Database Project

Vîlceanu Diana-Maria

Contents

Description	2
Database schema	3
Constructing the database	4
Inserting data into tables	11
The SELECT commands	23

Description

I had always been passionate about arts and recently I turned my passion to graphic design. In the past few years, graphic design grew a lot and many companies hired designers to help them with their branding and image. Graphic design departments were created not so long ago and many niches have started to appear, such as UX/UI design.

Giving my passion about this field, I decided to construct a database based on a graphic design department schema, which is represented by the following tables:

The G_D_EMPLOYEES table, which shows us the information about the employees hired in the department, such as the employee id, the last name, first name and the salary.

The NICHES table, which contains information about the niches of graphic design an employee has chosen. Here, we find the niche id, the niche name and the grades.

The OFFICES table, which reffers to the locations of the offices our employees work in. The information consists of the office id, the office phone number and the locations.

The G_D_JOBS_HISTORY table, which shows information about the history the employees had. We find there the history id, the start date, the end date and the reason they left their previous job.

The G_D_ORDERS table, which reffers to the orders. It contains information such as order id, order date and the total value of the order.

Last but not least, the G_D_CUSTOMERS table, which shows information about customers, such as customer CNP, customer phone number, first name and last name.

Links to the tables:

- 1. NICHES to G_D_EMPLOYEES one to many link A niche contain many employees.
- 2. OFFICES to G_D_EMPLOYEES one to many link An office contain many employees.
- 3. G_D_EMPLOYEES to G_D_JOBS_HISTORY one to many link An employee can have many jobs in his/her history.
- 4. G_D_EMPLOYEES to G_D_ORDERS one to many link An employee can deal with many orders.
- 5. NICHES to G_D_JOBS_HISTORY one to many link A niche can have many jobs from history.
- 6. G_D_CUSTOMERS to G_D_ORDERS one to many link A customer can place many orders.

On the next page, you can find the schema of the database I created:

Database schema

Constructing the database

At first, I created the tables without any constraint, because I decided to add them with the command ALTER TABLE to have a clear vision about linking my tables. Below there are the commands I used for this part:

```
CREATE TABLE G_D_EMPLOYEES(
EMPLOYEE_ID NUMBER(10),
LAST_NAME VARCHAR(255),
FIRST_NAME VARCHAR(255),
SALARY NUMBER(10)
);
CREATE TABLE NICHES(
NICHE_ID NUMBER(10),
NICHE_NAME VARCHAR(255),
GRADES NUMBER(10)
);
CREATE TABLE OFFICES(
OFFICE_ID NUMBER(10),
OFFICE_PHONE_NUMBER NUMBER(15),
LOCATIONS VARCHAR(255)
);
CREATE TABLE G_D_JOBS_HISTORY(
HISTORY_ID NUMBER(10),
START_DATE DATE,
END_DATE DATE,
REASON VARCHAR(255)
);
CREATE TABLE G_D_ORDERS(
ORDER_ID NUMBER(10),
```

```
ORDER_DATE DATE,
TOTAL_VALUE NUMBER(10)
);
CREATE TABLE G_D_CUSTOMERS(
CNP NUMBER(20),
CUSTOMER_PHONE_NUMBER NUMBER(15),
FIRST_NAME VARCHAR(255),
LAST_NAME VARCHAR(255)
);
       Worksheet Query Builder
            CREATE TABLE G_D_JOBS_HISTORY(
HISTORY_ID NUMBER(10),
START_DATE DATE,
             END DATE DATE.
             REASON VARCHAR (255)
           © CREATE TABLE G_D_ORDERS(
ORDER_ID NUMBER(10),
ORDER_DATE DATE,
TOTAL_VALUE NUMBER(10)
            CREATE TABLE G_D_CUSTOMERS(CNP NUMBER(20),
             CUSTOMER PHONE NUMBER NUMBER (15),
             FIRST NAME VARCHAR (255),
LAST NAME VARCHAR (255)
       Script Output ×
        📌 🥢 🔡 🚇 📦 | Task completed in 0.059 seconds
       Table G_D_JOBS_HISTORY created.
       Table G D ORDERS created.
       Table G_D_CUSTOMERS created.
        Worksheet Query Builder
            ECREATE TABLE G_D_JOBS_HISTORY(
HISTORY_ID NUMBER(10),
START_DATE DATE,
END_DATE DATE,
              REASON VARCHAR (255)
            G CREATE TABLE G_D_ORDERS (
             ORDER_ID NUMBER(10),
ORDER_DATE DATE,
TOTAL_VALUE NUMBER(10)
            © CREATE TABLE G_D_CUSTOMERS(
CNP NUMBER(20),
CUSTOMER_PHONE_NUMBER NUMBER(15),
              FIRST_NAME VARCHAR(255),
LAST_NAME VARCHAR(255)
        Script Output X
        🎤 🥢 🔒 💂 | Task completed in 0.059 seconds
        Table G_D_JOBS_HISTORY created.
        Table G_D_ORDERS created.
        Table G D CUSTOMERS created.
```

