Designation	Species	Epitope	Western Blot	HC	FACS	Epitope sequence
29011	rabbit	Pro?	ХАХ	**S97	n.d.	IDELKECFLNOTDETLSNVE
3145	rabbit	Pro3	Yes	ves**	yes	ELLQEFIDDNATTNAIDELK
6A1	rabbit	Pro2-3	Yes	n.d.	, ou	TTNAIDELKECFLNQ
14A12	rabbit	Pro3	Yes	n.d.	yes	ELLQEFIDDNATTNAIDELK
6B12	rabbit	Pro3	Yes	n.d.	yes	ELLQEFIDDNATTNAIDELK
2D3	rabbit	Pro5	Yes	n.d.	yes	SQHCYAGSGCPLLENVISKTI
1608	rabbit	Pro3	Yes	n.d.	yes	ELLQEFIDDNATTNAIDELK
31-1H7	monse	n.d.	Yes	n.d.	yes	
197-1H11	mouse	Pro5	Yes	n.d.	ou 0	SQHCYAGSGCPLLENVISKTI
32-1611	mouse	n.d.	Yes	n.d.	yes	
304-1A5	monse	n.d.	Yes	n.d.	yes	
98-1F4	mouse	n.d.	Yes	n.d.	00	

Fig. 1A

pc.h.mam.6a1.cell-57.579.1.t7

CACCATGGAGACAGGCCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCA
GTCGCTGGAGGAGTCCGGCGGTCGCCTGGTAACGCCTGGAGGATCCCTGACACTCACCTGCAC
AGTCTCTGGAATCGACCTCAGTAGCTATGGAGTGGGCTGGGTCCGCCAGGCTCCAGGGAAGG
GGCTGGAATACATCGGAATCATTAGTAAAATTGATAACACATACTACGCGAACTGGGCGAAA
GGCCGATTCACCATCTCCAAAACCTCGTCGACCACGGTGGATCTGAAAATGACCCAGTCTGACA
ACCGAGGACACGGCCACCTATTTCTGTACCAGAGGGTCTTTTGATCCCTGGGGCCCAGGCACC
CTGGTCACCGTCTCCTCAGGGCAACCTAA

pc.h.mam.16d8.cell-22.394.1.t7

CACCATGGAGACAGGCCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCA
GTCGGTGGAGGAGTCCGGGGGTCGCCTGGTCACGCCTGGACACCCTGACACTCACCTGCAC
AGTCTCTGGATTCTCCCTCAGCAGCTACGACATGACCTGGGTCCGCCAGGCTCCAGGGAAGGG
GCTGGAATGGATCGGAACCATTAGTACTATTGGTAGCCCATTTTACGCGAGCTGGGCGAGAGGG
CCGATTCACCATCTCCAAAACCTCGACCACGGTGGATCTGAAAATCACCAATCCGACAACCGA
GGACACGGCCACGTATTTTTGCGGCAGATTTCGGATTGCTGGTGA TGGTGCCTTCTGGGGCCC
AGGCACGCTGGTCACCGTCTCCTCAGGGCAACCTAA

pc.h.mam.16d8.cell-21.393.2.t7

CACCATGGAGACAGGCCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCA
GTCGGTGGAGGAGTCCGGGGGTCGCCTGGTCACGCCTAGGACACCCCTGACACTCACCTGCAC
AGTCTCTGGATTCTCCCTCAGCAGCTACGACATGACCTGGGTCCGCCAGGCTCCAGGGAAGGG
GCTGGAATGGATCGGAACCATTAGTACTATTGGTAGCCCATTTTACGCGACCTGGGCGAGAGG
CCGATTCACCATCTCCAAAACCTCGACCACGGTGGATCTGAAAATCACCAATCCGACACCGA
GGACACGGCCACGTATTTTTGCGGCAGATTTCGGATTGCTGGTGATGGTGCCTTCTGGGGCCC
AGGCACGCTGGTCACCGTCTCCTCAGGGCAACCTAA

pc.h.mam.6b12.cell-19.339.4.t7

CACCATGGAGACAGGCCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCGGTGTCA
GTCGGTGGAGGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGAGATTCACCTGCAC
AGTCTCTGGAATCGACCTCAGCACCTACGACATGACCTGGGTCCGCCAGGCTCCAGGGAAGG
GACTGGAATGGATCGGAACCATTAGTACTCTTGGTACCCCTTTTTCCGCCCAATTGGGCGAGAG
GCCGATTCACCATCTCCAAGACCTCGACCACGGTGGATCTGAAAATCGCCAGTCCGACGACCG
AAGACACTGCCACATATTTTTGTGGCAGATTGCGGATTGCTCATGATGGTGCCTTCTGGGGCC
CAGGCACGCTGGTCACCGTCTCCTCAGGGCAACCTAA

