Math 55a, Fall 2004

Eighth Assignment, Solutions Adapted from Andrew Cotton and George Lee

Problem 1.

Note: There are two possible definitions of "subring-with-unit." The usual notion says that D is a subring-with-unit of a ring $(R,+,\cdot)$ if $D \subset F$ and $(D,+|_D,\cdot|_D)$ is a ring with same multiplicative identity as R. Alternatively, one can say that D is a subring-with-unit of a ring R if it is isomorphic as a ring-with-unit to some D' which is a subring-with-unit of R in the usual sense. There is little difference between the two definitions; we use both in this solution at the sacrifice of some rigor but at the benefit of avoiding excessive notation.

Recall that in an integral domain (or in a field), addition and multiplication are commutative; and for $a, b, c \in D$, if ac = bc then $(a - b)c = 0 \implies a = b$ or c = 0. Also, in this proof given a set S, we write $S^* = S - \{0\}$.

(a)

• If K is a field with multiplicative inverse ν containing D as a subring-with-unit, then it is a quotient field of D iff $K = \{a \cdot \nu(b) \mid a, b \in D \times D^*\}.$

Since K contains D as a subring-with-unit, its additive and multiplicative identities 0 and 1 are the same as the identities in D.

For $(a, b), (c, d) \in D \times D^*$, we have

$$a \cdot \nu(b) + c \cdot \nu(d) = (ad + bc) \cdot \nu(bd),$$

$$-a \cdot \nu(b) = (-a) \cdot \nu(b),$$

$$a\nu(b) \cdot c\nu(d) = (ac) \cdot \nu(bd),$$

$$\nu(a \cdot \nu(b)) = b \cdot \nu(a),$$

$$1 \cdot \nu(1) = 1.$$

Thus $K' = \{a \cdot \nu(b) \mid (a,b) \in D \times D^*\}$ is a subfield of K. And for each $d \in D$, K' also contains $d \cdot \nu(1) = d$ so it contains D as a subring-with-unit. So if K is a quotient field, K' cannot be a *proper* subfield and we must have K = K'.

Conversely, suppose $K = \{a \cdot \nu(b) \mid (a,b) \in D \times D^*\}$. If K' is a subfield of K containing D as a subring-with-unit, it is closed under multiplication and the multiplicative inverse; so it must contain $\{a \cdot \nu(b) \mid (a,b) \in D \times D^*\} = K$. Thus no proper subfield of K can contain D as a subring-with-unit, and K is a quotient field of D.

• Any two quotient fields of D are isomorphic.

Suppose we have two quotient fields K_1 and K_2 of D, where \cdot and ν_1 represent multiplication and the multiplicative inverse in K_1 ; and \times and ν_2 represent multiplication and the multiplicative inverse in K_2 . From before, we know that $K_1 = \{a \cdot \nu_1(b) \mid (a,b) \in D \times D^*\}$ and that $K_2 = \{a \times \nu_2(b) \mid (a,b) \in D \times D^*\}$. Also, since D is a subring of both fields, $a \cdot b = a \times b$ for all $a, b \in D$.

Now consider the function $\phi: K_1 \to K_2$ defined by $\phi(a \cdot \nu_1(b)) = a \times \nu_2(b)$. ϕ is well-defined and injective because for $(a, b), (a', b') \in D \times D^*$,

$$a \cdot \nu_1(b) = a' \cdot \nu_1(b')$$

$$\iff a \cdot \nu_1(b) \cdot b \cdot b' = a' \cdot \nu_1(b') \cdot b' \cdot b$$

$$\iff a \cdot b' = a' \cdot b$$

$$\iff a \times b' = a' \times b$$

$$\iff a \times b' \times \nu_2(b') \times \nu_2(b) = a' \times b \times \nu_2(b) \times \nu_2(b')$$

$$\iff a \times \nu_2(b) = a' \times \nu_2(b').$$

It is also surjective since every element of K_2 can be written in the form $a \times \nu_2(b)$ for $(a, b) \in D \times D^*$; thus, ϕ is a bijective map.

