Функциональный анализ

Осень 2023

Оглавление

Оглавление			1
1	Введение		2
	1.1	qwe	2
	1.2	Зачем изучать функциональный анализ	3
2	Метрические пространства		5
	2.1	Банаховы пространства	7
	2.2	Пространства ограниченных функций	10
	2.3	Пространство последовательностей с sup нормой	12
	2.4	Пространства n раз непрерывно дифференцируемых функ-	
		ций на отрезке	12

Глава 1

Введение

1.1. qwe

День рождения функционального анализа — 1932 год. В этом году вышла книжка "Теория линейных операторов", автор — С. Банах. Главная цель функционального анализа — изучение линейных операторов (но не только их). Главным объектом у нас будет X — линейное топологическое пространство. Оно же линейное пространство над $\mathbb C$ (или $\mathbb R$). Есть непрерывные операции

1.
$$(x,z) \rightarrow x+z$$
 $x,z \in X$

2.
$$(\alpha, x) \to \alpha x \quad \alpha \in \mathbb{C}$$

Если у нас есть топологическое пространство, то у нас есть все любимые объекты из математического анализа – пределы, непрерывность, производные, интегралы.

Пусть есть X,Y – линейные топологические пространства. Также есть линейное отображение $A:X\to Y$

Определение 1.1 (Линейное отображение).

$$A(\alpha x + \beta z) = \alpha Ax + \beta Az$$

Если $\supset X < +\infty$, dim $Y < +\infty$, то это линейная алгебра.

$$A:X\to X, \dim X=n, A=A^* \implies \exists \ \mathrm{OHB}\{u_j\}_{j=1}^n$$

 λ_i – собственные

$$Au_j = \lambda_j u_j$$

Теорема 1.1 (Гильберт). X – гильбертово (сепарабельное) пространство. $A = A^*$ $A \cdot X \to X$, $\Longrightarrow \exists$ ОНБ из собственных векторов.

Если $\dim Y=1$, т.е. $Y=\mathbb{C}$ (или \mathbb{R}), то $A:X\to\mathbb{C},$ A – линейный функционал.

X - пространство функций, $f \in X$.

В математическом анализе мы изучаем $f \stackrel{?}{\Longrightarrow} f'$. В функциональном анализе же у нас X – пространство функций, $f \in X$

$$D(f) = f' \quad D: X \to Y \tag{1.1}$$

и здесь мы задаемся вопросами о следующих свойствах D(f)

- компактность
- самоспрояженность
- непрерывность

Отцы основатели функционального анализа:

- Ф. Гильберт (1862 1943) Гильбертовы пространства
- С. Банах (1892 -1945) Банаховы пространства
- Ф.Рисс (1880-1956) пространства Лебега L^p

Ну и хочется еще упомянуть для вас, компьютер саентистов, отцов основателей кибернетики, который оставили немалый след в функциональном анализае

- Н. Винер (1894-1964)
- Д. фон Нейман (1903 1957). Про его архитектуру, наверное, что-то слышали?

1.2. Зачем изучать функциональный анализ

Во-первых, он позволяет посмотреть на задачу с высокого уровня абстракции.

Рассмотрим пространство непрерывных функций C[a,b], там введем норму $|f| = \max_{x \in [a,b]} |f(x)|$. Рассмотрим пространство многочленов $P_n = \{\sum_{k=0}^n a_k x^k, a_k \in \mathbb{R}\}$ Существует ли такой многочлен, на котором инфимум достигается? И если да, то единственный ли он?

$$E_n(f) = \inf_{p \in \P_n} ||f - p|| = \min_{p \in \P_n} ||f - p||$$

На первый вопрос ответ да, это следует из общей теоремы функционального анализа.

$$\dim P_n = n + 1 < +\infty$$

На второй же вопрос ответ тоже да, и тут функциональный анализ не при чем. Суть в том, что у многочлена степени n не может быть больше n корней.

Ну и еще немаловажные причины

- 1. язык функционального анализа междисциплинарный язык математики.
- 2. его результаты применяются в математической физике, которая у нас будет в следующем семестре.
- 3. это интересно и важно. 0, 1, 2 = o(3).
- 4. у нас будет экзамен, на котором придется говорить уже нам.

Дополнительная литература по курсу. Первая Рассчитана на студентов. В некоторых местах рассказывается не так, как обычно пишут в книжках, а именно как придумать доказательство. Как прийти к тому, что требуется, а не в другую сторону, как обычно. Остальные же книги поумнее.

