1 loeng I

1.1 Meenutusi Algebra I-st

 $A \neq \emptyset$ $A^n = AxAx...A = \{(a_1, \cdots, a_n) | a_i \in A\}$ n - tuple $|A^0| = 1(A^0 = \{\emptyset\} \ \omega : A^n \to A$ n-kohaline algebraline tehe hulgal A

n-aarne:

- 1. n=1 unaarne tehe
- 2. n=2 binaarne tehe
- 3. n=0 nullarne tehe

1.2 Ω -algebra

Def. 1.1.1 Hulka Ω nimetakse tüübiks ehk signatuuriks kui ta on esitatud mittelikuvate alamhulkade $\Omega_1 yhend\Omega_2...$

Def 1.1.2 Olgu Ω tp. Mittetühja hulka A nimetatakse Ω -algebraks, kui iga a korral igale $\omega \in \Omega_n$ vastab n-aarne tehe hulgal A, mida thistatakse sama smboliga ω .

Kui tahetakse rhutada, mis tüüpi algebraga on tegemist, siis thistatakse Ω algebrad paarina $(A; \Omega)$

Nited:

- 1. Rühmoid hulk he binaarse tehtega, st. $\Omega = \Omega_2 = \{*\}$
- 2. Poolrühm sama signatuur mis rühmoidil
- 3. Monoid ühikelemendiga poolrühm, vaatame seda tihti laiemal signatuuriga, $\Omega = \Omega_0 yhend\Omega_2$, $\Omega_0 = \{1\}$ ühikelemendi fikseerimine, $\Omega_2 = \{*\}$
- 4. Rühm saab kirjeldada eelnevate signatuuride kaudu, aga parem kirjeldada jrgnevalt: $\Omega = \Omega_0 y hend\Omega_1 y hend\Omega_2$, kus $\Omega_1 = \{^{-1}\}$
- 5. Ring algebralinie struktuur signatuuriga(signatuuris): $\Omega = \Omega_0 yhend\Omega_1 yhend\Omega_2$, kus $\Omega_2 = \{+, *\}, \Omega_1 = -(vastandelemendivtmine, \Omega_0 = 0, 1$
- 6. Vektorruum struktuur signatuuriga: $\Omega = \Omega_0 yhend\Omega_1 yhend\Omega_2$, kus $\Omega_2 = \{+\}, \Omega_1 = \{-(vastandelement, polevajalikkuiskalaarigakorrutaminesissetoodud) <math>\{0\} samutiavaldatavskalaarigakorrutimasekaudu$

1.3 Morfismid

Def 1.2.1 Kujutust ϕ Ω -algebrast A Ω -algebrasse B nimetatakse homomorfismideks, kui iga $n, \omega \in \Omega_n$ ja suvaliste $a_1, ..., a_n \in A$ korral kehtib vrdus $\phi(\omega(a_1, ..., a_n)) = \omega(\phi(a_1), \cdots, \phi(a_n))$

 $Hom(A, B) - \{\phi | \phi onhomoformismA - stB - sse\}$ Nide:

Olgu A, B sellised $\Omega = \{1\}, \{^{-1}\}, \{*\} \ \phi : A \to Bhomoformism\phi(1) = 1, \phi(1) = \phi(1*1) = \phi(1)*\phi(1) \implies \phi(1) = 1(kolmandaphjal)\phi(x^{-1}) = \phi(x)^{-1}, 1 = \phi(1) = \phi(x^{-1}x) = \phi(x^{-1})\phi(x)(kolmandaphjal)\phi(xy) = \phi(x)\phi(y)$ Taandub kolmanda omanduse kontrollimisele.

Lineaarkujutis on vektorruumide isomorfism.

Olgu meil Ω -algebrad A,B,C ning nende homoformismid $\phi: A \to B$, $\psi: B \to C, (\psi\phi) = \psi(\phi(x)), x \in A$. Siis see kompositsioon on samuti homoformism (kui teda saab nii defineerida).

Testame : Veendume, et $(\psi\phi)(\omega(a_1,\dots,a_n)) = \omega((\psi\phi)(a_1,\dots,a_n))$. See on samavrne sellega, te $\psi(\phi(\omega(a_1,\dots,a_n))) = \psi(w(\phi(a_1),\dots,\phi(a_n))...$

Endomorfism (End(A) = Hom(A,A)).

