C.02.01.A2 – Combustão e Equilíbrio Químico

Aplicação em FTAF – Finite Time Air-Fuel Otto Engine Model

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-09-13 07h11m34s UTC

• Ar é modelado apenas como uma mistura de Oxigênio, O₂, e Nitrogênio, N₂;

- Ar é modelado apenas como uma mistura de Oxigênio, O₂, e Nitrogênio, N₂;
- A proporção é de ψ kmol de N₂ para cada 1 kmol de O₂;

- Ar é modelado apenas como uma mistura de Oxigênio, O₂, e Nitrogênio, N₂;
- A proporção é de ψ kmol de N₂ para cada 1 kmol de O₂;
- Nitrogênio será considerado gás inerte;

- Ar é modelado apenas como uma mistura de Oxigênio, O2, e Nitrogênio, N2;
- A proporção é de ψ kmol de N₂ para cada 1 kmol de O₂;
- Nitrogênio será considerado gás inerte;
- Todos os demais gases inertes são modelados como sendo N₂;

- Ar é modelado apenas como uma mistura de Oxigênio, O₂, e Nitrogênio, N₂;
- A proporção é de ψ kmol de N₂ para cada 1 kmol de O₂;
- Nitrogênio será considerado gás inerte;
- Todos os demais gases inertes são modelados como sendo N₂;
- Valor típico para ψ é de $79/21 \approx 3,76$.

• Molécula de combustível modelada como Cn_CHn_HOn_ONn_N;

- Molécula de combustível modelada como Cn_CHn_HOn_ONn_N;
- Valores $n_{\rm C}$, $n_{\rm H}$, $n_{\rm O}$, e $n_{\rm N}$ são parâmetros ajustáveis;

- Molécula de combustível modelada como Cn_CHn_HOn_ONn_N;
- Valores $n_{\rm C}$, $n_{\rm H}$, $n_{\rm O}$, e $n_{\rm N}$ são parâmetros ajustáveis;
- Seja ε a quantidade de combustível por kmol de O_2 estequiometricamente oxidada;

- Molécula de combustível modelada como Cn_CHn_HOn_ONn_N;
- Valores $n_{\rm C}$, $n_{\rm H}$, $n_{\rm O}$, e $n_{\rm N}$ são parâmetros ajustáveis;
- Seja ε a quantidade de combustível por kmol de O_2 estequiometricamente oxidada;

$$\varepsilon^{-1} \equiv n_{\rm C} + \frac{n_{\rm H}}{4} - \frac{n_{\rm O}}{2}.$$

- Molécula de combustível modelada como Cn_CHn_HOn_ONn_N;
- Valores $n_{\rm C}$, $n_{\rm H}$, $n_{\rm O}$, e $n_{\rm N}$ são parâmetros ajustáveis;
- Seja ε a quantidade de combustível por kmol de O_2 estequiometricamente oxidada;

$$\varepsilon^{-1} \equiv n_{\rm C} + \frac{n_{\rm H}}{4} - \frac{n_{\rm O}}{2}.$$

• $\varepsilon/(1+\psi)$ é a razão combustível-ar estequiométrica.

• Seja o a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

• Seja • a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)},$$
 assim,

• Seja • a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)},$$
 assim.

• ϕ < 1 modela misturas combustível-ar com excesso de ar (pobre em combustível);

• Seja • a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)},$$
 assim.

- ϕ < 1 modela misturas combustível-ar com excesso de ar (pobre em combustível);
- $\phi > 1$ modela misturas combustível-ar com excesso de combustível (pobre em ar); e

• Seja o a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv rac{n_{
m f}/n_{
m air}}{arepsilon/(1+\psi)}, \qquad {
m assim},$$

- ϕ < 1 modela misturas combustível-ar com excesso de ar (pobre em combustível);
- $\phi > 1$ modela misturas combustível-ar com excesso de combustível (pobre em ar); e
- $\phi = 1$ modela misturas combustível-ar estequiométricas.

• Quantidades químicas reais de ar e combustível são n_{air} e n_{f} ...

