Université Dr. Yahia Farès de Médéa Faculté des Sciences et de la Technologie Département de Génie Eléctrique & Informatique Année universitaire 2016-2017 Matière : Maths 3 08/01/2017

Epreuve de Fin de Semestre

Exercice 1:(4 points 2+2)

Calculer les intégrales doubles suivantes :

1.
$$\iint_{D} \frac{1}{(1+x^2)(1+y^2)} dx dy \text{ où } D = \{(x,y) \in \mathbb{R}^2 \text{ avec } 0 \le x \le 1, \ y \ge 0, \ 0 \le y \le x\}.$$

2.
$$\iint_D \frac{y^3}{x^2 + y^2} dx dy$$
 où $D = \{(x, y) \in \mathbb{R}^2 \text{ avec } x \ge 0, y \le x, 1 \le x^2 + y^2 \le 4\}$.

Exercice 2: (5 points 3+2)

1. Etudier la convergence des intégrales impropres suivantes :

a)
$$\int_{0}^{+\infty} \frac{dx}{x^2 + 3}$$

b)
$$\int_{2}^{+\infty} \frac{x}{x^3 + \sqrt{x} - 1} dx.$$

2. Etudier la convergence et la convergence absolue de l'intégrale $\int_{1}^{+\infty} \frac{\sin 5x}{x^{\alpha}} dx$, $\alpha \in \mathbb{R}^{+}$.

Exercice 3: (5 points 2.5+2.5)

- 1. Résoudre l'équation différentielle : $y' \frac{y}{x} = x \ln(x+1)$
- 2. Résoudre l'équation différentielle : $y'' 3y' + 2y = 2x^2 5x + 3$.

Exercice 4: (6 points 2,5+2,5+1)

Soit $(f_n)_{n\geq 1}$ la suite de fonctions définie par $f_n(x) = 1 - \frac{1}{nx^2 + 1}$, sur $[0, +\infty[$.

- 1. Etudier la convergence uniforme de la suite de fonctions $(f_n)_{n\geq 1}$ sur $[0, +\infty[$.
- 2. Montrer que la suite de fonctions $(f_n)_{n\geq 1}$ converge uniformément sur $[a, +\infty[, a>0]$.
- 3. Calcular $\lim_{n\to+\infty} \int_{3}^{5} \left(1-\frac{1}{nx^2+1}\right) dx$.

Bon Courage

Université Dr. Yahia Farès de Médéa Faculté des Sciences et de la Technologie Département de Génie Eléctrique & Informatique Année universitaire 2016-20017 Matière : Maths 3 08/01/2017

Corrigé de l' Epreuve de Fin de Semestre

Exercice 1:(4 points 2+2)

1.
$$\iint_{D} \frac{1}{(1+x^{2})(1+y^{2})} dx dy \text{ où } D = \left\{ (x,y) \in \mathbb{R}^{2} \text{ avec } 0 \leq x \leq 1, \ y \geq 0, \ 0 \leq y \leq x \right\}$$

$$\iint_{D} \frac{1}{(1+x^{2})(1+y^{2})} dx dy = \int_{0}^{1} \left(\int_{0}^{x} \frac{1}{(1+x^{2})(1+y^{2})} dy \right) dx.$$
On a
$$\int_{0}^{x} \frac{1}{(1+x^{2})(1+y^{2})} dy = \frac{1}{1+x^{2}} \int_{0}^{x} \frac{1}{(1+y^{2})} dy = \frac{1}{1+x^{2}} \left[\arctan y \right]_{y=0}^{y=x} = \frac{1}{1+x^{2}} \arctan x$$
. Par suite,
$$\iint_{D} \frac{1}{(1+x^{2})(1+y^{2})} dx dy = \int_{0}^{1} \frac{1}{1+x^{2}} \arctan x dx. \text{ On pose } u = \arctan x \ du = \frac{1}{1+x^{2}} dx. \text{ Ceci implique que } \iint_{D} \frac{1}{(1+x^{2})(1+y^{2})} dx dy = \int_{0}^{\frac{\pi}{4}} u du = \left[\frac{u^{2}}{2} \right]_{0}^{\frac{\pi}{4}} = \frac{\pi^{2}}{3^{2}} \text{ (2 point)}.$$
2.
$$\iint_{D} \frac{y^{3}}{x^{2}+y^{2}} dx dy \text{ où } D = \left\{ (x,y) \in \mathbb{R}^{2} \text{ avec } x \geq 0, \ y \leq x, \ 1 \leq x^{2} + y^{2} \leq 4 \right\}.$$
On passe aux coordonnées polaires. On pose $x = r \cos \theta, y = r \sin \theta \Rightarrow r = \sqrt{x^{2}+y^{2}}.$

