2. Функции. Крайни и изброими множества

Ще използуваме дефиницията на функция от училище.

Обикновенно функциите се означават така: f : A → B. Тук A е дефиниционно множество или, дефиниционна област, а B е множество, където се изобразяват функционалните стойности на f. Такива функции се наричат тотални, или навсякъде дефинирани в A.

Ние ще използуваме още и така наречените частични функции. Ще ги означаваме с f : A — → B. Частичните функции, означени по този начин, имат за дефиниционна област подмножество на A.

Пример за частична функция е $f(x) = \frac{1}{x}$. Тук $f: \mathbb{R} - \to \mathbb{R}$.

Означение

Ние ще използуваме още и така наречените частични функции. Ще ги означаваме с $f:A \to B$. Частичните функции, означени по този начин, имат за дефиниционна област подмножество на A.

Пример за частична функция е $f(x) = \frac{1}{x}$. Тук $f: \mathbb{R} - \to \mathbb{R}$.

Означение

Ние ще използуваме още и така наречените частични функции. Ще ги означаваме с f : A — → В. Частичните функции, означени по този начин, имат за дефиниционна област подмножество на А.

Пример за частична функция е $f(x) = \frac{1}{x}$. Тук $f: \mathbb{R} - \to \mathbb{R}$.

Означение

Ние ще използуваме още и така наречените частични функции. Ще ги означаваме с f : A — → В. Частичните функции, означени по този начин, имат за дефиниционна област подмножество на А.

Пример за частична функция е $f(x) = \frac{1}{x}$. Тук $f: \mathbb{R} - \to \mathbb{R}$.

Означение

Ние ще използуваме още и така наречените частични функции. Ще ги означаваме с $f:A \to B$. Частичните функции, означени по този начин, имат за дефиниционна област подмножество на A.

Пример за частична функция е $\mathrm{f}(\mathrm{x}) = rac{1}{\mathrm{x}}$. Тук $\mathrm{f}: \mathbb{R} - o \mathbb{R}$.

Означение

Ние ще използуваме още и така наречените частични функции. Ще ги означаваме с $f:A \to B$. Частичните функции, означени по този начин, имат за дефиниционна област подмножество на A.

Пример за частична функция е $f(x) = \frac{1}{x}$. Тук $f: \mathbb{R} - \to \mathbb{R}$.

Означение

Ние ще използуваме още и така наречените частични функции. Ще ги означаваме с $f:A \to B$. Частичните функции, означени по този начин, имат за дефиниционна област подмножество на A.

Пример за частична функция е $f(x) = \frac{1}{x}$. Тук $f : \mathbb{R} - \to \mathbb{R}$.

Означение

Ние ще използуваме още и така наречените частични функции. Ще ги означаваме с $f:A \to B$. Частичните функции, означени по този начин, имат за дефиниционна област подмножество на A.

Пример за частична функция е $f(x) = \frac{1}{x}$. Тук $f : \mathbb{R} - \to \mathbb{R}$.

Означение

Ние ще използуваме още и така наречените частични функции. Ще ги означаваме с $f:A \to B$. Частичните функции, означени по този начин, имат за дефиниционна област подмножество на A.

Пример за частична функция е $f(x) = \frac{1}{x}$. Тук $f : \mathbb{R} - \to \mathbb{R}$.

Означение

Да напомним, че казваме, че две функции f и g са равни и пишем f=g точно тогава, когато $D_f=D_g$ и за всяко $x\in D_f$ е изпълнено, че f(x)=g(x).

Да напомним още, че ако $C \subseteq A$ и $f : A \to B$, то образът на C посредством f се отбелязва c f[C] и $f[C] = \{f(c) | c \in C\}$.

Дефиниция

В общия случай с D_f означаваме дефиниционната област, а с R_f – множеството на функционалните стойности, т.е.

 $R_f = \{y | \text{ съществува } x \in D_f \text{ такова, че } y = f(x) \}.$

Да напомним, че казваме, че две функции f и g са равни и пишем f=g точно тогава, когато $D_f=D_g$ и за всяко $x\in D_f$ е изпълнено, че f(x)=g(x).

Да напомним още, че ако $C \subseteq A$ и $f : A \to B$, то образът на C посредством f се отбелязва c f[C] и $f[C] = \{f(c) | c \in C\}$.

Дефиниция

Да напомним, че казваме, че две функции f и g са равни и пишем f = g точно тогава, когато $D_f = D_g$ и за всяко $x \in D_f$ е изпълнено, че f(x) = g(x).

Да напомним още, че ако $C \subseteq A$ и $f : A \to B$, то образът на C посредством f се отбелязва c f[C] и $f[C] = \{f(c) | c \in C\}$.

Дефиниция

Да напомним, че казваме, че две функции f и g са равни и пишем f=g точно тогава, когато $D_f=D_g$ и за всяко $x\in D_f$ е изпълнено, че f(x)=g(x).

Да напомним още, че ако $C \subseteq A$ и $f : A \to B$, то образът на C посредством f се отбелязва c f[C] и $f[C] = \{f(c) | c \in C\}$.

