Zadanie: CZA CzatBBB

XXXI OI, etap I. Plik źródłowy cza.* Dostępna pamięć: 512 MB.

16.10-20.11.2023

Bajtazar odkrył w sobie pasję do uczenia maszynowego. Aktualnie pracuje nad projektem nowego modelu językowego, który nazwał CzatBBB (skrót od Bajtocki Bot Bajtazara).

Model na wejściu dostaje n-literowe słowo S i parametr k (liczba całkowita $1 \le k < n$), a następnie generuje kontynuację tego słowa.

Załóżmy, że mamy już słowo S', które jest rozszerzeniem S o pewne litery. Dodanie nowej litery będzie wyglądało następująco (patrz też przykład poniżej): rozważamy k-literowy sufiks R słowa S' i patrzymy na wszystkie wcześniejsze wystąpienia R w słowie S' (jako spójne podsłowa). Następnie dla każdej litery z alfabetu zliczamy, ile razy wystąpiła ona bezpośrednio za R w słowie S'. Niech c będzie literą, która wystąpiła najczęściej. Remisy rozstrzygamy na korzyść litery występującej wcześniej w alfabecie, a jeśli R nie wystąpiło nigdzie indziej w słowie S', to przyjmujemy $c=\mathbf{a}$. Na końcu rozszerzamy słowo S', dopisując na jego końcu literę c.

Dla przykładu niech S= abaaabababa oraz k=3. Mamy S'=S, R= aba oraz R występuje wcześniej z kolejną literką jako: abaa, abab. Najczęściej występuje z literką b, więc do S' dopisujemy b.

Teraz S' = abaaabababab, R = bab oraz R występuje wcześniej z kolejną literką jako baba, baba, więc do S' dopisujemy a.

Twoim zadaniem jest napisanie programu, który będzie implementował model zaprojektowany przez Bajtazara.

Wejście

W pierwszym wierszu wejścia znajdują się cztery liczby całkowite n, k, a i b ($2 \le n \le 10^6$, $1 \le k < n$, $n < a < b < 10^{18}$, $b + 1 - a \le 10^6$). W drugim wierszu wejścia znajduje się n-literowy ciąg znaków złożony z małych liter alfabetu angielskiego ('a' - 'z'), oznaczający słowo S.

Wyjście

Na wyjście należy wypisać ciąg b+1-a znaków, oznaczający litery w rozszerzonym słowie S' na pozycjach od a-tej do b-tej (włącznie). Innymi słowy, zakładamy, że do początkowego słowa S dodane zostało b-n liter i chcemy wypisać ostatnie b+1-a z tych dodanych liter.

Przykład

Dla danych wejściowych:

poprawnym wynikiem jest:

11 3 12 13 abaaabababa

ba

Testy przykładowe. Test 0 to test z przykładu powyżej. Poza tym:

```
locen: n = 20, k = 3, a = 30, b = 40, S = \texttt{abcdabcd}...
```

2ocen: $n=1\,000\,000,\,k=5,\,a=1\,000\,001,\,b=1\,000\,101,\,S={\tt zzzzz...zzy}$

3ocen: $n=1\,000\,000,\, k=n-1,\, a=10^{18}-10^6,\, b=10^{18}-1,\, S=\mathtt{aaaa}\dots$

Ocenianie

Zestaw testów dzieli się na następujące podzadania. Testy do każdego podzadania składają się z jednej lub większej liczby osobnych grup testów.

Podzadanie	Ograniczenia	Punkty
1	$n \le 100, b \le 1000$	8
2	$b \le 10^8$	10
3	$n \leq 500,$ wcześniejsze wystąpienie sufiksu R zawsze będzie istnieć i za każdym	16
	wystąpieniem będzie znajdować się ta sama litera	
4	wcześniejsze wystąpienie sufiksu R zawsze będzie istnieć i za każdym wystą-	10
	pieniem będzie znajdować się ta sama litera	
5	$k \leq 20, b \leq 10^{10},$ użyte są tylko litery a i b	16
6	brak dodatkowych ograniczeń	40