Supplemental Material for An Exploration of Exploration: Measuring the ability of lexicase selection to find obscure pathways

Jose Guadalupe Hernandez, Alexander Lalejini, and Charles Ofria

2021-06-21

Contents

1	Inti	roduction	7
	1.1	About our supplemental material	7
	1.2	Contributing authors	7
	1.3	Research overview	7
2	Dat	a Availability	9
	2.1	Source code	9
	2.2	Experimental results	9
3	Cor	npile and run experiments	11
	3.1	Docker	11
4	Tou	rnament selection vs Lexicase selection	13
	4.1	Overview	13
	4.2	Analysis dependencies	13
	4.3	Setup	14
	4.4	Exploration diagnostic performance	15
	4.5	Final Performance	16
	4.6	Unique starting positions	19
	4.7	Manuscript figures	24
5	Dia	gnostic cardinality	27
	5.1	Overview	27
	5.2	Analysis dependencies	27
	5.3	Setup	28
	5.4	Exploration diagnostic performance	29
	5.5	Unique starting positions	33
	5.6	Does activation position coverage predict performance?	38
	5.7	Manuscript figures	39
6	Inc	reasing population size versus increasing generations	41
	6.1	Overview	41
	6.2	Analysis dependencies	41
	6.3	Sotup	12

4 CONTENTS

	6.4	Exploration diagnostic performance	43
	6.5	Unique starting positions	46
	6.6	Manuscript figures	
7	Eps	ilon lexicase	53
	7.1	Overview	53
	7.2	Analysis dependencies	53
	7.3	Setup	54
	7.4	Exploration diagnostic performance	55
	7.5	Unique starting positions	
	7.6	Manuscript figures	61
8	Dow	vn-sampled lexicase	63
	8.1	Overview	63
	8.2	Analysis dependencies	63
	8.3	Setup	64
	8.4	Exploration diagnostic performance	65
	8.5	Unique starting positions	68
	8.6	Manuscript figures	71
9	Coh	ort lexicase	73
	9.1	Overview	73
	9.2	Analysis dependencies	73
	9.3	Setup	74
	9.4	Exploration diagnostic performance	75
	9.5	Unique starting positions	77
	9.6	Manuscript figures	81
10	Dow	vn-sampled lexicase versus cohort lexicase	83
	10.1	Overview	83
	10.2	Analysis dependencies	83
		Setup	
		Exploration diagnostic performance	85
		Unique starting positions	88
		Manuscript figures	92
11	Nov	relty lexicase	95
	11.1	Overview	95
	11.2	Analysis dependencies	95
		Setup	96
	11.4	Exploration diagnostic performance	97
		Unique starting positions	99
			102
	,		
12		1 1 1	105
		Overview	
	12.2	Analysis dependencies	105

CONTENTS	ŗ
CONTENTS	,

	12.3	Setup	106
	12.4	Exploration diagnostic performance	107
	12.5	Unique starting positions	110
	12.6	Manuscript figures	113
13	Cohe	ort lexicase with increased population size	117
	13.1	Overview	117
	13.2	Analysis dependencies	117
	13.3	Setup	118
	13.4	Exploration diagnostic performance	119
	13.5	Unique starting positions	122
	13.6	Manuscript figures	125

6 CONTENTS

Introduction

This is the supplemental material associated with our 2021 GPTP contribution entitled, An Exploration of Exploration: Measuring the ability of lexicase selection to find obscure pathways. Preprint forthcoming.

1.1 About our supplemental material

This supplemental material is hosted on GitHub using GitHub pages. The source code and configuration files used to generate this supplemental material can be found in this GitHub repository. We compiled our data analyses and supplemental documentation into this nifty web-accessible book using bookdown.

Our supplemental material includes the following:

• TODO

1.2 Contributing authors

- Jose Guadalupe Hernandez
- Alexander Lalejini
- Charles Ofria

1.3 Research overview

Abstract:

TODO

Data Availability

2.1 Source code

The source code for this work is available on GitHub at https://github.com/jgh9094/GPTP-2021-Exploration-Of-Exploration.

2.2 Experimental results

The data from our experiments are available online in an OSF repository (Lalejini and Hernandez, 2021) at https://osf.io/xpjft/.

Compile and run experiments

Here, we provide a guide to compiling and running our experiments using our Docker image.

Please file an issue on GitHub if something is unclear or does not work.

3.1 Docker

TODO

- 3.1.1 Getting the right image
- 3.1.1.1 DockerHub
- 3.1.1.2 Local build
- 3.1.2 Spinning up a container
- 3.1.3 Running inside the container
- 3.1.4 Copying content from the container

Tournament selection vs Lexicase selection

4.1 Overview

```
# Relative location of data.
working_directory <- "experiments/2021-05-27-tournament/analysis/"
# working_directory <- "./"

# Settings for visualization
cb_palette <- "Set2"

# Create directory to dump plots
dir.create(paste0(working_directory, "imgs"), showWarnings=FALSE)</pre>
```

4.2 Analysis dependencies

```
library(ggplot2)
library(tidyverse)
library(knitr)
library(cowplot)
library(viridis)
library(RColorBrewer)
library(ggsignif)
library(ggsignif)
library(Hmisc)
source("https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd97121f7f9ce9
```

These analyses were conducted in the following computing environment:

```
print(version)
```

```
##
                 x86_64-pc-linux-gnu
## platform
## arch
                 x86_64
## os
                 linux-gnu
## system
                 x86_64, linux-gnu
## status
## major
## minor
                1.0
                2021
## year
## month
               05
## day
                18
               80317
## svn rev
## language
                R
## version.string R version 4.1.0 (2021-05-18)
## nickname
                Camp Pontanezen
```

4.3 Setup

```
data_loc <- paste0(</pre>
  working_directory,
  "data/timeseries-res-1000g.csv"
data <- read.csv(data_loc, na.strings="NONE")</pre>
data$selection_name <- factor(</pre>
  data$selection_name,
  levels=c("EpsilonLexicase", "Tournament"),
  labels=c("Lexicase", "Tournament")
data$elite_trait_avg <-</pre>
  data$ele_agg_per / data$OBJECTIVE_CNT
data$unique_start_positions_coverage <-</pre>
  data$uni_str_pos / data$OBJECTIVE_CNT
final_data <- filter(data, evaluations==max(data$evaluations))</pre>
# Labeler for stats annotations
p_label <- function(p_value) {</pre>
threshold = 0.0001
```

```
if (p_value < threshold) {
    return(paste0("p < ", threshold))
} else {
    return(paste0("p = ", p_value))
}

# Significance threshold
alpha <- 0.05

# Common graph variables
performance_ylim <- 105
coverage_ylim <- 1.0

####### misc ######
# Configure our default graphing theme
theme_set(theme_cowplot())</pre>
```

4.4 Exploration diagnostic performance

```
elite_ave_performance_fig <- ggplot(</pre>
    data,
    aes(
     x=gen,
      y=elite_trait_avg,
      color=selection_name,
      fill=selection_name
    )
  ) +
  stat_summary(geom="line", fun=mean) +
  stat_summary(
    geom="ribbon",
    fun.data="mean_cl_boot",
    fun.args=list(conf.int=0.95),
    alpha=0.2,
    linetype=0
  scale_y_continuous(
    name="Average trait performance",
    limits=c(0, performance_ylim)
  scale_x_continuous(
    name="Generation"
```

```
scale_fill_brewer(
   name="Selection",
   limits=c("Lexicase", "Tournament"),
   labels=c("Lexicase", "Tournament"),
   palette=cb_palette
) +
scale_color_brewer(
   name="Selection",
   limits=c("Lexicase", "Tournament"),
   labels=c("Lexicase", "Tournament"),
   palette=cb_palette
)
elite_ave_performance_fig
```


4.5 Final Performance

```
# Compute manual labels for geom_signif
stat.test <- final_data %>%
  wilcox_test(elite_trait_avg ~ selection_name) %>%
  adjust_pvalue(method = "bonferroni") %>%
  add_significance() %>%
  add_xy_position(x="selection_name",step.increase=1)
stat.test$manual_position <- stat.test$y.position * 1.05</pre>
```

scale_fill_brewer(
 name="Selection",
 palette=cb_palette,

scale_color_brewer(
 name="Selection",
 palette=cb_palette,

limits=c("Lexicase", "Tournament"),
labels=c("Lexicase", "Tournament"),

limits=c("Lexicase", "Tournament"),

```
stat.test$label <- mapply(p_label,stat.test$p.adj)</pre>
elite_final_performance_fig <- ggplot(</pre>
    final_data,
    aes(
      x=selection_name,
      y=elite_trait_avg,
      fill=selection_name
 ) +
  geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
  ) +
  geom_point(
    mapping=aes(color=selection_name),
    position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
  ) +
  geom_boxplot(
    width = .1,
    outlier.shape = NA,
    alpha = 0.5
  ) +
  scale_y_continuous(
    name="Average trait performance",
    limits=c(0, performance_ylim)
  ) +
  scale x discrete(
    name="Selection",
    limits=c("Lexicase", "Tournament"),
    labels=c("Lexicase", "Tournament"),
  ) +
```

```
labels=c("Lexicase", "Tournament"),
) +
labs(
  subtitle=paste0(
    "Kruskal-Wallis, ",
    p_label(
      signif(
        kruskal.test(
          formula=elite_trait_avg~selection_name,
          data=final_data)$p.value,digits=4
      )
    )
  )
) +
ggsignif::geom_signif(
  data=filter(stat.test, p.adj <= alpha),</pre>
  aes(
    xmin=group1,
    xmax=group2,
    annotations=label,
    y_position=manual_position
  ),
  manual=TRUE,
  inherit.aes=FALSE
) +
theme(
  legend.position="none"
)
```


.y.	group1	group2	n1	n2	statistic	р	p.adj	p.adj.signif	y.position	groups
elite_trait_avg	Lexicase	Tournament	50	50	2357	0	0	****	97.477	Lexicase, 7

4.6 Unique starting positions

```
ggplot(data, aes(x=gen, y=uni_str_pos, color=selection_name)) +
    stat_summary(geom="line", fun=mean) +
    stat_summary(
        geom="ribbon",
        fun.data="mean_cl_boot",
        fun.args=list(conf.int=0.95),
        alpha=0.2,
        linetype=0
) +
    scale_y_continuous(
        name="Unique activation positions (population)",
        limits=c(0, 100)
) +
    scale_x_continuous(
        name="Generation"
)
```


Different cardinalities have numbers of possible starting positions, so next, we look at the proportion of starting positions (out of all possible) maintained by populations.

```
unique_start_position_coverage_fig <- ggplot(</pre>
    data,
    aes(
      y=unique_start_positions_coverage,
      color=selection_name,
      fill=selection_name
  ) +
  stat_summary(geom="line", fun=mean) +
  stat_summary(
    geom="ribbon",
    fun.data="mean_cl_boot",
    fun.args=list(conf.int=0.95),
    alpha=0.2,
    linetype=0
  ) +
  scale_y_continuous(
    name="Activation position coverage",
    limit=c(0, coverage_ylim)
```

```
scale_x_continuous(
   name="Generation"
) +
scale_fill_brewer(
   name="Selection",
   limits=c("Lexicase", "Tournament"),
   labels=c("Lexicase", "Tournament"),
   palette=cb_palette
) +
scale_color_brewer(
   name="Selection",
   limits=c("Lexicase", "Tournament"),
   labels=c("Lexicase", "Tournament"),
   palette=cb_palette
)
unique_start_position_coverage_fig
```


