

Two-way tables Independence & association

Michael Friendly
Psych 6136

http://friendly.github.io/psy6136

Two-way tables: Overview

Two-way frequency tables are a convenient way to represent a dataset cross-classified by two discrete variables, A & B

Special cases:

- 2 × 2 tables: two binary factors (e.g., gender, admitted?, died?, ...)
- $2 \times 2 \times k$ tables: a collection of $2 \times 2s$, stratified by another variable
- $r \times c$ tables
- \bullet $r \times c$ tables, with ordered factors

Questions:

- Are A and B statistically independent? (vs. associated)
- If associated, what is the strength of association?
- Measures: 2×2 odds ratio; $r \times c$ Pearson χ^2 , LR G^2
- How to understand the pattern or nature of association?

Methods

- The methods discussed this week are generally simple non-parametric or randomization methods
- There is no underlying formal model with parameters
- Hypothesis tests based on some test statistic:
 - Pearson X²
 - Odds ratio
 - Cohen's κ
- p-values, confidence intervals based on
 - Large sample theory: $X^2 \sim \chi^2$ as N → ∞
 - Permutation or simulation distributions

2 × 2 Example: Berkeley admissions

Table: Admissions to Berkeley graduate programs

	Admitted	Rejected	Total	% Admit	Odds(Admit)	_
Males	1198	1493	2691	44.52		odds ratio
Females	557	1278	1835	30.35	0.437	(θ) € 1.84
Total	1755	2771	4526	38.78	0.633	

Males were nearly twice as likely to be admitted

- Is there an association between gender & admission?
- If so, is this evidence for gender bias?
- How to measure strength of association?
- How to test for significance?
- How to visualize?

UCBAdmissions data

In R, the data is contained in UCBAdmissions, a 2 x 2 x 6 table for 6 deparatments. We collapse over department

Association in 2 x 2 table can be measured by the odds ratio (θ): odds of admission for males vs. females

"YES, ON THE SURFACE IT WOULD APPEAR TO BE SEX-BIAS BUT LET US ASK THE FOLLOWING QUESTIONS ..."

Questions:

- How to analyze these results? What tests for odds ratio?
- How to visualize & interpret?
- Does it matter that we collapsed over Department?

r × c Example: Hair color, eye color

Data from 592 students in a statistics class

Table: Hair-color eye-color data

Eye	Hair Color								
Color	Black	Brown	Red	Blond	Total				
Brown	68	119	26	7	220				
Blue	20	84	17	94	215				
Hazel	15	54	14	10	93				
Green	5	29	14	16	64				
Total	108	286	71	127	592				

- Is there an association between hair color and eye color?
- How to measure strength of association?
- How to test for significance?
- How to visualize?
- How to understand the pattern (nature) of association?

HairEyeColor data

In R, the dataset is HairEyeColor, a 4 x 4 x 2 table: Hair x Eye x Sex. For now, collapse over sex.

```
> data(HairEyeColor)
> HEC <- margin.table(HairEyeColor, 2:1)</pre>
```

Association can be tested by the standard Pearson χ^2 test. Details later

Or, as a loglinear model for independence Formula: $^{\sim}$ A + B = A \perp B

HairEyeColor data

vcd::assocstats() collects tests and measures in a convenient summary

For 3+ way tables, it gives the results for the strata defined by all last dimensions

```
$`Sex:Female`

X^2 df P(> X^2)

Likelihood Ratio 112.23 9 0

Pearson 106.66 9 0

Phi-Coefficient : NA

Contingency Coeff.: 0.504

Cramer's V : 0.337
```

Simple plots for $r \times c$ tables

barplot(HEC, beside=TRUE, ...)

tile(HEC, shade=TRUE)

Ordered tables

r x c table with ordered categories: Mental health and Parents' SES categories

Table: Mental impairment and parents' SES

	Mental impairment						
SES	Well	Mild	Moderate	Impaired			
1	64	94	58	46			
2	57	94	54	40			
3	57	105	65	60			
4	72	141	77	94			
5	36	97	54	78			
6	21	71	54	71			

- Mental impairment is the response, SES is a predictor
- How to measure strength of association?
- How to understand the pattern of association?
- How to take ordinal nature of variables into account?

