Modification de fichiers GRIB

Conception générale

Description

Ce document liste certains éléments de conception essentiels tel que le diagramme de classes de l'application ainsi que les calculs utilisés sur les composantes U et V du vent.

Diagramme de classes

Le diagramme est composé de 7 classes dont 1 module :

- La classe Application permet de définir les différents éléments graphiques qui composent l'application
- La classe Map permet de gérer l'affichage de la carte et ses interactions
- La classe Geojson permet d'ouvrir et de fermer un fichier GeoJSON ainsi que d'afficher les données qui le compose
- La classe Grib permet d'ouvrir et de fermer un fichier GRIB ainsi que d'afficher et manipuler les données qui le compose
- La classe History permet d'implémenter l'historique de modifications de l'application ainsi que son affichage
- La classe Move permet de gérer la fonctionnalité de mouvement sur la carte
- La classe Edit permet de gérer la fonctionnalité de sélection de zone sur la carte ainsi que les données saisies pour l'édition
- Le module Tools rassemble diverses fonctions utilitaires pour l'application

Calculs utilisés sur les composantes U et V du vent

Note: les calculs suivants sont composés de pseudo-code, le code original se trouve dans "src/tools.py", "src/grib.py", "src/api/grib_wind.c" et "src/api/grib_wind_tools.c".

U et V vers direction du vent en degrés

angle = (270 - atan2(V, U) * 180 / pi) % 360

U et V vers vitesse du vent en mètres par seconde

speed_in_mps = sqrt(U * U + V * V)

· Vitesse du vent en mètres par seconde vers vitesse du vent en nœuds

speed_in_knots = speed_in_mps / 0.514444

Modification de la direction du vent par ajout

speed_in_mps = sqrt(U * U + V * V)
new_angle = atan2(V, U) - input_value * pi / 180
new_U = speed_in_mps * cos(new_angle)
new_V = speed_in_mps * sin(new_angle)

Modification de la direction du vent par remplacement

speed_in_mps = sqrt(U * U + V * V)
new_angle = (270 - input_value) * pi / 180
new_U = speed_in_mps * cos(new_angle)
new_V = speed_in_mps * sin(new_angle)

• Modification de la vitesse du vent par ajout

speed_in_mps = sqrt(U * U + V * V)
new_speed = speed_in_mps + input_value * 0.514444
new_U = U * new_speed / speed_in_mps
new_V = V * new_speed / speed_in_mps

· Modification de la vitesse du vent par remplacement

speed_in_mps = sqrt(U * U + V * V)
new_speed = input_value * 0.514444
new_U = U * new_speed / speed_in_mps
new_V = V * new_speed / speed_in_mps

Modification de la vitesse du vent par ajout (pourcentage)

```
speed_in_mps = sqrt(U * U + V * V)
new_speed = speed_in_mps + (speed_in_mps * input_value / 100)
new_U = U * new_speed / speed_in_mps
new_V = V * new_speed / speed_in_mps
```