Дефиниция

Да напомним, че казваме, че две функции f и g са равни и пишем f=g точно тогава, когато $D_f=D_g$ и за всяко $x\in D_f$ е изпълнено, че f(x)=g(x).

Да напомним още, че ако $C\subseteq A$ и $f:A\to B$, то образът на C посредством f се отбелязва c f[C] и $f[C]=\{f(c)|c\in C\}$.

Дефиниция

Да напомним, че казваме, че две функции f и g са равни и пишем f=g точно тогава, когато $D_f=D_g$ и за всяко $x\in D_f$ е изпълнено, че f(x)=g(x).

Да напомним още, че ако $C\subseteq A$ и $f:A\to B$, то образът на C посредством f се отбелязва c f[C] и $f[C]=\{f(c)|c\in C\}$.

Дефиниция

Нека $f: A \to B$. Казваме, че f е инективна (инекция, обратима) точно тогава, когато за всеки два различни елемента $a_1, a_2 \in A$ е изпълнено $f(a_1) \neq f(a_2)$.

Дефиниция

Нека $f: A \to B$. Казваме, че f е сюрективна (сюрекция, върху) точно тогава, когато за всеки елемент $b \in B$ съществува $a \in A$ така, че е изпълнено f(a) = b.

Дефиниция

Нека $f: A \to B$. Казваме, че f е биективна (биекция, взаимно еднозначна) точно тогава, когато f е едновременно инективна и сюрективна.

Нека $f: A \to B$. Казваме, че f е инективна (инекция, обратима) точно тогава, когато за всеки два различни елемента $a_1, a_2 \in A$ е изпълнено $f(a_1) \neq f(a_2)$.

Дефиниция

Нека $f: A \to B$. Казваме, че f е сюрективна (сюрекция, върху) точно тогава, когато за всеки елемент $b \in B$ съществува $a \in A$ така, че е изпълнено f(a) = b.

Дефиниция

Нека $f: A \to B$. Казваме, че f е биективна (биекция, взаимно еднозначна) точно тогава, когато f е едновременно инективна и сюрективна.

Нека $f: A \to B$. Казваме, че f е инективна (инекция, обратима) точно тогава, когато за всеки два различни елемента $a_1, a_2 \in A$ е изпълнено $f(a_1) \neq f(a_2)$.

Дефиниция

Нека $f: A \to B$. Казваме, че f е сюрективна (сюрекция, върху) точно тогава, когато за всеки елемент $b \in B$ съществува $a \in A$ така, че е изпълнено f(a) = b.

Дефиниция

Нека $f:A\to B$. Казваме, че f е биективна (биекция, взаимно еднозначна) точно тогава, когато f е едновременно инективна и сюрективна.

Нека $f:A\to B$ и $g:B\to C$. Тогава ако $h:A\to C$ е композиция на функциите f и g, то са в сила:

- a) Ако f и g са инективни, то и h е инективна;
- б) Ако f и g са сюрективни, то и h е сюрективна;
- в) Ако f и g са биективни, то и h е биективна.

- а) Нека f и g са инективни и $a_1, a_2 \in A$ са два различни елемента. Тогава $f(a_1) \neq f(a_2)$ и $f(a_1), f(a_2) \in B$.
- б) Нека f и g са сюрективни и с \in C. Тогава съществува b \in B такова, че g(b) = с и съществува а \in A такова, че f(a) = b. Оттук h(a) = g(f(a)) = c.
- в) Очевидно

Нека $f:A\to B$ и $g:B\to C$. Тогава ако $h:A\to C$ е композиция на функциите f и g, то са в сила:

- а) Ако f и g са инективни, то и h е инективна;
- б) Ако f и g са сюрективни, то и h е сюрективна;
- в) Ако f и g са биективни, то и h е биективна.

- а) Нека f и g са инективни и $a_1, a_2 \in A$ са два различни елемента. Тогава $f(a_1) \neq f(a_2)$ и $f(a_1), f(a_2) \in B$.
- б) Нека f и g са сюрективни и с \in C. Тогава съществува b \in B такова, че g(b) = c и съществува а \in A такова, че f(a) = b. Оттук h(a) = g(f(a)) = c.
- в) Очевидно

Нека $f:A\to B$ и $g:B\to C.$ Тогава ако $h:A\to C$ е композиция на функциите f и g, то са в сила:

- а) Ако f и g са инективни, то и h е инективна;
- б) Ако f и g са сюрективни, то и h е сюрективна;
- в) Ако f и g са биективни, то и h е биективна.

- а) Нека f и g са инективни и $a_1, a_2 \in A$ са два различни елемента. Тогава $f(a_1) \neq f(a_2)$ и $f(a_1), f(a_2) \in B$.
- б) Нека f и g са сюрективни и с \in C. Тогава съществува b \in B такова, че g(b) = c и съществува а \in A такова, че f(a) = b. Оттук h(a) = g(f(a)) = c.
- в) Очевидно

Нека $f:A\to B$ и $g:B\to C.$ Тогава ако $h:A\to C$ е композиция на функциите f и g, то са в сила:

- а) Ако f и g са инективни, то и h е инективна;
- б) Ако f и g са сюрективни, то и h е сюрективна;
- в) Ако f и g са биективни, то и h е биективна.