4.6.1 Final starting position Coverage

```
# Compute manual labels for geom_signif
stat.test <- final_data %>%
  wilcox_test(unique_start_positions_coverage ~ selection_name) %>%
  adjust_pvalue(method = "bonferroni") %>%
  add_significance() %>%
```

```
add_xy_position(x="selection_name", step.increase=1)
stat.test$manual_position <- stat.test$y.position * 1.05</pre>
stat.test$label <- mapply(p_label,stat.test$p.adj)</pre>
unique_start_positions_coverage_final_fig <- ggplot(</pre>
    final_data,
    aes(
      x=selection_name,
      y=unique_start_positions_coverage,
      fill=selection_name
    )
  ) +
  geom_flat_violin(
    position = position nudge(x = .2, y = 0),
   alpha = .8,
    scale="width"
  ) +
 geom_point(
    mapping=aes(color=selection_name),
    position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
 ) +
  geom_boxplot(
    width = .1,
    outlier.shape = NA,
    alpha = 0.5
  scale_y_continuous(
   name="Activation position coverage",
    limits=c(0, coverage_ylim)
  scale x discrete(
   name="Selection",
    limits=c("Lexicase", "Tournament"),
   labels=c("Lexicase", "Tournament"),
  scale_fill_brewer(
    name="Selection",
    palette=cb_palette,
   limits=c("Lexicase", "Tournament"),
   labels=c("Lexicase", "Tournament"),
  scale_color_brewer(
   name="Selection",
```

```
palette=cb_palette,
 limits=c("Lexicase", "Tournament"),
 labels=c("Lexicase", "Tournament"),
) +
labs(
  subtitle=paste0(
   "Kruskal-Wallis, ",
   p_label(
      signif(
        kruskal.test(
          formula=unique_start_positions_coverage~selection_name,
          data=final_data)$p.value,digits=4
    )
  )
) +
ggsignif::geom_signif(
  data=filter(stat.test, p.adj <= alpha),</pre>
  aes(
   xmin=group1,
   xmax=group2,
   annotations=label,
   y_position=manual_position
 ),
 manual=TRUE,
  inherit.aes=FALSE
) +
theme(
  legend.position="none"
```

Warning: Ignoring unknown aesthetics: xmin, xmax, annotations, y_position
unique_start_positions_coverage_final_fig

·y.	group1	group2	n1	n2	statistic	р	p.adj	p.adj.s
unique_start_positions_coverage	Lexicase	Tournament	50	50	2500	0	0	****

4.7 Manuscript figures

```
legend <- cowplot::get_legend(</pre>
    elite_ave_performance_fig +
      guides(
        color=guide_legend(nrow=1),
        fill=guide_legend(nrow=1)
      ) +
        legend.position = "bottom",
        legend.box="horizontal",
        legend.justification="center"
      )
  )
grid <- plot_grid(</pre>
  elite_ave_performance_fig +
    ggtitle("Performance over time") +
    labs(subtitle="") +
    theme(legend.position="none"),
  elite_final_performance_fig +
```

```
ggtitle("Final performance") +
    theme(),
 unique_start_position_coverage_fig +
    ggtitle("Activation position coverage over time") +
    labs(subtitle="") +
    theme(legend.position="none"),
 unique_start_positions_coverage_final_fig +
    ggtitle("Final activation position coverage") +
    theme(),
 nrow=2,
 ncol=2,
 rel_widths=c(3,2),
 labels="auto"
grid <- plot_grid(</pre>
 grid,
 legend,
 nrow=2,
 ncol=1,
 rel_heights=c(1, 0.1)
save_plot(
 paste(
    working_directory,
    "imgs/tournament-vs-lexicase-panel.pdf",
    sep=""
 ),
 grid,
 base_width=12,
 base_height=8
grid
```


Diagnostic cardinality

5.1 Overview

```
# Relative location of data.
working_directory <-
    "experiments/2021-05-27-cardinality/analysis/"
# working_directory <- "./"

# Settings for visualization
cb_palette <- "Set2"
# Create directory to dump plots
dir.create(paste0(working_directory, "imgs"), showWarnings=FALSE)</pre>
```

5.2 Analysis dependencies

```
library(ggplot2)
library(tidyverse)
library(knitr)
library(cowplot)
library(viridis)
library(RColorBrewer)
library(ggsignif)
library(ggsignif)
library(Hmisc)
source("https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd97121f7f9ce9
```

These analyses were conducted in the following computing environment:

```
print(version)
##
              x86_64-pc-linux-gnu
## platform
## arch
                x86_64
## os
               linux-gnu
## system
              x86_64, linux-gnu
## status
## major
## minor
               1.0
## year
               2021
               05
## month
## day
                18
              80317
## svn rev
## language
               R
## version.string R version 4.1.0 (2021-05-18)
## nickname Camp Pontanezen
```

5.3 Setup

```
data_loc <- paste0(</pre>
  working_directory,
  "data/timeseries-res-1000g.csv"
)
data <- read.csv(</pre>
 data_loc,
  na.strings="NONE"
data$cardinality <- as.factor(</pre>
  data $OBJECTIVE_CNT
data$selection_name <- as.factor(</pre>
  data$selection_name
data$elite_trait_avg <-</pre>
  data$ele_agg_per / data$OBJECTIVE_CNT
data$unique_start_positions_coverage <-</pre>
  data$uni_str_pos / data$OBJECTIVE_CNT
final_data <- filter(data, gen==max(data$gen))</pre>
```

```
# Labeler for stats annotations
p_label <- function(p_value) {
    threshold = 0.0001
    if (p_value < threshold) {
        return(paste0("p < ", threshold))
    } else {
        return(paste0("p = ", p_value))
    }
}

# Significance threshold
alpha <- 0.05

####### misc ######
# Configure our default graphing theme
theme_set(theme_cowplot())</pre>
```

5.4 Exploration diagnostic performance

First, we look at performance over time. Specifically, we look at the normalized aggregage score of the most performant individuals over time. To control for different cardinalities having different maximum scores, we normalized performances (by dividing by cardinality) to values between 0 and 100.

```
elite_trait_ave_fit <- ggplot(</pre>
    data,
    aes(
      x=gen,
      y=elite_trait_avg,
      color=cardinality,
      fill=cardinality
    )
  ) +
  stat_summary(geom="line", fun=mean) +
  stat_summary(
    geom="ribbon",
    fun.data="mean_cl_boot",
    fun.args=list(conf.int=0.95),
    alpha=0.2,
    linetype=0
  ) +
  scale_y_continuous(
    name="Average trait performance",
    limits=c(0, 100)
```

```
scale_x_continuous(
   name="Generation"
) +
scale_fill_brewer(
   name="Cardinaltiy",
   palette=cb_palette
) +
scale_color_brewer(
   name="Cardinaltiy",
   palette=cb_palette
)
elite_trait_ave_fit
```


5.4.1 Final performance

Next, we look only at the final performances of each treatment

```
# Compute manual labels for geom_signif
stat.test <- final_data %>%
  wilcox_test(elite_trait_avg ~ cardinality) %>%
  adjust_pvalue(method = "bonferroni") %>%
  add_significance() %>%
  add_xy_position(x="cardinality",step.increase=1)
stat.test$manual_position <- stat.test$y.position * 1.05
stat.test$label <- mapply(p_label,stat.test$p.adj)</pre>
```

```
elite_trait_ave_fit_final <- ggplot(</pre>
    final_data,
    aes(x=cardinality, y=elite_trait_avg, fill=cardinality)
  ) +
  geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
  geom_point(
   mapping=aes(color=cardinality),
   position = position_jitter(width = .15),
   size = .5,
    alpha = 0.8
 ) +
  geom_boxplot(
    width = .1,
    outlier.shape = NA,
    alpha = 0.5
  ) +
  scale_y_continuous(
    name="Average trait performance",
    limits=c(0, 100)
  ) +
  scale_x_discrete(
   name="Cardinality"
 ) +
  scale_fill_brewer(
    name="Cardinaltiy",
    palette=cb_palette
 ) +
  scale_color_brewer(
    name="Cardinaltiy",
   palette=cb_palette
 ) +
 theme(
    legend.position="none"
elite_trait_ave_fit_final
```


.y.	group1	group2	n1	n2	statistic	р	p.adj	p.adj.signif	y.position	group
elite_trait_avg	10	20	50	50	2399	0	0	****	191.9440	10, 20
elite_trait_avg	10	50	50	50	2404	0	0	****	288.4852	10, 50
elite_trait_avg	10	100	50	50	2438	0	0	****	385.0264	10, 10
elite_trait_avg	10	200	50	50	2500	0	0	****	481.5676	10, 20
elite_trait_avg	10	500	50	50	2500	0	0	****	578.1088	10,50
elite_trait_avg	10	1000	50	50	2500	0	0	****	674.6500	10, 10
elite_trait_avg	20	50	50	50	2500	0	0	****	771.1912	20, 50
elite_trait_avg	20	100	50	50	2500	0	0	****	867.7324	20, 10
elite_trait_avg	20	200	50	50	2500	0	0	****	964.2736	20, 20
elite_trait_avg	20	500	50	50	2500	0	0	****	1060.8148	20,5
elite_trait_avg	20	1000	50	50	2500	0	0	****	1157.3560	20, 10
elite_trait_avg	50	100	50	50	2166	0	0	****	1253.8972	50, 10
elite_trait_avg	50	200	50	50	2500	0	0	****	1350.4384	50, 20
elite_trait_avg	50	500	50	50	2500	0	0	****	1446.9796	50,50
elite_trait_avg	50	1000	50	50	2500	0	0	****	1543.5208	50, 10
elite_trait_avg	100	200	50	50	2500	0	0	****	1640.0620	100, 2
elite_trait_avg	100	500	50	50	2500	0	0	****	1736.6032	100, 5
elite_trait_avg	100	1000	50	50	2500	0	0	****	1833.1444	100,
elite_trait_avg	200	500	50	50	2500	0	0	****	1929.6856	200, 5
elite_trait_avg	200	1000	50	50	2500	0	0	****	2026.2268	200,
elite_trait_avg	500	1000	50	50	2500	0	0	****	2122.7680	500,

5.5 Unique starting positions

Next, we analyze the number of unique starting position maintained by populations

```
ggplot(data, aes(x=gen, y=uni_str_pos, color=cardinality)) +
    stat_summary(geom="line", fun=mean) +
    stat_summary(
        geom="ribbon",
        fun.data="mean_cl_boot",
        fun.args=list(conf.int=0.95),
        alpha=0.2,
        linetype=0
) +
    scale_y_continuous(
        name="Unique activation positions (population)",
) +
    scale_x_continuous(
        name="Generation"
)
```


