Claims

1. A compound of formula (1):

wherein

Z is CH or nitrogen;

 R^4 and R^5 together are $-S-C(R^6)=C(R^7)$ - or $-C(R^7)=C(R^6)-S-$;

R⁶ and R⁷ are independently selected from hydrogen, halo, nitro, cyano, hydroxy, fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, carboxy, carbamoyl, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, and C₁₋₄alkanoyl;

A is phenylene or heteroarylene;

n is 0, 1, or 2;

 R^1 is independently selected from halo, nitro, cyano, hydroxy, carboxy, carbamoyl, $N-C_{1-4}$ alkylcarbamoyl, $N,N-(C_{1-4}$ alkyl)₂carbamoyl, sulphamoyl, $N-C_{1-4}$ alkylsulphamoyl,

N,*N*-(C₁₋₄alkyl)₂sulphamoyl, -S(O)_bC₁₋₄alkyl (wherein b is 0,1,or 2), C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanoyl, C₁₋₄alkanoyloxy, hydroxyC₁₋₄alkyl, fluoromethyl, difluoromethyl, trifluoromethyl, and trifluoromethoxy; or when n is 2, the two R¹ groups, together with the carbon atoms of A to which they are attached, may form a 4- to 7-membered ring, optionally containing 1 or 2 heteroatoms independently selected from O, S, and N, and optionally substituted with one or two methyl groups;

r is 1 or 2;

when r is 1 the group

$$R^4$$
 Z
 N
 N
 N
 N
 N

is a substituent on carbon (2);

when r is 2 (thereby forming a six-membered ring) the same group is a substituent on carbon (2) or on carbon (3);

Y is $-NR^2R^3$ or $-OR^3$;

R² and R³ are independently selected from hydrogen, hydroxy, C₁₋₄alkoxy, C₁.

4alkanoyl, carbamoyl, C₃₋₇cycloalkyl (optionally substituted with 1 or 2 hydroxy groups),

cyano(C_{1-4})alkyl, heterocyclyl, aryl, C_{1-4} alkyl [optionally substituted with 1 or 2 R^8 groups], $-COR^8$, $-SO_bR^8$ (wherein b is 0, 1, or 2), and groups of the formulae B and B':

$$(OH)_{y}$$

$$(B)$$

$$(B')$$

wherein y is 0 or 1, t is 0, 1, 2, or 3 and u is 1 or 2;

provided that the hydroxy group is not a substituent on the ring carbon adjacent to the ring oxygen; or

NR²R³ may form a 4- to 7-membered saturated, partially saturated, or unsaturated ring, optionally containing 1, 2, or 3 additional heteroatoms independently selected from N, O, and S, wherein any -CH₂- may optionally be replaced by -C(=O)-, and any N or S atom may optionally be oxidised to form an N-oxide, SO, or SO₂ group respectively, and the ring is optionally substituted with 1 or 2 substituents independently selected from halo, cyano, C₁₋₄alkyl, hydroxy, C₁₋₄alkoxy, and C₁₋₄alkylS(O)_b- (wherein b is 0, 1, or 2);

 R^8 is independently selected from hydrogen, hydroxy, C_{1-4} alkyl, C_{2-4} alkenyl, C_{1-4} alkoxy, cyano(C_{1-4})alkyl, amino(C_{1-4})alkyl [optionally substituted on nitrogen with 1 or 2 groups selected from C_{1-4} alkyl, hydroxy, hydroxy(C_{1-4})alkyl, dihydroxy(C_{1-4})alkyl, - CO_2C_{1-4} alkyl, aryl, and aryl(C_{1-4})alkyl], halo(C_{1-4})alkyl, dihalo(C_{1-4})alkyl, trihalo(C_{1-4})alkyl, hydroxy(C_{1-4})alkyl, dihydroxy(C_{1-4})alkyl, C_{1-4} alkoxyC₁₋₄alkoxy, C_{1-4} alkoxyC₁₋₄alkyl, hydroxyC₁₋₄alkoxy, 5- and 6-membered cyclic acetals and monoand di-methyl derivatives thereof, aryl, heterocyclyl, (heterocyclyl) C_{1-4} alkyl, C_{3-4} cycloalkyl (optionally substituted with 1 or 2 hydroxy groups, C_{1-4} alkyl, or - $C(O)OC_{1-4}$ alkyl), C_{1-4} alkanoyl, C_{1-4} alkylS($O)_b$ - (wherein b is 0, 1, or 2),

