Universidade do Minho Escola de Engenharia Mestrado Integrado em Engenharia de Telecomunicações e Informática

Processamento Digital de Sinal

Sinais de Eletrocardiograma

Relatório do projeto

Bruno Xavier Brás dos Santos A72122

Renato Jorge da Silva Gonçalves A85134

Guimarães 15 de junho de 2020

Conteúdo

Li	sta d	le Figuras	2
1	Inti	rodução	3
2	Tarefa 1: Remoção de interferências de baixa frequência		
	2.1	Que tipo de filtro deveria aplicar para eliminar a interferência sem danificar o sinal ECG?	4
	2.2	Projecte um filtro IIR para eliminar o ruído. No seu projecto deverá discutir a escolha para as frequências, atenuações e ordem do filtro	4
	2.3	Projecte um filtro FIR para eliminar o ruído. No seu projecto deverá discutir a escolha para as frequências, atenuações e ordem do filtro	6
	2.4	Considere o filtro cuja resposta em Z é, apresentada abaixo. Trata-se de um filtro IIR sintonizado. Determine o melhor valor de alfa para o sinal.	7
	2.5	Compare as soluções obtidas com os filtros IIR e FIR. Qual delas deveria usar?	8
	2.6	Compare o melhor filtro indicado na alínea anterior com o filtro sintonizado. Qual deles deveria usar?	8
3	Tarefa 2: Remoção de interferências do sinal da rede elétrica - 60 Hz		
	3.1	Que tipo de filtro deveria aplicar para eliminar a interferência sem danificar o sinal ECG?	9
	3.2	Projecte um filtro IIR para eliminar o ruído. No seu projecto deverá discutir a escolha para as frequências, atenuações e ordem do filtro	9
	3.3	Projete um filtro FIR para eliminar o ruído. No seu projeto deverá discutir a escolha para as frequências, atenuações e ordem do filtro	12
	3.4	Considere um filtro sintonizado. De que forma poderia alterar o filtro para eliminar a interferência da rede elétrica? Determine o melhor valor de alfa para o sinal	13
	3.5	Compare as soluções obtidas com os filtros IIR e FIR. Qual delas deveria usar?	14
	3.6	Compare o melhor filtro indicado na alínea anterior com o filtro sintonizado. Qual deles deveria usar?	14
	3.7	Como eliminar todos os harmónicos do sinal da rede elétrica?	15
4	Tarefa 3: Remoção de ruído de alta-frequência.		
	4.1	Projecte um filtro IIR para eliminar o ruído. No seu projecto deverá discutir a escolha para as frequências, atenuações e ordem do filtro	16
	4.2	Projecte um filtro FIR para eliminar o ruído. No seu projecto deverá discutir a escolha para as frequências, atenuações e ordem do filtro	18
	4.3	Compare as soluções obtidas com os filtros IIR e FIR. Qual delas deveria usar?	19
5	Tar	efa 4: Redução da frequência de amostragem.	2 0
G	Cor	nalução	วา

Lista de Figuras

2.1	Sinal ecg_ijn.aat com ruido	4
2.2	Resposta em frequencia IIR - tarefa 1	5
2.3	Diagrama polos e zeros IIR - tarefa 1	5
2.4	Sinal filtrado IIR - tarefa 1	6
2.5	Resposta em frequência FIR - tarefa 1	6
2.6	Diagrama polos e zeros FIR - tarefa 1	7
2.7	Sinal filtrado FIR - tarefa 1	7
2.8	Diagrama polos e zeros sintonizado - tarefa 1	8
2.9	Filtro FIR e filtro sintonizado - tarefa 1	8
3.1	Sinal $ecg2x60.dat$ com ruído	9
3.2	Resposta em frequencia IIR - tarefa 2	10
3.3	Resposta em frequencia do filtro analógico - tarefa 2	10
3.4	Resposta em frequencia do filtro digital - tarefa 2	11
3.5	Resposta em frequência do filtro digital - prewarping	11
3.6	Diagrama polos e zeros IIR - tarefa 2	11
3.7	Sinal filtrado IIR - tarefa 2	12
3.8	Resposta em frequência FIR - tarefa 2	12
3.9	Diagrama polos e zeros FIR - tarefa 2	13
3.10	Sinal filtrado FIR - tarefa 2	13
3.11	Diagrama polos e zeros sintonizado - tarefa 2	14
3.12	Filtro FIR e filtro sintonizado - tarefa 2	14
4.1	Sinal ecg_hfn.dat com ruído	16
4.2	Sinal filtrado IIR - tarefa 3	17
4.3	Resposta em frequência IIR - tarefa 3 $\dots \dots $	17
4.4	Diagrama polos e zeros IIR - tarefa 3	17
4.5	Sinal filtrado FIR - tarefa 3	18
4.6	Resposta em frequência FIR - tarefa 3	18
4.7	Diagrama polos e zeros FIR - tarefa 3	19
5.1	Sinal filtrado FIR - tarefa 4	20
5.2	Upsampling	20
5.3	Downsampling	21
5.4	Downsampling	21

