# TPG4190 Seismic data acquisition and processing Lecture 3: The CMP method

B. Arntsen

NTNU
Department of Geoscience and petroleum
borge.arntsen@ntnu.no

Trondheim fall 2021

#### Overview

- ► Seismic data acquisition
- ► CMP method 2D
- CMP method 3D
- ► NMO and stack
- ► Wide azimuth

## Seismic marine data acquisition



#### Schematic shot record



Figure: Schematic shot

#### Real shot record



Figure: Real shot

# The cmp method



# Common midpoint (cmp) gather



$$x_m = \frac{s+r}{2}, \qquad (1)$$

$$h = \frac{s-r}{2}, \qquad (2)$$

$$h = \frac{s-r}{2}, \tag{2}$$

- $\triangleright x_m$ : Midpoint coordinate
- ▶ h: Offset
- s: Source coordinate
- r: Receiver coordinate

Assume that we change the source and receiver coordinates a small amount  $\delta s$  and  $\delta r$ . The corresponding change in  $x_m$  and h are:

$$\delta x_m = \frac{1}{2} (\delta s + \delta r), \qquad (3)$$

$$\delta h = \frac{1}{2} (\delta s - \delta r). \tag{4}$$

If we consider a single cmp then  $\delta x_m = 0$ 

$$0 = \frac{1}{2} (\delta s + \delta r), \qquad (5)$$

(6)

which implies

$$\delta s = -\delta r \tag{7}$$

Inserting equation (7) into equation (4) I get

$$\delta h = \delta s = \delta r \tag{8}$$

We can now deduce the number of traces in each cmp, or the fold. The largest (half offset) is equal to

$$h_{max} = \frac{N_r}{2} \Delta r \tag{9}$$

where

 $ightharpoonup \Delta r$ : Distance between receiver groups

 $ightharpoonup N_r$ : Number of receivers

The fold  $N_f$  is then

$$N_f = \frac{h_{max}}{\delta h} = \frac{N_r}{2} \frac{\Delta r}{\delta s} \tag{10}$$

It remains to specify  $\delta s$ . The simplest assumption we can make is that  $\delta s = \Delta s$ , where  $\Delta s$  is the distance between shots. The final expression for the fold  $N_f$  is then

$$N_f = \frac{h_{max}}{\delta h} = \frac{N_r}{2} \frac{\Delta r}{\Delta s} \tag{11}$$

We can also figure out the distance between consecutive cmp's if we assume that the change in  $\delta r$  is equal to the receiver group spacing  $\Delta r$  and that  $\Delta r < \Delta s$  and use equation (3)

$$\delta x_m = \frac{1}{2} \Delta r \tag{12}$$

#### Example:

- ▶ No of receivers: 10
- No of shots: 5
- $ightharpoonup \Delta r = \Delta s = 25.0 \text{m}$
- $\triangle x_m = 12.5 \text{m}, N_f = 10/2 = 5$



## Aqcuisition geometry 3D



# 3D Seismic marine data acquisition single source



# 3D Seismic marine data acquisition flip-flop (left)



# 3D Seismic marine data acquisition flip-flop (right)



## 3D Binning



#### NMO and Stack



The traveltime  $\tau(h)$  is:

$$I^2 = z^2 + h^2$$

which gives by inserting  $v\tau/2$  for I and  $v\tau_0/2$  for z

$$\tau(h) = \sqrt{\tau_0^2 + 4h^2/v^2}.$$
 (14)

(13)

## NMO and Stack

Nmo-correction:

$$\Delta \tau = \tau(h) - \tau_0, \tag{15}$$

# Cmp



Figure:

## Nmo



Figure: Synthetic cmp

## Stack



#### NMO and Stack

Average velocity  $v_{rms}$  defined by

$$v_{rms}^2(t_0) = \frac{1}{t_0} \int_0^{t_0} v^2(t) dt \tag{16}$$

v(t): Interval velocity. The traveltime equation (14) then becomes

$$\tau(h) = \sqrt{t_0^2 + 4h^2/v_{rms}^2(t_0)}.$$
 (17)

## Real cmp



Figure: Real cmp

#### Real stack



Figure: Real stack

## Wide azimuth



Figure: Real stack

#### Wide azimuth



Figure: Real stack

Source: https://www.pgs.com/publications/feature-stories/why-more-azimuths-is-a-good-thing/