UNIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY WYDZIAŁ MATEMATYKI, FIZYKI I TECHNIKI INSTYTUT MATEMATYKI

Michał Jezierski

Funktory równościowo definiowalne

Praca magisterska napisana pod kierunkiem prof. dr hab. Andrzeja Prószyńskiego

Spis treści

Wstęp			2
1	Moduły		5
	1.1	Ciągi dokładne	10
	1.2	Moduły wolne	12
2	Fun	ktory	14
	2.1	Funktory odwzorowań	16
	2.2	Przekształcenia funktorów	18
3	Ciągi Grothendiecka i granice proste		20
	3.1	Ciągi Grothendiecka	20
		3.1.1 Ciągi Grothendiecka pierwszego rodzaju	20
		3.1.2 Ciągi Grothendiecka drugiego rodzaju	23
	3.2	Granice proste	27
4	Fun	ktor modułu wolnego ${\mathcal F}$	34
5	Fun	ktory równościowo definiowalne	41
	5.1	Odpowiedniość pomiędzy funktorami odwzorowań, a podfunkto-	
		rami funktora \mathcal{F}	41
	5.2	Warunki typu równości i ED-funktory	45
	5.3	Charakteryzacja funktorów równościowo definiowalnych	47
Ri	Bibliografia		

Wstęp

Podstawowym przedmiotem naszych rozważań są funktory wyznaczone przez równościowo definiowalne klasy odwzorowań. Mówimy, że klasa odwzorowań pomiędzy R-modułami X i Y jest równościowo definiowalna, jeżeli spełnia określony zestaw warunków typu równości, tzn. warunków postaci

$$\sum_{k=1}^{n} r_{ij} f\left(\sum_{j=1}^{m} s_{ijk} x_k\right) = 0, \qquad i \in I,$$

dla pewnych ustalonych elementów r_{ij} , s_{ijk} pierścienia R oraz dowolnych elementów $x_k \in X$. Przykładem równościowo definiowalnej klasy odwzorowań może być klasa R-homomorfizmów, klasa odwzorowań kwadratowych, bądź klasa wszystkich odwzorowań dla pustego układu warunków.

Każda równościowo definiowalna klasa odwzorowań wyznacza funktor dwóch zmiennych, który dowolnym R-modułom X i Y przyporządkowuje zbiór wszystkich odwzorowań z X do Y będących elementami danej równościowo definiowalnej klasy. Funktor ten nazywamy równościowo definiowalnym lub krótko ED-funktorem, przy czym pojęcie to pochodzi od A. Prószyńskiego ([4],[5]). Okazuje się, że ED-funktory są reprezentowalne. Celem tej pracy jest udowodnienie Twierdzenia 15, które podaje warunki równoważne charakteryzujące funktory równościowo definiowalne. Jeden z tych warunków mówi, że funktor reprezentujący zachowuje granice proste i ciągi Grothendiecka pierwszego rodzaju.

W pierwszych rozdziałach przedstawiamy kolejno podstawy teorii modułów, podstawy teorii funktorów oraz ciągi Grothendiecka i granice proste. SPIS TREŚCI 4

Zasadniczą rolę odgrywa funktor modułu wolnego \mathcal{F} , reprezentujący funktor Map wszystkich odwzorowań pomiędzy R-modułami, który omawiamy w Rozdziale 4. Natomiast w ostatnim rozdziale omawiamy ED-funktory i dowodzimy wspomnianego powyżej Twierdzenia 15, które je charakteryzuje.

Praca jest próbą możliwie najbardziej elementarnego wyłożenia wyników pochodzących z paragrafu 3.1 książki [3] (str. 72-80). W związku z tym wiele fragmentów dowodów zostało całkowicie zmienionych, a inne zostały przedstawione bardziej szczegółowo. Podjęto też próbę modyfikacji pewnych stosowanych pojęć w celu nadania im większej operatywności w tej pracy. Przykładem jest pojęcie zachowywania granic prostych przez funktor.

Rozdział 1

Moduly

W rozdziałe pierwszym wprowadzamy podstawowe pojęcia algebry przemiennej. Zakładamy przy tym, że znane są fakty z podstawowego kursu algebry. Rozdział w znacznej części oparty jest na książce Balcerzyka [2]. Pewne podstawowe fakty pochodzą z książki [1]. Poza tym wprowadzamy R-moduł $\operatorname{Map}(X,Y)$ i dowodzimy pewnych jego elementarnych własności.

Niech R będzie pierścieniem przemiennym z jedynką.

Definicja 1 R-modułem nazywamy trójkę $(X, +, \cdot)$, w której X jest niepustym zbiorem, $+: X \times X \to X$, $\cdot: R \times X \to X$ oraz dla wszystkich elementów $r, r' \in R$, $x, x' \in X$ spełnione są następujące warunki:

- 1. X jest grupą abelową względem działania +,
- 2. r(x + x') = rx + rx',
- 3. (r+r')x = rx + r'x,
- 4. (rr')x = r(r'x),
- 5. 1x = x.

W dalszej części zamiast pisać "X jest R-modułem" będziemy często pisali $X \in R$ -Mod. Element neutralny względem dodawania będziemu oznaczać 0 i nazywać zerem R-modułu X, natomiast element przeciwny do x będziemy oznaczać przez -x.

Definicja 2 Niech X będzie R-modułem. Podzbiór X_0 modułu X nazywamy podmodułem modułu X, o ile dla dowolnych $x, x' \in X_0$ oraz $r \in R$ spełnione są następujące warunki:

1.
$$x + x' \in X'$$
,

2.
$$rx \in X'$$
.

Bezpośrednio sprawdza się, że podmoduł X' modułu X jest też R-modułem względem działań określonych w X.

Niech $X,Y\in R$ -Mod. Homomorfizmem R-modułów (lub krótko R-homomorfizmem) nazywamy odwzorowanie $f:X\to Y$ takie, że f(x+x')=f(x)+f(x') oraz f(rx)=rf(x) dla wszystkich $x,x'\in X,\,r\in R.$ Jądrem R-homomorfizmu $f:X\to Y$ nazywamy zbiór $\ker(f)=\{x\in X\,;\,f(x)=0\}=f^{-1}(0),$ natomiast zbiór $\operatorname{im}(f)=\{f(x)\,;\,x\in X\}$ nazywamy jego obrazem. Jądro homomorfizmu $f:X\to Y$ jest podmodułem modułu X, natomiast $\operatorname{im}(f)$ jest podmodułem modułu Y.

R-homomorfizm $f: X \to Y$ nazywamy monomorfizmem, jeśli $\ker(f) = 0$, tzn. f jest różnowartościowe, a epimorfizmem, gdy $\operatorname{im}(f) = Y$, tzn. f jest na. R-homomorfizm f jest izomorfizmem, jeśli jest monomorfizmem i epimorfizmem. Istnieje wówczas odwzorowanie odwrotne f^{-1} , które też jest homomorfizmem.

Podmodułowi X' modułu X odpowiada moduł ilorazowy X/X', którego elementami są wszystkie warstwy $\bar{x}=x+X'=\{x+x'\;;\;x'\in X'\}$ elementów $x\in X$ względem X', przy czym działania określone są wzorami

$$(x + X') + (x' + X') = (x + x') + X', r(x + X') = rx + X',$$

dla dowolnych $x, x' \in X$, $r \in R$. Ponadto obowiązuje następująca reguła porównywania warstw:

$$x + X' = x' + X' \Leftrightarrow x - x' \in X'$$
.

Odwzorowanie $\nu: X \to X/X'$ określone wzorem $\nu(x) = x + X'$ jest R-homomorfizmem, który nazywamy homomorfizmem kanonicznym lub homomorfizmem naturalnym.

Poniższe twierdzenie znane jest jako twierdzenie o homomorfizmach R-modułów, a jego dowód jest analogiczny jak w teorii pierścieni lub teorii grup.

Twierdzenie 1 Niech $f: X \to Y$ będzie R-homomorfizmem oraz niech X' będzie podmodułem R-modułu X. Jeżeli $X' \subset \ker(f)$, to istnieje dokładnie jeden R-homomorfizm $\bar{f}: X/X' \to Y$ taki, że $\bar{f}(x+X') = f(x)$. W szczególności mamy izomorfizm R-modułów

$$X/\ker(f) \simeq \operatorname{im}(f).$$

Lemat 1 Niech X_0 będzie podzbiorem R-modułu X. Zbiór X' wszystkich elementów postaci $r_1x_1 + \ldots + r_nx_n$, $r_1, \ldots, r_n \in R$, $x_1, \ldots, x_n \in X_0$, $n = 1, 2, \ldots$ jest podmodułem modułu X.

dowód: Niech $x, x' \in X'$. Zatem

$$x = r_1 x_1 + \ldots + r_n x_n, \quad x' = r'_1 x'_1 + \ldots + r'_m x'_m,$$

gdzie $r_i, r'_j \in R, x_i, x'_j \in X_0$ dla $i=1, \ldots, n, j=1, \ldots, m.$ Stąd

$$x + x' = r_1 x_1 + \ldots + r_n x_n + r'_1 x'_1 + \ldots + r'_m x'_m \in X'.$$

Jeżeli $r \in R$, to

$$rx = r(r_1x_1 + \dots + r_nx_n) = r(r_1x_1) + \dots + r(r_nx_n) =$$

= $(rr_1)x_1 + \dots + (rr_n)x_n \in X'$. \square

Definicja 3 Podmoduł X' określony w powyższym lemacie nazywamy podmodułem generowanym przez zbiór X_0 , a zbiór X_0 nazywamy zbiorem generatorów podmodułu X'.

Podmoduł generowany przez zbiór $\{x_1, \ldots, x_n\}$ oznaczamy $R\{x_1, \ldots, x_n\}$.

Podobnie jak w teorii przestrzeni liniowych możemy wprowadzić pojęcie zewnętrznej sumy prostej R-modułów X i Y.

Definicja 4 Niech $X, Y \in R$ -Mod. Zbiór wszystkich par (x, y), gdzie $x \in X$, $y \in Y$, wraz z działaniami

$$(x,y) + (x',y') = (x + x', y + y'),$$

 $r(x,y) = (rx, ry),$

gdzie $x, x' \in X$, $y, y' \in Y$ oraz $r \in R$, nazywamy zewnętrzną sumą prostą R-modułów X i Y i oznaczamy $X \oplus Y$.

Z podstawowego kursu algebry wiemy, że zewnętrzna suma prosta dwóch przestrzeni liniowych jest przestrzenią liniową. Analogicznie można udowodnić następujący

Lemat 2 Zbiór $X \oplus Y$ jest R-modułem względem działań określonych powyżej.

Przez $\operatorname{Map}(X,Y)$ oznaczać będziemy zbiór wszystkich odwzorowań pomiędzy R-modułami X i Y. Podobnie $\operatorname{Hom}_R(X,Y)$ oznaczać będzie zbiór wszystkich R-homomorfizmów z modułu X do Y. Oczywiście $\operatorname{Hom}_R(X,Y) \subset \operatorname{Map}(X,Y)$.

Lemat 3 Map(X,Y) jest R-modułem względem działań dodawania oraz mnożenia odwzorowań przez skalar, określonych wzorami

$$(\alpha + \beta)(x) = \alpha(x) + \beta(x),$$

 $(r\alpha)(x) = r(\alpha(x)),$

 $gdzie \ \alpha, \beta \in \operatorname{Map}(X,Y), \ r \in R \ oraz \ x \ jest \ dowolnym \ elementem \ R\text{-}modulu \ X.$

 $dow \acute{o}d$: Zauważmy, że $\operatorname{Map}(X,Y)$ jest grupą abelową względem określonego powyżej dodawania. Jej elementem neutralnym jest odwzorowanie zerowe, 0(x)=0 oraz dla dowolnego $\alpha\in\operatorname{Map}(X,Y)$ określone jest odwzorowanie $-\alpha$ takie, że $\alpha(x)+(-\alpha)(x)=0$, tzn. $(-\alpha)(x)=-\alpha(x)$ dla dowolnego $x\in X$. Jest to oczywiście element przeciwny do α . Ponadto, dla dowolnych $\alpha,\beta\in\operatorname{Map}(X,Y),\,r,r'\in R$ oraz dla dowolnego $x\in X$ otrzymujemy

$$(r(\alpha + \beta))(x) = r((\alpha + \beta)(x)) = r(\alpha(x) + \beta(x)) = r(\alpha(x)) + r(\beta(x)) =$$
$$= (r\alpha)(x) + (r\beta)(x) = (r\alpha + r\beta)(x),$$

co oznacza, że $r(\alpha + \beta) = r\alpha + r\beta$. Mamy również

$$((r+r')\alpha)(x) = (r+r')(\alpha(x)) = r(\alpha(x)) + r'(\alpha(x)) = (r\alpha)(x) + (r'\alpha)(x) =$$
$$= (r\alpha + r'\alpha)(x),$$

skąd $(r+r')\alpha = r\alpha + r'\alpha$. Podobnie $r(r'\alpha) = (rr')\alpha$, gdyż

$$(r(r'\alpha))(x) = r((r'\alpha)(x)) = r(r'(\alpha(x))) = (rr')(\alpha(x)) = ((rr')\alpha)(x).$$

Ponieważ $(1\alpha)(x)=1\big(\alpha(x)\big)=\alpha(x),$ zatem $1\alpha=\alpha.$ Stąd $\mathrm{Map}(X,Y)\in R\operatorname{-Mod}.$ \square

Analogicznie jak w teorii przestrzeni liniowych można wykazać, że jeżeli $f,g:X\to Y$ są R-homomorfizmami, to $f+g:X\to Y$ oraz $rf:X\to Y$ są również R-homomorfizmami dla $r\in R$. Ponieważ $\operatorname{Hom}_R(X,Y)\subset\operatorname{Map}(X,Y)$, zatem prawdziwy jest następujący

Lemat 4 $\operatorname{Hom}_R(X,Y)$ jest podmodułem R-modułu $\operatorname{Map}(X,Y)$ dla dowolnych $X,Y\in R$ -Mod. \square

Mając dane R-moduły X, Y, X', Y' oraz homomorfizmy $f: X' \to X, g: Y \to Y'$ możemy określić homomorfizm $\operatorname{Map}(f,g): \operatorname{Map}(X,Y) \to \operatorname{Map}(X',Y')$, który dowolnemu $\alpha \in \operatorname{Map}(X,Y)$ przyporządkowuje złożenie $g \circ \alpha \circ f$. W szczególności $\operatorname{Map}(\operatorname{id}_X,g)$ oznaczać będziemy przez g_* , a $\operatorname{Map}(f,\operatorname{id}_Y)$ przez f^* , przy czym $g_*(\alpha) = g \circ \alpha$ oraz $f^*(\alpha) = \alpha \circ f$. $\operatorname{Map}(f,g)$ jest istotnie homomorfizmem, gdyż biorąc $x \in X'$ oraz $\alpha, \beta \in \operatorname{Map}(X,Y)$ otrzymujemy

$$(g \circ (\alpha + \beta) \circ f)(x) = g((\alpha + \beta)(f(x))) =$$

$$= g(\alpha(f(x)) + \beta(f(x))) = g(\alpha(f(x))) + g(\beta(f(x))) =$$

$$= (g \circ \alpha \circ f)(x) + (g \circ \beta \circ f)(x) =$$

$$= (g \circ \alpha \circ f + g \circ \beta \circ f)(x),$$

co oznacza, że

$$g \circ (\alpha + \beta) \circ f = g \circ \alpha \circ f + g \circ \beta \circ f$$

i w rezultacie

$$\operatorname{Map}(f,g)(\alpha+\beta) = \operatorname{Map}(f,g)(\alpha) + \operatorname{Map}(f,g)(\beta).$$

Niech $r \in R$. Wówczas

$$(g \circ (r\alpha) \circ f)(x) = g((r\alpha)(f(x))).$$

Ponieważ g jest R-homomorfizmem oraz $(r\alpha)(y) = r(\alpha(y))$ dla dowolnego $y \in X$, zatem

$$g((r\alpha)(f(x))) = r(g(\alpha(f(x)))).$$

Stad

$$(g \circ (r\alpha) \circ f)(x) = r((g \circ \alpha \circ f)(x))$$

i w rezultacie

$$\operatorname{Map}(f,g)(r\alpha) = r(\operatorname{Map}(f,g)(\alpha)),$$

co kończy dowód faktu, że $\mathrm{Map}(f,g)$ jest R-homomorfizmem.

Zauważmy, że $\operatorname{Map}(f,g) | \operatorname{Hom}_R(X,Y)$ jest R-homomorfizmem prowadzącym do $\operatorname{Hom}_R(X',Y')$. Homomorfizm ten oznaczać będziemy przez $\operatorname{Hom}_R(f,g)$. W szczególności $\operatorname{Hom}_R(\operatorname{id}_X,g)$ oznaczać będziemy przez g_* , a $\operatorname{Hom}_R(f,\operatorname{id}_Y)$ przez f^* , przy czym $g_*(\alpha) = g \circ \alpha$ oraz $f^*(\alpha) = \alpha \circ f$.

Rozważmy $\alpha, \beta \in \operatorname{Map}(X, Y)$ oraz dowolny $N \in R$ -Mod. Wówczas dla dowolnego R-homomorfizmu $f: Y \to N$ mamy $f \circ (\alpha \pm \beta) = f \circ \alpha \pm f \circ \beta$. Powyższą własność będziemy często wykorzystywać w dalszych rozważaniach.

1.1 Ciągi dokładne

Definicja 5 Mówimy, że ciąg R-modułów i R-homomorfizmów (skończony lub nieskończony)

$$\cdots \longrightarrow X_{i-1} \xrightarrow{f_i} X_i \xrightarrow{f_{i+1}} X_{i+1} \longrightarrow \cdots$$
 (1.1)

jest dokładny w X_i , o ile im $(f_i) = \ker(f_{i+1})$. Mówimy, że ciąg (1.1) jest dokładny, jeżeli dla każdego i, dla którego istnieją f_i i f_{i+1} , ciąg (1.1) jest dokładny w X_i .

