Implicit neural representation learning for hyperspectral image super-resolution

Arxiv. 2112

Haneol Lee

4th April, 2022

Contribution

- We propose a novel HSI reconstruction model based on INR for mapping spatial coordinates to spectral radiance intensities, and the model builds a bridge between discrete pixels and continuous representation in spectral domain.
- The continuous function is <u>approximated by</u> a MLP, whose <u>parameters are predicted by a hypernetwork</u>. Besides, <u>periodic spatial encoding</u> projects the pixel coordinates into a higher dimensional space for <u>recovering</u> more high frequency details.
- Experiments on CAVE, NUS, and NTIRE2018 datasets verify the superiority of the model.

tumor

Discrete Representation

Continuous Possible Po

Introduction-Single image super-resolution

Super Resolution

[Single Image Super Resolution 예시]

Introduction-Single image super-resolution

[III-Posed Problem 예시]

[Single Image Super Resolution 문제 정의]

Introduction-Why Implicit Neural representation?

Goal: A generative model for 3D-aware image synthesis which allows us to ...

- Generate photorealistic images
- Control individual objects wrt. their pose, size, and position in 3D
- Control camera viewpoint in 3D
- Train from collections of unposed images

Introduction-NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Voxel Representation

Voxel Representation

3D Feature

Implicit Representation

 $\mathbf{c}(\mathbf{o}+t\mathbf{d},\mathbf{d})$

Pixel 값 = 한 Ray 위에 존재하는 point들의 RGB 값들의 Weighted Sum!

$$C(\mathbf{r}) = \int_{t_n}^{t_f} T(t)\sigma(\mathbf{r}(t))\mathbf{c}(\mathbf{r}(t),\mathbf{d})dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^t \sigma(\mathbf{r}(s))ds\right)$$

Introduction-NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Pinhole Camera Model

Neural Radiance Field

NeRF

Input Images

Optimize NeRF

Render new views

Introduction-Implicit Neural Representation

 $g_{ heta}$

Implicit Representation has the advantages.

- Continuous representation, multi-view consistent
- Lighter than voxel representation (memory consumption), high Image Fidelity
- Neural Radiance Field encodes a continuous volume within the deep neural network (MLP), whose input is a single 5D coordinate (x, y, z, θ, ϕ) and whose output is the volume density and view-dependent RGB color $(r, g, b, \sigma(density))$

Introduction-Hyperspectral Imaging

〈표 1〉 초분광 이미징 사용대역

분광 이미징 **Hyperspectral Imaging**

〈표 2〉 밴드수에 따른 분광 기술

			1			
	흑백	RGB	분광기	다분광	초분광	극초분광
공간정보	YES	YES	NO	YES	YES	YES
분광 밴드수	1	2	수십~수백	3~10	10~100	>1000
분광정보	NO	NO	YES	Limited	YES	YES
적용분야	밝기	컬러	고체/액체/가스	고체/액체 탐지	고체/액체 분석	고체/액체/가스 분 석
상용화정도	YES	YES	YES	YES	YES	Emerging

Introduction-HSI color

H (Hue) : 색상

S (Saturation): 채도

I (Intensity): 색상 강도

Methods

Fig. 2. Architecture overview. Our model first processes the input at hypernetwork to produce a tensor of weights and biases θ for MLP. Then the MLP computes the final output from the input $[X_p, \gamma(p)]$.

