# Diagnosis for Interconnect Faults in Memory-based Reconfigurable Logic Device

Xihong Zhou, Senling Wang, Yoshinobu Higami, Hiroshi Takahashi

Department of Computer Science,

Ehime University



Nov. 25, 2021



### Outline

- Background
  - The application of Reconfigurable devices
  - —FPGA and its challenge
  - -MRLD and its chance
- Purpose
- Architecture and Working principle of MRLD
- Interconnect fault models in MRLD
  - Stuck-at faults
- Diagnosing the interconnect faults of MRLD
- Experimental results
- Conclusions



## Background ~ The application of Reconfigurable devices ~

- Reconfigurable devices (e.g.: FPGAs) are gaining increased attentions for IoT, Automotive and AI field
  - ★ Flexibility and scalability
  - ★ High performance (parallel computing)
  - Better time to market
  - ★ Low design cost (shortening of development cycle)





SW + FPGA

SW Only

< 30% Cost

25 W Power

HW Failure

## $Background \sim \text{FPGA and its challenge} \sim$

- Three types of configurable elements
  - Input/output blocks (IOBs)
  - Configurable logic blocks (CLBs)
  - Programmable interconnect resources (SM: switch matrix, PSB: programmable switch blocks)
- Large amount of interconnect resource
  - Large area
  - Large delay
  - High power
  - Significant production cost

### Overhead compared to ASIC

|                                     | Area          | Delay  | Power  |
|-------------------------------------|---------------|--------|--------|
| ASIC                                | 1             | 1      | 1      |
| FPGA                                | 20~35 or more | 3~4    | ~10    |
| Programmable interconnect resources | 90%           | 40~80% | 60~78% |



Alternative reconfigurable devices with low cost, low power and small delay is required

# $Background \sim \mathsf{MRLD} \text{ and its chance} \sim$

- Memory-based Reconfigurable Logic Device.
  - MLUTs (Multiple Look-Up-Table) array
  - MLUT configured with multiple SRAM blocks
  - Alternate interconnect of Address and Data line of MLUTs
  - Support Memory mode and Logic reconfiguration mode
- Logic and wiring are directly configured in the MLUTs
  - Lower area overhead
  - Smaller delay (logic wiring)
  - Low power
  - ➤ Low production cost





Top IO port: ti[9:0], to[9:0]

# Motivation & Purpose & Objective

- To improve the yield and reliability of MRLD.
  - Detecting and locating the defects on AD interconnects

(AD: Address line & Data line)



Purpose

Develop the diagnosis approaches for identifying the location of AD interconnect defects

Objective

- 1. Propose the diagnosis strategy for interconnect defects of MRLD
- 2. Propose the diagnostic generation method for Stuck-at faults

<sup>\*</sup> Detection approaches have been proposed in our previous research in ATS2017

# Architecture & Working principle of MRLD

- MLUT consists of four SRAM blocks (two asynchronous and two synchronous SRAMs )
- Each SRAM works as look-up tables (LUTs) to support logic reconfiguration by writing the corresponding truth tables into the SRAM
- Each MLUT can work at either Memory mode or Logic reconfiguration mode
- The data outputs of a MLUT are connected with the address inputs of other MLUTs



# Working principle of MRLD ~ an example ~

• Configure the logic circuit by writing the **truth table** of the logic circuit (**including wiring logic**) into the <u>SRAM</u> of MLUT



### Interconnect fault models in MRLD ~Stuck-at~

• A short between the ground (supply) and AD interconnect (address line or data line)



| MLUT1_D5 | MLUT2_A5 | behavior   |  |
|----------|----------|------------|--|
| (0)      | 0/       | MLUT2_D0/1 |  |
| 0        | 0/1      | MLUT2_D0/1 |  |
| 1        | 1        | 1          |  |
| 1        | 1        | 1          |  |

Logic behavior of Stuck-at-1 Fault



Diagnosing the location of the fault is helpful to avoid configuring the logic to pass through the faulty AD interconnects



# $Diagnosis\ Strategy\ \sim\ {\rm for\ the\ interconnect\ faults\ of\ MRLD}\ \sim$

- Diagnostic Test Generation
  - Diagnostic Cubes:
    - → Data in the SRAMs for Creating fault propagation path on MLUTs
  - External Patterns:
    - → patterns applied to the external input ports of MRLD for fault excitation
- Basic principle of diagnosis
  - Configuring Fault Propa. Path on Row&Column:
    - → Diagnostic Cubes Reconfiguration
  - Applying External Patterns:
    - → to external inputs of MRLD
  - Observing External Outputs:
    - → fault effects can be propagated and observed at the external outputs of MRLD.



# $Diagnosis\ Flow\ \sim\ {\rm for\ the\ interconnect\ faults\ of\ MRLD}\sim$

### Diagnosis Flow

- Step1: Row-direction diagnosis
  - a) Configuring *Diagnostic Cubes* (*DCr*)
  - b) Applying External Pattern
  - c) Staining Fault Path (FPr)
- Step2: Col-direction diagnosis
  - a) Configuring *Diagnostic Cubes* (*DCc*)
  - b) Applying External Pattern
  - c) Obtaining Fault Path (FPc)
- Step3: Determining fault location
  - $\rightarrow$  Find out the Fault location ( $F_{loc}$ ) through computing the intersection of FPr and FPc:  $F_{loc} = \text{FPr} \cap \text{FPc}$











### Simulation method

- MRLD design: 6 × 6 MLUT array
  - IO ports: left & right 48bits, top & bottom 20bits
  - MLUT: Four 256word × 16bit SRAMs
- Simulation method
  - Logic simulation by ModelSim
  - Fault node insertion (random)





#### \*Port Definition:

li: left address input lo: left data output ri: right address input ro: right data output ti: top address input to: top data output

bi: bottom address input bo: bottom data output



### **Step 1: Reconfigure Diagnostic Cube for row-direction (DCr)**

— into each MLUT



### **Step 2 : Apply External Patterns**



### **Step 3: Reconfigure Diagnostic Cube for col-direction (DCc)**

— into each MLUT



**Step 4: Apply External Patterns** 



# Simulation result ~stuck-at 1 fault diagnosis ~



19

## Simulation result ~stuck-at 0 fault diagnosis ~



### Conclusions

- MRLD should be a promising alternative reconfigurable device to FPGA with the benefits of low production cost, low power and small delay.
- We proposed the diagnosis strategy and the method for locating the stuck-at interconnect faults.
  - The method can diagnose the location of all stuck-at faults at any interconnects.

| MRLD<br>size                        | Total fault numbers                       |                                           | Reconfiguration (Row and Column) |         |
|-------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------|---------|
| $X \times Y$ MLUT(with M-bit) array | $\left( (X+1)Y + \frac{X-1}{2} \right) M$ | $\left( (X+1)Y + \frac{X-1}{2} \right) M$ | 2 times                          | 2 times |

<sup>\*</sup>X, Y: the number of rows and columns for MLUT array

#### • Future work

- Evaluate the effectivity of the proposed diagnosis method for multiple stuck-at faults.
- Analyze the diagnostic generation method for locating others interconnect faults such as bridge faults and open fault in MRLD.

<sup>\*</sup>M: the number of AD line pairs for an MLUT

# Thanks for listening