Ústav fyzikální elektroniky PřF MU

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 2

Zpracoval: Artem Gorodilov Naměřeno: 26. října 2023

Obor: Astrofyzika **Skupina:** Čt 8:00 **Testováno:**

Úloha č. 6: Elektromagnetické kmity v RLC obvodu

 $T=21.1~^{\circ}\text{C}$ p=987~hPa

 $\varphi = 41 \%$

1. Zadání

Určit impedanci rezistoru, cívky a kondenzátoru.

Změřit frekvenční charakteristiku RLC obvodu a na jejím základě zjistit odpor, kapacitu a indukčnost. Změřit přechodové jevy při podkritickém, kritickém a nadkritickém tlumení.

2. Teorie

RLC obvod se skládá z rezistoru s hodnotou R, cívky s indukčností L a kondenzátoru s kapacitou C, které jsou buď zapojeny sériově nebo paralelně. Při buzení těchto obvodů střídavým napětím při určité frekvenci dochází k rezonanci, která je charakterizována maximálním proudem. Podobné rezonanční chování lze pozorovat v různých oblastech fyziky, například při působení periodické síly na závaží připevněné k pružině. Obvody s rezistorem, cívkou a kondenzátorem mají široké využití jako rezonátory, filtry s horní a dolní propustí nebo integrační členy.

2.1. Impedance

Prvně jsme pomocí multimetru provedli přímá měření odporu rezistoru, kapacity kondenzátoru a indukčnosti cívky. Začali jsme sestavením obvodu podle schématu na obrázku (1). Postupně jsme prováděli měření pro rezistor, kondenzátor a cívku při frekvencích 1 a 30 kHz. Poté jsme přešli k sestavení obvodu s osciloskopem, viz obrázek (2). Výsledky z osciloskopu nám poskytly informace o rozdílu napětí U_1 a U_2 , fázi a hodnotě U_2 .

Nejprve jsme využili napětí U_2 a referenčního odporu R_I , který jsme si sami zvolili, k výpočtu proudu procházejícího obvodem pomocí Ohmova zákona.

Na základě toho jsme ověřili naměřený odpor, který jsme také vypočítali pomocí Ohmova zákona, avšak tentokrát s rozdílem napětí $U_1 - U_2$. Využitím následujícího vztahu zpočítáme absolutní hodnotu impedance Z a jeho fáze φ_Z :

$$|Z| = R_I \frac{|U_1 - U_2|}{|U_2|}, \ resp. \ \varphi_Z = \varphi_{M \to 2}$$
 (1)

kde $|U_1 - U_2| = U_{M0}$ a $|U_2| = U_{20}$.

V případě odporu pak dostáváme pro jeho impedanci Z_R :

$$Z_R = R = R_R \tag{2}$$

kde R_R je odpor dekády.

Obrázek (1) Schéma sériového RLC obvodu napájeného zdrojem střídavého napětí $\mathbf{U}(\mathbf{t}).$

Obrázek (2) Aparatura pro měření impedance \widehat{Z} (nebo vodivosti $\widehat{G}=1/\widehat{Z}$) zestávající z funkčního generátoru jako zdroje napětí U s určitou frekvencí, osciloskopu, měřené impedance \widehat{Z} a referenčního odporu R_I . V schématu jsou naznačena napětí U_I na referenčním odporu R_I a napětí U_Z na měřené impedanci Z. Referenční (stínící) vodiče kanálů U_1 a U_2 jsou uvnitř osciloskopu spojeny a uzemněny

Získanou absolutní hodnotu impedance jsme teoreticky využili k ověření kapacity kondenzátoru C pomocí následujícího vztahu:

$$C = -\frac{1}{2\pi f |Z_C| sin\varphi_C} \tag{3}$$

kde f je frekvenci naměřenou z funkčního generátoru, Z_C je impedance kondenzátoru a φ_C je jeho fáze.

Odpor kondenzátoru R_C se bude rovnat:

$$R_C = Z_C cos \varphi_C \tag{4}$$

Zjistíme indukci cívky L pomocí vztahu:

$$L = \frac{|Z_L| sin\varphi_L}{2\pi f} \tag{5}$$

kde Z_L je impedance a φ_L je fáze cívky. Odpor cívky R_L se bude rovnat:

$$R_L = Z_L cos\varphi_L \tag{6}$$

Získané hodnoty jsme použili k výpočtu teoretické hodnoty rezonanční frekvence obvodu f_0 , pro který jsme využili následující vztah:

$$f_0 = \frac{1}{2\pi\sqrt{LC}}\tag{7}$$

2.2. Frekvenční charakteristika obvodu RLC

Pro měření frekvenčních charakteristik jsme využili předchozí zapojení zobrazené na obrázku (2). Provedli jsme měření stejných veličin jako v předchozí části, tedy frekvenci, rozdíl napětí $U_1 - U_2$, napětí U_2 a fázi v okolí rezonanční frekvence, kterou jsme teoreticky vypočítali v první části.