- а) Нека f и g са инективни и $a_1, a_2 \in A$ са два различни елемента. Тогава $f(a_1) \neq f(a_2)$ и $f(a_1), f(a_2) \in B$.
- б) Нека f и g са сюрективни и с \in C. Тогава съществува b \in B такова, че g(b) = c и съществува а \in A такова, че f(a) = b. Оттук h(a) = g(f(a)) = c.
- в) Очевидно

Нека $f:A\to B$ и $g:B\to C.$ Тогава ако $h:A\to C$ е композиция на функциите f и g, то са в сила:

- a) Ако f и g са инективни, то и h е инективна;
- б) Ако f и g са сюрективни, то и h е сюрективна;
- в) Ако f и g са биективни, то и h е биективна.

- а) Нека f и g са инективни и $a_1, a_2 \in A$ са два различни елемента. Тогава $f(a_1) \neq f(a_2)$ и $f(a_1), f(a_2) \in B$.
- Следователно, $g(f(a_1)) \neq g(f(a_2))$, т.е. $h(a_1) \neq h(a_2)$.
- б) Нека f и g са сюрективни и $c \in C$. Тогава съществува $b \in B$ такова, че g(b) = c и съществува $a \in A$ такова, че f(a) = b. Оттук h(a) = g(f(a)) = c.
- в) Очевидно

Нека $f:A\to B$ и $g:B\to C.$ Тогава ако $h:A\to C$ е композиция на функциите f и g, то са в сила:

- a) Ако f и g са инективни, то и h е инективна;
- б) Ако f и g са сюрективни, то и h е сюрективна;
- в) Ако f и g са биективни, то и h е биективна.

- а) Нека f и g са инективни и $a_1, a_2 \in A$ са два различни елемента. Тогава $f(a_1) \neq f(a_2)$ и $f(a_1), f(a_2) \in B$. Следователно, $g(f(a_1)) \neq g(f(a_2))$, т.е. $h(a_1) \neq h(a_2)$.
- б) Нека f и g са сюрективни и с \in C. Тогава съществува b \in B такова, че g(b) = c и съществува $a \in A$ такова, че f(a) = b. Оттук h(a) = g(f(a)) = c.
- в) Очевидно

Нека $f:A\to B$ и $g:B\to C.$ Тогава ако $h:A\to C$ е композиция на функциите f и g, то са в сила:

- a) Ако f и g са инективни, то и h е инективна;
- б) Ако f и g са сюрективни, то и h е сюрективна;
- в) Ако f и g са биективни, то и h е биективна.

- а) Нека f и g са инективни и $a_1, a_2 \in A$ са два различни елемента. Тогава $f(a_1) \neq f(a_2)$ и $f(a_1), f(a_2) \in B$. Следователно, $g(f(a_1)) \neq g(f(a_2))$, т.е. $h(a_1) \neq h(a_2)$.
- б) Нека f и g са сюрективни и с \in C. Тогава съществува b \in B такова, че g(b) = с и съществува а \in A такова, че f(a) = b. Оттук h(a) = g(f(a)) = c.
- в) Очевидно

Нека $f:A\to B$ и $g:B\to C.$ Тогава ако $h:A\to C$ е композиция на функциите f и g, то са в сила:

- a) Ако f и g са инективни, то и h е инективна;
- б) Ако f и g са сюрективни, то и h е сюрективна;
- в) Ако f и g са биективни, то и h е биективна.

- а) Нека f и g са инективни и $a_1, a_2 \in A$ са два различни елемента. Тогава $f(a_1) \neq f(a_2)$ и $f(a_1), f(a_2) \in B$. Следователно, $g(f(a_1)) \neq g(f(a_2))$, т.е. $h(a_1) \neq h(a_2)$.
- б) Нека f и g са сюрективни и с \in C. Тогава съществува b \in B такова, че g(b) = с и съществува а \in A такова, че f(a) = b. Оттук h(a) = g(f(a)) = c.
- в) Очевидно

Нека $f:A\to B$ и $g:B\to C.$ Тогава ако $h:A\to C$ е композиция на функциите f и g, то са в сила:

- a) Ако f и g са инективни, то и h е инективна;
- б) Ако f и g са сюрективни, то и h е сюрективна;
- в) Ако f и g са биективни, то и h е биективна.

- а) Нека f и g са инективни и $a_1, a_2 \in A$ са два различни елемента. Тогава $f(a_1) \neq f(a_2)$ и $f(a_1), f(a_2) \in B$. Следователно, $g(f(a_1)) \neq g(f(a_2))$, т.е. $h(a_1) \neq h(a_2)$.
- б) Нека f и g са сюрективни и с \in C. Тогава съществува b \in B такова, че g(b) = c и съществува а \in A такова, че f(a) = b. Оттук h(a) = g(f(a)) = c.
- в) Очевидно.

