姓名: _____

学号: _____

院系: _____

____ 级___ 班

大 连 理 工 大 学

授课院(系): ____ 运载 ____ 考试日期: 2015 年 7 月 20 日 试卷共 4 页

	-	11	111	四	五.	六	七	总分
标准分	20	10	10	15	15	15	15	100
得分								

装

得分

- 一、(10分,每空2分)填空题
- 1. 5个互异节点的插值型求积公式最低代数精度为_4__,最高代数精度为

2. 已知方程组 $\begin{bmatrix}1&3\\3a&1\end{bmatrix}\begin{bmatrix}X_1\\X_2\end{bmatrix}=\begin{bmatrix}b_1\\b_2\end{bmatrix}$,则关于求解此方程组的 Jacobi 迭代法收

敛的充要条件是____ $3\sqrt{a} < 1$ _____

3. 复化 Simpson 求积公式
$$S = \frac{b-a}{6n} \left[f(a) + 4 \sum_{i=0}^{n-1} f(x_{i+\frac{1}{2}}) + 2 \sum_{i=0}^{n-1} f(x_i) + f(b) \right]$$
 •

- 4. 2.7182 作为自然对数 e 的近似值具有____4__位有效数字。
- 二、(10分,每空2分)单项选择题
- 1. 求方程 $x^2 (10^3 + 1)x + 10^3 = 0$ 的根 x_1, x_2 时,取三位浮点数计算。

$$x_1 = 10^3 \, \text{M} \, x_2 = \text{(} \, \text{C} \, \text{)}.$$

(A)
$$\frac{1}{2}(10^3 + 1) - \sqrt{\left[\frac{1}{2}(10^3 + 1)\right]^2 - 10^3}$$
 (B) 0 (C) $\frac{10^3}{x_1}$ (D) $-x_1$

2. 求方程 X = f(X) 根的 Newton 迭代公式为 (B)。

(A)
$$X_{k+1} = X_k - \frac{g(X_k)}{g'(X_k)}$$
 (B) $X_{k+1} = X_k - \frac{X_k - g(X_k)}{1 - g'(X_k)}$

(C)
$$x_{k+1} = g(x_k)$$
 B-1 $x_{k+1} = x_k - \frac{x_k - g(x_k)}{x_k - x_{k-1} - g(x_k) + g(x_{k-1})} (x_k - x_{k-1})$.

订

_ /3	成立 $\sum_{i=0}^{n} c_i = 0$	(C).		
	(A) $1^{i=0}$		(C) b-a	(D) c
	4. 对任意初始向量	量 $x^{\scriptscriptstyle (0)}$ 及右端向量 f , ϕ	Gauss-Seidel 迭代公式	$\boldsymbol{x}^{(k+1)} = \boldsymbol{B}\boldsymbol{x}^{(k)} + \boldsymbol{f}$
	收敛于方程组的精	确解 x^* 的充要条件是	(D).	
	(A) $\ \mathbf{B}\ _2 < 1$	(B) $\ {\pmb B} \ _{\infty} < 1$	(C) $\ \boldsymbol{B} \ _{1} < 1$	(D) $\rho(B) < 1$
	5. 若 n 阶方阵	A 的谱半径 $ ho(A)$ <	1,则求解 $Ax = b$ 的	Jacobi 迭代法和
	GaussSeidel 迭f (A)都收敛	弋法(B)。		
	(B)无法判断收敛	和发散		
		去收敛而 GaussSeide	el 迭代法发散	
	(D)Jacob i 迭代》	去发散而 Gauss──Seide	el 迭代法收敛	
	6. 用 Gauss 消去法	6 法求解线性方程组 3	$\begin{bmatrix} 3 & 2 \\ 9 & 5 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ Y \end{bmatrix} = \begin{bmatrix} 5 \\ 11 \\ 3 \end{bmatrix},$	则如下说法正确的
		1	$\begin{bmatrix} 2 & 4 & 1 \\ X_2 & 1 \end{bmatrix}$	
	为(C)。	- -		
		「B)无 (D) 雪	法判断能否元成计算 改用选主元 Gauss 消去	注 才 能空战计算
			r 法具有(A)精度	
		(B) 1阶		
	8. 计算 [∛] <i>a</i> 的迭代	公式 $X_{k+1} = \frac{5}{6} X_k +$	$\frac{a}{6X_k}$ 具有的收敛速度为	(D).
	(A)平方收敛	(B)超线性收敛	(C) 三阶收敛	(D)线性收敛
	9. $\mathbf{\mathfrak{g}} x_i (i=0,1,2)$	2,3,4,5) 为互异节点	, $l_i(\mathit{x})$ 为对应的 $5次$ Lag	range插值基函数 ,
	$ \mathbf{M} \sum_{i=0}^{5} (x_i^4 - x^4) I_i $	(0) = (A).		
	(A) 0	(B) 1	(C) x^5	(D) $l_i(0)$
	10. 设 $H(x)$ 为	为满足如下插	值条件的插	值多项式,
	$H(X_i) = f(X_i), H$	$I'(X_i) = f'(X_i), \qquad ($	$i = 0, 1, \cdots, n), (x \mathbf{\Xi} $	$\vec{\mathbf{r}}$, $i=0,1,\cdots,n$),
	则 $H(x)$ 的次数为	(D).		
	(A) 大于 2 <i>n+1</i>	(B) 小于 n+1	(C) 不超过 n+1	(D) 不超过 2n+1

