Packet 4

Packet 4.1: Sections 16.1-16.4

16.1 Vector Fields

Definition 1. A vector field assigns a vector to each point in 2D or 3D space.

$$\vec{\overline{\mathbf{F}}} = \vec{\overline{\mathbf{F}}}(\vec{\mathbf{r}}) = \vec{\overline{\mathbf{F}}}(x,y) = \langle P(x,y), Q(x,y) \rangle = \langle P(\vec{\mathbf{r}}), Q(\vec{\mathbf{r}}) \rangle = \langle P, Q \rangle$$

$$\vec{\overline{\mathbf{F}}} = \vec{\overline{\mathbf{F}}}(\vec{\mathbf{r}}) = \vec{\overline{\mathbf{F}}}(x,y,z) = \langle P(x,y,z), Q(x,y,z), R(x,y,z) \rangle = \langle P(\vec{\mathbf{r}}), Q(\vec{\mathbf{r}}), R(\vec{\mathbf{r}}) \rangle = \langle P, Q, R \rangle$$

Problem 2. Sketch the vector field $\vec{\mathbf{F}} = \langle x + y, 2y \rangle$ for all $x \in \{0, 1, 2\}$ and $y \in \{0, 1, 2\}$.

Solution. \Diamond

Contributors.

Remark 3. The gradient vector function

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle$$

$$\nabla f(x, y, z) = \langle f_x(x, y, z), f_y(x, y, z), f_z(x, y, z) \rangle$$

is a vector field which yields normal vectors to the level surfaces of the function f.

Problem 4. Compute ∇f for the function $f(x,y) = x^2 - 2xy + y$, and then sketch the vector field ∇f all $x \in \{0,1,2\}$ and $y \in \{0,1,2\}$.

Solution.

Contributors.

16.2 Line Integrals

Theorem 5. Some vector functions which parameterize curves follow.

• A line segment beginning at P_0 and ending at P_1 :

$$\vec{\mathbf{r}}(t) = \overrightarrow{\mathbf{P_0}} + t\overrightarrow{\mathbf{P_0P_1}}, 0 \le t \le 1$$

• A circle centered at the origin with radius a:

$$\vec{\mathbf{r}}(t) = \langle a\cos t, a\sin t \rangle, 0 \le t \le 2\pi$$
 (full counter-clockwise rotation)

$$\vec{\mathbf{r}}(t) = \langle a \sin t, a \cos t \rangle, 0 \le t \le 2\pi$$
 (full clockwise rotation)

• A planar curve given by y = f(x) from (x_0, y_0) to (x_1, y_1)

$$\vec{\mathbf{r}}(t) = \langle t, f(t) \rangle, x_0 \le t \le x_1 \text{ (left-to-right)}$$

$$\vec{\mathbf{r}}(t) = \langle -t, f(-t) \rangle, -x_0 \le t \le -x_1 \text{ (right-to-left)}$$

Problem 6. Give a vector function which parameterizes the line segment from the point (0,3,-2) to the point (4,-1,0).

Solution.

Contributors.

Problem 7. Give a vector function which parameterizes the curve $y = x^3 - 2x$ from the point (1, -1) to the point (-1, 1).

Solution.

Contributors.

Problem 8. Give a vector function which parameterizes the curve $x^2 + y^2 = 9$ from the point (3,0) clockwise to the point (0,-3).

Solution.

Auburn University March 31, 2015

Contributors.

Definition 9. The line integral with respect to arclength of a function of many variables $f(\vec{\mathbf{r}})$ along a curve C is given by

$$\int_{C} f(\vec{\mathbf{r}}) ds = \lim_{n \to \infty} \sum_{i=1}^{n} f(\vec{\mathbf{r}}_{n,i}) \Delta s_{n,i}$$

where for each positive integer n we've defined a way to partition C into n pieces

$$\Delta C_{n,1}, \Delta C_{n,2}, \dots, \Delta C_{n,n}$$

where $\Delta C_{n,i}$ has length $\Delta s_{n,i}$, contains the position vector $\vec{\mathbf{r}}_{n,i}$, and

$$\lim_{n \to \infty} \max(\Delta s_{n,i}) = 0$$

Theorem 10. If $\vec{\mathbf{r}}(t)$ is a parametrization of C for $a \leq t \leq b$, then

$$\int_{C} f(\vec{\mathbf{r}}) ds = \int_{t=a}^{t=b} f(\vec{\mathbf{r}}(t)) \frac{ds}{dt} dt$$

Problem 11. Evaluate $\int_C z + 2xy \, ds$ where C is the line segment from (0, -1, 3) to (2, 2, -3).

Solution. \Diamond

Contributors.

Problem 12. Prove that $\int_C xy \, ds = \int_0^1 t^3 \sqrt{1+2t} \, dt$ where C is the parabolic arc on $y=x^2$ from (0,0) to (1,1).

Solution.

Contributors.

Definition 13. The line integral of a vector field $\vec{\mathbf{F}}$ over the curve C is given by

$$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{C} \vec{\mathbf{F}} \cdot \vec{\mathbf{T}} \, ds$$

where $\vec{\mathbf{T}}$ is the unit tangent vector to the curve C at the position vector $\vec{\mathbf{r}}_0$.

Definition 14. If $\vec{\mathbf{r}}(t)$ is a parametrization of C for $a \leq t \leq b$, then

$$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{t=a}^{t=b} \vec{\mathbf{F}} \cdot \frac{d\vec{\mathbf{r}}}{dt} dt$$