2024 考研 301

数学 复习笔记

wjl CC BY-NC 4.0

目录

1	一九	C函数							
	1.1	函数极限与连续							
	1.2	一元函数微分学							
	1.3	一元函数积分学							
	1.4	中值定理							
2	多元函数								
	2.1	多元函数微分学							
	2.2	空间解析几何							
	2.3	多元函数积分学							
3	微分方程								
	3.1	一阶微分方程							
	3.2	二阶可降阶的微分方程							
	3.3	高阶常系数线性微分方程							
	3.4	n 阶常系数齐次线性微分方程的解							
4	无穷	无穷级数							
	4.1	判敛法							
	4.2	幂级数							
	4.3	傅里叶级数							
5	线性	挂代数	1						
	5.1	行列式和矩阵	1						
	5.2		1						
	5.3	线性方程组	1						
	5.4		1						
	5.5	二次型							
6	概率论与数理统计								
	6.1	随机变量	1						
	6.2								
	6.3	统计量及其分布							
	6.4	Color to No. 1. See No. 1. Color							

1 一元函数

1.1 函数极限与连续

1. 等价无穷小:

$$\begin{split} &\lim_{n \to \infty} \left[n \sum_{k=1}^n \ln(1 + \frac{k}{n^2}) - \frac{1}{2}(n+1) \right] = \lim_{n \to \infty} \left\{ n \sum_{k=1}^n \left[\frac{k}{n^2} - \frac{k^2}{2n^4} + o\left(\frac{k^2}{n^4}\right) \right] - \frac{1}{2}(n+1) \right\} \\ &= -\frac{1}{2} \lim_{n \to \infty} n \sum_{k=1}^n \frac{k^2}{n^4} + \lim_{n \to \infty} n^2 o\left(\frac{1}{n^2}\right) = -\frac{1}{2} \lim_{n \to \infty} n \sum_{k=1}^n \frac{k^2}{n^4} = -\frac{1}{2} \lim_{n \to \infty} \frac{1}{6} n(n+1)(2n+1) \\ &= -\frac{1}{6}. \end{split}$$

1.2 一元函数微分学

1. 反函数的导数:
$$\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}, \quad x' = \frac{1}{y'}, \quad \frac{d^2x}{dy^2} = \frac{d\left(\frac{dx}{dy}\right)}{dy} = \frac{d\left(\frac{1}{\frac{dy}{dx}}\right)}{dx} \frac{dx}{dy} = -\frac{\frac{d^2y}{dx^2}}{\left(\frac{dy}{dx}\right)^3}, \quad x'' = -\frac{y''}{(y')^3}.$$

2. 曲率和曲率半径: 曲率
$$k = \frac{|y^{"}|}{[1 + (y^{'})^{2}]^{\frac{3}{2}}}$$
,曲率半径 $R = \frac{1}{k}$.

1.3 一元函数积分学

1. 反常积分: 2010-03, 2016-01

比较判别法:
$$\int_0^1 \frac{1}{x^p} dx \begin{cases} 0 1, & \text{收敛}, \\ p \leqslant 1, & \text{发散}. \end{cases}$$

- 1) 设函数 f(x), g(x) 在区间 $[a, +\infty)$ 上连续,且 $0 \le f(x) \le g(x), a \le x \le +\infty$,则
- 当 $\int_a^{+\infty} g(x)dx$ 收敛时, $\int_a^{+\infty} f(x)dx$ 收敛; 当 $\int_a^{+\infty} f(x)dx$ 发散时, $\int_a^{+\infty} g(x)dx$ 发散。
- 2) 设函数 f(x), g(x) 在区间 $[a, +\infty)$ 上连续,且 $f(x) \ge 0, g(x) \ge 0, \lim_{x \to \infty} \frac{f(x)}{g(x)} = \lambda$ (有限或 ∞),则
- a. 当 $\lambda \neq 0$ 时, $\int_a^{+\infty} f(x)dx$ 与 $\int_a^{+\infty} g(x)dx$ 有相同的敛散性;
- b. 当 $\lambda = 0$ 时,若 $\int_a^{+\infty} g(x) dx$ 收敛,则 $\int_a^{+\infty} f(x) dx$ 也收敛;
- c. 当 $\lambda = \infty$ 时,若 $\int_a^{+\infty} g(x) dx$ 发散,则 $\int_a^{+\infty} f(x) dx$ 也发散。
- 2. 常用公式:
- 1) 区间再现公式:

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx, \quad \int_{a}^{b} f(x)dx = \frac{1}{2} \int_{a}^{b} \left[f(x) + f(a+b-x) \right] dx.$$

2) 华里士公式:

$$\int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n x dx = \begin{cases} \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{2}{3} \cdot 1, & n \text{ 为大于1的奇数,} \\ \frac{n-1}{n} \cdot \frac{n-3}{n-2} \cdot \dots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, & n \text{ 为正偶数.} \end{cases}$$

3) 对数-三角公式:

$$\int e^{ax} \sin bx dx = \frac{\begin{vmatrix} (e^{ax})^{'} & (\sin bx)^{'} \\ e^{ax} & \sin bx \end{vmatrix}}{a^2 + b^2} + C, \quad \int e^{ax} \cos bx dx = \frac{\begin{vmatrix} (e^{ax})^{'} & (\cos bx)^{'} \\ e^{ax} & \cos bx \end{vmatrix}}{a^2 + b^2} + C.$$

2

3. 极坐标表示的曲线在直角坐标系下的切线和法线:

24 超越 4-12 曲线
$$r = 1 + \cos \theta$$
 在点 $\theta = \frac{2\pi}{3}$ 处的法线方程: $y = \frac{\sqrt{3}}{4}$.
$$\begin{cases} x\big|_{\theta = \frac{2\pi}{3}} = r \cos \theta = (1 + \cos \theta) \cos \theta\big|_{\theta = \frac{2\pi}{3}} = -\frac{1}{4}, \\ y\big|_{\theta = \frac{2\pi}{3}} = r \sin \theta = (1 + \cos \theta) \sin \theta\big|_{\theta = \frac{2\pi}{3}} = \frac{\sqrt{3}}{4}. \end{cases}$$
 则 $\frac{dx}{dy}\big|_{\theta = \frac{2\pi}{3}} = \frac{dx/d\theta}{dy/d\theta}\big|_{\theta = \frac{2\pi}{3}} = 0 \Rightarrow y = \frac{\sqrt{3}}{4}.$

4. 旋转体体积:

1) 平面曲线绕定直线旋转: 设平面曲线 $L: y = f(x), a \leq x \leq b$, 且 f(x) 可导, 定直线 $L_0: Ax + By + C = 0$, 且过 L_0 的任一条垂线与 L 至多有 1 个交点,则 L 绕 L_0 旋转一周所得旋转体体积为:

$$V = \frac{\pi}{(A^2 + B^2)^{\frac{3}{2}}} \int_a^b [Ax + By + C]^2 |Af'(x) - B| dx.$$

- 2) 平面曲边梯形绕 x 轴旋转: $V = \pi \int_a^b f^2(x) dx$,绕 y 轴旋转: $V = 2\pi \int_a^b x |f(x)| dx$. 3) 平面图形 $D = \{(r,\theta)|0 \leqslant r \leqslant r(\theta), \theta \in [\alpha,\beta] \in [0,\pi]\}$ 绕<u>极轴</u> 旋转:

$$V = \frac{2\pi}{3} \int_{\alpha}^{\beta} r^3(\theta) \sin \theta d\theta.$$

6. 旋转曲面的面积 (侧面积):

$$S = 2\pi \int_a^b |y(x)| \sqrt{1 + [y'(x)]^2} dx. \quad S = 2\pi \int_\alpha^\beta |y(t)| \sqrt{[x'(t)]^2 + [y'(t)]^2} dt.$$

