

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

РТУ МИРЭА

ЛЕКЦИОННЫЕ МАТЕРИАЛЫ (ПРЕЗЕНТАЦИИ К ЛЕКЦИОННЫМ МАТЕРИАЛАМ)

Безопасность систем баз данных

	(наименование дисциплины (модуля) в с	оответствии с учебным планом)
Уровень	специалист	
-	(бака	давриат, магистратура, <u>специалитет)</u>
Форма обучения	квнро	
_	(очная, очно-заочная, заочная)	
Направление(-я)		
подготовки	10.03.01 «Информационная безопасность автоматизированных систем»	
		(код и наименование)
Институт	Институт Кибербезопасности и цифровых технологий	
		(полное и краткое наименование)
Кафедра	Кафедра Информационно-аналитические системы кибербезопасности (КБ-2) (полное и краткое наименование кафедры, реализующей дисциплину (модуль))	
-		
Лектор	К.т.н., доцент Шукенбаев Айрат Бисенгалеевич	
_	(сокращенно — ученая степень, ученое звание; полностью — ФИО)	
Используются в данной редакции с учебного года		2023/2024
		(учебный год цифрами)
Проверено и согласовано «	20r.	А.А. Бакаев
		(подпись директора Института/Филиала с расшифровкой)

online.mirea.ru

Ощущение полной безопасности наиболее опасно.

Илья Нисонович Шевелев
Везде, где есть жизнь, есть и опасность.

Ральф Уолдо Эмерсон

Безопасность систем баз данных.

Тема лекции: Угрозы информационной безопасности баз данных

Источники угроз информации баз данных. Классификация угроз информационной безопасности баз данных Угрозы, специфичные для систем управления базами данных

операторы GRANT, REVOKE

КОМАНДА GRANT

Предположим, что пользователь Diane имеет таблицу Заказчиков и хочет позволить пользователю Adrian выполнить запрос к ней. Diane должна в этом случае ввести следующую команду:

GRANT INSERT ON Salespeople TO Adrian;

Когда SQL получает команду GRANT, он проверяет привилегии пользователя подавшего эту команду, чтобы определить допустима ли команда GRANT. Если Adrian - владелец таблицы Продавцов, то он может позволить Diane вводить в нее строки с помощью следующего предложения

GRANT INSERT ON Salespeople TO Diane;

Теперь Diane имеет право помещать нового продавца в таблицу.

КОМАНДА REVOKE

С помощью команды *REVOKE осуществляется отмена привилегий*, синтаксис команды *REVOKE* аналогичен синтаксису команды *GRANT*.

Пример 1. Отмена привилегии *CREATE TABLE* на создание таблиц в базе данных у пользователя *user REVOKE CREATE TABLE FROM user*;

Методы доступа к данным в БД:

Большинство современных реляционных СУБД поддерживает дискреционную (DAC) и мандатную (MAC) модели разграничения доступа.

Дискреционное управление доступом - это метод ограничения доступа к объектам, который основан на том, что некоторый субъект (обычно владелец объекта) может по своему усмотрению давать другим субъектам или отбирать у них права доступа к объекту.

Дискреционное разграничение доступа к объектам (Discretionary Access Control — DAC) характеризуется следующим набором свойств:

- все субъекты и объекты компьютерной системы должны быть однозначно идентифицированы;
- для любого объекта определен пользователь-владелец;
- владелец объекта обладает правом определения прав доступа к объекту со стороны любых субъектов;
- существует привилегированный пользователь, обладающий правом полного доступа к любому объекту.

К достоинствам дискреционного разграничения доступа относятся относительно простая реализация и хорошая изученность.

Недостатки дискреционного разграничения доступа. Прежде всего, к ним относится статичность разграничения доступа.

Дискреционные — управление доступом субъектов (пользователей или прикладных процессов) к объектам (фрагментам данных, файлам, сегментам БД) на основе списков управления доступом или матрицы доступа (матрицы безопасности). Каждому пользователю (прикладному процессу) предписывается право доступа к каждому фрагменту данных, если право не предоставлено, то его запросы к данному фрагменту данных игнорируются.

Мандатное разграничение доступа (Mandatory Access Control — MAC).

