Forward selection procedure

▶ Let $\mu = E(Y|X)$.

- ▶ Begin with a constant model $\hat{\mu} = 0$ assuming that y is centered and x_i 's are standardized.
- ▶ Given a set of covariates, select x_j with the largest absolute correlation with y.
- ▶ Fit a linear model with x_i and update $\hat{\mu} \leftarrow \hat{\mu} + \hat{\beta}_i X_i$.
- ▶ Get a residual vector $r = Y \hat{\mu}$ and project other X_j 's orthogonally to X_j .
- ▶ Repeat the selection process.
- It can be very greedy, eliminating other correlated covariates.

Boosting for regression

- ► A technique for additive model building
- $y = f(x) + \epsilon$
- ▶ A family of basis functions ('base learners'): $\{b(x; \gamma), \gamma \in \Gamma\}$ e.g. $\{b(x; j) = x_j, j = 1, ..., k\}$ in linear regression
- Consider an additive model of the form

$$\hat{f}(\mathbf{x}) = \sum_{j=1}^{M} \beta_j b(\mathbf{x}; \gamma_j).$$

▶ Boosting builds such a model in a stagewise fashion.

Forward stagewise regression

- A cautious version of the forward selection
- ► An iterative procedure to build a regression function in successive small steps
- ▶ Begin with $\hat{\mu} = 0$.
- ▶ Define a vector of 'current correlations':

$$\hat{\mathbf{c}} = \mathbf{c}(\hat{\mu}) = \mathbf{X}^{\top}(\mathbf{Y} - \hat{\mu})$$

▶ Find the variable index $j = argmax|\hat{c}_i|$ and update

$$\hat{\mu} \leftarrow \hat{\mu} + \epsilon \cdot \text{sign}(\hat{c}_i) X_i$$

where ϵ is a small constant.

Least squares boosting

Least Squares Boosting

- ▶ Begin with $\hat{f}_0(x) = 0$.
- ▶ Let $\hat{f}_m(x)$ be the model at the *m*th step.
- ▶ At the (m+1) step, find β and γ minimizing

$$\sum_{i=1}^n \{y_i - \hat{f}_m(x_i) - \beta b(x_i; \gamma)\}^2.$$

• Equivalently, with $r_i^{(m)} = y_i - \hat{f}_m(x_i)$

$$\min_{\beta,\gamma} \sum_{i=1}^{n} (r_i^{(m)} - \beta b(x_i; \gamma))^2.$$

 $\hat{f}_{m+1}(x) = \hat{f}_m(x) + \beta_{m+1}b(x; \gamma_{m+1})$

Introduction to Least Angle Regression

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004) Least angle regression

- Motivated by the forward stagewise regression
- ▶ A computational shortcut to stagewise regression
- Explain a striking similarity between LASSO and stagewise regression
- Their connection as variants of LAR
- ▶ Geometrical interpretation
- An efficient computational algorithm for generating coefficient paths

Preliminaries for Least Angle Regression

- $ightharpoonup \sum_{i=1}^{n} y_i = 0, \sum_{i=1}^{n} x_{ij} = 0 \text{ and } \sum_{i=1}^{n} x_{ij}^2 = 1 \text{ for } j = 1, \dots, k$
- ▶ Current residuals: $Y \hat{\mu}$
- ▶ Current correlations: $c(\hat{\mu}) = X^{\top}(Y \hat{\mu})$
- Let \bar{Y} be the projection of Y onto the linear space $\mathcal{L}(X)$ spanned by X_i 's.
- ▶ Then $c(\hat{\mu}) = X^{\top}(\bar{Y} \hat{\mu})$
- ► The absolute correlations are related to the angles of the current residuals with X_i's.

Illustration of LAR when k = 2

Suppose that $X = [X_1, X_2]$.

- ▶ Begins at $\hat{\mu}_0 = 0$.
- ullet $c(\hat{\mu}_0) = X^{\top}(\bar{Y}_2 \hat{\mu}_0) = (X_1^{\top} \bar{Y}_2, X_2^{\top} \bar{Y}_2)^{\top}$
- ► The largest absolute correlation criterion is equivalent to choosing *X_i* with the least angle with *Y*.
- ► Suppose that X₁ has a smaller angle with Y. Then LAR updates

$$\hat{\mu}_1 = \hat{\mu}_0 + \hat{\gamma}_1 X_1,$$

where $\hat{\gamma}_1$ makes $\bar{Y}_2 - \hat{\mu}_1$ equally correlated with X_1 and X_2 .

- ▶ Let U_2 be the unit vector bisecting the angle between X_1 and X_2 .
- $\hat{\mu}_2 = \hat{\mu}_1 + \hat{\gamma}_2 U_2$ with $\hat{\gamma}_2$ chosen to make $\hat{\mu}_2 = \bar{Y}_2$

Geometry of LAR

Choice of $\hat{\gamma}_1$

Least Angle Regression in general

- Forward selection: $\hat{\gamma}_1$ large enough to make $\hat{\mu}_1 = \bar{Y}_1$ where \bar{Y}_1 : the projection of Y onto $\mathcal{L}(X_1)$
- ightharpoonup Forward stagewise regression: some small value ϵ
- ► Least Angle Regression: an intermediate value so that the updated residual vector is equally correlated with X₁ and X₂

- ▶ Let A be the set of indices corresponding to covariates in the current model.
- ► In what direction do we move to update the model? LAR steps are taken along 'equiangular vectors'.
- How far do we move along the direction? Until some new variable has the same current correlation as those in the active set

Equiangular vectors

- ▶ Let $X_A = [\cdots s_j X_j \cdots]_{j \in A}$, where $s_j = \pm 1$.
- ▶ $U_A = X_A w_A$: the unit vector making equal angles (< 90°) with the columns of X_A
- $\blacktriangleright X_{\mathcal{A}}^{\top}U_{\mathcal{A}} = A_{\mathcal{A}}\mathbf{1}_{\mathcal{A}}$ and $\|U_{\mathcal{A}}\| = 1$ where $A_{\mathcal{A}}$ is a constant.
- ▶ Then $w_{\mathcal{A}} = A_{\mathcal{A}}G_{\mathcal{A}}^{-1}1_{\mathcal{A}}$ and $A_{\mathcal{A}} = (1_{\mathcal{A}}^{\top}G_{\mathcal{A}}^{-1}1_{\mathcal{A}})^{-1/2}$ where $G_{\mathcal{A}} = X_{\mathcal{A}}^{\top}X_{\mathcal{A}}$.

Current correlations

- $ightharpoonup \hat{\mathbf{c}} = \mathbf{X}^{\top} (\mathbf{Y} \hat{\mu}_{\mathcal{A}})$
- $\blacktriangleright \text{ Let } \hat{C} = \max_{i} \{ |\hat{c}_i| \}.$
- ▶ Let $a = X^{\top}U_{\mathcal{A}}$.
- ► Consider $\mu(\gamma) = \hat{\mu}_{\mathcal{A}} + \gamma U_{\mathcal{A}}$. Then $c_i(\gamma) = X_i^\top (Y \mu(\gamma)) = \hat{c}_i \gamma a_i$.
- ► For $j \in \mathcal{A}$, $|c_j(\gamma)| = \hat{C} \gamma A_{\mathcal{A}}$.