Novel well-balanced arbitrary high order CIP stabilizations for continuous FEM/RD

L. Micalizzi¹, M. Ricchiuto², R. Abgrall¹

¹Institut für Mathematik, Universität Zürich

²Team CARDAMOM, Inria Bordeaux sud-ouest

Outline

- Governing equations and motivation
- Continuous FEM
- Well-balancing
 - Spatial part
 - Stabilization, continuous interior penalty
- Numerical results

Section 1

Governing equations and motivation

Shallow water equations

$$\frac{\partial}{\partial t} \boldsymbol{u} + \frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}) = \boldsymbol{S}(x, \boldsymbol{u}), \quad (x, t) \in \Omega \times [0, T], \ \Omega := (x_L, x_R)$$

$$\begin{aligned} \boldsymbol{u} &:= \begin{pmatrix} H \\ H v \end{pmatrix} \\ \boldsymbol{F}(\boldsymbol{u}) &:= \begin{pmatrix} H v \\ H v^2 + g \frac{H^2}{2} \end{pmatrix} \\ \boldsymbol{S}(x, \boldsymbol{u}) &:= -\begin{pmatrix} 0 \\ g H \frac{\partial}{\partial x} \boldsymbol{B}(x) \end{pmatrix} \end{aligned}$$

$$\eta := H + B$$

Well-balancing (in particular
$$\frac{\partial}{\partial t} \mathbf{u} \equiv 0 \Leftrightarrow \frac{\partial}{\partial x} \mathbf{F}(\mathbf{u}) = \mathbf{S}(x, \mathbf{u})$$
)

 \bullet Refine a lot the mesh \Rightarrow Longer computational time

- ullet Refine a lot the mesh \Rightarrow Longer computational time
- Well-balancing

- \bullet Refine a lot the mesh \Rightarrow Longer computational time
- Well-balancing \Rightarrow Not easy

- ullet Refine a lot the mesh \Rightarrow Longer computational time
- Well-balancing ⇒ Not easy

$$u_{eq} := \begin{pmatrix} \eta - B \\ 0 \end{pmatrix}$$
$$\eta = H + B \equiv const$$

Figure: Lake of Zürich at rest

- ullet Refine a lot the mesh \Rightarrow Longer computational time
- Well-balancing ⇒ Not easy

$$u_{eq} := \begin{pmatrix} \eta - B \\ 0 \end{pmatrix}$$

 $\eta = H + B \equiv const$

Figure: Lake of Zürich at rest

Section 2

• A tessellation $\mathcal{T}_h = \{K\}$ of Ω ;

- A tessellation $\mathcal{T}_h = \{K\}$ of Ω ;
- ullet The space V_h of continuous piecewise polynomial functions;

- A tessellation $\mathcal{T}_h = \{K\}$ of Ω ;
- The space V_h of continuous piecewise polynomial functions;
- \bullet a basis $\{\varphi_i\}_{i=1,\dots,I}$ of V_h (Bn, Pn, PGLn);

- A tessellation $\mathcal{T}_h = \{K\}$ of Ω ;
- ullet The space V_h of continuous piecewise polynomial functions;
- a basis $\{\varphi_i\}_{i=1,\dots,I}$ of V_h (Bn, Pn, PGLn);
- ullet We look for $oldsymbol{u}_h(x,t) := \sum_{j=1}^I oldsymbol{c}_j(t) arphi_j(x)$ s.t.

$$\int_{\Omega} \left(\frac{\partial}{\partial t} \boldsymbol{u}_h + \left[\frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \right]_h \right) \varphi_i(x) + \mathbf{ST}_i(\boldsymbol{u}_h) = \mathbf{0} \quad \forall i$$

- A tessellation $\mathcal{T}_h = \{K\}$ of Ω ;
- The space V_h of continuous piecewise polynomial functions;
- a basis $\{\varphi_i\}_{i=1,...,I}$ of V_h (Bn, Pn, PGLn);
- ullet We look for $oldsymbol{u}_h(x,t) := \sum_{j=1}^I oldsymbol{c}_j(t) arphi_j(x)$ s.t.

$$\int_{\Omega} \left(\frac{\partial}{\partial t} \boldsymbol{u}_h + \left[\frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \right]_h \right) \varphi_i(x) + \mathbf{ST}_i(\boldsymbol{u}_h) = \mathbf{0} \quad \forall i$$

$$\downarrow \downarrow$$

$$\mathcal{M} \frac{d}{dt} \boldsymbol{c}(t) = \boldsymbol{H}(\boldsymbol{c}(t))$$

