第5回 1変量時系列モデルの定式化と推定(7.3.2, 7.5.1)

村澤 康友

2023年10月23日

今	∃の	ボー	イン	r

1.	$\left\{\Delta^d y_t ight\}$ が共分散定常なら $\left\{y_t ight\}$ を d 次
	の和分(単位根)過程という. $\{\Delta y_t\}$ が
	WN なら $\{y_t\}$ をランダム・ウォークと
	いう. $\left\{\Delta^d y_t\right\}$ が $\operatorname{ARMA}(p,q)$ なら $\left\{y_t\right\}$
	を (p,d,q) 次の自己回帰和分移動平均
	(ARIMA)過程という.

- 2. AR モデルの係数の OLS 推定量は不偏で ないが一致性をもつ.
- 3. ARMA モデルの尤度関数は予測誤差分解で計算する. 時系列の同時 pdf を尤度とする ML 法を厳密な ML 法, 初期値を所与とした条件つき pdf を尤度とする ML 法を条件つき ML 法という.
- 4. ARMA モデルの次数は AIC・SBIC・HQC 等のモデル選択基準で選ぶ.

目次

ARIMA 過程

1.1	差分と和分]
1.2	和分(単位根)過程(p. 231)	1
1.3	ARIMA 過程(p. 221)	2
2	AR モデルの OLS 推定	2
2.1	OLS 推定量	2
2.2	有限標本特性	2
2.3	漸近特性	2
3	正規 ARMA モデルの ML 推定	3
3.1	最尤(ML)法	:

3.2	予測誤差分解	3
3.3	厳密な ML 法(p. 221)	4
3.4	条件つき ML 法	4
4	次数選択	4
4.1	仮説検定とモデル選択	4
4.2	Kullback–Leibler 情報量	4
4.3	モデル選択基準(p. 224)	4
5	今日のキーワード	5
6	次回までの準備	5

1 ARIMA 過程

1.1 差分と和分

 $\{x_t\}$ を t=1 から始まる数列とする.

定義 1. $\{x_t\}$ の差分(階差)は $\{\Delta x_t\}$.

定義 2. $\{x_t\}$ の和分は $t \ge 1$ について

$$S_t := x_1 + \dots + x_t$$

注 1. $t \ge 1$ について

$$\Delta S_t := S_t - S_{t-1}$$
= $x_1 + \dots + x_t - (x_1 + \dots + x_{t-1})$
= x_t

すなわち和分は差分の逆の演算.離散空間上の差分 と和分の関係は、連続空間上の微分と積分の関係に 相当.

1.2 和分(単位根)過程(p. 231)

 $\{y_t\}$ を確率過程とする.

定義 3. $\{\Delta^d y_t\}$ が共分散定常なら $\{y_t\}$ を d 次の和分(単位根)過程という.

注 2. I(d) と書く. I(0) =共分散定常.

注 3. I(d) は I(0) に変換して分析する.

定義 4. $\{\Delta y_t\}$ がホワイト・ノイズなら $\{y_t\}$ をランダム・ウォークという.

注 $4. \{w_t\}$ を WN とすると、任意の t について

$$\Delta y_t = w_t$$

AR(1) は、任意のt について

$$\phi(\mathbf{L})(y_t - \mu) = w_t$$

ただし $\phi(L):=1-\phi L$. ランダム・ウォークは $\phi=1$ の AR(1). このとき $\phi(z):=1-z=0$ の根は z=1 (単位根).

1.3 ARIMA 過程 (p. 221)

 $\{y_t\}$ \mathcal{E} $\mathbf{I}(d)$ \mathcal{E} \mathcal{F} \mathcal{E} \mathcal{E} \mathcal{E} .

定義 5. $\left\{\Delta^d y_t\right\}$ が $\operatorname{ARMA}(p,q)$ なら $\left\{y_t\right\}$ を $\left(p,d,q\right)$ 次の自己回帰和分移動平均(ARIMA)過程という.

注 5. ARIMA(p,d,q) と書く.

2 AR モデルの OLS 推定

2.1 OLS 推定量

時系列 $(y_0, ..., y_T)$ に平均 0 の AR(1) モデルを 仮定する. すなわち t = 1, ..., T について

$$y_t = \phi y_{t-1} + w_t$$
$$\{w_t\} \sim WN(\sigma^2)$$

ただし $|\phi| < 1$. ϕ の OLS 推定量を $\hat{\phi}_T$ とすると

$$\hat{\phi}_T = \frac{\sum_{t=1}^T y_{t-1} y_t}{\sum_{t=1}^T y_{t-1}^2}$$

2.2 有限標本特性

定理 1. 一般に

$$\mathrm{E}\left(\hat{\phi}_{T}\right) \neq \phi$$

証明. 式変形すると

$$\hat{\phi}_{T} = \frac{\sum_{t=1}^{T} y_{t-1} y_{t}}{\sum_{t=1}^{T} y_{t-1}^{2}}$$

$$= \frac{\sum_{t=1}^{T} y_{t-1} (\phi y_{t-1} + w_{t})}{\sum_{t=1}^{T} y_{t-1}^{2}}$$

$$= \phi + \frac{\sum_{t=1}^{T} y_{t-1} w_{t}}{\sum_{t=1}^{T} y_{t-1}^{2}}$$

第2項の期待値は

$$E\left(\frac{\sum_{t=1}^{T} y_{t-1} w_{t}}{\sum_{t=1}^{T} y_{t-1}^{2}}\right)$$

$$= \sum_{t=1}^{T} E\left(\frac{y_{t-1} w_{t}}{\sum_{t=1}^{T} y_{t-1}^{2}}\right)$$

$$= E\left(\frac{y_{0} w_{1}}{\sum_{t=1}^{T} y_{t-1}^{2}}\right) + \dots + E\left(\frac{y_{T-1} w_{T}}{\sum_{t=1}^{T} y_{t-1}^{2}}\right)$$

$$= \cos\left(\frac{y_{0}}{\sum_{t=1}^{T} y_{t-1}^{2}}, w_{1}\right) + \dots$$

$$+ \cos\left(\frac{y_{T-1}}{\sum_{t=1}^{T} y_{t-1}^{2}}, w_{T}\right)$$

 w_1 は y_1, \dots, y_{T-1} と相関するので第 1 項は一般に 0 でない. 同様に他の項も一般に 0 でない. \Box

注 6. 無作為標本でないため OLS 推定量は不偏でない.

2.3 漸近特性

定理 2.

$$\lim_{T \to \infty} \hat{\phi}_T = \phi$$

証明. 式変形すると

$$\hat{\phi}_T = \phi + \frac{\sum_{t=1}^T y_{t-1} w_t}{\sum_{t=1}^T y_{t-1}^2}$$

$$= \phi + \frac{(1/T) \sum_{t=1}^T y_{t-1} w_t}{(1/T) \sum_{t=1}^T y_{t-1}^2}$$

エルゴード定理より

$$\underset{T \to \infty}{\text{plim}} \frac{1}{T} \sum_{t=1}^{T} y_{t-1} w_t = E(y_{t-1} w_t)$$

$$\underset{T \to \infty}{\text{plim}} \frac{1}{T} \sum_{t=1}^{T} y_{t-1}^2 = E(y_{t-1}^2)$$

漸近演算より

$$\begin{aligned} \min_{T \to \infty} \hat{\phi}_T &= \phi + \frac{\text{plim}_{T \to \infty} (1/T) \sum_{t=1}^T y_{t-1} w_t}{\text{plim}_{T \to \infty} (1/T) \sum_{t=1}^T y_{t-1}^2} \\ &= \phi + \frac{\text{E}(y_{t-1} w_t)}{\text{E}(y_{t-1}^2)} \end{aligned}$$

$$E(y_{t-1}w_t) = cov(y_{t-1}, w_t) = 0$$
 より第 2 項は 0.

