Math 582 Intro to Set Theory Lecture 21

Kenneth Harris

kaharri@umich.edu

Department of Mathematics University of Michigan

March 15, 2009

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 21

March 15, 2009 1 / 1

Properties of Ordinal Multiplication

Multiplication on **ON**

Definition (Ordinal multiplication)

For all ordinals β ,

$$\begin{array}{rcl} \beta \cdot \mathbf{0} & = & \mathbf{0} \\ \beta \cdot (\alpha + \mathbf{1}) & = & \beta \cdot \alpha + \beta \\ \beta \cdot \alpha & = & \sup \{\beta \cdot \xi \, \big| \, \xi < \alpha \} \end{array}$$

when α is a limit

Ordinal Multiplication and Normality

Theorem

If $\alpha > 0$, then the function $(\xi \mapsto (\alpha + \xi))$ is normal.

Proof.

See Lecture 19, slide 5 for the theorem being applied.

Let $\alpha > 0$. The function is continuous by definition (limit clause). It is enough to check the successor clause is order preserving:

$$\alpha \cdot (\beta + 1) = \alpha \cdot \beta + \alpha > \alpha \cdot \beta,$$

by the Order Lemma (a) for Lecture 19.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 21

March 15, 2009

4/1

Properties of Ordinal Multiplication

Order Laws

Theorem (Order Laws)

For all α and β and $\alpha,\beta>1$

- (a) If $\alpha \neq 0$, then $\beta \leq \alpha \cdot \beta$.
- (b) If $\alpha \neq 0$ and $\beta < \gamma$, then $\alpha \cdot \beta < \alpha \cdot \gamma$.
- (c) $\alpha, \beta \neq 0 \rightarrow \alpha \cdot \beta \neq 0$.
- (d) If $\beta < \gamma$, then $\beta \cdot \alpha \leq \gamma \cdot \alpha$.

Proof (a) and (b) are immediate by normality.

(c) follows from (a): since $\alpha \neq 0$

$$1 < \beta < \alpha \cdot \beta$$

(d). By transfinite induction (next slide).

Proof

 $\beta < \gamma \rightarrow \beta \cdot \alpha < \gamma \cdot \alpha$.

(d). Proof by Transfinite Induction on α . The case $\alpha = 0$ is trivial, and successor follows from the order properties of addition.

If α is a limit, we assume (c) for $\delta < \alpha$.

$$\begin{array}{rcl} \beta \cdot \alpha & = & \sup \{\beta \cdot \delta \ \big| \ \delta < \alpha \} \\ & \leq & \sup \{\gamma \cdot \delta \ \big| \ \delta < \alpha \} \\ & = & \gamma \cdot \alpha. \end{array} \qquad \text{i.h.}$$

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 21

March 15, 2009 6 / 1

Properties of Ordinal Multiplication

0,1 Laws

Theorem (0,1 Laws)

For all α and β

- (a) $0 \cdot \alpha = \alpha \cdot 0 = 0$.
- (b) $\alpha \cdot 1 = 1 \cdot \alpha = \alpha$.
- (c) If $\alpha \neq 0$ and $\beta > 1$, then $\alpha < \alpha \cdot \beta$

(a) and (b) are easy transfinite inductions. (c) follows immediately from (b) and the order property (b) from the previous slide:

$$\alpha \neq 0 \land 1 < \beta \rightarrow \alpha \cdot 1 < \alpha \cdot \beta$$

Distributivity and Associativity

Theorem (Associativity)

For all α, β, γ

- (a) (Distributivity) $\alpha \cdot (\beta + \gamma) = \alpha \cdot \beta + \alpha \cdot \gamma$
- (b) (Associativity) $\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$
- (a). This is an exercise from HW9.
- (b). The proof is by transfinite induction on γ . I leave the case of $\gamma = 0$ and successor to you (it is the same as for the natural numbers, and uses Distributivity). I will do the limit case.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 21

March 15, 2009 8 / 1

Properties of Ordinal Multiplication

Proof

Proof.

If any of α , β or γ are zero, then the equality is 0 = 0.

Assume none are zero. Note that $\alpha \cdot \beta \neq 0$ as well.

Let γ be a limit. Define

$$F(\xi) = \alpha \cdot \xi$$
 $G(\xi) = \beta \cdot \xi$ $H(\xi) = (\alpha \cdot \beta) \cdot \xi$.

Each function is normal. So,

$$\begin{array}{lll} \alpha \cdot (\beta \cdot \gamma) & = & F(G(\gamma)) \\ & = & \sup\{F(G(\delta)) \, \big| \, \delta < \gamma\} & \qquad \qquad F \circ G \text{ normal, (L.20, s. 11)} \\ & = & \sup\{\alpha \cdot (\beta \cdot \delta) \, \big| \, \delta < \gamma\} & \qquad \qquad \text{i.h} \\ & = & \sup\{H(\delta) \, \big| \, \delta < \gamma\} & \qquad \qquad \text{i.h} \\ & = & \mu(\gamma) = (\alpha \cdot \beta) \cdot \gamma & \qquad H \text{ normal} \end{array}$$

Division Algorithm

The next theorem, the division algorithm, specializes to the ordinary division algorithm in the case of the natural numbers. It plays a central role in the normal form theorem (see H+J, Theorem 6.6.4).