中值定理 1.4

1. 泰勒公式:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(\xi)(x - x_0)^2.$$

- 2. 乘积求导公式 $(uv)^{'}=u^{'}v+uv^{'}$ 的逆用: $[f^{2}(x)]^{'}=2f(x)\cdot f^{'}(x),\quad \left[f(x)\cdot f^{'}(x)\right]^{'}=\left[f^{'}(x)\right]^{2}+f(x)f^{''}(x).$ $\left[f(x)e^{\varphi(x)}\right]^{'}=f^{'}(x)e^{\varphi(x)}+f(x)e^{\varphi(x)}\cdot \varphi^{'}(x)=\left[f^{'}(x)+f(x)\varphi^{'}(x)\right]e^{\varphi(x)}.$
- 3. 商的求导公式 $\left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2}$ 的逆用: $\left[\frac{f(x)}{x}\right]' = \frac{f'(x)x f(x)}{x^2}$, $\left[\frac{f'(x)}{f(x)}\right] = \frac{f''(x)f(x) [f'(x)]^2}{f^2(x)}$.

$$\left[\ln f(x)\right]^{'} = \frac{f^{'}(x)}{f(x)}, \quad \left[\ln f(x)\right]^{''} = \left\lceil \frac{f^{'}(x)}{f(x)} \right\rceil^{'} = \frac{f^{''}(x)f(x) - \left[f^{'}(x)\right]^{2}}{f^{2}(x)}.$$

- 4. 中值定理和不等式:
- 1) 积分中值定理: 设 f(x) 在 [a,b] 上连续,则存在 $\xi \in (a,b)$,使得 $\int_a^b f(x) dx = f(\xi)(b-a)$.
- 2) 柯西积分不等式: $\left(\int_a^b f(x)g(x)dx\right)^2 \leqslant \int_a^b f^2(x)dx \int_a^b g^2(x)dx$.

曲线 $x^3 + y^3 = 3axy(a > 0)$ 的渐近线:

设
$$\lim_{x\to\infty}\frac{y}{x}=k, \lim_{x\to\infty}(y-kx)=b$$
,等式变形为 $1+(\frac{y}{x})^3=\frac{3a}{x}\cdot\frac{y}{x}$,两边取极限,得 $k=-1$.

则
$$b = \lim_{x \to \infty} (y+x)$$
,又 $x^3 + y^3 = (x+y)(x^2 - xy + y^2)$,等式变形为 $x + y = \frac{3axy}{x^2 - xy + y^2} = \frac{3a\frac{y}{x}}{1 - \frac{y}{x} + (\frac{y}{x})^2}$,

两边取极限,得 b=-a,即渐近线为 y=-x-a.

多元函数 2

多元函数微分学 2.1

1. **全微分**: 函数在 z = f(x, y) 点 (x_0, y_0) 处可微等价于

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y) - f(x_0,y_0) - f_x'(x_0,y_0)(x-x_0) - f_y'(x_0,y_0)(y-y_0)}{\sqrt{(x-x_0)^2 + (y-y_0)^2}} = 0$$

- 2. **偏导数连续的判断**: 判断函数 z = f(x, y) 在特殊点 (x_0, y_0) 处的偏导数是否连续:
- 1) 用定义法求 $f'_x(x_0, y_0), f'_y(x_0, y_0)$,用公式法求 $f'_x(x, y), f'_y(x, y)$.
- 2) 计算 $\lim_{x \to x_0 \atop y \to y_0} f'_x(x,y)$, $\lim_{x \to x_0 \atop y \to y_0} f'_y(x,y)$, 看 $\lim_{x \to x_0 \atop y \to y_0} f'_x(x,y) = f'_x(x_0,y_0)$, $\lim_{x \to x_0 \atop y \to y_0} f'_y(x,y) = f'_y(x_0,y_0)$ 是否成立,若成立,则 z = f(x,y) 在点 (x_0,y_0) 处的偏导数是连续的.

別
$$z = f(x,y)$$
 任庶 (x_0, y_0) 处的偏导数定连续的.

3. 隐函数求导: 设
$$\begin{cases} F(x,y,z) = 0, \\ G(x,y,z) = 0, \end{cases}$$
 当满足 $\frac{\partial(F,G)}{\partial(y,z)} = \begin{vmatrix} \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial G}{\partial y} & \frac{\partial G}{\partial z} \end{vmatrix} \neq 0$ 时,可确定
$$\begin{cases} y = y(x), \\ z = z(x), \end{cases}$$
 且有
$$\frac{dy}{dx} = -\frac{\frac{\partial(F,G)}{\partial(x,z)}}{\frac{\partial(F,G)}{\partial(y,z)}}, \quad \frac{dz}{dx} = -\frac{\frac{\partial(F,G)}{\partial(y,x)}}{\frac{\partial(F,G)}{\partial(y,z)}},$$

4. 二元函数的二阶泰勒公式: f(x,y) 在点 (x_0,y_0) 处的二阶泰勒公式为: 其中 $\rho^2 = (x-x_0)^2 + (y-y_0)^2$. $f(x,y) = f(x_0,y_0) + \left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)f(x_0,y_0) + \frac{1}{2!}\left(x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right)^2f(x_0,y_0) + o(\rho^2).$

空间解析几何 2.2

1. 空间曲线的切线与法平面

曲线:
$$\begin{cases} F(x,y,z) = 0, \\ G(x,y,z) = 0. \end{cases} \stackrel{\text{def}}{=} \frac{\partial (F,G)}{\partial (y,z)} = \begin{vmatrix} \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial G}{\partial y} & \frac{\partial G}{\partial z} \end{vmatrix} \neq 0 \text{ 时, } \quad \mathbf{R} \tau = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ F_x' & F_y' & F_z' \\ G_x' & G_y' & G_z' \end{vmatrix} = (A,B,C).$$

切线方程: $\frac{x-x_0}{A} + \frac{y-y_0}{B} + \frac{z-z_0}{C} = 0$. 法平面方程: $A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$. 2. 旋转曲面: 曲线 Γ : $\begin{cases} F(x,y,z) = 0 \\ G(x,y,z) = 0 \end{cases}$ 绕直线 L: $\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$ 旋转一周形成的一个旋转曲面:

设 $M_0(x_0,y_0,z_0)$,方向向量 $\mathbf{s}=(m,n,p)$ 。在母线 Γ 上任取一点 $M_1(x_1,y_1,z_1)$,则过 M_1 的维圆上的任意一点 P(x,y,z) 满足条件 $\overrightarrow{M_1P} \perp s$, $|\overrightarrow{M_0P}| = |\overrightarrow{M_0M_1}|$, 即

联立
$$\begin{cases} m(x-x_1) + n(y-y_1) + p(z-z_1) = 0, \\ (x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = (x_1-x_0)^2 + (y_1-y_0)^2 + (z_1-z_0)^2, \text{ 即得旋转曲面的方程。} \\ F(x_1,y_1,z_1) = 0, G(x_1,y_1,z_1) = 0. \end{cases}$$

1) 方向导数:设三元函数 u = u(x, y, z) 在点 $P_0(x_0, y_0, z_0)$ 的某空间邻域 $U \subset \mathbf{R}^3$ 内有定义,l 为从点 P_0 出

发的射线, P(x,y,z) 为 l 上且在 U 内的任一点,以 $t=\sqrt{(\Delta x)^2+(\Delta y)^2+(\Delta z)^2}$ 表示 P 与 P_0 之间的距离. 若极限 $\lim_{t\to 0^+}\frac{u(P)-u(P_0)}{t}=\lim_{t\to 0^+}\frac{u(x_0+t\cos\alpha,y_0+t\cos\beta,z_0+t\cos\gamma)-u(x_0,y_0,z_0)}{t}$ 存在,则称此极限为函数 u=u(x,y,z) 在点 $P_0(x_0,y_0,z_0)$ 处沿方向 l 的方向导数。

计算: $\frac{\partial u}{\partial l}\Big|_{P_0} = u_x^{'}(P_0)\cos\alpha + u_y^{'}(P_0)\cos\beta + u_z^{'}(P_0)\cos\gamma$, 其中 $\cos\alpha,\cos\beta,\cos\gamma$ 为方向 l 的方向余弦。

2)梯度: $\mathbf{grad}u\big|_{P_0} = (u_x^{'}(P_0), u_y^{'}(P_0), u_z^{'}(P_0))$,函数在某点处的梯度是一个向量,它的方向与取得最大方向 导数的方向一致,它的模为方向导数最大值。 $|\mathbf{grad}u| = \sqrt{(u_x')^2 + (u_y')^2 + (u_z')^2}$.

