数列极限和函数极限之间的关系

钟思佳

October 11, 2017

- 1 定义
 - 数列极限的定义
 - 函数极限的定义
- 2 性质
 - 数列
 - 函数
- ③ 四则运算法则
- 4 判定准则

- 1 定义
 - 数列极限的定义
 - 函数极限的定义
- 2 性质
 - 数列
 - 函数
- 3 四则运算法则
- 4 判定准则

数列极限的定义

Definition

对 $\forall \epsilon > 0$, $\exists N \in \mathbb{Z}^+$, s.t. $\forall n > N$, 有

$$|a_n - a| < \epsilon$$
.

则称数列 $\{a_n\}$ 收敛到a,记作 $\lim_{n\to\infty}a_n=a$.

- 1 定义
 - 数列极限的定义
 - 函数极限的定义
- 2 性质
 - 数列
 - 函数
- 3 四则运算法则
- 4 判定准则

函数极限的定义

 $\lim_{x\to\infty}f(x)=a$

Definition

 $\forall \epsilon > 0$, $\exists X > 0$, s.t. $\forall |x| > X$, $\overleftarrow{\eta}$

$$|f(x)-a|<\epsilon.$$

则称函数f(x)在 $x \to \infty$ 时收敛到a,记作 $\lim_{x \to \infty} f(x) = a$.

函数极限的定义

 $\overline{\lim_{x\to x_0}} f(x) = a$

Definition

$$\forall \epsilon > 0$$
, $\exists \delta > 0$, s.t. $\forall 0 < |x - x_0| < \delta$, \uparrow

$$|f(x)-a|<\epsilon.$$

则称函数f(x)在 $x \to x_0$ 时收敛到a,记作 $\lim_{x \to x_0} f(x) = a$.

左极限, 右极限

- 1 定义
 - 数列极限的定义
 - 函数极限的定义
- 2 性质
 - 数列
 - 函数
- 3 四则运算法则
- 4 判定准则

数列极限的性质

- (唯一性) If $\lim_{n\to\infty} x_n$ 存在,则极限值唯一。
- (有界性) If $\lim_{n\to\infty} x_n$ 存在,则 $\{x_n\}$ 有界。 i.e. $\exists L>0$, s.t. $\forall n\in\mathbb{Z}^+$, $|x_n|\leq L$ 。
- (保序性) If $\lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} y_n = b$, 且a < b, 则 $\exists N \in \mathbb{Z}^+$, s.t. $\forall n > N$, 有 $x_n < y_n$ 。

保序性的推论

- If $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$, $\exists x_n \leq y_n, \Rightarrow a \leq b$.
- If $\lim_{n\to\infty} x_n = a$, a < 0, $\mathbb{M} \exists N \in \mathbb{Z}^+$, s.t. $\forall n > N$, $\overline{\uparrow} x_n < 0$.

- 1 定义
 - 数列极限的定义
 - 函数极限的定义
- 2 性质
 - 数列
 - 函数
- 3 四则运算法则
- 4 判定准则

函数极限的性质

- (唯一性) If lim f(x) 存在,则极限值唯一。
- (局部有界性)(以 $x \to x_0$ 为列) If $\lim_{x \to x_0} f(x)$ 存在,则存在 x_0 的 去心邻域 $\mathring{N}(x_0)$, s.t. 在 $\mathring{N}(x_0)$ 内f(x)有界。 i.e. $\exists L > 0$, $\mathring{N}(x_0)$, s.t. $|f(x)| \le L$, $\forall x \in \mathring{N}(x_0)$ 。
- (局部保序性)(以 $x \to x_0$ 为列) If $\lim_{x \to x_0} f(x) = a$, $\lim_{x \to x_0} g(x) = b$, 且a < b, 则 $\exists \mathring{N}(x_0)$, s.t. $\forall x \in \mathring{N}(x_0)$, 有f(x) < g(x)。

保序性的推论

- If $\lim_{x \to x_0} f(x) = a$, $\lim_{x \to x_0} g(x) = b$, $\exists \exists \mathring{N}(x_0) \text{ s.t. } f(x) \leq g(x)$, $\forall x \in \mathring{N}(x_0)$, $\Rightarrow a \leq b$.
- If $\lim_{x \to x_0} f(x) = a$, a < 0, 则日 $\mathring{N}(x_0)$, s.t. $\forall x \in \mathring{N}(x_0)$, 有f(x) < 0。

四则运算法则

加减乘除

注意: 前提,极限都存在,除法法则分母极限不为0。

定义 性质 **四则运算法则** 判定准则

复合运算法则 (函数)

判定准则

- 夹逼定理
- 单调有界必有极限
- Cauchy收敛准则
- 海涅定理