

TECHNICAL REPORT C-77-1

INVESTIGATION OF PROPRIETARY ADMIXTURES

by

William O. Tynes

U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180

> April 1977 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for Office, Chief of Engineers, U. S. Army Washington, D. C. 20314

Under CWR Work Unit 31138

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Technical Report C-77-1	
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
INVESTIGATION OF PROPRIETARY ADMIXTURES.	Final report. 1974-197
	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(8)
William O. Tynes	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U. S. Army Engineer Waterways Experiment Station	AREA & WORK ON ! NOMBERS
Concrete Laboratory P. O. Box 631, Vicksburg, Miss. 39180	CWR Work Unit 31138
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
(11)	April 1977
Office, Chief of Engineers, U. S. Army	13. NUMBER OF PAGES
Washington, D. C. 20314	38
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
11 V . 150 -0 0 00 1	Unclassified
WES-TR-C-77-1	154. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	L
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from	m Report)
	om Report)
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from 18. SUPPLEMENTARY NOTES	om Report)
	om Report)
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number,	
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Admixtures	
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Admixtures Air-entrained concretes	
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Admixtures Air-entrained concretes Concrete admixtures	
19. KEY WORDS (Continue on reverse side if necessary and identity by block number, Admixtures Air-entrained concretes Concrete admixtures Plasticizers	
18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Admixtures Air-entrained concretes Concrete admixtures Plasticizers Water-reducing agents	
19. KEY WORDS (Continue on reverse side if necessary and identify by block number, Admixtures Air-entrained concretes Concrete admixtures Plasticizers Water-reducing agents 20. ABSTRACT (Continue on reverse side if necessary and identify by block number) Three special water-reducing admixtures for c	oncrete were evaluated
19. KEY WORDS (Continue on reverse side if necessary and identity by block number, Admixtures Air-entrained concretes Concrete admixtures Plasticizers Water-reducing agents 20. ABSTRACT (Continue as reverse side if necessary and identity by block number) Three special water-reducing admixtures for concording to test method CRD-C 87-72. Tests were meffects of these admixtures on the properties of concessary and identify by block number)	oncrete were evaluated ade to determine the ncrete. Air-entrained
19. KEY WORDS (Continue on reverse side if necessary and identity by block number, Admixtures Air-entrained concretes Concrete admixtures Plasticizers Water-reducing agents 20. ABSTRACT (Continue as reverse side if necessary and identity by block number) Three special water-reducing admixtures for concrete of these admixtures on the properties of concrete mixtures were made with and without these	oncrete were evaluated adde to determine the ncrete. Air-entrained admixtures. All three
19. KEY WORDS (Continue on reverse side if necessary and identity by block number, Admixtures Air-entrained concretes Concrete admixtures Plasticizers Water-reducing agents 20. ABSTRACT (Continue as reverse side if necessary and identity by block number) Three special water-reducing admixtures for concrete of these admixtures on the properties of concrete mixtures were made with and without these of the admixtures permitted water reductions exceed	oncrete were evaluated ade to determine the ncrete. Air-entrained admixtures. All three ing 15 percent. The
19. KEY WORDS (Continue on reverse side if necessary and identity by block number, Admixtures Air-entrained concretes Concrete admixtures Plasticizers Water-reducing agents 20. ABSTRACT (Continue as reverse side if necessary and identity by block number) Three special water-reducing admixtures for concrete of these admixtures on the properties of concrete mixtures were made with and without these	oncrete were evaluated ade to determine the ncrete. Air-entrained admixtures. All three ing 15 percent. The

DO FORM 1473 EDITION OF I NOV 65 IS OBSOLETE

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

038100

1B

THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.

PREFACE

The investigation reported herein was authorized by a first indersement dated 8 May 1974 from the Office, Chief of Engineers, U. S. Army, to a U. S. Army Engineer Waterways Experiment Station (WES) letter dated 29 April 1974, subject: Project Plan for Investigation of Testing Methods and Apparatus, Tests of Proprietary Admixtures (CWR Work Unit 31138). The Technical Monitor for this investigation was Mr. J. H. Rhodes, DAEN-CWE-C.

The investigation was conducted between 1974 and 1976 at the Concrete Laboratory, WES, under the supervision of Messrs. B. Mather, Chief of the Concrete Laboratory, and J. M. Scanlon, Jr., Chief of the Engineering Mechanics Division. The members of the staff actively concerned with the work included Messrs. W. O. Tynes and W. B. Lee. Mr. Tynes prepared this report.

Directors of WES during this investigation and the preparation of this report were COL G. H. Hilt, CE, and COL John L. Cannon, CE. Technical Director was Mr. F. R. Brown.

CONTENTS

	Page
PREFACE	2
CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT	14
PART I: INTRODUCTION	5
Background	5
Scope	5
PART II: MATERIALS, MIXTURES, AND TEST SPECIMENS	7
Materials	7 7
Test Specimens	10
PART III: DISCUSSION OF TEST RESULTS OF CHEMICAL ADMIXTURES	12
Compressive Strength	12 14 15 15 21 21
PART IV: SUMMARY OF RESULTS AND THE RECOMMENDATION	23
Summary of Results	23 24
REFERENCES	25
TABLES 1-6	

CONVERSION FACTORS, U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U. S. customary units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	By	To Obtain
inches	25.4	millimetres
cubic yards	0.7645549	cubic metres
pounds (mass)	0.4535924	kilograms
pounds (mass) per cubic yard	0.59327631	kilograms per cubic metre
<pre>pounds (force) per square inch</pre>	0.006894757	megapascals

INVESTIGATION OF PROPRIETARY ADMIXTURES

PART I: INTRODUCTION

Background

1. New proprietary products intended to modify the properties of portland-cement concrete are developed and marketed from year to year. Some modifications of concrete properties resulting from the use of these products can be reduction in the amount of mixing water for equal workability, acceleration or retardation of setting time, more efficient entrainment of air, improvement in workability, and reduction in bleeding. Therefore, it is appropriate to evaluate the properties of these materials that appear to have potential value for use in Corps of Engineers work.

Purpose

2. The purpose of this investigation was to evaluate certain admixtures for use in concrete in Corps of Engineers Civil Works construction.

Scope

3. Two admixtures (SM-21-74 and SM-28-74) were evaluated according to CRD-C 87-72¹ (ASTM C 494-71) for acceptability as type A, water-reducing admixtures. One round (batch) of concrete was made on a third admixture (SM-4-75), which was also evaluated according to CRD-C 87-72 for compliance with the requirements for type A. Preliminary tests were conducted on a fourth admixture (SM-13-74), but testing was not completed because no significantly greater effect was produced when it was used as compared with water-reducing admixtures in general use. Two additional batches of concrete (mixture B1) were made with admixture SM-21-74, and one additional batch of concrete was made with

each of the admixtures, SM-28-74 (mixture Cl) and SM-4-75 (mixture El), reducing the quantity of admixture from that used in the initial test. Mixtures B2 and C2 were also made with admixture SM-21-74 and admixture SM-28-74, respectively.

PART II: MATERIALS, MIXTURES, AND TEST SPECIMENS

Materials

Portland cement

- 4. Type II portland cement (RC-658) from Texas and type II portland cement (RC-705) from Alabama were used in this investigation. Table 1 presents the results of chemical and physical tests of the cements. Aggregates
- 5. The fine natural aggregate (WES S-4(51)) and the coarse crushed limestone aggregate (CRD G-31(14)) were obtained from Mississippi and Tennessee, respectively. The aggregates were graded to meet the requirements of CRD-C $87-72^1$ (ASTM C 494-71). Table 2 gives the gradings and results of physical tests of the aggregates.

Air-entraining admixture

6. The air-entraining admixture (AEA-937) used in this investigation was a solution of neutralized vinsol resin.

Chemical admixture

- 7. The four commercially available proprietary admixtures obtained for this investigation were described as follows:
 - a. SM-21-74 is a condensation product of melamine and formaldehyde.
 - <u>b</u>. SM-28-74 is a sulfonated naphthalene formaldehyde condensate.
 - c. SM-4-75 is a high molecular weight sulfonated naphthalene condensate.
 - d. SM-13-74 is a high molecular weight naphthalene formal-dehyde condensate and a high molecular weight aliphatic phosphate.

