

Task Lab04 ข้อ 1 (Lab04_1) แบบฝึกปฏิบัติการครั้งที่ 4

Array และ String

จุดประสงค์

เมื่อผ่านปฏิบัติการนี้แล้ว นักศึกษาจะสามารถ

- 1) เขียนโปรแกรมโดยใช้ Array ได้
- 2) เขียนโปรแกรมโดยใช้ String ได้

การส่งงาน

เข้าสู่เว็บ grader.cs.science.cmu.ac.th และ login ด้วย user และ password ที่แจกให้ทาง email

- เลือกเมนู Course > 66-204114 > เลือกข้อหรือ Task ที่ต้องการส่งงาน
- Upload ไฟล์ .java ที่มีชื่อเดียวกันกับชื่อ Task เช่น Lab04_1.java
- ให้เขียน comment เป็นรหัสนักศึกษาและชื่อไว้ด้านบนไฟล์

คำสั่ง

จงเขียนโปรแกรมเชิงวัตถุ เพื่อรับค่าขนาด (N) และรับข้อมูลเลขจำนวนเต็ม ลงใน Matrix ขนาด N x N จนเต็ม ตาราง แล้วนำมาตรวจสอบว่า Matrix นั้นเป็น Identity Matrix (I) หรือ Upper Triangular Matrix (U) หรือ Lower Triangular Matrix (U) หรือเป็นชนิดอื่น (O)

Hint: ให้ ออกแบบ Class ที่ประกอบด้วยเมท็อดอย่างน้อย 2 เมท็อด

Identity Matrix (I) หมายถึง Matrix ที่มีข้อมูลในแนวทแยง (ซ้ายบนไปขวาล่าง) เป็น 1 ส่วนข้อมูลอื่นจะมีค่าเป็น 0 ดังตัวอย่าง

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

Upper Triangular Matrix (U) หมายถึง Matrix ที่มีข้อมูลส่วนด้านล่างแนวทแยงเป็น o ทั้งหมด ดังตัวอย่าง

6	-2	44	-5	2
0	10	0	5	4
0	0	2	77	100
0	0	0	9	22
0	0	0	0	-1

Lower Triangular Matrix (L) หมายถึง Matrix ที่มีข้อมูลส่วนด้านบนแนวทแยงเป็น 0 ทั้งหมด ดังตัวอย่าง

1	0	0	0	0
4	1	0	0	0
5	20	21	0	0
22	1111	100	32	0
41	35	52	34	77

Input มี N+1 บรรทัด

บรรทัดแรก เป็นเลขจำนวนเต็ม N แทนขนาดของเมตริก A ขนาด NxN , 1 <= N<= 10000 อีก N บรรทัด เป็นสมาชิกของเมตริก A แต่ละบรรทัดเป็นเลขจำนวนเต็ม Bij ทั้งหมด N จำนวนคั้นด้วยช่องว่าง โดย Bij เป็นสมาชิกของเมตริกแถวที่ i คอลัมน์ที่ j, และ -100000 <= Bij <= 100000 , i,j = 1... N

Output มี 3 บรรทัด

เป็นอักขระ 1 ตัว (I หรือ U หรือ L หรือ O) แทนผลการตรวจสอบประเภทของเมตริกตามเงื่อนไขข้างต้น

ตัวอย่าง Input และ Output

ตัวอย่างที่	Input	Output	คำอธิบาย
1	5	1	เป็น Identity Matrix
	10000		
	01000		
	00100		
	00010		
	00001		
2	3	U	เป็น Upper Triangular Matrix
	120		
	0 1 2		
	0 0 1		
3	3	L	เป็น Lower Triangular Matrix
	300		
	4 6 0		
	571		
4	3	0	อื่นๆ
	1 2 3		
	4 5 6		
	789		