MOTOROLA SEMICONDUCTOR TECHNICAL DATA

LM124, LM224, LM324, LM324A, LM2902

Quad Low Power Operational Amplifiers

The LM124 series are low-cost, quad operational amplifiers with true differential inputs. These have several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 V or as high as 32 V with quiescent currents about one fifth of those associated with the MC1741 (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

- Short Circuited Protected Outputs
- True Differential Input Stage
- Single Supply Operation: 3.0 V to 32 V
- Low Input Bias Currents: 100 nA Max (LM324A)
- Four Amplifiers Per Package
- Internally Compensated
- Common Mode Range Extends to Negative Supply
- Industry Standard Pinouts
- ESD Clamps on the Inputs Increase Ruggedness without Affecting Device Operation

MAXIMUM RATINGS (T_A = +25°C, unless otherwise noted.)

Rating	Symbol	LM124 LM224 LM324,A	LM2902	Unit
Power Supply Voltages Single Supply Split Supplies	V _{CC} V _{CC} , V _{EE}	32 ±16	26 ±13	Vdc
Input Differential Voltage Range (1)	V _{IDR}	±32	±26	Vdc
Input Common Mode Voltage Range	VICR	-0.3 to 32	-0.3 to 26	Vdc
Output Short Circuit Duration	tsc	Conti	nuous	· · · ·
Junction Temperature Ceramic Package Plastic Packages	TJ		75 50	°C
Storage Temperature Range Ceramic Package Plastic Packages	T _{stg}	-65 to -55 to		°C
Operating Ambient Temperature Range	TA	-55 to +125	-	°C
		-25 to +85 0 to +70 	 40 to +105	

NOTE: 1. Split Power Supplies.

QUAD DIFFERENTIAL INPUT OPERATIONAL AMPLIFIERS

SILICON MONOLITHIC INTEGRATED CIRCUIT

J SUFFIX CERAMIC PACKAGE CASE 632 N SUFFIX PLASTIC PACKAGE CASE 646 (LM224, LM324, LM2902 Only)

D SUFFIXPLASTIC PACKAGE
CASE 751A
(SO-14)

ORDERING INFORMATION

Device	Temperature Range	Package
LM124J	-55° to +125°C	Ceramic DIP
LM2902D	-40° to +105°C	SO-14
LM2902N	-40 10 + 103 C	Plastic DIP
LM2902J	-40° to +85°C	Ceramic DIP
LM224D	· · · · · ·	SO-14
LM224J	-25° to +85°C	Ceramic DIP
LM224N		Plastic DIP
LM324AD		SO-14
LM324AN		Plastic DIP
LM324D	0° to +70°C	SO-14
LM324J		Ceramic DIP
LM324N		Plastic DIP

LM124, LM224, LM324,A, LM2902

		_	LM124/LM224	224		LM324A			LM324			LM2902		
Characteristics	Symbol	M.	ą	Max	Mi	ď	Max	Min	ďΣ	Max	Min	ηγρ	Max	ž
Input Offset Voltage VC _C = 5.0 V to 30 V (26 V for LM2902), VC _R = 5.0 V to V _C C - 1.7 V, V _C = 1.4 V, R _S = 0.Ω VC _R = 25°C T _A = 7 Frigh to T _{low} (Note 1)	Oly		1 50	5.0	1.1	0.5	3.0	1.1	2.0	7.0 9.0	1.1	2.0	7.0	È
Average Temperature Coefficient of Input Offset Voltage TA = Thigh to Tlow (Note 1)	ΔV _{IO} /ΔT	ı	7.0	ı	ı	7.0	90	1	7.0	ı	I	7.0	ı	μV/°C
Input Offset Current TA = Thigh to T _{low} (Note 1)	Ol.	11	3.0	8 0	11	5.0	30		5.0	50 150	11	5.0	200	ξ
Average Temperature Coefficient of Input Offset Current $T_A = T_{high}$ to T_{low} (Note 1)	ΔΙΟ/ΔΤ	I	9		1	10	300	-	10		ı	0,	1	p A ∿C
Input Bias Current TA = Thigh to Tiow (Note 1)	81	11	06-	-150 -300	11	45	-100 -200	1 1	06-	-250	11	06	-250 -500	Ψ
Input Common Mode Voltage Range (Note 2) $V_{CC} = 30 V (26 V for LM2902)$ $V_{CC} = 30 V (26 V for LM2902), TA = Thigh to Tlow$	VICR	00	11	28.3	00	11	28.3 28	00	11	28.3	00	11	24.3 24	>
Differential Input Voltage Range	VIDR	Ι	_	VCC	1	ı	220	ı	1))	1	ı	2 2 2 2	>
Large Signal Open-Loop Voltage Gain $R_L = 2.0 \text{ kQ}$, $V_{CC} = 15 \text{ V}$, for Large V_Q Swing, $T_A = T_{high}$ to T_{low} (Note 1)	AVOL	25 50	<u>5</u> l	11	25 15	ة 1	1.1	25 15	100	11	25 15	<u>5</u> l	11	Λm//
Channel Separation 10 kHz ≤ f ≤ 20 kHz, Input Referenced	SO	1	-120	I	ı	-120	1	ı	-120	ı	ı	-120	I	뜅
Common Mode Rejection RS ≤ 10 kΩ	CMR	02	82	ı	65	02	ı	65	70	ı	20	02	1	쁑
Power Supply Rejection	PSR	65	5	1	92	5	ı	99	100	ı	20	100	1	쁑
Output Voltage — High Limit ($T_A = T_{High}$ to T_{Low}) (Note 1) VCC = 5.0 V, $T_B = 2.0$ Kd. $T_A = 2.5$ C V/C = 5.0 V ($T_B = 2.0$ Kd. $T_B = 2.0$ Kd. VCC = 30 V (56 V for LM2902), $T_L = 2.0$ kd. VCC = 30 V (26 V for LM2902), $T_L = 1.0$ Kd.	нол	3.3 26 27	3.5	111	3.3 26 27	3.5	1 1	3.3 26 27	3.5	111	3.3	3.5		>
Output Voltage — Low Limit $V_{CC} = 5.0 \text{ V}$, $R_L = 10 \text{ k}\Omega$ $T_A = T_{high}$ to T_{low} (Note1)	^OΓ	1	5.0	50	1	5.0	8	1	5.0	8	ı	5.0	60	è
Output Source Current (VID = +1.0 V, V _{CC} = 15 V) TA = 25°C TA = Thigh to T _{low} (Note 1)	, O	20	20	11	20 10	04 02	11	20 10	9 6	11	20 10	20	11	Ψ
Output Sink Current (VID = -1.0 V, VCC = 15 V) TA = 25°C TA = Thigh to Tlow (Note 1) (VID = -1.0 V, VO = 200 mV, TA = 25°C)	- O _l	10 5.0 12	20 8.0 50	111	10 5.0 12	20 8.0 50	111	10 5.0	20 8.0 50	111	10 5.0	20 8.0 —	111	A A
Output Short Circuit to Ground (Note 3)	SI	1	40	09	ı	40	09		40	09	ı	40	90	ΨE
Power Supply Current (T _A = T _{high} to T _{low}) (Note 1) $V_{CC} = 30 \text{ V}$ (26 V for LM2902), $V_{Q} = 0 \text{ V}$, $R_{L} = \infty$ $V_{CC} = 5.0 \text{ V}$, $V_{Q} = 0 \text{ V}$, $R_{L} = \infty$	221	1.1		3.0	11	1.4	3.0	1 1	11	3.0		11	3.0	μ
NOTES: 1. T _{low} = -55°C for LM124 Thigh = -25°C for LM224 = 0.0 LM324 A = 40°C for LM320.	+125°C for LM124 +85°C for LM224 +70°C for LM324,A			તાં ભં		put commire than 0.0	The input common mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common mode voltage range is $V_{CC} - 1.7 V$. Short circuits from the outbut to V_{CC} can cause excessive heating and eventual destruction	oltage or e	ither input of the corr	signal vol	tage shoule voltage	range is	llowed to	go negat V.

