EPITA / InfoS2		Mars 2020
NOM:	Prénom ·	Groupe .

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le suiet. Si vous manauez de place, vous

Choisissez	اند دا	امد	hanner	ránancac:	
(.II() \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	เสเมเ	167	DOLLIES	TEDUINES.	

			перопзез ехега			-		les pages.	e de pidee, ve	,us
<u>Exe</u>	rcice 1.	Ques	tions de cour	rs (3 poi	nts –	pas de	poi	nts négati	fs)	
oisis	ssez la ou le	es bonnes	réponses :							
1.		· · ·	cée en série a nt délivré par ce		_		léal	de couran	nt modifie-t-	elle
	a.	OUI		b. I	NON			C.	. Ça dépend	
2.	courant o	qui le trav	ur de capacité verse. On utilis lation correcte	se la cor						
a.	$i(t) = \frac{1}{c}.$	<u>du</u> dt	b. $u(t) = C$.	<u>di</u> dt	c. i	$\dot{c}(t) = C$	$\frac{du}{dt}$	d.	$u(t) = \frac{1}{c} \cdot \frac{di}{dt}$	
3.	Quelle est	t l'unité de	l'inductance ?							
	a.	Ohm (Ω)					c.	Henry (H)		
	b.	Farad (F)					d.	Mathieu (<i>N</i>	1)	
4.	Quelles so	ont les affir	mations fausse	s (2 répo	nses)					
	a.	Il y a cont	inuité du coura	nt dans i	un con	densate	ur.			
	b.	Il y a cont	inuité de la ten	ision aux	borne	s d'un co	nde	ensateur.		
	c.	Il y a cont	inuité du coura	nt dans i	une bo	bine.				
	d.	Il y a cont	inuité de la ten	ision aux	borne	s d'une b	obi	ine.		
5.	En régime	e permanei	nt continu (DC),	on peut	rempl	acer un d	con	densateur p	ar:	
	a.	un fil					c.	une bobine	9	
	b.	un interru	upteur ouvert				d.	une résista	nce	

Exercice 2. Théorème de Millman (3 points)

Soit le montage ci-contre. En utilisant le théorème de Millman, déterminer l'expression de la tension U.

Exercice 3. Valeurs moyennes et efficaces (3 points)

Donner l'expression de la tension u(t) pour $t \in [0;T]$ (T = Période du signal) avant de déterminer (en la justifiant) la valeur moyenne et la valeur efficace du signal suivant :

EPITA / InfoS2

Mars 2020

Exercice 4. Les régimes transitoires (11 points)

On considère le circuit suivant, dans lequel l'interrupteur K est ouvert depuis suffisamment longtemps pour que i_L soit nul.

- 1. A t = 0, on ferme l'interrupteur K.
 - a) Etude Qualitative: Remplir le tableau suivant :

	$i_1(t)$	$i_2(t)$	$i_L(t)$	u(t)
$t=0^+$				
$t \to \infty$				

- b) Etude Quantitative : On souhaite déterminer l'équation de $i_L(t)$. Pour simplifier le circuit, on va utiliser le théorème de Thévenin.
 - α . Déterminer le générateur de Thévenin "vu" par la bobine

β.	En utilisant les résultats précédents, établir l'équation différentielle qui régit le circuit et trouver alors l'expression de $i_L(t)$. Vous donnerez cette équation en fonction de E , R et L . Quelle est la constante de temps τ de ce circuit ?

- 2. Une fois le régime permanent établi, on ouvre l'interrupteur. On pose alors t'=0.
 - a) Etude Qualitative: Remplir le tableau suivant :

	$i_2(t')$	$i_L(t')$	u(t')
$t'=0^+$			
$t' \to \infty$			

b) Etude Quantitative : Etablir la nouvelle équation $i_L(t')$ du courant circulant dans la bobine. Vous exprimerez votre résultat en fonction de E, R et L. Quelle est la constante de temps τ de ce circuit ?

		6/