Part A:

Exercise 1:

	Exercise 1:
	$y = -\frac{1}{2}gt^2 + ut + c$
	$\frac{\partial f}{\partial y} = -\frac{1}{2} 2gt + v$
	= -st +u
0	Max height is realhed when by = 0 therefore we must substitute with our values or to get & max.
	9=10 , = 5
	-9++u=0
	-10++5=0
	t====5 t-5-10
	$\left(\frac{10}{2}\right)$
0	Our trax is 0.5 seconds
	To find the height reached at trax:
	To find the height reached at tmax: y = -\frac{1}{2}.10,(0.5)^2 + 5.0.5 + 1 y=-5.0,25 + 2.5 + 1
	y=-1,25+2.5+1
	y=-1.25 +2.5 +1 y= 2.25
	The maximum height reached by the ball is 2.25 meters.

Exercise 2:

0	Exercise 2:
	$f(x) = 2x^3 - 3x^2 - 36x + 2$
	We first need to calculate the 1st and the 2nd derivative so we can find the stationary points using the equation $\frac{df}{dx} = 0$
	1st df = 6x2 - 6x - 36
	$\frac{2x\delta}{2x^3} = \frac{\delta^3 f}{\delta x^3} = 12x - 6$
	$6x^{2}-6x-36=0$ $x^{2}-x-6=0$ $(x+2)(x-3)=0$
	$\begin{array}{c} x-3=0 \\ -2 \times = 3 \end{array}$
•	> + b = 0 => x = -a >tationary points are x1=3 and x2=-a
	$\frac{8^2 f}{8x^2}$ when $x=3-12.3-6=30$
	is the minimum daf when x=-2=12.(-2)-6=-30
0	$\frac{d^2f}{dx^2} \text{when} x = -2 = 12 \cdot (-2) - 6 = -30$ $-30 < 0 \text{therefore stationary}$ $\text{point } x_2 = -2 \text{is the maximum}$
1	

Exercise 3:

$$f(x) = \frac{1}{1+\exp(-m(x-x_0))}$$

O) $\lim_{x\to\infty} \frac{1}{1+e^{-m(x-x_0)}} = \frac{1}{1+e^{-m}} = \frac{1}{1+e^{-m}} = \frac{1}{1+e^{-m}} = \frac{1}{1+e^{-m}}$

$$\lim_{x\to\infty} \frac{1}{1+e^{-m(x-x_0)}} = \frac{1}{1+e^{-m}} = \frac{1}{1+e^{-$$


```
In [1]: # Exercise 3.C.
import numpy as np
from matplotlib import pyplot as plt

x = np.arange( -5, 5, 1)
c = np.exp( -1 * ( x - 1))
y = 1 / (1 + c)
```

In [2]: plt.plot(x,y) plt.grid()

The plot confirms what was found on 3b as m=1 therefore xo = 1/4 which can be seen on the plot.

Exercise 4:

Exercise 4:	
	Exercise 4:
	E = - & & wij xi xj = - (w11x2+ W12x1x2+ W21x2x1+142x3)
	DE (2w11x1 + w12x2 + w21x2)
	_ dE = -x1×2
0	
0	