CYBER 205 Timing Specification

ICONTROL DATA I		Ε	N	G	I	N	Ε	Ε	R	I	N	G		NO. DATE	10358026
Corporation	S	P	Ε	С	I	F	I	С	Δ	T	I	0	N	PAGE REV.	_
	St) P (ΞP	CC) M F	>U1	LEE	۶ () P E	Ŗ	11	[0]	٧S		

TABLE OF CONTENTS

	<u>PAG</u>	PAGE		
1.0	SCOPE			
2 • 0	APPLICABLE DOCUMENTS			
3 • 0	REQUIREMENTS			
3 • 1 3 • 2	General Description			

iq il d

Index To Timing Tables By Op Code

		l Page		Decemination
1	Code	1 #	1 Type	Description
1		!	1	1
•	0.0	41	I MN	Idle
i	01	41	1	Illegal
	02	41	1	Illegal
i	03	31	1	l No op
i	0.3	1	1	1
i	04	31	I NT	Ereakpoint - Maintepance
1	05	31	1 1	Void Instruction Stack
1	06	31	I NT I	Fault Test - Maintenance
ı	07	1 41	1	Illegal
ŧ		1	;	!
1	0.8	41	I MN I	Input/Output Per R
I	09	41	I BR I	Exit Force
ı	0 A	41	I MM I	Transmit (R) to Monitor Interval Timer
1	08	1 41	! 1	Illegal
•		ł	: :	
ŧ	0 C	31	I MN I	Store Associative Registers
1	ט ט	31	I MN	Load Associative Registers
1	0E	31	I MN I	Translate External Interrupt
ı	OF	31	MN I	Load Keys, Translate Address
1			1 26	O POD As Disasu Fixed Longth
i	10	31		Convert BCD to Binary, Fixed Length Convert Binary to BCD, Fixed Length
i	11	31	I RG I I NT I	Load Byte
i	12 13	31 31	I NT I	Store Byte
;	13	31	1	3101 e 391 e
•	14	41	NT	Bit Compress
•	15	41	NT I	
i		41	NT I	
i	17	41	1	Illegal
Ì	• '		1	1
1	18	41	1	Illegal
1	19	41	1	Illegal
ı	1A I	41 1	1	Illegal
1	18	41	1	Illegal
ı	1	1		t
1	1C	41 1	NT I	Form Repeated Bit Mask, Leading Zeros
ı	10	41	NT 1	Form Repeated Bit Mask, Leading Ones
1	1E	41 1	NT 1	Count Leading Equals
1	1F	41	NT I	Count Ones in Field R
1	1		1	T .

Index To Timing Tables By Op Code (Cont.)

-				
1	0 P	Page	1	l
:	Code	#	Type	Description
1				
•	20	1 1 31	I BR	 Branch if R EQ S (32-Bit FP)
i		1 32		I Branch If R NE S (32-Bit FP)
	22	1 32	I BR	I Branch If R GE S (32-PIt FP)
1	23	1 32	BR	Branch if R LT S (32-Bit FP)
i	2.0	1	1	
1	24	1 32	I BR	Pranch if R EQ S (64-Bit FP)
1	25	32	I BR	Branch if R NE S (64-Pit FP)
1	26	1 32		Branch if R GE S (64-Bit FP)
:	27	32	I BR I	Branch if R LT S (64-Bit FP)
Į,	28	l 41	I NT I	 Scan Equal
i	29	1 41	1 1	Illegal
i	2 A	32	l RG I	Enter Length of R with I(16)
i	28	32	I RG I	Add to Length Field
1		1	1	1
1	2C	32	I RG I	Logical Exclusive CP
i	20	32	I RG I	AND :
ł	2E	32	I RG I	Logical Inclusive OR 1
1	2F	32	BR I	Register Bit Branch and Alter !
ı	70	. 70	1 00 1	Childh D Dog C
	30 1	32	I RG I I BR I	Shift R Per S I Increase R and Branch if R ≠ 0 I
•		32	I BR I	Bit Branch and Alter
•	32 33	33 33	l BR I	Data Flag Register Bit Branch and Alter 1
i	33 I	33	l DK 1	Data Flay Register our branch and wifer i
i	34	33	RG I	Shift R Per (S)
1	35	33	BR I	Decrease R and Branch If R ≠ 0 1
1	36 I	33	I BR I	Branch and Set R to Next Instruction 1
1	37	41	NT I	Transmit Job Interval Timer
1	70	77	TA: 1	Topogrit D (00-45) to T (00-45)
i	38 I 39 I	33	INI	Transmit R (00-15) to T (00-15) Transmit Real-Time Clock
•	39 I	41	NTI	Transmit R to Job Interval Timer
i	3B 1	41 4 41	BR 1	Data Flag Register Load/Store
;	JU 1	71		build i lag Acgrater Coody Store
1	3C	33	NT I	Half Word Index Multiply
1	3D 1	33	NT I	Index Multiply
1	3E 1	34	IN I	Enter R with I (16)
i	3F	3,4 1	IN I	Increase R by I (16)
1	:	1	1	t .

Index To Timing Tables By Op Code (Cont.)

-					_
1	OP	-	1		t
1	Code	1 #	1 Type	Description	1
i		1		!	; !
i	40	1 34	l RG	I Add U	ì
1	41	1 34	I RG	1 Add L	ĺ
1	42	1 34	1 RG	Add N	ı
1	43	42	1	Illegal	1
1	1. 1.	1 34	l PG	I I Subtract U	!
i	44 45	1 34		I Subtract L	į
i	46	1 34	I RG	1 Subtract N	, L
i	47	1 42	1	I Illegal	ì
:		1	1	1	j
1	48	1 34	I RG	1 Multiply U	1
ł	49	1 37	I RG	I Multiply L	}
1	4 A	1 42	1	Illegal	
i	4 B	1 34	I RG	! Multiply S	
i	4C	34	I RG	I I Divide U	
•	40	1 34		I Half Word Enter R	
i	4E	1 34	IN	Half Word Increase R	
i	4F	1 34		Divide S	
1	•	1	1		
1	50	1 34	RG	I Truncate I	
1	51	1 34		I Floor I	
1	52	1 34	l RG	Celling	
1	53	34	I RG	Significant Square Root	
i	54	i 35	I RG		
i		35	RG I	Adjust Exponent 1	
ì	56	1 42	I NT	Select Link	
}	57	42	1	Illegal	
i		1	1 1	1	
ı	58	35	I RG I	Transmit	
1	59	35	RG 1	Absolute	
!	5 A	35	RG I	Exponent	
i	58	35	RG I	Pack !	
!	5C (35	I RG I	Extend	
i	50	35	RG I	Index Extend	
i	5E 1	35	NT	Load T	
1	5F	35	NT I	Store T	
ı			1	i i	

Index To Timing Tables By Op Code (Cont.)

1		l Page	1	1
	Code	! #	1 Type	Description
,			1	· · · · · · · · · · · · · · · · · · ·
•	60	1 35	l RG	I Add U
•	61	1 35		I Add L
i	62	35		I Add N
i	63	1 35	I RG	Add Address
i	•	1	1	1
1	64	35	1 RG	I Subtract U
1	65	35	I RG	I Subtract L
1	66	35	I RG	I Subtract N
1	67	35	I RG	Subtract Address
1		!	1	1
1	68	36		Multiply U
1	• .	36	I RG	Multiply L
	6 A	42	1 00	Illegal
	€ <u>.</u>	36	1 RG I	Multiply S
•	6C	36	l RG I	Divide U
i	6D I			Insert
i	6E I	36		Extract
i	6F 1	36	l RG	Divide S
ì	Ŭ			
ı	70	36	I RG I	Truncate
ı	71			Floor
1	72	36	I RG I	Ceiling
1	73 1	36	I RG I	Significant Square Root !
ı	1	1	1	1
1	74	36	I RG I	Adjust Significant
!	75	36		
1	76	36	RG I	
i	77	36	RG I	Rounded Contract
:	78 1	36	RGI	Transmit
i	79 1	36	RG I	Absolute
i	7A I	36	RG I	Exponent
1	7B	37	RG I	Pack
1	1	1	1	Ĭ
:	7C 1	37 1	RG I	Length
i	70 I	42 1	NT I	Swap
ı	7E 1	37 1	NT 1	Load T
1	7F	37	NT I	Store T
1	1	1	1	1

Index To Timing Tables By Op Code (Cont.)

-	0P	1 8220		1
1	Code	_	 Type	Description 1
1				
1		1	1	
1	80	1 42	I VT	I Add U
- 1	81	1 42	i VT	I Add L
	82	42	I VT	1 Add N
1	83	1 42	I VT	1 Add A
i	84	1 42	I VT	I Subtract U
•	85	42	i VT	I Subtract L
i	86	1 42	i VT	I Subtract N
į	87	1 42	i vi	I Subtract A
i	٥,	1	1	1
ŧ	88	1 42	t VT	I Multiply U
ŧ	89	1 42	1 VT	Multiply L
1	8 A	42	I VT	I Shift I
I	8 B	42	I VT	I Multiply S
1		1	1	1
1	8 C	1 42	1 VT	I Divide U
I	8 D	1 42	1	Illegal
ı	8E	42	•	I Illegal I
1	8F	1 42	I VT	Divide S
ı		! •	1	
I	90	42	I VT I	Truncate
I	91	1 42		Floor
I	92	42	• • •	Celling
	93	42	I VT I	Significant Square Poot
i	0.4	i !	1 1/4	Adlunt Cionidianas
	94	42	I VT I	Adjust Significance
,			1 VT 1 1 VT 1	Adjust Exponent 1 Contract 1
i	97 1	43	VI I	Rounded Contract
i	<i>) (</i>	, 43 I	·	Rounded Contract
i	98	43	I VT I	Transmit
1				Absolute
1	9A I	43	I VT I	Exponent
:	98	43	I VT I	Pack
i	1		1 1	1
1	9C	43	I VT I	Extend
1	90 1	43	ı TV I	Logical
1	9E 1	43	1	Illegal
1	9F 1	43	1	Illegal
1	1	1	1	1

Index To Timing Tables By Op Code (Cont.)