- 1. А.Н.Колмогоров, С.В. Фомин "Элементы теории функций и Ф.А."
- 2. М.Рид, Б. Саймон. 1 том "методы современной физики". Тонкая (можно осилить), рассказывается также про применение ФА.
- 3. А.В. Канторович, Г.Г Акилов "Функциональный анализ". Похожа на энциклопедию. Но там можно найти всё.
- 4. К. Итосида "Функциональный анализ".
- 5. У. Рудин

Глава 2

Метрические пространства

Начнём с того, что все знают. Надо ведь с чего-то начать. Мы будем несколько раз к ним возвращаться, а не изучим всё сразу. Один из полезных результатов — новое описание компакта в метрических пространствах. Он будет самым рабочим. А компакт вещь очень полезная. Компакты в гигантских пространствах напоминают компакты в \mathbb{R}^n или в \mathbb{C}^n и обладают теми же полезными свойствами.

Определение 2.1 (Метрика). X - множество. $\rho: X \times X \to \mathbb{R}, \, \rho$ - метрика, если она обладает следующими свойствами

1.
$$\rho(x,y) \ge 0$$
 $\rho(x,y) = 0 \leftrightarrow x = y$

2.
$$\rho(y, x) = \rho(x, y)$$

3.
$$\rho(x,z) \le \rho(x,y) + \rho(y,z)$$

Введём стандартное обозначение открытого шара. $x \in X, r > 0$ $B_r(x) = \{y \in X : \rho(x,y) < r\}$ — шар с радиусом r. $\{B_r(x)\}_{r>0}$ — база окрестности в точке x.

G – открытое, если $\forall x \in G \exists r > 0 : B_r(x) \subset G$.

 $F \subset X, F$ — замкнутое $\Leftarrow X \setminus F$ — открытое. В метрическом пространстве удобно ъарактеризовать замкнутое множества с помощью последовательностей. Вспомним, что такое сходящаяся последовательность, $\{x_n\}_{n=1}^{\infty}, x_n \in X$, $\lim_{n \to \infty} x_n = x_0 \Leftrightarrow \lim_{n \to \infty} \rho(x_n, x_0) = 0$

ность.
$$\{x_n\}_{n=1}^{\infty}, x_n \in X, \lim_{n \to \infty} x_n = x_0 \Leftrightarrow \lim_{n \to \infty} \rho(x_n, x_0) = 0$$
 F – замкнутое \Leftarrow если $x_{n=1}^{\infty}, x_i n \in F, \lim_{n \to \infty} x_n = x_0 \Rightarrow x_0 \in F$

Определение 2.2 (Фундаментальная последовательность). $\{x_n\}_{n=1}^{\infty}, x_n$ – фундаментальная, если $\forall \varepsilon > 0 \exists \ N \in \mathbb{N} : (n > N \land m > N) \Rightarrow \rho(x_n, x_m) < \varepsilon$ или же

$$\Leftrightarrow \lim_{n,m\to\infty} \rho(x_n,x_m) = 0$$

Замечание 2.1. Если $\exists \lim_{n \to \infty} x_n = x_0$, то $\{x_n\}_{n=1}^{\infty}$ фундаментальная.

Определение 2.3 (Полное метрическое пространство). (X, ρ) – полное, если все фундаментальные последовательности имеют предел (лежит в X)

Почему хорошо жить в полном метрическом пространстве?

Замечание 2.2 (о пользе полноты). $F: X \to \mathbb{R}, (X, \rho), F$ – непрерывная.

Стоит задача найти $x_0 \in X$ т.ч. $F(x_0) = 0$ Алгоритм: $\{x_n\}_{n=1}^{\infty}$, $\lim_{n \to \infty} F(x_n) = 0$, $\lim_{n,m \to \infty} \rho(x_n,x_m) = 0$ Если (X,ρ) – полное, то $\lim_{n \to \infty} x_n = x_0$, $F(x_0) = 0$ А если нет, то из наших вычислений вообще ничего не следует, возможно, решения вообще нет.

Пример 2.1. \mathbb{R}^n , \mathbb{C}^n – полные.

Пример 2.2. $\mathbb{R}^n \setminus \{0\}$, т.е. \mathbb{Q} – неполное.

Потом приведем примеры поинтереснее. Кстати, древние греки пришли в ужас, когда узнали, что \mathbb{Q} – неполное.

