1 Volume simpliciale

1.1 Complessi seminormati

Definizione 1.1. Una seminorma su un \mathbb{R} -spazio vettoriale V è una funzione $\|-\|:V\to [0,\infty]$ tale che:

- (i) $\|\lambda \cdot v\| = |\lambda| \cdot \|v\|$ per ogni $\lambda \in \mathbb{R}$, $v \in V$ (per convenzione, $0 \cdot \infty = 0$);
- (ii) $||v + w|| \le ||v|| + ||w||$ per ogni $v, w \in V$.

Osserviamo che, contrariamente all'uso comune, ammettiamo anche ∞ come possibile valore assunto dalla seminorma. Una norma su V è una seminorma che soddisfa inoltre le seguenti proprietà:

- (i) $||v|| < \infty$ per ogni $v \in V$;
- (ii) se $v \in V \setminus \{0\}$ allora ||v|| > 0.

Dati una seminorma $\|-\|$ su V e un sottospazio vettoriale $W\subseteq V$, il quoziente V/W eredita una seminorma naturale così definita: per ogni $[v]\in V/W$,

$$||[v]|| = \inf\{||v'|| : v' \in V, [v] = [v']\}.$$

Se V e W sono \mathbb{R} -spazi vettoriali seminormati, un'applicazione lineare $f\colon V\to W$ si dice:

- L-Lipschitz se $||f(v)|| \le L \cdot ||v||$ per ogni $v \in V$;
- \blacksquare isometrica se ||f(v)|| = ||v|| per ogni $v \in V$.

Osserviamo che un'isometria fra spazi seminormati non è necessariamente iniettiva.

Dati due spazi vettoriali seminormati $V_1,\ V_2$, un'applicazione lineare L-Lipschitz $f\colon V_1\to V_2$ e due sottospazi $W_1\subseteq V_1,\ W_2\subseteq V_2$ tali che $f(W_1)\subseteq W_2$, si verifica facilmente che l'applicazione indotta $\overline{f}\colon V_1/W_1\to V_2/W_2$ è ancora L-Lipschitz. Al contrario, la proprietà di essere isometrica non si conserva per passaggio al quoziente.

Definizione 1.2. Un complesso normato è un complesso $(C_{\bullet}, d_{\bullet})$ di \mathbb{R} -spazi vettoriali in cui ogni C_i è dotato di una seminorma.

Dalla discussione precedente deriva che gli \mathbb{R} -spazi vettoriali $H_i(C_{\bullet})$ ereditano in modo naturale una seminorma. Inoltre, un morfismo di complessi L-Lipschitz $f_{\bullet} \colon C_{\bullet} \to C'_{\bullet}$ induce applicazioni L-Lipschitz $H_{\bullet}(f_{\bullet}) \colon H_{\bullet}(C_{\bullet}) \to H_{\bullet}(C'_{\bullet})$ in omologia.

1.2 Seminorme singolari e prodotto di Kronecker

Sia X uno spazio topologico. Muniamo il complesso delle catene singolari $(C_{\bullet}(X),d)$ della norma ℓ^1 , definita come segue: per ogni $\sum_{i=1}^k a_i s_i \in C_n(X)$ vale

$$\left\| \sum_{i=1}^{k} a_i s_i \right\|_1 = \sum_{i=1}^{k} |a_i|.$$

Definiamo inoltre la seminorma ℓ^{∞} sul complesso delle cocatene singolari $(C^{\bullet}(X), \delta)$: data una cocatena $\varphi \in C^{n}(X)$, la sua seminorma ℓ^{∞} è

$$\|\varphi\|_{\infty} = \sup\{|\varphi(c)| : c \in C_n(X), \|c\|_1 \le 1\}.$$

Di conseguenza i moduli di omologia e coomologia di X ereditano, rispettivamente, le seminorme $\|-\|_1$ e $\|-\|_{\infty}$.

Per ogni $n \geq 0$ è ben definita l'applicazione bilineare

$$\langle -, - \rangle : H^n(X) \times H_n(X) \longrightarrow \mathbb{R}$$

 $([\varphi], [c]) \longmapsto \varphi(c),$

detta prodotto di Kronecker. Vale il seguente risultato di dualità.

Proposizione 1.1. Sia $\alpha \in H_n(X)$. Allora

$$\|\alpha\|_1 = \max\{\langle \beta, \alpha \rangle : \beta \in H^n(X), \|\beta\|_{\infty} \le 1\}.$$

Dimostrazione. Una disuguaglianza segue immediatamente osservando che per ogni $c \in C_n(X)$, $\varphi \in C^n(X)$ vale $\|a\|_1 \cdot \|\varphi\|_{\infty} \geq \varphi(a)$. Per dimostrare l'altra, fissiamo un ciclo a che rappresenti α . Denotiamo con $B_n(X) \subseteq C_n(X)$ il sottospazio dei bordi. Per Hahn-Banach, esiste un funzionale lineare $\varphi \in C^n(X)$ di norma al più 1, nullo su $B_n(X)$ e tale che

$$\varphi(a) = \inf\{\|a - b\|_1 : b \in B_n(X)\}.$$

Ma allora $\varphi(a) = \|[a]\|_1$, da cui $\langle [\varphi], \alpha \rangle = \|\alpha\|_1$.

2 Coomologia continua

2.1 Definizioni

Riportiamo la definizione di topologia compatta-aperta e ne ricordiamo alcune utili proprietà.

Definizione 2.1. Siano X, Y spazi topologici, F(X,Y) l'insieme delle funzioni continue da X in Y. La topologia compatta-aperta su F(X,Y) è la topologia generata dai sottoinsiemi

$$V(K,U) = \{ f \in F(X,Y) : f(K) \subseteq U \}$$

al variare di $K \subseteq X$ compatto e di $U \subseteq Y$ aperto.

Lemma 2.1. (i) Siano X, Y, Z spazi topologici, $f: Y \to Z, g: X \to Y$ funzioni continue. Allora le applicazioni

$$f \circ -: F(X,Y) \longrightarrow F(X,Z), \qquad -\circ g \colon F(Y,Z) \longrightarrow F(X,Z)$$

sono continue.

(ii) Siano X, Y spazi topologici con X localmente compatto e Hausdorff. Allora l'applicazione di valutazione

$$F(X,Y) \times X \longrightarrow Y$$

 $(f,x) \longmapsto f(x)$

è continua.

In questa sezione, tutti moduli di (co)
catene e di (co)omologia saranno da intendersi a coefficienti in
 $\mathbb R.$

Dirlo prima.

Sia M una n-varietà. Consideriamo sullo spazio $S_i(M) = F(\Delta^i, M)$ degli i-simplessi singolari la topologia compatta aperta.

Definizione 2.2. Una cocatena $\varphi \in C^i(M)$ si dice *continua* se la sua restrizione a $S_i(M)$ è continua.