I OP	Page	 Tune	
1 000e	#	1 Type	Description
1	t	1	1
1 AO	1 43	I SV	I Add U
1 41	1 43	I SV	I Add L
1 42	1 43	I SV	I Add N
1 A3	1 43	1	Illegal
i	1	1	1
1 A4	1 43	1 SV	I Subtract U I
1 A5	1 43	I SV	I Subtract L 1
1 A6	1 43	1 SV	I Subtract N I
1 A7	1 43	1	l Illegal l
1	t	I	1
1 A8	1 43	I SV	I Multiply U
I 49	1 43	I SV	I Multiply L
Ι ΔΑ	1 43	1	Illegal
1 AB	43	1 SV	Multiply S
!	! _	1	
1 AC	43	I SV	Divide U
I AG	1 43		Illegal
1 AE	1 43	1 64	Illegal
1 AF	1 43	SV	Divide S
1 Bo	1 77	I BR I	Index Branch
81	1 37 1 37	BR I	Index Branch
1 82	1 37	I BR I	Index Branch
1 83	1 38	BR I	Index Branch
1	1 30	1 76 1	Thoek of andth
84	38	BR I	Index Branch
1 B5	1 38	BR I	Index Branch
1 B6	1 38	I BR I	Branch to Immediate Address
1 B7	1 43	l VM¥ I	Transmit List Indexed
	1		I I
E8	1 44	VM I	Transmit Reverse
1 89	1 44 1	1	Illegal
1 BA	1 44 1	VM* 1	Transmit Indexed List
1 88	1 44 1	NT I	Mask I
1	1 1	1	1
I BC	1 44 1	NT I	Compress
1 60	1 44 1	NT I	Merge !
: BE	1 38 1	IN 1	Enter R 1
I BF	1 38 1	IN I	Increase R
:	1	1	t

Index To Timing Tables By Op Code (Cont.)

I OP I Code	Page	l I Type	Description
l Co	1 44	I VM	 Select EQ A EQ B, Item Count to C
i C1	1 44	1 VM	1 Select NE A NE B, Item Count to C
1 C2	1 44	I VM	Select GE A GE B, Item Count to C
1 C3	1 44	I VM	I Select LT A LT B, Item Count to C
1	1	ı	
1 04	1 44	1 NT	I Compare EQ A EQ B, Order Vector I
1 C5	1 44	INT	I Compare NE A NE B, Order Vector I
1 C6	1 44	1 NT	I Compare GE A GE B, Order Vector I
I C7	1 44	I NT	Compare LT A LT B, Order Vector
1	1	1	1
1 C8	1 44	I NT*	
1 C9	1 44	NT*	Search NE, Index List
I CA	1 44	NT*	Search GE, Index List
i CB	1 44	I NT*	Search LT, Index List
1	1	1	
I CC	1 44	I NT	Masked Binary Compare
1 CD	• • •	IN	Half Word Enter R
! CE	1 44	IN	Half Word Increase P
I CF	1 44	NT	Arithmetic Compress
1 00		1	
1 00	44	I VM I	Average
1 01	44	I VM I	Adjust Mean
1 02	45	•	Illegal
1 C3	45		1116981
1 04	45	I VM I	Average Differential
1 05	45	VM I	Delta
1 D6	45	. , , , , 	Illegal
1 07	45	1	Illegal
			1
I D8	45	NT I	Maximum of A to C, Item Count to B
1 09	45	NT I	Minimum of A to C, Item Count to B
I DA I		VM I	Sum 1
1 08 1	45	VM I	Product
1 1	1	1	1
I DC I	45 1	VM I	Vector Dot Product
1 00 1	45 1		-Illegal I
I CE I	45 1	1	Illegal
I CF I	45 1	VM I	Interval
1 1	1	1	1

Index To Timing Tables By Op Code (Cont.)

-		Page	!	!	-
I	Code	1 #	1 Type	Description	1
			1	1	1
•	ΕO	1 45	1	I Illegal	:
i	E1	45	1	l Illegal	i
i	E 2	1 45	i	l Illegal	i
i	E3	1 45	i	l Illegal	i
i	-0	1	1		ł
1	E4	1 45	1	l Illegal	ı
1	E5	45	1 1	l Illegal	ŧ
1	E6	1 45	1	Illegal	i
1	E7	1 45	1	Illegal	ł
ı	. .	1	1 1		l
	E 8	45	1	Illegal	I
	E9	45	1 1	Illegal	ļ
1	EA EB	45		Illegal Illegal	j
1	כס	1 45	1 1	1116701) }
i	ЕC	45	i i	Illegal	ŀ
i	ED	1 45		Illegal	}
i	EE	45	1 1	Illegal	
1	EF	45	1 1	Illegal	
:		i	: :		,
1	FO :	45	I LS I	Logical Exclusive OP)
1	F1	45	I LS I		
1	F2	45	I LS I		
1	F3	45	I LS I	Logical Stroke	
!	·			A saissa A Disassa	
ı	F4	46	I LS I		
i	F5 1	46 46	I LS I I LS I	Logical Implication I	
į	F7 1	1 46	I LS I	Logical Equivalence	
1	1	· +0 ·		1	
i	F8 1	46	ST	Move Bytes Left	
ı	F9 1	46	1	Illegal I	
1	FA I	46	1	Illegal	
ŧ	FB #	46	1	Illegal !	
1	1	1	1	·	
ı	FC I	46	1	Illegal	
1	FO I	46	1	Illegal	
ı	FE !	46	1	Illegal	
I	FF I	46	1	Illegal	
ŧ	I	i	1	.	

1.0 SCOPE

This timing specification is Intended for persons already having familiarity with CYBER 200 concepts, terminology and general description as contained in the applicable specifications. In particular, this timing specification depends on much of the material in the CYBER 205 Functional Computer Specification 10358025. The times contained in this specification for the CYBER 205 are preliminary estimates with little verification being complete at this time.

In general, those instructions executed will be verified via simulation.

2.0 APPLICABLE DOCUMENTS

(To be added)

3.0 REQUIREMENTS

3.1 General Description

The tables in Section 3.2 are designed to provide timing data for the instruction sequences in the CYBER 205. All timing data is expressed in 20 nsec. minor cycles.

3.1 (Continued)

Scalar Instructions are expressed as described below.

The <u>ISSUE</u> column of the tables contains the minimum number of minor cycles between the issue of the specific Instruction listed in the left column and the issue of the next instruction in the sequence. Various operand or memory conflicts (as discussed later) can cause additional delay beyond this minimum time.

The Issue column of the tables is sub-divided when appropriate into three categories as defined below:

NB -- No Branch

ISB -- In Stack Branch

OSB -- Cut of Stack Branch to first quarter sword. This time must be increased by 1, 2 or 3 if the Eranch address is in the 2nd, 3rd or 4th quarter sword respectively.

The non-branch instructions use the entry under NB or No Branch. Example 1 Illustrates a simple, no conflict, Branch sequence.

For this example and all following examples, the calculations are based on values from tables 3.1-1, 3.2-1 and 3.2-2. The times under each column are based on Issue or Busy (L/S or D/C) time plus SS, RF and MEM.

The R, S, T, A, X, Y, B, C, and Z under instruction represents the appropriate descriptors from the instruction. Non pertinent data is represented by a -.

CONTROL DATA		Ε	N	G	I	N	Ε	Ε	R	I	N	G		NO. DATE	10358026
Corporation	S	P	Ε	C	Ι	F	Ι	С	Δ	T	I	C •	N	PAGE REV.	

Example 1

	F	R/G	S/X	T/A		R	ESU	LIS	<u>BUSY</u>		REGISTER		
	<u>_Y_</u>	<u> </u>	<u>_Z_</u>	_ <u>c</u> _	ISSUE	SIACKED	<u>\$\$</u>	RE	MEM	LZS	DVC	RELEASE	
A)	60	-	-	-	0	-	5	8	-	-	-	-	
8)	25	-	-	-	1 (N	B) -	-	-	-	-	-	-	
					// 11								
C)		-				-	17	20	-	-	-	-	
0)	25	-			13(05	B) - 	- 		-	-	-	•	
					41								
E)	-	-	-	-	42								

Instruction (B) is a branch with condition not met; therefore instruction (C) issues at time 12.

Instruction (D) is a branch with condition met to instruction (E) whose address is out of stack and falls in the third quarter sword therefore; (E) s

Issue = Time 13 + OSB (D) + 3rd Quarter Sword = 13 + 27 + 2 = 42.

The <u>RESULT AVAILABLE</u> column of the tables contains information necessary to time instruction sequences with operand dependencies. The first column, SS or shortstop, contains entries for those instructions which use the Floating Point Unit. These are the instructions which may use the shortstop feature to provide an input operand. This entry is the number of minor cycles after issue that the result operand will be available at the shortstop for use with a following instruction.