- A tessellation $\mathcal{T}_h = \{K\}$ of Ω ;
- The space V_h of continuous piecewise polynomial functions;
- a basis $\{\varphi_i\}_{i=1,...,I}$ of V_h (Bn, Pn, PGLn);
- ullet We look for $oldsymbol{u}_h(x,t) := \sum_{j=1}^I oldsymbol{c}_j(t) arphi_j(x)$ s.t.

$$\int_{\Omega} \left(\frac{\partial}{\partial t} \boldsymbol{u}_h + \left[\frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \right]_h \right) \varphi_i(x) + \mathbf{ST}_i(\boldsymbol{u}_h) = \mathbf{0} \quad \forall i$$

$$\downarrow \downarrow$$

$$\mathcal{M} \frac{d}{dt} \boldsymbol{c}(t) = \boldsymbol{H}(\boldsymbol{c}(t))$$

$$u_{eq} := \begin{pmatrix} \eta - B \\ 0 \end{pmatrix}, \quad \eta = H + B \equiv const$$

Section 3

Well-balancing

Subsection 1

Spatial part

$$\begin{bmatrix} \frac{\partial}{\partial x} \mathbf{F}(\mathbf{u}_h) - \mathbf{S}(x, \mathbf{u}_h) \end{bmatrix}_h = \frac{\partial}{\partial x} \mathbf{F}_h(x) - \mathbf{S}_h(x)$$
$$\mathbf{F}_h(x) = \sum_j \mathbf{F}_j \varphi_j(x), \quad \mathbf{S}_h(x) = \sum_j \mathbf{S}_j \varphi_j(x)$$

$$\begin{bmatrix} \frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \end{bmatrix}_h = \frac{\partial}{\partial x} \boldsymbol{F}_h(x) - \boldsymbol{S}_h(x) \neq 0 \text{ for lake at rest}$$
$$\boldsymbol{F}_h(x) = \sum_j \boldsymbol{F}_j \varphi_j(x), \quad \boldsymbol{S}_h(x) = \sum_j \boldsymbol{S}_j \varphi_j(x)$$

$$\begin{bmatrix} \frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \end{bmatrix}_h = \frac{\partial}{\partial x} \boldsymbol{F}_h(x) - \boldsymbol{S}_h(x) \neq 0 \text{ for lake at rest}$$
$$\boldsymbol{F}_h(x) = \sum_j \boldsymbol{F}_j \varphi_j(x), \quad \boldsymbol{S}_h(x) = \sum_j \boldsymbol{S}_j \varphi_j(x)$$

Special WB discretization¹

$$\left[\frac{\partial}{\partial x} \mathbf{F}(\mathbf{u}_h) - \mathbf{S}(x, \mathbf{u}_h)\right]_h = \left[\frac{\partial}{\partial x} \begin{pmatrix} Hv \\ Hv^2 + g\frac{H^2}{2} \end{pmatrix} + \begin{pmatrix} 0 \\ gH\frac{\partial}{\partial x}B \end{pmatrix}\right]_h \\
= \frac{\partial}{\partial x} \left[\begin{pmatrix} Hv \\ Hv^2 \end{pmatrix}\right]_h + \begin{pmatrix} 0 \\ gH_h\frac{\partial}{\partial x}\begin{pmatrix} H_h + B_h \end{pmatrix}\right)_{\mathbb{F}}$$

10/31

¹Ricchiuto and Bollermann. Stabilized residual distribution for shallow water simulations, 2009

$$\begin{bmatrix} \frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \end{bmatrix}_h = \frac{\partial}{\partial x} \boldsymbol{F}_h(x) - \boldsymbol{S}_h(x) \neq 0 \text{ for lake at rest}$$

$$\boldsymbol{F}_h(x) = \sum_j \boldsymbol{F}_j \varphi_j(x), \quad \boldsymbol{S}_h(x) = \sum_j \boldsymbol{S}_j \varphi_j(x)$$

Special WB discretization¹

$$\begin{bmatrix} \frac{\partial}{\partial x} \mathbf{F}(\mathbf{u}_h) - \mathbf{S}(x, \mathbf{u}_h) \end{bmatrix}_h = \begin{bmatrix} \frac{\partial}{\partial x} \begin{pmatrix} Hv \\ Hv^2 + g\frac{H^2}{2} \end{pmatrix} + \begin{pmatrix} 0 \\ gH\frac{\partial}{\partial x}B \end{pmatrix} \end{bmatrix}_h$$

$$= \frac{\partial}{\partial x} \begin{bmatrix} \begin{pmatrix} Hv \\ Hv^2 \end{pmatrix} \end{bmatrix}_h + \begin{pmatrix} 0 \\ gH_h\frac{\partial}{\partial x} \begin{pmatrix} H_h + B_h \end{pmatrix} \end{pmatrix} = \mathbf{0}$$

