Università di Bologna

Corso di Laurea in Informatica Prova scritta di LOGICA PER L'INFORMATICA 20/02/2020 Fila 1 (risolto)

1 (1 punto). Dare la sintassi per le formule della logica del prim'ordine.

$$t ::= x \mid c \mid f^{n}(t_{1}, \dots, t_{n})$$

$$P ::= \bot \mid \top \mid P^{n}(t_{1}, \dots, t_{n}) \mid P \land P \mid P \lor P \mid \neg P \mid P \Rightarrow P \mid \forall x, P \mid \exists x, P$$

2 (5 punti). Considerare la seguente sintassi per le espressioni aritmetiche:

$$E ::= x \mid y \mid \dots \mid E + E \mid E * E$$

Scrivere, per induzione strutturale su E, una funzione nf(E) che ritorni un'espressione S, equivalente ad E, appartenente alla seguente grammatica:

$$S ::= P \mid S + S$$
 $P ::= x \mid y \mid \dots \mid P * P$

I seguenti esempi sono scritti con l'usuale convenzione che la precedenza del prdotto sia superiore a quella della somma. Esempi:

- nf(x*(y*(x+x))) = x*y*x + x*y*x
- nf((x+y)*(x+y*y)) = x*x + x*y*y + y*x + y*y*y
- nf((x+x+y)*(x+z) = x*x+x*x+y*x+x*z+x*z+y*z

Potete implementare funzioni ausiliarie, sempre per ricorsione strutturale, e/o utilizzare parametri aggiuntivi.

Suggerimenti: ricordarsi della proprietà distributiva del prodotto sulla somma; testare il codice prodotto su qualche esempio.

Problema n. 1: data un'espressione trovarne una sommatoria di prodotti equivalente Soluzione: nf(E)

nf(x) = x

$$nf(E1 + E2) = nf(E1) + nf(E2)$$

$$nf(E1 * E2) = distr(nf(E1), nf(E2))$$

Problema n. 2: date due sommatoria di prodotti trovare la sommatoria di prodotti equivalente

Soluzione: distr(S1,S2) per ricorsione su S1

distr(P1, S2) = mult(P1, S2)

$$distr(S1 + S2, S3) = distr(S1,S3) + distr(S2,S3)$$

Problema n. 3: data una produttoria e una sommatoria di prodotti, trovare la sommatoria di prodotti equivalente Soluzione: mult(P1, S2) per ricorsione su S2

$$mult(P1, P2) = P1 * P2$$

$$mult(P1, S1 + S2) = mult(P1,S1) + mult(P1,S2)$$

3 (4 punti). Dimostrare, in teoria degli insiemi, che

$$\forall A, \forall B, (A \cup B = A \cap B \Rightarrow A = B)$$

Scrivete la prova informalmente, ma facendo attenzione che ogni passaggio corrisponda a uno o più passi di una prova per deduzione naturale. Esplicitare una volta l'**enunciato** di tutti gli assiomi di teoria degli insiemi che state utilizzando.

Assoma di estensionalità:

$$\forall A, B, (A = B \iff \forall C, (C \in A \iff C \in B))$$

Assioma dell'unione binaria:

$$\forall A, B, C, (C \in A \cup B \iff C \in A \lor C \in B)$$

Assioma dell'intersezione binaria:

$$\forall A, B, C, (C \in A \cap B \iff C \in A \land C \in B)$$

Fisso A, B insiemi. Assumo $A \cup B = A \cap B$ (H). Dimostro A = B. Per assioma di estensionalità, basta dimostrare $\forall x, x \in A \iff x \in B$. Fisso x insieme.

Direzione \Rightarrow : assumo $x \in A$ (xA). Dimostro $x \in B$. Per assioma di estensionalità e H, $\forall y,y \in A \cup B \iff y \in A \cap B$ (H'). Quindi, per H' ho $x \in A \cup B \Rightarrow x \in A \cap B$. Dall'ipotesi xA e dall'assioma dell'insieme unione (che dice $\forall y,y \in A \cup B \iff y \in A \lor y \in B$) ho $x \in A \cup B$. Quindi per H' ho $x \in A \cap B$. Per l'assioma dell'intersezione, $x \in A \land x \in B$. Quindi $x \in B$.

L'altra direzione è analoga.

4 (1 punto). Enunciare il teorema di deduzione semantica per la logica proposizionale classica.

