CIS 2107 Chapter 2 Notes Part 2

Representing and Manipulating Information

negative numbers?

How do we represent negative numbers?

representing negative numbers

- Sign and magnitude
- One's complement
- Two's complement
- Biased encoding

simple idea: sign and magnitude

- one bit for the sign
- everything else exactly the same

- So if this is 1_{10:}
 - $-0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_{2}$
- -1₁₀ is:
 - $-1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001_{2}$

sign and magnitude

- *n* bit numbers, can represent
 - $--2^{n-1}$ to 2^{n-1}
- Some problems:
 - Two zeros:
 - 0_{10} =0x0000000 AND
 - $0_{10} = 0 \times 80000000$
 - Complicated hardware

another idea: back to our odometer

odometer math

odometer math

another example

another example

another example

odometer subtraction?

- (Isn't that illegal?)
- What if we wanted to do subtraction all along?
 - subtracting 99,998 is the same as adding 2
 - subtracting 98,000 is the same as adding 2,000

In odometer math, to subtract, what can we add?

9's complement

- decimal 9's complement of a number:
 - subtract number from all-9's (same width)
- example: 9's complement of 31,692

$$\begin{array}{r} 99,999 \\ - 31,692 \\ \hline 68,307 \end{array}$$

10's complement

- Simple. 9's complement + 1.
- 10's complement of 31,692:

$$\begin{array}{r} 99,999 \\ - 31,692 \\ \hline 68,307 \\ + 1 \\ \hline 68,308 \\ \end{array}$$

10's complement. So What?

• In odometer math, adding 68,308 is the same as subtracting 31,692. Example:

$$\begin{array}{r}
50,000 \\
- 31,692 \\
\hline
18,308
\end{array}$$

Why this works

losing the carry: same as subtracting 100,000

$$= 50,000 - 31,692$$

$$= 50,000 + (99,999 - 31,692 + 1) - 100,000$$

$$= 50,000 + (99/999 - 31,692 + 1) - 100/999$$

one's complement

- subtract from an equal-width string of all 1's.
- example: 1's complement of 11000110₂

$$\begin{array}{r} 11111111_2 \\ - 11000110_2 \\ \hline 00111001_2 \end{array}$$

another way of getting one's complement?

one's complement

- subtract from an equal-width string of all 1's.
- example: 1's complement of 11000110₂

$$\begin{array}{r} 111111111_2 \\ - 11000110_2 \\ \hline 00111001_2 \end{array}$$

- another way of getting one's complement?
 - bitwise NOT

one's complement arithmetic

- Addition
 - add the carry bit back in
- Subtraction
 - add the complement

notice: like signed magnitude, two zeros

two's complement

two's complement = one's complement + 1

two's complement example

- 6₁₀=0110₂
- -6₁₀?

- take one's complement (i.e., flip bits), add 1
- $OC(0110_2) = 1001_2$
- $1001_2 + 1 = 1010_2$
- So $-6_{10} = 1010_2$

TC(TC(x))=x?

- We've said:
 - $-6_{10} = 0110_2$
 - $--6_{10} = 1010_2$
- $TC(TC(0110_2))=0110_2$?
- $TC(1010_2)$
 - take one's complement
 - 0101₂
 - add one: 0110_2

$$6_{10}$$
=0110₂; -6_{10} = 1010₂. Check.

• So what's 6 + (-6)?

$$\begin{array}{r} 0110_2 \\ + 1010_2 \\ \hline 1 0000_2 \end{array}$$

 How could we take the two's complement of a number in C?

 How could we take the two's complement of a number in C?

```
int TC(int x) {
    ??????
}
```

 How could we take the two's complement of a number in C? Easy.

```
int TC(int x) {
    return -x;
}
```

 How could we take the two's complement of a number in C? Easy.

```
int TC(int x) {
    return -x;
}
```

 But what if we said that you couldn't use the negation operator?

TC in C without negation operator

- Take the one's complement (i.e., flip bits)
- Add 1
- How do we do this in C?

