MATH 237 Online Calculus 3 for Honours Mathematics

Spring 2024

Problem set and solutions

Instructor: Peixue Wu: p33wu@uwaterloo.ca

1. A quadratic surface is the graph of a second-degree equation in three variables x, y, z

$$Ax^{2} + By^{2} + Cz^{2} + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0,$$

where A, B, C, \cdots are constants. In particular, a two-variable scalar function z = f(x, y) can determine a quadratic surface. For example, if $z = \sqrt{2x^2 - 4y^2}$. It determines a quadratic surface given by

$$-2x^2 + 4y^2 + z^2 = 0. (1.1)$$

Now determine the quadratic surfaces given by the following two-variable functions and specify the domain and range. (Domain is the admissible values of (x, y) and range is the admissible values of z.)

- (i) $f(x,y) = 2\sqrt{1-x}$.
- (ii) $f(x,y) = \frac{x^2}{4} + \frac{y^2}{2}$.
- (iii) $f(x,y) = \frac{x^2}{4} \frac{y^2}{2}$.
 - (i) The quadratic surface is given by

$$z^2 + 4x - 4 = 0.$$

Domain = $\{(x,y): x \le 1, y \in \mathbb{R}\} = (-\infty,1] \times (-\infty,+\infty)$. Range = $[0,+\infty)$.

(ii) The quadratic surface is given by

$$x^2 + 2y^2 - 4z = 0$$

Domain = \mathbb{R}^2 . Range = $[0, +\infty)$.

(iii) The quadratic surface is given by

$$x^2 - 2y^2 - 4z = 0$$

Domain = \mathbb{R}^2 . Range = $(-\infty, +\infty)$.

- 2. Evaluate the limit or show the limit does not exist.
 - (i)

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}}.$$

(ii)

$$\lim_{(x,y)\to(0,0)} \exp\left(-\frac{1}{x^2+y^2}\right).$$

1-2 Lecture 1:

(iii)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xy}{\sqrt{x^2+y^2+z^2}}.$$

(iv)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{xyz}{\sqrt{x^2+y^2+z^2}}.$$

(i) We use squeeze theorem:

$$\label{eq:continuous} \big|\frac{x^2-y^2}{\sqrt{x^2+y^2}}\big| \leqslant \frac{x^2+y^2}{\sqrt{x^2+y^2}} = \sqrt{x^2+y^2} \to 0, \quad (x,y) \to (0,0),$$

thus

$$\lim_{(x,y)\to(0,0)}\frac{x^2-y^2}{\sqrt{x^2+y^2}}=0.$$

(ii) We use $\varepsilon - \delta$ language to formally prove it: for any $\varepsilon \in (0,1), \exists \delta = \sqrt{-\frac{1}{\ln \varepsilon}}$, such that when $0 < \sqrt{x^2 + y^2} < \delta$, we have

$$\exp\left(-\frac{1}{x^2+y^2}\right) < \exp\left(-\frac{1}{\delta^2}\right) = \varepsilon,$$

thus

$$\lim_{(x,y)\to(0,0)} \exp\left(-\frac{1}{x^2+y^2}\right) = 0.$$

(iii) We use squeeze theorem:

$$\left|\frac{xy}{\sqrt{x^2+y^2+z^2}}\right| \leqslant \left|\frac{xy}{\sqrt{x^2+y^2}}\right| \leqslant \frac{1}{2} \left|\frac{x^2+y^2}{\sqrt{x^2+y^2}}\right| = \frac{1}{2} \sqrt{x^2+y^2} \to 0, \quad (x,y) \to (0,0),$$

thus

$$\lim_{(x,y,z)\to(0,0,0)}\frac{xy}{\sqrt{x^2+y^2+z^2}}=0.$$

(iv) We use squeeze theorem:

$$\left|\frac{xyz}{\sqrt{x^2+y^2+z^2}}\right| \leqslant \left|\frac{xyz}{\sqrt{x^2+y^2}}\right| \leqslant \frac{1}{2}\left|\frac{x^2+y^2}{\sqrt{x^2+y^2}}z\right| = \frac{1}{2}\sqrt{x^2+y^2}|z| \to 0, \quad (x,y,z) \to (0,0,0),$$

thus

$$\lim_{(x,y,z)\to(0,0,0)}\frac{xyz}{\sqrt{x^2+y^2+z^2}}=0.$$

3. Suppose a, b, c, d are positive numbers such that $(a, b) \neq (c, d)$. Show that

$$\lim_{(x,y)\to(0,0)} \frac{|x|^a + |y|^b}{|x|^c + |y|^d} \tag{1.2}$$

exists if and only if a > c and b > d.

Sufficiency: If a > c, b > d we need to show that

$$\lim_{(x,y)\to(0,0)} \frac{|x|^a + |y|^b}{|x|^c + |y|^d} = 0.$$
(1.3)

We use $\varepsilon - \delta$ language to prove it. For any $\varepsilon \in (0,1)$, we choose

$$\delta = \{ \varepsilon^{\frac{1}{a-c}}, \varepsilon^{\frac{1}{b-d}} \}.$$

Then when $0 < \sqrt{x^2 + y^2} < \delta$, in particular $|x|, |y| < \delta$, we have

$$|x|^{a} + |y|^{b} - \varepsilon(|x|^{c} + |y|^{d})$$

$$= |x|^{c}(|x|^{a-c} - \varepsilon) + |y|^{d}(|y|^{b-d} - \varepsilon)$$

$$< |x|^{c}(\delta^{a-c} - \varepsilon) + |y|^{d}(\delta^{b-d} - \varepsilon)$$

$$\leq |x|^{c}(\varepsilon - \varepsilon) + |y|^{d}(\varepsilon - \varepsilon)$$

$$= 0.$$

Therefore,

$$\frac{|x|^a + |y|^b}{|x|^c + |y|^d} < \varepsilon, \ 0 < \sqrt{x^2 + y^2} < \delta.$$
 (1.4)

Necessity: We show that if $a \le b$ or $b \le d$ and $(a,c) \ne (b,d)$, then $\lim_{(x,y)\to(0,0)} \frac{|x|^a + |y|^b}{|x|^c + |y|^d}$ does not exist(DNE). In fact, if $a \le c$ and $b \le d$, we choose $|y| = k|x|^{\frac{a}{b}}$, then

$$\frac{|x|^a + |y|^b}{|x|^c + |y|^d} = \frac{1 + k^b}{|x|^{c-a} + k^b|y|^{d-b}} \to \begin{cases} \frac{1 + k^b}{k^b}, & a < c, b = d, \\ +\infty, & a < c, b < d, \\ 1 + k^b, & a = c, b < d. \end{cases}$$

Since the choice of k > 0 is arbitrary, we have $\lim_{(x,y)\to(0,0)} \frac{|x|^a + |y|^b}{|x|^c + |y|^d}$ does not exist. Other cases are similar. We have the following table exhibiting each case:

Limit Comparison of b, d Comparison of a, c	b < d	b = d	b > d
a < c	DNE; $ y = k x^{\frac{a}{b}} $	DNE; $ y = k x^{\frac{a}{b}} $	DNE; $ y = k x^{\frac{a}{d}} $
a = c	DNE; $ y = k x^{\frac{a}{b}} $	1	DNE; $ y = k x^{\frac{a}{d}} $
a > c	DNE; $ y = k x^{\frac{c}{b}} $	DNE; $ y = k x^{\frac{c}{b}} $	0

4. Suppose a, b, c, d are positive numbers. Show that

$$\lim_{(x,y)\to(0,0)} \frac{|x|^a |y|^b}{|x|^c + |y|^d} \tag{1.5}$$

exists if and only if

$$\frac{a}{c} + \frac{b}{d} > 1.$$

(Hint: use Young's inequality: suppose $x, y \ge 0$, then for any $p, q \ge 1$ with $\frac{1}{p} + \frac{1}{q} = 1$, we have $xy \le \frac{x^p}{p} + \frac{y^q}{q}$)

Sufficiency: If $\frac{a}{c} + \frac{b}{d} > 1$ we need to show that

$$\lim_{(x,y)\to(0,0)} \frac{|x|^a |y|^b}{|x|^c + |y|^d} \frac{|x|^a |y|^b}{|x|^c + |y|^d} = 0.$$
 (1.6)

We use Squeeze Theorem to prove it. In fact, since $\frac{a}{c} + \frac{b}{d} > 1$ then there exist $p, q \ge 1$ with $\frac{1}{p} + \frac{1}{q} = 1$ such that $\frac{a}{c} > \frac{1}{p}, \frac{b}{d} > \frac{1}{q}$. Then apply Young's inequality, we have

$$\begin{split} & \frac{|x|^a |y|^b}{|x|^c + |y|^d} \\ & \leq \frac{|x|^{pa}/p + |y|^{bq}/q}{|x|^c + |y|^d} \\ & \leq \max\{\frac{1}{p}, \frac{1}{q}\} \frac{|x|^{pa} + |y|^{bq}}{|x|^c + |y|^d} \to 0, (x, y) \to (0, 0). \end{split}$$

Note that we apply Question 3 above to get the limit converging to zero. Necessity: We show that if $\frac{a}{c} + \frac{b}{d} \leqslant 1$ then $\lim_{(x,y)\to(0,0)} \frac{|x|^a|y|^b}{|x|^c+|y|^d}$ does not exist(DNE). In fact, we

$$|y| = k|x|^{\frac{c}{d}},\tag{1.7}$$

we have

$$\frac{|x|^a|y|^b}{|x|^c+|y|^d}=|x|^{\frac{ad+bc-cd}{d}}\frac{k^b}{1+k^d},\quad ad+bc-cd\leqslant 0$$

Since the choice of k > 0 is arbitrary, we have $\lim_{(x,y)\to(0,0)} \frac{|x|^a + |y|^b}{|x|^c + |y|^d}$ does not exist.