If instruction A issues at minor cycle X, any following instruction, 8, needing the result of A must issue no later than minor cycle X+SS to utilize the shortstop. A floating point instruction needing the result of A, can be issued before X+SS and wait at the input of floating point for the shortstopped result of A. This allows other non-floating point instructions

(12,13,2F,31,32,35,36,5E,5F,7E,7F, (80-85)(.XX0X-X) and 86) to issue. The resulting time of an instruction that issues and waits for shortstop will be as if it had issued at the ideal time to match shortstop. A subsequent instruction requiring access to floating point will not issue any earlier than {X+SS} + 1.

If instruction B issues later than cycle X+SS, thus missing the shortstop; instruction B must wait until at least X+RF. At this time the desired operand will be available from the Register File. Example 2 illustrates operations using shortstop.

NOTE: Instructions that require 64-bit operands cannot shortstop—the result of a 32-bit operation and vice versa.

Example 2

					TIME									
		INS	RUC	TION										
	F	R/G	S/X	T/A	-		RESL	LIS		BUSY		REGISTER		
	<u>-Y</u> _	_8_	_Z_	_ <u>C</u> _	ISSUE	SIACKED	<u>\$</u> 5	RE	MEM		LZS	ΩVC	PELEASE	
A)	60	-	-	12	0	-	5	8	-		-	-	-	
B)	60	-	-	-	1	-	6	9	-		-	-	-	
C)	60	-	-	-	2	-	7	10	-		-	-	-	
O)	60	-	-	-	3	-	8	11	-		-	-	-	
E)	60	-	-	-	4	-	9	12	-		-	-	-	
F)	60	12	-	14	5	-	10	13	-					
G)	60	14	14	-	6	-	-	-	-					
H)	7 F	-	-	-	7	(G)	-	-	17	(H)	9	-	14	
					8	(G)								
I)	60	-	-	15	9	(G)								
					10	(G)	15	18	-	(G)	-	-	-	
					11	-	16	19	-	(I)	-	-	-	
J)	60	14	-	16	12									
					13	-	18	21	-		-	-	-	
K)	60	16	15	-	14									
L)	60	-	-	~	15	(K)								
	_				16	(K)								
					17	(K)								
					18	(K)	23	26	-		-	-	-	
					19	•		27	-		-	-	-	
M)	34	-	-	-	20									
					21	(M)								
					22	-	25	28	-		-	-	-	

----- OPERATIONS ----- SUPER COMPUTER OPERATIONS

Instruction (F) has a source operand conflict with instruction (A) whose SS time 5 matches instructions (F)'s earliest issue time 5, therefore no delay in issue.

Instruction (G) has a source operand conflict with instruction (F) and has to wait until instruction (F)'s SS time 10 before it can proceed but because one instruction can be stacked in front of the F.P. unit instruction (H) can issue and execute.

Instruction (J) has a source operand conflict with instruction (F). The earliest it can issue is time 12 and misses instruction (F) s SS time 10, therefore it has to wait until RF time 13 of instruction (F).

Instruction (K) has a source conflict with instructions (I) and (J). It tries to issue as early as time 14, but has to wait until time 18 which is the latest SS time of instruction (I) and J). It will stack in front of the F.P. unit but does no good in this case because the following instruction needs the same unit.

Instruction (M) has a register file write conflict and must wait until the next available RF opening before it can issue.

The last column under RESULT AVAILABLE (MEM) contains entries for those scalar instructions (13, 32, 5F, 7F) which store a result into Central Memory. The time listed is the minimum time until the operand is in memory and available for use. The time may also be increased by 4 minor cycles if the desired memory bank is busy.

The <u>UNIT BUSY</u> column of Table 3.2-1 concerns instructions issued to either the Divide/Convert (D/C) Unit or the Load/Store Unit (L/S). The Divide/ Convert Unit executes the 10, 11, 4C, 4F, 53, 6C, 6F and 73 instructions.

This unit is the only portion of Floating Point which is not a Pipe; thus the appropriate unit busy time listed in Table 3.2-1 must elabse before another instruction can be issued to the Divide/Convert Unit. Floating Point instructions other than these eight may be issued to Floating Point while the Divide/Convert Unit is busy.

------ SUPER COMPÚTER OPERATIONS -----------

A second instruction from the set of eight can be issued, but will be held in front of the Floating Point Unit and issuing of non-floating point instructions will continue.

The Load/Store Unit executes the 12, 13, 32, 5E, 5F, 7E and 7F instructions. There are six address registers in the Load/Store Unit which enable requests to be stacked and executed in the proper order. The 12, 5E and 7E instructions each require one register and can be executed (in the absence of memory conflicts) at the rate of one load per minor cycle. The 5F and 7F instructions each require two address registers and can be executed at one store per two minor cycles. The 13 and 32 (not if G bits 2 & 3 = 0) instructions each require two address registers and can be executed at one per 14 and 15 minor cycles, respectively. The rate is determined from the unit busy (see table 3.2-1).

The LOAD/STORE Unit is then carable of streaming Load/Store instructions (other than the 13 and 32) at one minor cycle per load and two minor cycles per store assuming no Memory or Register File conflicts. For example, a stream of N loads will execute in N + 14 minor cycles from the issue of the first load until the operand from the last load is available in the Register File. The N + 14 comes from table 3.2-1 where the 14 is the RF time minus 1.

The method of determining the time of issue for a load/store instruction that is waiting on address registers to be released from previous load/store operation is as follows:

A + B + 5 M.C. (minor cycles)
(for register release)

Where A is the unit busy time from Table 3.2-1 for the Instructions that release the register.

Where B is the sum of unit busies stacked up prior to A.

The method for determining result calculations for an instruction that waits on a unit busy and is already issued, is to substitute the previous unit busy accumulated time and add the instructions SS, RF and/or busy time. See Example 3.

ICONTROL DATA I		E	N	G	I	N	Ε	Ε	R	I	N	G		NO. DATE	10358026
1 Corporation 1	S	P	Ε	С	I	F	I	С	Δ	T	I	0	N	PAGE REV.	17 0 2

A sequence of loads and store do not reference memory out of order. Therefore, a store followed by a load to the same location results in a delayed load of one memory busy (4 M.C.) minimum.

Example 3

								TIME				
		INS	TRUC	TION								·
	F	R/G	S/X	T/A		F.P.		<u> PESUI</u>	<u>IS</u>	BUSY		REGISTER
	¥	_8_		_2_	ISSUE	SIACKED	<u>\$\$</u>	RF	MEM	<u>L/S</u>	DVC	RELEASE
A)	6 0	-	-	-	0	-	5	8	-	••	_	-
8)	7 E	-	-	-	1	-	-	16	-	2	_	7
C)	13	-	-	-	2	-						•
					3	-	-	-	25	16	_	21
D)	13	-	-	-	4							
					5	-	-	_	39	30	-	35
E)	6 0	-	-	-	6	-	11	14	-	-	-	-
F)	7 E	-	-	-	7	-	_	45	-	31	-	36
G)	7 E	-	-	-	8	-	_	46	_	32	-	37
H)	7 E	-	-	-	9							
					-//							
					21	-	_	47	-	33	-	38
I)	13	-	_	_	22							
					-//							
					36	-	-	_	56	47	_	52
J)	6F	-	-	-	37	-	91	94	-	_	87	-
K)	6F	-	-	-	38							
L)	-	-	-	-	39	(K)						
					-//							
					87	(K)	141	144	-	- 1	37	-

Instruction (B) is a load instruction and its calculations are:

L/S Busy = Issue + L/S = 1 + 1 = 2Register Release = Busy + 5 = 2 + 5 = 7Result RF = Issue + RF = 1 + 15 = 16

Instruction (C) is a byte store and calculations are based on Issue time 2 or prior L/S busy time 2, whichever is largest, in this case either can be used.

L/S Busy = L/S busy + L/S = 2 + 14 = 16Register Release = L/S busy + 5 = 16 + 5 = 21Mem = L/S busy + Min = 2 + 23 = 25

Instruction (D) is a byte store and the busy time is greater than issue time therefore:

L/S Busy = L/S busy + L/S = 16 + 14 = 30 Register Release = L/S busy + 5 = 30 + 5 = 35 Mem = L/S busy + Mem = 16 + 23 = 39

Load instruction (F's) times will be based on busy.

L/S Busy = L/S busy + L/S = 30 + 1 = 31Register Release = L/S busy + 15 = 31 + 5 = 36RF = L/S busy + RF = 30 + 15 = 45

Instruction (G) is the same as instruction (F) therefore all calculations will be 1 greater.

Instruction (H) is the same as instruction (G) but its issue will be held up because the 6 registers in Load/Store are busy by instruction (C) uses 2. (D) uses 2. (F) and (G) uses 1 apiece and will not issue until register release of instruction (C) time 21.

L/S Busy = L/S busy + L/S = 32 + 1 = 33Register Release = L/S busy + 5 = 33 + 5 = 38RF = L/S busy + RF = 32 + 15 = 47

Instruction (I) cannot issue because 5 of 6 registers are busy and must wait until instruction (D) register release time 35, therefore:

L/S busy = L/S busy + L/S = 33 + 14 = 47Register Release = L/S busy + 5 = 47 + 5 = 52Mem = L/S busy + Mem = 33 + 23 = 56

Instructions (J) and (K) use the D/C busy which is not busy therefore (J) issues at time 37 and its calculations are based on time 37.

