Applied Cryptography and Network Security

Adam J. Lee adamlee@cs.pitt.edu

6111 Sennott Square

Lecture #8: RSA January 30, 2014

Didn't we learn about RSA last time?

During the last lecture, we saw what RSA does and learned a little bit about how we can use those features

Our goal today will be to explore

- Why RSA actually works
- Why RSA is efficient* to use
- Why it is reasonably safe to use RSA

In short, it's a details day...

Note: Efficiency is a general term ©

How do we choose large, pseudo-random primes?!

Key generation:

- Choose two large prime numbers p and q, compute n = pq
- Compute $\varphi(n) = (p-1)(q-1)$
- Choose an integer d such that $gcd(d, \varphi(n)) = 1$
- Calculate *e* such that $ed \equiv 1 \pmod{\varphi(n)}$
- Public key: n, e
- Private key: p, q, d

why is $\varphi(n)$ = (p-1)(g-1)

How can we do this?

This seems tricky, too

Isn't this expensive?

Usage:

- Encryption: M^e (mod n)
- Decryption: $C^d \pmod{n} = M^{ed} \pmod{n} = M^{k\varphi(n)+1} \pmod{n} = M^1 \pmod{n} = M$

Why does this work?

Before we can do anything, we need a few large, pseudo-random primes

If our numbers are small, primality testing is pretty easy

- Try to divide n by all numbers less than √n
- The Sieve of Eratosthenes is a general extension of this principle

RSA requires big primes, so brute force testing is not an option (Why?)

To choose the types of numbers that RSA needs, we instead use a probabilistic primality testing method test : $Z \times Z \rightarrow \{T, F\}$

- test(n, a) = F means that n is composite based on the witness a
- test(n, a) = T means that n is probably prime based on the witness a

To test a number n for primality:

- 1. Randomly choose a witness a
- 2. if test(n, a) = F, n is composite
- 3. if test(n, a) = T, loop until we're reasonably certain that n is prime

k repetitions means PLn composite] = 2-k

Often times with probability = 1/2

Fermat's little theorem can help us!

Fermat's little theorem: Given a prime number p and a natural number a such that $1 \le a < p$, then $a^{p-1} \equiv 1 \mod p$.

How does this help with primality testing?

- If $a^{p-1} \neq 1 \mod p$, then p is definitely composite
- If $a^{p-1} \equiv 1 \mod p$, then p is probably prime

Note: Some composite numbers will always pass this test (Yikes!)

- These are called Carmichael numbers
- Carmichael numbers are rare, but may still be found
- Other primality tests (e.g., Miller-Rabin) avoid detecting these numbers

This helps us test whether some number is prime. But how exactly does this help us generate RSA keys?

Putting it all together...

The prime number theorem tells us that, on average, the number of primes less than n is approximately n/ln(n)

- That is, P[n prime] ≈ 1/ln(n)
- Searching for a prime is hard, but not ridiculously so

How do we choose large, pseudo-random primes?!

Key generation:

- Choose two large prime numbers p and q, compute n = pq
 - Compute $\varphi(n) = (p-1)(q-1)$
 - Choose an integer d such that $gcd(d, \varphi(n)) = 1$
 - Calculate e such that $ed \equiv 1 \pmod{\varphi(n)}$
 - Public key: n, e
 - Private key: p, q, d

This seems tricky, Isn't this

expensive?

Usage:

- Encryption: M^e (mod n)
- Decryption: $C^d \pmod{n} = M^{ed} \pmod{n} = M^{k\varphi(n)+1} \pmod{n} = M^1 \pmod{n} = M$

I THE TOP OF THE PARTY OF THE P

φ(n) is called Euler's totient function

Definition: The totient function, $\varphi(n)$, counts the number of elements less than n that are relatively prime to n

For an RSA modulus n = pq, calculating $\varphi(n)$ is actually pretty simple

Note that we need to consider each of the pq numbers \leq n

- Clearly, all multiples of p share a common factor with n
 - ➤ There are q such numbers {p, 2p, 3p, ..., qp}
- Similarly, all multiples of q share a common factor with n
 - ➤ There are p such numbers {q, 2q, 3q, ..., pq}
- So, we have that φ{n} = pq p q + 1
- As a result, $\varphi(n) = pq p q + 1 = (p-1)(q-1)$

The +1 controls - for subtracting pg twice

Note: Calculating $\varphi(n)$ is easy because we know how to factor n!

Key generation:

- Choose two large prime numbers p and q, compute n = pq
- Compute φ(n) = (p-1)(q-1)
 Choose an integer d such that gcd(d, φ(n)) = 1
 - Calculate *e* such that $ed \equiv 1 \pmod{\varphi(n)}$
 - Public key: n, e
 - Private key: p, q, d

why is φ (n) = (p-1)(g-1)

How can we do this?

