

ECEN 758 Data Mining and Analysis: Lecture 4, Dimensionality Reduction

Joshua Peeples, Ph.D.

Assistant Professor

Department of Electrical and Computer Engineering

Announcements

- Assignment #1 is available today (08/28)
 - Due next Friday, 09/06
- Submit PDF for solutions (can include code in PDF or submit as separate file)

Last Lecture

- Numerical attributes
 - Normal distribution
- Categorical attributes

Today

- Dimensionality reduction
- Reading: ZM Chapter 7
- Supplemental reading: ZM Chapter 6

What are features?

Feature Extraction

Learning from experience

0: Macaw 1: Conure

Feature Extraction

- Ideally, as you add more features, the data becomes more separable
- We'll explore this more for support vector machines

Cats vs Dogs

 What features would you use to distinguish between cats and dogs?

Increasing Features

 To improve performance, we can increase the number of features

Feature 1

- As we increase the number of features, we need more data
- Grow exponentially as the feature dimension increases

Performance Saturation

- Feature space lies on unit square (2D)
- Average of feature space is the center of square
- Samples not in unit circle are harder to classify

 The volume of the circle (hypersphere) with the feature dimension (for radius 1)

$$\mathsf{vol}(S_d(r)) = \mathcal{K}_d r^d = \left(rac{\pi^{rac{d}{2}}}{\Gamma\left(rac{d}{2}+1
ight)}
ight) r^d$$

$$\Gamma\left(\frac{d}{2}+1\right) = \begin{cases} \left(\frac{d}{2}\right)! & \text{if } d \text{ is even} \\ \sqrt{\pi}\left(\frac{d!!}{2^{(d+1)/2}}\right) & \text{if } d \text{ is odd} \end{cases}$$

Volume of hypersphere goes to zero as dimensionality increases

Images from: The Curse of Dimensionality in Classification.

Current State-of-the-Art Models

- Deep learning approaches have many parameters (e.g., features)
- "Data-hungry" approaches

How can we mitigate Curse of Dimensionality?

Dimensionality Reduction

- Goal: find lower dimensional representation of data matrix D
- Can we express data using set of orthonormal vectors, U
- a represents data x in new basis

$$\mathbf{x} = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \cdots + a_d \mathbf{u}_d$$

$$x = Ua$$

Dimensionality Reduction

- Infinite choices for orthonormal basis
- Goal is to find optimal basis that preserves most important information of data
- New dimension r should be less than d
- **P** is the projection matrix

$$\mathbf{x}' = a_1 \mathbf{u}_1 + a_2 \mathbf{u}_2 + \dots + a_r \mathbf{u}_r = \sum_{i=1}^r a_i \mathbf{u}_i = \mathbf{U}_r \mathbf{a}_r$$

$$\boldsymbol{x}' = \boldsymbol{U}_r \boldsymbol{U}_r^T \boldsymbol{x} = \boldsymbol{P}_r \boldsymbol{x}$$

Dimensionality Reduction: Error Vector

 Find projection that minimizes error vector

$$\epsilon = \sum_{i=r+1}^d a_i \boldsymbol{u}_i = \boldsymbol{x} - \boldsymbol{x}'$$

Iris Data: Optimal 1D Basis

Iris Data: 3D

Optimal 1D Basis

Principal Component Analysis

Principal Component Analysis (PCA)

- Seek projection that best captures variance
- Direction with the largest projected variance is first principal component
- Direction that maximizes variance should minimize error

Principal Component Analysis (PCA)

- Find unit vector u that maximizes projected variance
- Data need to first be centered
- Computed projected variance along u

$$\sigma_{\boldsymbol{u}}^2 = \frac{1}{n} \sum_{i=1}^n (a_i - \mu_{\boldsymbol{u}})^2 = \frac{1}{n} \sum_{i=1}^n \boldsymbol{u}^T \left(\boldsymbol{x}_i \boldsymbol{x}_i^T \right) \boldsymbol{u} = \boldsymbol{u}^T \left(\frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i \boldsymbol{x}_i^T \right) \boldsymbol{u} = \boldsymbol{u}^T \boldsymbol{\Sigma} \boldsymbol{u}$$

Principal Component Analysis (PCA)

- Maximize projected variance J(u)
- Constraint of $u^T u = 1$

$$\max_{\boldsymbol{u}} J(\boldsymbol{u}) = \boldsymbol{u}^T \boldsymbol{\Sigma} \boldsymbol{u} - \alpha (\boldsymbol{u}^T \boldsymbol{u} - 1)$$

Optimizing Objective Function

- In machine learning, typically want to minimize or maximize objective function
- Achieved by setting the derivative of objective function with variable of interest

$$\frac{\partial}{\partial \boldsymbol{u}} \left(\boldsymbol{u}^T \boldsymbol{\Sigma} \boldsymbol{u} - \alpha (\boldsymbol{u}^T \boldsymbol{u} - 1) \right) = 0$$
 that is, $2\boldsymbol{\Sigma} \boldsymbol{u} - 2\alpha \boldsymbol{u} = 0$ which implies
$$\boldsymbol{\Sigma} \boldsymbol{u} = \alpha \boldsymbol{u}$$

PCA: Direction of Most Variance

- Maximizing the projected variance means:
 - Selecting largest eigenvalue of covariance matrix
 - Dominant eigenvector is the direction of most variance (first principal component)

Back to the original scatter plot...

PCA: Minimum Squared Error

PCA: Minimum Square Error Approach

 Maximizing the variance also minimizes the squared error

$$MSE(\boldsymbol{u}) = \frac{1}{n} \sum_{i=1}^{n} \|\epsilon_i\|^2 = \frac{1}{n} \sum_{i=1}^{n} \|\boldsymbol{x}_i - \boldsymbol{x}_i'\|^2 = \sum_{i=1}^{n} \frac{\|\boldsymbol{x}_i\|^2}{n} - \boldsymbol{u}^T \Sigma \boldsymbol{u}$$

PCA: Minimum Square Error Approach

- First term is fixed for D
- Same solution for maximization of variance and minimization of squared error

$$\sum_{i=1}^{n} \frac{\|\boldsymbol{x}_i\|^2}{n} - \boldsymbol{u}^T \Sigma \boldsymbol{u} = var(\boldsymbol{D}) = tr(\Sigma) = \sum_{i=1}^{d} \sigma_i^2$$

$$MSE(\boldsymbol{u}_1) = var(\boldsymbol{D}) - \boldsymbol{u}_1^T \Sigma \boldsymbol{u}_1 = var(\boldsymbol{D}) - \lambda_1$$

30

PCA: 2-D Projection

 2D subspace captures the most variance in **D** with the two eigenvectors that correspond to largest and second largest eigenvalues

$$\boldsymbol{a}_i = \boldsymbol{U}_2^T \boldsymbol{x}_i$$

$$var(\boldsymbol{A}) = \boldsymbol{u}_1^T \boldsymbol{\Sigma} \boldsymbol{u}_1 + \boldsymbol{u}_2^T \boldsymbol{\Sigma} \boldsymbol{u}_2 = \boldsymbol{u}_1^T \lambda_1 \boldsymbol{u}_1 + \boldsymbol{u}_2^T \lambda_2 \boldsymbol{u}_2 = \lambda_1 + \lambda_2$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \mathbf{x}'_{i}\|^{2} = var(\mathbf{D}) - \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \mathbf{P}_{2} \mathbf{x}_{i}) = var(\mathbf{D}) - var(\mathbf{A})$$

PCA: r-D Projection

 r-D subspace captures the most variance in D with the r eigenvectors that correspond to rlargest eigenvalues

$$var(\mathbf{A}) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{T} \mathbf{P}_{r} \mathbf{x}_{i} = \sum_{i=1}^{r} \mathbf{u}_{i}^{T} \Sigma \mathbf{u}_{i} = \sum_{i=1}^{r} \lambda_{i}$$

$$MSE = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i} - \mathbf{x}'_{i}||^{2} = var(\mathbf{D}) - \sum_{i=1}^{r} \lambda_{i} = \sum_{i=1}^{d} \lambda_{i} - \sum_{i=1}^{r} \lambda_{i}$$

PCA Algorithmic Design

Choosing the Dimensionality

- To select the appropriate dimension, use ratio of total variance captured by the first r-components
- If you want to capture 90% of the variance in your data, ratio should be at least 0.9

$$f(r) = \frac{\lambda_1 + \lambda_2 + \dots + \lambda_r}{\lambda_1 + \lambda_2 + \dots + \lambda_d} = \frac{\sum_{i=1}^r \lambda_i}{\sum_{i=1}^d \lambda_i} = \frac{\sum_{i=1}^r \lambda_i}{var(\boldsymbol{D})}$$

PCA Algorithm

PCA (D, α):

- $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i // \text{ compute mean}$
- $m{Z} = m{D} 1 \cdot m{\mu}^T$ // center the data
- $\Sigma = \frac{1}{n} (\boldsymbol{Z}^T \boldsymbol{Z})$ // compute covariance matrix
- $(\lambda_1, \lambda_2, \dots, \lambda_d) = eigenvalues(\Sigma)$ // compute eigenvalues
- $m{U} = (m{u}_1 \ m{u}_2 \ \cdots \ m{u}_d) = \text{eigenvectors}(\Sigma) \ // \ \text{compute}$ eigenvectors
- $f(r) = \frac{\sum_{i=1}^{r} \lambda_i}{\sum_{i=1}^{d} \lambda_i}$, for all r = 1, 2, ..., d // fraction of total variance
- 7 Choose smallest r so that $f(r) \ge \alpha$ // choose dimensionality
- $\boldsymbol{U}_r = (\boldsymbol{u}_1 \ \boldsymbol{u}_2 \ \cdots \ \boldsymbol{u}_r) \ // \ \text{reduced basis}$
- $\mathbf{A} = \{\mathbf{a}_i \mid \mathbf{a}_i = \mathbf{U}_r^T \mathbf{x}_i, \text{for } i = 1, \dots, n\}$ // reduced dimensionality data

