Metody analityczne i komputerowe

w minimalizacji funkcji boolowskich

Metoda Quine'a McCluskey'a

- a) generacja implikantów prostych
- b) selekcja implikantów (tzw. pokrycie)

Metoda Espresso

- > duża liczba różnorodnych procedur
- procedury heurystyczne
- > iteracyjne poprawianie wyniku

Procedury systemu ESPRESSO

(rozdział 6 w książce SUL)

T P W

Zmodyfikowana metoda ekspansji (rozdział 3.3 książka SUL)

Łączy idee metody Quine'a McCluskey'a oraz metody Espresso:

- a) generacja implikantów prostych (wg Espresso)
- b) selekcja implikantów (wg Quine'a McCluskey'a)

Metoda ta zrealizowana w programie PANDOR jest udostępniona na <u>www.zpt.tele.pw.edu.pl</u> w katalogu OPROGRAMOWANIE

Pojęcia podstawowe

Kostka K to krotka o składowych 0, 1, * reprezentująca zbiór wektorów zero-jedynkowych.

K = (0*1*), to zbiór wektorów:

0010

0011

0110

0111

Kostka reprezentuje niepełny iloczyn:

$$K = 0*1* = \overline{X}_1X_3$$

Oznaczenia

W standardzie espresso wektory (w ogólności kostki), dla których funkcja f = 1 oznacza się zbiorem F.

Wektory (kostki) dla których funkcja f = 0 oznacza się zbiorem R.

f = (F, R)

Przykład (EXTL)

	X ₁	X_2	X_3	X ₄	X ₅	\mathbf{x}_{6}	X ₇	f	
	1	0	0	0	1	0	1	0	
	1	0	1	1	1	1	0	0	
	1	1	0	1	1	1	0	0	
	1	1	1	0	1	1	1	0	
k ₁	0	1	0	0	1	0	1	1	
k ₂	1	0	0	0	1	1	0	1 /	
k ₃	1	0	1	0	0	0	0	1 \ \	7
k_4	1	0	1	0	1	1	0	1	
k ₅	1	1	1	0	1	0	1	1	

$$\boldsymbol{F} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Ekspansja

Ekspansja jest procesem działającym na kostkach zbiorów F i R, a jej celem jest uzyskanie dla danej $k \in F$ kostki k' tak dużej, jak to tylko możliwe (tzn. z możliwie dużą liczbą pozycji o wartości *) i nie pokrywającej żadnego wektora zbioru R.

W swoich obliczeniach Ekspansja wykorzystuje tzw. macierz blokującą **B**.

T P W

Macierz blokująca

Definicja oryginalna (z książki Braytona):

Macierzą blokującą (kostkę k) nazywamy macierz $\boldsymbol{B}(k,\boldsymbol{R}) = [b_{ij}]$, w której każdy element $b_{ij} \in \{0,1\}$ jest definiowany następująco:

 $b_{ij} = 1$, jeśli $k_j = 1$ oraz $r_{ij} = 0$ lub $k_j = 0$ oraz $r_{ij} = 1$; $b_{ij} = 0$, w pozostałych przypadkach.

Macierz blokująca dla danej kostki $k \in F$ powstaje z macierzy R przez zanegowanie tych kolumn R, których pozycje są wyznaczone przez pozycje jedynek w kostce $k \in F$.

Tworzenie macierzy blokującej

Wyznaczymy macierz blokującą dla kostki k₁ wiedząc, że F i R są opisane macierzami:

$$F = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

Skoro k_1 = (0100101), to dla uzyskania **B** wystarczy w macierzy *R* "zanegować" kolumny drugą, piątą i siódmą. Zatem $\boldsymbol{B}(k_1,\boldsymbol{R})$:

$$\boldsymbol{B} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Pokryciem kolumnowym macierzy \boldsymbol{B} jest zbiór kolumn L ($L \subseteq \{1,...,n\}$) taki, że dla każdego wiersza i istnieje kolumna $j \in L$, która w wierszu i ma jedynkę.

Zbiór L jest minimalnym pokryciem kolumnowym macierzy B, jeśli nie istnieje zbiór L' (tworzący pokrycie) taki, że $L \supset L'$.