Определение 2.4. $(X, \rho), A \subset X, A$ – ограниченное, если

$$\exists R > 0, x_0 \in X : A \subset B_R(x_0)$$

Теорема 2.1 (Свойства фундаметнальных последовательностей). (X, ρ) – метрическое пространство, $\{x_n\}_{n=1}^{\infty}$ фундаментальная последовательность

- 1. $\{x_n\}_{n=1}^{\infty}$ ограниченная
- 2. Если $\exists \ \{x_{n_k}\}^i nfty_{k=1},$ т.ч. $\exists \ \lim x_{n_k} = a,$ то

$$\lim_{n \to \infty} x_n = a$$

3.
$$\{\varepsilon_k\}_{k=1}^\infty, \varepsilon_k>0, \exists \ \{x_{n_k}\}_{k=1}^\infty,$$
 т.ч. $\rho(x_{n_k},x_{n_j})$ при $j>k$

1 утверждение. $\varepsilon=1,\exists~N:n>N, \rho(x_n,x_N)<1.$ Возьмём $R=\max\{\rho(x_1,x_N),\dots,\rho(x_{N-1},x_N)\}+1.$ Единичка на всякий случай. Тогда $x_j\in B_R(x_n) \forall~j\in\mathbb{N}$

2 утверждение. $\varepsilon>0,\exists~N:~(n>N\land m>N)\Rightarrow \rho(x_n,x_m)<\varepsilon$ $\exists n_k:\rho(x_{n_k},a)<\varepsilon\land n_k>N$ Пусть есть какое-то m>N. Тогда $\rho(x_m,a)<\rho(x_m,x_{n_k})+\rho(x_{n_k},a)<2\varepsilon$

 $arepsilon_1 \exists n_1: (n>n_1 \land n>m) \Rightarrow
ho(x_m,x_n) < arepsilon_1 \Rightarrow
ho(x_m,x_{n_1}) < arepsilon_1$ при $m>n_1$. Тогда по индукции \exists выбрали $n_1,\dots,n_{k-1},\ k\geq 2$ $m>n_j \Rightarrow
ho(x_m,x_{n_j}) < arepsilon_j, j=1,2,\dots,k-1$

$$\varepsilon_k \exists n_k > n_{k-1} : m \ge n_k \quad \rho(x_m, x_{n_k}) < \varepsilon_k$$

Следствие 2.1. $(X, \rho), \{x_n\}$ – фундаментальная последовательность, тогда

$$\exists\left\{ x_{n_{k}}
ight\}$$
 т.ч. $\displaystyle\sum_{k=1}^{\infty}
ho(x_{n_{k}},x_{n_{k+1}})<+\infty$

 \mathcal{A} оказательство. По 3 свойству при $\varepsilon_k = \frac{1}{2^k}$

Теорема 2.2 (О замкнутом подмножестве). (X, ρ) – метрическое пространство

- 1. (X, ρ) полное, $Y \subset X$, X замкнутое $\Rightarrow (Y, \rho)$ полное
- 2. Теперь просто предполагаем (X, ρ) метрическое пространство, (Y, ρ) полное. Тогда Y замкнутое

1 утверждение. Доказательство следует прямо из определениеЗнаем что Y замкнутое подниножество полного пространства. Берем фундаментальную последовательность. $Y \subset X$, пусть $\{x_n\}_{n=1}^{\infty}, x_n \in Y$ фундаментальная. $x_n \in x, X$ – полное $\Rightarrow \exists \lim_{n \to \infty} x_n = x_0, x_0 \in X$. Y – замкнутое, значит $x_0 \in Y \Rightarrow (Y, \rho)$ – полное.

2 утверждение. Второй пункт не труднее первого. Пусть $x_n \in Y$. $\exists \lim_{n \to \infty} x_n = x_0 \Rightarrow \{x_n\}$ – фундаментальная. X – полное. Тогда $\exists \lim_{n \to \infty} x_n \in Y \Rightarrow x_0 \in Y \Rightarrow Y$ – замкнутое. \Box

2.1. Банаховы пространства

Сначала введём понятие полунормы.