Different cardinalities have numbers of possible starting positions, so next, we look at the proportion of starting positions (out of all possible) maintained by populations.

```
unique_start_positions_coverage_fig <- ggplot(</pre>
    data,
    aes(
      x=gen,
      y=unique_start_positions_coverage,
      color=cardinality,
      fill=cardinality
    )
  ) +
  stat_summary(geom="line", fun=mean) +
  stat_summary(
   geom="ribbon",
   fun.data="mean_cl_boot",
   fun.args=list(conf.int=0.95),
    alpha=0.2,
   linetype=0
  ) +
  scale_y_continuous(
   name="Activation position coverage",
   limits=c(0.0, 1.05)
  ) +
  scale_x_continuous(
   name="Generation"
  scale_fill_brewer(
   name="Cardinaltiy",
   palette=cb_palette
  scale_color_brewer(
   name="Cardinaltiy",
   palette=cb_palette
unique_start_positions_coverage_fig
```


5.5.1 Final starting position coverage

```
# Compute manual labels for geom_signif
stat.test <- final_data %>%
  wilcox_test(unique_start_positions_coverage ~ cardinality) %>%
  adjust_pvalue(method = "bonferroni") %>%
  add_significance() %>%
  add_xy_position(x="cardinality",step.increase=1)
stat.test$manual_position <- stat.test$y.position * 1.05</pre>
stat.test$label <- mapply(p_label,stat.test$p.adj)</pre>
final_unique_start_positions_coverage_fig <- ggplot(</pre>
    final_data,
    aes(
      x=cardinality,
      y=unique_start_positions_coverage,
      fill=cardinality
    )
  geom flat violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
```

```
geom_point(
   mapping=aes(color=cardinality),
    position = position_jitter(width = .15),
    size = .5,
   alpha = 0.8
  ) +
  geom_boxplot(
   width = .1,
   outlier.shape = NA,
   alpha = 0.5
  scale_y_continuous(
   name="Activation position coverage",
   limits=c(0, 1.05)
  ) +
  scale_x_discrete(
   name="Cardinality"
  scale_fill_brewer(
   name="Cardinaltiy",
   palette=cb_palette
  ) +
  scale_color_brewer(
   name="Cardinaltiy",
   palette=cb_palette
  theme(
    legend.position="none"
final_unique_start_positions_coverage_fig
```


.y.	group1	group2	n1	n2	statistic	p	p.adj	p.adj.signif	y.positio
unique_start_positions_coverage	10	20	50	50	1448	0.126	1	ns	1.9490
unique_start_positions_coverage	10	50	50	50	2424	0.000	0	****	2.9454
unique_start_positions_coverage	10	100	50	50	2500	0.000	0	****	3.9419
unique_start_positions_coverage	10	200	50	50	2500	0.000	0	****	4.9383
unique_start_positions_coverage	10	500	50	50	2500	0.000	0	****	5.9348
unique_start_positions_coverage	10	1000	50	50	2500	0.000	0	****	6.9312
unique_start_positions_coverage	20	50	50	50	2492	0.000	0	****	7.9277
unique_start_positions_coverage	20	100	50	50	2500	0.000	0	****	8.9241
unique_start_positions_coverage	20	200	50	50	2500	0.000	0	****	9.9206
unique_start_positions_coverage	20	500	50	50	2500	0.000	0	****	10.9170
unique_start_positions_coverage	20	1000	50	50	2500	0.000	0	****	11.9135
unique_start_positions_coverage	50	100	50	50	2500	0.000	0	****	12.9099
unique_start_positions_coverage	50	200	50	50	2500	0.000	0	****	13.9064
unique_start_positions_coverage	50	500	50	50	2500	0.000	0	****	14.9028
unique_start_positions_coverage	50	1000	50	50	2500	0.000	0	****	15.8993
unique_start_positions_coverage	100	200	50	50	2500	0.000	0	****	16.8957
unique_start_positions_coverage	100	500	50	50	2500	0.000	0	****	17.8922
unique_start_positions_coverage	100	1000	50	50	2500	0.000	0	****	18.8886
unique_start_positions_coverage	200	500	50	50	2500	0.000	0	****	19.8851
unique_start_positions_coverage	200	1000	50	50	2500	0.000	0	****	20.8815
unique_start_positions_coverage	500	1000	50	50	2500	0.000	0	****	21.8780

5.6 Does activation position coverage predict performance?

```
ggplot(
   final_data,
   aes(
       x=unique_start_positions_coverage,
       y=elite_trait_avg,
       color=cardinality
   )
) +
geom_point() +
scale_color_brewer(
   name="Cardinaltiy",
   palette=cb_palette
)
```



```
cor.test(
   x=final_data$unique_start_positions_coverage,
   y=final_data$elite_trait_avg,
   method="spearman",
   exact=FALSE
)
```

```
## Spearman's rank correlation rho
##
## data: final_data$unique_start_positions_coverage and final_data$elite_trait_avg
## S = 262488, p-value < 2.2e-16
## alternative hypothesis: true rho is not equal to 0
## sample estimates:
## rho
## 0.9632668</pre>
```

5.7 Manuscript figures

Combine figures for the manuscript.

```
legend <- cowplot::get_legend(</pre>
    elite_trait_ave_fit +
      guides(
        color=guide_legend(nrow=1),
        fill=guide_legend(nrow=1)
      ) +
      theme(
        legend.position = "bottom",
        legend.box="horizontal",
        legend.justification="center"
  )
grid <- plot_grid(</pre>
  elite_trait_ave_fit +
    ggtitle("Performance over time") +
    theme(legend.position="none"),
  elite_trait_ave_fit_final +
    ggtitle("Final performance") +
  unique_start_positions_coverage_fig +
    ggtitle("Activation position coverage over time") +
    theme(legend.position="none"),
  final_unique_start_positions_coverage_fig +
    ggtitle("Final activation position coverage") +
    theme(),
  nrow=2,
 ncol=2.
 rel_widths=c(3,2),
 labels="auto"
)
```

```
grid <- plot_grid(
   grid,
   legend,
   nrow=2,
   ncol=1,
   rel_heights=c(1, 0.1)
)

save_plot(
   paste(working_directory, "imgs/cardinality-panel.pdf", sep=""),
   grid,
   base_width=12,
   base_height=8
)</pre>
```


Chapter 6

Increasing population size versus increasing generations

6.1 Overview

```
# Relative location of data.
working_directory <-
    "experiments/2021-06-03-cardinality-pop-size/analysis/"
# working_directory <- "./"

# Settings for visualization
cb_palette <- "Set2"

# Create directory to dump plots
dir.create(paste0(working_directory, "imgs"), showWarnings=FALSE)</pre>
```

6.2 Analysis dependencies

```
library(ggplot2)
library(tidyverse)
library(cowplot)
library(viridis)
library(RColorBrewer)
source("https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd97121f7f9ce8
```

These analyses were conducted in the following computing environment:

```
print(version)
##
## platform
                 x86_64-pc-linux-gnu
## arch
                  x86_64
## os
                 linux-gnu
## system
                 x86_64, linux-gnu
## status
## major
## minor
                 1.0
## year
                 2021
                05
## month
                 18
## day
                80317
## svn rev
## language
                 R
## version.string R version 4.1.0 (2021-05-18)
```

Camp Pontanezen

6.3 Setup

nickname

```
data_loc <- pasteO(working_directory, "data/timeseries.csv")
data <- read.csv(data_loc, na.strings="NONE")

data$cardinality <- as.factor(
    data$OBJECTIVE_CNT
)

data$selection_name <- as.factor(
    data$selection_name
)

data$epsilon <- as.factor(
    data$LEX_EPS
)

data$POP_SIZE <- as.factor(
    data$POP_SIZE
)

data <- filter(data, cardinality=="100") # These runs finished.
data$elite_trait_avg <- data$ele_agg_per / data$OBJECTIVE_CNT
data$unique_start_positions_coverage <- data$uni_str_pos / data$OBJECTIVE_CNT</pre>
```

```
final_data <- filter(data, evaluations==max(data$evaluations))
####### misc ######
# Configure our default graphing theme
theme_set(theme_cowplot())</pre>
```

6.4 Exploration diagnostic performance

```
elite_ave_performance_fig <-</pre>
  ggplot(
    data,
    aes(
      x=evaluations,
      y=elite_trait_avg,
      color=POP_SIZE,
      fill=POP_SIZE
    )
  ) +
  stat_summary(geom="line", fun=mean) +
  stat_summary(
    geom="ribbon",
    fun.data="mean_cl_boot",
    fun.args=list(conf.int=0.95),
    alpha=0.2,
    linetype=0
  scale_y_continuous(
    name="Average trait performance"
  scale_x_continuous(
    name="Evaluations"
  ) +
  scale_fill_brewer(
    name="Population Size",
    palette=cb_palette
  scale_color_brewer(
    name="Population Size",
    palette=cb_palette
elite_ave_performance_fig
```


Same as above, but by generations instead of evaluations.

```
ggplot(data, aes(x=gen, y=elite_trait_avg, color=POP_SIZE)) +
    stat_summary(geom="line", fun=mean) +
    stat_summary(
        geom="ribbon",
        fun.data="mean_cl_boot",
        fun.args=list(conf.int=0.95),
        alpha=0.2,
        linetype=0
) +
    scale_y_continuous(
        name="Elite trait average"
) +
    scale_x_continuous(
        name="Generations"
)
```


6.4.1 Final performance

```
elite_final_performance_fig <- ggplot(</pre>
    final data,
    aes(x=POP_SIZE, y=elite_trait_avg, fill=POP_SIZE)
 ) +
  geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
 ) +
  geom_point(
    mapping=aes(color=POP_SIZE),
    position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
  ) +
  geom_boxplot(
    width = .1,
    outlier.shape = NA,
    alpha = 0.5
 ) +
  scale_y_continuous(
    name="Average trait performance",
```

```
limits=c(0, 100)
) +
scale_x_discrete(
   name="Population Size"
) +
scale_fill_brewer(
   name="Population Size",
   palette=cb_palette
) +
scale_color_brewer(
   name="Population Size",
   palette=cb_palette
) +
theme(
   legend.position="none"
)
elite_final_performance_fig
```


6.5 Unique starting positions

```
unique_start_position_coverage_fig <- ggplot(
   data,
   aes(</pre>
```

```
x=evaluations,
     y=unique_start_positions_coverage,
      color=POP_SIZE,
     fill=POP_SIZE
   )
 ) +
  stat_summary(geom="line", fun=mean) +
  stat_summary(
   geom="ribbon",
   fun.data="mean_cl_boot",
   fun.args=list(conf.int=0.95),
   alpha=0.2,
   linetype=0
 ) +
  scale_y_continuous(
   name="Activation position coverage",
   limits=c(0.0, 1.0)
  ) +
  scale_x_continuous(
   name="Evaluations"
  scale_fill_brewer(
   name="Population Size",
   palette=cb_palette
 ) +
  scale_color_brewer(
   name="Population Size",
   palette=cb_palette
unique_start_position_coverage_fig
```


