

Projeto de Banco de Dados

Prof. Alex Luciano Roesler Rese, MSc.

Adaptado: Prof. Lucas Debatin, MSc.

MER – Relacionamentos

- identifying: linha sólida entre as tabelas.
 - É aquele em que a tabela filho não pode ser identificada exclusivamente sem seu pai.
 - Geralmente ocorre quando uma tabela associativa é criada para resolver um relacionamento muitos-para-muitos.
 - A chave primária geralmente é uma chave composta pelas chaves primárias das duas tabelas originais.
- non-identifying: linha tracejada entre as tabelas.
 - Cria apenas uma coluna que representa a chave estrangeira.

Conteúdo

Projeto Físico

Conteúdo

Projeto Físico

Conceito

• É uma atividade na qual o objetivo não é apenas obter uma estrutura de dados apropriada para armazenamento, mas desenvolve-lo de maneira que garanta um bom desempenho.

Conceito

 A última etapa é a fase do projeto físico, durante a qual as estruturas de armazenamento internas, organizações de arquivo, índices, caminhos de acesso e parâmetros físicos do projeto para os arquivos do banco de dados são especificados.

Elmasri e Navathe (2011)

Elementos

Dicionário de Dados.

Modelo Entidade-Relacionamento.

- Linguagem SQL (a partir do dia 04/05).
- A partir do projeto lógico normalizado, damos início ao dicionário de dados. Em seguida, criamos o MER. Por fim, criamos o Banco de Dados utilizando a linguagem SQL.

Tipos de Dados – Numéricos

Tipo	Armazenamento	Range		
		Signed	Unsigned	
TINYINT	1 byte	-128 a 127	0 a 255	
SMALLINT	2 bytes	-32768 to 32767	0 to 65535	
MEDIUMINT	3 bytes	-8388608 to 8388607	0 to 16777215	
INT	4 bytes	-2147483648 to 2147483647	0 to 4294967295	
BIGINT	8 bytes	-9223372036854775808 to 9223372036854775807	0 to 18446744073709551615	
FLOAT (p)	4 bytes se 0 <= p <= 24, 8 bytes se 25 <= p <= 53	-		
FLOAT	4 bytes	-3.402823466E+38 a 3.402823466E+38	0 a 3.402823466E+38	
DOUBLE	8 bytes	-1.7976931348623157E+308 a 1.7976931348623157E+308	0 a 1.7976931348623157E+308	
DECIMAL (M, D)	varia de acordo com o valor de M	varia de acordo com o valor de M		
BIT (M)	aproximadamente (M+7)/8 bytes	1 a 64		

Tipos de Dados – Data/Hora

• **DATE**: se trata de uma data simples, no formato 'AAAA-MM-DD'. O tipo DATE permite valores informados como string ou números. Aceita dados entre 1000–01–01 e 9999–12–31.

• **DATETIME**: uma combinação de data e hora, no formato 'AAAA-MM-DD HH:MM:SS[.fração]' e permite que os valores sejam informados como string ou números. Suporta valores entre 1000–01–01 00:00:00.000000 e 9999–12–31 23:59:59.999999.

Tipos de Dados – Data/Hora

• TIMESTAMP: salva uma data e hora utilizando definindo o fuso horário (1970–01–01 00:00:00 UTC).

• TIME: armazena uma faixa de tempo, no formato 'HH:MM:SS[.fração]' e seu valor pode estar entre - 838:59:59.000000 e 838:59:59.000000.

• YEAR: ano representado por 4 dígitos, no formato 'AAAA' e pode ter valores entre 1901 e 2155, além do valor 0000.

 CHAR[(M)]: uma string de tamanho fixo, representado pelo M que pode assumir um valor entre 0 e 255. M pode ser informado para definir o tamanho da coluna e caso omitido, recebe o valor 1. Caso todas as posições da string não sejam utilizadas, ela será completada com espaços até atingir o tamanho total.

• VARCHAR(M): uma string de tamanho variável. O valor de M pode variar de 0 a 65535.

 BINARY[(M)]: similar o tipo CHAR, porém armazena os valores binários das strings ao invés dos caracteres não binários. M pode ser informado para definir o tamanho da coluna e caso omitido, recebe o valor 1.

• VARBINARY(M): similar ao VARCHAR, porém armazena os valores binários das strings ao invés dos caracteres. M indica o tamanho máximo.

- BLOB [(M)]: seu nome significa objeto binário grande. Caso um valor seja informado para M, o MySQL vai criar o menor subtipo de BLOB possível para armazenar aquela quantidade de dado, que são:
 - TINYBLOB: tamanho máximo de 255 bytes;
 - MEDIUMBLOB: tamanho máximo de 16.777.326 bytes (16MB);
 - LONGBLOB: tamanho máximo de 4.294.967.295 bytes (4GB).