3. 关于积分 $\int_a^b f(x) dx$ 的 7 点 Gauss 求积公式中的求积系数 c_i $(i=0,1,\cdots,6)$,

得分

三、(10 分) 求三次 Hermite 插值多项式 H(x), 使满足 H(-1)=-1, H(1)=1,

$$H'(0) = 1$$
, $H''(1) = 0$.

解: 所求三次 Hermite 的插值多项式为

$$H_3(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

由插值条件得到以下方程组

$$H_3(-1) = a_0 - a_1 + a_2 - a_3 = -1$$

$$H_3(1) = a_0 + a_1 + a_2 + a_3 = 1$$

$$H_3'(0) = a_1 = 1$$

$$H_3''(1) = 2a_2 + 6a_3 = 0$$

解上述方程组

$$a_0 = 3$$
, $a_1 = 0$, $a_2 = -3$, $a_3 = 1$

故得
$$H_3(x) = 3 - 3x^2 + x^3$$

得 分

四、(15 分) 用最小二乘原理确定经验公式 $y = ax^b$ 中的参数 a 和 b, 使该函数曲线

与下列数据相拟合

Xi	1	2	3	4
Уi	10¹	10 ^{2.1}	10 ^{3.8}	10 ⁴

解:对经验公式 $y = ax^b$ 两边取对数,得

$$\lg y = \lg a + b \lg x$$

令
$$w = \lg y$$
, $A = \lg a$, $z = \lg x$, 则得 $w = A + bz$, 将数据 (x_i, y_i) 转化为对应的 (x_i, w_i) , 得下表

\mathcal{X}_{i}	1	2	3	4
$w_{ m i}$	1	2.1	3.8	4

按题意,得矛盾方程组Aw = b

其中
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$
, $b = \begin{bmatrix} 1 \\ 2.1 \\ 3.8 \\ 4 \end{bmatrix}$, $w = \begin{Bmatrix} A \\ b \end{Bmatrix}$

其法方程为
$$A^{T}Aw = A^{T}b$$
,即 $\begin{bmatrix} 4 & 10 \\ 10 & 30 \end{bmatrix} \begin{bmatrix} A \\ b \end{bmatrix} = \begin{bmatrix} 11.9 \\ 33.2 \end{bmatrix}$

解得
$$\begin{cases} A \\ b \end{cases} == \begin{cases} 0.05 \\ 1.07 \end{cases}$$
 $\therefore a = 10^A = 10^{0.05}$ 。拟合曲线为 $y = 10^{0.05} x^{1.07}$

_____**五、(15 分)**给定求积公式

 $\int_{-2h}^{2h} f(x)dx \approx Af(-h) + \frac{B}{2}f(0) + \frac{C}{3}f(h)$

试确定 A, B, C, 使它的代数精确度尽可能地高,并指明所构造出的求积公式所具有的代数精度。

解: 令 $f(x) = 1, x, x^2$,代入所给定近似求积公式,使公式精确成立,得:

$$4h = A + \frac{B}{2} + \frac{C}{3}$$
$$0 = -hA + 0 + h\frac{C}{3}$$
$$\frac{16}{3}h^3 = h^2A + 0 + h^2\frac{C}{3}$$