6.5.1 Final starting position coverage

```
unique_start_positions_coverage_final_fig <- ggplot(</pre>
    final_data,
    aes(
      x=POP_SIZE,
      y=unique_start_positions_coverage,
      fill=POP_SIZE
    )
  ) +
  geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
  ) +
  geom_point(
    mapping=aes(color=POP_SIZE),
    position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
  geom_boxplot(
    width = .1,
    outlier.shape = NA,
```

```
alpha = 0.5
 ) +
  scale_y_continuous(
    name="Activation position coverage",
    limits=c(0, 1.0)
 ) +
  scale_x_discrete(
    name="Population size"
  scale_fill_brewer(
    name="Population size",
    palette=cb_palette
 ) +
  scale_color_brewer(
    name="Population size",
    palette=cb_palette
 ) +
 theme(
    legend.position="none"
{\tt unique\_start\_positions\_coverage\_final\_fig}
```


6.6 Manuscript figures

```
legend <- cowplot::get_legend(</pre>
    elite_ave_performance_fig +
      guides(
        color=guide_legend(nrow=1),
        fill=guide_legend(nrow=1)
      ) +
      theme(
        legend.position = "bottom",
        legend.box="horizontal",
        legend.justification="center"
  )
grid <- plot_grid(</pre>
  elite_ave_performance_fig +
    ggtitle("Performance over time") +
    theme(legend.position="none"),
  elite_final_performance_fig +
    ggtitle("Final performance") +
    theme(),
  unique_start_position_coverage_fig +
    ggtitle("Activation position coverage over time") +
    theme(legend.position="none"),
 unique_start_positions_coverage_final_fig +
    ggtitle("Final activation position coverage") +
    theme(),
 nrow=2,
 ncol=2,
 rel_widths=c(3,2),
 labels="auto"
grid <- plot_grid(</pre>
 grid,
 legend,
 nrow=2,
 ncol=1,
 rel_heights=c(1, 0.1)
save plot(
 paste(working_directory, "imgs/pop-size-panel.pdf", sep=""),
```


52CHAPTER 6. INCREASING POPULATION SIZE VERSUS INCREASING GENERATIONS

Chapter 7

Epsilon lexicase

7.1 Overview

```
# Relative location of data.
working_directory <- "experiments/2021-05-28-epsilon/analysis/"
# working_directory <- "./"

# Settings for visualization
cb_palette <- "Set2"
# Create directory to dump plots
dir.create(paste0(working_directory, "imgs"), showWarnings=FALSE)</pre>
```

7.2 Analysis dependencies

```
library(ggplot2)
library(tidyverse)
library(cowplot)
library(viridis)
library(RColorBrewer)
source("https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd97121f7f9ce8
```

These analyses were conducted in the following computing environment:

```
print(version)
```

```
## system
                x86_64, linux-gnu
## status
                4
## major
## minor
               1.0
               2021
## year
               05
## month
## day
               18
               80317
## svn rev
              R
## language
## version.string R version 4.1.0 (2021-05-18)
## nickname Camp Pontanezen
```

```
0-4---
data_loc <- paste0(</pre>
  working_directory,
  "data/timeseries-res-1000g.csv"
data <- read.csv(data_loc, na.strings="NONE")</pre>
data$cardinality <- as.factor(</pre>
  data$OBJECTIVE_CNT
data$selection_name <- as.factor(</pre>
 data$selection_name
data$epsilon <- as.factor(</pre>
  data$LEX_EPS
)
data$elite_trait_avg <-</pre>
  data$ele_agg_per / data$OBJECTIVE_CNT
data$unique_start_positions_coverage <-</pre>
  data$uni_str_pos / data$OBJECTIVE_CNT
final_data <- filter(data, evaluations==max(data$evaluations))</pre>
###### misc ######
# Configure our default graphing theme
theme_set(theme_cowplot())
```

7.4 Exploration diagnostic performance

```
elite_ave_performance_fig <-</pre>
  ggplot(
    data,
    aes(x=gen, y=elite_trait_avg, color=epsilon, fill=epsilon)
  stat_summary(geom="line", fun=mean) +
  stat_summary(
    geom="ribbon",
    fun.data="mean_cl_boot",
    fun.args=list(conf.int=0.95),
    alpha=0.2,
    linetype=0
  scale_y_continuous(
    name="Average trait performance"
  scale_x_continuous(
    name="Generations"
 ) +
  scale_fill_brewer(
    name="Epsilon",
    palette=cb_palette
  scale_color_brewer(
    name="Epsilon",
    palette=cb_palette
elite_ave_performance_fig
```


7.4.1 Final performance

```
elite_final_performance_fig <- ggplot(</pre>
    final data,
    aes(x=epsilon, y=elite_trait_avg, fill=epsilon)
 ) +
 geom_flat_violin(
   position = position_nudge(x = .2, y = 0),
   alpha = .8,
    scale="width"
 ) +
 geom_point(
    mapping=aes(color=epsilon),
   position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
 ) +
 geom_boxplot(
    width = .1,
    outlier.shape = NA,
    alpha = 0.5
 ) +
 scale_y_continuous(
   name="Average trait performance",
```

```
limits=c(0, 100)
) +
scale_x_discrete(
   name="Epsilon"
) +
scale_fill_brewer(
   name="Epsilon",
   palette=cb_palette
) +
scale_color_brewer(
   name="Epsilon",
   palette=cb_palette
) +
theme(
   legend.position="none"
)
elite_final_performance_fig
```


7.5 Unique starting positions

```
unique_start_position_coverage_fig <- ggplot(
   data,
   aes(</pre>
```

```
x=gen,
      y=unique_start_positions_coverage,
      color=epsilon,
      fill=epsilon
    )
  ) +
  stat_summary(geom="line", fun=mean) +
  stat_summary(
    geom="ribbon",
   fun.data="mean_cl_boot",
   fun.args=list(conf.int=0.95),
    alpha=0.2,
   linetype=0
  ) +
  scale_y_continuous(
   name="Activation position coverage",
   limits=c(0.0, 1.0)
  scale_x_continuous(
   name="Generations"
  scale_fill_brewer(
   name="Epsilon",
   palette=cb_palette
  ) +
  scale_color_brewer(
    name="Epsilon",
    palette=cb_palette
unique_start_position_coverage_fig
```


7.5.1 Final coverage

```
unique_start_positions_coverage_final_fig <- ggplot(</pre>
    final_data,
    aes(
      x=epsilon,
      y=unique_start_positions_coverage,
      fill=epsilon
    )
 ) +
  geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
 ) +
  geom_point(
    mapping=aes(color=epsilon),
    position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
  ) +
  geom_boxplot(
    width = .1,
    outlier.shape = NA,
```

```
alpha = 0.5
  ) +
  scale_y_continuous(
    name="Activation position coverage",
    limits=c(0, 1.0)
  ) +
  scale_x_discrete(
    name="Epsilon"
  scale_fill_brewer(
    name="Epsilon",
   palette=cb_palette
  ) +
  scale_color_brewer(
    name="Epsilon",
    palette=cb_palette
  ) +
  theme(
    legend.position="none"
unique_start_positions_coverage_final_fig
```


7.6 Manuscript figures

```
legend <- cowplot::get_legend(</pre>
    elite_ave_performance_fig +
      guides(
        color=guide_legend(nrow=1),
        fill=guide_legend(nrow=1)
      theme(
        legend.position = "bottom",
        legend.box="horizontal",
        legend.justification="center"
 )
grid <- plot_grid(</pre>
  elite_ave_performance_fig +
    ggtitle("Performance over time") +
    theme(legend.position="none"),
  elite_final_performance_fig +
    ggtitle("Final performance") +
    theme(),
  unique_start_position_coverage_fig +
    ggtitle("Activation position coverage over time") +
    theme(legend.position="none"),
 unique_start_positions_coverage_final_fig +
    ggtitle("Final activation position coverage") +
    theme(),
 nrow=2,
 ncol=2,
  rel_widths=c(3,2),
 labels="auto"
grid <- plot_grid(</pre>
 grid,
 legend,
 nrow=2,
 ncol=1,
 rel_heights=c(1, 0.1)
save_plot(
 paste(working_directory, "imgs/epsilon-panel.pdf", sep=""),
 grid,
```


Chapter 8

Down-sampled lexicase

8.1 Overview

```
# Relative location of data.
working_directory <- "experiments/2021-05-28-downsampled/analysis/"
# working_directory <- "./"

# Settings for visualization
cb_palette <- "Set2"
# Create directory to dump plots
dir.create(paste0(working_directory, "imgs"), showWarnings=FALSE)</pre>
```

8.2 Analysis dependencies

```
library(ggplot2)
library(tidyverse)
library(cowplot)
library(viridis)
library(RColorBrewer)
source("https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd97121f7f9ce8
```

These analyses were conducted in the following computing environment:

```
print(version)
```

```
## system
                x86_64, linux-gnu
## status
                4
## major
               1.0
## minor
               2021
## year
## month
               05
## day
                18
               80317
## svn rev
               R
## language
## version.string R version 4.1.0 (2021-05-18)
## nickname Camp Pontanezen
```

```
data_loc <- pasteO(working_directory, "data/timeseries.csv")</pre>
data <- read.csv(data_loc, na.strings="NONE")</pre>
data$cardinality <- as.factor(</pre>
  data$OBJECTIVE_CNT
data$selection name <- as.factor(</pre>
  data$selection_name
data$epsilon <- as.factor(</pre>
  data$LEX_EPS
data$proportion <- factor(</pre>
  data$DSLEX_PROP,
  levels=c(1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01)
data$elite_trait_avg <- data$ele_agg_per / data$OBJECTIVE_CNT</pre>
data$unique_start_positions_coverage <- data$uni_str_pos / data$OBJECTIVE_CNT</pre>
final_data <- filter(data, evaluations==max(data$evaluations))</pre>
###### misc ######
# Configure our default graphing theme
theme_set(theme_cowplot())
```

8.4 Exploration diagnostic performance

```
elite_ave_performance_fig <-</pre>
  ggplot(
    data,
    aes(
     x=evaluations,
     y=elite_trait_avg,
      color=proportion,
      fill=proportion
 ) +
  stat_summary(geom="line", fun=mean) +
  stat_summary(
    geom="ribbon",
    fun.data="mean cl boot",
    fun.args=list(conf.int=0.95),
    alpha=0.2,
    linetype=0
  ) +
  scale_y_continuous(
    name="Average trait performance",
    limits=c(0, 100)
  scale_x_continuous(
    name="Evaluations"
 ) +
  scale_fill_brewer(
    name="Sampling rate",
    palette=cb_palette
  scale_color_brewer(
    name="Sampling rate",
    palette=cb_palette
elite_ave_performance_fig
```


