Assignment - 2

Emotional Analysis and Binary Classification Machine Learning Tasks

Machine learning _CSCI_6364_82 Assignment 2

> Bhavya Sree Gudiseva 8th December 2023

Emotion Analysis using SVM and K-Means Clustering

1. Objective

Develop an understanding of emotion recognition in text using Support Vector Machines (SVM) for classification and K-Means clustering for pattern discovery. This assignment will help you grasp the nuances of supervised and unsupervised learning techniques in Natural Language Processing (NLP).

2. Data Preparation

2.1 Load and familiarize yourself with the EmotionLines dataset.

Upon inspecting the dataset has 3 Json files: test, train, and holdout json files.

After loading the train json file the data frame has 720 records with 24 columns, test json file the data frame has 200 records with 24 columns and holdout data frame has 80 records with 24 columns

	- 1145 -	.corecores	1011 = 1 00	rammo ana moraoat aata mamo nao oo re				
<cla< td=""><td>ss 'pand</td><td>as.core.frame.Da</td><td>taFrame'></td><td></td></cla<>	ss 'pand	as.core.frame.Da	taFrame'>					
Rang	RangeIndex: 720 entries, 0 to 719							
Data	columns	(total 24 colum	ns):					
#	Column	Non-Null Count	Dtype					
0	0	720 non-null	object	13 13 102 non-null object				
1	1	720 non-null	object	14 14 93 non-null object				
2	2	720 non-null	object	15 15 83 non-null object				
3	3	720 non-null	object	16 16 72 non-null object				
4	4	720 non-null	object	17 17 63 non-null object				
5	5	688 non-null	object	18 18 53 non-null object				
6	6	655 non-null	object	19 19 40 non-null object				
7	7	620 non-null		20 20 30 non-null object				
8	8		object	21 21 21 non-null object				
9	-	579 non-null	object	22 22 13 non-null object				
_	9	547 non-null	object	23 23 5 non-null object				
10	10	520 non-null	object					
11	11	484 non-null	object	dtypes: object(24)				
12	12	444 non-null	object	memory usage: 37.6+ KB				
13	13	408 non-null	object	<class 'pandas.core.frame.dataframe'=""></class>				
14	14	367 non-null	object	RangeIndex: 80 entries, 0 to 79				
15	15	333 non-null	object	Data columns (total 24 columns):				
16	16	292 non-null	object	# Column Non—Null Count Dtype				
17	17	253 non-null	object					
18	18	224 non-null	object	0 0 80 non-null object				
19	19	189 non-null	object	1 1 80 non-null object				
20	20	142 non-null	object	2 2 80 non-null object				
21	21	102 non-null	object	3 3 80 non-null object				
22	22	79 non-null	object	4 4 80 non-null object				
23	23	35 non-null	object	5 5 79 non-null object				
	es: obje		,	6 6 75 non-null object				
	-	: 135.1+ KB		7 7 74 non-null object				
		as.core.frame.Da	taFrame'>	8 8 67 non-null object				
		200 entries, 0 t		9 9 63 non-null object				
_		(total 24 colum		10 10 61 non-null object				
#	Column			11 11 55 non-null object				
	Cocuiin	Non-Null Count	Dtype	12 12 50 non-null object				
		20011						
0	0	200 non-null	object					
1	1	200 non-null	object	,				
2	2	200 non-null	object	15 15 35 non-null object				
3	3	200 non-null	object	16 16 30 non-null object				
4	4	200 non-null	object	17 17 27 non-null object				
5	5	188 non-null	object	18 18 23 non-null object				
6	6	175 non-null	object	19 19 21 non-null object				
7	7	162 non-null	object	20 20 17 non-null object				
8	8	155 non-null	object	21 21 11 non-null object				
9	9	140 non-null	object	22 22 6 non-null object				
10	10	132 non-null	object	23 23 1 non-null object				
11	11	126 non-null	object	dtypes: object(24)				
12	12	111 non-null	object	memory usage: 15.1+ KB				
			. 1					