Lause 1.2.2 (End(A);*) on monoid.

Testus: Assotatiivsus on selge, tuleneb homoformismide omadustest. Ühikelement ? $id_A: A \to B, id_A(x) = x, x \in A$

Def 1.2.3 Bijektiivne homomorfismi nimetatakse isomorfismiks.

Lause 1.2.3 Isomorfism on ekvivalentsiseos kigi Ω -algebrade klassis, ehk ta on reflektsiivne, sümmeetriline ja transitiivne.

Testus:

- 1. Refleksiivsus, st. A isom A, $id_A: A \to A$
- 2. Sümmeetria. Olgu $\phi: A \to B$ isomorfism. Vaja $\psi: B \to A$ mis oleks isomorfism. Valime selleks ϕ^{-1} Vaja nidata, et iga $b_1, \dots, b_n \in B$ korral $\phi^{-1}(\omega(b_1, \dots, b_n)) = \omega(\phi^{-1}(b_1), \dots, \phi^{-1}(b_2))$ Rakendame mlemale poole ϕ . $\phi(\omega(b_1, \dots, b_n)) = \phi\omega(\phi^{-1}(b_1), \dots, \phi^{-1}(b_2))...$
- 3. Transitiivsus ise!

Isomorfismi thtsus. Kui meid huvitab tehe ja tema omadused, siis need jvad samaks isomorfismi klassi tpsusega.

Aut(A)

Lause 1.2.4 Aut(A) on rhm.

Testus: $\phi, \psi \in AutA$,

```
\psi\phi \in End(A),
\phi\psi \in AutA
id_a \in AutA
\phi inAutA \implies \phi^{-1} \in AutA
Nited:
C \text{ kompleksarue korpus } \phi : C \to C, \phi(\alpha) = \overline{\alpha}
G \text{ suvaline rühm}
g \in G
\phi : G \to \dots
\phi(x) = g^{-1}xg
```

1.4 Alamalgebra

def 1.3.1. Mte : $B \subset A, b_1, \dots, b_n : \omega^B(b_1, \dots, b_n) = \omega^A(b_1, \dots, b_n) (\in B)$. Algebra alamhulk, mis on kinnine tehete suhtes on alamalgebra.

Nide: (A;*) poolrühm. $B \subset A, x, y \in B \implies xy \in B$, kui $B = \emptyset$, siis ei ole alamalgebra aga rahuldab definitsiooni. Tiendame: Algebra **mittethi** alamhulk, mis on kinnine tehete suhtes on alamalgebra.

```
B \leq A \iff BonAalamalgebra

B \leq A, \tau : B \to A

\tau(x) = x, x \in B

\tau \in Hom(B, A), \tau üksühene.

1.3.1 testus:

\phi \in Hom(B, A) \phi üksühene. \phi(B) \subset A B \to \phi(B) = \{\phi(x) | x \in B\}

phi \in Hom(A, B) C \leq A, D \leq B

\phi(C) \leq B, \phi^{-1}(B) \leq A

Esimese ise. Teine:

\phi^{-1}(B) \leq A

a_1, \dots, a_n \in \phi^{-1}(D), \omega \in \Omega_N

\omega(a_1, \dots, a_t...)
```

2 loeng II

Lause 1.3.3 Olgu antud ω -algebra A alamalgebrate sisteem $B_i, i \in I$, kujsuures $B = yhisosa_{i \in I}B_i \neq \emptyset$ Siis $B \leq A$.

Testus ...

Vaatleme alamhulka X: $\emptyset \neq X \subset A$ Vaatleme hulka $yhisosa\{B|X \leq B \leq A\} \neq \emptyset$. Vastavalt lausele 1.3.3 on tegemist alamalgebraga. Sellist alamalgebrad thistatakse < X > Kui < X >= A ehk X on A moodustajate süsteem.

2.1 Faktoralgebra

Eesmrgiks on tükeldada ω -algebra mittelikuvateks osadeks, nii et nende osade hulgal saaks loomulikul viisil defineerida ω -algebra struktuuri.