8.4.1 Final performance

```
elite_final_performance_fig <- ggplot(</pre>
   final_data,
    aes(
      x=proportion,
     y=elite_trait_avg,
      fill=proportion
    )
 ) +
 geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
   alpha = .8,
    scale="width"
 ) +
 geom_point(
   mapping=aes(color=proportion),
   position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
 ) +
 geom_boxplot(
   width = .1,
    outlier.shape = NA,
```

```
alpha = 0.5
  ) +
  scale_y_continuous(
    name="Average trait performance",
    limits=c(0, 100)
 ) +
  scale_x_discrete(
    name="Sampling rate"
  scale_fill_brewer(
    name="Sampling rate",
    palette=cb_palette
 ) +
  scale_color_brewer(
    name="Sampling rate",
    palette=cb_palette
 ) +
 theme(
    legend.position="none"
{\tt elite\_final\_performance\_fig}
```


8.5 Unique starting positions

```
unique_start_position_coverage_fig <- ggplot(</pre>
    data,
    aes(
      x=evaluations,
      y=unique_start_positions_coverage,
      color=proportion,
      fill=proportion
  ) +
  stat_summary(geom="line", fun=mean) +
  stat_summary(
    geom="ribbon",
    fun.data="mean cl boot",
    fun.args=list(conf.int=0.95),
    alpha=0.2,
    linetype=0
  ) +
  scale_y_continuous(
    name="Activation position coverage",
    limits=c(0.0, 1.0)
  scale_x_continuous(
    name="Evaluations"
  ) +
  scale_fill_brewer(
    name="Sampling rate",
    palette=cb_palette
  scale_color_brewer(
    name="Sampling rate",
    palette=cb_palette
unique_start_position_coverage_fig
```


8.5.1 Final starting position coverage

```
unique_start_positions_coverage_final_fig <- ggplot(</pre>
    final_data,
    aes(
      x=proportion,
      y=unique_start_positions_coverage,
      fill=proportion
    )
 ) +
  geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
 ) +
  geom_point(
    mapping=aes(color=proportion),
    position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
  ) +
  geom_boxplot(
    width = .1,
    outlier.shape = NA,
```

```
alpha = 0.5
  ) +
  scale_y_continuous(
    name="Activation position coverage",
    limits=c(0, 1.0)
  ) +
  scale_x_discrete(
    name="Sampling rate"
  scale_fill_brewer(
    name="Sampling rate",
   palette=cb_palette
  ) +
  scale_color_brewer(
    name="Sampling rate",
    palette=cb_palette
  ) +
  theme(
    legend.position="none"
unique_start_positions_coverage_final_fig
```


8.6 Manuscript figures

```
legend <- cowplot::get_legend(</pre>
    elite_ave_performance_fig +
      guides(
        color=guide_legend(nrow=1),
        fill=guide_legend(nrow=1)
      theme(
        legend.position = "bottom",
        legend.box="horizontal",
        legend.justification="center"
 )
grid <- plot_grid(</pre>
  elite_ave_performance_fig +
    ggtitle("Performance over time") +
    theme(legend.position="none"),
  elite_final_performance_fig +
    ggtitle("Final performance") +
    theme(),
  unique_start_position_coverage_fig +
    ggtitle("Activation position coverage over time") +
    theme(legend.position="none"),
  unique_start_positions_coverage_final_fig +
    ggtitle("Final activation position coverage") +
    theme(),
 nrow=2,
 ncol=2,
  rel_widths=c(3,2),
 labels="auto"
grid <- plot_grid(</pre>
 grid,
 legend,
 nrow=2,
 ncol=1,
 rel_heights=c(1, 0.1)
save_plot(
 paste(working_directory, "imgs/down-sampled-panel.pdf", sep=""),
 grid,
```


Chapter 9

Cohort lexicase

9.1 Overview

```
# Relative location of data.
working_directory <- "experiments/2021-06-01-cohort/analysis/"
# working_directory <- "./"

# Settings for visualization
cb_palette <- "Set2"
# Create directory to dump plots
dir.create(paste0(working_directory, "imgs"), showWarnings=FALSE)</pre>
```

9.2 Analysis dependencies

```
library(ggplot2)
library(tidyverse)
library(cowplot)
library(viridis)
library(RColorBrewer)
source("https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd97121f7f9ce8
```

These analyses were conducted in the following computing environment:

```
print(version)
```

```
## system
                x86_64, linux-gnu
## status
                4
## major
               1.0
## minor
                2021
## year
## month
               05
## day
                18
               80317
## svn rev
               R
## language
## version.string R version 4.1.0 (2021-05-18)
## nickname
            Camp Pontanezen
```

9.3 Setup

```
data_loc <- pasteO(working_directory, "data/timeseries.csv")</pre>
data <- read.csv(data_loc, na.strings="NONE")</pre>
data$cardinality <- as.factor(</pre>
  data $OBJECTIVE_CNT
data$selection_name <- as.factor(</pre>
  data$selection_name
)
data$epsilon <- as.factor(</pre>
  data$LEX_EPS
data$proportion <- factor(</pre>
  data$COH_LEX_PROP,
  levels=c(1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01)
)
data$elite_trait_avg <-</pre>
  data$ele_agg_per / data$OBJECTIVE_CNT
data$unique_start_positions_coverage <-</pre>
  data$uni_str_pos / data$OBJECTIVE_CNT
final_data <- filter(data, evaluations==max(data$evaluations))</pre>
###### misc ######
# Configure our default graphing theme
theme_set(theme_cowplot())
```

9.4 Exploration diagnostic performance

```
elite_ave_performance_fig <-</pre>
  ggplot(
    data,
    aes(
     x=evaluations,
      y=elite_trait_avg,
      color=proportion,
      fill=proportion
 ) +
  stat_summary(geom="line", fun=mean) +
  stat_summary(
    geom="ribbon",
    fun.data="mean cl boot",
    fun.args=list(conf.int=0.95),
    alpha=0.2,
    linetype=0
  ) +
  scale_y_continuous(
    name="Average trait performance",
    limits=c(0, 100)
  scale_x_continuous(
    name="Evaluations"
 ) +
  scale_fill_brewer(
    name="Cohort size",
    palette=cb_palette
  scale_color_brewer(
    name="Cohort size",
    palette=cb_palette
elite_ave_performance_fig
```


9.4.1 Final performance

```
elite_final_performance_fig <- ggplot(</pre>
   final data,
    aes(x=proportion, y=elite_trait_avg, fill=proportion)
 ) +
 geom_flat_violin(
   position = position_nudge(x = .2, y = 0),
   alpha = .8,
    scale="width"
 ) +
 geom_point(
    mapping=aes(color=proportion),
   position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
 ) +
 geom_boxplot(
    width = .1,
    outlier.shape = NA,
    alpha = 0.5
 ) +
 scale_y_continuous(
   name="Average trait performance",
```

```
limits=c(0, 100)
) +
scale_x_discrete(
   name="Cohort size"
) +
scale_fill_brewer(
   name="Cohort size",
   palette=cb_palette
) +
scale_color_brewer(
   name="Cohort size",
   palette=cb_palette
) +
theme(
   legend.position="none"
)
elite_final_performance_fig
```


9.5 Unique starting positions

```
unique_start_position_coverage_fig <- ggplot(
   data,
   aes(</pre>
```

```
x=evaluations,
     y=unique_start_positions_coverage,
      color=proportion,
      fill=proportion
   )
  ) +
  stat_summary(geom="line", fun=mean) +
 stat_summary(
   geom="ribbon",
   fun.data="mean_cl_boot",
   fun.args=list(conf.int=0.95),
   alpha=0.2,
   linetype=0
 ) +
  scale_y_continuous(
   name="Activation position coverage",
   limits=c(0.0, 1.0)
  scale_x_continuous(
   name="Evaluations"
  scale_fill_brewer(
   name="Cohort size",
   palette=cb_palette
 scale_color_brewer(
   name="Cohort size",
   palette=cb_palette
unique_start_position_coverage_fig
```


9.5.1 Final starting position coverage

```
unique_start_positions_coverage_final_fig <- ggplot(</pre>
    final_data,
    aes(
      x=proportion,
      y=unique_start_positions_coverage,
      fill=proportion
    )
 ) +
  geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
 ) +
  geom_point(
    mapping=aes(color=proportion),
    position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
  ) +
  geom_boxplot(
    width = .1,
    outlier.shape = NA,
```

```
alpha = 0.5
  ) +
  scale_y_continuous(
    name="Activation position coverage",
    limits=c(0, 1.0)
  ) +
  scale_x_discrete(
    name="Cohort size"
  ) +
  scale_fill_brewer(
    name="Cohort size",
   palette=cb_palette
  ) +
  scale_color_brewer(
    name="Cohort size",
    palette=cb_palette
  ) +
  theme(
    legend.position="none"
unique_start_positions_coverage_final_fig
```


9.6 Manuscript figures

```
legend <- cowplot::get_legend(</pre>
    elite_ave_performance_fig +
      guides(
        color=guide_legend(nrow=1),
        fill=guide_legend(nrow=1)
      theme(
        legend.position = "bottom",
        legend.box="horizontal",
        legend.justification="center"
 )
grid <- plot_grid(</pre>
  elite_ave_performance_fig +
    ggtitle("Performance over time") +
    theme(legend.position="none"),
  elite_final_performance_fig +
    ggtitle("Final performance") +
    theme(),
  unique_start_position_coverage_fig +
    ggtitle("Activation position coverage over time") +
    theme(legend.position="none"),
 unique_start_positions_coverage_final_fig +
    ggtitle("Final activation position coverage") +
    theme(),
 nrow=2,
 ncol=2,
  rel_widths=c(3,2),
 labels="auto"
grid <- plot_grid(</pre>
 grid,
 legend,
 nrow=2,
 ncol=1,
 rel_heights=c(1, 0.1)
save_plot(
 paste(working_directory, "imgs/cohort-panel.pdf", sep=""),
 grid,
```


Chapter 10

Down-sampled lexicase versus cohort lexicase

10.1 Overview

```
# Relative location of data.
working_directory <-
    "experiments/2021-06-05-downsample-vs-cohort/analysis/"
# working_directory <- "./"

# Settings for visualization
cb_palette <- "Dark2"
# Create directory to dump plots
dir.create(paste0(working_directory, "imgs"), showWarnings=FALSE)</pre>
```

10.2 Analysis dependencies

```
library(ggplot2)
library(tidyverse)
library(knitr)
library(cowplot)
library(viridis)
library(RColorBrewer)
library(ggsignif)
library(ggsignif)
library(Hmisc)
source("https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd97121f7f9ce9
```

These analyses were conducted in the following computing environment:

```
print(version)
```

```
##
## platform
                  x86_64-pc-linux-gnu
## arch
                  x86_64
## os
                  linux-gnu
## system
                  x86_64, linux-gnu
## status
## major
## minor
                 1.0
                 2021
## year
                 05
## month
                  18
## day
                80317
## svn rev
## language
                 R
## version.string R version 4.1.0 (2021-05-18)
## nickname
                  Camp Pontanezen
```

