

Curs 2/0: Introducere în Teoria Probabilităților: Problema zilei de nastere și Eșantionare

Conf.dr. Maria Jivulescu

Departamentul de Matematică UPT

Universitatea Politehnica Timișoara

- Recapitulare din cursul anterior
- Problema zilei de naștere(Birthday Paradox)
- Scheme clasice de probabilitate
 - Schema bilei revenite
 - Schema bilei nerevenite

Dată o experiența aleatoare, tripletul (Ω, \mathcal{K}, P) spatiu de probabilitate, unde Ω -spațiul tuturor realizărilor acestei exp, $\mathcal{K} \subset \mathcal{P}(\Omega)$ o familie (admisibila) de evenimente, iar $P: \mathcal{K} \to [0,1]$ funcția probabilitate

Ev. A	Multime A	$P(A) \in [0,1]$			
Ev. sigur	Ω	1			
Ev. imposibil	Ø	0			
Ev. contrar lui A	$C_\Omega A$	$P(\mathbb{C}_{\Omega}A) = 1 - P(A)$ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$			
Ev. reuniune	$A \cup B$				
Ev. intersectie	$A \cap B$	$P(A \cap B) = ?$			
Ev. mutual exclusive	$A \cap B = \emptyset$	$P(A\cap B)=0$			
Ev. diferenta	$A \setminus B$	$P(A \setminus B) = P(A) - P(A \cap B)$			

Partea I: Problema zilei de nastere

Universitatea Politehnica Timișoara

Formalizarea problemei

Fie n care persoane participă la un reuniune. Care este probabilitatea ca cel puțin două dintre ele să aibă aceeași zi de naștere?

■ probabilitatea de a găsi într-un grup de 23 de persoane cel puțin două cu aceeași zi de naștere este mai mare decât 1/2:

$$p_{23} = 0.507297$$

■ Rezultat este contrar intuiției umane→ *the birthday paradox*.

				20				
p(n)	0	2.7%	11.7%	41.1%	50∍7%	∄ >	₽	990

Rezolvare:

- Presupunem că anul are 365 de zile
- lacksquare A mulţimea participanţilor la reuniune, $A=\{1,2,\ldots,n\}$
- B mulțimea codurilor pentru zilele anului, $B = \{1, 2, 3, \dots, 365\}$
- $\,\blacksquare\,\,\Omega$ mulțimea tuturor posibilităților pentru zilele de naștere ale celor n persoane

$$\Omega = \{z_1 z_2 \dots z_n, z_i \in B\}$$

 Ω - mulţimea aplicaţiilor de la A la B , adică $\Omega = B^A$

- $|\Omega| = 365^n$
- cele 365 zile de naștere din *n*−liste sunt echiprobabile.

Universitatea Politehnica Timișoara

- \blacksquare E_n evenimentul: cel puţin două persoane din cele n care participă la reuniune au aceeași zi de naștere.
- $P(E_n) = |E_n|/|\Omega|.$
- $P(E_n) = 1 P(\mathbb{C}_{\Omega} E_n)$
- $\mathbb{C}_{\Omega}E_n$: printre cele n persoane nu există două persoane cu aceeași zi de naștere
- $\mathbb{C}_{\Omega}E_n = \{f \in B^A \mid f \text{ este injecție}\}$ (o injecție asociază la oricare două persoane diferite, zile de naștere diferite)
- $P(C_{\Omega}E_n) = \frac{\text{numărul injecţiilor de la A la B}}{\text{numărul aplicaţiilor de la A la B}} = \frac{A_{365}^n}{365^n} = \prod_{k=1}^{n-1} (1 \frac{k}{365})$
- $P(E_n) = 1 P(C_{\Omega}E_n) = 1 \prod_{k=1}^{n-1} \left(1 \frac{k}{365}\right)$

Universitatea Politehnica Timisoara

Figure: Ilustrarea $(n, P(E_n))$. Pentru $n \ge 23$, $P(E_n) > 0.5$, $n = 12, \dots, 100$.

Generalizarea problemei zilei de naștere

Universitatea Politehnica Timisoara

Generalizare

Fie date n objecte numerotate $1, 2, \ldots, n$ și N containere, $N \ge n$.

Pe rând, obiectele sunt atribuite la întâmplare containerelor (sunt aruncate la întâmplare în containere, fiecare obiect poate ateriza în oricare container cu aceeași probabilitate.)

Dacă într-un container au căzut cel puțin două obiecte spunem că s-a produs o *coliziune*.

