2. Ekonometryczne modele kursu bitcoina

Ekonometria jest dziedziną nauki, która pomaga zrozumieć i opisać zachodzące zmiany w gospodarce, przy pomocy metod statystyczno-matematycznych. Podstawowym narzędziem w ekonometrii, służącym do opisu zjawisk, jest model ekonometryczny, będący uproszczonym odwzorowaniem rzeczywistości (I.D.J. Bross, 1965).

2.1. Model regresji wielorakiej

Jednym z celów pracy było zbudowanie modelu regresji liniowej, który pokazywałby wpływ wybranych zmiennych objaśniających na cenę bitcoina. Za zmienne objaśniające przyjęto wybrane wskaźniki makroekonomiczne oraz indeksy giełdowe, które według teorii ekonomicznych, mogłyby mieć kluczowy wpływ na zmienną objaśnianą. Znajomość relacji między wskazanymi w Tabeli 3 zmiennymi objaśniającymi a kursem BTC umożliwi ocenę wrażliwości bitcoina na zmiany zachodzące w gospodarce.

Tabela 3. Zmienne objaśniające

Nazwa	Oznaczenie [jednostka]	Definicja	Źródło danych
Wskaźnik cen towarów i usług konsumpcyjnych	Inflacja [%]	"Proces wzrostu ogólnego poziomu cen, przy czym wzrost ten musi mieć stały charakter, utrzymujący się w danym czasie." (R. Milewski, E. Kwiatkowski, 2018, s. 659)	GUS
Stopa referencyjna	Stopa referencyjna [%]	"Określa minimalną cenę, po jakiej bank centralny organizuje operacje otwartego rynku na rynku międzybankowym" (Internet 29)	NBP
Bieżący wskaźnik ufności konsumenckiej	BWUK [%]	Wskaźnik ten "obrazuje bieżące tendencje zmian konsumpcji indywidualnej." (Internet 6)	GUS
Warszawski indeks giełdowy	WIG20 [PLN]	Obrazuje cenę 20 największych spółek notowanych na Warszawskiej giełdzie papierów wartościowych (Internet 7)	Stooq.pl
Dow Jones Industrial Average	DJIA [USD]	Jeden z najpopularniejszych indeksów giełdowych, obrazujący ceny 30 największych spółek notowanych na nowojorskiej giełdzie papierów wartościowych. (Internet 3)	Stooq.pl
Cena złota	AU [ozt/PLN]	Wartość złota została podana w PLN za uncję trojańską. Uncja trojańska jest jednostką masy metali szlachetnych, której wartość w przybliżeniu wynosi 31,1 gram. (Mennica Kapitałowa, 2020)	Stooq.pl

Źródło: opracowanie własne.

Do analizy wykorzystano dane miesięczne, od stycznia 2017 roku do marca 2022 roku. Zostały one pozyskane ze strony Głównego Urzędu Statystycznego i strony serwisu finansowego stooq.pl. Szeregi czasowe wybranych zmiennych do analizy zaprezentowano na Wykresie 1.

Wykres 1. Przebieg szeregów czasowych zmiennych wybranych do analizy, obserwacje od stycznia 2017 do marca 2022 roku Źródło: opracowanie własne.

Ze względu na fakt, że stopa referencyjna jest zmienną przyjmującą przedziałami stałe wartości (charakteryzuje się małą częstością zmian) została wyeliminowana z dalszych badań. Analiza powyższych wykresów pozwala zauważyć wyraźne zmiany charakteru przebiegu badanych szeregów czasowych. Zmiany te nastąpiły w 2020 roku, a fakt ten bez wątpienia związany jest z pojawieniem się pandemii Covid-19. W związku z powyższym analizę danych przeprowadzono w dwóch przedziałach czasowych:

- od stycznia 2017 roku do grudnia 2019 roku przedział obejmujący dane przed stanem epidemii;
- od stycznia 2020 roku do marca 2022 roku przedział obejmujący okres, w którym obowiązywał stan epidemii.

2.1.1. Modelowanie kursu BTC w okresie 2017 – 2019

Dla danych z założonego okresu czasowego, obliczono podstawowe statystyki opisowe, obejmujące: średnią, medianę, wartość minimalną i maksymalną, odchylenie standardowe oraz współczynnik zmienności.

Tabela 4. Statystyka opisowa dla okresu 2017-2019

	BTC	AU	DJIA	WIG20	Inflacja	BWUK
Średnia	23120	4891,7	24350	2292,6	100,18	5,25
Mediana	25232	4737,3	24682	2289,7	100,2	5,6
Minimalna	3987,4	4414,5	19885	2010,8	99,8	-2,0
Maksymalna	46930	5986,3	28169	2524,5	101,1	10,2
Odchylenie standardowe	12041	430,17	2221,8	117,19	0,29	3,11
Współczynnik zmienności [%]	52,08	9,88	9,13	5,11	0,33	59,14

Źródło: opracowanie własne.

W Tabeli 4 zaobserwować można, iż największą średnią cenę przyjmuje wskaźnik DJIA, ponieważ jego wartość wynosi aż 24 350 USD. Wysoką średnią cenę również posiada zmienna objaśniana BTC, ponieważ wynosi ona 23 120 PLN. Inwestor chcąc zainwestować w powyżej wspomniane indeksy giełdowe musi liczyć się z dużym wkładem kapitału. Najmniejszymi średnimi cenami charakteryzuje się cena złota i WIG 20, które są tańsze w zakupie. Wskaźnik zmienności wskazuje, że w badanym okresie najbardziej stabilny jest kurs WIG20, przy jednoczesnej niskiej średniej cenie tego indeksu czyni go najbezpieczniejszą inwestycją. Wyznaczone statystyki wskazują na dużą zmienność kursu bitcoina (52% wartości średniej) oraz wskaźnika BWUK (59%). Z powyższych analiz wynika, iż najbardziej ryzykowną inwestycją jest BTC. Inwestując w kryptowalutę bitcoin należy liczyć się z zainwestowaniem wysokiego kapitału, przy jednoczesnym wysokim współczynniku zmienności. Świadczy to o szybkiej możliwości wzbogacenia się, ale również z szybkim poniesieniem dużych strat.

Analizę rozpoczęto od identyfikacji składowych w szeregu notowań BTC, takich jak trend: wielomianowy (oznaczonych w modelu przez t i sq_t jako t^2) oraz składowe sezonowe (oznaczane dalej zmienną dmi, gdzie i oznacza i-ty miesiąc, i=1,2,...12). Wyniki przedstawiono w Tabeli 5. Do obliczeń wykorzystano program Gretl.

Tabela 5. Model 1

Estymacja KMNK, wykorzystane obserwacje 2017:01-2019:12 (N = 36)
Zmienna zależna (Y): BTC

	współczynnik	błąd sta	ndardowy	t-Studenta	wartość p
const	8731,20	9127,	34	0,9566	0,3492
dml	-3159,84	9548,	73	-0,3309	0,7438
dm2	-7262,84	9509,	36	-0,7638	0,4531
dm3	-8298,39	9476,	37	-0,8757	0,3907
dm4	-8705,77	9447,	83	-0,9215	0,3668
dm5	-4806,04	9422,	27	-0,5101	0,6151
dm6	-2310,72	9398,	72	-0,2459	0,8081
dm7	-1932,83	9376,	69	-0,2061	0,8386
dm8	-1493,24	9356,	20	-0,1596	0,8747
dm9	-3022,80	9337,	74	-0,3237	0,7492
dm10	-3307,00	9322,	36	-0,3547	0,7262
dmll	-2454,40	9311,	58	-0,2636	0,7946
sq t	-31,1508	19,	8248	-1,571	0,1304
t	1746,35	758,	715	2,302	0,0312
redn.aryt.	zm.zależnej 2	23119,52	Odch.sta	nd.zm.zależn	nej 12040,
uma kwadra	atów reszt 2	2,86e+09	Błąd sta	ndardowy res	szt 11399,
sp. determ	n. R-kwadrat (0,436615	Skorygow	any R-kwadra	at 0,1037
(13, 22)	1	1,311512	Wartość	p dla testu	F 0,2781
ogarytm wi	arygodności -	378,5041	Kryt. in	form. Akaike	e'a 785,00
ryt. bayes	. Schwarza	807,1775	Kryt. Ha	nnana-Quinna	792,74
	reszt - rhol (0,865424	Cont Du	rbina-Watson	na 0,2684

Z zamieszczonej powyżej Tabeli 5 można odczytać, iż w modelu nie występuje sezonowość, ponieważ wszystkie parametry stojące przy zmiennych objaśniających dmi (i=1,...12) nie są istotne statystycznie. Podobnie należy przyjąć, że w szeregu notowań BTC nie występuje trend wielomianowy, ale istotna jest rosnąca tendencja liniowa.

