

PolarHT[™] Power MOSFET

IXTH 96N20P IXTQ 96N20P IXTT 96N20P V_{DSS} = 200 V I_{D25} = 96 A $R_{DS(on)}$ \leq 24 m Ω

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum	Maximum Ratings		
V _{DSS}	T ₁ = 25° C to 150° C	200	V		
V _{DGR}	T_J° = 25° C to 150° C; R_{GS} = 1 M Ω	200	V		
V _{GSS}	Continous	<u>+2</u> 0	V		
V _{GSM}	Transient	±30	V		
I _{D25}	T _C =25°C	96	Α		
I _{D(RMS)}	External lead current limit	75	Α		
I _{DM}	$T_{\rm C}$ = 25° C, pulse width limited by $T_{\rm JM}$	225	Α		
I _{AR}	T _C =25°C	60	Α		
E _{AR}	T _C =25°C	50	mJ		
E _{AS}	T _C = 25° C	1.5	J		
dv/dt	$I_{S} \leq I_{DM}$, di/dt \leq 100 A/ μ s, $V_{DD} \leq V_{DSS}$,	10	V/ns		
	$T_J \leq 150^{\circ} C$, $R_G = 4 \Omega$				
P_{D}	T _C = 25° C	600	W		
T		-55 +175	°C		
T _{IM}		175	°C		
T _{stg}		-55 +150	°C		
T,	1.6 mm (0.062 in.) from case for 10 s	300	°C		
T _{SOLD}	Plastic body for 10 s	260	°C		
M _d	Mounting torque (TO-3P, TO-247)	1.13/10	Nm/lb.in.		
Weight	TO-3P	5.5	g		
	TO-247 TO-268	6.0 5.0	g		
	10-200	5.0	9		

(TAB)

TO-268 (IXTT)

G = Gate	D = Drain
S = Source	TAB = Drain

Features

- ¹ International standard packages
- Unclamped Inductive Switching (UIS) rated
- 1 Low package inductance
 - easy to drive and to protect

Symbol (T _J = 25° C,	Test Conditions unless otherwise specified)		Ch Min.	istic Va Max	
BV _{DSS}	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		200		V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$		2.5	5.0	V
I _{GSS}	$V_{GS} = \pm 20 V_{DC}, V_{DS} = 0$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 150° C		25 250	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10 \text{ V}, I_{D} = 0.5 I_{D25}$ Pulse test, t ≤300 µs, duty	cycle d ≤ 2 %		24	mΩ

Advantages

- ^I Easy to mount
- Space savings
- High power density

DS99117E(10/05)

Symbol **Test Conditions Characteristic Values** (T₁ = 25° C, unless otherwise specified) Min. Typ. Max. $V_{DS} = 10 \text{ V}; I_{D} = 0.5 I_{D25}, \text{ pulse test}$ 52 S g_{fs} Ciss 4800 рF $V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$ 1020 pF $\mathbf{C}_{\underline{r_{\underline{s}\underline{s}}}}$ 270 pF $\mathbf{t}_{\text{d(on)}}$ 28 ns $V_{_{\mathrm{GS}}}$ = 10 V, $V_{_{\mathrm{DS}}}$ = 0.5 $V_{_{\mathrm{DSS}}}$, $I_{_{\mathrm{D}}}$ = $I_{_{\mathrm{D25}}}$ 30 t, ns $R_c = 4 \Omega$ (External) 75 ns t_{d(off)} 30 ns t, $\mathbf{Q}_{\mathrm{g(on)}}$ 145 nC \mathbf{Q}_{gs} $V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 0.5 \text{ I}_{D25}$ 30 nC Q_{gd} 80 nC 0.25° C/W R_{thJC} 0.21 ° C/W $\mathbf{R}_{\text{thC}\underline{s}}$ (TO-3P, TO-247)

Source-Drain Diode

Characteristic Values (T, = 25°C, unless otherwise specified)

Symbol	Test Conditions Min.	∣Тур.	Max.	
I _s	V _{GS} = 0 V		96	Α
I _{SM}	Repetitive		240	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0 \text{ V}$, Pulse test, t ≤300 µs, duty cycle d≤ 2 %		1.5	V
$\begin{bmatrix} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} \end{bmatrix}$	$I_F = 25 \text{ A}, -\text{di/dt} = 100 \text{ A/}\mu\text{s}$ $V_R = 100 \text{ V}, V_{GS} = 0 \text{ V}$	160 3.0		ns μC

SYM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
Α	.185	.193	4.70	4.90	
A1	.051	.059	1.30	1.50	
A2	.057	.065	1.45	1.65	
Ь	.035	.045	0.90	1.15	
b2	.075	.087	1.90	2.20	
b4	.114	.126	2.90	3.20	
С	.022	.031	0.55	0.80	
D	.780	.799	19.80	20.30	
D1	.665	.677	16.90	17.20	
E	.610	.622	15.50	15.80	
E 1	.531	.539	13.50	13.70	
е	.215 BSC		5.45 BSC		
L	.779	.795	19.80	20.20	
L1	.134	.142	3.40	3.60	
ØΡ	.126	.134	3.20	3.40	
øP1	.272	.280	6.90	7.10	
S	.193	.201	4.90	5.10	

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 150°C

Fig. 5. R_{DS(on)} Normalized to

Fig. 2. Extended Output Characteristics

Fig. 4. $R_{DS(on)}$ Normalized to 0.5 I_{D25} Value vs. Junction Temperature

Fig. 6. Drain Current vs. Case
Temperature

0

0

0.4

0.6

4.5

5

5.5

Fig. 7. Input Admittance 160 140 120 ID - Amperes 100 80 60 T_J = 150°C 25°C 40 -40°C 20

6.5

 V_{GS} - Volts

Fig. 9. Source Current vs.

7.5

1.2

1.4

1.6

8

8.5

Source-To-Drain Voltage 300 250 200 Is - Amperes 150 100 T_J = 150°C 50 T_J = 25°C

V_{SD} - Volts

Fig. 11. Capacitance 10000 = 1MHz c_{iss} Capacitance - picoFarads 1000 Coss C_{rss} 100 0 5 10 20 25 30 35 40 V_{DS} - Volts

Fig. 8. Transconductance 80 T_{.1} = -40°C 70 25°C 60 g fs - Siemens 50 40 30 20 10 0 0 25 50 75 100 125 150 175 200 I_D - Amperes

Fig. 12. Forward-Bias

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Maximum Transient Thermal Resistance

