Introduction to OpenFOAM

Vachan Potluri

April 2023

- ► CFD software (but without GUI)
- ► Open source Field Operation And Manipulation
- lackbox Open source \Longrightarrow source code is given to user

- ► CFD software (but without GUI)
- ► Open source Field Operation And Manipulation
- ▶ Open source ⇒ source code is given to user

- ► CFD software (but without GUI)
- ► Open source Field Operation And Manipulation
- lackbox Open source \Longrightarrow source code is given to user

No GUI \implies hard to learn

Why

- ► Free
- ► Fast
- ► User customisable: solve any equation you desire

- ► CFD software (but without GUI)
- ► Open source Field Operation And Manipulation
- ▶ Open source ⇒ source code is given to user

No GUI \implies hard to learn

Why

- ► Free
- ► Fast
- ► User customisable: solve any equation you desire

Let's jump right into doing some simulations

Case 1

Heat conduction in a square plate

$$\frac{\partial T}{\partial t} = D_T \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

Other settings

- ► $D_T = 1 \, \text{m}^2/\text{s}$
- ► $L = 2 \, \text{m}$
- ► End time 10 s

Case 1

Heat conduction in a square plate

$$\frac{\partial T}{\partial t} = D_T \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right)$$

Other settings

- ► $D_T = 1 \, \text{m}^2/\text{s}$
- ► $L = 2 \, \text{m}$
- ► End time 10 s

- ► laplacianFoam is the "solver" to be used for heat conduction equation
- ► Visualise using parafoam -builtin
 - Mesh representation
 - Data array selection
 - Navigating times
 - Changing color map

OpenFOAM's simulation setup

- Every simulation is setup using certain "setting" files
- ► These files are grouped into 3 folders: 0/, constant/ and system/
- ► All are text files

OpenFOAM's simulation setup

- Every simulation is setup using certain "setting" files
- ► These files are grouped into 3 folders: 0/, constant/ and system/
- ► All are text files
- Only mandatory files are shown here, there can be additional files also
- When a simulation is done,
 OpenFOAM generates
 corresponding time files
- We will learn about these files by doing some variations of the square plate simulation

Change the thermal diffusivity

- lacktriangle In constant/physicalProperties, you can change $D_{\mathcal{T}}$
- ► Things to note
 - FoamFile "header"
 - Units of D_T
 - Units in OpenFOAM are specified using powers of 7 fundamental units: [kg m s K mol A cd]
 - $\bullet \ [1 \ 1 \ \text{--} 2 \ 0 \ 0 \ 0] \ \text{is kg m/s}^2 \implies \text{unit of force}$
 - ullet [0 0 1 0 0 1 0] is As \Longrightarrow unit of charge
 - ullet [1 2 2 -1 -1 0 0] is J/mol K \Longrightarrow unit of universal gas constant
- ► Try
 - Reduce D_T to $0.01 \,\mathrm{m}^2/\mathrm{s}$ and see the solution evolution
 - Can you guess whether the solution will evolve faster or slower?
- ► Tips
 - foamListTimes -rm deletes all time folders other than 0/
 - Reload files in ParaView by right-clicking

Change the boundary conditions

- ► In 0/T you can set initial condition (IC) and boundary conditions (BCs)
- ► Things to note
 - internalField ⇒ IC
 - Names of different boundaries
- ► Special BC type empty
 - By default OpenFOAM does 3d simulations
 - Check this in ParaView
 - empty BC in a direction tells OpenFOAM to not consider that direction
- ► Try
 - Change bottom BC to $-100\,^{\circ}$ C
 - Change IC
 - Do a 1d simulation by setting top and bottom boundaries as zeroGradient
 - Verify the solution using "Plot Over Line" in ParaView or gradTx value

Change time settings

- system/controlDict contains all the main controls of the simulation
- ► Things to note
 - startFrom, stopAt
 - startTime, endTime
 - deltaT
 - writeControl, writeInterval
- ► For heat conduction equation
 - "Stable" time step value (Δt_s) satisfies $D_T \frac{\Delta t_s}{\Delta x^2} < 1$
 - To determine end time (t_e) for steady state:

$$t_e\gg rac{L^2}{D_{ au}}\implies$$
 Steady state reached

- ► Try
 - Increase D_T to $10 \,\mathrm{m}^2/\mathrm{s}$
 - For correct simulation, time step also has to be changed

Change the mesh

- ► Multiple ways to create mesh in OpenFOAM
 - Create in a different software (e.g. ANSYS) and import to OpenFOAM
 - Use OpenFOAM's tools to create mesh
- ▶ blockMesh is one such tool in OpenFOAM to create meshes
- blockMesh reads an additional file system/blockMeshDict to create mesh
- ▶ system/blockMeshDict has 3 components
 - Specify points or vertices
 - 2 Create "blocks" using these vertices
 - 3 Define boundaries using the vertices

- ► OpenFOAM defines a local coordinate system (LCS) for every block
- ▶ Blocks are created using a list of points $(p_0 \ p_1 \ p_2 \ p_3 \ p_4 \ p_5 \ p_6 \ p_7 \ p_8)$ ordered in a specific way
 - 1 Point 0 is the origin of (LCS)
 - **2** Line 0-1 is along x_1 direction
 - 3 Line 1-2 is along x_2 direction
 - 4 Points 0-3 define plane $x_3 = 0$
 - **6** Points 4-7 are obtained by translating points 0-3 in x_3 direction

Suppose a block is defined using (0 1 2 3 4 5 6 7). Which one of these is wrong?

- ► Boundaries are defined using a list of points such that right hand thumb rule points outward the block
- ► The boundary names in system/blockMeshDict and O/T must match
- ► Try
 - Increasing mesh resolution
 - Using mesh grading
 - Changing geometry
- ► Tips
 - Run blockMesh command to update mesh
 - Run checkMesh command to check if the mesh has no issues
 - You can view different mesh regions (e.g. boundaries) individually in ParaView

Case 2

Heat conduction in an L-clamp

- ► This geometry can be constructed using two blocks
 - **1** Block 1: (0 1 2 3 6 7 8 9)
 - ② Block 2: (0 3 4 5 6 9 10 11)
- ► Use single cell in *z* direction and perpendicular to clamp

- ► Tip: you can see the mesh in ParaView without running the simulation
- ► BCs
 - One end (4 5 11 10) of clamp at 100 °C
 - Other end (1 7 8 2) at $0\,^{\circ}$ C
 - All other boundaries insulated
 - empty BC for top and bottom planes
- Use $D_T = 1 \text{ m}^2/\text{s}$; set end time and time step accordingly

$$D_T \frac{\Delta t_s}{\Delta x} \le t_e \gg \frac{L^2}{D_T}$$