Algorithms and Datastructures

Lecture 10

Manfred Jaeger

Graphs

Graphs and Networks everywhere:

Road Network

2/25

The mathematical model for connected entities:

directed

undirected

A **Graph** is a pair (V, E) where

- ▶ $V = \{v_1, ..., v_n\}$ is a set of nodes (a.k.a. vertices).
- ightharpoonup E is a set of ordered pairs (v_i, v_j) of vertices (**directed** graph), or unordered sets $\{v_i, v_j\}$ of vertices (**undirected** graph)
- ▶ Undirected graphs contain no self loops (edges (v, v))

A graph is weighted if there also is a function

$$w: E \to \mathbb{R}$$

Cycles

Path: Sequence of nodes $\langle v_0, \dots, v_k \rangle$ so that $(v_i, v_{i+1}) \in E$ $(i = 0, \dots, k-1)$.

Simple Cycle: Path with $v_0 = v_k$, and all vertices v_1, \ldots, v_k are distinct. For undirected graphs: k > 3.

Trees

Tree (a): Undirected graph without simple cycles

Rooted Tree (b): Tree with distinguished Root node

Directed Tree (c): Directed graph with distinguished *Root* node R, so that every node $v \in V$ is reachable from R by a unique path.

A Graph ADT

Data: graph data (V, E)

Operations

Name	Specification
void addNode(v)	adds new node v to V
void addEdge(v, w)	adds new edge (v, w) (or $\{v, w\}$) to E
void removeNode(v)	remove node v from V
void removeEdge(v, w)	remove edge (v, w) (or $\{v, w\}$) from E
list(Nodes) allNodes()	returns a list of all nodes in V
list(Nodes) neighbors(v)	returns a list of all nodes w with $(v, w) \in E$ $(\{v, w\} \in E)$
boolean testEdge(v, w)	returns true if $(v, w) \in E(\{v, w\} \in E)$

Not necessarily a complete list (Graph ADT does not have a generally accepted, normative definition, like Stack, Queue ...)!

For weighted graphs also *get*, *set* operations for the weights.

- Nodes identified with indices 1,..., n
- ▶ Edge set E stored as an $n \times n$ -dimensional **adjacency matrix** A with

$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{if } (i,j) \notin E \end{cases}$$

For weighted graphs:

$$A[i,j] = \begin{cases} w(i,j) & \text{if } (i,j) \in E \\ nil & \text{if } (i,j) \notin E \end{cases}$$

(alternative: 0 for non-existing edges)

- Data stored in array of linked lists
- List elements contain identifier of (or pointer to) node
- ▶ Does not require that nodes possess integer identifiers 1, ..., n.

Call nodes **indexed**, if nodes $v \in V$ have attribute $v.index \in 1, ..., |V|$ (for adjacency matrix nodes need to be indexed).

		Adjacency List	
Operation	Adjacency Matrix	Indexed	Not Indexed
void addEdge(v, w) list(Nodes) allNodes() list(Nodes) neighbors(v) boolean testEdge(v, w)	O(1) O(1) O(V) O(1)	O(1) O(1) O(1) O(E)	O(V) O(1) O(V) O(V + E)

Space: Adjacency Matrix: $O(|V|^2)$; Adjacency List: O(|V| + |E|). (but matrix has much lower constant factor!).

Breadth-first Search

14

15

16

```
input: Graph G with source vertex
           s \in V
   output: Setting of node attributes
           color, d, and \pi.
   BFS(G, s)
 1 for each u \in G.allnodes() \ \{s\} do
       u.color = white
      \mu d = \infty
      u.\pi = nil
 s.color = gray
 6.5.d = 0
 7 S.\pi = nil
 8 Q = newQueue
 9 ENQUEUE(Q, s)
10 while Q \neq \emptyset do
       u = Dequeue(Q)
       for each v \in neighbors(u) do
12
          if v.color = white then
13
              v.color = gray
              v.d=u.d+1
              V.\pi = U
              ENQUEUE(Q, v)
       u.color = black
18
```

$$a \xrightarrow{b} g$$

14

15

16

```
input: Graph G with source vertex
           s \in V
   output: Setting of node attributes
           color, d, and \pi.
   BFS(G, s)
 1 for each u \in G.allnodes() \ \{s\} do
       u.color = white
      \mu d = \infty
      u.\pi = nil
 s.color = gray
 6.5.d = 0
 7 S.\pi = nil
 8 Q = newQueue
 9 ENQUEUE(Q, s)
10 while Q \neq \emptyset do
       u = Dequeue(Q)
       for each v \in neighbors(u) do
12
          if v.color = white then
13
              v.color = gray
              v.d=u.d+1
              V.\pi = U
              ENQUEUE(Q, v)
       u.color = black
18
```


