

# Heterogeneity in preferences

#### **Outline**

1 Including heterogeneity

2 Interpretation with heterogeneity

$$\lambda^x e^{-\sum_{x \in \mathbb{Z}} P(x)} = 1$$
Including heterogeneity

## What is heterogeneity?

- Heterogeneity is another word for variability
- □ In a choice modelling context, this relates to:
  - differences across people
  - differences across choices for same person
    - · e.g. different settings, different points in time
- □ Main focus is in differences in sensitivities (e.g. cost sensitivity)
- Heterogeneity in preferences can lead to differences in choice outcomes



#### Mathematical fit

- Incorporating heterogeneity in our models increases flexibility
- □ Ability to better explain choices
- □ Models with heterogeneity invariably obtain better model fit



## Behavioural insights

- Provides insights into why some people make specific choices
  - e.g. underlying health conditions reducing the likelihood of using active transport
- □ Can ensure a more robust appraisal of cost vs benefits
  - e.g. if we know how relative importance of time and cost varies across travellers
- Can help in the context of shaping a more efficient provision of transport services
  - e.g. make a variety of services available, where the mix is such that it can help cover the widest range of preferences
- Can help shape strategies to nudge behaviour
  - e.g. identify rasons for lack of use of active transport



## What if I'm only interested in the mean?

- Offering multiple services may not be possible
- May conclude that only aggregate preferences are of interest
- Aggregate preferences from a model allowing for heterogeneity may be different (and less biased) than those from a model assuming homogeneity





## Why do we get bias?

□ Not accounting for heterogeneity increases the amount of noise in the model

$$U_{jnt} = \sum_{k=1}^{K} \beta_{n,k} x_{jnt,k} + \varepsilon_{jnt}$$
$$= \sum_{k=1}^{K} \beta_{k} x_{jnt,k} + \varepsilon_{jnt} + \sum_{k=1}^{K} (\beta_{n,k} - \beta_{k}) x_{jnt,k}$$

- Unobserved part of utility now correlated with deterministic part, breaking core assumption of additive in errors random utility models, potentially leading to bias
- Even if not interested in heterogeneity, will have less bias by accounting for it



## Where is the heterogeneity?

#### taste heterogeneity

- differences in relative sensitivities to individual attributes
- differences in baseline preferences for different options

#### scale heterogeneity

differences across individuals in amount of noise (from analyst's perspective)

#### process heterogeneity

- differences in how information is processed, and what decision rule is used
- ☐ In practice, difficult/impossible to disentangle, main focus is taste heterogeneity



## Deterministic heterogeneity: link to observed information

#### Option 1: discrete segmentations, with separate models

- e.g. male *vs* female, business *vs* leisure
- same as a joint model with segment-specific parameters
- assumes that differences exist in sensitivities to all attributes

#### Option 2: differences only for some attribute-covariate pairs

- interaction with categorical variables
  - e.g. interaction with gender, implying different sensitivities for men and women
- interactions with continuous covariates
  - e.g. continuous interaction with income, implying different sensitivity for each possible income



## Discrete segmentations

- Divide population into mutually exclusive subsets
- □ Estimate separate parameters for different segments
  - separate models
  - separate parameters within the same model
- Potential segmentations
  - occupation
  - income class
  - age group
  - gender



#### Linear interactions

- Examples with income
- $\square$  Assumes a unit elasticity for income:  $V_{jn} = \cdots + \beta_C \frac{C_{jn}}{inc_n} + \ldots$ 
  - real effect might be smaller
- $\square$  Or linear shift in baseline preferences:  $V_{in} = \delta_i + \Delta_i inc_n + \dots$ 
  - real effect might be non-linear

#### Non-linear interactions

- For use with continuous attributes
- $\square$  inc<sub>n</sub> = income of respondent n
- $\Box$   $\overline{inc}$  = reference income for sample, e.g. average

- $\square$   $\lambda_{inc,C}$  gives elasticity of cost sensitivity in relation to income
  - $\lambda_{inc,C} > 0$ : increasing cost sensitivity
  - $\lambda_{inc,C} < 0$ : decreasing cost sensitivity
  - $\lambda_{inc,C} = 0$ : no interaction

#### Normalisation with a continuous covariate

|                 | Bus                       | Train              |
|-----------------|---------------------------|--------------------|
| Travel time (T) | 45 min                    | 30 min             |
| Travel cost (C) | £7                        | £12                |
| Wifi            | Available for $\pounds 1$ | Available for free |
| Traveller age   | 43 years                  |                    |

|                 | Bus                       | Train              |
|-----------------|---------------------------|--------------------|
| Travel time (T) | 45 min                    | 30 min             |
| Travel cost (C) | £7                        | £12                |
| Wifi            | Available for $\pounds 1$ | Available for free |
| Traveller age   | 65 years                  |                    |

- Can estimate all continuous interactions
- □ But still need normalisations for interactions with categorial variables

$$\begin{split} V_{a,n} &= \delta_A + \Delta_{\delta_A} a_{\text{ge}_n} \\ &+ (\beta_T + \Delta_{\beta_T} a_{\text{ge}_n}) T_A \\ &+ (\beta_C + \Delta_{\beta_C} a_{\text{ge}_n}) C_A \\ &+ (\beta_{\text{wifi}_1} + \Delta_{\beta_{\text{wifi}_2}} a_{\text{ge}_n}) \left(W_A == 1\right) + (\beta_{\text{wifi}_2} + \Delta_{\beta_{\text{wifi}_2}} a_{\text{ge}_n}) \left(W_A == 2\right) \end{split}$$



## Normalisation with a categorical covariate

|                  | Bus              | Train              |
|------------------|------------------|--------------------|
| Travel time (T)  | 45 min           | 30 min             |
| Travel cost (C)  | £7               | £12                |
| Wifi             | Available for £1 | Available for free |
| Traveller gender | female           |                    |

|                  | Bus              | Train              |
|------------------|------------------|--------------------|
| Travel time (T)  | 45 min           | 30 min             |
| Travel cost (C)  | £7               | £12                |
| Wifi             | Available for £1 | Available for free |
| Traveller gender | male             |                    |

- Why is this the same as two separate models?
- Need normalisation for interactions too now

$$\begin{split} V_{\textbf{a},n} &= \delta_A + \Delta_{\delta_A} \textit{female}_n \\ &+ (\beta_T + \Delta_{\beta_T} \textit{female}_n) T_A \\ &+ (\beta_C + \Delta_{\beta_C} \textit{female}_n) C_A \\ &+ (\beta_{\textit{wifi}_1} + \Delta_{\beta_{\textit{wifi}_1}} \textit{female}_n) \left(W_A == 1\right) + (\beta_{\textit{wifi}_2} + \Delta_{\beta_{\textit{wifi}_2}} \textit{female}_n) \left(W_A == 2\right) \end{split}$$

With multiple covariates, we need to think about interactions between covariates too



## Misattributing deterministic heterogeneity

- Model estimation will use whatever flexibility we give it to try and improve fit
- □ Allowing heterogeneity in only some attributes risks lower fit and misattribution



- $\square$  Ignoring heterogeneity in  $\beta_k$  can lead to bias in  $\beta_l$ 
  - Bad idea to keep the cost coefficient fixed!



## Scale heterogeneity

- □ Idea that the choices of some individuals are more deterministic than others (from the perspective of the analyst)
- □ Try and link this to observed characteristics

## Allowing for scale heterogeneity

□ Example with male *vs* female:

$$P_n(i,n) = (\textit{male}_n) \cdot \frac{e^{\mu_{\textit{male}}V_{n,i}}}{\sum_{j=1}^J e^{\mu_{\textit{male}}V_{n,j}}} + (\textit{female}_n) \cdot \frac{e^{\mu_{\textit{female}}V_{n,i}}}{\sum_{j=1}^J e^{\mu_{\textit{female}}V_{n,j}}}$$

- Need to normalise one scale parameter
- lacksquare Assume we set  $\mu_{female}=1$ 
  - estimate μ<sub>male</sub>
  - if  $\mu_{male} > 1$ , modelled choice processes for men are more deterministic (opposite applies if  $\mu_{male} < 1$ )
  - scale of  $\beta$  parameters relates to part of the sample where the scale is normalised to 1, i.e. in our case women
  - while relative values of  $\beta$  parameters are influenced by both segments



## Scale heterogeneity: warning

- Impossible to fully disentangle scale heterogeneity from other heterogeneity
- □ For example, men might be more risk sensitive and risk might be most important attribute
  - Then scale heterogeneity might pick that up
- □ Safest approach is to allow for heterogeneity in all individual parameters



## Misattributing heterogeneity

- Allowing for scale heterogeneity but not heterogeneity in individual attributes
- □ Fake evidence of scale heterogeneity!