- 5. Differentiability and Continuity.
 - (i) State the definition: f(x,y) is differentiable at (a,b). (See 5.1 in Möbius)
 - (ii) Show that if f(x,y) is differentiable at (a,b) then f(x,y) is continuous at (a,b). (See 5.2 in Möbius)
- (iii) Show that if the partial derivatives f_x and f_y are continuous at (a, b) then f(x, y) is differentiable at (a, b). (See Theorem 2, 5.3 in Möbius)
- 6. Show that $f(x,y) = |x^2 + y^2 1|$ is not differentiable at any (x_0, y_0) with $x_0^2 + y_0^2 = 1$.

We use the definition of differentiable functions. For any (x_0, y_0) with $x_0^2 + y_0^2 = 1$, if

$$\lim_{(x,y)\to(x_0,y_0)}\frac{f(x,y)-f(x_0,y_0)-f_x(x_0,y_0)(x-x_0)-f_y(x_0,y_0)(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}$$

does not exist, then we are done.

15 points: Calculation of $f_x(x_0, y_0), f_y(x_0, y_0)$, show that either $f_x(x_0, y_0)$ or $f_y(x_0, y_0)$ does not exist:

$$f_x(x_0, y_0) = \lim_{h \to 0} \frac{|(x_0 + h)^2 + y_0^2 - 1| - |x_0^2 + y_0^2 - 1|}{h} = \lim_{h \to 0} \frac{|2x_0 h + h^2|}{h} = \begin{cases} 2|x_0|, h > 0\\ -2|x_0|, h < 0. \end{cases}$$
(1.8)

Thus the limit exists only for $x_0 = 0$. Similar argument shows that $f_y(x_0, y_0)$ only exists for $y_0 = 0$. Since $x_0^2 + y_0^2 = 1$, x_0 and y_0 cannot be zero simultaneously. Thus either $f_x(x_0, y_0)$ or $f_y(x_0, y_0)$ does not exist.

1-6 Lecture 1:

7. For the following functions, determine the differentiability at (0,0):

(i)
$$f(x,y) = x(|y| - 1)$$
.

(ii)

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, (x,y) \neq (0,0), \\ 0, (x,y) = (0,0). \end{cases}$$

(iii)

$$f(x,y) = \begin{cases} \frac{x^{100}y^2}{x^{100} + y^{98}}, (x,y) \neq (0,0), \\ 0, (x,y) = (0,0). \end{cases}$$

(Hint: Apply Problem 4)

(i) Calculation of f_x :

Note that f(x,0) = -x, thus $f_x(0,0) = -1$.

Calculation of f_y :

Note that f(0, y) = 0, thus $f_y(0, 0) = 0$.

Differentiability:

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)-f_x(0,0)x-f_y(0,0)y}{\sqrt{x^2+y^2}}=\lim_{(x,y)\to(0,0)}\frac{x|y|}{\sqrt{x^2+y^2}}=0$$

The limit is zero via squeeze theorem $\frac{|xy|}{\sqrt{x^2+y^2}} \leq |x| \to 0$. Therefore, it is differentiable.

(ii) Calculation of f_x :

Note that f(x, 0) = 0, thus $f_x(0, 0) = 0$.

Calculation of f_y :

Note that f(0, y) = 0, thus $f_y(0, 0) = 0$.

Differentiability:

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)-f_x(0,0)x-f_y(0,0)y}{\sqrt{x^2+y^2}}=\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}$$

does not exist by choosing y = mx.

(iii) One can show that f_x, f_y are continuous at (0,0) and use 1. iii). For the differentiability, one can also use the definition.

Calculation of f_x and continuity:

$$f_x = \frac{100x^{99}y^{100}}{(x^{100} + y^{98})^2},$$

which is continuous at (0,0) In fact,

$$\left| \frac{100x^{99}y^{100}}{(x^{100} + y^{98})^2} \right| = \left(\frac{100|x|^{99/2}y^{50}}{x^{100} + y^{98}} \right)^2$$

which converges to 0 when $(x,y) \rightarrow (0,0)$ since 99/200 + 50/98 > 1 via Problem 4 in Written assignment 1.

Calculation of f_y and continuity:

$$f_y = \frac{2x^{200}y - 96x^{100}y^{99}}{(x^{100} + y^{98})^2}$$

which converges to 0 when $(x,y) \to (0,0)$ since $\frac{2x^{200}y}{(x^{100}+y^{98})^2}$ tends to zero by $100/100 + \frac{1}{2\times 98} > 1$ and $\frac{96x^{100}y^{99}}{(x^{100}+y^{98})^2}$ tends to zero by $50/100 + \frac{99}{2\times 98} > 1$ via Problem 4 in Written assignment 1.

In summary f_x and f_y are continuous thus f is differentiable via 1. iii).

Remark: one can also show the differentiability via definition

$$\lim_{(x,y)\to(0,0)}\frac{f(x,y)-f(0,0)-f_x(0,0)x-f_y(0,0)y}{\sqrt{x^2+y^2}}=\lim_{(x,y)\to(0,0)}\frac{x^{100}y^2}{(x^{100}+y^{98})\sqrt{x^2+y^2}}=0.$$

One can use polar coordinate $x = r \cos \theta$, $y = \sin \theta$ to show the limit is 0.

8. Evaluate the limit or show the limit does not exist.

(i)

$$\lim_{(x,y)\to(0,0)} \frac{x^3 - y^3}{x^3 + y^3}.$$

(ii)

$$\lim_{(x,y)\to(0,0)} \frac{x^4y^4}{(x^3+y^6)^2}.$$

(iii) Suppose a,b,c,d are positive numbers and $\frac{a}{c} + \frac{b}{d} > 1$. Find

$$\lim_{(x,y)\to(0,0)} (|x|^c + |y|^d)^{|x|^a|y|^b}.$$

1-8 Lecture 1:

- (i) Take x = 0, we get -1 and take y = 0 we get 1. Thus the limit does not exist.
- (ii) Take $x = my^2$, we get $\frac{m^2}{(m^3+1)^2}$, thus the limit does not exist.
- (iii) Note that

$$(|x|^c + |y|^d)^{|x|^a|y|^b} = \exp(|x|^a|y|^b \ln(|x|^c + |y|^d)) = \exp(\frac{|x|^a|y|^b}{|x|^c + |y|^d}(|x|^c + |y|^d) \ln(|x|^c + |y|^d))$$

Since $\lim_{(x,y)\to(0,0)} \frac{|x|^a |y|^b}{|x|^c + |y|^d} = 0$ and $\lim_{(x,y)\to(0,0)} (|x|^c + |y|^d) \ln(|x|^c + |y|^d) = \lim_{t\to 0} t \ln t = 0$, we get the original limit is $\exp(0) = 1$ by limit theorem.

9. Suppose

$$f(x, y, z) = e^x \sqrt{y}z$$

- (i) Find the gradient of f.
- (ii) Find the linear approximation at the point (0, 25, 1)
- (iii) Use the linear approximation above to estimate $e^{0.01} \times \sqrt{24.8} \times 1.02$.
 - (i) The gradient of f is given by

$$\nabla f(x, y, z) = \left(e^x \sqrt{y}z, \frac{e^x z}{2\sqrt{y}}, e^x \sqrt{y}\right).$$

(ii) The linear approximation at (0, 25, 1) is given by

$$L(x, y, z) = f(0, 25, 1) + \nabla f(0, 25, 1) \cdot (x, y - 25, z) = 5x + \frac{y}{10} + 5z - 2.5.$$

(iii) $e^{0.01} \times \sqrt{24.8} \times 1.02$ can be approximated by

$$f(0,25,1) + \nabla f(0,25,1) \cdot (0.01,-0.2,0.02) = 5.13.$$

10. Suppose

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

- (i) Is f(x, y) continuous at (0, 0)?
- (ii) Calculate $f_{xy}(0,0)$ and $f_{yx}(0,0)$.
- (iii) State Clairaut's Theorem. Discuss why (ii) is not contradictive to Clairaut's Theorem.

(i) Note that

$$|xy\frac{x^2-y^2}{x^2+y^2}| \le |xy\frac{x^2+y^2}{x^2+y^2}| = |xy| \to 0.$$

Thus $\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$ and continuity follows.

(ii) We first calculate for $(x, y) \neq (0, 0)$

$$f_x(x,y) = y\frac{x^2 - y^2}{x^2 + y^2} + y\frac{4x^2y^2}{(x^2 + y^2)^2}.$$

In particular, for x = 0, we have

$$f_x(0,y) = -y,$$

thus by definition,

$$f_{xy}(0,0) = \lim_{h \to 0} \frac{f_x(0,h) - f_x(0,0)}{h} = \lim_{h \to 0} \frac{-h}{h} = -1.$$

Similarly, for $(x, y) \neq (0, 0)$

$$f_y(x,y) = x \frac{x^2 - y^2}{x^2 + y^2} - x \frac{4x^2y^2}{(x^2 + y^2)^2}.$$

In particular, for y = 0, we have

$$f_u(x,0) = x,$$

thus by definition,

$$f_{yx}(0,0) = \lim_{h \to 0} \frac{f_y(h,0) - f_y(0,0)}{h} = \lim_{h \to 0} \frac{h}{h} = 1.$$

- (iii) Clairaut's Theorem: If f_{xy} and f_{yx} are defined in some neighborhood of (a, b) and are both continuous at (a, b), then $f_{xy}(a, b) = f_{yx}(a, b)$. f_{xy} and f_{yx} are not continuous at (0, 0) so they can be different.
- 11. Suppose f(x,y) is bounded on the disk

$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}.$$

Moreover, f is homogeneous with order $k \ge 1$, i.e.,

$$\forall t \in \mathbb{R}, (x, y) \in \mathbb{R}^2, \quad f(tx, ty) = t^k f(x, y).$$

Find

$$\lim_{(x,y)\to(0,0)} f(x,y).$$

1-10 Lecture 1:

Use the polar coordinate

$$x = r\cos\theta,$$
$$y = r\sin\theta,$$

where $r = \sqrt{x^2 + y^2}$. Then we have

$$f(x,y) = f(r\cos\theta, r\sin\theta) = r^k f(\cos\theta, \sin\theta).$$

Note that by the boundedness condition $|f(\cos\theta,\sin\theta)| \leq M$, then by Squeeze theorem, we have

$$|f(x,y)| \leqslant r^k |f(\cos\theta, \sin\theta)| \leqslant Mr^k \to 0, \quad (x,y) \to (0,0). \tag{1.9}$$

- 12. Chain rules for multivariable functions.
 - (i) If z = f(x, y) and f_x, f_y are differentiable. Let $x = r \cos \theta, y = r \sin \theta$, verify that

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 f}{\partial r^2} + \frac{1}{r} \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial^2 f}{\partial \theta^2}$$

- (ii) If z = f(x, y), y = g(x) and x = h(u, v), find $\frac{\partial z}{\partial u}$.
- (iii) If $w=f(x,y,z),\, x=g(y,z),\, y=h(z),\, {\rm find}\, \frac{dw}{dz}.$ (Hint: See 6.4 in Möbius)

(i) Using Chain rules, we have

$$z_{r} = \frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta$$

$$z_{\theta} = \frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta} = \frac{\partial f}{\partial x} (-r \sin \theta) + \frac{\partial f}{\partial y} (r \cos \theta)$$

$$z_{rr} = \frac{\partial^{2} z}{\partial r^{2}} = \frac{\partial z_{r}}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z_{r}}{\partial y} \frac{\partial y}{\partial r}$$

$$z_{\theta\theta} = \frac{\partial^{2} z}{\partial \theta^{2}} = \frac{\partial z_{\theta}}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial z_{\theta}}{\partial y} \frac{\partial y}{\partial \theta} + \frac{\partial z_{\theta}}{\partial \theta}$$

$$\frac{\partial z_{r}}{\partial x} = \frac{\partial}{\partial x} (f_{x} \cos \theta + f_{y} \sin \theta) = f_{xx} \cos \theta + f_{yx} \sin \theta$$

$$\frac{\partial z_{r}}{\partial y} = \frac{\partial}{\partial y} (f_{x} \cos \theta + f_{y} \sin \theta) = f_{xy} \cos \theta + f_{yy} \sin \theta$$

$$\frac{\partial z_{\theta}}{\partial x} = \frac{\partial}{\partial x} (f_{x} (-r \sin \theta) + f_{y} (r \cos \theta)) = -f_{xx} (r \sin \theta) + f_{yx} (r \cos \theta)$$

$$\frac{\partial z_{\theta}}{\partial y} = \frac{\partial}{\partial y} (f_{x} (-r \sin \theta) + f_{y} (r \cos \theta)) = -f_{xy} (r \sin \theta) + f_{yy} (r \cos \theta)$$

$$\frac{\partial z_{\theta}}{\partial \theta} = \frac{\partial}{\partial \theta} (f_{x} (-r \sin \theta) + f_{y} (r \cos \theta)) = -f_{xy} (r \sin \theta) + f_{yy} (r \cos \theta)$$

$$\frac{\partial z_{\theta}}{\partial \theta} = \frac{\partial}{\partial \theta} (f_{x} (-r \sin \theta) + f_{y} (r \cos \theta)) = -f_{xy} (r \sin \theta) + f_{yy} (r \cos \theta)$$

Thus we have

$$z_{rr} = \frac{\partial^{2} z}{\partial r^{2}} = \frac{\partial z_{r}}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z_{r}}{\partial y} \frac{\partial y}{\partial r} = f_{xx} \cos^{2} \theta + 2f_{xy} \cos \theta \sin \theta + f_{yy} \sin^{2} \theta,$$

$$\frac{1}{r} z_{r} = \frac{1}{r} (\frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta),$$

$$\frac{1}{r^{2}} z_{\theta\theta} = \frac{1}{r^{2}} (\frac{\partial z_{\theta}}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial z_{\theta}}{\partial y} \frac{\partial y}{\partial \theta} + \frac{\partial z_{\theta}}{\partial \theta})$$

$$= f_{xx} \sin^{2} \theta - 2f_{xy} \cos \theta \sin \theta + f_{yy} \cos^{2} \theta - \frac{1}{r} (\frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta).$$

Therefore, we have the desired identity

$$z_{rr} + \frac{1}{r}z_r + \frac{1}{r^2}z_{\theta\theta} = z_{xx} + z_{yy}.$$

(ii) Using the Chain rule,

$$\frac{\partial z}{\partial u} = f_x(h(u, v), g(h(u, v)))h_u(u, v) + f_y(h(u, v), g(u, v))g_x(h(u, v))h_u(u, v)$$

(iii) Rewrite w = f(x, y, z) = f(g(h(z), z), h(z), z), we have

$$\begin{aligned} &\frac{dw}{dz} = f_x(g(h(z),z),h(z),z)\frac{dg}{dz}(h(z),z) + f_y(g(h(z),z),h(z),z)\frac{dh}{dz} + f_z(g(h(z),z),h(z),z) \\ &= f_x(g(h(z),z),h(z),z) \left[g_y(h(z),z)h'(z) + g_z(h(z),z)\right] + f_y(g(h(z),z),h(z),z)h'(z) + f_z(g(h(z),z),h(z),z) \end{aligned}$$

- 13. Directional derivatives.
 - (i) State the definition: The directional derivative of f(x,y) at a point (a,b) in the direction of a unit

1-12 Lecture 1:

vector $\vec{u} = (u_1, u_2)$ with $u_1^2 + u_2^2 = 1$.

$$D_{\vec{u}}f(a,b) =$$

- (ii) Prove the following important fact: suppose f(x,y) is differentiable at (a,b) and $\nabla f(a,b) \neq (0,0)$, then the largest value of $D_{\vec{u}}f(a,b)$ is given by $\|\nabla f(a,b)\|$ and occurs when \vec{u} is the unit vector in the direction of $\nabla f(a,b)$.
- (iii) In what directions at the point (2,1) does the directional derivative of the function f(x,y) = xy equal to $\sqrt{\frac{5}{2}}$? Express your answer by giving the angle between the required directions and $\nabla f(2,1)$.
 - (i) Either one of the following can get 10 points:

$$D_{\vec{u}}f(a,b) = \frac{d}{ds}f(a+su_1,b+su_2)\big|_{s=0} = \nabla f(a,b) \cdot \vec{u}$$

(ii)Proof: Since f is differentiable at (a, b) and $\|\vec{u}\| = 1$ we have

$$D_{\vec{u}}f(a,b) = \nabla f(a,b) \cdot \vec{u}$$
$$= \|\nabla f(a,b)\| \|\vec{u}\| \cos \theta$$
$$= \|\nabla f(a,b)\| \cos \theta$$

where θ is the angle between \vec{u} and $\nabla f(a,b)$. Thus, $D_{\vec{u}}f(a,b)$ assumes its largest value when $\cos \theta = 1$, i.e., $\theta = 0$. Consequently, the largest value of $D_{\vec{u}}f(a,b)$ is $\|\nabla f(a,b)\|$ and occurs when \vec{u} is in the direction of the gradient vector $\nabla f(a,b)$.

(iii) Since $\nabla f(x,y) = (y,x)$, we have

$$\nabla f(2,1) = (1,2).$$

Note that $\|\nabla f(2,1)\| = \sqrt{5}$ thus the angle between the required directions and $\nabla f(2,1)$ is 45° or $\frac{\pi}{4}$.

- 14. Taylor theorem for multivariable functions.
 - (i) State the definition: let f(x,y) be a function of two variables. The second degree Taylor polynomial $P_{2,(a,b)}(x,y)$ of f(x,y) at (a,b) is given by

$$P_{2,(a,b)}(x,y) =$$

- (ii) State Taylor's Theorem for Functions of Two Variables and prove it. (See Theorem 2 of 8.2 in Möbius).
- (iii) Let $f(x,y) = e^{x-4y}$. Use Taylor's Theorem to show that if $0 \le x \le 1, 0 \le y \le 1$, the error in the linear approximation $L_{(1,1)}(x,y)$ is at most

$$\frac{e}{2}[5(x-1)^2 + 20(y-1)^2].$$

(i) The second degree Taylor polynomial $P_{2,(a,b)}$ of f(x,y) at (a,b) is given by

$$P_{2,(a,b)}(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

$$+ \frac{1}{2} \left[f_{xx}(a,b)(x-a)^2 + 2f_{xy}(a,b)(x-a)(y-b) + f_{yy}(a,b)(y-b)^2 \right].$$

(ii) If $f(x,y) \in C^2$ in some neighborhood N(a,b) of (a,b), then for all $(x,y) \in N(a,b)$ there exists a point (c,d) on the line segment joining (a,b) and (x,y) such that

$$f(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b) + R_{1,(a,b)}(x,y)$$

where

$$R_{1,(a,b)}(x,y) = \frac{1}{2} \left[f_{xx}(c,d)(x-a)^2 + 2f_{xy}(c,d)(x-a)(y-b) + f_{yy}(c,d)(y-b)^2 \right]$$

The proof is given in Theorem 2 of 8.2 in Möbius.

