Indukcja reguł

- Kompleks k składa się z selektorów.
- $k_1=\{<$ słoneczna \lor deszczowa, zimna \lor ciepła, $?,?>\}$ $k_2=\{<$ słoneczna, ciepła, $?,?>\}$ $k_2 \prec k_1$ k_2 jest bardziej szczegółowe od k_1 , k_1 jest bardziej ogólne od k_2
- ullet $S\rhd k$ to dokładniej $(\exists k\in S)k\rhd x$ zbiór wszystkich x pokrywanych przez $k\in S$
- $\{k_1 > x\} = \{1, 2, 5, 6, 9\}$
- $\{k_2 > x\} = \{1, 2\}$

Indukcja reguł - sekwencyjne pokrywanie

```
funkcja sekwencyjne-pokrywanie(T)
argumenty wejściowe:
     • T - zbiór trenujący dla pojęcia c
   zwraca: zbiór reguł reprezentujący hipotezę przybliżającą c
        R := 0; P := T;
       jak długo P \neq 0 wykonaj
               k := \operatorname{znajd\acute{z}-kompleks}(T, P);
               d := \mathsf{kategoria}(k, T, P);
               R := R \cup \{k \rightarrow d\};
               P := P - P_k;
            koniec jak długo
```

zwróć ${\cal R}$

Indukcja reguł - algorytm AQ

funkcja znajdź-kompleks-aq(T, P) argumenty wejściowe:

- T zbiór trenujący dla pojęcia c,
- ullet P podzbiór zbioru T zawierający przykłady nie pokryte przez wygenerowane wcześniej reguły

```
zwraca: kompleks pokrywający pewną liczbę przykładów z P należących do jednej kategorii;
```

```
x_s := \mathsf{ziarno} - \mathsf{pozytywne}(P); S := \{<?>\}; \mathsf{jak} \ \mathsf{d}\mathsf{lugo} \ (\exists x \in T)S \rhd x \land c(x) \neq c(x_s) \ \mathsf{wykonaj} x_n := \mathsf{ziarno} - \mathsf{negatywne}(T, S, x_s); S' := \mathsf{cze} \\ \mathsf{ściowa} - \mathsf{gwiazda}(x_s, x_n); \mathsf{jeśli} \ S' = 0 \ \mathsf{to} \ \mathsf{zwro\acute{c}} < 0 >; \mathsf{koniec} \ \mathsf{jeśli}  S := S \cap S' S := S - \{k \in S | (\exists k' \in S)k \prec k'\} S := \mathsf{Arg} \\ \mathsf{max}_{k \in S}^m v_k(x_s, T, P) \mathsf{koniec} \ \mathsf{jak} \ \mathsf{d} \\ \mathsf{lugo} \mathsf{zwro\acute{c}} \ \mathsf{arg} \\ \mathsf{max}_{k \in S} v_k(x_s, T, P)
```

Indukcja reguł - częściowa gwiazda

```
funkcja częściowa-gwiazda(x_s, x_n) argumenty wejściowe:
```

- x_s ziarno-pozytywne,
- x_n ziarno-negatywne

zwraca: zbiór maksymalnie ogólnych kompleksów pokrywających x_s i nie pokrywających x_n

$$S' := 0$$

dla wszystkich atrybutów a_i określonych na dziedzinie wykonaj

```
k:=<?>; - kompleks V:=A_i-\{a_i(x_n)\}; jeśli a_i(x_s)\in V to umieść selektor s_V w k na pozycji i; S':=S'\cup\{k\}; koniec jeśli
```

koniec dla

zwróć S'

$oxed{x}$	aura	temperatura	wilgotność	wiatr	c(x)
1	słoneczna	ciepła	duża	słaby	0
2	słoneczna	ciepła	duża	silny	0
3	pochmurna	ciepła	duża	słaby	1
4	deszczowa	umiarkowana	duża	słaby	1
5	deszczowa	zimna	normalna	słaby	1
6	deszczowa	zimna	normalna	silny	0
7	pochmurna	zimna	normalna	silny	1
8	słoneczna	umiarkowana	duża	słaby	0
9	słoneczna	zimna	normalna	słaby	1
10	deszczowa	umiarkowana	normalna	słaby	1
11	słoneczna	umiarkowana	normalna	silny	1
12	pochmurna	umiarkowana	duża	silny	1
13	pochmurna	ciepła	normalna	słaby	1
14	deszczowa	umiarkowana	duża	silny	0

Kolejne kroki algorytmu AQ

- 1. Początkowo $r = 0, P = T = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$
- 2. Następuje wywołanie znajdź-kompleks(T, P).
 - $x_s = 1, c(x_s) = 0$, $x_n = 3, c(x_n) = 1$, $S = \{<?>\}$
 - powstaje częściowa gwiazda: $S' = S \cap S' = \{ < \text{słoneczna} \lor \text{deszczowa}, ?, ?, ? > \};$
 - ullet gwiazda w dalszym ciągu pokrywa przykłady z T o kategorii 1, wybór $x_n=4$
 - $S' = \{ \langle s \text{ ioneczna} \lor deszczowa, ?, ?, ? \rangle, \langle ?, z \text{ imna} \lor ciepła, ?, ? \rangle \}$

 - $S = \{k_1, k_2\}, v_{k_1} = |T_{k_1}^0| + (|T^1| |T_{k_1}^1|) = 3 + (9 2) = 10, v_{k_2} = 10$
 - ullet wybór pada na k_2 , który pokrywa dalej przykłady z c=1, $x_n=5$
 - $S' = \{ < \text{sloneczna} \lor \text{pochmurna}, ?, ?, ?>, <?, \text{umiarkowana} \lor \text{ciepla}, ?, ?>, <?, ?, duża, ?> \}$
 - $S \cap S' = \{ < \text{sloneczna}, \text{zimna} \lor \text{ciepla}, ?, ? >, < \text{sloneczna} \lor \text{deszczowa}, \text{ciepla}, ?, ? >, < \text{sloneczna} \lor \text{deszczowa}, \text{zimna} \lor \text{ciepla}, \text{duża}, ? > \}$

Kolejne kroki algorytmu AQ

- 1. $R = \{ \langle s | \text{shoneczna} \lor \text{deszczowa}, \text{zimna} \lor \text{ciepła}, \text{duża}, ? \rangle \rightarrow 0 \}$
- 2. $P = \{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$, dla $P \neq 0$ znajdź-kompleks(T, P)
- 3. dla $x_s=3, c(x_s)=1$ powstaje nowa reguła: $R=\{<\text{słoneczna} \lor \text{deszczowa}, \text{zimna} \lor \text{ciepła}, \text{duża},?> \to 0, <$ pochmurna $\lor \text{deszczowa},?,?,\text{słaby}> \to 1\}$
- 4. Po kolejnych wywołaniach głównej funkcji i zmniejszaniu zbioru P otrzymuje się zbiór reguł:
 - $R = \{ \langle s \text{loneczna} \lor deszczowa, zimna \lor ciepła, duża, ? \rangle \rightarrow 0, \}$
 - < pochmurna \lor deszczowa, ?, ?, słaby $> \rightarrow 1$,
 - < deszczowa, zimna \lor umiarkowana, ?, silny $> \rightarrow 0$,
 - < słoneczna \lor pochmurna, zimna \lor umiarkowana, ?, silny $> \to 1$,
 - < słoneczna \lor pochmurna, zimna \lor umiarkowana, duża, słaby $> \to 0$,
 - <?,?, normalna, słaby $> \rightarrow 1$ }