AD-A069 820
UNION COLL AND UNIV SCHENECTADY NY INST OF ADMINISTR—ETC F/G 12/1
A USEFUL APPROXIMATE FORMULA FOR THE DETERMINATION OF THE REGIO—ETC(U)
FEB 79 L A AROIAN, R W MILLER
N00014-77-C-0438
NL

END
ANTE
TARB
7 - 79

END
ANTE
TARB
7 - 79

IEVEL

A USEFUL APPROXIMATE FORMULA FOR THE DETERMINATION OF THE REGIONS OF THE SEQUENTIAL TEST FOR THE CORRELATION COEFFICIENT

AES-7901

This document has been approved for public release and sale; its distribution is unlimited.

ADMINISTRATIVE AND ENGINEERING SYSTEMS MONOGRAPH

A USEFUL APPROXIMATE FORMULA FOR THE DETERMINATION
OF THE REGIONS OF THE SEQUENTIAL TEST
FOR THE CORRELATION COEFFICIENT.

Technical rept.

Jun 78-Jin 79 by

Leo A./Aroian
Union College and Union College and Union Statistical Scientist
Allied Chemical Company, Buffalo, N.Y.

15 Pebers 1979

15 Pebers 1979

UNION COLLEGE AND UNIVERSITY
Institute of Administration and Management
Schenectady, New York 12308

This document has been approved for public release and sale; its distribution is unlimited.

408 725 LB

A USEFUL APPROXIMATE FORMULA FOR THE DETERMINATION OF THE REGIONS OF THE SEQUENTIAL TEST FOR THE CORRELATION COEFFICIENT

by

Leo A. Aroian Union College and University

Robert W. Miller Statistical Scientist Allied Chemical Company, Buffalo, N.Y.

1. Introduction.

A simple approximate formula is shown to be remarkably accurate for the determination of the regions of the sequential test for the correlation coefficient, p, when the variates follow a bivariate normal distribution. The approximate results are compared with the exact values and with an approximation of Ghosh (1970). The exact results depend on the solution of an equation involving the ratio of two hypergeometric functions. These results, combined with the Monte Carlo evaluations of the OC, operating characteristic function, the ASN, the average sample number, and the exact values of some selected regions by Campbell, Taneja, and Aroian (1977), (1978) provide all the materials needed for this sequential test. The real advantage of a sequential test over a fixed size test is the early termination of the test when ρ exceeds ρ_1 or ρ is less than ρ_0 by a substantial amount. Additionally the savings in sample size vary from 25% to 80% as compared to a fixed size test.

Determination of the Regions.

The sequential test for the coefficient of correlation is due to B.K. Ghosh (1970), who gives a complete discussion of all its essential properties. The test is described as follows.

$$\overline{x}_{1n} = \sum_{i=1}^{n} x_{1i}/n, \ \overline{x}_{2n} = \sum_{i=1}^{n} x_{2i}/n,$$

$$s_{1n}^{2} = \sum_{i=1}^{n} (x_{1i} - \overline{x}_{1n})^{2}/n, \ s_{2n}^{2} = \sum_{i=1}^{n} (x_{2i} - \overline{x}_{2n})^{2}/n,$$

$$r_{n} = \sum_{i=1}^{n} (x_{1i} - \overline{x}_{1n}) (x_{2i} - \overline{x}_{2n})/n s_{1n} s_{2n},$$

where $ns_{1n}s_{2n} = \{ \sum (x_{1i} - \overline{x}_{1n})^2 + \sum (x_{2i} - \overline{x}_{2n})^2 \}^{1/2}$

The hypothesis under test is H_0 : $\rho = \rho_0$ versus H_1 : $\rho = \rho_1$, $\rho_1 > \rho_0$. The Wald sequential test limits are given by $r_n(u)$, the upper limit for r_n , and $r_n(\ell)$, the lower limit for r_n . As soon as $r_n \leq r_n(\ell)$ accept $\rho = \rho_0$, or as soon as $r_n \geq r_n(u)$ accept $\rho = \rho_1$. The values of $r_n(u)$ and $r_n(\ell)$ are determined as follows. First $z_n(r_n)$ must be found:

$$\begin{split} z_2(r_2) &= \ln (\pi - 2\sin^{-1}\rho_1) - \ln (\pi - 2\sin^{-1}\rho_0), & \text{if } r_2 = -1, \\ &= \ln (\pi + 2\sin^{-1}\rho_1) - \ln (\pi + 2\sin^{-1}\rho_0), & \text{if } r_2 = 1, \\ z_n(r_n) &= .5(n-1)\{\ln (1-\rho_1^2) - \ln (1-\rho_0^2)\} \\ &- (n-1.5)\{\ln (1-\rho_1 r_n) - \ln (1-\rho_0 r_n)\} \\ &+ \ln F\{.5,.5,n-.5; .5(1+\rho_1 r_n)\}, & \text{if } n > 2. \end{split}$$