Osserviamo che se $\varphi \in C^i(M)$ è continua, allora anche $\varphi \circ d \in C^{i+1}(M)$ lo è (grazie al Lemma 2.1). Dunque le cocatene continue formano un sottocomplesso di $C^{\bullet}(M)$, che denotiamo con $C_c^{\bullet}(M)$; indichiamo inoltre con $C_{b,c}^{\bullet}(M) = C_c^{\bullet}(M) \cap C_b^{\bullet}(M)$ il complesso delle cocatene continue limitate. I moduli di coomologia relativi ai complessi $C_c^{\bullet}(M)$ e $C_{b,c}^{\bullet}$ saranno denotati, rispettivamente, con $H_c^{\bullet}(M)$ e $H_{b,c}^{\bullet}(M)$. Le inclusioni di complessi

$$i^{\bullet} \colon C_c^{\bullet}(M) \longrightarrow C^{\bullet}(M), \qquad \qquad i_b^{\bullet} \colon C_{b,c}^{\bullet}(M) \longrightarrow C_b^{\bullet}(M)$$

inducono mappe in coomologia

$$H^{\bullet}(i^{\bullet}): H_{c}^{\bullet}(M) \longrightarrow H^{\bullet}(M), \qquad H_{b}^{\bullet}(i_{b}^{\bullet}): H_{b}^{\bullet}(M) \longrightarrow H_{b}^{\bullet}(M).$$

In questa sezione ci domanderemo se queste mappe siano isomorfismi, dando risposta affermativa nel caso in cui M ammetta una metrica Riemanniana a curvatura non positiva.

2.2 Cocatene continue e moduli relativamente iniettivi

Sia M una n-varietà chiusa, $p \colon \widetilde{M} \to M$ il suo rivestimento universale. Fissiamo un'identificazione di $\Gamma = \pi_1(M)$ con il gruppo degli automorfismi di rivestimento di p.

Ricordiamo che i moduli $C^i(\widetilde{M})$ hanno una struttura naturale di $\mathbb{R}[\Gamma]$ -moduli. Osserviamo che per ogni $g \in \Gamma$ l'applicazione $g \cdot -: S_i(\widetilde{M}) \to S_i(\widetilde{M})$ è continua (grazie al Lemma 2.1), dunque i moduli $C^i_c(\widetilde{M})$ ereditano per restrizione una struttura di $\mathbb{R}[\Gamma]$ -moduli. Analogamente, i moduli $C^i_{b,c}(\widetilde{M})$ ereditano una struttura di $\mathbb{R}[\Gamma]$ -moduli normati.

Lemma 2.2. Esiste una funzione continua $h_{\widetilde{M}} \colon \widetilde{M} \to [0,1]$ che soddisfa le seguenti proprietà:

(i) per ogni $x \in \widetilde{M}$ esiste un intorno $W \subseteq \widetilde{M}$ di x tale che l'insieme

$$\{g\in\Gamma:g(W)\cap\operatorname{supp}h_{\widetilde{M}}\neq\emptyset\}$$

 \grave{e} finito;

(ii) per ogni $x \in \widetilde{M}$ vale

$$\sum_{g \in \Gamma} h_{\widetilde{M}}(g \cdot x) = 1.$$

Proposizione 2.3. Per ogni $i \geq 0$, i moduli $C_c^i(\widetilde{M})$ e $C_{b,c}^i(\widetilde{M})$ sono relativamente iniettivi (rispettivamente come $\mathbb{R}[\Gamma]$ -modulo e come $\mathbb{R}[\Gamma]$ -modulo normato).

Dimostrazione. Mostriamo innanzitutto che $C^i_c(M)$ è un $\mathbb{R}[\Gamma]$ -modulo relativamente iniettivo. Siano A, B due $\mathbb{R}[\Gamma]$ -moduli, $\iota \colon A \to B$ una funzione Γ-lineare fortemente iniettiva con inversa sinistra \mathbb{R} -lineare $\sigma \colon B \to A, \alpha \colon A \to C^i_c(\widetilde{M})$ una funzione Γ-lineare.

$$0 \longrightarrow A \xrightarrow{\iota} B$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} B$$

$$C_c^i(\widetilde{M})$$

Sia $h_{\widetilde{M}}$ una funzione come nel Lemma 2.2. Per ogni $b \in B$ definiamo la cocatena $\beta(b) \in C^i_c(\widetilde{M})$ come l'unica applicazione \mathbb{R} -lineare tale che per ogni $s \in S_i(\widetilde{M})$ valga

$$\beta(b)(s) = \sum_{g \in \Gamma} h_{\widetilde{M}}(g^{-1}(s(e_0))) \cdot \alpha(g(\sigma(g^{-1}(b))))(s),$$

dove e_0, \ldots, e_i sono i vertici del simplesso standard Δ^i . Osserviamo che, per le proprietà di $h_{\widetilde{M}}$, la somma su g è in realtà una somma finita, dunque $\beta(b)(s)$ è ben definito.

■ $\beta(b)$ è una cocatena continua. Per definizione di $h_{\widetilde{M}}$, per ogni $s \in S_i(\widetilde{M})$ esiste un intorno $W \subseteq \widetilde{M}$ di $s(e_0)$ tale che

$$\Gamma_s = \{ g \in \Gamma : g^{-1}(W) \cap \operatorname{supp} h_{\widetilde{M}} \neq \emptyset \}$$

è finito. Allora per ogni $s' \in V(\{e_0\}, W)$ (che è un intorno di s in $S_i(\widetilde{M})$) vale

$$\beta(b)(s') = \sum_{g \in \Gamma_s} h_{\widetilde{M}}(g^{-1}(s'(e_0))) \cdot \alpha(g(\sigma(g^{-1} \cdot b)))(s'),$$

che è evidentemente continua in s' (grazie al Lemma 2.1).

■ β è Γ -lineare. Sia $g_0 \in \Gamma$. Abbiamo

$$\beta(g_0 \cdot b)(s) = \sum_{g \in \Gamma} h_{\widetilde{M}}(g^{-1}(s(e_0))) \cdot \alpha(g(\sigma(g^{-1}g_0 \cdot b)))(s)$$

$$= \sum_{k \in \Gamma} h_{\widetilde{M}}(k^{-1}g_0^{-1}(s(e_0))) \cdot \alpha(g_0k(\sigma(k^{-1} \cdot b)))(s)$$

$$= \sum_{k \in \Gamma} h_{\widetilde{M}}(k^{-1}(g_0^{-1} \circ s)(e_0))) \cdot \alpha(k(\sigma(k^{-1} \cdot b)))(g_0^{-1} \circ s)$$

$$= \beta(b)(g_0^{-1} \circ s) = (g_0 \cdot \beta(b))(s).$$

■ Vale $\beta \circ \iota = \alpha$. Sia $a \in A$. Abbiamo

$$\beta(\iota(a))(s) = \sum_{g \in \Gamma} h_{\widetilde{M}}(g^{-1}(s(e_0))) \cdot \alpha(g(\sigma(g^{-1} \cdot \iota(a))))(s)$$

$$= \sum_{g \in \Gamma} h_{\widetilde{M}}(g^{-1}(s(e_0))) \cdot \alpha(g(\sigma(\iota(g^{-1} \cdot a))))(s)$$

$$= \sum_{g \in \Gamma} h_{\widetilde{M}}(g^{-1}(s(e_0))) \cdot \alpha(a)(s) = \alpha(a)(s).$$

Abbiamo dunque mostrato che $C^i_c(\widetilde{M})$ è un $\mathbb{R}[\Gamma]$ -modulo relativamente iniettivo. La stessa costruzione funziona anche per $C^i_{b,c}(\widetilde{M})$ nel contesto di $\mathbb{R}[\Gamma]$ -moduli normati: infatti, poiché $\|\sigma\| \leq 1$, si vede che $\|\beta\| \leq \|\alpha\|$. Dunque $C^i_{b,c}(\widetilde{M})$ è un $\mathbb{R}[\Gamma]$ -modulo normato relativamente iniettivo.

