Calculus and Mathematics Cheatsheet

Samo F.

2025

Contents

1	\mathbf{Alg}	ebra :					
	1.1	Exponent Properties					
	1.2	Properties of radicals					
	1.3	Complex numbers					
	1.4	Logarithms					
	1.5	Quadratic Formula					
2	Line	ear Algebra					
_	2.1	Transpose					
3	Trigonometry						
	3.1	Definitions					
	3.2	Formulas and Identities					
	~ .						
4		culus					
	4.1	Limits					
		4.1.1 Properties					
		4.1.2 Evaluations					
	4.2	Derivatives					
		4.2.1 Definition					
		4.2.2 Properties					
		4.2.3 Common Derivatives					
	4.3	Integrals					
		4.3.1 Fundamental Theorem of Calculus					
		4.3.2 Properties					
		4.3.3 Common Integrals					
	4.4	Laplace transforms					
		4.4.1 Definition					
		4.4.2 Properties					
5	Cro	eek letters					
J	GIE	TEN TENTET S					

1 Algebra

1.1 Exponent Properties

$$\frac{a^n}{a^m} = a^{n-m}$$

$$x^a y^a = \left(xy\right)^a$$

$$x^{(\frac{a}{b})} = \sqrt[b]{x^a}$$

1.2 Properties of radicals

$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[nm]{a}$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$\sqrt[n]{a^n} = |a|$$
, if n is even

1.3 Complex numbers

$$(a+bi)(c+di) = ac - bd + (ad+bc)i$$

$$(a+bi)(a-bi) = a^2 + b^2$$

 $|a+bi| = \sqrt{a^2 + b^2}$ Complex Modulus

$$\overline{(a+bi)} = a-bi$$

$$z_1 \cdot z_2 = r_1 \cdot r_2 e^{i(\theta_1 + \theta_2)}$$

$$z^{\frac{1}{n}} = \sqrt[n]{r} \cdot e^{i(\frac{\phi}{n} + \frac{2k\pi}{n})}; \quad k = 0, 1, ..., n-1$$

 $e^{ni\theta} = \cos n\theta + \sin n\theta$ De Moivre's Formula

1.4 Logarithms

$$\log_b b = 1$$

$$\log_b 1 = 0$$

$$\log_b(x^r) = r \log_b x$$

$$\log_b(xy) = \log_b(x) + \log_b(y)$$

$$\log_b\left(\frac{x}{y}\right) = \log_b(x) - \log_b(y)$$

$$\log_b\left(x\right) = \log_b\left(c\right)\log_c\left(x\right) = \frac{\log_c\left(x\right)}{\log_c\left(b\right)}$$

1.5 Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad \text{when } ax^2 + bx + c = 0$$

2 Linear Algebra

Matrix addition: one by one. (commutative, associative)

Scalar multiplication: all.

Matrix "multiplication of rows into columns". Multiplication is not commutative $(AB \neq BA)$.

$$c_{jk} = \sum_{i=1}^{n} a_{ji} b_{ik}$$

Inner or dot product of Vectors

$$\langle a, b \rangle = \mathbf{a} \bullet \mathbf{b} = \mathbf{a}^T \mathbf{b}$$

Matrix to the power $A^0 = I$

Inverse:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{\det(\mathbf{A})} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Identities

$$(AB)^T = B^T A^T$$

$$(A+B)^T = A^T + B^T$$

$$(AB)^{-1} = B^{-1} + A^{-1}$$

$$A^k B^l = A^{k+l}$$

Conjugate transpose / adjugate

$$A^* = (\overline{A})^{\mathrm{T}} = \overline{A^{\mathrm{T}}}$$

Determinants

$$\det(\mathbf{A}) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n A_{i,\sigma_i}$$

For 3×3 matrices (Sarrus rule):

 $\det\left(rA\right) = r^n \det(A) \quad \text{for all } A^{n\times n} \text{ and scalars } r$

The determinant of a triangular matrix equals the product of the diagonal entries. Since for any triangular matrix A the matrix A the matrix A, whose determinant is the characteristic polynomial of A, is also triangular, the diagonal entries of A in fact give the multiset of eigenvalues of A (an eigenvalue with multiplicity m occurs exactly m times as diagonal entry)

2.1 Transpose

$$[A^{T}]_{ij} = [A]_{ji}$$

$$(A^{T})^{T} = A$$

$$(AB)^{T} = B^{T}A^{T}$$

$$\det(A^{T}) = \det(A)$$

$$(A^{T})^{-1} = (A^{-1})^{T}$$

3 Trigonometry

3.1 Definitions

$$\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}}$$

$$\tan\theta = \frac{\text{opposite}}{\text{adjacent}}$$

Table 1: Trigonometric functions standard values

Θ	0°	30°	45°	60°	90°
$\sin\Theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos\Theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan\Theta$	0	$\frac{1}{\sqrt{3}}$	i i	$\sqrt{3}$	/

3.2 Formulas and Identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

Pythagorean identities

$$\sin^2\theta + \cos^2\theta = 1$$

Odd/Even formulas

$$\sin(-\theta) = -\sin\theta$$

$$\cos(-\theta) = \cos\theta$$

Sum and difference formulas

$$\sin{(\alpha \pm \beta)} = \sin{\alpha}\cos{\beta} \pm \cos{\alpha}\sin{\beta}$$

$$\cos\left(\alpha\pm\beta\right)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta$$

