Analysis II

1 Topologie metrischer Räume

1.1 Metrische/normierte Räume

1.1.1 Metrik

Sei X eine Menge. Die Metrik auf X ist

 $d: X \times X \to \mathbb{R}$

 $(x,y) \mapsto d(x,y)$ mit:

- 1. $d(x,y) = 0 \Leftrightarrow x = y$
- 2. d(x, y) = d(y, x)
- 3. $d(x,z) \le d(x,y) + d(y,z)$

für alle $x, y \in X$.

(X, d) heißt metrischer Raum aus einer Menge X und einer Metrik d auf X.

1.1.2 Normierte Vektorräume

Sei V ein Vektorraum über $\mathbb R$ oder $\mathbb C$. Die Norm auf V ist

 $|| || : V \to \mathbb{R}, x \mapsto ||x||$ mit:

- 1. $||x|| = 0 \Leftrightarrow x = 0$
- $2. ||\lambda x|| = |\lambda| \cdot ||x||$
- $3. ||x + y|| \le ||x|| + ||y||$

Ein normierter Vektorraum (V, || ||) ist ein Vektorraum V mit einer Norm || ||.

1.1.3 Metrik

Sei (V, || ||) ein normierter Vektorraum. Dann ist d(x, y) = ||x - y|| eine Metrik auf V.

1.1.4 Offene Kugel

Sei (X, d) ein metrischer Raum, $a \in X$ und r > 0. Dann heißt $B_r(a) = \{x \in X : d(a, x) < r\}$ die offene Kugel (Ball) mit Mittelpunkt a und Radius r bzgl. d.

1.1.5 Umgebung

Sei X ein metrischer Raum. $U \subset X$ heißt Umgebung von $x \in X$ falls ein $\epsilon > 0$ existiert, so dass $B_{\epsilon}(x) \subset U$. $B_{\epsilon}(x)$ heißt ϵ -Umgebung von x.

1.1.6 Hausdorfsches Trennungsaxiom

Sei X ein metrischer Raum. Dann gibt es zu je zwei Punkten $x,y\in X$ Umgebungen U und V sodass $U\cap V=\emptyset$.

1.1.7 Offene Mengen

Eine Teilmenge U eines metrischen Raums X heißt offen wenn für alle $x \in U$ ein $\epsilon > 0$ existiert so dass $B_{\epsilon}(x) \subset U$.

1.1.8 Abgeschlossene Mengen

A heißt abgeschlossen wenn $X \setminus A$ offen ist.

1.1.9 Randpunkt

Sei X ein metrischer Raum, $Y \subset X$ und $x \in X$. x heißt Randpunkt von Y wenn in jeder Umgebung von x ein Punkt von Y und ein Punkt von $X \setminus Y$ liegt. ∂Y ist die Menge aller Randpunkte von Y und heißt Rand von Y.

 $Y \setminus \partial Y$ ist offen

 $Y \cup \partial Y$ ist abgeschlossen

 ∂Y ist abgeschlossen

1.1.10 Inneres

Y Teilmenge eines metrischen Raums X $Y^{\circ} = Y \setminus \partial Y$ ist das Innere von Y.

1.1.11 Abgeschlossene Hülle

 $\overline{Y} = Y \cup \partial Y$ ist die abgeschlossene Hülle(Abschluss) von Y.

1.2 Topologische Räume

1.2.1 Topologie

Sei X eine Menge. Eine Teilmenge τ von X heißt Topologie, falls

1. \emptyset , $X \in X$

2. $U, V \in X \Rightarrow U \cap V \in X$ (endliche Schnittmengen)

3. $U_i \in X \to \bigcup U_i \in X$ (une
ndliche Vereinigungen)

 (X,τ) heißt topologischer Raum falls τ Topologie auf X

Eine Menge $U \subset X$ heißt offen falls $U \in \tau$.

Eine Menge $V \subset X$ heißt abgeschlossen falls $X \setminus V$ offen ist.

Jede Metrik induziert eine Topologie.

