Национальный исследовательский университет ИТМО Факультет информационных технологий и программирования Прикладная математика и информатика

Методы оптимизации

Отчет по лабораторной работе $N^{0}1$

 \langle Собрано 15 марта 2023 г. \rangle

Работу выполнили:

Бактурин Савелий Филиппович M32331 Вереня Андрей Тарасович M32331 Сотников Максим Владимирович M32331

Преподаватель:

Свинцов Михаил

Задача 1

Постановка задачи

Реализуйте градиентный спуск с постоянным шагом (learning rate).

Решение

Поймем, сначала, что мы хотим добиться: мы хотели бы найти направление наискорейшего спуска с некоторой точки к минимуму на заданной плоскостью функцией f. Однако, при решении этой задачи возникает проблема с производительностью нахождения argmin f за счет появления тех или иных накладных расходов на подсчет не целочисленных значения, а также проблемой с нахождением такого шага λ , что наш алгоритм не «застрянет» в бесконечном поиске интересующей точки.

Введем обозначения, пусть α – есть некоторая константа, порядка 10^{-3} , $x_i = \{x_i^0, x_i^1, \dots, x_i^{n-1}\}$ – некоторая координата в n-мерном пространстве, p_i – наше текущее направление.

Теперь рассмотрим идею $\it градиентного\ cnycкa$: оптимизацию нахождения необходимого минимум за $\it k$ шагов мы будем осуществлять шаги в $\it n$ -мерном пространстве в направлении, задаваемый как антиградиент функции $\it f$ в точке, задаваемая предыдущем шагом, то есть

$$x_{i+1} = x_i - \alpha \cdot \nabla f(x_i),$$

где x_0 будет задаваться некоторым множеством INIT = $\{x_0^0, x_0^1, \dots, x_0^{n-1}\}$ – то есть точка, от которой мы собираемся двигаться.

Итого, псевдо-алгоритм для этой задачи выглядит следующим образом:

```
function f(x):

/*implementation defined*/

function \nabla f(x):

return \left[ f(x) \frac{\partial}{\partial x^0}, \ f(x) \frac{\partial}{\partial x^1}, \ \dots, \ f(x) \frac{\partial}{\partial x^{n-1}} \right]

function main:

x_0 \leftarrow \text{INIT}

\alpha \leftarrow \text{const}

forall i \in [1, k] do

x_i \leftarrow x_{i-1} - \alpha \cdot \nabla f(x_{i-1})
```

Разберем пример. Мы хотим найти методом градиентного спуска приближенный $\underset{y \in Y}{\operatorname{argmin}}_{x \in X} f(x,y)$ функции $f(x,y) = x^2 - (x-y)^2$. Его направлением-антиградиентом будет $p_i = -\nabla f(x,y) = \{(-1) \cdot (2 \cdot x + 2 \cdot (x-y)), (-1) \cdot (-2 \cdot (x-y))\}$. В исходном коде points представляет из себя шаги, проделываемые алгоритмом от стартового состояния x_0 до некоторого приближенного x_k – являющийся минимумом. Наконец, представим всему миру полученную картину.

Задача 2

Постановка задачи

Реализуйте метод одномерного поиска (метод дихотомии, метод Фибоначчи, метод золотого сечения) и градиентный спуск на его основе.

Решение

Задача 3

Постановка задачи

Проанализируйте траекторию градиентного спуска на примере квадратичных функций. Для этого придумайте две-три квадратичные функции от двух переменных, на которых работа методов будет отличаться.

Решение

Задача 4

Постановка задачи

Для каждой функции:

- (а) исследуйте сходимость градиентного спуска с постоянным шагом, сравните полученные результаты для выбранных функций;
- (b) сравните эффективность градиентного спуска с использованием одномерного поиска с точки зрения количества вычислений минимизируемой функции и ее градиентов;
- (с) исследуйте работу методов в зависимости от выбора начальной точки;
- (d) исследуйте влияние нормализации (scaling) на сходимость на примере масштабирования осей плохо обусловленной функции;
- (e) в каждом случае нарисуйте графики с линиями уровня и траекториями методов;

Решение

Задача 5

Постановка задачи

Реализуйте генератор случайных квадратичных функций n переменных с числом обусловленности k.

