1. Summary of One-level Black-box Adversarial Applications

Adversary	Perturbation Methods	Perturbation Level	Architectures	Dataset
Heigold et al. [23].	 Randomly swap two adjacent characters in a word. Randomize the order of all the characters in a word except for the first and the last. Randomly replace a character with another character at a pre-specified rate. 	Character- level.	CNN, RNN.	UD English dataset, German- English (DEEN) parallel corpora provided by WMT16.
Belinkov and Bisk [4].	 Randomly swap two adjacent characters in a word. Randomize the order of all the characters in a word except for the first and the last. Randomize the order of all the characters in a word. Randomly replace a single character with the character next to it on the English keyboard. 	Character- level.	char2char [28], Nematus [45], charCNN [54].	TED talks (French, German, and Czech) to English parallel corpus.

Gao et al.		Character-	Word-LSTM, charCNN [54].	AG's News,
[19].	1. Randomly swap two adja-	level.		Amazon
	cent characters in a word.			Review full and
	2. Randomly replace a charac-			polarity,
	ter with another character.			DBPedia,
	3. Randomly delete a character.			Yahoo!
	4. Randomly insert a character.			Answers, Yelp
				Review full and
				polarity, Enron
				Spam.
Sogaard et		Character-	UUPARSER [12] [13],	English Penn
al. [49].	1. Delete all punctuation	level.	KGRAPHS [27], STANFORD	Treebank,
	marks.		[6], MALTPARSER [39],	Google Web
	2. Insert commas and dots.		TURBOPARSER [18].	Treebank.
Samanta		Token-level.	CNN.	Twitter dataset
and Mehta	1. Replace adjectives with ad-			for gender
[44].	verbs.			classification,
	2. Insert adverbs.			IMDB.
	3. Remove adverbs.			
Alzantot et		Token-level.	LSTM.	IMDB.
al. [1].	1. Replace a token with a se-			
	mantically similar token.			
Glockner et		Token-level.	ESIM [9], Decomposable	SNLI,
al. [20].	1. Replace a token with its syn-		Attention [40],	MultiNLI,
	onym or hypernym.		Residual-Stacked-Encoder	SciTail.
	2. Replace a token with its hy-		[37], WordNet [17], KIM [7].	
	ponym or antonym.			

Jia and		Sentence-level.	jNet [53], BiDAF Single and	SQuAD.
Liang [26].	1. ADD-SENT: Insert gram-		Ensemble versions [46],	
	matical sentences that are		RaSOR [29], Match-LSTM	
	similar to the question but do		Single and Ensemble versions	
	not conflict with the correct		[51], Ruminating Reader [21],	
	answer.		Logistic Regression Baseline	
	2. ADD-ANY: Insert arbitrary		[41], Dynamic Chunk Reader	
	sequences of English words,		(DCR) ¹ , ReasoNet Single and	
	regardless of grammatical-		Ensemble versions [48],	
	ity.		Mnemonic Reader Single and	
	3. ADD-COMMON: Like		Ensemble versions [25],	
	ADD-ANY except that		Multi-Perspective Context	
	it only Inserts English		Matching (MPCM) Single	
	common words.		version ² , Structural Embedding	
	4. ADD-ONE-SENT: Insert a		of Dependency Trees (SEDT)	
	human-approved sentence,		Single and Ensemble versions	
	selected at random.		[32].	
Ribeiro et		Sentence-level.	FastText, Zhu et al.'s [55].	Rotten
al. [42].	1. Paraphrase sentences.			Tomatoes
				movie reviews,
				IMDB
				sentence-sized
				reviews, Zhu et
				al.'s [55].

Table 1: A summary of the black-box adversarial applications that make perturbations on one level: Character-level, Token-level, or Sentence-level.

