МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №8

по дисциплине «Машинное обучение»

Тема: Классификация (линейный дискриминантный анализ, метод опорных векторов)

Студент гр. 6304	Ковынев М.В.
Преподаватель	Жангиров Т.Р.

Санкт-Петербург 2020

Цель работы

Ознакомиться с методами классификации модуля Sklearn.

Ход работы

Загрузка данных

Датасет загружен в датафрейм. Вид данных представлен на рис. 1.

	0	1	2	3	4
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

Рисунок 1 – Исходные данные

Выделены данные и их метки, тексты меток преобразованы к числам. Выборка разбита на обучающую и тестовую *train_test_split*.

Линейный дискриминантный анализ

 Проведена классификация наблюдений с помощью LinearDiscriminantAnalysis. Выявлено 3 неправильно классифицированных наблюдения. Параметры классификатора представлены в табл. 1. Атрибуты классификатора представлены в табл.2.

Таблица 1 – Параметры LinearDiscriminantAnalysis

Параметр	Описание
solver	 «svd»: Разложение по сингулярным числам. Не вычисляет ковариационную матрицу, поэтому рекомендуется для данных с большим количеством признаков. «lsqr»: Решение наименьших квадратов, можно комбинировать с параметром shrinkage. «eigen»: Разложение на собственные значения, можно комбинировать с параметром shrinkage.
shrinkage	 «auto»: Автоматическое сжатие по лемме Ледуа- Вольфа. float from [0, 1]
priors	Класс априорных вероятностей. По умолчанию пропорции классов выводятся из данных обучения.
n_components	Количество компонентов (<= min (n_classes - 1, n_features)) для уменьшения размерности. Если None, будет установлено значение min (n_classes - 1, n_features). Этот параметр влияет только на метод преобразования transform.
store_covariance	Если True, явно вычислить взвешенную ковариационную матрицу внутри класса, когда решатель – «svd». Матрица всегда вычисляется и сохраняется для других решателей.

tol	Абсолютный порог для того, чтобы единичное значение Х
	считалось значимым, используется для оценки ранга X.
	Измерения, единичные значения которых не значимы,
	отбрасываются. Используется только если решатель -
	«svd».

Таблица 2 – Атрибуты LinearDiscriminantAnalysis

Атрибут	Описание
coef_	Весовые вектора.
intercept_	Массив прерывания.
covariance_	Взвешенная внутриклассовая ковариационная матрица.
explained_variance_ratio_	Процент дисперсии, объясняемой каждым из выбранных компонентов. Если n_components не задано, то все компоненты сохраняются, а сумма объясненных дисперсий равна 1,0. Доступно только при использовании собственного решателя или «svd».
means_	Средние в классах.
priors_	Вероятности классов.
scalings_	Масштабирование объектов в пространстве, охватываемом центроидами классов. Доступно только для решателей «svd» и «eigen».
xbar_	Общее среднее. Присутствует, только если решатель - «svd».
classes_	Уникальные метки классов.

2. Точность классификации получена с помощью функции score() и составляет 98%.

 Построен график зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки.
 График представлен на рис. 2.

Рисунок 2 – Классификация LinearDiscriminantAnalysis

 Функция transform проецирует данные для максимизации разбиения классов. LDA пытается определить атрибуты, на которые приходится наибольшая разница между классами. В частности, LDA, в отличие от PCA, является контролируемым методом, использующим известные метки классов.

Рисунок 3 – Сравнение PCA и LDA

 Работа классификатора исследована при различных параметрах solver, shrinkage. Результаты представлены на рис. 4-7.

Рисунок 4 – Классификация LinearDiscriminantAnalysis c svd solver

Рисунок 5 – Классификация LinearDiscriminantAnalysis с lsqr solver и shrinkage

Рисунок 6 – Классификация LinearDiscriminantAnalysis с eigen solver и shrinkage

Рисунок 7 — Классификация LinearDiscriminantAnalysis с lsqr solver без shrinkage

 Заданы собственные значения априорных вероятностей классов, результаты представлены в табл. 3 и на рис. 8.

Таблица 3 – Результаты классификации LinearDiscriminantAnalysis

Априорные вероятности классов	Количество	Точность
	неправильно	классификации
	определенных	
	наблюдений	
[0.38666667, 0.26666667, 0.34666667]	3	0.987
[0.15, 0.7, 0.15]	5	0.987

Рисунок 8 – Классификация LinearDiscriminantAnalysis с заданными априорными вероятностями

Метод опорных векторов

- Проведена классификация наблюдений с помощью метода опорных векторов на тех же данных. Выявлено 4 неправильно классифицированных наблюдения.
- Точность классификации получена с помощью функции score() и составляет 96%.

- Атрибут support_ хранит индексы опорных векторов, support_vectors_ сами опорные вектора, n_support_ количество опорных векторов для каждого класса.
- Построен график зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки.
 График представлен на рис. 9.

Рисунок 9 - Классификация SVC

 Исследована работа метода опорных векторов при различных значениях параметров kernel, degree, max_iter. Результаты представлены в табл. 4-6.

Таблица 4 – Результаты классификации SVC

Тип ядра	Количество	Точность
	неправильно	классификации
	определенных	
	наблюдений	
linear	2	0.973
poly	6	0.987
rbf (default)	4	0.960
sigmoid	54	0.386

Таблица 5 – Результаты классификации SVC

Степень	Количество	Точность
	неправильно	классификации
	определенных	
	наблюдений	
1	5	0.960
2	6	0.960
3	6	0.987
4	5	0.987
5	3	0.987

Таблица 6 – Результаты классификации SVC

Количество итераций	Количество	Точность
	неправильно	классификации
	определенных	
	наблюдений	
Без ограничений	4	0.960
1	9	0.960
2	8	0.987
3	5	0.973
4	3	0.973
5	1	0.973
6	3	0.973

 Классификация методами NuSVC и LinearSVC представлены на рис. 10-11.

Рисунок 10 - Классификация NuSVC

Pисунок 10 – Классификация LinearSVC

NuSVC подобен SVC, но использует параметр для управления количеством опорных векторов.

LinearSVC аналогично SVC с линейным ядром, но лучше масштабируется для большого числа выборок.

Выводы

В ходе лабораторной работы рассмотрены такие методы классификации модуля Sklearn, как LinearDiscriminantAnalysis, SVC, NuSVC и LinearSVC.