Wigglyness is Diagonalisable

James Chok and Geoffrey M. Vasil

Linear Regression

$$\min_{\substack{a_0, a_1 \in \mathbb{R} \\ a_0 \neq 1}} \sum_{i=1}^{N} [y_i - (a_0 + a_1 x_i)]^2$$

$$X = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{pmatrix}, \quad a = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} \quad y = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}$$

$$\min_{a \in \mathbb{R}^2} \|y - Xa\|^2$$

$$\min_{a_0, \dots, a_M \in \mathbb{R}} \sum_{i=1}^{N} [y_i - (a_0 + a_1 x_i + \dots + a_M x_i^M)]^2$$

$$X = \begin{pmatrix} 1 & x_1 & \cdots & x_1^M \\ 1 & x_2 & \cdots & x_2^M \\ \vdots & \vdots & & & \\ 1 & x_N & \cdots & x_N^M \end{pmatrix}, \quad a = \begin{pmatrix} a_0 \\ \vdots \\ a_M \end{pmatrix} \quad y = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}$$

$$\min_{a \in \mathbb{R}^{M+1}} \|y - Xa\|^2$$

$$\min_{a \in \mathbb{R}^{M+1}} \|y - Xa\|^2$$

$$\mathcal{L} = \|y - Xa\|^2 = (y - Xa)^T (y - Xa)$$
$$= a^T X^T X a - 2a^T X^T y + y^T y$$

$$\frac{\partial \mathcal{L}}{\partial a} = 2a^T X^T X - 2X^T y = 0 \implies a = (X^T X)^{-1} X^T y$$

Plot Wiggly Polynomial Regression

$$X = \begin{pmatrix} 1 & x_1 & \cdots & x_1^M \\ 1 & x_2 & \cdots & x_2^M \\ \vdots & \vdots & & & \\ 1 & x_N & \cdots & x_N^M \end{pmatrix}, \qquad a = (X^T X)^{-1} X^T y$$

Vandermonde Matrix is Numerically Bad

$$X = \begin{pmatrix} 1 & x_1 & \cdots & x_1^M \\ 1 & x_2 & \cdots & x_2^M \\ \vdots & \vdots & & & \\ 1 & x_N & \cdots & x_N^M \end{pmatrix}, \qquad a = (X^T X)^{-1} X^T y$$

$$M = (X^T X)$$
 we hope $M^{-1} M = I$

Polynomial Regression (Preconditioning)

$$\sum_{i=0}^{M} a_i x^i = \sum_{i=0}^{M} c_i P_i(x)$$

 $\{P_i(x)\}_{i=0}^M$ spans polynomials of degree M

$$\min_{a_0,\ldots,a_M \in \mathbb{R}} \sum_{i=1}^N \left[y_i - \sum_{i=0}^M c_i P_i(x) \right]^2$$

$$X = \begin{pmatrix} P_0(x_1) & P_1(x_1) & \cdots & P_M(x_2) \\ P_0(x_2) & P_1(x_2) & \cdots & P_M(x_2) \\ \vdots & \vdots & & & \\ P_0(x_N) & P_1(x_N) & \cdots & P_M(x_N) \end{pmatrix}, \quad c = \begin{pmatrix} c_0 \\ \vdots \\ c_M \end{pmatrix} \quad y = \begin{pmatrix} y_1 \\ \vdots \\ y_N \end{pmatrix}$$

$$\min_{\alpha \in \mathbb{D}^{M+1}} \|y - Xc\|^2 \implies c = (X^T X)^{-1} X^T y$$