Определение 2.5 (полунорма). Пусть X – линейное пространство над \mathbb{R} или \mathbb{C} . Отображение $p: X \to \mathbb{R}$ называется полунормой, если

- 1. $p(x + y) \le p(x) + p(y)$ (полуаддитивность)
- 2. $p(\lambda x) = |\lambda| p(x); x, y \in X, \lambda \in \mathbb{R}$ или (\mathbb{C})

Следствие 2.2 (Свойство полунормы). p – полунорма \Rightarrow

$$p(\nvdash) = 0, p(x) > 0 \forall x \in X$$

Доказательство.
$$p(\not\vdash) = p(0\cdot\not\vdash) = 0\cdot p(\not\vdash) = 0$$
. Пусть $x\in X\Rightarrow\not\vdash=x+(-x)\Rightarrow p(\not\vdash)\leq p(x)+\underbrace{p(-x)}_{p(x)}=2p(x)\Rightarrow p(x)>0$

Определение 2.6 (Норма). X – линейное пространство, $p: X \to \mathbb{R}$. p – норма, если p – полунорма и $p(x) = 0 \Leftrightarrow x = \not\vdash$. Будем обозначать ||x|| := p(x).

 $(X, ||\cdot||)$ будем обозначать нормированное пространство. и $x, y \in X, \rho(x, y) := ||x - y|$. Тогда $(X, ||\cdot||)$ – метрическое пространство.

Определение 2.7 (банахово пространство). $(X, ||\cdot||)$ – банахово, если оно полное

Еще пару определений перед критерием банахова пространства.

Определение 2.8 (подпространство в алгебраическом смысле). X – линейнрое пространство, $L \subset X$. L – подпространство в алгебраическом смысле, если $x, y \in L$, $\alpha, \beta \in K \Rightarrow \alpha x + \beta y \in L$.

Определение 2.9 (подпространство). $(X, ||\cdot||), L \subset X, L$ – подпространство, если

- L подпространство в алгебраическом смысле
- $L = \overline{L} (\overline{L}$ замыкание)

Теперь нам потребуется сходимость рядов. Для того, чтобы говорить о сходимости, нужна топология.

Определение 2.10 (Сходимость).

$$(X, ||\cdot||) \quad \{x_k\}_{k=1}^{\infty} \quad S_n = \sum_{k=1}^n x_k$$

 $\sum_{k=1}^\infty x_k(*),$ (*) сходится, если $\exists \lim_{n\to\infty} S_n=S\in X$ (*) сходится абсолютно, если $\sum_{k=1}^\infty ||x_k||$ сходится

и В \mathbb{R}^n (или в \mathbb{C}^n) было что если асболютно сходится, то сходится, но вообще говоря, это не так.

Теорема 2.3 (Критерий полноты нормированного пространства (банаховости)). $(X,||\cdot||)$ - полное \Rightarrow из абсолютной сходимости рядаследует сходимость ряда.

Доказательство. Предположим, что наше пространство полное (\Rightarrow) . (X, ρ) – полное, $\{x_k\}_{k=1}^{\infty}$.

$$\sum_{k=1}^{\infty} ||x_k|| \operatorname{сходится} \tag{**}$$

Цель такая: последовательность S_n — фундаментальная. Сейчас применим критерий коши к ряду (**). Это ряд из чисел, так что все в порядке. Пусть $\varepsilon > 0$. По критерию Коши $\exists N \in \mathbb{N} : (n > N \land p \in \mathbb{N}) \Rightarrow \sum_{k=1}^p ||x_k|| < \varepsilon$. $S_n = \sum_{k=1}^n x_k$.

$$||S_{n+p}-S_n||=||\sum_{k=1}^p x_{n+k}||\leq \sum_{k=1}^p ||x_{n+k}||<\varepsilon$$

$$\Rightarrow \{S_n\}_{n=1}^\infty-\text{фундаментальная}, (X,\rho)-\text{полное}\Rightarrow \exists \lim_{n\to\infty} S_n=S$$

$$\Rightarrow \sum_{k=1}^\infty \text{сходится}$$

Мы так запаслись номерами, чтобы выражение было меньше ε

Теперь (⇒). У нас кроме определения ничего нет. Возьмём какуюто фундаментальную последовательность. Откуда взять предел? Есть соотношения между элементами последовательности. Возьмём какуюто подпоследовательность, ведь у нас есть следствие! Из свойств фундаментальных последовательностей, мы знаем, что существует

$$\begin{aligned} \{x_{n_k}\}_{k=1}^\infty : ||x_{n_1}|| + \sum_{k=1}^\infty ||x_{n_{k+1}-x_{n_k}}| + \infty \\ \Rightarrow x_{n_1} + \sum_{k=1}^n (x_{n_{k+1}}) - x_{n_k} - \text{сходится} \\ S_m = x_{n_1} + \sum_{k=1}^{m-1} (x_{n_{k+1}} - x_{n_k}) = x_{n_m} \Rightarrow \exists \lim_{n \to \infty} x_{n_m} = S \end{aligned}$$

