

TRƯỜNG ĐẠI HỌC NÔNG LÂM TP. HỒ CHÍ MINH KHOA MÔI TRƯỜNG & TÀI NGUYÊN | BỘ MÔN GIS & TÀI NGUYÊN

Phân chia đơn vị thủy văn (QSWAT)

Chuyên đề SWAT

Nội dung thực hành

- ◆ Biên tập dữ liệu lớp phủ đất cho SWAT
 - ♦ Vai trò, yêu cầu của dữ liệu lớp phủ đất
 - ◆ Nguồn tải lớp phủ đất miễn phí
 - ◆ Cắt lớp phủ đất theo vùng quan tâm
 - ♦ Chuyển lớp phủ đất sang hệ tọa độ UTM
- ◆ Biên tập dữ liệu thổ nhưỡng cho SWAT
 - ♦ Vai trò, yêu cầu của dữ liệu thổ nhưỡng
 - ♦ Nguồn tải thổ nhưỡng miễn phí
 - ♦ Cắt thổ nhưỡng theo vùng quan tâm
 - ♦ Chuyển thổ nhưỡng sang hệ tọa độ UTM
- Phân chia lưu vực dựa trên mạng lưới dòng chảy, tiểu lưu vực, cửa xả cho trước

Phân chia HRU

- ♦ Nhập lớp phủ đất, thổ nhưỡng, độ dốc
- ♦ Nhập bảng tra lớp phủ đất, thổ nhưỡng
- ◆ Tạo HRU
- ♦ Chia nhỏ lớp phủ đất (nếu cần)
- ♦ Miễn trừ lớp phủ đất (nếu cần)
- ◆ Xem kết quả
 - ◆ Phân bố độ cao
 - ♦ Phân bố lớp phủ đất, thổ nhưỡng, độ dốc
 - **♦ HRU**

Biên tập dữ liệu lớp phủ đất cho SWAT

- ◆ Vai trò của dữ liệu lớp phủ đất
 - ♦ Phân chia đơn vị thủy văn (Hydrologic Response Unit- HRU)

Sử dụng đất/lớp phủ đất, Tiểu lưu vực HRU Dòng chảy thổ nhưỡng, độ dốc Sub 1 Tributary 1 Lớp phủ đất ảnh hưởng đến Forest tính thấm của cảnh quan Sub 2 Tributary 2 5% cũng như mức độ bốc thoát Luu vực Feralit hơi nước, thay đổi theo các Sub 3 loại thảm thực vật và cách quản lý khác nhau. Sub 4 Receiving Water Sub 5 Cửa xả Chuyên đề SWAT Copyright © 2023 | nguyenduyliem @hcmuaf.edu.vn

Sử dụng đất/lớp phủ đất

- ◆ Sử dụng đất (land use)
 - ◆chức năng kinh tế-xã hội (mục đích sử dụng) của đất đai
 - giải trí,
 - giáo dục,
 - ◆bảo tồn,...

Rừng phòng hộ

Rừng đặc dụng

Rừng sản xuất

- ◆ Lớp phủ đất (land cover)
 - ◆trạng thái vật lý của bề mặt đất, có thể quan sát được.
 - thảm thực vật,
 - công trình xây dựng,
 - mặt nước,...

Rừng

Liên kết n - n

Thực vật

Đất trống

HRU không tham chiếu không gian trong mô phỏng SWAT

Cho output là bốc thoát hơi trên HRU 1, 2, 3, 4 lần lượt là 10, 15, 5, 20 mm. Kích thước pixel là 10 m. Tính bốc thoát hơi trên tiểu lưu vực?

Diện tích pixel (A)= 10 x 10= 100 m² Diện tích tiểu lưu vực= 20A= 2000 m²

Bốc thoát hơi trên tiểu lưu vực= [(10 x 100 x 6) + (15 x 100 x 5) + (5 x 100 x 8) + (20 x 100 x 1)] / 2000= 9,75 mm

T

Chuyên đề SWAT

Biên tập dữ liệu lớp phủ đất cho SWAT

- ♦ Yêu cầu dữ liệu lớp phủ đất
 - ♦ Bản đồ: ESRI GRID
 - ◆ Bảng tra lớp phủ đất: CSV

- ◆ Crop (QSWATRef2012.mdb\crop):
 - ◆ Các loại lớp phủ đất (cây trồng, đất nông nghiệp, rừng, đất ngập nước, mặt nước)