Měření jsme provedli pro 16 frekvencí, a získané hodnoty jsme použili k výpočtu absolutní hodnoty impedance |Z| a amplitudy vodivosti |G|. Následně jsme vizualizovali křivky závislosti amplitudy vodivosti na frekvenci a závislosti fáze na frekvenci.

Rezonanční úhlovou frekvenci ω_0 lze zjistit ze vzorce:

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{8}$$

Síla oscilátoru F podle vzorce:

$$F = \frac{1}{L} \tag{9}$$

Konstanta tlumení α_0 se zjistí jako:

$$\alpha_0 = \frac{R}{2L} \tag{10}$$

A zjistěme koeficient jakosti Q:

$$Q = \frac{\omega_0}{2\alpha_0} = \frac{L\omega_0}{R} \tag{11}$$

Následně jsme z absolutní impedance vypočítali amplitudu vodivosti |G| a jeho fáze φ_G podle následujícího vzorce:

$$|G| = \frac{1}{|Z|}, \ resp. \ \varphi_G = -\varphi_{M\to 2}$$
 (12)

Z amplitudy vodivosti při rezonanci tak můžeme identifikovat hodnotu odporu R_{celk} . V případě reálného RLC obvodu tato rezistence odpovídá celkovým ztrátám v obvodu, které jsou dány součtem ekvivalentních sériových odporů všech komponent na dané frekvenci:

$$R_{celk} = R_R + R_L + R_C \tag{13}$$

2.3. Přechodný jev RLC obvodu

K měření přechodového jevu jsme použili obvod na obrázku (3). Pro podkritické tlumení je α_0 menší než ω_0 . Poté jsme provedli přechodová měření pomocí osciloskopu a zpracovali získaná data. Nejprve jsme vykreslili závislost U_2 na čase t. Poté jsme pomocí maximálních hodnot určili $ln(U_C-U_f)$ (kde U_C je amplituda maxim nebo minim oscilací a U_f je konečné napětí) a vyjádřili jejich lineární závislost z fitu.

Tlumenou kruhovou rezonanční frekvenci ω_d lze zjistit ze vzorce:

$$\omega_d = \sqrt{\omega_0^2 - \alpha^2} \tag{14}$$

Obrázek (3) Aparatura analogická panelu na obrázku (2) použitá pro měření přechodového jevu náboje na kondenzátoru C.

 ω_0 pak se bude rovná:

$$\omega_0 = \sqrt{\omega_d^2 + \alpha^2} \tag{15}$$

V případě kritického tlumení platí, že $\alpha = \omega_0$. Do obvodu jsme integrovali odporovou dekádu, abychom určili odpor při kritickém tlumení. Následně jsme zaznamenali přechodový jev pro kritické tlumení a naměřená data U_2 jsme závislostí na čase interpretovali. Současně jsme teoreticky ověřili odpor R_k pro kritické tlumení pomocí vztahu:

$$R_k = 2\omega_0 L \tag{16}$$

kde ω_0 je úhlová cívka a L je indukčnost cívky. Nadkritické tlumení je charakterizováno hodnotou $\alpha > 2\omega_0$. V tomto případě se jedná o exponenciální závislost. Tuto závislost popisuje následující vzorec:

$$ln(U_C - U_f) = lnU_{C1} + \lambda_1 t \tag{17}$$

kde λ_1 je koeficient poklesu.