(iii) Note that the error in the linear approximation $L_{(1,1)}(x,y)$ is given by

$$R_{1,(1,1)}(x,y) = \frac{1}{2} \left[f_{xx}(c,d)(x-1)^2 + 2f_{xy}(c,d)(x-1)(y-1) + f_{yy}(c,d)(y-1)^2 \right]$$
$$= \frac{e^{c-4d}}{2} \left[(x-1)^2 - 8(x-1)(y-1) + 16(y-1)^2 \right],$$

where $x \le c \le 1, y \le d \le 1$.(Up to here, 5 points) Therefore we have $e^{c-4d} \le e$ and use the fact that $8|(x-1)(y-1)| \le 4(x-1)^2 + 4(y-1)^2$, we have

$$|R_{1,(1,1)}(x,y)| \le \frac{e}{2} [5(x-1)^2 + 20(y-1)^2].$$

Remark: For (iii), a different and sharper bound is allowed. For example, the bound can be

$$\frac{e^{c-4d}}{2} \left[(x-1)^2 - 8(x-1)(y-1) + 16(y-1)^2 \right] = \frac{e^{c-4d}}{2} (x-4y+3)^2 \leqslant \frac{e}{2} (x-4y+3)^2.$$

15. Suppose F(x, y, z) is a differentiable function on \mathbb{R}^3 . Its partial derivatives F_x, F_y, F_z are continuous and they satisfy

$$yF_x - xF_y + F_z \geqslant \alpha > 0, \forall (x, y, z) \in \mathbb{R}^3.$$

Calculate

$$\lim_{t \to +\infty} F(-\cos t, \sin t, t).$$

1-14 Lecture 1:

Using the chain rule, take the derivative of t we get

$$\frac{d}{dt}F(-\cos t,\sin t,t) = \sin t \cdot F_x(-\cos t,\sin t,t) + \cos t \cdot F_y(-\cos t,\sin t,t) + F_z(-\cos t,\sin t,t) \geqslant \alpha > 0$$
(1.10)

where we have $x = -\cos t$, $y = \sin t$, z = t and we apply the assumption. (Up to here 5 points). Then by fundamental theorem of calculus, we have

$$F(-\cos t, \sin t, t) - F(-1, 0, 0) = \int_0^t \frac{d}{ds} F(-\cos s, \sin s, s) ds \geqslant \alpha t,$$

thus for any t > 0, we have

$$F(-\cos t, \sin t, t) \ge F(-1, 0, 0) + \alpha t.$$

Let t tend to ∞ we have $\lim_{t\to+\infty} F(-\cos t, \sin t, t) = +\infty$.

16. Local Extrema and Critical Points

- (i) State the definition of the critical point of two-variable functions. What are the three classes of critical points?
- (ii) Suppose $f(x,y) = x^2 + y^2 + x^2y + 4$. Find all the critical points of f(x,y).
 - (i) A point (a,b) in the domain of f(x,y) is called a critical point of f if $\frac{\partial f}{\partial x}(a,b) = 0$ or $\frac{\partial f}{\partial x}(a,b)$ does not exist, and $\frac{\partial f}{\partial y}(a,b) = 0$ or $\frac{\partial f}{\partial y}(a,b)$ does not exist. Local maximum point, local minimum point and saddle point.

(ii) By calculation, we have

$$\frac{\partial f}{\partial x}(x,y) = 2x + 2xy, \quad \frac{\partial f}{\partial y}(x,y) = x^2 + 2y.$$

 $\frac{\partial f}{\partial x}(x,y) = 0$ implies x = 0, or y = -1. $\frac{\partial f}{\partial y}(x,y) = 0$ implies $y = -\frac{x^2}{2}$. If x = 0 then y = 0; if y = -1then $x = \sqrt{2}, -\sqrt{2}$. Therefore, there are three critical points:

$$(0,0),\ (\sqrt{2},-1),\ (-\sqrt{2},-1).$$

- 17. The Second Derivative Test and convex functions of two variables.
 - (i) State the Theorem of Second partial derivatives test. Classify the critical points of $f(x,y) = x^2 + y^2 + y$ $x^2y + 4$.
 - (ii) State the definition of convex and strictly convex functions of two variables. Prove the following fact: Suppose $f(x,y) \in C^2$ is a convex function, then for every critical point (c,d) of f(x,y), we have

$$f(x,y) \geqslant f(c,d), \quad \forall (x,y) \neq (c,d).$$

(See Möbius 9.3)

Lecture 1: 1-15

(i) Second partial derivatives test: suppose that $f(x,y) \in C^2$ in some neighborhood of (a,b) and that

$$f_x(a,b) = 0 = f_y(a,b)$$

If Hf(a,b) is positive definite, then (a,b) is a local minimum point of f. If Hf(a,b) is negative definite, then (a,b) is a local maximum point of f. If Hf(a,b) is indefinite, then (a,b) is a saddle point of f. If Hf(a,b) is semidefinite, then the test is inconclusive.

The Hessian matrix is given by

$$Hf(x,y) = \begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix} = \begin{pmatrix} 2+2y & 2x \\ 2x & 2 \end{pmatrix}.$$

At (0,0), the Hessian matrix is $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ which is positive definite, thus it is a local minimum.

At $(\sqrt{2}, -1)$, the Hessian matrix is $\begin{pmatrix} 0 & 2\sqrt{2} \\ 2\sqrt{2} & 2 \end{pmatrix}$ which is indefinite(the eigenvalues are 4 and -2), thus it is a saddle point.

At $(-\sqrt{2}, -1)$, the Hessian matrix is $\begin{pmatrix} 0 & -2\sqrt{2} \\ -2\sqrt{2} & 2 \end{pmatrix}$ which is indefinite (the eigenvalues are 4 and -2), thus it is a saddle point. (ii) Let f(x,y) have continuous second partial derivatives. We say that f is convex if Hf(x,y) is positive semi-definite for all (x,y) and that f is strictly convex if Hf(x,y) is positive definite for all (x,y).

We use Taylor's theorem at (c, d):

If $f(x,y) \in C^2$ in some neighborhood N(c,d) of (c,d), then for all $(x,y) \in N(c,d)$ there exists a point (u,v) on the line segment joining (c,d) and (x,y) such that

$$f(x,y) = f(c,d) + f_x(c,d)(x-a) + f_y(c,d)(y-b) + R_{1,(c,d)}(x,y)$$

where

$$R_{1,(c,d)}(x,y) = \frac{1}{2} \left[f_{xx}(u,v)(x-c)^2 + 2f_{xy}(u,v)(x-c)(y-d) + f_{yy}(u,v)(y-d)^2 \right]$$

Note that f is a convex function, then

$$Hf(u,v) = \begin{pmatrix} f_{xx}(u,v) & f_{xy}(u,v) \\ f_{xy}(u,v) & f_{yy}(u,v) \end{pmatrix}$$

is positive semi-definite thus the quadratic form given by

$$(x-c \quad y-d) Hf(u,v) \begin{pmatrix} x-c \\ y-d \end{pmatrix} = f_{xx}(u,v)(x-c)^2 + 2f_{xy}(u,v)(x-c)(y-d) + f_{yy}(u,v)(y-d)^2 \ge 0$$

Also note that (c,d) is a critical point thus $f_x(c,d) = f_y(c,d) = 0$. Finally we have

$$f(x,y) = f(c,d) + f_x(c,d)(x-a) + f_y(c,d)(y-b) + R_{1,(c,d)}(x,y)$$

= $f(c,d) + R_{1,(c,d)}(x,y) \ge f(c,d)$.

1-16 Lecture 1:

- 18. Extreme values and Lagrange multiplier.
 - (i) Find the maximum and minimum values of f(x,y) = x + 2y on the disc $x^2 + y^2 \le 4$.
 - (ii) Find the maximum value of x + y + z on the surface

$$x^2 + \frac{1}{4}y^2 + \frac{1}{9}z^2 = 1.$$

(i) Since $f_x=1, f_y=2$, there is no critical point inside the disc. The maximum and minimum occur on the boundary $x^2+y^2=4$. To find the maximum and minimum, suppose $x=2\cos\theta, y=2\sin\theta$, then we have $x+2y=2\cos\theta+4\sin\theta$, then the maximum value is given by $\sqrt{2^2+4^2}=2\sqrt{5}$ and the minimum value is given by $-2\sqrt{5}$.

(ii) We follow the standard Lagrange algorithm to find the maximum. Denote $f(x,y,z)=x+y+z, g(x,y,z)=x^2+\frac{1}{4}y^2+\frac{1}{9}z^2$. First set

$$\nabla f(x, y, z) = \lambda \nabla g(x, y, z), \ g(x, y, z) = 1.$$

The solution of the above equations is given by

$$x = \pm \frac{1}{\sqrt{14}}, \ y = \pm \frac{4}{\sqrt{14}}, \ z = \pm \frac{9}{\sqrt{14}}$$

Second, $\nabla g(x,y,z) = 0$, g(x,y,z) = 1, the solution does not exist. Finally, there is no edge point since the surface is closed.

Therefore, the maximum occurs at $x = \frac{1}{\sqrt{14}}$, $y = \frac{4}{\sqrt{14}}$, $z = \frac{9}{\sqrt{14}}$ thus the maximum value is $\sqrt{14}$.

- 19. Miscellaneous problems.
 - (i) Prove $ab \le a \ln a a + e^b$ for $a \ge 1, b \ge 0$.
 - (ii) Prove the following elementary inequality:

$$ab^2c^3 \le 108\left(\frac{a+b+c}{6}\right)^6, \quad a, b, c > 0.$$

(Hint: Find the maximum value of $\ln x + 2 \ln y + 3 \ln z$ on the sphere $x^2 + y^2 + z^2 = 6r^2$.)

(i) Define the function $f(x,y) = x \ln x - x + e^y - xy$, our goal is to show that the global minimum of f(x,y) on the region $\{x \ge 1, y \ge 0\}$ is 0.

To calculate the global minimum, we use the following approach: for any fixed $y_0 \ge 0$, we find the minimum of one-variable function $\varphi(x) := f(x, y_0)$. In fact,

$$\varphi'(x) = \ln x - y_0, \quad \varphi''(x) = \frac{1}{x} > 0.$$

Thus by second derivative test for one-variable function, $x = e^{y_0}$ is the only local minimum of $\varphi(x)$ thus is the global minimum. Therefore, for any fixed $y_0 \ge 0$,

$$\min_{x \ge 1} \varphi(x) = \varphi(e^{y_0}) = 0,$$

we have

$$\min_{y_0 \geqslant 0} \min_{x \geqslant 1} f(x, y_0) = \min_{y_0 \geqslant 0} 0 = 0.$$

(ii) We use Lagrange multiplier method. For any fixed r > 0, we set

$$\nabla(\ln x + 2\ln y + 3\ln z) = \lambda\nabla(x^2 + y^2 + z^2), \quad x^2 + y^2 + z^2 = 6r^2.$$

We get the solution x=r, $y=\sqrt{2}r$, $z=\sqrt{3}r$. Next, we find $\nabla(x^2+y^2+z^2)=(2x,2y,2z)=0$ and in this case $x^2+y^2+z^2-6r^2$ cannot be zero. Finally, the edge point of $x^2+y^2+z^2-6r^2=0$ does not exist because it is a closed surface.

