Modern Physics

Ikhan Choi

August 26, 2022

Contents

Ι	Quantum mechanics	3
1	Quantization	4
	1.1 Interpretations of quantum mechanics	4
	1.2 Canonical commutation relation	4
2	Schrödinger equation	5
	2.1 Time-independent potentials	5
	2.2 Approximation methods	5
	2.3 Atoms	5
	2.4 Scattering theory	5
3	Spin	6
	3.1	6
	3.2 Dirac equation	6
	3.3 Wigner classification	6
II	Statistical physics	7
4	Statistical mechanics	8
	4.1 Ensembles	8
	4.2 Quantum statistics	8
5	Condensed matter physics	9
	5.1 Solid state physics	9
	5.2 Quantum Hall effect	9
6	Renormalization group	10
	6.1 Phase transition	10
II	I Quantum field theory	11
7	Perturbative field theory	12
	7.1 Path integral formulation	12
	7.2 Field equations	12
	7.3 Interacting fields	12
8	Non-perturbative field theory	13
	8.1 Algebraic quantum field theory	13

9 Nonabelian gauge theory	14
IV	15
10 Supersymmetry	16

Part I Quantum mechanics

Quantization

1.1 Interpretations of quantum mechanics

Pictures Hilbert space, wave functions, Dirac notation Copenhagen interpretation and measurement observables and self-adjoint operators EPR paradox, Bell's inequality, CHSH inequality

1.2 Canonical commutation relation

canonical quantization Weyl quantization fourier transform Stone-von Neumann theorem

Schrödinger equation

2.1 Time-independent potentials

Infinite well Harmonic oscillator Free particle Hydrogen atom

2.2 Approximation methods

WKB approximation

- **2.3** Atoms
- 2.4 Scattering theory

Spin

- 3.1
- 3.2 Dirac equation

Pair production(1941)

3.3 Wigner classification

Part II Statistical physics

Statistical mechanics

4.1 Ensembles

ensembles microcanonical, canonical, grand canonical classical gas Boltzmann distribution

4.2 Quantum statistics

Two statistics Fermi sea Bose-Einstein condensation

Condensed matter physics

5.1 Solid state physics

phonon

5.2 Quantum Hall effect

Renormalization group

6.1 Phase transition

Magnetic models Ginzburg Landau theory

Part III Quantum field theory

Perturbative field theory

- 7.1 Path integral formulation
- 7.2 Field equations
- 7.3 Interacting fields

Feynman diagram

Non-perturbative field theory

8.1 Algebraic quantum field theory

Nonabelian gauge theory

Part IV

Supersymmetry