A Project of Applying Different Multivariate Methods on Bank Telemarketing Data

Submitted to

Dr. Megan Orr

Submitted By

Sharmin Hossain

Student ID: 1337949

Index

Introduction	3
Data Description and Visualization	5
Research Question 1	9
Research Question 2	10
Research Question 3	13
Research Question 4	14
Conclusion	17
Reference	18
SAS Code and Output	19

1.Introduction

The data I have worked on came from direct marketing campaigns of a Portuguese banking institution. Their research goal was to predict if clients will subscribe after their telemarketing.

The marketing campaigns were based on phone calls. Often, more than one contact to the same client was required to access if the product (bank term deposit) would be ('yes') or not ('no') subscribed.

The business purpose of the research was finding out the characteristics that are helping Bank to make customers successfully subscribe for deposits, which helps in increasing campaign efficiently and selecting high value customers.

Data set is taken from UCI Machine Learning repository. There is total 41188 Rows in the dataset.

Attribute Information:

There is total 21 columns in the main dataset.

For my project purpose, I have worked with 10 of them. Here is the brief description of those 10 variables.

Serial	Variable Name	Variable Type	Variable Description
1	Age	Numeric	
2	Job	Categorical	Type of Job: admin, blue-collar, entrepreneur, housemaid, management, retired, self-employed, services, student, technician, unemployed, unknown
3	Marital	Categorical	divorced, married, single, unknown
4	Education	Categorical	basic.4y, basic.6y, basic.9y, high. School, illiterate, professional. Course, university. Degree, unknown
5	Contact	Categorical	cellular, telephone
6	Duration	Numeric	Last Contact Duration
7	Campaign	Numeric	Number of contacts performed during this campaign and for this client
8	ConsumerPriceIndex	Numeric	Consumer Price Index (Monthly Indicator)
9	ConsumerConfidenceIndex	Numeric	Consumer Confidence Index (Monthly Indicator)
10	Υ	Binary	Has the client subscribed a term deposit? (Yes/No)

From this dataset, the answers I am trying to get are:

- 1. Are all variables equally important for this research? Or can we eliminate some of them using 'Stepwise' procedure.
- 2. What kind of classification can be used in the dataset if we consider "Job" as a grouping variable? Does error rate change if we use both resubstitution and cross validation method?
- 3. Using different MANOVA methods, can we decide on the equality of population mean vector of numeric variables?
- 4. How many factors can be used to explain the total variances of those variables? Does rotating can be used to interpret the factors properly?

2. Data Description and Visualization

For Categorical variable, from Figure 1, we can see that admin, blue-collar and technician consists of almost 65% of total frequencies of overall population.

The SAS System The FREQ Procedure

job	Frequency	Percent	Cumulative Frequency	Cumulative Percent
admin.	10422	25.30	10422	25.30
blue-col	9254	22.47	19676	47.77
entrepre	1456	3.54	21132	51.31
housemai	1060	2.57	22192	53.88
manageme	2924	7.10	25116	60.98
retired	1720	4.18	26836	65.15
self-emp	1421	3.45	28257	68.60
services	3969	9.64	32226	78.24
student	875	2.12	33101	80.37
technici	6743	16.37	39844	96.74
unemploy	1014	2.46	40858	99.20
unknown	330	0.80	41188	100.00

Figure 1: Descriptive Statistics of Categorical Variable

For numerical variables, as we can see from Figure 2 and 3, Age and ConsumerPriceIndex seem to be normally distributed whereas other variables are not. The variance for variables ranges from 0.33 to 67225.73 which seem to be a huge difference.