Kolejnym krokiem w analizie jest budowa modelu regresji wielorakiej. Konstrukcję modelu przeprowadzono za pomocą klasycznej metody najmniejszych kwadratów, dokonując wyboru zmiennych objaśniających metodą eliminacji krokowej wstecznej. Do zbioru potencjalnych zmiennych objaśniających włączono wszystkie zmienne wymienione w Tabeli 4 (za wyjątkiem BTC, będącą zmienną objaśnianą) oraz ich opóźnienia o jeden miesiąc. W gospodarce, reakcja konsumentów na występujące zmiany nie następuje od razu, w związku z czym zastosowano opóźnia zmiennych objaśniających. Przy budowanie modelu również uwzględniono wyniki z Tabeli 5. Na podstawie opisanych powyżej danych wygenerowany został *Model 2*, zaprezentowany w Tabeli 6.

Tabela 6. Model 2

Estymacja KMNK, wykorzystane obserwacje 2017:02-2019:12 (N = 35)

Zmienna zależna (Y): BTC

	współczynnik	błąd standardowy	t-Studenta	wartość p	
const	-198481	530894	-0,3739	0,7119	
t	-1743,04	441,960	-3,944	0,0006	***
AU	28,3006	9,92217	2,852	0,0090	***
AU_1	-17,8053	9,62137	-1,851	0,0771	*
DJIA	6,95189	2,45706	2,829	0,0095	***
DJIA_1	2,24503	2,70758	0,8292	0,4155	
WIG20	22,5341	25,1447	0,8962	0,3794	
WIG20_1	-8,34658	22,9612	-0,3635	0,7195	
Inflacja	-6709,00	4152,25	-1,616	0,1198	
Inflacja_1	6086,16	4138,09	1,471	0,1549	
BWUK	549,836	689,737	0,7972	0,4335	
BWUK_1	1080,71	716,902	1,507	0,1453	
Średn.aryt.zm	.zależnej 2366	6,15 Odch.stand	.zm.zależnej	11754,52	
Suma kwadrató	w reszt 9,38	e+08 Błąd standa	ardowy reszt	6387,097	
Wsp. determ.	R-kwadrat 0,80	0269 Skorygowany	y R-kwadrat	0,704745	
F(11, 23)	8,37	7698 Wartość p	dla testu F	0,000011	
Logarytm wiar	ygodności -348,	9866 Kryt. info	rm. Akaike'a	721,9733	
Kryt. bayes.	Schwarza 740,	6374 Kryt. Hanna	ana-Quinna	728,4161	
Autokorel.res	zt - rhol 0,22	5854 Stat. Durbi	ina-Watsona	1,546029	

W powstałym *Modelu 2* zaobserwować można, iż wiele zmiennych nie ma istotnego wpływu na zmienną objaśnianą. Świadczy o tym *wartość p* większa od zadanego poziomu istotności 0,05. W celu eliminacji zmiennych niemających istotnego wpływu przeprowadzono test pominiętych zmiennych. Otrzymany w ten sposób *Model 3*, zaprezentowano w Tabeli 7. Oszacowany model poddano weryfikacji przeprowadzono badania założeń klasycznej metody najmniejszych kwadratów dotyczących własności składnika losowego oraz badanie współliniowości zmiennych objaśniających. W celu zapewnienia poprawności modelu konieczne jest przeprowadzenie następujących testów:

- 1. test homoskedastyczności wariancji reszt modelu:
 - H_o heteroskedastyczność reszt nie występuje;
 - H₁ heteroskedastyczność reszt występuje;
- 2. test autokorelacji reszt modelu:
 - H_o brak autokorelacji składnika losowego;
 - H₁ autokorelacja składnika losowego występuje;
- 3. test normalności rozkładu reszt modelu:
 - H_o składnik losowy ma rozkład normalny;
 - H_1 składnik losowy nie ma rozkładu normalny;
- 4. test współliniowości zmiennych objaśniających.

Do zweryfikowania powyższych hipotez wykorzystano testy dostępne w programie Gretl, odpowiednio: test White'a, test autokorelacji reszt, test normalności rozkładu reszt, test oceny współliniowości.

Tabela 7. Model 3

Estymacja KMNK, wykorzystane obserwacje 2017:02-2019:12 (N = 35) Zmienna zależna (Y): BTC

	współczynnik	błąd standar	dowy t-Studenta	wartość p	
const	-192873	42169,3	-4.574	8,28e-05	***
t	-1584,11	368,660	-4,574 -4,297	0,0002	***
AU	26,9472	9,8851	2,726	0,0108	**
AU 1			-2,141		
DJIA		1,5749			
BWUK_1	1470,17			0,0220	**
Średn.aryt.	zm.zależnej 2	3666,15 Odch	.stand.zm.zależne	j 11754,5	2
Suma kwadra	tów reszt 1	,23e+09 Błąd	standardowy resz	t 6508,05	1
	. R-kwadrat 0	,738536 Skor	ygowany R-kwadrat	0,69345	6
F(5, 29)	1	6,38282 Wart	ość p dla testu B	1,10e-0	7
Logarytm wi	arygodności -3	53,6998 Kryt	. inform. Akaike'	a 719,399	5
Kryt. bayes	. Schwarza 7	28,7316 Kryt	. Hannana-Quinna	722,621	0
			. Durbina-Watsona		
z wartośc Test LM na Hipoteza Statystyk z wartośc Test na norm Hipoteza Statystyk	autokorelację zerowa: brak a a testu: LMF = ią p = P(F(12, malność rozkła	wadrat(20) > 10 rzędu 12 - utokorelacji si 1,4336 17) > 1,4336) du reszt - ik losowy ma ro wadrat(2) = 2,5	ozkład normalny		
VIF (Varian	nce Inflation 1	factors) - mini	rozdęcia wariano .malna możliwa wa .em współliniowoś	rtość = 1.	
	t 11,456				
7	AU 14,941				
	1 12,078				
	IA 8,918				
	1 2,933				

Źródło: opracowanie własne.

W zaprezentowanym *Modelu 3* uzyskano pięć zmiennych objaśniających, które należy wskazać jako istotne statystycznie. Istotnym współczynnikiem, na który należy zwrócić uwagę, jest R- kwadrat, zwany współczynnikiem determinacji. Informuje on o dopasowaniu modelu do zmienności zmiennej objaśnianej. Poziom współczynnika w modelu jest wysoki; wynosi ok. 74%. Następnie przeprowadzono testy weryfikujące poprawność modelu. Uzyskane wyniki świadczą o:

- homoskedastyczności reszt modelu brak podstaw do odrzucenia hipotezy zerowej w teście White'a;
- braku autokorelacji reszt modelu brak podstaw do odrzucenia hipotezy zerowej;
- braku podstaw do odrzucenia hipotezy zerowej zakładającej, że składnik losowy ma rozkład normalny;
- występowaniu współliniowości pomiędzy zmiennymi objaśniającymi.

Ze względu na wystąpienie współliniowości pomiędzy zmiennymi objaśniającymi, podjęto próbę zmodyfikowania powyższego modelu.

Czwarty model został zbudowany na takich samych zmiennych objaśniających jak poprzedni, jednak w modelu uwzględniono opóźnienie zmiennej objaśnianej (Tabela 8).

Tabela 8. Model 4

```
Estymacja KMNK, wykorzystane obserwacje 2017:02-2019:12 (N = 35)
Zmienna zależna (Y): BTC

współczynnik błąd standardowy t-Studenta wartość p
```

```
Test na normalność rozkładu reszt -
Hipoteza zerowa: składnik losowy ma rozkład normalny
Statystyka testu: Chi-kwadrat(2) = 9,35435
z wartością p = 0,00930528
```

Ocena współliniowości VIF(j) - czynnik rozdęcia wariancji VIF (Variance Inflation Factors) - minimalna możliwa wartość = 1.0 Wartości > 10.0 mogą wskazywać na problem współliniowości - rozdęcia wariancji

```
Inflacja_1 1,000
BTC 1 1,000
```

Źródło: opracowanie własne.

Należy zauważyć, że model jest dobrze dopasowany do danych rzeczywistych - w ok. 84,7% tłumaczy zmienność kursu BTC. Wykonano również testy weryfikacji modelu, które świadczą o:

- homoskedastyczności reszt modelu brak podstaw do odrzucenia hipotezy zerowej w teście White'a;
- braku autokorelacji reszt modelu brak podstaw do odrzucenia hipotezy zerowej;
- odrzuceniu hipotezy zerowej na korzyść hipotezy alternatywnej, co jest oznaką,
 że rozkład składników losowych nie jest rozkładem normalnym;
- braku wystąpienia współliniowości pomiędzy zmiennymi objaśniającymi.
 Powyższa analiza wskazuje, że model można uznać za poprawnie zweryfikowany.
 Na poniższym Wykresie 2 zaprezentowano dopasowanie danych uzyskanych na podstawie modelu do rzeczywistych wartości kursu BTC.

Wykres 2. Wykres dopasowania Modelu 3 Źródło: opracowanie własne.

Oszacowany *Model 4* przyjmuje postać:

$$\widehat{BTC} = -760 616 + 7 630,51 * Inflacja_{t-1} + 0,870494 * BTC_{t-1}$$
 (1)

Ponieważ model został pozytywnie zweryfikowany można wnioskować, że aktualny poziom kursu BTC zależy, w sposób istotny statystycznie, od jego wartości w poprzednim miesiącu oraz opóźnionego o jeden miesiąc poziomu inflacji. Każdy wzrost inflacji o jedną jednostkę powoduje zwiększenie się ceny bitcoina o 7 630,51 zł, przy założeniu, że pozostała zmienna w modelu nie ulega zmianie. Wzrost ceny bitcoina w poprzednim

miesiącu o jedną jednostkę powoduje średnio wzrost aktualnego kursu bitcoina średnio o 0,87 zł, przy założeniu, że poziom inflacji nie ulega zmianie.