pc.h.mam.2d3.cell-65.576.1.t7

CCCATGGAGACAGGCCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAG GAGCAGCTGAAGGAGTCCGGAGGAGGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTG CACAGTGTCTGGAATCGACCTCAATATCGATGCAATGAGCTGGGTCCGCCAGGCTCCAGGGA AGGGGCTGGAATGGATCGGAATTATTGGTACTCGTGGTGGCACATGGTTCGCGAGCTGGGCG AAAGGCCGATTCACCATCTCCAAAACCCCGACCACAGTGGATCTGAAAATCCCCAGTCCGAC AACCGAGGACACCGCCACCTATTTCTGTGCCAGTATCTATTCTGATAGTGGTACTTATACGAC

pc.h.mam.14a12.cell-3.333.1.t7

CACCATGGAGACAGGCCTGCGCTGGCTTCTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCA
GTCGGTGGAGGAGTCCGGGGGTCGCCTGGTCACGCCTGGGACACCCCTGACACTCACCTGCAC
CGTCTCTGGATTCTCCCTCAGCAGCGTCGACATGACCTGGGTCCGCCAGGCTCCAGGGAAGGG
GCTGGAATGGATCGGAACCATTAGTACTCGTAGTAGCACATACTACGCGAGCTGGGCGAAAG
GCCGATTCACCATCTCCAAAACCTCGACCACGGTGGATCTGAAAATCACCAGTCCGACAACCG
AGGACACGGCCACGTATTTCTGTGGCAGATTTCGGATTGCTGGTGATGGTGCCTTCTGGGGCC
CAGGCACGCTGGTCACCGTCTCCTCAGGGCAACCTAA

pcr.g.mam.29c11.c211.11779.780com

GGAAGGCTGCGCTGGCTTTTCCTGGTCGCTGTGCTCAGAGGTGTCCAGTGTCAGTCGCTGGAG
GAGTCCGGGGGTNGCCTGGTAACGCCTGGGACACCCCTGANANTCACCTGCACAGCCTTTGG
ATTTTCCCTCAGTAGCTGGTCAATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGCTGGAATG
GATCGGAATGATTGGTATTGTTGGTAGTGGCACATAATANGCGACCTGGGCGAAAGGCCGAT
TCACCATTTCCAAAACCTTGTGACCACGGTCGATTTGAAAATGACCAGTTTGACAACCGAGGA
CACGGCCACCTATTTTTGTGTCAGAGGGGGTAGTTTTANTTTTGCTACCGCCTTGTGGGGCCCA
GGCACCCTGGTCACCGTNTCCTCAGGGCAACCTAA

pcr.g.mam.31a5.c178.11884.780 com

TTGCAGGCTGCGTGGTTTTCCTGGTCGCTGTGCTCAAAGGTGTCCAGTGTCAGTCGGTGGAGG
AGTCCGGGGGTNGCCTGGTAACNCCTGGGACACCCCTGACANTTTTTTGCAAAGTNTTTGGAT
TTTCCCTCAGCAGNTACGANATGACCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAATGG
ATNGGAACCATTAGTANTTGTGGTAATGGATAATACGCGACCTGGGCGAAAGGCCGATTCAC
CATTTCCAAAACCTTGACCACCGTGGATTTGAAAATCACCAGTCCGACAACCGAGGACACGG
CCAAGTATTTTTGTGGCAGATTTCGGATTGCTGGTGATGGTGCTTTTTGGGGCCCCGGGCACGCT
GGTCACCGTNTCCTCAGGGCAACCTAA

MKILMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDET**LSNVEVFMQLIY**DSSLCDLF MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNA<u>IDELKECFL</u>NQTDETLSNVEVFMQLIYDSSLCDLF MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQV**SKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLS**NVEVFMQLIYDSSLCDLF MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQL<u>IYDSSLCDL</u>F MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNA<u>IDELKECFLNQTDETLSNV</u>EVFMQLIYDSSLCDLF MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF MKLLMVLMLAAL**SQHCYAGSGCPLLENVISKT<u>I</u>NPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDL**F MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF Glob-2 Pro-20 Pro-1 Pro-5 Pro-8 Pro-9 Pro-7 Pro-4 Pro-3 Pro-2

Fig. 2

Mammaglobin sequence

HCYAGSGCPLLENVISK

GSGMKETAAAKFERQHMDSPDLGTDDDDKAMAISDPNS.....

