IEOR E4004: Optimization Models and Methods

Instructor: Dr. Yaren Bilge Kaya

Due: 10/06/2024, 11:59 pm

Assignment 2

September 30, 2024

Question 1 (35 Points). Three airports in New York City run 24 hours a day, 7 days a week. In a given day, there are requirements for the total number of air traffic controllers that must be at the airports. These are given in Table 1.

Air traffic controllers can either work 8-hour or 12-hour shifts, starting at the times stated earlier (12-hour shifts can start only at 12 a.m./p.m. or 8 a.m./p.m.). Those working 8-hour shifts cost \$40/h in salary and benefits, and those working 12-hour shifts cost \$35/h.

- 1. Formulate and solve a linear program to minimize the dispatcher labor costs. [20 pts]
- 2. Suppose at most one-third of its controllers can work 12-hour shifts. Repeat (1). You may ignore the requirement that the number of employees must be an integer. [15 p]

Hours	Controllers needed
12 a.m. to 4 a.m.	8
4 a.m. to 8 a.m.	10
8 a.m. to 12 p.m.	16
12 p.m. to 4 p.m.	21
4 p.m. to 8 p.m.	18
8 p.m. to 12 a.m.	12

Table 1: Number of controllers needed during different time intervals.

4

IEOR E4004: Optimization Models and Methods

Instructor: Dr. Yaren Bilge Kaya

Due: 10/06/2024, 11:59 pm

Assignment 2

September 30, 2024

Question 2 (10 Points). Consider the LP below and write out its dual. Solve the LP and its dual via your favorite solver. State whether the optimal solution for primal and dual problem yield to the same optimal value.

$$max \ Z = 10x_1 + 14x_2 + 20x_3$$

$$s.t. \ 2x_1 + 3x_2 + 4x_3 \le 220$$

$$4x_1 + 2x_2 - x_3 \le 385$$

$$x_1 + 4x_3 \le 160$$

$$x_1, x_2, x_3 \ge 0$$

^

IEOR E4004: Optimization Models and Methods

Instructor: Dr. Yaren Bilge Kaya Due: 10/06/2024, 11:59 pm

Assignment 2

September 30, 2024

Question 3 (55 Points). Suppose that a lumberyard has a supply of 10-ft boards, which are cut into 3-ft, 4-ft, and 5-ft boards according to customer demand. The 10-ft boards can be cut into several sensible patterns, each in such a way that there the leftover material is less than 3-ft. The lumberyard just received an order for 90 3-ft boards, 60 4-ft boards, and 60 5-ft boards.

- 1. Determine all sensible patterns the lumberyard may use to cut the 10-ft boards. [10 pts]
- 2. The lumberyard would like to use as few 10-ft boards as possible in meeting the demand.
 - (a) Write out a mathematical formulation for the problem as an integer linear program.

 [10 pts]
 - (b) Solve this problem using Gurobi solver via the Python interface. What is the optimal number of each pattern, and what is the minimum number of boards to cut? [15 pts]
- 3. If it is possible to maintain the minimum number of 10-ft boards to be used, the lumberyard would also like to minimize the amount of scrap pieces leftover (those pieces smaller than 3-ft).
 - (a) With respect to the previous solution, model this desire algebraically. [10 pts]
 - (b) Modify the model and resolve it. Summarize the results here. [10 pts]