- ◆ Croprng (QSWATRef2012.mdb\croprgn):
 - ♦ Các thông số của loại lớp phủ đất
 - ◆CRNAME: tên thông số
 - MIN_, MAX_: giá trị nhỏ nhất, lớn nhất
 - ◆DEF: định nghĩa

roprng				
BJECTID	CRNAME	MIN_	MAX_	DEF
1	CPNM	0	99	Four character code to represent the land cover/plant name.
2	IDC	1	7	Land Cover/Plant Classification.
3	BIO_E	10	90	Biomass/Energy Ratio.
4	HVSTI	0.01	1.25	Harvest index.
5	BLAI	0.5	10	Max leaf area index.
6	FRGRW1	0	1	Fraction of the plant growing season corresponding to the 1st. Point on the optimal leaf area development curve.
7	LAIMX1	0	1	Fraction of the max. leaf area index corresponding to the 1st. point on the optimal leaf area development curve.
8	FRGRW2	0	1	Fraction of the plant growing season corresponding to the 2nd. point on the optimal leaf area development curve.
9	LAIMX2	0		Fraction of the max. leaf area index corresponding to the 2nd. point on the optimal leaf area development curve.
10	DLAI	0.15	1	Fraction of growing season when leaf area starts declining.
11	CHTMX	0.1		Max canopy height.
12	RDMX	0		Max root depth.
13	T_OPT	11		Optimal temp for plant growth.
	T_BASE	0		Min temp plant growth.
	CNYLD	0.0015		Fraction of nitrogen in seed .
	CPYLD	0.0001		Fraction of phosphorus in seed.
	BN1	0.004		Fraction of N in plant at emergence .
	BN2	0.002		Fraction of N in plant at 0.5 maturity.
	BN3	0.001		Fraction of N in plant at maturity.
	BP1	0.0005		Fraction of P at emergence.
	BP2	0.0003		Fraction of P at 0.5 maturity.
	BP3			Fraction of P at maturity.
	WSYF	-0.2		Lower limit of harvest index.
		0.001		
	USLE_C GSI	0.001		Min value of USLE C factor applicable to the land cover/plant.
	VPDFR			Max stomatal conductance (in drough condition).
		1.5		Vapor pressure deficit corresponding to the fraction maximum stomatal conductance defined by FRGMAX
	FRGMAX	0		Fraction of maximum stomatla conductance that is achievable at a high vapor pressure deficit.
	WAVP	0		Rate of decline in radiation use efficiency per unit increase in vapor pressure deficit.
	CO2HI	300		Elevated CO2 atmospheric concentration.
	BIOEHI	5		Biomass-energy ratio corresponding to the 2nd. point on the radiation use efficiency curve.
	RSDCO_PL	0.01		Plant residue decomposition coefficient.
	Cropname	0		Crop description name.
	CN2	25		SCS runoff curve number for moisture condition II.
	OV_N	0.01		Manning's "n" value for overland flow.
	FERTFIELD	0		If checked this crop is going to be fertilized.
	ALAI_MIN	0		Minimum leaf area index for plant during dormant period
	BIO_LEAF	0		Fraction of tree biomass converted to residue during dormancy
	MAT_YRS	0		Number of years required for tree species to reach full development
	BMX_TREES	0		Maximum biomass for a forest
	EXT_COEF	0		Light extinction coefficient
	CN2A	25		SCS runoff curve number for moisture condition II.
	CN2B	25	98	SCS runoff curve number for moisture condition II.
43	CN2C	25	98	SCS runoff curve number for moisture condition II.
44	CN2D	25	98	SCS runoff curve number for moisture condition II.
45	BM_DIEOFF	0	1	Biomass die-off fraction

- ◆ Urban (QSWATRef2012.mdb\urban):
 - ◆ Các loại đất đô thị (đất dân cư, đất thương mại, đất công nghiệp, đất giao thông, đất cơ quan)

- ◆ Urbanrng (QSWATRef2012.mdb\ urbanrng):
 - ♦ Các thông số của loại đất đô thị
 - ◆URBNAME: tên thông số
 - ◆MIN_, MAX_: giá trị nhỏ nhất, lớn nhất
 - ◆DEF: định nghĩa

urbanrng								
OBJECTID	URBNAM	MIN_	MAX_	DEF				
1	URBNAME	0	0	4 Character code for urban land use.				
2	URBFLNM	0	0	Urban Area land use descrption name.				
3	FIMP	0	1	Fraction total impervious area in urban land type				
4	CURBDEN	0	1	Curb length density in urban land use .				
5	URBCOEF	0	1	Wash-off coefficent for removal of constituents form impervious area.				
6	DIRTMX	0	2000	Maximum amount of solids allowed to build up on impervious area.				
7	THALF	0	100	No. of days for amount of solids on impervious area to build up				
8	TNCONC	0	1000	Concentration of total nitrogen in suspended solid load from impervious area.				
9	TPCONC	0	1000	Concentration of total phosphorus in suspended solid load form impervious area .				
10	TNO3CONC	0	50	Concentration of nitrate in suspended solid load from impervious area.				
11	FCIMP	0	1	Fraction dir. connected impervious area.				
12	CN2	25	98	SCS runoff curve number for moisture condition II.				
13	OV_N	0.01	30	Manning's "n" value for overland flow.				
14	CN2A	25	98	SCS runoff curve number for moisture condition II.				
15	CN2B	25	98	SCS runoff curve number for moisture condition II.				
16	CN2C	25	98	SCS runoff curve number for moisture condition II.				
17	CN2D	25	98	SCS runoff curve number for moisture condition II.				

