אינטגרציה של סדרות וטורי פונקציות

[a,b] נניח ש $f_n(x)$ רציפות, מוגדרות על ומתקיים

$$\lim_{n\to\infty} f_n(x) = f(x)$$

ברור ש- f_n אינטגרביליות.

אינטגרבילית! f(x) אינטגרבילית!

ווי $\int_a^b f_n(x)$ ווי.

ווי
$$\int_a^b f_n = \int_a^b \lim f_n$$
 .3

:ברור ש: $\sum_{n=0}^{\infty}u_n(x)$ כנ"ל עבור טור

$$\int_{a}^{b} \sum_{k=1}^{n} u_{k}(x) dx = \sum_{k=1}^{n} \int_{a}^{b} u_{k}(x) dx$$

האם

?
$$\int_{a}^{b} \sum_{k=1}^{\infty} u_{k}(x) dx = \sum_{k=1}^{\infty} \int_{a}^{b} u_{k}(x) dx$$

בדרך כלל, התשובה <u>היא שלילית</u>.

 f_n מוגדרת על [0,1], שווה f_n פרט כאן [1/n,2/n], היכן שהגרף שלה הוא "אוהל" עם מכסימום ב: (1.5/n,n). אז

$$f_n(x) \to f(x) \equiv 0$$

כי בכל נקודה קבועה $x_0 \neq 0$, המשולש $\int_0^1 f_n(x) \equiv 1/2$ אבל לנקודה). אבל לבסוף משמאל לנקודה). $\int_0^1 f(x) = 0$ לכל n בעוד שn = 0

הערה. אם ניקח בגרף גובה n^2 , אז נקבל

$$\int_0^1 f_n(x) = n/2 \to \infty$$

 $\frac{oldsymbol{a} oldsymbol{a} oldsymbol{a} g(x)}{oldsymbol{a} oldsymbol{a} oldsymbol{b}}$ תהיינה f(x) פונקציות רציפות f(x) אז f(x) איז f(x) אשר מתכנסות במ"ש ל-f(x) אז f(x) רציפה ו:

$$\int_{a}^{x} f_n(t)dt \longrightarrow \int_{a}^{x} f(t)dt$$

. [a,b] :במידה שווה עבור x

 $\epsilon>0$ במ"ש, ולכן בהינתן $f_n\longrightarrow f$ בחוכתה: $f_n\mapsto f$ במ"ש, ולכן בהינתן $N(\epsilon)$ קיים $N(\epsilon)$ כך ש $n>N(\epsilon)$

$$|\int_{a}^{x} f_{n} - \int_{a}^{x} f| \leq \int_{a}^{x} |f_{n}(t) - f(t)| dt$$
$$< (x - a) \cdot \epsilon \leq (b - a)\epsilon$$

 $\sum\limits_{k}^{\infty}u_k(x)$ ניסות לטורים: S(x) במ"ש ל-S(x) ב-[a,b]. אזי

$$\sum_{k=1}^{n} \int_{a}^{x} u_{k}(t) \to \int_{a}^{x} S(t) = \sum_{k=1}^{\infty} \int_{a}^{x} u_{k}(t) dt$$

כלומר

$$\sum_{k=1}^{n} \int_{a}^{x} u_{k}(t) \to \int_{a}^{x} \left(\sum_{k=1}^{\infty} u_{k}(t)\right) dt$$
$$= \sum_{k=1}^{\infty} \int_{a}^{x} u_{k}(t) dt$$

-ם אינטגרביליות ב f_n אינטגרביליות ב f_n במ"ש אז f אינטגרבילית ו[a,b]

$$. \int_{a}^{x} f_{n}(t) \longrightarrow \int_{a}^{x} f(t)dt$$

(480 'ראה מייזלר, עמ'

גזירה של סדרות וטורים

גזירה הינה יותר מסובכת מאינטגרציה כי אם f' קרוב ל- f' קרוב ל- f_n קרוב ל- f_n קרוב ל- f_n במילים אחרות: פעולת הגזירה אינה פעולה רציפה (על מרחב הפונקציות הגזירות) בעוד שאינטגרציה היא כן פעולה רציפה. זו הסיבה שנהוג לתרגם משוואות דיפרנציאליות למשוואות אינטגרליות.