注 7. すなわち OLS 推定量は一致性をもつ. また漸近正規性も証明できる(省略).

3 正規 ARMA モデルの ML 推定

3.1 最尤 (ML) 法

パラメトリックな確率過程を仮定する. 母数を θ とし, 観測する時系列の同時 pmf・pdf を $f(.;\theta)$ とする.

定義 6. ある母数の下で標本の実現値を観測する確率 (密度) を、その母数の**尤度**という.

注 $8.(y_1,\ldots,y_T)$ を観測する確率(密度)は

$$f(y_1,\ldots,y_T;\theta)$$

これを θ の「尤もらしさ」と解釈する.

定義 7. 標本の pmf・pdf を母数の尤度を表す関数 とみたものを**尤度関数**という.

注 9. $L(\theta; y_1, \ldots, y_T)$ と書く $((y_1, \ldots, y_T)$ と θ の位置が pmf・pdf と逆).

注 10. (y_1,\ldots,y_T) を観測したときの θ の尤度関数は

$$L(\theta; y_1, \dots, y_T) := f(y_1, \dots, y_T; \theta)$$

定義 8. 尤度関数の対数を対数尤度関数という.

注 11. $\ell(\theta; y_1, \ldots, y_T)$ と書く.

注 12. (y_1,\ldots,y_T) を観測したときの θ の対数尤度 関数は

$$\ell(\theta; y_1, \dots, y_T) := \ln L(\theta; y_1, \dots, y_T)$$
$$= \ln f(y_1, \dots, y_T; \theta)$$

定義 9. (対数) 尤度関数を最大にする解を母数 の推定値とする手法を**最尤 (**maximum likelihood, ML) 法という.

定義 10. ML 法による推定量を *ML* 推定量という.

定理 3. ML 推定量は一般に漸近有効.

証明. 省略(大学院レベル).

3.2 予測誤差分解

時系列 (y_1, \ldots, y_T) の同時 pdf を f(.), 条件つき pdf を f(.).) で表す.

定理 4 (予測誤差分解). 任意の (y_1, \ldots, y_T) について

$$f(y_1, \dots, y_T)$$

= $f(y_T|y_{T-1}, \dots, y_1) \cdots f(y_2|y_1) f(y_1)$

証明. 条件つき pdf の定義より, 任意の (y_1, \ldots, y_T) について

$$f(y_1, \dots, y_T)$$

$$= \frac{f(y_1, \dots, y_T)}{f(y_1, \dots, y_{T-1})} \frac{f(y_1, \dots, y_{T-1})}{f(y_1, \dots, y_{T-2})} \cdots$$

$$\frac{f(y_1, y_2)}{f(y_1)} f(y_1)$$

$$= f(y_T | y_{T-1}, \dots, y_1) f(y_{T-1} | y_{T-2}, \dots, y_1) \cdots$$

$$f(y_2 | y_1) f(y_1)$$

注 13. 確率の乗法定理と同じ.

例 1. 時系列 (y_1, \ldots, y_T) に平均 0 の正規 AR(1) モデルを仮定する. すなわち $t = 1, \ldots, T$ について

$$y_t = \phi y_{t-1} + w_t$$
$$\{w_t\} \sim \text{IN}(0, \sigma^2)$$

ただし $|\phi| < 1.^{*1} \operatorname{var}(y_1) = \sigma^2 / (1 - \phi^2)$ より

$$y_1 \sim N\left(0, \frac{\sigma^2}{1 - \phi^2}\right)$$

また $t=2,\ldots,T$ について

$$y_t | y_{t-1}, \dots, y_1 \sim N(\phi y_{t-1}, \sigma^2)$$

^{*1} IN $(0, \sigma^2)$ は独立な N $(0, \sigma^2)$ の意味.