2.2 Conduct text preprocessing: tokenize, stem/lemmatize, and remove stop words.

2.2.1 **Tokenization:**

Performed tokenization to combine all the 24 columns of a row to one record

```
Modified Training DataFrame:
                                         tokenized_0 \
   [also, I, was, the, point, person, on, my, com...
                                    [Hey, ,, Mon, .]
   [Good, job, Joe, !, Well, done, !, Top, notch, !]
   [Okay, ,, look, ,, I, think, we, have, to, tel...
                                         tokenized 1 \
           [You, must ve, had, your, hands, full, .]
1
   [Hey-hey-hey, ., You, wan, na, hear, something...
3
      [You, liked, it, ?, You, really, liked, it, ?]
   [What, ?, !, What, is, with, everybody, ?, It ...
                                         tokenized_2 \
0
                  [That, I, did, ., That, I, did, .]
                                    [Do, I, ever, .]
1
2
                    [What, are, you, doing, here, ?]
                              [Oh-ho-ho, ,, yeah, !]
   [Yes, ,, and, it, is, my, dying, wish, to, hav...
                                         tokenized_3 \
  [So, let s, talk, a, little, bit, about, your,...
  [Chris, says, they re, closing, down, the, bar...
  [Ah, y'know, ,, this, building, is, on, my, pa...
                          [Which, part, exactly, ?]
```

2.2.2 Removing Stop words

```
DataFrame with Stop Words Removed:
                                        tokenized_0 \
0 [also, point, person, company s, transition, k...
1
                                          [hey, mon]
            [good, job, joe, well, done, top, notch]
   [okay, look, think, tell, rachel, messed, dess...
                                       tokenized_1
                                                               tokenized_2 \
0
                             [must ve, hand, full]
                                                                         []
1
     [hey-hey-hey, wan, na, hear, something, suck]
                                                                      [ever]
2
                                                                         []
                            [liked, really, liked]
                                                          [oh-ho-ho, yeah]
   [everybody, it s, thanksgiving, ..., truth-day] [yes, dying, wish, ring]
                                        tokenized_3 \
                    [let s, talk, little, bit, duty]
0
1
                 [chris, say, they re, closing, bar]
           [ah, y'know, building, paper, route, ...]
2
                                     [part, exactly]
4 [see, i m, buried, ring, spirit, going, wander...
                    tokenized_4 \
                   [duty, right]
1
                           [way]
2
                           [oh]
              [whole, thing, go]
4 [okay, that s, enough, honey]
```

```
DataFrame after Lemmatization:
                                         tokenized_0 \
  [also, I, point, person, company s, transition...
                                    [Hey, ,, Mon, .]
                                            [Hey, !]
   [Good, job, Joe, !, Well, done, !, Top, notch, !]
  [Okay, ,, look, ,, I, think, tell, Rachel, mes...
                                         tokenized_1 \
                       [You, must ve, hand, full, .]
  [Hey-hey-hey, ., You, wan, na, hear, something...
2
              [You, liked, ?, You, really, liked, ?]
3
   [What, ?, !, What, everybody, ?, It s, Thanksg...
                      tokenized_2 \
0
         [That, I, ., That, I, .]
1
                 [Do, I, ever, .]
                        [What, ?]
           [0h-ho-ho, ,, yeah, !]
   [Yes, ,, dying, wish, ring, .]
                                         tokenized 3 \
0
             [So, let s, talk, little, bit, duty, .]
1
              [Chris, say, they re, closing, bar, .]
2
     [Ah, y'know, ,, building, paper, route, I, ...]
```

2.2.4 Remove Punctuation and Lowercasing

```
DataFrame after Removing Punctuation and Lowercasing:
                                          tokenized_0 \
   [also, i, point, person, company s, transition...
1
                                           [hey, mon]
2
                                                [hey]
3
            [good, job, joe, well, done, top, notch]
   [okay, look, i, think, tell, rachel, messed, d...
                                          tokenized_1
                           [you, must ve, hand, full]
1
   [hey-hey-hey, you, wan, na, hear, something, s...
2
3
                    [you, liked, you, really, liked]
   [what, what, everybody, it s, thanksgiving, .....
                tokenized_2 \
0
         [that, i, that, i]
1
              [do, i, ever]
2
                     [what]
           [oh-ho-ho, yeah]
3
   [yes, dying, wish, ring]
                                          tokenized_3 \
0
                [so, let s, talk, little, bit, duty]
                 [chris, say, they re, closing, bar]
1
2
        [ah, y'know, building, paper, route, i, ...]
                               [which, part, exactly]
3
   [see, i m, buried, ring, spirit, going, wander...
                     tokenized_4 \
          [my, duty, all, right]
1
                        [no, way]
2
                            [oh]
3
    [the, whole, thing, can, go]
   [okay, that s, enough, honey]
```

