Relatório de Análise VII

Criando Agrupamentos

In [1]:	M
import pandas as pd	
In [2]:	H
<pre>dados = pd.read_csv('dados/aluguel_residencial.csv',sep=';')</pre>	
In [3]:	H
dados.head(10)	

Out[3]:

	Tipo	Bairro	Quartos	Vagas	Suites	Area	Valor	Condominio	IPTU	Valor_ı
0	Quitinete	Copacabana	1	0	0	40	1700.0	500.0	60.0	42
1	Casa	Jardim Botânico	2	0	1	100	7000.0	0.0	0.0	70
2	Apartamento	Centro	1	0	0	15	800.0	390.0	20.0	53
3	Apartamento	Higienópolis	1	0	0	48	800.0	230.0	0.0	16
4	Apartamento	Cachambi	2	0	0	50	1300.0	301.0	17.0	26
5	Casa de Condomínio	Barra da Tijuca	5	4	5	750	22000.0	0.0	0.0	29
6	Casa de Condomínio	Ramos	2	2	0	65	1000.0	0.0	0.0	15
7	Apartamento	Grajaú	2	1	0	70	1500.0	642.0	74.0	21
8	Apartamento	Lins de Vasconcelos	3	1	1	90	1500.0	455.0	14.0	16
9	Apartamento	Copacabana	1	0	1	40	2000.0	561.0	50.0	50
4										•

In [4]:

dados['Valor'].mean()

Out[4]:

5046.172821405663

```
In [5]:
                                                                                                H
dados['Bairro'].drop_duplicates()
Out[5]:
0
               Copacabana
         Jardim Botânico
1
2
                   Centro
3
             Higienópolis
                 Cachambi
13855
                Bancários
15277
               Cavalcanti
15280
            Rio da Prata
15412
           Cidade Jardim
16428
              Coelho Neto
Name: Bairro, Length: 152, dtype: object
https://pandas.pydata.org/pandas-docs/stable/api.html#api-dataframe-stats (https://pandas.pydata.org/pandas-
docs/stable/api.html#api-dataframe-stats)
In [6]:
                                                                                                M
bairros = ['Barra da Tijuca', 'Copacabana', 'Ipanema', 'Leblon', 'Botafogo', 'Flamengo',
In [7]:
                                                                                                H
# selecao = dados['Bairro'].isin(bairros)
# dados = dados[selecao]
# dados.head(10)
In [8]:
                                                                                                H
dados['Bairro'].drop_duplicates()
Out[8]:
0
               Copacabana
         Jardim Botânico
1
2
                   Centro
3
             Higienópolis
4
                 Cachambi
13855
                Bancários
15277
               Cavalcanti
15280
             Rio da Prata
           Cidade Jardim
15412
16428
              Coelho Neto
Name: Bairro, Length: 152, dtype: object
```

In [9]: ▶

gurpo_bairros = dados.groupby('Bairro')
gurpo_bairros

Out[9]:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x0000021E70219648>

In [10]:

type(gurpo_bairros)

Out[10]:

pandas.core.groupby.generic.DataFrameGroupBy

In [11]:

gurpo_bairros.groups

Out[11]:

20, 4528, 4534, 4555, 4574, 4578, 4613, 4715, 4736, 4950, ...], 'Cascadur a': [558, 879, 1625, 1925, 4452, 5816, 6283, 6614, 8551, 9319, 10272, 1084 4, 11782, 11842, 11998, 12250, 12723, 14902, 15569, 16030, 16035, 16075, 1 6737, 17067, 17580, 19602, 19606, 20057, 20095, 20268, 21751], 'Catete': [94, 98, 120, 193, 300, 339, 682, 1174, 1351, 1402, 1692, 1798, 1824, 190 3, 2011, 2125, 2286, 2397, 2423, 2930, 2931, 2987, 3244, 3529, 3673, 3708, 3758, 3814, 3920, 4120, 4215, 4219, 4291, 4323, 4407, 4770, 4817, 5477, 56 12, 5617, 5635, 5707, 5710, 5727, 5889, 5948, 6160, 6250, 6599, 6888, 695 7, 7018, 7020, 7050, 7073, 7162, 7345, 7386, 7858, 8435, 8652, 8776, 8876, 8942, 9089, 9284, 9327, 9349, 9451, 9566, 9833, 9854, 9978, 10134, 10172, 10241, 10249, 10276, 10366, 10557, 10832, 10992, 11166, 11501, 11550, 1157 3, 11615, 11730, 11740, 11789, 11907, 12013, 12206, 12279, 12289, 12348, 1 2603, 12654, 13104, 13358, ...], 'Catumbi': [1343, 3152, 4506, 8394, 8769, 16685, 17119, 21002], 'Cavalcanti': [15277, 18152], 'Centro': [2, 38, 65, 71, 146, 181, 191, 312, 427, 585, 665, 826, 870, 939, 944, 954, 1016, 111 1, 1115, 1136, 1321, 1385, 1483, 1496, 1613, 1633, 1691, 1697, 1733, 1737, 1845, 1891, 1901, 2006, 2085, 2098, 2156, 2167, 2191, 2236, 2239, 2258, 23

```
In [12]:
                                                                                       H
for bairros, data in gurpo_bairros:
   print('{} -> {}'.format(bairros, data['Valor'].mean()))
   #print(type(dados))
Abolição -> 1195.3333333333333
Alto da Boa Vista -> 3966.666666666665
Anchieta -> 875.0
Andaraí -> 1464.7113402061855
Anil -> 2048.8732394366198
Arpoador -> 12923.91666666666
Bancários -> 1825.0
Bangu -> 1016.0
Barra da Tijuca -> 7069.552938130986
Barra de Guaratiba -> 5550.0
Benfica -> 996.0
Bento Ribeiro -> 1030.8695652173913
Bonsucesso -> 1225.9322033898304
Botafogo -> 8791.828178694159
Braz de Pina -> 1115.0
Cachambi -> 1157.1742424242425
Cachamorra -> 3000.0
Caiu -> 850.0
In [13]:
gurpo_bairros[['Valor', 'Condominio']].mean().round(2)
```

