Class: Final Year (Computer Science and Engineering)

Year: 2022-23 **Semester:** 7

Course: High Performance Computing Lab

Practical No. 02

Exam Seat No:

1. 2019BTECS00033 - Teknath K jha

Title of practical:

openMp program for :

- 1) Vector Vector Addition
- 2) Vector Scalar Addition

MY SYSTEM CONFIGURATION:

A) Problem Statement 1: Vector Vector Addition:

Comparison with sequential:

In below images 1st peak is of sequential and later is of parallel program :

Images from CPU Utilization Task Manager:

1)

for n=1000

2)

for n=10000

3) 3Hz Sockets: for n= 100000

Here sequential takes 0.01725 and parallel takes 0.011356 clock ticks

<u>Conclusion</u>: my sequential program uses less CPU and parallel program uses more UPU for same program and same number of instruction Sets.

Although time calculation is negligible as it is small program.

Problem Statement 2: Vector Scalar Addition

Parallel: 7.3 sec Sequential: 5.4sec

So here sequential is faster than parallel.

In below images 1st peak is of sequential and later is of parallel program:

CPU Graphs:

Here most of time width of sequential is more than parallel which shows time difference.

Conclusion:

In execution: sequential taken 5.56 while parallel taken 5.55 which is considerable difference, further observation of CPU cycles also proves this that parallel is faster than sequential.

Github Link:

https://github.com/Teknath-jha/HPC-LAB-2019BTECS00033/tree/main/Assignment-2