7 RBC model with leisure and investment-specific technological change

Consider the basic Real Business Cycle (RBC) model with leisure and investment-specific technological change. The representative household maximizes present as well as expected future utility

$$\max_{\{C_t, I_t, L_t, K_t\}} E_t \sum_{j=0}^{\infty} \beta^j U_{t+j}$$

with $\beta < 1$ denoting the discount factor and E_t is expectation given information at time t. The contemporaneous utility function

$$U_t = \gamma \ln(C_t) + (1 - \gamma) \ln(1 - L_t)$$

has two arguments: consumption C_t and labor L_t . The marginal utility of consumption is positive, whereas more labor reduces utility. Accordingly, γ is the elasticity of substitution between consumption and labor. In each period the household takes the real wage W_t as given and supplies perfectly elastic labor service to the representative firm. In return, she receives real labor income in the amount of W_tL_t and, additionally, profits Π_t from the firm as well as revenue from lending capital K_{t-1} in the previous period at interest rate R_t to the firms, as it is assumed that the firm and capital stock are owned by the household. Income and wealth are used to finance consumption C_t and investment I_t . In total, this defines the (real) budget constraint of the household:

$$C_t + I_t = W_t L_t + R_t K_{t-1} + \Pi_t$$

The law of motion for capital K_t at the end of period t is given by

$$K_t = (1 - \delta)K_{t-1} + Z_t I_t$$

where δ is the depreciation rate and Z_t investment-specific technological change. Assume that the transversality condition is full-filled.

The model includes two driving forces of the economy, a neutral technological progress A_t and a technological progress specific to investment Z_t . The laws of motion for these processes are given by:

$$\ln A_t = \rho_A \ln A_{t-1} + \varepsilon_t^A$$
$$\ln Z_t = \rho_Z \ln Z_{t-1} + \varepsilon_t^Z$$

where ρ_A and ρ_Z denote the persistence parameters and ε_t^A and ε_t^Z are assumed to be independently normally distributed with zero means and variances equal to σ_A^2 and σ_Z^2 , respectively.

Real profits Π_t of the representative firm are revenues from selling output Y_t minus costs from labor W_tL_t and renting capital R_tK_{t-1} :

$$\Pi_t = Y_t - W_t L_t - R_t K_{t-1}$$

The representative firm maximizes expected profits

$$\max_{\{L_t, K_{t-1}\}} E_t \sum_{j=0}^{\infty} \beta^j Q_{t+j} \Pi_{t+j}$$

subject to a Cobb-Douglas production function

$$Y_t = A_t K_{t-1}^{\alpha} L_t^{1-\alpha}$$

The discount factor takes into account that firms are owned by the household, i.e. $\beta^{j}Q_{t+j}$ is the present value of a unit of consumption in period t+j or, respectively, the marginal utility of an additional unit of profit; therefore $Q_{t+j} = \frac{\partial U_{t+j}/\partial C_{t+j}}{\partial U_t/\partial C_t}$. Finally, we have the non-negativity constraints $K_t \geq 0$, $C_t \geq 0$ and $0 \leq L_t \leq 1$ and clearing of the

labor as well as goods market in equilibrium, i.e.

$$Y_t = C_t + I_t$$

- 1. Briefly provide intuition behind the introduction of investment-specific technological change.
- 2. Show that the first-order conditions of the agents are given by

$$E_t \left[\frac{C_{t+1}}{C_t} \right] = \beta E_t \left[\frac{Z_t}{Z_{t+1}} \left(1 - \delta + Z_{t+1} R_{t+1} \right) \right],$$

$$W_t = \frac{1 - \gamma}{\gamma} \frac{C_t}{1 - L_t},$$

Interpret these equations in economic terms.

3. Show that the first-order conditions of the representative firm are given by

$$W_t = (1 - \alpha) A_t \left(\frac{K_{t-1}}{L_t}\right)^{\alpha},$$

$$R_t = \alpha A_t \left(\frac{L_t}{K_{t-1}}\right)^{1-\alpha}$$

Interpret these equations in economic terms.

- 4. Discuss how to calibrate the parameters ρ_Z and σ_Z^2 .
- 5. Write a DYNARE mod file for this model with a feasible calibration and compute the steady state of the model either analytically or numerically.
- 6. Study the effects of both a positive neutral productivity shock and a positive investment-specific productivity shock using an impulse response analysis. How would you design a short-run identification scheme for a SVAR model based on your DSGE model to disentangle both technological shocks? In other words, which variable(s) behave differently in the short-run?
- 7. Simulate data for investment and consumption growth for 200 periods. Estimate three parameters (of your choosing) with
 - (i) maximum likelihood methods
 - (ii) Bayesian methods

Provide feasible upper and lower bounds and discuss the intuition behind your priors.

8. Explain whether or not you are satisfied with your estimation results?