¹arXiv:1610.09996

²arXiv:1612.04211

2. Summary of Two-level Black-box Adversarial Applications

Adversary	Perturbation Methods	Perturbation	Architectures	Dataset
		Level		
Naik et al. [35].	 Change numbers or prefix them with "less than" or "more than". Replace tokens with their antonyms. Append the tautology "and true is true" to the end of every hypothesis sentence (word overlapping). Append the tautology "and false is not true" to the end of every hypothesis sentence (negation). Append the tautology "and true is true" five times to the end of every premise sentence (length mismatching). Randomly swap adjacent characters within a word. Randomly replace a single character with the character next to it on the English keyboard. 	Character- level, token-level.	Nie and Bansal's model [37], Chen et al.'s model [8], Balazs et al.'s model [2], Conneau et al.'s model [10], BiLSTM [36], CBOW [33].	MultiNLI.
Blohm et al. [5].	 Replace the most frequent question words with manually defined meaning-preserving lexical substitutions. Insert a distracting sentence contains random words from common English words (AddC). Insert a distracting sentence contains words from the question words (AddQ) Insert a distracting sentence contains words from the question and incorrect answers (AddQA). 	Token-level, sentence- level.	Wang and Jiang's model [50], Liu et al.'s model, Dzendzik et al.'s model [14], CNN word level, CNN, CNN ensemble, RNN-LSTM, ensemble, CNN RNN-LSTM ensemble, CNN	MovieQA.

Niu and		Token-level,	VHRED [47], RL,	CoCoA,
Bansal	Randomly swap two adjacent tokens.	sentence-	DynoNet [22].	Ubuntu
[38].	2. Randomly delete stop-words.	level.		Dialogue
	3. Replace tokens with a paraphrasing.			Corpus.
	4. Replaces grammatically correct words or			
	phrases with wrong ones.			
	5. Paraphrase sentences.			
	6. Negate verbs.			
	7. Replace verbs, adverbs, or adjectives with their			
	antonyms.			
Henderson		Character-	VHRED.	Reddit
et al. [24].	Misspelling words by removing, replacing or in-	level,	VIIICES.	Movies,
et al. [24].		level,		wiovies,
	serting an extra character in the word.	sentence-		Reddit
	2. Paraphrasing sentences.	level.		Politics.
1		I	I	1

Table 2: A summary of the black-box adversarial applications that make perturbations on two levels: Character-token-level, Token-sentence-level, or Character-sentence-level.

3. Summary of White-box Adversarial Applications

Adversary	Perturbation Methods	Perturbation	Architectures	Dataset
		Scope		
Behjati et		Token-level.	LSTM, bi-LSTM,	AG's news,
al. [3].	1. Insert a token or a sequence of tokens.		mean-LSTM.	SST.
Mudrakarta		Sentence-	Yu et al.'s model [52].	SQuAD.
et al.	1. Insert grammatical sentences that include	level.		
[34].	important tokens from the questions.			
Ebrahimi		Character-	charCNN-LSTM,	AG's news,
et al.	1. Character or token flipping.	level,	Word-CNN.	SST.
[16].	2. Character or token inserting.	token-level.		
	3. Character or token removal.			
Ebrahimi		Character-	Costa-Jussa et al.'s	TED talks
et al.	1. Replacing a character with another.	level,	model [11].	(French,
[15].	2. Swapping two adjacent characters.	token-level.		German,
	3. Deleting a character.			and Czech)
	4. Inserting a character.			to English
	5. Removing a specific token from the transla-			parallel
	tion output.			corpora.
	6. Replace a token with another in the transla-			
	tion output.			

Blohm et		Token-level,	Wang and Jiang's	MovieQA.
al. [5].	1. Substitute the words that receive most atten-	sentence-	model [50], Liu et al.'s	
	tion with randomly chosen words.	level.	model, Dzendzik et	
	2. Remove the sentence with the highest atten-		al.'s model [14], CNN	
	tion.		word level, CNN, CNN	
			ensemble,	
			RNN-LSTM,	
			RNN-LSTM ensemble,	
			CNN RNN-LSTM	
			ensemble.	
Liang et		Character-	charCNN [54].	DBpedia.
al. [31].	1. Insert a token, phrase, or a sentence.	level,		
	2. Replace a token with a misspelled version of	token-level,		
	it.	sentence		
	3. Replace a character with a character that has	level.		
	a similar visual appearance.			
	4. Delete a token, phrase, or a sentence.			

Table 3: A summary of the white-box adversarial applications that make perturbations on: Token-level, Sentence-level, Character-token-level, Token-sentence-level, or Character-token-sentence level.