14

15

16

17

```
input: Graph G with source vertex
           s \in V
   output: Setting of node attributes
           color, d, and \pi.
   BFS(G, s)
 1 for each u \in G.allnodes() \ \{s\} do
       u.color = white
      \mu d = \infty
      u.\pi = nil
 s.color = gray
 6.5.d = 0
 7 S.\pi = nil
 8 Q = newQueue
 9 ENQUEUE(Q, s)
10 while Q \neq \emptyset do
       u = Dequeue(Q)
       for each v \in neighbors(u) do
12
          if v.color = white then
13
              v.color = gray
              v.d=u.d+1
              V.\pi = U
              ENQUEUE(Q, v)
       u.color = black
18
```


а

12

13 14

15

16

17

```
input: Graph G with source vertex
           s \in V
   output: Setting of node attributes
           color, d, and \pi.
   BFS(G, s)
 1 for each u \in G.allnodes() \ \{s\} do
      u.color = white
      \mu d = \infty
      u.\pi = nil
s.color = gray
6.5.d = 0
7 S.\pi = nil
8 Q = newQueue
9 ENQUEUE(Q, s)
10 while Q \neq \emptyset do
      u = Dequeue(Q)
      for each v \in neighbors(u) do
          if v.color = white then
              v.color = gray
              v.d=u.d+1
              V.\pi = U
              ENQUEUE(Q, v)
      u.color = black
```


12

13 14

15

16

17

```
input: Graph G with source vertex
           s \in V
   output: Setting of node attributes
           color, d, and \pi.
   BFS(G, s)
 1 for each u \in G.allnodes() \ \{s\} do
      u.color = white
      \mu d = \infty
      u.\pi = nil
s.color = gray
6.5.d = 0
7 S.\pi = nil
8 Q = newQueue
9 ENQUEUE(Q, s)
10 while Q \neq \emptyset do
      u = Dequeue(Q)
      for each v \in neighbors(u) do
          if v.color = white then
              v.color = gray
              v.d=u.d+1
              V.\pi = U
              ENQUEUE(Q, v)
      u.color = black
```


12

13 14

15

16

17

```
input: Graph G with source vertex
           s \in V
   output: Setting of node attributes
           color, d, and \pi.
   BFS(G, s)
 1 for each u \in G.allnodes() \ \{s\} do
      u.color = white
      \mu d = \infty
      u.\pi = nil
s.color = gray
6.5.d = 0
7 S.\pi = nil
8 Q = newQueue
9 ENQUEUE(Q, s)
10 while Q \neq \emptyset do
      u = Dequeue(Q)
      for each v \in neighbors(u) do
          if v.color = white then
              v.color = gray
              v.d=u.d+1
              V.\pi = U
              ENQUEUE(Q, v)
      u.color = black
```


12

13 14

15

16

17

```
input: Graph G with source vertex
           s \in V
   output: Setting of node attributes
           color, d, and \pi.
   BFS(G, s)
 1 for each u \in G.allnodes() \ \{s\} do
      u.color = white
    u.d = \infty
      u.\pi = nil
s.color = gray
6.5.d = 0
7 S.\pi = nil
8 Q = newQueue
9 ENQUEUE(Q, s)
10 while Q \neq \emptyset do
      u = Dequeue(Q)
      for each v \in neighbors(u) do
          if v.color = white then
              v.color = gray
              v.d=u.d+1
              V.\pi = U
              ENQUEUE(Q, v)
      u.color = black
```


12

13 14

15

16

17

```
input: Graph G with source vertex
           s \in V
   output: Setting of node attributes
           color, d, and \pi.
   BFS(G, s)
 1 for each u \in G.allnodes() \ \{s\} do
      u.color = white
    u.d = \infty
      u.\pi = nil
s.color = gray
6.5.d = 0
7 S.\pi = nil
8 Q = newQueue
9 ENQUEUE(Q, s)
10 while Q \neq \emptyset do
      u = Dequeue(Q)
      for each v \in neighbors(u) do
          if v.color = white then
              v.color = gray
              v.d=u.d+1
              V.\pi = U
              ENQUEUE(Q, v)
      u.color = black
```


