Projekt z Szeregów Czasowych

Jan Moskal i Szymon Makulec

2025-01-18

Wstęp

Dane, które będziemy analizować, pochodzą ze strony Głównego Urzędu Statystycznego (https://bdl.st at.gov.pl/bdl/dane/podgrup/temat) znajdują się w grupie "Przeciętne ceny detaliczne towarów i usług konsumpcyjnych", podgrupie "Ceny detaliczne wybranych towarów i usług konsumpcyjnych (dane miesięczne)" i dotyczą cen węgla kamiennego za toną. Dane o przeciętnych cenach obejmują notowania co miesiąc dla całej Polski. Projekt ma na celu analizę tego szeregu czasowego, aby zrozumieć zmiany cen węgla kamiennego w Polsce w latach 2006-2019 i stworzyć prognozy na przyszłość.

Wczytywanie danych

Zamienimay wektor w macierz, aby ustawić dobrą kolejność danych (narazie mamy dane wypisane, w ten sposób, że jeden miesiąc dla czternastu lat i dopiero następny miesiąc, a chcemy żeby było chronologicznie)

Przekształcenie macierzy w wektor czytany kolumnowo (od góry do dołu). W ten sposób otrzymujemy dane w odpowiedniej kolejności.

Wstępna analiza szeregu

Wykres liniowy dla naszych danych w czasie t.

Cena kukurydzy

Jak widzimy z wykresu, cena dość szybko wzrosła do cen powyżej 700 zł. Widzimy również, że ogólny trend jest rosnący.

Robimy wykresy typu boxplot oraz histogram, żeby zobaczyć rozkład danych.

Histogram cen wegla kamienneg

Wykres ramka-wasy

Możemy zauważyć, że rozkład jest lewostronnie asymetryczny, bierzę się to z tego co już zauważyliśmy z wykresu liniowego czyli, że ceny od 700 zł za tonę zaczęły się już po 2 latach od pierwszej obserwacji z szeregu a pozostałe 12 lat oscylowało co do wartości od 700 do 900 zł za tonę. Z wykresu pudełkowego możemu zauważyć nawet dokładniej, że kwartyl pierwszy wynosi około 700 a kwartyl trzeci około 810 co w przełożeniu na nasz problem oznacza, że połowa obserwacji, czyli z 7 lat znajduje się na tym małym przedziale.

Podstawowe statystyki

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 477.1 702.2 788.7 744.1 814.5 897.3

Szukamy najlepszego wielomianu opisującego nasz szereg

Kryterium AIC dla wielomianu stopnia i

Z kryterium osuwiska wybieramy wielomian stopnia 5.

Badanie reszt

Zbadamy reszty z modelu stopnia 5.

```
##
## Runs Test
##
## data: reszty
## statistic = -11.143, runs = 13, n1 = 84, n2 = 84, n = 168, p-value <
## 2.2e-16
## alternative hypothesis: nonrandomness
## Asymptotic one-sample Kolmogorov-Smirnov test
##
## data: reszty
## D = 0.48095, p-value < 2.2e-16
## alternative hypothesis: two-sided
##
## Lilliefors (Kolmogorov-Smirnov) normality test
## data: reszty
## D = 0.035656, p-value = 0.8673
   Shapiro-Wilk normality test
##
## data: reszty
## W = 0.98779, p-value = 0.1533
## Box-Ljung test
## data: reszty
## X-squared = 390.21, df = 12, p-value < 2.2e-16
```

Odrzucamy hipotezy o losowości reszt, o ich średniej w zerze, o ich normalności oraz o ich nieskorelowaniu.

Analiza trendów fazowych

Wykres sezonowosci dla lat 2006-2019

Z wykresu sezonowości widzimy powtarzający się trend wzrostu cen węgla kamiennego w okresie od sierpnia do listopada. W okresie od stycznia do maja zauważalny jest nieznaczny trend spadkowy cen.

Dekompozycja

Decomposition of additive time series

Po wykonaniu dekompozycji widzimy, że trend jest rosnący w dziedzinie. Widzimy również, że występuje sezonowość w częstotliwości 12 miesięcznej. W kwestii reszt wydają się one oscylować wokół zera, jednak przez ich nieregularność będzie się trzeba im lepiej przyjrzeć.

Stacjonarność szeregu

```
##
##
   Augmented Dickey-Fuller Test
##
## data: dane
## Dickey-Fuller = -1.7305, Lag order = 5, p-value = 0.6888
## alternative hypothesis: stationary
## Warning in kpss.test(dane): p-value smaller than printed p-value
##
##
   KPSS Test for Level Stationarity
##
## data: dane
## KPSS Level = 2.7326, Truncation lag parameter = 4, p-value = 0.01
##
##
   Phillips-Perron Unit Root Test
##
## data: dane
## Dickey-Fuller Z(alpha) = -4.5142, Truncation lag parameter = 4, p-value
## = 0.856
## alternative hypothesis: stationary
```

Z wszystkich testów wynika, że szereg jest niestacjonarny.

```
## Series: dane
## ARIMA(4,1,0) with drift
##
## Coefficients:
##
            ar1
                     ar2
                            ar3
                                      ar4
                                            drift
        0.9059 -0.4425 0.5447
                                 -0.4685
                                           2.4353
##
## s.e. 0.0676
                 0.0881 0.0872
                                   0.0670
##
## sigma^2 = 21.63: log likelihood = -491.99
## AIC=995.97 AICc=996.5
                            BIC=1014.68
```

Model ARIMA(4,1,0) wskazuje, że szereg czasowy wymagał różnicowania pierwszego rzędu, aby stać się stacjonarny. Współczynniki autoregresyjne sugerują zależność od czterech poprzednich wartości, a obecność dryfu oznacza trend wzrostowy. Niemamy składnika średniej ruchomej. Teraz przejdziemy do zbadania reszt.

```
##
##
    Runs Test
##
## data: reszty
## statistic = -0.31874, runs = 82, n1 = 75, n2 = 93, n = 168, p-value =
## alternative hypothesis: nonrandomness
Odrzucamy hipotezę o losowości reszt.
##
##
    One Sample t-test
##
## data: reszty
## t = -0.016825, df = 167, p-value = 0.9866
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -0.7036653 0.6917731
## sample estimates:
##
     mean of x
## -0.00594608
Nie odrzucamy hipotezy o średniej równej 0.
##
##
   Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: reszty
## D = 0.10715, p-value = 6.983e-05
##
##
   Shapiro-Wilk normality test
##
## data: reszty
## W = 0.89614, p-value = 1.765e-09
##
##
    Box-Ljung test
##
## data: reszty
## X-squared = 38.365, df = 12, p-value = 0.0001338
```

Z box.testu odrzucamy hipoteze o braku korelacji w resztach.