1.2.2 Umgebung

Sei (X,τ) topologischer Raum und $x\in X$ ein Punkt. V heißt Umgebung von x falls es eine offene Menge $U\subset X$ gibt so dass $x\in U\subset V$

1.3 Folgen

1.3.1 Konvergenz von Folgen

Sei X ein metrischer Raum und (x_k) eine Folge. $\lim_{k\to\infty} x_k = a$ wenn gilt: Zu jeder Umgebung U von a existiert ein $N\in\mathbb{N}$ so dass $x_k\in U$ für alle $k\geq N$. Äquivalent zu: Zu jedem $\epsilon>0$ existiert ein $N\in\mathbb{N}$ so dass $||x_k,a||<\epsilon$ für alle $k\geq N$

Sei $x_k = (x_{k1}, x_{k2}, ..., x_{kn})$ eine Folge in \mathbb{R}^n . x_k konvergiert gegen den Punkt $a = (a_1, a_2, ..., a_n)$ wenn für v = 1, 2, ..., n gilt $\lim_{k \to \infty} a_{kv} = a_v$. $(x_k$ konvergiert wenn jede Komponente einzeln konvergiert.)

Jede konvergente Folge in einem metrischen Raum ist beschränkt.

1.3.2 Abgeschlossenheit

Sei X ein metrischer Raum. $A \subset X$ ist genau dann abgeschlossen wenn für jede Folge gilt: Ist x_k eine Folge mit $x_k \in A$ die gegen $x \in X$ konvergiert dann ist $x \in A$.

1.3.3 Cauchyfolge

Sei X ein metrischer Raum. x_k heißt Cauchyfolge falls gilt: Zu jedem $\epsilon > 0$ existiert ein $N \in \mathbb{N}$ so dass $||x_k, x_m|| < \epsilon$ für alle $k, m \ge N$. In einem metrischen Raum ist jede konvergente Folge eine Cauchyfolge.

1.3.4 Vollständigkeit

EIn metrischer Raum heißt vollständig wenn in ihm jede Cauchyfolge konvergiert.

1.3.5 Durchmesser

 $diam(A) = \sup\{||x,y|| : x,y \in A\}$ für eine Teilmenge A eines metrischen Raumes X. Die Menge A heißt beschränkt falls $diam(A) < \infty$.

A ist beschränkt falls ein Punkt $a \in X$ und eine positive reelle Zahl r > 0 existiert so dass $A \subset B_r(a)$.

1.3.6 Schachtelungsprinzip

Sei X ein vollständiger metrischer Raum und $A_0 \supset A_1 \supset A_2 \supset ...$ eine absteigende Folge nichtleerer abgeschlossener Teilmengen mit $\lim_{k\to\infty} diam(A_k) = 0$. Dann gibt es genau einen Punkt $x\in X$ der in allen A_k liegt.

1.4 Stetige Abbildungen

1.4.1 Stetigkeit

Seien X und Y metrische Räume und $f:X\to Y$ eine Abbildung. f heißt stetig im Punkt $a\in X$ falls $\lim_{k\to\infty}f(x)=f(a)$

d.h. wenn jede Folge x_n aus X mit $\lim_{n\to\infty} x_n = a$ gilt: $\lim_{n\to\infty} f(x_n) = f(a)$

Komposition, Addition, Multiplikation und Divison zweier stetiger Funktionen ist stetig.

 $f = (f_1, f_2, ... f_n) : X \to \mathbb{R}^n$ ist genau dann stetig wenn alle Komponenten $f_v : X \to \mathbb{R}$ stetig sind.

1.4.2 $\epsilon - \delta$ -Kriterium der Stetigkeit

Seien X und Y metrische Räume und $f: X \to Y$ eine Abbildung. f ist genau dann in $a \in X$ stetig wenn zu jedem $\epsilon > 0$ ein $\delta > 0$ existiert so dass $||f(x), f(a)|| < \epsilon$ für alle $x \in X$ mit $||x, a|| < \delta$.

1.4.3 Homöomorphismus

Seien X,Y metrische Räume. Eine bijektive Abbildung $f:X\to Y$ heißt Homöomorphismus wenn f und f^{-1} stetig ist. Zwei metrische Räume heißen homöomorph wenn einen Homöomorphismus $f:X\to Y$ gibt.