Lemat 5 Ciag

$$X \xrightarrow{f} Y \longrightarrow 0 \tag{1.2}$$

jest dokładny wtedy i tylko wtedy, gdy f jest epimorfizmem.

dowód: Jądrem jedynego homomorfizmu $Y\to 0$ jest Y. Stąd dokładność ciągu (1.2) oznacza, że $\operatorname{im}(f)=Y,$ co jest równoważne temu, że f jest epimorfizmem. \Box

Lemat 6 Ciąg

$$0 \longrightarrow X \stackrel{f}{\longrightarrow} Y \tag{1.3}$$

jest dokładny wtedy i tylko wtedy, gdy f jest monomorfizmem.

dowód: Obraz jedynego homomorfizmu $0 \to X$ jest podmodułem zerowym modułu X. Stąd dokładność ciągu (1.3) oznacza, że ker f=0, co jest równoważne temu, że f jest monomorfizmem. \square

Z powyższych dwóch lematów otrzymujemy następujący

Wniosek 1 Ciąg

$$0 \longrightarrow X \xrightarrow{f} Y \longrightarrow 0 \tag{1.4}$$

jest dokładny wtedy i tylko wtedy, gdy f jest izomorfizmem.

Kolejny fakt jest fragmentem twierdzenia o lewostronnej dokładności funktora Hom_R . Samo twierdzenie nie będzie nam potrzebne, za to w Rozdziale 3 udowodnimy pewną jego wersję związaną z ciągami Grothendiecka (Twierdzenie 5).

Lemat 7 Ciag

$$X \xrightarrow{f} Y \longrightarrow 0 \tag{1.5}$$

jest dokładny wtedy i tylko wtedy, gdy dla dowolnego $N \in R$ -Mod dokładny jest ciąg

$$0 \longrightarrow \operatorname{Hom}_{R}(Y, N) \xrightarrow{f^{*}} \operatorname{Hom}_{R}(X, N). \tag{1.6}$$

dowód:

(⇒): Niech ciąg (1.5) będzie dokładny oraz niech $g \in \operatorname{Hom}_R(Y, N)$. Niech $f^*(g) = 0$, tzn. $g \circ f = 0$. Wówczas $g | \operatorname{im}(f) = 0$. Ponieważ $\operatorname{im}(f) = Y$, zatem g = 0, skąd f^* jest monomorfizmem.

(\Leftarrow): Niech ciąg (1.6) będzie dokładny dla dowolnego $N \in R$ -Mod. Zatem

$$f^* : \operatorname{Hom}_R(Y, Y/\operatorname{im}(f)) \longrightarrow \operatorname{Hom}_R(X, Y/\operatorname{im}(f))$$

jest monomorfizmem. Niech $g \in \operatorname{Hom}_R(Y,Y/\operatorname{im}(f))$ będzie homomorfizmem naturalnym. Wówczas $g|\operatorname{im}(f)=0$, tzn. $f^*(g)=g\circ f=0$. Stąd g=0, gdyż f^* jest monomorfizmem, a zatem $\operatorname{im}(f)=Y$, co oznacza, że f jest epimorfizmem. \Box

1.2 Moduły wolne

Definicja 6 Zbiór $B = \{e_i\}_{i \in I}$ nazywamy bazą R-modułu X, o ile dowolny element $x \in X$ ma jednoznaczne przedstawienie w postaci $x = \sum_{i \in I} r_i e_i$, gdzie $r_i \in R$, $i \in I$ oraz $r_i = 0$ dla prawie wszystkich $i \in I$.

Definicja 7 R-moduł X nazywamy wolnym, o ile moduł ten posiada bazę.

Twierdzenie 2 ([2], Twierdzenie 1.8) Niech $B \subset X$ będzie bazą R-modułu wolnego X. Wówczas dowolne odwzorowanie $\alpha : B \to Y$ o wartościach w R-module Y może być jednoznacznie przedłużone do R-homomorfizmu $\bar{\alpha}$, tzn. diagram

w którym i oznacza odwzorowanie włożenia, może być jednoznacznie uzupełniony do diagramu przemiennego

dowód: Niech $B = \{e_i\}_{i \in I}$. Dowolny element $x \in X$ ma jednoznaczne przedstawienie w postaci kombinacji liniowej elementów bazy,

$$x = \sum_{i \in I} r_i e_i, \tag{1.7}$$

gdzie $r_i \in R$, dla $i \in I$ oraz prawie wszystkie r_i są zerami. Ponieważ $\bar{\alpha}$ ma być R-homomorfizmem, zatem musi być

$$\bar{\alpha} \Big(\sum_{i \in I} r_i e_i \Big) = \sum_{i \in I} r_i \bar{\alpha}(e_i).$$

Ponadto $\bar{\alpha}$ ma być przedłużeniem α , zatem

$$\bar{\alpha} \Big(\sum_{i \in I} r_i e_i \Big) = \sum_{i \in I} r_i \alpha(e_i).$$

Wobec tego istnieje co najwyżej jedno takie $\bar{\alpha}$ i określone jest powyższym wzorem. Zauważmy, że dzięki jednoznaczności przedstawienia elementu x w postaci (1.7) odwzorowanie $\bar{\alpha}$ jest określone poprawnie powyższym wzorem. Ponadto $\bar{\alpha} | B = \alpha$, gdyż dla dowolnego $e_i \in B$ mamy $\bar{\alpha}(e_i) = \alpha(e_i)$. Pozostaje pokazać, że $\bar{\alpha}$ jest R-homomorfizmem. Niech $x = \sum_{i \in I} r_i e_i$ oraz $x' = \sum_{i \in I} s_i e_i$, gdzie $r_i, s_i \in R$. Wówczas

$$\bar{\alpha}(x+x') = \bar{\alpha}\left(\sum_{i \in I} r_i e_i + \sum_{i \in I} s_i e_i\right) = \bar{\alpha}\left(\sum_{i \in I} (r_i + s_i) e_i\right) =$$

$$= \sum_{i \in I} (r_i + s_i)\alpha(e_i) = \sum_{i \in I} r_i \alpha(e_i) + \sum_{i \in I} s_i \alpha(e_i) =$$

$$= \bar{\alpha}(x) + \bar{\alpha}(x').$$

Niech teraz $r \in R$. Wówczas

$$\bar{\alpha}(rx) = \bar{\alpha}\left(r\sum_{i\in I} r_i e_i\right) = \bar{\alpha}\left(\sum_{i\in I} (rr_i)e_i\right) = \sum_{i\in I} (rr_i)\alpha(e_i) =$$
$$= r\left(\sum_{i\in I} r_i \alpha(e_i)\right) = r\bar{\alpha}(x).$$

Stąd $\bar{\alpha}$ jest R-homomorfizmem będącym przedłużeniem odw
zorowania $\alpha.$ \square

W przyszłych rozważaniach ważną rolę będzie odgrywać twierdzenie, którego dowód można znaleźć w [2].

Twierdzenie 3 ([2], Twierdzenie 1.9) Dla każdego zbioru X istnieje R-moduł wolny, którego baza jest zbiór równoliczny z X.

Rozdział 2

Funktory

Poniższy rozdział poświęcony jest pojęciu funktora i podobnie jak Rozdział 1 oparty jest w znacznej części na książce [2]. Rozważamy zarówno funktory jednej zmiennej jak i dwóch zmiennych. Wprowadzamy przede wszystkim funktor Map, który odegra zasadniczą rolę w kolejnych rozdziałach. W dalszej części wprowadzamy pojęcie podfunktora i funktora odwzorowań oraz podamy pewne ważne przykłady. Na zakończenie definiujemy przekształcenie funktorów oraz mówimy co to znaczy, że funktor jest reprezentowalny.

Definicja 8 Mówimy, że określony jest funktor kowariantny $F: R\operatorname{-Mod} \to R\operatorname{-Mod}$, jeśli

- 1. dla każdego R-modułu X określony jest R-moduł F(X),
- 2. dla każdego R-homomorfizmu $f: X \to X'$ określony jest R-homomorfizm $F(f): F(X) \to F(X'),$
- 3. spełnione są warunki
 - (a) $F(g \circ f) = F(g) \circ F(f)$, o ile złożenie $g \circ f$ istnieje,
 - (b) $F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$.

Definicja 9 Mówimy, że określony jest funktor kontrawariantny $F: R\operatorname{-Mod} \to R\operatorname{-Mod}$, jeśli

1. dla każdego R-modułu X określony jest R-moduł F(X),

- 2. dla każdego R-homomorfizmu $f: X \to X'$ określony jest R-homomorfizm $F(f): F(X') \to F(X),$
- 3. spełnione są warunki
 - (a) $F(g \circ f) = F(f) \circ F(g)$, o ile złożenie $g \circ f$ istnieje,
 - (b) $F(\mathrm{id}_X) = \mathrm{id}_{F(X)}$.

Podamy teraz jedno z czterech możliwych uogólnienień powyższych dwóch definicji na przypadek funktorów dwóch argumentów. Jest to ta wersja, którą będziemy wykorzystywali.

Definicja 10 Mówimy, że określony jest funktor dwóch zmiennych

 $A: R\operatorname{-Mod} \times R\operatorname{-Mod} \to R\operatorname{-Mod}$, kontrawariantny względem pierwszej zmiennej i kowariantny względem drugiej zmiennej, o ile spełnione są następujące warunki:

- 1. dla dowolnych R-modułów X, Y określony jest R-moduł A(X, Y),
- 2. dla dowolnych R-homomorfizmów $f: X' \to X, g: Y \to Y'$ określony jest R-homomorfizm $A(f,g): A(X,Y) \to A(X',Y'),$
- 3. spełnione są warunki
 - (a) $A(g \circ f, f' \circ g') = A(f, f') \circ A(g, g')$, o ile złożenia $g \circ f$ oraz $f' \circ g'$ istnieją,
 - (b) $A(\mathrm{id}_X,\mathrm{id}_Y) = \mathrm{id}_{A(X,Y)}$.

W przyszłości będziemy taki funktor nazywać po prostu funktorem dwóch zmiennych. Podobnie przez funktor jednej zmiennej będziemy rozumieć funktor kowariantny.

Lemat 8 Map jest funktorem dwóch zmiennych, jeśli Map(X, Y) i Map(f, g) określimy tak jak w Rozdziałe 1.

dowód: Jeżeli $X,Y \in R$ -Mod, to Map(X,Y) jest R-modułem na podstawie Lematu 3. W Rozdziałe 1 wykazaliśmy również, że jeżeli $f: X' \to X$ oraz

 $g:Y\to Y'$ są R-homomorfizmami, to $\mathrm{Map}(f,g):\mathrm{Map}(X,Y)\to\mathrm{Map}(X',Y')$ jest R-homomorfizmem, który dowolnemu $\alpha\in\mathrm{Map}(X,Y)$ przyporządkowuje odwzorowanie $g\circ\alpha\circ f$.

Niech teraz $f:X''\to X',\ g:X'\to X$ oraz $g':Y\to Y',\ f':Y'\to Y''$ będą R-homomorfizmami. Wówczas dla dowolnego $\alpha\in\mathrm{Map}(X,Y)$ mamy

$$\operatorname{Map}(g \circ f, f' \circ g')(\alpha) = (f' \circ g') \circ \alpha \circ (g \circ f) = f' \circ (g' \circ \alpha \circ g) \circ f =$$

$$= \operatorname{Map}(f, f')(g' \circ \alpha \circ g) = \operatorname{Map}(f, f')(\operatorname{Map}(g, g')(\alpha)).$$

Zatem

$$\operatorname{Map}(g \circ f, f' \circ g') = \operatorname{Map}(f, f') \circ \operatorname{Map}(g, g').$$

Ponadto

$$\operatorname{Map}(\operatorname{id}_X,\operatorname{id}_Y)(\alpha) = \operatorname{id}_Y \circ \alpha \circ \operatorname{id}_X = \alpha = \operatorname{id}_{\operatorname{Map}(X,Y)}(\alpha),$$

zatem Map jest funktorem. □

2.1 Funktory odwzorowań

Definicja 11 Niech $F: R\operatorname{-Mod} \to R\operatorname{-Mod}$ będzie funktorem.

Mówimy, że G jest podfunktorem funktora F (co zapisujemy $G \subset F$), o ile dla każdego $X \in R$ -Mod określony jest podmoduł $G(X) \subset F(X)$ oraz dla dowolnego R-homomorfizmu $f: X \to Y$ mamy $F(f)(G(X)) \subset G(Y)$. Wówczas G: R-Mod $\to R$ -Mod jest funktorem, przy czym $G(f) = \mathcal{F}(f)|G(X)$ jest R-homomorfizmem z G(X) do G(Y).

Definicja 12 Niech $A: R\operatorname{-Mod} \times R\operatorname{-Mod} \to R\operatorname{-Mod}$ będzie funktorem dwóch zmiennych. Mówimy, że B jest podfunktorem funktora A (co zapisujemy $B \subset A$), o ile dla dowolnych $X,Y \in R\operatorname{-Mod}$ określony jest podmoduł $B(X,Y) \subset A(X,Y)$ oraz dla dowolnych $R\operatorname{-homomorfizmów} f: X' \to X, g: Y \to Y'$ mamy $A(f,g)(B(X,Y)) \subset B(X',Y')$. Wówczas B jest funktorem dwóch zmiennych, przy czym B(f,g) = A(f,g)|B(X,Y) jest $R\operatorname{-homomorfizmem} z B(X,Y)$ do B(X',Y').

Definicja 13 Dowolny podfunktor funktora Map nazywamy funktorem odwzorowań.

PRZYKŁAD 1 Hom_R jest funktorem odwzorowań. Istotnie, w Lemacie 3 wykazaliśmy, że $\operatorname{Hom}_R(X,Y) \subset \operatorname{Map}(X,Y)$ oraz $\operatorname{Map}(f,g) | \operatorname{Hom}_R(X,Y) = \operatorname{Hom}_R(X',Y')$ dla dowolnych R-homomorfizmów $f: X' \to X, g: Y \to Y'$. Wobec tego $\operatorname{Hom}_R \subset \operatorname{Map}$, co oznacza, że Hom_R jest funktorem odwzorowań.

Przykład 2 Niech Hom_R^2 będzie funktorem dwóch zmiennych, który dowolnym R-modułom X i Y przyporządkowuje zbiór wszystkich odwzorowań kwadratowych pomiędzy modułami X i Y, tzn. takich odwzorowań $\alpha \in \operatorname{Map}(X,Y)$, dla których $\alpha(rx) = r^2\alpha(x)$ dla $r \in R$, $x \in X$ oraz odwzorowanie stowarzyszone $B_\alpha: X \times X \to Y$ określone wzorem $B_\alpha(x,y) = \alpha(x+y) - \alpha(x) - \alpha(y)$ jest dwuliniowe.

Wówczas Hom^2_R jest funktorem odwzorowań. Istotnie, niech dane będą R-homomorfizmy $f: X' \to X$ i $g: Y \to Y'$ oraz niech $\alpha: X \to Y$ będzie odwzorowaniem kwadratowym. Pokażemy, że $\operatorname{Map}(f,g)(\alpha) = g \circ \alpha \circ f$ jest też odwzorowaniem kwadratowym. Po pierwsze, dla dowolnych $r \in R$, $x' \in X'$ otrzymujemy

$$(g \circ \alpha \circ f)(rx') = g(\alpha(f(rx'))) = g(\alpha(rf(x'))) =$$

$$= g(r^2\alpha(f(x'))) = r^2g(\alpha(f(x'))) =$$

$$= r^2((g \circ \alpha \circ f)(x)).$$

Pozostaje pokazać, że odwzorowanie stowarzyszone $B_{g\circ\alpha\circ f}$ określone wzorem

$$B_{g \circ \alpha \circ f}(x', y') = (g \circ \alpha \circ f)(x' + y') - (g \circ \alpha \circ f)(x') - (g \circ \alpha \circ f)(y')$$

jest dwuliniowe względem $x', y' \in X'$. Pokażemy że $B_{g \circ \alpha \circ f}$ jest R-homomorfizmem ze względu na pierwszą zmienną. Uzasadnienie liniowości względem drugiej zmiennej będzie analogiczne. Niech $x', x'', y' \in X'$ oraz $r, s \in R$. Zauważmy, że

$$B_{g \circ \alpha \circ f}(x', y') = (g \circ \alpha \circ f)(x' + y') - (g \circ \alpha \circ f)(x') - (g \circ \alpha \circ f)(y') =$$

$$= g\Big(\alpha \Big(f(x') + f(y')\Big)\Big) - g\Big(\alpha \Big(f(x')\Big)\Big) - g\Big(\alpha \Big(f(y')\Big)\Big) =$$

$$= g\Big(\alpha \Big(f(x') + f(y')\Big) - \alpha \Big(f(x')\Big) - \alpha \Big(f(y')\Big)\Big) = g\Big(B_{\alpha}\Big(f(x'), f(y')\Big)\Big).$$

Wobec tego

$$B_{g\circ\alpha\circ f}(rx'+sx'',y') = g\Big(B_{\alpha}\big(f(rx'+sx''),f(y')\big)\Big) =$$

$$= g\Big(rB_{\alpha}\big(f(x'),f(y')\big) + sB_{\alpha}\big(f(x''),f(y')\big)\Big) = rg\Big(B_{\alpha}\big(f(x'),f(y')\big)\Big) +$$

$$+ sg\Big(B_{\alpha}\big(f(x''),f(y')\big)\Big) = rB_{g\circ\alpha\circ f}(x',y') + sB_{g\circ\alpha\circ f}(x'',y').$$

Stąd $B_{g\circ\alpha\circ f}$ jest odwzorowaniem dwuliniowym, a zatem $g\circ\alpha\circ f$ jest odwzorowaniem kwadratowym. Wobec tego $\operatorname{Map}(f,g)(\alpha)\in\operatorname{Hom}_R^2(X',Y')$, a więc Hom_R^2 jest funktorem odwzorowań.