$$D = \left\{ (r,\theta) \in \mathbb{R}^{2} \text{ avec } \cos \theta \geq 0, \ \sin \theta \leq \cos \theta, \ 1 \leq r^{2} \leq 4 \right\} = \left\{ (r,\theta) \in \mathbb{R}^{2} \text{ avec } \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{4}, \ 1 \leq r \leq 2 \right\}$$

$$\iint_{D} \frac{y^{3}}{x^{2}+y^{2}} dx dy = \iint_{D'} \frac{r^{3} \sin^{3} \theta}{r^{2}} r dr d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} (\int_{1}^{2} r^{2} \sin^{3} \theta dr) d\theta. \text{ On a } \int_{1}^{2} r^{2} \sin^{3} \theta dr = \sin^{3} \theta \int_{1}^{2} r^{2} dr = \sin^{3} \theta \left[\frac{r^{3}}{3} \right]_{r=1}^{r=2} = \frac{7}{3} \sin^{3} \theta \text{ (1 point)}. \text{ Par suite, } \iint_{D} \frac{y^{3}}{x^{2}+y^{2}} dx dy = \frac{7}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \sin \theta \left(1 - \cos^{2} \theta \right) d\theta = \frac{7}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta d\theta - \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta d\theta - \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta d\theta - \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta d\theta - \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin \theta \cos^{2} \theta d\theta = \frac{7}{3} \int_{1}^{\frac{\pi}{4}} \sin^{2} \theta d\theta - \frac{$$

Exercice 2: (5 points 2+2+1)

1. a)
$$\int_{0}^{+\infty} \frac{dx}{x^{2} + 3} = \int_{2}^{+\infty} \frac{1}{x(\ln x)^{2}} dx. \text{ Soit } t > 0. \int_{0}^{t} \frac{dx}{x^{2} + 3} dx = \frac{1}{\sqrt{3}} \int_{0}^{t} \frac{\frac{1}{\sqrt{3}} dx}{1 + \left(\frac{x}{\sqrt{3}}\right)^{2}} = \frac{1}{\sqrt{3}} \left[\arctan\left(\frac{x}{\sqrt{3}}\right)\right]_{0}^{t} = \frac{1}{\sqrt{3}} \arctan\left(\frac{t}{\sqrt{3}}\right). \text{ On a donc } \lim_{t \to +\infty} \int_{0}^{t} \frac{dx}{x^{2} + 3} dx = \lim_{t \to +\infty} \frac{1}{\sqrt{3}} \arctan\left(\frac{t}{\sqrt{3}}\right) = \frac{\pi}{2\sqrt{3}} \text{ et donc l'intégrale } \int_{2}^{+\infty} \frac{1}{x(\ln x)^{2}} dx \text{ est convergente } (\mathbf{1,5 \ points}).$$
b)
$$\int_{2}^{+\infty} \frac{xdx}{x^{3} + \sqrt{x} - 1}. \text{ On } \forall x \geq 2, \text{ la fonction } \frac{x}{x^{3} + \sqrt{x} - 1} \geq 0 \text{ et } \frac{x}{x^{3} + \sqrt{x} - 1} = \frac{1}{x^{2} + \frac{\sqrt{x}}{x} - \frac{1}{x}} \sim_{+\infty} \frac{1}{x^{2}}. \text{ Comme l'intégrale } \int_{2}^{+\infty} \frac{1}{x^{2}} dx \text{ converge, l'intégrale } \int_{2}^{+\infty} \frac{xdx}{x^{3} + \sqrt{x} - 1} \text{ converge } (\mathbf{1,5 \ points})$$