Nguồn tải lớp phủ đất miễn phí

Global Land Cover Characterization (AVHRR)

Landuse Maps

The landuse maps below come in the form of zip files containing 1 or more tiles for each continent. They come in two resolutions, the originals at approximately 400 meters (at the equator) and the resampled at 800 meters. The first are a little more accurate but the they take some time to load and minipulate. You may prefer to use the resampled ones at least while you are learning or experimenting.

Africa (original) 1 / Africa (resampled) 1

Australia/Pacific (original) La / Australia/Pacific (resampled) La

Europe/Asia (original) La / Europe/Asia (resampled)

North America (original) 🖺 / North America (resampled) 🖺

South America (original) 🔓 / South America (resampled) 🖺

Landuse data was constructed from the USGS Global Land Cover Characterization (GLCC) database.

- **◆USGS**
- ♦Độ phân giải 400 m, 800 m (1993)
- https://swat.tamu.edu/data/

Nguồn tải lớp phủ đất miễn phí

- **◆ Land cover portal (Landsat, MODIS)**
- ♦ Độ phân giải 50 m (1987 2018)
- https://landcovermapping.org/en/landcover/

♦ SERVIR Mekong

Nguồn tải lớp phủ đất miễn phí

- **♦ Sentinel-2 Land Cover Explorer**
 - **♦ ESRI**

- ♦Độ phân giải 10 m (2017 2022)
- https://livingatlas.arcgis.com/landcoverexplorer/

Cắt lớp phủ đất theo vùng quan tâm

- ◆ Mở QGIS 2.6.1
- ◆ Raster\ Extraction\ Clipper

- ◆Input file (raster): LopPhuDat1993.tif
- ◆ Output file: ...\LopPhuDat1993_KonPlong.tif
- No data value: -99 (ngoài khoảng giá trị của lớp phủ đất)
- ◆ Clipping mode: Chọn Extent, Vẽ hình chữ nhật bao quanh lưu vực
- **◆ Click OK**

Chuyển lớp phủ đất sang hệ tọa độ UTM

- ◆ Raster\ Projections\ Warp (Reproject)
 - ◆Input file: LopPhuDat1993_KonPlong.tif
 - ◆ Output file: ...\LopPhuDat1993_KonPlong_UTM.tif
 - ◆ Target SRS: EPSG:32648
 - ◆ No data value: -99 (ngoài khoảng giá trị của lớp phủ đất)
 - ◆ Click OK.

Processing Help

Warp (Reproject)

Database

Raster Calculator...

Tạo bảng tra lớp phủ đất

- ◆ Tạo file Excel chứa 2 cột LANDUSE_ID, SWAT_CODE
- ◆ Gán giá trị của lớp phủ đất USGS Land Use/Land Cover System theo mã SWAT

◆ Lưu thành tập tin CSV (*.csv).

USGS Land Use/Land Cover System QSWATRef2012.mdb

Raster > (crop/ urban)

Value	Description				
1	Urban and Built-Up Land				
2	Dryland Cropland and Pasture				
3	Irrigated Cropland and Pasture				
4	Mixed Dryland/Irrigated Cropland and Pasture				
5	Cropland/Grassland Mosaic				
6	Cropland/Woodland Mosaic				
7	Grassland				
8	Shrubland				
9	Mixed Shrubland/Grassland				
10	Savanna				
11	Deciduous Broadleaf Forest				
12	Deciduous Needleleaf Forest				
13	Evergreen Broadleaf Forest				
14	Evergreen Needleleaf Forest				
15	Mixed Forest				
16	Water Bodies				
17	Herbaceous Wetland				
18	Wooded Wetland				
19	Barren or Sparsely Vegetated				
20	Herbaceous Tundra				
21	Wooded Tundra				
22	Mixed Tundra				
23	Bare Ground Tundra				
24	Snow or Ice				