_

Delimization																								
Decision variables:	41153																							
1) Ar trafic control who (96 thirts are paid \$40/8	MSOR																							
1) Air traffic control with a second \$40/8 that the second \$40/8		\perp		_	<u></u>		<u> </u>	L	#	12	1:	N .	ļ		L:_									
1) Ate traffic control where (98 rights are good \$40/8 12am/pm 12am/pm 12am/pm 12am to 4am. 12am/pm 12am to 4am. 12am to 8am. 12am/pm 12am to 8am. 12am/pm 12am to 8am. 12am to 8am. 12am/pm 12am to 12pm. 12p								上	114	1 4		4		A TU	LIO	<u>n</u>							Ξ	
1) Are traffic combod. when (9% shifts are and \$40/8 Ath shifts are and \$35/8 starting at \$12 am/pm Ru amount of controllers medial depend on the time of the day, following his table: Hours 12 a.m. to 4 a.m. 4 a.m. to 8 a.m. 8 a.m. to 12 p.m. 12 p.m. to 4 p.m. 4 p.m. to 8 p.m. 8 p.m. to 12 a.m. Decision variables: z ₁ = number of walks an an 8% shift starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at \$12 am/pm Ru amount of controllers medial depend on the time of the day, following his table: 2 a + z ₁ + y ₂ + y ₃ > 40 12 p.m. to 8 p.m. 8 p.m. to 12 a.m. Decision variables: z ₁ = number of walks an an 8% shift starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4, 5 Use the starting at time i walks 1 0.1, 2, 3, 4 Use the starting at time i walks 1 0.1, 2, 3, 4 Use the starting at time i walks 1 0.1, 2, 3, 4 Use the starting at time i walks 1 0.1, 2, 3, 4 Use the starting at time i walks 1 0.1, 2, 3, 4 Use the starting at time i walks 1 0.1, 2, 3, 4 Use the starting at time i walks 1 0.1, 2, 3, 4 Use the starting at time i walks 1 0.1, 2, 3, 4 Use the starting at ti		+																					=	
12 12 13 14 14 15 15 15 15 15 15		Exer	cise 1	:																			=	
12 12 13 14 14 15 15 15 15 15 15																							\equiv	
12 12 13 14 14 15 15 15 15 15 15		1)	Arc +	alic	(DA	tol	wh	(8	ie of	:As a	- a	ا ا	40/8											
Resemble of controller medial depend on the time of the day, following the bath: Hours					-					Ī							2	10	1					
Rx amount of controller model depend on the time of the day, following his table. Hours					E	Ħ		1/4	Uh Wh	in a	are p	: امنا	J2/5	. 51	artim	9 "		_	-				\equiv	
Hours 12 a.m. to 4 a.m. 4 a.m. to 8 a.m. 8 a.m. to 12 p.m. 12 p.m. to 4 p.m. 4 p.m. to 8 p.m. 8 p.m. to 12 a.m. 12 p.m. to 12 a.m. 13 p.m. to 12 a.m. 14 p.m. to 8 p.m. 15 p.m. to 12 a.m. 16 describe for tota. 17 p.m. to 12 a.m. 18 p.m. to 12 a.m. 19 p.m. to 12 a.m. 10 p.m. to 12 a.m. 10 p.m. to 12 a.m. 10 p.m. to 12 a.m. 11 p.m. to 12 a.m. 12 p.m. to 12 a.m. 13 p.m. to 12 a.m. 14 p.m. to 12 a.m. 15 p.m. to 12 a.m. 16 p.m. to 12 a.m. 17 p.m. to 12 a.m. 18 p.m. to 12 a.m. 19 p.m. to 12 a.m. 19 p.m. to 12 a.m. 10 p.		+			#	#													•				=	
Hours 12 a.m. to 4 a.m. 4 a.m. to 8 a.m. 8 a.m. to 12 p.m. 12 p.m. to 4 p.m. 4 p.m. to 8 p.m. 8 p.m. to 12 a.m. 12 p.m. to 12 a.m. 13 p.m. to 12 a.m. 14 p.m. to 8 p.m. 15 p.m. to 12 a.m. 16 describe for tota. 17 p.m. to 12 a.m. 18 p.m. to 12 a.m. 19 p.m. to 12 a.m. 10 p.m. to 12 a.m. 10 p.m. to 12 a.m. 10 p.m. to 12 a.m. 11 p.m. to 12 a.m. 12 p.m. to 12 a.m. 13 p.m. to 12 a.m. 14 p.m. to 12 a.m. 15 p.m. to 12 a.m. 16 p.m. to 12 a.m. 17 p.m. to 12 a.m. 18 p.m. to 12 a.m. 19 p.m. to 12 a.m. 19 p.m. to 12 a.m. 10 p.			Rea	mew	nt of	Lem	سامها	3 WII	did	dipin	id on	the	binne	of t	k de	y , {	follow	emin	Kis	table			_	