Double angle formulas

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1$$

Half angle formulas

$$\tan\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos(\theta)}{1+\cos(\theta)}}$$

Euler's theorem

$$e^{\pm i\theta} = \cos\theta \pm i\sin\theta$$

$$\cos\theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$$

$$\sin\theta = \frac{1}{2i}(e^{i\theta} - e^{-i\theta})$$

Miscellaneous formulas

$$\sin^2\theta = \frac{1 - \cos(2\theta)}{2}$$

$$\cos^2\theta = \frac{1 + \sin(2\theta)}{2}$$

4 Calculus

4.1 Limits

4.1.1 Properties

$$\lim_{x\to a}\left[cf(x)\right]=c\lim_{x\to a}f(x)$$

L'Hopital's Rule

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

4.1.2 Evaluations

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to -\infty} e^x = 0$$

4.2 Derivatives

4.2.1 Definition

$$\frac{d}{dx}f\left(x\right) = \lim_{h \to 0} \frac{f\left(x+h\right) - f\left(x\right)}{h}$$

4.2.2 Properties

Product rule

$$\left(fg\right)'=f'g+fg'$$

Chain rule

$$\frac{d}{dx}\left[f\left(u\right)\right] = \frac{d}{du}\left[f\left(u\right)\right]\frac{du}{dx}$$

or
$$(f(g(x))'=f'(g(x))g'(x)$$
 or $(f\circ g)'=(f'\circ g)\cdot g'$

Quotient Rule

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$

4.2.3 Common Derivatives

$$\frac{d}{dx}\left(a^x\right) = a^x \ln(a)$$

$$\frac{d}{dx}\ln\left(x\right) = \frac{1}{x}, \quad x > 0$$

Power rule

$$\frac{d}{dx}x^n = nx^{(n-1)}$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\sin x = \cos x$$

4.3 Integrals

4.3.1 Fundamental Theorem of Calculus

$$\int_{a}^{b} \frac{d}{dx} F(x) dx = F(b) - F(a)$$

4.3.2 Properties

$$\int kdx = kx + C$$

4.3.3 Common Integrals

$$\int kdx = kx + C$$

$$\int x^n dx = \frac{1}{n+1}x^{n+1} + C, \quad n \neq -1$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int \ln u du = u \ln(u) - u + C$$

$$\int e^x dx = e^x + C$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax + C$$

$$\int \cos x dx = \sin x + C$$

Per partes (Integration by parts)

$$\int u \frac{dv}{dx} dx = uv - \int \frac{du}{dx} v dx$$

Substitution Rule

$$\int f(u)\frac{du}{dx}dx = \int f(u)du$$

4.4 Laplace transforms

4.4.1 Definition

$$X(s) = \int_0^\infty x(t) e^{-st} dt$$

7

4.4.2 Properties

$$1 \Leftrightarrow \frac{1}{s}$$

Kronecker delta function

$$\delta(t) \Leftrightarrow 1$$

$$Ke^{-at}u(t) \Leftrightarrow rac{K}{s+a}$$

$$t^n u(t) \Leftrightarrow \frac{n!}{s^{n+1}}$$

$$\sin(\alpha t)u(t) \Leftrightarrow \frac{\alpha}{(s^2 + \alpha^2)}$$

$$\cos(\alpha t)u(t) \Leftrightarrow \frac{s}{(s^2 + \alpha^2)}$$

$$e^{-at}\sin(\Omega t)u(t) \Leftrightarrow \frac{\Omega}{(s+a)^2+\Omega^2}$$

$$e^{-at}\cos(\Omega t)u(t) \Leftrightarrow \frac{s+a}{(s+a)^2+\Omega^2}$$

$$e^{at}x(t) \Leftrightarrow X(s-a)$$

Time domain scaling

$$x(at)u(t) \Leftrightarrow \frac{1}{a}X\left(\frac{s}{a}\right)$$

Time domain shifting

$$x(t-a)u(t-a) \Leftrightarrow e^{-as}X(s+a)$$

Derivative

$$\frac{d^n x(t)}{dt^n} \Leftrightarrow s^n X(s)$$

or
$$\mathcal{L}[\dot{x}] = sX(s) - x(0+)$$

Integral

$$\int x(t)dt \Leftrightarrow \frac{X(s)}{s}$$

Convolution

$$\int_0^\infty x_1(\tau)x_2(t-\tau)d\tau \Leftrightarrow X_1(s)X_2(s)$$

Symbol	Name	Symbol	Name	
--------	------	--------	------	--

5 Greek letters

Symbol	Name	Symbol	Name
αA	Alpha	νN	Nu
βB	Beta	$\xi\Xi$	Xi
$\gamma\Gamma$	Gamma	oO	Omicron
$\delta\Delta$	Delta	$\pi\Pi$	Pi
$\epsilon \varepsilon$	Epsilon	$\rho \varrho P$	Rho
ζZ	Zeta	$\sigma\Sigma$	Sigma
ηH	Eta	τT	Tau
$\theta\vartheta\Theta$	Theta	$v\Upsilon$	Upsilon
ιI	Iota	$\phi \varphi \Phi$	Phi
κK	Kappa	χX	Chi
$\lambda\Lambda$	Lambda	$\psi\Psi$	Psi
μM	Mu	$\omega\Omega$	Omega