Problemas de programación dinámica

José Antonio Hernández López

Departamento de Informática y Sistemas Universidad de Murcia

25 de marzo de 2025

Índice

1.	Segmentación de palabras
	1.1. Descripción del problema
	1.2. Ecuación de recurrencia
	1.3. Dimensiones de la tabla
	1.4. DAG de dependencias y orden topológico
	1.5. Implementación y orden
	1.6. Reconstrucción de la solución
	1.7. Versión memo
2.	Números de Catalán
	2.1. Descripción del problema
	2.2. Dimensiones de la tabla
	2.3. DAG de dependencias y orden topológico
	2.4. Implemetación y orden
	2.5. Versión memo

3.	Suma de un subconjunto			
	3.1.	Descripción del problema		
	3.2.	Ecuación de recurrencia		
	3.3.	Dimensiones de la tabla		
	3.4.	DAG de dependencias y orden topológico		
	3.5.	Implementación y orden		
	3.6.	Reconstrucción de la solución		
	3.7.	Versión memo		

1. Segmentación de palabras

1.1. Descripción del problema

Dado un texto sin espacios y un diccionario de palabras, devolver si es posible fragmentarlo de manera que todos los fragmentos pertenezcan al diccionario. Por ejemplo, dado el diccionario:

$$diccionario = \{i, love, samsung\}$$

Ejemplos de entradas y salidas son:

entrada₁ = ilovesamsung
$$\Rightarrow$$
 salida₁ = true
entrada₂ = ilovesamsungi \Rightarrow salida₂ = true
entrada₃ = ilovesamsunga \Rightarrow salida₃ = false
entrada₄ = xilovesamsung \Rightarrow salida₄ = false

1.2. Ecuación de recurrencia

Sea P(i), un función que devuelve **true** si la subcadena s[0:i] (de los i primeros carácteres, desde el carácter 0) puede segmentarse usando palabras del diccionario (y **false** en caso contrario). Entonces la relación de recurrencia es:

$$P(i) = \bigvee_{j=0}^{i-1} [P(j) \land s[j:i] \in \text{diccionario}]$$

Es decir, P(i) es true si existe algún j tal que P(j) sea true (es decir, se pueda segmentar la cadena de 0 hasta j) y que el resto de la cadena (desde j hasta i) sea una palabra del diccionario. El caso base es simplemente que P(i) = true si i = 0 (cadena vacía). De aquí en adelante P(i) será representado como P_i .

1.3. Dimensiones de la tabla

La ecuación de recurrencia depende de un solo parámetro. Así pues, usaremos una tabla unidimensional. Por otro lado, tenemos n+1 problemas diferentes (P_0,P_1,\ldots,P_n) siendo n la longitud de la cadena. Por ello, la tabla tendrá tamaño n+1.

Figura 1: DAG de la segmentación de palabras

1.4. DAG de dependencias y orden topológico

La Figura 1 muestra el DAG asociado a una palabra de 4 caracteres.

- P_4 depende de P_3, P_2, P_1, P_0 .
- P_3 depende de P_2, P_1, P_0 .
- P_2 depende de P_1, P_0 .
- P_1 depende de P_0 .
- P_0 es el caso base.

Así pues, el orden topológico con sentido es: P_0, \ldots, P_n . Siendo P_0 el caso base.

1.5. Implementación y orden

La implementación simplemente consiste en generar una tabla y recorrerla desde i = 0 hasta n e ir calculando P_0, \ldots, P_n (orden topológico).

```
def fragmentacion(palabra, diccionario):
    tabla = [False] * (len(palabra) + 1)
    for i in range(len(tabla)):
        if i == 0:
            tabla[0] = True
        else:
            r = False
            for j in range(i):
                 r = r or (tabla[j] and (palabra[j:i] in diccionario))
            tabla[i] = r
    return tabla[len(palabra)], tabla

diccionario = {"i", "love", "samsung"}
palabra = "ilovesamsungi"
resultado, _ = fragmentacion(palabra, diccionario)
# True
```

El orden de este algoritmo es $\Theta(n^2)$ ya que son dos bucles anidados $i = 0, \ldots, n$ y $j = 0, \ldots, i-1$. Por otro lado la memoria es $\Theta(n)$ ya que se necesita una tabla unidimiensional de tamaño n.

