$\underline{6}$ 'קומבינטוריקה - תרגיל מס

פתרוו

1 'תרגיל מס

כמה מספרים טבעיים בין 300 ל - 2000 אינם מתחלקים באף אחד מבין המספרים: 5, 12, 14, 14 פתרון:

ראשית, נתייחס כאן אל המספרים הדרושים בתחום אשר <u>כולל</u> את 300 ואת 2000. על מנת למצוא את המספרים המקיימים את התנאי שבשאלה, נגדיר את הקבוצות הבאות:

 $A_1 = 5$ - קבוצת המספרים בין 300 ל - 300 אשר מתחלקים ב

 $A_2=12$ - קבוצת המספרים בין 300 ל

 $A_3=14$ - קבוצת המספרים בין 300 ל

ואנו מתפשים את:

$$|U| - |A_1 \cup A_2 \cup A_3| = 1701 - |A_1 \cup A_2 \cup A_3|$$

נחשב את גודלי כל הקבוצות הדרושות לנו, לצורך הפתרון.

אבל, לפני שניגש לכל החישובים, בואו נבין דבר חשוב מאוד. כמה מספרים בתחום: $1,\dots,1$ יש, המתחלקים ב - 2, נכון, למדנו בכיתה שהמספר הדרוש הוא: $5=\left[\frac{11}{2}\right]$. כעת, ענו על זה: כמה מספרים שמתחלקים ב - 2 יש בתחום: $1,\dots,1$, ונפחית מכך יכולה להינתן באופן הבא: נבדוק כמה מספרים המתחלקים ב - 2 יש בתחום: $1,\dots,1$ ונפחית מכך את המספרים המתחלקים ב - 2 בתחום: $1,\dots,1$ נקבל בדיוק את התשובה הדרושה. לגבי חישובים אחרים (ושגויים) אשר מחפשים תשובה לאותה שאלה, ראו בסוף התשובה, בחלק: "טעויות נפוצות"...

אם כן, כעת נחשב את גודלי הקבוצות הדרושות:

$$|A_1|=5 - 2000 - 200$$

וכל מה שנותר לעשות, הוא להשתמש בעקרון ההכלה-הפרדה ולומר כי המספר אותו אנו מחפשים הוא:

$$1701 - (341 + 142 + 121) + (29 + 24 + 20) - 4 = 1166$$

מ.ש.ל.

טעויות נפוצות בשאלה זו:

אם נתעלם מן הטעויות שנבעו מאי-הכללת המספרים 300 ו/או 2000 בתחום הספירה, הבעיה העיקרית היתה בתשובה לשאלה: "כמה מספרים בין 300 ל - 2000 מתחלקים בx כפי שראינו למעלה, יש דרך פשוטה לחשב זאת. הטעויות אשר חזרו על עצמן פעמים רבות בחישוב זה היו:

- א. $\frac{1}{2} \frac{1}{2} = \frac{1}{2}$ את שניהם (כולל את שניהם) מתחלקים ב 2י". ברור, כי התשובה הנכונה היא: 2 (המספרים: $\frac{1}{2} = \frac{1}{2}$), נראה מה מקבלים כאן: $\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$, וברור כי התוצאה אינה נכונה. החישוב, כפי שנלמד בכיתה, מתייחס לעובדה שמתחילת התחום, אנו סופרים כמה קבוצות בגודל x יש לנו, ולא מתייחסים לקבוצה האחרונה, אם אינה מלאה. הרעיון הוא, כי בכל קבוצה כזו, יופיע בדיוק מספר אחד אשר מתחלק ב x. הטעות כאן היא, שבמקרה בו התחום אינו מתחיל ב 1, הקבוצה הראשונה אינה מלאה!
- ב. המספר המבוקש הוא: $\frac{[\frac{300}{x}] [\frac{300}{x}]}{x}$. באופן זה, אתם מוציאים את המספר $\frac{[\frac{300}{x}] [\frac{300}{x}]}{x}$ המספר המבוקש הוא: במקרה של התכונה בכל זאת, לתשובה הנכונה כיוון ש $\frac{300}{x}$ אינו מקיים את התכונה הנדרשת, ולכן בכל מקרה לא אמור להיספר...