- **TEXT [(M)]:** suas características são como as do BLOB. O valor máximo de M é 65535. Seus subtipos são:
 - TINYTEXT: suporta até 255 caracteres;
 - MEDIUMTEXT: suporta até 16.777.326 caracteres;
 - LONGTEXT: suporta até 4.294.967.295 caracteres.

Dicionário de Dados

- Representa os tipos de dados de cada coluna da tabela.
 - Cada tabela do projeto lógico, possuirá um dicionário de dados.

USUÁRIO	TIPO	TAMANHO	DESC	OBS
id	Int	6	Código do Funcionário	Chave Primária
nome	Varchar	50	Nome do Funcionário	
cpf	Int	12	CPF do Funcionário	
rg	Int	12	RG do Funcionário	
salário	Float	20	Salário Bruto do Funcionário	
departamento_id(FK)	Int	30	Departamento do Funcionário	Chave

MER

Modelo Entidade-Relacionamento (MER).

 Representa de forma abstrata a estrutura que possuirá o banco de dados da aplicação.

- Utilizado na Engenharia de Software para representar:
 - Tabelas;
 - Colunas com os tipos de dados;
 - Relacionamentos.

MER – Relacionamentos

one-to-one (1-para-1) non-identifying one-to-many (1-para-muitos) non-identifying one-to-one (1-para-1) identifying one-to-many (1-para-muitos) identifying many-to-many (muitos-para-muitos) identifying

MER – Relacionamentos

- identifying: linha sólida entre as tabelas.
 - É aquele em que a tabela filho não pode ser identificada exclusivamente sem seu pai.
 - Geralmente ocorre quando uma tabela associativa é criada para resolver um relacionamento muitos-para-muitos.
 - A chave primária geralmente é uma chave composta pelas chaves primárias das duas tabelas originais.
- non-identifying: linha tracejada entre as tabelas.
 - Cria apenas uma coluna que representa a chave estrangeira.

MER – Exemplo

MER – Software

MySQL Workbench Tutorial de instalação no Material Didático.

Engenharia Reversa

Vamos Praticar

Enunciado

- Para cada projeto lógico das alternativas 1, 2 e 3 a seguir, faça:
 - Tabelas do Dicionário de Dados (Word);
 - Imagem do MER (MySQL Workbench, LucidChart, entre outros).

Alternativa 1

- aluno (id, nome, idade, status)
- disciplina (id, nome)
- escola (id, nome)
- curso (id, id_escola, nome)
- grade_curricular (id, id_curso, nome, status)
 aluno_disciplina(id_aluno, id_disciplina)
- grade_disciplina(id_grade, id_disciplina)

Alternativa 2

- marca (id, nome)
- estado (id, nome, uf)
- opcional (id, nome)
- cor (id, nome)
- modelo (id, id_marca, nome)
- veiculo (id, id_modelo, nome, valor)
- cidade (id, id estado, nome)
- endereco (id, id_cidade, logradouro, numero, bairro, cep)
- cliente (id, id_endereco, nome, cpf, data_nascimento, status)
- telefone cliente (id, id cliente, numero, tipo)
- vendedor (id, id_endereco, nome, comissao, data_admissao, status)
- telefone_vendedor (id, id_vendedor, numero, tipo)
- venda (id, id_cliente, id_vendedor, data, valor_total, valor_desconto, forma_pagamento, status)
- item_venda (id, id_venda, id_veiculo, id_cor, quantidade, chassi)
- item_venda_opcional (id_item_venda, id_opcional)

Alternativa 2

- autor (id, nome)
- editora (id, nome)
- genero (id, nome)
- idioma (id, nome)
- disponibilidade (id, nome)
- tipo_capa (id, nome)
- setor (id, nome)
- curso (id, nome)
- prioridade (id, nome)
- estado (id, nome, uf)
- tipo_pagamento (id, nome)
- cidade (id, id estado, nome)
- livro (id, id_editora, id_idioma, id_disponibilidade, id_tipo_capa, codigo_interno, titulo, resumo, volume, ano, edicao, qtd_pagina, qtd_exemplar, isbn)
- autor_livro (id_livro, id_autor)
- genero_livro (id_livro, id_genero)
- usuario (id, codigo_pessoa, nome, email, senha)
- aluno (id, id usuario, id curso, matricula, status)
- comunidade (id, id_usuario, id_cidade, cpf, logradouro, bairro, numero, cep)
- comunidade_telefone (id, id_comunidade, telefone, tipo)
- funcionario (id, id usuario, id setor, ramal, status)
- emprestimo(id, id_usuario, data_registro, data_devolucao, quantidade_renovacoes, status)
- livro emprestimo (id emprestimo, id livro)
- reserva(id, id_usuario, id_prioridade, data_registro, status)
- livro reserva (id reserva, id livro)
- multa(id, id_emprestimo, id_tipo_pagamento, data_vencimento, valor, status)

27