 $\rho \in Eqv(A), \rho \subset AxA$, vastab kolmele tingimusele:

- 1. refleksiivne
- 2. transitiivne
- 3. sümmeetriline

```
a \in A, \ \{x \in A | a\rho x\} = a\rho, \ a \in a\rho \ \text{Faktorhulgaks} \ A\rho = \{a\rho | a \in A\}
a_1\rho = a_2\rho \iff a_1\rho a_2
\text{Vtame } \omega \in \Omega_n, \ a_1/\rho, \cdots, a_n/\rho \in A/\rho \ .
\omega(a_1/\rho, \cdots, a_n/\rho) = \omega(a_1, \cdots, a_n)/\rho
\text{Lisame } \omega\text{-le lisatingimiuse} : (x_1, y_i), \cdots, (x_n, y_n) \in \rho \iff (\omega(x_1, \cdots, x_n), \omega(y_1, \cdots, y_n)) \in \rho
\text{Olgu } \rho \in Eqv(a). \ \text{Eksisteerib kujutis} \ \pi : A \to A/\rho, \ \pi(a) = a/\rho \text{-loomulik}
kujutus faktorhulgale, projektsioon.
```

Vtame
$$\omega \in \Omega_n, a_1, \dots, a_n \in A$$

 $\pi(\omega(a_1, \dots, a_n)) = \omega(a_1, \dots, a_n)/\rho = \omega(a_1/\rho, \dots, a_n/\rho) = \dots$

2.2 Def - tuum

2.3 Lause 1.4.3

Testus

```
Olgu \phi: A \to B homoformism. \rho - \phi tuum . Valime \omega \in \Omega_n, a_1, \dots, a_n, a_1', \dots, a_n'. Kas \omega(a_1, \dots, a_n) \rho \omega(a_1', \dots, a_n') kehtib ? ...
```

Homomorfismiteoreem

Testus Olgu $\psi: A/\rho \to B, \psi(a/\rho) := \phi(a)$. Kas on üheselt mratud? Ehk kas $a_1/\rho = a_2/\rho \iff \phi(a_1) = \phi(a_2)$. Siit saaksime ktte ka injektiivsuse. Piisab arvesse vtta, et eelnev thendab, et $a_1\rho a_2$, nin kun ρ on ϕ tuum. siis on tulemus selge. Srjektiiuuvses tuleb sellest, et ϕ srjektiivne. Kas ψ on homoformism? Olgu $\omega \in \Omega_n, a_1, \dots, a_n \in A$. Siis $\psi(\omega(a_1/\rho, \dots, a_n/\rho) = \psi(\omega(a_1, \dots, a_n)/\rho) = \phi(w(a_1, \dots, a_n)) = \omega(\phi(a_1), \dots, \phi(a_n)) = \omega(\psi(a_1/\rho, \dots, a_s/\rho))$.

Lause 1.4.4 Olgu ρ Ω -algebra A kongruents, $D \leq A/\rho$ ning π kongurgentsi ρ tuum. Siis $DisomeetrilineC/\rho|_C$, $kusC = \pi^{-1}(D)$.

Testus Olgu $\pi^{-1}(D) = C \leq A$. Olgu α π ahend C-le $(\alpha = \pi|_C)$. Siis $\alpha : C \to D$, α on homomorfism. Vidame, et α on sürjektiinve. Kuna π oli sürjektiinve, siis $\forall x \in A\pi(x) = y$. Seega $\alpha(x) = y$.

Küsimus : kui kaks korda faktoriseerime, mis siis juhtub, kas me saame midagi uut ? Vimalik asendada isomorfismi tpsuseni ks kord faktoriseerimisega.

Olgu antud ρ ja σ Ω -algebra A kongurentsid, kusjuures $\rho \leq \sigma, (x,y) \in \rho \implies (x,y) \in \sigma$. Defineerime faktoralgebral A/ρ binaarse seos: $\sigma/\rho = \{(x/\rho, y/\rho | (x,y) \in a\sigma\}$

Vime veenduda, et nii defineertus seos σ/ρ on faktoralgebra A/ρ kongurents.

Teoreem 1.4.2 Olgu $\rho \in Con(A), \tau \in Con(A/\rho)$. $\pi : A \to A/\rho$. Olgu $x, y \in A$. Defineerime $\sigma \colon (x, y) \in \sigma \iff \pi(x)\tau\pi(x)$ Vide: $\sigma \in Con(A)$. Veendume, et $\sigma \in Eqv(A)$. Olgu $x, y, z \in A, (x, y), (y, z) \in \tau$, st. $(\pi(x), \pi(y)), (\pi(y), \pi(z)), (\pi(x), \pi(z)) \in \tau$.

