Vérifier un système informatique grâce à un automate

Gaëtan Staquet

Informatique théorique Département d'informatique Faculté des Sciences Université de Mons Formal Techniques in Software Engineering Computer Science Department Science Faculty University of Antwerp

24 octobre 2022

Machine à café - Erreur

Machine à café - Erreur

Comment détecter l'erreur le plus tôt possible?

Tests unitaires?

▶ Demande d'implémenter les tests « à la main ».

- ▶ Demande d'implémenter les tests « à la main ».
- Risque d'oublier des cas importants.

- ▶ Demande d'implémenter les tests « à la main ».
- ► Risque d'oublier des cas importants.
- On ne peut pas tout tester.

- ▶ Demande d'implémenter les tests « à la main ».
- ► Risque d'oublier des cas importants.
- ► On ne peut pas tout tester.
- \hookrightarrow Ne prouve pas que le système est correct.

Tests unitaires?

- ▶ Demande d'implémenter les tests « à la main ».
- ► Risque d'oublier des cas importants.
- ► On ne peut pas tout tester.
- \hookrightarrow Ne prouve pas que le système est correct.

On va exploiter les méthodes formelles.

Tests unitaires?

- ▶ Demande d'implémenter les tests « à la main ».
- ► Risque d'oublier des cas importants.
- ► On ne peut pas tout tester.
- \hookrightarrow Ne prouve pas que le système est correct.

On va exploiter les méthodes formelles.

ldée :

- ► Construire un modèle M du système.
- ▶ Vérifier si M satisfait les propriétés qu'on désire.

Tests unitaires?

- Demande d'implémenter les tests « à la main ».
- ► Risque d'oublier des cas importants.
- ► On ne peut pas tout tester.
- \hookrightarrow Ne prouve pas que le système est correct.

On va exploiter les méthodes formelles.

ldée :

- ► Construire un modèle M du système.
- ightharpoonup Vérifier si $\mathcal M$ satisfait les propriétés qu'on désire.

lci, on s'intéresse à la construction du modèle.

Un modèle pour la machine à café

Un modèle pour la machine à café

Un alphabet, noté Σ , est un ensemble fini et non-vide de symboles.

Exemple 1

 $\Sigma = \{a, b\}$ est un alphabet.

Un alphabet, noté Σ , est un ensemble fini et non-vide de symboles.

Un mot $w=a_1a_2\ldots a_n$ $(n\in\mathbb{N})$ sur un alphabet Σ est une séquence finie de symboles, $a_i\in\Sigma$. Le mot vide est dénoté ε .

Exemple 1

 $\Sigma = \{a, b\}$ est un alphabet.

w = ababb est un mot sur Σ .

Un alphabet, noté Σ , est un ensemble fini et non-vide de symboles.

Un mot $w=a_1a_2\ldots a_n$ $(n\in\mathbb{N})$ sur un alphabet Σ est une séquence finie de symboles, $a_i\in\Sigma$. Le mot vide est dénoté ε .

Un langage L sur un alphabet Σ est un ensemble de mots.

Exemple 1

 $\Sigma = \{a, b\}$ est un alphabet.

w = ababb est un mot sur Σ .

 $L' = \{\varepsilon, a, b\}$ et $L = \{w \mid w \text{ a un nombre pair de } a \text{ et un nombre impair de } b\}$ sont deux langages sur Σ .

```
Un automate fini déterministe (DFA) est un tuple \mathcal{A}=(Q,\Sigma,\delta,q_0,F) avec
```

ightharpoonup un alphabet;

- $\triangleright \Sigma$ un alphabet;
- Q un ensemble fini d'états;

Figure 1 – Un DFA \mathcal{A} .

- $ightharpoonup \Sigma$ un alphabet;
- Q un ensemble fini d'états;
- ▶ $\delta: (Q \times \Sigma) \to Q$ une fonction de transition;

Figure 1 – Un DFA \mathcal{A} .

