

Basic Structures: Sets, Functions, Sequences, and Summation

Chapter 2

Edited by: Dr. Meshal Alfarhood

Sequences and Summations

Section 2.4

Section Summary

Sequences

- Arithmetic Sequence
- Geometric Sequence
- Recurrence Relations
 - Example: Fibonacci Sequence

Summations

Sequences

Definition: A *sequence* is a function $f: A \rightarrow B$, where A is a subset of \mathbb{Z} .

•
$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{\frac{1}{5}}{\dots}$$

$$a_n = \frac{1}{n}$$

$$a_n = 3^n$$

 a_n is called <u>term</u> of the sequence.

<mark>n</mark> is the index.

 $\{a_n\}$ is the entire sequence.

Arithmetic Sequence

Definition: An arithmetic sequence has a <u>constant difference</u> between each term.

Examples: Consider the following sequences. What is the term of the sequence (a_n) ?

- 1. {1,3,5,7,9,...}
 - a=1, d=2 $a_n = 1 + 2n$
- 2. $\{7,4,1,-2,-5,...\}$
 - a=7, d=-3 $a_n = 7 3n$

Geometric Sequence

Definition: A geometric sequence has a <u>constant ratio</u> between each term.

Examples: What is the term of the sequence (a_n) ?

•
$$a=1, r=-1$$
 $a_n = 1(-1)^n$

• a=2, r=5
$$a_n = 2(5)^n$$

3.
$$\{6,2,\frac{2}{3},\frac{2}{9},\frac{2}{27},\ldots\}$$

• a=6, r=
$$\frac{1}{3}$$
 $a_n = 6(1/3)^n$

Exercise

when the index starts with 0

Exercise 1: Let $\{a_n\} = \{7,13,19,25,...\}$ for $n \ge 0$, Find a_{100} ?

Solution: It's arithmetic sequence, a=7 and d=6

$$a_n = a_0 + d(n)$$

= 7 + 6n
So, $a_{100} = 7 + 6(100) = 607$

Exercise 2: Let $\{a_n\} = \{7,13,19,25,...\}$ for $n \ge 1$, Find a_{100} ?

Solution: It's arithmetic sequence, a=7 and d=6

$$a_n = a_1 + d(n-1)$$
 when the index starts with 1
= 7 + 6(n-1)
So, $a_{100} = 7 + 6(100-1) = 601$

Recurrence Relations

Definition: A recurrence relation for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of <u>one</u> or more of the previous terms of the sequence.

Example: Fibonacci sequence. Let $f_n = f_{n-1} + f_{n-2}$ and $f_0 = 0$, $f_1 = 1$. How the sequence looks like?

Solution:

{0,1,1,2,3,5,8,13,21,...}

Guessing Sequences

Given a few elements of a sequence, try to identify the sequence or the formula .

Some questions to ask?

- Are there repeated terms of the same value?
- Can you obtain a term from the previous term by adding an amount or multiplying by an amount?
- Can you obtain a term by combining the previous terms in some way?
- Do the terms match those of a well known sequence?

Exercise

Example: Find the term of the sequence (a_n) for:

- 1. $\{a_n\}=\{1,\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{16}\}.$
 - This is a geometric sequence with a = 1 and $r = \frac{1}{2}$. Thus, $a_n = \frac{1}{2^n}$
- 2. $\{a_n\}=\{1,7,25,79,241,727,2185,6559,19681,59047\}$.
 - **Solution**: Note the ratio of each term to the previous ≈ 3 . So now compare with the sequence of 3^n . We notice that the n^{th} term is 2 less than the corresponding power of 3. Thus, $a_n = 3^n 2$.

h	1	2	3	4	5
3 ⁿ	3	9	27	8ા	243
an	1	7	25	79	241

Some Useful Sequences

TABLE: Some Useful Sequences.				
n th Term	First 10 Terms			
n ²	1, 4, 9, 16, 25, 36, 49, 64, 81, 100,			
n ³	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,			
n ⁴	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,			
f_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,			
2 ⁿ	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,			
<i>3</i> ⁿ	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,			
n!	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,			

Summations₁

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + \dots + a_n$$

The variable *i* is called the *index of summation*. It runs through all the **integers** starting with its *lower limit* (1) and ending with its upper limit (n).

