CO: Computer Organization

Day2

Indian Institute of Information Technology, Sri City

Jan - May - 2018

http://co-iiits.blogspot.in/

Number Systems

- Representation of Integer Numbers
 - Signed Magnitude Representation
 - ▶ 1's Complement Representation
 - 2's Complement Representation
- Representation of Real Numbers
 - Fixed Point Representation
 - ▶ Floating Point Representation

Resolution is difference between two successive numbers.

Representation of Integer Numbers

Let $A = a_{n-1}a_{n-2}a_{n-3}...a_0$ is an n-bit binary number if A is an **unsigned integer**, then value of A is : $\sum_{i=0}^{n-1} (2^i \times a_i)$. if A is a **signed integer**:

- Signed Magnitude Representation:
 - $A = \sum_{i=0}^{n-2} (2^i \times a_i)$, if $a_{n-1} = 0$
 - $A = -\sum_{i=0}^{n-2} (2^i \times a_i)$, if $a_{n-1} = 1$
- ▶ 1's Complement Rep.: $A = -(2^{n-1} 1) \times a_{n-1} + \sum_{i=0}^{n-2} (2^i \times a_i)$
- ▶ 2's Complement Rep.: $A = -2^{n-1} \times a_{n-1} + \sum_{i=0}^{n-2} (2^i \times a_i)$

Resolution: 1

Representation of Integer Numbers

Write all possible 4-bit numbers and write its equivalent value using the three rep.

Representation of Integer Numbers

Write all possible 4-bit numbers and write its equivalent value using the three rep.

Binary Number	Signed Magnitude	1's Complement	2's Complement
0 0 0 0	+0	+0	+0
0 0 0 1	+1	+1	+1
0 0 1 0	+2	+2	+2
0 0 1 1	+3	+3	+3
0 1 0 0	+4	+4	+4
0 1 0 1	+5	+5	+5
0 1 1 0	+6	+6	+6
0 1 1 1	+7	+7	+7
1000	-0	-7	-8
1001	-1	-6	-7
1010	-2	-5	-6
1011	-3	-4	-5
1 1 0 0	-4	-3	-4
1 1 0 1	-5	-2	-3
1110	-6	-1	-2
1111	-7	-0	-1

Range of Numbers

Let $A = a_{n-1}a_{n-2}a_{n-3}...a_0$ is an n bit binary number if A is an **unsigned integer**, then range of A is : 0 to $(2^n - 1)$. if A is a **signed integer**:

- ▶ Signed Magnitude Rep., range of A is : $-(2^{n-1}-1)$ to $(2^{n-1}-1)$.
- ▶ 1's Complement Rep., range of A is : $-(2^{n-1}-1)$ to $(2^{n-1}-1)$.
- ▶ 2's Complement Rep., range of A is : -2^{n-1} to $(2^{n-1}-1)$.

Add additional bit positions to the left and fill in with value of the sign bit. Let $A = 1 \ 0 \ 1 \ 0$ is a 4-bit binary number, Representation of A using 8-bits (i.e. B): $1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0$. is A = B?

- ▶ In 2's Complement Rep.: Yes.
- ▶ In 1's Complement Rep.: **Yes**.
- ► In Signed Magnitude Rep.: No.

Add additional bit positions to the left and fill in with value of the sign bit. Let $A = 1 \ 0 \ 1 \ 0$ is a 4-bit binary number, Representation of A using 8-bits (i.e. B): $1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0$. is A = B?

- ▶ In 2's Complement Rep.: Yes.
- ► In 1's Complement Rep.: Yes.
- ► In Signed Magnitude Rep.: No.

Add additional bit positions to the left and fill in with value of the sign bit. Let $A=1\ 0\ 1\ 0$ is a 4-bit binary number, Representation of A using 8-bits (i.e. B): $1\ 1\ 1\ 1\ 0\ 1\ 0$.

- is A=B?
 - ▶ In 2's Complement Rep.: **Yes**.
 - In 1's Complement Rep.: Yes.
 - ► In Signed Magnitude Rep.: No.

Add additional bit positions to the left and fill in with value of the sign bit. Let $A = 1 \ 0 \ 1 \ 0$ is a 4-bit binary number, Representation of A using 8-bits (i.e. B): $1 \ 1 \ 1 \ 1 \ 0 \ 1 \ 0$. is A = B?