9530153.1

C₃₋₆cycloalkylS(O)_b- (wherein b is 0, 1, or 2), arylS(O)_b- (wherein b is 0, 1, or 2), heterocyclylS(O)_b- (wherein b is 0, 1, or 2), benzylS(O)_b- (wherein b is 0, 1, or 2), C₁-4alkylS(O)_c(C₁₋₄)alkyl (wherein c is 0, 1, or 2), -N(OH)CHO, -C(=N-OH)NH₂, -C(=N-OH)NH₂ OH)NHC₁₋₄alkyl, -C(=N-OH)N(C₁₋₄alkyl)₂, -C(=N-OH)NHC₃₋₆cycloalkyl, OH)N(C_{3-6} cycloalkyl), -COCOOR⁹, -C(O)N(R^9)(R^{10}), -NHC(O) R^9 , -C(O)NHSO₂(C₁₋₄alkyl), -NHSO₂R⁹, (R⁹)(R¹⁰)NSO₂-, -COCH₂OR¹¹, (R⁹)(R¹⁰)N-, -COOR⁹, -CH₂OR⁹, -CH₂COOR⁹, -CH₂OCOR⁹, -CH₂CH(CO₂R⁹)OH, - $CH_2C(O)NR^9R^{10}$, -(CH_2)_w $CH(NR^9R^{10})CO_2R^{9'}$ (wherein w is 1, 2, or 3), and -(CH₂)_wCH(NR⁹R¹⁰)CO(NR⁹'R¹⁰') (wherein w is 1, 2, or 3); R⁹, R⁹, R¹⁰, and R¹⁰ are independently selected from hydrogen, hydroxy, C₁₋₄alkyl (optionally substituted with 1 or 2 R¹³), C₂₋₄alkenyl, C₃₋₇cycloalkyl (optionally substituted with 1 or 2 hydroxy groups), cyano(C₁₋₄)alkyl, trihaloalkyl, aryl, heterocyclyl, heterocyclyl(C₁₋₄alkyl), and -C(=O)O(C₁₋₄)alkyl; or R⁹ and R¹⁰ together with the nitrogen to which they are attached, or R⁹ and R¹⁰ together with the nitrogen to which they are attached, form a 4- to 6-membered ring where the ring is optionally substituted on carbon with 1 or 2 substituents independently selected from oxo, hydroxy, carboxy, halo, nitro, cyano, carbonyl, C₁-4alkoxy, and heterocyclyl; or the ring may be optionally substituted on two adjacent carbons with -O-CH₂-O- to form a cyclic acetal wherein one or both of the hydrogens of the -O-CH₂-O- group may be replaced by a methyl; R¹³ is selected from halo, trihalomethyl, and C₁₋₄alkoxy; and R¹¹ is independently selected from hydrogen, C₁₋₄alkyl, and hydroxyC₁₋₄alkyl; or a pharmaceutically acceptable salt or pro-drug thereof; with the proviso that the compound of formula (1) is not

- i) 2,3-dichloro-5-(N-{1-[N-(1,1-dimethylethoxy)carbonylamino]indan-2-yl}carbamoyl)-4H-thieno[3,2-b]pyrrole;
- ii) 5-[N-(1-aminoindan-2-yl)carbamoyl]-2,3-dichloro-4H-thieno[3,2-b]pyrrole;
- iii) 5-[N-(1-acetamidoindan-2-yl)carbamoyl]-2,3-dichloro-4H-thieno[3,2-b]pyrrole;
- iv) 2,3-dichloro-5-{*N*-[1-(methanesulphonamido)indan-2-yl]carbamoyl}4*H*-thieno[3,2-*b*]pyrrole;
- v) 2,3-dichloro-5-{N-[1-(methylamino)indan-2-yl]carbamoyl}-4H-thieno[3,2-b]pyrrole;

vi) 2,3-dichloro-5-{N-[1-(methylacetamido)indan-2-yl]carbamoyl}-4H-thieno[3,2-b]pyrrole;

- vii) 2,3-dichloro-5-[*N*-(1-hydroxyindan-2-yl)carbamoyl]-4*H*-thieno[3,2-*b*]pyrrole;
- viii) 2-chloro-5-[N-(1-hydroxyindan-2-yl)carbamoyl-6H-thieno[2,3-b]pyrrole;
- ix) 2,3-dichloro-5-[N-(6-fluoro-1-hydroxyindan-2-yl)carbamoyl-4H-thieno[3,2-b]pyrrole;
- x) 2,3-dichloro-5-[N-(1-methoxyindan-2-yl)carbamoyl-4H-thieno[3,2-b]pyrrole; or
- xi) 2,3-dichloro-5-[N-(1-hydroxy-1,2,3,4-tetrahydronaphth-2-yl)carbamoyl]-4*H*-thieno[3,2-*b*]pyrrole.

