Numerical Methods Lesson 4

Dr. Jose Feliciano Benitez Universidad de Sonora

Dr. Benitez Homepage: <u>www.jfbenitez.science</u>

Course page: http://jfbenitez.ddns.net:8080/Courses/MetodosNumericos

Goals for this Lesson

• Chapter 1 of the book: Statistical Data Analysis by Glen Cowan

1	Fundamental concepts		1
	1.1	Probability and random variables	1
	1.2	Interpretation of probability	4
		1.2.1 Probability as a relative frequency	4
		1.2.2 Subjective probability	5
	1.3	Probability density functions	7
	1.4	Functions of random variables	13
	1.5	Expectation values	16
	1.6	Error propagation	20
	1.7	Orthogonal transformation of random variables	22

Probability and Random variables

- A characteristic of a system is said to be random when it is not known or cannot be predicted with complete certainty.
- The degree of randomness can be quantified with the concept of **probability**.
- Consider a set S called the sample space consisting of a certain number of elements
- A variable that takes on a specific value for each element of the set S is called a random variable.
- conditional probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}$.
- Two subsets A and B are said to be independent if

$$P(A \cap B) = P(A) P(B).$$


```
P(\overline{A}) = 1 - P(A) where \overline{A} is the complement of A

P(A \cup \overline{A}) = 1

0 \le P(A) \le 1

P(\emptyset) = 0

if A \subset B, then P(A) \le P(B)

P(A \cup B) = P(A) + P(B) - P(A \cap B).
```

Example:

- The classical experiment of rolling a six face die with numbers 1-6.
- In this example the random variable is the value obtained (n).
- The probability distribution is uniform:
 P(n) = 1/6
- For the two subsets A and B defined here:
 - A n B = {} , the empty set
 - A u B = S , the total set
 - $P(A) = \frac{1}{2} = P(B)$
 - P(A n B) = 0, prob of not obtaining any value is 0.
 - P(AuB) = 1, prob of obtaining any value is
 1.
 - P(A | B) = P(A n B) / P(B) = 0 / 0.5 = 0, prob of A given B is 0 because a value cannot be odd and even at the same time.

S: {1,2,3,4,5,6}

Consider subsets:

A: {1,3,5}

B: {2,4,6}

And probabilities:

 $P(n) = 1/6, n \in S$

Prob. density functions

Continuous variables

probability to observe x in the interval [x, x + dx] = f(x)dx.

$$\int_{S} f(x)dx = 1, \qquad F(x) = \int_{-\infty}^{x} f(x')dx',$$

Discrete variables

probability to observe value $x_i = P(x_i) = f_i$,

$$\sum_{i=1}^{N} f_i = 1. \qquad F(x) = \sum_{x_i \leq x} P(x_i).$$

Cumulative distribution of f(x)

Experiment with 10 000 samples

2 dimensional p.d.f.

 Multidimensional prob distributions are needed to describe experiments with events described by multiple properties.

$$\int \int_S f(x,y) dx dy = 1.$$

• Marginal/projection p.d.f.:

$$f_x(x) = \int_{-\infty}^{\infty} f(x, y) dy.$$

• Conditional p.d.f.:

$$h(y|x) = rac{f(x,y)}{f_x(x)} = rac{f(x,y)}{\int f(x,y')dy'}.$$

Functions of random variables

- Functions of random variables are themselves random variables. Suppose a(x) is a continuous function of a continuous random variable x, where x is distributed according to the p.d.f. f(x).
- In general:

$$g(a')da' = \int_{dS} f(x)dx,$$

If a(x) is invertible then:

$$g(a) = f(x(a)) \left| \frac{dx}{da} \right|.$$

 Generalized multidimensional formula, n random variables with m mappings: a₁(x₁,...,x_n),

$$a_{m}(x_{1},...,x_{n}).$$

J is the Jacobian determinant for the transformation.

$$g(a_1,\ldots,a_n)=f(x_1,\ldots,x_n)|J|,$$

$$J = \begin{pmatrix} \frac{\partial x_1}{\partial a_1} & \frac{\partial x_1}{\partial a_2} & \cdots & \frac{\partial x_1}{\partial a_n} \\ \frac{\partial x_2}{\partial a_1} & \frac{\partial x_2}{\partial a_2} & \cdots & \frac{\partial x_2}{\partial a_n} \\ \vdots & & & \vdots \\ & & & \frac{\partial x_n}{\partial a_n} \end{pmatrix}.$$

Expectation values

Population mean E[x]

$$E[x] = \int_{-\infty}^{\infty} x f(x) dx = \mu.$$

• For any function a(x):

$$E[a] = \int_{-\infty}^{\infty} ag(a)da = \int_{-\infty}^{\infty} a(x)f(x)dx,$$

n_{th} moment :

n_{th} central moment:

$$E[x^n] = \int_{-\infty}^{\infty} x^n f(x) dx = \mu'_n,$$
 $E[(x - E[x])^n] = \int_{-\infty}^{\infty} (x - \mu)^n f(x) dx = \mu_n,$

Variance and standard deviation

• The second central moment is called the **variance** V[x]:

$$E[(x - E[x])^{2}] = \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx = \sigma^{2} = V[x],$$

$$E[(x - E[x])^{2}] = E[x^{2}] - \mu^{2}.$$

• The square root of the variance is the **standard deviation**:

$$\sigma = \operatorname{sqrt}(V[x])$$

 Note that all distributions have these properties no matter what is the underlying model.