Wigglyness

$$\mathscr{W}(f) = \int (f''(x))^2 dx$$

Penalized Regression

$$\mathscr{W}(f) = \int (f''(x))^2 dx$$

$$\min_{f} \|y - f(x)\|^2 \quad \text{such that} \quad \mathcal{W}(f) \le \eta$$

 $\min_{f} \|y - f(x)\|^2 \quad \text{such that} \quad \mathcal{W}(f) \le \eta$

Equivalent

$$\min_{f} \left[\|y - f(x)\|^2 + \lambda \mathcal{M}(f) \right]$$

$$\min_{f} \|y - f(x)\|^2 \quad \text{such that} \quad \mathcal{W}(f) \le \eta$$

For small η , λ is big

$$\min_{f} \left[\|y - f(x)\|^2 + \lambda \mathcal{W}(f) \right]$$

Smoothing Penalty

$$\min_{a_0, \dots, a_M \in \mathbb{R}} \sum_{i=1}^N \left[y_i - \sum_{k=0}^M a_k x_i^k \right]^2 + \lambda \int_0^1 \left(\frac{d^2}{dx^2} \sum_{k=0}^M a_k x^k \right)^2 dx$$

Wigglyness is Not Diagonalisable

L2 - Regularisation

$$\min_{a_0, \dots, a_M \in \mathbb{R}} \sum_{i=1}^{N} \left[y_i - \sum_{k=0}^{M} a_k x_i^k \right]^2 + \lambda \sum_{i=0}^{M} a_k^2$$

$$\min_{a_0,\ldots,a_M\in\mathbb{R}} \sum_{i=1}^N \left[y_i - \sum_{k=0}^M a_k x_i^k \right]^2 \quad \text{such that} \quad \sum_{i=0}^M a_k^2 \leq \eta$$

L2 - Regularisation

$$\min_{a_0, \dots, a_M \in \mathbb{R}} \sum_{i=1}^{N} \left[y_i - \sum_{k=0}^{M} a_k x_i^k \right]^2 + \lambda \sum_{i=0}^{M} a_k^2$$

$$a = (X^T X + \lambda I)^{-1} X^T y$$

Show Plot of I2-regularization

$$\min_{a_0, \dots, a_M \in \mathbb{R}} \sum_{i=1}^N \left[y_i - \sum_{i=0}^M c_i P_i(x) \right]^2 + \lambda \int_0^1 \left(\frac{d^2}{dx^2} \sum_{i=0}^M c_i P_i(x) \right)^2 dx$$

 $P_i(x)$ = i-th Legendre Polynomial

Show Plot of High/Low-pass filter

Classical Orthogonal Polynomials have Orthogonal Derivatives

Classical Orthogonal Polynomials

- Jacobi Polynomials
- Hermite Polynomials
- Laguerre Polynomials

Classical Orthogonal Polynomials

$$< P_n, P_m > = \int_{\Omega} P_n(x) P_m(x) d\mu_0 = c_{n,0} \delta_{n,m}$$

$$< P_n^{(k)}, P_m^{(k)} > = \int_{\Omega} P_n^{(k)}(x) P_m^{(k)}(x) d\mu_k = c_{n,k} \delta_{n,m}$$

Smoothing Penalty

$$\int_0^1 \left(\frac{d^k}{dx^k} \sum_{n=0}^N c_n P_n(x) \right)^2 d\mu_k = \langle \sum_{n=0}^N c_n P_n^{(k)}(x), \sum_{n=0}^N c_n P_n^{(k)}(x) \rangle_{\mu_k}$$

$$= \sum_{n=0}^{N} c_n^2 < P_n^{(k)}(x), P_n^{(k)}(x) >_{\mu_k}$$

Smoothing Penalty

$$\sum_{k\geq 0} \int_0^1 \left(\frac{d^k}{dx^k} \sum_{n=0}^N c_n P_n(x) \right)^2 d\mu_k = \sum_{k\geq 0} \sum_{n=0}^N c_n^2 < P_n^{(k)}(x), P_n^{(k)}(x) >_{\mu_k}$$

$$= \sum_{n=0}^{N} c_n^2 \sum_{k=0}^{n} \langle P_n^{(k)}(x), P_n^{(k)}(x) \rangle_{\mu_k}$$

$$\mathcal{W}(f) \sim \sum_{n=0}^{N} c_n^2 n^{2n}$$

Compare with polynomial wigglyness

Wigglyness is Diagonalisable

Smoothing Penalty

Sobolev-Jacobi Smoothing

$$\sum_{k>0} \int_0^1 \left(\frac{d^k}{dx^k} \sum_{n=0}^N c_n P_n(x) \right)^2 d\mu_k \sim \sum_{n=0}^N c_n^2 n^{2n}$$

