(19) B本國特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-90214

(43)公開日 平成8年(1996)4月9日

(51) Int.Cl.⁶

職別記号

庁内整理番号

FΙ

技術表示箇所

B 2 2 D 41/46

11/10

340 E

審査請求 未請求 請求項の数1 FD (全 5 頁)

鋼株式会社内

(21)出願番号 特願平6-247350 (71)出願人 000116655 愛知製鋼株式会社 (22)出願日 平成6年(1994)9月14日 愛知県東海市荒尾町ワノ割1番地 (71)出願人 000221122 東芝セラミックス株式会社 東京都新宿区西新宿1丁目26番2号 (71) 出願人 594168539 東海熱材株式会社 岐阜県土岐市土岐津町土岐口725番地の6 (72) 発明者 水谷 洋一 愛知県東海市荒尾町ワノ割1番地 愛知製

最終頁に続く

(54) 【発明の名称】 スライデイングノズルの充填材

(57)【要約】

【目的】スライデイングノズルの充填材であって、取鍋 等における溶鋼の滞留時間が長い場合や、スライデング ノズルの径が小さく溶鋼ヘッドが充填材にかかりにくい 場合においても、自然開孔しやすいスライデイングノズ ルの充填材を提供する。

【構成】ZrO、·SiO、98重量%以上を含有する ジルコン砂60~40重量%と、SiO,96重量%以 上を含有する珪砂40~60%と、長石5重量%未満の 混合物からなり、この混合物中のアルカリ含有量が1. 5重量%未満であるスライデイングノズルの充填材であ る。

【効果】本発明の充填材は、溶鋼の地金差しによる閉塞 や充填材自身の過焼結や熱膨張に起因する閉塞を防止で きるため、自然開孔率が高い充填材とすることができ る。そして、スライデングノズルの開孔トラブルが防止 でき、溶鋼の温度低下や作業工程の大幅な遅延が無いた めに、作業能率のよい充填材とすることができる。

【特許請求の範囲】

【請求項1】ZrO、・SiO、98重量%以上を含有 するジルコン砂60~40重量%と、SiO,96重量 %以上を含有する珪砂40~60%と、長石5重量%未 満の混合物からなり、との混合物中のアルカリ含有量が 1.5重量%未満であるスライデイングノズルの充填

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、取鍋あるいはタンデ 10 イシュに設置されたスライデイングノズルの充填材に関 する。本発明の充填剤は、自然開孔率の高い充填材とし て鋼の製造に利用できる。

[0002]

【従来の技術】製鋼工場で使用される取鍋あるいはタン デイシュには、一般に、スライデイングノズルが設置さ れている。スライディングノズルは、通常、上ノズル、 固定プレート、スライドプレート及び下ノズルから構成・ され、該スライドプレートを摺動させることにより、溶 の注出を停止させるものである。スライディングノズル の充填材は、溶鋼が上ノズルあるいは固定プレートのノ ズル孔部分に浸入し凝固するのを防止するために、溶鋼 を取鍋等に鋳込む前に、上ノズルのノズル孔部分に充填 される材料である。そして、スライディングノズルの固 定プレートとスライドプレートを一致させて溶鋼の注出 を開始するときには、充填材はノズル孔から落下して、 ノズル孔は自然開孔すべきものである。

デイングノズルが自然開孔しない問題が生じている。そ して、上記の問題を解消するために、スライデイングノ ズルの充填材として、珪砂を主成分とする珪砂系の充填 材で、珪砂80~90wt%と長石10~20wt%の 混合物からなり、との混合物中に1.8wt%以上のア ルカリを含有した充填材が、従来より使用されている。 【0004】スライデイングノズルの充填材がノズル孔 に閉塞して自然開孔が阻害される原因としては、(1) 充填材と溶鋼の接触部において、溶鋼が充填材の粒子間 に侵入し、凝固し、充填材を固着する(いわゆる充填材 40 であって、取鍋等における溶鋼の滯留時間が長い場合 への地金差し)。(2)充填材自体が過焼結し、充填材 がノズルから剥がれなくなり自然開孔ができなくなる。 の2原因が従来より知られている。

