Speeding Up Dynamic Programming via Quadrangle Inequality

Pramook Khungurn

March 14, 2013

1 Maximum t-gon Problem

- We are given a set of points P in \mathbb{R}^2 , and you are to find a convex polygon with no more than t vertices whose vertices are from P such that its perimeter is the longest.
- It is easy to show that we only need to concern ourselves with the vertices of the convex hull of these points. So let the convex hull have n vertices, and let them be called v_1, v_2, \ldots, v_n in clockwise order.
- Solving the maximum t-gon problem can be overwhelming. How about solving the maximum triangle problem first?
- Let D be an $n \times n$ matrix such that the element in the ith row and the jth column, d_{ij} , equals the Euclidean distance between v_i and v_j .
- Let $D \otimes D$ denote another $n \times n$ matrix where

$$(D \otimes D)_{ij} = \max_{i \le k \le j} \{d_{ik} + d_{kj}\}.$$

That is, $(D \otimes D)_{ij}$ is the longest convex two-hops-or-less path from v_i to v_j .

- It follows that the solution to the maximum triangle problem lies in the maximum element of the matrix $D + (D \otimes D)$. Hence, by the standard dynamic programming technique, we can compute the matrix and its maximum element in $O(n^3)$ times.
- Of course, we can do better than this by exploiting a special structure of the matrix. Let K(i,j) denote the maximum integer k such that $d_{ik} + d_{kj} = (D \otimes D)_{ij}$. In other words,

$$K(i,j) = \max\{k \mid d_{ik} + d_{kj} = (D \otimes D)_{ij}\}.$$

We can show that the following claim is true.

Claim 1. K is monotone. That is,

$$K(i, j) \le K(i, j + 1) \le K(i + 1, j + 1).$$

- By virtue of the claim, we can compute $D \otimes D$ faster by computing the elements in the order of increasing j-i. Now, when we want to compute $(D \otimes D)_{ij}$, we vary k from K(i, j-1) to K(i+1, j) instead of varying it from i to j like we used to do.
 - The pseudocode for computing $D \otimes D$ (stored in table M) and K (stored in the eponymous table) is given in Algorithm 1.
- What is the time complexity of Algorithm 1? For each value of δ , the innermost loop runs

$$\sum_{i=1}^{n-\delta-1} \left[K(i+1, i+1+\delta) - K(i, i+\delta) + 1 \right] = K(n-\delta, n) - K(1, 1+\delta) + n - \delta - 1 \le 2n$$

times. Since δ takes value from 1 to n-1, we have that Algorithm 1 has running time $O(n^2)$.

Algorithm 1 Computing $D \otimes D$

```
1: for i = 1 to n do
       K[i,i] = i
 3:
       M[i,i] = 0
 4: end for
 5: for \delta = 1 to n - 1 do
       for i = 1 to n - \delta do
 6:
         j = i + \delta
 7:
         M[i,j] = -\infty
 8:
         for k = K[i, j - 1] to K[i + 1, j] do
 9:
            if d_{ik} + d_{kj} \ge M[i,j] then
10:
               M[i,j] = d_{ik} + d_{kj}
11:
               K[i,j] = k
12:
            end if
13:
14:
         end for
       end for
15:
16: end for
```

2 Quadrangle Inequality

• The key property of the matrix D that makes K monotone is that it satisfies the quadrangle inequality (QI): for all $i \leq i' \leq j \leq j'$,

$$d_{ij} + d_{i'j'} \ge d_{ij'} + d_{i'j}.$$

This statement can be proven using elementary geometry.

• In this section, we discuss properties of 2D functions satisfying the quadrangle inequality. In particular, we shall discuss how the quadrangle inequality gives rise to monotonicity of K above. Before we discuss the proof, however, some definitions are in order.

