## Dérivation – Étude de fonctions

## I. Nombre dérivé - Fonction dérivée (Rappels)

#### Activité 0

- 1. On considère f la fonction définie sur  $\mathbb{R}$  par  $f(x) = x^2 2x$ . Étudier la dérivabilité de f en -1 puis interpréter le résultat graphiquement.
- 2. On considère g la fonction définie sur  $\mathbb{R}$  par g(x) = |x-1|.
  - (a) Étudier la dérivabilité de g à droite et à gauche en 1 puis interpréter les résultats graphiquement.
  - (b) g est-elle dérivable en 1 ?

#### Définitions et propriétés

Soit f une fonction définie sur un intervalle ouvert I et a un point de I.

- On dit que f est **dérivable** en a s'il existe un réel l tel que  $\lim_{x\to a} \frac{f(x)-f(a)}{x-a}=l$ .
- Le nombre l, noté f'(a) ou  $\frac{df}{dx}(a)$ , est appelé le **nombre dérivé** de la fonction f en a.
- On dit que f est **dérivable à droite** de a s'il existe un réel l', tel que  $\lim_{x\to a^+} \frac{f(x)-f(a)}{x-a}=l'$ .
- Le nombre l', noté  $f'_d(a)$ , est appelé le nombre dérivé de la fonction f à droite en a.
- On dit que f est **dérivable à gauche** de a s'il existe un réel l', tel que  $\lim_{x\to a^-} \frac{f(x)-f(a)}{x-a}=l'$ .

#### Remarques

- Si  $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = 0$ , alors  $(C_f)$  admet une tangente horizontale au point A(a, f(a)).
- Si f est continue en a et  $\lim_{x\to a^+} \frac{f(x)-f(a)}{x-a} = \pm \infty$  ou  $\lim_{x\to a^-} \frac{f(x)-f(a)}{x-a} = \pm \infty$ , alors  $(C_f)$  admet une demi-tangente verticale au point A(a, f(a)).

#### Exemple

La fonction définie sur ]  $-\infty;1]$  par  $f:x\mapsto x+1+2\sqrt{1-x}$  n'est pas dérivable en 1 à gauche. En effet :

$$\lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{x - 1 + 2\sqrt{1 - x}}{x - 1} = +\infty$$

Parce que:

$$\lim_{x \to 1^{-}} (x+3) = 4, \quad \lim_{x \to 1^{-}} x - 1 - 2\sqrt{1-x} = 0^{-}$$

Donc f n'est pas dérivable en 1 à gauche.

Puisque f est continue en 1 à gauche et  $\lim_{x\to 1^-} \frac{f(x)-f(1)}{x-1} = +\infty$ , alors la courbe  $(C_f)$  admet une demi-tangente verticale au point A(1,2) dirigée vers le haut.

**Application 0** : Étudier la dérivabilité de la fonction f en a puis interpréter graphiquement les résultats dans les cas suivants :

- $f(x) = x^3 x$ , a = 2
- $f(x) = \frac{x+1}{x}, a = 1$
- $f(x) = \sqrt{2x+1}$ ,  $a = -\frac{1}{2}$  à droite

Cas 1: 
$$f(x) = x^3 - x$$
 en  $a = 2$ 

1. Calcul de la dérivabilité Pour étudier la dérivabilité de f en a=2, on a

$$\lim_{x \to 2} \frac{(x^3 - x) - f(2)}{x - 2} = \lim_{x \to 2} \frac{x^3 - x - 6}{x - 2}$$

$$= \lim_{x \to 2} \frac{(x - 2)(x^2 + 2x + 3)}{x - 2}$$

$$= \lim_{x \to 2} (x^2 + 2x + 3)$$

$$= 2^2 + 2(2) + 3 = 4 + 4 + 3 = 11$$

- 2. Conclusion alors f est dérivable en a=2 et son nombre dérivé est  $\mathbf{f}'(2)=11$ .
- 3. Interprétation graphique La courbe  $(C_f)$  admet une tangente au point A(2, f(2)) = A(2, 6). L'équation de cette tangente (T) est :

$$y = f'(2)(x - 2) + f(2)$$
  

$$y = 11(x - 2) + 6$$
  

$$y = 11x - 22 + 6$$
  

$$y = 11x - 16$$

Cas 2: 
$$f(x) = \frac{x+1}{x}$$
 en  $a = 1$ 

. Calcul de la dérivabilité On calcule la limite du taux d'accroissement en a=1,:

$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1} \frac{\frac{x + 1}{x} - 2}{x - 1}$$

$$= \lim_{x \to 1} \frac{\frac{x + 1 - 2x}{x}}{x - 1}$$

$$= \lim_{x \to 1} \frac{1 - x}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{-(x - 1)}{x(x - 1)} = \lim_{x \to 1} -\frac{1}{x} = -1$$

La limite est un nombre réel fini. Donc, la fonction f est **dérivable en** a=1 et  $\mathbf{f}'(\mathbf{1})=-\mathbf{1}$ .

**Interprétation graphique** La courbe  $(C_f)$  admet une **tangente** au point A(1, f(1)) = A(1, 2). Son équation est :

$$y = f'(1)(x - 1) + f(1)$$

$$y = -1(x - 1) + 2$$

$$y = -x + 1 + 2$$

$$y = -x + 3$$

**Cas 3**: 
$$f(x) = \sqrt{2x+1}$$
 **en**  $a = -\frac{1}{2}$  **à droite**

1. Calcul de la dérivabilité à droite

$$\lim_{x \to -\frac{1}{2}^{+}} \frac{f(x) - f(-\frac{1}{2})}{x - (-\frac{1}{2})} = \lim_{x \to -\frac{1}{2}^{+}} \frac{\sqrt{2x+1}}{x + \frac{1}{2}}$$

$$= \lim_{x \to -\frac{1}{2}^{+}} \frac{\sqrt{2x+1}}{\frac{2x+1}{2}}$$

$$= \lim_{x \to -\frac{1}{2}^{+}} \frac{2\sqrt{2x+1}}{2x+1}$$

$$= \lim_{x \to -\frac{1}{2}^{+}} \frac{2}{\sqrt{2x+1}}$$

$$= \frac{2}{0^{+}}$$

$$= +\infty$$

Donc, la fonction f n'est pas dérivable à droite en  $a = -\frac{1}{2}$ .

Interprétation graphique La courbe  $(C_f)$  admet une demi-tangente verticale au point  $A(-\frac{1}{2},0)$ , dirigée vers le haut car la limite est  $+\infty$ .

Exercice  $\mathbf{0}$ : On considère f la fonction définie par

$$f(x) = \begin{cases} \frac{\sqrt{x^2 + 1} - 1}{x} & x \neq 0\\ 0 & sinon \end{cases}$$

- 1. Étudier la continuité de f en  $x_0 = 0$ .
- 2. Étudier la dérivabilité de f en  $x_0 = 0$ . Interpréter graphiquement le résultat.

#### Propriété:

f est dérivable en a ssi elle est dérivable à droite et à gauche en a et  $f'_q(a) = f'_d(a)$ 

**Application 2 :** On considère f la fonction définie par

$$f(x) = \begin{cases} \sqrt{x} - 1 & 0 \le x < 1\\ \frac{x^2 - 1}{4} & x \ge 1 \end{cases}$$

- 1. Montrer que f est continue en 1
- 2. Étudier la dérivabilité de f en 1

**Remarque :** Si f est dérivable en a, alors elle est continue en a, mais la réciproque n'est pas toujours vraie.

**Exemple :** La fonction  $x \mapsto |x|$  est continue en 0, mais n'est pas dérivable en ce point.

# II. Opérations sur les fonctions dérivables - Monotonie d'une fonction

#### Propriété

Les fonctions polynomiales et les fonctions  $x \mapsto \cos(x)$  et  $x \mapsto \sin(x)$  sont dérivables sur  $\mathbb{R}$ .

