COSE215: Theory of Computation

Lecture 11 — Pushdown Automata (1)

Hakjoo Oh 2019 Spring

Roadmap of This Course

- Finite automata (FA): the basic model of computation
- Pushdown automata (PDA): an extension of FA
- Turing machines: an extension of PDA

Pushdown Automata

Essentially, an ϵ -NFA with a stack:

- In FA, the next state is determined by the current state and the input symbol.
- In PDA, the next state is determined by the current state, the input symbol, and the stack contents.

Formal Definition of Pushdown Automata

Definition (Pushdown Automata)

A pushdown automaton (PDA) is defined as

$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$

- Q: A finite set of states
- ullet Σ : A finite set of *input symbols*
- ullet Γ : A finite set of stack alphabets
- ullet $\delta \in Q imes (\Sigma \cup \{\epsilon\}) imes \Gamma o 2^{Q imes \Gamma^*}$: the transition function
- $m{q}_0 \in Q$: the initial state (the state the PDA is in before making any transitions)
- $oldsymbol{Z}_0\in\Gamma$: the start stack symbol. Initially, the PDA's stack consists of only this symbol.
- ullet $F\subseteq Q$: the set of final states

The Transition Function

$$\delta \in Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to 2^{Q \times \Gamma^*}$$

- ullet δ takes a triple (q,a,X):
 - q: the current state
 - a: the current input symbol
 - X: the current symbol on top of the stack
- The output of δ is a finite set of paris (p, γ) :
 - p: the next state
 - $ightharpoonup \gamma$: the string of stack symbols that replaces the top of the stack

Example

```
P = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\})
  \delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}
  \delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}
    \delta(q_0,0,0) = \{(q_0,00)\}
    \delta(q_0,0,1) = \{(q_0,01)\}
    \delta(q_0, 1, 0) = \{(q_0, 10)\}
    \delta(q_0, 1, 1) = \{(q_0, 11)\}
  \delta(q_0, \epsilon, Z_0) = \{(q_1, Z_0)\}
    \delta(q_0, \epsilon, 0) = \{(q_1, 0)\}
    \delta(q_0, \epsilon, 1) = \{(q_1, 1)\}
    \delta(q_1,0,0) = \{(q_1,\epsilon)\}
    \delta(q_1, 1, 1) = \{(q_1, \epsilon)\}
  \delta(q_1, \epsilon, Z_0) = \{(q_2, Z_0)\}
```

Transition Graph

Exercises

Exercises

Exercises

- $2 L = \{ w \in \{a,b\}^* \mid n_a(w) = n_b(w) \}$

Announcement

• No class on Monday next week (May 6, 2019)