Нека $f:A\to B$. Казваме, че $g:R_f\to A$ е обратна на f точно тогава, когато за всеки елемент $b\in R_f$ е изпълнено f(g(b))=b.

$$f^{-1}(b) = a \iff f(a) = b$$

Нека $f: A \to B$. Казваме, че $g: R_f \to A$ е обратна на f точно тогава, когато за всеки елемент $b \in R_f$ е изпълнено f(g(b)) = b.

Примери за обратни функции от училище са $\log_a x, \sqrt{x}$.

Една функция може да има много обратни. Когато една функция $f:A\to B$ е биективна, тя има единствена обратна и тя се означава с f^{-1} и тя се определя еднозначно с помощта на еквивалентността:

$$f^{-1}(b) = a \iff f(a) = b$$

Нека $f:A\to B$. Казваме, че $g:R_f\to A$ е обратна на f точно тогава, когато за всеки елемент $b\in R_f$ е изпълнено f(g(b))=b.

$$f^{-1}(b) = a \iff f(a) = b$$

Нека $f: A \to B$. Казваме, че $g: R_f \to A$ е обратна на f точно тогава, когато за всеки елемент $b \in R_f$ е изпълнено f(g(b)) = b.

$$f^{-1}(b) = a \iff f(a) = b$$

Нека $f: A \to B$. Казваме, че $g: R_f \to A$ е обратна на f точно тогава, когато за всеки елемент $b \in R_f$ е изпълнено f(g(b)) = b.

$$f^{-1}(b) = a \iff f(a) = b$$
.

Казваме, че едно множество A е крайно, ако съществува естествено число n и биекция $f:A \to I_n$ (или $f:I_n \to A$). Единственото такова n, ако съществува, се нарича брой на елементите на множеството A. Броят на елементите на

единственото такова п, ако съществува, се нарича **оро**и на елементите на множеството А. Броят на елементите на крайното множество А ще означаваме с |A|.

Ясно е, че ако едно множество е крайно с брой на елементите n, то елементите на A могат да се подредят в редица от неповтарящи се елементи. Наистина, нека $f: I_n \to A$, откъдето $A = \{f(1), \dots f(n)\}$.

Ако вместо I_n в горната дефиниция използуваме J_n получаваме еквивалентна дефиниция.

Казваме, че едно множество A е крайно, ако съществува естествено число n и биекция $f:A \to I_n$ (или $f:I_n \to A$). Единственото такова n, ако съществува, се нарича брой на елементите на множеството A. Броят на елементите на крайното множество A ще означаваме c |A|.

Ясно е, че ако едно множество е крайно с брой на елементите n, то елементите на A могат да се подредят в редица от неповтарящи се елементи. Наистина, нека $f: I_n \to A$, откъдето $A = \{f(1), \dots f(n)\}$.

Ако вместо I_n в горната дефиниция използуваме J_n получаваме еквивалентна дефиниция.

Казваме, че едно множество A е крайно, ако съществува естествено число n и биекция $f:A \to I_n$ (или $f:I_n \to A$). Единственото такова n, ако съществува, се нарича брой на елементите на множеството A. Броят на елементите на крайното множество A ще означаваме $c \mid A \mid$.

Ясно е, че ако едно множество е крайно с брой на елементите n, то елементите на A могат да се подредят в редица от неповтарящи се елементи. Наистина, нека $f: I_n \to A$, откъдето $A = \{f(1), \dots f(n)\}.$

Ако вместо I_n в горната дефиниция използуваме J_n получаваме еквивалентна дефиниция.

Казваме, че едно множество A е крайно, ако съществува естествено число n и биекция $f:A \to I_n$ (или $f:I_n \to A$). Единственото такова n, ако съществува, се нарича брой на елементите на множеството A. Броят на елементите на крайното множество A ще означаваме $c \mid A \mid$.

Ясно е, че ако едно множество е крайно с брой на елементите n, то елементите на A могат да се подредят в редица от неповтарящи се елементи. Наистина, нека $f: I_n \to A$, откъдето $A = \{f(1), \dots f(n)\}$.

Ако вместо I_n в горната дефиниция използуваме J_n получаваме еквивалентна дефиниция.

(Принцип на биекцията) Нека A и B са крайни множества като |A|=n и |B|=m. Тогава съществува биекция $f:A\to B$ точно тогава, когато n=m.

Доказателство. Нека n=m. Тогава съществуват биекции $f:A\to I_n$ и $g:I_n\to B$. Тогава суперпозицията $h:A\to B$ на f и g е биекция.

Обратно, нека съществува биекция $f_1:A\to B$, тогава съществува както биекция $f:A\to I_n$ така и $g:A\to I_m$, откъдето n=m.

(Принцип на биекцията) Нека A и B са крайни множества като |A|=n и |B|=m. Тогава съществува биекция $f:A\to B$ точно тогава, когато n=m.

Доказателство. Нека n=m. Тогава съществуват биекции $f:A\to I_n$ и $g:I_n\to B$. Тогава суперпозицията $h:A\to B$ на f и g е биекция.

Обратно, нека съществува биекция $f_1:A\to B$, тогава съществува както биекция $f:A\to I_n$ така и $g:A\to I_m$, откъдето n=m.