The MEANS Procedure										
Variable	Mean	Median	Mode	Std Dev	Variance	Minimum	Maximun			
duration	258.2850102	180.0000000	85.0000000	259.2792488	67225.73	0	4918.0			
campaign	2.5675925	2.0000000	1.0000000	2.7700135	7.6729750	1.0000000	56.000000			
age	40.0240604	38.0000000	31.0000000	10.4212500	108.6024512	17.0000000	98.0000000			
ConsumerPriceeIndex	93.5756644	93.7490000	93.9940000	0.5788400	0.3350558	92.2010000	94.7670000			
ConsumerConfidenceIndex	-40.5026003	-41.8000000	-36.4000000	4.6281979	21.4202154	-50.8000000	-26.9000000			

Figure 2: Descriptive Statistics of Numerical Variables

Figure 3: Graphical representation of Numerical Variables

If we make a descriptive summary of group wise numerical variables, we can see from Figure 4 & 5 that there are many outliers for duration and campaign variable. For age, there are very few numbers of outliers and consumer price index & consumer confidence index seem more stable in terms of mean, median and percentiles for every job sector.

			Т	he MEANS Pr	ocedure				
job	N Obs	Variable	Mean	Median	Mode	Std Dev	Variance	Minimum	Maximu
admin.	10422	duration campaign age ConsumerPriceeIndex ConsumerConfidenceIndex	254.3121282 2.6234888 38.1872961 93.5340537 -40.2454327	175.0000000 2.0000000 36.0000000 93.4440000 -41.8000000	72.0000000 1.0000000 33.0000000 93.4440000 -36.1000000	258.2341698 2.8794773 8.9071509 0.5753110 4.7373269	66684.89 8.2913895 79.3373379 0.3309827 22.4422663	0 1.0000000 20.0000000 92.2010000 -50.8000000	3785.0 58.000000 72.00000 94.767000 -26.900000
blue-col	9254	duration campaign age Cons umerPrice eIndex Cons umerConfiden ceIndex	264.5423601 2.5584612 39.5557597 93.6566559 -41.3758159	186.0000000 2.0000000 39.0000000 93.9180000 -42.0000000	128.0000000 1.0000000 36.0000000 93.9940000 -36.4000000	265.7208403 2.7188570 8.8273967 0.5637070 4.1361581	70607.58 7.3921833 77.9229145 0.3177658 17.1078037	0 1.0000000 20.0000000 92.2010000 -50.8000000	4199.0 41.000000 80.000000 94.767000 -26.900000
entrepre	1458	duration campaign age ConsumerPriceeIndex ConsumerConfidenceIndex	263.2678571 2.5357143 41.7232143 93.6053716 -41.2836538	180.0000000 2.0000000 41.0000000 93.9180000 -42.0000000	85.0000000 1.0000000 37.0000000 93.9940000 -36.4000000	265.4207080 2.7433322 8.9108396 0.5656899 4.0084062	70448.15 7.5258714 79.4030621 0.3200051 16.0673202	2.0000000 1.0000000 20.0000000 92.2010000 -50.8000000	2482.0 39.000000 69.000000 94.767000 -26.900000
hous emai	1080	duration campaign age ConsumerPriceeIndex ConsumerConfidenceIndex	250.4547170 2.6396226 45.5000000 93.6765764 -39.4952830	175.5000000 2.0000000 45.0000000 93.9180000 -40.8000000	129.0000000 1.0000000 39.0000000 93.9940000 -36.4000000	253.8241211 2.8002994 10.7912198 0.5496393 4.3667575	64426.68 7.8416769 116.4504249 0.3021034 19.0685707	7.0000000 1.0000000 21.0000000 92.2010000 -50.8000000	2926.0 27.000000 85.000000 94.767000 -26.900000
