11 Exercise solutions – Construction of scoring matrix

1. Scoring schemes for protein alignments

Calculate the score of the alignment by using different scoring schemes.

Seq1 R-HIC Seq2 RDDCC

(a) Use the identity with a simple scoring scheme as match: 1, mismatch: 0, and gap penalty: 0.

Solution: 2

(b) Use the genetic code.

T		0 1	position		(T) 1 1
First		Third			
position	T	С	Α	G	position
Т	F	S	Y	С	Т
	F	\mathbf{S}	Y	\mathbf{C}	С
	L	\mathbf{S}	Stop	Stop	A
	L	\mathbf{S}	Stop	W	G
С	L	Р	Н	R	Т
	L	Р	Η	\mathbf{R}	С
	L	Р	Q	\mathbf{R}	A
	L	Р	Q	\mathbf{R}	G
A	I	Τ	N	S	Т
	I	${ m T}$	N	\mathbf{S}	С
	I	${ m T}$	\mathbf{K}	\mathbf{R}	A
	M	${ m T}$	K	\mathbf{R}	G
G	V	A	D	G	Т
	V	A	D	G	C
	V	A	\mathbf{E}	G	A
	V	A	E	G	G

Α	Ala	Alanine
\mathbf{C}	Cys	Cysteine
D	Asp	Aspartic acid
\mathbf{E}	Glu	Glutamic acid
\mathbf{F}	Phe	Phenylalanine
G	Gly	Glycine
Η	His	Histidine
Ι	Ile	Isoleucine
K	Lys	Lysine
L	Leu	Leucine
\mathbf{M}	Met	Methionine
N	Asn	Asparagine
Ρ	Pro	Proline
Q	Gln	Glutamine
\mathbf{R}	Arg	Arginine
\mathbf{S}	Ser	Serine
\mathbf{T}	Thr	Threonine
V	Val	Valine
W	Trp	Tryptophan
Y	Tyr	Tyrosine

Solution: 9

CGU --- CAU AUU UGU CGU GAU GAU UGU UGU

(c) Use the AACH.

Solution: 3 + 0 + 1 + 1 + 3 = 8

2. Probabilities of accepted mutations

Use a phylogenetic tree below to calculate the probabilities of accepted mutations. The tree contains sequences of four OTUs.

- (a) Estimate the mutations and fill them in the boxes next to the edges.
- (b) Count the occurrences of mutations and fill them in the matrix. Note that a mutation $A \to B$ is equivalent with a mutation $B \to A$.

	A	С	G	Τ
Α		1		1
С	1		3	
G		3		
Т	1			

(c) Use the following definitions and calculate f_{CG} , f_C and f.

 f_{ab} : The number of mutations from a to b or from b to a

 f_a : The total number of mutations in which a takes part

f: Twice the total number of mutations

 $f_{CG}: 3$

 $f_C: 1+3=4$

f: 2(1+1+3) = 10

(d) Use the following definition and calculate p_C .

 p_a : The relative occurrence of a in the observed sequences

 $p_C: \ 3/12$

3. Relative mutability of PAM

Relative mutability is calculated from frequencies of estimated mutilation and background probabilities.

$$m_a: \frac{1}{100p_a} \times \frac{f_a}{f}$$

 f_a : The total number of point mutations in which a takes part

f: Twice the total number of point mutations

 p_a : The relative occurrence of a in the observed sequences

Assume that the frequencies are pre-calculated as follows.

• Frequencies of estimated mutations

$$f_A: 2, \quad f_G: 3, \quad f_C: 3, \quad f_T: 2$$

 $f: 10$

• Background probabilities

$$p_A: 3/10, \quad p_G: 2/10, \quad p_C: 4/10, \quad p_T: 1/10$$

(a) Calculate the probabilities of point mutations by $\frac{f_a}{f}$.

$$\frac{f_A}{f}: \ 2/10 \qquad \frac{f_G}{f}: \ 3/10 \qquad \frac{f_C}{f}: \ 3/10 \qquad \frac{f_T}{f}: \ 2/10$$

(b) Calculate $100p_a$.

$$100p_A: 30$$
 $100p_G: 20$ $100p_C: 40$ $100p_T: 10$

(c) Calculate the relative mutability m_a .

$$m_A: \ 2/300 \quad m_G: \ 3/200 \quad m_C: \ 3/400 \quad m_T: \ 2/100$$