$\frac{2}{2}$ תרגיל מס'

n אנשים נכנסים למסעדה וכל אחד מהם תולה בכניסה מעיל ומטריה. בצאתם, כל אחד לוקח באקראי את אחד המעילים ואחת המטריות. מה ההסתברות לכך שאף אדם לא יצא עם \underline{ct} רכושו! (ז"א, אנו סופרים מקרים בהם אדם יצא עם המטריה שלו אך לא עם המעיל שלו, או להיפך, או עם אף אחד מהם). האם הסתברות זו שואפת לגבול כאשר $\infty \longrightarrow n$, ואם כן - מהו!

פתרון

לצורך הפתרון, ננסה לשחזר את תהליך מציאת D_n מן הכיתה.

ברור, כי במקרה זה, סך האפשרויות להחזיר לאנשים את המעילים והמטריות - ללא שום מגבלות - הוא: $(n!)^2$. כעת, נסמן את המספר הדרוש בשאלה ב: $(n!)^2$, ולצורך חישובו נגדיר את הקבוצות הבאות:

 $A_i = i$ אוסף החלוקות, בהן האיש הi מקבל את המעיל והמטריה שלו ווווווא אוסף החלוקות, בהן האיש הi

אנו מחפשים את:

$$D_n^{(2)} = (n!)^2 - \left| \bigcup_{i=1}^n A_i \right|$$

ולצורך חישוב גודלו של האיחוד, נצטרך להשתמש בעקרון ההכלה וההפרדה.

k - חישוב גודלי הקבוצות, אנו מחזירים ל $k \leq n$ חישוב בכל חיתוך אנו מחזירים להחישוב מקרה אנשים את במקרה את שאר $((n-k)!)^2$ החפצים ב $((n-k)!)^2$ החפצים את שאר אנשים את חפציהם, ומחלקים את שאר

$$\left| \bigcap_{i=1}^{k} A_i \right| = ((n-k)!)^2$$

וברור כי יש בדיוק $\binom{n}{k}$ חיתוכים כאלה. לכן, שימוש בעקרון ההכלה-הפרדה נותן, כי המספר הדרוש הוא:

$$D_n^{(2)} = (n!)^2 - \sum_{k=1}^n (-1)^{k+1} \binom{n}{k} ((n-k)!)^2$$

,כעת, ננסה לבדוק האם הביטוי: $\frac{D_n^{(2)}}{(n!)^2}$ (זוהי ההסתברות שהאירוע עליו אנו מדברים - אכן יתרחש) מתכנס, ואם כן - למהי

$$\frac{D_n^{(2)}}{(n!)^2} = 1 - \sum_{k=1}^n (-1)^{k+1} \frac{1}{(n!)^2} \binom{n}{k} ((n-k)!)^2$$

לפי מה שנלמד בכיתה על ביצוע הכלה-הפרדה עד שלב כלשהו, נובע שאם נשמור בסכום שבאגף ימין רק את המחובר המתאים לk=1, נקבל חסם מלרע על ההסתברות המבוקשת. בנוסף, כיוון שביטוי זה מבטא הסתברות - הוא וודאי קטן או שווה מ1. לכן:

$$1 - \frac{1}{n} \le \frac{D_n^{(2)}}{(n!)^2} \le 1$$

.1 - אורף שואפת המברות ההסתברות ולכן ה1 - שורף שואפת שואפת ולכן החסת חסם המלרע: ו1 - שורף שואפת החסת חסם המלרע: וולכן אורף שואפת החסת החסת חסם המלרע:

מרגיל מס' 3

בכמה מן התמורות של הספרות $0,1,2,\ldots,9$ אין רצף של שבע (או יותר) ספרות עוקבותי (למשל, התמורה: 2034567891 בסולה בגלל הרצף המסומן.)

:פתרון

נגדיר את הקבוצות הבאות:

 $A_1=0$ קיים קיים התמורות בהן הרצף

 $A_2 =$ התמורות בהן הרצף $1 \cdots 7$ קיים

 $A_3=$ התמורות בהן הרצף $2\cdots 8$ קיים

 $A_4=$ התמורות בהן הרצף $3\cdots 9$ קיים

וברור, כי אנו מחפשים את כל התמורות אשר אינן באחת מהקבוצות הנ"ל, כלומר את הגודל של:

$$10! - |A_1 \cup A_2 \cup A_3 \cup A_4|$$

נבדוק את גודלי כל הקבוצות אותן אנו צריכים, על מנת להשתמש בעקרון ההכלה-הפרדה. נשים לב, כי יש הבדלים בין גודלי חיתוכים של קבוצות שונות. ראשית:

$$|A_i| = 4!$$
 $1 \le i \le 4$

כעת, נעבור לחיתוכים של שתי קבוצות ונבחין בין המקרים הבאים:

 $|A_1\cap A_2|=$ מספר התמורות בהן הרצף $0\cdots 7$ קיים $=3!=|A_2\cap A_3|=|A_3\cap A_4|$

 $|A_1\cap A_3|=$ מספר התמורות בהן הרצף $0\cdots 8$ קיים אספר $=2!=|A_2\cap A_4|$

 $|A_1\cap A_4|=$ מספר התמורות בהן הרצף $0\cdots 9$ קיים =1

חיתוכים של שלוש קבוצות:

$$|A_1\cap A_2\cap A_3|=$$
 מספר התמורות בהן הרצף $0\cdots 8$ קיים $=2!=|A_2\cap A_3\cap A_4|$ $|A_1\cap A_2\cap A_4|=$ מספר התמורות בהן הרצף $0\cdots 9$ קיים $=1=|A_1\cap A_3\cap A_4|$

ולגבי הקבוצה האחרונה הדרושה:

$$|A_1 \cap A_2 \cap A_3 \cap A_4| =$$
מספר התמורות בהן הרצף $0 \cdots 9$ קיים $= 1$

מכאן, קצרה הדרך לתשובה הסופית. מספר התמורות המבוקש בשאלה הוא:

$$10! - 4 \cdot 4! + (3 \cdot 3! + 2 \cdot 2! + 1) - (2 \cdot 2! + 2 \cdot 1) + 1 = 10! - 78 = 3,628,722$$

מ.ש.ל.

:טעות נפוצה

רבים הגדירו את הקב' להיות:

עוקבות עוקבות 7 ספרות עוקבות - A_1

אוקבות עוקבות פרות פהן יש 8 ספרות עוקבות - A_2

התמורות בהן יש 9 ספרות עוקבות - A_3

התמורות בהן יש 10 ספרות עוקבות - A_4

ראשית, כיוון ש: $A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \supseteq A_4 = |A_1|$ ברור כי: $A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \supseteq A_4$ (ולכך הגיעו אלו שלא טעו בתישובים...).

4 'תרגיל מס'

סביב שולחן עגול עם 10 כסאות, יושבות 5 נשים כך שבין כל שתיים יש כסא פנוי. בכמה אופנים שונים יכולים להתיישב 5 הבעלים של הנשים בכסאות הפנויים, אחד בכל כסא, כך שאף גבר לא ישב על יד אשתוי פתרון:

נמספר את הנשים הישובות: $1, \dots, 5$ ונניח כי - לפי השאלה - הן התיישבו כבר, כמתואר בציור (הנשים ממוספרות בתוך עיגולים, לגברים יש מקומות ריקים בצורת ריבועים):

כעת, יש להושיב את הבעלים. ללא הגבלות, ניתן לעשות זאת ב - 5! אופנים. נגדיר את הקבוצות הבאות:

 $A_i = A_i$ קבוצת הסידורים בהם בעל מס' יושב ליד אשתו ו $1 \leq i \leq 5$

ואז אנחנו מחפשים את:

$$5! - \left| \bigcup_{i=1}^{5} A_i \right|$$

ברור, כי מתקיים:

$$|A_i| =$$
מספר הסידורים בהם בעל מס' i יושב ליד אשתו $i \leq i \leq 5$

ונבדוק את שאר הקבוצות, אותן אנו צריכים.

<u>חיתוכים של שתי קבוצות:</u> כאן, יש להפריד בין שני מקרים - האם אנו מנסים להושיב שני בעלים של נשים היושבות סמוך זו לזו, או האם שתי הנשים רחוקות זו מזו. נבדוק את שני המקרים:

$$|A_1 \cap A_2| = |A_2 \cap A_3| = |A_3 \cap A_4| = |A_4 \cap A_5| = |A_5 \cap A_1| = 3 \cdot 3!$$

כיוון שיש 3 דרכים להושיב את שני הבעלים המסויימים, ועוד !3 דרכים להושיב את שאר הבעלים.

$$|A_1 \cap A_3| = |A_2 \cap A_4| = |A_3 \cap A_5| = |A_4 \cap A_1| = |A_5 \cap A_2| = 4 \cdot 3!$$

כיוון שכעת לשני הבעלים הנדונים יש 4 אפשרויות ישיבה.

