String Matching (continued)

String matching with finite automata

• The string-matching automaton is very efficient: it examines each character in the text exactly once and reports all the valid shifts in O(n) time.

The basic idea is to build a automaton in which

- Each character in the pattern has a state.
- Each match sends the automaton into a new state.
- If all the characters in the pattern has been matched, the automaton enters the accepting state.
- Otherwise, the automaton will return to a suitable state according to the current state and the input character such that this returned state reflects the maximum advantage we can take from the previous matching.
- the matching takes O(n) time since each character is examined once.

Figure 1: An automaton.

• The construction of the stringmatching automaton is based on the given pattern. The time of this construction may be $O(m^3|\Sigma|)$.

Finite automata:

A finite automaton M is a 5-tuple (Q,q_0,A,Σ,δ) , where

- Q is a finite set of states.
- $q_0 \in Q$ is the start state.
- $A \in Q$ is a distinguish set of accepting states.
- Σ is a finite input alphabet
- δ is a function from $Q \times \Sigma$ into Q, called the transition function of M.

- The finite automaton begins in state q_0 and read the characters of its input string one at a time. If the automaton is in state q and reads input character a, it moves from state q to state $\delta(q,a)$.
- As long as M is in a state belonging to A, M is said to have accepted the string read so far, an input that is not accepted is said to be rejected.

A two-state automaton

- $Q = \{0,1\}.$
- $q_0 \in Q = 0$.
- $A \in Q = 1$.
- $\Sigma = \{a,b\}$
- δ the table in the left-hand side of the figure.

• Figure 1: An automaton. It accepts any string ending with an odd number of a's

- The automaton can also be represented as a state-transition diagram as in the right-hand side of the figure.
- This automaton accepts those strings that end in an odd number of a's. x=yz, where $y=\varepsilon$ or y ends with b and $z=a^k$ and k is odd.
- abbaa rejected, abaaa accepted, bbbaaaabaaa accepted.

• final-state function ψ : from Σ^* to Q such that $\psi(w)$ is the state in which M ends up after scanning the string w.

Thus, M accepts w if and only if $\psi(w) \in A$. For example, $\psi(abbaa)=0$, and $\psi(bbabaaa)=1$.

- $\psi(\varepsilon) = q_0$, (* empty string does not change any current state *)
- $\psi(wa) = \delta(\psi(w), a)$ for $w \in \Sigma^*$, $a \in \Sigma$.

The construction of string-matching automaton.

• There exists a string-matching automaton for every pattern P.

A suffix function w.r.t. pattern P[1..m], σ , is a mapping from Σ^* to $\{0,1,...,m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is a suffix of x: $\sigma(x)=\max\{k: P_k \supset x\}$. For example, $P=ab, P_0=\epsilon, \sigma(\epsilon)=0, \sigma(ccaca)=1, \sigma(ccab)=2.$

For P[1..m], $\sigma(x)=m$ if and only if P $\supset x$ (* a valid shift *). The whole pattern is the suffix of x.

The definition of $\sigma(x)$

A string-matching automaton w.r.t. a given P[1..m] is defined as follows.

- The state set $Q=\{0,1,...,m\}$, the start state $q_0=0$, and the only accepting state A=m.
- The transition function δ is $\delta(q,a) = \sigma(P_q a)$.
- The machine maintains an invariant of its operation: $\psi(T_i) = \sigma(T_i)$. After scanning the first i characters of the text string T, the machine is in state $\psi(T_i) = q$, where $q = \sigma(T_i)$ is the length of the longest suffix of T_i that is also a prefix of the pattern P.

• It is proved that $\sigma(T_i a) = \sigma(P_q a)$.

That means to compute the length of the longest suffix of T_i a that is prefix of P is equivalent to compute the length of the longest suffix of P_q a that is the prefix of P.

- For example, P=abababca.
- $\Box \delta(5, b)$ =4 denotes that in state 5 and reads a b. It is equivalent to P_5 b=ababab and the longest prefix of P that is also the suffix of ababab is P_4 =abab.
- Similarly, for $\delta(5,a)=1$. In state 5 and reads a, which is equivalent to $P_5a=ababaa$ and the longest prefix of P that is also the suffix of ababaa is $P_1=a$. How about $\delta(6,c)=0$?

Figure 3: A state-transition diagram for string-matching automaton that accepts all strings ending in the string ababaca. All the left-going arrows pointing to state 0 are not shown.

FINITE-AUTOMATON-MATCHER(T,δ,m)

- 1. $n \leftarrow length[T]$
- 2. $q \leftarrow 0$
- 3. for $i \leftarrow 1$ to n
- 4. do $q \leftarrow \delta(q, T[i])$
- 5. if q=m then
- 6. print 'Pattern occurs with shift' i-m

- Lemma (suffix-function inequality): For any string x and character a, we have $\sigma(xa) \le \sigma(x)+1$.
- Lemma (suffix-function recursion lemma): For any string x and character a, if $q=\sigma(xa)$, then $\sigma(xa)=\sigma(P_qa)$.
- Theorem: If ψ is the final-state function of a string-matching automaton for a given pattern P and T[1..n] is an input text for the automaton, then $\psi(T_i) = \sigma(T_i)$ for i = 0, 1, ..., n

The theorem shows that the automaton keeps tracking the longest prefix of the pattern which is a suffix of what has been read so far for each step.

Computing the transition function.

