Task: Bucket FICO Scores Report

1. Log-Likelihood-Optimized Buckets & Default Rates by FICO Bucket

This section displays the FICO score ranges (buckets) optimized using the **log-likelihood method**, along with the number of loans in each bucket:

Interpretation:

- The log-likelihood method prioritizes **separating borrowers with significantly different default probabilities**. This results in uneven bucket sizes (e.g., 214 loans in the first bucket vs. 3857 in the fourth).
- The first bucket (409–510) likely has the **highest default rate** (0.6963, as seen above), while the last bucket (677–850) has the **lowest default rate** (0.0625).

2. Optimal Boundaries (MSE vs. Log-Likelihood)

Two sets of boundaries were computed:

- MSE-Optimized Boundaries: [408, 552, 606, 654, 705, 851]
- Log-Likelihood-Optimized Boundaries: [408, 510, 553, 615, 676, 851]

Interpretation:

- MSE Optimization: Focuses on minimizing the squared error between actual FICO scores and their bucket representatives. This leads to more uniform bucket sizes (average ~2000 loans per bucket) but may not distinguish default rates as sharply.
- Log-Likelihood Optimization: Focuses on maximizing the discriminative power of default probabilities. Buckets are smaller where default rates change sharply (e.g., near low FICO scores).

3. Rating Maps

Two rating maps were generated, assigning ratings (1=best, 5=worst) to FICO ranges:

MSE-Optimized Rating Map

Log-Likelihood-Optimized Rating Map

Rating	Range	Rating	Range
5	408–551	5	408–509
4	552–605	4	510–552
3	606–653	3	553–614
2	654–704	2	615–675
1	705–851	1	676–851

Interpretation:

- The log-likelihood map more aggressively segments low FICO scores (e.g., 408–509 for Rating 5) because defaults are highly concentrated here.
- The MSE map spreads ranges more evenly, which may dilute risk differentiation.

4. Example Bucketing (Log-Likelihood)

Examples of FICO scores mapped to buckets and ratings:

- FICO 450 → Bucket 0 (Rating 5)
- FICO 580 → Bucket 2 (Rating 3)
- FICO 650 → Bucket 3 (Rating 2)
- FICO 720+ → Bucket 4 (Rating 1)

Interpretation:

- Low FICO scores (e.g., 450) are assigned the worst rating (5), reflecting higher default risk.
- High FICO scores (≥676) are assigned the best rating (1), reflecting lower risk.

5. Method Comparison

Metric	MSE-Optimized	Log-Likelihood-Optimized
Avg. Bucket Size	~2000 loans	~2000 loans
Default Rate Range	0.0444-0.5377	0.0625-0.6963

Key Takeaways:

- **Log-likelihood** achieves a **wider default rate range**, better separating high-risk and low-risk borrowers.
- MSE produces more balanced buckets but with less risk differentiation.
- Recommendation: Use log-likelihood for risk modeling (prioritizes default discrimination), and MSE for general-purpose bucketing (prioritizes uniformity).

Summary of Findings

- Log-likelihood optimization is superior to MSE optimization for risk segmentation, as it creates buckets with stark differences in default rates (e.g., 0.06 vs. 0.69).
- **MSE optimization** is simpler and more uniform but less effective for predicting defaults.
- The rating maps align with intuition: lower FICO → worse rating (higher default risk).

Business Implications:

For Charlie's goal of predicting defaults, the **log-likelihood buckets** are preferable because they maximize the model's ability to distinguish risk levels.