Семестровый проект по курсу "Введение в численные методы"

студента 215 группы факультета Вычислительной математики и кибернетики МГУ им. Ломоносова Яфизова Руслана

1 Постановка задачи

С помощью метода правых прямоугольников вычислить значение интеграла:

$$\int_{-1}^{1} Q(x)P_i(x) dx \tag{1}$$

для различных функций $P_i(x)$:

- 1. $P_1(x) = 1$,
- 2. $P_2(x)=U_6(x)$, где $U_n(x)=2xU_{n-1}(x)-U_{n-2}(x), U_1(x)=2x, U_0(x)=1.$

Использовать n=11,21,41,81,161 узел. Сравнить ошибки интегрирования для обоих случаев.

Возможные иные численные методы решения этой задачи:

- Метод трапеций
- Метод Симпсона (или метод парабол)
- Квадратурная формула Гаусса (метод Гаусса Лежандра)

Эти методы описаны в книгах Каханера Д., Моулера К., Нэша С. «Численные методы и программное обеспечение»; Костомарова Д.П., Фаворского А.П. «Вводные лекции по численным методам».

Численное интегрирование имеет широкий класс практических применений:

- В ІТ интегралы используются в обработке сигналов (цифровая фильтрация, преобразование Фурье) и машинном обучении (например, численное интегрирование для оценки сложных вероятностных распределений)
- В финансах их используют при расчёте стоимости производных финансовых инструментов с использованием стохастических процессов.
- В физике интегралы применяются для расчёта работы переменных сил, тепловых процессов, для вычисления энергии в переменных электрических и магнитных полях.

2 Описание численных методов

В работе в качестве основного метода используется метод правых прямоугольников. В качестве усовершенствованного используется метод Гаусса. Рассмотрим функцию f(x), определённую на [a,b]. Необходимо приблизительно вычислить значение интеграла $\int_a^b f(x) \, dx$.

2.1Метод правых прямоугольников

Этот метод основан на разбиении отрезка интегрирования [a,b] на n равных частей и замене площади под графиком функции f(x) площадью прямоугольников. Мы разбиваем [a, b] на n равных отрезков $[x_{i-1}, x_i]$: $x_i = a + h * i$, i=1,2,...,n; h=(b-a)/n - диаметр разбиения. Тогда $\int_a^b f(x)\,dx pprox \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f(x_i)\,dx = h*\sum_{i=1}^n f(x_i).$

Тогда
$$\int_a^b f(x) dx \approx \sum_{i=1}^n \int_{x_{i-1}}^{x_i} f(x_i) dx = h * \sum_{i=1}^n f(x_i)$$

Оценим погрешность данного метода. Пусть функция f(x) непрерывно дифференцируема на [a, b]. Погрешность на отрезке $[x_{i1}, x_i]$:

$$R_i = \int_{x_{i-1}}^{x_i} f(x) \ dx - f(x_i) * h = \int_{x_{i-1}}^{x_i} f(x) - f(x_i) \ dx.$$

По теореме Лагранжа: $R_i = \int_{x_{i-1}}^{x_i} \frac{df(\sigma_i)}{dx} \ \delta x = \frac{df(\sigma_i)}{dx} \frac{(x_{i-1} - x_i)^2}{2}.$ Так как $\frac{df(x)}{dx}$ непрерывна на отрезке [a,b], то она ограничена: $\left|\frac{df(x)}{dx}\right| \le$ $C = > |R_i| \le \frac{Ch^2}{2}$. Значит, переходя ко всему отрезку, получим: |R| = $|\sum_{i=1}^n R_i| \leq \frac{Ch^2n}{2} = O(\frac{1}{n})$. Так, погрешность метода правых прямоугольников составляет $O(\frac{1}{n})$

