

A combinatorial proof of Postnikov's identity and a generalized enumeration of labeled trees

Seunghyun Seo*

February 1, 2008

Abstract

In this paper, we give a simple combinatorial explanation of a formula of A. Postnikov relating bicolored rooted trees to bicolored binary trees. We also present generalized formulas for the number of labeled k -ary trees, rooted labeled trees, and labeled plane trees.

1 Introduction

In Stanley's 60th Birthday Conference, Postnikov [3, p. 21] showed the following identity:

$$(n+1)^{n-1} = \sum_{\mathfrak{b}} \frac{n!}{2^n} \prod_{v \in V(\mathfrak{b})} \left(1 + \frac{1}{h(v)}\right), \quad (1)$$

where the sum is over unlabeled binary trees \mathfrak{b} on n vertices and $h(v)$ denotes the number of descendants of v (including v). The figure below illustrates all 5 unlabeled binary trees on 3 vertices, with the value of $h(v)$ assigned to each vertex v . In this case, identity (1) says that $(3+1)^2 = 3+3+4+3+3$.

Postnikov derived this identity from the study of a combinatorial interpretation for mixed Eulerian numbers, which are coefficients of certain reparametrized *volume polynomials* which introduced in [2]. For more information, see [2, 3].

*Department of Mathematics, Brandeis University, Waltham, MA 02454-9110, USA.
Email: shseo@brandeis.edu. Research supported by the Post-doctoral Fellowship Program of Korea Science and Engineering Foundation (KOSEF).

In the same talk, he also asked for a combinatorial proof of identity (1). Multiplying both sides of (1) by 2^n and expanding the product in the right-hand side yields

$$2^n (n+1)^{n-1} = \sum_{\mathfrak{b}} n! \sum_{\alpha \subseteq V(\mathfrak{b})} \prod_{v \in \alpha} \frac{1}{h(v)}. \quad (2)$$

Let LHS_n (resp. RHS_n) denote the left-hand (resp. right-hand) side of (2).

The aim of this paper is to find a combinatorial proof of (2). In section 2 we construct the sets $\mathcal{F}_n^{\text{bi}}$ of labeled bicolored forests on $[n]$ and \mathcal{D}_n of certain labeled bicolored binary trees, where the cardinalities equal LHS_n and RHS_n , respectively. In section 3 we give a bijection between $\mathcal{F}_n^{\text{bi}}$ and \mathcal{D}_n , which completes the bijective proof of (2). Finally, in section 4, we present generalized formulas for the number of labeled k -ary trees, rooted labeled trees, and labeled plane trees.

2 Combinatorial objects for LHS_n and RHS_n

From now on, unless specified, we consider trees to be labeled and rooted.

A *tree* on $[n] := \{1, 2, \dots, n\}$ is an acyclic connected graph on the vertex set $[n]$ such that one vertex, called the *root*, is distinguished. We denote by \mathcal{T}_n the set of trees on $[n]$ and by $\mathcal{T}_{n,i}$ the set of trees on $[n]$ where vertex i is the root. A *forest* is a graph such that every connected component is a tree. Let \mathcal{F}_n denote the set of forests on $[n]$. There is a canonical bijection $\gamma : \mathcal{T}_{n+1,n+1} \rightarrow \mathcal{F}_n$ such that $\gamma(T)$ is the forest obtained from T by removing the vertex $n+1$ and letting each neighbor of $n+1$ be a root. A graph is called *bicolored* if each vertex is colored with the color **b** (black) or **w** (white). We denote by $\mathcal{F}_n^{\text{bi}}$ the set of bicolored forests on $[n]$. From Cayley's formula [1] and the bijection γ , we have

$$|\mathcal{F}_n| = |\mathcal{T}_{n+1,n+1}| = (n+1)^{n-1} \quad \text{and} \quad |\mathcal{F}_n^{\text{bi}}| = 2^n \cdot (n+1)^{n-1}. \quad (3)$$

Thus LHS_n can be interpreted as the cardinality of $\mathcal{F}_n^{\text{bi}}$.