manageme	2924	duration campaign age ConsumerPriceeIndex ConsumerConfidenceIndex	257.0581395 2.4760602 42.3628591 93.5227555 -40.4894865	181.0000000 2.0000000 42.0000000 93.4440000 -42.0000000	90.0000000 1.0000000 39.0000000 93.9940000 -36.4000000	253.3676295 2.6154704 9.3038202 0.5689192 4.6010565	64195.16 6.8406857 86.5610696 0.3236690 21.1697214	0 1.0000000 21.0000000 92.2010000 -50.8000000	3422.0 35.000000 80.000000 94.767000 -26.900000
retired	1720	duration campaign age ConsumerPriceeIndex ConsumerConfidenceIndex	273.7122093 2.4767442 62.0273256 93.4307860 -38.5730814	189.000000 2.000000 59.000000 93.444000 -37.500000	96.0000000 1.0000000 59.0000000 93.9180000 -42.7000000	280.9281109 2.8974191 10.4932931 0.7123771 5.9924290	68083.48 8.3950377 110.1092005 0.5074811 35.9092052	1.0000000 1.0000000 23.0000000 92.2010000 -50.8000000	3183.0 42.000000 98.000000 94.767000 -26.900000
self-emp	1421	duration campaign age ConsumerPriceeIndex ConsumerConfidenceIndex	264.1421534 2.6608023 39.9493315 93.5599817 -40.4881070	171.0000000 2.0000000 39.0000000 93.4440000 -41.8000000	73.0000000 1.0000000 30.0000000 93.9940000 -36.4000000	293.4377460 2.9121536 9.4224168 0.5720439 4.5173912	86105.71 8.4806385 88.7819379 0.3272342 20.4068232	4.0000000 1.0000000 21.0000000 92.2010000 -50.8000000	3366.0 40.000000 71.000000 94.767000 -26.900000
services	3969	duration campaign age ConsumerPriceeIndex ConsumerConfidenceIndex	258.39808.52 2.58780.55 37.9264298 93.6346586 -41.2900479	184.000000 2.000000 36.000000 93.9180000 -42.0000000	158.0000000 1.0000000 31.0000000 93.9940000 -36.4000000	244.1922627 2.7919116 9.0187489 0.5595384 4.1832922	59629.86 7.7947708 81.3378320 0.3130810 17.4999337	1.0000000 1.0000000 20.0000000 92.2010000 -50.8000000	2260.0 35.000000 69.000000 94.767000 -26.900000
student	875	duration campaign age ConsumerPriceeIndex ConsumerConfidenceIndex	283.6834286 2.1040000 25.8948571 93.3316126 -40.1875429	209.0000000 2.0000000 25.0000000 93.0750000 -40.8000000	136.0000000 1.0000000 24.0000000 92.8930000 -46.2000000	255.4318802 1.7659168 4.9913342 0.7184778 6.2345419	65245.45 3.1184622 24.9134175 0.5162103 38.8695128	5.0000000 1.0000000 17.0000000 92.2010000 -50.8000000	2680.0 17.000000 47.000000 94.767000 -26.900000
technici	6743	duration campaign age ConsumerPriceeIndex ConsumerConfidenceIndex	250.2322408 2.5773395 38.5076376 93.5614713 -39.9275693	173.0000000 2.0000000 37.0000000 93.4440000 -40.8000000	78.0000000 1.0000000 32.0000000 93.4440000 -36.1000000	254.3635511 2.7522925 8.6609678 0.5351722 4.5499392	64700.82 7.5751138 75.0123638 0.2864093 20.7019467	3.0000000 1.0000000 20.0000000 92.2010000 -50.8000000	4918.0 43.000000 70.000000 94.767000 -26.900000
unemploy	1014	duration campaign	249.4516765 2.5641028	178.0000000	98.0000000	262.6948375	69008.58 7.8611385	5.0000000	3831.0

