Dr. Ancinya Bhattacharya sir.

ELECTRICAL MACHINES - I

 $V = i_{(4)} R + Ld_{i_{(4)}}$ $V = i_{(4)} R + Ld_{i_{(4)}}$ $\frac{V}{Ls(s+R/L)} = \frac{L \times V \left((s+3,R/L) - s \right)}{R L \left(s + R/L \right)}$ $\frac{V}{R} \left[\frac{1}{S} - \frac{1}{S + R/L} \right]$ Taking Inverse L.T., i(t) = V [1-e-R/Lt] A Electrical materials should have following properties -High conductivity, least temp. coeff. of resistance, Adequate mechanical strongth, absence of britheness, rollability and drawability (can be drawn to thin wires), good weldability and solderability, adequate resistance to * Copper: 1) Highest electrical conductivity with resistance to oxidation and corrosion, 11) Highly malleable & ductility.
111) Most electrical machines employ winding of anneled highly conducting copper.

>		
>	10)	Hard drawn copper wires are used in electrical machin
		as hard drawing increases mechanical strain but
		also increases.
	v)	Temp. coeff. of cu is 0.00393/oc.
9		Aluminium:
9	1)	Cu is getting debloted and Al is available in
		- ance. depleted and Al is available in abud-
-	<u>n)</u>	Al can be rolled into thin sheets but not in wires.
-	111)	The acheaper and can be used for bans of Squirrel
-		()
9	J	It can be used for foil type winding in transformer because it connotbe drawn into Girthia wind
3	v)	Decause it cannot be drawn into for thin wires. It can be used to construct transformer banks.
	,)	Electrical carbon?
	")	They are made of graphite and other forms of carbon.
		make brushes in electrical machines. Brush carbon are heat trooped to
		IN CARLON AS
		& increase conductivity & reduce handness.
	17)	& increase conductivity & reduce handness. It has negative temp. coeff. of resistance.
	×	
	*	Materials for magnetic circuits -
) Total B
)	Diamagnetic material.
	-)	It has weak form of magnetism only when magnetic field is applied.
	1	field is applied.
	-	Induced magnetication is small and is opposite to the
		applied magnetic field.

E.g. → Cu, Ge, Au, Si, Diamond, etc.

-> Field lines more away from each other while passing through diamagnetic material.

M - opposite to H.

 $H = NI \rightarrow mmf$. $\chi_m < 0$.

So, Mr = 1+ xm < 1. { Mr ≈ 1}

1) Paramagnetic material.

Here weak form of magnetism exists when magnetic field is applied.

- Induced magnetisation is small & is in same direction as the applied magnetic field.

E.g. → K, W, Al, rare earth metals, etc

M → same direction as H.

2m > 0, $\mu_r = 1 + \eta_m > 1$; Mag. field lines come closer to each other.

111) Ferromagnetic material.

-> characterised by presence of permanent alignment of magnetic dipoles due to spin of unpaired e-.

Examples are Fe, Co, Ni, Gid, Dy.

Reluctance: Measure of opposition produced by mag circuits to the flow of flux. It is analogous to resistance in electrical circuits. Reluctance NI Reluctance = MMF flux BA/L (B/H)A Permeability of - magnetic circuits. applicable for a homogeneous mag circuit of uniform cross section. Relative permeability: It is the ratio of permeability of the permeability of free space space Mo → 4x ×10-7 H/m, dimensionales constant Sheet steet Cast Iron H I 主 B Linear Knee Saturation H Region ! region ; region

of (2 cm × 2 cm), Relative fermeability of 1400 at and and air gap of 5 mm is cut in the core.

The 3 coils carried by the core have $N_1 = 335$, $N_2 = 600$, $N_3 = 600$, and $I_1 = 1.6$ A, $I_2 = 4$ A, $I_3 = 3$ A, The directions of currents are as shown.

Calculate — ① flux in the air gap.

K/ A = mmf Reluctance

Net mmf = $N_1 I_1 + N_3 I_3 - N_2 I_2$ = $-335 \times 1..6 = -3 \times 600 + 4 \times 600$ = +64 AT

So, $\phi = \underline{\mathsf{mmf}}$ Reluctance

& mmf = $\phi \times Reluctance$.

mmf = ϕ [$\frac{l_{iron}}{l_{lo} u_{r} A} + \frac{l_{ain}}{l_{lo} A}$]

mmf = \$ [141 2+ 9.95] ×106.

\$ = 5.63 × 10-6 Wb.