WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C07D 515/00

A2

(11) International Publication Number:

WO 00/69862

(43) International Publication Date: 23 November 2000 (23.11.00)

(21) International Application Number:

PCT/GB00/01852

(22) International Filing Date:

15 May 2000 (15.05.00)

(30) Priority Data:

9911345.8	14 May 1999 (14.05.99)	GB
9918178.6	2 August 1999 (02.08.99)	GB
9923632.5	6 October 1999 (06.10.99)	GB
0001063.7	17 January 2000 (17.01.00)	GB

- (71) Applicant (for all designated States except US): PHARMA MAR, S.A. [ES/ES]; Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid ŒS).
- (71) Applicant (for SD only): RUFFLES, Graham, Keith [GB/GB]; 57-60 Lincoln's Inn Fields, London WC2A 3LS (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CUEVAS, Carmen [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). PEREZ, Marta [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). FRANCESCH, Andres [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono

Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). FERNANDEZ, Carolina [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). CHICHARRO, Jose Luis [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). GALLEGO, Pilar [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). ZARZUELO, Maria [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). DE LA CALLE, Fernando [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). MANZANARES, Ignacio [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES).

- (74) Agent: RUFFLES, Graham, Keith; Marks & Clerk, 57-60 Lincoln's Inn Fields, London WC2A 3LS (GB).
- (81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: HEMISYNTHETIC METHOD AND NEW COMPOUNDS

(57) Abstract

Methods are provided for preparing a compound with a fused ring structure of formula (XIV) which comprises one or more reactions starting from a 21-cyano compound of formula (XVI) where typically: R1 is an amidomethylene group or an acyloxymethylene group; R5 and R8 are independently chosen from -H, -OH or -OCOCH2OH, or R5 and R8 are both keto and the ring A is a p-benzoquinone ring; R^{14a} and R^{14b} are both -H ozone is -H and the other is -OH, -OCH3 or -OCH2CH3, or R14a and R14b together form a keto group; and R15 and R18 are independently chosen from -H or -OH, or R5 and R8 are both keto and the ring A is a p-benzoquinone ring. In modified starting materials, the 21-cyano group can be replaced by other groups introduced using nucleophilic reagents.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AΤ	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

HEMISYNTHETIC METHOD AND NEW COMPOUNDS

The present invention relates to synthetic methods, and in particular it relates to hemisynthetic methods.

BACKGROUND OF THE INVENTION

European Patent 309,477 relates to ecteinascidins 729, 743, 745, 759A, 759B and 770. The ecteinascidin compounds are disclosed to have antibacterial and other useful properties. Ecteinascidin 743 is now undergoing clinical trials as an antitumour agent.

Ecteinascidin 743 has a complex tris(tetrahydroisoquinolinephenol) structure of the following formula (I):

It is currently prepared by isolation from extracts of the marine tunicate *Ecteinascidin turbinata*. The yield is low, and alternative preparative processes have been sought.

A synthetic process for producing ecteinascidin compounds is described in US Patent 5,721,362. The claimed method is long and complicated, there being 38 Examples each describing a step in the synthetic sequence to arrive at ecteinascidin 743.

Claim 25 of US 5,721,362 is directed at an intermediate phenol compound of a given formula (11), which we refer to also as Intermediate 11 or Int-11. It has the following bis(tetrahydroisoquinolinephenol) structure (II):

where MOM is a methoxymethyl substituent and TBDPS is a 3,5-t-butyldiphenylsilyl substituent.

From Intermediate 11 it is possible to synthesise another interesting antitumour agent, phthalascidin, see Proc. Natl. Acad. Sci. USA, 96, 3496-3501, 1999. Phthalascidin is a bis(tetrahydroisoquinolinephenol) derivative of formula (III):

In ecteinascidin 743, the 1,4 bridge has the structure of formula (IV):

Other known ecteinsscidins include compounds with a different bridged cyclic ring system, such as occurs in ecteinsscidin 722 and 736, where the bridge has the structure of formula (V):

ecteinascidins 583 and 597, where the bridge has the structure of formula (VI):

and ecteinascidin 594 and 596, where the bridge has the structure of formula (VII):

The complete structure for these and related compounds is given in J. Am. Chem. Soc.

4.

(1996) 118, 9017-9023. This article is incorporated by reference.

Further compounds are known which lack a bridged cyclic ring system. They include the bis(tetrahydroisoquinolinequinone) antitumor-antimicrobial antibiotics safracins and saframycins, and the marine natural products renieramicins and xestomycin isolated from cultured microbes or sponges. They all have a common dimeric tetrahydroisoquinoline carbon framework. These compounds can be classified into four types, types I to IV, with respect to the oxidation pattern of the aromatic rings.

Type I, dimeric isoquinolinequinones, is a system of formula (VIII) most commonly occurring in this class of compounds, see the following table I.

Table I Structure of Type I Saframycin Antibiotics.

			Sı	ubstituents		
Compound	R^{14a}	R^{14b}	R^{21}	R^{25a}	R^{25b}	R^{25c}
saframycin A	H	Н	CN	O	0	CH ₃
saframycin B	Н	Н	Н	O	0	CH_3
saframycin C	Н	OCH_3	Н	0	0	CH ₃
saframycin G	Н	ОН	CN	0	0	CH ₃
saframycin H	Н	Н	CN	OH	CH ₂ COCH ₃	CH_3
saframycin S	Н	Н	ОН	O	0	CH_3
saframycin Y ₃	Н	Н	CN	NH ₂	Н	CH ₃

			5			•
saframycin Yd ₁	Н	Н	CN	NH ₂	Н	C ₂ H ₅
saframycin Adı	Н	Н	CN	O	Ο	C_2H_5
saframycin Yd2	Н	Н	CN	NH_2	Н	Н
saframycin Y _{2b}	Н	Q^b	CN	NH_2	Н	CH ₃
saframycin Y _{2b-d}	H	Q^b	CN	NH_2	Н	C_2H_5
saframycin AH ₂	Н	Н	CN	H^a	OH^a	CH_3
saframycin AH ₂ Ac	Н	Н	CN	Н	OAc	CH_3
saframycin AH ₁	Н	Н	CN	OH^a	H^a	CH ₃
saframycin AH ₁ Ac	Н	Н	CN	OAc	Н	CH ₃
saframycin AR ₃	Н	Н	Н	Н	ОН	CH ₃

a assignments are interchangeable.

Type I aromatic rings are seen in saframycins A, B and C; G and H; and S isolated from *Streptomyces lavendulae* as minor components. A cyano derivative of saframycin A, called cyanoquinonamine, is known from Japanese Kokai JP-A2 59/225189 and 60/084288. Saframycins Y₃, Yd₁, Ad₁, and Yd₂ were produced by *S. lavendulae* by directed biosynthesis, with appropriate supplementation of the culture medium. Saframycins Y_{2b} and Y_{2b-d} dimers formed by linking the nitrogen on the C-25 of one unit to the C-14 of the other, have also been produced in supplemented culture media of *S. lavendulae*. Saframycins AR₁ (=AH₂,), a microbial reduction product of saframycin A at C-25 produced by *Rhodococcus amidophilus*, is also prepared by nonstereoselective chemical reduction of saframycin A by sodium borohydride as a 1:1 mixture of epimers followed by chromatographic separation [the other isomer AH₁ is less polar]. The further reduction product saframycin AR₃, 21-decyano-25-

^b where the group Q is of formula (IX):

6

dihydro-saframycin A, (= 25-dihydrosaframycin B) was produced by the same microbial conversion. Another type of microbial conversion of saframycin A using a *Nocardia* species produced saframycin B and further reduction by a *Mycobacterium* species produced saframycin AH¹Ac. The 25-O-acetates of saframycin AH₂ and AH₁ have also been prepared chemically for biological studies.

Type I compounds of formula (X) have also been isolated from marines sponges, see Table II.

Table II Structures of Type I Compounds from Marine Sponges.

			Substitue	nts
	R ^{14a}	R ^{14b}	R ²¹	R
renieramycin A	ОН	Н	Н	-C(CH ₃)=CH-CH ₃
renieramycin B	OC_2H_5	H	Н	$-C(CH_3)=CH-CH_3$
renieramycin C	ОН	O	О	-C(CH ₃)=CH-CH ₃
renieramycin D	OC_2H_5	О	О	$-C(CH_3)=CH-CH_3$
renieramycin E	Н	Н	ОН	-C(CH ₃)=CH-CH ₃
renieramycin F	OCH ₃	H	ОН	$-C(CH_3)=CH-CH_3$
xestomycin	OCH ₃	Н	Н	-CH ₃

Renieramycins A-D were isolated from the antimicrobial extract of a sponge, a *Reniera* species collected in Mexico, along with the biogenetically related monomeric isoquinolines renierone and related compounds. The structure of renieramycin A was

WO 00/69862

initially assigned with inverted stereochemistry at C-3, C-11, and C-13. However, careful examination of the ¹H NMR data for new, related compounds renieramycins E and F, isolated from the same sponge collected in Palau, revealed that the ring junction of renieramycins was identical to that of saframycins. This result led to the conclusion that the formerly assigned stereochemistry of renieramycins A to D must be the same as that of saframycins.

Xestomycin was found in a sponge, a Xestospongia species collected from Sri Lancan waters.

Type II compounds of formula (XI) with a reduced hydroquinone ring include saframycins D and F, isolated from *S. lavendulae*, and saframycins Mx-1 and Mx-2, isolated from *Myxococcus xanthus*. See table III.

Table III

Type II Compounds

			S	ubstituents		
Compound	R^{14a}	R ^{14b}	R^{21}	R^{25a}	R^{25b}	R^{25c}
saframycin D	O	O	Н	O	0	CH_3
saframycin F	O	O	CN	O	0	CH ₃
saframycin Mx-1	Н	OCH_3	ОН	Н	CH_3	NH_2
saframycin Mx-2	Н	OCH_3	Н	Н	CH ₃	NH ₂

The type III skeleton is found in the antibiotics safracins A and B, isolated from

cultured *Pseudomonas fluorescens*. These antibiotics of formula (XII) consist of a tetrahydroisoquinoline-quinone subunit and a tetrahydroisoquinolinephenol subunit.

where R²¹ is -H in safracin A and is -OH in safracin B.

Saframycin R, the only compound classified as the Type IV skeleton, was also isolated from *S. lavendulae*. This compound of formula (XIII), consisting of a hydroquinone ring with a glycolic ester sidechain on one of the phenolic oxygens, is conceivably a pro-drug of saframycin A because of its moderate toxicity.

All these known compounds have a fused system of five rings (A) to (E) as shown in the following structure of formula (XIV):

The rings A and E are phenolic in the ecteinascidins and some other compounds, while in other compounds, notably the saframycins, the rings A and E are quinolic. In the known compounds, the rings B and D are tetrahydro, while ring C is perhydro.

OBJECT OF THE INVENTION

The need remains for new active compounds with the fused five-ring system of the known compounds, and for alternative synthetic routes to the ecteinascidin compounds and related compounds. Such synthetic routes may provide more economic paths to the known antitumour agents, as well as permitting preparation of new active compounds.

SUMMARY OF THE INVENTION

In one aspect, the present invention is directed at the use of a known compound, safracin B, also referred to as quinonamine, in hemisynthetic synthesis.

More generally, the invention relates to a hemisynthetic process for the formation of intermediates, derivatives and related structures of ecteinascidin or other tetrahydroisoquinolinephenol compounds starting from natural bis(tetrahydroisoquinoline) alkaloids. Suitable starting materials for the hemi-synthetic process include the classes of saframycin and safracin antibiotics available from different culture broths, and also the classes of reineramicin and xestomycin compounds available from marine sponges.

10

A general formula (XV) for the starting compounds is as follows:

where:

 R^1 is an amidomethylene group such as -CH₂-NH-CO-CR^{25a}R^{25b}R^{25c} where R^{25a} and R^{25b} form a keto group or one is -OH, -NH₂ or -OCOCH₃ and the other is -CH₂COCH₃, -H, -OH or -OCOCH₃, provided that when R^{25a} is -OH or -NH₂ then R^{25b} is not -OH, and R^{25c} is -H, -CH₃ or -CH₂CH₃, or R^1 is an acyloxymethylene group such as -CH₂-O-CO-R, where R^{25a} is -C(CH₃)=CH-CH₃ or -CH₃;

R⁵ and R⁸ are independently chosen from -H, -OH or -OCOCH₂OH, or R⁵ and R⁸ are both keto and the ring A is a p-benzoquinone ring;

 R^{14a} and R^{14b} are both -H or one is -H and the other is -OH, -OCH₃ or -OCH₂CH₃, or R^{14a} and R^{14b} together form a keto group;

 R^{15} and R^{18} are independently chosen from -H or -OH, or R^5 and R^8 are both keto and the ring A is a p-benzoquinone ring; and

R²¹ is -OH or -CN.

A more general formula for these class of compounds is provided below:

$$R_{10}$$
 R_{10}
 R_{10}

wherein the substituent groups defined by R₁, R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₉, R₁₀ are each independently selected from the group consisting of H, OH, OCH₃, CN, =O, CH₃; wherein X are the different amide or ester functionalities contained in the mentioned natural products;

11

wherein each dotted circle represents one, two or three optional double bonds.

Thus, according to the present invention, we now provide hemisynthetic routes for the production of intermediates including Intermediate 11 and thus for the production of the ecteinascidin compounds as well as phthalascidin and additional compounds. The hemisynthetic routes of the invention each comprise a number of transformation steps to arrive at the desired product. Each step in itself is a process in accordance with this invention. The invention is not limited to the routes that are exemplified, and alternative routes may be provided by, for example, changing the order of the transformation steps, as appropriate.

In particular, this invention involves the provision of a 21-cyano starting material of general formula (XVI):

where R¹ R⁵, R⁸ R^{14a}, R^{14b} R¹⁵ and R¹⁸ are as defined.

Other compounds of formula (XVI) with different substituents at the 21-position may also represent possible starting materials. In general, any derivative capable of production by nucleophilic displacement of the 21-hydroxy group of compounds of formula (XV) wherein R²¹ is a hydroxy group cis a candidate. Examples of suitable 21-substituents include but are not limited to:

a mercapto group;

an alkylthio group (the alkyl group having from 1 to 6 carbon atoms);

an arylthio group (the aryl group having from 6 to 10 carbon atoms and being unsubstituted or substituted by from 1 to 5 substituents selected from, for example, alkyl group having from 1 to 6 carbon atoms, alkoxy groups having from 1 to 6 carbon atoms, halogen atoms, mercapto groups and nitro groups);

an amino group;

a mono-or dialkylamino (the or each alkyl group having from 1 to 6 carbon atoms); a mono-or diarylamino group (the or each aryl group being as defined above in relation to arylthio groups);

12

an α -carbonylalkyl group of formula $-C(R^a)(R^b)-C(=O)R^c$, where

R^a and R^b are selected from hydrogen atoms, alkyl groups having from 1 to 20 carbon atoms, aryl groups (as defined above in relation to arylthio groups) and aralkyl groups (in which an alkyl group having from 1 to 4 carbon atoms is substituted by an aryl group a defined above in relation to arylthio groups), with the proviso that one of R^a and R^b is a hydrogen atom;

R^c is selected from a hydrogen atom, an alkyl group having from 1 to 20 carbon atoms, aryl groups (as defined above in relation to arylthio groups), an aralkyl group (in which an alkyl group having from 1 to 4 carbon atoms is substituted by an aryl group a defined above in relation to arylthio groups), an alkoxy group having from 1 to 6 carbon atoms, an amino group or a mono- or dialkylamino group as defined above.

Thus, in a more general aspect, the present invention relates to processes where the first step is to form a 21-derivitative using a nucleophilic reagent. We refer to such compounds as 21-Nuc compounds.

The presence of the 21-cyano group is required for some of the end-products, notably ecteinascidin 770 and phthalascidin, while for other end-products it acts as a protecting group which can readily be converted to another substituent, such as the 21-hydroxy group of ecteinascidin 743 or of 21-hydroxyphthalascidin. The adoption of the 21-cyano compound as the starting material effectively stabilises the molecule during the ensuing synthetic steps, until it is optionally removed. Other 21-Nuc compounds can offer this and other advantages.

In one important aspect, the present invention consists in the use of a 21-cyano compound of the general formula (XVI) in the preparation of a bis- or tris-(tetrahydroisoquinolinephenol) compounds. Products which may be prepared include intermediates such as Intermediate 11, and the ecteinascidins and phthalascidin, as well as new and known compounds of related structure.

Preferred starting materials include those compounds of formula (XV) or (XVI) where R^{14a} and R^{14b} are both hydrogen. Preferred starting materials also include compounds of formula (XV) or (XVI) where R^{15} is hydrogen. Furthermore, the preferred starting materials include compounds of formula (XV) or (XVI) where ring E is a phenolic ring. Preferred starting materials further include compounds of formula (XV) or (XVI) where at least one, better at least two or three of R^5 , R^8 , R^{15} and R^{18} is not hydrogen.

Examples of suitable starting materials for this invention include saframycin A, saframycin B, saframycin C, saframycin G, saframycin H, saframycin S, saframycin Y₃, saframycin Yd₁, saframycin Ad₁, saframycin Yd₂, saframycin AH₂, saframycin AH₂Ac, saframycin AH₁, saframycin AH₁Ac, saframycin AR₃, renieramycin A, renieramycin B, renieramycin C, renieramycin D, renieramycin E, renieramycin F, xestomycin, saframycin D, saframycin F, saframycin Mx-1, saframycin Mx-2, safracin A, safracin B and saframycin R. Preferred starting materials have a cyano group in position 21, for the group R²¹.

In a particularly preferred aspect, the invention involves a hemisynthetic process wherein the transformation steps are applied to safracin B:

SAFRACIN B

Safracin B presents a ring system closely related to the ecteinascidins. This compound has the same pentacycle structure and the same substitution pattern in the right-hand aromatic ring, ring E. Also, safracin B presents very close similarities to some of the synthetic intermediates in the total synthesis of ET-743, particularly to the intermediate 11.

14.

Such intermediate can be transformed into Et-743 using a well established method. Synthetic conversion of safracin B into intermediate 11 will therefore provide an hemi-synthetic method to obtain ET-743.

Thus, we provide Intermediate 11 made from this compound safracin B, and compounds derived from Intermediate 11, particularly ecteinascidin compounds. We further provide phthalascidin made from safracin B. The invention also relates to use of safracin B in the production of Intermediate 11, phthalascidin, ecteinascidin compounds and the other intermediates of the invention. The invention also relates to compounds described herein derived from the other suggested starting materials, and use of those compounds in the production of such compounds.

The more preferred starting materials of this invention have a 21-cyano group. The currently most preferred compound of the present invention is the compound of Formula 2. This compound is obtained directly from safracin B and is considered a key intermediate in the hemisynthetic process.

compound 2

In a related aspect, we provide cyanosafracin B by fermentation of a safracin B-producing strain of *Pseudomonas fluorescens*, and working up the cultured broth using cyanide ion. The preferred strain of *Pseudomonas fluorescens* is strain A2-2, FERM BP-14, which is employed in the procedure of EP 055,299. A suitable source of cyanide ion is potassium cyanide. In a typical work-up, the broth is filtered and excess cyanide ion is added. After an appropriate interval of agitation, such as 1 hour, the pH is rendered alkaline, say pH 9.5, and an organic extraction gives a crude extract which can be further purified to give the cyanosafracin B.

For the avoidance of doubt, the stereochemistries indicated in this patent specification are based on our understanding of the correct stereochemistry of the natural products. To the extent that an error is discovered in the assigned stereochemistry, then the appropriate correction needs to be made in the formulae given throughout in this patent specification. Furthermore, to the extent that the syntheses are capable of modification, this invention extends to stereoisomers.

The products of this invention are typically of the formula (XVIIa):

or formula (XVIIb):

where

R¹ is an optionally protected or derivatised aminomethylene group, an optionally protected or derivatised hydroxymethylene group, such as a group R¹ as defined for the formula (XV);

16

 R^4 is -H;

or

 R^1 and R^4 together form a group of formula (IV), (V) (VI) or (VII):

R⁵ is -H or -OH;

R⁷ is -OCH₃ and R⁸ is -OH or R⁷ and R⁸ together form a group -O-CH₂-O-;

 R^{14a} and R^{14b} are both -H or one is -H and the other is -OH, -OCH₃ or -OCH₂CH₃, or R^{14a} and R^{14b} together form a keto group; and

R¹⁵ is -H or -OH;

R²¹ is -H, -OH or -CN;

and derivatives including acyl derivatives thereof especially where R⁵ is acetyloxy or other acyloxy group of up to 4 carbon atoms, and including derivatives where the group -NCH₃- at the 12-position is replaced by -NH- or -NCH₂CH₃-, and derivatives where the -NH₂ group in the compound of formula (VI) is optionally derivatised.

In the formulae (XVIIa) or (XVIIb), R¹ is typically aminomethylene, amidomethylene or R¹ with R⁴ forms a group (IV) or (V). Suitable amidomethylene groups include those of formula -CH₂-NH-CO-CHCH₃-NH₂ derived from alanine, and similar groups derived from other amino acids, notably, both D and L, glycine, valine, leucine, isoleucine, phenylalanine, tyrosine, tryptophan, methionine, cysteine, aspartate, asparagine, glutamatic acid, glutamine, lysine, arginine, proline, serine, threonine, histidine and hydroxyproline. A general formula for the group R¹ is then -CH₂-NH -aa, where aa indicates an acyl amino acid group.

The group R¹ can be acylated on an -NH₂ group, and for example N-acyl derivatives can be formed from groups -CH₂NH₂ and -CH₂-NH-aa. The acyl derivatives can be N-acyl or N-thioacyl derivatives thereof, as well as cyclic amides. The acyl groups can illustratively

17

be alkanoyl, haloalkanoyl, arylalkanoyl, alkenoyl, heterocyclylacyl, aroyl, arylaroyl, haloaroyl, nitroaroyl, or other acyl groups. The acyl groups can be of formula -CO-R^a, where R^a can be various groups such as alkyl, alkoxy, alkylene, arylalkyl, arylalkylene, amino acid acyl, or heterocyclyl, each optionally substituted with halo, cyano, nitro, carboxyalkyl, alkoxy, aryl, aryloxy, heterocyclyl, heterocyclyloxy, alkyl, amino or substituted amino. Other acylating agents include isothiocyanates, such as aryl isothiocyanates, notably phenyl isocyanate. The alkyl, alkoxy or alkylene groups of R^a suitably have 1 to 6 or 12 carbon atoms, and can be linear, branched or cyclic. Aryl groups are typically phenyl, biphenyl or naphthyl. Heterocyclyl groups can be aromatic or partially or completely unsaturated and suitably have 4 to 8 ring atoms, more preferably 5 or 6 ring atoms, with one or more heteroatoms selected from nitrogen, sulphur and oxygen.

Without being exhaustive, typical R^a groups include alkyl, haloalkyl, alkoxyalkyl, haloalkoxyalkyl, arylalkylene, haloalkylarylakylene, acyl, haloacyl, arlyalkyl, alkenyl and amino acid. For example, R^a-CO- can be acetyl, trifluoroacetyl, 2,2,2-trichloroethoxycarbonyl, isovalerylcarbonyl, trans-3-(trifluoromethyl)cinnamoylcarbonyl, heptafluorobutyrylcarbonyl, decanoylcarbonyl, trans-cinnamoylcarbonyl, butyrylcarbonyl, 3-chloropropyonylcarbonyl, cinnamoylcarbonyl, 4-methylcinnamoylcarbonyl, hydrocinnamoylcarbonyl, or trans-hexenoylcarbonyl, or alanyl, arginyl, aspartyl, asparagyl, cystyl, glutamyl, glutaminyl, glycyl, histidyl, hydroxyprolyl., isoleucyl, leucyl, lysyl, methionyl, phenylalanyl, prolyl, seryl, threonyl, thyronyl, tryptophyl, tyrosyl, valyl, as well as other less common amino acid acyl groups, as well as phthalimido and other cyclic amides. Other examples may be found among the listed protecting groups.

Compounds wherein -CO-R^a is derived from an amino acid and include an amino group can themselves form acyl derivatives. Suitable N-acyl commands include dipeptides which in turn can form N-acyl derivatives.

In one variation which relates to intermediate products, the ring A is modified to incorporate the substructure shown as formula (XX) or (XXI), discussed later.

In another variation relating to intermediates, the group R¹ can be

18

-CH₂O-CO-CFu-CH₂-S-Prot³, derived from a compound of formula (XIX), where Prot³ and Fu have the indicated meanings. In such a case, R⁷ and R⁸ from the oxymethyleneoxy group. The group R¹⁸ is usually protected. Usually R²¹ is cyano.

Preferably R^{14a} and R^{14b} are hydrogen. Preferably R¹⁵ is hydrogen. The O-acyl derivatives are suitably aliphatic O-acyl derivatives, especially acyl derivatives of 1 to 4 carbon atoms, and typically an O-acetyl group, notably at the 5-position.

Suitable protecting groups for phenols and hydroxy groups include ethers and esters, such as alkyl, alkoxyalkyl, aryloxyalkyl, alkoxyalkoxyalkyl, alkylsilylalkoxyalkyl, alkylthioalkyl, arylthioalkyl, azidoalkyl, cyanoalkyl, chloroalkyl, heterocyclic, arylacyl, haloarylacyl, cycloalkylalkyl, alkenyl, cycloalkyl, alyklarylalkyl, alkoxyarylalkyl, nitroarylalkyl, haloarylalkyl, alkylaminocarbonylarylalkyl, alkylsulfinylarylalky, alkylsilyl and other ethers, and arylacyl, aryl alkyl carbonate, aliphatic carbonate, alkylsulfinylarlyalkyl carbonate, alkyl carbonate, aryl haloalkyl carbonate, aryl alkenyl carbonate, aryl carbamate, alkyl phosphinyl, alkylphosphinothioyl, aryl phosphinothioyl, aryl alkyl sulphonate and other esters. Such groups may optionally be substituted with the previously mentioned groups in R¹.

Suitable protecting groups for amines include carbamates, amides, and other protecting groups, such as alkyl, arylalkyl, sulpho- or halo- arylalkyl, haloalkyl, alkylsilylalkyl, arylalkyl, cycloalkylalkyl, alkylarylalkyl, heterocyclylalkyl, nitroarylalkyl, acylaminoalkyl, nitroaryldithioarylalkyl, dicycloalkylcarboxamidoalkyl, cycloalkyl, alkenyl, arylalkenyl, nitroarylalkenyl, heterocyclyl, hydroxyheterocyclyl, alkyldithio, alkoxyor halo- or alkylsulphinyl arylalkyl, heterocyclylacyl, and other carbamates, and alkanoyl, haloalkanoyl, arylalkanoyl, alkenoyl, heterocyclylacyl, aroyl, arylaroyl, haloaroyl, nitroaroyl, and other amides, as well as alkyl, alkenyl, alkylsilylalkoxyalkyl, alkoxyalkyl, cyanoalkyl, heterocyclyl, alkoxyarylalkyl, cycloalkyl, nitroaryl, arylalkyl, alkoxy- or hydroxy- arylalkyl, and many other groups. Such groups may optionally be substituted with the previously mentioned groups in R¹.

Examples of such protecting groups are given in the following tables.