1.6. Reconstrucción de la solución

La reconstrucción de la solución (sucessión de palabras del diccionario que forman la cadena) consiste en la siguiente idea:

- 1. Empezamos en el problema grande P(n) y vemos cuál j hace true la expresión $P(j) \wedge s[j:i] \in$ diccionario.
- 2. Añadimos, para ese j, s[j:i] a la reconstrucción y pasamos a P(j).
- 3. Repetimos hasta que lleguemos a j = 0.

```
def reconstruccion(palabra, tabla, diccionario):
    i_actual = len(palabra)
    S = []
    if not tabla[i_actual]:
       return []
   while i_actual != 0:
        for j in range(i_actual):
            if tabla[j] and (palabra[j:i_actual] in diccionario):
                S.append(palabra[j:i_actual])
                i_actual = j
                break
    return S[::-1]
palabra = "ilovesamsungiiloveiisamsung"
_, tabla = fragmentacion(palabra, diccionario)
reconstruccion(palabra, tabla, diccionario)
# ['i', 'love', 'samsung', 'i', 'i', 'love', 'i', 'i', 'samsung']
```

1.7. Versión memo

Si usamos PD con memorización, solo tenemos que implementar la ecuación recurrente con un método recursivo y añadir una caché memo (usamos un diccionario).

```
memo = {}
palabra = "ilovesamsungiiloveiisamsung"
fragmentacion_memo(palabra, diccionario, memo, len(palabra))
# True
```

Para caluclar el orden en este caso simplemente tenemos que ver el tiempo no recursivo que se tarda en resolver cada subproblema:

- Para calcular P_i de i=1 hasta n, tenemos que hacer un bucle $j=0,\ldots,i-1$. Así pues, $t_{P_i}\sim\Theta(i)$.
- P_0 es el caso base y require tiempo constante $\Theta(1)$.

Así pues, tenemos:

$$\sum_{i=1}^{n} \Theta(i) + \Theta(1) = \Theta(n^2)$$

2. Números de Catalán

2.1. Descripción del problema

Los números de Catalán son una secuencia que aparecen en varios problemas de conteo. Dicho números satisfacen la siguiente encuación:

$$C_n = \begin{cases} 1 & n = 0\\ \sum_{i=1}^{n} C_{i-1} C_{n-i} & n \ge 1 \end{cases}$$

Queremos obtener el término n-ésimo.

2.2. Dimensiones de la tabla

La ecuación de recurrencia depende de un único parámetro y tenemos un total de n+1 problemas C_0, \ldots, C_n . Así pues, lo que encaja aquí es una tabla unidimensional de tamaño n+1.

2.3. DAG de dependencias y orden topológico

En este caso,

- $C_5 = C_0C_4 + C_1C_3 + C_2C_2 + C_3C_2 + C_4C_0$. Así pues, C_5 depende de C_0, C_1, C_2, C_3, C_4 .
- $C_4 = C_0C_3 + C_1C_2 + C_1C_1 + C_3C_0$. Así pues, C_4 depende de C_0, C_1, C_2, C_3 .
- **-** ...

De este modo, el grafo de dependencias es el mismo que Figura 1 (cambiando P_i por C_i). El caso base es C_0 .

2.4. Implemetación y orden

Para cada i = 0, ..., n calculamos el número C_i usando los anteriores.

```
def catalan(n):
    tabla = [0]*(n+1)
    for i in range(0, n + 1):
        if i == 0:
            tabla[i] = 1
        else:
            s = 0
            for j in range(1, i + 1):
                s += tabla[j-1] * tabla[i - j]
            tabla[i] = s
    return tabla, tabla[n]
catalan(10)
# ([1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796], 16796)
```

El orden de este algoritmo es $\Theta(n^2)$ ya que tenemos dos bucles anidados. Por otro lado la memoria usada es $\Theta(n)$.

2.5. Versión memo

Usando un diccionario memo, tenemos:

```
def catalan_memo(n, memo):
    if n in memo:
        return memo[n]
    if n == 0:
        numero = 1
    else:
        numero = 0
        for j in range(1, n + 1):
            numero += catalan_memo(j - 1, memo) * catalan_memo(n - j, memo)
    memo[n] = numero
    return numero
memo = \{\}
catalan_memo(10, memo)
# 16796
memo
# {0: 1, 1: 1, 2: 2, 3: 5, 4: 14, 5: 42, 6: 132, 7: 429,
# 8: 1430, 9: 4862, 10: 16796}
```

Para calcular el orden vemos el tiempo no recursivo en resolver cada subproblema:

- Para C_i con $i \geq 1$ tenemos que hacer un bucle $j = 1 \dots i$. Esto da un orden $\Theta(i)$.
- Para C_0 el trabajo es constante.