10.3 Setup

```
data_loc <- pasteO(working_directory, "data/timeseries.csv")</pre>
data <- read.csv(data_loc, na.strings="NONE")</pre>
data$cardinality <- as.factor(</pre>
  data $OBJECTIVE_CNT
data$selection_name <- as.factor(</pre>
  data$selection_name
data$epsilon <- as.factor(</pre>
  data$LEX_EPS
# I always set cohort and downsampled lexicase sampling rates to
# be the same on a given run (regardless of selection scheme)
data$proportion <- factor(</pre>
  data$COH_LEX_PROP,
  levels=c(1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01)
)
data$elite trait avg <-
  data$ele_agg_per / data$OBJECTIVE_CNT
```

```
data$unique_start_positions_coverage <-</pre>
  data$uni_str_pos / data$OBJECTIVE_CNT
final_data <- filter(data, evaluations==max(data$evaluations))</pre>
# Labeler for stats annotations
p_label <- function(p_value) {</pre>
  threshold = 0.0001
  if (p_value < threshold) {</pre>
    return(paste0("p < ", threshold))</pre>
  } else {
    return(paste0("p = ", p_value))
  }
# Significance threshold
alpha \leftarrow 0.05
###### misc ######
# Configure our default graphing theme
theme_set(theme_cowplot())
```

10.4 Exploration diagnostic performance

```
elite_ave_performance_fig <-</pre>
  ggplot(
    data,
    aes(
      x=gen,
      y=elite_trait_avg,
      color=selection_name,
      fill=selection_name
    )
  ) +
  stat_summary(geom="line", fun=mean) +
  stat_summary(
    geom="ribbon",
    fun.data="mean_cl_boot",
    fun.args=list(conf.int=0.95),
    alpha=0.2,
    linetype=0
 ) +
  scale_y_continuous(
    name="Average trait performance",
```

```
limits=c(0, 100)
  ) +
  scale_x_continuous(
   name="Generations"
  scale_fill_brewer(
    name="Selection",
   palette=cb_palette,
   limits=c("CohortLexicase", "DownSampledLexicase"),
   labels=c("Cohort lexicase", "Down-sampled lexicase")
  scale_color_brewer(
   name="Selection",
    palette=cb_palette,
   limits=c("CohortLexicase", "DownSampledLexicase"),
    labels=c("Cohort lexicase", "Down-sampled lexicase")
 )
elite_ave_performance_fig
```


10.4.1 Final performance

```
# Compute manual labels for geom_signif
stat.test <- final_data %>%
wilcox_test(elite_trait_avg ~ selection_name) %>%
```

```
adjust_pvalue(method = "bonferroni") %>%
  add_significance() %>%
  add_xy_position(x="selection_name", step.increase=1)
stat.test$manual_position <- stat.test$y.position * 1.05</pre>
stat.test$label <- mapply(p_label,stat.test$p.adj)</pre>
elite_final_performance_fig <- ggplot(</pre>
    final_data,
    aes(x=selection_name, y=elite_trait_avg, fill=selection_name)
  ) +
  geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
  ) +
  geom point(
    mapping=aes(color=selection_name),
    position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
  geom_boxplot(
    width = .1,
    outlier.shape = NA,
    alpha = 0.5
  ) +
  scale_y_continuous(
    name="Average trait performance",
    limits=c(0, 100)
  ) +
  scale_x_discrete(
    name="Selection",
    limits=c("CohortLexicase", "DownSampledLexicase"),
    labels=c("Cohort lexicase", "Down-sampled lexicase")
  scale_fill_brewer(
    name="Selection",
    palette=cb_palette,
    limits=c("CohortLexicase", "DownSampledLexicase"),
    labels=c("Cohort lexicase", "Down-sampled lexicase")
  scale_color_brewer(
    name="Selection",
    palette=cb_palette,
    limits=c("CohortLexicase", "DownSampledLexicase"),
```

```
labels=c("Cohort lexicase", "Down-sampled lexicase")
) +
theme(
  legend.position="none"
)
elite_final_performance_fig
```


.y.	group1	group2	n1	n2	statistic	p	p.adj	p.adj.s
elite_trait_avg	CohortLexicase	DownSampledLexicase	50	50	2500	0	0	****

10.5 Unique starting positions

```
unique_start_position_coverage_fig <- ggplot(
    data,
    aes(
        x=gen,
        y=unique_start_positions_coverage,
        color=selection_name,
        fill=selection_name
    )
) +
stat_summary(geom="line", fun=mean) +
stat_summary(
    geom="ribbon",</pre>
```

```
fun.data="mean_cl_boot",
   fun.args=list(conf.int=0.95),
   alpha=0.2,
   linetype=0
 ) +
  scale_y_continuous(
   name="Activation position coverage",
   limits=c(0.0, 1.0)
  scale_x_continuous(
   name="Generations"
  scale_fill_brewer(
   name="Selection",
   palette=cb_palette,
   limits=c("CohortLexicase", "DownSampledLexicase"),
   labels=c("Cohort lexicase", "Down-sampled lexicase")
  ) +
  scale_color_brewer(
   name="Selection",
   palette=cb_palette,
   limits=c("CohortLexicase", "DownSampledLexicase"),
   labels=c("Cohort lexicase", "Down-sampled lexicase")
unique_start_position_coverage_fig
```


10.5.1 Final starting position coverage

```
# Compute manual labels for geom_signif
stat.test <- final_data %>%
  wilcox_test(unique_start_positions_coverage ~ selection_name) %>%
  adjust_pvalue(method = "bonferroni") %>%
  add_significance() %>%
  add_xy_position(x="selection_name",step.increase=1)
stat.test$manual_position <- stat.test$y.position * 1.05</pre>
stat.test$label <- mapply(p_label,stat.test$p.adj)</pre>
unique_start_positions_coverage_final_fig <- ggplot(</pre>
    final_data,
    aes(
      x=selection_name,
      y=unique_start_positions_coverage,
      fill=selection_name
    )
  geom flat violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
```

```
geom_point(
   mapping=aes(color=selection_name),
   position = position_jitter(width = .15),
   size = .5,
   alpha = 0.8
  ) +
  geom_boxplot(
   width = .1,
   outlier.shape = NA,
   alpha = 0.5
  ) +
  scale_y_continuous(
   name="Activation position coverage",
   limits=c(0, 1.0)
 ) +
  scale_x_discrete(
   name="Selection",
   limits=c("CohortLexicase", "DownSampledLexicase"),
   labels=c("Cohort lexicase", "Down-sampled lexicase")
  ) +
  scale_fill_brewer(
   name="Selection",
   palette=cb_palette,
   limits=c("CohortLexicase", "DownSampledLexicase"),
   labels=c("Cohort lexicase", "Down-sampled lexicase")
  scale_color_brewer(
   name="Selection",
   palette=cb_palette,
   limits=c("CohortLexicase", "DownSampledLexicase"),
   labels=c("Cohort lexicase", "Down-sampled lexicase")
  ) +
  theme(
   legend.position="none"
unique_start_positions_coverage_final_fig
```


.y.	group1	group2	n1	n2	statistic	p
unique_start_positions_coverage	CohortLexicase	DownSampledLexicase	50	50	2500	0

10.6 Manuscript figures

```
legend <- cowplot::get_legend(</pre>
    elite_ave_performance_fig +
      guides(
        color=guide_legend(nrow=1),
        fill=guide_legend(nrow=1)
      ) +
        legend.position = "bottom",
        legend.box="horizontal",
        legend.justification="center"
      )
  )
grid <- plot_grid(</pre>
  elite_ave_performance_fig +
    ggtitle("Performance over time") +
    theme(legend.position="none"),
 elite_final_performance_fig +
    ggtitle("Final performance") +
```

```
theme(),
 unique_start_position_coverage_fig +
    ggtitle("Activation position coverage over time") +
    theme(legend.position="none"),
 unique_start_positions_coverage_final_fig +
    ggtitle("Final activation position coverage") +
    theme(),
 nrow=2,
 ncol=2,
 rel_widths=c(3,2),
 labels="auto"
)
grid <- plot_grid(</pre>
 grid,
 legend,
 nrow=2,
 ncol=1,
 rel_heights=c(1, 0.1)
save_plot(
 paste(
    working_directory,
    "imgs/down-sampled-vs-cohort-panel.pdf",
 ),
 grid,
 base_width=12,
 base_height=8
grid
```


Chapter 11

Novelty lexicase

11.1 Overview

```
# Relative location of data.
working_directory <- "experiments/2021-06-01-novelty/analysis/"
# working_directory <- "./"

# Settings for visualization
cb_palette <- "Set2"
# Create directory to dump plots
dir.create(paste0(working_directory, "imgs"), showWarnings=FALSE)</pre>
```

11.2 Analysis dependencies

```
library(ggplot2)
library(tidyverse)
library(cowplot)
library(viridis)
library(RColorBrewer)
source("https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd97121f7f9ce8
```

These analyses were conducted in the following computing environment:

```
print(version)
```

```
## system
                x86_64, linux-gnu
## status
                4
## major
## minor
               1.0
                2021
## year
## month
               05
## day
                18
               80317
## svn rev
               R
## language
## version.string R version 4.1.0 (2021-05-18)
## nickname
            Camp Pontanezen
```

11.3 Setup

```
data_loc <- paste0(</pre>
  working_directory,
  "data/timeseries-res-1000g.csv"
data <- read.csv(data_loc, na.strings="NONE")</pre>
data$cardinality <- as.factor(</pre>
  data$OBJECTIVE_CNT
)
data$selection_name <- as.factor(</pre>
  data$selection_name
data$epsilon <- as.factor(</pre>
  data$LEX_EPS
)
data$k <- as.factor(</pre>
   data$NOVEL_K
data$elite_trait_avg <-</pre>
  data$ele_agg_per / data$OBJECTIVE_CNT
data$unique_start_positions_coverage <-</pre>
  data$uni_str_pos / data$OBJECTIVE_CNT
final_data <- filter(data, evaluations==max(data$evaluations))</pre>
###### misc ######
```

```
# Configure our default graphing theme
theme_set(theme_cowplot())
```

```
elite_ave_performance_fig <-</pre>
 ggplot(
    data,
    aes(x=gen, y=elite_trait_avg, color=k, fill=k)
  ) +
  stat_summary(geom="line", fun=mean) +
  stat_summary(
    geom="ribbon",
    fun.data="mean cl boot",
    fun.args=list(conf.int=0.95),
    alpha=0.2,
    linetype=0
 ) +
  scale_y_continuous(
    name="Average trait performance",
    limits=c(0, 100)
  scale_x_continuous(
    name="Generations"
 ) +
  scale_fill_brewer(
    name="k",
   palette=cb_palette
  scale_color_brewer(
    name="k",
    palette=cb_palette
elite_ave_performance_fig
```


11.4.1 Final performance

```
elite_final_performance_fig <- ggplot(</pre>
   final data,
    aes(x=k, y=elite_trait_avg, fill=k)
 ) +
 geom_flat_violin(
   position = position_nudge(x = .2, y = 0),
   alpha = .8,
    scale="width"
 ) +
 geom_point(
   mapping=aes(color=k),
   position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
 geom_boxplot(
    width = .1,
    outlier.shape = NA,
    alpha = 0.5
 ) +
 scale_y_continuous(
   name="Average trait performance",
```

```
limits=c(0, 100)
) +
scale_x_discrete(
   name="k"
) +
scale_fill_brewer(
   name="k",
   palette=cb_palette
) +
scale_color_brewer(
   name="k",
   palette=cb_palette
) +
theme(
   legend.position="none"
)
elite_final_performance_fig
```