CIRCUIT DESCRIPTION

The LM124 series is made using four internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input devices Q20 and Q18 with input buffer transistors Q21 and Q17 and the differential to single ended converter Q3 and Q4. The first stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q20 and Q18. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single-ended converter. The second stage consists of a standard current source load amplifier stage.

Large Signal Voltage Follower Response

Each amplifier is biased from an internal-voltage regulator which has a low temperature coefficient thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

Single Supply

Split Supplies

LM124, LM224, LM324, A, LM2902

Figure 1. Input Voltage Range 20 18 ± V, , INPUT VOLTAGE (V) 16 14 12 Negative 10 6.0 Positive 4.0 2.0 4.0 6.0 8.0 10 12 18 ± VCC/VEE, POWER SUPPLY VOLTAGES (V)

Figure 2. Open-Loop Frequency 120 A_{VOL} LARGE-SIGNAL OPEN-LOOP VOLTAGE GAIN (dB) V_{CC} = 15 V 100 VEE = Gnd TA = 25°C 80 60 40 20 0 1.0 10 100 1.0 k 10 k 100 k 1.0 M f, FREQUENCY (Hz)

f, FREQUENCY (kHz)

VOR , OUTPUT VOLTAGE RANGE (Vp-p)

0 L 1.0

Figure 3. Large-Signal Frequency Response

Pulse Response (Noninverting) 550 500 V_O, OUTPUT VOLTAGE (mV) Input 450 Output 400 350 300 V_{CC} = 30 V V_{EE} = Gnd T_A = 25°C C_L = 50 pF 200 0 0 1.0 3.0 2.0 4.0 5.0 6.0 7.0 8.0 t, TIME (µs)

Figure 4. Small-Signal Voltage Follower

Figure 5. Power Supply Current versus **Power Supply Voltage** 2.4 T_A = 25°C 2.1 bc, Power Supply Current (mA) RL = ∞ 1.8 1.5 1.2 0.9 0.6 0.3 0 5.0 VCC, POWER SUPPLY VOLTAGE (V)

1000

Figure 7. Voltage Reference

Figure 8. Wien Bridge Oscillator

Figure 9. High Impedance Differential Amplifier

Figure 10. Comparator with Hysteresis

LM124, LM224, LM324, A, LM2902

Figure 12. Function Generator

Figure 13. Multiple Feedback Bandpass Filter

Given: f_0 = center frequency $A(f_0)$ = gain at center frequency

Choose value f_0 , C Then: $R3 = \frac{Q}{\pi \; f_0 \; C}$ $R1 = \frac{R3}{2 \; A(f_0)}$ $R2 = \frac{R1 \; R3}{4Q^2 \; R1 \; -R3}$

For less than 10% error from operational amplifier,

$$\frac{Q_0 f_0}{BW}$$
 < 0.1 where f_0 and BW are expressed in Hz.

If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.