

(a)
$$\sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} = 1,$$

(b)
$$\sum_{k=0}^{n} k \binom{n}{k} p^k (1-p)^{n-k} = np.$$

a)
$$\sum_{k=0}^{n} {n \choose k} p^{k} (1-p)^{n-k} = (1-p+p)^{n-1}$$

b) $\sum_{k=0}^{n} k {n \choose k} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} k {n \choose k} p^{k} (1-p)^{n-k} = \sum_{k=1}^{n} n \cdot {n-1 \choose k-1} p^{k} (1-p)^{n-k} = n$
 $= np \sum_{k=1}^{n} {n-1 \choose k-1} p^{k-1} (1-p)^{n-1-(k-1)} = np (1-p)^{n-1} = np \cdot (1-p)^{n-1} = np$

 $\left(\times + y \right)^n = \sum_{k=0}^n \binom{n}{k} \times y$

$$k \cdot \binom{n}{k} = k \cdot \frac{n!}{k! \cdot n - k!} = \frac{n!}{(k-1)! \cdot (n-k)!} = n \cdot \frac{(n-1)!}{(k-1)! \cdot (n-k)!} = n \cdot \frac{(n-1)!}{(k-1)! \cdot (n-k-1)!} = n \cdot \binom{n-1}{k-1}$$

(a)
$$\sum_{\substack{k=0\\\infty}}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = 1,$$

(b)
$$\sum_{k=0}^{\infty} k \cdot e^{-\lambda} \frac{\lambda^k}{k!} = \lambda.$$

a)
$$\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^{k}}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} = e^{-\lambda} e^{\lambda} = e^{-\lambda} e^{\lambda}$$

$$e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} = e^{-\lambda} e^{\lambda} = e^{-\lambda} e^{\lambda} = e^{-\lambda} e^{\lambda}$$

$$e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} = e^{-\lambda} e^{\lambda} = e^{-\lambda} e^{\lambda}$$

$$e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} = e^{-\lambda} e^{\lambda} = e^{-\lambda} e^{\lambda}$$

$$e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} = e^{-\lambda} e^{\lambda} = e^{-\lambda} e^{\lambda}$$

b)
$$\sum_{k=0}^{\infty} k! = \sum_{k=1}^{\infty} \frac{k!}{k!} \leq 52e^{k} \frac{k!}{k!} \leq 52e^{k} \frac{k!}{k!} = \sum_{k=1}^{\infty} e^{-\lambda} \frac{k^{k-1}}{(k-1)!} = \lambda \cdot 1 = \lambda$$

3. Funkcja Γ-Eulera nazywamy wartość całki:

$$\Gamma(p) = \int_0^\infty t^{p-1} e^{-t} dt, \ p > 0.$$

Wykazać, że $\Gamma(p) = (p-1) \Gamma(p-1), \ p \in \mathbb{R}_+, \text{ w szczególności } \Gamma(n) = (n-1)!, \ n \in \mathbb{N}.$ UWAGA: nie dowodzimy istnienia całek, tylko formalne przekształcenia.

a)
$$\Gamma(p) = \int_{0}^{\infty} t^{p-1} e^{-t} dt = -\frac{t^{p-1}}{e^{+}} \Big|_{0}^{\infty} - \int_{0}^{\infty} (p-1) t^{p-2} \cdot (-e^{-t}) dt = \frac{t^{p-1}}{e^{+}} \Big|_{0}^{\infty} - \int_{0}^{\infty} (p-1) t^{p-2} \cdot (-e^{-t}) dt = \frac{t^{p-1}}{e^{+}} \Big|_{0}^{\infty} + \frac{t^{p-1}}{e^{+}} \Big|_{0}^{\infty} +$$

b) Wystarry pohazaci, że ~(1)=1

 $\Gamma(1) = \int_{0}^{\infty} t^{1-1} e^{-t} dt = \int_{0}^{\infty} e^{-t} = -e^{-t} \Big|_{0}^{\infty} = 0 - (-1) = 1$

