Dipôles RC, RL, RLC

Chapitre 5, 6, 7

	Dipôle RC	Dipôle RL	Dipôle RLC
Formules	$\boxed{q = C \times u_C} \boxed{i = C \frac{du_C}{dt}} \text{Bobine id\'eale}$	$u_L = L \frac{di}{dt}$ Bobine réelle $u_L = L \frac{di}{dt} + ri$	
Eq Diff	$E = RC \frac{du_C}{dt} + u_C \Rightarrow u_C(t) = A + Be^{-\frac{t}{\tau}}$	$E = L\frac{di}{dt} + R_{eq}i \Rightarrow i(t) = A + Be^{-\frac{t}{\tau}}$	$\boxed{\ddot{u}_C + \frac{1}{LC}u_C = 0} \Rightarrow u_C(t) = u_0 \cos\left(\frac{2\pi}{T_0}t + \phi_0\right)$
Charge	$A = E, B = -E, \boxed{\tau = RC}$ $u_C(t) = E\left(1 - e^{-\frac{t}{\tau}}\right)$	$A = I_0, B = -I_0, \boxed{\tau = \frac{L}{R_{eq}}}, \boxed{I_0 = \frac{E}{R_{eq}}}$ $i(t) = I_0 \left(1 - e^{-\frac{t}{\tau}}\right)$	$u_0 = E, \ \phi_0 = 0, \boxed{T_0 = 2\pi\sqrt{LC}}$ $u_C(t) = E\cos\left(\frac{2\pi}{T_0}t\right)$
Décharge	$A = 0, B = E, \tau = RC$ $u_C(t) = Ee^{-\frac{t}{\tau}} \text{ et } i(t) < 0$	$A = 0, B = I_0, \tau = \frac{L}{R_{eq}}, I_0 = \frac{E}{R_{eq}}$ $i(t) = I_0 e^{-\frac{t}{\tau}}$	Circuit RLC : $ \ddot{u}_C + \frac{r+R}{L} \dot{u}_C + \frac{1}{LC} u_C = 0 $
On peut utiliser	$i(t) = C \frac{du_C}{dt}$ $u_R(t) = Ri$	$u_R(t) = Ri$ $u_L(t) = E - u_R$	$u_C = \frac{q}{C} \Rightarrow \ddot{q} + \frac{1}{LC}q = 0$ $q(t) = Cu_C(t)$ $i(t) = \frac{dq}{dt} = C\frac{du_C}{dt}$
Énergie s	$\mathcal{E}_C = \frac{1}{2} C u^2$	$\mathcal{E}_{\rm L} = \frac{1}{2} {\rm Li}^2$	$\mathcal{E}_T = \frac{1}{2} CE^2$

Vérification de la dimension de τ ou T_0

$$[R]: u = Ri \Rightarrow R = \frac{u}{i} \Rightarrow \boxed{[R] = V.A^{-1}}$$

$$[L]: u_L = L\frac{\Delta i}{\Delta t} \Rightarrow L = u_L\frac{\Delta t}{\Delta i} \Rightarrow \boxed{[L] = V.s.A^{-1}}$$

$$[C]: q = Cu_C \text{ et } i = \frac{\Delta q}{\Delta t} \Rightarrow C = \frac{q}{u_C} \text{ et } q = i\Delta t \Rightarrow C = \frac{i\Delta t}{u_C} \Rightarrow \boxed{[C] = A.s.V^{-1}}$$