Artificial Bee Colony (ABC) algorithm and Its Implementation in Clustering

Yangzhuoran (Fin) Yang (28150295)

1 Introduction

Artifical Bee Colony (ABC) algorithm is a meta-heuristic optimization algorithm recently introduced by Karaboga (2005). It simulate the behaviour of a honey bee swarm in the attempt to find the optimal solution. As an general optimization algorithm, it does not limit to Clustering problem. We now give a brief overview of how the ABC algorithm works and summarize the algorithm in the pseudo-code that follows. Intruduction of each component in detail is given later in the clustering section. Part of the notation and formulations are adopted from Dervis Karaboga and Ozturk (2011).

1.1 Overview

Other than parameter initialization and solution evaluation, the ABC algorithm can be structured into three phases: the employed bee phase, the onlooker bee phase, and the scout bee phase. Each phase mimic the behavior of a group of bees in a honey bee swarm.

At the beginning of the algorithm, the total number of food sources (the solution set) is to be determined and denoted as SN (swarm size). The swarm size is one of the most important parameter in the ABC algorithm, as a large swarm size increases the accuarcy and decrease efficiency. We will dicuss the impact of swarm size in more detail in the parameter section.

After SN being decided, the ABC algorithm will simulate the position of initial food sources. The way to simulate the food sources has been tailored in differnt problems in the literature: they can be evenly assigned across the solution space (Vega Yon and Muñoz (2017)), randomly generated from a distribution (Dervis Karaboga and Ozturk (2011)), or they can be randomly selected from different data points for the problem of clustering. The main idea is to cover the solution space as much as possible.

The number of the employed bees or the number of the onlooker bees is the same as the swarm size, or to be specified by the user. In the employed bee phase, the bees search locally to find a neighbour, create a new solution by combining the existing solutions, then decide if to replace the current solution with the new solution using a greedy selection approach. The onlooker bee then performs similar neighbourhood search, the difference is the onlooker bee will search neighbours and create new solutions around existing solutions with better quality, so the onlooker bees provide a tendency towards where it is likely to produce good solution. The way that the employed bees and onlooker bees find neighbour and create new solutions, and the which solution that the onlooker bees select can be calculated using the general methods in the ABC algothim, or can be different depending on the problem at hand.

After the phases of the employed bee and onlooker bee, whether one solution has been improved is recorded for each food source. If one solution could not be improved up to some certain number of iteration, it will be discarded and the scout bees will find a replacement in the solution space to fill the postion, where the way to find new solutions can be independent with the current solutions. The employed bee and the onlooker bee search locally while the scout bee is in charge of the global search. In other words, the employed bee and the onlooker bee emphasis intensification by producing better solutions based on the current solution set, while the scout bee emphasis diversification search solutions independently from the current set of solutions. The ABC algorithm aims to chieve a balance between intensification and diversification through three different phases mimicing three different types of bee.

The updated solution in each iteration is the best solution among all the food sources in that iteration, and the final solution chosen by the algorithm is the best solution among all the food sources tried in the past up until the time the condition is met. Stopping condition are required to determine when to stop

the algorithm. Dervis Karaboga and Ozturk (2011) choose to use the maximum number of iteration as the stopping condition. Vega You and Muñoz (2017) includes the number of umimproved iteration: the algorithm stops when the result does not improve up to a certain number.

The ABC algorithm can be summarized in the following pseudo-code.

```
Algorithm: Artifical Bee Colony
 1. Load the training data
2. Generate the initial food sources 1,2,...,SN
3. Evaluate the quality of nectar (the fitness of initial solutions)
 4. While (Condition not met)
        The employed bee phase
 5.
        For each employed bee{
          Produce new solution using neighbourhood search
          Calculate the fitness
          Selecte the better fitted solution Greedily }
 6.
        Calculate the probabilities of selecting each solution
        The onlooker bee phase
 7.
        For each onlooker bee{
          Select a solution based on the probability calculated above
          Produce new solution using neighbourhood search
          Calculate the fitness
          Selecte the better fitted solution Greedily }
        Abandon the solution that the number of unimproved iteration reach the limit
8.
        The scout bee phase
9.
          Increase the number of food source to SN by finding new solution randomly
10.
        Record the best solution among all food sources
11. End
```

1.2 The parameters

There are three parameters in the ABC determines the quality of optimization and needs to be taken carefully: 1. the number of food sources (SN) which is also the number of empleyed bees or the onlooker bees; 2. the value of limit that decides when to abandon food sources; 3. the stopping conditions, such as the maximum cycle number (MCN) or the maximum number of unchanged iteration.