 $\sum\limits_{n=1}^\infty u_n(x)$ יהי $\sum\limits_{n=1}^\infty u_n(x)$ טור של פונקציות: בעלות נגזרות רציפות על [a,b]. נתון ש: $\sum\limits_{n=1}^\infty u_n(x)$. [a,b] מתכנס על $\sum\limits_{n=1}^\infty u_n(x)$. [a,b] מתכנס במידה שווה על $\sum\limits_{n=1}^\infty u_n(x)$.

メバ

ין [a,b] א. א $\sum_{n=1}^\infty u_n(x)$ מתכנס במידה שווה על $\sum_{n=1}^\infty u_n(x)$ מ $S(x)=\sum_{n=1}^\infty u_n(x)$

ב. הסכום S(x) הוא פונקציה גזירה.

ג. קיים $S'(x) = \sum\limits_{n=1}^{\infty} u'_n(x)$, כלומר

$$\frac{d}{dx} \sum_{n=1}^{\infty} u_n(x) = \sum_{n=1}^{\infty} \frac{d}{dx} u_n(x)$$

 $\sum\limits_{n=1}^\infty u_n'(x)$ מתכנס במידה $u_n'(x)$: נתון ש $u_n'(x)$: שווה. נסמן את סכומו ב $\varphi(x)$. נתון ש $\varphi(x)$ רציפות, לכן $\varphi(x)$ רציפה. לפי המשפט על אינטגרציה,

$$\sum_{n=1}^{\infty} \int_{a}^{x} u'_{n}(t)dt = \int_{a}^{x} (\sum_{n=1}^{\infty} u'_{n}(t))dt$$

$$= \int_{a}^{x} \varphi(t) dt$$

וכאן ההתכנסות של הטור $\sum\limits_{n=1}^{\infty}(\int_a^x u_n')$ היא במ"ש.

מצד שני, $u_n^\prime(t)$ רציפות, ולכן

$$\int_a^x u_n'(t)dt = u_n(x) - u_n(a)$$

ומקבלים ש:

$$\sum_{n=1}^{\infty} \left[u_n(x) - u_n(a) \right] = \int_a^x \varphi(t) dt$$

וההתכנסות במ"ש. אבל $\sum u_n(a)$ טור של קבועים (כאן השתמשנו בהנחה (0,1). ולכן התכנסות $\sum u_n(x)$ היא במ"ש.

 $n_n(x) + C$ ב $n_n(x)$ אי אפשר להסתפק רק ב $n_n(x) + C$ בי אז יכולנו להחליף את $\sum_{n=0}^{\infty} u_n(x)$ שהיה מקלקל את ההתכנסות של $\sum_{n=0}^{\infty} u_n(x) - u_n(a)$ כלומר היה מצב שבו $\sum_{n=0}^{\infty} u_n(x) - u_n(a)$ מתכנס אבל כל אחד מהסכומים $\sum_{n=0}^{\infty} u_n(a)$ מתבדר.

קיבלנו לפיכך

$$S(x) - S(a) = \int_a^x \varphi(t)$$

-מכיון ש- φ רציף נובע כי S(x) מכיון ש

$$S'(x) = \varphi(x) = \sum_{1}^{\infty} u'_n(x)$$

 $u_n(x)$ מתכנס במקום להניח ב: 1 כי $u_n(x)$ מתכנס עבור כל $u_n(a)$ מספיק היה להניח ב: 1 כי $u_n(a)$ מתכנס. 2 כמובן נחוץ.

