Функциональное программирование

Денис Николаевич Москвин

6 сентября 2022 г.

Содержание

1. Лямбда-исчисление			2
	1.1	Функциональная модель вычислений	2
	1.2	Чистое λ -исчисление	3
	1.3	Отношение эквивалентности на термах	4
2.	Реку	урсия и редукция	6
	2.1	Теорма о неподвижной точке	6
	2.2	Редексы и нормальная форма	7
	2.3	Теорма Черча-Россела	7
	2.4	Стратегии репукции	5

Все презентации можно найти тут тык.

1. Лямбда-исчисление

1.1. Функциональная модель вычислений

Типы прогрмаммирования:

- 1. **Императивное** инструкции выполняются последовательно (общение с вычислителем). Результат – выполнение последней инструкции.
- 2. Функциональное программа это выражение, его выполнение это вычисление (редукция) выражения. Результат отсутствие редексов (подвыражения, которые могут быть вычислены непосредственно).

Определение 1.1. Связывание – символ равенства $(a = 2 \cdot 7 + 1)$, имя слева становится редексом (будет происходить подстановка наряду со встроенными правилами).

Пример.

$$z \cdot 4 + 1 \rightarrow (2 \cdot 7 + 1) \cdot 4 + 1 \rightarrow \dots$$

Определение 1.2. Рекурсивное связывание – символ равенства $(x = 2 \cdot x + 1)$, имя слева становится редексом, такие выражения расходятся (так как нет терминирующего условия).

Пример.

$$x \cdot 2 \rightarrow (2 \cdot x + 1) \cdot 2 \rightarrow \dots$$

Определение 1.3. Лямбда абстракция (анонимная функция) – λ $\underbrace{y}_{\text{абстрактор}} \to \underbrace{2 \cdot y + 3}_{\text{тело}}$, чтобы применить функцию к аргументу, то мы записываем справа от тело аргумент.

Определение 1.4. Вычисление (β -редукция) — просто подстановка вместо абстрактора самого аргумента.

Пример. Заведем функцию:

$$f = \lambda y \to 2 \cdot y + 1$$

Стретегии редукции:

- 1. В Haskell используется **ленивая** стратегия: сокращается самый левый внешний редекс: $(\lambda y \to 2 \cdot y + 3)(4+6) \to_{\beta} 2 \cdot (4+6) + 3 \to (8+12) + 3 \to 20 + 3 \to 23$
- 2. Была еще энергетическая, но я не успел. Кто-нибудь добавьте, если хочется.

Пример. Тут был пример с факториалом.

Определение 1.5. Функция нескольких переменных – $\lambda n \to 2 \cdot m + 3 \cdot n$, тут свободная переменная это m, можно продолжить выражение, чтобы полуяиться замкунутое выражения (все переменные связанные): $\lambda m \to (\lambda n \to 2 \cdot m + 3 \cdot n)$.

Вызываем функцию так: $(\lambda m \to (\lambda n \to 2 \cdot m + 3 \cdot n)15)4$ – вместо m подставится 15, а вместо n-4.

1.2. Чистое λ -исчисление

Определение **1.6.** λ -терм – переменная, либо апликация, либо абстракция.

$$x \in V \implies x \in \Lambda$$

$$M, N \in \Lambda \implies (MN) \in \Lambda$$

$$M \in \Lambda, x \in V \implies (\lambda x, M) \in \Lambda$$

Пример. λ -термы:

- 1. x
- 2. (x z)
- 3. $(\lambda x. (xz))$
- 4. $((\lambda x. (xz)) y)$
- 5. ...

Каждый следующий терм содержит предыдущий как подтерм.

Замечание. Имеются следующий обозначения:

- 1. Внешние скобки опускаются
- 2. Применение ассоциативно влево: FXYZ == ((FX)Y)Z
- 3. Абстракция ассоциативна вправо: $\lambda xyz == \lambda x.(\lambda y.(\lambda z.M))$

Определение 1.7. β -редукция – $(\lambda x.M)N \to_{\beta} [x \mapsto N]M$ – подстановка N вместо x в M.

Определение 1.8. Применение вида $(\lambda x.M)N$, в которой левый аппликанд является абстракцией, называют β -редексом.

Определение **1.9.** Шаг вычисления по приведенному выше правилу называют сокращением редекса.

