Lecture 2: Singular value decomposition (SVD)

School of Mathematical Sciences, Xiamen University

1. Singular value decomposition

• Definition: Let m and n be arbitrary positive integers $(m \ge n)$ or m < n. Given $\mathbf{A} \in \mathbb{C}^{m \times n}$, not necessarily of full rank, a singular value decomposition (SVD) of \mathbf{A} is a factorization

$$A = U\Sigma V^*$$
,

where $\mathbf{U} \in \mathbb{C}^{m \times m}$ is unitary, $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary, and $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ is diagonal. In addition, it is assumed that the diagonal entries σ_i of $\mathbf{\Sigma}$ are nonnegative and in nonincreasing order; that is

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0,$$

where $p = \min\{m, n\}$.

Theorem 1 (Existence of SVD)

Every matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$ has a singular value decomposition.

Proof. Assume $\mathbf{A} \neq \mathbf{0}$; otherwise we can take $\mathbf{\Sigma} = \mathbf{0}$ and let \mathbf{U} and \mathbf{V} be arbitrary unitary matrices. Next, we use induction on m and n to prove the existence of SVD for the case $m \geq n$ (consider \mathbf{A}^* if m < n): Assume that an SVD exists for any $(m-1) \times (n-1)$ matrix and prove it for any $m \times n$ matrix.

(i) The basic step: $m \ge n = 1$.

Write $\mathbf{A} = \mathbf{u}_1 \mathbf{\Sigma}_1 \mathbf{V}^*$ with $\mathbf{u}_1 = \mathbf{A} / \|\mathbf{A}\|_2$, $\mathbf{\Sigma}_1 = \|\mathbf{A}\|_2$ and $\mathbf{V} = 1$. Choose \mathbf{U}_c such that $\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{U}_c \end{bmatrix} \in \mathbb{C}^{m \times m}$ is unitary. Let $\mathbf{\Sigma} = \begin{bmatrix} \mathbf{\Sigma}_1 & \mathbf{0} \end{bmatrix}^\top \in \mathbb{R}^{m \times 1}$. Then \mathbf{A} has an SVD $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$.

(ii) The induction step: $m \ge n > 1$.

Let $\widetilde{\mathbf{v}}_1 \in \mathbb{C}^n$ be a unit (i.e., $\|\widetilde{\mathbf{v}}_1\|_2 = 1$) eigenvector corresponding to the eigenvalue $\lambda_{\max}(\mathbf{A}^*\mathbf{A})$. Then we have $\|\mathbf{A}\widetilde{\mathbf{v}}_1\|_2 = \|\mathbf{A}\|_2 > 0$. Let $\widetilde{\mathbf{u}}_1 = \mathbf{A}\widetilde{\mathbf{v}}_1/\|\mathbf{A}\widetilde{\mathbf{v}}_1\|_2$, which is a unit vector. Choose $\widetilde{\mathbf{U}}_c$ and $\widetilde{\mathbf{V}}_c$ such that $\widetilde{\mathbf{U}} = \begin{bmatrix} \widetilde{\mathbf{u}}_1 & \widetilde{\mathbf{U}}_c \end{bmatrix} \in \mathbb{C}^{m \times m}$ and $\widetilde{\mathbf{V}} = \begin{bmatrix} \widetilde{\mathbf{v}}_1 & \widetilde{\mathbf{V}}_c \end{bmatrix} \in \mathbb{C}^{n \times n}$ are unitary.

Now we have

$$\widetilde{\mathbf{U}}^* \mathbf{A} \widetilde{\mathbf{V}} = \begin{bmatrix} \widetilde{\mathbf{u}}_1^* \\ \widetilde{\mathbf{U}}_c^* \end{bmatrix} \mathbf{A} \begin{bmatrix} \widetilde{\mathbf{v}}_1 & \widetilde{\mathbf{V}}_c \end{bmatrix} = \begin{bmatrix} \widetilde{\mathbf{u}}_1^* \mathbf{A} \widetilde{\mathbf{v}}_1 & \widetilde{\mathbf{u}}_1^* \mathbf{A} \widetilde{\mathbf{V}}_c \\ \widetilde{\mathbf{U}}_c^* \mathbf{A} \widetilde{\mathbf{v}}_1 & \widetilde{\mathbf{U}}_c^* \mathbf{A} \widetilde{\mathbf{V}}_c \end{bmatrix}.$$