4. Summary of Compromised Real-world Applications

Adversary	Perturbation Methods	Perturbation	Applications	Dataset
		Level		
Rodriguez		Character-	Google's Perspective	Google's
and Rojas-	1. Obfuscation: Replace characters, repeat	level,	API.	Perspective
Galeano [43].	characters and insert unnecessary punctua- tion marks within characters in the words (commas, dots, or blanks).	token-level.		dataset.
	2. Polarity: Negate toxic words.			
Li et al.		Character-	Google Machine	MDB,
[30].	1. Insert a space to the word;	level,	Learning, Microsoft	Rotten
	2. Randomly delete a character from the word	token-level.	Azure, IBM Watson,	Tomatoes
	except for the first and the last character;		Facebook fast-Text,	movie
	3. Randomly swap two adjacent characters in		Amazon Machine	reviews,
	the word except for the first and the last char-		Learning, ParallelDots,	the Kaggle
	acter;		Aylien Sentiment,	Toxic
	4. Replace characters with visually similar		TheySay Sentiment,	Comment
	characters or with adjacent characters in the		TextProcessing,	Classifica-
	keyboard;		Mashape Sentiment,	tion
	5. Replace a word with a semantically similar		Google Perspective.	competi-
	word.			tion
				dataset.

Table 4: A summary of the real-world applications that have been compromised by adversarial examples.

References

- [1] M. Alzantot, Y. Sharma, A. Elgohary, B.-J. Ho, M. Srivastava, K.-W. Chang, Generating natural language adversarial examples, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2018, pp. 2890–2896.
- [2] J. A. Balazs, E. Marrese-Taylor, P. Loyola, Y. Matsuo, Refining raw sentence representations for textual entailment recognition via attention, in: Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for NLP, 2017, pp. 51–55.
- [3] M. Behjati, S.-M. Moosavi-Dezfooli, M. S. Baghshah, P. Frossard, Universal adversarial attacks on text classifiers, in: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019, pp. 7345–7349.
 - [4] Y. Belinkov, Y. Bisk, Synthetic and natural noise both break neural machine translation, in: International Conference on Learning Representations, 2018.

 URL https://openreview.net/forum?id=BJ8vJebC-
- [5] M. Blohm, G. Jagfeld, E. Sood, X. Yu, N. T. Vu, Comparing attention-based convolutional and recurrent neural networks: Success and limitations in machine reading comprehension, in: Proceedings of the 22nd Conference on Computational Natural Language Learning, 2018, pp. 108–118.
- [6] D. Chen, C. Manning, A fast and accurate dependency parser using neural networks, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2014, pp. 740–750.
 - [7] Q. Chen, X. Zhu, Z.-H. Ling, D. Inkpen, S. Wei, Neural natural language inference models enhanced with external knowledge, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1, 2018, pp. 2406–2417.

- [8] Q. Chen, X. Zhu, Z.-H. Ling, S. Wei, H. Jiang, D. Inkpen, Recurrent neural network-based sentence encoder with gated attention for natural language inference, in: Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for NLP, 2017, pp. 36–40.
- [9] Q. Chen, X. Zhu, Z. Ling, S. Wei, H. Jiang, D. Inkpen, Enhanced LSTM for natural language inference, in: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017, pp. 1657–1668.
 - [10] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, A. Bordes, Supervised learning of universal sentence representations from natural language inference data, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2017, pp. 670–680.

35

- [11] M. R. Costa-Jussà, C. España-Bonet, P. Madhyastha, C. Escolano, J. A. Fonollosa, The TALP–UPC Spanish–English WMT biomedical task: Bilingual embeddings and char-based neural language model rescoring in a phrase-based system, in: Proceedings of the First Conference on Machine Translation, Vol. 2, 2016, pp. 463–468.
- [12] M. de Lhoneux, Y. Shao, A. Basirat, E. Kiperwasser, S. Stymne, Y. Goldberg, J. Nivre, From raw text to universal dependencies-look, no tags!, Proceedings of the CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies (2017a) 207–217.
- [13] M. de Lhoneux, S. Stymne, J. Nivre, Arc-hybrid non-projective dependency parsing with a static-dynamic oracle, in: Proceedings of the 15th International Conference on Parsing Technologies, 2017b, pp. 99–104.
- [14] D. Dzendzik, C. Vogel, Q. Liu, Who framed Roger Rabbit? multiple choice questions answering about movie plot, in: Proceedings of the The Joint Video and Language Understanding Workshop: MovieQA and The Large Scale Movie Description Challenge (LSMDC), 2017.