Therefore, note that as x approaches zero, the function $\ln x + 2 \ln y + 3 \ln z$ approaches $-\infty$. At the point x = r, $y = \sqrt{2}r$, $z = \sqrt{3}r$, it achieves global maximum, which means

$$\ln x + 2\ln y + 3\ln z \le \ln\left(r(\sqrt{2}r)^2(\sqrt{3}r)^3\right) = \ln\left(6\sqrt{3}r^6\right) = \ln\left(6\sqrt{3}\left(\frac{x^2 + y^2 + z^2}{6}\right)^3\right).$$

Taking the exponential on both sides, we have

$$xy^2z^3 \le 6\sqrt{3}(\frac{x^2+y^2+z^2}{6})^3.$$

Finally taking square on both sides, and take $a = x^2, b = y^2, c = z^2$, we have

$$ab^2c^3 = x^2y^4z^6 \le 6^2 \times 3(\frac{x^2+y^2+z^2}{6})^6 = 108(\frac{a+b+c}{6})^6.$$

Note that for part (i), using second derivative test for two-variable function is not possible. In fact,

$$\frac{\partial f}{\partial x} = \ln x - y, \quad \frac{\partial f}{\partial y} = e^y - x.$$

Therefore, on the region $\{x \ge 1, y \ge 0\}$, the critical points of f is given by

$$C_f := \{ y = \ln x, x \ge 1, y \ge 0 \}.$$

The second derivative test fails. The Hessian matrix is given by

$$\begin{pmatrix} \frac{1}{x} & -1 \\ -1 & e^y \end{pmatrix}$$

1-18 Lecture 1:

which has determinant zero on the critical points C_f . It is possible to do more detailed analysis to argue that it is a local minimum and also global minimum but the details are much more technical.

20. Partial derivatives.

(i) Determine the differentiability of the following function at (0,0):

$$f(x,y) = \begin{cases} \frac{x^2 y^2}{(x^2 + y^2)^{\frac{3}{2}}}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

(ii) Suppose z = f(r) and $r = \sqrt{x^2 + y^2}$. Then use the chain rule to show that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{d^2 z}{dr^2} + \frac{1}{r} \frac{dz}{dr}.$$

(i)

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0,$$

$$f_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0.$$

Using the definition of differentiability, we have

$$\left| \frac{f(x,y) - f(0,0) - f_x(0,0)x - f_y(0,0)}{\sqrt{x^2 + y^2}} \right| = \frac{x^2 y^2}{(x^2 + y^2)^2}.$$

The limit does not exist, since we can choose y = mx and by varying m we get different values as $(x,y) \to (0,0)$. Thus the function is not differentiable at (0,0).

(ii) The calculation proceeds as follows:

$$\begin{split} \frac{\partial z}{\partial x} &= \frac{dz}{dr} \frac{\partial r}{\partial x} = \frac{dz}{dr} \frac{x}{\sqrt{x^2 + y^2}}, \quad \frac{\partial z}{\partial y} = \frac{dz}{dr} \frac{\partial r}{\partial y} = \frac{dz}{dr} \frac{y}{\sqrt{x^2 + y^2}}, \\ \frac{\partial^2 z}{\partial x^2} &= \frac{d^2 z}{dr^2} \left(\frac{x}{\sqrt{x^2 + y^2}} \right)^2 + \frac{dz}{dr} \frac{\partial}{\partial x} \left(\frac{x}{\sqrt{x^2 + y^2}} \right) = \frac{d^2 z}{dr^2} \frac{x^2}{x^2 + y^2} + \frac{dz}{dr} \frac{y^2}{(x^2 + y^2)^{3/2}}, \\ \frac{\partial^2 z}{\partial y^2} &= \frac{d^2 z}{dr^2} \left(\frac{y}{\sqrt{x^2 + y^2}} \right)^2 + \frac{dz}{dr} \frac{\partial}{\partial y} \left(\frac{y}{\sqrt{x^2 + y^2}} \right) = \frac{d^2 z}{dr^2} \frac{y^2}{x^2 + y^2} + \frac{dz}{dr} \frac{x^2}{(x^2 + y^2)^{3/2}}. \end{split}$$

Then it is easy to see that we have

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{d^2 z}{dr^2} + \frac{1}{r} \frac{dz}{dr}.$$

- 21. Suppose $g(x, y, z) = 3 \ln(x + e^{yz})$.
 - (i) Find the gradient of g.
 - (ii) Calculate the directional derivative of at (0,1,0) in the direction from the point (0,1,0) to the point (5,3,3).
 - (i) The gradient is given by

$$\nabla g(x,y,z) = \left(\frac{3}{x + e^{yz}}, \frac{3ze^{yz}}{x + e^{yz}}, \frac{3ye^{yz}}{x + e^{yz}}\right)$$

(ii) Find the direction vector: $\vec{v} = (5,3,3) - (0,1,0) = (5,2,3)$. Next, normalize the vector

$$\overrightarrow{v^*} = \frac{1}{\sqrt{5^2 + 2^2 + 3^2}} (5, 2, 3)$$
$$= \frac{1}{\sqrt{38}} (5, 2, 3)$$

Note that $\nabla g(0,1,0) = (3,0,3)$.

Since g has continuous partial derivatives at (0,1,0), it is differentiable at (0,1,0). Thus, we can apply the Directional derivative theorem to get

$$D_{v*}g(0,1,0) = \frac{1}{\sqrt{38}}(5,2,3) \cdot (3,0,3)$$
$$= \frac{24}{\sqrt{38}}.$$

1-20 Lecture 1:

- 22. Suppose $f(x, y) = \ln(-2\sin^2 x + 4\cos^2 y)$.
 - (i) Find the linearization at (0,0), $L_{(0,0)}(x,y)$.
 - (ii) Find the second order Taylor polynomial at (0,0), $P_{2,(0,0)}(x,y)$.

i) First we find $f(0,0) = \ln(-2\sin^2(0) + 4\cos^2(0)) = \ln(4)$ Next we find the gradient vector:

$$\nabla f = \left(\frac{-2\sin(2x)}{-2\sin^2 x + 4\cos^2 y}, -\frac{4\sin(2y)}{-2\sin^2 x + 4\cos^2 y}\right) \Rightarrow \nabla f(0,0) = (0,0)$$

Therefore, the linear approximation at (0,0) is (10 points)

$$L_{(0,0)}(x,y) = f(0,0) + f_x(0,0)(x-0) + f_y(0,0)(y-0)$$

= ln(4) + 0(x - 0) + 0(y - 0)

ii) To set up the equation for the Taylor polynomial, we need to find the Hessian matrix. We begin by finding the second order derivatives:

$$f_{xx} = \frac{(-2)\left[2\cos(2x)\left(-2\sin^2 x + 4\cos^2 y\right) - (-2)\sin^2(2x)\right]}{\left(-2\sin^2 x + 4\cos^2 y\right)^2}$$

$$f_{xy} = f_{yx} = \frac{-8\sin(2x)\sin(2y)}{\left(-2\sin^2 x + 4\cos^2 y\right)^2}$$

$$f_{yy} = \frac{-(4)\left[2\cos(2y)\left(-2\sin^2 x + 4\cos^2 y\right) + 4\sin^2(2y)\right]}{\left(-2\sin^2 x + 4\cos^2 y\right)^2}$$

Then the Hessian matrix will be $Hf(0,0)=\begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$. Using the Hessian matrix, we get (10 points)

$$P_{2,(0,0)}(x,y) = L_{(0,0)}(x,y) + \frac{1}{2} \left(f_{xx}(0,0)(x-0)^2 + 2f_{xy}(0,0)(x-0)(y-0) + f_{yy}(0,0)(y-0)^2 \right)$$

Therefore,

$$P_{2,(0,0)}(x,y) = \underbrace{\ln(4)}_{\text{From part a}} + \frac{1}{2} (\underbrace{-1}_{\text{From Hf}(0,0)} x^2 + \underbrace{0}_{\text{From Hf}(0,0)} xy + \underbrace{(-2)}_{\text{From Hf}(0,0)} y^2)$$

- 23. Miscellaneous problems.
 - (i) Suppose $\varphi(u)$ is a one-variable function such that for any $u \in \mathbb{R}$, $|\varphi(u)| \leq u^2$. Determine the differentiability of $f(x,y) = \varphi(|xy|)$ at (0,0).
 - (ii) Suppose the second order partial derivatives of f(x,y) exist. Moreover, we assume f(x,y) > 0 for any x,y. Then show that f(x,y) = g(x)h(y) for some one-variable function g,h if and only if

$$f\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial f}{\partial x} \frac{\partial f}{\partial y}.$$

(Hint: Consider $\varphi = \frac{\partial f}{\partial y}$ and try to calculate $\frac{\partial}{\partial x}(\frac{\varphi}{f})$.)

(i) $f(0,0) = \varphi(0) = 0,$ $f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0,$ $f_y(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{0 - 0}{h} = 0.$

Using the definition of differentiability and squeeze theorem, we have (2 points)

$$\left| \frac{f(x,y) - f(0,0) - f_x(0,0)x - f_y(0,0)}{\sqrt{x^2 + y^2}} \right| \le \frac{|\varphi(|xy|)|}{\sqrt{x^2 + y^2}} \le \frac{|xy|^2}{\sqrt{x^2 + y^2}} \le |xy|^{\frac{3}{2}} \to 0.$$

Therefore, f is differentiable at (0,0).

