MoGo

Seminar Knowledge Engineering und Lernern in Spielen Sommersemester 2010

Inhalt

- Go
- Probleme für KIs
- Monte-Carlo-Suche
- UCT-Suchalgorithmus
- Modifikationen in MoGo
 - Zugauswahl in der Monte-Carlo-Suche
 - Beschleunigte Zugbewertung
 - Einsatz von gelerntem Vorwissen
- Fazit
- Quellen und Abbildungsverzeichnis

Go

- Brettspiel
 - 2 Spieler
 - 19x19 Felder (Anfänger: 5x5, 9x9)
 - Rundenorientiert
 - Schwarz beginnt
 - Starker Nachteil für weis
- Regeln
 - Schlagen möglich
 - Ko-Regeln gegen Wiederholungen
- Ziel
 - Schlagen von Steinen
 - Besetzen von Feldern

Probleme für KIs

- Extrem schwierig für KIs
- NP-vollständig
- Hoher Verzweigungsfaktor
 - Mögliche Züge < 361
- Stellungsvielfalt
 - 4,63 * 10¹⁷⁰ (Schach: ~ 10⁴³)
- Keine geeignete Bewertungsfunktion oder Heuristik vorhanden
 - Nicht schnell genug
 - Nicht ausreichend gut

Monte-Carlo-Suche

- Ziel:
 - Bewertung von Nachfolgeaktionen einer Situation
- Simulation von Aktionsverläufen
- Bewertung durch Bewertung des Endzustandes
- Anschließend Berechnung des Mittelwertes aller Simulationen mit identischer Anfangsaktion
- Monte-Carlo-Suche approximiert die Bewertung einer Stellung
- Aktionswahl in der Simulation meist zufällig verteilt

UCT-Suche (1)

- Upper Confidence bound applied to Tree
- Entscheidung für eine spezielle Aktion erfolgt aufgrund der aktuellen Nachfolgezustandsbewertung der möglichen Aktionen
- Approximation der Aktionsqualität mittels Simulationen
- Algorithmus mit 4 Phasen
 - 1. Selektion eines Spielzustandes

$$\pi_{UCT}(s) = \arg\max_{a} \left[Q_{UCT}(s,a) + c \sqrt{\frac{\log n(s)}{n(s,a)}} \right]$$

- 2. Erzeugen von Nachfolgezuständen
- 3. Simulation der Nachfolgezustände mit Monte-Carlo-Suche und Bewertung der Simulationen
- 4. Anpassung der Spielzustandsbewertungen

UCT-Suche (2)

Modifikationen in MoGo

- Ziel:
 - Bewertung von Knoten beschleunigen
 - Möglichst kein Genauigkeitsverlust
- Zugbewertung mit Gewinnwahrscheinlichkeit
- Parallele Suche auf Baum
 - Ausschluss von Selektion des gleichen Blattes
- Zugauswahl in der Simulationsphase
- Beschleunigte Zugbewertung
- Einsatz von gelerntem Vorwissen

Zugauswahl in der Simulationsphase

- Züge werden nicht mehr zufällig gewählt
- 1. beliebigen Zug zum sichern von Steinen
- 2. Suche eines Zuges mit Hilfe von Patterns im Bereich um den letzten Zug
- 3. Suche nach einem Zug der Steine gewinnt
- 4. Beliebiger Zug

Beschleunigte Zugbewertung

- Hohe Verzweigung benötigt viele Simulationen
- Hohe Gefahr Züge falsch zu interpretieren
- Züge können verloren gehen

$$\pi_{UCT}(s) = \arg\max_{a} \left[Q_{UCT}(s,a) + c \sqrt{\frac{\log n(s)}{n(s,a)}} \right]$$

- Bewertung des Anfangszuges einer Simulation
- Durschnitt über alle Simulationen mit selben Anfangszug
- Neu:
 - Bewertung aller Züge einer Simulation
 - Durschnitt über alle Simulationen in denen der Zug vorkommt

$$\pi_{UR}(s) = \arg\max_{a} \left[\beta(s, a) \left[Q_{RAVE}(s, a) + c \sqrt{\frac{\log m(s)}{m(s, a)}} \right] + (1 - \beta(s, a)) \left[Q_{UCT}(s, a) + c \sqrt{\frac{\log n(s)}{n(s, a)}} \right] \right]$$

