

5th Edition

Elmasri / Navathe

Identifiez les différentes composantes d'un schéma E/A dans le schéma ci-dessus.

- 1) Peut-on prescrire plusieurs médicaments dans une même consultation?
- 2) Un médecin peut-il recevoir plusieurs patients dans la même consultation?
- 3) Un patient peut-il être consulté plusieurs fois ?
- 4) Un médicament peut-il être prescrit plusieurs fois pour un même patient?
- 5) Un patient peut-il être consulté plusieurs fois le même jour ?
- 6) Un patient peut-il être consulté plusieurs fois le même jour par le même médecin ?

Exemple 2 : Bon de commande papier

 Proposer un diagramme EA qui modélise cette base de données en utilisant les données bon de commande.

Command	e N°: 30188		ate: 2/1/	2009
Numéro clie Nom Adresse Localité	ent $B_{1}S_{1}I_{2}$ $G_{1}I_{1}I_{1}E_{1}T_{1}$ $I_{1}A_{1}I_{1}F_{1}d_{e}$ $I_{1}I_{e}F_{1}$ $I_{1}O_{1}U_{1}I_{1}O_{1}U_{1}S_{1}e_{1}$	t _l é, , ,		
N° PRODUIT	LIBELLE PRODUIT	PRIX	QUANTITE	SOUS-TOTAL
CS464	CHEV. SAPIN 400x6x4	220	180	39600
PA45	POINTE ACIER 45 (20K)	105	22	2310
PA60	POINTE ACIER 60 (10K)	95	70	6650
PH222	PL. HETRE 200x20x2	230	92	21160
		OTAL C	OMMANDE	69720

Plan du cours

- Introduction aux bases de données.
- II. Modèle Entité-Association
- ш. Modèle relationnel
- v. Passage du modèle E-A au modèle Relationnel
- v. Algebre Relationnel
- vi. Langage SQL
- vII. Normalisation

Chapitre 3

Modèle de données relationnel et contraintes des bases de données relationnelles

Sommaire

- Concepts du modèle relationnel
- Contraintes du modèle relationnels et schémas de bases de données relationnelles
- Opérations de mise à jour et Vérification des violations de contrainte

Concepts du modèle relationnel

- La force du modèle relationnel
 - Simplicité de son fondement mathématique.
 - Représente la base de données comme un ensemble de tables sans préjuger de la façon dont les informations sont stockées dans la machine.
 - Les tables constituent donc la structure logique du modèle relationnel.
- Le modèle de données relationnel est fondé sur la notion de relation au sens mathématique.
 - Une relation est un concept mathématique basé sur les idées de la théorie des ensembles et la logique de premier ordre.

Concepts du modèle relationnel

- Modèle logique proposé en 1970 par Tedd Codd (IBM lab.) dans son célèbre article intitulé
 - "A Relational Model for Large Shared Data Banks,"
 Communications of the ACM, June 1970
- Aujourd'hui utilisé par beaucoup de SGBD commerciaux— Oracle, MySql, Postgres, MS SQL Server, etc

Concepts du modèle relationnel

- Une base de données relationnelle est une collections de relations normalisées, chacune avec un nom distinct.
- Une relation est représentée par une table avec des colonnes et des lignes.
 - S'applique uniquement à la structure logique de la base de données, pas à la structure physique.
- Chaque ligne d'une table représente un fait correspondant à une entité ou une association du monde réel.
- Chaque colonne a une en-tête qui révèle le sens des valeurs de chaque ligne.
 - Chaque colonne est typiquement appelée par son ordre ou l'entête de la colonne.
 - Toutes les valeurs d'une colonne sont du même type.
 - Le type des données introduites dans chaque colonne est représenté par un domaine de valeurs possibles.

