

EGYPFWD Initiative

Advanced Embedded Systems Nanodegree,
Embedded Software Design Masterclass by SPRINTS Egypt.

Automotive Door Control System Dynamic Design

A Graduation Project submitted in partial Fulfillment of Embedded Software Design Masterclass.

Prepared by

Yahia Emad Ahmed Derbala

yahderbala@gmail.com

LinkedIn

<u>Github</u>

ECU 1: Manager Modules State Diagrams

ECU 1: Sensor Modules State Diagrams

ECU 1 MCAL: DIO State Diagram

ECU 1 MCAL: COM Drivers State Diagram

ECU 1 : State Diagram

ECU 1: Sequence Diagram

ECU 1: CPU LOAD

• Calculation of HyperPeriod

Assumptions: Tick time = 1 ms; Task periodicities : 5, 10, 20 ms; Execution times = 1,2,4 ms

$$HyperPeriod = LCM(Periodicities) = LCM(5,10,20)$$

$$HyperPeriod = 20$$

• CPU Load Calculations

$$CPU LOAD = \frac{Total Time}{HyperPeriod} * 100$$

$$Total\ Time = \sum_{i=1}^{6} ExecutionTime_{i} * Num\ of\ Calls\ In\ HyperPeriod_{i}$$

$$Total\ Time = 1 * 4 + 2 * 2 + 4 * 1 = 12ms$$

$$Utilization = CPU LOAD = \frac{12}{20} * 100 = 60\%$$

ECU 2: Manager Modules State Diagrams

ECU 2 : Actuator Modules State Diagrams

ECU 2 MCAL: DIO State Diagram

ECU 2 MCAL: COM Drivers State Diagram

ECU 2 : State Diagram

ECU 2 : Sequence Diagram

ECU 2: CPU LOAD

• Calculation of HyperPeriod

Assumptions: Tick time = 1 ms; Task periodicities : 5, 10 ms; Execution times = 2, 3 ms

$$HyperPeriod = LCM(Periodicities) = LCM(5,10)$$

$$HyperPeriod = 10$$

CPU Load Calculations

$$CPU LOAD = \frac{Total Time}{HyperPeriod} * 100$$

$$Total\ Time = \sum_{i=1}^{6} ExecutionTime_{i} * Num\ of\ Calls\ In\ HyperPeriod_{i}$$

$$Total\ Time = 2 * 2 + 3 * 1 = 7ms$$

$$Utilization = CPU LOAD = \frac{7}{10} * 100 = 70\%$$