(Принцип на биекцията) Нека A и B са крайни множества като |A|=n и |B|=m. Тогава съществува биекция $f:A\to B$ точно тогава, когато n=m.

Доказателство. Нека n=m. Тогава съществуват биекции $f:A\to I_n$ и $g:I_n\to B$. Тогава суперпозицията $h:A\to B$ на f и g е биекция.

Обратно, нека съществува биекция $f_1:A\to B,$ тогава съществува както биекция $f:A\to I_n$ така и $g:A\to I_m,$ откъдето n=m.

Казваме, че едно множество A е изброимо, ако съществува биекция $f: \mathbb{N} \to A$ (или $f: A \to \mathbb{N}$).

Забележка. Ако едно множество A е изброимо, то елементите му могат да се подредят в редица от неповтарящи се елементи.

Наистина, нека $f: \mathbb{N} \to A$ е биекция. Тогава редицата $f(0), f(1), \ldots$ е търсената редица. Вярно е и обратното, че ако елементите на едно множество могат да се подредят в редица от неповтарящи се елементи, то то е изброимо.

Дефиниция

Казваме, че едно множество A е изброимо, ако съществува биекция $f: \mathbb{N} \to A$ (или $f: A \to \mathbb{N}$).

Забележка. Ако едно множество А е изброимо, то елементите му могат да се подредят в редица от неповтарящи се елементи.

Наистина, нека $f: \mathbb{N} \to A$ е биекция. Тогава редицата $f(0), f(1), \ldots$ е търсената редица. Вярно е и обратното, че ако елементите на едно множество могат да се подредят в редица от неповтарящи се елементи, то то е изброимо.

Дефиниция

Казваме, че едно множество A е изброимо, ако съществува биекция $f: \mathbb{N} \to A$ (или $f: A \to \mathbb{N}$).

Забележка. Ако едно множество A е изброимо, то елементите му могат да се подредят в редица от неповтарящи се елементи.

Наистина, нека $f: \mathbb{N} \to A$ е биекция. Тогава редицата $f(0), f(1), \ldots$ е търсената редица. Вярно е и обратното, че ако елементите на едно множество могат да се подредят в редица от неповтарящи се елементи, то то е изброимо.

Дефиниция

Казваме, че едно множество A е изброимо, ако съществува биекция $f: \mathbb{N} \to A$ (или $f: A \to \mathbb{N}$).

Забележка. Ако едно множество А е изброимо, то елементите му могат да се подредят в редица от неповтарящи се елементи.

Наистина, нека $f: \mathbb{N} \to A$ е биекция. Тогава редицата $f(0), f(1), \ldots$ е търсената редица. Вярно е и обратното, че ако елементите на едно множество могат да се подредят в редица от неповтарящи се елементи, то то е изброимо.

Дефиниция

Казваме, че едно множество A е изброимо, ако съществува биекция $f: \mathbb{N} \to A$ (или $f: A \to \mathbb{N}$).

Забележка. Ако едно множество А е изброимо, то елементите му могат да се подредят в редица от неповтарящи се елементи.

Наистина, нека $f: \mathbb{N} \to A$ е биекция. Тогава редицата $f(0), f(1), \ldots$ е търсената редица. Вярно е и обратното, че ако елементите на едно множество могат да се подредят в редица от неповтарящи се елементи, то то е изброимо.

Дефиниция

- а) Едно множество най-много изброимо множество точно тогава, когато то е или празно или елементите му могат да се подредят в редица (може и с повторения);
- б) Подмножество на всяко най-много изброимо множество е най-много изброимо;
- в) Обединение на краен брой най-много изброими множества е най-много изброимо;
- г) Обединение на безкрайна редица (Изброимо обединение) от най-много изброими множества е най-много изброимо.

- а) Едно множество най-много изброимо множество точно тогава, когато то е или празно или елементите му могат да се подредят в редица (може и с повторения);
- б) Подмножество на всяко най-много изброимо множество е най-много изброимо;
- в) Обединение на краен брой най-много изброими множества е най-много изброимо;
- г) Обединение на безкрайна редица (Изброимо обединение) от най-много изброими множества е най-много изброимо.

- а) Едно множество най-много изброимо множество точно тогава, когато то е или празно или елементите му могат да се подредят в редица (може и с повторения);
- б) Подмножество на всяко най-много изброимо множество е най-много изброимо;
- в) Обединение на краен брой най-много изброими множества е най-много изброимо;
- г) Обединение на безкрайна редица (Изброимо обединение) от най-много изброими множества е най-много изброимо.

- а) Едно множество най-много изброимо множество точно тогава, когато то е или празно или елементите му могат да се подредят в редица (може и с повторения);
- б) Подмножество на всяко най-много изброимо множество е най-много изброимо;
- в) Обединение на краен брой най-много изброими множества е най-много изброимо;
- г) Обединение на безкрайна редица (Изброимо обединение) от най-много изброими множества е най-много изброимо.

- а) Едно множество най-много изброимо множество точно тогава, когато то е или празно или елементите му могат да се подредят в редица (може и с повторения);
- б) Подмножество на всяко най-много изброимо множество е най-много изброимо;
- в) Обединение на краен брой най-много изброими множества е най-много изброимо;
- г) Обединение на безкрайна редица (Изброимо обединение) от най-много изброими множества е най-много изброимо.