Przykład 3 Niech $R=\mathbb{Z}$ oraz niech A będzie funktorem, który dowolnym $X,Y\in\mathbb{Z}$ -Mod przyporządkowuje zbiór A(X,Y) wszystkich takich odwzorowań z X do Y, że obraz dowolnego $x\in X$ jest skończonego rzędu. Inaczej mówiąc, $\alpha\in A(X,Y)$ dokładnie wtedy, gdy dla dowolnego $x\in X$ istnieje takie n, że $n\alpha(x)=0$. Tak określony funktor A jest funktorem odwzorowań. Istotnie, niech $f:X'\to X$ oraz $h:Y\to Y'$ będą \mathbb{Z} -homomorfizmami. Rozważmy odwzorowanie $\alpha\in A(X,Y)$. Wówczas $\mathrm{Map}(f,h)(\alpha)=h\circ\alpha\circ f$. Należy pokazać, że dla dowolnego $x'\in X'$ obraz $(h\circ\alpha\circ f)(x')$ jest skończonego rzędu. Ponieważ $f(x')\in X$, zatem $\alpha(f(x'))$ jest skończonego rzędu, tzn. istnieje takie n, że $n\alpha(f(x'))=0$. Wówczas

$$n(h \circ \alpha \circ f)(x') = nh\big(\alpha(f(x'))\big) = h\big(n\alpha(f(x'))\big) = h(0) = 0.$$

Stąd $h \circ \alpha \circ f \in A(X', Y')$. Pokazaliśmy w ten sposób, że

$$\operatorname{Map}(f,h)\big(A(X,Y)\big)\subset A(X',Y'),$$

co oznacza, że $A \subset \text{Map}$.

2.2 Przekształcenia funktorów

Definicja 14 Niech $F, G: R\operatorname{-Mod} \to R\operatorname{-Mod}$ będą funktorami. Mówimy, że określone jest przekształcenie funktorów $\varphi: F \to G$, o ile dla dowolnego $R\operatorname{-mod}$ dułu X określony jest $R\operatorname{-homomorfizm} \varphi_X: F(X) \to G(X)$ oraz spełniony jest następujący warunek:

jeśli X' jest dowolnym R-modułem oraz $f: X \to X'$ dowolnym R-ho-momorfizmem, to diagram

$$\begin{split} F(X) & \xrightarrow{\varphi_X} G(X) \\ & \downarrow^{F(f)} & \downarrow^{G(f)} \\ F(X') & \xrightarrow{\varphi_{X'}} G(X') \end{split}$$

jest przemienny, tzn. $G(f) \circ \varphi_X = \varphi_{X'} \circ F(f)$.

W szczególności, jeżeli dla dowolnego $X \in R$ -Mod homomorfizm φ_X jest izomorfizmem, to mówimy, że przekształcenie φ jest izomorfizmem funktorów oraz, że funktory F i G są izomorficzne, co zapisujemy $F \simeq G$. Mówimy także w tym wypadku, że istnieje naturalny izomorfizm $F(X) \simeq G(X)$.

Definicja 15 Niech $A, B: R\operatorname{-Mod} \times R\operatorname{-Mod} \to R\operatorname{-Mod}$ będą funktorami dwóch zmiennych. Mówimy, że określone jest przekształcenie funktorów $\varphi: A \to B$, o ile dla dowolnych $R\operatorname{-modułów} X, Y$ określony jest $R\operatorname{-homomorfizm}$ $\varphi_{X,Y}: A(X,Y) \to B(X,Y)$ oraz spełniony jest następujący warunek:

jeśli X', Y' są dowolnymi R-modułami oraz $f: X' \to X, g: Y \to Y'$ dowolnymi R-homomorfizmami, to diagram

$$A(X,Y) \xrightarrow{\varphi_{X,Y}} B(X,Y)$$

$$\downarrow^{A(f,g)} \qquad \downarrow^{B(f,g)}$$

$$A(X',Y') \xrightarrow{\varphi_{X',Y'}} B(X',Y')$$

jest przemienny, tzn. $B(f,g) \circ \varphi_{X,Y} = \varphi_{X',Y'} \circ A(f,g)$.

W szczególności, jeżeli dla dowolnych $X, Y \in R$ -Mod homomorfizm $\varphi_{X,Y}$ jest izomorfizmem, to mówimy, że przekształcenie φ jest izomorfizmem funktorów oraz, że funktory A i B są izomorficzne, co zapisujemy $A \simeq B$. Mówimy także w tym wypadku, że istnieje naturalny izomorfizm $A(X,Y) \simeq B(X,Y)$.

Definicja 16 Mówimy, że funktor odwzorowań A jest reprezentowalny, a dokładniej reprezentowany przez funktor $F: R\operatorname{-Mod} \to R\operatorname{-Mod}$, jeśli $A \simeq \operatorname{Hom}_R(F(_), _)$, tzn. istnieje naturalny izomorfizm $A(X,Y) \simeq \operatorname{Hom}_R(F(X),Y)$.

Rozdział 3

Ciągi Grothendiecka i granice proste

3.1 Ciągi Grothendiecka

Ciągi Grothendiecka stanowią odpowiednik ciągów dokładnych w sytuacji, gdy rozważamy odwzorowania niekoniecznie będące homomorfizmami pomiędzy obiektami, które są zbiorami z ewentualnymi dodatkowymi strukturami. W naszych rozważaniach ograniczymy się jednak do ciągów R-modułów i R-homomorfizmów. Czytelnika zainteresowanego tematem odsyłamy do pracy [6] oraz artykułu [3]. Informacje na ten temat można również znaleźć w [4] i [5]. Treść następujących dwóch paragrafów pochodzi głównie z pracy [3].

3.1.1 Ciągi Grothendiecka pierwszego rodzaju

Definicja 17 Ciąg R-modułów i R-homomorfizmów

$$X \xrightarrow{f_1} Y \xrightarrow{g} Z$$

nazywamy ciągiem Grothendiecka pierwszego rodzaju, jeżeli

- 1. g jest epimorfizmem,
- 2. dla dowolnych $y_1, y_2 \in Y$ następujące warunki są równoważne:
 - (a) $q(y_1) = q(y_2)$,
 - (b) istnieje $x \in X$ taki, że $y_1 = f_1(x)$ i $y_2 = f_2(x)$.

Przy tym implikacja (b) \Rightarrow (a) oznacza, że $g \circ f_1 = g \circ f_2$.

Twierdzenie 4 ([3], str. 222) Ciąg

$$X \xrightarrow{f_1} Y \xrightarrow{g} Z \tag{3.1}$$

jest ciągiem Grothendiecka pierwszego rodzaju wtedy i tylko wtedy, gdy ciąg

$$X \xrightarrow{f_1 - f_2} Y \xrightarrow{g} Z \longrightarrow 0 \tag{3.2}$$

jest dokładny i dla dowolnego $y \in Y$ istnieje $x \in X$ taki, że $y = f_1(x) = f_2(x)$.
dowód:

 (\Rightarrow) : Oczywiście g jest epimorfizmem z założenia. Dla dowodu dokładności pozostaje pokazać, że $\operatorname{im}(f_1-f_2)=\ker(g)$. Zauważmy najpierw, że do $\operatorname{im}(f_1-f_2)$ należą takie $y\in Y$, które dają się przedstawić w postaci $y=f_1(x)-f_2(x)$ dla pewnego $x\in X$. Mamy także

$$\ker(g) = \{ y \in Y \; ; \; g(y) = 0 \} = \{ y \in Y \; ; \; g(y) = g(0) \}.$$

Ponieważ ciąg (3.1) jest ciągiem Grothendiecka, zatem równość g(y)=g(0) równoważna jest temu, że istnieje taki $x\in X$, dla którego $y=f_1(x)$ i $f_2(x)=0$. Stąd

$$\ker(g) = \{ y \in Y ; \exists_{x \in Y} y = f_1(x) - f_2(x) \land f_2(x) = 0 \} \subset \operatorname{im}(f_1 - f_2).$$

Wprost z definicji wynika, że $g \circ f_1 = g \circ f_2$, więc $g \circ (f_1 - f_2) = 0$, co jest równoważne temu, że im $(f_1 - f_2) \subset \ker(g)$. Zatem im $(f_1 - f_2) \subset \ker(g)$ i ostatecznie im $(f_1 - f_2) = \ker(g)$, co dowodzi, że ciąg (3.2) jest dokładny. Ponadto, bezpośrednio z warunku \mathcal{Z} . (przy $y_1 = y_2$) wynika, że dla dowolnego $y \in Y$ istnieje $x \in X$ taki, że $y = f_1(x)$ i $y = f_2(x)$.

(\Leftarrow): Oczywiście g jest epimorfizmem. Jeśli $y_1=f_1(x)$ i $y_2=f_2(x)$, to $g(y_1)-g(y_2)=g\big((f_1-f_2)(x)\big)=0$, gdyż im $(f_1-f_2)\subset\ker(g)$. Niech $g(y_1)=g(y_2)$; wówczas $y_1-y_2\in\ker(g)$. Ponieważ ciąg (3.2) jest dokładny, zatem $y_1-y_2\in\inf(f_1-f_1)$. Stąd istnieje $x'\in X$ taki, że $y_1-y_2==(f_1-f_2)(x')$, zatem $y_1-f_1(x')=y_2-f_2(x')$. Z założenia

$$y_1 - f_1(x') = y_2 - f_2(x') = f_1(x'') = f_2(x'')$$

dla pewnego $x'' \in X$. Zatem $y_1 = f_1(x' + x'')$ i $y_2 = f_2(x' + x'')$. Kładąc x = x' + x'' otrzymujemy $y_1 = f_1(x)$ i $y_2 = f_2(x)$. \square

Lemat 9 ([3], Remark 2.4) Jeżeli ciąg

$$X \xrightarrow{f} Y \xrightarrow{g} Z \longrightarrow 0 \tag{3.3}$$

jest dokładny, to ciąg

$$X \oplus Y \xrightarrow{(f, \operatorname{id}_Y)} Y \xrightarrow{g} Z$$
 (3.4)

jest ciągiem Grothendiecka pierwszego rodzaju, gdzie $(f, id_Y)(x, y) = f(x) + y$ oraz $(0, id_Y)(x, y) = y$ dla $(x, y) \in X \oplus Y$.

dowód: Ciąg (3.3) jest dokładny, zatem g jest epimorfizmem i warunek 1. w definicji ciągu Grothendiecka jest spełniony. Pozostaje pokazać równoważność poniższych dwóch warunków:

(a) $g(y_1) = g(y_2)$,

(b)
$$\exists_{(x',y')\in X\oplus Y} y_1 = f(x') + y' \land y_2 = y'.$$

 $(b) \Rightarrow (a)$: Niech $y_1 = f(x') + y'$ oraz $y_2 = y'$ dla pewnego $(x', y') \in X \oplus Y$. Wówczas

$$g(y_1) = g(f(x') + y') = g(f(x')) + g(y').$$

Ciąg (3.3) jest dokładny, skąd wynika, że $g \circ f = 0$, zatem g(f(x')) = 0. Stąd

$$g(y_1) = g(y') = g(y_2).$$

 $(a) \Rightarrow (b)$: Niech $g(y_1) = g(y_2)$. Wówczas $g(y_1 - y_2) = 0$, co oznacza, że $y_1 - y_2 \in \ker(g)$. Ponieważ $\ker(g) = \operatorname{im}(f)$, zatem $y_1 - y_2 \in \operatorname{im}(f)$, skąd istnieje $x' \in X$ taki, że $f(x') = y_1 - y_2$. Przyjmując $y' = y_2$ otrzymujemy $y_1 = f(x') + y'$ oraz $y_2 = y'$, co należało udowodnić. \square

Pokazuje się, że dla dowolnego R-modułu Z istnieje ciąg dokładny (3.3), w którym X i Y są wolnymi R-modułami. Wówczas w ciągu Grothendiecka (3.4) moduły $X \oplus Y$ oraz Y są wolne.

Przykład 4 Rozważmy ciąg Z-modułów i Z-homomorfizmów

$$\mathbb{Z} \xrightarrow{f} \mathbb{Z} \xrightarrow{\nu} \mathbb{Z}/2\mathbb{Z} \longrightarrow 0,$$

w którym f(n) = 2n oraz ν jest homomorfizmem naturalnym, tzn. $\nu(n) = n + 2\mathbb{Z}$ dla $n \in \mathbb{Z}$. Powyższy ciąg jest dokładny, gdyż $\ker(\nu) = 2\mathbb{Z} = \operatorname{im}(f)$, zatem, na podstawie Lematu 9, ciąg

$$\mathbb{Z}^2 \xrightarrow[(0,\mathrm{id}_{\mathbb{Z}})]{(f,\mathrm{id}_{\mathbb{Z}})} \mathbb{Z} \xrightarrow{\nu} \mathbb{Z}/2\mathbb{Z}$$

jest ciągiem Grothendiecka pierwszego rodzaju, przy czym $(f, id_{\mathbb{Z}})(n, m) = 2n + m$ oraz $(0, id_{\mathbb{Z}})(n, m) = m$ dla dowolnego $(n, m) \in \mathbb{Z}^2$.

Lemat 10 Niech $g: Y \to Z$ będzie epimorfizmem oraz niech i będzie włożeniem $\ker(g)$ w Y. Wówczas ciąg

$$ker(g) \oplus Y \xrightarrow{(i, id_Y)} Y \xrightarrow{g} Z$$
 (3.5)

jest ciągiem Grothendiecka pierwszego rodzaju.

dowód: Zauważmy, że ciąg

$$\ker(g) \xrightarrow{i} Y \xrightarrow{g} Z \longrightarrow 0$$

jest dokładny, wobec czego, na podstawie Lematu 9, ciąg (3.5) jest ciągiem Grothendiecka pierwszego rodzaju. \Box

3.1.2 Ciągi Grothendiecka drugiego rodzaju

Definicja 18 Ciąg R-modułów i R-homomorfizmów

$$X \xrightarrow{g} Y \xrightarrow{f_1} Z$$

nazywamy ciągiem Grothendiecka drugiego rodzaju, jeżeli

- 1. q jest monomorfizmem,
- 2. dla dowolnego $y \in Y$ następujące warunki są równoważne:

- (a) $f_1(y) = f_2(y)$,
- (b) $istnieje \ x \in X \ taki, \ \dot{z}e \ y = g(x).$

Przy tym implikacja (b) \Rightarrow (a) oznacza, że $f_1 \circ g = f_2 \circ g$.

Lemat 11 Ciaq

$$X \xrightarrow{g} Y \xrightarrow{f_1} Z$$
 (3.6)

jest ciągiem Grothendiecka drugiego rodzaju wtedy i tylko wtedy, gdy ciąg

$$0 \longrightarrow X \xrightarrow{g} Y \xrightarrow{f_1 - f_2} Z \tag{3.7}$$

jest dokładny.

dowód:

(⇒): Załóżmy, że ciąg (3.6) jest ciągiem Grothendiecka. Należy pokazać, że ciąg (3.7) jest dokładny. Wystarczy pokazać, że $\ker(f_1 - f_2) = \operatorname{im}(g)$. Mamy

$$\ker(f_1 - f_2) = \{ y \in Y ; (f_1 - f_2)(y) = 0 \} = \{ y \in Y ; f_1(y) = f_2(y) \}$$
$$= \{ y \in Y ; \exists_{x \in X} y = g(x) \} = \operatorname{im}(g).$$

(\Leftarrow): Załóżmy, że ciąg (3.7) jest dokładny, skąd $\ker(f_1 - f_2) = \operatorname{im}(g)$. Niech $f_1(y) = f_2(y)$. Wówczas $y \in \ker(f_1 - f_2)$. Ponieważ $\ker(f_1 - f_2) \subset \operatorname{im}(g)$, zatem istnieje $x \in X$ taki, że y = g(x).

Rozważmy $x \in X$ taki, że y = g(x). Wówczas $y \in \text{im}(g)$. Ponieważ $\ker(f_1 - f_2) \supset \text{im}(g)$, zatem $f_1(y) = f_2(y)$, co kończy dowód faktu, że ciąg (3.6) jest ciągiem Grothendiecka drugiego rodzaju. \square

Lemat 12 Niech

$$X \xrightarrow{f_1} Y \xrightarrow{g} Z \tag{3.8}$$

będzie ciągiem Grothendiecka pierwszego rodzaju. Niech A będzie funktorem odwzorowań oraz niech N będzie dowolnym R-modułem. Wówczas

$$A(Z,N) \xrightarrow{g^*} A(Y,N) \xrightarrow{f_2^*} A(X,N)$$
 (3.9)

jest ciągiem Grothendiecka drugiego rodzaju wtedy i tylko wtedy, gdy dla każdego $\varphi \in A(Y,N)$ istnieje dokładnie jedno uzupełnienie diagramu przemiennego

$$X \xrightarrow{f_1} Y \xrightarrow{g} Z$$

$$\downarrow^{\varphi} \qquad \qquad N$$

 $tzn.\ takiego,\ \dot{z}e\ \varphi\circ f_1=\varphi\circ f_2,\ do\ diagramu\ przemiennego$

$$X \xrightarrow{f_1} Y \xrightarrow{g} Z$$

$$\downarrow^{\varphi} \downarrow^{\psi} \qquad (3.10)$$

 $tzn.\ takiego,\ ze\ dodatkowo\ \psi \circ g = \varphi,\ gdzie\ \psi \in A(Z,N).$

dowód:

 (\Rightarrow) : Bezpośrednio z Definicji 18 otrzymujemy, że skoro $f_1^*(\varphi) = \varphi \circ f_1 = \varphi \circ f_2 = f_2^*(\varphi)$, to istnieje $\psi \in A(Z,N)$ takie, że $g^*(\psi) = \varphi$, tzn. $\psi \circ g = \varphi$. Zauważmy ponadto, że istnienie dokładnie jednego ψ jest równoważne temu, że g^* jest monomorfizmem.

