Linguagens Formais e Autômatos

Expressões Regulares

Eduardo Furlan Miranda

Baseado em: GARCIA, A. de V.; HAEUSLER, E. H. Linguagens Formais e Autômatos. Londrina: EDA, 2017.

Expressão Regular (ER)

- Forma compacta de descrever Linguagens Regulares (LR)
 - LR podem ser reconhecidas por Autômatos Finitos (AF)
- Usa concatenação, união, e o fecho de Kleene
 - concatenação: "justaposição", ex.: e_1e_2 expressão regular
 - união: "+", ex.: e_1+e_2 (equivalente ao "ou" lógico)
 - fecho de Kleene: "*", ex.: e^* ("zero ou mais repetições")
- Outros ex. de ER:
 - linguagem vazia (Ø)
 - linguagem com cadeia vazia (ε)
 - somente um símbolo (σ_i) epsilon sigma

• Uma ER sobre o alfabeto $\Sigma = \{ \sigma_1, ..., \sigma_i, ..., \sigma_n \}$ é de uma das seguintes formas:

- Se e_1 e e_2 são ERs, então e_1e_2 e e_1+e_2 também são ERs
- Se e é uma ER, então (e) também é
 - () agrupa partes de uma ER; define precedência
- Nada mais é uma ER

Exemplos

- a representa a linguagem { a } linguagem que só tem o símbolo a
- Ø representa a linguagem vazia {}
- a + b + c representa a linguagem { a, b, c }
- ε representa a linguagem { ε }
- a* representa a linguagem { a }* cadeias com o símbolo a
- (a + b)* : cadeias no conjunto {a, b}* todas as cadeias formadas com a e b
- (a* + b*)* e (a + b)* : especificam a mesma linguagem {a, b}*
- a* + b* representa cadeias formadas só com a OU só com b, incluindo a cadeia vazia, mas não uma mistura de ambas

ER

• Se *e* é uma ER, vamos usar [*e*] para denotar a linguagem que

e descreve

•
$$[\sigma_i] = \{\sigma_i\}$$
 , com $\sigma_i \in \Sigma$

caractere

alfabeto

conjunto

classe de caracteres aceitos

---- conjunto vazio

classe de caracteres vazia

conjunto que contém o símbolo ε classe de caracteres que contém ε

(continua)

[e] é a linguagem formal descrita, especificada, pela expressão regular e

Se *e* é uma expressão regular, então a linguagem [*e*] é regular

- $[e_1 + e_2] = [e_1] \cup [e_2]$
 - $[e_1 + e_2]$: classe de caracteres aceitos pelas ER e_1 OU e_2
 - $[e_1]$: classe de caracteres aceita pela ER e_1
 - $[e_2]$: classe de caracteres aceita pela ER e_2
 - U : uni\(\tilde{a}\) ode dois conjuntos que cont\(\tilde{e}\) mbos os elementos de ambos os conjuntos, sem duplicatas

[&]quot;[]": classe de caracteres; dentro dos colchetes são colocados os caracteres permitidos; p. ex., [a-z] representa qualquer letra minúscula de 'a' a 'z'

Exemplo

- Se tivermos:
 - e₁ = a → Aceita apenas o caractere "a"
 - e₂ = b → Aceita apenas o caractere "b"
- Então:
 - $[e_1] = \{ \text{"a"} \}$
 - $[e_2] = \{ "b" \}$
 - $[e_1 + e_2] = [e_1] \cup [e_2] = \{ "a" \} \cup \{ "b" \} = \{ "a", "b" \}$
- Isso significa que a expressão e_1+e_2 aceita qualquer cadeia composta por "a" ou "b", mas não aceita cadeias que misturem os dois

ER 8/22

- $[e_1e_2] = [e_1][e_2]$
 - a concatenação das linguagens definidas por e_1 e e_2 é equivalente à junção das duas classes de caracteres, ou seja, qualquer string que pode ser formada pelos caracteres de e_1 seguidos pelos caracteres de e_2