The second step for me was creating the primary keys for my tables. Here is how I did it:

ALTER TABLE G_D_EMPLOYEES

ADD CONSTRAINT PK PRIMARY KEY (EMPLOYEE_ID, LAST_NAME);

ALTER TABLE G_D_EMPLOYEES

DROP CONSTRAINT PK;

ALTER TABLE G_D_EMPLOYEES

ADD CONSTRAINT PK PRIMARY KEY (EMPLOYEE_ID);

ALTER TABLE G_D_EMPLOYEES

ADD CONSTRAINT UN_NAME UNIQUE (LAST_NAME, FIRST_NAME);

ALTER TABLE NICHES

ADD CONSTRAINT PK_NICHE_ID PRIMARY KEY (NICHE_ID);

ALTER TABLE OFFICES

ADD CONSTRAINT PK_ PRIMARY KEY (OFFICE_ID);

ALTER TABLE G_D_JOBS_HISTORY

ADD CONSTRAINT PK_HISTORY_ID PRIMARY KEY (HISTORY_ID);

ALTER TABLE G_D_ORDERS

ADD CONSTRAINT PK_ORDER_ID PRIMARY KEY (ORDER_ID);

ALTER TABLE G_D_CUSTOMERS

ADD CONSTRAINT PK_CNP PRIMARY KEY (CNP);

Note: For the primary key from the G_D_EMPLOYEES table I realised later that I need to change it to EMPLOYEE_ID in order to link the tables, so I altered it with the DROP CONSTRAINT command.

Then, I added the foreign keys:

ALTER TABLE G_D_EMPLOYEES

ADD OFFICE_ID NUMBER(10);

ALTER TABLE G_D_EMPLOYEES

ADD CONSTRAINT FK_OFFICE_ID FOREIGN KEY (OFFICE_ID) REFERENCES OFFICES(OFFICE_ID);

ALTER TABLE G_D_EMPLOYEES

ADD NICHE_ID NUMBER(10);

ALTER TABLE G_D_EMPLOYEES

ADD CONSTRAINT FK_NICHE_ID FOREIGN KEY (NICHE_ID) REFERENCES NICHES(NICHE_ID);

ALTER TABLE G_D_JOBS_HISTORY

ADD NICHE_ID NUMBER(10);

ALTER TABLE G_D_JOBS_HISTORY

ADD CONSTRAINT FK_2NICHE_ID FOREIGN KEY (NICHE_ID) REFERENCES NICHES(NICHE_ID);

ALTER TABLE G D JOBS HISTORY

ADD LAST_NAME VARCHAR(255);

ALTER TABLE G_D_JOBS_HISTORY

ADD FIRST_NAME VARCHAR(255);

ALTER TABLE G_D_JOBS_HISTORY

ADD CONSTRAINT FK_NAME_ID FOREIGN KEY (LAST_NAME, FIRST_NAME) REFERENCES G_D_EMPLOYEES(LAST_NAME, FIRST_NAME);