2.3 Varietà con curvatura non positiva

Nonostante si possa proseguire anche con ipotesi meno restrittive, per semplicità ci limiteremo a considerare, da qui alla fine della sezione, varietà chiuse M che ammettano una metrica Riemanniana con curvatura non positiva.

In questo contesto, il teorema di Cartan-Hadamard garantisce che ogni coppia di punti $x,y\in \widetilde{M}$ siano collegati da un'unica geodetica; inoltre le parametrizzazioni a velocità costante delle geodetiche dipendono in modo continuo dagli estremi. Questo fatto permette di realizzare una procedura di raddrizzamento dei simplessi singolari.

Definizione 2.3. Siano x_0, \ldots, x_k punti di \widetilde{M} . Il *simplesso dritto* di vertici x_0, \ldots, x_k è un simplesso singolare $[x_0, \ldots, x_k] \in S_k(\widetilde{M})$ definito induttivamente come segue.

- Se k = 0, allora $[x_0]$ è lo 0-simplesso avente immagine x_0 .
- Se k > 0, allora $[x_0, \ldots, x_k]$ è univocamente determinato dalla seguente condizione: per ogni $z \in \Delta^{k-1} \subseteq \Delta^k$, la restrizione di $[x_0, \ldots, x_k]$ al segmento di estremi z e e_k è la parametrizzazione a velocità costante della geodetica che collega $[x_0, \ldots, x_{k-1}](z)$ a x_k .

È facile vedere, grazie a Cartan-Hadamard, che la definizione è ben posta (ossia $[x_0, \ldots, x_k]$ è una funzione continua). Notiamo inoltre che, essendo gli elementi di Γ isometrie di \widetilde{M} , vale l'identità

$$g \circ [x_0, \dots, x_k] = [g(x_0), \dots, g(x_k)]$$

per ogni $g \in \Gamma$.

È infine utile osservare che, essendo M e \widetilde{M} spazi metrici, la topologia compatta-aperta su $S_i(M)$ e $S_i(\widetilde{M})$ coincide con quella della convergenza uniforme.

2.4 Cocatene continue e risoluzioni forti di \mathbb{R}

Proposizione 2.4. I complessi $C_c^{\bullet}(\widetilde{M})$ e $C_{b,c}^{\bullet}(\widetilde{M})$ sono risoluzioni <u>forti di R</u> (rispettivamente come $\mathbb{R}[\Gamma]$ -modulo e come $\mathbb{R}[\Gamma]$ -modulo normato).

Dimostrazione. Fissiamo un $x_0 \in \widetilde{M}$. Definiamo per ogni $i \geq 0$ un operatore \mathbb{R} -lineare $T_k \colon C_k(\widetilde{M}) \to C_{k+1}(\widetilde{M})$. Consideriamo l'applicazione

$$r:$$
 $\Delta^k \longrightarrow \Delta^{k+1}$ $t_0 e_0 + \ldots + t_k e_k \longmapsto t_0 e_1 + \ldots + t_k e_{k+1}$

che identifica Δ^k con la faccia di Δ^{k+1} opposta a e_0 . Dato un simplesso singolare $s \in S_k(\widetilde{M})$, definiamo $T_k(s) \in S_{k+1}(\widetilde{M})$ come l'unico simplesso singolare che soddisfa la seguente condizione: per ogni $q \in \Delta^k$, la restrizione di $T_k(s)$ al segmento di estremi e_0 e r(q) è la parametrizzazione a velocità costante della geodetica di \widetilde{M} di estremi x_0 e s(q). Grazie al teorema di Cartan-Hadamard, è facile verificare che $T_k(s)$ è ben definito e continuo, e che l'applicazione $T_k \colon S_k(\widetilde{M}) \to S_{k+1}(\widetilde{M})$ è continua. Estendendo T_k per \mathbb{R} -linearità, si ottiene una mappa $T_k \colon C_k(\widetilde{M}) \to C_{k+1}(\widetilde{M})$. Definiamo infine $T_{-1} \colon \mathbb{R} \to C_0(\widetilde{M})$ come $T_{-1}(t) = tx_0$. Si verifica facilmente che $d_0 \circ T_{-1} = \mathrm{id}_{\mathbb{R}}$ e che $T_{k-1} \circ d_k + d_{k+1} \circ T_k = \mathrm{id}_{C_k(\widetilde{M})}$ per ogni $k \geq 0$.

Definiamo ora per ogni $k \ge 0$ l'applicazione

$$h^k: C_c^k(\widetilde{M}) \longrightarrow C_c^{k-1}(\widetilde{M})$$

 $\varphi \longmapsto \varphi \circ T_{k-1}.$

Il fatto che i complessi siano esatti segue dal fatto che l'identità è omotopa a 0, giusto? Osserviamo che $h^k(\varphi)$ è effettivamente una cocatena continua, poiché la restrizione di T_{k-1} a $S_{k-1}(\widetilde{M})$ è continua. Dunque la famiglia $\{h^k\}_{k\geq 0}$ fornisce un'omotopia fra l'identità del complesso $C_c^{\bullet}(\widetilde{M})$ e l'applicazione nulla, da cui si ottiene che $C_c^{\bullet}(\widetilde{M})$ è una risoluzione forte di \mathbb{R} come $\mathbb{R}[\Gamma]$ -modulo.

Infine, è evidente che per ogni $\varphi \in C_b^k(\widetilde{M})$ vale $\|h^k(\varphi)\| \leq \|\varphi\|$. Dunque le restrizioni $h^k \colon C_{b,c}^k(\widetilde{M}) \to C_{b,c}^{k-1}(\widetilde{M})$ forniscono un'omotopia fra l'identità del complesso $C_{b,c}^{\bullet}(\widetilde{M})$ e l'applicazione nulla, da cui si ottiene che $C_{b,c}^{\bullet}(\widetilde{M})$ è una risoluzione forte di \mathbb{R} come $\mathbb{R}[\Gamma]$ -modulo normato.

