

AK Femtoscopy in Pb-Pb collisions at 2.76 TeV

\lambda parameters

Residual Correlations

- Not all particles in pairs are primary
- Measured CF is combination of primary signal and transformed residuals
- $> \lambda$ parameters control strength of contribution

- Modeling parent CF
 - Assume same source size and scattering parameters as primary (daughter) system
 - ◆ Ξ-K data
 - Coulomb-only simulation

contribution • Coulomb-only simulation
$$C_{\text{measured}}(k_{\Lambda K}^*) = \mathcal{N}\left(1 + \lambda_{\Lambda K}'[C_{\Lambda K}(k_{\Lambda K}^*) - 1] + \sum_{i,j} \lambda_{ij}'[C_{ij}(k_{\Lambda K}^*) - 1]\right)$$

$$\lambda_{ij}' = \lambda_{\text{Fit}} \lambda_{ij}$$

$$\sum_{i,j} \lambda_{ij}' = \lambda_{\text{Fit}} \sum_{i,j} \lambda_{ij} = \lambda_{\text{Fit}}$$

$$\sum_{k_{ij}} T\left(k_{ij}^*, k_{\Lambda K}^*\right)$$

$$\sum_{k_{ij}} T\left(k_{ij}^*, k_{\Lambda K}^*\right)$$

Pair System	λ-factor
∧K+	0.154
$\Sigma^{0}K+$	0.099
Ξ ⁰ K+	0.072
Ξ-K+	0.069
Other	0.558
Fakes	0.048

Jai's Rec. Efficiency

MC Truth Yields of Λ by Parent Type

Effect of Efficiency

- > Previously, assumed reconstruction efficiency (R) was equal for all contributors
- Good approximation EXCEPT possibly for "Other" category
 - → Confusing results in Jai's thesis
 - → Currently, trying to reproduce myself
- IF "Other Λ" from previous slide is correct
 - R_{other} is an order of magnitude smaller than all other contributors
 - This would effectively increase the λ parameters of all other contributors, while reducing that of "Other"
 - L_{fit} (i.e. scale factor) naturally decreases
 - All other parameters remain approximately the same
- \rightarrow IF "Other $\overline{\Lambda}$ " from previous slide is correct
 - Method previously used, assuming equal reconstruction efficiencies, is mostly correct

\ \ -	N_{AB}	$ar{L} N_{\mathit{THERM},\mathit{AB}} \cdot R_{\mathit{AB}}$
\mathcal{N}_{AB} –	\overline{N}_{Tot} \overline{N}_{Tot}	$\sum N_{THERM,AB} \cdot R_{AB}$

Pair System	λ-factor	λ-factor	
ΛK+	0.154	0.371	
Σ_0K+	0.099	0.239	
Ξ ⁰ K+	0.072	0.107	
Ξ-K+	0.069	0.145	
Other	0.558	0.090	
Fakes	0.048	0.048	

- Is it possible reconstruction efficiency for "Other Λ " vs "Other $\overline{\Lambda}$ " differ by order of magnitude?
 - Probably not...

My CPA for Λ

Cosinus Pointing Angle

Laura's CPA for A

Fig. 30: Template fit to the cosine pointing angle in a p_T interval.

My DCA for Λ

DCA V0 to primary vertex

Laura's DCA for p

Fig. 26: Adjusted Monte Carlo Templates from Pythia to the experimental data. Due to the shape of the templates one has a good discrimination of the origin of the protons.

λ Parameters

- Λ values for the components of ΛK+, assuming various maximum values of cτ for parent systems to be considered primary
- Initially, used D.C._{max} = 5 fm
 - Probably not best, as this splits $\Sigma^{*1385}(c\tau = 5.33 \text{ fm})$ and $K^{*892}(c\tau = 4.11 \text{ fm})$
- Suggested I use D.C._{max} = 4 fm
 - For better "apples-to-apples" comparison of 3 residuals vs 10 residuals
- Should probably use, at least D.C._{max} = 6 fm, so both Σ^* and K^* considered "Primary" when using only 3 residuals

ΛK⁺ Residuals

Decay Le	ength
----------	-------

Pair System	0 fm	4 fm	5 fm	6 fm	10 fm	100 fm
3 Residuals						
$\Lambda \mathrm{K}^+$	0.111	0.154	0.228	0.445	0.470	0.508
$\Sigma^0 \mathrm{K}^+$			0.	099		
$\Xi^0 \mathrm{K}^+$			0.	072		
$\Xi^- \mathrm{K}^+$			0.	069		
Other	0.601	0.558	0.484	0.267	0.242	0.204
Fakes	0.048					
10 Residuals						
$\Lambda \mathrm{K}^+$	0.111	0.154	0.188	0.277	0.301	0.340
$\Sigma^0 \mathrm{K}^+$			0.	099		
$\Xi^0\mathrm{K}^+$			0.	072		
$\Xi^- \mathrm{K}^+$		0.069				
$\Sigma^{*+}K^+$		0.046				
$\Sigma^{*-}K^+$	0.042					
$\Sigma^{*0} \mathrm{K}^+$	0.042					
$\Lambda \mathrm{K}^{*0}$	0.039					
$\Sigma^0\mathrm{K}^{*0}$	0.035					
$\Xi^0\mathrm{K}^{*0}$	0.025					
$\Xi^-\mathrm{K}^{*0}$	0.024					
Other	0.348	0.305	0.271	0.182	0.158	0.119
Fakes	0.048					

3 Residual

NRes=3; D.C. $_{max}$ = 4 fm

NRes=3; D.C. $_{max}$ = 5 fm

NRes=3; D.C. $_{max}$ = 6 fm

NRes=3; D.C. $_{max}$ = 10 fm

NRes=3; D.C. $_{max}$ = 100 fm

10 Residual

NRes=10; D.C. = 4 fm

NRes=10; D.C. $_{max}$ = 5 fm

NRes=10; D.C. = 6 fm

NRes=10; D.C. $_{max}$ = 10 fm

NRes=10; D.C. = 100 fm

