

Annexe 4 Programmes des classes préparatoires aux Grandes Ecoles

Filière: scientifique

Voie : Physique, chimie et sciences de l'ingénieur (PCSI) - Physique et sciences de l'ingénieur (PSI)

Discipline : Sciences industrielles de l'ingénieur

Première et seconde années

PROGRAMME DE SCIENCES INDUSTRIELLES DE L'INGÉNIEUR DANS LA FILIÈRE PCSI - PSI

Le programme de sciences industrielles de l'ingénieur dans la filière PCSI-PSI s'inscrit entre deux continuités : en amont avec les programmes rénovés du lycée, en aval avec les enseignements dispensés dans les grandes écoles et plus généralement les poursuites d'études universitaires. Il est conçu pour amener progressivement tous les étudiants au niveau requis non seulement pour poursuivre avec succès un cursus d'ingénieur, de chercheur, d'enseignant, de scientifique, mais encore pour permettre de se former tout au long de la vie.

1. OBJECTIFS DE FORMATION

1.1. Finalités

La complexité des systèmes et leur développement dans un contexte économique et écologique contraint requièrent des ingénieurs et des scientifiques ayant des compétences scientifiques et technologiques de haut niveau, capables d'innover, de prévoir et maîtriser les performances de ces systèmes.

Le programme de sciences industrielles de l'ingénieur s'inscrit dans la préparation des élèves à l'adaptabilité, la créativité et la communication nécessaires dans les métiers d'ingénieurs, de chercheurs et d'enseignants.

L'enseignement des sciences industrielles de l'ingénieur a pour objectif d'aborder la démarche de l'ingénieur qui permet, en particulier :

- de conduire l'analyse fonctionnelle, structurelle et comportementale d'un système pluritechnologique;
- de vérifier les performances attendues d'un système, par l'évaluation de l'écart entre un cahier des charges et des réponses expérimentales;
- de proposer et de valider des modèles d'un système à partir d'essais, par l'évaluation de l'écart entre les performances mesurées et les performances calculées ou simulées ;
- de prévoir les performances d'un système à partir de modélisations, par l'évaluation de l'écart entre les performances calculées ou simulées et les performances attendues au cahier des charges;
- d'analyser ces écarts et de proposer des solutions en vue d'une amélioration des performances.

L'identification et l'analyse des écarts présentés mobilisent des compétences transversales qui sont développées en sciences industrielles de l'ingénieur, mais aussi en mathématiques et en sciences physiques. Les sciences industrielles de l'ingénieur constituent donc un vecteur de coopération interdisciplinaire et participent à la poursuite d'études dans l'enseignement supérieur.

Les systèmes complexes pluritechnologiques étudiés relèvent de grands secteurs technologiques : transport, énergie, production, bâtiment, santé, communication, environnement. Cette liste n'est pas exhaustive et les enseignants ont la possibilité de s'appuyer sur d'autres domaines qu'ils jugent pertinents. En effet, les compétences développées dans le programme sont transposables à l'ensemble des secteurs industriels.

Les technologies de l'information et de la communication sont systématiquement mises en œuvre dans l'enseignement. Elles accompagnent toutes les activités proposées et s'inscrivent naturellement dans le contexte collaboratif d'un environnement numérique de travail (ENT).

1.2. Objectifs généraux

À partir de systèmes industriels placés dans leur environnement technico-économique, la carte heuristique ci-dessous présente l'organisation du programme qui est décliné en compétences associées à des connaissances et savoir-faire :

Les compétences développées en sciences industrielles de l'ingénieur forment un tout cohérent, en relation directe avec la réalité industrielle qui entoure l'élève. Couplées à la démarche de l'ingénieur, elles le sensibilisent aux travaux de recherche, de développement et d'innovation.

Analyser permet des études fonctionnelles, structurelles et comportementales des systèmes conduisant à la compréhension de leur fonctionnement et à une justification de leur architecture. Via les activités expérimentales, elles permettent d'acquérir une culture des solutions industrielles qui facilitent l'appropriation de tout système nouveau. Cette approche permet de fédérer et assimiler les connaissances présentées dans l'ensemble des disciplines scientifiques de classes préparatoires aux grandes écoles.

Modéliser permet d'appréhender le réel et d'en proposer, après la formulation d'hypothèses, une représentation graphique, symbolique ou équationnelle pour comprendre son fonctionnement, sa structure et son comportement. Le modèle retenu permet des simulations afin d'analyser, de vérifier, de prévoir et d'améliorer les performances d'un système.