2.5 Coomologia continua e coomologia singolare

Lemma 2.5. Il morfismo di complessi $p^{\bullet}: C^{\bullet}(M) \to C^{\bullet}(\widetilde{M})$ induce per restrizione isomorfismi isometrici di complessi

$$p^{\bullet}|_{C_{c}^{\bullet}(M)} \colon C_{c}^{\bullet}(M) \longrightarrow C_{c}^{\bullet}(\widetilde{M})^{\Gamma}, \qquad p^{\bullet}|_{C_{b,c}^{\bullet}(M)} \colon C_{b,c}^{\bullet}(M) \longrightarrow C_{b,c}^{\bullet}(\widetilde{M})^{\Gamma},$$

Che norma c'è su $C_c^{\bullet}(M)$?

i quali a loro volta inducono isomorfismi isometrici in coomologia

$$H_c^{\bullet}(M) \simeq H^{\bullet}(C_c^{\bullet}(M)^{\Gamma}), \qquad \qquad H_{b.c}^{\bullet}(M) \simeq H_{b.c}^{\bullet}(C_{b.c}^{\bullet}(\widetilde{M})^{\Gamma}).$$

Possiamo infine dimostrare il risultato principale di questa sezione.

Fare la dimostrazione:

Proposizione 2.6. Sia M una varietà Riemanniana chiusa con curvatura non positiva. Allora le applicazioni

$$H^{\bullet}(i^{\bullet}): H_{c}^{\bullet}(M) \longrightarrow H^{\bullet}(M), \qquad H_{b}^{\bullet}(i_{b}^{\bullet}): H_{b,c}^{\bullet}(M) \longrightarrow H_{b}^{\bullet}(M)$$

sono isomorfismi isometrici.

Dimostrazione. In questa sezione (Proposizione 2.3 e Proposizione 2.4) abbiamo mostrato che il complesso $C_c^{\bullet}(\widetilde{M})$ fornisce una risoluzione forte relativamente iniettiva di \mathbb{R} . Sappiamo (?THM? ??) che lo stesso vale per il complesso $C^{\bullet}(\widetilde{M})$. Poiché l'inclusione $j^{\bullet}: C_c^{\bullet}(\widetilde{M}) \to C^{\bullet}(\widetilde{M})$ è un morfismo di complessi che estende l'identità di \mathbb{R} , dalla ?THM? ?? otteniamo che

Di nuovo, che norma c'è su $H^{\bullet}(M)$?

$$H^{\bullet}(j^{\bullet}) \colon H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{\Gamma}) \longrightarrow H^{\bullet}(C^{\bullet}(\widetilde{M})^{\Gamma})$$

è un isomorfismo lineare.

Analogamente,

$$H^{\bullet}_b(j_b^{\bullet}) \colon H^{\bullet}_b(C_{b,c}^{\bullet}(\widetilde{M})^{\Gamma}) \longrightarrow H^{\bullet}_b(C_b^{\bullet}(\widetilde{M})^{\Gamma})$$

è un isomorfismo lineare. Poiché j^{\bullet} e j_b^{\bullet} sono 1-Lipschitz, lo stesso vale per $H^{\bullet}(j^{\bullet})$ e $H_b^{\bullet}(j_b^{\bullet})$; per mostrare che si tratta di isometrie, è dunque sufficiente (di nuovo grazie alla ?THM? ??) esibire morfismi di complessi $\theta^{\bullet} \colon C^{\bullet}(\widetilde{M}) \to C_c^{\bullet}(\widetilde{M}), \ \theta_b^{\bullet} \colon C_b^{\bullet}(\widetilde{M}) \to C_{b,c}^{\bullet}(\widetilde{M})$ che siano 1-Lipschitz ed estendano l'identità di \mathbb{R} .

Fissiamo un $x_0 \in \widetilde{M}$. Per ogni $\varphi \in C^k(\widetilde{M})$ e per ogni $s \in S_k(\widetilde{M})$ definiamo

$$\theta^{k}(\varphi)(s) = \sum_{(g_0, \dots, g_k) \in \Gamma^{k+1}} h_{\widetilde{M}}(g_0^{-1}(s(e_0))) \cdots h_{\widetilde{M}}(g_k^{-1}(s(e_k))) \cdot \varphi([g_0(x_0), \dots, g_k(x_0)]),$$

dove $h_{\widetilde{M}} \colon \widetilde{M} \to [0,1]$ è data dal Lemma 2.2. Grazie alle proprietà di $h_{\widetilde{M}}$ è facile verificare che $\theta^k(\varphi)$ (una volta estesa per \mathbb{R} -linearità) definisce un elemento di $C_c^k(\widetilde{M})$, e che θ^{\bullet} risulta essere un morfismo 1-Lipschitz di complessi di $\mathbb{R}[\Gamma]$ -moduli che estende l'identità di \mathbb{R} .

Abbiamo dunque mostrato che le mappe $H^{\bullet}(j^{\bullet})$ e $H^{\bullet}_b(j^{\bullet}_b)$ sono isomorfismi isometrici. Dai seguenti diagrammi commutativi di complessi

$$\begin{array}{cccc} C_c^{\bullet}(M) & \xrightarrow{p^{\bullet}} & C_c^{\bullet}(\widetilde{M})^{\Gamma} & & & & & & & & \\ \downarrow_{i^{\bullet}} & & \downarrow_{j^{\bullet}} & & & & \downarrow_{i_b^{\bullet}} & & \downarrow_{j_b^{\bullet}} \\ C^{\bullet}(M) & \xrightarrow{\cong} & C^{\bullet}(\widetilde{M})^{\Gamma} & & & & & & & \\ \end{array}$$

(in cui le frecce orizzontali sono isomorfismi isometrici per il Lemma 2.5) segue che anche $H^{\bullet}(i^{\bullet})$ e $H^{\bullet}_b(i^{\bullet}_b)$ sono isomorfismi isometrici.

3 Principio di proporzionalità di Gromov

Mappa di restrizione 3.1

Utilizziamo le notazioni della sezione precedente, continuando a supporre che M sia una varietà Riemanniana chiusa con curvatura non positiva. Sia G il gruppo delle isometrie di M che preservano l'orientazione. È ben noto che G ammette una struttura di gruppo di Lie che induce la topologia compattaaperta. Di conseguenza esiste una misura di Borel regolare invariante a sinistra su G (misura di Haar), unica a meno di riscalamento.

Poiché Γ è un sottogruppo discreto di G e $M \simeq M/\Gamma$ è compatta, esiste un insieme misurabile $F \subseteq G$ relativamente compatto tale che $\{\gamma \cdot F\}_{\gamma \in \Gamma}$ definisca una partizione localmente finita di G. In particolare, Γ è cocompatto in G, pertanto la misura di Haar è anche invariante a destra. D'ora in poi supporremo che tale misura sia riscalata in modo che F abbia misura 1.

Reference please.