Pokrycie kolumnowe jest pojęciem ogólnym, można go tworzyć dla każdej macierzy binarnej

O obliczaniu *L* będziemy jeszcze mówili

 $L = \{4,7\}$ jest pokryciem kolumnowym.

 $L = \{2,3,6\}$ jest pokryciem kolumnowym.

 $L = \{2,3\} - \text{nie}, L = \{2,6\} - \text{nie}, L = \{3,6\} - \text{nie}.$

Macierz blokująca B(k,R) pozwala wyznaczyć ekspansję kostki k oznaczaną $k^+(L,k)$ w sposób następujący: wszystkie składowe kostki k należące do L nie ulegają zmianie, natomiast składowe nie należące do L przyjmują wartość *.

Ekspansja kostki k jest implikantem funkcji f = (F, R).

W szczególności $k^+(L,k)$ jest implikantem prostym, gdy L jest minimalnym pokryciem kolumnowym macierzy $\boldsymbol{B}(k,\boldsymbol{R})$.

Generacja implikantów - przykład

Dla
$$k_2$$
 = (1000110) i macierzy \mathbf{B} =
$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

zbiór $L = \{4,7\}$ jest pokryciem kolumnowym \boldsymbol{B} , a więc

$$k_2 = (1000110)$$

$$k^+(L, k_2) = (***0**0)$$
, czyli implikantem \mathbf{F} jest $\overline{\mathbf{x}}_4 \overline{\mathbf{x}}_7$

Natomiast dla $L = \{2,3,6\}$ (inne pokrycie kolumnowe), $k^+(L,k) = (*00**1*) = \overline{\chi}_2 \overline{\chi}_3 \chi_6$

Implikanty proste

Obliczając kolejno implikanty proste dla każdej $k \in \mathbf{F}$ uzyskuje się:

$$\begin{aligned} I_1 &= \overline{x}_1 \\ I_2 &= x_2 \overline{x}_6 \\ I_3 &= \overline{x}_4 \overline{x}_7 \\ I_4 &= \overline{x}_2 \overline{x}_3 x_6 \end{aligned} \qquad \begin{aligned} I_5 &= \overline{x}_5 \\ I_6 &= \overline{x}_6 \overline{x}_7 \\ I_7 &= x_3 \overline{x}_6 \end{aligned}$$

Proszę zauważyć, że na tym zakończyliśmy proces generacji implikantów prostych

... przystępujemy do procesu selekcji

Relacja pokrycia dla kostek

	\mathbf{x}_{1}	$\mathbf{X_2}$	X_3	X_4	X_5	\mathbf{x}_{6}	X ₇
k ₁	0	1	0	0	1	0	1
k ₂	1	0	0	0	1	1	0
k ₃	1	0	1	0	0	0	0
k_4	1	0	1	0	1	1	0
k ₅	1	1 0 0 0	1	0	1	0	1

 $I_{1} = \overline{X}_{1} \quad (0 * * * * * * *) \supseteq k_{1}$ $I_{2} = X_{2}\overline{X}_{6} \quad (* 1 * * * 0 *) \supseteq k_{1}, k_{5}$ $I_{3} = \overline{X}_{4}\overline{X}_{7} \quad (* * * * 0 * * 0) \supseteq k_{2}, k_{3}, k_{4}$

Tablica implikantów prostych

$$\begin{split} I_1 &= \overline{x}_1 & (0 * * * * * * *) \supseteq k_1 \\ I_2 &= x_2 \overline{x}_6 & (*1 * * * 0 *) \supseteq k_1, k_5 \\ I_3 &= \overline{x}_4 \overline{x}_7 & (* * * 0 * * 0) \supseteq k_2, k_3, k_4 \end{split}$$

	I ₁	l ₂	I_3	I_4	I ₅	I ₆	I ₇
k ₁	1	1	0	0	0	0	0
k ₂	0	1 0 0 0	1	1	0	0	0
k ₃	0	0	1	0	1	1	1
k ₄	0	0	1	0	0	0	0
k ₅	0	1	0	0	0	0	1

Tablica implikantów prostych umożliwia wybór (selekcję) takiego minimalnego zbioru implikantów, który pokrywa wszystkie kostki funkcji pierwotnej