This seems tricky, too _____ Isn't this _____ expensive?

Usage:

- Encryption: M^e (mod n)
- Decryption: $C^d \pmod{n} = M^{ed} \pmod{n} = M^{k\varphi(n)+1} \pmod{n} = M^1 \pmod{n} = M$

Why does this work?

Review of greatest common divisors

Definition: Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and $d \mid b$ is called the greatest common divisor of a and b, and is denoted by gcd(a, b).

Note: We can (naively) find GCDs by comparing the common divisors of two numbers.

Example: What is the GCD of 24 and 36?

- Factors of 24: 1, 2, 3, 4, 6, 12
- Factors of 36: 1, 2, 3, 4, 6, 9, 12, 18
- \therefore gcd(24, 36) = 12

Wait. Aren't we dealing with numbers that are hard to factor?

Luckily, computing GCDs is not all that hard...

Intuition: Rather than computing the GCD of two big numbers, we can instead compute the GCD of smaller numbers that have the same GCD!

Interesting observation: gcd(x, y) is the same as gcd(x-y, y)

Wait, what?

First, we must show that $d \mid x \wedge d \mid y \rightarrow d \mid (x - y)$

- •If $d \mid x$ and $d \mid y$, then x = kd and y = jd
- •Then x-y = kd jd = (k-j)d
- •So, $d \mid x \land d \mid y \rightarrow d \mid (x y)$

Ok, so d is a divisor of (x - y), but is it the greatest divisor?

- The divisors of (x y) are a subset of of the divisors of x and the divisors of y
- •Since d = gcd(x, y), it is the greatest of the remaining divisors

Euclid's algorithm optimizes this process!

Euclid's algorithm finds gcd(x,y) as follows:

• Set
$$r_{-1} = x$$
, $r_{-2} = y$, $n = 0$

- While $r_{n-1} != 0$
 - \gg divide r_{n-2} by r_{n-1} to find q_n and r_n such that $r_{n-2} = q_n r_{n-1} + r_n$
 - \gg n = n + 1
- $gcd(x, y) = r_{n-2}$

Example: Computing gcd(414, 662)

n	\mathbf{q}_{n}	r _n
-2	-	662
-1	-	414
0	1	248
1	1	166
2	1	82
3	2	2
4	41	0

That's all fine and good, but how does this help us compute $d \equiv 1 \mod \varphi(n)$?

Method 1: Use Euclid's algorithm

- Choose a random d
- Use Euclid's algorithm to determine wither $gcd(d, \varphi(n)) = 1$
- Repeat as needed

Method 2: We can just choose a large prime number r > max(p, q)

Why does method 2 work?

- r is a prime number, so it has no divisors other than itself and 1
- r is larger than p and q, so r ≠ p and r ≠ q

Note that in Method 2, d must be chosen from a large enough set that an adversary cannot simply find it through blind trial and error

Key generation:

- Choose two large prime numbers p and q, compute n = pq
- Compute $\varphi(n) = (p-1)(q-1)$
- Choose an integer d such that $gcd(d, \varphi(n)) = 1$
 - Calculate *e* such that $ed \equiv 1 \pmod{\varphi(n)}$
 - Public key: n, e
 - Private key: p, q, d

How can we do this?

This seems tricky, too _____ Isn't this _____ expensive?

Usage:

- Encryption: M^e (mod n)
- Decryption: $C^d \pmod{n} = M^{ed} \pmod{n} = M^{k\varphi(n)+1} \pmod{n} = M^1 \pmod{n} = M$

Why does this work?

It turns out that Euclid's algorithm can help us compute e = d⁻¹, too

If we maintain a little extra state, we can figure out numbers u_n and v_n such that $r_n = u_n x + v_n y$

If x and y are relatively prime, this will allow us to calculate x-1

```
• 1 = u_n x + v_n y // If x and y are relatively prime, r_n = 1

• u_n x = 1 - v_n y // Subtract v_n y from both sides

• u_n x \equiv 1 \mod y // Definition of congruence

• So u_n = x^{-1}! // Definition of inverse
```

The extended Euclid's algorithm works as follows:

• Set
$$r_{-1} = y$$
, $r_{-2} = x$, $n = 0$, $u_{-2} = 1$, $v_{-2} = 0$, $u_{-1} = 0$, $v_{-1} = 1$

• While $r_{n-1} != 0$

 \rightarrow divide r_{n-2} by r_{n-1} to find q_n and r_n such that $r_{n-2} = q_n r_{n-1} + r_n$

$$> u_n = u_{n-2} - q_n u_{n-1}$$

$$> V_n = V_{n-2} - q_n V_{n-1}$$

$$>$$
 n = n + 1

•
$$gcd(x, y) = r_{n-2} = u_{n-2}x + v_{n-2}y$$

This makes $r_n = u_n x + v_n y$ for n = -1 and n = -2

ERSITE CONTROL OF THE PROPERTY OF THE PROPERTY

How about an example?

