

Sentiment Analysis of Songs Lyrics

An NLP approach using deep learning

David Gamez, Joseph Mercer <u>david.gamez@berkeley.edu</u>, <u>jlmercer@berkeley.edu</u>

UC Berkeley School of Information. Master of Information and Data Science. W266 Natural Language Processing with Deep Learning

Objectives

Binomial classification

Positive/Negative valence

Multinomial classification:

Four emotions categories of Russell's model: happy, angry, sad and relaxed

Data

Two datasets:

- corpus of collection of 771 song lyrics collected from Allmusic, annotated using human evaluators and user tags
- collection of 2,500 song lyrics annotated using content words of lyrics and their valence and arousal norms in affect lexicons only
- Data pre-processing (spelling errors / repeated syllables)
- Final Corpus: 2574 songs

Mood	Valence	Source 1	Source 2	Total	
		[4]	[1]		
Нарру	Positive	211	465	667	
Angry	Negative	204	468	672	
Sad	Negative	204	443	647	
Relaxed	Positive	148	440	588	

2574 songs!

Binomial

Best result:

BERT model on accuracy and f-1 score on test data

Interesting:

DL models get more homogeneous results on precision and recall for both classes

Model			Metrics		
	class	precision	recall	f1-score	#
Baseline	Accuracy: 0.48			515	
	pos	0.88	0.61	0.72	265
NB	neg	0.69	0.91	0.78	250
	Accuracy: 0.7553				515
	pos	0.65	0.82	0.72	155
CNN	neg	0.78	0.59	0.78	169
	Accuracy: 0.7006				324
	pos	0.72	0.72	0.72	155
Bi-LSTM	neg	0.74	0.74	0.74	169
RNN	Accuracy: 0.7315			324	
	pos	0.80	0.75	0.76	256
BERT	neg	0.795	0.77	0.78	259
	Accuracy: 0.7825				515

Multinomial

Best result:

Naive Bayes model on accuracy and most of f-1 score on test data

Interesting:

DL models get more homogeneous results on precision and recall for both classes

Model	Metrics				
	class	precision	recall	f1-score	#
Baseline	Accuracy: 0.2563				515
	happy	0.59	0.74	0.66	132
	angry	0.84	0.72	0.77	143
NB	sad	0.51	0.66	0.58	122
	relax	0.57	0.33	0.42	118
		515			
	happy	0.60	0.62	0.61	90
	angry	0.63	0.79	0.70	85
CNN	sad	0.46	0.46	0.46	70
	relax	0.60	0.42	0.49	79
		324			
	happy	0.53	0.57	0.55	90
	angry	0.68	0.66	0.67	85
Bi-LSTM	sad	0.35	0.34	0.35	70
RNN	relax	0.52	0.51	0.51	79
	Accuracy: 0.5277			324	

Multinomial

Normalized confusion matrix for Bi-LSTM RNN model

True\Pred	Нарру	Angry	Sad	Relaxed
Нарру	56.67	14.44	13.33	15.56
Angry	10.59	65.88	17.65	5.88
Sad	25.71	14.29	34.29	25.71
Relaxed	22.78	3.80	22.78	50.63

Interesting:

Angry songs are the easiest to classify: very frequent use of rude vocabulary and expressions, not common in any of the other classes. However, the boundaries between a sad and relaxed, or between a relaxed and happy song lyrics are not always so clear, even for a human being

Conclusion

- For binomial classification, we developed a deep learning model which was able to beat the classical model, which it is a better result than the one reported in reference #2, where a combination of lyrics and audio models was required to beat a classical NLP approach -on lyrics only-.
- On top of that, our BERT model got a 78.25% accuracy on positive/negative (valence),
 beating the 76.29% maximum accuracy on valence reported in reference #6 and even
 the 77.23% reported on arousal, which we did not train for.
- However, for multiclass classification, we were not able to beat a classical model.
- The greatest confusion of the model was found between relaxed and sad emotions. A
 larger corpus would probably help dealing with this difficulty.

References

- [1] Çano, Erion; Morisio, Maurizio (2017). MoodyLyrics: A Sentiment Annotated Lyrics Dataset. In: 2017 International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence, Hong Kong, March, 2017. pp. 118-124 (Link [1]).
- [2] Delbouys, R., Hennequin, R., Piccoli, F., Royo-Letelier, J., Moussallam, M. (2018). Music Mood Detection Based On Audio And Lyrics With Deep Neural Net. arXiv e-prints arXiv:1809.07276 (Link [2]).
- [3] Kim, Yoon (2014). Convolutional Neural Networks for Sentence Classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics (Link [3]).
- [4] Malheiro, Ricardo & Panda, Renato & Gomes, Paulo & Paiva, Rui Pedro. (2016). Classification and Regression of Music Lyrics: Emotionally-Significant Features. 45-55. 10.5220/0006037400450055 (Link [4]).
- [5] Russell, James A.(1980). A circumplex model of a_ect. Journal of personality and social psychology, 39(6):1161-1178, 1980 (Link [5]).
- [6] Zaanen, Kanters (2010). Automatic mood classification using tf*idf based on lyrics. Proceedings of the 11th International Society for Music Retrieval Conference, pages 75-80 (Link [6])

Thanks for listening!