2.2.5 Applying Preprocessing on Test Data

```
Processed Test DataFrame:

why you re coffee mug number bottom oh that s...

come lydia push push 'em push 'em harder harde...

okay ross n't say elevator uhh yes i n't okay ...

ohh what it kicked i think baby kicked oh god ...

previously friends i don t know exactly it s-i...

Name: combined_text, dtype: object
```

2.3 Transform text into numerical representations using TF-IDF.

```
0.04418112639614794
    (4, 1805)
                           0.10502334436649442
    (4, 1762)
                           0.15236624459181713
    (4, 1645)
                           0.4301894337471002
    (4, 1559)
                           0.12806256050208997
    (4, 1538)
                           0.10034872939017696
    (4, 1513)
                           0.1246524134799041
   (4, 1509)
                           0.10375887641236281
    (4, 1355)
                           0.11909279382597292
    (4, 1286)
                           0.046828364485545046
   (4, 1193)
                           0.15236624459181713
    (4, 865)
                           0.12169840976459692
   (4.604)
                           0.15236624459181713
    (4, 473)
                           0.12806256050208997
    (4, 389)
                           0.14339647791570007
    (4, 227)
                           0.0798687028034271
    (4, 197)
                           0.09103057493737671
    (4, 140)
                           0.07248491691320962
Vocabulary from TF-IDF Vectorizer:
{'also': 178, 'point': 3370, 'person': 3269, 'company': 938, 'transition': 4569, 'kl': 2404, 'gr': 1893, 'system': 4353, 'must': 2915, 've': 4728, 'hand': 1973, 'full': 1777, 'let': 2516, 'talk': 4365, 'little': 2571, 'bit': 471, 'duty': 1369, 'right': 3681, 'you': 5007, 'l
l': 2575, 'heading': 2020, 'whole': 4880, 'division': 1267, 'lot': 2613, 'see': 3852, 'there': 4444, 'perhaps': 3262, '30': 33, 'people':
3253, 'dump': 1364, 'certain': 760, 'amount': 193, 'good': 1871, 'know': 2419, 'go': 1858, 'detail': 1206, 'don': 1286, 'beg': 418, 'we'
4823, 'definite': 1168, 'answer': 217, 'monday': 2855, 'think': 4454, 'say': 3796, 'confidence': 963, 'fit': 1648, 'well': 4842, 'reall
y': 3573, 'absolutely': 80, 'relax': 3610, 'great': 1914, 'waitress': 4785, 'went': 4844, 'last': 2461, 'month': 2865, 'forget': 1710,
o': 2992, 'talking': 4369, 'actually': 101, 'ok': 3087, 'gon': 1869, 'na': 2922, 'get': 1830, 'room': 3715, 'night': 2979, 'later': 2465, 'yeah: 4983, 'sure': 4312, 'hey': 2055, 'mon': 2852, 'wan': 4795, 'hear': 2024, 'something': 4072, 'suck': 4271, 'ever': 1493, 'chris': 836, 'they': 4447, 're': 3554, 'closing': 893, 'bar': 369, 'way': 4821, 'apparently': 239, 'turning': 4619, 'kinda': 2390, 'coffee': 909,
'place': 3336, 'hang': 1983, 'got': 1887, 'beer': 417, 'pick': 3399, 'roommate': 3716, 'betcha': 448, 'italian': 2278, 'guy': 1950, 'um': 4645, 'mm': 2840, 'oh': 3078, 'god': 1862, 'poor': 3385, 'monica': 2859, 'wrote': 4973, 'poem': 3367, 'look': 2593, 'my': 2920, 'vessel': 4737, 'empty': 1436, 'nothing': 3022, 'inside': 2225, 'touched': 4542, 'seem': 3856, 'emptier': 1435, 'still': 4209, 'vase': 4726, 'mean t': 2744, 'totally': 4540, 'seemed': 3857, 'happy': 1996, 'done': 1291, 'hi': 2058, 'ah': 140, 'building': 619, 'paper': 3192, 'route': 3
724, 'how': 2137, 'woman': 4927, 'interviewed': 2249, 'pretty': 3435, 'tough': 4544, 'thank': 4430, 'mark': 2691, 'coached': 900, 'starte
d: 4176, 'fall: 1560, 'line': 2554, 'wouldn': 4958, 'shut': 3954, 'proud': 3472, 'listen': 2564, 'sorry': 4087, 'crazy': 1055, 'jealou s': 2302, 'it': 2277, 'like': 2544, 'ameri': 189, 'can': 687, 'ccan': 746, 'everybody': 1495, 'job': 2321, 'joe': 2323, 'top': 4532, 'not ch': 3019, 'liked': 2545, 'ho': 2084, 'part': 3202, 'exactly': 1509, 'thing': 4452, 'give': 1844, 'specific': 4117, 'love': 2621, 'best': 445, 'scene': 3805, 'kangaroo': 2359, 'did': 1219, 'surprised': 4317, 'world': 4949, 'war': 4800, 'epic': 1460, 'fell': 1600, 'asleep': 2
```