 (\Leftarrow) : Załóżmy, że istnieje $\psi\in A(Z,N)$ takie, że $g^*(\psi)=\psi\circ g=\varphi$ dla $\varphi\in A(Y,N)$. Wówczas g jest epimorfizmem oraz

$$f_1^*(\varphi) = \varphi \circ f_1 = \psi \circ g \circ f_1 = \psi \circ g \circ f_2 = \varphi \circ f_2 = f_2^*(\varphi),$$

gdyż $g \circ f_1 = g \circ f_2$ z założenia.

Jeżeli teraz $f_1^*(\varphi) = f_2^*(\varphi)$, tzn. $\varphi \circ f_1 = \varphi \circ f_2$, to z założenia wynika, że istnieje dokładnie jedno $\psi \in A(Z, N)$ takie, że $\varphi = \psi \circ g$, tzn. $g^*(\psi) = \varphi$. \square

Wniosek 2 Niech

$$X \xrightarrow{f_1} Y \xrightarrow{g} Z \tag{3.11}$$

będzie ciągiem Grothendiecka pierwszego rodzaju oraz niech N będzie dowolnym R-modułem. Wówczas

$$\operatorname{Map}(Z, N) \xrightarrow{g^*} \operatorname{Map}(Y, N) \xrightarrow{f_1^*} \operatorname{Map}(X, N)$$
 (3.12)

jest ciągiem Grothendiecka drugiego rodzaju.

dowód: Zgodnie z poprzednim lematem pokażemy, że diagram (3.10) można jednoznacznie uzupełnić odwzorowaniem $\psi \in \operatorname{Map}(X,Y)$. Ponieważ g jest epimorfizmem, więc każdy element $z \in Z$ jest postaci z = g(y) dla pewnego $y \in Y$. Odwzorowanie $\psi : Z \to N$ ma uzupełniać diagram (3.10), wobec czego musi być określone wzorem $\psi(z) = \varphi(y)$, dla z = g(y), $\varphi \in \operatorname{Map}(Y,N)$. Wobec tego ψ jest wyznaczone jednoznacznie. Odwzorowanie ψ jest poprawnie określone. Istotnie, niech z = g(y) = g(y'). Ciąg (3.11) jest ciągiem Grothendiecka pierwszego rodzaju, co oznacza, że istnieje $x \in X$, dla którego $y = f_1(x)$ i $y' = f_2(x)$. Stąd

$$\varphi(y) = \varphi(f_1(x)) = \varphi(f_2(x)) = \varphi(y').$$

Zatem ψ jest poprawnie określone i jest jedynym uzupełnieniem diagramu (3.10). Z Lematu 12 wynika, że (3.12) jest ciągiem Grothendiecka drugiego rodzaju. \square

Twierdzenie 5 Ciąg

$$X \xrightarrow{f_1} Y \xrightarrow{g} Z \tag{3.13}$$

jest ciągiem Grothendiecka pierwszego rodzaju wtedy i tylko wtedy, gdy dla dowolnego $N \in R$ -Mod ciąg

$$\operatorname{Hom}_{R}(Z, N) \xrightarrow{g^{*}} \operatorname{Hom}_{R}(Y, N) \xrightarrow{f_{2}^{*}} \operatorname{Hom}_{R}(X, N)$$
 (3.14)

jest ciągiem Grothendiecka drugiego rodzaju oraz dla dowolnego $y \in Y$ istnieje $x \in X$ taki, że $y = f_1(x) = f_2(x)$.

dowód:

 (\Rightarrow) : Wystarczy zauważyć, że odwzorowanie ψ określone we Wniosku 2 jest R-homomorfizmem. Istotnie, niech z=g(y) oraz z'=g(y') dla pewnych $y,y'\in Y$. Wówczas

$$\psi(z+z') = \varphi(y+y') = \varphi(y) + \varphi(y') = \psi(z) + \psi(z'),$$

gdyż $\varphi \in \operatorname{Hom}_R(Y, N)$. Ponadto, jeżeli $r \in R$, to

$$\psi(rz) = \varphi(ry) = r\varphi(y) = r\psi(z),$$

skąd $\psi \in \operatorname{Hom}_R(Y, N)$.

(\Leftarrow): Niech (3.14) będzie ciągiem Grothendiecka drugiego rodzaju. Zauważmy, że jeżeli g^* jest monomorfizmem, to g jest epimorfizmem na podstawie Lematu 7. Niech $N=Y/\operatorname{im}(f_1-f_2)$ oraz niech $\nu:Y\to Y/\operatorname{im}(f_1-f_2)$ będzie homomorfizmem naturalnym. Wówczas $\nu\in\ker(f_1-f_2)^*$, gdyż $\nu\circ(f_1-f_2)=0$. Zatem $\nu\circ f_1=\nu\circ f_2$, co oznacza, że $f_1^*(\nu)=f_2^*(\nu)$. Wobec tego istnieje $\psi\in\operatorname{Hom}_R(Z,N)$ takie, że $\nu=\psi\circ g$.

Jeżeli $g(y_1)=g(y_2)$, to $y_1-y_2\in\ker(g)$. Zatem $\psi\big(g(y_1-y_2)\big)=\psi(0)=0$, skąd $\nu(y_1-y_2)=0$. Oznacza to, że $y_1-y_2\in\operatorname{im}(f_1-f_2)$, wobec czego istnieje $x'\in X$ taki, że $y_1-y_2=f_1(x')-f_2(x')$. Stąd $y_1-f_1(x')=y_2-f_2(x')$, więc z założenia wynika, że $y_1-f_1(x')=f_1(x'')$ oraz $y_2-f_2(x')=f_2(x'')$ dla pewnego $x''\in X$. Kładąc x=x'+x'' otrzymujemy, że $y_1=f_1(x)$ i $y_2=f_2(x)$.

Pozostaje udowodnić, że jeżeli $f_1^*\circ g^*=f_2^*\circ g^*,$ to $f_1\circ g=f_2\circ g$ (dla każdego R-modułu N). Oznaczmy

$$h = g \circ f_1 - g \circ f_2.$$

Wówczas h^* : $\operatorname{Hom}_R(Y,N) \to \operatorname{Hom}_R(X,N)$ i $h^* = f_1^* \circ g^* - f_2^* \circ g^* = 0$ dla każdego $N \in R$ -Mod. W szczególności dla N = Y otrzymujemy, że $h^*(\operatorname{id}_Y) = 0$, skąd h = 0. Wobec tego $g \circ f_1 = g \circ f_2$. \square

3.2 Granice proste

Celem tego podrozdziału jest przedstawienie podstawowych faktów dotyczących prostych systemów R-modułów oraz ich granic. Czytelnika zainteresowanego dokładniejszym omówieniem tematu odsyłamy do książki [2].

Definicja 19 Niech S będzie zbiorem częściowo uporządkowanym relacją \leq . Zbiór S nazywamy zbiorem skierowanym, o ile spełniony jest następujący warunek:

jeśli
$$\alpha, \beta \in S$$
, to istnieje $\gamma \in S$ takie, że $\alpha \leq \gamma$ i $\beta \leq \gamma$.

Przykład 5 Niech X będzie dowolnym zbiorem oraz niech S oznacza rodzinę wszystkich skończonych podzbiorów zbioru X. Wówczas S jest zbiorem skierowanym względem relacji zawierania \subset .

Każdy zbiór liniowo uporządkowany jest zbiorem skierowanym. Zbiór częściowo uporządkowany zawierający element największy jest skierowany.

Definicja 20 Niech S będzie zbiorem skierowanym. Systemem prostym R-modułów nad zbiorem S nazywamy układ $\{X_{\alpha}, f_{\beta}^{\alpha}\}$, gdzie $X_{\alpha} \in R$ -Mod dla $\alpha \in S$ oraz $f_{\beta}^{\alpha}: X_{\alpha} \to X_{\beta}$ jest R-homomorfizmem dla $\alpha \leq \beta$, jeśli spełnione są następujące warunki:

1.
$$f_{\alpha}^{\alpha} = \mathrm{id}_{X_{\alpha}}, \ \alpha \in S$$

2. jeśli $\alpha \leq \beta \leq \gamma$, to diagram

$$X_{\alpha} \xrightarrow{f_{\beta}^{\alpha}} X_{\beta}$$

$$\downarrow^{f_{\gamma}^{\alpha}} \downarrow^{f_{\gamma}^{\beta}}$$

$$X_{\gamma}$$

jest przemienny, tzn. $f^{\beta}_{\gamma} \circ f^{\alpha}_{\beta} = f^{\alpha}_{\gamma}$.

Definicja 21 Niech $\{X_{\alpha}, f_{\beta}^{\alpha}\}$ będzie systemem prostym R-modułów nad zbiorem skierowanym S. Granicą tego systemu nazywamy R-moduł X wraz z odwzorowaniami $f^{\alpha}: X_{\alpha} \to X$, $\alpha \in S$, o ile spełnione są warunki:

1. dla dowolnych $\alpha, \beta \in S$, $\alpha \leq \beta$, diagram

$$X_{\alpha} \xrightarrow{f_{\beta}^{\alpha}} X_{\beta}$$

$$\downarrow^{f^{\alpha}}$$

$$X$$

jest przemienny, tzn. $f^{\beta} \circ f^{\alpha}_{\beta} = f^{\alpha}$,

2. jeśli $Y \in R$ -Mod oraz dla dowolnego $\alpha \in S$ określone są R-homomorfizmy $g^{\alpha}: X_{\alpha} \to Y$ takie, że diagramy

są przemienne dla wszystkich $\alpha \leq \beta$, to istnieje dokładnie jeden R-homomorfizm $g: X \to Y$ taki, że wszystkie diagramy

są przemienne, tzn. $g \circ f^{\alpha} = g^{\alpha} dla \alpha \in S$.

Granicę systemu prostego $\{X_{\alpha}, f^{\alpha}_{\beta}\}$ oznaczamy $\lim\{X_{\alpha}, f^{\alpha}_{\beta}\}$ lub $\lim X_{\alpha}$.

Twierdzenie 6 ([2], Twierdzenie 2.14) Jeśli $\{X_{\alpha}, f_{\beta}^{\alpha}\}$ jest prostym systemem R-modułów nad zbiorem skierowanym S, to istnieje granica $\lim_{\longrightarrow} X_{\alpha}$ i jest wyznaczona jednoznacznie z dokładnością do izomorfizmu.

Powyższego twierdzenia nie dowodzimy między innymi dlatego, że nigdzie nie będziemy korzystali z konstrukcji $\lim_{\longrightarrow} X_{\alpha}$.

Lemat 13 Niech $\{X_{\alpha}\}_{\alpha \in S}$ będzie skierowaną rodziną podmodułów R-modułu X, tzn. $X_{\alpha} \subset X_{\beta}$ o ile $\alpha \leq \beta$. Niech $f_{\beta}^{\alpha}: X_{\alpha} \to X_{\beta}$ będą włożeniami dla $\alpha \leq \beta$. Wówczas $\{X_{\alpha}, f_{\beta}^{\alpha}\}$ jest prostym systemem R-modułów. Ponadto, jeżeli $X = \bigcup_{\alpha \in S} X_{\alpha}$, to $\lim_{\alpha \in S} X_{\alpha} = X$, przy czym $f^{\alpha}: X_{\alpha} \to X$ są włożeniami.

 $dow \acute{o}d$: Oczywiście $f^{\alpha}_{\alpha}=\mathrm{id}_{X_{\alpha}}$ oraz dla $\alpha\leq\beta\leq\gamma$ diagramy

są przemienne, skąd $\{X_{\alpha}, f_{\beta}^{\alpha}\}$ jest prostym systemem R-modułów. Niech $X = \bigcup_{\alpha \in S} X_{\alpha}$. Wówczas dla dowolnych $\alpha, \beta, \alpha \leq \beta$ diagramy

są przemienne, gdyż f^{α} , f^{β} oraz f^{α}_{β} są włożeniami. Niech Y będzie dowolnym R-modułem oraz niech dla dowolnego α określone będą R-homomorfizmy $g^{\alpha}: X_{\alpha} \to Y$ takie, że diagramy

są przemienne. Należy określić odwzorowanie $g:X\to Y$ w ten sposób, aby diagramy

$$X_{\alpha} \xrightarrow{f^{\alpha}} X$$

$$\downarrow^{g^{\alpha}} \downarrow^{g}$$

$$Y$$

$$(3.15)$$

były przemienne dla wszystkich $\alpha \in S$. Zauważmy, że jeżeli $x \in X$, to istnieje takie $\alpha \in S$, że $x \in X_{\alpha}$. Z przemienności diagramów (3.15) wynika, że $g(x) = g^{\alpha}(x)$, zatem w szczególności g jest co najwyżej jedno. Odwzorowanie g jest poprawnie określone. Istotnie, niech $x \in X_{\alpha}$ oraz $x \in X_{\beta}$. Wówczas istnieje wskaźnik γ taki, że $\alpha, \beta \leq \gamma$. Stąd

$$g^{\alpha}(x) = g^{\gamma}(f^{\alpha}_{\gamma}(x)) = g^{\gamma}(x) = g^{\gamma}(f^{\beta}_{\gamma}(x)) = g^{\beta}(x).$$

Oczywiście z definicji wynika, że g uzupełnia diagramy (3.15). Pozostaje pokazać, że g jest R-homomorfizmem. Niech $x, x' \in X$. Wobec tego istnieją α i β takie, że $x \in X_{\alpha}$ i $x' \in X_{\beta}$. Ponieważ S jest zbiorem skierowanym, zatem istnieje γ takie, że $\alpha, \beta \leq \gamma$ oraz $x, x' \in X_{\gamma}$, skąd $x + x' \in X_{\gamma}$. Wówczas

$$g(x + x') = g^{\gamma}(x + x') = g^{\gamma}(x) + g^{\gamma}(x') = g(x) + g(x').$$

Niech $r \in R$. Wówczas, jeśli $x \in X_{\alpha}$, to $rx \in X_{\alpha}$, więc

$$g(rx) = g^{\alpha}(rx) = rg^{\alpha}(x) = rg(x).$$

Wobec tego $X = \lim_{\longrightarrow} X_{\alpha}$. \square

PRZYKŁAD 6 ([2], Przykład 13, Przykład 19) Niech X będzie dowolnym R-modułem. Rozważym zbiór S wszystkich skończonych (odp. co najwyżej przeliczalnych) podzbiorów zbioru X. Jeśli $\alpha \in S$ oraz $\alpha = X'$, to przez X_{α} oznaczmy podmoduł RX'. Jeśli $\beta \in S$ oraz $\alpha \leq \beta$, to $X_{\alpha} \subset X_{\beta}$ i R-homomorfizm $f_{\beta}^{\alpha}: X_{\alpha} \to X_{\beta}$ określamy jako włożenie, tzn. $f_{\beta}^{\alpha}(x) = x$ dla $x \in X_{\alpha}$. Wówczas $\{X_{\alpha}, f_{\beta}^{\alpha}\}$ jest prostym systemem R-modułów nad zbiorem skierowanym S oraz $\lim X_{\alpha} = X$.

Zauważmy, że $\{X_{\alpha}\}_{\alpha\in S}$ jest skierowaną rodziną podmodułów R-modułu X. Wobec tego $\{X_{\alpha}, f_{\beta}^{\alpha}\}$ jest prostym systemem R-modułów na podstawie powyższego lematu. Ponadto $X = \bigcup_{\alpha\in S} X_{\alpha}$, gdyż dowolny element $x\in X$ jest elementem skończenie generowanego R-modułu Rx. Z Lematu 13 wynika zatem, że R-moduł X wraz z włożeniami $f^{\alpha}: X_{\alpha} \to X$ jest granicą prostą systemu $\{X_{\alpha}, f_{\beta}^{\alpha}\}$.

Zanotujmy jeszcze twierdzenie, z którego będziemy często korzystali:

Twierdzenie 7 ([2], Twierdzenie 2.12, Twierdzenie 2.16) Jeśli R-moduł X wraz z R-homomorfizmami $f^{\alpha}: X_{\alpha} \to X$ jest granicą systemu prostego $\{X_{\alpha}, f^{\alpha}\}$, to $X = \bigcup_{\alpha} \operatorname{im}(f^{\alpha})$ oraz $\operatorname{ker}(f^{\alpha}) = \bigcup_{\beta>\alpha} \operatorname{ker}(f^{\alpha}_{\beta})$.

Definicja 22 Niech $\{X_{\alpha}, f_{\beta}^{\alpha}\}$ będzie dowolnym prostym systemem R-modułów nad zbiorem skierowanym S. Niech X wraz z R-homomorfizmami $f^{\alpha}: X_{\alpha} \to X$ będzie granicą prostą tego systemu. Mówimy, że funktor F: R-Mod $\to R$ -Mod zachowuje granice proste jeżeli F(X) wraz z R-homomorfizmami $F(f^{\alpha})$ jest granicą prostą systemu $\{F(X_{\alpha}), F(f_{\beta}^{\alpha})\}$.