2.2. Пространства ограниченных функций

Определение 2.11. Пусть A – произвольное множество. Стандартное обозначение m(A) – множество всех ограниченных функций.

$$m(A) = \{f: A o \mathbb{R} \$$
или $\mathbb{C}, \sup_{x \in A} |f(x)| < \infty \}$

$$f \in m(A), ||f||_{\infty} = \sup_{x \in A} |f(x)|.$$

Теорема 2.4. $(m(A), ||\cdot||_{\infty})$ – банахово пространство

Доказательство. Нужно проверить две вещи. Во-первых, что норма удовлетворяет аксиомам нормы. А во-вторых, что пространство с таким определением является полным. Просто по определению, никаких хитрых критериев. Возьмём фундаментальную подпоследовательность и покажем, что у нее есть предел.

Проверяем, что $||\cdot||_{\infty}$ удовлетворяет аксиомам нормы.

$$||f||_{\infty} = \sup_{x \in A} |f(x)| \ge 0, ||f||_{\infty} 0 \Rightarrow f(x) 0 \forall x \in A \text{ T.e. } f = \nvdash$$

 $\lambda \in \mathbb{R}$ (или \mathbb{C}). $||\lambda f|| = \sup_{x \in A} |\lambda| \cdot ||f||_{\infty}$

Нужно проверить неравенство треугольника.

 $f,g\in m(A).$ x — фиксированная точка в A

$$|f(x) + g(x)| \le |f(x)| + |g(x)| \le ||f||_{\infty} + ||g||_{\infty} \forall x \in A$$

$$\Rightarrow ||f+g||_{\infty} = \sup_{x \in A} |f(x)+g(x)| \le ||f||_{\infty} + ||g||_{\infty}$$

Теперь мы проверили аксиомы нормы. Доказываем полноту. $\{f_n\}$ – фундаментальная в m(A).

$$\varepsilon > 0 \exists N \in \mathbb{N} : (m > N \land n > N) \Rightarrow ||f_n - f_m||_{\infty} < \varepsilon \text{ T.e. } \sup_{x \in A} |f_n(x) - f_m(x)|$$

Первый вопрос: откуда взять претендента на роль предела? Еще желательно, чтобы он был единственный. Фиксируем x.Если для супремума есть неравенство, то и для x тем более. $|f_n(x) - f_m(x)| < \varepsilon$ при n, m > N. $\Rightarrow \{f_n(x)\}_{n=1}^{\infty} ==$ последовательность чисел в $\mathbb C$ или $\mathbb R$.

$$\Rightarrow \{f_n(x)\}_{n=1}^{\infty}$$
 – фундаментальная $\Rightarrow \exists \lim_{n \to \infty} f_n(x)$

$$f(x) = \lim_{n \to \infty} f_n(x) \forall \, x \in A$$
х фиксированный

$$|f_n(x) = f_m(x)| < \varepsilon$$
 пусть $m \to \infty$ $\Rightarrow |f_n(x) - f(x)| \le \varepsilon, x \in A \forall x \in A$ $\Rightarrow ||f_n - f||_{\infty} = \sup_{x \in A} |f_n(x) - f(x)| \le \varepsilon$ при $n > A$

Последнее сображение, которое нужно добавить, это то, что f – элемент A. Мы можем записать f как $f = (f - f_n) + f_n$, $f_n \in m(A)$, $f - f_n \in m(A)$.

$$\Rightarrow \lim_{n \to \infty} ||f - f_n|| = 0 \Leftrightarrow \lim_{n \to \infty} f_n = f \in m(A)$$

Давайте заметим, что у нас получилось определение равномерной непрерывности из математического анализа.

$$\lim_{n \to \infty} f_n = f \in m(A) \Leftrightarrow \lim_{n \to \infty} \sup_{x \in A} |f_n(x) - f(x)| = 0 \Leftrightarrow f_n \underset{A, n \to \infty}{\Longrightarrow} f$$

Определение 2.12 (Топологический компакт). Множество K – топологический компакт, если оно обладает следующими свойствами

