

Cześć!

Krzysztof Bork-Ceszlak

Data Science Enthusiast, specialized in Deep Learning

Deep Learning

Rozkład jazdy:

- Czym jest deep learning?
- Jakie są rodzaje głębokiego uczenia?
- Budowa sztucznej sieci neuronowej.
 Proces uczenia

Czym jest deep learning?

Gdzie jest ?...

Czym jest deep learning?

Gdzie jest ?... SZTUCZNA INTELIGENCJA **UCZENIE MASZYNOWE**

Czym jest deep learning?

Gdzie jest ?...

UCZENIE MASZYNOWE

UCZENIE GŁĘBOKIE

Czym jest deep learning? Gdzie jest ?...

Czym jest deep learning? Gdzie jest ?...

Machine Learning

Deep Learning

- Posiada ,uczący się feature extractor'
- Modele bywają ogromne
- Na ogół potrzebuje ogromną ilość danych
- Oraz mocny sprzęt do obliczeń;)
- Do niemal każdego problemu można dostosować odpowiednią architekturę sieci neuronowej

- Predykcja wartości danych ,tabelkowych'
- Rozpoznawanie obrazów
- Detekcja obiektów
- Klasyfikacja tekstu
- Translacja
- Wiele wiele innych...

optymalizacja kosztów zużycia energii

detekcja obiektów – konwolucyjne sieci neuronowe

generowanie tekstu – rekurencyjne sieci neuronowe

generowanie tekstu – rekurencyjne sieci neuronowe

generowanie tekstu – gpt3.5 & ChatGPT

generowanie dźwięku – magenta tensorflow

MuseNet

by OpenAI

generowanie rzeczywistego obrazu

uczenie ze wzmocnieniem

uczenie ze wzmocnieniem

Sieć neuronowa

Koncepcja sieci neuronowej Skąd taki pomysł?

Collect electrical

signals

Integrates incoming signals and generates outgoing signal to axon

Axon

Passes electrical signals to dendrites of another cell or to an effector cell

Figure 45-2b Biological Science, 2/e © 2005 Pearson Prentice Hall, Inc.

Koncepcja sieci neuronowej Skąd taki pomysł?

Perceptron Model (Minsky-Papert in 1969)

Funkcje aktywacji

Koncepcja sieci neuronowej Funkcje aktywacji

Sigmoid

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Koncepcja sieci neuronowej Funkcje aktywacji

Sigmoid

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Hyperbolic Tangent

$$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Koncepcja sieci neuronowej Funkcje aktywacji

Sigmoid

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Hyperbolic Tangent

$$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

Rectified Linear

$$\phi(z) = \begin{cases} 0 & \text{if } z < 0 \\ z & \text{if } z \ge 0 \end{cases}$$

Nane	Plot	Equation	Derivative
Identity	/	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus	/	$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Nane	Plot	Equation	Derivative
Identity	/	f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]	/	$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus	/	$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Czy jeden neuron wystarczy?

x1

(x2)

x2

x1 h2

h3

modyfikowalność

Koncepcja sieci neuronowej modyfikowalność

Optymalizacja

Optymalizacja Funkcja kosztu

$$E_{total} = \sum_{n=1}^{\infty} \frac{1}{2} (target - output)^2$$

Optymalizacja Wsteczna propagacja

Optymalizacja Wsteczna propagacja

Optymalizacja Gradient descent

Optymalizacja Korekta wag

Wnew = Wcurr - Ir*(dErr/Wcurr)

(dErr/Wcurr) – pochodna błędu po danej wadze, w tensorflow będzie to tzw. *gradient*

Optymalizacja Wsteczna propagacja - chain rule

$$F(x) = f(g(x))$$

$$F'(x) = f'(g(x))g'(x)$$

tensorflow

tensorflow

- tworzenie modeli dl
- Bazuje na tensorach
- Tworzy z operacji graf modelu
- Zoptymalizowane pod gpu

