Batch: Hinglish ECE

DPP-03

Subject: Electronic Devices & Circuits Chapter: Basic SC Physics

[MCQ]

- In a pure Si, intrinsic carrier concentration is
 - $n_i = 1.5 \times 10^{10} / cm^3$ it is desired to have hole concentration $p_0 = 1.5 \times 10^{15} / \text{cm}^3$ then required doping will be
 - (a) Phosphorous with concentration

$$N_S = 1.5 \times 10^{15} / cm^3$$

- (b) Boron with concentration $N_s = 1.5 \times 10^{10} / \text{cm}^3$
- (c) All with concentration $N_S = 1.5 \times 10^{15} / \text{cm}^3$
- (d) As with concentration $N_S = 2.25 \times 10^{15} / \text{cm}^3$

[MCQ]

- In pure Ge, impurities are added such that hole concertation is found to be $p_0 = 1.25 \times 10^{10} / \text{cm}^3$ and electrons concentration is found to be
 - $n_0 = 5 \times 10^{14}$ /cm³ then which of the following is true?
 - (a) Intrinsic carrier concentration is

$$n_i = 2.5 \times 10^{12} / \text{cm}^3$$

- (b) Intrinsic carrier concentration is
 - $n_i = 2.5 \times 10^{13} \mbox{/cm}^3$ and it is n-type semiconductor.
- (c) Intrinsic carrier concentration is
 - $n_i = 1.25 \times 10^{10} / \text{cm}^3$ & is p-type semiconductor
- (d) None of these

[MCQ]

- Which of the following is true about doped semiconductors.
 - (a) Minority carrier concentration is directly proportional to intrinsic carrier concentration.
 - (b) Minority carrier concentration is inversely proportional to intrinsic carrier concentration.
 - (c) Minority carrier concentration is directly proportional to doping concentration.
 - (d) None of these.

[MCQ]

- In a p-type semiconductor concentration of holes and electrons are $p_0 = 10^{15}/\text{cm}^3$, $n_0 = 10^{10}/\text{cm}^3$. We want to change the concentration of electrons to 10¹¹/cm³ then we need to add
 - (a) Phosphorous with concentration $N_D = 10^{11}/\text{cm}^3$
 - (b) Phosphorous with concentration $N_D = 9 \times 10^{14}$
 - (c) As with concentration $N_D = 10^{14}/\text{cm}^3$.
 - (d) Boron with concentration $N_D = 10^{14}/\text{cm}^3$.

[MCQ]

- In Si, donors are added to the extent $N_D = 10^{10}/\text{cm}^3$. Intrinsic carrier concentration $n_i = 1.5 \times 10^{10} / \text{cm}^3$ then which of the following is true?
 - (a) It is p-type semiconductor with

$$p_0 = 2.25 \times 10^{10} / \text{cm}^3$$

(b) It is n-type semiconductor with

$$n_0 = 10^{10} / \text{cm}^3$$

(c) It is p-type semiconductor with

$$p_0 = 1.5 \times 10^{10} / cm^3$$

(d) It is n-type semiconductor with

$$n_0 = 2.08 \times 10^{10} / cm^3$$

[MCQ]

- a pure Ge is doped with Boron in the ratio 1:10⁶ i.e. 1 atom per 10⁶ atoms of Ge if density of Ge is
 - 4×10^{22} /cm³ and intrinsic carrier concentration is

$$n_i = 2 \times 10^{11} / \text{cm}^3 \text{ then}$$

- (a) Concentration of electrons is $n_0 = 10^6/\text{cm}^3$
- (b) Concentration of holes is $p_0 = 10^6/\text{cm}^3$
- (c) Concentration of electrons is $n_0 = 4 \times 10^{16} / \text{cm}^3$
- (d) None of these

[MCQ]

7. In pure Si is doped with donor impurities

 $N_D = 10^{16}/\text{cm}^3$. At room temperature to,

 $n_i=1.5\times 10^{10}/cm^3$. At room temperature to, concentration of electrons is n_0 & concentration of holes is ρ_0 . Now temperature is increased to T_1 and at T_1 , value of n_i is $3\times 10^{10}/cm^3$. (Double of the initial value) then new concentration of electrons & holes will be

- (a) $n_0 = n_0 \& p_{0'} = 2 p_0$
- (b) $n_0 = 2n_0 \& p_{0'} = 2 p_0$
- (c) $n_0 = n_0 \& p_0^- = 4 p_0$
- (d) $n_0 = 2n_0 \& p_0 = 4 p_0$

[NAT]

8. A pure Si is converted into n-type semiconductor with impurity doping concentration $N_D = 10^{15}/\text{cm}^3$. If intrinsic carrier concentration $n_i = 1.5 \times 10^{10}/\text{cm}^3$ &

 $\frac{\mu_n}{\mu_\rho}$ = 2.5 then the ration of conductivity of doped

semiconductor to conductivity of pure semiconductor is _____.

[MSQ]

- **9.** Minority carrier concentration in a doped semiconductor will increase if
 - (a) Operating temperature decreases
 - (b) Doping concentration increases
 - (c) Doping concentration decreases
 - (d) Operating temperature increases

[MCQ]

- 10. In presence of electric field:
 - (a) Electrons and holes flow in opposite direction and contribute current in opposite direction.
 - (b) Electrons and holes flow in same direction and contribute current in same direction.
 - (c) Electrons and holes flow in opposite direction and contribute current in same direction.
 - (d) None of these.

Answer Key

- 1. (c)
- 2. (a)
- 3. (c)
- **4. (b)**
- 5. (d)

- 6. (a)
- 7. (c)
- 8. (4.76×10^4)
- 9. (c, d)
- **10.** (c)

Any issue with DPP, please report by clicking here:- $\frac{https://forms.gle/t2SzQVvQcs638c4r5}{https://smart.link/sdfez8ejd80if}$ For more questions, kindly visit the library section: Link for web: $\frac{https://smart.link/sdfez8ejd80if}{https://smart.link/sdfez8ejd80if}$

PW Mobile APP: https://smart.link/7wwosivoicgd4