Course: Basic Electronics (EC21101)

Course Instructor: Prof. Kapil Debnath

Lecture 9: Digital Logic gates

- Contact Email: k.debnath@ece.iitkgp.ac.in
- website: https://kdebnath8.wixsite.com/nanophotonics
- Office: R314, ECE Dept, Discussion time: Friday 5pm

Logic Gates

A logic gate is an elementary building block of a digital circuit. Most logic gates have two inputs and one output. At any given moment, every terminal is in one of the two binary conditions low (0) or high (1), represented by different voltage levels. The logic state of a terminal can, and generally does, change often, as the circuit processes data. In most logic gates, the low state is approximately zero volts (0 V), while the high state is approximately five volts positive (+5 V).

There are three basic logic gates: NOT, AND, OR

Two universal gates: NAND, NOR

Two Derived gates: XOR, XNOR

In this course we will study the basic gates and universal gates and simple digital circuits by combining some of the logic gates.

Truth table of Logic Gates

Truth tables specify how logic circuit's output depends on the logic levels present at the inputs.

BASIC GATES

NOT gate

Truth table

Input

Input	Output
A	Z
0	1
1	0

Outnut

OR gate

Logic Function: Z = A + B

Output

Truth table

Inputs

A	В	Z
0	0	0
0	1	1
1	0	1
1	1	1

AND gate

Logic Function: Z = AB

Output

Truth table

Inputs

A	В	Z
0	0	0
0	1	0
1	0	0
1	1	1

Truth table of Logic Gates

A universal gate is a gate which can implement any Boolean function without need to use any other gate type. The NAND and NOR gates are universal gates.

UNIVERSAL GATES

NAND gate

Logic Function: $Z = \overline{AB}$

Truth table

Innute

inputs		Output	
A	В	Z	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

Outnut

NOR gate

Logic Function:

$$Z = \overline{A + B}$$

Output

Truth table

Inputs

A	В	Z
0	0	1
0	1	0
1	0	0
1	1	0

Example of a digital system

Lets say we want to display number '3' (i.e. binary 11).

When any of the display segment (C0 to C6) gets logic 1 (say 5V) it will glow

The truth table of the circuit to display number '3' becomes:

Input	C ₀	C ₁	C ₂	C ₃	C ₄	C ₅	C ₆
1	1	1	1	1	1	1	0
1	1	1	1	1	0	0	1

Using the logic gates we can build a digital circuit to perform this task

De Morgan's theorem

De Morgan's Theorems are used to simplify Boolean expressions

De Morgan's First Theorems

$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

De Morgan's Second Theorems

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Proof of De Morgan's first theorem

Proof of De Morgan's second theorem

Realizing Basic gates using universal gates

NOT gate

Using NAND gate

Using NOR gate

OR gate

Using NAND gate

Using NOR gate

Realizing Basic gates using universal gates

AND gate

Using NAND gate

Using NOR gate

Use of De Morgan's theorem for circuit design

Realize a logic circuit to perform the following logic function

$$F = \overline{\left(\overline{X \cdot \overline{Y}}\right) \cdot \left(\overline{Y} + Z\right)}$$

Without using De Morgan's theorem

By using De Morgan's theorem

$$F = \overline{\left(\overline{X \cdot \overline{Y}}\right) \cdot \left(\overline{Y} + Z\right)} = \overline{\left(\overline{X \cdot \overline{Y}}\right)} + \overline{\left(\overline{Y} + Z\right)} = X \cdot \overline{Y} + \left(\overline{\overline{Y}} \cdot \overline{Z}\right) = X\overline{Y} + Y\overline{Z}$$