Definition 2. A function $f(\cdot,\cdot)$ is said to satisfy the convex quadrangle inequality if, for all $i \leq i' \leq j \leq j'$, we have

$$f(i,j) + f(i',j') \ge f(i,j') + f(i',j).$$

We say that it satisfies the concave quadrangle inequality if, for all $i \leq i' \leq j \leq j'$, we have

$$f(i,j) + f(i',j') \le f(i,j') + f(i',j).$$

Definition 3. Let $f(\cdot,\cdot)$ and $g(\cdot,\cdot)$ be 2D functions. Then, $f\otimes g$ is another 2D function, where

$$(f \otimes g)(i,j) = \max_{i \le k \le j} \{f(i,k) + g(k,j)\}.$$

And $f \oslash g$ is another 2D function, where

$$(f \oslash g)(i,j) = \min_{i \le k \le j} \{f(i,k) + g(k,j)\}.$$

• We now prove an important property of \otimes and \oslash .

Lemma 4. If both f and g satisfies convex QI, then so does $f \otimes g$. On the other hand, if both f and g satisfies concave QI, then so does $f \otimes g$.

Proof. We shall only work on the convex case as the concave case can be proven with the same reasoning.

Suppose that both f and g satisfy convex QI. Let $h = f \oplus g$. Let i, i', j, and j' be integers such that $i \leq i' \leq j \leq j'$

Let y be integer such that h(i,j') = f(i,y) + g(y,j'). Let z be integer such that h(i',j) = f(i',z) = g(z,j). For convenience, let us denote f(i,k) + g(k,j) with $h_k(i,j)$, so that we may write $h(i,j') = h_k(i,j')$ and $h(i',j) = h_z(i',j)$. There are two cases to consider.

In the first case, $y \leq z$. We can deduce that $y \leq j$. Now,

$$h(i,j) + h(i',j') \ge h_y(i,j) + h_z(i',j')$$

$$\ge f(i,y) + g(y,j) + f(i',z) + f(z,j')$$

$$= f(i,y) + f(i',z) + [g(y,j) + g(z,j')]$$

$$\ge f(i,y) + f(i',z) + [g(y,j') + g(z,j)]$$

$$= [f(i,y) + g(y,j')] + [f(i',z) + g(z,j)]$$

$$= h_y(i,j') + h_z(i',j)$$

$$= h(i,j') + h(i',j)$$

The second case, where $y \geq z$, is symmetric to the first case. We are done

• We now show that convex/concave QI implies monotonicity.

Lemma 5. Let $h = f \otimes g$, and let $K(i, j) = \max\{k \mid h(i, j) = h_k(i, j)\}$. If f and g satisfy convex QI, then K is monotone; that is,

$$K(i,j) \le K(i,j+1) \le K(i+1,j+1)$$

for all $i \leq j$.

The same goes for $h = f \otimes g$ if both f and g satisfy concave QI.

Proof. Again, we work out only the convex case.

We shall prove the first inequality, $K(i,j) \leq K(i,j+1)$, by showing that, for any k and k' such that $i \leq k \leq k' \leq j$, we have that

$$[h_{k'}(i,j) \ge h_k(i,j)] \implies [h_{k'}(i,j+1) \ge h_k(i,j+1)].$$
 (1)

Applying the convex QI g with $k \le k' \le j \le j+1$, we have

$$g(k, j) + g(k', j + 1) \ge g(k, j + 1) + g(k', j)$$

Adding f(i,k) + f(i,k') to both sides, we have that

$$[f(i,k) + g(k,j)] + [f(i,k') + g(k',j+1)] \ge [f(i,k) + g(k,j+1)] + [f(i,k') + g(k',j)]$$
$$h_k(i,j) + h_{k'}(i,j+1) \ge h_k(i,j+1) + h_{k'}(i,j).$$

which implies (1). The second inequality, $K(i, j+1) \leq K(i+1, j+1)$, is symmetric and can be proven similarly.

Theorem 6. If both f and g satisfy convex QI, then $f \otimes g$ can be computed in $O(n^2)$ time. Also, if both f and g satisfy concave QI, then $f \otimes g$ can be computed in $O(n^2)$ time as well.

3 Maximum t-gon Problem (Revisited)

• To compute the solution to the problem efficiently, we make use of the following property of \otimes .