4. Niech
$$f(x) = \lambda \exp(-\lambda x)$$
, gdzie $\lambda > 0$. Obliczyć wartości całek:

(a)
$$\int_{0}^{\infty} f(x) dx$$
,

(b)
$$\int_0^\infty x f(x) dx.$$

$$f(x) = \lambda e^{-\lambda x}$$
, $\lambda > 0$

a)
$$\int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} \lambda e^{-\lambda x} dx$$
 $\int_{0}^{\infty} \int_{0}^{\infty} \lambda \frac{e^{+}}{\lambda} dt = \int_{0}^{\infty} e^{+} dt = -e^{-1} \Big|_{0}^{\infty} = 0 - (-1)^{2} 1$

$$\int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} \lambda e^{-\lambda x}$$

$$\frac{1}{d+2} \lambda dx$$

$$\int_{a}^{\infty} \chi \lambda e^{-\lambda x}$$

$$d_{x} = \int_{0}^{\infty} \times \lambda e^{-\lambda x}$$

b)
$$\int_{0}^{\infty} \times \int_{0}^{\infty} \left(\frac{1}{x} \right) dx = \int_{0}^{\infty} \left(\frac{1}{x} \right) dx =$$

$$\int_{x} dx = -xe^{-\lambda x} \Big|_{0}^{\infty}$$

$$-\times e^{-\lambda} \Big|_{0}^{\infty} + \int_{c}^{\infty}$$

$$\int_{0}^{\infty} x f(x) dx = \int_{0}^{\infty} x \lambda e^{-\lambda x} dx = -xe^{-\lambda x} \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-\lambda^{2}} dx = 0 + \frac{1}{\lambda}$$

$$|f(x) = x + \frac{1}{\lambda} \int_{0}^{\infty} e^{-\lambda^{2}} dx = 0$$

$$|f'(x) = 1 + \frac{1}{\lambda} \int_{0}^{\infty} e^{-\lambda^{2}} dx = 0$$

$$|f'(x) = 1 + \frac{1}{\lambda} \int_{0}^{\infty} e^{-\lambda^{2}} dx = 0$$

$$|f'(x) = 1 + \frac{1}{\lambda} \int_{0}^{\infty} e^{-\lambda^{2}} dx = 0$$

5. V	Vyka	ızać,	że <i>L</i>	$O_n =$	n, g	dzie																			
								1	-1	-1		_1	ι												
								1	1																
							$D_n =$: <u>1</u>		1			-												
								1			٠.]	L												
l <i>i</i>		,							_		7	1		1		r									
Mam	9 1	Doha z	≥a c′	ize	wyz	na U2n	ik mad	ierzy	Un	= n .	Las	Tosuje	my e	imina	49 (yauss	Œ								
(1				,					1 .																
Cha	2 my	preh	sztω	luc	Dn	do	madery	d	olnoti	vójhu	tnej	Wte	dy h	yzni	1024	ciem	Dn	ba	dzie	ilo	agn u	y 1426.	u na p	nekatnej:	
	1	- /1	-1		• •	. – 1	13	qdz	iemy	e	limir	owa	·c	ele	men	ty	Z	pie	/W52	eyo	wie	√52Œ			
	1	- 1 1					2	? u	pol	mo C	limir en k	olei	nyd	1 w	ie v52	y :									
	1		1										J		-										
	:			٠, ر						R, +	R ₂														
	1				`.					R1+	R3														
	1					1				:															
	İ									R1	+ Rn														
	12	\bigcirc	- 1	_1		-1		١,	0.	. 1.		, ',				1	1.				- /				
	1	0		,				ич 7 (χe	bal	quie	wie 1	W 52 0	0	2 WIE	usry	ele	men	d	1,1 	0 1				
	1	,	1					W	90	, ,	sta	levzv	ıe.	d1	1 -	n	10	υn	ľ	es1 1	ma	462	5		
	-			٠.				de	יטמול	tvojl	nustu. nej	us,	g dr	ie	20.	2051	are	el	2ma	rty	uæ		_	0 1	
	:			`	٠.			1	ve l	nust 1	ny	mo	ig	Wa	v to	561	(r	ie h	ptyi	vamy	na wi	W52l	K2-	K_n	
	'. 	1																							
	/					1																			
	n	0	0			0																			
	1	0																							
	1		Λ																						
	'.				` ,																				
	Λ					1																			

