Badinh Nguyen UID: 104734141

Your task is to find the maximal delay of this design – i.e. determine the delays of $S_{0.31}$ and C_{32} – the maximal delay of these outputs will be the maximal delay of the design. Fill in the values in the table on the following page to receive full credit (and to help with possible partial credit).

Ī	Output	Delay	
ŀ	G0	27	(2 points)
	PO	27	(2 points)
	Gα	127	(2 points)
	Ρα	77	(2 points)
Ī	C12	LOT	(2 points)
	C15	307	(2 points)
	C16	247	(2 points)
	S15	3 LT	(2 points)
	C20	16T	(2 points)
	S19	147	(2 points)
	C24	30 T	(2 points)
	C31	547	(2 points)
	C32 (after mux)	427	(2 points)
<u> </u>	S31 (after mux)	[0]	(2 points)

Find the maximum delay in terms of T of the 32-bit adder – take the maximum of all output bits – including the sum bits (S_0-S_{31}) and the final carry out (C_{32}) . Show your work clearly in the table above. The two figures on the following pages are taken from the class notes, if you need to refer to them.

Czy=

531 A

Czy

54

ty