ALTER TABLE G_D_ORDERS

ADD CNP NUMBER(20);

ALTER TABLE G_D_ORDERS

ADD LAST_NAME VARCHAR(255);

ALTER TABLE G_D_ORDERS

ADD FIRST_NAME VARCHAR(255);

ALTER TABLE G_D_ORDERS

ADD CONSTRAINT FK_2NAME_ID FOREIGN KEY (LAST_NAME, FIRST_NAME) REFERENCES G_D_EMPLOYEES(LAST_NAME, FIRST_NAME);

ALTER TABLE G_D_ORDERS

ADD CONSTRAINT FK_CNP FOREIGN KEY (CNP) REFERENCES G_D_CUSTOMERS(CNP);

Note: I made then some modifications to my tables because I realised I should keep EMPLOYEE_ID as a foreign key to make it easier to introduce data. Here they are:

ALTER TABLE G_D_JOBS_HISTORY

DROP CONSTRAINT FK NAME ID:

ALTER TABLE G_D_JOBS_HISTORY

DROP COLUMN FIRST_NAME;

ALTER TABLE G_D_JOBS_HISTORY

DROP COLUMN LAST_NAME;

ALTER TABLE G_D_ORDERS

DROP CONSTRAINT FK_2NAME_ID;

ALTER TABLE G_D_ORDERS

DROP COLUMN FIRST_NAME;

ALTER TABLE G_D_ORDERS

DROP COLUMN LAST_NAME;

ALTER TABLE G_D_JOBS_HISTORY

ADD EMPLOYEE_ID NUMBER(10);

ALTER TABLE G_D_ORDERS

ADD EMPLOYEE_ID NUMBER(10);

ALTER TABLE G_D_JOBS_HISTORY

ADD CONSTRAINT FK_EMPLOYEE_ID FOREIGN KEY (EMPLOYEE_ID) REFERENCES G_D_EMPLOYEES(EMPLOYEE_ID);

ALTER TABLE G_D_ORDERS

ADD CONSTRAINT FK_2EMPLOYEE_ID FOREIGN KEY (EMPLOYEE_ID) REFERENCES G_D_EMPLOYEES(EMPLOYEE_ID);

Now that my tables were successfully created and altered, I moved on to the next step, inserting data.

Inserting data into tables

I started with the G_D_EMPLOYEES table. Below you can find how I introduced data in it:

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY) VALUES (1, 'Smith', 'John', 50000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY)
VALUES (2, 'Johnson', 'Jane', 55000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY) VALUES (3, 'Williams', 'Bob', 60000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY) VALUES (4, 'Jones', 'Sophie', 65000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY) VALUES (5, 'Brown', 'Michael', 70000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY) VALUES (6, 'Davis', 'Emma', 75000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY) VALUES (7, 'Miller', 'William', 80000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY) VALUES (8, 'Garcia', 'Emily', 85000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY)
VALUES (9, 'Rodriguez', 'Jacob', 90000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY)

VALUES (10, 'Martinez', 'Isabella', 95000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY) VALUES (11, 'Anderson', 'Ethan', 100000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY) VALUES (12, 'Thomas', 'Ava', 105000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY) VALUES (13, 'Jackson', 'Madison', 110000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY) VALUES (14, 'White', 'Elizabeth', 115000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY) VALUES (15, 'Harris', 'Sofia', 120000);

```
INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY)
VALUES (1, 'Smith', 'John', 50000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY)
VALUES (2, 'Johnson', 'Jane', 55000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY)
VALUES (3, 'Williams', 'Bob', 60000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY)
VALUES (4, 'Jones', 'Sophie', 65000);

INSERT INTO G_D_EMPLOYEES (EMPLOYEE_ID, LAST_NAME, FIRST_NAME, SALARY)
VALUES (5, 'Brown', 'Michael', 70000);
```

