EnKFseir

Geir Evensen

Version compiled April 3, 2020

1 Seir model

1.1 Model variables

All model variables are dimensionless normalized by the total initial population N.

Variable	Numerical	Description	Variable i	n html
S	$y(0) = (N - I_0)/N$	Susceptible (Population not immune to disease)	(S)
E	y(1) = 0.0	Exposed (Population currently in incubation)	(E)
I	$y(2) = I_0/N$	Infected (Number of infections actively circulating)	(I)
\mathbf{Q}_{m}	y(3) = 0.0	Sick Mild (Number of mild cases)	(Mild)
\mathbf{Q}_{s}	y(4) = 0.0	Sick Severe (Number of sever cases at home)	(Severe)
\mathbf{Q}_{h}	y(5) = 0.0	Sick Hospital (Number of sever cases at hospital)	(Severe_	_H)
\mathbf{Q}_{f}	y(6) = 0.0	Sick Fatal (Severe at hospital that will die)	(Fatal)
\mathbf{R}_{m}	y(7) = 0.0	Removed mild (recovered)	(R_Mild)
\mathbf{R}_{s}	y(8) = 0.0	Removed severe (recovered)	(R_Sever	re)
D	y(9) = 0.0	Removed fatal (Dead)	(R_Fatal	.)

1.2 Model equations

$$\mathbf{S} \to \mathbf{E} \to \mathbf{I} \to \begin{cases} \mathbf{Q}_{\mathrm{m}} & \to \mathbf{R}_{\mathrm{m}} \\ \mathbf{Q}_{\mathrm{s}} \to \mathbf{Q}_{\mathrm{h}} & \to \mathbf{R}_{\mathrm{s}} \\ \mathbf{Q}_{\mathrm{f}} & \to \mathbf{D} \end{cases}$$
 (1)

The model starts with a non-immune population S and a number of infectious persons I. people in S gets in contact with people in I and are exposed E. After some time they become infectious and move to I. The infectious people then develop desease and are moved to Q_m for mild cases, Q_s for severe cases, and Q_f for fatal cases. The severe cases are all going to the hospital after some time Q_h . (The fatal cases are also assumed being hospitelized.) Then Q_m recovers and are moved to R_m , the severe hospitelized Q_h recovers and move to R_s , and the fatally ill Q_f ends up dead in D.

The model assumes that as soon as you get sick you are moved to one of the \mathbf{Q} categories and you don't infect anyone anymore, in other words you are \mathbf{Q} arantined. We know this is not the case since doctors and nurses are getting infected at the hospitals.

Note that the dimensional equations includes a division by N in the quadratic terms which disappears

from the non-dimensional equations below.

$$\frac{\partial \mathbf{S}}{\partial t} = -(R(t)/\tau_{\text{inf}})\mathbf{I}\mathbf{S} \tag{2}$$

$$\frac{\partial \mathbf{E}}{\partial t} = (R(t)/\tau_{\text{inf}}) \mathbf{IS} - (1/\tau_{\text{inc}}) \mathbf{E}$$
(3)

$$\frac{\partial \mathbf{S}}{\partial t} = -(R(t)/\tau_{\text{inf}}) \mathbf{I} \mathbf{S}$$

$$\frac{\partial \mathbf{E}}{\partial t} = (R(t)/\tau_{\text{inf}}) \mathbf{I} \mathbf{S} - (1/\tau_{\text{inc}}) \mathbf{E}$$

$$\frac{\partial \mathbf{I}}{\partial t} = (1/\tau_{\text{inc}}) \mathbf{E} - (1/\tau_{\text{inf}}) \mathbf{I}$$
(4)

$$\frac{\partial \mathbf{Q}_{\mathrm{m}}}{\partial t} = (p_{\mathrm{m}}/\tau_{\mathrm{inf}})\mathbf{I} - (1/\tau_{\mathrm{recm}})\mathbf{Q}_{\mathrm{m}}$$
 (5)

$$\frac{\partial \mathbf{Q}_{s}}{\partial t} = (p_{s}/\tau_{inf})\mathbf{I} - (1/\tau_{hosp})\mathbf{Q}_{s}$$
 (6)

$$\frac{\partial \mathbf{Q}_{h}}{\partial t} = (1/\tau_{hosp}) \,\mathbf{Q}_{s} - (1/\tau_{recs}) \,\mathbf{Q}_{h} \tag{7}$$