12

13 14

15

16

17

```
input: Graph G with source vertex
           s \in V
   output: Setting of node attributes
           color, d, and \pi.
   BFS(G, s)
 1 for each u \in G.allnodes() \ \{s\} do
      u.color = white
    u.d = \infty
      u.\pi = nil
s.color = gray
6.5.d = 0
7 S.\pi = nil
8 Q = newQueue
9 ENQUEUE(Q, s)
10 while Q \neq \emptyset do
      u = Dequeue(Q)
      for each v \in neighbors(u) do
          if v.color = white then
              v.color = gray
              v.d=u.d+1
              V.\pi = U
              ENQUEUE(Q, v)
      u.color = black
```


12

13 14

15

16

17

```
input: Graph G with source vertex
           s \in V
   output: Setting of node attributes
           color, d, and \pi.
   BFS(G, s)
 1 for each u \in G.allnodes() \ \{s\} do
      u.color = white
    u.d = \infty
      u.\pi = nil
s.color = gray
6.5.d = 0
7 S.\pi = nil
8 Q = newQueue
9 ENQUEUE(Q, s)
10 while Q \neq \emptyset do
      u = Dequeue(Q)
      for each v \in neighbors(u) do
          if v.color = white then
              v.color = gray
              v.d=u.d+1
              V.\pi = U
              ENQUEUE(Q, v)
      u.color = black
```


12

13 14

15

16

17

18

```
input: Graph G with source vertex
           s \in V
   output: Setting of node attributes
           color, d, and \pi.
   BFS(G, s)
 1 for each u \in G.allnodes() \ \{s\} do
      u.color = white
    u.d = \infty
      u.\pi = nil
s.color = gray
6.5.d = 0
7 S.\pi = nil
8 Q = newQueue
9 ENQUEUE(Q, s)
10 while Q \neq \emptyset do
      u = Dequeue(Q)
      for each v \in neighbors(u) do
          if v.color = white then
              v.color = gray
              v.d=u.d+1
              V.\pi = U
              ENQUEUE(Q, v)
      u.color = black
```


Q:

```
BFS(G, s)
 1 for each u \in G.allnodes() \ \{s\} do
      u.color = white
   u.d = \infty
   \mu \pi = nil
 s.color = gray
 6 s.d = 0
 7 s.\pi = nil
 Q = newQueue
 9 ENQUEUE(Q, s)
10 while Q \neq \emptyset do
      u = Dequeue(Q)
11
      for each v \in neighbors(u) do
12
          if v.color = white then
13
              v.color = gray
14
              v.d=u.d+1
15
              v.\pi = u
16
              ENQUEUE(Q, v)
17
      u.color = black
18
```

Aggregate Analysis

Analysing loops: Instead of bounding the time for each single loop iteration, and summing over all iterations:

 directly bound the total time spent on all loop iterations

BFS Analysis

Total time spent:

- ► lines 10,11: O(|V|) (each node is enqueued/dequeued at most once).
- ▶ lines 13-17: O(|E|) (each edge is processed once (directed graph), or twice (undirected graph)).
- ► line 12: O(|V|) if computation of neighbors(u) is O(1), $O(|V|^2)$ if neighbors(u) is O(|V|).

Total time O(|V| + |E|) if neighbors(u) computable in O(1), otherwise $O(|V|^2)$.

Shortest Path

For unweighted graph G: shortest path distance $\delta(s, v)$ from s to v is the minimum number of edges on paths from s to v (∞ if no path exists).

Shortest Paths from BFS

After termination of BFS(G, s):

- ▶ for all $v \in V$: $v.d = \delta(s, v)$
- for all v with $v.d \neq \infty$: a shortest path from s to v is given by backward-tracing the π pointers from v to s

Depth-first Search

- 1 **for** each $u \in G$.allnodes() **do** 2 u.color = white 3 u. $\pi = nil$
- 4 time = 0
 - s for each $u \in G$.allnodes() do
- if u.color = white then
- 7 DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 time = time + 1
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- $V.\pi = U$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

Snapshots at line 4 of DFS-VISIT. Nodes marked with u.d/u.f:

- 1 **for** each $u \in G$.allnodes() **do** 2 u.color = white
- $u.\pi = nil$
- 4 time = 0
 - for each $u \in G$.allnodes() do
- 6 if u.color = white then
- 7 DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 time = time + 1
- 2 u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- 6 $V.\pi = U$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

Snapshots at line 4 of DFS-VISIT. Nodes marked with u.d/u.f:

 π edge

- 1 for each $u \in G$.allnodes() do 2 u.color = white
 - $u.\pi = nil$
- 4 time = 0
 - for each $u \in G$.allnodes() do
- 6 **if** *u.color* = *white* **then**
- DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 time = time + 1
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- $v.\pi = u$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

Snapshots at line 4 of DFS-VISIT. Nodes marked with u.d/u.f:

 π edge

- 1 **for** each $u \in G$.allnodes() **do** 2 u.color = white 3 u. $\pi = nil$
- 4 time = 05 **for** $each u \in G.allnodes()$ **do**
- if u.color = white then DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 $\overline{time = time + 1}$
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- 6 $V.\pi = U$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

Snapshots at line 4 of DFS-VISIT. Nodes marked with u.d/u.f:

 π edge next $v \in neighbors(u)$

- 1 **for** each $u \in G$.allnodes() **do** 2 u.color = white 3 u. $\pi = nil$
- $u.\pi = IIII$
- 4 time = 0
 - for each $u \in G$.allnodes() do
- 6 if u.color = white then
- DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 $\overline{time = time + 1}$
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- $v.\pi = u$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

Snapshots at line 4 of DFS-VISIT. Nodes marked with u.d/u.f:

 π edge

- 1 for each $u \in G$.allnodes() do 2 u.color = white
- $u.\pi = nil$
- 4 time = 0
 - for each $u \in G$.allnodes() do
- 6 if u.color = white then
- σ DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 time = time + 1
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- 6 $V.\pi = U$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

Snapshots at line 4 of DFS-VISIT. Nodes marked with u.d/u.f:

- 1 for each u ∈ G.allnodes() do
 2 u.color = white
- 3 $u.\pi = nil$
- 4 time = 0
- **for** each $u \in G$.allnodes() **do**
- 6 if u.color = white then
- σ DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 time = time + 1
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- 6 $V.\pi = U$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

Snapshots at line 4 of DFS-VISIT. Nodes marked with u.d/u.f:

 π edge

- 1 **for** each $u \in G$.allnodes() **do** 2 u.color = white
- 3 $u.\pi = nil$
- 4 time = 0
- for each $u \in G$.allnodes() do
- 6 if u.color = white then
- σ DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 time = time + 1
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- 6 $V.\pi = U$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

Snapshots at line 4 of DFS-VISIT. Nodes marked with u.d/u.f:

 π edge

- 1 **for** each $u \in G$.allnodes() **do** 2 u.color = white
- $u.\pi = nil$
- 4 time = 0
 - for each $u \in G$.allnodes() do
- 6 if u.color = white then
- σ DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 time = time + 1
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- $v.\pi = u$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

Snapshots at line 4 of DFS-VISIT. Nodes marked with u.d/u.f:

 π edge

- 1 **for** each $u \in G$.allnodes() **do** 2 u.color = white
- $u.\pi = nil$
- 4 time = 0
- for each $u \in G$.allnodes() do
- 6 if u.color = white then
- DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 time = time + 1
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- $V.\pi = U$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

Snapshots at line 4 of DFS-VISIT. Nodes marked with u.d/u.f:

- 1 **for** each $u \in G$.allnodes() **do** 2 u.color = white 3 u. $\pi = nil$
- 4 time = 0
- 5 for each u ∈ G.allnodes() do
 6 if u.color = white then
- if u.color = white then DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 $\overline{time = time + 1}$
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- if v.color=white then $v.\pi = U$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

Snapshots at line 4 of DFS-VISIT. Nodes marked with u.d/u.f:

- 1 **for** each $u \in G$.allnodes() **do** 2 u.color = white
- $u.\pi = nil$
- 4 time = 0
 - for each $u \in G$.allnodes() do
- 6 if u.color = white then
- DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 time = time + 1
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- 6 $V.\pi = U$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

Snapshots at line 4 of DFS-VISIT. Nodes marked with u.d/u.f:

 π edge

- 1 **for** each $u \in G$.allnodes() **do** 2 u.color = white
- $u.\pi = nil$
- 4 time = 0
- for each $u \in G$.allnodes() do
- 6 if u.color = white then
- DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 time = time + 1
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- 6 $V.\pi = U$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

