Sem vložte zadání Vaší práce.

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA INFORMAČNÍCH TECHNOLOGIÍ KATEDRA SOFTWAROVÉHO INŽENÝRSTVÍ

Diplomová práce

Letecké záznamy pro iOS pomocí moderních architektur a FRP

Bc. Martin Žid

Vedoucí práce: Ing. Dominik Veselý

Poděkování Doplňte, máte-li komu a za co děkovat. V opačném případě úplně odstraňte tento příkaz.

Prohlášení

Prohlašuji, že jsem předloženou práci vypracoval(a) samostatně a že jsem uvedl(a) veškeré použité informační zdroje v souladu s Metodickým pokynem o etické přípravě vysokoškolských závěrečných prací.

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona, ve znění pozdějších předpisů. V souladu s ust. § 46 odst. 6 tohoto zákona tímto uděluji nevýhradní oprávnění (licenci) k užití této mojí práce, a to včetně všech počítačových programů, jež jsou její součástí či přílohou, a veškeré jejich dokumentace (dále souhrnně jen "Dílo"), a to všem osobám, které si přejí Dílo užít. Tyto osoby jsou oprávněny Dílo užít jakýmkoli způsobem, který nesnižuje hodnotu Díla, a za jakýmkoli účelem (včetně užití k výdělečným účelům). Toto oprávnění je časově, teritoriálně i množstevně neomezené. Každá osoba, která využije výše uvedenou licenci, se však zavazuje udělit ke každému dílu, které vznikne (byť jen zčásti) na základě Díla, úpravou Díla, spojením Díla s jiným dílem, zařazením Díla do díla souborného či zpracováním Díla (včetně překladu), licenci alespoň ve výše uvedeném rozsahu a zároveň zpřístupnit zdrojový kód takového díla alespoň srovnatelným způsobem a ve srovnatelném rozsahu, jako je zpřístupněn zdrojový kód Díla.

České vysoké učení technické v Praze Fakulta informačních technologií

© 2017 Martin Žid. Všechna práva vyhrazena.

Tato práce vznikla jako školní dílo na Českém vysokém učení technickém v Praze, Fakultě informačních technologií. Práce je chráněna právními předpisy a mezinárodními úmluvami o právu autorském a právech souvisejících s právem autorským. K jejímu užití, s výjimkou bezúplatných zákonných licencí a nad rámec oprávnění uvedených v Prohlášení na předchozí straně, je nezbytný souhlas autora.

Odkaz na tuto práci

Žid, Martin. Letecké záznamy pro iOS pomocí moderních architektur a FRP. Diplomová práce. Praha: České vysoké učení technické v Praze, Fakulta informačních technologií, 2017.

Abstrakt

Tato práce realizuje iOS aplikaci pro evidenci letů. V první části analyzuji obdobné aplikace a předpisy pro piloty České republiky, podle nichž probíhá návrh funkcionality vytvářené aplikace. Podle návrhu je následně zvolena vhodná architektura a vytvořeno uživatelského rozhraní v podobě wireframů.

Aplikace je implementována s použitím zvolené architektury a pomocí principů FRP. V průběhu implementace aplikace jsou realizovány jednotkové testy a na konci jsou provedeny uživatelské testy. Na základě výsledků testů je aplikace upravena do finální podoby.

V poslední části práce popisuji výhody a nevýhody, které přinesly postupy FRP. Také hodnotím časovou a implementační náročnost oproti standardním postupům a architektuře MVC.

V práci jsem vytvořil funkční iOS aplikaci s využitím moderní architektury a principů FRP. Aplikace bude sloužit pilotům České republiky pro elektronickou evidenci letů a bude jim také ulehčovat administrativu s evidencí spojenou.

V příloze této diplomové práce je možné nalézt všechny zdrojové kódy jak aplikace, tak i testů společně s vytvořenými wireframy.

Klíčová slova mobilní aplikace pro evidenci letů, iOS, Swift, FRP, ReactiveCocoa, MVVM architektura

Abstract

Sem doplňte ekvivalent abstraktu Vaší práce v angličtině.

 ${\bf Keywords}~$ flight records mobile application, iOS, Swift, FRP, ReactiveCocoa, MVVM architecture

Obsah

U۱	vod		1
1	Cíl	práce	3
2	Ana	alýza a návrh	5
	2.1	Tvorba iOS aplikací	5
	2.2	EASA	6
	2.3	Analýza existujících aplikací pro evidenci letů	8
	2.4	Funkční a nefunkční požadavky	15
	2.5	Navržená funkcionalita v podobě případů užití	15
	2.6	Návrh uživatelského rozhraní	19
	2.7	Architektury při tvorbě iOS aplikací	19
	2.8	Funkcionálně reaktivní programování	22
	2.9	Perzistence dat	23
3	Rea	alizace	25
	3.1	iOS aplikace a Swift	25
	3.2	Unit testy	25
	3.3	Použité nástroje při vývoji	25
	3.4	Uživatelské testování	25
	3.5	Postupy FRP v aplikaci	25
	3.6	Zhodnocení MVVM a FRP	25
Zá	ivěr		27
$\mathbf{Li}^{\mathbf{i}}$	terat	ura	29
\mathbf{A}	Sez	nam použitých zkratek	35
В	Obs	sah přiloženého CD	37

Seznam obrázků

2.1	LogTen Pro X)
2.2	Logbook Pro Aviation Flight Log for Pilots)
2.3	Safelog Pilot Logbook	2
2.4	FlyLogio	3
2.5	Smart Logbook	1
2.6	Případy užití	5
2.7	Model-View-Controller diagram)
2.8	Model-View-Controller při vývoji iOS aplikace)
2.9	Model-View-ViewModel architektura	L
2.10	VIPER architektura	2

Úvod

V dnešní době, kdy existují mobilní aplikace na téměř vše, mě zarazil fakt, že u pilotů tomu tak nemusí být. Aplikace na evidenci letů samozřejmě existují, však je tu hned několik problémů. Tyto aplikace jsou často velice drahé, nemusí odpovídat leteckým přepisům České republiky nebo nemají vyhovující funkcionalitu.