- ► In 2's Complement Rep.: Yes.
 - ▶ In 1's Complement Rep.: Yes.
 - In Signed Magnitude Rep.: No.

$$(4.5)_{10} = (100.1)_2$$

$$(8.25)_{10} = (1000.01)_2$$

$$(16.125)_{10} = (10000.001)_2$$

$$(0.875)_{10} = (0.111)_2$$

$$(4.5)_{10} = (1.001)_2 \times 2^2$$

$$(8.25)_{10} = (1.00001)_2 \times 2^3$$

$$(16.125)_{10} = (1.0000001)_2 \times 2^4$$

$$(0.875)_{10} = (1.11)_2 \times 2^{-1}$$

Representations 5 to 8 are called Normalized Representations.

Normalized Rep.: $(\pm 1.xxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.

$$(4.5)_{10} = (100.1)_2$$

$$(8.25)_{10} = (1000.01)_2$$

$$(16.125)_{10} = (10000.001)_2$$

$$(0.875)_{10} = (0.111)_2$$

$$(4.5)_{10} = (1.001)_2 \times 2^2$$

$$(8.25)_{10} = (1.00001)_2 \times 2^3$$

$$(16.125)_{10} = (1.0000001)_2 \times 2^4$$

$$(0.875)_{10} = (1.11)_2 \times 2^{-1}$$

Representations 5 to 8 are called Normalized Representations.

Normalized Rep.: $(\pm 1.xxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.

$$(4.5)_{10} = (100.1)_2$$

$$(8.25)_{10} = (1000.01)_2$$

$$(16.125)_{10} = (10000.001)_2$$

$$(0.875)_{10} = (0.111)_2$$

$$(4.5)_{10} = (1.001)_2 \times 2^2$$

$$(8.25)_{10} = (1.00001)_2 \times 2^3$$

$$(16.125)_{10} = (1.0000001)_2 \times 2^4$$

$$(0.875)_{10} = (1.11)_2 \times 2^{-1}$$

Representations 5 to 8 are called Normalized Representations.

Normalized Rep.: $(\pm 1.xxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.

$$(4.5)_{10} = (100.1)_2$$

$$(8.25)_{10} = (1000.01)_2$$

$$(16.125)_{10} = (10000.001)_2$$

$$(0.875)_{10} = (0.111)_2$$

$$(4.5)_{10} = (1.001)_2 \times 2^2$$

$$(8.25)_{10} = (1.00001)_2 \times 2^3$$

$$(16.125)_{10} = (1.0000001)_2 \times 2^4$$

$$(0.875)_{10} = (1.11)_2 \times 2^{-1}$$

Representations 5 to 8 are called Normalized Representations

Normalized Rep.: $(\pm 1.xxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.

$$(4.5)_{10} = (100.1)_2$$

$$(8.25)_{10} = (1000.01)_2$$

$$(16.125)_{10} = (10000.001)_2$$

$$(0.875)_{10} = (0.111)_2$$

$$(4.5)_{10} = (1.001)_2 \times 2^2$$

$$(8.25)_{10} = (1.00001)_2 \times 2^3$$

$$(16.125)_{10} = (1.0000001)_2 \times 2^4$$

$$(0.875)_{10} = (1.11)_2 \times 2^{-1}$$

Representations 5 to 8 are called Normalized Representations.

Normalized Rep.: $(\pm 1.xxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxx' is a **Fraction/Mantissa**.

$$(4.5)_{10} = (100.1)_2$$

$$(8.25)_{10} = (1000.01)_2$$

$$(16.125)_{10} = (10000.001)_2$$

$$(0.875)_{10} = (0.111)_2$$

$$(4.5)_{10} = (1.001)_2 \times 2^2$$

$$(8.25)_{10} = (1.00001)_2 \times 2^3$$

$$(16.125)_{10} = (1.0000001)_2 \times 2^4$$

$$(0.875)_{10} = (1.11)_2 \times 2^{-3}$$

Representations 5 to 8 are called Normalized Representations. Normalized Rep.: $(\pm 1.xxxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**,

'xxxxx' is a Fraction/Mantissa.

$$(4.5)_{10} = (100.1)_2$$

$$(8.25)_{10} = (1000.01)_2$$

$$(16.125)_{10} = (10000.001)_2$$

$$(0.875)_{10} = (0.111)_2$$

$$(4.5)_{10} = (1.001)_2 \times 2^2$$

$$(8.25)_{10} = (1.00001)_2 \times 2^3$$

$$(16.125)_{10} = (1.0000001)_2 \times 2^4$$

$$(0.875)_{10} = (1.11)_2 \times 2^{-1}$$

Representations 5 to 8 are called Normalized Representations. Normalized Rep.: $(\pm 1.xxxxxx)_2 \times 2^E$, Where 'E' is a True Exponent, 'xxxxxx' is a Fraction/Mantissa.