Einsatz von gelerntem Vorwissen

- Initiale Bewertung oft ungenau
- Möglichst genau Initialbewertung eines Zuges wünschenswert
- Initialbewertung mittels gelernter Bewertungsfunktion
- Lineare Funktion von gewichteten binären Eigenschaften
 - Offline gelernt mit TD(0)-Algorithmus
 - Entnommen aus RLGO
 - Binäre Eigenschaften bestehen aus lokalen Steinkonfigurationen für 1x1 bis 3x3 große Feldbereiche
 - 2 Gewichte pro Steinkonfigurationen
 - Gespiegelte und rotierte Steinkonfigurationen teilen sich ein Gewicht
 - Steinkonfigurationen die zum selben Pattern gehören teilen sich das andere Gewicht

Fazit

- UCT ist gut geeignet für Suchprobleme mit hoher Verzweigung
- Go ist jedoch zu komplex für einen reinen UCT
- Mit modifizierter Approximation und ausreichend Rechenleistung vielversprechend

Algorithm	Wins .v. GnuGo
$UCT(\pi_{random})$	$1.84 \pm 0.22 \%$
$UCT(\pi_{MoGo})$	$23.88 \pm 0.85\%$
$UCT_{RAVE}(\pi_{MoGo})$	$60.47 \pm 0.79 \%$
$UCT_{RAVE}(\pi_{MoGo}, Q_{RLGO})$	$69 \pm 0.91 \%$

Fazit (2)

- Titel von MoGo:
 - Sieger Computer Olympiade 2007
 - Zweiter Computer Olympiade 2008
 - Dritter Computer Olympiade 2009
 - 2009: Sieg über Zhou-Jun Xhou(9P) auf 9x9 Feld mit schwarz

Rank	Program	Country	Hardware	Score	Games	Title
1	Zen	JPN	2 x 2 core (4 x 2.8 GHz Opteron)	9.0	10	Gold medal
2	Fuego	CAN	8 x 8 core (64 x 3 GHz Xeon E5450)	8.0	10	Silver medal
3	MoGo	FRA	4 x 4 core (16 x 2.9 GHz Xeon)	7.0	10	Bronze medal
4	Fudo Go	JPN	6 PCs (20 x 3 GHz Core2 + 4 x 3.6 GHz Core i7)	3.0	10	
4	Go Intellect	USA	8 core (8 x 3 GHz)	3.0	10	
6	GoKnot-QYZ	ESP	4 core (4 x 3.6 GHz Core i7)	0.0	10	

Simulations	Wins .v. GnuGo	CGOS rating
3000	69%	1960
10000	82%	2110
70000	92%	2320*

		1	2	3	4	5	6
1	<u>Zen</u>		2	1	2	2	2
2	<u>Fuego</u>	0		2	2	2	2
3	<u>MoGo</u>	1	0		2	2	2
4	Go Intellect	0	0	0		1	2
5	Fudo Go	0	0	0	1		2
6	GoKnot-QYZ	0	0	0	0	0	

Quellen

- *Modification of UCT with Patterns in Monte-Carlo Go*, Gelly, S., Wang, Y., Munor, R. & Teytaud, O., INRIA (Techical Report 6062), 2006
- Combining Online and Offline Knowledge in UCT, Gelly, S. & Silver, D., Proceedings of the 24th International Conference on Machine Learning (ICML-07), Seite 279, 2007

Abbildungsverzeichnis

- Folie 1 und 3:
 - Quelle: http://en.wikipedia.org/wiki/Go_%28game%29
- Folie 7 und 9:
 - Quelle: Modification of UCT with Patterns in Monte-Carlo Go, Gelly, S., Wang,
 Y., Munor, R. & Teytaud, O., INRIA (Techical Report 6062), 2006
- Folie 12 und 13 links unten:
 - Quelle: Combining Online and Offline Knowledge in UCT, Gelly, S. & Silver, D.,
 Proceedings of the 24th International Conference on
 Machine Learning (ICML-07), Seite 279, 2007
- Folie 13 Rest:
 - Quelle: http://www.grappa.univ-lille3.fr/icga/tournament.php?id=193