Implementacja sieci

forward:

$$Z = input * W$$

$$y = f_{activation}(Z)$$

backward:

$$\begin{split} W_{new} &= W_{current} - lr * \frac{dError}{dW} \\ \frac{dError}{dW} &= \frac{dError}{dActivationOut} * \frac{dActivationOut}{dZ} * \frac{dZ}{dW} \\ \frac{dError}{dActivationOut} &= activationOut - y_{reference} \\ \frac{dActivationOut}{dZ} &= ActivationFunctionDerivaive(Z) \\ \frac{dZ}{dW} &= activationOut_{previousLayer} \end{split}$$

forward:

$$Z_{1} = input * W_{0}$$

$$activationOut_{1} = f_{activation}(Z_{1})$$

$$Z_{2} = activationOut_{1} * W_{1}$$

$$y = f_{activation}(Z_{2})$$

backward:

third layer/output(2)

$$\begin{split} \boldsymbol{W}_{1new} &= \boldsymbol{W}_{1current} - lr * \frac{dError}{dW_{1}} \\ \frac{dError}{dW_{1}} &= \frac{dError}{dActivationOut_{2}} * \frac{dActivationOut}{dZ_{2}} * \frac{dZ_{2}}{dW_{1}} \\ \frac{dError}{dActivationOut_{2}} &= activationOut_{2} - y_{reference} \\ \frac{dActivationOut}{dZ_{2}} &= ActivationFunctionDerivaive(Z_{2}) \\ \frac{dZ_{2}}{dW_{1}} &= activationOut_{1}^{T} \end{split}$$

second layer(1)

$$\begin{split} W_{0new} &= W_{0current} - lr * \frac{dError}{dW_0} \\ \frac{dError}{dW_0} &= \frac{dError}{dActivationOut_1} * \frac{dActivationOut}{dZ_1} * \frac{dZ_1}{dW_0} \\ \frac{dError}{dActivationOut_1} &= \frac{dError}{dActivationOut_2} * \frac{dActivationOut}{dZ_2} * W_1^T \\ \frac{dActivationOut}{dZ_1} &= ActivationFunctionDerivaive(Z_1) \\ \frac{dZ_1}{dW_0} &= input^T \end{split}$$

forward:

$$Z_n = activationOut_{(n-1)} * W_{(n-1)}$$

 $activationOut_n = f_{activation}(Z_n)$

backward:

$$W_{(n-1) new} = W_{(n-1) current} - lr * \frac{dError}{dW_{(n-1)}}$$

$$\frac{dError}{dW_{(n-1)}} = \frac{dError}{dActivationOut_n} * \frac{dActivationOut}{dZ_n} * \frac{dZ_n}{dW_{(n-1)}}$$

$$\frac{dError}{dActivationOut_n} = \frac{dError}{dActivationOut_{(n+1)}} * \frac{dActivationOut}{dZ_{(n+1)}} * W_n^T$$

$$\frac{dActivationOut}{dZ_n} = ActivationFunctionDerivaive(Z_n)$$

$$\frac{dZ_n}{dW_{(n-1)}} = activationOut_n^T$$

Co możemy do sieci dołączyć?

weight increment,

previous iteration

Co możemy do sieci dołączyć? Człon momentum

momentum

factor

Co możemy do sieci dołączyć? Regularyzacja

info Share

Co możemy do sieci dołączyć? Regularyzacja

$$C = -rac{1}{n}\sum_{xj}\left[y_j\ln a_j^L + (1-y_j)\ln(1-a_j^L)
ight] + rac{\lambda}{2n}\sum_w w^2.$$

Co możemy do sieci dołączyć? Regularyzacja

$$C = -rac{1}{n}\sum_{xj}\left[y_j \ln a_j^L + (1-y_j) \ln(1-a_j^L)
ight] + rac{\lambda}{2n}\sum_w w^2$$

Zalety

- Teoretycznie do każdego problemu można dostosować odpowiednią sieć neuronową
- Radzi sobie z dużą ilością danych
- Dowolne wejście/wyjście
- Skuteczne zarówno dla regresji jak i klasyfikacji

Wady

- Zanikający gradient
- Eksplodujący gradient
- Złożoność obliczeniowa
- wielkość

Źródła

- https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463
- http://www.emergentmind.com/neural-network
- https://www.youtube.com/watch?v=Ilg3gGewQ5U
- https://en.wikipedia.org/wiki/Chain_rule
- https://cloud.google.com/blog/products/gcp/understanding-neural-networks-with-tensorflow-playground
- https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
- http://www.adeveloperdiary.com/data-science/machine-learning/understand-and-implement-the-backpropagation-algorithm-fro m-scratch-in-python/

Dzieki

You can find me at

@Krzysztof Bork-Ceszlak & ceszlak.krzysztof@gmail.com