Diseño de la Red de Distribución Funnys Company Tarea 1 – Taller de Programación

La IA India de Hevia

Nicolas Armijo

Benjamin Camus

Francisco Gonzalez

Giovanni Mealla

Martes 09 de septiembre del 2025 Valparaíso, Chile.

Índice

- 1. Introducción y Contexto
- 2. Problema
- 3. Propuesta
- 4. Supuestos
- 5. Resultados
- 6. Conclusiones y cierre

1.Introducción y Contexto

- Funnys Company es una empresa dedicada a la producción de productos de entretención para el hogar.
- Actualmente enfrenta un explosivo aumento de la demanda a nivel nacional.
- Su planta en Rancagua y la **red de distribución existente resultan insuficientes** para cubrir este crecimiento.
- La empresa evalúa abrir nuevas plantas de producción en distintas ciudades y seleccionar un servicio de transporte más eficiente.
- El **objetivo es diseñar una red que satisfaga la demanda proyectada** de los próximos tres años al menor costo total posible.

2. Problema

- Es un problema clásico de **investigación de operaciones**, donde se busca optimizar los costos de producción y distribución de una empresa.
- Actualmente el aumento del consumo y la demanda juega un papel fundamental en las organizaciones, que para seguir siendo competitivas en la era moderna, deben buscar la eficiencia operativa.
- El aumento de la población juega un papel fundamental en estos escenarios, que seguirán teniendo relevancia debido al hecho de tener un planeta industrializado.

- Para resolver el problema se propone un modelo de programación lineal mixta.
- Además, se implementa el modelo propuesto en Python utilizando el solver PuLP. Esto nos determinará si el problema cuenta con solución, y si es capaz de encontrar el óptimo del problema.
- PULP

 La solución ayudará al equipo directivo de Funnys Company a tomar decisiones sobre el futuro de la red de producción y distribución de la empresa.

El modelo propuesto es el siguiente:

Variables

$$X_{p,c}$$
:
$$\begin{cases} 1, si \ se \ instala \ una \ planta \ tipo \ p \ en \ la \ ciudad \ c \\ 0, etoc. \end{cases}$$

 $Y_{p,c,r,t,a}$: Cantidad de productos que van desde la planta tipo p, desde la ciudad c a la región r en transporte t en el año a.

Parámetros

- $F_{p,c}$: Costo fijo de planta tipo p en la ciudad c.
- $V_{p,c}$: Costo variable de producción de una unidad en la planta tipo p en la ciudad c.
- $T_{c,r,t}$: Costo de transporte de la ciudad c a la región r en transporte tipo t.
- $A_{p,c}$: Costo de apertura de planta tipo p en la ciudad c.
- C_p : Capacidad de planta tipo p.
- $D_{r,a}$: Demanda de la región r en el año a.

Se busca minimizar los costos totales de producción y distribución, que considera:

- (1) Costos Fijos
- (2) Costos Variables
- (3) Costos de transporte

Función Objetivo

$$Min z = \sum_{p} \sum_{c} \left[3 \cdot F_{p,c} + A_{p,c} \right] \cdot X_{p,c} + \sum_{p} \sum_{c} V_{p,c} \cdot \sum_{r} \sum_{t} \sum_{a} Y_{p,c,r,t,a} + \sum_{c} \sum_{r} \sum_{t} T_{c,r,t} \cdot \sum_{p} \sum_{a} Y_{p,c,r,t,a} \right]$$

Restricciones

1) <u>Satisfacción de la demanda</u>. El total de productos transportados a cada región debe a lo menos satisfacer la demanda de cada año.

$$\sum_{n} \sum_{c} \sum_{t} Y_{p,c,r,t,a} \ge D_{r,a} \qquad \forall r \in Regiones, a \in A\tilde{n}os$$

2) <u>Capacidad de producción</u>. El total de productos enviados desde una planta no puede superar la capacidad de producción.