Mixtures

8. Air-entrained concrete mixtures, containing 1-in. (25.4-mm)* nominal maximum size aggregate, were proportioned with and without the

^{*} A table of factors for converting U. S. customary units of measurement to metric (SI) units is presented on page 4.

chemical admixtures under test. The cement content of all mixtures was 517 lb/yd³ (307 kg/m³); slump was 2-1/2 \pm 1/2 in. (63.5 \pm 12.7 mm) for all mixtures except B2; and the air content when determined by ASTM Method C 231-75 was 6.0 + 1 percent for all mixtures except B2. The difference between the air content of the control concrete and that of the concrete containing the admixture under test did not exceed 0.5 percent except for mixture B2. All concrete mixtures except mixture B2 were proportioned, batched, mixed, sampled, and cured according to the requirements of CRD-C 87-72 with one exception. A reference laboratory Type II cement was used rather than a blend as specified in CRD-C 87-72. The quantity of air-entraining admixture varied with the different cements and proprietary admixtures and also as the amounts of the admixtures used changed. For some of the admixtures a greater amount of airentraining admixture was required than used in the control mixture to obtain the desired air content, and for others a smaller amount was required. Table 3 gives the chemical admixture and the quantities of airentraining admixture for each of the mixtures, designated A, B, Bl, B2, C, Cl, C2, D, E, and El. The batches were mixed in accordance with CRD-C 87-72, and the water-reducing admixture was introduced as the last ingredient to the batch. Following such introduction, the specified 2-min mixing, 3-min rest, and 1-min remixing were done.

9. Pertinent data on each mixture are summarized in the following tabulation:

Mix- ture Desig- nation	Batch No.	Water- Cement Ratio by Wt	Chemical Desig- nation	Admixture Quantity Used	Maximum Size Aggregate in. (mm)	Slump in. (mm)	Air Content, %, Pressure Method*
A	1	0.45		None	1 (25.4)	2-3/4 (69.8)	5.8
В	1	0.34	SM-21-74	3%**	1 (25.4)	2-1/2 (63.5)	6.2
A	2	0.45		None	1 (25.4)	2-3/4 (69.8)	6.0
В	2	0.34	SM-21-74	3%**	1 (25.4)	2-1/2 (63.5)	5.8
A	3	0.45	~-	None	1 (25.4)	2-3/4 (69.8)	6.0
В	3	0.34	SM-21-74	3%**	1 (25.4)	2-1/2 (63.5)	5.7
A	1	0.45		None	1 (25.4)	2-1/2 (63.5)	6.3
C	1	0.37	SM-28-74	1.49%+	1 (25.4)	2 (50.8)	6.3
A	2	0.45		None	1 (25.4)	2-3/4 (69.8)	5.8
				(Conti	nued)		

^{*} Method CRD-C 41 (ASTM C 231).

^{**} Percent of solution by weight of cement (solution contains 0.20 solids).

⁺ Percent of solution by weight of cement (solution contains 0.42 solids).

Mix- ture Desig- nation	Batch	Water- Cement Ratio by Wt	Chemical Desig- nation	Admixture Quantity Used	Maximum Size Aggregate in. (mm)	Slump in. (mm)	Air Content, %, Pressure Method
C A C	2 3 3	0.37 0.45 0.37	SM-28-74 SM-28-74	1.49%† None 1.49%†	1 (25.4) 1 (25.4) 1 (25.4)	2-1/2 (63.5) 2-1/4 (57.2) 2 (50.8)	6.0 5.7 5.8
A D	1	0.45	 SM-13-74	None 0.9%++	1 (25.4) 1 (25.4)	2-1/2 (63.5) 2-1/2 (63.5)	6.0 6.2
A E	1	0.45	 SM-4-75	None 1.49%‡	1 (25.4) 1 (25.4)	2 (50.8) 2-1/2 (63.5)	5.7 5.7
A Cl	1	0.45 0.38	 SM-28-74	None 1.2%†	1 (25.4) 1 (25.4)	2-1/4 (57.2) 2-1/4 (57.2)	5.7 5.8
A Bl	1	0.45	 SM-21-74	None 1.25%**	1 (25.4) 1 (25.4)	2-1/4 (57.2) 2-1/2 (63.5)	6.1 6.6
A Bl	2	0.45	 SM-21-74	None 1.25%**	1 (25.4) 1 (25.4)	2-3/4 (69.8) 2-1/4 (57.2)	6.3 6.6
A El	1	0.45	 SM-4-74	None 0.47%‡	1 (25.4) 1 (25.4)	2-3/4 (69.8) 2-1/4 (57.2)	6.2 6.5
A C2	1	0.45	 SM-28-74	None 0.42%†	1 (25.4) 1 (25.4)	2-3/4 (69.8) 2-1/2 (63.5)	6.2 6.5
A B2	1	0.45	 SM-21-74	None 1.55%**	1 (25.4) 1 (25.4)	2-3/4 (69.8) 4-1/4 (108.0)	6.3 10.0
A B2 B2	1 2 2	0.45 0.39 0.39	SM-21-74 SM-21-74	None 1.55%** 1.55%**	1 (25.4) 1 (25.4) 1 (25.4)	2-3/4 (69.8) 4-1/4 (108.0) 2-1/4 (57.2)‡‡	6.3 10.0 5.2‡‡

^{**} Percent of solution by weight of cement (solution contains 0.20 solids).

10. The liquid water-reducing admixtures were batched by weight. However, in order to compute dosage in the same units as were used to batch the air-entraining admixture, it was necessary to compute the unit weights. The values obtained were:

Admixture	<u>ml/lb</u>	Solids, %
SM-21-74	405	20
SM-28-74	370	42
SM-4-75	380	34

The relation of unit weight to reported solids content is shown in Figure 1.

[†] Percent of solution by weight of cement (solution contains 0.42 solids).

tt Percent solids by weight of cement.

^{*} Percent of solution by weight of cement (solution contains 0.34 solids).

^{##} Slump and air content after reducing the air content by vibration.

Figure 1. Relation of solids content (as reported by producer) to unit weight of liquid admixtures

Test Specimens

11. Three batches of concrete were made for each test condition, i.e., three for the reference mixture A and three each for mixtures B and C containing chemical admixtures SM-21-74 and SM-28-74, respectively. One batch of concrete of each was made on three different casting days. Only one batch of concrete was made for mixtures D and E that contained admixtures SM-13-74 and SM-4-75, respectively. No freezing-and-thawing tests or length-change measurements were made on concrete containing admixture SM-13-74. The tests and minimum number of types of tests conducted of the freshly mixed concrete and of the hardened concrete for each batch of the other two admixtures are shown below. Also, the same number and type of tests were made on all of the additional batches of concrete cast.

Types	No. of Types of Specimens	No. of Test Ages	No. of Conditions of Concrete	No. of Specimens
Water content		1	2	*
Slump	1	1	2	*
Air content	1	1	2	*
Time of setting	1	*	2	6
Compressive strength	1	5	2	30
Flexural strength	1	3	2	18
Freezing and thawing	1	1	2	12
Length change	1	1	2	6

^{*} One test determined on each batch of concrete mixed.

PART III: DISCUSSION OF TEST RESULTS OF CHEMICAL ADMIXTURES

- 12. Table 3 shows the concrete mixture data and the results of the tests on freshly mixed concrete. Tables 4 and 5 present the individual test and average results of tests on hardened concrete specimens. As a result of reported differences between test results in this study and those of commercial laboratories, i.e., resistance to freezing and thawing on two of the admixtures, additional mixtures using three of the admixtures, one per mixture, were made to investigate this discrepancy. It was suggested that the quantity of admixture being used may have caused the low durability factor (DFE) value or the slump was not high enough. All mixtures except mixture B2 were proportioned in accordance with requirements of CRD-C 87-72. The slump and air contents of mixture B2 were varied somewhat to provide information as to the effect of higher slump and using a higher initial air content and slump. The air content was reduced from 10 to 5.2 percent; the slump was lowered from 4-1/4 in. (108.0 mm) to 2-1/4 in. (57.2 mm) on one batch, and the other batch was used as produced. This reduction in air con tent was accomplished by vibrating the complete batch of concrete 2 min with an internal vibrator.
- 13. Table 6 gives the average results for each of all the types of tests with requirements of CRD-C 87-72. The following analysis of the results of chemical admixtures used in mixtures B and C will show the effects of chemical admixtures on both compressive and flexural strength, water reduction, frost resistance, time of setting, and length change on drying.