予測誤差分解より尤度関数は

$$L(\phi, \sigma^{2}; y_{1}, \dots, y_{T})$$

$$= f(y_{1}, \dots, y_{T})$$

$$= f(y_{T}|y_{T-1}, \dots, y_{1}) \cdots f(y_{2}|y_{1}) f(y_{1})$$

$$= \prod_{t=2}^{T} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{(y_{t} - \phi y_{t-1})^{2}}{2\sigma^{2}}\right)$$

$$\frac{1}{\sqrt{2\pi\sigma^{2}/(1 - \phi^{2})}} \exp\left(-\frac{y_{1}^{2}}{2\sigma^{2}/(1 - \phi^{2})}\right)$$

対数尤度関数は

$$\ell(\phi, \sigma^2; y_1, \dots, y_T)$$

$$:= \ln L(\phi, \sigma^2; y_1, \dots, y_T)$$

$$= \sum_{t=2}^{T} \left\{ -\frac{1}{2} \ln 2\pi - \frac{1}{2} \ln \sigma^2 - \frac{(y_t - \phi y_{t-1})^2}{2\sigma^2} \right\}$$

$$-\frac{1}{2} \ln 2\pi - \frac{1}{2} \ln \frac{\sigma^2}{1 - \phi^2} - \frac{y_1^2}{2\sigma^2/(1 - \phi^2)}$$

$$= -\frac{T}{2} \ln 2\pi - \frac{T}{2} \ln \sigma^2 + \frac{1}{2} \ln (1 - \phi^2)$$

$$-\frac{(1 - \phi^2)y_1^2}{2\sigma^2} - \frac{1}{2\sigma^2} \sum_{t=2}^{T} (y_t - \phi y_{t-1})^2$$

3.3 厳密な ML 法 (p. 221)

定義 11. (y_1, \ldots, y_T) の同時 pdf を尤度とする ML 法を厳密な ML 法という.

注 14. 漸近有効だが尤度の計算が複雑(ARMA モデルを状態空間モデルで表現し、カルマン・フィルターで尤度を計算する).

3.4 条件つき ML法

定義 12. 初期値 (y_1, \ldots, y_p) と (w_{p-q+1}, \ldots, w_p) を所与とした (y_{p+1}, \ldots, y_T) の条件つき pdf を尤度とする ML 法を**条件つき** *ML* 法という.

注 15. 初期値の周辺 pdf を省くため漸近有効でないが,推定が簡単になる.AR モデルなら条件つき ML 法= OLS.

4 次数選択

4.1 仮説検定とモデル選択

予測モデルの次数選択は仮説検定と異なる.

1. 真の次数が無限大なら真のモデルは推定できず

仮説検定も無意味.

2. 真の次数が有限でも推定する係数が多いと予測値が不安定になる.

モデル選択基準による次数選択が便利.

4.2 Kullback-Leibler 情報量

確率変数 Y の真の分布を $f_0(.)$, 予測モデルの下での分布を f(.) とする.

定義 13. f(.) の $f_0(.)$ に対する Kullback-Leibler 情報量は

$$I(f(.); f_0(.)) := -\operatorname{E}_{f_0}\left(\ln\frac{f(Y)}{f_0(Y)}\right)$$

注 16. f(.) の $f_0(.)$ に対する「距離」を表す。 $f(.) = f_0(.)$ なら「距離」は 0 で最小。 ただし真の次数が無限大なら $f_0(.)$ は予測に使えない。 式変形すると

$$I(f(.); f_0(.)) = - \operatorname{E}_{f_0}(\ln f(Y)) + \operatorname{E}_{f_0}(\ln f_0(Y))$$

第 1 項を最小化,すなわち $\mathrm{E}_{f_0}(\ln f(Y))$ を最大化する f(.) が最適な予測モデル. $\mathrm{E}_{f_0}(\ln f(Y))$ は未知なので推定が必要.

