FELIX YANWEI WANG

(802) 349-7611 | felixwang@u.northwestern.edu | http://yanweiw.github.io

EDUCATION

Northwestern University

Evanston, IL

M.S. Robotics

Expected December 2018

- GPA: 4.0
- Reinforcement Learning, Active Learning, Probabilistic Robotics, Robotic Manipulation, Swarm Robotics

Middlebury College

Middlebury, VT

B.A. Physics & Minor in Computer Science

2012 - 2017

- GPA: 3.75
- Fluid Dynamics, Quantum Mechanics, Machine Learning, Computer Vision

EXPERIENCE

Deep Reinforcement Learning Project (Prof. Mitra Hartmann)

Evanston, IL

DQN to model active whisking of rat whiskers for shape detection

2018 - Current

- Modeled rats' whisking behavior to sense objects as optimizing a distance measurement sequence with a sensor model of outward radially positioned laser array; abstracted task to identify 2D triangles and hexagons
- Built randomly positioned and oriented shape dataset and visualization tool for observing the measurement
- Pre-trained a LSTM that predicts shape based on a measurement sequence; approximated the probability of current guess matching ground truth as well as the reward of an action using the LSTM loss
- Trained a DQN to optimize the measurement sequence based on past observations; shaping the reward with an entropy term that characterizes the diversity of whiskers in contact leads to biologically realistic behaviors

Auris Surgical Robotics

Redwood City, CA

Computer Vision Engineer

Summer 2018

- Collected, processed and annotated endoscopic images of porcine anatomy for an anomaly instance dataset
- Implemented a Fully Convolutional Network (FCN) to test semantic segmentation of the dataset; experimented with different max pooling strides to preserve size of the feature map
- Researched on Mask-RCNN based and Regional-FCN based methods to design an instance segmentation network; adopted Feature Pyramid Network (FPN) to handle low image resolution
- Extended instance segmentation capability to instance tracking by comparing segmented instance mask
- Built an instance tracking pipeline and trained on the dataset I produced via transfer learning to track anomaly
- Undergoing patent application

Active Learning Project (Prof. Todd Murphey)

Evanston, IL

Infotaxis and Ergodic Exploration for target localization

Spring 2018

- Limited the search problem to no gradient information and only an imperfect sensor model on a grid world
- Implemented Infotaxis that maximizes information gain based on current posterior to search for single target
- Extended to multiple targets search where Infotaxis fails; adopted Ergodic metric to ration exploration time proportional to the current posterior to ensure coverage and avoid getting stuck at a single target location

Swarm Robotics Project (Prof. Michael Rubinstein)

Evanston, IL

Multi-agent simulation and hovercraft localization

Spring 2018

- Implemented coordination, segregation and locomotion of a robot swarm with Kilobot simulation engine
- Simulated a rotating hovercraft using one light sensor to localize at the center of a triangle of light sources
- Designed, 3D printed and built a lightweight hovercraft with one Arduino Trinket controller, one light sensor, one rotor for hovering rotation and another rotor for thrust force to realize the simulation on hardware

Convolutional Neural Network Project

Middlebury, VT

LIV Net for facial feature preference

Summer 2017

- Prepared 110 multi-ethnic faces from the "Ethnic Origins of Beauty" project and averaged them to create another 76 faces; created survey app and generated preference data for all image pairs from the face dataset
- Extracted features of image pairs with VGG-Face and computed distance metric by way of Siamese Network
- Trained logistic regression and SVM classifiers to predict preference for a feature vector within a pair

SKILLS

Computer Skills: Python, C++, ROS, TensorFlow, Keras

Language Skills: Native Chinese, Fluent English