ICP

ICP-10111 Barometric Pressure Sensor

v1.0 2025-07-15

Rev. A

Compact and efficient sensor designed for high-accuracy atmospheric pressure measurements

PRODUCT OVERVIEW

The ICP-10111 Barometric Pressure Sensor Module is a compact and efficient sensor designed for high-accuracy atmospheric pressure measurements with low power consumption. Based on MEMS capacitive technology, this module offers ultra-low noise performance, exceptional relative accuracy, and stable sensor throughput. Ideal for weather monitoring, altitude measurement, and environmental sensing, it delivers industry-leading precision in demanding applications.

PRODUCT VIEWS

TOP VIEW

Component placement and connectors

BOTTOM VIEW

Underside components and connections

KEY TECHNICAL SPECIFICATIONS

POWER SUPPLY

Supply 3.3 V-5.5 V (module), 1.8 V (sensor

Voltage: core)

Supply Current:

Low Power (10 Hz): **1.3 μA**

CONNECTIVITY

Interfaces: up to 400 kHz, 7-bit address 0x63

Connector: Qwiic + Pin Headers

PIN CONFIGURATION

PIN	VOLTAGE LEVEL	FUNCTION
vcc	3.3 V - 5.5 V	Provides power to the on-board regulator and sensor core.
GND	0 V	Common reference for power and signals.
SDA	1.8 V to VCC	Serial data line for I ² C communications.
SCL	1.8 V to VCC	Serial clock line for I ² C communications.

TECHNICAL FEATURES

Board Dimensions 20.32 mm × 17.78 mm Mounting Holes 4 × Ø 2.2 mm

High-stability MEMS capacitive pressure sensor with low Integrated temperature sensor for on-board compensation drift

uiiii

Ultra-low-noise $\Delta\Sigma$ ADC with 24-bit resolution Three user-selectable power/noise modes for optimized

current usage

Qwiic/STEMMA QT connector for solder-free I²C daisy-

chaining

On-board level shifting and 1.8 V core regulator

Wide operating range

-40 °C to +85 °C, 30 kPa to 110 kPa

TYPICAL APPLICATIONS

Weather Stations & Barographs Altimeters & UAVs Indoor/Outdoor Navigation

Wearables & IoT Climatology & Research Weather Forecasting

VISUAL DOCUMENTATION

PRIMARY TECHNICAL DOCUMENTATION

MECHANICAL DIMENSIONS

Physical dimensions and mounting specifications (measurements in millimeters)

SUPPLEMENTARY TECHNICAL DOCUMENTATION

SYSTEM TOPOLOGY

Connection topology and system integration

CIRCUIT SCHEMATIC

Detailed circuit schematic diagram

USAGE

- Arduino IDE
- Install SparkFun_ICP10111 library via Library Manager
- Include and in your sketch
- PlatformIO
- Add sparkfun/sparkfun-icp10111@^1.0.0 to lib_deps in platformio.ini
- Raspberry Pi (Linux/C or Python)
- Use the I²C-1 bus (/dev/i2c-1) with smbus2 (Python) or i2c-dev (C)
- CircuitPython / MicroPython
- Install adafruit_icp10111 from the Adafruit bundle
- Use busio.I2C or I2C() to communicate over SDA/SCL

DOWNLOADS

_

PIN CONFIGURATION & LAYOUT

Detailed pin assignment and connector layout

PINOUT

Descripción:

Complete pin configuration diagram showing all connectors, pin assignments, and electrical connections for proper integration

© 2025 UNIT Electronics México Technical document automatically generated ICP v1.0 Professional Technical Datasheet Date: 2025-07-15 For commercial distribution