PROGRAM INDEX TO VOLUMES 16-20

Ast	Astrophysics					
Vol	Page	Cat.no.				
16	243	ABUX	ALFVEN (Fortran). ALFVEN: a two-dimensional code based on SHASTA, solving the radiative, diffusive MHD equations. W.J. Weber, J.P. Boris and J.H. Gardner.			
16	331	ACYO	COSTANTI DEL MOTO (Fortran). A computer program for integrals of motion. A. Giorgilli.			
16	363	AAUV	EMCASR (Fortran). A set of subroutines for simulation of electron-photon cascades. T. Stanev and Ch. Vankov.			
19	215	ABVA	P3M3DP (Fortran). P3M3DP: the three dimensional periodic particle-particle-mesh program. J.W. Eastwood, R.W. Hockney and D.N. Lawrence. Subroutines required by this program are ABUA 2(1971)127, ABUF 7(1974)245.			
	mic Ph erimen	ysics tal Analysi	s			
Vol.	Page	Cat.no.				
19	93	ABGS	CFIT (Fortran). A computer program for determination of nuclear parameters from internal conversion experiments. M. Rysavy and O. Dragoun.			
Scat	tering					
Vol.	Page	Cat.no.				
16	119	AAKY	LSTOIC (Fortran). Intermediate coupling collision strengths from LS coupled R-matrix elements. R.E.H. Clark.			
17	305	ACYJ	0001 BREMSSTRAHLUNG INTENSITY 2 (Fortran). Extension to high frequencies of a program for calculating the angular distribution of nonrelativistic bremsstrahlung. A. Banuelos, F. Rodriguez-Trelles and L. Bilbao.			
17	365	AAIE	SCHRODINTEQN (Fortran). An integral equation program to calculate radial wave functions and scattering phase shifts of short-range local interactions. M.S. Stern.			
17	424	ACWJ	000B CORRECTION 28/03/79 (Fortran). Multistate molecular treatment of atomic collisions in the impact parameter approximation. I. Integration of coupled equations and calculation of transition amplitudes for the straight line case. C. Gaussorgues, R.D. Piacentini and A. Salin.			
17	425	ACWU	000A CORRECTION 28/03/79 (Fortran). Multistate molecular treatment of atomic collisions in the impact parameter approximation. III - Integration of coupled equations and calculation of transition amplitudes for Coulomb trajectories. R.D. Piacentini and A. Salin.			
18	287	ACYF	0001ADAPT IMPPRO FOR ECSIMPACT (Fortran). Preprocessor for ECSIMPACT: a special version of program IMPACT for CDC machines with ex-core memory. H.E. Saraph.			

	omic Ph	ysics (cont.)	
Vol	. Page	Cat.no.	
18	287	ACZK	ECSIMPACT (Fortran). ECSIMPACT: a special version of program IMPACT for CDC machines with ex-core memory. T.M. Luke and H.E. Saraph. Subroutines required by this program are ACYF 15(1978)23, ACYF0001 18(1979)287. See other version of this program ACYE 15(1978)23.
19	103	AAJA	ASYPCK (Fortran). ASYPCK: a program for calculating asymptotic solutions of the coupled equations of electron collision theory. M.A. Crees. Subroutine required by this program is AAJB 19(1980)103.
19	103	AAJB	ASYPRO (Fortran). Preprocessor for ASYPCK: a program for calculating asymptotic solutions of the coupled equations of electron collision theory. M.A. Crees.
19	271	ACQN	A00ACORRECTION TO 0001 31/01/80 (Fortran). Program ACQN to calculate transport collision integrals adapted to run on IBM computers. P.D. Neufeld and R.A. Aziz.
19	327	ACZU	IPEXMAT (Fortran). Subroutines for the evaluation of exchange integrals in the impact parameter formulation of atomic charge transfer collisions. C.J. Noble. Subroutine required by this program (for data) is ACZV 19(1980)327.
19	327	ACZV	REXMAT (Reduce2). Subroutines for the evaluation of exchange integrals in the impact parameter formulation of atomic charge transfer collisions. C.J. Noble.
19	359	AAJC	EDWIN (Fortran). EDWIN: a program for calculating inelastic molecular collision cross sections using the exponential distorted wave and related approximate methods. G.G. Balint-Kurti, J.H. van Lenthe, R. Saktreger and L. Eno.
20	462	ACXY	000A CORRECTION 22/08/80 (Fortran). Calculation of wave-functions and collision matrix elements for one-electron diatomic molecules. A. Salin.
Spec	ctroscop	ny .	
Vol.	Page	Cat.no.	
16	129	ABUV	TRIP 1 (Fortran). TRIP 1: a time-dependent recombination ionisation package. J. Magill. Subroutine required by this program is ABUJ 9(1975)51.
16	221	ABNB	MUON (Fortran). Static and dynamic muonic-atom codes MUON and RURP. G.A. Rinker.