LANDUSE ID SWAT CODE 1 URMD 2 CRDY 3 CRIR 4 MIXC 5 CRGR 6 CRWO 7 GRAS 8 SHRB 9 MIGS 10 SAVA 11 FODB 12 FODN 13 FOEB 14 FOEN 15 FOMI 16 WATR 17 WEHB 18 WEWO 19 BSVG 20 TUHB 21 TUWO 22 TUMI tề SWAT 23 TUBG 24 WATR

Biên tập dữ liệu thổ nhưỡng cho SWAT

- ♦ Vai trò của dữ liệu lớp thổ nhưỡng
 - ♦ Phân chia đơn vị thủy văn (Hydrologic Response Unit- HRU)

Thổ nhưỡng ảnh hưởng lớn đến chế độ thủy văn của lưu vực. Việc tham số hóa các loại đất khác nhau thường phải áp dụng một loạt các hàm chuyển đổi các đặc tính kết cấu của đất sang các tham số đất mà mô hình cần.

Biên tập dữ liệu thổ nhưỡng cho SWAT

- ◆ Yêu cầu dữ liệu thổ nhưỡng
 - ♦ Bản đồ: ESRI GRID
 - ♦ Bảng tra thổ nhưỡng: CSV

Cấu trúc dữ liệu thổ nhưỡng trong SWAT

- ◆ Usersoil (QSWATRef2012.mdb\usersoil)
 - ♦ Các loại thổ nhưỡng (FAO 1974, Hoa Kì)

Cấu trúc dữ liệu thổ nhưỡng trong SWAT

- ◆ Solrgn (QSWATRef2012.mdb\solrgn)
 - ◆ Các thông số của loại thổ nhưỡng
 - ◆ CRNAME: tên thông số
 - MIN_, MAX_: giá trị nhỏ nhất,
 lớn nhất
 - DEFAULTS: giá trị mặc định
 - UNITS: đơn vị đo
 - FORMAT: định dạng
 - ◆REPAT_VAR: số lần lặp
 - DEF: định nghĩa

solrng							
CRNAME	MIN_	MAX_	DEFAULT	UNITS	FORMAT	REPEAT_VAR	DEF
OID	na	na	na	na	AUTOINCREMENT	1	Unique ID.
SUBBASIN	1	9999	1	na	INTEGER	1	Subbasin ID
HRU	1	99999	1	na	INTEGER	1	HRU ID
LANDUSE	na	na	XXXX	na	TEXT(4)	1	Land use code
SOIL	na	na	XXXX	na	TEXT(40)	1	Soil code
SLOPE_CD	na	na	XXXX	na	TEXT(20)	1	Slope code
SNAM	na	na	XXXX	na	TEXT(100)	1	Soil name
NLAYERS	1	10	-999	na	INTEGER	1	Number of layers in the soil.
HYDGRP	0	0	-999	na	TEXT(1)	1	Soil Hydrologic Group
SOL_ZMX	0	3500	-999	[mm]	FLOAT	1	Maximum rooting depth of soil profile.
ANION_EXCL	0.01	1	0.5	[fraction]	FLOAT	1	Fraction of porosity (void space) from which anions are excluded.
SOL_CRK	0	1	0.5	[fraction]	FLOAT	1	Crack volume potential of soil.
TEXTURE	0	0	-999	na	TEXT(80)	1	Texture of soil layer.
SOL_Z	0	3500	-999	[mm]	FLOAT	10	Depth from soil surface to bottom of layer.
SOL_BD	0.9	2.5	-999	[g/cm3]	FLOAT	10	Moist bulk density.
SOL_AWC	0	1	-999	[mm/mm]	FLOAT	10	Available water capacity of the soil layer.
SOL_K	0	2000	-999	[mm/hr]	FLOAT	10	Saturated hydraulic conductivity.
SOL_CBN	0.05	10	-999	[%]	FLOAT	10	Organic carbon content .
CLAY	0	100	-999	[%]	FLOAT	10	Clay content.
SILT	0	100	-999	[%]	FLOAT	10	Silt content.
SAND	0	100	-999	[%]	FLOAT	10	Sand content.
ROCK	0	100	-999	[%]	FLOAT	10	Rock fragment content.
SOL_ALB	0	0.25	-999	na	FLOAT	10	Moist soil albedo.
USLE_K	0	0.65	-999	na	FLOAT	10	USLE equation soil erodibility (K) factor.
SOL_EC	0	100	-999	[dS/m]	FLOAT	10	[Not currently active] Electrical conductivity.
SOL_CAL	0	65	-999	[%]	FLOAT	10	Calcium carbonate content
SOL_PH	3	10	-999	na	FLOAT	10	Soil pH

