01.112/50.007 Machine Learning

Lecture 6 K-Medoids Clustering

What is clustering

- Form of unsupervised learning no information from teacher
- The process of partitioning a set of data into a set of meaningful (hopefully) sub-classes, called clusters

Cluster:

- collection of data points that are "similar" to one another and collectively should be treated as group
- as a collection, are sufficiently different from other groups

What is clustering

Clustering Problem.

Input.

Training data $S_n = \{x^{(i)}; i = 1, 2, ..., n\}$, each $x^{(i)} \in \mathbb{R}^d$. Integer k.

Output.

Clusters $C_1, C_2, ..., C_k \subset \{1, 2, ..., n\}$ such that every data point is in one and only one cluster.

Some clusters could be empty!

How to Specify a Cluster

By listing all its elements

$$C_1 = \{1,3,4,7,8,11\}$$

$$C_2 = \{2,5,6,9,10\}$$

How to Specify a Cluster

- Using a representative
 - a. A point in center of cluster (centroid)
 - b. A point in the training data (exemplar)

$$z^{(1)} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, z^{(2)} = \begin{pmatrix} 5 \\ 4 \end{pmatrix}$$

$$z^{(1)} = 8, z^{(2)} = 9$$

exemplar

Each point $x^{(i)}$ will be assigned the closest representative.

K-Means Algorithm

- 1. Initialize centroids $z^{(1)}, ..., z^{(k)}$ from the data.
- 2. Repeat until no further change in training loss:
 - a. For each $j \in \{1, ..., k\}$, $C_j = \{i \text{ such that } x^{(i)} \text{ is closest to } z^{(j)} \}$.
 - b. For each $j \in \{1, ..., k\}$, $z^{(j)} = \frac{1}{|\mathcal{C}_i|} \sum_{i \in \mathcal{C}_j} x^{(i)} \text{ (cluster mean)}$

Animation: https://towardsdatascience.com/k-means-clustering-introduction-to-machine-learning-algorithms-c96bf0d5d57a

K-Medoids

Use exemplars instead of centroids.

e.g. Google News.

Repeat until convergence:

- Find best clusters given exemplars
- Find best exemplars given clusters

People Are Drilling Headphone Jacks Into the iPhone 7

He then takes the bit to the iPhone 7 and drills a hole into the device. ... Instead.

Apple shipped iPhone 7 units with an adapter that lets users ...

iPhone 7 review: Not Apple's best

Expert Reviews - 2 hours ago

Please don't drill a headphone jack into your iPhone 7

BGR - 2 hours ago

Apple iPhone 7 Users: Please DO NOT Drill a 3.5mm Hole on it to ...

News18 - 7 hours ago

Video claiming drilling into iPhone 7 will reveal hidden headphone ...

Highly Cited - The Guardian - 1 hour ago

Clueless iPhone 7 owners tricked into DRILLING hole in their ...

Highly Cited - The Sun - 24 Sep 2016

View all

Pegatron CEO slams analysts, 'cautiously optimistic' about Apple ...

AppleInsider (press release) (blog) - 3 hours ago

The CEO of Apple's manufacturing partner Pegatron notes that the iPhone 7 is exceeding estimates on the strength of the phone alone, and ...

Google Nexus 2016' Specs: Solution to Apple iPhone 7 ...

University Herald - 3 hours ago

Apple Supplier Pegatron Hints of Higher iPhone 7 Demand while ...

Patently Apple - 2 hours ago

iPhone 7 vs Samsung Galaxy S7: Which is the best smartphone to ...

Alphr - 5 hours ago

Samsung Galaxy Note 7 Explosions Boost iPhone 7 Sales, Top ...

Softpedia News - 8 hours ago

View all

K-Medoids Algorithm

- 1. Initialize exemplars $z^{(1)}, ..., z^{(k)} \subseteq \{x^{(1)}, ..., x^{(n)}\}$
- 2. Repeat until no further change in training loss:
 - a. For each $j \in \{1, ..., k\}$, $\mathcal{C}^{j} = \{ i \text{ such that } x^{(i)} \text{ is closest to } z^{(j)} \}.$
 - b. For each $j \in \{1, ..., k\}$, set $z^{(j)}$ to be the point in $C^{(j)}$ that minimizes $\sum_{i \in C^j} d(x^{(i)}, z^{(j)})$

 Suppose we have 4 boxes of different sizes and we want to divide them into 2 clusters. Each box represents one point with two attributes (X,Y):

- Initial centers: suppose we choose points A and B as the initial centers, so c1 = (10, 10) and c2 = (20, 10)
- Object centre distance: calculate the Euclidean distance between cluster centers and the objects.