[15] J. Ebrahimi, D. Lowd, D. Dou, On adversarial examples for character-level neural machine translation, in: Proceedings of the 27th International Conference on Computational Linguistics, 2018, pp. 653–663.

- [16] J. Ebrahimi, A. Rao, D. Lowd, D. Dou, Hotflip: White-box adversarial examples for NLP, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2017, pp. 31–36.
- [17] C. Fellbaum, Wordnet: Wiley online library, The Encyclopedia of Applied Linguistics.
- [18] D. Fernández-González, A. F. Martins, Parsing as reduction, in: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015, pp. 1523–1533.
- [19] J. Gao, J. Lanchantin, M. L. Soffa, Y. Qi, Black-box generation of adversarial text sequences to evade deep learning classifiers, in: IEEE Security and Privacy Workshops, 2018, pp. 50–56.
 - [20] M. Glockner, V. Shwartz, Y. Goldberg, Breaking NLI systems with sentences that require simple lexical inferences, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018, pp. 650–655.
 - [21] Y. Gong, S. R. Bowman, Ruminating reader: Reasoning with gated multi-hop attention, in: Proceedings of the Workshop on Machine Reading for Question Answering, 2018, pp. 1–11.
- [22] H. He, A. Balakrishnan, M. Eric, P. Liang, Learning symmetric collaborative dialogue agents with dynamic knowledge graph embeddings, in: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, 2017, pp. 1766–1776.
 - [23] G. Heigold, G. Neumann, J. van Genabith, How robust are character-based word embeddings in tagging and MT against wrod scrambing or randdm nouse?, in:

- Proceedings of the 13th Conference of the Association for Machine Translation in the Americas, 2018, pp. 68–80.
 - [24] P. Henderson, K. Sinha, N. Angelard-Gontier, N. R. Ke, G. Fried, R. Lowe, J. Pineau, Ethical challenges in data-driven dialogue systems, in: AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society, 2018, pp. 123–129.
- [25] M. Hu, Y. Peng, Z. Huang, X. Qiu, F. Wei, M. Zhou, Reinforced mnemonic reader for machine reading comprehension, in: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 4099–4106.
 - [26] R. Jia, P. Liang, Adversarial examples for evaluating reading comprehension systems, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2017, pp. 2021–2031.

- [27] E. Kiperwasser, Y. Goldberg, Simple and accurate dependency parsing using bidirectional LSTM feature representations, in: Transactions of the Association for Computational Linguistics, Volume 4, Issue 1, 2016.
- [28] J. Lee, K. Cho, T. Hofmann, Fully character-level neural machine translation without explicit segmentation, Transactions of the Association for Computational Linguistics 5 (2017) 365–378.
 - [29] K. Lee, S. Salant, T. Kwiatkowski, A. Parikh, D. Das, J. Berant, Learning recurrent span representations for extractive question answering, in: International Conference on Learning Representations, 2017.
- URL https://openreview.net/forum?id=HkIQH7qel
 - [30] J. Li, S. Ji, T. Du, B. Li, T. Wang, TEXTBUGGER: Generating adversarial text against real-world applications, in: Proceedings of Network and Distributed System Security Symposium (NDSS), 2019.
- [31] B. Liang, H. Li, M. Su, P. Bian, X. Li, W. Shi, Deep text classification can be fooled, in: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI-18), 2017.

- [32] R. Liu, J. Hu, W. Wei, Z. Yang, E. Nyberg, Structural embedding of syntactic trees for machine comprehension, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2017, pp. 815–824.
- 110 [33] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word representations in vector space, in: International Conference on Learning Representations, 2013.
 - URL https://openreview.net/forum?id=idpCdOWtqXd60s
- [34] P. K. Mudrakarta, A. Taly, M. Sundararajan, K. Dhamdhere, Did the model understand the question?, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018, pp. 1896–1906.
 - [35] A. Naik, A. Ravichander, N. Sadeh, C. Rose, G. Neubig, Stress test evaluation for natural language inference, in: Proceedings of the International Conference on Computational Linguistics, 2018, pp. 2340–2353.
- 120 [36] N. Nangia, A. Williams, A. Lazaridou, S. R. Bowman, The Repeval 2017 shared task: Multi-genre natural language inference with sentence representations, in: Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for NLP, 2017, pp. 1–10.
- [37] Y. Nie, M. Bansal, Shortcut-stacked sentence encoders for multi-domain inference, in: Proceedings of the 2nd Workshop on Evaluating Vector Space Representations for NLP, 2017, pp. 41–45.
 - [38] T. Niu, M. Bansal, Adversariasl over-sensitivity and over-stability strategies for dialogue models, in: Proceedings of the 22nd Conference on Computational Natural Language Learning, 2018, pp. 486–496.
- [39] J. Nivre, J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kübler, S. Marinov, E. Marsi, Maltparser: A language-independent system for data-driven dependency parsing, Natural Language Engineering 13 (2) (2007) 95–135.