Introdução

No âmbito da unidade curricular de Processamento Digital de Sinal, foi-nos proposto desenvolver um projeto que consiste em filtrar diferentes sinais ECG corrompidos para que possamos extrair informação de relevância médica deles.

Este projeto é composto por 4 tarefas, durante estas teremos que aplicar vários filtros tanto analógicos como digitais aos sinais corrompidos para que possamos concluir qual deles tem melhor efeito na eliminação de diferentes ruídos e outras interferências.

Para a elaboração do presente relatório, optamos por utilizar o software LATEX. Sendo este software uma excelente forma de produzir trabalhos científicos, relatórios e textos académicos com excelente qualidade.

Tarefa 1: Remoção de interferências de baixa frequência

O objetivo da primeira tarefa consiste na remoção de interferências de baixa frequência. A largura de banda do sinal de interferência é inferior a 2 Hz.

Na figura seguinte encontra-se a representação do sinal ecg_lfn.dat com ruído.

Figura 2.1: Sinal ecq_lfn.dat com ruído

2.1 Que tipo de filtro deveria aplicar para eliminar a interferência sem danificar o sinal ECG?

Uma vez que a largura de banda de interferência do sinal a ser eliminada é inferior a 2 Hz, deve-se aplicar um filtro passa alto com uma frequência de corte superior à frequência a ser eliminada.

2.2 Projecte um filtro IIR para eliminar o ruído. No seu projecto deverá discutir a escolha para as frequências, atenuações e ordem do filtro.

As etapas no projeto de um filtro envolvem:

- Especificação das propriedades pretendidas do sistema.
- Aproximação da especificação através de um sistema discreto causal.
- Implementação do sistema.

O filtro como supra-mencionada é um filtro Passa-Alto, uma vez que o objetivo é eliminar as frequências baixas e deixar passar as altas.

No projeto do respetivo filtro, detalhado no notebook denominado $tarefa_1$ e que acompanha o presente relatório, numa fase inicial foram criadas duas funções de suporte. A função $butter_highpass$ recebe como parâmetro a frequência de corte do protótipo analógico, a frequência de amostragem e a

ordem do filtro. No bloco da função, esta normaliza a frequência de amostragem (devido ao critério de nyquist) e normaliza a frequência de corte. Com a ajuda da função butter obtenho os coeficientes (b e a) dos polinómios do numerador e do denominador de e H(z) ou H(s). Como a flag analog nos parâmetros da função butter por definição tem o valor False, os coeficientes (b e a) retornados correspondem aos coeficientes do numerador e denominador da fração H(z), ou seja, são os coeficientes do filtro digital.

A função butter_high_filter tem como objetivo implementar o filtro, recebendo por parâmetros o sinal de entrada, a frequência de corte, a frequência de amostragem e a ordem do filtro.

De seguida, e com o objetivo de verificar a resposta na frequência dos filtros para várias ordens, foi implementada a função lp_freq_resp . Esta função permitiu-nos observar e fazer uma escolha ponderada de qual é a melhor ordem para o projeto do filtro passa-alto IIR.

A frequência de amostragem é de 1000 Hz.