Z przeprowadzonych badań wynika, iż w latach 2017-2020 największy wpływ na cenę bitcoina miała jego cena i inflacja, opóźnione o jeden miesiąc. Opóźnienie wynika z faktu, iż konsumenci na rynku nie są w stanie reagować od razu na zachodzące zmiany w gospodarce. Skutki zachodzących zamian są widoczne po pewnym czasie, w tym przypadku po miesiącu. Przeprowadzona analiza nie potwierdziła zależności kursu bitcoina od wskazanych początkowo wskaźników makroekonomicznych, ceny złota, wartości indeksów WIG20 i DJIA oraz bieżącego wskaźnika ufności konsumenckiej. Należy więc przyjąć, iż wpływ na cenę ma zapotrzebowanie inwestorów na dane dobro, jakim są kryptowaluty. W przypadku występowania wysokiej inflacji, konsumenci inwestują swoje oszczędności w dobra, na których wartość pieniądza nie straci. Powoduje to wzmożony popyt na dane dobro. Również konsumenci widząc, że cena bitcoina w poprzednim miesiącu urosła, oczkują jej wzrostu również w kolejnym. W ten sposób zwiększa się zapotrzebowanie na zakup kryptowaluty bitcoin, co z kolei powoduje wzrost jej ceny.

2.1.2. Modelowanie kursu BTC w okresie 2020 - 2022

W pracy przeprowadzono analizę dla drugiego okresu, przypadającego na czasy pandemiczne. Podobnie jak dla pierwszego okresu, dokonano obliczeń podstawowych wartości statystki opisowej.

Tabela 9. Statystyka opisowa dla okresu 2020-2022

	BTC	AU	DJIA	WIG20	Inflacja	BWUK
Średnia	119190	6998,5	30688	1986,5	100,58	-19,55
Mediana	133080	6943,5	30753	1982	100,4	-20
Minimalna	27770	5961	22768	1572,8	99,7	-39
Maksymalna	244730	8353	35426	2366,7	103,3	3,7
Odchylenie standardowe	73821	456,57	4140,8	247,82	0,76	10,48
Współczynnik zmienności [%]	61,94	6,52	13,49	12,48	0,75	53,59

Źródło: opracowanie własne.

Z przedstawionych danych wynika, że wpływ pandemii był kluczowy dla analizowanych danych. Najistotniejsze zmiany dotyczą zmiennej objaśnianej, ponieważ średnia cena omawianej kryptowaluty wzrosła aż o ponad 400%. Dodatkowo współczynnik zmienności, w porównaniu do uprzednio analizowanego roku,

wzrósł o prawie 10 punktów procentowych. Wymienione zmiany dowodzą bardzo dużej niestabilności ceny bitcoina. Inwestowanie w kryptowalutę bitcoin stało się w analizowanych latach jeszcze bardziej ryzykowne niż w poprzednim okresie. Kolejne kluczowe zmiany obserwuje się w przypadku współczynnika zmienności dla wskaźnika DIJA oraz WIG 20. Wzrósł on znacznie, przekraczając ponad 12%. Powodem wzrostu wskaźnika zmienności jest prawie dwukrotny wzrost odchylenia standardowego w analizowanych zmiennych. Widoczne zmiany zachodziły również we wskaźniku BWUK, który znacznie zmienił swoją średnią wartość. W latach 2017-2019 jego średnia wynosiła 5,25, natomiast już w 2020-2022 spadła aż do -19,552. Oznacza to, iż nastroje konsumentów w większości są negatywne. W obserwowanym przedziale czasowym można również dostrzec powolnie rosnącą inflację, która swoją maksymalną wartość (103,3) osiąga w ostatnim miesiącu analizowanego okresu. W poprzednim przedziale najbardziej stabilnym instrumentem był WIG20 (ok. 5% zmienności w stosunku do średniej) natomiast w okresie 2020-2022 najbardziej stabilne okazują się być ceny złota (ok. 6%). Spadek średniej ceny WIG20 o ok. 13%, w porównaniu do poprzedniego analizowanego okresu, świadczy o spadku zainteresowaniu tym indeksem giełdowym. Natomiast cena złota wzrosła o ok. 43% w porównaniu do średniej ceny z lat 2017-2019. Oznacza to, iż w czasie pandemii covid-19 najbardziej bezpieczniejszą oraz opłacalną inwestycją było złoto.

W pierwszej fazie konstrukcji modelu zbadano występowanie trendu oraz wahań sezonowych w szeregu obserwacji wartości kursu BTC. Wyniki zaprezentowano w Tabeli 10.

Tabela 10. Model 5

Estymacja KMNK,	wykorzystane	obserwacje	2020:01-2022:03	(N = 27)	
Zmienna zależna	(Y): BTC				

	współczynnik	blad star	ndardowy	t-Studenta	wartość p	
const	-36662,1	41438,	, 3	-0,8847	0,3924	
t	15625,2	4690	.30	3,331	0,0054	**
sq t	-260,192	163,	356	-1,593	0,1352	
dm1	11812,5	37930,	. 6	0,3114	0,7604	
dm2	13812,1	37771,	1	0,3657	0,7205	
dm3	24334,3	37702	6	0,6454	0,5299	
dm4	41322,5	41210	. 0	1,003	0,3343	
dm5	10109,8	41029	4	0,2464	0,8092	
dm6	-18671,9	40889	3	-0,4566	0,6555	
dm7	-23500,9	40770	. 6	-0,5764	0,5742	
dm8	-15310,0	40661	. 7	-0,3765	0,7126	
dm9	-20040,7	40558,	. 6	-0,4941	0,6295	
dm10	-6178,75	40465	. 5	-0,1527	0,8810	
dmll	9672,87	40394	. 1	0,2395	0,8145	
redn.aryt.	zm.zależnej	119185,4	Odch.sta	and.zm.zależn	ej 73820,	90
uma kwadra		2,12e+10	Blad sta	andardowy res	zt 40364,	59
sp. determ	. R-kwadrat	0,850510	Skorygov	wany R-kwadra	t 0,7010	20
(13, 13)		5,689406	Wartość	p dla testu	F 0,0017	98
ogarytm wi	arygodności -	314,7985	Kryt. in	form. Akaike	'a 657,59	70
ryt. bayes	. Schwarza	675,7387		nnana-Quinna		14
		0,698917	Stat. Du	rbina-Watson		

Podobnie jak poprzednio w szeregu kursu bitcoina nie zidentyfikowano istotnych statystycznie wahań sezonowych oraz trendu wielomianowego drugiego stopnia. Występuje jedynie trend liniowy.

Kolejnym krokiem analizy, podobnie jak we wcześniejszych modelach, było zastosowanie klasycznej metody najmniejszych kwadratów do oszacowania modelu regresji liniowej dla zmiennej BTC w zależności od zaproponowanych potencjalnych zmiennych (Tabela 11).

Tabela 11. Model 6

Model 2: Estymacja KMNK, wykorzystane obserwacje 2020:02-2022:03 (N = 26) Zmienna zależna (Y): BTC

	współczynni	błąd standar	dowy t-Studenta	wartość p	
const	-2,49220e	+06 1,94227e	+06 -1,283	0,2203	
t	15819,9	5107,21	3,098	0,0079	***
AU	-55,9605	25,3370	-2,209	0,0444	**
AU_1	-60,5068	27,7205	-2,183	0,0466	**
DJIA	31,8176	7,36842	4,318	0,0007	***
DJIA 1	-37,2587	10,0973	-3,690	0,0024	***
WIG20	-223,355	86,0652	-2,595	0,0212	**
WIG20 1	139,541	85,9667	1,623	0,1268	
Inflacja	21083,3	7857,24	2,683	0,0178	**
Inflacja l	14328,6	14088,5	1,017	0,3264	
BWUK	1234,97	1182,07	1,045	0,3138	
BWUK_1	526,221	789,432	0,6666	0,5159	
Średn.aryt.z	m.zależnej 12:	2551,5 Odch.sta	nd.zm.zależnej	73139,16	
Suma kwadrate	ów reszt 5,	33e+09 Błąd sta	ndardowy reszt	19507,31	
Wsp. determ.	R-kwadrat 0,	960163 Skorygow	any R-kwadrat	0,928863	
F(11, 14)	30	67593 Wartość	p dla testu F	7,04e-08	
Logarytm wia:	rygodności -28	6,6870 Kryt. in	form. Akaike'a	595,3741	
Kryt. bayes.	Schwarza 61	,4713 Kryt. Ha	nnana-Quinna	599,7215	
Autokorel.res	szt - rhol 0,	126143 Stat. Du	rbina-Watsona	1,647238	

Z postaci *Modelu 6* można wnioskować, że nie wszystkie zmienne objaśniające uwzględnione w modelu mają istotny wpływ na zmienną objaśnianą. W celu eliminacji zbędnych zmiennych przeprowadzono test pominiętych zmiennych. Otrzymane wyniki zamieszczono w Tabeli 12.

