ANSWERS

Skills (Section A and B) / 20

Analysis (Section C) / 22

Section A: Short Answer (15 minutes)

No Calculators Allowed

NOTE: Exact answers are required unless instructed otherwise within the question

(a) Without dividing, find the remainder when $x^3 - 2x^2 - 5x + 6$ is divided by x + 2= (-1)3-2(-1)2-5(-1) +6 = P(-2)

(1+2=3 marks)22-4x+3 23-2x2-5x+6 (b) Hence, fully factorise $x^3 - 2x^2 - 5x + 6$ (242)(24-3) x+2 0 a Pachor (2+2) (2+c)

2. Expand $(2x-3)^3$

 $(25)^{3} - 3(12)(3) + 3(25)(3)^{2} - (3)^{3}$

= 8x3-36x x54x-27

(2 marks)

Given $P(x) = x^3 - kx^2 + 4x - 1$ has a remainder of 2 when divided by x - 3 find k. સ

P(3) = 27 -98+12-1 = 2

38-9k=2

p=4.

(2 marks)

The area of the shape shown below is 42 cm^2 . Find the value of x.

(3 marks)

(a) Express $y = 2x^2 - 5x - 2$ in the form $y = a(x + b)^2 + c$

$$A = 2(x^{2} - 2x^{2})^{2} - \frac{1}{12}$$

$$= 2(x^{2} - 2x^{2})^{2} - \frac{1}{12}$$

$$= 2(x^{2} - 2x^{2})^{2} - \frac{1}{12}$$

$$= 2(x^{2} - 2x^{2})^{2} - \frac{1}{12}$$

(b) Hence, or otherwise, write the coordinates of the turning point of $y = 2x^2 - 5x - 2$

Section B: Multiple Choice Questions (30 minutes for Sections B&C)

Calculators are allowed

For the graph of the parabola $y = ax^2 + bx + c$ shown, with $\Delta = b^2 - 4ac$, which statement is

- a > 0 and $\Delta > 0$
- a > 0 and $\Delta < 0$
- a < 0 and $\Delta < 0$
- Ή a < 0 and $\Delta > 0$ a > 0 and $\Delta = 0$

upralut shape g ρ √ φ

oc intercapts, so

D 10

- 5 The equation of the image is: The parabola with equation $y = x^2$ is translated so that its image has its vertex at (-4,3).

A.
$$y = (x-4)^2 + 3$$

B.
$$y = (x-3)^2 + 4$$

C
$$y = (x+4)^2 + 3$$

D.
$$y = (x+3)^2 - 4$$

E.
$$y = -4x^2 + 3$$

ယ The expression $(4x + 1)^2 + 3x - 2$ is equal to

A.
$$4x^2 + 5x - 1$$

B.
$$4x^2 + 11x - 1$$

$$3. 4x^{-}+11x^{-}1$$

C.
$$16x^2 + 5x - 1$$

D. $16x^2 + 5x + 1$

Ö

E)
$$16x^2 + 11x - 1$$

(4x+1)2+3x-

4. If
$$ax^3 + 2x^2 + 5$$
 is exactly divisible by $x+1$, the value of a is

0= (1-)d

5. If the graph of
$$y = 2x^2 - kx + 6$$
 touches the x-axis, the possible value(s) of k is/are

A.
$$k = 2$$
 or $k = -3$

B.
$$k=1$$

C.
$$k = -2$$
 or $k = -3$
D. $k = 4\sqrt{3}$ or $k = -4\sqrt{3}$
E. $k = 12\sqrt{2}$ or $k = -12\sqrt{3}$

E.
$$k = 12\sqrt{2}$$
 or $k = -12\sqrt{2}$

6. The expression
$$27x^3 - 8$$
 expressed as a product of a linear and a quadratic factor is equal to

A.
$$(3x + 2)(9x^2 + 6x + 4)$$

B. $(3x + 2)(9x^2 + 24x + 4)$

C.
$$(3x+2)(9x^2+12x+4)$$

C.
$$(3x + 2)(9x^2 + 12x + 4)$$

D) $(3x - 2)(9x^2 + 6x + 4)$

E.
$$(3x-2)(9x^2-12x+4)$$

End of Section B

Section C: Extended Response

of x + 2 and gives a remainder of 4 when divided by x + 1. Find the values of a and b. The polynomial $P(x) = 6x^3 + ax^2 + bx - 2$ where a and b are constants, has a factor

(4 marks)

'n metres and a width of x metres. The design is shown in the diagram below. A rectangular gate is made from 10 metres of metal tubing. The frame has a length of y

75

(a) Find an expression for the total length of tubing in terms of x and y.

(b) Find the equation expressing y in terms of x.

The gate is to be covered with a sheet of metal.

(c) Find an equation for the area of the gate, A, in terms of x.

(d) Sketch the graph of the equation found in part (c). Label the coordinates of the axial intercepts and the turning point.

(e) What is the maximum possible area of the gate?

(f) If the area of the gate is 1.6 m², find the approximate dimensions of the gate, correct to 2 decimal places.

ယ Consider the following two functions, where k is an unknown constant.

$$y = kx^2 - 3x + 1$$
 and $y = kx + 2$

<u>a</u> satisfy the equation $kx^2 - (3 + k)x - 1 = 0$ Show that at the point(s) where the graphs of these functions intersect must

6 Show that the discriminant of the quadratic $kx^2 - (3 + k)x - 1 = 0$

is equal to $k^2 + 10k + 9$.

<u>o</u> start of this problem do not intersect. Hence, find the values of k for which the graphs of the two functions given at the

(2+2+4 = 8 marks)

		• •
· · · · · · · · · · · · · · · · · · ·		
	•	
		is a second of the second of t

*