1 CODAGE BINAIRE ⇒ DÉCIMAL

<u>Exercice 1.</u>: Convertir les nombres binaires suivant en base décimale :

- a. 11₂
- b. 101₂
- c. 1 1011₂
- d. 101 0011₂

Exercice 1 : Réponse :

- a. 3_{10}
- b. 5₁₀
- c. 27₁₀
- d. 83₁₀

2 CODAGE DÉCIMAL ⇒ BINAIRE

Exercice 2. : Convertir les nombres suivant en base binaire :

- a. 12₁₀
- b. 139₁₀
- c. 254₁₀
- d. 1001₁₀

Exercice 2 : Réponse :

- a. 1100₂
- b. 10001011₂
- c. 11111110₂
- d. 1111101001_2

3 MSB, LSB.

Exercice 3. : Donner le MSB et le LSB des nombres suivant codés sur 1 ou 2 octets :

- a. 1000_2
- b. 101₂
- c. $100\ 0011\ 1000_2$

d. 01 0001₂

Exercice 3 : Réponse :

a.

4 CODAGE HEXADÉCIMAL

Exercice 4.: A quoi correspondent les chiffres A,

B, C, D, E, F en hexadécimal?

Exercice 4 : Réponse :

Cela correspond aux chiffres hexadécimaux A vaut 10 décimal ou 1010 binaire, B vaut 11 décimal ou 1011 binaire, C vaut 12 décimal ou 1100 binaire, D vaut 13 décimal ou 1101 binaire, E vaut 14 décimal ou 1110 binaire, F vaut 15 décimal ou 1111 binaire.

<u>Exercice 5.</u>: Écrire la table de conversion pour les 16 premiers nombres (0 étant le premier) :

Décimal	Hexadécimal	Binaire
0		
1		

Exercice 5 : Réponse :

Décimal	Hexadécimal	Binaire
0	0	0
1	1	1
2	2	10
3	3	11
4	4	100
5	5	101
6	6	110
7	7	111
8	8	1000
9	9	1001
10	a	1010
11	b	1011

12	С	1100
13	d	1101
14	е	1110
15	f	1111

5 CODAGE HEXA ⇒ BINAIRE

Exercice 6. : écrire la conversion hexadécimale

des nombres binaires suivant :

- a. 0b 1000
- b. 0b 1011 1001
- c. 0b 1100 1100 0110
- d. 0b 11 0000

Exercice 6 : Réponse :

- a. 8₁₆
- b. b9₁₆
- c. cc6₁₆
- d. 30_{16}

6 CODAGE BINAIRE ⇒ HEXA

<u>Exercice 7.</u>: écrire la conversion binaire des nombres hexadécimaux suivant :

- a. 0x A
- b. 0x FA
- c. 0x DAD
- d. 0x B0B
- e. 0x 0F F1 CE

Exercice 7 : Réponse :

- a. 1010_2
- b. 11111010₂
- c. 110110101101₂
- d. 101100001011₂
- e. 1111111110001110011110_2

7 CODAGE HEXA ⇒ DÉCIMAL

<u>Exercice 8.</u>: écrire la conversion décimale des nombres hexadécimaux suivant (passer par le binaire si nécessaire):

- a. A1₁₆
- b. 12₁₆
- c. 12F₁₆
- d. B2A₁₆

Exercice 8 : Réponse :

- a. 161₁₀
- b. 18₁₀
- c. 303₁₀
- d. 2858₁₀

8 CODAGE DÉCIMAL ⇒ HEXA

<u>Exercice 9.</u> : écrire la conversion hexadécimale des nombres décimaux suivant (passer par le binaire si nécessaire) :

- a. 12₁₀
- b. 134₁₀
- c. 143_{10}
- d. 1678₁₀

Exercice 9 : Réponse :

- a. c₁₆
- b. 86_{16}
- c. $8f_{16}$
- d. 68e₁₆

9 OCTETS

<u>Exercice 10.</u>: Ecrire les nombres suivant sous forme d'octets en binaire et en hexadécimal :

Nombre	Octet binaire	Octet hexa
1001 1001 ₂		
1001 1002		
127 ₁₀		
223 ₁₀		

Exercice 10 : Réponse :

Nombre	Octet binaire	Octet hexa
1001 1001 ₂		
1001 100 ₂		
127 ₁₀		
223 ₁₀		