Definizione 3.1. Indichiamo con $C_c^{\bullet}(\widetilde{M})^G$ il complesso delle cocatene continue G-invarianti. L'inclusione di complessi $C_c^{\bullet}(\widetilde{M})^G \to C_c^{\bullet}(\widetilde{M})^\Gamma$ induce una mappa in coomologia

$$\operatorname{res}^{\bullet} : H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{G}) \longrightarrow H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{\Gamma})$$

detta mappa di restrizione.

Osserviamo che, considerando su $H^{\bullet}(C_c^{\bullet}(\widetilde{M})^G)$ e $H^{\bullet}(C_c^{\bullet}(\widetilde{M})^{\Gamma})$ le seminorme indotte rispettivamente da $C_c^{\bullet}(\widetilde{M})^G$ e $C_c^{\bullet}(\widetilde{M})^{\Gamma}$, la mappa di restrizione risulta 1-Lipschitz.

Ci proponiamo ora di costruire un'inversa sinistra 1-Lipschitz di res. Indichiamo con μ_G la misura di Haar su G. Per ogni $\varphi \in C^i_c(M)$ e per ogni $s \in S_i(M)$ definiamo

$$\operatorname{trans}^{i}(\varphi)(s) = \int_{F} \varphi(g \cdot s) d\mu_{G}(g).$$

Si tratta di una buona definizione, poiché $\varphi(-\cdot s)$ è una funzione continua da G in \mathbb{R} e F è relativamente compatto. Estendendo transⁱ(φ) per linearità, otteniamo un elemento di $C^{i}(M)$.

Proposizione 3.1. Per ogni $\varphi \in C^i_c(\widetilde{M})$ valgono le seguenti proprietà.

- (i) La cocatena transⁱ(φ) è continua.
- (ii) Vale transⁱ⁺¹($\varphi \circ d^{i+1}$) = transⁱ(φ) $\circ d^{i+1}$.
- (iii) Se φ è Γ -invariante, allora transⁱ(φ) è G-invariante.
- (iv) Se φ è G-invariante, allora transⁱ(φ) = φ .

Dimostrazione.

(i) Osserviamo innanzitutto che la topologia compatta-aperta su $S_i(\widetilde{M})$ è indotta dalla distanza

$$\operatorname{dist}(s, s') = \sup\{\operatorname{dist}_{\widetilde{M}}(s(x), s'(x)) : x \in \Delta^i\}.$$

Sia $s_0 \in S_i(\widetilde{M})$, e sia $\epsilon > 0$. Poiché \overline{F} è compatto in G, dal Lemma 2.1 si ottiene immediatamente che $\overline{F} \cdot s_0$ è compatto in $S_i(\widetilde{M})$. Dalla continuità di φ segue facilmente l'esistenza di un $\eta > 0$ tale che per ogni $s \in \overline{F} \cdot s_0$ e per ogni $s' \in S_i(\widetilde{M})$ con $\operatorname{dist}(s,s') < \eta$ valga $|\varphi(s) - \varphi(s')| \leq \epsilon$. Sia dunque $s \in S_i(\widetilde{M})$ tale che $\operatorname{dist}(s_0,s) < \eta$. Poiché G agisce su $S_i(\widetilde{M})$ in modo isometrico, allora anche $\operatorname{dist}(g \cdot s_0,g \cdot s) < \eta$ per ogni $g \in G$. Ma allora

$$|\operatorname{trans}^{i}(\varphi)(s) - \operatorname{trans}^{i}(\varphi)(s_{0})| \leq \int_{F} |\varphi(g \cdot s) - \varphi(g \cdot s')| d\mu_{G}(g) \leq \epsilon \mu_{G}(F) = \epsilon$$

dunque $trans^i(\varphi)$ è continua.

(ii) Sia $s \in S_{i+1}(\widetilde{M})$, e siano $a_0, \ldots, a_{i+1} \in \mathbb{R}, s_0, \ldots, s_{i+1} \in S_i(\widetilde{M})$ tali che

$$d^{i+1}(s) = \sum_{j=0}^{i+1} a_j s_j.$$

Osserviamo che

$$d^{i+1}(g \cdot s) = \sum_{j=0}^{r} a_j(g \cdot s_j),$$

per ogni $g \in G$, da cui

$$\begin{aligned} \operatorname{trans}^{i+1}(\varphi \circ d^{i+1})(s) &= \int_{F} \varphi(d^{i+1}(g \cdot s)) d\mu_{G}(g) \\ &= \sum_{j=0}^{i+1} a_{j} \int_{F} \varphi(g \cdot s_{j}) d\mu_{G}(g) \\ &= \sum_{j=0}^{i+1} a_{j} \operatorname{trans}^{i}(\varphi)(s_{j}) \\ &= \operatorname{trans}^{i}(\varphi) \left(\sum_{j=0}^{i+1} a_{j} s_{j} \right) = \operatorname{trans}^{i}(\varphi)(d^{i+1}s). \end{aligned}$$

(iii) Fissiamo $\varphi \in C_c^i(\widetilde{M})$, $s \in S_i(\widetilde{M})$, $g_0 \in G$. Poiché F è relativamente compatto, lo sono anche $F \cdot g_0$ e $F \cdot g_0^{-1}$, dunque esistono un numero finito di elementi $\gamma_1, \ldots, \gamma_r \in \Gamma$ tali che

$$F \cdot g_0 \subseteq \bigsqcup_{j=1}^r \gamma_j \cdot F$$
 e $F \cdot g_0^{-1} \subseteq \bigsqcup_{j=1}^r \gamma_j^{-1} \cdot F$.

Posto $F_j = (\gamma_j^{-1} \cdot F \cdot g_0) \cap F$ si ottiene immediatamente che

$$F = \bigsqcup_{j=1}^{r} F_j$$
 e $F \cdot g_0 = \bigsqcup_{j=1}^{r} \gamma_j \cdot F_j$.

Sfruttando il fatto che μ_G è invariante a destra e a sinistra e che φ è Γ -invariante si ottiene

$$\operatorname{trans}^{i}(\varphi)(g_{0} \cdot s) = \int_{F} \varphi(gg_{0} \cdot s) d\mu_{G}(g)$$

$$= \int_{F \cdot g_{0}} \varphi(g \cdot s) d\mu_{G}(g)$$

$$= \sum_{j=1}^{r} \int_{\gamma_{j} \cdot F_{j}} \varphi(g \cdot s) d\mu_{G}(g)$$

$$= \sum_{j=1}^{r} \int_{F_{j}} \varphi(\gamma_{j}g \cdot s) d\mu_{G}(g)$$

$$= \sum_{j=1}^{r} \int_{F_{j}} \varphi(g \cdot s) d\mu_{G}(g)$$

$$= \int_{F} \varphi(g \cdot s) d\mu_{G}(g) = \operatorname{trans}(\varphi)(s).$$

(iv) Se φ è G-invariante segue immediatamente dalla definizione che trans^i(φ) = φ .

Corollario 3.2. La mappa di restrizione

$$\operatorname{res}^{\bullet} \colon H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{G}) \longrightarrow H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{\Gamma})$$

è un'immersione isometrica.

