MIDTERM EXAMINATION Fall 2009

CS302- Digital Logic Design (Session - 5)

Ref No: 1022709

Time: 60 min

Marks: 38

Question No: 1 (Marks: 1) - Please choose

one

According to Demorgan's theorem:

 $\overline{A + B + C} =$

- ► A.B.C
- \rightarrow A + $\overline{\text{B.C}}$
- A.B.C
- ▶ A.B + C

Question No: 2 (Marks: 1) - Please choose one

The Extended ASCII Code (American Standard Code for Information Interchange) is a _____ code

- ► 2-bit
- ► 7-bit
- ▶ 8-bit
- ► 16-bit

Question No: 3 (Marks: 1) - Please choose

one

The AND Gate performs a logicalfunction
➤ Addition ➤ Subtraction
MultiplicationDivision
Question No: 4 (Marks: 1) - Please choose one
NOR gate is formed by connecting
► OR Gate and then NOT Gate
NOT Gate and then OR GateAND Gate and then OR Gate
OR Gate and then AND Gate
Question No: 5 (Marks: 1) - Please choose one
Generally, the Power dissipation of devices remains constant throughout their operation.
 ► TTL ► CMOS 3.5 series ► CMOS 5 Series ► Power dissipation of all circuits increases with time.
Question No: 6 (Marks: 1) - Please choose

one

Two 2-bit comparator circuits can be connected to form single 4-bit comparator						
► True ► False						
Question No: 7 (Marks: 1) - Please choose one						
When the control line in tri-state buffer is high the buffer operates like a gate						
 ► AND ► OR ► NOT ► XOR 						
Question No: 8 (Marks: 1) - Please choose one						
The GAL22V10 has inputs						
 ▶ 22 ▶ 10 ▶ 44 ▶ 20 						
Question No: 9 (Marks: 1) - Please choose						

one
The ABEL symbol for "OR" operation is

▶ &
▶ #
▶ \$
Question No: 10 (Marks: 1) - Please choose one
The OLMC of the GAL16V8 is to the OLMC of the GAL22V10
▶ Similar▶ Different
► Similar with some enhancements
Depends on the type of PALs input size
Question No: 11 (Marks: 1) - Please choose one
All the ABEL equations must end with
" . " (a dot)" \$ " (a dollar symbol)
" \$ " (a dollar symbol) "; " (a semicolon)
► "\$" (a dollar symbol)
" \$ " (a dollar symbol) "; " (a semicolon)

- **4**
- ▶ 8
- **▶** 12
- ▶ 16

Question No: 13 (Marks: 1) - Please choose one

"Sum-of-Weights" method is used

- ► to convert from one number system to other
 - ▶ to encode data
 - ▶ to decode data
 - ▶ to convert from serial to parralel data

Question No: 14 (Marks: 1) - Please choose one

Circuits having a bubble at their outputs are considered to have an active-low output.

- ▶ True
- ► False

Question No: 15 (Marks: 1) - Please choose one

 $(A+B)(A+\overline{B}+C)(\overline{A}+C)$ is an example of _____

► Product of sum form

- ➤ Sum of product form
- ▶ Demorgans law
- ► Associative law

Question No: 16 (Marks: 1) - Please choose one

Which one is true:

Power consumption of TTL is higher than of CMOS

- ► Power consumption of CMOS is higher than of TTL
- ► Both TTL and CMOS have same power consumption
- ► Power consumption of both CMOS and TTL depends on no. of gates in the circuit.

Question No: 17 (Marks: 1)

Which device performs an operation which is the opposite of the Decoder function?

Ans:

Encoder function.

Question No: 18 (Marks: 1)

Name any two modes in which PALs are programmed. Ans:

PAL devices are programmed by blowing the fuses permanently using over voltage.

Question No: 19 (Marks: 2)

Explain Combinational Function Devices?

Ans;

Xor,Xnor,NAND,NOR are combinational function devices.

Question No: 20 (Marks: 3)

Differentiate between hexadecimal and octal number system

octal - base 8 hexadecimal - base 16

Octal and hex are used to represent numbers instead of decimal because there is a very easy and direct way to convert from the "real" way that computers store numbers (binary) to something easier for humans to handle (fewer symbols). To translate a binary number to octal, simply group the binary digits three at a time and convert each group. For hex, group the binary digits four at a time.

Question No: 21 (Marks: 5)

Explain "Sum-of-Weights Method" for Hexadecimal to Decimal Conversion with at least one example?

Ans:

The hexadecimal (Hex) numbering system provides even shorter notation than octal. Hexadecimal uses a base of 16. It employs 16 digits: number 0 through 9, and letters A through F, with A through F substituted for numbers 10 to 15, respectively,

Hexadecimal numbers can be expressed as their decimal equivalents by using the sum of weights method, as shown in the following example:

Weight 2 1 0
Hex. Number 1 B 7

$$7 \times 16^{0} = 7 \times 1 = 7$$

 $11 \times 16^{1} = 11 \times 16 = 176$
 $1 \times 16^{2} = 1 \times 256 = 176$
Sum of products

Like octal numbers, hexadecimal numbers can easily be converted to binary or vise versa. Conversion is accomplished by writing the 4-bit binary equivalent of the hex digit for each position, as illustrated in the following

43910

example:

Hexadecim	Binary	Decimal
al		
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
В	1011	11
C	1100	12
D	1101	13
Е	1110	14
F	1111	15

Question No: 22 (Marks: 10)

Draw the function table of two-bit comparator circuit, map it to K-Map and derive the expression for (A > B) Ans:

X_1	X_0	\mathbf{Y}_1	Y_0	X <y< th=""><th>X=Y</th><th>X>Y</th></y<>	X=Y	X>Y
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

The circuit has inputs X_1X_0 and Y_1Y_0 and outputs X > Y, the expression for > is $x_1 \overline{y_1} + x_0 \overline{y_1} \overline{y_0} + x_1 x_0 \overline{y_0}$ time is out.....

BEST REGARD KASHIF IMRAN SUPER MODERATOR WWW.VIRTUALINSPIR.COM