

SRM Institute of Science and Technology Delhi- NCR Campus, Modinagar Department of Computer Science and Engineering

Mode of Exam OFFLINE

SET-II

Academic Year: 2022-23

(ODD)

Course Code & Title: 18MAB201T & Transform and Boundary Values Problems

Date: 19/09/2022

Year & SEM: 2nd & 3rd

Duration: 1 hour Max. Marks: 30

	rticulation Matrix: (to be placed) Part - A (MCQ)				
	(10*1 = 10 Marks)				
	Instructions: Answer all questions	Marks	CO	PO	Bl
Q. No	Question	Transico.		1	\top
1	The PDE formed by eliminating arbitrary function from $z = f(x^2 +$		1		١.
	y^2) is	1	1	2	1
	(A) $py = qx$ (B) $xy = pq$ (C) $xp = yq$ (D) $x + y = p + q$		-	-	+
	The complementary function of $(D^2 + DD' - 2D'^2)z = x^2y$ is				
		1	1	2	1 :
2	(A) $z = f_1(y - x) + f_2(y - 2x)$ (B) $z = f_1(y + x) + f_2(y + 2x)$	1		1	1
	(A) $z = f_1(y-x) + f_2(y-2x)$ (B) $z = f_1(y+x) + f_2(y-2x)$ (C) $z = xf_1(y+x) + f_2(y+2x)$ (D) $z = f_1(y+x) + f_2(y-2x)$				
					1
3	The particular integral of $D^2z = x^3y$ is	1	1	2	1
	(A) $\frac{1}{20}x^5y$ (B) $\frac{1}{5}x^5y$ (C) $\frac{1}{10}x^5y$ (D) x^5y	1			
4	The solution of $\frac{\partial^3 z}{\partial x^3} = 0$ is				
	(A) $z = (1 + x + x^2)f(y)$ (B) $z = f_1(y) + xf_2(y) + x^2f_3(y)$	1	1	2	1
	(C) $z = (1 + y + y^2)f(x)$ (D) $z = f_1(x) + yf_2(x) + y^2f_3(x)$				
5	Find the particular integral of $(D^2 - 2DD' + D'^2)z = \sin x$ is	ı	1	2	1
	(A) $\sin x$ (B) $-\sin x$ (C) $\cos x$ (D) $-\cos x$				
	The complete integral of $\left(D^7 - 3DD' + 2D^{'2}\right)z = 0$ is				
6	$(A) z = \emptyset_1(y+x) + \emptyset_2(y-2x)$		i	2	1
	(B), $z = \phi_1(y + x) + \phi_2(y + 2x)$	1 . 1			
	(C) $z = \emptyset_1(y - x) + \emptyset_2(y + 2x)$	1 1	- 1	- 1	
	(D) $z = \phi_1(y + x) - \phi_7(y + 2x)$				
7	The solution of the linear PDE $(D^2 + 4DD^2 - 5D^2)z = 0$ is				
	(A) $z = f_1(y+x) + f_2(y+5x)$ (B) $z = f_1(y-x) + f_2(y-5x)$	1		2	1
	(C) $z = f_1(y + x) + f_2(y - 5x)$ (D) $z = f_1(y - x) + f_2(y + 5x)$	1 1		-	I

1					
	The complete integral of $z = px + qy + pq$ is				
.	(A) $z = px + qy + ab$ (B) $z = ax + by + pq$				
8	(C) $z = ax + by + ab$ (D) $z = ax + by$	1	1	2	1
	The solution of $p + q = z$ is			-	
9	(A) $f(x+y, y + \log z) = 0$ (B) $f(xy, y \log z) = 0$ (C) $f(x-y, y - \log z) = 0$ (D) $f(xy, y - \log z) = 0$	1	1	2	2
	A solution got by giving particular values to the arbitrary constants in a complete integral is called a				
10	(A) Complete integral (B) Particular integral	1	1	2	1
	(C) Singular integral (D) General integral				
	Part – B (Long Answer)				
	(4*5 = 20 Marks)				
	Instructions: Answer all questions.				
11	Form the partial differential equation by eliminating the arbitrary constants a and b from $z = (x^2 + a)(y^2 + b)$.	5	1	2	2
	OR		1	1	
	Form the partial differential equation by eliminating f from				
		5	1	2	\ 2
	$z = xy + f(x^2 + y^2 + z^2).$	5	1	2	2
12		5	1	2	
12	$z = xy + f(x^2 + y^2 + z^2).$				
12	$z = xy + f(x^2 + y^2 + z^2).$ Solve $p = 2qx$.				
12	$z = xy + f(x^2 + y^2 + z^2).$ Solve $p = 2qx$.	5	1	2	2
	$z = xy + f(x^2 + y^2 + z^2).$ Solve $p = 2qx$. OR Compute the complete integral of $p^2 + q^2 = x + y$. Solve $x(y - z)p + y(z - x)q = z(x - y)$. OR	5	1	2	2
	$z = xy + f(x^2 + y^2 + z^2).$ Solve $p = 2qx$. OR Compute the complete integral of $p^2 + q^2 = x + y$. Solve $x(y - z)p + y(z - x)q = z(x - y)$.	5	1	2	2
	$z = xy + f(x^2 + y^2 + z^2).$ Solve $p = 2qx$. OR Compute the complete integral of $p^2 + q^2 = x + y$. Solve $x(y - z)p + y(z - x)q = z(x - y)$. OR	5 5 5	1	2 2	1 2
13	$z = xy + f(x^2 + y^2 + z^2).$ Solve $p = 2qx$. Compute the complete integral of $p^2 + q^2 = x + y$. Solve $x(y - z)p + y(z - x)q = z(x - y)$. OR Find the solution of $z(x - y) = x^2p - y^2q$.	5 5	1	2 2 2	2