N-terminal recombinant

	Reactivit	Reactivity of Mouse Monoc		nal antiboc	dies to Ma	onal antibodies to Mammaglobin	n with pe	ptides and	with peptides and recombinants		
Antibody	Pro2	Pro-3	Pro-4	Pro-5	Pro-6	Pro-7	Pro-8	Glob-2	amma+Tlinal	recon	TRX
31–1H7 32–1G11 197–1H11 304–1A5 98–1F4 967 Blank	0.065 0.056 0.055 0.054 0.068 0.055	0.055 0.055 0.054 0.054 0.055 0.057	0.059 0.054 0.053 0.053 0.056 0.056	0.061 0.054 1.139 0.055 0.056 0.056	0.06 0.055 0.054 0.054 0.059 0.055	0.066 0.057 0.053 0.053 0.064 0.062	0.07 0.055 0.055 0.053 0.11 0.056	0.063 0.055 0.055 0.054 0.112 0.637	2.78 2.75 2.502 2.7 2.7 2.819 1.566 0.056	0.074 0.057 2.596 0.056 0.069 0.052	0.116 0.07 0.064 0.064 0.121 0.159 0.06

Fig. 3A

Fig. 3C

Mammaglobin rabbit monoclonal 2D3

Fig. 3D

Staining of permeabilized human breast tumor cell line MDA-MB415 with rabbit anti-mammaglobin monoclonal antibodies

Staining of permeabilized human breast tumor cell lines with murine anti-mammaglobin monoclonal antibodies

Western blot analysis of Mammaglobin from MB415 cells

Mouse monoclonal: 1G11, 1F4, 1H11,1H7, 1A5 Rabbit monoclonal: 14A12, 6B12, 2D3, 6A1 Rabbit polyclonal: 967

Rec.: bacterially expressed recombinant mammaglobin

IHC analysis of mammaglobin expression in normal tissue.

Normal Tissue	Mam-29C11/31A5
Breast	3-
Adrenal	0
Cervix	0
Colon	0
Duodenum	0
Gall bladder	0
lleum	0
Kidney	0
Ovary	0
Pancreas	0
Paroud gland	0
Prostate	0
Skeletal muscle	0
Spleen	0
Testis	0

