

Spike Train Analysis IV: SPADE and other methods for higher-order spike pattern detection

Dr. Junji Ito (j.ito@fz-juelich.de)

Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany

9th Latin American School on Computational Neuroscience (LASCON 2024) NeuroMat, University of Sao Paulo, Sao Paulo, Brazil | January 25, 2024

Recap | higher-order correlation

 Same number of neurons, same number of spikes, but different order of correlation

Neurons

Time

- Analysis of only pairwise correlations cannot fully capture higher-order correlations (HOCs).
 - → need for methods for detecting and analysing HOCs in massively parallel spike train data

Recap | challenges in HOC analysis

- UE analysis is, in principle, capable of detecting excess spike synchrony among more than 2 units
- However, in practice, scaling the UE analysis up to a large number N of neurons leads to...
 - combinatorial explosion of the number of patterns to be considered
 - e.g., for N = 100, $2^{100} \sim 10^{30}$ patterns
 - massive multiple testing problem
 - 10^{30} significant tests at a 5% significance level produce $\sim 5 \times 10^{28}$ false positives
 - Bonferroni correction (divide the p-value by the number of tests) makes the test too conservative

Recap | HOC in complexity distribution

The order and temporal jitter of HOCs in massively parallel spike trains can be inferred from the complexity distribution
 identity of neurons involved in the HOCs?

Outline

- SPADE for synchronous pattern identification
 - methods
 - application
- Extension to spatio-temporal pattern identification
 - 3d-SPADE
 - ASSET

Methods | counting synchronous patterns

 Frequent item-set mining (FIM): an efficient counting algorithm, imported from market basket analysis

Mathematics	Market basket analysis	Spike train analysis								
Item	Product	Neuron								
Item base	Set of products	Set of neurons								
Transaction id	Customer	Time bin								
Transaction	Set of products bought	Set of neurons firing								
	by a customer	in a time bin								
Frequent	Set of products frequently	Set of neurons frequently								
item set	bought together	firing together								

Methods | counting synchronous patterns

- Frequent item-set mining (FIM): an efficient counting algorithm, imported from market basket analysis
 - Consider only the patterns with size $z \ge Z$ and occurrence count $c \ge C$

item

transaction

- Non-frequent item-set: occurring less than C times
- Non-closed frequent item-set: occurring only as many times as its superset
- Closed frequent item-set (CFIS): all the others;
 the output of the FIM algorithm

Picado-Muiño et al (2013) Front Neuroinform Torre et al (2013) Front Comput Neurosci

- A test data with a size-10 pattern (50 CFISs found by FIM)
- Characterize CFISs by signatures: size z and occurrence c

 Pattern spectrum: 2-dimensional histogram of the size z and the occurrence c of CFISs

• **P-value spectrum**: 2-dimensional matrix of the occurrence probability of CFISs with size $\geq z$ and occurrence $\geq c$

• Significance spectrum: 2-dimensional binary matrix indicating the significance of CFISs with signature (z, c)

Methods | rejecting false positives

- Typically, sub- and super-patterns of a pattern from the actual HOC are detected as false positives
- They can be filtered out by additional pattern set reduction
 - Subset and superset filtering: reject a sub- or superpatterns if the extra synchrony is non-significant
 - Covered-spikes criterion: for any overlapping patterns, reject all patterns but the one that covers the most spikes

Torre et al (2013) Front Comput Neurosci

Methods | rejecting false positives

 After the pattern set reduction, only the pattern from the embedded HOC remains.

Methods | summary

- SPADE (Spike PAttern Detection and Evaluation) method consists of the following steps:
 - Frequent item-set mining: extract closed frequent item-sets (CFISs) from the given spike train data
 - 2. Pattern spectrum filtering: reduce CFISs to their signatures, and evaluate their significance based on surrogates
 - Pattern set reduction:
 reject false positive patterns due to extra chance coincidences

Outline

- SPADE for synchronous pattern identification
 - methods
 - application
- Extension to spatio-temporal pattern identification
 - 3d-SPADE
 - ASSET

Application | reach-to-grasp experiment

- Two macaques, trained for a delayed reaching task to hold an object with side/precision grip (SG/PG) using high/low force (HF/LF) → 4 trial types by the combination
- Spiking activity was recoded with a 10x10 Utah array covering the primary motor and premotor cortices
 - → ~100 simultaneously recorded single units per monkey

Application | data structure

- 10 recording sessions per monkey
 - ~30 trials for each of the
 4 trial types
 - Each trial is cut into 6 epochs of 500 ms
- SPADE analysis is applied separately to the data for each of the 24 combinations
- Question: do patterns occur specifically for a particular trial type or epoch?

Torre et al. (2016) J Neurosci

Application | example patterns in one session

Application | population statistics

- Patterns occur primarily during late delay or during movement
- Pattern size on average of about 2
- Individual patterns occur
 100 times

Torre et al. (2016) J Neurosci

Application | are patterns specific?