Compressive Strength

14. The average compressive strengths of concrete, as shown in Figure 2 and Table 4, contain different admixtures at 3, 7, 28, 180, and 365 days age. The average strength result (control mixture A), plotted in Figure 2 for each age, is the average of the specimens from

Figure 2. Average compressive strength of control mixture A (i.e., average of specimens from batches 1-8) and mixtures B, C, and E containing chemical admixtures at 3, 7, and 28 days age

batches 1-8 of the control mixture. The strength results of mixtures B, C, and E containing admixtures are considerably higher at each age tested than those of the reference mixture A. The average compressive strength results of mixture C were the highest of all the mixtures tested except at 3 days age where the strength results of mixture B were the highest. The compressive strength results of mixture B were also higher than those of mixture E at 3, 7, and 28 days age. The strength gain of concrete with two of the chemical admixtures (mixtures C and E) is quite similar (Figure 3). The compressive strength results met the specification requirements of CRD-C 87-72 at each age tested for all five types of chemical admixtures as given in CRD-C 87.

15. When the quantity of admixture was decreased for each of the three admixtures (SM-21-74, SM-28-74, and SM-4-75) from that used initially in mixtures B, C, and E, the compressive strength of

Figure 3. Average flexural strength of control mixture A (i.e., average of specimens 1-8) and mixtures B, C, and E containing chemical admixtures at 3, 7, and 28 days age

mixture Bl containing admixture SM-21-74 failed to meet the requirements of CRD-C 87-72 at 28 days age. The compressive strength results of the other admixtures met the requirements of CRD-C 87-72 at each age tested, i.e., through 28 days age for one admixture.

Flexural Strength

16. The average flexural strength of concrete, as shown in Figure 3 and Table 4, contain different admixtures at 3, 7, and 28 days age. The average strength result (control mixture A), plotted in Figure 3 for each age, is the average of the specimens from batches 1-8 of the control mixture. The strength results of mixtures B, C, and E

containing admixtures are considerably higher at each age tested than those of the reference mixture A. The strength results of mixture C were the highest at all ages tested, and those of mixture B were the next highest of the three admixtures tested. The strength gain of concrete with the three chemical admixtures is quite similar (Figure 3). The flexural strength results of all three admixtures met the specification requirements of CRD-C 87-72.

17. When the quantity of admixture was decreased for each of the three admixtures (SM-21-74, SM-28-74, and SM-4-75), the flexural strength of mixture Bl containing admixture SM-21-74 failed to meet the requirements of CRD-C 87-72 at 28 days age. The flexural strength results of the other admixtures met the requirements of CRD-C 87-72 at all ages tested.

Water Reduction

18. Table 5 gives the results of the water-reduction tests. The water reductions for mixtures B, C, and E were 25, 18, and 22 percent, respectively. It has been reported by Aignesberger, Fah, and Rey that a water reduction of 20 percent was obtained in mortar using a chemical admixture similar to that used in mixture B. All three admixtures used in mixtures B, C, and E, respectively, resulted in a higher degree of water reduction than customarily used water-reducing admixtures; however, the amount of water reduction met the requirements of CRD-C 87-72. When the quantities of these three admixtures were lowered, the amount of water reduction decreased but still met the requirements of CRD-C 87-72. The least amount of water reduction obtained with the lower quantities of admixture was 12.6 percent.

Resistance to Accelerated Freezing and Thawing

19. The results of tests for resistance to freezing and thawing show that resistance to freezing and thawing of concrete containing the water-reducing admixtures (mixtures B, C, and E) was lower than that

of the control mixture A not containing any of the admixtures (Table 5). Mixture B's relative resistance to freezing and thawing was reduced to 25 percent of mixture A (control) batches 1-3; mixture C was reduced to approximately 54 percent of mixture A (control) batches 4-6; and mixture E was reduced to 17 percent of mixture A (batch 8). All tests for resistance to freezing and thawing made when the specimens were 14 days old were according to CRD-C 20. Specimens from all mixtures B, C, and E containing chemical admixtures failed to meet the requirements of CRD-C 87-72 for resistance to freezing and thawing. Specimens from one batch of concrete (mixture Bl) containing 1.25 percent of admixture (SM-21-74) by weight of cement had a DFE of 77 which met the requirements of CRD-C 87-72. However, a repeat batch of this mixture resulted in an average DFE value of 40 which did not meet the requirements of CRD-C 87-72. Specimens from one batch of concrete (mixture Cl) with 1.2 percent of admixture (SM-28-74) and from one batch (mixture C2) with 0.42 percent of admixture (SM-28-74) by weight of cement had a DFE of 26 and 56, respectively, which did not meet the requirements of CRD-C 87-72.

- 20. Another high-gain water-reducing admixture was received for testing for compliance with CRD-C 87-72 for type A and gave similar results, i.e., the resistance to freezing and thawing was insufficient to comply with the specification.
- 21. In connection with the performance of tests on it, one special batch was made in which the air-entraining admixture quantity in the control batch (178 ml/yd³) was also used in the batch to which the water-reducing admixture was introduced. The result was a batch with 7-1/2-in. (190.5-mm) slump and 13 percent air. Specimens molded from it gave a DFE of 35. The batch which had the proper air content and slump and was made with the water-reducing admixture under test contained 73 ml of air-entraining admixture per cubic yard, and the specimens molded from it had a DFE of 13.
- 22. The behavior of these admixtures is different from that reported by all previous workers who have studied conventional water-reducing admixtures.
 - 23. Micrometric air content and air void spacing factor (\overline{L})

determinations were made by CRD-C 42-71¹ (ASTM C 457-71) on one beam from each of the concrete mixtures (A, B, Bl, C, Cl, and E) after they had been tested for frost resistance according to CRD-C 20. For frost resistance, the spacing factor should not be greater than 0.008 in. (0.203 mm).³⁻⁵ The spacing factors of the specimens containing the three admixtures SM-21-74, SM-28-74, and SM-4-75 are shown below as equal or higher than the 0.008-in. (0.203-mm) value. The values of

Water- Reducing	Mix- ture Desig-	Batch	Speci- men	DFE 300	Microm	Air Conte		Pressure	ī	-
Admixture	nation	No.	No.	Cycles	Entrained	Entrapped	Total	Method*	in.	mm
None	A	1	9357	84	5.5	0.6	6.1	6.3	0.003	0.08
SM-21-74	В	1	9290	32	2.4	1.2	3.6	6.2	0.011	0.28
SM-28-74	C	2	9358	55	3.8	1.1	4.9	6.0	0.008	0.20
SM-4-75	E	1	9476	14	2.7	1.0	3.7	5.7	0.012	0.30

^{*} Based on freshly mixed concrete (CRD-C 411); other air data based on hardened concrete (CRD-C 421).

specimens from mixtures B, C, and E are 0.011 in. (0.279 mm), 0.008 in. (0.203 mm), and 0.012 in. (0.305 mm), respectively, and thus are considerably higher than the value 0.003 in. (0.08 mm) of the specimen from the control mixture.

24. The air content data of the freshly mixed concrete tests, using CRD-C 41 , 1 in which the concrete was consolidated by rodding show that the air contents were approximately the same. However, the air content data of the hardened concrete, using CRD-C 42 , 1 in which the concrete was also consolidated by rodding show considerable difference in the air content between mixtures A, B, C, and E. For the hardened concrete containing admixtures, (mixtures B, C, and E), the air content data indicate a considerable decrease in the total air content. Also, the amount of entrapped air of the specimens containing admixtures is approximately twice that of the control specimen. Micrometric air content determinations were also made on a companion beam not subjected to freezing-and-thawing tests from mixtures Bl and Cl. From mixture Cl, \overline{L} of the beam was higher than 0.008 in. (0.203 mm), and from mixture Bl it was lower than 0.008 in. (0.023 mm). This lower spacing factor agrees with the higher DFE value of 77 obtained on companion beams.

The data for \overline{L} and DFE of these two beams are presented below:

Water- Reducing	ture Desig-	Batch	Speci- men	DFE 300	Micron	Air Conte		Pressure	ī	
Admixture	nation	No.	No.	Cycles	Entrained	Entrapped	Total	Method*	in.	men
SM-28-74	C1	1	9482	26	2.8	0.3	3.1	5.8	0.009	0.229
SM-21-74	B1	1	9488	77	5.8	0.8	6.6	6.6	0.004	0.102

 Based on freshly mixed concrete (CRD-C 41¹); other air data based on hardened concrete (CRD-C 42¹).

The relation of \overline{L} to DFE is shown in Figure 4.