【0003】従来より、スライディングノズルからの注

【0005】そして、(1)の原因である充填材中への 溶鋼の侵入凝固を防止するために、充填材上層部の溶鋼 接触部分に高粘性のガラス層を形成させる方法が考えら れている。上記目的のために、従来の充填材において は、充填材中に 1.8 w t %以上のアルカリを含有する ように、長石が添加されている。長石の溶解点は120 0~1350℃の範囲にあることから、溶鋼が取鍋等に 50 重量%未満の混合物からなり、この混合物中のアルカリ

移されると、溶鋼の熱により、先ず長石が溶けて珪砂の 粒子間を埋めながらガラス層を形成し、溶鋼の充填材へ の浸入を防止する。

【0006】また、(2)の原因である充填材自体の過 焼結を防止するために、耐火度が高く、焼結しにくい珪 砂が主原料として用いられている。主原料である珪砂 は、過度に焼結しないために、従来の珪砂系充填材は、 通常は、自然開孔しやすい充填材として使用されてい る。

[0007]

【この発明が解決しようとする課題】しかしながら、近 年、鉧の精錬過程において、取鍋精錬等の二次精錬の比 重が増大し、取鍋における溶鋼の滞留時間が増加したた め、スライデイングノズル部に加わる熱影響が大きくな ってきた。また、小断面ビレットの連続鋳造時における 場合のように、小径サイズの取鍋ノズルを必要とする場 合が増えてきた。小径サイズのノズルにおいては、溶鋼 ヘッドが充填材にかかりにくく、従って、充填材を押し 下げる力が弱いため、かかる小径サイズのノズルは充填 鋼の注出を開始し、溶鋼の流量を制御し、あるいは溶鋼 20 材がスライデイングノズルから分離されにくいノズルと なっている。

【0008】とのような状況下で、近年、溶鋼の注出開 始時に充填材が落下せず、スライデイングノズルが自然 開孔しない問題が新たに顕在化してきた。そして、従来 の珪砂系充填材を使用した操業結果において、スライデ ングノズルのノズル径が80mm以上で、取鍋内での溶 鋼滞留時間が90分程度であれば、自然開孔率は99. 5%以上の水準であるのに対して、ノズル径が60mm 以下で、取鍋内での溶鋼滞留時間が3時間以上となる 出を開始する場合、充填材がノズル孔に閉塞してスライ 30 と、自然開孔率は50%以下の水準となっているのが実 情である。

> 【0009】そして、スライディングノズルが不開孔と なった場合は、酸素パイプを使用して開孔させることと なり、そのための酸素吹きに長時間を要することから、 かかる注出開始時における開孔失敗が生じると、溶鋼の 温度が低下し、かつ作業スケジュールが大幅に遅延する こととなり、銅の品質や製鋼の作業性に悪影響が及ばさ れるととになる。

> 【0010】本発明は、スライデイングノズルの充填材 や、スライデングノズルの径が小さく溶鋼ヘッドが充填 材にかかりにくい場合においても、自然開孔しやすいス ライデイングノズルの充填材を提供することを目的とす る。

[0011]

【課題を解決するための手段】上記目的を達成するため の本発明の充填材は、ZrO,·SiO,98重量%以 上を含有するジルコン砂60~40重量%と、SiO, 96重量%以上を含有する珪砂40~60%と、長石5

含有量が1.5重量%未満であるスライデイングノズル の充填材である。以下に発明の詳細について記載する。 【0012】取鍋等における溶鋼の滞留時間が長い場合 や、スライデングノズルの径が小さく溶鋼ヘッドによる 充填材の押し下げ力が弱い場合において発生した溶鋼注 出開始時の開孔失敗原因を種々検討した結果、次のよう なことが明らかになった。従来の充填材においては、

- (A) 充填材中への溶鋼の侵入を防止するために溶鋼と の接触部に形成されるガラス層が、厚く、強固に形成さ れ、溶鋼ヘッド圧により破れにくくなるため、形成され 10 るガラス層が、逆に充填材の自然開孔を阻害する。
- (B) 充填材が過焼結してノズル壁に溶着することによ ってではなく、充填材が熱影響を受けて熱膨張し、充填 材の膨張によるノズル壁への突っ張りが生じるととにより って、充填材の自然開孔が阻害される。