| Tableau des fonctions dérivées usuelles |                                       |                                                             |
|-----------------------------------------|---------------------------------------|-------------------------------------------------------------|
| La fonction $f$                         | La fonction dérivée $f'$              | Domaine de dérivabilité de $f$                              |
| $x \mapsto a$                           | 0                                     | $\mathbb{R}$                                                |
| $x \mapsto ax + b$                      | a                                     | $\mathbb{R}$                                                |
| $x \mapsto x^n \ (n \in \mathbb{N}^*)$  | $nx^{n-1}$                            | $\mathbb{R}$                                                |
| $x \mapsto \frac{1}{x}$                 | $-\frac{1}{x^2}$                      | $\mathbb{R}^*$                                              |
| $x \mapsto \sqrt{x}$                    | $\frac{1}{2\sqrt{x}}$                 | $\mathbb{R}_+^*$                                            |
| $x \mapsto \cos(x)$                     | $-\sin(x)$                            | $\mathbb{R}$                                                |
| $x \mapsto \sin(x)$                     | $\cos(x)$                             | $\mathbb{R}$                                                |
| $x \mapsto \tan(x)$                     | $1 + \tan^2(x) = \frac{1}{\cos^2(x)}$ | $\mathbb{R}\setminus\{\tfrac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$ |
|                                         |                                       |                                                             |

#### Propriétés

Soient f et g deux fonctions dérivables sur un intervalle I et k un réel, alors :

- f + g est dérivable et (f + g)' = f' + g'
- kf est dérivable et (kf)' = kf'
- $f \times g$  est dérivable et (fg)' = f'g + fg'
- $f^n$  (pour  $n \in \mathbb{N}$ ) est dérivable et  $(f^n)' = nf^{n-1}f'$
- Si  $g(x) \neq 0$ ,  $\left(\frac{f}{g}\right)' = \frac{f'g fg'}{g^2}$
- Si  $f(x) \neq 0$ ,  $\left(\frac{1}{f}\right)' = -\frac{f'}{f^2}$
- Si f(x) > 0,  $(\sqrt{f})' = \frac{f'}{2\sqrt{f}}$

#### Applications

1. Calculer la dérivée des fonctions suivantes :

$$f(x) = \frac{2x}{1+x^2}$$
,  $h(x) = \sqrt{x}\sin(x) + \cos(x)$ ,  $g(x) = (x^2+1)^5$ 

- 2. (a) Étudier la monotonie de la fonction f ci-dessus.
  - (b) Dresser le tableau de variations de f.
  - (c) En déduire que  $\forall x \in \mathbb{R}, -1 \le f(x) \le 1$ .

#### Exercice:

- On considère g définie sur  $[0, +\infty[$  par  $g(x) = x\sqrt{x} 1 :$ 
  - 1. Étudier la dérivabilité de q à droite en 0. Interpréter graphiquement.
  - 2. Montrer que g est dérivable sur  $]0,+\infty[$  puis calculer sa dérivée.
  - 3. Dresser le tableau de variations de g.
  - 4. Calculer g(1) et en déduire le signe de g sur  $[0, +\infty[$ .
- Soit f définie sur  $]0, +\infty[$  par  $f(x) = 2x 3 + \frac{4}{\sqrt{x}}$  :
  - 1. Montrer que  $f' = \frac{2g(x)}{x\sqrt{x}}$
  - 2. Étudier la monotonie de f
  - 3. Dresser le tableau de variation de  $\boldsymbol{f}$
  - 4. En déduire que  $\forall x \in ]0, +\infty[, f(x) \ge 3.$

## III. Dérivée de la fonction composée

#### Propriété

• Si f est dérivable en a et g est dérivable en f(a), alors la fonction composée  $g \circ f$  est dérivable en a et :

$$(g \circ f)'(a) = g'(f(a)) \times f'(a)$$

• Si f est dérivable sur un intervalle I et g dérivable sur un intervalle J tel que  $f(I) \subset J$ , alors  $g \circ f$  est dérivable sur I et pour tout  $x \in I$ :

$$(g \circ f)'(x) = g'(f(x)) \times f'(x)$$

#### Exemple

Déterminons la dérivée de la fonction  $h: x \mapsto \cos(\sqrt{x})$  sur  $]0, +\infty[$ . Pour tout x de  $]0, +\infty[$ , on a  $h(x) = (g \circ f)(x)$  tel que  $g(x) = \cos(x)$  et  $f(x) = \sqrt{x}$ . Comme g est dérivable sur  $\mathbb{R}$  et f est dérivable sur  $]0, +\infty[$  et que  $f(]0, +\infty[) \subset \mathbb{R}$ , alors la fonction h est dérivable sur  $]0, +\infty[$ . Et on a :  $h'(x) = g'(f(x)) \times f'(x) = -\sin(\sqrt{x}) \times \frac{1}{2\sqrt{x}} = \frac{-\sin(\sqrt{x})}{2\sqrt{x}}$ , pour tout x de  $]0, +\infty[$ .

