Single Neuron - is just a function

neights - how much influence a specific input has

bias - how much influence the neuron has

5 positive bias: small input - big output

4 negative bias, vice versa - neuron less important / influence

activation functions - allow to capture and model complex non-linear relationships within injusts. Lo enabling to learn & generalize from complex data

- any growing function is possible

-> but some non-linear are necessary or neural net is just an lienar regression

examples.				0
Activation function	Equation	Example	1D Graph	
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	7	converts reguline to 0
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	1	converts regulire -> set regulire.
Linear	$\phi(z) = z$	Adaline, linear regression	2	Cincar
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	1 0	Signum with linear transition
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	0	Signam smoth transition between O and 1
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	—	Sigmoid n/o boundries
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0, z)$	Multi-layer Neural Networks		sets repetive input to zero
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks		corrects numbers into probabilité
				converts numbers into probabilities