We note that

$$\widetilde{\mathbf{u}}_{1}^{*}\mathbf{A}\widetilde{\mathbf{v}}_{1} = \frac{(\mathbf{A}\widetilde{\mathbf{v}}_{1})^{*}(\mathbf{A}\widetilde{\mathbf{v}}_{1})}{\|\mathbf{A}\widetilde{\mathbf{v}}_{1}\|_{2}} = \|\mathbf{A}\widetilde{\mathbf{v}}_{1}\|_{2} = \|\mathbf{A}\|_{2},$$

$$\widetilde{\mathbf{U}}_{c}^{*}\mathbf{A}\widetilde{\mathbf{v}}_{1} = \widetilde{\mathbf{U}}_{c}^{*}\widetilde{\mathbf{u}}_{1}\|\mathbf{A}\widetilde{\mathbf{v}}_{1}\|_{2} = \mathbf{0},$$

and

$$\widetilde{\mathbf{u}}_1^*\mathbf{A}\widetilde{\mathbf{V}}_c = \frac{(\mathbf{A}\widetilde{\mathbf{v}}_1)^*}{\|\mathbf{A}\widetilde{\mathbf{v}}_1\|_2}\mathbf{A}\widetilde{\mathbf{V}}_c = \frac{\widetilde{\mathbf{v}}_1^*\mathbf{A}^*\mathbf{A}\widetilde{\mathbf{V}}_c}{\|\mathbf{A}\widetilde{\mathbf{v}}_1\|_2} = \frac{\lambda_{\max}(\mathbf{A}^*\mathbf{A})\widetilde{\mathbf{v}}_1^*\widetilde{\mathbf{V}}_c}{\|\mathbf{A}\widetilde{\mathbf{v}}_1\|_2} = \mathbf{0}.$$

Let

$$\sigma_1 := \|\mathbf{A}\|_2.$$

Then we have

$$\widetilde{\mathbf{U}}^*\mathbf{A}\widetilde{\mathbf{V}} = \begin{bmatrix} \sigma_1 & \mathbf{0} \\ \mathbf{0} & \widetilde{\mathbf{U}}_{\mathrm{c}}^*\mathbf{A}\widetilde{\mathbf{V}}_{\mathrm{c}} \end{bmatrix}.$$

By the induction hypothesis, we know that the $(m-1) \times (n-1)$ matrix $\widetilde{\mathbf{U}}_{c}^{*} \mathbf{A} \widetilde{\mathbf{V}}_{c}$ has an SVD:

$$\widetilde{\mathbf{U}}_{\mathrm{c}}^{*}\mathbf{A}\widetilde{\mathbf{V}}_{\mathrm{c}}=\widehat{\mathbf{U}}\widehat{\boldsymbol{\Sigma}}\widehat{\mathbf{V}}^{*}.$$

It follows from $\sigma_1 = \|\mathbf{A}\|_2$, unitary invariance of $\|\cdot\|_2$, and

$$\widetilde{\mathbf{U}}^* \mathbf{A} \widetilde{\mathbf{V}} = \begin{bmatrix} \sigma_1 & \mathbf{0} \\ \mathbf{0} & \widehat{\mathbf{U}} \widehat{\mathbf{\Sigma}} \widehat{\mathbf{V}}^* \end{bmatrix} = \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \widehat{\mathbf{U}} \end{bmatrix} \begin{bmatrix} \sigma_1 & \mathbf{0} \\ \mathbf{0} & \widehat{\mathbf{\Sigma}} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \widehat{\mathbf{V}} \end{bmatrix}^*$$

that $\sigma_1 \geq \|\widehat{\Sigma}\|_2$. Now it is straightforward to show that

$$\mathbf{A} = \widetilde{\mathbf{U}} \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \widehat{\mathbf{U}} \end{bmatrix} \begin{bmatrix} \sigma_1 & \mathbf{0} \\ \mathbf{0} & \widehat{\boldsymbol{\Sigma}} \end{bmatrix} \begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \widehat{\mathbf{V}} \end{bmatrix}^* \widetilde{\mathbf{V}}^* =: \mathbf{U} \begin{bmatrix} \sigma_1 & \mathbf{0} \\ \mathbf{0} & \widehat{\boldsymbol{\Sigma}} \end{bmatrix} \mathbf{V}^*$$

is an SVD of **A**.

