Forecasting electricity demand – ensemble methods

Jérôme Emery

Update august 18

Ensemble methods - stacking

Create many base models, average their predictions.

- Improve accuracy, reduce errors.
- How to determine weights for each forecast?

Rolling window linear regression

• With c and α_i determined by least squares regression

Least squares regression

Linear regression model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... \beta_k x_k + \epsilon$

Matrix form:
$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
, $X = \begin{pmatrix} 1 & x_{11} & \cdots & x_{k1} \\ 1 & x_{12} & \cdots & x_{k2} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{1n} & \cdots & x_{kn} \end{pmatrix}$, $\beta = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{pmatrix}$

Model: $y = X\beta + \epsilon$

Solution: $\hat{\beta}$, least squares estimator of β given by:

 $\hat{\beta} = (X^T X)^{-1} X^T Y$ provided $X^T X$ is invertible.

Problems arise if predictors are correlated among themselves.

- 1. If predictors are correlated, X may not be of full rank and thus X^tX may not be invertible.
- 2. Inflation of variance of $\hat{\beta}$.
- 3. The least squares estimator $\hat{\beta}$ may be far from true value of β .

For simplicity, take a simple linear regression model with two predictors:

$$y = \beta_1 x_1 + \beta_2 x_2 + \epsilon$$

With x_1, x_2, y standardized.

Then, $X^TX = n \begin{pmatrix} 1 & r \\ r & 1 \end{pmatrix}$ with r the correlation coefficient between predictors x_1 and x_2 .

1. We have
$$|X^TX| = \begin{vmatrix} 1 & r \\ r & 1 \end{vmatrix} = 1 - r^2$$
. For $r \to 1$, $|X^tX| \to 0$

2. We can show that
$$var(\hat{\beta}_i) = \frac{\sigma^2}{n(1-r^2)}$$
. For $r \to 1$, $var(\hat{\beta}_i) \to \infty$

3. We can show that
$$E\left(\left\|\hat{\beta} - \beta\right\|^2\right) = \frac{2\sigma^2}{1-r^2}$$

As $r \to 1$, $\hat{\beta}$ is on average far from β .

 For a time window of 30 days, correlation coefficient between any two models varies between 0.90 and 0.99.

Model weights from OLS ensemble

Regularization

Consider the regularized least squares problem:

$$\min_{\beta} \frac{1}{2} \|Y - X\beta\|_{2}^{2} + \frac{\lambda}{2} \|\beta\|_{2}^{2} = \min_{\beta} \left\| \begin{pmatrix} X \\ \sqrt{\lambda}I \end{pmatrix} \beta - \begin{pmatrix} Y \\ 0 \end{pmatrix} \right\|_{2}^{2}$$

Solve like OLS but for $\lambda > 0$, $\binom{X}{\sqrt{\lambda}I}$ has full rank,

Thus, from normal equations, $\hat{\beta}_r = (X^T X + \lambda I)^{-1} X^T Y$

Regularization

Thus, from normal equations, $\hat{\beta}_r = (X^T X + \lambda I)^{-1} X^T Y$

1. Numerically easier to solve for $\hat{\beta}_r$ since $(X^TX + \lambda I)$ is always invertible.

2. We are essentially minimizing $RSS + \lambda \|\beta\|_2^2$, by choosing an appropriate λ , we get a tradeoff between magnitude of the parameters and fit.

Regularization

Regularization – Determining λ

• We do not know a priori the optimal λ .

• Take mean optimal lambda from training set.

Results – Regularized ensemble method

Best model – Fourier series

• RMSE: 656 MW

• MAPE: 2.24 %

OLS ensemble method

• RMSE: 601 MW

• MAPE: 1.95 %

Ridge ensemble method

• RMSE: 553 MW

• MAPE: 1.82 %

Results

RMSE of individual models

Results

Evolution of weight of Fourier model in ensemble

Results

Evolution of weight of regression spline model in ensemble

Errors

Distribution of forecasting errors