Z tohoto důvodu jsem se rozhodl vytvořit iOS aplikaci na evidenci letů. Tato aplikace bude pomáhat pilotům zaznamenávat elektronicky své lety, bude také kontrolovat předpisy a umožňovat export do formátu pro tisk.

Začínám analýzou podobných aplikací, a to pro zařízení iOS i Android. Poté navrhuji vhodnou funkcionalitu a vytvářím návrh uživatelského rozhraní.

Dalším tématem, které ve své práci řeším, jsou softwarové architektury při vývoji iOS aplikace. Zde analyzuji alternativy k architektuře MVC ve spojení s funkcionálně reaktivním programováním neboli FRP.

Tuto analýzu následně aplikuji v praxi, kdy se zvolenou architekturou a FRP implementuji společně s jednotkovými testy dříve zmíněnou aplikaci. Nakonec aplikaci podrobím uživatelským testům a podle jejich výsledků upravím aplikaci do finální podoby.

V poslední části své práce se snažím zhodnotit postupy FRP společně se mnou zvolenou moderní architekturou a jejich časovou a implementační náročnost oproti klasickému MVC.

Cíl práce

Cílem této práce je navrhnout a implementovat aplikaci k evidenci letů pro platformu iOS, a to pomocí postupů FRP (funkcionálně reaktivního programování) a s využitím moderní softwarové architektury jako např. MVVM nebo VIPER. Tato aplikace bude sloužit pilotům České republiky k elektronické evidenci letů. Tento cíl je rozdělen do několika podúkolů.

V první části analyzuji podobné aplikace pro evidenci letů, a to jak pro platformu iOS, tak i pro Android. Na základě této analýzy navrhnu vhodnou funkcionalitu pro vytvářenou aplikaci. Podle navržených funkcionalit si zvolím architekturu a navrhnu uživatelské rozhraní v podobě wireframů.

V dalším kroku aplikaci implementuji pomocí postupů FRP a se zvolenou architekturou. V průběhu realizace aplikace budou vytvářeny také testy a dokumentace aplikace.

Dále bude aplikace podrobena uživatelským testům, podle kterých bude vhodně upravena.

V poslední části budu popisovat výhody a nevýhody, které přinesly postupy FRP. Budu také hodnotit časovou a implementační náročnost oproti standardním postupům a architektuře MVC.

Analýza a návrh

2.1 Tvorba iOS aplikací

Vývoj iOS aplikace je možný hned několika způsoby, každý má své výhody a nevýhody, právě ty bych rád v této kapitole rozebral. Mezi možné způsoby vývoje bych rád zmínil nativní aplikace, hybridní aplikace a mobilní webové aplikace.

2.1.1 Nativní aplikace

Nativní aplikace jsou vyvíjeny specificky pro jednu platformu. Díky tomu mají přístup ke všem funkcím daného zařízení jako např. GPS, kamera nebo kontakty. Mohou fungovat i pouze offline, tedy bez nutnosti internetového připojení. [1]

Však pokud bychom chtěli aplikaci distribuovat na více platforem, tak s tímto přístup by bylo nutné vytvořit pro každou platformu vlastní aplikaci. To by prodloužilo vývoj a znesnadnilo následnou údržbu aplikací.

Co se týče iOS vývoje, je možné si zvolit z dvou programovacích jazyků – Objective-C nebo Swift. [2] [3]

2.1.2 Hybridní aplikace

Hybridní aplikace jsou aplikace tvořené nejčastěji pomocí HTML5 a JavaScriptu, následně jsou spuštěné v nativním kontejneru. [4] Jako příklad je možné uvést např. Apache Cordova. Tento kontejner umožňuje přístup k funkcím daného přístroje, podporuje použití aplikace offline a dává možnost publikace vytvořené aplikace do obchodu tzv. app store. [5]

Však výhodou nativních aplikacím proti hybridním je to, že jsou vytvářeny přesně pro danou platformu, a tudíž jejich vzhled a výkon bude vždy lepší. [6]

2.1.3 Mobilní webové aplikace

Poslední možností jsou mobilní webové aplikace. Tyto aplikace jsou pouze upravené webové stránky do podoby a chování nativních aplikací. Přestože běží pouze v prohlížeči, mohou mít i tyto aplikace přístup k určitým (ne však ke všem) nativním funkcím. [1]

Tím, že jsou mobilní webové aplikace spouštěny v prohlížeči a nejsou stahovány přes obchody, je ulehčena údržba a vývoj, protože si uživatel nemusí vždy stahovat novou verzi aplikace.

Však tento postup má i své nevýhody. Jak již bylo zmíněno dříve, aplikace nemá přístup ke všem nativním funkcím daného přístroje. S dalším problémem se můžeme setkat u offline ukládání dat, a to se zabezpečením, které nemusí být tak dokonalé nebo uživatelsky přívětivé, jako u nativních aplikací. [4]

2.1.4 Zvolené řešení

Pro svou práci jsem si zvolil možnost nativní mobilní aplikace z důvodu zaměření pouze na platformu iOS. Bude se tedy jednat pouze o jednu aplikaci, která bude moci využít všech nativních funkcionalit, výkonu i vzhledu.

2.2 EASA

EASA, neboli European Aviation Safety Agency, je agentura spadající pod Evropskou Unii, která má na starosti technické přepisy, bezpečnost, regulace a certifikace v oboru letectví. [7]

Pro tuto diplomovou práci je EASA důležitá, protože vydává i pokyny např. pro evidenci letů nebo limity odlétaných hodin. [8]

2.2.1 Pokyny pro evidenci letů

Pokyny pro evidenci letů udává předpis FCL.050. Tento předpis specifikuje povinné položky každého leteckého záznamu. [9]

- " Každý záznam letů by měl obsahovat minimálně tyto informace:
- 1. osobní informace: jméno a adresu pilota;
- 2. každý záznam letu by měl obsahovat:
 - jméno velícího pilota (PIC Pilot-in-command),
 - datum letu,
 - čas a místo odletu a příletu,
 - typ, značku, model, variantu a registraci letadla,
 - označení zda je letadlo jednomotorové (SE single engine) nebo vícemotorové (ME multi engine),

- čas letu,
- celkový čas letu.
- 3. každý záznam z výcvikového zařízení pro simulaci letu (FSTD flight simulation training devices) by měl obsahovat:
 - typ a kvalifikační číslo výcvikového zařízení,
 - instrukce výcvikového zařízení pro simulaci letu,
 - datum,
 - čas,
 - celkový čas.
- 4. funkce pilota velící pilot (včetně sólového, velícím pilotem student (Student PIC) nebo velící pilot pod dohledem (PICUS pilot-in-command under supervision)), druhý pilot, dvojí pilot (dual), instruktor (FI Flight Instructor) nebo zkoušející (FE Flight Examiner);
- 5. provozní podmínky pokud se let uskutečnil v noci nebo pokud byl prováděn podle pravidel pro let podle přístrojů.
- " [9] (překlad vlastní)

2.2.2 Limity

Limity letového času a času ve službě obsahuje předpis ORO.FTL.210.