Tabela 12. Model 7

Estymacja KMNK, wykorzystane obserwacje 2020:02-2022:03 (N = 26) Zmienna zależna (Y): BTC

		błąd standardowy	/ t-Studenta	wartość p	
const		630754	-1,087	0 2924	7/1
AU	-55,4118		-2,395	0,0284	**
AU 1	-60,1338	23,6751	-2.540	0.0211	
DJIA	30,9408	6,64180			
DJIA 1	-30,7173	6,81688	4,658 -4,506	0.0003	***
WIG20		67,4754		0.0017	***
WIG20 1	201,717		3,085	0,0067	***
		6078,61	2,496		**
t		2547,63		0,0002	***
Średn.arvt.	zm.zależnej l	.22551,5 Odch.st	and.zm.zależn	ej 73139,	16
		,97e+09 Błąd st			
		,955354 Skorygo			
F(8, 17)		5,47172 Wartość			
		87,1687 Kryt. i			
		03,6603 Kryt. H			
Autokorel.r	eszt - rhol 0	,177903 Stat. I	Ourbina-Watson	a 1.5385	52
Hipoteza Statystyk z wartośc Test LM na Hipoteza Statystyk	zerowa: hetero a testu: LM = ią p = P(Chi-k autokorelację zerowa: brak a a testu: LMF =	rwadrat(16) > 16,0 rzędu 12 – autokorelacji skła	eszt nie wystę 036) = 0,45045 adnika losoweg	puje 2	esztowej) –
Hipoteza Statystyk		nik losowy ma rozk wadrat(2) = 2,098	No. 1		
VIF (Varian	ce Inflation H	F(j) – czynnik roz Factors) – minimal azywać na problem	lna możliwa wa	rtość = 1.	
AU_ DJIA_ WIG2 WIG20_ Inflacj	U 6,555 1 5,609 A 55,430 1 57,374 0 20,460 1 19,393 a 1,555 t 27,027				

Po zbudowaniu modelu w oparciu o klasyczną metodę najmniejszych kwadratów i wykonaniu testu pominiętych zmiennych w modelu, zauważyć można, iż test autokorelacji reszt oraz ocena współliniowości nie zostały spełnione. W związku z powyższym, przystąpiono do modyfikacji *Modelu 7*. Ze względu na duży współczynnik

współliniowości usunięto z modelu zmienną DJIA_1. Następnie po wykonaniu testu pominietych zmiennych uzyskano *Model 8*.

współczynnik błąd standardowy t-Studenta wartość p

Tabela 13. Model 8

```
Estymacja KMNK, wykorzystane obserwacje 2020:02-2022:03 (N = 26) 
Zmienna zależna (Y): BTC
```

```
______
  const 450511 122217 3,686 0,0012 ***
t 10185,2 908,281 11,21 8,44e-011 ***
AU_1 -68,4732 18,5279 -3,696 0,0012 ***
Średn.aryt.zm.zależnej 122551,5 Odch.stand.zm.zależnej 73139,16
Suma kwadratów reszt 1,96e+10 Błąd standardowy reszt 29214,60
Wsp. determ. R-kwadrat 0,853213 Skorygowany R-kwadrat 0,840449
F(2, 23) 66,84480 Wartość p dla testu F 2,61e-10
Logarytm wiarygodności -302,6416 Kryt. inform. Akaike'a 611,2832
Kryt. bayes. Schwarza 615,0575 Kryt. Hannana-Quinna 612,3700 Autokorel.reszt - rhol 0,633153 Stat. Durbina-Watsona 0,700537
Test White'a na heteroskedastyczność reszt (zmienność wariancji resztowej) -
  Hipoteza zerowa: heteroskedastyczność reszt nie występuje
  Statystyka testu: LM = 7,16889
  z wartością p = P(Chi-kwadrat(5) > 7,16889) = 0,20838
Test LM na autokorelację rzędu 12 -
  Hipoteza zerowa: brak autokorelacji składnika losowego
  Statystyka testu: LMF = 5,79571
  z wartością p = P(F(12, 11) > 5,79571) = 0,00328599
Test na normalność rozkładu reszt -
  Hipoteza zerowa: składnik losowy ma rozkład normalny
  Statystyka testu: Chi-kwadrat(2) = 1,92642
  z wartością p = 0,381665
Ocena współliniowości VIF(j) - czynnik rozdęcia wariancji
VIF (Variance Inflation Factors) - minimalna możliwa wartość = 1.0
Wartości > 10.0 mogą wskazywać na problem współliniowości - rozdęcia wariancji
                 1,414
         AU 1 1,414
```

Źródło: opracowanie własne.

Do równania modelu zakwalifikowały się dwie zmienne, które należy uznać za istotne statystycznie. R kwadrat jest na bardzo wysokim poziomie, aż 85%. Świadczy to o bardzo wysokim dopasowaniu modelu. W celu weryfikacji tego modelu przeprowadzono również testy. Ich wyniki świadczą o:

- braku występowania heteroskedastyczności reszt modelu brak podstaw do odrzucenia hipotezy zerowej w teście White'a;
- występowaniu autokorelacji reszt modelu wartość p w teście na autokorelacje jest mniejsza od zadanego poziomu istotności 0,05, więc konieczne jest odrzucenie hipotezy zerowej;

- braku podstaw do odrzucenia hipotezy zerowej zakładającej, że składnik losowy ma rozkład normalny;
- braku wystąpienia współliniowości pomiędzy zmiennymi objaśniającymi.

Ze względu na autokorelację reszt modelu, podjęto próbę zmodyfikowania *Modelu 8*. Otrzymane wyniki zaprezentowano w Tabeli 14.

Tabela 14. Model 9

Estymacja KMNK, wykorzystane obserwacje 2020:03-2022:03 (N = 25) Zmienna zależna (Y): BTC

```
współczynnik błąd standardowy t-Studenta wartość p
  ______

    const
    -5,84971e+06
    1,34616e+06
    -4,345
    0,0003
    ***

    AU_1
    -44,8134
    15,2165
    -2,945
    0,0080
    ***

    DJIA
    12,5672
    1,43864
    8,735
    2,92e-08
    ***

    Inflacja
    27000,7
    6931,53
    3,895
    0,0009
    ***

    Inflacja_1
    31705,7
    9800,99
    3,235
    0,0042
    ***

Średn.aryt.zm.zależnej 126008,0 Odch.stand.zm.zależnej 72447,58
Suma kwadratów reszt 9,36e+09 Błąd standardowy reszt 21637,94
Wsp. determ. R-kwadrat 0,925663 Skorygowany R-kwadrat 0,910796
F(4, 20)
           62,26162 Wartość p dla testu F 5,28e-11
Logarytm wiarygodności -282,2393 Kryt. inform. Akaike'a 574,4785
Kryt. bayes. Schwarza 580,5729 Kryt. Hannana-Quinna 576,1688
Autokorel.reszt - rhol 0,229257 Stat. Durbina-Watsona 1,433653
Test White'a na heteroskedastyczność reszt (zmienność wariancji resztowej) -
  Hipoteza zerowa: heteroskedastyczność reszt nie występuje
  Statystyka testu: LM = 19,906
  z wartością p = P(Chi-kwadrat(14) > 19,906) = 0,133133
Test LM na autokorelację rzędu 12 -
  Hipoteza zerowa: brak autokorelacji składnika losowego
  Statystyka testu: LMF = 2,40151
  z wartością p = P(F(12, 8) > 2,40151) = 0,110194
Test na normalność rozkładu reszt -
  Hipoteza zerowa: składnik losowy ma rozkład normalny
  Statystyka testu: Chi-kwadrat(2) = 2,06196
  z wartością p = 0,356657
Ocena współliniowości VIF(j) - czynnik rozdęcia wariancji
VIF (Variance Inflation Factors) - minimalna możliwa wartość = 1.0
Wartości > 10.0 mogą wskazywać na problem współliniowości - rozdęcia wariancji
         AU 1 1,239
         DJIA 1,885
    Inflacja 1,515
  Inflacja 1 1,436
```

Źródło: opracowanie własne.

Model 9 zbudowano w oparciu o zmienne objaśniające, ich opóźnienia o jeden miesiąc, czas oznaczony jako "t" oraz opóźnienie zmiennej objaśnianej o jeden miesiąc. Następnie wykonano test pominiętych zmiennych i uzyskano cztery zmienne objaśniające.

Należy uznać je za istotne statystycznie. Wykonano również testy weryfikacji modelu, dowodzące o:

- homoskedastyczności reszt modelu brak podstaw do odrzucenia hipotezy zerowej w teście White'a;
- braku autokorelacji reszt modelu brak podstaw do odrzucenia hipotezy zerowej;
- braku podstaw do odrzucenia hipotezy zerowej zakładającej, że składnik losowy ma rozkład normalny;
- braku wystąpienia współliniowości pomiędzy zmiennymi objaśniającymi.

