ΛΥΣΗ

- α) Η υπερβολή με εξίσωση : $\frac{x^2}{4}$ y^2 = 1 (1) έχει α^2 = 4 και β^2 = 1. Οι εστίες της βρίσκονται στον άξονα x'x και έχουν συντεταγμένες Ε(γ, 0) και Ε'(-γ, 0), όπου $\gamma = \sqrt{\alpha^2 + \beta^2} = \sqrt{5} \ .$
 - i. Οι εστίες της υπερβολής έχουν συντεταγμένες $E(\sqrt{5}, 0)$ και $E'(-\sqrt{5}, 0)$.
 - ii. Η εκκεντρότητα της υπερβολής είναι ε = $\frac{\gamma}{\alpha}$ = $\frac{\sqrt{5}}{2}$.
- iii. Οι ασύμπτωτες της υπερβολής είναι οι $y = \frac{\beta}{\alpha} x = \frac{1}{2} x και y = -\frac{\beta}{\alpha} x = -\frac{1}{2} x$.
- β) Η εξίσωση της εφαπτόμενης της υπερβολής στο σημείο της με συντεταγμένες (x_1, y_1) θα έχει τη μορφή $\varepsilon: \frac{x \, x_1}{4} y \, y_1 = 1 \Leftrightarrow xx_1 4 \, yy_1 = 4$. Οπότε για $x_1 = \sqrt{5}$ και $y_1 = \frac{1}{2}$ στην εξίσωση της ευθείας ε θα έχουμε $\varepsilon: \sqrt{5} \cdot x 4 \cdot \frac{1}{2} \, y = 4$ ή $\varepsilon: \sqrt{5} \cdot x 2 \, y = 4$.