湖南大学理工类必修课程

大学数学 All

—— 多元微分学

2.4 多元函数的全微分

• 主 讲: 于 红 香

回忆一元函数微分的定义及几何意义

若存在仅与 x_0 有关的实数 A ,使得

$$\Delta y = A\Delta x + o(\Delta x)$$

则称函数 f(x) 在点 x_0 处可微,

 $A\Delta x$ 为函数 f(x) 在点 x_0 处的微分,

$$dy = f'(x) dx$$
, $dx = \Delta x$

微分的几何意义 局部以直代曲

$$\Delta y \approx f'(x_0) \Delta x = \mathbf{d} y$$

曲线上的增量

切线上的增量

一元函数微分推广到 二元函数微分

一元函数的图形为曲线

 \longleftrightarrow

二元函数的图形为曲面

对自变量的微小变化, 可用<mark>微分来估计</mark>函数的变化量。

对自变量的微小变化, 是否也可用微分来估计函数的变化量?

函数的微分 是自变量变化量的线性函数。

\ \ \ \

函数的微分 也会是自变量变化量的线性函数吗?

几何上,是以直(线)代曲(线)! 几何上,是以平(面)代曲(面)?

第二章 多元函数微分学

第四节 全微分

- 1. 二元函数全微分的定义
- 2. 可微与可偏导和连续的关系
- 3. 全微分的计算
- 4. 全微分的几何意义
- 5. 全微分在近似计算中的应用

第二章 多元函数微分学

第四节 全微分

本节学习要求:

- 正确理解多元函数的全微分、偏微分的概念。
- 了解全微分与可偏导和连续的关系。
- 熟练掌握全微分的计算方法。
- 了解二元函数全微分的几何意义。

若存在仅与 x_0 有关的实数 A ,使得

$$\Delta y = A\Delta x + o(\Delta x)$$

则称函数f(x) 在点 x_0 处可微,

 $A\Delta x$ 为函数 f(x) 在点 x_0 处的微分,

$$dy = f'(x) dx$$
, $dx = \Delta x$

$$z = f(x, y) = f(X)$$

若存在仅与 $X_0 = (x_0, y_0)$ 有关的实数向量 A = (a, b),使得

$$\Delta z = A\Delta X + \mathrm{o}(\Delta X)$$

$$= (a,b) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} + o(||\Delta X||)$$

$$= a\Delta x + b\Delta y + o(\sqrt{\Delta x^2 + \Delta y^2})$$

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$

一元函数的增量 ←→ 多元函数的全增量

1. 二元函数全微分的定义

设函数z = f(X)在点 $X_0 = (x_0, y_0)$ 的某一邻域 $U(X_0)$ 内有定义,

当 X_0 获得增量 $\Delta X = (\Delta x, \Delta y), \mathbf{L}X_0 + \Delta X \in \mathbf{U}(X_0)$ 时,若函数在点 X_0

处的全增量可表示为

$$\Delta z = a\Delta x + b\Delta y + o(\sqrt{\Delta x^2 + \Delta y^2})$$

则称函数z = f(X)在点 X_0 处可微。

$$dz \triangleq a\Delta x + b\Delta y$$

称为函数在点 X_0 处的全微分,其中a, b是与 ΔX 无关,仅与 X_0 有关的常数.

1. 二元函数全微分的定义

全微分概念的极限形式

$$\Delta z = a\Delta x + b\Delta y + o(\sqrt{\Delta x^2 + \Delta y^2})$$

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \frac{\Delta z - (a\Delta x + b\Delta y)}{\sqrt{\Delta x^2 + \Delta y^2}} = 0$$

如何描述?

或
$$\lim_{\Delta x \to 0 \atop \Delta y \to 0} \frac{|\Delta z - (a\Delta x + b\Delta y)|}{||\Delta X||} = 0$$

其中
$$\|\Delta X\| \triangleq \sqrt{\Delta x^2 + \Delta y^2}$$

1. 二元函数全微分的定义

下面讨论:

- 1、函数在什么条件下可微?
- 2、可微函数的微分如何计算?
- 3、可微与连续及可偏导有什么关系?

可微:

$$\Delta z = a\Delta x + b\Delta y + o(\sqrt{\Delta x^2 + \Delta y^2})$$

什么关系?

