Andrea Augello Department of Engineering, University of Palermo, Italy

Addestrare una rete neurale (SGD)

Introduzione

Introduzione

- Addestrare una rete neurale significa trovare i valori dei pesi che minimizzano una funzione di errore sul training set.
- Per trovare i pesi ottimali, è necessario utilizzare un algoritmo di ottimizzazione.
- L'algoritmo di ottimizzazione più semplice è la discesa del gradiente.
- La discesa del gradiente è un algoritmo iterativo che può essere applicato a qualsiasi funzione differenziabile.

Reti neurali

Reti neurali

- Una rete neurale è un modello matematico ispirato al sistema nervoso.
- ▶ Una rete neurale è composta da un insieme di neuroni artificiali.
- ▶ Un neurone è un modello matematico ispirato al neurone biologico.
- ► Un neurone è composto da:
 - un insieme di connessioni in ingresso
 - una funzione di aggregazione
 - una funzione di attivazione

Un neurone artificiale

- ▶ Il neurone riceve un insieme di input $\mathbf{x} = (x_1, x_2, \dots, x_n, 1)$.
- ▶ Ogni input x_i è moltiplicato per un peso W_i .
- ▶ I pesi W sono i parametri della rete neurale.
- ▶ I pesi **W** sono inizializzati casualmente.
- ▶ I pesi W sono aggiornati durante l'addestramento.

Un esempio giocattolo

- ► Consideriamo una rete neurale con un solo neurone.
- La rete deve imparare a separare due classi linearmente separabili sul piano.
- La rete ha come funzione di attivazione la funzione identità.

$$g(x) = x$$
$$g'(x) = 1$$

Un esempio giocattolo

- ► Consideriamo una rete neurale con un solo neurone.
- La rete deve imparare a separare due classi linearmente separabili sul piano.
- La rete ha come funzione di attivazione la funzione identità.

$$g(x) = x$$
$$g'(x) = 1$$

Dataset:		
x_1	x_2	y
2.0	1.0	1
6.0	0.5	-1
2.5	-1.0	1
5.0	0.0	-1
0.0	0.0	1
4.0	-1.0	-1
1.0	0.5	1
3.0	1.5	-1

Un esempio giocattolo

La predizione della rete è: $y = sign(\mathbf{W}^T \mathbf{x} + b)$

PyTorch

PyTorch

- PyTorch è un framework per il deep learning.
- PyTorch è basato su <u>Tensor</u>, un array multidimensionale.
- PyTorch fornisce un'implementazione efficiente di tensori e operazioni su tensori.
- PyTorch fornisce un'implementazione efficiente di reti neurali e numerosi algoritmi di ottimizzazione.

PyTorch

Useremo principalmente le seguenti componenti:

- ▶ torch.tensor: array multidimensionali.
- torch.nn: moduli per la definizione di reti neurali.
 - ► funzioni di attivazione
 - layer
 - loss
- ▶ torch.optim: moduli per l'ottimizzazione.

Una semplice rete neurale in PyTorch

Proviamo a implementare la rete neurale giocattolo in PyTorch.

Una semplice rete neurale in PyTorch

Proviamo a implementare la rete neurale giocattolo in PyTorch.

```
import torch
import torch.nn as nn
class ToyNet(nn.Module):
    def __init__(self):
        super(ToyNet, self).__init__()
        self.fc1 = nn.Linear(2, 1)
    def forward(self, x):
        x = self.fc1(x)
        return x
```

nn. Module è la classe base per tutti i moduli di reti neurali in PyTorch.

Accedere ai parametri

```
>>> net = ToyNet()
>>> print(net)
ToyNet(
  (fc1): Linear(in_features=2, out_features=1, bias=True)
>>> for name, param in net.named_parameters():
       print(name, param)
fc1.weight Parameter containing:
tensor([[-0.6990, 0.4320]], requires_grad=True)
fc1.bias Parameter containing:
tensor([-0.0255], requires_grad=True)
```

Modificare i parametri

È possibile modificare i parametri della rete neurale accedendo direttamente ai tensori.

```
>>> print(net.fc1.weight)
tensor([[-0.6990, 0.4320]], requires_grad=True)
>>> net.fc1.weight.data = torch.nn.Parameter(torch.tensor([[1.0, 0.0]]))
>>> print(net.fc1.weight)
tensor([[1.0, 0.0]], requires_grad=True)
```

Nella pratica, è molto scomodo e i parametri non vengono modificati manualmente.

Calcolare i pesi

Il caso studio

La predizione della rete è: $y = sign(\mathbf{W}^T \mathbf{x} + b)$

Caricare i dati e visualizzarli

Caricare i dati e visualizzarli

```
import matplotlib.pyplot as plt
def plot(x,y, net):
    plt.scatter(x[:, 0], x[:, 1], c=y)
    w = net.fc1.weight.data
    b = net.fc1.bias.data
    x1 = np.linspace(min(x[:, 0]), max(x[:, 0]), 100)

# w_0*x + w_1*y + b = 0
    x2 = -(w[0, 0]*x1 + b[0])/w[0, 1]
    plt.plot(x1, x2)
    plt.ylim(min(x[:, 1])-1, max(x[:, 1])+1)
    plt.show()
```

Algoritmo del percettrone

Intuizione: correggere l'errore corrente.