3) 散度:
$$\operatorname{div} \mathbf{A} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$
; 旋度: $\operatorname{rotA} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$.

4. 双曲面: 注意区分

单叶双曲面 $x^2 + y^2 - z^2 = 1$ 双叶双曲面 $x^2 - y^2 - z^2 = 1$

多元函数积分学 2.3

换元法: 取 $\begin{cases} x = x(u, v, \omega), \\ y = y(u, v, \omega), \text{ 其中 } \frac{\partial(x, y, z)}{\partial(u, v, \omega)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial \omega} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial \omega} \\ z = z(u, v, \omega). \end{vmatrix} \neq 0, \text{ 则}$ $\iiint f(x,y,z)dxdydz = \iiint f\left[x(u,v,\omega),y(u,v,\omega),z(u,v,\omega)\right] \left|\frac{\partial(x,y,z)}{\partial(u,v,\omega)}\right| dudvd\omega.$

1) 空间情形: 空间曲线 L 由参数式给出 $\begin{cases} x - x(t), \\ y = y(t), (\alpha \leqslant t \leqslant \beta) \text{ 则 } ds = \sqrt{\left[x'(t)\right]^2 + \left[y'(t)\right]^2 + \left[z'(t)\right]^2} dt, \text{ 且 } \\ z = z(t). \end{cases}$

$$\int_{\Gamma} f(x, y, z) ds = \int_{\alpha}^{\beta} f[x(t), y(t), z(t)] \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt$$

2) 平面情形:

a. 平面曲线 L 由 $y=y(x)(a\leqslant x\leqslant b)$ 给出,则 $ds=\sqrt{1+[y'(x)]^2}dx$,且

$$\int_{L}f(x,y)ds=\int_{a}^{b}f\left[x,y(x)\right] \sqrt{1+\left[y^{\prime}(x)\right] ^{2}}dx.$$

b. 平面曲线 L 由参数式 $\begin{cases} x = x(t), \\ y = y(t). \end{cases}$ ($\alpha \leqslant t \leqslant \beta$) 给出,则 $ds = \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$,且

$$\int_{L} f(x,y)ds = \int_{\alpha}^{\beta} f[x(t), y(t)] \sqrt{[x'(t)]^{2} + [y'(t)]^{2}} dt.$$

c. 平面曲线由极坐标形式 $r=r(\theta)(\alpha\leqslant\theta\leqslant\beta)$ 给出,则 $ds=\sqrt{\left[r(\theta)\right]^2+\left[r'(\theta)\right]^2}d\theta$,且

$$\int_{L}f(x,y)ds=\int_{\alpha}^{\beta}f\left(r(\theta)\cos\theta,r(\theta)\sin\theta\right)\sqrt{\left[r(\theta)\right]^{2}+\left[r^{'}(\theta)\right]^{2}}d\theta.$$

2018-12 设 L 为球面 $x^2 + y^2 + z^2 = 1$ 与平面 x + y + z = 0 的交线,则 $\oint_L xyds = -\frac{\pi}{3}$.

$$\oint_{L} = \frac{1}{6} \oint_{L} [(x+y+z)^{2} - (x^{2}+y^{2}+z^{2})] ds.$$

24 超越 3-2 曲线 $L: x^2 + y^2 = -2y$,则曲线积分 $\oint_L \sqrt{x^2 + y^2} ds = 8$.

24 李林 6-2-14 曲线 L: $\begin{cases} x^2+y^2+z^2=1, \\ y+z=0. \end{cases}$ 则 $I=\int_L (x^2+2y+2z)ds=\int_L x^2ds=\underline{\pi}.$

- 2. 第一型曲面积分: 边界方程可带入被积函数
- 1) 一投:将曲面 Σ 投影到某一平面(如 xOy 面)上 \Rightarrow 投影区域为 D(如 D_{xy});
- 2) 二代: 将 z = z(x, y) 或 F(x, y, z) = 0 代入 f(x, y, z);
- 3) 三计算: 计算 $z_x^{'}, z_y^{'}$,得 $dS = \sqrt{1 + (z_x^{'})^2 + (z_y^{'})^2} dx dy$,得到

$$\iint_{\Sigma} f(x, y, z) dS = \iint_{D_{xy}} f[x, y, z(x, y)] \sqrt{1 + (z'_x)^2 + (z'_y)^2} dx dy.$$

- 3. 第二型曲线积分:
- 3. 第二型曲线积分: 1) 化为定积分: 平面有向曲线 L 由参数方程 $\begin{cases} x=x(t), & (t:\alpha \to \beta) \text{ 给出,则} \\ y=y(t). & \end{cases}$

$$\int_{L} P(x,y)dx + Q(x,y)dy = \int_{\alpha}^{\beta} \{Px^{'}(t) + Qy^{'}(t)\}dt.$$
2)格林公式: 设平面有界闭区域 D 由分段光滑曲线 L 围成,则

$$\oint_{L} P(x,y)dx + Q(x,y)dy = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) d\sigma$$

- a. 曲线封闭且无奇点在内部, 直接用公式;
- b. 曲线封闭但有奇点在内部,且除奇点外 $\frac{\partial Q}{\partial x} \equiv \frac{\partial P}{\partial y}$,则换路径;
- c. 非封闭曲线且 $\frac{\partial Q}{\partial x} \equiv \frac{\partial P}{\partial y}$,则换路径; d. 非封闭曲线且 $\frac{\partial Q}{\partial x} \neq \frac{\partial P}{\partial y}$,可补线使其封闭。

24 张八-1-4 被积函数为积分区域正向边界时值最大。 积分区域不是单连通区域时, $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \Rightarrow \int_L Pdx + Qdy$ 与路径无关。

3) 两类曲线积分的关系: 其中 $(\cos \alpha, \sin \beta)$ 为 L 上点 (x, y) 处与 L 同向的单位切向量:

$$\int_L P dx + Q dy = \int_L (P\cos\alpha + Q\sin\beta) ds.$$

- 4) 空间问题:
- a. 直接计算: 设 Γ : $\begin{cases} x=x(t), \\ y=y(t), t: \alpha \to \beta, \text{则有} \int_{\Gamma} P dx + Q dy + R dz = \int_{\alpha}^{\beta} \left[Px^{'}(t) + Qy^{'}(t) + Rz^{'}(t) \right] dt. \end{cases}$
- b. 斯托克斯公式:设 Ω 为某空间区域, Σ 为 Ω 内的分片光滑有向曲面片, Γ 为逐段光滑的 Σ 的边界,则有

$$\oint_{\Gamma} Pdx + Qdy + Rdz = \iint_{\Sigma} \begin{vmatrix} dydz & dzdx & dxxdy \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$
 (第二型曲面积分形式)

