

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ: ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА: КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ

ОТЧЕТ

по лабораторной работе № 4

по лаобраторной работе ле4					
Тема: Синхронные одноступенчатые триггеры со статическим					
и дина	мическим управлением	м записью			
Дисциплина:	Схемотехника				
Студент	ИУ6-42Б	25.05.24	А. П. Плютто		
-	(Группа)	(Подпись, дата)	(И. О. Фамилия)		
Преподавателн			В. Д. Шульман		
		(Подпись, дата)	(И.О.Фамилия)		

Содержание

1. Исследовать работу асинхронного RS-триггера с инверсными входами	В
статическом режиме	3
1.1. Таблица переходов	
1.2. Функция переходов	
1.3. Схема	
2. Исследовать работу синхронного RS-триггера в статическом режиме	5
2.1. Таблица переходов	5
2.2. Функция переходов	5
2.3. Схема	6
3. Исследовать работу синхронного D триггера в статическом режиме	7
3.1. Таблица переходов	7
3.2. Функция переходов	7
3.3. Схема	8
4. Исследовать схему синхронного D-триггера с динамическим управлени	ием
записью в статическом режиме	9
4.1. Таблица переходов	9
4.2. Схема	9
4.3. Временная диаграмма	10
5. Исследовать работу ассинхронного Т-триггера	11
5.1. Таблица переходов	11
5.2 Cvema	12

1. Исследовать работу асинхронного RS-триггера с инверсными входами в статическом режиме

1.1. Таблица переходов

\overline{R}	\overline{S}	Q_t	$Q_{ m t+1}$
0	0	0	X
0	0	1	X
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Как видно по таблице, чтобы удерживать текущее состояние необходимо просто подавать 0 в R и S. Сигнал будет меняться, если подать логическую единицу на один из этих входов, но не на оба сразу. Если подаем 1 на R то текущее значение становится 0, если на S-1.

1.2. Функция переходов

$$Q_{t+1} = \overline{Q}_t \, \overline{R} \, S \vee Q_t \, \overline{R} \, S \vee Q_t \, \overline{R} \, \overline{S}$$

1.3. Схема

Рисунок 1 — Схема асинхронного RS-триггера

2. Исследовать работу синхронного RS-триггера в статическом режиме

2.1. Таблица переходов

C	R	S	Q_t	$Q_{ m t+1}$
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	X
1	1	1	1	X

Как видно из таблицы, в данном случае ситуация схожа с заданием 1, но появляется синхронизирующий бит, если его значение равно 0, то при любых R и S триггер не изменит своего состояния.

2.2. Функция переходов

$$Q_{t+1} = \overline{C}\,Q_t \vee C\left(\overline{Q}_t\,\overline{R}\,S \vee Q_t\,\overline{R}\,S \vee Q_t\,\overline{R}\,\overline{S}\right)$$

2.3. Схема

Рисунок 2 — Схема синхронного RS-триггера

3. Исследовать работу синхронного D триггера в статическом режиме

3.1. Таблица переходов

C	D	Q_t	$Q_{ m t+1}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Как видно из таблицы, если бит C равен 1, то значение триггера равно D, иначе сохраняется предыдущее.

3.2. Функция переходов

$$Q_{t+1} = \overline{C} \, \overline{D} \, Q_t \vee \overline{C} \, DQ_t \vee CD \, \overline{Q}_t \vee CDQ_t = \overline{C} \, Q_t \vee CD$$

3.3. Схема

Рисунок 3 — Схема синхронного D-триггера

4. Исследовать схему синхронного D-триггера с динамическим управлением записью в статическом режиме

4.1. Таблица переходов

C	D	Q_t	$Q_{ m t+1}$
0	×	0	0
0	X	1	1
$0 \rightarrow 1$	1	X	1
$0 \rightarrow 1$	0	X	0
$1 \rightarrow 0$	X	0	0
$1 \rightarrow 0$	X	1	1

C меняется динамически, если меняется в 1, то записываем значение D в триггер, если меняется на 0 значение в D не записывается.

4.2. Схема

Рисунок 4 — Схема с динамическими сигналами

4.3. Временная диаграмма

Рисунок 5 — Временная диаграмма

5. Исследовать работу ассинхронного Т-триггера

5.1. Таблица переходов

R	S	T	Q_t	$Q_{ m t+1}$
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	x	X	1
1	0	x	X	0
1	1	x	х	x

Таблица переходов похожа на таблицу обычного инвертора, но с некоторой памятью: если Т равен 1, то триггер инвертирует предыдущее значение.

5.2. Схема

Рисунок 6 — Схема Т триггера