Lorenzo Micalizzi (UZH) 10 / 31 USNCCM 2023 10 / 31

¹Ricchiuto and Bollermann. Stabilized residual distribution for shallow water simulations. 2009

Subsection 2

Stabilization, continuous interior penalty

Stabilization part

$$\int_{\Omega} \varphi_i(x) \frac{\partial}{\partial t} \boldsymbol{u}_h d\boldsymbol{x} + \int_{\Omega} \varphi_i(x) \left[\frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \right]_h + \mathbf{ST}_i(\boldsymbol{u}_h) = \mathbf{0} \quad \forall i$$

Stabilization part

$$\int_{\Omega} \varphi_i(x) \frac{\partial}{\partial t} \boldsymbol{u}_h d\boldsymbol{x} + \int_{\Omega} \varphi_i(x) \left[\frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \right]_h + \mathbf{ST}_i(\boldsymbol{u}_h) = \mathbf{0} \quad \forall i$$

CIP² stabilization terms (jump c)

$$\begin{split} \mathbf{ST}_i(\boldsymbol{u}_h) := & \sum_f \alpha_f \int_f [\![\nabla_{\boldsymbol{x}} \varphi_i]\!] [\![\nabla_{\boldsymbol{x}} \boldsymbol{u}_h]\!] d\sigma \\ = & \sum_f \alpha_f [\![\frac{\partial}{\partial x} \varphi_i]\!] [\![\frac{\partial}{\partial x} \boldsymbol{u}_h]\!] \end{split}$$

Lorenzo Micalizzi (UZH) 12 / 31 USNCCM 2023 12 / 31

²J. Douglas Jr and T. Dupont Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods, 1976

Stabilization part

$$\int_{\Omega} \varphi_i(x) \frac{\partial}{\partial t} \boldsymbol{u}_h d\boldsymbol{x} + \int_{\Omega} \varphi_i(x) \left[\frac{\partial}{\partial x} \boldsymbol{F}(\boldsymbol{u}_h) - \boldsymbol{S}(x, \boldsymbol{u}_h) \right]_h + \mathbf{ST}_i(\boldsymbol{u}_h) = \mathbf{0} \quad \forall i$$

CIP² stabilization terms (jump c)

$$\begin{split} \mathbf{ST}_i(\boldsymbol{u}_h) &:= \sum_f \alpha_f \int_f \!\! \left[\!\!\left[\nabla_{\boldsymbol{x}} \varphi_i \right]\!\!\right] \!\! \left[\!\!\left[\nabla_{\boldsymbol{x}} \boldsymbol{u}_h \right]\!\!\right] \! d\sigma \\ &= \sum_f \alpha_f \left[\!\!\left[\frac{\partial}{\partial x} \varphi_i \right]\!\!\right] \left[\!\!\left[\frac{\partial}{\partial x} \boldsymbol{u}_h \right]\!\!\right] \\ &= \sum_f \alpha_f \left[\!\!\left[\frac{\partial}{\partial x} \varphi_i \right]\!\!\right] \left[\!\!\left[\frac{\partial}{\partial x} \left(\frac{H_h}{(Hv)_h} \right) \right]\!\!\right] \neq \mathbf{0} \end{split}$$

Lorenzo Micalizzi (UZH) 12 / 31 USNCCM 2023 12 / 31

²J. Douglas Jr and T. Dupont Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. 1976

Stabilization part, novel well-balanced jumps

• jump t (total height)

$$\mathsf{ST}_i(\boldsymbol{u}_h) := \sum_f \alpha_f \left[\left[\frac{\partial}{\partial x} \varphi_i \right] \right] \left[\left[\frac{\partial}{\partial x} \left(\frac{\eta}{H v} \right) \right] \right]$$

Stabilization part, novel well-balanced jumps

• jump t (total height)

$$\mathsf{ST}_i(\boldsymbol{u}_h) := \sum_f \alpha_f \left[\left[\frac{\partial}{\partial x} \varphi_i \right] \right] \left[\left[\frac{\partial}{\partial x} \left(\begin{matrix} \eta \\ Hv \end{matrix} \right) \right] \right]$$

• jump e (entropy variables)

$$\mathsf{ST}_i(\boldsymbol{u}_h) := \sum_f \alpha_f \left[\left[\frac{\partial}{\partial x} \varphi_i \right] \right] \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{w}} \left[\left[\frac{\partial}{\partial x} \boldsymbol{w} \right] \right], \quad \boldsymbol{w} := \begin{pmatrix} g \eta - \frac{v^2}{2} \\ v \end{pmatrix}$$

Stabilization part, novel well-balanced jumps

• jump t (total height)

$$\mathsf{ST}_i(\boldsymbol{u}_h) := \sum_f \alpha_f \left[\left[\frac{\partial}{\partial x} \varphi_i \right] \right] \left[\left[\frac{\partial}{\partial x} \left(\begin{matrix} \eta \\ Hv \end{matrix} \right) \right] \right]$$