Résoudre permet de donner la démarche pour atteindre de manière optimale un résultat. La résolution peut être analytique ou numérique. L'outil de simulation numérique permet de prévoir les performances de systèmes complexes en s'affranchissant de la maîtrise d'outils mathématiques spécifiques.

Expérimenter permet d'appréhender le comportement des systèmes, de mesurer, d'évaluer et de modifier les performances. Les activités expérimentales sont au cœur de la formation et s'organisent autour de produits industriels instrumentés ou de systèmes didactisés utilisant des

solutions innovantes. Elles permettent de se confronter à la complexité de la réalité industrielle, d'acquérir une culture des solutions technologiques, de formuler des hypothèses pour modéliser le réel, d'en apprécier leurs limites de validité, de développer le sens de l'observation, le goût du concret et la prise d'initiative.

Concevoir permet de modifier l'architecture des systèmes pour satisfaire un cahier des charges. Elle permet également de faire évoluer le comportement des systèmes. Elle développe l'esprit d'initiative et la créativité des élèves.

Communiquer permet de décrire, avec les outils de la communication technique et l'expression scientifique et technologique adéquate, le fonctionnement, la structure et le comportement des systèmes.

1.3. Usage de la liberté pédagogique

Les finalités et objectifs généraux de la formation en sciences industrielles de l'ingénieur laissent à l'enseignant une latitude certaine dans le choix de l'organisation de son enseignement, de ses méthodes, de sa progression globale, mais aussi dans la sélection de ses problématiques ou ses relations avec ses élèves, qui met fondamentalement en exergue sa liberté pédagogique, suffisamment essentielle pour lui être reconnue par la loi. La liberté pédagogique de l'enseignant peut être considérée comme le pendant de la liberté d'investigation de l'ingénieur et du scientifique.

Globalement, dans le cadre de sa liberté pédagogique, le professeur peut organiser son enseignement en respectant deux principes :

- pédagogue, il doit privilégier la mise en activités des élèves en évitant le dogmatisme ; l'acquisition de connaissances et de savoir-faire est d'autant plus efficace que les étudiants sont acteurs de leur formation. Les supports pédagogiques utilisés doivent notamment aider à la réflexion, la participation et l'autonomie des élèves. La détermination des problématiques, alliée à un temps approprié d'échanges, favorise cette mise en activité;
- didacticien, il doit recourir à la mise en contexte des connaissances, des savoir-faire et des systèmes étudiés; les sciences industrielles de l'ingénieur et les problématiques qu'elles induisent se prêtent de façon privilégiée à une mise en perspective de leur enseignement avec l'histoire des sociétés, des sciences et des techniques, des questions d'actualité ou des débats d'idées; l'enseignant de sciences industrielles de l'ingénieur est ainsi conduit naturellement à recontextualiser son enseignement pour rendre la démarche plus naturelle et motivante auprès des élèves.

2. PROGRAMME

Pour assurer la cohérence du programme, la totalité de l'enseignement est assurée par un même professeur sur chaque année de formation.

Le programme de sciences industrielles de l'ingénieur introduit des compétences fondamentales pour l'ingénieur et le scientifique. Celles-ci forment un tout que l'enseignant organise en fonction des connaissances et savoir-faire exigibles.

Le programme est élaboré en s'inspirant de l'approche projet, sans pour autant prétendre former les élèves à la conduite de projets.

La diversité des outils existants pour décrire les systèmes pluritechnologiques rend difficile la communication et la compréhension au sein d'une équipe regroupant des spécialistes de plusieurs disciplines. Il est indispensable d'utiliser des outils compréhensibles par tous et compatibles avec les spécificités de chacun.

Le langage de modélisation SysML (System Modeling Language) s'appuie sur une description graphique des systèmes et permet d'en représenter les constituants, les programmes, les flux d'information et d'énergie.

L'adoption de ce langage en classes préparatoires, situées en amont des grandes écoles, permet de répondre au besoin de modélisation à travers un langage unique. Il intègre la double approche structurelle et comportementale des systèmes représentatifs du triptyque matière - énergie - information.

Le langage SysML permet de décrire les systèmes selon différents points de vue cohérents afin d'en permettre la compréhension et l'analyse. Les diagrammes SysML remplacent les outils de description fonctionnelle et comportementale auparavant utilisés.

Les diagrammes SysML sont présentés uniquement à la lecture. La connaissance de la syntaxe du langage SysML n'est pas exigible.