$$\sum_{r} \sum_{t} Y_{p,c,r,t,a} \leq C_p \cdot X_{p,c} \qquad \forall c \in Ciudades, a \in A \| os, p \in Plantas$$

3) Máximo de una planta por ciudad. Solo se permite la construcción de una planta por ciudad.

$$\sum_{p} X_{p,c} \le 1 \qquad \forall c \in Ciudades$$

4. Supuestos

- Plantas funcionan desde que se abren hasta el final del horizonte. No es posible abrir ni cerrar una planta entre el horizonte de tiempo, sólo se puede hacer al inicio.
- No se consideran los costos de inventario, ni se tiene presente la inflación con el paso de los años. Reflejando costos constantes.
- El año en el que se comienza a presenciar el aumento de demanda corresponde al año 1, ya que se considera que la demanda actual considera al año 0.

5. Resultados: Configuración Óptima

```
# (3)
for c in CITIES:
  prob += pl.lpSum(x[p,c] for p in P TIPO) <= 1, f"planta unica {c}"</pre>
# RESOLVER (CBC por defecto en PuLP)
solver = pl.PULP_CBC_CMD(msg=True)
prob.solve(solver)
print("Estado:", pl.LpStatus[prob.status])
print("Valor objetivo z =", pl.value(prob.objective))
for c in CITIES:
    opened = [p for p in P TIPO if x[p,c].varValue and x[p,c].varValue > 0]
   for p in opened:
        print(f" Ciudad {c} ({CIUDAD[c]}): Planta {'Peq' if p==1 else 'Gra'} abierta")
```

Estado: Optimal
Valor objetivo z = 619887317.12
 Ciudad 3 (Santiago): Planta Peq abierta
 Ciudad 4 (Rancagua): Planta Peq abierta

5. Resultados: Problema relajado

```
# (3)
#for c in CITIES:
 \#prob += pl.lpSum(x[p,c] for p in P TIPO) <= 1, f"planta unica {c}"
# RESOLVER (CBC por defecto en PuLP)
solver = pl.PULP_CBC_CMD(msg=True)
prob.solve(solver)
print("Estado:", pl.LpStatus[prob.status])
print("Valor objetivo z =", pl.value(prob.objective))
for c in CITIES:
    opened = [p for p in P_TIPO if x[p,c].varValue and x[p,c].varValue > 0]
    for p in opened:
        print(f" Ciudad {c} ({CIUDAD[c]}): Planta {'Peq' if p==1 else 'Gra'} abierta")
```

```
Estado: Optimal
Valor objetivo z = 619887317.12
Ciudad 3 (Santiago): Planta Peq abierta
Ciudad 4 (Rancagua): Planta Peq abierta
```


5. Resultados: Validación

Para validar las soluciones se realizaron las siguientes tareas:

- 1. Verificar el cumplimiento de demanda en cada región.
- 2. Verificación de las plantas abierta.
- 3. Desglosar los costos y la reconciliación con la FO.
- 4. Chequeo de sanidad.
- 5. Y verificación de la capacidad de producción.

Además, para verificar que estuviéramos en un optimo, forzamos en el modelo a que la planta de Santiago NO se pueda construir.

6. Conclusiones

Las conclusiones del trabajo expuesto se pueden resumir en:

- La importancia del óptimo del problema juega un papel significativo en la tomas de decisiones y en el impacto económico.
- El costo de apertura de Rancagua lo hace atractivo ya que no hay que tener una nueva inversión. Pero es el modelo que confirma que este paso es una buena decisión.
- La solución encontrada posee los costos de producción de las plantas más bajos.
- Los precios de las plantas seleccionadas tiene los precios más competitivos hacia las regiones que más proyección tienen.
- La flexibilidad con múltiples plantas no genera una diferencia en las plantas abiertas.

Muchas Gracias

La IA India de Hevia

Nicolás Armijo

Benjamín Camus

Francisco Gonzalez

Giovanni Mealla

Martes 09 de septiembre del 2025 Valparaíso, Chile.