МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Факультет обшей и прикладной физики

Отчёт по лабораторной работе 1.2.1 «Определение скорости полёта пули при помощи баллистического маятника»

Выполнил: Студент гр. Б02-304 Головинов. Г.А.

Долгопрудный, 2023

1 Аннотация

Цель работы: определить скорость полета пули, применяя законы сохранения и используя баллистические маятники.

Используемые инструменты: духовое ружье на штативе, осветитель, оптическая система для измерения отклонений маятника, измерительная линейка, пули и весы для их взвешивания, баллистические маятники

2 Основные теоретические сведения

2.1 Метод баллистического маятника

Рис. 1: Схема установки для измерения скорости полета пули

При взаимодействии маятника и пули можно считать импульс постоянным, так как время взаимодействия сильно меньше периода колебаний маятника. Следовательно отклонение от положения равновесия за время взаимодействия много меньше амплитуды колебаний.

Закон сохранения импульса:

$$mu = (M+m)v_0 \tag{1}$$

где m — масса пули, M — масса маятника, u — искомая скорость пули, v_0 — начальная скорость системы маятник-пуля.

Учитывая, что масса пули много меньше массы маятника, можно сказать что

$$u = \frac{M}{m}v_0 \tag{2}$$

Далее, так как колебания маятника слабо затухающие, можно считать, что энергия в первые несколько колебаний сохраняется. Отсюда, зная массу маятника и пули, а также амплитуду колебаний, мы можем узнать начальную скорость маятника, а значит узнать и скорость пули до вза-имодействия.

Закон сохранения энергии:

$$(M+m)v_0^2 = (M+m)gh (3)$$

где h – подъем маятника, g – ускорение свободного падения.

Высоту подъема маятника можно вывести через угловую амплитуду:

$$h = L(1 - \cos\varphi) = 2L\sin^2\frac{\varphi}{2} \tag{4}$$

где L – высота подвеса. Учитывая что φ – мал, его можно выразить как

$$\varphi \approx \frac{\Delta x}{L} \tag{5}$$

Из соотношений (2), (3), (4) получим конечную формулу для скорости пули u:

$$u = \frac{M}{m} \sqrt{\frac{g}{L}} \Delta x \tag{6}$$

2.2 Метод крутильного маятника

Рис. 2: Схема установки крутильного маятника

Относительно оси маятника можно записать закон сохранения момента импульса:

$$mru = I\omega_0 \tag{7}$$

где r — расстояние от оси маятника до места попадания пули, ω_0 — начальная угловая скорость маятника.

Далее, в процессе движения маятника его энергия вращения переходит в упругую энергию закручивания проволоки. Колебания достаточно слабо затухающие, что мы можем считать энергию постоянной в течение нескольких первых колебаний.

Закон сохранения энергии:

$$k\frac{\varphi^2}{2} = I\frac{\omega_0^2}{2} \tag{8}$$

где k — модуль кручения проволоки $\Pi,\, \varphi$ — максимальный угол поворота маятника.

Из уравнений (7), (8) получим

$$u = \varphi \frac{\sqrt{kI}}{mr} \tag{9}$$

Методика измерения φ и момента инерции I Стрельба производилась в маятник без дополнительных грузов. Чтобы найти момент инерции маятника в такой конфигурации необходимо найти период собственных колебаний T_1 , а затем, поменяв конфигурацию на известный дополнительный момент инерции ΔI и измерив период T_2 , можем найти изначальный момент инерции I.

Угол максимального отклонения находится с помощью лазерной линейки. Измерив отклонение точки лазера на этой линейке и расстояние от нее до оси маятника, мы можем найти малый угол φ

$$\varphi \approx \frac{x}{d} \tag{10}$$

где d – расстояние от оси маятника до линейки.

Уравнения для момента инерции:

$$T_1 = 2\pi \sqrt{\frac{I}{k}} \tag{11}$$

$$T_2 = 2\pi \sqrt{\frac{I + 2MR^2}{k}} \tag{12}$$

Тогда величина \sqrt{kI} находится следующим образом:

$$\sqrt{kI} = \frac{4\pi M R^2 T_1}{T_2^2 - T_1^2} \tag{13}$$

где R — расстояние от оси до дополнительных грузов, M - масса этих грузов.

3 Результаты измерений и их обработка

Измерение масс пуль В работе нам было предоставлено 10 пронумерованных пуль, 1-5 были использованы для баллистического маятника, а 6-10 для крутильного. Масса каждой пули была измерена на 3х разных

весах, что позволило определить точность измерения

	1	2	3	σ_m
m_1	0.503	0.508	0.505	0.002
m_2	0.499	0.502	0.500	0.002
m_3	0.510	0.511	0.511	0.001
m_4	0.503	0.503	0.504	0.001
m_5	0.507	0.508	0.508	0.001
m_6	0.502	0.501	0.503	0.001
m_7	0.497	0.498	0.498	0.001
m_8	0.498	0.499	0.500	0.001
m_9	0.508	0.510	0.510	0.001
m_{10}	0.516	0.517	0.518	0.001

Таблица 1: Результаты измерений масс пуль

3.1 Баллистический маятник

Масса маятника была известна заранее и равна $M=2900\pm 5$ g. Высота подвеса $L=223.5\pm 1.0$ cm.

