- 1) Responda às seguintes questões sobre tabelas hash:
- a) Em que situações a tabela hash deve ser utilizada?

Quando houverem muitos valores a serem adicionados

b) Quais as características de uma boa função de hash?

Eficiência e bom espalhamento (não apresentar uma grande quantidade colisões e de clusters)

c) O que é uma colisão em uma tabela hash?

É quando um dado tem a mesma chave de um outro anteriormente adicionado a tabela hash

d) Caracterize o endereçamento aberto e encadeamento separado.

No endereçamento aberto, a colisão é tratada diferente, pois nele, números que foram colididos não permanecem no mesmo "espaço", eles são realocados para outro espaço na tabela que esteja vazio, já no endereçamento separado, cria-se uma espécie de lista onde se há colisão.

e) O que fazer quando uma tabela hash torna-se cheia demais?

Um novo vetor maior terá que ser criado e então inserir o conteúdo do antigo vetor pequeno naquele novo grande.

- 2) Suponha uma tabela hash armazenar valores de chaves. Insira as seguintes chaves nessa tabela: 36,53, 70, 87, 54, 37, 71 e 40, nessa ordem. Considere os diferentes métodos:
- a) Endereçamento Aberto (tabela hash de tamanho 17)
- Exploração linear: Passo(k) = k % arraySize+ 1

• Hash duplo: h1(k) = k % arraySize; h2(k) = 5 - (k % 5)

b) Encadeamento separado (tabela hash de tamanho 5)

- 3) Dependendo da implementação, quando se permitir que itens de dados com chaves duplicadas sejam usadas em tabelas hash, apenas o primeiro item de dados pode ser acessado.
- a) Descreva com suas palavras com resolver esse problema

Para solucionar esse problema, pode haver a criação de uma tabela maior, ou a utilização do endereçamento separado, que irá "permitir" que tenham dados com as mesmas chaves.

4) Fazendo operações na tabela hash abaixo, preencha a tabela que se segue utilizando o duplo

hashing. Tem-se que:

- h1(k) = k % arraySize;
- h2(k) = 5 (k % 5).

51	*	85	4	39	*	24	42	*	38	20	32	*
0												

N° do Item	Operação	Valor do Hash	Tamanho do Passo	Células na Sequência de Exploração	Status da Operação
1	BUSCA (39)	5	1		Encontrado
2	INSERE (32)	15	3		Inserido
3	BUSCA (85)	0	5	5 10 15 3	Encontrado
4	INSERE (20)	3	5	8 13	Inserido
5	REMOVE (27)	10	3		Removido
6	BUSCA (28)	11	2		Falhou

7	BUSCA (19)	2	1	 Falhou
8	REMOVE (4)	4	1	 Falhou
8	BUSCA (34)	0	1	 Falhou
9	BUSCA (37)	3	3	 Falhou
10	BUSCA(44)	10	1	 Falhou