Como supramencionado, através da função lp_freq_resp foi possível visualizar as várias respostas em frequência do presente filtro para várias ordens. Na figura seguinte encontra-se a resposta em frequência para as ordens 3, 5, 7 e 8. A frequência de corte é de 4 Hz.

Figura 2.2: Resposta em frequencia IIR - tarefa 1

Da observação da resposta em frequência, e um vez que a ordem 8 apresenta oscilações, a ordem escolhida para o presente filtro é a ordem 7. Com esta ordem o filtro apresenta uma banda de transição por volta de 2Hz, atenua as frequências inferiores a 2 Hz e apresenta um ganho unitário na banda passante

Na figura seguinte é possível visualizar o diagrama de polos e zeros do presente filtro.

Figura 2.3: Diagrama polos e zeros IIR - tarefa 1

Uma vez que os 7 polos e 7 zeros encontram-se no circulo unitário, o presente filtro é realizável Sendo o filtro IIR implementável, e analisando a sua resposta em frequência, o filtro IIR implementado terá uma frequência de corte de 4 Hz, com ganho na banda passante unitário, ordem 8 e a sua resposta em Z apresenta 7 polos e 7 zeros.

Colocando o sinal representado na figura 2.1 (sinal com ruído), na entrada do presente filtro, obtivemos o sinal representado na figura seguinte:

Figura 2.4: Sinal filtrado IIR - tarefa 1

2.3 Projecte um filtro FIR para eliminar o ruído. No seu projecto deverá discutir a escolha para as frequências, atenuações e ordem do filtro.

Nos filtros FIR, a resposta aproximada na frequência é obtida diretamente. O filtro ideal no qual partimos de base para a projeção de um filtro realizável é um filtro passa alto com wc=4 Hz.

Um filtro FIR pode ser implementado através de várias janelas. No notebook da tarefa 1, foram testadas duas janelas na implementação do filtro: a janela de hamming e a janela de keiser. Como comprovado no notebook, a janela de keiser foi a que obteve melhores resultados, pelo que foi a janela escolhida para a implementação do referido filtro FIR passa-alto.

A largura de transição utilizada foi de 5 Hz, o ripple de 60 dB e a wc de 4 Hz. O número de coeficientes do polinómio, ou seja, a ordem escolhida, foi de 25.

Para o cálculo dos parâmetros *Beta* e o número de coeficientes (num_{taps}) do polinómio denominador, foi utilizada a função *kaiserord*, que recebe como parâmetros o valor do ripple e a largura da banda de transição.

Para o cálculo dos coeficientes do polinómio do denominador foi utilizada a funçao firwin, que recebe como parâmetros o num_taps, a frequência de corte normalizada, window=('kaiser', beta) e pass_zero='highpass'.

Através da função freqz cujos parâmetros são os coeficientes do denominador (taps) e do numerador (valor 1) foi possível obter a resposta em frequência do FIR com a janela de Keiser.

Figura 2.5: Resposta em frequência FIR - tarefa 1

Analisando a resposta em frequência, podemos ver que para frequências inferiores a 2 Hz são atenuadas 60 dB, o que foi especificado inicialmente.

Na figura seguinte é possível visualizar o diagrama de polos e zeros do presente filtro.

Figura 2.6: Diagrama polos e zeros FIR - tarefa 1

O presente diagrama de polos e zeros apresenta um grande número de zeros (726) e de polos (363). A cada zero no interior do circulo unitário corresponde um zero no exterior do circulo unitário. No centro do referencial encontra-se a totalidade dos 363 polos.

Implementado o filtro FIR passa-alto com a janela de keiser, ordem de 726, wc = 4 Hz, largura da banda de transição = 5 Hz e ripple = 60 dB, o sinal a verde representado na figura seguinte aplicado na entrada, tem como resposta o sinal representado a vermelho.

