The Canonical Correlatoin Analysis Family

Xunyi Jiang, Langtian Ma

2023 Summer Seminar on SSL - Week 7

malt2020@mail.sustech.edu.cn

August 3, 2023

Generalized CCA Framework

For random variables $X\in\mathbb{R}^p$ and $Y\in\mathbb{R}^q$, we seek two transformations $f:\mathbb{R}^p\to\mathbb{R}^d$ and $g:\mathbb{R}^q\to\mathbb{R}^d$:

$$egin{aligned} \max_{f,g} \ \mathbb{E}[f(X)^T g(Y)] \ & ext{Subject to } \mathbb{E}[f(X)] = \mathbb{E}[g(Y)] = \mathbf{0}, \ & ext{} Cov[f(X)] = Cov[g(Y)] = \mathbf{I} \end{aligned}$$

with $d \leq \min\{p,q\}$.

Traditional CCA: f and g are linear.

Traditional Nonlinear CCA

EstimatinOgptimalTransformatiofnosrMultiple Regressionand Correlation LEO BREIMANand JEROMEH Friedman

Univariate Setting:

$$Y \in \mathbb{R}, f(X) = (f_1(X_1), \ldots, f_p(X_p))$$

Alternating Conditional Expectations: nonlinear least square with objective function:

$$\mathcal{L}(f,g) = rac{\mathbb{E}[g(Y) - \mathbf{1}^T f(X)]^2}{\mathbb{E}g^2(Y)}$$

Traditional Nonlinear CCA

For any random variable X and Y, the best predictor for Y given X is $\mathbb{E}[Y|X]$

Basic Algorithm (For illustration):

- Set $g(Y) = Y/\|Y\|$
- Iterate until $\mathcal{L}(f,g)$ fails to decrease;

$$\circ \ f(X) = \mathbb{E}[g(Y)|X]$$

$$\circ g(Y) = \mathbb{E}[f(X)|Y]$$

End Iteration Loop

Remark: Smoothing is applied repeatedly throughout the algorithm.

Traditional Nonlinear CCA

Information-theoretic Compressed Representation

Problem Formulation

Nonlinear Canonical Correlation Analysis: A Compressed Representation Approach 2020; Amichai Painsky, Meir Feder, Naftali Tishby

Additional mutual information constraints:

$$I(X, f(X)) \leq R_X, \quad I(Y, g(Y)) \leq R_Y$$

- ullet f and g are not required to be deterministic.
- f(X) and g(Y) are also restricted to be compressed representations of X and Y.
- R_X and R_Y define the amount of information preserved from the original vectors.

Mutual information constraint controls the generalization gap, and it can be viewed as a soft dimensionality reduction: restrict the level of information allowed to represent the data.

Information-theoretic Compressed Representation

Kernel CCA

Kernel functions $\kappa(\cdot, \cdot)$ can be expressed as an inner product in a representation space:

$$k(x,y) = \langle \phi(x), \phi(y) \rangle,$$

Kernel CCA is equivalent to conducting linear CCA on the representation space.

Let $\mathbf{X} \in \mathbb{R}^{n imes p}, \mathbf{Y} \in \mathbb{R}^{n imes q}$ be the data matrices, $\kappa(\cdot, \cdot)$ be aspecified kernel function

- Sample version of Covariance matrix $\hat{Cov(X)} = \mathbf{X}^T\mathbf{X}, \hat{Cov(Y)} = \mathbf{Y}^T\mathbf{Y}$
- Let $K_\mathcal{X}$ and $K_\mathcal{Y}$ be the kernel Gram matirces defined as $(K_x)_{ij}=\kappa(x_i,x_j)$ and $(K_y)_{ij}=\kappa(y_i,y_j)$

Find vectors α , β such that

$$lpha_{m{lpha},m{eta}\in\mathbb{R}^m} m{lpha}' m{K}_{m{\mathcal{X}}} m{K}_{m{\mathcal{Y}}} m{eta}$$
 subject to $m{lpha}' m{K}_{m{\mathcal{X}}} m{K}_{m{\mathcal{X}}} m{lpha} = m{eta}' m{K}_{m{\mathcal{Y}}} m{K}_{m{\mathcal{Y}}} m{eta} = 1$

Deep CCA

Deep Canonical Correlation Analysis

2013 Galen Andrew, Raman Arora, Jeff Bilmes, Karen Livescu

Idea: Let f and g be neural networks.

- Initialize the parameters of each layer with a denoising autoencoder
 - \circ Input data: $\mathbf{X} \in \mathbb{R}^{n \times m}$,
 - \circ Adding i.i.d zero-mean Guassian noise to obtain distorted matrix $f{X}$
 - Learn denoising auto encoder by minimizing reconstruction loss
- Updating parameters by maximizing correlation:

$$\max_{ heta_1, heta_2} \operatorname{corr}(f(X; heta_1),g(Y; heta_2))$$

Deep CCA

MNIST handwritten image

Each image is splited along the central axis to form two views.

	CCA	KCCA	DCCA
		(RBF)	(50-2)
Dev	28.1	33.5	39.4
Test	28.0	33.0	39.7

Deep CCA

Wisconsin X-ray Microbeam Database

Deep canonically correlated autoencoders

On Deep Multi-View Representation Learning

Weiran Wang, Raman Arora, Karen Livescu, Jeff Bilmes

Two autoencoders, optimizethe combination of canonical correlation and the reconstruction errors. For illustration, we write:

$$\min - ext{Corr}(f(X), g(Y)) + rac{\lambda}{N} \sum_{i=1}^{N} (\|x_i - p(f(x_i))\|^2 + \|y_i - q(g(y_i))\|^2)$$

where p and q are decoders for X and Y, respectively.

- CCA: maximizes the mutual information between the transformed views.
- Reconstruction error: maximizes the mutual information between inputs and learned features.

Summary

- Linear CCA: Linear transformation.
- Nonlinear CCA: Conditional Expectation & Smoothing.
- Information Compressed CCA: constrain the level of information allowed to represent the data.
- Kernel CCA: use kernel function to seek for nonlinear representation
- Deep CCA: Use correlation as objective functions
- DCCAE: Combination of Deep CCA and autoencoders.