CS550 Week 3

29. KNN + Confusion Matrix

Three phases of using KNN for classification:

- 1. Training Phase: Training different models
 - o Different K values can represent different KNN models
 - References
 - K-NN step-by-step example
- 2. Evaluation Phase
 - o Objective
 - Finding the <u>K value</u> representing the best model.
 - o How? -- This is the homework you need to do.
 - Using Pick an Evaluation Metric: Confusion Matrix
 - For example, for <u>credit card assessment</u>
 - o There are two classes in this example, "+" (credit approval) and "-" (credit denial).

	<u>K=3</u>	<u>K</u>	<u>=5</u>
Correc Assess			edicted Assessment
-	-		
-	+		
+	+	- +	
_	-	+ -	
-	-	+ -	
+	+	- +	
+	+	- +	
_	-	+ -	
_	-		
+	+	- +	
_	-		
+	-	+ -	
+	+		
+	+	+ +	
_	-		
_	-	+ -	
_	-	+ -	
+	+	- +	
+	+		
+	+	+ +	
+	+	+ -	
_	-	- +	
+	+	- +	
	+	+ +	
+			

K=	TP	FN	FP	TN	Precision	Accuracy	Recall	F1 score
3								
5								

- Which K value represents the better model? Please explain your assessment.
- 3. Test Phase
 - o Using the best model selected in Evaluation Phase
 - References
- 1. Training, Validation, and Test

Answer

Deriving the Confusion Matrix for the "+" class for both K=3 and K=5

For K = 3

	Predict = +	Predict = -
Actual = +	True Positive (+->+) Actual credit card approval that were correctly classified as credit card approval 12	False Negative (+ -> !+) Actual credit card approval that were incorrectly classified as credit card denial. 1
Actual = -	False Positive (!+->+) Actual credit card denial that were incorrectly classified as credit card approval	True Negative (!+ -> !+) Actual credit card denial that were correctly classified as credit card denial 11

CS550 Week 3

For K = 5

	Predict = +	Predict = -
Actual = +	True Positive (+->+) Actual credit card approval that were correctly classified as credit card approval 3	False Negative (+ -> !+) Actual credit card approval that were incorrectly classified as credit card denial. 7
Actual = -	False Positive (!+ -> +) Actual credit card denial that were incorrectly classified as credit card approval	True Negative (!+ -> !+) Actual credit card denial that were correctly classified as credit card denial

From the table above,

Precision = TP/(TP+FP)

A better way to estimate performance than Accuracy.

For K = 3,

Precision = 12/(12+1) = 12/13 = 0.923

For K = 5,

Precision = 3/(3+7) = 3/10 = 0.3

Accuracy = (TP+TN)/(TP+TN+FP+FN)

Accuracy is the ratio of the number of correct labels to the total number of labels.

Accuracy is the probability that your model gets the right answer.

Accuracy is not a good metric of success, because the "everything looks good" model, or equivalently the "nothing looks fraudulent" model, is dumb but has good accuracy.

For K = 3,

CS550 Week 3

Accuracy =
$$(12+11)/(12+1+11+1) = 23/25 = 0.92$$

For K = 5,

Accuracy =
$$(3+8)/(3+7+7+8) = 11/25 = 0.44$$

Recall = TP/(TP+FP)

A better way to estimate performance than Accuracy.

For K = 3,

Recall =
$$12/(12+1) = 23/25 = 0.92$$

For K = 5,

Recall =
$$3/(3+7) = 3/10 = 0.3$$

F1 Score = 2TP/(2TP+FP+FN)

For K = 3,

F1 Score =
$$2*12/(2*12+1+1) = 24/26 = 0.923$$

For K = 5,

F1 Score =
$$2*3/(2*3+7+7) = 6/20 = 0.3$$

K	TP	FN	FP	TN	Precision	Accuracy	Recall	F1 Score
3	12	1	1	11	0.923	0.92	0.92	0.923
5	3	7	7	8	0.3	0.44	0.3	0.3

As per observation, the model with K=3 has high Accuracy compared to model with K=5. It is said that Accuracy is not a good metric for success, so let us compare the Precision and Recall.

The Precision and Recall values of the model with K=3 is so much better than values of the model with K=5 and so is the F1 Score.

Thus, K=3 represents the better model.