Определение 1.10. В чистом λ -исчислении нет ничего кроме переменных, применения, абстракции и редукции.

todo

Определение 1.11. Множество FV(T) свободных переменных в терме T:

$$FV(x) \implies \{x\}$$

 $FV(MN) \implies FV(M) \cup FV(N)$
 $FV(\lambda x.M) = FV(M) \setminus \{x\}$

Определение 1.12. Множество BV(T) связных переменных в терме T:

$$BV(x) \implies \varnothing$$

$$BV(MN) \implies BV(M) \cup BV(N)$$

$$BV(\lambda x.M) \implies BV(M) \cup \{x\}$$

Определение 1.13. М – замкнутый λ -терм (комбинатор), если $FV(M) = \varnothing$. Множество замкнутых λ -термов обозначается Λ^0 .

Пример. I - комбинатор.

$$I = \lambda x.x$$
$$IM \to_I (\lambda x.x)M \to_\beta M$$

Пример.

$$\omega = \lambda x.xx$$

$$\Omega = \omega \omega \to_{\Omega} (\lambda x.xx)\omega \to_{\beta} \omega \omega$$

Определение 1.14. α -редукция – $\lambda x.x \rightarrow_{\alpha} \lambda y.y$

1.3. Отношение эквивалентности на термах

Определение 1.15. Подстановка – $[x \mapsto N]M$. Правила подстановки:

- 1. $[x \mapsto N]x = N$
- 2. $[x \mapsto N]y = y$
- 3. $[x \mapsto N](PQ) = ([x \mapsto N]P)([x \mapsto N]Q)$
- 4. $[x \mapsto N](\lambda x.P) = \lambda x.P$
- 5. $[x \mapsto N](\lambda y.P) = \lambda y.[x \mapsto N]P : y \notin FV(N) y$ не свободная переменная.
- 6. $[x \mapsto N](\lambda y.P) = \lambda y'.[x \mapsto N]([y \mapsto y']P) : y \in FV(N)$ иначе.

Лемма. (О подстановке) Подстановки не коммутируют, однако верна $M, N, L \in \Lambda$. Предположим, что $x \not\equiv y$ и $x \not\in FV(L)$. Тогда $[y \mapsto L]([x \mapsto N]M) \equiv [x \mapsto [y \mapsto L]N]([y \mapsto L]M)$

Доказательство. Нудная индукция по всем 6ти случаям, с разбором всех подслучаев.

Определение 1.16. β -эквивалентность (хотим все свойства отношения эквивалентности). $\forall M, N \in \Lambda : (\lambda x.M) =_{\beta} [x \mapsto N]M$.

Логические аксиомы этого правила:

- 1. $M =_{\beta} M$
- 2. $M =_{\beta} N \implies N =_{\beta} M$
- 3. $M =_{\beta} N, N =_{\beta} L \implies M =_{\beta} L$

Правила совместимости:

- 1. $M =_{\beta} M' \implies MZ =_{\beta} M'Z$
- 2. $M =_{\beta} M' \implies ZM =_{\beta} ZM'$

3.
$$M =_{\beta} M' \implies \lambda x. M =_{\beta} \lambda x. M'$$

Если $M =_{\beta} N$ доказуемо в λ -исчислении, пишут $\lambda \vdash M =_{\beta} N$.

Определение 1.17. α -эквивалентность – $\lambda x.M =_{\alpha} \lambda y.[x \mapsto y]M$, если $y \notin FV(M)$ (переименование переменных). (там еще была табличка с аксиомами, посмотрите в презентации)

Определение 1.18. η -эквивалентность – $\lambda x.Mx =_{\eta} M$. Смысл в том, что апликативное поведение термов слева и справа от знака равенства одинаоково: для произвольного N верно: $(\lambda x.Mx)N =_{\beta} MN$.

2. Рекурсия и редукция

2.1. Теорма о неподвижной точке

Отношение β -эквивалентности, основанное на схеме β -преобразования: $(\lambda n.M)N =_{\beta} [n \mapsto N]M$ дает возможность решать простейшейшие уравнения на термы.

Пример. Найти F, такой что $\forall M, N, L : \Lambda \vdash FMNL =_{\beta} ML(NL)$.

$$FMNL = ML(NL)$$

$$FMNL = (\lambda l.Ml(Nl))L$$

$$FMN = \lambda l.Ml(Nl)$$

$$FM = \lambda n.\lambda l.Ml(nl)$$

$$F = \lambda mnl.ml(nl)$$

Пример. Рассмотрим рекурсивное уравнение:

$$FM = MF$$

$$FM = (\lambda m.mF)M$$

$$F = \lambda m.mF$$

$$F = (\lambda fm.mf)F$$

терм F – неподвижная точка, научившись их искать, можно решать рекурсивные уравнения.