SS = ISSUE + SS = 37 + 54 = 91 RF = ISSUE + RF = 37 + 57 = 94 D/C Pusy = ISSUE + D/C = 37 + 50 = 87

Instruction (K) calculations will be based on D/C busy which is greater than issue time.

SS = D/C busy + SS = 87 + 54 = 141 RF = D/C busy + RF = 87 + 57 = 144 D/C busy = D/C busy + D/C = 87 + 50 = 137

Instruction (L) can issue at time 39 and execute if it is a non F.P. instruction, otherwise it must walt until time 88.

There are three Operand Dependencies which delay issue that must be considered.

- 1. Source operand conflict -- an instruction requiring the result of a previous instruction as an input operand waits until the operand becomes available.
- Output operand conflict -- an instruction output to the same Register File location as a previously issued, but slower instruction, waits until the previous instruction stores its result in the Register File, unless it also has a source operand conflict then it will go at the shortstop time.
- Register File Write conflict -- an instruction cannot issue if its result arrives at the Register File at the same minor cycle as the result of a previously issued but slower instruction.

Table 3.1-1 pertains to Instructions having greater than 1 minor cycle issue time.

The first column lists the appropriate instructions. The second column indicates the minor cycle of issue that a specific operand is required. The third column indicates the availability of shortstop for that specific operand.

_____IIMF

Example 4

E) 60 - - -

		INST	RUCT	ION							
	F	R/G	S/A	T/A		F.P.	_Resu	<u> </u>	_ <u></u>	<u> </u>	REGISTER
	<u> </u>	_ <u>B_</u>	_Z_	_ <u>c</u> _	ISSUE	SIACKED	SS RE	MEM	<u>L/S</u>	DVC	RELEASE
A) B)	60 31	- 12	-	12	0 1 7(0SB	-	5 8	-	. -	-	-
C)	60 20	- 35	- 35	35 -	31 32 33 34 35 36(ISB	-	36 39	-	-	-	-

Instruction (B) branches out of stack to Instruction (C) (In second quarter sword). Its issue occurs at time 7 as opposed to time the RF time of instruction that Its depended on. The R descriptor is in the second cycle (from table 3.1) therefore:

Issue = Issue + OSB+1 (second quarter sword) = 7 + 23 + 1 = 31

Instruction (D) branches in stack to instruction (E) and is dependent on instruction (D)'s SS time 36. Because (D) R & S descriptors are read in the second cycle, issue starts at time 35. Calculations are:

Issue = Issue + ISB = 35 + 12 = 47

Timing descriptions for those instructions in the vector/string units are as follows.

Each instruction has two values in its timing equations. One value is issue time (INE) which is the amount of time the issue unit spends on this instruction. The other value is a busy time (VBA). Overlap does occur in most cases between vector/string instructions (table 3.2-2) and scalar instructions (table 3.2-1). The exceptions are those instructions in table (3.2-2) that do not have a (VBA) time.

The busy time (VBA) represents the number of cycles of parallel work that can be accomplished by the scalar instructions before the next vector/string unit instruction will be executed. Overlap does not occur if the scalar instruction requires the load/store unit instructions (04, 00, 00, 0F, 12, 13, 32, 5E, 5F, 7E and 7F). In this case, busy time (VBA) is used to predict the execution start time for these instructions the same way it is used to predict execution start time for a vector/string instruction. Their results and busy times will be increased from (15-23) minor cycles because of common hardware between table 3.2-2 instructions and load/store unit instructions. The start time of a vector string instruction is influenced by a preceding load/store unit instruction. The vector/ string operation will start when the load/store unit busy has 10 minor cycles remaining.

Table 3.2-2 lists the instruction OP-CODE in the first column, then the issue time in minor cycle, the busy times in minor cycles and in the last four

CONTROL DATA	Ε	N	G	I	N	Ε	Ε	R	Ι	N	G		NO. DATE	10358026
Corporation	S P	Ε	C	I	F	I	С	Δ	T	I	0	N	PAGE REV.	

3.1 (Continued)

columns are the rate factors or pipe line size (PLS). The PLS is given for both 2 and 4 pipe size CPU's. PLS is the number of elements per minor cycle and is constant or has different values for elements of 32 bit (32M) and 64 bit (64M) moves.

Example 5 - C=40 and PLS=2 for vectors

						TIM	Ę			
		INSTR	UCTIO	N						
	F		R/X			F.P.		<u>Resul</u>	<u>ts</u>	
	Y	В	Z	С	Issue	Stacked	<u>ss</u>	RF	MEM	
4)	60	-	-	-	9	-	5	8	-	
8)	60	-	-	-	1	-	6	9	-	
C)	60	-	_	-	2	-	7	10	-	
D)	63	-	-	12	3	-	4	7	-	
E)	50	0.0	-	-	4+(I	NB)				
	-	12	-	-						
					//					
F)	60	_	-	-	21	-	26	29	-	
G)	60	-	-	-	22	-	27	30	•	
H)	60	-	-	-	23	-	28	31	-	
I)	60	-	-	-	24 +V	BA(E)-	29	32	-	
J)	60	-	-	-	25 +I	N3(0)-	30	33	-	
K)	60	-	-	-	26	-	31	34	-	
L)	60	-	-	-	27 I	-	32	35	-	
M)	60	•••	-	-	28 I	-	33	36	-	
N)	60	-	-	-	29 I	-	34	37	-	
0)	8F	00	-	-	30 t					
	-	-	-	-	1					
					//-1					
P)	60	-	-	-	93<-	-	98	111	-	
Q)	60	-	-	-	94-1	-	99	112	-	
R)	60	-	-	-	95	-	100	113	•	
S)	60	-	-	-	96 +V	3A (O)-	101	114	-	
T)	60	-		-	97 1	-	102	115	-	
U)	7E	-	-	-	280<-	-				
						-	-	310	-	
V)	60	-	-	-	281	-	286	289	•	

Instruction (E) will start issue at time 4 even though designator B's contents are not available until time 6 (instructions (C) RF time) because table 3.1-1 shows it is not needed until the fourth cycle of the instruction.

Instruction (F) will issue at time 21 using table $3 \cdot 2 - 2 \cdot$

3.1 (Continued)

Issue = Issue + INB(E) =
$$4 + 17 = 21$$

Instruction (P) will issue at time 93 because the VBA (=34 +14 Ω) of E), is greater than issue time spent by \perp 21

Instructions (F) through (N) therefore:

Issue = Issue (F) + VBA(E) + INB(0) = 21 + 34
$$\frac{140!}{2!}$$
 + 18 = 93

Instruction (u) will issue at time 314 because instruction (U) is a load and cannot start until instruction (0)'s busy is expended therefore:

Issue = Issue (P) +
$$V3A(0)$$
 = 93 + 62 + 1401 = 280 1.321

Instruction (U) s result to register file RF will be delayed by an additional 15 minor cycles minimum because of the previous vector instruction.

Timing of link operation

The total INE time for a link operation is the sum of INB's for the 56 instruction F1 and F2. The VBA time is the longer of F1 or F2.

All times are approximate due to small variations listed under assumptions for vectors.

Assumptions

Calculation using tables does assume an ideal situation and time must be added for the following:

- Alignment of slot time for memory reference, up to 7 minor cycles.
- 2. Space table searches in Job mode: $34 + \underline{N}$ where N is number of element to search.
- 3. Interrupts.
- 4. Vector conflict with I/O 0-32 minor cycles only if there is a control vector. Not a high probability.

ICONTROL DATA I	ENGINEERING	NO. 10358026 DATE
Corporation	SPECIFICATION	PAGE 23 REV. 02

3.1 (Continued)

- 5. Starting bank address of input streams and output stream could add 4, 8 or 12 cycles.
- 6. Register file conflicts are calculated the same as scalar instructions by using Table 3.1.1. The exact cycle the register is needed for the vector instruction can be obtained from the table.

ICONTROL DATA I		Ε	N	G	I	N	Ε	Ε	R	I	N	G		NO. DATE	10358026
Corporation	S	Ρ	Ε	С	I	F	I	С	Δ	T	I	0	N	PAGE REV.	'

Table 3.1-1

ORDER THAT DESIGNATORS ARE READ FOR MULTIPLE ISSUE INSTRUCTION AND IF THEY CAN USE SHORTSTOP OF A PREVIOUS INSTRUCTION

INSTRUCTION	ICYCLE	I DESCRIPTORS	I SHORTSTOP
13	1 1	I RESET I T	I No I No
20-27	1 1	I T I P&S	I No I Yes
2F	1 2 3	S T T	I No I No I No
31 & 35	1 1 2 1 3	S&T R P	I No I No I No
32	1 2	I S I T	l No l No
36	1 2 3	S&T R R	I No I No I No
5F	1 2	P&S&T T	I No I No
6D	1 2		Yes (R&S) No
7F	1 2	R&S&T T	I No I No
80-35.X00X-X	2	P&Y&Z X&A C&Z X&A&C	NO NO NO NO
E0-85.X01X-X		9&Y&Z X&A&C C&Z	No Yes (X+A) No
80-85.X10X-X	1 2	8	No Yes
B0-B5.X11X-X	1 2	B&Y X&A+Y	l No l Yes (X+A)
l 86	1 !	R	l No

ICONTROL DATA		Ε	N	G	I	N	Ε	Ε	R	I	N	G		NO. DATE	10358026
Corporation	i s	Р	Ε	С	I	F	I	С	Α	T	I	0	N	PAGE REV.	~ >