11.5 Unique starting positions

```
unique_start_position_coverage_fig <- ggplot(
    data,
    aes(x=gen, y=unique_start_positions_coverage, color=k, fill=k)</pre>
```

```
) +
  stat_summary(geom="line", fun=mean) +
  stat_summary(
    geom="ribbon",
   fun.data="mean_cl_boot",
    fun.args=list(conf.int=0.95),
    alpha=0.2,
   linetype=0
  scale_y_continuous(
   name="Activation position coverage",
   limits=c(0.0, 1.0)
  ) +
  scale_x_continuous(
   name="Generations"
  scale_fill_brewer(
    name="k",
   palette=cb_palette
  scale_color_brewer(
    name="k",
    palette=cb_palette
unique_start_position_coverage_fig
```


11.5.1 Final starting position coverage

```
unique_start_positions_coverage_final_fig <- ggplot(</pre>
    final data,
    aes(x=k, y=unique_start_positions_coverage, fill=k)
 ) +
  geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
 ) +
  geom_point(
    mapping=aes(color=k),
    position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
  ) +
  geom_boxplot(
    width = .1,
    outlier.shape = NA,
    alpha = 0.5
 ) +
  scale_y_continuous(
    name="Activation position coverage",
```

```
limits=c(0, 1.0)
) +
scale_x_discrete(
   name="k"
) +
scale_fill_brewer(
   name="k",
   palette=cb_palette
) +
scale_color_brewer(
   name="k",
   palette=cb_palette
) +
theme(
   legend.position="none"
)
unique_start_positions_coverage_final_fig
```


11.6 Manuscript figures

```
legend <- cowplot::get_legend(
  elite_ave_performance_fig +
    guides(</pre>
```

```
color=guide_legend(nrow=1),
        fill=guide_legend(nrow=1)
      ) +
      theme(
        legend.position = "bottom",
        legend.box="horizontal",
        legend.justification="center"
 )
grid <- plot_grid(</pre>
  elite_ave_performance_fig +
    ggtitle("Performance over time") +
    theme(legend.position="none"),
  elite_final_performance_fig +
    ggtitle("Final performance") +
    theme(),
  unique_start_position_coverage_fig +
    ggtitle("Activation position coverage over time") +
    theme(legend.position="none"),
  unique_start_positions_coverage_final_fig +
    ggtitle("Final activation position coverage") +
    theme(),
 nrow=2,
  ncol=2,
 rel_widths=c(3,2),
 labels="auto"
grid <- plot_grid(</pre>
 grid,
 legend,
 nrow=2,
 ncol=1,
 rel_heights=c(1, 0.1)
)
save_plot(
 paste(working_directory, "imgs/novelty-panel.pdf", sep=""),
 base_width=12,
 base_height=8
grid
```


Chapter 12

Down-sampled lexicase with increased population size

12.1 Overview

```
# Relative location of data.
working_directory <- "experiments/2021-06-14-downsampled-pop-size/analysis/"
# working_directory <- "./"

# Settings for visualization
cb_palette <- "Set2"
# Create directory to dump plots
dir.create(paste0(working_directory, "imgs"), showWarnings=FALSE)</pre>
```

12.2 Analysis dependencies

```
library(ggplot2)
library(tidyverse)
library(knitr)
library(cowplot)
library(viridis)
library(RColorBrewer)
library(rstatix)
library(ggsignif)
library(Hmisc)
source("https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd97121f7f9ce9
```

These analyses were conducted in the following computing environment:

```
print(version)
##
## platform
                 x86_64-pc-linux-gnu
## arch
                 x86 64
## os
                 linux-gnu
## system
                 x86_64, linux-gnu
## status
## major
## minor
                 1.0
## year
                2021
                05
## month
## day
                 18
                80317
## svn rev
## language
                R
## version.string R version 4.1.0 (2021-05-18)
## nickname
                 Camp Pontanezen
```

12.3 Setup

```
data_loc <- pasteO(working_directory, "data/timeseries.csv")
data <- read.csv(data_loc, na.strings="NONE")

data$cardinality <- as.factor(
    data$OBJECTIVE_CNT
)
data$selection_name <- as.factor(
    data$selection_name
)

data$epsilon <- as.factor(
    data$LEX_EPS
)

data$proportion <- factor(
    data$DSLEX_PROP,
    levels=c(1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01)
)

data$POP_SIZE <- factor(
    data$POP_SIZE
)</pre>
```

```
data <- filter(data, proportion %in% c(1, 0.5, 0.2, 0.1))
data$proportion <- factor(</pre>
  data$DSLEX_PROP,
  levels=c(1, 0.5, 0.2, 0.1)
data$elite_trait_avg <-</pre>
  data$ele_agg_per / data$OBJECTIVE_CNT
data$unique_start_positions_coverage <-</pre>
  data$uni_str_pos / data$OBJECTIVE_CNT
final_data <- filter(data, evaluations==max(data$evaluations))</pre>
# Labeler for stats annotations
p_label <- function(p_value) {</pre>
  threshold = 0.0001
  if (p_value < threshold) {</pre>
    return(paste0("p < ", threshold))</pre>
  } else {
    return(paste0("p = ", p_value))
  }
}
# Significance threshold
alpha <- 0.05
###### misc ######
# Configure our default graphing theme
theme_set(theme_cowplot())
```

12.4 Exploration diagnostic performance

```
elite_ave_performance_fig <-
    ggplot(
    data,
    aes(
        x=gen,
        y=elite_trait_avg,
        color=proportion,
        fill=proportion
    )
) +</pre>
```

```
stat_summary(geom="line", fun=mean) +
  stat_summary(
    geom="ribbon",
    fun.data="mean_cl_boot",
    fun.args=list(conf.int=0.95),
    alpha=0.2,
    linetype=0
  ) +
  scale_y_continuous(
    name="Average trait performance",
    limits=c(0, 100)
 ) +
  scale_x_continuous(
    name="Generations"
  ) +
  scale_fill_brewer(
    name="Down-sampling rate",
    palette=cb_palette
  scale_color_brewer(
    name="Down-sampling rate",
    palette=cb_palette
elite_ave_performance_fig
```


12.4.1 Final performance

```
# Compute manual labels for geom_signif
stat.test <- final_data %>%
 wilcox_test(elite_trait_avg ~ proportion) %>%
  adjust_pvalue(method = "bonferroni") %>%
  add_significance() %>%
  add_xy_position(x="proportion",step.increase=1)
stat.test$label <- mapply(p_label,stat.test$p.adj)</pre>
elite_final_performance_fig <- ggplot(</pre>
    final_data,
    aes(x=proportion, y=elite_trait_avg, fill=proportion)
 ) +
  geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
  ) +
  geom_point(
    mapping=aes(color=proportion),
    position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
  ) +
  geom_boxplot(
    width = .1,
    outlier.shape = NA,
    alpha = 0.5
  ) +
  scale_y_continuous(
    name="Average trait performance",
    limits=c(0, 100)
  ) +
  scale_x_discrete(
    name="Down-sampling rate"
  scale_fill_brewer(
    name="Down-sampling rate",
    palette=cb_palette
  scale color brewer(
    name="Down-sampling rate",
   palette=cb_palette
  ) +
 theme(
```

```
legend.position="none"
)
elite_final_performance_fig
```


.y.	group1	group2	n1	n2	statistic	p	p.adj	p.adj.signif	y.posi
elite_trait_avg	1	0.5	50	50	2500	0.00e+00	0.0000000	****	178.4
elite_trait_avg	1	0.2	50	50	2500	0.00e+00	0.0000000	****	274.7
elite_trait_avg	1	0.1	50	50	2500	0.00e+00	0.0000000	****	371.0
elite_trait_avg	0.5	0.2	50	50	1840	4.82e-05	0.0002892	***	467.4
elite_trait_avg	0.5	0.1	50	50	2229	0.00e+00	0.0000000	****	563.7
elite_trait_avg	0.2	0.1	50	50	1775	2.99e-04	0.0017940	**	660.0

12.5 Unique starting positions

```
unique_start_position_coverage_fig <- ggplot(
    data,
    aes(
        x=gen,
        y=unique_start_positions_coverage,
        color=proportion,
        fill=proportion
    )
) +
stat_summary(geom="line", fun=mean) +</pre>
```

```
stat_summary(
    geom="ribbon",
   fun.data="mean_cl_boot",
   fun.args=list(conf.int=0.95),
   alpha=0.2,
   linetype=0
  ) +
  scale_y_continuous(
   name="Activation position coverage",
   limits=c(0.0, 1.0)
  ) +
  scale_x_continuous(
   name="Generations"
  ) +
  scale_fill_brewer(
   name="Down-sampling rate",
   palette=cb_palette
  ) +
  scale_color_brewer(
   name="Down-sampling rate",
   palette=cb_palette
unique_start_position_coverage_fig
```


12.5.1 Final starting position coverage

```
# Compute manual labels for geom_signif
stat.test <- final_data %>%
 wilcox_test(unique_start_positions_coverage ~ proportion) %>%
 adjust_pvalue(method = "bonferroni") %>%
 add significance() %>%
  add_xy_position(x="proportion",step.increase=1)
stat.test$label <- mapply(p_label,stat.test$p.adj)</pre>
unique_start_positions_coverage_final_fig <- ggplot(</pre>
   final_data,
    aes(
      x=proportion,
      y=unique_start_positions_coverage,
      fill=proportion
    )
 ) +
  geom_flat_violin(
    position = position nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
 ) +
  geom_point(
    mapping=aes(color=proportion),
   position = position_jitter(width = .15),
   size = .5,
    alpha = 0.8
  ) +
  geom_boxplot(
    width = .1,
    outlier.shape = NA,
    alpha = 0.5
 ) +
  scale_y_continuous(
    name="Activation position coverage",
   limits=c(0, 1.0)
  scale x discrete(
   name="Down-sampling rate"
  scale_fill_brewer(
   name="Down-sampling rate",
   palette=cb_palette
  ) +
 scale_color_brewer(
```

```
name="Down-sampling rate",
  palette=cb_palette
) +
theme(
  legend.position="none"
)
unique_start_positions_coverage_final_fig
```


·y.	group1	group2	n1	n2	statistic	p	p.adj	p.adj.signif	y.positio
unique_start_positions_coverage	1	0.5	50	50	2500.0	0.000	0	****	0.74
unique_start_positions_coverage	1	0.2	50	50	2471.0	0.000	0	****	1.12
unique_start_positions_coverage	1	0.1	50	50	2500.0	0.000	0	****	1.50
unique_start_positions_coverage	0.5	0.2	50	50	348.5	0.000	0	****	1.89
unique_start_positions_coverage	0.5	0.1	50	50	343.5	0.000	0	****	2.27
unique_start_positions_coverage	0.2	0.1	50	50	1372.5	0.397	1	ns	2.66

