Тема 2. Визуальный анализ данных

Практическое задание. Визуальный анализ данных по пассажирам "Титаника".

Соревнование Kaggle "Titanic: Machine Learning from Disaster".

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

Считываем обучающую выборку.

```
train df = pd.read csv(r"C:\Users\Еленa\Downloads\data\
titanic_train.csv",
                       index col='PassengerId')
train df.head(2)
             Survived Pclass \
PassengerId
                    0
2
                    1
                                                           Name
                                                                    Sex
Age \
PassengerId
                                        Braund, Mr. Owen Harris
1
                                                                   male
22.0
             Cumings, Mrs. John Bradley (Florence Briggs Th... female
38.0
                                         Fare Cabin Embarked
             SibSp
                    Parch
                              Ticket
PassengerId
                           A/5 21171
                                                            S
1
                                       7.2500
                                                 NaN
                            PC 17599 71.2833
                                                 C85
train df.describe(include='all')
          Survived
                        Pclass
                                                    Name
                                                           Sex
Age \
        891.000000 891.000000
count
                                                     891
                                                           891
714.000000
                                                     891
                                                             2
               NaN
unique
                           NaN
```

NaN top NaN NaN Braund, Mr. Owen Harris male NaN freq NaN NaN NaN 1 577 NaN mean 0.383838 2.308642 NaN NaN 29.699118 std 0.486592 0.836071 NaN NaN 14.526497 min 0.000000 1.000000 NaN NaN 0.420000 25% 0.000000 2.000000 NaN NaN 20.125000 50% 0.000000 3.000000 NaN NaN	
freq NaN NaN 1 577 NaN nan 1 577 mean 0.383838 2.308642 NaN NaN 29.699118 std 0.486592 0.836071 NaN NaN 14.526497 min 0.000000 1.000000 NaN NaN 0.420000 25% 0.000000 2.000000 NaN NaN 20.125000	
mean 0.383838 2.308642 NaN NaN 29.699118 std 0.486592 0.836071 NaN NaN 14.526497 min 0.000000 1.000000 NaN NaN NaN 0.420000 25% 0.000000 2.000000 NaN NaN NaN 20.125000 NaN NaN NaN	
std 0.486592 0.836071 NaN NaN 14.526497 min 0.000000 1.000000 NaN NaN 0.420000 25% 0.000000 2.000000 NaN NaN NaN 20.125000 NaN NaN NaN	
min 0.000000 1.000000 NaN NaN 0.420000 25% 0.000000 2.000000 NaN NaN 20.125000	
25% 0.000000 2.000000 NaN NaN 20.125000	
28.000000	
75% 1.000000 3.000000 NaN NaN	
38.000000 max 1.000000 3.000000 NaN NaN	
80.000000	
SibSp Parch Ticket Fare Cabin Er count 891.000000 891.000000 891 891.000000 204 unique NaN NaN 681 NaN 147 top NaN NaN 347082 NaN B96 B98 freq NaN NaN 7 NaN 4 mean 0.523008 0.381594 NaN 32.204208 NaN std 1.102743 0.806057 NaN 49.693429 NaN min 0.000000 0.0000000 NaN 0.0000000 NaN 25% 0.000000 0.0000000 NaN 7.910400 NaN 50% 0.000000 0.0000000 NaN 7.910400 NaN 75% 1.000000 0.0000000 NaN 14.454200 NaN 75% 1.000000 0.000000 NaN 31.000000 NaN max 8.000000 6.000000 NaN 512.329200 NaN train_df.info() <class 'pandas.core.frame.dataframe'=""> Int64Index: 891 entries, 1 to 891 Data columns (total 11 columns):</class>	mbarked 889 3 644 NaN NaN NaN NaN NaN
# Column Non-Null Count Dtype O Survived 891 non-null int64 Pclass 891 non-null int64 Name 891 non-null object	
3 Sex 891 non-null object 4 Age 714 non-null float64 5 SibSp 891 non-null int64 6 Parch 891 non-null int64 7 Ticket 891 non-null object 8 Fare 891 non-null float64 9 Cabin 204 non-null object	

```
10 Embarked 889 non-null object dtypes: float64(2), int64(4), object(5) memory usage: 83.5+ KB
```

Выкинем признак Cabin, а потом – все строки, где есть пропуски.

```
train_df = train_df.drop('Cabin', axis=1).dropna()
```

Постройте попарные зависимости признаков Age, Fare, Pclass, Sex, SibSp, Parch, Embarked и Survived. (метод scatter matrix Pandas или pairplot Seaborn).

