Effect Size

Revisão Sistemática e Meta-Análise

Marcelo M. Weber & Nicholas A. C. Marino github.com/nacmarino/maR

Recapitulando

- Meta-Análise: "é a análise estatística de uma ampla coleção de resultados de estudos com o propósito de integrar a evidência disponível". (*Glass, 1976*)
- É importante determinar a sua pergunta e objetivos com clareza: Population, Intervention, Comparison, Outcome (PICO).
- · A extração de dados precisa ser muito bem planejada e o processo muito bem conduzido.
- · A qualidade da meta-análise depende do que você coloca nela: garbage in, garbage out.

Testes de Significância

- É o método mais utilizado para determinar a significância e importância de um efeito: "a ditadura dos valores de p".
 - A hipótese nula raramente é realista ou plausível;
 - Dá importância demais à uma única hipótese que pode ser consistente com os dados (quando na verdade, podem existir múltiplas);
 - Trabalha com aceite ou rejeição de uma hipótese, ao invés de sua plausibilidade;
 - Sofre forte influência do tamanho amostral e de dados aberrantes.

Testes de Significância

Tamanho do Efeito *vs* Significância do Efeito: perspectiva da relevância de um resultado

- · Você já usa métricas de tamanho do efeito sem saber:
 - Quando você estima o efeito de uma variável em uma regressão;
 - Quando você compara os resultados de diferentes tratamentos;
 - Quando você avalia o efeito de diferentes níveis do mesmo tratamento.
- Em uma meta-análise, o tamanho do efeito é um parâmetro estatístico que pode ser usado para comparar, em uma mesma escala, os resultados de diferentes estudos no qual um efeito de interesse tenha sido medido.
 - Mesma resposta, medida de formas diferentes;
 - Mesma medida, expressa em unidades diferentes.

Intervalos de Confiança

- · Interpretado como um envelope dentro do qual um parâmetro de interesse é muito plausível de estar.
 - Se uma população for amostrada n vezes, o parâmetro de interesse vai estar contido no interval de confiança de x% em z% das amostragens.
 - Combina uma estimativa de uma característica da população em um ponto, com a variabilidade associada à esta estimativa.
- Um teste estatístico não será significativo quando o cálculo de um intervalo de confiança sugerir que o valor do parâmetro de interesse pode ser zero.
- · Deveria ser o foco principal ao fazermos qualquer inferência, mas não é:
 - Efeito significativo, mas impreciso: a intenção de votos é de 42 pontos, com um desvio de 41 pontos para mais ou para menos.
 - Efeito significativo, mas muito preciso: a inteção de votos é de 42 pontos, com um desvio de 2 pontos para mais ou para menos.

Pensamento Meta-analítico

- · Todo estudo estima o parâmetro correto que descreve a população, mas com precisão diferente.
- · Portanto, o valor de cada estudo é dado pelo parâmetro estimado e pela incerteza ao redor dele.

Pensamento Meta-analítico

- · Em uma meta-análise precisamos estimar dois parâmetros:
 - A métrica de **effect size** *per se*, que é a medida do tamanho do efeito de intesse.
 - Uma métrica que descreva a incerteza sobre a estimativa do effect size a variância.
- · Estes dois parâmetros são necessários para rodarmos qualquer modelo de meta-análise:
 - Métrica de effect size é a variável resposta (como já esperado);
 - O inverso da variância é uma medida de precisão usado para ponderar cada observação;
 - Observações mais precisas têm mais peso do que as observações com baixa precisão.
- · A falta de algum dos dados pode limitar a escolha da métrica de effect size e também o uso adequado dos modelos.

Tipos de Medida

Medidas de tamanho de efeito podem ser postas em dois grupos:

· Binárias

- Qual a proporção de vezes em que a resposta é *x* ou *y*: qual a mais provável;
- Em uma população *k*, observamos a resposta *z* tantas vezes;
- ...

· Continuas

- Valor médio de a;
- Força da relação entre *b* e *c*;
- ...

Tipos de Medida

Medidas de efeito também podem ser usadas com diferentes objetivos:

- · Determinar a magnitude e/ou direção de um fenômeno
 - Coeficientes de correlação;
 - Slopes;
 - Valores de média;
 - Predominância de um efeito;
 - ...
- Comparar grupos
 - comparação entre médias.

