

Exame Normal de **Introdução aos Sistemas Eletromagnéticos - Parte I** Eng. Biomédica 2ºAno/1ºSemestre

19/01/20	15
Duração:	1h

Nome	N	Aluno	

A parte I do exame é constituída por 3 questões de escolha múltipla e por 3 problemas de desenvolvimento.

Das perguntas indicadas, responda no máximo a 4 e indique nesta tabela as respostas efetivamente respondidas.

1	2	3	4	5	6

Escolha múltipla

- Para cada questão há uma única hipótese correta.
- Assinale a resposta correta no enunciado com um círculo.
- Se pretende anular uma resposta escreva "Anulado" na respetiva caixa.
- Cotação: Resposta correta = 2; Resposta errada = -0,66
- 1. Uma carga pontual $Q_1 = 5.0 \,\mu\text{C}$ encontra-se na posição $x_1 = 0.0 \,\text{cm}$ e uma carga pontual $Q_2 = 7.0 \,\mu\text{C}$ encontra-se na posição $x_2 = 85.0 \,\text{cm}$. Onde se deve colocar uma terceira carga, Q_3 , de

$$Q_2 = 7.0 \,\mu\text{C}$$
 encontra-se na posição $x_2 = 85.0 \,cm$. Onde se deve colocar uma terceira carga, Q_3 , de modo a que a força elétrica sobre ela seja nula?

A: $x_3 = 34.4 \,cm$
B: $x_3 = 46.1 \,cm$
C: $x_3 = 38.9 \,cm$
D: $x_3 = 40.6 \,cm$

2. Um condensador de capacidade $C_1 = 2 \, \mu F$ é carregado com uma diferença de potencial $V_{1i} = 50 \, V$ e um condensador de capacidade $C_2 = 3 \, \mu F$ é carregado com uma diferença de potencial $V_{2i} = 100 \, V$. Após estarem carregados, os dois condensadores ligam-se em paralelo ficando as placas de polaridade contrária ligadas. As diferenças de potencial finais nos condensadores 1 e 2, serão de

A: $\begin{cases} V_{1f} = 40 V \end{cases}$	B: $\begin{cases} V_{1f} = 60 V \end{cases}$	$C \cdot \int V_{1f} = 70 V$	D: $\begin{cases} V_{1f} = 75 V \end{cases}$
$V_{2f} = 40 V$	$V_{2f} = 90 V$	$V_{2f} = 70 V$	$V_{2f} = 75 V$

3. Uma bobine plana de secção circular encontra-se perpendicularmente a um campo de indução magnética uniforme, tal como está representado na figura.

Se a intensidade do campo magnético aumentar linearmente ao longo do tempo...

- A: é induzida na bobine uma corrente sinusoidal.
- B: não existe corrente induzida na bobine.
- C: é induzida na bobine uma corrente constante com o sentido anti-horário.
- D: é induzida na bobine uma corrente constante com o sentido horário.

Desenvolvimento

- Apresente todos os passos de resolução e justifique convenientemente todos os cálculos.
- Indique as unidades dos resultados obtidos.
- Cada problema tem a cotação de 2 valores.
- **4.** Cinco cargas pontuais iguais, cada uma com uma carga Q = 2 nC, encontram-se na periferia de uma circunferência de raio R = 3 cm, tal como se esquematiza na figura. Considere que o potencial elétrico no infinito é nulo.

Caracterize (intensidade, direção e sentido) o vetor campo elétrico no centro da circunferência.

- **5.** Dois fios retilíneos, muito compridos, encontram-se paralelos a uma distância $d = 5 \, cm$. Os fios são percorridos por correntes $I_1 = 1,0 \, A$ e $I_2 = 2,0 \, A$, com os sentidos positivos do eixo dos Y, tal como está representado na figura.
- a) Caracterize (intensidade, direção e sentido) os campos de indução magnética existentes no centro do fio 1 e no centro do fio 2.
- **b)** Caracterize (intensidade, direção e sentido) a força magnética que o fio 2 exerce sobre um metro do fio 1 e a força magnética que o fio 1 exerce sobre um metro do fio 2.

6. Duas bobines circulares planas encontramse no plano XOY com os seus centros na origem das coordenadas.

A bobine 1 tem um número de espiras $N_1 = 1000$, um raio $R_1 = 12 \, cm$ e é percorrida por uma corrente $i_1 = 2 \, A$, com o sentido indicado na figura. A bobine 2 tem um número de espiras $N_2 = 5000$ e um raio $R_2 = 3 \, cm$.

a) Caracterize (intensidade, direção e sentido) o campo de indução magnética na origem das coordenadas.

- **b**) Determine o fluxo magnético ligado com a bobine 2, admitindo que o campo magnético sobre esta bobine é uniforme.
- c) Determine o coeficiente de indução mútua entre as bobines.

Soluções:

1	2	3
С	A	D

4.
$$\vec{E} = 8,3 \hat{x} kV/m$$

5. a)
$$\overrightarrow{B_{fio1}} = 8.0 \times 10^{-6} \ \hat{z} \ T$$
; $\overrightarrow{B_{fio2}} = -4.0 \times 10^{-6} \ \hat{z} \ T$

5. a)
$$\overrightarrow{B_{fiol}} = 8.0 \times 10^{-6} \ \hat{z} \ T \ ; \ \overrightarrow{B_{fio2}} = -4.0 \times 10^{-6} \ \hat{z} \ T$$
5. b) $\overrightarrow{F_{fiol}} = 8.0 \times 10^{-6} \ \hat{x} \ N \ ; \ \overrightarrow{F_{fio2}} = -8.0 \times 10^{-6} \ \hat{x} \ N$

6. a)
$$\vec{B} = 1,05 \times 10^{-2} \hat{z}$$
 T

6. b)
$$\phi_2 = 1,48 \times 10^{-1} Wb$$

6. c) L =
$$7,40 \times 10^{-2} H$$