BDR « MICRO » (Voir TP1)

78°	PRODUIT							
201	Laptop P4	HP	1800,00	25				
202	Laptop P4	DELL	1630,00	12				
501	Photoshop	ADOBE	94,00	5				
502	Encarta	MICROSOFT	21,00	20				
503	Office 2003	MICROSOFT	55,00	20				
504	DreamWeaver	MACROMEDIA	30,00	15				
505	C++ Builder	BORLAND	54,00	5				
506	Printer 330	HP	870,00	12				
507	DDR2 1M	NULL	300,00	5				

33.		VENTE		
1	201	15/01/05	4	OUI
1	202	15/01/05	1	NON
1	503	15/04/05	2	OUI
1	504	15/04/05	1	OUI
1	505	05/05/04	30	NON
2	201	15/04/05	1	NON
2	202	15/04/05	12	OUI
3	202	15/04/05	1	OUI
4	202	15/01/05	1	OUI
4	504	15/04/05	10	NON
4	504	15/04/04	12	NON

‡÷								18		
	CLIENT									
1	Gamotte	Albert	50,	Rue des alouettes	PARIS	M	(01) 43567890	NULL		
2	Hibulaire	Albertine	10,	Avenue des marguerites	NICE	F	(06) 78567801	NULL		
3	Odent	Robert	25,	Boulevard des fleurs	PARIS	M	(01) 45678956	(01) 45678956		
4	Adiba	Jeanne	25,	Boulevard des fleurs	PARIS	F	(06) 78905645	NULL		
5	Nathan	Aude	45,	Avenue des abeilles	RENNE	M	NULL	NULL		

Terminologie alternative pour le modèle relationnel

Termes informels	Termes formels
Table (Fichier)	Relation
En-tête d'une colonne (Champ)	Attribut
Toues les valeurs possibles d'une colonne	Domaine
Ligne (Enregistrement)	Tuple
Nombre de colonne	Degré
Définition d'une table	Schéma d'une relation
Nombre de lignes	Cardinalité
Population d'une relation	État relationnel

Exemple – Relation PRODUIT

Domaine

Domaine D

Un ensemble des valeurs atomique (chaque valeur est indivisible)

- Un domaine a une définition logique
 - Un nom afin d'assurer l'interprétation des valeurs.
 - Un type de de données (ou format) est également t attribue a chaque domaine.

Exemple

- No_de_telephone : ensemble de huit chiffres.
- Le type de données du domaine No_de_telephone peut être déclaré sous la forme suivante: (NN) NN-NN-NN
 - Ensemble de 8 chiffres.
 - N: chiffre obligatoire de 0 à 9.

Définition Formelle - Schéma

- Schéma d'une relation R (Schéma relationnel R):
 - Noté R(A1, A2,An)
 - Composé de
 - * R est **le nom** de la relation
 - A1, A2, ..., An sont les attributs de la relation.
- Attribut Ai
 - le nom du rôle joué par un domaine D dans le schéma relationnel
 R.
- Exemple: PRODUIT(noProduit, nom, marque, prix, QteStock)
 - PRODUIT est le nom de la relation
 - Les attributs de la relation : noProduit, nom, marque, prix, QteStock
- Chaque attribut a un domaine, ou un ensemble de valeurs valides noté dom(A).
 - Par exemple, dom(noProduit) correspond à une chaine de 3 caractères.

Définition Formelle - Degré, tuple

- Degré
 - le degré d'une relation est le nombre d'attributs de son schéma relationnel.
- Une relation r est un ensemble de tuples (ou n-tuples)
 - $r(R) = \{t1, t2, ..., tm\}$
- Un tuple (ou n-uplet) est une liste ordonnée de valeurs
 - ti = <v1, v2, ..., vn> (enfermé entre '< ... >')
- Chaque valeur vj est un élément d'un domaine approprié dom(Aj) ou une valeur spécial NULL.
 - Par exemple, une ligne de la relation PRODUIT est un 5-tuple parce qu'elle contient 5 valeurs:
 - < 201,"Laptop P4", HP, 1800.00, 25>

Définition Formelle - Etat

- L'état relationnel ou la population d'une relation reflète l'ensemble des tuples valides existants dans la base.
- L'état d'une relation est en effet le sous-ensemble du produit cartésien des domaines de valeurs de ses attributs (toutes les combinaisons possibles)
 - Soit R(A1, A2,, An)
 - r(R) ⊂ dom (A1) X dom (A2) XX dom(An)
 - r(R): est un état spécifique (population) d'une relation R – c'est l'ensemble des tuples (lignes).