Odtud zjistíme, že odpor při nadkritickém tlumení R je následující:

$$R = -L\frac{\omega_0^2 + \lambda_1^2}{\lambda_1} \tag{18}$$

3. Měření

3.1. Impedance

Následující hodnoty pro frekvenci f = 1 [kHz] byly získány z přímého měření multimetrem:

$$\begin{split} R_R &= 29.1 \; [\Omega] \quad \ \varphi_R = 0^o \\ R_C &= 5.4 \; [\Omega] \quad \ \varphi_C = -89.2^o \quad \ \ C = 409.5 \; [\text{nF}] \\ R_L &= 16.1 \; [\Omega] \quad \ \varphi_L = 88.6^o \quad \ \ L = 113 \; [\text{mH}] \\ R_L^{DC} &= 10.6 \; [\Omega] \end{split}$$

Pomocí vzorce (7) zjistíme teoretickou hodnotu rezonanční frekvence f_0 :

$$f_0 = 739.8 \text{ [Hz]}$$

Dále pomocí osciloskopu změříme hodnoty U_{M0} , U_{20} a $\varphi_{M\to 2}$ pro rezistor, kondenzátor a cívku, pro pět různých frekvencí f:

f [Hz]	U_{M0} [V]	$U_{20} [\mathrm{mV}]$	$\varphi_{M\to 2}$ [°]
100	1.955	699.1	0
300	1.955	699.4	0
739	1.955	698.6	0
1000	1.955	698.4	0
3000	1.955	697.9	0

Tabulka (1) hodnoty U_{M0} , U_{20} a $\varphi_{M\to 2}$ pro rezistor.

Proto podle vzorců (1) a (2) zjistíme odpor dekády R_R za předpokladu, že $R_I=10.622~[\Omega]$:

$$R_R = 29.72(2) [\Omega]$$

 $R_R(f_0) = 29.73 [\Omega]$

f [Hz]	U_{M0} [V]	$U_{20} [\mathrm{mV}]$	$\varphi_{M\to 2} [^o]$
100	6.068	16.73	-88.4
300	6.065	49.91	-88.5
739	6.023	121.40	-89.0
1000	5.988	161.40	271.0
3000	5.459	441.00	-89.0

Tabulka (2) hodnoty U_{M0} , U_{20} a $\varphi_{M\to 2}$ pro kondenzátor.

Pomocí vzorců (1), (3) a (4) tedy zjistíme impedanci Z_C , kapacitu C a odpor R_C kondenzátoru:

f [Hz]	$Z_C [\Omega]$	C [nF]	$R_C [\Omega]$
100	3853	413.3	107.6
300	1291	411.2	33.8
739	527	408.7	9.2
1000	394	403.9	6.9
3000	132	403.5	2.3

Tabulka (3) hodnoty Z_C , C a R_C pro kondenzátor.

Kapacita kondenzátoru C se tedy bude rovnat:

$$C = 408(4) [nF]$$

f [Hz]	U_{M0} [V]	$U_{20} [\mathrm{mV}]$	$\varphi_{M\to 2}$ [o]
100	4.297	633.50	81.5
300	5.721	285.10	87.0
739	5.986	121.10	88.7
1000	6.018	88.90	88.7
3000	6.057	29.38	89.4

Tabulka (4) hodnoty U_{M0} , U_{20} a $\varphi_{M\to 2}$ pro cívku.

Pomocí vzorců (1), (5) a (6) tedy zjistíme impedanci Z_L , indukčnost L a odpor R_L cívky:

f [Hz]	$Z_L [\Omega]$	L [mH]	$R_L [\Omega]$
100	72.1	113.4	10.7
300	213.5	112.9	11.2
739	525.1	113.1	11.9
1000	719.1	114.4	16.3
3000	2189.8	116.2	22.9

Tabulka (5) hodnoty Z_L , L a R_L pro cívku.

Indukčnost cívky L se tedy bude rovnat:

$$L = 114(1) \text{ [mH]}$$

3.2. Frekvenční charakteristika obvodu RLC

Z měření osciloskopem provedených podle zapojení na obrázku (2) byly naměřeny následující hodnoty $U_{M0},\,U_{20}$ a $\varphi_{M\to 2}$ pro 16 různých frekvencí f:

f [Hz]	U_{M0} [V]	$U_{20} [\mathrm{mV}]$	$\varphi_{M\to 2}$ [°]
556.100	5.752	197.50	-80.0
647.100	4.999	335.00	-69.9
678.800	4.346	447.00	-60.0
697.110	3.756	496.90	-50.0
708.810	3.354	527.20	-40.0
718.080	3.043	546.50	-30.0
725.590	2.857	560.10	-19.9
732.232	2.754	565.50	-10.0
738.470	2.721	567.40	0.0
744.700	2.754	565.50	10.0
751.590	2.861	559.90	19.9
758.960	3.027	549.90	30.1
768.910	3.316	530.90	40.0
781.630	3.701	501.50	50.0
802.200	4.315	450.30	60.0
842.190	5.004	356.30	69.9
969.100	5.707	204.70	80.0

Tabulka (6) hodnoty U_{M0}, U_{20} a $\varphi_{M\to 2}$ pro obvod z obrázku (2).