The number of the employed bees, the onlooker bees, or the scout bees can also be customized based on the specified problem. As Dervis Karaboga and Ozturk (2011) emphsis the three parameters mentioned above, we will assume the number of the employed bees or the onlooker bees are the same as the swarm size SN and assme the number of scout bees is one per iteration in the following discussion, which would be sufficent in general optimization problem.

1.2.1 The number of food sources (SN)

A large numer of food sources can increase the excution time for each iteration dramatically. It is the number of neighbourhood serach and greedy evaluation conducted in the employed bee phase or the onlooker bee phase. For each iteration, there is effectively $2 \times SN$ neighbourhood search conducted by the employed bee and the onlooker bee. While a large SN increase the time it needs to run for each iteration, it also means the local search is more throughly implemented: the number of solution we are consider at the same time is large. Therefore, there is a higher chance of finding a better solution.

1.2.2 The limit

The limit controls the balance between intensification and diversification. If the limit is set to be too large, a useless food source needs more time to be droped and more time is needed to triger the global search implemented by the scout bee, which may leads to unnecessary intensification over diversification. If the limit

is set to be too small, a promising food source may be droped before it runs the time it needs to produce a good solition, and the scout bee is trigered too early, leading to diversification more then intensification.

1.2.3 The stopping condition

If we consider the maximum cycle number (MCN) as the stopping condition, a small value of the MCN may stops the algorithm too early then the optimization settles down to the optimal solution. If MCN is set to be too large, the algorithm may run many extral iterations without any improvement, leading to a poor efficiency. The maximum number of unchanged iteration works the same way: the algorithm may stops before the solution converges.

1.3 Comparing to others and its own features

We compare the ABC algorithm to two other meta-heuristics: The Simulated Annealing and the Genetic Algorithm. The ABC algorithm share some of the same features of other meta-heuristics while having its own technic to some of other problem. We now look at how the problem specific elements in those algorithms are presented in the ABC algorithm.

1.3.1 Escape local optimum differently from Simulated Annealing

The simulated annealing differs from the basic neighbourhood by allowing the algorithm to accept a solution with worse fitness with certain probabilities. With such a feature that mimic the process of ammealing metals to climb the "hill" in the curve of objective function, it can escape the local minimum (when it is a minimization problem). The probability of accepting a worse move decreases with time.

The ABC algorithm does not have the feature to accept a worse move if we consider the path of solution in ABC as the best solution among all the food sources in each iteration. However, it has a similar functionality to avoid being stucked in the local minimum: it abandons the food source that has not been improved for some certain amount of iteration. By droping unimproved food source, it effectively drops the solutions that are in the local minimum. By consider the all the food sources collectively and add in new food sources from the whole space, it expands its search spane.

1.3.2 Reproduce like Genetic Algorithm (GA)

The genetic algorithm imitates the process of evolution. It selects multiple solutions (selection), create a new solution from those existing solutions (crossover), modify the solution to create another new solution (mutation), calculate the objective value of the new solution (evaluation) and determine whether to replace a existing solution using the new solution (update).

Many components in the ABC algorithm largely share the same process in the genetic algorithm. The bees finding neighbours is corresping to selction in GA. Creating new solution using the neighbour is corresping to the crossover in GA. calculating the fitness of the new solution and deciding whether to take the new solution are corresping to evaluation and update. The difference is for the step of mutation. In GA, mutation is done separatly from crossover, but in ABC the mutation step is embedded in the crossover: after selecting a neighbour, the bee create the new solution not only based on the esisting ones, but also adding a random component. (The random number generation in Equation (3) which is to be discussed later.)

1.3.3 Its own features

1.3.3.1 Additional global search

The scout bee phase in the ANC provides additional global search that is lacked in both the simulated annealing and the genetic algorithm. Although the diversification can be achieved using different parameters in those two methods, using a separatly component generats certain exposure to the whole solution space.

