武汉大学2018-2019学年第一学期

《大学物理》B(下)期末试卷(计算机学院)

	学院	学号	姓名	成绩
1. 判断对错,对的打(√),错的打(X),每小题1分				
	1. 一个物体的	电阻是它的固有性质,不	下随其温度、形状和 戶	己寸变化。 ()
	2. 在金属中, 电	1子的定向漂移形成电流	,电子的定向漂移速率	ጆ等于电子的热运动速率。(
	3. 一个运动的	电荷在磁场中受洛伦兹力	力作用运动方向发生值	扁转,所以洛伦兹力对运动的电
荷做功。()				
	4. 对抗磁质来	说,其相对磁导率大于1	,磁化后磁介质内部	磁场增强。()
	5. 电场线起于	正电荷,终止于负电荷;	同理, 磁感应线起	F磁体的N极,而终止于磁体的S
极。	()			
	6. 铁磁质具有	临界转变温度居里点,当	当其温度高于居里点,	其显示铁磁性, 当其温度低于
居里点时,显示顺磁性。()				
	7. 楞次定律表	明,闭合回路中感应电	流产生的磁通量总是	反抗回路中原磁通量的变化。
()			
	8. 感生电场和	静电场对电荷的作用规律	津相同,可表示为 \vec{F} =	$q\vec{E}$,它们都是保守力场。(
	9. 一个具有一	定结构因素(匝数,形状,	大小等)的线圈,其	自感系数可用下式求得 $L = \frac{-\xi_L}{dI/dt}$
(]	其中 <i>I</i> 为通过线圈	的电流大小), 所以通	过改变电流可有效地	, 改变其自感。()
	10. 位移电流是	是带电导体机械运动产生	的电流,它在导体中	¹ 运动可产生热量并对外做功。
()			
	11. 在电磁波中	,波的强度与其电场强	度振幅成正比。()
	12. 电磁波在不	同介质中传播时,根据。	介质的性质不同,既可	可以以横波的形式传播,也可以
以纵波的形式传播。()				
	13. 光在真空中	传播时其速度为C,波长	· 为λ,当光从真空中4	传入一折射率为n(n>1)的介质
时,	其频率不变,	而波长变长。()		
	14. 电磁波从光	疏介质射向光密介质在	界面处发生发射,有	半波损失; 而透射波没有半波损
失。	()			

- 15. 两条无限长平行圆导线通反向电流,当两条导线的间距为其直径的10倍时,其单位长度上的自感为零。()
 - 16. 一个以速率 $v = \frac{1}{2}C(C$ 为光速)运动的粒子,其动能为 $E_k = \frac{1}{2}mv^2 = \frac{1}{8}mC^2$ 。 ()
 - 17. 为了降低路面反射光对司机的影响,应该佩戴竖直偏振的太阳镜。()
 - 18. 狭义相对论表明固有长度最长,而固有时间最短。()
- 19. 根据德布罗意的物质波理论,微观粒子的物质波是一种概率波,其波函数的强度,即波函数的模的平方反映了粒子在空间出现的概率分布。()
- 20. 根据玻尔的经典氢原子模型,电子在原子核外的定态轨道上运动,且在这些定态轨道上电子角动量L是量子化的,满足 $L=mvr=n\frac{h}{2\pi}$ 。()

2. (本题10分)

根据安培定律,磁场对电流的作用力可表示为 $d\vec{F} = Id\vec{l} \times \vec{B}$, $d\vec{F}$ 为磁场 \vec{B} 对电流元 $Id\vec{l}$ 的作用力;一个运动电荷Q在磁场 \vec{B} 中所受的洛伦兹力为 $\vec{F} = Q\vec{v} \times \vec{B}$, \vec{v} 为运动电荷的速度。试运用洛伦兹力公式推导安培定律。

3. (本题10分)

- 一同轴电缆由半径分别为 r_1 和 r_2 的两个同轴薄壁导体圆筒组成,设恒定电流 I由内壁流入,外筒流出,两圆筒间是相对磁导率为 μ_r 的绝缘介质。求:
 - (1) 同轴电缆内、外磁感应强度的分布;
 - (2) 同轴电缆单位长度上的自感。

4. (本题10分)

一束自然光,其光强为I₀,使其变成完全水平线偏振的偏振光,需要至少几个偏振片,透过偏振光的强度多大?要使此线偏振光通过偏振片后方向转过90°变成竖直偏振光,至少需要再加几个偏振片,透射最大光强是原来自然光光强的多少倍?

5. (本题10分)

一射电望远镜的天线设在湖岸上,距湖面高度为h,对岸地平线上方有一恒星正在升起,恒星发出波长为 \(\rangle \) 的电磁波。求: 当天线测得第1级干涉极大时恒星所在的角位置。

6. (本题10分)

一衍射光栅,每厘米有400条透光缝,每条透光缝宽度为 a=1×10⁻⁵m,在光栅后放一焦距f=1m 的凸透镜,现以λ=500nm的单色平行光垂直照射光栅,求(1)透光缝b的单缝衍射中央明条纹宽度 为多少?(2)在该宽度内,有几个光栅衍射主极大?

7. (本题10分)

 π 介子是一种不稳定的粒子,从它产生到它衰变经历的时间即为它的寿命,已测得静止 π 介子的平均寿命 $\pi = 2 \times 10^{-8}$ s. 某加速器产生的 π 介子以速率 u = 0.98 c 相对实验室运动。 求 π 介子衰变前在实验室中通过的平均距离。

8. (本题10分)

康普顿效应表明,当高能X射线照射到某一物质上并被散射时,在散射线中除了有与原波长相同的波长成分外,还有波长变长的成分,其波长偏移公式为 $\Delta\lambda=\lambda-\lambda_0=\frac{h}{m_0c}(1-\cos\theta)$,其中 λ 和 λ_0 分别为散射线和入射线波长,h为普朗克常数, m_0 为电子的静止质量,C为光速, θ 为散射角,试结合光的波粒二象性、能量守恒定律、动量守恒定律及矢量运算法则推导此波长偏移公式,要求写出严格的推导过程并图示。

9. (本题10分)

分别求电子和一质量为0.1 kg的金属球以v=10000~m/s的速率运动时的德布罗意波长;如果电子受加速电压U=10000 V作用时,求其德布罗意波长。其中 $m=9.11\times 10^{-31}~kg$ 为电子质量, $h=6.626\times 10^{-34}~J\cdot s$ 为普朗克常数, $e=1.602\times 10^{-19}~C$ 为电子电量。