К основным характеристикам этой модели относится следующее:

- все субъекты и объекты должны быть однозначно идентифицированы;
- имеется линейно упорядоченный набор меток конфиденциальности и соответствующих им уровней допуска;
- каждому объекту присвоена метка конфиденциальности;
- каждому субъекту присваивается степень допуска;
- в процессе своего существования каждый субъект имеет свой уровень конфиденциальности, равный максимуму из меток конфиденциальности объектов, к которым данный субъект получил доступ;
- существует привилегированный пользователь, имеющий полномочия на удаление любого объекта системы;
- понизить метку конфиденциальности объекта может только субъект, имеющий доступ к данному объекту и обладающий специальной привилегией;
- право на чтение информации из объекта получает только тот субъект, чья степень допуска не меньше метки конфиденциальности данного объекта;
- право на запись информации в объект получает только тот субъект, чей уровень конфиденциальности не больше метки конфиденциальности данного объекта.

Целью мандатного разграничения доступа к объектам является предотвращение утечки информации из объектов с высокой меткой конфиденциальности в объекты с низкой меткой конфиденциальности.

К другим достоинствам мандатного разграничения доступа относятся:

- более высокая надежность работы самой компьютерной системы, так как при разграничении доступа к объектам контролируется и состояние самой системы, а не только соблюдение установленных правил;
- большая простота определения правил разграничения доступа по сравнению с дискреционным разграничением.

Недостатки мандатного разграничения доступа к объектам компьютерной системы:

- сложность программной реализации, что увеличивает вероятность внесения ошибок и появления каналов утечки конфиденциальной информации;
- снижение эффективности работы компьютерной системы, так как проверка прав доступа субъекта к объекту выполняется не только при открытии объекта в процессе субъекта, но и перед выполнением любой операции чтения из объекта или записи в объект;
- создание дополнительных неудобств работе пользователей компьютерной системы, связанных с невозможностью изменения информации в не конфиденциальном объекте, если тот же самый процесс использует информацию из конфиденциального объекта.

Мандатные —разграничение доступа субъектов к объектам, основанное на назначении степени конфиденциальности для информации, содержащейся в объектах, и выдаче официальных разрешений (допуска) субъектам на обращение к информации такой степени конфиденциальности. Каждому пользователю (прикладному процессу) назначается привилегия доступа (или ограничение на доступ) к каждой степени конфиденциальности, если субъект обращается к данным со степенью конфиденциальности, к которой он не допущен, то его запросы отклоняются.

Ролевые (role based access control - **RBAC**)—развитие методов дискреционного доступа, при этом привилегии субъектов системы на объекты группируются с учётом специфики их применения, образуя роли. Все пользователи (прикладные процессы) объединяются в группы с одинаковым уровнем благонадежности и наследуют привилегии доступа к данным, назначенные для их уровня благонадежности.

Атрибутивные (attribute based access control - **ABAC**) — метод доступа к объектам, основанный на наборе правил для атрибутов объектов или субъектов, возможных операций с ними и окружения, соответствующего запросу. Каждому уровню благонадежности пользователей (прикладных процессов) назначается совокупность привилегий и условий, при которых они реализуются, относительно каждой степени конфиденциальности данных, что позволяет учитывать условия обращения к данным, как дополнительный фактор в принятии решения о доступе.

Под угрозой понимают потенциально возможное событие, действие, процесс или явление, которое может привести к нанесению ущерба чьим-либо интересам.

Угрозой ИБ АИС назовем возможность воздействия на информацию, обрабатываемую в системе, приводящего к искажению, уничтожению, копированию, блокированию доступа к информации, а также возможность воздействия на компоненты ИС, приводящего к утрате, уничтожению или сбою функционирования носителя информации или средства управления программно-аппаратным комплексом системы

Угроза нарушения конфиденциальности.

Угроза нарушения целостности.

Угроза нарушения доступности.

Первый шаг в анализе угроз – их идентификация.

Источники угроз информации баз данных

Внешними дестабилизирующими факторами являются:

- умышленные, деструктивные действия лиц с целью искажения, уничтожения или хищения программ, данных и документов системы;
- искажения в каналах передачи информации, поступающей от внешних источников, циркулирующих в системе и передаваемой потребителям, а также недопустимые значения и изменения характеристик потоков информации из внешней среды и внутри системы;
- сбои и отказы в аппаратуре вычислительных средств;
- вирусы и иные деструктивные программные элементы;
- изменения состава и конфигурации комплекса взаимодействующей аппаратуры системы за пределы, проверенные при тестировании или сертификации системы.

