Índex

- Lògica i fonamentació
- 2 Teoria de Conjunts
- Aritmètica
- Combinatòria
- Teoria de Grafs
 - Aspectes computacionals
 - Arbres no arrelats
 - Arbres arrelats

Aspectes computacionals

Objectiu

Representar i treballar computacionalment amb grafs

Representació: Diccionari de vèrtexos adjacents

Per a cada vèrtex, guardar la llista de vèrtexos adjacents a ell

Exemple

$\mathcal{A}(v)$
2,4
1,4,5
5
1,2
2,3

Representació: Matriu d'adjacència

Enumerar vèrtexos v_1, \ldots, v_n i construir matriu

$$A = (a_{i,j}),$$
 $a_{i,j} = \begin{cases} 1 & \text{si } v_i v_j \in E \\ 0 & \text{altrament.} \end{cases}$

Exemple

$$\begin{pmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix}$$

←□ > ←□ > ←□ > ←□ > ←□

Proposició

Sigui $a_{i,j}^{(k)}$ l'entrada (i,j) de la matriu A^k . Aleshores $a_{i,j}^{(k)}$ és igual al nombre de recorreguts $v_i \rightsquigarrow v_j$ de longitud k

Demostració

- ightharpoonup Cert per definició per a k=1
- ▶ Per a k > 1. Per a cada $v_i, v_i \in V$, bijecció entre:
 - ightharpoonup Camins $v_i \leadsto v_i$ de long. k
 - ▶ Parells $(v_i \leadsto v_l, v_l v_i \in E)$ amb $u \leadsto w$ de long. k-1

Per H.I., núm. camins: $\sum_{i} a_{i,l}^{(k-1)} a_{l,i}^{(1)} = a_{i,l}^{(k)}$

Observació

Amb grafs dirigits funciona igual

5 / 23

Enumerar vèrtexos v_1, \ldots, v_n i arestes e_1, \ldots, e_m i construir matriu

$$B=(b_{i,j}), \qquad a_{i,j}= egin{cases} 1 & ext{si } v_i ext{ incident amb } e_j \ 0 & ext{altrament.} \end{cases}$$

Exemple

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

マロケス部ケスを大きを 第二名

Representació: Matriu d'incidència (cas dirigit)

Enumerar vèrtexos v_1, \ldots, v_n i arcs e_1, \ldots, e_m i construir matriu

$$B = (b_{i,j}), \qquad a_{i,j} = \begin{cases} 1 & \text{si } v_i \text{ v. inicial de } e_j \\ -1 & \text{si } v_i \text{ v. final de } e_j \\ 0 & \text{altrament.} \end{cases}$$

Exemple

$$\begin{pmatrix}
1 & 0 & 0 & 1 & 0 \\
-1 & 1 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 & 1
\end{pmatrix}$$

< □ ト < □ ト < 亘 ト ∢

Teorema

G graf, A mat. d'adjacència, B matriu d'incidència, D matriu diagonal amb $d_i = d(v_i)$. Aleshores:

$$B \cdot B^t = A + D$$

Demostració

 $V = \{v_1, \dots, v_n\}, E = \{e_1, \dots, e_m\}.$

- \blacktriangleright Si $i \neq j$, $(B \cdot B^t)_{i,j} = \sum_k b_{i,k} b_{j,k}$. Cada sumand: 1 si $e_k = v_i v_j$; 0 altrament. La suma és $a_{i,i}$
- ▶ Si i = j, $(B \cdot B^t)_{i,i} = \sum_k b_{i,k} b_{i,k}$. Cada sumand: 1 si e_k té extrem v_i ; 0 altrament. La suma és d_i .

Curs 2013/14

Biel Cardona (UIB)

Algorismes sobre grafs

Els llenguatges d'alt nivell implementen:

- ► Grafs i digrafs com a tipus de dades
- Mètodes per introduir grafs
- Mètodes per a tractar grafs:
 - Accés a vèrtexos, arestes
 - Accés a veïns d'un vèrtex
 - **>**
- Algorismes específics

Algorisme de Dijkstra

Donat un graf (dirigit) amb pesos als arcs, trobar el camí de pes mínim entre un vèrtex donat i els altres (Demo)

```
Dades: Un graf G i un node origen u.
NoOpt := V;
per a tot node v diferent de u fer
    dist(v) := \infty;
    pred(v) := nodef:
fi
dist(u) := 0;
mentre NoOpt \neq \emptyset fer
    Sigui v \in \text{NoOpt amb } \text{dist}(v) mínim;
    NoOpt := NoOpt \setminus \{v\};
    per a tot node v' de NoOpt adjacent a v fer
        si dist(v) + w(vv') < dist(v') aleshores
             dist(v') = dist(v) + w(vv');
            \operatorname{pred}(v') = v;
    fi
```

Sortida: Taula amb dist(v) i pred(v)

Arbres no arrelats

Arbres (no arrelats)

Un arbre és: graf connex acíclic

Exemple

Proposició (caracteritzacions d'arbres)

En tot graf, són equivalents:

- G és connex i acíclic
- $oldsymbol{\circ}$ Tot parell de vèrtexos de G està unit per un únic camí.
- \bullet G és connex i, si el seu ordre és n, la seva mida és n-1.
- G és connex, però G-e és no connex per a tota aresta $e \in E(G)$.
- G és acíclic, però G + uv conté un cicle per a tot parell u, v de vèrtexos independents.

