Faculdade de Engenharia da Universidade do Porto

Minix Calendar

MinCAL

Laboratório de Computadores 2017/2018

Mestrado Integrado em Engenharia Informática e Computação

Professor Pedro Alexandre Guimarães Lobo Ferreira Souto

Grupo T3G10:

Daniel Pereira da Silva up201503212@fe.up.pt

Frederico Portugal Pinho Rocha up201408030@fe.up.pt

ÍNDICE

1	Instruçõ	Instruções de Utilização2	
	1.1 Ec:	rã Inicial	2
	1.2 Vis	sta de Mês	2
	1.2.1	Navegar no Calendário	3
	1.3 Pe	squisa de Datas (via teclado)	3
		rminar o Programa	
G .		do Projeto	
		spositivos Utilizados	
	2.1.1	Timer	4
	2.1.2	Keyboard	4
	2.1.3	Mouse	
	2.1.4	Video Card	
	2.1.5	Real Time Clock	
3		ra do Código	
		ódulos	
	3.1.1	proj	
	3.1.2	e_cal	
	3.1.3	utils	
	3.1.4	read_xpm	
	3.1.5	mouse	
	3.1.6	keyboard	
	3.1.7	rtc	
	3.1.8	timer	
	3.1.9	vbe	
	3.1.10	video	
	3.1.11	video_gr	
	3.1.12	view	
	3.2 Grafo de Chamada de Funções		
4		s da Implementação	
1		ntos de maior dificuldade	
	4.1.1	Inclusão de <i>XPMs</i> na aplicação	
		ementos de Valorização	
	4.2.1	Escrita de texto utilizando <i>XPMs</i> de carateres	
	4.2.2	Double-buffering transparente	
	4.2.3	Utilização de combinações de teclado	
		tros detalhes	
	4.3.1	RTC	
5		ões	
5		Apêndice	
J	Apendic	~·····································	10

1 Instruções de Utilização

1.1 ECRĂ INICIAL

Ao iniciar o programa, é apresentado um ecrã em jeito de *landing page* que serve para introduzir o utilizador ao MinCAL. Aproveitamos também para sincronizar o rato de forma simples e relativamente transparente.

São visíveis algumas dicas de como utilizar mais facilmente a aplicação assim que se chega ao ecrã seguinte.

1-1 Ecrã Inicial

1.2 VISTA DE MÊS

Feita a sincronização (ou pressionada qualquer tecla), o utilizador é levado do ecrã inicial para a vista de calendário. No centro do ecrã é desenhado, então, o calendário. No topo do ecrã são indicadas informações adicionais, tal como o titulo do programa, a data atual e horas, e uma 'cruz' para encerrar o programa.

1-2 Vista de Mês

1.2.1 Navegar no Calendário

De modo a navegar no calendário, estão disponíveis várias opções, a saber:

- Botões presentes no ecrã (a selecionar utilizando o rato):
 - o Estes são autoexplicativos.
- Setas esquerda e direita do teclado:
 - A tecla da seta esquerda muda o calendário para o mês anterior, enquanto a seta direita muda o calendário para o mês seguinte. Se premir adicionalmente a tecla CTRL, as setas do teclado ganham a funcionalidade de alterar o ano do calendário.
- Roda de deslocamento do rato:
 - A roda de deslocamento do rato pode ser utilizada conjuntamente com a tecla CTRL, de modo a alterar o ano do calendário (em vez do mês).

1.3 PESQUISA DE DATAS (VIA TECLADO)

É possível pesquisar datas utilizando o botão *Search*, ou premindo o atalho \mathbf{s} . O par mês-ano deve ser introduzido conforme indicado no ecrã. A pesquisa é iniciada clicando no botão Ok, ou carregando na tecla *Enter*.

1.4 TERMINAR O PROGRAMA

De modo a terminar o programa, o utilizador pode premir a tecla *ESC*, ou, com o rato, clicar na cruz acima do calendário.

2 ESTADO DO PROJETO

2.1 DISPOSITIVOS UTILIZADOS

Dispositivo	Utilização	Interrupções
Timer	Ativar o refrescamento do ecrã	Sim
Keyboard	Navegar no menu. Pesquisar por meses. Com combinações de teclas.	Sim
	Introdução de texto (números e símbolos), com backspace.	
Mouse	Navegar no calendário. Premir botões no ecrã. Com Deslocamento	Sim
Video Card	Desenho no ecrã. Double-buffering.	Não
RTC	Data e hora atual. Uso de Interrupções de <i>update</i> .	Sim

2.1.1 Timer

O timer é utilizado para redesenhar o ecrã a cada interrupção do Timer 0.

Vide:

2.1.2 Keyboard

O teclado é utilizado para alterar os valores da estrutura do calendário. Sempre que é premida uma tecla, entra-se na condição de interrupção apresentada abaixo, onde ocorrem as verificações relacionadas as teclas premidas. O teclado é utilizado para o input de texto na caixa de pesquisa.

Vide:

2.1.3 Mouse

O rato tem vários usos no contexto do nosso projeto, e é provavelmente o periférico que mais esforço nos custou. Ora, o rato é utilizado, antes de mais, para navegar no ecrã. Deste modo, assume um papel muito semelhante ao dos ratos comuns. Adicionalmente, é possível utilizar a roda de deslocamento do rato para mudar o mês selecionado no calendário. É ainda possível, numa ação combinada do rato com o teclado, mudar de ano, e não de mês, bastando para isso premir a tecla *CTRL* e deslocar a referida roda.

Vide:

void check_clicks()
void start_listening(); (loop de receção de interrupções)

2.1.4 Video Card

O modo de vídeo é utilizado para desenhar o fundo do ecrã, através da atribuição de cores aleatórias. É também utilizado para desenhar todas as *sprites* no ecrã, através de funções próprias de leitura de ficheiros *xpm*.

O modo gráfico é inicializado no modo 0x118, com uma resolução de 1024x768 e suportando cores de 24 bits. Isto faz-se recorrendo à função 0x10 do VBE (VESA BIOS Extensions). É utilizado *double-buffering* de modo a eliminar artefactos de outro modo visíveis no ecrã, dada a recorrência com que a aplicação faz o refrescamento da memória gráfica.

Usa-se deteção de colisão nos botões acionados pelo rato.

Vide:

```
void setP(x, y, color);

void draw_xpm_from_memory(xpm, x, y);

void draw_string(string, x, y, color);
```

2.1.5 Real Time Clock

O RTC é utilizado para ler a data e as horas, atualizando-as a cada interrupção. Estas são desenhadas no ecrã utilizando uma função que foi desenvolvida para desenhar *pixmaps* de carateres individuais. As interrupções utilizadas são somente as de *update* (*UIE*).

Vide:

```
rtc_time_t * rtc_int_handler ();
```

ESTRUTURA DO CÓDIGO

3.1 Módulos

3.1.1 proj

Módulo que contém a função main. Chama a função init() em e_cal se o argumento passado em argv[1] for o literal init.

Peso relativo: 2%

Principal contribuidor: Frederico Rocha

3.1.2 e cal

Módulo responsável por inicializar o modo de video, fazer o load dos ficheiros xpm contidos na pasta xpms, chamar a função de desenho da main page e chamar o ciclo responsável pela resposta às interrupções.

Peso relativo: 5%

Principal contribuidor: Daniel Silva

3.1.3 utils

Módulo que contém o device listening loop. Contém também a função que descarrega todos os XPMs para as suas devidas structs e a função que desenha a main page.

Peso relativo: 20%

Principal contribuidor: Daniel Silva

3.1.4 read_xpm

Módulo responsável por ler ficheiros *xpm*, dado o nome do ficheiro respetivo. Define a estrutura *xpm_t*, utilizada para guardar informação relativa aos XPMs lidos de ficheiros.

Peso relativo: 12%

Principal contribuidor: Daniel Silva

3.1.5 mouse

Módulo que trata de todas as ocorrências relacionadas com o rato. Contém funções feitas previamente no lab4, modificadas para acomodar este projeto. Contém também funções de deteção de colisões, tal como uma estrutura MOUSE_ACTION para guardar dados relativos ao rato, como posição e se certos botões estão premidos.

Peso relativo: 10%

Principal contribuidor: Frederico Rocha

3.1.6 keyboard

Módulo que contém as funções de subscrição e tratamento das interrupções do teclado de aulas laboratoriais anteriores, modificadas para este projeto. Contém também a estrutura KEY_PRESS, responsável por guardar dados sobre os códigos da última tecla premida.

Peso relativo: 7%

Principal contribuidor: Daniel Silva

3.1.7 rtc

Módulo que contém informação sobre o tempo atual, guardado numa struct *rtc_time_t*. Contém funções de subscrição e tratamento de interrupções do RTC e funções de *interrupt enabling*.

A função bcd_to_decimal() converte binário para decimal e foi retirada da internet, não tendo sido alterada de qualquer forma. URL: https://stackoverflow.com/a/42340213.

Peso relativo: 8%

Principal contribuidor: Frederico Rocha

3.1.8 timer

Este módulo contém funções de tratamento e subscrição de interrupções do timer0, adaptadas de labs anteriores.

Peso relativo: 4%

Principal contribuidor: Frederico Rocha

3.1.9 vbe

Este módulo contém duas estruturas com informação sobre o *VBE Mode* e *VBE Controller*, e uma função que retorna a estrutura relativa ao modo do VBE.

Peso relativo: 4%

Principal contribuidor: Daniel Silva

3.1.10 video

Módulo responsável por desenhar no ecrã. Contém funções que preenchem o *background* e que desenham *XPMs, strings* e caracteres específicos. Contém a estrutura *pixel_t* usada para definir cores *rgb*.