$$(4.5)_{10} = (100.1)_2$$

$$(8.25)_{10} = (1000.01)_2$$

$$(16.125)_{10} = (10000.001)_2$$

$$(0.875)_{10} = (0.111)_2$$

$$(4.5)_{10} = (1.001)_2 \times 2^2$$

$$(8.25)_{10} = (1.00001)_2 \times 2^3$$

$$(16.125)_{10} = (1.0000001)_2 \times 2^4$$

$$(0.875)_{10} = (1.11)_2 \times 2^{-1}$$

Representations 5 to 8 are called Normalized Representations. Normalized Rep.: $(\pm 1.xxxxx)_2 \times 2^E$, Where 'E' is a True Exponent, 'xxxxx' is a Fraction/Mantissa.

$$(4.5)_{10} = (100.1)_2$$

$$(8.25)_{10} = (1000.01)_2$$

$$(16.125)_{10} = (10000.001)_2$$

$$(0.875)_{10} = (0.111)_2$$

$$(4.5)_{10} = (1.001)_2 \times 2^2$$

$$(8.25)_{10} = (1.00001)_2 \times 2^3$$

$$(16.125)_{10} = (1.0000001)_2 \times 2^4$$

$$(0.875)_{10} = (1.11)_2 \times 2^{-1}$$

Representations 5 to 8 are called Normalized Representations.

Normalized Rep.: $(\pm 1.xxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.

▶ The IEEE Standard for Floating-Point Arithmetic.

The TEEE Standard for Floating Forme Attenumence.					
	Sign	Biased Exponent	Mantissa/Fraction		
Single Precision N=32	1 bit	8 bits	23 bits	Bias Value:+127	
Double Precision N=64	1 bit	11 bits	52 bits	Bias Value :+1023	

Biased Exponent=True Exponent + Bias Value

- ▶ Rep. of (4.5)₁₀ using Single Precision (4.5)₁₀ = (100.1)₂ = (1.001)₂ × 2² Normalized Rep.: (±1.xxxxxx)₂ × 2^E, Where 'E' is a True Exponent, 'xxxxxx' is a Fraction/Mantissa.
- ▶ Biased Exponent = 2 + 127 = 129 = 10000001
- ► Mantissa = **001** = **0010000 0000 0000 0000 0000**
- \triangleright Sign= + ve = 0

The IEEE Standard for Floating-Point Arithmetic.

The TEEE Standard for Floating Forme Attenumence.					
	Sign	Biased Exponent	Mantissa/Fraction		
Single Precision N=32	1 bit	8 bits	23 bits	Bias Value:+127	
Double Precision N=64	1 bit	11 bits	52 bits	Bias Value :+1023	

Biased Exponent=True Exponent + Bias Value

▶ Rep. of $(4.5)_{10}$ using Single Precision

$$(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$$

Normalized Rep.: $(\pm 1.xxxxx)_2 \times 2^E$, Where 'E' is a**True Exponent**, 'xxxxx' is a **Fraction/Mantissa**.

- ▶ Biased Exponent = 2 + 127 = 129 = 10000001
- ► Mantissa = **001** = **0010000 0000 0000 0000 0000**
- \triangleright Sign= + ve = 0

The IEEE Standard for Floating-Point Arithmetic.

The IEEE Standard for Floating Fount / treminetic.					
	Sign	Biased Exponent	Mantissa/Fraction		
Single Precision N=32	1 bit	8 bits	23 bits	Bias Value:+127	
Double Precision N=64	1 bit	11 bits	52 bits	Bias Value :+1023	

Biased Exponent=True Exponent + Bias Value

- ▶ Rep. of $(4.5)_{10}$ using Single Precision $(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$ Normalized Rep.: $(\pm 1.xxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.
- ▶ Biased Exponent = 2 + 127 = 129 = 10000001
- ► Mantissa = **001** = **0010000 0000 0000 0000 0000**
- \triangleright Sign= + ve = 0

The IEEE Standard for Floating-Point Arithmetic

The fille standard for Floating Fourt Artifilmetic.				
	Sign	Biased Exponent	Mantissa/Fraction	
Single Precision N=32	1 bit	8 bits	23 bits	Bias Value:+127
Double Precision N=64	1 bit	11 bits	52 bits	Bias Value :+1023

Biased Exponent=True Exponent + Bias Value

- ▶ Rep. of (4.5)₁₀ using Single Precision $(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$ Normalized Rep.: $(\pm 1.xxxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a Fraction/Mantissa.
- ightharpoonup Biased Exponent = 2 + 127 = 129 = 1000 0001

The IEEE Standard for Floating-Point Arithmetic.