Lemma 7. \otimes *is associative.*

Proof. Let f, g, and h be 2D functions. We have that

$$\begin{split} [f\otimes(g\otimes h)](i,j) &= \max_{i\leq k\leq j} \big\{f(i,k) + (g\otimes h)(k,j)\big\} \\ &= \max_{i\leq k\leq j} \Big\{f(i,k) + \max_{k\leq \ell\leq j} \{g(k,\ell) + h(\ell,j)\}\Big\} \\ &= \max_{i\leq k\leq \ell\leq j} \big\{f(i,k) + g(k,\ell) + h(\ell,j)\big\}. \end{split}$$

We can similarly show that $[(f \otimes g) \otimes h](i,j)$ equals the same thing.

- Hence, we can write $D \otimes D \otimes D$ without parentheses. For notational convenience, let us write $D \otimes D$ as $D^{(2)}$, $D \otimes D \otimes D$ as $D^{(3)}$, and so on.
- By Lemma 4, we have that $D^{(m)}$ satisfies convex QI for all $m \ge 1$. Hence, $D^{(m)}$ can be computed in $O(n^2 \log m)$ by deploying recursive squaring algorithm and using an algorithm similar to Algorithm 1 to do the squaring.
- The solution to the maximum t-gon problem is the maximum entry of $D + D^{(t)}$. Thus, the problem can be solved in $O(n^2 \log t)$ time.

4 String Product Problem

• Let A and B be sets of strings. Let AB denote the set of *concatenations* of elements of A by elements of B. That is,

$$AB = \{ab \mid a \in A \land b \in B\}.$$

- You have a set L_1, L_2, \ldots, L_n of strings. You wish to compute the concatenation set $L_1 L_2 \cdots L_n$. However, the computation is restricted to concatenating two sets at a time. That is, you have to parenthesize the concatenation $L_1 L_2 \cdots L_n$ and carry out the binary concatenation as parenthesized. Let the cost of computing AB be |A||B|, the size of the output set. You wish to compute the parenthesization with the lowest cost.
- Let ℓ_i denote $|L_i|$, and let $w(i,j) = \ell_i \ell_{i+1} \cdots \ell_j$. Let c(i,j) be the minimum cost of computing $L_i L_{i+1} \cdots L_j$. It is clear that c(i,j) can be computed by the following recurrence relation:

$$c(i,j) = \begin{cases} 0, & i = j \\ w(i,j) + \min_{i < k \le j} \{c(i,k-1) + c(k,j)\}, & i < j \end{cases}$$

Hence, the problem can be solve in $O(n^3)$ by standard dynamic programming.

• It turns out that we can compute 2D functions defined with recurrences of the form above in $O(n^2)$ if w satisfies concave QI, and if w is monotone.

Definition 8. A 2D function $w(\cdot,\cdot)$ is said to be monotone if, for all $i' \le i \le j \le j'$,

$$w(i,j) \le w(i',j').$$

• Before proving the above result, let us demonstrate that $w(i,j) = \ell_i \ell_{i+1} \cdots \ell_j$ satisfies concave QI. Let $i \leq i' \leq j \leq j'$. Let a = w(i,i'-1), b = w(i',j), and c = w(j+1,j'). Here, we abuse the notation and say that w(i,j) = 1 if i > j. We have that

$$w(i,j) + w(i',j') = ab + bc = b(a+c) \le b(ac+1) \le abc + b = w(i,j') + w(i',j)$$

where the fact that $a + c \le ac + 1$ comes from the fact that $(a - 1)(c - 1) \ge 0$. (Each set has to have at least an element. Otherwise, we wouldn't bother computing c in the first place.)

It is also evident that w(i,j) is monotone because $\ell_i \geq 1$ for all i.

• The proof that we can compute c as defined in (4) in $O(n^2)$ is very similar to the proof of Theorem 6. We first show that c also satisfies concave QI, and then show that the maximum index function K is monotone in the sense of Claim 1.