Mental data: Association

The data is contained in vcdExtra::Mental, a frequency data frame

```
> data(Mental, package="vcdExtra")
> str(Mental)
'data.frame': 24 obs. of 3 variables:
$ ses : Ord.factor w/ 6 levels "1"<"2"<"3"<"4"<..: 1 1 1 1 1 2 2 2 2 3 ...
$ mental: Ord.factor w/ 4 levels "Well"<"Mild"<..: 1 2 3 4 1 2 3 4 1 2 ...
$ Freq : int 64 94 58 46 57 94 54 40 57 105 ...</pre>
```

Convert to a contingency table using xtabs(), and test association

```
> mental.tab <- xtabs(Freq ~ ses + mental, data=Mental)
> chisq.test(mental.tab)

Pearson's Chi-squared test

data: mental.tab
X-squared = 46, df = 15, p-value = 5e-05
```

Mental data: Ordinal tests

For ordinal factors, more powerful (focused) tests are available with Cochran-Mantel-Haenszel tests in vcdExtra::CMHtest()

χ2 / df shows why ordered tests are more powerful

```
> xx <- CMHtest(mental.tab)
> xx$table[,"Chisq"] / xx$table[,"Df"]
    cor rmeans cmeans general
37.16   8.06  13.56  3.06
```

Table notation

	Col		
Row	1	2	Total
1	n ₁₁	n ₁₂	<i>n</i> ₁₊
2	n_{21}	n_{22}	n_{2+}
Total	n_{+1}	n_{+2}	<i>n</i> ++

Gender	Admit	Reject	Tot		
Male	1198	1493	2691		
Female	557	1278	1835		
Total	1755	2771	4526		

- $N = \{n_{ij}\}$ are the observed frequencies.
- + subscript means sum over: row sums: n_{i+} ; col sums: n_{+j} ; total sample size: $n_{++} \equiv n$
- Similar notation for:
 - Cell joint population probabilities: π_{ij} ; also use $\pi_1 = \pi_{1+}$ and $\pi_2 = \pi_{2+}$
 - Population marginal probabilities: π_{i+} (rows), π_{+j} (cols)
 - Sample proportions: use $p_{ij} = n_{ij}/n$, etc.

Independence

Two categorical variables, A and B are statistically independent when:

The conditional distributions of B given A are the same for all levels of A

$$\pi_{1j}=\pi_{2j}=\cdots=\pi_{rj}$$

Joint cell probabilities are the product of the marginal probabilities

$$\pi_{ij} = \pi_{i+}\pi_{+j}$$

For 2 x 2 tables, this gives rise to tests and measures based on:

- Difference in row/col marginal probabilities: Test $H_0: \pi_1 = \pi 2$
- Odds ratio, $\hat{\theta} = (n_{11} / n_{12}) / (n_{21} / n_{22})$. Test $H_0 : \theta = 1$
- Standard χ2 test is for largish n
- Small samples: Fisher's exact test, or simulation / permutation tests

Independence: Example

A contrived example, where I generate cell frequencies as the product of row and column marginal totals: $n_{ij} = n_{i+} \times n_{+j}$

Outer product:

Independence: Example

- The row proportions of party are the same for each educ group
- The col proportions of educ are the same for each party

```
> prop.table(table, 1)
     NDP Liberal Cons
Low 0.2      0.5      0.3
Med 0.2      0.5      0.3
High 0.2      0.5      0.3
```

So, the X^2 is exactly zero, and measures of strength are zero

Independence: Arthritis data

In the Arthritis data, people are classified by Sex, Treatment and Improved. Are Treatment and Improved independent?

