Presentation Outline: Parallel Algorithms for Centrality in Dynamic Graphs

Nathan Bowness
School of Computer Science
Carleton University
Ottawa, Canada K1S 5B6
nbown088@uottawa.ca

November 18th, 2020

Slide Topics:

- 1. Introduction
 - Introduction to the project
- 2. Betweenness Centrality
 - Brief definition of betweenness centrality
- 3. Where/Why is Betweenness Centrality Used?
 - Practical applications, where it is used
- 4. Calculating Betweenness Centrality
 - Overview of fundamental Brandes Algorithm (will include animations)
 - o Run Breadth-first search (BFS) and Reverse-BFS (R-BFS) from every node
- 5. Betweenness Centrality in Dynamic Graphs
 - Brief overview, of how an edge update affects betweenness centrality
 - Applications
- 6. Calculating Betweenness Centrality in Dynamic Graphs
 - Introduction to Shukla et. Al's cutting-edge algorithm and its key concepts
 - Avoid BFS by using biconnected components
 - Using previous data stored from BFS/R-BFS
 - Computing betweenness centrality for a batch of edges
- 7. Biconnected Components:
 - How identifying biconnected components allows for less BFS and further parallelization
 - Discuss that re-computing the betweenness centrality within just the affected biconnected component is enough
- 8. Batch Update of Edges
 - Discuss how a batch of updates can be applied rather than recomputing the betweenness centrality after each edge insertion/deletion

9. Parallelization of Betweenness Centrality Calculation

• Explanation of how the algorithm is parallelized for performance improvements (with animations for the graph)

10. Parallel Performance

• Discuss how the performance was with multiple processors

11. Comparison of Results with Literature

- On the same datasets
- On different datasets

12. References

- Reference any images used
- Reference the papers talked about

Note: Likely sections **4** & **9** will contain multiple slides that include animations to show the process of computing betweenness centrality and showing the final parallelized algorithm, respectively.