Let F be a forest and let i and j be vertices of F . We say that j is a *descendant* of i if i is contained in the path from j to the root of the component containing j . In particular, if i and j are joined by an edge of F , then j is called a *child* of i . Note that i is also a descendant of i itself. Let $S(F, i)$ be the induced subtree of F on descendants of i , rooted at i . We call this tree the *descendant subtree* of F rooted at i . A vertex i is called *proper* if i is the smallest vertex in $S(F, i)$; otherwise i is called *improper*. Let $\text{pv}(F)$ denote the number of proper vertices in F .

A *plane tree* or *ordered tree* is a tree such that the children of each vertex are linearly ordered. We denote by \mathcal{P}_n the set of plane trees on $[n]$ and by $\mathcal{P}_{n,i}$ the set of plane trees on $[n]$ where vertex i is the root. Define a *plane forest* on $[n]$ to be a finite sequence of non-empty plane trees (P_1, \dots, P_m) such that $[n]$ is the disjoint union of the sets $V(P_r)$, $1 \leq r \leq m$. We denote by \mathcal{PF}_n the set of plane forests on $[n]$ and by $\mathcal{PF}_n^{\text{bi}}$ the set of bicolored plane forests

on $[n]$. There is also a canonical bijection $\bar{\gamma} : \mathcal{P}_{n+1,n+1} \rightarrow \mathcal{PF}_n$ such that $\bar{\gamma}(P) = (S(P, j_1), \dots, S(P, j_m))$ where each vertex j_r is the r th child of $n+1$ in P . It is well-known that the number of unlabeled plane trees on $n+1$ vertices is given by the n th Catalan number $C_n = \frac{1}{n+1} \binom{2n}{n}$ (see [4, ex. 6.19]). Thus we have

$$|\mathcal{PF}_n| = |\mathcal{P}_{n+1,n+1}| = n! \cdot C_n = 2n(2n-1)\cdots(n+2). \quad (4)$$

A *binary tree* is a tree in which each vertex has at most two children and each child of a vertex is designated as its left or right child. We denote by \mathcal{B}_n the set of binary trees on $[n]$ and by $\mathcal{B}_n^{\text{bi}}$ the set of bicolored binary trees on $[n]$.

For $k \geq 2$, a *k -ary tree* is a tree where each vertex has at most k children and each child of a vertex is designated as its first, second, \dots , or k th child. We denote by \mathcal{A}_n^k the set of k -ary trees on $[n]$. Clearly, we have that $\mathcal{A}_n^2 = \mathcal{B}_n$. Since the number of unlabeled k -ary trees on n vertices is given by $\frac{1}{(k-1)n+1} \binom{kn}{n}$ (see [4, p. 172]), the cardinality of \mathcal{A}_n^k is as follows:

$$|\mathcal{A}_n^k| = n! \cdot \frac{1}{(k-1)n+1} \binom{kn}{n} = kn(kn-1)\cdots(kn-n+2). \quad (5)$$

Now we introduce a combinatorial interpretation of the number RHS_n . Let \mathbf{b} be an unlabeled binary tree on n vertices and $\omega : V(\mathbf{b}) \rightarrow [n]$ be a bijection. Then the pair (\mathbf{b}, ω) is identified with a (labeled) binary tree on $[n]$. Let $\Pi(\mathbf{b}, \omega)$ be the set of vertices v in \mathbf{b} such that v has no descendant v' satisfying $\omega(v) > \omega(v')$.

Let \mathcal{D}_n be the set of bicolored binary trees on $[n]$ such that each proper vertex is colored with \mathbf{b} or \mathbf{w} and each improper vertex is colored with \mathbf{b} .

Lemma 1. *The cardinality of \mathcal{D}_n is equal to RHS_n .*

Proof. Let \mathcal{D}'_n be the set defined as follows:

$$\mathcal{D}'_n := \{ (\mathbf{b}, \omega, \alpha) \mid (\mathbf{b}, \omega) \in \mathcal{B}_n \text{ and } \alpha \subseteq \Pi(\mathbf{b}, \omega) \}.$$

There is a canonical bijection from \mathcal{D}'_n to \mathcal{D}_n as follows: Given $(\mathbf{b}, \omega, \alpha) \in \mathcal{D}'_n$, if a vertex v of \mathbf{b} is contained in α then color v with \mathbf{w} ; otherwise color v with \mathbf{b} . Thus it suffices to show that the cardinality of \mathcal{D}'_n equals RHS_n .