Le programme est organisé selon la structure ci-dessous. Le séquencement proposé n'a pas pour objet d'imposer une chronologie dans l'étude du programme. Celui-ci est découpé en quatre semestres.

Il sera fait appel, chaque fois que nécessaire, à une étude documentaire destinée à analyser et à traiter l'information relative à la problématique choisie.

Analyser

- o Identifier le besoin et les exigences
- o Définir les frontières de l'analyse
- o Appréhender les analyses fonctionnelle et structurelle
- Caractériser des écarts
- Apprécier la pertinence et la validité des résultats

Modéliser

- o Identifier et caractériser les grandeurs physiques
- o Proposer un modèle de connaissance et de comportement
- Valider un modèle

Résoudre

- o Proposer une démarche de résolution
- o Procéder à la mise en œuvre d'une démarche de résolution analytique
- o Procéder à la mise en œuvre d'une démarche de résolution numérique

Expérimenter

- o S'approprier le fonctionnement d'un système pluritechnologique
- o Proposer et justifier un protocole expérimental
- Mettre en œuvre un protocole expérimental

Concevoir

Communiquer

- o Rechercher et traiter des informations
- o Mettre en œuvre une communication

Lorsqu'une connaissance et le(s) savoir-faire associé(s) sont positionnés au semestre Si, cela signifie :

- qu'ils doivent être acquis en fin de semestre Si;
- qu'ils ont pu être introduits au cours des semestres précédents ;
- qu'ils peuvent être utilisés aux semestres suivants.

A - Analyser

A1 Identifier le besoin et les exigences

Connaissances	Savoir-faire	1 ^{re}	2 ^e
Cahier des charges : - diagramme des exigences - diagramme des cas d'utilisation	Décrire le besoin Traduire un besoin fonctionnel en exigences Présenter la fonction globale Définir les domaines d'application, les critères technico-économiques Identifier les contraintes Identifier et caractériser les fonctions Qualifier et quantifier les exigences (critère, niveau)	s1	année
Commentaires Les diagrammes SysML sont présentés uniquement à la lecture. La connaissance de la syntaxe du langage SysML n'est pas exigible. Impact environnemental Évaluer l'impact environnemental (matériaux, énergies,			
impact environmental	nuisances)	S1	
Commentaires Il s'agit de sensibiliser les élèves au développement durable.			

A2 Définir les frontières de l'analyse

Connaissances	Savoir-faire	1 ^{re} année	2 ^e année
Frontière de l'étude Milieu extérieur	Isoler un système et justifier l'isolement Définir les éléments influents du milieu extérieur	S2	
Flux échangés	Identifier la nature des flux échangés (matière, énergie, information) traversant la frontière d'étude	S2	

A3 Appréhender les analyses fonctionnelle et structurelle

Au premier semestre, les analyses fonctionnelles et structurelles seront limitées à la lecture. Elles permettent à l'élève d'appréhender la complexité du système étudié et de décrire les choix technologiques effectués par le constructeur. Au terme du second semestre, l'élève devra être capable de proposer un outil de description du système étudié.

Connaissances	Savoir-faire	1 ^{re}	2 ^e
Connaissances	Savoli-laile	année	année
Architectures fonctionnelle et structurelle : - diagrammes de définition de blocs - chaîne directe - système asservi - commande	Analyser les architectures fonctionnelle et structurelle Identifier les fonctions des différents constituants Repérer les constituants dédiés aux fonctions d'un système Identifier la structure d'un système asservi : chaîne directe, capteur, commande, consigne, comparateur, correcteur Identifier et positionner les perturbations Différencier régulation et poursuite	S1	
	Justifier le choix des constituants dédiés aux fonctions d'un système		S4
Commentaires Il faut insister sur la justification de l'asservissement par la présence de perturbations.			
Chaîne d'information et	Identifier et décrire la chaîne d'information et la chaîne		
d'énergie : - diagramme de blocs internes	d'énergie du système Identifier les liens entre la chaîne d'énergie et la	S1	