Definicja 23 Niech S będzie zbiorem skierowanym oraz niech $\{X_{\alpha}, f_{\beta}^{\alpha}\}$ i $\{Y_{\alpha}, g_{\beta}^{\alpha}\}$ będą prostymi systemami R-modułów nad zbiorem skierowanym S. Homomorfizmem systemów

$$\varphi: \{X_{\alpha}, f_{\beta}^{\alpha}\} \to \{Y_{\alpha}, g_{\beta}^{\alpha}\}$$

nazywamy taką rodzinę R-homomorfizmów $\varphi = \{\varphi_{\alpha}\}_{{\alpha} \in S}$, że dla każdego ${\alpha} \in S$

oraz dla wszystkich β takich, że $\alpha \leq \beta$ diagramy

$$X_{\alpha} \xrightarrow{f_{\beta}^{\alpha}} X_{\beta}$$

$$\downarrow^{\varphi_{\alpha}} \qquad \downarrow^{\varphi_{\beta}}$$

$$Y_{\alpha} \xrightarrow{g_{\beta}^{\alpha}} Y_{\beta}$$

$$(3.16)$$

są przemienne.

Zauważmy, że jeśli $\phi:F\to G$ jest przekształceniem funktorów, to dla dowolnego systemu prostego $\{X_\alpha,f^\alpha_\beta\}$ mamy homomorfizm systemów

$$\varphi = \{\varphi_{\alpha}\} : \{F(X_{\alpha}), F(f_{\beta}^{\alpha})\} \to \{G(X_{\alpha}), G(f_{\beta}^{\alpha})\},$$

gdzie
$$\varphi_{\alpha} = \phi(X_{\alpha}) : F(X_{\alpha}) \to G(X_{\alpha}).$$

Niech $\{X_{\alpha}, f^{\alpha}_{\beta}\}$ i $\{Y_{\alpha}, g^{\alpha}_{\beta}\}$ będą prostymi systemami R-modułów nad zbiorem skierowanym S i niech $\varphi = \{\varphi_{\alpha}\}_{\alpha \in S}$ będzie homomorfizmem systemów. Wówczas dla dowolnych $\alpha \leq \beta$ diagram

$$X_{\alpha} \xrightarrow{f_{\beta}^{\alpha}} X_{\beta}$$

$$\downarrow^{\varphi_{\alpha}} \qquad \downarrow^{\varphi_{\beta}}$$

$$Y_{\alpha} \xrightarrow{g_{\beta}^{\alpha}} Y_{\beta}$$

$$\downarrow^{g_{\alpha}} \qquad \swarrow^{g_{\beta}}$$

$$\lim_{\alpha} Y_{\alpha}$$

$$(3.17)$$

jest przemienny, wobec czego istnieje dokładnie jedno uzupełnienie diagramów

$$X_{\alpha} \xrightarrow{f_{\beta}^{\alpha}} X_{\beta}$$

$$\downarrow^{f^{\alpha}} \downarrow^{f^{\beta}} \downarrow^{g^{\beta}} \downarrow^{g^{\beta$$

do diagramu przemiennego

które będziemy oznaczać przez $\varinjlim \varphi_{\alpha}$. Wobec tego $\varinjlim \varphi_{\alpha}$ jest jedynym uzupełnieniem wszystkich diagramów

$$X_{\alpha} \xrightarrow{\varphi_{\alpha}} Y_{\alpha}$$

$$\downarrow^{f^{\alpha}} \qquad \downarrow^{g^{\alpha}}$$

$$\lim_{\alpha} X_{\alpha} \xrightarrow{\lim_{\alpha} \varphi_{\alpha}} \lim_{\alpha} Y_{\alpha}$$

$$(3.20)$$

W przyszłości będzie nam potrzebne

Twierdzenie 8 ([2], Twierdzenie 4.12) Niech $\{X_{\alpha}, f_{\beta}^{\alpha}\}\ i\ \{Y_{\alpha}, g_{\beta}^{\alpha}\}\ będą prostymi systemami R-modułow nad zbiorem skierowanym S. Niech X wraz z R-homomorfizmami <math>f^{\alpha}: X_{\alpha} \to X$ będzie granicą systemu $\{X_{\alpha}, f_{\beta}^{\alpha}\}$ oraz niech Y wraz z R-homomorfizmami $g^{\alpha}: Y_{\alpha} \to Y$ będzie granicą systemu $\{Y_{\alpha}, g_{\beta}^{\alpha}\}$. Niech $\varphi: \{X_{\alpha}, f_{\beta}^{\alpha}\} \to \{Y_{\alpha}, g_{\beta}^{\alpha}\}, \varphi = \{\varphi_{\alpha}\}_{\alpha \in S}$ będzie homomorfizmem systemów. Wówczas

$$\ker(\underset{\longrightarrow}{\lim}\varphi_{\alpha}) = \bigcup_{\alpha} f^{\alpha}(\ker(\varphi_{\alpha})).$$

Rozdział 4

Funktor modułu wolnego \mathcal{F}

Poniższy rozdział wprowadza funktor modułu wolnego \mathcal{F} . Podajemy pewne istotne własności, między innymi to, że \mathcal{F} zachowuje granice proste (Twierdzenie 9) oraz to, że funktor \mathcal{F} reprezentuje funktor Map (Lemat 15).

Przypomnijmy, że zgodnie z Lematem 3 dla każdego zbioru X istnieje R-moduł wolny, którego bazą jest zbiór X. Wobec tego prawdziwy jest następujący

Wniosek 3 Dla każdego R-modułu X istnieje R-moduł wolny $\mathcal{F}(X)$, którego bazą jest zbiór X.

Niech x będzie dowolnym elementem R-modułu X. Wówczas odpowiadający mu element bazy R-modułu $\mathcal{F}(X)$ oznaczamy przez [x]. Zatem istnieje kanoniczne włożenie $i: X \to \mathcal{F}(X), i(x) = [x]$, które nie jest R-homomorfizmem, gdyż $[x+y] \neq [x] + [y]$ oraz $[rx] \neq r[x]$, o ile $r \neq 1$.

W dalszych rozważaniach zasadniczą rolę odgrywa następujące twierdzenie będące wnioskiem z Twierdzenia 2

Wniosek 4 Dowolne odwzorowanie $\alpha: X \to Y$ można jednoznacznie przedłużyć do R-homomorfizmu $\bar{\alpha}: \mathcal{F}(X) \to Y$, dla którego diagram

jest przemienny. Homomorfizm $\bar{\alpha}$ jest określony na bazie wzorem $\bar{\alpha}([x]) = \alpha(x)$.

Zauważmy, że \mathcal{F} możemy traktować jako funktor kowariantny, który dowolnemu $X \in R$ -Mod przyporządkowuje $\mathcal{F}(X) \in R$ -Mod. Istotnie, jeżeli $f: X \to X'$ jest R-homomorfizmem, to $\mathcal{F}(f)$ jest R-homomorfizmem, będącym jedynym uzupełnieniem diagramu

$$X \xrightarrow{f} X'$$

$$\downarrow^{i} \qquad \qquad \downarrow^{i'}$$

$$\mathcal{F}(X) \qquad \mathcal{F}(X')$$

do diagramu przemiennego

$$X \xrightarrow{f} X'$$

$$\downarrow_{i} \qquad \qquad \downarrow_{i'}$$

$$\mathcal{F}(X) \xrightarrow{\mathcal{F}(f)} \mathcal{F}(X')$$

$$(4.1)$$

Takie jedyne uzupełnienie istnieje, gdyż na podstawie Twierdzenia 2 odwzorowaniu i' of odpowiada wzajemnie jednoznacznie R-homomorfizm $\mathcal{F}(f):\mathcal{F}(X)\to\mathcal{F}(X')$. Z przemienności diagramu (4.1) wynika zatem, że

$$(\mathcal{F}(f))([x]) = [f(x)].$$

Ponadto $\mathcal{F}(f)$ jest R-homomorfizmem, zatem dla dowolnego $\sum_{x \in X} r_x[x] \in \mathcal{F}(X)$ mamy

$$(\mathcal{F}(f))(\sum_{x\in X}r_x[x]) = \sum_{x\in X}r_x[f(x)],$$

gdzie $r_x \in R$, $x \in X$. Ponadto, jeżeli $f: X \to X'$ oraz $g: X' \to X''$ są R-homomorfizmami, to

$$\mathcal{F}(g \circ f)([x]) = [(f \circ g)(x)] = [f(g(x))] = (\mathcal{F}(f))[g(x)] =$$
$$= (\mathcal{F}(f))((\mathcal{F}(g))([x])) = (\mathcal{F}(f) \circ \mathcal{F}(g))([x]),$$

zatem $\mathcal{F}(g\circ f)=\mathcal{F}(g)\circ\mathcal{F}(f).$ Również

$$(\mathcal{F}(\mathrm{id}_X))([x]) = [\mathrm{id}_X(x)] = [x] = \mathrm{id}_{\mathcal{F}(X)}(x),$$

skąd $\mathcal{F}(\mathrm{id}_X) = \mathrm{id}_{\mathcal{F}(X)}$. Pokazaliśmy tym samym, że warunki Definicji 8 są spełnione, zatem $\mathcal{F}: R\operatorname{-Mod} \to R\operatorname{-Mod}$ jest rzeczywiście funktorem.

W następnym rozdziale przydatny będzie następujący

Lemat 14 Niech $f: X' \to X$, $g: Y \to Y$ będą R-homomorfizmami oraz niech $\alpha: X \to Y$ będzie dowolnym odwzorowaniem. Wówczas

- (1) $g \circ \bar{\alpha} = \overline{g \circ \alpha}$,
- (2) $\overline{\alpha \circ f} = \bar{\alpha} \circ \mathcal{F}(f)$.
- (3) $\overline{g \circ \alpha \circ f} = g \circ \bar{\alpha} \circ \mathcal{F}(f)$.

dowód: Ponieważ po obu stronach równości (1) i (2) występują homomorfizmy i złożenia homomorfizmów określone na modułach wolnych $\mathcal{F}(X)$ i $\mathcal{F}(X')$, więc wystarczy sprawdzić te równości na elementach bazy. Niech $x \in X$, wówczas

$$(g \circ \bar{\alpha})([x]) = g(\bar{\alpha}([x])) = g(\alpha(x)) = (g \circ \alpha)(x) = \overline{(g \circ \alpha)}([x]),$$

skąd $g \circ \bar{\alpha} = \overline{g \circ \alpha}$. Podobnie

$$(\bar{\alpha} \circ \mathcal{F}(f))([x]) = \bar{\alpha}(\mathcal{F}(f)([x])) = \bar{\alpha}([f(x)]) =$$
$$= \alpha(f(x)) = (\alpha \circ f)(x) = \overline{(\alpha \circ f)}([x]).$$

skąd $\bar{\alpha} \circ \mathcal{F}(f) = \overline{\alpha \circ f}$.

Wzór (3) jest prostą konsekwencją wzorów (1) i (2). Istotnie, kładąc $\beta = g \circ \alpha$ otrzymujemy

$$\overline{g \circ \alpha \circ f} = \overline{\beta \circ f} = \overline{\beta} \circ \mathcal{F}(f) = \overline{g \circ f} \circ \mathcal{F}(f) = g \circ \overline{\alpha} \circ \mathcal{F}(f). \square$$

Rozważmy dowolny podfunktor K funktora \mathcal{F} . Wówczas możemy określić nowy funktor \mathcal{F}/K kładąc $(\mathcal{F}/K)(X) = \mathcal{F}(X)/K(X)$ dla dowolnego $X \in R$ -Mod. Niech $f: X \to Y$ będzie dowolnym R-homomorfizmem oraz niech $\nu_X: \mathcal{F}(X) \to \mathcal{F}(X)/K(X), \, \nu_Y: \mathcal{F}(Y) \to \mathcal{F}(Y)/K(Y)$ będą homomorfizmami naturalnymi. Ponieważ $\mathcal{F}(f)\big(K(X)\big) \subset K(Y)$, więc $\big(\nu_Y \circ \mathcal{F}(f)\big)\big(K(X)\big) = 0$, wobec czego, na podstawie Twierdzenia 1, istnieje dokładnie jeden R-homomorfizm $\mathcal{F}(X)/K(X) \to \mathcal{F}(Y)/K(Y)$, który oznaczać będziemy przez $(\mathcal{F}/K)(f)$, dla którego

$$((\mathcal{F}/K)(f))(u+K(X)) = (\nu_Y \circ \mathcal{F}(f))(u) = \mathcal{F}(f)(u) + K(Y),$$

gdzie $u \in \mathcal{F}(X)$. Wobec tego, jeżeli $u = \sum_{x \in X} r_x[x]$, gdzie $r_x \in R, x \in X$, to

$$\left((\mathcal{F}/K)(f) \right) \left(\sum_{x \in X} r_x[x] + K(X) \right) = \sum_{x \in X} r_x [f(x)] + K(Y).$$

Pozostaje pokazać, że \mathcal{F}/K jest funktorem. Niech $f:Y\to Z$ oraz $g:X\to Y$ będą R-homomorfizmami. Wówczas, dla dowolnego $x\in X$ mamy

$$(\mathcal{F}/K)(f \circ g)\big([x] + K(X)\big) = [(f \circ g)(x)] + K(Z) = \big[f\big(g(x)\big)\big] + K(Z) =$$

$$= (\mathcal{F}/K)(f)\Big([g(x)] + K(Y)\Big) = (\mathcal{F}/K)(f)\Big((\mathcal{F}/K)(g)([x] + K(X))\Big) =$$

$$= \Big((\mathcal{F}/K)(f) \circ (\mathcal{F}/K)(g)\Big)\big([x] + K(X)\big).$$

Ponadto

$$(\mathcal{F}/K)(\mathrm{id}_X)([x]+K(X))=[x]+K(X)=\mathrm{id}_{(\mathcal{F}/K)(X)}([x]+K(X)),$$

zatem $(\mathcal{F}/K)(\mathrm{id}_X) = \mathrm{id}_{(\mathcal{F}/K)(X)}$, co kończy dowód faktu, że \mathcal{F}/K jest funktorem.

Okazuje się, że istnieje ważny związek pomiędzy funktorami \mathcal{F} i Map. Z kolejnego lematu wynika bowiem, że funktor Map jest reprezentowalny, a \mathcal{F} jest jego funktorem reprezentującym.

Lemat 15 Niech $\varphi_{X,Y}$ będzie odwzorowaniem, które dowolnemu $f \in \operatorname{Hom}_R (\mathcal{F}(X), Y)$ przyporządkowuje odwzorowanie $f \circ i \in \operatorname{Map}(X,Y)$, gdzie i(x) = [x]. Wówczas dla dowolnych $X,Y \in R$ -Mod odwzorowanie $\varphi_{X,Y}$ jest R-izomorfimem oraz dla dowolnych R-homomorfizmów $g: Y \to Y'$, $h: X' \to X$ diagram

$$\operatorname{Hom}_{R}\left(\mathcal{F}(X),Y\right) \xrightarrow{\varphi_{X,Y}} \operatorname{Map}(X,Y)$$

$$\downarrow^{\operatorname{Hom}_{R}(\mathcal{F}(h),g)} \qquad \downarrow^{\operatorname{Map}(h,g)}$$

$$\operatorname{Hom}_{R}\left(\mathcal{F}(X'),Y'\right) \xrightarrow{\varphi_{X',Y'}} \operatorname{Map}(X',Y')$$

$$(4.2)$$

jest przemienny.

dowód: Zauważmy najpierw, że $\varphi_{X,Y}$ jest R-homomorfizmem, gdyż dla dowol-

nych $x \in X$, $r \in R$ oraz dowolnych $h_1, h_2 \in \operatorname{Hom}_R(\mathcal{F}(X), Y)$ mamy

$$(\varphi_{X,Y}(h_1 + h_2))(x) = ((h_1 + h_2) \circ i)(x) = (h_1 + h_2)(i(x)) = h_1(i(x)) + h_2(i(x)) =$$

$$= (h_1 \circ i)(x) + (h_2 \circ i)(x) = (h_1 \circ i + h_2 \circ i)(x) =$$

$$= (\varphi_{X,Y}(h_1) + \varphi_{X,Y}(h_2))(x),$$

$$(\varphi_{X,Y}(rh_1))(x) = ((rh_1) \circ i)(x) = (rh_1)(i(x)) = rh_1(i(x)) = r((h_1 \circ i)(x))$$

$$= (r(h_1 \circ i))(x) = (r\varphi_{X,Y}(h_1))(x).$$

Zatem $\varphi_{X,Y}(h_1 + h_2) = \varphi_{X,Y}(h_1) + \varphi_{X,Y}(h_2)$ oraz $\varphi_{X,Y}(rh_1) = r\varphi_{X,Y}(h_1)$, co oznacza, że $\varphi_{X,Y}$ jest R-homomorfizmem. Ponadto, z Wniosku 4 wynika, że odpowiedniość ta jest wzajemnie jednoznaczna, zatem $\varphi_{X,Y}$ jest R-izomorfizmem.

Niech $f \in \operatorname{Hom}_R(\mathcal{F}(X), Y)$ oraz niech i będzie włożeniem $X \le \mathcal{F}(X)$, natomiast i' niech będzie włożeniem $X' \le \mathcal{F}(X')$. Zauważmy teraz, że

$$\left(\varphi_{X',Y'} \circ \operatorname{Hom}_{R}\left(\mathcal{F}(h),g\right)\right)(f) = \varphi_{X',Y'}\left(\operatorname{Hom}_{R}\left(\mathcal{F}(h),g\right)(f)\right) =$$

$$= \varphi_{X',Y'}\left(g \circ f \circ \mathcal{F}(h)\right) = g \circ f \circ \mathcal{F}(h) \circ i'.$$

Z drugiej strony

$$(\operatorname{Map}(h,g)\circ\varphi_{X,Y})(f)=\operatorname{Map}(h,g)(\varphi_{X,Y})=g\circ f\circ i\circ h.$$

Aby pokazać, że zachodzi równość $g \circ f \circ \mathcal{F}(h) \circ i' = g \circ f \circ i \circ h$ wystarczy pokazać, że $\mathcal{F}(h) \circ i' = i \circ h$. Zauważmy jednak, że równość ta wynika bezpośrednio z określenia $\mathcal{F}(h)$. Stąd

$$\operatorname{Map}(h,g) \circ \varphi_{X,Y} = \varphi_{X',Y'} \circ \operatorname{Hom}_R (\mathcal{F}(h),g),$$

co oznacza, że diagram (4.2) jest przemienny. \Box

Wniosek 5 Istnieje naturalny izomorfizm $\operatorname{Hom}_R(\mathcal{F}(X),Y) \simeq \operatorname{Map}(X,Y)$. Oznacza to, że funktor Map jest reprezentowalny, przy czym \mathcal{F} jest jego funktorem reprezentującym.

