In [3]:
import seaborn as sns

In [5]:

import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')

In [4]:

In [12]:

In [12]:

In [13]:

In [13]:

In [13]:

In [13]:

In [14]:

In [15]:

In [15]:

In [15]:

In [16]:

In [17]:

In [18]:

In

Out[13]:

	SubjectID	RisksetID	CaseStatus	AgeAtDiag	HPVpos	CTpos	AgeAtSmear	MatchFirst	Match
0	1	1	0	59.90	0	0	55.18	1	
1	1	1	0	59.90	0	0	59.31	0	
2	2	1	1	59.58	1	0	54.89	1	
3	2	1	1	59.58	1	0	59.40	0	
4	5	2	0	57.78	1	0	49.11	1	
4									•

In [14]:
infection_data.tail()

Out[14]:

	SubjectID	RisksetID	CaseStatus	AgeAtDiag	HPVpos	CTpos	AgeAtSmear	MatchFirst	Mat
752	242	132	1	28.99	1	0	28.08	0	
753	254	133	0	24.41	1	0	17.40	1	
754	256	133	1	24.19	1	0	17.29	1	
755	256	133	1	24.19	1	0	18.91	0	
756	256	133	1	24.19	1	0	19.49	0	
4									•

```
In [15]:
infection_data.shape
Out[15]:
(757, 10)
In [16]:
                                                                                        H
infection_data.columns
Out[16]:
Index(['SubjectID', 'RisksetID', 'CaseStatus', 'AgeAtDiag', 'HPVpos', 'CTp
os',
       'AgeAtSmear', 'MatchFirst', 'MatchLast', 'RecNr'],
      dtype='object')
In [17]:
                                                                                        H
infection_data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 757 entries, 0 to 756
Data columns (total 10 columns):
 #
     Column
                 Non-Null Count
                                 Dtype
 0
     SubjectID
                 757 non-null
                                  int64
     RisksetID
                 757 non-null
 1
                                  int64
 2
     CaseStatus 757 non-null
                                  int64
 3
     AgeAtDiag
                 757 non-null
                                  float64
 4
     HPVpos
                 757 non-null
                                  int64
 5
     CTpos
                                  int64
                 757 non-null
 6
     AgeAtSmear 757 non-null
                                  float64
 7
     MatchFirst 757 non-null
                                  int64
 8
     MatchLast
                 757 non-null
                                  int64
 9
     RecNr
                 757 non-null
                                  int64
dtypes: float64(2), int64(8)
memory usage: 59.3 KB
```

In [18]: ▶

```
infection_data.describe()
```

Out[18]:

	SubjectID	RisksetID	CaseStatus	AgeAtDiag	HPVpos	CTpos	AgeAtSmear
coun	757.000000	757.000000	757.000000	757.000000	757.000000	757.000000	757.000000
mear	122.023778	62.458388	0.561427	39.047503	0.549538	0.022457	33.593144
sto	74.482958	38.122296	0.496540	9.329715	0.497869	0.148263	9.805491
mir	1.000000	1.000000	0.000000	19.780000	0.000000	0.000000	16.200000
25%	58.000000	31.000000	0.000000	32.110000	0.000000	0.000000	26.390000
50%	118.000000	58.000000	1.000000	37.510000	1.000000	0.000000	32.200000
75%	186.000000	95.000000	1.000000	44.310000	1.000000	0.000000	39.690000
max	261.000000	133.000000	1.000000	75.190000	1.000000	1.000000	72.210000
4							•

In [19]: ▶

infection_data.isnull().sum()

Out[19]:

SubjectID 0 RisksetID 0 CaseStatus 0 AgeAtDiag 0 **HPVpos** 0 **CTpos** 0 AgeAtSmear 0 MatchFirst 0 MatchLast 0 RecNr 0 dtype: int64

```
H
In [20]:
infection_data.nunique()
Out[20]:
SubjectID
               261
RisksetID
               133
CaseStatus
                 2
AgeAtDiag
               238
HPVpos
                 2
CTpos
                 2
               591
AgeAtSmear
MatchFirst
                 2
MatchLast
                 2
RecNr
               757
dtype: int64
In [21]:
                                                                                          H
infection_data['CaseStatus'].unique()
Out[21]:
array([0, 1], dtype=int64)
In [22]:
                                                                                          H
infection_data['CaseStatus'].value_counts()
Out[22]:
1
     425
     332
Name: CaseStatus, dtype: int64
```

```
In [23]:

plt.figure(figsize=(15,6))
sns.countplot('CaseStatus', data = infection_data)
plt.xticks(rotation = 0)
plt.show()
```



```
In [24]: ▶
```

```
infection_data['HPVpos'].unique()
```

Out[24]:

array([0, 1], dtype=int64)

```
In [25]: ▶
```

```
infection_data['HPVpos'].value_counts()
```

Out[25]:

416
 341

Name: HPVpos, dtype: int64

```
In [26]:

plt.figure(figsize=(15,6))
sns.countplot('HPVpos', data = infection_data)
plt.xticks(rotation = 0)
plt.show()
```



```
In [27]: ▶
```

```
infection_data['CTpos'].unique()
```

Out[27]:

array([0, 1], dtype=int64)

```
In [28]: ▶
```

```
infection_data['CTpos'].value_counts()
```

Out[28]:

0 7401 17

Name: CTpos, dtype: int64

```
In [29]:

plt.figure(figsize=(15,6))
sns.countplot('CTpos', data = infection_data)
plt.xticks(rotation = 0)
plt.show()
```

```
In [30]:
infection_data['MatchFirst'].unique()
Out[30]:
```

array([1, 0], dtype=int64)

```
In [31]:
infection_data['MatchFirst'].value_counts()
```

Out[31]:

0 5011 256

Name: MatchFirst, dtype: int64

```
In [32]:
                                                                                               H
plt.figure(figsize=(15,6))
sns.countplot('MatchFirst', data = infection_data)
plt.xticks(rotation = 0)
plt.show()
  500
  400
  300
  200
  100
                                         MatchFirst
In [33]:
                                                                                               H
infection_data['MatchLast'].unique()
Out[33]:
array([0, 1], dtype=int64)
```

In [34]: H

infection_data['MatchLast'].value_counts()

Out[34]:

501 0 256

Name: MatchLast, dtype: int64

In [35]: ▶

```
plt.figure(figsize=(15,6))
sns.countplot('MatchLast', data = infection_data)
plt.xticks(rotation = 0)
plt.show()
```



```
In [37]: ▶
```


In [38]: ▶

In [39]: ▶

In [40]: ▶

In [41]: ▶

In [42]: ▶

sns.pairplot(infection_data)

Out[42]:

<seaborn.axisgrid.PairGrid at 0x196df33df0>


```
In [46]: ▶
```



```
In [47]: ▶
```



```
In [56]:

category=pd.cut(infection_data['AgeAtDiag'], bins= list(range(20,80,5)))

In [60]:

infection_data.insert(5,'Age_Group',category)
```

In [77]: ▶

```
infection_data.head()
```

Out[77]:

	SubjectID	RisksetID	CaseStatus	AgeAtDiag	HPVpos	Age_Group_New	Age_Group	Age Group	C ⁻
0	1	1	0	59.90	0	(55, 60]	(55, 60]	(55, 60]	
1	1	1	0	59.90	0	(55, 60]	(55, 60]	(55, 60]	
2	2	1	1	59.58	1	(50, 55]	(55, 60]	(55, 60]	
3	2	1	1	59.58	1	(55, 60]	(55, 60]	(55, 60]	
4	5	2	0	57.78	1	(45, 50]	(55, 60]	(55, 60]	
4									•

In [62]:

```
infection_data['Age_Group'].unique()
```

Out[62]:

```
[(55, 60], (60, 65], (50, 55], (40, 45], (35, 40], ..., (45.0, 50.0], (20. 0, 25.0], NaN, (70.0, 75.0], (65.0, 70.0]]

Length: 12

Categories (11, interval[int64, right]): [(20, 25] < (25, 30] < (30, 35] < (35, 40] ... (55, 60] < (60, 65] < (65, 70] < (70, 75]]
```