12.6 Manuscript figures

```
legend <- cowplot::get_legend(
   elite_ave_performance_fig +
      guides(
      color=guide_legend(nrow=1),
      fill=guide_legend(nrow=1)
    ) +</pre>
```

```
theme (
        legend.position = "bottom",
        legend.box="horizontal",
        legend.justification="center"
  )
grid <- plot_grid(</pre>
  elite_ave_performance_fig +
    ggtitle("Performance over time") +
    theme(legend.position="none"),
  elite_final_performance_fig +
    ggtitle("Final performance") +
    theme(),
  unique_start_position_coverage_fig +
    ggtitle("Activation position coverage over time") +
    theme(legend.position="none"),
 unique_start_positions_coverage_final_fig +
    ggtitle("Final activation position coverage") +
    theme(),
 nrow=2,
 ncol=2,
 rel_widths=c(3,2),
 labels="auto"
grid <- plot_grid(</pre>
 grid,
 legend,
 nrow=2,
 ncol=1,
 rel_heights=c(1, 0.1)
save_plot(
 paste(working_directory, "imgs/down-sampled-pop-size-panel.pdf", sep=""),
 grid,
 base_width=12,
 base_height=8
grid
```


116CHAPTER 12. DOWN-SAMPLED LEXICASE WITH INCREASED POPULATION SIZE

Chapter 13

Cohort lexicase with increased population size

13.1 Overview

```
# Relative location of data.
working_directory <- "experiments/2021-06-14-cohort-pop-size/analysis/"
# working_directory <- "./"

# Settings for visualization
cb_palette <- "Set2"
# Create directory to dump plots
dir.create(paste0(working_directory, "imgs"), showWarnings=FALSE)</pre>
```

13.2 Analysis dependencies

```
library(ggplot2)
library(tidyverse)
library(knitr)
library(cowplot)
library(viridis)
library(RColorBrewer)
library(rstatix)
library(ggsignif)
library(Hmisc)
source("https://gist.githubusercontent.com/benmarwick/2a1bb0133ff568cbe28d/raw/fb53bd97121f7f9ce9
```

These analyses were conducted in the following computing environment:

```
print(version)
##
## platform
                 x86_64-pc-linux-gnu
## arch
                 x86_64
## os
                 linux-gnu
## system
                 x86_64, linux-gnu
## status
## major
## minor
                 1.0
## year
                2021
                05
## month
## day
                 18
                80317
## svn rev
## language
                R
## version.string R version 4.1.0 (2021-05-18)
## nickname
                 Camp Pontanezen
```

13.3 Setup

```
data_loc <- pasteO(working_directory, "data/timeseries.csv")
data <- read.csv(data_loc, na.strings="NONE")

data$cardinality <- as.factor(
    data$OBJECTIVE_CNT
)
data$selection_name <- as.factor(
    data$selection_name
)

data$epsilon <- as.factor(
    data$LEX_EPS
)

data$proportion <- factor(
    data$COH_LEX_PROP,
    levels=c(1, 0.5, 0.2, 0.1, 0.05, 0.02, 0.01)
)

data$POP_SIZE <- factor(
    data$POP_SIZE
)</pre>
```

```
data <- filter(data, proportion %in% c(1, 0.5, 0.2, 0.1))
data$proportion <- factor(</pre>
  data$COH_LEX_PROP,
  levels=c(1, 0.5, 0.2, 0.1)
)
data$elite_trait_avg <-</pre>
  data$ele_agg_per / data$OBJECTIVE_CNT
data$unique_start_positions_coverage <-</pre>
  data$uni_str_pos / data$OBJECTIVE_CNT
final_data <- filter(data, evaluations==max(data$evaluations))</pre>
# Labeler for stats annotations
p_label <- function(p_value) {</pre>
  threshold = 0.0001
  if (p_value < threshold) {</pre>
    return(paste0("p < ", threshold))</pre>
  } else {
    return(paste0("p = ", p_value))
  }
}
# Significance threshold
alpha <- 0.05
###### misc ######
# Configure our default graphing theme
theme_set(theme_cowplot())
```

13.4 Exploration diagnostic performance

```
elite_ave_performance_fig <-
    ggplot(
    data,
    aes(
        x=gen,
        y=elite_trait_avg,
        color=proportion,
        fill=proportion
    )
) +</pre>
```

```
stat_summary(geom="line", fun=mean) +
  stat_summary(
    geom="ribbon",
    fun.data="mean_cl_boot",
    fun.args=list(conf.int=0.95),
    alpha=0.2,
    linetype=0
  ) +
  scale_y_continuous(
    name="Average trait performance",
    limits=c(0, 100)
 ) +
  scale_x_continuous(
    name="Generations"
  ) +
  scale_fill_brewer(
    name="Cohort size",
    palette=cb_palette
  ) +
  scale_color_brewer(
    name="Cohort size",
    palette=cb_palette
elite_ave_performance_fig
```


13.4.1 Final performance

```
# Compute manual labels for geom_signif
stat.test <- final_data %>%
 wilcox_test(elite_trait_avg ~ proportion) %>%
  adjust_pvalue(method = "bonferroni") %>%
  add_significance() %>%
  add_xy_position(x="proportion",step.increase=1)
stat.test$label <- mapply(p_label,stat.test$p.adj)</pre>
elite_final_performance_fig <- ggplot(</pre>
    final_data,
    aes(x=proportion, y=elite_trait_avg, fill=proportion)
 ) +
  geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
  ) +
  geom_point(
    mapping=aes(color=proportion),
    position = position_jitter(width = .15),
    size = .5,
    alpha = 0.8
  ) +
  geom_boxplot(
    width = .1,
    outlier.shape = NA,
    alpha = 0.5
  ) +
  scale_y_continuous(
    name="Average trait performance",
    limits=c(0, 100)
  ) +
  scale_x_discrete(
    name="Cohort size"
  scale_fill_brewer(
   name="Cohort size",
    palette=cb_palette
  scale color brewer(
   name="Cohort size",
   palette=cb_palette
  ) +
 theme(
```


·y.	group1	group2	n1	n2	statistic	p	p.adj	p.adj.signif	y.posit
elite_trait_avg	1	0.5	50	50	1102	3.09e-01	1.00e+00	ns	114.0
elite_trait_avg	1	0.2	50	50	1905	6.40e-06	3.85e-05	****	133.4
elite_trait_avg	1	0.1	50	50	2478	0.00e+00	0.00e+00	****	152.8
elite_trait_avg	0.5	0.2	50	50	2012	2.00e-07	9.00e-07	****	172.2
elite_trait_avg	0.5	0.1	50	50	2500	0.00e+00	0.00e+00	****	191.7
elite_trait_avg	0.2	0.1	50	50	2478	0.00e+00	0.00e+00	****	211.1

13.5 Unique starting positions

```
unique_start_position_coverage_fig <- ggplot(
    data,
    aes(
        x=gen,
        y=unique_start_positions_coverage,
        color=proportion,
        fill=proportion
    )
) +
stat_summary(geom="line", fun=mean) +</pre>
```

```
stat_summary(
    geom="ribbon",
    fun.data="mean_cl_boot",
    fun.args=list(conf.int=0.95),
    alpha=0.2,
    linetype=0
  ) +
  scale_y_continuous(
    name="Activation position coverage",
    limits=c(0.0, 1.0)
  ) +
  scale_x_continuous(
    name="Generations"
  ) +
  scale_fill_brewer(
    name="Cohort size",
    palette=cb_palette
  ) +
  scale_color_brewer(
    name="Cohort size",
    palette=cb_palette
{\tt unique\_start\_position\_coverage\_fig}
```


13.5.1 Final starting position coverage

```
# Compute manual labels for geom_signif
stat.test <- final_data %>%
 wilcox_test(unique_start_positions_coverage ~ proportion) %>%
 adjust_pvalue(method = "bonferroni") %>%
 add significance() %>%
  add_xy_position(x="proportion",step.increase=1)
stat.test$label <- mapply(p_label,stat.test$p.adj)</pre>
unique_start_positions_coverage_final_fig <- ggplot(</pre>
   final_data,
    aes(
      x=proportion,
      y=unique_start_positions_coverage,
      fill=proportion
    )
 ) +
  geom_flat_violin(
    position = position_nudge(x = .2, y = 0),
    alpha = .8,
    scale="width"
 ) +
  geom_point(
    mapping=aes(color=proportion),
   position = position_jitter(width = .15),
   size = .5,
    alpha = 0.8
  ) +
  geom_boxplot(
    width = .1,
    outlier.shape = NA,
    alpha = 0.5
  ) +
  scale_y_continuous(
    name="Activation position coverage",
   limits=c(0, 1.0)
  scale x discrete(
   name="Cohort size"
  scale_fill_brewer(
   name="Cohort size",
   palette=cb_palette
  ) +
 scale_color_brewer(
```

```
name="Cohort size",
  palette=cb_palette
) +
theme(
  legend.position="none"
)
unique_start_positions_coverage_final_fig
```


.y.	group1	group2	n1	n2	statistic	p	p.adj	p.adj.signif	y.
unique_start_positions_coverage	1	0.5	50	50	586.0	4.4e-06	2.66e-05	****	
unique_start_positions_coverage	1	0.2	50	50	51.5	0.0e+00	0.00e+00	****	
unique_start_positions_coverage	1	0.1	50	50	4.5	0.0e+00	0.00e+00	****	
unique_start_positions_coverage	0.5	0.2	50	50	150.5	0.0e+00	0.00e+00	****	
unique_start_positions_coverage	0.5	0.1	50	50	13.5	0.0e+00	0.00e+00	****	
unique_start_positions_coverage	0.2	0.1	50	50	334.0	0.0e+00	0.00e+00	****	

13.6 Manuscript figures

```
legend <- cowplot::get_legend(
   elite_ave_performance_fig +
      guides(
      color=guide_legend(nrow=1),
      fill=guide_legend(nrow=1)
    ) +</pre>
```

```
theme (
        legend.position = "bottom",
        legend.box="horizontal",
        legend.justification="center"
  )
grid <- plot_grid(</pre>
  elite_ave_performance_fig +
    ggtitle("Performance over time") +
    theme(legend.position="none"),
  elite_final_performance_fig +
    ggtitle("Final performance") +
    theme(),
  unique_start_position_coverage_fig +
    ggtitle("Activation position coverage over time") +
    theme(legend.position="none"),
 unique_start_positions_coverage_final_fig +
    ggtitle("Final activation position coverage") +
   theme(),
 nrow=2,
 ncol=2,
 rel_widths=c(3,2),
 labels="auto"
grid <- plot_grid(</pre>
 grid,
 legend,
 nrow=2,
 ncol=1,
 rel_heights=c(1, 0.1)
save_plot(
 paste(working_directory, "imgs/cohort-pop-size-panel.pdf", sep=""),
 grid,
 base_width=12,
 base_height=8
grid
```


128CHAPTER 13. COHORT LEXICASE WITH INCREASED POPULATION SIZE

Bibliography

Lalejini, A. M. and Hernandez, J. G. (2021). Data for measuring the ability of lexicase selection to find obscure pathways to optimality.