Finally, ϕ is a homomorphism because it preserves addition and multiplication:

$$\phi(a \cdot \nu_1(b) + c \cdot \nu_1(d)) = \phi((ad + bc) \cdot \nu_1(bd))$$

$$= (ad + bc) \times \nu_2(bd)$$

$$= a \times \nu_2(b) + c \times \nu_2(b)$$

$$= \phi(a \cdot \nu_1(b)) + \phi(c \cdot \nu_1(d))$$

and

$$\phi((a \cdot \nu_1(b)) \cdot (c \cdot \nu_1(d))) = \phi((ac) \cdot \nu_1(bd))$$

$$= (ac) \times \nu_2(bd)$$

$$= (a \times \nu_2(b)) \times (c \times \nu_2(d))$$

$$= \phi(a \cdot \nu_1(b)) \times \phi(c \cdot \nu_1(d)).$$

Thus ϕ is an isomorphism between the quotient fields, as desired.

• A quotient field of D exists.

Define the relation \sim on $D \times D^*$ as follows: $(a, b) \sim (c, d) \iff ad = cb$. Observe that

$$(a,b) \sim (a,b);$$

$$(a,b) \sim (c,d) \iff ad = cb \iff cb = ad \iff (c,d) \sim (a,b); \text{ and}$$

$$(a,b) \sim (c,d), (c,d) \sim (e,f) \implies ad = cb, cf = ed$$

$$\implies \begin{cases} \text{ (if } c = 0) & ad = ed = 0 \implies a = e = 0 \\ \text{ (if } c \neq 0) & (ad)(cf) = (cb)(ed) \implies (af)(cd) = (eb)(cd) \end{cases}$$

$$\implies af = eb \implies (a,b) \sim (e,f),$$

so \sim is an equivalence relation.

Define $K = (D \times D^*)/\sim$, where $\frac{a}{b}$ is the equivalence class containing (a,b). We define addition and multiplication in K as follows in the left column.

$$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}, \qquad (ab_1)d^2 + bb_1cd = (ba_1)d^2 + bb_1cd \Longrightarrow (ad+bc)(b_1d) = (bd)(a_1d+b_1c)$$

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}. \qquad (ab_1)cd = (ba_1)cd \Longrightarrow (ac)(b_1d) = (bd)(a_1c)$$

The column on the right shows that these operations are well-defined for different representatives $(a, b), (a_1, b_1) \in D \times D^*$ of the same equivalence class (and by the same logic, for different representatives of $\frac{c}{d}$). And all the resulting "fractions" are in K because bd and b_1d are nonzero as long as b, b_1, d are.

Because addition and multiplication are closed, associative, and commutative in D and D^* , it's easily seen that they are also closed, associative, and commutative in K. The distributive property in K also follows easily. It's also clear that $\frac{0}{1}$ and $\frac{1}{1}$ are additive and multiplicative identities. Because $\frac{0}{1} = \frac{0}{c}$ and $\frac{1}{1} = \frac{c}{c}$ for all c inD^* , we see that $\frac{-a}{b}$ is an additive inverse of $\frac{a}{b} \in K$ and that $\frac{b}{a}$ is a multiplicative inverse of $\frac{a}{b} \in K^*$. Therefore $(K, +, \cdot)$ satisfies the axioms for a field.

Consider the map $\varphi: D \to K$ defined by $d \mapsto \frac{d}{1}$. This map is a homomorphism because $\frac{a}{1} + \frac{b}{1} = \frac{a+b}{1}$ and $\frac{a}{1} \cdot \frac{b}{1} = \frac{ab}{1}$; also, it maps the multiplicative identity in D to the multiplicative identity in K. Hence, φ is a homomorphism of rings-with-unit, and $D' = \varphi(D)$ is a subring-with-unit of K (in the usual sense). For $d \neq 0$, $\frac{d}{1} \neq \frac{0}{1}$, so $\varphi: D \to \varphi(D)$ is actually an *isomorphism* of rings-with-unit. Therefore, D is a subring-with-unit of K (in the modified sense).

And since $K = \{r \cdot \nu(s) \mid r, s \in R \times R^*\}$, from our first claim it is a quotient field. Thus K is a quotient field of R, or equivalently, D.

- (b) Construct the quotient field K of $D=\mathbb{Z}$ as in part (a), and consider the map $\Phi:\mathbb{Q}\to K$ defined by $\frac{a}{b}\mapsto \frac{a}{b}$ for $(a,b)\in\mathbb{Z}\times\mathbb{Z}^*$. (What suggestive notation!) Because $\frac{a}{b}=\frac{c}{d}$ in \mathbb{Q} iff ad=bc, Φ is well-defined. Because $\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}$ and $\frac{a}{b}\cdot\frac{c}{d}=\frac{ac}{bd}$ in both \mathbb{Q} and K, Φ is a field homomorphism. Finally, nonzero elements of \mathbb{Q} are mapped to nonzero elements of K, implying that Φ must actually be an isomorphism. Hence $\mathbb{Q}\cong K$, as desired.
- (c) The quotient field is the set of equivalence classes of "rational functions" $\frac{P}{Q}$ where $P,Q \in K[x]$, Q is nonzero. Without having to describe it in terms of equivalence classes, we could instead say the quotient field is the set of expressions $\frac{P}{Q}$ in "simplest terms": that is, where $P,Q \in K[x]$, Q is nonzero and monic, and P and Q share no common "nonconstant" (i.e., with degree less than one) polynomial divisor.

Problem 2.

(solution due to Gabriel Carroll, Andy Cotton, and George Lee)

Products \prod , sums \sum , and direct sums \bigoplus in this solution refer to products, sums, and direct sums taken over all $\alpha \in A$. Let (f_{α}) denote the element $f \in \prod \operatorname{Hom}(M_{\alpha}, N)$ whose α -coordinate is f_{α} . For $\beta \in A$, let p_{β} denote the projection from $\bigoplus M_{\alpha}$ to M_{β} . In addition, let $i_{\beta}: M_{\beta} \to \bigoplus M_{\alpha}$ be the map such that $i_{\beta}(m)$ has α -coordinate 0 for $\alpha \neq \beta$ and β -coordinate m. It is easy to verify that i_{β} and p_{β} are homomorphisms of N-modules. Also, for $x \in \bigoplus M_{\alpha}$ observe that $x = \sum i_{\alpha}(p_{\alpha}(x))$.

Define

$$\psi : \prod \operatorname{Hom}(M_{\alpha}, N) \to \operatorname{Hom}(\bigoplus M_{\alpha}, N),$$

$$f \mapsto \psi_f,$$

where if $f = (f_{\alpha})$ then $\psi_f(x) = \sum f_{\alpha}(p_{\alpha}(x))$ for all $x \in \bigoplus M_{\alpha}$. We claim this is an isomorphism. We must check four properties: (i) ψ is well-defined; (ii) ψ is injective; (iii) ψ is surjective; (iv) ψ is a homomorphism of N-modules.

(i) Fix $f = (f_{\alpha}) \in \prod \operatorname{Hom}(M_{\alpha}, N)$. For $x \in \bigoplus M_{\alpha}$, $p_{\beta}(x) \neq 0$ for finitely many $\beta \in A$, so $\sum f_{\alpha}(p_{\alpha}(x))$ is well-defined. However, we must verify that ψ_f is actually in $\operatorname{Hom}(\bigoplus M_{\alpha}, N)$. Indeed, suppose we have