Dimostrazione. Dalla Proposizione 3.1 segue immediatamente che

$$\operatorname{trans}^{\bullet} \colon C_{c}^{\bullet}(\widetilde{M})^{\Gamma} \longrightarrow C_{c}^{\bullet}(\widetilde{M})^{G}$$

è un morfismo di complessi ben definito la cui restrizione a $C_c^{\bullet}(\widetilde{M})^G$ è l'identità. Poiché trans $^{\bullet}$ è evidentemente 1-Lipschitz, guardando la corrispondente mappa in coomologia si ottiene che

$$H^{\bullet}(\operatorname{trans}^{\bullet}) \colon H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{\Gamma}) \longrightarrow H^{\bullet}(C_{c}^{\bullet}(\widetilde{M})^{G})$$

è una mappa 1-Lipschitz tale che $H^{\bullet}(\operatorname{trans}^{\bullet})$ ores $^{\bullet}$ sia l'identità. Questo conclude la dimostrazione.

3.2 Cociclo volume

Se X è una varietà Riemanniana, denotiamo con ${}_sS_k(X)$ lo spazio dei k-simplessi lisci di X (ossia l'insieme delle funzioni lisce da Δ^k in X) munito della topologia C^1 .

Proposizione 3.3. Per ogni $x_0, \ldots, x_k \in \widetilde{M}$, il simplesso dritto $[x_0, \ldots, x_k]$ è liscio. Inoltre l'applicazione

$$\widetilde{M} \times \ldots \times \widetilde{M} \longrightarrow {}_{s}S_{k}(\widetilde{M})$$
$$(x_{0}, \ldots, x_{k}) \longmapsto [x_{0}, \ldots, x_{k}]$$

è continua.

Dimostrazione.

Per ogni $s \in S_k(\widetilde{M})$ definiamo $\widetilde{\operatorname{str}}_k(s) = [s(e_0), \dots, s(e_k)]$. Estendendo $\widetilde{\operatorname{str}}_k$ per \mathbb{R} -linearità otteniamo un'applicazione $\widetilde{\operatorname{str}}_k \colon S_k(\widetilde{M}) \to S_k(\widetilde{M})$.

Proposizione 3.4. L'applicazione $\widetilde{\operatorname{str}}_k \colon S_k(\widetilde{M}) \to S_k(\widetilde{M})$ soddisfa le seguenti proprietà.

- (i) $d_{k+1} \circ \widetilde{\operatorname{str}}_{k+1} = \widetilde{\operatorname{str}}_{k+1} \circ d_k \ per \ ogni \ k \geq 0 \ (ossia \ \widetilde{\operatorname{str}}_{\bullet} \colon C_{\bullet}(\widetilde{M}) \to C_{\bullet}(\widetilde{M}) \ \dot{e} \ un \ morfismo \ di \ complessi).$
- (ii) $\widetilde{\operatorname{str}}_k(\gamma \circ s) = \gamma \circ \widetilde{\operatorname{str}}_k(s)$ per ogni $k \geq 0, \ \gamma \in \Gamma, \ s \in S_k(\widetilde{M}).$
- (iii) $\widetilde{\operatorname{str}}_{\bullet} \colon C_{\bullet}(\widetilde{M}) \to C_{\bullet}(\widetilde{M})$ è omotopa all'identità mediante un'omotopia Γ equivariante che manda simplessi lisci in una somma finita di simplessi
 lisci.

Dimostrazione.

- (i) È immediato verificare che la *i*-esima faccia di $[x_0, \ldots, x_k]$ è $[x_0, \ldots, \hat{x_i}, \ldots, x_k]$, da cui la tesi.
- (ii) Poiché le isometrie preservano le geodetiche, si ha

$$\gamma \circ [x_0, \dots, x_k] = [\gamma(x_0), \dots, \gamma(x_k)],$$

da cui la tesi.

(iii) Dato un simplesso singolare $s \in S_k(\widetilde{M})$ definiamo l'applicazione $F : \Delta^k \times [0,1] \to \widetilde{M}$ in modo che per ogni $x \in \Delta^k$ la mappa $F(x,-) : [0,1] \to \widetilde{M}$ sia la parametrizzazione a velocità costante della geodetica che congiunge s(x) con $\widetilde{\operatorname{str}}_k(s)(x)$. Definiamo poi $T_k(s) = F_{\bullet}(c)$, dove $c \in C_{k+1}(\Delta^k \times [0,1])$ è la triangolazione standard di $\Delta^k \times [0,1]$. È immediato verificare che $d_{k+1} \circ T_k + T_{k-1} \circ d_k = \operatorname{id} - \widetilde{\operatorname{str}}_k$, mentre la Γ -equivarianza di T_k segue dal fatto che le isometrie preservano le geodetiche.

Come conseguenza otteniamo un morfismo di complessi $\operatorname{str}_{\bullet}\colon C_{\bullet}(M) \to C_{\bullet}(M)$ omotopo all'identità. Inoltre, dalla Proposizione 3.3, $\operatorname{str}_k(s)$ è un simplesso liscio di M per ogni $s \in S_k(M)$, e le restrizioni $\operatorname{str}_k\colon S_k(M) \to {}_sS_k(M)$ sono continue.

Supponiamo ora che M sia orientata, e sia n la dimensione di M. Denotiamo con $\omega_M \in \Omega^n(M)$ la forma volume di M.

Definizione 3.2. Per ogni $s \in S_n(M)$ definiamo

$$\operatorname{Vol}_M(s) = \int_{\operatorname{str}_n(s)} \omega_M.$$

Estendendo per linearità, otteniamo una cocatena $Vol_M \in C^n(M)$, detta cocatena volume.

Poiché str_n: $S_n(M) \to {}_sS_n(M)$ è continua e l'integrazione è continua rispetto alla topologia C^1 , otteniamo che la cocatena volume è continua. Osserviamo inoltre che per ogni $s \in S_{n+1}(M)$ vale

$$\operatorname{Vol}_{M}(d(s)) = \int_{\operatorname{str}_{n}(d(s))} \omega_{M} = \int_{d \operatorname{str}_{n+1}(s)} \omega_{M} = \int_{\operatorname{str}_{n+1}(s)} d\omega_{M} = 0,$$

dove abbiamo utilizzato il fatto che str $_{\bullet}$ è un morfismo di complessi e il teorema di Stokes. Pertanto Vol_M è un cociclo, e definisce classi $[\operatorname{Vol}_M] \in H^n(M)$, $[\operatorname{Vol}_M]_c \in H^n_c(M)$ in coomologia.

Lemma 3.5. $Vale [Vol_M] = Vol(M) \cdot [M]^*$.