4.3 モデル選択基準 (p. 224)

定常過程 $\{Y_t\}$ の 1 期先予測モデルを $f(.; \boldsymbol{\theta})$ とする. $\mathrm{E}(\ln f(Y_t; \boldsymbol{\theta}))$ を最大化する $\boldsymbol{\theta}$ を $\boldsymbol{\theta}^*$ とする. $\mathrm{E}(\ln f(Y_t; \boldsymbol{\theta}^*))$ の推定は 2 つの推定を含む.

- 1. \varTheta* の推定
- 2. θ^* を所与とした $\mathrm{E}(\ln f(Y_t; \theta^*))$ の推定

 θ^* が既知ならエルゴード定理より

$$\operatorname{plim}_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \ln f(Y_t; \boldsymbol{\theta}^*) = \operatorname{E}(\ln f(Y_t; \boldsymbol{\theta}^*))$$

 $m{ heta}^*$ の ML 推定量を $\hat{m{ heta}}_T$ とする.左辺の $m{ heta}^*$ を $\hat{m{ heta}}_T$ で置き換えると右辺の推定量として偏りが生じるので修正が必要.未知係数の数を k とする.

補題 1. 任意の θ と (y_1, \ldots, y_T) について

$$\sum_{t=1}^{T} \ln f(y_t; \boldsymbol{\theta}) = \ell(\boldsymbol{\theta}; y_1, \dots, y_T)$$

証明. 予測誤差分解より

$$f(y_1,\ldots,y_T;\boldsymbol{\theta}) = \prod_{t=1}^T f(y_t;\boldsymbol{\theta})$$

したがって

$$\ell(\boldsymbol{\theta}; y_1, \dots, y_T) := \ln f(y_1, \dots, y_T; \boldsymbol{\theta})$$
$$= \sum_{t=1}^T \ln f(y_t; \boldsymbol{\theta})$$

定義 14. 赤池の情報量基準 (Akaike's information criterion, AIC) は

AIC :=
$$-2\ell\left(\hat{\boldsymbol{\theta}}_T; y_1, \dots, y_T\right) + 2k$$

注 17. AIC が最小のモデルを選択する. 第 2 項は偏りの修正項であり、モデルの大きさに対するペナルティーと解釈できる.

定義 15. 真のモデルを選ぶ確率が $T \to \infty$ で 1 に 収束する性質をモデル選択基準の一致性という.

注 18. AIC は一致性をもたない(過剰定式化の傾向がある).

定義 16. Schwarz のベイズ情報量基準 (Schwarz's Bayesian information criterion, SBIC) は

SBIC :=
$$-2\ell\left(\hat{\boldsymbol{\theta}}_T; y_1, \dots, y_T\right) + k \ln T$$

注 19. θ^* をベイズ法で推定した場合の周辺尤度 $\mathrm{E}(\ell(\theta^*;y_1,\ldots,y_T))$ のラプラス近似から得られる.

注 20. SBIC は一致性をもつ. $\ln T > 2$ ならモデルの大きさに対するペナルティーが AIC より大きく、AIC より小さいモデルを選択する.

定義 17. Hannan-Quinn の基準 (Hannan-Quinn criterion, HQC) は

$$\mathrm{HQC} := -2\ell\left(\hat{\boldsymbol{\theta}}_T; y_1, \dots, y_T\right) + 2k \ln \ln T$$

注 21. HQC も一致性をもつ。モデルの大きさに対するペナルティーは AIC と SBIC の中間.

5 今日のキーワード

差分(階差),和分,和分(単位根)過程,ランダム・ウォーク,自己回帰和分移動平均(ARIMA)過程,尤度,尤度関数,対数尤度関数,最尤(ML)法,ML 推定量,予測誤差分解,厳密な ML 法,条件つき ML 法,Kullback-Leibler 情報量,赤池の情報量基準(AIC),一致性,Schwarz のベイズ情報量基準(SBIC),Hannan-Quinn の基準(HQC)

6 次回までの準備

提出 宿題 5

復習 教科書第7章3.2,5.1節,復習テスト5

予習 特になし