若 rot F = 0,可换路径。

- 4. 第二型曲面积分:
- 1) 化为二重积分: 拆成三个积分

2)转换投影法:若 Σ 投影到 xOy 平面上不是一条线,并且 Σ 上任意两点到 xOy 平面上的投影不重合,则 可将 Σ 投影到 xOy 平面,设投影域为 D_{xy} ,曲面方程写成 z=z(x,y) 的形式,则有

$$\iint\limits_{\Sigma} P(x,y,z) dy dz + Q(x,y,z) dz dx + R(x,y,z) dx dy = \iint\limits_{D_{xy}} \left[P\left(-\frac{\partial z}{\partial x}\right) + Q\left(-\frac{\partial z}{\partial y}\right) + R \right] dx dy.$$

$$\iint\limits_{\Sigma} P(x,y,z) dy dz + Q(x,y,z) dz dx + R(x,y,z) dx dy = \iint\limits_{D_{xz}} \left[P\left(-\frac{\partial y}{\partial x}\right) + Q + R\left(-\frac{\partial y}{\partial z}\right) \right] dz dx.$$

$$\iint\limits_{\Sigma} P(x,y,z) dy dz + Q(x,y,z) dz dx + R(x,y,z) dx dy = \iint\limits_{D_{yz}} \left[P + Q\left(-\frac{\partial x}{\partial y}\right) + R\left(-\frac{\partial x}{\partial z}\right) \right] dy dz.$$

3) 高斯公式: 设空间有界闭区域 Ω 由分段光滑曲面 Σ 围成

$$\iint\limits_{\Sigma} P dy dz + Q dz dx + R dx dy = \iiint\limits_{\Omega} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dv.$$

- a. 封闭曲面且内部无奇点, 直接用公式;
- b. 封闭曲面,有奇点在内部,且除奇点外 $div \mathbf{F} = 0$,换个面积分;
- c. 非封闭曲面, 且 $div \mathbf{F} = 0$, 换个面积分;
- d. 非封闭曲面,且 $div \mathbf{F} \neq 0$,补面使其封闭。
- 4) 两类曲面积分的关系: 其中 $(\cos \alpha, \cos \beta, \cos \gamma)$ 为 Σ 在点 (x, y, z) 处与 Σ 同侧的单位法向量。

$$\iint\limits_{\Sigma}Pdydz+Qdzdx+Rdxdy=\iint\limits_{\Sigma}\left(P\cos\alpha+Q\cos\beta+R\cos\gamma\right)dS.$$

- 5. 应用:
- 1) 弧长: $l = \int_{L} ds = \int_{a}^{b} \sqrt{1 + (y'_{x})^{2}} dx$. 2) 曲面面积: $S = \iint_{\Sigma} dS = \iint_{D_{xy}} \sqrt{1 + (z'_{x})^{2} + (z'_{y})^{2}} dx dy$. 3) 曲顶柱体体积: $V = \iint_{D_{xy}} |z(x,y)| d\sigma$.
- 4)转动惯量:空间物体 Ω ,对x轴、原点O的转动惯量:

$$I_x = \iiint_O (y^2 + z^2) \rho(x, y, z) dv, \quad I_O = \iiint_O (x^2 + y^2 + z^2) \rho(x, y, z) dv.$$

3 微分方程

wil

3 微分方程

3.1 一阶微分方程

1.
$$y^{'} + p(x)y = q(x)$$
, 则 $y = e^{-\int p(x)dx} \left[\int e^{\int p(x)dx} \cdot q(x)dx + C \right]$.
2. 伯努利方程: $y^{'} + p(x)y = q(x)y^{n}$, 令 $z = y^{1-n}$, 得 $\frac{dz}{dx} = (1-n)y^{-n}\frac{dy}{dx}$, 则 $\frac{1}{n-1}\frac{dz}{dx} + p(x)z = q(x)$.

3.2 二阶可降阶的微分方程

1.
$$y'' = f(x, y')$$
: $\Leftrightarrow y' = p, y'' = p', \quad \text{M} \frac{dp}{dx} = f(x, p)$.
2. $y'' = f(y, y')$: $\Leftrightarrow y' = p, y'' = \frac{dp}{dx} = \frac{dp}{dy} \cdot \frac{dy}{dx} = \frac{dp}{dy} \cdot p, \quad \text{M} p \frac{dp}{dy} = f(y, p)$.

3.3 高阶常系数线性微分方程

1.
$$y'' + py' + qy = f(x)$$
 特解

微分算子:
$$y^* = \frac{1}{F(D)} f(x)$$

1) $\frac{1}{F(D)} e^{\alpha x}$:
若 $F(D)|_{D=\alpha} \neq 0$, 有 $y^* = \frac{1}{F(D)} e^{\alpha x} = \frac{1}{F(D)|_{D=\alpha}} e^{\alpha x}$.
若 $F(D)|_{D=\alpha} = 0$, 而 $F'(D)|_{D=\alpha} \neq 0$, 有 $y^* = \frac{1}{F(D)} e^{\alpha x} = x \frac{1}{F'(D)|_{D=\alpha}} e^{\alpha x}$.
若 $F(D)|_{D=\alpha} = F'(D)|_{D=\alpha} = 0$, 而 $F''(D)|_{D=\alpha} \neq 0$, 有 $y^* = \frac{1}{F(D)} e^{\alpha x} = x^2 \frac{1}{F''(D)|_{D=\alpha}} e^{\alpha x}$.
2) $\frac{1}{F(D^2)} \cos \beta x$ 或 $\frac{1}{F(D^2)} \cos \beta x$:
若 $F(D^2)|_{D=\beta i} \neq 0$, 有 $y^* = \frac{1}{F(D^2)} \cos \beta x = \frac{1}{F(D^2)|_{D=\beta i}} \cos \beta x$.
若 $F(D^2)|_{D=\beta i} = 0$, 有 $y^* = \frac{1}{F(D^2)} \cos \beta x = x \frac{1}{[F(D^2)]'} \cos \beta x$.
3) $\frac{1}{F(D)} (x^k + a_1 x^{k-1} + \dots + a_{k-1} x + a_k)$: $y^* = Q_k(D)(x^k + a_1 x^{k-1} + \dots + a_{k-1} x + a_k)$.
4) $\frac{1}{F(D)} e^{\alpha x} v(x)$: $y^* = \frac{1}{F(D)} e^{\alpha x} v(x) = e^{\alpha x} \frac{1}{F(D+\alpha)} v(x)$.

2. 欧拉方程:
$$x^2y^{''} + pxy^{'} + qy = f(x), x < 0$$
 时, 令 $x = -e^t$. $x > 0$ 时, 令 $x = e^t$,则 $\frac{dt}{dx} = \frac{1}{x}$, $\frac{dy}{dx} = \frac{1}{x}\frac{dy}{dt}$, $\frac{d^2y}{dx^2} = -\frac{1}{x^2}\frac{dy}{dt} + \frac{1}{x^2}\frac{d^2y}{dt^2}$ 即 $\frac{d^2y}{dt^2} + (p-1)\frac{dy}{dt} + qy = f(e^t)$.

3.4 n 阶常系数齐次线性微分方程的解

- $1. \lambda$ 为单实根, $Ce^{\lambda x}$.
- 2. λ 为重实根, $(C_1 + C_2 x + C_3 x^2 + \dots + C_k x^{k-1})e^{\lambda x}$.
- 3. λ 为单复根 $\alpha + \beta i$, $e^{\alpha x}(C_1 \cos \beta x + C_2 \sin \beta x)$.
- 4. λ 为二重复根 $\alpha + \beta i$, $e^{\alpha x}(C_1 \cos \beta x + C_2 \sin \beta x + C_3 x \cos \beta x + C_4 x \sin \beta x)$.