19.

protection for -OH group

ethers	abbreviation
methyl	
methoxymethyl	MOM
benzyloxymethyl	BOM
methoxyethoxymethyl	MEM
2-(trimethylsilyl)ethoxymethyl	SEM
methylthiomethyl	MTM
phenylthiomethyl	PTM
azidomethyl	
cyanomethyl	
2,2-dichloro-1,1-difluoroethyl	
2-chloroethyl	
2-bromoethyl	
tetrahydropyranyl	THP
1-ethoxyethyl	EE
phenacyl	
4-bromophenacyl	
cyclopropylmethyl	
allyl	
propargyl	
isopropyl	
cyclohexyl	
t-butyl	
benzyl	
2,6-dimethylbenzyl	
4-methoxybenzyl	MPM or PMB
o-nitrobenzyl	
2,6-dichlorobenzyl	
3,4-dichlorobenzyl	
4-(dimethylamino)carbonylbenzyl	
4-methylsuflinylbenzyl	Msib
9-anthrylmethyl	
4-picolyl	
heptafluoro-p-tolyl	
tetrafluoro-4-pyridyl	
trimethylsilyl	TMS
t-butyldimethylsilyl	TBDMS
t-butyldiphenylsilyl	TBDPS
triisopropylsilyl	TIPS
•	

esters

20

ArOPv

aryl formate aryl acetate aryl levulinate

aryl pivaloate

aryl benzoate

aryl 9-fluorocarboxylate

aryl methyl carbonate 1-adamantyl carbonate

t-butyl carbonate BOC-OAr
4-methylsulfinylbenzyl carbonate Msz-Oar
2,4-dimethylpent-3-yl carbonate Doc-Oar

aryl 2,2,2-trichloroethyl carbonate

aryl vinyl carbonate aryl benzyl carbonate aryl carbamate

dimethylphosphinylDmp-OArdimethylphosphinothioylMpt-OArdiphenylphosphinothioylDpt-Oar

aryl methanesulfonate aryl toluenesulfonate

aryl 2-formylbenzenesulfonate

protection for the -NH2 group

abbreviation carbamates methyl ethyl 9-fluorenylmethyl Fmoc 9-(2-sulfo)fluroenylmethyl 9-(2,7-dibromo)fluorenylmethyl 17-tetrabenzo[a,c,g,i]fluorenylmethyl **Tbfmoc** Climoc 2-chloro-3-indenylmethyl benz[f]inden-3-ylmethyl **Bimoc** 2,7-di-t-butyl[9-(10,10-dioxo-10,10,10,10tetrahydrothioxanthyl)]methyl DBD-Tmoc 2,2,2-trichloroethyl Troc Teoc 2-trimethylsilylethyl hΖ 2-phenylethyl Adpoc 1-(1-adamantyl)-1-methylethyl 2-chlooethyl 1,1-dimethyl-2-chloroethyl 1,1-dimethyl-2-bromoethyl

21

DB-t-BOC 1,1-dimethyl-2,2-dibromoethyl **TCBOC** 1,1-dimethyl-2,2,2-trichloroethyl 1-methyl-1-(4-biphenyl)ethyl **Bpoc** 1-(3,5-di-t-butylphenyl)-1-1-methylethyl t-Burmeoc 2-(2'-and 4'-pyridyl)ethyl Pyoc 2,2-bis(4'-nitrophenyl)ethyl Bnpeoc *n*-(2-pivaloylamino)-1,1-dimethylethyl 2-[(2-nitrophenyl)dithio]-1-phenylethyl **NpSSPeoc**

2-(n,n-dicyclohexylcarboxamido)ethyl

BOC t-butyl 1-adamantyl 1-Adoc 2-adamantyl 2-Adoc vinyl Voc

allyl Aloc or Alloc

1-isopropylallyl Ipaoc cinnamyl Coc 4-nitrocinnamyl Noc 3-(3'-pyridyl)prop-2-enyl Paloc

8-quinolyl

n-hydroxypiperidinyl

alkyldithio

benzyl p-methoxybenzyl Moz p-nitrobenzyl **PNZ**

p-bromobenzyl p-chlorobenzyl 2.4-dichlorobenzyl

9-anthrylmethyl

4-methylsulfinylbenzyl

diphenylmethyl phenothiazinyl-(10)-carbonyl n'-p-toluenesulfonylaminocarbonyl

n'-phenylaminothiocarbonyl

amides

formamide acetamide chloroacetamide trifluoroacetamide phenylacetamide

3-phenylpropanamide pent-4-enamide picolinamide

3-pyridylcarboxamide

benzamide

p-phenylbenzamide *n*-phthalimide

Cbz or Z

Msz

TFA

22 **TCP** n-tetrachlorophthalimide 4-nitro-*n*-phthalimide n-dithiasuccinimide Dts *n*-2,3-diphenylmaleimide n-2,5-dimethylpyrrole n-2,5-bis(triisopropylsiloxyl)pyrrole **BIPSOP** n-1,1,4,4-tetramethyldisiliazacyclopentante adduct **STABASE** 1.1.3,3-tetramethyl-1,3-disilaisoindoline **BSB** special -NH protective groups *n*-methylamine n-t-butylamine n-allylamine **SEM** *n*-[2-trimethylsilyl)ethoxylmethylamine *n*-3-acetoxypropylamine *n*-cyanomethylamine n-(1-isopropyl-4-nitro-2-oxo-3-pyrrolin-3-yl)amine n-2,4-dimethoxybenzylamine Dmb 2-azanorbornenes n-2,4-dinitrophenylamine n-benzylamine Bn **MPM** n-4-methoxybenzylamine n-2,4-dimethoxybenzylamine **DMPM** n-2-hydroxybenzylamine Hbn n-(diphenylmethyl)amino **DPM** n-bis(4-methoxyphenyl)methylamine *n*-5-dibenzosuberylamine **DBS** Tr *n*-triphenylmethylamine n-[(4-methoxyphenyl)diphenylmethyl]amino MMTr *n*-9-phenylflurenylamine Pf n-ferrocenylmethylamine Fcm n-2-picolylamine n'-oxide n-1,1-dimethylthiomethyleneamine n-benzylideneamine *n-p*-methoxybenzylideneamine *n*-diphenylmethyleneamine n-(5,5-dimethyl-3-oxo-1-cyclohexenyl)amine *n*-nitroamine *n*-nitrosoamine Dpp diphenylphosphinamide dimethylthiophosphinamide Mpt diphenylthiophosphinamide Ppt dibenzyl phosphoramidate 2-nitrobenzenesulfenamide Nps n-1-(2,2,2-trifluoro-1,1-diphenyl)ethylsufenamide TDE 3-nitro-2-pyridinesulfenamide Npys

p-toluenesulfonamide

Ts

benzenesulfonamide

Safracin B includes an alanyl sidechain. In one aspect of the invention, we have found that protection of the free amino group with a Boc group can give strong advantages.

Particular ecteinascidin products of this invention include compounds of the formula (XVIII):

where R1 and R4 form a group of formula (IV), (V), (VI) or (VII):

more particularly a group (IV) or (V);

R²¹ is -H, -OH or -CN, more particularly -OH or -CN;

and acyl derivatives thereof, more particularly 5-acyl derivatives including the 5-acetyl derivative.

FORMATION OF ECTEINASCIDIN 743 AND RELATED COMPOUNDS.

In general, the conversion of the 21-cyano starting compound to an ecteinascidin product of, for example, formula (XVIII) involves:

a) conversion if necessary of a quinone system for the ring E into the phenol system

- b) conversion if necessary of a quinone system for the ring A into the phenol system;
- c) conversion of the phenol system for the ring A into the methylenedioxyphenol ring;
- d) formation of the bridged spiro ring system of formula (IV), (VI) or (VII) across the 1-position and 4-position in ring B; and
- e) derivatisation as appropriate, such as acylation.

Step (a), conversion if necessary of a quinone system for the ring E into the phenol system, can be effected by conventional reduction procedures. A suitable reagent system is hydrogen with a palladium-carbon catalyst, though other reducing systems can be employed.

Step (b), conversion if necessary of a quinone system for the ring A into the phenol system is analogous to step (a), and more detail is not needed.

Step (c), conversion of the phenol system for the ring A into the methylenedioxyphenol ring, can be effected in several ways, possibly along with step (b). For example, a quinone ring A can be demethylated in the methoxy substituent at the 7-position and reduced to a dihydroquinone and trapped with a suitable electrophilic reagent such as CH₂Br₂, BrCH₂Cl, or a similar divalent reagent directly yielding the methylenedioxy ring system, or with a divalent reagent such as thiocarbonyldiimidazol which yields a substituted methylenedioxy ring system which can be converted to the desired ring.

Step (d) is typically effected by appropriate substitution at the 1-position with a bridging reagent that can assist formation of the desired bridge, forming an exendo quinone methide at the 4-position and allowing the methide to react with the 1-substituent to bring about the bridged structure. Preferred bridging reagents are of formula (XIX)

where Fu indicates a protected functional group, such as a group -NHProt^{4a} or OProt^{4b}, Prot³ is a protecting group, and the dotted line shows an optional double bond.

Suitably the methide is formed by first introducing a hydroxy group at the 10-position

25

at the junction of rings A and B to give a partial structure of formula (XX):

or more preferably a partial structure of formula (XXI):

where the group R" is chosen for the desired group of formula (IV), (V), (VI) or (VII). For the first two such groups, the group R" typically takes the form -CHFu-CH₂-SProt³. The protecting groups can then be removed and modified as appropriate to give the desired compound.

A typical procedure for step (d) is provided in US Patent 5,721,362 incorporated by reference. Particular reference is made to the passage at column 8, step (l) and Example 33 of the US Patent, and related passages.

Derivatisation in step (e) can include acylation, for instance with a group R^a-CO- as well as conversion of the 12-NCH₃ group to 12-NH or 12-NCH₂CH₃. Such conversion can be effected before or after the other steps, using available methods.

By way of illustration, it is now feasible to transform cyanosafracin B compound of formula 2 into ET-743 resulting in a shorter and more straightforward way to make ET-743 than methods previously described. Cyanosafracin B can be transformed into Intermediate 25;

INT-25

and from this derivative it is possible to introduce a number of cysteine derivatives that can be transformed later into Et-743. Preferred cysteine derivatives are exemplified by the following two compounds:

The retrosynthetic analysis to make ET-743 using compound 29 is depicted in scheme

I.

Scheme I

Following the above scheme I it is possible to obtain ET-743 in 21 linear steps. This method transforms cyanosafracin B into intermediate 25 through a sequence of reactions that involves essentially (1) removal of methoxy group placed in ring A, (2) reduction of ring A and formation of methylene-dioxy group in one pot, (3) hydrolysis of amide function placed over carbon 1, (4) transformation of the resulting amine group into hydroxyl group. Furthermore the method avoids protection and de-protection of the primary alcohol function at the position 1 in ring B of compound 25 using directly a cysteine residue 29 to form intermediate 27. Cysteine derivative 29 is protected in the amino group with β - β - β -trichloroethoxycarbonyl protecting group in order to have compatibility with the existing allyl and MOM groups. Intermediate 27 is directly oxidized and cycled. These circumstances, together with a different de-protecting strategy in the later stages of the synthesis makes the route novel and more amenable to industrial development than the process of US 5,721,362...

28

The conversion of the 2-cyano compound into Intermediate 25 usually involves the following steps (see scheme II):

formation of the protected compound of Formula 14 by reacting 2 with *tert*-butoxycarbonyl anhydride;

converting of **14** into the di-protected compound of Formula **15** by reacting with bromomethylmethyl ether and diisopropylethylamine in acetonitrile;

selectively elimination of the methoxy group of the quinone system in 15 to obtain the compound of Formula 16 by reacting with a methanolic solution of sodium hydroxide;

transforming of 16 into the methylene-dioxy compound of Formula 18 by employing the next preferred sequence: (1) quinone group of compound 16 is reduced with 10% Pd/C under hydrogen atmosphere; (2) the hydroquinone intermediate is converted into the methylenedioxy compound of Formula 17 by reacting with bromochloromethane and caesium carbonate under hydrogen atmosphere; (3) 17 is transformed into the compound of Formula 18 by protecting the free hydroxyl group as a OCH₂R group. This reaction is carried out with BrCH₂R and caesium carbonate, where R can be aryl, CH=CH₂, OR etc.

elimination of the *tert*-butoxycarbonyl and the methyloxymethyl protecting groups of 18 to afford the compound of Formula 19 by reacting with a solution of HCl in dioxane. Also this reaction is achieved by mixing 18 with a solution of trifluoroacetic acid in dichloromethane;

formation of the thiourea compound of Formula 20 by reacting 19 with phenylisothiocyanate;

converting compound of Formula 20 into the amine compound of Formula 21 by reacting with a solution of hydrogen chloride in dioxane;

transforming compound of Formula 21 into the *N*-Troc derivative 22 by reacting with trichloroethyl chloroformate and pyridine;

29.

formation of the protected hydroxy compound of Formula 23 by reacting 22 with bromomethylmethyl ether and diisopropylethylamine;

transforming compound of Formula 23 into the N-H derivative 24 by reacting with acetic acid and zinc;

conversion of compound of Formula 24 into the hydroxy compound of Formula 25 by reaction with sodium nitrite in acetic acid. Alternatively, it can be used nitrogen tetroxide in a mixture of acetic acid and acetonitrile followed by treatment with sodium hydroxide. Also, it can be used sodium nitrite in a mixture of acetic anhydride-acetic acid, followed by treatment with sodium hydroxide.

Scheme II

The conversion of the Intermediate 25 compound into ET-743 using cysteine derivative 29 usually involves the following steps (see scheme III):

transforming compound of formula 24 into the derivative 30 by protecting the primary hydroxyl function with (S)-N-2,2,2-tricloroethoxycarbonyl-S-(9H-fluoren-9-ylmethyl)cysteine 29;

converting the protected compound of formula 30 into the phenol derivative 31 by cleavage of the allyl group with tributyltin hydride and dichloropalladium-bis (triphenylphosphine);

transforming the phenol compound of Formula 31 into compound of formula 32 by oxidation with benzeneseleninic anhydride at low temperature;

transforming the hydroxy compound of formula 32 into the lactone 33 by the following sequence: (1) Reacting compound of formula 32 with 2 eq. of triflic anhydride and 5 eq. of DMSO. (2) followed by reaction with 8 eq. of diisopropylethylamine. (3) followed by reaction with 4 eq of t-butyl alcohol (4) followed by reaction with 7 eq of 2-tert-Butyl-1,1,3,3,tetramethylguanidine (5) followed by reaction with 10 eq of acetic anhydride;

transforming the lactone compound 33 into hydroxyl compound 34 by removal of MOM protecting group with TMSI;

cleaving the N-trichloroethoxycarbonyl group of the compound of formula 34 into compound 35 by reaction with Zn/AcOH;

transforming the amino compound 35 into the corresponding α -keto lactone compound 36 by reaction with N-methyl pyridinium carboxaldehyde chloride followed by DBU;

forming ET-770 by reacting compound of Formula 36 with 3-hydroxy-4-methoxyphenylethylamine;

transforming ET-770 into ET-743 by reaction with silver nitrate in a mixture of AcN/H₂O.

Scheme III

The route described above to transform Intermediate 25 into ET-743 can be conveniently modified using other cysteine derivatives, for example compound 37 named 2-methoxymethyloxy-3-(9H-fluoren-9-ylmethyl)-thio-propenoic acid. This compound has already incorporated a keto group in form of enol ether, while in the other cysteine analogs there is an amino that has to be transformed later into a keto group through a transamination reaction with a moderate yield of 55-60%. Therefore using compound 37 is possible to increase substantially the yield of the linear synthesis because the transamination step is avoided.

The conversion of the Intermediate compound 25 into ET-743 using cysteine derivative 37 can be made in a similar manner and with the same reagents than with cysteine derivative 29 with the exception of transformations (f) and (g). The reaction sequence is exemplified in the following scheme (Scheme IV):

Scheme IV

Compound 38 can also be formed reacting Intermediate 12 described in U.S. patent N 5,721,362 with Intermediate 37 providing a improvement of the route described in that patent.

FORMATION OF PHTHALASCIDIN AND RELATED COMPOUNDS.

In the present invention, a key class of products includes phthalascidin and has the general formula (XX):

where R^1 is an amidomethylene group; R^5 is a small oxy-sidechain; and R^{21} is a cyano group or a hydroxy group. For phthalascidin, R^1 is a phthalimidomethylene group; R^5 an acetoxy group; and R^{21} is a cyano group. Other groups for R^1 include mono- and di-N-substituted amidomethylenes as well as other cyclic amidomethylenes, and other groups for R^5 include further C_1 - C_4 acyl groups, as well as C_1 - C_4 alkyl groups.

The conversion of the 21-cyano compound to phthalascidin or a related product of formula (XX) usually involves the following steps:

- a) conversion if necessary of a quinone system for the ring E into the phenol system
- b) formation of the $-R^5$ group at the 5-position in ring A;
- c) formation of the R^1 group at the 1-position in ring B; and
- d) conversion if necessary of a quinone system for the ring A into the phenol system;
- e) conversion of the phenol system for the ring A into the methylenedioxyphenol ring.

These steps have many similarities with the steps given for formation of ecteinascidins. Step (c) typically involves forming a group -CH₂NH₂ at the 1-position and acylating it.

Phthlascidin can be made using Intermediates described in the conversion of cyanosafracin B into Intermediate 25. For example, Intermediates 21 and 17 are suitable starting materials to make Phthlascidin.

As shown above in scheme V, the process for the synthetic formation of phthlascidin starting from Intermediate 21 comprises the sequential steps of:

transforming of 21 into the compound of Formula 27 by reaction with phthalic anhydride in

dichloromethane and carbonyldiimidazole.

converting of 27 into phthlascidin by reacting with tributyltin hydride and dichloro palladium-bis(triphenylphosphine) or basic media, followed by reaction with acetyl chloride.

Scheme V

As shown above in scheme VI, the process for the synthetic formation of phthlascidin starting from Intermediate 17 comprises the sequential steps of:

acetylation of the hydroxyl group of compound of formula 17 with acetyl chloride and pyridine to give the acetylated intermediate compound of formula 42;

removal of the *tert*-butoxycarbonyl and the methyloxymethyl protecting groups of **42** to afford the compound of Formula **43** by reacting with a solution of HCl in dioxane. Also this reaction is achieved by mixing **42** with a solution of trifluoroacetic acid in dichloromethane;

formation of the thiourea compound of Formula 44 by reacting 43 with phenylisothiocyanate;

converting compound of Formula 44 into the amine compound of Formula 45 by reacting with a solution of hydrogen chloride in dioxane;

transforming of **45** into Phthlascidin by reaction with phthalic anhydride in dichloromethane and carbonyldiimidazole.

Scheme VI

FORMATION OF INTERMEDIATE 11 AND RELATED INTERMEDIATES.

The retrosynthetic analysis is described in the following sequence.

In the present invention, a key class of intermediate includes Intermediate 11 and has

the general formula (XXI):

where Prot¹ and Prot² are hydroxy protecting groups, preferably different. Typically Prot¹ is selected from [more generalisation needed]. Typically Prot² is selected from [more generalisation needed]. For Intermediate 11 itself, the group Prot¹ is a methoxymethyl group, and Prot² is a t-butyldiphenylsilyl group.

The conversion of the 21-cyano compound to Intermediate 11 or a related intermediate of formula (XXI) usually involves the following steps:

- a) conversion if necessary of a quinone system for the ring E into the phenol system
- b) formation of the -OProt¹ group at the 18-position, in ring E;
- c) formation of the $-CH_2$ -OProt² group at the 1-position, in ring B; and
- d) conversion if necessary of a quinone system for the ring A into the phenol system;
- e) conversion of the phenol system for the ring A into the methylenedioxyphenol ring.

Step (b), formation of the -OProt¹ group at the 18-position in ring E, is a typical protection reaction for a phenol group, and no special comments need to be made. Appropriate conditions are chosen depending on the nature of the protecting group. The other steps are similar to the other reactions.

Step (b), formation of the -CH₂-OProt² group at the 1-position in ring *B*, is normally carried out by forming a group -CH₂NH₂ at the 1-position and then converting the amine function to a hydroxy function and protecting. Thus, where the starting material has a group R¹ which is -CH₂-NH-CO-CR^{25a}R^{25b}R^{25c} then it is matter of removing the N-acyl group. Where the starting material has a group R¹ which is -CH₂-O-CO-R then no change may be needed for an ecteinascidin product where the substituent R¹ is the same. For other products,

it is matter of removing the O-acyl group. Various procedures are available for such deacylations. In one variation, the deacylation and conversion to a hydroxy function are performed in one step. Thereafter, the hydroxy group can be acylated or otherwise converted to give the appropriate R¹ group.

U.S. Patent N° 5,721,362 describe synthetic methods to make ET-743 through a long multistep synthesis. One of the Intermediates of this synthesis is Intermediate 11. Using cyanosafracin B as starting material it is possible to reach Intermediate 11 providing a much shorter way to make such Intermediate and therefor improving the method to make ET-743

Cyanosafracin B can be converted into Intermediate 25 by the methods described above. From Intermediate 25 is possible to reach Intermediate 11 using the following steps, see scheme VII.

formation of the protected hydroxy compound of Formula **26** by reacting **25** with *tert*-butyldiphenylsilyl chloride in the presence of a base;

final cleavage of the allyl group with tributyltin hydride and dichloropalladium-bis (triphenylphosphine) in 26 that leads to the formation of the intermediate 11.

Scheme VII

One embodiment of the synthetic process of the present invention to transform safracin

39

B into intermediate 11 is a modification and extension of Scheme VIII and comprises the sequential steps of:

stereospecifically converting the compound of Formula 1 (Safracin B) to the compound of Formula 2 by selective replacement of OH by CN by reacting with KCN in acid media; forming the thiourea compound of Formula 3 by reacting compound of Formula 2 with phenyl isothiocyanate;

converting the thiourea compound of Formula 3 into the acetamide of Formula 5 by an hydrolysis in acid media followed by addition of acetic anhydride; The intermediate amine compound of Formula 4 can be isolated by quenching the hydrolysis in acid media with sodium bicarbonate, but this intermediate is highly unstable, and is transformed quickly into a five member cyclic imine, named compound 6;

forming the protected compound of Formula 7 by reacting with bromomethylmethyl ether and diisopropylethylamine in dichloromethane;

selectively de-methylating the methoxy group of the quinone system of compound of Formula 7 into the compound of Formula 8 by reacting with methanolic solution of sodium hydroxide; transforming the compound of Formula 8 into methylenedioxy-compound of Formula 9 by the preferred following sequence: (1) quinone group of compound 8 is reduced with 10% Pd/C under hydrogen atmosphere; (2) the hydroquinone intermediate is converted into the methylene-dioxy compound of Formula 9 by reacting with bromochloromethane and cesium carbonate under hydrogen atmosphere; (3) compound of Formula 9 is transformed into compound of Formula 10 by protecting the free hydroxyl group as a OCH₂R group, by reacting with BrCH₂R and cesium carbonate, where R can be aryl, CH=CH₂, OR' etc.; converting the acetamide group of compound of Formula 10 into the corresponding hydroxyl group of Formula 11 by reaction with nitrogen tetroxide in a mixture of acetic acid and acetic acetate followed by treatment with sodium hydroxide; alternatively can be used sodium nitrite in a mixture of acetic anhydride acetic acid, followed by treatment with sodium hydroxide; alternatively the acetamide group of compound of Formula 10 can be converted into the primary amine group by reacting with hydrazine or with Boc₂O, DMAP followed by hydrazine; such primary amine can be converted into the corresponding hydroxyl group (compound of Formula 11) by an oxidative conversion of the primary amine into the corresponding aldehyde with 4-formyl-1-methylpyridinium benzenesulphonate or other pyridinium ion, followed by DBU or other base treatment and further hydrolization, and

40

followed by the reduction of the aldehyde to the corresponding hydroxyl group with lithium aluminium hydride or other reducing agent;

forming the protected compound of Formula 26 by reacting with t-butyldiphenylsilyl chloride and dimethylaminopyridine in dichloromethane;

transforming the silylated compound of Formula 26 into the intermediate 11 by deprotection of the OCH₂R protecting group, by reacting under reductive conditions or acid conditions. Typical procedures are with palladium black under hydrogen atmosphere, or aqueous TFA, or tributyltin hydride and dichlorobis (triphenylphosphine palladium).

In yet another preferred modification, the cyano compound of Formula 2 can be transformed into Intermediate 11 using an extension of the scheme II, involving the further steps of.

formation of the protected hydroxy compound of Formula 26 by reacting 25 with *tert*-butyldiphenylsilyl chloride in the presence of a base;

final cleavage of the allyl group with tributyltin hydride and dichloropalladium-bis (triphenylphosphine) in 26 that leads to the formation of the intermediate 11.

FORMATION OF ACTIVE COMPOUNDS

It is possible to transform cyanosafracin B into a number of intermediates and derivatives with potential antitumor therapeutic activity. These intermediates can be made starting from already described compounds, or using alternative routes.

Intermediates described herein comprise compound 47, and a numbers of amide derivatives made using compounds 45 or 43.

In Scheme VIII is described formation of compound 47 using the following sequence:

forming the thiourea compound of Formula 3 by reacting compound of Formula 2 with phenyl isothiocyanate;

41

converting the thiourea compound of Formula 3 into the acetamide of Formula 5 by an hydrolysis in acid media followed by addition of acetic anhydride; The intermediate amine compound of Formula 4 can be isolated by quenching the hydrolysis in acid media with sodium bicarbonate, but this intermediate is highly unstable, and is transformed quickly into a five member cyclic imine, named compound 6;

forming the protected compound of Formula 7 by reacting with bromomethylmethyl ether and diisopropylethylamine in dichloromethane;

selectively de-methylating the methoxy group of the quinone system of compound of Formula 7 into the compound of Formula 8 by reacting with methanolic solution of sodium hydroxide;

transforming the compound of Formula 8 into methylenedioxy-compound of Formula 10 by the preferred following sequence: (1) quinone group of compound 8 is reduced with 10% Pd/C under hydrogen atmosphere; (2) the hydroquinone intermediate is converted into the methylene-dioxy compound of Formula 9 by reacting with bromochloromethane and cesium carbonate under hydrogen atmosphere; (3) compound of Formula 9 is transformed into compound of Formula 10 by protecting the free hydroxyl group as a allyloxy group, by reacting with allyl-bromide and cesium carbonate;

transforming the compound of formula 9 into acetyl-derivative 46 by reaction with acetyl chloride in pyridine;

transforming compound of formula 46 into de-protected compound 47 by reaction with hydrochloric acid in dioxane.

Scheme VIII

Other useful amide intermediate derivatives are made starting from already described intermediate 45 using the next scheme:

The second step is optional. This process is an important part of the invention, particularly where the group R is a group R^a as previously defined. Furthermore, the Scheme VIII can be readily broadened to enable preparation of compounds of formula (XXIII), by inclusion in the starting material of a different group at the 5-position, either a group directly intended for the product or a group which can be removed or otherwise modified to give the desired group.

Scheme IX

From compound 45 can be made a group of analogs through the following sequence:

acylation in the amino group of compound of Formula 45 by a wide range of acyl derivatives to provide the corresponding amides, where preferred acyl groups are acetyl, cinnamoyl chloride, p-trifluorocinnamoyl chloride, isovaleryl chloride phenylisothiocyanate or aminoacids, or the other examples previously given of groups RaCO-.

transforming the CN group into an OH group by reaction with silver nitrate in a mixture AcN/H₂O.

Other useful amide intermediate derivatives are made starting from already described intermediate 43 using the next scheme:

Scheme X

From Compound 43 can be obtained another group of interesting derivatives using the following sequence:

- (a) acylation in the amino group of compound of Formula 43 by a wide range of acyl derivatives to provide the corresponding amides, where preferred acyl groups are acetyl, cinnamoyl chloride, p-trifluorocinnamoyl chloride, isovaleryl chloride or aminoacids, or the other examples previously given of groups R^aCO-.
- (b) transforming the CN group into an OH group by reaction with silver nitrate in a mixture AcN/H₂O

NOVEL INTERMEDIATE COMPOUNDS

In the light of the preceding explanations, it can be seen that the present invention provides novel intermediate compounds. Depending on ring A, the intermediates are of formula (XXIIa):

or of formula (XXIIb):

where:

 R^1 is -CH₂NH₂ or -CH₂OH, or a protected or derivatised version of such a group and R^4 is -H; or

R^{1a} and R⁴ together form a group of formula (IV), (VI) or (VII):

R⁵ is -OH or a protected or derivatised version of such a group;

R^{14a} and R^{14b} are both -H or one is -H and the other is -OH or a protected or derivatised

46

version of such a group, -OCH₃ or -OCH₂CH₃, or R^{14a} and R^{14b} together form a keto group; R¹² is -NH-, -NCH₃- or -NCH₂CH₃-;

R¹⁵ is -OH or a protected or derivatised version of such a group; and R¹⁸ is -OH or a protected or derivatised version of such a group.

In one embodiment, preferably at least of R^1 , R^5 , R^{14a} , R^{14b} , R^{15} or R^{18} is a protected or derivatised group.

In one variation of this invention, the group R¹ is not a 3,5-t-butyldiphenylsilyl substituent and/or the group R¹⁸ is not a methoxymethyl group.

Preferably R¹ is -CH₂NH₂ or -CH₂OH, or a protected or derivatised version of such a group and R⁴ is -H;

or

R^{1a} and R⁴ together form a group:

Preferably R^{14a} and R^{14b} are both -H.

One preferred class of intermediates includes the compound which we identify as compound 25, of formula:

The preferred class is thus of the general formula where the group MOM is replaced by any other protecting group.

Other preferred intermediates includes the compounds which we identify as compound 45 and 47. Other N-acyl derivatives may readily be made from compound 45 and are an important part of this invention. Suitable acyl groups include those previously mentioned. The corresponding 21-hydroxy compounds are also useful and are among the active compounds which we have found.