- " Celková doba služby, na kterou může být člen posádky přidělen, nesmí překročit:
 - 1. 60 hodin služby za 7 po sobě jdoucích dnů;
 - 2. 110 hodin služby za 14 po sobě jdoucích dnů; a
 - 3. 190 hodin služby za 28 po sobě jdoucích dnů, rozdělených co nejrovnoměrněji během tohoto období.

Celkový čas, na který je jedinec přidělen jako člen provozní posádky, nesmí překročit:

- 1. 100 hodin letu za 28 po sobě jdoucích dnů;
- 2. 900 hodin letu v kalendářním roce; a
- 3. 1000 hodin letu během 12 po sobě jdoucích kalendářních měsících.

Poletová služba se počítá do doby služby. "[10] (překlad vlastní)

2.2.3 Zdravotní certifikáty

Informace o zdravotních certifikátech obsahuje předpis Part-MED. Certifikáty jsou tří druhů – zdravotní certifikát třídy 1 (Class 1 medical certificate), zdravotní certifikát třídy 2 (Class 2 medical certificate) a zdravotní certifikát pro licence na lehká letadla (LAPL – Light Aircraft Pilot Licence). Každý z těchto certifikátů má jinak nastavenou dobu platnosti a je pro jiné typy pilotních licencí.

LAPL certifikát je pouze pro pilotní licence na lehká letadla. Platnost je 60 měsíců u pilotů do věku 40 let, poté je platnost pouze 24 měsíců.

Zdravotní certifikát třídy 2 je pro pilotní licence PPL (Private Pilot Licence), SPL (Sailplane Pilot Licence) a BPL (Balloon Pilot Licence), tedy pro piloty soukromých letadel, kluzáků a balónů. Platnost licence se znovu odvíjí od věku pilota – 60 měsíců u pilotů do věku 40 let, následně 24 měsíců do věku 50 let a nakonec platnost licence klesá na 12 měsíců.

Zdravotní certifikát třídy 1 je certifikát nejvyšší úrovně. Je pro pilotní licence CPL (Commercial Pilot Licence), MPL (Multi-crew Pilot Licence) a ATPL (Airline Transport Pilot Licence), tedy pro piloty komerčních, vícečlenných a dopravních letadel. Platnost licence je 12 měsíců. To neplatí u pilotů starších 40 let, létajících jednopilotní komerční lety s cestujícími nebo u pilotů starších 60 let, zde se platnost licence snižuje na 6 měsíců. [11]

2.3 Analýza existujících aplikací pro evidenci letů

Tato kapitola se zabývá analýzou již existujících aplikací pro evidenci letů. Pro analýzu bylo vybráno pět aplikací – tři pro iOS a dvě pro platformu Android.

- 1. LogTen Pro X iOS aplikace v angličtině vyvíjená společností Coradine Aviation. [12]
- 2. Logbook Pro Aviation Flight Log for Pilots druhá iOS aplikace, také v angličtině, vytvořená NC Software, Inc. [13]
- 3. Safelog Pilot Logbook poslední z analyzovaných iOS aplikací. I tato aplikace je v anglickém jazyce. Publikována Dauntless Software. [14]
- 4. FlyLogio Pilot Logbook česká aplikace vyvinutá pro platformu Android společností FlyLogio.com. [15]
- 5. Smart Logbook anglická Andriod aplikace vydána firmou Kviation, Inc. [16]

Obrázek 2.1: LogTen Pro X

2.3.1 Kritéria hodnocení

Kritéria hodnocení byla rozdělena do několika kategorií – přihlášení, platby, napojení externích databází, doplňkové položky při vkládání záznamu, limity a certifikáty, reporty a zálohování.

Při vkládání záznamu jsou brány v potaz pouze doplňkové položky, protože aplikace bude tvořena podle předpisu EASA FCL.050, který udává povinné údaje při evidování letu. Také položka v hodnocení – reporty podle EASA, je analyzována z pohledu předpisu FCL.050.

Všechny položky hodnocení jsou uváděny z pohledu mobilní/tablet aplikace.

2.3.2 Srovnávací tabulka

2. Analýza a návrh

Obrázek 2.2: Logbook Pro Aviation Flight Log for Pilots

Tabulka 2.1: Srovnávací tabulka

Napojení o	externí	ch data	bází			
Opakované platby	✓	✓	✓	✓	✓	5/5
Platby jednorázové	X	X	X	X	✓	1/5
	Platby	7				
Možnost přihlášení	✓	✓	✓	✓	✓	5/5
Aplikace funkční bez přihlášení	✓	X	X	X	X	1/5
F	Přihláše	ení				
Kritéria	Log Ten Pro X	Logbook Pro	Safelog	FlyLogio	Smart Logbook	Výsledek

Tabulka 2.1	l: Srovna	ávací ta	bulka			
Kritéria	Log Ten Pro X	Logbook Pro	Safelog	FlyLogio	Smart Logbook	Výsledek
Napojení na databázi letišť	Х	✓ ¹	✓	1	1	4/5
Napojení na databázi letadel	X	X	✓	✓	X	2/5
Doplňkové polo	žky při	vkládái	ní zázna	amu		
Možnost přidání fotky	1	Х	✓	Х	Х	2/5
Možnost přidání dokumentu	1	X	✓	X	X	2/5
Limi	ty a cer	tifikáty				· · · · · · · · · · · · · · · · · · ·
Kontrola limitů	✓	✓	\checkmark^2	Х	1	4/5
Certifikáty	1	✓	\checkmark^3	X	✓	4/5
	Report	у				
Generování reportů	1	Х	\checkmark^4	Х	✓	3/5
Reporty podle EASA	X	X	✓	X	✓	2/5
Jiné reporty	1	✓	✓	X	✓	2/5
Pe	rzistence	e dat				
iCloud/Google	1	Х	Х	✓	✓	3/5
Vlastní řešení	X	✓	✓	X	X	2/5
Synchronizace více zařízení	1	1	1	1	1	5/5

