1/10/24, 3:39 PM

$$\lim_{X \to 2} (2-3x) = -1$$

$$|(2-5x) + 1| \le \varepsilon$$

$$|(2-5x) + 1| \le \varepsilon$$

$$|(2-3x + 1) - \varepsilon|$$

$$|(2-3x + 1) - \varepsilon|$$

$$|(2-3x + 1) - \varepsilon|$$

$$|(2-3x) + 1| \le \varepsilon$$

$$|(2-3x$$

martedì 19 maggio 2020 16:38

$$\lim_{X \to 2} (x^{2}-2x+2) = I$$

$$|(x^{2}-2x+2) - 1| \in \mathcal{E}$$

$$|(x^{2}-2x+2-1) - \mathcal{E}|$$

$$|(x^{2}-2x+2-1) - \mathcal{E}|$$

$$|(x^{2}-2x+2-1) - \mathcal{E}|$$

$$|(x^{2}-2x+2-1) - \mathcal{E}|$$

$$|(x^{2}-2x+1) - \mathcal{E}|$$

$$\times^{2}$$
 \times + $(1+\varepsilon)$ > \Rightarrow

poiche $x^2 - 2x + 1 > \phi$ é sempre venificate allore $x^2 - 2x + 1 > - E$ $(\Delta = \phi)$ e sempre venificate allore $x^2 - 2x + 1 > - E$

 $(\Delta = \phi)$ ε seugre vero $\forall x$

 $\frac{1-\sqrt{\epsilon} < v < 1+\sqrt{\epsilon}}{4x}$ interserione $\frac{1-\sqrt{\epsilon}}{1-\sqrt{\epsilon}} = 1$

 $https://polimi365-my.sharepoint.com/personal/10528302_polimi_it/_layouts/15/Doc.aspx?sourcedoc=\{a10f2567-c381-4011-aaa6-bbad744452f9\}\&action=view\&wd=target\%28Note\ rapide.one\%7Ce8dfd795-42b7-4715-87df-f711c7919c40\%2FPagina\ senza\ titolo\%7C9a084d68-bc71-4858-bf91-e5f393078d2e\%2F\%29\&wdorigin=NavigationUrl$