Name:

ID:

Section:

EE 281 - Midterm Examination 2 December 8th, 2014

1) a) Find the Thevenin equivalent of the given circuit. (8 pts)

b) Connect a resistor between the terminals a and b, as seen in Fig 1.2. Find the power dissipated by R_L , for $R_L = 2.5\Omega$, $R_L = 5\Omega$, $R_L = 7.5\Omega$. (9 pts)

c) Comment on the results (3 pts)

2) a) Write the node voltage equation for the essential node voltages, v_1 and v_2 , using only the given parameters (represent v_0 in terms of v_1 and v_2). (10 pts)

Fig. 2.1

b) Write the two mesh current equations necessary to analyze the given circuit, using only the given parameters. (10 pts)

3)

- a) Find v_0 in terms of v_i , R_1 , R_2 , i, L. (10 pts)
- b) Assume;

Vss = 10V (Voltage at which the OpAmp goes into positive saturation region)

 V_{dd} = -10V (Voltage at which the OpAmp goes into negative saturation region)

 $v_i = 5V$

 $R_1=1k\Omega$

 $R_2=3k\Omega$

L=0.5H

 $i=0.1t^2$ (t is time in seconds)

Find the time instants at which;

- i) the OpAmp leaves the negative saturation region
- ii) the OpAmp goes into the positive saturation region. (20 pts)

4) Consider the given circuits and voltage sources. Connect those components such that resulting output voltage will be;

$$v_0 = -10\left(\int v_1(\tau)d\tau + v_2 + \frac{dv_3}{dt}\right)$$

Show all your work for full credit, including derivation of the input-output relations of the OpAmp circuits. (30 pts)

