Chapter 5 - Ex2: NBA Players

Cho dữ liệu nba_2013.csv

Sử dụng thuật toán KNN để dự đoán số điểm (points) mà các cầu thủ NBA ghi được trong mùa giải 2013-2014.

Mỗi hàng trong dữ liệu chứa thông tin về player thực hiện trong mùa giải 2013-2014 NBA. (với player -- tên player/ pos -- vị trí của player/ g -- số trận mà player đã tham gia/ gs -- số trận mà player đã bắt đầu/ pts -- tổng số point mà player đã ghi được)

- Đọc dữ liệu và gán cho biến data. Xem thông tin data: shape, type, head(), tail(), info. Tiền xử lý dữ liệu (nếu cần)
- 2. Tạo inputs data với các cột không có giá trị null trừ cột 'player', 'bref_team_id', 'season', 'season_end', 'pts', và outputs data với 1 cột là 'pts' => Vẽ biểu đồ quan sát mối liên hệ giữa inputs và outputs data
- 3. Từ inputs data và outputs data => Tạo X_train, X_test, y_train, y_test với tỷ lệ 80:20
- 4. Thực hiện KNN với X_train, y_train
- 5. Dự đoán y từ X test => so sánh với y test
- 6. Xem kết quả => Nhận xét model
- 7. Ghi model nếu model phù hợp

```
In [0]: from google.colab import drive
    drive.mount("/content/gdrive", force_remount=True)

path = '/content/gdrive/My Drive/LDS6_MachineLearning/'
```

Mounted at /content/gdrive

```
In [0]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split
```

```
In [0]:
         data = pd.read csv(path +"practice/Chapter5 KNN/nba 2013.csv", sep=",")
          data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 481 entries, 0 to 480
         Data columns (total 31 columns):
                          481 non-null object
         pos
                          481 non-null object
                          481 non-null int64
         age
         bref_team_id
                          481 non-null object
                          481 non-null int64
         g
                          481 non-null int64
         gs
                          481 non-null int64
         mp
         fg
                          481 non-null int64
                          481 non-null int64
         fga
                          479 non-null float64
         fg.
         х3р
                          481 non-null int64
         x3pa
                          481 non-null int64
                          414 non-null float64
         x3p.
         x2p
                          481 non-null int64
                          481 non-null int64
         x2pa
                          478 non-null float64
         x2p.
                          479 non-null float64
         efg.
                          481 non-null int64
         ft
                          481 non-null int64
         fta
         ft.
                          461 non-null float64
                          481 non-null int64
         orb
         drb
                          481 non-null int64
         trb
                          481 non-null int64
                          481 non-null int64
         ast
                          481 non-null int64
         stl
                          481 non-null int64
         blk
         tov
                          481 non-null int64
                          481 non-null int64
         pf
         pts
                          481 non-null int64
         season
                          481 non-null object
                          481 non-null int64
         season end
         dtypes: float64(5), int64(22), object(4)
         memory usage: 116.6+ KB
 In [0]: data.shape
Out[85]: (481, 31)
 In [0]: # HV tự tìm cách fill dữ liệu thiếu/drop dựa trên các kiến thức đã học
          data = data.dropna()
 In [0]: data.shape
Out[87]: (403, 31)
```

