Лабораторная работа 4.3.3. Исследование разрешающей способности микроскопа методом Аббе

Калинин Даниил, Б01-110

9 февраля 2023 г.

Цель работы: Изучение дифракционного предела разрешения объектива микроскопа.

В работе используются: лазер; кассета с набором сеток разного периода; линзы; щель с микрометрическим винтом; оптический стол с набором рейтеров и крепёжных винтов; экран; линейка.

Теоритическая справка:

Принцип двойной дифракции и формирование оптического изображения: Формирование изображения с помощью линзы можно рассматривать, основываясь на идее пространственного спектрального разложения. Монохроматическую волну, идущую от предмета, представим в виде суперпозиции плоских волн разных направлений α , т. е. разных пространственных частот $u=k\sin\alpha$. Каждая гармоника фокусируется линзой в определённую точку фокальной плоскости, и там возникает картина пространственного спектра. По этой причине фокальную плоскость линзы называют фурье-плоскостью.

В процессе распространения света от предмета до фурье-плоскости осуществляется преобразование Фурье светового поля (по терминологии Аббе – первая дифракция). Процесс распространения света от фурье-плоскости до плоскости изображения (рис. 1) – вторая дифракция.

Можно сказать, что в процессе образования изображения происходит два последовательных преобразования Фурье: от входной плоскости Π_1 к фурье-плоскости – первая дифракция, и затем от фурье-плоскости с помощью линзы Π_2 к выходной плоскости Π_2 – вторая дифракция.

Пространственная фильтрация: В фурье-плоскости возможно избирательное воздействие на разные пространственные гармоники: установив в любой точке x этой плоскости пластинку, вносящую определённое поглощение, мы изменим амплитуду и фазу плоской волны с пространственной частотой u = kx/f, не изменяя амплитуд и фаз других плоских волн.

Мультипликация изображения: Изображение, возникающее в плоскости Π_2 , представляет собой периодически повторяющееся с периодом

$$d_0 = \lambda f/d$$

изображение объекта с функцией пропускания $f_0(x)$. Соседние элементы периодической структуры, видимой в Π_2 , $f(x) = \sum f_0(x - nd_0)$, не налагаются друг на друга при условии

Рис. 1. Двойная дифракция Аббе

 $d_0 > a$, где a — размер объекта. Число элементов N размноженного изображения определяется шириной главного максимума картины дифракции Фраунгофера на отдельной щели решётки:

$$N \approx 2b/d_0$$
.

Разрешающая способность. Критерий Рэлея: Согласно качественному критерию, предложенному Рэлеем, два источника света различимы, если дифракционный максимум одного приходится на минимум другого. Т. е, расстояние между центрами пятен Δx равно полуширине пятна Эйри:

$$\Delta x = 1.22 \frac{\lambda}{D} z,$$

где z — расстояние от диафрагмы до плоскости наблюдения, а D — диаметр диафрагмы. Отсюда минимальное угловое разрешение равно:

$$\alpha_{min} \approx 1.22 \frac{\lambda}{D}$$
.

Расчётные формулы:

Минимально разрешаемое объективом расстояние:

$$l_{min} \approx \frac{2f\lambda}{D},\tag{1}$$

где f – фокусное расстояние линзы. Условия главных максимумов:

$$d\sin\theta_x = m_x \lambda, \quad d\sin\theta_y = m_y \lambda, \tag{2}$$

где $m_{x,y}$ – порядок дифракционных максимумов.

Рис. 2. Схема экспериментальной установки

Увеличение системы собирающих линз (в условиях опыта):

$$\Gamma = \frac{b_1 b_2}{a_1 a_2},\tag{3}$$

где a, b – соответствующие расстояния на рис. 2.

Экспериментальная установка:

Схема экспериментальной установки отображена на рис. 2. Излучение лазера (ОКГ) почти перпендикулярно падает на сетку C, установленную вблизи фокальной плоскости линзы \mathcal{J}_1 — объектива. Вторичное изображение из плоскости P_2 проецируется на экран \mathfrak{I}_2 линзой \mathcal{I}_2 .

Установка имеет следующие параметры:

- 1. Длина волны лазера: $\lambda = 532 \ \text{нм}$.
- 2. Фокусное расстояние линзы \mathcal{J}_1 : $f_1 = 110$ мм.
- 3. Фокусное расстояние линзы J_2 : $f_2 = 25$ мм.

Ход работы:

1. Определение периодов решеток.

Расстояние от сетки до экрана: H=120~cм. Из формул (2), где $\sin\theta\sim a/H$ и a — период изображения, получим результат в табл. 1.

Номер решетки	Период изображения, мм.	Период решетки, мм.
1	30.0	0.0213
2	22.5	0.0284
3	12.0	0.0532
4	5.0	0.1277
5	3.7	0.1725

Таблица 1. Результаты вычислений периодов решеток по картине спектра

2. Соберем микроскоп со следующими параметрами.

$$a_1 = 19 \text{ cm},$$

 $b_1 = 48.7 \text{ cm},$
 $a_2 = 2.5 \text{ cm},$

Номер решетки	Период изображения, мм.	Период решетки, мм.
1	1.0	0.0126
2	2.0	0.0252
3	3.3	0.0415
4	6.0	0.0755
5	9.0	0.1133

Таблица 2. Результаты вычислений периодов решеток по увеличенному изображению

$$b_2 = 77.5 \ cм.$$

По формуле (3), $\Gamma = 79.46$. Тогда найдём период решётки (табл. 2).

3. Определим периоды решеток с помощью критерия Риэля.

Измерим наименьший размер диафрагмы, при котором еще видно изображение сетки. А далее по формуле (1) определим периоды решоток. Результат занесем в таблицу 3.

Номер решетки	Минимальный размер диафрагмы, мм.	Период решетки, мм.
1	-	-
2	4.0	0.0293
3	2.5	0.0459
4	1.6	0.0732
5	1.1	0.1064

Таблица 3. Результаты вычислений периодов решеток по критерию Риэля

4. Проверим метод Аббе.

Построим график d = f(1/D), где d – периоды решеток, расчитанные по спектрам, а D – минимальный размер диафрагмы.

Puc. 3. График зависимости d(1/D)

Из графика получаем экспериментальный коэффициент: $k_{sscn}=0.114$, в то время как теоретический: $k_{meop}=2\lambda f=0.117$. Как видно, они хорошо совпадают, а значит метод

Аббе работает верно.

Заключение:

В ходе работы мы определили несколькими способами периоды решёток, исследовали зависимость дифракционного предела разрешения объектива микроскопа от его диаметра. Отличия в полученных значениях периодов решоток могут быть связаны с общим недостатком метода, например, с точным определением фокусного расстояния: изображение может быть достаточно четким на довольно большом диапазоне расстояний и др.