Here is how the tables look after inserting data:

	₩ EMPLO	\$ LAST_NAME	FIRST_NA	SALARY	♦ OFFICE_ID	♦ NICHE_ID
1	1	Smith	John	50000	(null)	(null)
2	2	Johnson	Jane	55000	(null)	(null)
3	3	Williams	Bob	60000	(null)	(null)
4	4	Jones	Sophie	65000	(null)	(null)
5	5	Brown	Michael	70000	(null)	(null)
6	6	Davis	Emma	75000	(null)	(null)
7	7	Miller	William	80000	(null)	(null)
8	8	Garcia	Emily	85000	(null)	(null)
9	9	Rodriguez	Jacob	90000	(null)	(null)
10	10	Martinez	Isabella	95000	(null)	(null)
11	11	Anderson	Ethan	100000	(null)	(null)
12	12	Thomas	Ava	105000	(null)	(null)
13	13	Jackson	Madison	110000	(null)	(null)
14	14	White	Elizabeth	115000	(null)	(null)
15	15	Harris	Sofia	120000	(null)	(null)

Then, I continued with the NICHES table. Below is the code I used:
INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)
VALUES (1, 'Branding', 9);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (2, 'Digital marketing', 8);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (3, 'Landing page web design', 7);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (4, 'UX/UI design', 8);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (5, 'Editorial design', 9);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (6, 'Illustration', 10);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)
VALUES (7, 'Type design', 8);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)
VALUES (8, '3D modelling', 7);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (9, 'Creative Arts', 8);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (10, 'Animation', 9);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)
VALUES (11, 'Identity', 10);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (12, 'Product/Package Design', 7);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)
VALUES (13, 'Interfaces', 8);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (14, 'Corporate Designs', 9);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)
VALUES (15, 'Multimedia', 10);

```
INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (1, 'Branding', 9);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (2, 'Digital marketing', 8);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (3, 'Landing page web design', 7);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (4, 'UX/UI design', 8);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (5, 'Editorial design', 9);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (6, 'Illustration', 10);

INSERT INTO NICHES (NICHE_ID, NICHE_NAME, GRADES)

VALUES (6, 'Illustration', 10);
```

The table then looked like this:

	NICHE_ID	♦ NICHE_NAME	
1	1	Branding	9
2	2	Digital marketing	8
3	3	Landing page web design	7
4	4	UX/UI design	8
5	5	Editorial design	9
6	6	Illustration	10
7	7	Type design	8
8	8	3D modelling	7
9	9	Creative Arts	8
10	10	Animation	9
11	11	Identity	10
12	12	Product/Package Design	7
13	13	Interfaces	8
14	14	Corporate Designs	9
15	15	Multimedia	10

The next table where I inserted data was the OFFICES table:

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (1, '+1234567890', 'New York');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (2, '+0987654321', 'Los Angeles');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (3, '+1122334455', 'Chicago');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (4, '+6677889900', 'Houston');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (5, '+5544332211', 'Phoenix');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (6, '+4433221100', 'Philadelphia');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (7, '+3322110000', 'San Antonio');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (8, '+2211000000', 'San Diego');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (9, '+1100000000', 'Dallas');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (10, '+0000000000', 'San Jose');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)
VALUES (11, '+1111111111', 'Austin');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (12, '+22222222222', 'Jacksonville');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)
VALUES (13, '+3333333333', 'Fort Worth');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)
VALUES (14, '+44444444444', 'Columbus');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (15, '+55555555555', 'San Francisco');

```
Worksheet Query Builder

VALUES (15, 'Multimedia', 10);

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (1, '+1234567890', 'New York');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (2, '+0987654321', 'Los Angeles');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (3, '+1122334455', 'Chicago');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (4, '+6677889900', 'Houston');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (5, '+5544332211', 'Phoenix');

INSERT INTO OFFICES (OFFICE_ID, OFFICE_PHONE_NUMBER, LOCATIONS)

VALUES (5, '+5544332211', 'Phoenix');
```

