Билет 1

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{3z^2}{\theta (1+z^3)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^3\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=16 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=161$ мин, $S(\overline{x})=5.31$ мин. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 2.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{5z^4}{\theta (1+z^5)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^5\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 3.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{7z^6}{\theta (1+z^7)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^7\right),$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S\left(\overrightarrow{x}\right)=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 4.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{4z^3}{\theta (1+z^4)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^4\right),$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 5.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3x^2}{\theta (1+x^3)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^3\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=26 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=142.5$ мин, $S(\overline{x'})=3.43$ мин. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы резца до затупливания. $\frac{\mathbb{N} \text{ вопроса}}{\mathbb{B} \text{ валлы}} \frac{1}{17} \frac{2}{17} \frac{\mathbb{E} \text{ max min}}{34}$

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 6.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5x^4}{\theta (1 + x^5)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^5\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 7

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7x^6}{\theta (1 + x^7)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^7\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 8.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4x^3}{\theta (1 + x^4)^{1/\theta + 1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^4\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20
	•			

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 9.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3y^2}{\theta (1+y^3)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^3\right),$$

где $\overrightarrow{Y}=(Y_1,\dots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=11 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=212$ мин, $S(\overline{x})=7.62$ мин. Построить доверительный интервал уровня $\gamma=0.85$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 10.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5y^4}{\theta (1 + y^5)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^5\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

No re	ompoes	1 1	9	V = may	min
Fa Ba	ллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 11.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{7y^6}{\theta (1 + y^7)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^7\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $\mathbf{B}_{\mathbf{U}}$ Теория $\mathbf{12}$.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4y^3}{\theta (1+y^4)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^4\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{3z^2}{\theta (1+z^3)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^3\right),\,$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}(\overrightarrow{Z})$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=16 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=161$ мин, $S(\overline{x})=5.31$ мин. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 14.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{5z^4}{\theta (1+z^5)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^5\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${\bf Билет}\ 15.$

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{7z^6}{\theta (1+z^7)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^7\right),$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S\left(\overrightarrow{x}\right)=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 16.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{4z^3}{\theta (1+z^4)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^4\right),$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20
	•			

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 17.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3x^2}{\theta (1+x^3)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^3\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=26 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=142.5$ мин, $S(\overline{x'})=3.43$ мин. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы резца до затупливания. $\frac{\mathbb{N} \text{ вопроса}}{\mathbb{B} \text{ валлы}} \frac{1}{17} \frac{2}{17} \frac{\mathbb{E} \text{ max min}}{34}$

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${
m Bu}$ лет 18.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5x^4}{\theta (1+x^5)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^5\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7x^6}{\theta (1 + x^7)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^7\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $\mathbf{Б}$ илет $\mathbf{20}.$

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4x^3}{\theta (1 + x^4)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^4\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${\bf Билет}\ 21.$

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3y^2}{\theta (1+y^3)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^3\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=11 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=212$ мин, $S(\overline{x})=7.62$ мин. Построить доверительный интервал уровня $\gamma=0.85$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 22.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5y^4}{\theta (1 + y^5)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^5\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 23.

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{7y^6}{\theta (1 + y^7)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^7\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

иут, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год f Билет~24.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4y^3}{\theta (1 + y^4)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^4\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{3z^2}{\theta (1+z^3)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^3\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=16 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=161$ мин, $S(\overline{x})=5.31$ мин. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${f Билет}\ 26.$

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_{Z}\left(z\right)=\frac{5z^{4}}{\theta\left(1+z^{5}\right)^{1/\theta+1}},\qquad z\geqslant0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^5\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Bилет 27.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{7z^6}{\theta (1+z^7)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^7\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m,\sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S\left(\overrightarrow{x}\right)=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 28.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{4z^3}{\theta (1+z^4)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^4\right),\,$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

Γ	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 29.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3x^2}{\theta (1+x^3)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^3\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=26 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=142.5$ мин, $S(\overline{x'})=3.43$ мин. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы резца до затупливания. $\frac{\mathbb{N} \text{ вопроса}}{\mathbb{B} \text{ валлы}} \frac{1}{17} \frac{2}{17} \frac{\mathbb{E} \text{ max min}}{34}$

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${\bf Билет}\ 30.$

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5x^4}{\theta (1+x^5)^{1/\theta+1}}, \quad x \ge 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^5\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7x^6}{\theta (1 + x^7)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^7\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 32.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4x^3}{\theta (1 + x^4)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^4\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 33.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3y^2}{\theta (1+y^3)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^3\right),$$

