НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ ІМЕНІ ІГОРЯ СІКОРСЬКОГО»

Факультет прикладної математики Кафедра прикладної математики

Звіт

із лабораторної роботи №3 з дисципліни «Теорія керування» на тему

«Числове розв'язання задач варіаційного числення»

Виконала: Перевірили:

студентка групи КМ-03 Ковальчук А. С.

Професор ПМА ФПМ Норкін В.І. Асистент ПМА ФПМ Жук І.С.

Зміст

Теоретичні відомості	3
Порядок виконання роботи	
Основна частина	6
Точний розв'язок	6
Наближений розв'язок	8
Висновок	10
Використана література	11
Додаток А – Код програми	12

Теоретичні відомості

Розглянемо задачу варіаційного числення, тобто задачу нескінченновимірної оптимізації у просторі неперервно диференційованих функцій з фіксованими кінцями:

$$J(x(\cdot)) = \int_{\alpha}^{\beta} I(t, x(t), x(t)) dt \to \min_{x(\cdot): x(\alpha) = a, x(\beta) = b}$$

Апроксимуємо цю задачу скінчено-вимірною задачею оптимізації наступним чином.

На інтервалі інтегрування $[\alpha,\beta]$ визначимо точки $t_i=\alpha+i(\beta-\alpha)/N$, i=0,...,N+1, де (N+1) - число точок, $N\sim 10$. Довжина інтервалу між сусідньома точками дорівнює $\Delta t=(\beta-\alpha)/N$.

Введемо N-1 змінну $x_i = x(t_i)$, i = 1,...,N-1, позначимо $x_0 = a$, $x_N = b$.

Апроксимуємо інтеграл в задачі варіаційного числення за формулою прямокутників:

$$J(x(\cdot)) \approx \sum_{i=0}^{N-1} I(t_i, x(t_i), x(t_i)) \Delta t$$

Похідну $x(t_i)$ апроксимуємо скінченою різницею:

$$x(t_i) \approx (x(t_{i+1}) - x(t_i)) / \Delta t = (x_{i+1} - x_i) / \Delta t$$

Друга похідна апроксимується за формулою:

$$\dot{x}(t_i) = \left(\left(x(t_{i+1}) - x(t_i) \right) / \Delta t - \left(x(t_i) - x(t_{i-1}) \right) / \Delta t \right) / \Delta t =$$

$$= \left(x(t_{i+1}) - 2x(t_i) + x(t_i) \right) / \left(\Delta t \right)^2 = \left(x_{i+1} - 2x_i + x_i \right) / \left(\Delta t \right)^2.$$

Тепер замість вихідної нескінченновимірної оптимізаційної задачі маємо оптимізаційну задачу у (N-1)-вимірному просторі:

$$J_N(x_1,...,x_{N-1}) = \sum_{i=0}^{N-1} I(t_i, x_i, (x_{i+1} - x_i)/\Delta t) \cdot \Delta t \to \min_{x_1,...,x_{N-1}}$$

Також можна розглянути так звану регулярізовану задачу з додатковим квадратичним членом в цільової функції з параметром регулярізації $\lambda \ge 0$:

$$J_{N}^{\lambda}(x_{1},...,x_{N-1}) = \sum_{i=0}^{N-1} I(t_{i},x_{i},(x_{i+1}-x_{i})/\Delta t)\Delta t + \lambda \sum_{i=0}^{N-1} ((x_{i+1}-x_{i})/\Delta t)^{2}\Delta t \rightarrow \min_{x_{1},...,x_{N-1}}$$

Якщо вихідна задача містить декілька функцій $x_1(t), x_2(t), \dots$, то для кожної із них вводяться свої змінні, $x_{1i} = x_1(t_i)$, $x_{2i} = x_2(t_i)$. Таким чином, оптимізаційна задачу буде містити 2N змінних, $x_{11}, x_{12}, \dots, x_{1N}, x_{21}, x_{22}, \dots, x_{2N}$.

Ці задачі можна розв'язувати методами безградієнтного типу (по координатний спуск, Нелдера-Міда, випадкових напрямків, скінчено-різницевий). Альтернативно, ці задачі можна також розв'язувати методами градієнтного типу. Градієнт

$$\nabla J_{_{N}}(x_{_{1}},...,x_{_{N-1}}) = \left(\frac{\partial J_{_{N}}}{\partial x_{_{1}}},...,\frac{\partial J_{_{N}}}{\partial x_{_{N-1}}}\right) \\ \text{функції} \quad J_{_{N}}(x_{_{1}},...,x_{_{N-1}}) \\ \text{ наближено обчислюється} \\ \text{наступним чином:}$$

$$\frac{\partial J_{N}}{\partial x_{i}} = \frac{\partial J}{\partial x}\Big|_{t=t_{i-1}} \left(\frac{1}{\Delta t}\right) + \frac{\partial J}{\partial x}\Big|_{t=t_{i}} + \frac{\partial J}{\partial x}\Big|_{t=t_{i}} \left(\frac{-1}{\Delta t}\right) \approx
\approx \left(\frac{\partial J}{\partial x}(t_{i-1}, x_{i-1}, (x_{i} - x_{i-1})/\Delta t)\right) + \left(\frac{\partial J}{\partial x}(t_{i}, x_{i}, (x_{i+1} - x_{i})/\Delta t)\right) \Delta t -
- \left(\frac{\partial J}{\partial x}(t_{i}, x_{i}, (x_{i+1} - x_{i})/\Delta t)\right), \qquad i = 1, ..., N - 1.$$