Methods – Model Formulation

• $X \in R^{W \times H \times 3}$: RGB image

ullet W, H : the width, height of an image X

ullet $c \in \{R,G,B\}$: RGB Color 3 channel

• $Y \in R^{W imes H imes L}$: ground truth HSI

• L(L>>3) : the number of spectral bands

• Λ : all spectral bands, set

$$L1 = \|Y - M(X)\|_{1}, \qquad (1)$$

$$Y(p) = \int_{\lambda_{1},...,\lambda_{L}} R(p,\lambda)d\lambda, \qquad (2)$$

$$X_{c}(p) = \int_{\Lambda} R(p,\lambda)\Phi_{c}(\lambda)d\lambda, \qquad (3)$$

$$X_{c}(p) = \sum_{n=1}^{L} R(p,\lambda_{n})\Phi_{c}(\lambda_{n}), \qquad (4)$$

Methods – Model Formulation

• $X \in R^{W \times H \times 3}$: RGB image

ullet W, H : the width, height of an image X

ullet $c \in \{R,G,B\}$: RGB Color 3 channel

• $Y \in R^{W imes H imes L}$: ground truth HSI

• L(L>>3) : the number of spectral bands

ullet Λ : all spectral bands, set

$$L1 = \|Y - M(X)\|_1, \qquad (1)$$

$$Y(p) = \int_{\lambda_1, \dots, \lambda_L} R(p, \lambda) d\lambda, (2)$$

$$X_c(p) = \int_{\Lambda} R(p,\lambda) \Phi_c(\lambda) d\lambda, (3)$$

$$X_c(p) = \sum_{1}^{L} R(p, \lambda_n) \Phi_c(\lambda_n), (4)$$

$$X_{c=R} = \int R(p,\lambda) \Phi_{c=R}(\lambda) d\lambda$$

$$X_{c=G} = \int R(p,\lambda) \Phi_{c=G}(\lambda) d\lambda$$

$$X_{c=B} = \int R(p,\lambda) \Phi_{c=B}(\lambda) d\lambda$$

Methods – Model Formulation

- • $X \in R^{W \times H \times 3}$: RGB image
- •W, H: the width, height of an image X
- • $c \in \{R, G, B\}$: RGB Color 3 channel
- $ullet Y \in R^{W imes H imes L}$: ground truth HSI corresponding to X
- L (L>>3) : the number of spectral bands in hyperspectral images
- Λ : all spectral bands, set

$$L1 = ||Y - M(X)||_1, \qquad (1)$$

$$Y(p) = \int_{\lambda_1, \dots, \lambda_L} R(p, \lambda) d\lambda, \qquad (2)$$

$$X_c(p) = \int_{\Lambda} R(p, \lambda) \Phi_c(\lambda) d\lambda, \qquad (3)$$

$$X_c(p) = \sum_{L} R(p, \lambda_n) \Phi_c(\lambda_n), \qquad (4)$$

 $X_{c=R} = \int R(p,\lambda) \Phi_{c=R}(\lambda) d\lambda$

 $X_{c=G} = \int R(p,\lambda) \Phi_{c=G}(\lambda) d\lambda$

 $X_{c=B} = \int R(p,\lambda) \Phi_{c=B}(\lambda) d\lambda$

Methods – Periodic Spatial Encoding

 $ullet X \in R^{W imes H imes 3}$: RGB image

ullet W, H : the width, height of an image X

ullet $c \in \{R,G,B\}$: RGB Color 3 channel

ullet $Y \in R^{W imes H imes L}$: ground truth HSI

• $L\left(L>>3\right)$: the number of spectral bands

• Λ : all spectral bands, set

ullet $\gamma_k(p)$: periodic spatial encoding from $_{R^2}$ to $_{R^4}$

$$(x,y) \in [0,1]^2 \qquad f: (x,y,X_p) \to Y(p)$$

$$\bigoplus_{\text{RGB } X(p)} \text{Periodic Spatial Encoding } p \to \gamma(p)$$

$$\downarrow \text{MLP}$$

$$\downarrow \text{HSI}$$

$$\uparrow \text{V}(p)$$

$$\downarrow \text{Hypernetwork}$$

$$\downarrow \text{H}(\cdot)$$

$$\downarrow \text{Parameters } \theta$$

$$f(X_p, p; \theta) = \hat{Y}(p), (5)$$

$$\theta = H(X), (6)$$

$$\gamma_k(p) = [\cos(2^k \pi x), \sin(2^k \pi x), \cos(2^k \pi y), \sin(2^k \pi y)].$$
 (7) :4 channel

$$\gamma(p) = [\gamma_0(p), \dots, \gamma_{N-1}(p)].$$
 (8) $R^{4N}(4N > 2)$:4N channel

$$f(X_p, \gamma(p); \theta) = \hat{Y}(p)$$
. (9) $R^2 \rightarrow R^{4N+3}$ X_p : 3 channel

Methods — Parametric Model of Implicit Neural Representation

• $X \in R^{W \times H \times 3}$: RGB image

ullet W, H : the width, height of an image ${\bf X}$

ullet $c \in \{R,G,B\}$: RGB Color 3 channel

• $Y \in R^{W imes H imes L}$: ground truth HSI

• $L\left(L>>3\right)$: the number of spectral bands

• Λ : all spectral bands, set

ullet $\gamma_k(p)$: periodic spatial encoding from $_{R^2}$ to $_{R^4}$

• $\theta = H(X)$

The model parameterization method enables realistic image output with consistency edge and detailed structures

$$\theta = [\theta_{cell_i}]_{i=1,...,S\times S}.$$

Methods

• $X \in R^{W \times H \times 3}$: RGB image

ullet W, H : the width, height of an image ${f X}$

ullet $c \in \{R,G,B\}$: RGB Color 3 channel

• $Y \in R^{W imes H imes L}$: ground truth HSI

• L(L>>3) : the number of spectral bands

• Λ : all spectral bands, set

ullet $\gamma_k(p)$: periodic spatial encoding from $_{R^2}$ to $_{R^4}$

• $\theta = H(X)$

$$\theta = \arg\min_{\theta} \sum_{p \in R^{W*H}} |f(X_p, \gamma(p); \theta) - Y(p)|, \qquad (11)$$