PCA Example

Iris Flower Dataset

Google Colab notebook

Kernel PCA

Kernel PCA

- PCA can be extended to find non-linear "directions"
- Can leverage "kernel trick" to perform PCA in kernel space

Input Space

Feature Space

$$\Sigma_{\phi} \mathbf{u}_1 = \lambda_1 \mathbf{u}_1$$

$$\Sigma_{\phi} = \frac{1}{n} \sum_{i=1}^{n} \phi(\mathbf{x}_{i}) \phi(\mathbf{x}_{i})^{T}$$

Kernel PCA

- Principal component direction in feature space is linear combination of transformed points
- Weight vector, c, is the eigenvector corresponding to largest eigen value of the kernel matrix
- Weight vector constraint

$$\boldsymbol{u}_1 = \sum_{i=1}^n c_i \phi(\boldsymbol{x}_i)$$

$$\boldsymbol{c} = (c_1, c_2, \cdots, c_n)^T$$

$$Kc = n\lambda_1 c = \eta_1 c$$

$$\|\boldsymbol{c}\|^2 = \frac{1}{\eta_1}$$

Kernel PCA Algorithm

KernelPCA (D, K, α):

- $K = \{K(x_i, x_j)\}_{i,j=1,...,n}$ // compute $n \times n$ kernel matrix
- $K = (I \frac{1}{n} 1_{n \times n}) K (I \frac{1}{n} 1_{n \times n}) //$ center the kernel matrix
- $(\eta_1, \eta_2, \dots, \eta_d) = \text{eigenvalues}(\mathbf{K}) // \text{compute eigenvalues}$
- $(c_1 \ c_2 \ \cdots \ c_n) = eigenvectors(K) // compute eigenvectors$
- $\lambda_i = \frac{\eta_i}{n}$ for all $i=1,\ldots,n$ // compute variance for each component
- $c_i = \sqrt{\frac{1}{\eta_i}} \cdot c_i$ for all $i = 1, \dots, n$ // ensure that $u_i^T u_i = 1$
- $f(r) = \frac{\sum_{i=1}^{r} \lambda_i}{\sum_{i=1}^{d} \lambda_i}$, for all r = 1, 2, ..., d // fraction of total variance
- 8 Choose smallest r so that $f(r) \ge \alpha$ // choose dimensionality
- $\boldsymbol{c}_r = (\boldsymbol{c}_1 \quad \boldsymbol{c}_2 \quad \cdots \quad \boldsymbol{c}_r) \; // \; \text{reduced basis}$
- $\mathbf{A} = \{\mathbf{a}_i \mid \mathbf{a}_i = \mathbf{C}_r^T \mathbf{K}_i, \text{for } i = 1, ..., n\}$ // reduced dimensionality data

PCA vs Kernel PCA

- PCA performs linear transformation (centering, rescaling, and rotation)
- Data is already centered and no rescaling (PCA causes rotation)
- Kernel PCA more effective for non-linearly separable data

Image from: Sklearn, Kernel PCA.

Singular Value Decomposition

Singular Value Decomposition

- PCA special case of SVD
- Generalizes factorization for any matrix

Other Dimensionality Reduction Techniques

Sklearn Dimensionality Reduction

Original S-curve samples

t-distributed Stochastic Neighbor Embedding Am Engineering

- t-SNE
- Uses joint distribution of higher and lower dimension to model perform dimensionality reduction

Uniform Manifold Approximation and Projection

- UMAP
- Assumptions
 - Data is uniformly distributed
 - Metric is locally constant
 - Manifold is locally connected

TSNE UMAP

Dimension Reduction Applications

Defense

Automatic Target Recognition

Statistical SAS Images

- Created statistical textures using Pseudo Image Synthetic Aperture Sonar (PISAS) dataset
- > Two structures: sand ripple and rocky

S1: Binomial

S2: Multinomial

S3: Constant

Statistical SAS Images Results

CNN (77.70)

TSNE Visualization of Training Data Features with Images

RBF (82.18)

TSNE Visualization of Training Data Features with Images

Generalization to SAS Images

Agriculture

Traditional WinRhizotron Analyses do not capture the whole picture

Not enough resources to avoid the flooding stress

Enough resources to produce more lateral roots and avoid the waterlogged soil

EMD Workflow for Water Level 120% (with fertilizer)

J. Peeples, W. Xu, R. Gloaguen, et. al. Spatial and Texture Analysis of Root System Distribution with Earth Mover's Distance (STARSEED), Plant Methods, 2023.

Plant Root Analysis

Next class

- No class Monday (Labor Day)
- Wednesday (09/04): Frequent Itemset Mining and Association Rules

Supplemental Slides

Dimensionality Reduction Resources

- Eigenvectors and eigenvalues
- PCA in 5 minutes
- PCA Step-by-Step
- Introduction to KPCA