TC in C without negation operator

- Take the one's complement (i.e., flip bits)
- Add 1
- How do we do this in C?

```
int TC(int x) {
    return ~x+1;
}
```

unsigned numbers

signed numbers

know the key places

key places for 16 bit words

	hex	binary
UMax	0xFFFF	0b1111111111111111
TCMax	0x7FFF	0b0111111111111111
TCMin	0x8000	0b1000000000000000
0	0x0000	0b0000000000000000
-1	0xFFFF	0b1111111111111111

key places table

word size	8	16	32	64
UMax	0xFF	0xFFFF	0xFFFFFFFF	0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
	255_{10}	$65,535_{10}$	$2^{32} - 1$	$2^{64} - 1$
TCMax	0x7F	0x7FFF	0x 7 FFFFFFF	0x 7 FFFFFFFFFFFFFFFF
TCMin	0x80	0x8000	0x80000000	0x8000000000000000
0	0x00	0x0000	0x000000000	0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-1	0xFF	0xFFFF	0xFFFFFFFF	0xFFFFFFFFFFFFFFF

know these in binary

unsigned numbers

another way of describing unsigned nums

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

What's B2U(1010)?

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

$$B2U(10102) = (1)(8) + (0)(4) + (1)(2) + (0)(1)$$
$$= 1010$$

same for two's complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

What's TC(1010)?

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

$$B2T(1010) = (1)(-8) + (0)(4) + (1)(2) + (0)(1)$$
$$= -6$$

Bias Encoding. Bias = -2^{width-1}-1

binary	unsigned	\mathbf{TC}	OC	$ \mathbf{SM} $
0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	4	4	4
0101	5	5	5	5
0110	6	6	6	6
0111	7	7	7	7
1000	8	-8	-7	-0
1001	9	-7	-6	-1
1010	10	-6	-5	-2
1011	11	-5	-4	-3
1100	12	-4	-3	-4
1101	13	-3	-2	-5
1110	14	-2	-1	-6
1111	15	-1	-0	-7

C integer types

- char, short int, int, long int (C99 long long int)
- unsigned versions of each

C spec doesn't say, but most implementations TC

How big are each?

C data type	typical 32-bit	Intel IA32	x86-64
char	1	1	1
short	$\overline{2}$	2	2
int	4	4	4
long	4	4	8
long long	8	8	8
float	4	4	4
double	8	8	8
long double	8	10/12	10/16
pointer	4	4	8

Is this sort of thing an issue in Java?

constants

integers

- 123 (32-bit int)
- 123L (32-bit long int)
- 123u (32-bit unsigned int),
- 123uL (32-bit unsigned long)
- 123LL (64-bit signed long long)

octal and hex

- 0100 (100 octal = 64 decimal)
- 0x100 (100 hex = 256 decimal)
- Oxful (15 unsigned long).

floating point

- 12.3 (32-bit float),
- 123e-1 (32-bit float)
- 12.3f (32-bit float),
- 12.3L (64-bit long double)

'x' = character constant (0 to 127).

- In ASCII ' ' = '\040' = 'x20' = 32
- In ASCII $'0' = ' \setminus 060' = 'x30' = 48$
- In ASCII 'A' = $' \setminus 101' = 'x41' = 65$
- In ASCII 'a' = ' 141' = 'x61' = 97

What range can be stored?

width	signed?	range
8 bits	unsigned	$0 \text{ to } 2^8 - 1$
	signed	$-2^7 \text{ to } 2^7 - 1$
16 bits	unsigned	0 to $2^{16} - 1$
	signed	-2^{15} to $2^{15}-1$
32 bits	unsigned	$0 \text{ to } 2^{32} - 1$
	signed	-2^{31} to $2^{31} - 1$
64 bits	unsigned	$0 \text{ to } 2^{64} - 1$
	signed	-2^{63} to $2^{63}-1$

```
limits.h
/* Number of bits in a 'char'. */
# define CHAR_BIT
                       8
/* Minimum and maximum values a 'signed char' can hold. */
# define SCHAR MIN
                      (-128)
# define SCHAR_MAX
                       127
/* Maximum value an 'unsigned char' can hold. (Minimum is 0.) */
# define UCHAR_MAX
                       255
/* Minimum and maximum values a 'signed short int' can hold. */
# define SHRT MIN
                      (-32768)
# define SHRT_MAX
                       32767
/* Maximum value an 'unsigned short int' can hold. (Minimum is 0.) */
# define USHRT_MAX
                       65535
/* Minimum and maximum values a 'signed int' can hold. */
# define INT MIN
                      (-INT MAX - 1)
# define INT_MAX
                       2147483647
/* Maximum value an 'unsigned int' can hold. (Minimum is 0.) */
# define UINT_MAX
                       4294967295U
/* Minimum and maximum values a 'signed long int' can hold. */
# define LONG_MAX
                      2147483647L
# define LONG_MIN
                       (-LONG_MAX - 1L)
```

C99 <stdint.h>

- for all widths W that the machine supports
 - exact width types: intW t, uintW t
 - *e.g.*, int8_t, uint32_t.
 - minimum width types: int_leastW_t, uint_leastW_t
 - – style macros for these types:
 - e.g. INTW_MIN, UINTW_MAX, ...

take a look at some of these with gdb

```
int p1 = 37;
unsigned int p2 = 37;
int n1 = -37;
```

- remember to compile:
 - with the –g switch
 - don't turn on optimization (no –O)
- in gdb, to print binary, use p/t
- confirm you get the expected when you try:
 - $p/d (^n1+1)$

What happens?

```
int x=-1;
unsigned int ux = (unsigned int) x;
```

What happens?

```
int x=-1;
unsigned int ux = (unsigned int) x;
(gdb) p/t x
(gdb) p/d x
$2 = -1
(gdb) p/t ux
(gdb) p/u ux
$4 = 4294967295
```

casting from signed to unsigned

what happens if we cast a negative to an equal width unsigned?

bits
0000_{2}
0001_{2}
0010_{2}
00112
0100_2
$\boxed{0101_2}$
$\boxed{0110_2}$
$\boxed{0111_2}$
1000_{2}
$\boxed{1001_2}$
$\boxed{1010_2}$
10112
$\boxed{1100_2}$
$\boxed{1101_2}$
$\boxed{1110_2}$
11112

signed
0010
01_{10}
02_{10}
03_{10}
04_{10}
05_{10}
06_{10}
07_{10}
-08_{10}
-07_{10}
-06_{10}
-05_{10}
-04_{10}
-03_{10}
-02_{10}
-01_{10}

unsigned	
0010	
01 ₁₀	
02_{10}	
03 ₁₀	
04_{10}	
05 ₁₀	
06 ₁₀	
07 ₁₀	
08_{10}	
09_{10}	
10_{10}	
11_{10}	
12_{10}	
13 ₁₀	
14_{10}	
15_{10}	

casting from unsigned to signed

what if we cast a large unsigned positive to an equal width signed?

bit shifting for unsigned numbers

numbers fall off the end

shift left 1

• fill in with 0s

math equivalent (when 1s haven't fallen off)?

shifting left

- x << j
 - shift x to the left j bit positions
 - fill with 0s from the right
 - numbers "fall off the left end"

char
$$x=11$$
, j;

	x_{10}	x_2
0	11	0b00001011
1	22	0b00010110
2	44	0b00101100
3	88	0b01011000
4	176	0b10110000
5	96	0b01100000
6	192	0b11000000
7	128	0b10000000

shifting to the right

- unsigned:
 - same as left shift
- what about signed?
 - implementation dependent
 - some fill from LHS
 - with 0
 - with sign bit
 - (why do this with signed numbers anyway?)

```
int main(void)
  int i;
  char c1 = 64, c2 = -64;
  for (i=8; i>0; i--) {
    c1>>=1;
    c2>>=1;
  return 0;
```

(aside) java right shift

- Java defines two:
 - ->> fills from the left with the sign bit
 - ->>> fills from the left with 0s

some example code

```
public class JavaShift {
     public static void main(String args[]) {
2
        int x = Integer.MIN_VALUE; // i.e. -2**(31)
3
        for (int i=0; i<32; i++) {
4
          int ds = x > i;
5
          int ts = x >> i;
6
          System.out.println(x+" >> "+ i + " = " +
7
                                     Integer.toBinaryString(ds));
8
          System.out.println(x+" >>> "+ i + " = " +
9
                                     Integer.toBinaryString(ts));
10
          System.out.println();
11
12
13
14
```

java right shifts output

casting to different widths

- smaller to larger
 - no problem
- larger to smaller
 - information loss?

small to large

- What happens?
 - $-\log x = \operatorname{char} c$

unsigned: zero extension

- unsigned numbers
 - going from small to large → zero extension
- Example: unsigned long x = unsigned char c
- What happens?

signed: sign extension

- signed numbers
 - going from small to large → sign extension
- Example: long x = char c
- What happens?
 - if c > 0?
 - if c < 0?

C conversion rules

- Details in K&R Appendix A
- C rules. Three types:
 - Integer promotion
 - Integer conversion rank
 - Usual arithmetic conversions

C Conversion Rules: Integer Promotion

- Integer types smaller than int promoted to int.
- example:
 - char result, a=100, b=10, c=20

C Conversion Rules: Integer Conversion Rank

C Conversion Rules: "Usual" Arithmetic Conversions

casting large to small. truncation

```
int x1 = 0x00001234;
int x2 = 0x12345678;
short s1 = (short)x1;
short s2 = (short)x2;
printf("x1=0x%08x, ", x1);
printf("x2=0x%08x, ", x2);
printf("s1=0x%08x, ", s1);
printf("s2=0x%08x\n", s2);
```

we get:

x1=0x00001234, x2=0x12345678, s1=0x00001234, s2=0x00005678

truncation of unsigned numbers

- unsigned int x
- truncating to k bits equivalent to $x \mod 2^k$

integer arithmetic

- "odometer" effect
- modular arithmetic
- unsigned addition: addition modulo width
- for others, see details in BO

unsigned addition

addition modulo the width

@@@ TAKE A LOOK AT BO SLIDES 28 --@@@

@@@ ADD CMU SL 31 MATERIAL @@@@

Floating Point

What happens here?

```
#include <stdio.h>
2
    int main(int argc, char **argv)
3
      float f=0.1;
5
6
      if (f==0.1)
7
        printf("It's 0.1\n");
8
      else
9
        printf("It's not 0.1\n");
10
11
      return 0;
12
    }
13
```

What happens here?

```
#include <stdio.h>
             2
                int main(int argc, char **argv)
             3
                {
             4
                  float f=0.1;
             5
             6
                  if (f==0.1)
                    printf("It's 0.1\n");
             8
                  else
             9
                    printf("It's not 0.1\n");
            10
            11
                  return 0;
            12
                }
            13
   bash-3.2$ gcc -Wall -o StrangeFloat02 StrangeFloat02.c
  bash-3.2$ ./StrangeFloat02
2
   It's not 0.1
3
```

1

What about here?

```
#include <stdio.h>
    int main(int argc, char **argv)
    {
      float f1=0.1,
        f2=0.2,
6
        sum;
8
      sum=f1+f2;
9
      printf("%.8f+%.8f=%.8f\n", f1, f2, sum);
10
11
      return 0;
12
    }
13
```

What about here?

#include <stdio.h>

1

3

```
2
         int main(int argc, char **argv)
      4
           float f1=0.1,
             f2=0.2,
      6
             sum;
      8
           sum=f1+f2;
      9
           printf("%.8f+%.8f=%.8f\n", f1, f2, sum);
      10
      11
           return 0;
      12
         }
      13
bash-3.2$ gcc -Wall -o StrangeFloat StrangeFloat.c
bash-3.2$ ./StrangeFloat
0.10000000+0.20000000=0.30000001
```

Strange on 32-bit machines

```
#include <stdio.h>
1
2
   int main(void) {
3
      float a = 30000000;
      float b = 3;
5
      float c;
6
7
     c = a + b - a;
8
      printf("%f\n", c);
     c = a + b;
10
     c = c - a;
11
      printf("%f\n", c);
12
13
      return 0;
14
15
```

Strange on 32-bit machines

```
#include <stdio.h>
1
2
   int main(void) {
3
      float a = 30000000;
                                   Output:
      float b = 3;
5
                                      3.00000
     float c;
6
                                      4.00000
7
     c = a + b - a;
8
     printf("%f\n", c);
     c = a + b;
10
     c = c - a;
11
     printf("%f\n", c);
12
13
      return 0;
14
   }
15
```

Recall Binary Representation of ints

$$11011001_2 =$$

2^7	2^6	2^5	2^4	2^3	2^2	2^1	2^0
1	1	0	1	1	0	0	1

$$= (1)(128) + (1)(64) + (0)(32) + (1)(16) + (1)(8) + (0)(4) + (0)(2) + (1)(1)$$

$$= 128 + 64 + 16 + 8 + 1$$

$$= 217$$

What about fractions?

$$.11011001_2 =$$

•	2^{-1}	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}	2^{-7}	2^{-8}
•	1	1	0	1	1	0	0	1

$$= 2^{-1} + 2^{-2} + 2^{-4} + 2^{-5} + 2^{-8}$$
$$= 0.5 + 0.25 + 0.0625 + 0.03125 + 0.00390625$$

= 0.84765625

some powers of 2 <= 1

2^0	1.000000
2^{-1}	0.500000
2^{-2}	0.250000
2^{-3}	0.125000
2^{-4}	0.062500
2^{-5}	0.031250
2^{-6}	0.015625
2^{-7}	0.0078125
2^{-8}	0.00390625

Decimal to binary?

- How do we convert the representation of:
 - a fraction in decimal
 - to a fraction in binary

recall how we did numbers > 1

- Convert 119₁₀ to binary
- solution: 111 0111₂

$$119 = 59 * 2 + 1$$
$$59 = 29 * 2 + 1$$

$$29 = 14 * 2 + 1$$

$$14 = 7 * 2 + 0$$

$$7 = 3 * 2 + 1$$

$$3 = 1 * 2 + 1$$

$$1 = 0 * 2 + 1$$

converting fractions

```
while (fraction part != 0) {
    multiply number by 2
    record the integer part for later
    subtract the integer part
}

recorded integer parts are the binary rep
```

example. 0.6953125_{10} ?

$$0.6953125_{10} * 2 = 1.390625_{10}$$

$$0.390625_{10} * 2 = \mathbf{0}.78125_{10}$$

$$0.78125_{10} * 2 = 1.5625_{10}$$

$$0.5625_{10} * 2 = 1.125_{10}$$

$$0.125_{10} * 2 = \mathbf{0}.25_{10}$$

$$0.25_{10} * 2 = \mathbf{0}.5_{10}$$

$$0.5_{10} * 2 = 1.0_{10}$$

solution: 0.6953125₁₀=0.1011001₂

double check result

• $0.1011001_2 = 0.6953125_{10}$????

$$0.1011001_2 = 2^{-1} + 2^{-3} + 2^{-4} + 2^{-7}$$
$$= 0.5_{10} + 0.125_{10} + 0.0625_{10} + 0.0078125_{10}$$

$$\begin{array}{r} 0.5_{10} \\ 0.125_{10} \\ 0.0625_{10} \\ + 0.0078125_{10} \\ \hline 0.6953125_{10} \end{array}$$

Does it always work?

- Remember the pigeonhole?
 - infinite number of floating-point numbers
 - storing in register of finite size

Does it always work? Repeating

- We have repeating decimal fractions
- We also have repeating binary fractions.
 - $-0.1_{10} = 0.0001100110011_2 \dots$
 - $-0.2_{10} = 0.001100110011_2 \dots$
- The more places we have, the closer we are to the value we're trying to represent

representing 0.2₁₀

base 2 float	base 10 frac	base 10 float
0.0_{2}	0_{10}	0_{10}
0.00_{2}	0_{10}	0_{10}
0.001_2	$1/8_{10}$	0.125_{10}
0.0011_2	$3/16_{10}$	0.1875_{10}
0.00110_2	$3/16_{10}$	0.1875_{10}
0.001100_2	$3/16_{10}$	0.1875_{10}
0.0011001_2	$25/128_{10}$	0.1953125_{10}
0.00110011_2	$51/256_{10}$	0.19921875_{10}
0.001100110_2	$51/256_{10}$	0.19921875_{10}
0.0011001100_2	$51/256_{10}$	0.19921875_{10}
0.00110011001_2	$409/2048_{10}$	0.19970703125_{10}
0.001100110011_2	$819/4096_{10}$	0.199951171875_{10}
$0.0011001100110_2\\$	$819/4096_{10}$	0.199951171875_{10}
$0.00110011001100_2\\$	$819/4096_{10}$	0.199951171875_{10}
$0.001100110011001_2\\$	$6553/32768_{10}$	0.199981689453125_{10}
$0.0011001100110011_2\\$	$13107/65536_{10}$	0.1999969482421875_{10}
$0.00110011001100110_2\\$	$13107/65536_{10}$	0.1999969482421875_{10}
$0.001100110011001100_2\\$	$13107/65536_{10}$	0.1999969482421875_{10}
$0.0011001100110011001_2\\$	$104857/524288_{10}$	$0.1999988555908203125_{10}$
0.00110011001100110011_2	$209715/1048576_{10}$	$0.19999980926513671875_{10}^{91}$

representing 0.1₁₀

base 2 float	base 10 frac	base 10 float
0.00_{2}	0_{10}	0_{10}
0.000_{2}	0_{10}	0_{10}
$0.000\overline{1}_{2}$	$1/16_{10}$	0.0625_{10}
$0.0001\overline{1}_{2}$	$3/32_{10}$	0.09375_{10}
0.000110_2	$3/32_{10}$	0.09375_{10}
0.0001100_2	$3/32_{10}$	0.09375_{10}
0.00011001_2	$25/256_{10}$	0.09765625_{10}
0.000110011_2	$51/512_{10}$	0.099609375_{10}
0.0001100110_2	$51/512_{10}$	0.099609375_{10}
0.00011001100_2	$51/512_{10}$	0.099609375_{10}
0.000110011001_2	$409/4096_{10}$	0.099853515625_{10}
0.0001100110011_2	$819/8192_{10}$	0.0999755859375_{10}
0.00011001100110_2	$819/8192_{10}$	0.0999755859375_{10}
0.000110011001100_2	$819/8192_{10}$	0.0999755859375_{10}
$0.0001100110011001_2\\$	$6553/65536_{10}$	0.0999908447265625_{10}
0.00011001100110011_2	$13107/131072_{10}$	0.09999847412109375_{10}
$0.000110011001100110_2\\$	$13107/131072_{10}$	0.09999847412109375_{10}
$0.0001100110011001100_2\\$	$13107/131072_{10}$	0.09999847412109375_{10}
$0.00011001100110011001_2\\$	$104857/1048576_{10}$	$0.09999942779541015625_{10} \\$
$ 0.000110011001100110011_2 \\$	$209715/2097152_{10}$	$0.099999904632568359375_{1\%}$

can't represent everything

 with finite length binary strings, can only approximate numbers that can't be written as:

$$(x)(2^y)$$

(remember that y can be positive or negative)

Other "interesting" numbers

base 2 float	base 10 frac	base 10 float
0.1_2	$1/2_{10}$	0.5_{10}
0.11_{2}	$3/4_{10}$	0.75_{10}
0.111_{2}	$7/8_{10}$	0.875_{10}
0.1111_{2}	$15/16_{10}$	0.9375_{10}
0.11111_2	$31/32_{10}$	0.96875_{10}
0.111111_2	$63/64_{10}$	0.984375_{10}
0.1111111_2	$127/128_{10}$	0.9921875_{10}
0.111111111_2	$255/256_{10}$	0.99609375_{10}
0.1111111111_2	$511/512_{10}$	0.998046875_{10}
0.1111111111_2	$1023/1024_{10}$	0.9990234375_{10}

represent as:

$$\pm m \times b^e$$

m mantissa

b base

e exponent

but, base is always 2

- Recall: 1234567.0_{10} can be written:
 - -123456.7*10
 - $-12345.67*10^{2}$
 - $-1234.567*10^{3}$
 - $-123.4567*10^{4}$
 - $-12.34567*10^{5}$
 - $-1.234567*10^{6}$

- 110010.0010₂ can be written:
 - -110010.0010_2*2^0
 - -11001.00010_2*2^1
 - -1100.100010_2*2^2
 - $-110.0100010_2 * 2^3$
 - -11.00100010_2*2^4
 - -1.100100010_2*2^5
- Shift until radix after first 1 called normalizing

୍ର exponent mantissa

floating point representation

sign	exponent	mantissa
------	----------	----------

C type	exponent	mantissa
float	8 bits	23 bits
double	11 bits	52 bits

floating point representation

୍ରିଟ୍ର exponent mantissa

C type	exponent	mantissa
float	8 bits	23 bits
double	11 bits	52 bits

On Intel – "extended precision" (depending on compiler)

C type	exponent	mantissa	
long double	15 bits	64 bits	

How?

- How are floating-point numbers represented?
- There are three cases.

--- let's do the most common case first

How? The common case.

- Set the sign bit. 0 for positive, 1 for negative
- Write num in fixed-pt binary
- Normalize (radix pt is just to the right of the first 1)
- *m* is the values to the right of radix point
- calculate e: exponent+bias
 - $-bias = 2^{exponent field width-1}-1$
 - for floats, bias is $2^{8-1}-1 = 2^7-1 = 127$
 - for doubles, it's $2^{11-1}-1 = 2^{10}-1 = 1023$
 - Can represent exponents of:
 - -126 to +127 for floats
 - -1022 to +1023 for doubles

How? Example -15.375

- Set the sign bit. 0 for positive, 1 for negative
 - sign bit 1
- Write num in fixed-pt binary:
 - $-15.375 = 1111.011_{2}$
- Normalize (so radix point is just to the right of the first 1)
 - -1.111011_2*2^3
- *m* is the values to the right of radix point
 - -111011
- calculate e: exponent+127
 - exponent was 3_{10} (11₂).
 - $-3_{10}+127_{10}=130_{10}$ or $1000\ 0010_2$
- Final result:

1 1000 0010 111 0110 0000 0000 0000 0000

Another example

• -118.625

Another example

• -118.625

1 1000 0101 110 1101 0100 0000 0000 0000

double check: try in gdb

- -118.625?
 1 1000 0101
 110 1101 0100 0000 0000 0000
- Check.
- In a program where we have:
 - float fl
- (gdb) set fl=-118.625
- (qdb) x/t &fl
- 0x7fff5fbff68c: 1100001011101101010000000000000

How?

- How are floating-point numbers represented?
- There are three cases:
 - Normalized values (what we just did)
 - De-normalized values
 - Numbers "close" to 0.0
 - Exponent field is all zeros
 - "Special" cases
 - +/- ∞, NaN
 - Exponent field is all 1s.

Visualizing Floating-point Range

How?

- How are floating-point numbers represented?
- There are three cases:
 - Normalized values (what we just did)
 - De-normalized values
 - Numbers "close" to 0.0
 - Exponent field is all zeros
 - "Special" cases
 - +/- ∞, NaN
 - Exponent field is all 1s.

De-Normalized Values

- Why?
 - Used to represent values "close" to 0.0
- Exponent field all 0s.
 - Fraction represented has exponent of 1-Bias
- Mantissa field
 - we don't assume a leading 1
- Sign field
 - As usual, can be 1 or 0.
 - Means that we can also have +0.0 or -0.0

Example

- We'll use 7-bit floats, consisting of:
 - A sign bit
 - 3 bits for the exponent
 - 3 bits for the mantissa
- What is: 0 101 000, where:
 - 0 is the sign bit
 - 101 are the bits for the mantissa
 - 000 are the bits for the exponent

Example: 0 101 000

- We'll use 7-bit floats, consisting of:
 - A sign bit
 - 3 bits for the exponent
 - 3 bits for the mantissa
- What is: 0 101 000, where:
 - 0 is the sign bit
 - 101 are the bits for the mantissa
 - 000 are the bits for the exponent

- Bias is $2^{(3-1)}-1 = 2^2-1 = 3$
- Exponent is 1-bias = -2
- Mantissa:
 - $-\frac{1}{2}+0/4+1/8=5/8$
- Final result:
 - Mantissa * 2^{exponent}=
 - $-5/8*2^{-2}=$
 - -5/8*1/4=
 - 5/32 =
 - -0.15625

Another de-normalized example

0 110 000 (110 is the mantissa)

Another de-normalized example

- 0 110 000 (110 is the mantissa)
- Bias is $2^{(3-1)}-1 = 2^2-1 = 3$
- Exponent is 1-bias = -2
- $M = \frac{1}{2} + \frac{1}{4} + \frac{0}{8} = \frac{3}{4}$
- Final result = M*2^{exponent} =
 - $-\frac{3}{4}*2^{-2}=$
 - -3/4*1/4=
 - -3/16 = 0.1875

How?

- How are floating-point numbers represented?
- There are three cases:
 - Normalized values (what we just did)
 - De-normalized values
 - Numbers "close" to 0.0
 - Exponent field is all zeros
 - -"Special" cases
 - +/- ∞, NaN
 - Exponent field is all 1s.