NOVEL ACTIVE COMPOUNDS

We have additionally found that certain of the compounds of the invention which we initially prepared as intermediates have exceptional activity in the treatment of cancers, such as leukaemias, lung cancer, colon cancer, kidney cancer and melanoma.

Thus, the present invention provides a method of treating any mammal, notably a human, affected by cancer which comprises administering to the affected individual a therapeutically effective amount of a compound of the invention, or a pharmaceutical composition thereof.

The present invention also relates to pharmaceutical preparations, which contain as active ingredient a compound or compounds of the invention, as well as the processes for their preparation.

48

Examples of pharmaceutical compositions include any solid (tablets, pills, capsules, granules, etc.) or liquid (solutions, suspensions or emulsions) with suitable composition or oral, topical or parenteral administration, and they may contain the pure compound or in combination with any carrier or other pharmacologically active compounds. These compositions may need to be sterile when administered parenterally.

Administration of the compounds or compositions of the present invention may be by any suitable method, such as intravenous infusion, oral preparations, intraperitoneal and intravenous administration. We prefer that infusion times of up to 24 hours are used, more preferably 2-12 hours, with 2-6 hours most preferred. Short infusion times which allow treatment to be carried out without an overnight stay in hospital are especially desirable. However, infusion may be 12 to 24 hours or even longer if required. Infusion may be carried out at suitable intervals of say 2 to 4 weeks. Pharmaceutical compositions containing compounds of the invention may be delivered by liposome or nanosphere encapsulation, in sustained release formulations or by other standard delivery means.

The correct dosage of the compounds will vary according to the particular formulation, the mode of application, and the particular *situs*, host and tumour being treated. Other factors like age, body weight, sex, diet, time of administration, rate of excretion, condition of the host, drug combinations, reaction sensitivities and severity of the disease shall be taken into account. Administration can be carried out continuously or periodically within the maximum tolerated dose.

The compounds and compositions of this invention may be used with other drugs to provide a combination therapy. The other drugs may form part of the same composition, or be provided as a separate composition for administration at the same time or a different time. The identity of the other drug is not particularly limited, and suitable candidates include:

- a) drugs with antimitotic effects, especially those which target cytoskeletal elements, including microtubule modulators such as taxane drugs (such as taxol, paclitaxel, taxotere, docetaxel), podophylotoxins or vinca alkaloids (vincristine, vinblastine);
- b) antimetabolite drugs such as 5-fluorouracil, cytarabine, gemcitabine, purine analogues

such as pentostatin, methotrexate);

- c) alkylating agents such as nitrogen mustards (such as cyclophosphamide or ifosphamide);
- d) drugs which target DNA such as the antracycline drugs adriamycin, doxorubicin, pharmorubicin or epirubicin;
- e) drugs which target topoisomerases such as etoposide;
- hormones and hormone agonists or antagonists such as estrogens, antiestrogens (tamoxifen and related compounds) and androgens, flutamide, leuprorelin, goserelin, cyprotrone or octreotide;
- g) drugs which target signal transduction in tumour cells including antibody derivatives such as herceptin;
- h) alkylating drugs such as platinum drugs (cis-platin, carbonplatin, oxaliplatin, paraplatin) or nitrosoureas;
- i) drugs potentially affecting metastasis of tumours such as matrix metalloproteinase inhibitors:
- j) gene therapy and antisense agents;
- k) antibody therapeutics;
- l) other bioactive compounds of marine origin, notably the didemnins such as aplidine:
- m) steroid analogues, in particular dexamethasone;
- n) anti-inflammatory drugs, in particular dexamethasone; and
- o) anti-emetic drugs, in particular dexamethasone.

The present invention also extends to the compounds of the invention for use in a method of treatment, and to the use of the compounds in the preparation of a composition for treatment of cancer.

CYTOTOXIC ACTIVITY

Cell Cultures. Cells were maintained in logarithmic phase of growth in Eagle's Minimum Essential Medium, with Earle's Balanced Salts, with 2.0 mM L-glutamine, with non-essential amino acids, without sodium bicarbonate (EMEM/neaa); supplemented with

50

10% Fetal Calf Serum (FCS), 10⁻² M sodium bicarbonate and 0.1 g/l penicillin-G + streptomycin sulfate.

A simple screening procedure has been carried out to determine and compare the antitumour activity of these compounds, using an adapted form of the method described by Bergeron et al (1984). The tumour cell line employed have been P-388 (suspension culture of a lymphoid neoplasm from DBA/2 mouse), A-549 (monolayer culture of a human lung carcinoma), HT-29 (monolayer culture of a human colon carcinoma) and MEL-28 (monolayer culture of a human melanoma).

P-388 cell were seeded into 16 mm wells at 1x10⁴ cells per well in 1 ml aliquots of MEM 5FCS containing the indicated concentration of drug. A separate set of cultures without drug was seeded as control growth to ensure that cells remained in exponential phase of growth. All determinations were carried out in duplicate. After three days of incubation at 37°C, 10% CO₂ in a 98% humid atmosphere, an approximately IC₅₀ was determined by comparing the growth in wells with drug to the growth in wells control.

A-549, HT-29 and MEL-28 were seeded into 16 mm wells at 2x10⁴ cells per well in 1 ml aliquots of MEM 10FCS containing the indicated concentration of drug. A separate set of cultures without drug was seeded as control growth to ensure that cells remained in exponential phase of growth. All determinations were carried out in duplicate. After three days of incubation at 37°C, 10% CO₂ in a 98% humid atmosphere, the wells were stained with 0.1% Crystal Violet. An approximately IC₅₀ was determined by comparing the growth in wells with drug to the growth in wells control.

- 1. Raymond J. Bergeron, Paul F. Cavanaugh, Jr., Steven J. Kline. Robert G. Hughes, Jr., Gary T. Elliot and Carl W. Porter. Antineoplastic and antiherpetic activity of spermidine catecholamide iron chelators. *Biochem. Bioph. Res. Comm.* 1984, <u>121</u>(3), 848-854.
- 2. Alan C. Schroeder, Robert G. Hughes, Jr. and Alexander Bloch. Effects of Acyclic Pyrimidine Nucleoside Analoges. J. Med. Chem. 1981, 24 1078-1083.

Cytotoxic activity

Compound	IC ₅₀ (μM)					
	P-388	A-549	HT-29	MEL-28	CV-1	DU-145
Me HO NH-Me MeO NH-N-Me NH-N-M	0.009	0.018	0.018	0.018	0.023	
Me O No	0.15	>0.15	0.15	>0.15		
Me O NH Me N	1.44	1.44	1.44	1.44		
Me Me Me Me NMe HO NH O HO NH	>1.5	>1.5	>1.5	>1.5		
ON Me ON NI-Me ON NI-	1.4	1.4	1.4	1.4		
OMe Me NI-Me	0.01	0.01	0.01	0.01		
Mo HO Me Me NH-1-Me NH	0.08	0.16	0.01	0.16		

52

		5.	2			
Me M	0.01	0.01	0.01	0.01		
Me No Me No	0.019	0.019	0.019	0.019		
Me M	0.014	0.014	0.014	0.014	0.014	0.014
OME ME No CH-CCI- OO C	0.13	0.13	0.13	0.13	0.13	0.13
Me No	0.18	1.8	1.8	1.8	1.8	1.8
Me North Me 25	0.2	0.2	0.2	0.2		0.2
Me N N N N N N N N N N N N N N N N N N N	0.008	0.008	0.008	0.008		
OME Me Me Me N-IME	0.01	0.01	0.01	0.01		
OH HO Me	0.001	0.001	0.001	0.001	0.001	0.001
OAC NH AC A 2	0.13	0.13	0.13	0.13		0.13

		5.	3			
OAC No-tube	0.008	0.016	0.008	0.008		0.016
OME MO	0.001	0.001	0.001	0.001		0.001
Me HO Me Me	0.01	0.01	0.01	0.01		0.01
CMe Me Me Me Me Me NH-Me EN	0.015	0.015	0.015	0.015	0.018	
NO N	2.171	2.171	2.171	2.171	2.171	
MeC O No.	0.005	0.005	0.005	0.005		
Me M	0.22	0.22	0.22	0.22	0.22	
No.	>9	>18.1	>18.1	>18.1	>18.1	

		5	4			
OH NMe	>1.77	>1.77	>1.77	>1.77		>1.77
OMP UP	>1.65	>1.65	>1.65	>1.65		>1.65
Oue we	0.016	0.016	0.016	0.016		0.016
OAC NO ME NO	0.001	0.001	0.001	0.001		0.001
Me No Me	0.0008	0.001	0.0008	0.0008		0.001
OAC NH NH Me	0.007	0.007	0.007	0.007	·	0.007
HO OMe Me No OME	0.0001	0.0001	0.0001	0.0001		0.0001
OAC NO CN No Me No CN No No CN No	0.0001	0.0001	0.0001	0.0001		0.0001
OAC Me Me Me NH OCF, 52	0.001	0.001	0.001	0.001		0.001

55 .

		J.	5 .			
Oute Me He No State N	0.0001	0.0001	0.0001	0.0001		0.0001
Me O 54	0.001	0.001	0.001	0.001		0.001
OH HO Me OH N- We ON N-	0.01	0.01	0.01	0.01		0.01
OME MO MO MO NI-MO	0.18	0.9	0.18	0.8		0.9
NACSNOPP 57	0.14	0.14	0.14	0.14		0.14
OAC NO-CSNPh Ac 58	0.001	0.001	0.001	0.001		0.001
OAC NH HO NH HO OAC NH HO OAC NH HO OAC NH H H H H H H H H H H H H H H H H H H	0.001	0.001	0.0005	0.001		0.0005
OAC No Me	0.001	0.001	0.001	0.001	·	0.001
OAC N-Me OAC	0.001	0.001	0.0005	0.0005		0.001

_		50	6		
OAC NO ME OC	0.0001	0.0001	0.0001	0.0001	0.0001
OAC HO Me OAC N Me OAC N MC N M MC OAC N M	0.001	0.001	0.001	0.001	0.001
OAC NH Me OAC NH Me CN NH OMB	0.0001	0.0005	0.0001	0.0001	0.0005
OAC Me Me OAC N Me OAC	0.0001	0.0001	0.0001	0.0001	0.0001
OM6 HO M6 OAC N M6 N M6 N M6 N M7	0.0001	0.0001	0.0001	0.0001	0.0001

From this activity data and other considerations, it can be seen that the active compounds of this invention include a preferred class of compounds of the general formula (XXIII):

$$H_3C$$
 R^5
 H_3
 R^5
 R^5

where R¹ is as previously defined for formula (XVIIb) and is preferably a derivatised aminomethylene group of moderate bulk;

R⁵ is as previously defined for formula (XVIIb) and is preferably a derivatised hydroxy group of low bulk;

57

 R^{12} is as previously defined and is preferably -NCH₃- and R^{21} is a hydroxy or cyano group.

R¹ is suitably a hydrophobic group and which thus lacks free amino, hydroxy or other hydrophilic function. Typically R¹ is a group -CH₂-NH₂-CO-R^a, where R^a is as defined but preferably has a linear chain length of less than 20 atoms, more preferably less than 15 or 10 atoms, where a 1,4-phenyl is counted as a chain length of four atoms and similar considerations apply to other cyclic groups (for example, 1,2-cyclohexyl is chain length of two), and the linear chain of less than 10, 15 or 20 atoms can itself be substituted. In particular, the data suggests there is a balance to be achieved between having no such group R^a-CO- and having a large, bulky group.

In one variation, we prefer that R¹ is free from cyclic groups, especially aromatic groups. In a related variation, the present invention does not prepare the compounds which are described in the article Proc. Natl. Acad. Sci. USA, 96, 3496-3501, 1999, incorporated by reference. Our preferred groups for R¹ exclude the corresponding substituents CH₂R₂ shown in Table 1 of that article, specifically the groups A, B, C and D for R₂.

R⁵ is preferably an acetyl group.

In particularly preferred compounds, the group R¹ is acylated on an -NH₂ group, and for example N-acyl derivatives can be formed from groups -CH₂NH₂ and -CH₂-NH-aa. The acyl derivatives can be N-acyl or N-thioacyl derivatives thereof. The acyl groups can be of formula -CO-R^a, where R^a is as defined and is chosen to meet the indicated criteria. Suitable acyl groups include alanyl, arginyl, aspartyl, asparagyl, cystyl, glutamyl, glutaminyl, glycyl, histidyl, hydroxyprolyl., isoleucyl, leucyl, lysyl, methionyl, phenylalanyl, prolyl, seryl, threonyl, thyronyl, tryptophyl, tyrosyl, valyl, as well as other amino acid acyl groups. Such amino acid acyl groups are preferred derivatised on the amino group to give hydrophobicity.

In a variation, the group R^1 is a derivatised hydroxymethylene group. Similar considerations apply as with the derivatised aminomethylene group.

Reflecting the active compounds, an important process in accordance with this invention is as follows:

where R⁵ for the end product is as defined for the compound (XXXII) and may be different in the starting material and converted thereto as part of the process,

R¹⁸ is a hydroxy group in the end product but may be a protected hydroxy group in the starting material and converted thereto as part of the process,

R¹² for the end product may be the same as in the starting material or may be converted thereto as part of the process,

R²¹ for the end product is as defined and if a hydroxy group may be formed from a cyano group as part of the process,

R^a is as defined, and may be further acylated as part of the process to give an end product with an acylated R^a group as discussed.

R⁵ is preferably acetyl or other small acyl group in the starting material and is not changed in the reaction. R¹⁸ is preferably a hydroxy group in the starting material and is not changed in the reaction. R¹² is preferably -NCH₃- in the starting material and is not changed in the reaction. R²¹ the end product is as defined and if a hydroxy group may be formed from a cyano group as part of the process. R^a is in the final product is preferably as defined in relation to the compound of formula (XXIII).

Another important method of this invention includes the reaction:

Another important method of this invention includes the reaction:

Another important method of this invention includes the reaction includes the reaction where a group R^1 is aminomethylene is converted to a hydroxymethylene group.

Another important method of this invention includes the reaction wherein a compound with a group R^I which is hydroxymethylene is reacted with a reagent of the formula (XIX)

where Fu indicates a protected functional group, Prot³ is a protecting group, and the dotted line shows an optional double bond.

Another important method of this invention includes the reaction for preparing a 21-cyano compound of formula (XVI) which comprises reacting a compound of formula (XV):

60

where R^1 , R^5 , R^8 , R^{14a} , R^{14b} , R^{15} and R^{18} are as defined and R^{21} is a hydroxy group, with a source of cyanide ion, to give the desired 21-cyano compound.

In addition, processes using other nucleophile-containing compounds, to produce similar compounds of formula (XVI) wherein the 21-position is protected by another nucleophilic group, a 21-Nuc group, are also envisaged. For example, a 21-Nuc compound of formula (XVI) with an alkylamino substituent at the 21-position can be produced by reacting the compound of formula (XV) wherein R^{21} is a hydroxy group with a suitable alkylamine. A 21-Nuc compound of formula (XVI) with an alkylthio substituent at the 21-position can also be produced by reacting the compound of formula (XV) wherein R^{21} is a hydroxy group with a suitable alkanethiol. Alternatively, a 21-Nuc compound of formula (XVI) with an α -carbonylalkyl substituent at the 21-position can be produced by reacting the compound of formula (XV) wherein R^{21} is a hydroxy group with a suitable carbonyl compound, typically in the presence of a base. Other synthetic routes are available for other 21-Nuc compounds.

Another important reaction of this invention involves treatment of a 21-cyano product of this invention to form a 21-hydroxy compound. Such compounds have interesting *in vivo* properties.

EXAMPLES

To a solution of 2 (21.53 g, 39.17 ml) in ethanol (200 ml), *tert*-butoxycarbonyl anhydride (7.7 g, 35.25 ml) was added and the mixture was stirred for 7 h at 23 °C. Then, the reaction was concentrated *in vacuo* and the residue was purified by flash column chromatography (SiO₂, hexane:ethyl acetate 6:4) to give 14 (20.6 g, 81 %) as a yellow solid.

Rf: 0.52 (ethyl acetate:CHCl₃ 5:2).

¹H NMR (300 MHz, CDCl₃): δ 6.49 (s, 1H), 6. 32 (bs, 1H), 5.26 (bs, 1H), 4.60 (bs, 1H), 4.14 (d, *J*= 2.4 Hz, 1H), 4.05 (d, *J*= 2.4 Hz, 1H), 3.94 (s, 3H), 3.81 (d, *J*= 4.8 Hz, 1H), 3.7 (s, 3H), 3.34 (br d, *J*= 7.2 Hz, 1H), 3.18-3.00 (m, 5H), 2.44 (d, *J*= 18.3 Hz, 1H), 2.29 (s, 3H), 2.24 (s, 3H), 1.82 (s, 3H), 1.80-1.65 (m, 1H), 1.48 (s, 9H), 0.86 (d, *J*= 5.7 Hz, 3H)

¹³C NMR (75 MHz, CDCl₃): δ 185.5, 180.8, 172.7, 155.9, 154.5, 147.3, 143.3, 141.5, 135.3, 130.4, 129.2, 127.5, 120.2, 117.4, 116.9, 80.2, 60.7, 60.3, 58.5, 55.9, 55.8, 54.9, 54.4, 50.0, 41.6, 40.3, 28.0, 25.3, 24.0, 18.1, 15.6, 8.5.

ESI-MS m/z: Calcd. for $C_{34}H_{43}N_5O_8$: 649.7. Found $(M+H)^+$: 650.3.

To a stirred solution of 14 (20.6 g, 31.75 ml) in CH₃CN (159 ml), diisopropylethylamine (82.96 ml, 476.2 ml), methoxymethylene bromide (25.9 ml, 317.5 ml) and dimethylaminopyridine (155 mg, 1.27 ml) were added at 0 °C. The mixture was stirred at 23 °C for 24h. The reaction was quenched at 0 °C with aqueous 0.1N HCl (750 ml) (pH = 5), and extracted with CH₂Cl₂ (2 x 400 ml). The organic phase was dried (sodium sulphate) and concentrated *in vacuo*. The residue was purified by flash column chromatography (SiO₂, gradient hexane:ethyl acetate 4:1 to hexane:ethyl acetate 3:2) to give 15 (17.6 g, 83 %) as a yellow solid.

Rf: 0.38 (hexane:ethyl acetate 3:7).

¹H NMR (300 MHz, CDCl₃): δ 6.73 (s, 1H), 5.35 (bs, 1H), 5.13 (s, 2H), 4.50 (bs, 1H), 4.25 (d, *J*= 2.7 Hz, 1H), 4.03 (d, *J*= 2.7 Hz, 1H), 3.97 (s, 3H), 3.84 (bs, 1H), 3.82-3.65 (m, 1H), 3.69 (s, 3H), 3.56 (s, 3H), 3.39-3.37 (m, 1H), 3.20-3.00 (m, 5H), 2.46 (d, *J*= 18 Hz, 1H), 2.33 (s, 3H), 2.23 (s, 3H), 1.85 (s, 3H), 1.73-1.63 (m, 1H), 1.29 (s, 9H), 0.93 (d, *J*= 5.1 Hz, 3H) ¹³C NMR (75 MHz, CDCl₃): δ 185.4, 180.9, 172.4, 155.9, 154.5, 149.0, 148.4, 141.6, 135.1, 131.0, 129.9, 127.6, 124.4, 123.7, 117.3, 99.1, 79.3, 60.7, 59.7, 58.4, 57.5, 56.2, 55.9, 55.0, 54.2, 50.0, 41.5, 39.9, 28.0, 25.2, 24.0, 18.1, 15.6, 8.5.

ESI-MS m/z: Calcd. for $C_{36}H_{47}N_5O_9$: 693.8. Found $(M+H)^+$: 694.3.

To a flask containing 15 (8 g, 1.5 ml) in methanol (1.6 l) an aqueous solution of 1M sodium hydroxide (3.2 l) was added at 0 °C. The reaction was stirred for 2h at this temperature and then, quenched with 6M HCl to pH = 5. The mixture was extracted with ethyl acetate (3 x l l) and the combined organic layers were dried over sodium sulphate and concentrated *in* vacuo. The residue was purified by flash column chromatography (SiO₂, gradient CHCl₃ to CHCl₃:ethyl acetate 2:1) to afford 16 (5.3 mg, 68 %).

Rf: 0.48 (CH₃CN:H₂O 7:3, RP-C18)

¹H NMR (300 MHz, CDCl₃): δ 6.73 (s, 1H), 5.43 (bs, 1H), 5.16 (s, 2H), 4.54 (bs, 1H), 4.26 (d, *J*= 1.8 Hz, 1H), 4.04 (d, *J*= 2.7 Hz 1H), 3.84 (bs, 1H), 3.80-3.64 (m, 1H), 3.58 (s, 3H), 3.41-3.39 (m, 1H), 3.22-3.06 (m, 5H), 2.49 (d, *J*= 18.6 Hz 1H), 2.35 (s, 3H), 2.30-2.25 (m, 1H), 2.24 (s, 3H), 1.87 (s, 3H), 1.45-1.33 (m, 1H), 1.19 (s, 9H), 1.00 (br d, *J*= 6.6 Hz 3H) (75 MHz, CDCl₃): δ 184.9, 180.9, 172.6, 154.7, 151.3, 149.1, 148.6, 144.7, 132.9, 131.3, 129.8, 124.5, 123.7, 117.3, 116.8, 99.1, 79.4, 59.8, 58.6, 57.7, 56.2, 55.6, 54.9, 54.5, 50.1, 41.6, 40.1, 28.0, 25.3, 24.4, 18.1, 15.7, 8.0.

ESI-MS m/z: Calcd. for $C_{35}H_{45}N_5O_9$: 679.7. Found $(M+H)^{\dagger}$: 680.3

To a degassed solution of compound 16 (1.8 g, 2.64 ml) in DMF (221 ml) 10 % Pd/C (360 mg) was added and stirred under H₂ (atmospheric pressure) for 45 min. The reaction was filtered through celite under argon, to a flask containing anhydrous Cs₂CO₃ (2.58 g, 7.92 ml). Then, bromochloromethane (3.40 ml 52.8 ml), was added and the tube was sealed and stirred at 100 °C for 2h. The reaction was cooled, filtered through a pad of celite and washed with CH₂Cl₂. The organic layer was concentrated and dried (sodium sulphate) to afford 17 as a brown oil that was used in the next step with no further purification.

Rf: 0.36 (hexane:ethyl acetate 1:5, SiO₂).

¹H NMR (300 MHz, CDCl₃): δ 6.68 (s, 1H), 6.05 (bs, 1H), 5.90 (s, 1H), 5.79 (s, 1H), 5.40 (bs, 1H), 5.31-5.24 (m, 2H), 4.67 (d, J= 8.1 Hz, 1H), 4.19 (d, J= 2.7 Hz, 1H), 4.07 (bs, 1H), 4.01 (bs, 1H), 3.70 (s, 3H), 3.67 (s, 3H), 3.64-2.96 (m, 5H), 2.65 (d, J=18.3 Hz, 1H), 2.33 (s, 3H), 2.21 (s, 3H), 2.04 (s, 3H), 2.01-1.95 (m, 1H), 1.28 (s, 9H), 0.87 (d, J= 6.3 Hz, 3H) (75 MHz, CDCl₃): δ 172.1, 162.6, 154.9, 149.1, 145.7, 135.9, 130.8, 130.7, 125.1, 123.1, 117.8, 100.8, 99.8, 76.6, 59.8, 59.2, 57.7, 57.0, 56.7, 55.8, 55.2, 49.5, 41.6, 40.1, 36.5, 31.9, 31.6, 29.7, 28.2, 26.3, 25.0, 22.6, 18.2, 15.8, 14.1, 8.8.

ESI-MS m/z: Calcd. for $C_{36}H_{47}N_5O_9$: 693.34. Found $(M+H)^{\dagger}$: 694.3.

To a flask containing a solution of 17 (1.83 g, 2.65 ml) in DMF (13 ml), Cs₂CO₃ (2.6 g, 7.97 ml), and allyl bromide (1.15 ml, 13.28 ml) were added at 0° C. The resulting mixture was stirred at 23 °C for 1h. The reaction was filtered through a pad of celite and washed with CH₂Cl₂. The organic layer was dried and concentrated (sodium sulphate). The residue was purified by flash column chromatography (SiO₂, CHCl₃:ethyl acetate 1:4) to afford 18 (1.08 mg, 56 %) as a white solid.

Rf: 0.36 (CHCl₃:ethyl acetate 1:3).

¹H NMR (300 MHz, CDCl₃): δ 6.70 (s, 1H), 6.27-6.02 (m, 1H), 5.94 (s, 1H), 5.83 (s, 1H), 5.37 (dd, J_I = 1.01 Hz, J_2 = 16.8 Hz, 1H), 5.40 (bs, 1H), 5.25 (dd, J_I = 1.0 Hz, J_2 = 10.5 Hz, 1H), 5.10 (s, 2H), 4.91 (bs, 1H), 4.25-4.22 (m, 1H), 4.21 (d, J = 2.4 Hz, 1H), 4.14-4.10 (m, 1H), 4.08 (d, J = 2.4 Hz, 1H), 4.00 (bs, 1H), 3.70 (s, 3H), 3.59 (s, 3H), 3.56-3.35 (m, 2H), 3.26-3.20 (m, 2H), 3.05-2.96 (dd, J_I = 8.1 Hz, J_2 = 18 Hz, 1H), 2.63 (d, J = 18 Hz, 1H), 2.30 (s, 3H), 2.21 (s, 3H), 2.09 (s, 3H), 1.91-1.80 (m, 1H), 1.24 (s, 9H), 0.94 (d, J = 6.6 Hz, 3H) (75 MHz, CDCl₃): δ 172.0, 154.8, 148.8, 148.6, 148.4, 144.4, 138.8, 133.7, 130.9, 130.3, 125.1, 124.0, 120.9, 117.8, 117.4, 112.8, 112.6, 101.1, 99.2, 73.9, 59.7, 59.3, 57.7, 56.9, 56.8, 56.2, 55.2, 40.1, 34.6, 31.5, 28.1, 26.4, 25.1, 22.6, 18.5, 15.7, 14.0, 9.2. ESI-MS m/z: Calcd. for C₃₉H₅₁N₅O₉: 733.4. Found (M+H)⁺: 734.4.

To a solution of 18 (0.1 g, 0.137 ml) in dioxane (2 ml), 4.2M HCl/dioxane (1.46 ml) was added and the mixture was stirred for 1.2h at 23 °C. The reaction was quenched at 0 °C with sat. Aqueous sodium bicarbonate (60 ml) and extracted with ethyl acetate (2x70 ml). The organic layers were dried (sodium sulphate) and concentrated *in vacuo* to afford 19 (267 mg, 95 %) as a white solid that was used in subsequent reactions with no further purification.

Rf: 0.17 (ethyl acetate:methanol 10:1, SiO₂)

¹H NMR (300 MHz, CDCl₃): δ 6.49 (s, 1H), 6.12-6.00 (m, 1H), 5.94 (s, 1H), 5.86 (s, 1H), 5.34 (dd, *J*= 1.0 Hz, *J*= 17.4 Hz, 1H), 5.25 (dd, *J*= 1.0 Hz, *J*= 10.2 Hz, 1H), 4.18-3.76 (m, 5H), 3.74 (s, 3H), 3.71-3.59 (m, 1H), 3.36-3.20 (m, 4H), 3.01-2.90 (m, 1H), 2.60 (d, *J*= 18.0 Hz, 1H), 2.29 (s, 3H), 2.24 (s, 3H), 2.11 (s, 3H), 1.97-1.86 (m, 1H), 0.93 (d, *J*= 8.7 Hz, 3H) ¹³C NMR (75 MHz, CDCl₃): δ 175.5, 148.4, 146.7, 144.4, 142.4, 138.9, 133.7, 131.3, 128.3, 120.8, 117.9, 117.4, 113.8, 112.4, 101.1, 74.2, 60.5, 59.1, 56.5, 56.1, 56.3, 56.0, 55.0, 50.5, 41.6, 39.5, 29.5, 26.4, 24.9, 21.1, 15.5, 9.33.

ESI-MS m/z: Calcd. for $C_{32}H_{39}N_5O_6$: 589. Found $(M+H)^+$: 590.

To a solution of 19 (250 mg, 0.42 ml) in CH₂Cl₂ (1.5 ml), phenyl isothiocyanate (0.3 ml, 2.51 ml) was added and the mixture was stirred at 23° C for 1h. The reaction was concentrated *in vacuo* and the residue was purified by flash column chromatography (SiO₂, gradient Hexane to 5:1 hexane:ethyl acetate) to afford 20 (270 mg, 87 %) as a white solid.

