

Stephanie Vidovic k01505694, Simon Grundner k12136610 Institute of Signal Processing

- @ k01505694@students.jku.at
- @ k12136610@students.jku.at
- https://jku.at/isp

30. April 2025

UE04 Signalverarbeitung

Protokoll

Gruppe 13 - SoSe 2025

JOHANNES KEPLER UNIVERSITÄT LINZ Altenberger Straße 69 4040 Linz, Austria jku.at

Inhaltsverzeichnis

1.	Aufgabe		
	(a)	z-Transformierte	3
	(b)	Übertragungsfunktion	4
	(c)	Konvergenzgebiet	4
	(d)	Pol Nullstellen Diagramm	5
	(e)	Übertragungsfunktion in der z-Ebene	5
	(f)	Betragsgang	6
	(g)	System ohne existenter DTFT	7
2.	Aufgabe		
	(a)	Reihenentwicklung	8
	(b)	Partialbruchzerlegung	9
3.	Aufgabe		
	(a)	Blockschaltbild	11
	(b)	Übertragungsfunktion	11
	(c)	Stabilität	11
	(d)	Transformation des Eingangssignals	11
	(e)	Lösung der Differenzengleichung	11
	(f)	Plot für stationärer und transienter Anteil	12
	(g)	Alternative Lösung	13
Ar	Anhang		
Lit	Literatur		

1. Aufgabe

z-Transformation eines rekursiven Systems (15 Punkte)

Gegeben sei ein LTI-System beschrieben durch die Differenzengleichung

$$y[n] = \frac{1}{3}x[n] - \frac{1}{8}x[n-1] - \frac{1}{6}y[n-1] - \frac{1}{4}y[n-2]$$
 (1)

für $n \ge 0$ und y[-1] = y[-2] = 0

- (a) Berechnen Sie die z-Transformierte von y[n].
- (b) Bestimmen Sie die Übertragungsfunktion
- (c) Bestimmen Sie das Konvergenzgebiet (Region of convergence, ROC).
- (d) Skizzieren Sie das Pol- und Nullstellen Diagramm in der komplexe z-Ebene. Markieren Sie Pole mit einem 'x' und Nullstellen mit einem 'o'. Zeichnen Sie das Konvergenzgebiet (ROC) ein.
- (e) Berechnen Sie in MATLAB den Verlauf von |H(z)| in der komplexen z-Ebene in einem geeigneten Bereich. Nachdem der Betrag an den Polen ∞ groß wird, begrenzen Sie jene Werte auf einen vernünftigen Maximalwert. Erstellen Sie nun einen contour und surf plot. Tragen Sie den Realteil von z auf der x-Achse, den Imaginärteil von z auf der y-Achse und den resultierenden Betragsgang auf der z-Achse auf. Was können Sie von den Plots ablesen?
- (f) Berechnen Sie den Betragsgang der DTFT $|H\left(e^{j\Omega}\right)|$ und stellen Sie diesen in Matlab grafisch dar.
- (g) Geben Sie ein Beispiel für ein System an, für welches die DTFT nicht existiert. Dieses System soll die gleiche Form wie (1) haben, Sie dürfen lediglich die Koeffizienten ändern!

(a) z-Transformierte

Für die verzögerten Glieder wird die Rechenregel aus Tabelle 1-2 verwednet

$$Y(z) = \frac{1}{3}X(z) - \frac{1}{8}z^{-1}X(z) - \frac{1}{6}z^{-1}Y(z) - \frac{1}{4}z^{-2}Y(z)$$
$$Y(z)\left(1 + \frac{1}{6}z^{-1} + \frac{1}{4}z^{-2}\right) = X(z)\left(\frac{1}{3} - \frac{1}{8}z^{-1}\right)$$

$$Y(z) = X(z) \frac{\frac{1}{3} - \frac{1}{8}z^{-1}}{1 + \frac{1}{6}z^{-1} + \frac{1}{4}z^{-2}}$$

(b) Übertragungsfunktion

Hier muss nur noch X(z) auf die andere Seite gebracht werden

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\frac{1}{3} - \frac{1}{8}z^{-1}}{1 + \frac{1}{6}z^{-1} + \frac{1}{4}z^{-2}}$$

(c) Konvergenzgebiet

Um da Konvergenzgebiet zu ermitteln müssen zuerst die Pole der Übertragungsfunktion berechnet werden.

