

Quantum Tensor Networks, Stochastic Processes, and Weighted Automata

Sandesh Adhikary* University of Washington

Siddarth Srinivasan* University of Washington

Jacob Miller MILA & DIRO, Université de Montréal

Guillaume Rabusseau MILA & DIRO, Université de Montréal

Byron Boots University of Washington

Link to the full paper

Abstract

We show equivalence between various probabilistic models developed independently in the physics, machine learning, and formal language communities.

- Modeling joint probability distributions over sequences has been studied from many perspectives.
- Specifically, matrix product states (MPS) [1] and associated quantum tensor networks in physics bear striking resemblance to stochastic processes and weighted automata.
- We show how exactly these model classes relate, focusing on the uniform (stationary) versions of quantum tensor networks.

The Non-Terminating Limit

- ▶ Within quantum tensor networks, we focus on *uniform* MPS where all tensor cores are identical.
- ightharpoonup The probability of any sequence y_1, \dots, y_N in a non-terminating uMPS is computed by marginalizing over infinitely many future observations

$$P(y_1, \cdots, y_T) = \lim_{N \to \infty} \sum_{y_N} \cdots \sum_{y_{T+1}} P(y_1, \cdots, y_T, y_{T+1}, \cdots, y_N)$$

We assume the tensor networks are semi-infinitely long, so marginal probabilities computed from the fixed boundary to any core are not affected by the distance from the boundary.

Quantum Tensor Networks

- **▶** uBM = Uniform Born Machine
- uLPS = Uniform Locally Purified State
- **▶** uMPS = Uniform Matrix Product State

Stochastic Processes

- ► HMM = Hidden Markov Model
- ► NOOM = Norm Observable Operator Model
- ► HQMM = Hidden Quantum Markov Model
- **▶** PSR = Predictive State Representation

Weighted Automata

- ► PA = Probabilistic Automata
- ► QWA = Quadratic Weighted Automata
- SWA = Stochastic Weighted Automata

uMPS = PSR = SWA

ightharpoonup A **uMPS** represents the joint distribution of a sequence $y_1 \cdots y_N$ as a tensor-train decomposition with matrices \mathbf{A}_{y_i} , an evaluation functional $\vec{\sigma}^{\dagger}$, and an initial state vector $\vec{\rho}_0$

$$P(y_1,\cdots,y_N)=ec{\sigma}^\dagger \mathbf{A}_{y_N}\cdots \mathbf{A}_{y_1}ec{
ho}_0$$

► The *effective* evaluation functional of a **non-terminating uMPS** converges to the fixed point $\vec{\sigma}^{*\dagger}$ of its transfer operator $\sum_{y} \mathbf{A}_{y}$

$$N o \infty \implies ec{\sigma}^{*\dagger} \sum_y (\mathbf{A}_y)^{N-t} o ec{\sigma}^{*\dagger}$$
 where $ec{\sigma}^{*\dagger} \sum_y \mathbf{A}_y = ec{\sigma}^{*\dagger}$

- ► An (uncontrolled) **PSR** is also a tensor-train decomposition of the joint distribution over sequences, but its evaluation functional $\vec{\sigma}^{\dagger}$ is constrained to be the fixed point of its transfer operator. PSRs are thus equivalent to uMPS.
- ► An **SWA** is a weighted automaton that computes a probability distribution. These models are also equivalent to PSRs and uMPS.
- ► The Negative Probability Problem: It is undecidable whether a given set of PSR, uMPS, or SWA parameters will assign negative probability to some arbitrary length-sequence [2].

uLPS = HQMM

► A **uLPS** is a type of uMPS [3] where model parameters are expressed in a special Schmidt decomposition, which ensures that the model always assigns non-negative probabilities $P(y_1, \dots, y_N)$ computed as follows

$$\underbrace{\left(\sum_{\beta_L} \overline{\mathbf{K}}_{\beta_L,L}^T \otimes \mathbf{K}_{\beta_L,L}^T\right)}_{\vec{\sigma}} \left(\sum_{\beta} \overline{\mathbf{K}}_{\beta,y_N} \otimes \mathbf{K}_{\beta,y_N}\right) \cdots \left(\sum_{\beta} \overline{\mathbf{K}}_{\beta,y_1} \otimes \mathbf{K}_{\beta,y_1}\right) \underbrace{\left(\sum_{\beta_R} \overline{\mathbf{K}}_{\beta_R,R} \otimes \mathbf{K}_{\beta_R,R}\right)}_{\vec{\rho}_0}$$