- 25. Twenty-five batches of concrete were used to mold test specimens for freezing and thawing: 12 from mixture A, 7 from mixture B, 5 from mixture C, and 2 from mixture E. All of the DFE values for the B, C, and E mixtures (Figure 4) were lower than the lowest specimen from any batch of control mixture A except for one batch of Bl that gave a DFE of 77 and \overline{L} of 0.004 in. (0.102 mm). No explanation is available as to why this batch had a good air void system. Figure 5 shows the ranges in DFE of two specimens from each batch of mixtures A, B, C, and E.
- 26. The mixture proportions were adjusted to give the specified slump and air content of the completely mixed concrete. Therefore, the mixture just before the water-reducer was added was of very dry consistency. However, the full 2/3/1 mixing cycle was given to the mixture after the water-reducing admixture was added.
- 27. Davis reported that a chemical admixture similar to that used in mixture B did not affect the properties of hardened concrete. He stated that: "The admixture is added to the concrete on-site just before it is placed. The normal dosage is 1.5 percent of the admixture by weight of cement....The effect is temporary 30-60 minutes depending on ambient temperatures."
- 28. Two batches of concrete were made using mixture B2. In the first batch of concrete, the slump was 4-1/4 in. (108 mm) and the air content of the freshly mixed concrete was 10 percent. Specimens were made and tested according to CRD-C 87-72. The average DFE of the two specimens containing the admixture was 52. The average DFE of the two control specimens was 81. Even with the higher slump and higher air content of the concrete containing the admixture the results failed to meet the requirements of CRD-C 87-72, i.e., the DFE value was not equal to at least 80 percent of the control. Apparently, the higher slump

Figure 4. Relation of air void spacing factor (I) to durability factor (DFE)

Figure 5. Range in DFE of two specimens from each batch of mixtures A, B, C, and E

did not have any effect on the DFE. The second batch of concrete also had a slump of 4-1/4 in. (108 mm) and an air content of 10.0 percent, but the total batch of concrete was vibrated for 2 min, using an internal vibrator to reduce the air content to 5.2 percent and the slump to 2-1/4 in. (57.2 mm). Specimens were made and tested according to CRD-C 87-72. The average DFE value of the two specimens was 60. The test results still failed to meet the requirements of CRD-C 87-72.

29. Figure 6 shows the effect of adding the water-reducing

Figure 6. Effect of water-reducing admixtures on air-entraining admixture demand

admixtures on the air-entraining admixture demand of the concrete. The quantity of air-entraining admixture required to give 6 ± 0.5 percent air in concrete made with RC 658 portland cement was significantly greater than with RC 705 portland cement, possibly due in part to the higher surface area of RC 658. When SM-21-74 was added, the air-entraining admixture demand increased substantially; when the other liquid admixtures were added in the larger amounts tested, the air-entraining admixture demand decreased but increased when smaller amounts were added. It would be desirable to know whether other air-entraining admixtures show the same behavior.

Time of Setting

30. Table 5 presents the results of the time-of-setting tests. The quantities used allowed the admixture to meet the time-of-set requirements for type A chemical admixture. If the dosage had been increased, it is possible the admixtures would have met the requirement for one of the other types of chemical admixtures.

Length Change on Drying

- 31. The length-change deviation of the specimens containing an admixture from the control specimens was very small for mixtures meeting the requirements of CRD-C 87-72. Specimens tested were well within the specified limits of CRD-C 87-72, as shown in Table 5. The length change on drying for mixture B2 containing admixture SM-21-74 and 10 percent air content failed to meet the requirement of CRD-C 87-72. Apparently, this was a result of the high air content of 10 percent and a higher slump.
- 32. Tables 4 and 5 also show the results of the one batch of concrete containing chemical admixture SM-13-74 (mixture D). At the dosage of the admixture that was used, the concrete failed to meet the time-of-setting requirement of CRD-C 87-72. A smaller dosage should have been used if this requirement were to have been met, but since

the water reduction was approaching that of customarily used waterreducing admixture, further testing was discontinued.

33. In Table 6, the average values only of each type test for each mixture and specified limits of CRD-C 87-72 are given for ease of comparison of data. In columns where there is more than one batch number, the values are an average of that number of batches, otherwise values of one batch represent the one value.

PART IV: SUMMARY OF RESULTS AND THE RECOMMENDATION

Summary of Results

- 34. Resistance to freezing and thawing was significantly reduced by the addition of all three of the water-reducing chemical admixtures tested. An average DFE value of 76 was obtained on control batches 1-3, 85 on control batches 4-6, and 76 on control batch 8 of control mixture A. Average DFE's of 19, 47, and 13 were obtained on specimens with admixtures SM-21-74, SM-28-74, and SM-4-75, respectively; these values caused the admixtures not to meet the requirements of CRD-C 87-72 for resistance to freezing and thawing. It is clear that this was due to a failure to produce a proper air void system in the concrete.
- 35. The admixtures are not marketed as air-entraining admixtures. These data suggest that in the event they are to be used in concrete that needs to be air entrained in order to be frost resistant, they should be used together with an effective air-entraining admixture, perhaps with the use of an air-detraining agent as an intermediate step. When the high increase in water reduction was used in this study, i.e., nominal 13 to 25 percent, the concrete failed to meet the durability requirements of CRD-C 87-72. This does not mean to infer that the admixture in question will or will not comply with the specification when evaluated at lower water reductions.
- 36. The water reductions for admixtures SM-21-74, SM-28-74, and SM-4-75 were 25, 18, and 22.2 percent, respectively.
- 37. The specimens of the concrete containing admixtures had less length change on drying than those of the control mixture with the air content and slump as required by CRD-C 87-72.
- 38. Admixtures SM-21-74, SM-28-74, and SM-4-75 met the time-of-setting requirements for type A chemical admixture. The admixtures met all the requirements of CRD-C 87-72 except for resistance to freezing and thawing.
- 39. When these chemical admixtures are used to obtain a high degree of water reduction, they may be expected not to meet the

requirements for frost resistance in CRD-C 87-72 (ASTM C 494-71).

40. As a result of this investigation, Headquarters of Department of Army (HQDA), DAEN-CWE-C, plans to distribute an Engineer Technical Letter (ETL) to all Corps of Engineer Divisions and Districts, cautioning them in the use of these special water-reducing admixtures in concrete to be exposed to freezing-and-thawing conditions.

Recommendation

41. In order to take advantage of the high increase in water reduction of these special water-reducing admixtures in concrete exposed to freezing and thawing while wet, further research is recommended.

REFERENCES

- U. S. Army Engineer Waterways Experiment Station, CE, <u>Handbook</u> for Concrete and Cement, Aug 1949 (with quarterly supplements), Vicksburg, Miss.
- 2. Aignesberger, A., Fah, N. L., and Rey, T., "Melamine Resin Admixture Effect on Strength of Mortars," <u>Proceedings, American Concrete Institute</u>, Vol 68, Aug 1971, pp 608-616.
- 3. Mielenz, R. C. et al., "Origin, Evolution, and Effects of the Air Void System in Concrete; Part 4, The Air Void System in Job Concrete," Proceedings, American Concrete Institute, Vol 55, Oct 1958, pp 507-517.
- 4. Powers, T. C., "The Air Requirement of Frost-Resistant Concrete," Proceedings, Highway Research Board, Vol 29, 1949, pp 184-202.
- 5. Kleiger, P., "Effect of Entrained Air on Strength and Durability of Concrete Made with Various Maximum Sizes of Aggregate," <u>Proceedings</u>, Highway Research Board, Vol 31, 1952, pp 177-201.
- 6. Davis, B., "German Proof for Flowing Concrete," New Civil Engineer (special supplement), 15 May 1975, pp 26-27.