Lemma 9. Let c be defined as in (4), and let w satisfy concave QI and be monotone in the sense of Definition 8. Then, c also satisfies concave QI.

Proof. The proof is by induction on j' - i.

As the base case, i = i' = j = j', QI is trivially true.

Now, suppose that QI holds for all non-negative j'-i up to δ . Now, let $j'-i=\delta+1$. There are two cases to consider.

Case A: i' = j. In this case, we have to show that $c(i,j) + c(j,j') \le c(i,j')$. Now, let k be an integer such that w(i,j') = w(i,j') + c(i,k-1) + c(k,j'). There are two cases to consider regarding the value of k.

 $-k \leq j$. In this case, we have that

$$c(i,j) + c(j,j') \le c_k(i,j) + c(j,j')$$

$$= w(i,j) + c(i,k-1) + c(k,j) + c(j,j')$$

$$\le w(i,j') + c(i,k-1) + c(k,j')$$

$$= c(i,j')$$

where the identity $c(k, j) + c(j, j') \le c(k, j')$ is derived from the induction hypothesis.

-k > j. This case is symmetric to the last case. We shall omit the proof.

Case B: i' < j. Let $c_k(i, j) = w(i, j) + c(i, k-1) + c(k, j)$. Let y be an integer such that $c(i, j') = c_y(i, j')$, and let z be an integer such that $c(i', j) = c_z(i', j)$. There are again two cases to consider.

 $-y \le z$. We have that $i < y \le z \le j$. Hence,

$$\begin{split} c(i,j) + c(i',j') &\leq c_y(i,k) + c_z(i',j') \\ &\leq w(i,j) + c(i,y-1) + c(y,j) + w(i',j') + c(i',z-1) + c(z,j') \\ &= [w(i,j) + w(i',j')] + c(i,y-1) + c(i',z-1) + [c(y,j) + c(z,j')] \\ &\leq [w(i,j') + w(i',j)] + c(i,y-1) + c(i',z-1) + [c(y,j') + c(z,j)] \\ &= [w(i,j') + c(i,y-1) + c(y,j')] + [w(i',j) + c(i',z-1) + c(z,j)] \\ &= c_y(i,j') + c_z(i',j) \\ &= c(i,j') + c(i',j). \end{split}$$

-y>z. This case is symmetric to the last case. We shall omit the proof (again).

By induction, QI holds for all value of i' - i.

Lemma 10. Let c be defined as in (4), and let w be monotone and satisfy concave QI. Let $K(i,j) = \max\{k \mid c(i,j) = c_k(i,j)\}$. Then, $K(i,j+1) \leq K(i,j) \leq K(i+1,j+1)$ for all $i \leq j$.

Proof. Similar to the proof of Lemma 5, we prove that the first inequality, $K(i, j) \leq K(i + 1, j + 1)$, by showing that the following proposition is true: for all k' > k,

$$[c_{k'}(i,j) \le c_k(i,j)] \implies [c_{k'}(i,j+1) \le c_k(i,j+1)].$$
 (2)

Let k and k' be integers such that $k < k' \le j \le j+1$. Applying concave QI, we have that

$$c(k,j) + c(k',j+1) \le c(k,j+1) + c(k',j).$$

Adding w(i, j) + w(i, j + 1) + c(i, k - 1) + c(i, k' - 1) to both sides, we have

$$c_k(i,j) + c_{k'}(i,j+1) \le c_k(i,j+1) + c_{k'}(k',j)$$

which implies (2).

The second inequality can be proven in the same way.

Theorem 11. Let c be defined as in (4), and let w be monotone and satisfy concave QI. Then, c can be computed in $O(n^2)$ time.

• We have been only discussing the case where c(i,i) = 0 for all i. However, c(i,i) can take any value a_i because, then, $c(i,j) = c_{\text{old}}(i,j) + \sum_{k=i}^{j} a_k$, and QI still holds.