 $\int_{1}^{+\infty} \frac{\sin 5x}{x^{\alpha}} dx, \ \alpha \in \mathbb{R}^{+} \ . \ \text{On pour tout} \ x \geq 1, \ \left| \frac{\sin 5x}{x^{\alpha}} \right| = \frac{|\sin 5x|}{x^{\alpha}} \leq \frac{|\sin 5x|}{x^{\alpha}} \leq \frac{1}{x^{\alpha}}. \ \text{Si} \ \alpha > 1,$ alors comme l'intégrale $\int_{1}^{+\infty} \frac{1}{x^{\alpha}} dx \ \text{converge}, \ \text{l'intégrale} \int_{1}^{+\infty} \left| \frac{\sin 5x}{x^{\alpha}} \right| dx \ \text{converge}. \ \text{Ceci implique que}$ l'intégrale $\int_{1}^{+\infty} \frac{\sin 5x}{x^{\alpha}} dx \ \text{est absolument convergente et donc convergente} \ \left(1 \ \text{point} \right). \ \text{Si} \ \alpha \leq 1, \ \text{alors}$ $\left| \frac{\sin 5x}{x^{\alpha}} \right| = \frac{|\sin 5x|}{x^{\alpha}} \geq \frac{\sin^2 5x}{x^{\alpha}} = \frac{1 - \cos 10x}{2x^{\alpha}} = \frac{1}{2x^{\alpha}} - \frac{\cos 10x}{2x^{\alpha}}. \ \text{L'intégrale} \int_{1}^{+\infty} \frac{1}{2x^{\alpha}} dx \ \text{est divergente}. \ \text{L'intégrale} \right|_{1}^{+\infty} \frac{\cos 10x}{2x^{\alpha}} dx \ \text{converge}. \ \text{Ceci implique que l'intégrale} \int_{1}^{+\infty} \frac{\sin^2 5x}{x^{\alpha}} dx \ \text{est divergente}. \ \text{D'après le critère de comparaison, l'intégrale} \right|_{1}^{+\infty} \frac{\sin 5x}{x^{\alpha}} dx \ \text{est divergente}. \ \text{Pour tout convergente}. \ \text{Pour la convergence on utilise le Théorème d'Abel Diriclet. On a } \left(\frac{1}{x^{\alpha}} \right)' = \frac{-\alpha}{x^{\alpha+1}} \ \text{et donc la fonction } x \mapsto \left| \frac{1}{x^{\alpha}} \right| \sin 5x dx = \left| \left[-\frac{1}{5} \cos 5x \right]_{c}^{d} \right| = \frac{1}{5} |\cos 5c - \cos 5d| \leq \frac{1}{5} \left(|\cos 5c| + |\cos 5d| \right) \leq \frac{2}{5}. \ \text{D'après le Théorème}$ d'Abel Diriclet, l'intégrale $\int_{1}^{+\infty} \frac{\sin 5x}{x^{\alpha}} dx \ \text{est convergente}. \ \left(1 \ \text{points} \right).$

Exercice 3:(5 points 2,5+2,5)

- 1. $y'' 3y' + 2y = 2x^2 5x + 3$. La solution $y(x) = y_h(x) + y_p(x)$. Soit y'' 3y' + 2y = 0 l'équation homogène. L'equation caractéristique $k^2 3k + 2 = 0$ admet deux solutions réelles $k_1 = 1$, $k_2 = 2$ donc $y_h(x) = c_1 e^x + c_2 e^{2x}$. Comme le second membre est un polynôme de dégrés 2, $y_p(x) = ax^2 + bx + c$. $y_p'(x) = 2ax + b$ et $y_p'(x) = 2a$. On remplace dans l'équation différentielle donnée, on trouve $2ax^2 + (-6a + 2b)x + 2a 3b + 2c = 2x^2 5x + 3$. Par identification, on $\begin{cases} 2a = 2 \\ -6a + 2b = -5 \end{cases}$. D'où, a = 1, $b = \frac{1}{2}$, $c = \frac{5}{4}$ et $y_p(x) = x^2 + \frac{x}{2} + \frac{5}{4}$. La solution $y(x) = y_h(x) + y_p(x) = c_1 e^x + c_2 e^{2x} + x^2 + \frac{x}{2} + \frac{5}{4}$. (2,5 points)
- 2. Soit l'équation différentielle : $y' \frac{y}{x} = x \ln(x+1)$. C'est une équation différentielle linéaire du premier ordre avec $p(x) = -\frac{1}{x}$ et $Q(x) = x \ln(x+1)$. La solution y(x) = u(x)v(x). $v(x) = e^{-\int p(x)dx} = e^{\int \frac{1}{x}dx} = x$. $u(x) = \int \frac{Q(x)}{v(x)}dx + c = \int \frac{x \ln(x+1)}{x} + c = \int \ln(x+1) dx + c$. On effectue une intégration par partie. On pose $f(x) = \ln(x+1)$ et g'(x) = 1. Ceci implique que $f'(x) = \frac{1}{1+x}$ et g(x) = x. Donc $\int \ln(x+1) dx = x \ln(x+1) \int \frac{x}{x+1} dx$. Comme $\frac{x}{x+1} = 1 \frac{1}{1+x}$, alors $\int \ln(x+1) dx = x \ln(x+1) \int dx + \int \frac{1}{1+x} dx = (x+1) \ln(x+1) x$. Donc $u(x) = (x+1) \ln(x+1) x + c$. D'où $u(x) = u(x)v(x) = x(x+1) \ln(x+1) x^2 + cx$. (2,5)