4 p.m. to 8 p.m. 8 p.m. to 12 a.m. Decision variables: z: = number of warker on an 86 shift starting at time i, where i = 0,1,2,3,4,5 y: = number of warker on an 12h shift starting at time i, where i = 0,2,3,5 Objective function: min \(\text{10} \times 8 \) \(\times 2 \); \(\text{25} \times 4 \); \(\text{25} \times 4 \); \(\text{25} \times 4 \); \(\text{26} \times 4 \); \(\text{28} \times 4 \);	Н																							
4 p.m. to 8 p.m. 8 p.m. to 12 a.m. Decision variables: z: = number of warker on an 86 shift starting at time i, where i = 0,1,2,3,4,5 y: = number of warker on an 12h shift starting at time i, where i = 0,2,3,5 Objective function: min \(\text{10} \times 8 \) \(\times 2 \); \(\text{25} \times 4 \); \(\text{25} \times 4 \); \(\text{25} \times 4 \); \(\text{26} \times 4 \); \(\text{28} \times 4 \);	12 a.m.	to 4	4 a.:	m.								1 a/2		y •		Ty:	s	Z _S 1	+ Z 0+	٠ ٧٠ ٠	+ 4=	۶, ۶	_	
4 p.m. to 8 p.m. 8 p.m. to 12 a.m. Decision variables: z: = number of workers on an 88 shift starting at time i, where i = 0,1,2,3,4,5 y: = number of workers on an 121 shift starting at time i, where i = 0,2,3,5 Objective function: min 40 x 8 \(\) z: + 35 x 12 \(\) y: where \(\) s = 14, \$? that the filt of the constraints: \(\) z_2 + z_2 + y_3 + y_5 \(\) 8 \(\) 20 \(\) 2 x + z_4 + y_5 \(\) 8 \(\) 2 x + z_4 + y_5 \(\) 40	4 a.m.					1	Τ					<u> </u>	\neg	-		<u> </u>							_	
4 p.m. to 8 p.m. 8 p.m. to 12 a.m. Decision variables: z: = number of workers on an 88 shift starting at time i, where i = 0,1,2,3,4,5 y: = number of workers on an 121 shift starting at time i, where i = 0,2,3,5 Objective function: min 40 x 8 \(\) z: + 35 x 12 \(\) y: where \(\) s = 14, \$? that the filt of the constraints: \(\) z_2 + z_2 + y_3 + y_5 \(\) 8 \(\) 20 \(\) 2 x + z_4 + y_5 \(\) 8 \(\) 2 x + z_4 + y_5 \(\) 40	8 a.m.					<u> </u>	1	П						Π,	43			2,	+ ×2	+ %	0> - u . ≥	. 16	_	
4 p.m. to 8 p.m. 8 p.m. to 12 a.m. Decision variables: z: = number of workers on an 88 shift starting at time i, where i = 0,1,2,3,4,5 y: = number of workers on an 121 shift starting at time i, where i = 0,2,3,5 Objective function: min 40 x 8 \(\) z: + 35 x 12 \(\) y: where \(\) s = 14, \$? that the filt of the constraints: \(\) z_2 + z_2 + y_3 + y_5 \(\) 8 \(\) 20 \(\) 2 x + z_4 + y_5 \(\) 8 \(\) 2 x + z_4 + y_5 \(\) 40	12 p.m.				_	\vdash	_	1*	П				_	⇈		is .		2,	+ 223	+ 4		> 9	_	
8 p.m. to 12 a.m. **Decision variables: ** = number of worker on an 88 shift starting at time i, where i = 0,1,2,3,4,5 **Question variables: ** = number of worker on an 12h shift starting at time i, where i = 0,2,3,5 **Objective function: min 40 x 8 \(\frac{1}{2} \) \(\frac{1}	4 p.m.				_	\vdash			寸	*3	gu,			士	十	-	27 + 24 + 4 + 4 7 18							