Figura 2.7: Sinal filtrado FIR - tarefa 1

2.4 Considere o filtro cuja resposta em Z é, apresentada abaixo. Trata-se de um filtro IIR sintonizado. Determine o melhor valor de alfa para o sinal.

$$H(z) = \frac{1 - z^{-1}}{1 - \alpha z^{-1}}$$

Sendo o filtro sintonizado, é possível mudar o polo para compensar o efeito do zero. Ou seja, como o zero é fixo, é possível sintonizar (alterar) o valor do polo.

O filtro sintonizado apenas tem um zero = 1. O valor do alfa não pode ser um, uma vez que

assim o fosse, anulava o efeito do zero e não cortava nenhuma frequência no sinal. Deste modo, o valor escolhido para o alfa é de 0.99.

Os coeficientes do numerador é b = [1, -1] e os coeficientes do denominador são a = [1, -0.99]. Através da função zplane(b,a) foi possível obter o diagrama de polos e zeros do respetivo filtro.

Figura 2.8: Diagrama polos e zeros sintonizado - tarefa 1

2.5 Compare as soluções obtidas com os filtros IIR e FIR. Qual delas deveria usar?

Através da visualização do sinal filtrado pelos filtros IIR e FIR, o sinal filtrado através do filtro FIR apresentou menos distorções no sinal filtrado, sendo o escolhido para o projeto do filtro passa-alto.

2.6 Compare o melhor filtro indicado na alínea anterior com o filtro sintonizado. Qual deles deveria usar?

Figura 2.9: Filtro FIR e filtro sintonizado - tarefa 1

No gráfico anterior, a verde é possível observar o o sinal filtrado pelo filtro FIR e a azul o sinal filtrado através do filtro sintonizado, com alfa = 0.99.

Os sinais filtrados são muito semelhantes, não sendo possível escolher com exatidão qual o melhor. A única diferença nos dois sinais é a fase inicial. O sinal filtrado pelo filtro FIR nas primeiras amostras estão atrasadas.

Tarefa 2: Remoção de interferências do sinal da rede elétrica - 60 Hz

O objetivo da segunda tarefa consiste na remoção de interferências cuja largura de banda é de 60 Hz.

Na figura seguinte encontra-se a representação do sinal ecg2x60.dat com ruído.

A frequência de amostragem do sinal é de 200 Hz.

Figura 3.1: Sinal ecg2x60.dat com ruído

3.1 Que tipo de filtro deveria aplicar para eliminar a interferência sem danificar o sinal ECG?

Uma vez que a largura de banda de interferência do sinal a ser eliminada é limitada apenas a 60 Hz, deve-se aplicar um filtro Stop Banda (Rejeita Banda).

Um filtro rejeita banda é caracterizado por uma banda de rejeição. No presente filtro, essa banda deve conter a frequência de 60 Hz.

3.2 Projecte um filtro IIR para eliminar o ruído. No seu projecto deverá discutir a escolha para as frequências, atenuações e ordem do filtro.

Na figura seguinte é possível observar a resposta em frequência do filtro para diversas ordens.

Figura 3.2: Resposta em frequencia IIR - tarefa 2

Da visualização do gráfico anterior, optamos por escolher a ordem 9 para o projeto do filtro IIR. Esta ordem "corta" a frequência de 60 HZ.

As frequências de corte escolhidas para atenuar a componente de $60~\mathrm{Hz}$ foram: frequência corte inferior = $55~\mathrm{Hz}$ e frequência corte superior = $65~\mathrm{Hz}$.

A resposta na frequência do filtro nunca se anula, haverá sempre aliasing. Esta é uma das limitações do método da invariância da resposta impulsional. Deste modo, utilizamos de seguida o método da transformação bilinear, que mapeia todo o eixo jw do plano s no circulo unitário do plano z.

A função butter retorna os coeficientes (b,a) da função de sistema H(s). Recebe como parâmetros a ordem (8), as frequências de corte superior e inferior, btype='bandstop' e analog=True.

Com a função freqs é possível visualizar a resposta em frequência do filtro analógico, na qual apresentamos na figura seguinte.

Figura 3.3: Resposta em frequencia do filtro analógico - tarefa 2

Com a função bilinear, que recebe os coeficientes calculados anteriormente (b e a) e a frequência de amostragem, é realizada a transformação biliniar, ou seja, a função retorna os coeficientes da função H(z) do filtro digital (bb, aa).

