Alessandro Pedone

Politecnico di Milano

24 settembre 2024

Indice

- 1 Introduzione
- 2 Versione invariante
- 3 Esempi
- 4 Versioni alternative
- 5 Applicazioni

Sofya Vasilyevna Kovalevskaya (1850-1891)

Diamo per nota la figura storica di Augustin-Louis Cauchy. Kovalevskaya è stata:

- una matematica russa allieva di Weierstrass
- la **pima donna** a conseguire un dottorato (3 tesi risalenti al 1875) e a ottenere una cattedra in Europa (in matematica)

- Una biografia accurata: Little Sparrow: A Portrait of Sophia Kovalevsky (1983), Don H. Kennedy
- Un racconto breve: Too Much Happiness (2009), Alice Munro

Introduzione

E' possibile che esista una soluzione analitica a un sistema di EDP qualsiasi?

Introduzione

La risposta a questa domanda sarà affermativa, per questo ci poniamo già delle altre:

- sotto quali ipotesi?
- la soluzione a questo sistema è unica?
- la soluzione dipende in modo continuo dai dati?
- quali conseguenze hanno risultati ottenuti?

Introduzione

Introduzione

0000000

Prima di entrare nel merito della discussione è necessario introdurre il concetto di superficie caratteristica per un'equazione (strettamente legato al metodo delle caratteristiche).

Caso equazione lineare

Disegno

Significato (Evans): se assegnamo delle condizioni iniziali su una superficie non caratteristica sarà possibile calcolare tutte le derivate sulle superficie seguendo un ragionamento induttivo.

Introduzione

Background

Introduzione

in quegli anni ci si concentrava sullo studio delle funzioni analitiche grazie al lavoro di Cauchy 1835-42 (analisi complessa), da qui segue quello di Kovalevskaya 70-74 l'esistenza e l'unicità di soluzioni locali (analitche/olomorfe) di equazioni differenziali ordinarie (che abbrevieremo con EDO da qui in poi) e di sistemi lineari del primo ordine, sfruttando il metodo dei maggioranti

Metodo dei maggioranti

Introduzione

Si basa sul teorema che garantisce che se $g_{\alpha} \geq |f_{\alpha}|$ e la serie con g_{α} come coefficienti converge allora lo fa anche la quella con coefficienti f_{α}

Schema dell'approccio

Seguendo l'ordine cronologico di scoperta procediamo per generalizzazioni successive

- versione di base per EDO
- versione per EDP quasi-lineari
- generalizzazione per EDP non lineari

Introduzione

Teorema di unicità $f: A \times B \to \mathbb{C}^n$ olomorfa (A, B aperti)

$$\begin{cases} y' = f(x, y) & \forall x \in \Omega \\ y(x_0) = y_0 \end{cases}$$
 (1)

Se la soluzione esiste è unica

Teorema di esistenza locale con stima del raggio

Sketch della dimostrazione

EDP quasi-lineari

Introduzione

Forma particolare del sistema di interesse

- si osserva come i coefficienti di una serie di potenze che risolve l'equazione devono essere dei polinomi a coefficienti non negativi
- $2 A_i^* >> A_i, B^* >> B \implies u^* >> u$
- 3 si scelgono A_i^* , B^* in modo tale da poter calcolare esplicitamente una soluzione analitica con il metodo delle caratteristiche

EDP non lineari

Forma particolare del sistema di interesse

EDP non lineari

Introduzione

Trasformazione nel sistema quasi-lineare precedente (che è il grande merito di Kovalevskaya)

Esempio di Lewy

Introduzione

Importanza della richiesta di analiticità

generalizzazione esempio di Lewy, enunciato

Ipotesi
$$A \subseteq \mathbb{R}^3$$
 aperto

otesi
$$A \subseteq \mathbb{R}^3$$
 aperto
$$\exists F \in C^\infty(\mathbb{R}^3,\mathbb{R}) : \nexists u \in C^1(A,\mathbb{R}) \text{ tale che } \begin{cases} Lu = u_x, u_y \\ la \text{ conditions} \end{cases}$$

- 1 traslare il problema del teorema precedente in modo da ricondursi al caso di un generico punto (x_0, y_0, t_0) , usando come forzante la funzione $g(x, y, t) = f(t 2xy_0 + 2x_0y)$;
- 2 costruire con una serie una funzione $S_a \in C^{\infty}$ per ogni $a \in I^{\infty}$;
- 3 costruire degli insiemi $E_{j,n} \subseteq I^{\infty}$ chiusi e senza parte interna sfruttando S_a e il teorema di Ascoli-Arzelà;
- 4 concludere la dimostrazione del nuovo teorema utilizzando i lemmi appena citati per ricavare, con un ragionamento per assurdo, l'uguaglianza $I^{\infty} = \bigcup E_{j,n}$, grazie alla quale si può applicare l'argomento di Baire.

Esempio di Kovalevskaya

Introduzione

Importanza superfici non caratteristiche

Esempio di Hadamard

Introduzione

Nessuna garanzia della stabilità della soluzione

Versioni alternative

•00000

Introduzione

Enunciato, può essere visto come corollario di un teorema più astratto.

Versione astratta

Introduzione

Premessa

$$E_s = H(\overline{\mathcal{O}_s}; \mathbb{C}^m)$$

con $s \in [0, 1]$, costante C

Dimostrazione esistenza

000000

Versioni "olomorfe"

Introduzione

Si può rifare tutto con *t* variabile complessa e i teoremi non cambiano. Lo stesso vale anche per la versione invariante normale.

Le conseguenze di questo teorema si osservano in vari campi, tra cui i principali sono:

- teoria delle equazioni differenziali
- fisica matematica, dove ha fatto emergere numerose domande (cosa succede nella realtà quando esiste una soluzione analitica locale?)
- geometria differenziale
- teoria economica

Impatto sulla teoria delle equazioni differenziali:

- confutare la congettura di Weierstrass (ogni funzione è
- teorema di Holmgren
- Treves e Nierenberg per la ricerca di condizioni necessarie e/o sufficienti per l'esistenza di soluzioni locali
- Hormander la teoria degli operatori differenziali lineari (con particolare attenzione alla condizioni necessarie)

Teorema di Holmgren

Introduzione

Enunciato astratto, si dimostra utilizzando la versione astratta di CK

Enunciato concreto

Sketch della dimostrazione

Teorema di Cartan-Kahler

Per quanto riguarda geometria differenziale e teoria economica abbiamo un risultato che seguire dal teorema di CK Enunciato e applicazione al campo economico

Nonostante la ricerca in questo ambito condotta in quegli anni

- non fosse guidata da applicazioni immediate
- portò a risultati deludenti rispetto alle aspettative di Cauchy e Weierstrass

ha avuto un impatto gigantesco grazie alla comprensione delle soluzioni di sistemi di EDP che ci ha permesso di raggiungere.

Era una vita – gli costava dirlo, come ebbe ad ammettere, perché si era sempre guardato dagli eccessivi entusiasmi –, era una vita che aspettava di veder entrare nel suo studio un allievo del genere. Un allievo in grado di lanciargli una sfida assoluta, di non seguire soltanto il percorso spericolato della sua mente, ma se possibile di spiccare un volo più alto.

— Alice Munro, Too Much Happiness

