- MFE230E Problem Set

 Due March 31 6:00 pm PST via bC

 1. Ruppert-Matteson ch. 12 Question 7

 2. Ruppert-Matteson ch. 12 Question

 3. Show that the ARMA(?

$$x_t = 1.5x_{t-1} - 0.5x_{t-2} + e_t - 0.5e_{t-1}$$

$$x_t = \phi x_{t-1} + e_t$$

$$y_t = \psi y_{t-1} + w_t$$

- where $|\phi|, |\psi| < 1$.

 (a) What kind of AP^-
 - What kind of ARMA process is $z_t = x_t + y_t$ if $\phi \neq \psi$?
 - 1,2022,10:02:58 PI 5. Simulate and plot five sample paths of simulated AR(1) processes $x_t = \phi x_{t-1} + e_t, e_t \sim NWN(0, 1)$ for sample sizes T = 100, 1000, 10000nkaj kumar@berkeley.edu for sample sizes T = 100, 1000, 10000 and
 - (a) $\phi = 0.9$.
 - (b) $\phi = 0.99$.

32:58 PM

- (c) $\phi = 0.99999$.
- (d) Random walk

Use the same draws of the e_t 's to construct the AR(1) with different ϕ 's.

Use the same y-scale for plots with the same sample size. Compute the sample means and standard deviations and compare them to the population moments. Compare the behavior of the processes.

Note: Do not use built-in statsmodels routines, such as the statsmodels.tsa.arima_process.arma_ generate_sample command. Draw shocks using a random number generator and then construct $x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + e_t$ $b_2 \text{ is the } AB$ the processes recursively.

6. Consider an AR(2) process:

$$x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + e_t$$

Under what conditions for ϕ_1 and ϕ_2 is the AR(2) stationary and ergodic? Plot the stationarity region in a diagram with ϕ_1 on the x-axis and ϕ_2 on the y-axis. Also indicate the regions for which the roots are real and imaginary. 32 10.02:58 PM PDT