Внутренними источниками угроз безопасности СБД и СУБД являются:

- системные ошибки при постановке целей и задач проектирования автоматизированных информационных систем и их компонент, допущенные при формулировке требований к функциям и характеристикам средств обеспечения безопасности системы;
- ошибки при определении условий и параметров функционирования внешней среды, в которой предстоит использовать информационную систему;
- ошибки проектирования при разработке и реализации алгоритмов обеспечения безопасности аппаратуры, программных средств и баз данных;
- ошибки и несанкционированные действия пользователей, административного и обслуживающего персонала в процессе эксплуатации системы;
- недостаточная эффективность используемых методов и средств обеспечения информационной безопасности в штатных или особых условиях эксплуатации системы.

Классификация угроз информационной безопасности баз данных

Классификация по цели реализации угрозы:

- Нарушение конфиденциальности информации.
- Нарушение целостности информации.
- Полное или частичное нарушение работоспособности системы.

Классификация по природе возникновения угрозы:

- Естественные угрозы.
- Искусственные угрозы

Классификация по локализации источника угрозы представляется следующим образом:

- 1. Угрозы, непосредственным источником которых является человек:
- разглашение, передача или утрата атрибутов разграничения доступа;
- подкуп или шантаж обслуживающего персонала или пользователей;
- копирование конфиденциальных данных легальным пользователем системы с целью неправомерного;
- взлом системы защиты с целью выполнения деструктивных действий лицом, не являющимся законным пользователем системы;
- внедрение агентов фирм-конкурентов или преступных организаций в обслуживающий персонал атакуемой ИС.
- 2. Угрозы, непосредственным источником которых являются штатные программно-аппаратные средства ИС:
- неквалифицированное использование или ошибочный ввод параметров программ;
- неквалифицированное использование или ошибочный ввод параметров программ;
- отказы и сбои в работе операционной системы, СУБД и прикладных программ.

- 3. Угрозы, непосредственным источником которых являются несанкционированно используемые программно-аппаратные средства:
- нелегальное внедрение и использование программ;
- нелегальное внедрение и использование троянских программ;
- заражение компьютера вирусами с деструктивными функциями;
- работа генераторов шума и подобных источников электромагнитного излучения.
- 4. Угрозы, непосредственным источником которых является среда обитания:
- внезапное и длительное отключение систем электропитания;
- техногенные и природные катастрофы;
- всплески природных электромагнитных излучений.

Классификация по расположению источника угроз.

- 1. Угрозы, источник которых расположен вне контролируемой зоны места расположения АИС:
- нарушение нормальной работы или разрушение систем жизнеобеспечения зданий
- блокирование физического доступа на объект размещения автоматизированной системы обслуживающего персонала, пользователей;
- нарушение нормальной работы или разрушение внешних каналов связи
- 2. Угрозы, источник которых расположен в пределах контролируемой зоны расположения АИС:
- нарушение нормальной работы или разрушение систем электропитания и водоснабжения помещений;
- физическое разрушение линий связи или аппаратуры, обеспечивающей работу информационной системы;
- считывание конфиденциальной информации из аппаратных средств телекоммуникационной или вычислительной техники с использованием перехвата электромагнитных излучений;
- выведения из рабочего состояния обслуживающего персонала.
- 3. Угрозы, источник которых имеет доступ к терминальным устройствам АИС:
- получение параметров входа в систему и аутентифицирующей информации с использованием видеонаблюдения, клавиатурных закладок и технологий подбора паролей;
- получение параметров входа в систему и аутентифицирующей информации с использованием мошеннических приемов, насилия;
- получение возможности несанкционированного входа в систему в период, когда легальный пользователь покинул рабочее место, не завершив сеанс взаимодействия с системой;
- получение конфиденциальной информации из распечаток результатов выполнения запросов и иных выводимых системой данных.
- 4. Угрозы, источник которых имеет доступ к помещениям, где расположены серверы АИС:
- физическое разрушение элементов серверов и коммутационной аппаратуры;
- выключение электропитания серверов и коммутационной аппаратуры;
- остановка серверных и иных критически важных для функционирования автоматизированной системы процессов;
- уничтожение или модификация критически важных для функционирования АС файлов операционной системы;
- нарушение штатной работы базовой операционной системы;
- рассылка сообщений, дезорганизующих работу пользователей и обслуживающего персонала системы.

online.mirea.ru

Классификация по способу воздействия на методы и средства хранения данных информационной системы.