где $\overrightarrow{Y}=(Y_1,\ldots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=11 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=212$ мин, $S(\overline{x})=7.62$ мин. Построить доверительный интервал уровня $\gamma=0.85$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 34

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5y^4}{\theta (1 + y^5)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^5\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

иут, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 35.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{7y^6}{\theta (1 + y^7)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^7\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

Баллы 17 17 34 20	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 36.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4y^3}{\theta (1 + y^4)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^4\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{3z^2}{\theta (1+z^3)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^3\right),\,$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=16 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=161$ мин, $S(\overline{x})=5.31$ мин. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${f Билет}\ 38.$

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_{Z}\left(z\right)=\frac{5z^{4}}{\theta\left(1+z^{5}\right)^{1/\theta+1}},\qquad z\geqslant0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^5\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${\bf Билет}\ {\bf 39}.$

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{7z^6}{\theta (1+z^7)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^7\right),$$

где $\overrightarrow{Z}=(Z_1,\dots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m,\sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S\left(\overrightarrow{x}\right)=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 40.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{4z^3}{\theta (1+z^4)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^4\right),\,$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 41.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3x^2}{\theta (1+x^3)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^3\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

при скорости резания 0.33~м/c и подаче 0.12~мм/o6, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=142.5~\text{мин},~S(\overrightarrow{x'})=3.43~\text{мин}.$ Построить доверительный интервал уровня $\gamma=0.99~\text{для}$ среднего времени работы резца до затупливания. $\frac{\text{Ne вопроса}}{\text{Баллы}} \frac{1}{17} \frac{1}{17} \frac{2}{17} \frac{|\Sigma=\text{max}|}{34} \frac{\text{min}}{20}$

2. Для определения стойкости резца из сплава T15K6 были испытаны n=26 образцов

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${\bf Билет}\ 42.$

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5x^4}{\theta (1+x^5)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^5\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7x^6}{\theta (1 + x^7)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^7\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 44.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4x^3}{\theta (1 + x^4)^{1/\theta + 1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^4\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${\bf Билет}\ {\bf 45}.$

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3y^2}{\theta (1+y^3)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^3\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=11 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=212$ мин, $S(\overline{x})=7.62$ мин. Построить доверительный интервал уровня $\gamma=0.85$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 46

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5y^4}{\theta (1 + y^5)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^5\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 47.

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{7y^6}{\theta (1 + y^7)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^7\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${f Билет}$ 48.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4y^3}{\theta (1+y^4)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^4\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{3z^2}{\theta (1+z^3)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^3\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=16 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=161$ мин, $S(\overline{x})=5.31$ мин. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год \mathbf{B} илет $\mathbf{50}$.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_{Z}\left(z\right)=\frac{5z^{4}}{\theta\left(1+z^{5}\right)^{1/\theta+1}},\qquad z\geqslant0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^5\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S\left(\overrightarrow{x'}\right)=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${\bf Билет}\ 51.$

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{7z^6}{\theta (1+z^7)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^7\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m,\sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S\left(\overrightarrow{x}\right)=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 52.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{4z^3}{\theta (1+z^4)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^4\right),$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overline{x}) = 5.31$.

, № Bonpoca	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 53.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3x^2}{\theta (1+x^3)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^3\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=26 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=142.5$ мин, $S(\overline{x'})=3.43$ мин. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы резца до затупливания. $\frac{\mathbb{N} \text{ вопроса}}{\mathbb{B} \text{ валлы}} \frac{1}{17} \frac{2}{17} \frac{\mathbb{E} \text{ max min}}{34}$

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год \mathbf{B} ИЛЕТ $\mathbf{54}$.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5x^4}{\theta (1+x^5)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^5\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7x^6}{\theta (1 + x^7)^{1/\theta + 1}}, \quad x \geqslant 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^7\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

N:	вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${f Билет}\ {f 56}.$

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4x^3}{\theta (1 + x^4)^{1/\theta + 1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^4\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год \mathbf{B} илет $\mathbf{57}$.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3y^2}{\theta (1+y^3)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^3\right),$$

где $\overrightarrow{Y}=(Y_1,\ldots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=11 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=212$ мин, $S(\overline{x})=7.62$ мин. Построить доверительный интервал уровня $\gamma=0.85$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 58

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5y^4}{\theta (1 + y^5)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^5\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 59.