Per ogni coppia di formule F, G e per ogni insieme di formule Γ si ha:

$$\Gamma \Vdash F \Rightarrow G \iff \Gamma, F \Vdash G$$

5 (1 punto). Enunciare il teorema di correttezza per la logica proposizionale classica.

Per ogni formula F e insieme di formule Γ ,

$$\Gamma \vdash F \implies \Gamma \Vdash F$$

6 (1 punto). Dare la definizione di equivalenza logica senza fare riferimento alle tabelle di verità.

Due formule F e G sono logicamente equivalenti $(F \equiv G)$ sse $F \Vdash G$ e $G \Vdash F$.

7 (5 punti). Considerare le formule della logica proposizionale ristrette a variabili, \bot e congiuzioni.

Dimostrare, per induzione strutturale su F, che $F[\bot/A] \land F[\top/A] \Vdash F$.

Procediamo per induzione strutturale su F.

Caso A: dimostro $A[\bot/A] \land A[\top/A] \Vdash A$, ovvero $\bot \land \top \Vdash A$. Ovvio perchè qualunque cosa è conseguenza logica del \bot .

Caso B: dimostro $B[\bot/A] \land B[\top/A] \Vdash B$, ovvero $B \land B \Vdash B$. Ovvio perchè $B \land B \equiv B$.

Caso \perp : dimostro $\perp [\perp/A] \wedge \perp [\top/A] \Vdash \perp$, ovvero $\perp \wedge \perp \Vdash \perp$. Ovvio perchè $\perp \wedge \perp \equiv \perp$.

Caso $F_1 \wedge F_2$:

per ipotesi induttiva $F_1[\bot/A] \wedge F_1[\top/A] \Vdash F_1$, per ipotesi induttiva $F_2[\bot/A] \wedge F_2[\top/A] \Vdash F_2$.

Dimostro $(F_1 \wedge F_2)[\bot/A] \wedge (F_1 \wedge F_2)[\top/A] \Vdash F_1 \wedge F_2$, ovvero $F_1[\bot/A] \wedge F_2[\bot/A] \wedge F_1[\top/A] \wedge F_2[\top/A] \Vdash F_1 \wedge F_2$. ovvero che in ogni mondo v, se $min\{ \llbracket F_1[\bot/A] \rrbracket^v, \llbracket F_1[\bot/A] \rrbracket^v, \llbracket F_1[\top/A] \rrbracket^v, \llbracket F_2[\top/A] \rrbracket^v \} = 1$ allora $min\{ \llbracket F_1 \rrbracket^v, \llbracket F_2 \rrbracket^v \} = 1$.

Sia v un mondo e supponiamo

$$\min\{ [\![F_1[\bot/A]]\!]^v, [\![F_1[\bot/A]]\!]^v, [\![F_1[\top/A]]\!]^v, [\![F_2[\top/A]]\!]^v \} = 1$$

da cui $min\{ [\![F_1[\bot/A]]\!]^v, [\![F_1[\top/A]]\!]^v \} = 1$ e $min\{ [\![F_2[\bot/A]]\!]^v, [\![F_2[\top/A]]\!]^v \} = 1$. Quindi, usando le due ipotesi induttive, si ha $[\![F_1]\!]^v = [\![F_2]\!]^v = 1$ e pertanto $min\{ [\![F_1]\!]^v, [\![F_2]\!]^v \} = 1$, come volevasi dimostrare.

8 (7 punti). Si consideri il seguente ragionamento:

Se i passeggeri sono infetti, allora moriranno o non potranno scendere dalla nave. I passeggeri potranno scendere dalla nave se supereranno i controlli. I passeggeri non moriranno. Quindi, se i passeggeri supereranno i controlli, allora i passeggeri non sono infetti.

Verificare la correttezza del ragionamento utilizzando la deduzione naturale per la logica proposizionale. Preferire una prova intuizionista se possibile.

9 (2 punti). Si scriva il risultato della seguente sostituzione ottenuto minimizzando il numero di cambi di nome alle variabili.

$$(\Sigma_{y=y}^b \Sigma_{a=b}^y a) \{ y^a/b \}$$

$$\sum_{z=y}^{y^a} \sum_{a=y^a}^z a$$

10 (3 punti). Dimostrare il seguente teorema usando la deduzione naturale al prim'ordine, preferendo una prova intuizionista a una classica ove possibile:

$$(\exists x, (P(g(x)) \vee Q(f(f(x))))), \quad (\forall x, (Q(f(x)) \Rightarrow P(g(x)))) \vdash \exists x, P(x)$$