2. A compound of claim 1, wherein

 R^2 and R^3 are independently selected from hydrogen, hydroxy, C_{1-4} alkyl [optionally substituted with 1 or 2 R^8 groups], C_{3-7} cycloalkyl (optionally substituted with 1 or 2 hydroxy groups), cyano(C_{1-4})alkyl, phenyl, morpholino, morpholinyl, piperidino, piperidyl, pyridyl, pyranyl, pyrrolyl, imidazolyl, thiazolyl, thienyl, thiadiazolyl, piperazinyl, isothiazolidinyl, 1,3,4-triazolyl, tetrazolyl, pyrrolidinyl, thiomorpholino, pyrrolinyl, homopiperazinyl, 3,5-dioxapiperidinyl, pyrimidyl, pyrazinyl, pyridazinyl, pyrazolyl, pyrazolinyl, isoxazolyl, 4-oxopydridyl, 2-oxopyrrolidyl, 4-oxothiazolidyl, furyl, thienyl, oxazolyl, 1,3,4-oxadiazolyl, and 1,2,4-oxadiazolyl, tetrahydrothiopyranyl, 1-oxotetrahydrothiopyranyl, 1,1-dioxotetrahydrothiopyranyl, - COR^8 , and $-SO_bR^8$ (wherein b is 0, 1, or 2);

 R^8 is independently selected from hydrogen, hydroxy, C_{1-4} alkoxy, C_{1-4} alkoxy, C_{1-4} alkoxy C_{1-4} alkoxy C_{1-4} alkoxy C_{1-4} alkoxy, hydroxy C_{1-4} alkoxy, C_{1-4} alkyl, amino(C_{1-4})alkyl [optionally substituted on nitrogen with 1 or 2 groups selected from C_{1-4} alkyl, hydroxy(C_{1-4})alkyl, dihydroxy(C_{1-4})alkyl, $-CO_2C_{1-4}$ alkyl, aryl, and aryl(C_{1-4})alkyl], C_{2-4} alkenyl, C_{3-7} cycloalkyl (optionally substituted with $-C(O)OC_{1-4}$ alkyl), 5- and 6-membered cyclic acetals and mono- and di-methyl derivatives thereof, halo(C_{1-4})alkyl, dihalo(C_{1-4})alkyl, trihalo(C_{1-4})alkyl, hydroxy(C_{1-4})alkyl, dihydroxy(C_{1-4})alkyl, cyano(C_{1-4})alkyl, heterocyclyl, heterocyclyl C_{1-4} alkyl, aryl, C_{1-4} alkylS(O)_b- (wherein b is 0, 1, or 2), C_{3-6} cycloalkylS(O)_b- (wherein b is 0, 1, or 2), heterocyclylS(O)_b- (wherein b is 0, 1, or 2), benzylS(O)_b- (wherein b is 0, 1, or 2), heterocyclylS(O)_b- (wherein b is 0, 1, or 2), benzylS(O)_b- (wherein b is 0, 1, or 2), heterocyclylS(O)_b- (wherein b is 0, 1, or 2), benzylS(O)_b- (wherein b is 0, 1, or 2), heterocyclylS(O)_b- (wherein b is 0, 1, or 2), benzylS(O)_b- (wherein b is 0, 1, or 2), heterocyclylS(O)_b- (wherein b is 0, 1, or 2).