Para visualizar a resposta em frequência do filtro digital, utilizamos a função freqz, na qual apresentamos na figura seguinte.

Figura 3.4: Resposta em frequencia do filtro digital - tarefa 2

Na figura anterior, a laranja é a resposta do filtro analógico e a azul a resposta do filtro digital, após a transformação biliniar. Esta última, devido à natureza não linear da transformação bilinear as frequências indicadas na especificação do filtro foram deslocadas.

Para corrigir o problema da resposta do filtro digital, foi feito o prewarping das respectivas frequências. Para tal, definimos a função prewarping.

Como é possível observar na figura seguinte, através do prewarping, as frequências deslocadas pela transformação biliniar foram corrigidas.

Figura 3.5: Resposta em frequência do filtro digital - prewarping

Na figura seguinte é possível visualizar o diagrama de polos e zeros do presente filtro.

Figura 3.6: Diagrama polos e zeros IIR - tarefa 2

Da observação do diagrama de polos e zeros, podemos concluir que, uma zer que os polos estã

no interior do ciuculo unitario o filtro é realizavel. Apresenta 14 polos e 14 zeros. Os polos e os zeros são conjugados.

O filtro IIR é um filtro rejeita banda que atenua a banda de frequências [55-65] Hz, tem ganho na banda passante unitário, ordem 8 e a sua resposta em Z apresenta 14 polos e 14 zeros.

Colocando o sinal representado na figura 3.1 (sinal com ruído), na entrada do presente filtro, obtivemos o sinal representado na figura seguinte:

Figura 3.7: Sinal filtrado IIR - tarefa 2

3.3 Projete um filtro FIR para eliminar o ruído. No seu projeto deverá discutir a escolha para as frequências, atenuações e ordem do filtro.

Nos filtros FIR, a resposta aproximada na frequência é obtida diretamente. O filtro ideal no qual partimos de base para a projeção de um filtro realizável é um filtro rejeita banda com frequencias de corte infeiror e superior de, respetivamente, 55 Hz e de 65 Hz.

Um filtro FIR pode ser implementado através de várias janelas. Para o presente filtro utilizamos a janela de keiser.

A largura de transição utilizada foi de 5 Hz e o ripple de 80 dB.

Para o cálculo dos parâmetros Beta e o número de coeficientes (num_taps) do polinómio denominador, foi utilizada a função kaiserord, que recebe como parâmetros o valor do ripple e a largura da banda de transição.

Para o cálculo dos coeficientes do polinómio do denominador foi utilizada a função firwin, que recebe como parâmetros o num_taps, as frequências de corte normalizadas, window=('kaiser', beta) e pass_zero='bandstop'.

Através da função freqz cujos parâmetros são os coeficientes do denominador (taps) e do numerador (valor 1) foi possível obter a resposta em frequência do FIR com a janela de Keiser.

Figura 3.8: Resposta em frequência FIR - tarefa 2

Analisando a resposta em frequência, podemos ver que as frequências entre 55 Hz e 65 Hz são atenuadas. Sendo a frequência de 60 Hz atenuada por volta de 80 dB, o que foi especificado

inicialmente.

Na figura seguinte é possível visualizar o diagrama de polos e zeros do presente filtro.

Figura 3.9: Diagrama polos e zeros FIR - tarefa 2

O diagrama de polos e zeros apresenta 146 zeros e 73 polos. Todos os polos estão na origem do referencial.

Implementado o filtro FIR rejeita banda com a janela de keiser, o sinal a azul representado na figura seguinte aplicado na entrada, tem como resposta o sinal representado a verde.

Da visualização dos sinais filtrado e original, podemos ver que o sinal filtrado (verde) apresenta um atraso em relação ao sinal original. Isto deve-se à inicialização do filtro. Quanto maior o número de taps, ordem, maior será o atraso.

Figura 3.10: Sinal filtrado FIR - tarefa 2

3.4 Considere um filtro sintonizado. De que forma poderia alterar o filtro para eliminar a interferência da rede elétrica? Determine o melhor valor de alfa para o sinal.