Example: Find the inverse of 797 mod 1047

n	q_n	r_n	u _n	v _n
-2		797	1	0
-1		1047	0	1
0	0	797	1	0
1	1	250	-1	1
2	3	47	4	-3
3	5	15	-21	16
4	3	2	67	-51
5	7	1	-490	373

So, 1 = -490*797 + 373*1047

- -490*797 = 1 + (-373)1047
- $-490*797 \equiv 1 \mod 1047$
- In other words, -490 is the inverse of 797 mod 1047

Key generation:

- Choose two large prime numbers p and q, compute n = pq
- Compute $\varphi(n) = (p-1)(q-1)$
- Choose an integer d such that $gcd(d, \varphi(n)) = 1$
- ✓ Calculate *e* such that $ed \equiv 1 \pmod{\varphi(n)}$
 - Public key: n, e
 - Private key: p, q, d

This seems tricky, too Isn't this expensive?

Usage:

- Encryption: M^e (mod n)
- Decryption: $C^d \pmod{n} = M^{ed} \pmod{n} = M^{k\varphi(n)+1} \pmod{n} = M^1 \pmod{n} = M$

Why does this work?

Isn't exponentiation really expensive?

Exponentiation can be sped up using a trick called successive squaring

```
int pow(int m, int e)
  if(e is even)
    return pow(m*m, e/2)
  else
    return m * pow(m, e - 1)
```

For example, consider computing 2¹⁵

- Naive method: 2 * 2 * 2 * ... * 2 = 32,768
- Fast method: $2^{15} = 2 * 4^7$

O(e) multiplications

· O(log(e)) multiplications

Key generation:

- Choose two large prime numbers p and q, compute n = pq
- Compute $\varphi(n) = (p-1)(q-1)$
- Choose an integer d such that $gcd(d, \varphi(n)) = 1$
- ✓ Calculate *e* such that $ed \equiv 1 \pmod{\varphi(n)}$
 - Public key: *n*, *e*
 - Private key: p, q, d

Usage:

- Encryption: M^e (mod n)
 - Decryption: $C^d \pmod{n} = M^{ed} \pmod{n} = M^{k\varphi(n)+1} \pmod{n} = M^1 \pmod{n} = M$

Isn't this expensive?

Why does decryption work?

Note: Decryption will work if and only if C^d mod n = M

```
C^d \bmod n = M^{ed} \bmod n \qquad // C = M^e \bmod n = M^{k\phi(n)+1} \bmod n \qquad // ed \equiv 1 \bmod \phi(n), \text{ so ed } = k\phi(n) + 1 = M^1 \bmod n \qquad // ?!? = M \bmod n \qquad // M^1 = M
```

The only hitch in showing the correctness of the decryption process is proving that $M^{k\phi(n)+1}$ mod $n=M^1$ mod n

Fortunately, two smart guys can help us out with this...

Pierre de Fermat 160? - 1665

Leonhard Euler 1707 - 1783

First, we need to learn about the set Z_n*

Definition: Z_n* is the set of all integers relatively prime to n

Example: Z_{10}^*

×	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

Interesting note: \forall a, b \in Z_n^* : ab \in Z_n^*

- a relatively prime to n means that $\exists u_1, v_1 : u_1a + v_1n = 1$
- b relatively prime to n means that $\exists u_2, v_2 : u_2b + v_2n = 1$
- Multiplying gives us $(u_1u_2)ab + (u_1v_2a + v_1u_2b + v_1v_2n)n = 1$

The above states that Z_n^* is closed under multiplication

This leads us to something called Euler's theorem

Theorem: $\forall a \in Z_n^* : a^{\varphi(n)} \equiv 1 \mod n$

Proof:

- Multiply all $\varphi(n)$ elements of Z_n^* together, calling the product x
- Note that $x \in Z_n^*$, and has an inverse x^{-1}
- Now, multiply each element of Z_n^* by a and multiply each of the resulting elements together. This will give us $a^{\varphi(n)}x$.
- Multiplying each element of Z_n^* actually just rearranges these elements.
- As a result, we have that $a^{\phi(n)}x = x$.
- If we divide both sides of the equation by x, we get that $a^{\varphi(n)} = 1$. \Box

Ok, so what does Euler's theorem have to do with RSA?

We can restate Euler's theorem so that it more clearly connects to RSA math

Theorem: $\forall a \in Z_n^*, k \in Z^+$: $a^{k\phi(n)+1} \equiv a \mod n$

Proof:
$$a^{k\phi(n)+1} = a^{k\phi(n)}a = a^{\phi(n)k}a = 1^k a = a \Box$$

From Euler's theorem!

