Search Trees and Augmenting Data Structures

CS 4231, Fall 2017

Mihalis Yannakakis

Dictionary Search/ Index structure

- Maintain set S of items, each item has key and other info
- Basic Operations:
- Insert an item x
- Search for an item with given key k
- Other operations: empty?, size, list all items
- delete an item (specified by handle or key)
- join (union) two sets
- min, max, successor (ceiling), predecessor (floor) (in presence of <)
- Duplicate key issue: may assume no duplicate keys or allow them

Applications

- Dictionary key=word, info=translation, definition etc
- Phone book: key=name, info=number (or vice-versa)
- File system: key=file name -> location on disc
- Book index: key=term -> list of pages
- Web index: keyword -> list of documents/ web pages
- DNS: URL -> IP address
- Routing table: destination -> network route
- Compiler: variable name -> type and value
- Genome database: DNA string (marker) -> positions

Domain (Type) of keys: easy case

- If small domain D = {1,...,k}, i.e. can treat key as an index for array, then easy:
- Array A[] where A[i] contains the nullitem (if set S has no item with key=i) or the item with key=i.
- If allow duplicate-key items then A[i]=list of items with key=i
- Special case where no other info, i.e. just want to maintain a set S of keys, then A[] is a bit array:
- A[i] = 1 iff i ∈S else A[i] =0
- Complexity: O(1) time for search, insert, delete
- Need more to support min, max (if we have deletions)

General Domain of keys

- Dictionary == Associative array = Index structure: Behaves like an array but indexed with keys from a general domain
- Approach 1: Comparison-based.
- Domain has < (besides =) operator
- Supports also some more operations: sorted listing, min, max, successor, predecessor
- Approach 2: Hashing
- Map large domain to small domain {1,...,k}
- Approach 3: Radix-based for keys that are strings (tuples)

Elementary data structures

		Search	Insert
•	Unsorted array	Ν	1
•	Sorted array	logN	N
•	Unsorted list	N	1
•	Sorted list	Ν	Ν

- If mostly search operations, or static set (all inserts at the beginning, eg. language dictionary) -> sorted array + binary search good solution (or hash table)
- If mix of operations, want to do better

Binary Search Trees

- Data structure for maintaining a set S of elements with keys drawn from an ordered domain, that supports the dictionary operations
- Search
- Insert
- Delete
- + other operations
- Min, Max, ...

Binary Search Tree

- Binary tree
- Keys at the nodes, 1-1 correspondence
- Order property of BST: ∀ node v
 keys in left subtree ≤ key(v) ≤ keys in right subtree

Examples

- Tree may not be balanced
- height(T) between logn and n

Min and Max

Min(node v)
 while left(v) ≠ nil
 do v = left(v)
 return v

Max(node v)
 while right(v) ≠ nil
 do v = right(v)
 return v
 4
 5
 8
 13

Sorted Listing of Set S

Inorder walk of the tree : O(n) time
 InorderWalk(v)

```
if v ≠ nil then
{ Inorder(left(v))
    print key(v)
    Inorder(right(v))
}
```

Search

- Start at the root
- Search(node v, key k)
 if v=nil or k=key(v) then return v
 if k < key(v) then return Search(left(v), k)
 else return Search(right(v), k)

Complexity: O(h), h=height of the tree

Search: Iterative version

- Start at the root
- Search(node v, key k)
 while v≠nil and k≠key(v) do
 if k < key(v) then v=left(v) else v= right(v)
 return v

Complexity: O(h), h=height of the tree

Insertion of a new key

 Search for the key, and at the end when it is not found, put it where it should have been

Shape of BST depends on Order of insertion

Sorted order ⇒ unbalanced BST

Decreasing order

13 7 5 4

Increasing order

4 5 7 13

Random insertion order \Rightarrow ~Balanced BST

- Correspondence with Randomized-Quicksort
- R-Quicksort: Random pivot key partitions other keys, recursive calls on smaller and larger keys
- Binary Search Tree: Random first key goes at root, partitions other keys: smaller in left subtree, larger in right subtree
- Total BST insertion time = R-Quicksort time
 - = $\Theta(nlogn)$ expected time (if no duplicate keys)
- height of BST = depth of R-Quicksort recursion
- expected height = O(logn) (no duplicate keys)

Successor, Predecessor

- successor(v) = node with least key > key(v)
- predecessor(v) = node with greatest key < key(v)

Successor(v)

Case 1: v has a right child: go right then all left

Case 2: v has no right child:

go up till first left child

Nearest matches of a missing key

- Given key k ∉S, find nearest keys a,b in S, a<kb
- Search for key k in BST
- Nearest matches found on the path
- Case 1: k → missing right child

a = key of last node visited

b = key of its successor

Case 2: k → missing left child, symmetric

Deletion

Delete(key(v))

- Case 1: v has no children → delete v
- Case 2: v has one child → shortcut v

Deletion ctd.

