```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import norm
from sklearn.preprocessing import StandardScaler
from scipy import stats
import warnings
warnings.filterwarnings('ignore')
```

df=pd.read_excel("/content/drive/MyDrive/sample_-_superstore.xls") df.head()

₹		Row ID	Order ID	Order Date	Ship Date	Ship Mode	Customer ID	Customer Name	Segment	Country	Cit
	0	1	CA- 2016- 152156	2016- 11-08	2016- 11-11	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderso
	1	2	CA- 2016- 152156	2016- 11-08	2016- 11-11	Second Class	CG- 12520	Claire Gute	Consumer	United States	Henderso
	2	3	CA- 2016- 138688	2016- 06-12	2016- 06-16	Second Class	DV- 13045	Darrin Van Huff	Corporate	United States	Lc Angele
	3	4	US- 2015- 108966	2015- 10-11	2015- 10-18	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fo Lauderdal
	4	5	US- 2015- 108966	2015- 10-11	2015- 10-18	Standard Class	SO- 20335	Sean O'Donnell	Consumer	United States	Fo Lauderdal
	5 rows × 21 columns										

df.shape

→ (9994, 21)

df.info()

<<class 'pandas.core.frame.DataFrame'> RangeIndex: 9994 entries, 0 to 9993 Data columns (total 21 columns):

```
#
           Column
                                           Non-Null Count Dtype
___
          ____
                                              _____
        Row ID
                                          9994 non-null int64
  a
 0 Row ID 9994 non-null int64
1 Order ID 9994 non-null object
2 Order Date 9994 non-null datetime64[ns]
3 Ship Date 9994 non-null datetime64[ns]
4 Ship Mode 9994 non-null object
 4 Ship Mode 9994 non-null object Customer ID 9994 non-null object 6 Customer Name 9994 non-null object 7 Segment 9994 non-null object 8 Country 9994 non-null object 9 City 9994 non-null object 10 State 9994 non-null object 11 Postal Code 9994 non-null int64 12 Region 9994 non-null object 13 Product ID 9994 non-null object 14 Category 9994 non-null object 15 Sub-Category 9994 non-null object 15 Sub-Category 9994 non-null object
  15 Sub-Category 9994 non-null object
  16 Product Name 9994 non-null object
 17 Sales 9994 non-null float64
18 Quantity 9994 non-null int64
19 Discount 9994 non-null float64
20 Profit 9994 non-null float64
dtypes: datetime64[ns](2), float64(3), int64(3), object(13)
memory usage: 1.6+ MB
```

- 1. Top 3 Selling Categories by Total Units Problem: Given a CSV with Category, Sales, find top
- 1. What is the total profit made in each region?

3 categories by total units sold.

df.describe()

→ *		Row ID	Order Date	Ship Date	Postal Code	Sales
	count	9994.000000	9994	9994	9994.000000	9994.000000 99
	mean	4997.500000	2016-04-30 00:07:12.259355648	2016-05-03 23:06:58.571142912	55190.379428	229.858001
	min	1.000000	2014-01-03 00:00:00	2014-01-07 00:00:00	1040.000000	0.444000
	25%	2499.250000	2015-05-23 00:00:00	2015-05-27 00:00:00	23223.000000	17.280000
	50%	4997.500000	2016-06-26 00:00:00	2016-06-29 00:00:00	56430.500000	54.490000
	75%	7495 750000	2017-05-14	2017-05-18	90008 000000	209 940000

Insights:

**Sales Mean = ₹229.86, but max = ₹22,638 → huge spread

Std Dev = ₹623 → high variation

Right-skewed (mean > median)

** Profit Negative min profit: -₹6599 → some orders lead to major losses!

High std deviation → unstable profitability

** Discount Max = 0.8 → 80% discounts exist!

Median = 20%, but 25% of orders have 0% discount

There is high variability in profit values.

min = -6599.97, max = 8399.97, mean = 28.6, std = 234.26

Some orders even incur losses as large as ₹6599, while others reach profits of ₹8399. Despite a positive average, the business needs to investigate loss-making orders.

Histograms to See Distributions

```
sns.histplot(df['Sales'],bins=50)
plt.title("Distribution of Sales")
plt.show()
```


Insight from Distribution of Sales

** The sales distribution is highly right-skewed, with most orders having low sales values (below ₹1000), and a few very high-value sales going up to ₹22,000.