Nguồn tải thổ nhưỡng miễn phí

- ◆ Digital Soil Map of the World
 - **◆ FAO/UNESCO (2003)**

- ♦ Tỉ lệ 1:5.000.000 ~ 8 km
- https://swat.tamu.edu/data/

Nguồn tải thổ nhưỡng miễn phí

- ◆ Harmonized World Soil Database
 - **◆ FAO, IIASA (2012)**

- ♦Độ phân giải 1 km
- https://www.wateritech.com/data

Nguồn tải thổ nhưỡng miễn phí

- OpenLand Map
 - ◆ López-Ballesteros et al. (2023)

- ♦Độ phân giải 250 m
- https://www.wateritech.com/data

Cắt thổ nhưỡng theo vùng quan tâm

◆ Tương tự lớp phủ đất

Chuyển thổ nhưỡng sang hệ tọa độ UTM

◆ Tương tự lớp phủ đất

Tạo bảng tra thổ nhưỡng

- ◆ Tạo file Excel chứa 2 cột SOIL_ID, SNAME
- ♦ Gán giá trị của thổ nhưỡng FAO/UNESCO theo mã SWAT
- ◆ Lưu thành tập tin CSV (*.csv).

Tạo đồ án SWAT

- ◆ Mở QSWAT 1.9
- **◆ Click New Project**
 - ◆ Discard (không lưu đồ án hiện hành)
 - ◆ Chọn thư mục, nhập tên đồ án DemoKonPlong, click Save
- ◆ Kiểm tra thư mục đồ án:
 - ◆ Scenarios → Kịch bản chạy SWAT
 - ◆ Source → Raster đầu vào của SWAT
 - ♦ Watershed → Dữ liệu đầu vào về lưu vực
 - ◆ DemoKonPlong.mdb → Tập tin CSDL của đồ án SWAT
 - ◆ QSWATRef2012.mdb → Tập tin CSDL thông số của SWAT

softP (D:) adataP (E:)

Hide Folders

DemoKonPlono Save as type: QGIS files (*.qgs *.QGS)

QSWAT 1.9

Select Project

New Project

About

Cancel

Cancel

Type

▼ ✓ Search QSWAT

Date modified

25/10/2023 11:04 ...

25/10/2023 8:19 PM QGS File

Existing Project

Phân chia lưu vực dựa trên mạng lưới dòng chảy, tiểu lưu vực, cửa xả cho trước

- ◆ Click Delineate Watershed
- ♦ Nhập DEM
 - ◆ Select DEM = Nhập tập tin ...\DEM_KonPlong.tif
- ◆ Chon tab Use existing watershed
 - ♦ Watershed shapefile = Nhập LuuVucKonPlong.shp
 - ◆ Streams shapefile = Nhập SongSuoiKonPlong.shp
 - ◆ Inlets/outlets shapfile = Nhập CuaXaKonPlong.shp
- ♦ Tạo mạng lưới dòng chảy, tiểu lưu vực
 - ◆ Run
 - **♦OK**

OSWAT 1.9

- - X

Nhập lớp phủ đất, thố nhưỡng, độ dốc

- Click Create HRUs
- ♦ Nhập lớp phủ đất
 - ♦ Select landuse map = SuDungDat\ LopPhuDat1993_KonPlong_UTM.tif
 - ◆ Landuse table = Use csv file
- ♦ Nhập thổ nhưỡng
 - ♦ Select soil map = ThoNhuong\ ThoNhuong2003_KonPlong_UTM.tif
 - ◆ Soil data = usersoil
 - ◆ Soil table = Use csv file
- ♦ Không tick chọn Generate FullHRUs shapefile (Tạo HRUs tiềm năng) -> Tiết kiệm thời gian xử lý
- ♦ Nhập độ dốc (%)
 - ♦ Nhập giá trị 10, click Insert
- Click Read Copyright © 2023 | nguyenduyliem @hcmuaf.edu.vn

-Set landuse, soil, slope thresholds

0 Landuse (%) 100

Create HRUs

Select soil map

Soil data

shapefile

Slope bands

[0, 10, 9999]

Set bands for slope (%)

Insert

Clear

Single/Multiple HRUs

O Dominant landuse,

Dominant HRU

soil, slope

Filter by area

O Filter by landuse.