► An **HQMM** is a type of PSR [4] where model parameters are constructed similarly to uLPS, but the evaluation functional is fixed to be the vectorized identity $\vec{\mathbb{I}}^T$. As with a uLPS, HQMMs always return non-negative probabilities $P(y_1, \cdots, y_N)$ computed as

$$ec{\mathbb{I}}^T \left(\sum_{eta} \overline{\mathbf{K}}_{eta,y_N} \otimes \mathbf{K}_{eta,y_N}
ight) \;\; \cdots \;\; \left(\sum_{eta} \overline{\mathbf{K}}_{eta,y_1} \otimes \mathbf{K}_{eta,y_1}
ight) ec{
ho}_0$$

- We demonstrate that non-terminating uLPS and HQMMs are equivalent model classes.
- ► We also show that NOOMs are a *strict* subset of HQMMs or uLPS.

Figure 1 : All quantum tensor networks assumed to be non-terminating. The shaded area is potentially empty. Two model classes are equivalent if any joint distribution over sequences that can be represented by a model in one class (with finite parameters) can be represented exactly by a model in the other class (also with finite parameters).

uBM = NOOM = QWA

uBMs are a subset of uMPS where probabilities of sequences are computed with an additional the absolute-square to ensure non-negative probabilities.

$$P(y_1,\cdots,y_N) = \left| ec{lpha} \ ^\dagger \mathbf{A}^{y_N} \ldots \mathbf{A}^{y_1} ec{\omega}_0
ight|^2$$

► **NOOMs** are a subset of PSRs that enforces non-negative probabilities through the 2-norm.

$$P(y_1,\cdots,y_N) = \left|\left|oldsymbol{\phi}_{y_N} \ \cdots \ oldsymbol{\phi}_{y_1} ec{\psi_0}
ight|
ight|_2^2$$

- **QWAs** are a subset of SWAs designed to ensure non-negative probabilities through the 2-norm, similar to NOOMs.
- ▶ We show that non-terminating uBMS, NOOMs and QWA are equivalent model classes.

Non-negative uMPS = HMM = PA

- ► It is well known that an **HMM** is equivalent to a PSR/uMPS where all model parameters are non-negative and $\vec{\sigma}$ is fixed to be the ones vector $\vec{1}$.
- ► A PA is an SWA with non-negative parameters, and is equivalent to an HMM.
- ► HMMs avoid the negative probability problem at the cost of reduced expressiveness.
- ► We show that NOOMs/uBMs are also restrictive model classes as they do not encompass all finite dimensional HMMs i.e. HMM ⊄ NOOM/uBM.

Remarks

Whether the gap between HQMMs/uLPS and PSRs/uMPS is empty is unknown; this gap **is not** empty in the non-uniform

* denotes equal contribution

Connections raise the possibility of adopting learning algorithms from one framework to another; e.g., learning algorithm for HQMMs builds in physical (TP/CP/HP) constraints, unlike tensor networks

Figure 2 : Tensor network diagrams of all models considered. At the boundaries, filled circles are vectors and connecting lines (without circles) represent the vectorized identity.

Summary of Results

- ► HQMM = uLPS
- ► NOOM = uBM
- ► NOOM ⊂ HQMM
- **▶** uBM ⊄ HMM

► HMM ⊄ NOOM

References

- [1] Perez-Garcia, D., Verstraete, F., Wolf, M. M., and Cirac, J. I. (2006). Matrix product state representations. arXiv preprint quant-ph/0608197
- [2] Wiewiora, E. W. (2008). Modeling probability distributions with predictive state representations. PhD thesis, UC San Diego.
- [3] Glasser, I., Sweke, R., Pancotti, N., Eisert, J., and Cirac, I. (2019). Expressive power of tensor-network factorizations for probabilistic modeling. In Advances in Neural Information Processing Systems.
- [4] Adhikary, S., Srinivasan, S., Gordon, G., and Boots., B. (2020). Expressiveness and learning of hidden quantum Markov models. In Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics.