Accelerated massive data analytics for materials and semiconductors

Quynh L. Nguyen

Linac Coherent Light Source SLAC National Accelerator Laboratory

4 December 2024

Materials for devices

Understanding and manipulating matter for practical applications

Wavelength and Matter Size

Gamma Ray 10⁻¹² m X-ray 10⁻¹⁰ m Ultraviolet 10⁻⁸ m Visible 10⁻⁶ m Infrared 10⁻⁵ m

Microwave 10-2 m

Atomic nuclei

Atom

Molecules

Cells

Sewing Needles

Honey Bees

Wavelength and Matter Size

10⁻¹² m

X-ray 10⁻¹⁰ m Ultraviolet 10⁻⁸ m

Visible 10⁻⁶ m

Infrared 10-5 m

Microwave 10⁻² m

Atom

Molecules

Cells

Sewing Needles

Wavelength and Matter Size

Ultrafast X-ray Light Sources: HHG, Synchrotron, FEL

VUV, EUV to soft-Xray (< 300 eV) femto to attosecond (10-15 - 10-18 s) 106 - 108 photons/sec

High-harmonic Generation

Soft x-ray (0.25 - 1.6 keV) picoseconds (10⁻¹² s) 10¹² photons/sec

Synchrotron

Soft x-ray (0.25 - 1.6 keV), 1-MHz femtoseconds (10⁻¹⁵ s) 10¹⁵ photons/sec

Free-Electron Laser

World's first X-ray Free Electron Laser

SLAC X-ray Free Electron Laser

- 3-km long tunnel under I-280 and close to Stanford campus
- Access angstrom-length-scales and electronic movements
- Unravel new scientific insights in matter

Applications

Ultrafast Excitation Driver

Ultrafast characterization approaches

Electronic Structure

Spectroscopy

Scattering

Spectral Microscopy

Spatial Imaging

Time-resolved X-ray experiment schematic timeline

Time-resolved X-ray experiment schematic timeline

3-km beam line to complex instrumentations

Experimental Hutch

Cryogenic Time-resolved Scattering Experimental Setup

Robot Detector

Multidimensional Tuning Parameters to Access Material Properties

Laser excitation

Making material movies by varying parameters

- Sample geometry => Momentum range
- · X-ray/laser energy
- Time delay
- Temperature

Data Structure

Detector • 120 Hz • 10 Gps

- 1024 x 512 pixels
- 75 um/pixel

Multidimensional Data

Multidimensional Data Structure

Laser excitation Material

 Δ time

momentum

Making material movies by varying parameters

• Sample geometry => Momentum range

X-ray (5-20 keV)

- · X-ray/laser energy
- Time delay
- Temperature

tr-XRD: q-dependence dynamics

Multidimensional Data Structure

Multidimensional Data Structure

QL Nguyen et al. Physical review letters 131 (7), 076901 (2023)

Data analytics with cuPyNumeric

Data analytics with cuPyNumeric

\$B 1-MHz LCLS-II just turned on after 10 years in the making!

Challenges: Massive Data Generation from Superconducting LINAC

92x football fields

4000/day for life

Soft X-ray FEL Probe at LCLS-II

ChemRIXS / Resonant inelastic Xray scattering (qRIXS) Instruments

SLAC

Energy Transfer (eV)
DOE BES Roundtable Report (2017)

Leer

Soft X-ray FEL Probe at LCLS-II: roll-in end stations

Momentum Microscope Instrument

Pump off Pump on Rev. Sci. Inst. 91, 013109 (2020)

SLAC

DOE BES Roundtable Report (2017)

SLAC

- Seshu Yamajala
- Alex Aiken
- Jana Thayer

Special thanks to:

Irina Demeshko and Manolis Papadakis at NVIDIA

SLAC