Figure 4: Descriptive Statistics of Numerical Variables using Job as a grouping variable

Figure 5: Graphical representation of Numerical Variables using Job as a grouping variable

3. Methods and Results:

3.1. Research Question 1:

Are all variables equally important for this research? Or can we eliminate some of them using some procedure?

Method Used: Stepwise Procedure.

Method Description: In many applications, there are many dependent variables available for analysis and researchers are interested in discarding redundant variables for separating the groups. Stepwise Procedure is a combination of forward selection and backward elimination. Variables are added one at a time. At each step, the variables are reexamined to see if any previously selected variable has become redundant in the presence of the recently added variables. The procedure stops when the largest partial F-statistic among the remaining variables available for entry fails to exceed the preset significance threshold.

SAS Interpretation: Applying Stepwise procedure in SAS, we can see that there were 6 steps in total before getting into conclusion for this dataset. And no variables were removed from the procedure. So, age, consumer confidence index, consumer price index, duration, campaign-these 5 variables will be used for the further procedures.

				STEPDISC						
			Stepv	vise Selecti	on Summ	ary				
Step	Number In	Entered	Removed	Partial R-Square	F Value	Pr > F	Wilks' Lambda	Pr < Lambda	Average Squared Canonical Correlation	Pr> ASCC
1	1	age		0.2548	1279.98	<.0001	0.74518943	<.0001	0.02316460	<.0001
2	2	ConsumerConfidenceIndex		0.0198	75.72	<.0001	0.73041362	<.0001	0.02496393	<.0001
3	3	ConsumerPriceeIndex		0.0170	64.77	<.0001	0.71799005	<.0001	0.02648670	<.0001
4	4	duration		0.0008	3.10	0.0003	0.71739505	<.0001	0.02656052	<.0001
5	5	campaign		0.0007	2.63	0.0023	0.71689164	<.0001	0.02662392	<.0001

Figure 6: Stepwise Selection Summary

3.2. Research Question 2:

What kind of classification can be used in the dataset if we consider "Job" as a grouping variable? Does error rate change if we use both resubstitution and cross validation summary?

Method Used: Discrim Procedure

Method Description: Given a set of observations that contains one or more quantitative variables and a classification variable which indexes groups of observations, the DISCRIM procedure develops a discriminant criterion to classify each observation into one of the groups. If we are not sure of the equality of population covariance matrices, we can use a Chi-square test to identify if we should use Linear discriminant function or quadratic function to classify the observations.

To judge the ability of classification procedures to predict group membership, the probability of misclassification, or error rate, is usually used. We have used two types of error rate here – one is called resubstitution and another one is cross validation method.

Using resubstitution method, the classification rule is applied to each observation vector and this observation is assigned to a group. Then, the number of misclassifications is counted. The proportion of misclassifications resulting from resubstitution is call the apparent error rate.

In the cross-validation method, all but one observation vector is used to determine the classification rule and then the omitted observation is classified into one of the groups using the classification rule based on the N-1 observations. This procedure is repeated until every observation has been classified in this manner.

SAS Interpretation: As the Discrim procedure shows (Figure 7) the p value of chi-square test is less than 0.0001, we can safely say that quadratic classification was applied to this dataset.

Figure 7: Test of Homogeneity of within covariance Matrices

From Figure 8 & 9, we can see that there is not much difference between resubstitution & cross validation method in terms of overall error rate. All the variables also showed similar error rates individually.

