MATH-251: HOMEWORK 3

BLAKE FARMAN

1. For each fixed non-zero $k \in \mathbb{Q}$, the map

$$\varphi:\mathbb{Q}\to\mathbb{Q}$$

$$q \mapsto kq$$

is an automorphism of \mathbb{Q} .

Proof. Let $p,q\in\mathbb{Q}$ be distinct. Since k is fixed, by the left cancellation law $\varphi(p)=\varphi(q)$ only if p=q. Hence φ is injective.

To see that φ is surjective, let p be given and observe that there exists some $q \in \mathbb{Q}$ such that $\varphi(q) = p$. Since k is non-zero, take $q = \frac{p}{k}$. Then $\varphi(q) = p$. Therefore φ is a bijection.

It remains only to show that φ is a homomorphism. Let $p,q\in\mathbb{Q}$ be given. Then

$$\varphi(p+q) = k(p+q)$$

$$= kp + kq$$

$$= \varphi(p) + \varphi(q).$$

Therefore, φ is an automorphism of \mathbb{Q} .

2. Let G be any group and let A = G. Show that the maps defined by $g \cdot a = gag^{-1}$ do satisfy the axioms of a (left) group action.

Proof. i) Let $g_1, g_2 \in G$ and $a \in A$ be given. Then

$$(g_1g_2) \cdot a = g_1g_2a(g_1g_2)^{-1}$$

= $g_1(g_2ag_2^{-1})g_1^{-1}$
= $g_1 \cdot (g_2 \cdot a)$.

Date: Friday, September 24, 2010.

ii) Let $a \in A$ be given. Since A = G, observe that 1a = a1 = a and $1^{-1} = 1$. So it follows that

$$1 \cdot a = 1a1^{-1}$$
$$= 1a1$$
$$= a.$$

3. Let G be a group and let G act on itself by left conjugation, so each $g \in G$ maps G to G by

$$x \mapsto gxg^{-1}$$
.

For fixed $g \in G$, prove that conjugation by g is an automorphism of G. Deduce that x and gxg^{-1} have the same order for all x in G and that for any subset A of G, $|A| = |gAg^{-1}|$, where $gAg^{-1} = \{gag^{-1} \mid a \in A\}$.

Proof. Fix $g \in G$ and let φ be defined by

$$\varphi:G\to G$$

$$x \mapsto qxq^{-1}$$
.

Let $\alpha, \beta \in G$ be distinct. Since g is fixed, by the cancellation laws $\varphi(\alpha) = \varphi(\beta)$ only if $\alpha = \beta$. Hence φ is injective.

Now let $\beta \in G$ be given. To see φ is surjective, observe that there exists some $\alpha \in G$ such that $\varphi(\alpha) = \beta$. Namely take $\alpha = g^{-1}\beta g$. Then $\varphi(\alpha) = \beta$. Therefore φ is a bijection.

It remains only to show that φ is a homomorphism. Let $\alpha, \beta \in G$ be given. Then

$$\varphi(\alpha\beta) = g\alpha\beta g^{-1}$$

$$= (g\alpha g^{-1})(g\beta g^{-1})$$

$$= \varphi(\alpha)\varphi(\beta).$$

Therefore φ is an automorphism of G.

That $|A| = |gAg^{-1}|$ follows immediately from the bijective property of φ . To see x and gxg^{-1} have the same order for all x in G, let n = |x| and consider $\varphi(x^n)$. From the previous homework set, $\varphi(x^n) = \varphi(x)^n$ implies $(gxg^{-1})^n = 1$ and thus

 $|gxg^{-1}| \le n$. Now suppose there exists some k < n such that $(gxg^{-1})^k = 1$. Then

$$\varphi(x^k) = (gxg^{-1})^k$$

$$= 1$$

$$= \varphi(1).$$

Since φ is injective, this implies $x^k = 1$. This is a contradiction. Therefore, x and gxg^{-1} have the same order.