3 loeng IV

3.1 Lagrange'i teoreem

Lpliku rhma jrk(elementide arv) jagub tema iga alamhulga jrguga.

3.2 Ω -algebrate otsekorrutis

Viis kuidas saada mitmest algebrast uus algebra.

Vime defineerida funktsioonid, mis kirjeldavad jadasid. $\phi : \mathbb{N} \to \bigcup_{i \in \mathbb{N}} A_i$, mis rahuldab tingimust $\phi(i) \in A_i$, iga $i \in \mathbb{N}$ korral.

Projektsioonid - seavad jadale vastavuse mingi kindla elemendi. Thistame π_i .

1.6.1

Testus
$$\omega \in \Omega_n, a^1 = (a_i^1)_{i \in I}, ..., a^n = (a_i^n)_{i \in I}...$$

3.3 Vred

(Osaliselt) Jrjestatud hulk Binaarne seas, mis on reflektsiivne, transitiivne ja antismeetriline. Lineaarselt jrjestatud hulk on selline, kus iga element on mingis seoses iga teisega.

Teoreem 2.2.1

Testus 4) Neeldevus (absorbtion) Tarvilikkus: $x \le y \iff x = xaluminerajay$

4 Loeng V

$$[a,b] = \{x \in L | a \le x \le b\}$$
$$Con(A/\rho) \longleftrightarrow \{\sigma \in Con(A) | \rho \le \sigma\}$$

Teoreem 2.2.2 Distributiivsed vred.

Lause 2.3.1 Ahelad on distributiivsed vred.

Lause 2.3.2 Thtis distributiivne vre (P(A); intersection; union) Isendega duaalsus.

Lause 2.3.3

Jreldus 2.3.1

Teoreem 2.3.1 Vre on modulaarne parajasti siis, kui ta ei oma vrega N_5 isomorfset alamvret. Modulaarne vre on distributiivne parajasti siis, kui ta ei oma vrega M_3 isomorfset alamvret.

Testus Riina esitab seminaris.

Teorem 2.4.1 Vre on distributiivne parajasti siis, kui ta on isomorfne mingi hulga kigi alamhulkade vre mingi alamvrega.

Definitsioon 2.4.1 Vre mittethja alamhulka F nimetatakse filtriks, kui ta on kinnine alumise raja vtmise suhtes ja koos iga elemendiga a sisaldab ka vre L kik elemendist a suuremad elemendid.

Mrkus Filtri ja algfiltri duaalsed misted on vastavalt ideaal ja algideal.

Definitsioon 2.4.2 Vre L filtrit F nimetatakse algfiltriks, kui sellest, et $aVb \in F$, kus $a, b \in L$, jrjeldub $a \in F$ vi $b \in F$. Algfilter $F \neq L$.

Zorni lemma Olgu meil jrjestatud hulk A. Eeldame, et iga hulga A alamhulk omab lemist tket hulgas A. Siis sellest jreldub, et A omab vhemalt hte maksimaalset elementi. $C \subset Aalamhulk : x, y \in C \implies x \leq yviy \leq x$.

Lause 2.4.1 Distributiivse vre iga kahe erivena elemendi jaoks leidub algfilter, mis sisaldab tpselt hte neist kahest.

Testus

Teoreem 2.4.1 Vre on distributiivne parajasti siis, kui ta on isomorfne mingi hulga kigi alamhulkade vre mingi alamvrega

Selgitus Olgu L distributiivne vre. Vaja ledia hulk A ja üksühene homomorfism $\Phi: L \to P(A), \Phi(L) \leq P(A), Lisomm\Phi(L)$.

Testus

5 Rühmad

5.1 Faktorrühma faktoriseerimine

Isomorfismiteoreem Olgu H rhma G normaalne alamrühm, B rühma G alamrühm ning A rühma B normaalne alamrühm. Siis BH/AHisomB/(A(ByhisosaH)).

Jreldus 3.2.1. Olgu H rühma G normaalne alamrühm ja A rühma G alamrühm. Siis BH/HisomB/(ByhisosaH).

Teoreem 3.2.2. (Zassenhausi lemma) Kui H, H', K ja K' on rhma G alamrhmad, kusjuures H' on normaalne alamrühm rühmas H ja K' on normaalne alamrühm rühmas K, siis

(HyhisK)H'/(HyhisK')H'isom(KyhisH)K'/(KyhisH')K'.

