Aula 06: Introdução à Probabilidade (Parte III)

Estatística e Probabilidades

André Victor Ribeiro Amaral (sala 3029) avramaral@gmail.com

Independência

Em relação à Independência de eventos, define-se:

Definição 1

Seja $(\Omega, \mathcal{A}, \mathbb{P})$ um espaço de probabilidade. Os eventos A e B são ditos independentes se:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \times \mathbb{P}(B).$$

Perceba que, se A e B são independentes, então:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(A) \times \mathbb{P}(B)}{\mathbb{P}(B)} = \mathbb{P}(A)$$
; ou seja, se A e B são independentes, a ocorrência de B não muda a probabilidade da ocorrência de A . Analogamente: $\mathbb{P}(B|A) = \mathbb{P}(B)$.

Exercício (JAMES, Barry R. Probabilidade: um curso em nível intermediário):

Duas moedas são lançadas e supõe-se que os 4 resultados possíveis são igualmente prováveis. Sejam $E = \{ \text{a primeira moeda dá cara} \}$ e $F = \{ \text{a segunda moeda dá coroa} \}$ os eventos de interesse. Nesse caso, calcule $\mathbb{P}(E)$, $\mathbb{P}(F)$ e $\mathbb{P}(E \cap F)$. Os eventos E e F são independentes?

Resposta:

Primeiro, vamos determinar Ω , E, F e $E \cap F$. Nesse caso:

- $\bullet \ \Omega = \{(\text{cara, cara}), (\text{cara, coroa}), (\text{coroa, cara}), (\text{coroa, coroa})\};$
- $E = \{(\text{cara}, \text{cara}), (\text{cara}, \text{coroa})\};$
- $F = \{(\text{cara, coroa}), (\text{coroa, coroa})\}; e$
- $E \cap F = \{(\text{cara, coroa})\}.$

Assim,

- $\mathbb{P}(E) = \frac{2}{4} = \frac{1}{2}$;
- $\mathbb{P}(F) = \frac{2}{4} = \frac{1}{2}$; e
- $\mathbb{P}(E \cap F) = \frac{1}{4} = \mathbb{P}(E) \cdot \mathbb{P}(F)$; logo, $E \in F$ são independentes.

Exercício "adaptado de" (JAMES, Barry R. Probabilidade: um curso em nível intermediário):

Suponha que um determinado experimento (por exemplo, "o lançamento de uma moeda") seja realizado n vezes de maneira independente. Para esse experimento arbitrário a probabilidade de sucesso; i.e., de que o evento de interesse aconteça, vale p (por consequência, a probabilidade de fracasso é igual a 1-p). Nesse cenário, calcule a probabilidade de que k sucessos ocorram em n tentativas.

Reposta:

Considere uma sequência particular de resultados tal que, para as n tentativas, k sucessos foram obtidos (e n-k fracassos).

Nesse caso, e sob a hipótese de independência dos experimentos, $\mathbb{P}(A_1 \cap \cdots \cap A_k \cap A_{k+1}^c \cap \cdots \cap A_n^c) = \mathbb{P}(A_1) \times \cdots \times \mathbb{P}(A_k) \times \mathbb{P}(A_{k+1}^c) \times \cdots \times \mathbb{P}(A_n^c)$, onde $A = \{\text{evento de interesse}\}.$

Relembrando que $\mathbb{P}(A) = p$ e $\mathbb{P}(A^c) = 1 - p$, para a sequência escolhida, a probabilidade calculada é de $p^k \cdot (1-p)^{n-k}$.

Agora, basta notar que temos $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ sequências desse tipo.

Assim, $\mathbb{P}(k \text{ sucessos em } n \text{ tentativas}) = \binom{n}{k} p^k \cdot (1-p)^{n-k}$.

Algumas Consequências

Teorema 1

Um evento A é independente de si mesmo se, e somente se, $\mathbb{P}(A)=0$ ou 1.

Demonstração:

 (\Longrightarrow) É possível escrever A como $A\cap A$. Assim, a partir da Definição 1 (e, como, por hipótese, A é independente de A), temos que: $\mathbb{P}(A\cap A)=\mathbb{P}(A)\times\mathbb{P}(A)$. Logo, os dois únicos valores que satisfazem à essa igualdade são $\mathbb{P}(A)=0$ e $\mathbb{P}(A)=1$.

(
$$\iff$$
) Se $\mathbb{P}(A) = 0$, então $\mathbb{P}(A \cap A) = \mathbb{P}(A) = 0 = \mathbb{P}(A) \times \mathbb{P}(A)$; e, se $\mathbb{P}(A) = 1$, então $\mathbb{P}(A \cap A) = \mathbb{P}(A) = 1 = \mathbb{P}(A) \times \mathbb{P}(A)$.