- → row proportions are the same for Treated and Placebo
- ullet ightarrow cell frequencies \sim row total imes column total

But, more people given the Placebo show no improvement; more people Treated show marked improvement

Independence: Arthritis data

If Treatment and Improved were independent, frequencies ~ row x col margins

These are the expected frequencies, under independence; but for the data:

```
> chisq.test(arth.tab) 
 Pearson \chi^2 
 Pearson's Chi-squared test \chi^2_{(r-1)\times(c-1)} = \sum_{i,j} \frac{(O_{ij}-E_{ij})^2}{E_{ij}} = \sum d_{ij}^2 data: arth.tab 
 X-squared = 13.1, df = 2, p-value = 0.0015
```

Sampling models: Poisson, Binomial, Multinomial

Subtle distinctions arise concerning whether the row and/or margins are fixed by design or random

- Poisson: each n_{ij} is regarded as an independent Poisson variate; nothing fixed
- Binomial: each row (or col) is regarded as an independent binomial distⁿ, with one fixed margin (group total), other random (response)
- Multinomial: only the total sample size, n_{++} , is fixed; frequencies n_{ij} are classified by A and B
- Makes a difference in how hypothesis tests are justified & explained
- Happily, for most inferential methods, ≈ same results are obtained under the three sampling models

Q: what is an appropriate sampling model for the UCB admissions data? For hair-eye color? For the mental impairment data?

Odds and odds ratios

For a binary response where $\pi = \Pr(\text{success})$, the *odds* of a success is

$$odds = \frac{\pi}{1 - \pi} .$$

- Odds vary multiplicatively around 1 ("even odds", $\pi = \frac{1}{2}$)
- Taking logs, the log(odds), or logit varies symmetrically around 0,

$$logit(\pi) \equiv log(odds) = log\left(\frac{\pi}{1-\pi}\right)$$
.

```
> p <- c( 0.05, .1, .25, .50, .75, .9, .95)
> odds <- p / (1-p)
> logodds <- log(odds)
> (odds.df <- data.frame(p, odds, logodds))
        p   odds logodds
1 0.05   0.0526   -2.94
2 0.10   0.1111   -2.20
3 0.25   0.3333   -1.10
4 0.50   1.0000   0.00
5 0.75   3.0000   1.10
6 0.90   9.0000   2.20
7 0.95 19.0000   2.94</pre>
```

Log odds

```
plot(logodds, p, type='b', xlab="log odds", ylab="Probability", ...)
abline(lm(p ~ logodds, subset=(p>=.2 & p<=.8)), col="blue")</pre>
```


Symmetric around
$$\pi = \frac{1}{2}$$
: $logit(\pi) = - logit(1 - \pi)$

Fairly linear in the middle, $0.2 \le \pi \le 0.8$

The logit transformation of probability is the basis for logistic regression

(An alternative, the cumulative normal, $\Phi^{-1}(\pi)$, gives rise to probit regression)

Odds ratio

For two groups, with probabilities of success π_1, π_2 , the *odds ratio*, θ , is the ratio of the odds for the two groups:

odds ratio
$$\equiv \theta = \frac{\text{odds}_1}{\text{odds}_2} = \frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)} = \frac{\pi_{11}/\pi_{12}}{\pi_{21}/\pi_{22}} = \frac{\pi_{11}\pi_{22}}{\pi_{12}\pi_{21}}$$

- $\theta = 1 \implies \pi_1 = \pi_2 \implies$ independence, no association
- Same value when we interchange rows and columns (transpose)
- Sample value, $\widehat{\theta}$ obtained using n_{ij} .

More convenient to characterize association by *log odds ratio*, $\psi = \log(\theta)$ which is symmetric about 0:

$$\log \text{ odds ratio} \equiv \psi = \log(\theta) = \log\left[\frac{\pi_1/(1-\pi_1)}{\pi_2/(1-\pi_2)}\right] = \log it(\pi_1) - \log it(\pi_2) \ .$$

Odds ratio: Inference & hypothesis tests

Symmetry of the distribution of the log odds ratio $\psi = \log(\theta)$ makes it more convenient to carry out tests independence as tests of $H_0: \psi = \log(\theta) = 0$ rather than $H_0: \theta = 1$

•
$$z = \log(\widehat{\theta})/SE(\log(\theta)) \sim N(0,1)$$
 $SE(\log(\theta)) = \sqrt{\sum_{ij} n_{ij}^{-1}}$

vcd::oddsratio() has option, log=, TRUE by default
The summary() method calculates z tests