- 1 **for** each $u \in G$.allnodes() **do** 2 u.color = white
- $u.\pi = nil$
- 4 time = 0
- for each $u \in G$.allnodes() do
- 6 if u.color = white then
- σ DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 time = time + 1
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- 6 $V.\pi = U$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

- 1 **for** each $u \in G$.allnodes() **do** 2 u.color = white
- $u.\pi = nil$
- 4 time = 0
- for each $u \in G$.allnodes() do
- 6 if u.color = white then
- DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 time = time + 1
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- 6 $V.\pi = U$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

- 1 for each $u \in G$.allnodes() do 2 u.color = white
 - $u.\pi = nil$
- 4 time = 0
- for each $u \in G$.allnodes() do
- 6 if u.color = white then
- DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 time = time + 1
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- $v.\pi = u$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time


```
1 for each u \in G.allnodes() do
2 u.color = white
3 u.\pi = nil
```

4 time = 05 **for** $each u \in G.allnodes()$ **do**

if u.color = white thenThe DFS-VISIT(G, u)

DIS-VISIT(G,u)

$\mathsf{DFS}\text{-}\mathsf{Visit}(G,u)$

1
$$\overline{time = time + 1}$$

$$u.d = time$$

$$u.color = gray$$

4 for each $v \in neighbors(u)$ do

if v.color=white then $v \pi = u$

7 DFS-VISIT
$$(G, v)$$

9
$$time = time + 1$$

10 u.f = time

- 1 **for** each $u \in G$.allnodes() **do** 2 u.color = white
- $u.\pi = nil$
- 4 time = 0
- for each $u \in G$.allnodes() do
- 6 if u.color = white then
- DFS-VISIT(G, u)

$\mathsf{DFS}\text{-}\mathsf{Visit}(G,u)$

- 1 time = time + 1
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- 6 $V.\pi = U$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

- 1 **for** each $u \in G$.allnodes() **do** 2 u.color = white
- $u.\pi = nil$
- 4 time = 0
- for each $u \in G$.allnodes() do
- 6 if u.color = white then
- DFS-VISIT(G, u)

DFS-VISIT(G, u)

- 1 time = time + 1
- u.d = time
- u.color = gray
- 4 for each $v \in neighbors(u)$ do
- 5 if v.color=white then
- $v.\pi = u$
- 7 DFS-VISIT(G, v)
- 8 u.color = black
- 9 time = time + 1
- 10 u.f = time

Similar aggregate analysis as for BFS:

- ▶ O(|V| + |E|) if neighbors(u) computable in O(1)
- ▶ $O(|V|^2)$ if neighbors(u) computable in O(|V|)

The π -edges define a set of rooted trees (a forest):

Right: tree structure with nodes spanning time interval [v.d, v.f]

 Γ The exact structure depends on the order in which nodes are enumerated in allnodes() and neighbors(u).

► Tree edges (v.color = white in line 5)

- ► Tree edges (v.color = white in line 5)
- ► Forward Edges: Edges inside one tree, leading from ancestor to descendant (v.color = black in line 5)

- ► Tree edges (v.color = white in line 5)
- Forward Edges: Edges inside one tree, leading from ancestor to descendant (v.color = black in line 5)
- ► Back Edges: Edges inside one tree, leading from descendant to ancestor (*v.color* = *gray* in line 5)

- ► Tree edges (v.color = white in line 5)
- Forward Edges: Edges inside one tree, leading from ancestor to descendant (v.color = black in line 5)
- ▶ Back Edges: Edges inside one tree, leading from descendant to ancestor (v.color = gray in line 5)
- ► Cross Edges: All other edges (v.color = black in line 5)

It is classification is determined by the node orderings in allnodes() and neighbors(u); not describing inherent edge properties.

Directed Acyclic Graphs (DAG)

Directed Graph without any cycles:

Typical Application: nodes represent tasks/events, edges temporal or logistic precedence

DAG Test by DFS

A directed graph is acyclic if and only if a DFS does not produce any Back edges (no gray nodes encountered in line 4)

Typical Application: determine whether set of tasks is feasible

Topological Sort

A topological sort of a DAG is an ordering of the vertices, so that

$$(u, v) \in E \Rightarrow u < v$$

Nodes labelled with index in a topological sort:

Typical application: construct a feasible schedule to carry out all tasks.