Ze vzorců (1) a (12) tedy zjistíme hodnoty |G| a φ_G :

$ G [\Omega^{-1}]$	φ_G [°]
0.003233	80.0
0.006309	69.9
0.009683	60.0
0.012455	50.0
0.014798	40.0
0.016908	30.0
0.018456	19.9
0.019331	10.0
0.019632	0.0
0.019331	-10.0
0.018424	-19.9
0.017103	-30.1
0.015073	-40.0
0.012757	-50.0
0.009825	-60.0
0.006703	-69.9
0.003377	-80.0
	0.003233 0.006309 0.009683 0.012455 0.014798 0.016908 0.018456 0.019331 0.019331 0.019331 0.017103 0.015073 0.012757 0.009825 0.006703

Tabulka (7) hodnoty |G| a φ_G pro obvod z obrázku (2).

Po výpočtech byly získány následující grafy závislosti naměřených a teoretických hodnot |G| a φ_G na frekvenci f:

Obrázek (4) Závislost amplitudy vodivosti |G|na frekvenci f.

Obrázek (5) Závislost fáze amplitudy vodivosti φ_G na frekvenci f.

Data byla aproximována pomocí kódu 06RLCFitovaciPrikladPython3p8.zip. Z aproximace byly získány následující hodnoty R a ω_0 a α :

$$R = 50.9(4) [\Omega]$$

 $\omega_0 = 4642(1) \left[\frac{rad}{s} \right]$
 $\alpha = 221(1) [s^{-1}]$

Proto podle vzorce (10) najdeme L a podle vzorce (8) najdeme C:

$$L = 115.3(6) \text{ [mH]}$$

 $C = 403(2) \text{[nF]}$

Podle vzorce (9) nalezneme F:

$$F = 8.67(4) \, [\text{mH}^{-1}]$$

Hodnota f_0 se získá ze vzorce (7):

$$f_0 = 738.8(2)$$
 [Hz]

Hodnota Q se získá ze vzorce (11):

$$Q = 10.40(7)$$

Hodnota R_{celk} pro f_0 se získá ze vzorce (13):

$$R_{celk}(f_0) = 50.83$$

Teoretické hodnoty ω_0 , α_0 , F, f_0 a Q se rovnají:

$$\omega_0 = (4636 \pm 30) \left[\frac{rad}{s} \right]$$
 $\alpha = 223(2) \left[s^{-1} \right]$
 $F = 8.77(9) \left[\text{mH}^{-1} \right]$
 $f_0 = 738(5) \left[\text{Hz} \right]$
 $Q = 10.4(3)$

3.3. Přechodný jev RLC obvodu

Dále jsme použili zapojení obvodu na obrázku (3). Měřili jsme podkritické, kritické a nadkritické tlumení. Příslušné použité odpory jsou následující: $R_{R,1}$ $R_{R,2}$ $R_{R,3}$.

Pro podkritický tlumení byl získán následující graf závislosti napětí U_2 na době tlumení t:

Obrázek (6) Závislost napětí U_2 na době tlumení t propodkritický tlumení.

Z toho vyplývá, že konečné napětí U_f je rovno:

$$U_f = -3.1 \text{ [V]}$$

Dále vykreslíme závislost logaritmu rozdílu mezi maximy tlumení $ln(U_C - U_f)$ na době tlumení t a lineárně ji aproximujeme:

Obrázek (7) Závislost logaritmu rozdílu mezi maximy útlumu tlumení $ln(U_C-U_f)$ na době tlumení t a jeho lineární aproximace.

Z aproximace získáme hodnotu α :

$$\alpha = 442(2) [s^{-1}]$$

Odpor obvodu R se zjistí ze vzorce (10) pomocí známé hodnoty indukčnosti L:

$$R_1 = 101(1) [\Omega]$$

Proto podle vzorce (14) zjistíme tlumenou frekvenci oscilací ω_d :

$$\omega_d = 4621(1) \left[\frac{rad}{s} \right]$$

Najdeme teoretickou hodnotu rezonanční frekvence f_0 vydělením ω_0 číslem 2π :

$$f_0 = 738.8(2) \text{ [Hz]}$$

Známý použitý odpor $R_{R,1}=29.12$ [Ω]. Známe také odpor $R_G=50$ [Ω]. Odtud zjistíme $R_{celk,R1}$ a $R_{celk,R1}+R_G$ podle vzorce (13):

$$R_{celk,R1} = 50 [\Omega]$$

$$R_{celk,R1} + R_G = 100 [\Omega]$$

Pro kritický tlumení byl získán následující graf závislosti napětí U_2 na době tlumení t:

Obrázek (8) Závislost napětí U_2 na době tlumení t pro kritický tlumení.