а) Нека най-напред множеството е най-много изброимо, т.е. то е или крайно или изброимо. Ако множеството е изброимо, то забележката по-горе дава доказателство. Ако множетвото A е крайно, нека $f:J_n\to A$ е биекция. Тогава или $A=\emptyset$ или n>0 и редицата $f(0),f(1),\ldots,f(n-1),f(n-1),\ldots$ е търсената.

Обратно, ако $A=\emptyset$, то е крайно. Ако елементите на A могат да се подредят в редица, то елементите могат да се подредят в редица от неповтарящи се елементи, която е или крайна или безкрайна. В първия случай множеството е крайно, а във втория – изброимо.

а) Нека най-напред множеството е най-много изброимо, т.е. то е или крайно или изброимо. Ако множеството е изброимо, то забележката по-горе дава доказателство. Ако множетвото A е крайно, нека $f:J_n\to A$ е биекция. Тогава или $A=\emptyset$ или n>0 и редицата $f(0),f(1),\ldots,f(n-1),f(n-1),\ldots$ е търсената.

Обратно, ако $A=\emptyset$, то е крайно. Ако елементите на A могат да се подредят в редица, то елементите могат да се подредят в редица от неповтарящи се елементи, която е или крайна или безкрайна. В първия случай множеството е крайно, а във втория – изброимо.

а) Нека най-напред множеството е най-много изброимо, т.е. то е или крайно или изброимо. Ако множеството е изброимо, то забележката по-горе дава доказателство. Ако множетвото A е крайно, нека $f:J_n\to A$ е биекция. Тогава или $A=\emptyset$ или n>0 и редицата $f(0),f(1),\ldots,f(n-1),f(n-1),\ldots$ е търсената.

Обратно, ако $A = \emptyset$, то е крайно. Ако елементите на A могат да се подредят в редица, то елементите могат да се подредят в редица от неповтарящи се елементи, която е или крайна или безкрайна. В първия случай множеството е крайно, а във втория – изброимо.

а) Нека най-напред множеството е най-много изброимо, т.е. то е или крайно или изброимо. Ако множеството е изброимо, то забележката по-горе дава доказателство. Ако множетвото A е крайно, нека $f:J_n\to A$ е биекция. Тогава или $A=\emptyset$ или n>0 и редицата $f(0),f(1),\ldots,f(n-1),f(n-1),\ldots$ е търсената.

Обратно, ако $A=\emptyset$, то е крайно. Ако елементите на A могат да се подредят в редица, то елементите могат да се подредят в редица от неповтарящи се елементи, която е или крайна или безкрайна. В първия случай множеството е крайно, а във втория – изброимо.

а) Нека най-напред множеството е най-много изброимо, т.е. то е или крайно или изброимо. Ако множеството е изброимо, то забележката по-горе дава доказателство. Ако множетвото A е крайно, нека $f:J_n\to A$ е биекция. Тогава или $A=\emptyset$ или n>0 и редицата $f(0),f(1),\ldots,f(n-1),f(n-1),\ldots$ е търсената.

Обратно, ако A = ∅, то е крайно. Ако елементите на A могат да се подредят в редица, то елементите могат да се подредят в редица от неповтарящи се елементи, която е или крайна или безкрайна. В първия случай множеството е крайно, а във втория – изброимо.

а) Нека най-напред множеството е най-много изброимо, т.е. то е или крайно или изброимо. Ако множеството е изброимо, то забележката по-горе дава доказателство. Ако множетвото A е крайно, нека $f:J_n\to A$ е биекция. Тогава или $A=\emptyset$ или n>0 и редицата $f(0),f(1),\ldots,f(n-1),f(n-1),\ldots$ е търсената.

Обратно, ако $A=\emptyset$, то е крайно. Ако елементите на A могат да се подредят в редица, то елементите могат да се подредят в редица от неповтарящи се елементи, която е или крайна или безкрайна. В първия случай множеството е крайно, а във втория — изброимо.

а) Нека най-напред множеството е най-много изброимо, т.е. то е или крайно или изброимо. Ако множеството е изброимо, то забележката по-горе дава доказателство. Ако множетвото A е крайно, нека $f:J_n\to A$ е биекция. Тогава или $A=\emptyset$ или n>0 и редицата $f(0),f(1),\ldots,f(n-1),f(n-1),\ldots$ е търсената.

Обратно, ако $A = \emptyset$, то е крайно. Ако елементите на A могат да се подредят в редица, то елементите могат да се подредят в редица от неповтарящи се елементи, която е или крайна или безкрайна. В първия случай множеството е крайно, а във втория — изброимо.

а) Нека най-напред множеството е най-много изброимо, т.е. то е или крайно или изброимо. Ако множеството е изброимо, то забележката по-горе дава доказателство. Ако множетвото A е крайно, нека $f:J_n\to A$ е биекция. Тогава или $A=\emptyset$ или n>0 и редицата $f(0),f(1),\ldots,f(n-1),f(n-1),\ldots$ е търсената.