חיתוכים של שלוש קבוצות: גם כאן, יש להפריד בין שני מקרים - האם אנו מנסים להושיב שלושה בעלים של שלוש נשים היושבות בסמוך זו לזו, או האם רק שתי נשים צמודות זו לזו והשלישית רחוקה. נבדוק את שני המקרים:

$$|A_1 \cap A_2 \cap A_3| = |A_2 \cap A_3 \cap A_4| = |A_3 \cap A_4 \cap A_5| = |A_4 \cap A_5 \cap A_1| = |A_5 \cap A_1 \cap A_2| = 4 \cdot 2!$$

. כיוון שיש 4 דרכים להושיב את שלושת הבעלים הנדונים, ועוד 2 דרכים להושיב את שאר הבעלים.

$$|A_1 \cap A_3 \cap A_4| = |A_2 \cap A_4 \cap A_5| = |A_3 \cap A_5 \cap A_1| = |A_4 \cap A_1 \cap A_2| = |A_5 \cap A_2 \cap A_3| = 6 \cdot 2!$$

כיוון שכעת לשלושת הבעלים הנדונים יש 6 אפשרויות ישיבה.

חיתוכים של ארבע קבוצות: פה יש רק אפשרות אחת לבדוק - כל הבעלים יושבים ליד נשים הסמוכות זו לזו. כל אפשרות כזו, תיתן לנו 5 אפשרויות ישיבה.

ולבסוף:

$$|A_1 \cap A_2 \cap A_3 \cap A_4 \cap A_5| = 2$$

כעת, ניתן לגשת למתן התשובה הסופית. מספר הדרכים להושיב את הבעלים, כך שאף אחד לא ישב ליד אשתו, הוא:

$$5! - 5 \cdot 2 \cdot 4! + (5 \cdot 3 \cdot 3! + 5 \cdot 4 \cdot 3!) - (5 \cdot 4 \cdot 2! + 5 \cdot 6 \cdot 2!) + 5 \cdot 5 - 2 = 13$$

מ.ש.ל.

תרגיל מס' 5

 $f_{n-1} \cdot f_{n+1} - f_n^2 = (-1)^n$:הוכת שמספרי פיבונאצ'י מקיימים

:פתרון

n נוכית באינדוקציה על

$$f_0 \cdot f_2 - f_1^2 = 0 - 1 = -1 = (-1)^1$$
 מתקיים וווקציה האינדוקציה האינדוקציה וו

n+1 צעד האינדוקציה: נניח נכונות עבור n ונראה עבור

$$f_{n+1-1} \cdot f_{n+1+1} - f_{n+1}^2 = f_n \cdot f_{n+2} - f_{n+1}^2 = f_n \cdot (f_{n+1} + f_n) - f_{n+1}^2 = f_n^2 \cdot (f_{n+1} + f_n) - f_n^2 \cdot (f_n^2 + f_n) - f_n^2 \cdot (f_n^2 + f_n^2 + f_n^2) - f_n^2 \cdot (f_n^2$$

$$= f_n^2 - (f_{n+1} - f_n) \cdot f_{n+1} = -(f_{n-1} \cdot f_{n+1} - f_n^2)$$

ולפי הנחת האינדוקציה זה שווה ל

$$-(-1)^n = (-1)^{n+1}$$

ובכך השלמנו את הוכחת צעד האינדוקציה.

מ.ש.ל.

α תרגיל מס' 6^* (בונוס)

 f_m -ב מתחלק היים: mב-שמתחלק שמתחלק הוכיחו כי עבור nשמתחלק היים:

$$(f_0=0,f_1=1,f_2=1,f_3=2,\ldots)$$
 שימו לב כי כאן

שלבים מרכזיים בפתרון:

טבעיים n,m כי לכל הראשון הוכיחו באנדוקציה על א

$$f_{m+n} = f_{m+1}f_n + f_m f_{n-1}$$

- f_m -ב מתחלק בית כי $f_{m\cdot n}$ מתחלק ב-בי עתה, נוכיח באנדוקציה על
 - בסיס: עבור n=1 הטענה נכונה.
 - n+1 צעד: ננית נכונות עבור n, אז עבור-

$$f_{m(n+1)} = f_{m \cdot n+m} = f_{m \cdot n+1} f_m + f_{m \cdot n} f_{m-1}$$

. נעדרש, f_m - מתחלק מתחלק כנדרש, האנדוקציה מקבלים כי $f_{m(n+1)}$