(ii) Sufficiency. First, note that

$$\frac{\partial}{\partial x} \left(\frac{\frac{\partial f}{\partial y}}{f} \right) = \frac{f \frac{\partial^2 f}{\partial x \partial y} - \frac{\partial f}{\partial x} \frac{\partial f}{\partial y}}{f^2} = 0,$$

we have a function \tilde{h} of variable y, such that

$$\frac{\frac{\partial f}{\partial y}}{f} = \widetilde{h}(y).$$

Notice that $\frac{\frac{\partial f}{\partial y}}{f} = \frac{\partial}{\partial y}(\ln f)$, which implies that there exists a function $\widetilde{g}(x)$ such that

$$\ln f = \int \widetilde{h}(y)dy + \widetilde{g}(x).$$

Finally, taking exponential on both sides, we have

$$f(x,y) = \exp\left(\int \widetilde{h}(y)dy\right) \exp(\widetilde{g}(x)).$$

Take $g(x) = \exp(\tilde{g}(x))$, $h(y) = \exp\left(\int \tilde{h}(y)dy\right)$ and we finish the proof. Necessity. If f(x,y) = g(x)h(y) for some one-variable function g,h, then

$$f(x,y)\frac{\partial^2 f}{\partial x \partial y}(x,y) = h(y)\frac{dg}{dx}(x)g(x)\frac{dh}{dy}(y) = \frac{\partial f}{\partial x}(x,y)\frac{\partial f}{\partial y}(x,y).$$

- 24. Polar coordinates, Cylindrical coordinates and Spherical coordinates
 - (i) Write down the transform equation from Cartesian to Polar, Cylindrical and Spherical coordinates and the other way around.
- (ii) For the region $R = \{(x, y, z) : z \ge \sqrt{x^2 + y^2}, x^2 + y^2 + z^2 \le 2\}$ given in Cartesian coordinates, give a description in cylindrical coordinates and spherical coordinates.

1-22 Lecture 1:

(i)	Coordinate System	Coordinates	From Cartesian	To Cartesian	When to use
	Polar	(r, θ)	$r = \sqrt{x^2 + y^2}$ $\tan(\theta) = \frac{y}{x}$	$x = r\cos(\theta)$ $y = r\sin(\theta)$	When there is symmetry about the origin in $2D$
	Cylindrical	(r, θ, z)	$r = \sqrt{x^2 + y^2}$ $\tan(\theta) = \frac{y}{x}$ $z = z$	$x = r\cos(\theta)$ $y = r\sin(\theta)$ $z = z$	When there is symmetry about the z -axis in $3D$
	Spherical	(ho,arphi, heta)	$\rho = \sqrt{x^2 + y^2 + z^2}$ $\tan(\theta) = \frac{y}{x}$ $\cos(\varphi) = \frac{z}{\sqrt{x^2 + y^2}}$	$x = \rho \sin(\varphi) \cos(\theta)$ $y = \rho \sin(\varphi) \sin(\theta)$ $z = \rho \cos(\varphi)$	When there is symmetry about the origin in $3D$

(ii)

Description in spherical coordinates: $\{(\rho, \varphi, \theta) : 0 \le \varphi \le \pi/4, \rho \le \sqrt{2}\}$. Description in cylindrical coordinates: $\{(z, r, \theta) : z \ge r, r^2 + z^2 \le 2\}$.

- 25. Mappings from \mathbb{R}^2 to \mathbb{R}^2 .
 - (i) Find the image of $D=\{(x,y):0\leqslant x\leqslant 2,0\leqslant y\leqslant 2\}$ under the mapping $T(x,y)=(x^2-y^2,x^2+y^2).$
 - (ii) Use the linear approximation for mappings to approximate the image of (0.01, 0.02) under the mapping $F(x,y) = (e^x + y, e^x y)$.
 - (i) Set $u=x^2-y^2, v=x^2+y^2$, we have $x^2=\frac{u+v}{2}, y^2=\frac{v-u}{2}$. Since we have $0 \le x^2 \le 4, 0 \le y^2 \le 4$, the conditions on (u,v) is given by

$$0 \leqslant u + v \leqslant 8$$

$$0 \leqslant v - u \leqslant 8.$$

Thus it is a parallelogram in the (u, v)-plane with the four vertices given by (0, 0), (4, 4), (0, 8), (-4, 4).

(ii) Use the approximation $F(x,y) = F(a,b) + DF(a,b)(\Delta x)$, with $\Delta x = \begin{pmatrix} x-a \\ y-b \end{pmatrix}$.

$$DF(x,y) = \begin{pmatrix} e^x & 1 \\ e^x & -1 \end{pmatrix}.$$

Finally, we have $F(0.01,0.02) \approx F(0,0) + DF(0,0) \begin{pmatrix} 0.01 \\ 0.02 \end{pmatrix} = \begin{pmatrix} 1.03 \\ 0.99 \end{pmatrix}$.

Lecture 1: 1-23

- 26. Composite Mappings and the Chain Rule.
 - (i) State the Chain Rule in matrix form for mappings from \mathbb{R}^2 to \mathbb{R}^2 .
- (ii) Consider the maps F and G defined by

$$F(u,v) = (v + u^2, u), \quad G(x,y) = (e^x y, 2e^{-x} y)$$

Calculate the derivative $D(F \circ G)(0,1)$ of the composite map.

(i) Let F and G be mappings from \mathbb{R}^2 to \mathbb{R}^2 . If G has continuous partial derivatives at (x,y) and F has continuous partial derivatives at (u,v)=G(x,y), then the composite mapping $F\circ G$ has continuous partial derivatives at (x,y) and

$$D(F \circ G)(x, y) = DF(u, v)DG(x, y)$$

(ii) Note that

$$DF(u,v) = \begin{pmatrix} 2u & 1 \\ 1 & 0 \end{pmatrix}, \quad DG(x,y) = \begin{pmatrix} e^x y & e^x \\ -2e^{-x}y & 2e^{-x} \end{pmatrix}.$$

when (x, y) = (0, 1), we have (u, v) = G(x, y) = (1, 2). Therefore,

$$D(F \circ G)(0,1) = DF(1,2)DG(0,1) = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 1 & 1 \end{pmatrix}.$$

1-24 Lecture 1:

27. See related discussion in Möbius 12.4, application.

Recall that any complex number $z \in \mathbb{C}$ can be written as $z = x + iy, x, y \in \mathbb{R}$. Here i is the imaginary unit satisfying $i^2 = -1$. There is a natural one-to-one correspondence of \mathbb{C} and \mathbb{R}^2 defined by the map $\varphi : \mathbb{C} \to \mathbb{R}^2 : z = x + iy \mapsto (x,y)$ with the inverse map $\varphi^{-1} : \mathbb{R}^2 \to \mathbb{C} : (x,y) \mapsto x + iy$. Then any complex function $f : \mathbb{C} \to \mathbb{C}$ can be viewed as a mapping F from \mathbb{R}^2 to \mathbb{R}^2 defined by

$$F(x,y) := \varphi \circ f \circ \varphi^{-1}(x,y).$$

(i) Rewrite the famous Möbius transform $f(z) = \frac{az+b}{cz+d}$ as a mapping F from \mathbb{R}^2 to \mathbb{R}^2 . Here a,b,c,d are complex numbers

$$a = a_1 + ia_2, b = b_1 + ib_2, c = c_1 + ic_2, d = d_1 + id_2.$$

(ii) What is the image of the open unit disc $\{z=x+iy\in\mathbb{C}:x^2+y^2<1\}$ under Möbius transformation $f(z)=\frac{1+z}{1-z}$. (Hint: The answer is the right half plane. You need to explain why.)

Lecture 1: 1-25

(i) Plug in the expression of the complex numbers, we have

$$f(z) = \frac{(a_1 + ia_2)(x + iy) + (b_1 + ib_2)}{(c_1 + ic_2)(x + iy) + (d_1 + id_2)}$$

Expanding and separating into real and imaginary parts:

$$f(z) = \frac{(a_1x - a_2y + b_1) + i(a_2x + a_1y + b_2)}{(c_1x - c_2y + d_1) + i(c_2x + c_1y + d_2)}$$

Let:

$$u = c_1 x - c_2 y + d_1$$

$$v = c_2 x + c_1 y + d_2$$

Then: $f(z) = \frac{(a_1x - a_2y + b_1) + i(a_2x + a_1y + b_2)}{u + iv}$. To simplify this expression, we multiply the numerator and the denominator by the conjugate of the denominator:

$$f(z) = \frac{((a_1x - a_2y + b_1) + i(a_2x + a_1y + b_2))((c_1x - c_2y + d_1) - i(c_2x + c_1y + d_2))}{(c_1x - c_2y + d_1)^2 + (c_2x + c_1y + d_2)^2}$$

The real part u' and imaginary part v' of the resulting complex number can be written as functions of x and y. After simplifying the expression, the result will be in the form:

$$f(z) = u'(x,y) + iv'(x,y)$$

Thus, the Möbius transformation can be represented as a mapping from \mathbb{R}^2 to \mathbb{R}^2 :

$$(x,y) \mapsto (u'(x,y),v'(x,y))$$

where

$$u'(x,y) = \frac{(a_1x - a_2y + b_1)(c_1x - c_2y + d_1) + (a_2x + a_1y + b_2)(c_2x + c_1y + d_2)}{(c_1x - c_2y + d_1)^2 + (c_2x + c_1y + d_2)^2}$$
$$v'(x,y) = \frac{(a_2x + a_1y + b_2)(c_1x - c_2y + d_1) - (a_1x - a_2y + b_1)(c_2x + c_1y + d_2)}{(c_1x - c_2y + d_1)^2 + (c_2x + c_1y + d_2)^2}$$

(ii) For this example, $a_1 = b_1 = d_1 = 1$, $c_1 = -1$, $a_2 = b_2 = c_2 = d_2 = 0$. Therefore,

$$u'(x,y) = \frac{1 - x^2 - y^2}{(x-1)^2 + y^2}, v'(x,y) = \frac{2y}{(x-1)^2 + y^2}.$$

Note that $x^2+y^2<1$, thus u'(x,y)>0 and v'(x,y) can be arbitrary real number. (Up to here you can get full score. A more detailed calculation is provided) We claim that the image is the right half plane, i.e, $\{(u,v)\in\mathbb{R}^2:u>0,v\in\mathbb{R}\}$. In fact, for any (u,v) in the right half plane, we need to find z inside the unit disk such that $\frac{1+z}{1-z}=w=u+iv$, and we have $z=\frac{w-1}{w+1}$. The existence of z is verified if we can show that $|z|=|\frac{w-1}{w+1}|<1$. Since w is a point in the right half plane, the geometric meaning is that the distance to the point (-1,0) is larger than the distance to the point (1,0). This is true as long as u>0:

$$\left| \frac{u-1+iv}{u+1+iv} \right| < 1 \iff u^2+v^2-2u+1 < u^2+v^2+2u+1 \iff u > 0.$$

28. Change of variable method: two dimensional.

1-26 Lecture 1:

- (i) State the Change of Variable Theorem for double integrals.
- (ii) Suppose a, b are two real numbers. Calculate

$$\iint\limits_{D} (ax + by) dx dy$$

where D is the region in the first quadrant bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and y = 0.

