Fallstudien II

Laura Kampmann, Christian Peters, Alina Stammen 11. Dezember 2020

Inhalt

 Task I - Vorhersage der Datenrate Extreme Gradient Boosting Regression mit ARMA-Fehlern Validierung

 Task II - Handover Vorhersage und Link Lifetime Lösungsansatz Task II

1

Task I - Vorhersage der Datenrate

Extreme Gradient Boosting

Extreme Gradient Boosting

Intro

Features

Features

Tuning

Tuning

Validierung

Abbildung 1: Einteilungen in Trainings- und Testdatensätze bei der Kreuzvalidierung für Zeitreihen.

Out-of-Sample Vorhersagen

Abbildung 2: XGBoost Out-of-Sample Vorhersagen der Upload-Rate

Out-of-Sample Vorhersagen

Abbildung 3: XGBoost Out-of-Sample Vorhersagen der Download-Rate

Task I - Vorhersage der Datenrate

Regression mit ARMA-Fehlern

Situation

Abbildung 4: Grafik der auf der ersten Testfahrt im Szenario "Highway" gemessenen Datenübertragungsrate.

- · Zeitreihe $y_1, ..., y_n$ (Zielvariable)
- k Zeitreihen $x_{i,1},...,x_{i,n}$ für i=1,...,k (Einflussvariablen)

Lineares Regressionsmodell

$$y_t = c + \beta_1 x_{1,t} + ... + \beta_k x_{k,t} + \epsilon_t$$
 mit Fehler ϵ_t und Konstante c

Annahmen an Fehler:

- $E((\epsilon_1,...,\epsilon_n)^T)=0$
- · $Cov((\epsilon_1,...,\epsilon_n)^T) = \sigma^2 \mathbb{1}_n$

Annahmen sind in unserer Situation nicht einhaltbar!

ARMA(p, q): Zusammengesetzes Modell aus

- \cdot AR(p) (Auto Regressive): Linearkombination aus
 - · p vorherige Beobachtungen,
 - Konstante
 - · Fehler
- MA(q) (Moving Average): Linearkombination aus
 - · q vorherige Fehler
 - Konstante
 - · aktueller Fehler

Anwendung auf Regressionsfehler

Erinnerung: Fehler $(\epsilon_1, ..., \epsilon_n)$ des linearen Modells sind autokorreliert \Rightarrow erfüllen Voraussetzungen nicht

Lösung: Wende ARMA-Modell auf Fehler an

Modellgleichung Regression mit ARMA-Fehlern:

$$y_t = c + \sum_{i=1}^k \beta_i x_{i,t} + \underbrace{\sum_{j=1}^p \phi_j \epsilon_{t-j}}_{\text{vergangene Fehler LM}} + \underbrace{\sum_{k=1}^q \theta_k e_{t-k}}_{\text{vergangene Fehler ARMA}} + e_t$$

Task I - Vorhersage der Datenrate

Validierung

Validierung

k-fache Kreuzvalidierung

- · beachtet Abhängigkeit der Datenpunkte nicht
- · zerstört zeitliche Komponente
- verwendet eventuell zukünftige Beobachtungen für Prognose der Gegenwart
- ⇒ Kreuzvalidierung für Zeitreihen

Validierung

Abbildung 5: Einteilungen in Trainings- und Testdatensätze bei der Kreuzvalidierung für Zeitreihen.

Aufgabenstellung Task II

Vorhersage des Handovers und Link Lifetime

- Vergleich des RSRP Wertes zur verbundenen Zelle sowie zu den Nachbarzellen
- · Vorhersage des Handovers durch Angabe der Link Lifetime

Lösungsansatz Task II

und Link Lifetime

Task II - Handover Vorhersage

Lösungsansatz Task II

Idee: Prädiktionsmodell für Link Lifetime mit Einfluss des RSRP der verbunden sowie der Nachbarzellen

- ightarrow Datentransformation nötig
 - Anpassen der RSRP Messwerte in "Cellsän RSRP Werte in "Context"
 - Cell Id → eNodeB
 - ullet eNodeB Wechsel o Response Variable Link Lifetime

Prädiktionsmodell Task II

- Anwendung des Prädiktionsmodells XGBoost um Link Lifetime vorherzusagen
- · Validierung analog zu Task I mit Zeitreihenkreuzvalidierung

Literatur i

T. Chen and C. Guestrin.

Xgboost: A scalable tree boosting system.

CORR, abs/1603.02754, 2016.

T. Hastie, R. Tibshirani, and J. Friedman.

The elements of statistical learning: data mining, inference and prediction.

Springer 2 addition, 2000.

Springer, 2 edition, 2009.

R. Hyndman and G. Athanasopoulos. Forecasting: principles and practice, 2018.

h-Schritt Punktvorhersage

- Ersetze Beobachtungen zu zukünftigen Zeitpunkten mit deren Vorhersagen
- Ersetze Fehler an vergangenen Zeitpunkten durch das entsprechende Residuum
- · Ersetze Fehler an zukünftigen Zeitpunkten durch 0

Beispiel:
$$h = 2, k = 1, p = 2, q = 2$$

$$y_t = c + \beta_1 x_t + \epsilon_t \text{ mit } \quad \epsilon_t = \phi_1 \epsilon_{t-1} + \phi_2 \epsilon_{t-2} + \theta_1 e_{t-1} + \theta_2 e_{t-2} + e_t$$

$$\widehat{y_{t+1}} = c + \beta_1 x_t + \widehat{\epsilon_{t+1}} \text{ mit } \widehat{\epsilon_{t+1}} = \phi_1 \epsilon_t + \phi_2 \epsilon_{t-1} + \theta_1 e_t + \theta_2 e_{t-1} + \widehat{\varrho_{t+1}}$$

$$\widehat{y_{t+2}} = c + \beta_1 x_t + \widehat{\epsilon_{t+2}} \ \text{mit} \ \widehat{\epsilon_{t+2}} = \phi_1 \widehat{\epsilon_{t+1}} + \phi_2 \epsilon_t + \theta \underbrace{\widehat{e_{t+1}}}_{=0} + \theta e_t + \underbrace{\widehat{e_{t+2}}}_{=0}$$

Gradient Boosted Trees

- Kann man aus vielen ßchwachen"Lernern einen starken Lerner konstruieren?
 - \Rightarrow Ja, Boosting ist eines der mächtigsten Konzepte des Machine Learning [2]
- Kombination von einfachen CART Bäumen zu einem starken Ensemble
 - ⇒ Ähnlich zu Random Forest
- · Der Unterschied zum Random Forest liegt im Training!

Training von Gradient Boosted Trees

- · Bäume werden nacheinander zum Ensemble hinzugefügt
- Jeder neue Baum versucht, die Schwächen seiner Vorgänger äuszubügeln"
 - ⇒ Additives Training
- Je mehr Bäume aufgenommen werden, desto geringer wird der Training-Error (das Modell wird aber komplexer)
 - ⇒ Kontrolle des Bias-Variance Tradeoffs
 - ⇒ Zusätzlich gibt es Regularisierungs-Parameter

Implementierung: XGBoost

- Liefert state-of-the-art Performance in einer Vielzahl von ML-Problemen
- In 2015 haben 19/25 Gewinner von Kaggle-Competitions XGBoost eingesetzt
- Kann problemlos auf mehrere Milliarden Training Samples skaliert werden
- Lässt sich aber auch hervorragend auf ressourcenbegrenzten Systemen einsetzen [1]