Given an unlabeled binary tree \mathbf{b} and a subset α of $V(\mathbf{b})$, let $l(\mathbf{b}, \alpha)$ be the number of labelings ω satisfying $\alpha \subseteq \Pi(\mathbf{b}, \omega)$. Then for each $v \in \alpha$, the label $\omega(v)$ of v should be the smallest label among the labels of the descendants of v . So the number of possible labelings ω is $n! / \prod_{v \in \alpha} h(v)$. Thus we have

$$\begin{aligned} |\mathcal{D}'_n| &= \sum_{\mathbf{b}} \sum_{\alpha \subseteq V(\mathbf{b})} l(\mathbf{b}, \alpha) \\ &= \sum_{\mathbf{b}} \sum_{\alpha \subseteq V(\mathbf{b})} n! \prod_{v \in \alpha} \frac{1}{h(v)}, \end{aligned}$$

which coincides with RHS_n . □

Figure 1: The flip \mathbf{f} of D

3 A bijection

In this section, we construct a bijection between $\mathcal{F}_n^{\text{bi}}$ and \mathcal{D}_n , which gives a bijective proof of (2).

Given a vertex v of a bicolored binary tree B , let $L(B, v)$ (resp. $R(B, v)$) be the descendant subtree of B , which is rooted at the left (resp. right) child of v . Note that $L(B, v)$ and $R(B, v)$ may be empty, but $L(B, v)$ or $R(B, v)$ is nonempty when v is improper. For any kind of tree T , let $m(T)$ be the smallest vertex in T . By convention, we put $m(\emptyset) = \infty$. For an improper vertex v of B , if $m(L(B, v)) > m(R(B, v))$, then we say that v is *right improper*; otherwise *left improper*.

For a vertex v of B , define the *flip* on v , which will be denoted by f_v , by swapping $L(B, v)$ and $R(B, v)$ and changing the color of v . Note that this flip operation satisfies $f_v \circ f_v = \text{id}$ and $f_v \circ f_w = f_w \circ f_v$. For a bicolored binary tree D in \mathcal{D}_n , let \mathbf{f} be the map defined by

$$\mathbf{f}(D) := (f_{v_1} \circ \cdots \circ f_{v_k})(D),$$

where $\{v_1, \dots, v_k\}$ is the set of right improper vertices in D . (See Figure 1.)

Let \mathcal{E}_n be the set of bicolored binary trees E on $[n]$ such that every improper vertex v is left improper, i.e., $m(L(E, v)) < m(R(E, v))$.

Lemma 2. *The map \mathbf{f} is a bijection from \mathcal{D}_n to \mathcal{E}_n .*

Proof. For a bicolored binary tree E in \mathcal{E}_n , let \mathbf{f}' be the map defined by $\mathbf{f}'(E) := (f_{u_1} \circ \cdots \circ f_{u_j})(E)$, where $\{u_1, \dots, u_j\}$ is the set of white-colored improper vertices in E .

Let v be a right (resp. white-colored) improper vertex of $B \in \mathcal{B}_n^{\text{bi}}$. Then v is a left (resp. black-colored) improper vertex of $f_v(B)$. Moreover, since f_v does not change the state of other vertices, $f_v(B)$ has one less right (resp. white-colored) improper vertex than B . Thus the set of right improper vertices in D equals the set of white-colored improper vertices in $\mathbf{f}(D)$ and $\mathbf{f}(D)$ is contained in \mathcal{E}_n . Similarly, the set of white-colored improper vertices in E equals the set of right improper vertices in $\mathbf{f}'(E)$ and $\mathbf{f}'(E)$ is contained in \mathcal{D}_n . Since flip operations are commutative, we have that $(\mathbf{f}' \circ \mathbf{f})(D) = D$ and $(\mathbf{f} \circ \mathbf{f}')(E) = E$ for all $D \in \mathcal{D}_n$ and $E \in \mathcal{E}_n$, which completes the proof. \square