Note $F(r,s,t;z) = \sum_{j=0}^{\infty} \frac{\Gamma(r+j)\Gamma(s+j)\Gamma(t)}{\Gamma(r)\Gamma(s)\Gamma(t+j)} (z^{j/j!}).$

Define b = $\ln\{\beta/(1-\alpha)\}$, a = $\ln\{(1-\beta)/\alpha\}$. If n = 2, r_2 = -1, and $z_2(-1) \le b$, accept $\rho = \rho_0$; if n = 2, r_2 = 1, and $z_2(1) \ge a$, accept $\rho = \rho_1$. If n ≥ 3 , r_n is computed from $z_n(r_n) = b$ and $z_n(r_n) = a$, and $\rho = \rho_0$ or $\rho = \rho_1$ is accepted depending on whether $r_n \le r_n(\ell)$, or $r_n \ge r_n(u)$ where $r_n(\ell)$ and $r_n(u)$ are solutions of $z_n(r_n(\ell)) = b$, and $z_n(r_n(u)) = a$. This test, the preceding results, and the monotonicity properties of $z_n(r_n)$ are due to B.K. Ghosh (1970).

3. Approximate Formula for r_n .

If we omit the hypergeometric functions in $z_n(r_n) = a$ or b we obtain the approximate formula for $r_n(u)$ and $r_n(\ell)$ for $n \ge 3$:

(3.1)
$$r_n(u)$$
 or $r_n(\ell) = (W-1)/(W\rho_1-\rho_0)$

(3.2)
$$W = \{(1-\rho_0^2)/(1-\rho_1^2)\}^{1/2+(4n-6)^{-1}}e^{\omega(n-1.5)^{-1}}$$

where ω = b for determining $r_n(u)$, and ω = a for determining $r_n(\ell)$. The formula is correct to order $O(n^{-1})$ and is exact if the hypergeometric terms could be neglected. The hypergeometric terms depend only on r = 0.5, s = 0.5, t = n-0.5, $z = 0.5(1+\rho_1 r_n)$ and $0.5(1+\rho_0 r_n)$. A remainder term C_1 is found if we use $\ln(1+A_1z)$ for each hypergeometric function

(3.3)
$$c_1 = 0.5(\rho_1 - \rho_0)(4n-2)^{-1}r_n$$

bounded by ± 0.1 for n>2 in the worst possible situation $\rho_1=1$, $\rho_0=-1$ and $r_n=\pm 1$; is least when $\rho_1-\rho_0$ and r_n are small. Furthermore a and b are the smallest in absolute

value when α and β assume their largest permissible values. Hence the approximate formula will be quite accurate for α 's and β 's commonly used: $\alpha \le .25$, $\beta \le .25$. A more accurate remainder term C_2 of order $O(n^{-3})$ is found by use of three terms of the hypergeometric function and its logarithm:

(3.4)
$$C_2 = 0.5(\rho_1 - \rho_0)r_n \{ (4n-2)^{-1} + (1.125(4n^2-1)^{-1} - 0.5(4n-2)^{-2} \} (1+0.5(\rho_1 + \rho_0)r_n) \}.$$

Here r_n indicates either $r_n(\ell)$ or $r_n(u)$. Both C_1 and C_2 will be used to improve the accuracy of (3.1) and (3.2).

A second approximation to $r_n(\ell)$ and $r_n(u)$ is first to calculate

(3.5)
$$W_1 = W \exp\{\omega_1 (n-1.5)^{-1}\}\$$

where $\omega_1 = b-C_1$ for $r_n(u)$ and $\omega_1 = -a+C_1$ for $r_n(\ell)$. A third approximation is to use $\omega_1 = b-C_2$ and $-a+C_2$ in W_1 . In both C_1 and C_2 the r_n to be used is that value found first by (3.1) and (3.2). Otherwise we may consider r_n unknown in C_1 and C_2 and then solve for it by using $z_n(r_n(\ell)) = a$ and b, where the hypergeometric terms are properly replaced by C_1 or C_2 .