Twierdzenie 9 Funktor \mathcal{F} zachowuje granice proste.

dowód: Niech $\{X_{\alpha}, f^{\alpha}_{\beta}\}$ będzie prostym systemem R-modułów nad zbiorem skierowanym S oraz niech R-moduł X będzie granicą tego systemu. Pokażemy,

że $\mathcal{F}(X)$ wraz z R-homomorfizmami $\mathcal{F}(f^{\alpha})$ jest granicą systemu $\{\mathcal{F}(X_{\alpha}), \mathcal{F}(f^{\alpha})\}$. Ponieważ \mathcal{F} jest funktorem, zatem dla dowolnego $\alpha \in S$, z przemienności diagramów

$$X_{\alpha} \xrightarrow{f_{\beta}^{\alpha}} X_{\beta}$$

$$\downarrow^{f^{\alpha}} \qquad \downarrow^{f^{\beta}}$$

$$X$$

$$(4.3)$$

wynika, że diagramy

$$\mathcal{F}(X_{\alpha}) \xrightarrow{\mathcal{F}(f_{\beta}^{\alpha})} \mathcal{F}(X_{\beta})$$

$$\downarrow^{\mathcal{F}(f^{\alpha})} \qquad \downarrow^{\mathcal{F}(f^{\beta})}$$

$$\mathcal{F}(X)$$

są również przemienne. Niech Y będzie dowolnym R-modułem oraz niech dla dowolnego $\alpha \in S$ określone będą R-homomorfizmy $g_{\alpha} : \mathcal{F}(X_{\alpha}) \to Y$ takie, że diagramy

$$\mathcal{F}(X_{\alpha}) \xrightarrow{\mathcal{F}(f_{\beta}^{\alpha})} \mathcal{F}(X_{\beta})$$

$$\downarrow^{g^{\alpha}} \qquad \downarrow^{g^{\beta}}$$

$$Y$$

są przemienne dla wszystkich $\alpha \leq \beta$.

Należy określić odwzorowanie $g:\mathcal{F}(X)\to Y$ w taki sposób, aby diagramy

$$\mathcal{F}(X_{\alpha}) \xrightarrow{\mathcal{F}(f^{\alpha})} \mathcal{F}(X)$$

$$\downarrow^{g^{\alpha}} \qquad \downarrow^{g}$$

$$Y \qquad (4.4)$$

były przemienne dla wszystkich $\alpha \in S$. Ponieważ $X = \lim_{\alpha} X_{\alpha}$, zatem $X = \lim_{\alpha} (f^{\alpha})$, co oznacza, że dla dowolnego $x \in X$ istnieje $x_{\alpha} \in X_{\alpha}$ taki, że $x = f^{\alpha}(x_{\alpha})$. Z przemienności diagramów (4.4) wynika, że $g([x]) = g^{\alpha}([x_{\alpha}])$. Odwzorowanie g jest poprawnie określone. Istotnie, jeżeli $x = f^{\beta}(x_{\beta})$, to istnieje taki element $\gamma \in S$, że $\alpha, \beta \leq \gamma$. Chcemy pokazać, że $g^{\alpha}([x_{\alpha}]) = g^{\beta}([x_{\beta}])$. Zauważmy, że jeżeli $x = f^{\alpha}(x_{\alpha}) = f^{\beta}(x_{\beta})$, to $x = f^{\gamma}(f^{\alpha}_{\gamma}(x_{\alpha})) = f^{\gamma}(f^{\beta}_{\gamma}(x_{\beta}))$, skąd $f^{\alpha}_{\gamma}(x_{\alpha}) - f^{\beta}_{\gamma}(x_{\beta}) \in \ker(f^{\gamma})$. Z Twierdzenia 7 wynika zatem, że istnieje taki

element $\delta \in S$, że $\gamma \leq \delta$ i $f_{\delta}^{\gamma} (f_{\gamma}^{\alpha}(x_{\alpha}) - f_{\gamma}^{\beta}(x_{\beta})) = 0$, skąd $f_{\delta}^{\alpha}(x_{\alpha}) = f_{\delta}^{\beta}(x_{\beta})$. Wobec tego

$$g^{\alpha}([x_{\alpha}]) = g^{\delta}([f^{\alpha}_{\delta}(x_{\alpha})]) = g^{\delta}([f^{\beta}_{\delta}(x_{\beta})]) = g^{\beta}([x_{\beta}]),$$

skąd g jest poprawnie określone. Pozostaje pokazać, że g jest R-homomorfizmem. Istotnie, jeżeli $x=f^{\alpha}(x_{\alpha})$ oraz $x'=f^{\alpha}(x'_{\alpha})$, to

$$g([x] + [x']) = g^{\alpha}([x_{\alpha}] + [x'_{\alpha}]) = g^{\alpha}([x_{\alpha}]) + g^{\alpha}([x'_{\alpha}]) = g([x]) + g([x']).$$

Podobnie dla $r \in R$ otrzymujemy

$$g(r[x]) = g^{\alpha}(r[x_{\alpha}]) = rg^{\alpha}([x_{\alpha}]) = rg([x]),$$

skąd g jest R-homomorfizmem. Zatem funktor $\mathcal F$ zachowuje granice proste. \square

Rozdział 5

Funktory równościowo definiowalne

Rozdział 5 oparty został na pracy [4] oraz na artukule [5]. W pierwszej kolejności dowodzimy Twierdzenia 11 charakteryzującego reprezentowalne funktory odwzorowań, po czym wprowadzamy pojęce równościowo definiowalnej klasy odwzorowań oraz pojęcie ED-funktora. Następnie dowodzimy Twierdzenia 15 charakteryzującego ED-funktory i będące głównym wynikiem tej pracy.

5.1 Odpowiedniość pomiędzy funktorami odwzorowań, a podfunktorami funktora \mathcal{F}

Niech \mathscr{K} oznacza klasę wszystkich podfunktorow funktora \mathcal{F} . Podobnie niech \mathscr{A} oznacza klasę wszystkich funktorów odwzorowań z X do Y oraz niech $\mathscr{\bar{A}}$ będzie podklasą wszystkich reprezentowalnych funktorów odwzorowań z X do Y. Rozważmy odwzorowania $\Phi: \mathscr{A} \to \mathscr{K}, \Psi: \mathscr{K} \to \mathscr{A}$ określone następująco: $\Phi(A) = K_A$ oraz $\Psi(K) = A_K$, gdzie

$$K_A(X) = \{ u \in \mathcal{F}(X) ; \forall_{Y \in R\text{-Mod}} \forall_{\alpha \in A(X,Y)} \bar{\alpha}(u) = 0 \},$$

$$A_K(X,Y) = \{ \alpha \in \text{Map}(X,Y) ; \bar{\alpha}(K(X)) = 0 \},$$

przy czym
$$\bar{\alpha}: \mathcal{F}(X) \to Y$$
, $\bar{\alpha}(\sum_{x \in X} r_x[x]) = \sum_{x \in X} r_x \alpha(x)$ dla $r_x \in R$, $x \in X$.

Lemat 16 K_A jest podfunktorem funktora \mathcal{F} .

dowód: Wprost z określenia K_A wynika, że $K_A(X) \subset \mathcal{F}(X)$ dla dowolnego R-modułu X. Pozostaje pokazać, że $(\mathcal{F}(f))(K_A(X)) \subset K_A(Y)$.

Niech $u \in K_A(X)$ oraz niech $\alpha \in A(Y, Z)$ dla dowolnie wybranego R-modułu Z. Korzystając z Lematu 14 otrzymujemy

$$\bar{\alpha}\Big(\big(\mathcal{F}(f)\big)(u)\Big) = \big(\bar{\alpha} \circ \mathcal{F}(f)\big)(u) = \overline{(\alpha \circ f)}(u).$$

Ponieważ $\alpha \circ f: X \to Z$ jest R-homomorfizmem oraz $u \in K_A(X)$, zatem $\overline{(\alpha \circ f)}(u) = 0$, co oznacza, że $(\mathcal{F}(f))(u) \in K_A(Y)$. Wobec tego

$$(\mathcal{F}(f))(K_A(X)) \subset K_A(Y),$$

co dowodzi, że K_A jest podfunktorem funktora \mathcal{F} . \square

Lemat 17 A_K jest podfunktorem funktora Map.

dowód: Bezpośrednio z określenia A_K otrzymujemy, że $A_K(X,Y) \subset \operatorname{Map}(X,Y)$. Niech $\alpha \in A_K(X,Y)$ oraz niech dane będą R-homomorfizmy $f: X' \to X$ i $g: Y \to Y'$. Wówczas $\operatorname{Map}(f,g)(\alpha) = g \circ \alpha \circ f$. Należy pokazać, że $g \circ \alpha \circ f \in A_K(X',Y')$, tzn. $\overline{(g \circ \alpha \circ f)}(K(X')) = 0$. Z Lematu 14 wynika, że $\overline{g \circ \alpha \circ f} = g \circ \overline{\alpha} \circ \mathcal{F}(f)$. Ponadto $\mathcal{F}(f)(K(X')) \subset K(X)$ oraz $\overline{\alpha}(K(X)) = 0$, zatem $\overline{(g \circ \alpha \circ f)}(K(X')) = (g \circ \overline{\alpha} \circ \mathcal{F}(f))(K(X')) = 0$. Wobec tego $g \circ \alpha \circ f \in A_K(X',Y')$ i $A_K \subset \operatorname{Map}$. \square

Lemat 18 Funktor A_K jest reprezentowalny, a jego funktorem reprezentującym jest \mathcal{F}/K .

dowód: Z Twierdzenia 2 wynika, że istnieje wzajemnie jednoznaczna odpowiedniość pomiędzy odwzorowaniami z X do Y, a homomorfizmami z $\mathcal{F}(X)$ do Y dająca naturalny izomorfizm $\operatorname{Map}(X,Y) \simeq \operatorname{Hom}_R(\mathcal{F}(X),Y)$. Następnie z Twierdzenia 1 wynika, że homomorfizmom z $\mathcal{F}(X)$ do Y, które zerują się na K(X), odpowiadają wzajemnie jednoznacznie homomorfizmy z $\mathcal{F}(X)/K(X)$ do Y. Stąd otrzymujemy, że $A_K(X,Y) \simeq \operatorname{Hom}_R(\mathcal{F}(X)/K(X),Y)$. \square

Podamy teraz twierdzenie, które jest szczególnym przypadkiem znacznie ogólniejszego faktu, zwanego w literaturze Lematem Yonedy (zob. np. [7], Twierdzenie 4.3.2).

Twierdzenie 10 Jeśli $\Phi : \operatorname{Hom}_R(X, _) \to \operatorname{Hom}_R(Y, _)$ jest przekształceniem funktorów, to istnieje jedyny R-homomorfizmu $\varphi : Y \to X$ taki, że $\Phi(Z) = \varphi^*$ dla dowolnego $Z \in R\operatorname{-Mod}$, a zatem $(\Phi(Z))(f) = f \circ \varphi^*$ dla $f \in \operatorname{Hom}_R(X, Z)$.

W oparciu o ten fakt udowodnimy

Twierdzenie 11 Każdy reprezentowalny funktor odwzorowań A jest postaci A_K dla pewnego podfunktora K funktora \mathcal{F} .

dowód: Niech G będzie funktorem reprezentującym A. Ponieważ funktor Map jest reprezentowany przez \mathcal{F} , zatem włożenie A(X,Y) w $\mathrm{Map}(X,Y)$ indukuje przekształcenie funktorów $\mathrm{Hom}_R\left(G(X),Y\right)\to\mathrm{Hom}_R\left(\mathcal{F}(X),Y\right)$, wobec czego diagram

$$\operatorname{Hom}_{R}(G(X), Y) \xrightarrow{\varphi_{X}^{*}} \operatorname{Hom}_{R}(\mathcal{F}(X), Y)$$

$$\downarrow^{\simeq} \qquad \qquad \downarrow^{\simeq}$$

$$A(X, Y) \xrightarrow{\longleftarrow} \operatorname{Map}(X, Y)$$

jest przemienny. Przekształcenie φ_X^* jest monomorfizmem i na mocy Twierdzenia 10 pochodzi od jedynego R-homomorfizmu $\varphi_X: \mathcal{F}(X) \to G(X)$, który jest epimorfizmem na mocy Lematu 7. Niech $K(X) = \ker(\varphi_X)$. Z Twierdzenia 1 wynika zatem, że $G(X) \simeq \mathcal{F}(X)/K(X)$. Niech $g: G(X) \to Y$ będzie dowolnym R-homomorfizmem. Z przemienności powyższego diagramu oraz z faktu, że R-homomorfizmowi $\bar{\alpha} = \varphi_X^*(g): \mathcal{F}(X) \to Y$ wzajemnie jednoznacznie odpowiada odwzorowanie $\alpha = \bar{\alpha} \circ i = g \circ \varphi_X \circ i \in \operatorname{Map}(X,Y)$ otrzymujemy

$$A(X,Y) = \left\{ \alpha \in \operatorname{Map}(X,Y) \; ; \; \underset{g \in \operatorname{Hom}_R(\mathcal{F}(X),Y)}{\exists} \; \bar{\alpha} = g \circ \varphi_X \right\}.$$

Ponieważ $(g \circ \varphi_X)(K(X)) = 0$, zatem również $\bar{\alpha}|K(X) = 0$, wobec czego

$$A(X,Y) = \{ \alpha \in \operatorname{Map}(X,Y) ; \bar{\alpha} | K(X) = 0 \} = A_K(X,Y). \square$$

Twierdzenie 12 ([4], Lemat 3.1.1) Określone powyżej przyporządkowania Φ oraz Ψ ustalają wzajemnie jednoznaczną odpowiedniość typu Galois (tzn. odwracającą zawierania) pomiędzy reprezentowalnymi funktorami odwzorowań z X od Y, a podfunktorami funktora \mathcal{F} . Ponadto $\bar{A} = A_{K_A}$ jest najmniejszym reprezentowalnym funktorem odwzorowań zawierającym wyjściowy funktor A, czyli tzw. powłoką reprezentowalną funktora A.

dowód: Zauważmy na początku, że Φ i Ψ odwracają zawierania. Istotnie, niech A i B będą funktorami odwzorowań takimi, że $A \subset B$. Wówczas, jeżeli $u \in K_B(X)$, to dla dowolnego $\beta \in B(X,Y)$ mamy $\bar{\beta}(u) = 0$. Ponieważ $A \subset B$, zatem również dla dowolnego $\alpha \in A(X,Y)$ mamy $\bar{\alpha}(u) = 0$. Stąd $K_B \subset K_A$, co oznacza, że $\Phi(B) \subset \Phi(A)$.

Niech teraz K i L będą podfunktorami funktora \mathcal{F} takimi, że $K \subset L$. Wówczas, jeżeli $\alpha \in A_L(X,Y)$, to $\bar{\alpha}(L(X)) = 0$. Ponieważ $K \subset L$, zatem również $\bar{\alpha}(K(X)) = 0$. Stąd $A_L \subset A_K$, co oznacza, że $\Psi(L) \subset \Psi(K)$.

W dalszej części pokażemy, że $\Phi \circ \Psi = \mathrm{id}_{\mathscr{K}}$ oraz $\Psi \circ (\Phi | \mathscr{A}) = \mathrm{id}_{\mathscr{A}}$, tzn. $K = K_{A_K}$ i $A = A_{K_A}$ dla reprezentowalnego funktora odwzorowań A oraz podfunktora K funktora \mathcal{F} . Mamy

$$K_{A_K}(X) = \left\{ u \in \mathcal{F}(X) \; ; \; \forall_{Y \in R \text{-Mod}} \; \forall_{\alpha \in A_K(X,Y)} \; \bar{\alpha}(u) = 0 \right\},$$

$$A_{K_A}(X,Y) = \left\{ \alpha \in \text{Map}(X,Y) \; ; \; \bar{\alpha}(K_A(X)) = 0 \right\}.$$

Niech $u \in K(X)$. Wówczas dla dowolnego odwzorowania $\alpha \in A_K(X,Y)$ wprost z określenia A_K otrzymujemy równość $\bar{\alpha}(u) = 0$, skąd $K \subset K_{A_K}$. Podobnie, jeżeli $\alpha \in A(X,Y)$, to $\bar{\alpha}(K_A(X)) = 0$, zatem $A \subset A_{K_A}$.

Niech teraz $u \in K_{A_K}(X)$. Rozważmy $Y = \mathcal{F}(X)/K(X)$ oraz homomorfizm naturalny $\bar{\alpha} : \mathcal{F}(X) \to \mathcal{F}(X)/K(X)$, któremu wzajemnie jednoznacznie odpowiada odwzorowanie $\alpha = \bar{\alpha} \circ i : X \to Y$, gdzie i jest włożeniem $X \le \mathcal{F}(X)$. Przy tych założeniach $\bar{\alpha}(K(X)) = 0$, więc $\alpha \in A_K(X,Y)$. Wobec tego $\bar{\alpha}(u) = 0$, co oznacza, że $u \in K(X)$. Zatem $K_{A_K} \subset K$ i ostatecznie $K = K_{A_K}$. Pokazaliśmy, że $\Phi \circ \Psi = \mathrm{id}_{\mathscr{K}}$.