Figure 2: The bijection ϕ

Let \mathcal{G}_n (resp. \mathcal{Q}_n) be the set of bicolored trees (resp. bicolored plane trees) on $[n+1]$ such that $n+1$ is the root colored with \mathbf{b} . Note that the map γ (resp. $\bar{\gamma}$) can be regarded as a bijection $\gamma : \mathcal{G}_n \rightarrow \mathcal{F}_n^{\text{bi}}$ (resp. $\bar{\gamma} : \mathcal{Q}_n \rightarrow \mathcal{PF}_n^{\text{bi}}$). It is easy to show that \mathcal{G}_n can be viewed as a subset of \mathcal{Q}_n satisfying the following condition: For an interior vertex v of $Q \in \mathcal{Q}_n$, let (w_1, \dots, w_r) be the children of v , in order. Then $m(S(Q, w_1)) < \dots < m(S(Q, w_r))$ holds.

Recall that $\mathcal{B}_n^{\text{bi}}$ denotes the set of bicolored binary trees on $[n]$. Clearly we have $\mathcal{E}_n \subseteq \mathcal{B}_n^{\text{bi}}$ and $\mathcal{G}_n \subseteq \mathcal{Q}_n$. Let Φ be a bijection from $\mathcal{B}_n^{\text{bi}}$ to \mathcal{Q}_n , which maps B to Q as follows:

1. The vertices of B are the vertices of Q with the root deleted.
2. The root of B is the first child of the black root $n+1$ of Q .
3. v is a left child of u in B iff v is the first child of u in Q .
4. v is a right child of u in B iff v is the sibling to the right of u in Q .
5. The color of v in B is the same as the color of v in Q .

Note that here Φ is essentially an extension of a well-known bijection, which is described in [5, p. 60], from binary trees to plane trees.

Lemma 3. *The restriction ϕ of Φ to \mathcal{E}_n is a bijection from \mathcal{E}_n to \mathcal{G}_n .*

Proof. For any improper vertex v of $E \in \mathcal{E}_n$, we have $m(L(E, v)) < m(R(E, v))$. This guarantees that $m(S(G, v)) < m(S(G, w))$ in $G = \phi(E)$, where w (if it exists) is the sibling to the right of v in G . Thus $\phi(E) \in \mathcal{G}_n$, i.e., $\phi(\mathcal{E}_n) \subseteq \mathcal{G}_n$. Similarly we can show that $\phi^{-1}(\mathcal{G}_n) \subseteq \mathcal{E}_n$. So we have $\phi(\mathcal{E}_n) = \mathcal{G}_n$, which implies that ϕ is bijective. (See Figure 2.) \square

From Lemma 3, we easily get that $\gamma \circ \phi$ is a bijection from \mathcal{E}_n to $\mathcal{F}_n^{\text{bi}}$. Combining this result with Lemma 2 yields the following consequence.

Theorem 4. *The map $\gamma \circ \phi \circ \mathbf{f}$ is a bijection from \mathcal{D}_n to $\mathcal{F}_n^{\text{bi}}$.*

From equation (3) the cardinality of $\mathcal{F}_n^{\text{bi}}$ equals LHS_n and from Lemma 1 the cardinality of \mathcal{D}_n equals RHS_n . Thus Theorem 4 is a combinatorial explanation of identity (2).

4 Generalized formulas

In Theorem 4, we showed that the set \mathcal{D}_n of binary trees on $[n]$ such that each proper vertex is colored with the color **b** or **w** and each improper vertex is colored with the color **b** has cardinality $|\mathcal{D}_n| = 2^n (n+1)^{n-1}$. In this section, we give a generalization of this result.

For $n \geq 1$, let $a_{n,m}$ denote the number of k -ary trees on $[n]$ with m proper vertices. By convention, we put $a_{0,m} = \delta_{0,m}$. Let

$$a_n(t) = \sum_{m \geq 0} a_{n,m} t^m = \sum_{T \in \mathcal{A}_n^k} t^{\text{pv}(T)}.$$

It is clear that for a positive integer t the number $a_n(t)$ is the number of k -ary trees on $[n]$ such that each proper vertex is colored with the color $\bar{1}, \bar{2}, \dots$, or \bar{k} and each improper vertex has one color $\bar{1}$. Let $A(x)$ be denote the exponential generating function for $a_n(t)$, i.e.,

$$A(x) = \sum_{n \geq 0} a_n(t) \frac{x^n}{n!}.$$

Lemma 5. *The function $A = A(x)$ satisfies the following equation:*

$$A = (1 + (kt - t - k)x A^{k-1})^{t/(kt-t-k)}. \quad (6)$$

Proof. Let T be an k -ary tree on $[n] \cup \{0\}$. Delete all edges going from the root r of T . Then T is decomposed into $T' = (r; T_1, \dots, T_k)$ where each T_i is a k -ary tree and $[n] \cup \{0\}$ is the disjoint union of $V(T_1), \dots, V(T_k)$ and $\{r\}$. Consider two cases: (i) For some $1 \leq i \leq k$, T_i has the vertex 0 ; (ii) $r = 0$. Then we have

$$\begin{aligned} a_{n+1}(t) &= \sum_{i=1}^k \sum_{n_1+\dots+n_k=n-1} \binom{n}{1, n_1, \dots, n_k} a_{n_1}(t) \cdots a_{n_i+1}(t) \cdots a_{n_k}(t) \\ &\quad + t \sum_{n_1+\dots+n_k=n} \binom{n}{n_1, \dots, n_k} a_{n_1}(t) \cdots a_{n_k}(t). \end{aligned}$$

Multiplying both sides by $x^n/n!$ and summing over n yields

$$A' = kx A^{k-1} A' + t A^k, \quad (7)$$

with $A(0) = 1$, where the prime denotes the derivative with respect to x . Adding $(kt - t - k)x A^{k-1} A'$ to both sides of (7) yields

$$(1 + (kt - t - k)x A^{k-1}) A' = t((k-1)x A^{k-2} A' + A^{k-1}) A.$$

Let $\alpha(x) = 1 + (kt - t - k)x A^{k-1}$ and $\beta(x) = (k-1)x A^{k-2} A' + A^{k-1}$. Since $\alpha'(x) = (kt - t - k)\beta(x)$, we have

$$(\log A)' = \frac{t}{kt - t - k} (\log \alpha(x))',$$

which implies the functional equation (6). \square

Now we can deduce a formula for the polynomial $a_n(k)$ from equation (6).

Theorem 6 (k -ary trees). *For $n \geq 1$, the polynomial $a_n(t)$ in t is given by*

$$a_n(t) = t \prod_{i=1}^{n-1} ((ki - i + 1)t + k(n - i)). \quad (8)$$

Proof. Let $y^k = x$ and $\hat{A}(y) = y A(y^{k-1})$. Then by Lemma 5 we have

$$\hat{A}(y) = y (1 + (kt - t - k) \hat{A}(y)^{k-1})^{t/(kt-t-k)}. \quad (9)$$

Note that

$$a_n(t) = \left[\frac{x^n}{n!} \right] A(x) = \left[\frac{y^{(k-1)n}}{n!} \right] A(y^{k-1}) = n! [y^{kn-n+1}] \hat{A}(y).$$

Applying the Lagrange Inversion Formula (see [4, p. 38]) to (9) yields that

$$\begin{aligned} [y^{kn-n+1}] \hat{A}(y) &= \frac{1}{kn - n + 1} [y^{(k-1)n}] (1 + (kt - t - k) y^{k-1})^{\frac{t(kn-n+1)}{kt-t-k}} \\ &= \frac{1}{kn - n + 1} (kt - t - k)^n \binom{\frac{t(kn-n+1)}{kt-t-k}}{n} \\ &= \frac{t}{n!} \prod_{i=1}^{n-1} (t(kn - k + 1) - (kt - t - k)i). \end{aligned}$$

Thus we obtain the desired result. \square

Clearly, substituting $t = 1$ in (8) yields the number of k -ary trees on $[n]$, i.e.,

$$a_n(1) = kn(kn - 1) \cdots (kn - n + 2) = |\mathcal{A}_n^k|.$$

For some values of k , we can get interesting results. In particular when $k = 2$ we have

$$a_n(t) = t \prod_{i=1}^{n-1} ((i+1)t + 2(n-i)) \xrightarrow{t=2} 2^n(n+1)^{n-1},$$

which is a generalization of $|\mathcal{D}_n| = 2^n(n+1)^{n-1}$, i.e., identity (2).