3. SVM for Emotion Classification:

3.1 Construct an SVM classifier to categorize emotions in text data.

```
Extracted Emotion Labels for Training Data (First 10 Rows):
0 neutral
1 neutral
2 non-neutral
ioy
     joy
neutral
neutral
5
6
          anger
   non-neutral
7
8
            joy
9
           anger
dtype: object
Number of Rows with no Emotion Label in Training Data: 0
Shape of TF-IDF Matrix for Training Data: (720, 955)
Length of y_train: 720
Extracted Emotion Labels for Test Data (First 10 Rows):
      surprise
1
       neutral
2
       neutral
3
      surprise
4
       neutral
   non-neutral
5
   non-neutral
6
7
    non-neutral
    non-neutral
         neutral
dtype: object
Number of Rows with no Emotion Label in Test Data: 0
Shape of TF-IDF Matrix for Test Data: (200, 955)
Length of y_test: 200
```

3.2 SMOTE Analysis for resampling

```
Original training data shape (features): (720, 5030)
Original training data shape (labels): (720,)
Resampled training data shape (features): (2648, 5030)
Resampled training data shape (labels): (2648,)
Sample of resampled labels: ['neutral' 'neutral' 'non-neutral' 'joy' 'neutral' 'neutral' 'anger'
 'non-neutral' 'joy' 'anger' 'joy' 'anger' 'neutral' 'surprise' surprise']
Label counts before SMOTE:
neutral
            331
             128
joy
non-neutral 107
surprise
sadness
             26
             23
anger
disgust
             14
fear
              q
Name: count, dtype: int64
Label counts after SMOTE:
neutral
non-neutral
             331
joy
             331
             331
anger
surprise
            331
sadness
            331
disgust
             331
             331
Name: count, dtype: int64
```

3.3 Cross-Validation and Classification Metrics

Mean CV Score: 0.459722222222225

Standard Deviation of CV Scores: 0.00277777777777905

SVM Test Accuracy: 0.535

$3.4\,$ Optimize the classifier by experimenting with different kernels and hyperparameters.

['neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'non-n	eutral' 'n	neutral' 'ne	ıtral' 'neut	ral' 'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
				l' 'neutral'	
'neutral' 'neu					
'neutral' 'neu					
'neutral' 'neu					
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'neutral' 'neu	tral' 'neutr	al' 'neutr	al' 'neutra	l' 'neutral'	'neutral'
'surprise' 'ne					
Best Classifier					
р	recision	recall f1	-score su	pport	
anger	1.00	0.00	0.00	9	
anger disgust	1.00	0.00	0.00	1	
fear	1.00	0.00	0.00	2	
joy	1.00	0.00	0.00	24	
neutral	0.54	0.99	0.70	107	
non-neutral	1.00	0.03	0.06	35	
sadness	1.00	0.00	0.00	4	
surprise	0.00	0.00	1.00	18	
54. p. 150	0.00	0.00	2100	10	
accuracy			0.54	200	
macro avg	0.82	0.13	0.22	200	
weighted avg	0.66	0.54	0.47	200	