Pokażemy teraz, że $\bar{A} = A_{K_A}$ zawiera się w dowolnym reprezentowalnym funktorze odwzorowań, zawierającym wyjściowy funktor A. Niech B będzie reprezentowalnym funktorem odwzorowań, oraz niech $A \subset B$. Z Twierdzenia 11 otrzymujemy $B = A_K$ dla pewnego podfunktora K funktora \mathcal{F} . Ponieważ $A \subset B$ i $K \subset K_{A_K} = K_B$, zatem $K \subset K_B \subset K_A$. Stąd $A_{K_A} \subset A_K = B$. Oznacza to, że każdy reprezentowalny funktor odwzorowań B zawiera się w \bar{A} . Stąd \bar{A} jest powłoką reprezentowalną funktora A. W szczególności jeżeli $A \in \mathcal{A}$, to możemy przyjąć B = A i otrzymujemy $A_{K_A} \subset A$. Ponieważ $A \subset A_{K_A}$, więc

$$A_{K_A} = A$$
, tzn. $\Psi \circ (\Phi | \mathcal{A}) = \mathrm{id}_{\mathcal{A}}$. \square

5.2 Warunki typu równości i ED-funktory

Definicja 24 Przez warunek typu równości będziemy rozumieli związek postaci

$$\sum_{j=1}^{n} r_j \alpha \left(\sum_{k=1}^{m} s_{jk} x_k \right) = 0,$$

gdzie $\alpha: X \to Y$ jest odwzorowaniem pomiędzy R-modułami, $r_j, s_{jk} \in R$ oraz $x_k \in X$. Zakładamy przy tym, że r_j oraz s_{kj} są ustalonymi elementami pierścienia R, natomiast x_k jest dowolnym elementem R-modułu X.

Definicja 25 Klasę \mathcal{E} odwzorowań pomiędzy R-modułami nazywamy równościowo definiowalną, jeżeli składa się ona z dokładnie tych odwzorowań, które spełniają pewien zestaw warunków typu równości, tzn. takich odwzorowań $\alpha: X \to Y$, dla których

$$\sum_{i} r_{ij} \alpha \left(\sum_{k} s_{ijk} x_k \right) = 0, \quad i \in I,$$

gdzie j przebiega pewien (zależny od i) zakres indeksów $\{1, \ldots, n_i\}$ i analogicznie k przebiega $\{1, \ldots, m_i\}$.

Klasa wszystkich odwzorowań pomiędzy R-modułami jest równościowo definiowalna dla pustego układu warunków. Klasa odwzorowań stałych jest równościowo definiowalna. Klasa wszystkich R-homomorfizmów jest równościowo definiowalna, gdyż jej elementami są wszystkie odwzorowania $\alpha: X \to Y$ spełniające warunki

$$\alpha(x_1 + x_2) - \alpha(x_1) - \alpha(x_2) = 0,$$

$$\alpha(rx_1) - r\alpha(x_1) = 0.$$

Podobnie klasa wszystkich odwzorowań kwadratowych jest równościowo definiowalna.

Twierdzenie 13 Niech $\mathcal E$ będzie klasą równościowo definiowalną oraz niech

$$A(X,Y) = \{ \alpha \in \operatorname{Map}(X,Y) ; \alpha \in \mathscr{E} \}.$$

 $W \acute{o}w czas \ A : R \operatorname{-Mod} \times R \operatorname{-Mod} \to R \operatorname{-Mod} \ jest \ funktorem \ odwzorowań.$

dowód: Niech $f_1: X' \to X$, $f_2: Y \to Y'$ będą R-homomorfizmami oraz niech $\alpha \in A(X,Y)$. Wówczas α spełnia zestaw warunków typu równości wyznaczony przez klasę \mathscr{E} , tzn.

$$\sum_{i} r_{ij} \alpha \left(\sum_{k} s_{ijk} x_k \right) = 0,$$

gdzie $r_{ij}, s_{ijk} \in R$ są ustalone, $x_k \in X$ są dowolne oraz $i \in I$. Należy pokazać, że $\operatorname{Map}(f_1, f_2)(\alpha) = f_2 \circ \alpha \circ f_1 \in A(X', Y')$. Niech $i \in I$ oraz $x'_k \in X'$. Wówczas

$$\sum_{j} r_{ij} (f_2 \circ \alpha \circ f_1) \Big(\sum_{k} s_{ijk} x_k' \Big) = \sum_{j} r_{ij} f_2 \Big(\alpha \Big(f_1 \Big(\sum_{k} s_{ijk} x_k' \Big) \Big) \Big) =$$

$$= \sum_{j} r_{ij} f_2 \Big(\alpha \Big(\sum_{k} s_{ijk} f_1(x_k') \Big) \Big) = f_2 \Big(\sum_{j} r_{ij} \alpha \Big(\sum_{k} s_{ijk} f_1(x_k') \Big) \Big) = f_2(0) = 0,$$

co oznacza, że $f_2 \circ \alpha \circ f_1 \in A(X',Y')$. Wobec tego $A \subset \text{Map.} \square$

Funktor A określony w powyższym twierdzeniu nazywamy funktorem równościowo definiowalnym wyznaczonym przez klasę $\mathscr E$, lub krótko ED-funktorem.

Funktory Map, Hom_R oraz funktor Hom_R^2 określony w Przykładzie 2 są przykładzie dami funtorów równościowo definiowalnych.

Twierdzenie 14 Każdy ED-funktor A jest reprezentowalny. Dokładniej, jeśli A jest funktorem równościowo definiowalnym zadanym przez układ równości

$$\sum_{i} r_{ij} \alpha \left(\sum_{k} s_{ijk} x_k \right) = 0, \quad i \in I,$$

to $A = A_K$, gdzie

$$K(X) = R\left\{\sum_{i} r_{ij} \left[\sum_{k} s_{ijk} x_{k}\right] ; i \in I, x_{k} \in X\right\}.$$

dowód: Rozważmy $\alpha \in A(X,Y)$. Wówczas

$$\bar{\alpha}\left(\sum_{i} r_{ij} \left[\sum_{k} s_{ijk} x_{k}\right]\right) = \sum_{i} r_{ij} \alpha\left(\sum_{k} s_{ijk} x_{k}\right) = 0,$$

skąd wynika, że $A \subset A_K$. Niech teraz $\alpha \in A_K(X,Y)$. Wówczas

$$\sum_{j} r_{ij} \alpha \left(\sum_{k} s_{ijk} x_{k} \right) = \sum_{j} r_{ij} \bar{\alpha} \left(\left[\sum_{k} s_{ijk} x_{k} \right] \right) =$$

$$= \bar{\alpha} \left(\sum_{j} r_{ij} \left[\sum_{k} s_{ijk} x_{k} \right] \right) \in \bar{\alpha} \left(K(X) \right) = 0,$$

zatem $\alpha \in A(X,Y)$, skąd $A \supset A_K$ i ostatecznie $A = A_K$. Pokazaliśmy zatem, że dowolny ED-funktor A jest postaci A_K , wobec czego A jest reprezentowalny na podstawie Lematu 18. \square

5.3 Charakteryzacja funktorów równościowo definiowalnych

Celem tego paragafu jest udowodnienie następującego twierdzenia, które jest głównym wynikiem tej pracy:

Twierdzenie 15 ([4], Twierdzenie 3.1.2) Niech A będzie funktorem odwzorowań. Wówczas następujące warunki są równoważne:

- 1. A jest równościowo definiowalny,
- 2. A jest reprezentowany przez funktor zachowujący ciągi Grothendiecka pierwszego rodzaju i granice proste,
- 3. $A = A_K$, gdzie K jest funktorem zachowującym granice proste i epimorfizmy.

Jeśli powyższe warunki są spełnione, to A jest wyznaczony jednoznacznie przez wartość funktora K na R-module wolnym R^{∞} o bazie przeliczalnej.

dowód: (1 \Rightarrow 2) Ponieważ każdy funktor równościowo definiowalny jest postaci $A_K,$ zatem na mocy Lematu 18 mamy izomorfizm funktorów

$$A(X,Y) = A_K(X,Y) \simeq \operatorname{Hom}_R (\mathcal{F}(X)/K(X),Y),$$

a więc Ajest reprezentowany przez funktor $\mathcal{F}/K.$ Pokażemy, że

(i) funktor \mathcal{F}/K zachowuje ciągi Grothendiecka pierwszego rodzaju,

- (ii) funktor \mathcal{F}/K zachowuje granice proste.
- (i) Niech ciąg

$$X \xrightarrow{f_1} Y \xrightarrow{g} Z \tag{5.1}$$

będzie ciągiem Grothendiecka pierwszego rodzaju. Należy pokazać, że ciąg

$$(\mathcal{F}/K)(X) \xrightarrow{(\mathcal{F}/K)(f_1)} (\mathcal{F}/K)(Y) \xrightarrow{(\mathcal{F}/K)(g)} (\mathcal{F}/K)(Z)$$
 (5.2)

jest również ciągiem Grothendiecka pierwszego rodzaju. Niech $y \in (\mathcal{F}/K)(Y)$, $y = \sum_{i=1}^{n} r_i[y_i] + K(Y)$. Z założenia ciąg (5.1) jest ciągiem Grothendiecka pierwszego rodzaju, wobec czego z Twierdzenia 4 wynika, że dla dowolnego y_i istnieje $x_i \in X$ taki, że $y_i = f_1(x_i) = f_2(x_i)$. Zatem

$$y = \sum_{i=1}^{n} r_i[f_1(x_i)] + K(Y) = (\mathcal{F}/K)(f_1) \Big(\sum_{i=1}^{n} r_i[x_i] + K(X) \Big),$$

$$y = \sum_{i=1}^{n} r_i[f_2(x_i)] + K(Y) = (\mathcal{F}/K)(f_2) \Big(\sum_{i=1}^{n} r_i[x_i] + K(X) \Big).$$

Ponieważ g jest epimorfizmem, zatem dla dowolnego $z \in Z$ istnieje $y \in Y$ taki, że z = g(y). Analogicznie jak we Wniosku 2 możemy zatem rozważać odwzorowanie $\psi: Z \to N$ określone wzorem $\psi(z) = \varphi(y)$, dla z = g(y), $\varphi \in A(Y, N)$. We Wniosku 2 pokazaliśmy, że takie odwzorowanie jest poprawnie określone i uzupełnia diagram

do diagramu przemiennego. Ponadto, jeżeli φ spełnia równości definiujące A, tzn., powiedzmy równości

$$\sum_{j} r_{j} \varphi \left(\sum_{k} s_{jk} y_{k} \right) = 0, \quad i \in I,$$

dla dowolnych $y_k \in Y$, to ψ spełnia te same warunki co φ . Istotnie, mamy

$$\sum_{j} r_{j} \psi \left(\sum_{k} s_{jk} z_{k} \right) = \sum_{j} r_{j} \psi \left(\sum_{k} s_{jk} g(y_{k}) \right) =$$

$$= \sum_{j} r_{j} \psi \left(g \left(\sum_{k} s_{jk} y_{k} \right) \right) = \sum_{j} r_{j} \varphi \left(\sum_{k} s_{jk} y_{k} \right) = 0,$$

dla dowolnych $z_k \in Z$ gdzie $z_k = g(y_k), y_k \in Y$, i dla dowolnego $i \in I$. Zatem $\psi \in A(Z, N)$. Wobec tego, na podstawie Lematu 12, ciąg

$$A(Z,N) \xrightarrow{g^*} A(Y,N) \xrightarrow{f_1^*} A(X,N). \tag{5.4}$$

jest ciągiem Grothendiecka drugiego rodzaju. Zatem również

$$\operatorname{Hom}_{R}\left(\left(\mathcal{F}/K\right)(Z), N\right) \xrightarrow{g^{*}} \operatorname{Hom}_{R}\left(\left(\mathcal{F}/K\right)(Y), N\right) \xrightarrow{f_{2}^{*}} \operatorname{Hom}_{R}\left(\left(\mathcal{F}/K\right)(X), N\right).$$

jest ciągiem Grothendiecka drugiego rodzaju. Biorąc także pod uwagę pierwszą część dowodu, na podstawie Twierdzenia 5 stwierdzamy, że (5.2) jest ciągiem Grothendiecka pierwszego rodzaju. Stąd funktor \mathcal{F}/K zachowuje ciągi Grothendiecka pierwszego rodzaju.

(ii) Pokażemy, że funktor \mathcal{F}/K zachowuje granice proste.

Niech $\{X_{\alpha}, f_{\beta}^{\alpha}\}$ będzie prostym systemem R-modułów nad zbiorem skierowanym S oraz niech R-moduł X będzie granicą tego systemu. Pokażemy, że $\mathcal{F}(X)/K(X)$ wraz z R-homomorfizmami $(\mathcal{F}/K)(f^{\alpha})$ jest granicą systemu $\{\mathcal{F}(X_{\alpha})/K(X_{\alpha}), (\mathcal{F}/K)(f^{\alpha})\}$. Ponieważ \mathcal{F}/K jest funktorem, zatem dla dowolnego $\alpha \in S$, z przemienności diagramów

wynika, że diagramy

$$\mathcal{F}(X_{\alpha})/K(X_{\alpha}) \xrightarrow{(\mathcal{F}/K)(f_{\beta}^{\alpha})} \mathcal{F}(X_{\beta})/K(X_{\beta})$$

$$(\mathcal{F}/K)(f^{\alpha}) \qquad \qquad (\mathcal{F}/K)(f^{\beta})$$

$$\mathcal{F}(X)/K(X)$$

są również przemienne. Niech Y będzie dowolnym R-modułem oraz niech dla dowolnego $\alpha \in S$ określone będą R-homomorfizmy $g_{\alpha} : \mathcal{F}(X_{\alpha})/K(X_{\alpha}) \to Y$

takie, że diagramy

są przemienne dla wszystkich $\alpha \leq \beta$.

Należy określić R-homomorfizm $g: \mathcal{F}(X)/K(X) \to Y$ w taki sposób, aby uzupełniał diagram

$$\mathcal{F}(X_{\alpha})/K(X_{\alpha}) \xrightarrow{(\mathcal{F}/K)(f_{\beta}^{\alpha})} \mathcal{F}(X_{\beta})/K(X_{\beta})$$

$$\mathcal{F}(X)/K(X)$$

$$\mathcal{$$

do diagramu przemiennego

$$\mathcal{F}(X_{\alpha})/K(X_{\alpha}) \xrightarrow{(\mathcal{F}/K)(f_{\beta}^{\alpha})} \mathcal{F}(X_{\beta})/K(X_{\beta})$$

$$\mathcal{F}(X)/K(X)$$

$$g^{\alpha} \qquad | \qquad \qquad | \qquad \qquad |$$

$$\downarrow g$$

$$\uparrow \qquad \qquad \downarrow g$$

$$\downarrow \qquad \qquad \downarrow g$$

Zauważmy, że jeżeli $x \in X$, to $x = f^{\alpha}(x_{\alpha})$ dla pewnego $x_{\alpha} \in X_{\alpha}$. Rozważmy zatem homomorfizm $g' : \mathcal{F}(X) \to Y$ określony na bazie wzorem

$$g'([x]) = g^{\alpha}([x_{\alpha}] + K(X_{\alpha})).$$

Z określenia wynika, że g' jest wyznaczony jednoznacznie. Analogicznie jak w Twierdzeniu 9 możemy sprawdzić, że homomorfizm g' jest poprawnie określony. Zauważmy ponadto, że jeżeli $x_1 = f^{\alpha_1}(X_{\alpha_1,1}), \ldots, x_n = f^{\alpha_n}(X_{\alpha_n,n})$, to istnieje $\alpha \in S$ takie, że $\alpha_1, \ldots, \alpha_n \leq \alpha$, wobec czego $x_i = f^{\alpha}(f^{\alpha_i}_{\alpha}(x_{\alpha_i,i}))$ dla

 $i=1,\ldots,n$. Połóżmy $x_i=f_{\alpha}^{\alpha_i}(x_{\alpha_i,i})$. Wówczas $\sum_k s_{ijk}x_k=f^{\alpha}(\sum_k s_{ijk}x_{\alpha k})$. Zauważmy teraz, że g'(K(X))=0. Istotnie, mamy

$$g'\left(\left[\sum_{k} s_{ijk} x_{k}\right]\right) = g^{\alpha}\left(\left[\sum_{k} s_{ijk} x_{\alpha k}\right] + K(X_{\alpha})\right) = g^{\alpha}(0) = 0.$$

Zatem z Twierdzenia 1 wynika, że istnieje dokładnie jeden R-homomorfizm $g: \mathcal{F}(X)/K(X) \to Y$ taki, że g(x+K(X)) = g'(x) dla $x \in \mathcal{F}(X)$. Ponadto g uzupełnia diagram (5.6) do diagramu przemiennego (5.7), co oznacza, że $\mathcal{F}(X)/K(X) = \lim \mathcal{F}(X_{\alpha})/K(X_{\alpha})$. Zatem \mathcal{F}/K zachowuje granice proste.

