第 9 次作业(提交截止时间: 4 月 24 日上午 9:50)

- 1. 尝试以简要框架形式给出概率部分知识的总结,并指出自己掌握起来相对困难的知识点.
- 2. 给出一个抽样调查实例,试指出你认为的其可能的不当之处.
- 3. (简单随机抽样)设总体的大小为N,总体均值和方差分别为 μ , σ^2 , X_i ($i=1,\cdots,n$)为无放回抽取的简单随机样本.
 - (1) *证明: $E(X_i) = \mu$, $Var(X_i) = \sigma^2$.

(2) *证明:
$$E(\overline{X}) = \mu$$
, $Var(\overline{X}) = \frac{\sigma^2}{n} \left(\frac{N-n}{N-1} \right)$.

- 4. 设随机样本 X_i ($i=1,\dots,n$)来自二项总体B(k,p).
 - (1) 给出参数k和p的矩估计.
 - (2) 尝试讨论上述估计的不足之处.
- 5. 设随机样本 X_i ($i=1,\cdots,n$)来自均匀分布 $U(\theta,2\theta)$,求 θ 的矩估计和极大似然估计.
- 6. 设总体概率密度函数 $f(x; a, \sigma) = (\sqrt{2\pi}\sigma^3)^{-1}(x-a)^2 \exp\left(-\frac{1}{2\sigma^2}(x-a)^2\right),$ $x \in \mathbb{R}$,其中 $a \in \mathbb{R}$, $\sigma > 0$ 为参数.
 - (1) 验证 $f(x;a,\sigma)$ 作为x的函数满足概率密度的归一化要求.
 - (2) 设随机样本 X_i ($i=1,\dots,n$)来自此总体,求a和 σ^2 的矩估计.
 - (3) 列出 a, σ^2 的极大似然估计所满足的方程,并指出一种迭代求解的方法.
- 7. 设随机样本 X_i ($i=1,\cdots,n$)来自 Bernoulli 总体 B(p),请给出参数 p 的矩

估计和极大似然估计.

- 8. 设总体是总数为n,单元概率分别为 p_1, \cdots, p_m (这里 $p_1 + \cdots + p_m = 1$)的多项分布, X_i ($i = 1, \cdots, m$)分别为m个单元的观测频数($X_1 + \cdots + X_m = n$). 求参数 p_i ($i = 1, \cdots, m$)的极大似然估计.
- 9. 设总体 X 满足以下分布表:

X	1	2	3
P	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 $0<\theta<1$ 是未知参数. 假设已取得了样本值 $x_1=1$, $x_2=2$, $x_3=1$, 请据此求 θ 的矩估计值和极大似然估计值.

- 10. 设随机样本 X_1, \dots, X_n 来自具有概率密度函数为 $f(x) = \begin{cases} \theta \, x^{\theta-1}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$ 的分布,其中 $\theta > 0$ 是未知参数.
 - (1) 求 θ 的矩估计 $\hat{\theta}$.
 - (2) 求 θ 的极大似然估计 θ^* .
- 11. (计算机实验)考虑第 4 题,分别尝试k=10,p=0.01,p=0.5,n=10,n=1000,生成服从 B(k,p) 容量为 n 的随机样本,利用样本给出 k,p 的矩估计值. 多尝试几次,观察你的实验结果,当中是否有明显不合理的?