Podle vzorce (16) zjistíme odpor obvodu R_k :

$$R_k = (1058 \pm 10) [\Omega]$$

Známý použitý odpor $R_{R,2} = 848.8$ [Ω]. Odtud zjistíme $R_{celk,R2}$ a $R_{celk,R2} + R_G$ podle vzorce (13):

$$R_{celk,R2} = 870 [\Omega]$$

$$R_{celk,R2} + R_G = 930 [\Omega]$$

Pro nadkritické tlumení byl získán následující graf závislosti napětí U_2 na době tlumení t:

Obrázek (9) Závislost napětí U_2 na době tlumení t pro nadkritické tlumení.

Dále vykreslíme závislost logaritmu rozdílu mezi maximy nadkritického tlumení $ln(U_C-U_f)$ na době nadkritického t a lineárně ji aproximujeme:

Obrázek (10) Závislost logaritmu rozdílu mezi maximy nadkritického tlumení $ln(U_C-U_f)$ na době nadkritického tlumení t a jeho lineární aproximace.

Získáme tedy hodnotu λ_1 :

$$\lambda_1 = 351(1) [s^{-1}]$$

Pak odpor při nadkritickém tlumení R_3 zjistíme podle vzorce (18):

$$R_3 = (7050 \pm 80) [\Omega]$$

Známý použitý odpor $R_{R,3} = 6002$ [Ω]. Odtud zjistíme $R_{celk,R3}$ a $R_{celk,R3} + R_G$ podle vzorce (13):

$$R_{celk,R3} = 6023 \ [\Omega]$$

 $R_{celk,R3} + R_G = 6073 \ [\Omega]$

K výpočtu veličin a jejich nejistot byla použita knihovna Uncertinties pro Python: pypi.org/project/uncertainties. Kód je přiložen k protokolu.

4. Závěr

4.1. Impedance

Hodnoty dekádového odporu naměřené multimetrem $R_R=29.1~[\Omega]$ a osciloskopem $R_R=29.72(2)$ $[\Omega]$ se vzájemně shodují. Totéž lze říci o kapacitě kondenzátoru $C=409.5~[\mathrm{nF}]$ a $C=408(4)~[\mathrm{nF}]$ a indukčnosti cívky $L=113~[\mathrm{mF}]$ a $L=114(1)~[\mathrm{mH}]$.

4.2. Frekvenční charakteristika obvodu RLC

Hodnota odporu obvodu R=50.9(4) $[\Omega]$ získaná měřením se téměř zcela shoduje s teoretickým výpočtem $R_{celk}(f_0)=50.83$. Hodnoty úhlové frekvence $\omega_0=4642(1)$ $[\frac{rad}{s}]$ se rovněž shodují s teoretickými hodnotami $\omega_0=(4636\pm30)$ $[\frac{rad}{s}]$. Totéž lze říci o konstantě útlumu $\alpha=221(1)$ $[s^{-1}]$ a $\alpha=223(2)$ $[s^{-1}]$. Kapacita kondenzátoru C=403(2) [nF] a indukčnost L=115.3(6) [mH] cívky rovněž dobře konvergují s dříve provedenými měřeními C=408(4) [nF] a L=114(1) [mH]. Naměřená hodnota oscilační síly F=8.67(4) $[mH^{-1}]$ se rovněž shodují s teoretickými hodnotami F=8.77(9) $[mH^{-1}]$. Koeficient jakosti Q=10.40(7) se téměř rovná teoretickému Q=10.4(3). Naměřená frekvence $f_0=738.8(2)$ [Hz] se prakticky neliší od původně stanovené $f_0=738(5)$ [Hz].

4.3. Přechodný jev RLC obvodu

Tlumicí konstanta pro podkritické tlumení z aproximace je $\alpha=442(2)$ [s^{-1}]. Odpor obvodu $R_1=101(1)$ [Ω] konverguje k hodnotě $R_{celk,R1}+R_G=100$ [Ω]. Tlumicí frekvence oscilací a úhlová frekvence oscilací jsou rovny $\omega_d=4621(1)$ [$\frac{rad}{s}$], resp. $\omega_0=4642(1)$ [$\frac{rad}{s}$]. Rezonanční frekvence je rovna $f_0=738.8(2)$ [Hz].