Как плата за билет (Fare) зависит от класса каюты (Pclass)? Постройте boxplot.

```
sns.boxplot(x='Pclass', y='Fare', data=train_df)
<Axes: xlabel='Pclass', ylabel='Fare'>
```


Такой boxplot получается не очень красивым из-за выбросов.

Опционально: создайте признак Fare_no_out (стоимости без выбросов), в котором исключаются стоимости, отличающиеся от средней по классу более чем на 2 стандартных отклонения. Важно: надо исключать выбросы именно в зависимости от класса каюты. Иначе исключаться будут только самые большие (1 класс) и малые (3 класс) стоимости.

```
train_df['Fare_no_out'] = train_df['Fare']
fare_pclass1 = train_df[train_df['Pclass'] == 1]['Fare']
fare_pclass2 = train_df[train_df['Pclass'] == 2]['Fare']
fare_pclass3 = train_df[train_df['Pclass'] == 3]['Fare']
fare_pclass1_no_out = fare_pclass1[(fare_pclass1 -
fare_pclass1.mean()).abs() < 2 * fare_pclass1.std()]
fare_pclass2_no_out = fare_pclass2[(fare_pclass2 -
fare_pclass2.mean()).abs() < 2 * fare_pclass2.std()]
fare_pclass3_no_out = fare_pclass3[(fare_pclass3 -
fare_pclass3.mean()).abs() < 2 * fare_pclass3.std()]
train_df['Fare_no_out'] = pd.concat([fare_pclass1_no_out,
fare_pclass2_no_out, fare_pclass3_no_out])
sns.boxplot(x='Pclass', y='Fare_no_out', data=train_df)
plt.show()</pre>
```


Каково соотношение погибших и выживших в зависимости от пола? Отобразите с помощью Seaborn.countplot с аргументом hue.

```
sns.countplot(x='Sex', hue='Survived', data=train_df)
plt.title('Соотношение погибших и выживших по полу')
plt.xlabel('Пол')
plt.ylabel('Количество')
plt.legend(title='Выживание', loc='upper right', labels=['Погибшие', 'Выжившие'])
<matplotlib.legend.Legend at 0x21eaa86f640>
```


Каково соотношение погибших и выживших в зависимости от класса каюты? Отобразите с помощью Seaborn.countplot с аргументом hue.

```
sns.countplot(x='Pclass', hue='Survived', data=train_df)
plt.title('Соотношение погибших и выживших по классу каюты')
plt.xlabel('Класс каюты')
plt.ylabel('Количество')
plt.legend(title='Выживание', loc='upper right', labels=['Погибшие',
'Выжившие'])
<matplotlib.legend.Legend at 0x2leaa9d7ee0>
```

Соотношение погибших и выживших по классу каюты

Как факт выживания зависит от возраста пассажира? Проверьте (графически) предположение, что молодые чаще выживали. Пусть, условно, молодые - младше 30 лет, пожилые – старше 60 лет.

```
def categorize_age(age):
    if age < 30:
        return 'Молодые (<30)'
    elif age > 60:
        return 'Пожилые (>60)'
    else:
        return 'Средний возраст (30-60)'
    train_df['AgeGroup'] = train_df['Age'].apply(categorize_age)
    sns.countplot(x='AgeGroup', hue='Survived', data=train_df)
    plt.title('Зависимость факта выживания от возрастной группы')
    plt.xlabel('Возрастная группа')
    plt.ylabel('Количество')
    plt.legend(title='Выживание', loc='upper right', labels=['Погибшие', 'Выжившие'])

<matplotlib.legend.Legend at 0x21eaa9c3e50>
```

Зависимость факта выживания от возрастной группы