Odds ratio: Confidence intervals

Results should be reported with confidence intervals, either for the odds ratio, θ , or for log(θ)

Summary in words:

For the Berkeley admissions data:

- The Pearson χ^2 test of association between Gender and Admission was highly significant, $\chi_1^2 = 91.6$, p < .0001
- This corresponded to an odds ratio of admission for Males vs. Females of θ = 1.84 (CI: 1.62, 2.09), meaning that overall, males were 84% more likely to be admitted
- On the scale of log odds, $\psi = \log(\theta)$, the estimate was $\psi = 0.610$ (CI: 0.485, 0.736), meaning a significant positive association between Gender(Male) and admission.

Small sample size

- Pearson χ^2 and LR G² tests are valid when most expected frequencies ≥ 5
- Otherwise, use Fisher's exact test or simulated p-values

Example: Cholesterol diet and heart disease

Small sample size

The standard Pearson χ^2 test is not significant For 2 x 2 tables with small n, a correction |O-E| - ½ is standardly applied

> chisq.test(fat)

Pearson's Chi-squared test with Yates' continuity correction

data: fat

X-squared = 3.19, df = 1, p-value = 0.074

Yet, we get a warning

Warning message:

In chisq.test(fat): Chi-squared approximation may be incorrect

Small sample size: Simulation

A Monte-Carlo method uses simulation to calculate a p-value

This method repeatedly samples cell frequencies from tables with the same margins, and calculates a χ^2 for each. The *p*-value compares the observed X^2 to distribution in the simulations.

The χ^2 test is now significant.

Small sample size: Fisher exact test

Fisher's exact test: calculates probability for all 2×2 tables with odds ratio as or more extreme than that in the data, keeping the margins fixed.

The p-value is similar to that obtained using simulation.

Fisher's test is available for larger $r \times c$ tables, but the method gets computationally intensive as r * c increases

Visualizing association

Visualizing: fourfold plots

fourfold(UCB, std="ind.max") # maximum frequency

Friendly (1994a):

- Fourfold display: area \sim frequency, n_{ij}
- Color: blue (+), red(−)
- This version: Unstandardized
- Odds ratio: ratio of products of blue / red cells

Visualizing: fourfold plots

fourfold (UCB)

#standardize both margins

Better version:

- Standardize to equal row, col margins
- Preserves the odds ratio
- Confidence bands: significance of odds ratio
- If don't overlap $\implies \theta \neq 1$

Cholesterol data

fourfold(fat)

Stratified tables: $2 \times 2 \times k$

The UC Berkeley data was obtained from 6 graduate departments

> ftable	(addmar	gins(U	CBAdm	issio	ns, 3))			
		Dept	A	В	С	D	E	F	Sum
Admit	Gender								
Admitted	Male		512	353	120	138	53	22	1198
	Female		89	17	202	131	94	24	557
Rejected	Male		313	207	205	279	138	351	1493
	Female		19	8	391	244	299	317	1278

Questions:

- Does the overall association between gender and admission apply in each department?
- Do men and women apply equally to all departments?
- Do departments differ in their rates of admission?

Stratified analysis tests association between a main factor and a response within the levels of control variable(s)

Odds ratios by department

- Odds ratio only significant, $log(\theta) \neq 0$ for department A
- For dept. A, men are only exp(-1.05) = .35 times as likely to be admitted as women
- The overall analysis (ignoring department) is misleading: falsely assumes no association of {admission, department} and {gender, department}

Stratified fourfold plots

Fourfold plots by department (intense shading where significant)

> fourfold(UCBAdmissions)

Log odds ratio plot

Plot the log odds ratios with confidence limits

```
> plot(oddsratio(UCBAdmissions), cex=2, xlab="Department")
```

log odds ratios for Admit and Gender by Dept

Stratified tables: Homogeneity of association

Questions:

- Are the k odds ratios all equal, $\theta_1 = \theta_2 = ... = \theta_k$?
 - Woolf's test: vcd::woolftest()
- This is the same as the hypothesis of no three-way association
- If homogeneous, is the common odds ratio different from 1?
 - Mantel-Haenszel test: stats::mantelhaen.test()

```
> woolf_test(UCBAdmissions)

Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.)

data: UCBAdmissions
X-squared = 17.9, df = 5, p-value = 0.0031
```

The odds ratios differ across departments, so no sense testing their common value

What happened at UC Berkeley?