Spełnianie zostały wszystkie warunki, więc należy przyjąć model za poprawny. Również skorygowany R-kwadrat jest na wyższym poziomie niż w *Modelu 8*. Dowodzi to, iż *Model 9* jest lepiej dopasowany (R-kwadrat wynosi 92,6%). Zobrazowano to dokładnie na Wykresie 3.

Wykres 3. Wykres dopasowania Modelu 9 Źródło: opracowanie własne.

Równanie Modelu 9 wygląda następująco:

$$\widehat{BTC} = -5849706,24 - 44,81 * AU_{t-1} + 12,57 * DJIA_t + 27000,7 * Inflacja_t + 31705,7 * Inflacja_{t-1}$$
 (2)

Podobnie jak dla okresu 2017-2020, zaobserwować można, iż istotną zmienną objaśniającą jest inflacja, której wzrost powoduje wzrost ceny bitcoina. Kolejną istotną zmienną objaśniającą, która również powoduje wzrost ceny bitcoina, jest wskaźnik DIJA, którego

współczynnik wynosi ok. 12,57. Oznacza to, jeśli wartość wskaźnika DJIA wzrośnie o jedną jednostkę, przy jednoczesnym założeniu, że pozostałe zmienne w modelu nie ulegną zmianie spowoduje to wzrost ceny bitcoina o ok 13 zł. Ostatnią zmienną objaśniającą jest cena złota opóźniona o jeden miesiąc. W jej przypadku wzrost ceny o jedną jednostkę, przy założeniu, że pozostałe zmienne nie ulegną zmianie, spowoduje spadek ceny bitcoina o ok. 45 zł.

Znaczący wpływ na cenę bitcoina w analizowanych latach ma inflacja. Chęć inwestorów do ochrony swoich oszczędności spowodowała zwiększony popyt na inwestycje m.in. bitcoina. Istotną statystycznie zmienną jest również cena złota opóźniona o jeden miesiąc, ponieważ złoto uważane jest za jedno z najlepszych możliwych dóbr inwestycyjnych. W przypadku wzrostu ceny złota konsumenci wolą zakupić tego rodzaju dobro, gdyż należy do najmniej ryzykownych. W takim przypadku zmniejsza się popyt na zakup bitcoina, co z kolei skutkuje obniżeniem ceny tego surowca. Ostatnią zmienną jest wskaźnik DJIA, którego wzrost skutkuje wzrostem ceny bitcoina, przy założeniu, że pozostałe zmienne nie ulegną zmianie.

2.2. Ocena wpływu wybranych indeksów gieldowych oraz kryptowalut na poziom stóp zwrotu bitcoina

Poszukując odpowiedzi na pytanie, czy warto inwestować w bitcoina w dalszej części pracy podjęto próbę zidentyfikowania i oszacowania modelu regresji, dla stóp zwrotu inwestycji w bitcoina. Przyczyną tego jest fakt, iż inwestorzy rozpatrując możliwości inwestycyjne, nie kierują się tylko ceną danego dobra, a za kluczowy czynnik uznają możliwy zysk, który reprezentuje stopa zwrotu z danej inwestycji. Do roli zmiennych objaśniających zakwalifikowano stopy zwrotu z inwestycji w:

- złoto;
- DJIA;
- WIG20;
- cztery najpopularniejsze kryptowaluty.

W poniższej Tabeli 15 zamieszczono krótkie przedstawienie kryptowalut przyjętych do roli zmiennych objaśniających.

Tabela 15. Kryptowaluty zakwalifikowane jako zmienne objaśniające do modelu

Nazwa	Skrót	Rok powstania	Opis
Dogecoin	DOGE	2013	Dogecoin jest to kryptowaluta oparta na algorytmie LTC. Cechą charakterystyczną wspomnianej kryptowaluty jest, iż nie posiada ograniczonej liczby możliwych monet do wydobycia, co skutkuje, iż ma charakter inflacyjny. Głównym zastosowaniem dogecoina jest zbieranie funduszy dla działalności dobroczynnych oraz regulowanie podstawowych zobowiązań.
Ether	ETH	2015	Jest to waluta cyfrowa powstała na potrzeby regulowania opłat na platformie ethereum.
Litecoin	LTC	2011	Kryptowaluta uważana za podobną do bitcoina, jednak wykorzystuje inne algorytmy. Cechą charakterystyczną litecoina jest zastosowanie do szybkich i tanich płatności.
Ripple	XRP	2013	Kryptowaluta została stworzona w celu szybkiego dokonywania płatności transgranicznych w sektorze usług finansowych.

Źródło: opracowanie własne na podstawie Internet 31

Dla wymienionych zmiennych objaśniających i zmiennej objaśnianej obliczono stopy zwrotu. Dane zaprezentowane na Wykresie 4 obejmują przedział czasowy od lutego 2017 roku do marca 2022 roku.

Wykres 4. Stopy zwrotu dla zmiennych objaśniających i zmiennej objaśnianej dla lat 2017-2022 Źródło: opracowanie własne.

Aby poznać opłacalność inwestycji w wyróżnione instrumenty wyznaczono podstawowe statystyki opisowe dla zmiennych objaśniających i zmiennej objaśnianej.

Tabela 16. Podstawowe statystyki, miesięczna stopa zwrotu (od lutego 2017 do marca 2022)

Miara	Mir	nimum	Mak	simum	Średnia	Odchylenie	Współczynnik	Współczynnik
	Wartość	Data	Wartość	Data	(w %)	standardowe	zmienności	asymetrii
	(w %)		(w %)			(w p.p.)	[%]	
BTC	-37,92	30.11.2018	70,83	31.05.2017	9,53	26,012	272,91	0,3471
AU	-10,19	30.11.2020	10,76	31.08.2019	0,90	3,661	405,36	0,12287
DJIA	-13,74	31.03.2020	11,84	30.11.2020	1,01	4,5774	454,58	-0,56942
WIG20	-14,48	31.03.2020	20,72	30.11.2020	0,24	6,0702	2531,3	0,12893
DOGE	-53,82	31.03.2018	712,71	31.01.2021	33,37	124,08	371,8	3,9703
ETH	-54,11	31.03.2018	210,58	31.03.2017	17,20	47,111	273,89	1,8439
LTC	-42,94	31.03.2018	163,58	31.12.2017	11,53	39,298	340,88	1,3724
XRP	-65,93	31.12.2020	740,41	31.12.2017	29,94	118,42	395,52	4,1733

Źródło: opracowanie własne.

Z zamieszczonej Tabeli 16 można odczytać, iż kryptowaluty należą do dóbr inwestycyjnych, o bardzo wysokim ryzyku. Dowodzi temu bardzo duża rozpiętość pomiędzy wartościami minimalnymi a maksymalnymi dla wszystkich kryptowalut, duże odchylenie standardowe i w konsekwencji wysoka wartość współczynnika zmienności. Największą niepewnością charakteryzuje się kryptowaluta ripple i dogecoin, ponieważ ich

odchylenie standardowe wynosi odpowiednio 118 i 124 punktów procentowych. Co oznacza, że średnio na jednostkę stopy zwrotu przypada, odpowiednio, 118 i 124 jednostek ryzyka. Należy też zwrócić uwagę na bardzo wysoką dochodowość kryptowalut. Dowodem możliwości zdobycia wysokich zysków jest maksymalna wartość stóp zwrotu występująca w ripple oraz dogecoin, przekraczająca ponad 700%. Należy także zaznaczyć, iż wartości minimalne w przypadku stóp zwrotu kryptowalut są najmniejsze. Dodatkowo należy również zwrócić uwage na współczynnik asymetrii dla stóp zwrotu kryptowalut, który przyjmuje duże wartości dodatnie. Oznacza to rozkład prawostronny w którym większość obserwacji skupia się na wartościach mniejszych od średniej arytmetycznej. Dowodzi to, że w bardzo krótkim czasie można stracić zainwestowany kapitał. Statystyki stóp zwrotu bitcoina w porównaniu do stóp zwrotu pozostałych analizowanych kryptowalut okazują się być najstabilniejsze (stopa zwrotu bitcoina charakteryzuje się najmniejszym odchyleniem standardowym, współczynnikiem zmienności i asymetrii). Jednak porównując stopy zwrotu bitcoina ze stopami zwrotu indeksów giełdowych, nadal kryptowaluta bitcoin wydaje się ryzykowną inwestycją. Za najbezpieczniejszą inwestycję należy uznać inwestycję w złoto, ponieważ jej wartość minimalna jest najbliższa zera oraz charakteryzuje się najmniejszym odchyleniem standardowym (wynoszącym 3,661 punktu procentowego).

W celu poznania relacji między zaproponowanymi zmiennymi wyznaczono macierz współczynników korelacji, zamieszczoną poniżej (Tabela 17).

Tabela 17. Macierz korelacji

Źródło: opracowanie własne.

Z zamieszczonej macierzy można odczytać, iż najsilniejszą korelację dodatnią ze stopą zwrotu bitcoina przejawia stopa zwrotu litecoina. Stopy zwrotu pozostałych kryptowalut są umiarkowanie skorelowane ze stopą zwrotu BTC. Natomiast korelację stopy zwrotu BTC ze stopami zwrotu z inwestycji w złoto i indeksy giełdowe należy uznać za słabą występuje słaba zależność lub nawet jej brak.