Définition Formelle - Exemple

- Soit R(A1, A2) le schema d'une relation donnee:
 - Soit dom(A1) = $\{0,1\}$
 - Soit dom(A2) = {true, false}
- Alors : dom(A1) X dom(A2) est l'ensemble de toutes les combinaisons possibles :

```
{<0,true>, <0,false>, <1,true>, <1,false>}
```

- L'etat de la relation r(R) ⊂ dom(A1) X dom(A2)
- Par exemple r(R) peut être : {<0,false> ,<1,true>}
 - r est un état (ou "population" ou "extension) possible de la relation R défni sur A1et A2.
 - Dans l'exemple donné, r a deux 2-tuples: <0,false> et
 <1,true>

Propriétés des relations

- Ordonnancement des tuples d'une relations r(R):
 - Toute relation est définie comme un ensemble de tuples.
 - Du point de vue mathématique, les éléments de cet ensemble ne sont pas ordonnés même s'ils semblent être sous forme tabulaire (logiquement).
- Ordonnancement des attributs dans un schéma relationnel R (et des valeurs d'un tuple)
 - Chaque tuple t=<v1, v2, ..., vn> est une correspondance entre R(A1, A2, ..., An) et D = dom (A1) ∪ dom (A2) ∪ ∪ dom(An)
 - * <u>Si</u> t est un tuple (ligne) de l'état relationnel r(R) <u>alors</u> chaque vi doit être une valeur de dom(Ai) :

$$t[Ai]$$
 (ou $t.Ai$) \in dom(Ai), $i = 1,...,n$

⋆ t[Ai]: Valeur de vi qui correspond au attribut Ai dans le tuple t

Propriétés des relations (Résumé)

- Chaque tuple est distinct; il n'y a pas de tuples en double.
- Chaque attribut a un nom distinct
- Les valeurs d'un attribut proviennent toutes du même domaine
- L'ordre des attributs n'a aucune signification.
- L'ordre des tuples n'a pas de signification, théoriquement

Valeurs et valeur NULL dans les tuples

- Chaque cellule d'une relation contient exactement une seule valeur atomique.
 - Modèle relationnel plat
 - Les attributs composites et a plusieurs valeurs ne sont pas donc permis
- Première forme normale
 - les attributs multivalués doivent être représentés par des relation séparées
 - Les attributs composites ne sont représentés que par leurs composants
- Valeur NULL
 - Une valeur speciale qui représente les valeurs d'attributs inconnues ou inapplicable a un tuple.
 - n'est pas la même qu'un zéro ou un espace.

Schémas des bases de données relationnelles

- Schéma de base de données relationnelle S
 - Ensemble de schémas relationnels S = {R1, R2, ..., Rm}
 - Un jeu de contraintes d'intégrité IC
 - Les règles d'intégrité sont des assertions qui doivent être vérifiées par l'ensemble de tous les états relationnels.
- Etats de bases de données relationnelles DB de S
 - Reflète seulement les tuples valides qui représentent un état particulier du monde réel.
 - Ensemble d'états relationnels DB = {r1, r2, ..., rm}
 - Chaque ri est un état de Ri et que les états relationnels ri satisfont aux contraintes d'intégrité spécifiées dans IC
- Etat valide et un etat invalide.

Schémas des bases de données relationnelles

- Les contraintes déterminent quelles valeurs sont admissibles et qui ne sont pas dans la base de données.
- Catégories de contraintes:
 - 1) Contraintes inhérentes au modèle de données ou implicites
 - elles sont basées sur le modèle de données lui-même
 - 2) Contraintes inhérentes au schéma ou explicites
 - Elles sont exprimés dans le schéma en utilisant les facilités fournies par le modèle (LDD).
 - 3) Contraintes applicatives
 - elles ne peuvent pas directement formulées dans le schéma
 - Exprimées et appliquées par les programmes applicatifs.