or 2), C₁₋₄alkylS(O)_c(C₁₋₄)alkyl (wherein c is 0, 1, or 2), -

CH₂CH(NR⁹R¹⁰)CO(NR⁹'R¹⁰'), -CH₂OR⁹, (R⁹)(R¹⁰)N-, -COOR⁹, -CH₂COOR⁹, $-C(O)N(R^9)(R^{10})$, $-CH_2CH(CO_2R^9)OH$, $-CH_2CONR^9R^{10}$, $-CH_2CH(NR^9R^{10})CO_2R^{9'}$, and-CH₂OCOR⁹; R⁹, R⁹, R¹⁰, and R¹⁰ are independently selected from hydrogen, C₁₋₄alkyl (optionally substituted with 1 or 2 R¹³), C₃₋₇cycloalkyl (optionally substituted with 1 or 2 hydroxy groups), -C(=O)O^tBu, C₂₋₄alkenyl, cyano(C₁₋₄)alkyl, and phenyl (optionally substituted with 1 or 2 groups selected from nitro, halo, hydroxy, and cyano); or R⁹ and R¹⁰ together with the nitrogen to which they are attached, or R⁹ and R¹⁰ together with the nitrogen to which they are attached, form a 4- to 6-membered ring where the ring is optionally substituted on carbon with 1 or 2 substituents independently selected from oxo, hydroxy, carboxy, halo, nitro, cyano, carbonyl, and C₁₋₄alkoxy; or the ring may be optionally substituted on two adjacent carbons with -O-CH₂-O- to form a cyclic acetal wherein one or both of the hydrogens of the -O-CH₂-O- group may be replaced by a methyl; and R¹³ is selected from halo, trihalomethyl, and C₁₋₄alkoxy; or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.

3. A compound of claim 1, wherein

 R^2 and R^3 are independently selected from hydrogen, C_{1-4} alkyl [optionally substituted with 1 or 2 R^8 groups], -COR⁸, and -SO_bR⁸ (wherein b is 0, 1, or 2); R^8 is independently selected from hydrogen, hydroxy, C_{1-4} alkoxy, C_{1-4} alkyl, C_{1-4} alkyl, amino(C_{1-4})alkyl [optionally substituted on nitrogen with 1 or 2 groups selected from C_{1-4} alkyl, hydroxy(C_{1-4})alkyl, dihydroxy(C_{1-4})alkyl, -CO₂C₁₋₄alkyl, phenyl, and aryl(C_{1-4})alkyl], C_{2-4} alkenyl, C_{3-7} cycloalkyl (optionally substituted with -C(O)OC₁₋₄alkyl), 5- and 6-membered cyclic acetals and mono- and di-methyl derivatives thereof, halo(C_{1-4})alkyl, trihalo(C_{1-4})alkyl, hydroxy(C_{1-4})alkyl, dihydroxy(C_{1-4})alkyl, cyano(C_{1-4})alkyl, furyl (optionally substituted on carbon with 1 or 2 nitro groups), thienyl (optionally substituted on carbon with 1 or 2 nitro groups), thienyl(C_{1-4})alkyl (wherein furyl is optionally substituted on carbon with 1 or 2 nitro groups), 1,2,4-oxadiazolyl, tetrazolyl, imidazolyl, pyrrolidinyl, piperidyl, pyridyl, tetrahydrofuryl, tetrahydropyranyl, 1-oxotetrahydrothiopyranyl, tetrahydrothionyl, phenyl (optionally substituted with 1 or 2

groups selected from nitro, halo, cyano, hydroxy, and C₁₋₄alkyl), pyrazinyl, piperazinyl, 4-methylpiperazino, C₁₋₄alkylS(O)_b- (wherein b is 0, 1, or 2), C₃₋₆cycloalkylS(O)_b- (wherein b is 0, 1, or 2), arylS(O)_b- (wherein b is 0, 1, or 2), heterocyclylS(O)_b- (wherein b is 0, 1, or 2 -CH₂CH(NR⁹R¹⁰)CO(NR⁹'R¹⁰'), -CH₂OR⁹, (R⁹)(R¹⁰)N-, -COOR⁹, -CH₂COOR⁹, -C(O)N(R⁹)(R¹⁰), -CH₂CH(CO₂R⁹)OH, - CH₂CONR⁹R¹⁰, -CH₂CH(NR⁹R¹⁰)CO₂R⁹', and -CH₂OCOR⁹; and R⁹, R⁹', R¹⁰ and R¹⁰' are independently selected from hydrogen, C₁₋₄alkyl (optionally substituted with 1 or 2 hydroxy groups), C₂₋₄alkenyl, and phenyl (optionally substituted with 1 or 2 groups selected from nitro, halo, hydroxy, and cyano); or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.