Podobnie jak poprzednio schemat konstrukcji modelu obejmowała zbadanie czy w szeregu czasowym zmiennej objaśnianej występują wahania sezonowe oraz trend.

Tabela 18. Model 10 miesięcznych stóp zwrotu z inwestycji BTC

Estymacja KMNK, wykorzystane obserwacje 2017:04-2022:03 (N = 60) Zmienna zależna (Y): BTC

	współczynnil	c błąd sta	ndardowy	t-Studenta	wartość p
const	27,6951	17,25	46	1,605	0,1153
dml	-12,8329	17,13	45	-0,7489	0,4577
dm2	1,22571	17,13	90	0,07152	0,9433
dm3	-12,4799	17,14	71	-0,7278	0,4704
dm4	10,3262	17,21	.51	0,5998	0,5516
dm5	3,52522	17,19	47	0,2050	0,8385
dm6	-7,14279	17,17	78	-0,4158	0,6795
dm7	-1,03821	17,16	41	-0,06049	0,9520
dm8	2,73901	17,15	30	0,1597	0,8738
dm9	-18,8535	17,14	44	-1,100	0,2772
dm10	14,5838	17,13	82	0,8510	0,3992
dm11	-5,77042	17,13	344	-0,3368	0,7378
sq t	0,0146510	0,01	30527	1,122	0,2675
t	-1,10141	0,87	3098	-1,261	0,2135
redn.ary	t.zm.zależnej	9,625449	Odch.sta	nd.zm.zależn	ej 26,21678
uma kwadratów reszt		33757,44 Błąd standardowy reszt		zt 27,08980	
sp. deter	rm. R-kwadrat	0,167549	Skorygow	any R-kwadra	t -0,067709
(13, 46)		0,712193	Wartość	p dla testu	F 0,741781
ogarytm t	wiarygodności -	-275,1147	Kryt. in	form. Akaike	'a 578,2293

Źródło: opracowanie własne.

Z uzyskanej postaci *Modelu 10* i statystyk można wnioskować o braku występowania w stopach zwrotu z bitcoina wahań sezonowych, oraz trendu.

589,6983

1,580473

Kryt. bayes. Schwarza 607,5501 Kryt. Hannana-Quinna

Autokorel.reszt - rhol 0,205288 Stat. Durbina-Watsona

Następnie zbudowano *Model 11* zawierający zmienne objaśniające, przedstawione na Wykresie 4 oraz ich wartości opóźnione o jeden miesiąc i dwa miesiące.

Tabela 19. Model 11 miesięcznych stóp zwrotu z inwestycji BTC

Estymacja KMNK, wykorzystane obserwacje 2017:04-2022:03 (N = 60) Zmienna zależna (Y): BTC

	współczynnik	błąd sta	ndardowy	t-Studenta	wartość	p
const	6,78345	2,491	.11	2,723	0,0097	***
AU	-0,309017	0,511	.045	-0,6047	0,5490	
AU 1	-1,80870	0,604	668	-2,991	0,0049	***
AU 2	0,141534	0,672	821	0,2104	0,8345	
DJIA	1,50639	0,589	543	2,555	0,0147	**
DJIA 1	-0,995681	0,640	265	-1,555	0,1282	
DJIA 2	0,0269512	0,614	1975	0,04382	0,9653	
WIG20	-0,755773	0,450	808	-1,676	0,1019	
WIG20 1	0,517685	0,514	205	1,007	0,3204	
WIG20 2	-0,306875	0,487	944	-0,6289	0,5332	
Doge	-0,0173848	0,022	8939	-0,7594	0,4523	
Doge 1	-0,00411516	0,017	5841	-0,2340	0,8162	
Doge 2	0,00457950	0,017	4405	0,2626	0,7943	
Eth	0,370178	0,086	3137	4,289	0,0001	***
Eth 1	-0,0518753	0,076		-0,6816	0,4996	
Eth 2	-0,0259098	0,061	2188	-0,4232	0,6745	
Ltc	0,331921	0,103	090	3,220	0,0026	***
Ltc 1	0,0459685	0,100	0061	0,4594	0,6486	
Ltc 2	0,234255	0,079	2919	2,954	0,0054	***
Xrp	-0,0527212	0,026	1425	-2,017	0,0508	*
Xrp 1	-0,0951434	0,026	8140	-3,548	0,0011	***
Xrp_2	-0,0462896	0,026	3987	-1,753	0,0876	*
redn.aryt	.zm.zależnej 9	,625449	Odch.sta	nd.zm.zależn	ej 26,21	678
ıma kwadra	atów reszt 5	770,657	Błąd sta	ndardowy res	zt 12,32	312
sp. determ. R-kwadrat		0,857697 Skorygov		any R-kwadra	t 0,779	056
(21, 38)	1	0,90646	Wartość	p dla testu	F 2,44e	-10
garytm w	iarygodności -2	22,1222	Kryt. in	form. Akaike	'a 488,2	444
ryt. bayes	s. Schwarza S	34,3200	Kryt. Ha	nnana-Quinna	506,2	671
itokorel.	reszt - rhol (,282404	Stat. Du	rbina-Watson	a 1,409	039

Źródło: opracowanie własne.

Pomimo dobrego dopasowania *Modelu 11* do danych rzeczywistych, nie można go uznać za poprawnie zweryfikowany. Zawiera bowiem wiele zmienych objaśnajacych, które należy uznać za nieistotne statystycznie. W celu weliminowania tych zmiennych przeprowadzozno test pominiętych zmiennych, którego wyniki zamieszczono w Tabeli 20.

Tabela 20. Model 12 miesięcznych stóp zwrotu z inwestycji BTC

Estymacja KMNK, wykorzystane obserwacje 2017:04-2022:03 (N = 60) Zmienna zależna (Y): BTC

	współczynnik	błąd sta	andardowy	t-Studenta	wartość p	
const	0,0669724	0,018	34467	3,631	0,0006	***
AU 1	-1,88431	0,500	0064	-3,768	0,0004	***
Eth	0,426019	0,061	16518	6,910	5,77e-09	***
Ltc	0,299077	0,075	3508	3,969	0,0002	***
Xrp	-0,0724871	0,021	11356	-3,430	0,0012	***
Xrp_1	-0,0798355	0,014	15823	-5,475	1,17e-06	***
Średn.aryt	.zm.zależnej	0,096254	Odch.sta	and.zm.zależr	nej 0,2621	68
Suma kwadra	atów reszt	0,865841	Błąd sta	andardowy res	szt 0,1266	26
Wsp. determ	m. R-kwadrat	0,786486	Skorygov	wany R-kwadra	at 0,7667	16
F(5, 54)		39,78206	Wartość	p dla testu	F 6,27e-	17
Logarytm w	iarygodności	42,01565	Kryt. ir	nform. Akaike	e'a -72,031	29
Kryt. baye:	s. Schwarza -	59,46522	Kryt. Ha	annana-Quinna	a -67,116	01
Autokorel.:	reszt - rhol	0,254265	Stat. Du	rbina-Watsor	na 1,4269	25

Źródło: opracowanie własne.

Uzyskany model należy zmodyfikować, ze względu na brak koincydencji (znak współczynnika korelacji zmiennej Xrp ze zmienną BTC nie jest taki sam jak znak parametru stojącego przy zmiennej Xrp w oszacowanym modelu).

W związku z powyższym z modelu wyeliminowano zmienną Xrp. W dalszym etapie ponownie wykonano test pominiętych zmiennych i uzysakne wyniki zaprezentowano w Tabeli 21.

Tabela 21. Model 13 miesięcznych stóp zwrotu z inwestycji BTC

Estymacja KMNK, wykorzystane obserwacje 2017:04-2022:03 (N = 60) Zmienna zależna (Y): BTC

```
współczynnik błąd standardowy t-Studenta wartość p

        const
        6,74758
        2,01703
        3,345
        0,0015
        ***

        AU_1
        -2,11729
        0,541736
        -3,908
        0,0003
        ***

        Eth
        0,385020
        0,0661350
        5,822
        3,12e-07
        ***

        Ltc
        0,166814
        0,0707846
        2,357
        0,0220
        **

        Xrp_1
        -0,0743147
        0,0158479
        -4,689
        1,85e-05
        ***

Średn.aryt.zm.zależnej 9,625449 Odch.stand.zm.zależnej 26,21678
Suma kwadratów reszt 10544,39 Błąd standardowy reszt 13,84616
Wsp. determ. R-kwadrat 0,739978 Skorygowany R-kwadrat 0,721067
                 39,13010 Wartość p dla testu F 1,75e-15
F(4, 55)
Logarytm wiarygodności -240,2064 Kryt. inform. Akaike'a 490,4129
Kryt. bayes. Schwarza 500,8846 Kryt. Hannana-Quinna 494,5089
Autokorel.reszt - rhol 0,212748 Stat. Durbina-Watsona 1,537267
Test White'a na heteroskedastyczność reszt (zmienność wariancji resztowej) -
  Hipoteza zerowa: heteroskedastyczność reszt nie występuje
  Statystyka testu: LM = 7,13879
  z wartością p = P(Chi-kwadrat(14) > 7,13879) = 0,929229
Test LM na autokorelację rzędu 12 -
  Hipoteza zerowa: brak autokorelacji składnika losowego
  Statystyka testu: LMF = 1,88353
  z wartością p = P(F(12, 43) > 1,88353) = 0,0643004
Test na normalność rozkładu reszt -
  Hipoteza zerowa: składnik losowy ma rozkład normalny
  Statystyka testu: Chi-kwadrat(2) = 4,69422
  z wartością p = 0,095645
Ocena współliniowości VIF(j) - czynnik rozdęcia wariancji
VIF (Variance Inflation Factors) - minimalna możliwa wartość = 1.0
Wartości > 10.0 mogą wskazywać na problem współliniowości - rozdęcia wariancji
          AU 1
                 1,225
           Eth 2,191
           Ltc 2,298
        Xrp 1 1,117
```

Źródło: opracowanie własne.