Table 1

Chemical and Physical Properties

of Type II Portland Cement

Properties	RC-658	RC-705		
Chemical D	ata			
SiO ₂ , %	22.4	22.8		
A1 ₂ O ₃ , %	4.9	4.0		
Fe ₂ O ₃ , %	3.9	4.2		
MgO, %	1.0	3.5		
so ₃ , %	2.0	1.7		
Loss on ignition, %	0.8	0.6		
Insoluble residue, %	0.12	0.26		
Na ₂ O, %	0.45	0.12		
K ₂ O, %	0.14	0.49		
Total alkalies, Na ₂ 0, %	0.54	0.44		
C ₃ S, %	50.5	45.6		
C ₃ A, %	6.4	3.5		
C ₂ S, %	26.0	30.9		
CaO, %	65.0	62.8		
C ₄ AF, %	11.8	12.7		
Physical D	ata			
Specific gravity	3.15	3.15		
Fineness, air permeability, cm ² /g	3295	3150		
Time of set, Gilmore:				
Initial, hr:min	3:20	3:15		
Final, hr:min	5:45	5:45		
Mortar expansion, autoclave test, %	0.00	0.10		
Air content, %	8.1	8.4		
False set - Pen. F/Init., %	87			
Compressive strength, psi (MPa)				
1 day 3 days 7 days 28 days	1010 (6.96) 2180 (15.03) 3160 (21.79) 4800 (33.09)	1630 (11.24) 2280 (15.72)		

Table 2

Gradings and Physical Properties

of Fine and Coarse Aggregates

	Coarse Aggregate CRD G-31(14)	Fine Aggregate (Sand) WES-1 S-4(51)
	Gradings, Percent Passing	
Sieve Size:		
l in. (25.0 mm)	100	
3/4 in. (19.0) mm)	75	
1/2 in. (12.5 mm)	50	
3/8 in. (9.5 mm)	25	
No. 4 (4.75 mm)		100
No. 8 (2.36 mm)		88
No. 16 (1.18 mm)	<u></u>	73
No. 30 (600 μm)		47
No. 50 (300 μm)	<u></u>	16
No. 100 (150 μm)		3
No. 200 (75 μm)		
Passing No. 200		
	Physical Properties	
Absorption, %	0.4	0.2
Specific gravity	2.72	2.64
Fineness modulus	7.00	2.73

Mixture Data and Results of Tests of Freshly Mixed Concrete (Individual Values and Averages)

							Chemica	1 Admixt							
								Amount	Ratio,						
									Pounds Water	Water-					
		Ma	x i mum						to Air-	Cement			Air Con-	Sand-	Quantity
			ize	Cement	Content		Weigh Cem		Entrained Admixture	Ratio			tent, Z,	Aggregate	Air-Entraining
Mixture Designation	Batch No.	in.	mm	1b/yd ³	kg/m ³	Designa- tion	1	1b/yd ³	m1/yd3	by Weight	in.	mp mm	Pressure Method	Ratio, 2 by Volume	Admixture ml/yd ³
Designation	110.	1111	LIMEL	10/14	NE/ III			10/34	mix/yu	werking	-111.	1141	riectiou	by vorume	mi/yu-
Cement RC-65			25 1		207					0.11	2 2/1			20	2/2
A	1	1	25.4	517	307				0.96	0.45	2-3/4	69.8	5.8	39	243
A	2	1	25.4	517	307				0.96	0.45	2-3/4	69.8	6.0	39	243
A	3	1	25.4	517	307				0.96	0.45	2-3/4	69.8	6.0	39	243
	Average	1	25.4	517	307				0.96	0.45	2-3/4	69.8	5.9	39	243
В	1	1	25.4	5.7	307	SM-21-74	3.00*	15.51	0.33	0.34	2-1/2	63.5	6.2	39	486
В	2	1	25.4	517	307	SM-21-74	3.00*	15.51	0.33	0.34	2-1/2	63.5	5.8	39	486
В	3	1	25.4	517	307	SM-21-74	3.00*	15.51	0.33	0.34	2-1/2	63.5	5.7	39	486
	Average	1	25.4	517	307	SM-21-74	3.00*	15.51	0.33	0.34	2-1/2	63.5	5.9	39	486
A	4	1	25.4	517	307				0.96	0.45	2-1/2	63.5	6.3	39	243
Å	5	1	25.4	517	307				0.96	0.45	2-3/4	69.8	5.8	39	243
Â	6	1	25.4	517	307				0.96	0.45	2-1/4	57.2	5.7	39	243
•	۰	-							0.70					-	
	Average	1	25.4	517	307				0.96	0.45	2-1/2	63.5	5.9	39	243
С	1	1	25.4	517	307	SM-28-74	1.49**	7.70	0.97	0.37	2	50.8	6.3	39	189
С	2	1	25.4	517	307	SM-28-74	1.49**	7.70	0.97	0.37	2-1/2	63.5	6.0	39	189
C	3	1	25.4	517	307	SM-28-74	1.49**	7.70	0.97	0.37	2	50.8	5.8	39	189
	Average	1	25.4	517	307	SM-28-74	1.49**	7.70	0.97	0.37	2-1/4	57.2	6.0	39	189
	7	1	25.4	517	307				0.96	0.45	2-3/4	69.8	6.0	39	243
D	1	1	25.4	517	307	SM-13-74	0.90+	4.65	0.47	0.43	2-1/2	63.5	6.2	39	459
U			23.4	317	307	3n-13-74	0.90:	4.03	0.47	0.41	2-1/2	63.3	0,2	39	437
Cement RC-70	5														
A	8	1	25.4	517	307				1.31	0.45	2	50.8	5.7	39	178
E	1	1	25.4	517	307	SM-4-75	1.49++	7.70	1.15	0.35	2-1/2	63.5	5.7	39	151
A	9	1	25.4	517	307				1.31	0.45	2-1/4	57.2	5.7	39	178
C1	1	1	25.4	517	307	SM-28-74	1.20**	6.20	1.00	0.38	2-1/4	57.2	5.8	39	189
A	10	1	25.4	517	307				1.31	0.45	2-1/4	57.2	6.1	39	178
A	11	1	25.4	517	307				1.31	0.45	2-3/4	69.8	6.3	39	178
	Average	1	25.4	517	307				1.31	0.45	2-1/2	63.5	6.2	39	178
B1	1	1	25.4	517	307	SM-21-74	1.25*	6.46	0.49	0.39	2-1/2	63.5	6.6	39	405
81	2	1	25.4	517	307	SM-21-74	1.25*	6.46	0.49	0.39	2-1/4	57.2	6.6	39	405
	Average	1	25.4	517	307	SM-21-74	1.25*	6.46	0.49	0.39	2-1/4	57.2	6.6	39	405
			25 /		307					0.45	2 244			39	178
A	12	1	25.4	517					1.31	0.45	2-3/4	69.8	6.2		
El	1	1	25.4	517	307	SM-4-75	0.47++	2.43	0.83	0.39	2-1/4	57.2	6.5	39	243
A	12	1	25.4	517	307				1.31	0.45	2-3/4	69.8	6.2	39	178
C2	1	1	25.4	517	307	SM-28-74	0.42**	2.17	0.83	0.39	2-1/2	63.5	6.5	39	243
A	13	1	25.4	517	307				1.31	0.45	2-3/4	69.8	6.3	39	178
82	1	1	25.4	517	307	SM-21-74	1.55*	8.01	0.47	0.39	4-1/4	108.0	10.0	39	411
^	13	1	25.4	517	307				1.31	0.45	2-3/4	69.8	6.3	39	178
B2 #	1	1	25.4	517	307	SM-21-74	1.55*	8.01	0.47	0.39	4-1/4 2-1/4	108.0 57.2	5.2	39	411

Percent of solution by weight of cement. Solution contains 0.20 solids (3% = 6278 ml/yd³) (1.25% = 2616 ml/yd³) (1.55% = 3240 ml/yd³).

Percent of solution by weight of cement. Solution contains 0.42 solids (1.49% = 2849 ml/yd³) (1.2% = 2294 ml/yd³) (0.42% = 799 ml/yd³).

Percent solids by weight of cement. Solution contains 0.34 solids (1.49% = 2926 ml/yd³) (0.47% = 923 ml/yd³).

Slump and air content were reduced from %=1/4 to 2-1/4 in. (114.3 to 57.2 mm) and 10.0 to 5.2 percent, respectively, by internal vibration.

