3. Анализ зубчатой передачи

- 3.1. Открытая эвольвентная зубчатая передача
- 3.1.1. Расчет параметров открытой эвольвентной передачи

Исходные данные:

Коэффициент радиального зазора, $c^* = 0.25$

Коэффициент высоты головки зуба, h_a * = 1

Модуль зубчатой передачи, m = 2 мм

Числа зубьев, $z_5 = 11$, $z_6 = 12$

Коэффициенты смещения принимаем по таблице ([2], табл. 9.1, стр. 74)

$$X_5 = 0.432, X_6 = 0.372$$

Угол профиля зубьев, $\alpha = 20^{\circ}$

Определяем угол зацепления

$$inv\alpha_w = inv\alpha + \frac{2 \cdot (X_5 + X_6)}{Z_5 + Z_6} tg\alpha = 0.014904 + \frac{2 \cdot (0.432 + 0.372)}{11 + 12} tg(20) = 0.04035$$

по таблице определяем: $\alpha_{\scriptscriptstyle W}=27.4^\circ$

Определяем делительное межосевое расстояние

$$a = m\frac{Z_5 + Z_6}{2} = 2\frac{11 + 12}{2} = 23$$
 мм

Определяем межосевое расстояние

$$a_{W} = a \frac{\cos \alpha}{\cos \alpha_{W}} = 23 \frac{\cos 20}{\cos 27,4} = 24,3$$
 мм

Определяем коэффициент воспринимаемого смещения

$$y = \frac{a_W - a}{m} = \frac{24,3 - 23}{2} = 0,65$$

Определяем коэффициент уравнительного смещения

$$\Delta y = X_5 + X_6 - y = 0,432 + 0,372 - 0,65 = 0,154$$

Расчет геометрических параметров шестерни 5 и колеса 6 приведен в таблице 3.1.

Изм.	Лист	№ докум.	Подпись	Дата

Таблица 3.1 - основные параметры зубчатого зацепления.

Определяемая	D 1	Размер-	Зна	чения
величина	Расчетная формула	ность	Колесо 5	Колесо 6
Высота ножки зуба	$h_f = m \cdot \left(h_a^* + c^* - X\right)$	MM	1,64	1,756
Высота головки зуба	$h_a = m \cdot \left(h_a^* + X - \Delta y \right)$	MM	2,61	2,49
Радиус делительной окружности	$r = \frac{m \cdot Z}{2}$	ММ	11	12
Радиус основной окружности	$r_b = r \cdot \cos \alpha$	MM	10,34	11,28
Радиус начальной окружности	$r_{W} = r \cos \alpha / \cos \alpha_{W}$	MM	11,65	12,71
Радиус окружности вершин зубьев	$r_a = r + h_a$	MM	13,61	14,49
Профильный угол	$\alpha_a = \arccos\left(\frac{r_b}{r_a}\right)$	град.	40,6	38,9
Радиус окружности впадин	$r_f = r - h_f$	MM	9,36	10,24
Толщина зуба по де- лительной окружности	$S = \frac{\pi m}{2} + 2X \cdot m \cdot tg\alpha$	ММ	3,77	3,68
Окружной шаг	$P_b = \pi \cdot m \cdot \cos(\alpha)$	MM	5,	,9
Толщина зуба по ос- новной окружности	$S_b = \frac{P_b}{\pi} \left(2X \cdot tg\alpha + \frac{\pi}{2} + Z \cdot inv\alpha \right)$	ММ	3,85	3,8
Толщина зуба по окружности вершин	$S_a = 2r_a \left(\frac{\pi}{2Z} + \frac{2X \cdot tg \alpha}{Z} + inv \alpha - inv \alpha_a \right)$	MM	1,04	1,17
Хорда по делительной окружности	$b_i = mz_i \cdot \sin\left(\frac{\pi}{z_i}\right)$	ММ	6,2	6,21