20							(Chapter5 ₋	_Ex3_	NBA ·	- Jupyte	er Note	ebook						
In [0]:	dat	ta.h	ead()																
Out[88]:	mp	fg	fga		fg.	х3р	х3ра	x:	3p. :	x2p	x2pa	l	x2p.	efg.	ft	fta	ft.	orb	drb
	847	66	141	0.4	168	4	15	0.2666	667	62	126	0.4	92063	0.482	35	53	0.660	72	144
	552	464	1011	0.4	159	128	300	0.4266	667	336	711	0.4	72574	0.522	274	336	0.815	32	230
	951	136	249	0.5	546	0	1	0.0000	000	136	248	0.5	348387	0.546	56	67	0.836	94	183
	498	652	1423	0.4	158	3	15	0.2000	000	649	1408	0.4	60938	0.459	296	360	0.822	166	599
	072	134	4 300	0.4	147	2	13	0.1538	346	132	287	0.4	59930	0.450	33	50	0.660	119	192
	4																		•
In [0]:	dat	ta.ta	ail()																
Out[89]:			playe	r p	os	age	bref_t	eam_id	g	gs	mp) f	g fga	fg	. x3p	x3	ра	х3р.	x2ŗ
	47	6	Ton Wrote		SG	20		PHI	72	16	1765	34	5 808	0.427	7 40) 1	88 0.21	12766	305
	47	7	Nic Youn		SG	28		LAL	64	9	1810	38	7 889	0.435	5 135	5 3	50 0.38	35714	252
	47	8 Ti	naddeu Youn	s ,	PF	25		PHI	79	78	2718	58:	2 1283	0.454	l 90) 2	92 0.30	08219	492
	47	9	Cod Zelle	у	С	21		СНА	82	3	1416	5 17:	2 404	0.426	6 ()	1 0.00	00000	172
	48	s0	Tyle	er	С	24		CLE	70	9	1049) 15	6 290	0.538	3 ()	1 0.00	00000	156
	4		Zelle	er	Ū	21		OLL	70		1010		200	0.000	, (•	1 0.00	70000)
In [0]:	# -	The i	colum	nc t	hat	- we	เมว์ ไ ไ	he mal	bina	nna	odi ct	i one	s with						
in [o].	inp	outs		ta.d											on_en	ıd",'	'pts"],	axis	=1)
Out[90]:	(46	93, 2	26)																
In [0]:	inp	outs	.head	()															
Out[91]:		pos	age	g	gs	mp	o fg	fga	f	g. x	(3р х	Зра	x 3	p. x2p	o x2	ра	x2p.	efç	
	0	SF	23	63	0	847	7 66	141	0.46	88	4	15	0.2666	67 62	2 1:	26 (0.492063	0.48	2
	3	SG	28	73	73	2552	2 464	1011	0.45	59 1	128	300	0.4266	67 336	³ 7	11 ().472574	0.52	2 2
	4	С	25	56	30	951	136	249	0.54	16	0	1	0.0000	00 136	6 2 ⁴	48 ().548387	0.54	6
	6	PF	28	69	69	2498	652	1423	0.45	58	3	15	0.2000	00 649).460938		9 2
	7	חר	0.4	G.F.	0	4070	104	200	0.44	17	2	40	0.4500	46 400	2 0	07 (150020	0.45	