1

10

18

18

18

18

20

20

Th

Vo

16

16

18

RURP (Fortran). Static and dynamic muonic-atom codes MUON and RURP. 16 221 **ABNC** G.A. Rinker. Subroutine required by this program (for data) is ABNB 16(1979)221. A00ACORRECTION TO 0001 01/03/79 (Fortran). An adaptation of ACRZ to 17 426 **ACRZ** calculate electric quadrupole oscillator strengths. M. Godefroid. 18 401 **AAMB** INTERNAL CONVERSION COEFFICIENTS (Fortran). A program to calculate internal conversion coefficients including higher-order corrections for all atomic shells. R. Der, D. Hinneburg and M. Nagel. 19 **ABGS** CFIT (Fortran). A computer program for determination of nuclear parameters from internal conversion experiments. M. Rysavy and O. Dragoun.

Atomic Physics (cont.)

Structure

Vol.	Page	Cat.no.	
16	285	AAKU	TERM (Fortran). I. Generator of determinantal non-relativistic atomic states from spectroscopic notation. Computation of matrix elements. J.J. Labarthe.
16	301	AAKV	EXCGH (Fortran). II. Generator of atomic excited terms from angular considerations. J.J. Labarthe. Subroutine required by this program (for data) is AAKU 16(1979)285.
16	311	AAKW	EDD (Fortran). III. Analytic approximations of radial orbitals for multiconfigurational Hartree-Fock computations. J.J. Labarthe. Subroutines required by this program (for data) are AAKV 16(1979)301, AAKU 16(1979)285.
16	325	AAKW	0001 QFO (Fortran). IV. Approximation of numerical orbitals by Slater functions. J.J. Labarthe.
18	87	AAKZ	ATOMIC FROZEN CORE HARTREE-FOCK (Algol). Frozen core Hartree-Fock program for atomic discrete and continuous states. L.V. Chernysheva,
			N.A. Cherepkov and V. Radojevic. Subroutine required by this program (for data) is AAKQ 11(1976)57.
18	109	AACH	SSTR-TRANSITION GENERALIZED SUMS (Fortran). Z-expansion of matrix elements of one-electron operators for many-electron atoms. M.N. Lewis.
18	287	ACYF	0001ADAPT IMPPRO FOR ECSIMPACT (Fortran). Preprocessor for ECSIMPACT: a special version of program IMPACT for CDC machines with ex-core memory. H.E. Saraph.
18	287	ACZK	ECSIMPACT (Fortran). ECSIMPACT: a special version of program IMPACT for CDC machines with ex-core memory. T.M. Luke and H.E. Saraph. Subroutines required by this program are ACYF 15(1978)23, ACYF0001 18(1979)287. See other version of this program ACYE 15(1978)23.
20	213	AAJD	RPA TWO ELECTRON EIGENFUNCTION (Fortran). A program to calculate the eigenfunctions of the random phase approximation for two electron systems. M.J. Jamieson and I.H.K. Aldeen.
20	221	AAHK	CPOLAR (Fortran). Energy eigenvalues and bound-bound transitions of hydrogen atoms in a magnetic field using cylindrical basis functions. S.M. Kara.

Theoretical Methods (see also General Purpose)

Page	Cat.no.	
57	AAKP	0002ADAPT TENSOR 2 TO CHECK DATA (Fortran). Adaptation of the new version of the reduced matrix elements (AAKP) program; inclusion of the checking of the input data. K.M.S. Saxena. Subroutines required by this program are ACQB 1(1969)15, ACRN 6(1973)88, AAHD 8(1974)151.
65	ACYU	STP (Fortran). An integral package for one-centre integrals over Slater-Transform-Preuss functions. E. Yurtsever.
245	AAAL	MCBP-BREIT ANGULAR COEFFICIENTS (Fortran). MCBP: a program to calculate angular coefficients of the Breit interaction between electrons in the low energy limit. N. Beatham, I.P. Grant, B.J. McKenzie and N.C. Pyper. Subroutines required by this program are AAHD 8(1974)151, ACRI 4(1972)377, ACWE 11(1976)397.
	57 65	65 ACYU

Cher	mic	tr
CHE	IIIA	er?

Vol.	Page	Cat.no.	
17	309	ABNE	DIFFUS2 (Fortran). A Fortran program to interpret pulsed field-gradient spin-echo diffusion data. E.D. von Meerwall.
18	27	ACZA	BATAN (Fortran). Analysis of Faradaic impedance experimental measurements. A. Batana, E.R. Gonzalez and M.C. Monard.

Crystallography

Vol.	Page	Cat.no.	
17	337	AASB	CORECTEX (Fortran). Slit height smearing correction in small angle X-ray scattering I: intensity correction program. M. Deutsch. Subroutine required by this program (for data) is AASC 17(1979)345.
18	143	AASB	0001 CORECTSP (Fortran). Slit height smearing correction in small angle X-ray scattering III: intensity correction program adaptation to arbitrary slit transmission function. M. Deutsch. Subroutine required by this program (for data) is AASD 18(1979)149.
17	345	AASC	FFITEX (Fortran). Slit height smearing correction in small angle X-ray scattering II: computation of the correction function. M. Deutsch.
18	149	AASD	GTSPLINE (Fortran). Slit height smearing correction in small angle X-ray scattering IV: computation of the correction function for an arbitrary slit transmission function. M. Deutsch.
18	261	AAQE	PLOMAC (Fortran). Plot program for Laue patterns and stereographic projections. E. Preuss.
18	277	AAQF	COL (Fortran). Calculation of crystal orientations using Laue patterns. E. Preuss. Subroutine required by this program (for data) is AAQE 18(1979)261.

Fluid and Gas Dynamics

Vol.	Page	Cat.no.	
18	123	ACZO	GAS MIXTURE TRANSPORT PROPERTIES (Fortran). Transport properties of dilute gas mixtures. R.M. Thomson.
19	271	ACQN	A00ACORRECTION TO 0001 31/01/80 (Fortran). Program ACQN to calculate transport collision integrals adapted to run on IBM computers. P.D. Neufeld and R.A. Aziz.
19	377	ABVC	NOMAD (Fortran). Numerical solutions of the Boltzmann transport equation. S.D. Rockwood and A.E. Greene.
19	395	ACSA	000A CORRECTION 21/09/79 (Fortran). An expansion equation of state subroutine. K. Morgan.

General P	urpose
-----------	--------

Algebras and Rotation Groups

Vol.	Page	Cat.no.	
18	35	ACZI	CONTRACTION-BASIC-DIAGRAM (Fortran). A program to generate closed basic diagrams for product operators. B.D. Chang and S.S.M. Wong.
20	191	AAAM	CONTRACTION-JT-RECOUPLING (Fortran). A program to evaluate closed diagrams algebraically for angular momentum coupled product operators. B.D. Chang and S.S.M. Wong. Subroutine required by this program (for data) is ACZI 18(1979)35.

Mathematical Functions

Vol	. Page	Cat.no.	The second secon
16	93	AAUX	TRIINT (Fortran). Fourier analysis with splines. A Fortran program. C. Pomponiu and M. Sararu.
16	383	ACZC	FTRANS (Fortran). On numerical Bessel transformation. B. Sommer and J.G. Zabolitzky.
17	321	ACYQ	BESJYH (Fortran), Accurate Bessel functions Jn(z), Yn(z), H(1)n(z) and H(2)n(z) of integer order and complex argument. R.W.B. Ardill and K.J.M. Moriarty.
17	351	ABND	CCOULM (Fortran). Coulomb functions with complex angular momenta. T. Takemasa, T. Tamura and H.H. Wolter.
18	63	ACZN	PLMCHB (Fortran). Chebyshev expansion of the associated Legendre polynomial PLM(x). G. Delic.
18	73	ACZM	JLRCHB (Fortran). Chebyshev series for the spherical Bessel function jl(r). G. Delic.
18	133	ACZP	BESSJY (Fortran). Bessel functions Jnu(x) and Ynu(x) of real order and real argument. J.B. Campbell.
20	441	ABVJ	RIEMANN ZETA FUNCTION (Fortran). A program for computing the Riemann Zeta function for complex argument. A. Banuelos and R.A. Depine.
20	447	AANB	COUL (Fortran). Coulomb functions (negative energies). K.L. Bell and N.S. Scott.
Mat	rices		
Vol.	Page	Cat.no.	
17	317	ACZJ	APICS (Fortran). Application of the generalized backward substitution method to solve a class of linear systems. R. Calinon and J. Ligou.
17	375	ACZH	LIHOIN (Fortran). A program for solving systems of homogeneous linear inequalities. K.S. Kolbig and F. Schwarz.
18	13	ABSE	GENLU (Fortran). A program generator for the incomplete LU decomposition-conjugate gradient (ILUCG) method. G.K. Petravic and M. Petravic.

Minimization and Fitting

Vol.	Page	Cat.no.	
16	113	AAPA	BELLS (Fortran). A subroutine for approximation by cubic splines in the least squares sense. J. Bok.
18	411	ABNH	UNIFIT4 (Fortran). An all-purpose curve-fitting program for functions of several variables. E.D. von Meerwall. See other version of this program ABMR 11(1976)211.

General	Purpose	(cont.)
O CHICK MI	I WI DOGC	(COLLES)

Numerical Methods

Vol.	Page	Cat.no.	
16	93	AAUX	TRIINT (Fortran). Fourier analysis with splines. A Fortran program. C. Pomponiu and M. Sararu.
16	199	ACYV	CUSPLN (Fortran). A cubic spline interpolation of unequally spaced data points. J. Anderson, R.W.B. Ardill, K.J.M. Moriarty and R.C. Beckwith. Subroutines required by this program are AAUN 9(1975)85, AAUN0001 15(1978)437.
16	273	ACYW	JMPDIS (Fortran). An interpolation method for data sets with jump discontinuities. W. Moon.
16	383	ACZC	FTRANS (Fortran). On numerical Bessel transformation. B. Sommer and J.G. Zabolitzky.
17	239	ACYZ	FORSIM VI (Fortran). FORSIM VI: a program package for the automated solution of arbitrarily defined differential equations. M.B. Carver.
17	283	ACZB	RADISH (Fortran). De Vogelaere's method with automatic error control. J.P. Coleman and J. Mohamed.
17	357	ACZG	BISPLN (Fortran). A bicubic spline interpolation of unequally spaced data. M.A. Christie and K.J.M. Moriarty.
17	383	ACZL	SIPSOL (Fortran). SIPSOL: a suite of subprograms for the solution of the linear equations arising from elliptic partial differential equations. C.R. Jesshope.
20	291	ABVD	FHT (Fortran). A method and a program for the numerical evaluation of the Hilbert transform of a real function. O.E. Taurian.
20	309	AANA	EXPFIT1 (Fortran). The method of Raptis and Allison with automatic error control. J. Mohamed.
20	421	ABVI	HYMBLO (Fortran). HYMNIABLOCK: eigenvalue solver for blocked matrices. R. Gruber

Plotting

Vol. Page Cat.no.

A00ACORRECTION TO 0001 04/02/80 (Fortran). A plotting package for visually comparing theoretical and experimental results. J. Anderson, R.C. Beckwith, K.J.M. Moriarty and J.H. Tabor.

1

1

18

20

Statistical Physics

Vol. Page Cat.no.

16 207 ACYP MATRIXFORMAT, CLSSCLFORMAT (Fortran). An inversion of quantum mechanics. E. Lubkin and T. Lubkin.

General	Purpose	(cont.)
FTT.		

F 1	. 1		
U	,,	21	•
U	u	u	w
			-

iu

n

1.

Vol.	Page	Cat.no.	
16	345	ABPH	WORKER (Fortran). WORKER: a program for histogram manipulation. J.E. Bolger, H. Ellinger and C.F. Moore.
19	51	ACZQ	CDC PARTITIONED DATA SETS (Fortran, Compass). Implementation of the partitioned-data-set concept for CDC computers. J.R. Comfort.
19	139	ACZZ	EDITOR (Fortran). EDITOR: a program for amending files of card images. M.A. Crees.

Geophysics

Vol.	Page	Cat.no.	
16	267	ACYX	ELSGAU (Fortran). Numerical evaluation of geomagnetic dynamo integrals (Elsasser and Adams-Gaunt integrals). W. Moon.
19	63	ACZT	HYDELP (Fortran). Algorithm for the first order hydrostatic ellipticity of a planet. W. Moon.

Laser Physics

20

413

ACWD

Vol.	Page	Cat.no.	
16	73	AAHJ	CARS (Fortran). CARS spectral profiles for homonuclear diatomic molecules. W.M. Shaub, S. Lemont and A.B. Harvey.
17	397	ABUY	CASTOR 2 (Fortran). CASTOR 2: a two-dimensional laser target code. J.P. Christiansen and N.K. Winsor. Subroutines required by this program are ABUF 7(1974)245, ABUV 16(1978)129.
18	353	ACZD	REACS (Fortran). Numerical modelling of a chemical plasma. I. REACS: a program to generate all reactions which take place in a plasma of given chemical content. S.A. Roberts, Subroutine required by this program (for data) is ACZF 18(1979)377.
18	363	ACZE	PLASKEM (Fortran). Numerical modelling of a chemical plasma. II. PLASKEM: a program to predict the variation with time of the number densities of chemical species within a plasma. S.A. Roberts. Subroutines required by this program (for data) are ACWX 11(1976)369, ACZD 18(1979)353, ACZF 18(1979)377.
18	377	ACZF	DATSTOR (Fortran). Numerical modelling of a chemical plasma. III. DATSTOR: a program to create a database containing information on rate coefficients of chemical reactions. S.A. Roberts.
19	377	ABVC	NOMAD (Fortran). Numerical solutions of the Boltzmann transport equation. S.D. Rockwood and A.E. Greene.
20	373	ABVF	COLASE (Fortran). COLASE: a CO-N2-He laser kinetics code. S.A. Roberts.

0001 INJLOK (Fortran). INJLOK: a CO2 laser injection locking code. A.R. Davies, K. Smith and R.M. Thomson.

Mole	ouler	Physi	00
MIGIE	culai	L HAZI	C2

	Vol.	Page	Cat.no.	
	16	65	ACYU	STP (Fortran). An integral package for one-centre integrals over Slater-Transform-Preuss functions. E. Yurtsever.
	16	73	ААНЈ	CARS (Fortran). CARS spectral profiles for homonuclear diatomic molecules. W.M. Shaub, S. Lemont and A.B. Harvey.
	17	365	AAIE	SCHRODINTEQN (Fortran). An integral equation program to calculate radial wave functions and scattering phase shifts of short-range local interactions. M.S. Stern.
	17	424	ACWJ	000B CORRECTION 28/03/79 (Fortran). Multistate molecular treatment of atomic collisions in the impact parameter approximation. I. Integration of coupled equations and calculation of transition amplitudes for the straight line case. C. Gaussorgues, R.D. Piacentini and A. Salin.
	17	425	ACWU	000A CORRECTION 28/03/79 (Fortran). Multistate molecular treatment of atomic collisions in the impact parameter approximation. III - Integration of coupled equations and calculation of transition amplitudes for Coulomb trajectories. R.D. Piacentini and A. Salin.
•	18	123	ACZO	GAS MIXTURE TRANSPORT PROPERTIES (Fortran). Transport properties of dilute gas mixtures. R.M. Thomson.
	18	281	ABAB	DOMUS (Fortran). DOMUS: a program for the analysis of two-dimensional spectra. V.B. Zlokazov.
	18	441	ACXN	000ACORRECTION 07/09/79 (Fortran). A compact program of the SCF-Xalpha scattered wave method. S. Katsuki, P. Palting and S. Huzinaga.
	19	215	ABVA	P3M3DP (Fortran). P3M3DP: the three dimensional periodic particle-particle-mesh program. J.W. Eastwood, R.W. Hockney and D.N. Lawrence. Subroutines required by this program are ABUA 2(1971)127, ABUF 7(1974)245.
	19	271	ACQN	A00ACORRECTION TO 0001 31/01/80 (Fortran). Program ACQN to calculate transport collision integrals adapted to run on IBM computers. P.D. Neufeld and R.A. Aziz.
	19	337	ACYY	IBMOL-7 (Fortran). A program to introduce local symmetry in ab initio computations of molecules: IBMOL-7. E. Ortoleva, G. Castiglione and E. Clementi.
	19	359	AAJC	EDWIN (Fortran). EDWIN: a program for calculating inelastic molecular collision cross sections using the exponential distorted wave and related approximate methods. G.G. Balint-Kurti, J.H. van Lenthe, R. Saktreger and L. Eno.
	20	267	ACZR	ONE CENTRE STATIC POTENTIAL (Fortran). Third version of a program for calculating the static interaction potential between an electron and a diatomic molecule. G. Raseev. See other versions of this program ACQW 2(1971)261, ACWO 11(1976)237.
	20	275	ACZS	ELECTRON MOLECULE SCATTERING (Fortran). Electron scattering by closed or open shell diatomic molecules. G. Raseev. Subroutine required by this program (for data) is ACZR 20(1980)267. See other version of this program ACQO 1(1970)445.
	20	462	ACXY	000A CORRECTION 22/08/80 (Fortran). Calculation of wave-functions and collision matrix elements for one-electron diatomic molecules. A. Salin.

