超声波辐射相转移催化合成苄基2萘基醚

李敬芬

(湖州师范学院 生命科学学院, 浙江 湖州 313000)

摘 要: 为了探索香料苄基 2 萘基醚的合成方法, 通过对催化剂的改进和利用超声波技术改善催化条件, 使苄基 2 萘基醚的合成过程向绿色化靠近. 具体实验方法是, 以四丁基溴化铵为相转移催化剂, 环己烷为溶剂, 在超声波辐射下, 采用 $L_9(3^4)$ 正交试验法进行苄基 2 萘基醚合成条件的优化. 实验结果表明, 在超声波条件下, 以四丁基溴化铵为相转移催化剂是合成苄基 2 萘基醚的一种可行工艺. 合成苄基 2 萘基醚的最佳条件为: 以四丁基溴化铵为相转移催化剂, 2 萘酚与氯化苄的摩尔比为 1:1.05, 反应温度为 $60\sim70\,^{\circ}$ C, 反应时间为 1.5h, 产率可达 40.5%.

关键词: 超声波辐射: 苄基 2 萘基醚: 相转移催化: 正交实验设计

中图分类号: 0621.3

文献标识码. A

文章编号: 1009 1734(2007) 02 0061 04

苄基 2 萘基醚广泛应用于合成香料,如用于皂用香精、化妆品香精、草霉香精及调合香精等香料工业,且为合成苄氧萘青霉素等医药工业产品的重要中间体^[1].传统合成方法不同程度地存在着实验条件苛刻、反应时间较长、产品收率低等诸多缺点^[2~3].

本文基于前人合成苄基 2 萘基醚的方法,利用超声波技术对反应进行改进,使反应趋向于绿色、简便、高效^[4].即在超声波辐射下,采用四丁基溴化铵作相转移催化剂,以 2 萘酚、氯化苄和氢氧化钠为原料,以环己烷作溶剂,在较低温度下合成苄基 2 萘基醚,其反应式为:

式中 USI 表示超声波辐射,为 Ultrasonic irradiation 的缩写. 反应机理为:

1 实验部分

1.1 试剂与仪器

Thermo Electron Corporation 的 NICOLET 5700(FTIR) 型红外光谱仪(KBr压片)、昆山市超声仪

^{*} 收稿日期: 2007 02 08

作者简介: 李敬芬(1964 一),女,黑龙江绥化人,湖州师范学院生命科学学院教授,研究方向: 有机合成. (C) 1994-2019 China Academic Journal Electronic Publishing House, All rights reserved. http://www.cnki.ne

器有限公司的 KQ2200 超声波清洗器. 所有试剂均为分析纯和化学纯.

实验方法

1.2.1 超声波辐射下以环己烷作溶剂合成苄基 2 萘基醚

2 萘酚钠盐的制备

在碘量瓶中加入氢氧化钠 3.65g(0.091 3mol), 水 30mL, 2 萘酚 11.5g(0.079 8mol), 70℃下 2 萘酚 完全溶解,得深褐色透明溶液,冷却至室温,备用.

1.2.1.2 苄基2萘基醚的制备

在上述碘量瓶中加入四丁基溴化铵 $0.560 \log(1.737 \times 10^{-3} \text{ mol})$, 环己烷 50 m L, 氯化苄 $A(9.50 \times 9.70 \times 10^{-3} \text{ mol})$ 10.10)mL即(10.45、10.67、11.11g)后,溶液分层,上层为无色透明溶液,下层为墨绿色透明溶液,将碘量瓶置 于超声波清洗器内, 超声波辐射(超声波功率 500W, 频率为 40k Hz), 控制温度在 B $^{\circ}$ C($40 \sim 50$ $^{\circ}$ C, $50 \sim 60$ $^{\circ}$ C, 60~70 $^{\circ}$ 0, 反应一定时间(分别取 1.0、1.5、2 0h)停止反应, 分出有机相, 用 80mL 的 80 $^{\circ}$ 热水洗涤 2 ~3 次, 无 水硫酸钠干燥,减压蒸馏除去环己烷和过量反应物,冷却结晶,得粗产品.将粗产品用95%(质量分数)乙醇重 结晶, 干燥, 称量, 得精制产品(肉色片状固体). 测得熔点为 97.5~99.5 ℃ 文献值为 100~101 ℃21).