1.4.4 Stetigkeit

Seien X und Y topologische Räume und $f: X \to Y$ eine Abbildung. f heißt stetig im Punkt $a \in X$ wenn zu jeder Umgebung V von f(a) eine Umgebung U von a existiert mit $f(U) \subset V$.

f ist auf ganz X stetig wenn das Urbild $f^{-1}(V)$ jeder offenen Menge $V \in Y$ offen in X ist.

f ist auf ganz X stetig wenn das Urbild $f^{-1}(V)$ jeder abgeschlossenen Menge $V \in Y$ abgeschlossen in X ist.

1.4.5 Gleichmäßige Stetigkeit

Seien X und Y topologische Räume und $f: X \to Y$ eine Abbildung. f heißt gleichmäßig stetig wenn zu jedem $\epsilon > 0$ ein $\delta > 0$ existiert so dass $||f(x), f(y)|| < \epsilon$ für alle $x, y \in X$ mit $||x, y|| < \delta$

1.5 Funktionenfolgen

1.5.1 Gleichmäßige Konvergenz von Funktionenfolgen

Sei X eine Menge, Y ein metrischer Raum und $f_n: X \to Y$ und $f: X \to Y$ Abbildungen. f_n konvergiert gleichmäßig gegen f falls zu jedem $\epsilon > 0$ ein $N \in \mathbb{N}$ existiert so dass $||f_n(x), f(x)|| < \epsilon$ für alle $x \in X$ und für alle $n \ge \mathbb{N}$.

1.5.2 Stetige Funktionenfolgen

Sei f_n eine Folge stetiger Funktionen die gleichmäßig gegen f konvergiert. Dann ist auch f stetig.

1.5.3 Satz von Dini

Sei X kompakt und $f_n: X \to \mathbb{R}$ eine monoton wachsende Folge stetiger Funktionen die punktweise gegen eine stetige Funktion f konvergieren. Dann konvergieren sie auch gleichmäßig gegen f.

1.6 Lineare Abbildungen

1.6.1 Stetigkeit

Seien V und W normierte Vektorräume über $\mathbb R$ oder $\mathbb C$ und $A:V\to W$ eine lineare Abbildung. A ist genau dann stetig wenn es eine reelle Konstante gibt so dass $||A(x)|| \leq C||x||$ für alle $x \in V$

1.6.2 Norm einer lineare Abbildung

Seien V und W normierte Vektorräume und $A:V\to W$ eine lineare Abbildung. Dann ist $||A||=\sup\{||A(x)||:x\in V \text{ mit } ||x||\leq 1\}$ die Norm von A.

1.7 Kompaktheit

1.7.1 Offene Überdeckung

Sei A eine Teilmenge eines metrischen Raumes X und I eine endliche oder unendliche Indexmenge und $(U_i)_{i\in I}$ eine Familie von offenen Teilmengen $U_i\subset X$. Dann ist $(U_i)_{i\in I}$ eine offene Überdeckung von A wenn $A\subset\bigcup_{i\in I}$

1.7.2 Kompaktheit

Eine Teilmenge A eines metrischen Raumes X heißt kompakt wenn es zu jeder offenen Überdeckung $(U_i)_{i\in I}$ von A endlich viele Indizes $i_1,...,i_k\in I$ gibt so dass $A\subset U_{i_1}\cup U_{i_2}\cup...\cup U_{i_k}$.

Jede kompakte Teilmenge eines metrischen Raumes ist beschränkt und abgeschlossen.

Sei X ein metrischer Raum. $K \subset X$ kompakt und $A \subset K$ abgeschlossen. Dann ist A kompakt.

Sei X ein metrischer und x_n eine Folge in X die gegen a konvergiert. Dann ist $A = \{x_n : n \in \mathbb{N}\} \cup \{a\}$ kompakt

1.7.3 Heine-Borel

Eine Teilmenge $A \subset \mathbb{R}^n$ ist genau dann kompakt wenn sie abgeschlossen und beschränkt ist.

1.7.4 Stetige Abbildungen

Seien X, Y metrische Räume und $f: X \to Y$ eine stetige Abbildung. Ist $K \subset X$ kompakt so ist auch $f(K) \subset Y$ kompakt.

Sei X ein kompakter metrischer RAum und $f: X \to Y$ eine stetige Abbildung. Dann ist f beschränkt und nimmt ihr Maximum und Minimum an.

1.7.5 Bolzano-Weierstraß

Sei A eine kompakte Teilmenge eines metrischen Raumes X und x_n eine Folge in A. Dann gibt es eine konvergente Teilfolge die gegen einen Punkt in A konvergiert.