- 4. A compound of claim 1, wherein Y is NR²R³, or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.
- 5. A compound of claim 1, wherein Y is OR³, or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.
- 6. A compound of claim 1, wherein R⁴ and R⁵ together are
 -S-C(R⁶)=C(R⁷)-, or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.
- 7. A compound of claim 1, wherein R^4 and R^5 together are $-C(R^7)=C(R^6)-S$ -, or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.
- 8. A compound of claim 1, wherein A is phenylene, or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.
- 9. A compound of claim 1, wherein A is heteroarylene, or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.
- 10. A compound of claim 1, wherein Z is CH, or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.
- 11. A compound of claim 1, which is a compound of formula (1B)

9530153.1

or a pharmaceutically acceptable salt or an in-vivo hydrolysable ester thereof.

12. A compound of claim 1, selected from

2,3-dichloro-N-[(1R,2R)-1-(formylamino)-2,3-dihydro-1H-inden-2-yl]-4H-thieno[3,2-b]pyrrole-5-carboxamide;

2,3-dichloro-N-((1R,2R)-1-{[(methyloxy)acetyl]amino}-2,3-dihydro-1H-inden-2-yl)-4H-thieno[3,2-B]pyrrole-5-carboxamide;

 $N-((1S,2S)-1-\{[(3(R)-3-(tert-butoxycarbonylamino)-3-carbamoylpropanoyl]amino\}-$

2,3-dihydro-1*H*-inden-2-yl)-2,3-dichloro-4*H*-thieno[3,2-*b*]pyrrole-5-carboxamide;

2,3-dichloro-N-[(1R,2R)-1- $(\{[(4R)$ -2,2-dimethyl-5-oxo-1,3-dioxolan-4-

yl]acetyl}amino)-2,3-dihydro-1*H*-inden-2-yl]-4*H*-thieno[3,2-*b*]pyrrole-5-carboxamide;

2,3-dichloro-N-{(1R,2R)-1-[(3-methoxypropanoyl)amino]-2,3-dihydro-1H-inden-2-yl}-4H-thieno[3,2-B]pyrrole-5-carboxamide;

N-{(1R,2R)-1-[(2-acetoxyacetyl)amino]-2,3-dihydro-1*H*-inden-2-yl}-2,3-dichloro-4*H*-thieno[3,2-*b*]pyrrole-5-carboxamide;

 $N-\{(1R,2R)-1-[(2-carbamoylacetyl)amino]-2,3-dihydro-1H-inden-2-yl\}-2,3-dichloro-4H-thieno[3,2-b]pyrrol-5-carboxamide;$

2,3-dichloro-N-{(1R,2R)-1-[(trifluoroacetyl)amino]-2,3-dihydro-1H-inden-2-yl}-4H-thieno[3,2-b]pyrrole-5-carboxamide;

2,3-dichloro-*N*-{(1*S*,2*S*)-1-[(furan-2-ylcarbonyl)amino]-2,3-dihydro-1*H*-inden-2-yl}-4*H*-thieno[3,2-*b*]pyrrole-5-carboxamide;

2,3-dichloro-*N*-{(1*S*,2*S*)-1-[(furan-3-ylcarbonyl)amino]-2,3-dihydro-1*H*-inden-2-yl}-4*H*-thieno[3,2-*b*]pyrrole-5-carboxamide;

2,3-dichloro-N-{(1S,2S)-1-[(3-thienylcarbonyl)amino]-2,3-dihydro-1H-inden-2-yl}-4H-thieno[3,2-b]pyrrole-5-carboxamide;

2,3-dichloro-N-((1S,2S)-1-{[(5-nitrofuran-2-yl)carbonyl]amino}-2,3-dihydro-1H-inden-2-yl)-4H-thieno[3,2-b]pyrrole-5-carboxamide;