4. Examination of Various Cases.

We examine a case where (3.1) and (3.2) are almost as poor as possible, Table 1, and a more usual set of values, Table 2. Let $\rho_0 = -.5$, $\rho_1 = .5$, $\alpha = .40$, $\beta = .50$, a = .22314, b = -.18232. In this case the results are given in Table 1. Clearly formulas (3.1) and (3.2) either alone, or followed by (3.5) using

 C_1 or C_2 are certainly sufficient. In Table 2 we list the exact boundaries values, those found by the approximation (3.1), (3.2), and Ghosh's approximation formula (1970, p. 324) for a wide variety of $\{\rho_0, \rho_1, \alpha, \beta\}$.

TABLE 1 Boundaries for the Sequential Test $\alpha = .40, \; \beta = .50, \; \rho_1 = .50, \; \rho_0 = -.50$

		r _n (u)			r _n (l)					
n	1	2	3	4	5	6	7	8		
3	.1485	.1436	.1421	.1418	1214	1174	1163	1160		
4	.0892	.0879	.0876	.0875	0729	0719	0716	0716		
5	.0637	.0632	.0631	.0631	0521	0517	0516	0516		
6	.0496	.0493	.0493	.0493	0405	0403	0403	0403		
7	.0406	.0404	.0404	.0404	0332	0330	0330	0330		

^{1 &}amp; 5 evaluated by (3.1) and (3.2),

^{2 &}amp; 6 evaluated by the second approximation (3.5),

^{3 &}amp; 7 evaluated by the third approximation (3.5),

^{4 &}amp; 8 are exact results.

Corrections to AES-7901

A USEFUL APPROXIMATE FORMULA FOR THE

DETERMINATION OF THE REGIONS OF THE

SEQUENTIAL TEST FOR THE CORRELATION COEFFICIENT

In Table 2

				r _n (l)				r _n (u)			
0	ρ ₁	α	β	n	1	2	3	4	5	6	
0	.10	.05	.05	30			9273				
				31	9928	9933	- 8957	.9957	.9961	.9944	
				40	7396	7400	- 6829	.7831	.7833	.7819	

		α	В	n		r _n (l)		r	n (u)	
0 0	⁰ 1	•			1	2	3	4	5	6
0	.10	. 05	.05	30			9273			
				31		9933	8957		.9961	.9944
				40		7400	6829		.7833	.7819
0	.10	.05	.15	20	9925	9923				.9672
				30	6143	6147	8904	.9922	.9925	.6615
				40	4375	4378	6553	.7564	.7566	.5086
0	.10	.10	.15	20	9604	9603				.9403
				30	5941	5946	6605	.7703	.7707	.6436
				40	4229	4232	4828	.5885	.5887	.4952
0	.10	.20	.01	18			8354	.9698	.9707	
				20			7468	.8747	.8754	
				30			4812	.5936	.5940	
				46	9787	9789	2964	.4017	.4019	.9974
0	.10	.20	. 05	18			8126	.9473	.9481	
				20			7263	.8543	.8551	
				30	9650	9655	4675	.5800	.5803	.9689
				40	6919	6922	3381	.4452	. 4454	.7392
0	.10	.20	.10	17			8317	.9709	.9717	
				20			6994	.8276	.8283	
				30	7016	7020	4496	.5621	.5624	.7390
				40	5012	5014	3246	.4317	.4320	.5668
0	.10	.20	.15	16			8512	.9956	.9966	
				20	8899	8907	6710	.7993	.7999	.8817
				30	5505	5509	4306	.5432	.5435	.6045
				40	3911	3914	3104	.4175	.4178	.4659
0	.10	.20	.20	16	9449	9463	8127	.9579	.9589	.9114
				20	7219	7227	6402	.7690	.7697	.7392
				30	4446	4449	4101	.5230	.5234	.5095
				40	3138	3140	2950	.4024	.4026	.3946
0	. 25	. 05	.10	11	8984	9003	8963			.9140
				20	3701	3704	4358	.6898	.6901	.5599
				30	1889	1890	2482	.5023	.5025	.4156
				40	1044	1045	1544	.4086	.4086	.3444
.25	.50	.05	.10	9	9865	9913	5762			.5832
				10	7480	7508	4804			.5630
				15	2206	2211	1929	.8769	.8773	.4486
				20	0285	0286	0492	.7668	.7670	.4725
.25	.50	.10	.10	9	9338	9383	3508			
				10	7071	7097	2775	.9547	.9555	
				20	0167	0168	.0522	.6889	.6891	.6954
				30	.1382	.1382	.1621	.5914	.5916	.5909