- 1. $\forall \{G_{\alpha}\}_{\alpha \in A}, G_{\alpha}$ открытые множества $K \subset \bigcup_{\alpha \in A} G_{\alpha} \exists \{\alpha_j\}_{j=1}^n, K \subset \bigcup_{i=1}^n G_{\alpha_i}$
- 2. Хаусдорфовость $\forall\,x,y(x\neq y)\in K\,\exists\,U,V$ открытые множества, $x\in U,y\in V,U\cap V=\varnothing$

Определение 2.13. $C(K) = \{f : K \to \mathbb{R}, f \text{ непрерывна}\}$

$$||f||_{C(K)} = ||f||_{\infty} = \sup_{x \in K} |f(x)| = \max_{x \in K} |f(x)|$$

Следствие 2.3. K – топологический компакт $\Rightarrow C(K)$ – банахово

Доказательство. $C(K) \subset m(K)$. C(K) — подпространство в алгебраическом смысле. Проверим, что C(K) — замкнуто в m(K)

$$\{f_n\}, f_n = C(K), \lim_{n \to \infty} |f - f_n|_{\infty} = 0 \Leftrightarrow f_n \underset{K, n \to \infty}{\Longrightarrow} f \Rightarrow f \in C(K) \Rightarrow C(K)$$

тогда
$$m(K)$$
 – полное и $C(K)$ – полное.

2.3. Пространство последовательностей с sup нормой

Определение 2.14. $\mathbb{C}^n, n \in \mathbb{N}, l_n = \{x^{\infty} = (x_1, \dots, x_n) x_j \in \mathbb{C}\} ||x||_{\infty} = \max_{1 \le j \le n} |x_j|$

 $A=\{1,2,\dots,n\}, l_n^\infty=m(A)\Rightarrow l_n^\infty$ — полное Удобно думать, что последовательность — это функция на множестве натуральных чисел.

Определение 2.15 (l^{∞}) .

$$\begin{split} l^\infty &= \{X = \{x_j\}_{j=1}^\infty, \sup_{j \in \mathbb{N}} |x_j| < +\infty\} \\ ||x||_\infty \sup_{j \in \mathbb{N}} |x_j| \quad A = \{1, 2, 3, \dots, n, \dots\} \\ X &= \{x_j\}_{j=1}^\infty \in m(A), f(j) = x_j \\ f: A \to \mathbb{C} \\ l^\infty &:= m(\mathbb{N}) \Rightarrow l^\infty - \text{полное} \end{split}$$

Определение 2.16.

$$c = \{X = \{x_j\}_{j=1}^{\infty}, x_j \in \mathbb{C} \quad \exists \lim_{n \to \infty} x_n = x_0\}$$
$$c \subset l^{\infty}, ||x|| = ||x||_{\infty} = \sup ||X||$$
$$c_0 = \{x = \{x\}_{j=1}^{\infty}, \lim_{n \to \infty} x_j = 0\}, c_0 \subset c \subset l^{\infty}$$

 c, c_0 – замкнутые подпространства в $l^{\infty} \Rightarrow c, c_0$ – банаховы.

2.4. Пространства n раз непрерывно дифференцируемых функций на отрезке

Определение 2.17. (норма n производной)

$$n \in \mathbb{N}.C^{(n)}[a,b] = \{f : [a,b] \to \mathbb{R}\} \exists f^{(n)} \in C[a,b]$$
$$|||f||_{(n)}|| = \max_{0 \le k \le n}, f^0 = f$$

Теорема 2.5. В $C^{(n)}[a,b]$ – банахово.

Доказательство.

$$\{f_m\}_{m=1}^\infty$$
 — фундаментальная последовательность в $C^{(n)}[a,b]$ $arepsilon>0$ $\exists~N:(m>n\land q>n)\Rightarrow||f_m-f_q||_{C^{(n)}}$

$$\{f_m^{(k)}\} - \text{фундаментальная в полном пространстве} C[a,b] \Rightarrow \exists \phi_k \in C[a,b], f_n^{(k)} \underset{[a,b]}{\Longrightarrow} \phi_k, k = 0 \}$$

$$\stackrel{\text{Анализ}}{\Rightarrow} (f_k^{(n)} \underset{[a,b]}{\Longrightarrow} \phi_0 \wedge \phi_k^0 \underset{[a,b]}{\Longrightarrow} \phi_1) \Rightarrow \phi_1 = \phi_0', \phi_2 = \phi_0'', ldots, \phi_n = \phi_0^{(n)}$$