【0013】本発明は、自然開孔を阻害する上記の (A)、(B) 両原因を同時に解消する組成物を勘案す るととによってなされたものである。まず、上記原因 (A)を解消するための組成物として、適度の焼結性を 有するZrO₂·SiO₂に着眼した。そして、鋭意研 20 究を進める中で、ZrO,・SiO, においては、溶鋼 との接触により、充填材の上層部に、強固なガラス層は 形成されずに、薄い焼結ジルコン膜が形成され、形成さ れたジルコン膜の厚みが溶鋼との接触時間とともに大き く変化しない事実を見い出した。そして、ジルコン砂と 珪砂混合の充填材であって、ZrO、·SiO、を35 重量%以上含有する充填材においては、充填材と溶鋼と の接触部に形成される上記の焼結ジルコン膜により、充 填材内への溶鋼の侵入(地金差し)を防止できることを 見い出した。

【0014】また、併せて、ZrO₂・SiO₂の熱膨 張率と嵩比重に着眼した。ZrOz·SiOzの熱膨張 率はSiO,のそれよりも小さく、熱影響を受けた場合 のZrO、·SiO、の膨張量はSiO、より少ない。 そして、試験研究の末、ZrO,・SiO,を主成分と するジルコン砂とSiO、を主成分とする珪砂の混合材 で、ZrO、・SiO、を40%以上含有する充填材に おいては、熱膨張によるノズル壁への突っ張りが防止で き、上記原因(B)によるノズル閉塞を回避できること を見い出した。一方、ZrO,・SiO,はSiO,よ 40 り強い焼結性をもつため、ZrO、・SiO、を多く含 有する充填材においては、充填材自身の過焼結によるノ ズル閉塞(前記(2)のノズル閉塞原因)が生じるとと も判明した。このために、SiO、を主成分とする珪砂 を40~60重量%混合させる必要があった。

【0015】また、ZrO、·SiO、は嵩比重の大き い耐火材料である。とのために、ZrO、・SiO、を 主成分とする充填材は、充填材自身の自重によりノズル 孔から落下しやすい性質をもつので、充填材の熱膨張に よるノズル壁への突っ張りによる落下抵抗が生じた場合 50 下で、取鍋スライデングノズルに上記供試材を用いて開

に、その抵抗に打ち勝つ落下力は大きいものとなる。 [0016] 一方、ZrO, ·SiO, とSiO, の混 合物中に含有されるアルカリは、上記の閉塞原因(A) を解消させるために、できるだけ低い量に抑制する必要 がある。そして、鋭意研究を重ねた結果、充填材中のア ルカリの含有量を1.5重量%未満に抑制すれば、溶鋼 との接触部に形成される焼結ジルコン膜の厚みと強さに 大きな影響が生じなく、また溶鋼との接触部に強固なガ ラス層が形成されないことを見い出した。そして、アル カリの含有量を1.5重量%未満に抑制するためには、 アルカリを含有する長石の添加を5重量%未満に抑制す る必要があることが判った。

【0017】以上に記述した着眼と試験研究により得ら れたスライデングノズルの充填材は、ZrOz・SiO 、98重量%以上を含有するジルコン砂60~40重量 %と、SiO,96重量%以上を含有する珪砂40~6 0%と、長石5重量%未満の混合物からなり、この混合 物中のアルカリ含有量が1.5重量%未満であるスライ デイングノズルの充填材である。

[0018]