24 李林 6-2-17
$$\frac{dy}{dx} = \pm \frac{\sqrt{y^2 - 1}}{2} \Rightarrow \frac{d^2y}{dx^2} = \pm \frac{1}{2} \cdot \frac{y}{\sqrt{y^2 - 4}} \cdot \frac{dy}{dx} = \frac{y}{4} \Rightarrow \underline{y} = C_1 e^{\frac{1}{2}} + C_2 e^{-\frac{1}{2}}.$$

4 无穷级数

4 无穷级数

4.1 判敛法

1. 比较判别法:
$$p$$
级数 $\sum_{n=1}^{\infty} \frac{1}{n^p} \begin{cases} \psi \mathfrak{D}, & p > 1, \\ \mathcal{Z} \mathfrak{D}, & p \leqslant 1. \end{cases}$ 广义 p 级数 $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^p} \begin{cases} \psi \mathfrak{D}, & p > 1, \\ \mathcal{Z} \mathfrak{D}, & p \leqslant 1. \end{cases}$ 2. 常用结论: 设 $\sum_{n=1}^{\infty} u_n$ 收敛, 则 $\begin{cases} \sum_{n=1}^{\infty} (u_{2n-1} + u_{2n}) \psi \mathfrak{D}, \\ \sum_{n=1}^{\infty} (u_{2n-1} - u_{2n}) \end{aligned}$ $\begin{cases} \sum_{n=1}^{\infty} (u_n + u_{n+1}) \psi \mathfrak{D}, \\ \sum_{n=1}^{\infty} (u_n - u_{n+1}) \psi \mathfrak{D}. \end{cases}$

2023-04 已知 $a_n < b_n (n = 1, 2, ...)$,若级数 $\sum_{n=1}^{\infty} a_n$ 与 $\sum_{n=1}^{\infty} b_n$ 均收敛,则 " $\sum_{n=1}^{\infty} a_n$ 绝对收敛"是 " $\sum_{n=1}^{\infty} b_n$ 绝对收敛"的<u>充要条件</u>。由题意 $\sum_{n=1}^{\infty} (b_n - a_n)$ 为正项级数且绝对收敛,由三角不等式得 $|b_n| = |b_n - a_n + a_n| \leq |b_n - a_n| + |a_n|$, $|a_n| = |a_n - b_n + b_n| \leq |b_n - a_n| + |b_n|$,即为充要条件。

4.2 幂级数

1. 收敛域:比值法和根值法只是计算幂级数收敛半径的充分条件,而不是必要条件。

记
$$\sum\limits_{n=1}^{\infty}a_nx^n$$
 的收敛半径为 $R,\sum\limits_{n=1}^{\infty}a_{2n}x^{2n}$ 的收敛半径为 $R_1,$ 则 $R_1\geqslant R$. 若 $\sum\limits_{n=1}^{\infty}a_{2n}r^{2n}$ 发散,则 $|r|\geqslant R_1\geqslant R$.

2. 和函数: 直接套公式、先积后导或先导后积; 用所给微分方程求和、建立微分方程求和。

$$\begin{split} &\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}, \quad -1 < x \leqslant 1. \\ &(\arctan x)^{'} = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, \quad -1 \leqslant x \leqslant 1. \\ &\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad -\infty < x < +\infty. \\ &\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad -\infty < x < +\infty. \\ &\frac{e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad -\infty < x < +\infty. \\ &\frac{e^x = \sum_{n=0}^{\infty} \frac{(-x)^n}{n!}, \quad -\infty < x < +\infty. \\ &\frac{e^x + e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, \quad -\infty < x < +\infty. \\ &\frac{e^x - e^{-x}}{2} = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, \quad -\infty < x < +\infty. \end{split}$$

4.3 傅里叶级数

1. 周期为
$$2l$$
 的傅里叶级数: $f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi}{l} x + b_n \sin \frac{n\pi}{l} x \right)$.
$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi}{l} x dx, (n = 0, 1, 2, \cdots), \quad b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi}{l} x dx, (n = 1, 2, 3, \cdots).$$
2. 狄利克雷收敛定理: $S(x) = \begin{cases} f(x), & x \text{为连续点}, \\ \frac{f(x-0) + f(x+0)}{2}, & x \text{为间断点}, \\ \frac{f(-l+0) + f(l-0)}{2}, & x = \pm l. \end{cases}$

3. 只在 [0, l] 上有定义的函数的正弦级数和余弦级数展开:

1) 正弦级数:
$$f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi}{l} x, x \in [0, l], \quad b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi}{l} x dx (n = 1, 2, 3, ...).$$

2) 余弦级数:
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi}{l} x, x \in [0, l], \quad a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi}{l} x dx (n = 0, 1, 2, \dots).$$

5 线性代数 wjl

5 线性代数

5.1 行列式和矩阵

- 1. 代数余子式 $\mathbf{A}_{ij} = (-1)^{i+j} \mathbf{M}_{ij}$,行列式: $|\mathbf{A}| = a_{i1} \mathbf{A}_{i1} + a_{i2} \mathbf{A}_{i2} + \dots + a_{in} \mathbf{A}_{in} = \sum_{j=1}^{n} a_{ij} \mathbf{A}_{ij} (i = 1, 2, \dots, n)$.
- 2. 矩阵的初等变换: "左行右列"。
- 1. 设 $\mathbf{A} \not\in m \times n$ 矩阵, $\mathbf{B} \not\in n \times s$ 矩阵, $\mathbf{E} \not\in n$ 阶单位矩阵:
- 1) 若 $r(\mathbf{A}) = n($ 列满秩),则 $r(\mathbf{A}\mathbf{B}) = r(\mathbf{B})$;若 $r(\mathbf{B}) = n($ 行满秩),则 $r(\mathbf{A}\mathbf{B}) = r(\mathbf{A})$.
- 2) $r(\mathbf{A}) + r(\mathbf{B}) n \leqslant r(\mathbf{A}\mathbf{B}) \leqslant \min\{r(\mathbf{A}), r(\mathbf{B})\}.$
- 2. 设 A, B 为同型矩阵,则 $r(A + B) \leqslant r(A, B) \leqslant r(A) + r(B)$, r(A, B) = r(A[E, B]) = r(A).
- 3. 设 A 是 n(n > 2) 阶方阵,则 $r(A) = r(A^T) = r(A^T A) = r(AA^T)$;若 A 可逆,则 $(A^*)^* = |A|^{n-2} A$.

分块矩阵秩的常用结论:

1)
$$r(A + B) \le r(A, B) \le r(A) + r(B)$$
, $r(A + B) \le r \begin{bmatrix} A \\ B \end{bmatrix} \le r(A) + r(B)$.

2) 当
$$A$$
 可逆时, $r \begin{bmatrix} A & O \\ C & D \end{bmatrix} = r \begin{bmatrix} A & B \\ O & D \end{bmatrix} = r(A) + r(D)$.

3)
$$r \begin{bmatrix} A & O \\ O & B \end{bmatrix} = r(A) + r(B), \quad r \begin{bmatrix} O & A \\ B & O \end{bmatrix} = r(A) + r(B).$$

4)
$$r \begin{bmatrix} A & O \\ C & D \end{bmatrix} \geqslant r(A) + r(D), \quad r \begin{bmatrix} A & B \\ O & D \end{bmatrix} \geqslant r(A) + r(D).$$

5.2 向量组

- 1. 等价向量组: $r(\alpha_1, \alpha_2, \dots, \alpha_s) = r(\beta_1, \beta_2, \dots, \beta_t) = r(\alpha_1, \alpha_2, \dots, \alpha_s, \beta_1, \beta_2, \dots, \beta_t)$.
- 2. 基坐标:向量空间 V 中的任一向量 $\boldsymbol{\xi}$ 都可由这个基唯一地线性表示: $\boldsymbol{\xi} = x_1 \boldsymbol{\alpha_1} + x_2 \boldsymbol{\alpha_2} + \cdots + x_r \boldsymbol{\alpha_r}$. 称有序数组 x_1, x_2, \ldots, x_r 为向量 $\boldsymbol{\xi}$ 在基 $\boldsymbol{\alpha_1}, \boldsymbol{\alpha_2}, \ldots, \boldsymbol{\alpha_r}$ 下的坐标.
- 3. 过渡矩阵: 设 V 的两个基 $\eta_1, \eta_2, \dots, \eta_n$; $\xi_1, \xi_2, \dots, \xi_n$, 若 $[\eta_1, \eta_2, \dots, \eta_n] = [\xi_1, \xi_2, \dots, \xi_n] C$. 称 C 为由基 $\xi_1, \xi_2, \dots, \xi_n$ 到基 $\eta_1, \eta_2, \dots, \eta_n$ 的过渡矩阵.