A frequência a ser eliminada é de 60 Hz. Como o espetro é bilateral, é necessário também eliminar a frequência de - 60 Hz. A partir desta premissa, foi possível chegar à fórmula seguinte:

$$H(z) = \frac{1 - 2 * \cos(\frac{3pi}{5}) * z^{-1} + z^{-2}}{1 - 2 * \cos(\frac{3pi}{5}) * \alpha * z^{-1} + \alpha * z^{-2}}$$

O valor de alfa (α) corresponde ao fator de sintonização.

Na figura seguinte, é possível observar o diagrama de polos e zeros do filtro sintonizado. A visualização do diagrama foi possível recorrendo à função *zplane* cujos parametros foram os coeficientes

o filtro sintonizado: b = [1, -2*np.cos(3*np.pi/5), 1] e a = [1, -2*np.cos(3*np.pi/5)*alfa, 1*alfa].

Figura 3.11: Diagrama polos e zeros sintonizado - tarefa 2

O melhor valor de alfa conseguido para o filtro sintonizado foi alfa = 0.95. Com este valor os polos não coincidem com os zeros e estão suficientemente perto para que não existem outras distorções no sinal.

3.5 Compare as soluções obtidas com os filtros IIR e FIR. Qual delas deveria usar?

Da observação dos gráficos obtidos da resposta na frequência e do sinal filtrado usando as duas classes de filtros, O filtro FIR com a janela de Kaiser foi o que obteve melhores resultados.

O filtro FIR conseguiu atenuar de forma eficaz as frequências em torno de 60 Hz. O ganho na banda passante foi unitário (não houve ganho).

3.6 Compare o melhor filtro indicado na alínea anterior com o filtro sintonizado. Qual deles deveria usar?

Figura 3.12: Filtro FIR e filtro sintonizado - tarefa $2\,$

No gráfico anterior podemos ver o filtro FIR representado a verde e o filtro sintonizado representado a azul. Uma vez que o filtro sintonizado não apresenta o problemas das condições iniciais, ou seja, as suas amostras não estão atrasadas, e o resto do sinal é semelhante ao sinal filtrado com filtro FIR, perante isto, usaríamos o filtro sintonizado.

3.7 Como eliminar todos os harmónicos do sinal da rede elétrica?

Os harmónicos são frequências múltiplas inteiras de uma frequência fundamental. No caso da rede elétrica a frequência fundamental é de 60 Hz, sendo o segundo harmónico 120 Hz, o terceiro harmónico 180 Hz e assim sucessivamente.

Como a frequência de amostragem é de 200 Hz, o filtro não pode deixar passar as frequências de 60 Hz (frequência fundamental), 120 Hz (primeiro harmónico) e 180 Hz (segundo harmónico). Através do filtro sintonizado representado anteriormente, eliminamos a componente de 60 Hz. Repetindo o mesmo procedimento para as frequências de 120 Hz e de 180 Hz, é possível filtrar todos os harmónicos do sinal da rede elétrica. O diagrama de polos e zeros resultante, terá 6 polos e 6 zeros.

Tarefa 3: Remoção de ruído de alta-frequência.

O objetivo da terceira tarefa consiste na remoção de interferências de alta frequência. A escolha das frequências e atenuações devem ser feitas através da análise do espectro do sinal ECG de forma a garantir que detalhes não são removidos.

Na figura seguinte encontra-se a representação do sinal ecg_hfn.dat com ruído.

Figura 4.1: Sinal ecg_hfn.dat com ruído

Para remover o ruído de alta-frequência é necessário utilizar um filtro passa baixo. A frequência de amostragem do sinal representado na figura 4.1 é de $1000~{\rm Hz}$.

4.1 Projecte um filtro IIR para eliminar o ruído. No seu projecto deverá discutir a escolha para as frequências, atenuações e ordem do filtro.