- diagramme paramétrique	chaîne d'information			
	Identifier les constituants de la chaîne d'information			
	réalisant les fonctions acquérir, coder, communiquer,			
	mémoriser, restituer, traiter			
	Identifier les constituants de la chaîne d'énergie			
	réalisant les fonctions agir, alimenter, convertir,			
	moduler, transmettre, stocker			
	Vérifier l'homogénéité et la compatibilité des flux entre			
	les différents constituants			
	Identifier la nature et les caractéristiques des flux		S4	
	échangés			
	Identifier et interpréter les modèles des constituants du			
	système			
Commentaires		_		
·	énergie et d'information permettent de construire une cultu	ire de soi	lutions	
industrielles.				
Systèmes à événements	Interpréter tout ou partie de l'évolution temporelle d'un			
discrets :	système	S2		
- diagramme de séquences		0_		
- diagramme d'états				
Réversibilité de la chaîne	Analyser la réversibilité d'un constituant dans une			
d'énergie :	chaîne d'énergie			
- source			S3	
- modulateur				
- actionneur				
- chaîne de transmission				
Commentaires				
L'étude de la réversibilité de la chaîne d'énergie porte sur la structure, sans aborder la technologie interne				

A4 Caractériser des écarts

du constituant.

La caractérisation des écarts est essentielle et commence dès le premier semestre.

Connaissances	Savoir-faire	1 ^{re}	2 ^e
Comidissances	Savoii-laile	année	année
Identification des écarts	Extraire du cahier des charges les grandeurs pertinentes		
	Traiter des données de mesures et en extraire les caractéristiques statistiques		S4
	Exploiter et interpréter les résultats d'un calcul ou d'une simulation		
Commentaires			
Il faut insister sur la pertinence	du choix des grandeurs à évaluer.		
Quantification des écarts	Quantifier des écarts entre des valeurs attendues et des valeurs mesurées		
	Quantifier des écarts entre des valeurs attendues et		S4
	des valeurs obtenues par simulation Quantifier des écarts entre des valeurs mesurées et des valeurs obtenues par simulation		
Interprétation des écarts	Vérifier la cohérence des résultats d'expérimentation		
obtenus	avec les valeurs souhaitées du cahier des charges Vérifier la cohérence du modèle choisi avec des résultats d'expérimentation		
	Vérifier la cohérence du modèle choisi avec les valeurs souhaitées du cahier des charges		S4
	Rechercher et proposer des causes aux écarts constatés		

A5 Apprécier la pertinence et la validité des résultats

L'évaluation de la pertinence des résultats commence dès le premier semestre.

Connaissances	Savoir-faire	1 ^{re} année	2 ^e année
Grandeurs utilisées : - unités du système international - homogénéité des grandeurs	Utiliser des symboles et des unités adéquates Vérifier l'homogénéité des résultats	S1	
Ordres de grandeur	Prévoir l'ordre de grandeur et l'évolution de la mesure ou de la simulation Critiquer les résultats issus d'une mesure ou d'une simulation Identifier des valeurs erronées Valider ou proposer une hypothèse		S4

B - Modéliser

B1 Identifier et caractériser les grandeurs physiques

En fonction de la complexité des grandeurs physiques utilisées, celles-ci seront données au semestre 1 et exigées au semestre 2.

Connaissances	Savoir-faire	1 ^{re}	2 ^e	
Comiaissances	Savoir-laile	année	année	
Caractéristiques des	Qualifier les grandeurs d'entrée et de sortie d'un			
grandeurs physiques :	système isolé			
- nature physique	Identifier la nature (grandeur effort, grandeur flux)	S2		
- caractéristiques	Décrire l'évolution des grandeurs	02		
fréquentielles				
 caractéristiques temporelles 				
Commentaires				
	tionne le choix de la grandeur d'effort ou de la grandeur d	e flux à u	tiliser.	
La dualité temps-fréquence est	mise en évidence.			
Flux de matière	Qualifier la nature des matières, quantifier les volumes			
Flux d'information	et les masses	S2		
	Identifier la nature de l'information et la nature du	32		
	signal			
Énergie	Associer les grandeurs physiques aux échanges			
Puissance	d'énergie et à la transmission de puissance			
Rendement	Identifier les pertes d'énergie			
	Évaluer le rendement d'une chaîne d'énergie en			
	régime permanent		S3	
	Déterminer la puissance des actions mécaniques		33	
	extérieures à un solide ou à un ensemble de solides,			
	dans son mouvement rapport à un autre solide			
	Déterminer la puissance des actions mécaniques			
	intérieures à un ensemble de solides			
Commentaires				
La puissance est toujours égale	La puissance est toujours égale au produit d'une grandeur « effort » (force, couple, pression, tension			

électrique, température) par une grandeur « flux » (vitesse, vitesse angulaire, débit volumique, intensité du

courant, flux d'entropie).

