1 Space-time chemin

Définition 1. Une arête-temps est un couple (e,t) où e est une arçete de \mathbb{E} et t un nombre réel.

Nous définissons une relation d'équivalence de connexion sur l'espace $\mathbb{E} \times \mathbb{R}$ de la manière suivante : nous disons que les arêtes-temps (e,t) et (f,s) sont connectés si e=f ou (s=t et $e\sim f)$. Nous notons $(e,t)\sim (f,s)$ si l'une des conditions est vérifiée. Un space-time chemin est une suite d'arête-temps $(e_i,t_i)_{i\geqslant 0}$ telle que pour tout $i\geqslant 0$, $(e_i,t_i)\sim (e_{i+1},t_{i+1})$.

Nous appelons un space time chemin d'occurrence disjointe de longueur n avec m changement de temps s'il existe m indices $1 \leq k(1) < k(2) < \cdots < k(m) \leq n$ telles que :

• Les changements de temps arrivent aux instants $t_{k(1)}, \ldots, t_{k(m)}$, i.e.

$$\forall i \in \{1, \dots, m-1\}$$
 $e_{k(i)} = e_{k(i)+1}$ $t_{k(i)+1} = \dots = t_{k(i+1)}$.

• les arpetes visitées à un temps donné sont 2 à 2 distinctes, i.e.

$$\forall i, j \in \{1, \dots, n\} \qquad i \neq j \Rightarrow e_i \neq e_j.$$

- les fermetures d'arêtes arrivent disjointement, i.e. pour tout $i, j \in \{1, ..., j\}$, i < j tels que $e_i = e_j$, l'une des 3 conditions suivantes est vérifiée :
 - $-j = i + 1 \text{ et } i \in \{k(1), \dots, k(m)\};$
 - $-t_i < t_j$ et il existe un instant $s \in]t_i, t_j[$ tel que e_j est ouverte à s;
 - $-t_j < t_i$ et il existe un instant $s \in]t_j, t_i[$ tel que e_j est ouverte à s;