1 Лемма(*)

$$(\varphi \to \neg \neg \psi) \to (\varphi \to \psi)$$

Доказательство: по теореме о дедукции $(\varphi \to \neg \neg \psi), \varphi \vdash \psi$

- 1. $\neg \neg \psi \rightarrow \psi$ (схема аксиом 10)
- 2. $\varphi \rightarrow \neg \neg \psi$ (допущение)
- 3. φ (допущение)
- 4. $\neg \neg \psi \text{ (MP 2, 3)}$
- 5. ψ (MP 1, 4)

$$2 \quad (a) \ \neg \forall x \varphi \to \exists x \neg \varphi$$

Сначала докажем, что $\neg \exists x \neg \varphi \rightarrow \varphi$

- 1. $\neg \varphi \rightarrow \exists x \neg \varphi$ (схема аксиом 12)
- 2. $\neg \exists x \neg \varphi \rightarrow \neg \neg \varphi$ (по лемме о контрапозиции)
- 3. $\neg \exists x \neg \varphi \rightarrow \varphi \pmod{*}$

Применяя правило вывода, получаем $\neg \exists x \neg \varphi \rightarrow \forall x \varphi$.

По лемме о контрапозиции $\neg \forall x \varphi \rightarrow \neg \neg \exists x \neg \varphi$.

И по (*) снимаем двойное отрицание $\neg \forall x \varphi \to \exists x \neg \varphi$.

3 (e) $(\alpha\&\forall x\beta)\to \forall x(\alpha\&\beta),$ если x не входит свободно в α

Используем теорему о дедукции $\alpha\&\forall x\beta \vdash \forall x(\alpha\&\beta)$

- 1. $(\alpha \& \forall x \beta)$ (допущение)
- 2. $(\alpha \& \forall x \beta) \rightarrow \forall x \beta$ (схема аксиом 5)
- 3. $\forall x\beta \text{ (MP 1, 2)}$
- 4. $\forall x\beta \rightarrow \beta$ (схема аксиом 11)
- 5. β (MP 3, 4)
- 6. $(\alpha \& \forall x \beta) \rightarrow \alpha$ (схема аксиом 4)
- 7. α (MP 1, 6)

- 8. $\alpha \to \beta \to (\alpha \& \beta)$ (схема аксиом 3)
- 9. $\alpha \& \beta$ (MP 5 и 7 с 8)
- 10. $(\alpha \& \beta) \to \alpha \to (\alpha \& \beta)$ (схема аксиом 1)
- 11. $\alpha \rightarrow (\alpha \& \beta)$ (MP 9, 10)
- 12. $\alpha \to \forall x (\alpha \& \beta)$ (правило вывода, 11)
- 13. $\forall x(\alpha \& \beta) \text{ (MP 7, 12)}$