Tipos de Medida

- Em ecologia, a maior parte das meta-análises envolve comparações entre grupos, mas a determinação da magnitude/direção de um fenômeno ecológico também é bastante marcante.
- · Para o cálculo de qualquer métrica de effect size e sua variância precisamos:
 - 1. De uma estimativa de ponto (médias, correlações, slopes);
 - 2. De uma estimativa de erro (intervalo de confiança, erro padrão, desvio padrão, variância);
 - 3. De uma estimativa de tamanho da amostra.
- No R, o pacote metafor oferece a função escalc para o cálculo de diversas métricas de effect size.
 - Você também pode programar suas próprias funções no Excel, no R ou em qualquer outra ferramenta de programação.

Hedge's d

- · É um tipo muito comum de métrica em meta-análises na ecologia.
- · Principal objetivo é comparar grupos através de suas médias (medida contínua).
- · Também conhecido como Standardized Mean Difference.
- Estimativa da diferença entre a média de dois grupos (normalmente um tratamento e um controle), padronizado pelo desvio padrão agrupado dos dois grupos e tamanho amostral.
- Limitação: para o cálculo do valor de d você precisa de estimativas de média, erro e tamanho da amostra para todos os grupos, caso contrário você não consegue calcular esta métrica de effect size.
- Vantagem: pode ser usado com valores de média negativas.

Hedge's d

· O cálculo desta métrica de *effect size* é feito com a fórmula:

$$d = \frac{\overline{Y_1} - \overline{Y_2}}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}} J$$

- · Onde \bar{Y} é a média de cada um dos grupos, s é o desvio padrão de cada grupo e n é o número de réplicas em cada grupo (1 e 2).
- J é um fator de correção para viés causado por baixa replicagem (o que é muito comum em estudos ecológicos), e é calculado como:

$$J = 1 - \frac{3}{4(n_1 + n_2 - 2) - 1}$$

Hedge's d

 Uma vez calculada a estimativa do effect size, podemos calcular a variância associada à esta medida:

$$v_d = \frac{n_1 + n_2}{n_1 n_2} + \frac{d^2}{2(n_1 + n_2)}$$

- · d pode ter qualquer valor entre - ∞ e + ∞ , e segue uma distribuição normal (no geral).
- Note que esta métrica é descrita como diferença em termos de desvio padrão:
 - $|d| \le 0.2$: efeito fraco;
 - 0.2 > |d| < 0.8: efeito moderado;
 - $|d| \ge 0.8$: efeito forte.

· Vamos carregar um conjunto de dados e dar uma olhada nele.

```
dados <- read.csv(file = "../98 - dados para exemplos/medias.csv", header = TRUE)</pre>
str(dados)
## 'data.frame': 16 obs. of 11 variables:
                       : int 11 3 10 4 6 9 2 11 5 7 ...
   $ estudo
                       : Factor w/ 11 levels "Aline", "Ana", ...: 11 3 10 4 6 9 2 11 5 7 ...
## $ autor
   $ riqueza controle : int 1 1 1 1 1 1 1 1 1 1 ...
   $ riqueza tratamento: int 3 4 4 5 5 5 5 6 6 7 ...
                       : Factor w/ 2 levels "Aquatico", "Terrestre": 2 1 1 1 2 2 1 1 1 2 ...
   $ ecossistema
   $ media controle : num 2.71 2.28 2.69 3.2 3.15 ...
   $ sd controle : num 0.336 1.615 0.77 0.655 1.204 ...
## $ n controle : int 9 9 9 7 7 7 7 7 7 7 ...
## $ media tratamento : num 1.34 1.54 1.61 2.11 2.77 ...
## $ sd tratamento : num 1.34 2.62 1.77 1.66 2.2 ...
## $ n tratamento : int 9 9 9 7 7 7 7 7 7 7 ...
```

- · Utilizaremos o pacote metafor para realizar todas as tarefas relacionadas à meta-análise.
- · Vamos calcular o valor de *d* para cada estudo neste conjunto de dados com o escalc.
- SMD especifica o calculo de *d*: Standardized Mean Difference.
- · Incorpora a correção para amostras pequenas.

```
library(metafor)
escalc(measure = "SMD", # opcao de metrica do tamanho do efeito
    m1i = media_tratamento, sd1i = sd_tratamento, n1i = n_tratamento, # infos do tratamento
    m2i = media_controle, sd2i = sd_controle, n2i = n_controle, # infos do controle
    data = dados) # conjunto de dados de onde extrair as informações acima
```

- · O R vai automaticamente adicionar duas colunas ao conjunto de dados de onde ele extraiu as informações para o calculo do effect size:
 - yi representa a medida do tamanho do efeito em cada observação, que, nesse caso, é o valor de d (diferença entre médias em unidades de desvio padrão); e,
 - vi representa a estimativa da variância da estimativa do tamanho do efeito em cada observação.