Rf: 0.56 (CHCl₃:ethyl acetate 1:4).

¹H NMR (300 MHz, CDCl₃): δ 8.00 (bs, 1H), 7.45-6.97 (m, 4H), 6.10 (s, 1H), 6.08-6.00 (m, 1H), 5.92 (s, 1H), 5.89 (s, 1H), 5.82 (s, 1H), 5.40 (dd, *J*= 1.5 Hz, *J*= 17.1 Hz, 1H), 3.38 (bs, 1H), 5.23 (dd, *J*= 1.5 Hz, *J*= 10.5 Hz, 1H), 4.42-4.36 (m, 1H), 4.19-4.03 (m, 5H), 3.71 (s, 3H), 3.68-3.17 (m, 4H), 2.90 (dd, *J*=7.8 Hz, *J*= 18.3 Hz, 1H), 2.57 (d, *J*= 18.3 Hz, 1H), 2.25 (s, 3H), 2.12 (s, 3H), 2.10 (s, 3H), 1.90 (dd, *J*= 12.3 Hz, *J*= 16.5 Hz, 1H), 0.81 (d, *J*= 6.9 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃): δ 178.4, 171.6, 148.6, 146.8, 144.3, 142.7, 138.7, 136.2, 133.6, 130.7, 129.8, 126.6, 124.2, 124.1, 120.9, 120.5, 117.7, 117.4, 116.7, 112.6, 112.5, 101.0, 74.0, 60.6, 59.0, 57.0, 56.2, 56.1, 55.0, 53.3, 41.4, 39.7, 26.3, 24.8, 18.3, 15.5, 9.2. ESI-MS m/z: Calcd. for C₃₀H₄₄N₆O₆S: 724.8 Found (M+H)⁺: 725.3.

To a solution of **20** (270 mg, 0.37 ml) in dioxane (1 ml), 4.2N HCl/dioxane (3.5 ml) was added and the reaction was stirred at 23 °C for 30 min. Then, ethyl acetate (20 ml) and H₂O (20 ml) were added and the organic layer was decanted. The aqueous phase was basified with saturated aqueous sodium bicarbonate (60 ml) (pH = 8) at 0 °C and then, extracted with CH_2Cl_2 (2 x 50 ml). The combined organic extracts were dried (sodium sulphate), and concentrated *in vacuo*. The residue was purified by flash column chromatography (SiO₂, ethyl acetate:methanol 5:1) to afford compound **21** (158 mg, 82%) as a white solid.

Rf: 0.3 (ethyl acetate:methanol 1:1).

¹H NMR (300 MHz, CDCl₃): δ 6.45 (s, 1H), δ .12-6.03 (m, 1H), 5.91 (s, 1H), 5.85 (s, 1H), 5.38 (dd, J_I = 1.2 Hz, J_Z = 17.1 Hz, 1H), 5.24 (dd, J_I = 1.2 Hz, J_Z = 10.5 Hz, 1H), 4.23-4.09 (m, 4H), 3.98 (d, J= 2.1 Hz, 1H), 3.90 (bs, 1H), 3.72 (s, 3H), 3.36-3.02 (m, 5H), 2.72-2.71 (m, 2H), 2.48 (d, J= 18.0 Hz, 1H), 2.33 (s, 3H), 2.22 (s, 3H), 2.11 (s, 3H), 1.85 (dd, J_I = 11.7 Hz, J_Z = 15.6 Hz, 1H)).

¹³C NMR (75 MHz, CDCl₃): 8 148.4, 146.7, 144.4, 142.8, 138.8, 133.8, 130.5, 128.8, 121.5, 120.8, 118.0, 117.5, 116.9, 113.6, 112.2, 101.1, 74.3, 60.7, 59.9, 58.8, 56.6, 56.5, 55.3, 44.2, 41.8, 29.7, 26.5, 25.7, 15.7, 9.4.

ESI-MS m/z: Calcd. for C₂₉H₃₄N₄O₅: 518.3. Found (M+H)⁺: 519.2.

To a solution of 21 (0.64 g, 1.22 ml) in CH₂Cl₂ (6.13 ml), pyridine (0.104 ml, 1.28 ml) and 2,2,2-trichloroethyl chloroformate (0.177 ml, 1.28 ml) were added at -10 °C. The mixture was stirred at this temperature for 1h and then, the reaction was quenched by addition of 0.1N HCl (10 ml) and extracted with CH₂Cl₂ (2 x 10 ml). The organic layer was dried over sodium sulphate and concentrated *in vacuo*. The residue was purified by flash column chromatography (SiO₂, (hexane:ethyl acetate 1:2) to afford 22 (0.84 g, 98%) as a white foam solid.

Rf: 0.57 (ethyl acetate:methanol 5:1).

¹H NMR (300 MHz, CDCl₃): δ 6.50 (s, 1H), 6.10-6.00 (m, 1H), 6.94 (d, J= 1.5 Hz, 1H), 5.87 (d, J= 1.5 Hz, 1H), 5.73 (bs, 1H), 5.37 (dq, J_I = 1.5 Hz, J_Z = 17.1 Hz, 1H), 5.26 (dq, J_I = 1.8 Hz, J_Z = 10.2 Hz, 1H), 4.60 (d, J= 12 Hz, 1H), 4.22-4.10 (m, 4H), 4.19 (d, J= 12 Hz, 1H), 4.02 (m, 2H), 3.75 (s, 3H), 3.37-3.18 (m, 5H), 3.04 (dd, J_I = 8.1 Hz, J_Z = 18 Hz, 1H), 2.63 (d, J= 18 Hz, 1H), 2.31 (s, 3H), 2.26 (s, 3H), 2.11 (s, 3H), 1.85 (dd, J_I = 12.3 Hz, J_Z = 15.9 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 154.3, 148.5, 146.7, 144.5, 142.8, 139.0, 133.8, 130.7, 128.7, 121.3, 120.8, 117.8, 117.7, 116.8, 112.7, 101.2, 77.2, 74.3, 60.7, 59.9, 57.0, 56.4, 55.3, 43.3, 41.7, 31.6, 26.4, 25.3, 22.6, 15.9, 14.1, 9.4.

ESI-MS m/z: Calcd. for C₃₂H₃₅Cl₃N₄O₇: 694.17. Found (M+H)⁺: 695.2.

To a solution of 22 (0.32 g, 0.46 ml) in CH₃CN (2.33 ml), diisopropylethylamine (1.62 ml, 9.34 ml), bromomethyl methyl ether (0.57 ml, 7.0 ml) and dimethylaminopyridine (6 mg, 0.046 ml) were added at 0 °C. The mixture was heated at 30 °C for 10h. Then, the reaction was diluted with dichloromethane (30 ml) and poured in an aqueous solution of HCl at pH = 5 (10 ml). The organic layer was dried over sodium sulphate and the solvent was eliminated under reduced pressure to give a residue which was purified by flash column chromatography (SiO₂, hexane:ethyl acetate 2:1) to afford 23 (0.304 g, 88%) as a white foam solid.

Rf: 0.62 (hexane:ethyl acetate 1:3).

¹H NMR (300 MHz, CDCl₃): δ 6.73 (s, 1H), 6.10 (m, 1H), 5.94 (d, J= 1.5 Hz, 1H), 5.88 (d, J= 1.5 Hz, 1H), 5.39 (dq, J_I= 1.5 Hz, J_Z= 17.1 Hz, 1H), 5.26 (dq, J_I= 1.8 Hz, J_Z= 10.2 Hz, 1H), 5.12 (s, 2H), 4.61 (d, J= 12 Hz, 1H), 4.55 (t, J= 6.6 Hz, 1H), 4.25 (d, J= 12 Hz, 1H), 4.22-4.11 (m, 4H), 4.03 (m, 2H), 3.72 (s, 3H), 3.58 (s, 3H), 3.38-3.21 (m, 5H), 3.05 (dd, J_I= 8.1 Hz, J_Z= 18 Hz, 1H), 2.65 (d, J= 18 Hz, 1H), 2.32 (s, 3H), 2.23 (s, 3H), 2.12 (s, 3H), 1.79 (dd, J_I= 12.3 Hz, J_Z= 15.9 Hz, 1H);

¹³C NMR (75 MHz, CDCl₃) δ 154.3, 148.6, 148.4, 144.5, 139.0, 133.6, 130.6, 130.1, 125.07, 124.7, 124.0, 121.1, 117.7, 112.6, 101.2, 99.2, 77.2, 74.4, 74.1, 59.8, 59.8, 57.7, 57.0, 56.8, 56.68, 55.3, 43.2, 41.5, 26.4, 25.2, 15.9, 9.3.

ESI-MS m/z: Calcd. for C₃₄H₃₉Cl₃N₄O₈: 738.20. Found (M+H)⁺: 739.0.

To a suspension of 23 (0.304 g, 0.41 ml) in 90% aqueous acetic acid (4 ml), powder zinc (0.2 g, 6.17 ml) was added and the reaction was stirred for 7 hour at 23 °C. The mixture was filtered through a pad of celite which was washed with CH_2Cl_2 . The organic layer was washed with an aqueous sat. solution of sodium bicarbonate (pH = 9) (15 ml) and dried over sodium sulphate. The solvent was eliminated under reduced pressure to give 24 (0.191 g, 83%) as a white solid.

Rf: 0.3 (ethyl acetate:methanol 5:1).

¹H NMR (300 MHz, CDCl₃): δ 6.68 (s, 1H), 6.09 (m, 1H), 5.90 (d, J= 1.5 Hz, 1H), 5.83 (d, J= 1.5 Hz, 1H), 5.39 (dq, J_I = 1.5 Hz, J_2 = 17.1 Hz, 1H), 5.25 (dq, J_I = 1.5 Hz, J_2 = 10.2 Hz, 1H), 5.10 (s, 2H), 4.22-4.09 (m, 3H), 3.98 (d, J= 2.4 Hz, 1H), 3.89 (m, 1H), 3.69 (s, 3H), 3.57 (s, 3H), 3.37-3.17 (m, 3H), 3.07 (dd, J_I = 8.1 Hz, J_2 = 18 Hz, 1H), 2.71 (m, 2H), 2.48 (d, J= 18 Hz, 1H), 2.33 (s, 3H), 2.19 (s, 3H), 2.17 (s, 3H), 1.80 (dd, J_I = 12.3 Hz, J_2 = 15.9 Hz, 1H)

¹³C NMR (75 MHz, CDCl₃): δ 148.5, 148.2, 144.3, 138.7, 133.7, 130.7, 129.9, 125.0, 123.9, 121.3, 117.9, 117.5, 113.6, 112.0, 101.0, 99.2, 74.0, 59.8, 59.7, 58.8, 57.6, 57.0, 56.2, 55.2, 44.2, 41.5, 31.5, 26.4, 25.6, 22.5, 16.7, 14.0, 9.2.

ESI-MS m/z: Calcd. for $C_{31}H_{38}N_4O_6$: 562.66. Found $(M+H)^{\dagger}$: 563.1.

To a solution of **24** (20 mg, 0.035 ml), in H₂O (0.7 ml) and THF (0.7 ml), NaNO₂ (12 mg, 0.17 ml) and 90% aqueous AcOH (0.06 ml) were added at 0 °C and the mixture was stirred at 0 °C for 3h. After dilution with CH₂Cl₂ (5 ml), the organic layer was washed with water (1 ml), dried over sodium sulphate and concentrated *in vacuo*. The residue was purified by flash column chromatography (SiO₂, hexane:ethyl acetate 2:1) to afford **25** (9.8 mg, 50%) as a white solid.

Rf: 0.34 (hexane:ethyl acetate 1:1).

¹H NMR (300 MHz, CDCl₃): δ 6.71 (s, 1H), 6.11 (m, 1H), 5.92 (d, J= 1.5 Hz, 1H), 5.87 (d, J= 1.5 Hz, 1H), 5.42 (dq, J_I = 1.5 Hz, J_2 = 17.1 Hz, 1H), 5.28 (dq, J_I = 1.5 Hz, J_2 = 10.2 Hz, 1H), 5.12 (s, 2H), 4.26-4.09 (m, 3H), 4.05 (d, J= 2.4 Hz, 1H), 3.97 (t, J= 3.0 Hz, 1H), 3.70 (s, 3H), 3.67-3.32 (m, 4H), 3.58 (s, 3H), 3.24 (dd, J_I = 2.7 Hz, J_2 = 15.9 Hz, 1H), 3.12 (dd, J_I = 8.1 Hz, J_2 = 18.0 Hz, 1H), 2.51 (d, J= 18 Hz, 1H), 2.36 (s, 3H), 2.21 (s, 3H), 2.12 (s, 3H), 1.83 (dd, J_I = 12.3 Hz, J_2 = 15.9 Hz, 1H)

¹³C NMR (75 MHz, CDCl₃) δ 148.7, 148.4, 138.9, 133.7, 131.1, 129.4, 125.1, 123.9, 120.7, 117.6, 117.5, 113.2, 112.3, 101.1, 99.2, 74.0, 63.2, 59.8, 59.7, 57.9, 57.7, 57.0, 56.5, 55.2, 41.6, 29.6, 26.1, 25.6, 22.6, 15.7, 9.2.

ESI-MS m/z: Calcd. for $C_{31}H_{37}N_3O_7$: 563.64. Found $(M+H)^{\dagger}$: 564.1.

Example 13

29

The starting material (2.0 g, 5.90 ml) was added to a suspension of sodium hydride (354 mg, 8.86 ml) in THF (40 ml) at 23 °C, following the suspension was treated with allyl chloroformate (1.135 ml, 8.25 ml) at 23 °C and then refluxed for 3 hours. The suspension was cooled, filtered off, the solid washed with ethyl acetate (100 ml), and the filtrate was concentrated. The oil crude was ground with hexane (100 ml) and kept at 4°C overnight. After, the solvent was decanted and the light yellow slurry was treated with CH₂Cl₂ (20 ml), and precipitated with hexane (100 ml). After 10 minutes, the solvent was decanted again. The operation was repeated until appearing a white solid. The white solid was filtered off and dried to afford compound 29 (1.80 g, 65%) as a white solid.

¹H-NMR (300 MHz, CDCl₃): δ 7.74 (d, J= 7.5 Hz, 2H), 7.62 (d, J= 6.9 Hz, 2H), 7.33 (t, J= 7.5 Hz, 2H), 7.30 (t, J= 6.3 Hz, 2H), 5.71 (d, J= 7.8 Hz, 1H), 4.73 (d, J= 7.8 Hz, 2H), 4.59 (m, 1H), 4.11 (t, J= 6.0 Hz, 1H), 3.17 (dd, J= 6.0 Hz, J= 2.7 Hz, 2H), 3.20 (dd, J= 5.4 Hz, J= 2.1 Hz, 2H).

¹³C-NMR (75 MHz, CDCl₃): δ 173.6, 152.7, 144.0, 139.7, 137.8, 126.0, 125.6, 123.4, 118.3, 73.4, 52.4, 45.5, 35.8, 33.7.

ESI-MS m/z: Calcd.. for C₂₀H₁₈Cl₃NO₄S: 474.8. Found (M+Na)⁺: 497.8

Example 14

A mixture of compound 25 (585 mg, 1.03 ml) and compound 29 (1.47 mg, 3.11 ml) were azeotroped with anhydrous toluene (3 x 10 ml). To a solution of 25 and 29 in anhydrous CH₂Cl₂ (40 ml) was added DMAP (633 mg, 5.18 ml) and EDC·HCl (994 mg, 5.18 ml) at 23

°C. The reaction mixture was stirred at 23 °C for 3 hours. The mixture was partitioned with saturated aqueous solution of sodium bicarbonate (50 ml) and the layers were separated. The aqueous layer was washed with CH₂Cl₂ (50 ml). The combined organic layers were dried over sodium sulphate, filtered and concentrated. The crude was purified by flash column chromatography (ethyl acetate/hexane 1:3) to obtain 30 (1.00 g, 95%) as a pale cream yellow solid.

¹H-NMR (300 MHz, CDCl₃): δ 7.72 (m, 2H), 7.52 (m, 2H), 7.38 (m, 2H), 7.28 (m, 2H), 6.65 (s, 1H), 6.03 (m, 1H), 5.92 (d, J= 1.5 Hz, 1H), 5.79 (d, J= 1.5 Hz, 1H), 5.39 (m, 1H), 5.29 (dq, J= 10.3 Hz, J= 1.5 Hz, 1H), 5.10 (s, 2H), 4.73 (d, J= 11.9 Hz, 1H), 4.66 (d, J= 11.9 Hz, 1H), 4.53 (m, 1H), 4.36-3.96 (m, 9H), 3.89 (t, J= 6.4 Hz, 1H), 3.71 (s, 3H), 3.55 (s, 3H), 3.33 (m, 1H), 3.20 (m, 2H), 2.94 (m, 3H), 2.59 (m, 1H), 2.29 (s, 3H), 2.23 (s, 3H), 2.02 (s, 3H), 1.83 (dd, J= 16.0 Hz, J= 11.9 Hz, 1H).

¹³C-NMR (75 MHz, CDCl₃): δ 169.7, 154.0, 148.8, 148.4, 145.7, 144.5, 140.9, 139.0, 133.7, 130.9, 130.6, 127.6, 127.0, 124.8, 124.6, 124.1, 120.8, 119.9, 118.2, 117.7, 117.3, 112.7, 112.1, 101.3, 99.2, 74.7, 73.9, 64.4, 59.8, 57.7, 57.0, 56.8, 55.4, 53.3, 46.7, 41.4, 36.5, 34.7, 31.5, 26.4, 24.9, 22.6, 15.7, 14.0, 9.1.

ESI-MS m/z: Calcd.. for $C_{51}H_{53}Cl_3N_4O_{10}S$: 1020.4. Found $(M+H)^+$: 1021.2

To a solution of 30 (845 mg, 0.82 ml), acetic acid (500 mg, 8.28 ml) and (PPh₃)₂PdCl₂ (29 mg, 0.04 ml) in anhydrous CH₂Cl₂ 20 ml at 23 °C was added, dropwise, Bu₃SnH (650 mg, 2.23 ml). The reaction mixture was stirred at this temperature for 15 min., bubbling was. The crude was quenched with water (50ml) and extracted with CH₂Cl₂ (3 x 50 ml). The organic layers were dried over sodium sulphate, filtered and concentrated. The crude was purified by flash column chromatography (ethyl acetate/hexane in gradient from 1:5 to 1:3) to obtain compound 31 (730 mg, 90%) as a pale cream yellow solid.

¹H-NMR (300 MHz, CDCl₃): δ 7.72 (m, 2H), 7.56 (m, 2H), 7.37 (m, 2H), 7.30 (m, 2H), 6.65 (s, 1H), 5.89 (s, 1H), 5.77 (s, 1H), 5.74 (s, 1H), 5.36 (d, J= 5.9 Hz, 1H), 5.32 (d, J= 5.9 Hz, 1H), 5.20 (d, J= 9.0, 1H), 4.75 (d, J= 12.0 Hz, 1H), 4.73 (m, 1H), 4.48 (d, J= 11.9 Hz, 1H), 4.08 (m, 4H), 3.89 (m, 1H), 3.86, (t, J= 6.2 Hz, 1H), 3.70 (s, 3H), 3.69 (s, 3H), 3.38 (m, 1H), 3.25 (m, 1H), 3.02-2.89 (m, 4H), 2.67 (s, 1H), 2.61 (s, 1H), 2.51 (dd, J= 14.3 Hz, J= 4.5 Hz, 1H), 2.29 (s, 3H), 2.23 (s, 3H), 1.95 (s, 3H), 1.83 (m, 1H).

¹³C-NMR (75 MHz, CDCl₃): δ 168.2, 152.5, 148.1, 146.2, 144.4, 144.3, 143.3, 139.6, 134.6, 129.7, 129.6, 126.2, 125.6, 123.4, 123.3, 121.6, 118.5, 116.3, 110.7, 110.2, 105.1, 99.4, 98.5, 75.2, 73.3, 61.7, 58.4, 57.9, 56.3, 56.1, 55.1, 54.7, 53.9, 51.9, 45.2, 40.1, 35.6, 33.3, 24.8, 23.3., 14.5, 7.3.

ESI-MS m/z: Calcd.. for $C_{48}H_{49}Cl_3N_4O_{10}S$: 980.3. Found $(M+H)^+$: 981.2

Example 16

31

76

To a solution of 31 (310 mg, 0.32 ml), in anhydrous CH₂Cl₂ (15 ml) at -10 °C was added a solution of benzeneseleninic anhydride 70 % (165 mg, 0.32 ml), in anhydrous CH₂Cl₂ (7 ml), via cannula, keeping the temperature at -10 °C. The reaction mixture was stirred at -10 °C for 5 min. A saturated solution of sodium bicarbonate (30 ml) was added at this temperature. The aqueous layer was washed with more CH₂Cl₂ (40 ml). The organic layers were dried over sodium sulphate, filtered and concentrated. The crude was purified by flash column chromatography (ethyl acetate/hexane in gradient from 1:5 to 1:1) to obtain 32 (287 mg, 91%, HPLC: 91.3%) as a pale cream yellow solid and as a mixture of two isomers (65:35) which were used in the next step.

¹H-NMR (300 MHz, CDCl₃): δ (Mixture of isomers) 7.76 (m, 4H), 7.65 (m, 4H), 7.39 (m, 4H), 7.29 (m, 4H), 6.62 (s, 1H), 6.55 (s, 1H), 5.79-5.63 (m, 6H), 5.09 (s, 1H), 5.02 (d, *J*= 6.0 Hz, 1H), 4.99 (d, *J*= 6.0 Hz, 1H), 4.80-4.63 (m, 6H), 4.60 (m, 1H), 4.50 (m, 1H), 4.38 (d, *J*= 12.8 Hz, *J*= 7.5 Hz, 1H), 4.27 (dd, *J*= 12.8 Hz, *J*= 7.5 Hz, 1H), 4.16-3.90 (m, 10H), 3.84 (s, 3H), 3.62 (s, 3H), 3.50 (s, 3H), 3.49 (s, 3H), 3.33-2.83 (m, 14H), 2.45-2.18 (m, 2H), 2.21 (s, 6H), 2.17 (s, 6H), 1.77 (s, 6H), 1.67 (m, 2H).

¹³C-NMR (75 MHz, CDCl₃): δ (Mixture of isomers) 168.6, 168.4, 158.6, 154.8, 152.8, 152.5, 147.3, 147.2, 146.8, 144.1, 144.0, 140.8, 139.7, 137.1, 129.8, 129.3, 128.4, 128.7, 126.5, 125.5, 123.7, 123.6, 123.5, 123.4, 122.2, 121.3, 118.3, 115.8, 115.5, 110.2, 106.9, 103.5, 103.2, 100.1, 99.6, 97.9, 97.7, 93.8, 73.4, 70.9, 69.2, 64.9, 62.5, 59.3, 58.9, 58.4, 56.7, 56.3, 56.2, 55.4, 55.2, 55.1, 54.9, 54.7, 54.3, 54.1, 53.8, 52.8, 45.5, 40.5, 40.0, 39.8, 35.8, 35.5, 33.9, 33.7, 30.1, 28.8, 24.2, 24.1, 21.2, 14.5, 14.4, 12.7, 6.0, 5.7.

ESI-MS m/z: Calcd.. for C₄₈H₄₉Cl₃N₄O₁₁S: 996.3. Found (M+H)[†]: 997.2

The reaction flask was flamed twice, purged vacuum/Argon several times and kept under Argon atmosphere for the reaction. To a solution of DMSO (39.1 ml, 0.55 ml, 5 equivalents.) in anhydrous CH₂Cl₂ (4.5 ml) was dropwise added triflic anhydride (37.3 ml, 0.22 ml, 2 equivalents.) at -78 $^{\circ}$ C. The reaction mixture was stirred at -78 $^{\circ}$ C for 20 minutes, then a solution of 32 (110 mg, 0.11 ml, HPLC: 91.3%) in anhydrous CH₂Cl₂ (1 ml, for the main addition and 0.5 ml for wash) at -78 °C was added, via cannula. During the addition the temperature was kept at -78 °C in both flasks and the colour changed from yellow to brown. The reaction mixture was stirred at -40 °C for 35 minutes. During this period of time the solution was turned from yellow to dark green. After this time, Pr2NEt (153 ml, 0.88 ml, 8 equivalents.) was dropwise added and the reaction mixture was kept at 0 °C for 45 minutes, the colour of the solution turned to brown during this time. Then t-butanol (41.6 ml, 0.44 ml, 4 equivalents.) and 2-Butyl-1,1,3,3-tetramethylguanidine (132.8 ml, 0.77 ml, 7 equivalents.) were dropwise added and the reaction mixture was stirred at 23 °C for 40 minutes. After this time, acetic anhydride (104.3 ml, 1.10 ml, 10 equivalents.) was dropwise added and the reaction mixture was kept at 23 °C for 1 hour more. Then the reaction mixture was diluted with CH₂Cl₂ (20ml) and washed with aqueous saturated solution of NH₄Cl (50ml), sodium bicarbonate (50ml), and sodium chloride (50ml). The combined organic layers were dried over sodium sulphate, filtered and concentrated. The residue was purified by flash column chromatography (eluent: ethyl acetate/hexane gradient from 1:3 to 1:2) to afford compound 33 (54 mg, 58%) as a pale yellow solid.

78

¹H-NMR (300 MHz, CDCl₃): δ 6.85 (s, 1H), 6.09 (s, 1H), 5.99 (s, 1H), 5.20 (d, *J*= 5.8 Hz, 1H), 5.14 (d, *J*= 5.3 Hz, 1H), 5.03 (m, 1H), 4.82 (d, *J*= 12.2, 1H), 4.63 (d, *J*= 12.0 Hz, 1H), 4.52 (m, 1H), 4.35-4.17 (m, 4H), 3.76 (s, 3H), 3.56 (s, 3H), 3.45 (m, 2H), 2.91 (m, 2H), 2.32 (s, 3H), 2.28 (s, 3H), 2.21 (s, 3H), 2.12 (m, 2H), 2.03 (s, 3H).

¹³C-NMR (75 MHz, CDCl₃): δ 168.5, 167.2, 152.7, 148.1, 147.1, 144.5, 139.6, 139.1, 130.5, 129.0, 123.7, 123.5, 123.3, 118.8, 116.5, 112.1, 100.6, 97.8, 73.3, 60.5, 59.4, 59.2, 58.3, 57.6, 57.4, 56.1, 53.3, 53.1, 40.6, 40.0, 31.0, 22.2, 18.9, 14.4, 8.1.

ESI-MS m/z: Calcd.. for $C_{36}H_{39}Cl_3N_4O_{11}S$: 842.1. Found $(M+H)^+$: 843.1

Example 18

To a solution of 33 (12 mg, 0.014 ml)in dry dichloromethane (1.2 ml) and HPLC grade acetonitrile (1.2 ml) was added at 23 °C sodium iodide (21 mg, 0.14 ml) and freshly distilled (over calcium hydride at atmospheric pressure) trimethylsilyl chloride (15.4 mg, 0.14 ml). The reaction mixture turned to orange colour. After 15 min the solution was diluted with dichloromethane (10 ml) and was washed with a freshly aqueous saturated solution of Na₂S₂O₄ (3 x 10 ml). The organic layer was dried over sodium sulphate, filtered and concentrated. It was obtained compound 34 (13 mg, quantitative) as pale yellow solid which was used without further purification.

¹H-NMR (300 MHz, CDCl₃): δ 6.85 (s, 1H), 6.09 (s, 1H), 5.99 (s, 1H), 5.27 (d, J= 5.8 Hz, 1H), 5.14 (d, J= 5.3 Hz, 1H), 5.03 (d, J= 11.9 Hz, 1H), 4.82 (d, J= 12.2, 1H), 4.63 (d, J= 13.0 Hz, 1H), 4.52 (m, 1H), 4.34 (m, 1H), 4.27 (bs, 1H), 4.18 (m, 2H), 3.76 (s, 3H), 3.56 (s, 3H), 3.44 (m, 1H), 3.42 (m, 1H), 2.91 (m, 2H), 2.32 (s, 3H), 2.28 (s, 3H), 2.21 (s, 3H), 2.03 (s,

79

3H).

