

0 1 0 1 1 0 1 2 1 [0,1] - juncte limità lim X = 21 lim X n = 0 Dy: Fix (Xm) n CR. Consideran Olu = 1844 Xx si Nem = inf Xx Un zum > uz vnnz vn => u. Jez liv S. m. lim vey a levi (Xm) n lim den = inf un sé se mat, lim sup X = lim X = lin X = lim X = Propositie Fie (xm) n un our mongionit de mr. neale. Alunci F Xmx /k (oubsir) convergent a.i. Xmx-> lin x n= l Pas k=1 e = lin Un => 7 m, a. i. \ m = m, =) $\mathcal{E} \leq u_n \leq \mathcal{E} + 1$ $u_{m_n} = su_p \times_{\kappa} = 3 \neq m_n \geq m_n \quad a.i. \quad \underbrace{t_{m_n}} = 3$ $k \geq m_n \quad k \geq m_n \quad a.i. \quad \underbrace{t_{m_n}} = 3$ $a.i. \quad U_{m_n} - 1 \leq x_{m_n} \leq U_{m_n}.$ xm, e(e-1; e+1) = 1|xm, -e/<1

Per her un Ve=> 3 m2 > n: a.i. + m2 m2 a) => ē eun < ē+ ½ Um = my X = > 3 m2 > m a 2

Um - 2

a - 2 T X m2 5 Um; e-1cum, - 2 < Xm2 & um2 < e+ 2 -, 1 × m2 - e/e 2 Presylenem ca am gasit Xne a i. IXne - Ele ! un se=> 7 mx+1 > mx a i, 4 m 2 mx -> -) Equacer L Man = roup Xx => 7 mari = mx a i. + a. i. ummer - to 1 < x mar. 5 lm mar. =) 1e-X m 451 le ++1

Teorema In Rouce sir ming are un substr convergent Teorem Sp. metric (R, d) este complet (once ser Cauchy este convergent) Teoremo To (R", d,) once sin margint are un sulpin convergent Dem: m=2 = = (xm, ym) ER2 (2 n) n este margint => 7 M >0 a.i. d (7 n, 0) < Ms (= > JXn2+yn2 < M + nen (Xm) m este marginit = Fun rubsia (Xux) Xux -> X (yn) n este ming => (yn) este marg => =(yn) y = - y Zn ke = (Xm ne, y me) - s (x,y) Teoreme (Rm, dr) este un op metri complet.

Xn->a +E>O I me a 1 +a zme=s 1a- E < E < a+ E Prop: Fie (Xn) n un sir marg de mr reale Atune DYERO F ME a.c. Umzme = xmcang 2 3 Xm, -> a Perm Xm = Q (=) Prop. The Un on many est conv. (=) lim X= lim Xa Prop: 1) Daca Xn Syn -, lin Xn S Ain Jn lin Xm 5 lin yn 2) Pin (-×n)=-lin Xn 3) tem (Xm+yn) & tim Xn + tim yn 4) tim (xm+ym) > lim Xm + tim ym
5) Doca 7 lim Xm => tim (xm+ym) = lim Xm+ling 6) lim (xm+ym) > lim xx+ lim ym +1 lim (xn+yn) < lim xn + lim yn 8) Em 1 = 1 Em xn

9) tom (xn-yn) (Ein xn) (Ein yn) Brop Eie (Xm)m a. e. Xn>0 Eim Xmy 5 lin 5Xm 5 lin JXm 5 lin Xxm In particular daca 7 lim Xny >> line of Xn = lin XnT/ ex. lim Jm! = lin (m+1) = 1 m+1 = 20 Om: Vrem a aritim -ce tim JKn Elim Xn Dace lum Xxx = 2 = , 1 este ovidents fectern Por cà lèm Xurl = a EZ 4 200 7 ng a.i. +m >, mg =) Xm+1 (a+E $m \ge m_2$ $\frac{(n_1 + 2 \times m_1)}{\times m} = \frac{(n_1 + 2 \times m_1)}{\times m} < (a + e)^2$ $m \geq m_{\xi} = 1 \times m_{\xi} = \frac{\times m_{\xi}}{\times m} = \frac{\times m_{\xi}}{\times m_{\xi}} =$ XMT' < (at E)P < (a+ 2)+

tim wy Xm 2 tim mp Xmp & lim (a+ E)thro tim mp Xm m-200 a+ E = a+E pt. +E>0 => tum m X n 5 a+E+EN =) => Pim JXn < a = Pim Xn+1 n-200 Xn Teowma Dace len > 00 si f lim ann-an 2) 2) Flin an 2 lim anti-an ex. lim 1+ 1+ -- + 1 n-20 1+ 1+ -- + 1 (anz 1+ 2+ -- + = O bur for n > 0 lim aux - au lim 1+2x - + m+ n+1 - 12+ 1- h m-> 00 bur - bu n-> 00 ln (n+1) - en a = Pin 1 - Pm(4+1) = Pin 1 = 1 -> am -> AD

Dem: lim an+1-an 2 a ER 4 2 70 3 mg a. i. Hazme =) | anni-an - 0/ < 8 Hm≥mε (a-ε) (lan+, - lan) € an+, -an ε (a+ε) (bron-ty)
me get partial arts (> + m > ma 2) am+p - am = = = (an+k+1 - am+k) = ((burker - briek) = se simplifice tormen on termen = (a+E) (lm+p-b-u) /: b-n+p any an 5 (a+ E) (1- bm) Em antp 2 Com antp an 5 (a-E). lin butp butp butp butp (1- km) = 2+E Em antp < 9= lim anti-an british

Serie studieres conv. unei seri Def. O serie & xm - & Xn este o pereche de Sywnern-ca seria E Xn are limità (este conv) dact sime (ym)map en cimiti(este conv.) Some Xn = tim gr ex. (1) \sum_{m21} \frac{1}{m(m+1)} $X_{m} = \frac{1}{m(m+1)}, \quad Y_{m} = \sum_{k=1}^{m} \frac{1}{k-(k+1)} = \sum_{k=1}^{m} \frac{1}{k-k+1}$ se recomplif termini $= 1 - \sum_{k=1}^{m} \frac{1}{m+1} = \sum_{k=1}^{m} \frac{1}{k-k+1}$ ex 3 5 9 2 GZ 1 | a | s 1 , Xm = am

ym = 2 a k = 1+a+a2+a= +60

k=0

Ca2 2 a=1 ym = & 1= m-) no ex. 3 & (m+1)2 ym = & (k+1)2 ym+1-ym=Xm+1= (m+2)= =0=1 siml ym? (NH)2 = m(NH) = 1 ym & & / (KH) = 1-hur) ->1 sir mon. si marg. - , seria este convergenta ex = E X M Obs: Daci soule & xu si & yn sout conv. atumes coulle & (Xm Ju) si & a. Xu munt come si E (Xn+yn) = E Xn + E ym E a. Xm = a. E Xp

Ob: Laca son's E X este convergenta atuna sur Xm+12 yu+1-yn= a-a=0 (yn-)a) 15 (1+1-0-) X2m+1=0 X2m = 2 -30/0 Out rad time 2 Fix a> An sa ne 18 Verm and Pentinu : = tum