No projeto do respetivo filtro, detalhado no notebook denominado $tarefa_3$ e que acompanha o presente relatório, numa fase inicial foram criadas duas funções de suporte. A função $butter_lowpass$ recebe como parâmetro a frequência de corte do protótipo analógico, a frequência de amostragem e a ordem do filtro. No bloco da função, esta normaliza a frequência de amostragem (devido ao critério de nyquist) e normaliza a frequência de corte. Com a ajuda da função butter obtenho os coeficientes (b e a) dos polinómios do numerador e do denominador de e H(z) ou H(s). Como a flag analog nos parâmetros da função butter por definição tem o valor False, os coeficientes (b e a) retornados correspondem aos coeficientes do numerador e denominador da fração H(z), ou seja, são os coeficientes do filtro digital.

A função butter_low_filter tem como objetivo implementar o filtro, recebendo por parâmetros o sinal de entrada, a frequência de corte, a frequência de amostragem e a ordem do filtro.

Através das duas funções, foram realizados vários testes no sentido de remover o ruído do sinal da figura 4.1. A frequência de corte que melhor removeu o ruído sem que o sinal de saída tivesse distorções significativas foi de 30 Hz. A ordem do filtro utilizada foi de 9. Com base nestes parâmetros

obtivemos o sinal filtrado na figura seguinte.

Figura 4.2: Sinal filtrado IIR - tarefa 3

A resposta na frequência do filtro passa-baixo IIR para várias ordens encontra-se na figura seguinte.

Figura 4.3: Resposta em frequência IIR - tarefa $3\,$

Da observação das resposta em frequências para diversas ordens foi verificada que a escolha da ordem 9 satisfez os requisitos pedidos: atenuar as frequências superiores a 30 Hz.

O diagrama de polos e zeros do respetivo filtro encontra-se na figura seguinte.

Figura 4.4: Diagrama polos e zeros IIR - tarefa 3

 ${\rm O}$ diagrama de polos e zeros do presento filtro, apresenta 9 zeros e 9 polos, dentro do circulo unitário.

4.2 Projecte um filtro FIR para eliminar o ruído. No seu projecto deverá discutir a escolha para as frequências, atenuações e ordem do filtro.

Nos filtros FIR, a resposta aproximada na frequência é obtida diretamente. Foi escolhida a janela de kaiser, um ripple de 80 dB, a largura da banda de transição de 6 Hz e a wc = 40 Hz do filtro passa baixo. Estes parâmetros só foram definidos depois de várias analises do sinal filtrado para diversos parâmetros.

Para o cálculo dos parâmetros *Beta* e o número de coeficientes (num_{taps}) do polinómio denominador, foi utilizada a função *kaiserord*, que recebe como parâmetros o valor do ripple e a largura da banda de transição.

Para o cálculo dos coeficientes do polinómio do denominador foi utilizada a funçao *firwin*, que recebe como parâmetros o num_taps, a frequência de corte normalizada e window=('kaiser', beta).

Através de várias análises, como supramencionado, e através dos parâmetros definidos anteriormente, o sinal filtrado através do presente filtro encontra-se na figura seguinte.

Figura 4.5: Sinal filtrado FIR - tarefa $3\,$

Através da função freqz cujos parâmetros são os coeficientes do denominador (taps) e do numerador (valor 1) foi possível obter a resposta em frequência do FIR com a janela de Keiser.

Figura 4.6: Resposta em frequência FIR - tarefa 3

Podemos ver que o ganho na banda passante é unitário e para frequências superiores à frequência de corte, 40 Hz, estas são atenuadas para valores superiores a 80 dB.

Na figura seguinte é possível visualizar o diagrama de polos e zeros do presente filtro.

(605, 303)

Figura 4.7: Diagrama polos e zeros FIR - tarefa 3

O diagrama de polos e zeros para o presente filtro, apresenta 605 zeros e 303 polos. Os polos estão concentrados dentro do circulo unitário na origem.

4.3 Compare as soluções obtidas com os filtros IIR e FIR. Qual delas deveria usar?

A escolha do melhor filtro dependerá da especificação, por exemplo, da linearidade da fase, banda de transição ou da ordem.