Classical Smoothing

$$\int_{0}^{1} \left(\frac{d^{2}}{dx^{2}} \sum_{n=0}^{N} c_{n} P_{n}(x) \right)^{2} d\mu_{k} \sim ??$$

Smoothing Penalty vs L2-Penalty

Sobolev-Jacobi Smoothing

$$\sum_{k>0} \int_0^1 \left(\frac{d^k}{dx^k} \sum_{n=0}^N c_n P_n(x) \right)^2 d\mu_k \sim \sum_{n=0}^N c_n^2 n^{2n}$$

L2-Penalty

$$\sum_{n=0}^{N} c_n^2$$

$$\min_{a_0, \dots, a_M \in \mathbb{R}} \sum_{i=1}^{N} \left[y_i - \sum_{m=0}^{M} c_m P_m(x) \right]^2 + \lambda \sum_{m=0}^{M} c_m^2 m^{2m}$$

$$\min_{a_0,...,a_M \in \mathbb{R}} \sum_{i=1}^{N} \left[y_i - \sum_{m=0}^{M} c_m P_m(x) \right]^2 \quad \text{such that} \quad \sum_{m=0}^{M} c_m^2 m^{2m} \leq \eta$$

$$\min_{a_0, \dots, a_M \in \mathbb{R}} \sum_{i=1}^{N} \left[y_i - \sum_{m=0}^{M} c_m P_m(x) \right]^2 \quad \text{such that} \quad \sum_{m=0}^{M} c_m^2 m^{2m} \leq \eta$$

$$M = 2 \implies c_0^2 + c_1^2 + 16c_2^2 \le \eta$$

$$\min_{a_0, \dots, a_M \in \mathbb{R}} \sum_{i=1}^N \left[y_i - \sum_{m=0}^M c_m P_m(x) \right]^2 \quad \text{such that} \quad \sum_{m=0}^M c_m^2 m^{2m} \leq \eta$$

$$M = 2 \implies c_0^2 + c_1^2 + 16c_2^2 \le \eta$$

$$c = (X^T X + Diag(m^{2m}))^{-1} X^T y$$

Polynomial Approximation

$$f(x) \approx \sum_{n=0}^{N} a_n P_n(x) = \sum_{n=0}^{N} c_n x^n$$

(e.g. Legendre or Chebyshev)

Rational Approximation

$$f(x) \approx R_{N,M}(x) = \sum_{n=0}^{N} a_n P_n(x) / \sum_{m=0}^{M} b_m Q_m(x)$$

- Reduces Runge's Phenomena
- Faster convergence than ordinary polynomials

AAA Algorithm

Nakatsukasa, Sète, and Trefethen (2018)

$$f(x) \approx R_{N,N}(x) = \sum_{n=0}^{N} \frac{w_n f_n}{x - x_n} / \sum_{n=0}^{N} \frac{w_n}{x - x_n}$$

$$f_n = f(x_n), \quad w_n \neq 0$$

 $0 < x_0 < x_1 < \dots < x_N \le 1$ partitions [0,1]. Non-zero denominator at x_i

$$\min_{w} \sum_{i} \left[f_{i} \left(\sum_{n=0}^{N} \frac{w_{n}}{x_{i} - x_{n}} \right) - \left(\sum_{n=0}^{N} \frac{w_{n} f_{n}}{x_{i} - x_{n}} \right) \right]^{2}$$
Normalizing Condition: $||w|| = 1$

New Problem

$$f(x) \approx R_{N,M}(x) = \frac{P(x)}{Q(x)}$$
 with $\underline{Q(x) > 0}$ for $x \in [0,1]$