Why do results collapsed over department disagree with the results by department?

Simpson's paradox

- Aggregate data are misleading because they falsely assume men and women apply equally in each field.
- But:
 - Large differences in admission rates across departments.
 - Men and women apply to these departments differentially.
 - Women applied in large numbers to departments with low admission rates.
- Other graphical methods can show these effects.
- (This ignores possibility of structural bias against women: differential funding of fields to which women are more likely to apply.)

Mosaic matrices

Scatterplot matrix analog for categorical data

All pairwise views Small multiples → comparison

The answer: Simpson's Paradox

- Depts A, B were easiest
- Applicants to A, B mostly male
- ∴ Males more likely to be admitted overall

r × c tables: Overall analysis

- Overall tests of association: assocstats (): Pearson chi-square and LR G²
- Strength of association: φ coefficient, contingency coefficient (C), Cramer's V (0 ≤ V ≤ 1)

$$\phi^2 = \frac{\chi^2}{n}$$
, $C = \sqrt{\frac{\chi^2}{n + \chi^2}}$, $V = \sqrt{\frac{\chi^2/n}{\min(r - 1, c - 1)}}$

- For a 2 \times 2 table, $V = \phi$.
- (If the data table was collapsed from a 3+ way table, the two-way analysis may be misleading)

r × c tables: Overall analysis

The Pearson X² and LR G² statistics have the following forms:

$$X^{2} = \sum_{ij} \frac{(n_{ij} - \widehat{m}_{ij})^{2}}{\widehat{m}_{ij}} \qquad G^{2} = \sum_{ij} n_{ij} \log \left(\frac{n_{ij}}{\widehat{m}_{ij}}\right)$$

- Expected (fitted) frequencies under independence: $\hat{m}_{ij} = n_{i+} n_{+j} / n_{++}$
- Each of these is a sum-of-squares of corresponding residuals
- Degrees of freedom: df = (r-1)(c-1) # independent residuals

Residuals, fitted values, test statistics returned by MASS::loglm()

Residuals and fitted values are obtained with "extractor" methods

Direct calculation of Pearson & LR χ^2

```
> sum(res.P^2) # Pearson chisq
[1] 138.29
> sum(res.LR^2) # LR chisq
[1] 146.44
```

logIm() returns an object (mod) of class
"loglm"

Method functions, *.loglm(), include: residuals(), fitted(), anova(), summary() & various plot methods

Plots for two-way tables

Barplots are easy, but not often very useful. Why?

Spine plots

Spine plots show the marginal proportions of one variable, and the conditional proportions of the other.

Independence: cells align

Tile plots

Tile plots show a matrix of rectangular tiles, area ~ frequency.

They can be scaled to facilitate different types of comparisons: cells, rows, cols They can be shaded to show the sign & magnitude of residuals from independence

Sieve diagrams

Visual metaphor: **count** \sim **area**

- When row/col variables are independent, $n_{ij} \approx \hat{m}_{ij} \sim n_{i+} n_{+j}$
- \Rightarrow each cell can be represented as a rectangle, with area = height \times width \sim frequency, n_{ij} (under independence)

This display shows expected frequencies, m_{ij}, as # boxes within each cell

Under independence, boxes all of the same size & equal density

Real sieve diagrams use # boxes = observed frequencies, n_{ij}

Sieve diagrams

- Height, width \sim marginal frequencies, n_{i+} , n_{+j}
- Area \sim expected frequency, $\hat{m}_{ij} \sim n_{i+} n_{+j}$
- Shading \sim observed frequency, n_{ij} , color: $sign(n_{ij} \hat{m}_{ij})$.
- Independence: Shown when density of shading is uniform.