Table 3.1-1

ORDER THAT DESIGNATORS ARE READ FOR MULTIPLE ISSUE VECTOR UNIT INSTRUCTIONS OF WHICH CANNOT USE SHORTSTOP OF A PREVIOUS INSTRUCTION

INSTRUCTION	ICYCLE	OESCRIPTORS	I SHORTSTOP
09	1 2	I S & T I Store Trace Reg.	I No I No
14->16, 1C->1F	1 2	S & T R	I No I No
28	1 1	IT&S	I No
33	1 2	I T I Felative Branch	No No
70	1 1 1 2 1 3	! Store Trace Reg. ! S & T ! R	No No No
80->8C, 8F 90->98	1 1	C C+1 IF GBIT 2=1	i No
•	2	I Z I A IF GBIT3=0	I No I No
	4	X B	No
	! 5	A	No
90	1 1	C C+1 IF GBIT2=1	No
	1 2	I Z I A IF GBIT3=0 I X	I No I No
	1 4	 A IF GBIT3=1	I No I No
90	1 1	C C+1 IF G8 T2=1	l No
	2	I Z I A IF GBIT3=0	I No I No
	i i 4	X B	l No
	5	A IF GBIT3=1 B IF GBIT4=1	l No

CONTROL DATA	ENGINEERING.	NO. 10358026 DATE
Corporation	S P E C I F I C A T I C	N PAGE 26 REV. 02

Table 3.1-1

ORDER THAT DESIGNATORS ARE READ FOR MULTIPLE ISSUE VECTOR UNIT INSTRUCTIONS OF WHICH CANNOT USE SHORTSTOP OF A PREVIOUS INSTRUCTION

IINSTRUCTION IC	YCLE	I DESCRIPTORS	SHORTSTOP
1 A0-A2, A4-A61	1	I C & Z	I No
1 A8, A9, AB, 1		I Z	I No
I AC, AF I	3	A IF GBIT3=0	1 No
1	}	1 X	1
1	4	B IF GBIT4=0	I No
1	1	I Y	1
1	5	A IF GBIT3=1	1 No
1	1	B IF GBIT4=1	1
B7	1 1	STORE TRACE REG.	I No
	2	I C & A	I No
•	3 1	7	I No
1			I No
ì	5 1		i No
1	- 1	I Y	1
1	6 1	B IF GBIT4=1	I No
P8 1	1 !	C	l No
1		C+1 IF GBIT2=1	1
i	2 1	Z	l No
i	3 1	A IF GBIT3=0	l No
i	Ŭ	X	t
·	4	B IF GBIT4=0	l No
1	1	Y	1
1	5 1	A IF GBIT3=1	l No
1	1	B IF GBIT4=1	I
BA 1	1 !		l No
; •		Z	l No
ţ	•	A & X	l No
i .	· ·	B & Y	l No I No
i	5 1		INU

| CONTROL DATA | ENGINEERING NO. 10358026

----- SUPER COMPUTER OPERATIONS -----

Table 3.1-1

ORCER THAT DESIGNATORS ARE READ FOR MULTIPLE ISSUE VECTOR UNIT INSTRUCTIONS OF WHICH CANNOT USE SHORTSTOP OF A FREVIOUS INSTRUCTION

INSTRUCTION	ICYCLE	I DESCRIPTORS	SHORTSTOP
88, BC, BO, CO-C3	1 2 1 3 1 1 4 1 5	C & Z Z A IF GBIT3=0 X B IF GBIT4=0 Y A IF GBIT3=1 B IF GBIT4=1	No No No No No
C4-C7	1 1 2 3 1 4 1 5 1	Z Z A IF GBIT3=0 X B IF GBIT4=0 Y A IF GBIT3=1 B IF GBIT4=1	No No No No No
C8-CB CF	1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Z A IF GBIT3=0 X B IF GBIT4=0 Y A IF GBIT3=1	No No No No No
• • •	1		i No i No
1 00, 01, 04, 1 1 05 1	1 1 3 1 3 1 4 1 5 1	C+1 IF GBIT2=1	No No No No No

1 Corporation SPECIFICATION PAGE 28	ICONTROL DATA I		Ε	Ν	G	Ι	N	Ε	Ε	R	Ι	N	G		NO. DATE	1035802
REV. 02	•	S	P	Ε	С	I	F	I	С	Δ	T	I	0	N	PAGE	

Table 3.1-1

----- SUPER COMPUTER OPERATIONS -----

ORDER THAT DESIGNATORS ARE READ FOR MULTIPLE ISSUE VECTOR UNIT INSTRUCTIONS OF WHICH CANNOT USE SHORTSTOP OF A PREVIOUS INSTRUCTION

INSTRUCTION	ICYCLE	DESCRIPTORS	I SHORTSTOP
1 08, 09 1	1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C Z A IF GBIT3=0 X B IF GBIT4=0	No No No No
! ! !	5 5	Y A IF GBIT3=1 B IF GBIT 4=1	No
I DA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C & C+1 Z A IF GBIT3=0	I No I No I No
1 ! !	1 4 1	X B IF GBIT4=0 Y	1 No 1
 	1 5 1	A IF GBIT3=1 B IF GBIT4=1	1 No 1
108 !	1 1 1 1 1 1 1 3 1	C Z A IF GBIT3=0	I No I No I No I
	1 4 1	B IF GBIT4=0 Y A IF GBIT3=1	No I
! !		B IF GBIT4=1	1

CONTROL DATA		Ξ	N (3	I	N	Ε	Ε	R	I	N	G		NO. DATE	10358026
Corporation	S	0	E (0	I	F	I	С	Δ	T	I	0 •	N	PAGE REV.	29 02

Table 3.1-1

ORDER THAT DESIGNATORS ARE READ, FOR MULTIPLE ISSUE VECTOR UNIT INSTRUCTIONS OF WHICH CANNOT USE SHORTSTOP OF A PREVIOUS INSTRUCTION

IINSTRUCTION	ICYCLEI	DESCRIPTORS	I SHORTSTOP
OC	1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C & C+1 Z A IF GBIT3=0 X B IF GBIT4=0 Y A IF GBIT3=1 B IF GBIT4=1	No No No No No
OF	1	C C+1 IF GBIT 2=1 Z A & B	No No No
F0-F7	1	C & Z C & Z A & X B & Y	I No I No I No I No
F8	1 2 3	C & Z Z A & X	No

| Corporation | SPECIFICATION

PAGE 30 REV. 02

------ SUPER COMPUTER OPERATIONS -----

3.2 Basic Instruction Timing

Table 3.2-1 Scalar Instruction Times

						lUnit Busy			
	i 	Issue	: 	ı kes	sult Avai	L 1 •	10011		i - 1
Instructions	EN 1	I ISB	920	1 5.5.	I R.F.	I MEM	1 L/S	1 0/0	
	1	1	1	1	1	1	Ī	1	- 1
1	1	1	1	1	1	1	1	1	1
03	1							1	1
0.4	20	1	!	1	•		1		1
05	-	-	32	:	i	!	1	!	!
06	1 4	1	1		 	1	1	1	!
1	1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1
	i i	1	† †	1	1	1	1	1	
! OC	! ! 34	! !	} #	! !	!	1		; 1	
	1	i	!		1	İ	į		į
00	48	!	!	• •	!	, !	1		i
	:		! 	: !	1	1	1	•	1
1 **0E	120	31	46	1 1	f 1] 1	! !	† 	1
I OF-IN ARS	1 9 1				22	1	1	1	1
1		<u>N</u>			92+ <u>N</u> 2	i I	! !	1	1
1 10	1		 	21	l 1 24	! !	; ;	1 1 17	1
11	1 1	1	 	54	l l 57	! !	ī I	 50	1
1 12	1 1	1		!	l 15	!	! !1*	1 1	
1	1		_			!	}	1	!
1 13	2 1		1			1 23 1 :	114*	1	1
l 20 l	11	12	27					! ! ! !	 -

^{*} MUST ADD 5 MC FOR REGISTER RELEASE

^{*} MUST BE TREATED LIKE A VECTOR INSTRUCTION-N=NUMBER WORDS SEARCHED

Table 3.2-1 Scalar Instruction Times (cont d.)

					,	<u>-</u>			
		1	Issue		l Res	ult Avai	1.	lUnit E	Busy !
	Instructions	I NB	I ISB	OSB	1 5.5.	I R.F.	I MEM	1 L/S 1	D/C
	, ====================================	1	1	1	1	1	1	1	
	21	111	1 12	27	 	! !	! !	1 1	!
į	22	11	12	27	 		· !		į
	23	111	12	2 7			! ! ~- !		1
1	24	111	1 12	27			l 	1 1	1
1	l 25	111	1 12	27		 	! !	1 1	:
1	26	111	12	27					1
!	27	11 !	12.	27	!	- -			
1	2 A	1	 	1	3 1	6		1 1 1 1	1
!	28	1	! !	!	3 1	6		! ! ! !	1
1	2C	1	: : : :	1	3 1	6			;
!	20	1		!	3	6			!
1	2E	1		!	3	6			i
1	2 F	7	8	23	!	7	!		!
1	30	1	1	!	3 1	6			!
1	31	7	8 1	23	l	7 7	!		1
-	·	•	•	•	•	•	•	•	•

^{*} MUST ADD 5 MC FOR REGISTER RELEASE

Table 3.2-1 Scalar Instruction Times (cont'd.)