##		estudo	autor	riqueza_tratamento	yi	vi
##	1	11	Maria	3	-1.3334	0.2716
##	2	3	Antonio	4	-0.3242	0.2251
##	3	10	Marcos	4	-0.7577	0.2382
##	4	4	Fernanda	5	-0.8046	0.3088
##	5	6	Joao	5	-0.2034	0.2872
##	6	9	Marcia	5	-0.6654	0.3015
##	7	2	Ana	5	1.8936	0.4138
##	8	11	Maria	6	1.6277	0.3803
##	9	5	Francisca	6	1.7914	0.4003
##	10	7	Jose	7	0.5054	0.2948
##	11	8	Lucas	8	1.3836	0.3541
##	12	11	Maria	8	2.1690	0.5294
##	13	1	Aline	9	1.3707	0.4939
##	14	2	Ana	9	1.3479	0.4908
##	15	7	Jose	10	2.4570	0.8773
##	16	11	Maria	10	2.2624	0.8199

Log Response Ratio

- · Outro tipo muito comum de métrica em meta-análises na ecologia, que comparar grupos através de suas médias (medida contínua).
- · Estimativa da diferença pela razão entre a média de um tratamento e o controle.
- O logarítimo natural é aplicado para normalizar a razão.
- Pode assumir qualquer valor entre -∞ e +∞.
- · Limitação: não pode ser usado com valores de média negativas.
- Vantagem: para o cálculo do valor de LRR você precisa somente de estimativas de média.

$$\ln R = \ln \left(\frac{\overline{Y_1}}{\overline{Y_2}} \right) = \ln \overline{Y_1} - \ln \overline{Y_2}.$$

$$\nu_{\ln R} = \frac{s_1^2}{n_1 \overline{Y}_1^2} + \frac{s_2^2}{n_2 \overline{Y}_2^2}.$$

Log Response Ratio

- · Lajeunesse (2015) demonstrou que esta formulação do LRR sofre um viés quando tamanho amostral do estudo é pequeno, e pode fornecer estimativas de variância erradas quando a escala dos parâmetros de estudo é próxima a zero (isto é, os valores de média são muito próximos a zero).
- · Sugere a utilização de dois outros estimadores para o LRR e sua variância:
 - LRR[∆] (baseado no Método Delta);
 - LRR $^{\Sigma}$ (baseado na regra de Expecativa de Linearidade).

Log Response Ratio

 $^{\circ}$ LRR $^{\Delta}$ fornece estimativas um pouco melhores do que LRR $^{\Sigma}$, mas ambos são pouco eficientes quando valores da média beiram o zero.

$$RR^{\Delta} = RR + \frac{1}{2} \left[\frac{(SD_{T})^{2}}{N_{T} \tilde{X}_{T}^{2}} - \frac{(SD_{C})^{2}}{N_{C} \tilde{X}_{C}^{2}} \right] \quad var(RR^{\Delta}) = var(RR) + \frac{1}{2} \left[\frac{(SD_{T})^{4}}{N_{T}^{2} \tilde{X}_{T}^{4}} + \frac{(SD_{C})^{4}}{N_{C}^{2} \tilde{X}_{C}^{4}} \right]$$

$$var(RR^{\Sigma}) = 2 \times var(RR)$$

$$RR^{\Sigma} = \frac{1}{2} ln \left[\frac{\bar{X}_{T}^{2} + N_{T}^{-1}(SD_{T})^{2}}{\bar{X}_{C}^{2} + N_{C}^{-1}(SD_{C})^{2}} \right] - ln \left[1 + var(RR) + \frac{(SD_{T})^{2}(SD_{C})^{2}}{N_{T}N_{C}\bar{X}_{T}^{2}\bar{X}_{C}^{2}} \right]$$

- · Utilizamos também o escalo para calcular o LRR, especificando ROM como a medida do tamanho do efeito: Ratio of Means.
- · O resultado pode ser expresso em %, caso você tire o exponencial do LRR.

```
escalc(measure = "ROM", m1i = media_tratamento, sd1i = sd_tratamento, n1i = n_tratamento, m2i = media controle, sd2i = sd controle, n2i = n controle, data = dados)
```

