Time Series Analysis

Jimson Mathew, Dept. CSE, IIT P

Whytatesieotetsiams such pieces?

Time Series Forecasting Models

- ☐ Autoregressive Models (AR)
- Moving Average Models (MA)
- Autoregressive Moving Average Models (ARMA)
- Autoregressive Integrated Moving Average Models (ARIMA)
- Neural Network models
- Long Short Term Memory Network Models (LSTM)

Smart Grid

A.I. Saleh et al. / Advanced Engineering Informatics 30 (2016) 422-448

Architecture and main components of smart grid.

Fig. 1. Architecture and main components of smart grid.

Eg:Real Time Electricity Usage at IITP

24 Hour Data

Data by Date

how All ventries	Sea	arch:	_
Date (dd-mm-yyyy) 🖣	Time (hh:mm:ss) +	Readings (In standard unit) +	
06-11-2017	21:59:06	676170.38	
06-11-2017	21:58:06	682617.75	
06-11-2017	21:57:06	672862.81	
06-11-2017	21:56:06	669819.19	
06-11-2017	21:55:06	666511.94	
06-11-2017	21:54:06	633467.06	
06-11-2017	21:53:06	655203.06	
06-11-2017	21:52:06	649298.5	
06-11-2017	21:51:06	643586.75	
06-11-2017	21:50:06	629989.38	
06-11-2017	21:49:06	640710.94	

Eg:Real Time Electric Energy Usage at IITP

Energy Forecast

Eg:Real Time Electric Energy Usage at IITP

Autoregressive Models (AR)

- Values of variables in one period related to its value in previous periods
- ☐ AR (p): AR model with p lags

AR(p):
$$y_t = \sum_{1}^{p} \Theta_i.y_{t-i} + \epsilon_t$$

AR(1):
$$y_t = \Theta_1.y_{t-1} + \epsilon_t$$

where

- \bullet ϵ_{+} is zero mean uncorrelated random variables
- θ_i are autoregressive coefficients (parameter)
- Yt is observed variable (predicted)

Moving Average Models

- Relationship between a variable and residuals from the previous lags
- \Box MA(q): moving average with q lags

MA(p):
$$y_t = \sum_{1}^{p} \Theta_i \cdot \epsilon_{t-i} + \epsilon_t$$

MA(1): $y_t = \Theta_i \cdot \epsilon_{t-i} + \epsilon_t$

where

are the moving average coefficients (parameters)

Autoregressive Moving Average Models

Combine both 'p' autoregressive terms and 'q' moving average terms i.e ARMA(p,q)

$$y_t = \mu + \sum_{i=1}^{p} y_i \cdot y_{t-i} + \epsilon_t + \sum_{i=1}^{q} \theta_i \cdot \epsilon_{t-i}$$

- modelling AR, MA, ARMA(p,q) requires stationary process
- mean and variance has to be constant
- process shouldn't have trend

Stationarity

- A sequence of random variables Z = {Zt} belongs to real numbers is **stationary** if its distribution is invariant to shifting in time
- a process having zero mean and constant variance is a stationary process

Examples of stationary and non-stationary series

Stationary Time Series

Non-stationary Time Series

Autoregressive Integrated Moving Average models (ARIMA) continued

- \Box ARIMA model can be represented as ARIMA(p,d,q)
 - p is the number of autoregressive terms
 - d is the number of non seasonal differences needed for stationarity
 - q is the number of lagged forecast errors in the prediction equation
- The forecasting equation is constructed as follows
 - If d=0: $y_{+} = Y_{+}$
 - If d=1: $y_t = Y_t Y_{t-1}$
 - If d=2: $Y_t = (Y_t Y_{t-1}) (Y_{t-1} Y_{t-2}) = Y_t 2Y_{t-1} + Y_{t-2}$

Autoregressive Integrated Moving Average models (ARIMA) continued

- Identifying the order of differencing in an ARIMA model
 - Rule 1: If the series has positive autocorrelations out to a high number of lags, then it probably needs a higher order of differencing
 - Rule 2: If the lag-1 autocorrelation is zero or negative, or the autocorrelations are all small and pattern less, then the series does not need a higher order of differencing
 - Rule 3: The optimal order of differencing is often the order of differencing at which the standard deviation is lowest

Multiple Linear Regression models (MLR)

