Chapter 2, Section 2. Exercises 1, 4-6

MTH 594, Prof. Mikael Vejdemo-Johansson Differential Geometry Independent Study

Matthew Connelly

September 22, 2018

Exercise 2.2.4

[Part 1]

Let k be the signed curvature of a plane curve C expressed in terms of its arc-length. Show that, if C_a is the image of C under the dilation of $\mathbf{v} \to a\mathbf{v}$ of the plane (where a is a non-zero constant), the signed curvature of C_a in terms of its arc-length s is $\frac{1}{a}k(\frac{s}{a})$.

[Part 2]

A heavy chain suspended at its ends hanging loosely takes the form of a plane curve C. Show that, if s is the arc-length of C measured from its lowest point, ϕ the angle between the tangent of C and the horizontal, and T the tension in the chain, then

$$Tcos\phi = \lambda$$
, $Tsin\phi = \mu s$

where λ , μ are non-zero constants (we assume that the chain has constant mass per unit length). Show that the signed curvature of C is

$$k_s = \frac{1}{a} \left(1 + \frac{s^2}{a^2} \right)^{-1}$$

where $a = \lambda/\mu$, and deduce that C can be obtained from the catenary in Example 2.2.4 by applying a dilation and an isometry of the plane.

[Part 1]

Showing that the signed curvature of C_a is $\frac{1}{a}k(\frac{s}{a})$.

First, relating the arc-length of C to that of C_a :

$$C = (x, y) C_a = (ax, ay)$$

k is the signed curvature of C in respect to its arc-length.

Let s_c be the arc-length of C, given s is the arc-length of C_a .

 $\therefore s = a s_c$ C_a 's arc-length = C's arc-length · a

Proof:

$$s_c = \int_0^t \parallel C' \parallel dt$$
 C's arc-length
$$s_c = \int_0^t \sqrt{(x')^2 + (y')^2} \ dt$$

$$s = \int_0^t \| C_a' \| dt$$

$$c_a's \text{ arc-length}$$

$$s = \int_0^t \sqrt{(ax')^2 + (ay')^2} dt$$

$$s = \int_0^t \sqrt{a^2[(x')^2 + (y')^2]} dt$$

$$s = \int_0^t \sqrt{a^2} \sqrt{(x')^2 + (y')^2} dt$$

$$s = \int_0^t a\sqrt{(x')^2 + (y')^2} \ dt$$

$$s = a \int_0^t \sqrt{(x')^2 + (y')^2} dt$$
 a is constant; commuted outside of integral expression $s = a s_c$

Lastly, relating the curvature of C to that of C_a :

$$k = n_s k_s$$
 C's signed curvature = unit normal · tangent's rate of turning

C's rate of turning $k_s = \dot{\phi}$:

$$\phi = tan^{-1} \frac{y'}{x'}$$
 Angle between C's tangent and the horizontal

$$\dot{\phi} = \frac{d\phi}{ds} = \frac{1}{1 - (\frac{y'}{x'})^2} \cdot \frac{x'y'' - x''y'}{(x')^2} = k \qquad \text{C's tangent's rate of turning}$$

 C_a 's rate of turning $\dot{\phi}_a$:

$$\phi_a = tan^{-1} \frac{ay'}{ax'} = tan^{-1} \frac{y'}{x'} = \phi$$
 Angle between C_a 's tangent and the horizontal

$$\dot{\phi}_a = \dot{\phi} = k_s$$
 C's rate of turning = C_a 's rate of turning

To relate all of this to $\frac{1}{a}k(\frac{s}{a})$:

Let $n_s^a = (-a \sin \phi, a \cos \phi)$ be C_a 's unit normal; a $\frac{\pi}{2}$ rotation of C_a 's tangent \mathbf{t} . n_s is C's unit normal.

$$k(s_c) = k\left(\frac{s}{a}\right)$$
 Because $s = a \cdot s_c$ and C and C_a have the same turning rate $n_s \cdot k_s = n_s^a \cdot k_s$ Expansion of k at s_c and $\frac{s}{a}$
$$(-sin\phi, \cos\phi) \cdot \dot{\phi} = (-a \sin\phi, a \cos\phi) \cdot \dot{\phi}$$
 Further expansion
$$(-sin\phi, \cos\phi) \cdot \dot{\phi} \cdot \frac{1}{a} = (-sin\phi, \cos\phi) \cdot \dot{\phi}$$
 Division by constant of dilation
$$k(s_c) \cdot \frac{1}{a} = k\left(\frac{s}{a}\right) \cdot \frac{1}{a}$$
 Simplification

[Part 2]

Show:

$$T\cos\phi = \lambda$$
, $T\sin\phi = \mu s$

Where λ, μ are non-zero constants.

Curve C is described as a heavy chain with tension T; a catenary. $\therefore C = (t, cosht), C' = (1, sinht)$

Unit tangent vector: $\mathbf{t} = (\cos\phi, \sin\phi)$ Arc-length $s = \sinh t$, because $s = \int_0^t \sqrt{1 + \cosh^2 t} = \sinh t$ for a catenary.

$$C'=(1,\ sinht)$$
 $C'=\mathbf{t}$ Relating C' to arc-length of C
 $TC'=T\mathbf{t}$ Scaling by constant of tension $TC'=(Tcos\phi,\ Tsin\phi)$ Expansion of $T\mathbf{t}$
 $\therefore \ TC'=(\lambda,\ \mu s)$ Expansion of $T\mathbf{t}$

Also show:

$$k_s = \frac{1}{a} \left(1 + \frac{s^2}{a^2} \right)^{-1}$$

The signed curvature of C is k_s .

Given: $a = \frac{\lambda}{\mu}$ From earlier definitions of λ , μ :

$$\mu = \frac{Tsin\phi}{s}$$

$$\therefore a = \frac{Tcos\phi}{Tsin\phi} \cdot s$$

Which can be simplified:

$$a = \frac{\cos\phi}{\sin\phi} \cdot s \qquad \text{Cancellation of } T$$

$$a = \frac{1}{\tan\phi} \cdot s$$

$$a = \frac{1}{\tan\phi} \cdot \sinh \qquad \text{Expansion of arc-length } s$$

$$\therefore \ a = \frac{\sinh}{\tan\phi}$$

However,

$$tan\phi = sinh$$
, making $a = \frac{\lambda}{\mu} = 1$.

Justification:

$$tan\phi = \frac{y'}{x'}$$
 tan of angle between ${\bf t}$ and $x\text{-axis}$ $tan\phi = sinh$

Now expanding a and s in k_s :

$$k_s = \frac{1}{(1 + sinh^2 t)}$$