2.2 Метод Гаусса - Лежандра

Данный метод применяется для интегралов с пределами интегрирования -1,1. К таким пределам можно прийти через линейные преобразования. Метод Гаусса заключается в намеренном подборе n узлов x_i и n весов c_i так, чтобы $\int_{-1}^1 f(x) \, dx \approx \sum_{i=1}^n c_i * f(x_i)$ (1) с точностью порядка 2n-1 (что будет доказано ниже). Значения x_i при выборе n точек есть корни полинома Лежандра $P_n(x)$ степени n. Значения весов вычисляются следующим образом:

$$c_i=\int_{-1}^1 \frac{(x-x_1)..(x-x_{m-1})(x-x_{m+1})..(x-x_n)}{(x_m-x_1)..(x_m-x_{m-1})(x_m-x_{m+1})..(x_m-x_n)}\,dx.$$
 Докажем оценку порядка точности метода. Сначала докажем, что фор-

мула (1) является точной для любого полинома $Q_{n-1}(x)$ степени (n-1). Такой полином можно представить в виде суммы специальных полиномов $Q_{n-1,m}(x)\colon Q_{n-1}(x)=\sum_{m=1}^n Q_{n-1}(x_m)Q_{n-1,m}(x),$ где

$$Q_{n-1,m} = \frac{(x-x_1)..(x-x_{m-1})(x-x_{m+1})..(x-x_n)}{(x_m-x_1)..(x_m-x_{m-1})(x_m-x_{m+1})..(x_m-x_n)}.$$

Справедливость такого разложения следует из того, что левая и правая части совпадают в n точках $x_i, 1 \le i \le n$. Но если два полинома (n-1)-й степени совпадают в n точках, то они тождественно равны. Интегрируя $Q_{n-1}(x)$ по отрезку [-1,1], получим:

$$Q_{n-1}(x)$$
 по отрезку $[-1,1]$, получим:
$$\int_{-1}^1 Q_{n-1}(x) \ dx = \sum_{m=1}^n Q_{n-1}(x_m) \int_{-1}^1 Q_{n-1,m}(x) \ dx = \sum_{m=1}^n c_m Q_{n-1}(x_m).$$
 Получили, что формула точна для полиномов степени $(n-1)$ степени.

Теперь рассмотрим произвольный полином $Q_{2n-1}(x)$ степени (2n-1). Разделим его с остатком на полином Лежандра $P_n(x)$ и представим в виде $Q_{2n-1}(x)=P_n(x)q_{n-1}(x)+r_{n-1}(x)$, где $q_{n-1}(x)$ и $r_{n-1}(x)$ — полиномы степени (n-1). Проинтегрировав $Q_{2n-1}(x)$ по отрезку [-1,1], будем иметь $\int_{-1}^1 Q_{2n-1}(x) \ dx = \int_{-1}^1 (P_n(x)q_{n-1}(x)+r_{n-1}(x)) \ dx = 0+\int_{-1}^1 r_{n-1} \ dx$, поскольку полином Лежандра $P_n(x)$ ортогонален любому полиному (n-1)-й степени. Соответственно

$$\int_{-1}^{1} Q_{2n-1}(x) dx = \int_{-1}^{1} r_{n-1}(x) dx = \sum_{i=1}^{n} c_i r_{n-1}(x_i) = \sum_{i=1}^{n} c_i (P_n(x_i) q_{n-1}(x_i) + r_{n-1}(x_i)).$$

Так можно сделать, поскольку $P_n(x_i)=0$ в силу выбора узлов x_i как корней полинома Лежандра n-й степени. Таким образом, получим $\int_{-1}^1 Q_{2n-1}(x) \ dx = \sum_{i=1}^n c_i(P_n(x_i)q_{n-1}(x_i) + r_{n-1}(x_i)) = \sum_{i=1}^n c_iQ_{2n-1}(x_i).$ Значит, метод Гаусса имеет порядок точности (2n-1). Что и требовалось доказать.

В проекте будет применён метод Гаусса для n=3. Необходимости в линейных преобразованиях пределов интегрирования нет, так как они изначально равны -1 и 1. Точность для 3 узлов имеет порядок 5. Узлы и веса имеют следующие значения: $x_{1,3}=\pm\sqrt{0.6}, x_2=0$. $c_{1,3}=\frac{5}{9}, c_2=\frac{8}{9}$.

