Reverse Physics: from laws to physical assumptions,

Found Phys **52**, 40 (2022)

Reverse Physics for GR

Gabriele Carcassi and Christine A. Aidala

Physics Department University of Michigan

https://assumptionsofphysics.org

Hamiltonian mechanics \iff det/rev + DOF independence

$$d_t q^i = \partial_{p_i} H$$
$$d_t p_i = \partial_{q^i} H$$

$$S_a = d_t \xi^a \omega_{ab} = \partial_b H$$

$$\omega_{ab}(t+dt) = \omega_{ab}(t) + (\partial_a S_b - \partial_b S_a)dt + O(dt^2)$$

Assumptions of Physics,

Michigan Publishing (v2 2023) (q^2, p_2)

$$(q^2, p_2)$$

Scalar product across DOFs

 (\hat{q}^2, \hat{p}_2)

Area within each DOF

Volume = #states

$$\#$$
states = $\prod \#$ confDOF

Areas = #confDOF

Hamiltonian is the continuous version of

Recovers relativistic particle mechanics without additional assumptions

Geometry of principle of least action (SDOF) $\vec{S} = 0 \qquad \vec{S} = -\nabla \times \vec{\theta} \qquad \mathcal{S}[\gamma] = \int_{\gamma} L dt = \int_{\gamma} \vec{\theta} \cdot d_{t} \xi^{a} dt$

$$\nabla \cdot \vec{S} = 0$$

$$\vec{S} = -\nabla \times \vec{\theta}$$

 $pd_tq + 0d_tp - Hd_tt$

No state is "lost" or "created" as time evolves (Minus sign to match convention)

Sci Rep 13, 12138 (2023)

The action is the line integral of the vector potential (unphysical)

Variation of the action

$$\delta \mathcal{S}[\gamma] = \oint_{\partial \Sigma} \vec{\theta} \cdot d\vec{\gamma}$$
$$= -\iint_{\Sigma} \vec{S} \cdot d\vec{\Sigma}$$

Gauge independent, physical!

Variation of the action measures the flow of states (physical). Variation = $0 \Rightarrow$ flow of states tangent to the path.

Discrete case

Counting states and configurations

$$q^2$$
 q^1
 V

$$\#conf(S) = \#S$$

$$\#conf(S) = \#S$$
 $\#states(V) = \#V$ $\#DOF(I) = \#I$

Continuous case

$$\#conf(S) = \int_{S} \omega_{ab} d\xi^{a} d\xi^{b}$$

State density

Ham Mech ⇒ Correct count of configurations/states on finitely many dense (i.e. continuous) DOFs

Field theory ⇒ DOFs themselves are dense (i.e. continuous)

$$\#DOF(I) \neq \#I$$

Configuration density

Conjecture: GR ⇔ det/rev + DOF independence for infinitely many (dense) DOFs

$$\delta \int_{\gamma} L dt = \oint_{\partial \Sigma} \theta_a d\gamma^a = \iint_{\Sigma} \omega_{ab} d\xi^a d\gamma^b$$

$$\delta \int_{\gamma} \mathcal{L} d^n s = ???$$

$$= ?$$

$$\delta \int_{\gamma} \mathcal{L} d^n s = ???$$

Line integral of the vector potential of the flow of state **density**?

Flow of configurations?

$$\int_{U} \sqrt{-g} \ d^{3}x \qquad \text{\#DOFs?}$$

$$\mathcal{L} = \mathcal{L}_{g} + \mathcal{L}_{matter}$$
 Flow of DOFs?

We are mapping values between Cauchy surfaces, #DOFs are the points on the Cauchy surface, #conf are the possible field values at each point

The problem with counting on the continuum

We'd like:

- 1. Every state is a single case (i.e. $\mu(\{\psi\}) = 1$)
- Incompatible! 2. Finite continuous range carries finite information (i.e. $\mu(U) < \infty$)
- 3. Count is additive for disjoint sets (i.e. $\mu(\cup U_i) = \sum \mu(U_i)$) Pick two!

Discard $2 \Rightarrow$ counting measure Discard $1 \Rightarrow$ Lebesgue measure

Discard 3 ⇒ "Quantum measure"

$$\mu(U) = 2^{\sup(S(\operatorname{hull}(U)))}$$

Exponential of the maximum entropy reachable with convex combinations (statistical mixtures) of U (reduces to counting/Liouville measure)

Orthogonal states: different states all else equal

 $\mu({A,C}) < 2 = \mu({A}) + \mu({C})$

Non-orthogonal states: different states but in different contexts sub-additive

Quantum mechanics ⇒ lower bound on #conf (entropy) on continuous DOF

Conjecture: quantum gravity ⇒ lower bound on DOF count

From QM: Lower bound on state count requires a severe revisitation of particle state space

- 1. Every point is a single DOF (i.e. $\mu(\lbrace x \rbrace) = 1$)
- 2. Finite volume carries finitely many DOFs (i.e. $\mu(U) < \infty$)
- 3. Count is additive for disjoint regions (i.e. $\mu(\cup U_i) = \sum \mu(U_i)$)

Does lower bound on DOF count require an equally severe revisitation of space-time?

Wrapping up

- Classical mechanics is exactly det/rev mapping of configurations over finitely many DOFs
- Conjecture: is general relativity exactly det/rev mapping of configurations over infinitely many (dense) DOFs (i.e. a field theory)?
- Quantum mechanics sets a lower bound on state count
 - Entropy of pure state is zero, pure states count as one state
- Conjecture: is quantum gravity setting a lower bound on the DOF count?
 - No region of space can contain less than one DOF
- Can we generalize the physical/geometric interpretation of the action principle to field theory and to QM?