In [63]: ▶

```
infection_data['Age_Group'].value_counts()
```

Out[63]:

```
(35, 40]
             171
(30, 35]
             145
(40, 45]
             125
(25, 30]
             113
(45, 50]
              74
(50, 55]
              59
(55, 60]
              25
(20, 25]
              22
(60, 65]
              17
(65, 70]
               2
(70, 75]
               1
Name: Age_Group, dtype: int64
```

```
In [64]: ▶
```

```
plt.figure(figsize=(15,6))
sns.countplot('Age_Group', data = infection_data)
plt.xticks(rotation = 0)
plt.show()
```



```
In [65]:
```

category1=pd.cut(infection_data['AgeAtSmear'], bins= list(range(20,80,5)))

```
In [66]: ▶
```

infection_data.insert(5,'Age_Group_New',category1)

In [78]: ▶

```
infection_data.head()
```

Out[78]:

	SubjectID	RisksetID	CaseStatus	AgeAtDiag	HPVpos	Age_Group_New	Age_Group	Age Group	C ⁻
0	1	1	0	59.90	0	(55, 60]	(55, 60]	(55, 60]	
1	1	1	0	59.90	0	(55, 60]	(55, 60]	(55, 60]	
2	2	1	1	59.58	1	(50, 55]	(55, 60]	(55, 60]	
3	2	1	1	59.58	1	(55, 60]	(55, 60]	(55, 60]	
4	5	2	0	57.78	1	(45, 50]	(55, 60]	(55, 60]	
4									•

```
In [79]:
```

```
infection_data['Age_Group_New'].unique()
```

Out[79]:

```
[(55, 60], (50, 55], (45, 50], (60, 65], (40, 45], ..., (25.0, 30.0], (20. 0, 25.0], NaN, (70.0, 75.0], (65.0, 70.0]]

Length: 12

Categories (11, interval[int64, right]): [(20, 25] < (25, 30] < (30, 35] < (35, 40] ... (55, 60] < (60, 65] < (65, 70] < (70, 75]]
```

```
In [80]: ▶
```

```
infection_data['Age_Group_New'].value_counts()
```

Out[80]:

```
(25, 30]
             176
(30, 35]
             129
(35, 40]
             122
(20, 25]
             109
(40, 45]
              92
(45, 50]
              38
(50, 55]
              26
(55, 60]
              21
(70, 75]
               3
(65, 70]
               2
(60, 65]
```

Name: Age_Group_New, dtype: int64

In [81]: ▶

```
plt.figure(figsize=(15,6))
sns.countplot('Age_Group_New', data = infection_data)
plt.xticks(rotation = 0)
plt.show()
```



```
In [83]: ▶
```

```
plt.figure(figsize=(15,6))
sns.countplot(x = 'Age_Group', hue = 'HPVpos', data = infection_data)
plt.xticks(rotation = 0)
plt.show()
```


In [84]: ▶

```
plt.figure(figsize=(15,6))
sns.countplot(x = 'Age_Group_New', hue = 'HPVpos', data = infection_data)
plt.xticks(rotation = 0)
plt.show()
```



```
In [85]: ▶
```

```
plt.figure(figsize=(15,6))
sns.countplot(x = 'Age_Group', hue = 'CTpos', data = infection_data)
plt.xticks(rotation = 0)
plt.show()
```


In [86]: ▶

```
plt.figure(figsize=(15,6))
sns.countplot(x = 'Age_Group_New', hue = 'CTpos', data = infection_data)
plt.xticks(rotation = 0)
plt.show()
```



```
In [87]: ▶
```

```
plt.figure(figsize=(15,6))
sns.countplot(x = 'CaseStatus', hue = 'HPVpos', data = infection_data)
plt.xticks(rotation = 0)
plt.show()
```


In [88]: ▶

```
plt.figure(figsize=(15,6))
sns.countplot(x = 'CaseStatus', hue = 'CTpos', data = infection_data)
plt.xticks(rotation = 0)
plt.show()
```

