Consider the circuit on the left. You are not given the values of V_S , I_S , R_1 , R_2 or R_3 .

You are told the value of current i_1 if V_1 is attached to this circuit, with A connected to A' and B connected to B'.

You are also told the value of current i_2 if V_2 is attached, with A connected to A" and B connected to B". However, in this case, the independent sources were first turned off (i.e., $V_S = 0$ and $I_S = 0$).

Your task is to find V_x if current source I_1 is connected to the original circuit (i.e., with the independent sources V_S and I_S not turned off), with A connected to A''' and B connected to B'''.

Represent the left circuit as its Thevenin equivalent circuit

When A - A', B - B'

when $A \rightarrow A''$, $B \rightarrow B''$ and $V_s = G$, $I_s = G$

$$R_{1h} = \frac{V_2}{i_2} = \frac{10}{5} = 2D -$$

$$V_{Th} = 15 - 602$$

when A → A", B → B"

