STATS 3001 Statistical Modelling III Tutorial 1 Week 2, Semester 1, 2018

(1) Let $\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}$ be a random vector with

$$\mathrm{E}\left[\boldsymbol{Y}\right] = \boldsymbol{\eta} = \begin{pmatrix} 0 \\ -2 \end{pmatrix} \text{ and } \mathrm{Var}\left[\boldsymbol{Y}\right] = \Sigma = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}.$$

Also define,

$$A = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 0 & 3 \end{pmatrix} \text{ and } \boldsymbol{b} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.$$

- (a) Find AY + b and call this random vector W.
- (b) Find $E[W_1]$ and $Var[W_1]$, that is, the expectation and variance of the first element of \mathbf{W} .
- (c) Find E[AY + b] and Var[AY + b] using Lemma 1.1 from lectures.
- (d) Are the results in (b) and (c) consistent?
- (e) Using part (c) above, what is $Cov[W_1, W_2]$ and thus the correlation between W_1 and W_2 .
- (2) If X is a matrix of dimension $n \times p$ with linearly independent columns (so that $X^T X$ is invertible) then prove that the matrix $P = X(X^T X)^{-1} X^T$ satisfies

$$P^T = P = P^2$$

and hence show that

$$(I - P)^T = (I - P) = (I - P)^2.$$

- (3) Suppose $y \in \mathbb{R}^n$ and X is a $n \times p$ matrix with linearly independent columns.
 - (a) What are the dimensions of $\boldsymbol{\beta}$ and $\hat{\boldsymbol{\beta}}$?
 - (b) Give interpretations of what vectors $\boldsymbol{\beta}$ and $\hat{\boldsymbol{\beta}}$ are, and how they differ.
 - (c) What is contained the vector $\mathbf{y} X\hat{\boldsymbol{\beta}}$?
 - (d) Prove that

$$y - X\hat{\beta}$$

is orthogonal to

$$X\hat{\boldsymbol{\beta}} - X\boldsymbol{\beta}.$$

(4) Suppose A and B are matrices of dimension $n \times m$ and $m \times n$ respectively. Prove that the trace satisfies

$$\operatorname{tr}(AB) = \operatorname{tr}(BA)$$
.

(5) If A is a constant $n \times n$ matrix and \mathcal{Y} is an $n \times n$ matrix whose elements are random variables, prove that

$$E[tr(AY)] = tr(AE[Y]).$$