Bayesian Statistics III/IV (MATH3361/4071)

Michaelmas term 2021

Homework 4: Hypothesis test

Lecturer: Georgios Karagiannis

georgios.karagiannis@durham.ac.uk

For Formative assessment, submit the solutions to the Exercise 1.

Exercise 1. $(\star\star)$

1. Consider the Single vs. General alternative Bayesian hypothesis test

$$H_0: \theta = \theta_0$$
 vs $H_1: \theta \neq \theta_0$.

or more formally

$$\mathbf{H}_0: \begin{cases} y|\theta_0 & \sim F(y|\theta_0) \\ \theta_0 \text{ is fixed} \end{cases} \quad \text{vs} \quad \mathbf{H}_1: \begin{cases} y|\theta & \sim F(y|\theta) \\ \theta & \sim \Pi_1(\theta), \ \theta \in \Theta_1 \end{cases} \tag{1}$$

Show that the Bayes factor B_{01} of H_0 and H_1 can be computed as

$$\mathbf{B}_{01} = \frac{\pi_1 \left(\theta_0 | y\right)}{\pi_1 \left(\theta_0\right)}$$

where $\pi_1(\cdot)$ and $\pi_1(\cdot|\cdot)$, denote the PDF of $\Pi_1(\cdot)$ and $\Pi_1(\cdot|\cdot)$.

- 2. In the above hypothesis test, assume that $y|\theta \sim \text{Bin}(n,\theta)$ has Binomial sampling distribution with unknown parameter θ .
 - (a) Find an approximation of B_{01} , when n is large.
 - (b) For large n, show that $B_{01} > 1$ when $z_0 = \frac{p-\theta_0}{\sqrt{u}}$, with $p = \frac{y}{n}$ and $u = \frac{p(1-p)}{n}$, satisfies $|z| < \max\left(\sqrt{k}, 0\right)$ for some k that depends of n, p, and $\pi_1\left(\theta_0\right)$.
 - (c) Let the conditional prior $\Pi_1(\theta)$ be a Uniform distribution with positive mass above the interval [0,1]. Show that this choice of the conditional prior $\Pi_1(\theta)$ can create a "paradox" when compared with fixed size tests.