LIBRARY OF FUNCTIONS FOR CONTACT DETECTION WITH APPLICATIONS IN BIOMECHANICS

FINAL PRESENTATION

LEBiom's Final Project Supervised by Prof. Daniel Simões Lopes

TABLE OF CONTENTS

01 MOTIVATION Collision detection

applications

CHALLENGE

Sparse and scattered information

03

GOALS & STRATEGY

Compile the information into function libraries and apply it in Unity

04 **LITERATURE** REVIEW

Creation of closest distance & collision detection tables

05

02

CHOSEN PRIMITIVES

Primitives implemented into function libraries

06

UNITY

Unity Micrograme & Robotic foot on ground simulation

MOTIVATION

VARIETY OF FIELDS

Collision Detection can be used in: astronomy, physics, molecular geometry, electromagnetics, fluid mechanics...

BIOMEDICAL RELEVANCE

Simulating foot-ground contact^[1] & virtual reality-based training system for needle micromanipulation^[2].

MULTIPLE VIRTUAL APPLICATIONS

Virtual reality training, video games, rapid digital prototyping, and robotics simulation make use of **Collision Detection** and **Shortest Distance calculations**.

^{[1] &}quot;A superellipsoid-plane model for simulating footground contact during human gait" (Lopes et al., 2015)

^{[2] &}quot;Multisensory learning cues using analytical collision detection between needle and a tube" (Wang et al., 2004)

CHALLENGE

Collision detection has attracted the attention of researchers for decades in the field of computer graphics, robot motion planning, computer-aided design...

&

A large number of successful algorithms have been proposed and applied.

There's a need to increase the computational performance of already existing algorithms.

GOAL

What we proposed to do:

Review the literature.

Create a game in Unity to apply and interact with the library created.

STRATEGY

STEP 1

Literature review.

STEP 3

Development of a library of functions.

STEP 5

Publish the code and write down a paper on "state-of-the-art".

STEP 2

Get familiar with Unity and C# scripting.

STEP 4

Development of a Unity game implementing the created library.

STEP 6

Implementation of case studies in movement biomechanics.

LITERATURE REVIEW

CLOSEST DISTANCE TABLE 2D (26 contact pairs)

Contact Pairs	References	Used References	Specific Location/Equation
2D			
Point-Line	Scheneider, J.P., Eberly, D. H., "Distance in 2D", "Point to Linear Component", "Point to Line". Geometric Tools for Computer Graphics. Morgan Kaufamann Publishers. 2003. p 190-191.		
Point-Ray	Scheneider, J.P., Eberly, D. H., "Distance in 2D", "Point to Linear Component", "Point to Ray". Geometric Tools for Computer Graphics. Morgan Kaufamann Publishers. 2003. p 191-192.		
Point-Segment	1. Scheneider, J.P., Eberly, D. H., "Distance in 2D", "Point to Linear Component", "Point to Segment". Geometric Tools for Computer Graphics. Morgan Kaufamann Publishers. 2003. p 192-193. 2. Ericson C., "Basic Primitive Tests", "Closest-point Computations", "Closest Point on Line Segment to Point ". Real-Time Collision Detection. Elsevier Inc., 2005. p. 127-129		CLOSES
Point-Polyline	Scheneider, J.P., Eberly, D. H., "Distance in 2D", "Point to Polyline". Geometric Tools for Computer Graphics, Morgan Kaufamann Publishers, 2003, p. 194.		Cont

table (36 contact pairs)

CLOSEST DISTANCE TABLE 3D (36 contact pairs)

Contact Pairs	References &
3D	
Point-Linear Component	Scheneider, J.P., Eberly, D. H., "Distance in 3D", "Point to Linear Component". Geometric Tools for Computer Graphics. Morgan Kaufamann Publishers. 2003. p 365-367
Point-Line- Segment	Scheneider, J.P., Eberly, D. H., "Distance in 3D", "Point to Linear Component", "Point to Ray or Line Segment". Geometric Tools for Computer Graphics. Morgan Kaufamann Publishers. 2003. p 367-369.
Point-Ray	Scheneider, J.P., Eberly, D. H., "Distance in 3D", "Point to Linear Component", "Point to Ray or Line Segment". Geometric Tools for Computer Graphics. Morgan Kaufamann Publishers. 2003. p 367-369.
Point-Polyline	Scheneider, J.P., Eberly, D. H., "Distance in 3D", "Point to Linear Component", "Point to Polyline". Geometric Tools for Computer Graphics. Morgan Kaufamann Publishers. 2003. p 369-374.
Point-Plane	Scheneider, J.P., Eberly, D. H., "Distance in 3D", "Point to Planar Component", "Point to Plane". Geometric Tools for Computer Graphics. Morgan Kaufamann Publishers. 2003. p 374-376. Christer Ericson, "Basic Primitive Tests", "Closest-point Computations", "Closest Point on Plane to Point ". Real-Time Collision Detection. Elsevier Inc., 2005. p. 126-127
	Scheneider, J.P., Eberly, D. H., "Distance in 3D", "Point to Planar Component", "Point to Triangle". Geometric Tools for Computer Graphics, Morgan Kaufamano Publishers, 2003, p. 376-382.