The rectangles have area ~ expected frequency

boxes = observed frequency

 $n_{ij} > m_{ij} \rightarrow \text{greater density}$ $n_{ij} < m_{ij} \rightarrow \text{less density}$

Sieve diagrams: Effect ordering

Permuting the rows / cols to make the pattern more coherent

Here, I reordered the eye colors according to lightness

The opposite-corner pattern suggests an explanation for the association

Sieve diagrams: Subtle patterns

Vision classification of 7477 women in Royal Ordnance factories: visual acuity grade in left & right eyes

- The obvious association is apparent in the diagonal cells
- A more subtle pattern appears in the off-diagonal cells
- Analysis methods for square tables allow testing hypotheses beyond independence
 - Symmetry
 - Quasi-symmetry, ...

Ordinal factors

The standard Pearson χ^2 and LR G² give tests of general association, with (r-1) × (c-1) df

More powerful CMH tests:

- When either row or col levels are ordered, more specific CMH (Cochran– Mantel–Haentszel) tests which take order into account have greater power to detect ordered relations.
 - Use fewer df, so ordinal tests are more focused on detecting a particular "signal"
- This is similar to testing for linear trends in ANOVA
- Essentially, these assign scores to the categories & test for differences in row / col means, or non-zero correlation

CMH tests for ordinal factors

Three types of CMH tests:

Non-zero correlation

- Use when both row and column variables are ordinal.
- CMH $\chi^2 = (N-1)r^2$, assigning scores (1, 2, 3, ...)
- most powerful for *linear* association

Row/Col Mean Scores Differ

- Use when only one variable is ordinal
- Analogous to the Kruskal-Wallis non-parametric test (ANOVA on rank scores)

General Association

- Use when both row and column variables are nominal.
- Similar to overall Pearson χ^2 and Likelihood Ratio G^2 .

Sample CMH profiles

Only general association:

	•	b2 +			-	Total	Mean
a1 a2 a3	0 5 20	15 20	25 5 5	15 20 5	0 5 20	55 55 55	3.0
Total	-					-	

Output:

Cochran-N	Mantel-Haenszel Statistics	(Based	on Table	Scores)
Statistic	Alternative Hypothesis	DF	Value	Prob
1 2 3	Nonzero Correlation Row Mean Scores Differ General Association	1 2 8	0.000 0.000 91.797	1.000 1.000 0.000

Sample CMH profiles

Linear Association:

	b1	b2		b3	b4	b5	Total	Mean
a1 a2	1 2	2	5			8		3.48 3.19
a3	j 5	5 j	8	8	. 8	2	31	2.81
a4 		} +	+	8	5 +	2 +	31 +	2.52
Total	17	7	29	32	29	17	124	

Output:

Cochran-N	Mantel-Haenszel Statistics	(Based	on Table	Scores)
Statistic	Alternative Hypothesis	DF	Value	Prob
1 2 3	Nonzero Correlation Row Mean Scores Differ General Association	1 3 12	10.639 10.676 13.400	0.001 0.014 0.341

Visualizing the association

The association here is U-shaped Only general association detects this

Higher levels of A are associated with lower levels of B

Example: Mental health data

For the mental health data, both ses and mental are ordinal All tests are significant, but the nonzero correlation test, with 1 df has the smallest p-value & largest $\chi 2$ / df

```
> CMHtest(mental.tab)
Cochran-Mantel-Haenszel Statistics for ses by mental

AltHypothesis Chisq Df Prob

cor Nonzero correlation 37.2 1 1.09e-09 both ordinal rmeans Row mean scores differ 40.3 5 1.30e-07 cols ordinal cmeans Col mean scores differ 40.7 3 7.70e-09 rows ordinal general General association 46.0 15 5.40e-05 neither
```

χ2 / df shows why ordered tests are more powerful

```
> xx <- CMHtest(mental.tab)
> xx$table[,"Chisq"] / xx$table[,"Df"]
    cor rmeans cmeans general
37.16 8.06 13.56 3.06
```

Observer agreement

- Inter-observer agreement often used as to assess reliability of a subjective classification or assessment procedure
 - → square table, Rater 1 x Rater 2
 - Levels: diagnostic categories (normal, mildly impaired, severely impaired)
- Agreement vs. Association: Ratings can be strongly associated without strong agreement
- Marginal homogeneity: Different frequencies of category use by raters affects measures of agreement
- Measures of Agreement:
 - Intraclass correlation: ANOVA framework— multiple raters!
 - Cohen's κ : compares the observed agreement, $P_o = \sum p_{ii}$, to agreement expected by chance if the two observer's ratings were independent, $P_c = \sum p_{i+} p_{+i}$.