Así pues, tenemos:

$$\sum_{i=1}^{n} \Theta(i) + \Theta(1) = \Theta(n^2).$$

3. Suma de un subconjunto

3.1. Descripción del problema

Dado un conjunto de números A, decidir si hay un subconjunto que sume M. Asumimos que todos los números de A y M son enteros. Por ejemplo, para

$$A = \{13, 11, 7\}, M = 20$$

La respuesta es sí: el subconjunto $\{13,7\}$ suma 20.

$$A = \{13, 11, 7\}, M = 8$$

La respuesta es no.

3.2. Ecuación de recurrencia

Este problema es parecido al de la mochila y al del cambio de monedas. Supongamos que los número de A tienen un orden a_1, \ldots, a_n y definimos P(j, m) como la función booleana que dice si es cierto sumar m con un conjunto que tiene los elementos a_1, \ldots, a_j . En ese caso tenemos dos posiblidades: el objeto a_j es sumando o no:

$$P(j,m) = P(j-1,m) \vee P(j-1,m-a_j).$$

Los casos base son:

- Si m < 0 o j < 0, entonces P(j, m) =false (me salgo de la tabla)
- Si m = 0 y $j \ge 0$, entonces P(j, m) = true
- Si j=0 y m>0, entonces P(j,m)= false

3.3. Dimensiones de la tabla

De manera similar a la mochila al del cambio, la tabla tiene dimensiones $(n+1) \times (M+1)$ donde n es el número de elementos de A.

Figura 2: DAG de suma de un subconjunto

3.4. DAG de dependencias y orden topológico

Supongamos $A = \{2, 3, 4\}$ y M = 6, entonces tenemos el DAG representeado en la Figura 2. Los casos base están pintados (en verde los **true** y en rojo los **false**). Se puede observar que los problemas de j dependen del nivel inferior. Así pues, un orden válido sería recorrer la tabla $j = 0, \ldots, n$ y, de manera anidada, $m = 0, \ldots, M$.

3.5. Implementación y orden

Construimos una tabla de dimensiones $(n+1)\times (M+1)$ y la rellenamos siguiendo el orden escogido:

```
def subsetsum(A, M):
    tabla = [[0 for _ in range(M + 1)] for _ in range(len(A) + 1)]
    for j in range(len(A) + 1):
        for m in range(M + 1):
            if m == 0 and j >= 0:
                tabla[j][m] = True
            elif j == 0 and m > 0:
                tabla[j][m] = False
            else:
                if m - A[j - 1] >= 0:
                    r1 = tabla[j-1][m - A[j - 1]]
                else:
                     r1 = False # me salgo de la tabla
                r2 = tabla[j-1][m]
                tabla[j][m] = r1 \text{ or } r2
    return tabla, tabla[len(A)][M]
```

El orden y la memoria es $\Theta(nM)$ ya que tenemos simplemente que rellenar la tabla de dimensiones $(n+1)\times (M+1)$. Este algoritmo, como ocurre con el

de la mochila, es pseudo-polinomial.

3.6. Reconstrucción de la solución

Empezamos con el problema más grande: P(n, M). Si es false, entonces no hay nada que reconstruir. En caso contrario, vemos si añadiendo el elemento n en la suma obtenemos true. Si es así, añadimos el elemento n a la solución y restamos a M. En caso contrario, no añadimos nada. Pasamos al subproblema asociado a n-1 y así sucesivamente hasta llegar al problema j=0 (quedarnos sin objetos).

```
def reconstruccion(A, M, tabla):
    elemento_actual = len(A)
    cantidad_actual = M
    if not tabla[elemento_actual][cantidad_actual]:
        return "Sin solución"
    S = []
    while elemento_actual != 0 and cantidad_actual != 0:
        if (cantidad_actual - A[elemento_actual - 1] >= 0 and
        tabla[elemento_actual - 1] [cantidad_actual - A[elemento_actual - 1]]):
            S.append(A[elemento_actual - 1])
            cantidad_actual -= A[elemento_actual - 1]
            elemento_actual -= 1
    return S
```

3.7. Versión memo

```
def subset_memo(A, j, m, memo):
    if (j,m) in memo:
        return memo[(j,m)]
    if m < 0 or j < 0:
        r = False
    elif m == 0 and j>= 0:
        r = True
    elif j == 0 and m > 0:
        r = False
    else:
        r1 = subset_memo(A, j-1, m - A[j - 1], memo)
        r2 = subset_memo(A, j-1, m, memo)
        r = r1 or r2
    memo[(j,m)] = r
    return r
```

Se puede probar que el número de problemas está acotado superiormente por O(nM) (esto no lo vamos a demostrar). Por otro lado, lo que se tarda en resolver cada problema es constante. Así pues, el orden es O(nM).