3 Результаты

Для начала узнаем вид Q(x) и $P_2(x)$: По формуле Лейбница для 9-й производной: $Q(x)=9!\sum_{k=0}^9(C_9^k)^2(x+1)^k(x-1)^{9-k}$. Также $P_2(x)=64x^6-80x^4+24x^2-1$.

Теперь найдём значения I_1, I_2 :

- 1. $Q(x) * P_1(x) = Q(x)$ нечётная функция (у Q(-x) выносим минус за скобку и получим -Q(x))
- 2. $Q(x) * P_2(x)$ тоже нечётная функция (у $P_2(x)$ все x в нечётной степени)

Т.к. пределы интегрирования -1,1 — симметричны относительно 0, то $I_1=I_2=0$. Следовательно, для ошибки измерения интеграла справедливо следующее: $\phi_i(h)=I_i-I_i(h)=-I_i(h), i=1,2$.

Число узлов	Метод правых прямоугольников	$\phi_1(h)$	Метод Гаусса
11	37158911.99999954	1.000000000000037	-1.043081283569336e-07
21	18579455.999999292	0.999999999998114	-1.043081283569336e-07
41	9289728.00000086	0.999999999999728	-1.043081283569336e-07
81	4644864.000000518	1.0000000000012614	-1.043081283569336e-07
161	2322431.999998228	1.0000000000008291	-1.043081283569336e-07

Таблица 1: Результаты вычислений I_1

Число узлов	Метод правых прямоугольников	$\phi_2(h)$	Метод Гаусса
11	260112383.99999288	1.00000000000000109	1.564621925354004e-07
21	130056191.99999547	0.999999999997952	1.564621925354004e-07
41	65028096.00000697	0.999999999999656	1.564621925354004e-07
81	32514048.000004258	1.0000000000013476	1.564621925354004e-07
161	16257023.999986941	1.00000000000008136	1.564621925354004e-07

Таблица 2: Результаты вычислений I_2

4 Анализ применимости методов

4.1 Метод правых прямоугольников

Метод правых прямоугольников даёт огромную ошибку для обоих интегралов I_1 и I_2 . Каждый раз число отрезков (n-1), на которых применяется метод правых прямоугольников, удваивается. В силу $I_1=I_2=0$ получим, что $I_i(h)=2*I_i(\frac{h}{2})$, из-за чего $\phi_i(h)=1$ (i=1,2) (теоретически). Для результатов в обеих Таблицах это справедливо (с точностью до ошибки в хранении вещественных чисел в ЭВМ). Из результатов следует, что метод правых прямоугольников крайне неточен и для многочлена большого порядка даёт сильную погрешность.

4.2 Метод Гаусса-Лежандра

В сравнении с методом правых прямоугольников, метод Гаусса - Лежандра, в силу симметричности относительно нуля корней полинома Лежандра и нечётности полиномов, сразу же выдаёт результат очень близкий к 0. Он не равен в точности нулю, но это всё равно замечательно, учитывая, что для 3 узлов порядок точности равен 5, когда же вычисления производятся для полиномов 9 и 15 степеней. Для метода Гаусса - Лежандра не вычисляется порядок сходимости, так как используется только одно значение на количестве узлов n=3. Метод дал очень хороший и быстрый результат по сравнению с методом правых прямоугольников.

5 Заключение и выводы

Сравнивая результаты исследований и вычислений, можно прийти к выводу, что метод правых прямоугольников - довольно простой в реализации, нетребовательный к высоким порядкам гладкости функции, но малоэффективный и неточный вариант численного интегрирования. Метод Гаусса-Лежандра, в свою очередь, - мощный и высокоточный инструмент, но он требует подготовки в виде вычисления корней полинома Лежандра и весов, линейных преобразований пределов интегрирования в -1,1. Тем не менее, он оказывается намного лучше метода правых прямоугольников даже при малом количестве просчитанных весов и узлов.