Theorem

If α and β are given with $\beta \neq 0$, then there exist unique γ and δ such that $\alpha = \beta \cdot \gamma + \delta$ and $\delta < \beta$.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 21

March 15, 2009

10 /

Properties of Ordinal Multiplication

Proof

Let $F_{\beta}(\gamma) = \beta \cdot \gamma$. Since F_{β} is normal and $F_{\beta}(0) = 0 \le \alpha$, it follows by the Bracket Theorem (L.20, s. 13) that there is a unique γ such that

$$\beta \cdot \gamma \leq \alpha < \beta \cdot (\gamma + 1).$$

Let $G_{\beta \cdot \gamma}(\delta) = \beta \cdot \gamma + \delta$. Since $G_{\beta \cdot \gamma}$ is normal and $G_{\beta \cdot \gamma}(0) = \beta \cdot \gamma \leq \alpha$, it follows by the Bracket Theorem that there is a unique δ such that

$$\beta \cdot \gamma + \delta \le \alpha < \beta \cdot \gamma + (\delta + 1) = (\beta \cdot \gamma + \delta) + 1$$

It follow that $\beta \cdot \gamma + \delta = \alpha$.

Since $\alpha < \beta \cdot (\gamma + 1) = \beta \cdot \gamma + \beta$, it follows that $\delta < \beta$.

This proves existence.

Proof - continued

Suppose γ' and δ' also satisfy the conditions of the Theorem:

$$\alpha = \beta \cdot \gamma' + \delta'$$
 $\delta' < \beta$.

Since $\delta' < \beta$

$$\beta \cdot \gamma' \le \alpha < \beta \cdot \gamma' + (\delta' + 1) \le \beta \cdot (\gamma' + 1),$$

so, $\gamma' = \gamma$ by the uniqueness of γ' .

Similarly,

$$\beta \cdot \gamma + \delta' \le \alpha < \beta \cdot \gamma + (\delta' + 1)$$

which implies that $\delta = \delta'$ by the uniqueness of δ .

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 21

March 15, 2009

Properties of Ordinal Exponentiation

Exponentiation on **ON**

Definition (Ordinal exponentiation)

For all ordinals β ,

$$\begin{array}{rcl} \beta^0 & = & 1 \\ \beta^{\alpha+1} & = & \beta^\alpha \cdot \beta \\ \beta^\alpha & = & \sup\{\beta^\xi \, \big| \, \xi < \alpha\} & \text{when } \alpha \text{ is a limit} \end{array}$$

Ordinal Exponentiation and Normality

Theorem

If $\alpha > 1$, then the function $(\xi \mapsto (\alpha^{\xi}))$ is normal.

Proof.

See Lecture 19, slide 5 for the theorem being applied.

Let $\alpha > 1$. The function is continuous by definition (limit clause). It is enough to check the successor clause is order preserving:

$$\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha > \alpha^{\beta}$$

 $\alpha^{\beta} \neq 0$ for all β by easy transfinite induction. The rest follows by the order property for multiplication since $\alpha > 1$.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 21

March 15, 2009

15 /

Properties of Ordinal Exponentiation

0,1 Laws

Theorem (0,1 Laws)

For all α ,

- (a) $0^{\alpha} = 0$ if α is a successor.
- (b) $0^{\alpha} = 1$ if $\alpha = 0$ or is a limit ordinal.
- (c) $1^{\alpha} = 1$.
- (d) $\alpha^0 = 1$.
- (e) $\alpha^1 = \alpha$.
- (f) If $1 < \alpha, \beta$, then $1 < \alpha^{\beta}$

Easy transfinite inductions. Note (a) and (b) can be proven together by transfinite induction. When α is a limit

$$0^{\alpha} = \sup\{0^{\delta} \mid \delta < \alpha\} = 1.$$

(f) follows from (e) together with normality (order preserving).

Order Laws

Theorem (Order Laws)

For all α ,

- (a) If $\alpha > 1$, then $\beta \leq \alpha^{\beta}$.
- (b) If $\alpha > 1$ and $\beta < \gamma$, then $\alpha^{\beta} < \alpha^{\gamma}$.
- (c) If $\alpha > 1$ and $\beta > 1$, then $\alpha < \alpha^{\beta}$.
- (d) If $\beta < \gamma$, then $\beta^{\alpha} \leq \gamma^{\alpha}$.

 $^{\square}$ (a) and (b) follow by Normality: let $F_{\alpha}(\xi) = \alpha^{\xi}$. Then, by normality

- (a) $\beta \leq F_{\alpha}(\beta)$
- (b) $\beta < \gamma \rightarrow F_{\alpha}(\beta) < F_{\alpha}(\gamma)$.
- (c) follows from (b).
- (d) is an easy induction, as in part (d) on slide 5 for multiplication.

Kenneth Harris (Math 582)

Math 582 Intro to Set Theory Lecture 21

March 15, 2009

17 / 1

Properties of Ordinal Exponentiation

Exponent Laws

Theorem (Exponent Laws)

For all α, β, γ ,

- (a) $\alpha^{\beta+\gamma} = \alpha^{\beta} \cdot \alpha^{\gamma}$.
- (b) $(\alpha^{\beta})^{\gamma} = \alpha^{(\beta \cdot \gamma)}$.

Proof by transfinite induction. Homework 9 problems.