The table then looked like this:

	♦ OFFICE_ID	OFFICE_PHONE_NUMBER	
1	1	1234567890	New York
2	2	987654321	Los Angeles
3	3	1122334455	Chicago
4	4	6677889900	Houston
5	5	5544332211	Phoenix
6	6	4433221100	Philadelphia
7	7	3322110000	San Antonio
8	8	2211000000	San Diego
9	9	1100000000	Dallas
10	10	0	San Jose
11	11	1111111111	Austin
12	12	222222222	Jacksonville
13	13	3333333333	Fort Worth
14	14	444444444	Columbus
15	15	555555555	San Francisco

The next table I inserted data into was the G_D_JOBS_HISTORY table:

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON)

VALUES (1, DATE '2022-01-01', DATE '2022-12-30', 'Retired');

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON)
VALUES (2, DATE '2021-01-01', DATE '2021-12-31', 'Job completed');

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON) VALUES (3, DATE '2020-01-01', DATE '2020-12-31', 'Job changed');

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON)
VALUES (4, DATE '2019-01-01', DATE '2019-12-31', 'Job completed');

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON) VALUES (5, DATE '2018-01-01', DATE '2018-12-31', 'Job changed');

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON) VALUES (6, DATE '2017-01-01', DATE '2017-12-31', 'Job completed');

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON) VALUES (7,DATE '2016-01-01',DATE '2016-12-31', 'Retired');

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON) VALUES (8, DATE '2014-01-01', DATE '2014-12-31', 'Job changed');

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON) VALUES (9, DATE '2013-01-01', DATE '2013-12-31', 'Job completed');

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON) VALUES (10, DATE '2010-01-01',DATE '2010-12-31', 'Job completed');

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON) VALUES (11, DATE '2009-01-01', DATE '2009-12-31', 'Retired');

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON) VALUES (12, DATE '2010-03-01', DATE '2020-12-31', 'Job changed');

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON) VALUES (13, DATE '2007-01-01', DATE '2007-12-31', 'Job completed');

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON) VALUES (14, DATE '2006-01-01', DATE '2006-12-31', 'Job changed');

INSERT INTO G_D_JOBS_HISTORY (HISTORY_ID, START_DATE, END_DATE, REASON) VALUES (15, DATE '2005-01-01', DATE '2005-12-31', 'Job completed');

The table after I inserted data in it, looks like this:

	♦ HISTORY_ID	START_DATE	♦ END_DATE	REASON	♦ NICHE_ID	
1	1	01-JAN-22	30-DEC-22	Retired	(null)	(null)
2	2	01-JAN-21	31-DEC-21	Job completed	(null)	(null)
3	3	01-JAN-20	31-DEC-20	Job changed	(null)	(null)
4	4	01-JAN-19	31-DEC-19	Job completed	(null)	(null)
5	5	01-JAN-18	31-DEC-18	Job changed	(null)	(null)
6	6	01-JAN-17	31-DEC-17	Job completed	(null)	(null)
7	7	01-JAN-16	31-DEC-16	Retired	(null)	(null)
8	8	01-JAN-14	31-DEC-14	Job changed	(null)	(null)
9	9	01-JAN-13	31-DEC-13	Job completed	(null)	(null)
10	10	01-JAN-10	31-DEC-10	Job completed	(null)	(null)
11	11	01-JAN-09	31-DEC-09	Retired	(null)	(null)
12	12	01-MAR-10	31-DEC-20	Job changed	(null)	(null)
13	13	01-JAN-07	31-DEC-07	Job completed	(null)	(null)
14	14	01-JAN-06	31-DEC-06	Job changed	(null)	(null)
15	15	01-JAN-05	31-DEC-05	Job completed	(null)	(null)

After that, I inserted data into the G_D_ORDERS table:

INSERT INTO G_D_ORDERS (ORDER_ID, ORDER_DATE, TOTAL_VALUE)

VALUES (1, DATE '2022-03-01', 100);

INSERT INTO G_D_ORDERS (ORDER_ID, ORDER_DATE, TOTAL_VALUE)
VALUES (2, DATE '2022-10-21', 240);

INSERT INTO G_D_ORDERS (ORDER_ID, ORDER_DATE, TOTAL_VALUE)
VALUES (3, DATE '2022-07-30', 73);

INSERT INTO G_D_ORDERS (ORDER_ID, ORDER_DATE, TOTAL_VALUE)
VALUES (4, DATE '2021-02-01', 560);

INSERT INTO G_D_ORDERS (ORDER_ID, ORDER_DATE, TOTAL_VALUE)
VALUES (5, DATE '2022-03-09', 760);

INSERT INTO G_D_ORDERS (ORDER_ID, ORDER_DATE, TOTAL_VALUE)
VALUES (6, DATE '2022-04-01', 100);

INSERT INTO G_D_ORDERS (ORDER_ID, ORDER_DATE, TOTAL_VALUE)
VALUES (7, DATE '2022-10-27', 267);

INSERT INTO G_D_ORDERS (ORDER_ID, ORDER_DATE, TOTAL_VALUE)
VALUES (8, DATE '2022-07-15', 89);

INSERT INTO G_D_ORDERS (ORDER_ID, ORDER_DATE, TOTAL_VALUE)
VALUES (9, DATE '2021-02-06', 97);

INSERT INTO G_D_ORDERS (ORDER_ID, ORDER_DATE, TOTAL_VALUE)
VALUES (10, DATE '2022-09-09', 547);

The table looked like this:

	♦ ORDER_ID	♦ ORDER_DATE	↑ TOTAL_VALUE	CNP	
1	1	01-MAR-22	100	(null)	(null)
2	2	21-OCT-22	240	(null)	(null)
3	3	30-JUL-22	73	(null)	(null)
4	4	01-FEB-21	560	(null)	(null)
5	5	09-MAR-22	760	(null)	(null)
6	6	01-APR-22	100	(null)	(null)
7	7	27-OCT-22	267	(null)	(null)
8	8	15-JUL-22	89	(null)	(null)
9	9	06-FEB-21	97	(null)	(null)
10	10	09-SEP-22	547	(null)	(null)

At last, I inserted data into the G_D_CUSTOMERS table:

INSERT INTO G_D_CUSTOMERS (CNP, CUSTOMER_PHONE_NUMBER, FIRST_NAME, LAST_NAME) VALUES (6001012227376, 12025686179, 'John', 'Doe');

INSERT INTO G_D_CUSTOMERS (CNP, CUSTOMER_PHONE_NUMBER, FIRST_NAME, LAST_NAME) VALUES (5031227335939,15056441378, 'Jane', 'Smith');

INSERT INTO G_D_CUSTOMERS (CNP, CUSTOMER_PHONE_NUMBER, FIRST_NAME, LAST_NAME) VALUES (2910913267386, 12243112230, 'Bob', 'Johnson');

INSERT INTO G_D_CUSTOMERS (CNP, CUSTOMER_PHONE_NUMBER, FIRST_NAME, LAST_NAME) VALUES (6030925303231, 13209917679, 'Alice', 'Williams');

INSERT INTO G_D_CUSTOMERS (CNP, CUSTOMER_PHONE_NUMBER, FIRST_NAME, LAST_NAME) VALUES (6040525112942, 12035319681, 'Charlie', 'Jones');

INSERT INTO G_D_CUSTOMERS (CNP, CUSTOMER_PHONE_NUMBER, FIRST_NAME, LAST_NAME) VALUES (2890730422541, 15055004007, 'David', 'Brown');

INSERT INTO G_D_CUSTOMERS (CNP, CUSTOMER_PHONE_NUMBER, FIRST_NAME, LAST_NAME) VALUES (2890904014509,12195584968, 'Amy', 'Miller');

INSERT INTO G_D_CUSTOMERS (CNP, CUSTOMER_PHONE_NUMBER, FIRST_NAME, LAST_NAME) VALUES (1890912344377, 13808110551, 'James', 'Moore');

INSERT INTO G_D_CUSTOMERS (CNP, CUSTOMER_PHONE_NUMBER, FIRST_NAME, LAST_NAME) VALUES (2940104187581, 15055561044, 'Rachel', 'Taylor');

INSERT INTO G_D_CUSTOMERS (CNP, CUSTOMER_PHONE_NUMBER, FIRST_NAME, LAST_NAME) VALUES (2930107094845, 15056468477, 'Emily', 'Anderson');

The table then looked like this:

I didn't forget to insert my name and my group in a table, as a part of the mandatory requirements. Here is the proof:

The SELECT commands

1. Display the employees with the salary smaller than 70000.

SELECT * FROM G_D_EMPLOYEES

WHERE SALARY<70000;

2. Display the order with the order id 5.

SELECT * FROM G_D_ORDERS

WHERE ORDER_ID=5;

3. Select LAST_NAME, FIRST_NAME, NICHE_NAME, and TOTAL_VALUE from three tables where the TOTAL_VALUE is less or equal to 1000

Note: For this command I had to update some rows from the G_D_EMPLOYEES table to match them with the NICHES table. Here is the code I used:

UPDATE G_D_EMPLOYEES

SET NICHE_ID=1

WHERE EMPLOYEE_ID=1;

UPDATE G_D_EMPLOYEES

SET NICHE_ID=2

WHERE EMPLOYEE_ID=2;

UPDATE G_D_EMPLOYEES

SET NICHE_ID=3

WHERE EMPLOYEE_ID=3;

UPDATE G_D_EMPLOYEES

SET NICHE_ID=5

WHERE EMPLOYEE_ID=4;

UPDATE G_D_EMPLOYEES

SET NICHE_ID=3

WHERE EMPLOYEE_ID=5;

UPDATE G_D_EMPLOYEES

SET NICHE_ID=2

WHERE EMPLOYEE_ID=6;

UPDATE G_D_EMPLOYEES

SET NICHE_ID=1

WHERE EMPLOYEE_ID=7;

UPDATE G_D_EMPLOYEES

SET NICHE_ID=2

WHERE EMPLOYEE_ID=8;

UPDATE G_D_EMPLOYEES

SET NICHE_ID=10

WHERE EMPLOYEE_ID=9;

UPDATE G_D_EMPLOYEES

SET NICHE_ID=1

WHERE EMPLOYEE_ID=10;

UPDATE G_D_EMPLOYEES

SET NICHE_ID=3

WHERE EMPLOYEE_ID=11;

UPDATE G_D_EMPLOYEES

SET NICHE_ID=2

WHERE EMPLOYEE_ID=13;

4. Display the sum of the salaries that are bigger than 50000 grouping them by niches. SELECT NICHE_NAME, SUM(SALARY) FROM G_D_EMPLOYEES INNER JOIN NICHES ON G_D_EMPLOYEES.NICHE_ID = NICHES.NICHE_ID WHERE SALARY > 50000 GROUP BY NICHE NAME:

5. Display the order date, current time and order month of orders placed in 2022, in the specific format.

SELECT TO_CHAR(ORDER_DATE, 'MM/DD/YYYY') AS ORDER_DATE,

TO_CHAR(SYSDATE, 'HH24:MI:SS') AS CURRENT_TIME,

EXTRACT(MONTH FROM ORDER_DATE) AS ORDER_MONTH

FROM G D ORDERS

WHERE EXTRACT(YEAR FROM ORDER_DATE) = 2022;

6. Display the order id, the order date and the total value of the orders by adding a new column which distributes each order by sizes.

```
SELECT
order_id,
order_date,
total_value,
CASE
WHEN total_value BETWEEN 10 AND 100 THEN 'SMALL ORDER'
WHEN total_value BETWEEN 101 AND 500 THEN 'MEDIUM ORDER'
ELSE 'LARGE ORDER'
END ORDER_SIZE
FROM G_D_ORDERS;
```


7. Display the employee types, knowing that a junior has a salary lower than 65000, a mid has a salary greater than 65000 and lower than 100000 and a senior has a salary greater than 100000.

SELECT

```
employee_id,

last_name,

first_name,

salary,

decode(

case

when salary < 65000 then 1
```

```
when salary >= 65000 and salary <= 100000 then 2
when salary > 100000 then 3
end,
1,'JUNIOR', 2,'MID', 3, 'SENIOR') as EMPLOYEE_TYPE
FROM
g_d_employees
WHERE
```

salary < 50000 OR (salary >= 50000 AND salary <= 100000) OR salary > 100000;

8. Display the order id, order date and total value from G_D_ORDERS where total value hs any value and the date is bigger and lower than the January 1st 2022.

SELECT order_id, order_date, total_value

FROM G_D_ORDERS

WHERE total_value = ANY (SELECT total_value FROM G_D_ORDERS WHERE order_date >= date '2022-01-01')

UNION

SELECT order_id, order_date, total_value

FROM G_D_ORDERS

WHERE total_value = ANY (SELECT total_value FROM G_D_ORDERS WHERE order_date < date '2022-01-01');

9. Create a view with all the employees info and display it.

CREATE VIEW vw_employee_info AS

SELECT employee_id, last_name, first_name, salary

FROM g_d_employees;

SELECT * FROM vw_employee_info;

10. Create an index on the employees first names and drop it.

CREATE INDEX idx_employee_first_name ON g_d_employees(first_name);

DROP INDEX idx_employee_first_name;

11. Create a sequence that generates an unique integer and get the next value of it.

CREATE SEQUENCE emp_id_seq START WITH 1 INCREMENT BY 1;

SELECT emp_id_seq.NEXTVAL FROM DUAL;

12. Display the history id, the start and end date of the employees that has changed their job.

SELECT

history_id,

to_char(start_date, 'MM/DD/YYYY') as start_date,

```
to_char(end_date, 'MM/DD/YYYY') as end_date,
reason

FROM
G_D_JOBS_HISTORY

WHERE
reason = 'Job changed';
```


13. Display the history_id, start date, end date and reason for the employees that ended their job before the system date.

```
SELECT
```

history_id, start_date,

end_date,

reason

FROM

G_D_JOBS_HISTORY

WHERE

end_date <= sysdate;

niche

id 2.

SELECT

HISTORY ID

FROM

G D JOBS HISTORY

WHERE

EXTRACT(MONTH FROM start_date) = 1

INTERSECT

SELECT

EMPLOYEE_ID

FROM

G_D_EMPLOYEES

WHERE

NICHE_ID= 2;

```
Worksheet Query Builder
      -Display the id of the employees that started their previous job in January and have the niche id 2
   SELECT
        HISTORY_ID
     FROM
        G_D_JOBS_HISTORY
     WHERE
       EXTRACT (MONTH FROM start_date) = 1
     INTERSECT
    SELECT
       EMPLOYEE_ID
     FROM
        G_D_EMPLOYEES
     WHERE
Script Output × Query Result ×
📌 📇 🔞 🗽 SQL | All Rows Fetched: 4 in 0.013 seconds
    ♦ HISTORY_ID
   2
            13
```

15. Display the level, last_name, first_name, manager_id, and path of the employees who have no manager and it will connect the employees to their managers using the employee_id and manager_id columns.

SFL FCT

LEVEL,

last_name,

first_name.

manager_id,

SYS_CONNECT_BY_PATH(last_name, '/') as path

FROM

G_D_EMPLOYEES

START WITH manager_id is null

CONNECT BY PRIOR employee_id = manager_id;