Etats de bases de données relationnelles COMPANY

Figure 5.6

One possible database state for the COMPANY relational database schema.

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	th 123456789 1965-01-0		731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX		40000	888665555	5
Alicia	J	Zelaya	Zelaya 999887777 1968-01-1		3321 Castle, Spring, TX F		25000	987654321	4
Jennifer	S	Wallace 987654321 1941-06-		1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K Narayan 666884444 1962-09-15		1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5	
Joyce	Α	English 453453453 1972-07-31		1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad			980 Dallas, Houston, TX M		25000	987654321	4		
James			450 Stone, Houston, TX	М	55000	NULL	1		

DEPARTMENT

Dnam	e <u>Dnumb</u>	oer Mgr_ssn	Mgr_start_date
Research	5	33344555	5 1988-05-22
Administr	ation 4	98765432	1 1995-01-01
Headqua	rters 1	88866555	5 1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

WORKS_ON

Essn	<u>Pno</u>	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship						
333445555	Alice	F	1986-04-05	Daughter						
333445555	Theodore	М	1983-10-25	Son						
333445555	Joy	F	1958-05-03	Spouse						
987654321	Abner	М	1942-02-28	Spouse						
123456789	Michael	М	1988-01-04	Son						
123456789	Alice	F	1988-12-30	Daughter						
123456789	Elizabeth	F	1967-05-05	Spouse						

Schémas de base de données relationnelleCOMPANY

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
Thame	IVIIIIL	Litailie	0011	Duale	Addiess	OCX	Dalaiy	Ouper_ssii	Dilo

DEPARTMENT

Dname Dnumber Mgr_ssn Mgr_start_date

DEPT_LOCATIONS

PROJECT

Pname	Pnumber	Plocation	Dnum
1 Hairio			Dilaili

WORKS_ON

DEPENDENT

Essn Dependent_name	Sex	Bdate	Relationship
---------------------	-----	-------	--------------

Figure 5.5

Schema diagram for the COMPANY relational database schema.

CI inhérentes au schéma

- Contraintes de clé (contraintes d'unicité)
- Contraintes d'intégrité des entités
- Contraintes de domaine
- Contraintes d'intégrité référentielle

Contraintes de clé

Superclé de R:

- Un sous-ensemble d'attributs SK de R telle que :
 - Deux tuples distincts d'un état valide r(R) ne peuvent pas avoir la même valeur pour SK.
 - Pour $t1 \in r(R)$, $t2 \in r(R)$, $t1 \neq t2$) on a $t1[SK] \neq t2[SK]$
 - Chaque R possède au moins une superclé par défaut.

Clé de R:

- Une superclé « minimale ».
- Une clé est une superclé K telle que toute suppression d'un attribut A de K résulte un ensemble d'attributs qui n'est plus une superclé (contrainte d'unicité)

Contraintes de clé (Suite)

- Exemple: soit le schema de la relation voiture:
 - VOITURE(NoImmatriculation, NoSerieMoteur, Marque, Modele, Annee)
 - VOITURE a deux cles:
 - Clé 1 = {NoImmatriculation}
 - Clé 2 = {NoSerieMoteur}
 - Les deux sont aussi des superclés pour VOITURE
 - {NoSerieMoteur,Marque} est une superclé mais pas une clé.
- En générale:
 - Une clé est une superclé (mais pas vice versa)
 - Un ensemble d'attributs qui inclut une clé est une superclé.
 - Une superclé minimale est aussi une clé

Contraintes de clé (Suite)

- Si une schéma relationnel possède plusieurs clés, appelées clés candidates, , un est choisi arbitrairement pour être la clé primaire.
 - Les attributs de clé primaire sont soulignés.
- Exemple: Soit le schéma relationnel VOITURE:
 - VOITURE(<u>NoImmatriculation</u>, NoSerieMoteur, Marque, Modele, Annee)
 - On choisi Nolmmatriculation comme clé primaire.
- La valeur de la clé primaire est utilisée pour identifier de manière unique chaque tuple de la relation
 - Fournit l'identité du tuple
- Aussi utilisé pour référencer le tuple d'un autre relation
 - Règle générale: Choisir comme clé primaire la plus petite des clés candidates (en termes de taille)
 - Pas toujours applicable le choix est parfois subjectif

CAR table with two candidate keys – LicenseNumber chosen as Primary Key

CAR

Figure 5.4

The CAR relation, with two candidate keys: License_number and Engine_serial_number.