Numerische Werte dafür, werden auch vom Matlab-Script A1cd_pole_zeros.m ausgegeben.

$$p = -0.0833 \pm 0.4930i$$

Das Konvergenzgebiet beinhaltet alle z, deren Betrag größer als der der absolut größten Polstelle, also

$$ROC = \{ z \in \mathbb{C} : |z| > \max |p| \}$$

In diesem Fall (wird ebenfalls im Matlab Skript ausgegeben), für $|z| > \left| -\frac{1}{12} + j\frac{1}{12}\sqrt{35} \right| = 0.5$

(d) Pol Nullstellen Diagramm

Abbildung 1: Pol-Nullstellen Diagramm

Die ROC ist hierbei der gesamte Bereich außerhalb dem blau-strichliertem Kreis. Der Kreis selbst ist dabei nicht enthalten.

(e) Übertragungsfunktion in der z-Ebene

Im Kontourplot ist das Pol-Nullstellen Diagramm wieder zu erkennen. Die gelbe Ebene zeigt, dass der Betrag hier besonders groß wird. Wäre der Plot nicht limitiert, dann sogar unendlich groß.

Abbildung 2: Enter Caption

der Surface-Plot zeigt nochmal im 3 Dimensionalen wie die Polstellen in der z-Ebene aussehen.

Abbildung 3: Enter Caption

(f) Betragsgang

Der Betrag des Frequenzganges entsteht, wenn man den Betrag der Übertragungsfunktion am Einheitskreis auswertet. Hierbei ist vorausgesetzt, dass der Einheitskreis im Konvergenzbereich liegt. Bildlich kann die Auswertung am Einheitskreis auch in der z-Ebene dargestellt werden (Matlab-Script¹ A1cd_pole_zeros.m)

Abbildung 4: Auswertung am Einheitskreis in der z-Ebene

 $^{^{1}}$ Quelle: https://de.mathworks.com/help/signal/ref/zplane.html

(g) System ohne existenter DTFT

Der am Einheitskreis auszuwertende Frequenzgang existiert nur, wenn der Einheitskreis auch im Konvergenzgebiet liegt. Ein System, für das die DTFT nicht existiert besitzt daher Polstellen $|\mathbf{p}| \geq 1$. Durch experimentieren mit den Koeffizienten, hat z.B. das System

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\frac{1}{3} - \frac{1}{8}z^{-1}}{1 + z^{-1} + 2z^{-2}}$$

diese Eigenschaft mit $\max |p| = \sqrt{2}$

2. Aufgabe

Inverse z-Transformation (10 Punkte)

Berechnen Sie die inverse z-Transformation folgender Ausdrücke:

(a)

$$X_1(z) = \ln \left[2\left(\frac{1}{2} - z^{-1}\right) \right], \quad \text{mit } |z| > 2$$

(b)

$$X_2(z) = \frac{5}{z - \frac{1}{2} - \frac{3}{8}z^{-1}}$$

Tipp: Verwenden Sie in (a) die Potenzreihenentwicklung für $\ln(1+x)$.

(a) Reihenentwicklung

Zuerst wird die z-Transformierte in die Form ln(1 + x) gebracht

$$X_1(z) = \ln(1 - 2z^{-1})$$

In diesem Fall gilt also $x = -2z^{-1}$, und einsetzen in die Potenzreihenentwicklung des Logarithmus (3) liefert

$$X_1(z) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(-2z^{-1})^n}{n} = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(-2)^n}{n} z^{-n}$$

In der resultierenden Reihe lassen sich die zwei versetzt alternierenden Reihen in ein Vorzeichen Auflösen. Nun ähnelt die Reihe schon der Definition der z-Transformation (Tabelle 1-1) und es muss nur mehr ein Index-Shift vorgenommen werden.

$$X_1(z) = -\sum_{n=1}^{\infty} \frac{2^n}{n} z^{-n} = -\sum_{n=0}^{\infty} \frac{2^{(n+1)}}{n+1} z^{-(n+1)} = -2z^{-1} \left(\sum_{k=0}^{\infty} \frac{2^n}{n+1} z^{-n} \right)$$

Die Transformierte lässt sich nun mit dem kausalen Signal anschreiben

$$X_1(z) = -2z^{-1}\mathcal{Z}_n\left\{\frac{2^n}{n+1}u[n]\right\}(z) = -2z^{-1}\mathcal{Z}_n\{f[n]\}(z)$$

Die Multiplikation mit z^{-1} korrespondiert zu einer zeitlichen Verschiebung des Signals um 1 (Tabelle 1-2), und die Transformation lautet schließlich

$$X_1(z)$$
 $\bullet \sim x_1[n] = -2f[n-1] = -2\frac{2^{n-1}}{n-1+1}u[n-1] = -\frac{2^n}{n}u[n-1]$

(b) Partialbruchzerlegung

Erst wird der Ausdruck auf die Form

$$X_2(z) = \frac{b_0 + b_1 z^{-1} b_2 z^{-2}}{a_0 + a_1 z^{-1} a_2 z^{-2}}$$
 (2)

gebracht.