• Full SVD:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$$

• Reduced SVD (the case $m \geq n$):

$$\mathbf{A} = \mathbf{U}_n \mathbf{\Sigma}_n \mathbf{V}^*$$

where

$$\mathbf{U}_n = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix},$$

and

$$\Sigma_n = \operatorname{diag}\{\sigma_1, \sigma_2, \dots, \sigma_n\}.$$

• Rank SVD or compact SVD or condensed SVD:

$$\mathbf{A} = egin{bmatrix} \mathbf{U}_r & \mathbf{U}_\mathrm{c} \end{bmatrix} egin{bmatrix} \mathbf{\Sigma}_r & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{bmatrix} egin{bmatrix} \mathbf{V}_r^* \ \mathbf{V}_\mathrm{c}^* \end{bmatrix} = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^* = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^*$$

where $r = \text{rank}(\mathbf{A})$,

$$\mathbf{U}_r = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_r \end{bmatrix}, \quad \mathbf{U}_c = \begin{bmatrix} \mathbf{u}_{r+1} & \mathbf{u}_{r+2} & \cdots & \mathbf{u}_m \end{bmatrix},$$

$$\mathbf{V}_r = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_r \end{bmatrix}, \quad \mathbf{V}_c = \begin{bmatrix} \mathbf{v}_{r+1} & \mathbf{v}_{r+2} & \cdots & \mathbf{v}_n \end{bmatrix},$$

and

$$\Sigma_r = \operatorname{diag}\{\sigma_1, \sigma_2, \dots, \sigma_r\}.$$

• $\{\sigma_i^2, \mathbf{u}_i\}$ are eigenvalue-eigenvector pairs of $\mathbf{A}\mathbf{A}^*$, and $\{\sigma_i^2, \mathbf{v}_i\}$ are eigenvalue-eigenvector pairs of $\mathbf{A}^*\mathbf{A}$:

$$\mathbf{A}\mathbf{A}^*\mathbf{u}_i = \sigma_i^2\mathbf{u}_i, \quad \mathbf{A}^*\mathbf{A}\mathbf{v}_i = \sigma_i^2\mathbf{v}_i, \quad i = 1, 2, \dots, p$$

• $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p$ are called the singular values of **A**.

• the left singular vectors $\{\mathbf{u}_i\}$ and the right singular vectors $\{\mathbf{v}_i\}$: $\mathbf{u}_i^* \mathbf{A} = \sigma_i \mathbf{v}_i^*$, $\mathbf{A} \mathbf{v}_i = \sigma_i \mathbf{u}_i$, $i = 1, 2, \dots, p$

Theorem 2

The set of singular values $\{\sigma_i\}$ is uniquely determined and invariant under unitary multiplication.

Theorem 3

If **A** is square and all the σ_i are distinct, the left and right singular vectors are uniquely determined up to complex signs (i.e., complex scalar factors of absolute value 1).

Hint: There exists only one linearly independent eigenvector for each eigenvalue of $\mathbf{A}^*\mathbf{A}$ or $\mathbf{A}\mathbf{A}^*$ if the eigenvalues are distinct.

Theorem 4 (Real SVD)

Every matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ has a real singular value decomposition.

1.1. Geometric observation

• The image of the unit sphere (in the 2-norm) of \mathbb{C}^n under any $m \times n$ matrix is a hyperellipse of \mathbb{C}^m .

For example, 2×2 real matrix **A**

SVD of a matrix can not be emphasized too much!

2. Matrix properties via SVD: $A = U\Sigma V^*$

• 2-norm

$$\|\mathbf{A}\|_2 = \sigma_1 = \|\mathbf{A}^*\|_2 = \|\mathbf{A}^\top\|_2 = \|\overline{\mathbf{A}}\|_2$$

• F-norm

$$\|\mathbf{A}\|_{\mathrm{F}} = \sqrt{\sigma_1^2 + \sigma_2^2 + \dots + \sigma_r^2} = \|\mathbf{A}^*\|_{\mathrm{F}} = \|\mathbf{A}^\top\|_{\mathrm{F}} = \|\overline{\mathbf{A}}\|_{\mathrm{F}}$$