$$\kappa = \frac{P_o - P_c}{1 - P_c}$$

Cohen's K

Properties of Cohen's κ :

- perfect agreement: $\kappa = 1$
- minimum κ may be < 0; lower bound depends on marginal totals
- Unweighted κ : counts only diagonal cells (same category assigned by both observers).
- Weighted κ : allows partial credit for near agreement. (Makes sense only when the categories are *ordered*.)

Weights:

- Cicchetti-Alison (inverse integer spacing)
- Fleiss-Cohen (inverse square spacing)

	Integer	Weights		Fle	eiss-Cohe	en Weigh	ts	
1	2/3	1/3	0	1	8/9	5/9	0	
2/3	1	2/3	1/3	8/9	1	8/9	5/9	
1/3	2/3	1	2/3	5/9	8/9	1	8/9	
0	1/3	2/3	1	0	5/9	8/9	1	

Example: Cohen's K

The table below summarizes responses of 91 married couples to a questionnaire item,

Sex is fun for me and my partner (a) Never or occasionally, (b) fairly often, (c) very often, (d) almost always.

Husband's Rating	Never fun	Wife's Fairly often	Rating - Very Often	Almost	SUM
Never fun Fairly often Very often Almost always	7 2 1 2	7 8 5 8	2 3 4 9	3 7 9 14	19 20 1 19 1 33
SUM	12	28	18	33	91

Example: Cohen's k

vcd::Kappa() calculates unweighted and weighted к, using equal-spacing weights by default

Unweighted κ is not significant, but both weighted versions are You can obtain confidence intervals with the confint () method

Observer agreement: Multiple strata

When the individuals rated fall into multiple groups, one can test for:

- Agreement within each group
- Overall agreement (controlling for group)
- Homogeneity: Equal agreement across groups

Example: Diagnostic Classification of MS patients

Patients in Winnipeg and New Orleans were each classified by a neurologist in each city

NO rater:	Winnipeg patients				New Orleans patients				
NO Tacer.	Cert	Prob	Pos	Doubt		Cert	Prob	Pos	Doubt
Winnipeg rater: Certain MS Probable Possible Doubtful MS	38 33 10 3	5 11 14 7	0 3 5 3	1 0 6 10		5 3 2 1	3 11 13 2	0 4 3 4	0 0 4 14

To what extent to the neurologists agree?

Do they agree equally for the patients for the two cities

Observer agreement: Multiple strata

Here, simply assess agreement between the two raters in each stratum separately

Somewhat larger agreement for the New Orleans patients

The irr package (inter-rater-reliability) provides ICC and other measures; also handles the case of k > 2 raters

Bangdiwala's Observer agreement chart

The observer agreement chart (Bangdiawala, 1987) provides:

- > A simple graphic representation of the strength of agreement
- A measure of strength of agreement with an intuitive interpretation

Bangdiwala's Observer agreement chart

Construction:

- $n \times n$ square, n=total sample size
- Black squares, each of size $n_{ii} \times n_{ii} \rightarrow$ observed agreement
- Positioned within larger rectangles, each of size $n_{i+} \times n_{+i} \to \text{maximum}$ possible agreement
- ⇒ visual impression of the strength of agreement is B:

$$B = \frac{\text{area of dark squares}}{\text{area of rectangles}} = \frac{\sum_{i}^{k} n_{ii}^{2}}{\sum_{i}^{k} n_{i+} n_{+i}}$$

 $\bullet \Rightarrow$ Perfect agreement: B = 1, all rectangles are completely filled.