Fig. 6

Mouse monoclonal sandwiches with biotinylated 31A5

Fig. 7A

Fig. 7B

Fig. 7C

Fig. 8

Detection of mmamglobin in sera

2D3 mAb capture, 29C11 secondary 29C11 secondary 4980-9600 3 8 560-1245 2.6 311-622 1.7 311-622 1.5 149-311 0.6 149-311 0.6 74-149 0.38 38-74 0.21 38-74 0.18 38-74 0.19		101 John J. 101		Candwich FIISA	
Western Mammaglobin [pg/m]] 00 hd 4980-9600 3 8 nd 311-622 1.7 nd 311-622 1.5 nd 311-622 1.5 nd 149-311 0.6 nd 74-149 0.38 nd 38-74 0.21 nd 38-74 0.19 nd 38-74 0.18 nd 38-74 0.18 nd 38-74 0.18 nd 38-74 0.18 nd 38-74 0.16 nd 38-74 0.16 nd 433 0.16 nd 433 0.14 nd 417 0.05 nd 417 0.01 nd 417 0.01 nd 417 0.01 nd 417 0.01		Sanawich ELISA 2D3 mAb captur 29C11 secondary	, e ,	34114MICH ELISA 967 Ab capture, 2D3 mAb secondary	
+ 4980-9600 nd 560-1245 nd 311-622 nd 149-311 nd 149-311 nd 38-74 nd 3		mmaglobın [pg/ml]	00	Mammaglobın [pg/m]]**	MRNA in blood*
nd 560-1245 nd 311-622 nd 311-622 nd 149-311 nd 149-311 nd 38-74 nd -33	+	4980-9600	3.8	8732	not tested
11-622 Ind 311-622 Ind 149-311 Ind 149-311 Ind 38-74 Ind 38-7	þu	560-1245	2.6	2392	+
nd 149-311 nd 149-311 nd 149-311 nd 38-74	pu	311-622	1.7	1443	+
nd 149-311 nd 149-311 nd 38-74	ם פ	311-622	1.5	2298	weakly +
nd 149-311 nd 38-74 nd 38-74 nd 38-74 nd 38-74 nd 38-74 nd <33 nd <33 nd <33 nd <31 nd	j: pu	149-311	9.0	1498	+
74-149 nd 38-74 nd 38	pu	149-311	9.0	847	+
38-74 nd 38-74 nd 38-74 nd 38-74 nd 38-74 nd 38-74 18-27 nd 433 nd 417 nd 717) u	74-149	0 38	356	pu
38-74 nd 38-74 nd 38-74 nd 38-74 18-74 nd 38-74 18-7	pu pu	38-74	0.21	2333	not tested
nd 38-74 nd 38-74 nd 38-74 nd <33 nd <17 nd <17 nd <17	. Pu	38-74	0.2	636	not tested
nd 38-74 38-74 nd <33 nd <33 nd <17 nd <17	70 5	38-74	0.19	284	pu
nd (33) nd (33) nd (17) nd (17) nd (17)	pu pu	38-74	0.18	188	not tested
nd	nd Du	33	0.16	43	not tested
$\begin{array}{c} \text{nd} \\ \text{od} \\$	בי בים בים	; \$	0.14	149	not tested
$\begin{array}{c} 3 \\ \text{nd} \\ \text{nd} \\ \text{od} \\ o$) TC	33	0.13	96	not tested
nd <17 () P	<17	0.05	18	not tested
nd <17 (D	<17	0.01	363	not tested
)) 110	<17	0.01	443	not tested
	D	/ 1.	1 222	10.8	not tested
nd	pu	XXX	ΥΥΥ	0.11	3000

Fig. 9

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

peptide #	AA sequence	AA location within mmgb
1a	MKLLMVLMLAALSQHCYAGS	1-20
2a	ALSQHCYAGSGCPLLENVIS	11-30
3a	GCPLLENVISKTINPQVSKT	21-40
4a	KTINPQVSKTEYKELLQEFI	31-50
5a	EYKELLQEFIDDNATTNAID	41-60
6a	DDNATTNAIDELKECFLNQT	51-70
7a	ELKECFLNQTDETLSNVEVF	61-80
8a	DETLSNVEVFMQLIYDSSLCDLF	71-93

Fig. 10

Fig. 11A

Fig. 11B

MKLLMVLMLAALSQHCYAGSGCPLLENVISKTINPQVSKTEYKELLQEFIDDNATTNAIDELKECFLNQTDETLSNVEVFMQLIYDSSLCDLF

#	Start positon	sequence (length)	score
1	2	KLLMVLMLA (9)	148
2	3	LLMVLMLAA (9)	72
3	4	LMVLMLAAL (9)	60
4	66	FLNQTDETL (9)	48
6	83	LIYDsSLCDL (10)	151
7	2	KLLMVLMLAA (10)	148
8	80	FMQLiYDSSL (10)	71
9	58	AIDE1KECFL (10)	26
10	45	LLQEFIDDNA (10)	17

Fig. 12

Fig. 13B


```
Normal Testes-4C
Normal Stomach-73A
Normal Stomach-137A
Normal Stomach-137A
Normal Small Intestine-66B
Normal Skin-138A
Normal Skin-60A
Normal Skeletal Muscel-128A
Normal Retina-32263
Normal Ovary-93B
Normal Lung-Clontech
Normal Lung-58A
Normal Lung-51C
Normal Liver-56A
Normal Liver-136A
Nomal Kidney-69A
Normal Kidney-119A
Normal Esophagus-1375
 Normal Colon-50B
 Normal Brain-Clontech
 Normal Brain-75A
 Normal Bone Marrow-74A
 Normal Bladder-S9-1
 Normal Aorta-1375
 Normal Prostate-131A
 Normal Prostate-48B
 Normal Prostate-45A
 Normal Prostate-34C
 Normal Prostate-117A
 Prostate Tumor-40A
 Prostate Tumor-35A
 Prostate Tumor-135A
 Prostate Tumor-115A
 Ovary Tumor-120A
 Lung Tumor-Squamous-96A
```