1.2.2 正交设计实验

为了探索最佳反应条件,利用 $L_{2}(3^{4})$ 正交实验表,对催化剂用量、反应温度、反应时间等因素进行优 化, 见表 1. 实验结果见表 2 和表 3.

	表上正父	:因于水平表	
水平	原料配比	反应温度/℃	反应时间 /h
	A	В	С
1	1:1.025	40 ~ 50	1.0
2	1:1.05	50 ~ 60	1.5
3	1:1.10	60 ~ 70	2.0

表 2	正交设计直观分析表

\+W =		因素				
试验号	A	В	С		粗品产率 y /%	
1	1:1.025	40~50	1.0	1	50. 2	
2	1:1.025	50~60	1.5	2	76. 4	
3	1:1.025	60~70	2.0	3	59. 6	
4	1:1.05	40~50	1.5	3	57. 5	
5	1:1.05	50~60	2.0	2	58. 3	
6	1:1.05	60~70	1.0	1	62. 5	
7	1:1.10	40~50	2.0	2	57. 8	
8	1:1.10	50~60	1.0	3	56. 2	
9	1:1.10	60~70	1.5	1	61. 3	
I	86.2	75.5	78.9	84.0		
II	88.3	90.9	95.2	92.5		
III	85.3	93.4	85.7	83.3		
\mathbf{K}_1	28.7	25.2	26.3	28.0		
K 2	29.4	30.3	31.7	30.8		
K 3	28.4	31.3	28.6	27.8		
R	1. 0	6. 1	5.4	3.0		

注: 四 基溴化铵取 0.725g; [、II、III分别代表各水平的产率总和;

方差来源	变动平方和	自由度	均方和	F 值	显著性	
A	1. 58	2	0. 79	0.09		
В	62.6	2	31.3	3.58		
C	44.7	2	22.35	2.55		
误差	17.5	2	8. 75			

表 3 正交设计的方差分析表

- 1.2.3 有无超声波辐射对照实验
- (1) 取 11. 5g(0.079 8mol) 2 萘酚、30mL 水、3.65g(0.091 3mol)氢氧化钠、9.70mL(10.670g) 氯化 苄、50mL 环己烷、 $0.725 \text{ 0}g(2.248 9×10^{-3}\text{mol})$ 四丁基溴化铵,在 60~70 ℃下,反应 1. 5h 直接合成苄基 2 萘基醚. 重复实验 3 次.
- (2) 将相转移催化剂用量减半, 其它条件相同, 采用超声波技术合成苄基 2 萘基醚. 重复实验 3 次. 结果见表 4.

试验号	相转移催化剂 用量 /g	原料配比	反应温度 / ℃	反应时间/h	产率/%
1	0. 725 0	1:1.05	60~70	1.5	68. 9
2	0. 725 0	1:1.05	60~70	1.5	71. 7
3	0. 725 0	1:1.05	60~70	1.5	70. 9
					70. 5

表 4 正交设计最佳反应条件下重复实验结果

2 结果与讨论

2.1 结果

2.1.1 正交设计实验结果

为探索最佳反应条件,利用 $L_9(3^4)$ 正交实验表,对催化剂用量、反应温度、反应时间等因素进行考察. 综上所述,影响指标的因素大小为 B>C>A,各因子水平的最佳选择条件为 $A_2B_3C_2$,即以四丁基溴化铵为催化剂,环己烷为溶剂,反应物原料配比(n^2 萘酚 n 氯化苄)为 1:1.025,温度为 $60\sim70$ $^{\circ}$ 0,时间为 1.5h.

2.1.2 有无超声波辐射对照实验结果

按实验步骤 2.2.1 进行实验,结果见表 5.

表 5 有无超声波辐射对照实验结果

实验号	相转移催 化剂用量 /g	原料配比	反应温度 / ℃	反应时间/h	产率/%
I 1	0. 725 0	1:1.05	60~70	1.5	68. 5
I_{2}	0. 725 0	1:1.05	60~70	1.5	69. 2
I 3	0. 725 0	1:1.05	60~70	1.5	68. 7
\prod_{1}	0. 362 5	1:1.05	60~70	1.5	70. 2
\prod_{2}	0. 362 5	1:1.05	60~70	1.5	72. 3
\coprod_3	0. 362 5	1:1.05	60~70	1.5	73. 5

由该实验结果分析可得,在其它条件相同下,采用超声波技术合成苄基 2 萘基醚比直接合成苄基 2 萘基醚在相转移催化剂的用量上减少近一半.