Să se determine probabilitatea să se producă cel puțin o coliziune după aruncarea celor n obiecte în cele N containere.

- Probabilitatea se calculează similar cu probabilitatea să participe la reuniune cel puţin două persoane cu aceeaşi zi de naștere.
- În cazul coliziunii 365 se înlocuiește cu *N*.

Propozitie

Pentru $N \ge n \ge 2$ probabilitatea a cel puțin unei coliziuni C(N,n) este

$$P(C(N,n)) = 1 - \prod_{k=1}^{n-1} (1 - \frac{k}{N}), \quad P(C(N,n)) \ge 1 - e^{-n(n-1)/2N}$$

Deci, numărul de obiecte ce trebuie aruncate in N containere pentru o obtine o coliziune cu probabiltate P este:

$$n(P) \leq 1 + \sqrt{2N \ln \frac{1}{1 - P}}$$

Concluzie: Intr-o căutare a unu obiect, este mult mai ușor să găsim obiecte identice, decât un obiect particular.

Algoritmi de coliziune= constituie două liste de elemente, caută un element ce apare în ambele, adică identifică o coliziune

Dorim să îmbunătățim performanța algoritmului de verificarea a echivalenței a două polinoame. Cum?

- alegem $r \in \{1, 2, ..., 1000d\}$; avem $P(\text{raspuns gresit}) \le 1/10^3$, dar limită de memorie ale calculatorului.
- reluăm algoritmul de mai multe ori, considerând valori aleatoare diferite pentru a testa identitatea F(x) = G(x).
 - dacă se repetă algoritmul de un număr de ori și la orice rulare se generează r pentru care $F(r) \neq G(r)$, atunci $F(x) \neq G(x)$;
 - dacă se repetă algoritmul de un număr de ori și determinăm un r pentru care $F(r) \neq G(r)$, atunci $F(x) \neq G(x)$;
 - dacă F(r) = G(r), la toate rulările algoritmului, atunci F(x) = G(x).
- Cum facem generarea numerelor $r \in \{1, 2, ... 100d\}$ in rularile algoritmului?

Esantionare cu înlocuire

Universitatea Politehnica Timișoara

Metoda 1: se bazează pe Schema bilei revenite

- nu ne amintim ce numere au fost testate în rulările anterioare ale algoritmului;
- lacktriangle presupunem că reluăm algoritmul de k ori;
- la fiecare rulare, se genereaza un numă aleator, uniform din $\{1,2,\ldots,100d\}$, indiferent de alegerile anterioare
- lacktriangle la fiecare reluare a algoritmului avea prb de eroare d/100d
- definim E_i : la iterația i s-a găsit o rădăcină a polinomului F-G; avem $P(E_1)=P(E_2)\leq 1/100$;
- probabilitatea ca la ambele iterații să se găsească o rădăcină a lui F-G este $P(E_1\cap E_2)\leq (1/100)^2$
- probabilitatea ca la k iterații să se găsească rădăcini ale lui F G este $P(E_1 \cap ... E_k) \leq (1/100)^k$;

$\textbf{Acst rezultat} \rightarrow \textbf{noțiunea de independenta a evenimentelor!}$

 $E_1, \ldots E_k$ independente : $P(E_1 \cap E_2) = P(E_1)P(E_2)$

Universitatea Politehnica Timisoara

Metoda 2: se bazează pe **Schema bilei nerevenite**

- dacă la una din iterații s-a generat numărul r, nu vom mai permite ca acest număr să fie ales la iterațiile ulterioare ale algoritmului
- în acest caz, $P(E_1 \cap E_2)$ depinde de ce s-a obținut la iterația $1 \Rightarrow$ necesitatea introducerii noțiunii de **probabilitate condiționată**

$$P(E_2|E_1) := \frac{P(E_1 \cap E_2)}{P(E_1)}$$

 $P(E_1 \cap E_2 \cap ... \cap E_k) = P(E_1)P(E_2|E_1)P(E_3|E_1 \cap E_2)...P(E_k|E_1 \cap E_2... \cap E_{k-1})$

Concluzii cu care să rămânem

Universitatea Politehnica Timișoara

- Problema zilei de naștere (birthday paradox): formularea problemei + soluție
- eșantionare cu (fără) înlocuire
- necesitatea extinderii teorei pentru a cuprinde situații deosebite: independență și condiționare

Vă mulțumesc pentru atenție! Întrebări?