Out[13]:

Rairro

Valor	Condo	minio
	-0	

Bairro		
Abolição	1195.33	191.40
Alto da Boa Vista	3966.67	885.00
Anchieta	875.00	19.75
Andaraí	1464.71	497.71
Anil	2048.87	455.85
Vila Valqueire	1769.58	276.88
Vila da Penha	1260.58	232.68
Vista Alegre	1114.38	210.06
Zumbi	2150.00	1050.00
Água Santa	861.11	269.44

152 rows × 2 columns

Estatísticas Descritivas

In [14]: ▶

gurpo_bairros['Valor'].describe().round(2)

Out[14]:

	count	mean	std	min	25%	50%	75%	max
Bairro								
Abolição	15.0	1195.33	425.32	800.0	900.0	1180.0	1200.0	2300.0
Alto da Boa Vista	6.0	3966.67	5513.59	600.0	1150.0	1725.0	3275.0	15000.0
Anchieta	4.0	875.00	132.29	700.0	812.5	900.0	962.5	1000.0
Andaraí	97.0	1464.71	408.11	700.0	1200.0	1400.0	1650.0	2950.0
Anil	71.0	2048.87	1523.97	300.0	1100.0	1500.0	2675.0	7000.0
Vila Valqueire	48.0	1769.58	2203.01	800.0	1000.0	1250.0	1700.0	16000.0
Vila da Penha	104.0	1260.58	644.66	450.0	900.0	1100.0	1302.5	4500.0
Vista Alegre	16.0	1114.38	199.60	700.0	1012.5	1200.0	1225.0	1400.0
Zumbi	2.0	2150.00	777.82	1600.0	1875.0	2150.0	2425.0	2700.0
Água Santa	9.0	861.11	174.60	600.0	800.0	850.0	950.0	1200.0

152 rows × 8 columns

In [15]:

```
gurpo_bairros['Valor'].aggregate(['min','max','sum'])
```

Out[15]:

	min	max	sum
Bairro			
Abolição	800.0	2300.0	17930.0
Alto da Boa Vista	600.0	15000.0	23800.0
Anchieta	700.0	1000.0	3500.0
Andaraí	700.0	2950.0	142077.0
Anil	300.0	7000.0	145470.0
Vila Valqueire	0.008	16000.0	84940.0
Vila da Penha	450.0	4500.0	131100.0
Vista Alegre	700.0	1400.0	17830.0
Zumbi	1600.0	2700.0	4300.0
Água Santa	600.0	1200.0	7750.0

152 rows × 3 columns

In [16]:

gurpo_bairros['Valor'].aggregate(['min','max','sum']).rename(columns = {'min':'Mínimo', 'ma

Out[16]:

	Mínimo	Máximo	Soma
Bairro			
Abolição	800.0	2300.0	17930.0
Alto da Boa Vista	600.0	15000.0	23800.0
Anchieta	700.0	1000.0	3500.0
Andaraí	700.0	2950.0	142077.0
Anil	300.0	7000.0	145470.0
Vila Valqueire	800.0	16000.0	84940.0
Vila da Penha	450.0	4500.0	131100.0
Vista Alegre	700.0	1400.0	17830.0
Zumbi	1600.0	2700.0	4300.0
Água Santa	600.0	1200.0	7750.0

152 rows × 3 columns

```
In [17]:
```

```
%matplotlib inline
import matplotlib.pyplot as plt
plt.rc('figure', figsize = (30, 20))
```

```
In [21]:
```

```
fig = gurpo_bairros['Valor'].mean().plot.bar(color = 'blue')
fig.set_ylabel('Valor do Aluguel')
fig.set_title('Valor Médio do Aluguel por Bairro ', {'fontsize':22})
```

Out[21]:

Text(0.5, 1.0, 'Valor Médio do Aluguel por Bairro ')


```
In [22]: ▶
```

```
fig = gurpo_bairros['Valor'].max().plot.bar(color = 'blue')
fig.set_ylabel('Valor do Aluguel')
fig.set_title('Valor Médio do Aluguel por Bairro ', {'fontsize':22})
```

Out[22]:

Text(0.5, 1.0, 'Valor Médio do Aluguel por Bairro ')