Select landuse map

Nhập bảng tra lớp phủ đất, thố nhưỡng

- ◆ Chọn bảng tra lớp phủ đất, click Open ◆ SuDungDat\ BangTra_LopPhuDat.csv
- ◆ Chọn bảng tra thổ nhưỡng, click Open

◆ ThoNhuong\ BangTra_ThoNhuong.csv

AT Choose landuse lookup csv file

New folder

Organize •

Recent Places

OneDrive

Documents

Libraries

Music

BangTra_LopPhuDat.csv

Name

▼ ← Search SuDunaDat

LANDUSE_ID, SWAT_CODE

1,URMD

2,CRDY

3,CRIR 4,MIXC

5,CRGR

6.CRWO

7.GRAS 8,SHRB

9.MIGS

Các phương pháp tạo HRU

- ♦ 2 phương pháp tạo 1 HRU 1 tiểu lưu vực
 - ◆ Dominant landuse, soil, slope
 - Lựa chọn lớp phủ đất, thổ nhưỡng, độ dốc chiếm diện tích lớn nhất trong tiểu lưu vực để tạo thành HRU.
 - Dominant HRU
 - Lựa chọn tổ hợp lớp phủ đất thổ nhưỡng độ dốc chiếm diện tích lớn nhất trong tiểu lưu vực để tạo thành HRU.
- ♦ 3 phương pháp tạo n HRU 1 tiểu lưu vực
 - ◆ Filter by landuse, soil, slope
 - Loại bỏ HRU có bất kì lớp phủ đất, thổ nhưỡng, độ dốc dưới ngưỡng diện tích/ phần trăm của tiểu lưu vực.
 - ◆ Filter by area
 - ◆ Loại bỏ HRU dưới ngưỡng diện tích/ phần trăm của tiểu lưu vực.
 - ◆ Target number of HRUs
 - Giới hạn số HRU trong khoảng [số tiểu lưu vực số HRU tiềm năng]

Tạo HRU bằng Filter by landuse, soil, slope

- ◆ Chon Filter by landuse, soil, slope
- ◆ Chon Threshold method
 - ♦ Percent of subbasin: % của tiểu lưu vực
 - ♦ Area (ha): diện tích của tiểu lưu vực
- ◆ Trong Set landuse, soil, slope thresholds
 - ◆ Nhập ngưỡng cho lớp phủ đất, click Go
 - ♦ Nhập ngưỡng cho thổ nhưỡng, click Go
 - ♦ Nhập ngưỡng cho độ dốc
- Click Create HRUs

Chia nhỏ lớp phủ đất (nếu cần)

◆ Sử dụng khi cần định nghĩa chính xác hơn, chi tiết hơn hoặc phản ánh thay đổi cho lớp phủ đất ✓ Select

- ♦ Giả sử:
 - ◆ Chia CRIR (cây trồng có tưới) thành 60% là CRIR (cây trồng có tưới), 40% là lúa (RICE).
 - ♦ Tỉ lệ chia phải là số nguyên và có tổng bằng 100.
- Click Split landuses
- Chọn lớp phủ đất cần chia (Select landuse to split)
 = CRIR
- Chọn lớp phủ đất con 1 (Select sub-landuse)
 CRIR
- ◆ Click Add sub-landuse, chọn lớp phủ đất con 2 (Select sub-landuse) = RICE
- Nhập tỉ lệ chia (Percent)
- Click Save edits, Save splits

Optional

Miễn trừ lớp phủ đất (nếu cần)

- ◆ Sử dụng khi cần đảm bảo giữ lại các lớp phủ đất trong tạo HRU ngay cả khi chúng nằm dưới ngưỡng.
- ♦ Giả sử cần giữ lại FODB (rừng lá rộng rụng lá)
- Click Exempt landuses

◆ Chọn lớp phủ đất cần giữ lại (Select landuse to be exempt) =

HRUs done: 43 HRUs formed in 5 subbasins.

FODB

◆ Click OK

Click Create HRUs

Xem kết quả phân bố độ cao

- ◆ Select report to view = Elevation
- ♦ Thống kê độ cao trên lưu vực, tiểu lưu vực

Chuyên đề SWAT

Thống kê độ cao trên lưu vực

- ◆ Minimum/ Maximum/ Mean elevation: độ cao nhỏ nhất, lớn nhất, trung bình
- ◆ Standard deviation: độ lệch chuẩn

Thống kê độ cao trên tiểu lưu vực

- ◆ Minimum/ Maximum/ Mean elevation: độ cao nhỏ nhất, lớn nhất, trung bình
- ◆ Standard deviation: độ lệch chuẩn

Xem kết quả phân bố lớp phủ đất, thổ nhưỡng, độ dốc

- ◆ Select report to view = Landuse and Soil
- ♦ Thống kê lớp phủ đất, thổ nhưỡng trên lưu vực, tiểu lưu vực

		Area [ha]	%Watershed	%Subbasin
Subbasin 1		398.04	0.28	
Landuse	SAVA FODB FOEB FOMI	85.20 249.56 51.28 11.99	0.06 0.18 0.04 0.01	21.41 62.70 12.88 3.01
Soil	Af60-1-2a-4260	398.04	0.28	100.00
Slope (0-10.0 10.0-9999	85.79 312.25	0.06 0.22	21.55 78.45