Обратно, ако $A=\emptyset$, то е крайно. Ако елементите на A могат да се подредят в редица, то елементите могат да се подредят в редица от неповтарящи се елементи, която е или крайна или безкрайна. В първия случай множеството е крайно, а във втория — изброимо.

а) Нека най-напред множеството е най-много изброимо, т.е. то е или крайно или изброимо. Ако множеството е изброимо, то забележката по-горе дава доказателство. Ако множетвото A е крайно, нека $f:J_n\to A$ е биекция. Тогава или $A=\emptyset$ или n>0 и редицата $f(0),f(1),\ldots,f(n-1),f(n-1),\ldots$ е търсената.

Обратно, ако $A=\emptyset$, то е крайно. Ако елементите на A могат да се подредят в редица, то елементите могат да се подредят в редица от неповтарящи се елементи, която е или крайна или безкрайна. В първия случай множеството е крайно, а във втория – изброимо.

а) Нека най-напред множеството е най-много изброимо, т.е. то е или крайно или изброимо. Ако множеството е изброимо, то забележката по-горе дава доказателство. Ако множетвото A е крайно, нека $f:J_n\to A$ е биекция. Тогава или $A=\emptyset$ или n>0 и редицата $f(0),f(1),\ldots,f(n-1),f(n-1),\ldots$ е търсената.

Обратно, ако $A=\emptyset$, то е крайно. Ако елементите на A могат да се подредят в редица, то елементите могат да се подредят в редица от неповтарящи се елементи, която е или крайна или безкрайна. В първия случай множеството е крайно, а във втория – изброимо.

- в) Ще докажем твърдението само за две множества. За повече доказателството е аналогично. Нека A и B са най много изброими. Тогава $A=\{a_0,a_1,\dots\}$ и $B=\{b_0,b_1,\dots\}$ откъдето $A\cup B=\{a_0,b_0,a_1,b_1,\dots\}$.
- г) Нека A_0, A_1, \ldots е изброима редица от най-много изброими множества. Без ограничение на общността ще считаме, че всички са непразни. Тогава за всяко $i, A_i = \{a_{i0}, a_{i1}, \ldots\}$.

- в) Ще докажем твърдението само за две множества. За повече доказателството е аналогично. Нека A и B са най много изброими. Тогава $A=\{a_0,a_1,\dots\}$ и $B=\{b_0,b_1,\dots\},$ откъдето $A\cup B=\{a_0,b_0,a_1,b_1,\dots\}.$
- г) Нека A_0, A_1, \ldots е изброима редица от най-много изброими множества. Без ограничение на общността ще считаме, че всички са непразни. Тогава за всяко $i, A_i = \{a_{i0}, a_{i1}, \ldots\}$.

- в) Ще докажем твърдението само за две множества. За повече доказателството е аналогично. Нека A и B са най много изброими. Тогава $A=\{a_0,a_1,\dots\}$ и $B=\{b_0,b_1,\dots\},$ откъдето $A\cup B=\{a_0,b_0,a_1,b_1,\dots\}.$
- г) Нека A_0, A_1, \ldots е изброима редица от най-много изброими множества. Без ограничение на общността ще считаме, че всички са непразни. Тогава за всяко $i, A_i = \{a_{i0}, a_{i1}, \ldots\}$.

- в) Ще докажем твърдението само за две множества. За повече доказателството е аналогично. Нека A и B са най много изброими. Тогава $A=\{a_0,a_1,\dots\}$ и $B=\{b_0,b_1,\dots\}$, откъдето $A\cup B=\{a_0,b_0,a_1,b_1,\dots\}$.
- г) Нека A_0, A_1, \ldots е изброима редица от най-много изброими множества. Без ограничение на общността ще считаме, че всички са непразни. Тогава за всяко $i, A_i = \{a_{i0}, a_{i1}, \ldots\}$.

- в) Ще докажем твърдението само за две множества. За повече доказателството е аналогично. Нека A и B са най много изброими. Тогава $A=\{a_0,a_1,\dots\}$ и $B=\{b_0,b_1,\dots\},$ откъдето $A\cup B=\{a_0,b_0,a_1,b_1,\dots\}.$
- г) Нека A_0, A_1, \ldots е изброима редица от най-много изброими множества. Без ограничение на общността ще считаме, че всички са непразни. Тогава за всяко $i, A_i = \{a_{i0}, a_{i1}, \ldots\}$.

- в) Ще докажем твърдението само за две множества. За повече доказателството е аналогично. Нека A и B са най много изброими. Тогава $A=\{a_0,a_1,\dots\}$ и $B=\{b_0,b_1,\dots\}$, откъдето $A\cup B=\{a_0,b_0,a_1,b_1,\dots\}$.
- г) Нека A_0, A_1, \ldots е изброима редица от най-много изброими множества. Без ограничение на общността ще считаме, че всички са непразни. Тогава за всяко $i, A_i = \{a_{i0}, a_{i1}, \ldots\}$.

