Lab-1 [Ensemble Methods]

Out date: August 1, 2022

Due date: August 7, 2022 at 11:59PM

Submission

 Prepare your solution in Orange and save the workspace for Problem 1 (e.g., Badge3_Lab-1 LastName.ows) [20 points]

- 2. Complete the tables given below and save the file (e.g., Badge3_Lab-1_LastName.docx). [80 points]
- 3. Upload the files to the Canvas.

Objective: To understand how to use Ensemble Methods based ML algorithms such as Random Forest, Ada Boost, Stacking and how to handle class imbalance problem.

Problem 1 [100 points]

Data: For this lab, please download *GOMFields_Reserves_Processed.csv* and *Badge3_Lab1_Start.ows* files from Canvas to your folder.

(Data Source: https://www.data.bsee.gov/Main/FieldReserves.aspx#ascii)

Oil & BOE reserves and production in MMbbl

Gas reserves and production in Bcf

Field GOR in SCF/STB

Lab Instructions

1. Open the Badge3_Lab1_Start.ows file using Orange. Your pipeline should look as below:

2. Open **File** widget and load the data. Complete the table below: (10 points)

# of instances/rows	1319
# of features, attribute types and roles	12 features, 1 meta (13 columns)
What is the target variable and what are its class labels?	WaterDepthCat

3. Open **Data Table, Feature Statistics and Distributions** widget and inspect features. Complete the table below: (15 points)

List 3 observations
based on inspecting the features

No missing values so no need to worry computing, not a balanced target, you can see some history as field name MC

4. Open **Select Columns** widget and ensure selection of variables is as below:

5. Inspect the rest of the pipeline. Open **Test and Score** & **Confusion Matrix** widgets.

Selecting <u>Cross validation (10 folds)</u> for *Sampling* and observe the Evaluation Results for each of the class and the Confusion Matrix (average over class). (10 points)

What are your Model Train time [s] Test time [s] AUC CA F1 Specificity observations kNN 0.096 0.047 0.872 0.907 0.901 0.683 regarding the Since we have a class imbalance, we would need to resolve this by model class weighting/balance to improve specificity of the model; performance? imbalances can affect this Predicted DEEP SHALLOW ULTRA-DEEP Σ DEEP 45 10 102 47 20 886 910 SHALLOW 4 **ULTRA-DEEP** 11 44 6 27 Σ 76 939 41 1056 Three class problem; only 45 of deep fields are correctly predicted by the model, 10 is being misclassified as ultra-deep, remaining 47 as shallow fields; Shallow looks okay since majority is classified as Shallow (886); Ultra-Deep, only 27 is correctly classified

Complete the table below: (15 points)

Model / Class	AUC	CA	F1	9	Specifici	ty		
kNN / Average	Model	Train time [s]	Test time [s]	AUC	CA	F1	Specificity	
	kNN	0.096	0.047	0.872	2 0.907	0.901	0.683	
kNN / Deep	Model	Train time [s]	Test time [s]	AUC	CA	F1	Specificity	
	kNN	0.096	0.047	0.83	1 0.917	0.506	0.968	
kNN / Shallow	Model	Train time [s]	Test time [s]	AUC	CA	F1	Specificity	
	kNN	0.096	0.047	0.898	8 0.927	0.958	0.637	

kNN / Ultra-Deep	Model	Train time [s]	Test time [s]	AUC	CA	F1	Specificity	
	kNN	0.096	0.047	0.893	0.971	0.635	0.986	

6. Add Random Forest and AdaBoost models to your pipeline as shown below.

7. Add **Stacking** models to your pipeline as shown below.

8. Select **Cross validation (10 folds)** as *Sampling* in the **Test and Score** widget. Observe Evaluation Results and the Confusion Matrix. **(10 points)**

Model / Class	AUC	CA	F1	Spe	cificity		
kNN / Average over classes	Model	Train time [s]	Test time [s]	AUC	CA	F1	Specificity
	kNN	0.096	0.047	0.872	0.907	0.901	0.683
Random Forest / Average over classes	Random Forest	0.826	0.098	0.907	0.904	0.896	0.677
AdaBoost / Average over classes	AdaBoost	0.125	0.023	0.765	0.885	0.885	0.734
Stacking / Average over classes	Stack	6.012	0.182	0.915	0.914	0.906	0.690

What are your observations on the performance of the 4 models?

Stacking gave highest AUC and CA and F1 but second highest Specificity.

AdaBoost highest Specificity

9. Let us <u>oversample the Ultra-Deep class label</u>. Add **Select Rows** and **Data Sampler** widgets and connect them to **File** widget as shown below.

10. Edit Select Rows and Data Sampler widgets as shown below.

11.Let us <u>oversample the Deep</u> class label. Add another **Select Rows** and **Data Sampler** widgets and connect them to **File** widget. Edit them as below:

12.Let us <u>under sample Shallow</u> class label. Add another **Select Rows** widget and **Data Sampler widget** and connect them to **File** widget. Edit them as below:

13.Add Concatenate widget and connect the 3 Data Sampler widgets. Connect Concatenate widget to Select Columns widget. Add Distributions widget to observe class label distribution.

Pipeline should now look like this:

14. Open **Select Columns** widget and ensure variable selections are as below:

15. Open **Test and Score** and **Confusion Matrix** widgets. Select **Cross validation (10 folds)** for *sampling* in the **Test and Score** widget. Observe Evaluation Results and the Confusion Matrix. (10 points)

What are your
observations on the
performance of the 4
models?

iviuch definitei	y improved					
Model	Train time [s]	Test time [s]	AUC	CA	F1	Specificity
kNN	0.096	0.047	0.872	0.907	0.901	0.683
Stack	6.012	0.182	0.915	0.914	0.906	0.690
Random Forest	0.826	0.098	0.907	0.904	0.896	0.677
AdaBoost	0.125	0.023	0.765	0.885	0.885	0.734

Vs

Model	Train time [s]	Test time [s]	AUC	CA	F1	Specificity
kNN	0.095	0.051	0.974	0.946	0.946	0.960
Stack	8.020	0.186	0.986	0.958	0.957	0.964
Random Forest (1)	0.781	0.071	0.983	0.954	0.953	0.967
AdaBoost (1)	0.152	0.018	0.953	0.946	0.946	0.965

Seems stacking is not too essential since it increases train time, and can be costly if huge dataset.

Has the model performance improved after over / under sampling of class labels?

Yes!

16. Change sampling to **Test on test data** in the **Test and Score** widget. Complete the table below: (15 points)

Model / Class	AUC	CA	F1			Speci	ficity		
kNN	Model	Train time [s]	Test time	e [s]	AUC	CA	F1	Specificity	
	kNN	0.027	(0.006	0.974	0.960	0.959	0.959	
Random	Random Forest (1)	0.080		0.009	0.975	0.935	0.936	0.952	
Forest AdaBoost	AdaBoost (1)	0.015		0.003	0.953	0.945	0.945	0.955	
				0.003	0.555	0.545	0.545		
Stacking	Stack	0.594	(0.019	0.979	0.965	0.965	0.960	

/ did good, not

2:23:XX

Observe the Confusion Matrix widget for predictions of each class label.

Which model would you select as your final	Stack actually did good,
model?	considering train time

kNN:

Random Forest:

AdaBoost:

Stack:

