TITLE HERE

In Partial Fulfillment of the Requirements for the Degree of degree $\,$

1st Semester A.Y. 2025-2026

by

Nmae

Abstract

Contents

Abstract								
1	Intr	roduction	4					
	1.1	Background of the Study	4					
	1.2	Statement of the Problem	4					
	1.3	Objective of the Study	4					
	1.4	Study Hypothesis	4					
	1.5	Significance of the Study	4					
	1.6	Scope and Limitation	4					
	1.7	Definition of Terms	4					
2	Bac	kground	4					
3 Methodology			4					
	3.1	Nonrank-based method	4					
	3.2	Parametric bootstrap	4					
R	efere	nces	5					
\mathbf{A}	Appendices							

1 Introduction

- 1.1 Background of the Study
- 1.2 Statement of the Problem
- 1.3 Objective of the Study
- 1.4 Study Hypothesis
- 1.5 Significance of the Study
- 1.6 Scope and Limitation
- 1.7 Definition of Terms
- 2 Background
- 3 Methodology

3.1 Nonrank-based method

Algorithm 1 Computation of Joint Confidence Region

Let the data consist of $\hat{\theta}_1, \dots, \hat{\theta}_K$ and suppose Σ is known

- 1: **for** b = 1, 2, ..., B **do**
- 2: Generate $\hat{\boldsymbol{\theta}}_b^* \sim N_K \left(\hat{\boldsymbol{\theta}}, \boldsymbol{\Sigma} \right)$ and write $\hat{\boldsymbol{\theta}}_b^* = \left(\hat{\theta}_{b1}^*, \hat{\theta}_{b2}^*, \dots, \hat{\theta}_{bK}^* \right)'$
- 3: Compute $t_b^* = \max_{1 \le j \le K} \left| \frac{\hat{\theta}_{bj}^* \hat{\theta}_j^*}{\sigma_j} \right|$
- 4: end for
- 5: Compute the (1α) -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .
- 6: The joint confidence region of $\theta_1, \theta_2, \dots, \theta_K$ is given by $\mathfrak{R} = \left[\hat{\theta}_1 \pm \hat{t} \times \sigma_1\right] \times \left[\hat{\theta}_2 \pm \hat{t} \times \sigma_2\right] \times \dots \times \left[\hat{\theta}_K \pm \hat{t} \times \sigma_K\right]$

3.2 Parametric bootstrap

THIS IS Rizzo (2008) and Klein et al. (2020)

Algorithm 2 Computation of Joint Confidence Region

1: **for** b = 1, 2, ..., B **do**

2: Generate $\hat{\theta}_{bi}^* \sim N(\hat{\theta}_i, \sigma_i^2)$, i = 1, 2, ..., K and let $\hat{\theta}_{b(1)}, \hat{\theta}_{b(2)}, ..., \hat{\theta}_{b(K)}$ be the corresponding ordered values

	k = 1	k=2	 k = K
b=1	$\hat{ heta}_{1(1)}^*$	$\hat{ heta}_{1(2)}^*$	 $\hat{ heta}_{1(K)}^*$
b=2	$\hat{ heta}_{2(1)}^*$	$\hat{ heta}_{2(2)}^*$	 $\hat{ heta}_{2(K)}^*$
:	:	•	 :
b = B	$\hat{\theta}_{B(1)}^*$	$\hat{\theta}_{B(2)}^*$	 $\hat{\theta}_{B(K)}^*$

3: Compute $\hat{\sigma}_{b(k)}^* = \sqrt{\text{kth ordered value among } \left\{\hat{\theta}_{b1}^{*2} + \sigma_1^2, \hat{\theta}_{b2}^{*2} + \sigma_2^2, \dots, \hat{\theta}_{bK}^{*2} + \sigma_K^2\right\} - \hat{\theta}_{(k)}^{*2}}$

4: Compute
$$t_b^* = \max_{1 \le j \le K} \left| \frac{\hat{\theta}_{bj}^* - \hat{\theta}_j^*}{\sigma_j} \right|$$

5: end for

6: Compute the $(1 - \alpha)$ -sample quantile of $t_1^*, t_2^*, \dots, t_B^*$, call this \hat{t} .

7: The joint confidence region of $\theta_1, \theta_2, \dots, \theta_K$ is given by $\mathfrak{R} = \left[\hat{\theta}_1 \pm \hat{t} \times \sigma_1\right] \times \left[\hat{\theta}_2 \pm \hat{t} \times \sigma_2\right] \times \dots \times \left[\hat{\theta}_K \pm \hat{t} \times \sigma_K\right]$

References

Klein, M., Wright, T., & Wieczorek, J. (2020). A joint confidence region for an overall ranking of populations.

Rizzo, M. (2008). Statistical computing with r.

Appendices