Math 240B: Real Analysis, Winter 2020 Homework Assignment 3

Due Wednesday, January 29, 2020

Unless otherwise stated, (X, \mathcal{M}, μ) denotes a measure space.

- 1. Let $1 \le p < r \le \infty$. Prove the following:
 - (1) The space $L^p(\mu) \cap L^r(\mu)$ is a Banach space with norm $||f|| = ||f||_p + ||f||_r$. Moreover, if p < q < r then the inclusion map $L^p(\mu) \cap L^r(\mu) \to L^q(\mu)$ is continuous;
 - (2) The space $L^p(\mu) + L^r(\mu)$ is a Banach space with norm $||f|| = \inf\{||g||_p + ||h||_r : f = g + h \text{ with } g \in L^p(\mu) \text{ and } h \in L^r(\mu)\}.$
- 2. Let (X, \mathcal{M}, μ) be a finite measure space, $1 , and <math>f_n, f \in L^p(\mu)$ (n = 1, 2, ...). Assume $\sup_{n \ge 1} \|f\|_p < \infty$ and $\lim_{n \to \infty} \int_E f_n d\mu = \int_E f d\mu$ for any $E \in \mathcal{M}$. Prove that $f_n \to f$ weakly in $L^p(\mu)$. (It turns out that these conditions are also necessary for f_n to converge to f weakly in $L^p(\mu)$. The first condition follows from the fact that the space $L^p(\mu)$ is the dual of $L^q(\mu)$ with q the conjugate of p and the Principle of Uniform Boundedness for bounded linear operators; see Theorem 5.13.)
- 3. Let X = [0, 1], $\mathcal{M} = \mathcal{B}_X$ (the Borel σ -algebra of X), and $\mu = m$ (the Lebesgue measure).
 - (1) Construct $f, f_n \in L^2(X)$ (n = 1, 2, ...) such that $f_n \to f$ weakly in $L^2(X)$ but $f_n \not\to f$ in measure and $f_n \not\to f$ a.e.
 - (2) Construct $f, f_n \in L^2(X)$ (n = 1, 2, ...) such that $f_n \to f$ in measure and a.e. but $f_n \not\to f$ weakly.

(You can use the sufficient and necessary conditions for the weak convergence in L^2 stated in Problem 2.)

- 4. (Hilbert's Inequality) Let $X = (0, \infty)$, $\mathcal{M} = \mathcal{B}_X$ (the Borel σ -algebra on X), and $\mu = m$ (the Lebesgue measure). Let $1 . For any <math>f \in L^p(0, \infty)$, define Tf by $Tf(x) = \int_0^\infty \frac{f(y) \, dy}{x+y}$ for any $x \in (0, \infty)$. Also define $C_p = \int_0^\infty \frac{dx}{x^{1/p}(x+1)}$. Prove that $||Tf||_p \leq C_p ||f||_p$.
- 5. Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be two σ -finite measure spaces and $K \in L^2(\mu \times \nu)$. Prove the following:
 - (1) If $f \in L^2(\nu)$, then $\int_Y |K(x,y)f(y)| d\nu(y) < \infty$ for μ -a.e. $x \in X$;
 - (2) If $f \in L^2(\nu)$ and $Tf(x) = \int_Y K(x, y) f(y) d\nu(y)$, then $Tf \in L^2(\mu)$ and $||Tf||_2 \le ||K||_2 ||f||_2$.
- 6. Let 1 and <math>1/p + 1/q = 1. Define $Tf(x) = x^{-1/p} \int_0^x f(t) dt$. Prove that T is a bounded liner map from $L^q((0,\infty))$ to $C_0((0,\infty))$.