As funções de escrita de carateres na memória gráfica fazem uso de um *array*: *letters*, que foi descarregado da internet. Link: https://stackoverflow.com/a/23130671/1469991

Peso relativo: 14%

Principal contribuidor: Daniel Silva

3.1.11 video_gr

Este módulo é responsável por iniciar o modo de video. Contém funções criadas na aula laboratorial 5, reestruturadas para melhor servir este projeto, com a adição de *double buffering*.

Peso relativo: 4%

Principal contribuidor: Daniel Silva

3.1.12 view

Este módulo contem informação sobre o calendário, guardada numa struct *View*, e o tratamento desta mesma. Contém também funções de desenho do calendário.

A função bissextile() indica se o ano em questão é ano bissexto e foi retirada da internet, não tendo o código sido alterado.

Link: https://github.com/FEUP-MIEEC/Prog1/blob/master/Aula Pratica 03/Problema 8.c

Peso relativo: 10%

Principal contribuidor: Frederico Rocha

3.2 GRAFO DE CHAMADA DE FUNÇÕES

4 DETALHES DA IMPLEMENTAÇÃO

4.1 PONTOS DE MAIOR DIFICULDADE

4.1.1 Inclusão de XPMs na aplicação

Para a implementação das *sprites*, foi necessária alguma criatividade da nossa parte, visto que foi necessário utilizar um número de *XPMs* tal que o executável ficava tão grande que não podia ser carregado em memória para ser executado. Assim, foi necessário criar funções que lessem diretamente os ficheiros *xpm* e os guardassem em memória. Esta abordagem foi feita, e com desempenho melhor do que a anterior! Ainda assim, foi um trabalho moroso, dado que fizemos questão de utilizar algumas das funções já existentes.

4.2 ELEMENTOS DE VALORIZAÇÃO

4.2.1 Escrita de texto utilizando XPMs de carateres.

De modo a imprimir a data/hora do RTC, bem como o que o utilizador escreve na caixa de pesquisa, foi necessário implementar uma função capaz de escrever *strings* na memória gráfica. Para tal, recorreu-se a uma fonte de *pixmaps* obtida online (ver secção 3.1.10).

4.2.2 Double-buffering transparente

A nossa solução de *double-buffering* é extremamente transparente, de modo que as funções que escrevem para o buffer, não são informadas disto, i.e., atuam como se estivessem a escrever na memória. A função abaixo transcrita é chamada uma única vez para efetuar toda a cópia. Esta operação é pela interrupção do *timer*.

```
void vg_flush(){
#ifdef DOUBLEBUFF
    video_info_t vi = get_vi();
    memcpy(vi.rvm, vi.vm, vi.x*vi.y*vi.bpp/8);
#endif
}
```

4-1Função responsável pela atualização da real video memory

4.2.3 Utilização de combinações de teclado

Como temos feito questão de reforçar ao longo deste relatório, o premir da tecla *CTRL* pode alterar o funcionamento do teclado, e do rato. Consideramos este cruzamento de periféricos extremamente valioso.

4.3 OUTROS DETALHES

4.3.1 RTC

O RTC foi utilizado com base na aula laboratorial de 2013, que fizemos questão de deixar no nosso repositório (*lab6*). No nosso projeto, fizemos uso das interrupções de *update*, para fazermos a recolha da data/hora, num instante que fosse favorável à evasão de erros de leitura.

5 CONCLUSÕES

Inicialmente, planeávamos implementar mais uma vista para o calendário, onde se apresentava apenas os 7 dias da semana horizontalmente, com as horas no eixo vertical. Porém, com o passar do tempo apercebemo-nos que seria mais sensato não seguir essa abordagem. Parte desta ideia, fazia ainda parte a adição de um sistema de alertas, que utilizaria o alarme do RTC e o rato, para selecionar o dia ao qual se quer adicionar um lembrete. Poder-se-ia também utilizar o input do teclado para dar um título e descrição ao dito lembrete.

Uma outra funcionalidade que pensámos implementar, mas acabou por não suceder, foi um módulo de cálculo de diferença de datas.

Por outro lado, estamos felizes com o módulo de pesquisa de datas implementado.

Relativamente a críticas à UC, é o nosso entender que o uso de SVN é injustificado, num mundo onde Git é a tecnologia mais utilizada.

De outro modo, ficámos agradados em perceber que se retiraram as aulas laboratoriais do RTC e da porta série. Estas, ainda que interessantes, podem ser feitas em casa, dado que os alunos já possuem os conhecimentos necessários.

6 APÊNDICE

Apesar de utilizarmos ficheiros, não há qualquer cuidado a ter com a execução do programa. *Make* é suficiente para compilar, e depois o lançamento do serviço é feito como de costume. Deve ser passado o argumento "init".