The fille standard for Floating Fourt Artifilmetic.				
	Sign	Biased Exponent	Mantissa/Fraction	
Single Precision N=32	1 bit	8 bits	23 bits	Bias Value:+127
Double Precision N=64	1 bit	11 bits	52 bits	Bias Value :+1023

Biased Exponent=True Exponent + Bias Value

- ▶ Rep. of $(4.5)_{10}$ using Single Precision $(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$ Normalized Rep.: $(\pm 1.xxxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.
- ightharpoonup Biased Exponent = 2 + 127 = 129 = 1000 0001
- ► Mantissa = **001** = **0010000 0000 0000 0000 0000**
- \triangleright Sign= + ve = 0

The IEEE Standard for Floating-Point Arithmetic.

	Sign	Biased Exponent	Mantissa/Fraction	
Single Precision N=32	1 bit	8 bits	23 bits	Bias Value:+127
Double Precision N=64	1 bit	11 bits	52 bits	Bias Value :+1023

Biased Exponent=True Exponent + Bias Value

- ▶ Rep. of $(4.5)_{10}$ using Single Precision $(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$ Normalized Rep.: $(\pm 1.xxxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.
- ightharpoonup Biased Exponent = 2 + 127 = 129 = 1000 0001
- ► Mantissa = **001** = **0010000 0000 0000 0000 0000**
- \triangleright Sign= + ve = 0

The IEEE Standard for Floating-Point Arithmetic.

· · · ·			, , , , , ,	_
	Sign	Biased Exponent	Mantissa/Fraction]
e Precision N=32	1 bit	8 bits	23 bits E	Bias Value:+127
le Precision N=64	1 bit	11 bits	52 bits Bi	as Value :+1023

Biased Exponent=True Exponent + Bias Value

- ▶ Rep. of $(4.5)_{10}$ using Single Precision $(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$ Normalized Rep.: $(\pm 1.xxxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.
- ightharpoonup Biased Exponent = 2 + 127 = 129 = 1000 0001
- ► Mantissa = **001** = **0010000 0000 0000 0000 0000**
- ightharpoonup Sign= + ve = 0

Single Double

The IEEE Standard for Floating-Point Arithmetic.

	Sign	Biased Exponent	Mantissa/Fraction]
Single Precision N=32	1 bit	8 bits	23 bits	Bias Value:+127
Double Precision N=64	1 bit	11 bits	52 bits	Bias Value :+1023

Biased Exponent=True Exponent + Bias Value

- ▶ Rep. of $(4.5)_{10}$ using Single Precision $(4.5)_{10} = (100.1)_2 = (1.001)_2 \times 2^2$ Normalized Rep.: $(\pm 1.xxxxxx)_2 \times 2^E$, Where 'E' is a **True Exponent**, 'xxxxxx' is a **Fraction/Mantissa**.
- ightharpoonup Biased Exponent = 2 + 127 = 129 = 1000 0001
- ► Mantissa = **001** = **0010000 0000 0000 0000 0000**
- ightharpoonup Sign= + ve = 0

- ▶ Biased Exponent=True Exponent + Bias Value, where 1≤ Biased Exponent ≤ (2^{BiasedExponentBits} - 2).
- ▶ Single Precision (N=32), 1≤ Biased Exponent ≤254.
- ▶ Biased Exponent = 0,
 - ▶ Mantissa = ± 0 , then Value is ± 0 .
 - ▶ Mantissa \neq 0, then Value is **not** a **normalized number**.
- ▶ Biased Exponent = 255,
 - ▶ Mantissa = ± 0 , then Value is $\pm \infty$.
 - ▶ Mantissa \neq 0, then Value is **NAN**.
- ▶ Range of positive values: $[1.0 \times 2^{-126}, (2-2^{-23}) \times 2^{127}]$
- ▶ Range of negative values: $[-(2-2^{-23}) \times 2^{127}, -1.0 \times 2^{-126}]$
- ▶ Single Precision Number Resolution: $2^{-23} \times 2^{TrueExponent}$