B2 Proposer un modèle de connaissance et de comportement

Connaissances	Savoir-faire	1 ^{re} année	2 ^e année
Chaîne d'énergie et	Choisir un modèle adapté à l'objectif		S4
d'information	Construire un modèle multiphysique simple		
	Définir les paramètres du modèle	S2	
	Associer un modèle à une source d'énergie		
	Associer un modèle aux composants d'une chaîne		
	d'énergie		S3
	Associer un modèle aux composants d'une chaîne		
	d'information .		
Commentaires			
Un logiciel de modélisation acad	usale sera privilégié pour la modélisation des systèmes mu	ıltiphysiq	ues.
Systèmes linéaires continus et	Déterminer les fonctions de transfert à partir		
invariants:	d'équations physiques (modèle de connaissance)		
- modélisation par équations			
différentielles		S1	
- calcul symbolique			
- fonction de transfert ; gain,			
ordre, classe, pôles et zéros			
Commentaires			
	e Laplace ne nécessite aucun prérequis. Sa présentation s		
	cul symbolique strictement nécessaires à ce cours. Les the	éorèmes	de la
	et du retard sont donnés sans démonstration.		
Signaux canoniques d'entrée :	Caractériser les signaux canoniques d'entrée		
- impulsion			
- échelon		S1	
- rampe			
- signaux sinusoïdaux			
Schéma-bloc :	Analyser ou établir le schéma-bloc du système		
- fonction de transfert en	Déterminer les fonctions de transfert		
chaîne directe		S1	
- fonction de transfert en			
boucle ouverte et en boucle			
fermée	Linéariaar la madèla autaur d'un naint da		
Linéarisation des systèmes non linéaires	Linéariser le modèle autour d'un point de		S3
	fonctionnement		
Modèles de comportement	Renseigner les paramètres caractéristiques d'un	S1	
	modèle de comportement (premier ordre, deuxième	31	
Commentaires	ordre, dérivateur, intégrateur, gain, retard)		
	st associé à l'observation de la réponse expérimentale d'ur	constitu	ant
Solide indéformable :	Paramétrer les mouvements d'un solide indéformable	i constitu	an.
- définition	Associer un repère à un solide		
- référentiel, repère	Identifier les degrés de liberté d'un solide par rapport à		
- équivalence solide/référentiel	un autre solide		
- degrés de liberté	an add o onido	S1	
- vecteur-vitesse angulaire de		٥,	
deux référentiels en			
mouvement l'un par rapport à			
l'autre			
Commentaires			
	s d'Euler ou les angles de roulis, de tangage et de lacet es	t prácont	á mais
Le paramétrage avec les angles	s a culer ou les arigles de roulis. de landade et de lacer es	rnieseiii	

Modélisation plane	Préciser et justifier les conditions et les limites de la modélisation plane	S2	
Torseur cinématique	Déterminer le torseur cinématique d'un solide par rapport à un autre solide	S2	
Commentaires Seuls les éléments essentiels de glisseur – sont présentés.	e la théorie des torseurs – opérations, invariants, axe cent	ral, coup	le et
Centre d'inertie Opérateur d'inertie Matrice d'inertie Torseur cinétique Torseur dynamique Énergie cinétique	Déterminer le torseur dynamique d'un solide, ou d'un ensemble de solides, par rapport à un autre solide Déterminer l'énergie cinétique d'un solide, ou d'un ensemble de solides, dans son mouvement par rapport à un autre solide		S3
	tie (matrice d'inertie, centre d'inertie) ne donnent pas lieu à matrice d'inertie et la géométrie de la pièce est exigible.	à évaluati	ion.
Actions mécaniques : - modélisation locale, actions à distance et de contact - modélisation globale, torseur associé - lois de Coulomb - adhérence et glissement - résistance au roulement et au pivotement	Associer un modèle à une action mécanique Déterminer la relation entre le modèle local et le modèle global	S2	
Liaisons: - géométrie des contacts entre deux solides - définition du contact ponctuel entre deux solides: roulement, pivotement, glissement, condition cinématique de maintien du contact - définition d'une liaison - liaisons normalisées entre solides, caractéristiques géométriques et repères d'expression privilégiés - torseur cinématique des liaisons normalisées - torseur des actions mécaniques transmissibles dans les liaisons normalisées - associations de liaisons en série et en parallèle - liaisons cinématiquement équivalentes Commentaires	Proposer une modélisation des liaisons avec une définition précise de leurs caractéristiques géométriques Associer le paramétrage au modèle retenu Associer à chaque liaison son torseur cinématique Associer à chaque liaison son torseur d'actions mécaniques transmissibles	S 2	

L'analyse des surfaces de contact entre deux solides et de leur paramétrage associé permet de mettre en évidence les degrés de mobilités entre ces solides.