טורי חזקות

בשלב הבא נבחר $u_n(x)=a_nx^n$ ונסתכל על טורים מהצורה

$$\sum_{n=0}^{\infty} a_n x^n$$

 $u_n(x) = a_n(x - x_0)^n$ או על פונקציות שהיא הזזה ב: x_0 , ואז מתיחסים לטור

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

 $\sum\limits_{n=0}^\infty a_n x^n$ מתכנס בנקודה אם הטור $x=\alpha$, אז הוא מתכנס בהחלט לכל הוא $x=\alpha$. $|x|<|\alpha|$

 $\sum\limits_{n=0}^{\infty}a_{n}lpha^{n}$ מתכנס, לכן $\sum\limits_{n=0}^{\infty}a_{n}lpha^{n}=0$ ו $lpha_{n}lpha^{n}\leq M$ ולכן ו $lpha_{n}lpha_{n}lpha_{n}lpha_{n}lpha_{n}=0$ ועבור $lpha_{n}lpha_{n}lpha_{n}lpha_{n}$ האברים הראשונים - מספרם סופי.) לכן לכל $lpha_{n}lpha_{n}lpha_{n}$

$$\sum_{n=0}^{\infty} |a_n x^n| = \sum_{n=0}^{\infty} |a_n \alpha^n| \cdot |\frac{x}{\alpha}|^n \le \sum_{n=0}^{\infty} M \cdot |\frac{x}{\alpha}|^n$$

שהוא טור גיאומטרי מתכנס.

המשפט מדבר על תחום סימטרי המשפט מדבר על $(-|\alpha|, |\alpha|)$ ולא אומר דבר על קצותיו.

 $\sum\limits_{n=0}^\infty a_n x^n$ יש רדיוס לכל טור חזקות לכל טור חזקות התכנסות אכל אר וור $0 \leq R \leq \infty$, R

מתכנס עבור |x| < R ומתבדר עבור ($x=\pm R$ אין שום טענה על |x|>R וואן שום $R=\infty$ און פרושו: מתכנס לכל $R=\infty$ ($x \neq 0$ און מתכנס לאף פרושו: $R=\infty$

x את קבוצת כל הנקודות E את בורת ב- $E
eq \emptyset$ מתכנס. ברור ש $\sum\limits_{n=0}^\infty a_n x^n$ כי $0 \in E$

 ${f v}''$ נגדיר את ${f R}$ ע"י

 $, R = \sup\{ |x| : x \in E \}$

 $R \geq 0$:וברור ש

. $0 < R < \infty$: מקרה א':

ניקח $lpha \in E$ אז קיים $lpha \in E$ כך $lpha : |x| < R = \sup E$ ש- lpha : |x| < |lpha| < R הטור . lpha : |x| < |lpha| < R מתכנס עבור lpha, ולכן מתכנס בהחלט עבור

אם $x \notin E$ אז $|x| > R = \sup E$ ולכן הטור $\sum\limits_{n=0}^{\infty} a_n x^n$

R=0 : מקרה ב': אז לכל R=0 ווור א מתכנס. אז לכל |x|>R=0

 $R=\infty$: מקרה ג'

 $\alpha \in E$ כך ש- $\alpha \in E$ ממשי יש $\alpha \in E$ ממשי יש $\alpha \in E$ ממשי יש $\alpha \in E$ ולכל הטור $|x| < \alpha < R = \sup E = \infty$ מתכנס בהחלט לכל $\alpha \in E$

ו: נקרא רדיוס ההתכנסות, וR נקרא קטע ההתכנסות. (-R,R)

 $x=\pm R$ אין שום אינפורמציה על הנקודות

דוגמאות.

$$|x| < 1 = R$$
 מתכנס עבור $\sum_{n=0}^{\infty} x^n$ (א)

 $\sum\limits_{n=0}^\infty (rac{x}{n})^n$ כי $\sum\limits_{n=0}^\infty (rac{x}{n})^n$ מתכנס בהחלט לכל $|(rac{x}{n})^n|<(rac{1}{2})^n$ מתכנס n>2|x| עבור $|(rac{x}{n})^n|<(rac{1}{2})^n$ מקבלים לכן $R=\infty$

x
eq 0 מתבדר לכל $\sum\limits_{n=0}^{\infty}n^nx^n$ מתבדר לכל ווצא |nx|>1 עבור |nx|>1 . R=0

משפט. רדיוס ההתכנסות של ההתכנסות בייס ההתכנסות $\sum_{n=0}^{\infty}a_nx^n$ הוא

$$.R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}$$

. $c=\limsup_{n o\infty}\sqrt[n]{|a_n|}$ נסמן ברתה: נסמן

א. ננית ש: $c < \infty > 0$ וניקת ש|x| > 1 וניקת

$$\overline{\lim} \sqrt[n]{|a_n x^n|} = |x| \cdot \overline{\lim} \sqrt[n]{|a_n|} = |x| \cdot c > 1$$

והטור מתבדר.

