Devoir final : Modèles linéaires

Pour ce travail vous devez déposer un <u>unique</u> fichier au format nom_prenon.ipynb sur le site pédagogique du cours MDI 720.

Vous devez charger votre fichier sur ce site (MDI720 > Validation), avant le mercredi 25/10/2017, 23h59, dans l'un des deux dossier qui correspond à votre nom.

La note totale est sur 20 points, répartis comme suit :

- qualité des réponses aux questions : 15 pts,
- qualité de rédaction, de présentation et d'orthographe : 2 pts,
- indentation, style PEP8, commentaires adaptés, etc.: 2 pts,
- absence de bug : 1 pt.

Les personnes qui n'auront pas rendu leur devoir avant la limite obtiendront **zéro** (et aucun travail par mail ne sera accepté).

EXERCICE 1. (Lasso seuillé)

Dans cette section on veut comparer différentes procédures sur la base de données "Leukemia". On reprend les notations du cours : $X \in \mathbb{R}^p$ est la matrice des variables explicatives (sans intercept), $\mathbf{y} \in \mathbb{R}^n$ est le vecteur des observations. On travaillera sans intercept (sauf pour pour la question 10), et pour les validations croisées, on utilisera uniquement CV = 4 folds. Charger les données de la manière suivante :

```
from sklearn.datasets.mldata import fetch_mldata
dataset_name = 'leukemia'
data = fetch_mldata(dataset_name)
X = data.data
y = data.target
X = X.astype(float)
y = y.astype(float)
```

- 1) Donner le nombre d'observations et de variables explicatives (features) de cette base de données. Appliquer un pré-traitement afin que chaque colonne de X soit dorénavant de variance empirique égale à 1.
- 2) Appliquer une analyse en composantes principales (ACP) sur la matrice X, et visualiser les variables explicatives en dimension d=1, puis en dimension d=2 en projetant sur les axes principaux qui conviennent. Faire de même avec la méthode TSNE. On affichera les points de deux couleurs différentes selon leur classe.
- 3) Couper les données en deux ensembles : un pour l'entraînement $(X^{train}, \mathbf{y}^{train})$ et un pour le test $(X^{test}, \mathbf{y}^{test})$. On utilisera 80% des données pour l'entraînement (en utilisant par exemple la fonction model_selection.train_test_split de sklearn).
- 4) On définit le Lasso (sans *intercept*) comme en cours par :

$$\hat{\boldsymbol{\theta}}_{\lambda}^{\text{Lasso}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\text{arg min}} \left(\frac{1}{2} \| \mathbf{y} - X \boldsymbol{\theta} \|_2^2 + \lambda \| \boldsymbol{\theta} \|_1 \right). \tag{1}$$

Notons que dans la plupart des packages il est défini par

$$\hat{\boldsymbol{\theta}}_{\lambda'}^{\text{Lasso package}} \in \underset{\boldsymbol{\theta} \in \mathbb{R}^p}{\text{arg min}} \left(\frac{1}{2n} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 + \lambda' \|\boldsymbol{\theta}\|_1 \right). \tag{2}$$

avec n le nombre d'observations fournies. Trouver mathématiquement λ' en fonction de λ tel que $\hat{\boldsymbol{\theta}}_{\lambda}^{\mathrm{Lasso}} = \hat{\boldsymbol{\theta}}_{\lambda'}^{\mathrm{Lasso package}}$.

5) Utiliser LassoCV sur $(X^{train}, \mathbf{y}^{train})$. On utilisera pour cela la grille standard des solveurs, avec T=17 valeurs de paramètres de régularisation (i.e., on choisit pour $t=0,\ldots,T-1$, $\lambda_t'=\lambda_0'10^{-\delta t/(T-1)}$, avec $\delta=0.01$ et $\lambda_0'=\|X^{\top}\mathbf{y}\|_{\infty}/n$, le plus petit λ' tel que $\hat{\boldsymbol{\theta}}_{\lambda'}^{\text{Lasso package}}=0$). Donner l'erreur de prédiction moyenne (quadratique) obtenue par LassoCV sur $(X^{test},\mathbf{y}^{test})$, i.e., $\|X^{test}\hat{\boldsymbol{\theta}}_{\lambda'}^{\text{Lasso package}}-\mathbf{y}^{test}\|_2^2/n_{test}$.

Afficher aussi graphiquement l'erreur de prédiction (quadratique) moyenne obtenue par validation croisée pour chaque paramètre λ' (on pourra utiliser l'attribut $mse_path_$ de LassoCV ainsi qu'une échelle semi-log avec semilogx).

- 6) Proposer et calculer un estimateur $\hat{\sigma}$ de l'écart type du bruit dans le modèle linéaire considéré.
- 7) Coder la méthode suivante :

Algorithm 1: Lasso Seuillé

```
Input: X^{train}, \mathbf{y}^{train}, \lambda', \tau
Output: Lasso Seuillé : \hat{\boldsymbol{\theta}}_{\lambda'}^{\text{th-Lasso}}
\boldsymbol{\theta} \leftarrow \hat{\boldsymbol{\theta}}_{\lambda'}^{\text{Lasso package}}(X^{train}, \mathbf{y}^{train})
S = \emptyset
for j \in [\![1,p]\!] do
 \begin{vmatrix} \text{if } |\boldsymbol{\theta}_j| > \tau \text{ then} \\ | S \leftarrow S \cup \{j\} \text{ (rajout de } j \text{ aux indices retenus)} \end{vmatrix}
\hat{\boldsymbol{\theta}}_{\lambda'}^{\text{th-Lasso}} \leftarrow \boldsymbol{\theta}^{\text{OLS}}(X_S^{train}, \mathbf{y}^{train}) \text{ (moindres carrés de } \mathbf{y}^{train} \text{ sur la matrice extraite de } X^{train} \text{ en ne gardant que les colonnes d'indices dans } S 
return \hat{\boldsymbol{\theta}}_{\lambda'}^{\text{th-Lasso}}
```

- 8) Écrire une procédure de validation croisée (avec CV=4 folds) pour la procédure "Lasso Seuillé" sur la double grille en λ' et en τ (prendre seulement 5 valeurs pour τ).
- 9) Comparer l'erreur de prédiction obtenue sur la partie "test" pour :
 - (a) le "Lasso Seuillé" avec validation croisée (de la question précédente)
 - (b) le LassoCV (de la question 5, sans intercept).
 - (c) l'estimateur des moindres carrées (sans intercept).
- 10) Reprendre l'ensemble des comparaisons précédentes, mais cette fois en tenant compte de l'intercept dans votre démarche.
- 11) Comparer (sur la partie test) les performances des deux méthodes suivantes :
 - (a) le LassoCV modifié pour retourner une prédiction valant soit 1 soit -1
 - (b) la LogisticRegressionCV.

On utilisera ici l'erreur 0/1 (i.e., la proportion d'erreurs de "classe" faites) comme mesure de performance.