2.1.3 优化条件下的重复实验结果

在正交设计所得的最佳条件下进行重复实验,结果见表 4.

2.1.4 产品分析

以2萘酚、氯化苄和氢氧化钠为原料、50~60°C水浴、超声波辐射、1.5h、采用四丁基溴化铵为相转移

催化剂制取苄基 2 萘基醚, 粗产品用 95%(质量分数)乙醇重结晶, 干燥得到肉色片状固体. 熔点为 97. 5~99. 5 $^{\circ}$ C(文献值 $100 \sim 101$ $^{\circ}$ C(2)). 所得样品红外光谱(KBr压片)的典型蜂为: 芳醚(= $^{\circ}$ G $^{\circ}$ G) 伸缩振动频率(cm⁻¹): 125 6, 121 7, 117 8; 芳环(C=C)伸缩振动频率(cm⁻¹): 162 8, 159 5, 152 0; 芳环(= $^{\circ}$ G $^{\circ}$ H) 弯曲振动频率(cm⁻¹): 763, 735; 萘环 2 取代位伸缩振动频率(cm⁻¹): 758. 谱图与苄基 2 萘基醚标准谱图一致[4].

2.2 讨论

2.2.1 溶剂的选择

文献采用甲苯作溶剂,但甲苯具有较大的毒性,它可通过吸食进入人的体内或经皮吸收,对人体造成危害^[2].为使反应接近绿色化,我们选用环己烷代替甲苯做溶剂.

2.2.2 超声波作用对反应条件的改善

与原合成方法比较^[3],采用超声波技术催化合成苄基 2 萘基醚时,反应温度降低至 $50 \sim 60$ $^{\circ}$,且催化剂用量减少,反应时间明显缩短.

3 结论

本文采用在超声波辐射下,以四丁基溴化铵作相转移催化剂,合成了苄基 2 萘基醚. 该合成方法鲜见文献报道. 通过正交实验设计优化了最佳反应条件,即在超声波辐射下,以四丁基溴化铵为相转移催化剂,催化剂用量为 0.725 0g,反应温度为 $60 \sim 70$ $^{\circ}$,反应时间为 1.5h.与常规方法相比,该方法采用了新的能源方式对醚化反应进行催化,大大改善了反应条件,使反应温度大幅度降低,更易于控制,反应时间明显缩短,同时催化剂用量减少,表明采用超声波技术可以提高催化剂的利用率,使合成向绿色化迈近一步.

参考文献:

- [1] WILLIAM W S. The Saddler Handbook of Infrared Spectra [M] . Philadelphia: Sadtler Research Laboratories Ing. 1978. 389.
- [2] 汪小兰. 有机化学(第5版)[M]. 北京: 高等教育出版社, 2005. 61.
- [3] 王树清, 高崇, 朱石生. 苄基 2 萘基醚的相转移催化合成研究[3]. 化学世界, 2004, 45(5): 267~269.
- [4] 薛永强, 王志忠, 张蓉, 等. 现代有机合成方法与技术[M]. 北京: 化学工业出版社, 2003. 293~296.

Synthesis of Benzyl 2 Naphthyl Ether Under Ultrasound Irradiation

LI Jing fen

(Faulty of Life Science, Huzhou Teachers College, Huzhou 313000, China)

Abstract: In order to study the synthetic method of benzyl 2 naphthyl ether, we used in the synthetic process of benzyl 2 naphthyl ether ultrasonic catalysis, $Bu_4N^+Br^-$ as phase transfer catalyst and cyclo hexane as an impregnant. In addition, we made $L_9(3^4)$ orthogonal experiment to optimize reaction condition. Under the ultrasonic condition, using $Bu_4N^+Br^-$ as phase transfer catalyst in the synthetic process of benzyl 2 naphthyl ether is a kind of good industrial process. By using the ultrasonic technology, the optimal condition of syntheses of benzyl 2 naphthyl ether using $Bu_4N^+Br^-$ as phase transfer catalyst, the rate of mole of 2 naphthol and benzyl chloride is 1 : 1.05, the reaction temperature is about 60 ~ $70^{\circ}C$, and the reaction time is about 1.5h, the yield can reach over 40.5%.

Key words: ultrasound irradiation; benzył 2 naphthyl ether; phase transfer catalysis; orthogonal experimental design