COMPUTE-TRANSITION-FUNCTION(P,Σ)

- 1. $m \leftarrow length[P]$ 2. for $q \leftarrow 0$ to m (for each state) do for each character $a \in \Sigma$ ($|\Sigma|$) 3. do $k \leftarrow \min(m+1, q+2)$ 4. repeat $k \leftarrow k-1$ $(1 \le k \le m+1)$ 5. until $P_k \supset P_a$ ($\sum k$) 6. 7. $\delta(q,a) \leftarrow k$
- 8. return δ

Example

- P= a b a b a c a
- q= 3 (implies text is ... a b a ...) (step 2)
- $a \leftarrow \Sigma$ (step 3)
- k = min(7+1, 3+2)=5, k-1=4, (steps 4,5)
 - $p_4 = p_3 a$? No. k \leftarrow k-1=3 (step 5)
 - $p_3 \supset p_2 a$? Yes. $\delta(2,a) \leftarrow 3$ (steps 6,7)
 - $b \leftarrow \Sigma$ (step 3)
 - k = min(7+1, 3+2)=5, k-1=4, (steps 4,5)
 - $p_4 = p_3 b$? Yes. $\delta(3,b) \leftarrow 4$ (steps 6,7)

• • •

• This procedure builds $\delta(q,a)$ is a straight-forward way by definition. It considers all states q and all characters in Σ . For each combination, to find the the largest k such that $P_k \supset P_q$ a. The worstcase time complexity is

 $O(m^3 | \Sigma |)$.

- Questions to consider
- Given pattern P=abba, Σ ={a,b}, construct its automaton. Show how the automaton works for text T[1..12]=baabbabbaaba, using FINATE-AUTOMATON-MATCHER(T, δ , m).
- We call a pattern P non-overlappable if $P_k \supset P_q$ implies k=0 or k=q.

Describe the state transition diagram of the string-matching automaton for a non-overlappable pattern.

The Knuth-Morris-Pratt algorithm

- The most expensive part of the string matching automaton method is to build the transition function δ , which takes $O(m^3 | \Sigma |)$ time (or at least $O(m | \Sigma |)$ time).
- The KMP algorithm avoids to directly compute δ . Instead, it computes an auxiliary function $\pi[1..m]$ pre-computed from pattern P in O(m) time.
- The transition function δ can be obtained from array π in an efficient amortized constant time when the algorithm runs on a text.

The prefix function π for a pattern P:

it encapsulates the knowledge about how the pattern P matches against shifts of itself.

Therefore, the knowledge can be used to avoid the useless shifts in the naive method or to avoid to pre-compute δ in the automaton method.

Notations (reminder)

- Σ : alphabet, Σ^* : set of all finite-length string,
- ϵ : empty string. w: a string. w $\sqsubset x$: w is prefix of x, w $\sqsupset x$: w is suffix of x.
- Q: a finite set of states, q_0 : start state, A: accepting states. δ : transition function of M. $\delta(q,a)=q'$.
- ψ: final-state function. ψ(w) is the state M ends up after M scanning w.ψ(wa)=δ(ψ(w),a).
- σ: the suffix function corresponding to pattern P. $σ(x) = \max \{k: P_k \supset x\}.$

• Given that pattern characters P[1..q] match text characters T[s+1..s+q], what is the least shift s'>s such that

$$P[1..k]=T[s'+1..s'+k]$$
, where $s'+k=s+q$?

- The above equation is equivalent to find the largest k < q such that $P_k \supset P_q$. Then, s'=s+(q-k) is the potential next valid shift.
- Given a pattern P[1..m], the prefix function for the pattern P is the function π : $\{1,2,...,m\} \rightarrow \{0,1,...,m-1\}$ such that $\pi[q]=\max\{k:|k<q \& P_k \sqsupset P_a\}.$

```
KMP-MATCHER(T,P)
     n \leftarrow length[T]
     m \leftarrow length[P]
2.
3.
     \pi \leftarrow \text{COMPUTE-PREFIX-FUNCTION}(P)
     q \leftarrow 0 (* number of characters matched *)
5.
     for i \leftarrow 1 to n (*scan the text from left to right *)
        do while q>0 & P[q+1] \neq T[i]
6.
7.
               do q \leftarrow \pi[q] (* next character does not match *)
8.
            if P[q+1]=T[i]
9.
              then q \leftarrow q+1 (* next character matches *)
            if q=m (* is all of P matched? *)
10.
11.
              then print 'Pattern occurs with shift' i-m
12.
                   q \leftarrow \pi[q] (* look for the next match *)
```

- COMPUTE-PREFIX-FUNCTION(P)
- 1. $m \leftarrow length[P]$
- 2. $\pi[1] \leftarrow 0$
- 3. $k \leftarrow 0$
- 4. for $q \leftarrow 2$ to m
- 5. do while $k>0 \& P[k+1] \neq P[q]$
- 6. do $k \leftarrow \pi[k]$
- 7. if P[k+1]=P[q]
- 8. then $k \leftarrow k+1$
- 9. $\pi[q] \leftarrow k$
- 10. return π

• Time Complexity:

COMPUTE-PREFIX-FUNCTION(P) takes $\Theta(m)$ time.

(By amortized analysis.)

KMP-MATCHER(T,P) takes $\Theta(n)$ time.

Figure 4: A demonstration for how to obtain the valid shift from the previous partial matching. It is clearly that the next potential valid shift is $s'=s+(q-\pi[q])$, where $\pi[5]=3$.

i	1	2	3	4	5	6	7	8	9	10
P[i]	a	b	a	b	a	b	a	b	c	a
π[ι]	0	0	1	2	3	4	5	6	0	1

Figure 5: A demonstration for how to obtaining the π function of P