_{eq} - R_G R_{eq}}$$

• Dato che a noi serve la corrente netta che passa per R_L , siamo interessati alla differenza $I_L = I_1 - I_2$, con la sostituzione $R_{eq} \rightarrow -R$:

Example

$$I_L = -\frac{V_G R}{R_G R_L - R_L R + R_G R}$$

Che sotto la condizione $R_G = R$ diventa:

Example

$$I_L = -\frac{V_G}{R}$$

Che non dipende da $R_{l}!$

- Convertitore ad impedenza negativa NIC
 - Analisi del comportamento del circuito
 - Simulazioni e progetti di circuito
 - Dimensionamento del circuito

- Generatore di corrente Howland Circuit
 - Analisi del circuito
 - Corrente sul carico

Figura : Plot della corrente I_L su resistenza di carico R_L per R3 = 500 Ohm, Vg = 0.5V, R2 = 10k, R1 = 1k, R_g = 50 Ohm

Figura : Plot della corrente I_L su resistenza di carico R_L , per R3 = 500 Ohm (nero), e R3 = 1k (blu)

Figura : Dipendenza di I_L da R_L - raddoppiamo R3 e R_G : R3 = 250 (verde); R3 = 500 Ohm R_G = 50 Ohm (nero); R3 = 1k R_G = 100 Ohm (blu); R3 = 2k R_G = 200 Ohm (rosso)

Aumentare la regione di plateau senza modificare R_G

Figura : I_L su R_L : dipendenza da R3 e R1 - raddoppiamo R3 e dimezziamo R1. R3 = 1250hm, R1 = 4k (nero); R3 = 250 Ohm, R1 = 2k (rosso); R3 = 500 Ohm, R1 = 1k (blu)

• Troviamo ora la relazione fra la corrente I_L e V_{out} . Analizzando il circuito si vede subito che:

$$\begin{cases} V_{L} = I_{L} R_{L} \\ V_{out} = (1 + \frac{R_{2}}{R_{1}}) V_{L} \end{cases}$$
 (1)

Per cui:

Definition

$$V_{out} = I_L R_L (1 + \frac{R_2}{R_1})$$

Dove I_L (come abbiamo visto) non dipende da R_L , quindi c'e' proporzionalita' lineare.

Figura : V_{out} in funzione di R_L a $R_3=500$ fissata, $V_G=0.5V$

Figura : Confronto fra la tensione V_{out} in funzione di R_L e di I_L in funzione di R_L - $R_3 = 500$

Stima della corrente I_L e del coefficiente angolare

Calcolo del coefficiente angolare della retta:

Definition

 $m_{meas} \simeq 4.8 \, 10^{-4} \, \text{V}/ \, \text{Ohm}$

In ottimo accordo con quanto previsto dalla relazione:

$$V_{out} = I_L R_L (1 + \frac{R_2}{R_1})$$
 (2)

Da cui, prendendo la corrente di *plateau* e moltiplicandola per il gain: $m_{\rm exp} \simeq 4.8\,10^{-4}{
m V/~Ohm}.$

Stima della corrente I_L e del coefficiente angolare

Calcolo del coefficiente angolare della retta:

Definition

$$m_{meas} \simeq 4.8 \, 10^{-4} \, \text{V}/ \, \text{Ohm}$$

In ottimo accordo con quanto previsto dalla relazione:

$$V_{out} = I_L R_L (1 + \frac{R_2}{R_1})$$
 (2)

Da cui, prendendo la corrente di *plateau* e moltiplicandola per il gain: $m_{\rm exp} \simeq 4.8\,10^{-4}{
m V/~Ohm}.$

• Ma c'e' un problema!

Stima della corrente I_L e del coefficiente angolare

Calcolo del coefficiente angolare della retta:

Definition

$$m_{meas} \simeq 4.8 \, 10^{-4} \, \text{V}/ \, \text{Ohm}$$

In ottimo accordo con quanto previsto dalla relazione:

$$V_{out} = I_L R_L (1 + \frac{R_2}{R_1})$$
 (2)

Da cui, prendendo la corrente di *plateau* e moltiplicandola per il gain: $m_{\rm exp} \simeq 4.8\,10^{-4}{
m V/~Ohm}.$

- Ma c'e' un problema!
- Da $I_L=rac{V_G}{R=R_G}=rac{0.5
 m V}{500
 m hm} \simeq 10
 m mA$ invece di $I_{plateau}\sim 43.8 \, \mu A$.

A cosa serve?

- Generatore di corrente ideale!
- Generare una differenza di potenziale: la corrente che scorre nel carico RL dipende solo da Vg quindi la differenza di potenziale ai capi di RL il segnale Vg per un fattore RL/R.