W zamieszczonym *Modelu 13* występuje wysoki poziom współczynnika R kwadrat (ok. 74%). Świadczy to o wysokim dopasowaniu modelu do zmiennej objaśnianej. Wykonano również testy weryfikacji modelu, które dowodzą o:

- homoskedastyczności reszt modelu brak podstaw do odrzucenia hipotezy zerowej w teście White'a;
- braku autokorelacji reszt modelu brak podstaw do odrzucenia hipotezy zerowej;
- braku podstaw do odrzucenia hipotezy zerowej zakładającej, że składnik losowy ma rozkład normalny;
- braku wystąpienia współliniowości pomiędzy zmiennymi objaśniającymi.

Spełnione zostały wszystkie warunki weryfikujące poprawność modelu. Należy uznać zatem model za poprawny. Na poniższym Wykresie 5 zaprezentowano dopasowanie modelu do zmiennej objaśnianej.

Wykres 5. Wykres dopasowania Modelu 12 miesięcznych stóp zwrotu z inwestycji BTC Źródło: opracowanie własne.

Pomimo licznych wahań losowych, zawartych na wykresie stopy zwrotu bitcoina, można zaobserwować wysokie dopasowanie modelu. Równanie regresji wielorakiej dla stóp zwrotu bitcoina prezentuje się następująco:

$$\widehat{BTC} = 6,748 - 2,117 * AU_{t-1} + 0,3850 * Eth + 0,1668 * Ltc - 0,0743 * Xrp_{t-1}$$
 (3)

Można zauważyć, że wraz ze wzrostem zmiennych ether i litecoin, następuje wzrost stóp zwrotu bitcoina. Natomiast wraz ze wzrostem wartości stóp zwrotu z inwestycji w złoto i ripple opóźnionych o jeden miesiąc następuje spadek stóp zwrotu kursu bitcoina.

3. Zastosowanie wybranych technik modelowania szeregów czasowych prognozowania stóp zwrotu z inwestycji w bitcoiny BTC/PLN

W modelowaniu ekonometrycznym szczególną rolę odgrywają adaptacyjne modele szeregów czasowych. Celem tego rodzaju modeli jest opisanie kształtowania się zmiennej objaśnianej w czasie, bez uwzględnienia mechanizmu przyczynowo - skutkowego. Tego rodzaju rozwiązania stosowane są do opisania zjawisk nieregularnych oraz tych, z pojawiającymi się załamaniami trendu. W pracy zastosowano metody: wygładzania wykładniczego oraz metoda trendu pełzającego z wagami harmonicznymi. Charakterystyczną cechą wspomnianych metod jest nieposiadanie rygorystycznych założeń takich jak stabilność struktury danych, występowanie trendu czy sezonowości (Kukuła, 2017).

3.1. Model wygładzania wykładniczego

W celu dopasowania właściwej metody opisu dynamiki szeregu czasowego należy zidentyfikować jego składowe systematyczne. Z analiz przedstawionych w poprzednim rozdziale (*Model 10*) wynika, że w szeregu stóp zwrotu z inwestycji w bitcoina nie występują wahania sezonowe i trend. Taka obserwacja uzasadnia zastosowanie metody wygładzania wykładniczego do prognozowania badanego szeregu.

Wzór równania wykładniczego zaprezentowano poniżej:

$$\hat{\mathbf{y}}_1 = \mathbf{y}_1$$

$$\hat{\mathbf{y}}_t = \alpha \mathbf{y}_t + (1 - \alpha)\hat{\mathbf{y}}_{t-1}$$
(4)

Parametr wygładzania (α) dobierany jest metodą minimalizowania średniokwadratowego błędu metody. W wyniku zastosowano tego podejścia parametr alfa ustalono na poziomie 0,90.

Dla stóp zwrotu z inwestycji w BTC przyjęto model w postaci:

Wykres 6. Wykres dopasowania wygładzania wykładniczego dla miesięcznych stóp zwrotu z inwestycji BTC Źródło: opracowanie własne.

Prognoza dla wygładzania wykładniczego dla danych zamieszczonych na Wykresie 6 prezentuje poniższa tabela (szczegółowe obliczenia w załączniku):

Tabela 22. Zaprognozowane wartości stóp zwrotu z inwestycji w BTC metodą wygładzania wykładniczego

Data	Zaprognozowana wartość stóp zwrotu bitcoina [%]		
30.04.2022	1,98		

Źródło: opracowanie własne.

Z prognozy przeprowadzonej w oparciu o metodę wygładzania wykładniczego wynika, iż w przyszłości stopa zwrotu z bitcoina wyniesie ok. 2%. Oznacza to, iż opłaca się inwestować w bitcoina, ponieważ w najbliższym czasie inwestycja przyniesie zysk. Wadą powyższej metody jest to, iż pozwala wyznaczać prognozę tylko na jedynie na jeden krok przodu. Związku z powyższym do prognozowania stóp zwrotu z kursu bitcoina w dalszej części pracy wykorzystano model trendu pełzającego

3.2. Model trendu pełzającego

Metoda trendu pełzającego z wagami harmonicznymi, uwzględnia aspekt starzenia się informacji oraz skupia się na przebiegu zjawiska w przeszłości oraz na nowych napływających danych. Wynika to z faktu nadawania malejących wag danym historycznym. Skutkiem wymienionego działania jest ograniczenie wpływu starszych danych na prognozowanie. Z przeprowadzonych analiz wynika, iż wartość stóp zwrotu z bitcoina cechuje bardzo duża nieregularność. Dlatego też, metoda trendu pełzającego została poprawnie dobrana do prognozowania stóp zwrotu bitcoina i należy ona do metod to. iż nieregularność adaptacyjnych. Oznacza zjawiska nie przeszkodzi w zaprognozowaniu zmiennej (Kukuła, 2017).

W początkowej fazie wyrównywania szeregu czasowego (liczba obserwacji n=62) przy pomocy trendu pełzającego, określono stałą wygładzania na poziomie k=3. Przyjęto małą wartość stałej wygładzania, ze względu na duże różnice w poziomach stóp zwrotu z bitcoina. Dla przyjętej stałej wygładzania podzielono szereg stóp zwrotu z bitcoina na segmenty. Segmenty zostały zbudowane w następujący sposób:

$$(1) y_1, y_2, \dots, y_k$$

$$(2)$$
 $y_2, y_3, ..., y_{k+1}$

...

$$(n-k+1)$$
 y_{n-k+1}, \dots, y_n

Po wyznaczeniu segmentów (tabela z wynikami zawarta w załączniku), dla każdego z nich opracowano wzór funkcji trendu liniowego, którego ogólny wzór wygląda następująco:

$$y_{i t} = a_i * t + b_i \tag{5}$$

Dla poszczególnych segmentów równania prezentują się w przedstawiony sposób:

$$\hat{y}_1 = -0.0394 * t + 0.1823$$
 dla $t = 1, 2, 3$ (6)

$$\hat{y}_2 = 0.4145 * t - 0.989$$
 dla $t = 2, 3, 4$ (7)

•••

$$\hat{y}_{59} = 0.1712 * t - 10.3433$$
 dla t = 59, 60, 61 (8)

$$\hat{y}_{60} = 0.1214 * t - 7.3936$$
 dla $t = 60, 61, 62$ (9)

Na podstawie zamieszczonych wzorów, obliczono wartości teoretyczne z poszczególnych funkcji trendu (tabela z wynikami zawarta w załączniku). Następnie dokonano ostatecznego wygładzenia wartości poprzez policzenie średnich arytmetycznych z wartości teoretycznych dla danego t. Na poniższym wykresie zaprezentowano zestawienie szeregu empirycznego i wygładzonego dla stóp zwrotu bitcoina.

Wykres 7. Dopasowanie szeregu wygładzonego i empirycznego Źródło: opracowanie własne.

Na powyższym wykresie zaobserwować można, iż otrzymane wygładzenie prawie pokrywa się z szeregiem wyjściowym, pomimo że kurs bitcoina charakteryzuje się dużymi wahaniami wartości. Na podstawie szeregu empirycznego zamieszczonego na wykresie, dokonano próby zaprognozowania stóp zwrotu bitcoina dla następnych czterech miesięcy: kwiecień, maj, czerwiec, lipiec.