6. **(2p.)** Niech
$$I = \int_{-\infty}^{\infty} \exp\left\{-\frac{x^2}{2}\right\} dx$$
. Mamy $I^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left\{-\frac{x^2 + y^2}{2}\right\} dy dx$. Stosując podstawienie $x = r\cos\theta$, $y = r\sin\theta$, wykazać, że $I^2 = 2\pi$.

$$I = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^2 + y^2}{2}} dy dx$$

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{x^{2}+y^{2}}{2}} dy dx$$

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$\begin{array}{c|c}
r & cos & \Theta \\
r & sin & \Theta
\end{array}$$

$$\frac{dx}{dx} \left| \begin{array}{c} cos & \Theta \\ -rsin(\Theta) \end{array} \right|$$

$$\frac{dx}{dx} = r \cos \theta$$

$$\frac{dx}{d\theta} = \cos \theta - r \sin(\theta)$$

$$\begin{array}{c|c} z & cos & \Theta \\ \hline z & r & sin & \Theta \end{array}$$

$$\begin{array}{c|c} dx & cos & \Theta & -rsin(\Theta) \\ \hline \end{array}$$

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$\int \frac{dx}{dr} \frac{dx}{d\theta} = \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \frac{dy}{d\theta} = \sin \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \frac{dy}{d\theta} = \sin \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \frac{dy}{d\theta} = \sin \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$\int \frac{dy}{dr} \cos \theta \cos \theta \cos \theta \cos \theta \cos \theta$$

$$s(\theta)^2 + rsin(\theta)$$

$$\frac{1}{2} + r \sin(\theta)$$

 $= \theta \Big|_{0}^{2n} = 2n$

$$\int_{0}^{2} = \int_{0}^{2n} \int_{0}^{\infty} |r| e^{-\frac{r^{2}(\cos(\theta)^{2} + r^{2}\sin(\theta)^{2}}{2}} dr d\theta = \int_{0}^{2n} \int_{0}^{\infty} |r| e^{-\frac{r^{2}}{2}} dr d\theta = \int_{0}^{2n} -\frac{r^{2}}{2} dr d\theta = \int_{0}^{2n} -\frac{r^{2}$$

7. Symbol
$$\bar{s}$$
 oznacza srednią ciągu s_1,\ldots,s_n . Udowodnić, że: (a) $\sum_{k=1}^n (x_k - \bar{x})^2 = \sum_{k=1}^n x_k^2 - n \cdot \bar{x}^2$,

(b)
$$\sum_{k=1}^{k=1} (x_k - \bar{x})(y_k - \bar{y}) = \sum_{k=1}^{n} x_k y_k - n\bar{x}\bar{y}.$$

(b)
$$\sum_{k=1} (x_k - \bar{x})(y_k - \bar{y}) = \sum_{k=1} x_k y_k - nx_k$$

a)
$$\sum_{k=1}^{n} (x_k - \overline{x})^2 = \sum_{k=1}^{n} x_k^2 + \overline{x}^2 - 2 x_k \overline{x}^2 = \sum_{k=1}^{n} x_k^2 + \sum_{k=1}^{n} \overline{x}^2 - \sum_{k=1}^{n} 2 x_k \cdot \overline{x} =$$

$$= \sum_{k=1}^{n} \chi_{k}^{2} + n \overline{\chi}^{2} - 2 \overline{\chi} \sum_{k=1}^{n} \chi_{k} = \sum_{k=1}^{n} \chi_{k}^{2} + n \overline{\chi}^{2} - 2 \overline{\chi} (n \overline{\chi}) = \sum_{k=1}^{n} \chi_{k}^{2} + n \overline{\chi}^{2} - 2 n \overline{\chi}^{2} =$$