Testus Idee: nitame, et mlemad on isomorfsed HyhisK/(H'yhisK)(HyhisK'). H'(HyhisK)/H'(HyhisK')isomHyhisK/(H'yhisK)(HyhisK'). Kasutame isomorfismiteoreemi. Vtame B rolli HyhisK, H rolli sobib H', A rolli vtame HyhisK'. Lisaks vaatama G rollis H-d. Kas hyhisK'normaalnealamryhmHyhisK?

5.2 Normaal- ja kompositsioonijadad

Schreieri teoreem Antud rühmas suvalised kaks normaaljada omavad ekvivalentseid tihedusi.

```
Testus \{1\} = H_0 < dH_1 < dH_2...H_m = G

\{1\} \  \  | K_0 < dK_1 < dK_2... < dH_n = G

Defineerime H_{ij} = H_i(H_{i+1}yhisosaK_j) ja K_{ji} = K_j(K_{j+1}yhisosaH_i).

Miks H_{ij} < dH_{i,j+1}?

Miks H_i(H_{i+1}yhisosaK_j) < dH_i(H_{i+1}yhisosaK_{j+1})?
```

Nide Olgu m=2, n=3. Siis peavad eelneva phjal ekvivalentsed olema $H_0=H_{00}\leq H_{01}\leq H_{02}\leq H_{03}=H_1=H_{10}\leq H_{11}\leq H_{12}\leq H_{13}=H_2=G$ ja $K_0=K_{00}\leq K_{01}\leq K_{02}=K_1=K_{10}\leq K_{11}\leq K_{12}=K_2=K_2=K_{20}\leq K_{21}\leq K_{22}=K_3=G.$

Veenduda Sachenhausi lemma phjal.

 $H_{01}/H_{00} isomorfne K_{01}/K_{00}$

```
H_{02}/H_{01} isomorfne K_{11}/K_{10} \ H_{03}/H_{02} isomorfne K_{21}/K_{20} \ H_{11}/H_{10} isomorfne K_{02}/K_{01} \ H_{12}/H_{11} isomorfne K_{12}/K_{11} \ H_{13}/H_{12} isomorfe K_{22}/K_{12}
```

6 Lihtsad rühmad

Lause 3.4.1 Abeli rhm on lihtne siis ja ainult siis, kui tema jrk on algarv

Testus Kuna alamrhma jrk jagab rhma jrke, siis algarvulise jrguga rhmal saab olla ainult 2 alamrhma - kogu rhm ja 1 elemendiline rhm.

Teistpidi, olgu A lihtne Abeli rhm. $(A,+),0 \neq a \in A$, $\{na|n \in \mathbb{Z}\}$. Kusjuures, kui n > 0 siis $na = a + a + \dots + a$, kui n = 0 siis 0a = 0. Ja kui n < 0 siis (-n) * a = -(na). Elemendi A poolt tektitatdu tsükliline alamrühm. Abeli rhma alamrühm on lihte, seega $A = \langle a \rangle$.

Teoreem 3.4.1 Kui n = 3 vi $n \ge 5$, siis rhm A_n on lihtne

Teoreem 3.4.2 Kui n > 2 vi n = 2 ja |K| > 3, siis projektiivne spetsiaalne lineaarrühm PSL(n,K) on lihtne.

7 Lahenduvad rhmad

Definitsioon 3.5.1. Rühma, mis omab normaaljada, mille kik faktorid on Abeli rhmad, nimetatakse lahenduvaks.

Teoreem 3.5.1 Lahenduva rühma alamrhmad ja faktorrhmad on lahenduvad.

Testus Olgu meil lahenduv rhm G. Kehtigu $\{1\} = H_0 < dH_1 < dH_2 < d... < dH_m = G$. H_{i+1}/H_i on Abeli rhm i = 0, ..., n-1. $A \leq G$, $A_i = AyhiosaH_i$, $A_0 = Ayhisosa\{1\} = \{1\}$, $A_n = AyhisosaG = A$, $i \leq j \implies A_i \leq A_j$.

Teoreem X Iga paaritu arvulise jrguga rhm on lahenduv

Testus Olgu |G| paaritu. $\{1\} = H_0 < dH_1 < dH_2 < d... < dH_n = G$. Kik jada faktorit lihtsad lplikud rhmad. Alamrhma jrk jagab rhma jrku \Longrightarrow alamrühmade jrgud on paaritud.

