Anteckningar 2022-04-05

Elias Almqvist

 $elalmqvist@gmail.com -- \verb|https://wych.dev|$

Inhomogena diff-ekvationer av första-ordningen bevis

$$y' + ay = f(x)$$

Låt $g = y_{p1} - y_{p2}$

Där y_{p1} och y_{p2} (antagande) är partikulärlösningar till ekvationen y' + ay = f(x). Alltså är $y'_{pn} + ay_{pn} = f(x)$ Detta ger den homogena ekvationen för g:

$$g' + ag = y'_{p1} - y'_{p2} + a(y_{p1} - y_{p2}) = (y'_{p1} + ay_{p1}) - (y'_{p2} + ay_{p2})$$

Eftersom $(y'_{p1} + ay_{p1}) - (y'_{p2} + ay_{p2}) = f(x) - f(x)$ får vi att:

$$g' + ag = (y'_{p1} + ay_{p1}) - (y'_{p2} + ay_{p2}) = f(x) - f(x) = 0$$

Dv
s $g=y_{p1}-y_{p2}$ är en lösning till $y^{\prime}+ay=0$

$$\implies g + y_{p2} = y_{p1}$$

$$\therefore y = g + y_{p2} \therefore g = y_{p1} - y_{p2}$$

Då $g = y_h$ och $y_{p2} = y_p$

$$y = y_h + y_p$$
 V.S.V