Решение

Изначально поймем, что такое *число обусловленности*. По своей сущности, это нечто, что может показать насколько может измениться значение функции при небольшом изменении аргумента. Для нахождения такого числа и, в следствии, нахождения некоторого вектора чисел, которые будут являться коэффициентами квадратичной формы, существует несколько способов: через матричный нормы – это исходит напрямую из рассматриваемого линейного уравнения вида $\mathfrak{A}x = \mathbf{b}$, где \mathfrak{A} – линейный

оператор, \mathbf{b} — вектор и x — переменная. Такой способ подошел бы нам, если б мы знали заранее нормы матриц. Из-за чего нам понадобится более сильное средство, именуемое как сингулярное разложение, а именно: возьмем некоторую матрицу A, тогда его число обусловленности будет равно отношению максимального и минимального из диагональных элементов; остальные же элементы на диагональной части матрицы будут коэффициентами разложения квадратичной формы.

Итак мы хотим сгенерировать матрицу такую, что $k = \frac{\max_{\forall i \in [0,n]} x_{i,i \in [0,n]}}{\min_{\forall i} x_{i,i}}$. Для этого мы получим максимальный элемент MAX = $k \cdot \text{MIN}$, а в качестве минимального возьмем случайное число из ограниченного операционной системой диапазоном, например $[0, 2^{64} - 1]$. Тогда как все остальные элементы следует брать из диапазона $[\text{MIN} + 1, \text{MIN} \cdot k)$.

Итого, псевдо-алгоритм для этой задачи выглядит следующим образом:

```
\begin{aligned} & \text{function } random(l,r)\colon \\ & \text{return } randomized \ R \in [l,\ldots,r) \end{aligned} & \text{function } main(n,k)\colon \\ & \text{MIN} \leftarrow random(0,2^{32}) \\ & \text{MAX} \leftarrow \text{MIN} \cdot k \\ & q \leftarrow [\text{MIN, MAX, } x_0 \ \ldots, \ x_{n-3}], \ \forall x_i = 0 \\ & \text{forall } i \in [2,n] \ \text{do} \\ & q_i \leftarrow random(\text{MIN}+1, \ \text{MAX}) \end{aligned}
```

Для примера мы рассмотрим задачу. Необходимо сгенерировать квадратичную функцию с n=10 переменными и k=5 числом обусловленности. Воспользуемся заготовленной программой, которая выводит функцию в Техвиде, и получим, как один из результатов вот такой:

```
f(x_0, x_1, \dots, x_9) = 55881652088902977 \cdot x_0^2 + 279408260444514885 \cdot x_1^2 
+ 168040993445098276 \cdot x_2^2 + 98341599851142922 \cdot x_3^2 
+ 126881448626083312 \cdot x_4^2 + 112063718763017541 \cdot x_5^2 
+ 167683450954662177 \cdot x_6^2 + 104734621927684905 \cdot x_7^2 
+ 196100745993640030 \cdot x_8^2 + 199634427735860479 \cdot x_9^2
```

Задача 6

Постановка задачи

Исследуйте зависимость числа итераций T(n,k), необходимых градиентному спуску для сходимости в зависимости от размерности пространства $2\leqslant n\leqslant 10^3$ и числа обусловленности оптимизируемой функции $1\leqslant k\leqslant 10^3$.

Решение

Дополнительное задание

Постановка задачи

Реализуйте одномерный поиск с учетом условий Вольфе и исследуйте его эффективность. Сравните полученные результаты с реализованными ранее методами.

Решение