【作用】以下に本発明の充填材組成物の成分限定範囲に ついて説明する。ジルコン砂と珪砂の混合割合は、ジル コン砂60~40重量%と、珪砂40~60重量%であ り、この範囲では、自然開孔率が高く、この範囲を超え ると自然開孔率は低くなる。充填材中のZrOz·Si O, が70重量%以上の割合になると、過焼結が生じて スライデングノズルは不開孔となり、また充填材中の乙 rO,・SiO,が35重量%未満の割合では、溶鋼と の接触部に焼結ジルコン膜が形成されず、かつ、充填材 30 の充填密度が低くなるため、地金差しが発生してスライ デングノズルは不開孔となる。一方、充填材中のアルカ リ (Na, O、K,O) の含有量が1.5重量%以上と なると、溶鋼との接触部に強固なガラス層が形成され て、形成されたガラス層が溶鋼へっドにより破られず、 スライデングノズルは不開孔となる。また、ジルコン砂 はZrO、·SiO、を98重量%以上含有する高純度 のジルコン砂である必要があり、ZrO、·SiO、が 98重量%未満のジルコン砂では、混合後の充填材中の アルカリ含有量が1.5重量%以上になる場合がある。 また、珪砂はSiO、を96重量%以上含有する高純度 の珪砂である必要があり、SiO、が96重量%未満の 珪砂では、混合後の充填材中のアルカリ含有量が1.5 重量%以上になる場合がある。

[0019]

【実施例】次に、本発明のスラデイングノズルの充填材 の特徴を従来の充填材と比べて実施例をもって明らかに する。表1は、本発明材と従来材と比較材とからなる供 試材の成分と、ノズル孔径:60mm、溶鋼の滞留時 間:3.5時間、溶鋼中のC:0.4~0.6%の条件 孔試験を行った場合の結果を示す。比較材のNo8は、

ジルコン砂と珪砂の混合割合は本発明材の範囲内にある が、長石の添加量が多く、充填材中のアルカリ含有量が

1. 8重量%である供試材である。表1における結果 *

*は、スライデングノズルの自然開孔率(%)で示した。 [0020] 【表] 】

供試試材No		本発明材					從来材		比較材
		1	2	3	4	5	6	7	8
混 合 比重 显 %	珪砂	40	45	50	55	60	. 80	85	45
	ダルコンをか	60	55	50	45	40	-	-	45
	長 石	< 5	< 5	< 5	< 5	< 5	20	15	10
成分重	SiO ₂	39	44	48	54	58	95	95	52
	ZrSO ₂ - ŠiO ₂	59	55	50	44	40	1	-	44
星 %	7829	0.6	0.5	0.7	1.0	0.7	2. 3	2, 0	1.8
自然開孔率 (%)		94	98	97	94	95	53	55	70

. 【0021】表1に示されるように、珪砂80~85重 量%と長石20~15重量%を混合させたNo6とNo 7の従来材は、自然開孔率が53~55%であるのに対 し、本発明材であるNo1、No2、No3、No4、 No5は、自然開孔率が94~98%であり、本発明材 の自然開孔率は従来材に比べて大幅に向上している。ま た、比較材No8の自然開孔率は、供試材中のアルカリ 含有量が大きいため、本発明材の自然開孔率より劣る数 値となっている。

[0022]

【発明の効果】以上説明してきたように、本発明のスラ イデングノズルの充填材は、取鍋等における溶鋼の滞留 時間が長い場合や、スライデングノズルの径が小さく溶 鋼ヘッドによる充填材押し下げ力が弱い場合において も、自然開孔率が高い充填材とすることができる。従っ て、本発明の充填材により、スライデングノズルの開孔

トラブルを防止することができ、溶鋼の温度低下や作業 工程の大幅な遅延がないために、作業能率のよい充填材 を提供することができる。

[0023]

【図面の簡単な説明】

【図1】充填材が充填されているスライデングノズルの 断面図である。

【符号の説明】

- 1 取鍋 40
 - 2 上ノズル
 - 3 固定プレート
 - 4 ノズル孔
 - 5 スライドプレート
 - 6 上ノズル孔
 - 7 充填材

[図1]

フロントページの続き

(72)発明者 二村 直志

愛知県東海市荒尾町ワノ割 1 番地 愛知製 鋼株式会社内 (72)発明者 西尾 内匠

愛知県豊田市畝部東町川田1番地の21

(72)発明者 林 健三

愛知県刈谷市小垣江町南藤 1 番地 東芝セラミックス株式会社刈谷製造所内