- Quantidades químicas reais de ar e combustível são n_{air} e n_f ...
- ... na câmara de combustão fechada ao final da admissão, assumindo (P_0, V_0, T_0)

- Quantidades químicas reais de ar e combustível são n_{air} e n_f ...
- ... na câmara de combustão fechada ao final da admissão, assumindo (P_0, V_0, T_0)
- com $P_0 \leqslant P_{\text{atm}}$, $T_0 \approx T_{\text{atm}}$, para motores aspirados e $V_0 \approx V_{\text{PMI}}$. Assim:

- Quantidades químicas reais de ar e combustível são n_{air} e n_f ...
- ... na câmara de combustão fechada ao final da admissão, assumindo (P_0, V_0, T_0)
- com $P_0 \leqslant P_{\text{atm}}$, $T_0 \approx T_{\text{atm}}$, para motores aspirados e $V_0 \approx V_{\text{PMI}}$. Assim:

$$n_{\rm f} = \frac{P_0 V_0}{\bar{R} T_0} \cdot \frac{\Phi \varepsilon}{1 + \psi + \Phi \varepsilon},$$

- Quantidades químicas reais de ar e combustível são n_{air} e n_{f} ...
- ... na câmara de combustão fechada ao final da admissão, assumindo (P_0, V_0, T_0)
- com $P_0 \leqslant P_{\text{atm}}$, $T_0 \approx T_{\text{atm}}$, para motores aspirados e $V_0 \approx V_{\text{PMI}}$. Assim:

$$n_{\rm f} = \frac{P_0 V_0}{\bar{R} T_0} \cdot \frac{\Phi \varepsilon}{1 + \psi + \Phi \varepsilon},$$

$$n_{\rm air} = \frac{P_0 V_0}{\bar{R} T_0} \cdot \frac{1 + \psi}{1 + \psi + \phi \varepsilon}.$$

$$n_{\rm f}$$
 C $n_{\rm C}$ H $n_{\rm H}$ O $n_{\rm O}$ N $n_{\rm N}$ +

$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$

$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow n_{\rm CO_2} {\rm CO}_2$$

$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} {\rm CO}_2 + n_{\rm H_2O} {\rm H_2O}$$

$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} {\rm CO}_2 + n_{\rm H_2O} {\rm H}_2 {\rm O} + n_{\rm CO} {\rm CO}$$

$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} {\rm CO}_2 + n_{\rm H_2O} {\rm H}_2 {\rm O} + n_{\rm CO} {\rm CO} + n_{\rm H_2} {\rm H}_2$$

$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} {\rm CO}_2 + n_{\rm H_2O} {\rm H_2O} + n_{\rm CO} {\rm CO} + n_{\rm H_2} {\rm H}_2 + n_{\rm O_2} {\rm O}_2$$

$$n_{\rm f} \operatorname{C} n_{\rm C} \operatorname{H} n_{\rm H} \operatorname{O} n_{\rm O} \operatorname{N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1 + \psi} \operatorname{O}_2 + \frac{\psi}{1 + \psi} \operatorname{N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} \operatorname{CO}_2 + n_{\rm H_2O} \operatorname{H}_2 \operatorname{O} + n_{\rm CO} \operatorname{CO} + n_{\rm H_2} \operatorname{H}_2 + n_{\rm O_2} \operatorname{O}_2 + n_{\rm N_2} \operatorname{N}_2.$$

A reação de combustão básica é:

$$n_{\rm f} \operatorname{C} n_{\rm C} \operatorname{H} n_{\rm H} \operatorname{O} n_{\rm O} \operatorname{N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1 + \psi} \operatorname{O}_2 + \frac{\psi}{1 + \psi} \operatorname{N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} \operatorname{CO}_2 + n_{\rm H_2O} \operatorname{H}_2 \operatorname{O} + n_{\rm CO} \operatorname{CO} + n_{\rm H_2} \operatorname{H}_2 + n_{\rm O_2} \operatorname{O}_2 + n_{\rm N_2} \operatorname{N}_2.$$

Hipótese: oxidação mais completa possível:

$$n_{\rm f} \operatorname{C} n_{\rm C} \operatorname{H} n_{\rm H} \operatorname{O} n_{\rm O} \operatorname{N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1+\psi} \operatorname{O}_2 + \frac{\psi}{1+\psi} \operatorname{N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} \operatorname{CO}_2 + n_{\rm H_2O} \operatorname{H}_2 \operatorname{O} + n_{\rm CO} \operatorname{CO} + n_{\rm H_2} \operatorname{H}_2 + n_{\rm O_2} \operatorname{O}_2 + n_{\rm N_2} \operatorname{N}_2.$$