ESI-MS m/z: Calcd.. for $C_{34}H_{35}N_4O_{10}S$: 798.1. Found $(M+H)^+$: 799.1

Example 19

To a solution of 34 (13 mg, 0.016 ml) in a mixture of acetic acid/H₂O (90:10, 1 ml) was added powder Zinc (5.3 mg, 0.081 ml) at 23 °C. The reaction mixture was heated at 70 °C for 6 h. After this time, was cooled to 23 °C, diluted with CH₂Cl₂ (20 ml) and washed with aqueous saturated solution of sodium bicarbonate (15 ml) and aqueous solution of Et₃N (15 ml). The organic layer was dried over sodium sulphate, filtered and concentrated. The residue was purified by flash column chromatography with Silica-NH₂ (eluent: ethyl acetate/hexane gradient from 0:100 to 50:50) to afford compound 35 (6.8 mg, 77% for two steps) as a pale yellow solid.

¹H-NMR (300 MHz, CDCl₃): δ 6.51 (s, 1H), 6.03 (dd, *J*= 1.3 Hz, *J*= 26.5 Hz, 2H), 5.75 (bs, 1H), 5.02 (d, *J*= 11.6 Hz, 1H), 4.52 (m, 1H), 4.25 (m, 2H), 4.18 (d, *J*= 2.5 Hz, 1H), 4.12 (dd, *J*= 1.9 Hz, *J*= 11.5 Hz, 1H), 3.77 (s, 3H), 3.40 (m, 2H), 3.26 (t, *J*= 6.4 Hz, 1H), 2. 88 (m, 2H), 2.30-2.10 (m, 2H), 2.30 (s, 3H), 2.28 (s, 3H), 2.18 (s, 3H), 2.02 (s, 3H).

¹³C-NMR (75 MHz, CDCl₃): δ 174.1, 168.4, 147.8, 145.4, 142.9, 140.8, 140.1, 131.7, 130.2, 129.1, 128.3, 120.4, 118.3, 117.9, 113.8, 111.7, 101.7, 61.2, 59.8, 59.2, 58.9, 54.4, 53.8, 54.4, 41.3, 41.5, 34.1, 23.6, 20.3, 15.5, 9.4.

ESI-MS m/z: Calcd.. for C₃₁H₃₄N₄O₈S: 622.7. Found (M+H)⁺: 623.2.

To a solution of 36 (49mg, 0.08 ml) and 2-[3-hydroxy-4-methoxyphenyl]ethylamine (46.2 mg, 0.27 ml) in ethanol (2.5 ml) was added silica gel (105 mg) at 23 °C. The reaction mixture was stirred at 23 °C for 14 h. It was diluted with hexane and poured into a column of chromatography (ethyl acetate/hexane from 1/3 to 1/1) to afford Et-770 (55 mg, 90%) as a pale yellow solid.

¹H-NMR (300 MHz, CDCl₃): δ 6.60 (s, 1H), 6.47 (s, 1H), 6.45 (s, 1H), 6.05 (s, 1H), 5.98 (s, 1H), 5.02 (d, J=11.4 Hz, 1H), 4.57 (bs, 1H), 4.32 (bs, 1H), 4.28 (d, J=5.3 Hz, 1H), 4.18 (d, J=2.5 Hz, 1H), 4.12 (dd, J=2.1 Hz, J=11.5 Hz, 1H), 3.78 (s, 3H), 3.62 (s, 3H), 3.50 (d, J=5.0 Hz, 1H), 3.42 (m, 1H), 3.10 (ddd, J=4.0 Hz, J=10.0 Hz, J=11.0 Hz, 1H), 2.94 (m, 2H), 2.79 (m, 1H), 2.61 (m, 1H), 2.47 (m, 1H), 2.35 (m, 1H), 2.32 (s, 3H), 2.27 (s, 3H), 2.20 (s, 3H), 2.09 (m, 1H), 2.04 (s, 3H).

ESI-MS m/z: Calcd.. for $C_{40}H_{42}N_4O_{10}S$: 770.7. Found $(M+H)^+$: 771.2

81

To a solution of 21 (22 mg, 0.042 ml) in CH₂Cl₂ (0.8 ml) was added phthalic anhydride (6.44 mg, 0.042 ml) and the reaction mixture was stirred for 2h at 23 °C. Then, carbonyldiimidazole (1mg, 0.006 ml) was added and the mixture was stirred at 23 °C for 7h. Then, carbonyldiimidazole (5.86mg, 0.035 ml) was added and the reaction was stirred at 23 °C for an additional 17h. The solution was diluted with CH₂Cl₂ (15 ml) and washed with 0.1 N HCl (15 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, hexane:ethyl acetate 2:1) to afford 27 (26.4 mg, 96%) as a white solid.

Rf: 0.58 (ethyl acetate).

¹H NMR (300 MHz, CDCl₃): 7.73–7.64 (m, 4H), 6.40 (s, 1H), 6.12-6.01 (m, 1H), 5.63 (s, 1H), 5.58 (d, J= 1.5 Hz, 1H), 5.37 (dd, J_I = 1.8 Hz, J_Z = 17.4 Hz), 5.23 (dd, J_I = 1.8 Hz, J_Z = 10.5 Hz, 1H), 5.12 (d, J= 1.5 Hz, 1H), 4.22-4.15 (m, 3H), 4.08 (d, J= 1.8 Hz, 1H), 3.68 (s, 3H), 3.59-3.55 (m 2H), 3.35 (d, J= 8.1 Hz, 1H), 3.27-3.16 (m, 2H), 3.05 (dd, J_I = 8.1 Hz, J_Z = 18.3 Hz, 1H), 2.64 (d, J= 18.0Hz, 1H), 2.30 (s, 3H), 2.24 (s, 3H), 2.09 (s, 3H), 1.80 (dd, J_I = 11.4 Hz, J_Z = 15 Hz, 1H);

¹³C NMR (75 MHz, CDCl₃): δ 167.7, 148.9, 146.4, 144.2, 142.6, 139.5, 134.0, 133.5, 132.0, 131.0, 128.3, 123.0, 121.3, 120.9, 118.1, 117.5, 116.8, 113.6, 112.4, 100.8, 74.5, 60.6, 60.5, 57.7, 56.6, 55.6, 55.5, 42.3, 41.7, 26.6, 25.5, 15.9, 9.46.

ESI-MS m/z: Calcd. for $C_{37}H_{35}N_4O_7$: 648.79. Found $(M+H)^{+}$: 649.3.

To a solution of 27 (26 mg, 0.041 ml) in CH₂Cl₂ (11 ml), acetic acid (11 ml), (PPh₃)₂PdCl₂ (2.36 mg) and Bu₃SnH (28 ml, 0.10 ml) were added at 23 °C. After stirring at that temperature for 2h the reaction was poured into a pad of flash column (SiO₂, gradient Hex to hexane:ethyl acetate 2:1) to afford 28 (24.7 mg, 99 %) as a white solid.

Rf: 0.33 (hexane:ethyl acetate 2:1).

¹H NMR (300 MHz, CDCl₃): δ 7.75-7.70 (m, 2H), 7.69-7.65 (m, 2H), 6.39 (s, 1H), 5.82 (bs, 1H), 5.50 (d, J= 1.5 Hz, 1H), 5.0 (d, J= 1.5 Hz, 1H), 4.45 (bs, 1H), 4.23-4.19 (m, 2H), 4.10-4.09 (m, 1H), 3.73 (s, 3H), 3.60-3.48 (m, 2H), 3.36-3.33 (m, 1H), 3.26-3.20 (m, 1H), 3.14-3.08 (m, 1H), 3.98 (d, J= 14.4 Hz, 1H), 2.61 (d, J= 18.3 Hz, 1H), 2.30 (s, 3H), 2.23 (s, 3H), 2.06 (s, 3H), 1.85 (dd, J₁= 12 Hz, J₂= 15.3 Hz); (m, 2H), 1.20 (s, 3H), 1.85 (dd, 3Hz, 1Hz, 3Hz), 1.40 (s, 3Hz, 1Hz, 3Hz), 1.31 (s, 3Hz, 3Hz), 1.32 (s, 3Hz), 1.32 (s, 3Hz), 1.33 (s, 3Hz), 1.34 (s, 3Hz), 1.35 (s, 3Hz),

128.4, 122.9, 120.8, 118.0, 116.8, 114.0, 113.4, 106.4, 100.4, 60.6, 60.5, 57.8, 56.6, 55.5, 55.2, 42.6, 41.5, 25.6, 25.5, 15.8, 8.9.

ESI-MS m/z: Calcd. for $C_{34}H_{32}N_4O_7$: 608.6. Found $(M+H)^+$: 609.2.

Example 24

To a solution of 28 (357 mg, 0.058 ml) in CH₂Cl₂ (3 ml), acetyl chloride (41.58 ml, 0.58 ml) and pyridine (47.3 ml, 0.58 ml) were added at 0 °C. The reaction mixture was stirred for 1h and then, the solution was diluted with CH₂Cl₂ (15 ml) and washed with 0.1 N HCl (15 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column

83

chromatography (RP-18, $CH_3CN:H_2O$ 60:40) to afford phthalascidin (354 mg, 94%) as a white solid.

Rf: 0.37 (CH₃CN:H₂O 7:3, RP-18).

¹H NMR (300 MHz, CDCl₃): δ 7.72–7.68 (m, 2H), 7.67-7.63 (m, 2H), 6.38 (s, 1H), 5.69 (d, J= 1.2 Hz, 1H), 5.64 (d, J= 1.2Hz, 1H), 5.30 (bs, 1H), 4.25-4.21 (m, 2H), 4.02 (d, J= 2.1 Hz, 1H), 3.64-3.62 (m, 5H), 3.33 (d, J= 8.4 Hz, 1H), 3.21-3.16 (m, 1H), 3.02 (dd, J_I = 8.1 Hz, J_Z = 18 Hz, 1H), 2.76 (dd, J_I = 1.8 Hz, J_Z = 15.6 Hz, 1H), 2.63 (d, J= 17.7 Hz, 1H), 2.29 (s, 3H), 2.28 (s,3H), 2.21 (s, 3H), 2.0 (s, 3H), 1.73 (dd, J_I = 12.0 Hz, J_Z = 15.3 Hz, 1H))

¹³C NMR (75 MHz, CDCl₃)): δ 168.5, 167.6, 146.2, 144.2, 142.5, 141.0, 140.5, 133.4, 131.8, 130.7, 128.2, 120.9, 120.8, 117.9, 116.4, 113.6, 101.1, 60.4, 60.0, 57.0, 56.3, 55.6, 55.4, 41.6, 41.5, 26.5, 25.2, 20.2, 15.7, 9.4.

ESI-MS m/z: Calcd. for $C_{36}H_{34}N_4O_8$: 650. Found $(M+H)^+$: 651.2.

Example 25

To a solution of 17 (300 mg, 0.432 ml) in CH₂Cl₂ (2 ml), acetyl chloride (30.7 ml, 0.432 ml) and pyridine (34.9 ml, 0.432 ml) were added at 0 °C. The reaction mixture was stirred for 2h at that temperature and then, the solution was diluted with CH₂Cl₂ (15 ml) and washed with 0.1 N HCl (15 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure to afford 42 (318 mg, 100%) as a white solid that was used in subsequent reactions with no further purification.

Rf: 0.5 (ethyl acetate:methanol 5:1).

¹H NMR (300 MHz, CDCl₃). δ 6.66 (s, 1H), 5.93 (d, J= 1.2 Hz, 1H), 5.83 (d, J= 1.2 Hz, 1H), 5.42 (t, J= 6.6 Hz, 1H), 5.07 (d, J= 5.7 Hz, 1H), 4.98 (d, J= 5.7 Hz, 1H), 4.16 (d, J= 1.8 Hz, 1H), 4.11 (d, J= 2.7 Hz, 1H), 3.98 (bs, 1H), 3.73-3.61 (m, 2H), 3.64 (s, 3H), 3.52-3.48 (m, 1H), 3.50 (s, 3H), 3.33 (d, J= 9.6 Hz, 1H), 3.17-3.14 (m, 1H), 2.97-2.87 (m, 1H), 2.75-2.70 (d, J= 16.8 Hz, 1H), 2.26 (s, 6H), 2.16 (s, 3H), 1.96 (s, 3H), 1.70 (dd, J_I= 11.7 Hz, J_I= 15.6 Hz, 1H), 1.33 (s, 9H), 0.59 (d, J= 6.0 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃)): δ 172.0, 168.3, 162.3, 148.2, 144.4, 140.4, 140.2, 130.9, 130.5, 125.3, 123.4, 120.8, 117.6, 112.7, 111.7, 101.4, 99.1, 79.2, 59.5, 58.8, 57.5, 57.4, 56.4, 55.5, 55.0, 41.3, 39.0, 28.2, 26.4, 24.6, 19.9, 18.4, 15.4, 9.1.

ESI-MS m/z: Calcd. for $C_{38}H_{49}N_5O_{10}$: 735.82. Found $(M+H)^+$: 736.3.

Example 26

To a solution of 42 (318 mg, 0.432 ml) in CH₂Cl₂ (2.16 ml), trifluoroacetic acid (1.33 ml, 17.30 ml) was added and the reaction mixture was stirred for 3.5h at 23 °C. The reaction was quenched at 0 °C with saturated aqueous sodium bicarbonate (60 ml) and extracted with CH₂Cl₂ (2 x 70 ml). The combined organic layers were dried (sodium sulphate) and concentrated *in vacuo*. The residue was purified by flash column chromatography (SiO₂, ethyl acetate:methanol 20:1) to afford 43 (154 mg, 60%) as a white solid.

Rf: 0.22 (ethyl acetate:methanol 5:1).

85.

¹H NMR (300 MHz, CDCl₃). δ 6.47 (s, 1H), 6.22 (bs, 1H), 5.95 (d, J= 1.2 Hz, 1H), 5.88 (d, J= 1.2 Hz, 1H), 4.08-4.06 (m, 2H), 4.01 (bs, 1H), 3.69 (s, 3H), 3.49 (d, J= 3.6 Hz, 1H), 3.33 (d, J= 8.1 Hz, 1H), 3.26-3.22 (m, 1H), 2.95 (dd, J₁= 8.1 Hz, J₂= 18 Hz, 1H), 2.80-2.76 (m, 2H), 2.58 (d, J=18Hz, 1H), 2.29 (s, 3H), 2.27 (s, 3H), 2.21 (s, 3H), 1.96 (s, 3H), 1.77 (dd, J₁= 12.3 Hz, J₂= 15.6 Hz, 1H), 0.90 (d, J=6.9 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃)): δ 174.8, 169.0, 146.8, 144.4, 142.8, 140.5, 140.2, 131.1, 128.8, 120.8, 120.5, 117.1, 112.9, 111.6, 101.5, 60.3, 59.0, 56.5, 56.3, 55.6, 55.1, 50.2, 41.6, 39.5; 26.8, 26.3, 24.9, 20.2, 15.4, 9.2.

ESI-MS m/z: Calcd. for $C_{31}H_{37}N_5O_7$: 591.65. Found $(M+H)^+$: 592.3.

Example 27

To a solution of 43 (154 mg, 0.26 ml) in CH₂Cl₂ (1.3 ml), phenyl isothiocyanate (186 ml, 1.56 ml) was added and the mixture was stirred at 23° C for 2h. The reaction was concentrated *in vacuo* and the residue was purified by flash column chromatography (SiO₂, gradient Hexane to hexane:ethyl acetate 1:1) to afford 44 (120 mg, 63 %) as a white solid.

Rf: 0.41 (ethyl acetate:methanol 5:1).

¹H NMR (300 MHz, CDCl₃). δ 8.17 (s, 1H), 7.49-7.44 (m, 3H), 7.31-7.24 (m, 3H), 7.05 (d, J= 6.9 Hz, 1H), 5.98 (d, J= 1.2 Hz, 1H), 5.87 (d, J= 1.2 Hz, 1H), 5.52 (bs, 1H), 4.54 (t, J= 6.6 Hz, 1H), 4.15 (d, J= 2.1 Hz, 1H), 4.03 (d, J= 2.7 Hz, 2H), 3.80 (bs, 1H), 3.66 (s, 3H), 3.40 (bs, 1H), 3.32 (d, J= 7.8 Hz, 1H), 3.16 (d, J= 11.7 Hz, 1H), 2.82-2.61 (m, 3H), 2.29 (s, 3H), 2.20 (s, 3H), 1.99 (s, 3H), 1.80 (dd, J= 12.0 Hz, J= 15.9 Hz, 1H), 0.62 (d, J=

86

6.0 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 178.5, 171.9, 168.7, 146.7, 144.5, 142.6, 140.6, 140.3, 136.3, 131.0, 129.9, 128.9, 126.7, 124.4, 120.9, 120.6, 117.7, 116.6, 112.7, 111.9, 101.4, 60.4, 58.7, 57.5, 56.1, 55.7, 55.1, 53.3, 41.4, 38.8, 26.3, 24.4, 20.2, 18.1, 15.3, 9.2. ESI-MS m/z: Calcd. for C₃₈H₄₂N₆O₇S: 726.3. Found (M+H)⁺: 727.3.

Example 28

To a solution of 44 (120 mg, 0.165 ml) in dioxane (0.9 ml), 5.3N HCl/dioxane (1.8 ml) was added and the reaction was stirred at 23 °C for 2.5h. Then, CH_2Cl_2 (10 ml) and H_2O (5 ml) were added to this reaction and the organic layer was decanted. The aqueous phase was basified with saturated aq sodium bicarbonate (20 ml) (pH = 8) at 0 °C and then, extracted with CH_2Cl_2 (2x15 ml). The combined organic extracts were dried (sodium sulphate), and concentrated *in vacuo* to afford 45 (75 mg, 87%) as a white solid that was used in subsequent reactions with no further purification.

Rf: 0.23 (ethyl acetate:methanol 5:1).

¹H NMR (300 MHz, CDCl₃): δ 6.43 (s, 1H), 5.94 (d, J= 1.2 Hz, 1H), 5.87 (d, J= 1.2Hz, 1H), 4.10 (d, J= 2.1 Hz, 1H), 3.98 (d, J= 2.4 Hz, 1H), 3.91 (bs, 1H), 3.69 (s, 3H), 3.34-3.25 (m, 2H), 3.05 (dd, J_I= 1.8 Hz, J_I= 8.1 Hz, 1H), 2.80-2.73 (m, 3H), 2.46 (d, J= 18 Hz, 1H), 2.30 (s, 3H), 2.28 (s,3H), 2.20 (s, 3H), 1.98 (s, 3H), 1.79 (dd, J_I= 12.6 Hz, J_I= 16.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃)): δ 168.7, 146.7, 144.4, 142.9, 140.4, 130.4, 128.9, 121.1, 120.8, 117.8, 116.8, 113.6, 111.5, 101.4, 67.6, 60.5, 59.8, 58.4, 56.6, 55.8, 55.3, 43.6, 41.8, 31.3,

87

25.6, 20.2, 15.6, 9.2.

ESI-MS m/z: Calcd. for $C_{28}H_{32}N_4O_6$: 520.58. Found $(M+H)^+$: 521.3.

Example 29

To a solution of 45 (10 mg, 0.02 ml) in CH₂Cl₂ (0.4 ml) was added phthalic anhydride (2.84 mg, 0.02 ml) and the reaction mixture was stirred for 2 h at 23 °C. Then, carbonyldiimidazole (0.5 mg, 0.003 ml) was added and the mixture was stirred at 23 °C for 7h. Then, carbonyldiimidazole (2.61 mg, 0.016 ml) was added and the reaction was stirred at 23 °C for an additional 17h. The solution was diluted with CH₂Cl₂ (10 ml) and washed with 0.1 N HCl (5 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (RP-18, CH₃CN:H₂O 60:40) to afford phthalascidin (11.7 mg, 93%) as a white solid.

Rf: 0.37 (CH₃CN:H₂O 7:3, RP-18).

¹H NMR (300 MHz, CDCl₃): δ 7.72–7.68 (m, 2 h), 7.67-7.63 (m, 2 h), 6.38 (s, 1H), 5.69 (d, J= 1.2 Hz, 1H), 5.64 (d, J= 1.2 Hz, 1H), 5.30 (bs, 1H), 4.25-4.21 (m, 2 h), 4.02 (d, J= 2.1 Hz, 1H), 3.64-3.62 (m, 5H), 3.33 (d, J= 8.4 Hz, 1H), 3.21-3.16 (m, 1H), 3.02 (dd, J_I = 8.1 Hz, J_I = 18 Hz, 1H), 2.76 (dd, J_I = 1.8 Hz, J_I = 15.6 Hz, 1H), 2.63 (d, J= 17.7 Hz, 1H), 2.29 (s, 3H), 2.28 (s,3H), 2.21 (s, 3H), 2.0 (s, 3H), 1.73 (dd, J_I = 12.0 Hz, J_I = 15.3 Hz, 1H)); 13C NMR (75 MHz, CDCl₃)): δ 168.5, 167.6, 146.2, 144.2, 142.5, 141.0, 140.5, 133.4, 131.8, 130.7, 128.2, 120.9, 120.8, 117.9, 116.4, 113.6, 101.1, 60.4, 60.0, 57.0, 56.3, 55.6,

55.4, 41.6, 41.5, 26.5, 25.2, 20.2, 15.7, 9.4.

ESI-MS m/z: Calcd. for $C_{36}H_{34}N_4O_8$: 650. Found $(M+H)^+$: 651.2.

Example 30

To a solution of **25** (18 mg, 0.032 ml) in DMF (0.05 ml), cat. DMAP (0.5 mg, 0.004 ml), imidazole (5 mg, 0.08 ml) and *tert*-Butyldiphenylsilyl chloride (12.5 ml, 0.048 ml) were added at 0 °C and the reaction mixture was stirred for 6h at 23 °C. Water (10 ml) was added at 0 °C and the aqueous phase was extracted with hexane:ethyl acetate 1:10 (2 x 10 ml). The organic layer was dried (sodium sulphate), filtered, and the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (SiO₂, hexane:ethyl acetate 3:1) to afford **26** (27 mg, 88 %) as a white solid.

Rf: 0.29 (hexane:ethyl acetate 3:1).

¹H NMR (300 MHz, CDCl₃) δ 7.61-7.58 (m, 2 h), 7.42-7.28 (m, 8H), 6.71 (s, 1H), 6.19-6.02 (m, 1H), 5.78 (d, J= 1.2 Hz, 1H), 5.64 (d, J= 1.2 Hz, 1H), 5.40 (dd, J_I = 1.2 Hz, J_2 = 17.1 Hz, 1H), 5.27 (dd, J_I = 1.2 Hz, J_2 = 10.2 Hz, 1H), 5.13 (s, 2 h), 4.45 (d, J= 2.4 Hz, 1H), 4.24 (d, J= 2.1 Hz, 1H), 4.17-4.06 (m, 3H), 3.75 (s, 3H), 3.64 (dd, J_I = 2.4 Hz, J_2 = 9.9 Hz, 1H), 3.59 (s, 3H), 3.42-3.21 (m, 4H), 3.10 (dd, J_I = 8.1 Hz, J_2 = 17.7 Hz, 1H), 2.70 (d, J= 17.7 Hz, 1H), 2.33 (s, 3H), 2,26 (s, 3H), 2.11 (s, 3H), 2.08-1.89 (m, 1H), 0.87 (s, 9H); ¹³C NMR (75 MHz, CDCl₃): δ 148.5, 148.3, 148.1, 144.0, 139.0, 135.6, 135.4, 133.8, 133.1, 132.6, 130.5, 130.3, 129.6, 129.4, 127.5, 127.4, 125.1, 124.3, 121.6, 118.5, 117.5, 112.9, 111.7, 100.8, 99.2, 74.0, 67.7, 61.5, 59.6, 59.0, 57.7, 57.1, 55.4, 41.6, 29.6, 26.6, 25.5, 18.8, 15.8, 9.2.

ESI-MS m/z: Calcd. for $C_{47}H_{55}N_3O_7Si$: 801.3. Found $(M+H)^+$: 802.3.

Example 31

To a solution of **26** (7 mg, 0.0087 ml) in CH₂Cl₂ (0.15 ml), acetic acid (2.5 ml, 0.044 ml), (PPh₃)₂PdCl₂ (0.5 mg, 6.96 x 10⁻⁴ ml) and Bu₃SnH (3.5 ml, 0.013 ml) were added at 23 °C. The reaction mixture was stirred at that temperature for 1h. The solution was diluted with a mixture of hexane:ethyl acetate 5:1 (0.5 ml) and poured into a pad of flash column (SiO₂, gradient 5:1 to 1:1 hexane:ethyl acetate) affording **ET-11** (5 mg, 75 %) as a white solid.

Rf: 0.36 (hexane:ethyl acetate 1:5, silica).

¹H NMR (300 MHz, CDCl₃): δ 7.56 (m, 2 h), 7.41-7.25 (m, 8H), 6.67 (s, 1H), 5.72 (d, J= 1.0 Hz, 1H), 5.58 (d, J= 1.0 Hz, 1H), 5.51 (s, 1H), 5.38 (d, J= 5.75 Hz, 1H), 5.16 (d, J= 5.7 Hz, 1H), 4.57 (d, J= 2.9 Hz, 1H), 4.21 (m, 1H), 4.09 (m, 1H), 3.72 (s, 3H), 3.71 (s, 3H), 3.68 (dd, J_I = 2.1 Hz, J_I = 10.4 Hz, 1H), 3.38-3.26 (m, 3H), 3.11 (dd, J_I = 2.5 Hz, J_I = 15.7 Hz, 1H), 3.01 (dd, J_I = 8.9 Hz, J_I = 17.9 Hz, 1H), 2.70 (d, J= 17.9 Hz, 1H), 2.31 (s, 3H), 2.25 (s, 3H), 2.06 (s, 3H), 1.89 (dd, J_I = 12.1 Hz, J_I = 15.7 Hz, 1H), 0.9 (s, 9H).); (3°C NMR (75 MHz, CDCl₃): δ 149.0, 147.4, 145.3, 144.3, 136.3, 135.7, 135.4, 133.2, 130.9, 130.5, 129.6, 129.5, 127.5, 125.0, 118.6, 112.5, 112.1, 105.7, 100.5, 99.8, 68.5, 61.5, 59.7, 58.8, 57.7, 56.9, 56.5, 55.4, 41.7, 26.6, 26.2, 25.5, 18.9, 15.8, 14.2, 8.7. ESI-MS m/z: Calcd. for C₄₄H₅₁N₃O₇Si: 761. Found (M+H)⁺: 762.

A solution of 2 (3.0 g, 5.46 ml) and phenyl isothiocyanate (3.92mL, 32.76 ml) in CH₂Cl₂ (27 ml) was stirred at 23° C for 1.5h. The reaction mixture was partitioned between CH₂Cl₂ (10 ml) and H₂O (5 ml). The organic layer was dried over sodium sulphate, filtered and concentrated. The residue was purified by flash column chromatography (SiO₂, gradient Hex to 2:3 hexane:ethyl acetate) to give 3 (3.29 g, 88%) as a yellow solid.

Rf: 0.27 (ACN:H₂O 3:2, RP-C18);

¹H NMR (300 MHz, CDCl₃): δ 7.77 (bs, 1H), 7.42-7.11 (m, 5H), 6.65 (d, 1H), 6.29 (s, 1H), 5.6-5.5 (m, 1H), 4.19-4.14 (m, 2 h), 4.08 (d, 1H), 3.92 (s, 3H), 3.87-3.65 (m, 6H), 3.77 (s, 3H), 3.37-2.98 (m, 8H), 2.50 (d, 1H), 2.31 (s, 3H), 2.20 (s, 3H), 1.96 (d, 1H), 1.87 (s, 3H), 1.81-1.75 (m, 1H), 0.96 (d, 3H);

¹³C NMR (75 MHz, CDCl₃):8 185.7, 180.9, 178.9, 172.0, 155.7, 147.1, 143.2, 142.4, 136.0, 135.1, 130.5, 129.9, 129.3, 128.5, 126.9, 124.4, 120.2, 117.4, 116.3, 77.1, 60.9, 58.6, 56.2, 55.8, 55.0, 54.6, 53.5, 41.7, 40.3, 25.1, 24.5, 18.4, 15.8, 8.7

ESI-MS m/z: Calcd. for $C_{36}H_{40}N_6O_6S$: 684.8. Found $(M+H)^+$: 685.2.

A solution of 3 (0.143 g, 0.208 ml) in 6.5 M HCl/dioxane (150 ml) was stirred at 23 °C for 6h. Then, toluene (3 ml) was added to this reaction and the organic layer was decanted. The residue was partitioned between saturated aqueous sodium bicarbonate (3 ml) and CHCl₃ (3x3 ml) The organic layers were dried and concentrated to afford title compound as a mixture of 4 and 6 (4:6 90:10) which slowly cyclizes to 6 on standing.