$$= \sum_{k=1}^{n} \chi_k^2 - n\bar{\chi}^2$$

$$= \sum_{k=1}^{n} \chi_{k}^{2} - n\bar{\chi}$$

$$= \sum_{k=1}^{n} \chi_{k}^{2} - n\bar{\chi}$$

$$= \sum_{k=1}^{\infty} \chi_k^2 - n\bar{\chi}^2$$

$$x_{\mu} - n\bar{x}$$

b)
$$\sum_{k=1}^{n} (\chi_k - \overline{\chi}) (y_k - \overline{y}) = \sum_{k=1}^{n} \chi_k y_k - \overline{y} \chi_k - \overline{\chi} y_k + \overline{\chi} \overline{y} = \sum_{k=1}^{n} \chi_k y_k - \sum_{k=1}^{n} \overline{y} \chi_k - \sum_{k=1}^{n} \overline{\chi} y_k + \sum_{k=1}^{n} \overline{\chi} \overline{y} = \sum_{k=1}^{n} \chi_k y_k - \sum_{k=1}^{n} \overline{y} \chi_k - \sum_{k=1}^{n} \overline{\chi} y_k + \sum_{k=1}^{n} \overline{\chi} \overline{y} = \sum_{k=1}^{n} \chi_k y_k - \sum_{k=1}^{n} \overline{\chi} y_k + \sum_{k=1}^{n} \overline{$$

8. (2p.) Dane są wektory $\vec{\mu}, X \in \mathbb{R}^n$ oraz macierz $\Sigma \in \mathbb{R}^{n \times n}$. Niech $S = (X - \vec{\mu})^T \Sigma^{-1} (X - \vec{\mu})$ oraz $Y = A \cdot X$, gdzie macierz A jest odwracalna. Sprawdzić, że $S = (Y - A\vec{\mu})^T (A\Sigma A^T)^{-1} (Y - A\vec{\mu})$.

$$S = (X - \mu^2)^T \ge 1 (X - \mu)$$

$$V = A \times$$

$$(Y - A \vec{p}^{2})^{T} (A \Sigma A^{\tilde{1}})^{-1} (Y - A \mu) = (A \times - A \vec{p}^{2})^{T} (A \Sigma A^{\tilde{1}})^{-1} (A \times - A \vec{p}^{2}) = (A (X - \vec{p}^{2}))^{T} (A \Sigma A^{\tilde{1}})^{-1} (A (X - \vec{p}^{2})) = ((X - \vec{p}^{2})^{\tilde{1}} A^{\tilde{1}}) (A \Sigma A^{\tilde{1}})^{-1} (A (X - \vec{p}^{2})) = ((X - \vec{p}^{2})^{\tilde{1}} A^{\tilde{1}}) (A \Sigma A^{\tilde{1}})^{-1} (A (X - \vec{p}^{2})) = ((X - \vec{p}^{2})^{\tilde{1}} A^{\tilde{1}}) (A \Sigma A^{\tilde{1}})^{-1} (A (X - \vec{p}^{2})) = ((X - \vec{p}^{2})^{\tilde{1}} A^{\tilde{1}}) (A \Sigma A^{\tilde{1}})^{-1} (A (X - \vec{p}^{2})) = ((X - \vec{p}^{2})^{\tilde{1}} A^{\tilde{1}}) (A \Sigma A^{\tilde{1}})^{-1} (A \Sigma A^{\tilde{1}}$$

$$(A(x-\bar{\mu}))' (A \sum A') \hat{} (A(x-\bar{\mu})) = ((x-\bar{\mu})'A') (A \sum A') (A(x-\bar{\mu})') = ((x-\bar{\mu})'A') (A \sum A') (A(x-\bar{\mu})') = ((x-\bar{\mu})'A') (A(x-\bar{\mu})) = (x-\bar{\mu})'A') (A(x-\bar{\mu})) = (x-\bar{\mu})'A'$$

$$= (X - \overline{\mu})^{T} \sum_{i=1}^{n} (X - \overline{\mu}) = S$$

$$= (X - \vec{\mu})^T \geq (X - \vec{\mu}) = S$$

9. Udowodnić, że
$$\int_0^\infty x^k \, \lambda \exp(-\lambda x) \, dx = \frac{k!}{\lambda^k}, \quad k = 0, 1, \dots, \quad \lambda > 0.$$