- ☐ A linear regression model containing more than one predictor variable
- It is used to analyze the association between two or more independent variables and a single dependent variable

$$\hat{Y} = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_p x_p$$

r = predicted value of dependent variable x1 through xp are distinct independent variables bo= is the value of Y when all the independent variable are zero

b1 through bp are regression coefficients

Feedforward Neural Network

- The pine out intain matures in ois ly in eat (x) = fbrw and hfr (x) the input
- Thredaetthaeioghathealyielders gorden (if yarty) (x)nd god (x)) output node
- where gusteathearthearthis ardin का भारती कि (for example, logistic,
- tahh, The network contains L-1
- The activation at the
 - output layer i is given by:
 Finally, one output layer

 f(x) = h(x) = O(a) (x)
- where O is the output activation function

 Lach neuron in hidden and

 (for example, softmax, linear, etc)
- Modelityu± laxer can be split into two parts:
 - pre-activation
 (\\\/**?•**¬(**\&\¢tivation**, b_-).

 $g(W^2g(W^2t_iv_at_ip_n_+b_2) + b_3)$

Conventional Deep learning

Recurrent Neural Networks

Time series forecasting with Recurrent Neural Networks (RNN)

Neural Networks

Inputs and outputs are independent

Recurrent Neural Networks

Sequential inputs and outputs

- x_t: the input at time step t
- s_t: the hidden state at time t
- o_t: the output state at time t

LSTM Networks

- Special kind of RNNs capable of learning long term dependencies
- Four neural network layer,, interacting in a very special way

Load Forecasting Accuracy

Forecast results

Forecast results for Kaggle electrical load dataset:

Time Of Year (Seasons)			RMSE	l.	MAPE					
	SVR	FNN	DBN	LSTM-SSA- MSE	LSTM-SSA- PLF	SVR	FNN	DBN	LSTM-SSA- MSE	LSTM-SSA- PLF
Spring	59044.76	62939.39	62658.25	59711.83	59525.31	76.38%	79.83%	80.32%	73.06%	74.38%
Summer	61617.91	62074.01	60981.38	66204.35	66273.94	91.39%	81.66%	72.35%	75.48%	71.06%
Autumn	63728.59	64483.76	62622.23	59706.26	56335.94	65.47%	58.15%	60.46%	63.31%	62.17%
Winter	64662.19	62532.44	66387.25	58066.71	60929.47	69.26%	75.71%	73.23%	70.26%	69.86%
Average	62263.36	63007.40	63162.28	60922.28	60766.16	75.62%	73.84%	71.34%	70.50%	69.36%

Forecast results for South Australia electrical load dataset:

Time Of Year (Seasons)		RMSE					MAPE					
	SVR	FNN	DBN	LSTM-SSA- MSE	LSTM-SSA- PLF	SVR	FNN	DBN	LSTM-SSA- MSE	LSTM-SSA- PLF		
Spring	38.66	36.36	37.81	30.67	28.14	1.54%	2.26%	2.55%	1.48%	1.56%		
Summer	40.31	35.77	35.46	20.39	20.67	1.98%	1.79%	1.75%	1.41%	1.22%		
Autumn	45.57	45.92	54.15	29.04	30.70	2.63%	1.55%	2.07%	2.02%	1.84%		
Winter	30.77	29.97	37.25	32.27	32.25	1.99%	2.09%	2.18%	1.65%	1.75%		
Average	38.82	37.00	41.16	28.09	27.94	2.03%	1.92%	2.13%	1.64%	1.59%		

Forecast results for Tasmania electrical load dataset:

Time Of Year (Seasons)		RMSE					MAPE					
	SVR	EZNINI	DBN	LSTM-SSA- MSE PLF	SVR	FNN	DDM	LSTM-SSA-	LSTM-SSA-			
	SVK F	FININ	DBN		PLF	SVI	FININ	DBN	MSE	PLF		
Spring	18.67	19.61	24.65	15.24	13.91	1.25%	1.32%	1.78%	1.21%	1.17%		
Summer	22.76	21.93	25.87	13.81	15.67	1.28%	1.31%	1.77%	1.07%	1.26%		
Autumn	24.22	23.40	22.59	15.39	16.11	1.59%	1.58%	1.51%	1.57%	1.41%		
Winter	22.19	22.66	20.99	22.17	22.93	1.42%	1.41%	1.30%	1.31%	1.10%		
Average	21.96	21.90	23.52	16.65	17.15	1.38%	1.40%	1.56%	1.29%	1.24%		

Forecast results for Queensland electrical load dataset:

Time Of Year (Seasons)	8	RMSE					MAPE					
	SVR	FNN	DBN	LSTM-SSA- MSE	LSTM-SSA- PLF	SVR	FNN	DBN	LSTM-SSA- MSE	LSTM-SSA- PLF		
Spring	59.66	60.29	82.34	58.13	59.86	0.75%	0.72%	1.01%	0.72%	0.73%		
Summer	56.38	68.79	70.49	57.42	57.73	0.72%	0.87%	0.91%	0.67%	0.67%		
Autumn	58.61	52.10	67.03	57.39	51.37	0.82%	0.71%	0.99%	0.68%	0.66%		
Winter	50.16	55.50	56.96	51.20	49.76	0.67%	0.73%	0.74%	0.66%	0.65%		
Average	56.20	59.17	69.20	56.35	54.68	0.74%	0.75%	0.91%	0.68%	0.68%		

Forecast results for Victoria electrical load dataset:

Time Of Year (Seasons)		RMSE					MAPE					
	SVR	FNN	DBN	LSTM-SSA- MSE	LSTM-SSA- PLF	SVR	FNN	DBN	LSTM-SSA- MSE	LSTM-SSA- PLF		
Spring	67.32	76.63	73.97	66.29	67.14	1.06%	1.26%	1.39%	0.99%	0.89%		
Summer	67.19	77.12	85.57	70.21	70.51	1.06%	1.21%	1.22%	0.89%	0.93%		
Autumn	86.74	90.89	122.66	72.83	72.33	1.17%	1.23%	1.73%	1.03%	0.97%		
Winter	63.17	79.50	69.99	73.48	72.21	0.86%	1.17%	1.06%	0.99%	1.06%		
Average	71.11	81.03	88.47	70.45	70.45	1.04%	1.22%	1.35%	0.97%	0.96%		

Forecast results for New South Wales electrical load dataset:

Time Of Year (Seasons)		RMSE						MAPE					
	SVR	FNN	DBN	LSTM-SSA- MSE	LSTM-SSA- PLF	SVR	FNN	DBN	LSTM-SSA- MSE	LSTM-SSA- PLF			
Spring	88.13	81.62	97.01	87.57	86.27	0.88%	0.78%	1.05%	0.86%	0.86%			
Summer	81.50	85.57	72.25	78.31	80.18	0.82%	0.89%	0.75%	0.80%	0.81%			
Autumn	67.36	112.44	89.55	71.16	73.87	0.64%	1.06%	0.87%	0.71%	0.70%			
Winter	71.24	84.59	91.31	81.06	78.13	0.63%	0.80%	0.80%	0.69%	0.70%			
Average	77.62	91.05	87.53	79.52	79.61	0.74%	0.88%	0.86%	0.76%	0.77%			

Model	MA	AR	ARMA	ARIMA	SARIMA
RMSE	224.67	127.44	121.68	116.79	129.41

Traditional Cloud Approach

Motivation

- Surveillance for security, patient care
- Impossible for human operator
- Accuracy/subjective

Normal Abnormal

Edge Based Approach

Edge Processing Monitoring

Approach

Algorithm Abnormality detection using autoencoder

- 1: procedure ABNORMAL AUTOENCODER(P, ϕ, ψ, X_t))
- P is the set of concatenated HOFM vector of training set.
- 3: ϕ and ψ is the encoder and decoder trained on P.
- 4: X_t is the concatenated HOFM vector of test frames.
- 5: if $||X_t \psi(\phi(X_t))||^2 > \tau$ then
- 6: the test frames contain abnormality
- 7: else
- 8: the test frames do not contain abnormality

Results

Dataset	AUC	EER (%)	Frame Processing Time (ms)
UCSD Ped1	0.78	29.49	34.85
UCSD Ped2	0.91	15.78	66.47
Subway Entrance	0.84	22.68	15.26
Subway Exit	o.86	19.58	32.85

Results: Time series data - LV panic0 dataset

Results: Time series data - LV panic1 dataset

Results: Time series data - LV panic2 dataset

Eg:Real Time Electricity Usage at IITP

24 Hour Data

Data by Date

how All ventries	Sea	arch:	_
Date (dd-mm-yyyy) 🖣	Time (hh:mm:ss) +	Readings (In standard unit) +	
06-11-2017	21:59:06	676170.38	
06-11-2017	21:58:06	682617.75	
06-11-2017	21:57:06	672862.81	
06-11-2017	21:56:06	669819.19	
06-11-2017	21:55:06	666511.94	
06-11-2017	21:54:06	633467.06	
06-11-2017	21:53:06	655203.06	
06-11-2017	21:52:06	649298.5	
06-11-2017	21:51:06	643586.75	
06-11-2017	21:50:06	629989.38	
06-11-2017	21:49:06	640710.94	