2.3.3 Výsledky a vlastní zhodnocení

2.3.3.1 LogTen Pro X

LogTen Pro X je z analyzovaných iOS aplikací nejvíce uživatelsky přívětivá. Zobrazuje přehledně limity a certifikáty, i vkládání je intuitivní. Má však i několik nedostatků:

- není napojená na databázi letišť, tudíž uživatel musí vyplnit všechny informace o daném letišti sám, bez automatického doplnění nebo našeptávání;
- neumožňuje generování reportů podle předpisu EASA FCL.050;
- aplikace je placená ročně –

 $^{^1\}mathrm{Logbook}$ Pro umí nalézt pouze nejbližší letiště.

 $^{^2{\}rm Safelog}$ zobrazuje limity ve webové verzi.

 $^{^3{\}rm Safelog}$ zobrazuje certifikáty ve webové verzi.

⁴Safelog zobrazuje reporty ve webové verzi.

Obrázek 2.3: Safelog Pilot Logbook

- -iPhone + iPad + Mac 3550 Kč,
- Mac 3550 Kč,
- iPhone + iPad 2150 Kč.

Data o aplikaci a cenách jsou získány přímo z aplikace LogTen Pro X.

2.3.3.2 Logbook Pro Aviation Flight Log for Pilots

Aplikace Logbook Pro vyžaduje pro přihlášení stažení PC aplikace (pouze pro Windows). S touto aplikací je následně synchronizován. Některá funkcionalita, např. generování reportů, je dostupná pouze v PC verzi.

PC verze aplikace je zadarmo pouze ve zkušební verzi, poté základní verze stojí v přepočtu 1800 Kč. iOS verze aplikace se platí ročně v přepočtu za 1045 Kč, je nutné si zaplatit i zálohování a další funkcionality. [17]

Obrázek 2.4: FlyLogio

2.3.3.3 Safelog Pilot Logbook

Safelog Pilot Logbook obsahuje pouze některé funkce přímo v aplikaci, u ostatních je uživatel odkázán do webového rozhraní (SafelogWeb Cloud) viz. 2.3. Toto webové rozhraní zobrazené v aplikaci však není přizpůsobené pro mobilní zařízení, často je zobrazena pouze část stránky a není možné např. vyplnit všechna pole formuláře.

Tato aplikace však, pokud budeme brát v potaz i funkce ve webovém rozhraní, obsahuje nejširší spektrum funkcionalit.

Samotná aplikace je zadarmo, ale pro plnou verzi aplikace je nutné předplatné. To se pohybuje od 1320 Kč za jeden rok až po 8990 Kč za deset let. Data o aplikaci a cenách jsou získány z aplikace Safelog Pilot Logbook.

2.3.3.4 FlyLogio - Pilot Logbook

Android aplikace FlyLogio - Pilot Logbook je jedinou aplikací kompletně zadarmo. Z uživatelského pohledu se jedná o přehlednou a jednoduchou aplikaci. Však neobsahuje takovou funkcionalitu jako ostatní placené aplikace, např. chybí generování jakýchkoliv reportů nebo kontrolování limitů.

Obrázek 2.5: Smart Logbook

2.3.3.5 Smart Logbook

Smart Logbook je poslední analyzovanou aplikací, jedná se o Android aplikaci. Obsahuje mnoho funkcionalit – generování reportů podle mnoha norem, zobrazení mapy se zaznamenáním jednotlivých letů, hlídání limitů i expirace certifikátů.

Tato aplikace je zadarmo pouze ve zkušební verzi, následně je nutné aplikaci zakoupit za 300 Kč. Je nutné také platit za zálohování a synchronizaci dat, a to buď 20 Kč za měsíc, nebo 120 Kč za rok. Informace o cenách jsou získány z aplikace Smart Logbook.

2.3.3.6 Závěr analýzy

Tato analýza posloužila při návrhu funkcionalit iOS aplikace ve formě případů užití, při návrhu uživatelského rozhraní a také při analýze řešení perzistence dat.

Obrázek 2.6: Případy užití

2.4 Funkční a nefunkční požadavky

2.5 Navržená funkcionalita v podobě případů užití

Případy užití (use cases) byly využity při návrhu funkcionalit iOS aplikace. Jsou obsaženy přímo v práci z důvodu přehledného zobrazení navržených funkcionalit a možným dovysvětlením u některých z nich.

Diagram případů užití zobrazuje obrázek 2.6

2.5.1 Vytvořit záznam letu

Vytvoření leteckého záznam umožňuje uživateli vložit nový záznam letu do aplikace.

Hlavní scénář -

- Případ užití začíná, když chce uživatel evidovat svůj let.
- Systém zobrazí formulář umožňující zadat: jméno velícího pilota, datum letu, čas a místo odletu a příletu, letadlo, čas letu, celkový čas letu, počet vzletů a přistání, pilotovu funkci při letu a provozní podmínky.
- Uživatel vyplní všechny povinné položky.
- Aplikace uloží informace o letu.

Alternativní scénář –

- Případ užití začíná, když chce uživatel evidovat záznam z výcvikového zařízení pro simulaci letu.
- Systém zobrazí formulář umožňující zadat: typ a kvalifikační číslo výcvikového zařízení, datum a čas.
- Případ užití pokračuje 3. krokem hlavního scénáře.

Aplikace bude napojena na databázi letišť, pro jednoduché evidování místa odletu a příletu. Nebude však napojena na databázi letadel, protože uživatel u každého letadla musí vyplnit minimálně registrační číslo. Pokud by uživatel musel letadlo najít a zeditovat, je výhodnější pokud si sám letadlo přidá. Dalším důvodem k tomu rozhodnutí je, že pilot létá velmi často pouze s jedním letadlem a proto funkcionalitu přidání letadla nebude používat příliš často.

