Αρχή του Περιστερώνα

Διδάσκοντες: **Δ. Φωτάκης, Δ. Σούλιου** Επιμέλεια διαφανειών: **Δ. Φωτάκης**

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Συναρτήσεις

- **Συνάρτηση**: διμελής σχέση $R \subseteq A \times B$ όπου για κάθε $\alpha \in A$, υπάρχει μοναδικό $\beta \in B$ τ.ω. $(\alpha, \beta) \in R$.
 - Α: πεδίο ορισμού. Β: πεδίο τιμών. R(a) = β: β εικόνα a (ως προς R).
- \square f συνάρτηση **1-1**: $a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2)$.
 - Δεν υπάρχουν δύο στοιχεία με ίδια εικόνα.
- \square f συνάρτηση επί: για κάθε $\beta \in B$, υπάρχει $\alpha \in A$ με $f(\alpha) = \beta$.
 - Κάθε στοιχείο του Β είναι εικόνα κάποιου στοιχείου του Α.
- f αμφιμονοσήμαντη: 1-1 και επί.
 - f αντιστοιχία μεταξύ στοιχείων Α και Β.
 - Αντίστροφη f⁻¹ είναι συνάρτηση ανν f αμφιμονοσήμαντη.

Αρχή Περιστερώνα

- \square Av |A| > |B|, δεν υπάρχει 1-1 συνάρτηση από A στο B.
 - Για κάθε συνάρτηση f, υπάρχουν a_1 , $a_2 \in A$ τ.ω. $f(a_1) = f(a_2)$.
 - Αν η περιστέρια σε m φωλιές και n > m, ∃φωλιά με ≥ 2 περιστέρια.
- □ Για κάθε συνάρτηση f από A στο B, υπάρχουν $\geq k = \lceil |A|/|B| \rceil$ $a_1, a_2, ..., a_k \in A$ με $f(a_1) = f(a_2) = ... = f(a_k)$.
 - lacktriangle Av η περιστέρια σε \mathbf{m} φωλιές, \exists φωλιά με $\geq \lceil n/m
 ceil$ περιστέρια.
- Τετριμμένα παραδείγματα:
 - Σε κάθε σύνολο 13 ανθρώπων, υπάρχουν ≥ 2 γεννημένοι ίδιο μήνα.
 - Στον κόσμο ζουν ≥ 2 άνθρωποι γεννημένοι το ίδιο δευτερόλεπτο.
 - Στην Ελλάδα ζουν ≥ 2 άνθρωποι γεννημένοι το ίδιο πεντάλεπτο.
 - Σε κάθε πάρτυ, υπάρχουν δύο καλεσμένοι με τον ίδιο αριθμό φίλων στο πάρτυ (υποθ: σχέση φίλος συμμετρική, όχι ανακλαστική).

- \square \forall σύνολο 1000 διαφ. φυσικών, υπάρχουν x \neq y: 573 | (x y).
 - Ποσότητες που αντιστοιχούν σε «περιστέρια» και «φωλιές»;
 - «Περιστέρια»: 1000 φυσικοί.
 - «Φωλιές»: 573 διαφορετικές τιμές για n mod 573.
- Αν επιλέξουμε n+1 διαφορετικούς φυσικούς υπάρχουν δύο που η διαφορά τους διαιρείται από το n.
 - «Περιστέρια»: n+1 επιλεγμένοι αριθμοί.
 - «Φωλιές»: n υπόλοιπα διαίρεσης με n ({0, 1, ..., n-1}).
 - Δύο αριθμοί σε ίδια «φωλιά»: διαφορά τους διαιρείται από η.

- Για κάθε σύνολο 10 (διαφορετικών) φυσικών < 100,
 υπάρχουν δύο διαφορετικά υποσύνολα με ίδιο άθροισμα.
 - «Περιστέρια»: 2¹⁰ 1 = 1023 διαφορετικά μη κενά υποσύνολα.
 - «Φωλιές»: Πιθανές τιμές για αθροίσματα υποσυνόλων (≤ 946).
- Αν θεωρήσουμε 26 διαφορετικά υποσύνολα του {1, ..., 9}
 με 3 στοιχεία το πολύ, δύο από αυτά έχουν το ίδιο άθροισμα.
 - «Περιστέρια»: 26 διαφορετικά υποσύνολα.
 - «Φωλιές»: Πιθανές τιμές για αθροίσματα υποσυνόλων (≤ 25).