Table 4

Results of Individual Compressive and

Flexural Strength Tests and Averages

			Stre	ngth Te	sts, ps	si	(MPa)			
Mixture					ys Age					
A B		Compr	essive				Flex	ural		
Batch	Mixt	ure A	Mixt	ure B	M	ixt	ure A	Mixt	ure B	
No.	psi	MPa	psi	_MPa_	ps	<u> </u>	MPa	psi	MPa	
1 1	2860	19.72	5540	38.20	465		3.21	685	4.72	
2 2	2900	19.99	6410	44.20	4.5	50	3.10	600	4.14	
3 3	2880	19.86	5190	35.78	4.5	55	3.14	565	3.90	
Average	2880	19.86	5710	39.37	45	55	3.14	615	4.24	
% Control			198					135		
				7 Da	ys Age					
		Compr	essive		10 1160		F1ex	ural		
	Mixt	ure A		ure B	M	ixt	ure A	Mixt	ure B	
	psi	MPa	psi	MPa	ps	<u> </u>	MPa	psi	MPa	
	3710	25.58	6320	43.57	56	60	3.86	785	5.41	
	3510	24.20	6840	47.16	69	90	4.76	750	5.17	
	3500	24.13	5500	37.02	54	15	3.76	615	4.24	
	3570	24.61	6220	42.88	60	00	4.14	715	4.93	
			174					119		
			essive				ural			
		ure A		ure B		Mixture A			ure B	
	psi	MPa	psi	_MPa_	psi	<u> </u>	MPa	psi	MPa	
	5040	34.75	7040	48.54		00	4.14	890	6.14	
	5110	35.23	7680	52.95	68		4.69	870	6.00	
	4860	33.51	5860	40.40	75		5.17	685	4.72	
	5000	34.47	6860	47.30	67	5	4.65	815	5.62	
			137					121		
		180 D	ays Age				365 D	ays Age		
		Compr	essive				Compr	essive		
		ure A		ure B	-		ure A		ure B	
	psi	MPa	psi	MPa	psi	<u> </u>	MPa	psi	MPa	
	6650	45.85	7880	54.33	668		46.06	10,710		
	6130	42.26	8980	61.91	629		43.37		65.02	
	6460	44.54	6890	47.50	661		45.57		51.71	
	6410	44.20	7920	54.61	653	30	45.02		63.50	
			124					141		

Table 4 (Continued)

		16	ible 4 (Continu	ieu)									
			Stre	ngth Te			(MPa)							
Mixture				3 Da	ys A	Age								
$\underline{\mathbf{A}} \underline{\mathbf{C}}$			ressive					exural						
Batch		ure A	Mixt			ure A	Mixture C							
No.	psi	<u>MPa</u>	psi	MPa		psi	MPa	psi	MPa					
4 1	2640	18.20	5430	37.44		440	3.03	715	5.43					
5 2	2700	18.62	5170	35.65		425	2.93	625	4.31					
6 3	2880	19.86	5250	36.20		480	3.31	695	4.79					
Average	2740	18.89	5280	36.40		450	3.10	680	4.69					
% Control			193					151						
		7 Days Age												
		Compr	essive			-0-	F1e	xural						
	Mixt	ure A	Mixt	ure C		Mixt	ure A	Mixt	ure C					
	psi	MPa	psi	MPa		psi	MPa	psi	MPa					
	3500	24.13	6540	45.09		510	3.52	750	5.17					
	3800	26.20	6260	43.16		540	3.72	755	5.20					
	3890	26.82	6250	43.09		580	4.00							
	3730	25.72	6350	43.78		545	3.76	750	5.17					
			170					138						
				28 Da	ys I	Age								
			essive				Fle	xural						
	Mixt	ure A	Mixt	ure C		Mixture A		Mixt	ure C					
	psi	MPa	psi	MPa		psi	_MPa_	psi	MPa					
	4550	31.37	8020	55.30		650	4.48	820	5.65					
	5180	35.71	7950	54.81		700	4.83	845	5.83					
	5090	35.09	6960	47.99		785	5.41	900	6.21					
	4940	34.06	7640	52.68		710	4.90	855	5.90					
			155					120						
		180 Da	ys Age				365 Da	ys Age						
	-		essive					essive						
	Mixt	ure A	Mixt	ure C		Mixt	ure A		ire C					
	psi	MPa	psi	MPa		psi	MPa	psi	MPa					
	6390	44.06	10,460			6620	45.64	10,700	73.77					
	6290	43.37		66.95		6860	47.30	10,160						
	6900	47.57	10,250			7550	52.06	11,390	78.53					
	6530	45.02	10,140	69.91		7010	48.33	10,750						
			155					153						

Table 4 (Continued)

			Stre		sts, psi	(MPa)						
Mixture				3 Da	ys Age							
$\frac{A}{D}$			essive			Flex						
Batch	-	ure A		ure D	-	ure A	-	ure D				
No.	psi	<u>MPa</u>	psi	MPa	psi	<u>MPa</u>	psi	MPa				
7 1 % Control	2880	19.86	3490 121	24.06	450	3.10	580 129	4.00				
				7 Da	ys Age							
		Compr	essive			Flex	ural					
	-	ure A	Mixt	ure D		ure A	Mixt	ure D				
	psi	MPa	psi	MPa	psi	MPa	psi	MPa				
	3500	24.13	4160 119	28.68	570	3.93	640 112	4.41				
		28 Days Age										
		Compre	essive			Flex	ural					
		ure A	Mixt	ure D		ure A	Mixt	ure D				
	psi	MPa_	psi	<u>MPa</u>	psi	MPa	psi	MPa				
	4860	33.51	5340 110	36.82	750	5.17	715 95	4.93				
		180 Da	ays Age			365 Da	ays Age					
		Compr	essive			Compre	essive					
	Mixt	ure A	Mixture D			ure A		ure D				
	psi	<u>MPa</u>	psi	<u>MPa</u>	psi	<u>MPa</u>	psi	MPa				
	6460	44.54	6610 102	45.57	6610	45.57	6430 97	44.33				
Mixture				3 Day	ys Age							
A E	7 4 1 1	Compr	essive			Fle	xural					
Batch	Mixt	ure A	Mixt	ure E		ure A	Mixt	ure E				
No.	psi	MPa	psi	MPa	psi	<u>MPa</u>	psi	MPa				
8 1 % Control	2820	19.45	4910 174	33.85	455	3.14	575 126	3.96				
				7 Day	s Age							
		Compr	essive		32	Fle	xural					
	Mixt	ure A		ure E	Mixt	ure A	Mixt	ure E				
	psi	MPa	psi	MPa	psi	MPa	psi	MPa				
	3750	25.86	5330 142	36.75	530	3.65	675 127	4.65				

Table 4 (Continued)

			Stre	ngth Te	sts	, psi	(MPa)					
Mixture				28 Da	ys .	Age						
A E		Compre	essive				Flexu	ral				
Batch	Mixt	ure A	Mixt	ure E		Mixt	ure A	Mixt	ure E			
No.	psi	MPa	psi	MPa		psi	MPa	psi	MPa			
8 1 % Control	5120	35.30	6790 46.82 132			635	4.38	755 118	5.21			
		180 Da	ays Age				365 Day	ys Age				
			essive				Compre					
	Mixt	ure A		ure E		Mixt	ure A		ure E			
	psi	MPa	psi	MPa		psi	MPa	psi	MPa			
	7220	49.78	9040 125	62.33								
Mixture				3 Da	ys .	Age						
A C1		Compre	essive		-		Flex	ural				
Batch	Mixt	ure A	Mixt		Mixt	ure A	Mixt	ure Cl				
No.	psi	MPa	psi	MPa		psi	MPa	psi	MPa			
9 1 Control	2350	16.20	4040 172	27.85		410	2.83	585 143	4.03			
	7 Days Age											
		Compr	essive				Flex	ural				
	Mixt	ure A	Mixt	ure Cl		Mixt	ure A	Mixt	ure Cl			
	psi	MPa	psi	MPa		psi	MPa	psi	MPa			
	3240	22.34	4680 144	32.27		505	3.48	750 149	5.17			
				28 Da	ays Age							
		Compre	essive				Flex	ural				
	Mixt	ure A	Mixt	ure Cl		Mixt	ure A	Mixt	ure Cl			
	psi	MPa	psi	MPa		psi	MPa	psi	MPa			
	5180	35.71	7000 135	48.26		700	4.83	825 118	5.69			
		180 Da	ays Age				365 D	ays Age				
		Compr	essive					essive				
	Mixt	ure A		ure Cl			ure A	Mixt	ure Cl			
	psi	MPa	psi	MPa		psi	MPa_	psi	MPa			
	6220	42.89	8860 136	61.09								

Table 4 (Continued)

