北京大学数学科学学院数学分析(二)期中考试

2021 年 5 月 10 日 10:10-12:10 姓名 学号 25000

全卷共 2 页, 计7 道大题, 满分 100 分.

- 1. (每道小题2分, 共14分) 判断下列命题的对错(不需给出理由)。

 - (2) 若 $f(x) \in R[0,1]$, 则存在 $\xi \in [0,1]$, 使得 $\int_0^1 f(x) dx = f(\xi)$.
 - (3) 若f(x), g(x) 在任何有界闭区间上都Riemann可积,则g(f(x)) 在任何有界闭区间上都Riemann可积。
 - (4) 若无穷积分 $\int_0^{+\infty} f(x) dx$ 绝对收敛,则 |f(x)| 在 $[0,+\infty)$ 有界。《
 - (5) 若级数 $\sum_{n=1}^{+\infty} a_n$ 收敛,则 $\sum_{n=1}^{+\infty} a_n^2$ 收敛。
 - (6) 若级数 $\sum_{n=1}^{+\infty} a_n$ 收敛,则级数 $\sum_{n=1}^{+\infty} \frac{a_n \sin n}{n}$ 收敛。 χ 大城 χ
 - (7) 若级数 $\sum_{n=1}^{+\infty} a_n$ 收敛,则级数 $\sum_{n=1}^{+\infty} \frac{a_n}{n}$ 收敛。 \checkmark
- 2. (本题16分) 求下列极限:

(1)
$$\lim_{x \to 0} \frac{\int_{x}^{\sin x} e^{t^{2}} dt}{x^{3}}$$
, $= -\frac{1}{1}$ (2) $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \ln\left(1 + \frac{k}{n}\right)$.

3. (本题10分) 求平面曲线 $x = t - \sin t$, $y = 1 - \cos t$, $0 \le t \le 2\pi$ 的弧长。

4. **(本题15分)** 令 $f(x) = \sin\left(x\left[\frac{x}{2\pi}\right]\right)$, 这里 [·] 为取整函数。 (2) 证明: 无穷积分 $\int_{0}^{+\infty} f(x^2) dx$ 收敛。 $\sum_{n=1}^{+\infty} \frac{n^n x^n}{n!}, \quad x \in (-\infty, +\infty)$ $\sum_{n=1}^{+\infty} \frac{n^n x^n}{n!}, \quad x \in (-\infty, +\infty)$ 6. (本题10分) 讨论级数 的敛散性与绝对敛散性。 7. **(本题15分)** 设 $f(x) = \sin x$, 任取 $a_0 \in (0, \pi/2)$, 令 $a_{n+1} = f(a_n)$, $b_n = f'(a_n)$, $n \ge 0$. (2) 证明: 无穷乘积 $\prod_{n=1}^{+\infty} b_n$ 发散到0; $\prod_{n=1}^{+\infty} b_n$ 为 $\prod_{n=1}^{+$ (1) 证明: 数项级数 $\sum_{n=1}^{+\infty} a_n^2$ 与无穷乘积 $\prod_{n=1}^{+\infty} b_n$ 同时敛散;

=
$$n \ln \frac{1 - 65 \cos \theta}{1 + 6 \cos \theta} = \frac{3}{2}$$