- в) Ще докажем твърдението само за две множества. За повече доказателството е аналогично. Нека A и B са най много изброими. Тогава $A = \{a_0, a_1, \dots\}$ и $B = \{b_0, b_1, \dots\}$, откъдето $A \cup B = \{a_0, b_0, a_1, b_1, \dots\}$.
- г) Нека A_0, A_1, \ldots е изброима редица от най-много изброими множества. Без ограничение на общността ще считаме, че всички са непразни. Тогава за всяко $i, A_i = \{a_{i0}, a_{i1}, \ldots\}$.

```
\begin{aligned} A_0 &= \{a_{00}, a_{01}, a_{02}, \dots \} \\ A_1 &= \{a_{10}, a_{11}, a_{12}, \dots \} \\ A_2 &= \{a_{20}, a_{21}, a_{22}, \dots \} \\ \dots &\dots &\dots \\ \text{Тогава} \ \cup_{i=0}^{\infty} A_i &= \{a_{00}, a_{01}, a_{10}, a_{02}, a_{11}, a_{20}, \dots \} \end{aligned}
```

```
\begin{aligned} A_0 &= \{a_{00}, a_{01}, a_{02}, \dots\} \\ A_1 &= \{a_{10}, a_{11}, a_{12}, \dots\} \\ A_2 &= \{a_{20}, a_{21}, a_{22}, \dots\} \end{aligned}
```

Тогава $\cup_{i=0}^{\infty} A_i = \{a_{00}, a_{01}, a_{10}, a_{02}, a_{11}, a_{20}, \dots\}.$

$$\begin{array}{l} A_0 = \{a_{00}, a_{01}, a_{02}, \dots\} \\ A_1 = \{a_{10}, a_{11}, a_{12}, \dots\} \\ A_2 = \{a_{20}, a_{21}, a_{22}, \dots\} \end{array}$$

Тогава $\bigcup_{i=0}^{\infty} A_i = \{a_{00}, a_{01}, a_{10}, a_{02}, a_{11}, a_{20}, \dots\}.$

```
\begin{aligned} A_0 &= \{a_{00}, a_{01}, a_{02}, \dots\} \\ A_1 &= \{a_{10}, a_{11}, a_{12}, \dots\} \\ A_2 &= \{a_{20}, a_{21}, a_{22}, \dots\} \end{aligned}
```

Тогава $\bigcup_{i=0}^{\infty} A_i = \{a_{00}, a_{01}, a_{10}, a_{02}, a_{11}, a_{20}, \dots\}.$

$$\begin{aligned} A_0 &= \{a_{00}, a_{01}, a_{02}, \dots\} \\ A_1 &= \{a_{10}, a_{11}, a_{12}, \dots\} \\ A_2 &= \{a_{20}, a_{21}, a_{22}, \dots\} \end{aligned}$$

.....

Тогава $\cup_{i=0}^{\infty} A_i = \{a_{00}, a_{01}, a_{10}, a_{02}, a_{11}, a_{20}, \dots\}.$

$$\begin{aligned} A_0 &= \{a_{00}, a_{01}, a_{02}, \dots\} \\ A_1 &= \{a_{10}, a_{11}, a_{12}, \dots\} \\ A_2 &= \{a_{20}, a_{21}, a_{22}, \dots\} \end{aligned}$$

.....

Тогава $\cup_{i=0}^{\infty} A_i = \{a_{00}, a_{01}, a_{10}, a_{02}, a_{11}, a_{20}, \dots\}.$

- а) Едно множество е изброимо точно тогава, когато елементите му могат да се подредят в редица от неповтарящи се елементи;
- б) Ако едно множество е най-много изброимо и не е крайно, то то е изброимо;
- в) Ако A изброимо, то A × A е изброимо;
- г) $\mathbb{N} \times \mathbb{N}$ и \mathbb{Q} са изброими.

- а) Едно множество е изброимо точно тогава, когато елементите му могат да се подредят в редица от неповтарящи се елементи;
- б) Ако едно множество е най-много изброимо и не е крайно, то то е изброимо;
- в) Ако А изброимо, то А × А е изброимо:
- г) $\mathbb{N} \times \mathbb{N}$ и \mathbb{Q} са изброими

- а) Едно множество е изброимо точно тогава, когато елементите му могат да се подредят в редица от неповтарящи се елементи;
- б) Ако едно множество е най-много изброимо и не е крайно, то то е изброимо;
- в) Ако А изброимо, то А × А е изброимо;
- г) $\mathbb{N} \times \mathbb{N}$ и \mathbb{Q} са изброими.

- а) Едно множество е изброимо точно тогава, когато елементите му могат да се подредят в редица от неповтарящи се елементи;
- б) Ако едно множество е най-много изброимо и не е крайно, то то е изброимо;
- в) Ако A изброимо, то A × A е изброимо;
- г) $\mathbb{N} \times \mathbb{N}$ и \mathbb{Q} са изброими.

- а) Едно множество е изброимо точно тогава, когато елементите му могат да се подредят в редица от неповтарящи се елементи;
- б) Ако едно множество е най-много изброимо и не е крайно, то то е изброимо;
- в) Ако A изброимо, то A × A е изброимо;
- г) $\mathbb{N} \times \mathbb{N}$ и \mathbb{Q} са изброими.