Personalized Transfer of User Preferences for Cross-domain Recommendation

Yongchun Zhu^{1, 3, 4}, Zhenwei Tang¹, Yudan Liu⁴, Fuzhen Zhuang^{2, 5}, Ruobing Xie⁴, Xu Zhang⁴, Leyu Lin⁴, Qing He^{1, 2}

1.Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS) , Institute of Computing Technology, CAS, Beijing, China

- 2. Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
 - 3. University of Chinese Academy of Sciences, Beijing, China
 - 4. WeChat Search Application Department, Tencent, China
- 5. SKLSDE, School of Computer Science, Beihang University, Beijing 100191, China

Cold-start Problem

How to recommend to these new(cold-start) users?

For Recommendation

Cross-domain recommendation aims to bridge user's preferences in the source domain and the target domain.

Existing methods assume that all users share the same preference relationships. (Common Bridge)

Challenges

- **□** Diverse user characteristics
- **□** Various preference relationships

Solution

□ Personalized Transfer of User Preferences

Model (PTUPCDR)

□ Characteristic Encoder

$$\begin{split} p_{u_i} &= \sum_{v_j^s \in \mathcal{S}_{u_i}} a_j v_j^s, \\ a_j' &= h(v_j; \theta), \\ a_j &= \frac{\exp(a_j')}{\sum_{v_l^s \in \mathcal{S}_{u_i}} \exp(a_l')}, \end{split}$$

■ Meta Network

$$w_{u_i} = g(p_{u_i}; \phi),$$

■ Personalized Bridge

$$f_{u_i}(\cdot; \mathbf{w}_{u_i}),$$

$$\hat{\boldsymbol{u}}_{i}^{t} = f_{u_{i}}(\boldsymbol{u}_{i}^{s}; \boldsymbol{w}_{u_{i}}),$$

Model (PTUPCDR)

mapping-oriented optimization

$$\mathcal{L} = \sum_{u_i \in \mathcal{U}^o} ||\hat{\boldsymbol{u}}_i^t - \boldsymbol{u}_i^t||^2,$$

□ task-oriented optimization

$$\min_{\theta,\phi} \frac{1}{|\mathcal{R}_o^t|} \sum_{r_{ij} \in \mathcal{R}_o^t} (r_{ij} - f_{u_i}(u_i^s; w_{u_i}) v_j)^2,$$

Algorithm 1 Personalized Transfer of User Preferences for CDR (PTUPCDR)

Input: \mathcal{U}^s , \mathcal{U}^t , \mathcal{V}^s , \mathcal{V}^t , \mathcal{U}^o , \mathcal{R}^s , \mathcal{R}^t

Input: Meta network g_{ϕ} .

Input: Characteristic encoder h_{θ} .

Pre-training Stage:

- 1. Learning a source model which contains u^s, v^s .
- 2. Learning a target model which contains u^t, v^t .

Meta Stage:

3. Learning a characteristic encoder h_{θ} and a meta network g_{ϕ} by minimizing Equation (7).

Initialization Stage:

4. For a cold-start user u^t in the target domain, we use the transformed embedding $f_{u_i}(u_i^s; w_{u_i})$ as the user's initialized embedding in the target domain.

Datasets

■ Amazon review dataset

Metrics: MAE, RMSE

Baselines

- □ TGT denotes the target MF model, which is trained only using target domain data.
- □ CMF is an extension of MF. In CMF, the embeddings of users are shared across the source and target domains.
- EMCDR adopts to learn embeddings first and then utilize a network to bridge the user embeddings from the auxiliary domain to the target domain.
- □ DCDCSR falls into the bridge-based methods, which considers the rating sparsity degrees of individual users in different domains.
- □ SSCDR is a semi-supervised bridge-based method.

Research questions

- RQ1 Why we need an auxiliary domain and why we need to introduce CDR? How does PTUPCDR perform in extremely cold-start scenarios comparing to state-of-the-art models with a CDR perspective?
- RQ2 How does PTUPCDR perform in more practical scenarios of real-world recommendations?
- □ RQ3 Why could PTUPCDR perform better?

Dataset splits

- □ Three cross-domain tasks.
- Cold-start scenario.
- Warm-start scenario.
- \square Train: Test = 2:8 / 5:5/8:2

	Domain		Item		User			Rating	
CDR Tasks	Source	Target	Source	Target	Overlap	Source	Target	Source	Target
Task1	Movie	Music	50,052	64,443	18,031	123,960	75,258	1,697,533	1,097,592
Task2	Book	Movie	367,982	50,052	37,388	603,668	123,960	8,898,041	1,697,533
Task3	Book	Music	367,982	64,443	16,738	603,668	75,258	8,898,041	1,097,592

	β	Metric	TGT	CMF	DCDCSR	SSCDR	EMCDR	PTUPCDR Improve
Task1	20%	MAE RMSE	4.4803 5.1580	1.5209 2.0158	1.4918 1.9210	1.3017 1.6579	1.2350 1.5515	1.1504* 6.86% 1.5195 2.06%
	50%	MAE RMSE	4.4989 5.1736	1.6893 2.2271	1.8144 2.3439	1.3762 1.7477	1.3277 1.6644	1.2804* 3.57% 1.6380 1.59%
	80%	MAE RMSE	4.5020 5.1891	2.4186 3.0936	2.7194 3.3065	1.5046 1.9229	1.5008 1.8771	1.4049* 6.39% 1.8234* 2.86%
Task2	20%	MAE RMSE	4.1831 4.7536	1.3632 1.7918	1.3971 1.7346	1.2390 1.6526	1.1162 1.4120	0.9970* 10.68% 1.3317* 5.69%
	50%	MAE RMSE	4.2288 4.7920	1.5813 2.0886	1.6731 2.0551	1.2137 1.5602	1.1832 1.4981	1.0894* 7.93% 1.4395* 3.91%
	80%	MAE RMSE	4.2123 4.8149	2.1577 2.6777	2.3618 2.7702	1.3172 1.7024	1.3156 1.6433	1.1999* 8.80% 1.5916* 3.15%
Task3	20%	MAE RMSE	4.4873 5.1672	1.8284 2.3829	1.8411 2.2955	1.5414 1.9283	1.3524 1.6737	1.2286* 9.15% 1.6085* 9.19%
	50%	MAE RMSE	4.5073 5.1727	2.1282 2.7275	2.1736 2.6771	1.4739 1.8441	1.4723 1.8000	1.3764* 6.51% 1.7447* 3.07%
	80%	MAE RMSE	4.5204 5.2308	3.0130 3.6948	3.1405 3.5842	1.6414 2.1403	1.7191 2.1119	1.5784* 3.84% 2.0510* 2.88%

Results (RQ1)

- Utilizing data from an auxiliary domain is an effective way to alleviate data sparsity and improve the recommendation performance in the target domain.
- □ It is essential to study CDR by using the auxiliary domain more effectively.
- □ PTUPCDR could outperform the best baseline significantly in most tasks.

Generalization Experiments (RQ2)

- PTUPCDR can be applied upon various base models.
- PTUPCDR can work well in both cold- and warm-start tasks.

More base structures

Warm-start task

Analysis Experiments (RQ3)

- The embeddings transformed by EMCDR are very concentrated.
- The transformed embeddings by PTUPCDR are scattered across the target domain feature space.
- PTUPCDR has a good personalization capacity.

Name: Yongchun Zhu | Email: zhuyongchun18s@ict.ac.cn