3.3. Prognozowanie w oparciu o metodę trendu pełzającego

W celu przeprowadzania prognozy należy wyznaczyć przyrosty funkcji trendu dla każdego segmentu w następujący sposób:

$$w_{t+1} = \hat{y}_{t+1} - \hat{y}_t,$$
 dla $t = 1, 2, ..., n-1$ (10)

Obliczonym w ten sposób przyrostom trzeba nadać odpowiednie wagi, które powinno się obliczyć za pomocą wzoru:

$$C_{t+1}^n = \frac{1}{n-1} \sum_{i=1}^t \frac{1}{n-i}, \quad \text{dla } t = 1, 2, ..., n-1$$
 (11)

Następnie oblicza się współczynnik harmoniczny, będący określeniem średnich przyrostów. Wzór na wspominany współczynnik wygląda następująco:

$$\overline{w} = \sum_{t=1}^{n-1} C_{t+1}^n * w_{t+1} \tag{12}$$

Na podstawie wyników obliczeń z powyższych wzorów można przejść do wyznaczania prognozy punktowej, o wzorze:

$$y_t^* = \hat{y}_n + (t - n) * \overline{w} \qquad \text{dla } t > n$$
 (13)

Zbudowano również przedział ufności prognozy dla przyjętej wiarygodności prognozy na poziomie 95%. Wyniki zaprognozowanych przyszłych wartości stóp zwrotu bitcoina oraz przedziały krańcowe zostały zamieszczone poniżej.

Tabela 23. Wyniki prognozy punktowej i przedziałowej dla stóp zwrotu inwestycji kursu BTC

Prognoza	Data	t	Prognoza punktowa	Lewy kraniec	Prawy kraniec
				przedziału 95%	przedziału 95%
2022	31.03.2022	62	6,41%	=	-
	30.04.2022	63	14,07%	11,89%	16,25%
	31.05.2022	64	14,74%	10,84%	18,64%
	30.06.2022	65	15,41%	10,02%	20,80%
	31.07.2022	66	16,09%	9,36%	22,81%

Źródło: opracowanie własne.

Z przeprowadzonej prognozy zaobserwować można, iż stopy zwrotu z inwestycji w bitcoina będą w przyszłości rosnąć. Z obliczeń wynika, iż opłaca się inwestować w bitcoina, ponieważ w najbliższym czasie stopy zwrotu będą rosnąć. Inwestowanie będzie opłacalnym sposobem przechowywania pieniędzy, ponieważ na 95% będą przekraczać wartość 0.

Zakończenie

Rynek kryptowalut nadal jest nowością w dziedzinie finansów. Jego ciągłe i dynamiczne zmiany powodują trudność w jednoznacznej ocenie perspektywy kryptowaluty jako przyszłości pieniądza. Do głównych zalet tej formy pieniądza należą brak pośredników i szybkość w dokonywaniu transakcji. Nieodłącznym elementem każdej kryptowaluty jest technologia blockchain. Ma ona zapewnić przejrzystość oraz bezpieczeństwo. (W. Lepak, 2020) Jednakże należy być świadomym zagrożeń związanych z inwestycjami w kryptowaluty. Wśród nich szczególnie istotne wydają się być anonimowość, łatwa możliwość dokonywania oszustw oraz wystąpienie efektu bańki spekulacyjnej.

W pracy omówiono genezę i idee kryptowalut oraz dokonano obszernej analizy ceny oraz stóp zwrotu w inwestycje w bitcoina.

Twórcą kryptowaluty kierowała idea stworzenia środka płatniczego umożlwiającego anonimowe oraz szybkie dokonywanie płatności bez pośredników. Satoshi Nakamoto zakładał stworzenie systemu niezależnego od sytuacji panujących na świecie. W pracy dokonano weryfikacji tego założenia oraz podjęto próbę odpowiedzi na pytanie czy warto inwestować w bitcoina. Pytanie to wydaje się być aktualne w obliczu rosnącej inflacji oraz niepewności rynku wynikającej z trwającej wojny na Ukrainie. Jak również z faktu, że obecnie większość inwestorów postrzega kryptowaluty bardziej jako dobro inwestycyjne niż środek płatniczy.

Z przeprowadzonej analizy wynika, że średnia stopa zwrotu bitcoina (w okresie od stycznia 2017 do marca 2022) wynosiła 9,53%. Podczas gdy średnia stopa zwrotu dla indeksu WIG20 i złota wynosiły odpowiednio 0,25% i 0,9%. Taki wynik świadczy o tym, że najbardziej opłacalne były inwestycje w BTC. Nie można jednak nie zauważyć jak dużym ryzykiem obarczone są inwestycje w badaną kryptowalutę. Zmienność stóp zwrotu inwestycji w BTC wynosiła 26 punktów procentowych, co stanowiło ok. 37% wartości średniej stopy zwrotu. W przeciwieństwie do bitcoina inwestycja w złoto obarczona była zmiennością na poziomie 3,7 punktów procentowych. W związku z powyższym inwestując w kryptowaluty należy liczyć się z bardzo wysokim ryzykiem inwestycji. Powodzenie takiej inwestycji w dużej mierze zależy od umiejętności analizy kursów oraz predykcji zmian zachodzących na rynku (podobnie jak w przypadku inwestycji giełdowych).

Badając przebieg szeregu czasowego wartości kursu BTC oraz jego stóp zwrotu można zauważyć, że pojawienie się pandemii spowodowało spadek jego wartości (-1 597,0 zł z dnia 20.03.2020) oraz spadek stóp zwrotu (-5,95 %). Dodatkowo, przeprowadzona analiza wskazuje na istotne zmiany w strukturze modeli opisujących

wartości bitcoina. Dla danych z okresu przed pandemią wartość BTC zależała od: ceny bitcoina z poprzedniego miesiąca oraz inflacji. Natomiast w okresie od stycznia 2020 do marca 2022 na wartość bitciona wpływały, w sposób istotny statystycznie wartości: cena złota, inflacja i wskaźnik DJIA. Zatem z postaci oszacowanych modeli można wnioskować, że cena bitcoina jest determinowana przez procesy popytowo–podażowe. Warto zauważyć, że w okresie pandemii istotny wpływ na cenę BTC miała cena złota. Wzrostowi wartości ceny złota towarzyszył spadek wartości bitcoina. Można przypuszczać, że złoto jest postrzegane przez inwestorów jako bezpieczniejsza forma przechowywania oszczędności, a jednocześnie wnioskować, że oba dobra konkurują ze sobą. Na cenę bitcoina w okresie pandemii zaczął oddziaływać również wskaźnik DJIA (wraz z jego wzrostem zwiększa się cena tej kryptowaluty).

Badaniu poddano również stopy zwrotu kursu BTC. W omawianym przypadku również dostrzega się kluczowy wpływ wartości stóp zwrotu złota na zmniejszenie stóp zwrotu bitcoina. Kryptowalutami, które mają istotny wpływ na wzrost stóp zwrotu bitcoina jest ether oraz litecoin. Jedyną kryptowalutą, której wzrost powoduje spadek stóp zwrotu bitcoina jest ripple opóźnione o jeden miesiąc. Przyjęty do modelu dogecoin okazał się nie mieć istotnego wpływu na stopy zwrotu bitcoina.

W pracy podjęto również próbę zaprognozowania miesięcznych stóp zwrotu bitcoina w oparciu o metodę wygładzania wykładniczego oraz metodę trendu pełzającego. Krótkoterminowa prognoza w oparciu o model wygładzania wykładniczego wskazuje, że stopy zwrotu z inwestycji w bitcoin w kolejnym miesiącu (kwiecień 2022) wyniosą 1,98% (stopa zwrotu w kwietniu 2020 wynosiła -11,66%). Prognozą za pomocą metody trendu pełzającego z wagami harmonicznymi umożliwiła wyznaczenie prognoz punktowych oraz przedziałowych na kolejne cztery miesiące: kwiecień, maj, czerwiec, lipiec. Z przeprowadzonych obliczeń wynika, iż stopy zwrotu bitcoina w następnych czterech miesiącach będą rosnąć. Uzyskano prognozy przedziałowe: kwiecień (11,89%-16,25%), maj (10,84%-18,64%), czerwiec (10,02%-20,80%), lipiec (9,36%-22,81%). Podczas gdy rzeczywiste wartości stóp zwrotu wynosiły dla kwietnia -11,66%, maja -20,32%. Co wskazuje na nieskuteczność zaproponowanych metod.

Wyniki przeprowadzonej analizy świadczą o rozwoju rynku kryptowaluty bitcoina oraz zainteresowaniu, jakie on budzi wśród inwestorów. Z przeprowadzonych analiz i zamieszczonych wykresów wynika, że w czasie kryzysu następuje spadek stóp zwrotu bitcoina, ponieważ w czasie kryzysu inwestorzy inwestują w gotówkę i złoto, które są bezpieczne.

Wartym podkreślenia faktem jest to, iż zmiany gospodarcze wpływają na zmianę ceny oraz stopy zwrotu z inwestycji bitcoina, pomimo iż celem twórcy było, aby kryptowaluta bitcoin była niezależna od czynników gospodarczych. Podsumowując warto inwestować w kryptowalutę bitcoin, jednak trzeba pamiętać o ryzyku, które jest znaczącym elementem kryptowaluty bitcoin.