<u>License_number</u>	Engine_serial_number	Make	Model	Year
Texas ABC-739	A69352	Ford	Mustang	02
Florida TVP-347	B43696	Oldsmobile	Cutlass	05
New York MPO-22	X83554	Oldsmobile	Delta	01
California 432-TFY	C43742	Mercedes	190-D	99
California RSK-629	Y82935	Toyota	Camry	04
Texas RSK-629	U028365	Jaguar	XJS	04

Contrainte d'intégrité des entités & domaine

Contrainte d'entité

- imposant qu'aucune valeur de clé primaire ne peut être NULL.
 - En effet, les clés primaires identifient les tuples des relations.
 - t[PK] ≠ NULL pour chaque tuple de r(R)
 - If PK est compose de plusieurs attributs, NULL I n'est autorisé dans aucun de ces attributs.
- Remarque: Les autres attributs de R peuvent être contraints de ne pas autoriser les valeurs nulles, même s'ils ne sont pas membres de la clé primaire.

Contraintes de domaine

 Chaque valeur dans un tuple doit provenir du domaine de son attribut vérifiant certaine assertion logique (ou elle peut être nulle, si elle est autorisée pour cet attribut)

Contraintes d'intégrité référentielle

- Spécifiée entre deux relations
 - Les contraintes précédentes concernent les relations individuelles.
- Elle précise que tout tuple qui référence une autre relation doit référencer un tuple existant de cette relation.
 - Relation référençante et relation référencée.

Contraintes d'intégrité référentielle

- L'ensemble des attributs FK de R1 est une clé étrangère de R1 qui référence R2 si les deux règles suivantes sont respectées
 - Attributs de FK doivent avoir le(s) même(s) domaine que les attributs de PK de R2.
 - La valeur en FK d'un tuple t1 d'état courant r1(R1) doit avoir la valeur en PK de d'état courant r2(R2) : t1[FK] = t2[PK]. On dit alors t1 référence t2

Referential Integrity (or foreign key) Constraint

- Statement of the constraint
 - The value in the foreign key column (or columns) FK of the the referencing relation R1 can be either:
 - (1) a value of an existing primary key value of a corresponding primary key PK in the referenced relation R2, or
 - (2) a **null**.
- In case (2), the FK in R1 should **not** be a part of its own primary key.

Displaying a relational database schema and its constraints

- Each relation schema can be displayed as a row of attribute names
- The name of the relation is written above the attribute names
- The primary key attribute (or attributes) will be underlined
- A foreign key (referential integrity) constraints is displayed as a directed arc (arrow) from the foreign key attributes to the referenced table
 - Can also point the primary key of the referenced relation for clarity
- Next slide shows the COMPANY relational schema diagram

Referential Integrity Constraints for COMPANY database

Figure 5.7Referential integrity constraints displayed on the COMPANY relational database schema.

Other Types of Constraints

- Semantic Integrity Constraints:
 - based on application semantics and cannot be expressed by the model per se
 - Example: "the max. no. of hours per employee for all projects he or she works on is 56 hrs per week"
- A constraint specification language may have to be used to express these
- SQL-99 allows triggers and ASSERTIONS to express for some of these

Populated database state

- Each relation will have many tuples in its current relation state
- The relational database state is a union of all the individual relation states
- Whenever the database is changed, a new state arises
- Basic operations for changing the database:
 - INSERT a new tuple in a relation
 - DELETE an existing tuple from a relation
 - MODIFY an attribute of an existing tuple
- Next slide shows an example state for the COMPANY database

Populated database state for COMPANY

Figure 5.6

One possible database state for the COMPANY relational database schema.