4. Show that the specified subset is or is not a subgroup of the given group.

Proof. a) $H = \{a + ai \mid a \in \mathbb{R}\} \subseteq \mathbb{C}$. Let $a = \alpha + i\alpha, b = \beta + i\beta$ be given. Then $ab = (\alpha + \beta) + i(\alpha + \beta)$. Hence H is closed under addition. Furthermore, for any $a \in H$, its inverse $-a = (-\alpha) + i(-\alpha) \in H$ implies $H \leq \mathbb{C}$.

b)
$$H = \{\alpha + i\beta \mid \alpha^2 + \beta^2 = 1\} \subseteq \mathbb{C}$$
. Let $a = \alpha + i\beta, b = \gamma + i\delta$ be given. Then

$$|ab| = (\alpha\gamma - \beta\delta)^2 + (\alpha\delta + \beta\gamma)^2$$

$$= (\alpha\gamma)^2 - 2\alpha\beta\gamma\delta + (\beta\delta)^2 + (\alpha\delta)^2 + 2\alpha\beta\gamma\delta + (\beta\gamma)^2$$

$$= \gamma^2(\alpha^2 + \beta^2) + \delta^2(\alpha^2 + \beta^2)$$

$$= \gamma^2 + \delta^2$$

$$= 1.$$

Hence H is closed under addition. So for any $a \in H$ consider $a^{-1} = \frac{\alpha - i\beta}{\alpha^2 + \beta^2}$. Then $a^{-1} = \bar{a} \in H$ implies H is closed under inverses. Therefore, $H \leq \mathbb{C}$.

c)
$$H=\{rac{p}{q}\in\mathbb{Q}\mid (q,n)=q, \text{fixed } n\in\mathbb{Z}^+\}\subseteq\mathbb{Q}.$$
 Let $x,y\in H$ be given. Then

$$x + y = \frac{p}{q} + \frac{r}{s} = \frac{ps + rq}{qs}.$$

If $qs \leq n$, then qs divides n. So, assume that qs > n. If this is the case, then it must be that g = (q, s) > 1. Then

$$\frac{ps+rq}{qs} = \frac{(gj)p+(gk)r}{g^2(jk)}, \text{ for some } j,k \in \mathbb{Z}.$$

So the denominator becomes gjk, where g,j and k are all necessarily relatively prime factors of n and thus $gjk \leq n$. Therefore, H is closed under addition. Furthermore, for any $x \in H$, $x^{-1} = -x \in H$ implies that H is closed under inverses. Therefore, $H \leq \mathbb{Q}$.

d) $H=\{\frac{p}{q}\in\mathbb{Q}\mid (n,q)=1, \text{fixed } n\in\mathbb{Z}^+\}\subseteq\mathbb{Q} \text{Let } x,y\in H \text{ be given. Then }$

$$x + y = \frac{p}{q} + \frac{r}{s} = \frac{ps + rq}{qs}.$$

Since (q, n) = 1 and (s, n) = 1, (qs, n) = 1 which implies $x + y \in H$. Hence H is closed under addition. Furthermore, for any $x \in H$, $x^{-1} = -x \in H$ implies H is closed under inverse. Therefore, $H \leq \mathbb{Q}$.

- e) $H = \{a > 0 \in \mathbb{R} \mid a^2 \in \mathbb{Q}\} \subseteq \mathbb{R}$. Let $x, y \in H$ be given. Then since \mathbb{Q} is closed under the commutative multiplication operation, $(xy)^2 = x^2y^2 \in \mathbb{Q}$. Hence $xy \in H$ implies H is closed under multiplication. Furthermore, since each $x \in H$ is non-zero, it is invertible and its inverse $\frac{1}{x} \in H$. Therefore $H \leq \mathbb{R}$.
- a) The set of 2-cycles in S_n for $n \geq 3$ is not closed under composition. Let $\sigma = (1 \quad 2)$ and let $\tau = (2 \quad 3)$. Then

$$\sigma\tau = (1 \ 2)(2 \ 3)$$

$$= (1 \ 2 \ 3).$$

Therefore the set of 2-cycles in S_n for $n \geq 3$ is not a subgroup.

b) The set of reflections in D_{2n} for $n \geq 3$ is not closed under the group operation. Take s and sr^2 for example:

$$s(sr^2) = r^2.$$

Therefore the set of reflections in D_{2n} for $n \geq 3$ is not a subgroup.