联立求解关于系数 A, B, C 的方程, 得

$$A = \frac{8}{3}h$$
, $B = -\frac{8}{3}h$, $C = 8h$

于是
$$\int_{-2h}^{2h} f(x)dx \approx \frac{4}{3}h[2f(-h)-f(0)+2f(h)]$$

它至少具有2次的代数精确度。

令
$$f(x) = x^3$$
, 代入公式得: 左边=0, 右边= $\frac{4}{3}h[-2h^3 - 0 + 2h^3] = 0$

故 左边=右边

令
$$f(x) = x^4$$
,代入公式得: 左边= $\frac{64}{5}h^5$,右边= $\frac{4}{3}h[2h^4 - 0 + 2h^4] = \frac{16}{3}h^5$

则 左边≠右边

至此可知求积公式具有3次代数精确度。

评分标准: (1) 每个系数 4 分(若系数不对,按方程可酌情加 1-3 分),(2)验证精度正确 6 分

六、(15分)利用改进平方根法解方程组Ax=b,其中 得 分

$$\mathbf{A} = \begin{bmatrix} 2 & 6 & -4 \\ 6 & 17 & -17 \\ -4 & -17 & -20 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 0 \\ -6 \\ -33 \end{bmatrix}.$$

解:
$$\begin{bmatrix} 2 & 6 & -4 \\ 6 & 17 & -17 \\ -4 & -17 & -20 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} d_1 & 0 & 0 \\ 0 & d_2 & 0 \\ 0 & 0 & d_3 \end{bmatrix} \begin{bmatrix} 1 & l_{21} & l_{31} \\ 0 & 1 & l_{32} \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} d_1 & 0 & 0 \\ l_{21}d_1 & d_2 & 0 \\ l_{31}d_1 & l_{32}d_2 & d_3 \end{bmatrix} \begin{bmatrix} 1 & l_{21} & l_{31} \\ 0 & 1 & l_{32} \\ 0 & 0 & 1 \end{bmatrix}$$

由矩阵乘法得 $d_1 = 2$, $l_{21} = 3$, $l_{31} = -2$, $d_2 = -1$, $l_{32} = 5$, $d_3 = -3$

曲 **L** y=**b**,
$$\begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ -2 & 5 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0 \\ -6 \\ -33 \end{bmatrix}, \ \ 得 \ y = \begin{bmatrix} 0 \\ -6 \\ -3 \end{bmatrix}$$

评分标准: (1)矩阵分解形式 1分, (2) L矩阵 4分, (3) U矩阵 4分, (4) y 向量3分,(5)x向量3分(若y向量省略,x向量正确可加6分)

得分

七、(15 分) 用改进的欧拉(Euler)方法计算初值问题 y' = x + y, y(0) = 2,

 $x \in [0,0.6]$ 的解的近似值,取h = 0.2。保留 4 位有效数字。

解: 改进的 Euler 法格式为

$$\begin{cases} \tilde{y}_{i+1} = y_i + hf(x_i, y_i) \\ y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, \tilde{y}_{i+1})] \end{cases}$$

由
$$y' = x + y$$
 得 $f(x, y) = x + y$ 。于是有

$$\tilde{y}_{i+1} = y_i + h(x_i + y_i) = y_i + 0.2(x_i + y_i)$$

$$y_{i+1} = y_i + \frac{h}{2}(x_i + y_i + x_{i+1} + \widetilde{y}_{i+1}) = y_i + 0.1(x_i + y_i + x_{i+1} + \widetilde{y}_{i+1})$$

计算结果如表

i	x_i	y_i
0	0	2
1	0.2	2.4600
2	0.4	3.0652
3	0.6	3.8475

评分标准:(1)给出改进的 Euler 法一般公式得 4 分,(2)列出改进的 Euler 具体公式加 5 分,(3)结果每步正确加 2 分。