Tutorial 5 Surface integrals and divergence theorem

1. Flux integrals $\iint_S \mathbf{F} \cdot \mathbf{n} dA$ (page 450). Evaluate the second type surface integral for the given data. Describe the kind of surface. Show the details of your work.

(1)
$$\mathbf{F} = \langle -x^2, y^2, 0 \rangle$$
, $S: \mathbf{r} = \langle u, v, 3u - 2v \rangle$, $0 \le u \le \frac{3}{2}, -2 \le v \le 2$.

(2) $\mathbf{F} = \langle e^y, e^x, 1 \rangle$, $S: x + y + z = 1, x \ge 0, y \ge 0, z \ge 0$.

- 2. Surface integrals $\iint_S G(r)dA$ (page 450). Evaluate the first type surface integral for the following data. Indicate the kind of surface. Show the details of your work.
 - (1) $G = \cos x + \sin x$, S is the portion of x + y + z = 1 in the first octant.

(2) $G = x + y + z, z = x + 2y, 0 \le x \le \pi, 0 \le y \le x$.

3. Evaluate the integral $\iint_S \mathbf{F} \cdot \mathbf{n} dA$ where $\mathbf{F} = <0,0,z>$, and S is the oriented surface parametrized by $\mathbf{r}(u,v) = < u\cos v, u\sin v, v>$, $0 \le u \le 1, 0 \le v \le 2\pi$.

4. Evaluate the surface integral $\iint_S \mathbf{F} \cdot \mathbf{n} dA$ where $\mathbf{F} = \langle x, y, 2z \rangle$, and S is the part of the paraboloid $z = 4 - x^2 - y^2$ that lies above the unit square $[0,1] \times [0,1]$ with the downward orientation.

- 5. Evaluate the surface integral $\iint_{S} \mathbf{F} \cdot \mathbf{n} dA$ by the divergence theorem. Show the details.
 - (1) $F = \langle x^2, 0, z^2 \rangle$, S is the surface of the box $|x| \le 1$, $|y| \le 3$, $0 \le z \le 2$.

(2) $F = \langle \sin y, \cos x, \cos z \rangle$, S is the surface of $x^2 + y^2 \le 4$, $|z| \le 2$ (a cylinder and two disks).

- 6. Evaluate the integral $\iint_S \mathbf{F} \cdot \mathbf{n} dA$ directly or, if possible, by the divergence theorem. Show the details.
 - (1) $\mathbf{F} = \langle ax, by, cz \rangle$, S is the sphere $x^2 + y^2 + z^2 = 36$.

(2) $F = \langle y + z, 20y, 2z^3 \rangle$, S is the surface of $0 \le x \le 2, 0 \le y \le 1, 0 \le z \le y$.

(3) $\mathbf{F} = \langle y^2, x^2, z^2 \rangle$, S is $\mathbf{r} = \langle u, u^2, v \rangle$, $0 \le u \le 2, -2 \le v \le 2$.