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \Delta z = 0$$

连续:

$$\lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} f(x_0 + \Delta x, y_0 + \Delta y) = f(x_0, y_0)$$

定理

若 z = f(x, y) 在点 P(x, y) 处可微,则其两个偏导数

$$\frac{\partial z}{\partial x}$$
, $\frac{\partial z}{\partial y}$ 均存在,且 $dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$. 可微⇒可偏导

(证)

若函数可微,则 $\Delta z = a\Delta x + b\Delta y + o(\sqrt{\Delta x^2 + \Delta y^2})$

可微

由 Δx , Δy 的任意性 , 取 $\Delta y = 0$, 则 $\Delta z = \Delta_x z = a \Delta x + o(|\Delta x|)$

$$\lim_{\Delta x \to 0} \frac{\Delta_x z}{\Delta x} = \lim_{\Delta x \to 0} \frac{a \Delta x + o(|\Delta x|)}{\Delta x} = a \quad \mathbb{P} \quad \frac{\partial z}{\partial x} = a , \quad \mathbf{\Box} \mathbf{\Xi}, \mathbf{\Sigma} \Delta x = 0, \quad \mathbf{\Xi} \frac{\partial z}{\partial y} = b ,$$

故
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$
, $(\Delta x = dx, \Delta y = dy)$.

可导

【例】 考虑函数
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$$

可偏导⇒可微

在点(0,0)处是否连续,是否可偏导,是否可微?

设
$$z = f(x, y)$$
 在U((x_0, y_0)) 内有定义,可偏导。若 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

在点 (x_0, y_0) 处连续,则函数 f(x, y) 在点 (x_0, y_0) 处可微。

要证明函数f(x,y) 在点 (x_0,y_0) 处可微,即要证

偏导数连续⇒可微

$$\Delta z = \frac{\partial f(x_0, y_0)}{\partial x} \Delta x + \frac{\partial f(x_0, y_0)}{\partial y} \Delta y + o(\sqrt{\Delta x^2 + \Delta y^2}).$$

利用微分中值定理 $f(x,y)-f(x_0,y_0)=f'_x(\xi_1,y)(x-x_0)+f'_y(x_0,\eta_2)(y-y_0)$,

由偏导数的连续性
$$\lim_{\substack{x \to x_0 \\ y \to y}} \frac{\partial f(\xi_1, y)}{\partial x} = \frac{\partial f(x_0, y_0)}{\partial x},$$
 故 $\frac{\partial f(\xi_1, y)}{\partial x} = \frac{\partial f(x_0, y_0)}{\partial x} + \alpha$,

$$\frac{\partial f(\xi_1, y)}{\partial x} = \frac{\partial f(x_0, y_0)}{\partial x} + \alpha,$$

故
$$\frac{\partial f(\xi_1, y)}{\partial x} = \frac{\partial f(x_0, y_0)}{\partial x} + \alpha$$
,

故
$$\frac{\partial f(\xi_1, y)}{\partial x} = \frac{\partial f(x_0, y_0)}{\partial x} + \alpha$$
, 同理 $\frac{\partial f(x_0, \eta_2)}{\partial y} = \frac{\partial f(x_0, y_0)}{\partial y} + \beta$,

其中 α , β 为该极限过程中的无穷小量.

从而, 函数的全增量
$$\Delta z = \frac{\partial f(x_0, y_0)}{\partial x} \Delta x + \frac{\partial f(x_0, y_0)}{\partial y} \Delta y + (\alpha \Delta x + \beta \Delta y),$$

又
$$0 \le \left| \frac{\alpha \Delta x + \beta \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}} \right| \le |\alpha| + |\beta| \to 0$$
, 故由夹逼定理,得

$$\Delta z = \frac{\partial f(x_0, y_0)}{\partial x} \Delta x + \frac{\partial f(x_0, y_0)}{\partial y} \Delta y + o(\sqrt{\Delta x^2 + \Delta y^2}),$$

即函数 f(x,y) 在点 (x_0,y_0) 处可微.

考虑函数
$$f(x,y) = \begin{cases} (x^2 + y^2)\sin\frac{1}{\sqrt{x^2 + y^2}}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$

在点(0,0)处偏导数的连续性和可微性?

如果函数z = f(X)在区域 Ω 中具有连续偏导数,

则称函数为区域 Ω 中的 C^1 函数,记为 $f(X) \in C^1(\Omega)$.

当不强调区域时,记为 $f(X) \in C^1$.

设函数f(X), g(X) 在点X 处可微,则

$$d(f(X) \pm g(X)) = df(X) \pm dg(X)$$

$$d(\lambda f(X)) = \lambda d f(X) \qquad (\lambda \in R)$$

$$d(f(X)g(X)) = g(X)df(X) + f(X)dg(X)$$

$$d\left(\frac{f(X)}{g(X)}\right) = \frac{g(X)df(X) - f(X)dg(X)}{g^2(X)} \quad (g(X) \neq 0)$$

【例】 函数 $z = x^2y + y^2$ 是否可微 ? 若可微, 求其全微分.

【解】 易知
$$\frac{\partial z}{\partial x} = 2xy$$
, $\frac{\partial z}{\partial y} = x^2 + 2y$ 在 R^2 中连续,

故函数 $z = x^2y + y^2$ 在 \mathbb{R}^2 中可微.

