뇌파 기반 감성 분류 및 회화 재생성 시스템 연구

DL_Team_B 영재하고 싶조

A Table of Contents

1 팀원 소개

딥러닝 B조를 구성하는 딥린이 6인방

2 주제 선정 배경

뇌파 기반 감성 분류 및 회화 재생성 시스템 연구

3 진행 과정

헬스 케어 팀 / 회화 생성 팀

4 결과

두둥 탁

Part 1, 팀원 소개

Part 1, 팀원 소개

DL B조를 구성하는 딥린이 6인방

배병현

제약학과

서혜련

기계공학부

이나혁

소프트웨어학부

이보림

소프트웨어학부

이하윤

소프트웨어학부

이환진

에너지시스템공학 부

Part 2, 주제 선정 배경

사진을 찍을 때의 감성이 반영된 이미지를 만들 수는 없을까?

Part 3, 진행 과정

Overall flow

헬스 케어 팀 - 데이터 수집(뇌파 측정)

Train Data 수집을 위한 뇌파 측정

- 측정 기기 : SICHIRAY TGAM Starter Kit Brainwave Sensor
- Sampling period가 0.01s인 전기 신호 측정
- 40초 간 Target 감성인 긍정/부정적인 감정을 유발하는 영상 시청하며 뇌파 신호 측정

헬스 케어 팀 - 데이터 수집(뇌파 측정)

Train Data 수집을 위한 뇌파 측정

• 40초 중 감정이 고조된 1초 ~ 25초의 뇌파 신 호를 이용해 분석 진행

```
# fft 함수 'get_data' 정의
def get_data(data):
   # eegRawValueVolts column 이용
   data = data['eegRawValueVolts']
   # 1초에서 25초까지의 데이터만 추출
   data = data.iloc[range(100,2500,1)]
    length = len(data)
   # Fast Fourier Transform (numpy 이용)
   fft = np.fft.fft(data)
   fft_magnitude = np.abs(fft)
   fft_spectrum = np.square(fft_magnitude)
   ifft = np.fft.ifft(fft_magnitude)
   # 1200을 기준으로 대칭. 우측 데이터만 이용
   fft_spec = fft_spectrum[1200:2400]
   return fft_spec
```

헬스 케어 팀 - 데이터 수집(뇌파 측정)

Train Data 수집을 위한 뇌파 측정

- 주파수 대역별로 뇌파를 분류하는 Band
 Power와 전력 스펙트럼 밀도(PSD)를 이용해 뇌파의 활성화 정도 측정
- 시간에 따른 전기적 신호를 numpy에서 제공 하는 FFT를 이용해 Frequency Domain으로 변환
- 변환된 신호의 PSD를 구한 후 뇌파 신호의 주 파수 대역별로 크기를 합해 기존에 정의된 뇌 파의 종류로 재분류

<pre>sad_df = pd.DataFrame() num = 12 for n in range(1, num): sad_df = sad_df.append(append_data('data/sad' +str(n)+'.csv'), ignore_index=True) sad_df</pre>								
:	new_delta	new_theta	new_alphaLow	new_alphaHigh	new_betaLow	new_betaHigh	new_gammaLow	new_gammaMid
0	2	9	19	22	13	15	18	0
1	0	44	158	79	115	132	135	102
2	37	106	120	118	116	98	149	141
3	26	110	92	113	109	57	113	140
4	36	42	75	172	113	164	214	156
5	18	54	64	136	111	159	105	68
6	17	62	88	73	101	170	165	137
7	19	80	139	142	130	149	146	148
8	19	35	38	37	92	112	165	167
9	8	23	71	34	127	53	161	149
10	0	19	55	74	111	121	152	98

