

MAM3

Mathématiques de l'ingénieur.e 1

2025-26

Exam CC no. 1

Durée 2H00. Documents non autorisés. Tous les exercices sont indépendants.

Le barème prévisionnel est indiqué pour chaque exercice.

Rendre sur des copies séparées les exercices 1 et 2 d'une part, 3 et 4 d'autre part.

Exercice 1 (4 points)

1.1

Montrer que l'intégrale impropre ci-dessous est convergente et déterminer sa valeur :

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{1+x^2}.$$

En déduire que l'intégrale impropre ci-dessous est également convergente et déterminer sa valeur :

$$\int_0^\infty \frac{e^t \, \mathrm{d}t}{1 + e^{2t}} \cdot$$

Exercice 2 (4 points)

Calculer

$$\int_D \frac{xy \, \mathrm{d}x \mathrm{d}y}{1 + y^2}$$

où
$$D:=\{(x,y)\in {\bf R}^2 \mid 1\leq x\leq 2,\; 0\leq y\leq 1\}.$$

Exercice 3 (6 points)

3.1

Calculer la dérivée (la matrice jacobienne) de la fonction associée au changement de coordonnées sphériques :

$$\varphi(r,\theta,\varphi) := (r\cos\theta\sin\varphi, r\sin\theta\sin\varphi, r\cos\varphi).$$

3.2

En déduire la valeur de

$$\int_{D} \frac{(x^2 + y^2) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\sqrt{x^2 + y^2 + z^2}}$$

où
$$D:=\{(x,y,z)\in {f R}^3 \ | \ 1\leq x^2+y^2+z^2\leq 4\}.$$

Exercice 4 (6 points)

On considère la famille de parties de $\left[0,2\right]$ suivante :

$$\mathscr{A} := \{[0,1], [1,2]\}.$$

4.1

Montrer que les tribus engendrées sur [0,2] par $\mathscr A$ et

$$\tilde{\mathscr{A}} := \{[0,1[,B,]1,2[\}$$

où $B\subset [0,2]$ est une partie que l'on précisera, sont égales.

4.2

Donner, sans le justifier, le cardinal de la tribu $\mathscr{B}(\mathscr{A})$ engendrée par \mathscr{A} sur [0,2].

4.3

Soit (X,\mathscr{B}) un espace mesurable, et soit $f:X\to [0,2]$ telle que $f^{-1}([0,1])$ et $f^{-1}([1,2[)$ appartiennent tous deux à \mathscr{B} . Que peut-on dire de f?