							Procedure	a: WORK					
				Numbe	r of Observa	itions and	Percent C	lassified	into job				
From job	admin	blue-co	entrepr	e housema	i managem	e retired	self-em	servic	es stude	nt techr	nici unemp	loy unkno	wn Tota
admin.	167 1.60	2 555.73	701 6070	 (200) 	12 (2.5	2 460 8 4.41	23	5.0	7.7	77 (A. 1) 17 (A. 1)	(12.7	5000	.73 100.0
blue-col	89 0.96	3 9 9 9 9 9 9 9		75 1 25325	St. redta	0 311	S 8000	50 mm2	9.00 au (9.0		.31 0	17.75 X 22	303 925 .32 100.0
entrepre	12 0.82	E 7250	1000	5 75	[A]	7 81 7 5.56	S-E	72.7	E173	74 95 3	44 .02 1		224 145 .38 100.0
housemai	1.51	200		0	50	5 162 2 15.28	A (3) To	1000	09 28 8	90 49 8	87 .21 1		240 106 .64 100.0
manageme	0.92	7 5375		5 0 0	- 17	5 265 0 9.06	7	50	7.73 H	000001	179 .12 2	70.2	61 292 .77 100.0
retired	0.00	31 0.25	74	70 V. V.	23	7 1198 1 69.65	0.000	100	16 93 0	3 17 0	1 .06 0	10/2	282 172 .40 100.0
self-emp	0.99	(I) (7.75)	74	2. (22		0 81	1	9 0 9	2.2	7.50	101 .11 1	177	225 142 .83 100.0
services	1.11	7	100	1,000		9 108 8 2.72	200	500	67 10 32 25	(T. C.)	97 .44 0	7000	557 396 .03 100.0
student	0.80	2	52	4 6 0.1		1 0.11	75.5	70	76 7 69 83	32 66 1	11 .26 0	3 .34 0	1 87 .11 100.0
technici	89 1.32	100	7.0	3 1 777		3 264 4 3.92	70 CO TO 1	201	30.0		953 .13 1	W-7-1	353 674 .65 100.0
unemploy	1.78	2000		5 0070		1 58 7 5.72			7.6	94 13 4	48 .73 3	T. 1	149 101 .69 100.0
unknown	0.61	2 2005270	7.7	2		5 51 2 15.45	7		35 61 10	36 91 5	17 .15 1		08 33 .73 100.0
Total	485 1.18	10.00		1		7.7.0			EB 200			7.51	926 4118 .39 100.0
Priors	0.08333	0.0833	0.0833	0.0833	0.0833	3 0.08333	0.0833	0.083	33 0.083	33 0.083	0.083	0.083	333
		157			Error	Count Est	mates for	job	32	70		-	
	admin.	blue-col	entrepre	housemai	manageme	retired s	elf-emp s	ervices	student	technici	unemploy	unknown	Total
Rate	0.9840	0.8020	0.8372	0.9311	0.9880	0.3035	0.9514	0.8068	0.1634	0.8587	0.9635	0.6727	0.7719
Priors	0.0833	0.0833	0.0833	0.0833	0.0833	0.0833	0.0833	0.0833	0.0833	0.0833	0.0833	0.0833	

Figure 8: Resubstitution Summary

Classification Analysis

The DISCRIM Procedure Classification Summary for Calibration Data: WORK.BANKNEW Cross-validation Summary using Quadratic Discriminant Function

				Number	of Observati	ons and F	ercent Cla	issified int	o lop				
From job	admin.	blue-col	entrepre	housemai	manageme	retired	self-emp	services	student	technici	unemploy	unknown	Tota
admin.	156	1405	824	333	92	460	389	1704	2624	965	247	1223	10422
	1.50	13.48	7.91	3.20	0.88	4.41	3.73	16.35	25.18	9.26	2.37	11.73	100.00
blue-col	89	1815	846	415	30	311	406	1786	1672	217	64	1603	9254
	0.96	19.61	9.14	4.48	0.32	3.36	4.39	19.30	18.07	2.34	0.69	17.32	100.00
entrepre	12	251	225	67	21	82	67	268	174	44	21	224	1456
	0.82	17.24	15.45	4.60	1.44	5.63	4.60	18.41	11.95	3.02	1.44	15.38	100.00
housemai	16	109	108	66	15	162	36	109	90	87	18	244	1060
	1.51	10.28	10.19	6.23	1.42	15.28	3.40	10.28	8.49	8.21	1.70	23.02	100.00
manageme	27	432	403	145	34	265	108	463	346	179	61	461	2924
	0.92	14.77	13.78	4.96	1.16	9.06	3.69	15.83	11.83	6.12	2.09	15.77	100.00
retired	0.00	20 1.16	90 5.23	69 4.01	7 0.41	1188 69.07	39 2.27	16 0.93	0.17	0.06	4 0.23	283 16.45	1720 100.00
self-emp	20	185	134	43	10	83	57	246	298	101	19	225	1421
	1.41	13.02	9.43	3.03	0.70	5.84	4.01	17.31	20.97	7.11	1.34	15.83	100.00
services	44	674	362	138	19	108	145	757	1032	99	34	557	3969
	1.11	16.98	9.12	3.48	0.48	2.72	3.65	19.07	26.00	2.49	0.86	14.03	100.00
student	7 0.80	27 3.09	4 0.46	1 0.11	0.11	0.11	14 1.60	77 8.80	728 83.20	11 1.26	3 0.34	0.11	875 100.00
technici	89	890	484	255	43	264	243	1118	1457	949	98	853	6743
	1.32	13.20	7.18	3.78	0.64	3.92	3.60	16.58	21.61	14.07	1.45	12.65	100.00
unemploy	18	135	101	36	21	58	36	181	194	48	37	149	1014
	1.78	13.31	9.96	3.55	2.07	5.72	3.55	17.85	19.13	4.73	3.65	14.69	100.00
unknown	2	26	17	23	5	52	12	35	36	17	5	100	330
	0.61	7.88	5.15	6.97	1.52	15.76	3.64	10.61	10.91	5.15	1.52	30.30	100.00
Total	480	5969	3598	1591	298	3034	1552	6760	8654	2718	611	5923	41188
	1.17	14.49	8.74	3.86	0.72	7.37	3.77	16.41	21.01	6.60	1.48	14.38	100.00
Priors	0.08333	0.08333	0.08333	0.08333	0.08333	0.08333	0.08333	0.08333	0.08333	0.08333	0.08333	0.08333	