Algumas Consequências

Teorema 2

Se A e B são eventos independentes, então A e B^c também são independentes.

Demonstração:

construção, é uma união de eventos disjuntos (vale Axioma 3).
Assim,
$$\mathbb{P}(A) = \mathbb{P}((A \cap B) \cup (A \cap B^c)) = \mathbb{P}(A \cap B) + \mathbb{P}(A \cap B^c)$$
.

È possível escrever A como $((A \cap B) \cup (A \cap B^c))$; o que, por

Como, por hipótese,
$$A$$
 e B são independentes, temos que $\mathbb{P}(A) = (\mathbb{P}(A) \times \mathbb{P}(B)) + \mathbb{P}(A \cap B^c) \implies \mathbb{P}(A \cap B^c) =$

 $\mathbb{P}(A) - (\mathbb{P}(A) \times \mathbb{P}(B)) = \mathbb{P}(A) \times (1 - \mathbb{P}(B))$; e, já que

$$\mathbb{P}(B^c) = 1 - \mathbb{P}(B)$$
, temos, por fim, que:

 $\mathbb{P}(A \cap B^c) = \mathbb{P}(A) \times \mathbb{P}(B^c)$.

4 □ ▶ 8 / 16

Algumas Consequências

Corolário 1

Se A e B são eventos independentes, então A^c e B^c também são independentes.

Demonstração:

É possível escrever B^c como $((A \cap B^c) \cup (A^c \cap B^c))$; o que, por construção (mais uma vez), é a união de eventos disjuntos. Assim: $\mathbb{P}(B^c) = \mathbb{P}((A \cap B^c) \cup (A^c \cap B^c)) = \mathbb{P}(A \cap B^c) + \mathbb{P}(A^c \cap B^c)$. Além disso, se A e B são independentes, então, pelo Teorema 2, A e B^c também são independentes; logo:

$$\mathbb{P}(B^c) - (\mathbb{P}(A) \times \mathbb{P}(B^c)) = \mathbb{P}(B^c) \times (1 - \mathbb{P}(A))$$
. Dessa forma, conclui-se que $\mathbb{P}(A^c \cap B^c) = \mathbb{P}(B^c) \times \mathbb{P}(A^c) = \mathbb{P}(A^c) \times \mathbb{P}(B^c)$.

 $\mathbb{P}(B^c) = (\mathbb{P}(A) \times \mathbb{P}(B^c)) + \mathbb{P}(A^c \cap B^c) \implies \mathbb{P}(A^c \cap B^c) =$

Aula 06: Introdução à Probabilidade — Parte III (Estatatística e Probabilidades).

Extensão da definição de Independência

Definição 2

Seja $(\Omega, \mathcal{A}, \mathbb{P})$ um espaço de probabilidade. Seja A_1, A_2, \dots, A_n (com $n \ge 2$) uma sequência de eventos; dizemos que esses eventos são:

- a. **2 a 2 independentes** se A_i e A_j são independentes, $\forall i \neq j$.
- b. coletivamente independentes se

$$\mathbb{P}(A_{i1} \cap A_{i2} \cap \cdots \cap A_{ik}) = \mathbb{P}(A_{i1}) \times \mathbb{P}(A_{i2}) \times \cdots \times \mathbb{P}(A_{ik}), \forall k \in \{2, 3, \dots, n\}, \forall i 1, i 2, \dots, ik \text{ distintos.}$$

Observação: independência coletiva implica em independência 2 a 2 (basta tomar k=2 da Definição 2 b.); porém, a recíproca não é verdadeira. Um contra-exemplo é mostrado a seguir.

Indep. 2 a 2 \implies Indep. Coletiva

Conta-exemplo (parte 01 de 02): em um experimento aleatório no qual dois dados (d_1 e d_2) são lançados, define-se:

- $\Omega = \{(d_1, d_2) : (d_1, d_2) \in \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}\};$
- $\mathcal{A} = \mathcal{P}(\Omega)$ (lê-se: conjunto das partes de Ω); e
- $\mathbb{P}(\text{Evento}) = \frac{\#(\text{Evento})}{\#(\Omega)} = \frac{\#(\text{Evento})}{36}$.

Além disso, considere os seguintes eventos:

- $A = \{$ "O resultado do primeiro dado é par." $\}$;
- $B = \{$ "O resultado do segundo dado é par." $\}$; e
- $C = \{$ "O resultado da soma dos dados é par." $\}$.