Decision variables: z: = member of workers on an 8h shift starting at time i, where i = 0,1,2,3,4,5 - y: = member of workers on an 12h shift starting at time i, where i = 0,2,3,5 Objective function: main 40 × 8 \(\sigma \) = \(\text{25} \times 12 \) \(\text{41} \) = \(\text{55} \) = \(\text{41} \) = \(\text{5} \) = \(\text{5} \) = \(\text{41} \) = \(\text{5} \) = \(\text{41} \) = \(\text{5} \) = \(\text{41} \) = \(\text{5} \) = \(\text{42} \) = \(\text{43} \) = \(\text{43} \) = \(\text{43} \) = \(\text{41} \) = \(\text{5} \) = \(\text{41} \) = \(\text{42} \) = \(_		_		_				_						丁	\top								
Decision variables: z: = mumber of workers on an 8h shift starting at time i, where i = 0,1,2,3,4,5 u: = mumber of workers on an 12h shift starting at time i, where i = 0,2,3,5 Objective function: main 40 x 8 \(\sigma \sigma \); \(\sigma \sigma \); \(\sigma \sigma \); \(\sigma \sigma \sigma \); \(\sigma \sigma \sigma \); \(\sigma \sigm																					1-05		=	
Decision variables: z: = mumber of workers on an 8h shift starting at time i, where i = 0,1,2,3,4,5 u: = mumber of workers on an 12h shift starting at time i, where i = 0,2,3,5 Objective function: main 40 x 8 \(\sigma \sigma \); \(\sigma \sigma \); \(\sigma \sigma \); \(\sigma \sigma \sigma \); \(\sigma \sigma \sigma \); \(\sigma \sigm								10	1- c.al															
Objective function: min 40 x 8 \sums x; + 35 x 12 \sums \cdots \cdot \cd			NL v	Sam.	D (Nikum	8	De a	-	Dur u	Alter	illia.												
Objective function: main 40 x 8 \sums \frac{1}{12} \tag{2} \tag{2} \tag{2} \tag{2} \tag{2} \tag{2} \tag{2} \tag{3} \tag{2} \ta					=	Ħ	=		—													-	=	
Objective function: main 40 x 8 \sums \frac{1}{12} \tag{2} \tag{2} \tag{2} \tag{2} \tag{2} \tag{2} \tag{2} \tag{3} \tag{2} \ta			كوونة	ion v	pariab	٤s:	2 ;	= mv	mber	of w	rockus	On a	m 8h	shif	: sta	rting	at ti	m i	, wk	w L:	: 0, 1, 2	., 3, 4 ,	5	
Objective Bunchion: min 40 x 8 \(\sigma \) \(\sigma \); \(\text{15} \times \) \(\sigma \); \(\text{15} \times \); \(\text{15} \times \); \(\text{16} \);																_								
(onstraints: \(\frac{2}{2} + \frac{2}{4} + \frac{4}{3} + \frac{4}{3} \) \(2 + \frac{2}{4} + \frac{4}{3} + \frac{4}{3} + \frac{4}{3} \) \(2 + \frac{4}{3}							9		<u> </u>							· ·							=	
(onstraints: \(\frac{2}{2} + \frac{2}{4} + \frac{4}{3} + \frac{4}{3} \) \(2 + \frac{2}{4} + \frac{4}{3} + \frac{4}{3} + \frac{4}{3} \) \(2 + \frac{4}{3}			۸(۰۰۰					1.0	. 25	,	13	C A	₀ Σ.		.0	(.	-24	٥١	4	14			=	
Constraints: \(z_5 + z_0 + y_0 + y_5 \) \(8 \) \(z_6 + z_2 + y_0 + y_5 \) \(10 \) \(z_6 + z_2 + y_0 + y_1 \) \(16 + y_1 + y_1 \) \(16 + y_1 + y_1 + y_1 \) \(16 + y_1 + y			Opper	tive	LIMOU	m:	MAIN	40	X O Z	E3	7 ,) y · 4	iel) :	Wither	10	- 10.	-,5,	lan	41				
26+20,+40+40> 10 26+20,+40> 16					=											1-	- 1-,	b1 >1~ .	-) ~-,			=	
26+20,+40+40> 10 26+20,+40> 16			Comst	mior	<u>s:</u>	251	Z 0+	y. + '	42 3	8													=	
2n + 22 + 12 + 12 > 16																								
				F	H			1															Ξ	
1 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2																								
21+23+41+43 BI						_	_	_	_															
23+24+ y1+y37-18		+			=																	-	=	
24+25+45+75 > 12						24	+ 2 ₅ +	43+	75	12													_	
Won augetwiby: { Vi & s. z: >0			Non	ALGO	huib		V: E	3. 2	z. 20	,														
			-		34.50																			
(V: EL , y; 20							A. C.	- 1 4	1 5 0														_	
								0	4															