$$\frac{\partial \mathbf{Q}_{\text{m}}}{\partial t} = (1/\tau_{\text{inc}}) \mathbf{E} - (1/\tau_{\text{inf}}) \mathbf{I} \qquad (4)$$

$$\frac{\partial \mathbf{Q}_{\text{m}}}{\partial t} = (p_{\text{m}}/\tau_{\text{inf}}) \mathbf{I} - (1/\tau_{\text{recm}}) \mathbf{Q}_{\text{m}} \qquad (5)$$

$$\frac{\partial \mathbf{Q}_{\text{s}}}{\partial t} = (p_{\text{s}}/\tau_{\text{inf}}) \mathbf{I} - (1/\tau_{\text{hosp}}) \mathbf{Q}_{\text{s}} \qquad (6)$$

$$\frac{\partial \mathbf{Q}_{\text{h}}}{\partial t} = (1/\tau_{\text{hosp}}) \mathbf{Q}_{\text{s}} - (1/\tau_{\text{recs}}) \mathbf{Q}_{\text{h}} \qquad (7)$$

$$\frac{\partial \mathbf{Q}_{\text{f}}}{\partial t} = (p_{\text{f}}/\tau_{\text{inf}}) \mathbf{I} - (1/\tau_{\text{death}}) \mathbf{Q}_{\text{f}} \qquad (8)$$

$$\frac{\partial \mathbf{R}_{\text{m}}}{\partial t} = (1/\tau_{\text{recm}}) \mathbf{Q}_{\text{m}} \qquad (9)$$

$$\frac{\partial \mathbf{R}_{\text{s}}}{\partial t} = (1/\tau_{\text{recs}}) \mathbf{Q}_{\text{h}} \qquad (10)$$

$$\frac{\partial \mathbf{D}}{\partial t} = (1/\tau_{\text{death}}) \mathbf{Q}_{\text{f}} \qquad (11)$$

$$\frac{\partial \mathbf{R}_{\mathbf{m}}}{\partial t} = (1/\tau_{\text{recm}}) \mathbf{Q}_{\mathbf{m}} \tag{9}$$

$$\frac{\partial \mathbf{R}_{s}}{\partial t} = (1/\tau_{\text{recs}}) \,\mathbf{Q}_{h} \tag{10}$$

$$\frac{\partial \mathbf{D}}{\partial t} = (1/\tau_{\text{death}}) \mathbf{Q}_{\text{f}} \tag{11}$$

Model paramters 1.3

$ au_{ m 2death}$	P(1)	Time_to_death	=	32.0	Days to death
N	P(2)	N	=	5000000.0	Initial population
I_0	P(3)	10	=	50.0	Initial infectious (19 cases 1st march)
R_0	P(4)	R0	=	2.2	Basic Reproduction Number
$ au_{ m inc}$	P(5)	D_incbation	=	5.2	Incubation period (Tinc)
$ au_{ ext{inf}}$	P(6)	D_infectious	=	2.9	Duration patient is infectious (Tinf)
$ au_{ m recm}$	P(7)	D_recovery_mild	=	14.0 - D_infectious	Recovery time mild cases (11.1)
$ au_{ m recs}$	P(8)	D_recovery_severe	: =	31.5 - D_infectious	Recovery time severe cases Length of hosp
$ au_{ m hosp}$	P(9)	<pre>D_hospital_lag</pre>	=	5.0	Time to hospitalization.
$p_{ m f}$	P(10)	CFR	=	0.02	Case fatality rate
$p_{\rm S}$	P(11)	p_severe	=	0.2	Hospitalization rate % for severe cases
R(t)	P(12)	Rt	=	0.9	Basic Reproduction Number during interve
$ au_{ m intervention}$	P(13)	InterventionTime	=	30.0	Interventions start here (15th march)
$p_{\rm m}=1-p_{\rm s}-p_{\rm f}$					
$\tau_{\text{death}} = \tau_{\text{2death}} - \tau_{\text{inf}}$					

Diagnostic variables

Number of hospitelized	$N(\mathbf{Q}_{\mathrm{f}} + \mathbf{Q}_{\mathrm{h}})$
Number of recovered	$N(\mathbf{R}_{\rm m}+\mathbf{R}_{\rm s})$
Number of deaths	$N\mathbf{D}$
Number of exposed	$N\mathbf{E}$
Number of infectious	$N\mathbf{I}$
Number of susceptible	NS