```
#### instaling and loading a package called "cluster"
>install.packages("cluster")
>library (cluster)
#### load a data
>data("animals")
### let's investigate more of the data
>?animals
#### to keep going with rest of the analysis we need to change the 1 and 2 values to 0 and 1
>animals.bin <- animals
>animals.bin[animals == 1] <- 0
>animals.bin[animals == 2] <- 1
#### let's calculate the paiwise distance between animals
## first let's figure out what code "daisy" does
>?daisy
>diss.animals <- daisy(animals.bin, type=list(symm=1:6))
>diss.animals
##### let's plot the dissimilarities
>par(mfrow=c(1,2))
#### using the code agnes to agglomerative tree algorithm, and specify a single linkage
### lat's first see what code "agnes" details are
>?agnes
>agnes.tree <- agnes(diss.animals, method="single")
```

```
>plot(agnes.tree, ask=T)
#### let's try a divisive method to make a tree
>diana.tree <- diana(diss.animals)
>plot(diana.tree)
#### how well do these two methods match?
>par(mfrow=c(1,2))
>plot(agnes.tree, ask=T)
>plot(diana.tree, ask=T)
#### let's remove the missing values
>animals.complete <- animals.bin[complete.cases(animals.bin),]
#### apply K-means and start it with K=2
>kmeans.animals <- kmeans(animals.complete,centers=2)
### now let's see the variables
>names(kmeans.animals)
#### let's investigate variables into more details
>kmeans.animals$cluster
>kmeans.animals$centers
>kmeans.animals$withinss
>kmeans.animals$size
#### now let's plot clusters but we need to use the PCA to reduce the dimensionality
>pca.animals <- princomp(scale(animals.complete))
>plot(pca.animals$scores[,1:2],col=kmeans.animals$clust,
  pch=kmeans.animals$clust,main="K-Means clusters")
```

we can use another code called "pam" to make partition around medoids

medoids are representative data points in each cluster whose average distance to all other objects in the cluster is minimal

>pam.animals <- pam(diss.animals, k=2)

let's plot it

>par(mfrow=c(1,2))

>clusplot(pam.animals)

>plot(pam.animals)

Let's explore the fitted model object

>names(pam.animals)

>pam.animals\$medoids

>pam.animals\$clustering

>pam.animals\$clusinfo