• range or column space of $\mathbf{A} \in \mathbb{C}^{m \times n}$, spanned by the columns of \mathbf{A}

range(
$$\mathbf{A}$$
) := { $\mathbf{y} \in \mathbb{C}^m \mid \exists \ \mathbf{x} \in \mathbb{C}^n \quad s.t. \quad \mathbf{y} = \mathbf{A}\mathbf{x}$ }
= span{ $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_r$ }

• kernel or nullspace of $\mathbf{A} \in \mathbb{C}^{m \times n}$

$$\operatorname{null}(\mathbf{A}) := {\mathbf{x} \in \mathbb{C}^n \mid \mathbf{A}\mathbf{x} = \mathbf{0}} = \operatorname{span}{\{\mathbf{v}_{r+1}, \mathbf{v}_{r+2}, \dots, \mathbf{v}_n\}}$$

• Range and nullspace of A*:

$$range(\mathbf{A}^*) = span\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_r\} = null(\mathbf{A})^{\perp}$$
$$null(\mathbf{A}^*) = span\{\mathbf{u}_{r+1}, \mathbf{u}_{r+2}, \dots, \mathbf{u}_m\} = range(\mathbf{A})^{\perp}$$

• Relations between the four subspaces

$$\operatorname{range}(\mathbf{A}^*) \perp \operatorname{null}(\mathbf{A}), \quad \operatorname{range}(\mathbf{A}^*) + \operatorname{null}(\mathbf{A}) = \mathbb{C}^n$$

 $\operatorname{range}(\mathbf{A}) \perp \operatorname{null}(\mathbf{A}^*), \quad \operatorname{range}(\mathbf{A}) + \operatorname{null}(\mathbf{A}^*) = \mathbb{C}^m$

• Absolute value of determinant of $\mathbf{A} \in \mathbb{C}^{m \times m}$:

$$|\det(\mathbf{A})| = \prod_{i=1}^m \sigma_i$$

- \bullet If ${\bf A}$ is Hermitian, i.e., ${\bf A}={\bf A}^*,$ then singular values are absolute values of eigenvalues.
- An eigendecomposition via SVD:

$$\begin{bmatrix} \mathbf{0} & \mathbf{A} \\ \mathbf{A}^* & \mathbf{0} \end{bmatrix} = \mathbf{Q} \begin{bmatrix} \mathbf{\Sigma}_r & & & \\ & -\mathbf{\Sigma}_r & & \\ & & \mathbf{0} & \\ & & & \mathbf{0} \end{bmatrix} \mathbf{Q}^*, \mathbf{Q} = \begin{bmatrix} \frac{\mathbf{U}_r}{\sqrt{2}} & \frac{\mathbf{U}_r}{\sqrt{2}} & \mathbf{U}_c & \mathbf{0} \\ \frac{\mathbf{V}_r}{\sqrt{2}} & \frac{-\mathbf{V}_r}{\sqrt{2}} & \mathbf{0} & \mathbf{V}_c \end{bmatrix}.$$

• A random square matrix is "always" nonsingular. Or more general, a random rectangular matrix is "always" of full rank. Why?

2.1. Low-rank approximation (LRA)

Theorem 5 (Eckart-Young-Mirski)

For any integer k with $1 \le k < r = \text{rank}(\mathbf{A})$, define

$$\mathbf{A}_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^*.$$

Then

$$\|\mathbf{A} - \mathbf{A}_k\|_2 = \sigma_{k+1} = \min_{\substack{\mathbf{B} \in \mathbb{C}^{m \times n}, \\ \operatorname{rank}(\mathbf{B}) < k}} \|\mathbf{A} - \mathbf{B}\|_2,$$

and

$$\|\mathbf{A} - \mathbf{A}_k\|_{\mathrm{F}} = \sqrt{\sigma_{k+1}^2 + \dots + \sigma_r^2} = \min_{\substack{\mathbf{B} \in \mathbb{C}^{m \times n}, \\ \mathrm{rank}(\mathbf{B}) \le k}} \|\mathbf{A} - \mathbf{B}\|_{\mathrm{F}}.$$

• Discussion: Is the minimizer in Theorem 5 unique?

Proof of Theorem 5.