Тут спочатку для даної підінтегральної функції I(t,x(t),x(t)) аналітично обчислюються формули для часткових похідних $\frac{\partial J}{\partial x}$ та $\frac{\partial J}{\partial x}$ як функцій змінних (t,x(t),x(t)), а потім заміст них підставляються трійки аргументів $(t_{i-1},x_{i-1},(x_i-x_{i-1})/\Delta t)$ та $(t_i,x_i,(x_{i+1}-x_i)/\Delta t)$.

Аналогічно,

$$\nabla J_{N}^{\lambda}(x_{1},...,x_{N-1}) = \left(\frac{\partial J_{N}^{\lambda}}{\partial x_{1}},...,\frac{\partial J_{N}^{\lambda}}{\partial x_{N-1}}\right),$$

$$\frac{\partial J_{N}^{\lambda}}{\partial x_{i}} = \frac{\partial J}{\partial x}\Big|_{t=t_{i-1}} \left(\frac{1}{\Delta t}\right) + \frac{\partial J}{\partial x}\Big|_{t=t_{i}} + \frac{\partial J}{\partial x}\Big|_{t=t_{i}} \left(\frac{-1}{\Delta t}\right) + \frac{2\lambda}{(\Delta t)} \left(x_{i} - x_{i-1}\right) - \frac{2\lambda}{(\Delta t)} \left(x_{i+1} - x_{i}\right) \approx$$

$$\approx \left(\frac{\partial J}{\partial x} \left(t_{i-1}, x_{i-1}, (x_{i} - x_{i-1})/\Delta t\right)\right) + \left(\frac{\partial J}{\partial x} \left(t_{i}, x_{i}, (x_{i+1} - x_{i})/\Delta t\right)\right) \Delta t -$$

$$-\left(\frac{\partial J}{\partial x} \left(t_{i}, x_{i}, (x_{i+1} - x_{i})/\Delta t\right)\right) + \frac{2\lambda}{(\Delta t)} \left(x_{i} - x_{i-1}\right) - \frac{2\lambda}{(\Delta t)} \left(x_{i+1} - x_{i}\right).$$

Порядок виконання роботи

- 1) Обрати приклад задачі варіаційного числення зі списку та повідомить викладача.
- 2) Обрати число точок апроксимації N.
- 3) Запрограмувати функцію $J_N(x_1,...,x_{N-1})$.
- 4) Обрати метод безградієнтний (або градієнтний) метод мінімізації $J_N(x_1,...,x_{N-1})$.
- 5) Застосувати метод до мінімізації $J_N(x_1,...,x_{N-1})$ та побудувати графік залежності отриманого значення мінімізованої функції від числа ітерацій, обрати критерій зупинки методу.
- 6) Для отриманого розв'язку $(x_1^*,...,x_{N-1}^*)$ (мінімуму) побудувати кусковолінійну функцію по точкам $((\alpha,a),(t_1,x_1^*),...,(t_{N-1},x_{N-1}^*),(\beta,b))$ та зобразити її графічно.
- 7) Графічно порівняти отриманий наближений розв'язок з точним розв'язком, отриманим аналітично.
- 8) Дослідити точність апроксимації від числа точок апроксимації.
- 9) Підготувати письмовий звіт про роботу (та надіслати викладачу).

Відповідно до варіанту №4 було обрано наступну задачу:

$$\int_{0}^{1} ((x')^{2} + 4x^{2}) dt \to \text{extr}, \quad x(0) = e^{2}, \, x(1) = 1.$$

Основна частина

У даній лабораторній роботі було взято наступні константи:

$$N = 10$$
 $X(0) = e^{2}$ $X(1) = 1$ $Y(0) =$

Після цього було запрограмовано функцію $J_{\scriptscriptstyle N}(x_{\scriptscriptstyle \rm I},...,x_{\scriptscriptstyle N-{\rm I}})$ відповідно до теоретичних відомостей.

Було використано математичну бібліотеку scipy. У ній ϵ функція scipy.optimize.minimize, яка використовуючи метод BFGS (градієнтний метод) оптимізує задану функцію.

Точний розв'язок

Для порівняння результатів треба вручну розв'язати задачу і отримати аналітичний розв'язок. Після чого можна буде порівняти розв'язки графічно.