2.5.2 Přidat letadlo

Přidání letadla dává uživateli možnost přidat letadlo, které pak může vkládat do záznamů o letu.

- Případ užití začíná, když chce uživatel přidat nové letadlo.
- Systém zobrazí formulář umožňující zadat: typ, značku model, variantu, registrační číslo letadla a zda je letadlo jednomotorové nebo vícemotorové.
- Uživatel vyplní všechna pole formuláře.
- Aplikace uloží letadlo.

2.5.3 Zobrazit letecké záznamy

Zobrazení leteckých záznamů zobrazuje jednotlivé záznamy v podobě tabulky, kde u každého záznamu jsou vidět základní informace. Mezi tyto informace patří: místo odletu a přílet, datum a čas letu.

2.5.4 Vyhledat a filtrovat letecké záznamy

Tato funkcionalita umožňuje uživateli vyhledávání a filtrování leteckých záznamů.

- Případ užití začíná, pokud chce uživatel vyhledat nebo vyfiltrovat letecké záznamy.
- Include (Zobrazit letecké záznamy).
- Aplikace zobrazí formulář, který umožňuje: zadat hledaný text, nastavit
 zda se jedná o záznam letu nebo o záznam z výcvikového zařízení, zvolit letadlo, nastavit délku letu, zvolit datum příletu a odletu, nastavit
 uživatelovu funkci pilota a zvolit provozní podmínky.
- Uživatel vyplní pole, podle kterých chce vyhledávat/filtrovat.
- Systém zobrazí pouze záznamy odpovídající zvoleným parametrům.

2.5.5 Smazat letecký záznam

Smazání leteckého záznamu umožňuje uživateli smazat letecký záznam, který předtím sám vytvořil.

- Případ užití začíná, když chce uživatel smazat jeden ze svých leteckých záznamů.
- Include (Zobrazit letecké záznamy).
- Uživatel si zvolí záznam, který chce smazat.
- Aplikace zobrazí potvrzovací dialog.
- Uživatel potvrdí smazání.
- Aplikace odstraní položku ze seznamu.

2.5.6 Upravit letecký záznam

Upravení leteckého záznamu umožňuje uživateli upravit všechny položky zvoleného letecké záznamu.

- Případ užití začíná, když chce uživatel upravit letecký záznam.
- Include (Zobrazit letecké záznamy).
- Uživatel si zvolí záznam, který chce upravit.
- Scénář pokračuje krokem 2 Vytvořit záznam letu.

2.5.7 Zobrazit limity

Tato funkcionalita slouží ke zobrazení limitů a kontrole zda jsou všechny limity v normě.

2.5.8 Zobrazit certifikáty

Tato funkcionalita umožňuje uživateli zobrazit všechny jeho certifikáty, společně s kontrolou platnosti a počtem dní do jejich expirace.

2.5.9 Přidat certifikát

Tato funkce umožňuje uživateli přidat certifikát a to buď dle šablony pro zdravotní certifikáty (LALP, třídy 1 a třídy 2), nebo vlastní.

- Případ užití začíná, když chce uživatel vytvořit nový certifikát.
- Include (Zobrazit certifikáty).
- Aplikace zobrazí formulář s možností vytvoření vlastního certifikátu nebo dle šablony. Ve formuláři je následně možné zadat: název certifikátu, datum vydání, datum expirace a popis.
- Uživatel povinně vyplní název a datum expirace.
- Aplikace uloží certifikát.

2.5.10 Editovat osobní údaje

Editace osobních údajů umožňuje uživateli upravit své osobní informace. Mezi tyto informace patří: jméno a příjmení, adresa a věk.

U osobních údajů je důležitý hlavně věk, který hraje roli u zdravotních certifikátů.

2.5.11 Generovat report

Generování reportu umožňuje uživateli vygenerovat report ve formátu PDF z nímž zvolených záznamů.

- Případ užití začíná, jestliže se uživatel rozhodne vygenerovat report.
- Aplikace zobrazí formulář s možným výběrem záznamů, které se v reportu objeví.
- Uživatel si zvolí záznamy.
- Aplikace vytvoří report ve formátu PDF se zvolenými záznamy letů.

2.5.12 Odeslat report emailem

Funkcionalita odeslání reportu emailem umožňuje uživateli, poté co vygeneroval report, odeslat tento report přes email.

2.6 Návrh uživatelského rozhraní

2.6.1 Wireframe

2.6.2 Heuristická analýza

2.7 Architektury při tvorbě iOS aplikací

Při tvorbě iOS aplikace je možné si vybrat z několika architektur. V této kapitole budu rozebírat pouze MVC, MVVM a VIPER.

2.7.1 MVC

Architektura MVC je zkratka pro "Model View Controller" neboli tři komponenty, ze kterých se architektura skládá. Jedná se o softwarovou architekturu, které se velice často používá při tvorbě aplikací s uživatelským rozhraním. [18]

- Model definuje jaká data aplikace obsahuje, a pokud dojde k jakékoliv změně, tak informuje buď Controller nebo View (tzv. své observery).
 [19]
- View vrstva je prezentována samotnému uživateli. Tedy jsou zde zobrazena aplikační data a je zachycována uživatelova práce s aplikací.[18]
- Controller je vrstva mezi View a Model zabezpečující logiku aplikace.
 Stará se o promítnutí změn do View pokud se změní Model. Zároveň provádí úpravy v Model při uživatelově manipulaci s View. [19]

Však co se týče iOS vývoje, vrstvy View a Controller jsou téměř spojeny, protože Controller je příliš úzce zapojený do životního cyklu View, což následně způsobuje velký nárůst Controller.[20]

Základní myšlenku MVC a MVC při vývoji iOS aplikace ukazují obrázky 2.7 a 2.8.

MVC je základní architekturou pro tvorbu iOS aplikací. Není však jedinou možností.

