1 Training Algorithm

Algorithm 1 Training for Image-to-Video network

Input: Untrimmed video set $\{V_i\}_{i=1}^N$, Video-level labels $\{\boldsymbol{y}_i\}_{i=1}^N$

Output: Updated I2V model

- 1: Initial network with ImageNet pretrained model
- 2: for Each epoch do
- Sample several frames $\{T_{k,i}\}_{k=1}^K$ from Videoc V_i 3:
- Feed all sampled frames to I2V network to get the outputs $\{z_{T_{k,i}}\}_{k=1}^K$ 4:
- Do average consensus among outputs of all frames to get video-level prediction $oldsymbol{z}_i = rac{1}{K} \sum_{k=1}^K oldsymbol{z}_{T_{k,i}}$ Back propagate and update model
- 7: end for

Algorithm 2 Training for Video-to-Proposal network

Input: Action proposal set $\{\{(t^q_{start,i}, t^q_{end,i})\}_{q=1}^Q\}_{i=1}^N$, Video-level labels $\{y_i\}_{i=1}^N$ Output: Updated V2P model

- 1: Initial network with pretrained I2V model
- 2: for Each epoch do
- Feed all action proposals $\{(t_{start,i}^q, t_{end,i}^q)\}_{q=1}^Q$ of V_i to V2P network to get the output $\{m{r_q}\}_{q=1}^Q$
- Do maximun consensus $v_i^j = \max(r_1^j, r_2^j, \dots, r_n^j)$ among outputs of all proposals to get video-level prediction $\hat{p}_i = softmax(v_i)$
- Back propagate and update model
- 6: end for

Testing Algorithm

Algorithm 3 Action localization

Input: Action proposals $\{\{(t^q_{start,i}, t^q_{end,i})\}_{q=1}^Q\}_{i=1}^N$, threshold θ

Output: Detection results

- 1: Feed all proposals to trained V2P network and get scores for each proposal
- 2: Implement NMS for each class among all proposals
- 3: Select propsals with score higer than a threshold θ as the final detection results