Since $\|\exp(tA_n)\| \le e^t$ for every $n \in \mathbb{N}$, $t \ge 0$, and since $t \to T(t)x$ is continuous on each component E_n it follows that T is strongly continuous. Its generator is the operator A as defined above.

For $\lambda \in \mathbb{C}$, Re $\lambda > 0$, we have $\lim_{n \to \infty} \|R(\lambda - 2\pi i n, A_n)\| = 0$, hence $(R(\lambda, A_n + 2\pi i n))_{n \in \mathbb{N}} = (R(\lambda - 2\pi i n, A_n))_{n \in \mathbb{N}}$

is a bounded operator on E representing the resolvent $R(\lambda,A)$. Therefore we obtain $s(A) \le 0$. On the other hand, each $2\pi in$ is an eigenvalue of A , hence s(A) = 0.

Take now $x_n \in E_n$ as above and consider the sequence $(x_n)_{n \in \mathbb{N}}$. From (iii) it follows that for t > 0 the number e^t is an approximate eigenvalue of T(t) with approximate eigenvector $(x_n)_{n \in \mathbb{N}}$ (see Def.2.1 below). Therefore $e^t \le r(T(t)) \le \|T(t)\|$ and hence $\omega(T) \ge 1$. On the other hand, it is easy to see that $\|T(t)\| = e^t$, hence $\omega(T) = 1$.

Finally if we take $S(t) := e^{-t/2} \cdot T(t)$ we obtain a semigroup having spectral bound $-\frac{1}{2}$ but such that $\lim_{t \to \infty} \|S(t)\| = \infty$ in contrast with Cor. 1.2.

These examples show that neither the conclusion of Cor.1.2 , i.e. 's(A) < 0 implies stability', nor the 'spectral mapping theorem'

$$\sigma(T(t)) = \exp(t \cdot \sigma(A))$$

is valid for arbitrary strongly continuous semigroups. A careful analysis of the general situation will be given in Section 6 below, but we will first develop systematically the necessary spectral theoretic tools for unbounded operators.

2. THE FINE STRUCTURE OF THE SPECTRUM

As usual, with a closed linear operator A with dense domain D(A) in a Banach space E , we associate its spectrum $\sigma(A)$, its resolvent set $\rho(A)$ and its resolvent

$$\lambda \rightarrow R(\lambda,A) := (\lambda - A)^{-1}$$

which is a holomorphic map from $\rho\left(A\right)$ into $L\left(E\right)$. In contrast to the finite dimensional situation, where a linear operator fails to be surjective if and only if it fails to be injective, we now have to distinguish different cases of 'non-invertibility' of λ - A . This distinction gives rise to a subdivision of $\sigma\left(A\right)$ into different subsets. We point out that these subsets need not be disjoint, but our defini-