Algoritmo del percettrone

Intuizione: correggere l'errore corrente.

► Errore su esempio positivo: $\mathbf{W}^T\mathbf{x} < 0$

$$\mathbf{W}_{t+1}^T x = (\mathbf{W}_t + \mathbf{x}_t)^T \mathbf{x}_t$$
$$= \mathbf{W}_t^T \mathbf{x}_t + \mathbf{x}_t^T \mathbf{x}_t$$
$$= \mathbf{W}_t^T \mathbf{x}_t + ||\mathbf{x}_t||^2$$

▶ Errore su esempio negativo: $\mathbf{W}^T\mathbf{x} > 0$

$$\mathbf{W}_{t+1}^{T} x = (\mathbf{W}_{t} - \mathbf{x}_{t})^{T} \mathbf{x}_{t}$$
$$= \mathbf{W}_{t}^{T} \mathbf{x}_{t} - \mathbf{x}_{t}^{T} \mathbf{x}_{t}$$
$$= \mathbf{W}_{t}^{T} \mathbf{x}_{t} - ||\mathbf{x}_{t}||^{2}$$

Algoritmo del percettrone

Intuizione: correggere l'errore corrente.

► Errore su esempio positivo: $\mathbf{W}^T\mathbf{x} < 0$

$$\mathbf{W}_{t+1}^T x = (\mathbf{W}_t + \mathbf{x}_t)^T \mathbf{x}_t$$
$$= \mathbf{W}_t^T \mathbf{x}_t + \mathbf{x}_t^T \mathbf{x}_t$$
$$= \mathbf{W}_t^T \mathbf{x}_t + ||\mathbf{x}_t||^2$$

▶ Errore su esempio negativo: $\mathbf{W}^T\mathbf{x} > 0$

$$\mathbf{W}_{t+1}^T x = (\mathbf{W}_t - \mathbf{x}_t)^T \mathbf{x}_t$$
$$= \mathbf{W}_t^T \mathbf{x}_t - \mathbf{x}_t^T \mathbf{x}_t$$
$$= \mathbf{W}_t^T \mathbf{x}_t - ||\mathbf{x}_t||^2$$

1: $\mathbf{W_1} \leftarrow \mathbf{0}$ 2: $t \leftarrow 1$ 3: **while** non convergente **do** 4: $\delta \leftarrow \frac{y - \operatorname{sign}(\mathbf{W}_t^T \mathbf{x}_t)}{2}$ 5: $\mathbf{W}_{t+1} \leftarrow \mathbf{W}_t + \delta \mathbf{x}_t$ 6: $t \leftarrow t+1$

7: end while

Interpretazione geometrica

Interpretazione geometrica: ruotare l'iperpiano di decisione fino a che i punti sono correttamente classificati.

Convergenza

SE i dati sono linearmente separabili **ALLORA** l'algoritmo converge in un numero finito di passi.

Altrimenti, l'algoritmo non convergerà.

Implementazione

Addestramento

Valutiamo l'errore su un campione ed aggiorniamo i pesi.

- 1: $\mathbf{W_1} \leftarrow \mathbf{0}$
- $\mathbf{2} \colon\thinspace t \leftarrow 1$
- 3: while non convergente do
- 4: $\delta \leftarrow \frac{y \operatorname{sign}(\mathbf{W}_t^T \mathbf{x}_t)}{2}$
- 5: $\mathbf{W}_{t+1} \leftarrow \tilde{\mathbf{W}}_t + \delta \mathbf{x}_t$
- 6: $t \leftarrow t + 1$
- 7: end while

Addestramento

Valutiamo l'errore su un campione ed aggiorniamo i pesi.

- 1: $\mathbf{W_1} \leftarrow \mathbf{0}$ 2: $t \leftarrow 1$
- 3: **while** non convergente **do**
- 4: $\delta \leftarrow \frac{y \operatorname{sign}(\mathbf{W}_t^T \mathbf{x}_t)}{2}$
- 5: $\mathbf{W}_{t+1} \leftarrow \tilde{\mathbf{W}}_t + \delta \mathbf{x}_t$
- 6: $t \leftarrow t + 1$
- 7: end while

```
class ToyNet(nn.Module):
   def init (self):
        super(ToyNet, self).__init__()
        self.fc1 = nn.Linear(2, 1)
   def forward(self, x):
       x = self.fc1(x)
        return x
   def train_sample_perceptron(self, x,y):
        y_hat = torch.sign(self.forward(x))
        delta = (y - y_hat)/2
        self.fc1.weight.data += delta * x
        self.fc1.bias.data += delta
```

Loop di addestramento

```
net = ToyNet.ToyNet()
x, y = load_data(DATA)
while True:
    # shuffle x and v
    indices = torch.randperm(len(x))
    x = x[indices]
    y = y[indices]
    for i in range(len(x)):
        net.train_sample_perceptron(x[i], y[i])
    plot(x, y, net)
    v_hat = torch.sign(net.forward(x))
    if torch.all(y_hat.flatten() == y):
        break
print("w: ", net.fc1.weight.data)
print("b: ", net.fc1.bias.data)
```

L'algoritmo del percettrone non garantisce la convergenza in caso di dati non linearmente separabili.

