1. Udowodnij że implikacja odwrotna występująca w prawie Peirce'a też jest tautologią rachunku zdań

prawo peirce'a:
$$((p \Rightarrow q) \Rightarrow p) \Rightarrow p$$

p	q	$p \Rightarrow q$	$(p\Rightarrow q)\Rightarrow p$	W
0	0	1	0	1
0	1	1	0	1
1	0	0	1	1
1	1	1	1	1

2. Udowodnij że zasada kontrapozycji jest tautologią

zasada kontrapozycji:
$$(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$$

p	q	$p \Rightarrow q$	eg p	eg q	$ eg q \Rightarrow eg p$	w
0	0	1	1	1	1	1
0	1	1	1	0	1	1
1	0	0	0	1	0	1
1	1	1	0	0	1	1

3. Udowodnij że prawo dylematu konstrukcyjnego jest tautologią

prawo dylematu konstrukcyjnego:
$$(p \Rightarrow r) \land (q \Rightarrow r) \land (p \lor q) \Rightarrow r$$

p	q	r	$p \Rightarrow r$	$q \Rightarrow r$	$(p\Rightarrow r)\wedge (q\Rightarrow r)=lpha$	$p \lor q$
0	0	0	1	1	1	0
0	0	1	1	1	1	0
0	1	0	1	0	0	1
0	1	1	1	1	1	1
1	0	0	0	1	0	1
1	0	1	1	1	1	1
1	1	0	0	0	0	1
1	1	1	1	1	1	1

4. Udowodnij, bez analizowania tabeli prawdy, że następująca formuła jest tautologią

$$((a\Rightarrow b)\land (c\Rightarrow \lnot b)\land (\lnot a\Rightarrow d))\Rightarrow (c\Rightarrow d)\equiv lpha$$

Gdy zadanie jest w takiej formie jak ta, to można udowodnić tautologię, pokazując że gdy następnik ma wartość T, to poprzednik ma wartość F, gdyż tylko wtedy cała implikacja ma wartość fałsz.

$$w(c\Rightarrow d)=0\Leftrightarrow w(c)=1\wedge w(d)=0$$

W takim razie

$$w(c \Rightarrow \neg b) = 1 \Leftrightarrow w(b) = 0$$

co z kolei oznacza że w(a)=0, oraz $w(\neg a\Rightarrow d)=0$. A więc poprzednik jest zawsze fałszywy gdy następnik jest fałszywy, cnd.