下の表に示す作業からなるプロジェクトについて、クリティカルパスを求める. 以下の手順に従って結果を示せ.

表:作業の依存関係

作業名	必要日数	前提作業
A	2	なし
В	3	なし
C	2	A
D	1	В
E	3	С
F	2	В, С
G	1	D
Н	2	F, G
完了	_	Е, Н

- 1. このプロジェクトの PERT 用アローダイアグラムを示し、対応するグラフデータファイルを作成せよ. ただし、アローダイアグラムのプロジェクト開始頂点の番号は「1」にすること.
- 2. 全ての頂点について最早結合点時刻を算出する関数「calc_earliest_node_times」と, 最遅結合点時刻を算出する 関数「calc_latest_node_times」を実装せよ.
- 3. クリティカルパスをパスに沿った頂点リストを求める関数「trace_critical_path」を実装し、実行結果を示せ、ただし、複数の経路がある場合には、いずれかの経路を一つだけ示せば良い、以下のアルゴリズム概略を参考にせよ、
 - (a) 開始頂点番号: $i \leftarrow 1$ とする.
 - (b) 作業列を保存するリスト: $P \leftarrow \{\}$ (空にする) とする.
 - (c) リストPの末尾に v_i を追加する.
 - (d) v_i の最早結合点時刻を t_i^E とする.
 - (e) v_i に接続している次の全頂点 v_i について
 - i. v_i がなければ終了.
 - ii. v_i の最遅結合点時刻を t_i^L とする.
 - iii. v_j から v_j に要する作業時間を $t_{i,j}$ とする.
 - iv. t_i^L と $t_i^E + t_{i,j}$ を比較する.
 - A. 一致する $(t_i^L = t_i^E + t_{i,j})$ 場合 $: i \leftarrow j$ に置き換えて (3c) へ.
 - B. 一致しない場合:次の v_i について調べる.
 - (f) リストPに保存されている頂点列がクリティカルパスを表す.