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{7y^6}{\theta (1 + y^7)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^7\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год \mathbf{B} ИЛЕТ $\mathbf{60}$.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4y^3}{\theta (1 + y^4)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^4\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{3z^2}{\theta (1+z^3)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^3\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=16 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=161$ мин, $S(\overline{x})=5.31$ мин. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год \mathbf{B} илет $\mathbf{62}.$

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_{Z}\left(z\right)=\frac{5z^{4}}{\theta\left(1+z^{5}\right)^{1/\theta+1}},\qquad z\geqslant0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^5\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S\left(\overrightarrow{x'}\right)=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год \mathbf{B} илет $\mathbf{63}$.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{7z^6}{\theta (1+z^7)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^7\right),$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S\left(\overrightarrow{x}\right)=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 64.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{4z^3}{\theta (1+z^4)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^4\right),$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 65.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3x^2}{\theta (1+x^3)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^3\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=26 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=142.5$ мин, $S(\overline{x'})=3.43$ мин. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы резца до затупливания. $\frac{\mathbb{N} \text{ вопроса}}{\mathbb{B} \text{ валлы}} \frac{1}{17} \frac{2}{17} \frac{\mathbb{E} \text{ max min}}{34}$

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год \mathbf{B} ИЛЕТ $\mathbf{66}$.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5x^4}{\theta (1+x^5)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^5\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7x^6}{\theta (1 + x^7)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^7\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год \mathbf{B} илет $\mathbf{68}$.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4x^3}{\theta (1 + x^4)^{1/\theta + 1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^4\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20
	•			

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 69.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3y^2}{\theta (1+y^3)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^3\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=11 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=212$ мин, $S(\overrightarrow{x})=7.62$ мин. Построить доверительный интервал уровня $\gamma=0.85$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 70

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5y^4}{\theta (1 + y^5)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^5\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 71.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{7y^6}{\theta (1 + y^7)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^7\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${f B}$ ИЛІ ${f e}$ Т ${f 72}$.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4y^3}{\theta (1 + y^4)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^4\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{3z^2}{\theta (1+z^3)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^3\right),$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}(\vec{Z})$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава T15K6 были испытаны n=16 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x} = 161$ мин. $S(\overrightarrow{x}) = 5.31$ мин. Построить доверительный интервал уровня $\gamma = 0.95$ для среднего времени работы резца до

> ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 74.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_{Z}\left(z\right)=\frac{5z^{4}}{\theta\left(1+z^{5}\right)^{1/\theta+1}},\qquad z\geqslant0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^5\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}(\vec{Z})$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 75.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{7z^6}{\theta (1+z^7)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^7\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S(\overrightarrow{x})=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 76.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{4z^3}{\theta (1+z^4)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^4\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУТ, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 77.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3x^2}{\theta (1+x^3)^{1/\theta+1}}, \quad x \geqslant 0$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^3\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава T15K6 были испытаны n=26 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x} = 142.5$ мин. $S(\overrightarrow{x}) = 3.43$ мин. Построить доверительный интервал уровня $\gamma = 0.99$ для среднего времени работы резца до Баллы 17 17

> ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 78.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5x^4}{\theta (1+x^5)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^5\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\theta}(\vec{X})$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7x^6}{\theta (1 + x^7)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^7\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год \mathbf{B} илет $\mathbf{80}$.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4x^3}{\theta (1 + x^4)^{1/\theta + 1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^4\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год \mathbf{B} илет 81.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3y^2}{\theta (1+y^3)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^3\right),$$

где $\overrightarrow{Y}=(Y_1,\dots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=11 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=212$ мин, $S(\overline{x})=7.62$ мин. Построить доверительный интервал уровня $\gamma=0.85$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 82.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5y^4}{\theta (1 + y^5)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^5\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год \mathbf{B} ИЛТЕТ $\mathbf{83}$.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{7y^6}{\theta (1 + y^7)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^7\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год BИЛeТ 84.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4y^3}{\theta (1+y^4)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^4\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{3z^2}{\theta (1+z^3)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^3\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=16 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=161$ мин, $S(\overline{x})=5.31$ мин. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 86.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_{Z}\left(z\right)=\frac{5z^{4}}{\theta\left(1+z^{5}\right)^{1/\theta+1}},\qquad z\geqslant0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^5\right),$$

где $\overrightarrow{Z}=(Z_1,\dots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S\left(\overrightarrow{x'}\right)=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Bилет 87.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{7z^6}{\theta (1+z^7)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^7\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m,\sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S\left(\overrightarrow{x}\right)=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 88.