Através da visualização da filtragem do sinal corrompido pelos filtros, o sinal filtrado pelo filtro FIR e IIR são equivalentes, mas a especificação é diferente. A ordem do filtro FIR é de 605 e do filtro IIR é de 9. Uma vez que quanto maior a ordem de um filtro maior é a sua dificuldade de o projetar, podiamos optar por utilizar um filtro IIR.

Tarefa 4: Redução da frequência de amostragem.

Na tarefa 4, o objetivo corresponde à diminuição da frequência de amostragem do sinal para 300 Hz antes de ser injetado num bloco que, devido à sua complexidade, requer uma menor frequência de amostragem.

O sinal utilizado para a redução de amostragem é o sinal $ecg_lfn.data$ cuja frequência de amostragem é de 1000 Hz.

Inicialmente, o sinal antes de entrar no bloco, é filtrado por um filtro FIR passa-alto para remover as frequências denotadas na tarefa 1. Na figura seguinte, a verde encontra-se o sinal filtrado e a vermelho o sinal corrompido.

Figura 5.1: Sinal filtrado FIR - tarefa 4

A primeira parte do bloco é responsável por aumentar a taxa de amostragem de 1000 Hz para 3000 Hz, ou seja, é feito o upsampling.

Na figura seguinte podemos ver o diagrama dos processos a realizar para aumentar a taxa de amostragem. Inicialmente é necessário colocar 2 (L=3) zeros por cada amostra do sinal e de seguida, através de um filtro passa-baixo é realizada a interpolação do sinal.

Figura 5.2: Upsampling

Para realizar o procedimento atrás descrito, foi implementado a função upsampling que recebe como parâmetros a frequência de corte (pi/L), a nova frequência de amostragem (3000 Hz), a ordem (8), o L(3) e o sinal filtrado. Esta função a cada amostra do sinal filtrado acrescenta 2 zeros (L=3). De seguida, através de um filtro IIR passa-baixo com wc = pi/L e ordem 9, é realizado a interpolação, reconstituindo o sinal com o tripo das amostras.

Aumentada a frequência de amostragem para 3000 Hz, de seguida procedeu-se à redução, num fator de 10, da frequência de amostragem para 300 Hz. Para tal, a ordem de processos para realizar a respetiva operação encontra-se na figura seguinte.

Figura 5.3: Downsampling

O sinal, inicialmente passa num filtro passa-baixo e de seguida, a cada amostra, é retirada as subsequentes 9.

Para realizar o procedimento referenciado na figura 5.3, foi implementada a função downsampling. Esta função recebe como parâmetros a frequência de corte (pi/M), a nova frequência de amostragem (300 Hz), a ordem (9), o valor de M=10 e o sinal. No corpo da função, inicialmente, é utilizado um filtro passa-baixo IIR com wc=pi/M e ordem 9. De seguida, para cada 10 amostras são retiradas 9 (M=10), retornando um sinal com 1/10 amostras comparando com o sinal recebido.

Através do procedimento supra-mencionado, foi possível reduzir a frequência de amostragem de um sinal de 1000 Hz para 300 Hz, utilizando apenas filtros digitais e as técnicas de downsampling e upsampling.

Deste modo, o sinal, inicialmente filtrado através de um filtro FIR passa-alto, entra no sistema que reduz a sua taxa de amostragem, podendo de seguida, entrar num segundo bloco para o qual foi necessitado.

Na figura seguinte podemos ver o sinal original a azul e com frequência de amostragem 1000 Hz. O sinal depois de ter sido feito o upsampling, com frequência de amostragem 3000 Hz e com tonalidade laranja. E, por fim, com a tonalidade a verde, o sinal resultante de todo o processo com uma frequência de amostragem de 300 Hz.

Figura 5.4: Downsampling

Conclusão

Após termos concluído este projeto, obtemos as competências necessárias para conseguirmos fazermos diferentes filtragens de sinais corrompidos por diferentes interferências.

Concluímos então que este projeto foi benéfico a nível pedagógico porque tivemos de aplicar e utilizar os conhecimentos adquiridos durante a frequência desta unidade curricular, e também para nos contextualizar com um problema real, para que no futuro estejamos familiarizados caso precisemos de aplicar tal conhecimento.