		1	Issue		l Resu	ieva tlu	i •	Uni	Busy 1
•	Instructions	I NB	ISB	I OSB	I S.S.	I P.F.	I MEM	L/S	0/01
		1		 			!	!	
	32.0X 32.1X-3X	2		 	 		 24	15*	
1	 32.4X 32.5X-7X	 	9	1 24 24	 	 	 24	1 15*	
-	 32.8X 32.9X-8X	1 20 I	21 21	36 36	 		 24	1 1 15*	
1	32.CX 32.DX-FX	1 20 1 1 20 1	21 21	36 36	l I I		24	1 1	.
1	**3 3	20 1	31	46		1		1 1	:
1	34	1 1		1	3 1	6		1 1	!
!	35	7 1	8 1	23 1	1	7		! !	İ
1	36,R=T,S=0	1 4 1	1		1	6 1		! ! !	1
1	36,R=T,S≠0		9 1	24 1		8 1		! !	1
i	36,R≠T		8 1	23	!	7 1			1
1			1	1	!	1		!!!	!
!	38	1 1	!	!	1 !	4 1		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1
1			:	1	1	1	;		i
1			:	1	!	:	!		1
1	3C	1	!	!	5	8	!		1
:	30	1 1	!	1	5 I	8 I			† †
•	•	•	•	•	•	•		•	•

^{*} MUST ADD 5 MC FOR REGISTER RELEASE

^{**} MUST BE TREATED LIKE A VECTOR INSTRUCTION

Table 3.2-1 Scalar Instruction Times [cont*d.]

		I 	Issue		l Res	ult Avai	1.	lUnit	Busy I
IIns	tructions	I NB	ISB	1 058	1 5.5.	P.F.	I MEM	I L/S	1 D/C
1	3E	1 1	<u> </u>	1	1 1	1 4		1	1 1
! !	3F	! 1	! !	! !	1 1	1 4	 	i i	
1	40	; ; ; 1	! !	! !	! ! 5	1 8		i !	
1	41	1	! ! !	! !	! ! 5	1 8	! !	1.	!!!
	42	1	!		l 1 5	8	!	1	!!!
1 1 1	44	1	 	- -	l l 5	; ; 8 ;	: 	i !	: : : :
i	45	1	i i	- -	I 5	I 8	! !	! !	i i
	46	1			5	i i 8	: !	! !	! ! ! !
!	48	1			5	8	! !		; ; ; ;
i ! !	49	1	1	:	5	8		! !	; ; ; ;
i 1	48	1	I	I	5	8		; !	
1	4C	1 !		!	30	33			26
!	4D	1!	!	1	1	4			
i i	4E	1	!	- - !	1	4			
!	4F	1	!		30	33	1		26
1	50 1	1	1	1	5	8	1	1	1
1	51 I	1	1	1	5	8	!	1	1
1	52	1	!	!	5 I	8 1	!	1	1
1	53	1	1	1	29 1	32 1	I	1	25

Table 3.2-1 Scalar Instruction Times [cont*d.]

		 	Issue	: 	Res	ult Avai	1.	lunit	Busy	1
	Instructions	I NB	1 ISB	1 058	1 S.S.	1 P.F.	1 MEM	L/S	1 0/0	ci
		;====						7	7222	- ;
	1 1 54 1	1 1	i		 5	1 8	 	!	1	!
	55	1 1		i	I 5	8	i	1	1	i
	58	1			1	. 4	!			
	· 59	1			5	8				
	ĺ	1	1	i	İ	1	1	1	1	i
	5 A	1 1	 	1	3	6	;	1	1	1
	5 B	1 1	1	1	1 3	1 6	! !	1	1	1
1	5C	1	i	i	1 5	8	!	1	1	1
	5 D	1	!	i	5	! 8	!	! !	1	!
			!	:	1		!	!	i	i
1	5E	1	!	! !	! !	15	 	1 1*	1	1
1	5F I	2	 	! !	 		10	1 2*	1	1
i	60	1		!	 5	8		!		
1	1	- 1	!	l	1	İ		l	1	1
1	61 !	1		! !	5	1 8 I		!	1	1
1	62 ! !	1 1	! ! ! !	 	1 5 I	1 8 I	!	!	1	1
1	63 I	1 1	 		1 1	4	!	 	1 1	1
1	64 1	1 1	1	 	l 5	! ! ! 8 !	- - !		1 1	1
I	1	1	1	1	1	1	1		1	I
1	65 I	1	 	 	5 	8 1	I		1 1	1
1	66 !	1	1	[5 1	8 1	!		i i	!
1	67 I	1	1		1	4 1	1		l 	1

^{*} MUST ADD 5 MC FOR REGISTER RELEASE

: :

Table 3.2-1 Scalar Instruction Times [cont*d.]

		1	Issue		l Resi	ult Avai	1.	Uni †	Busy I
•	IInstructions	I NB	I ISB	058	I S.S.	I P.F.	I MEM	I L/S	D/C
	68	1 1			l 1 5	 8		! !	1 1
	l l 69	! ! 1	 	} 	l 1 5	8	:	I I	! ! ! !
	l 6B	1 1			l	l 8	1 1	! !	1 1
į	6C 1	1	 	[54	57	! ! !	! !	1 1
1	- 0	_				_			; ;
1	6D	2	1	1	4	7	(; ; ; ;
j	6E	1	!	1	3	6			1 1
1	6F	1	1	~- 1	54	57	I		150 1
1	1	1	1						
1	70	1 1	1	1	5 !	8 1	1	i 	; ;
1	71	1	i	1	5 l	8	1		
	72	1	i	i	5 !	8 1		!	
1	73	1	i	i	53 I	56		1	49
1	74 1	1 1	1	1	5 I	8		1	1
1	75 I	1 1	1	!	5 I	8 1	1	1	1
İ	1		!	į	1	!		1	İ
1	76 I	1	1	1	5 !	8 1	;		i
1	77	1	1	1	5	8 I	!	1	1
1	7.0					1	!	1	1
1	78 I	1	;	1	1 !	4		•	1
1	79	1 !	!	!	5 !	8 1	!	1	† †
1	7A 1	1 1		1	3 1	6 1	1	i	i

Table 3.2-1 Scalar Instruction Times [cont*d.]

	·									
- !		l Issue			l Result Avail.			Unit Busy		
1	Instructions	I NB	I ISB	1 0SB	1 S.S.	I R.F.	! MEM	L/S	D/CI	
1	7 B	 1	1	1	1 3	1 6	!	1	1 1	
1	7C	1 1		! !	1 3	6		; ;		
1	7E	1	; ;	i !	i !	1 15	! 	1 *	1 1	
1	7F .	2	!	, ! !	!		10	1 2* 1	, , 1 1	
1	80.X00X-X	l l 8	. 9	24	 	1 8	1	!	1 1	
	B0.X01X-X	3			5	15+8**		; ! !	; ;	
i	e0.X10X-X	11	12	27		!	!	! !		
i	B0.X11X-X	2			6	9 				
:	81.X00X-X	8 1	9 1	24		! ! 8	 			
1	B1.X01X-X	3 1	1	1	5	5+8** 				
	81.X10 X-X	11	12	27						
	B1.X11 X-X	2			6	9				
1	B2.X00 X-X	8 1	9 I	1 24		8 1		1	1	
1	82.X01 X-X 1	3 1	!	!	5	5+8**		İ	i	
1	82.X10 X-X	11	12	27	!			!		
1	82.X11 X-X	2			6	9	 		1	

^{*} MUST ADD 5 MC FOR REGISTEF RELEASE.

^{**}Cutput to be stored in Register C is available at 5 cycles and Y at 8 cycles. Y may be used from the Shortstop at time 5. C can not be shortstopped.

----- SUPER COMPUTER OPERATIONS -----

Table 3.2-1 Scalar Instruction Times [cont*d.]

	1	Issue		l Res	uit Aval	1.	Unit	Busy
Instructions	I NB	ISB	I OSB	I S.S.	R.F.	I MEM	I L/S	D/C
B3.X00 X-X	i i 8	1 9	24	 	8	!	1	1 1
B3.X01 X-X	1 3	! !	! !	! ! 5	15+8**		1	; ; 1 1
1 83.X10 X-X	11	12	27		i 	! !	1	i i i i
B3.X11 X-X	2	! :		6	9	!	1	, . 1 1 1 1
1 84.X00 X-X	8	9	24		! 8	!	1	
B4.X01 X-X	3			5 5	5+8 **	!		
1 E4.X10 X-X	11	12	27		!	: !	1	
1 84.X11 X-X	2			6	9			
85.X00 X-X	8	9 1	24		8			
B5.X01 X-X	3 1		1	5 1	5+8 **			
85.X10 X-X	11	12	27					
85.X11 X-X	2	1		6	9 1			1
1 B6	i	8 1	23	!	[1
BE !	1	!		1	4	; 		1
BF I	1			1	4	1		1
CO	1	i	<u>1</u>	1	4	1		1
CE I	1	i	i	1	4			1

^{**}Cutput to be stored in Register C is available at 5 cycles and Y at 8 cycles. Y may be used from the Shortstop at time 5. C can not be shortstopped.

```
ENGINEERING
                                           NO. 19358926
ICONTROL DATA I
                                           DATE
| Corporation | SPECIFICATION
                                           PAGE
                                                38
                                           REV.
                                                02
----- SUPER COMPUTER OPERATIONS -----
                       Table 3.2-2
Definitions for Table 3.2-2
32M = 32 Mode Operation
64M = 64 Mode Operation
PLS = Pipe Line Size (Number of elements per minor cycle)
  1 = The ceiling defined as the nearest integer greater than
   l or equal
Α
   1
В
  1 These letters stand for usable length of their respective
C
  I fields, that is: B's field length of a field etc. Usable
X
  > field length means given field or sometimes requires the
Y
     subtraction of its offset.
Z
R
S
  1
T
  1
  1
CR=
     1_C_1
     I PLSI
     1_Z_1
ZR=
     IPLS1
     1_B_1
BR=
     IPLS!
     I_A_I
AR=
     IPLS!
     I A | OR | B | Use smaller of the two
ABR=
     IPLSI IPLSI
       TRA =
       1 1R1 1
```

```
ICONTROL DATA I
             ENGINEERING
                                     NO. 10358026
                                     DATE
1 Corporation | SPECIFICATION
                                     PAGE
                                          39
                                     REV.
                                          02
       ----- SUFER COMPUTER OPERATIONS -------
                    Table 3.2-2
Definitions for Table 3.2-2 (Continued)
             1 1_R 1 + 1_S 1 1
      TRB =
             1 1_R 1 + 1S_R1 1
TRC =
      1 | 5 | 1 | 116 | 116 | 1
```

TR =
$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$
 or $\begin{bmatrix} 1 & R & 1 \\ 2 & 1 & 2 & 1 \end{bmatrix}$ Use larger of the two results.

RR = $\begin{bmatrix} 1 & R & 1 \\ 1 & PL & S \end{bmatrix}$

TRD = $\begin{bmatrix} 1 & 1 & 1 \\ 1 & PL & S \end{bmatrix}$

ENGINEERING ICONTROL DATA I

NO. 10358026 DATE

! Corporation | SPECIFICATION PAGE 40 REV. 02

----- SUPER COMPUTER OPERATIONS -----

Table 3.2-2 VECTOR/STRING INSTRUCTION TIMES

	· · · · · · · · · · · · · · · · · · ·	ECTUR/SIR	100 1051		11963		
!	!	1	!	1	PL	S	
1	Issue	Busy	Notes	2 P	ipe	1 4 P	ip e
 Instruction	INB	VBA	: :	32M	I 64M	32M	1 64M
1 00	 1	1	 !	1	!	1	1
1 00	23	• •	, !	1	i	1	1
1 02	23	!	•	i	i	i	1
1 07	23	•	!	•	:	i	1
1 08	14	1	!	1	i	1	1
1 09	MONITOR	TO JOB			i	i	i
1	187	TWO P	TPF	•	i	1	1
•	123	FOUR			i	i	1
		MONITOR		!	i	1	İ
1	190	TWO P		1	i	1	1
1	126	FOUR F		!	i	1	Ī
1	1 TCD			•	i	i	I
1 0A	1 14		1	!	1		· !
1 09	23			, !	1	i	1
		54+TRA		16	1 16	16	16
14	14	1947188 .		. 16	1	• 10	. 10 I
1 15	14	35+TRB		16	16	16	16
1	1	1	I	ŧ	1	1	
1 16	14	35+TRB		16	16	16	16
				i •	i •	i •	
i :			i !	! !	1) 1	
1 47 1	97		! !		1		
1 17	23 l		·		•	1	
1 18				1	•		
1 19	23	•	,		•		
1 1 4	23				1		
, 18	23				•		
. 10		1	;		1	1	1
1 1C	14	31+TRC		16	16	16	16
1 - 1	1	1	1	!	1	1	l 1
1 10	14	31+TRC		16	16	16	16
: 1	1	1	1	1	1	1	: !
1 1E	16	33+RR	1	16	16	16	16
1 1F		37+RR 1		16	16	16	16
1 28 1		37+TRD 1		2	. 2 1	2	2
1 29 I	23	1	1		1		1
1		1	1	1	1	1	1
1 37	15 I	1	1	1	1	l t	I
1 39 1	15	1	1	1	1	1	1
1 3A I	15 I	1	1	1	!	1	1
I 3B I	50 I	1	1	1	1	1	1

| CONTROL DATA | E N G I N E E R I N G NO. 10358026

----- SUPER COMPUTER OPERATIONS -----

REV. 02

Table 3.2-2 VECTOR/STRING INSTRUCTION TIMES

I I I PLS I Issue Busy Notes 2 Pice Instruction INB VBA 32M 64M 32	Pipe 1 64M 1 1 1 1 1 1 1 1 1
	M 1 64M 1
TIME INCLINITY THE THE TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL THE TOTAL TOT	
	1 1
1 43 1 23 1 1 1	
147 1 23 1 1 1	
	1
1 4A 23 1	1 1
1 56 1 15	1 1
	1 1
1 57	ii
170 R=0 1 28+TR	i
1 70 K-0 1 2041K 1 1 1 1 1	i
170 R≠0 56+TR	1 1
1 80	8 1 4 1
1 81 1 17 1 34+CR 1 1 4 1 2 1	8 1 4 1
82	8 1 4 1
1 83	- 1 4 1
84 17 34+CR 4 2	8 1 4 1
185 17 34+CR 4 2	8 1 4 1
1 86	8 1 4 1
1 87	- 1 4 1
	1
188 1 18 1 34+CR 1 1 4 1 2 1	8 1 4 1
189 18 34+CR 4 2	8 4
1 8A	- 1 4 1
1 8B 1 18 1 34+CR 1 1 4 1 2 1	8 1 4 1
8C GO=1	
8C GO=0	- .64
180 1 23 1 1 1	1 1
1 8E	
8F GO=1	2 1 - 1
1 8F GO=0	- 1 .64 1
1 90	8 1 4 1
1 91	8 1 4 1
	1
1 92	8 1 4 1
1 93 GO=1	2 1 - 1
1 93 GO=0	- 1 .64 1
1 94	8 1 4 1

ICONTROL DATA | ENGINEERING

| Corporation | SPECIFICATION

NO. 10358026 DATE

PAGE 42 REV. 02

----- SUPER COMPÚTER OPERATIONS -----

Table 3.2-2 VECTOR/STRING INSTRUCTION TIMES

VECTOR/STRING INSTRUCTION TIMES							
1		1	1	<u>-</u> -	PL:	S	1
1	l Issue	l l Busy	 Notes	2 P	ipe	4 Pi	ipe l
		VBA	!	1 1 32M	1 64M	32M	I I 64M I
IInstruction	INB	VDA	1				
1 95	17	1 34+CR	1	4	2	8	4 !
1 96	17	1 34+CR	1	4	-	8 1	- 1
1 97	17	1 34+CR		4 4	1 2	1 8 i 1 8 i	
1 98	17	34+CR	1) 4 	1		1
1 99	17	1 34+CR		4	1 2	8 1	4 1
1 9	17	1 34+CR		4	1 2	8 1	4 1
1 98	17	1 34+CR		4	2		; 4, 1 ; 1, 1
1 90	17	1 34+CR	1	- !	1 2		1
190	17	34+CR	1	4	2 1	8 1	4 1
1 9E	23	1	1		1		1
1 9F	23	; •	1 1		: : 1		' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
A0 I	19	1 69+ZR .		4	2	8 1	4 1
1 A1 1	19	1 69+ZR	1	4	1 2 1	8 1	4 1
1 A2 1	19	1 69+ZR		4	2 !	8 1	4 1
1 A3	23	! !	} •	-	! - 1 !	I	- :
1 A4 1	19	1 69+ZR		4	. 21	8 1	4 1
1 A5 I	19	1 69+ZR	1	4	1 2 1	8 1	4 1
1 A6 1	19	69+ZR	1	4	1 2	8 1	4 1
1 A7 1	23	1	1	-	; - ! ! !	- 1	- 1
1 48	20	1 1 69+ZR	! 	4	. 2 1	8 1	4 1
1 A9 I	20	69+ZR	1	4	2 1	8 1	4 1
1 AA 1	23	I	1	-	- 1	- 1	- 1
I AB	20	69+ZR	! !	4	1 2 1	5 1	4 1
AC GO=1	20	85+ZR		•61	i	1.22	- 1
1 AC GO=0 1	20	97+ZR		-	.32	- 1	.64 1
I AD I	23		!	1	! !		I .
I AE I	23		1 1 1				
I AF GO=1	20	85+ZR		•61	-	1.22	- 1
1 AF GO=0 1	20	1 97+ZR	1 1	-	.32	- 1	.64
1 87 G567=0 1	18	65+AR	1 1	• 8	. 8 1	-8 1	.8 1
1 1 1	63+AR		!	• 8		•8 I	•8 1 4 1
2 1	18	40+[A	1	4	2	0 i	4 1
	18	l(43+BR)] l 53+AR	1 1	• 8	. 8	.8 1	.8 1
1 4 1	61+AR) 		.8	. 8 1	.8 1	.8 1
1 6 1	18	8+[A	1 1	4	2 1	8 1	4 1
1 1		(48+BR)]	1 1	1	1	1	

