Homework Assignment 2

Due Friday March 1st midnight

SDS 384-11 Theoretical Statistics

- 1. Remember Hoeffding's Lemma? We proved it with a weaker constant in class using a symmetrization type argument. Now we will prove the original version. Let X be a bounded r.v. in [a,b] such that $E[X] = \mu$. Let $f(\lambda) = \log E[e^{\lambda(X-\mu)}]$. Show that $f''(\lambda) \leq (b-a)^2/4$. Now use the fundamental theorem of calculus to write $f(\lambda)$ in terms of $f''(\lambda)$ and finish the argument.
- 2. Bernstein's inequality for bounded i.i.d sequences of random variables $\{X_i\}$ with $|X_i| \leq M$ gives: $P(|\sum_i (X_i E[X_i])| \geq t) \leq 2 \exp\left(\frac{-t^2/2}{\sum_i \operatorname{var}(X_i) + Mt/3}\right)$. There is another better inequality called Bennett's inequality, which we will prove here.
 - (a) Consider zero mean r.v.s X_i such that $|X_i| \leq b$ and $var(X_i) = \sigma_i^2$. Prove that

$$\log E[\exp(\lambda X_i)] \le \sigma_i^2 \lambda^2 \left(\frac{e^{\lambda b} - 1 - \lambda b}{(\lambda b)^2}\right) \quad \forall \lambda \in \mathbb{R}.$$

(b) Given independent r.v.s X_i , i = 1, ..., n satisfying the above condition prove

(Bennett's inequality)
$$P\left(\sum_i X_i \geq n\delta\right) \leq \exp\left(-\frac{n\sigma^2}{b^2}h(b\delta/\sigma^2)\right),$$

where
$$\sigma^2 = \sum_i \sigma_i^2$$
 and $h(t) := (1+t)\log(1+t) - t$ for $t \ge 0$.

- (c) Show that Bennett's inequality is at least as good as Bernstein's inequality.
- 3. Given a scalar random variable X, suppose that there are positive constants c_1, c_2 such that,

$$P(X - E[X] \ge t) \le c_1 \exp(-c_2 t^2) \qquad \forall t \ge 0.$$

- (a) Prove that $var(X) \leq \frac{c_1}{c_2}$
- (b) A median m_X is any number such that $P(X \ge m_X) \ge 1/2$ and $P(X \le m_X) \ge 1/2$. Show by example that the median does not need to be unique.
- (c) Show that if the median concentration bound holds, then for any median m_X ,

$$P(|X - m_X| \ge t) \le c_3 \exp(-c_4 t^2),$$

where $c_3 = 4c_1$ and $c_4 = c_2/8$.

(d) Conversely, show that whenever the above median concentration holds, then mean concentration holds with $c_1 = 2c_3$ and $c_2 = c_4/4$.

1

4. Given a positive semidefinite matrix $Q \in \mathbb{R}^{n \times n}$, consider $Z = \sum_{i,j} Q_{ij} X_i X_j$. When $X_i \sim N(0,1)$, prove the Hanson-Wright inequality.

$$P(Z \ge \operatorname{trace}(Q) + t) \le 2 \exp\left(-\min\left\{c_1 t / \|Q\|_{op}, c_2 t^2 / \|Q\|_F^2\right\}\right),$$

where $||Q||_{op}$ and $||Q||_F$ denote the operator and frobenius norms respectively. Hint: The rotation-invariance of the Gaussian distribution and sub-exponential nature of χ^2 -variables could be useful.