Les normes associées aux liaisons usuelles seront fournies.

Les conditions et les limites de la modélisation plane sont précisées et justifiées.

Chaînes de solides : - degré de mobilité du modèle - degré d'hyperstatisme du modèle	Déterminer les conditions géométriques associées à l'hyperstatisme		S4
Systèmes logiques :	Coder une information		
- codage de l'information	Exprimer un fonctionnement par des équations		
- binaire naturel, binaire réfléchi	logiques		
- représentation hexadécimale		S2	
- table de vérité			
- opérateurs logiques			
fondamentaux (ET, OU, NON)			
Commentaires			
	à la représentation de systèmes logiques, mais elle ne sera	a pas utili	isée
pour la simplification des équati	<u> </u>		
Systèmes à événements	Représenter tout ou partie de l'évolution temporelle		
discrets		S2	
Chronogramme			
Structures algorithmiques :	Décrire et compléter un algorithme représenté sous		
- variables	forme graphique	S2	
- boucles, conditions,		32	
transitions conditionnelles			
Commentaires			
La présentation graphique perm	net de s'affranchir d'un langage de programmation spécifiq	ue.	

B3 Valider un modèle

Connaissances	Savoir-faire Savoir-faire	1 ^{re} année	2 ^e année
Point de fonctionnement Non-linéarités (hystérésis, saturation, seuil)	Vérifier la cohérence du modèle choisi avec les résultats d'expérimentation	<u>uoo</u>	S3
Commentaires L'accent est porté sur les appro	ximations faites, leur cohérence et le domaine de validité.		
Pôles dominants et réduction de l'ordre du modèle : - principe - justification	Réduire l'ordre de la fonction de transfert selon l'objectif visé, à partir des pôles dominants qui déterminent la dynamique asymptotique du système		S3
Grandeurs influentes d'un modèle	Déterminer les grandeurs influentes Modifier les paramètres et enrichir le modèle pour minimiser l'écart entre les résultats simulés et les réponses mesurées		S4

C - Résoudre

C1 Proposer une démarche de résolution

Connaissances	Savoir-faire	1 ^{re}	2 ^e
Commandances	Ouvon-lane	année	année
Chaînes de solides : - principe fondamental de la dynamique - théorème de l'énergie cinétique	Proposer une démarche permettant la détermination de la loi de mouvement Proposer une méthode permettant la détermination d'une inconnue de liaison Choisir une méthode pour déterminer la valeur des paramètres conduisant à des positions d'équilibre		S3
Commentaires Le principe fondamental de la statique est proposé comme un cas particulier du principe fondamental de la dynamique.			
Correction	Proposer la démarche de réglage d'un correcteur proportionnel, proportionnel intégral et à avance de phase		S3
Commentaires Les relations entre les paramètres de réglage sont fournies.			

C2 Procéder à la mise en œuvre d'une démarche de résolution analytique

Connaissances	Savoir-faire	1 ^{re}	2 ^e
Connaissances	Savoir-laire	année	année
Réponses temporelle et fréquentielle : - systèmes du 1 ^{er} et du 2 ^e ordre	Déterminer la réponse temporelle Déterminer la réponse fréquentielle Tracer le diagramme asymptotique de Bode	S1	
- intégrateur			
Commentaires Seule la connaissance de la rép au programme.	onse temporelle à un échelon est exigible. Seul le diagran	nme de E	Bode est
Stabilité des SLCI: - définition entrée bornée - sortie bornée (EB-SB) - équation caractéristique - position des pôles dans le plan complexe - marges de stabilité (de gain et de phase)	Analyser la stabilité d'un système à partir de l'équation caractéristique Déterminer les paramètres permettant d'assurer la stabilité du système Relier la stabilité aux caractéristiques fréquentielles		S 3
	nite au sens : entrée bornée - sortie bornée (EB - SB) estème perturbé conserve la même équation caractéristiqu	e dans le	e cas de
Rapidité des SLCI : - temps de réponse à 5 % - bande passante	Prévoir les performances en termes de rapidité Relier la rapidité aux caractéristiques fréquentielles	S1	
Précision des SLCI : - erreur en régime permanent - influence de la classe de la fonction de transfert en boucle ouverte	Déterminer l'erreur en régime permanent vis-à-vis d'une entrée en échelon ou en rampe (consigne ou perturbation) Relier la précision aux caractéristiques fréquentielles		S3
d'adapter la sortie et sa consign	e comparer des grandeurs homogènes, par exemple la né e. a valeur de la consigne et celle de sortie.	cessité	