(i) Let each of D_{uv} and D_{xy} be a closed bounded set whose boundary is a piecewise-smooth closed curve. Let

$$(x,y) = F(u,v) = (f(u,v), g(u,v))$$

be a one-to-one mapping of D_{uv} onto D_{xy} , with $f,g\in C^1$, and $\frac{\partial(x,y)}{\partial(u,v)}\neq 0$ except for possibly on a finite collection of piecewise-smooth curves in D_{uv} . If G(x,y) is continuous on D_{xy} , then

$$\iint\limits_{D_{xy}} G(x,y) dx dy = \iint\limits_{D_{\text{uv}}} G(f(u,v),g(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

(ii) Use the Polar coordinate

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

and it is straightforward to calculate $\left|\frac{\partial(x,y)}{\partial(r,\theta)}\right| = r$. Moreover, the regions are given by $D_{xy} = \{(x,y): 0 \le x, y \le 2, x^2 + y^2 \le 4\}$ and $D_{r\theta} = \{(r,\theta): 0 \le r \le 2, 0 \le \theta \le \frac{\pi}{2}\}$. Using the Change of Variable Theorem for double integrals, we have

$$\iint\limits_{D_{xy}}(ax+by)dxdy=\iint\limits_{D_{r\theta}}(a\cos\theta+b\sin\theta)r^2drd\theta=\frac{8}{3}(a+b).$$

- 29. Change of variable method: three dimensional.
 - (i) State the Change of Variable Theorem for triple integrals.
- (ii) Find the volume of ellipsoid using change of variable method:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, \quad a, b, c > 0.$$

Lecture 1: 1-27

(i) Let

$$x = f(u, v, w), \quad y = g(u, v, w), \quad z = h(u, v, w)$$

be a one-to-one mapping of D_{uvw} onto D_{xyz} with f,g,h having continuous partials, and

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} \neq 0$$
 on D_{uvw}

If G(x, y, z) is continuous on D_{xyz} , then

$$\iiint\limits_{D_{v,v,v}}G(x,y,z)dV=\iiint\limits_{D_{v,v,v}}G(f(u,v,w),g(u,v,w),h(u,v,w))\left|\frac{\partial(x,y,z)}{\partial(u,v,w)}\right|dV$$

(ii) Use the transformation

$$\begin{cases} x = au \\ y = bv \\ z = cw \end{cases}$$

and it is straightforward to check $\frac{\partial(x,y,z)}{\partial(u,v,w)} = abc$. The regions are $D_{xyz} = \{(x,y,z): \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1\}$ and $D_{uvw} = \{(u,v,w): u^2 + v^2 + w^2 \le 1\}$. Then the volume of the ellipsoid is calculated as

$$\iint\limits_{D_{xyz}} dV = \iiint\limits_{D_{uvw}} \left| \frac{\partial(x,y,z)}{\partial(u,v,w)} \right| dV = abc \cdot \text{volume of unit ball} = \frac{4\pi}{3}abc.$$

Volume of unit ball is $\frac{4\pi}{3}$ and it can be calculated via Spherical coordinates:

$$\int_0^1 \int_0^{2\pi} \int_0^{\pi} r^2 \sin \varphi dr d\theta d\varphi = \frac{4\pi}{3}.$$

30. Evaluate the following triple integrals:

(i)

$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} dz dy dx.$$

(ii)

$$\int_0^1 \int_0^{\sqrt{1-y^2}} \int_{\sqrt{3x^2+3y^2}}^{\sqrt{3}} dz dx dy.$$

1-28 Lecture 1:

(i) We use cylindrical coordinates

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \\ z = z \end{cases}$$

it is straightforward to calculate $\left|\frac{\partial(x,y,z)}{\partial(r,\theta,z)}\right| = r$. The regions are given by $D_{xyz} = \{(x,y,z): 0 \leqslant x \leqslant 1, 0 \leqslant y \leqslant \sqrt{1-x^2}, \sqrt{x^2+y^2} \leqslant z \leqslant \sqrt{2-x^2-y^2}\}$ and $D_{r\theta z} = \{(r,\theta,z): 0 \leqslant r \leqslant 1, 0 \leqslant \theta \leqslant \frac{\pi}{2}, r \leqslant z \leqslant \sqrt{2-r^2}\}$. The integral can be calculated as follows:

$$\int_0^1 \int_0^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{2-x^2-y^2}} dz dy dx = \frac{\pi}{2} \int_0^1 (\sqrt{2-r^2}-r) r dr = \pi \frac{\sqrt{2}-1}{3}.$$

(ii) We use cylindrical coordinates

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \\ z = z \end{cases}$$

it is straightforward to calculate $\left|\frac{\partial(x,y,z)}{\partial(r,\theta,z)}\right| = r$. The regions are given by $D_{xyz} = \{(x,y,z): 0 \le y \le 1, 0 \le x \le \sqrt{1-y^2}, \sqrt{3(x^2+y^2)} \le z \le \sqrt{3}\}$ and $D_{r\theta z} = \{(r,\theta,z): 0 \le r \le 1, 0 \le \theta \le \frac{\pi}{2}, \sqrt{3}r \le z \le \sqrt{3}\}$. The integral can be calculated as follows:

$$\int_0^1 \int_0^{\sqrt{1-y^2}} \int_{\sqrt{3x^2+3y^2}}^{\sqrt{3}} dz dx dy = \frac{\pi}{2} \int_0^1 \sqrt{3} (1-r) r dr = \frac{\sqrt{3}\pi}{12}.$$

- 31. Miscellaneous problems.
 - (i) Suppose D is the region surrounded by z=0, z=1 and $x^2+\frac{1}{2}(y-z)^2=1$. Calculate

$$\iiint\limits_D (y-z)\arctan z\ dxdydz.$$

(Hint: Use transformation $x = u, y - z = \sqrt{2}v, z = w$)

(ii) Suppose f(x,y) has continuous second partial derivatives. If $D=\{(x,y)\in\mathbb{R}^2:a\leqslant x\leqslant b,c\leqslant y\leqslant d\}$, calculate

$$\iint\limits_D f_{xy}(x,y)dxdy, \quad \iint\limits_D f_{yx}(x,y)dxdy.$$

Briefly discuss how the above calculation can imply Clairaut's Theorem(For the statement, see Möbius 4.2).

Lecture 1: 1-29

(i) Use the transformation

$$\begin{cases} x = u \\ y - z = \sqrt{2}v \\ z = w \end{cases}$$

It is straightforward to calculate $\left|\frac{\partial(x,y,z)}{\partial(u,v,w)}\right| = \sqrt{2}$. The regions are given by $D_{xyz} = \{(x,y,z) : 0 \le z \le 1, x^2 + \frac{1}{2}(y-z)^2 \le 1\}$, and $D_{uvw} := \{(u,v,w) : 0 \le w \le 1, u^2 + v^2 \le 1\}$. The integral can be calculated via change of variable method as follows:

$$\iiint\limits_{D_{xyz}}(y-z)\arctan z\ dxdydz=\iint\limits_{D_{uvw}}2v\arctan(w)dudvdw.$$

Note that by symmetry

$$\iint\limits_{u^2+v^2\leqslant 1}vdudv=0,$$

the above integral is 0.

(ii) Since f_{xy} and f_{yx} are continuous, recall that $D = \{(x, y) \in \mathbb{R}^2 : a \leq x \leq b, c \leq y \leq d\}$, calculate

$$\iint_{D} f_{xy}(x,y)dxdy = \iint_{D} f_{xy}(x,y)dydx = \int_{a}^{b} \int_{c}^{d} \frac{\partial}{\partial y} (\frac{\partial f}{\partial x}(x,y))dydx$$
$$= \int_{a}^{b} \frac{\partial f}{\partial x}(x,d) - \frac{\partial f}{\partial x}(x,c)dx$$
$$= f(b,d) - f(a,d) - (f(b,c) - f(a,c))$$
$$= f(a,c) + f(b,d) - f(a,d) - f(b,c).$$

Similarly,

$$\iint_{D} f_{yx}(x,y)dxdy = \int_{c}^{d} \int_{a}^{b} \frac{\partial}{\partial x} (\frac{\partial f}{\partial y}(x,y))dxdy$$
$$= \int_{c}^{d} \frac{\partial f}{\partial y}(b,y) - \frac{\partial f}{\partial y}(a,y)dy$$
$$= f(b,d) - f(b,c) - (f(a,d) - f(a,c))$$
$$= f(a,c) + f(b,d) - f(a,d) - f(b,c).$$

Therefore, $\iint_D f_{xy}(x,y) dxdy = \iint_D f_{yx}(x,y) dxdy = f(a,c) + f(b,d) - f(a,d) - f(b,c)$. For any (x_0,y_0) , we choose $D_n = [x_0,x_0+\frac{1}{n}] \times [y_0,y_0+\frac{1}{n}]$ and let n go to infinity, we have $f_{yx}(x_0,y_0) = f_{xy}(x_0,y_0)$ which implies Clairaut's theorem. (This explanation is optional and no point for this part.