24 张八-2-7
$$n$$
 维向量组 $A = (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n), B = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_n)$ 等价,则
$$r(\boldsymbol{A}) = r(\boldsymbol{B}) = r(\boldsymbol{A}, \boldsymbol{B}) \Rightarrow r(\boldsymbol{A}^T) = r(\boldsymbol{B}^T) = r\begin{pmatrix} \boldsymbol{A}^T \\ \boldsymbol{B}^T \end{pmatrix} \Rightarrow \boldsymbol{A}^T \boldsymbol{x} = \boldsymbol{O}, \boldsymbol{B}^T \boldsymbol{x} = \boldsymbol{O}, \begin{pmatrix} \boldsymbol{A}^T \\ \boldsymbol{B}^T \end{pmatrix} \boldsymbol{x} = \boldsymbol{O}$$
同解.

5.3 线性方程组

- 1. 公共解:齐次线性方程组 $A_{m\times n}x=O$ 和 $B_{m\times n}x=O$ 的公共解即联立方程 $\begin{bmatrix} A \\ B \end{bmatrix}x=O$ 的解。
- 2. 同解方程组: 两个方程组 $\mathbf{A}\mathbf{x} = 0$ 和 $\mathbf{B}\mathbf{x} = 0$ 有完全相同的解: $r(\mathbf{A}) = r(\mathbf{B}) = r\begin{bmatrix} \mathbf{A} \\ \mathbf{B} \end{bmatrix}$ (三秩相同较方便)。

$$\boldsymbol{A}_{m \times n} \boldsymbol{x} = \boldsymbol{b} \ \boldsymbol{f} \boldsymbol{H} \Leftrightarrow r(\boldsymbol{A}) = r(\boldsymbol{A}, \boldsymbol{b}) \Leftrightarrow r(\boldsymbol{A}^T) = r \begin{bmatrix} \boldsymbol{A}^T \\ \boldsymbol{b}^T \end{bmatrix} \Leftrightarrow \boldsymbol{A}^T \boldsymbol{x} = \boldsymbol{O} \ \boldsymbol{\exists} \begin{bmatrix} \boldsymbol{A}^T \\ \boldsymbol{b}^T \end{bmatrix} \boldsymbol{x} = \boldsymbol{O} \ \boldsymbol{\exists} \boldsymbol{H} \boldsymbol{\beta}$$

秩的情况	解的情况	位置关系		
$r(\mathbf{A}) = 1, r(\mathbf{A} \mathbf{b}) = 1$	有无穷解	三平面重合		
$r(\mathbf{A}) = 1, r(\mathbf{A} \mathbf{b}) = 2$	无解	三平面平行且三平面互异		
$T(\mathbf{A}) \equiv 1, T(\mathbf{A} 0) \equiv 2$		两平面重合,第三个平面与之平行		
$r(\mathbf{A}) = 2, r(\mathbf{A} \mathbf{b}) = 2$	有无穷解	两平面相交, 第三个平面与其中一个平面重合		
$ I(\mathbf{A}) - 2, I(\mathbf{A} 0) = 2$		三平面互异,相交于一条直线		
$r(\mathbf{A}) = 2, r(\mathbf{A} \mathbf{b}) = 3$	无解	两平面平行, 第三个平面与这两个平面分别相交		
$T(\mathbf{A}) \equiv 2, T(\mathbf{A} 0) \equiv 3$		三平面互不平行,两两相交		
$r(\mathbf{A}) = 3, r(\mathbf{A} \mathbf{b}) = 3$	有唯一解	三平面相交于一点		

表 1: 线性方程组与空间平面、直线的关系

相似矩阵: 设 A, B 是 n 阶矩阵, 若 $A \sim B$, 则 $A^T \sim B^T$, $A^* \sim B^*$, $A^{-1} \sim B^{-1}$, $A^m \sim B^m$, $f(A) \sim f(B)$. 若 A, B 可逆, 则 $AB \sim BA$.

5.4 特征值与特征向量

表 2: 特征值及其对应的特征向量

矩阵	A	kA	$m{A}^k$	f(A)	A^{-1}	$oldsymbol{A}^*$	$P^{-1}AP = B$	$\mathbf{P}^{-1}f(\mathbf{A})\mathbf{P} = \mathbf{B}$
特征值	λ	$k\lambda$	λ^k	$f(\lambda)$	$\frac{1}{\lambda}$	$\frac{ A }{\lambda}$	λ	$f(\lambda)$
对应的特征向量	ξ	ξ	ξ	ξ	ξ	ξ	$oldsymbol{P}^{-1} \xi$	$oldsymbol{P}^{-1} \xi$

- 1. 迹数:矩阵 \boldsymbol{A} 的对角线元素之和,等于特征值总和。 $\operatorname{tr}(\boldsymbol{A}) = \sum_{i=1}^{n} \lambda_{i}$.
- 2. 反对称矩阵: $\mathbf{A}^{T} = -\mathbf{A}(a_{ij} = -a_{ji}), r(\mathbf{A}_{3\times 3}) = 2.$

5.5 二次型

- 1. n 元二次型 $f = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 正定 $\Leftrightarrow \forall \mathbf{x} \neq 0, \mathbf{x}^T \mathbf{A} \mathbf{x} > 0 \Leftrightarrow \mathbf{A}$ 的特征值 $\lambda_i > 0 \Leftrightarrow f$ 的正惯性指数 p = n $\Leftrightarrow \exists \mathbf{D}$ 可逆, $\mathbf{A} = \mathbf{D}^T \mathbf{D} \Leftrightarrow \mathbf{A} \vdash \mathbf{E}$ 合同 $\Leftrightarrow \mathbf{A}$ 的各阶顺序主子式均大于 0.
 - 2. 同阶方阵 *A*. *B* 合同的判定:
 - 1) A, B 合同 \Leftrightarrow 存在可逆矩阵 C,使得 $C^TAC = B$.
 - 2) 实对称矩阵 A, B 的正负惯性指数相同。
 - 3) 同阶实对称矩阵相似必合同。

24 张 **4-2-07** 二次型 $f(x_1, x_2, x_3) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ 与 $g(y_1, y_2, y_3) = \mathbf{y}^T \mathbf{B} \mathbf{y}$. 若存在可逆线性变换将 f 化为 g, 则 \mathbf{A} , \mathbf{B} 合同;若不存在正交变换将 f 化为 g, 则 \mathbf{A} , \mathbf{B} 不相似。

2012-13 设 α 为 3 维列向量, E 为 3 阶单位矩阵,则矩阵 $E - \alpha \alpha^T$ 的秩为: $\underline{2}$. 取 $A = E - \alpha \alpha^T$, $A^2 = A = (E - \alpha \alpha^T)(E - \alpha \alpha^T) = E - \alpha \alpha^T = A$, 即 A(E - A) = O, 则 $\begin{cases} r(A) + r(E - A) \geqslant 3, \\ r(A) + r(E - A) \leqslant 3. \end{cases}$ 所以 r(A) + r(E - A) = 3, 又 $r(E - A) = r(\alpha \alpha^T) = 1$, 即 $r(E - \alpha \alpha^T) = 2$.