- $[e^*] = [e]^*$
 - [e]: a classe de caracteres aceita pela expressão regular e
 - [e]*: aplicação do fecho de Kleene à classe de caracteres [e]
 - O fecho de Kleene é uma operação que aceita zero ou mais repetições da classe de caracteres [e]
- $[e^*]$ é a classe de caracteres resultante da aplicação do fecho de Kleene diretamente à expressão regular e
- [e]* é a aplicação do fecho de Kleene à classe de caracteres aceita por e
- Ambas representam o mesmo conjunto: todas as strings que podem ser formadas por zero ou mais repetições da classe de caracteres [e]

 Um autômato finito com transição ε, AFε, é um AFND (Autômato Finito Não Determinístico) onde a função de transição inclui a leitura da cadeia vazia

 A transição ε é uma forma de realizar a transição de estados sem que sejam lidos símbolos da entrada

delta

- A função de transição δ de um AF_ε é tal que,
 - $\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow \wp(Q)$ "A função de transição δ recebe um estado em Q e um símbolo do alfabeto Σ (ou a transição vazia ϵ) e retorna um conjunto de estados Q possíveis."
 - Q é o conjunto de estados
 - Σ é o alfabeto (conjunto de símbolos de entrada)
 - {ε} representa a transição vazia (épsilon)
 - ρ(Q) é o conjunto potência de Q (o conjunto de todos os subconjuntos de Q)

```
Ex.: A = \{1, 2\}; \wp(A) = \{\{\}, \{1\}, \{2\}, \{1, 2\}\}
```

- Isso significa que, para um dado estado e um símbolo de entrada (ou ε), a função de transição pode resultar em um conjunto de estados, o que caracteriza o não determinismo
- Q × (Σ υ {ε}) representa o domínio da função, ou seja, os estados e os símbolos de entrada

- O efeito de uma transição ε é não determinístico
 - A transição $\delta(q_1, \epsilon) = \{q_2\}$ indica que na leitura de ϵ , estando o autômato no estado q_1 , este muda para q_2
 - Desde que a leitura de ϵ é opcional, pois a cadeia vazia é subcadeia de qualquer outra cadeia, também pode-se considerar que o autômato permanece no estado q_1

- Todo autômato finito com transições ε (ou AFND-ε) reconhece uma linguagem regular (ou LR)
 - Uma LR é um conjunto de strings (cadeias de caracteres) que pode ser reconhecido por um AF ou descrito por uma ER, que usa operações como união, concatenação e fecho de Kleene

- Seja e uma ER. O autômato finito Ae que reconhece e, é definido:
 - Se e é um símbolo único σ_i (onde $\sigma_i \in \Sigma$), então Ae é um autômato que aceita exatamente a cadeia contendo σ_i

Se a ER e for simplesmente um único símbolo σ_i (ou seja, a ER mais simples possível), então o AFND A_e correspondente será o AFND que reconhece apenas esse símbolo σ_i

• Se $e = \emptyset$, então $A_e = A_\emptyset$

 Se a expressão regular e representa o conjunto vazio (ou seja, não reconhece nenhuma string), então o autômato finito A_e construído a partir dessa expressão regular é o autômato A_Ø, que também reconhece o conjunto vazio (ou seja, não aceita nenhuma string)

Ae: "A índice ϵ " ou "A associado a ϵ " (ϵ sendo a expressão regular em questão)

A_∅: "A índice vazio" ou "A associado ao conjunto vazio"

• Se $e = \varepsilon$, então $A_e = A_{\varepsilon}$

 Se a expressão regular e representa a string vazia (ε), então o autômato finito A_e construído a partir dessa expressão regular é o autômato A_ε, que reconhece apenas a string vazia

AFND a partir de ER - união entre ER

• Se $e=e_1+e_2$ então $A_e=A_{e1}\cup A_{e2}$, onde é criado um novo estado inicial que tem uma transição ϵ indo para cada um dos estados iniciais de A_{e1} e A_{e2}

Ex.: seja $e_1 = a$ e $e_2 = b$

- A_{e1} seria um autômato com um estado inicial e um estado final, com uma transição a entre eles
- A_{e2} seria um autômato similar, mas com uma transição b
- Ae (para e = a + b) teria um novo estado inicial q₀ com uma transição ε para o estado inicial de Ae1 e outra transição ε para o estado inicial de Ae2

AFND a partir de ER - concatenação de ER

• Se $e = e_1 e_2$, então $A_e = A_{e1} A_{e2}$, onde cada estado final de A_{e1} tem uma transição ϵ indo para o estado inicial de A_{e2}

- Ex.: seja $e_1 = a + b$ e $e_2 = c$
- A_{e_1} seria um autômato com um estado inicial e dois estados finais diferentes para representar "a" e "b"
- A_{e2} seria um autômato com um estado inicial e um estado final, com uma transição "c" entre eles
- A_e (para e = ab) seria construído conectando os estados finais de Ae_1 ao estado inicial de Ae_2 com transições ϵ

AFND a partir de ER - fecho de Kleene

se uma ER e é o fecho de Kleene de e_1 , então o autômato A_e correspondente pode ser construído com base no autômato A_{e1} a partir da aplicação do fecho de Kleene

• Se $e=e_1^*$, então $A_e=A_{e1}^*$, onde é criado um novo estado inicial/final q_0 , com uma transição ϵ indo para o estado inicial de A_{e1} e são incluídas transições ϵ dos estados finais para o inicial de A_{e1}

- Para qualquer Expressão Regular (ER) e, o autômato finito com transições ε (AF_ε A_e) reconhece a linguagem definida por [e]
 - Ao eliminar as transições ε desse autômato, obtemos um AFND equivalente que também reconhece a linguagem definida por [e]

Ambos os autômatos, o AF $_\epsilon$ original e o AFND resultante da eliminação das transições ϵ , aceitam exatamente as mesmas strings, ex.: {ab, ac}. Isso demonstra que, para qualquer ER, é possível construir um AF $_\epsilon$ que reconhece a mesma linguagem, e esse AF $_\epsilon$ pode ser convertido para um AFND equivalente sem transições ϵ , comprovando a equivalência entre eles

 $AF_{\epsilon}A_{e}$: autômato finito não determinístico com transições ϵ que reconhece a linguagem descrita pela expressão regular e. É um AF_{ϵ} construído para reconhecer uma linguagem particular e.

Maneiras de formalizar uma LR

- Gramáticas regulares
- Via autômatos finitos (determinísticos ou não)
- Via expressões regulares

• Afirma que se conhecemos as linguagens L_1 e L_2 e definimos a linguagem L pela igualdade:

$$L = L_1 L + L_2$$
 (recursiva, L aparece nos 2 lados)

• Então a menor linguagem que atende à igualdade é dada por:

$$L = L_1^* L_2$$
 (ER direta, sem recursão)

- A solução é única quando o símbolo vazio ε não pertence a L₁
 - Isso significa que L₁ não deve conter a palavra vazia, caso contrário, haveria outras soluções possíveis

Exemplo

- Considere as LR : $L_1 = \{a\}$; $L_2 = \{b\}$
- Vamos definir a linguagem L tal que: $L = L_1 L + L_2$
- Usando o Lema de Arden, sabemos que: $L = L_1 * L_2$
- Logo: $L_1^* = \{ \epsilon, a, aa, aaa, ... \}$
- Portanto, a menor linguagem L que satisfaz a equação é: $L = \{a\}^* \{b\} = \{b, ab, aab, aaab, ...\}$
 - L é formada por todas as cadeias que terminam em b e que podem ter qualquer número de a antes do b