Teza: Dla kaidego k eM zachodzi
$$\int_0^\infty x^k \lambda e^{-\lambda x} dx = \frac{k!}{\lambda^k}$$

$$\int_{0}^{\infty} \times \int_{0}^{-\lambda \times} dx = \left| \frac{1 + \frac{\lambda}{2} \lambda dx}{dt + \frac{\lambda}{2} dx} \right| = \int_{0}^{\infty} e^{-t} dt = -e^{-t} \Big|_{0}^{\infty} = -e^{-\lambda \times} \Big|_{0}^{\infty} = 0 - (-1) = 1 = \frac{0!}{\sqrt{0}}$$

()* Let
$$\lambda = 1$$
 at ozing, ze leza zachodzi dla k, pokazemy, że zachodzi dla k+1

()* Let $\lambda = 1$ $\lambda =$

$$\int_{0}^{\infty} x^{k+1} \lambda_{e}^{-\lambda x} dx = \begin{cases} e^{2a} & zachodzi & dla & k, pokazemy, ze & zachodzi & dla & k+1 \\ \int_{0}^{\infty} x^{k+1} \lambda_{e}^{-\lambda x} dx & = \begin{cases} f(s) = x^{k+1} & g'(x) = \lambda e^{-\lambda x} \\ & & = x^{k+1} - \lambda x \end{cases} = \begin{cases} \int_{0}^{\infty} (k+1)^{k} x^{k-1} dx \\ & & = x^{k+1} - \lambda x \end{cases}$$

$$\int_{0}^{\infty} x^{k+1} \lambda e^{-\lambda x} dx = \begin{cases} f(s) = x^{k+1} & g'(x) = \lambda e^{-\lambda x} \\ f'(x) = (k+1)x^{k} & g(x) = -e^{-\lambda x} \end{cases} = \begin{cases} \frac{k+1}{2} - \lambda x & \frac{k}{2} + \int_{0}^{\infty} (k+1)x^{k} e^{-\lambda x} = 0 \\ \frac{k}{2} + \int_{0}^{\infty} (k+1)x^{k} e^{-\lambda x} = 0 \\ \frac{k}{2} + \int_{0}^{\infty} (k+1)x^{k} e^{-\lambda x} = 0 \end{cases} = \begin{cases} \int_{0}^{\infty} (k+1)x^{k} e^{-\lambda x} & \frac{\lambda}{\lambda} dx = 0 \\ \frac{k}{2} + \int_{0}^{\infty} (k+1)x^{k} e^{-\lambda x} = 0 \end{cases}$$

$$\int_{0}^{1} x^{k+1} \lambda e^{-\lambda x} dx = \begin{cases} f(x) = x \\ f'(x) = (k+1)x^{k} \end{cases} g(x) = -e^{-\lambda x} = \underbrace{\begin{cases} e^{-\lambda x} - \lambda x \\ e^{-\lambda x} = \frac{1}{(k+1)x^{k}} \frac{1}{2} \frac{1}$$

$$= \frac{k+1}{\lambda} \int_{0}^{\infty} \frac{k^{-\lambda x}}{x^{\lambda}} dx = \frac{k+1}{\lambda} \cdot \frac{k!}{x^{k!}} = \frac{(k+1)!}{x^{k+1}} dx$$

$$\frac{1}{\lambda} \int_{0}^{\infty} \frac{k^{-\lambda x}}{x^{\lambda e}} dx \stackrel{=}{=} \frac{\frac{k!}{\lambda}}{\lambda} \cdot \frac{k!}{\lambda^{k}} = \frac{(k!)!}{x^{k+1}}$$

10. Obliczyć całkę nieoznaczoną
$$\int x \exp\left(-\frac{x^2}{2}\right) dx$$

$$\int_{x} e^{\left(\frac{-x^2}{2}\right)} dx = \begin{vmatrix} \frac{1-\frac{x^2}{2}}{2} & \frac{dx}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{vmatrix} = \int_{x} e^{-\frac{1}{2}} dx = \int_{x} e^{-\frac{1}$$