עבור $|x|<rac{1}{c}$ נקבל

$$\overline{\lim} \sqrt[n]{|a_n x^n|} = |x| \cdot c < 1$$

.והטור מתכנס. לכן $R=rac{1}{c}$ במקרה זה

 $\overline{\lim}\sqrt[n]{|a_n|}=c=0$ ב. אם

$$\overline{\lim} \sqrt[n]{|a_n x^n|} = |x| \cdot c = 0 < 1$$

 $R=\infty$ לכל x לכן מתכנס לכל x והטור מתכנס לכל .R=1/c במקרה זה, ואכן

 $c=\infty$ אז לכל x הטור מתבדר כי

$$,\overline{\lim}\sqrt[n]{|a_nx^n|}=\infty>1$$

$$R = 1/c$$
 , $R = 0$ ולכן

מבתן המנה. בוחנים קיום של

עני .lim sup $\frac{a_{n+1}}{a_n} < 1$: lim inf $\frac{a_{n+1}}{a_n} > 1$ מספרים אלה לא בהכרח שוים ולא תמיד יתנו R^{-1} , ונקבל תוצאה רק כשהם שווים:

<u>משפט.</u> אם קיים הגבול

$$\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = R_0$$

 $\sum_{n=1}^{\infty}a_nx^n$ של ההתכנסות ההתכנסות הוא רדיוס ההתכנסות

הוכתה:

$$\lim_{n \to \infty} \left| \frac{a_{n+1} x^{n+1}}{a_n x^n} \right| = |x| \cdot \lim \left| \frac{a_{n+1}}{a_n} \right| = L$$

והגבול הזה $L=|x|/R_0$ הינו גדול או קטן מ $R_0:$ בהתאם לכך אם |x| גדול או קטן מ|x| שהוא לכך אם $\lim_{n\to\infty}\left|a_n/a_{n+1}\right|$

<u>הערה.</u> רדיוס ההתכנסות מוגדר באמצעות lim sup, שתמיד קיים. במבחן המנה דרוש קיום של גבול המנה, שלא תמיד קיים.

 $x = \pm R$ למשל הערה. אין שום טענה על $x = \pm R$ עבור הטור x^n/n^2 יש התכנסות ב x^n/n^2 עבור הטור x^n/n יש התכנסות ב x^n/n ועבור הטור x^n/n יש התכנסות ב x^n/n ועבור הטור x^n/n יש התכנסות ב x^n/n לכל השלושה רדיוס ההתכנסות הוא x^n

התכנסות במ"ש של טורי חזקות

דוגמא.

$$R = 1 \quad , \sum_{n=0}^{\infty} x^n$$

「スグ

$$R_n(x) = S(x) - S_n(x) = \sum_{k=n+1}^{\infty} x^k$$

= $\frac{x^{n+1}}{1-x} \to 0$

הטור מתכנס נקודתית לכל |x| < 1 אבל לא במידה שווה ב-(-1,1) כי

$$.R_{n-1}(\sqrt[\eta]{1/2}) = \frac{1/2}{1 - \sqrt[\eta]{1/2}} \to \infty$$

אם [-lpha,lpha] אם [-lpha,lpha] אבל ההתכנסות היא כן במ"ש בי 0<lpha<1

$$.R_n(x) = \frac{|x|^{n+1}}{|1-x|} \le \frac{\alpha^{n+1}}{1-\alpha} \longrightarrow 0$$

 $\frac{\Delta u}{\Delta r}$ אם ל: $\sum a_n x^n$ יש רדיוס התכנסות $\sum a_n x^n$ אם ל: R>0 ו- R>0 ב: [-r,r] :

