(20.05.20) Ogamnae Manjuga. 2) $A_{11} = (+1)^{11} \cdot \begin{vmatrix} 5 & 6 \\ 8 & 0 \end{vmatrix} = -43$ $A_{12} = -\begin{vmatrix} 4 & 6 \\ 9 & 0 \end{vmatrix} = 42$ $A_{13} = \begin{vmatrix} 4 & 5 \\ 5 & 1 \end{vmatrix} = +3$ $A_{21} = -\begin{vmatrix} 2 & 5 \\ 2 & 0 \end{vmatrix} = 24$ $A_{22} = -\begin{vmatrix} 4 & 5 \\ 7 & 0 \end{vmatrix} = -2$ $A_{23} = -\begin{vmatrix} 4 & 4 \\ 7 & 2 \end{vmatrix} = 6$ $A_{31} = \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = -3$ $A_{32} = -\begin{vmatrix} 4 & 3 \\ 6 & 1 \end{vmatrix} = 6$ As = 10 81 +-3 Auj = (-48 +2 -3) 3) $\widetilde{A} = (A_{11})^{T}$ $\widetilde{A} = \begin{pmatrix} -48 & 24 & -3 \\ -4 & -24 & \frac{1}{3} \end{pmatrix}$ 4) A' - JHA A A= (0 0 0 0) 10 DA - 0 0 0 = 1-10 01 = 1=0=> 3x

 $A_{21} = -\frac{1}{10} \frac{01}{11} = 1$ $A_{22} = -\frac{1}{10} \frac{01}{11} = 0$ $A_{22} = \frac{1}{10} \frac{01}{11} = 0$ $A_{23} = \frac{1}{10} \frac{01}{10} = 0$ $A_{24} = \frac{1}{10} \frac{01}{10} = 0$ $A_{25} = \frac{1}{10} \frac{01}{10} = 0$ A = (0 0 0 0) (5) $\widetilde{\Lambda} = (A_{18})^{\overline{1}} \Rightarrow \widetilde{A} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ (4) $A' = A_{els} \cdot \widetilde{A} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ = 1 - 1 - 1 - 1 - 1 - 1 - 1 = -27 = -1 +0 => 3A" 2) $A_{11} = \begin{vmatrix} v_{11} & v_{21} \end{vmatrix} = -\frac{1}{3}$ $A_{22} = -\begin{vmatrix} v_{11} & v_{21} \end{vmatrix} = -\frac{1}{3} \cdot \frac{1}{3} A_{23} = \begin{vmatrix} v_{11} & v_{21} \end{vmatrix} = -\frac{1}{3} \cdot \frac{1}{3} A_{23} = \begin{vmatrix} v_{11} & v_{21} \end{vmatrix} = -\frac{1}{3} \cdot \frac{1}{3} A_{23} = \begin{vmatrix} v_{11} & v_{21} \end{vmatrix} = \frac{1}{3} \cdot \frac{1}{3} A_{23} = \begin{vmatrix} v_{11} & v_{21} \end{vmatrix} = \frac{1}{3} \cdot \frac{1}{3} A_{23} = \begin{vmatrix} v_{11} & v_{21} \end{vmatrix} = \frac{1}{3} \cdot \frac{1}{3} A_{23} = \begin{vmatrix} v_{11} & v_{21} \end{vmatrix} = \frac{1}{3} \cdot \frac{1}{3} A_{23} = \begin{vmatrix} v_{11} & v_{21} \end{vmatrix} = \frac{1}{3} \cdot \frac{1}{3} A_{23} = \begin{vmatrix} v_{11} & v_{21} \end{vmatrix} = \frac{1}{3} \cdot \frac{1}{3} A_{23} = \begin{vmatrix} v_{11} & v_{21} \end{vmatrix} = \frac{1}{3} \cdot \frac{1}{3} A_{23} = \begin{vmatrix} v_{11} & v_{11} & v_{11} \end{vmatrix} = \frac{1}{3} \cdot \frac{1}{3} A_{23} = \begin{vmatrix} v_{11} & v_{11$ A-1 = (-1/3 +1/3 +1/3 +1/3) 5) Ã - (Ay) = (1/2 1/3 1/3 1/4) A - (1 2 -3) OAA = 3 + -3 = 2 = 2 = -2 + 15 -2 + 15 -2 -=-4+B= 4=0=2 IA

2)	$A_{11} = \begin{vmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -\frac{1}{2}$ $A_{31} = \begin{vmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{vmatrix} = -2$	Aze = 12 0 = 6	A13 = 12 -1 = -4 A23 = -12 -1 = 5 A33 = 13 21 = -4
3)	$A = \begin{pmatrix} -4 & 3 & -2 \\ -3 & 6 & -5 \\ -7 & 5 & -4 \end{pmatrix}$		
4)	$A^{-1} = \begin{pmatrix} -4 & 3 & -2 \\ -8 & 6 & -5 \\ -7 & 5 & -4 \end{pmatrix}$		