### **Confidence Intervals**

- what is a confidence interval?
- finding and interpreting confidence intervals

### confidence intervals

A plausible range of values for the population parameter is called a

confidence interval.

Using only a sample statistic to estimate a parameter is like fishing in a murky lake with a spear

Using a confidence interval is like fishing with a net.

We can throw a spear where we saw a fish but we will probably miss.

If we toss a net in that area, we have a good chance of catching the fish.



- If we report a point estimate, we probably won't hit the exact population parameter.
- If we report a range of plausible values we have a good shot at capturing the parameter.

### Sampling distribution and CLT



Although the sample mean  $\bar{x}$  is a unique number for any particular sample, if you pick a different sample you will probably get a different sample mean.

In fact, you could get many different values for the sample mean, and virtually none of them would actually equal the true population mean,  $\mu$ .



## confidence interval for a population mean



point estimate :  $\bar{x}$ 

#### Central Limit Theorem (CLT):

$$\overline{x} \sim N(mean = \mu, SE = \frac{\sigma}{\sqrt{n}})$$



# finding the confidence interval

#### Central Limit Theorem (CLT):

$$\overline{x} \sim N(mean = \mu, SE = \frac{\sigma}{\sqrt{n}})$$

For 95% of random samples, the unknown true population mean is going to be within 2 standard errors of that sample's mean.



95% CI 
$$\approx \overline{x} \pm 2$$
 SE

CI stands for confidence interval

SE stands for standard error

In above formula, the 2 standard errors, is actually called the margin of error (ME).

The margin of error for a 95% confidence interval is roughly 2 standard error.

If population distribution is normal, 95% CI for a population mean :  $\bar{x} \pm 1.96$ SE If  $\sigma$  is unknown, use s (sample standard deviation) for SE,

#### conditions for the confidence interval:

**Independence:** sampled observations must be independent

- random sample/assignment
- if sampling without replacement, n<10% of population</p>

#### Sample size/skew:

Either the population distribution is normal, or if the population distribution is skewed, the sample size is large (*rule of thumb:n>30*)

### What does 95% confident mean?

- Suppose we took many samples and built a confidence interval from each sample using the equation point estimate ± 2 x SE.
- Then about 95% of those intervals would contain the true population mean ( $\mu$ ).
- The figure shows this
   process with 25 samples,
   where 24 of the resulting
   confidence intervals
   contain the true population
   mean, and one does not.



# Interpreting confidence intervals

 A confidence level describes what would happen if we took many samples and built a confidence interval from each sample: the confidence level describes the fraction of those intervals that captures the population parameter



# changing the confidence level

if a point estimate closely follows a normal distribution with standard error SE, then a confidence interval for the population parameter is

point estimate ± z\* × SE

- In a confidence interval, z\* x SE is called the margin of error, and for a given sample, the margin of error changes as the confidence level changes.
- In order to change the confidence level we need to adjust z\* in the above formula. Commonly used confidence levels in practice are 90%, 95% and 99%.
- For a 95% confidence interval, z\* = 1.96.
- However, using the standard normal (z) distribution, it is possible to find the appropriate z\* for any confidence level.



#### width of an interval

If we want to be more certain that we capture the population parameter, i.e. increase our confidence level, should we use a wider interval or a smaller interval?

#### A wider interval.

Can you see any drawbacks to using a wider interval?



If the interval is too wide it may not be very informative.

#### **Practice**

Which of the below Z scores is the appropriate z\* when calculating a 98% confidence interval?

(a) 
$$Z = 2.05$$

(b) 
$$Z = 1.96$$

(c) 
$$Z = 2.33$$

(d) 
$$Z = -2.33$$

(e) 
$$Z = -1.65$$



> qnorm(.01) [1] -2.326348

| Z    | .00    | .01    | .02    | .03    | .04    | .05    | .06    | .07    | .08    | .09    |
|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| -2.4 | .00820 | .00798 | .00776 | .00755 | .00734 | .00714 | .00695 | .00676 | .00657 | .00639 |
| -2.3 | .01072 | .01044 | .01017 | .00990 | .00964 | .00939 | .00914 | .00889 | .00866 | .00842 |
| -2.2 | .01390 | .01355 | .01321 | .01287 | .01255 | .01222 | .01191 | .01160 | .01130 | .01101 |
| -2.1 | .01786 | .01743 | .01700 | .01659 | .01618 | .01578 | .01539 | .01500 | .01463 | .01426 |
| -2.0 | .02275 | .02222 | .02169 | .02118 | .02068 | .02018 | .01970 | .01923 | .01876 | .01831 |

#### **Practice**

A random sample of 50 college students were asked how many exclusive relationships they have been in so far. This sample yielded a mean of 3.2 and a standard deviation of 1.74. Estimate the true average number of exclusive relationships using this sample.

$$\bar{x} = 3.2$$
  $s = 1.74$ 

The approximate 95% confidence interval is defined as

point estimate ± 2 x SE

$$SE = \frac{s}{\sqrt{n}} = \frac{1.74}{\sqrt{50}} \approx 0.25$$

$$\bar{x} \pm 2 \times SE$$
 $\rightarrow$ 
 $(3.2 \pm 2 \times 0.25)$ 
 $\rightarrow$ 
 $(3.2 - 0.5, 3.2 + 0.5)$ 
 $\rightarrow$ 
 $(2.7, 3.7)$ 

#### **Practice**

Which of the following is the correct interpretation of this confidence interval?

We are 95% confident that

- (a) the average number of exclusive relationships college students in this sample have been in is between 2.7 and 3.7.
- (b) college students on average have been in between 2.7 and 3.7 exclusive relationships.
- (c) a randomly chosen college student has been in 2.7 to 3.7 exclusive relationships.
- (d) 95% of college students have been in 2.7 to 3.7 exclusive relationships.

# Summary

The concept of a confidence interval.

Analogy: fishing with a net instead of a spear

Constructing a 95% confidence interval. :

point estimate  $\pm$  1.96×SE or point estimate  $\pm$  2×SE

Changing the confidence level.

Adjust "1.96" in the confidence interval formula

Interpreting confidence intervals.

"We are 95% confident that..."

Never use the word "probability".

Remember that the interval only tries to capture the population parameter

# Assignment

In 2013, the Pew Research Foundation reported that 45% of U.S. adults report that "they live with one or more chronic conditions". However, this value was based on a sample, so it may not be a perfect estimate for the population parameter of interest on its own. The study reported a standard error of about 1.2%, and a normal model may reasonably be used in this setting.

Problem 1. Create a 95% confidence interval for the proportion of U.S. adults who live with one or more chronic conditions. Also interpret the confidence interval in the context of the study

# Assignment

Problem 2. Identify each of the following statements as true or false. Provide an explanation to justify each of your answers.

- a. We can say with certainty that this confidence interval contains the true percentage of U.S. adults who suffer from a chronic illness.
- b. If we repeated this study 1,000 times and constructed a 95% confidence interval for each study, then approximately 950 of those confidence intervals would contain the true fraction of U.S. adults who suffer from chronic illnesses.
- c. The poll provides statistically significant evidence (at the = 0:05 level) that the percentage of U.S. adults who suffer from chronic illnesses is below 50%.
- d. Since the standard error is 1.2%, only 1.2% of people in the study communicated uncertainty about their answer.