Corollary 12. Let c be defined as follows:

$$c(i,j) = \begin{cases} a_i, & i = j \\ w(i,j) + \min_{i < k \le j} \{ c(i,k-1) + c(k,j) \}, & i < j \end{cases}$$

for any constant a_1, a_2, \ldots, a_n . Then, if w satisfies concave QI and is monotone in the sense of Definition 8, then c satisfies QI, K is monotone in the sense of Claim 1, and thus c can be computed in $O(n^2)$.

- One famous example of dynamic programming problems that can be sped up this way is the optimal binary search tree problem. You are given a set of n distinct English words and you are to build an optimal binary search tree that minimize the expected search time according to these specifications:
 - 1. The *i*th word has the probability of being searched p_i .
 - 2. The probability of the search falling between the *i*th and the (i+1)st word is q_i . (So we have q_0 , q_1, q_2, \ldots, q_n)
 - 3. Words are internal nodes, and leaves represent words that fall between them. (So there are 2n+1 nodes in total.)
 - 4. A node at depth d incur a search time of d.

Let c(i, j) be the cost of the minimum binary search tree for words from the (i + 1)st word to the jth word (i.e., the binary tree would consist of nodes for q_i , p_{i+1} , q_{i+1} , ..., p_j , and q_j). Then, c(i, j) can be defined as in (4) with $w(i, j) = q_i + p_{i+1} + q_{i+1} + \cdots + p_j + q_j$, which can be shown easily to satisfy concave QI and to be monotone.

Hence, the optimal binary search tree problem can be solved in $O(n^2)$ time.

5 Optimal t-ary Tree Problem

• What if, instead of constructing a binary search tree, we want to construct a t-ary search tree? If we restrict ourselves to the case that every search request must hit a word, the situation may be viewed as trying to compute c where

$$c(i,j) = \begin{cases} 0, & i \ge j \\ w(i,j) + \min_{i < k_1 \le k_2 \le \dots \le k_{t-1} \le j}, \{c(i,k_1-1) + c(k_1,k_2-1) + \dots + c(k_{t-1},j)\}, & i < j \end{cases}$$
(3)

where $w(i, j) = p_{i+1} + p_{i+2} + \dots + p_j$.

• The main result in this section is that it is possible to compute c in $O(n^2 \log t)$ time if w is non-negative and satisfies convex QI and the triangle inequality (TI):

Definition 13. Function $w(\cdot,\cdot)$ is said to satisfy the triangle inequality if, for all i < j < k, we have

$$w(i,j) + w(j,k) \le w(i,k).$$

Note that TI and w's non-negativity implies monotonicity in the sense of Definition 8.

• To simplify the notation, we define

$$f^{(t)}(i,j) = \begin{cases} 0, & i \ge j \\ \min_{i < k_1 \le k_2 \le \dots \le k_{t-1} \le j}, \{c(i,k_1-1) + c(k_1,k_2-1) + \dots + c(k_{t-1},j)\}, & i < j \end{cases}$$

so that we can write $c(i, j) = w(i, j) + f^{(t)}(i, j)$.

Furthermore, for any q such that $1 \le q < t$, we define

$$f^{(q)}(i,j) = \begin{cases} 0, & i \ge j \\ \min_{i \le k_1 \le k_2 \le \dots \le k_{q-1} \le j}, \{c(i,k_1-1) + c(k_1,k_2-1) + \dots + c(k_{q-1},j)\}, & i < j \end{cases}$$

Note that $f^{(t)}(i,j)$ and $f^{(q)}(i,j)$ differs only at whether k_1 being strictly greater than i or not. $f^{(t)}(i,j)$ requires that the interval [i,j] be split, but $f^{(q)}(i,j)$ do not.

Note also that $f^{(1)}(i, j) = c$.

• We now state and give brief proofs of some properties of $f^{(t)}(i,j)$ and $f^{(q)}(i,j)$.