Closest Distance 2D table

(26 contact pairs)

Collision Table 2D: (61 contact pairs)

Contact Pairs	References	Used Reference(s)	Specific Location
2D			
Point-Point	1. Schwarzl, T. "Collision Detection: Point-Point Collision". 2D Game Collision Detection: An introduction to clashing geometry in games. CreateSpace Independent Publishing Platform, 2012. p. 29 2. jeffThompson, "CollisionDetection/CodeExamples/PointPoint at masterjeffThompson/CollisionDetection," GitHub, Dec. 12, 2018		
Point-Line	1. Schwarzl, T. "Collision Detection: Point-Line Collision". 2D Game Collision Detection: An introduction to clashing geometry in games. CreateSpace Independent Publishing Platform, 2012. p. 50 2. jeffThompson, "CollisionDetection/CodeExamples/LinePoint at master jeffThompson/CollisionDetection," GitHub, Dec. 12, 2018		
Point-Line- Segment	Schwarzl, T. "Collision Detection: Point-Line-Segment Collision". 2D Game Collision Detection: An introduction to clashing geometry in games. CreateSpace Independent Publishing Platform, 2012. p. 51		COLL
	4.51 - 17.65 11.1 12		

Collision Detection 3D table

(89 contact pairs)

COLLISION TABLE 3D (89 contact pairs)

Contact Pairs	References		
3D			
Line-Triangle	Scheneider, J.P., Eberly, D. H., "Intersection in 3D", "Linear Components and Planar Components", "Linear Components and Tools for Computer Graphics. Morgan Kaufamann Publishers. 2003. p 485-488.		
Line-Polygon	Scheneider, J.P., Eberly, D. H., "Intersection in 3D", "Linear Components and Planar Components", "Linear Components and Tools for Computer Graphics. Morgan Kaufamann Publishers. 2003. p 488-491.		
Line-Disk	Scheneider, J.P., Eberly, D. H., "Intersection in 3D", "Linear Components and Planar Components", "Linear Component and for Computer Graphics. Morgan Kaufamann Publishers. 2003. p 491-493.		
Line-Polyhedra	Scheneider, J.P., Eberly, D. H., "Intersection in 3D", "Linear Components and Polyhedra". Geometric Tools for Computer Gra Kaufamann Publishers. 2003. p 493-498.		
Line-Quadric Surface	Scheneider, J.P., Eberly, D. H., "Intersection in 3D", "Linear Components and Quadric Surfaces", "General Quadric Surfaces" Computer Graphics. Morgan Kaufamann Publishers. 2003. p 499-501.		
Line-Sphere	Scheneider, J.P., Eberly, D. H., "Intersection in 3D", "Linear Components and Quadric Surfaces", "Linear Components and Sp for Computer Graphics. Morgan Kaufamann Publishers. 2003. p 501-503.		

Scheneider, J.P., Eberly, D. H., "Intersection in 3D", "Linear Components and Quadric Surfaces", "Linear Components and an

Collision Detection 2D table

(61 contact pairs)

Line-Ellipsoid

CHOSEN PRIMITIVES

SHORTEST DISTANCE

Primitives in two and three dimensions:

- Point-Point;
- Point-Line Segment;
- Line Segment-Line Segment;
- Point-Circle/Sphere;
- Line Segment-Circle/Sphere;
- Circle/Sphere-Circle/Sphere.

COLLISION DETECTION

Primitives in two and three dimensions:

- AABB-AABB;
- OBB-OBB.

Primitives in three dimensions:

- Point-AABB;
- Point-Sphere;
- Sphere-AABB;
- Sphere-Sphere.

POINT-POINT

Given two points P_1 and P_2 ,

Closest Distance:
$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$$

POINT-LINE SEGMENT

Given a point **Y** and a line segment $L(t) = P + t\vec{v}$,

Closest Distance:
$$\begin{cases} ||Y - P||, & \text{if } t' \leq 0 \\ ||Y - (P + t'\overrightarrow{v})||, & \text{if } 0 < t' < 1 \\ ||Y - (P + \overrightarrow{v})||, & \text{if } t' \geq 1 \end{cases}$$

