

# Verschüsselung leicht gemacht

Eine kleine Hilfestellung für Anfänger

# Agenda



- 1. Warum wollen wir überhaupt verschlüsseln?
- 2. Grundlagen der Verschlüsselung
- 3. Anwendung: eMail-Verschlüsselung
- 4. Anwendung: Festplatten-Verschlüsselung

#### Was ist Sicherheit?



- Allgemein
  - gefahrenfreier Zustand
  - frei von unvertretbaren Risiken
- Informationssicherheit
  - Vertraulichkeit, Verfügbarkeit und Integrität

#### Netzwerksicherheit



- Angriffe
  - Mitlesen von Daten und Kontrollinformationen
    - Anfällig: POP3/SMTP/IMAP/...
  - Einschleusen von Daten oder Informationen
    - Anfällig: POP3/SMTP/...

## Kompromisse eingehen



- Benutzerfreundlichkeit vs. Sicherheit
- Beispiele
  - Passwortlänge
  - Vista UAC
  - Performance bei RSA



# Achtung, Theorie!

# Grundlagen I



- Das Kerckhoff-Prinzip
  - Jean Guillaume Hubert Victor François Alexandre Auguste Kerckhoff von Nieuwendorf
    - Niederländsischer Linguist und Kryptologe
    - \* 1835 in Nuth, heutiges Niederlande
    - † 1903 in Paris, Frankreich
  - Zentrale Aussage:
    - Die Sicherheit eines Kryptosystems darf nicht von der Geheimhaltung des Algorithmus abhängen.
    - Die Sicherheit gründet sich nur auf die Geheimhaltung des Schlüssels.

# Grundlagen II



- Bedeutung f
  ür die heutige Kryptographie
  - Höher einzuschätzen als zu Zeiten Kerkhoffs
  - Heutige Algorithmen sehr komplex
  - Sicherstellung der Integrität und Zuverlässigkeit des Algorithmus nur durch »viele« möglich

# Der Anfang I



- Verschiebealgorithmus / Cäsar-Chiffre
  - Einfache Zuordnung der Buchstaben durch Verschieben; z.B. um drei Stellen:

```
a b c d e ... w x y z D E F G H ... Z A B C
```

- Was bedeutet die Zeichenfolge?
  - YHUVFKOVVHOXQJ OHLFKW JHPDFKW!

# Der Anfang II



- Vorteile
  - Schnell zu Realisieren
  - Nicht komplex
- Nachteile
  - Sehr schnell zu knacken
  - 26 Buchstaben → 26 Möglichkeiten
  - In linearer Zeit lösbar
  - Häufigkeitsanalyse bei beliebiger Permutation

# Aktuelle Konzepte I



- Symmetrische Verschlüsselung
  - Verschlüsselung und Entschlüsselung mittels gleichen Schlüssels
    - z.B. Realisierung durch Blockchiffre
    - Teilschlüssel repräsentiert durch Zufallszahlen fester Länge
  - Vorteile
    - Kurze Schlüssellänge ausreichend
    - Schnelles Ver- und Entschlüsseln

## Aktuelle Konzepte II



- Symmetrische Verschlüsselung
  - Nachteile
    - Schlüsselaustausch über sicheren Kommunikationsweg notwendig
    - Schlüssel muss überall geheim gehalten werden (Problem bei großer Teilnehmerzahl)
  - Bekannte standardisierte Verfahren
    - 3DES (Data Encryption Standard)
      - offiziell abgelöst 2001 durch AES
    - AES (Advanced Encrpytion Standard)
      - seit 2001 offizieller Standard

## Aktuelle Konzepte III



- Asymmetrische Verschlüsselung
  - Verschlüsselung und Entschlüsselung mittels unterschiedlicher Schlüssel
    - Große Primzahlen zum erstellen der Schlüssel notwendig (Einwegfunktion)
    - Beruht auf langwieriger Faktorisierung großer Zahlen
    - Public Key Infrastructure (PKI)
  - Vorteile
    - Geheimhaltung nur des privaten Schlüssels notwendig
    - Kleineres Schlüsselverteilungsproblem im Vergleich zum symmetrischen Verfahren

# Aktuelle Konzepte IV



- Asymmetrische Verschlüsselung
  - Nachteile
    - Sehr langsam im Vergleich zu Symmetrischen Verfahren (Faktor  $\approx 1000$ )
    - Sicherheit der zugrunde liegenden Einwegfunktion nur angenommen
  - Bekanntes standardisiertes Verfahren:
    - RSA (nach den Erfindern Rivest, Shamir und Adleman benannt)

#### 4096Bit

# OUTPUT'08

#### von Studenten für Studenten



# Email-Verschlüsselung

mittels Thunderbird + Enigmail + GPG

# **OpenPGP**



- OpenPGP-Standard (RFC 4880)
  - Hybride Verschlüsselung (asymmetrisch + symmetrisch)
    - Pretty Good Privacy (kommerziell)
    - GNU Privacy Guard (kostenlosen + OpenSource)

# Signierung



- Gewährleistet NUR Unverfälschtheit
- Daten weiterhin unverschlüsselt
- Verfahren
  - I. Fingerabdruck der Nachricht erstellen
  - 2. Verschlüsselung des Fingerabdruckes mit privaten Schüssel
  - 3. Empfänger entschlüsselt mit öffentlichem Schlüssel
  - 4. Empfänger erzeugt seinen eigenen Fingerabdruck
  - 5. Vergleich der beiden Fingerabdrücke