- $ightharpoonup \Sigma$ un alphabet;
- Q un ensemble fini d'états;
- $lackbox{} \delta: (Q \times \Sigma) \rightarrow Q$ une fonction de transition;
- ▶ $q_0 \in Q$ l'état initial;

Figure 1 – Un DFA \mathcal{A} .

- $\triangleright \Sigma$ un alphabet;
- Q un ensemble fini d'états;
- ▶ $\delta: (Q \times \Sigma) \rightarrow Q$ une fonction de transition;
- ▶ $q_0 \in Q$ l'état initial;
- $ightharpoonup F \subseteq Q$ l'ensemble des états finaux.

Figure 1 – Un DFA \mathcal{A} .

Soit $w = a_1 a_2 \dots, a_n \in \Sigma^*$. L'exécution de \mathcal{A} sur w est la séquence d'états

$$p_1 \xrightarrow{a_1} p_2 \xrightarrow{a_2} p_3 \xrightarrow{a_3} \dots \xrightarrow{a_n} p_{n+1}$$

telle que $p_1 = q_0$ et $\forall i, \delta(p_i, a_i) = p_{i+1}$.

Exemple 2

Soit w = ababb. L'exécution correspondante est

$$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_3 \xrightarrow{a} q_2 \xrightarrow{b} q_0 \xrightarrow{b} q_2.$$

Figure 1 – Un DFA \mathcal{A} .

Soit $w = a_1 a_2 \dots, a_n \in \Sigma^*$. L'exécution de \mathcal{A} sur w est la séquence d'états

$$p_1 \xrightarrow{a_1} p_2 \xrightarrow{a_2} p_3 \xrightarrow{a_3} \dots \xrightarrow{a_n} p_{n+1}$$

telle que $p_1 = q_0$ et $\forall i, \delta(p_i, a_i) = p_{i+1}$. Si $p_{n+1} \in F$, alors w est accepté par A.

Exemple 2

Soit w = ababb. L'exécution correspondante est

$$q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_3 \xrightarrow{a} q_2 \xrightarrow{b} q_0 \xrightarrow{b} q_2$$

et w est accepté par A.

Figure 1 – Un DFA \mathcal{A} .

Le langage de ${\cal A}$ est l'ensemble des mots acceptés, i.e.,

$$\mathcal{L}(\mathcal{A}) = \{ w \mid \exists p \in F, q_0 \xrightarrow{w} p \}.$$

Exemple 3

Le langage de ${\mathcal A}$ est

 $\mathcal{L}(\mathcal{A}) = \{ w \mid w \text{ a un nombre pair de } a \text{ et}$ un nombre impair de $b \}.$

Figure 1 – Un DFA \mathcal{A} .

Soit $L = \{w \mid w \text{ a un nombre pair de } a \text{ et un nombre impair de } b\}$.

Soit $u \in \Sigma^*$. Pour tout $w \in \Sigma^*$, on vérifie si $uw \in L$.

On construit une table dont les lignes sont indexées par les u et les colonnes par les w.

Soit $L = \{w \mid w \text{ a un nombre pair de } a \text{ et un nombre impair de } b\}$.

	ε	а	b	aa	ab	ba	bb	
ε	0	0	1	0	0	0	0	
a	0	0	0	0	1		0	
Ь	1	0	0	1	0	0	1	
aa	0	0	1	0	0	0	0	
ab	0	1	0	0	0	0	0	
ba	0	1	0	0	0	0	0	
÷	÷	÷	÷	:	:	÷	:	٠

Soit $L = \{ w \mid w \text{ a un nombre pair de } a \text{ et un nombre impair de } b \}$.

	ε	а	b	aa	ab	ba	bb	
ε	0	0	1	0	0	0	0	
а	0	0	0	0	1	1	0	
Ь	1	0	0	1	0	0	1	
aa	0	0	1	0	0	0	0	
ab	0	1	0	0	0	0	0	
ba	0	1	0	0	0	0	0	
:	:	÷	:	:	:	÷	:	٠

La table contient en vérité quatre lignes différentes.

Soit $L = \{ w \mid w \text{ a un nombre pair de } a \text{ et un nombre impair de } b \}$.