Rf: 0.4 (ethyl acetate:methanol5:1, silica);

¹H NMR (300 MHz, CDCl₃): δ 6.45 (s, 1H), 4.16 (m, 1H), 4.02 (d, 1H), 3.96 (s, 3H), 3.79 (m, 2 h), 3.75 (s, 3H), 3.35 (m, 1H), 3.20-3.00 (m, 3H), 2.87 (d, 1H), 2.75 (d, 1H), 2.43 (d, 1H), 2.34 (s, 3H), 2.30 (s, 3H), 1.93 (s, 3H), 1.72-1.5 (m, 3H); ESI-MS m/z: Calcd. for $C_{26}H_{30}N_4O_5$: 478.5. Found (M+H)⁺: 479.2

Example 34

A solution of 3 (0.143 g, 0.208 ml) in 6.5M HCl/dioxane (150 ml) was stirred at 23 °C for 1h. Evaporation of the solvent gave a residue which was purified by flash column chromatography (ethyl acetate/methanol/triethylamine 100:25:0.1) to give 6 (80 mg, 83%) as a yellow solid.

Rf: 0.26 (ACN:H₂O 3:2, RP-C18);

¹H NMR (500 MHz, CDCl₃): δ 6.46 (s, 1H), 5.9 (bs, 1H) 4.67 (dd, *J*=18.3 Hz, *J*= 7.8 Hz, 1H), 4.24 (d, 1H), 4.16 (s, 3H), 3.93 (d, *J*=2.7 Hz, 1H), 3.8 (m, 2 h), 3.77 (s, 3H), 3.45 (m, 2 h), 3.08 (dd, *J*=17.9 Hz, *J*=3.6 Hz, 1H), 2.78 (m, 1H), 2.55 (d, 1H), 2.3 (m, 1H), 2.3 (s, 3H), 2.

28 (s, 3H), 1.90 (s, 3H);

¹³C NMR (75 MHz,CDCl₃):8 186.2, 162.1, 154.9, 146.9, 145.3, 143.0, 130.1, 129.4, 128,1, 125.0, 121.4, 116.4, 116.2, 66.6, 60.7, 60.7, 60.1, 59.6, 58.8, 55.6, 54.9, 41.9, 25.3, 24.7, 15.7, 8.9.

ESI-MS m/z: Calcd. for $C_{26}H_{28}N_4O_4$: 460.5. Found $(M+H)^+$: 461.1

Example 35

To a solution of 3 (2.38 g, 3.47 ml) in dioxane (5 ml) 5.3M HCl in dioxane (34 ml) was added and the reaction was stirred at 23 °C for 45 minutes. Then Ac₂O (51 ml, 539.5 ml) was added and the mixture was stirred for 4h. The reaction was cooled at 0 °C and partitioned between aqueous saturated Na₂CO₃ (300 ml) and ethyl acetate (300 ml) at this temperature. The organic phase was dried over sodium sulphate, filtered and concentrated. The residue was purified by flash column chromatography (SiO₂, gradient CH₂Cl₂ to CH₂Cl₂:ethyl acetate 1:2) to give 5 (1.75 g, 97%) as a yellow solid.

Rf: 0.53 (ACN:H₂O 3:2, RP-C18);

¹H NMR (300 MHz, CDCl₃): δ 6.51 (s, 1H), 5.98 (bs, 1H), 4.84 (dd, 1H), 4.17 (d, 1H), 4.00 (d, 1H), 3.99 (s, 3H), 3.85 (bs, 1H), 3.81 (m, 1H), 3.74 (s, 3H), 3.70 (d, 1H), 3.23 (m, 1H), 3.11 (dd, 1H), 3.09 (m, 1H), 2.93 (m, 2 h), 2.44 (d, 1H), 3.67 (s, 3H), 2.25 (s, 3H), 1.70 (s, 3H), 1.60-1.50 (m, 2 h), 1.29 (s, 3H);

¹³C NMR (75 MHz, CDCl₃): δ 185.9, 180.8, 169.9, 160.2, 156.2, 147.0, 143.1, 140.4, 136.1, 130.6, 129.6, 127.9, 120.4, 117.2, 61.0, 60.7, 58.6, 56.1, 55.7, 55.1, 54.3, 41.8, 41.1, 25.7, 23.9, 22.2, 15.7, 8.7.

93

ESI-MS m/z: Calcd. for C₂₈H₃₂N₄O₆: 520.6. Found (M+H)⁺: 521.1

Example 36

To a solution of 5 (1.75 g, 3.36 ml) in CH₂Cl₂ (17 ml) diisopropylethylamine (11.71 ml, 67.23 ml), DMAP (20 mg, 0.17 ml) and bromomethyl methyl ether (4.11 ml, 50.42 ml) were added at 0 °C. After 6 h at 23 °C the reaction was partitioned between CH₂Cl₂ (50 ml) and aqueous saturated sodium bicarbonate (25 ml). The organic layer was dried over sodium sulphate and the solvent was eliminated under reduced pressure. The crude was purified by flash column chromatography (RP-18, CH₃CN/H₂O 1/1) to give 7 (1.32 g, 70%) as a yellow solid.

Rf: 0.34 (ACN:H₂O 2:3, RP-C18);

¹H NMR (300 MHz, CDCl₃): δ 6.74 (s, 1H), 5.14 (s, 2 h), 4.82 (m, 1H), 4.22 (d, 1H), 4.00 (s, 3H), 4.0 (m, 1H), 3.83 (m, 2 h), 3.7 (s, 3H), 3.58 (s, 3H), 3.4 (m, 1H), 3.2-2.95 (m, 6H), 2.43 (d, 1H), 2.37 (s, 3H), 2.22 (s, 3H), 1.89 (s, 3H), 1.5-1.4 (m, 2 h), 1.31 (s, 3H); (mode) (mod)

ESI-MS m/z: Calcd. for $C_{30}H_{36}N_4O_7$: 564.6. Found $(M+H)^+$: 565.3

To a solution of 7 (0.37 g, 0.65 ml) in methanol (74 ml) at 0 °C was added 1M sodium hydroxide (130 ml). The reaction was stirred for 15 minutes and then, quenched at 0 °C with 6M HCl to pH = 5. The mixture was extracted with ethyl acetate (3 x 50 ml) and the combined organic layers were dried over sodium sulphate and concentrated *in vacuo*. The residue was purified by flash column chromatography (RP-C18 CH₃CN:H₂O 1/:1) to afford 8 (232 mg, 65%) as a yellow oil.

Rf: 0.5 (ACN:H₂O 3:2, RP-C18);

¹H NMR (300 MHz, CDCl₃): δ 6.75 (s, 1H), 5.15 (s, 2 h), 4.86 (m, 1H), 4.26 (d, 1H),), 4.01 (d, 1H), 3.88-3.81 (m, 2 h), 3.70 (s, 3H), 3.58 (s, 3H), 3.39 (m, 1H), 3.27-3.21 (m, 1H), 3.18-3.08 (m, 2 h), 3.03-2.97 (m, 1H) 2.47 (d, 1H), 2.37 (s, 3H), 2. 22 (s, 3H), 1.90 (s, 3H), 1.57-1.46 (m, 2 h), 1.33 (s, 3H);

¹³C NMR (75 MHz, CDCl₃): δ 185.3, 180.6, 175.9, 170.1, 151.5, 148.9, 148.6, 143.3, 133.7, 131.5, 129.9, 124.7, 123.5, 117.1, 117.0, 99.2, 59.8, 58.7, 57.8, 56.3, 55.3, 54.9, 54.3, 41.5, 40.7, 29.6, 25.5, 24.4, 22.2, 20.7, 15.7, 8.0.

ESI-MS m/z: Calcd. for C₂₉H₃₄N₄O₇: 550.6. Found (M+H)⁺: 551.2

To a degassed solution of compound 8 (240mg, 0.435 ml) in DMF (30 ml) 10 % Pd/C (48 mg) was added and the reaction was stirred under H₂ (atmospheric pressure.) for 1h. The reaction was filtered through a pad of celite under Argon to a Schlenk tube, as a colourless solution, containing anhydrous Cs₂CO₃ (240 mg, 0.739 ml). Then, bromochloromethane (0.566 ml, 8.71 ml) was added. The tube was sealed and stirred at 90 °C for 3h. The reaction was cooled and filtrated through celite and washed with CH₂Cl₂. The organic layer was concentrated and dried (sodium sulphate) to afford 9 as a brown oil that was used in the next step with no further purification.

Rf: 0.36 (SiO₂, hexane:ethyl acetate 1:5)

¹H NMR (300 MHz, CDCl₃): δ 6.71 (s, 3H), 5.89 (d, 1H), 5.81 (d, 1H), 5.63 (bs, 1H), 5.33 (d, 1H), 5.17 (d, 1H), 4.97 (m, 1H), 4.20 (d, 1H), 4.09 (m, 1H), 3.99 (m, 1H), 3.68 (m, 1H), 3.65 (s, 6H), 3.59-3.47 (m, 4H), 3.37-3.27 (m, 2 h), 3.14- 2.97 (m, 2 h), 2.62 (d, 1H), 2.32 (s, 3H), 2.20 (s, 3H), 2.08 (s, 3H), 1.72 (m, 1H), 1.36 (s, 3H);

¹³C NMR (75 MHz, CDCl₃): δ 169.8, 149.1, 147.4, 145.5, 136.2, 130.9, 130.8, 125.0, 122.9, 117.7, 112.6, 111.8, 106.4, 100.8, 99.8, 59.8, 58.9, 57.7, 56.6, 56.4, 55.5, 55.2, 41.6, 40.1, 29.6, 25.9, 25.0, 22.6, 15.6, 8.8.

ESI-MS m/z: Calcd. for $C_{30}H_{36}SiN_4O_7$: 564.6. Found $(M+H)^+$: 565.3.

To a flask containing 9 (245 mg, 0.435 ml) in DMF, (4 ml), cesium carbonate (425 mg, 1.30 ml) and allyl bromide (376 ml, 4.35 ml) were added at 0 °C and the mixture was stirred at 23 °C for 1h. The reaction was filtered though a pad of celite and partitioned between CH₂Cl₂ (25 ml) and H₂O (10 ml). The organic phase was dried (sodium sulphate) and concentrated at reduced pressure to afford a residue that was purified by flash column chromatography (SiO₂, CHCl₃:ethyl acetate 1:2) to give 10 as a yellow oil. (113 mg, 43 %).

Rf: 0.36 (hexane:ethyl acetate 1:5)

¹H NMR (300 MHz, CDCl₃): δ 6.74 (s, 1H), 6.3-6.0 (m, 1H), 5.94 (d, 1H), 5.87 (d, 1H), 5.43-5.36 (m, 2 h), 5.22 (s, 2 h), 5.00 (m, 1H), 4.22 (m, 1H), 4.17-4.01 (m, 1H), 3.98 (m, 2 h), 3.71-3.67 (m, 1H), 3.69 (s, 3H), 3.62-3.51 (m, 3H), 3.58 (s, 3H), 3.39-3.37 (m, 1H), 3.31-3.26 (m, 3H), 3.09 (dd, 1H), 2.56 (d, 1H), 2.36 (s, 3H), 2.21 (s, 3H), 2.11 (s, 3H), 2.24-2.10 (m, 1H), 1.82-1.73 (m, 1H), 1.24 (bs, 3H)

¹³C NMR (75 MHz, CDCl₃): δ 169.4, 148.8, 148.3, 139.1, 133.7, 130.9, 130.3, 125.2, 120.2, 117.7, 113.1, 112.6, 101.3, 99.3, 74.1, 59.7, 59.3, 57.8, 57.0, 56.1, 56.1, 55.2, 41.6, 41.0, 40.9, 29.7, 26.3, 22.5, 15.6, 9.3

ESI-MS m/z: Calcd. for $C_{33}H_{40}N_4O_7$: 604.7. Found $(M+H)^+$: 605.3.

To a solution of 9 (22 mg, 0.039 ml) in CH₂Cl₂ (0.2 ml), acetyl chloride (2.79 ml, 0.039 ml) and pyridine (3.2 ml, 0.039 ml) were added at 0 °C. The reaction mixture was stirred for 1h and then, the solution was diluted with CH₂Cl₂ (10 ml) and washed with 0.1 N HCl (5 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure to afford 46 (22 mg, 93%) as a white solid.

Rf: 0.4 (hexane:ethyl acetate 1:5).

¹H NMR (300 MHz, CDCl₃). δ 6.74 (s, 1H), 5.97 (d, J= 0.9 Hz, 1H), 5.91 (d, J= 0.9 Hz, 1H), 5.12 (d, J= 5.7 Hz, 2 h), 5.04 (d, J= 5.7 Hz, 1H) 4.90 (t, J= 6 Hz, 1H), 4.17 (d, J= 2.7 Hz, 1H), 4.05 (d, J= 2.7 Hz, 1H), 4.01 (bs, 1H), 3.71 (s, 3H), 3.57 (s, 3H), 3.50-3.44 (m, 2 h), 3.38-3.36 (m, 1H), 3.30-3.26 (m, 1H), 3.00 (dd, J_I= 7.8 Hz, J_Z= 18.0 Hz, 1H), 2.79 (d, J= 12.9 Hz, 1H), 2.60 (d, J=18.0 Hz, 1H), 2.35 (s, 3H), 2.32 (s, 3H), 2.21 (s, 3H), 2.00 (s, 3H), 1.68 (dd, J_I=11.7 Hz, J_Z= 15.6 Hz, 1H).

ESI-MS m/z: Calcd. for $C_{32 h38}N_4O_8$: 606.67. Found $(M+H)^+$: 607.3.

To a solution of 46 (8 mg, 0.013 ml) in dioxane (0.1 ml), 5.3N HCl/dioxane (0.5 ml) was added and the reaction was stirred at 23 °C for 1h. Then, the solution was diluted with CH₂Cl₂ (5 ml) and washed with 0.1 N HCl (3 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure to afford 47 (5 mg, 70%) as a white solid.

Rf: 0.4 (hexane:ethyl acetate 1:5).

¹H NMR (300 MHz, CDCl₃). δ 6.51 (s, 1H), 5.97 (d, J= 1.2 Hz, 1H), 5.91 (d, J= 1.2 Hz, 1H), 4.97 (bs, 1H), 4.11 (bs, 1H), 4.04-4.02 (m, 2 h), 3.75 (s, 3H),), 3.65 (d, J= 2.1 Hz, 2 h), 3.56-3.30 (m, 2 h), 3.04 (dd, J_I = 7.5 Hz, J_Z = 18 Hz, 1H), 2.80 (d, J= 14.4 Hz, 1H), 2.59 (d, J= 18.3 Hz, 1H), 2.33 (s, 3H), 2.24 (s, 3H), 2.00 (s, 3H), 1.76 (dd, J_I = 12.0 Hz, J_Z = 15.9 Hz, 1H), 1.33 (s, 3H), 1.25 (s, 3H).

ESI-MS m/z: Calcd. for $C_{30}H_{34}N_4O_7$: 562.61. Found $(M+H)^+$: 563.3.

Example 42

To a solution of 45 (10 mg, 0.0192 ml) in CH₂Cl₂ (0.3 ml), isovaleryl chloride (2.34 ml,

0.0192 ml) and pyridine (1.55 ml, 0.0192 ml) were added at 0 °C. The reaction mixture was stirred for 1h and then, the solution was diluted with CH₂Cl₂ (5 ml) and washed with 0.1 N HCl (3 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, Hex: ethyl acetate 1:2) to afford 48 (11 mg, 95%) as a white solid.

Rf: 0.12 (Hex: ethyl acetate 1:2).

¹H NMR (300 MHz, CDCl₃): δ 6.50 (s, 1H), 5.98 (d, J= 1.5Hz, 1H), 5.91(d, J= 1.5 Hz, 1H), 5.75 (s, 1H), 5.02 (t, J= 5.4 Hz, 1H), 4.10 (d, J= 1.5 Hz, 1H), 4.06 (d, J= 2.7 Hz, 1H), 4.02 (d, J= 2.7 Hz, 1H), 3.77 (s, 3H), 3.76-3.71 (m, 1H), 3.86-3.28 (m, 3H), 3.04 (dd, J_I= 8.1 Hz, J_I= 18.3Hz, 1H), 2.78 (d, J=15.9 Hz, 1H), 2.55 (d, J=18 Hz, 1H), 2.32 (s, 6H), 2.26 (s, 3H), 1.98 (s, 3H), 1.84-1.68 (m, 2 h), 1.36 (d, J= 7.2 Hz, 2 h), 0.69 (d, J= 6.6 Hz, 3H), 0.62 (d, J=6.6 Hz, 3H).

ESI-MS m/z: Calcd. for $C_{33}H_{40}N_4O_7$: 604.69. Found $(M+H)^+$: 605.3.

Example 43

To a solution of 45 (10 mg, 0.0192 ml) in CH₂Cl₂ (0.3 ml), isovaleryl chloride (3.98 ml, 0.0192 ml) and pyridine (1.55 ml, 0.0192 ml) were added at 0 °C. The reaction mixture was stirred for 1h and then, the solution was diluted with CH₂Cl₂ (5 ml) and washed with 0.1 N HCl (3 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, Hex: ethyl acetate 1:2) to afford 49 (12.4 mg, 96%) as a white solid.

100

Rf: 0.7 (ethyl acetate:methanol10:1).

¹H NMR (300 MHz, CDCl₃): δ 6.50 (s, 1H), 5.98 (d, J= 1.5Hz, 1H), 5.91 (d, J= 1.5 Hz, 1H), 5.73 (s, 1H), 5.08 (t, J= 5.4 Hz, 1H), 4.10 (d, J= 1.5 Hz, 1H), 4.05 (m., 1H), 4.01 (m, 1H), 3.76 (s, 3H), 3.65-3.61 (m, 1H), 3.40-3.27 (m, 3H), 3.03 (dd, J_I= 8.1 Hz, J_I= 18.6 Hz, 1H), 2.78 (d, J=13.2 Hz, 1H), 2.57 (d, J=18.3 Hz, 1H), 2.32 (s, 3H), 2.31 (s, 3H), 2.25 (s, 3H), 1.99 (s, 3H), 1.79 (dd, J_I= 12.0 Hz, J_I= 16.5 Hz, 1H), 1.73-1.42 (m, 4H), 1.33-1.18 (m, 10H), 1.03 (m, 2 h), 0.87 (t, J=6.6 Hz, 3H).

ESI-MS m/z: Calcd. for $C_{38}H_{50}N_4O_7$: 674.83. Found $(M+H)^+$: 675.5.

Example 44

To a solution of 45 (14.5 mg, 0.0278 ml) in CH₂Cl₂ (0.3 ml), trans-3-trifluoromethyl cinnamoyl chloride (4.76 ml, 0.0278 ml) and pyridine (2.25 ml, 0.0278 ml) were added at 0 °C. The reaction mixture was stirred for 1h and then, the solution was diluted with CH₂Cl₂ (5 ml) and washed with 0.1 N HCl (3 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, Hex: ethyl acetate 1:1) to afford 50 (18.7 mg, 94%) as a white solid.

Rf: 0.64 (ethyl acetate:methanol5:1).

¹H NMR (300 MHz, CH₃OD). δ 7.74-7.55 (m, 4H), 7.23 (d, *J*= 16.0 Hz, 1H), 6.34 (s, 1H), 6.12 (d, *J*= 16.0 Hz, 1H), 6.07 (d, *J*= 0.9 Hz, 1H), 5.96 (d, *J*= 0.9 Hz, 1H), 4.39 (d, *J*= 2.4 Hz, 1H), 4.07-4.05 (m, 1 H), 3.81 (bs, 1H), 3.46-3.51 (m, 3H), 3.42 (s, 3H), 3.09 (br d, *J*= 12.0 Hz, 1H), 2.94-2.85 (m, 2 h), 2.74 (d, *J*=18.3 Hz, 1H), 2.38 (s, 3H), 2.23 (s, 3H), 2.02 (s, 3H),

101

1.80 (s, 3H), 1.84-1.75 (m, 1H).

¹³C NMR (75 MHz, CDCl₃)): 8 168.7, 165.3, 146.5, 144.7, 142.6, 140.6, 138.0, 135.9, 131.0, 130.9, 129.1, 128.6, 125.8, 125.7, 124.5, 124.4, 122.7, 121.2, 117.8, 116.5, 113.0, 112.0, 101.7, 60.4, 59.1, 56.5, 56.4, 55.6, 55.3, 41.8, 40.3, 26.6, 25.1, 20.3, 15.4, 9.3. ESI-MS m/z: Calcd. for C₃₈H₃₇F₃N₄O₇: 718.72. Found (M+H)⁺: 719.3.

Example 45

To a solution of 43 (33 mg, 0.0557 ml) in CH₂Cl₂ (0.4 ml), isovaleryl chloride (6.79 ml, 0.0557 ml) and pyridine (4.5 ml, 0.0557 ml) were added at 0 °C. The reaction mixture was stirred for 1h and then, the solution was diluted with CH₂Cl₂ (5 ml) and washed with 0.1 N HCl (3 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, Hex: ethyl acetate 1:2) to afford 51 (34 mg, 91%) as a white solid.

Rf: 0.09 (Hex: ethyl acetate 1:2).

¹H NMR (300 MHz, CDCl₃): δ 6.46 (s,1H), 6.10 (bs, 1H), 5.99 (d, J= 0.9Hz, 1H), 5.90 (d, J= 0.9 Hz, 1H), 5.30 (t, J= 6.0 Hz, 1H), 4.10-4.05 (m, 3H),3.81 (bs, 1H), 3.74 (s, 3H), 3.54 (bs,1H), 3.38-3.36 (m, 1H), 3.29-3.21 (m, 1H), 3.00 (dd, J_I = 8.0 Hz, J_Z = 18.0 Hz, 1H), 2.25 (s, 3H), 2.20 (s, 3H), 2.00 (s, 3H), 1.95-1.90 (m, 3H), 0.87 (d, J=6.6 Hz, 6H), 0.76 (d, J=6.0 Hz, 3H).

ESI-MS m/z: Calcd. for $C_{36}H_{45}N_5O_8$: 675.77. Found $(M+H)^+$: 676.3.

Example 46

To a solution of 43 (33 mg, 0.0557 ml) in CH₂Cl₂ (0.4 ml), trans-3-trifluoromethyl cinnamoyl chloride (9.52 ml, 0.0557 ml) and pyridine (4.5 ml, 0.0557 ml) were added at 0 °C. The reaction mixture was stirred for 1h and then, the solution was diluted with CH₂Cl₂ (5 ml) and washed with 0.1 N HCl (3 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, Hex: ethyl acetate 1:2) to afford 52 (40 mg, 92%) as a white solid.

Rf: 0.21 (hexane:ethyl acetate 1:2).

¹H NMR (300 MHz, CD₃OD). δ 7.74-7.47 (m, 4H), 6.49 (s, 1H), 6.40 (d, J= 15.6 Hz, 1H), 6.00 (d, J= 1.5 Hz, 1H), 5.90 (d, J= 1.5 Hz, 1H), 5.47 (t, J= 6 Hz, 1H), 4.12-4.09 (m, 3H), 3.93 (bs, 1H), 3.71 (s, 3H), 3.59-3.58 (m, 1H), 3.38 (d, J=7.8 Hz, 1H), 3.29 (d, J=12.0 Hz, 1H), 3.00 (dd, J_I = 8.1 Hz, J_Z = 18.3 Hz, 1H), 2.79-2.78 (m, 1H), 2.65 (d, J=18.3 Hz, 1H) 2.29 (s, 6H), 2.28 (s, 3H), 2.22 (s, 3H), 1.84-1.80 (m, 1H), 0.85-0.84 (m, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 171.9, 168.8, 164.4, 146.9, 144.6, 143.0, 140.5, 140.5, 139.3, 135.7, 131.1, 131.0, 129.4, 129.1, 126.0, 124.1, 124.0, 122.4, 121.1, 120.7, 120.6, 117.7, 116.9, 112.8, 112.0, 101.6, 60.6, 59.3, 57.1, 56.3, 55.9, 55.2, 49.0, 41.7, 49.9, 26.5, 25.1, 20.2, 18.4, 15.7, 9.3.

ESI-MS m/z: Calcd. for $C_{41}H_{42}F_3N_5O_8$: 789.8. Found $(M+H)^+$: 790.3.

Example 47

To a solution of 43 (10 mg, 0.0169 ml) in CH_2Cl_2 (0.2 ml) trifluoroacetic anhydride (2.38 μ l, 0.0169 ml) was added at 23 °C. The reaction mixture was stirred for 5h and then, the solution was diluted with CH_2Cl_2 (5 ml) and washed with 0.1 N HCl (3 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, Hex: ethyl acetate 3:2) to afford 53 (10.7 mg, 93%) as a white solid.

Rf: 0.57 (ethyl acetate:methanol5:1).

¹H NMR (300 MHz, CDCl₃) δ 6.45 (s, 1H), 6.00 (d, J= 1.2 Hz, 1H), 5.90 (d, J= 1.2 Hz, 1H), 5.87 (bs, 1H), 5.32 (bs, 1H), 4.12(d, J= 2.1 Hz, 1H), 4.08 (d, J= 1.8 Hz, 1H), 3.78-3.56 (m, 3H), 3.72 (s, 3H), 3.40 (d, J= 8.1 Hz, 1H), 3.25 (d, J= 9.3 Hz, 1H), 3.00 (dd, J_I= 8.4 Hz, J_Z= 18.0 Hz, 1H), 2.77 (dd, J_I= 2.1 Hz, J_Z= 15.9 Hz, 1H), 2.68 (d, J= 18.6 Hz, 1H), 2.30 (s, 3H), 2.28 (s, 3H), 2.22 (s, 3H), 2.00 (s, 3H), 1.75 (dd, J_I= 11.4 Hz, J_Z= 15.9 Hz, 1H), 0.69 (d, J= 6.3 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 170.1, 168.6,156.0, 147.0, 144.6, 143.0, 140.6, 140.4, 131.0, 129.4, 120.9, 120.7, 117.6, 116.8, 112.4, 112.1, 101.6, 60.5, 59.0, 57.1, 56.3, 55.6, 55.2, 48.7, 41.6, 39.4, 26.5, 24.9, 20.2, 17.8, 15.4, 9.2.

ESI-MS m/z: Calcd. for $C_{33}H_{36}F_3N_5O_8$: 687.63. Found $(M+H)^+$: 688.66.

To a solution of 19 (11 mg, 0.0169 ml) in CH_2Cl_2 (0.2 ml) trifluoroacetic anhydride (2.38 ml, 0.0169 ml) was added at 23 °C. The reaction mixture was stirred for 5h and then, the solution was diluted with CH_2Cl_2 (5 ml) and washed with 0.1 N HCl (3 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (SiO_2 , Hex: ethyl acetate 3:2) to afford 54 (10.7 mg, 93%) as a white solid.

Rf: 0.6 (ethyl acetate:methanol5:1).

¹H NMR (300 MHz, CDCl₃) δ 7.33 (d, J= 6.3 Hz, 1H), 6.45 (s, 1H), 6.04 (m, 1H), 5.95 (d, J= 1.5 Hz, 1H), 5.84 (d, J= 1.5 Hz, 1H), 5.32 (m, 2 h), 5.21 (m, 1H), 4.11 (m, 4H), 3.73 (s, 3H), 3.64 (m, 2 h), 3.51 (m, 1H), 3.37 (d, J= 7.8 Hz, 1H), 3.22 (m, 2 h), 3.03 (dd, 1H, J_I= 8.1 Hz, J_I= 18.3 Hz, 1H), 2.60 (d, J= 18.3 Hz, 1H), 2.29 (s, 3H), 2.24 (s, 3H), 2.08 (s, 3H), 1.86 (dd, J_I= 12 Hz, J_I= 16.2 Hz, 1H), 0.82 (d, J= 7.2 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 170.0, 156.0, 148.4, 147.1, 144.3, 143.0, 138.7, 133.8, 130.5, 129.4, 120.6, 120.4, 117.6, 117.5, 117.0, 113.5, 112.5, 112.4, 101.1, 74.1, 66.8, 60.4, 59.3, 56.9, 56.6, 56.3, 55.4, 48.7, 41.6, 40.1, 26.2, 25.0, 17.6, 15.4, 9.1.

ESI-MS m/z: Calcd. for $C_{35}H_{39}F_3N_5O_7$: 685.69. Found $(M+H)^+$: 686.3.

To a solution of 54 (100 mg, 0.415 ml) in CH₂Cl₂ (4 ml), acetic acid (40 ml), (PPh₃)₂PdCl₂ (8.4 mg, 0.012 ml) and Bu₃SnH (157 ml, 0.56 ml) were added at 23 °C. After stirring at that temperature for 2 h the reaction was poured into a pad of flash column (SiO₂, gradient Hex to hexane:ethyl acetate 2:1) to afford 55 (90 mg, 96%) as a white solid.