Při kritickém tlumení je odpor obvodu $R_k = (1058 \pm 10) [\Omega]$, který se liší, ale je řádově stejný jako $R_{celk,R2} + R_G = 930 [\Omega]$.

Pro nadkritický útlum je činitel poklesu z aproximace $\lambda_1 = 351(1) \ [s^{-1}]$. Odpor obvodu je $R_3 = (7050 \pm 80) \ [\Omega]$, který se výrazně liší, ale je ve stejném řádu velikosti jako $R_{celk,R3} + R_G = 6073 \ [\Omega]$. Tento rozdíl může být způsoben nepřesností měření λ_1 .

K výpočtu chyb byl použit následující kód:

```
#Importing the libraries
 import matplotlib.pyplot as plt
 import numpy as np
import pandas as pd
 from scipy import stats
from scipy.optimize import curve_fit
from scipy.optimize import curve_...
import uncertainties as u
from uncertainties import ufloat
from uncertainties umath import *
from uncertainties import unumpy
from lmfit import Minimizer, Parameters, fit_report
 # Constants and values
 B_{-}I = 10.622 \#Ohm
 #Reading data
R_1 = pd.read_excel('R_1.xlsx')
C_1 = pd.read_excel('C_1.xlsx')
L_1 = pd.read_excel('L_1.xlsx')
 f_2 = pd.read_excel('f_2.xlsx')
scope_0 = pd.read_csv('scope_0.csv')
scope_1 = pd.read_csv('scope_1.csv')
scope_2 = pd.read_csv('scope_2.csv')
 #Calculations
\begin{array}{lll} R_{.1}\left[ \ 'U_{.}20\ ' \right] &=& R_{.1}\left[ \ 'U_{.}20\ ' \right]*10**(-3) \\ C_{.1}\left[ \ 'U_{.}20\ ' \right] &=& C_{.1}\left[ \ 'U_{.}20\ ' \right]*10**(-3) \\ L_{.1}\left[ \ 'U_{.}20\ ' \right] &=& L_{.1}\left[ \ 'U_{.}20\ ' \right]*10**(-3) \end{array}
 \begin{array}{lll} R_{-1}\left[ \; 'Z' \; \right] &=& R_{-1}\left[ \; 'U_{-}M0 \; ' \right] / R_{-1}\left[ \; 'U_{-}20 \; ' \right] \\ C_{-1}\left[ \; 'Z' \; \right] &=& R_{-1}\left[ \; * \; C_{-1}\left[ \; 'U_{-}M0 \; ' \right] / C_{-1}\left[ \; 'U_{-}20 \; ' \right] \\ L_{-1}\left[ \; 'Z' \; \right] &=& R_{-1}\left[ \; * \; L_{-1}\left[ \; 'U_{-}M0 \; ' \right] / L_{-1}\left[ \; 'U_{-}20 \; ' \right] \end{array} \right. \end{array}
\begin{array}{lll} C_{-}1\left[\;'C'\;\right] &=& -1/(2*np.\,pi*C_{-}1\left[\;'f'\;\right]*C_{-}1\left[\;'Z'\;\right]*np.\,sin\left(np.\,radians\left(C_{-}1\left[\;'phi\;'\right]\right)\right)) \\ C_{-}1\left[\;'R'\;\right] &=& C_{-}1\left[\;'Z'\;\right]*np.\,cos\left(np.\,radians\left(C_{-}1\left[\;'phi\;'\right]\right)\right) \end{array}
\begin{array}{lll} L_{-1}\left[\;'L\;'\;\right] \; = \; L_{-1}\left[\;'Z\;'\right]*\,np\,.\,sin\,(np\,.\,radians\,(\,L_{-1}\left[\;'phi\;'\right])\,)\,/(\,2*np\,.\,pi\,*L_{-1}\left[\;'f\;'\right]) \\ L_{-1}\left[\;'R\;'\right] \; = \; L_{-1}\left[\;'Z\;'\right]*\,np\,.\,cos\,(np\,.\,radians\,(\,L_{-1}\left[\;'phi\;'\right])\,) \end{array}