 Case 3: v has two children → replace v by its successor(v) (which has no left child ⇒Case 1 or 2) and update links

Balanced Trees

Balanced Trees

- BST trees after random insertions have O(logn) expected height, but
 - insertions may not be random
 - bound does not hold after mix of deletions, insertions
- Ensure O(logn) height by enforcing some form of balance in the tree
 - red-black trees
 - AVL trees
 - 2-3, 2-3-4 trees, B-trees
 - treaps (expected)
 - splay trees (amortized cost)

—

Red-Black Trees

- Red-Black Tree: Binary Search Tree with two types of nodes, red and black
- Root is black
- Children, parent of a red node are black
- All root-to-'nil' paths same number of black nodes

Example

Height of red-black trees

Height $\leq 2\log(n+1)$

Define black height of a node v: bh(v)= #black nodes in any path from v to nil

Claim: Subtree rooted at v has ≥ 2^{bh(v)} -1 nodes

Proof: By induction on height of v.

 \Rightarrow bh(root) \leq log(n+1)

Root-to-leaf paths do not have two red nodes in a row \Rightarrow Height of tree ≤ 2 bh(root) ≤ 2 log(n+1)

Restructuring a Binary Search Tree: Rotations

- BST order property maintained
 keys(A) ≤ key(x) ≤ keys(B) ≤ key(y) ≤ keys(C)
- Can restructure BST, improve balance for BST, and/or fix coloring for Red Black tree

Operations on Red-black trees

- Search: Same as in ordinary BST
- Insertion: Key is inserted as in BST in new leaf colored red

 → may result in two red nodes in a row

 Possible violation of property 'no red-red' fixed by recolorings, rotations
- Deletion: Key is deleted as in BST
 Possible violation of red-black properties due to shortcut of removed node are fixed by recolorings, rotations several cases, see book

Red node with red child and red sibling

 $\alpha, \beta, \gamma, \delta$ pointers to black nodes or nil

- If c=root, then change its color to black, Done
- If parent(c) is black then Done,
- otherwise violation of two red nodes at c -> Continue fixing up the tree

Red node with red child, and black (or no) sibling

Example (red-black tree insertion)

Example (red-black tree insertion)

Example (red-black tree insertion)

Summary

- Balanced Trees (e.g. red-black trees,..) support the following operations in O(logn) worst-case time
- Insertion
- Deletion
- Search
- Max, Min
- Successor, Predecessor

Augmenting Data Structures

Augmenting data structures

 Can add auxiliary information to facilitate other queries, operations, or structuring of tree

Example:

- Selection, Order Statistics queries

Select(i): Find the i-th smallest key

Rank(x): What is the rank of the key at node x

or Rank(k): How many keys are ≤ k

Augmenting Search Trees (BST, red-black ..) for Order Statistics

Add size(v): #nodes (keys) of subtree rooted at node v

Select(v,i): select the i-th smallest key in subtree of node v: Complexity O(height(v)).

- If balanced tree (e.g. red-black tree) then O(logn)

```
case: size(left(v)) = i-1 → return key(v)
size(left(v)) ≥ i → return Select(left(v),i)
size(left(v))< i-1 → return Select(right(v),i-size(left(v))-1)
```


Can use size() to answer also Rank(node x) and Rank(key k) queries

Maintaining the additional information

- When we change the data structure (eg. insertions, deletions) we have to maintain the auxiliary information
- Size(nodes) in BST can be easily updated during insertions, deletions at same complexity O(height)
 - The only nodes affected during insertion or deletion are the nodes on the path from root to inserted/deleted node
- Ditto for red-black trees : O(logn)
 - Recolorings have no effect.
 - Rotations ok, can update the size.