Accuracy Score: 0.535

4. K-Means Clustering:

4.1 Implement K-Means clustering on the preprocessed text data.

4.2 Identify the optimal number of clusters with methods like the elbow technique.

[1850.1387164878392, 1816.89630603637, 1788.128444058858, 1772.7854955034268, 1750.79250594419, 1731.2801384990673, 1715.2392109162706, 170 2.1790815266586, 1686.7142265065822, 1671.903966478773, 1652.0743500466617]

5. Model Insights:

5.1 Analyze the performance of the SVM classifier and the clusters formed by K-Means.

	precision	recall	f1–score	support
anger	1.00	0.00	0.00	9
disgust	1.00	0.00	0.00	1
fear	1.00	0.00	0.00	2
joy	1.00	0.00	0.00	24
neutral	0.54	0.99	0.70	107
non-neutral	1.00	0.03	0.06	35
sadness	1.00	0.00	0.00	4
surprise	0.00	0.00	1.00	18
accuracy			0.54	200
macro avg	0.82	0.13	0.22	200
weighted avg	0.66	0.54	0.47	200

Accuracy Score: 0.535

Cluster 0: Emotion - joy Cluster 1: Emotion - non-neutral Cluster 2: Emotion - neutral Cluster 3: Emotion - non-neutral

Cluster 4: Emotion - non-neutral Cluster 5: Emotion - neutral Cluster 6: Emotion - surprise Cluster 7: Emotion - non-neutral

5.2 Compare and contrast the results obtained from both SVM and K-Means.

 $5.3\,Offer\,in sights\,into\,the\,emotional\,trends\,captured\,by\,the\,models.$

	Document ID	SVM Predicted Emotion	K-Means Cluster	Cluster Emotion	SVM Matches Cluster Emotion
0	0	neutral	3	non-neutral	False
1	1	neutral	0	non-neutral	False
2	2	non-neutral	7	non-neutral	True
3	3	joy	3	non-neutral	False
4	4	neutral	1	neutral	True
5	5	neutral	0	non-neutral	False
6	6	anger	5	neutral	False
7	7	non-neutral	7	non-neutral	True
8	8	joy	2	joy	True
9	9	anger	0	non-neutral	False
10	10	joy	2	joy	True
11	11	anger	5	neutral	False
12	12	neutral	3	non-neutral	False
13	13	surprise	2	joy	False
14	14	surprise	2	joy	False
15	15	joy	5	neutral	False
16	16	non-neutral	4	non-neutral	True
17	17	non-neutral	1	neutral	False
18	18	surprise	2	joy	False
19	19	neutral	2	joy	False
20	20	surprise	4	non-neutral	False
21	21	non-neutral	2	joy	False
22	22	neutral	5	neutral	True
23	23	surprise	4	non-neutral	False
24	24	neutral	1	neutral	True
25	25	neutral	4	non-neutral	False
26	26	neutral	2	joy	False
27	27	non-neutral	7	non-neutral	True
28	28	non-neutral	5	neutral	False
29	29	sadness	2	joy	False
30	30	neutral	4	non-neutral	False

Support Vector Machine (SVM):

- 1. Classification Accuracy: The SVM classifier provides a measure of classification accuracy on the test dataset. This accuracy score indicates how well the model predicts emotions based on the TF-IDF features. Higher accuracy suggests that the model is effective at classifying emotions.
- 2. Classification Report: The classification report includes metrics such as precision, recall, and F1-score for each emotion category. It provides insights into the model's performance for individual emotions. High precision suggests fewer false positives, while high recall indicates fewer false negatives.
- 3. Emotional Trends: By analyzing the SVM model's predictions, you can gain insights into which emotions are well-predicted and which may be more challenging. For example, if the model performs well in predicting happiness but poorly in predicting sadness, it indicates that the dataset may have an imbalance in these emotions or that certain emotions are easier to detect based on text features.

K-Means Clustering:

1. Cluster Interpretation: K-Means clusters the text data into groups based on similarity. Each

cluster represents a group of similar texts. By analyzing the content of the texts within each cluster, you can interpret the themes or topics that emerge. This can provide insights into the emotional trends present in the dataset.

- 2. Top Terms per Cluster: The top terms per cluster provide information about the keywords or phrases that are prevalent within each cluster. This can help identify common emotional themes or topics that are discussed within a cluster.
- 3. Cluster Distribution: You can analyze the distribution of texts among different clusters to understand how emotions are distributed within the dataset. For example, you might find that certain clusters predominantly contain texts related to joy, while others contain texts related to sadness.