Dullet 66.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{4z^3}{\theta (1+z^4)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^4\right),$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 89.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3x^2}{\theta (1+x^3)^{1/\theta+1}}, \quad x \ge 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^3\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=26 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=142.5$ мин, $S(\overline{x'})=3.43$ мин. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы резца до затупливания. $\frac{\mathbb{N} \text{ вопроса}}{\mathbb{B} \text{алим}} \frac{1}{17} \frac{2}{17} \frac{\mathbb{E} \text{ max min}}{34} \frac{1}{20}$

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${\bf Билет}\ 90.$

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5x^4}{\theta (1+x^5)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^5\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7x^6}{\theta (1 + x^7)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^7\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 92.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4x^3}{\theta (1 + x^4)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^4\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год \mathbf{B} илет 93.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3y^2}{\theta (1+y^3)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^3\right),$$

где $\overrightarrow{Y}=(Y_1,\ldots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=11 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=212$ мин, $S(\overline{x})=7.62$ мин. Построить доверительный интервал уровня $\gamma=0.85$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 94.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5y^4}{\theta (1 + y^5)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^5\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 95.

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{7y^6}{\theta (1 + y^7)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^7\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 96.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4y^3}{\theta (1 + y^4)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^4\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{3z^2}{\theta (1+z^3)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^3\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=16 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=161$ мин, $S(\overline{x})=5.31$ мин. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${f Билет}\ 98.$

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_{Z}\left(z\right)=\frac{5z^{4}}{\theta\left(1+z^{5}\right)^{1/\theta+1}},\qquad z\geqslant0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^5\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S\left(\overrightarrow{x'}\right)=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год \mathbf{B} илет $\mathbf{99}$.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{7z^6}{\theta (1+z^7)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^7\right),$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m,\sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S\left(\overrightarrow{x}\right)=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $\mathbf{Б}$ илет 100.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{4z^3}{\theta (1+z^4)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^4\right),\,$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

Баллы 17 17 34 20	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $\mathbf{f E}$ ИЛЕТ 101.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3x^2}{\theta (1+x^3)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^3\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=26 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=142.5$ мин, $S(\overline{x'})=3.43$ мин. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы резца до затупливания. $\frac{\mathbb{N} \text{ вопроса}}{\mathbb{B} \text{ валлы}} \frac{1}{17} \frac{2}{17} \frac{\mathbb{E} \text{ max min}}{34}$

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $\overline{\mathbf{Б}}$ илет 102.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5x^4}{\theta (1+x^5)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^5\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7x^6}{\theta (1 + x^7)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^7\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

N:	вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${
m E}$ илет 104.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4x^3}{\theta (1 + x^4)^{1/\theta + 1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^4\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $\mathbf{Б}$ илет 105.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3y^2}{\theta (1+y^3)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^3\right),$$

где $\overrightarrow{Y}=(Y_1,\dots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=11 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=212$ мин, $S(\overline{x})=7.62$ мин. Построить доверительный интервал уровня $\gamma=0.85$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 106.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5y^4}{\theta (1 + y^5)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^5\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билтет 107.

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{7y^6}{\theta (1 + y^7)^{1/\theta + 1}}, \quad y \ge 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^7\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

Баллы 17 17 34 20	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $\mathbf{f E}$ ИЛЕТ 108.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4y^3}{\theta (1 + y^4)^{1/\theta + 1}}, \quad y \ge 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^4\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{3z^2}{\theta (1+z^3)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^3\right),$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}(\overrightarrow{Z})$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава T15K6 были испытаны n=16 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x} = 161$ мин. $S(\overrightarrow{x}) = 5.31$ мин. Построить доверительный интервал уровня $\gamma = 0.95$ для среднего времени работы резца до

> ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 110.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{5z^4}{\theta (1+z^5)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^5\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}(\vec{Z})$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 111.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{7z^6}{\theta (1+z^7)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^7\right),$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 112.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{4z^3}{\theta (1+z^4)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^4\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУТ, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 113.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3x^2}{\theta (1+x^3)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^3\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава T15K6 были испытаны n=26 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x} = 142.5$ мин. $S(\overrightarrow{x}) = 3.43$ мин. Построить доверительный интервал уровня $\gamma = 0.99$ для среднего времени работы резца до затупливания. Баллы 17 17 34 20

> ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 114.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5x^4}{\theta (1+x^5)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^5\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\theta}(\vec{X})$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7x^6}{\theta (1 + x^7)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^7\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${f E}$ илет ${f 116}.$

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4x^3}{\theta (1 + x^4)^{1/\theta + 1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^4\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${\bf Билет}\ 117.$

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3y^2}{\theta (1+y^3)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^3\right),$$

где $\overrightarrow{Y}=(Y_1,\ldots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=11 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=212$ мин, $S(\overline{x})=7.62$ мин. Построить доверительный интервал уровня $\gamma=0.85$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 118.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5y^4}{\theta (1 + y^5)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^5\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $\mathbf{f E}$ ИЛЕТ 119.