Thống kê lớp phủ đất, thổ nhưỡng trên lưu vực

- ♦ Number of subbasins: số tiểu lưu vực
- ♦ Watershed Area (ha): diện tích lưu vực

Area (ha): diện tích các loại lớp phủ đất, thổ nhưỡng, khoảng độ dốc

% watershed: tỉ lệ lưu vực của các loại lớp phủ đất, thổ nhưỡng, khoảng độ dốc

Thống kê lớp phủ đất, thổ nhưỡng trên tiểu lưu vực

Subbasin 1/ Area (ha), % watershed: mã số, diện tích (ha), tỉ lệ của lưu vực

Landuse: mã các loại lớp phủ đất

Soil: mã các loại thổ nhưỡng

Slope: các khoảng độ dốc

		Area [ha]	%watershed	%Subbasin
Subbasin 1		398.04	0.28	
Landuse	SAVA FODB FOEB FOMI	85.20 249.56 51.28 11.99	0.06 0.18 0.04 0.01	21.41 62.70 12.88 3.01
_ Soil	Af60-1-2a-4260	398.04	0.28	100.00
Slope	0-10.0 10.0-9999	85.79 312.25	0.06 0.22	21.55 78.45

% subbasin: tỉ lệ tiếu lưu vực của các loại lớp phủ đất, thổ nhưỡng, khoảng độ dốc

Area (ha): diện tích các loại lớp phủ đất, thổ nhưỡng, khoảng độ dốc % watershed: tỉ lệ lưu vực của các loại lớp phủ đất, thổ nhưỡng, khoảng độ dốc

Xem kết quả tạo HRU

- ♦ Select report to view = HRUs
- ◆ Thống kê lớp phủ đất, thổ nhưỡng, độ dốc, HRU trên lưu vực, tiểu lưu vực

		 Area [ha]		%Watershed
Subbasin 1		398.04		0.28
Landuse	SAVA FODB FOEB FOMI	87.85 257.32 52.87	(85.20) (249.56) (51.28) (11.99)	0.06 (0.06) 0.18 (0.18) 0.04 (0.04) (0.01)
Soil Af60-1	1-2a-4260	398.04	(398.04)	0.28 (0.28)
5lope	0-10.0 10.0-9999	86.64 311.39	(85.79) (312.25)	0.06 (0.06) 0.22 (0.22)
HRUS: 1	260/10.0-9999 260/0-10.0 260/10.0-9999 260/0-10.0 260/10.0-9999	24.32 63.53 50.96 206.36 11.36 41.51	5 L	0.02 0.05 0.04 0.15 0.01 0.03

QSWAT 1.9

Split landuses:

Watershed

Landuse

Soil

slope

_ - X

About

Existing Project

Select Project

New Project

Thống kê lớp phủ đất, thổ nhưỡng, độ dốc, HRU trên lưu vực

- ◆ Using percentage of subbasin as a threshold → ◆ Number of subbasins: 5 → Số tiểu lưu vực Phương pháp tạo HRU
 - Multiple HRUs Landuse/Soil/Slope option Thresholds: 10/10/10 [%] → Ngưỡng của lớp phủ đất/ thổ nhưỡng/ độ dốc
 - Number of HRUs: 43 → Số HRU

 ◆ Landuses exempt from thresholds: FODB → Loại lớp phủ miễn trừ

6.33 (9.90)

93.67 (90.10)

◆ Split landuses: CRIR split into RICE: 40% CRIR
 : 60% → Loại lớp phủ được chia nhỏ

Watershed Area (ha): diện tích lưu vực

Landuse: mã các loại lớp phủ đất

Soil: mã các loại thổ nhưỡng

Slope: các khoảng độ dốc

Copyright © 2023 | nguyenduyl.

0-10.0

10.0-9999

Area (ha): diện tích các loại lớp phủ đất, thổ nhưỡng, khoảng độ dốc sau khi tạo HRU (trước khi tạo HRU)

Area [ha] 141018.61 Area [ha] %Watershed Landuse (46083.38) 23.05 (32.68) CRIR 32500.14 0.06 (0.06) 5.36 (5.09) 22.33 (24.78) SAVA 87.85 (85.20)7559.51 (7182.57)FODB 31492.53 (34943.13) **FOEB** 47711.82 (43902.63) 33.83 (31.13) FOMI WATR 21666.76 (0.00)15.36 (0.00)CRDY (4506.64)(3.20) (85.96)(0.06) CRGR CRWO (2976.90)(2.11)(0.23) GRA5 (317.49)(934.72)(0.66) SHRB Soil 27.66 (30.63) 72.34 (69.37) Af60-1-2a-4260 39003.64 (43193.66) Ao90-2-3c-4284 102014.98 (97824.95)

