Recall: Locks: Loads/Stores

- This implementation does not ensure mutual exclusion, since both threads may grab the lock:
- After Thread 1 reads flag==0 and exits the while loop, it is preempted/interrupted by Thread 2, which also reads flag==0 and exits the while loop. Then both threads set flag=1 and enter the critical section.
- Root cause: Lock is not an atomic operation!

```
typedef struct __lock_t { int flag; } lock_t;
                                                           flag = 0
   void init(lock t *mutex) {
        // 0 -> lock is available, 1 -> held
                                                           Thread 1
                                                                                       Thread 2
        mutex - > flag = 0;
                                                           call lock()
                                                           while (flag == 1)
                                                           interrupt: switch to Thread 2
   void lock(lock t *mutex) {
                                                                                       call lock()
        while (mutex->flag == 1) // TEST the flag
                                                                                       while (flag == 1)
             ; // spin-wait (do nothing)
                                                                                       flag = 1;
        mutex \rightarrow flaq = 1; // now SET it!
                                                                                       interrupt: switch to Thread 1
12
                                                           flag = 1; // set flag to 1 (too!)
13
   void unlock(lock_t *mutex) {
        mutex -> flaq = 0;
```

Mutual Exclusion I

```
Boolean flag[2];
flag[0]=false, flag[1]=false;
```

```
//Thread T0
while (true) {
  while (flag[0]==flag[1]);
  //Critical section
  flag[0]=flag[1];
}
//Thread T1
while (true)
//Critical flag[0]=
```

```
//Thread T1
while (true) {
    while (flag[0]!=flag[1]);
    //Critical section
    flag[0]=!flag[1];
}
```

- Does it achieve one of more of the correctness properties of a concurrent program:
 - Mutual exclusion: Only one thread in critical section at a time
 - Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
 - Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter
- Does it need the TestAndSet() instruction for atomic execution like the previous slide "Locks: Loads/Stores"?
- What is its major flaw?
- ANS:

Mutual Exclusion II

```
Boolean flag[2];
flag[0]=false, flag[1]=false;
```

```
//Thread T0
while (true) {
    flag[0] = true;
    while (flag[1]==true);
    /* Critical Section */
    flag[0] = false;
}
```

```
//Thread T1
while (true) {
   flag[1] = true;
   while (flag[0]==true);
   /* Critical Section */
   flag[1] = false;
}
```

- Does it achieve one of more of the correctness properties of a concurrent program:
 - Mutual exclusion: Only one thread in critical section at a time
 - Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
 - Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter
- ANS:

Mutual Exclusion III (Peterson's Solution)

```
Boolean flag[2];
flag[0]=false, flag[1]=false;
int turn = 0;
```

```
//Thread T0
while (true) {
   flag[0] = true;
   turn = 1;
   while (flag[1]==true && turn==1);
   /* Critical Section */
   flag[0] = false;
}
```

```
//Thread T1
while (true) {
   flag[1] = true;
   turn = 0;
   while (flag[0]==true && turn==0);
   /* Critical Section */
   flag[1] = false;
}
```

- Does it achieve one of more of the correctness properties of a concurrent program:
 - Mutual exclusion: Only one thread in critical section at a time
 - Progress (deadlock-free): If several simultaneous requests, must allow one to proceed
 - Bounded waiting (starvation-free): Must eventually allow each waiting thread to enter
- ANS: