EE 542 – Laboratory Assignment

Instructor: Young H. Cho T.A.: Yue Shi Due date: Report due: October 21, 11:59pm Demo due: Oct 23, 11:59 pm

The git repo for all the codes provided in this lab: https://github.com/yuesOctober/GDCproject/tree/yue

Download the repo:

git clone https://github.com/yuesOctober/GDCproject.git

<u>Basic git command:</u> https://confluence.atlassian.com/bitbucketserver/basic-git-commands-776639767.html

GDC Data Lab:

In this lab, you will learn

- 1. How to download, integrate, and preprocess files related to a particular disease type, and how to use the data obtained.
- 2. As an example, you will go through the entire process to get the miRNA files, and the related file metadata, case metadata to the disease <u>Liver Hepatocellular Carcinoma</u>
- 3. You will apply the machine learning package to the miRNA matrix extracted to detect normal/cancer samples.

What to turn in:

- 1. Go through the entire tutorial and do the Part 1 and Part 2 with all the cancer types and do a multiclass classification. You can treat all the samples from normal tissues in different cancer types as one single class.
- 2. In Part2, try a different model other than the one provided in the sample code.
- 3. Visualize the features after feature selection with t-SNE and PCA method [3]
- 4. Plot the evaluation metrics and ROC curve for the model.

Submission guideline:

Each team should create a github repo and provide the link to your repo for code and slide submission. You need have a readme file explaining how to run your source codes. For video demo submission, you need show the steps to run your code and explain. Only one submission per team is needed.

Part 1: Data download, integration and preprocess.

1. Introduction to GDC data:

Read the document below to get a sense of GDC data.

https://gdc.cancer.gov/about-data

Biomarker Data:

Data Category	Data Type
DNA Methylation	Methylation Beta Value
Simple Nucleotide	Annotated Somatic Mutation
Variation	Raw Simple Somatic Mutation
	Aggregated Somatic Mutation
	Masked Somatic Mutation
Transcriptome Profile	Gene Expression Quantification
	Isoform Expression Quanfitication
	miRNA expression Quantification

2. Example: Downloading miRNA files of Disease: Liver Hepatocellular Carcinoma

miRNA Expression Quantification is a table that associates miRNA IDs with read count and a normalized count in reads-per-million-miRNA-mapped. https://docs.gdc.cancer.gov/Data/Bioinformatics Pipelines/miRNA Pipeline/

Download Expression Quantification data: miRNA sequence data

- 1. Go to the data portal <u>https://portal.gdc.cancer.gov/repository</u>, on the left side there are two tabs: *Files* and *Cases*
- 2. Click Cases and select a disease type: Liver Hepatocellular Carcinoma
- 3. Click Files and select

Data Category: Transcriptome Profiling

Data type: miRNA Expression Quantification

Experimental Strategy: miRNA-Seq

You will see 373 cases and 425 files. That means there are duplicates for some cases. Also in those cases, there are some normal cases without cancer.

4. Click on the **Manifest download.** This will download the manifest file for use with GDC data transfer tool.

The Manifest file contains the id, filename, md5, size and patient state.

5. Data transfer tool Download:

https://gdc.cancer.gov/access-data/gdc-data-transfer-tool

Download the version according to your OS type.

Command line to **download** and **unzip** a **OSX** version:

Download:

wget -c -t 0 https://gdc.cancer.gov/files/public/file/gdc-client v1.3.0 OSX x64.zip Unzip:

Unzip gdc-client v1.3.0 OSX x64.zip

Note: For other versions, just replace with the corresponding OS version file name.

Binary Distributions

Links to the binary distributions for supported platforms are provided below.

- gdc-client_v1.3.0_Windows_x64.zip
- gdc-client_v1.3.0_Ubuntu14.04_x64.zip
- #gdc-client_v1.3.0_OSX_x64.zip
- #gdc-client_v1.3.0_CentOS7_x64_Beta.zip
- Try out the new Beta GDC Data Transfer Tool User Interface!

System Recommendations

The system recommendations for using the GDC Data Transfer Tool are as follows:

- OS: Linux (Ubuntu 14.x or later), OS X (10.9 Mavericks or later), or Windows (7 or later)
- CPU: At least eight 64-bit cores, Intel or AMD
- RAM: At least 8 GiB
- Storage: Enterprise-class storage system capable of at least 1 Gb/s (gigabit per second) write throughput and sufficient free space for BAM files.

6. Download the files with gdc-client tool:

- a. make a directory for the data: mkdir live_miRNA cd live_miRNA
- b. Download with gdc-client.
 ./<path-to-gdc-client>/gdc-client download -m <path-to-manifest-file> e.g.

./~/Downloads/gdc-client -m ~/Downloads/gdc manifest.2018-08-23.txt

After successful downloads, you will see

7. Check the successful download:

Since large volumes of data are downloaded, it is important to check the file integrity. You could use the md5 checksum to check the integrity of downloaded files.

Run the code: python3 check.py

A sample python 3 code **check.py** is provided.

8. If some files fail download, use the following command:

```
./<path-to-gdc-client>/gdc-client download <id>e.g.
../gdc-client download fa63ce14-b9b5-4041-9df7-3b86ba9ede16
```

9. Once we get the biomarker files. We also need get the case ids related to the files.

This is because we need correlate the biomarker files with the corresponding case clinical/biospecimen files.

Here we need to write some python codes to extract all the file_ids and the corresponding case ids for future use.

Get the cases related to the files:

The code *parse_file_case_id.py* is provided.

Click on the tab , and check all the following items, then click on the **JSON** tab. It will download the case ids for the files.

Screenshot of a downloaded file:

```
"file name": "0644e07b-831c-436a-b3cb-83d79a48820b.mirbase21.mirnas.quantification.txt",
"data_format": "TXT",
"access": "open",
"file_id": "baa65cc1-acb7-46c0-b68b-ce11600b476d",
"data_category": "Transcriptome Profiling",
"file_size": 50268,
"cases": [
    "project": {
      "project_id": "TCGA-LIHC"
    "case_id": "7bdc5f86-4d7d-4f1f-bc23-ab51fa9fb947"
"file_name": "455502e4-9e9b-48b5-a6be-1a722de47909.mirbase21.mirnas.quantification.txt",
"data_format": "TXT",
"access": "open",
"file_id": "593d4a08-a05e-42c8-9440-4176fbf177fe",
"data_category": "Transcriptome Profiling",
"file_size": 50261,
"cases": [
    "project": {
      "project_id": "TCGA-LIHC"
    "case id": "801b1d2c-eb6f-4eef-a00b-83da939d755a"
```

11. Get the meta data for the files and corresponding cases:

The source code: *request_meta.py*The fields for the files and cases:

File fields:

https://docs.gdc.cancer.gov/API/Users_Guide/Appendix_A_Available_Fields/#file-fields case fields:

https://docs.gdc.cancer.gov/API/Users Guide/Appendix A Available Fields/#case-fields

Once we get the meta data for the miRNA files, we can see that some samples come from a normal solid tissue and some others come from tumor.

12. Now we could generate the miRNA matrix for all the files with labeled normal or tumor. The miRNA seq that comes from tumor is labeled with 1, and normal tissue is labeled with 0.

Part 2: Apply Machine Learning Package (sklearn) to the above data.

^

Sample code provided: predict.py

The steps are as following:

- 1. Data standardization.
- 2. Train and test data split.
- 3. Feature selection.
- 4. Model hyper-parameters tuning with cross validation
- **5**. Model prediction with the best hyper-parameters
- 6. Evaluation: Precision, Sensitivity, Accuracy, F1-score, Specificity

The result is shown in Figure 1.

Fig.1 Performance Evaluation for Different ML models

Please explain the evaluation metrics above. Please try a different model other than the models used in the sample code. Also plot the ROC curve for the model applied.

Below are some good reference papers for your project.

Reference:

- [1] Hyeongmin Kim & Yong-Min Kim ,"Pan-cancer analysis of somatic mutations and transcriptomes reveals common functional gene clusters shared by multiple cancer types," *Scientific Reports*, **volume 8**, Article number: 6041 (2018) ,https://www.nature.com/articles/s41598-018-24379-y
- [2] Marieke Lydia Kuijjer, Joseph Nathaniel Paulson, Peter Salzman, Wei Ding & John Quackenbush, "Cancer subtype identification using somatic mutation data,", British Journal of Cancervolume 118, pages1492–1501 (2018).

[3] https://medium.com/@luckylwk/visualising-high-dimensional-datasets-using-pca-and-t-sne-in-python-8ef87e7915b