#### Application

Calculer la dérivée des fonctions  $f: x \mapsto \sin(x^2 - \frac{2}{3}x + 4)$  et  $g: x \mapsto \cos(\frac{4}{x^2 + 4})$ .

## IV. Dérivée de la fonction Réciproque

#### Propriété

Soit f une fonction continue et strictement monotone sur un intervalle I de  $\mathbb{R}$ , et  $a \in I$ . Si f est dérivable en a et  $f'(a) \neq 0$ , alors la fonction  $f^{-1}$  est dérivable en f(a) et :

$$(f^{-1})'(f(a)) = \frac{1}{f'(a)}$$

#### Application

Soit f la fonction définie sur  $\mathbb{R}$  par  $f(x) = x^3 + x$ .

- 1. Montrer que f admet une fonction réciproque définie sur  $\mathbb{R}$ .
- 2. (a) Calculer f(1).
  - (b) Montrer que  $f^{-1}$  est dérivable en 2 puis déterminer  $(f^{-1})'(2)$ .

#### Propriété

Soit f une fonction continue et strictement monotone sur un intervalle I de  $\mathbb{R}$ . Si f est dérivable sur I tel que  $(\forall x \in I) : f'(x) \neq 0$ , alors la fonction  $f^{-1}$  est dérivable sur J = f(I). De plus on a pour tout  $x \in J$ :

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$$

#### Conséquences

- Soit n un entier naturel supérieur ou égal à 2. La fonction  $x \mapsto \sqrt[n]{x}$  est dérivable sur  $]0, +\infty[$  et pour tout  $x \in ]0, +\infty[$ :  $(\sqrt[n]{x})' = \frac{1}{n\sqrt[n]{x^{n-1}}}$ .
- Si f une fonction dérivable sur un intervalle I de  $\mathbb{R}$  et  $(\forall x \in I): f(x) > 0$ , alors la fonction  $x \mapsto \sqrt[n]{f(x)}$  est dérivable sur I et sa fonction dérivée est donnée par :

$$(\sqrt[n]{f(x)})' = \frac{f'(x)}{n(\sqrt[n]{f(x)})^{n-1}}$$

#### Application

1. Calculer la dérivée de chacune des fonctions suivantes :

a. 
$$f(x) = \sqrt[3]{x}$$

b. 
$$f(x) = \sqrt[4]{x^3}$$

c. 
$$f(x) = \sqrt[4]{1 + \cos^2(x)}$$

d. 
$$f(x) = \sqrt[3]{x^2 + 2x}$$

2. A l'aide du nombre dérivé, calculer les limites suivantes :

a. 
$$\lim_{x\to 0} \frac{\sqrt[3]{x+1}-1}{x}$$

b. 
$$\lim_{x\to 1} \frac{(x^8+1)(\sqrt[4]{x^3+1})-4}{x-1}$$

#### Exercice

Soit f la fonction numérique définie sur  $\mathbb{R}$  par  $f(x) = x^3 - 3x - 3$ .

- 1. Etudier les variations de la fonction f.
- 2. Soit g la restriction de f sur  $[1, +\infty[$ .
  - (a) Montrer que g admet une fonction réciproque définie sur un intervalle J à déterminer.
  - (b) Montrer que l'équation g(x)=0 admet une unique solution  $\alpha$  et que  $2<\alpha<3$ .
  - (c) Montrer que :  $(g^{-1})'(0) = \frac{1}{3(\alpha^2 1)}$ .

## V. Branches infinies (Rappel)

#### Schéma récapitulatif de l'étude des branches infinies





#### Exemple 1

On considère la fonction définie sur  $\mathbb{R} \setminus \{-1\}$  par :  $f(x) = \frac{3-2x^2}{(1+x)^2}$ .

On a  $\lim_{x\to\pm\infty} f(x) = \lim_{x\to\pm\infty} \frac{-2x^2}{x^2} = -2$ .