Rf: 0.6 (hexane:ethyl acetate 1:2).

¹H NMR (300 MHz, CDCl₃) δ 7.55 (d, J= 7.2 Hz, 1H), 6.45 (s, 1H), 5.90 (d, J= 1.2 Hz, 1H), 5.82 (d, J= 1.2 Hz, 1H), 5.37 (t, J= 6.0 Hz, 1H), 4.15 (d, J= 2.1 Hz, 1H), 4.04 (d, J= 1.8 Hz, 1H), 3.70 (s, 3H), 3.66-3.53 (m, 2 h), 3.37-3.31 (m, 2 h), 3.19-3.15 (d, J= 11.7 Hz, 1H), 3.08-3.00 (m, 2 h), 2.56 (d, J=18.3 Hz, 1H), 2.30 (s, 3H), 2.24 (s, 3H), 2.04 (s, 3H), 1.91 (dd, J_I= 12.0 Hz, J_Z= 15.6 Hz, 1H), 0.84 (d, J= 6.9 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 170.1, 156.3, 147.3, 144.9, 144.4, 143.3, 136.7, 130.7, 129.3, 120.6, 117.6, 117.4, 114.4, 112.1, 107.7, 101.0, 85.8, 60.5, 59.3, 56.5, 56.4, 56.2, 55.2, 48.9, 41.6, 40.9, 25.7, 25.3, 18.0, 15.6, 8.7.

ESI-MS m/z: Calcd. for $C_{32 h35}F_3N_5O_7$: 645.63. Found $(M+H)^+$: 646.2.

106

To a solution of 17 (200 mg, 0.288 ml) in CH₂Cl₂ (1.44 ml), trifluoroacetic acid (888 ml, 11.53 ml) was added and the reaction mixture was stirred for 4h at 23 °C. The reaction was quenched at 0 °C with saturated aqueous sodium bicarbonate (60 ml) and extracted with ethyl acetate (2 x 70 ml). The combined organic layers were dried (sodium sulphate) and concentrated *in vacuo* to afford 56 (147 mg, 93%) as a white solid that was used in subsequent reactions with no further purification.

Rf: 0.19 (ethyl acetate:methanol5:1).

¹H NMR (300 MHz, CD₃OD). δ 6.48 (s, 1H), 5.88, d, J= 0.9 Hz, 1H), 5.81 (d, J= 0.9 Hz, 1H), 4.35 (d, J= 2.4 Hz, 1H),4.15 (d, J= 1.8 Hz, 1H), 3.99-3.98 (m, 1H), 3.70 (s, 3H), 3.52-2.96 (m, 7H), 2.68 (d, J= 18.3 Hz, 1H), 2.24 (s, 3H), 2.23 (s, 3H), 2.06 (s, 3H), 1.85 (dd, J_I= 11.7 Hz, J₂= 15.6 Hz, 1H), 0.91 (d, J= 6.6 Hz, 3H).

¹³C NMR (75 MHz, CD₃OD): δ 173.2, 149.1, 145.6, 144.9, 138.0, 132.2, 130.6, 121.4, 119.6, 117.4, 114.3, 109.2, 102.5, 82.3, 60.4, 58.4, 58.3, 57.8, 56.6, 50.1, 42.3, 41.6, 27.8, 26.2, 19.5, 15.5, 9.8.

ESI-MS m/z: Calcd. for $C_{29}H_{35}N_5O_6$: 549.62. Found $(M+H)^+$: 550.3.

To a solution of 56 (10 mg, 0.018 ml) in CH₂Cl₂ (0.4 ml), phenyl isothiocyanate (13 ml, 0.109 ml) was added and the reaction was stirred at 23° C for 1.5h. The mixture was concentrated in vacuo and the residue was purified by flash column chromatography (SiO₂, gradient Hexane to 1:1 hexane:ethyl acetate) to afford 57 (8 mg, 65%) as a white solid.

Rf: 0.57 (ethyl acetate:methanol10:1).

¹H NMR (300 MHz, CDCl₃): δ 7.88 (bs, 1H), 7.41-7.36 (m, 2 h), 7.27-7.22 (m, 1H), 7.02-7.00 (d, J= 7.8 Hz, 2 h), 6.71 (d, J= 7.2 Hz, 1H), 6.31 (s, 1H), 6.17 (bs, 1H), 5.93 (d, J=1.2 Hz, 1H), 5.83 (d, J= 1.2 Hz, 1H), 5.55 (bs, 1H), 5.20-5.17 (m, 1H), 4.16 (d, J= 1.8 Hz, 1H), 4.05 (bs, 1H), 4.02 (d, J= 2.4 Hz, 1H), 3.79 (s, 3H), 3.75-3.71 (m, 1H), 3.35 (d, J= 7.8 Hz, 1H), 3.28-3.19 (m, 2 h), 3.12-2.97 (m, 2 h), 2.50 (d, J=18.3 Hz, 1H), 2.32 (s, 3H), 2.21 (s, 3H), 2.15-2.09 (dd, J_I= 11.4 Hz, J_Z= 15.9 Hz, 1H), 1.95 (s, 3H), 0.88 (d, J=6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 178.5, 171.7, 147.2, 145.0, 144.3, 143.3, 137.0, 135.7, 130.6, 130.4, 129.6, 127.5, 124.3, 120.6, 117.7, 117.2, 115.3, 112.1, 108.3, 100.9, 60.9, 59.5, 56.7, 56.5, 56.2, 55.2, 54.1, 41.7, 41.1, 26.3, 25.4, 18.5, 15.8, 9.0.

ESI-MS m/z: Calcd. for $C_{36}H_{40}N_6O_6S$: 684.81. Found $(M+H)^+$: 685.3.

To a solution of 57 (45 mg, 0.065 ml) in CH₂Cl₂ (0.5 ml), acetyl chloride (4.67 ml, 0.065 ml) and pyridine (5.3 ml, 0.065 ml) were added at 0 °C. The reaction mixture was stirred for 3h and then, the solution was diluted with CH₂Cl₂ (10 ml) and washed with 0.1 N HCl (5 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (RP-18, CH₃CN: H₂O 40:60) to afford 58 (14 mg, 28%) as a white solid.

Rf: 0.34 (CH₃CN: H₂O 7:15).

¹H NMR (300 MHz, CDCl₃). δ 11.90 (d, J= 6.6 Hz, 1H), 7.45-7.40 (m, 3H), 7.18-7.15 (m, 2 h), 6.58 (s, 1H), 6.00 (d, J= 1.2 Hz, 1H), 5.89 (d, J= 1.2 Hz, 1H), 5.70 (s, 1H), 5.37 (t, J= 4.8 Hz, 1H), 4.48 (m, 1H), 4.23 (bs, 1H), 4.07 (bs, 2 h), 3.85-3.75 (m, 1H), 3.70 (s, 3H), 3.46-3.41 (m, 2 h), 3.24-3.20 (m, 1H), 3.00-2.95 (m, 1H), 2.87-2.75 (m, 1H), 2.31 (s, 3H), 2.28 (s, 3H), 2.24 (s, 3H), 2.00 (s, 3H), 1.85 (dd, J_I= 11.4 Hz, J₂= 15.6 Hz, 1H), 1.66 (s, 3H), 0.82 (d, J= 6.0 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃)): δ 182.6, 174.3, 171.0, 146.6, 144.6, 142.7, 142.3, 140.7, 140.2, 131.3, 129.8, 129.3, 128.9, 128.8, 121.5, 120.4, 117.3, 116.6, 112.8, 112.0, 111.3, 101.5, 60.5, 59.0, 57.6, 56.2, 55.9, 55.3, 55.1, 41.6, 39.4, 27.8, 26.5, 24.8, 20.2, 17.1, 15.5, 9.3.

ESI-MS m/z: Calcd. for $C_{40}H_{44}N_6O_8S$: 768.88. Found $(M+H)^+$: 769.2.

A solution of 57 (130 mg, 0.189 ml) in dioxane (1 ml), 5.3N HCl/dioxane (1.87 ml) was added and the reaction was stirred at 23 °C for 4h. Then, CH_2Cl_2 (15 ml) and H_2O (10 ml) were added to this reaction and the organic layer was decanted. The aqueous phase was basified with saturated aq sodium bicarbonate (60 ml) (pH = 8) at 0 °C and then, extracted with ethyl acetate (2x50 ml). The combined organic extracts were dried (sodium sulphate), and concentrated *in vacuo* to afford 59 (63 mg, 70%) as a white solid.

Rf: 0.15 (ethyl acetate:methanol5:1).

¹H NMR (300 MHz, CDCl₃). δ 6.67 (s, 1H), 5.99 (d, J= 0.9 Hz, 1H), 5.91 (d, J= 1.2 Hz, 1H), 5.10 (bs, 1H), 4.32 (d, J= 7.2 Hz, 1H), 4.25 (dd, J_I = 3.6 Hz, J_Z = 9.3 Hz, 1H), 3.7 (s, 3H), 3.71-3.64 (m, 2 h), 3.50 (dd, J_I = 2.4 Hz, J_Z = 15.9 Hz, 1H), 3.42-3.37 (m, 2 h), 3.16 (dd, J_I =3.6 Hz, J_Z = 12.9 Hz, 1H), 2.27 (s, 3H), 2.11 (s, 3H), 1.91 (dd, J_I = 12.0 Hz, J_Z = 15.9 Hz, 1H).

ESI-MS m/z: Calcd. for $C_{26}H_{30}N_4O_5$: 478.5. Found $(M+H)^+$: 479.3.

A solution of 43 (20 mg, 0.0338 mmol) in CH₂Cl₂ (0.3 ml), cinnamoyl chloride (5.63 mg, 0.0338 mmol) and pyridine (2.73 ml, 0.0338 mmol) were added at 0 °C. The reaction mixture was stirred for 1h and then, the solution was diluted with CH₂Cl₂ (10 ml) and washed with 0.1 N HCl (5 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, EtOAc:MeOH 20:1) to afford 60 (22 mg, 90%) as a white solid.

Rf: 0.56 (EtOAc:MeOH 5:1).

¹H NMR (300 MHz, CDCl₃). 7.51 (s, 1H), 7.50-7.47 (m, 2H), 7.36-7.35 (m, 2H), 6.43 (s, 1H), 6.36 (brd, J= 15.9 Hz, 2H), 6.01 (d, J= 1.5 Hz, 1H), 5.90 (brd, J= 1.5 Hz, 2H), 5.42 (t, J= 6.0 Hz 1H), 4.12-4.07 (m, 3H), 3.96-3.95 (m, 1H), 3.73 (bs, 3H), 3.58 (bs, 2H), 3.39 (d, J= 8.7 Hz, 1H), 3.25 (d, J= 11.7 Hz, 1H), 3.0 (dd, J_I= 7.5 Hz, J_I= 17.7 Hz, 1H), 2.78 (d, J= 15.9 Hz, 1H), 2.67 (d, J= 16.5 Hz, 1H), 2.29 (s, 6H), 2.23 (s, 3H), 1.99 (s, 3H), 1.82 (dd, J_I= 11.4 Hz, J_I= 15.6 Hz, 1H), 0.83 (d, J= 6.0 Hz, 3H).

¹³C NMR (75 MHz, CDCl₃)): δ. 172.0, 165.0, 146.9, 144.6, 143.1, 141.0, 140.5, 134.8, 131.0, 129.7, 129.1, 128.8, 127.8, 125.5, 123.8, 123.0, 121.1, 120.5, 117.7, 116.9, 112.8, 112.0, 101.9, 60.6, 59.2, 57.1, 56.4, 55.9, 55.3, 48.8, 41.7, 40.0, 26.5, 25.1, 20.3, 18.5, 15.7, 9.3.

ESI-MS m/z: Calcd. for $C_{40}H_{43}N_5O_8$: 721.8. Found $(M+H)^+$: 722.3.

A solution of 45 (19 mg, 0.0364 mmol) in CH₂Cl₂ (0.3 ml), heptafluorobutyryl chloride (5.44 ml, 0.0364 mmol) and pyridine (2.95 ml, 0.0364 mmol) were added at 0 °C. The reaction mixture was stirred for 1h and then, the solution was diluted with CH₂Cl₂ (10 ml) and washed with 0.1 N HCl (5 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, EtOAc:MeOH 20:1) to afford 61 (11.7 mg, 45%) as a white solid.

Rf: 0.76 (EtOAc:MeOH 5:1).

¹H NMR (300 MHz, CDCl₃) δ 6.46 (s, 1H), 6.12 (bs, 1H), 5.98 (d, J= 1.2 Hz, 1H), 5.93 (d, J= 1.2 Hz, 1H), 5.72 (bs, 1H), 4.13-4.11 (m, 2H), 4.0 (d, J= 2.4 Hz, 1H), 3.98-3.96 (m, 1H), 3.73 (s, 3H), 3.39 (d, J= 7.5 Hz, 1H), 3.39-3.28 (m, 2H), 3.09 (dd, J_I= 8.1 Hz, J_I= 18.0 Hz, 1H), 2.80 (d, J= 16.2 Hz, 1H), 2.46 (d, J= 18.3 Hz, 1H), 2.32 (s, 6H), 2.21 (s, 3H), 1.99 (s, 3H), 1.80 (dd, J_I= 12.0 Hz, J_I= 16.2 Hz, 1H).

ESI-MS m/z: Calcd. for $C_{32}H_{31}F_7N_4O_7$: 716.6. Found $(M+H)^+$: 717.2.

A solution of 43 (24 mg, 0.04 mmol) in CH₂Cl₂ (0.3 ml), butyryl chloride (4.15 ml, 0.04 mmol) and pyridine (3.28 ml, 0.04 mmol) were added at 0 °C. The reaction mixture was stirred for 1h and then, the solution was diluted with CH₂Cl₂ (10 ml) and washed with 0.1 N HCl (5 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, EtOAc:MeOH 20:1) to afford 62 (24 mg, 90%) as a white solid.

Rf: 0.35 (EtOAc:MeOH 5:1).

¹H NMR (300 MHz, CDCl₃) δ 6.47 (s, 1H), 6.10 (d, J= 6.5 Hz, 1H), 6.0 (d, J= 1.5 Hz, 1H), 5.91 (d, J= 1.5 Hz, 1H), 5.86 (bs, 1H), 5.31 (d, J= 6.9 Hz, 1H), 4.11-4.06 (m, 3H), 3.85-3.81 (m, 1H), 3.75 (s, 3H), 3.59-3.53 (m, 2H), 3.38 (d, J= 7.5 Hz, 1H), 3.27-3.22 (m, 1H), 3.0 (dd, J_I= 7.8 Hz, J_I= 17.4 Hz, 1H), 2.79 (d, J= 15.3 Hz, 1H), 2.63 (d, J= 17.7 Hz, 1H), 2.31 (s, 3H), 2.0 (s, 3H), 1.80 (dd, J_I= 12.0 Hz, J_I= 15.9 Hz, 1H), 1.58 (q, J= 7.2 Hz, 2H), 0.89 (t, J= 7.2 Hz, 3H), 0.76 (d, J= 6.6 Hz, 3H).

ESI-MS m/z: Calcd. for $C_{35}H_{43}N_5O_8$: 661.64. Found $(M+H)^+$: 662.3

A solution of 43 (19 mg, 0.0364 mmol) in CH₂Cl₂ (0.3 ml), cinnamoyl chloride (6.06 mg, 0.0364 mmol) and pyridine (2.95 ml, 0.0364 mmol) were added at 0 °C. The reaction mixture was stirred for 1h and then, the solution was diluted with CH₂Cl₂ (10 ml) and washed with 0.1 N HCl (5 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, EtOAc:MeOH 20:1) to afford 63 (20.1 mg, 85%) as a white solid.

Rf: 0.65 (EtOAc:MeOH 5:1).

¹H NMR (300 MHz, CDCl₃) δ 7.39-7.29 (m, 5H), 6.42, (s, 1H), 6.01 (d, J= 1.5 Hz, 1H), 5.92 (d, J= 1.5 Hz, 1H), 5.73 (bs, 1H), 5.24 (t, J= 6.8 Hz, 1H), 4.12-4.08 (m, 3H), 3.66-3.64 (m, 2H), 3.58 (bs, 3H), 3.36 (d, J= 8.7 Hz, 1H), 3.29 (d, J= 12.0 Hz, 1H), 2.98 (dd, J_I= 8.1 Hz, J_Z= 18 Hz, 1H), 2.33 (s, 6H), 2.29 (s, 3H), 2.01 (s, 3H), 1.84 (dd, J_I= 12.0 Hz, J_Z= 15.9 Hz, 1H).).

ESI-MS m/z: Calcd. for $C_{37}H_{38}N_4O_7$: 650.72. Found $(M+H)^+$: 651.2.

A solution of 43 (20 mg, 0.0338 mmol) in CH₂Cl₂ (0.3 ml), 3-chloropropionyl chloride (3.22 ml, 0.0338 mmol) and pyridine (2.73 ml, 0.0338 mmol) were added at 0 °C. The reaction mixture was stirred for 1h and then, the solution was diluted with CH₂Cl₂ (10 ml) and washed with 0.1 N HCl (5 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, EtOAc:MeOH 20:1) to afford 64 (20.5 mg, 89%) as a white solid.

Rf: 0.32 (EtOAc:Hexane 5:1).

¹H NMR (300 MHz, CDCl₃) 6.48 (s, 3H), 6.28 (m, 1H), 5.99 (d, J= 1.2 Hz, 1H), 5.91 (d, J= 1.2 Hz, 1H), 5.86 (bs, 1H), 5.31 (m, 1H), 4.08-4.07 (m, 3H), 3.75 (s, 3H), 3.72-3.53 (m, 5H), 3.39 (d, J= 8.1 Hz, 1H), 3.24 (d, J= 12.0 Hz, 1H), 3.00 (dd, J_I= 8.1 Hz, J_I= 18.0 Hz, 1H), 2.79 (d, J= 13.5 Hz, 1H), 2.50 (t, J= 6.3 Hz, 2H), 2.32 (s, 3H), 2.28 (s, 3H), 2.25 (s, 3H), 2.0 (s, 3H), 1.79 (dd, J_I= 12.3 Hz, J_I= 14.8 Hz, 1H), 0.81 (d, J= 6.3 Hz, 3H).

Example 59

A solution of 43 (19 mg, 0.0364 mmol) in CH₂Cl₂ (0.3 ml), butyryl chloride (3.78 ml, 0.0364 mmol) and pyridine (2.95 ml, 0.0364 mmol) were added at 0 °C. The reaction mixture was stirred for 1h and then, the solution was diluted with CH₂Cl₂ (10 ml) and washed with 0.1 N HCl (5 ml). The organic layer was dried over sodium sulphate, filtered, and the solvent was eliminated under reduced pressure. The residue was purified by flash column chromatography (SiO₂, EtOAc:MeOH 20:1) to afford 64 (19 mg, 87%) as a white solid.

115

Rf: 0.60 (EtOAc:MeOH 5:1).

¹H NMR (300 MHz, CDCl₃) 6.50 (s, 1H), 5.98 (d, J= 1.5 Hz, 1H), 5.91 (d, J= 1.5 Hz, 1H), 5.75 (s,1H), 5.01 (t, J= 6.4 Hz, 1H), 4.10 –4.09 (m, 1H), 4.06 (d, J= 2.1 Hz, 1H), 4.03-4.02 (m, 1H), 3.76 (s, 3H), 3.67-3.60 (m, 1H), 3.42-3.35 (m, 2H), 3.29 (d, J= 12.0 Hz, 1H), 3.02 (dd, J_I= 7.8 Hz, J_I= 17.7 Hz, 1H), 2.79 (d, J= 14.1 Hz, 1H), 2.56 (d, J= 18.3 Hz, 1H), 2.32 (s, 3H), 2.31 (s, 3H), 2.25 (s, 3H), 1.78 (dd, J_I= 12.0 Hz, J_I= 15.9 Hz, 1H), 1.63 (s, 3H), 1.53-1.46 (m, 2H), 1.28-1.16 (m, 2H), 0.68 (t, J= 7.2 Hz, 3H).

ESI-MS m/z: Calcd. for $C_{32}H_{38}N_4O_7$: 590.67. Found $(M+H)^+$: 591.2.

Example 60

To a solution of **50** (31.7 mg, 0.044 mmol) in CH₃CN/H₂O (1.5 ml/0.5 ml), AgNO₃ (225 mg, 1.32 mmol) was added and the reaction was stirred at 23°C for 17 h. Then brine (10 ml) and Aq sat NaHCO₃ (10 ml) were added at 0°C and the mixture was stirred for 15 min, filtered through a pad of celite and washed with CH₂Cl₂ (20 ml). The solution was decanted and the organic layer was dried and concentrated *in vacuo*. The residue was purified by flash column chromatography (SiO₂, EtOAc:MeOH 5:1) to afford **66** (16 mg, 51%) as a white solid.

Rf: 0.26 (EtOAc:MeOH 5:1).

¹H NMR (300 MHz, CDCl₃) δ 7.66-7.42 (m, 4H), 7.20 (bs, 1H), 6.44 (s, 1H), 5.97 (b, J= 1.2 Hz, 1H), 5.90 (d, J= 1.2 Hz, 1H), 5.76 (bs, 1H), 5.28 (bs, 1H), 4.54 (bs, 1H), 4.43 (bs, 1H), 4.00 (bs, 1H), 3.68-3.57 (m, 4H), 3.47 (d, J= 3.3 Hz, 1H), 3.40 (d, J= 11.7 Hz, 1H), 3.17 (d, J= 6.9 Hz, 1H), 2.92 (dd, J_I= 8.1 Hz, J_I= 17.7 Hz, 1H), 2.74 (d, J= 17.1 Hz, 1H), 2.48 (d, J= 18.6 Hz, 1H), 2.32 (s, 6H), 2.28 (s, 3H), 1.99 (s, 3H), 1.76 (dd, J_I= 12.0 Hz, J_I= 16.2 Hz, 1H).

116

ESI-MS m/z: Calcd. for $C_{37}H_{38}F_3N_3O_8$: 709. Found (M^+ -17): 692.3.

Example 61

To a solution of 53 (57 mg, 0.0828 mmol) in CH₃CN/H₂O (1.5 mL/0.5 ml), AgNO₃ (650 mg, 3.81 mmol) was added and the reaction was stirred at 23°C for 24 h. Then, brine (10 ml) and Aq sat NaHCO₃ (10 ml) were added at 0°C and the mixture was stirred for 15 min, filtered through a pad of celite and washed with CH₂Cl₂ (20 ml). The solution was decanted and the organic layer was dried and concentrated *in vacuo*. The residue was purified by flash column chromatography (SiO₂, EtOAc:MeOH 5:1) to afford 67 (28 mg, 50%) as a white solid.

Rf: 0.28 (EtOAc:MeOH 10:1).

¹H NMR (300 MHz, CDCl₃) d

6.47 (s, 1H), 5.97 (s, 1H), 5.88 (s, 1H), 5.35 (bs, 1H), 4.51 (bs, 1H), 4.41 (bs, 1H), 4.12-4.05 (m, 1H), 4.00 (d, J= 2.7 Hz, 1H), 3.77 (s, 3H), 3.64 (bs, 1H), 3.46 (d, J= 3.3 Hz, 1H), 3.34 (d, J= 11.4 Hz, 1H), 3.18 (d, J= 7.5 Hz, 1H), 2.95 (dd, J_I= 8.4 Hz, J_I= 18.3 Hz, 1H), 2.70 (d, J= 15.6 Hz, 1H), 2.48 (d, J= 17.7 Hz, 1H), 2.28 (s, 3H), 2.27 (s, 3H), 2.26 (s, 3H), 1.98 (s, 3H), 1.68 (dd, J_I= 12 Hz, J_I= 15.6 Hz, 1H), 0.86 (d, J= 6.3 Hz, 3H).

ESI-MS m/z: Calcd. for $C_{32}H_{37}F_3N_4O_9$: 678.66. Found (M⁺-17): 661.2.

To a solution of 48 (32 mg, 0.0529 mmol) in CH₃CN/H₂O (1.5 ml/0.5 ml), AgNO₃ (270 mg, 1.58 mmol) was added and the reaction was stirred at 23°C for 24 h. Then, brine (10 ml) and Aq sat NaHCO₃ (10 ml) were added at 0°C and the mixture was stirred for 15 min, filtered through a pad of celite and washed with CH₂Cl₂ (20 ml). The solution was decanted and the organic layer was dried and concentrated *in vacuo*. The residue was purified by flash column chromatography (SiO₂, EtOAc:MeOH 5:1) to afford 68 (18 mg, 56%) as a white solid.

Rf: 0.40 (EtOAc:MeOH 5:1).

¹H NMR (300 MHz, CDCl₃) d 6.50 (s, 1H), 5.95 (d, J= 1.2 Hz, 1H), 5.88 (d, J= 1.2 Hz, 1H), 5.23 (d, J= 6.9 Hz, 1H), 4.45 (d, J= 3.3 Hz, 1H), 4.38 (s, 1H), 4.01 (d, J= 2.4 Hz, 1H), 3.78 (m, 1H), 3.77 (s, 3H), 3.41-3.37 (m, 1H), 3.17-3.15 (m, 1H), 2.96 (dd, J_I= 7.8 Hz, J_I= 18.0 Hz, 1H), 2.70 (d, J= 15.3 Hz, 1H), 2.40 (d, J= 18.0 Hz, 1H), 2.30 (s, 6H), 2.27 (s, 3H), 1.76-1.65 (m, 1H), 1.35-1.25 (m, 2H), 0.89-0.82 (m, 1H), 0.69 (d, J= 6.6 Hz, 3H)

To a solution of 51 (27 mg, 0.04 mmol) in CH₃CN/H₂O (1.5 ml/0.5 ml), AgNO₃ (204 mg, 1.19 mmol) was added and the reaction was stirred at 23°C for 24 h. Then, brine (10 ml) and Aq sat NaHCO₃ (10 ml) were added at 0°C and the mixture was stirred for 15 min, filtered through a pad of celite and washed with CH₂Cl₂ (20 ml). The solution was decanted and the organic layer was dried and concentrated *in vacuo*. The residue was purified by flash column chromatography (SiO₂, EtOAc:MeOH 5:1) to afford 69 (10 mg, 38%) as a white solid.

Rf: 0.38 (EtOAc:MeOH 5:1).

¹H NMR (300 MHz, CDCl₃) d 6.48 s, 1H), 6.16 (bs, 1H), 5.98 (d, J= 1.5 Hz, 1H), 5.89 (d, J= 1.5 Hz, 1H), 5.33 (t, J= 6.0 Hz, 1H), 4.50 (m, 1H), 4.40 (m, 1H), 4.11-4.09 (m, 1H), 4.00 (d, J= 2.6Hz, 1H), 3.78 (s, 3H), 3.41-3.32 (m, 3H), 3.18 (d, J= 8.4 Hz, 1H), 2.94 (dd, J_I= 8.4 Hz, J_I= 18.3 Hz, 1H), 2.70 (d, J= 14.4 Hz, 1H), 4.45 (d, J= 18.3 Hz, 1H), 2.31 (s, 3H), 2.28 (s, 3H), 2.27 (s, 3H), 2.04 (s, 3H), 2.00-1.86 (m, 3H), 1.73 (m, 1H), 0.87 (d, J= 6.3 Hz, 6H).

To a solution of **63** (15 mg, 0.023 mmol) in CH₃CN/H₂O (1.5 ml/0.5 ml), AgNO₃ (118 mg, 0.691 mmol) was added and the reaction was stirred at 23°C for 24 h. Then, brine (10 ml) and Aq sat NaHCO₃ (10 ml) were added at 0°C and the mixture was stirred for 15 min, filtered through a pad of celite and washed with CH₂Cl₂ (20 ml). The solution was decanted and the organic layer was dried and concentrated *in vacuo*. The residue was purified by flash column chromatography (SiO₂, EtOAc:MeOH 5:1) to afford **70** (20.1 mg, 85%) as a white solid.

Rf: 0.43 (EtOAc:MeOH 5:1).