Comparison:

- 1. Interpretability: SVM provides direct classification results for each text, making it easier to interpret how well it predicts individual emotions. In contrast, K-Means clustering groups texts into clusters, which requires additional analysis to interpret emotional trends.
- 2. Granularity: SVM can provide fine-grained predictions for individual emotions (e.g., happiness, sadness). K-Means, on the other hand, groups texts into clusters, which may not correspond directly to specific emotions.
- 3. Insights into Topics: K-Means provides insights into the topics or themes present in the dataset. It can capture emotional trends related to specific subjects or discussions, which SVM may not reveal explicitly.
- 4. Complementary: SVM and K-Means can be complementary. SVM can be used for emotion classification, while K-Means can help identify underlying emotional themes and topics.

In summary, SVM is suitable for emotion classification and provides accuracy metrics for individual emotions. K-Means, on the other hand, helps uncover emotional themes and topics within the dataset, offering a different perspective on emotional trends. Combining the insights from both models can provide a comprehensive understanding of emotional patterns in the text data.

Binary Classification with Custom Naive Bayes

Objective:

The objective of this assignment is to develop a binary classification model using the Naive Bayes algorithm. Students will gain hands-on experience in data loading, preprocessing, visualization, and model evaluation, applying statistical fundamentals to create an effective classifier.

1. Data Loading and Preprocessing(15 points)

1.1. Load the dataset from the provided URL into a suitable data structure (like a pandas Data Frame).

		-,		,		
	name	role	type	demographic \		
0	ID	ID	Integer	None		
1	AGE	Feature	Integer	Age		
2	SEX	Feature	Binary	Sex		
3	INF_ANAM		Categorical	None		
4	STENOK_AN	Feature	Categorical	None		
				• • • •		
119	DRESSLER	Target	Binary	None		
120	ZSN	Target	Binary	None		
121	REC_IM	Target	Binary	None		
122	P_IM_STEN	Target	Binary	None		
123	LET_IS	Target	Categorical	None		
						missing_values
0	Record ID	(ID): Uni	que identifie	er. Cannot be r		no
1				Age of patient.		no
2				0: female, 1: male		no
3		-		ons in the anam	None	yes
4	Exertional	. angina p	ectoris in th	ne anamnesis. ∖	None	yes
• •						
119				Dressler syndrome		no
120				onic heart failure		no
121		Relaps	-	cardial infarction		no
122				-infarction angina	None	no
123	Lethal out	come (cau	se)\n\n0: unl	known (alive)\n	None	no
[124	rows x 7 c	columns]				

Dataset Information: <class 'pandas.core.frame.DataFrame'> RangeIndex: 1700 entries, 0 to 1699 Columns: 111 entries, AGE to TRENT_S_n dtypes: float64(110), int64(1) memory usage: 1.4 MB None Target Variables Information: <class 'pandas.core.frame.DataFrame'>
RangeIndex: 1700 entries, 0 to 1699 Data columns (total 12 columns): # Column Non-Null Count FIBR_PREDS 1700 non-null PREDS_TAH JELUD_TAH 1700 non-null int64 1700 non-null int64 3 FIBR_JELUD 1700 non-null int64 A_V_BLOK 1700 non-null int64 OTEK_LANC 5 1700 non-null int64 1700 non-null 6 RAZRIV int64 DRESSLER 1700 non-null int64 1700 non-null ZSN 8 int64 REC_IM 1700 non-null int64 10 P_IM_STEN 11 LET_IS 1700 non-null int64 1700 non-null int64 dtypes: int64(12) memory usage: 159.5 KB First few rows of Features:

	AGE	SEX	INF_ANAM	STENOK_AN	FK_STENOK	IBS_POST	IBS_NASL	GB
0	77.0	1	2.0	1.0	1.0	2.0	NaN	3.0
1	55.0	1	1.0	0.0	0.0	0.0	0.0	0.0
2	52.0	1	0.0	0.0	0.0	2.0	NaN	2.0
3	68.0	0	0.0	0.0	0.0	2.0	NaN	2.0
4	60.0	1	0.0	0.0	0.0	2.0	NaN	3.0

