A COMPUTATIONAL MODEL OF POWER IN COLLABORATIVE NEGOTIATION DIALOGUES

IVA 2017

Lydia OULD OUALI

Nicolas Sabouret (LIMSI-CNRS)
Charles Rich (WPI)

Plan

Context

Model of collaborative negotiation

Evaluation

Conclusion and futur work

Context: Conversational agents

- Raise of popularity in different fields.
 - Chatbots (SIRI, Google now)
 - Companion for the eldery (Bickmore, 05)
 - Tutoring agents (Kerly et al, 08)
 - •
- Collaborate with user in order to satisfy tasks.
 - Ex tutoring agents:
 - Knowledge comparison for a better learning
 - Personalized teaching to the learner.

Collaboration in dialogue

Collaboration in dialogue

Collaborative negotiation

trade-of which best satisfies the interests of **both participants**, instead of maximizing **one participant's interest**. (Chu-Caroll & Carberry, 95)

Social aspects in negotiation

- Negotiation involves social interaction:(Brockens et al, 10)
 - Affects
 - Social behaviors.

Dominance:

- Ability to express behavior of power (Burgoon & Dunbar 98)
- control attempts by one individual are accepted by the interactional partner (Burgoon & Dunbar 98)
- Power: the ability to influence the behavior of another person (Burgoon et al 98)

Social aspects in negotiation

Non-verbal behaviors:

- Body movement:
 - Posture, relaxation etc ...
 - Computational model (Mignault and chaudhuri, 03)
- Head tilts
 - raised head is associated to a dominant behavior
 - Computational model (Gebhard, 14)
- Gaze
 - Computational model (Lance and Marsella, 08)

• . . .

Social aspects in negotiation

- ➤ Verbal behaviors → 3 principles
 - Level of demand and concession(Dedreu et al 95)
 - Power is associated to a high level of demand and a low level of concessions
 - Self vs other (Fiske 93, DeDreu et al 95)
 - High-power individuals are self-centered and only interested in satisfying their own preferences.
 - Lead of the negotiation (Dedreu and VanKleef, 04)
 - High-power individuals tends to make the first move
 - Control of the flow of the negotiation

Objectives

- Model of social behaviors in the context of collaborative negotiation.
 - Conversational agent communicates using actes of dialogue
 - Define strategies of collaborative negotiation
 - Adapt the strategies of negotiation to the relation of power

- Domain model
 - Goal: choose an option (ex: Restaurant).
 - Option = {Criterion_1, ..., Criterion_n}
 - Ex : Restaurant = {cuisine, Price, ambiance}
 - Preferences on criteria's values ≺
 - Partial order.
 - Score of satisfaction based on the preferences
 - Inverse of the number of ancestors

$$\mathtt{sat}_{\mathtt{self}}(\nu, \prec_{\mathtt{i}}) = 1 - \left(\frac{|\{\nu' : \nu' \neq \nu \ \land \ (\nu \prec_{\mathtt{i}} \nu')\}|}{(|C_{\mathtt{i}}| - 1)}\right)$$

Communication: Dialogue acts

Share preferences

- Share a preference
 - State Preference(X)
- Ask for a preference
 - Ask Preference(X)

Negotiation

- Make a proposal
 - Propose(X)
- Reject a proposal
 - Reject(X)
- Accept a proposal
 - Accept(X)

Dialogue model

Shared knowledge during the negotiation:

Proposals

P: Open, T: Accepted, R: Rejeted

Shared preferences

Other preferences

$$sat_{other}(v) = \begin{cases} 1 & \text{if } c \in A_i \\ 0 & \text{if } c \in U_i \\ 0.5 & \text{otherwise} \end{cases}$$

Dialogue model

Shared knowledge during the negotiation:

Proposals

P: Open, T: Accepted, R: Rejeted

Shared preferences

Other preferences

$$sat_{other}(v) = \begin{cases} 1 & \text{if } c \in A_i \\ 0 & \text{if } c \in U_i \\ 0.5 & \text{otherwise} \end{cases} \text{I like v}$$

- Decision based on power
 - Implementation of the three principles
 - Agent is initiated with a value of power
 - pow ∈ [0,1]

Decision based on power

Principle 1

High power agent makes less concessions

Self: Function representing the value of **pow** over time

$$\text{self}(\text{pow}, t) = \begin{cases} \text{pow} & \text{if } (t \leqslant \tau) \\ \text{max}(0, \text{pow} - (\frac{\delta}{\text{pow}} \cdot (t - \tau))) \text{ otherwise} \end{cases}$$

Decision based on power

Principle 1

- High-power agent is more demanding
- Acc: Define if a value is acceptable for the agent
 - Ex: Accept(Chinese) / Condition : acc(Chinese) = True
- The acceptability of a value depends on the agent's level of demand

$$acc(pow, v, t) = sat_{self}(v, \prec_i) \ge (\beta \cdot self(pow, t))$$

- Decision based on power
 - > Principle 2
- · High-power agent gives more weight to its own satisfaction.
- Tolerability:
 - Let V_i be the set of acceptable values
 - Compute the acceptability of a proposal by taking into account self preference and other preferences

$$tol(v) = self(pow, t) \cdot sat_{self}(v, \prec_i) + (1 - self(pow, t)) \cdot sat_{other}(v)$$

Decision based on power

Principe 2

- High-power agent gives more weight to its own satisfaction.
- Tolerability: Compute the acceptability of a proposal by considering both interlocutors preferences
- The agent proposes the most « tolerable » value

$$propose(V_i, \prec_i, pow) = \underset{\nu \in V_i}{\arg\max}(tol(\nu))$$

- Decision based on power
 - > Principle 3

Mental state

- Preferences
- Pow (Power)

Negotiation context

- Proposalss (P,T,R)
- Other (A,U)
- History of utterances

Decision based on power

- Decision on preferences.
 (P1, P2)
- Decision on the choice of an utterance (P3)

- Decision based on power
 - > Principle 3
 - high-power agent tends to lead the negotiation

- Decision rules
- Define a priority in the choice of the utterance
- High-power: Negotiation acts (Propose, Reject, Accept).
- Low-power: Statement acts (StatePreference, AskPreference)

Pow(Agent1) = 0.9, Pow(Agent2) = 0.4

A: "Let's go to a Chinese restaurant."

B: "I don't like Chinese restaurants, let's choose something else."

A: "Let's go to the Shanghai. It's a quiet, cheap Chinese restaurant on the south side."

B: "Do you like Italian restaurants?"

A: "I don't like Italian restaurants."

B: "Do you like French restaurants?"

A: "Let's go to the Shanghai. It's a quiet, cheap Chinese restaurant on the south side."

B: "Do you like French restaurants?"

A: "I don't like French restaurants."

B: "Do you like Korean restaurants?"

A: "Let's go to a cheap restaurant."

B: "Okay, let's go to a cheap restaurant."

A: "Let's go to a restaurant on the south side."

B: "Okay, let's go to a restaurant on the south side."

A: "Let's go to the Shanghai. It's a quiet, cheap Chinese restaurant on the south side."

Pow(Agent1) = 0.9, Pow(Agent2) = 0.4

A: "Let's go to a Chinese restaurant."

B: "I don't like Chinese restaurants, let's choose something else."

A: "Let's go to the Shanghai. It's a quiet, cheap Chinese restaurant on the south side."

B: "Do you like Italian restaurants?"

A: "I don't like Italian restaurants."

B: "Do you like French restaurants?"

A: "Let's go to the Shanghai. It's a quiet, cheap Chinese restaurant on the south side."

B: "Do you like French restaurants?"

A: "I don't like French restaurants."

B: "Do you like Korean restaurants?"