¹H NMR (300 MHz, CDCl₃) d 7.38-7.28 (m, 5H), 6.48 (s, 1H), 5.98 (d, J=1.5 Hz, 1H), 5.91 (d, J=1.5 Hz, 1H), 5.75 (bs, 1H), 5.38 (brd, 1H), 5.30 (bs, 1H), 4.53 (m, 1H), 4.42 (m, 1H), 4.02 (d, J=2.7 Hz, 1H), 3.78-3.65 (m, 5H), 3.46-3.40 (m, 2H), 3.17 (d, J=7.8 Hz, 1H), 2.94 (dd, J_I=7.8 Hz, J_I=17.7 Hz, 1H), 2.73 (d, J=16.8 Hz, 1H), 2.45 (d, J=18.0 Hz, 1H), 2.31 (s, 6H), 2.28 (s, 3H), 1.97 (s, 3H), 1.77 (dd, J_I=12.0 Hz, J_I=15.3 Hz, 1H).

PCT/GB00/01852

To a solution of 65 (25 mg, 0.042 mmol) in CH₃CN/H₂O (1.5 ml/0.5 ml), AgNO₃ (215.56 mg, 1.269 mmol) was added and the reaction was stirred at 23°C for 24 h. Then, brine (10 ml) and Aq sat NaHCO₃ (10 ml) were added at 0°C and the mixture was stirred for 15 min, filtered through a pad of celite and washed with CH₂Cl₂ (20 ml). The solution was decanted and the organic layer was dried and concentrated *in vacuo*. The residue was purified by flash column chromatography (SiO₂, EtOAc:MeOH 5:2) to afford 71 (16mg, 65%) as a white solid.

Rf: 0.0.5 (EtOAc:MeOH 5:2).

¹H NMR (300 MHz, CDCl₃) d 6.50 (s, 1H), 5.95 (d, J=1.5 Hz, 1H), 5.78 (s, 1H), 5.19 (bs, 1H), 4.45 (d, J=3.3 Hz, 1H), 4.37 (bs, 1H), 4.11 (brd, J=4.8 Hz, 1H), 4.01 (d, J=2.1 Hz, 1H), 3.76 (s, 1H), 3.71-3.69 (m, 1H), 3.49-3.35 (m, 1H), 3.24 (d, J=13.5 Hz, 1H), 3.15 (d, J=9.3 Hz, 1H), 2.95 (dd, J₁=8.1 Hz, J₂=17.7 Hz, 1H), 2.70 (d, J=15.6 Hz, 1H), 2.40 (d, J=18.0 Hz, 1H), 2.31 (s, 3H), 2.29 (s, 3H), 2.26 (s, 3H), 1.96 (s, 3H), 1.75-1.66 (m, 1H), 1.52-1.17 (m, 2H), 0.66 (t, J=7.2 Hz, 3H).

Fermentation Procedures

Example A

Seed medium YMP3 containing 1% glucose; 0.25% beef extract; 0.5% bacto-peptone; 0.25% NaCl; 0.8% CaCO₃ was inoculated with 0.1% of a frozen vegetative stock of the microorganism, strain A2-2 of *Pseudomonas fluorescens*, and incubated on a rotary shaker (250 rpm) at 27°C. After 30 h of incubation, the seed culture was added to a agitated-vessel fermentor with a production medium composed of 2% dextrose; 4% mannitol, 2% dried brewer's yeast (*Vitalevor*® *Biolux*, *Belgium*); 1% (NH₄)₂SO₄; 0.04% K₂HPO₄; 0.8 KCl; 0.001% FeCl₃; 0.1% L-Tyr; 0.8% CO₃Ca; 0.05% PPG-2000; 0.2% anti-foam silicone (ASSAF-100, RHODIA UK). The sterilisation was carried out at 122°C 30 minutes. The volume inoculated was a 2% (v/v). The temperature was 27°C (0 to 16h) and 24°C from 16h to final process (41 hours). The dissolve oxygen-pressure was upper to 25%. The pH was controlled at 6.0 with diluted sulphuric acid since 28 hours till final process. The overpressure was 0.5 bar. A 1% mannitol or sorbitol was added from 16 h to final process

121

(for two days running) and 2% for three days fermentation-process.

After 41 or 64 hours, the fermentation broth must be extracted for recovery safracin B or KCN treatment in the clarified broth for recovery safracin B - cyano.

Example B

Obtention of safracin B cyano from the crude extract.

A clarification or filtration from the fermentation broth at pH 6 removes the solids. The clarified broth was adjusted a pH 9.5 with diluted sodium hydroxide and extracted twice with 2:1 (v/v) ethyl acetate, methylene chloride or butyl acetate. The extraction was carried out into an agitated-vessel during 20', the temperature of the mixture was maintained at 8 to 10°C. The two phases were separated by a liquid-liquid centrifuge. The organic phase was dried with sodium sulphate anhydrous or frozen and then filtered for removing ice. This organic phase (ethyl acetate layer) was evaporated until obtention of an oil-crude extract.

Example C

Obtention of safracin B cyano from the clarified broth.

A clarification or filtration from the fermentation broth at pH 6 removes the solids. The clarified broth was adjusted at pH 3.9 with concentrated acetic acid. 0.5 grams per litre of KCN are added to the clarified broth an incubated at 20°C during 1 hour with agitation. Then, the temperature was decreased at 15°C and the pH was adjusted at 9.5 with diluted sodium hydroxide and extracted with 2:1.5 (v/v) ethyl acetate. The extraction was carried out into an agitated-vessel during 20 minutes, the temperature of the mixture was maintained at 8 to 10°C. The two phases were separated by a liquid-liquid centrifuge. The organic phase was dried with sodium sulphate anhydrous. This organic phase (ethyl acetate layer) was evaporated until obtention of an oil-crude extract. This extract was purified by flash column chromatography (SiO₂, gradient 20:1 to 10: to 5:1 ethyl acetate:methanol) to afford quantitatively compound 2 as a light yellow solid.

122

Rf: 0.55 (ethyl acetate:methanol5:1); t_R = 19.9 min [HPLC, Delta Pack C4, 5 μ m, 300 A, 150x3 mm, λ =215 nm, flow= 0.7 ml/min, temp= 50°C, grad.: CH₃CN-aq. NaOAc (10mM) 85% - 70% (20')];

¹H NMR (300 Mhz, CDCl₃): δ 6.54 (dd, J_I = 4.4Hz, J_2 = 8.4 Hz, 1H),6.44 (s, 1H), 4.12 (d, J = 2.4 Hz, 1H), 4.04 (d, J = 2.4 Hz, 1H), 4.00 (s, 3H), 3.87 (bs, 1H), 3.65 (ddd, J_I = 1.5 Hz, J_2 = 8.7 Hz, J_3 = 9.9 Hz, 1H), 3.35 (br. D, J = 8.4 Hz, 1H), 3.15-2.96 (m, 4H), 2.92 (q, J = 7.2 Hz, 1H), 2.47 (d, J = 18.3 Hz, 1H), 2.29 (s, 3H), 2.18 (s, 3H) 1.83 (s, 3H), 1.64 (ddd, J_I = 2.7 Hz, J_2 = 11.1 Hz, J_3 = 14.1 Hz, 1H), 0.79 (d, J = 7.2 Hz, 3H);

¹³C NMR (75 Mhz, CDCl₃): δ 186.0 (q), 175.9 (q), 156.2 (q), 146.8 (q), 142.8 (q), 140.7 (q), 136.6 (q), 130.5 (q), 128.8 (q), 127.0 (q), 120.5 (s), 117.4 (q), 116.5 (q), 60.8 (t), 60.4 (s), 58.7 (t), 56.2 (s), 55.7 (s), 54.8 (s), 54.8 (s), 54.4 (s), 50.0 (s), 41.6 (t), 39.8 (d), 25.2 (d), 24.4 (d), 21.2 (t), 15.5 (t), 8.4 (t).

ESI-MS m/z: Calcd for $C_{29}H_{35}N_5O_6$: 549.6. Found $(M+Na)^+$: 572.3.

Example D

A medium (50 l) composed of dextrose (2%), mannitol (4%), dry brewer's yeast (2%), ammonium sulphate (1%), potassium secondary phosphate (0.04%), potassium chloride (0.8%), iron (III) chloride 6-hydrate (0.001%), L-tyrosine (0.1%), calcium carbonate (0.8%), poly- (propylene glycol) 2000 (0.05%) and antifoam ASSAF 1000 (0.2%) was poured into a jar-fermentor with 75 l total capacity and, after sterilisation, inoculated with seed culture (2%) of A2-2 strain (FERM BP-14) and aerated cultivation under agitation was carried out at 27°C to 24°C for 64 hours (aeration of 75 l per minute and agitation from 350 to 500 rpm). The pH was controlled by automatic feeding of diluted sulphuric acid from 27 hours to final process. A 2% mannitol was added from 16 hours to final process. The cultured medium (45 l) thus obtained was, after removal of cells by centrifugation, adjusted to pH 9.5 with diluted sodium hydroxide, extracted with 25 litres of ethyl acetate twice. The mixture was carried out into an agitated-vessel at 8°C for 20 minutes. The two phases were separated by a liquid-liquid centrifuge. The organic phases were frozen at -20°C and filtered for removing ice and evaporated ice and evaporated until obtention of a 40 g oil-dark-crude extract. After

123

introduction of the cyanide group and purification, 3.0 grams of safracin B cyano were obtained.

Example E

A medium (50 l) composed of dextrose (2%), mannitol (4%), dry brewer's yeast (2%), ammonium sulphate (1%), potassium secondary phosphate (0.02%, potassium chloride (0.2%), Iron (III) chloride 6-hydrate (0.001%, L-tyrosine (0.1%), calcium carbonate (0.8%, poly- (propylene glycol) 2000 (0.05%) and antifoam ASSAF 1000 (0.2%) was poured into a jar-fermentor with 75 l total capacity and, after sterilisation, inoculated with seed culture (2%) of A2-2 strain (FERM BP-14) and aerated cultivation under agitation was carried out at 27°C to 24°C for 41 hours (aeration of 75 l per minute and agitation from 350 to 500 rpm). The pH was controlled by automatic feeding of diluted sulphuric acid from 28 hours to final process. A 1% mannitol was added from 16 hours to final process. The cultured medium (45 l) thus obtained was, after removal of cells by centrifugation, adjusted to pH 3.9 with 200 ml of conc. acetic acid. 25 grams of potassium cyanide 97% were added and after 1 hour of agitation at 20°C, the pH was adjusted to 9.5 with 1500 ml of a solution 10% sodium hydroxide. Then, extracted with 35 litres of ethyl acetate. The mixture was carried out into an agitated -vessel at 8°C for 20 minutes. The two phases were separated by a liquid-liquid centrifuge. The organic phase was dried by sodium sulphate anhydrous and evaporated until obtention of a 60 g oil-dark-crude extract.

After chromatography, 4.9 grams of safracin B cyano were obtained.

REFERENCES

European Patent 309,477.

US Patent 5,721,362.

Sakai, R., Jares-Erijman, E.A., Manzanares, I., Elipe, M.V.S., and Rinehart, K.L. J. Am.

Chem. Soc. (1996) 118, 9017-9023

Martinez, E.J., Owa, T., Schreiber, S.L. and Corey, E.J. Proc. Natl. Acad. Sci. USA, 1999, 96,

3496-3501.

Japanese Kokai JP-A2 59/225189.

Japanese Kokai JP-A2 60/084288.

Arai, T.; Kubo, A. In *The Alkaloids, Chemistry and Pharmacology*; Brossi, A. Ed.; Academic: New York, 1983, Vol 21; pp 56-110.

Remers, W. A.: In *The Chemistry of Antitumor Antibiotics*; Vol. 2; Wiley; New York, 1988, pp 93-118.

Gulavita N. K.; Scheuer, P. J.: Desilva, E. D. Abst. Indo-United States Symp. on Bioactive Compounds from Marine Organisms, Goa, India, Feb. 23-27, 1989, p 28.

Arai, T; Takahashi, K; Kubo, A. J. Antibiot, 1977, 30, 1015-1018.

Arai. T.; Takahashi, K.; Nakahara, S.; Kubo, A. Experientia 1980, 36, 1025-1028.

Mikami, Y.; Takahashi, K; Yazawa, K.; Hour-Young, C.; Arai, T.; Saito, N.; Kubo, A. J. Antibiot. 1988, 41, 734-740.

Arai, T.; Takahashi, K.; Ishiguro, K.; Yazawa, K. J. Antibiot. 1980, 33, 951-960.

Yazawa, K.; Takahashi, K.; Mikami, Y.; Arai, T.; Saito, N.; Kubo, A. J. Antibiot. 1986, 39, 1639-1650.

Arai, T.; Yazawa, K.; Takahashi, K.; Maeda, A.; Mikami, Y. Antimicrob. Agent Chemother. 1985, 28, 5-11.

Takahashi, K.; Yazawa, K.; Kishi, K.; Mikami, Y.; Arai, T.; Kubo, A. J. Antibiot. 1982, 35, 196-201.

Yazawa, K.; Asaoka, T.; Takahashi, K.; Mikami, Y.; Arai, T. J. Antibiot. 1982, 35, 915-917.

Frincke, J. M.; Faulkner, D. J. J. Am. Chem. Soc. 1982, 104, 265-269.

He, H.-Y.; Faulkner, D. J. J. Org. Chem. 1989, 54, 5822-5824.

Kubo, A.; Saito, N.; Kitahara, Y.; Takahashi, K.; Tazawa, K.; Arai, T. Chem Pharm. Bull. 1987, 35, 440-442.

Trowitzsch-Kienast, W.; Irschik, H.; Reichenback, H.; Wray, V.; Höfle, G. *Liebigs Ann. Chem.* 1988, 475-481.

Ikeda, Y.; Idemoto, H.; Hirayama, F.; Yamamoto, K.; Iwao, K.; Asano, T.; Munakata, T. J. Antibiot. 1983, 36, 1279-1283.

Asaoka, T.; Yazawa, K.; Mikami, Y. Arai, T.; Takahashi, K. J. Antibiot. 1982, 35, 1708-1710.

Lown, J. W.; Hanstock, C. C.; Joshua, A. V.; Arai, T; Takahashi, K. J. Antibiot. 1983, 36, 1184-1194.

125

Munakata et al. United States Patent 4, 400, 752, 1984.

Y. Ikeda et al. The Journal of Antibiotics. VOL XXXVI, N°10, 1284, 1983.

R. Cooper, S. Unger. The Journal of Antibiotics. VOL XXXVIII, N°1, 1985.

Corey et al. United States Patent 5, 721, 362. 1998.

Corey et al. J. Am. Chem. Soc. vol 118 pp 9202-92034, 1996.

Proc. Natl. Acad. Sci. USA. Vol. 96, pp 3496-3501, 1999.

Claims

1. The use in synthesis as starting material of a 21-Nuc compound with a structure of formula (XIV):

where at least one ring A or E is quinolic.

2. A method for preparing a compound with a fused ring structure of formula (XIV):

which comprises one or more reactions starting from a 21-cyano compound of formula (XVI):

where:

R¹ is an amidomethylene group or an acyloxymethylene group;

 R^5 and R^8 are independently chosen from -H, -OH or -OCOCH₂OH, or R^5 and R^8 are both keto and the ring A is a p-benzoquinone ring;

 R^{14a} and R^{14b} are both -H or one is -H and the other is -OH, -OCH₃ or -OCH₂CH₃, or R^{14a} and R^{14b} together form a keto group; and

R¹⁵ and R¹⁸ are independently chosen from -H or -OH, or R⁵ and R⁸ are both keto and the ring

A is a p-benzoquinone ring.

- 3. A method according to claim 2, where R^1 is -CH₂-NH-CO-CR^{25a}R^{25b}R^{25c} where R^{25a} and R^{25b} form a keto group or one is -OH, -NH₂ or -OCOCH₃ and the other is -CH₂COCH₃, -H, -OH or -OCOCH₃, provided that when R^{25a} is -OH or -NH₂ then R^{25b} is not -OH, and R^{25c} is -H, -CH₃ or -CH₂CH₃, or R^1 is -CH₂-O-CO-R, where R is -C(CH₃)=CH-CH₃ or -CH₃;
- 4. A method according to claim 2, wherein the 21-cyano compound of formula (XVI) is cyanosafracin B.
- 5. A method according to any preceding claim, wherein the compound with a fused ring structure of formula (XIV) is a compound of formula (XVIIa):

or formula (XVIIb):

where

R¹ is an optionally protected or derivatised aminomethylene group, an optionally protected or derivatised hydroxymethylene group;

 R^4 is -H;

or

 R^1 and R^4 together form a group of formula (IV), (V) (VI) or (VII):

R⁵ is -H or -OH;

R⁷ is -OCH₃ and R⁸ is -OH or R⁷ and R⁸ together form a group -O-CH₂-O-;

 R^{14a} and R^{14b} are both -H or one is -H and the other is -OH, -OCH₃ or -OCH₂CH₃, or R^{14a} and R^{14b} together form a keto group; and

R¹⁵ is -H or -OH;

R²¹ is -H, -OH or -CN;

and derivatives including acyl derivatives thereof and including derivatives where the group -NCH₃- at the 12-position is replaced by -NH- or -NCH₂CH₃-, and derivatives where the -NH₂ group in the compound of formula (VI) is optionally derivatised.

- 6 A method according to claim 6, wherein R⁵ is alkanoyloxy of 1 to 5 carbon atoms.
- 7. A method according to claim 6, wherein R5 is acetyloxy.
- 8. A method according to claim 5, 6 or 7, wherein R^{14a} and R^{14b} are hydrogen.
- 9. A method according to any of claims 5 to 8, wherein R¹⁵ is hydrogen.
- 10. A method according to any of claims 5 to 9, wherein R²¹ is -OH or -CN.
- 11. A method according to any of claims 5 to 10, which is of formula (XVIIb).
- 12. A method according to claim 11, wherein R⁷ and R⁸ together form a group -O-CH₂-O-.
- 13. A method according to any of claims 4 to 11, wherein R¹ and R⁴ together form a group

of formula (IV), (V) (VI) or (VII):

- A method according to any of claims 5 to 12, wherein R¹ is an optionally protected or derivatised aminomethylene group, an optionally protected or derivatised hydroxymethylene group; and R⁴ is -H.
- A method according to claim 14, wherein R¹ is a group -CH₂NH₂ or -CH₂-NH-aa, where aa is an acyl amino acid group.
- 16. A method according to claim 15, wherein in the form of an N-acyl derivative of the group -CH₂NH₂ or -CH₂-NH-aa.
- 17. A method according to claim 16, wherein R¹ is a N-acyl derivative where the acyl group is of formula -CO-R^a, where R^a is alkyl, alkoxy, alkylene, arylalkyl, arylalkylene, amino acid acyl, or heterocyclyl; each optionally substituted with halo, cyano, nitro, carboxyalkyl, alkoxy, aryl, aryloxy, heterocyclyl, heterocyclyloxy, alkyl, amino or substituted amino; or R^a is aa.
- 18. A method according to claim 15, 16 or 17, wherein one or more aa groups is present and is alanyl, arginyl, aspartyl, asparagyl, cystyl, glutamyl, glutaminyl, glycyl, histidyl, hydroxyprolyl., isoleucyl, leucyl, lysyl, methionyl, phenylalanyl, prolyl, seryl, threonyl, thyronyl, tryptophyl, tyrosyl, valyl, or another amino acid acyl group.
- 19. A method according to any of claims 5 to 18, wherein one or more substituent groups is protected by a protecting group.

20. A method according to any preceding claim, wherein the product is of formula (XXIIa):

or of formula (XXIIb):

$$R^{18}$$
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{18}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{19}
 R^{14}
 R^{14}
 R^{14}

where:

R¹ is -CH₂NH₂ or -CH₂OH, or a protected or derivatised version of such a group and R⁴ is -H; or

 R^{1a} and R^4 together form a group of formula (IV), (VI) or (VII):

R⁵ is -OH or a protected or derivatised version of such a group;

R^{14a} and R^{14b} are both -H or one is -H and the other is -OH or a protected or derivatised version of such a group, -OCH₃ or -OCH₂CH₃, or R^{14a} and R^{14b} together form a keto group; R¹² is -NH-, -NCH₃- or -NCH₂CH₃-;

R¹⁵ is -OH or a protected or derivatised version of such a group; and R¹⁸ is -OH or a protected or derivatised version of such a group.

21. A method according to any preceding claim, where the product is of formula (XXIII):

where R¹ is as previously defined for formula (XVIIb) and is preferably a derivatised aminomethylene group of moderate bulk;

R⁵ is as previously defined for formula (XVIIb) and is preferably a derivatised hydroxy group of low bulk;

 R^{12} is as previously defined and is preferably -NCH₃- and R^{21} is a hydroxy or cyano group.

- 22. A method according to claim 21, where R¹ is a hydrophobic group.
- A method according to claim 22, where R¹ is a group -CH₂-NH₂-CO-R^a, where R^a has a linear chain length of less than 20 atoms, more preferably less than 15 or 10 atoms.
- 24. A method according to claim 20,21 or 22, wherein \mathbb{R}^5 is an acetyl group.
- 25. A method according to any preceding claim, which includes the step:

where R⁵ for the end product is as defined for the compound (XXXII) and may be different in

the starting material and converted thereto as part of the process,

R¹⁸ is a hydroxy group in the end product but may be a protected hydroxy group in the starting material and converted thereto as part of the process,

R¹² for the end product may be the same as in the starting material or may be converted thereto as part of the process,

R²¹ for the end product is as defined and if a hydroxy group may be formed from a cyano group as part of the process,

R^a is as defined, and may be further acylated as part of the process to give an end product with an acylated R^a group.

- 26. A method according to any preceding claim, wherein aa is alanyl.
- 27. A method according to claim 26, wherein the alanyl group is present in the starting material and is protected with a Boc group.
- 28. A method according to any preceding claim, which includes the reaction:

29. A method according to any preceding claim, which includes the reaction:

30. A method according to any preceding claim, which includes the reaction where a group R¹ is aminomethylene is converted to a hydroxymethylene group.

31. A method according to any preceding claim, wherein a compound with a group R¹ which is hydroxymethylene is reacted with a reagent of the formula (XIX)

where Fu indicates a protected functional group, Prot³ is a protecting group, and the dotted line shows an optional double bond.

32. A method for preparing a 21-cyano compound of formula (XVI), as defined in claim 1, which comprises reacting a compound of formula (XV):

where R¹, R⁵, R⁸, R^{14a}, R^{14b}, R¹⁵ and R¹⁸ are as defined and R²¹ is a hydroxy group, with a source of cyanide ion, to give the desired 21-cyano compound.

33. A 21-cyano compound of formula (XVI):

where:

R¹ is an amidomethylene group or an acyloxymethylene group;

 R^5 and R^8 are independently chosen from -H, -OH or -OCOCH₂OH, or R^5 and R^8 are both keto and the ring A is a p-benzoquinone ring;

 R^{14a} and R^{14b} are both -H or one is -H and the other is -OH, -OCH₃ or -OCH₂CH₃, or R^{14a} and R^{14b} together form a keto group; and

R¹⁵ and R¹⁸ are independently chosen from -H or -OH, or R⁵ and R⁸ are both keto and the ring

134

A is a p-benzoquinone ring, with the exception of safracin B.

(19) World Intellectual Property Organization International Burcau

(43) International Publication Date 23 November 2000 (23.11.2000)

PCT

(10) International Publication Number WO 00/69862 A3

- (51) International Patent Classification?: C07D 515/22, 491/22, 471/18, A61K 35/00 // (C07D 515/22, 317:00, 291:00, 241:00, 221:00, 221:00) (C07D 491/22, 317:00, 241:00, 221:00, 221:00) (C07D 471/18, 241:00, 221:00, 221:00)
- (21) International Application Number: PCT/GB00/01852
- (22) International Filing Date: 15 May 2000 (15.05.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

 9911345.8
 14 May 1999 (14.05.1999)
 GB

 9918178.6
 2 August 1999 (02.08.1999)
 GB

 9923632.5
 6 October 1999 (06.10.1999)
 GB

 0001063.7
 17 January 2000 (17.01.2000)
 GB

- (71) Applicant (for all designated States except US): PHARMA MAR, S.A. [ES/ES]; Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES).
- (71) Applicant (for SD only): RUFFLES, Graham, Keith [GB/GB]; 57-60 Lincoln's Inn Fields, London WC2A 3LS (GB).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): CUEVAS, Carmen [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). PEREZ, Marta [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). FRANCESCH, Andres [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). FERNANDEZ, Carolina [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). CHICHARRO, Jose Luis [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). GALLEGO, Pilar [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). ZARZUELO, Maria [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). DE LA CALLE, Fernando [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES). MANZANARES, Ignacio [ES/ES]; Pharma Mar, S.A., Calle de la Calera, 3, Poligono Industrial de Tres Cantos, Tres Cantos, E-28760 Madrid (ES).
- (74) Agent: RUFFLES, Graham, Keith; Marks & Clerk, 57-60 Lincoln's Inn Fields, London WC2A 3LS (GB).

[Continued on next page]

(54) Title: HEMISYNTHETIC METHOD AND INTERMEDIATES THEREOF

(57) Abstract: Methods are provided for preparing a compound with a fused ring structure of formula (XIV) which comprises one or more reactions starting from a 21-cyano compound of formula (XVI) where typically: R¹ is an amidomethylene group or an acyloxymethylene group; R⁵ and R⁸ are independently chosen from -H, -OH or -OCOCH₂OH, or R⁵ and R⁸ are both keto and the ring A is a p-benzoquinone ring; R^{14a} and R^{14b} are both -H ozone is -H and the other is -OH, -OCH₃ or -OCH₂CH₃, or R^{14a} and R^{14b} together form a keto group; and R¹⁵ and R¹⁸ are independently chosen from -H or -OH, or R⁵ and R⁸ are both keto and the ring A is a p-benzoquinone ring. In modified starting materials, the 21-cyano group can be replaced by other groups introduced using nucleophilic reagents.

WO 00/69862 A3

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,

MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- (88) Date of publication of the international search report: 22 March 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

INTERNATIONAL SEARCH REPORT

nal Application No Intern PCT/GB 00/01852

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C07D515/22 C07D491/22 C07D471/18 A61K35/00 //(CO7D515/22,317:00,291:00,241:00,221:00,221:00),(CO7D491/22,317:00,241:00,221:00),(CO7D471/18,241:00,221:00)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) $IPC\ 7\ CO7D\ A61K$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT				
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
X	E.J.COREY, DAVID Y.GIN, AND ROBERT S. KANIA: "Enantioselective Total Synthesis of Ecteinascidin" J.AM.CHEM.SOC., vol. 118, 1996, pages 9202-99203, XP002925428 page 203; table 1A	1,5		
X	FUKUYAMA, LIHU YANG, KAREN L.AJECK: "Total Synthesis of(+)-Saframycic " J.AM.CHEM.SOC.,, vol. 112, 1990, pages 3713-3715,	1,5,33		
X X	XP002925425 example 1 examples 14,15	33 1,5		

Further documents are listed in the continuation of box C.	Patent tamily members are listed in annex.
Special calegories of cited documents: 'A' document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international filing date 'L' document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or other means 'P' document published prior to the international filing date but later than the priority date claimed	 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. 'X' document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone. 'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. '&' document member of the same patent family
Date of the actual completion of the international search 5 December 2000	Date of mailing of the international search report $12/12/2000$
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Authorized officer Goss, I

1

INTERNATIONAL SEARCH REPORT

Intern 1al Application No PCT/GB 00/01852

		FC1/GB 00/01832			
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT					
ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
	THORU FUKUYAMA ET AL.: "Stereocontrolled Total Synthesis of Saframycic B " J.AM.CHEM.SOC., vol. 104, 1982, pages 4957-4958, XP002925427 the whole document	1,5			
	J.W.LOWN, ALUMMOOTTIL V.JOSHUA ET AL.: "Molecular Mechanisms of Binding and Single-Strand Scission of Deoxyribonucleic Acid by the Antitumor Antibiotics saframycic A and C" BIOCHEMISTRY,	1,5			
:	vol. 21, no. 3, 1982, XP002925424 figure 1	33			
	RYUICHI SAKAI ET AL.: "Ecteinascidins: Putative Biosynthetic Precursors and Absolute Stereochemistry" J.AM.CHEM.SOC., vol. 118, 1996, pages 9017-9023, XP002925426	1,5			
	example 13	33			
	US 5 721 362 A (COREY ELIAS J ET AL) 24 February 1998 (1998-02-24) cited in the application the whole document	1,5,33			

1

INTERNATIONAL SEARCH REPORT

... urmation on patent family members

Intern: val Application No PCT/GB 00/01852

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 5721362 A	24-02-1998	AU 4420597 A CN 1237974 A CZ 9900914 A EP 0931083 A HU 0000068 A NO 991301 A PL 332206 A WO 9812198 A	14-04-1998 08-12-1999 11-08-1999 28-07-1999 28-06-2000 14-05-1999 30-08-1999 26-03-1998