				7				
	9		5		6		8	
		8	4		1	2		
	5	9				8	4	
7								6
	2	3				5	7	
		5	3		7	4		
	1		6		8		9	
				1				

Figure 1: An example of sudoku puzzle from Pacurib, J. A., Seno, G. M. M., and Yusiong, J. P. T. (2009, December)

1.3.3.2 Tendency towards better performed solution

The onlooker bees find the food sources with better quality and conduct seach aroud them: the create new solutions using good solutions. This improves the effeciency of the algorithm as intuitively good solutions may cluster together. Similar feature can be found in come modified genetic algorithm. The way to select the parent solutions may be weighted towards good solutions.

2 Applying the ABC Algorithm to Solve Sudoku Puzzles

Pacurib, Seno, and Yusiong (2009) provides solution of Sudoku puzzles using the ABC algorithm. Sudoku puzzles is a logic-based combinatorial puzzle. Players are given a map of $n \times n$ squares (cells) with some of the squares filled with numbers called the starting squares. The player aims to fill out the rest of cells based on the following three rules

- 1. A number can only appear once in each row
- 2. A number can only appear once in each column
- 3. A number can only appear once in a $m \times m$ predifined sub-block.

Figure 1 is an example of 9×9 sudoku puzzle with 3×3 sub-blocks.

Pacurib, Seno, and Yusiong (2009) apply the ABC algorithm by imposing the third constrain in the solution space while only evaluate objective function using the other two constrains in the algorithm. The solution representation would simply be a vector of numbers, where the position of the number corresponds to the index of the cell they are in. The optimization problem is to minimize the number of duplicate digits found on each row and column, while the third constraint is set to be always satisfied for a valid solution.

2.1 The parameters specification

The number of food souces in the experiments of Pacurib, Seno, and Yusiong (2009) is defined to be 100, the same as the number of the employed bees, while the number of onlooker bees to be set as 200. The number of scout bees is set to be 10% of the employed bees which is 10. The maximum number of iteration is set to be 100,000.

In general ABC algorithm, the food sources are abondanded when the number that they does not change accumulates to the limit. In the Sudoku problem, the food sources are paired to a randonly generated new food source by the scout bee, and if new food source has a higher fitness than the old one, the old one is replaced, so the value of the limit is no long a parameter needed in this problem.

There are two stopping criteria. While the objective function is the number of duplicate digits, one of the criteria is having a fitness value of 1, If this criteria is met it means that the optimal solution to the puzzle

has been found. If this criteria is not met, instead the algorithm stops when it reachs the maximum number of cycles, it means the algorithm has not yet find the optimal solution to the puzzel and it produced the best solution obtained at the time the algorithm stops.

2.2 Adjusted approach

The approach of creating new solution is adjusted to fit this specific problem. Given the solution representation of a vector of digits, a random number j is chosen for the feasible solution X_i and the randomly chosen neighbor X_k . If we denote the new solution as V_i , the value of each element (denoted using subscript j) of V_i is determined by the following equation:

$$V_{ij} = X_{ij} + rand[0, 1] \times |X_{ij} - X_{ij}|$$

The function to generate new solution is defined using the uniform random number between 0 and 1 and the absolute value of difference to ensure no negative solution is created. If the value obtained is greater than the value that is allowed in the sudoku puzzle, for example 9 in the 9×9 puzzle, the modulo of the value plus one is used as the final value of V_{ij} .

There is no guarantee that the new solution is going to satisfied the third rule above. If a new solution violates the sub-block constraint, a swap operation is trigered: the original location of the violating element V_{ij} us replaced with X_{ij} . Then the feasible new solution will be considered in the greedy selection approach comparing the current solution.

The fitness is calculated using the generic function in Equation (1) and the probability for the onlooker bee to find food source is calculated using the general function in Equation (4). We will introduce them in the clustering section.

2.3 Experiments and Conclusion

Pacurib, Seno, and Yusiong (2009) apply the ABC algorithm to sudoku puzzles with three different difficulities. By comparing the average number of cycles needed to solve the sudoku puzzles and the average time needed, they conclude that the more difficult the puzzle is, the longer it needs to solve the puzzle. They also find that the modified ABC algorithm outperforms the Genetic-Algorithm-based sudoku solver.