LINE SEGMENT-LINE SEGMENT

Given two parallel line segments $L_i(t) = P_i + t\vec{d}_i$ $(i = 0,1, \text{ and } t \in [0,T_i])$

and $\overrightarrow{\Delta} = P_0 - P_1$, $\| \overrightarrow{\Delta} \|, \vec{d}_0 \cdot \vec{d}_1 < 0 \land \vec{d}_0 \cdot \vec{\Delta} \ge 0$ $\textbf{Closest Distance} : \begin{cases} \| \overrightarrow{\Delta} \|, \vec{d}_0 \cdot \vec{d}_1 < 0 \land \vec{d}_0 \cdot \vec{\Delta} \ge 0 \\ \| \overrightarrow{\Delta} + T_0 \vec{d}_0 \|, \vec{d}_0 \cdot \vec{d}_1 < 0 \land \vec{d}_0 \cdot (\vec{\Delta} + T_0 \vec{d}_0) \ge 0 \\ \| \overrightarrow{\Delta} - T_1 \vec{d}_1 \|, \vec{d}_0 \cdot \vec{d}_1 < 0 \land \vec{d}_0 \cdot (\vec{\Delta} - T_1 \vec{d}_1) \ge 0 \\ \dots * \end{cases}$

POINT-CIRCLE/SPHERE

Given a points P_1 , the sphere's center P_2 and the sphere's radius r_1 ,

Closest Distance:
$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}-r_1$$

Proximity Query:
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \le r_1$$

LINE SEGMENT-CIRCLE/SPHERE

Given the sphere's center Y, the sphere's radius r and a line segment

$$\boldsymbol{L}(\boldsymbol{t}) = P + t\vec{v},$$

$$L(t) = P + t\vec{v},$$

$$Closest Distance: \begin{cases} ||Y - P|| - r, & \text{if } t' \leq 0 \\ ||Y - (P + t'\vec{v})|| - r, & \text{if } 0 < t' < 1 \\ ||Y - (P + \vec{v})|| - r, & \text{if } t' \geq 1 \end{cases}$$

CIRCLE/SPHERE-CIRCLE/SPHERE

Given the sphere's centers P_1 and P_2 and the spheres' radii r_1 and r_2 ,

Closest Distance:
$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}-r_1-r_2$$

Proximity Query:
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \le (r_1 + r_2)$$

AABB-AABB

Given two AABBs A and B,

Proximity Query:
$$\begin{cases} \left(A_{min_{x}} \leq B_{max_{x}}\right) \land \left(B_{min_{x}} \leq A_{max_{x}}\right) \\ \left(A_{min_{y}} \leq B_{max_{y}}\right) \land \left(B_{min_{y}} \leq A_{max_{y}}\right) \\ \left(A_{min_{z}} \leq B_{max_{z}}\right) \land \left(B_{min_{z}} \leq A_{max_{z}}\right) \end{cases}$$

OBB-OBB

Given two OBBs, **A** and **B**, the vector joining their centers d_{AB} , the boxes' extents $\mathbf{h_A}$ and $\mathbf{h_B}$ and a chosen separation axis, L. Then, $t = \|d_{AB} \cdot L\| - (\|h_A \cdot L\| + \|h_B \cdot L\|)$,

Proximity Query:
$$\begin{cases} \exists L, t < 0 \Rightarrow No \ collision \\ \forall L, t \geq 0 \Rightarrow Collision \end{cases}$$

POINT-AABB

Given an AABB A and a point P,

Proximity Query:
$$\begin{cases} \left(P_{x} \leq A_{max_{x}}\right) \land \left(A_{min_{x}} \leq P_{x}\right) \\ \left(P_{y} \leq A_{max_{y}}\right) \land \left(A_{min_{y}} \leq P_{y}\right) \\ \left(P_{z} \leq A_{max_{z}}\right) \land \left(A_{min_{z}} \leq P_{z}\right) \end{cases}$$

AABB-SPHERE

Given the AABB's closest point P_1 , the sphere's center P_2 and sphere's radius r_1 ,

Proximity Query:
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \le r_1$$

UNITY MICROGRAME

ROBOTIC FOOT ON GROUND SIMULATION

FINAL REMARKS

FINAL REMARKS

Anyone can use the libraries developed to perform calculations of their interest

OTHER POSSIBLE SIMULATIONS

- Hand-object contact for rehabilitation applications;
- Handrails for sports;
- Biomechanical seat design evaluation;
- Drug packaging.

IN THE FUTURE

- Add more complex primitives;
- Scale the libraries to other programming languages;
- Publish our work and share it with the community.

PROJECT MEMBERS:

FOR MORE QUESTIONS PLEASE CONTACT US:

Inês Lúcio – <u>ines.marques.lucio@tecnico.ulisboa.pt</u>

João Afonso – <u>joaoduarteafonso@tecnico.ulisboa.pt</u>

Raquel Agostinho – <u>raquelmslagostinho@tecnico.ulisboa.pt</u>