基 礎 徹 底 演 習 基本問題プリント

ベクトル②

131 点の存在範囲

 \triangle OAB に対して、 $\overrightarrow{OP} = s\overrightarrow{OA} + t\overrightarrow{OB}$ (ただし、s、t は実数)とする。s、t が $s + t \le 2$ 、 $s \ge 0$ 、 $t \ge 0$ を満たすとき、点 P の存在範囲の面積は \triangle OAB の面積の \nearrow 倍である。

132 交点の位置ベクトル

 \triangle OAB があり、辺OA を 2:1 に内分する点を M、辺OB を 1:3 に内分する点を N とし、線分 A N と線分 BM の交点を P とする。このとき、 \overrightarrow{OP} を \overrightarrow{OA} 、 \overrightarrow{OB} を用いて表すと、

$$\overrightarrow{\mathrm{OP}} = \frac{\overline{7}}{\overline{1}} \overrightarrow{\mathrm{OA}} + \frac{\overline{7}}{\overline{1}} \overrightarrow{\mathrm{OB}}$$
 である

133 等式を満たす点の位置

 \triangle ABC と点 P があり、等式 $3\overrightarrow{PA} + 4\overrightarrow{PB} + 5\overrightarrow{PC} = \overrightarrow{0}$ が成り立っているとき、

年 組 番 名前

134 球面の方程式

点(3, 1, -2)を中心として、点(1, 3, 2)を通る球面の方程式は

$$(x-$$
 ア $)^2+(y-$ イ $)^2+(z+$ ウ $)^2=$ エオ

である。また、この球面とxy平面が交わってできる円の半径はn

135 空間ベクトルの垂直と内積

136 4点が同一平面上にある条件