Proposition 14.
$$f^{(1)}(i,j) \ge f^{(2)}(i,j) \ge \cdots \ge f^{(t-1)}(i,j) \ge f^{(t)}(i,j)$$

Proof. The inequealities hold by definition of $f^{(q)}(i,j)$ except for the last one: $f^{(t-1)}(i,j) \ge f^{(t)}(i,j)$. Now, if $f^{(t-1)}(i,j)$ achieves its minimum in such a way that the interval [i,j] is split, then $f^{(t-1)}(i,j) \ge f^{(t)}(i,j)$. Otherwise, $f^{(t-1)}(i,j) = c(i,j) \ge f^{(t)}(i,j)$ because $w(i,j) \ge 0$.

Proposition 15. For any q such that $2 \le q < t$, and for any r and s such that $r \ge 1$, $s \ge 1$, and r + s = q, we have that

$$f^{(q)}(i,j) = \min_{i \le k \le j} \{f^{(r)}(i,k-1) + f^{(s)}(k,j)\}$$

Proof. It is evident that LHS \leq RHS. To show that LHS \geq RHS, suppose that the value of $f^{(q)}(i,j)$ is achieved by using $k_1, k_2, \ldots, k_r, \ldots, k_{q-1}$. Then, $f^{(q)}(i,j) \geq f^{(r)}(i,k_{r-1}) + f^{(s)}(k_r,j) \geq$ RHS. \square

Proposition 16. For any r and s such that $r \ge 1$, $s \ge 1$, t = r + s, we have

$$f^{(t)}(i,j) = \min_{i < k \le j} \{ f^{(r)}(i,k-1) + f^{(s)}(k,j) \}$$

Proof. Same as that of the proof of Proposition 15.

• We now prove that $f^{(q)}$ and $f^{(t)}$ satisfy concave QI.

Lemma 17. Let q be an integer such that $2 \le q < t$. Let r and s be integers such that $r \ge 1$, $s \ge 1$, and r+s=q. If $f^{(r)}(i,j)$ and $f^{(s)}(i,j)$ satisfy concave QI for $j-i \le \delta$, then $f^{(q)}(i,j)$ satisfies concave QI for $j-i \le \delta$ as well.

Proof. Let i, i', j, j' be integers such that $i \leq i' \leq j \leq j'$ with $j' - i \leq \delta$. There are two cases to consider.

Case A: i' = j. We have to show that $f^{(q)}(i,j) + f^{(q)}(j,j') \le f^{(q)}(i,j')$. Let k be the integer such that $f^{(q)}(i,j') = f^{(r)}(i,k-1) + f^{(s)}(k,j')$. There two cases to consider regarding the value of k.

 $-k \leq j$. Then, we have that

$$\begin{split} f^{(q)}(i,j) + f^{(q)}(j,j') &\leq f^{(r)}(i,k-1) + f^{(s)}(k,j) + f^{(q)}(j,j') \\ &\leq f^{(r)}(i,k-1) + f^{(s)}(k,j) + f^{(s)}(j,j') \\ &\leq f^{(r)}(i,k-1) + f^{(s)}(k,j') + f^{(s)}(j,j) \\ &= f^{(r)}(i,k-1) + f^{(s)}(k,j') \\ &= f^{(q)}(i,j') \end{split}$$

-k>j. This case is symmetric to the last case, and we will omit the proof.

Case B: i' < j. Let y be the integer such that $f^{(q)}(i,j') = f^{(r)}(i,y-1) + f^{(s)}(y,j')$, and z be the integer such that $f^{(q)}(i',j) = f^{(r)}(i',z-1) + f^{(s)}(z,j)$. There are two cases to consider.

 $-y \le z$. We have that $i \le y \le z \le j$. So,

$$\begin{split} f^{(q)}(i,j) + f^{(q)}(i',j') &\leq f^{(r)}(i,y-1) + f^{(s)}(y,j) + f^{(r)}(i',z-1) + f^{(s)}(z,j') \\ &= f^{(r)}(i,y-1) + f^{(r)}(i',z-1) + [f^{(s)}(y,j) + f^{(s)}(z,j')] \\ &\leq f^{(r)}(i,y-1) + f^{(r)}(i',z-1) + [f^{(s)}(y,j') + f^{(s)}(z,j)] \\ &= [f^{(r)}(i,y-1) + f^{(s)}(y,j')] + [f^{(r)}(i',z-1) + f^{(s)}(z,j)] \\ &= f^{(q)}(i,j') + f^{(q)}(i',j) \end{split}$$

-y>z. This case is symmetric to the last case, and we will omit the proof.