• jump e (entropy variables)

$$\mathsf{ST}_i(\boldsymbol{u}_h) := \sum_f \alpha_f \left[\left[\frac{\partial}{\partial x} \varphi_i \right] \right] \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{w}} \left[\left[\frac{\partial}{\partial x} \boldsymbol{w} \right] \right], \quad \boldsymbol{w} := \begin{pmatrix} g \eta - \frac{v^2}{2} \\ v \end{pmatrix}$$

• jump r (residual)

$$\mathsf{ST}_i(\boldsymbol{u}_h) := \sum_f \alpha_f \left[\!\! \left[\boldsymbol{J} \frac{\partial}{\partial x} \varphi_i \right] \!\! \right] \!\! |\boldsymbol{J}|^{-1} \left[\!\! \left[\!\! \boldsymbol{J} \frac{\partial}{\partial x} \boldsymbol{u} - \boldsymbol{S} \!\! \right] \!\! \right], \quad \boldsymbol{J} := \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{u}}$$

Section 4

Numerical results

Well-balancing

Framework	${\cal L}^1$ error ${\cal H}$	L^1 error Hv
WB-HS jc	3.007E-004	5.963E-004
WB-HS jt	9.403E-013	4.418E-012
WB-HS je	9.396E-013	4.415E-012
WB-HS jr	9.409E-013	4.415E-012

Table: PGL4 with 100 elements at $T_f=10$

Same with $\mathsf{P} n$ and $\mathsf{B} n$

Small perturbation of lake at rest

Same domain, non-smooth bathymetry, only C^0

$$\eta(x) = \begin{cases} \eta_{eq} + A \exp\left(1 - \frac{1}{1 - \left(\frac{x - 6}{0.5}\right)^2}\right) & 5.5 < x < 6.5\\ \eta_{eq} & otherwise \end{cases}$$

with $A = 5 \cdot 10^{-5}$.

Figure: Perturbation amplified by 1000

Small perturbation of lake at rest

PGL4; coarse: 30 elements; refined: 128 elements

Question

What about the other steady states?

USNCCM 2023

Convergence, PGL4

10-22

Neterieras

Continuous H, Dashed Hv

19/31

Networks

Small perturbation

Figure: Perturbation amplified by 1000

Supercritical

Supercritical

Analogous results for...

• for other basis functions (Bn, Pn and PGLn)

Supercritical: "fair" comparison with 60, 40 and 30 elements

for other tests

(NB: No limiting at all)

with friction

$$S(x, \boldsymbol{u}) = -\begin{pmatrix} 0 \\ gH\frac{\partial}{\partial x}B \end{pmatrix} - g\frac{n^2|Hv|}{H^{\frac{7}{3}}}\begin{pmatrix} 0 \\ Hv \end{pmatrix}$$

Subcritical: perturbation amplified by 100

(Same for supercritical)

Further

Other WB space discretizations and stabilizations: Global flux

$$\frac{\partial}{\partial t} \boldsymbol{u} + \frac{\partial}{\partial x} \boldsymbol{F} = \boldsymbol{S}$$

$$\Downarrow \boldsymbol{R} = -\int_{x_L}^x \boldsymbol{S}, \quad \boldsymbol{G} = \boldsymbol{F} + \boldsymbol{R}$$

$$\frac{\partial}{\partial t} \boldsymbol{u} + \frac{\partial}{\partial x} \boldsymbol{G} = \boldsymbol{0}$$

$$\mathbf{ST}_{i}(\boldsymbol{u}_{h}) = \sum_{f} \alpha_{f} \left[\boldsymbol{J} \frac{\partial}{\partial x} \varphi_{i} \right] |\boldsymbol{J}|^{-1} \left[\frac{\partial}{\partial x} \boldsymbol{G} \right]$$

Convergence

Section 5

Conclusions

USNCCM 2023

• WB space discretization (w.r.t. lake at rest)

USNCCM 2023

- WB space discretization (w.r.t. lake at rest)
- Three new well-balanced CIP stabilizations
 - jt (total height)
 - je (entropy variables)
 - jr (residual)

- WB space discretization (w.r.t. lake at rest)
- Three new well-balanced CIP stabilizations
 - jt (total height)
 - je (entropy variables)
 - jr (residual)
- The numerical results confirm
 - Exact well-balancing for lake at rest
 - HO accuracy
 - Ability of jr to handle general steady states

USNCCM 2023

The End

Thank you³⁴

⁴Looking for a postdoc in the U.S.

Lorenzo Micalizzi (UZH)

³Micalizzi, Ricchiuto, Abgrall, Novel well-balanced continuous interior penalty stabilizations, 2023