We obtain the following distance matrix:

	Α	В	С	D
Centre 1				
Centre 2				

- Initial centers: suppose we choose points A and B as the initial centers, so c1 = (10, 10) and c2 = (20, 10)
- Object centre distance: calculate the Euclidean distance between cluster centers and the objects. For example, the distance of object C from the first center is:

$$\sqrt{(40-10)^2 + (30-10)^2} = 36.06$$

We obtain the following distance matrix:

	Α	В	С	D
Centre 1	0	10	36.06	50
Centre 2	10	0	28.28	43.43

 Object clustering: We assign each object to one of the clusters based on the minimum distance from the centre:

	Α	В	С	D
Centre 1	1	0	0	0
Centre 2	0	1	1	1

Determine centers: Based on the group membership, we compute the new centers

 Object clustering: We assign each object to one of the clusters based on the minimum distance from the centre:

	Α	В	С	D
Centre 1	1	0	0	0
Centre 2	0	1	1	1

• Determine centers: Based on the group membership, we compute the new centers

$$c_1 = (10, 10), c_2 = \left(\frac{20+40+50}{3}, \frac{10+30+40}{3}\right) = (36.7, 26.7)$$

 Recompute the object-center distances: We compute the distances of each data point from the new centers:

	Α	В	С	D
Centre 1				
Centre 2				

 Object clustering: We reassign the objects to the clusters based on the minimum distance from the center:

	Α	В	С	D
Centre 1				
Centre 2				

 Recompute the object-center distances: We compute the distances of each data point from the new centers:

	Α	В	С	D
Centre 1	0	10	36.06	50
Centre 2	31.4	23.6	4.7	18.9

 Object clustering: We reassign the objects to the clusters based on the minimum distance from the center:

	Α	В	С	D
Centre 1	1	1	0	0
Centre 2	0	0	1	1

Determine the new centers:

Recompute the object-centers distances

Object clustering

	Α	В	C	D
Centre 1				
Centre 2				

• Determine the new centers:
$$c_1 = \left(\frac{10+20}{2}, \frac{10+10}{2}\right) = (15,10)$$

 $c_2 = \left(\frac{40+50}{2}, \frac{30+40}{2}\right) = (45,35)$

Recompute the object-centers distances

	Α	В	С	D
Centre 1	5	5	32	46.1
Centre 2	43	35.4	7.1	7.1

Object clustering

	Α	В	С	D
Centre 1	1	1	0	0
Centre 2	0	0	1	1

 The cluster membership did not change from one iteration to another. So the k-means computation terminates.

K-Medoids Algorithm

- 1. Initialize exemplars $z^{(1)}, ..., z^{(k)} \subseteq \{x^{(1)}, ..., x^{(n)}\}$
- 2. Repeat until no further change in training loss:
 - a. For each $j \in \{1, ..., k\}$, $\mathcal{C}^{j} = \{ i \text{ such that } x^{(i)} \text{ is closest to } z^{(j)} \}.$
 - b. For each $j \in \{1, ..., k\}$, set $z^{(j)}$ to be the point in $C^{(j)}$ that minimizes $\sum_{i \in \mathcal{C}^j} d(x^{(i)}, z^{(j)})$

For each data point, $x^{(i)}$ which is not a medoid:

- 1. Swap $z^{(j)}$ and $x^{(i)}$, associate each data point to the swapped medoid, recompute the cost.
- 2. If the total cost is more than that in the previous step, undo the swap.

Consider the following set of points

x ⁽¹⁾	2	6
x ⁽²⁾	3	4
$\chi^{(3)}$	3	8
$x^{(4)}$	4	7
$x^{(5)}$	6	2
x ⁽⁶⁾	6	4
$x^{(7)}$	7	3
x ⁽⁸⁾	7	4
x ⁽⁹⁾	8	5
$x^{(10)}$	7	6

• We will consider L1 distance $d(x^{(i)}, z^{(j)}) = |x^{(i)} - z^{(j)}|$

Source: https://en.wikipedia.org/wiki/K-medoids

 Let the randomly selected 2 medoids be

$$z^{(1)} = (3,4)$$

 $z^{(2)} = (7,4)$

 The cost of each non-medoid point with the medoids is calculated and tabulated:

Data object		Distance to	
i	$x^{(i)}$	$z^{(1)} = (3,4)$	$z^{(2)} = (7,4)$
1	(2, 6)	3	7
2	(3, 4)	0	4
3	(3, 8)	4	8
4	(4, 7)	4	6
5	(6, 2)	5	3
6	(6, 4)	3	1
7	(7, 3)	5	1
8	(7, 4)	4	0
9	(8, 5)	6	2
10	(7, 6)	6	2
	Cost		