- 1. Угрозы нарушения информационной безопасности данных хранимых на внешних запоминающих устройствах:
- нарушение конфиденциальности, уничтожение или модификация данных, сохраненных средствами создания резервных копий на магнитных носителях, путем незаконного восстановления баз данных с последующей заменой реальной копии или без таковой;
- нарушение конфиденциальности, уничтожение ил модификация данных, созданных штатными средствам ведения журнала изменений баз данных;
- дискредитация криптографических систем защиты информации путем создания копии носителей ключевой информации;
- создание несанкционированных копий файлов операционной системы, содержащих информацию баз данных для проведения последующего анализа с целью доступа к конфиденциальной информации.
- 2. Угрозы нарушения ИБ данных, хранимых в оперативной памяти серверов и клиентских компьютеров:
- изменение информации в оперативной памяти, используемой СУБД для кэширования данных, организации хранения промежуточных результатов выполнения запросов, констант и переменных процессов обработки данных;
- изменение информации в оперативной памяти, используемой операционной системой для кэширования данных, организации многопользовательского режима работы, констант и переменных процессов обработки данных;
- изменение информации в оперативной памяти, используемой прикладными программами в процессе организации и выполнения сессии взаимодействия с сервером баз данных и прослушивающим процессом.
- 3. Угрозы нарушения ИБ данных, отображаемой на терминале пользователя или принтере:
- организация имитации процесса установления взаимодействия с сервером с целью получения идентификаторов и аутентифицирующей информации пользователей;
- изменение элементов данных, выводимых на терминал пользователя за счет перехвата потока вывода;
- изменение элементов данных, выводимых на принтер за счет перехвата потока вывода.

Классификация по характеру воздействия на информационную систему (целесообразно выделить два варианта):

- активное воздействие;
- пассивное воздействие.

Математической модели первого приближения уровень обеспечения ИБ некоторой ИС может рассматриваться как многомерный вектор, включающий характеристики нескольких независимых измерений:

- физического;
- технологического;
- логического (процедурного);
- человеческого.

Угрозы, специфичные для систем управления базами данных

Существует несколько оснований для классификации угроз, специфичных для СУБД. Будем использовать упрощенную классификацию угроз по следующим основаниям:

- угрозы конфиденциальности информации;
- угрозы целостности информации;
- угрозы доступности.

Угрозы конфиденциальности информации.

К угрозам такого типа можно отнести:

- 1. Инъекция SQL (конструкция UNION)
- 2. Логический вывод на основе функциональных зависимостей.

Пусть дана схема отношения: R(A1, ..., An). Пусть U = (A1, ..., An), X, Y - подмножества из U. Говорят, что X функционально определяет Y, если в любом отношении Y со схемой Y со различными из Y. В этом случае имеет место функциональная зависимость, обозначаемая X > Y.

Логический вывод на основе ограничений целостности

Использование оператора *UPDATE* для получения конфиденциальной информации. Оператор *SELECT*, мог выполнить оператор *UPDATE* со сколь угодно сложным логическим условием.

Угрозы целостности информации, специфические для систем управления базами данных.

Модификация данных в реляционных СУБД возможна с помощью SQL операторов *UPDATE*, *INSERT* и *DELETE* оператором *CHECK*

Специфичными для систем управления базами данных угрозами доступности являются:

- 1. Использование свойств первичных и внешних ключей Блокировка записей при изменении
- 2. Загрузка системы бессмысленной работой. Простейший пример выполнение запроса, содержащего декартово произведение двух больших отношений. Мощность декартового произведения двух отношений мощности N1 и N2, равна N1 * N2. Т.е. при выдаче злоумышленником запроса вида SELECT * FROM Tab 1, Tab 1 ORDER BY 1,

где мощность отношения (количество строк в таблице $Tab\ 1)=10000,$ мощность результирующего отношения будет $N=N1^2=10000^2=100\ 000\ 000.$

Большинство современных реляционных СУБД поддерживает дискреционную (DAC) и мандатную (MAC) модели разграничения доступа.