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = 2xy dx + (x^2 + 2y) dy$$

【例】 设
$$u = x^{y^z}$$
, 求 d $u |_{(2,2,1)}$.

【解】
$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz$$

将
$$y$$
, z 看成常数: $u = x^w$, $w = y^z$.

将 y, z 看成常数:
$$u = x^w$$
, $w = y^z$.
$$\frac{\partial u}{\partial x}\Big|_{(2,2,1)} = \frac{\partial}{\partial x}(x^{y^z})\Big|_{(2,2,1)} = y^z x^{y^z-1}\Big|_{(2,2,1)} = 4$$

将
$$x$$
, z 看成常数: $u = x^w$, $w = y^z$.

将
$$x$$
, z 看成常数: $u = x^w$, $w = y^z$.
$$\frac{\partial u}{\partial y}\Big|_{(2,2,1)} = \frac{\partial}{\partial y}(x^{y^z})\Big|_{(2,2,1)} = x^{y^z} \ln x \cdot z y^{z-1}\Big|_{(2,2,1)} = 4\ln 2$$

将
$$x$$
, y 看成常数: $u = x^w$, $w = y^z$.

将
$$x$$
, y 看成常数: $u = x^w$, $w = y^z$.
$$\frac{\partial u}{\partial z}\Big|_{(2,2,1)} = \frac{\partial}{\partial z}(x^{y^z})\Big|_{(2,2,1)} = x^{y^z} \ln x \cdot y^z \ln y\Big|_{(2,2,1)} = 8\ln^2 2$$

故
$$du|_{(2,2,1)} = 4dx + 4\ln 2dy + 8\ln^2 2dz$$

练 设
$$z = xy + \frac{y}{x}$$
, 求 d z.

$$dz = (y - \frac{y}{x^2}) dx + (x + \frac{1}{x}) dy$$

回头看全微分公式

$$dz = \frac{\partial z}{\partial x} \Delta x + \frac{\partial z}{\partial y} \Delta y$$

$$dz = d_x z + d_y z$$

$$\Delta_x z \approx \mathbf{d}_x z = \frac{\partial z}{\partial x} \Delta x$$
 称为函数关于 x 的偏微分.

$$\Delta_{y}z \approx d_{y}z = \frac{\partial z}{\partial y} \Delta y$$
 称为函数关于 y 的偏微分.

一元函数微分的几何意义

局部以直代曲

$$\Delta y \approx f'(x_0) \Delta x = \mathbf{d} y$$

曲线上的增量切线上的增量

4. 全微分的几何意义

曲面上的增量 近似为 切平面上的增量

4. 全微分的几何意义

当函数z = f(x, y)在点 $X_0(x_0, y_0)$ 处可微,

且 $|\Delta x|$, $|\Delta y|$ 都较小时,有近似式:

$$\Delta z \approx \mathrm{d} z = f_x'(x_0, y_0) \Delta x + f_y'(x_0, y_0) \Delta y$$

即
$$f(x,y) \approx f(x_0,y_0) + f'_x(x_0,y_0)(x-x_0) + f'_y(x_0,y_0)(y-y_0)$$

曲面Σ 切平面π

$$z = f(x,y) | z = f(x_0, y_0) + f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0) |$$

以平代曲

5. 全微分在近似计算中的应用

曲面Σ

切平面π

$$f(x,y) \approx f(x_0, y_0) + f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0)$$

$$z = f(x,y)$$
 $z = f(x_0, y_0) + f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0)$

z = L(x, y): 为x和y的一次函数

称为z = f(x, y) 在点 (x_0, y_0) 处的线性化函数

非线性函数近似为线性函数! 用于近似计算!

5. 全微分在近似计算中的应用

【例】 计算 $I = 1.04^{2.02}$ 的近似值

【解】 设函数 $f(x, y) = x^y$ 则 I = f(1.04, 2.02)

取
$$x_0 = 1, y_0 = 2, \Delta x = 0.04, \Delta y = 0.02,$$

$$f'_x(x, y) = yx^{y-1}, f'_y(x, y) = x^y \ln x, f(1, 2) = 1, f'_x(1, 2) = 2, f'_y(1, 2) = 0,$$

$$f(x,y) \approx f(x_0,y_0) + f'_x(x_0,y_0)(x-x_0) + f'_y(x_0,y_0)(y-y_0)$$

$$f(1.04, 2.02) \approx f(1, 2) + f'_x(1, 2)\Delta x + f'_y(1, 2)\Delta y$$

$$f(1.04, 2.02) \approx 1 + 2 \times 0.04 + 0 \times 0.02 = 1.08.$$

全微分的2种定义:增量形式及极限形式

全微分的几何意义: 以平代曲

全微分的计算

全微分与可导及连续的关系