	-		Stre	ngth Te	sts,	psi	(MPa)				
Mixture					ys Ag						
A B1		Compre	essive				Fle	xural			
Batch	Mixt	ure A		ure Bl		Mixt	ure A	Mixt	ure B1		
No.	psi	MPa	psi	MPa]	osi	MPa	psi	MPa		
10 1	2280	15.72	3020	20.82		405	2.79	450	3.10		
11 2	2210	15.24	3160	21.79		390	2.69	505	3.48		
Average	2240	15.48	3090	21.30		395	2.74	480	3.29		
% Control			138					122			
				7 Da	ys Ag	ge					
			essive		_		Fle	xural			
	Mixt	ure A	Mixt	ure B1	_	Mixt	ure A		ure Bl		
	psi	MPa	psi	MPa	J	osi	MPa	psi	MPa		
	3140	21.65	3880	26.75		495	3.41	635	4.38		
	2960	20.41	4180	28.82		490	3.38	545	3.76		
	3050	21.03	4030	27.78		490	3.40	590	4.07		
			132					120			
			essíve		_	Flexural Mixture A Mixtur					
		ure A		ure Bl	_				ure Bl		
	psi	_MPa_	psi	<u>MPa</u>	1	osi	<u>MPa</u>	psi	MPa		
	4870	33.58	5180	35.71		760	5.24	740	5.10		
	4750	32.75	5340	36.82		<u>760</u>	5.24	660	4.55		
	4810	33.16	5260	36.26		760	5.24	700	4.82		
			109					95			
			ays Age		365 Days Age						
			essive					essive			
		ure A		ure Bl			ure A		ure Bl		
	psi	MPa	psi	<u>MPa</u>	1	psi	_MPa	psi	MPa		
Mixture				3 Da	ys A	ge					
A E1	-	Compr	essive				Fle	xural			
Batch	Mixt	ure A		ure El		Mixt	ure A	Mixt	ure El		
No.	psi	MPa	psi	MPa	j	psi	MPa	psi	MPa		
12 1	2070	14.27	2790	19.24		370	2.55	450	3.10		
% Control			135					122			
				7 Da	ys A	ge					
		Compr	essive				Fle	xural			
	Mixt	ure A	Mixt	ure El		Mixt	ure A	Mixt	ure El		
	psi	MPa	psi	MPa]	psi	MPa	psi	MPa		
	2620	18.06	3500	24.13		475	3.28	580	4.00		
			134					122			
			(Cor	ntinued)							
			(001	· · · · · · · · · · · · · · · · · · ·							

Table 4 (Continued)

	Strength Tests, psi (MPa) 28 Days Age													
Mixture				28 Da	ys Age									
<u>A</u> <u>E1</u>			essive				xura1							
Batch	Mixt	ure A		ure El		ure A		ire El						
No.	psi	MPa_	psi	MPa	psi	MPa_	psi	<u>MPa</u>						
12 1 % Control	4250	29.30	5140 121	35.44	660	4.55	750 114	5.17						
		180 Da	ays Age			365 Da	ays Age							
			essive			Compr	essive							
	Mixt	ure A		ure El	Mixt	ure A	Mixtu	ire El						
	psi	MPa	psi	МРа	psi	_MPa_	psi	MPa						
Mixture				3 Da	ys Age									
A C2		Compre	essive			Fle	xural							
Batch		ure A	Mixt	ure C2		ure A		ure C2						
No.	psi	MPa	psi	MPa	psi	MPa	psi	MPa						
12 1 % Control	2070	14.27	3230 156	22.27	370	2.55	480 130	3.31						
				7 Da	ys Age									
		Compr	essive			Fle	xural							
	Mixt	ure A		ure C2	Mixt	ure A	Mixt	ure C2						
	psi	MPa	psi	MPa	psi	MPa	psi	MPa						
	2620	18.06	3830 146	26.41	475	3.28	615 129	4.24						
	28 Days Age													
	-	Compr	essive		Flexural									
	Mixt	ure A		ure C2	Mixt	ure A	Mixture (
	psi	MPa	psi	MPa	psi	MPa	psi	MPa						
	4250	29.30	5680 134	39.16	660	4.55	740 112	5.10						
		180 D	ays Age		365 Days Age									
	-		essive				essive							
	Mixt	ure A		ure C2	Mixt	ure A	Mixt	ure C2						
	psi	MPa	psi	MPa	psi	MPa	psi	_MPa_						
Mixture				3 Da	ys Age									
A B2		Compr	essive			Fle	xural							
Batch	Mixt	ure A	Mixt	ure B2		ure A		ure B2						
No.	psi	MPa	psi	MPa	psi	MPa	psi	<u>MPa</u>						
13 1 % Control	2210	15.24	3160 143	21.79	390	2.69	505 129	3.48						

Table 4 (Concluded)

				noth Toot		(MD-)				
			Stre		s, psi	(MPa)				
Mixture				7 Days	Age	- F1				
$\frac{A}{R}$ $\frac{B2}{R}$	163		essive	D2	Wd		xural	D2		
Batch		ure A		ure B2		ure A	Mixture B2			
No.	psi	MPa_	psi	<u>MPa</u>	psi	MPa_	psi	<u>MPa</u>		
13 1	2960	20.41	4180	28.82	490	3.38	545	3.76		
Control			141				111			
				28 Days	Age					
		Compr	essive		80	F1e	xural			
	Mixt	ure A		ure B2	Mixtu	ire A	Mixtu	re B2		
	psi	MPa	psi	MPa	psi	MPa	psi	MPa		
	4750	32.75	5340	36.82	760	5.24	660	4.55		
			112				87			
		180 D	ays Age			365 D	ays Age			
			essive				essive			
	Mixt	ure A		ure B2	Mixtu	ure A		re B2		
	psi	MPa	psi	MPa	psi	MPa	psi	MPa		
Mixture				3 Days	Δαρ					
A B2(2)		Compr	essive	3 Days	Age	Fle	xural			
Batch	Mixt	ure A		e B2(2)	Mixtu	ure A	Mixture	B2(2)		
No.	psi	MPa	psi	MPa	psi	MPa	psi	MPa		
13 1	2210	15.24	4170	28.75	390	2.69	565	3.90		
Control			189				145			
				7 Days	Age					
				, bujo	Flexural					
		Compr	essive		1160	Fle	xural			
	Mixt		essive Mixtur	e B2(2)				B2(2)		
	Mixt	Compr ure A MPa		e B2(2) MPa		Fle ure A MPa	xural Mixture psi	B2(2) MPa		
	psi	ure A MPa	Mixtur psi	MPa	Mixtupsi	MPa	Mixture	MPa		
		ure A	Mixtur psi 4520		Mixtu	ıre A	Mixture			
	psi	ure A MPa	Mixtur psi	MPa 31.16	Mixtu psi 490	MPa	Mixture psi 705	MPa		
	psi	wre A MPa 20.41	Mixtur psi 4520 153	MPa	Mixtu psi 490	MPa 3.38	Mixture psi 705 144	MPa		
	<u>psi</u> 2960	MPa 20.41 Compr	Mixtur psi 4520 153 essive	MPa 31.16 28 Days	Mixtu psi 490	MPa 3.38	Mixture psi 705 144 xural	MPa 4.86		
	psi 2960 Mixt	wre A MPa 20.41	Mixtur psi 4520 153 essive	MPa 31.16	Mixtupsi 490 Age	MPa 3.38	Mixture psi 705 144 xural Mixture	MPa 4.86		
	psi 2960 Mixt	ure A MPa 20.41 Comprure A MPa	Mixtur psi 4520 153 essive Mixtur psi	MPa 31.16 28 Days e B2(2) MPa	Mixtu psi 490 Age Mixtu psi	MPa 3.38 Fleure A MPa	Mixture psi 705 144 xural Mixture psi	MPa 4.86 4.86 B2(2) MPa		
	psi 2960 Mixt	MPa 20.41 Comprure A	Mixtur psi 4520 153 essive Mixtur psi 4820	MPa 31.16 28 Days e B2(2)	Mixtupsi 490 Age	MPa 3.38 Fleure A	Mixture psi 705 144 xural Mixture psi 825	MPa 4.86		
	psi 2960 Mixt	Comprure A MPa 20.41 Comprure A MPa 32.75	Mixtur psi 4520 153 essive Mixtur psi 4820 101	MPa 31.16 28 Days e B2(2) MPa 33.23	Mixtu psi 490 Age Mixtu psi	Fleure A MPa 3.38 Fleure A MPa 5.24	Mixture psi 705 144 xural Mixture psi 825 109	MPa 4.86 4.86 B2(2) MPa		
	psi 2960 Mixt	Comprure A MPa 32.75	Mixtur psi 4520 153 essive Mixtur psi 4820 101 easys Age	MPa 31.16 28 Days e B2(2) MPa 33.23	Mixtu psi 490 Age Mixtu psi	Fleure A MPa 3.38 Fleure A MPa 5.24	Mixture psi 705 144 xural Mixture psi 825 109 eays Age	MPa 4.86 2 B2(2) MPa		
	95i 2960 Mixt psi 4750	Comprure A MPa 32.75	Mixtur psi 4520 153 essive Mixtur psi 4820 101 lays Age	MPa 31.16 28 Days e B2(2) MPa 33.23	Mixtupsi 490 Age Mixtupsi 760	Fleure A MPa 3.38 Fleure A MPa 5.24	Mixture psi 705 144 xural Mixture psi 825 109	MPa 4.86 2 B2(2) MPa 5.69		

