

Prof. Dr. Anne Frühbis-Krüger M.Sc. Marco Melles

Präsenzaufgaben 10 - Modul mat 110

Keine Abgabe vorgesehen

Präsenzaufgabe 10.4.

- (a). Sei R ein kommutativer Ring und M ein R-Modul. Ist N ein Untermodul von M, so ist die Faktorgruppe $M_N := \{ [a]_N = a + N \mid a \in M \}$ ein R-Modul unter der Skalarmultiplikation $r \cdot [a]_N := [r \, a]_N$. Hinweis: Wohldefiniertheit der Skalarmultiplikation nicht vergessen.
- (b). Seien R, S kommutative Ringe und sei $\varphi:R\to S$ ein Ringhomomorphismus. Ist M ein S-Modul unter der Skalarmultiplikation \cdot_S , so ist M auch ein R-Modul unter der Skalarmultiplikation

$$r \cdot_R a := \varphi(r) \cdot_S a$$
.

Präsenzaufgabe 10.5. Sei R ein Integritätsring und M ein R-Modul. Ein $a \in M$ heißt **Torsionselement** von M, wenn ein $r \in R \setminus \{0\}$ existiert, sodass $r \cdot a = 0$. Wir bezeichnen die Menge aller Torsionselemente von M mit $T(M) := \{a \in M \mid a \text{ Torsionselement von } M\}$. M heißt **torsionsfrei**, falls $T(M) = \{0\}$.

- (a). Beweisen Sie, dass T(M) ein Untermodul von M ist. Zeigen Sie auch, dass die Aussage falsch sein kann, wenn R kein Integritätsring, sondern nur ein kommutativer Ring, ist.
- (b). Es bezeichne ${}^{M}\!/_{T(M)}$ den Faktormodul von M modulo T(M) und $[0]_{T(M)}$ das neutrale Element dieses R-Moduls. Beweisen Sie, dass ${}^{M}\!/_{T(M)}$ torsionsfrei ist.

Präsenzaufgabe 10.6. Seien $n, r \in \mathbb{N}$, R ein Integritätsring und K dessen Quotientenkörper. Beweisen Sie die folgenden Aussagen:

- (a). Eine Familie (x_1, \ldots, x_r) von Elementen des R-Moduls $R^{n \times 1}$ ist genau dann linear unabhängig über R, wenn sie im K-Vektorraum $K^{n \times 1}$ linear unabhängig über K ist.
- (b). Ist $I \neq 0$ ein Hauptideal von R, so sind R und I als R-Moduln isomorph.
- (c). $\mathbb{Z}_5 \times \mathbb{Z}_5$ hat eine Basis als \mathbb{Z}_5 -Vektorraum, aber nicht als \mathbb{Z} -Modul.