



Aug 27, 2021

# STRIP: Systematic Testing using Robotics and Innovation during Pandemics

Peter H L Krijger<sup>1</sup>, Tim A Hoek<sup>1</sup>, Sanne Boersma<sup>1</sup>, Lieke I P M Donders<sup>2</sup>, Maaike M C Broeders<sup>2</sup>, Mark Pieterse<sup>1</sup>, Pim W Toonen<sup>1</sup>, Ive Logister<sup>1</sup>, Bram M P Verhagen<sup>1</sup>, Marjon J A M Verstegen<sup>1</sup>, Thomas W van Ravesteyn<sup>1</sup>, Rene J T M Roymans<sup>2</sup>, Francesca Mattiroli<sup>1</sup>, Jo Vandesompele<sup>3</sup>, Monique Nijhuis<sup>4</sup>, Stefan Meijer<sup>5</sup>, Anton van Weert<sup>6</sup>, Edwin Dekker<sup>7</sup>, Fred J Dom<sup>8</sup>, Rob Ruijtenbeek<sup>9</sup>, Lieven B J van der Velden<sup>2</sup>, Jeroen H B van de Bovenkamp<sup>2</sup>, Martijn Bosch<sup>9</sup>, Wouter de Laat<sup>1</sup>, Marvin E Tanenbaum<sup>1</sup>

<sup>1</sup>Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.;

<sup>2</sup>Laboratory of Medical Microbiology, Stichting PAMM, Veldhoven, the Netherlands. InActiv Blue, Beernem, Belgium.;

<sup>3</sup>Biogazelle, Zwijnaarde, Belgium.; <sup>4</sup>Dept of Medical Microbiology, University Medical Center, Utrecht, the Netherlands.;

<sup>5</sup>Tecan labwerx, Tecan Trading AG, Männedorf, Switzerland.;

<sup>6</sup>National Screening Laboratory Sanquin, Sanquin Diagnostics, Amsterdam, the Netherlands.;

<sup>7</sup>Bodegro B.V., Breda, the Netherlands.; <sup>8</sup>HiFiBio Therapeutics, Saint-Jacques, France.;

<sup>9</sup>Department of Laboratory Automation, Genmab B.V., Utrecht, the Netherlands.



This collection is published without a DOI.

Peter Krijger

DISCLAIMER

J.V. is co-founder and CSO of InActiv Blue; S.M. is an employee of Tecan Trading AG; L.M.P.D., M.M.C.B., R.J.T.M.R., L.B.J.V. and J.H.B.B. are employees of Stichting PAMM Veldhoven; A.vW. is an employee of Sanquin;, E.D. is a founder and employee of Bodegro; and F.J.D. is CEO and co-founder HiFIBiO France.

## ABSTRACT

STRIP is a start-to-end streamlined and automated procedure for COVID-19 testing, centering on a single Tecan Fluent liquid-handling robot that can process over 14,000 samples per day. The sensitivity, specificity, and practical implementation of STRIP have been validated in a clinical study on 1128 individuals, meeting the standards set by the Dutch National Institute for Public Health and the Environment (Dutch CDC). Automation throughout the testing procedure dramatically reduces the workload of diagnostic laboratory personnel and potentially allows the placement of multiple STRIP liquid-handling robots per testing facility, further increasing testing capacity. The entire test procedure also requires only 3 pipet tips per sample, as well as reduced testing reagents due to process miniaturization, which is important given scarcity of testing consumables during the COVID-19 pandemic. Furthermore, STRIP is compatible with reagents from any supplier, and thus less sensitive to supply chain bottlenecks. Finally, the system is open and modular, facilitating adaptation of future developments in diagnostics. Overall, the system enabled substantial savings in personnel and reagents requirements compared with conventional diagnostic testing; when STRIP runs at full capacity, it is possible to rapidly recoup the initial outlay in the liquid-handling system from savings in personnel costs, reagents and materials.

### **COLLECTION CITATION**

Peter H L Krijger, Tim A Hoek, Sanne Boersma, Lieke I P M Donders, Maaike M C Broeders, Mark Pieterse, Pim W Toonen, Ive Logister, Bram M P Verhagen, Marjon J A M Verstegen, Thomas W van Ravesteyn, Rene J T M Roymans, Francesca Mattiroli, Jo Vandesompele, Monique Nijhuis, Stefan Meijer, Anton van Weert, Edwin Dekker, Fred J Dom, Rob Ruijtenbeek, Lieven B J van der Velden, Jeroen H B van de Bovenkamp, Martijn Bosch, Wouter de Laat, Marvin E Tanenbaum 2021. STRIP: Systematic Testing using Robotics and Innovation during Pandemics. **protocols.io** 

https://protocols.io/view/strip-systematic-testing-using-robotics-and-innova-bxiwpkfe

.

#### FUNDERS ACKNOWLEDGEMENT

Oncode Institute

Grant ID: STRIP

Foundation Friends of the Hubrecht Institute

Grant ID: STRIP

the Royal Dutch Academy of Sciences (KNAW)

Grant ID: STRIP

Health~Holland Top Sector Life Sciences & Health

Grant ID: STRIP

#### LICENSE

This is an open access collection distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Aug 20, 2021

LAST MODIFIED

Aug 27, 2021

COLLECTION INTEGER ID

52534

DISCLAIMER:

J.V. is co-founder and CSO of InActiv Blue; S.M. is an employee of Tecan Trading AG; L.M.P.D., M.M.C.B., R.J.T.M.R., L.B.J.V. and J.H.B.B. are employees of Stichting PAMM Veldhoven; A.vW. is an employee of Sanquin;, E.D. is a founder and employee of Bodegro; and F.J.D. is CEO and co-founder HiFIBiO France.

## ABSTRACT

STRIP is a start-to-end streamlined and automated procedure for COVID-19 testing, centering on a single Tecan Fluent liquid-handling robot that can process over 14,000 samples per day. The sensitivity, specificity, and practical implementation of STRIP have been validated in a clinical study on 1128 individuals, meeting the standards set by the Dutch National Institute for Public Health and the Environment (Dutch CDC). Automation throughout the testing procedure dramatically reduces the workload of diagnostic laboratory personnel and potentially allows the placement of multiple STRIP liquid-handling robots per testing facility, further increasing testing capacity. The entire test procedure also requires only 3 pipet tips per sample, as well as reduced testing reagents due to process miniaturization, which is important given scarcity of testing consumables during the COVID-19 pandemic. Furthermore, STRIP is compatible with reagents from any supplier, and thus less sensitive to supply chain bottlenecks. Finally, the system is open and modular, facilitating adaptation of future developments in diagnostics. Overall, the system enabled substantial savings in personnel and reagents requirements compared with conventional diagnostic testing; when STRIP runs at full capacity, it is possible to rapidly recoup the initial outlay in the liquid-handling system from savings in personnel costs, reagents and materials.

|   | Step 1: Swab sample collection  Version 1 by Peter Krijger        |
|---|-------------------------------------------------------------------|
|   | Step 2: RNA extraction and RT-qPCR  Version 1 by Peter Krijger    |
|   | Bead preparation protocol  Version 1 by Peter Krijger             |
| B | Multiplex SARS-CoV-2 RT-qPCR protocol  Version 1 by Peter Krijger |