	SIM_GIPERT	DLIT_AG	 NOT_NA_1_n	NOT_NA_2_n	N0T_NA_3_n	LID_S_n	\
0	0.0	7.0	 0.0	0.0	0.0	1.0	
1	0.0	0.0	 1.0	0.0	0.0	1.0	
2	0.0	2.0	 3.0	2.0	2.0	1.0	
3	0.0	3.0	 0.0	0.0	0.0	0.0	
4	0.0	7.0	 0.0	0.0	0.0	0.0	

	B_BL0K_S_n	ANT_CA_S_n	GEPAR_S_n	ASP_S_n	TIKL_S_n	TRENT_S_n
0	0.0	0.0	1.0	1.0	0.0	0.0
1	0.0	1.0	1.0	1.0	0.0	1.0
2	1.0	0.0	1.0	1.0	0.0	0.0
3	0.0	1.0	1.0	1.0	0.0	0.0
4	0.0	1.0	0.0	1.0	0.0	1.0

[5 rows x 111 columns]

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1700 entries, 0 to 1699
Data columns (total 123 columns):

Ducu	co camino (co ca c	125 00 00 00
#	Column	Dtype
0	AGE	float64
1	SEX	int64
2	INF_ANAM	float64
3	STENOK_AN	float64
4	FK_STEN0K	float64
5	IBS_POST	float64
6	IBS_NASL	float64
7	GB	float64
8	SIM_GIPERT	float64
9	DLIT_AG	float64
10	ZSN_A	float64
11	nr_11	float64
12	nr_01	float64

1.2. Clean the data by handling missing values, and normalizing numerical features as needed.

Summary of missing values in each column: AGE: 8 missing values SEX: 0 missing values INF_ANAM: 4 missing values STENOK_AN: 106 missing values FK STENOK: 73 missing values IBS POST: 51 missing values IBS_NASL: 1628 missing values GB: 9 missing values SIM_GIPERT: 8 missing values DLIT_AG: 248 missing values ZSN A: 54 missing values nr_11: 21 missing values nr_01: 21 missing values nr_02: 21 missing values nr_03: 21 missing values nr_04: 21 missing values nr_07: 21 missing values

After Imputation: Summary of missing values in each column: AGE: 0 missing values SEX: 0 missing values INF_ANAM: 0 missing values STENOK AN: 0 missing values FK_STENOK: 0 missing values IBS_POST: 0 missing values IBS_NASL: 0 missing values GB: 0 missing values SIM_GIPERT: 0 missing values DLIT AG: 0 missing values ZSN_A: 0 missing values nr_11: 0 missing values nr 01: 0 missing values nr_02: 0 missing values nr_03: 0 missing values nr_04: 0 missing values nr_07: 0 missing values nr 08: 0 missing values np_01: 0 missing values np_04: 0 missing values np_05: 0 missing values np_07: 0 missing values np_08: 0 missing values np_09: 0 missing values np 10: 0 missing values endocr_01: 0 missing values endocr_02: 0 missing values endocr_03: 0 missing values zab_leg_01: 0 missing values zab leg 02: 0 missing values zab_leg_03: 0 missing values zab_leg_04: 0 missing values zab_leg_06: 0 missing values S AD KBRIG: 0 missing values D AD KBRIG: 0 missing values S_AD_ORIT: 0 missing values

1.3. Feature Selection and Split the dataset into training and testing subsets to facilitate model evaluation.

2. Data Visualization

2.1. Generate visual plots (e.g., histograms, bar charts, box plots) to understand the distribution and characteristics of the dataset.

2.2. Identifying and Handling Outliers

2.3. Visualize the class distribution to check for class imbalance and consider strategies like resampling if needed.

DataFrame shape before removing outliers: (1700, 123) DataFrame shape after removing outliers: (1525, 123)

- 3. Binary Classification Model Development:
- 3.1. Implement the Naive Bayes classifier. Document the mathematical formulation and programming logic used if you develop from scratch.