	Error Count Estimates for job												
	admin.	blue-col	entrepre	housemai	manageme	retired	self-emp	services	student	technici	unemploy	unknown	Total
Rate	0.9850	0.8039	0.8455	0.9377	0.9884	0.3093	0.9599	0.8093	0.1680	0.8593	0.9635	0.6970	0.7772
Priors	0.0833	0.0833	0.0833	0.0833	0.0833	0.0833	0.0833	0.0833	0.0833	0.0833	0.0833	0.0833	

Figure 9: Cross-validation Summary

3.3. Research Question 3:

Using different MANOVA methods, can we decide on the equality of population mean vector of numeric variables?

Method Used: GLM Procedure.

Method Description: I used this process to test for significant difference between at least two mean vectors. The hypothesis I want to test is

H₀: $\mu_{1}=\mu_{2}=\dots=\mu_{k}$ vs H₁=at least two population mean vector differ

From GLM procedure, we can test this hypothesis by 4 different methods. (Wilks' lambda, Pillai's trace, Hotelling-Lawley Trace & Roy's greatest root)

SAS Interpretation: We can see from the hypothesis test that for all methods mentioned here (Wilks' lambda, Pillai's trace, Hotelling-Lawley Trace & Roy's greatest root), the P-values are significant. So, we can reject our null hypothesis and conclude that there is significant difference among the mean vectors of population variables. We can also rank the variables based on their coefficient of 1st discriminate function as:

Age>ConsumerPriceIndex>ConsumerConfidenceIndex>Campaign>Duration

Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SSCP Matrix for job E = Error SSCP Matrix											
		Characterist	tic Vector V'EV=1								
Characteristic Root	Percent	duration	campaign	age	ConsumerPriceeIndex	ConsumerConfidenceIndex					
0.34271837	89.86	0.00000029	0.00000751	0.00054553	-0.00034118	0.00003225					
0.03222133	8.45	-0.00000043	0.00009483	-0.00006855	-0.00576443	0.0008609					
0.00561007	1.47	-0.00000532	0.00026695	-0.00002987	0.00600248	0.00061500					
0.00065254	0.17	0.00000841	-0.00146743	-0.00001205	0.00238369	0.00021840					
0.00017458	0.05	0.00001625	0.00100223	-0.00001282	0.00042649	0.0001218					

MANOVA Tests for the Hypothesis of No Overall job Effect H = Type III SSCP Matrix for job E = Error SSCP Matrix S=5 M=2.5 N=20585								
Statistic	Value	P-Value						
Wilks' Lambda	0.71689164	<.0001						
Pillai's Trace	0.29286314	<.0001						
Hotelling-Lawley Trace	0.38137688	<.0001						
Roy's Greatest Root	0.34271837	<.0001						

Figure 10: Applying MANOVA Method

3.4. Research Question 4:

How many factors can be used to explain the total variances of those variables? Does rotating can be used to interpret the factors for better?

Method Used: Principal Component Method in the Factor Procedure & Orthogonal Rotation using Varimax.

