# Projeto de Análise de Índice de Desenvolvimento Humano (IDH)

O projeto consiste em analisar a possível relação entre o IDH e outros índices que possam ter influência sobre ele, e com isso poder prever com precisão satisfatória um possível aumento do IDH com base nesses índices.

Os índices utilizados para tentar demonstrar essa possível relação foram:

- 1- Produto Interno Bruto (PIB)
- 2- Índice de Liberdade Econômica (ILE)
- 3- Índice de Percepção da Corrupção (IPC)

## **Fonte dos Dados**

Os dados referem-se ao ano de 2019 e foram extraídos de diferentes sites, conforme abaixo:

#### 1- PIB:

https://pt.wikipedia.org/wiki/Lista de pa%C3%ADses por PIB nominal

#### 2- ILE:

https://www.fraserinstitute.org/economic-freedom/map?geozone=world&page=map&year=2019

#### 3- IPC:

https://www.transparency.org/en/cpi/2019

#### 4- IDH:

https://www.cnnbrasil.com.br/internacional/veja-o-ranking-completo-de-todos-os-paises-por-idh/

#### Tratamento dos Dados

Como os dados foram adquiridos de fontes diferentes, é natural que eles tivessem formatos diferentes, então foram necessários procedimentos de tratamento para que fosse possível submetê-los aos experimentos e este pudesse ter uma maior precisão e performance.

Após extração, os dados foram inseridos no Excel e os principais tratamentos aplicados foram:

**Consistência**: Nomes em diferentes idiomas para o mesmo país. Foi utilizado o tradutor para que todos os países tivessem seus nomes em conformidade com português-BR.

**Conformidade:** Países que não tiveram dados de um ou mais índices divulgados foram eliminados do processo, garantindo assim que todo nosso estudo e pesquisa contasse com dados reais e precisos.

Após tratamento adequado os dados foram exportados em formato ".csv" para que pudessem ser utilizados para experimentos no Python.

## **Experimentos**

#### Correlação

No primeiro experimento, buscou-se verificar a correlação entre as variáveis independentes (PIB, ILE, IPC) e a variável dependente (IDH).

O resultado mostra a inexistência da correlação do PIB, correlação positiva moderada do ILE e correlação positiva forte do IPC.

```
corrPIB = np.corrcoef(X[:,0], y)
     corrPIB
[6]: array([[1.
                        , 0.20176387],
             [0.20176387, 1.
     corrILE = np.corrcoef(X[:,1], y)
     corrILE
[7]: array([[1.
                       , 0.6800175],
            [0.6800175, 1.
[8]:
     corrIPC = np.corrcoef(X[:,2], y)
     corrIPC
[8]: array([[1.
                        , 0.76337469],
             [0.76337469, 1.
```

Devido ao fato da correlação do PIB ter se mostrado inexistente, ao analisar mais a fundo, observou-se que países como os Estados Unidos e China, ambos responsáveis pela maior parcela do PIB mundial, com 24% e 17% respectivamente, não aparecem nem entre os 5 primeiros colocados no índice IDH. Esse fator corrobora com o resultado de inexistência dessa correlação, pois ao contrário disso, os países com maior PIB estariam entre os primeiros colocados do ranking de IDH.



Devido à observação acima, prosseguiu-se a análise excluindo o PIB dos próximos experimentos.

### Regressão Linear Simples

A regressão Linear demonstra a evolução positiva entre as variáveis ILE e IPC com o IDH, ou seja, quanto maior for a pontuação desses índices, maior tende a ser o Índice de Desenvolvimento Humano de um país.

Embora podemos realizar previsões apenas com uma variável, o objetivo com a regressão é apenas visualizar a dispersão dos dados juntamente com a linha de melhor ajuste.

#### Dispersão da IPC



## Dispersão da ILE



#### **Agrupamento**

Para que pudéssemos utilizar técnicas de agrupamento, foi necessário a transformação das pontuações do IDH para classe hierárquica, sendo assim essa classe foi dividida em 3 grupos, conforme abaixo:

| IDH   | Pontuação     |
|-------|---------------|
| Alto  | 0,8 até 1     |
| Médio | 0,5 até 0,799 |
| Baixo | 0 até 0,499   |

Nesse experimento foram utilizadas as técnicas de agrupamento K-means e K-medoids. Com o K-means obteve-se uma taxa de acerto em torno de 31% no agrupamento da classe, já com K-medoids essa taxa foi em torno de 62%.



A notória diferença entre K-means e K-medoids deve-se ao fato de que no K-medoids o centro de inicialização dos clusters são definidos manualmente, podendo assim serem ajustados para se obter melhores resultados.

## Classificação

Por fim, foram aplicadas duas técnicas de classificação de Machine Learning para avaliar o quão preciso seria um modelo de previsão utilizando tais técnicas.

#### 1º Árvores de Decisão

Configurando o algoritmo com 70% dos dados para treino, 30% para testes e um total de 100 treinamentos, conseguiu-se uma taxa de acerto nos testes em torno de 68%.

```
[4]: #Dividindo dados entre treino e teste definindo 30% para teste
     X_treino, X_teste, y_treino, y_teste = train_test_split(X,
                                                          test_size = 0.3,
                                                          random_state = 0)
[5]: #Aplicando algoritmo de ávores aleatórias Random Forest para o treinamento do modelo
     forest = RandomForestClassifier(n_estimators = 100)
     forest.fit(X_treino, y_treino)
[5]: RandomForestClassifier()
[6]: #Criando a Matriz de Confusão para verificar a taxa de acerto
    X = forest.predict(X teste)
     confusion = confusion_matrix(y_teste, X)
     confusion
taxa_acerto = accuracy_score(y_teste, X)
     taxa_acerto
    0.6808510638297872
```

#### 2º Redes Neurais

Com essa técnica, configuramos o algoritmo com 70% dos dados para treino, 30% para testes e um total de 500 epochs, obtendo assim uma taxa final de acerto nos testes em torno de 72%.

```
[7]: #Dividindo dados entre treino e teste
    X_treino, X_teste, y_treino, y_teste = train_test_split(previsores,
                                                   classe_dummy,
                                                   test_size = 0.3,
                                                   random_state = 0)
[8]: #Criação da estrutura da rede neural com a classe Sequential (sequência de camadas)
    modelo = Sequential()
    modelo.add(Dense(units = 3, input_dim = 2))
    modelo.add(Dense(units = 3))
    modelo.add(Dense(units = 3, activation = 'softmax'))
    modelo.summary()
    Model: "sequential"
    Layer (type)
                             Output Shape
                                                   Param #
     dense (Dense)
                             (None, 3)
     dense_1 (Dense)
                             (None, 3)
                                                   12
     dense_2 (Dense)
                             (None, 3)
                                                   12
    Total params: 33
    Trainable params: 33
    Non-trainable params: 0
<keras.callbacks.History at 0x18081b4d820>
```

## Conclusão

Após o estudo podemos concluir que o Índice de Liberdade Econômica e o Índice de Percepção da Corrupção parecem afetar de forma significativa o Desenvolvimento Humano de uma população e, com os modelos de previsão utilizados neste estudo, em especial Redes Neurais, pode-se almejar um aumento do IDH com base na melhoria do ILE e principalmente do IPC, podendo obter assim uma taxa de sucesso de previsões do alvo principal pouco acima de 70%.