We can now conclude that $f^{(q)}$ satisfies concave QI as well.

Lemma 18. Let r and s be integers such that $r \ge 1$, $s \ge 1$, and r + s = t. If $f^{(r)}(i,j)$ and $f^{(s)}(i,j)$ satisfy concave QI for $j - i \le \delta$, then $f^{(t)}(i,j)$ satisfies concave QI for $j - i \le \delta + 1$.

Proof. Pretty much the same as the proof of Lemma 17. However, notice that now $j-i=\delta+1$ because $f^{(t)}$ requires the interval to be split.

Lemma 19. If $f^{(t)}(i,j)$ satisfies concave QI for $j-i=\delta$, then $f^{(1)}(i,j)$ satisfies concave QI for $j-i=\delta$ as well.

Proof. Since $f^{(1)}(i,j) = c(i,j) = w(i,j) + f^{(t)}(i,j)$, we have that $f^{(1)}(i,j)$ satisfies concave QI as well because it is a sum of two functions which satisfy concave QI.

Lemma 20. $f^{(1)}, f^{(2)}, \ldots, f^{(t)}$ all satisfy concave QI.

Proof. By induction on δ and using Lemma 17, Lemma 18, and Lemma 19 together.

• Now, our main theorem:

Theorem 21. c as defined in (3) can be computed in $O(n^2 \log t)$ time if w is non-negative and satisfy both QI and TI.

Proof. Let q_1, q_2, \ldots, q_m be an additive chain of t; that is, a sequence of integers such that (1) $q_1 = 1$, (2) $q_m = t$, and (3) for any a > 1, $q_a = q_b + q_c$ for some a, b < i. It is easy to show that we can find an additive change where $m \le 2 \log t$.

Let $K^{(q_a)}(i,j) = \max_{i \le k \le j} \{k \mid f^{(q_a)}(i,j) = f^{(q_b)}(i,k-1) + f^{(q_c)}(k,j)\}$. Using the reasoning similar to that for Lemma 10, we can show that $K^{(q_a)}(i,j) \le K^{(q_a)}(i,j+1) \le K^{(q_a)}(i+1,j+1)$ for all $1 \le a \le m$.

Hence, we can compute $f^{(q_1)}, f^{(q_2)}, \ldots, f^{(q_m)}$ with Algorithm 2, which runs in $O(n^2 \log t)$ time.

Algorithm 2 Solve t-ary Recurrence

```
1: for a = 1 to m do
      for i = 1 to n do
         f^{(q_a)}[i,i] = 0
 3:
         K^{(q_a)}[i,i] = i
 4:
       end for
 5:
 6: end for
 7:
 8: for \delta = 1 to n-1 do
      Compute-F(\delta, m)
9:
10:
      for i = 1 to n - \delta do
11:
         j = i + \delta
12:
         f^{(q_1)}[i,j] = w(i,j) + f^{(q_m)}[i,j]
13:
      end for
14:
15:
       for a = 2 to m - 1 do
16:
17:
         Compute-F(\delta, a)
      end for
18:
19: end for
```

Algorithm 3 Compute- $F(\delta, a)$

```
1: for i = 1 to n - \delta do
        Let b, c be integers such that q_b + q_c = q_a
        j = i + \delta
 3:
        f^{(q_a)}[i,j] = -\infty
 4:
        for k = K^{(q_a)}[i, j-1] to K^{(q_a)}[i+1, j] do
 5:
           if f^{(q_a)}[i,k-1] + f^{(q_a)}[k,j] \ge f^{(q_a)}[i,j] then f^{(q_a)}[i,j] = f^{(q_b)}[i,k-1] + f^{(q_c)}[k,j]
 6:
 7:
               K^{(q_a)}[i,j] = k
 8:
           end if
 9:
        end for
10:
11: end for
```