Nuclear Physics Experimental Analysis

Vol. Page Cat.no.

19 93 ABGS CFIT (Fortran). A computer program for determination of nuclear parameters from internal conversion experiments. M. Rysavy and O. Dragoun.

Nuclear Physics (cont.) High Energy Scattering

Vol.	Page	Cat.no.	
16	363	AAUV	EMCASR (Fortran). A set of subroutines for simulation of electron-photon cascades. T. Stanev and Ch. Vankov.
16	389	AAWC	PIRK 2 (Fortran). A new version of PIRK (elastic pion-nucleus scattering) to handle differing proton and neutron radii. H.O. Funsten. See other version of this program ABCJ 8(1974)130.
16	395	AAWD	DWPI 2 (Fortran). A new version of DWPI (inelastic pion-nucleus scattering) to incorporate microscopic form factors and differing proton and neutron radii. H.O. Funsten. Subroutine required by this program is AAWC 16(1979)389. See other version of this program ABIG 11(1976)95.
17	301	AAUY	COUNTING FEW RADIOACTIVE ATOMS/2 (Fortran). Counting a small number of radioactive atoms, second program. A.M. Aurela. See other version of this program AAUS 13(1977)281.
18	155	AAUR	0001 BACKWARD INCLUSIVE PROTONS (Fortran). Program adaptation: to calculate inclusive backward proton production cross sections. K.J.M. Moriarty and H.N. Thompson. Subroutines required by this program are AAUN 9(1975)85, AAUN0001 15(1978)437.
18	215	AAUT	ANALYT (Fortran). A guide to analytic extrapolations. A program for optimal extrapolation to interior points and to be used in finding analytic correlations of data and for detecting zeros and poles of the scattering amplitude. See also Comp. Phys. Commun. 18(1979)305. I. Caprini, M. Ciulli, S. Ciulli, C. Pomponiu, M. Sararu and I.S. Stefanescu.
20	337	ABPJ	VIRT SPEC (Fortran). Calculation of the virtual photon spectrum in distorted wave analysis. L.E. Wright and C.W. Soto Vargas.

Low Energy Scattering

Vol	Page	Cat.no.	
16	85	ABQG	LIQUID DROP DEFORMATION ENERGIES (Fortran). Liquid drop model deformation energies of nuclei with axial symmetry and reflection asymmetry. D.N. Poenaru and M. Ivascu.
17	365	AAIE	SCHRODINTEQN (Fortran). An integral equation program to calculate radial wave functions and scattering phase shifts of short-range local interactions. M.S. Stern.
18	163	ABPA	0001 SATURN-2-FOR-EFR-DWBA (Fortran). Exact finite range DWBA form factor for heavy-ion induced nuclear reactions. T. Tamura, T. Udagawa, K.E. Wood and H. Amakawa.
18	427	ABNF	REGGE (Fortran). Complex angular momentum methods for elastic scattering with an optical potential. T. Takemasa, T. Tamura and H.H. Wolter.

Spectroscopy

Vol.	Page	Cat.no.	
16	221	ABNB	MUON (Fortran). Static and dynamic muonic-atom codes MUON and RURP. G.A. Rinker.
16	221	ABNC	RURP (Fortran). Static and dynamic muonic-atom codes MUON and RURP. G.A. Rinker. Subroutine required by this program (for data) is ABNB 16(1979)221.

