

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education

Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	

PHYSICS 9702/33

Advanced Practical Skills 1

May/June 2011

2 hours

Candidates answer on the Question Paper.

Additional Materials: As list

As listed in the Confidential Instructions.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer both questions.

You will be allowed to work with the apparatus for a maximum of one hour for each question.

You are expected to record all your observations as soon as these observations are made, and to plan the presentation of the records so that it is not necessary to make a fair copy of them.

You may lose marks if you do not show your working or if you do not use appropriate units.

Additional answer paper and graph paper should be used only if it becomes necessary to do so.

You are reminded of the need for good English and clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
Total		

This document consists of 11 printed pages and 1 blank page.

BLANK PAGE

You may not need to use all of the materials provided.

For Examiner's Use

- 1 In this experiment you will investigate how the motion of a paper strip depends on its width.
 - (a) (i) Measure and record the width x of the thin paper strip, as shown in Fig. 1.1.

Fig. 1.1

<i>x</i> =	 cm	[1]

(ii) Connect the clips to the strip, as shown in Fig. 1.2.

Fig. 1.2

(b) (i) Set up the apparatus with the top clip supported on the nail, as shown in Fig. 1.3.

Fig. 1.3

For Examiner's Use

(ii) Twist the wooden rod through an angle of approximately 45° in a horizontal plane, as shown in Fig. 1.4.

For Examiner's Use

Fig. 1.4

Release the rod and watch its movement.

The wooden rod completes one swing by twisting one way and then back the other way, as shown in Fig. 1.4.

Τ

The time taken for each complete swing is *T*.

By timing several of these complete swings, determine an accurate value for T.

		i
_	[0]	
=	121	i

(c)) By cutting new strips from the graph paper, repe values of x and T. Values of x should be in the ra		For Examiner's
	Include values of $\frac{1}{x}$ in your table of results.		Use
		[9]	
(d)) (i) Plot a graph of T on the y -axis against $\frac{1}{x}$ on	the x-axis. [3]	
	(ii) Draw the straight line of best fit.	[1]	
	(iii) Determine the gradient and y-intercept of the	s line.	
		ot =[2]	

7

For Examiner's Use

(e)	It is suggested that the relationship between T and x is	For
	$T = \frac{a}{x} + b$	Examiner's Use
	where a and b are constants.	
	Using your answers from (d)(iii) , determine the values of <i>a</i> and <i>b</i> . Give appropriate units.	
	a =	
	<i>b</i> =[1]	
(f)	State one problem with determining an experimental value of T for $x = 15$ cm.	
	[1]	
		/

You may not need to use all of the materials provided.

For Examiner's Use

- 2 In this experiment you will investigate the deflection of a metre rule when a mass is suspended from its centre.
 - (a) (i) Set up the apparatus as shown in Fig. 2.1 with a distance *l* between the supports of approximately 95 cm.

Fig. 2.1

(ii) Measure and record l.

1_	[4]
ι =	

(iii) Midway between the supports, measure and record the height h_0 of the bottom of the rule above the bench.

$$h_0 = \dots [1]$$

- (b) (i) Use the small loop of string to suspend the mass from the rule, midway between the supports.
 - (ii) Midway between the supports, measure and record the new height *h* of the bottom of the rule above the bench.

(iii) Calculate the deflection d of the beam where $d = h_0 - h$.	For Examiner's Use
d =	
percentage uncertainty =	
$l = \dots $ $h_0 = \dots $ $h = \dots $ $d = \dots $ [4]	
[+7]	

(e)	It is	suggested that the quantities d and l are related by the equation	For
		$d = k l^3$	Examine Use
	whe	ere k is a constant.	
	(i)	Using your data, calculate two values of <i>k</i> .	
		first value of $k = \dots$	
		second value of $k = \dots$ [1]	
	(ii)	Explain whether your results support the suggested relationship.	
	(,	Explain Whother your recalls support the suggested relationering.	
		[1]	
	(iii)	Justify the number of significant figures that you have given for your values of k .	
		[1]	
		[1]	
			1

(f) (i)	Describe four sources of uncertainty or limitations of the procedure for this experiment.	For Examiner's Use
	1	
	2	
	3	
	J	
	4	
	[4]	
(ii)	Describe four improvements that could be made to this experiment. You may suggest the use of other apparatus or different procedures.	
	1	
	2	
	3.	
	J	
	4	
	[4]	

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2011 970