								0																

```
Here is the code, solving the LP:
m = Model("Air Traffic Controllers")
time_intervals = ['12am to 4am', '4am to 8am', '8am to 12pm', '12pm to 4pm', '4pm to 8pm', '8pm to 12am']
 requirements = [8, 10, 16, 21, 18, 12]
 # Decision variables
x = {i: m.addVar(vtype=GRB.CONTINUOUS, name=f"x_{i}") for i in range(6)} # 8-hour shifts
 y = {i: m.addVar(vtype=GRB.CONTINUOUS, name=f"y_{i}") for i in [0, 2, 3, 5]} # 12-hour shifts
# Objective function
_ m.setObjective(
      40 * 8 * quicksum(x[i] for i in range(6)) + 35 * 12 * quicksum(y[i] for i in [0, 2, 3, 5]),
      GRB.MINIMIZE
# Constraints:
m.addConstr(x[5] + x[0] + y[0] + y[5] >= requirements[0], "12am to 4am")
m.addConstr(x[0] + x[1] + y[0] + y[5] >= requirements[1], "4am to 8am")
m.addConstr(x[1] + x[2] + y[0] + y[2] >= requirements[2], "8am to 12pm")
m.addConstr(x[2] + x[3] + y[2] + y[3] >= requirements[3], "12pm to 4pm")
m.addConstr(x[3] + x[4] + y[2] + y[3] >= requirements[4], "4pm to 8pm")
 m.addConstr(x[4] + x[5] + y[3] + y[5] >= requirements[5], "8pm to 12am")
# Optimize the model
 m.setParam('OutputFlag', 0) # cleaner output
 m.optimize()
# Output results
if m.status == GRB.OPTIMAL:
      print("Optimal solution found:\n")
      print(f"8-hour shift starting at :")
      for i in range(6):
          print(f"\t {time_intervals[i]}: {x[i].x} controllers")
      print(f"12-hour shift starting at : ")
      for i in [0, 2, 3, 5]:
          print(f"\t {time_intervals[i]}: {y[i].x} controllers")
      print(f"\nTotal cost: ${m.objVal}")
else:
      print("No optimal solution found.")
 Optimal solution found:
8-hour shift starting at :
            12am to 4am: 0.0 controllers
            4am to 8am: 2.0 controllers
            8am to 12pm: 3.0 controllers
            12pm to 4pm: 3.0 controllers
            4pm to 8pm: 0.0 controllers
            8pm to 12am: 0.0 controllers

☐ 12-hour shift starting at:

            12am to 4am: 8.0 controllers
            8am to 12pm: 3.0 controllers
            12pm to 4pm: 12.0 controllers
            8pm to 12am: 0.0 controllers
Total cost: $12220.0
```

```
2) Now we regar hat: all y works 5 1 all works
                 So:
                     \sum_{\mathbf{y}_{i}} \underbrace{4} \left( \sum_{\mathbf{z}_{i}} + \sum_{\mathbf{y}_{i}} \underbrace{4} \right)
                 The code is:
# New constraint :
m.addConstr(
    quicksum(y[i] for i in [0, 2, 3, 5]) <= (1/3) *
     (quicksum(x[i] for i in range(6)) + quicksum(y[i] for i in [0, 2, 3, 5])),
    "12-hour shift limit"
# Optimize the model
m.setParam('OutputFlag', 0) # cleaner output
m.optimize()
# Output results
if m.status == GRB.OPTIMAL:
    print("Optimal solution found:\n")
    print(f"8-hour shift starting at :")
    for i in range(6):
         print(f"\t {time_intervals[i]}: {x[i].x} controllers")
    print(f"12-hour shift starting at : ")
    for i in [0, 2, 3, 5]:
         print(f"\t {time_intervals[i]}: {y[i].x} controllers")
    print(f"\nTotal cost: ${m.objVal}")
else:
    print("No optimal solution found.")
Optimal solution found:
                                         me intous, de 1
8-hour shift starting at :
```