- 2,3-dichloro-*N*-{(1S,2S)-1-[(pyridin-3-ylcarbonyl)amino]-2,3-dihydro-1*H*-inden-2-yl}-4*H*-thieno[3,2-*b*]pyrrole-5-carboxamide;
- *N*-[(1*S*,2*S*)-1-(acryloylamino)-2,3-dihydro-1*H*-inden-2-yl]-2,3-dichloro-4*H*-thieno[3,2-*b*]pyrrole-5-carboxamide;
- 2,3-dichloro-N-((1S,2S)-1-{[(3-hydroxyphenyl)carbonyl]amino}-2,3-dihydro-1H-inden-2-yl)-4H-thieno[3,2-b]pyrrole-5-carboxamide;
- N-[(1S,2S)-1-(acetylamino)-2,3-dihydro-1H-inden-2-yl]-2,3-dichloro-4H-thieno[3,2-b]pyrrole-5-carboxamide;
- N-[(1S,2S)-1-[(2-carboxyacetyl)amino]-2,3-dihydro-1*H*-inden-2-yl]-2,3-dichloro-4*H*-thieno[3,2-*b*]pyrrole-5-carboxamide;
- 2,3-dichloro-N-((1S,2S)-1-{[(dimethylamino)carbonyl]amino}-2,3-dihydro-1H-inden-2-yl)-4H-thieno[3,2-b]pyrrole-5-carboxamide;
- 2,3-dichloro-N-((1S,2S)-1-{[(4-methylpiperazin-1-yl)carbonyl]amino}-2,3-dihydro-1H-inden-2-yl)-4H-thieno[3,2-B]pyrrole-5-carboxamide;
- 2,3-dichloro-N-((1S,2S)-1-{[(ethylamino)carbonyl]amino}-2,3-dihydro-1H-inden-2-yl)-4H-thieno[3,2-B]pyrrole-5-carboxamide;
- 2,3-dichloro-N-((1S,2S)-1-{[(prop-2-en-1-ylamino)carbonyl]amino}-2,3-dihydro-1H-inden-2-yl)-4H-thieno[3,2-b]pyrrole-5-carboxamide;
- 2,3-dichloro-N-[(1S,2S)-1-({[(3,5-dinitrophenyl)amino]carbonyl}amino)-2,3-dihydro-1H-inden-2-yl]-4H-thieno[3,2-B]pyrrole-5-carboxamide;
- 2,3-dichloro-N-[(1S,2S)-1-(formylamino)-2,3-dihydro-1H-inden-2-yl]-4H-thieno[3,2-b]pyrrole-5-carboxamide;
- N-{(1R,2R)-1-[((3R)-3-amino-3-carbamoylpropanoyl)amino]-2,3-dihydro-1H-inden-2-yl}-2,3-dichloro-4H-thieno[3,2-b]pyrrole-5-carboxamide;
- N-(1R,2R)-1-[((3R)-3-carboxy-3-hydroxypropanoyl)amino]-2,3-dihydro-1<math>H-inden-2-yl}-2,3-dichloro-4H-thieno[3,2-b]pyrrole-5-carboxamide;
- 2,3-dichloro-N-{(1R,2R)-1-[(hydroxyacetyl)amino]-2,3-dihydro-1H-inden-2-yl}-4H-thieno[3,2-b]pyrrole-5-carboxamide;
- 2,3-dichloro-N-{(1S,2S)-1-[(methylsulfonyl)amino]-2,3-dihydro-1H-inden-2-yl}-4H-thieno[3,2-b]pyrrole-5-carboxamide;
- 2,3-dichloro-N-{(1S, 2S)-1-[methyl(morpholin-4-ylacetyl)amino]-2,3-dihydro-1H-inden-2-yl}-4H-thieno[3,2-b]pyrrole-5-carboxamide;
- $N-\{(1R,2R)-1-[(2-amino-2-oxoethyl)amino]-2,3-dihydro-1H-inden-2-yl\}-2,3-dichloro-4H-thieno[3,2-b]pyrrole-5-carboxamide;$

N-(1R,2R)-1-[(tert-butoxycarbonylmethyl)amino]-2,3-dihydro-1H-inden-2-yl}-2,3-dichloro-4H-thieno[3,2-b]pyrrole-5-carboxamide;

