Problem 0003

Problem

The prime factors of 13195 are 5, 7, 13 and 29.

What is the largest prime factor of the number 600851475143?

Solution

Variables and Functions

- Let n be the integer that should ultimately be factorised into the primes that compose it.
- P(o) returns an array of prime numbers using the Sieve of Eratosthenes method repeatedly casting out multiples of primes.
 - Let o be the exclusive upper limit for values of terms of P(o).
 - Let f be an array of boolean values which acts as the "sieve".
 - Let i be an integer which represents the position within the sieve.
 - Let j be an integer which is used to represent positions in the sieve which are multiples of i.
- F(m, s) factorises an integer.
 - Let *m* be the integer to be factorised.
 - Let s be an array of prime numbers, where \sqrt{n} is the inclusive upper limit for values of terms of s.
 - Let p be a term in s.

Approach

Initially, n is defined as the number to be ultimately factorised. n is passed, along with $P(\sqrt{n})$ into the *recursive* function F(m,s).

F(m,s) iterates through terms of s. If the remainder from the division of $\frac{m}{p}$ (where p is the current term of s) is 0, p is a *prime* factor of m (and by extension n). p is returned along with the output of $F\left(\frac{m}{p},s\right)$.

This function repeatedly divides by prime numbers until m is a prime number, which is known when either m is equal to p, or when $m \mod p$ has not output 0 for any term of s. At this point, m itself is returned, and the array of prime factors is passed up the function call stack to the top level.

Code

The code to produce this solution is in solution.py.

Output

For n = 13195, the program outputs [5, 7, 13, 29], as displayed in the problem text.

For n=600851475143, the program outputs [71,839,1471,6857], with the greatest prime factor being 6857. This is correct.