Indep. 2 a 2 \implies Indep. Coletiva

Conta-exemplo (parte 02 de 02): agora, calcule as seguintes probabilidades:

•
$$\mathbb{P}(A) = \frac{\#(A)}{36} = \frac{3\times 6}{36} = \frac{18}{36} = \frac{1}{2};$$

•
$$\mathbb{P}(B) = \frac{\#(B)}{36} = \frac{6 \times 3}{36} = \frac{18}{36} = \frac{1}{2}$$
; e

•
$$\mathbb{P}(C) = \frac{\#(C)}{36} = \frac{(3\times3) + (3\times3)}{36} = \frac{18}{36} = \frac{1}{2}.$$

Em seguida, verifique se os eventos são independentes 2 a 2:

•
$$\mathbb{P}(A \cap B) = \frac{3 \times 3}{36} = \frac{9}{36} = \frac{1}{4} = \mathbb{P}(A) \times \mathbb{P}(B); (\checkmark)$$

•
$$\mathbb{P}(B \cap C) = \frac{3 \times 3}{36} = \frac{9}{36} = \frac{1}{4} = \mathbb{P}(B) \times \mathbb{P}(C)$$
; e (\checkmark)

•
$$\mathbb{P}(A \cap C) = \frac{3 \times 3}{36} = \frac{9}{36} = \frac{1}{4} = \mathbb{P}(A) \times \mathbb{P}(C)$$
. (\checkmark)

Entretanto, apesar de os eventos serem independentes 2 a 2, a eles **não** são coletivamente independentes, já que:

$$P(A \cap B \cap C) = \frac{3 \times 3}{36} = \frac{9}{36} = \frac{1}{4} \neq (\frac{1}{2})^3 = \mathbb{P}(A) \times \mathbb{P}(B) \times \mathbb{P}(C).$$

Lema de Borel-Cantelli

Utilizando a noção de independência, podemos enunciar o Lema de Borel-Cantelli:

Teorema 3 (Lema de Borel-Cantelli)

Seja $(\Omega, \mathcal{A}, \mathbb{P})$ um espaço de probabilidade. Seja $A_1, A_2, \dots, A_n \dots$ uma sequência de eventos. Então:

- A. Se $\sum_{m=1}^{\infty} \mathbb{P}(A_n) < +\infty$, então $\mathbb{P}(A_n \text{ i.v.}) = 0$.
- B. Se $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = +\infty$ e a sequência $\{A_n\}_{n=1}^{\infty}$ for coletivamente independente, então $\mathbb{P}(A_n \text{ i.v.}) = 1$.

A demonstração desse teorema foge do escopo do nosso curso, então ela não será feita; porém, ele tem aplicações interessantes, mostradas a seguir.

Aplicações do Lema de Borel-Cantelli

Sobre o Lema de Borel-Cantelli, considere os experimentos:

- 1. Um macaco é colocado de frente para um computador; nesse caso, o evento de interesse é {o macaco digita, sem erros, a obra literária X}. A cada vez que o macaco digita um caractere errado, ele tem um tempo para descansar e comer uma banana (para garantir independência).
- 2. Um jogador compulsivo aposta semanalmente na Mega Sena. Nesse caso, suponha que o jogador vive para sempre e que suas apostas são feitas de maneira independente. Aqui, considere o evento {o jogador faz uma aposta vencedora}.

Podemos argumentar que, para os dois casos, com probabilidade 1, o evento de interesse acontece infinitas vezes.

Desafio – O problema dos pontos

Exercício "adaptado de" (JAMES, Barry R. Probabilidade: um curso em nível intermediário):

Os jogadores A e B estão jogando um jogo (de azar) que funciona da seguinte forma: o jogador A ganha um ponto c/ probabilidade "p" e o jogador B ganha um ponto c/ probabilidade "1-p".

De posse dessa regra básica e depois de algumas rodadas, o jogo teve que ser interrompido.

Nesse cenário, qual a probabilidade de que o jogador A tivesse sido o vencedor no caso de o jogo ter sido interrompido em um momento em que ele precisasse de n pontos para vencer e o jogador B precisasse de m pontos?

Desafio – O problema dos pontos

Exercício "adaptado de" (JAMES, Barry R. Probabilidade: um curso em nível intermediário):

Um enunciado alternativo para o problema proposto é o seguinte:

Realizam-se tentativas independentes que têm sucesso com probabilidade "p" e fracasso com probabilidade "1-p". Qual a probabilidade de que n sucessos ocorram antes de m fracassos?

Curiosidade: Esse problema tem importância histórica e foi resolvido primeiro por Pascal e depois por Fermat.