3 Detailed process in the context of clustering

3.1 Initialization

To mimic the behavior of a bee swarm, the ABC algorithm needs parameter that defines the size of the swarm: the numer of food sources, or the number of solutions in the solution set. We denote this number as SN (swarm size).

Once the position of the inition solutions has been determined, the fitness $f_i : i = 1, 2, ..., SN$ can be calculated from corresponding cost function/objuective function. The quality of the nectar $fit_i : i = 1, 2, ..., SN$ in the ABC algorithm can be calculated correspondly, using Equation (1)

$$fit_i = \frac{1}{1/f_i} \tag{1}$$

In the case when the cost function produces negative fitness, the quality of the nectar can be calculated by:

$$fit_i = 1 + |f_i| \tag{2}$$

3.2 The Employed Bee

The number of employed bees is set to be the same as the number of food sources SN. For each employed bee at each food source, the bee implements a neighbourhood search to find a new solution by combine the neighbour find with the current position using

$$\nu_{ij} = z_{ij} + \phi_{ij}(z_{ij} - z_{kj}) \tag{3}$$

where $i \in \{1, 2, ..., SN\}$ is the index of the current position, and $j \in \{1, 2, ..., SN\}$ is the randomly generated index of the neighbour. If we denote D as the number of elements we need to optimize in one solution (the number of dimensions), then $k \in \{1, 2, ..., D\}$ is the randomly generated index denoting the position of the element. phi_{ij} is a random number simulated using a uniform distribution with bound -1 and 1.

After finding the new solution, the employed make a decision on whether to jump from the current solution to the new solution by compare the quality of the nectar of two positions. If the bee decides to jump to the new position with the higher value of fit_i , it will forget the old position, i.e. the old solution was not stored in the memory of the algorithm.

3.3 The Onlooker Bee

The onlooker bee performs the same local search as the employed bee. The difference is the onlooker bee does not implement the search on each and every food source, but selectively perform the search based on the quality of the nectar of each food source. After the employed bee phase, the algorithm calculate the probabilities p_i of the onlooker bee selecting each food source based on the following equation:

$$p_i = \frac{fit_i}{\sum_{i=1}^{SN} fit_i} \tag{4}$$

$$p_i = a \times \frac{fit_i}{\max_i(fit_i)} + b \tag{5}$$

with a = 0.9 and b = 0.1. Probability values are calculated by using the quality of nectar fit_i and normalized by dividing maximum fit_i .

The number of onlooker bees is the same as the employed bee or the number of food sources SN. Each onlooker bees selects a solution as the base solution, finds a new solution like the employed bee using equation (3), and choose whether to switch solution using the same greedy approach.

3.4 The Scout Bee

The last two phases focus on the local search of solution. The scout bee component prevent the algorithm from stucked in a local optim. After the employed bee and the onlooker bee phase, whether the food source has been moved by one of the bees has been recorded. If a food source has not been improved (moved) up to some some certain number of iteration, called the limit, it is abandoned and a new solution would be found in the scout bee phase. It ransomly generate a solution in the solution space using the following equation

$$z_{i}^{j} = z_{min}^{j} + \delta_{i}^{j} (z_{max}^{j} - z_{min}^{j})$$
 (6)

where z_i is the abandoned source and $j \in 1, 2, ..., D$ is the index of dimension. δ_i^j is simple generated from a uniform distribution with bound 0 and 1. The replaced food source can be selected using a different method in different problems. The main idea is to expand the range of selecting new solution.

References

- Karaboga, D (2005). "An idea based on honey bee swarm for numerical optimization". In: URL: https://pdfs.semanticscholar.org/015d/f4d97ed1f541752842c49d12e429a785460b.pdf.
- Karaboga, Dervis and Celal Ozturk (2011). "A novel clustering approach: Artificial Bee Colony (ABC) algorithm". In: *Applied soft computing* 11.1, pp. 652–657.
- Pacurib, Jaysonne A, Glaiza Mae M Seno, and John Paul T Yusiong (2009). "Solving sudoku puzzles using improved artificial bee colony algorithm". In: 2009 fourth international conference on innovative computing, information and control (ICICIC). IEEE, pp. 885–888.
- Vega Yon, George and Enyelbert Muñoz (2017). ABCoptim: An implementation of the Artificial Bee Colony (ABC) Algorithm. R package version 0.15.0. URL: https://github.com/gvegayon/ABCoptim.