24 65

2 1072 134

300 0.447

13 0.153846 132

287 0.459930 0.450

```
In [0]: # import seaborn as sns
          # sns.pairplot(inputs)
          # plt.show()
 In [0]:
          inputs = pd.get_dummies(inputs)
          inputs.head()
Out[93]:
                                           fg. x3p x3pa
                                                             x3p. x2p x2pa
             age
                   g
                     gs
                           mp
                                fg
                                     fga
                                                                                x2p.
                                                                                       efg.
                                                                                             ft
           0
              23
                  63
                       0
                          847
                                66
                                     141 0.468
                                                 4
                                                      15 0.266667
                                                                   62
                                                                        126
                                                                            0.492063 0.482
                                                                                             35
           3
              28
                  73
                      73
                         2552
                               464
                                    1011
                                         0.459
                                               128
                                                     300
                                                         0.426667
                                                                  336
                                                                        711
                                                                            0.472574
                                                                                     0.522
                                                                                            274 3
                          951
                               136
                                    249 0.546
                                                         0.000000
                                                                            0.548387 0.546
              25
                  56
                      30
                                                 0
                                                                  136
                                                                        248
                                                                                            56
                               652
                                   1423 0.458
                                                         0.200000
                                                                       1408
              28
                  69
                      69
                         2498
                                                 3
                                                                  649
                                                                            0.460938
                                                                                     0.459
                                                                                           296 3
                  65
                       2 1072 134
                                     300 0.447
                                                         0.153846
                                                                  132
                                                                        287 0.459930 0.450
                                                                                             33
 In [0]: #inputs.info()
 In [0]:
          # The column that we want to predict.
          outputs = data["pts"]
          outputs = np.array(outputs)
          outputs.shape
Out[95]: (403,)
          from sklearn.model_selection import train_test_split
          X_train, X_test, y_train, y_test = train_test_split(inputs, outputs,
                                                                  test size=0.20,
                                                                  random_state = 42)
          from sklearn.neighbors import KNeighborsRegressor
 In [0]:
          from sklearn.metrics import accuracy_score
```

```
In [0]: list_k = []
list_score = []
for K_value in range(2,int(y_train.shape[0]**0.5)):
    list_k.append(K_value)
    neigh = KNeighborsRegressor(n_neighbors = K_value)
    neigh.fit(X_train, y_train)
    y_pred = neigh.predict(X_test)
    score = neigh.score(X_test, y_test)
    list_score.append(score)
    print("Accuracy is ", score,"% for K-Value:",K_value)
Accuracy is 0.9706106398874882 % for K-Value: 2
```

```
Accuracy is 0.9706106398874882 % for K-Value: 2
Accuracy is 0.9725933456177593 % for K-Value: 3
Accuracy is 0.9770730768900523 % for K-Value: 4
Accuracy is 0.978230348461507 % for K-Value: 5
Accuracy is 0.977798100546243 % for K-Value: 6
Accuracy is 0.9764061450426895 % for K-Value: 7
Accuracy is 0.9770400934699496 % for K-Value: 8
Accuracy is 0.9737204054920425 % for K-Value: 9
Accuracy is 0.9731007587419361 % for K-Value: 10
Accuracy is 0.9723657389625773 % for K-Value: 11
Accuracy is 0.971109581151784 % for K-Value: 12
Accuracy is 0.9696185629376203 % for K-Value: 13
Accuracy is 0.9696185629376203 % for K-Value: 14
Accuracy is 0.9645375047786899 % for K-Value: 16
```

```
In [0]: vi_tri = list_score.index(max(list_score))
    k = list_k[vi_tri]
    print("\nThe optimal number of neighbors is", k, "with", list_score[vi_tri])
```

The optimal number of neighbors is 5 with 0.978230348461507

```
In [0]: plt.plot(list_k, list_score)
   plt.xlabel('Number of Neighbors K')
   plt.ylabel('Test Accuracy')
   plt.show()
```



```
In [0]: knn = KNeighborsRegressor(n_neighbors=5)
knn.fit(X_train, y_train)
```

```
In [0]: # Kiểm tra độ chính xác
print("The Train/ Score is: ", knn.score(X_train,y_train)*100,"%")
print("The Test/ Score accuracy is: ", knn.score(X_test,y_test)*100,"%")
```

The Train/ Score is: 98.01127110964177 %
The Test/ Score accuracy is: 97.8230348461507 %

```
In [0]: # Tinh MSE
from sklearn import metrics
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
```

Mean Squared Error: 7451.879581404321

Nhân xét:

- Training và Testing cùng có R² cao và gần bằng nhau
- Mô hình trên cho R^2 cao ~ 0.98, cho thấy nó fit 98% dữ liệu => mô hình phù hợp

```
In [0]: y_pred = knn.predict(X_test)
#y_pred
```

Out[105]: Actual Prediction 0 490 450.8

1 548 467.6

2 820 796.4

217

4 491 516.4

In [0]: # Xuất model

3

import pickle
Save to file in the current working directory

pkl_filename = "NBA_model.pkl"
with open(pkl_filename, 'wb') as file:

198.6

pickle.dump(knn, file)

```
In [0]: with open(pkl_filename, 'rb') as file:
    nba_model = pickle.load(file)
```

```
In [0]: nba_model
```