#### Warum verschlüsseln?



- Schutz vor Mitlesern
  - Geheimdienste sammeln alles
- Briefgeheimnis §202 Stgb gilt nicht für eMails
  - aber §202a wenn man verschlüsselt
- Schutz vor organisierter Kriminalität
- Warum nicht? Meine Tür schließe ich auch zu

# Vorgehensweise



- 1. Schlüssel erstellen (einmalig)
- 2. öffentlichen Schlüssel publizieren
  - auf Keyserver laden
  - 2. Link in der Signatur publizieren
- 3. Nachrichten signieren/verschlüsseln
- 4. Empfänger entschlüsselt

#### Konto einrichten



- Benutzername: e040XX@abwesend.com
- Passwort: e040XX
- IMAP-Server: mail.abwesend.com
- SMTP-Server: mail.abwesend.com



# Festplattenverschlüsselung

mittels TrueCrypt

# Sichere Datenhaltung I



- Warum überhaupt verschlüsseln? Meine Wohnung ist doch sicher...
  - Innerhalb der "sicheren" Wohnung
    - Wohnung keinesfalls 100%-ig sicher
      - z.B. Einbruch (physisch wie digital)
    - Benutzung des Computers durch mehrere Personen
    - Abgrenzung vertraulicher Daten
  - Außerhalb der "sicheren" Wohnung
    - → Was passiert, wenn mein Laptop gestohlen wird?

# Sichere Datenhaltung II



- Was sind schützenswerte Daten?
  - Steuererklärung und Amtliche Dokumente
  - Persönliche Patientenakte/ Krankenversicherungsnachweise
  - Digitale Rechnungen und Kontoauszüge
  - Persönliche Tagebücher
  - Private Schlüssel (z.B. für E-Mail-Kommunikation)
  - Generelles Bedürfnis nach Privatsphäre!
    - Entgegenwirken des »Gläsernen Nutzers«

# TrueCrypt I



- TrueCrypt Eine Möglichkeit der Datenverschlüsselung
  - Was ist TrueCrypt?
    - Ein Programm zur (relativ) einfachen Datenverschlüsselung
    - Verfügbar für Microsoft Windows, Linux und MacOS
  - Was kann TrueCrypt?
    - Daten mittels vier unterschiedlicher Verfahren verschlüsseln ...
    - ... dabei diese (je nach Paranoiagrad) performant zu benutzen
    - Anlegen versteckter Datenträger für hohe Sicherheitsanforderungen

# TrueCrypt II



- Was kann TrueCrypt nicht?
  - Mich davon abhalten mein Passwort an den Monitor zu kleben.
  - Mich daran hindern den Rechner "offen" stehen zu lassen.
  - Mit der Installation mich von aller Last zu befreien und ein digital sicheres Leben zu führen.

# TrueCrypt III



- Wodurch wird die Sicherheit von TrueCrypt bestimmt?
  - Wahl des Verschlüsselungsalgorithmus
    - AES, Serpent, Twofish, Cascades
    - Oder Kombinationen dieser
      - Erhöht die Sicherheit
      - Senkt die Performance u.U. drastisch

# TrueCrypt IV



- Wahl des Passworts
  - Was wäre ein einfaches Passwort?
    - z.B.: baumkuchen
  - Was wäre ein ideales Passwort?
    - untere Grenze: g yZSljmk/ICet9 {g3\*
  - Was wäre ein realistisches Passwort?
    - <u>Myran blickte sich um und sah die 16 Tore zu</u>
       <u>Baskinth ...</u>«
      - Mbsuusd16TzB

# TrueCrypt V



- Wahl des Hash-Algorithmus zur Schlüsselerzeugung
  - Whirlpool, SHA-512 und RIPEMD-160

#### Und weiter?



#### Sichere E-Mail-Kommunikation

- Mozilla Thunderbird: http://www.mozilla-europe.org/de/products/thunderbird/
- Enigmail: http://www.erweiterungen.de/detail/Enigmail/
- GnuPG/MacGPG: <a href="http://www.gnupg.org/download/index.de.html">http://macgpg.sourceforge.net/</a>

#### Sichere Datenhaltung

- TrueCrypt: <a href="http://www.truecrypt.org/">http://www.truecrypt.org/</a>
- TrueCrypt Anleitungen: <a href="http://www.truecrypt.org/docs/">http://www.truecrypt.org/docs/</a>
- TrueCrypt Sprachpakete: <a href="http://www.truecrypt.org/localizations.php">http://www.truecrypt.org/localizations.php</a>
- Anleitung: http://www.heise.de/software/download/special/windows\_verschluesseln/26\_I

#### Sicheres W-LAN

- Wikipedia Artikel zu WPA: http://de.wikipedia.org/wiki/Wi-Fi\_Protected\_Access
- Heise Security Artikel zu WPA: http://www.heise.de/security/Angriffe-auf-WPA--/artikel/53014

#### Passwortverwaltung

- Heise Sofware Archiv f
  ür verschiedenste Passwortmanager:
  - http://www.heise.de/software/download/o0g1s3l3k306?stq=30

#### Danke



- Aufwachen!
- Fragen?
- Anmerkungen?
- Folien auf <u>www.abwesend.com</u>