12am to 4am: 2.428571428571427 controllers 4am to 8am: 2.0 controllers 8am to 12pm: 8.42857142857143 controllers 12pm to 4pm: 6.0 controllers

4pm to 8pm: 5.428571428571431 controllers 8pm to 12am: 0.0 controllers 12-hour shift starting at : 12am to 4am: 5.571428571428573 controllers

> 12pm to 4pm: 6.571428571428569 controllers 8pm to 12am: 0.0 controllers

Total cost: \$12871.428571428572

8am to 12pm: 0.0 controllers

n" to solve the instru

_																				
Exe	ris.	3:																		
1)	We o	am	mak	. 3,	ч о	nd S	5 feet	ىد	s.											
	Ue n	шq	SVan	(lin	yth a	Hed	boards) < /	0											
			ants		•				,											
			auts							\perp										
								0 L	0 4											
			out o				CUX (7	feet											
			outs																	
			cut o							+					+					
		c. 2	ouls	of 3	fat	+ /	աև	4 4	Juk_	_										
																_				
2) a		Decis	sion '	varial	as:	2;	repres	ents	th.	/D.V/	ber o	مظ ال	me t	he pa	Hesm	i	S AS	ed		
		Obiec	tive	Rundt	on:	min	Σ	.	whe	r R	<u>-</u> {1.	2.3.1	5.6							
		- 4					161													
		/		. 1	ر م		1	. 5		q.A	20		1-							
		UA. S	de	i/nL	he a	umar	nov c													
									at =	60	4 5	t boo	udS							
								t	d ₅ =	60	, 5 f	t bo	2015							
		Cons	mim	s : €	32,	25	+ 2:	r6 3	dz											
					lz, t	23	X.	dy												
					2 2 +	224	+ 25	≥ d _s												
		Mon	Mago	huib		y. >.) W	here i	C L											
			-0																	

```
m = Model("Cutting_Stock_4_Patterns")
   demand 3 = 90
   demand 4 = 60
   demand 5 = 60
   # Decision variables
   x1 = m.addVar(vtype=GRB.INTEGER, name="x1") # Three 3-ft boards
  x2 = m.addVar(vtype=GRB.INTEGER, name="x2") # Two 4-ft boards
x3 = m.addVar(vtype=GRB.INTEGER, name="x3") # Two 5-ft boards
x4 = m.addVar(vtype=GRB.INTEGER, name="x4") # Two 5-ft boards
x5 = m.addVar(vtype=GRB.INTEGER, name="x4") # Two 5-ft and one 3-ft board
x6 = m.addVar(vtype=GRB.INTEGER, name="x5") # One 5-ft and one 3-ft board
x6 = m.addVar(vtype=GRB.INTEGER, name="x6") # Two 3-ft boards and one 4-ft board
   # Set objective function: minimize the number of 10-ft boards used
   m.setObjective(x1 + x2 + x3 + x4 + x5 + x6, GRB.MINIMIZE)
   # Demand constraints :
   m.addConstr(3*x1 + x5 + 2*x6 >= demand_3, "3-ft boards constraint")
m.addConstr(2*x2 + x3 + x6 >= demand_4, "4-ft boards constraint")
m.addConstr(x3 + 2*x4 + x5 >= demand_5, "5-ft boards constraint")
   # Optimize the model
   m.setParam('OutputFlag', 0) # cleaner output
   m.optimize()
   # Output the optimal solution
   if m.status == GRB.OPTIMAL:
        print(f"Optimal solution found:")
        print(f"\t x1 (Three 3-ft boards): {x1.x}")
        print(f"\t x2 (Two 4-ft boards): {x2.x}")
        print(f"\t x3 (One 5-ft and one 4-ft board): {x3.x}")
        print(f"\t x4 (Two 5-ft boards): {x4.x}")
        print(f"\t x5 (One 3-ft and one 5-feet board): {x5.x}")
        print(f"\t x6 (Two 3-ft and one 4-feet board): {x6.x}")