 $(2 \Rightarrow 3)$: Niech $A = A_K$ będzie funktorem odwzorowań reprezentowanym przez funktor \mathcal{F}/K zachowujący ciągi Grothendiecka pierwszego rodzaju oraz granice proste. Pokażemy, że

- (i) K zachowuje granice proste,
- (ii) K zachowuje epimorfizmy.
- (i) Niech $\{X_{\alpha}, f_{\beta}^{\alpha}\}$ będzie prostym systemem R-modułów nad zbiorem skierowanym S. Niech R-moduł X wraz z R-homomorfizmami $f^{\alpha}: X_{\alpha} \to X$ będzie granicą prostą tego systemu. Ponieważ K, \mathcal{F} oraz \mathcal{F}/K są funktorami, zatem $\{K(X_{\alpha}), K(f_{\beta}^{\alpha})\}$, $\{\mathcal{F}(X_{\alpha}), \mathcal{F}(f_{\beta}^{\alpha})\}$ oraz $\{\mathcal{F}(X_{\alpha})/K(X_{\alpha}), (\mathcal{F}/K)(f_{\beta}^{\alpha})\}$ są systemami prostymi. Dla każdego $\alpha \in S$ niech $\nu_{\alpha}: \mathcal{F}(X_{\alpha}) \to \mathcal{F}(X_{\alpha})/K(X_{\alpha})$ będą homomorfizmami naturalnymi. Podobnie niech $\nu: \mathcal{F}(X) \to \mathcal{F}(X)/K(X)$ będzie homomorfizmem naturalnym. Wobec tego, z definicji $(\mathcal{F}/K)(f^{\alpha})$ wynika, że diagram

$$\mathcal{F}(X_{\alpha}) \xrightarrow{\nu_{\alpha}} \mathcal{F}(X_{\alpha})/K(X_{\alpha})$$

$$\downarrow^{\mathcal{F}(f^{\alpha})} \qquad \downarrow^{(\mathcal{F}/K)(f^{\alpha})}$$

$$\mathcal{F}(X) \xrightarrow{\nu} \mathcal{F}(X)/K(X)$$

$$(5.8)$$

jest przemienny dla każdego $\alpha \in S$. Ponieważ funktory \mathcal{F} i \mathcal{F}/K zachowują granice proste z założenia, tzn. $\mathcal{F}(X)$ wraz z R-homomorfizmami $\mathcal{F}(f^{\alpha})$ jest granicą systemu $\{\mathcal{F}(X_{\alpha}), \mathcal{F}(f^{\alpha})\}$ oraz $\mathcal{F}(X)/K(X)$ wraz z R-homomorfizmami $(\mathcal{F}/K)(f^{\alpha})$ jest granicą systemu $\{\mathcal{F}(X_{\alpha})/K(X_{\alpha}), (\mathcal{F}/K)(f^{\alpha})\}$, więc porównując powyższy diagram z diagramem (3.20) ze strony 33 widzimy, że $\nu = \lim \nu_{\alpha}$.

Ponadto z Twierdzenia 8 wynika, że

$$\ker\left(\underset{\longrightarrow}{\lim}\nu_{\alpha}\right) = \bigcup_{\alpha} \mathcal{F}(f^{\alpha})\big(\ker(\nu_{\alpha})\big).$$

Wobec tego

$$K(X) = \ker(\nu) = \ker\left(\varinjlim \nu_{\alpha}\right) = \bigcup_{\alpha} \mathcal{F}(f^{\alpha}) \left(\ker(\nu_{\alpha})\right) =$$
$$= \bigcup_{\alpha} \mathcal{F}(f^{\alpha}) \left(K(X_{\alpha})\right) = \bigcup_{\alpha} K(f^{\alpha}) \left(K(X_{\alpha})\right) = \bigcup_{\alpha} \inf\left(K(f^{\alpha})\right).$$

Pozostaje pokazać, że $K(X) = \bigcup_{\alpha} \operatorname{im} \left(K(f^{\alpha})\right)$ wraz z R-homomorfizmami $K(f^{\alpha})$ jest granicą prostą systemu $\{K(X_{\alpha}), K(f^{\alpha})\}$. Niech Y będzie dowolnym R-modułem. Należy określić R-homomorfizm $g:K(X)\to Y$ tak, aby diagram

był przemienny. Zauważmy, że dla dowolnego $z \in K(X)$ istnieje element $u \in K(X_{\alpha})$ taki, że $z = K(f^{\alpha})(u)$ dla pewnego $\alpha \in S$. Ponieważ g ma uzupełniać powyższy diagram, zatem musi być określone wzorem $g(z) = g^{\alpha}(u)$. Stąd w szczególności g jest co najwyżej jedno. Odwzorowanie g jest poprawnie określone. Istotnie, niech $z = K(f^{\alpha})(u)$ i $z = K(f^{\beta})(t)$. Wówczas $z = \mathcal{F}(f^{\alpha})(u) = \mathcal{F}(f^{\beta})(t)$, gdyż K jest podfunktorem funktora \mathcal{F} . Zbiór S jest skierowany, zatem istnieje $\gamma \in S$ takie, że $\alpha, \beta \leq \gamma$. Wobec tego

$$z = \mathcal{F}(f^{\gamma}) \big(\mathcal{F}(f^{\alpha}_{\gamma})(u) \big) = \mathcal{F}(f^{\gamma}) \big(\mathcal{F}(f^{\beta}_{\gamma})(t) \big).$$

Zatem $\mathcal{F}(f_{\gamma}^{\alpha})(u) - \mathcal{F}(f_{\gamma}^{\beta})(t) \in \ker(\mathcal{F}(f^{\gamma}))$. Funktor \mathcal{F} zachowuje granice proste, zatem istnieje $\delta \in S$ takie, że $\gamma \leq \delta$ i

$$\mathcal{F}(f_{\delta}^{\gamma})\big(\mathcal{F}(f_{\gamma}^{\alpha})(u) - \mathcal{F}(f_{\gamma}^{\beta})(t)\big) = 0.$$

Stąd $\mathcal{F}(f^{\alpha}_{\delta})(u)=\mathcal{F}(f^{\beta}_{\delta})(t)$ i

$$g^{\alpha}(u) = g^{\delta}(\mathcal{F}(f^{\alpha}_{\delta})(u)) = g^{\delta}(\mathcal{F}(f^{\beta}_{\delta})(t)) = g^{\beta}(t),$$

co oznacza, że g jest poprawnie określone. Zauważmy, że g jest R-homomorfizmem, bo jeśli $z_1, z_2 \in K(X), z_1 = K(f^{\alpha})(u_1), z_2 = K(f^{\beta})(u_2)$, to dla $\gamma \geq \alpha, \beta$ mamy $z_1 = K(f^{\gamma})(v_1), z_2 = K(f^{\gamma})(v_2)$, skąd $z_1 + z_2 = K(f^{\gamma})(v_1 + v_2)$, $rz_1 = K(f^{\gamma})(rv_1)$. Zatem

$$g(z_1 + z_2) = g^{\gamma}(v_1 + v_2) = g^{\gamma}(v_1) + g^{\gamma}(v_2) = g(z_1) + g(z_2)$$

i analogicznie

$$g(rz_1) = g^{\gamma}(rv_1) = rg^{\gamma}(v_1) = rg(z_1).$$

Zatem $K(X) = \lim K(X_{\alpha})$, a więc funktor K zachowuje granice proste.

(ii) Niech $g: Y \to Z$ będzie epimorfizmem oraz niech i będzie włożeniem $\ker(g)$ w Y. Wówczas, na podstawie Lematu 10 ciąg

$$\ker(g) \oplus Y \xrightarrow{(i, \mathrm{id}_Y)} Y \xrightarrow{g} Z \tag{5.10}$$

jest ciągiem Grothendiecka pierwszego rodzaju. Oznaczmy $f_1 = (i, id_Y)$, $f_2 = (0, id_Y)$ oraz $X = \ker(g) \oplus Y$. Ponieważ Map jest ED-funktorem, zatem \mathcal{F} (na podstawie implikacji $(1\Rightarrow 2)$) zachowuje ciągi Grothendiecka pierwszego rodzaju, skąd ciąg

$$\mathcal{F}(X) \xrightarrow{\mathcal{F}(f_1) - \mathcal{F}(f_2)} \mathcal{F}(Y) \xrightarrow{\mathcal{F}(g)} \mathcal{F}(Z) \longrightarrow 0$$

jest dokładny na mocy Twierdzenia 4. Z założenia funktor \mathcal{F}/K zachowuje ciągi Grothendiecka pierwszego rodzaju, zatem również ciąg

$$\mathcal{F}(X)/K(X) \xrightarrow{(\mathcal{F}/K)(f_1) - (\mathcal{F}/K)(f_2)} \mathcal{F}(Y)/K(Y) \xrightarrow{(\mathcal{F}/K)(g)} \mathcal{F}(Z)/K(Z) \longrightarrow 0$$

jest dokładny. Oznaczając $f' = \mathcal{F}(f_1) - \mathcal{F}(f_2)$ oraz $f'' = (\mathcal{F}/K)(f_1) - (\mathcal{F}/K)(f_2)$ otrzymujemy, że diagram o dokładnych wierszach i kolumnach

jest przemienny, gdzie i_Y , i_Z są włożeniami, natomiast ν_X, ν_Y, ν_Z są homomorfizmami naturalnymi. Pokażemy, że K(g) jest epimorfizmem. Niech $z \in K(Z)$. Ponieważ $\mathcal{F}(g)$ jest epimorfizmem, zatem istnieje $y' \in \mathcal{F}(Y)$ taki, że $\mathcal{F}(g)(y') = i_Z(z)$. Diagram (5.11) jest przemienny, skąd, w szczególności, kwadrat

$$\mathcal{F}(Y) \xrightarrow{\mathcal{F}(g)} \mathcal{F}(Z)$$

$$\downarrow^{\nu_{Y}} \qquad \qquad \downarrow^{\nu_{Z}}$$

$$\mathcal{F}(Y)/K(Y) \xrightarrow{(\mathcal{F}/K)(g)} \mathcal{F}(Z)/K(Z)$$

jest przemienny, tzn. $\nu_Z \circ \mathcal{F}(g) = (\mathcal{F}/K)(g) \circ \nu_Y$. Ponadto $\nu_Z (i_Z(z)) = 0$, wobec czego $0 = \nu_Z (\mathcal{F}(g)(y')) = (\mathcal{F}/K)(g) (\nu_Y(y'))$. Z dokładności trzeciego wiersza wynika, że istnieje $\bar{x}' \in \mathcal{F}(X)/K(X)$ taki, że $f''(\bar{x}') = \nu_Y(y')$. Ponieważ ν_X jest epimorfizmem, zatem $\bar{x}' = \nu_X(x')$ dla pewnego $x' \in \mathcal{F}(X)$. Powyższe zależności ilustruje diagram

Z przemienności diagramu

$$\mathcal{F}(X) \xrightarrow{f'} \mathcal{F}(Y)$$

$$\downarrow^{\nu_X} \qquad \qquad \downarrow^{\nu_Y}$$

$$\mathcal{F}(X)/K(X) \xrightarrow{f''} \mathcal{F}(Y)/K(Y)$$

wynika więc, że $\nu_Y(f'(x')) = \nu_Y(y')$, skąd $\nu(y' - f'(x')) = 0$. Zatem istnieje $y \in K(Y)$ taki, że $i_Y(y) = y' - f'(x')$, jak w poniższym diagramie:

$$y \longrightarrow z$$

$$\downarrow \qquad \qquad \downarrow$$

$$y' - f'(x') \longmapsto i_Z(z)$$

$$\downarrow$$

$$0$$

Zauważmy, że, jak zaznaczono powyżej, $\mathcal{F}(g)(y'-f'(x'))=\mathcal{F}(g)(y')=i_Z(z)$, gdyż $f'(x')\in \mathrm{im}(f')=\ker\big(\mathcal{F}(g)\big)$. Pozostaje zauważyć, że K(g)(y)=z. Istotnie,

$$i_z(K(g)(y)) = \mathcal{F}(g)(i_Y(y)) = \mathcal{F}(g)(y' - f'(x')) = i_Z(z),$$

skąd K(g)(y) = z, gdyż i_Z jest monomorfizmem. Stąd K(g) jest epimorfizmem. $(3 \Rightarrow 1)$: Niech $A = A_K$ oraz niech funktor K zachowuje granice proste i epimorfizmy. Wybierzmy pewien zbiór generatorów podmodułu $K(R^{\infty}) \subset \mathcal{F}(R^{\infty})$, gdzie R^{∞} jest R-modułem wolnym o przeliczalnej bazie $\{e_1, e_2, \ldots\}$, a więc przyjmijmy, że $K(R^{\infty}) = R\{\sum_j r_{ij} \left[\sum_k s_{ijk} e_k\right] \; ; \; i \in I\}$ dla ustalonych $r_{ij}, s_{ijk} \in R$. Dla dowolnego $X \in R$ -Mod oraz $x_1, x_2, \ldots \in X$ rozważmy R-moduł $R\{x_1, x_2, \ldots\}$ oraz epimorfizm $\varphi : R^{\infty} \to R\{x_1, x_2, \ldots\}$ zadany na bazie wzorem $\varphi(e_k) = x_k$. Ponieważ funktor K zachowuje epimorfizmy, zatem $K(\varphi) : K(R^{\infty}) \to K(R\{x_1, x_2, \ldots\})$ jest również epimorfizmem, co oznacza, że $K(\varphi)(K(R^{\infty})) = K(R\{x_1, x_2, \ldots\})$. Stąd $K(R\{x_1, x_2, \ldots\})$ jest generowany przez obrazy generatorów modułu $K(R^{\infty})$, czyli elementy

$$K(\varphi)\Big(\sum_{j} r_{ij} \Big[\sum_{k} s_{ijk} e_{k}\Big]\Big) = \sum_{j} r_{ij} K(\varphi)\Big(\Big[\sum_{k} s_{ijk} e_{k}\Big]\Big) =$$

$$= \sum_{j} r_{ij} \Big[\sum_{k} s_{ijk} \varphi(e_{k})\Big] = \sum_{j} r_{ij} \Big[\sum_{k} s_{ijk} x_{k}\Big],$$

gdzie $i \in I$. Oznacza to, że

$$K(R\{x_1, x_2, \ldots\}) = R\{\sum_{j} r_{ij} [\sum_{k} s_{ijk} x_k] ; i \in I\}.$$
 (5.12)

W Przykładzie 6 rozważaliśmy system prosty $\{X_{\alpha}, f_{\beta}^{\alpha}\}$ nad zbiorem skierowanym S wszystkich co najwyżej przeliczalnych podzbiorów zbioru X. Przypomnijmy, że jeśli $\alpha \in S$ oraz $\alpha = X'$, to przez X_{α} oznaczamy podmoduł RX'. Jeśli $\beta \in S$ oraz $\alpha \leq \beta$, to $X_{\alpha} \subset X_{\beta}$ i R-homomorfizm $f_{\beta}^{\alpha} : X_{\alpha} \to X_{\beta}$ określamy jako włożenie.

Pokazaliśmy, że $X = \bigcup_{\alpha} X_{\alpha}$ wraz z włożeniami $f^{\alpha}: X_{\alpha} \to X$ jest granicą prostą tego systemu. Zauważmy, że jeżeli $X_{\alpha} \subset X$, to $\mathcal{F}(f^{\alpha}) : \mathcal{F}(X_{\alpha}) \to \mathcal{F}(X)$, $\mathcal{F}(f^{\alpha}) \left(\sum_{i} r_{i}[x_{i}]\right) = \sum_{i} r_{i}[x_{i}]$ jest monomorfizmem, można więc uznać, że $\mathcal{F}(X_{\alpha}) \subset \mathcal{F}(X)$. Podobnie $K(f^{\alpha}): K(X_{\alpha}) \to K(X)$ jest monomorfizmem jako ograniczenie $\mathcal{F}(f^{\alpha})$, zatem możemy przyjąć, że $K(X_{\alpha}) \subset K(X)$. Z założenia mamy więc

$$K(X) = \lim_{\longrightarrow} K(X_{\alpha}) = \bigcup_{\alpha} K(f^{\alpha}) (K(X_{\alpha})) = \bigcup_{\alpha} K(X_{\alpha}) =$$

$$= \bigcup_{x_1, x_2, \dots \in X} K(R\{x_1, x_2, \dots\}) = R \left\{ \sum_{j} r_{ij} \left[\sum_{k} s_{ijk} x_k \right] ; i \in I, x_k \in X \right\}.$$

Zatem

$$A(X,Y) = A_K(X,Y) = \left\{ \alpha \in \operatorname{Map}(X,Y) \; ; \; \bar{\alpha}(K(X)) = 0 \right\} =$$

$$= \left\{ \alpha \in \operatorname{Map}(X,Y) \; ; \; \bigvee_{i \in I} \bigvee_{x_k \in X} \bar{\alpha} \left(\sum_j r_{ij} \left[\sum_k s_{ijk} x_k \right] \right) = 0 \right\} =$$

$$= \left\{ \alpha \in \operatorname{Map}(X,Y) \; ; \; \bigvee_{i \in I} \bigvee_{x_k \in X} \sum_j r_{ij} \alpha \left(\sum_k s_{ijk} x_k \right) = 0 \right\},$$

co oznacza, że A jest ED-funktorem. Przy tym, jak widzieliśmy, relacje są wyznaczone jednoznacznie przez generatory nad $K(R^{\infty})$, czyli ostatnia część tezy jest też spełniona. \square

Można pokazać ([4], Wniosek 3.2.2), że jeśli podfunktor K funktora \mathcal{F} zachowuje epimorfizmy, to zachowuje też granice proste. Wobec tego w powyższym twierdzeniu można opuścić założenia o zachowywaniu granic prostych. Dowód tego faktu wymaga jednak użycia metod, które wykraczają poza granice tej pracy.

Bibliografia

- [1] M. F. Atiyah, I. G. MacDonald, *Introduction to commutative algebra*, Addison-Wesley, Reading, Mass. 1969 (istnieje przekład rosyjski: Mir, Moskwa 1972)
- [2] S. Balcerzyk, Algebra homologiczna, PWN, Warszawa 1972
- [3] A. Prószyński, Forms and mappings. I: Generalities, Fund. Math. 122 (1984) 219-235
- [4] A. Prószyński, *Odwzorowania wyższych stopni*, Wydawnictwo Uczelniane WSP w Bydgoszczy, Bydgoszcz 1987
- [5] A. Prószyński, Equationally definable functors and polynomial mappings, Journal of Pure and Applied Algebra 56 (1989) 59-84
- [6] N. Roby, Lois polynômes et lois formelles en théorie des modules, Ann. Sci. École Norm. Sup. 80 (1963) 213-348
- [7] Z. Semadeni, A. Wiweger, Wstęp do teorii kategorii i funktorów, PWN, Warszawa 1978