Bernstein Polynomials

$$B_k^{(N)}(x) = {N \choose k} x^k (1-x)^{N-k}$$
 $B_k^{(N)}(x) > 0$ for $x \in (0,1)$

Sergei Natanovich Bernstein

Our Proposal

$$f(x) \approx R_{N,M}(x) = \frac{P(x)}{Q(x)}$$
 with $Q(x) > 0$ for $x \in [0,1]$

$$Q(x) = \sum_{m=0}^{M} w_m B_m(x) \quad \text{where} \quad B_m(x) = \binom{M}{m} x^m (1-x)^{M-m}$$

Our Proposal

$$f(x) \approx R_{N,M}(x) = \frac{P(x)}{Q(x)}$$
 with $Q(x) > 0$ for $x \in [0,1]$

$$Q(x) = \sum_{m=0}^{M} w_m B_m(x) \quad \text{where} \quad B_m(x) = \binom{M}{m} x^m (1-x)^{M-m}$$

Positivity

$$w_m \geq 0$$

Normalization

$$\sum_{m} w_{m} = 1$$

Our Proposal

$$f(x) \approx R_{N,M}(x) = \frac{P(x)}{Q(x)}$$
 with $Q(x) > 0$ for $x \in [0,1]$

$$Q(x) = \sum_{m=0}^{M} w_m B_m(x) \quad \text{where} \quad B_m(x) = \binom{M}{m} x^m (1-x)^{M-m}$$

Positivity

$$w_m \geq 0$$

Normalization

$$\sum_{m} w_{m} = 1$$

$$f(x) \approx R_{N,M}(x) = \sum_{n=0}^{N} a_n P_n(x) / \sum_{m=0}^{M} w_m B_m(x)$$

For some $\{P_n(x)\}_n$

How to Solve

$$f(x) \approx R_{N,M}(x) = \sum_{n=0}^{N} a_n P_n(x) / \sum_{m=0}^{M} w_m B_m(x)$$

$$w \in \Delta^{M+1} = \left\{ w \in \mathbb{R}^{M+1} \mid w_m \ge 0 \text{ and } \sum_m w_m = 0 \right\}$$

Linearized Problem

$$\min_{\substack{a \in \mathbb{R}^{N+1} \\ w \in \Delta^{M+1}}} \left\| f(x) \sum_{m} w_m B_m(x) - \sum_{n} a_n P_n(x) \right\|$$

Very much like Lanczos (1938)

Penalization & smoothing

$$f(x) \approx R_{N,M}(x)$$
 and $R_{N,M}$ is smooth $\approx R_{N,M}(x)$ and Numerator is smooth

$$\rightarrow \min_{g} \left\| f(x) - g(x) \right\| + \sum_{k>0} \lambda_k \int (g^{(k)}(x))^2 d\mu_k \quad \text{for} \quad \lambda_k \ge 0$$

Bivariate

$$R(x,y) = \sum_{n, m} a_{n,m} P_n(x) P_m(y) / \sum_{j,k} w_{j,k} B_j(x) B_k(y)$$

$$w_{j,k} \geq 0$$
 and $\sum_{j,k} w_{j,k} = 1$

Numerical Convergence

Numerical Convergence

Bernstein vs Spline

$$\sin(8x^2 + 8y^2) + \mathcal{N}(0,0.1^2)$$

Bernstein vs Spline

$$\sin\left((4(x-0.5))^2 + (4(y-0.5))^2\right) + \mathcal{N}(0,0.1^2)$$

Bernstein vs Spline

Poleless Barycentric

J. P. Berrut (1988) and M. S. Floater and K. Hormann (2007)

Poleless Barycentric

J. P. Berrut (1988) and M. S. Floater and K. Hormann (2007)

Poleless Barycentric

J. P. Berrut (1988) and M. S. Floater and K. Hormann (2007)

Quasiconvex

V. Peiris, N. Sharon, N. Sukhorukova, and J. Ugon (2021)

Quasiconvex

V. Peiris, N. Sharon, N. Sukhorukova, and J. Ugon (2021)