        print(f"\nTotal 10-ft boards used: {m.objVal}")
        total_scrap = 1*x1.x + 2*x2.x + 1*x3.x + 0*x4.x + 2*x5.x + 0*x6.x
        print(f"Total scrap: {total_scrap} feet")
        print("No optimal solution found.")
   Optimal solution found:
               x1 (Three 3-ft boards): -0.0
               x2 (Two 4-ft boards): 8.0
               x3 (One 5-ft and one 4-ft board): -0.0
               x4 (Two 5-ft boards): 30.0
               x5 (One 3-ft and one 5-feet board): -0.0
               x6 (Two 3-ft and one 4-feet board): 45.0
   Total 10-ft boards used: 83.0
   Total scrap: 16.0 feet
The patterns scraps are: 4. 3 cuts of 3 feets
                               2. 2 outs of 4 feets
                               3. 1 out of 5 feet + 1 out of 4 feet
                               4. 2 outs of 5 feets
                               5. 1 cut of 3 feet + 1 cut of 5 feet
                               6. 2 and of 3 fort + 1 ort of 4 feet
                                                                                   Oft sea
  Total scrap = 1xx, + 2x z + 1xx + 1xx
  Objective function: min 1xx, + 2x z + 1xx + 2x given we know the princes Z
                                                                                            optimel me
                                                                                              & Comber
```

```
New constraint: 2 2: = Z
                                  we bup the previous comstraints
            6) That way, we're making sure that we're closing the gutterns that have be hast amount of scrap.
# Total number of 10-ft boards must be equal to N_star
m_scrap.addConstr(x1 + x2 + x3 + x4 + x5 + x6 == m.objVal, "fixed number of boards")
# Optimize the model
m scrap.setParam('OutputFlag', 0) # cleaner output
m scrap.optimize()
# Output the optimal solution
if m.status == GRB.OPTIMAL:
    print(f"Optimal solution found:")
    print(f"\t x1 (Three 3-ft boards): {x1.x}")
    print(f"\t x2 (Two 4-ft boards): {x2.x}")
    print(f"\t x3 (One 5-ft and one 4-ft board): {x3.x}")
    print(f"\t x4 (Two 5-ft boards): {x4.x}")
    print(f"\t x5 (One 3-ft and one 5-feet board): {x5.x}")
    print(f"\t x6 (Two 3-ft and one 4-feet board): {x6.x}")
    print(f"\nTotal 10-ft boards used: {m.objVal}")
    total scrap = 1*x1.x + 2*x2.x + 1*x3.x + 0*x4.x + 2*x5.x + 0*x6.x
    print(f"Total scrap: {total_scrap} feet")
else:
    print("No optimal solution found.")
Optimal solution found:
         x1 (Three 3-ft boards): -0.0
         x2 (Two 4-ft boards): 7.0
         x3 (One 5-ft and one 4-ft board): -0.0
         x4 (Two 5-ft boards): 30.0
         x5 (One 3-ft and one 5-feet board): -0.0
         x6 (Two 3-ft and one 4-feet board): 46.0
Total 10-ft boards used: 83.0
Total scrap: 14.0 feet
               Using this approach, we managed to use as many 10 ft boards and reduce by 2 ft the
               amount of snap done by the outs.
```