8 Faktorringi faktoriseerimine

Lause 4.1.1 Kik korpused on lihtsad ringid. Iga lihtne kommutatiivne ring on korpus.

Testus $\{0\} \neq I < dK$. I - ideaal. ...

Lause 4.1.2 Tielik maatriksring $Mat_n(K)$ on lihtne iga naturaalarve n ja korpuse K korral.

AlI - iga vektorruum omab baasi l
plikul juhul lpmatu mtmelise baasi lin sltumatus - kik lpblikud alamhul
gad sltumatud. T.4.4.2 $S = \{X | X \subset V, Xonlin.sltumatu\}$ Zorni lemma eeldute kontroll. $\{X_i | i \in I\}, X_i \in S$ Otsime suurimat elementi $X = \sup_{i \in I} X_i$. Kas X kuulub hulka S? ... Zorni lemma eeldus tidetud. S omab maksimaalset elementi, olgu selleks Z. Z on V baas ? Valime $v \in V$, kas $v \in L(Z)$. Oletame, et $v \notin V$, siis $Z \sup \{v\}$ on lin sltumatu, see on aga vastuolu.

Vvektorruum üle K $ei,i\in I$ -V baas. $Visomringpluss \sum\limits_{i\in I} K_i$ ringpluss $\sum\limits_{i\in I} K_i = \{(k_i)_{i\in I}|k_i\in K, |\{j\in L|k_j=0\}|<\infty\}$

defineerime
$$\phi: V \to ringpluss \sum_{i \in I} K_i$$
 nii, et $\phi(v) = (l_i)_{i \in I}, l_i = \begin{cases} k_i, \text{ku} i \in \{i_1, i_2, ..., i_n\} \\ 0, \text{ku} i \notin \{i_1, i_2, ..., i_n\} \end{cases}$

9 Ringide esitused ja moodulid

D 4.5.1

A Abeli rühm, End(A) on rühm. Liitimine defineeritud kui $(\phi + \psi)(a) = \phi(a) + \psi(a)$.

T 4.5.1 $\phi: R \to End(M; +)$, iga $r \in R$ kollab tekib loomulik kujutus $l_2: M \to M, x \to rx$. Sellest vime melda kui vasaknihkest. $\phi(r) = l_r$. Veendume, kas definitsioon on korrektne. Esiteks, kas $l_r \in End(M; +)$?

$$l_2(x+y) = r(x+y) = rx + ry = l_r(x) + l_r(y)$$
. Veel, $\phi(rs) = \phi(r) * \phi(s)$, $\phi(1) = 1_M$, $l_{r+s} = l_r + l_s$. D 4.5.2

 $\phi: R \to \operatorname{End}(A)$. Oletame, et ϕ on üksühene, oletame, et r kuulub $\operatorname{Ker}(\phi), \phi(r) = 0 = \phi(0) \implies r = 0$, seega $\operatorname{Ker}(\phi)$

R-moodul M on tpne \implies vastav esitus on tpne. $\phi: R \to \operatorname{End}(M; +)$, $\phi(r) = l_r$, $\operatorname{Ker}(\phi) = \{0\}$, $l_r(x) = 0 \forall x \in M \iff r = 0$ T $4.5.2 \ Risom \phi(R) < \operatorname{End}(M; +)$.

Ainult null element anuleerib kik mooduli elemendid.

10 Abeli rühmad

POLE SLAIDIL! Idee: nidata, et mooduli ehitus vib olla keerulisem.

Tskliline R-moodul

Def. R-moodulit nimetatakse tsükliliseks, kui ta on tekitatud ühe elemendi poolt.

Olgu M tsükliline R-moodul, see thendab $\exists a \in M, M = \langle a \rangle$. $M = Ra = \{ar | r \in R\}$. $RA \subset \langle a \rangle$. ra + sa = (r + s)a, s(ra) = (sr)a. $a = 1 * a \in Ra$.

L. Iga tsükliline $R\operatorname{\!-moodul}$ on isomorfne $R\operatorname{\!-moodul}$ R faktormooduliga.

M=Ra. $\phi:R\to Ra.$ $\phi(r)=ra.$ Kontrollida homomorfismi. Sürjektiivne, homomorfismi teoreemi phjal M isomorfne $R/\mathrm{Ker}(\phi)$.

L 4.5.1