PC3231

Tutorial 5: Electrodynamics & Relativity

1. Consider a particle in hyperbolic motion,

$$x(t) = \sqrt{b^2 + (ct)^2}, \quad y = z = 0$$

(a) Find the proper time τ as a function of t, assuming the clocks are set so that $\tau = 0$ when t = 0. [Hint: Integrate $d\tau = \sqrt{1 - u^2/c^2} dt$]

Note:
$$\int \frac{1}{\sqrt{a^2 + x^2}} dx = \ln[x + \sqrt{a^2 + x^2}]$$

- (b) Find x and u (ordinary velocity) as functions of τ .
- (c) Find η^{μ} (proper velocity) as a function of τ .

2. Define proper acceleration in the obvious way:

$$\alpha^{\mu} \equiv \frac{\mathrm{d}\eta^{\mu}}{\mathrm{d}\tau} = \frac{\mathrm{d}^2 x^{\mu}}{\mathrm{d}\tau^2}$$

- (a) Find α^0 and α in terms of \boldsymbol{u} and \boldsymbol{a} (the ordinary acceleration).
- (b) Express $\alpha_{\mu}\alpha^{\mu}$ in terms of \boldsymbol{u} and \boldsymbol{a} .
- (c) Show that $\eta^{\mu}\alpha_{\mu}=0$.
- (d) Write the Minkowski version of Newton's second law, $K^{\mu} \equiv \frac{\mathrm{d}p^{\mu}}{\mathrm{d}\tau}$, in terms of α^{μ} . Evaluate the invariant product $K^{\mu}\eta_{\mu}$.

- 3. In system S, a static uniform line charge λ coincides with the z axis.
 - (a) Write the electric field E in *Cartesian* coordinates, for the point (x, y, z).
 - (b) Use the transformation rules

$$\bar{E}_x = E_x$$
, $\bar{E}_y = \gamma (E_y - vB_z)$, $\bar{E}_z = \gamma (E_z + vB_y)$

$$\bar{B}_x = B_x$$
, $\bar{B}_y = \gamma \left(B_y + \frac{v}{c^2} E_z \right)$, $\bar{B}_z = \gamma \left(B_z - \frac{v}{c^2} E_y \right)$

to find the electric in \bar{S} , which moves with speed v in the x direction with respect to S. The field is still in terms of (x,y,z); express it instead in terms of the coordinates $(\bar{x},\bar{y},\bar{z})$ in \bar{S} . Finally, write \bar{E} in terms of the vector \bar{R} from the *present* location of the wire and the angle θ between \bar{R} and \hat{x} . Does the field point away from the instantaneous location of the wire, like the field of a uniformly moving point charge?

- 4. Inertial system S' moves at constant velocity $\mathbf{v} = \beta c(\cos\phi \,\hat{\mathbf{x}} + \sin\phi \,\hat{\mathbf{y}})$ with respect to S. Their axes are parallel to one another, and their origins coincide at t = t' = 0, as usual. Find the Lorentz transformation matrix Λ .
- 5. Calculate the threshold (minimum) momentum the pion must have in order for the process $\pi + p \to K + \sum$ to occur. The proton p is initially at rest. Use $m_{\pi}c^2 = 150$, $m_Kc^2 = 500$, $m_pc^2 = 900$, $m_{\Sigma}c^2 = 1200$ (all in MeV).

Hint: To formulate the threshold condition, examine the collision in the center-of-momentum frame.