2.7.2 MVVM

Architektura MVVM má obdobné koncepce jako MVC. Jedná se také o zkratku, tentokrát "Model-View-ViewModel". [23]

Obrázek 2.7: Model-View-Controller diagram [21]

Obrázek 2.8: Model-View-Controller při vývoji iOS aplikace [22]

- *Model* je totožný s *Model* vrstvou architektury MVC, jedná se tedy o datovou část aplikace.
- View prezentuje aplikační data uživateli a monitoruje jeho akce. Však, jak již bylo zmíněno dříve, u iOS aplikací se jedná spíše o vrstvu View/Viewcontroller. Tato vrstva obsahuje pouze minimum logiky aplikace a reaguje hlavně na ViewModel. [24]
- ViewModel spojuje View a Model a zajišťuje hlavní logiku aplikace.
 ViewModel tedy komunikuje s Model a jeho metodami a následně připravuje data pro View. Obsahuje také implementaci funkcí, které reagují a zpracovávají akce uživatele např.: kliknutí na tlačítko. [23]

Tedy pro shrnutí rozdílů MVC a MVVM u iOS bych zmínil to, že iOS MVC má ve výsledku téměř jen dvě vrstvy View/Viewcontroller a Model. Když potom uvažujeme architekturu MVVM ,View/Viewcontroller je opravdu pouze jednou vrstvou a mezi ní a Model je vložena nová vrstva ViewModel, která je spojuje, a do které je přesunuta i většina aplikační logiky.

Mezi výhody architektury MVVM oproti MVC patří např.:

- poskytuje návrhový princip tzv. separation of concerns, neboli oddělení zájmů;
- zlepšuje možnost testovatelnosti aplikace.

Obrázek 2.9: Model-View-ViewModel architektura [25]

2.7.3 VIPER

VIPER je poslední rozebíranou možností, co se týče architektur. I zde je název složen z prvních písmen jednotlivých vrstev architektury, tedy "View, Interactor, Presenter, Entity, Router".

- View zobrazuje data uživateli a předává uživatelovi vstupy vrstvě Presenter.
- Interactor obsahuje logiku aplikace spojenou s daty (Entity).
- Presenter vrstva má na starosti View logiku. Reaguje tedy na uživatelovy akce a komunikuje s vrstvou Interactor, od ní také přijímá nová data. [20]
- Entity jsou datové objekty aplikace přístupné pouze části Interactor.
- Routing obsahuje navigační logiku. [26]

Mezi výhody architektury VIPER znovu patří např.:

- dobře rozděluje odpovědnosti;
- zlepšuje možnost testovatelnosti aplikace. [20]

Tato architektura však může být zbytečně složitá pro menší aplikace. [20]

Obrázek 2.10: VIPER architektura [27]

2.8 Funkcionálně reaktivní programování

Funkcionálně reaktivní programování je kombinací funkcionálního a reaktivního programování, díky němuž dokáže aplikace dynamicky měnit stav a chování v závislosti na událostech přicházejících za nějaký čas. [28]

Pro vysvětlení, co je reaktivní programování cituji [29] "reaktivní programování je programování s asynchronními datovými toky".

Na spojení funkcionální a reaktivního programování může dívat i jako na návrhový vzor observer. [30] Pozorujeme tedy např. určité vstupní pole, tlačítko nebo i dotaz na server a jsme informování o každé změně v podobě asynchronního datového toku. Na tyto datové toky je možné aplikovat funkcionální programování. Je tedy možné toky spojovat (merge), filtrovat (filter) pouze události, které nás zajímají, mapovat (map) jeden tok na nový a další. [29]

2.8.1 FRP frameworky pro iOS

V této kapitole jsou pouze rozebrány základy jednotlivých frameworků, podrobnější vysvětlení (zvoleného frameworku) společně s ukázkami jsou k nalezení v kapitole Realizace.

2.8.1.1 ReactiveSwift

Reactive Swift je prvním frameworkem pro iOS podporující FRP. Obsahuje řadu základních prvků (Signal, Signal Producer, Property, Action...) a operátorů podporujících myšlenku "tok hodnot za čas". [31]

2.8.1.2 ReactiveCocoa

ReactiveCocoa je další z FRP frameworků pro iOS. ReactiveCocoa rozšiřuje různé aspekty Apple Cocoa frameworku základními prvky frameworku ReactiveSwift. Umožňuje vazbu na prvky uživatelského rozhraní, u interaktivních prvků napojuje Signal a Action pro kontrolu událostí a změn. Dále také umožňuje vytvářet signály na volání metod (např. i pro UIKit třídy). [32]

2.8.1.3 RxSwift

RxSwift je Swift verzí knihovny Reactive Extensions (Rx). [33] Tato knihovna umožňuje vytvářet aplikace založené na událostech a asynchronních datových tocích pomocí tzv. Observables. [34] I přesto, že RxSwift není striktně FRP frameworkem, [35] je zde uváděn, a to z důvodu velkého využití knihovny Reactive Extensions i na jiných platformách např.: JavaScript, C#, Python. [36]

2.9 Perzistence dat

2.9.1 Core Data

Core Data je Apple framework, který má na starosti model vrstvu aplikace. Stará se o životní cyklus objektů, jejich vztahy (objektový graf) i perzistenci. [37]

Core Data má více možností na způsob uložení např. SQLite a XML. Jedná se tedy o uložení dat na disku daného zařízení. [38]

Výhodou tohoto frameworku je to, že je zcela zdarma a má podporu přímo v Xcode. [39]

2.9.2 iCloud

iCloud je cloudové úložiště od společnosti Apple. Umožňuje ukládat aplikační data i dokumenty a přistupovat k nim na všech Apple zařízeních a na webu. [40]

Při vývoji iOS aplikací se pro využití iCloud používá framework CloudKit. CloudKit zajišťuje rozhraní pro komunikaci dané aplikace a iCloud. [41] Poskytuje ověření uživatele, tři druhy databáze – soukromou, veřejnou a sdílenou, dále také analytický nástroj CloudKit Dashboard, který umožňuje prozkoumání dat, měření aktivity uživatelů a další. [42]

CloudKit je dostupný pro členy Apple Developer programu. [43] Tento program stojí ročně v přepočtu 2150 Kč. [44]

2.9.3 Realm

Realm, s oficiální stránkou https://realm.io, je multiplatformní mobilní databáze, která je připravená pro jazyky Java (Android), Swift, Objective-C, JavaScript a Xamarin. Hlavní myšlenkou je kontejner objektů tzv. Realm. Zde jsou uložena data, na které je možné se dotazovat, tyto data filtrovat a podobné. Na rozdíl od klasických např. SQL databází, zde pracujeme přímo s "živými" objekty, tedy pokud provedeme změnu není nutné ukládat změněný objekt do databáze, ale změna se provede automaticky.