Experiments

Datasets

Evaluation Metric

- Cave
- NUS
- NTIRE2018

$$PSNR(Y, \hat{Y}) = 10log_{10}(\frac{max(Y)^{2}}{\frac{1}{W \times H} \|Y - \hat{Y}\|_{2}^{2}}).$$
 (12)

$$SSIM(Y, \hat{Y}) = \frac{(2\mu_Y \mu_{\hat{Y}} + c_1)(2\sigma_{Y\hat{Y}} + c_2)}{(\mu_Y^2 + \mu_{\hat{Y}}^2 + c_1)(\sigma_Y^2 + \sigma_{\hat{Y}}^2 + c_2)}, \quad (13)$$

$$SAM(Y, \hat{Y}) = \arccos \frac{\langle Y^T \hat{Y} \rangle}{\|Y\|_2 \cdot \|\hat{Y}\|_2}.$$
 (14)

Experiments

Datasets

Evaluation Metric

- Cave
- NUS
- NTIRE2018

$$PSNR(Y, \hat{Y}) = 10log_{10}(\frac{max(Y)^2}{\frac{1}{W \times H} \|Y - \hat{Y}\|_{2}^{2}}).$$
 (12)

$$l(A,B) = \frac{2\mu_A \mu_B + C_1}{\mu_A^2 + \mu_B^2 + C_2}$$

휘도를 비교 하기 위한 수식

$$c(A,B) = \frac{2\sigma_A \sigma_B + C_2}{\sigma_A^2 + \sigma_B^2 + C_2}$$

대비를 비교 하기 위한 수식

$$S(A,B) = \frac{\sigma_{AB} + C_3}{\sigma_A \sigma_B + C_3}$$

$$l(A,B) = \frac{2\mu_A\mu_B + C_1}{\mu_A^2 + \mu_B^2 + C_1} \qquad SSIM(Y,\hat{Y}) = \frac{(2\mu_Y\mu_{\hat{Y}} + c_1)(2\sigma_{Y\hat{Y}} + c_2)}{(\mu_Y^2 + \mu_{\hat{Y}}^2 + c_1)(\sigma_Y^2 + \sigma_{\hat{Y}}^2 + c_2)}, \qquad (13)$$

$$SAM(Y, \hat{Y}) = \arccos \frac{\langle Y^T Y \rangle}{\|Y\|_2 \cdot \|\hat{Y}\|_2}.$$
 (14)

구조 비교를 위한 식

$$SSIM(A, B) = l(A, B)c(A, B)s(A, B)$$

Experiments – CAVE Dataset

TABLE I
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON CAVE, NUS, AND NTIRE2018 DATASETS.

Model	CAVE		NUS			NTIRE2018			
Wiodei	PSNR	SSIM	SAM	PSNR	SSIM	SAM	PSNR	SSIM	SAM
CNN [51]	32.2165	0.9706	10.7111	25.5296	0.9238	9.4873	45.8232	0.9998	1.7232
UNET [52]	31.6973	0.9488	13.1052	25.0038	0.8872	10.0554	38.2989	0.9976	3.0454
HSCNN-R [53]	31.4676	0.9637	12.2081	25.1326	0.9213	9.5254	45.7062	0.9998	1.6455
Multi-scale CNN [54]	31.9298	0.9575	11.8746	25.1922	0.9219	9.5021	45.7752	0.9998	1.6938
PriNET [55]	32.8129	0.9733	10.0400	25.2622	0.9368	9.9859	46.2661	0.9999	1.5560
PriNET+ [35]	32.8300	0.9833	8.7750	26.2893	0.9405	8.9923	46.3500	0.9999	1.5316
INR(Ours)	34.6257	0.9781	7.3285	26.3431	0.9568	8.8187	46.0808	0.9999	1.5198

Experiments - NUS Dataset

Ablation Study

THE RECONSTRUCTION RESULTS ON DIFFERENT SIZES OF PARAMETER GRID.

S	#Ds layers	Params	PSNR	SSIM	SAM
S=2	5	64.9M	33.8938	0.9718	7.5979
S=4	4	64.9M	33.1491	0.9729	7.5561
S=8	3	64.8M	33.4025	0.9730	7.6563
S = 16	2	64.8M	33.8625	0.9702	7.5359

TABLE III
RECONSTRUCTION RESULTS ON DIFFERENT FREQUENCIES OF PERIODIC SPATIAL ENCODING.

Per. Spa. Enc.	S	PSNR	SSIM	SAM
w/o	S=16	32.6752	0.9669	8.3312
N=3	S = 16	34.0027	0.9747	7.7469
N=5	S = 16	34.6257	0.9781	7.3285

A&Q