 Let the randomly selected 2 medoids be

$$z^{(1)} = (3,4)$$

 $z^{(2)} = (7,4)$

The total cost of this clustering is:

Cluster 1: (3+0+4+4) = 11

Cluster 2: (3+1+1+0+2+2) = 9

Total: 20

Data object		Distance to		
i	$x^{(i)}$	$z^{(1)} = (3,4)$	$z^{(2)} = (7,4)$	
1	(2, 6)	3	7	
2	(3, 4)	0	4	
3	(3, 8)	4	8	
4	(4, 7)	4	6	
5	(6, 2)	5	3	
6	(6, 4)	3	1	
7	(7, 3)	5	1	
8	(7, 4)	4	0	
9	(8, 5)	6	2	
10	(7, 6)	6	2	
Cost		11	9	

• Updating Z_2 with a non-medoid point, O'

$$z^{(1)} = (3,4)$$

 $O' = (7,3)$

The total cost of this clustering is:

Cluster 1: (3+0+4+4) = 11

Cluster 2: (2+2+0+1+3+3) = 11

Total: 22

i	$Z^{(1)}$		$x^{(i)}$		dist
1	3	4	2	6	3
3	3	4	3	8	4
4	3	4	4	7	4
5	3	4	6	2	5
6	3	4	6	4	3
8	3	4	7	4	4
9	3	4	8	5	6
10	3	4	7	6	6

i	0'		$\chi^{(i)}$		dist
1	7	3	2	6	8
3	7	3	3	8	9
4	7	3	4	7	7
5	7	3	6	2	2
6	7	3	6	4	2
8	7	3	7	4	1
9	7	3	8	5	3
10	7	3	7	6	3

The total cost of this clustering is:

Cluster 1: (3+0+4+4) = 11

Cluster 2: (2+2+0+1+3+3) = 11

Total: $22 > 20 \rightarrow No swapping$

Discussion

Number of Clusters

How do we choose k, the optimal number of clusters?

- Elbow method
 - Training Loss
 - Validation Loss
- Semi-supervised learning
 - Accuracy in supervised task

Elbow Method

Generalization

Semi-Supervised Learning

Supervised task with small *labeled* data S'

- For each number of clusters k,
 - 1. Perform *k*-means on *unlabeled* data.
 - 2. Transform S' using learned clusters
 - e.g. compute distance to each centroid.
 - 3. Use new features for supervised task, and compute prediction error.
- Pick k with smallest prediction error.

Example

1. Perform *k*-means on *unlabeled* data.

Unlabelled data:

$$A = (10,10), B = (20,10),$$

 $C = (40,30), D = (50,40)$

Centroids:

$$c1 = (15,10), c2 = (45,35)$$

Distances:

	Α	В	С	D
Centre 1	5	5	32	46.1
Centre 2	43	35.4	7.1	7.1

Example

2. Transform S' using learned clusters e.g. compute distance to each centroid.

Labelled original data:

$$S' = \{ ((50,30), +1), ((15,20), -1) \}$$

Unlabelled data:

$$A = (10,10), B = (20,10),$$

 $C = (40,30), D = (50,40)$

Centroids:

$$c1 = (15,10), c2 = (45,35)$$

	Α	В	С	D	E	F
Centre 1	5	5	32	46.1		
Centre 2	43	35.4	7.1	7.1		

Example

3. Use new features for supervised task, and compute prediction error.

Labelled original data:

$$S' = \{ ((50,30), +1), ((15,20), -1) \}$$

Transformed labelled data:

$$\mathcal{S}' = \{ ((40.3, 7.07), +1), ((10, 33.54), -1) \}$$

F Α В D Ε Centre 1 5 32 40.3 10 5 46.1 33.54 Centre 2 43 35.4 7.1 7.1 7.07

Unlabelled data:

$$A = (10,10), B = (20,10),$$

 $C = (40,30), D = (50,40)$

Centroids:

$$c1 = (15,10), c2 = (45,35)$$

Points belonging to same cluster have similar features

Summary

- The K-medoids algorithm shares the properties of K-means that we discussed (each iteration decreases the cost; the algorithm always converges; different starts gives different final answers; it does not achieve the global minimum)
- K-medoids is computationally harder than K-means (because of step 2: computing the medoid is harder than computing the average)
- Remember, K-medoids has the (potentially important) property that the centers are located among the data points themselves