Aluno(a)	:	
	\sim	•	

			Terceira avaliação (Valor: 10,0)
1.	[Valor: 2,0]	Marq	ue (V)erdadeiro ou (F)also.
	(a) V	\Box F	O problema de verificar se um número x pertence a um conjunto de n números está em P .
	(b) \Box V	\Box F	Se P \neq NP então nenhum problema NP pode ser resolvido em tempo polinomial.
	(c) \Box V	\Box F	Se P \neq NP então nenhum problema NP-Completo pode ser resolvido em tempo polinomial.
	(d) \Box V	\Box F	O problema de verificar se uma fórmula booleana é satisfazível pertencente à classe NP.
	(e) \Box V	\Box F	Se há um algoritmo de tempo $O(n^{100})$ para o problema de $Subset\ Sum,$ então P = NP.
	(f) 🗆 V	\Box F	Suponha que $X \in \text{NP}$. Se existir um algoritmo de tempo $O(\lg n)$ para X , então $P = \text{NP}$.
	(g) \square V	\Box F	O problema de parada da Máquina de Turing é NP-Completo.
			Se um problema X é NP-Completo, então existe um algoritmo de tempo polinomial não-detereresolve X.
2.	não precisa que não sal	estar e bemos	roblema X é NP-Difícil se e somente se existe um problema NP-Completo Y tal que Y \leq_p X. X em NP e nem ser um problemas de decisão. Seja S um problema NP-Completo, Q e R problemas se pertencem a NP. Se existe uma redução em tempo polinomial de Q para S e, S pode ser o polinomial para R, assinale qual(is) sentença(s) é(são) verdadeira(s)?
	□ R é NP-0	Compl	eto \square R é NP-Difícil \square Q é NP-Completo \square Q é NP-Difícil
3.			se que 3-SAT é NP-Completo e que existe um algoritmo de tempo polinomial para o problema rmos que P \neq NP, então é possível termos 3-SAT \leq_p 2-SAT? Justifique.
4.		-	que o que é redução em tempo polinomial. Apresente um exemplo de como podemos usá-la para roblema X é NP-Completo.
5.	[Valor: 1,0]	Um a	lgoritmo verificador para um problema de decisão recebe dois objetos: uma instância do problema

- e um certificado. Ao receber esses dois objetos, o verificador pode responder SIM ou NÃO. Se responder SIM, dizemos que o verificador aceitou o certificado. Um verificador para um determinado problema de decisão é polinomial se: (i) para cada instância positiva do problema, existe um certificado que o verificador aceita em tempo limitado por uma função polinomial do tamanho da instância; (ii) para cada instância negativa do problema, não existe certificado que o verificador aceite. Dada esta definição, apresente um algoritmo verificador para o Problema de Cobertura de Vértice. [Dado um grafo G = (V, E), uma cobertura de vértices é um subconjunto de vértices $S \subseteq V$ tal que toda aresta $(u, v) \in E$ tem pelo menos uma ponta (u ou v) em S.]
- 6. [Valor: 1,5] Um clique em um grafo G = (V, E) é um subgrafo completo de G (cada dois vértices do subconjunto são conectados por uma aresta). Encontrar um clique de tamanho máximo em um grafo é um problema de otimização para o qual não se conhece um algoritmo que o resolva em tempo polinomial. Mas se P=NP, então mostre que existe um algoritmo que resolve o Problema do Clique Máximo em tempo polinomial. [Note que, o problema de verificar se um grafo possui um clique de tamanho $\geq k$ é NP-Completo. Assuma que CLIQUE(G,k) é o algoritmo que resolve este problema. Dica: desenvolva seu algoritmo de modo a fazer diversas consultas a CLIQUE(G,k).
- 7. [Valor: 1,5] Um conjunto independente de um grafo G = (V, E) é um conjunto de vértices $S \subseteq V$ tal que não existem dois vértices adjacentes contidos em S. Vimos que o problema de encontrar um conjunto independente de tamanho k em um grafo é um problema NP-Completo. E o problema de encontrar em um grafo um conjunto independente contendo exatamente 3 vértices? Também é um problema NP-Completo? Justifique.

Aluno(a)		
Allinotal	•	