Assignment 17 MAT 257

Q1a: Define the function g(x,y) = y - f(x). This is clearly a C^{∞} function, and $g^{-1}\{0\} = \Gamma_f$. To show that Γ_f is an n manifold it is enough to show that rank(Dg) = n. Notice that

$$Dg = \left[-\frac{\partial f}{\partial x} | I \right]$$

This will be an $(n) \times (n+m)$ matrix, and hence will have a rank of m, since the identity matrix will span a m dimensional space. Thereforem we have that Γ_f is a manifold, if f is smooth.

Q1b: Consider the graph of the function $f(x) = x^{\frac{1}{3}}$. This will be a smooth manifold, since in every neighborhood, the function locally looks like \mathbb{R} , but $x^{\frac{1}{3}}$ is not C^1 since its derivative is not continuous at 0.