8924.77

132093.84

(13964.30)

(127054.32)

% watershed: tỉ lệ lưu vực của các loại lớp phủ đất, thổ nhưỡng, khoảng độ dốc sau khi tạo HRU (trước khi tạo HRU)

Chuyên đề SWAT

Thống kê lớp phủ đất, thổ nhưỡng, độ dốc, HRU trên tiểu lưu vực

Subbasin 1/ Area (ha), %watershed: mã số, diện tích (ha), tỉ lệ lưu vực

Area (ha): diện tích các loại lớp phủ đất, thổ nhưỡng, khoảng độ dốc sau khi tạo HRU (trước khi tạo HRU)

0.03

Landuse: mã các loại lớp phủ đất

Soil: mã các loại thổ nhưỡng

Slope: các khoảng độ dốc

	Area [ha]		%watershed
Subbasin 1	398.04		0.28
Landuse SAVA FODB FOEB FOMI	87.85 257.32 52.87	(85.20) (249.56) (51.28) (11.99)	0.06 (0.06) 0.18 (0.18) 0.04 (0.04) (0.01)
Soil Af60-1-2a-4260	398.04	(398.04)	0.28 (0.28)
5lope 0-10.0 10.0-9999	86.64 311.39	(85.79) (312.25)	0.06 (0.06) 0.22 (0.22)
HRUS: 1	24.32 63.53 50.96 206.30		0.02 0.05 0.04 0.15

% watershed: tỉ lệ lưu vực của các loại lớp phủ đất, thổ nhưỡng, khoảng độ dốc sau khi tạo HRU (trước khi tạo HRU)

HRUS: mã số, lớp phủ đất/ thổ nhưỡng/ độ dốc, diện tích (ha), tỉ lệ lưu vực (%) của HRU

Copyright © 2023 | riguyenduyilem @ncmuaf.edu.vn

FOEB/Af60-1-2a-4260/10.0-9999

Bài tập kiểm tra

- Phân chia lưu vực dựa trên mạng lưới dòng chảy, tiểu lưu vực, cửa xả cho trước sử dụng các dữ liệu sau:
 - **◆** DEM_KonPlong.tif,
 - ◆ LuuVucKonPlong.shp,
 - SongSuoiKonPlong.shp,
 - ◆ CuaXaKonPlong.shp
- ◆ Từ dữ liệu lớp phủ 2018 (LopPhuDat2018.tif), bảng chú dẫn ý nghĩa giá trị trong lớp phủ đất (LopPhuDat2018.csv), biên tập lại bảng tra lớp phủ đất, lưu thành BangTra_LopPhuDat2018.csv.
- ◆ Phân cấp độ dốc lưu vực thành 3 khoảng (%): 0 - 25, 25 - 50, 50 - 9999.
- Nhập LopPhuDat2018.tif,

- ThoNhuong2003_KonPlong_U TM.tif và hai bảng tra lớp phủ đất (BangTra_LopPhuDat2018.csv), thổ nhưỡng (BangTra_ThoNhuong.csv).
- Hãy điền câu trả lời vào Google Form https://forms.gle/cfCPNhG5LRPd YAgm6 cho các câu hỏi sau:
 - 1. Tạo HRU bằng phương pháp Dominant HRU. Cho biết:
 - Có bao nhiêu HRU được tạo ra?
 - Diện tích (ha) của lớp phủ đất WATR trên toàn lưu vực là bao nhiêu?
 - Tỉ lệ % lưu vực có khoảng độ dốc 25 – 50% là bao nhiêu?
 - Trên tiểu lưu vực 3, loại thổ nhưỡng nào chiếm diện tích lớn nhất?

- Do chuyển đối sử dụng đất nên 20% lớp phủ đất "Evergreen Broadleaf" được chuyển thành AGRC, 80% còn lại được giữ nguyên là "Evergreen Broadleaf". Tạo lại HRU bằng phương pháp Filter by area với ngưỡng 30% diện tích của tiểu lưu vực. Không miễn trừ lớp phủ đất nào cả. Cho biết:
 - Có bao nhiêu HRU được tạo ra?
 - Diện tích (ha) sau khi tạo HRU của lớp phủ đất nào là lớn nhất trên toàn lưu vực?
 - Tiểu lưu vực mã số 4 có bao nhiêu HRU?
 - Trong tiểu lưu vực 2, HRU có diện tích nhỏ nhất chiếm tỉ lệ % lưu vực là bao nhiêu?