For $n \geq 0$, let $f_{n,m}$ denote the number of forests on $[n]$ with m proper vertices and $p_{n,m}$ denote the number of plane forests on $[n]$ with m proper vertices. Let

$$f_n(t) = \sum_{m \geq 0} f_{n,m} t^m \quad \text{and} \quad p_n(t) = \sum_{m \geq 0} p_{n,m} t^m.$$

Let $F(x)$ and $P(x)$ be the exponential generating function for $f_n(t)$ and $p_n(t)$, respectively, i.e.,

$$F(x) = \sum_{n \geq 0} f_n(t) \frac{x^n}{n!} \quad \text{and} \quad P(x) = \sum_{n \geq 0} p_n(t) \frac{x^n}{n!}.$$

With the same methods used for k -ary trees, we can get the following results.

Theorem 7 (forests). Suppose $f_n(t)$ and $F(x)$ are defined as above. Then we have

1. $F = F(x)$ satisfies the following differential equation:

$$F' = x F F' + t F^2, \quad \text{with } F(0) = 1.$$

2. F satisfies the following functional equation:

$$F = (1 + (t - 1)x F)^{t/(t-1)}.$$

3. For $n \geq 1$, the polynomial $f_n(t)$ in t is given by

$$f_n(t) = t \prod_{i=1}^{n-1} ((i+1)t + (n-i)). \quad (10)$$

Theorem 8 (plane forests). Suppose $p_n(t)$ and $P(x)$ are defined as above. Then we have

1. $P = P(x)$ satisfies the following differential equation:

$$P' = x P^2 P' + t P^3, \quad \text{with } P(0) = 1.$$

2. P satisfies the following functional equation:

$$P = (1 + (2t - 1)x P^2)^{t/(2t-1)}.$$

3. For $n \geq 1$, the polynomial $p_n(t)$ in t is given by

$$p_n(t) = t \prod_{i=1}^{n-1} ((2i+1)t + (n-i)). \quad (11)$$

Note that the polynomials (10) and (11) are generalizations of (3) and (4), respectively. Moreover, from these formulas, we can easily get

$$\begin{aligned} \sum_{T \in \mathcal{T}_{n+1}} t^{\text{pv}(T)} &= t \prod_{i=0}^{n-1} ((i+1)t + (n-i)), \\ \sum_{P \in \mathcal{P}_{n+1}} t^{\text{pv}(P)} &= t \prod_{i=0}^{n-1} ((2i+1)t + (n-i)), \end{aligned}$$

which are generalizations of $|\mathcal{T}_{n+1}| = (n+1)^n$ and $|\mathcal{P}_{n+1}| = (n+1)! C_n$.

Acknowledgment

The author thanks Ira M. Gessel for his helpful advice and suggestions.

References

- [1] A. Cayley, A theorem on trees, *Quart. J. Math.* **23** (1889), 376–378.
- [2] J. Pitman and R. P. Stanley, A polytope related to empirical distributions, plane trees, parking functions, and the associahedron, *Discrete Comput. Geom.* **27** (2002), no. 4, 603–634.
- [3] A. Postnikov, Permutohedra, associahedra, and beyond, *Retrospective in Combinatorics: Honoring Richard Stanley's 60th Birthday*, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2004, slide available at: <http://www-math.mit.edu/~apost/talks/perm-slides.pdf>
- [4] R. P. Stanley, *Enumerative Combinatorics*, Vol. 2, Cambridge University Press, Cambridge, 1999.
- [5] D. Stanton and D. White, *Constructive Combinatorics*, Springer-Verlag, New York, 1986.