Modelos de Computação CC1004

2016/2017

Exame – 22.06.2017

duração: 3h

N.º		Nome					
1. Seja $\mathbf M$ a linguagem constituída pelas palavras de alfabeto $\Sigma=\{0,1,2\}$ que têm 112 como subpalavra e não terminam em 1. Seja $\mathbf K$ a linguagem constituída pelas palavras de Σ^* que não têm 112 como subpalavra.							
a) Descreva a linguagem M por uma expressão regular abreviada.							
b)]	Descreva a linguagem	K por uma	expressão regular abreviada.				
a) I	indique uma GIC C —		que gara M. não saja linear à asquerda nom à direita e prefer	· · · · · · · · · · · · · · · · · · ·			
men	c) Indique uma GIC $G=(V,\Sigma,P,S)$ que gere M, não seja linear à esquerda nem à direita e, preferencialmente, não seja ambígua. Se G for ambígua, a resposta terá uma penalização de 25%. Explique porque é que G satisfaz as condições pedidas (se for ambígua, indique-o e justifique).						
d)	Mostre que $S \Rightarrow_G^* 2$:	 11201120.	pre- e) Desenhe o AFD mínimo que aceita M.				
	tando uma <i>derivação p</i>						

, 1	a expressão regular abreviada.				
b) Desenhe o AFD mínimo que reconhece L e use a relação R_L definida no teorema de Myhill-Nerode e a caraterização do AFD mínimo dada pelo corolário desse teorema para justificar a sua resposta.					
3. Desenhe o AFND- com $\Sigma = \{1, 2\}$, de a	que resulta da aplicação do método de Thompson à expressão $(((\emptyset^*)2)(\emptyset^*)$ ordo com as restrições indicadas nesta unidade curricular.	(1+(22))*))			

4. Desenhe o diagrama de transição do AFD que se obtém por aplicação do método de conversão ao autómato representado, mantendo apenas os estados acessíveis do estado inicial. Use **obrigatoriamente** conjuntos para os designar. Admita que $\Sigma = \{0, 1\}$.

(Continua)

N.º		Nome	
5.	Seja $G = (\{N, E, A\})$	}, {0, 1,),	$\{(,+,*\},P,A) \text{ com } P \text{ dado por:}$
			$A+A \mid EN$ $E \rightarrow \varepsilon \mid EN$ $N \rightarrow 0 \mid 1$
			pertencem a $\mathcal{L}(G)$ e apresente as suas árvores de derivação. Justifique que n o símbolo $+$ admitem mais do que uma derivação e que G é ambígua.
b)	Indique uma GIC G',	equivaler	nte a G , na forma normal de Chomsky. Explique como a obteve.
	Indique e tebele que	rosulto d	a anligação do algoritmo CVV a 1011 com C' Evaligas quaintemente
			a aplicação do algoritmo CYK a 1011 com G' . Explique sucintamente ma linha (e de que valores depende), e porque é que tal é correto.
1			

6. Seja L a linguagem de alfabeto $\Sigma = \{0, 1, 2\}$ constituída pelas palavras que se tiverem comprimento ímpar então o número de 2's é igual ao número de 0's e o símbolo central é 1.					
Por exemplo, $0221011 \in L$, $0112011 \notin L$ $0221022 \notin L$, $022201 \in L$, $112002 \in L$, $111 \in L$, $\varepsilon \in L$, $1 \in L$, e $2 \notin L$.					
b) Apresente um autómato de pilha que reconheça a L por pilha vazia , com estado inicial s_0 e símbolo					
inicial na pilha Z_0 . Indique sucintamente as ideias principais do algoritmo subjacente.					

N.º Nome		
Exame – 22.06.2017	Folha de continuação	
Modelos de Computação CC1004	2016/2017	
Departamento de Ciência de Computadores	FCUP	