Date: 2021/03/18 Reg: 20BD50405

Construction and working of an electrochemical cell

Electrochemical cell (also known as Galvanic cell) is a device used to convert chemical energy (produced in a redox reaction) into electrical energy.

If we take a Zn rod and place it in a container filled with CuSO₄ solution, heat will be produced. This happens due a spontaneous **redox reaction** as given below:

As the reaction would proceed, Zn rod would get eroded, Cu particles get deposited and solution would become warm.

An Electrochemical Cell

Oxidation reaction in Zn rod releases 2e⁻ and are taken by Cu²⁺ ion in CuSO₄ solution. If these two half reactions can be separated, then the electrons can be made to move through a wire. In this manner, we can produce electrical energy from chemical energy. The salt bridge is a concentrated solution of inert electrolytes. It is required for completing the circuit. It allows the movement of ions from one solution to the other.

Applications: Electrochemical cell would be useful to be able to convert this chemical energy to electrical energy (in Battery) instead of heat energy. This process is also used in electroplating industry to coat Fe metal with Zn/Al coatings.

20B050405

Expt. No.: 7 Date: 2021/03/18

Experiment	Construction and working of an Zn-Cu electrochemical cell				
Problem definition	Measurement of electrode potential and construction of a battery system				
Methodology	Single electrode potentials of Zn/Zn ²⁺ and Cu/Cu ²⁺ system and Daniel Cell				
Solution	Electromotive force measurement (EMF) as voltage				
Student learning outcomes	Students will learn to perform a) Electrode potential relevant to battery b) Understanding of a normal battery system				

Principle: The electromotive force (emf) of an electrochemical cell is measured by means of a potentiometer. An electrochemical cell (E_{cell}) is considered as a combination of two individual single electrodes. The potential difference between the two single electrode potentials is a measure of emf of the cell (E_{cell}). In order to measure the potential difference between electrodes in contact with electrolyte containing the same cation, it is necessary to have another electrode in contact with electrolyte of same cation, both the half-cells connected through a salt bridge. Saturated calomel electrode (SCE; $E_{calomel}$) whose potential is known, is used as a reference electrode and it is coupled with the metal electrode for which the potential is to be determined.

Hg / Hg₂Cl₂ (s), saturated KCl | (N/10) electrolyte of the metal / Metal

From the emf of the cell involving saturated calomel electrode and metal electrode dipped in its solution of 0.1 N electrolyte, electrode potential of the metal electrode is readily calculated using the standard potential of calomel electrode as;

$$\begin{split} E_{cell} &= {E_{M/M}}^{+} - \, E_{calomel} \\ {E_{M/M}}^{+} &= E_{cell} + E_{calomel} \end{split}$$

E_{cell} is total emf of the cell. Electrode potential of the metal electrode is given by Nernst equation as;

$$E_{M/M}^{+} = E^{\circ} + \underline{RT} \text{ In } a_{M}^{n+}$$
 nF

$$E_{M/M}^{+} = E_{M/M}^{+} - \underline{RT} \text{ In } a_{M}^{n+}$$
 nF

$$E_{M/M}^{\circ}^{+} = E_{M/M}^{+} - \underline{0.0595} \text{ Iog } a_{M}^{n+}$$

Requirements:

Reagents and solutions: CuSO₄ stock solution (0.1N), ZnSO₄ stock solution (0.1N), KCl salt.

Apparatus: Digital potentiometer, copper electrode, zinc electrode, calomel electrode, 100 mL beaker, burette, 50 ml standard flasks.

20BDS0405

Procedure:

Calibrate the digital potentiometer with the help of the wires to display 1.018 V. The metal electrode is sensitized by dipping in a small quantity of 1:1 nitric acid containing a small quantity of sodium nitrite until effervescence occurs. Then the electrode is washed well with distilled water. 50 mL of the given concentration of the electrolyte solution (0.01 N, 0.05 N and 0.1 N) is taken in a beaker and its corresponding metal electrode is introduced. This is connected with the saturated calomel electrode (half-cell) by means of a salt bridge. The metal electrode is connected to the positive terminal and the calomel electrode is connected to the negative terminal of the potentiometer. EMF of the cell (E_{cell}) is measured and noted in **Table 1**. Standard electrode potential $[E^{\circ}_{M/M}]^{2+1}$ is computed using Nernst equation (Eq. 1).

Table 1: EMF measured for various concentrations of M/Mⁿ⁺ system

Electrode/	Electrolyte	F (V)	$\mathbf{E}_{\mathbf{M}'\mathbf{M}+} =$	$\mathbf{E}^{\circ}_{\mathbf{M}\mathbf{M}}^{^{\dagger}}$	Average	
Electrolyte	conc. (N)	$\mathbf{E}_{\mathrm{cell}}$ (V)	$E_{cell} + E_{calomel}$	[From Eq. (1)]	$\mathbf{E}^{\circ}_{\mathbf{M}\mathbf{M}}^{+}$	
	0.01 N	-1.107	~0.9623	- 0.7931		
Zn/Zn ²⁺	0.05 N	-1:112	- 0.8673	-0.8213	-0.8179	
	0.1 N	-1.117	- 0.8723	~ D-8332_		
	0.01 N	0.092	0.3367	0.3999		
Cu/Cu ²⁺	0.05 N	0.095	0.3397	0.3826	0.3301	
	0.1 N	0.101	0:3457	0.3848		

Solution Temperature (T) =
$$^{\circ}$$
C; Potential of SCE = 0.244 + 0.0007 (25 $^{\circ}$ C) = 0.2447
$$E^{\circ}_{M/M}^{+} = E_{M/M}^{+} - \underline{0.0595} \text{ log } [\gamma_{c} \times C] - - - - - (1)$$

where, E° is standard electrode potential of metal electrode; a_M^{n+} is activity of metal ions in solution $(a_M^{n+} = \gamma_c[C])$; γ_c is activity coefficient (Table 2) and C is concentration of electrolyte solution.

Table 2: Individual activity coefficients of Cu²⁺ and Zn²⁺ in water at 25 °C

Metal ion system (Cu ²⁺ /Zn ²⁺)	0.001	0.002	0.005	0.01	0.02	0.05	0.1	0.2
Activity coefficient (γ _c)	0.905	0.870	0.809	0.749	0.675	0.570	0.485	0.405

Use this space for detailed calculation

20BDS0405:

CALCULATIONS 1 -

O For zn

Formulalled: Nerst Equation EM/M+ = Em/M+ - 0.0595 Log (12x0)

He know, n= 2

i). Eznizny = -0-8623 V, [c] = 0.01 N, Yc = 0.749

Then, Using Merst Equation,

Ezn/zht = -0.8623 - 0.0595 log (0.749 x 0.01)

= -0.7991 V

"i) Eunient = -0.8673 V, [C] = 0.05 N, Yc = 0.570 Using Nerst Equation,

Ecnish+ = -0.86+3 - 0.0595 log(0.570x0.05).

= -0.8213 V

Til 7. Eznizat = -0.8 723 V, [c] = 0.1 H, Yc= 0.485

Using Nerst Equation,

E'zn/zn++ = -0.87234, -000551.10 (0.1x 0-485) = -0.8332 V

Average E'zn/zn++ = -0.79914-0.82134-0.83324 = -0.8179 V

3 For Cu, We know, n=2,

DECURCY = 0.3367 V, [[] = 0.01N, YC = 0.749

Using New Equation, Ecucum = 0-3367 - 0.0595 log (0.01x0.749)

6.2999 V

(1) FCUICH = 0.33974, [c] = 0.05H, Yc = 0.570 Using NewstEq", E0cucutt = 0.33971-0.0595 log(0.5 x0570)

= 0.385 6 V (11) Eculary = 0.34574, [C] = 0.14, Yc = 0.485 Wing Nest Eq. , Ecurut = 0-34574 - 0-0595 Log (0-1x0-485)

= 0.3848 Average Fullate = 0-3939+0.3856+0.3848. = 0.3901 V

20BD50405

Construction of Daniel cell and measurement of its voltage with three different concentrations of Cu/Zn solutions:

In the Daniel cell, copper and zinc electrodes are immersed in the equimolar solution of CuSO₄ and ZnSO₄ respectively.

At the anode, zinc is oxidized as per the following half-reaction: $Zn_{(s)} \to Zn^{2+}_{(aq)} + 2e^-$

At the cathode, copper is reduced as per the following reaction: $Cu^{2+}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$

The overall reaction is: $Zn_{(s)} + Cu^{2+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$ Construct Daniel cell using the following concentrations of Copper and Zinc solutions and record the voltage of the cells in Table 3.

Table 3: EMF of Daniel Cell observed from three different conc. of Zn and Cu solutions

Metal	Concentration (N)	Metal	Concentration (N)	EMF observed (E _{cell} / V)
Zn/Zn ²⁺	0.01 N	Cu/Cu ²⁺	0.01 N	0.967
	0.02 N		0.02 N	0.977
	0.05 N		0.05 N	1.101
			Average	1.105 \/

Results:

- (a). Standard electrode potential of Copper (E°) = -0.8179 V vs. SCE
- (b). Standard electrode potential of Zinc (E^{o}) = ______0.3901 \checkmark vs. SCE
- (c). EMF of the constructed Daniel cell = $1.105 \lor$