Weighted agreement chart: Partial agreement

Partial agreement: include weighted contribution from off-diagonal cells, b steps from the main diagonal, using weights $1 > w_1 > w_2 > \cdots$.

$$n_{i-b,i}$$
 \cdots $n_{i,i-b}$ \cdots $n_{i,i+b}$ w_2 w_1 w_2 w_1 w_2 w_1 w_2 w_2 w_1 w_2 w_2 w_2 w_3 w_4 w_2 w_4 w_5 w_5 w_6 w_7 w_8 w_8 w_8 w_8 w_8 w_8 w_9 $w_$

- Add shaded rectangles, size ~ sum of frequencies, A_{bi}, within b steps of main diagonal
- ⇒ weighted measure of agreement,

$$B^w = \frac{\text{weighted sum of agreement}}{\text{area of rectangles}} = 1 - \frac{\sum_{i}^{k} \left[n_{i+} n_{+i} - n_{ii}^2 - \sum_{b=1}^{q} w_b A_{bi} \right]}{\sum_{i}^{k} n_{i+} n_{+i}}$$

Husbands and wives: B = 0.146, $B^w = 0.498$

```
agreementplot(SexualFun, main="Unweighted", weights=1)
agreementplot(SexualFun, main="Weighted")
```


The smallest exact agreement occurs for "very often", but husbands & wives more on this allowing $\pm\,1$ step disagreement

Marginal homogeneity & observer bias

- Different raters may consistently use higher or lower response categories
- Test– marginal homogeneity: $H_0: n_{i+} = n_{+i}$
- Shows as departures of the squares from the diagonal line

Winnipeg neurologist tends to use more severe categories

Looking ahead: Models

Loglinear models [loglm()]

- Generalize the Pearson χ^2 and LR G^2 tests of association to 3-way and larger tables.
- Allows a range of models from mutual independence ([A] [B] [C]) to the saturated model ([ABC])
- Intermediate models address questions of conditional independence, controlling for some factors
- Can test associations in 2-way, 3-way, ... terms, analogously to tests of interactions in ANOVA

Generalized linear models [glm()]

- Similar to ordinary lm(), but w/ Poisson distⁿ of counts: family="poisson"
- Formula notation: Freq ~ A + B + C; Freq ~ (A + B + C)^2
- Familiar diagnostic methods & plots (outliers, influence)

Looking ahead: Models

Example: UC Berkeley data

- Mutual independence: [Admit][Gender][Dept] = ~ A + G + D
- Joint independence: [Admit][Gender Dept] = ~ A + G * D
- Conditional independence: [D Admit][D Gender] = ~ D * (A + G)
 - Specific test of absence of gender bias, controlling for department
- No three-way association: [A G][A D][G D] $= ^{\sim} (A + D + G)^2$

```
library(MASS)
loglm(~ Admit + Dept + Gender, data=UCBAdmissions)  # mutual independence
loglm(~ Admit + Dept * Gender, data=UCBAdmissions)  # joint independence
loglm(~ Dept * (Admit + Gender), data=UCBAdmissions)  # conditional independence
loglm(~ (Admit + Gender + Dept )^2, data=UCBAdmissions)  # all two-way, no three-way
```

Bracket notation:

- terms in the same bracket are allowed to be associated $[A G] \equiv A * G$
- terms in separate brackets are asserted to be independent [A] [G] \equiv A + G

Looking ahead: Mosaic plots

Mosaic plots provide visualizations of associations in 2+ way tables

- Tiles ~ frequency; conditioned by A, then B, then C, ...
- Fit: any loglinear model [A][B][C], [AB][C], [AB][AC], ..., [ABC]
- Shading: ~ residuals, contributions to χ²
- Show: associations not accounted for by model

Looking ahead: Correspondence analysis

Like PCA for categorical data

- Account for max % of χ^2 in few (2-3) dimensions
- Find scores for row and col categories
- Plot of row/col scores shows associations

Dim 1: dark to light

Dim 2: something about red

hair, green eyes?

Summary

- Two-way tables summarize frequencies of two categorical factors
 - 2 × 2 a special case, with odds ratio as a measure
 - r x c: factors can be unordered or ordered
 - r × c × k stratified tables
- Tests & measures of association
 - Pearson χ^2 , LR G^2 : general association
 - More powerful CMH tests for ordered factors
- Visualization
 - 2 × 2: fourfold plots
 - r × c: sieve diagrams, tile plots, ...