SESIÓN 2

Gráficos

- **4.** Representa gráficamente la función $x(t) = v_x t + \frac{1}{2}at^2$ en el intervalo $t \in [0,1]$ para los valores $v_x = 5 \ m/s$ y $a = -3.2 \ m/s^2$.
- 5. Representa gráficamente la función $f(x) = e^{-x} \sin(2x)$ en el intervalo $x \in [-4, 4]$.
- 6. La presión atmosférica p varía en función de la altura h según la expresión $p=1035e^{-0.12h}$, donde la altura se mide en kilómetros y la presión en milibares. Representa gráficamente la variación de la presión con la altura para valores $h \in [0,30]$ km.

Control de flujo

- 7. Calcula la suma $\sum_{n=1}^{10} \frac{1}{n}$
- 8. Genera la matriz triangular de dimensión $n \times n$ con n = 10 definida por $a(i,j) = \begin{cases} \frac{2\pi}{n} & \text{si } j = i \\ ij & \text{si } j < i \\ 0 & \text{si } j > i \end{cases}$
- 9. Implementa un programa que calcule el factorial de un número.
- 10. Puesto que π es la suma de la serie

$$\pi = \sum_{n=0}^{\infty} 16^{-n} \left(\frac{4}{8n+1} - \frac{2}{8n+4} - \frac{1}{8n+5} - \frac{1}{8n+6} \right)$$

podemos calcular una aproximación de π truncándola hasta $n=N_{max}$:

$$\pi \approx \sum_{n=0}^{N_{max}} 16^{-n} \left(\frac{4}{8n+1} - \frac{2}{8n+4} - \frac{1}{8n+5} - \frac{1}{8n+6} \right)$$

- a) Escribe un programa que calcule el valor aproximado de π para un N_{max} concreto.
- b) ¿Para qué N_{max} se obtienen 10 cifras exactas de π ?
- c) ¿Para qué N_{max} se obtiene una aproximación de π al menos tan precisa como la almacenada en la variable π ?