On Guillotine Separable Packings for the Two-dimensional **Geometric Knapsack Problem**

Amatya Sharma IIT Kharagpur

Joint work with:

Arindam Khan Arnab Maiti Andreas Wiese Universidad de Chile

IISc Bangalore IIT Kharagpur

2D Geometric Knapsack

- Input:
 - Items : Axis Parallel Rectangles
 - Knapsack : N x N Square
- Goal : Pack most profitable non-overlapping subset of items

Guillotine Separability

Each item can be "cut" out using axis parallel end-to-end cuts

2D Guillotine Knapsack

- Input
 - Knapsack : N x N Square
 - Items : Axis Parallel Rectangles
- Goal: Pack most profitable subset of items such that items are
 - Non-Overlapping
 - Guillotine Separable

A Guillotine Separable Packing

Variants & Prior Results

- Variants
 - Rotated Case: Items can be rotated by 90°
 - Cardinality Case: All Profits = 1

- NP-Hard
- (3 + ε)-approximation [Jansen and Zhang, SODA'04]
- Cardinality Case: QPTAS with quasi-polynomially bounded input
 [Abed et al, Approx'15]

Our Results

 Pseudo-Polynomial Time Approximation Scheme (PPTAS): (1 + ε)-approximation with pseudo-polynomial running time.

Input numbers are all polynomially bounded in n

Our Techniques

 Structural Lemma: Existence of near-optimal "nicely" structured solutions

• Guessing the Packing: Guess the nice packing in $(nN)^{O\epsilon(1)}$

Structural Lemma

• Existence of packing in:

Guessing Near-Optimal Packing

- Guess O_s(1) L- or box- Compartments
- Assign & Pack Items
 - box-Compartment : Use GAP -> NFDH
 - L-Compartment: Use algorithm adapted from recent work by Galvez et al (SoCG'21)

Can be extended to case where 90° rotations are allowed

Thank You!!

Questions?

There will be a detailed talk next week in SoCG'21