##		estudo	autor	riqueza_tratamento	уi	vi
##	1	11	Maria	3	-0.7009	0.1117
##	2	3	Antonio	4	-0.3916	0.3743
##	3	10	Marcos	4	-0.5165	0.1441
##	4	4	Fernanda	5	-0.4133	0.0936
##	5	6	Joao	5	-0.1306	0.1115
##	6	9	Marcia	5	-0.3675	0.0981
##	7	2	Ana	5	0.5922	0.0151
##	8	11	Maria	6	0.7044	0.0332
##	9	5	Francisca	6	1.0501	0.0857
##	10	7	Jose	7	0.2085	0.0390
##	11	8	Lucas	8	0.5702	0.0354
##	12	11	Maria	8	1.1063	0.0714
##	13	1	Aline	9	0.5692	0.0473
##	14	2	Ana	9	0.5741	0.0502
##	15	7	Jose	10	1.4969	0.2425
##	16	11	Maria	10	1.0664	0.0978

Correlação

- · É valor numérico que mede o grau de associação entre duas variáveis.
- · Para o cálculo desta métrica de effect size você só precisa do coeficiente de correlação e do tamanho amostral.
- · Muito cuidado deve ser tomado quando usar esta métrica, pois:
 - 1. Ela se baseia no pressuposto de linearidade entre as duas variáveis independentes;
 - 2. Pressupõem que não haja problemas com dados aberrantes na correlação.
- Quando os valores de correlação são muito próximos à -1 ou +1, a distribuição dos dados tende a ficar deslocada. Neste sentido, uma opção é realizar a normalização dos dados é a conversão do valor do coeficiente de correção r para o z score de Fisher.

$$z = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right), \quad v_z = \frac{1}{n-3}.$$

· Para trazer o valor de z de Fisher de volta para o coeficiente de correção,

- No escalc, cor especifica o calculo do effect size baseado no valor bruto da correlação, enquanto
 zcor o faz baseado no valor do coeficiente de correlção transformado.
- · A estimativa da variância não é afetada, uma vez que seu calculo não depende do valor de r.

```
dados <- read.csv(file = "../98 - dados para exemplos/correlacao.csv")</pre>
escalc(measure = "ZCOR", ri = r, ni = n, data = dados)
##
                 autor riqueza tratamento
      estudo
                                                                 vi
                                                 r n
                                                          уi
## 1
                 Maria
          11
                                         3 0.1691 12 0.1707 0.1111
## 2
           3
               Antonio
                                         4 0.2126 10 0.2159 0.1429
                                         4 0.2433 10 0.2483 0.1429
## 3
          10
                Marcos
## 4
              Fernanda
                                         5 0.1981 10 0.2008 0.1429
                                         5 0.2981 10 0.3074 0.1429
## 5
                  Joao
## 6
                Marcia
                                         5 0.2941 7 0.3030 0.2500
## 7
                                         5 0.3581 10 0.3747 0.1429
           2
                   Ana
## 8
          11
                 Maria
                                         6 0.4120 12 0.4380 0.1111
## 9
           5 Francisca
                                         6 0.3436 9 0.3582 0.1667
                                         7 0.4762 10 0.5181 0.1429
## 10
                  Jose
## 11
           8
                 Lucas
                                         8 0.3856 10 0.4066 0.1429
## 12
          11
                 Maria
                                         8 0.3728 10 0.3917 0.1429
## 13
           1
                 Aline
                                         9 0.4021 7 0.4262 0.2500
                                         9 0.4515 12 0.4866 0.1111
## 14
           2
                   Ana
## 15
           7
                  Jose
                                        10 0.5751 8 0.6551 0.2000
## 16
          11
                 Maria
                                        10 0.5347 8 0.5967 0.2000
```

Slopes

- Outra medida relevante que pode ser usada como effect size;
- Mede a taxa de mudança em um variável dependente de acordo com uma variável independente;
- O valor do effect size é o slope em si, e o valor da variância é o valor do erro associado ao slope, elevado ao quadrado (ver Capítulo 6 do livro de Metaanálise para detalhes);
- · Muito cuidado deve ser tomado quando usar esta métrica, pois:
 - 1. Ela se baseia no pressuposto de linearidade;
 - 2. Pressupõem que não haja problemas com dados aberrantes;
 - 3. Quando em um contexto de regressão múltipla, valor do *slope* não é o mesmo do quando quando em uma regressão simples.
- No R (ou qualquer outro programa estatístico), este valor é representado pelo estimate em uma análise;

Outras Métricas

- Em essência, qualquer estimativa de um dado efeito pode ser usada para o cálculo do *effect size*;
- · Existem diversas outras métricas disponíveis:
 - Odds Ratio: define a razão entre a chance de um evento ocorrer em um grupo *vs* em um segundo grupo;
 - Incidence Rate Ratio: razão entre o número de eventos específicos e o número total de eventos em uma população;
 - Estimativas de Padrões: valores que descrevam algum padrão/processo ecológico (emissão de um gás, densidade de plantas em áreas alagadas de um determinado tipo,...).