- Question: do patterns occur specifically for a particular trial type or epoch?
- Let $\mathcal{P}_{\alpha,\mu}$ be the set of significant patterns found for the combination of trial type α and epoch μ .
- Specificity S_{μ} for **epoch** μ is defined as:

$$S_{\mu} = \frac{\left| \bigcup_{\alpha} \mathcal{P}_{\alpha,\mu} \setminus \bigcup_{\alpha,\nu \neq \mu} \mathcal{P}_{\alpha,\nu} \right|}{\left| \bigcup_{\alpha} \mathcal{P}_{\alpha,\mu} \right|}$$

- $S_{\mu} = 1 \rightarrow$ all the patterns that occur in epoch μ never occur in the other epochs.
- $S_{\mu} = 0 \rightarrow$ any pattern that occurs in epoch μ also occurs in at least one other trial type.
- Specificity S_{α} for **trial type** α is defined in the same manner.

Application | are patterns specific?

- Question: do patterns occur specifically for a particular trial type or epoch?
- Average specificity values over sessions per monkey
- Generally high specificity to epoch
- Medium to low specificity to trial type

Torre et al. (2016) J Neurosci

Application | are patterns specific?

- Question: do patterns occur specifically for a particular trial type or epoch?
- Average specificity values over sessions per monkey
- Generally high specificity to epoch
- Medium to low specificity to trial type
 - If focused only on grip type or force level, specificity is high to grip type but low to force level

Torre et al. (2016) J Neurosci

SPADE analysis | summary

- The SPADE method enables to identify the groups of units that fire synchronously above the chance level
 - The chance level is estimated based on surrogates
 - > can be adapted to various assumptions on the data
- The SPADE analysis on the reach-to-grasp data revealed behaviour-specific synchronous spike patterns
 - High specificity to epoch
 - Higher specificity to grip type than to force level
- Not clear whether these patterns represent information independent from- and/or complementary to the information represented by firing rates

Outline

- SPADE for synchronous pattern identification
 - methods
 - application
- Extension to spatio-temporal pattern identification
 - Beyond synchronous spike patterns
 - 3d-SPADE
 - ASSET

Beyond synchronous spike patterns

- Synchronous spikes can effectively activate post-synaptic neurons
- Those post-synaptic neurons also fire synchronously?
 - → stable transmission of synchronous volleys of spikes
 - → synfire chain (Abeles, 1982; 1991)

Beyond synchronous spike patterns

 If such a transmission occurs within the recorded neurons, multiple synchronous spike patterns with fixed time delays would be observed

Beyond synchronous spike patterns

- If such a transmission occurs within the recorded neurons, multiple synchronous spike patterns with fixed time delays would be observed
- More realistically, at most one neuron per synchronous group (or another model: synfire braid (Bienenstock, 1996); polychrony (Izhikevich, 2006))
 - → spatio-temporal pattern (STP) of spikes

Outline

- SPADE for synchronous pattern identification
 - methods
 - application
- Extension to spatio-temporal pattern identification
 - Beyond synchronous spike patterns
 - 3d-SPADE
 - ASSET

3d-SPADE

- Extension of the SPADE method for detection of synchronous spike patterns to detection of SPTs
- Main idea: reformat the spike trains to represent STPs at each time bin

III.	channel 1					:	channel 2									; C					hannel 3						
time-index =	0 1	2 3	4	5	6	7	8	9 0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9
window t _A	X	X					Χ			Χ			X		Χ				X			Χ			Χ		
window $t_{_{\rm B}}$	XX					Χ					Χ	Χ			X			Χ				Χ				Χ	

3d-SPADE | problem

- There are more longer patterns than shorter patterns per signature
 - Example: patterns of unit 1, 2 and 3
 - Duration: 1 bin \rightarrow {1,2,3; 0,0}
 - Duration: 2 bins \rightarrow {1,2,3; 0,1}, {1,2,3; 1,0}, {1,3,2; 0,1} {2,1,3; 1,0}, {2,3,1; 0,1}, {3,1,2; 1,0}
 - Duration: 3 bins → even more...