| Number of individuals          | 50       | 00                 | 50       | 00                 |
|--------------------------------|----------|--------------------|----------|--------------------|
| Number of modelled<br>outcomes | 5000     |                    | 5000     |                    |
| Estimated parameters           | 4        | 1                  | 3        |                    |
| LL(final)                      | -2060    | ).733              | -2077    | 7.792              |
| Adj.Rho-square (0)             | 0.4      | 042                | 0.3      | 996                |
| AIC                            | 412      | 9.47               | 416      | 1.58               |
| BIC                            | 4155.54  |                    | 4181.14  |                    |
|                                |          |                    |          |                    |
|                                | estimate | Rob.t-<br>ratio(0) | estimate | Rob.t-<br>ratio(0) |
| efficacy                       | 0.0212   | 11.78              | 0.0126   | 10.41              |
| risk                           | -0.3025  | -20.12             | -0.255   | -19.99             |
| efficacy interaction for men   | -0.0029  | -0.99              |          |                    |
| risk interaction for men       | -0.1816  | -6.57              |          |                    |
| scale parameter for men        |          |                    | 2.087    | 17.45              |



### Data requirements

- Capturing heterogeneity places additional demands on data
- Need rich data, with trade-offs that allow us to observe different outcomes for different people
- Heterogeneity in sensitivities alone may not lead to different outcomes if stimuli are not strong enough
- Focus on categorical variables in many fields, e.g., health studies, makes capturing heterogeneity especially hard
  - Proliferation of parameters



## Within people vs between people effects

- May find that cost sensitivity is lower for higher income people
  - but data is generally cross-sectional
  - not clear that cost sensitivity would change in same way if a person's income increases
- □ Need longitudinal data in order to separate within-people from between-people effects





## Interpretation with heterogeneity

## MRS with deterministic heterogeneity (categorical)

Interaction with and gender and purpose

$$V_{in} = \ldots + (eta_{tt} + eta_{tt,female} \cdot z_{female,n}) \ TT_{in} + (eta_{cost} + eta_{cost,business} \cdot z_{business,n}) \ C_{in}$$

Trade-off becomes person-specific (4 groups)

$$VTT_n = rac{eta_{ ext{tt}} + eta_{ ext{tt}, ext{female}} \cdot ext{Zfemale}_n}{eta_{ ext{cost}} + eta_{ ext{cost}, ext{business}} \cdot ext{Zbusiness}_n}$$

```
Estimates:
                    Estimate
asc car
                    0.00000
asc bus
                    -2.36476
asc_air
                    -0.93027
asc_rail
                    -1.01880
b tt
                    -0.01338
b tt female
                 -6.9615e-04
b_access
                    -0.01855
b cost
                    -0.08524
b cost_business
                     0.05522
b no frills
                     0.00000
b wifi
                     0.98081
b food
                     0.40660
```

| II(in | t/hr)   |          |
|-------|---------|----------|
|       | Leisure | Business |
| ale   | 9.42    | 26.76    |
| emale | 9.91    | 28.15    |
|       |         |          |



## Interpretation with heterogeneity

## MRS with deterministic heterogeneity (continuous)

Additional interaction between income and cost sensitivity:

$$V_{in} = \ldots + (eta_{tt} + eta_{tt,female} \cdot z_{female,n}) \ TT_{in}$$
 $+ (eta_{cost} + eta_{cost,business} \cdot z_{business,n}) \cdot \left( \frac{income_n}{income} \right)^{\lambda_{income}} \cdot C_{in}$ 

| Estimates:                 |             |
|----------------------------|-------------|
|                            | Estimate    |
| asc_car                    | 0.00000     |
| asc_bus                    | -2.57432    |
| asc_air                    | -1.10547    |
| asc_rail                   | -1.14259    |
| b_tt                       | -0.01447    |
| b_tt_female                | -5.1631e-04 |
| b_access                   | -0.01846    |
| b_cost                     | -0.08501    |
| <pre>b_cost_business</pre> | 0.05491     |
| b_no_frills                | 0.00000     |
| b_wifi                     | 1.01211     |
| b_food                     | 0.41897     |
| lambda_income              | -0.58221    |



# Interpretation with heterogeneity

## Trade-off becomes person-specific

$$VTT_n = rac{eta_{tt} + eta_{tt,female} \cdot Z_{female_n}}{\left(eta_{cost} + eta_{cost,business} \cdot Z_{business_n}
ight) \cdot \left(rac{income_n}{income}
ight)^{\lambda_{income}}}$$

# VTT distribution OTH Male leisure Male leisure Female leisure Female business 5 10 15 20 25 30 35 40



$$\lambda^x e^{-\lambda} P(x) = 1$$
Summary
$$\int_{-\infty}^{\infty} e^{-x^{n-1}} dx$$

# Summary

## Key points from this class

- Incorporating heterogeneity can lead to gain in fit and insights, as well as bias reduction
- Model comparison is crucial part of model building

# Summary

## Suggested reading

- □ Train, K.E. (2009), Discrete Choice Methods with Simulation, Cambridge University Press, free online access https://eml.berkeley.edu/books/choice2.html
  - Chapters 3 and 8





www.ApolloChoiceModelling.com

The most flexible choice modelling software (up to a probability)