	ε	а	b	aa	ab	ba	bb	
ε	0	0	1	0	0	0	0	
а	0	0	0	0	1	1	0	
b	1	0	0	1	0	0	1	
aa	0	0	1	0	0	0	0	
ab	0	1	0	0	0	0	0	
ba	0	1	0	0	0	0	0	
÷	:	:	:	:	:	÷	÷	٠

La table contient en vérité quatre lignes différentes.

Soit $L = \{ w \mid w \text{ a un nombre pair de } a \text{ et un nombre impair de } b \}$.

	ε	а	b	aa	ab	ba	bb	
ε	0	0	1	0	0	0	0	
а	0	0	0	0	1	1	0	
Ь	1	0	0	1	0	0	1	
aa	0	0	1	0	0	0	0	
ab	0	1	0	0	0	0	0	
ba	0	1	0	0	0	0	0	
÷	÷	÷	:	:	:	:	:	٠

La table contient en vérité quatre lignes différentes.

 \hookrightarrow On peut se contenter d'une sous-table finie.

Comment apprendre une table?

Figure 2 – Le framework d'Angluin. ¹

1. ${\rm Angluin},~{\rm \mbox{\it w}}$ Learning Regular Sets from Queries and Counterexamples », 1987.

G. Staquet Construire un modèle Vérification par automates

Comment apprendre une table?

Figure 2 – Le framework d'Angluin. ¹

 $1.\ \mathrm{Angluin},\ \text{\ensuremath{\text{w}}}\ \mathsf{Learning}\ \mathsf{Regular}\ \mathsf{Sets}\ \mathsf{from}\ \mathsf{Queries}\ \mathsf{and}\ \mathsf{Counterexamples}\ \mathsf{>},\ 1987.$

G. Staquet Construire un modèle Vérification par automates

Comment apprendre une table?

Figure 2 – Le framework d'Angluin. ¹

G. Staquet Construire un modèle Vérification par automates

^{1.} Angluin, « Learning Regular Sets from Queries and Counterexamples », 1987.

Comment fonctionne le professeur en pratique?

▶ Requêtes d'appartenance : exécuter le programme sur w et donner la réponse.

- ▶ Requêtes d'appartenance : exécuter le programme sur w et donner la réponse.
- ► Requêtes d'équivalence :
 - ► Si on peut manipuler le programme comme une boîte noire, alors on peut approximer les requêtes d'équivalence.

- ▶ Requêtes d'appartenance : exécuter le programme sur w et donner la réponse.
- ► Requêtes d'équivalence :
 - Si on peut manipuler le programme comme une boîte noire, alors on peut approximer les requêtes d'équivalence.
 - Si on a accès à l'intérieur du programme (boîte blanche), alors les requêtes d'équivalence peuvent être plus précises.

- ▶ Requêtes d'appartenance : exécuter le programme sur w et donner la réponse.
- ► Requêtes d'équivalence :
 - Si on peut manipuler le programme comme une boîte noire, alors on peut approximer les requêtes d'équivalence.
 - ► Si on a accès à l'intérieur du programme (boîte blanche), alors les requêtes d'équivalence peuvent être plus précises.
 - ► On peut mixer les deux (boîte grise).

- ▶ Requêtes d'appartenance : exécuter le programme sur w et donner la réponse.
- ► Requêtes d'équivalence :
 - Si on peut manipuler le programme comme une boîte noire, alors on peut approximer les requêtes d'équivalence.
 - ► Si on a accès à l'intérieur du programme (boîte blanche), alors les requêtes d'équivalence peuvent être plus précises.
 - On peut mixer les deux (boîte grise).
- \hookrightarrow Cela dépend du problème étudié.

```
{
  "titre": "Vérification par automates",
  "lieu": {
    "ville": "Mons",
    "pays": "Belgique"
  },
  "inscrits": [9, 0, 13, 5, 1, 14]
```

```
{
  "titre": "Vérification par automates",
  "lieu": {
    "ville": "Mons",
    "pays": "Belgique"
},
  "inscrits": [9, 0, 13, 5, 1, 14]
}
```

▶ Un objet est une collection non-ordonnée de paires clé-valeur.