$$X_2(z) = \frac{5}{z - \frac{1}{2} - \frac{3}{8}z^{-1}} \cdot \frac{z^{-1}}{z^{-1}} = \frac{5z^{-1}}{1 - \frac{1}{2}z^{-1} - \frac{3}{8}z^{-2}}$$

Mit Matlab² kann der Ausdruck in die Partialbruchdarstellung gebracht werden:

liefert die Koeffizienten der Darstellung

$$X_2(z) = \frac{r_0}{1 - p_0 z^{-1}} + \dots + \frac{r_N}{1 - p_N z^{-1}} + k_0 + k_1 z^{-1} + \dots$$

Dabei ist N der Grad des Nennerpolynoms (ist Zählergrad > Nennergrad, liefert k die Koeffizienten des Polynoms nach der Integrierten Polynomdivision). r steht für residues und p für poles.

In diesem Fall ist b = [0, 5, 0] und a = [1, -1/2, -3/8] (siehe 2). residuez liefert

- r = [-3.77964473, 3.77964473]
- p = [-0.41143783, 0.91143783]
- k = [],

also den Term

$$X_2(z) = \frac{-3.78}{1 + 0.41z^{-1}} + \frac{3.78}{1 - 0.91z^{-1}} = \frac{-3.78z}{z + 0.41} + \frac{3.78z}{z - 0.91}$$

Für diese Darstellung lässt sich die Korrespondenz in Tabelle 2-1 anwenden.

$$x_2[n] = 3.78 \cdot u[n](0.91^n - (-0.41)^n)$$

 $^{^2} https://www.mathworks.com/help/signal/ref/residuez.html\\$

3. Aufgabe

Einschwingvorgang eines LTI-Systems (15 Punkte)

Gegeben sei ein System mit Differenzengleichung

$$y[n] = ay[n-1] + x[n]$$

- (a) Skizzieren Sie das Blockschaltbild des Systems.
- (b) Berechnen Sie die Übertragungsfunktion $H(z) = \frac{Y(z)}{X(z)}$
- (c) Für welchen Wertebereich von a ist das System stabil?
- (d) Das System wird nun mit folgender Eingangssequenz beaufschlagt:

$$x[n] = 3(-1)^n u[n]$$

Berechnen Sie dessen z-Transformierte X(z) analytisch!

- (e) Nachdem das Eingangssignal erst zum Zeitpunkt $\mathfrak{n}=0$ beaufschlagt wird, ergibt sich naturgemäß ein Einschwingvorgang sowie eine eingeschwungene Lösung im Ausgangssignal y[n]. Ermitteln Sie diese beiden Anteile mit Hilfe der z-Transformation für die gegebene Eingangssequenz $\mathfrak{x}[\mathfrak{n}]$ analytisch.
- (f) Stellen Sie nun die Ausgangssequenz y[n], als auch deren einzelne Anteile (Einschwingvorgang und die eingeschwungene Lösung) dar. Verwenden Sie dazu einen subplot in MATLAB, um diese drei Signale untereinander darzustellen. Wählen Sie im ersten Schritt einen vernünftigen Wert für a, sodass das System stabil ist. Wählen Sie in einem zweiten Schritt a so, sodass das System instabil wird. Fügen Sie die Diagramme für beide Fälle in Ihrem Protokoll ein.
- (g) Wie würden Sie diese Problemstellung ohne die z-Transformation lösen? Was wäre der Nachteil davon?

Tipp: Verwenden Sie für die Partialbruchzerlegung den Befehl residuez in MATLAB.

(a) Blockschaltbild

(b) Übertragungsfunktion

Für jeden Summenterm wird separat eine Transformation durchgeführt. Für die Verzögerung gilt der Rechensatz wie in Tabelle 1-2.

$$Y(z) = \alpha z^{-1} Y(z) + X(z) \quad \Longrightarrow \quad Y(z)(1 - \alpha z^{-1}) = X(z) \quad \Longrightarrow \quad H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - \alpha z^{-1}}$$

(c) Stabilität

Das System gilt als Stabil, wenn die absolut größte Polstelle innerhalb des Einheitskreises liegt. Die Übertragungsfunktion ist bereits so dargestellt, dass die Polstelle abgelesen werden kann, die hier α ist. Das heißt für Stabilität muss gelten $|\alpha| < 1$

(d) Transformation des Eingangssignals

Die Transformierte kann hier wieder mit der Korrespondenz (Tabelle 2-1) ermittelt werden

$$x[n] = 3(-1)^n u[n] \implies X(z) = \frac{3z}{z+1} = \frac{3}{1+z^{-1}}$$

(e) Lösung der Differenzengleichung

Das Signal y[n] ist die Lösung einer Differenzengleichung und kann genau wie im zeit kontinuierlichen Fall in eine homogene und in eine partikuläre Lösung zerlegt werden. Dazu muss zuerst die Lösung, hier über die z-Transformation, ermittelt werden.