DATE

NO. 10358026

1 Corporation 1 SPECIFICATION

PAGE 43 REV. 02

----- SUPER COMPUTER OPERATIONS -----

Dable 3.2-2 VECTOR/STRING INSTRUCTION TIMES

	1		!	1	!	1	PLS	5	1
	; 1		I I Issue	1 Busy	Notes	2 P	ioe	4 P	loe !
	i I Inst	truction	INB	I VBA		32M	1 64M I	32M	64M
	B8	(17	1 34+CR		3.8	1.9	3.8	1.9
	89		23	1]		: :		
	ВА	G567=9	17	52+AR		• 8	. 8 1	•8	.8
1	ł	=1 .	63+AR	1 1		. 8	1 .8 1	. 8 1	.8 1
- 8		=2	18	1 32+[A		4	1 2 1	8 1	4 1
1	}	1		1 (48+BR)] [1	1 1		1
1	:	=4 1	17	1 22+AR 1		- 8	.8 1	-8	-8 1
1		=5 1			'	. 8	.8 1	.8 1	.8 1
1		=6 1	18	1 8+[A 1	{	4	2 1	8 1	4 1
1	,			(48+BR)]				1	1
1	88	1	18	I 36+ZR I		4		8 1	4 1
1	ВС	1	16	36+ZR 1		i. I	2 1	8 1	4
1	80	1	18	1 40+ZR 1		4	2 1	8 1	4.1
I		i	1	1	i	, i	i	1	i
1	CO	!	21	51+ABR		4 1	2 1	8 1	4 1
i	C1	1	21	51+ABR		4	2	8 1	4
1	CS		21	51+ABR I		4	2 !	8 1	4 1
1	C3	1	21	51+ABR		4 1	2 1	8 1	4 1
i	C4	i	20	36+ZR	!	4	2 1	8 1	4
1	C5	1	20 1	36+ZR 1	1	4 1	2 1	8 1	4 1
ı	C6	1	20 1	36+ZR 1	1	4 1	2 1	8 1	4 1
1	C7	1	20 1	36+ZR 1	1	4 1	2 1	8 1	4 1
1		ŧ	1	1	1	1	1	1	1
!	C 5	1	16	15+[A		4 1	2	8 1	4 !
1	C 9	•	16	(62+BR)] 15+[A		4 !	2	8 1	4. 1
i	0,	1		(62+BR)		1	1	1	4 1
1	CA	1	16	15+[A		4 1	2 1	8 1	4 1
1		1		(62+BR)][!	ı	1	1	į.
1	CB		16	15+[A		4 1	2 !	8 !	4 1
į		i •	i	(62+BR)]	;	1	1	;	1
•	СС	1	26	48+AR		_ •	2 1		
1	CF	Į.	26				2 1	- 1	4 1
1	00		19	47+AR		4 1		8 1	4 1
•		į.	17	34+CR 1		4 1	2 1	8 1	4 1
í	01	1	19 I	34+CR	;	4 1	2 1	8 1	4 1

ENGINEERING ICONTROL DATA I

1 Corporation 1

SPECIFICATION

----- SUPER COMPUTER OPERATIONS -----

NO. 10358026 DATE PAGE 44

REV. 02

Tabl	e 3.2-2	
VECTOR/STRING	INSTRUCTION	TIMES

					. *			
1						PLS	5	1
1		Issue	l Busy	 Notes	2 P	lpe	4 Pi	pe
1	Instruction	INB	VBA		32M	1 64M	32M	64M
i				 		1		
1	02 03	23 23		! !		!		1
1	04 I	17 19	34+CR 34+CR		4	2	8 1	4 1
1	D6 !	23		!				1
1	07 I	23 I 21 I	48+AR	1	1 1	1 1	1	1
1	09 I	21 21	48+AR 1 75+AR 1	1 2	1 1	1 1	1 1	1 1
1	DB I	21 I	76+AR	2	1		1 1	1 1
1	DC 1	21 23	86+ABR J	2 1	1 - 1	1 - 1	1 -	1 1
1	DE 1 DF 1	23 17	29+CR	!	- I	1 1	- ! 1	- I 1 I
1	EO I	23 I	1	i 1	; ;	1	1	1
1	E1 1 E2 1	23 I	:	1	: 1	! !	1	1
1	E3	23 1	1	1	! !	1	1	; {
1	E4 1 E5 1	23 I 23 I	1	! !	! !	1	1	1
1	E6 1 E7 1	23 I 23 I	! !	1	! !	! !	1	; 1
1	E8 1	23	1	1	1	1	1	1
1	E9 I	23 I 23 I	! !	! !	: 1	1	1	!
1	E8 !	23	1 1	1	1	:	1	1
1	EC I	23 I 23 I	1	1	1	1	1	1
1	EE !	23 I 23 I	1	1	1	:	:	!
1	F0 !	17	30+CR !	1	16	16	16	16
1	F1 F2 F2 F2 F3 F4 F4 F4 F4 F4 F4 F4	17 17	30+CR 30+CR 1		16 16	16 I	16 16	16 16
1	F3 1	17	30+CR 1		16	16 I	16	16

1 Corporation 1

NO. 10358026 DATE

PAGE 45 REV. 02

----- SUPER COMPUTER OPERATIONS -----

Table 3.2-2 VECTOR/STRING INSTRUCTION TIMES

SPECIFICATION

•					 I	PL	s		1
	! !	Issue	l Busy	l Notes	2 0	ipe	1 4 P	ip e	1
	 Instruction	INB	VBA	 	32M	1 64M	32M	1 64M	1
1	F4	17 17 17	30+CR 30+CR 30+CR		16	16 16 16	16	16	
1	F7 I F8 I F9 I	17 17 17 23 23	30+CR 35+CR 1		 16 2	1 16 1 2	1 16 1 2	 16 2 	
1 1 1 1	FB FC FD FE	23 23 23 23	1 1 1						!!!!!!
1 1	FF I	23	! ! !	!		! ! ! !			
1 1 1 1				1		i i i i	1		:
1	; ! !	1	1	! ! !	!	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	! ! !	! ! !	
1 1 1	1 1 1	1 1 1	1 1 1	! ! !	i		 	1 1 1	
!!!!!	1 1 1	! ! !	! !	1 1 1	; ;		 	 	
1 1 1 1	: : :	! ! !	1 1 1	1 1 1	1 1 1		1 1 1	 	
: !	: : :	; ; ;	; ; ;	!	! ! !	1 1	; ! !	! ! !	
i	į	i	i	i	i	1	i	i	

----- SUFER COMPUTER OPERATIONS -----

NOTES

- For each new Max/Min add 16 minor cycles.
- 2. Each discontinuity in data flow adds 8 minor cycles.

,

61,63

CYBER 205

NOMINAL PERFORMANCE

	2-PIPE	4-PIPE
VECTOR ADD 64-bit	1.02 + L/100	1.05 + F\500
32-bit	1.02 + L/200	1-02 + L/400
25-016	.*	
VECTOR MULTIPLY 64-bit	1.04 + L/100	1.04 + L/200
VECTOR MOLITIFET BY bit	1.04 + L/200	1.04 + L/400
35-816		
LINKED ADD, MULTIPLY 64-bit	* 1.48 + L/100	1.48 + L/200
12-bit	* 1.48 + L/200	1.48 + L/400
36 816		
TRANSMIT 64-bit	1-02 + L/100	1.05 + L/200
32-bit	1.02 + L/200	1.02 + L/400
25-010		
VECTOR DIVIDE 64-bit	1.60 + L/16	1-60 + L/32
32-bit	1.36 + L/3.5	1-36 + L/61
JC 10.20		
SWAP single 64-bit	0 - 56 + 1	R/ <u>1</u> 00
double 64-bit	1.12 + 1	R/100
donnie ei pir	•	
SQUARE ROOT 64-bit	1.60 + L/16	1-PO + F/35
32-bit	1.36 + L/30.5	1.36 + L/61
コニーロエク	-	

ALL TIMES IN MICROSECONDS

* START-UP TIME NOT VERIFIED

CONTROL DATA
PRIVATE

8/20/80 CJP

CYBER 205

NOMINAL PERFORMANCE

	2-PIPE	4-PIPE
SPARSE ADD 64-bit 32-bit fall Boolean connectives} [skips or [the only difference in timing Vector SPARSE MULTIPLY 64-bit 32-bit	1.76 + Z/200 n runs of 16, 8, 4	1.76 + Z/200 1.76 + Z/400 or 2 zeros} rt-up:0.74} 1.78 + Z/200 1.78 + Z/400
SPARSE DIVIDE 64-bit 32-bit	2·34 + Z/14 2·10 + Z/25	2.34 + Z/28 2.10 + Z/50
GATHER random periodic	1.38 + L/40 0.78 + L/40	
SCATTER random periodic	1.66 > L/40 1.42 + L/40	
MASK 64-bit 32-bit	1.08 + Z/100 1.08 + Z/200	1.08 + Z/200 1.08 + Z/400
Compress 64-bit 32-bit	1.00 + Z/100 1.00 + Z/200	1.00 + Z/200 1.00 + Z/400
MERGE 64-bit 32-bit		1.16 + Z/200 1.16 + Z/400

ALL TIMES IN MICROSECONDS

6/20/A0

CYBER 205

NOMINAL PERFORMANCE

	2-PIPE 4-PIPE
SELECT 64-bit 32-bit	1.72 + pipe rate
COMPARE 64-bit 32-bit	1.12 + pipe rate
SEARCH 64-bit BE-bit MASKED WORD SEARCH 64-bit MAXIMUM	0.32 + {0.30+A}*i1.24 + piperate} 1.92+ 1/00 1.92+ 1/200 * 1.72 + L/50
minimum	* 1·72 → L/50
SUM double precision	* 2.32 + L/50
PRODUCT single precision	* 2-52 + L/50
INNER PRODUCT double	* 2.32 + L/50
BIT LOGICALS	0-94 + C/800
BIT COMPRESS	1-36 + X/800
BIT MERGE	O-98 + Z/800
	n pr , 7/000

CONTROL DATA
PRIVATE

BIT MASK

8/30/80 CJP

0-98 + Z/800

NOT VERIFIED

* START-UP TIME