2. BRUYÈRE, PÉREZ et STAQUET, Validating JSON Documents with Learned VPAs, 2022.

```
{
  "titre": "Vérification par automates",
  "lieu": {
    "ville": "Mons",
    "pays": "Belgique"
  },
   "inscrits": [9, 0, 13, 5, 1, 14]
}
```

- ▶ Un objet est une collection non-ordonnée de paires clé-valeur.
- ▶ Un tableau est une collection ordonnée de valeurs.

```
{
  "titre": "Vérification par automates",
  "lieu": {
    "ville": "Mons",
    "pays": "Belgique"
},
  "inscrits": [9, 0, 13, 5, 1, 14]
}
```

- ▶ Un objet est une collection non-ordonnée de paires clé-valeur.
- Un tableau est une collection ordonnée de valeurs.

On veut vérifier que le document satisfait certaines contraintes.

^{2.} Bruyère, Pérez et Staquet, Validating JSON Documents with Learned VPAs, 2022.

```
{ "titre": "Vérification par automates", "lieu": + chaîne de caractère "lieu": + objet tel que "ville": "Mons", "pays": "Belgique" "ville" + chaîne de caractère }, "pays": + chaîne de caractère "pays": + chaîne de caractère "inscrits": + [9, 0, 13, 5, 1, 14] "inscrits": + tableau de 6 entiers
```

- Un objet est une collection non-ordonnée de paires clé-valeur.
- ▶ Un tableau est une collection ordonnée de valeurs.

On veut vérifier que le document satisfait certaines contraintes.

^{2.} Bruyère, Pérez et Staquet, Validating JSON Documents with Learned VPAs, 2022.

- ▶ Un objet est une collection non-ordonnée de paires clé-valeur.
- Un tableau est une collection ordonnée de valeurs.

On veut vérifier que le document satisfait certaines contraintes. Notre approche ² :

^{2.} Bruyère, Pérez et Staquet, Validating JSON Documents with Learned VPAs, 2022.

- Un objet est une collection non-ordonnée de paires clé-valeur.
- Un tableau est une collection ordonnée de valeurs.

On veut vérifier que le document satisfait certaines contraintes. Notre approche ² :

ightharpoonup On apprend un automate $\mathcal A$ avec un ordre sur les clés.

^{2.} BRUYÈRE, PÉREZ et STAQUET, Validating JSON Documents with Learned VPAs, 2022.

```
{ "titre": "Vérification par automates", "lieu": + chaîne de caractère "lieu": + objet tel que "ville": "Mons", "pays": "Belgique" "ville" + chaîne de caractère }, "pays": + chaîne de caractère "pays" + chaîne de caractère "inscrits": + tableau de + entiers
```

- Un objet est une collection non-ordonnée de paires clé-valeur.
- Un tableau est une collection ordonnée de valeurs.

On veut vérifier que le document satisfait certaines contraintes. Notre approche ² :

- ightharpoonup On apprend un automate $\mathcal A$ avec un ordre sur les clés.
- ightharpoonup On abstrait A pour permettre n'importe quel ordre.

^{2.} BRUYÈRE, PÉREZ et STAQUET, Validating JSON Documents with Learned VPAs, 2022.

Figure 3 – Résultats expérimentaux de notre algorithme pour la vérification de documents JSON. Les croix bleues donnent les valeurs pour notre algorithme et les ronds rouges pour l'algorithme « classique ».

Références I

- ANGLUIN, Dana. « Learning Regular Sets from Queries and Counterexamples ». In: Inf. Comput. 75.2 (1987), p. 87-106. DOI: 10.1016/0890-5401(87)90052-6. URL: https://doi.org/10.1016/0890-5401(87)90052-6.
- BRUYÈRE, V., G. A. PÉREZ et G. STAQUET. *Validating JSON Documents with Learned VPAs.* Pre-print. Soumis à TACAS 2023. F.R.S.-FNRS, Universités de Mons et d'Anvers, 2022.