Пуля	Δx , mm
1	12.75
2	12.00
3	12.75
4	12.00
5	11.75

Таблица 2: Результаты амплитуды колебаний баллистического маятника

Полную погрешность результата будем рассчитывать по формуле:

$$\sigma_x = \sqrt{\sigma_{rnd}^2 + \sigma_{sys}^2} \tag{14}$$

Системной погрешностью будем считать цену деления $\sigma_{sys}=0.25~\mathrm{mm}.$

Тогда погрешность измерений $\sigma_x=0.53~\mathrm{mm}$

По формуле (6) находим u, погрешность σ_u вычисляем по формуле:

$$\sigma_u = u\sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_M}{M}\right)^2 + \left(\frac{1}{2}\frac{\sigma_L}{L}\right)^2 + \left(\frac{\sigma_x}{\Delta x}\right)^2}$$
 (15)

Пуля	1	2	3	4	5
u, m/s	153.34	145.76	151.74	144.89	140.66
σ_u	6.44	6.47	6.33	6.42	6.36

Таблица 3: Полученные скорости пуль

Тогда по формуле:

$$\sigma_u = \left(\sum_{i=1}^5 \frac{1}{\sigma_i^2}\right)^{-1/2} \tag{16}$$

$$u = 147.28 \pm 2.53 \text{ m/s}$$

3.2 Крутильный маятник

Массы дополнительных грузов $m_1 = 730.6 \pm 0.1 \; \mathrm{g}, \; m_2 = 713.4 \pm 0.1 \; \mathrm{g}.$

Пуля	Δx , cm
6	5.9
7	5.6
8	6.1
9	5.7
10	6.1

Полную погрешность, аналогично баллистическому маятнику будем рассчитывать по формуле (14), цена деления $0.1~{\rm cm}$

Тогда полная погрешность $\sigma_x \approx 0.25$ cm.

Измерение момента инерции I Для того, чтобы найти момент инерции крутильного маятника, а точнее величину \sqrt{kI} , которая необходима для расчета скорости по формуле (9), необходимо измерить период собственных колебаний маятника с моментами инерции I и $I + \Delta I = I + m_1 R^2 + m_2 R^2$.

Измерения проводились по 5 полных колебаний, 3 раза для каждой конфигурации маятника:

	1	2	3
T_1 , s	6.434	6.314	6.346
T_2 , s	4.720	4.766	4.670

Таблица 4: Результаты измерений периода колебаний для двух конфигураций маятника

Полную погрешность измерения периода T вычисляем по формуле:

$$\sigma_T = \sqrt{\sigma_{rnd}^2 + \sigma_{sys}^2} \tag{17}$$

за σ_{sys} возьмем среднюю скорость реакции человека, поделенную на количество периодов (т.е 0.2/5).

Тогда $T_1 = 6.365 \pm 0.074$ s, $T_2 = 4.719 \pm 0.062$ s.

Найдем величину \sqrt{kI} по формуле (13). $R=32.5\pm0.5$ cm, M=0.722 kg (среднее двух грузов, так как $m_1+m_2=2M$)

Погрешность \sqrt{kI} (в единицах СИ) будем вычислять по формуле:

$$\sigma_{\sqrt{kI}} = \sqrt{kI} \left(\left(\frac{\sigma_M}{M} \right)^2 + \left(2 \frac{\sigma_R}{R} \right)^2 + \left(3 \frac{\sigma_{T_1}}{T_1} \right)^2 + \left(2 \frac{\sigma_{T_2}}{T_2} \right)^2 \right)^{(1/4)} \tag{18}$$

Погрешность угла φ будем рассчитывать по формуле:

$$\sigma_{\varphi} = \varphi \sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2} \tag{19}$$

А погрешность скорости пули u по формуле:

$$\sigma_u = u\sqrt{\left(\frac{\sigma_{\sqrt{kI}}}{\sqrt{kI}}\right)^2 + \left(\frac{\sigma_{\varphi}}{\varphi}\right)^2 + \left(\frac{\sigma_r}{r}\right)^2 + \left(\frac{\sigma_m}{m}\right)^2}$$
 (20)

Пуля	1	2	3	4	5
m, g	0.502	0.498	0.499	0.509	0.517
σ_m , g	0.001	0.001	0.001	0.001	0.001
x, cm	5.9	5.6	6.1	5.7	6.1
φ , rad	0.045	0.043	0.047	0.044	0.047
σ_{φ} , rad	0.002	0.002	0.002	0.002	0.002
\sqrt{kI} , in SI	0.334	0.334	0.334	0.334	0.334
σkI , in SI	0.025	0.025	0.025	0.025	0.025
$u, \mathrm{m/s}$	143.94	137.72	149.71	137.15	144.50
σ_u , m/s	12.97	12.55	13.39	12.45	12.92

Таблица 5: Полученные скорости пуль

Тогда по формуле (16):

$$u = 142.60 \pm 5.74 m/s$$

4 Обсуждение результатов и выводы

В результате выполнения работы была получена скорость пули, выпущенной из пневматического оружия двумя способами: с помощью подвешенного баллистического маятника и с помощью крутильного баллистического маятника. Результаты хорошо соотносятся, однако в первом случае погрешность оказалась недооценена.

Расхождение результатов также может быть объяснено разной скоростью выхода пули у первого ружья и у второго ружья или большим влиянием внешних сил (таких как трение или сопротивление воздуха) на второй маятник.