Subject (Name & Code): Mechanics of Solids (CIE 1051)

Date of Examination:

Assignment test - III

.....

Total Marks:

Q.	Questions	Mar	CO
No		ks	
1	A bronze bar is fastened between a steel bar and an aluminum bar as shown in the fig. Axial loads are applied at the positions indicated. Find the largest value of P that will not exceed an overall deformation of 3.0 mm, for the following stresses: 140 MPa in the steel, 120 MPa in the bronze, and 80 MPa in the aluminum. Assume that the assembly is suitably braced to prevent buckling. Use Est = 200 GPa, Eal = 70 GPa, and Ebr = 83 GPa Steel A = 480 mm ² A = 650 mm ² A = 320 mm ²	5	4
2	A rectangular steel block is 300 mm long in x direction, 200 mm long in y direction, and 400 mm long in z direction. The block is subjected to a triaxial loading of three uniformly distributed forces as follows: 48 kN tension in x direction, 60 kN compression in y direction, and 54 kN tension in z direction. If Poisson's ratio is 0.30 and $E = 210$ GPa, determine the single uniformly distributed load in x direction that would produce the same deformation in y direction as the original loading.	5	4
3	A metal tube of external diameter 25mm and internal diameter 20mm is subjected to an axial load of 30kN. The extension on a gauge length of 75mm is 0.06mm and decrease in outer diameter was 0.006mm. Determine a) Young's modulus of elasticity. b) Poisson's ratio. c) Change in volume if the length of the tube is 0.5m	5	4
4	A steel tube is rigidly fastened between aluminium and bronze rods and the axial loads are applied at the position shown. Find P that will not exceed stress of 80 MPa in Aluminium, 100 MPa in bronze and 150 MPa in steel, given the following details Aluminium: $A = 200 \text{ mm}^2$, $L = 1 \text{m}$; Steel: $A = 400 \text{mm}^2$, $L = 2 \text{m}$ Bronze: $A = 500 \text{mm}^2$, $L = 3 \text{m}$	5	4

