- # Reinforcement Learning Autonomous Driving in CARLA Roadmap
- Phase 1: Understanding & Setup (1-2 Weeks)
- Step 1: Install & Run CARLA
 - You've already done this! 6
- Step 2: Learn CARLA's Python API
 - Write a simple script to:
 - Spawn a car.
 - o Control the car manually (throttle, brake, steering).
 - o Read sensor data (camera, LIDAR, IMU).
 - Reset the environment.
- Step 3: Set Up a Custom CARLA Gym Environment
 - Convert CARLA into an OpenAl Gym environment.
 - Define:
 - o **Observations**: Camera/LIDAR data, speed, position.
 - Actions: Steering, throttle, brake.
 - Reward Function: Staying on the road, avoiding collisions.
- Phase 2: Training the RL Model (3-5 Weeks)
- Step 4: Choose an RL Algorithm
 - Use Deep Q-Network (DQN) for a basic version.
 - Later, upgrade to Proximal Policy Optimization (PPO) or Soft Actor-Critic (SAC) for continuous control.
- Step 5: Train the RL Agent
 - Run training episodes in CARLA.
 - Tune rewards, hyperparameters.
 - Save and test the trained model.

Step 6: Evaluate and Improve

- Test on different roads/weather conditions.
- Improve the model with better rewards and hyperparameters.

Phase 3: Advanced Features & Optimization (2-4 Weeks)

Step 7: Implement Camera-Based Driving

Train the agent using images instead of just sensor data.

Step 8: Optimize Performance

- Improve training speed.
- Use **Transfer Learning** to reuse trained models.

Step 9: Simulate in Complex Environments

- Try night, rain, and traffic scenarios.
- Compare RL vs. traditional driving algorithms.

Ponus (Optional)

- Use LIDAR for obstacle detection.
- Integrate Deep Learning (CNNs for vision-based driving).
- Simulate **multi-agent environments** (handling traffic).