Etude de cas:

Nous allons modéliser une expression régulière qui dénote tous les entiers naturels, Pour cela il va falloir

- 1. Proposer une Expression régulière
- 2. Traduire l'ER en un automate
- 3. Déterminiser l'automate ci-dessus
- 4. Proposer un programme simulant l'automate ci-dessus

On considère l'alphabet = $\{0,1,2,....9\}$ Expression régulière = (1|2|..9)(0|1|2|..9)*|0

 E_0 = état initial E_1 et E_2 sont des états terminaux

Etat	0	1	2	3	4	5	6	7	8	9
E ₀	E_1	E ₂	E2	E ₂	E ₂	Fa				
Eı	-	-	-	-	-	-		-		-
E ₂	E ₂	E_2	E ₂	\mathbf{E}_2	E ₂	E ₂	E ₂	E ₂	Fa	Fa

Le programme ci-dessous représente l'automate ci-dessus.

```
def Etat0(chaine):
  if len(chaine)==0:
     return False
  elif chaine[0]=='0':
     return Etat1(chaine[1:])
  elif chaine[0]>='1' and chaine[0]<='9':
     return Etat2(chaine[1:])
  else:
     return False
def Etat1(chaine):
  if len(chaine)==0:
     return True
  else:
     return False
def Etat2(chaine):
  if len(chaine)==0:
    return True
  elif chaine[0]>='0' and chaine[0]<='9':
    return Etat2(chaine[1:])
  else:
    return False
```

Etude de cas 2:

Nous allons modéliser une expression régulière qui dénote tous les nombres possédant une virgule Exemples :

- 1,8
- 0,89
- -12,78

Pour cela il va falloir

- 1. Proposer une Expression régulière
- 2. Traduire l'ER en un automate
- 3. Déterminiser l'automate ci-dessus
- 4. Proposer un programme simulant l'automate ci-dessus