		hysics (con	t.)
Vol		Cat.no.	
16	373	ABGR	TAMOBR (Fortran). Calculations of generalized harmonic oscillator brackets. J. Dobes.
17	309	ABNE	DIFFUS2 (Fortran). A Fortran program to interpret pulsed field-gradient spin-echo diffusion data. E.D. von Meerwall.
18	281	ABAB	DOMUS (Fortran). DOMUS: a program for the analysis of two-dimensional spectra. V.B. Zlokazov.
18	401	AAMB	INTERNAL CONVERSION COEFFICIENTS (Fortran). A program to calculate internal conversion coefficients including higher-order corrections for all atomic shells. R. Der, D. Hinneburg and M. Nagel.
18	417	ABNG	SAMCS1 (Fortran). A Fortran program to perform signal averaging, multichannel scaling and pulse-height analysis. E.D. von Meerwall.
19	93	ABGS	CFIT (Fortran). A computer program for determination of nuclear parameters from internal conversion experiments. M. Rysavy and O. Dragoun.
19	197	AAPB	SMUDLA (Fortran). Nuclear decay scheme construction based on qualitative coincidences. L. Hlavaty.
Stru	cture		
Vol.	Page	Cat.no.	
16	85	ABQG	LIQUID DROP DEFORMATION ENERGIES (Fortran). Liquid drop model deformation energies of nuclei with axial symmetry and reflection asymmetry. D.N. Poenaru and M. Ivascu.
16	373	ABGR	TAMOBR (Fortran). Calculations of generalized harmonic oscillator brackets. J. Dobes.
19 ·	205	ABQH	FYPEDIFC (Fortran). Folded Yukawa-plus-exponential model PES for nuclei with different charge densities. D.N. Poenaru, M. Ivascu and D. Mazilu.
Opti	cs		man managalisalism sintraditi nebi a sa popula sintalis di Sonsi da da
Vol.	Page	Cat.no.	
16	175	ACUB	FREINT (Fortran). FREINT: an integration routine calculating Fresnel diffraction. W.J. Gruschel.
17	393	ACMN	0001 TRAPZAL (Fortran). Adaptation: numerical solution of the Kramers-Kronig transforms by trapezoidal summation as compared to a Fourier method. S.J. Collocott and G.J. Troup.

Plasma Physics

Vol.	Page	Cat.no.	
16	73	ААНЈ	CARS (Fortran). CARS spectral profiles for homonuclear diatomic molecules. W.M. Shaub, S. Lemont and A.B. Harvey.
16	129	ABUV	TRIP 1 (Fortran). TRIP 1: a time-dependent recombination ionisation package. J. Magill. Subroutine required by this program is ABUJ 9(1975)51.
16	139	ABUW	RADFL (Fortran). Radial radiative flux in cylindrically symmetric arcs. P.J. Shayler and M.T.C. Fang.

Plasma Physics (cont.)

Vol.	Page	Cat.no.	desirence de la la companya de la companya del companya del companya de la compan
16	243	ABUX	ALFVEN (Fortran). ALFVEN: a two-dimensional code based on SHASTA, solving the radiative, diffusive MHD equations. W.J. Weber, J.P. Boris and J.H. Gardner.
17	397	ABUY	CASTOR 2 (Fortran). CASTOR 2: a two-dimensional laser target code. J.P. Christiansen and N.K. Winsor. Subroutines required by this program are ABUF 7(1974)245, ABUV 16(1978)129.
18	297	ABUZ	DRFT (Fortran). Radiation potential of a point antenna immersed in drifting cold or hot (hydrodynamical) plasma. E. Fijalkow and G. Mourgues.
18	353	ACZD	REACS (Fortran). Numerical modelling of a chemical plasma. I. REACS: a program to generate all reactions which take place in a plasma of given chemical content. S.A. Roberts. Subroutine required by this program (for data) is ACZF 18(1979)377.
18	363	ACZE	PLASKEM (Fortran). Numerical modelling of a chemical plasma. II. PLASKEM: a program to predict the variation with time of the number densities of chemical species within a plasma. S.A. Roberts. Subroutines required by this program (for data) are ACWX 11(1976)369, ACZD 18(1979)353, ACZF 18(1979)377.
18	377	ACZF	DATSTOR (Fortran). Numerical modelling of a chemical plasma. III. DATSTOR: a program to create a database containing information on rate coefficients of chemical reactions. S.A. Roberts.
19	215	ABVA	P3M3DP (Fortran). P3M3DP: the three dimensional periodic particle-particle/particle-mesh program. J.W. Eastwood, R.W. Hockney and D.N. Lawrence. Subroutines required by this program are ABUA 2(1971)127, ABUF 7(1974)245.
20	353	ABVK	MFP (Fortran). MFP: a code for calculating equation of state and optical data for noble gases. R.R. Peterson and G.A. Moses.
20	421	ABVI	HYMBLO (Fortran). HYMNIABLOCK: eigenvalue solver for blocked matrices. R. Gruber.
20	429	ABVE	PLASMA (Fortran). A program to solve rotating plasma problems. M. Bakker and M.S. van den Berg.
			•