Table 5 Results of Individual Tests of Setting Time, Relative Durability (DFE), Length Change, Air Void Spacing Factor (\overline{L}) , and Averages

					Tim	e of Setting		Length- Change
	Batch	Ini	tial	Fi	nal	or beering	Relative DFE	Shrink-
Mixture	No.	hr	min	hr	min	Specified	at 300 Cycles	age, in
Α	1	4	30	7	28		71 66	0.018
	2	4	20	7	5		77 78	0.014
	3	4	47	8	4		83 79	0.011
Average		4	36	7	32		76	0.014
В	1(a)*	4	40	7	48		28 32	0.016
	2	4	53	8	19		18 17 7	0.012
	3	5	5	8	47		11	0.007
Average		4	53	8	18		19	0.012
Deviation	from control	1	+17		+46	Not more than 1 hr earlier nor 1-1/2 hr later		
A	4(b)*	5	0	7	10		84 84	0.015
	5	5	15	7	15		86 83	0.015
	6	6	0	7	50		89 86	0.016
Average		5	25	7	25		85	0.015
С	1	6	30	8	15		38 37	0.017
	2(c)*	6	20	7	55		55 55 47	0.013
	3	6	35	8	5		47	0.012
Average		6	25	8	5		47	0.014
Deviation	from control	+1	0		+40	Not more than 1 hr earlier nor 1-1/2 hr later		
Α	7	4	47	8	4		No test	No test
D	1	8	55	11	5		No test	No test
Deviation	from control	+4	8	+3	1	Not more than 1 hr earlier nor 1-1/2 hr later		
A	8	5	0	7	50		76 77	No test
Average							76	
Е	1(d)*	6	5	8	50		14 12	No test
Average Deviation	from control	+1	5	+1	0	Not more than 1 hr earlier nor 1-1/2 hr later	13	
A	9	5	10	7	20		83 79	No test
Average							81 27	
C1	1(e)*	6	0	8	5		24	No test
Average							26	
Deviation	n from contro	1	+50		+45	Not more than 1 hr earlier nor 1-1/2 hr later		

⁽a) $\overline{L} = 0.011$ in. (b) $\overline{L} = 0.003$ in. (c) $\overline{L} = 0.008$ in. (d) $\overline{L} = 0.012$ in. (e) $\overline{L} = 0.009$ in.

Table 5 (Concluded)

					T4-	e of Setting		Length Change
	Batch	Ini	tial	Fi	nal	e of Setting	Relative DFE	Shrink-
Mixture	No.	hr	min	hr	mín	Specified	at 300 Cycles	age, in
A	10	4	55	6	40		82	0.010
							78 81	
	11	5	20	7	20		81	0.010
Average		5	10	7	0		80	0.010
B1	1(f)*	4	45	6	40		77 77	0.007
							38	
	2	4	50	6	50		43	0.010
Average		4	50	6	45		59	0.008
Deviation	from contr	ol	-20		-15	Not more than 1 hr earlier nor 1-1/2 hr later		
A	12	5	40	7	35		76	0.010
							74	
Average							75 34	0.010
E1	1	5	10	7	5		62	0.006
Average							48	0.006
Deviation	from contr	ol	-30		-30	Not more than 1 hr earlier nor 1-1/2 hr later		
A	12	5	40	7	35		76 74	0.010
Average							75	0.010
C2	1	5	25	7	30		54 58	0.005
Average							56	0.005
	from contr	ol	-15		-5	Not more than 1 hr earlier nor 1-1/2 hr later		0.003
A	13	5	20	7	20		81 81	0.010
Ave:age							81	0.010
В2	1	5	35	7	35		47	0.014
							56 52	
Average Deviation	from contr	ol	+15		+15	Not more than 1 hr earlier nor 1-1/2 hr later	32	0.014
Α	13	5	20	7	20		81	0.010
Average							81 81	0.010
B2(2)	1	5	0	6	45		62	0.001
							57	
Average Deviation	from contr	ol	-20		-35	Not more than 1 hr earlier nor 1-1/2 hr later	60	0.001

Table 6

Average Values of Test Data and Specified Limits of CRD-C 87-72

	Mixture A B	Mixtur A	re C	Mixtur	e D	Mixtu	re E	Mixtu A	re Cl	
	Batch No.	Batch :		Batch N		Batch		Bacch		
Test	(1,2,3)(1,2,3)	(4,5,6)(1,	,2,3)	(7)	(1)	(8)	(1)	(9)	(1)	Specified
Water content, % of control	75.0	82.0		92.0		77.8		83.8		95 max
Initial setting time: Deviation from control	+17 min	+1 hr 0 m:	in ·	+4 hr 8	min	+1 hr 5	min	+50 min		<+1 hr <-1-1/2 hr
Final setting time: Deviation from control	+46 min	+40 min		+3hr 1 m	nin	+1 hr () min	+45 min		<+1 hr <-1-1/2 hr
3 days compressive strength: Percent of control	198	193		121		174		172		110 min
3 days flexural strength: Percent of control	135	151		129		126		143		100 min
7 days compressive strength: Percent of control	174	170		119		142		144		110 min
7 days flexural strength: Percent of control	119	138		112		127		149		100 min
28 days compressive strength: Percent of control	137	155		110		132		135		110 min
28 days flexural strength: Percent of control	121	120		95		118		118		100 min
180 days compressive strength: Percent of control	124	155				125		136		100 min
365 days compressive strength: Percent of control	141	153								100 min
Relative durability factor: Percent of control	25	55				17		32		80 min
Length change: Shrinkage percent control	86	93								135 max
	Mixture	Mixture	Mixt			xture		xture		
	A B1 Batch No.	A El Batch No.	A Batch	C2	A	B2 ch No.		B2(2) ch No.		
	(10,11)(1,2)	(12) (1)	(12)		(13)	(1)	(13)	(1)	Speci	fied
Water content, % of control	87.4	87.4	87.4		87.4		87.4		95 ma	ix
Initial setting time: Deviation from control	-20 min	-30 min	-15 mi	í n	+15	nin	-20	min	<+1 h	nr ./2 hr
Final setting time: Deviation from control	-15 min	-30 min	-5 mir	1	+15 m	nin	-35	min	<+1 h	ır
3 days compressive strength: Percent of control	138	135	156		143		189		110 m	1/2 hr
<pre>3 days flexural strength: Percent of control</pre>	122	122	130		129		145		100 m	iin
7 days compressive strength: Percent of control	132	134	146		141		153		110 m	in
7 days flexural strength: Percent of control	120	122	129		111		144		100 m	iin
28 days compressive strength: Percent of control	109	121	134		112		101		110 m	iin
28 days flexural strength: Percent of control	95	114	112		87		109		100 m	iin
180 days compressive strength: Percent of control									100 m	iin
365 days compressive strength: Percent of control									100 m	iin
Relative durability factor: Percent of control	74	64	75		64		74		80 mi	n
Length change: Shrinkage percent control	80	60	50		140		10		135 m	ax

In accordance with ER 70-2-3, paragraph 6c(1)(b), dated 15 February 1973, a facsimile catalog card in Library of Congress format is reproduced below.

Tynes, William O
Investigation of proprietary admixtures, by William O.
Tynes. Vicksburg, U. S. Army Engineer Waterways
Experiment Station, 1977.
1 v. (various pagings) illus. 27 cm. (U. S. Waterways Experiment Station. Technical report C-77-1)
Prepared for Office, Chief of Engineers, U. S. Army,
Washington, D. C., under CWR Work Unit 31138.
Includes bibliography.

1. Admixtures. 2. Air-entrained concretes. 3. Concrete admixtures. 4. Plasticizers. 5. Water-reducing agents. I. U. S. Army. Corps of Engineers. (Series: U. S. Waterways Experiment Station, Vicksburg, Miss. Technical report C-77-1)
TA7.W34 no.C-77-1