[40] A. P. Parikh, O. Täckström, D. Das, J. Uszkoreit, A decomposable attention model for natural language inference, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2016, pp. 2249–2255.

135

145

150

155

- [41] P. Rajpurkar, J. Zhang, K. Lopyrev, P. Liang, Squad: 100,000+ questions for machine comprehension of text, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, 2016, pp. 2383–2392.
- [42] M. T. Ribeiro, S. Singh, C. Guestrin, Semantically equivalent adversarial rules for debugging nlp models, in: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Vol. 1, 2018, pp. 856–865.
 - [43] N. Rodriguez, S. Rojas-Galeano, Fighting adversarial attacks on online abusive language moderation, Applied Computer Sciences in Engineering 915 (2018) 480–493.
 - [44] S. Samanta, S. Mehta, Generating adversarial text samples, Advances in Information Retrieval 10772 (2017) 744–749.
 - [45] R. Sennrich, O. Firat, K. Cho, A. Birch, B. Haddow, J. Hitschler, M. Junczys-Dowmunt, S. Läubli, A. V. M. Barone, J. Mokry, et al., Nematus: a toolkit for neural machine translation, in: Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association for Computational Linguistics, 2017, pp. 65–68.
 - [46] M. Seo, A. Kembhavi, A. Farhadi, H. Hajishirzi, Bidirectional attention flow for machine comprehension, in: International Conference on Learning Representations, 2017.
 - URL https://openreview.net/forum?id=HJ0UKP9ge
 - [47] I. V. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau, A. C. Courville, Y. Bengio, A hierarchical latent variable encoder-decoder model for generating dialogues., in: The Association for the Advancement of Artificial Intelligence, 2017, pp. 3295–3301.

- [48] Y. Shen, P.-S. Huang, J. Gao, W. Chen, Reasonet: Learning to stop reading in machine comprehension, in: Proceedings of the 23rd ACM International Conference on Knowledge Discovery and Data Mining, 2017, pp. 1047–1055.
- [49] A. Søgaard, M. de Lhoneux, I. Augenstein, Nightmare at test time: How punctuation prevents parsers from generalizing, in: Proceedings of the EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, 2018, pp. 25–29.
 - [50] S. Wang, J. Jiang, A compare-aggregate model for matching text sequences, in: International Conference on Learning Representations, 2017.
- URL https://openreview.net/forum?id=HJTzHtqee
 - [51] S. Wang, J. Jiang, Machine comprehension using match-LSTM and answer pointer, in: International Conference on Learning Representations, 2017. URL https://openreview.net/pdf?id=B1-q5Pqxl
- [52] A. W. Yu, D. Dohan, Q. Le, T. Luong, R. Zhao, K. Chen, Fast and accurate reading comprehension by combining self-attention and convolution, in: International Conference on Learning Representations, 2018.
 URL https://openreview.net/forum?id=B14TlG-RW
- [53] J. Zhang, X. Zhu, Q. Chen, L. Dai, S. Wei, H. Jiang, Exploring question understanding and adaptation in neural-network-based question answering, in: Proceedings of the 3rd IEEE International Conference on Computer and Communications, 2017, pp. 1975–1984.
 - [54] X. Zhang, J. Zhao, Y. LeCun, Character-level convolutional networks for text classification, in: Advances in Neural Information Processing Systems, 2015, pp. 649–657.
- [55] Y. Zhu, O. Groth, M. Bernstein, L. Fei-Fei, Visual7w: Grounded question answering in images, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 4995–5004.