Method Description: Principal component method is a factor extraction method used to form uncorrelated linear combinations of the observed variables. The first component has maximum variance. Successive components explain progressively smaller portions of the variance and are all uncorrelated with each other. Principal components analysis is used to obtain the initial factor solution.

Varimax Method is an orthogonal rotation method that minimizes the number of variables that have high loadings on each factor. This method simplifies the interpretation of the factors.

SAS Interpretation: 4 factors will be retained for this dataset.

Before rotating, we can see that duration can be explained by Factor 3.

Campaign, Age & Consumer Confidence Index is associated with Factor1, Factor2 & Factor 4 almost equally.

Consumer Price Index can be explained by both Factor 1 & Factor 3.

Figure 11: Factor Procedure before Rotation

After rotating, we can see that duration is still explained by Factor 3.

Campaign & Consumer Price Index are associated with Factor 1.

Age is explained by Factor 4.

Consumer Confidence Index is associated with Factor 2.

So, except for duration, every variable association with factors are more interpretable after rotation. Also for duration, the proportion gets better after applying rotation.

Figure 12: Factor Procedure after Rotation

4. Conclusions:

From our multivariate analysis, we can see that all the numeric variables will be used in the process we have done so far. We can use quadratic discriminant function to classify the observations though error rates will be almost similar for resubstitution & cross-validation method. From one-way MANOVA, we can see that at least two population mean vectors differs significantly using four different methods. And four factors will be used to explain the variables. After rotation, the interpretation of factor & variable association will be more straightforward.

5.Reference:

- 1. UCI Machine Learning Repository: https://data.world/uci/bank-marketing
- 2. SPSS Statistics Documentation: https://www.ibm.com/docs/en/spss-statistics/24.0.0?topic=option-factor-analysis
- 3. Performing Exploratory Data Analysis with SAS and Python: https://www.analyticsvidhya.com/blog/2021/06/exploratory-data-analysis-with-sas-and-python/
- 4. SAS Help Center: https://documentation.sas.com/doc/en/pgmsascdc/9.4-3.3/casref/p1k1no304sy91on1 qjvks0ggelb5.htm
- 5. Data Driven Approach to Predict Success of Bank- Marketing:

 https://medium.com/mlearning-ai/data-driven-approach-to-predict-success-of-bank-marketing-31791cad8f81

6.SAS Code & Output:

```
/*Reading Text File*/
DATA banknew;
INFILE 'banknew2.txt' dlm=',' firstobs=2 lrecl=32767;
INPUT job$ marital$ education$ contact$ duration campaign age ConsumerPriceeIndex
ConsumerConfidenceIndex y$;
/*Categorical Variable Descriptive Statistics*/
proc freq data=banknew;
tables job;
run;
/*Numerical Variable Descriptive Statistics*/
proc means data=banknew mean median mode std var min max;
run;
/*Categorical+ Numerical Variable Descriptive Statistics*/
proc means data=banknew mean median mode std var min max;
class job;
var duration campaign age ConsumerPriceeIndex ConsumerConfidenceIndex;
run;
/*Scatter Plot by Group*/
proc sgscatter data=banknew;
matrix duration campaign age ConsumerPriceeIndex ConsumerConfidenceIndex
/diagonal=(histogram kernel);
run;
/*Stepwise Procedure*/
PROC STEPDISC STEPWISE;
CLASS job;
Run;
```

```
/*Classification Analysis'*/
PROC DISCRIM LIST CROSSVALIDATE POOL=TEST;
CLASS job;
VAR duration campaign age ConsumerPriceeIndex ConsumerConfidenceIndex;
RUN;

/* MANOVA */
PROC GLM;
CLASS job;
MODEL duration campaign age ConsumerPriceeIndex ConsumerConfidenceIndex=job;
MANOVA H=job/PRINTE PRINTH MSTAT=EXACT;
RUN;

/*Principal Component Analysis of Factor Method*/
proc factor method=prin rotate=varimax proportion=0.8 corr;
var duration campaign age ConsumerPriceeIndex ConsumerConfidenceIndex;
run;
```