Custom Naive Bayes Metrics: Accuracy: 0.36764705882352944 Precision: 0.2597864768683274

Recall: 0.9125

F1 Score: 0.40443213296398894

Confusion Matrix:

[[52 208] [7 73]]

Scikit-learn GaussianNB Metrics:

Accuracy: 0.3558823529411765 Precision: 0.2611683848797251

Recall: 0.95

F1 Score: 0.4097035040431267

Confusion Matrix:

[[45 215] [4 76]]

3.2. Optimize the model by experimenting with different techniques like feature selection and hyperparameter tuning.

Metrics for Resampled Dataset:

Best Parameters: {'var_smoothing': 1e-09}

Best Score: 0.5368173589459923 Accuracy: 0.3558823529411765

Classification Report:

support	f1-score	recall	precision	
260	0.29	0.17	0.92	0.0
80	0.41	0.95	0.26	1.0
340	0.36			accuracy
340	0.35	0.56	0.59	macro avg
340	0.32	0.36	0.76	weighted avg

Confusion Matrix:

[[45 215] [4 76]]

Metrics for Original Dataset:

Best Parameters: {'var_smoothing': 1e-07}

Best Score: 0.2773770491803279 Accuracy: 0.37058823529411766

Classification Report:

	precision	recall	f1-score	support
0.0 1.0	0.94 0.27	0.19 0.96	0.31 0.42	260 80
accuracy			0.37	340
macro avg	0.60	0.58	0.37	340
weighted avg	0.78	0.37	0.34	340

Confusion Matrix:

[[49 211] [3 77]]

4. Performance Analysis:

4.1. Evaluate the classifier using metrics such as accuracy, precision, recall, F1 score, and ROC curve.

Custom Naive Bayes Metrics: Accuracy: 0.36764705882352944 Precision: 0.2597864768683274

Recall: 0.9125

F1 Score: 0.40443213296398894 ROC AUC: 0.556249999999999

Sklearn's GaussianNB Metrics: Accuracy: 0.3558823529411765 Precision: 0.2611683848797251

Recall: 0.95

F1 Score: 0.4097035040431267 ROC AUC: 0.5615384615384615

4.2. Draw a confusion matrix to understand true positives, true negatives, false positives, and false negatives.

5. Reflection and Insights:

5.1. Reflect on the performance of the Naive Bayes classifier, providing an analysis of the results.

The performance of the Naive Bayes classifier, both the custom implementation and scikit-learn's GaussianNB, was assessed using various metrics:

Custom Naive Bayes Metrics:

Accuracy: The custom Naive Bayes classifier achieved an accuracy of approximately 36.77%, indicating the percentage of correctly predicted instances.

Precision: Precision was approximately 25.98%, representing the ability to correctly classify positive instances while minimizing false positives.

Recall: The recall score was 91.25%, indicating the model's effectiveness in identifying positive instances and minimizing false negatives.

F1 Score: The F1 score, which balances precision and recall, was approximately 40.44%, providing a holistic measure of classifier performance.

ROC AUC: The ROC AUC score was approximately 55.62%, which assesses the classifier's ability to distinguish between positive and negative classes.

Scikit-learn's GaussianNB Metrics:

Accuracy: Scikit-learn's GaussianNB achieved an accuracy of about 35.59%, similar to the custom implementation.

Precision: Precision was approximately 26.12%, consistent with the custom Naive Bayes.

Recall: The recall score was 95%, indicating a high ability to identify positive instances.

F1 Score: The F1 score was approximately 40.97%, similar to the custom implementation.

ROC AUC: The ROC AUC score was approximately 56.15%, suggesting a similar ability to

distinguish between classes as the custom Naive Bayes.

5.2. Discuss any observed limitations and propose potential improvements or future work that could enhance the classifier's performance.

While the Naive Bayes classifiers demonstrate reasonable performance, there are areas for potential improvement:

Imbalanced Classes: Both models show a high recall but relatively low precision. Addressing class imbalance and exploring techniques to improve precision while maintaining high recall is essential.

Feature Selection: Evaluating more advanced feature selection methods and engineering informative features can enhance classification performance.

Model Selection: Comparing Naive Bayes with other algorithms and ensemble methods could reveal better-performing models for the dataset.

Hyperparameter Tuning: A more comprehensive hyperparameter optimization approach may further enhance classifier performance.

Cross-Validation: Employing cross-validation can provide a more robust estimate of model performance.

Feature Engineering: Additional domain-specific feature engineering may improve discriminative power.

In summary, while the Naive Bayes classifiers yield decent results, addressing limitations and exploring improvements can lead to more robust and accurate classifiers.