Определяем масштабный коэффициент для зубчатого зацепления:

$$\mu_L = \frac{a_W}{O_5 O_6} = \frac{0,0243}{400} = 0,00006075 \frac{M}{MM}$$

Принимаем
$$\mu_L = 0.00006 \frac{M}{MM}$$

					Лист
					10
Изм.	Лист	№ докум.	Подпись	Дата	19

Таблица 3.2 - основные размеры зацепления с учетом масштаба.

	r	r_b	r_{w}	r_a	r_f	P_b	S	S_b	S_a	b
Колесо 5	183,3	172,3	194,1	226,8	156,1	98,4	62,8	64,2	17,3	103,3
Колесо 6	200	188	211,8	241,5	170,7		61,4	63,3	19,5	103,5

3.1.2. Построение эвольвентного зацепления

- 1 Наносим положение осей вращения O_5 и O_6 и проводим осевую линию.
- 2 Проводим дуги начальных окружностей (r_{w5} и r_{w6}) и отмечаем полюс зацепления P в точке их контакта. Строим остальные окружности зубчатых колёс: вершин зубьев (радиусы r_{a5} и r_{a6}), делительные (радиусы r_{5} и r_{6}), основные (радиусы r_{b5} и r_{b6}), впадин зубьев (радиусы r_{f5} и r_{f5}). При этом проверяем точность графического построения по величине радиального зазора.
- 3 Проводим общую касательную к основным окружностям. При этом она должна обязательно пройти через полюс зацепления Р. Так как данная касательная является линией зацепления, то отмечаются на ней характерные точки: N_5 и N_6 точки касания с основными окружностями и H_5 и H_6 точки пересечения линии зацепления с окружностями вершин зубьев.

Отрезок линии зацепления, заключённый между точками N_5 и N_6 , является теоретической линией зацепления, а отрезок, заключённый между точками H_5 и H_6 - рабочим участком линии зацепления.

Показываем угол зацепления. Для этого проводим прямую через полюс зацепления Р перпендикулярно линии межосевого расстояния. Угол отклонения линии зацепления от данной линии и является углом зацепления.

4 Строим эвольвенты зубчатых колёс, соприкасающиеся в полюсе зацепления P. Для построения профиля зуба первого колеса, отрезок теоретической линии зацепления N_5P делим на 4 равные части. Эти отрезки (принимая их равными длинам дуг) откладываем по основной окружности вправо и влево от N_5 и отмечаем точки. Через эти точки проводим касательные к основной окружности и на них откладываем единичные отрезки, число которых соответствует номеру точки, из которой проведена касательная. Для более точного проведения ка-

Изм.	Лист	№ докум.	Подпись	Дата

сательных вначале проводим прямые, соединяющие эти точки с осью вращения, и восстанавливаем перпендикуляры к этим прямым. Плавная кривая, проведенная через полученные точки, является эвольвентным профилем правой части первого колеса.

5 Для построения противоположной стороны зуба необходимо провести его ось симметрии. Её положение определим путём откладывания половины толщины зуба по делительной окружности. Отложив величину $S_5/2$ по делительной окружности, получаем точку. Прямая, соединяющая данную точку с осью вращения, и будет являться осью симметрии зуба. Измеряя хорды этих дуг с помощью циркуля и делая засечки на соответствующих окружностях, получаем точки, принадлежащие эвольвенте противоположной стороны зуба.

Определяем радиус галтели:

$$\rho = 0.38 \cdot m = 0.38 \cdot 2 = 0.76$$
 мм,

$$[\rho] = \frac{\rho \cdot 10^{-3}}{\mu_L} = \frac{0.76 \cdot 10^{-3}}{0.00006} = 12.7$$
 мм.

Аналогичным образом строятся эвольвенты второго колеса.

- 3.2. Синтез планетарной передачи
- 3.2.1. Определение передаточного числа планетарного механизма Исходные данные:

Угловая скорость кривошипа рычажного механизма: $\omega_2 = 12 \ c^{-1}$.

