

IN THE CLAIMS

Claims 1-13 (canceled)

14. (original) In a communication device, a method for determining an operating frequency of an oscillator based on a reference signal from a reliable time base, comprising:

detecting a beginning time point of the reference signal received by the communication device;

upon detection of the beginning time point of the reference signal, enabling a counter to count in accordance with a clock signal derived from the oscillator;

detecting an ending time point of the reference signal received by the communication device;

upon detecting the ending time point of the reference signal, disabling the counter to stop the counter from further counting; and

determining the frequency of the oscillator based on the count in the counter and an expected time that elapsed between the beginning time point and the ending time point.

15. (original) A method as in Claim 14, wherein the beginning time point and the ending time point represent a known duration in time.

16. (original) A method as in Claim 14, wherein the beginning time point and the ending time point represent arrivals of recurring events in the reference signal, the recurring events recurs at a fixed frequency.

17. (original) A method as in Claim 14, further comprising adjusting for processing times in the communication device for detecting the beginning time point and the ending time point.

18. (original) A method as in Claim 1, wherein the recording comprises recording an indication that a frequency adjustment of the oscillator is made.

19. (original) A method as in Claim 18, wherein the processing hypothesizes a frequency shift and time point of the frequency shift in the received positioning signal between the second time point and the third time point.

20. (original) A method as in Claim 14, wherein the frequency of the oscillator thus determined is provided to a positioning signal receiver.

21. (original) A method as in Claim 20, wherein the positioning signal receiver receives global positioning system (GPS) signals.

Claims 22-33 (canceled)

34. (original) An oscillator frequency determining apparatus in a communication device, comprising:

an oscillator providing a periodic output signal;

a receiver receiving a reference signal from a reliable time base;

a detector detecting a beginning time point and an ending time point of the reference signal received by the communication device;

a counter that begins counting the number of periods in the output signal of the oscillator in response to the detector detecting the beginning time point and stops counter in response to the detector detecting the ending time point of the reference signal; and

arithmetic unit for determining the frequency of the oscillator based on the count in the counter and an expected time that elapsed between the beginning time point and the ending time point.

35. (original) An apparatus as in Claim 34, wherein the beginning time point and the ending time point represent a known duration in time.

36. (original) An apparatus as in Claim 34, wherein the beginning time point and the ending time point represent arrivals of recurring events in the reference signal, the recurring events recurs at a fixed frequency.

37. (original) An apparatus as in Claim 34, wherein the arithmetic unit further adjusts for processing times in the communication device for detecting the beginning time point and the ending time point.

38. (original) A mobile communication device as in Claim 22, wherein the central processing unit records an indication that a frequency adjustment of the oscillator is made.

39. (original) A mobile communication device as in Claim 38, wherein the central processing unit hypothesizes a frequency shift and time point of the frequency shift in the received positioning signal between the second time point and the third time point.

40. (original) An apparatus as in Claim 34, wherein the frequency of the oscillator thus determined is provided to a positioning signal receiver.

41. (original) An apparatus as in Claim 40, wherein the positioning signal receiver receives global positioning system (GPS) signals.

Any questions regarding this case can be addressed to the undersigned at 408-392-9250.

Express Mail Label No.:

EV 301 054 710 US

Respectfully submitted,

Edward C. Kwok
Attorney for Applicant(s)
Reg. No. 33,938