Topological Sort and DFS Finishing Times

The finishing times *v.f* computed by DFS on a <u>DAG</u> define a reverse topological sort.

Example: Nodes with finishing times and index in topological sort:

Definition

A strongly connected component (SCC) of G is maximal subgraph C of G, such that for all $u, v \in C$ there exists a path from u to v.

Example: graph with its SCCs shown in color :

For every directed graph *G* there is a unique partitioning into SCCs.

The **Component Graph** of the directed graph G = (V, E) is the graph

- whose nodes are the SCCs C_1, \ldots, C_k of G, and
- ▶ there is an edge (C_i, C_j) if and only if there are nodes $u \in C_i$ and $v \in C_j$ with $(u, v) \in E$

The Component Graph is a DAG!

DFS Trees and SCCs

- ▶ All nodes from SCC will be contained in a single tree constructed by DFS
- ▶ But: a single tree may contain nodes from several SCCs

Goal: apply DFS such that the DFS trees are exactly the SCCs.

Transpose Graph

The transpose G^T of a graph G = (V, E) is the graph with the same vertex set V as G, and all edges reversed, i.e. G^T has the edge set

$$E^{T} = \{(u, v) \mid (v, u) \in E\}$$

 \square G and G^T have the same SCCs.

- Step 1: Perform a standard DFS to compute finishing times *v.f* for all vertices
- Step 2: Turn G into G^T .
- Step 3: Perform a DFS on G^T , where in the top-level loop nodes are processed in decreasing order of their v.f values
- Step 4: Return the trees obtained in the second DFS

Step 1: Perform a standard DFS to compute finishing times *v.f* for all vertices

Step 1: Perform a standard DFS to compute finishing times *v.f* for all vertices

 Finishing times computed (top loop first started at A, then B; edges processed in clockwise order)

Step 1: Perform a standard DFS to compute finishing times *v.f* for all vertices

- Finishing times computed (top loop first started at A, then B; edges processed in clockwise order)
- ▶ SCCs C labeled with $f(C) = max_{u \in C} u.f$

Step 1: Perform a standard DFS to compute finishing times *v.f* for all vertices

- Finishing times computed (top loop first started at A, then B; edges processed in clockwise order)
- ▶ SCCs C labeled with $f(C) = max_{u \in C} u.f$

If there is an edge (C, C') in the component graph, then f(C) > f(C').

Step 2: Turn G into G^T .

Only the reversal of the edges between different SCCs matters!

Step 2: Turn G into G^T .

Only the reversal of the edges between different SCCs matters!

Step 3: Perform a DFS on G^T , where in the top-level loop nodes are processed in decreasing order of their v.f values

Step 3: Perform a DFS on G^T , where in the top-level loop nodes are processed in decreasing order of their v.f values

The first node processed in the top-level loop belongs to a SCC whose nodes do not have any descendants in other SCCs

Step 3: Perform a DFS on G^T , where in the top-level loop nodes are processed in decreasing order of their v.f values

- The first node processed in the top-level loop belongs to a SCC whose nodes do not have any descendants in other SCCs
- ▶ → the first DFS tree consists of the nodes of that component

Step 3: Perform a DFS on G^T , where in the top-level loop nodes are processed in decreasing order of their v.f values

- The first node processed in the top-level loop belongs to a SCC whose nodes do not have any descendants in other SCCs
- ▶ → the first DFS tree consists of the nodes of that component
- The second node processed in the top-level loop belongs to a SCC whose nodes can only have black descendants in other SCCs

Step 3: Perform a DFS on G^T , where in the top-level loop nodes are processed in decreasing order of their v.f values

- The first node processed in the top-level loop belongs to a SCC whose nodes do not have any descendants in other SCCs
- ▶ → the first DFS tree consists of the nodes of that component
- The second node processed in the top-level loop belongs to a SCC whose nodes can only have black descendants in other SCCs
- ▶ → the second DFS tree consists of the nodes of that component

Step 3: Perform a DFS on G^T , where in the top-level loop nodes are processed in decreasing order of their v.f values

- The first node processed in the top-level loop belongs to a SCC whose nodes do not have any descendants in other SCCs
- ▶ → the first DFS tree consists of the nodes of that component
- The second node processed in the top-level loop belongs to a SCC whose nodes can only have black descendants in other SCCs
- ▶ → the second DFS tree consists of the nodes of that component
- ...etc

