COMP111 - Exercise 6 Answers

Ben Weston

November 19, 2020

1. (a) This statement is false as not all of the statements are subsets of p_3 :

p_1	p_2	p_3	$(p_1 \Rightarrow p_2)$	$(p_2 \Rightarrow p_3)$
0	0	0	1	1
0	0	1	1	1
0	1	0	1	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

- 3. (d) $S = \{HHHH, HHHT, HHTH, HHTT, HTHH, HTHT, HTTH, HTTT, THHH, THHT, THTH, THTH, THTT, TTHH, TTTT, THHH, TTTTH, TTTT, where <math>P(x) = \frac{1}{16}$ for all $x \in S$. $P(T \ge 3|S') \text{ where } S' = \{HTHH, HTHT, HTTH, HTTT, THHH, THHT, THTH, TTTH, TTTH, TTTT, TTHHH, THHT, THHH, THHT, TTTH, TTTH, TTTH, TTTT, TTT$
 - Therefore the probability is $\frac{\frac{5}{16}}{\frac{12}{16}} = \frac{5}{12}$
 - (e) No, as there are only four coins, two of which are high. In order for three coins to come up tails then at least one must be a low coin. Therefore if you know that three coins are tails you can conclude that at least one value coin was chosen proving that they are not independent.