Email: aamodatre51297@gmail.com

AAMOD ATRE

B.E. (Hons.) | Major - Chemical Engineering | Minor - Physics

About Me

- 1. INTERESTED in understanding molecular interactions in materials & their dynamics across various timescales
- 2. BELIEVE in approaching a problem theoretically prior to pursuing computational and experimental study
- 3. INTEND to pursue the development of theoretical frameworks of atomic, molecular and optical sciences

Education History			
Undergraduate	Undergraduate Birla Institute of Technology and Science, Pilani		
GPA 8.65/10.0	B.E (Hons.) Chemical Engg. $ $ Minor : Physics		
Higher Secondary	FIITJEE Junior College, Kukatpally, Hyderabad	Apr 2015 - Aug 2017	
Percentage : 94.7 $\%$	Grades XI & XII		
Senior Secondary	Delhi Public School, Nacharam, Hyderabad	Mar 2013 - Mar 2015	
GPA: 10.0/10.0	Grades IX & X		

Work Experience

Remote Research Assistantship

Sept. 2021 - Present

Dr. Aaron Kelly | Max Plank Structure and Dynamics of Matter, Hamburg

Studying the cavity-modified molecular dynamics with spin-mapping-based semiclassical techniques.

Remote Research Internship

July. 2021 - Sept. 2021

Dr. Pengfei Huo | University of Rochester, New York

Compared the performance of standard and spin-based partially linearized density matrix (PLDM) algorithms in calculating linear absorption spectra of a bi-exciton coupled dimer model.

Undergraduate Thesis | Research Internship

Jan. 2021 - June 2021

Dr. Jeremy Richardson | ETH Zürich

Gauged the efficacy of a spin-mapping-based semiclassical dynamics technique by studying the population and coherence dynamics of exciton relaxation in a 1D polymer chain. Formulated a spin-mapping for tight-binding polymer chains which conform to SU(2) symmetry.

Research Internship May 2019 - July 2019

Prof. Bibek Dash | CSIR Institute of Minerals and Materials Technolgy, India

DFT-based computational designing of triazole-based molecular precursors for selective CO_2 capture. Statistically determined the optimum functional-basis combination to model the CO_2 -triazole interactions with DFT. Studied CO_2 interactions with the aromatic building blocks to propose a new triazole moiety design.

Technical Skills			Languages
Programming	Softwa	re Packages	English (Native/Bilingual)
Python	MATLAB	LAMMPS	German (A1)
Fortran	Maple	Quantum Espresso	French (A2)
C	Mathematica	Gaussian 09	Marathi Hindi (Native)

Undergraduate Teaching Experience

Teaching Assistant Dr. Radhika Vathsan Quantum Mechanics - II	Aug. 2020 - Dec. 2020
Teaching Assistant Dr. S. D. Manjare Process Design Principles - I	Aug. 2020 - Dec. 2020

C. 1		T .
Stand	lardized	Tests

$\textbf{GRE General Test}: 335/340 \mid Quant: 168/170 \mid Verbal: 167/170 \mid Analytical Writing: 5/6$	Aug. 2021
TOEFL : 115/120 Reading: 30/30 Listening: 30/30 Speaking: 25/30 Writing: 29/30	Sept. 2021

Academic Interests

- 1. Dynamics of many-body, optical and open quantum systems.
- 2. Development of theoretical and computational chemistry.
- 3. Ab initio molecular modelling and statistical physics.

Relevant Academic Credit Courses			
Quantum Mechanics I & II	Solid State Physics	Statistical and Molecular	
Statistical Mechanics	Atomic and Molecular Physics	thermodynamics	
Nonlinear Dynamics and Chaos		Transport Phenomenon	
Theory			

Featured Undergraduate Projects

1	Design Project	Ab initio design of Lithium-based metal organic frameworks (Li-MOFs) for hydrogen production	
	Jan 2020 - June 2021	\cdot Employing DFT to develop the theoretical model of a graphene-based Li-MOF.	
	Dr. Paramita Haldar	\cdot Employing classical molecular dynamics to gauge the hydrogen evolution	
	BITS Pilani	potential of the proposed model.	
2	Study Project	Study of the cavity QED formalism and modern quantum control techniques.	
	August 2020 - Dec 2020	· Study of cavity QED formalism and the applications of Jaynes-Cummings model.	
	Dr. Raghunath Ratabole	· Literature survey of modern qubit implementations, entangles state preparation.	
	BITS Pilani	and quantum gate implementations in molecule-coupled cavity systems.	
3	Study Project	Modelling kinetics of photocatalytic reactions involved in waste-water treatment	
	Aug 2019 - Dec 2019	· Modelling TiO_2 -based photocatalytic degradation of phenol and extraction	
	Dr. Sharad Sontakke	of Cr and Cu ions with MATLAB.	
	BITS Pilani	\cdot Optimization of TiO_2 catalyst concentration and reaction rates for varying contamination levels.	
4	Study Project	Study of metal-organic frameworks as tools for adsorptive CO_2 capture	
	Jan 2019 - May 2019	· Literature review of thermodynamic and electronic properties of MOFs.	
	Dr. Richa Singhal	· Studying the methodologies and developments in the field of CO_2 capture.	
	BITS Pilani		
5	Other Academic Projects	· Simulation of Hamiltonian maps and transport in structured fluids.	
	Aug 2018 - Dec 2021	· Fugacity coefficient estimation of pure CO2 and water for comparative study using	
	BITS Pilani	Van der Waals and Soave-Redlich-Kwong EOS modeling.	
		\cdot Derivation of various thermodynamic relations for a grand canonical ensemble of NO_2	

Extracurricular Activities		
Quantum Computing	 Cleared Quantum Open Source Foundation (QOSF) cohort 4 assesment task 	Sept. 2021
	· Completed IBM Quantum's Global Summer School	June 2020
Positions of Responsibility	· Core Member : Kala - Fine Arts Club	Mar. 2018 - May 2020
Hobbies	Long distance running, swimming and squash sportsAvid reader of fiction and non fiction literature	

Last Updated October 30, 2021 | Hyderabad, India 500046