Inhaltsverzeichnis 1

Tipps zur Mathematik

Inhaltsverzeichnis

1	Differentialrechnung		1
	1.1	Ermitteln der Ableitung	1
2	Kon	nplexe Zahlen	1
3	Wahrscheinlichkeitsrechnung		1
	3.1	Zufallsgrößen	1

1 Differentialrechnung

1.1 Ermitteln der Ableitung

Die Ableitung einer reellen Funktion f ist definiert als

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Möchte man in Erfahrung bringen, ob sie unter Anwendung der Ableitungsregeln richtig ermittelt wurde, kann man die Probe machen, indem der Differenzenquotient

$$D_h f(x) = \frac{f(x+h) - f(x)}{h}$$

an einer konkreten Stelle x für ein kleines h numerisch berechnet und mit f'(x) verglichen wird.

Da dies recht umständlich ist, ist es sinnvoll, diese Aufgabe einem Funktionenplotter zu überlassen. Numerisch günstiger ist es, den Differenzenquotient nicht naiv gemäß der Definition zu berechnen, sondern als

$$D_h f(x) = \frac{f(x+h) - f(x-h)}{2h}.$$

Mit dem Plotter kann man schließlich

$$10^n (D_h f(x) - f'(x)) \approx 0$$

für n ∈ {0, 1, 2, . . .} prüfen.

2 Komplexe Zahlen

Jeder komplexen Zahl ist gemäß

$$\Phi(a+bi) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

oder äquivalent

$$\Phi(re^{i\varphi}) = r \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

genau eine Matrix zugeordnet. Die Abbildung Φ ist ein Isomorphismus vom Körper der komplexen Zahlen in einen Körper, der eine Unterstruktur des Matrizenrings darstellt.

Diese Beziehung schafft eine Verbindung zwischen dem Rechnen mit komplexen Zahlen und Konzepten der linearen Algebra.

3 Wahrscheinlichkeitsrechnung

3.1 Zufallsgrößen

Was ist eine Zufallsgröße? Eine Zufallsgröße kann man sich zunächst einfach als eine Abbildung $X \colon \Omega \to \Omega'$ zwischen Ergebnismengen vorstellen. Sei bspw.

$$\Omega := \{(w_1, w_2) \mid w_1, w_2 \in \{1, \dots, 6\}\}$$

die Menge der Ergebnisse des Wurfs zweier gewöhnlicher Würfel. Das heißt, wurde mit dem ersten Würfel eine Drei gewürfelt, und mit dem zweiten eine Fünf, ist das Ergebnis (3,5). Jedes elementare Ereignis $\{(w_1,w_2)\}$ besitzt offenbar dieselbe Wahrscheinlichkeit

$$P(\{(w_1, w_2)\}) = \frac{1}{|\Omega|} = \frac{1}{36}.$$

Für ein beliebiges Ereignis A gilt daher

$$P(A) = \frac{|A|}{|\Omega|}.$$

Ein gutes Beispiel für eine Zufallsgröße ist die Summe der Augenzahlen, also

$$X((w_1, w_2)) := w_1 + w_2.$$

Des Pudels Kern liegt nun in der Beantwortung der Frage, wie wahrscheinlich ein aus Funktionswerten von X bestehendes Ereignis ist.

Ein elementares Ereignis $\{x\}$ tritt doch genau dann ein, wenn x der Funktionswert $x=X(\omega)$ zum Ergebnis ω ist. Wurde bspw. das Ergebnis $\omega=(3,5)$ gewürfelt, ist das elementare Ereignis

$${X(\omega)} = {3 + 5} = {8}$$

eingetreten.

Das Ereignis $\{x\}$ tritt also genau dann ein, wenn das Ergebnis ω im Urbild $X^{-1}(x)$ liegt, für das sich die Schreibweise

$$X^{-1}(x) = \{X = x\}$$

eingebürgert hat. Demnach stimmt die Wahrscheinlichkeit von $\{x\}$ mit der des Urbildereignisses $\{X=x\}$ überein. Das heißt, es gilt

$$P_X({x}) = P(X^{-1}(x)) = P({X = x}) = P(X = x).$$

Bspw. ist

$${X = 8} = {(2,6), (6,2), (3,5), (5,3), (4,4)}.$$

Damit ergibt sich

$$P(X = 8) = \frac{|\{X = 8\}|}{|\Omega|} = \frac{5}{36}$$

als Wahrscheinlichkeit der Augensumme acht.