Now, in RSA

- All of our math is done mod n
- Our message space is chosen from elements of Z_n*
- ed \equiv 1 mod $\varphi(n)$, so ed = $k\varphi(n)$ + 1 for some k
- .. $M^{ed} \mod n = M^{k\varphi(n)+1} \mod n = M^1 \mod n = M$

Decryption works!

Key generation:

• Choose two large prime numbers p and q, compute n = pq

• Compute $\varphi(n) = (p-1)(q-1)$

• Choose an integer d such that $gcd(d, \varphi(n)) = 1$

✓ • Calculate *e* such that $ed \equiv 1 \pmod{\varphi(n)}$

• Public key: n, e

Private key: p, q, d

Usage:

✓ • Encryption: M^e (mod n)

■ Decryption: $C^d \pmod{n} = M^{ed} \pmod{n} = M^{k\varphi(n)+1} \pmod{n} = M^1 \pmod{n} = M$

Now, why exactly is RSA safe to use?

In the original RSA paper*, the authors identify four avenues for attacking the mathematics behind RSA

- Factoring n to find p and q
- 2. Determining $\varphi(n)$ without factoring n
- 3. Determining d without factoring n or learning $\varphi(n)$
- 4. Learning to take eth roots modulo n

As it turns out, all of these attacks are thought to be hard to do

- But you shouldn't take my word for it...
- Let's see why!

^{*}R.L. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital Signatures and Public-Key Cryptosystems, Communications of the ACM 21(2): 120-126, Feb. 1978.

It turns out that factoring is a hard* problem

First of all, why is factoring an issue?

- n is the public modulus of the RSA algorithm
- If we can factor n to find p and q, we can compute $\varphi(n)$
- Given $\varphi(n)$ and e, we can easily compute the decryption exponent d

Fortunately, mathematicians believe that factoring numbers is a very difficult problem. History backs up this belief.

The fastest general-purpose algorithm for integer factorization is called the general number field sieve. This algorithm has running time:

$$O(e^{(c+o(1))(\log n)^{\frac{1}{3}}(\log\log n)^{\frac{2}{3}}})$$

Note: This running time is sub-exponential

- i.e., Factoring can be done faster than brute force
- This explains why RSA keys are larger than AES keys
 - > RSA: Typically 1024-2048 bits
 - > AES: Typically 128 bits

What about computing $\varphi(n)$ without factoring?

Question: Why would the ability to compute $\varphi(n)$ be a bad thing?

• It would allow us to easily compute d, since ed \equiv 1 mod $\varphi(n)$

Good news: If we can compute $\varphi(n)$, it will allow us to factor n

• Note 1:
$$\varphi(n) = n - p - q + 1$$

= $n - (p + q) + 1$

- Rewriting gives us $(p + q) = \varphi(n) n 1$
- Note 2: $(p q) = \int ((p+q)^2 4n)$
- Note 3: (p + q) (p q) = 2q
- Finally, given q and n, we can easily compute p

What does this mean?

- If factoring is actually hard, then so is computing $\varphi(n)$ without factoring
- This is called a reduction

$$(p + q)^2 - 4n = p^2 + 2pq + q^2 - 4n$$

= $p^2 + 2pq + q^2 - 4pq$
= $p^2 - 2pq + q^2$
= $(p - q)^2$

What about computing d without factoring n or knowing $\varphi(n)$?

As it turns out, if we can figure out d without knowing $\phi(n)$ and without factoring n, d can be used to help us factor n

Given d, we can compute ed-1, since we know e

Note: ed - 1 is a multiple of $\varphi(n)$

- ed \equiv 1 mod φ (n)
- ed = $1 + k\varphi(n)$
- ed 1 = kφ(n)

It has been shown that n can be efficiently factored using any multiple of $\varphi(n)$. As such, if we know e and d, we can efficiently factor n.

Are there any other attacks that we need to worry about?

Recall: C = Me mod n

- e is part of the public key, so the adversary knows this
- If we could compute eth roots mod n, we could decrypt without d

It is not known whether breaking RSA yields an efficient factoring algorithm, but the inventors conjecture that this is the case

- This conjecture was made in 1978
- To date, it has either been proved or disproved

Conclusion: Odds are that breaking RSA efficiently implies that factoring can be done efficiently. Since factoring is hard, RSA is probably safe to use.

THI CAN THE TANK THE

RSA Wrap Up

Hopefully you now have a better understanding of RSA

- How each step of the process works
- How these steps can be made reasonably efficient
- Why RSA is safe to use

Unfortunately, this is not the end of the story...

- Although theoretically secure, implementations can be broken
- We'll revisit this in a later lecture

Next time: Secret sharing and threshold cryptography