或者:
$$\begin{cases} (\boldsymbol{\alpha}\boldsymbol{\alpha}^T)\boldsymbol{\alpha} = \boldsymbol{\alpha} \Rightarrow \lambda_1 = 1, \\ r(\boldsymbol{\alpha}\boldsymbol{\alpha}^T) = 1. \end{cases} \Rightarrow \boldsymbol{\alpha}\boldsymbol{\alpha}^T \sim \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \Rightarrow (\boldsymbol{E} - \boldsymbol{\alpha}\boldsymbol{\alpha}^T) \sim \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}.$$

6 概率论与数理统计

6.1 随机变量

1. 随机变量概率分布及其数字特征:

表 3: 一维随机变量概率分布及其数字特征

分布	概率密度/概率分布	均值	方差
泊松分布	$P\{X=k\} = \frac{\lambda^k}{k!}e^{-\lambda}(k=0,1,\dots)$	$EX = \lambda$	$DX = \lambda$
几何分布	$P{X = k} = p(1-p)^{k-1}(k = 1, 2,)$	$EX = \frac{1}{p}$	$DX = \frac{1-p}{p^2}$
均匀分布	$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & \text{else} \end{cases}$	$EX = \frac{a+b}{2}$	$DX = \frac{(b-a)^2}{12}$
指数分布	$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geqslant 0\\ 0, & x < 0 \end{cases}$	$EX = \frac{1}{\lambda}$	$DX = \frac{1}{\lambda^2}$
正态分布	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$EX = \mu, E X - \mu = \sqrt{\frac{2}{\pi}}\sigma$	$DX = \sigma^2$

- 1. 分布函数: F(x) 是分布函数 $\Leftrightarrow F(x)$ 是 x 的单调不减、右连续函数,且 $F(-\infty) = 0, F(+\infty) = 1$.
- 2. 若随机变量 X 分布函数 $F_X(x)$ 严格单调增加,反函数 $F_X^{-1}(y)$ 存在,则 $Y = F_X(X) \sim U(0,1)$.
- 3. 泊松定理: 若 $X \sim B(n,p)$, 当 n 很大, p 很小, $\lambda = np$ 适中时, 可用泊松分布近似表示, 即 $X \sim P(\lambda)$.
- 4. 设 X 为离散型随机变量,分布律为 $P\{X=a_i\}=p_i(i=1,2,\dots)$,则数学期望 EX 存在的:

充分条件: $\sum_{n=1}^{\infty} a_n^2 p_n$ 收敛, 必要条件: $\sum_{n=1}^{\infty} a_n p_n$ 收敛.

2. 二维正态分布: (X,Y) 服从参数为 $\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho$ 的二维正态分布,记为 $(X,Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$. $f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho \left(\frac{x-\mu_1}{\sigma_1}\right) \left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 \right] \right\}.$

24 超越 1-22
$$(X_1,X_2)\sim N, egin{dcases} Y_1=a_1X_1+a_2X_2 \ Y_2=b_1X_1+b_2X_2 \end{cases}, \quad 且 \begin{vmatrix} a_1 & a_2 \ b_1 & b_2 \end{vmatrix} \neq 0 \Rightarrow (Y_1,Y_2)\sim N.$$

- 3. 卷积公式: 设 $(X,Y) \sim f(x,y)$
- 1) Z = X + Y 的概率密度函数为

領度函数
$$\mathcal{N}$$

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx \stackrel{独立}{=} \int_{-\infty}^{+\infty} f_X(x) f_Y(z - x) dx.$$

2) Z = X - Y 的概率密度函数为

$$f_Z(z) = \int_{-\infty}^{+\infty} f(x, x - z) dx \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} f_X(x) f_Y(x - z) dx.$$

3) Z = XY 的概率密度函数为

$$f_Z(z) = \int_{-\infty}^{+\infty} \frac{1}{|x|} f\left(x, \frac{z}{x}\right) dx \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} \frac{1}{|y|} f_X\left(\frac{z}{y}\right) f_Y(y) dy.$$

4) $Z = \frac{X}{Y}$ 的概率密度函数为

$$f_Z(z) = \int_{-\infty}^{+\infty} |y| f(yz, y) dy \stackrel{\text{def}}{=} \int_{-\infty}^{+\infty} |y| f_X(yz) f_Y(y) dy.$$

 $\max(X,Y) = \tfrac{1}{2}(X+Y+|X-Y|), \quad \min(X,Y) = \tfrac{1}{2}(X+Y-|X-Y|).$

4. 切比雪夫不等式: 设随机变量 X 的 EX 与 DX 均存在,则 $\forall \varepsilon > 0, P\{|X-EX| \geqslant \varepsilon\} \leqslant \frac{DX}{\varepsilon^2}$ 或 $P\{|X-EX| < \varepsilon\} \geqslant 1 - \frac{DX}{\varepsilon^2}$.

设随机变量
$$X \sim B(n,p), Y = e^X - 2$$
,则 $EY = \underline{[(e-1)p+1]^n - 2}$.
$$EY = \sum_{k=0}^n (e^k - 2) \cdot C_n^k p^k (1-p)^{n-k} = \sum_{k=0}^n C_n^k (ep)^k (1-p)^{n-k} - 2 \sum_{k=0}^n C_n^k p^k (1-p)^{n-k} = (ep+1-p)^n - 2(p+1-p)^n = (ep+1-p)^n - 2 = [(e-1)p+1]^n - 2.$$

5. 相关系数: $Y = aX + b : a > 0 \Rightarrow \rho_{XY} = 1, a < 0 \Rightarrow \rho_{XY} = -1.$

独立和相关性的判断:

- 1. X, Y 独立 $\Rightarrow X, Y$ 不相关,反之不;X, Y 相关 $\Rightarrow X, Y$ 不独立。
- 2. (X,Y) 服从二维正态分布,则 X,Y 独立 $\Leftrightarrow X,Y$ 不相关。
- 3. X, Y 均服从 0-1 分布,则 X, Y 独立 $\Leftrightarrow X, Y$ 不相关。

24 超越 5-10 设 $(X,Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho), U = X + Y, V = X - Y, U 与 V 独立的充要条件为 <math>\underline{\sigma_1^2 = \sigma_2^2}.$ (U,V) 服从二维正态分布,则 U,V 独立 $\Leftrightarrow U,V$ 不相关 $\Leftrightarrow Cov(U,V) = DX - DY = 0 \Leftrightarrow \sigma_1^2 = \sigma_2^2.$

6.2 大数定理与中心极限定理

中心极限定理: 设 X_i 独立同分布于某一分布,期望、方差均存在,当 $n \to \infty$ 时, $\sum_{i=1}^{n} X_i$ 服从正态分布,即

$$\lim_{n \to \infty} P \left\{ \frac{\sum_{i=1}^{n} X_i - n\mu}{\sqrt{n}\sigma} \leqslant x \right\} = \Phi(x).$$

6.3 统计量及其分布

1. χ^2 分布: 若随机变量 X_1, X_1, \dots, X_n 相互独立,且都服从标准正态分布,则随机变量 $X = \sum_{i=1}^n X_i^2$ 服从自由度为 n 的 χ^2 分布. $P\{\chi^2 > \chi^2_{\alpha}(n)\} = \alpha$, EX = n, DX = 2n.