• Suppose there is some $\mathbf{B} \in \mathbb{C}^{m \times n}$ with rank $(\mathbf{B}) \leq k < r$ such that

$$\|\mathbf{A} - \mathbf{B}\|_2 < \sigma_{k+1}.$$

It follows that $\dim(\text{null}(\mathbf{B})) = n - \text{rank}(\mathbf{B}) \ge n - k$. Thus there exists an (n - k)-dimensional subspace $\mathcal{W} \subseteq \text{null}(\mathbf{B})$. For any nonzero $\mathbf{x} \in \mathcal{W}$, we have

$$\|\mathbf{A}\mathbf{x}\|_{2} = \|(\mathbf{A} - \mathbf{B})\mathbf{x}\|_{2} \le \|\mathbf{A} - \mathbf{B}\|_{2}\|\mathbf{x}\|_{2} < \sigma_{k+1}\|\mathbf{x}\|_{2}.$$

Let $\mathcal{V} = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{k+1}\}$. For any $\mathbf{x} \in \mathcal{V}$, we have

$$\|\mathbf{A}\mathbf{x}\|_{2} = \|\mathbf{A}\mathbf{V}_{k+1}\mathbf{y}\|_{2} = \|\mathbf{U}_{k+1}\mathbf{\Sigma}_{k+1}\mathbf{y}\|_{2} = \|\mathbf{\Sigma}_{k+1}\mathbf{y}\|_{2} \ge \sigma_{k+1}\|\mathbf{x}\|_{2}.$$

Since $\dim \mathcal{W} + \dim \mathcal{V} = (n-k) + (k+1) > n$, there must be a nonzero vector lying in both, and this is a contradiction.

• Case $\|\cdot\|_F$: Generalized Inverses: Theory and Applications, 2nd edition, Adi Ben-Israel and Thomas N.E. Greville, Page 213.

Application of low-rank approximation: image compression

- An image can be represented as a matrix. For example, typical grayscale images consist of a rectangular array of pixels, m in the vertical direction, n in the horizontal direction. The color of each of those pixels is denoted by a single number, an integer between 0 (black) and 255 (white). (This gives $2^8 = 256$ different shades of gray for each pixel. Color images are represented by three such matrices: one for red, one for green, and one for blue. Thus each pixel in a typical color image takes $(2^8)^3 = 2^{24}$ shades.)
- The objective of image compression is to reduce irrelevance and redundancy of the image data in order to be able to store or transmit data in an efficient form.
- Low-rank SVD approximation is a good candidate. (Note: jpeg compression algorithm uses similar idea, on subimages)

 Image Compression with Singular Value Decomposition Demo

3. Moore-Penrose pseudoinverse

• Let $\mathbf{A} \in \mathbb{C}^{m \times n}$ have an SVD (rank form) $\mathbf{A} = \mathbf{U}_r \mathbf{\Sigma}_r \mathbf{V}_r^*$. The Moore-Penrose pseudoinverse of \mathbf{A} , denoted by \mathbf{A}^{\dagger} :

$$\mathbf{A}^\dagger := \mathbf{V}_r \mathbf{\Sigma}_r^{-1} \mathbf{U}_r^* = \sum\nolimits_{i=1}^r \frac{1}{\sigma_i} \mathbf{v}_i \mathbf{u}_i^*.$$

• The matrix \mathbf{A}^{\dagger} is the *unique* matrix satisfying the four equations

$$\mathbf{AXA} = \mathbf{A}, \quad \mathbf{XAX} = \mathbf{X}, \quad (\mathbf{AX})^* = \mathbf{AX}, \quad (\mathbf{XA})^* = \mathbf{XA}.$$

For a proof, see Page 122 of Numerical Linear Algebra (in Chinese) by Zhihao Cao.

• If A has full column rank, then

$$\mathbf{A}^{\dagger} = (\mathbf{A}^* \mathbf{A})^{-1} \mathbf{A}^*.$$

If A has full row rank, then

$$\mathbf{A}^{\dagger} = \mathbf{A}^* (\mathbf{A} \mathbf{A}^*)^{-1}.$$

4. A wonderful reference

Zhihua Zhang (arXiv:1510.08532)
 The singular value decomposition, applications and beyond

5. Another proof of Theorem 5

Holger Wendland
 Numerical Linear Algebra An Introduction
 Cambridge University Press, 2018.
 See Page 295, Theorem 7.41.

6. Computationally more feasible methods for LRA

- Adaptive cross approximation (ACA)
 See Page 297 of Numerical Linear Algebra An Introduction.
- Joel A. Tropp and Robert J. Webber (arXiv:2306.12418)

 Randomized algorithms for low-rank matrix approximation:

 Design, analysis, and applications