points)

Exercice 4: (6 points 2,5+2,5+1)

$$f_n(x) = 1 - \frac{1}{nx^2 + 1}$$
, sur $[0, +\infty[$

1. a) La convergence simple sur $[0, +\infty[$: Pour $x \in [0, 1]$ fixé, on a $\lim_{n \to +\infty} f_n(x) = \lim_{n \to +\infty} \left(1 - \frac{1}{nx^2 + 1}\right) = \begin{cases} 0 \text{ si } x = 0 \\ 1 \text{ si } x > 0 \end{cases}$ 0 (1 point). D'où, la suite de fonctions $(f_n)_{n \ge 1}$ converge

simplement sur $[0, +\infty[$ vers la fonction $f(x) = \begin{cases} 0 \text{ si } x = 0 \\ 1 \text{ si } x > 0 \end{cases}$ (0,5 point).

- b) La convergence uniforme sur $[0, +\infty[$: On ici une suite de fonctions continues sur $[0, +\infty[$ convergente simplement sur $[0, +\infty[$ vers une fonction discontinue en 0. On a donc pas de convergence uniforme sur $[0, +\infty[$ (1 point)
- 2. a) La convergence simple sur $[a, +\infty[$: Pour tout $x \in [a, +\infty[$, $\lim_{n \to +\infty} f_n(x) = 1$ (0,5 point). D'où, la suite de fonctions $(f_n)_{n \ge 1}$ converge simplement sur $[a, +\infty[$ vers la fonction f(x) = 1 (0,5 point).
 - b) La convergence uniforme sur $[a, +\infty[:|f_n(x)-f(x)|] = \left|\frac{-1}{nx^2+1}\right| = \frac{1}{nx^2+1} = g_n(x)$. On a $g'_n(x) = \frac{-2nx}{(nx^2+1)^2} < 0$.

La fonction $g_n(x)$ est décroissante et donc $\sup_{x \in [a, +\infty[} |f_n(x) - f(x)| = \sup_{x \in [a, +\infty[} g_n(x) = g_n(a) = g_n(a)$

 $\frac{1}{na^2+1} \cdot \lim_{n \to +\infty} \sup_{x \in [a, +\infty[} |f_n(x) - f(x)| = \lim_{n \to +\infty} \frac{1}{na^2+1} = 0. \text{ D'où, la suite de fonctions}(f_n)_{n \ge 1}$ converge uniformément sur $[a, +\infty[.(\mathbf{1.5 \ point}).$

3. Comme on la convergence uniforme sur $[a, +\infty[$, a > 0. On prend a = 1 et on a donc $[3,5] \subset [1, +\infty[$. Ceci implique que $\lim_{n \to +\infty} \int_3^5 \left(1 - \frac{1}{nx^2 + 1}\right) dx = \int_3^5 \lim_{n \to +\infty} \left(1 - \frac{1}{nx^2 + 1}\right) dx = \int_3^5 dx = [x]_3^5 = 5 - 3 = 2$. (1 point).