1.7.6 Approximationssatz von Stone-Weierstraß

Sei $A \subset C(K)$ mit:

- 1. A ist ein reeller Untervektorraum und aus $f, g \in U$ folgt $f \cdot g \in A$
- $2. f: x \mapsto 1 \in A$
- 3. Für alle $x,y\in K$ gibt es ein $f\in A$ mit $f(x)\neq f(y)$. (A trennt Punkte in K) Dann liegt A dicht in C(K) ($\overline{A}=C(K)$). \Leftrightarrow Für alle $g\in C(K)$ und $\epsilon>0$ existiert ein $f\in A$ mit $||f(x)-g(x)||<\epsilon$.

2 Kurven

2.1 Kurven

Eine Kurve im \mathbb{R}^n ist eine stetige Abbildung $f: I \to \mathbb{R}^n$ wobei $I \subset \mathbb{R}$. $f = (f_1, f_2, ..., f_n)$ mit $f_k: I \to \mathbb{R}^n$ stetig.

Die Kurve heißt differenzierbar (stetig differenzierbar) wenn alle Funktionen f_k differenzierbar(stetig differenzierbar) sind.

2.1.1 Tangentialvektor

Sei f eine differenzierbare Kurve. Für $t \in I$ heißt $f'(t) = (f'_1(t), ... f'_n(t)) \in \mathbb{R}^n$ Tangentialvektor der Kurve f zum Parameterwert t

2.1.2 Doppelpunkt

x heißt Doppelpunkt falls $f(t_1) = f(t_2) = x$ für $t_1 \neq t_2$

2.1.3 Reguläre Kurve

Sei f eine stetig differenzierbare Kurve. Die Kurve heißt regulär(nicht singulär) falls $f'(t) \neq 0$ für alle $t \in I$. Ein Parameterwert $t \in I$ mit f'(t) = 0 heißt singulär.

2.1.4 Schnittwinkel

Seien $f: I_1 \to \mathbb{R}^n, g: I_2 \to \mathbb{R}^n$ reguläre Kurven. Für $t_1 \in I_1, t_2 \in I_2$ und $f(t_1) = g(t_2)$ ist der Winkel zwischen den Tangentialvektoren: $cos(\alpha) = \frac{\langle f'(t_1), g'(t_2) \rangle}{||f'(t_1, f'(t_2))||}$ mit $\alpha \in [0, \pi]$

2.1.5 Rektifizierbar

Eine Kurve $f:[a,b] \to \mathbb{R}^n$ heißt rektifizierbar mit der Länge L wenn zu jedem $\epsilon > 0$ ein $\delta > 0$ existiert so dass für jede Unterteilung $a = t_0 < t_1 < ... < t_k = b$ mit der Feinheit kleiner δ gilt: $|p_f(t_0,...,t_k) - L| < \epsilon$.

$$p_f(t_0, ..., t_k) = \sum_{i=1}^{k} ||f(t_i) - f(t_{i-1})||$$

Jede stetig differenzierbare Kurve ist rektifizierbar mit $L = \int_a^b ||f'(t)|| dt$

2.2 Partielle Ableitung

Sei $U \subset \mathbb{R}^n$ offen. $f: U \to \mathbb{R}$ heißt in x partiell differenzierbar in der i-ten Koordinatenrichtung falls $D_i f(x) = \frac{\partial f(x)}{\partial x_i} = \lim_{h \to 0} \frac{f_i(x + he_i) - f(x)}{h}$ existiert. f heißt partiell differenzierbar wenn $D_i f(x)$ für alle $x \in U$ und alle i = 1, ...n existiert. f heißt stetig partiell differenzierbar wenn alle $D_i f$ stetig sind.

2.2.1 Gradient

$$grad(f(x)) = (\frac{\partial f(x)}{\partial x_1}, \dots \frac{\partial f(x)}{\partial x_n})$$

2.2.2 Vektorfeld

Sei $U \subset \mathbb{R}^n$ offen. Ein Vektorfeld auf U ist eine Abbildung $v: U \to \mathbb{R}^n$. Jedem Punkt $x \in U$ wird ein Vektor $v(x) \in \mathbb{R}^n$ zugeordnet.

