Due date: Friday, April 1, 2016 (before class).

1. Using induction, verify that for all $n \ge 1$, the sum of the squares of the first 2n positive integers is given by the formula:

$$1^{2} + 2^{2} + 3^{2} + \dots + (2n)^{2} = \frac{n(2n+1)(4n+1)}{3}$$

2. Consider the sequence of real numbers defined by the relations:

$$x_1 = 1, x_{n+1} = \sqrt{1 + 2x_n}$$

for $n \geq 1$.

Use the Principle of Mathematical Induction to show that $x_n < 4$ for all $n \ge 1$.

- 3. Show that $n! > 3^n$ for $n \ge 7$ via induction.
- 4. Let $p_0 = 1, p_1 = \cos\theta$ (for θ some fixed constant) and $p_{n+1} = 2p_1p_n p_{n-1}$ for $n \ge 1$. Use Principle of Mathematical Induction to prove that $p_n = \cos(n\theta)$ for $n \ge 0$.
- 5. Using strong induction, prove that the Fibonacci sequence: $a_0 = 1, a_1 = 1, a_{k+1} = a_k + a_{k+1}$ for $k \ge 1$:

$$a_k \ge \left(\frac{3}{2}\right)^{k-2}.$$