TABLE 2 (Continued)

P 0	٥٦	α	В	n		r _n (l)			r _n (u)		
					1	2	3	4	5	6	
. 25	.50	.10	.20	7	7775	7840	5109			.9876	
				10	2569	2579	2430	.9313	.9331	.8059	
				20	.1268	.1269	.0695	.6750	.6752	.5939	
				30	.2226	.2227	.1736	.5815	.5816	.5233	
.25	.75	.10	.20	4	3279	3367	0307			.8814	
				10	.3678	.3681	.3160	.7698	.7703	.6808	
				15	.4396	.4398	.3930	.6976	.6978	.6362	
.25	.75	.20	.20	4	2097	2152	.1457	.9609	.9656	.8514	
				10	.3858	.3861	. 3865	.7107	.7113	.6688	
				15	.4499	.4501	.4400	.6555	.6558	.6282	

1 and 4 are exact results,

2 and 5 are new approximations,

3 and 6 Ghosh's approximations.

A blank indicates no decision.

In all cases the boundaries found by the new approximation are wider than those given by the exact results. This means that the ASN (average sample number) will be slightly larger, with an accompanying slight decrease in α and β .

REFERENCES

- Campbell, D., Taneja, V., Aroian, L.A. (1977). Sequential tests for the coefficient of correlation. Exact Wald regions, operating characteristic, and average sample number. 1977 Social Statistics Section Proceedings of the American Stat. Asso., 987-990.
- Ghosh, B.K. (1970). <u>Sequential Tests of Statistical Hypotheses</u>. Addison-Wesley.
- Taneja, V., Campbell, D., Aroian, L.A. (1978). Tables of the regions, operating characteristic function, and average sample number for Wald sequential tests, Ohio State Univ. Technical Report 158, Dept. of Stat., 1958 Neil Avenue, Columbus, Ohio, 43210.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM				
AES-7901	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER			
for the Determination of the the Sequential Test for the	S. TYPE OF REPORT & PERIOD COVERED Technical Report Jun. 1978-Jan1979 6. PERFORMING ORG. REPORT NUMBER				
Coefficient		AES-7901 CONTRACT OR GRANT NUMBER(*)			
Leo A. Aroian . Robert W. Miller		N00014-77-C-0438			
Institute of Administration NAME AND ADDRESS Institute of Administration Union College Schenectady, NY 12308	• & Management,	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS			
Office of Naval Research Department of Navy Arlington, VA		Feb. 15, 1979 13. NUMBER OF PAGES 9			
14. MONITORING AGENCY NAME & ADDRESS(II dillerent	i trom Controlling Office)	Unclassified 13. DECLASSIFICATION/DOWNGRADING SCHEDULE			

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Presented to the Computing Section of the American Stat. Assoc. at its annual meeting, August 1979 at Washington, D.C.

19. KEY WORDS (Continue on reverse elde if necessary and identify by block number)

Sequential analysis, coefficient of correlation. boundary regions, approximate formula, Wald regions.

rho

20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

A simple approximate formula is shown to be remarkably accurate for the determination of the regions of the sequential test for the correlation coefficient, ρ , when the variates follow a bivariate normal distribution. The approximate results are compared with the exact values and with an approximation of Ghosh (1970). The exact results depend on the solution of an equation involving the ratio of two hypergeometric functions. (over)

DD 1 708 1473 EDITION OF 1 NOV 46 14 OBSOLETE

DECURITY CLASSIFICATION OF THIS PAGE (When Fine Brissed)

LLINITY CLASSIFICATION OF THIS PAGE(When Date Entered)

20 (continued)

These results, combined with the Monte Carlo evaluations of the OC, operating characteristic function, the ASN, the average sample number, and the exact values of some selected regions by Campbell, Taneja, and Aroian (1977), (1978) provide all the materials needed for this sequential test. The real advantage of a sequential test over a fixed size test is the early termination of the test when ρ exceeds ρ_1 or ρ is less than ρ_0 by a substantial amount. Additionally the savings in sample size vary from 25% to 80% as compared to a fixed size test.

-rho sub 1

. rho sub o