

Feature Engineering

Week 7

Table of Contents

- One Hot Encoding
- Label Encoding
- Feature Scaling
- Feature Selection

BUSINESS UNDERSTANDING Lifecycle 02 **DATA MINING DATA SCIENCE LIFECYCLE** 06 03 sudeep.co PREDICTIVE **DATA CLEANING** MODELING Fix the inconsistencies within the data and handle the missing values. **DATA EXPLORATION FEATURE ENGINEERING** Form hypotheses about your defined problem by visually analyzing the data.

Feature Engineering

Different algorithms have distinct requirements in order for us to fit them to our data. Some require:

- Only numerical values
- Only categorical values
- No null values

And more...

We just need to make the correct transformations in order to make our data suitable for specific/different algorithms.

Feature Engineering

- So far we have studied KNN Classifier and Regressor as a predictive model.
- Because KNN is a distance based algorithm, it requires all entries in our data to be **numerical**.
- On the other hand, some models, like Naive-Bayes (yet to study) requires all entries to be **categorical**.

Let's explore some techniques to transform all data into numerical or categorical.

Feature Engineering - One Hot Encoding

Recap - Nominal Data

 One-hot encoding converts categorical variables into numerical (binary vectors) where each category is represented by a single bit, indicating its presence.

Original Data

Team	Points	
Α	25	
Α	12	
В	15	
В	14	
В	19	
В	23	
С	25	
С	29	

One-Hot Encoded Data

Team_A	Team_B	Team_C	Points
1	0	0	25
1	0	0	12
0	1	0	15
0	1	0	14
0	1	0	19
0	1	0	23
0	0	1	25
0	0	1	29

Feature Engineering - Label Encoding

Recap - Ordinal Data

 Label encoding for ordinal data assigns numerical values to categories based on their order or ranking.

Height	Height
Tall	0
Medium	1
Short	2

Feature Engineering - Binning

Recap

 Grouping a continuous variable into intervals can make analysis more intuitive and can highlight patterns better in some cases.

Sex	Age	Sex	
male	22	male	
female	38	female	-
female	26	female	٦,
female	35	female	
male	35	male	
male	80	male	
male	54	male	-
male	2	male	-
female	27	female	
female	14	female	
female	4	female	
female	58	female	

Sex	Age	
male	Adult	
female	Adult	
female	Adult	
female	Adult	
male	Adult	
male	Elderly	
male	Adult	
male	Toddler/baby	
female	Adult	
female	Child	
female	Toddler/baby	
female	Adult	

 Feature scaling is the process of adjusting the range of features in a dataset to make sure they're all on a similar scale, which might help improve machine learning algorithms.

Normalization - MinMaxScaler

• **MinMaxScaler** is a **normalization** technique that scales features to a specified range, between 0 and 1, preserving the relationship between data points.

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

Standardization - Z-score

• **Z-score** is a way to standardize all your data in a way that tells you how many standard deviations each point is from the mean.

Examples

 Normalizing or Standardizing your data can improve your models by a lot, specially when those models are distance based.

Examples

Feature Selection

Feature Selection

- In ML we want features to be highly correlated with the target, but not between themselves.
- High correlation among features themselves, can lead to redundancy and instability in models, potentially degrading performance.

Feature Selection

Recap

- When dealing with categorical data, we can check if two features are correlated with Chi-square test.
- For numerical data, computing correlation matrix will allow you to see the relationship between features between themselves and also with the target.

	Apple	Samsung	Google
Youth	40	25	5
Middle-Aged	15	30	5
Seniors	10	20	10