Donc la droite d'équation y = -2 est une asymptote horizontale à la courbe  $(C_f)$ au voisinage de  $+\infty$  et  $-\infty$ .

Et on a :  $\lim_{x\to -1^+} f(x) = +\infty$  et  $\lim_{x\to -1^-} f(x) = +\infty$ .

Donc la droite d'équation x = -1 est une asymptote verticale de la courbe  $(C_f)$ .

#### Exemple 2

On considère la fonction définie sur  $[0, +\infty[$  par :  $g(x) = 2x - \sqrt{x}$ .

On a:  $\lim_{x\to+\infty} g(x) = \lim_{x\to+\infty} x(2-\frac{1}{\sqrt{x}}) = +\infty.$ 

On calcule alors  $\lim_{x\to +\infty} \frac{g(x)}{x}$ . On a  $\lim_{x\to +\infty} \frac{g(x)}{x} = \lim_{x\to +\infty} \frac{2x-\sqrt{x}}{x} = \lim_{x\to +\infty} (2-\frac{1}{\sqrt{x}}) = 2$ .

Par suite :  $\lim_{x\to +\infty} [g(x)-2x] = \lim_{x\to +\infty} (2x-\sqrt{x}-2x) = \lim_{x\to +\infty} -\sqrt{x} = -\infty$ .

D'où la courbe  $(C_g)$  admet une branche parabolique de direction la droite d'équation y = 2x au voisinage de  $+\infty$ .

#### Application

On considère la fonction f définie par  $f(x) = \frac{x^2 + x - 1}{x + 2}$ .

- 1. Donner  $D_f$  l'ensemble de définition de f.
- 2. Calculer  $\lim_{x\to -2^+} f(x)$  et  $\lim_{x\to -2^-} f(x)$ . Interpréter les résultats.
- 3. (a) Vérifier, pour tout  $x \in D_f$ , que  $f(x) = x 1 + \frac{1}{x+2}$ .
  - (b) Montrer que la droite d'équation (D): y = x 1 est une asymptote oblique de  $(C_f)$  au voisinage de  $+\infty$  et  $-\infty$ .

## VI. Concavité d'une courbe - Points d'inflexion

#### Propriétés

Soient f une fonction deux fois dérivable sur un intervalle I et  $(C_f)$  sa courbe représentative.

- Si f'' > 0 sur I, alors  $(C_f)$  est convexe.
- Si f'' < 0 sur I, alors  $(C_f)$  est concave.
- Si f'' s'annule en a en changeant de signe, alors A(a; f(a)) est un point d'inflexion.

#### Application:

On considère f définie par  $f(x) = \frac{x^2 + x - 1}{x + 2}$ .

Étudier la concavité de  $(C_f)$  et préciser les points d'inflexion s'ils existent.

## III. Eléments de symétrie d'une courbe

### 1. Axe de symétrie

#### Propriétés

Soit f une fonction définie sur un ensemble D et  $(C_f)$  sa courbe dans un repère orthonormé.

La droite  $(\Delta)$  d'équation x = a  $(a \in \mathbb{R})$  est un axe de symétrie de  $(C_f)$  si et seulement si

$$\begin{cases} \forall x \in D, \ (2a - x) \in D \\ \forall x \in D, \ f(2a - x) = f(x) \end{cases}$$

#### Application:

Montrer que la droite  $(\Delta)$  : x = 1 est un axe de symétrie de la courbe de la fonction  $f(x) = \sqrt{x^2 - 2x + 3}$ .

#### 2. Centre de symétrie

#### Propriétés

Soit f définie sur un ensemble D et  $(C_f)$  sa courbe dans un repère orthonormé. Le point  $\Omega(a,b)$  est un centre de symétrie de  $(C_f)$  si et seulement si

$$\begin{cases} \forall x \in D, \ (2a - x) \in D \\ \forall x \in D, \ f(2a - x) + f(x) = 2b \end{cases}$$

#### Application:

On considère f définie par  $f(x) = \frac{x^2 + x - 1}{x + 2}$ .

- 1. Montrer que  $\Omega(-2, -3)$  est un centre de symétrie pour la courbe  $(C_f)$ .
- 2. En déduire que l'étude de la fonction peut se limiter à l'intervalle ]  $-2;+\infty$