MB415 cells versus copy number for Mammaglobin

Fig. 16

																													_	_	_			_		_		_	~~	•		·^	_		
amm i	1222	4599	1890	922	792	135 135	2307	是	2524	2288	2759	667	455	1.5		200	4 10	3 5	22.6	7000	1640		6009	4	40	5873	278	9972	3256	1966	390	5575	Š	<u>5</u>	978	71	10861	4354	10128	69	1937	7906	1010		
irmin 1 Hm	1944	14327	9698	4232	1922	282	£88	1008	3744	2586	5983	1480	9017	Cap	200	D 1	2 4 4	1950 674	202	27733	2546	516	9317	1171	586	12078	6 9 6	11118	3124	4834	2080	13983	2532	3583	2217	761	13873	9892	15188	3365	2296	22871	4 65.60		
amm 10 Hms	5989	18027	11457	1158	2758	418	512	928	5405	00.00	5005 F) H	101	2007	455	97.		175	O TO	20654	4175	1513	10420	1891	647	201516	2647	20077	51.15	11289	5,261	18054	2681	6:170	9.439	1715	18:285	15:209	19894	6922	0.62.6	20110		7+:01	
map B 5A Hmg	980	40 A	1984	2 6	717	¥ 7	177	2000	¥004		2000 0000	5000	478	<u> </u>	563	40	299	380	\$0\$	222	1217	2	220	19	3	465	105	946	430	1587	230	6354	966	624	76	760	75	5	9	5	ָ ער ער ער ער ער ער ער ער ער ער	20 107	47.	5	
7.0 000	200	100	707	200	1000 1000 1000 1000	2007		3007	1691	200	1752	#159 1	11797	3049	1358	38	489	266	6	183	1496	83	157	125	171	6 T	75.19	4081	1822	13029	12379	022	900	2041	HC3	7101	200	2 4	? 5	9. 0	- 1 G	7 4 7	A	- 78	
¥ 15	5	BRON	1/200	12676	0636	7	924	2020	2636	2000	3-187	2064	3658	805	2925	88	127	50 130 130 130 130 130 130 130 130 130 13	341	45524	1985	25 82	11029	27.6	101	7148	HGH	2131		1917	200		0400	240		2019	RAL	76047	1849	cnn77	40CZ	2.634	233982	17835	
	K.				998																																								
	1A-7A	247B	13737	7815	18113	15548	6638	29047	16814	7754	7583	2340B	16769	20866	12541																														
	DMSO				1725																																							227	
assay #2	media	551	155	582	1309	588	478	1802	2142	1553	1607	9101	878	1 6	02.7	7	D 6	27		252	247	2020	₩	-	222	315	485	S S	1852	1448	5572	1072	240	551	652	109	824	177	230	146	129	2293	430	545	
- large	oriming Det	5A	\ \r \\r	5.4	5.4	1A-7A	1A-7A	1 A-7A	1A.7A	47.4	47.4	1 - Y	(()	1,4-7,	H-7.4	¥.;¥	₹ 'n	(1) (1)	S.A.	ą Ą	5A	5.A	5. A	5.A	₹.	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A-7A	1A.7A	1A-7A	14.74	1A-7A	A-7A	1 A.7A	4.74	, 1A-7A	
0117 mrh. CD4 proliferation	d omen	1	E.C.1	A 10.00	AR-H19	AB-A7	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00.04	00:00 00:00 00:00	50.00) (i	70.00	AB:HIZ	AB:H4	CD:A4	CD:A5	CD:C1	AB:G7	45:H12	AB:C10	AB:C11	AB:G6	AB:G7	AB:H2	AB:D1	AB:E9	AB:GB	AB:H4	AB:D12	AB:01	AB:H1	AB:A7	AB:B12	AB:F7	AB:G7	CID:C7	0000	00.03	50.00	CD G3	40.0			COHI	
0117 mah		# CH 21	- c	ų t	י מ)		10	~ (1	ъ.	D F	-	걸	ħ	‡	百	9	17	8	9	202	5	22	83	24	52	58	27	7	2 5	S	3 5	. 2	į	3 7	r r	3 8	3 6	5 6	2 6	n i	. 4C	4 g	į

FIGURE 19

Fig. 20

H₃ N- Met His tag 6aa Ra12 (short) 30aa HindIII 2aa Human mammaglobin (full length) 93aa -C00

.

Ra12(s)MammFL pCRX1 Expression Screen