Loi entrée – sortie géométrique	Déterminer la loi entrée - sortie géométrique d'une chaîne cinématique	S2	
Dérivée temporelle d'un vecteur par rapport à un référentiel Relation entre les dérivées	Déterminer les relations de fermeture de la chaîne cinématique Déterminer la loi entrée - sortie cinématique d'une chaîne cinématique	S2	
temporelles d'un vecteur par rapport à deux référentiels distincts Loi entrée – sortie	Résoudre le système associé à la fermeture cinématique et en déduire le degré de mobilité et d'hyperstatisme		S4
cinématique Composition des vitesses angulaires Composition des vitesses			54
d'expression du résultat. La maitrise des méthodes graph	insiste sur la différence entre référentiel d'observation et la niques n'est pas exigible. tatisme a pour objectif de déterminer les conditions géome		
Principe fondamental de la statique Équilibre d'un solide, d'un ensemble de solides Théorème des actions réciproques Modèles avec frottement : arc-	Déterminer le calcul complet des inconnues de liaison Déterminer la valeur des paramètres conduisant à des positions d'équilibre (par exemple l'arc-boutement)	S2	
la dynamique. L'étude des conditions d'équilible première sensibilisation au prob année.	ratique est proposé comme un cas particulier du principe force pour les mécanismes qui présentent des mobilités cons lème de recherche des équations de mouvement étudié e a modélisation plane sont précisées et justifiées.	titue une	
La maitrise des méthodes graph	niques n'est pas exigible.		
Principe fondamental de la dynamique Conditions d'équilibrage statique et dynamique	Déterminer les inconnues de liaison ou les efforts extérieurs spécifiés dans le cas où le mouvement est imposé Déterminer la loi du mouvement sous forme d'équations différentielles dans le cas où les efforts extérieurs sont connus		S3
Commentaires Le modèle utilisé est isostatique. La résolution de ces équations d	ifférentielles peut être conduite par des logiciels adaptés.		
Inertie équivalente Théorème de l'énergie cinétique ou théorème de l'énergie/puissance	Déterminer la loi du mouvement sous forme d'équations différentielles dans le cas où les efforts extérieurs sont connus		S4

C3 Procéder à la mise en œuvre d'une démarche de résolution numérique

Connaissances	Savoir-faire	1 ^{re} année	2 ^e année
Paramètres de résolution numérique : - durée de calcul - pas de calcul	Choisir les valeurs des paramètres de la résolution numérique	S2	
Grandeurs simulées	Choisir les grandeurs physiques tracées	S2	
Commentaires Le choix des grandeurs analysées doit être en lien avec les performances à vérifier.			
Variabilité des paramètres du modèle de simulation	Choisir les paramètres de simulation Faire varier un paramètre et comparer les courbes obtenues		S4

D – Expérimenter

D1 S'approprier le fonctionnement d'un système pluritechnologique

Connaissances	Savoir-faire	1 ^{re} année	2 ^e année
Chaîne d'énergie	Repérer les différents constituants de la chaîne d'énergie	S1	
Chaîne d'information	Repérer les différents constituants de la chaîne d'information	S1	
Paramètres influents	Régler les paramètres de fonctionnement d'un système Mettre en évidence l'influence des paramètres sur les performances du système		S4
Commentaires Les activités expérimentales permettent d'appréhender les incompatibilités entre les exigences de performances.			

D2 Proposer et justifier un protocole expérimental

Connaissances	Savoir-faire	1 ^{re} année	2 ^e année
Modèles de comportement d'un système	Prévoir l'allure de la réponse attendue Prévoir l'ordre de grandeur de la mesure	S2	
Protocoles expérimentaux	Choisir les configurations matérielles du système en fonction de l'objectif visé Choisir la grandeur physique à mesurer ou justifier son choix Choisir les entrées à imposer pour identifier un modèle de comportement		S4
Chaîne d'acquisition Filtrage Échantillonnage Quantification	Justifier la chaîne d'acquisition utilisée Prévoir la quantification nécessaire à la précision souhaitée		S4
Commentaires Les notions sur le filtrage s'appl	uient sur le cours de physique.		