# print(R_1)
# print(C_1)
# print(L_1)
 \begin{array}{lll} R_{-}1\_mean &=& ufloat\left(R_{-}1\left[\begin{array}{c} 'Z'\end{array}\right].mean()\;,\; np.std\left(np.array\left(R_{-}1\left[\begin{array}{c} 'Z'\end{array}\right]\right)\right))\\ C_{-}1\_mean &=& ufloat\left(C_{-}1\left[\begin{array}{c} 'C'\end{array}\right].mean()\;,\; np.std\left(np.array\left(C_{-}1\left[\begin{array}{c} 'C'\end{array}\right]\right)\right))\\ L_{-}1\_mean &=& ufloat\left(L_{-}1\left[\begin{array}{c} 'L'\end{array}\right].mean()\;,\; np.std\left(np.array\left(L_{-}1\left[\begin{array}{c} 'L'\end{array}\right]\right)\right)) \end{array} 
print('R_1=', R_1_mean)
print('C_1=', C_1_mean)
print('L_1=', L_1_mean)
 f_{-2}['U_{-20}'] = f_{-2}['U_{-20}']*10**(-3)
\begin{array}{lll} f_{-2}\left[\;'Z\;'\right] &=& R_{-}I &*& f_{-2}\left[\;'U\_M0\;'\right]/\; f_{-2}\left[\;'U\_20\;'\right] \\ f_{-2}\left[\;'G'\right] &=& 1/\; f_{-2}\left[\;'Z\;'\right] \\ f_{-2}\left[\;'phi\_G\;'\right] &=& -f_{-2}\left[\;'phi\;'\right] \end{array}
 # print (f_2)
def G_teor(f_teor, R_teor, L_teor, C_teor):
    omega = 2*np.pi*f_teor
    return 1 / (np.sqrt(R_teor**2 + (omega*L_teor.nominal_value - 1/(omega*C_teor.nominal_value))**2)
 def phi_G_teor(f_teor, R_teor, L_teor, C_teor):
    omega = 2*np.pi*f_teor
    return np.degrees(np.arctan((1/(omega*C_teor.nominal_value)-(omega*L_teor.nominal_value))/R_teor)
 f_teor = np.linspace(556.100, 969.100, 1000)
R_teor = R_1['Z'][2] + C_1['R'][2] + L_1['R'][2]
L_teor = L_1_mean
C_teor = C_1_mean
\begin{array}{lll} alpha\_teor &=& R\_teor/(2*L\_teor) \\ omega\_teor &=& 1/sqrt(L\_teor*C\_teor) \\ F\_teor &=& 1/L\_teor \\ Q\_teor &=& (L\_teor*omega\_teor)/R\_teor \\ f\_0\_teor &=& 1/(2*np.pi*sqrt(L\_teor*C\_teor)) \end{array}
print('alpha_teor=', alpha_teor)
print('omega_teor=', omega_teor)
print('F.teor=', F.teor)
print('Q.teor=', Q.teor)
print('R.celk=', R.teor)
print('f.o_teor=', f.o_teor)
 \begin{array}{lll} G\_teor\_values = G\_teor\left(f\_teor\;,\;R\_teor\;,\;L\_teor\;,\;C\_teor\right) \\ phi\_G\_teor\_values = phi\_G\_teor\left(f\_teor\;,\;R\_teor\;,\;L\_teor\;,\;C\_teor\right) \end{array}
 #RLC fit
```

```
def Gphi(omega0, alpha, omega): #faze ve stupnich
               return np.arctan((omega0**2-omega**2)/(2*alpha*omega))/np.pi*180
def residual(pars, omega, Gdata):
return Gabs(pars['F'],pars['omega0'],pars['alpha'],omega) - Gdata
fdata=f_2['f']
odata=fdata*2*np.pi
Gdata=f_2 [ 'G' ]
Phase=f_2 [ 'phi_G' ]
R=60
L=0.100
C=500E-9
ParsStart = Parameters()
ParsStart.add('F', value=1/L,vary=True)
ParsStart.add('omega0', value=1/np.sqrt(L*C),vary=True)
ParsStart.add('alpha', value=R/(2*L),vary=True)
minner = Minimizer(residual, ParsStart, fcn_args=(odata,Gdata))
results = minner.minimize()
{\tt ParsFit=\ results.params}
print(fit_report(results))
# FileStatistika= open('Statistika.dat', 'w+')
# print(fit_report(results), file=FileStatistika)
# FileStatistika.close()
F=ufloat(ParsFit['F'], ParsFit['F'].stderr)
omega0=ufloat(ParsFit['omega0'], ParsFit['omega0'].stderr)
alpha=ufloat(ParsFit['alpha'], ParsFit['alpha'].stderr)
R=2*L*alpha