32. Use the method of Lagrange multipliers to find the maximum and minimum values of f(x,y) = x on the curve defined by

$$y^2 + x^4 - x^3 = 0.$$

1-30 Lecture 1:

We apply the Lagrange Multiplier, we first solve

$$\nabla f(x,y) = \lambda \nabla g(x,y), g(x,y) = y^2 + x^4 - x^3 = 0.$$

Note that $\nabla f(x,y) = (1,0) = \lambda \nabla g(x,y), \nabla g(x,y) = (4x^3 - 3x^2, 2y)$, our solution is given by the following two points

$$(x,y) = (1,0), (0,0); \quad \lambda = 1$$

Second, we solve

$$\nabla g(x,y) = (0,0), g(x,y) = y^2 + x^4 - x^3 = 0.$$

The only solution is given by (x, y) = (0, 0). Finally, we find that the curve $y^2 + x^4 - x^3 = 0$ is closed and no end point exists.

In summary, we have two candidates (1,0) and (0,0) and the maximum is 1 which occurs at (1,0) and the minimum is 0 which occurs at (0,0).

33.

(i) Convert the following equations in Cartesian coordinates to spherical coordinates:

$$z = -\sqrt{x^2 + y^2}.$$

(ii) Convert the following equations in Cartesian coordinates to cylindrical coordinates:

$$z = \sqrt{5x^2 + 5y^2}.$$

(i) The spherical coordinates are given by

$$\begin{cases} x = \rho \sin(\varphi) \cos(\theta) \\ y = \rho \sin(\varphi) \sin(\theta) \\ z = \rho \cos(\varphi) \end{cases}$$

we have $\cos \varphi = -|\sin \varphi|$. (15 points)

(ii) The cylindrical coordinates are given by

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \\ z = z \end{cases}$$

we have $z = \sqrt{5}r$. (15 points)

34. Consider the map defined by

$$(u, v) = F(x, y) = (y + xy, y - xy).$$

- (i) Show that F has an inverse map by finding F^{-1} explicitly.
- (ii) Find the derivative matrices DF(x,y) and $DF^{-1}(u,v)$ and verify that

$$DF(x,y)DF^{-1}(u,v) = I.$$

(iii) Verify that the Jacobians satisfy

$$\frac{\partial(x,y)}{\partial(u,v)} = \left[\frac{\partial(u,v)}{\partial(x,y)}\right]^{-1}.$$

1-32 Lecture 1:

For part (i), we need to solve

$$\begin{cases} u = y(1+x) \\ v = y(1-x) \end{cases}$$
 (1.11)

and the solution is

$$\begin{cases} x = \frac{u-v}{u+v}, \\ y = \frac{u+v}{2}. \end{cases}$$
 (1.12)

Therefore, the explicit expression is

$$F^{-1}(u,v) = (\frac{u-v}{u+v}, \frac{u+v}{2}),$$

which exists when $u + v \neq 0$ (1 point).

For part (ii), the derivative matrix can be calculated directly using the definition

$$DF(x,y) = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial u}{\partial y} \end{pmatrix} = \begin{pmatrix} y & 1+x \\ -y & 1-x \end{pmatrix},$$

$$DF^{-1}(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial v}{\partial v} \end{pmatrix} = \begin{pmatrix} \frac{2v}{(u+v)^2} & \frac{-2u}{(u+v)^2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

Then we can direct verify using $x = \frac{u-v}{u+v}, y = \frac{u+v}{2}$:

$$\begin{split} DF(x,y)DF^{-1}(u,v) &= \begin{pmatrix} y & 1+x \\ -y & 1-x \end{pmatrix} \begin{pmatrix} \frac{2v}{(u+v)^2} & \frac{-2u}{(u+v)^2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \\ &= \begin{pmatrix} \frac{2vy}{(u+v)^2} + \frac{1+x}{2} & \frac{-2uy}{(u+v)^2} + \frac{1+x}{2} \\ \frac{-2vy}{(u+v)^2} + \frac{1-x}{2} & \frac{2uy}{(u+v)^2} + \frac{1-x}{2} \end{pmatrix} \\ &= \begin{pmatrix} \frac{v}{u+v} + \frac{u}{u+v} & \frac{-u}{u+v} + \frac{u}{u+v} \\ \frac{-v}{u+v} + \frac{v}{u+v} & \frac{u}{u+v} + \frac{v}{u+v} \end{pmatrix} = I. \end{split}$$

For part (iii),

$$\frac{\partial(x,y)}{\partial(u,v)} = \det(DF^{-1}(u,v)) = \frac{1}{u+v}, \quad \frac{\partial(u,v)}{\partial(x,y)} = \det(DF(x,y)) = 2y = u+v.$$

Therefore, we have

$$\frac{\partial(x,y)}{\partial(u,v)} = \left[\frac{\partial(u,v)}{\partial(x,y)}\right]^{-1}.$$

Lecture 1: 1-33

35. Miscellaneous problems.

- (i) Find the local maximum and minimum of the function $f(x,y) = (1 + e^y)\cos x ye^y$ and the corresponding critical points if they exist.
- (ii) Suppose f(x,y), g(x,y) are two functions with continuous partial derivatives. Show that if for any $(x,y) \in \mathbb{R}^2$ we have

$$\frac{\partial f}{\partial x}(x,y)\frac{\partial g}{\partial y}(x,y)\neq \frac{\partial f}{\partial y}(x,y)\frac{\partial g}{\partial x}(x,y),$$

then the number of solutions of $\begin{cases} f(x,y) = 0 \\ g(x,y) = 0 \end{cases}$ in the region $\{(x,y) \in \mathbb{R}^2 : 0 \le x \le 100, 0 \le y \le 50\}$ is finite.

(Hint: Use the Inverse Mapping Theorem.

Additional hint: You can freely use the following property: if the region $\{(x,y) \in \mathbb{R}^2 : 0 \le x \le 100, 0 \le y \le 50\}$ is covered by infinitely many neighbors(open sets) $\{O_i : i \in I\}, |I| = +\infty$, i.e.,

$$\{(x,y) \in \mathbb{R}^2 : 0 \leqslant x \leqslant 100, 0 \leqslant y \leqslant 50\} \subseteq \bigcup_{i \in I} O_i$$

then there are finitely many neighbors covering the region, i.e.,

$$\exists J \subseteq I, |J| < +\infty, \quad \{(x,y) \in \mathbb{R}^2 : 0 \leqslant x \leqslant 100, 0 \leqslant y \leqslant 50\} \subseteq \bigcup_{i \in J} O_i$$

)

1-34 Lecture 1:

(i) We calculate the first derivatives

$$f_x(x,y) = -\sin x(1+e^y), \quad f_y(x,y) = (\cos x - 1 - y)e^y$$

and second derivatives

$$f_{xx}(x,y) = -\cos x(1+e^y), \quad f_{xy}(x,y) = -e^y \sin x, \quad f_{yy}(x,y) = (\cos x - 2 - y)e^y.$$

To find the critical points, we set $f_x = f_y = 0$, then we have a sequence of critical points given by

$$(x_n, y_n) = (n\pi, \cos n\pi - 1), \quad n = 0, \pm 1, \pm 2, \cdots$$

For even n, $(x_n, y_n) = (n\pi, 0)$, and we can show that $\begin{pmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & -1 \end{pmatrix}$ is negative definite thus $(n\pi, 0)$ for n even are local maxima and the local maximum value is (1 point)

$$(1 + e^0)\cos n\pi - 0e^0 = 2.$$

For odd n, $(x_n, y_n) = (n\pi, -2)$, and we can show that $\begin{pmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{pmatrix} = \begin{pmatrix} 1 + e^{-2} & 0 \\ 0 & -e^{-2} \end{pmatrix}$ which is indefinite and via second derivative test, it is a saddle point.

In summary, we only have local maxima $(n\pi,0)$ with n even integers, and the local maximum value is 2.

(ii) Construct a mapping from \mathbb{R}^2 to \mathbb{R}^2 as F(x,y)=(f(x,y),g(x,y)). Denote the region $D=\{(x,y)\in\mathbb{R}^2:0\leqslant x\leqslant 100,0\leqslant y\leqslant 50\}$. Then the solution of $\begin{cases}f(x,y)=0\\g(x,y)=0\end{cases}$ in D is given by

the solution of F(x,y) = (0,0) in D. By inverse mapping theorem, for any $(x_0,y_0) \in D$, we have a neighborhood $O(x_0,y_0)$ including (x_0,y_0) such that F is injective in $O(x_0,y_0)$. Then we have

$$D \subseteq \bigcup_{(x_0, y_0) \in D} O(x_0, y_0).$$

Since D is bounded and closed, there exist finitely many $(x_i, y_i), 1 \le i \le n$ such that (use the additional hint).

$$D \subseteq \bigcup_{i=1}^{n} O(x_i, y_i).$$

Note that for each i, F is injective in $O(x_i, y_i)$, there is at most one solution of F(x, y) = (0, 0) in $O(x_i, y_i)$. Therefore, there are at most n solution in $D \subseteq \bigcup_{i=1}^n O(x_i, y_i)$.

An alternative solution: prove by contradiction. Suppose there are infinitely many solutions, then there must be a sequence $\{(x_n, y_n)\}_{n\in\mathbb{N}}$ such that $(x_n, y_n) \to (x_0, y_0)$ such that $F(x_n, y_n) = 0$.