TEST 2 PRZYKŁADOWY

Imię i nazwisko:

Numer indeksu:

Numer grupy:

Test jest testem wielokrotnego wyboru (tzn. wszystkie kombinacje odpowiedzi są możliwe). Pytanie jest uznane za poprawnie rozwiązane wttw, gdy wszystkie podpunkty w pytaniu mają zaznaczone właściwe odpowiedzi. Odpowiedzi "+" oraz "-" proszę zaznaczać przy każdym podpunkcie pytania w stosownym miejscu - wewnątrz nawiasu kwadratowego poprzedzającego treść [____]. Życzę powodzenia.

- 1. Niech U będzie niepustym uniwersum. Które z poniższych zdań jest prawdziwe:
 - (a) [-] dowolna relacja $r \subseteq U^2$ jest funkcja
 - (b) [+] dowolna funkcja $f \subseteq U^2$ jest relacja
 - (c) [+] relacja $r = \{(i, j) \in U^2 : i = j\}$ jest funkcją
- 2. Niech $f: \mathbb{R} \to \mathbb{R}$ będzie funkcją, jeżeli:
 - (a) [-] $f(x) = |x| + \frac{\pi}{2}$, to funkcja f nie jest suriekcją, ale jest iniekcją
 - (b) [-] $f(x) = \sin(x) \frac{\pi}{2}$, to funkcja f jest suriekcją, ale nie jest iniekcją
 - (c) $[+] f(x) = \frac{1}{x}$, dla $x \neq 0$ oraz f(0) = 0, to funkcja f jest bijekcją
- 3. Niech $f: \mathbb{Z} \to \mathbb{Z}$, będzie funkcją oraz $A \subseteq \mathbb{Z}$ pewnym zbiorem, wtedy:
 - (a) [+] jeżeli f(x) = 2x + 1 i $A = \{-2, -1, 0, 1\}$, to $f(A) = \{-3, -1, 1, 3\}$
 - (b) [+] jeżeli f(x) = |x| i $A = \mathbb{Z} \setminus \{0\}$, to $f(A) = \mathbb{N} \setminus \{0\}$
 - (c) [+] jeżeli $f(x) = \max(x,0)$ i $A = \mathbb{N}$, to $f(A) \neq \mathbb{Z}$
- 4. Niech $f: \mathbb{N} \to \mathbb{R}_+$ będzie funkcją postaci $f(n) = \sqrt{n^3} \lg n! + n^2$. Które z podanych poniżej ograniczeń funkcji jest poprawne:
 - (a) [-] $f(n) = \Theta(n^2)$
 - (b) [+] $f(n) = \Omega\left(n^{\frac{5}{2}}\right)$
 - (c) [+] $f(n) = O\left(n^{\sqrt{n}}\right)$
- 5. Niech $f(n) = n^3 + n \lg n + \sqrt{n}$ oraz $g(n) = 2^{2 \lg n} + n^2$, wtedy:
 - (a) $[+] f(n) + q(n) = \Omega(n)$
 - (b) $[-] f(n) + g(n) = O(n^2)$
 - (c) [-] $f(n) \cdot q(n) = \Theta(n^4)$
- 6. Jeżeli pewna własność W(n), gdzie $n \in \mathbb{N}$, jest prawdziwa dla n=1 i jeżeli W(n) jest prawdą, to W(n+1) także jest prawdą, dla dowolnego $n \geq 1$, to:
 - (a) [+] własność $W(2^{100})$ jest prawdziwa
 - (b) [-] własność W(0) jest prawdziwa
 - (c) [-] jeżeli własność W(0) jest fałszywa, to własność W(1) jest fałszywa

7. Która z poniższych formuł jest niezmiennikiem pętli while w następującym programie:

```
int Cos (int a, int n) { // a>1, n>(-1)
  int i:=0, s:=1;
  while (i<n)
    s:=s*a;
    i:=i+1;
  od
  return s;
}</pre>
```

- (a) [+] $i \in \mathbb{N} \land s \in \mathbb{N}$
- (b) $[+] s \cdot a = \prod_{j=0}^{i} a_j$
- (c) $[+] s \ge a \cdot i$
- 8. Funkcję $f(n) = 2^{n-1}$, dla n > 0, można zdefiniować następującym równaniem rekurencyjnym:

(a)
$$[+] f(0) = 1$$
, $f(1) = 1$, $f(n) = \sum_{i=0}^{n-1} f(i) dla n > 1$

(b)
$$[+] f(0) = 1, f(1) = 1, f(n) = 2f(n-1) dla n > 1$$

(c)
$$[-]$$
 $f(0) = 1$, $f(n) = 2f(n-1)$, dla $n > 0$

9. W urnie znajduje się 15 kul białych, 20 kul szarych oraz 25 kul czarnych. Wyjmujemy pojedynczo z urny 14 kul i ustawiamy je jedna za drugą. Ile różnych (w sensie kolorów kul) ustawień możemy uzyskać:

(a) [-]
$$3^{14} \cdot 14 \cdot \begin{pmatrix} 14 \\ 3 \end{pmatrix}$$

- (b) [-] 14!
- (c) $[+] 3^{14}$
- 10. Rzucamy 12 razy symetryczną monetą. Wiemy, że w pierwszym rzucie otrzymamy reszkę. Ile jest możliwych wyników rzutów, w których reszka wypadła parzystą liczbę razy:

(a)
$$[+]$$
 $\begin{pmatrix} 11\\1 \end{pmatrix}$ $+$ $\begin{pmatrix} 11\\3 \end{pmatrix}$ $+$ $\begin{pmatrix} 11\\5 \end{pmatrix}$ $+ \dots +$ $\begin{pmatrix} 11\\11 \end{pmatrix}$

(b)
$$\begin{bmatrix} -1 & 14! \cdot (2+4+6+8+10) \end{bmatrix}$$

(c)
$$\begin{bmatrix} - \end{bmatrix} \begin{pmatrix} 12 \\ 0 \end{pmatrix} + \begin{pmatrix} 12 \\ 2 \end{pmatrix} + \begin{pmatrix} 12 \\ 4 \end{pmatrix} + \ldots + \begin{pmatrix} 12 \\ 12 \end{pmatrix}$$

ZADANIA OTWARTE

Zadanie nr 1 (5 pkt) Udowodnij indukcyjnie, że dla każdego n > 0, F(4n) jest podzielne przez 3, gdzie F(n) jest n-tą liczbą Fibonacciego.

3 Paweł Rembelski

Zadanie nr 2 (5 pkt) Stosując metodę wielomianu charakterystycznego znajdź postać jawną n-tego wyrazu ciągu rekurencyjnego G(n), gdzie

$$G\left(n\right) = \begin{cases} 0 & \text{dla} & n=0\\ 1 & \text{dla} & n=1\\ G\left(n-1\right) + G\left(n-2\right) + 1 & \text{dla} & n \geq 2 \end{cases}$$