Um exemplo para estimativas de padrões

· Emissão de gases a partir de diferentes tipos de ecossistemas aquáticos.

```
dados <- read.csv(file = "../98 - dados para exemplos/emissao.csv", header = TRUE)
escalc(measure = "MN", mi = emissao, sdi = desvio, ni = replicas, data = dados)</pre>
```

##		estudo	autor	${\tt ecossistema}$	${\tt emissao}$	desvio	replicas	yi	vi
##	1	11	Maria	riacho	283	52.238	13	283.0000	209.9084
##	2	3	Antonio	riacho	292	79.927	26	292.0000	245.7048
##	3	10	Marcos	riacho	280	74.245	18	280.0000	306.2400
##	4	4	Fernanda	riacho	305	41.921	17	305.0000	103.3747
##	5	6	Joao	riacho	300	41.366	22	300.0000	77.7794
##	6	9	Marcia	lagos	772	72.388	22	772.0000	238.1828
##	7	2	Ana	lagos	787	44.128	12	787.0000	162.2734
##	8	11	Maria	lagos	767	65.880	16	767.0000	271.2609
##	9	5	Francisca	lagos	809	49.803	22	809.0000	112.7427
##	10	7	Jose	lagos	800	58.733	23	800.0000	149.9811
##	11	8	Lucas	lagos	804	46.219	20	804.0000	106.8098
##	12	11	Maria	pocas	478	51.971	20	478.0000	135.0492
##	13	1	Aline	pocas	490	67.438	21	490.0000	216.5659
##	14	2	Ana	pocas	474	32.341	21	474.0000	49.8067
##	15	7	Jose	pocas	507	39.897	27	507.0000	58.9545
##	16	11	Maria	pocas	500	70.588	27	500.0000	184.5432

Transformando entre métricas

- Alguns estudos podem não te fornecer os valores de média, coeficientes de correlação, slopes e estimativas de erro de forma direta.
- · Uma das opções é realizar conversões baseadas nos dados que estão disponíveis (lista completa no Capítulo 13 do livro de Meta-Análise):
 - t para d
 - *r* para *d* (e vice-versa)
 - F para d
 - *z* para *d* (e vice-versa)
 - χ^2 para d
 - Slope para *r* (e vice-versa)
 - t para r
 - F para *r*
 - z para r (e vice-versa)
 - χ^2 para r
 - t para z

Resumindo

- Em qualquer trabalho que fizemos, é importante considerar tanto o tamanho do efeito do que estamos medindo, quanto a incerteza existente nesta estimativa.
- Este tipo de pensamento é essencial para passarmos uma estatística frequentista baseada em uma única hipótese, para aquela que contempla múltiplas hipóteses igualmente válidas.
- Em uma meta-análise, é essencial calcularmos ou extrairmos uma métrica de tamanho de efeito e também a sua variância, para que o peso de cada estudo seja proporcional à sua precisão.
- Existem vários tipos de métricas de effect size, mas a escolha de qual delas usar depende em grande parte da sua pergunta.
- · Alguns métodos específicos existem para lidar para o cálculo de effect size e sua variância quando houverem dados faltantes ou incompletos.

Literatura Recomendada

- 1. Nakagawa & Cuthill, 2007, Biol Rev, Effect size, confidence interval and statistical significance a practical guide for biologists
- 2. Lajeunesse, 2015, Ecology, Bias and correction for the log response ratio in ecological meta-analysis
- 3. Rosenberg et al, 2013, Effect Sizes: Conventional choices and calculations, In: Handbook of meta-analysis in ecology and evolution (Capítulo 6)
- 4. Mengersen & Gurevitch, 2013, Using other metrics of effect size in metaanalysis, In: Handbook of meta-analysis in ecology and evolution (Capítulo 7)
- 5. Lajeunesse, 2013, Recovering missing or partial data from studies: a survey of conversions and imputations for meta-analysis, In: Handbook of meta-analysis in ecology and evolution (Capítulo 13)