Insertion of a new key in a BST

 Search for the key, and at the end when it is not found, put it where it should have been

Increment size along the path to new leaf

Deletion

Delete(key(v))

- Case 1: v has no children → delete v
- Case 2: v has one child → shortcut v
- Case 3: v has both children: reduced to case 2

Decrement size along the path to node a

Rotations

- Sizes of the roots of subtrees A, B, C don't change
- Update size(x) and size(y)

Red-Black Trees

-Same method for red-black trees: O(logn)

During insertion or deletion, changes along the path to the inserted/deleted node: recolorings, rotations

We can update the sizes of all the affected nodes in O(logn) time

- Similar for other types of balanced search trees

Augmenting Search Trees (BST, red-black trees etc)

- General Lemma: Suppose augment search tree with field f and that f at node x can be computed from info(x), and value of f at children of x. Then can maintain the values of f at all nodes during insertion and deletion in time O(height) (=O(logn) for balanced trees)
- Proof Idea: Propagate the change in value of f at a node v up the tree during insertion and deletion. Can update f when we do rotations in red-black trees (recolor -> no change)

Examples:

f(x) =size (#nodes) of subtree T[x]

f(x)= sum of keys in subtree T[x]

Not: average of keys in subtree

Summary

- Balanced Trees (e.g. red-black trees and others) support the following operations in O(logn) worst-case time
- Insertion
- Deletion
- Search
- Max, Min
- Successor, Predecessor
- (+ others, possibly by augmentation, eg. Selection, rank)

Designing Data Structures

- Determine objects, operations (updates, queries)
- For comparison-based structures:
 - What will serve as the key?
 - What is the comparison operator and what is its cost?
 - What auxiliary information do we need?

Example: Interval trees

- Maintain set of intervals with insert, member, delete + other ops.
- Closed, open, half-open intervals: [a,b], (a,b), [a,b), (a,b]
- a = low (left) endpoint, b = high (right) endpoint
- Assume for simplicity closed intervals
- Basic Search data structure: search, insert, delete
- Can use a comparison-based structure: a balanced search tree (red-black, 2-3-4, AVL tree ...) for O(logn) worst case
- What is the key and comparison operator?

Relations between intervals

- I1 left-of I2, I1 right-of-I2 (I1, I2 disjoint)
- I1 overlaps with I2 (I1, I2 intersect: they just overlap or one contains the other)

Interval Search data structure

- Define Comparison operator (Ordering) among intervals s.t.
 - 1. nonreflexive : I not < I
 - 2. total: for all distinct intervals I1, I2 either I1<I2 or I2 <I1 (but not both)
 - 3. transitive: I1 <I2 and I2 < I3 \Rightarrow I1 < I3
- 'left-of' not appropriate: not total
- order by low endpoint (in book) not total either: cannot do member and delete by value (can delete by handle)
 - Would be ok if we don't need member and delete
- Order by low endpoint, then (break ties) by high endpoint (lexicographic order for pairs): ok
- Use a red-black tree (could also use 2-3-4 tree etc)

Example query: Longest interval

- Interval tree + auxiliary information:
- maxlength(v) = maximum-length interval in the subtree of v
- f(v)=maxlength(v) can be computed from the info(v) (which
 is the interval at v) and value of f at the children of v.
 - ⇒ can maintain the maxlength information with O(logn) time for insert and delete

Alternative solution: choose as key=(length, low endpoint) Then longest interval is just a max query.

Example: Overlap queries

- Given query interval I, determine if there is some interval in the set that overlaps it and return one if so.
- Special case: I =[a,a] (a point).
- Augment interval tree with max(v) = maximum high endpoint of an interval in the subtree T[v]
- max(v) can be computed from I(v) and max at children

Example: Overlap queries

```
OVER(v,I) [v a node of the tree, I a query interval]
```

```
if Int(v) overlaps I then return v else
if left(v) ≠nil and max(left(v)) ≥low(I) then OVER(left(v),I) else
if right(v) ≠nil then OVER(right(v,I)) else return NO
```

Time: O(logn)

Correctness proof:

- If Int(v) overlaps I then ok, so suppose not, i.e. Int(v) either left or right of I
- if max(left(v)) ≥low(I) and Int(v) left of I then there is an intersecting interval in the left subtree because all intervals
 J in the left subtree have low(J) ≤ low(Int(v)) < low(I) and at least one of them has high(J) = max(left(v)) ≥low(I).

Thus the algorithm correctly recurses in the left subtree to find an intersecting interval.

 if max(left(v)) ≥low(I) and Int(v) right of I, then all intervals in right subtree are right of I (no overlap) ⇒ if there is an overlapping interval it must be in the left subtree

Correctness proof ctd.

 if max(left(v)) < low(I) then all intervals in left subtree are left of I ⇒ if there is an overlapping interval it must be in the right subtree

Example: Rectangle overlap

 Given a set of rectangles with sides parallel to the x and y axis, determine if there are any two overlapping rectangles.

Algorithm

- Sort the rectangles by the x coordinate of their left side.
- Sweep a vertical line from left to right, maintaining in an interval tree data structure the set of intervals in which the line intersects the rectangles
- Answer an overlap query for every new rectangle