Теорема 2.1. $\forall \lambda$ -терма $F \exists$ неподвижная точка: $\forall F \in \Lambda. \exists X \in \Lambda. \lambda \vdash FX =_{\beta} X.$

Доказательство.
$$W \equiv \lambda x, F(xx) \wedge X \equiv WW$$
. Тогда $X \equiv WW \equiv (\lambda x.F(xx))W =_{\beta} F(WW) \equiv FX - X$ - неподвижная точка.

Теорема 2.2. (О комбинаторе неподвижной точки)

$$\exists Y : \forall F \in \Lambda, \lambda \vdash F(YF) =_{\beta} YF.$$

Доказательство. $Y \equiv \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$. Имеем

$$YF =_{\beta} (\lambda x.F(xx))(\lambda x.F(xx)) =_{\beta} F((\lambda x.F(xx))(\lambda x.F(xx))) =_{\beta} F(YF)$$

Пример. Тут пример с рекурсивным вычислением факториала (todo)

2.2. Редексы и нормальная форма

Определение 2.1. Отношение редукции:

- 1. $KI \rightarrow_{\beta} K_*$ редуцируется за один шаг.
- 2. $IIK_* \mapsto_{\beta} K_*$ редуцируется.
- 3. $KI =_{\beta} IIK_*$ конвертируемо.

Определение 2.2. Бинарное отношение β -редукции за один шаг $\rightarrow_{\beta} \Lambda$.

$$(\lambda x.M)N \to_{\beta} [x \to N]M$$

$$M \to_{\beta} N \implies ZM \to_{\beta} ZN$$

$$M \to_{\beta} N \implies MZ \to_{\beta} NZ$$

$$M \to_{\beta} N \implies \lambda x.M \to_{\beta} \lambda x.N$$

Пример. тут пример: todo

Определение 2.3. Бинарное отношение β -редукции \mapsto_{β} над Λ (индуктивно):

$$M \mapsto_{\beta} M(refl)$$

$$M \to_{\beta} N \implies M \mapsto_{\beta} N(sym)$$

$$M \mapsto_{\beta} NN \mapsto_{\beta} L \implies M \mapsto_{\beta} L(trans)$$

Определение 2.4. Бинарное отношение $=_{\beta}$ над Λ (индуктивно, отношение конвертируемости):

$$M \rightarrowtail_{\beta} N \implies M =_{\beta} N$$

$$M =_{\beta} N \implies N =_{\beta} M$$

$$M =_{\beta} N, N =_{\beta} L \implies M =_{\beta} L$$

Утверждение 2.3. Новая β -конвертируемость и старая β -эквивалентность это одно и то же: $M =_{\beta} N \Leftrightarrow \lambda \vdash M =_{\beta} N.$

Определение 2.5. λ -терм М находится в β -нормальной форме (β -NF), если нет подтермов, являющихся β -редексами.

Определение 2.6. λ -терм M имеет β -нормальной форму, если $\exists N : M =_{\beta} N$ и $N \in \beta$ -NF.

2.3. Теорма Черча-Россела

Теорема 2.4. Если $M \rightarrowtail_{\beta} N, M \rightarrowtail_{\beta} K : \exists L : N \rightarrowtail_{\beta} L \land K \rightarrowtail_{\beta} L$ (свойство ромба/конфлюентность).

Следствие. Теорма о существовании общего редукта:

$$M =_{\beta} N : \exists L : M \rightarrowtail_{\beta} L \land N \rightarrowtail_{\beta} L$$

Следствие. Теорма о редуцируемости к NF:

Если M имеет N в качестве β -NF, то $M \rightarrowtail_{\beta} N$

Следствие. Теорма о единственности NF:

 λ -терм имеет не более одной β -NF.

Утверждение 2.5. Все затевалось для того, чтобы доказывать неравенства: берем термы, сводим к нормальной форме, если не совпеали, то не равны, иначе равны (Если какие-то термы расходятся, то ничего сказать нельязы).

2.4. Стратегии редукции

Духотища, читайте презу здесь.