Train Data 수집을 위한 뇌파 측정

• Target: happy 0, sad 1

	Delta	Theta	AlphaLow	AlphaHigh	BetaLow	BetaHigh	GammaLow	GammaMid	target
0	0.096494	0.106731	0.089205	0.129719	0.165946	0.198439	0.107642	0.105825	0
1	0.022036	0.024554	0.025769	0.025837	0.026813	0.038597	0.153249	0.683145	0
2	0.172285	0.167949	0.166167	0.118133	0.104320	0.099117	0.067440	0.104588	0
3	0.163685	0.141831	0.159324	0.159762	0.122647	0.090905	0.065070	0.096776	0
4	0.159220	0.138152	0.133228	0.162818	0.100186	0.078691	0.079785	0.147920	0

데이터 전처리

Raw Data

Part 3, 진행 과정

헬스 케어 팀 – 데이터 전처리

데이터 전처리

Modeling - LightGBM

```
split = StratifiedShuffleSplit(n_splits=1, test_size=0.2)
for train_idx, test_idx in split.split(result_df, result_df["target"]):
    df_train = result_df.loc[train_idx]
    df_test = result_df.loc[test_idx]

X_train = df_train.drop(['target'], axis=1)
y_train = df_train['target']
X_test = df_test.drop(['target'], axis=1)
y_test = df_test['target']

print(X_train.shape, X_test.shape)
print(y_train.shape, y_test.shape)

(220, 8) (55, 8)
(220,) (55,)
```

회화 생성 팀 – 이미지 추천 시스템 : 흑백화

학습할 명화 흑백화

Part 3, 진행 과정

회화 생성 팀 – 이미지 추천 시스템 : 회화 감성 지수

회화별 감성 지수 - 명화 기법에 따른 사용자 감성 평가 조사

pic_num	Нарру	Sad
1	0.41	0.59
2	0.71	0.29
3	0.31	0.69
4	0.75	0.25
5	0.4	0.6
6	0.44	0.56
7	0.45	0.55
8	0.2	0.8
9	0.24	0.76

회화 생성 팀 – 이미지 추천 시스템: Euclidean Distance 계산법

User와 유사한 감성을 가지는 회화 추천 - Euclidean Distance 계산

SinGAN을 이용한 회화 학습(Pretrained Data 생성) - ICCV 2019 Best Paper Award

SinGAN?

- 적은 데이터(단 한 장의 이미지)로 학습이 가능하다.
- 학습 시간이 빠르다.

진행 과정 SinGAN 파라미터 조정

SinGAN – parameter value test

Ref : pic01

Original

Scale 4

Scale 1

Scale 5

Scale 2

Scale 6

Scale 3

Scale 7

SinGAN – parameter value test

Ref : pic01

Original

Scale 4

Scale 1

Scale 5

Scale 2

Scale 6

Scale 3

Scale 7

SinGAN – parameter value test

Ref : pic02

Original

Scale 4

Scale 1

Scale 5

Scale 2

Scale 6

Scale 3

Scale 7

SinGAN – parameter value test

Ref : pic04

Original

Scale 4

Scale 1

Scale 5

Scale 2

Scale 6

Scale 3

Scale 7

SinGAN 파라미터 조정

SinGAN – parameter value test

Ref : pic05

Original

Scale 4

Scale 1

Scale 5

Scale 2

Scale 6

Scale 3

Scale 7

진행 과정 SinGAN 파라미터 조정

SinGAN – parameter value test

Ref : pic05

Original

Scale 4

Scale 1

Scale 5

Scale 2

Scale 6

Scale 3

Scale 7

Part 4, 결과

0.096494
0.106731
0.089205
0.129719
0.165946
0.198439
0.107642
0.105825
Innut

Input

Recommended

Target img

Result

0.092694	
0.108612	
0.10362	
0.081884	
0.096303	
0.105274	
0.106163	
0.30545	

Input

Recommended

Target img

Result

결과 비교

Нарру

Sad

뇌파 기반 감성 분류 및 회화 재생성 시스템 연구

감사합니다

DL_Team_B 영재하고 싶조