Memoria Virtuale

- Uso della memoria principale come "cache" per i dispositivi di memorizzazione secondari (dischi)
 - Gestita congiuntamente da hardware della CPU e dal sistema operativo
- I programmi condividono la memoria principale
 - Ciascuno ottiene uno spazio di indirizzamento virtuale contenente il codice e i dati usati frequentemente
 - Protetto dagli altri programmi
- La CPU e il sistema operativo traducono gli indirizzi virtuali in indirizzi fisici
 - Un blocco di memoria virtuale si chiama pagina
 - Una miss di memoria virtuale si chiama fault di pagina

Traduzione degli indirizzi

Penalità di fault di pagina

- In caso di fault di pagina, la pagina deve essere prelevata dal disco
 - Richiede milioni di cicli di clock
 - Gestito dal codice del sistema operativo
- Bisogna cercare di minimizzare il tasso di fault di pagine
 - Gestione completamente associativa
 - Algoritmi di rimpiazzamento intelligenti

Tabella delle pagine

- Contiene le informazioni di piazzamento delle pagine
 - Array di elementi indicizzato dal numero di pagina virtuale
 - Il registro della tabella delle pagine nella CPU punta alla tabella delle pagine corrente nella memoria principale
- Se una pagina è presente in memoria
 - L'elemento della tabella delle pagine memorizza il numero di pagina fisica
 - Più altri bit di status (references, dirty, ecc)
- Se una pagina non è presente
 - L'elemento della tabella delle pagine può riferire la locazione nello **spazio di swap** del disco

Traduzione con la tabella delle pagine

Mappare pagine su memoria

Rimpiazzamento e scritture

- Per ridurre il tasso di fault di pagina, si preferisce usare il rimpiazzamento LRU
 - Bit di indirizzamento (detto anche bit di uso) nell'elemento della tabella delle pagine settato a 1 se una pagine è acceduta
 - Periodicamente resettato a 0 dal sistema operativa
 - Una pagina con bit di indirizzamento a 0 non è stata acceduta di recente
- Le scritture su disco richiedono milioni di cicli
 - Scrivere a blocchi, non singole locazioni
 - Write-through non è pratico
 - Usare write-back
 - Il bit sporco nell'elemento della tabella delle pagine settato quando una pagine è scritta

Traduzione veloce tramite TLB

- La traduzione dell'indirizzo richiede accessi alla memoria extra
 - Uno per accedere all'elemento della tabella delle pagine
 - Uno per accedere all'elemento di memoria
- Ma l'accesso alla tabella delle pagine ha una buona località
 - Quindi usiamo una cache veloce per gli elementi della tabella delle pagine all'interno della CPU
 - Chiamato translation lookaside buffer (TLB)
 - Tipicamente: 16-512 elementi, 0.5-1 ciclo per hit, 10-100 cicli per miss, 0.01%-1% tasso di miss
 - Le miss possono essere gestite via hardware o via software

Traduzione veloce tramite TLB

Miss nel TLB

- Se una pagina è in memoria
 - Caricare l'elemento della tabella delle pagine dalla memoria e riprovare
 - Può essere gestito via hardware
 - Può diventare complicato per strutture della tabella delle pagine più complesse
 - O via software
 - Sollevare un'eccezione speciale, con un handler ottimizzato
- Se la pagina non è in memoria (fault di pagina)
 - Il sistema operativo gestisce il caricamento della pagina e l'aggiornamento della tabella delle pagine
 - Quindi ri-esegue l'istruzione che ha causato il fault

Handler delle Miss nel TLB

- Una miss nel TLB indica
 - Pagina presente, ma l'elemento della tabella delle pagine non è presente nel TLB
 - Pagina non presente
- Deve riconoscere una miss nel TLB prima che il registro di destinazione sia sovrascritto
 - Sollevando un'eccezione
- L'handler copia l'elemento della tabella delle pagine dalla memoria al TLB
 - Quindi ri-esegue l'istruzione
 - Se la pagina non è presente, si verificherà un fault di pagina

Handler dei fault di pagine

- Usare l'indirizzo virtuale cha ha causato il fault per localizzare l'elemento della tabella delle pagine
- Localizzare la pagina sul disco
- Scegliere la pagina da rimpiazzare
 - Se sporca, prima scriverla sul disco
- Caricare la pagina in memoria e aggiornare la tabella delle pagine
- Rimandare il processo in esecuzione
 - Ripartendo dall'istruzione che ha causato il fault

Interazione tra cache e TLB

31 30 29 14 13 12 11 10 9 3 2 1 0 Numero di pagina virtuale Offset di pagina 12 Numero della pagina fisica Valido Dirty Tag TLB (-) hit del TLB -20 Offset di pagina Numero della pagina fisica Indirizzo fisico Offset Offset Indice Campo tag dell'indirizzo fisico della cache di blocco di byte 18 8 12 Dati Valido Tag Cache Hit della cache 32 Dati

Indirizzo virtuale

- Se il tag della cache usa
 l'indirizzo fisico
 - Bisogna tradurre prima della ricerca nella cache
- Alternativamente, usare nel tag
 l'indirizzo virtuale
 - Complesso a causa dell'aliasing
 - Indirizzi
 virtuali diversi
 per indirizzi
 fisici condivisi

Gestione di lettura/scrittura write-through nel TLB e cache

Possibili miss con TLB, memoria virtuale e cache

TLB	Tabella delle pagine	Cache	Possibile? Se sì, in quale situazione?
Hit	Hit	Miss	Possibile, sebbene la tabella delle pagine non venga mai realmente controllata se si verifica una hit del TLB.
Miss	Hit	Hit	Miss del TLB, ma l'elemento si trova nella tabella delle pagine; al secondo tentativo, il dato viene trovato nella cache.
Miss	Hit	Miss	Miss del TLB, ma l'elemento si trova nella tabella delle pagine; al secondo tentativo, si verifica però una miss della cache.
Miss	Miss	Miss	Miss del TLB, seguita da un page fault; al secondo tentativo, l'accesso al dato deve provocare una miss della cache.
Hit	Miss	Miss	Impossibile: il TLB non può fornire la traduzione di una pagina che non è presente in memoria.
Hit	Miss	Hit	Impossibile: il TLB non può fornire la traduzione di una pagina che non è presente in memoria.
Miss	Miss	Hit	Impossibile: i dati non possono trovarsi nella cache se la pagina non è presente in memoria.

Protezione della memoria

- Task diversi possono condividere parte dei loro spazi di indirizzamento virtuali
 - Ma bisogna proteggerli da accessi accidentali
 - Richiede l'assistenza del sistema operativo
- Supporto hardware per la protezione del sistema operativo
 - Modalità supervisore (o modalità kernel) privilegiata
 - Istruzioni privilegiate
 - Tabelle delle pagine e altre informazioni di stato accessibili sono in modalità supervisore
 - Eccezione di chiamata di sistema (syscall nel MIPS)