Step: 1 Upload All Four Source Files

Step 2: Load & Clean Population Projections (2022)

```
In [13]: # Load Projections sheet, skipping metadata rows
         proj_df = pd.read_excel(
             "WPP2022_GEN_F01_DEMOGRAPHIC_INDICATORS_COMPACT_REV1.xlsx",
             sheet_name="Projections",
             skiprows=16
         # Filter to 2022, Medium variant, country/area
         proj_2022 = proj_df[
              (proj_df['Year'] == 2022) &
             (proj_df['Variant'] == 'Medium') &
             (proj df['Type'] == 'Country/Area')
         ][[
              'Region, subregion, country or area *',
              'ISO3 Alpha-code',
             'Births (thousands)'
         ]].rename(columns={
              'Region, subregion, country or area *': 'Country',
              'ISO3 Alpha-code': 'ISO3',
              'Births (thousands)': 'Births_Thousands'
         })
         proj_2022['Births'] = proj_2022['Births_Thousands'] * 1000
         proj_2022 = proj_2022.dropna(subset=['ISO3'])
         display(proj_2022.head())
```

	Country	ISO3	Births_Thousands	Births
1900	Burundi	BDI	439.648	439648.0
1979	Comoros	СОМ	24.201	24201.0
2058	Djibouti	DJI	24.549	24549.0
2137	Eritrea	ERI	104.981	104981.0
2216	Ethiopia	ETH	3928.445	3928445.0

Step 3: Load & Process U5MR Status

	Country	ISO3	Births_Thousands	Births	Group
0	Burundi	BDI	439.648	439648.0	Off-track
1	Comoros	СОМ	24.201	24201.0	Off-track
2	Djibouti	DJI	24.549	24549.0	Off-track
3	Eritrea	ERI	104.981	104981.0	Off-track
4	Ethiopia	ETH	3928.445	3928445.0	Off-track

Step 4: Load & Clean ANC4 and SBA

```
"OBS_VALUE": value_name
}))
return latest
anc4_latest = clean_indicator("ANC4_long.xlsx", "ANC4")
sba_latest = clean_indicator("SBA_long.xlsx", "SBA")
display(anc4_latest.head(), sba_latest.head())
```

	Country	ANC4
76	Cabo Verde	85.6
78	Cameroon	64.9
349	Papua New Guinea	49.0
117	Costa Rica	94.1
301	Montenegro	94.2

	Country	SBA
748	Venezuela (Bolivarian Republic of)	98.7
711	Tunisia	99.5
564	Papua New Guinea	56.4
488	Mongolia	99.3
489	Montenegro	98.8

Step 5: Merge All & Compute Weighted Coverage

Step 6: Visualize the Results

```
In [17]: import numpy as np
import matplotlib.pyplot as plt
```

```
# Services and values
services = ["ANC4", "SBA"]
ontrack = [46.7, 60.3]
offtrack = [49.9, 67.5]
x = np.arange(len(services))
width = 0.35
fig, ax = plt.subplots()
ax.bar(x - width/2, ontrack, width, label="On-track")
ax.bar(x + width/2, offtrack, width, label="Off-track")
ax.set_xticks(x)
ax.set_xticklabels(services)
ax.set_ylabel("Coverage (%)")
ax.set_title("Population-weighted Coverage: On-track vs Off-track")
ax.legend()
plt.tight_layout()
plt.show()
```

Population-weighted Coverage: On-track vs Off-track

Additional Visualizations

Distribution Boxplots by Group

 This shows you the spread of country-level ANC4 and SBA coverages for On-track vs Off-track.

```
In [18]: import matplotlib.pyplot as plt
         anc4_on = df.loc[df["Group"]=="On-track", "ANC4"].dropna()
         anc4_off = df.loc[df["Group"]=="Off-track", "ANC4"].dropna()
                  = df.loc[df["Group"]=="On-track", "SBA"].dropna()
         sba_off = df.loc[df["Group"]=="Off-track", "SBA"].dropna()
         # ANC4
         plt.figure()
         plt.boxplot([anc4_on, anc4_off], labels=["On-track","Off-track"])
         plt.title("ANC4 Coverage Distribution by U5MR Group")
         plt.ylabel("ANC4 (%)")
         plt.tight_layout()
         plt.show()
         # SBA
         plt.figure()
         plt.boxplot([sba_on, sba_off], labels=["On-track","Off-track"])
         plt.title("SBA Coverage Distribution by U5MR Group")
         plt.ylabel("SBA (%)")
         plt.tight_layout()
         plt.show()
```

/tmp/ipython-input-18-3720530496.py:12: MatplotlibDeprecationWarning: The 'labels' p
arameter of boxplot() has been renamed 'tick_labels' since Matplotlib 3.9; support f
or the old name will be dropped in 3.11.
 plt.boxplot([anc4 on, anc4 off], labels=["On-track","Off-track"])

/tmp/ipython-input-18-3720530496.py:20: MatplotlibDeprecationWarning: The 'labels' p
arameter of boxplot() has been renamed 'tick_labels' since Matplotlib 3.9; support f
or the old name will be dropped in 3.11.
 plt.boxplot([sba_on, sba_off], labels=["On-track","Off-track"])

SBA Coverage Distribution by U5MR Group

Scatter of Coverage vs. Births

• This helps you see whether country size (birth count) correlates with coverage, colored by group.

```
In [19]:
         # ANC4
         plt.figure()
         for grp, color in [("On-track","CO"), ("Off-track","C1")]:
             sub = df[df["Group"]==grp]
             plt.scatter(sub["Births"], sub["ANC4"], label=grp, alpha=0.6)
         plt.xscale("log")
         plt.xlabel("2022 Births (log scale)")
         plt.ylabel("ANC4 (%)")
         plt.title("ANC4 Coverage vs Births by U5MR Group")
         plt.legend()
         plt.tight_layout()
         plt.show()
         # SBA
         plt.figure()
         for grp, color in [("On-track","C0"), ("Off-track","C1")]:
             sub = df[df["Group"]==grp]
             plt.scatter(sub["Births"], sub["SBA"], label=grp, alpha=0.6)
```

```
plt.xscale("log")
plt.xlabel("2022 Births (log scale)")
plt.ylabel("SBA (%)")
plt.title("SBA Coverage vs Births by U5MR Group")
plt.legend()
plt.tight_layout()
plt.show()
```


In []:

30

Interpretation

10²

 10^{3}

Population-weighted ANC4 coverage is slightly higher in off-track countries (49.9%) than in on-track ones (46.7%), suggesting that even where under-five mortality improvements lag, antenatal service uptake remains relatively strong—possibly due to targeted maternal health programs. Conversely, SBA coverage shows a larger gap (67.5% vs. 60.3%), indicating that skilled birth attendance is more consistently available in countries ahead on mortality targets. **Caveats & Assumptions:**

 10^{4}

2022 Births (log scale)

10⁵

- We used 2022 medium-variant birth projections from the UN WPP "Projections" sheet.
- ANC4/SBA values reflect the most recent data between 2018–2022, which may vary by country in terms of exact year.
- Country names/ISO3 matching may omit a few small territories if identifiers didn't align exactly.

In [27]:

!ls -1

10⁷

10⁶

```
ANC4_long.xlsx
drive
'On-track and off-track countries.xlsx'
outputs
sample_data
SBA_long.xlsx
WPP2022_GEN_F01_DEMOGRAPHIC_INDICATORS_COMPACT_REV1.xlsx

In []: # 1) Mount Google Drive
from google.colab import drive
drive.mount('/content/drive')

In []:
```