За формулою Ейлера:

$$F_{x'x'} * x'' + F_{xx'} * x' + F_{tx'} - F_x = 0$$

$$F_x(t, x, x') = 8x$$

$$F_{xx'}(t, x, x') = 0$$

$$F_{x'}(t, x, x') = 2x'$$

$$F_{x'x'}(t, x, x') = 2$$

$$F_t(t, x, x') = 0$$

$$F_{tx'}(t, x, x') = 0$$

Отримаємо рівняння:

$$2x'' - 8x = 0$$

Характеристичне рівняння:

$$2\lambda^{2} - 8 = 0$$

$$\lambda_{1,2} = \pm \sqrt{4}$$

$$y = C_{1}e^{-2x} + C_{2}e^{2x}$$

$$\begin{cases} x(0) = e^{2} \\ x(1) = 1 \end{cases}$$

$$\begin{cases} C_{1}e^{0} + C_{2}e^{0} = e^{2} \\ C_{1}e^{-2} + C_{2}e^{2} = 1 \end{cases}$$

$$C_{1} = e^{2}, \quad C_{2} = 0$$

$$y = e^{2}e^{-2x}$$

Отже, було отримано точний розв'язок задачі, тепер треба порівняти його із наближеним результатом.

Наближений розв'язок

У ході досліджень наближеного розв'язку було отримано такі результати: Мінімальне значення функції: 12.0497

Рис. 1 — Наближений та точний розв'язок задачі при N=10

Хоч кількість точок апроксимації не велика, графіки все одно виглядають дуже схоже.

Збільшимо параметр N до 50:

Мінімальне значення функції: 2.1914

0.2

0.0

Розв'язки задачі варіаційного числення — Наближений розв'язок — Точний розв'язок 5 x(t) 4 3

Рис. 2 – Наближений та точний розв'язок задачі при N=50

0.6

0.8

1.0

0.4

Отже, при N=50 та більше, різниця між наближеним та точним розв'язками не суттєва.

Висновок

Під час проведення даної лабораторної роботи було аналітично та чисельно розв'язано задачу варіаційного числення.

Було побудовано графіки розв'язків. Можна зробити висновок, що при N=50 наближений розв'язок збігається досить сильно з точним розв'язком задачі. Звісно, можна зменшити параметр N або навпаки збільшити в залежності від потреб. Це буде впливати на використовувані обчислювальні ресурси, таким чином можна балансувати між точністю розв'язку та задіяними потужностями.

Використана література

- 1. Методичні вказівки до лабораторної роботи.
- 2. Лейтман Дж. Введение в теорию оптимального управления. М.: Наука, 1968. 192 стр.

Додаток А – Код програми

КМ-03 Ковальчук Лаб 3.ру:

```
import numpy as np
import scipy.optimize
import matplotlib.pyplot as plt
PRECISION = 4
np.set_printoptions(precision=PRECISION)
def j(args):
    global x_list
    x_list = []
    _b = B + step
    dt = (b-A)/N
    func_str = ""
    for i in range(1, N + 2):
        x_{list.append}(A + (i - 1) * dt)
        func_str += "(" + FUNC.replace("x'", f"((y\{i + 1\}-y\{i\})/\{dt\})")\
                               .replace("x", f''(x\{i\}))")
                               .replace("t", f"{dt}") + f")*{dt}"
        if i != N+1:
            func str += "+"
    func_str = func_str.replace("y", "x")
    func_str = f''(1/{N})*(" + func_str + ")"
    f_str = func_str
    f_str = f_str.replace(f'x{N}', str(YB))
    for i in range(len(args), 1, -1):
        f_str = f_str.replace(f"x{i}", str(args[i - 1]))
    f_str = f_str.replace('x1', str(YA))
    return eval(f_str)
def solve(n):
    x0 = np.array([1 for _ in range(n + 2)])
    res = scipy.optimize.minimize(j, x0)
    print(f"Мінімальне значення функції: {round(res.fun, PRECISION)}")
    result = res.x[1:-2]
```

```
result[-1] = YB
    y_list = np.concatenate([[YA], result])
    t_plot = np.linspace(A, B, 200)
    analytic = [np.exp(2*(1-t)) for t in t_plot]
    plt.plot(x_list[:-1], y_list, label="Наближений розв'язок", color='red')
    plt.plot(t_plot, analytic, label="Точний розв'язок", color='blue')
    plt.title("Розв'язки задачі варіаційного числення")
   plt.legend()
    ax = plt.gca()
    ax.set_axisbelow(True)
    plt.grid(c='lightgrey')
    plt.xlabel('t')
    plt.ylabel('x(t)', rotation=0, labelpad=10)
    plt.tight_layout()
    plt.show()
if __name__ == "__main__":
   N = 50
   A = 0
                     # Нижня межа інтегрування
   B = 1
                     # Верхня межа інтегрування
   YA = np.exp(2) # x(0) = e^2
YB = 1 # x(1) = 1
    FUNC = "x'**2+4*x**2"
    step = (B-A)/N
    solve(N)
```