C=1/(L*omega0**2)
Q=omega0/(2*alpha)
C-onegao/(2*arpna)
f0=omegao/(2*np.pi)
print("R=", R,"Ohm,-L=", L*1000,"mH,-C=", C*1E9,"nF,--Q=",Q, "f0=", f0, "Hz")
ftheor = np.arange(np.amin(fdata), np.amax(fdata), 1)
otheor=ftheor *2*np.pi
 \begin{array}{lll} GabsStart = & Gabs(ParsStart ["F"], ParsStart ["omega0"], ParsStart ["alpha"], otheor) \\ GphiStart = & Gphi(ParsStart ["omega0"], ParsStart ["alpha"], otheor) \\ GabsFit = & Gabs(ParsFit ["F"], ParsFit ["omega0"], ParsFit ["alpha"], otheor) \\ GphiFit = & Gphi(ParsFit ["omega0"], ParsFit ["alpha"], otheor) \\ \end{array} 
  \# \ FileFitSpekta = \ open('FitSpekta.dat', 'w+') \\  \# \ print ("f[Hz]", "\t", "GabsStart", "\t", "GphiStart", "\t", "GabsFit", "\t", "GphiFit", file=FileFitSpekta) 
  \# \ for \ i \ in \ range (len(ftheor)): \\  \# \ print \ (ftheor[i], "\ t", GabsStart[i], "\ t", GphiStart[i], "\ t", GabsFit[i], "\ t", GphiFit[i], \\  file=FileFitSpekta) 
# FileFitSpekta.close()
R_{\text{-}measur} = R
omega_measur = omega0
alpha = alpha
L_measur = L*1000
C_measur = C*1E9
F_measur = F
f_0=measur = f0
Q-measur = Q
# #Linear fitting
\begin{array}{lll} u\_c\_list = [0.18965242\,,\,\, -1.29941085\,,\,\, -2.11729032\,,\,\, -2.5510466\,,\,\, -2.78644109\,,\,\, -2.92356013\,,\,\, -2.98914254] \\ ln\_u\_list = np.log(u\_c\_list\_u\_f) \\ t\_c\_list = [0.07634\,,\,\, 0.0777\,,\,\, 0.07905\,,\,\, 0.08043\,,\,\, 0.0818\,,\,\, 0.08317\,,\,\, 0.08452] \end{array}
# Calculate linear regression parameters
alpha_d = ufloat(np.abs(slope), np.abs(std_err))
print('alpha_d'=', alpha_d)
# Create the best-fit line
best_fit_line = slope * np.array(t_c_list) + intercept
R_{-}G = 50
R_R_1 = 29.12
R_R_2 = 848.8
R_R_3 = 6002
R_{-}1_{-}3 \ = \ alpha_{-}d * 2 * L_{-}1_{-}mean
omega_d = sqrt (omega_measur **2 - alpha_d **2)
f_0_3 = omega_measur / (2 * np.pi)
\begin{array}{lll} R_{\tt celk\_1} = R_{\tt celk\_1} + C_{\tt celk\_2} & + L_{\tt l}['R'][2] \\ R_{\tt celk\_2} = R_{\tt celk\_2} + C_{\tt celk\_3} & + L_{\tt l}['R'][2] \\ R_{\tt celk\_3} = R_{\tt celk\_3} + C_{\tt celk\_3} & + L_{\tt l}['R'][2] \\ \end{array}
R_2 = 2 * omega_measur * L_1_mean
print('R_celk_1 :=', R_celk_1)
print('R_celk_2 :=', R_celk_2)
print('R_celk_3 :=', R_celk_3)
print('f-0-3'=', f-0-3)
print('R-1-3'=', R-1-3)
print('R-2-3'=', R-2-3)
```

```
print('omega_d = ', omega_d)

#Linear fitting
u_c_list_2 = scope_2['u_2'][443:1397]
u_f_2 = -3.04138675

ln_u_list_2 = np.log(u_c_list_2 - u_f_2)

# Calculate linear regression parameters
slope, intercept, r_value, p_value, std_err = stats.linregress(scope_2['t'][443:1397], ln_u_list_2)
lambda_1 = ufloat (np.abs(slope), np.abs(std_err))
print('lambda_1 = ', lambda_1)

# Create the best_fit line
best_fit_line = slope * np.array(scope_2['t'][443:1397]) + intercept

R_3_3 = -L_1_mean * ((omega_measur**2 + lambda_1**2) / lambda_1)
print('R_3_3-=', R_3_3)
```