Machine Learning for Finance (FIN 570) Regression

Instructor: Jaehyuk Choi

Peking University HSBC Business School, Shenzhen, China

2018-19 Module 1 (Fall 2018)

Notations and conventions: vector and matrix

General rules (guess from the context)

- Scalar (non-bold): x, y, X, Y
- Vector (lowercase bold): $\mathbf{x} = (x_i), \mathbf{y} = (y_i)$
- Matrix (uppercase bold): $\boldsymbol{X} = (X_{ij}), \boldsymbol{Y} = (Y_{ij})$
- The (i,j) component of X: X_{ij}
- The *i*-th row vector of \boldsymbol{X} : $\boldsymbol{X}_{i*} = (X_{i1}, X_{i2}, \cdots, X_{ip})^T$
- The j-th column vector of X: $X_{*j} = (X_{1j}, X_{2j}, \cdots, X_{Nj})$

Examples

- Dot product: $\langle {m x}, {m y}
 angle = {m x}^T {m y}$
- Vector norm: $|x| = \sqrt{x^T x}$
- ullet Matrix multiplication: $oldsymbol{Z} = oldsymbol{X} oldsymbol{Y} + oldsymbol{Z}_{ij} = oldsymbol{X}_{i*} oldsymbol{Y}_{*j}$

Jaehyuk Choi (PHBS) MLF: Intro 2018-19 M1

Notation and conventions: variables and observations

General rules

- Generic (or representative) variables (uppercase non-bold): X (input), Y(output), G (classification output)
- The predictions: \hat{Y} . \hat{G}
- X (input) may be p-dimensional (features/predictors): X_i ($i \le p$), row vector
- Y (output) may be K-dimensional (responses): Y_k ($k \le K$), row vector.
- The N observations of X or Y are stacked over as rows: \boldsymbol{X} ($N \times p$ matrix), \boldsymbol{Y} ($N \times K$ matrix)
- The *i*-th observation of the *j*-th feature: X_{ij} v.s. $X_i^{(i)}$ in **PML**
- The *i*-th observation set: X_{i*} (1 × p row vector) v.s. $X^{(i)}$ in PML
- All observation of j-th feature X_i : X_{*i} ($N \times 1$ row vector) v.s. X_i in **PML**
- $X = (X_{*1} \cdots X_{*p})$ (column-wise concatenation)
- The weight vector, β or w, are column vectors used interchangeably.

Jaehvuk Choi (PHBS) MLF: Intro

4 D > 4 A > 4 B > 4 B >

Simple Linear Regression (Ordinary Least Square)

For scalar predictor (X) and response (Y),

$$Y \approx \beta_0 + \beta_1 X \longrightarrow \hat{\boldsymbol{y}} = \beta_0 + \beta_1 \boldsymbol{x}.$$

For N observations $(x_1, y_1), \dots, (x_N, y_N)$, the set of $(\hat{\beta}_0, \hat{\beta}_1)$ to minimize the residual sum of squares (RSS):

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i)^2 = (\boldsymbol{y} - \beta_0 - \beta_1 \boldsymbol{x})^T (\boldsymbol{y} - \beta_0 - \beta_1 \boldsymbol{x})$$

is given as

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{\mathsf{Cov}(X, Y)}{\mathsf{Var}(X)},$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

for $\bar{x} = \sum x_i/N$ and $\bar{y} = \sum y_i/N$.

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ めな○

Jaehyuk Choi (PHBS) MLF: Intro 2018-19 M1 4/

Multi-dimensional Linear Regression

For (p+1)-vector predictor (X) and scalar response (Y),

$$Y \approx X\boldsymbol{\beta} \longrightarrow \hat{\boldsymbol{y}} = \boldsymbol{X}\boldsymbol{\beta},$$

where $X_0 = 1$ $(\boldsymbol{X}_{*0} = \boldsymbol{1})$ and $\boldsymbol{\beta}$ is a (p+1)-column vector.

$$\mathsf{RSS}(\boldsymbol{\beta}) = \frac{1}{2} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$

$$\frac{\partial}{\partial \boldsymbol{\beta}} \mathsf{RSS}(\boldsymbol{\beta}) = -\boldsymbol{X}^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) \quad \Rightarrow \quad \hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

For (p+1)-vector predictor (X) and K-vector response (Y), the result is similarly given as

$$\hat{m{Y}} = m{X}m{B}$$
 where $\hat{m{B}} = (m{X}^Tm{X})^{-1}m{X}^Tm{Y},$

which is the independent regressions on Y_j ($m{Y}_{*j}$) combined together,

$$\hat{\boldsymbol{B}}_{*j} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}_{*j}$$

Logistic Regression (Classification)

- ullet Qualitative (categorical) response (binary dependent variable, $Y \in \{0,1\}$)
- Multiple categories: how to give order?
- Linear regression (quantitative) is not proper
- Logistic (sigmoid) function: $\sigma(logit) = quantile$

$$p = \phi(t) = \frac{e^t}{1 + e^t} = \frac{1}{1 + e^{-t}}$$
 for $t = Xw \ (X_0 = 1)$

Logit function (the inverse): log odds

$$\phi^{-1}(p) = \log\left(\frac{p}{1-p}\right) = \log(p) - \log(1-p)$$

Fitting of logistic regression

Likelihood function

- For a given the prediction model, measures the likelihood of a data set.
- The best prediction model/weight is the one that maximizes the likelihood of the dataset.

For a data set $(\boldsymbol{X}, \boldsymbol{y})$ where $y_i \in \{0, 1\}$),

$$L(\boldsymbol{w}) = \prod_{i} P(y_i = \hat{y}_i) = \prod_{i:y_i = 1} \phi(\boldsymbol{X}_{i*}\boldsymbol{w}) \prod_{i:y_i = 0} (1 - \phi(\boldsymbol{X}_{i*}\boldsymbol{w}))$$
$$= \prod_{i} \phi(\boldsymbol{X}_{i*}\boldsymbol{w})^{y_i} (1 - \phi(\boldsymbol{X}_{i*}\boldsymbol{w}))^{1 - y_i}$$
$$\log L(\boldsymbol{w}) = \sum_{i} y_i \log \phi(\boldsymbol{X}_{i*}\boldsymbol{w}) + (1 - y_i) \log (1 - \phi(\boldsymbol{X}_{i*}\boldsymbol{w}))$$

The cost function (to minimize) is $J(\boldsymbol{w}) = -\log L(\boldsymbol{w})$

4 □ ト 4 問 ト 4 置 ト 4 置 ・ 夕 Q (*)