CIS 606 Spring 2013 Machine Learning Lecture 12

Online Learning

Wei Lee Woon and Zeyar Aung

Online Learning: the General Setting

ightharpoonup For $t = 1 \dots T$

1. I receive some input $\underline{x}^{(t)}$

I make some prediction $\hat{y}^{(t)}\in\{-1,+1\}$ I receive the correct label $y^{(t)}\in\{-1,+1\}$. If $\hat{y}^{(t)}\neq y^{(t)}$ I have made an error.

4. I potentially update my hypothesis based on the new information $\underline{x}^{(t)}, y^{(t)}$. The goal: to minimize the number of errors I make on the sequence

Online Learning

Examples:

- lacktriangle Weather prediction. For each day I receive some input $\underline{x}^{(t)}$ summarizing various measurements. My goal is to predict whether it will rain or not.
- $\underline{x}^{(t)}$ summarizing various measurements. My goal is to predict Stock market prediction. For each day I receive some input whether the stock market will go up or not.

Online Learning: Predicting from Expert Advice

- ightharpoonup A useful setting is as follows. Assume each $\underline{x}^{(t)}$ is a vector in $\{-1,+1\}^d$ summarizing the advice from d experts.
- $ightharpoonup x_j^{(t)}$ is the prediction of the j'th expert. I.e., $x_j^{(t)}=+1$ if the j,th expert predicts +1 (similarly for -1).
- ▶ For any sequence $(x^{(1)}, y^{(1)}) \dots (x^{(T)}, y^{(T)})$, the loss of the $L_j = \sum [[x_j^{(t)} \neq y^{(t)}]]$ j'th expert is
- sequence does nearly as well as the best expert We'd like to design an online algorithm that for any

The Halving Algorithm

First case: we assume that there is at least one $j \in \{1 \dots d\}$ such that

$$L_j = 0$$

The Halving Algorithm

▶ Initialization: $Q^{(1)} = \{1, 2, 3, ... d\}$

- ightharpoonup For $t=1\dots T$
- 1. I receive some input $\underline{x}^{(t)}$
- Define

$$Q_{+}^{(t)} = \{j \in Q^{(t)} : x_{j}^{(t)} = +1\}$$
$$Q_{-}^{(t)} = \{j \in Q^{(t)} : x_{j}^{(t)} = -1\}$$

If
$$|\mathcal{Q}_+^{(t)}|>|\mathcal{Q}_-^{(t)}|$$
 predict $\hat{y}^{(t)}=+1$, else $\hat{y}^{(t)}=-1$

- 3. I receive the correct label $y^{(t)} \in \{-1, +1\}$. If $\hat{y}^{(t)} \neq y^{(t)}$ I have made an error.
- 4. Update: if $y^{(t)} = +1$ then $Q^{(t+1)} = Q_+^{(t)}$, else $Q^{(t+1)} = Q_-^{(t)}$.

The Halving Algorithm: Guarantees

▶ For any value of T, for any sequence $(x^{(1)}, y^{(1)}, \dots (x^{(T)}, y^{(T)})$ sequence, the halving algorithm makes at most $\log_2 d$ errors. such that at least one expert j has $L_j=0$ errors on the

Proof:

$$|\mathcal{Q}^{(1)}| = d$$

 $|\mathcal{Q}^{(T+1)}| \geq 1$ (note that $\mathcal{Q}^{(T+1)}$ contains all experts that

have $L_j = 0$ on the sequence)

If we make an error on the t'th example, we have

$$|\mathcal{Q}^{(t+1)}| \le \frac{1}{2} |\mathcal{Q}^{(t)}|$$

We can halve $\mathcal{Q}^{(1)}$ at most $\log_2 d$ times before reaching a set of size zero, hence the number of mistakes is at most $\log_2 d$.

The Weighted Majority Algorithm

▶ Parameter: 0 < β < 1</p>

▶ Initialization: set $w_j = 1$ for $j = 1 \dots d$.

ightharpoonup For $t = 1 \dots T$

1. I receive some input $\underline{x}^{(t)}$

Define

$$q_{+}^{(t)} = \sum_{j:x_{j}^{(t)}=+1} w_{j}; \quad q_{-}^{(t)} = \sum_{j:x_{j}^{(t)}=-1} w_{j}$$

If $q_+^{(t)} > q_-^{(t)}$ predict $\hat{y}^{(t)} = +1,$ else $\hat{y}^{(t)} = -1$

3. I receive the correct label $y^{(t)} \in \{-1, +1\}$. If $\hat{y}^{(t)} \neq y^{(t)}$ I have made an error.

4. Update: for all j such that $x_j^{(t)} \neq y^{(t)}$, set $w_j = w_j \times \beta$

Guarantees for the Weighted Majority Algorithm

▶ For any value of T, for any sequence $(x^{(1)}, y^{(1)}) \dots (x^{(T)}, y^{(T)})$, the weighted majority algorithm makes at most

$$f(\beta) \times \min_{j} L_j + g(\beta) \times \log d$$

mistakes, where L_j is the loss of the j'th expert on the sequence,

$$f(\beta) = \frac{\log\left(\frac{1}{\beta}\right)}{\log\left(\frac{2}{1+\beta}\right)} \qquad g(\beta) = \frac{1}{\log\left(\frac{2}{1+\beta}\right)}$$

► E.g., with $\beta = 1/e$, $f(\beta) = g(\beta) = 2.63$.

Behaviour of $f(\beta)$ and $g(\beta)$

$g(\beta)$ 1.67 1.95 2.32 2.80 3.47 4.48 6.15	9
9(1. 2. 2. 3. 4.	9.49 19.49
$f(\beta)$ 3.85 3.15 2.79 2.56 2.40 2.28 2.19	2.11
β 0.1 0.2 0.3 0.4 0.5 0.6	0.8

Original source:

http://courses.csail.mit.edu/6.867/lectures/lecture7 slides.pdf (by Prof Michael Collins)