- *N*-[(1*R*,2*R*)-1-(carboxymethylamino)-2,3-dihydro-1*H*-inden-2-yl]-2,3-dichloro-4*H*-thieno[3,2-*b*]pyrrole-5-carboxamide;
- $N-(1R,2R)-1-[N-acetyl-N-(carboxymethyl)amino]-2,3-dihydro-1H-inden-2-yl}-2,3-dichloro-4H-thieno[3,2-b]pyrrole-5-carboxamide;$
- $N-\{(1R,2R)-1-[acetyl(2-amino-2-oxoethyl)amino]-2,3-dihydro-1H-inden-2-yl\}-2,3-dichloro-4H-thieno[3,2-b]pyrrole-5-carboxamide;$
- $N-\{(1R,2R)-1-[N-(carboxymethyl)-N-(hydroxyacetyl)amino]-2,3-dihydro-1H-inden-2-yl\}-2,3-dichloro-4H-thieno[3,2-b]pyrrole-5-carboxamide;$
- 2-chloro-N-[(1R,2R)-1-({[(2S)-5-oxotetrahydrofuran-2-yl]carbonyl}amino)-2,3-dihydro-1H-inden-2-yl]-6H-thieno[2,3-b]pyrrole-5-carboxamide;
- 2-chloro-*N*-[(1*R*,2*R*)-1-(formylamino)-2,3-dihydro-1*H*-inden-2-yl]-6*H*-thieno[2,3-*b*]pyrrole-5-carboxamide;
- 2-chloro-N-{(1R,2R)-1-[(methoxyacetyl)amino]-2,3-dihydro-1H-inden-2-yl}-6H-thieno[2,3-b]pyrrole-5-carboxamide;
- *N*-[(1*R*,2*R*)-1-(acetylamino)-2,3-dihydro-1*H*-inden-2-yl]-2-chloro-6*H*-thieno[2,3-*b*]pyrrole-5-carboxamide;
- 2-chloro-N-{(1R,2R)-1-[(3-methoxypropanoyl)amino]-2,3-dihydro-1*H*-inden-2-yl}-6*H*-thieno[2,3-*b*]pyrrole-5-carboxamide;
- $N-\{(1R,2R)-1-[(2-acetoxyacettyl)amino]-2,3-dihydro-1H-inden-2-yl\}-2-chloro-6H-thieno[2,3-b]$ pyrrole-5-carboxamide;
- N-((1S,2S)-1-{[(2(S)-2-(tert-butoxycarbonylamino)-2-carbamoylacetyl]amino}-2,3-dihydro-1H-inden-2-yl)-2-chloro-6H-thieno[2,3-B]pyrrole-5-carboxamide;
- N-{(1S,2S)-1-[(2-(*tert*-butoxycarbonylamino)acetylamino]-2,3-dihydro-1*H*-inden-2-yl}-2-chloro-6*H*-thieno[2,3-*b*]pyrrole-5-carboxamide;
- $N-\{(1R,2R)-1-[2-carbamoylacetyl)amino]-2,3-dihydro-1H-inden-2-yl\}-2-chloro-6H-thieno[2,3,b]pyrrole-5-carboxamide;$
- *N*-{(1*R*,2*R*)-1-[2-(tert-butoxycarbonyl)acetylamino]-2,3-dihydro-1*H*-inden-2-yl}-2-chloro-6*H*-thieno[2,3,*b*]pyrrole-5-carboxamide;
- 2-chloro-N-((1R,2R)-1-{[3-hydroxy-2-(hydroxymethyl)propanoyl]amino}-2,3-dihydro-1H-inden-2-yl)-6H-thieno[2,3-b]pyrrole-5-carboxamide;
- $N-\{(1R,2R)-1-[((3R)-3-amino-3-carbamoylpropanoyl)amino]-2,3-dihydro-1$ *H* $-inden-2-yl\}-2-chloro-6$ *H*-thieno[2,3-*b*]pyrrole-5-carboxamide;

```
N-\{(1R,2R)-1-[(aminoacetyl)amino]-2,3-dihydro-1H-inden-2-yl\}-2-chloro-6H-thieno[2,3-b]pyrrole-5-carboxamide;
```