- Hipótese: oxidação mais completa possível:
- $(\phi \leqslant 1)$: sem produção de CO e H₂ $\longrightarrow n_{CO} = n_{H_2} = 0$ kmol, e o sistema fecha;

$$n_{\rm f} \operatorname{C} n_{\rm C} \operatorname{H} n_{\rm H} \operatorname{O} n_{\rm O} \operatorname{N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1 + \psi} \operatorname{O}_2 + \frac{\psi}{1 + \psi} \operatorname{N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} \operatorname{CO}_2 + n_{\rm H_2O} \operatorname{H}_2 \operatorname{O} + n_{\rm CO} \operatorname{CO} + n_{\rm H_2} \operatorname{H}_2 + n_{\rm O_2} \operatorname{O}_2 + n_{\rm N_2} \operatorname{N}_2.$$

- Hipótese: oxidação mais completa possível:
- $(\phi \leqslant 1)$: sem produção de CO e H₂ $\longrightarrow n_{CO} = n_{H_2} = 0$ kmol, e o sistema fecha;
- $(\phi > 1)$: todo O_2 é utilizado $\longrightarrow n_{O_2} = 0$ kmol, e requer-se mais equações!

Equilíbrio Químico:

• Para $\phi > 1$ o fechamento é obtido por equilíbrio químico;

Equilíbrio Químico:

- Para $\phi > 1$ o fechamento é obtido por equilíbrio químico;
- Reação de "water-gas shift reaction":

Equilíbrio Químico:

- Para $\phi > 1$ o fechamento é obtido por equilíbrio químico;
- Reação de "water-gas shift reaction":

$$CO_2 + H_2 \Longrightarrow CO + H_2O$$
, com

Equilíbrio Químico:

- Para $\phi > 1$ o fechamento é obtido por equilíbrio químico;
- Reação de "water-gas shift reaction":

$$CO_2 + H_2 \Longrightarrow CO + H_2O$$
, com

• Constante de equilíbrio da reação, K(T), reduzido por hipótese a uma constante K:

Equilíbrio Químico:

- Para $\phi > 1$ o fechamento é obtido por equilíbrio químico;
- Reação de "water-gas shift reaction":

$$CO_2 + H_2 \Longrightarrow CO + H_2O$$
, com

• Constante de equilíbrio da reação, K(T), reduzido por hipótese a uma constante K:

$$K(T) = \frac{n_{\text{H}_2\text{O}}n_{\text{CO}}}{n_{\text{CO}_2}n_{\text{H}_2}} = K(1740 \text{ K}) = 3,5.$$

$$\frac{n_{\rm CO}}{n_{\rm f}} = -\beta \pm \sqrt{\beta^2 - \gamma}, \qquad {
m com}$$

$$rac{n_{
m CO}}{n_{
m f}} = -eta \pm \sqrt{eta^2 - \gamma}, \qquad {
m com}$$
 $\gamma = rac{2n_{
m C}(\phi - 1)}{\phi \epsilon (K - 1)},$

$$\begin{split} \frac{n_{\text{CO}}}{n_{\text{f}}} &= -\beta \pm \sqrt{\beta^2 - \gamma}, \qquad \text{com} \\ \gamma &= \frac{2n_{\text{C}}(\phi - 1)}{\phi \epsilon (K - 1)}, \\ \beta &= \frac{\phi \epsilon [(2 - K)n_{\text{C}} - n_{\text{O}}] + 2[K(\phi - 1) + 1]}{2(K - 1)\phi \epsilon}. \end{split}$$

• Seja o a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

• Seja • a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)},$$
 assim,

• Seja • a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)},$$
 assim,

• ϕ < 1 modela misturas combustível-ar com excesso de ar (pobre em combustível);

Seja φ a razão de equivalência, ou a razão combustível-ar real pela estequiométrica;

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)},$$
 assim.

- ϕ < 1 modela misturas combustível-ar com excesso de ar (pobre em combustível);
- $\phi > 1$ modela misturas combustível-ar com excesso de combustível (pobre em ar); e

• Seja • a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\mathrm{f}}/n_{\mathrm{air}}}{\epsilon/(1+\psi)},$$
 assim,

- ϕ < 1 modela misturas combustível-ar com excesso de ar (pobre em combustível);
- $\phi > 1$ modela misturas combustível-ar com excesso de combustível (pobre em ar); e
- $\phi = 1$ modela misturas combustível-ar estequiométricas.