D3 Mettre en œuvre un protocole expérimental

Connaissances	Savoir-faire	1 ^{re}	2 ^e
	Savoli-laile	année	année
Règles de sécurité	Mettre en œuvre un système complexe en respectant		S4
élémentaires	les règles de sécurité		5
Commentaires			
	ouvertes au travers des activités expérimentales.		
Chaîne d'acquisition	Mettre en œuvre la chaîne d'acquisition		
Fréquence d'échantillonnage	Appréhender l'influence de la fréquence		S4
	d'échantillonnage sur les mesures effectuées		
Paramètres de configuration	Régler les paramètres de fonctionnement d'un		S4
du système	système		5
Réversibilité de la chaîne	Mesurer les grandeurs d'effort et de flux		
d'énergie	Quantifier les pertes dans les constituants d'une		
Source, modulateur,	chaîne d'énergie		S4
actionneur, chaîne de			
transmission			
Routines, procédures	Générer un programme et l'implanter dans le système		
Systèmes logiques à	cible		S4
événements discrets	Réaliser une intégration et une dérivation sous une		34
	forme numérique (somme et différence)		
Commentaires			
L'influence de la période d'écha	ntillonnage est illustrée.		
Modèles de comportement	Extraire les grandeurs désirées et les traiter	S2	
Identification temporelle d'un	Identifier les paramètres caractéristiques d'un modèle		
modèle de comportement	du premier ordre ou du deuxième ordre à partir de sa	S1	
	réponse indicielle		
Commentaires			
Les abaques nécessaires à l'ide	entification sont fournis.		
Identification fréquentielle d'un	Identifier les paramètres caractéristiques d'un modèle		
modèle de comportement	de comportement à partir de sa réponse fréquentielle		
	Associer un modèle de comportement (premier ordre,	S1	
	deuxième ordre, intégrateur, gain) à partir de sa		
	réponse fréquentielle		
Commentaires			
D'un point de vue fréquentiel, se	eul le diagramme de Bode est développé pour l'identification	on d'un m	nodèle

E – Concevoir

de comportement.

Connaissances	Savoir-faire	1 ^{re} année	2 ^e année
Architecture fonctionnelle et structurelle	Proposer une architecture fonctionnelle et les constituants associés		S4
Commentaires Cette proposition se fait sous fo	rme d'association de blocs.		
Correction d'un système asservi	Choisir un type de correcteur adapté		S4
Commentaires Cette correction ne concerne que les correcteurs à actions proportionnelle, proportionnelle intégral et à avance de phase.			
Système logique Systèmes à événements discrets Structures algorithmiques	Modifier un programme pour faire évoluer le comportement du système	S2	
Commentaires			

La syntaxe de l'outil utilisé pour concevoir ou modifier un programme est fournie. Les modifications portent sur les états, les transitions, les instructions conditionnelles, les instructions itératives et les appels

simples de fonctions.

© Ministère de l'enseignement supérieur et de la recherche, 2013
http://www.enseignementsup-recherche.gouv.fr

F – Communiquer

F1 Rechercher et traiter des informations

Connaissances	Savoir-faire	1 ^{re}	2 ^e	
Cominaissances	Savoii-iaile	année	année	
Informations techniques	Extraire les informations utiles d'un dossier technique Effectuer une synthèse des informations disponibles dans un dossier technique Vérifier la nature des informations Trier les informations selon des critères Distinguer les différents types de documents en fonction de leurs usages	S2		
Schémas cinématique, électrique, hydraulique et pneumatique	Lire et décoder un schéma		S4	
Commentaires				
Les normes de représentation des schémas sont fournies.				
Langage SysML	Lire et décoder un diagramme	S2		
Commentaires				
Les normes de représentation du langage SysML sont fournies et la connaissance de la syntaxe n'est pa exigible.				

F2 Mettre en œuvre une communication

Connaissances	Savoir-faire	1 ^{re}	2 ^e
Connaissances	Savoir-laire	année	année
Outils de communication	Choisir les outils de communication adaptés par rapport à l'interlocuteur Faire preuve d'écoute et confronter des points de vue Présenter les étapes de son travail Présenter de manière argumentée une synthèse des résultats	S2	
Commentaires			
Les outils de communication so	nt découverts au travers des activités expérimentales.		
Langage technique	Choisir l'outil de description adapté à l'objectif de la communication Décrire le fonctionnement du système en utilisant un vocabulaire adéquat		S4
Schémas cinématique, électrique	Réaliser un schéma cinématique Réaliser un schéma électrique	S2	
Commentaires Les normes de représentation s	ont fournies.		