EMPLOYEE

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

DEPARTMENT

Dname	<u>Dnumber</u> Mgr_ssn		Mgr_start_date
Research	5	333445555	1988-05-22
Administration	4	987654321	1995-01-01
Headquarters	1	888665555	1981-06-19

DEPT_LOCATIONS

Dnumber	Dlocation
1	Houston
4	Stafford
5	Bellaire
5	Sugarland
5	Houston

WORKS_ON

Essn	<u>Pno</u>	Hours
123456789	1	32.5
123456789	2	7.5
666884444	3	40.0
453453453	1	20.0
453453453	2	20.0
333445555	2	10.0
333445555	3	10.0
333445555	10	10.0
333445555	20	10.0
999887777	30	30.0
999887777	10	10.0
987987987	10	35.0
987987987	30	5.0
987654321	30	20.0
987654321	20	15.0
888665555	20	NULL

PROJECT

Pname	Pnumber	Plocation	Dnum
ProductX	1	Bellaire	5
ProductY	2	Sugarland	5
ProductZ	3	Houston	5
Computerization	10	Stafford	4
Reorganization	20	Houston	1
Newbenefits	30	Stafford	4

DEPENDENT

Essn	Dependent_name	Sex	Bdate	Relationship
333445555	Alice	F	1986-04-05	Daughter
333445555	Theodore	М	1983-10-25	Son
333445555	Joy	F	1958-05-03	Spouse
987654321	Abner	М	1942-02-28	Spouse
123456789	Michael	М	1988-01-04	Son
123456789	Alice	F	1988-12-30	Daughter
123456789	Elizabeth	F	1967-05-05	Spouse

Update Operations on Relations

- INSERT a tuple.
- DELETE a tuple.
- MODIFY a tuple.
- Integrity constraints should not be violated by the update operations.
- Several update operations may have to be grouped together.
- Updates may propagate to cause other updates automatically. This may be necessary to maintain integrity constraints.

Update Operations on Relations

- In case of integrity violation, several actions can be taken:
 - Cancel the operation that causes the violation (RESTRICT or REJECT option)
 - Perform the operation but inform the user of the violation
 - Trigger additional updates so the violation is corrected (CASCADE option, SET NULL option)
 - Execute a user-specified error-correction routine

Possible violations for each operation

- INSERT may violate any of the constraints:
 - Domain constraint:
 - if one of the attribute values provided for the new tuple is not of the specified attribute domain
 - Key constraint:
 - if the value of a key attribute in the new tuple already exists in another tuple in the relation
 - Referential integrity:
 - if a foreign key value in the new tuple references a primary key value that does not exist in the referenced relation
 - Entity integrity:
 - if the primary key value is null in the new tuple

Possible violations for each operation

- DELETE may violate only referential integrity:
 - If the primary key value of the tuple being deleted is referenced from other tuples in the database
 - Can be remedied by several actions: RESTRICT, CASCADE, SET NULL (see Chapter 8 for more details)
 - RESTRICT option: reject the deletion
 - CASCADE option: propagate the new primary key value into the foreign keys of the referencing tuples
 - SET NULL option: set the foreign keys of the referencing tuples to NULL
 - One of the above options must be specified during database design for each foreign key constraint

Possible violations for each operation

- UPDATE may violate domain constraint and NOT NULL constraint on an attribute being modified
- Any of the other constraints may also be violated, depending on the attribute being updated:
 - Updating the primary key (PK):
 - Similar to a DELETE followed by an INSERT
 - Need to specify similar options to DELETE
 - Updating a foreign key (FK):
 - May violate referential integrity
 - Updating an ordinary attribute (neither PK nor FK):
 - Can only violate domain constraints

Summary

- Presented Relational Model Concepts
 - Definitions
 - Characteristics of relations
- Discussed Relational Model Constraints and Relational Database Schemas
 - Domain constraints'
 - Key constraints
 - Entity integrity
 - Referential integrity
- Described the Relational Update Operations and Dealing with Constraint Violations