INTRO TO BINARY SYSTEMS

Main Numeral Systems

Dasimal

Decimai	(Base 10)	Number System	0, 1, 2, 3, 4, 5, 6, 7, 6, 9
Binary	(Base 2)	Number System	0, 1
Ternary	(Base 3)	Number System	0, 1, 2
Quaternary	(Base 4)	Number System	0, 1, 2, 3

0123456780

Hexadecimal (Base 16) Number System 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

(Pace 10) Number System

Converting Between Counting Systems

Decimal	Hex	Binary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
10	A	1010
11	В	1011
12	С	1100
13	D	1101
14	E	1110
15	F	1111

$$(10110)_{b} = 1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} \rightarrow (22)_{d}$$

$$(10010)_{b} = 1 \times 2^{4} + 0 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0} \rightarrow (18)_{d}$$

$$(AE3)_{hex} = A \times 16^{2} + E \times 16^{1} + 3 \times 16^{0} \rightarrow (2787)_{d}$$

$$(B2F)_{hex} = B \times 16^{2} + 2 \times 16^{1} + F \times 16^{0} \rightarrow (2863)_{d}$$

The value of a number is often expressed in hex

The 16-bit number FFFF hex corresponds to \longrightarrow (1111 1111 1111 1111) $_b$ The 16-bit number 4AE3 hex corresponds to \longrightarrow (0100 1010 1110 0011) $_b$

Computer Language

Computer Memory

• <u>Memory</u> — A collection of storage cells together with the necessary circuits to transfer information to and from them.

byte	b	8 bits	1 byte
kilobyte	Kb	1024 bytes	1 024 bytes
megabyte	MB	1024 KB	1 048 576 bytes
gigabyte	GB	1024 MB	1 073 741 824 bytes
terabyte	TB	1024 GB	1 099 511 627 776 bytes

Mem Content vs Mem Address

- n-bit memory location can store one of 2ⁿ
 different numbers.
- A 32-bit variable can store any of 2³²
 different numbers.

- n-bit address can refer to any of 2ⁿ different memory locations.
- A 16-bit address can refer to any of 2^{16} = 64K different memory locations.

Size matters!

Powers of two

20 = 1	25 = 32	$2^{10} = 1024 = 1$ K (kilo)
$2^1 = 2$	26 = 64	$2^{20} = 1M \text{ (mega)}$
$2^2 = 4$	27 = 128	$2^{30} = 1G \text{ (giga)}$
$2^3 = 8$	28 = 256	2 ⁴⁰ = 1T (tera)
24 = 16	2° = 512	

Rule: $2^{n+m} = 2^n \times 2^m$

Example: $2^{16} = 2^{10} \times 2^6 = 1k \times 64 = 64k$

Logarithms (base 2)

$\log_2 1 = 0$	$\log_2 32 = 5$	$\log_2 1024 = \log_2 1K = 10$
$log_2 2 = 1$	$\log_2 64 = 6$	$\log_2 1M = 20$
$\log_2 4 = 2$	$\log_2 128 = 7$	$\log_2 1G = 30$
$log_2 8 = 3$	log ₂ 256 = 8	$log_2 1T = 40$
log ₂ 16 = 4	$\log_2 512 = 9$	

Rule: $\log_2(n \times m) = \log_2 n + \log_2 m$

Example: $\log_2 64k = \log_2 1k + \log_2 64 = 10+6 = 16$

Examples

- What is the size the largest memory we can have with 45-bit address?

$$2^{45} = 2^{40} \times 2^5 = 1T \times 32 = 32T$$

- How many binary digits do we need for an address of 2G memory?

$$log 2G = log 2 + Log G = 1 + 30 = 31 bits$$

Representation of Data

Representation of Symbols and Text

Symbols and Text

Each symbol can be assigned a numeric value.

ASCII Code: Character to Binary

```
0011 1010
                                                                  0110 1101
                                                                                  :
                                              0101 0111
                                                            m
     0011 0000
                    G
                          0100 0111
                                        W
0
                                                                                       0011 1011
                                                                  0110 1110
                                                                                  ;
                    H
                          0100 1000
                                        х
                                              0101 1000
                                                            n
     0011 0001
                                                                  0110 1111
                                                                                       0011 1111
                                                                                  ?
                          0100 1001
                                              0101 1001
                    I
2
     0011 0010
                                                                 0111 0000
                                                                                       0010 0001
                         0100 1010
                                              0101 1010
                    J
     0011 0011
3
                                                                  0111 0001
                                                                                        0010 1100
                          0100 1011
                                              0110 0001
                                                            a
     0011 0100
                    K
                                                                  0111 0010
                                                                                        0010 0010
                          0100 1100
                                              0110 0010
5
     0011 0101
                    L
                                        b
                                                                  0111 0011
                                                                                        0010 1000
                                              0110 0011
     0011 0110
                    M
                          0100 1101
                                                                  0111 0100
                                                                                        0010 1001
7
     0011 0111
                    N
                          0100 1110
                                        d
                                              0110 0100
                                                                  0111 0101
                                                                                       0010 0000
                          0100 1111
                                              0110 0101
                                                                                space
     0011 1000
                    0
                                        e
8
                                                                  0111 0110
                    P
                          0101 0000
                                        £
                                              0110 0110
     0011 1001
9
                                                                  0111 0111
                          0101 0001
                                              0110 0111
     0100 0001
                                                                  0111 1000
                          0101 0010
                                              0110 1000
                                        h
     0100 0010
B
                                                                  0111 1001
                          0101 0011
                                              0110 1001
                     s
                                        I
     0100 0011
                                                                  0111 1010
                          0101 0100
                                        j
                                              0110 1010
     0100 0100
D
                                                                  0010 1110
                    U
                          0101 0101
                                        k
                                              0110 1011
     0100 0101
E
                          0101 0110
                                                                  0010 0111
                                        1
                                              0110 1100
     0100 0110
```

