Indian Institute of Technology, Kharagpur

Instruction: The test is in open-book, open-notes mode. Answer all questions. No marks will be awarded without proper justification. Notations used are as explained in the class.

1. [2+2=4 mark] Here is a variation of the ElGamal Signature scheme. The key is constructed in a similar manner as before: Alice chooses a generator g of Z_p^* and a random integer a, $0 \le a \le p-2$, such that $\gcd(a, p-1) = 1$, and computes $g^a \mod p$. Alice's public key is $(p, g, g^a \mod p)$ and her private key is a. Let $m \in Z_p^*$ be a message to be signed. Alice computes the signature (r, s) on message m, where

$$r = g^k \mod p,$$

$$s = (h(m) - kr)a^{-1} \mod (p-1).$$

Here h is a suitable hash function. The only difference from the original ElGamal Signature Scheme is the computation of s. Answer the following questions concerning this modified scheme:

- (a) Describe how a signature (r, s) on a message m would be verified using Alice's public key.
- (b) Describe computational advantage of the modified scheme over the original scheme.
- 2. [2+2=4 mark]
 - (a) Determine the Galois field $GF(3^3)$ generated by $x^3 + 2x + 1 = 0$ and list down the polynomial equivalents for each ternary 3-tuple in this field.
 - (b) Find the inverse of 121 in $GF(3^3)$ generated by $x^3 + 2x + 1 = 0$.
- 3. [1+2=3 mark] The field $\mathsf{GF}(2^5)$ can be constructed as $\mathbb{Z}_2[x]/(x^5+x^2+1)$.
 - (a) Compute $(x^4 + x^2) \times (x^3 + x + 1)$.
 - (b) Using the **Extended Euclidean algorithm**, compute $(x^3 + x^2)^{-1}$.
- 4. [2 mark] Show that the Decisional Diffie-Hellman (DDH) problem is not hard in the multiplicative group Z_p , for any odd prime p.
- 5. [3+3=6 mark] Let E be the modular elliptic curve defined by $y^2=x^3+3x \pmod{17}$.
 - (a) Find all points of E (including the point at infinity).
 - (b) Find 2(8, 14).

- 6. [3 mark] Let \mathcal{G} be a Bilinear Diffie-Hellman (BDH) instance generator, i.e., \mathcal{G} on input a security parameter k outputs (q, G_1, G_2, e, P) where q is prime, G_1, G_2 are groups of order $q, e: G_1 \times G_1 \to G_2$ an admissible symmetric bilinear pairing and P a generator of G_1 . Show that if the Computational Diffie-Hellman (CDH) problem in G_2 is easy, then the BDH problem with respect to \mathcal{G} is easy.
- 7. [3 mark] Let $e: G_1 \times G_1 \to G_2$ be a symmetric admissible bilinear pairing, where both G_1 and G_2 are prime order groups of order q. For a fixed but arbitrary $Q \in G_1^*$ define the isomorphism $f_Q: G_1 \to G_2$ by $f_Q(P) = e(P,Q)$. Show that if the Decisional Diffie-Hellman (DDH) problem is hard in G_2 then f_Q is strongly one-way. (A Strong One-Way function is a function which is easy to compute and can be inverted only with a negligible probability on a random input or it is hard to invert on all but a negligible fraction of inputs.)