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{7y^6}{\theta (1 + y^7)^{1/\theta + 1}}, \quad y \ge 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^7\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

Баллы 17 17 34 20	Nº E	вопроса	1	2	$\Sigma = \max$	min
	Б	аллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${
m f E}$ Ил ${
m f E}$ Т ${
m \bf 20}.$

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4y^3}{\theta (1 + y^4)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^4\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{3z^2}{\theta (1+z^3)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^3\right),$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}(\vec{Z})$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава T15K6 были испытаны n=16 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x} = 161$ мин. $S(\overrightarrow{x}) = 5.31$ мин. Построить доверительный интервал уровня $\gamma = 0.95$ для среднего времени работы резца до

> ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 122.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{5z^4}{\theta (1+z^5)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^5\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}(\vec{Z})$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 123.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{7z^6}{\theta (1+z^7)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^7\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S(\overrightarrow{x})=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 124.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{4z^3}{\theta (1+z^4)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^4\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

Баллы 17 17 34 20	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУТ, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 125.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3x^2}{\theta (1+x^3)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^3\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава T15K6 были испытаны n=26 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x} = 142.5$ мин. $S(\overrightarrow{x}) = 3.43$ мин. Построить доверительный интервал уровня $\gamma = 0.99$ для среднего времени работы резца до Баллы 17 17 34 20

> ИУ7. 6-й сем., Математическая статистика. РК1 (модуль 1, теория и задачи), 2019-2020 уч. год Билет 126.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5x^4}{\theta (1+x^5)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^5\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\theta}(\vec{X})$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7x^6}{\theta (1 + x^7)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^7\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${\bf Б}$ илет 128.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4x^3}{\theta (1 + x^4)^{1/\theta + 1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^4\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.99$, если после n = 26 испытаний получены значения $\overline{x} = 142.5$, $S(\overrightarrow{x}) = 3.43$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20
	•			

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${\bf Билет}\ 129.$

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3y^2}{\theta (1+y^3)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^3\right),$$

где $\overrightarrow{Y}=(Y_1,\ldots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=11 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=212$ мин, $S(\overline{x})=7.62$ мин. Построить доверительный интервал уровня $\gamma=0.85$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $\mathbf{Б}$ илет 130.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{5y^4}{\theta (1 + y^5)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^5\right),$$

где $\overrightarrow{Y}=(Y_1,\ldots,Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${f Б}$ ИЛЕТ ${f 131}$.

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{7y^6}{\theta (1 + y^7)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^7\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.85$, если после n = 11 испытаний получены значения $\overline{x} = 212$, $S(\overrightarrow{x}) = 7.62$.

Баллы 17 17 34 20	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${
m \bf B}$ илет 132.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4y^3}{\theta (1+y^4)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^4\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{3z^2}{\theta (1+z^3)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^3\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=16 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=161$ мин, $S(\overline{x})=5.31$ мин. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${\bf Билет}\ 134.$

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{5z^4}{\theta (1+z^5)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^5\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год $\mathbf{Б}$ илет 135.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{7z^6}{\theta (1+z^7)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^7\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m,\sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.95$, если после n=16 испытаний получены значения $\overline{x}=161$, $S\left(\overrightarrow{x}\right)=5.31$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 136.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{4z^3}{\theta (1+z^4)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^4\right),\,$$

где $\overrightarrow{Z}=(Z_1,\ldots,Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 16 испытаний получены значения $\overline{x} = 161$, $S(\overrightarrow{x}) = 5.31$.

Γ	№ вопроса	1	2	$\Sigma = \max$	min
	Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${
m B}$ илет 137.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3x^2}{\theta (1+x^3)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^3\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=26 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=142.5$ мин, $S(\overline{x'})=3.43$ мин. Построить доверительный интервал уровня $\gamma=0.99$ для среднего времени работы резца до затупливания. $\frac{\mathbb{N} \text{ вопроса}}{\mathbb{B} \text{ валлы}} \frac{1}{17} \frac{2}{17} \frac{\mathbb{E} \text{ max min}}{34}$

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год ${
m f B}$ ИЛЕТ 138.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5x^4}{\theta (1+x^5)^{1/\theta+1}}, \quad x \ge 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^5\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7x^6}{\theta (1+x^7)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^7\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.99$, если после n=26 испытаний получены значения $\overline{x}=142.5$, $S\left(\overrightarrow{x}\right)=3.43$.

№ вопроса	1	2	$\Sigma = \max$	min]
Баллы	17	17	34	20	1

ИУ7, 6-й сем., Математическая статистика, РК1 (модуль 1, теория и задачи), 2019-2020 уч. год

Билет 140.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4x^3}{\theta (1+x^4)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^4\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20