Dimostrazione. Osserviamo innanzitutto che $[\operatorname{Vol}_M] = \langle [\operatorname{Vol}_M], [M] \rangle \cdot [M]^*$. È ben noto che la classe fondamentale di M ammette un rappresentante della forma $c = \sum s_i$, dove gli s_i sono gli n-simplessi lisci e orientati positivamente di una triangolazione di M. Per la Proposizione 3.4, $c - \operatorname{str}_n(c)$ è bordo di una catena di simplessi lisci. Pertanto

$$\langle [\operatorname{Vol}_M], [M] \rangle = \operatorname{Vol}_M(c) = \int_{\operatorname{str}_n(c)} \omega_M = \int_c \omega_M = \operatorname{Vol}(M),$$

dove abbiamo usato il teorema di Stokes per dedurre che

$$\int_{c-\operatorname{str}_n(c)} \omega_M = 0.$$

3.3 Principio di proporzionalità

Consideriamo l'immagine di Vol_M mediante l'identificazione isometrica $C_c^n(M) \simeq C_c^n(\widetilde{M})^{\Gamma}$ indotta da p^{\bullet} : si tratta del cociclo $\operatorname{Vol}_{\widetilde{M}} \colon C_n(\widetilde{M}) \to \mathbb{R}$ tale che per ogni simplesso $s \in S_n(\widetilde{M})$ valga

$$\operatorname{Vol}_{\widetilde{M}}(s) = \int_{\operatorname{str}_n(p \circ s)} \omega_M = \int_{p \circ \widetilde{\operatorname{str}}_n(s)} \omega_M = \int_{\widetilde{\operatorname{str}}_n(s)} \omega_{\widetilde{M}},$$

dove $\omega_{\widetilde{M}}$ è la forma volume di \widetilde{M} . Osserviamo che $\operatorname{Vol}_{\widetilde{M}}$ è una cocatena G-invariante, dunque definisce una classe $[\operatorname{Vol}_{\widetilde{M}}]_c^G \in H^n(C_c^{\bullet}(\widetilde{M}))$ tale che l'immagine di $\operatorname{res}^n([\operatorname{Vol}_{\widetilde{M}}]_c^G)$ mediante l'identificazione isometrica $H^n(C_c^{\bullet}(\widetilde{M})^{\Gamma}) \simeq H_c^n(M)$ sia proprio $[\operatorname{Vol}_M]_c$.

Possiamo ora enunciare e dimostrare il risultato principale di questa sezione.

Teorema 3.6. Sia M una varietà Riemanniana chiusa con curvatura non positiva. Allora

$$||M|| = \frac{\operatorname{Vol}(M)}{\|[\operatorname{Vol}_{\widetilde{M}}]_c^G\|_{\infty}}.$$

Dimostrazione. Per come è definito il volume simpliciale per varietà non orientabili, possiamo supporre che M sia orientata. Cominciamo osservando che tutte le mappe nel seguente diagramma sono isomorfismi o immersioni isometriche (rispettivamente per la Proposizione 2.6, il Lemma 2.5 e il Corollario 3.2).

$$H^n(M) \xleftarrow{H^n(i^{\bullet})} H^n_c(M) \xrightarrow{H^n(p^{\bullet})} H^n(C_c^{\bullet}(\widetilde{M})^{\Gamma}) \xleftarrow{\operatorname{res}^n} H^n(C_c^{\bullet}(\widetilde{M})^G)$$

Inoltre, a $[\operatorname{Vol}_M] \in H^n(M)$ a sinistra corrisponde $[\operatorname{Vol}_{\widetilde{M}}]_c^G \in H^n(C_c^{\bullet}(\widetilde{M})^G)$ a destra; in particolare, $\|[\operatorname{Vol}_M]\|_{\infty} = \|[\operatorname{Vol}_{\widetilde{M}}]_c^G\|_{\infty}$. Allora la tesi segue immediatamente dalla ?THM? ?? e dal Lemma 3.5:

$$||M|| = \frac{1}{||[M]^*||_{\infty}} = \frac{\operatorname{Vol}(M)}{||[\operatorname{Vol}_M]||_{\infty}} = \frac{\operatorname{Vol}(M)}{||[\operatorname{Vol}_{\widetilde{M}}]_{\mathcal{E}}^{G}||_{\infty}}.$$

In particolare, abbiamo il seguente.

Corollario 3.7. Nelle ipotesi del teorema precedente, il rapporto ||M|| / Vol(M) dipende solo dalla classe di isometria del rivestimento universale \widetilde{M} .

4 Varietà euclidee e iperboliche

4.1 Varietà euclidee

Il principio di proporzionalità di Gromov permette di calcolare immediatamente il volume simpliciale di tutte le varietà chiuse euclidee (ossia localmente isometriche a \mathbb{R}^n).

Proposizione 4.1. Sia M una varietà chiusa euclidea. Allora ||M|| = 0.

Dimostrazione. Osserviamo che l'n-toro euclideo $(S^1)^n$ ha volume simpliciale nullo, poiché ammette endomorfismi di grado arbitrariamente alto. Poiché il rivestimento universale di ogni varietà euclidea è isometrico a \mathbb{R}^n , dal Corollario 3.7 segue che

$$\frac{\|M\|}{\text{Vol}(M)} = \frac{\left\| (S^1)^n \right\|}{\text{Vol}((S^1)^n)} = 0.$$

4.2 Varietà iperboliche

Nel resto di questa sezione ci proponiamo di calcolare il rapporto ||M|| / Vol(M) per varietà chiuse iperboliche (ossia localmente isometriche a \mathbb{H}^n). Il Teorema 3.6 garantisce che non dipende dalla varietà M, e fornisce un metodo per calcolarlo: è sufficiente conoscere la seminorma della coclasse $[\text{Vol}_{\mathbb{H}^n}]_c^G \in H^n(C_{\bullet}^{\bullet}(\mathbb{H}^n)^G)$, dove G denota il gruppo delle isometrie di \mathbb{H}^n che preservano l'orientazione.

Ricordiamo brevemente alcuni fatti riguardanti la geometria dei simplessi dritti in \mathbb{H}^n . Un k-simplesso (geodetico) in $\overline{\mathbb{H}^n}$ è l'inviluppo convesso di k+1 punti in \mathbb{H}^n , detti vertici. Un simplesso si dice finito se tutti i suoi vertici appartengono a \mathbb{H}^n , ideale se tutti i suoi vertici appartengono a \mathbb{H}^n , e regolare e ogni permutazione dei suoi vertici si estende a un'isometria di \mathbb{H}^n . I simplessi geodetici sono esattamente le immagini dei simplessi dritti (più precisamente, l'immagine di $[x_0,\ldots,x_k]$ è il simplesso geodetico di vertici x_0,\ldots,x_k). Per ogni $\ell>0$ esiste a meno di isometria un unico n-simplesso regolare finito di lato ℓ , che denoteremo con τ_ℓ . Inoltre esiste a meno di isometria un unico n-simplesso regolare ideale, che denoteremo con τ_∞ ; definiamo infine $v_n=\mathrm{Vol}(\tau_\infty)$.

Teorema 4.2. Sia Δ un n-simplesso geodetico in \mathbb{H}^n . Allora $\operatorname{Vol}(\Delta) \leq v_n$, e $\operatorname{Vol}(\Delta) = v_n$ se e solo se Δ è regolare ideale.

