MOB qPCR

Kevin D. Webster and Jay T. Lennon 17 December, 2015

Overview

The following code takes output from the qPCR instrument and calculates gene copy abundance for methane monoxygenase (pmoA) gene

Set working directory

```
rm(list=ls())
getwd()

## [1] "/Users/lennonj/GitHub/radiolyticCH4/code/caves/qPCR"

setwd("~/GitHub/radiolyticCH4")
```

Read MOB data

Change copy numbers to their correct values

```
# calculate the number of pmoA genes present in a 2.5 ng/uL standard cpn <- 2.5*10^(-9)*((202+661-189)*(660))^(-1)*6.022*10^(23)

mob[57,4] <- cpn # The copy numbers entered into RealPlex were incorrect.
mob[58,4] <- cpn*10^(-1) # These steps use the 189 - 661 primer pair to calculate mob[59,4] <- cpn*10^(-2) # the number of gene copies present in solution mob[60,4] <- cpn*10^(-3) mob[61,4] <- cpn*10^(-4) mob[62,4] <- cpn*10^(-5) mob[63,4] <- cpn*10^(-6) mob[64,4] <- cpn*10^(-7)

mob[,3] <- as.numeric(mob[,3]) # change data type of column 3
```

Warning: NAs introduced by coercion

```
mob[,4] <- as.numeric(mob[,4]) # change data type of column 4</pre>
```

Warning: NAs introduced by coercion

```
ct <- mob[57:64,3] # flourescent values of the standards
s <- mob[57:64,4] # copy numbers of standards

plot(ct,log10(s)) # plots copy number against standard flouresence for a visual check
reg <- lm(log10(s) ~ ct) # linear regression of log10(s) vs ct
abline(reg)</pre>
```



```
reg_sum <- summary(reg) # summary of analysis
```

qPCR statistics

```
mob.ef <- -1+10^(-reg$coefficients[2]) # efficiency
mob.r2 <- summary(lm(log10(s)~ct, mob))$r.squared # r^2 of the standard curve
```

Loop to calculate MOB gene copy number from standard curve coefficients

```
for (i in 1:51) {
  mob[i,4] <- (10^(reg$coefficients[1] + reg$coefficients[2]*mob[i,3]))
}
write.table(mob, file = "~/GitHub/radiolyticCH4/data/caves/qPCR/mob.661.out.txt")</pre>
```