Selekcja implikantów prostych

	I ₁	l ₂ _	l ₃	I_4	I ₅	I ₆	I ₇
k ₁	1	1	0	0	0	0	0
k ₂	I ₁ 1 0 0 0 0	0	1	1	0	0	0
k_3	0	0	1	0	1	1	1
k_4	0	0	1	0	0	0	0
k ₅	0	1	0	0	0	0	1

Inny zapis tablicy:

$$I_{2} = X_{2}\overline{X}_{6}$$

$$I_{3} = \overline{X}_{4}\overline{X}_{7}$$

I₁, I₂ Minimalne pokrycie: I₂,I₃

Minimalna formuła: $\overline{X}_4\overline{X}_7 + X_2\overline{X}_6$

Implementacja metody – program Pandor

Fragment pliku wyjściowego Pandora:

Implicants table of function y1

10010

01000

01101

01000

00011

Trochę inny zapis

All results of function y1 y1 = !x4!x7 + x2!x6

Taki sam wynik generuje Espresso...

Plik wejściowy i wyjściowy przykładu

```
.type fr
.i 7
.01
                                    .0 1
.p 9
                                    .ilb x1 x2 x3 x4 x5 x6 x7
.ilb x1 x2 x3 x4 x5 x6 x7
                                    .ob y
.ob y
                                    .p 2
10001010
                                     1---0- 1
10111100
                                    ---0--0 1
11011100
         Skoro wyszło to samo
11101
         co w obliczeniach za
                                                  ...to po co są
01001
         pomocą tylko jednej
                                                 inne procedury
         procedury ekspansji...
                                                   ESPRESSO
10001
1010000 1
1010110 1
                                         To jest za prosty
1110101 1
```

P W ZPT

.e

21

przykład!

Porównanie Pandora i Espresso wymaga szczegółowszych eksperymentów.

Można je przeprowadzić samodzielnie. Przykładowe pliki oraz programy Pandor i Espresso są umieszczone w katalogu *Eksperymenty do wykładów cz. 3 i cz. 4.*

Program PANDOR został stworzony po to, aby naocznie zaobserwować zjawisko wzrostu złożoności obliczeniowej wraz ze wzrostem liczby argumentów funkcji.

Funkcja EXTL ma 7 implikantów (Pandor dokonuje lepszej selekcji i oblicza ich zaledwie 5). Nie ma żadnej sprawy w obliczeniu minimalnego pokrycia kolumnowego.

Ale...

T P W

.end

KAZ

Zagadka...

Ile implikantów prostych ma funkcja TL27

...a ile KAZ? Można pomylić się o 10...

I dlatego TL27 obliczy zarówno systematyczna ekspansja Pandora, jak i Espresso. Ale już funkcja KAZ jest z praktycznego punktu widzenia realna do policzenia wyłącznie programem ESPRESSO.

Ale nie może to być wynik minimalny

O innych zaletach Pandora na następnym wykładzie

TL27

Dalsze zalety Espresso...

Metoda Espresso jest szczególnie efektywna w minimalizacji zespołów funkcji boolowskich. Dla metod klasycznych synteza wielowyjściowych funkcji boolowskich jest procesem bardzo złożonym – trudnym do zalgorytmizowania.

Przypomnijmy przykład z poprzedniego wykładu

Układy wielowyjściowe - przykład

$$y_1 = \Sigma(2,3,5,7,8,9,10,11,13,15)$$
$$y_2 = \Sigma(2,3,5,6,7,10,11,14,15)$$
$$y_3 = \Sigma(6,7,8,9,13,14,15)$$

Po żmudnych obliczeniach uzyskaliśmy wynik na 5 bramkach AND

$$y_2 = \overline{b}c + \overline{a}bd + bc$$

$$y_3 = abd + a\overline{b}\overline{c} + bc$$

ZPT

Jak obliczy Espresso?

F,D Complement **Expand** .i 4 Essential primes .03 .p 5 Irredundant-Cover 11-1 101 Reduce 100-101 01-1 110 $F_{\mathbf{M}}$ Last-gasp -01- 110 -11- 011 .e Łatwo sprawdzić, że

jest to taki sam wynik

jak na poprzedniej

planszy

.e