Realm je rozdělený na dvě části mobilní databáze Realm (Realm Mobile Database) a objektový server Realm (Realm Object Server). Jak je již z názvů možné usuzovat mobilní databáze je pouze na mobilním zařízení, jedná se tedy o offline uložení dat. Pokud však chceme data např. sdílet na více zařízení, je možné se připojit na objektový server Realm a s tím se synchronizovat. Realm se řídí strategii "nejprve offine" – čtení a zápis probíhá nejprve lokálně a až poté probíhá synchronizace se serverem.

Jedna aplikace může využívat hned několik Realm kontejnerů, a to jak lokální, tak i na vzdálené, kde každý z nich může mít různá oprávnění pro různé uživatele.

Realm Mobile Database je open source, tedy zdarma. [45]

Kapitola 3

Realizace

- 3.1 iOS aplikace a Swift
- 3.2 Unit testy
- 3.3 Použité nástroje při vývoji
- 3.4 Uživatelské testování
- 3.5 Postupy FRP v aplikaci
- 3.6 Zhodnocení MVVM a FRP

Závěr

Literatura

- [1] Mobile: Native Apps, Web Apps, and Hybrid Apps. Nielsen Norman Group [online]. United States of America: Nielsen Norman Group, © 1998-2017, [cit. 2017-09-05]. Dostupné z: https://www.nngroup.com/articles/mobile-native-apps/
- [2] About Objective-C. Apple Developer [online]. California, U.S.: Apple Inc., © 2014, [cit. 2017-09-05]. Dostupné z: https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
- [3] Swift. Apple Developer [online]. California, U.S.: Apple Inc., © 2017, [cit. 2017-09-05]. Dostupné z: https://developer.apple.com/swift/
- [4] Native, HTML5, or Hybrid: Understanding Your Mobile Application Development Options. Saleforce Developers [online]. Suite 300, San Francisco, CA 94105, United States: Salesforce.com, inc., © 2000-2017, [cit. 2017-09-05]. Dostupné z: https://developer.salesforce.com/page/Native,_HTML5,_or_Hybrid: _Understanding_Your_Mobile_Application_Development_Options
- [5] Apache Cordova. Apache Cordova [online]. Forest Hill, Maryland, United States: The Apache Software Foundation, © 2015, [cit. 2017-09-05]. Dostupné z: https://cordova.apache.org/
- [6] Should You Build a Hybrid Mobile App? UpWork [online]. Mountain View, CA, US.: Upwork Global Inc., © 2015 2017, [cit. 2017-09-05]. Dostupné z: https://www.upwork.com/hiring/mobile/should-you-build-a-hybrid-mobile-app/
- [7] European Aviation Safety Agency (EASA). European Union [online], [cit. 2017-09-14]. Dostupné z: https://europa.eu/european-union/about-eu/agencies/easa_en

- [8] Regulations. European Aviation Safety Agency [online], © 2017, [cit. 2017-09-14]. Dostupné z: https://www.easa.europa.eu/regulations
- [9] PART-FCL. London, United Kingdom: EASA, June 2016. Dostupné z: https://www.easa.europa.eu/system/files/dfu/Part-FCL.pdf
- [10] Official Journal of the European Union. London, United Kingdom: EASA, 2014. Dostupné z: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=0J:L:2014:028:0017:0029:EN:PDF
- [11] EU Part-MED medical certificates EU licences. Civil[online]. AviationAuthority London, United Kingdom: Civil Aviation Authority, © 2015, [cit. 2017-09-14]. Dostupné z: https://www.caa.co.uk/General-aviation/Pilot-licences/EASArequirements/Medical/EASA-Part-MED-requirements/
- [12] LogTen Pro X. ITunes [online]. California, U.S.: Apple Inc., © 2017, [cit. 2017-09-08]. Dostupné z: https://itunes.apple.com/us/app/logten-pro-x/id837274884?mt=8
- [13] Logbook Pro Aviation Flight Log for Pilots. ITunes [online]. California, U.S.: Apple Inc., © 2017, [cit. 2017-09-08]. Dostupné z: https://itunes.apple.com/us/app/logbook-pro-aviation-flight-log-for-pilots/id410773111?mt=8
- [14] Safelog Pilot Logbook. *ITunes* [online]. California, U.S.: Apple Inc., © 2017, [cit. 2017-09-08]. Dostupné z: https://itunes.apple.com/us/app/safelog-pilot-logbook/id411409786
- [15] FlyLogio Pilot Logbook. *Google Play* [online]. Silicon Valley: Google, ©2017, [cit. 2017-09-08]. Dostupné z: https://play.google.com/store/apps/details?id=com.flylogio&hl=en
- [16] Smart Logbook. Google Play [online]. Silicon Valley: Google, ©2017, [cit. 2017-09-08]. Dostupné z: https://play.google.com/store/apps/details?id=com.kviation.logbook&hl=en
- [17] Logbook Pro Desktop. NC Software [online]. Richmond, Virginia: NC Software, Inc., © 2017. Dostupné z: http://www.nc-software.com/Logbook-Pro-Flight-Log-Software-for-Pilots
- [18] MVC Architecture. MDN web docs [online]. Mountain View, California, United States: Mozilla and individual contributors, © 2005-2017, [cit. 2017-08-29]. Dostupné z: https://developer.mozilla.org/cs/
- [19] MVC Architecture. Developer Chrome [online]. Silicon Valley: Google, © 2017, [cit. 2017-08-29]. Dostupné z: https://developer.mozilla.org/