Числа зубьев открытой передачи: $z_5 = 11$, $z_6 = 12$.

Число оборотов вала электродвигателя: $n_{\text{дв}} = 1000 \ \text{obs}_{\text{мин}}^{/}$.

Определяем угловую скорость вала электродвигателя:

$$\omega_{AB} = \frac{\pi \cdot n_{AB}}{30} = \frac{3,14 \cdot 1000}{30} = 104,7 \ c^{-1}$$

Определяем передаточное отношение всего механизма:

$$i_{3M} = \frac{\omega_{AB}}{\omega_2} = \frac{104,7}{12} = 8,725$$

Определяем передаточное отношение открытой передачи:

$$i_{56} = -\frac{z_6}{z_5} = -\frac{12}{11} = -1,091$$

Изм.	Лист	№ докум.	Подпись	Дата

Определяем передаточное отношение планетарного механизма:

$$i_{nn} = \frac{i_{3M}}{i_{56}} = \frac{8,725}{1,091} = 8$$

3.2.2 Синтез планетарного механизма

Определяем внутреннее передаточное отношение механизма

$$i_{n\pi} = i_{1H}^3 = 1 - i_{13}^H = 1 - (-1)^1 i_{12} i_{23} = 1 + \frac{z_2 z_3}{z_1 z_2} = 1 + \frac{z_3}{z_1} = 8$$

$$\frac{z_3}{z_1} = 7$$
, тогда $z_3 = 7 \cdot z_1$

Исходим из того, что $z_3 > 85$, а $z_1 > 17$

Принимаем $z_1 = 18$, тогда $z_3 = 7 \cdot 18 = 126$

Условие соосности для данной схемы: $z_1 + z_2 = z_3 - z_2$

$$z_2 = \frac{z_3 - z_1}{2} = \frac{126 - 18}{2} = 54$$

Проверка условия соседства:

$$\sin\left(\frac{\pi}{k}\right) = \max\left(\frac{z_2 + 2}{z_1 + z_2}\right)$$

Принимаем k = 4

$$\sin\left(\frac{\pi}{4}\right) = \max\left(\frac{54+2}{18+54}\right)$$

 $0,707\ \langle\ 0,778-$ условие не выполняется

Принимаем k = 3

$$\sin\left(\frac{\pi}{3}\right) = \max\left(\frac{54+2}{18+54}\right)$$

 $0,866 \ \rangle \ 0,778 -$ условие выполняется

Проверка условия сборки: $i_{1H} \left(\frac{z_1}{k} \right) (1 + kp) = B$ - целое при любом p

$$k = 3$$
: $8 \cdot \left(\frac{18}{3}\right)(1 + 3p) = B$ - условие выполняется

Изм. Лист № докум. Подпись Дата					
Изм Лист № докум Подпись Лата					
	Изм.	Лист	№ докум.	Подпись	Лата

Так как был принят z_1 с минимально возможным числом зубьев, то нет необходимости делать дальнейший подбор. Механизм будет иметь минимальный габаритный размер.

Приняв модуль m=2 мм, находим диаметры начальных окружностей по формуле: $d_i = m \cdot z_i$

$$d_1 = m \cdot z_1 = 2 \cdot 18 = 36$$
 мм

$$d_2 = m \cdot z_2 = 2 \cdot 54 = 108$$
 мм

$$d_3 = m \cdot z_3 = 2 \cdot 126 = 252$$
 мм

Определяем масштабный коэффициент для планетарного механизма:

$$\mu_L = \frac{d_3}{[d_3]} = \frac{0,252}{252} = 0,001 \frac{M}{MM}$$

$$[d_1] = \frac{d_1}{\mu_I} = \frac{0.036}{0.001} = 36 \text{ мм}$$

$$[d_2] = \frac{d_2}{\mu_L} = \frac{0,108}{0,001} = 108$$
 мм

Изм.	Лист	№ докум.	Подпись	Дата