כי יש $[a,b] \subset (-R,R)$ כי יש $[a,b] \subset (-R,R)$ כי $[a,b] \subset (-R,R)$ כי r < R

 $-r \leq x \leq r$ קיים , $|a_n x^n| < |a_n| r^n$

אבל טור הקבועים $\sum |a_n|r^n$ מתכנס, ולפי באלטור הקבועים $\sum |a_nx^n|$ משפט קודם $\sum |a_nx^n|$ משתמשים בקריטריון קושי.) [-r,r]

מה קורה אם הטור המקורי מתכנס גם בנקודות הקצה x=Rי אז ההתכנסות במ"ש מגיעה עד לקצה . R

 $\frac{$ משפט. יהי $\infty < R < \infty$ רדיוס ההתכנסות . $\sum a_n x^n$

א. אם הטור x = R מתכנס ב: x = R אז x = R א. אם הטור במ"ש ב: [0,R] (וכמובן ב-[-r,R]

ב. אם הטור מתבדר ב: x=R אז ההתכנסות ב: (-R,R) ב:

x=R א. נניח שהטור מתכנס ב- x=R תזכורת: נוסחת הסכום בחלקים היא

$$\sum_{k=1}^{m} \alpha_k \beta_k = \alpha_m B_m$$

$$-\sum_{k=1}^{m-1} B_k (\alpha_{k+1} - \alpha_k)$$

$$B_k = \beta_1 + \dots + \beta_k, \qquad B_0 \equiv 0$$

 $\epsilon>0$ לכן לכל . x=R : נתון שהטור מתכנס בm,n>N מתקיים

$$\left| \sum_{k=n}^{m} a_k R^k \right| < \epsilon$$

ניקח $0 \leq x \leq R$ ניקח

$$\left|\sum_{k=n}^{m} a_k x^k\right| = \left|\sum_{k=n}^{m} \underbrace{(a_k R^k)}_{\beta_k} \underbrace{(\frac{x}{R})^k}_{\alpha_k}\right|$$

כאן ניקח

$$B_k = \beta_n + \beta_{n+1} + \ldots + \beta_k$$

ונקבל עבור הביטוי הקודם

$$\leq |\alpha_m| \cdot |B_m| + \sum_{k=n}^{m-1} |B_k| \cdot |\alpha_{k+1} - \alpha_k|$$

$$= \left(\frac{x}{R}\right)^m \cdot |B_m| + \sum_{k=n}^{m-1} |B_k| \cdot \left[\left(\frac{x}{R}\right)^k - \left(\frac{x}{R}\right)^{k+1}\right]$$

אבל

$$|B_k|=|\sum\limits_{i=n}^k a_i R^i|<\epsilon$$
לכל $m\geq n>N(\epsilon)$ לכל

$$\leq \epsilon \left[\left(\frac{x}{R} \right)^m + \left(\left(\frac{x}{R} \right)^n - \left(\frac{x}{R} \right)^{n+1} \right) + \dots \right]$$
$$\left(\left(\frac{x}{R} \right)^{m-1} - \left(\frac{x}{R} \right)^m \right) = \epsilon \left(\frac{x}{R} \right)^n \leq \epsilon$$

לכל $m \geq n > N$ ולכל $0 \leq x \leq R$ לכן .התכנסות היא במ"ש על [0,R]

ב. נניח שהטור מתבדר ב- x=R . נניח שהטור מתבדר ב-, (-R,R) . בשלילה שההתכנסות היא במ"ש ב: $N=N(\epsilon)$ קיים $\epsilon>0$ כך ש:

$$\left| \sum_{k=n}^{m} a_k x^k \right| < \frac{\epsilon}{2}$$

. m>n>N ולכל -R < x < R לכל בסכום הסופי הזה ניקח $x \to R$ ואז

$$\left| \sum_{k=n}^{m} a_k R^k \right| \le \frac{\epsilon}{2} < \epsilon$$

לכל $m>n>N(\epsilon)$ זה אומר שמתקיים הריטריון Cauchy להתכנסות הטור ב-x=0 בסתירה לנתון שהטור לא מתכנס. לכן x=R ההנחה מופרכת.