2.2.3 Divergenz

Sei $v = (v_1, ..., v_n) : U \to \mathbb{R}^n$ ein partiell differenzierbares Vektorfeld. $div(v) = \sum_{i=1}^n \frac{\partial}{\partial x_i} v_i$

2.2.4 Satz von Schwarz

Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$ eine zweimal stetig partiell differenzierbare Funktion. Dann gilt für $a \in U$: $D_i D_i f(a) = D_i D_j f(a)$

2.2.5 Rotation

$$rot(v) = (\frac{\partial v_3}{\partial x_2} - \frac{\partial v_2}{\partial x_3}, \frac{\partial v_1}{\partial x_3} - \frac{\partial v_3}{\partial x_1}, \frac{\partial v_2}{\partial x_1} - \frac{\partial v_1}{\partial x_2})$$

2.2.6 Laplace Operator

Sei fzweimal stetig differenzierbar. $\Delta f=(\frac{\partial^2 f}{\partial x_1^2}+\ldots+\frac{\partial^2 f}{\partial x_n^2})$

2.3 Totale Differenzierbarkeit

Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}^m$. f heißt in x total differenzierbar falls es eine lineare Abbildung $A: \mathbb{R}^n \to \mathbb{R}^m$ gibt so dass in einer Umgebung von x gilt: $f(x+\xi) = f(x) + A\xi + \varphi(\xi)$ wobei φ in einer Umgebung von $0 \in \mathbb{R}^n$ definiert ist mit $\lim_{\xi \to 0} \frac{\varphi(\xi)}{||\xi||} = 0$. A ist eindeutig bestimmt durch das Differential. Jede stetig partiell differenzierbare Funktion ist total differenzierbar.

2.3.1 Differential

$$D(f(x))=(\frac{\partial f_i}{\partial x_j}(x))$$
 wobei die i-te Zeile der Gradient von f_i ist Kettenregel: $D((g\circ f)(x))=D(g(f(x)))\cdot D(f(x))$

2.3.2 Richtungsableitung

Sei $U \subset \mathbb{R}^n$ offen und $f: U \to \mathbb{R}$ eine Funktion. Sei $x \in U$ ein Punkt und $v \in \mathbb{R}$ ein Vektor mit ||v|| = 1. Die Richtungsableitung von f im Punkt x in Richtung v ist $D_v f(x) = \lim_{t \to 0} \frac{f(x+tv) - f(x)}{t} = \langle v, grad(f(x)) \rangle$

2.3.3 Mittelwertsatz

Ist $f: I \to \mathbb{R}^m$ stetig differenzierbar mit $I \subset \mathbb{R}^n$ und $x + t\xi \in I$ für alle $0 \le t \le 1$ so gilt: $f(x + \xi) - f(x) = (\int_0^1 Df(x + t\xi) dt) \cdot \xi$

2.3.4 Hessesche Matrix

Sei f zweimal differenzierbar dann ist $Hess(f(x)) = (D_i D_j f(x))$ die Hessesche Matrix.

2.3.5 Approximation zweiter Ordnung

Sei f zweimal differenzierbar dann gilt: $f(x+\xi)=f(x)+< a,\xi>+\frac{1}{2}<\xi,A\xi>+o(||\xi||^2)$ wobei a=grad(f(x)) und A=Hess(f(x))

2.4 Taylor-Formel

Sei $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbb{N}^n$ mit $|\alpha| = \alpha_1 + \alpha_2 + ... + \alpha_n$ und $\alpha! = \alpha_1!\alpha_2! \cdot ... \cdot \alpha_n!$. Sei $f |\alpha|$ -mal stetig differenzierbar mit $D^{\alpha}f = D_1^{\alpha_1}f \cdot D_2^{\alpha_2}f...D_n^{\alpha_n}f$. Sei $U \subset \mathbb{R}^n$ und $f: U \to \mathbb{R}$ (k+1)-mal stetig differenzierbar und $x + t\xi \in I$ für alle $0 \le t \le 1$. Dann existiert ein $\Theta \in [0,1]$ so dass $f(x + \xi) = \sum_{|\alpha| \le k} \frac{D^{\alpha}f(x)}{\alpha!}\xi^{\alpha} + \sum_{|\alpha| = k+1} \frac{D^{\alpha}f(x+\xi)}{\alpha!}\xi^{\alpha}$