- en-US/Apps/Fundamentals/Modern_web_app_architecture/MVC_ architecture
- [20] Orlov, B.: IOS Architecture Patterns. Medium [online], 2015, [cit. 2017-08-29]. Dostupné z: https://medium.com/ios-os-x-development/ios-architecture-patterns-ecba4c38de52
- [21] Model-View-Controller. Apple Developer [online]. California, U.S.: Apple Inc., © 2015, [cit. 2017-08-29]. Dostupné z: https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
- [22] Orlov, B.: Realistic Cocoa MVC. In: Medium [online], 2015, [cit. 2017-08-29]. Dostupné z: https://cdn-images-1.medium.com/max/800/1*PkWjDU0jqGJ0B972cMsrnA.png
- [23] The MVVM Pattern. Microsoft Developer Network [online]. Washington, U.S.: Microsoft, © 2017, [cit. 2017-08-29]. Dostupné z: https://msdn.microsoft.com/en-us/library/hh848246.aspx
- [24] Morrison, J.; Schmidt, M.: IOS Design Patterns: MVC and MVVM. CapTech, 2014, [cit. 2017-08-29]. Dostupné z: https://www.captechconsulting.com/blogs/ios-design-patterns-mvc-and-mvvm
- [25] Orlov, B.: MVVM. In: *Medium* [online], 2015, [cit. 2017-08-30]. Dostupné z: https://cdn-images-1.medium.com/max/800/1*uhPpTHYzTmHGrAZy8hiM7w.png
- [26] Architecting iOS Apps with VIPER. *Objc* [online]. Berlin: Objc.io, 2013, [cit. 2017-08-30]. Dostupné z: https://www.objc.io/issues/13-architecture/viper/
- [27] Orlov, B.: VIPER. In: *Medium* [online], 2015, [cit. 2017-08-30]. Dostupné z: https://cdn-images-1.medium.com/max/800/1*0pN3BNTXfwKbf08lhwutag.png
- [28] Functional Reactive Programming (FRP). Technopedia [online]. Techopedia Inc., © 2017, [cit. 2017-09-01]. Dostupné z: https://www.techopedia.com/definition/29571/functionalreactive-programming-frp
- [29] Staltz, A.: The introduction to Reactive Programming you've been missing. In *GitHubGist*, California, US.: GitHub, 2014, [cit. 2017-09-01]. Dostupné z: https://gist.github.com/staltz/868e7e9bc2a7b8c1f754
- [30] Blackheath, S.; Jones, A.: Functional reactive programming. United States: Manning Publications, 2016, ISBN 978-163-3430-105.

- [31] ReactiveSwift. *GitHub* [online]. California, US.: GitHub Inc., © 2017, [cit. 2017-09-01]. Dostupné z: https://github.com/ReactiveCocoa/ReactiveSwift
- [32] ReactiveCocoa. GitHub [online]. California, US.: GitHub Inc., © 2017, [cit. 2017-09-01]. Dostupné z: https://github.com/ReactiveCocoa/ReactiveCocoa/
- [33] RxSwift: ReactiveX for Swift. *GitHub* [online]. California, US.: GitHub Inc., © 2017, [cit. 2017-09-04]. Dostupné z: https://github.com/ReactiveX/RxSwift
- [34] Reactive Extensions. *GitHub* [online]. California, US.: GitHub Inc., © 2017, [cit. 2017-09-04]. Dostupné z: https://github.com/Reactive-Extensions/Rx.NET
- [35] ReactiveX. ReactiveX [online], [cit. 2017-09-04]. Dostupné z: http://reactivex.io/intro.html
- [36] ReactiveX. ReactiveX [online], [cit. 2017-09-04]. Dostupné z: http://reactivex.io/
- [37] What Is Core Data? Apple Developer [online]. California, U.S.: Apple Inc., © 2017, [cit. 2017-09-16]. Dostupné z: https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CoreData/index.html
- [38] Persistent Store Types and Behaviors. Apple Developer [online]. California, U.S.: Apple Inc., © 2017, [cit. 2017-09-16]. Dostupné z: https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CoreData/PersistentStoreFeatures.html
- [39] Creating a Managed Object Model. Apple Developer [online]. California, U.S.: Apple Inc., © 2017, [cit. 2017-09-16]. Dostupné z: https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/CoreData/KeyConcepts.html
- [40] iCloud. Apple Developer [online]. California, U.S.: Apple Inc., © 2017, [cit. 2017-09-16]. Dostupné z: https://developer.apple.com/icloud/
- [41] CloudKit. Apple Developer [online]. California, U.S.: Apple Inc., © 2017, [cit. 2017-09-16]. Dostupné z: https://developer.apple.com/documentation/cloudkit
- [42] CloudKit. Apple Developer [online]. California, U.S.: Apple Inc., © 2017, [cit. 2017-09-16]. Dostupné z: https://developer.apple.com/icloud/cloudkit/

- [43] Capabilities Available to Developers. Apple Developer [online]. California, U.S.: Apple Inc., © 2017, [cit. 2017-09-16]. Dostupné z: https://developer.apple.com/support/app-capabilities/
- [44] Purchase and Activation. Apple Developer [online]. California, U.S.: Apple Inc., © 2017, [cit. 2017-09-16]. Dostupné z: https://developer.apple.com/support/purchase-activation/
- [45] The Realm Mobile Platform. Realm [online]. Realm, © 2014-2017, [cit. 2017-09-16]. Dostupné z: https://realm.io/docs/get-started/ overview/

PŘÍLOHA **A**

Seznam použitých zkratek

FRP Funkcionálně reaktivní programování

MVC Model View Controller

MVVM Model View ViewModel

VIPER View Interactor Presenter Entity Router

 ${f PC}$ Personal Computer

EASA European Aviation Safety Agency

PIC Pilot-in-command

SE Single engine

ME Multi engine

SPIC Student PIC

PICUS PIC under supervision

FSTD flight simulation training devices

FI Flight instructor

FE Flight examiner

LAPL Light Aircraft Pilot Licence

SPL Sailplane Pilot Licence

BPL Balloon Pilot Licence

PPL Private Pilot Licence

PŘÍLOHA **B**

Obsah přiloženého CD

readme.txtstručný popis obsah	au CD
exe adresář se spustitelnou formou impleme	entace
src	
implzdrojové kódy impleme	entace
implzdrojové kódy implemethesiszdrojová forma práce ve formátu	IAT _E X
texttext	
thesis.pdf text práce ve formátu	
thesis.pstext práce ve formá	itu PS