Exercises 1

- Revive Lesson 1 code for generating events from a Gaussian distribution and generate a dataset of 100 events.
- Produce the same graphs as before using ROOT including statistics box which shows Mean and RMS
- Run the fit from Lesson 2 to obtain the fitted values for mu and sigma.
- Write your own code to read the dataset and calculate:
 - Expectation value E[x] = mu
 - Variance V[x] = E[(x-mu)^2] and standard deviation
- Rerun with 10,000 events.
- Write a txt file summarizing and comparing the results of the three approaches above. Publish this text file in the Lesseon 4 Results directory.

Part 2: 1D distributions

2	Examples of probability functions		26
	2.1	Binomial and multinomial distributions	26
	2.2	Poisson distribution	29
	2.3	Uniform distribution	30
	2.4	Exponential distribution	31
	2.5	Gaussian distribution	32
	2.6	Log-normal distribution	34
	2.7	Chi-square distribution	35
	2.8	Cauchy (Breit-Wigner) distribution	36
	2.9	Landau distribution	37

Binomial distribution

- Experiment with only two possible outcomes:
 - Prob of outcome #1: p
 - Prob of outcome #2 : (1-p)
- Example: a coin flip
 - Heads prob p = 0.5
 - Tails prob (1-p)= 0.5
- Suppose we run this experiment N times.
 - What is the probability of obtaining n successes (e.g. Heads)?
 - ANSWER: the probability is given by the binomial distribution.

$$f(n; N, p) = \frac{N!}{n!(N-n)!} p^n (1-p)^{N-n},$$

Poisson distribution

- The Poisson distribution is derived from the Binomial distribution in following limits:
 - $N \rightarrow infinity$
 - $p \rightarrow 0$

But pN $\rightarrow v$ is constant

- The formula at the right can be derived mathematically by applying this limits
- This situation actually occurs frequently in real experiments where we make a large number of trials (e.g. particle collisions) and we are looking for a very rare signal.

$$f(n;\nu) = \frac{\nu^n}{n!} e^{-\nu},$$

Exponential distribution

- The **Exponential** distribution has the formula the right.
- Example: A population of particles/nuclei with certain lifetime
- In the formula at the right if x = time then ξ is the lifetime of the particle. It is the time it takes the population to decrease by 1/e.

$$f(x;\xi) = \frac{1}{\xi}e^{-x/\xi}.$$

Gaussian distribution

- Very common distribution for many types of measurements.
- For example, where there is common value expected (μ) but there is a measurement uncertainty (σ) .

INTERESING:

- NOTE 1: the Poisson distribution in the limit of large parameter \mathbf{v} can be approximated by a Gaussian distribution with parameters: $\mathbf{\mu} = \mathbf{v}$ and $\mathbf{\sigma}^2 = \mathbf{v}$
- NOTE 2 (**Central Limit Theorem**): the Gaussian distribution describes the distribution of the sum of many random variables with arbitrary distributions.

$$f(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right),$$

Breit-Wigner

- Describes the mass distribution for an unstable particle (resonance).
- x₀ is the Mass
- Γ is the Width, related to the lifetime (τ) of the particle by the relation $\Gamma = 1/\tau$ in natural units.

$$f(x;\Gamma,x_0)=\frac{1}{\pi}\frac{\Gamma/2}{\Gamma^2/4+(x-x_0)^2},$$

16

Landau

• The **Landau** distribution describes the amount of energy deposited in a material by the passage of an ionizing particle.

 The formulas are complex, derived from first principles in physics. The distribution must solved numerically due to the integral.

$$f(\Delta; \beta) = \frac{1}{\xi} \phi(\lambda), \quad 0 \le \Delta < \infty,$$

$$\xi = \frac{2\pi N_{\rm A} e^4 z^2 \rho \sum Z}{m_{\rm e} c^2 \sum A} \frac{d}{\beta^2},$$

$$\lambda = \frac{1}{\xi} \left[\Delta - \xi \left(\log \frac{\xi}{\epsilon'} + 1 - \gamma_{\rm E} \right) \right],$$

$$\epsilon' = \frac{I^2 \exp(\beta^2)}{2m_{\rm e} c^2 \beta^2 \gamma^2},$$

$$\phi(\lambda) = \frac{1}{2\pi i} \int_{\epsilon - i\infty}^{\epsilon + i\infty} \exp(u \log u + \lambda u) du,$$

$$\Delta_{\rm mp} = \xi \left[\log(\xi/\epsilon') + 0.198 \right],$$

Exercises 2

- Write code to implement the formulas and make the following graphs:
 - Binomial (1 graph) with N = 100, p = 0.5 (coin flip experiment)
 - Poisson (2 graphs): v=1 and v = 10, use range n: 0-20
 - Exponential (2 graphs): parameter values 0.5 and 2
 - Breit-Wigner (2 graphs):
 - Mass = 91, Width = 2.5 (the Z boson)
 - Mass = 80, Width = 2.0 (the W boson)
- Use the TGraph object in ROOT
 - Use 1000 points
 - Set points TGraph::SetPoint(n,x,y)
 - Draw in Canvas: TGraph::Draw("alp")
- Publish these graphs including proper labels in the Lesson 4 Results folder.

18