Teorema 4.3.
$$Vale \lim_{\ell \to \infty} Vol(\tau_{\ell}) = v_n$$
.

Reference please.

Proposizione 4.4. Sia M una n-varietà iperbolica chiusa. Allora

$$||M|| = \frac{\operatorname{Vol}(M)}{v_n}.$$

Dimostrazione. Grazie al Teorema 3.6, è sufficiente dimostrare che $\|[\operatorname{Vol}_{\mathbb{H}^n}]_c^G\|_{\infty} = v_n$. Dal Teorema 4.2 segue che

$$\|[\operatorname{Vol}_{\mathbb{H}^n}]_c^G\|_{\infty} \le \|\operatorname{Vol}_{\mathbb{H}^n}\|_{\infty} = v_n,$$

quindi rimane da mostrare la disuguaglianza opposta.

Per definizione,

$$\left\| [\operatorname{Vol}_{\mathbb{H}^n}]_c^G \right\|_{\infty} = \inf \left\{ \left\| \operatorname{Vol}_{\mathbb{H}^n} + \delta \varphi_{\infty} \right\| : \varphi \in C_c^{n-1}(\mathbb{H}^n)^G \right\}.$$

Osserviamo che la cocatena volume è alternante; inoltre il morfismo 1-Lipschitz alt $^{\bullet}: C^{\bullet}(\mathbb{H}^n) \to C^{\bullet}(\mathbb{H}^n)$ preserva le cocatene continue e G-invarianti, dunque

$$\begin{aligned} \left\| [\operatorname{Vol}_{\mathbb{H}^{n}}]_{c}^{G} \right\|_{\infty} &\geq \inf \left\{ \left\| \operatorname{alt}^{n} (\operatorname{Vol}_{\mathbb{H}^{n}} + \delta \varphi) \right\|_{\infty} : \varphi \in C_{c}^{n-1} (\mathbb{H}^{n})^{G} \right\} \\ &= \inf \left\{ \left\| \operatorname{Vol}_{\mathbb{H}^{n}} + \delta \operatorname{alt}^{n-1} (\varphi) \right\|_{\infty} : \varphi \in C_{c}^{n-1} (\mathbb{H}^{n})^{G} \right\} \\ &= \inf \left\{ \left\| \operatorname{Vol}_{\mathbb{H}^{n}} + \delta \varphi \right\|_{\infty} : \varphi \in C_{c, \operatorname{alt}}^{n-1} (\mathbb{H}^{n})^{G} \right\}. \end{aligned}$$

Sia dunque φ una (n-1)-cocatena continua alternante e G-invariante. Consideriamo un n-simplesso regolare finito τ_ℓ e la sua parametrizzazione $s_\ell = [\tau_\ell(e_0), \ldots, \tau_\ell(e_n)]$; sia $\partial_i s_\ell = [\tau_\ell(e_0), \ldots, \tau_\ell(e_i), \ldots, \tau_\ell(e_n)]$ la i-esima faccia. Sia $\sigma \colon \Delta^{n-1} \to \Delta^{n-1}$ una mappa affine che induce una permutazione dispari sui vertici di Δ^{n-1} . Poiché τ_ℓ è regolare, esiste un'isometria $g \in G$ di \mathbb{H}^n tale che $g \circ \partial_i s_\ell = \partial_i s_\ell \circ \sigma$; a meno di comporre con la riflessione lungo l'iperpiano che contiene l'immagine di $\partial_i s_\ell$, possiamo supporre che g preservi l'orientazione. Sfruttando il fatto che φ è contemporaneamente G-invariante e alternante otteniamo

Funziona no?

$$\varphi(\partial_i s_\ell) = \varphi(g \circ \partial_i s_\ell) = \varphi(\partial_i s_\ell \circ \sigma) = -\varphi(\partial_i s_\ell),$$

da cui $\varphi(\partial_i s_\ell) = 0$ e $\varphi(ds_\ell) = 0$. Pertanto

$$\begin{aligned} \left\| [\operatorname{Vol}_{\mathbb{H}^n}]_c^G \right\|_{\infty} &\geq \inf \left\{ \left\| \operatorname{Vol}_{\mathbb{H}^n} + \delta \varphi \right\|_{\infty} : \varphi \in C_{c,\operatorname{alt}}^{n-1}(\mathbb{H}^n)^G \right\} \\ &\geq \inf \left\{ \left| (\operatorname{Vol}_{\mathbb{H}^n} + \delta \varphi)(s_{\ell}) \right| : \varphi \in C_{c,\operatorname{alt}}^{n-1}(\mathbb{H}^n)^G \right\} \\ &= |\operatorname{Vol}_{\mathbb{H}^n}(s_{\ell})| = \operatorname{Vol}(\tau_{\ell}). \end{aligned}$$

Facendo tendere $\ell \to \infty$, dal Teorema 4.3 otteniamo $\|[\operatorname{Vol}_{\mathbb{H}^n}]_c^G\|_{\infty} \geq v_n$, il che conclude la dimostrazione.

Corollario 4.5. Sia Σ_g la superficie chiusa orientabile di genere g. Allora

$$\|\Sigma_g\| = \begin{cases} 0 & g < 2 \\ 4g - 4 & g \ge 2 \end{cases}.$$

Dimostrazione. Per i casi g=0,1 basta osservare che S^2 e $S^1\times S^1$ ammettono endomorfismi di grado arbitrariamente alto, dunque hanno volume simpliciale nullo. Se invece $g\geq 2$, è ben noto che Σ_g ammette una metrica iperbolica. Ricordando che $v_2=\pi$ e Area $(\Sigma_g)=-2\pi\chi(\Sigma_g)=4\pi g+4\pi$, dalla Proposizione 4.4 segue che

$$\|\Sigma_g\| = \frac{\operatorname{Area}(\Sigma_g)}{v_0} = 4g - 4.$$

Possibili errori di battitura nel libro

- \blacksquare p.105, Lemma 8.2. X al posto di M.
- p.107, Proposition 8.5. \mathbb{R} -modulo normato al posto di Γ -modulo normato.
- p.109, Proposition 8.7. La mappa $H^{\bullet}(i^{\bullet})$ è fra moduli di coomologia, non di cocatene (stessa cosa per $H_b^{\bullet}(i_b^{\bullet})$).
- p.111, Proposition 8.8, proof. Probabilmente sono io che mi perdo in qualche sciocchezza insiemistica, ma non riesco a dedurre

$$F = \bigsqcup_{i=1}^{r} F_i \implies F \cdot g_0 = \bigsqcup_{i=1}^{r} \gamma_i \cdot F_i.$$

- p.113, Proposition 8.11, (1). Dovrebbe essere $k \in \mathbb{N}$.
- \blacksquare p.114. Dovrebbe essere $\mathrm{res}^n([\mathrm{Vol}_{\widetilde{M}}]_c^G)$ (manca la c).