Graded

1. (14.4.6) Prove that $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$ is not a simple extension by explicitly exhibiting an infinite number of intermediate subfields.

Proof. The extension $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$ is degree p^2 as the minimal polynomial for x is t^p-x^p and the minimal polynomial for y is t^p-y^p , so the extension is degree p^2 by the tower law. We show that there are infinitely many distinct intermediate subfields which are degree p extensions of $F = \mathbb{F}_p(x^p,y^p)$.

Consider the family of extensions F(x+cy)/F for $c \in F$, which is infinite since F is infinite (as x, y are indeterminates). Each extension is degree p since the minimal polynomial for x + cy is $t^p - (x + cy)^p$ and by Frobenius we have $(x + cy)^p = x^p + c^p y^p \in F$.

If two extensions F(x+cy) and F(x+dy) were equivalent, then the difference $(c-d)y \in F(x+cy)$, and so also $x \in F(x+cy)$ so that $F(x,y) = \mathbb{F}_p(x,y) \subseteq F(x+cy)$. This is impossible by degree considerations, so it follows that any two extensions in the given family are distinct.

Since there are infinitely many distinct intermediate subfields of the extension $\mathbb{F}_p(x,y)/\mathbb{F}_p(x^p,y^p)$, it cannot be simple.

2. (14.5.7) Show that complex conjugation restricts to the automorphism $\sigma_{-1} \in \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ of the cyclotomic field of n^{th} roots of unity. Show that the field $K^+ = \mathbb{Q}(\zeta_n + \zeta_n^{-1})$ is the subfield of real elements in $K = \mathbb{Q}(\zeta_n)$, called the maximal real subfield of K.

Proof. Recall that complex conjugation respects sums and products so that for any rational function $P(\zeta_n)/Q(\zeta_n)$ of ζ_n over \mathbb{Q} , its complex conjugate is $P(\overline{\zeta_n})/Q(\overline{\zeta_n})$. But $\zeta_n = \exp(2\pi i/n)$ so that $\overline{\zeta_n} = \exp(-2\pi i/n) = \zeta_n^{-1}$. Furthermore, ζ_n^{-1} is also a primitive *n*-th root of unity since -1 is coprime with n. So complex conjugation restricted to $\mathbb{Q}(\zeta_n)$ agrees with the automorphism σ_{-1} which sends ζ_n to ζ_n^{-1} .

Observe that elements fixed by complex conjugation are real and conversely. We find the fixed field of the subgroup generated by $\{\sigma_{-1}\}$ and show it is K^+ as above. Observe that elements of K^+ are rational functions of $\zeta_n + \zeta_n^{-1}$, and so σ_{-1} fixes these rational functions since $\sigma_{-1}(\zeta_n + \zeta_n^{-1}) = \zeta_n^{-1} + \zeta_n$ and σ_{-1} fixes real elements. Hence K^+ is contained in the fixed field.

The degree of K over K^+ is 2: The monic polynomial $x^2 - (\zeta_n + \zeta_n^{-1})x + 1$ is irreducible since its roots ζ_n, ζ_n^{-1} are complex, so it is the minimal polynomial for ζ_n over K^+ . The extension K/\mathbb{Q} is Galois with Abelian Galois group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ (so every intermediate subfield is Galois over \mathbb{Q}), which has order $\phi(n)$. The degree of the fixed field K^H of $H = \{1, \sigma_{-1}\} \cong \mathbb{Z}/2\mathbb{Z}$ over \mathbb{Q} must be $\phi(n)/2$ by the Galois correspondence. Hence the degree of K over K^H is 2 also.

But the fixed field contains K^+ as a subfield, and K^H is a proper subfield of K (as K contains complex elements while K^H only contains real elements). Since 2 is prime it follows that $[K^H:K^+]=1$. Hence K^+ is the fixed field of H, the maximal real subfield of K.

Additional Problems

1. (14.4.1) Determine the Galois closure of the field $\mathbb{Q}(\sqrt{1+\sqrt{2}})$ over \mathbb{Q} .

Proof. We show that the Galois closure of $F=\mathbb{Q}(\sqrt{1+\sqrt{2}})$ is $K=\mathbb{Q}(\sqrt{1+\sqrt{2}},\sqrt{1-\sqrt{2}})$, the splitting field of the separable polynomial $p(x)=x^4-2x^2-1$ (with roots are $\pm\sqrt{1\pm\sqrt{2}}$). We first show that p(x) is irreducible so that it is the minimal polynomial of $\sqrt{1+\sqrt{2}}$: The extension F over $\mathbb{Q}(\sqrt{2})$ is degree 2: consider the polynomial $x^2-1-\sqrt{2}$. We show that $\alpha=\sqrt{1+\sqrt{2}}$ is not a square in $\mathbb{Q}(\sqrt{2})$ to show that the polynomial is irreducible. Suppose α is a square of an element $c=a+b\sqrt{2}\in\mathbb{Q}$. Then $a^2+2b^2=-1$ and 2ab=-1, so b is determined by a. We show that a could not be rational to obtain the contradiction. With b=-1/2a we find with some algebra that a needs to satisfy $2a^4+2a^2+1=0$. By the rational root theorem a could not be rational so by contradiction α is not a square of an element of $\mathbb{Q}(\sqrt{2})$, so the polynomial $x^2-1-\sqrt{2}$ is irreducible hence the minimal polynomial of $\sqrt{1+\sqrt{2}}$ over $\mathbb{Q}(\sqrt{2})$. It follows by the tower law that the degree of F over \mathbb{Q} is 4, and since $\sqrt{1+\sqrt{2}}$ satisfied the degree 4 polynomial p(x) over \mathbb{Q} , it follows that p(x) was irreducible. Hence p(x) is the minimal polynomial of $\sqrt{1+\sqrt{2}}$ over \mathbb{Q} .

Then consider any other Galois extension L over \mathbb{Q} containing F. We show that K is contained in L. Any irreducible polynomial with a root in L splits completely over L; in particular since L contains F the minimal polynomial p(x) of $\sqrt{1+\sqrt{2}}$ splits completely, so L contains K. Since L was arbitrary it follows that K is the smallest Galois extension of \mathbb{Q} containing F, the Galois closure of F as desired. \square

The other two I could have done but I got home too late.

2. (14.5.10) Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic field over \mathbb{Q} .

Proof. Cyclotomic field extensions have Abelian Galois groups, so every intermediate subfield is Galois over \mathbb{Q} . But we saw earlier that $\mathbb{Q}(\sqrt[3]{2})$ is not Galois over \mathbb{Q} so it could not be a subfield of a cyclotomic field extension.

Feedback

- 1. None.
- 2. Things are okay so far; same as usual I think.