A: "Let's go to a cheap restaurant."

B: "Okay, let's go to a cheap restaurant."

A: "Let's go to a restaurant on the south side."

B: "Okay, let's go to a restaurant on the south side."

A: "Let's go to the Shanghai. It's a quiet, cheap Chinese restaurant on the south side."

Pow(Agent1) = 0.9, Pow(Agent2) = 0.4

A: "Let's go to a Chinese restaurant."

B: "I don't like Chinese restaurants, let's choose something else."

A: "Let's go to the Shanghai. It's a quiet, cheap Chinese restaurant on the south side."

B: "Do you like Italian restaurants?"

A: "I don't like Italian restaurants."

B: "Do you like French restaurants?"

A: "Let's go to the Shanghai. It's a quiet, cheap Chinese restaurant on the south side."

B: "Do you like French restaurants?"

A: "I don't like French restaurants."

B: "Do you like Korean restaurants?"

A: "Let's go to a cheap restaurant."

B: "Okay, let's go to a cheap restaurant."

A: "Let's go to a restaurant on the south side."

B: "Okay, let's go to a restaurant on the south side."

A: "Let's go to the Shanghai. It's a quiet, cheap Chinese restaurant on the south side."

Pow(Agent1) = 0.9, Pow(Agent2) = 0.4

A: "Let's go to a Chinese restaurant."

B: "I don't like Chinese restaurants, let's choose something else."

A: "Let's go to the Shanghai. It's a quiet, cheap Chinese restaurant on the south side."

B: "Do you like Italian restaurants?"

A: "I don't like Italian restaurants."

B: "Do you like French restaurants?"

A: "Let's go to the Shanghai. It's a quiet, cheap Chinese restaurant on the south side."

B: "Do you like French restaurants?"

A: "I don't like French restaurants."

B: "Do you like Korean restaurants?"

A: "Let's go to a cheap restaurant."

B: "Okay, let's go to a cheap restaurant."

A: "Let's go to a restaurant on the south side."

B: "Okay, let's go to a restaurant on the south side."

A: "Let's go to the Shanghai. It's a quiet, cheap Chinese restaurant on the south side."

Evaluation of the model

Evaluate the perception of the implemented behaviors

Conditions

- Agent preferences.
 - Similar preferences
 - Different preferences
- Init of power.
 - Pow(Agent1) = 0.9, Pow(Agent2) = 0.4
 - Pow(Agent1) = 0.7, Pow(Agent2) = 0.4
 - Pow(Agent1) = 0.7, Pow(Agent2) = 0.2

Evaluation of the model

Hypotheses

- H1 The higher-power agent will more strongly be perceived as self-centered than the lower-power agent
- H2 The lower-power agent will be more strongly perceived as making larger concessions than the higher-power agent
- H3 The higher-power agent will more strongly be perceived as demanding than the lower-power agent
- H4 he higher-power agent will more strongly be perceived as taking the lead in the negotiation than the lower-power agent

Evaluation of the model

Procedure

 a between-subject study on the online site CrowdFlower.com.

 Agents described as two friends trying to negotiate a restaurant to have dinner.

Total participants: 120

Evaluation 28

Evaluation of the model

Results

H1

H2

- Agent 1 is more self-centered and do not make concessions.
- Agent 2 tries to find the best trade-off for both parties, and is able to make larger concessions.

Evaluation 29

Evaluation of the model

Results

H3

H4

- Agent 1 is more demanding than agent 2.
- Agent 1 is the one who leads the dialogue.

Conclusion & futur work

- Impact of power on the negotiation strategies
 - Identify 3 principles of behaviors related to power
 - Define a computational model of collaborative negotiation
- Validation of the computation model: Perception of behaviors by external observers
- 3. Validate the model in a human machine interaction
- 4. Define the relation of dominance:
 - Add a model of ToM
 - Test the model in a human machine interaction

Thank you for your attention