"Special" Cases

- The exponent field is all 1s.
- If the fraction field is all 0s:
 - +/- infinity
 - Can use +/- infinity when:
 - overflow has occurred
 - divide by 0.
- Otherwise:
 - NaN, e.g. sqrt(-1)

"Simple" examples

- 32-, 64-, or 80-bit widths: tough to see
- keep it simple for now: 8-bit widths.
 - 1 bit for sign
 - 4 bits for the exponent
 - 3 bits for the fraction

Bias

• With a 4-bit exponent, what will be the bias?

Bias

- With a 4-bit exponent, what will be the bias?
- Bias = $2^{\text{width-1}} 1 = 2^{4-1} 1 = 2^3 1 = 7$

Table of "Simple" Values

\mathbf{S}	\exp	\mathbf{frac}	${f E}$	Value	comment
0	0000	000	-6	0	zero
0	0000	001	-6	1/8 * 1/64 = 1/512	closest to zero
0	0000	010	-6	2/8 * 1/64 = 2/512	
				• • •	
0	0000	110	-6	6/8 * 1/64 = 6/512	
0	0000	111	-6	7/8 * 1/64 = 7/512	largest denormalized
0	0001	000	-6	8/8 * 1/64 = 8/512	smallest norm (rem. leading 1)
0	0001	001	-6	9/8 * 1/64 = 9/512	
	• • •	• • •		• • •	•••
0	0110	110	-1	14/8 * 1/2 = 14/16	
0	0110	111	-1	15/8 * 1/2 = 15/16	closest to 1 from below
0	0111	000	0	8/8 * 1 = 1	
0	0111	001	0	9/8 * 1 = 9/8	closest to 1 from above
0	0111	010	0	10/8 * 1 = 10/8	
				• • •	•••
0	1110	110	7	14/8 * 128 = 224	
0	1110	111	7	15/8 * 128 = 240	largest normalized
0	1111	000	n/a	infinity	

Please convince yourselves that these make sense

Floating-point cheat sheet

"important" numbers

description	exp	frac
zero	0000	0000
smallest de-normalized	0000	0001
largest de-normalized	0000	1111
smallest normalized	0001	0000
one	0111	0000
largest normalized	1110	1111

Rounding

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
towards zero	\$1	\$1	\$1	\$2	-\$1
round down $(-\infty)$	\$1	\$1	\$1	\$2	-\$2
round up $(+\infty)$	\$2	\$2	\$2	\$3	-\$1
round to even	\$1	\$2	\$2	\$2	-\$2

Rounding

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
towards zero	\$1	\$1	\$1	\$2	-\$1
round down $(-\infty)$	\$1	\$1	\$1	\$2	-\$2
round up $(+\infty)$	\$2	\$2	\$2	\$3	-\$1
round to even	\$1	\$2	\$2	\$2	-\$2

- Don't be confused by round to even:
 - Round to the closest
 - Choose the even number when you're half-way between two possibilities

Why Round to Even?

- Rounding in same direction → skew?
- Round to even:
 - sometimes up
 - sometimes down

The moral of the story ... back to our first example. Why false?

```
#include <stdio.h>
2
    int main(int argc, char **argv)
    {
      float f=0.1;
5
6
      if (f==0.1)
7
        printf("It's 0.1\n");
8
      else
9
        printf("It's not 0.1\n");
10
11
      return 0;
12
    }
13
```

The moral of the story ... back to our first example. Why false?

```
#include <stdio.h>
2
    int main(int argc, char **argv) •
4
      float f=0.1;
5
6
      if (f==0.1)
7
        printf("It's 0.1\n");
8
      else
        printf("It's not 0.1\n");
10
11
      return 0;
12
13
```

- Can we store 0.1₁₀
 without rounding?
 - Will there be less round error if we use a double?
- What happens if the compiler uses a double for the 0.1 in line 7?
 Will the values be the same?

These give us what we expect.

```
#include <stdio.h>
                                            #include <stdio.h>
1
    int main(int argc, char **argv)
                                            int main(int argc, char **argv)
   {
                                         4
      float f = 0.1;
                                              double f = 0.1;
5
6
      if (f==0.1f) {
                                              if (f==0.1) {
                                                printf("It's 0.1\n");
       printf("It's 0.1\n");
     } else {
                                              } else {
        printf("It's not 0.1\n");
                                                printf("It's not 0.1\n");
10
                                        10
                                              }
11
                                        11
                                        12
12
      return 0;
                                              return 0;
13
                                        13
   }
14
                                        14
```