Behavioral realism in IAMs: vehicle choice case study

Kamila Krych, 09.03.2022

Improving the behavioral realism of global integrated assessment models: an application to consumers' vehicle choices

David L. McCollum^{a,b*}, Charlie Wilson^c, Hazel Pettifor^c, Kalai Ramea^d, Volker Krey^a, Keywan Riahi^{a,e}, Christoph Bertram^f, Zhenhong Lin^g, Oreane Y. Edelenbosch^h, Sei Fujisawa^{a,1}

Introduction

Energy use is influenced by behavioral features

Policy-relevance

Heterogeneity

Non-optimizing heuristics

Bounded rationality

Social influence

Non-monetary preferences

Infrastructure & context

Immediacy effects (discount rate)

Institutions

Behavioral realism in models today*

 A few energy-economy models incorporate heterogeneity, nonmonetary preferences etc. (Canadian CIMS, UK's BLUE model, French Res-IRF)

- Technology rich
- bottom-up
- inter-temporal optimization (MESSAGE, TIAM-UCL, DNE21+)
- → Discount rates

- Simulation models
- Limited temporal foresight
- Recursive-dynamic modeling (GCAM, IMAGE)
- → Multinomial logit functions

Behavioral realism in models today*

 A few energy-economy mo monetary preferences etc. (Continue of the property of th

- Technology rich
- bottom-up
- inter-temporal optimization (MESSAGE, TIAM-UCL, DNE21-
- → Discount rates

Vehicle choice – behavior is key!

Vehicle choice is influenced by behavioral features

Bounded rationality

Heterogeneity

Non-optimizing heuristics

Social influence

Non-monetary preferences

Infrastructure & context

Immediacy effects (discount rate)

Institutions

We shouldn't include it all

Behavioral Feature	Description	strength of evidence	tractable	policy lever	impact
Heterogeneous preferences	Adoption propensity	high-medium	maybe	maybe	yes
	Driving practices	low	no	no	maybe
	Environmental concern	medium	maybe	no	yes
	Attitudes to vehicles	high-medium	maybe	no	less
Non-monetary preferences	Refueling network	high	yes	yes	yes
	CO2 emissions	high-medium	yes	yes	yes
	Range, battery time, warranties	high	yes	maybe	yes
	Vehicle range	high-medium	yes	no	yes
Social influences	Neighborhood effects	high	maybe	yes	yes
	Information transmission	high	maybe	maybe	yes
Contextual conditions	Refueling availability	high	maybe	yes	yes
	Refueling location	medium	maybe	yes	yes
	Incentives	high	yes	yes	yes

Methods

Case study in MESSAGE

- in particular "MESSAGE-Transport" with alternative fuel vehicles
 - ICE, HEVs, PHEVs, <u>FCVs</u>, <u>BEVs</u>
- Scenarios 2020-2100
- Goal: 600 ppm in 2100, 2.7 deg temp increase
- Uniform carbon price from 2020, growing 5%/year
- Behavioral aspect:
 - Step 1: Disaggregate demand
 - Step 2: Assess disutility costs (MA³T model)

Step 1: Disaggregate demand

Step 2: Assess disutility costs

Step 2: Assess disutility costs

Scenarios

1. Scenario "Homog NoBeh"

2. Scenario "Heterog NoBeh"

3. Scenario "Homog_LimBeh"

Results

Vehicle-km distribution until 2100

Vehicle-km distribution until 2100

Vehicle-km distribution until 2100

Carbon price increases

Conclusions

Behavior matters

- Including behavioral realism in IAMs:
 - Frontier of research for IAMs
 - Strongly alters results!
 - Allows to evaluate a wider set of policies
 - (price vs. non-price-based policy instruments)
- Disutility costs could decrease in time
- More "quantifiable" data needed