- c) $H = \{x \in G \mid |x| = n\} \cup \{1\} \subseteq G$. Let $x \in H$ be given. In order to be closed, x^2 must be an element of G. However, $(x^2)^{\frac{n}{2}} = 1$ implies that the order of x^2 is strictly less than n. Therefore H is not a subgroup of G.
- $d)H = \{x \in \mathbb{Z} \mid x \equiv 1(2)\} \cup \{0\} \subseteq \mathbb{Z}$. Since the sum of any two odd integers is always even, H is not closed under addition. Therefore H is not a subgroup.
- e) $H = \{x \in \mathbb{R} \mid x^2 \in \mathbb{Q}\} \subseteq \mathbb{R}^+$. Take the two elements $\sqrt(2), \sqrt(3) \in H$. The square of their sum is the irrational number

$$(\sqrt{2} + \sqrt{3})^2 = 2 + 2\sqrt{2}\sqrt{3} + 3.$$

Hence H is not a subgroup.

- **5.** Let A and B be groups. Prove that the following sets are subgroups of the direct product $A \times B$:
 - a) $G_1 = \{(a,1) \mid a \in A\}$
 - $b) G_2 = \{(1, b) \mid b \in B\}$
 - c) $G_3 = \{(a, a) \mid a \in A\}$, where here we assume B = A.

Proof. Since A and B are both groups, for any two elements $(x_1, 1), (x_2, 1) \in G_1$, $(1, y_1), (1, y_2) \in G_2$ or $(x_1, y_2), (x_2, y_2) \in G_3$ of the above subsets, their respective products $(x_1x_2, 1), (1, y_1y_2), (x_1x_2, y_1y_2)$ are clearly an element of their respective subset. Hence the subsets are closed under the group operation.

Moreover, any such elements have inverses which are elements of their respective subsets, $(x,1)^{-1}=(x^{-1},1),\ (1,y)^{-1}=(1,y^{-1}),\ {\rm and}\ (x,y)^{-1}=(x^{-1},y^{-1}).$ Therefore, all three sets are subgroups of $A\times B$.

6 a). Prove that if H and K are subgroups of G then so is their intersection, $H \cap K$.

Proof. For any element $x \in H \cap K$, $x \in H$ and $x \in K$ by definition. Since H and K are both subgroups of G, $x^{-1} \in H$ and $x^{-1} \in K$ implies $H \cap K$ is closed under inverses.

Similarly, for any $x, y \in H \cap K$, $xy \in K$ and $xy \in H$ implies $H \cap K$ is closed under multiplication. Therefore $H \cap K$ is a subgroup of G.

b). Prove that the intersection of arbitrary non-empty subgroups of G is a subgroup.

Proof. Let I be an arbitrary index set and let $G_i \leq G$, for each $i \in I$. Let $g_1, g_2 \in \bigcap_{i \in I} G_i$. Then by definition $g_1, g_2 \in G_i$, for each $i \in I$. Since each G_i is a subgroup it's necessarily closed under multiplication and inverses, so $g_1g_2 \in \bigcap_{i \in I} G_i$ and $g_1^{-1} \bigcap_{i \in I} G_i$ implies $\bigcap_{i \in I} G_i \leq G$.

7. Let H and K be subgroups of G. Prove that $H \cup K$ is a subgroup if and only if either $H \subseteq K$ or $K \subseteq H$.

Proof. To show that $H \cup K \leq G$ implies $H \subseteq K$ or $K \subseteq H$, it suffices to show the contrapositive. Assume it is not the case that $H \subseteq K$ or $K \subseteq H$. Then there exist elements of $H \cup K$, $x \in H$ and $y \in K$ such that $x, y \notin H \cap K$. Observe that

$$x^{-1}(xy) = y \notin H$$
 and $(xy)y^{-1} = x \notin K$.

Since H and K are both subgroups of G, it follows that $xy \notin H$ and $xy \notin K$. Hence $H \cup K$ is not closed under multiplication and thus it is not a subgroup of G, as desired.

Conversely, it suffices to assume that $H \subseteq K$. Then, by definition, for any $x,y \in H \cup K$, $x,y \in K$. Since K is a subgroup of G, $H \cup K$ is closed under multiplication and under inverses. Hence $H \cup K$ is a subgroup of G. Therefore, $H \cup K$ is a subgroup of G if and only if either $H \subseteq K$ or $K \subseteq H$.