HW 1

Due: Fri, Feb 5

The first two problems should be plausible given what you know as of Jan 29. Ideally, the material presented on Monday, Feb 1 will allow you to do the other two problems. Don't be shy about asking for help in office hours or on Piazza!

- **1:** Placing parens Suppose $A, B \in \mathbb{R}^{n \times n}$ are square matrices, $D = \operatorname{diag}(d) \in \mathbb{R}^{n \times n}$ is a diagonal matrix, and $u, v \in \mathbb{R}^n$ are vectors. Write short fragments of MATLAB to evaluate them as efficiently as possible, and give the complexity in terms of n:
 - 1. $v^T(I + DAD)v$
 - $2. \ u^T A^2 v$
 - 3. $\operatorname{tr}(uv^T A)$
- 2: Recognizing rank Consider the MATLAB fragment

function [y] = hw1mult(x)

n = length(x);

 $A = \mathbf{reshape}(1:n^2, n, n);$

y = A*x;

- 1. What is A for n = 3?
- 2. Show that A has rank two (independent of n).
- 3. Rewrite hw1mult so that it runs in O(n) time.

3: Norms!

- 1. Show that $x \mapsto ||x||_1 + ||x||_{\infty}$ is a norm.
- 2. The space \mathcal{P}_3 of polynomials with degree less than or equal to three has a norm ||p|| given by

$$||p||^2 = \int_{-1}^1 p(x)^2 \, dx$$

For a general cubic $p(x) = ax^3 + bx^2 + cx + d$, write ||p|| in terms of a, b, c, d.

4: Pushing products Suppose $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite. The A-norm of a vector $v \in \mathbb{R}^n$ is $||v||_A = \sqrt{v^T A v}$. Describe how to reconstruct A given a function that computes $||v||_A$ for any given vector. Code it up in a function with the following interface:

function [A] = hw1normA(normfun, n)

% Given a function to evaluate the Euclidean norm of a length n vector % v with respect to the A inner product, reconstruct A.