Curs 2013/14

Demostració

- \blacktriangleright (1 \Longrightarrow 2) El camí existeix per ser G connex. Si hi ha múltiples camins, obtenim cicle.
- \triangleright (2 \Longrightarrow 1) G és connex per l'existència de camins. Si hi ha cicles, obtenim múltiples camins.
- \blacktriangleright (1 \Longrightarrow 3) Fem inducció sobre |V|=n. Per a n=1 el resultat és trivial. Sigui G un graf connex acíclic amb n+1 vèrtexos, sigui e una aresta qualsevol i G/e el graf amb n vèrtexos obtingut per contracció de e. G/e és connex i acíclic; per hipòtesi d'inducció G/e té n-1 arestes, d'on G en té n.
- \blacktriangleright (3 \Longrightarrow 1) Fem inducció sobre |V|=n. Per a n=1 el resultat és trivial. Sigui G amb n+1 vèrtexos i n arestes, i sigui e una aresta qualsevol. G/e té n vèrtexos i n-1 arestes, d'on és connex i acíclic. Ara G és connex i acíclic (per ser-ho G/e).

Demostració

- lacksquare (1 \Longrightarrow 4) Suposem que G-e és connex per a certa aresta e=uv. Un camí $u \rightsquigarrow v$ a G - e concatenat amb e dóna cicle. Contradicció.
- \blacktriangleright (4 \Longrightarrow 1) Suposem que G té cicle, i sigui e aresta del cicle. El graf G-e és connex. Contradicció.
- \blacktriangleright (1 \Longrightarrow 5) Siguin u,v independents; considerem $u \leadsto v$ únic camí de u a v. Concatenant amb e = vu trobem cicle.
- \triangleright Suposem G no connex, i u i v de components diferents. G + uv no pot contenir cicles si G no té cicles. Contradicció

Boscos

Un bosc és un graf acíclic (components connexos són arbres)

Arbres generadors

Un arbre generador d'un graf connex és subgraf generador (conté tots els vèrtexos) que és arbre.

Proposició

Tot graf connex té arbre generador

Demostració.

Comencem amb $W = \{u_0\}$ un vèrtex qualsevol i $F = \{\}$. T = (W, F) és un arbre. Per a cada $k = 2, \ldots, |V|$ fem:

- **E**scollim e = uv aresta unint vèrtex u de W amb vèrtex v de $V \setminus W$ (existeix per connexitat)
- $V := W \sqcup \{v\}, F := F \sqcup e, T := (W, F)$

Al final F és subgraf de G amb n vèrtexos i n-1 arestes.

Curs 2013/14 15 / 23

Arbres generadors minimals

- ▶ Un graf amb pesos a les arestes és un graf amb funció $w: E \to \mathbb{R}^+$.
- El pes d'un subgraf és la suma dels pesos de les arestes que conté.
- Un arbre generador minimal és un arbre generador de pes minimal.

Algoritme de Prim

Donat un graf amb pesos a les arestes, trobar un arbre generador minimal. (Demo)

```
Dades: Un graf G amb pesos a les arestes.
```

```
Sigui e = uv una aresta de G de pes minimal; V_1 := \{u, v\}; T := (V_1, \{e\});
```

```
per a k=2,\ldots,|V|-1 fer
```

```
Sigui e_k = (u_k v_k) de pes mínimal t.g. u_k \in V_{k-1}, v_k \notin V_{k-1};
```

$$\mathsf{Fem}\ V_k := V_{k-1} \cup \{v_k\};$$

Fem
$$T := T + e_k$$
;

fi

Sortida: T

Curs 2013/14

Arbres arrelats

Arbres arrelats

Un arbre arrelat és:

- ► Arbre amb node distingit (arrel)
- ► Digraf amb:
 - únic vèrtex r amb $d_e(r)=0$
 - Per a tot $u \in V \exists ! \mathsf{cam}(\ r \leadsto u)$

Exemple

| イロト イ部ト イミト イミト | ヨーダ

ightharpoonup Si uv és arc: u és pare de v, v és fill de u

- Arrel: únic node sense pare
- ► Fulla: node sense fills
- Node interior: node amb pare (únic) i fills
- Node elemental: node amb únic fill
- ightharpoonup Descendència de u: Nodes accessibles des de u
- lacktriangle Ascendència de u: Nodes des dels que es pot accedir a u

Arbres binaris

Tot node no fulla té 2 fills (indistingibles)

Exemple

Curs 2013/14

Arbres ordenats

Arbre on es fixa ordenació dels fills dels nodes interiors

Exemple

Arbres ordenats binaris

Tot node no fulla té dos fills distingibles (esq./dreta)

Nombre d'arbres amb n fulles:

n	SNE	Bin	Bin Ord
2	1	1	1
3	2	1	2
4	5	2	5
5	12	3	14
6	33	6	42
7	90	11	132
8	261	23	429
9	766	46	1430
10	2312	98	4862

► SNE: Sense nodes elementals

▶ Bin .: Binaris

▶ Bin. Ord.: Binaris ordenats

Recorreguts

- ▶ Recorregut en *preordre* de *T* :
 - lacktriangle Visitar l'arrel de T.
 - lacktriangle Recorre en preordre el subarbre de l'esquerra de T.
 - ullet Recorre en preordre el subarbre de la dreta de T.
- ▶ Recorregut en *inordre* de *T*:
 - Recorre en inordre el subarbre de l'esquerra de T.
 - \bigcirc Visitar l'arrel de T.
 - ullet Recorre en inordre el subarbre de la dreta de T.
- ► Recorregut en *postordre* de *T*:
 - lacktriangle Recorre en postordre el subarbre de l'esquerra de T.
 - 2 Recorre en postordre el subarbre de la dreta de T.
 - Visitar l'arrel de T.

- ▶ Preordre: F, B, A, D, C, E, G, I, H.
- ▶ Inordre: A, B, C, D, E, F, G, H, I.
- ▶ Postordre: A, C, E, D, B, H, I, G, F.

Curs 2013/14