Sei f k-mal stetig differenzierbar. Dann gilt für jedes $x \in U$: $f(x+\xi) = \sum_{|\alpha| \le k} \frac{D^{\alpha} f(x)}{\alpha!} \xi^{\alpha} + o(||\xi||^k) \text{ für } \xi \to 0$

2.5 Lokale Extrema

x heißt lokales Extremum falls eine Umgebung $V \subset U$ von x existiert so dass $f(x) \geq f(y)$ bzw $f(x) \leq f(y)$ für alle $y \in V$

2.5.1 notwendige Bedingung für lokales Extremum

Sei f partiell differenzierbar und x ein lokales Extremum dann ist grad(f(x)) = 0

2.5.2 Hinreichende Bedingung für lokales Extremum

Sei f partiell differenzierbar und grad(f(x)) = 0. Dann ist x ein Minimum wenn Hess(f(x)) positiv definit(alle Eigenwerte positiv). Dann ist x ein Maximum wenn Hess(f(x)) negativ definit(alle Eigenwerte negativ). Dann ist x kein Extremum wenn Hess(f(x)) indefinit(mind. ein Eigenwerte positiv und ein Eigenwert negativ).

3 Implizite Funktionen

3.1 Implizite Funktionen

Seien $U_1 \subset \mathbb{R}^k$, $U_2 \subset \mathbb{R}^m$ offen und $F: U_1 \times U_2 \to \mathbb{R}^m$, $(x,y) \mapsto F(x,y)$ stetig differenzierbar. Sei (a,b) ein Punkt mit F(a,b) = 0

$$\text{Sei } \frac{\partial F}{\partial y} = \begin{pmatrix} \frac{\partial F_1}{\partial y_1} & \dots & \frac{\partial F_1}{\partial y_m} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial y_1} & \dots & \frac{\partial F_m}{\partial y_m} \end{pmatrix} \text{ im Punkt } (a,b) \text{ invertierbar. Dann gibt es eine offene}$$

$$\text{Umgebung } V_1 \subset U_1 \text{ von } a \text{ und eine Umgebung } V_2 \subset U_2 \text{ von } b \text{ und eine stetig}$$

Umgebung $V_1 \subset U_1$ von a und eine Umgebung $V_2 \subset U_2$ von b und eine stetig differenzierbare Abbildung $g: V_1 \to V_2$ mit g(a) = b so dass F(x, g(x)) = 0 für alle $x \in V_1$. Ist (x, y) ein Punkt mit F(x, y) = 0 so ist y = g(x).

Bemerkungen:

1. g entsteht durch Auflösen der Gleichung F(x,y) = 0 nach y.

2. Ist
$$\frac{\partial F}{\partial y}$$
 in (a,b) invertierbar so ist es auch in einer Umgebung von (a,b) invertierbar.
3. Ist $\frac{\partial F}{\partial y}$ in $(x,g(x))$ invertierbar so ist $\frac{\partial g}{\partial x}(x) = -(\frac{\partial F}{\partial y}(x,g(x)))^{-1} \cdot \frac{\partial F}{\partial y}(x,g(x))$

3.1.1 Banachscher Fixpunktsatz

Sei A eine abgeschlossene Teilmenge eines Banachraums(vollständig normierter Vektorraum). Sei $\Phi: A \to A$ eine Kontraktion(es gibt eine Konstante $0 < \theta < 1$ so dass $||\Phi(f) - \Phi(g)|| \leq \theta ||f - g||$ für alle $f, g \in A)$

Dann besitzt Φ genau einen Fixpunkt $(\Phi(f) = f)$.

Für jeden Anfangswert $f_0 \in A$ konvergiert $f_k = \Phi(f_{k-1})$ gegen f.

3.1.2 Umkehrabbildung

Sei $U \subset \mathbb{R}^n$ und $f: W \to \mathbb{R}^n$. Sei $a \in W$ und b = f(a) und Df(a) invertierbar. Dann gibt es eine offene Umgebung U von a und V von b so dass f U bijektiv auf V abbildet und die Umkehrabbildung stetig differenzierbar ist. $D(f^{-1}(b)) = (D(f(a)))^{-1}$