Quantum Chemistry

Vol.	Page	Cat.no.	
16	65	ACYU	STP (Fortran). An integral package for one-centre integrals over Slater-Transform- Preuss functions. E. Yurtsever.
18	441	ACXN	000ACORRECTION 07/09/79 (Fortran). A compact program of the SCF-Xalpha scattered wave method. S. Katsuki, P. Palting and S. Huzinaga.
19	337	ACYY	IBMOL-7 (Fortran). A program to introduce local symmetry in ab initio computations of molecules: IBMOL-7. E. Ortoleva, G. Castiglione and E. Clementi.
20	267	ACZR	ONE CENTRE STATIC POTENTIAL (Fortran). Third version of a program for calculating the static interaction potential between an electron and a diatomic molecule. G. Raseev. See other versions of this program ACQW 2(1971)261, ACWO 11(1976)237.
20	275	ACZS	ELECTRON MOLECULE SCATTERING (Fortran). Electron scattering by closed or open shell diatomic molecules. G. Raseev. Subroutine required by this program (for data) is ACZR 20(1980)267. See other version of this program ACQO 1(1970)445.

20

459

ACIC

	130		Program index volumes 10–20
F	Radiation	Physics	
1	ol. Page	Cat.no.	
1	6 129	ABUV	TRIP 1 (Fortran). TRIP 1: a time-dependent recombination ionisation package. J. Magill. Subroutine required by this program is ABUJ 9(1975)51.
1	6 139	ABUW	RADFL (Fortran). Radial radiative flux in cylindrically symmetric arcs. P.J. Shayler and M.T.C. Fang.
1	7 305	ACYJ	0001 BREMSSTRAHLUNG INTENSITY 2 (Fortran). Extension to high frequencies of a program for calculating the angular distribution of nonrelativistic bremsstrahlung. A. Banuelos, F. Rodriguez-Trelles and L. Bilbao.
1	8 385	ACUE	CLUSTER 78 (Fortran). Calculation of the nucleation and growth of defect clusters P.B. Kruger and R.M. Mayer.
R	adiative	Transfer	
V	ol. Page	Cat.no.	
20		ABVK	MFP (Fortran). MFP: a code for calculating equation of state and optical data for noble gases. R.R. Peterson and G.A. Moses.
S	olid State	Physics	
V	ol. Page	Cat.no.	
16		ACMP	LATTICE DYNAMICS OF ZINCBLENDE (Fortran). Lattice dynamics of zincblende structure compounds using deformation-dipole model and rigid ion model. K. Kunc and O.H. Nielsen.
17	7 393	ACMN	0001 TRAPZAL (Fortran). Adaptation: numerical solution of the Kramers-Kronig transforms by trapezoidal summation as compared to a Fourier method. S.J. Collocott and G.J. Troup.
17	413	ACUC	LATTICE DYNAMICS - SHELL MODEL (Fortran). Lattice dynamics of zincblende structure compounds II. Shell model. K. Kunc and O.H. Nielsen. Subroutine required by this program is ACMP 16(1979)181.
17	423	ACXR	000A CORRECTION 22/12/78 (Fortran). II. A program for computing normal modes of molecules, crystal phonon dispersion relations and structure factors for neutron inelastic scattering. F.Y. Hansen.
18	101	ACUD	ADIABATIC BOND CHARGE MODEL (Fortran), Lattice dynamics of group IV semiconductors using an adiabatic bond charge model. O.H. Nielsen and W. Weber.
18	385	ACUE	CLUSTER 78 (Fortran). Calculation of the nucleation and growth of defect clusters. P.B. Kruger and R.M. Mayer.
19	69	ACZY	PEOVER1 (Fortran). Calculation of photoemission spectra for surfaces of solids. J.F.L. Hopkinson, J.B. Pendry and D.J. Titterington.
19	263	ACKR	ELECTRONS REFLECTED BY SURFACE (Fortran). A program for calculation of the reflection and transmission of electrons through a surface potential barrier. G. Malmstrom and J. Rundgren.
20	237	ABVB	CAVLEED (Fortran). Calculation of LEED diffracted intensities. D.J. Titterington and C.G. Kinniburgh.
20	349	AAPC	GRINT (Fortran). Gilat-Raubenheimer method for k-space integration. A. Simunek.
20	459	ACIC	000ACORRECTION 11/10/79 (Fortran). Monte Carlo calculation of multiple scattering effects in thermal neutron scattering experiments. J.R.D. Copley.

B00ACORRECTION TO 0002 11/10/79 (Fortran). Monte Carlo calculation of multiple scattering effects in thermal neutron scattering experiments: modification to horizontal cylinder geometry. J.R.D. Copley.

