

Ministerul Educației, Cercetării și Tineretului

Olimpiada Națională de Fizică

Oricare altă variantă corectă de rezolvare se va puncta în mod corespunzător

	Oricare altă variantă corectă de rezolvare se va puncta în mod core	in mod corespunzator Pund	
Subiect	Soluție	parțial	total
1			1
	D < f: $O < f:$		2
	D = f: $(d1)$ $D = f:$ $(d2)$		2
	D > f:		2
	(d3) (e)		2
Oficiu		,	1
Total sub	piect 1		10

Subiect		Pun	ctaj
	Soluție	parțial	total
2.a	\vec{F} \vec{F} \vec{G} \vec{G} \vec{G} \vec{G} \vec{G}		3
	$\begin{cases} a = \frac{G_{t2} - F_{f2} - T}{m_2} \\ a = \frac{T - G_{t1} - F_{f1}}{m_1} \end{cases}$	1	
	$\Rightarrow a = g \frac{(m_2 - m_1)\sin\alpha - \mu(m_1 + m_2)\cos\alpha}{m_1 + m_2}$	1	
	$\Rightarrow a = \frac{\sqrt{2}}{2} g \left(\frac{k-1}{k+1} - \mu \right)$	1	
2.b	$N = mg + 2T\sin\alpha + (N_1 + N_2)\cos\alpha + (F_{f2} - F_{f1})\sin\alpha$	1	3
	în care: $T = \frac{2m_1 m_2 g}{m_1 + m_2} \sin \alpha$ $\sqrt{2}k$		
	$\Rightarrow T = \frac{\sqrt{2}k}{k+1} m_1 g$	1	
	$\Rightarrow N = mg + \frac{1}{2}m_1g\left(\frac{4k}{k+1} + k + 1 + \mu(k-1)\right)$	1	
2.c	$F = (N_2 - N_1)\sin\alpha - (F_{f2} + F_{f1})\cos\alpha$	2	3
	$\Rightarrow F = \frac{1}{2} m_1 g \left(k - 1 - \mu(k+1) \right)$ Oha i da š samnul fartai asta gravit sa nun staa ž 000/	1	
Oficiu	Obs.: dacă semnul forței este greșit, se punctează 90%.		1
Total subject 2			10

Subiect	Soluție	Punctaj	
		parțial	total
3.A.a.	Notând cu T_P perioada de rotație a Pământului, rezultă:		4
	$\left(\frac{KmM}{\left(R+h\right)^{2}}=m\omega_{s}^{2}\left(R+h\right)\right)$	0,5	
	$\left\{ \qquad \omega_{s} = \frac{2\pi}{T_{a}} - \frac{2\pi}{T_{P}} \right.$	1	
	$g_0 = \frac{KM}{R^2}$	0,5	
	$\Rightarrow h = \sqrt[3]{\frac{g_0 R^2}{\omega_s^2}} - R$	0,5	
	$\Rightarrow h = 13900 \text{ km}$	0,5	
3.A.b.	$T_b = 24 \text{ ore } \Rightarrow \omega_s = 0 \Rightarrow h \rightarrow \infty$	1	
3.B.a.	Deoarece fragmentele ajung simultan la sol, rezultă că explozia modifică doar componentele orizontale ale vitezelor, iar cele verticale nu se modifică.		5
	Deoarece $v' < v_0$, rezultă că explozia are loc pe porțiunea ascendentă.		
	<i>y</i>		
	$\frac{1}{\beta}$ $\frac{1}{\sqrt{2}}$	1	

Subject	Soluție	Punctaj	
		parțial	total
3.B.b.	$\begin{cases} v'_{y} = v_{0y}; v_{0y} = v_{0} \sin \alpha \\ v'_{x} = \sqrt{v'^{2} - v_{0}^{2} \sin^{2} \alpha} \end{cases}$		
	$\Rightarrow \operatorname{tg} \beta = \frac{\mathbf{v}_{y}'}{\mathbf{v}_{x}'} = \frac{4}{3}$	1	
	Ecuațiile traiectoriilor:		
	$\begin{cases} y = x \operatorname{tg} \alpha - \frac{g}{2v_0^2 \cos^2 \alpha} x^2 \\ y = x \operatorname{tg} \beta - \frac{g}{2v'^2 \cos^2 \beta} x^2 \end{cases}$		
	$y = x \operatorname{tg} \beta - \frac{g}{2v'^2 \cos^2 \beta} x^2$		
	$\Rightarrow x = \frac{2(\operatorname{tg}\beta - \operatorname{tg}\alpha)}{g\left(\frac{1}{\operatorname{v}'^2\cos^2\beta} - \frac{1}{\operatorname{v}_0^2\cos^2\alpha}\right)}$	1	
	$\Rightarrow x = 4187 \text{ m}$]	
	$\Rightarrow y = 1687 \text{ m}$	0,5	
3.B.c.	$m\frac{{\bf v}'^2}{R} = mg\cos\beta$	1	
	$\Rightarrow R = \frac{{\rm v}^{\prime 2}}{g\cos\beta}$	0,25	
	$\Rightarrow R = 10,4 \text{ km}$	0,25	
Oficiu		1	
Total subject 3			10
Total general			30

Subiect propus de:

prof. Viorel Popescu – C.N. "I.C. Brătianu, Pitești prof. Ion Toma – C.N. "Mihai Viteazul", București

prof. Dorel Haralamb – C.N. "Petru Rareș", Piatra-Neamț