Phase-2 MACHINE LEARNING

Student Name : NANTHITHA .M

Register Number : 510623243038

Institution : C ABDUL HAKEEM COLLEGE OF ENGINEERING AND

TECHNOLOGY

Department: INFORMATION TECHNOLOGY

Date of Submission: 09-05-2025

Github Repository Link: https://github.com/nandhu345-coder/phase_2.git

1. Problem Statement

Topic: Predicting Student Performance using Machine Learning

This project aims to predict whether a student will pass or fail based on their academic and socio-demographic features. The problem is a binary classification task where the target variable is the final student result (pass/fail). The problem is important for early identification of students at risk, enabling timely intervention and academic support.

2. Project Objectives

The goal of this project is to build a classification model that predicts student performance accurately.

- Improve model accuracy through preprocessing and feature engineering.
- Ensure interpretability of the results.
- Apply the model to identify patterns influencing academic success.

3. Flowchart of the Project Workflow

- 1. Data Collection
- 2. Data Preprocessing
- 3. Exploratory Data Analysis (EDA)
- 4. Feature Engineering
- 5. Model Building
- 6. Model Evaluation
- 7. Conclusion and Insights

4. Data Description

Dataset Name: Student Performance Dataset

Source: UCI Machine Learning Repository / Kaggle

Type: Structured CSV file

Records: 1001 rows

Features: 08 columns

Static Dataset

Target Variable: Final Result (Pass/Fail)

5. Data Preprocessing

- Missing values handled using mean/mode imputation
- Duplicate records were removed
- Outliers detected using IQR method and capped
- Data types were corrected (e.g., categorical to category type)
- Label encoding used for binary categoricals, One-hot encoding for nominal data
- Features standardized using MinMaxScaler

6. Exploratory Data Analysis (EDA)

- Univariate analysis showed that absences and study time had significant variation
- Bivariate analysis: Higher study time correlated with better grades
- Parental education level and previous failures influenced outcomes
- Visualizations: Histograms, box plots, pairplots, correlation heatmap
- Key Insight: Students with higher family support and study time tend to perform better

7. Feature Engineering

- Created a new feature: total support (combining family and school support)
- Extracted week vs weekend study habits
- · Applied polynomial features on 'study time'
- Feature selection using SelectKBest to keep top predictors
- PCA used to reduce dimensionality, retaining 95% variance

8. Model Building

- Models Used: Logistic Regression and Random Forest Classifier
- Train-Test Split: 80% training, 20% testing with stratification
- Logistic Regression: Accuracy = 78%, F1-Score = 0.75
- Random Forest: Accuracy = 85%, F1-Score = 0.82
- Random Forest performed better due to handling of non-linearity and feature interactions

9. Visualization of Results & Model Insights

- Confusion Matrix: Showed better true positive rate in Random Forest
- ROC Curve: AUC = 0.91 for Random Forest
- Feature Importance: 'Study time', 'Failures', 'Parental Education' ranked high
- Residual analysis showed well-distributed errors, indicating a good fit

10. Tools and Technologies Used

- Programming Language: Python
- IDE: Google Colab
- Libraries: pandas, numpy, seaborn, matplotlib, scikit-learn, xgboost
- Visualization: Plotly and seaborn for visual exploration

11. Team Members and Contributions

NAME	ROLE	RESPONSIBLITY
PRIYADHARSHINI R	Lead	Oversee project
		development, coordinate
		team activities, ensure
		timely delivery of
		milestones, and
		contribute to documenta
		Data Engineer final
NANDHITHA M	Data Engineer	Collect data from APIs
		(e.g., Twitter), manage
		dataset storage, clean
		and preprocess text
		data, and ensure quality
		of input data
Varshini.S,	NLP Specialist / Data	Build sentiment and
,		emotion classification
Vaishnavi.A		models, perform feature
		engineering, and
		evaluate
		model performance
		using suitable metrics

Sonika.R	Data Analyst /	Conduct exploratory
	Visualization	data analysis (EDA),
		generate insights, and
		develop visualizations
		such as word clouds,
		emotion trends, and
		sentiment