Задачи по терверу

Распределения

Задача 1. Где находится α -тая квантиль у равномерного распределения на [-1, 1]?

Задача 2. Нарисуйте ф-ции распределения и плотности (если она есть) для следующих случайных величин:

- а) Бернуллиевская
- б) Дискретная случайная величина, принимающая значение a_i с вероятностью p_i
- в) Раномерное на [a, b]
- \mathbf{r}^*) Сумма двух независимых равномерных на [0, 1]
- д*) Максимум из двух независимых равномерных на [0, 1]

Задача 3. Как сгенерировать на компе сэмпл из случайной величины с ф-цией распределения F, если известно как посчитать F^{-1} ?

Задача 4. Есть два распределения, мы кидаем монетку и если выпал орел сэмплируем число из первого распределения, если решка – из второго. Как выражается функция распределения полученной случайной величины, через функции распределения исходных величин?

Задача 5. Как изменится функция распределения случайной величины, если к ней добавить **a)** константу? **б)** бернуллиевскую случайную величину с вероятностью единицы равной р?

Задача 6*. Как связаны функции плотности и распределения?

Про тест Манна-Уитни

Задача 7. Убедитесь, что статистику Манна-Уитни можно посчитать так: объединить две выборки в одну большую выборку и отсортировать ее. Затем для каждого начального отрезка большой выборки нарисовать точку с координатами (n_1, n_2) , где n_1 и n_2 – количества объектов в начальном отрезке, пришедших из первой и второй выборки соответственно. И наконец соединить построенные точки ломаной и посчитать площадь под ее графиком. Какова вычислительная сложность этого алгоритма при аккуратной реализации?

Задача 8. Приведите пример таких величин X, Y что P(Y > X) > 1/2, но $\mathbb{E}(Y) < \mathbb{E}(X)$.

Задача 9. Приведите пример таких величин X, Y и Z, что

$$P(Y > X) > 1/2$$
, $P(Z > Y) > 1/2$ и $P(X > Z) > 1/2$.

Задача 10*. Посчитайте дисперсию статистики Манна-Уитни при условии нулевой гипотезы.

Разное.

Задача 11*. Пусть X_1, \ldots, X_n – независимые одинаково распределенные величины с матожиданием m и дисперсией d. Пусть $\hat{m} = \frac{1}{n} \sum_{i=1}^n X_i$.

а) Посчитайте матожидание выборочной дисперсии:

$$\hat{d} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \hat{m})^2$$

б) Предложите оценку дисперсии, такую что ее матожидание равно d.

Задача 12**. Посчитайте правильное pvalue для "теста Гальтона".