Seat	
No.	20

S.E. (IT) (I Sem.) EXAMINATION, 2018

DIGITAL ELECTRONICS AND LOGIC DESIGN

			(2015	PATTERN)	
Tir	me	: Two	Hours	Maximum	Marks: 50
<i>N.</i> .	<i>B.</i> :-			or 2, 3 or 4, 5 or 6	
			=	st be drawn wherever ne	cessary.
		(iii)	Assume suitable d	ata, if necessary.	
					,
1.	(a)	Do the fo	ollowing		[6]
		(i)	$(27.50)_2$ - $(68.75)_2$ Usin	ng 2's complement method.	
		(ii)	Convert the decimal nu	ımber 25 into	
			Binary format, Excess	-3 format and BCD format	
	(b)	Design F	Full subtractor circuit usin	g decoder IC 74138	[6]
				OR	
2	(a)	Define for	ollowing terms related to	logic families	[6]
		(i)	Power dissipation		5
		(ii)	Fan-in		<u>ئ</u> . '
		(iii)	Fan-out		
		(iv)	Noise margin		, , ,
		(v)	Propagation delay		
		(vi)	Figure of Merit		0
	(b)	Draw an	d explain 4 bit BCD adde	r using IC 7483.	[6]
				R OS	
3	(a)		e Asynchronous counter vusing IC 74191.	with Synchronous counter. Design	MOD 11 up [6]
	(b)	Draw ar	nd explain 4 bit Ring cour	ter. Write the Truth Table for same	e showing all
			states if initial state is 11		[6]
					101

4	(a)	Design and draw MOD 56 counter using IC 7490 and explain its operation.	[6]		
	(b)	Draw and explain 4 bit SISO and SIPO shift register. Give applications of each.	[6]		
5	(a)	Draw ASM chart for 2bit binary up counter with mode control input M such that	[7]		
		For $M = 1$ Counter counts Up			
		For $M = 0$ Counter holds present state.			
		Design the circuit using multiplexer controller method.			
	(b)	Design 4:1 multiplexer using suitable PAL	[6]		
		OR			
6	(a)	Design 3 bit Binary to Gray code converter using suitable PLA	[7]		
	(b)	Draw and explain Internal Architecture of CPLD in detail.	[6]		
7	(a)	What is VHDL? Explain components of VHDL in detail with example of 2 input	[6]		
	<i>a</i> >	AND gate.	[7]		
	(b)	Write VHDL code (Entity and Architecture) for 4:1 Multiplexer using Dataflow modeling method	[7]		
		moderning method			
8	(a)	Compare sequential and concurrent statements in VHDL with suitable example	[6]		
•	(b)	Write VHDL code (Entity and Architecture) in Behavior modeling style for 2 bit	[7]		
		synchronous up/down counter. Consider			
		Mode = 0. Un counting			
		Mode = 1 Down counting			
		Mode = 1 Down counting Mode = 1 Down counting	5		
		<i>∞</i> ,			
		9			
		C, 10.			
		S. ·			
5352]-573 2					