- Αν 7 διαφορετικοί αριθμοί επιλεγούν από το {1, 2, ..., 11},
 2 από αυτούς αθροίζονται στο 12.
 - «Περιστέρια»: 7 επιλεγμένοι αριθμοί.
 - «Φωλιές»: 6 «ζευγάρια» αριθμών που αθροίζονται στο 12.
 - \square {1, 11}, {2, 10}, {3, 9}, {4, 8}, {5, 7}, {6}.
 - □ {6} «δέχεται» έναν αριθμό το πολύ (μόνο το 6).
 - Επιλέγουμε και τους δύο αριθμούς κάποιου άλλου ζευγαριού.
- □ Αν n+1 διαφορετικοί αριθμοί επιλεγούν από το {1, ..., 2n-1},
 2 από αυτούς αθροίζονται στο 2n.
 - «Περιστέρια»: n+1 επιλεγμένοι αριθμοί.
 - «Φωλιές»: n «ζευγάρια» αριθμών που αθροίζονται στο 2n.
 - □ {n} «δέχεται» έναν αριθμό το πολύ (μόνο το n).

- Αν επιλέξουμε n+1 διαφορετικούς φυσικούς από $\{1, 2, ..., 2n\}$, υπάρχουν δύο που είναι σχετικά πρώτοι (μκδ = 1).
 - Αρκεί νδο υπάρχουν δύο αριθμοί α, β: β = α+1.
 - «Περιστέρια»: n+1 επιλεγμένοι αριθμοί.
 - «Φωλιές»: η ζεύγη «διαδοχικών» αριθμών στο {1, 2, ..., 2n}.
 - \square {1, 2}, {3, 4}, ..., {2n 1, 2n}.
- Αν επιλέξουμε n+1 φυσικούς από {1, 2, ..., 2n},
 υπάρχουν δύο που ο ένας διαιρεί τον άλλο.
 - «Περιστέρια»: n+1 επιλεγμένοι αριθμοί.
 - «Φωλιές»: η περιττοί αριθμοί στο {1, 2, ..., 2n}.
 - □ Αριθμός x στη «φωλιά» m ανν m μεγαλύτερος περιττός διαιρέτης του x ($x = 2^k m$, για κάποιο $k \ge 0$).
 - □ Αριθμοί x και y στην iδια «φωλιά»: $x = 2^k$ m και $y = 2^s$ m, άρα είτε $x \mid y$ είτε $y \mid x$.

- Σε κάθε ακολουθία n²+1 διαφορετικών αριθμών, είτε αύξουσα υπακολουθία μήκους n+1 είτε φθίνουσα υπακολ. μήκους n+1.
 - Υπακολουθία προκύπτει με διαγραφή κάποιων αριθμών.
 - **0,** 8, **4,** <u>12,</u> 2, <u>10,</u> <u>6,</u> 14, 1, **9,** <u>5,</u> 13, <u>3,</u> 11, 7, 15, 16
- Αντιστοιχούμε αριθμό α_k στο (i_k, d_k).
 - i_k (d_k): μήκους μεγαλύτερης αύξουσας (φθίνουσας) υπακολουθίας που τελειώνει στη θέση k.
- \square Av ὁλα $i_k \le n$ και ὁλα $d_k \le n$, #ζευγών $\le n^2$.
 - Αρχή περιστερώνα: υπάρχουν δύο αριθμοί a_k και a_s (k < s) που αντιστοιχούνται στο ίδιο ζεύγος (x, y).
 - **Δτοπο:** av $a_k < a_s$, τότε $i_k < i_s$, ενώ av $a_k > a_s$, τότε $d_k < d_s$.
 - Για κάθε στοιχείο a_k και ζεύγος (i_k, d_k) : είτε $i_{k+1} > i_k$, είτε $d_{k+1} > d_k$
- Διαφορετικά: Αὐξουσα υπακολουθία αντιστοιχεί σε αλυσίδα και φθίνουσα υπακολουθία σε αντιαλυσίδα, για μερική διάταξη ≤ που λαμβάνει υπόψη σειρά εμφάνισης στην ακολουθία.