- 2-chloro-N-[(1R,2R)-1-({[(2-hydroxyethyl)(phenylmethyl)amino]acetyl} amino)-2,3-dihydro-1H-inden-2-yl)-6H-thieno[2,3-B]pyrrole-5-carboxamide;
- 2-chloro-N-{(1R,2R)-1-[(morpholin-4-ylacetyl)amino]-2,3-dihydro-1*H*-inden-2-yl}-6*H*-thieno[2,3-*b*]pyrrole-5-carboxamide;
- 2-chloro-*N*-((1*R*,2*R*)-1-({[(2-hydroxyethyl)(methyl)amino]acetyl}amino)-2,3-dihydro-1*H*-inden-2-yl)-6*H*-thieno[2,3-*b*]pyrrole-5-carboxamide;
- $N-((1R,2R)-1-(\{[bis(2-hydroxyethyl)amino]acetyl\}amino)-2,3-dihydro-1<math>H$ -inden-2-yl)-2-chloro-6H-thieno[2,3-B]pyrrole-5-carboxamide;
- 2-chloro-N-((1R,2R)-1-({[ethyl(2-hydroxyethyl)amino]acetyl}amino)-2,3-dihydro-1H-inden-2-yl)-6H-thieno[2,3-b]pyrrole-5-carboxamide;
- 2-chloro-N-((1R,2R)-1-({[(2,3-dihydroxypropyl)(methyl)amino]acetyl}amino)-2,3-dihydro-1H-inden-2-yl)-6H-thieno[2,3-B]pyrrole-5-carboxamide;
- $N-((1R,2R)-1-(\{[bis(2-hydroxypropyl)amino\}acetyl\}amino)-2,3-dihydro-1<math>H$ -inden-2-yl)-2-chloro-6H-thieno[2,3-b]pyrrole-5-carboxamide;
- *N*-{(1*R*,2*R*)-1-[(2-amino-2-oxoethyl)amino]-2,3-dihydro-1*H*-inden-2-yl}-2-chloro-6*H*-thieno[2,3-*b*]pyrrole-5-carboxamide;
- *N*-[(1*R*,2*R*)-1-[(tert-butoxycarbonylmethyl)amino]-2,3-dihydro-1*H*-inden-2-yl}-2-chloro-6*H*-thieno[2,3-*b*]pyrrole-5-carboxamide;
- $N-\{(1R,2R)-1-(carboxymethylamino)-2,3-dihydro-1H-inden-2-yl\}-2-chloro-6H-thieno(3,2,b]$ pyrrole-5-carboxamide;
- 2-chloro-N- $\{(1R,2R)$ -1-[(hydroxyacetylamino]-2,3-dihydro-1H-inden-2-yl $\}$ -6H-thieno[2,3-b]pyrrole-5-carboxamide;
- 2,3-dichloro-N-{(1R,2R)-1-[(chloroacetyl)amino]-2,3-dihydro-1H-inden-2-yl}-4H-thieno[3,2-b]pyrrole-5-carboxamide;
- $N-\{(1R,2R)-1-[((3S)-3-amino-3-carboxypropanoyl)amino]-2,3-dihydro-1H-inden-2-yl\}-2,3-dichloro-4H-thieno(3,2,b]pyrrole-5-carboxamide;$
- $N-\{(1R,2R)-1-[(2-carboxyacetyl)amino]-2,3-dihydro-1H-inden-2-yl\}-2,3-dichloro-4H-thieno(3,2,b]pyrrole-5-carboxamide;$
- $N-\{(1R,2R)-1-[(2-carboxyacetyl)amino]-2,3-dihydro-1H-inden-2-yl\}-2-chloro-6H-thieno(3,2,b]$ pyrrole-5-carboxamide;
- $N-\{(1R,2R)-1-[((3S)-3-amino-3-carboxypropanoyl)amino]-2,3-dihydro-1H-inden-2-yl\}-2-chloro-6H-thieno(3,2,b]pyrrole-5-carboxamide; and$

2,3-dichloro-N-{(1R,2R)-1-[(methylsulfonyl)amino]-2,3-dihydro-1H-inden-2-yl}-4H-thieno[3,2-b]pyrrole-5-carboxamide; or a pharmaceutically acceptable salt or an in-vivo hydrolysable ester thereof.

- 13. A pharmaceutical composition which comprises a compound claim 1 or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, in association with a pharmaceutically acceptable diluent or carrier.
- 14. A method for the treatment of type 2 diabetes, insulin resistance, syndrome X, hyperinsulinaemia, hyperglucagonaemia, cardiac ischaemia, or obesity in a warmblooded animal, comprising administering a compound of claim 1, or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.
- 15. A method for the treatment of type 2 diabetes in a warm-blooded animal, comprising administering a compound of claim 1, or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof.
- 16. A process for the preparation of claim 1, which process comprises: reacting an acid of the formula (2)

or an activated derivative thereof; with an amine of formula (3)

$$NH_2 \xrightarrow{Y} A \xrightarrow{} (R^1)_n$$
(3)

and thereafter if necessary

i) converting a compound of the formula (1) into another compound of the formula (1);

ii) removing any protecting groups; or

Ç

iii) forming a pharmaceutically acceptable salt or in-vivo hydrolysable ester.