$$Y(z) = H(z)X(z) = \frac{3}{1+z^{-1}} \cdot \frac{1}{1-az^{-1}} \stackrel{(*)}{=} 3 - \frac{3}{(1+a)(z+1)} + \frac{3a^2}{(1+a)(z-a)}$$

(*): Wurde mittels **Apart**[Yz]³ in Mathematica berechnet. Händisch wäre erst eine Polynomdivision und anschließend eine Partialbruchzerlegung des Restpolynoms notwendig.

³https://reference.wolfram.com/language/ref/Apart.html

Die Rücktransformation der einzelnen Terme und damit die Lösung der Differenzengleichung lautet

$$\begin{split} y[n] &= 3\mathcal{Z}_n\{1\}[n] - \frac{3}{1+\alpha}\mathcal{Z}_n\left\{\frac{1}{z+1}\right\}[n] + \frac{3\alpha^2}{1+\alpha}\mathcal{Z}_n\left\{\frac{1}{z-\alpha}\right\}[n] \\ &= 3\delta[n] + \frac{3}{1+\alpha}\left(-\mathcal{Z}_n\left\{\frac{z^{-1}z}{z+1}\right\}[n] + \alpha^2\mathcal{Z}_n\left\{\frac{z^{-1}z}{z-\alpha}\right\}[n]\right) \\ &= 3\delta[n] + \frac{3}{1+\alpha}\left(-\mathcal{Z}_n\left\{\frac{z}{z+1}\right\}[n-1] + \alpha^2\mathcal{Z}_n\left\{\frac{z}{z-\alpha}\right\}[n-1]\right) \\ &= 3\delta[n] + \frac{3}{1+\alpha}\left(-(-1)^{n-1}u[n-1] + \alpha^2\alpha^{n-1}u[n-1]\right) \\ &= 3\delta[n] + \frac{3((-1)^n + \alpha^{n+1})}{1+\alpha}u[n-1] \end{split}$$

für n=0 wäre der Term $\frac{3((-1)^n+a^{n+1})}{1+a}=3\delta[n]=3$. Der alleinstehende Deltaimpuls kann daher in den Einheitssprung mit aufgenommen werden, wodurch die Verschiebung um 1 verschwindet.

$$y[n] = \frac{3((-1)^n + a^{n+1})}{1+a}u[n]$$

Da wegen der Stabilität gilt, dass $|\alpha|<1,$ verschwindet der Term $\alpha^{n+1},$ wenn $n\to\infty$ und der stationärer / partikuläre Anteil ist:

Daher beschreibt der andere Summand den transienten / homogenen Anteil

$$y_p[n] = \frac{3(-1)^n}{1+\alpha} u[n] \qquad \qquad y_h[n] = \frac{3\alpha^{n+1}}{1+\alpha} u[n]$$

(f) Plot für stationärer und transienter Anteil

Abbildung 5: Signale mit unterschiedlichen Werten von $\mathfrak a$

(g) Alternative Lösung

In (e) wurde die z-Transformation zur Ermittlung der Lösung der Differenzengleichung verwendet. Das hatte den Vorteil, dass man die Algebraische Gleichung im z-Bereich lösen konnte. Um die Differenzengleichung rein im Zeitbereich zu Lösen, könnte man z.B. y[n] rekursiv in sich einsetzen und eine Reihe Bilden. Diese analytisch aufzulösen ist jedoch meist ein hoher Rechenaufwand.

Anhang

Z-Transformation

Tabelle 1: Rechensätze für kausale Signale

1.
$$X(z) = \mathcal{Z}_n\{x[n]\}(z) := \sum_{n=0}^{\infty} x[n]z^{-n}$$

2.
$$\mathcal{Z}_{\mathfrak{n}}\{x[\mathfrak{n}-k]\}(z) = z^{-k}\mathcal{Z}_{\mathfrak{n}}\{x[\mathfrak{n}]\}(z)$$

Tabelle 2: z-Korrespondenztabelle

1.
$$\frac{z}{z-a}$$
 $\circ - \bullet$ $a^n u[n]$

Testsignale

■ Kronecker Delta

$$\delta[n] = \begin{cases} 1 \text{ wenn } n = 0 \\ 0 \text{ sonst} \end{cases}$$

■ Sprungfunktion

$$u[n] = \begin{cases} 1 \text{ wenn } n \ge 0 \\ 0 \text{ sonst} \end{cases}$$

Potenzreihen

Logarithmus

$$\ln(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$
 (3)

Literatur

Feedback