Connaissance du cours

- 1. Donner la définition de :
 - · recherche linéaire
 - · recherche dichotomique
 - · algorithme de tri
 - · complexité. En particulier, Comment mesure t-on l'efficacité d'un algorithme?
 - · Que signifie: complexité linéaire / logarithmique / quadratique ?
- 2. Expliquer avec des mots le principe du tri par sélection.
- 3. Expliquer avec des mots le principe du tri par insertion
- 4. Donner l'algorithme de recherche linéaire, écrit soit en langage naturel, soit en langage Python
- 5. Expliquer en quoi la recherche d'un mot dans un dictionnaire est une recherche dichotomique

Exercice 1:

On considère le tableau T = [2,3,5,7,9,4].

1. Appliquez les algorithmes de tris par sélection et par insertion à ce tableau. Vous complèterez les deux tableaux ci-dessous pour détailler chaque itération.

Tri par sélection	T avant l'itération	T après l'itération	Nombre de comparaisons nécessaires	Nombre d'échanges nécessaires
Itération 1	[2,3,5,7,9,4]			
Itération 2				

Tri par insertion	T avant l'itération	T après l'itération	Nombre de comparaisons nécessaires	Nombre de décalages nécessaires	
Itération 1	[2,3,5,7,9,4]				
Itération 2					

2. Comparez le nombre total de comparaisons nécessaires de ces deux algorithmes. Lequel semble le plus efficace ?

Exercice 2:

En supposant que le tri par sélection prend un temps directement proportionnel à n² et qu'il prend 6,8 secondes pour trier 16 000 valeurs, calculez le temps qu'il faudrait pour trier un million de valeurs avec ce même tri par sélection.

Exercice 3:

- 1. Ecrire une fonction **est_trie(t)** qui renvoie **True** si le tableau t est trié par ordre croissant et False sinon.
- 2. On dispose d'une fonction appelée tri_select. Cette fonction va réaliser le tri d'une liste selon la méthode de tri par sélection. Comment pourrait-on utiliser cette fonction pour réaliser un test de POST condition?
- 3. Comment pourrait-on utiliser la fonction **est_trie** pour réaliser pour réaliser un test de PRE condition? Ce test devra faire sortir de la fonction de tri, sans rien faire (puisque la liste est déjà triée).

Exercice 4:

Que renvoie chacune des instructions suivantes ?

```
    sorted([10, 2, 3, 21, 7])
    sorted(['10', '2', '3', '21', '7'])
```

Exercice 5:

1. Que vaut le tableau t après les instructions suivantes ? Justifiez.

```
t = [2, 1, 4, 7]
t.sort()
t[1] = 3
```

2. Que vaut le tableau t après les instructions suivantes ? Justifiez.

```
t = [2, 1, 4, 7]
sorted(t)
t[1] = 3
```

Exercice 6:

On recherche la valeur 9 par dichotomie dans le tableau t suivant.

```
t = [1, 2, 2, 5, 6, 6, 7, 9, 9, 10, 10, 13, 13, 15]
```

- 1. Complétez le tableau d'évolution des variables au cours de l'algorithme de recherche dichotomique.
- 2. Quelle est la valeur renvoyée par l'algorithme ? (i_min <=> g , i_max <=> d, mid <=> m)

	g <= d?	m	T[m]	Moitié à conserver (droite ou gauche ou fin ?)	g	d
Avant l'itération 1						
Après l'itération 1						
Après l'itération 2						

Exercice 7:

Combien de valeurs sont examinées par l'instruction if t[m] == m lors d'un appel à

recherche_dichotomique([0,1,1,2,3,5,8,13,21], 7) ?

Exercice 8:

Donnez un exemple d'exécution de la fonction **recherche_dichotomique** où le nombre de valeurs examinées est exactement 5.

Exercice 9:

- 1. A quoi sert la fonction **f** suivante?
- 2. Quel est le nombre d'opérations (affectations, additions, divisions, ...) effectuées lors d'un appel à: f([0, 10, 20, 90, 100])?

```
def f(t):
    """t est un tableau d'entiers"""
s = 0
for i in range(len(t)):
    s = s + t[i]
return s/len(t)
```

Exercice 10:

Quand on joue au nombre mystère avec un nombre entier compris entre 1 et 100, combien faut-il d'essais dans le pire des cas si l'on joue de façon optimale ?

Exercice 11:

Quel est le nombre maximal de tours de boucle effectués par l'algorithme de recherche dichotomique dans un tableau trié de taille 60 000 000 ? de taille 7 500 000 000 ?