Eg:Real Time Electric Energy Usage at IITP

Energy Forecast

Eg:Real Time Electric Energy Usage at IITP

Eg:Real Time Electric Energy Usage at IITP

EEG Classification using LSTM and Autoencoder

Electroencephalogram

- The electroencephalogram (EEG) is a recording of the electrical activity of the brain from the scalp.
- During EEG test, small electrodes like cup placed on scalp

Why EEG?

- Always there will be a underlying relation between the lie and the brain signals difficult to control the reactions inside the brain
- Ability to differentiate known and unknown

Processing Data

Sample Data set:

P7	P8	01	02	case
0.019579	0.031368	0.049292	0.031376	1
-0.005074	0.061788	0.172507	-0.009579	1
-0.252178	0.067108	0.328600	-0.344678	1
-0.619706	0.456606	0.759965	-0.801646	1
-0.627086	1.868949	1.796608	-0.784960	1

Deep Learning Models

Ensembling of AUTOENCODER and LSTM:

LSTM Architecture

Layer (type)	Output Shape	Param #
dropout_3 (Dropout)	(None, 128, 4)	0
Istm_2 (LSTM)	(None, 128)	68096
dropout_4 (Dropout)	(None, 128)	0
dense_2 (Dense)	(None, 128)	16512

Autoencoder Architecture

- Input is feed to autoencoder
- Output of autoencoder is image of input
- Reshape the output in 3D as(number of sample, time steps, features)
- Feed to LSTM

Results

Simple LSTM Model:

Dense layer(128)

Network Architecture

Layer (type)	Output Shape	Param #
dropout_3 (Dropout)	(None, 128, 4)	0
Istm_2 (LSTM)	(None, 128)	68096
dropout_4 (Dropout)	(None, 128)	0
dense_2 (Dense)	(None, 128)	16512

Results

Results

Stacked LSTM:

Network Architecture

Layer (type)	Output Shape	Param #
dropout_13 (Dropout)	(None, 128, 4)	0
Istm_9 (LSTM)	(None, 128, 128)	68096
dropout_14 (Dropout)	(None, 128, 128)	0
Istm_10 (LSTM)	(None, 128)	131584
dropout_15 (Dropout)	(None, 128)	0
dense_5 (Dense)	(None, 128)	16512

Stateful LSTM:

Network Architecture

 , 128)	
, ,	330
(1, 128) 0	
	6512
	1, 128)

Results

Simple Autoencoder:

We are using the concept of outlier detection

- We can find mean and standard deviation
- Calculate threshold based on mean and standard deviation
- Points above threshold are OUTLIERS

Reconstruction Error

0.456 0.321 0.157 0.056 4.562 0.112 0.156 0.442 6.32 0.152 5.63 0.211 0.143 0.11

Mean = 1.3448571428571428

STD = 2.2006712241347395

Threshold = 3.5455283669918822

Data points which are above threshold are OUTLIERS

• We can use this concept for classification

- RMSE for reconstruction error
- Calculate threshold of reconstruction error
- Classify test data which is unfamiliar data based on threshold.

Result

Comparison of models

References

- [1] V. abootalebi, m. h. moradi, and m. a. khalilzadeh, a new approach for eeg feature extraction in p300-based lie detection, computer meth- ods and programs in biomedicine, vol. 94, no. 1 2009.
- [2] Z. h. e. tan, k. g. smitha, and a. p. vinod, detection of familiar and unfamiliar images using eeg-based brain-computer interface, in systems, man, and cybernetics (smc), 2015 ieee international con- ference on. ieee, 2015.
- [3] https://github.com/cerebro409/eeg-classification-using-recurrent-neural-network.
- [4] https://www.kaggle.com/imrandude/h2o-autoencoders-and-anomaly-detection-Python.
- [5] M. teplan et al., fundamentals of eeg measurement, measurement science review, vol. 2, no. 2, pp. 111, 2002.
- [6] F. lotte, m. congedo, a. lcuyer, f. lamarche, and b. arnaldi, a review of classification algorithms for eeg-based braincomputerinterfaces, journal of neural engineering, vol. 4, no. 2, p. r1, 2007.

Thanks

