工 业 大 学 试 卷 (A) 肥

共 1 页第 1 页

2019~2020 学年第 二 学期 课程代码 1400071B 课程名称 线性代数 学分 2.5 课程性质:必修☑、选修□、限修□ 考试形式:开卷□、闭卷☑ 考试日期 2020 年 8 月 24 日 8:00-10:00 命题教师 集体 系(所或教研室)主任审批签名 专业班级(教学班)

一、填空题(每小题 4 分, 共 20 分)

2. 设 $A = (\alpha_1, \alpha_2, \alpha_3)$, $B = (\alpha_1 + 2\alpha_3, \alpha_1 + 2\alpha_2, 2\alpha_2)$,其中 $\alpha_i(i=1,2,3)$ 是3维列向量,若|A|=1, 则**|B**|=_____

3. 设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
, $\mathbf{P} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $\mathbf{Q} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, 则 $\mathbf{P}^2 A \mathbf{Q}^3 = \underline{}$.

4. 设
$$3 \times 4$$
 矩阵 **B** 的秩 $R(\mathbf{B}) = 3$,且 $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 1 & 9 \end{pmatrix}$,则 $R(\mathbf{AB}) = \underline{\qquad}$.

5. 设
$$\boldsymbol{A}$$
 的秩为 2 , $\boldsymbol{\xi}_1$, $\boldsymbol{\xi}_2$ 是三元非齐次线性方程组 $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$ 的两个特解,且 $\boldsymbol{\xi}_1+\boldsymbol{\xi}_2=\begin{pmatrix}2\\2\\2\end{pmatrix}$, $\boldsymbol{\xi}_2=\begin{pmatrix}0\\1\\1\end{pmatrix}$,

则 Ax = b 的通解是

二、选择题(每小题 4 分, 共计 20 分)

- 1. 设 \mathbf{A} 和 \mathbf{B} 均为 $\mathbf{n} \times \mathbf{n}$ 矩阵,则必有().

 - (A) $A^2 B^2 = (A B)(A + B)$ (B) $(AB)^T = B^T A^T$
 - (C) $(A + B)^{-1} = A^{-1} + B^{-1}$
- (D) |A + B| = |A| + |B|

2. 设
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$, $\mathbf{C} = \mathbf{AB}$, 则矩阵 \mathbf{C} 中第三行、第二列的元素是().

- (A) 2 (B) 1 (C) -2

3. 向量组 $\alpha_1, \alpha_2, \dots \alpha_m \ (m \ge 2)$ 线性无关的充分必要条件是().

- $(A) \alpha_1, \alpha_2, \cdots \alpha_m$ 中不含有零向量
- (B) $\alpha_1, \alpha_2, \cdots \alpha_m$ 中任意两个向量的分量不成比例
- (C) $\alpha_1, \alpha_2, \cdots \alpha_m$ 中任意一个向量均不能由其余 m-1 个向量线性表示
- (D) $\alpha_1, \alpha_2, \cdots \alpha_m$ 中有一个向量不能由其余m-1个向量线性表示

4. 设A为n阶矩阵,且|A|=0,则().

- (A) A 的秩为零
- (B) A 的行秩等于零
- (C) 非齐次线性方程组 Ax = b 有无穷多解
- (D) 齐次线性方程组 Ax = 0 有非零解

5. 矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & 1 & -2 \\ 0 & 1 & 4 \\ 0 & 2 & 3 \end{pmatrix}$$
 与 $\mathbf{B} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & b \end{pmatrix}$ 相似,则 \mathbf{b} 的值为().

- (A) 3
- (C) 5

三、(10 分) 已知行列式
$$D = \begin{vmatrix} 1 & 2 & 0 & 0 \\ 1 & 2 & 3 & 1 \\ 2 & 4 & 3 & 2 \\ 0 & 0 & 2 & 1 \end{vmatrix}$$
, 求 $2A_{21} + A_{22} + 4A_{23} + 2A_{24}$, 其中 A_{2j} 为 D 中 $(2, j)$ 元素的代

数余子式 (j=1,2,3,4).

四、(10分) 已知
$$AB = B + 2A$$
,且 $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$,求矩阵 B .

五、(12 分) 设向量组: $\boldsymbol{\alpha}_1 = (1,3,1,0)^T$, $\boldsymbol{\alpha}_2 = (2,0,2,-6)^T$, $\boldsymbol{\alpha}_3 = (1,3,0,0)^T$, $\boldsymbol{\alpha}_4 = (0,3,0,3)^T$, 求 此向量组的秩及一个极大线性无关组,并将其余向量用该极大无关组线性表示.

六、(12分) 设方程组
$$\begin{cases} x_1 + ax_2 + 2x_3 = 1 \\ x_1 + x_2 - ax_3 = 2 \\ 2x_1 + 2x_2 + 4x_3 = 2 \end{cases}$$
 (1) 求系数行列式 $|A|$; (2) a 取何值时,方程组有唯一解、

无解及无穷多解?

七、(12 分) 矩阵
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 3 \end{pmatrix}$$
 可否相似对角化?若能相似对角化,则求可逆阵 P ,使得 $P^{-1}AP$ 为对

八、(4分) 设 α 为 $n\times1$ 非零矩阵, $A=\alpha\alpha^T$,证明: R(A)=1.