- ** This suggests that the company relies heavily on a large volume of small sales.
- ** Recommendation: Focus on increasing average order value or encouraging upselling in low-ticket items.

```
sns.histplot(df['Profit'],bins = 50)
plt.title("Distribution of Profit")
plt.show()
```


Insight from Distribution of Profit

- **The profit distribution appears centered around 0, but has a long tail on both the loss and gain side. Many orders fall near zero profit, and a noticeable number of transactions show negative profit, going as low as ₹-6599.
- ** This indicates that the business is experiencing both profitable and loss-making orders.
- ** Recommendation: Identify the loss-making products or regions, especially where discounts are high, to reduce the negative profit margin.

```
sns.boxplot(x=df['Profit'])
plt.title("Outliers in Profit")
plt.show()
```


sns.boxplot(x=df['Discount'])
plt.title("Outliers in Discount")
plt.show()

df.isnull().sum()

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

There is no null values in data

Profit

Use Grouping to Summarize

0

```
region_profit=df.groupby('Region')['Profit'].sum().reset_index()
region_profit
```


Insights:

" West " and " East " Regions are generate the highest profits compare to " South and Central".while central is poor region performance.

CITIES With Highest Loss

Insight:

The City "Philadelphia" is most loss making Location, which may be due to low sales volume or deep discounts, Investigating this city can help over all reduces.

Double-click (or enter) to edit

```
top3=df.groupby('Category')['Sales'].sum().nlargest(3)
top3
```


Double-click (or enter) to edit

Explore Correlation

```
sns.scatterplot(data=df,x="Discount",y="Profit")
plt.title("Discount vs Profit")
plt.show()
```


Insights:

A Scatter Plot negtive trend between discount and profit as the discount increases, the profit trends to decrease.

Many orders with discount 40% in losses, the highest profit observed no discounts.

This suggests that aggressive discounting may be hurting profitability. The business should reevaluate high-discount strategies, especially for categories where discounts do not drive profitable sales.

```
df['Order Date']=pd.to_datetime(df['Order Date'])
df['Month'] = df['Order Date'].dt.month
df['Year'] = df['Order Date'].dt.year
df.groupby('Month')['Profit'].sum().plot(kind='bar')
```


The monthly sales trend shows a significant peak in December, followed by high sales in September and November.

This pattern suggests that Q4 (October to December) is the most profitable quarter, likely due to holiday season, year-end purchases, and promotional campaigns.

The business should consider strategically increasing marketing and inventory in these months to maximize revenue

The data shows that [month/quarter] has the highest [sales/profit/volume], while [other months] are comparatively lower.

This indicates [seasonal behavior / customer pattern], possibly driven by [reason like holidays, festivals, etc.].

The business should [plan promotions / stock inventory / run offers] during this period to optimize performance.

Segment Analysis

Which customer segment is most profitable? Bonus: What actions would you recommend based on this?

df.groupby('Segment')['Profit'].sum().nlargest()

Sub-Category Loss

Which sub-category consistently shows negative profit, even if sales are good?

The Consumer segment is the most profitable, contributing over ₹1.34 lakh in total profit.

The business should continue to target consumers with personalized offers and consider cross-selling within this group.

State-Level Insight Identify top 3 states by total profit and bottom 3 by total loss.

```
total_profit_state_smallest=df.groupby('State')['Profit'].sum().nsmallest()
total profit state smallest
```

5/25, 6	:00 PM	
₹		Profit
	State	
	Texas	-25729.3563
	Ohio	-16971.3766
	Pennsylvania	-15559.9603
	Illinois	-12607.8870
	North Carolina	-7490.9122
	4	_
	_profit_state_ _profit_state_	

groupby('State')['Profit'].sum().nlargest()

Ship Mode Impact

Analyze if Ship Mode affects delivery time or profit.

ship_mode_profit=df.groupby('Ship Mode')['Profit'].sum() ship_mode_profit

Customer Insights

Are repeat customers buying more often, or just once? (Hint: Count Customer ID frequency)

100 rows × 1 columns

CJ-12010

Time Series + Strategy

20

```
df['Order Date'] = pd.to_datetime(df['Order Date'])
df['Month'] = df['Order Date'].dt.month
df['Year'] = df['Order Date'].dt.year
monthly_sales = df.groupby(['Year' , 'Month'])['Sales'].sum()
monthly_sales.plot()
```

