| Nom    | _ |       |  |
|--------|---|-------|--|
| Prénom |   | Note  |  |
| Groupe |   | 11000 |  |

Algorithmique INFO-SPÉ S4 Partiel nº 4 (P4) 14 mai 2019 Feuilles de réponses

| 1 |  |
|---|--|
| 2 |  |
| 3 |  |
| 4 |  |

Réponses 1 (Floyd revisité – 3 points)

|     | ment modifier Floyd pour detecter des circuits absorbants : |
|-----|-------------------------------------------------------------|
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
| 4   |                                                             |
| omi | ment utiliser $Floyd$ pour déterminer le centre du graphe : |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |
|     |                                                             |

# Réponses 2 (ARM ou non? – 2 points)

| e graphe partiel $T$ est-il un ARM de $G$ | 7? ( | DUI – NON |  |  |
|-------------------------------------------|------|-----------|--|--|
| i oui, expliquer :                        |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
| non, donner un contre-exemple :           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |
|                                           |      |           |  |  |

## Réponses 3 (Mangez des crêpes – 11 points)

### 1. Graphe représentant le projet :



### 2. Spécifications :

La fonction  $tri\_topo$  (G) retourne une solution de tri topologique pour le graphe G sans circuit, dont tous les sommets sont atteignables depuis le sommet 0.



FEUILLES DE RÉPONSES – PARTIEL n° 4 (P4) –

3. (a) Comment calculer les dates au plus tôt de chaque tâche à partir de ce typ

| Dates a | u plus t | ôt pour   | la recett    | e: |   |          |     |   |   |   |         |
|---------|----------|-----------|--------------|----|---|----------|-----|---|---|---|---------|
| start   | A        | В         | $\mathbf{C}$ | D  | E | F        | G   | Н | I | J | $e^{i}$ |
|         |          |           |              |    |   |          |     |   |   |   |         |
|         |          | e avant d |              |    |   | que tâch | e ? |   |   |   |         |

(d) Spécifications :

La fonction duration(G) calcule la durée minimale du projet représenté par le graphe G.



# Réponses 4 (Prim, tout simplement – 5 points)

### Spécifications :

La fonction Prim(G) retourne un ARPM (Graph) du graphe connexe G.