Example: What is the value of $\sum_{i=1}^{5} i^2$?

Solution: $\sum_{i=1}^{5} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$

$$\sum_{i=1}^{5} i^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55$$

Summations₂

Example: Evaluate the following summations:

$$\sum_{i=1}^{n} c = c + c + c + \dots + c = nc$$

$$\sum_{i=m}^{n} c = (n-m+1)c$$

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Proof? Next slide

$$\sum_{i=m}^{n} i = \sum_{i=1}^{n} i - \sum_{i=1}^{m-1} i = \frac{n(n+1)}{2} - \frac{(m-1)m}{2}$$

Proof of
$$\frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Proof:

Let
$$S = 1 + 2 + 3 + \dots + n$$

$$S = n + (n-1) + (n-2) + \dots + 1$$

$$2S = n (n+1)$$

$$S = n (n+1) / 2$$

Summation of Arithmetic Sequence

$$\sum_{i=1}^{n} a + bi = \sum_{i=1}^{n} a + b \sum_{i=1}^{n} i$$

Example: Evaluate the following summations:

$$\sum_{j=1}^{10} 5j + 2 = 5 \sum_{j=1}^{10} j + \sum_{j=1}^{10} 2 = 5 \frac{10(11)}{2} + 2(10) = 275 + 20 = 295$$

$$\sum_{j=5}^{10} 5j = 5 \sum_{j=1}^{10} j - 5 \sum_{j=1}^{4} j = 5 \frac{10(11)}{2} - 5 \frac{4(5)}{2} = 275 - 50 = 225$$

Summation of Geometric Sequence

$$\sum_{i=0}^{n} ar^{i} = a \sum_{i=0}^{n} r^{i} = a + ar + ar^{2} + \dots + ar^{n} = a \left[\frac{r^{n+1} - 1}{r - 1} \right] \quad r \neq 1$$

Proof:

Let
$$S = a + ar + ar^2 + \dots + ar^n$$

 $r \times S = ar + ar^2 + \dots + ar^{n+1}$
 $rS - S = ar^{n+1} - a$
 $S = \frac{ar^{n+1} - a}{r - 1}$

Example:
$$\sum_{j=0}^{5} 2(5)^j = 2\left[\frac{5^6 - 1}{5 - 1}\right] = 2\left[\frac{15624}{4}\right] = 7812$$

Some Useful Summation Formulae

Sum	Closed From
$\sum_{k=0}^{n} ar^{k} \left(r \neq 0 \right)$	$\frac{ar^{n+1}-a}{r-1}, \ r\neq 1$
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$

Double Summations

Example 1:
$$\sum_{i=1}^{n} \sum_{j=1}^{m} c = \sum_{i=1}^{n} cm = \frac{cmn}{n}$$

Example 2:
$$\sum_{i=1}^{n} \sum_{j=1}^{m} i = \sum_{i=1}^{n} mi = m \sum_{i=1}^{n} i = m \frac{n(n+1)}{2}$$

Example 3:
$$\sum_{i=1}^{n} \sum_{j=1}^{m} j = \sum_{i=1}^{n} \frac{m(m+1)}{2} = n \frac{m(m+1)}{2}$$

Example 4:
$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} \frac{3(4)}{2}i = \sum_{i=1}^{4} (6i) = 6\frac{4(5)}{2} = 60$$

Product Notation

$$\prod_{i=1}^{n} a_i = a_1 \times a_2 \times a_3 \times \dots \times a_n$$

Examples:

$$\prod_{i=1}^{n} c = c \times c \times c \times \cdots \times c = c^{n}$$

$$\prod_{i=1}^{n} i = 1 \times 2 \times 3 \times \dots \times n = n!$$