 $r, s \in N$ and $x, y \in \bigoplus M_{\alpha}$. Because p_{α} and f_{α} are homomorphisms of N-modules for each $\alpha \in A$, we have

$$\psi_f(rx + sy) = \sum f_{\alpha}(p_{\alpha}(rx + sy))$$

$$= \sum f_{\alpha}(rp_{\alpha}(x) + sp_{\alpha}(y))$$

$$= \sum (rf_{\alpha}(p_{\alpha}(x)) + sf_{\alpha}(p_{\alpha}(y)))$$

$$= r \sum f_{\alpha}(p_{\alpha}(x)) + s \sum f_{\alpha}(p_{\alpha}(y))$$

$$= r\psi_f(x) + s\psi_f(y),$$

where we may separate the sums because $f_{\alpha}(p_{\alpha}(x))$ and $f_{\alpha}(p_{\alpha}(y))$ are nonzero for only finitely many $\alpha \in A$. Hence, ψ_f is indeed a homomorphism of N-modules.

(ii) Next we prove that ψ is injective. Suppose that $f = (f_{\alpha})$ and $g = (g_{\alpha})$ are elements in $\prod \operatorname{Hom}(M_{\alpha}, N)$ such that $\psi_f = \psi_g$. Then

$$f_{\alpha}(m) = \psi_f(m) = \psi_g(m) = g_{\alpha}(m).$$

But this is true for all $m \in M_{\alpha}$, so $f_{\alpha} = g_{\alpha}$. And this is true for all $\alpha \in A$, so we must have f = g, as desired.

(iii) Third, we prove ψ is surjective. Given any $\sigma \in \text{Hom}(\bigoplus M_{\alpha}, N)$, for each $\alpha \in A$ define $f_{\alpha} : M_{\alpha} \to N$ by $f_{\alpha} = \sigma \circ i_{\alpha}$. Because σ and i_{α} are both homomorphisms of N-modules, so is f_{α} . Writing $f = (f_{\alpha})$, for any $x \in \bigoplus M_{\alpha}$ we have

$$\psi_f(x) = \sum_{\alpha} f_{\alpha}(p_{\alpha}(x))$$

$$= \sum_{\alpha} \sigma(i_{\alpha}(p_{\alpha}(x)))$$

$$= \sigma(\sum_{\alpha} i_{\alpha}(p_{\alpha}(x))) \text{ since } \sigma \text{ preserves addition of finitely many nonzero terms}$$

$$= \sigma(x). \text{ from our initial observations}$$

Hence, $\psi_f = \sigma$, as needed.

(iv) Finally, we prove that ψ is a homomorphism of N-modules. Suppose we have $f = (f_{\alpha})$ and $g = (g_{\alpha})$ in $\prod \text{Hom}(M_{\alpha}, N)$, and scalars r and s in N. By the definition of addition and scalar multiplication in each $\text{Hom}(M_{\alpha}, N)$, we have $(rf_{\alpha} + sg_{\alpha})(m) = rf_{\alpha}(m) + sg_{\alpha}(m)$ for all $m \in M_{\alpha}$. Similarly, $(r\psi_f + s\psi_g)(x) = r\psi_f(x) + s\psi_g(x)$ for all $x \in \bigoplus M_{\alpha}$. Therefore, for all such x, we have

$$\psi_{rf+sg}(x) = \sum (rf_{\alpha} + sg_{\alpha})(p_{\alpha}(x))$$

$$= \sum (rf_{\alpha}(p_{\alpha}(x)) + sg_{\alpha}(p_{\alpha}(x)))$$

$$= r \sum f_{\alpha}(p_{\alpha}(x)) + s \sum g_{\alpha}(p_{\alpha}(x))$$

$$= r\psi_{f}(x) + s\psi_{g}(x)$$

$$= (r\psi_{f} + s\psi_{g})(x),$$

where again we may separate the sums because $f_{\alpha}(p_{\alpha}(x))$ and $g_{\alpha}(p_{\alpha}(x))$ are nonzero for only finitely many $\alpha \in A$. Hence ψ is indeed a homomorphism of N-modules. This completes the proof.