3d-SPADE | problem

- There are more longer patterns than shorter patterns per signature
 - Example: patterns of unit 1, 2 and 3
 - Duration: 1 bin \rightarrow (1,2,3; 0,0)
 - Duration: 2 bins \rightarrow (1,2,3; 0,1), (1,2,3; 1,0), (1,3,2; 0,1) (2,1,3; 1,0), (2,3,1; 0,1), (3,1,2; 1,0)
 - Duration: 3 bins → even more...
 - A signature (3, c) is occupied more by longer patterns

Solution

- extend the signature to 3-dimensional as (size z, occurrence c, duration d)
- Accordingly, extend the pattern spectrum to 3-dimensional

3d-SPADE | 3d spectra

- Pattern spectrum: 3-dimensional histogram of size z, occurrence c, and duration z of CFISs
- Significance spectrum: 3-dimensional binary matrix indicating the significance of CFISs with signature (z, c, d)

3d-SPADE | application

start

early-d

late-d

mov

SGHF

SGLF

GLF

PGHF

Outline

- SPADE for synchronous pattern identification
 - methods
 - application
- Extension to spatio-temporal pattern identification
 - Beyond synchronous spike patterns
 - 3d-SPADE
 - ASSET

ASSET

- Short for "Analysis of Sequences of Synchronous EvenTs"
- Designed specifically for detecting sequences of synchronous spike patterns
- Intersection matrix *I*: degree of overlap between unit membership in synchronous spike patterns at two time points
- Test the significance of diagonal patterns in I

Schrader et al. (2008) *J Neurophysiol*; Gerstein et al. (2012) *J Neurosci Meth*; Torre et al. (2016) *PLoS CB*

Summary

- Various methods for analysis of HOCs
 - Complexity distribution, SPADE, 3d-SPADE, ASSET, CuBIC (Staude, Grün and Rotter, 2010; Staude, Rotter and Grün, 2010), and so on...
 - Assume different models of HOC, and design statistical tests for detecting expected patterns
- Common problems: combinatorial explosion of patterns and multiple testing problem
- Surrogate is a versatile and flexible method for estimating pvalues.

Literature

Overview of spike pattern detection:
 Quaglio P., Rostami V., Torre E., Grün S. (2018)
 Methods for identification of spike patterns in massively parallel spike trains
 Biological Cybernetics 112:57-80 DOI:10.1007/s00422-018-0755-0

... and more

- Grün S, Abeles M, and Diesmann M. (2008) Impact of higher-order correlations on coincidence distributions of massively parallel data. Lecture Notes in Computer Science, 'Dynamic Brain from Neural Spikes to Behaviors' 5286:96-114. DOI:10.1007/978-3-540-88853-6
- Louis S, Borgelt C, Grün S (2010) Complexity distribution as a measure for assembly size and temporal precision Neural Networks 23:705-712. DOI:10.1016/j.neunet.2010.05.004
- Staude B, Rotter S, Grün S (2010) CuBIC: cumulant based inference of higher-order correlations in massively parallel spike trains. J Comput Neurosci 29(1-2):327-350. DOI: 10.1007/s10827-009-0195-x
- Staude B, Grün S, Rotter S. (2010) Higher-order correlations in non-stationary parallel spike trains: statistical modeling and inference. Front. Comput. Neurosci. 4:16. DOI:10.3389/fncom.2010.00016
- Staude B, Grün S, Rotter S (2010) Higher order correlations and cumulants. In: Analysis of parallel spike trains. eds. Grün & Rotter. Springer Series in Computational Neuroscience DOI:10.1007/978-1-4419-5675-0 12
- Picado-Muiño D., Borgelt C., Berger D., Gerstein G., Grün S. (2013). Finding neural assemblies with frequent item set mining. Frontiers in Neuroinformatics 7:9. DOI: 10.3389/fninf.2013.00009.
- Torre E., Picado-Muiño D., Denker M., Borgelt C., Grün S. (2013). Statistical evaluation of synchronous spike patterns extracted by frequent item set mining. Frontiers in Computational Neuroscience 7:132. DOI: 10.3389/fncom.2013.00132.
- Torre E., Canova C., Denker M., Gerstein G., Helias M., Grün S. (2016b). ASSET: analysis of sequences of synchronous events in massively parallel spike trains. PLOS Computational Biology 12:e1004939. DOI: 10.1371/journal.pcbi.1004939.
- Torre E., Quaglio P., Denker M., Brochier T., Riehle A., Grün S. (2016a). Synchronous spike patterns in macaque motor cortex during an instructed-delay reach-to-grasp task. Journal of Neuroscience 36:8329–8340. DOI: 10.1523/JNEUROSCI.4375-15.2016.
- Yegenoglu A, Quaglio P, Torre E, Grün S, Enders D. (2016) Exploring the Usefulness of Formal Concept Analysis for Robust Detection of Spatio-Temporal Spike Patterns in Massively Parallel Spike Trains. In: Graph-Based Representation and Reasoning 22nd International Conference on Conceptual Structures, ICCS 2016, Annecy, France. pp 3-16. DOI:10.1007/978-3-319-40985-6_1 ISBN: 978-3-319-40984-9
- Quaglio P., Yegenoglu A., Torre E., Endres DM., Grün S. (2017). Detection and evaluation of spatio-temporal spike patterns in massively parallel spike train data with spade. Frontiers in Computational Neuroscience 11:41. DOI: 10.3389/fncom.2017.00041.