常见分布的可加性:

- 1. 二项分布: $X \sim B(n,p), Y \sim B(m,p) \Rightarrow X + Y \sim B(n+m,p)$.
- 2. 泊松分布: $X \sim P(\lambda_1), Y \sim P(\lambda_2) \Rightarrow X + Y \sim P(\lambda_1 + \lambda_2).$
- 3. 正态分布: $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2) \Rightarrow X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$
- 4. χ^2 分布: $X \sim \chi^2(n), Y \sim \chi^2(m) \Rightarrow X + Y \sim \chi^2(n+m)$.
- 2. t 分布: 设随机变量 $X \sim N(0,1), Y \sim \chi^2(n), X$ 与 Y 相互独立,则随机变量 $t = \frac{X}{\sqrt{Y/N}}$ 服从自由度为n 的 t 分布. $P\{t > t_{\alpha}(n)\} = \alpha, Et = 0.$
- 3. F 分布: 设随机变量 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$,且 X 与 Y 相互独立,则 $F = \frac{X/n_1}{Y/n_2}$ 服从自由度为 (n_1, n_2) 的 F 分布. $P\{F > F_\alpha(n_1, n_2)\} = \alpha, F \sim F(n_1, n_2) \Rightarrow \frac{1}{F} \sim F(n_2, n_1)$,若 $t \sim t(n)$,则 $t^2 \sim F(1, n)$.
- 4. 正态总体下的常用结论: 设 X_1, X_2, \ldots, X_n 是取自正态总体 $N(\mu, \sigma^2)$ 的一个样本, \overline{X}, S^2 分别是样本均值和样本方差, \overline{X} 与 S^2 相互独立,则

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right) \Rightarrow \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim N(0, 1) \Rightarrow \frac{n(\overline{X} - \mu)^2}{\sigma^2} \sim \chi^2(1), \quad \sum_{i=1}^n \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2(n).$$

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1), \quad \frac{\sqrt{n}(\overline{X} - \mu)}{S} \sim t(n-1) \Rightarrow \frac{n(\overline{X} - \mu)^2}{S^2} \sim F(1, n-1).$$

设 X_1, X_2 为来自总体 $X \sim N(\mu, \sigma^2)$ 的简单随机样本, $(X_1 + X_2)^2$ 与 $(X_1 + X_2)^2$ 相互独立: $\overline{X} = \frac{X_1 + X_2}{2}, \quad S^2 = (X_1 - \frac{X_1 + X_2}{2})^2 + (X_2 - \frac{X_1 + X_2}{2})^2 = \frac{(X_1 - X_2)^2}{2},$ \overline{X} 与 S^2 相互独立,故 $(X_1 + X_2)^2$ 与 $(X_1 + X_2)^2$ 相互独立。

6.4 参数估计与假设检验

- 1. 矩估计:
- 1) 一个参数,用一阶矩建方程,令 $\overline{X} = EX$,若一阶矩为 0,用二阶矩建方程,令 $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} = E(X^{2})$.
- 2) 两个参数, 用一阶矩和二阶矩建立两个方程.
- 2. 最大似然估计: 写似然函数 $L(x_1, x_2, ..., x_n; \theta) = \prod_{i=1}^{n} p(x_i; \theta)$ 或 $L(x_1, x_2, ..., x_n; \theta) = \prod_{i=1}^{n} f(x_i; \theta)$.
- 1) 若似然函数有驻点,令 $\frac{dL}{d\theta}$ 或 $\frac{d \ln L}{d\theta} = 0$,解出 $\hat{\theta}$; 2) 若似然函数无驻点(单调),或为常数,用定义求 $\hat{\theta}$.
- 24 超越 6-22 X 的概率密度为 $f(x) = \begin{cases} bx, & 0 \leq x < 1, \\ ax, & 1 \leq x < 2. \end{cases}$ 测得样本观察值为 0.5, 0.8, 1.5, 1.5. 则 a 与 b 的最大似然估计为 $\hat{a} = \frac{1}{3}, \hat{b} = 1.$

 $\int_{-\infty}^{+\infty} f(x)dx = 1 \Rightarrow b = 2 - 3a. \quad L = 0.5b \cdot 0.8b \cdot (1.5a)^2 \Rightarrow \frac{d \ln L}{da} = \frac{2}{a} - \frac{6}{2 - 3a} = 0 \Rightarrow \hat{a} = \frac{1}{3}, \hat{b} = 1.$

- 3. 估计量的评价:
- 1) 无偏性: $E\hat{\theta} = \theta$; 2) 有效性: $E\hat{\theta_1} = \theta$, $E\hat{\theta_2} = \theta$, 即均是无偏估计量, 当 $D\hat{\theta_1} < D\hat{\theta_2} = \theta$ 时, $\hat{\theta_1}$ 更有效.
- 3) 一致性(相合性): $\lim P\{|\hat{\theta} \theta| \ge \varepsilon\} = 0$ 或 $\lim P\{|\hat{\theta} \theta| < \varepsilon\} = 1$.
- 4. **区间估**计: 单个正态总体均值和方差的置信区间: 设 $X \sim N(\mu, \sigma^2)$,从总体 X 中抽取样本 $X_1, X_2, ..., X_n$,样本均值为 \overline{X} ,样本方差为 S^2 。
 - 1) σ^2 已知, μ 的置信水平是 $1-\alpha$ 的置信区间为: $\left(\overline{X}-\frac{\sigma}{\sqrt{n}}z_{\frac{\alpha}{2}},\overline{X}+\frac{\sigma}{\sqrt{n}}z_{\frac{\alpha}{2}}\right)$.
 - 2) σ^2 未知, μ 的置信水平是 $1-\alpha$ 的置信区间为: $\left(\overline{X} \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1), \overline{X} + \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)\right)$.
 - 3) μ 已知, σ^2 的置信水平是 $1-\alpha$ 的置信区间为: $\left(\frac{\sum\limits_{i=1}^{n}(X_i-\mu)^2}{\chi_{\frac{\alpha}{2}}^{\alpha}(n)}, \frac{\sum\limits_{i=1}^{n}(X_i-\mu)^2}{\chi_{1-\frac{\alpha}{2}}^{2}(n)}\right)$.
 - 4) μ 未知, σ^2 的置信水平是 $1-\alpha$ 的置信区间为: $\left(\frac{(n-1)S^2}{\chi^2_{\frac{\alpha}{2}}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-\frac{\alpha}{2}}(n-1)}\right)$.
 - 5. 假设检验:正态总体下的六大检验及拒绝域:
 - 1) σ^2 已知, μ 未知, $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$, 拒绝域为 $\left(-\infty, \mu_0 \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}\right] \cup \left[\mu_0 + \frac{\sigma}{\sqrt{n}} z_{\frac{\alpha}{2}}, +\infty\right)$.
 - (2) σ^2 未知, μ 未知, $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$, 拒绝域为 $\left(-\infty, \mu_0 \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1)\right] \cup \left[\mu_0 + \frac{S}{\sqrt{n}}t_{\frac{\alpha}{2}}(n-1), +\infty\right]$.
 - 3) σ^2 已知, μ 未知, $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$, 拒绝域为 $\left[\mu_0 + \frac{\sigma}{\sqrt{n}} z_\alpha, +\infty\right)$.
 - 4) σ^2 已知, μ 未知, $H_0: \mu \geqslant \mu_0, H_1: \mu < \mu_0$, 拒绝域为 $\left(-\infty, \mu_0 \frac{\sigma}{\sqrt{n}} z_{\alpha}\right]$.
 - 5) σ^2 未知, μ 未知, $H_0: \mu \leq \mu_0, H_1: \mu > \mu_0$, 拒绝域为 $\left[\mu_0 + \frac{S}{\sqrt{n}} t_{\alpha}(n-1), +\infty\right]$.
 - 6) σ^2 未知, μ 未知, $H_0: \mu \geqslant \mu_0, H_1: \mu < \mu_0$,拒绝域为 $\left(-\infty, \mu_0 \frac{S}{\sqrt{n}} t_\alpha(n-1)\right]$.
 - 6. **两类错误**: 第一类错误 (弃真): $\alpha = P\{ 拒绝H_0|H_0为真\}$; 第二类错误 (取伪): $\beta = P\{ 接受H_0|H_0为假\}$.