- L'algoritmo del percettrone non garantisce la convergenza in caso di dati non linearmente separabili.
- L'apprendimento di una rete neurale è un problema di ottimizzazione.

- L'algoritmo del percettrone non garantisce la convergenza in caso di dati non linearmente separabili.
- L'apprendimento di una rete neurale è un problema di ottimizzazione.
- ▶ I parametri della rete neurale sono ottimizzati per minimizzare una funzione di errore sul training set.

- L'algoritmo del percettrone non garantisce la convergenza in caso di dati non linearmente separabili.
- L'apprendimento di una rete neurale è un problema di ottimizzazione.
- ▶ I parametri della rete neurale sono ottimizzati per minimizzare una funzione di errore sul training set.
- ► Tipiche funzioni di errore:

- L'algoritmo del percettrone non garantisce la convergenza in caso di dati non linearmente separabili.
- L'apprendimento di una rete neurale è un problema di ottimizzazione.
- ▶ I parametri della rete neurale sono ottimizzati per minimizzare una funzione di errore sul training set.
- ▶ Tipiche funzioni di errore:
 - ▶ Cross-entropy (problemi di classificazione): $E = -\sum_i y_i \log(\hat{y}_i)$

- L'algoritmo del percettrone non garantisce la convergenza in caso di dati non linearmente separabili.
- L'apprendimento di una rete neurale è un problema di ottimizzazione.
- ▶ I parametri della rete neurale sono ottimizzati per minimizzare una funzione di errore sul training set.
- ► Tipiche funzioni di errore:
 - Cross-entropy (problemi di classificazione): $E = -\sum_i y_i \log(\hat{y}_i)$
 - Mean squared error (problemi di regressione): $E = \frac{1}{2}(y \hat{y})^2$

Discesa del gradiente

- L'algoritmo del percettrone non garantisce la convergenza in caso di dati non linearmente separabili.
- L'apprendimento di una rete neurale è un problema di ottimizzazione.
- ▶ I parametri della rete neurale sono ottimizzati per minimizzare una funzione di errore sul training set.
- ► Tipiche funzioni di errore:
 - Cross-entropy (problemi di classificazione): $E = -\sum_i y_i \log(\hat{y}_i)$
 - Mean squared error (problemi di regressione): $E = \frac{1}{2}(y \hat{y})^2$
- Tipicamente si utilizza un sottoinsieme dei dati per l'addestramento (training set).

L'algoritmo SGD

- 1. Si inizializzano i pesi W in modo casuale.
- 2. Per ogni elemento x del training set:
 - 2.1 Si calcola l'output della rete $\hat{y} = g(\mathbf{W}^T \mathbf{x})$.
 - 2.2 Si calcola l'errore commesso attraverso la funzione di loss scelta.
 - 2.3 Si calcola il gradiente della loss rispetto ai pesi $\frac{\partial L}{\partial W_i}$.
 - 2.4 Si aggiornano i pesi nella direzione opposta al gradiente.
- 3. Si ripete il processo fino a che l'errore non è sufficientemente basso o il numero di epoche non è sufficientemente alto.

Usiamo come funzione di loss il MSE.

$$L = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(y - g(\sum_i W_i x_i))^2$$

Usiamo come funzione di loss il MSE.

$$L = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(y - g(\sum_i W_i x_i))^2$$

L'ottimizzazione avviene attraverso la discesa del gradiente.

Usiamo come funzione di loss il MSE.

$$L = \frac{1}{2}Err^{2} \equiv \frac{1}{2}(y - \hat{y})^{2} = \frac{1}{2}(y - g(\sum_{i} W_{i}x_{i}))^{2}$$

- L'ottimizzazione avviene attraverso la discesa del gradiente.
- Deriviamo la loss rispetto all'output:

$$\frac{\partial L}{\partial \hat{y}} = \hat{y} - y = Err$$

Usiamo come funzione di loss il MSE.

$$L = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(y - g(\sum_i W_i x_i))^2$$

- L'ottimizzazione avviene attraverso la discesa del gradiente.
- ► Deriviamo la loss rispetto all'output:

$$\frac{\partial L}{\partial \hat{y}} = \hat{y} - y = Err$$

▶ Deriviamo l'output rispetto al peso W_i :

$$\frac{\partial \hat{y}}{\partial W_i} = \frac{\partial g(\sum_i W_i x_i)}{\partial W_i} = g'(\sum_i W_i x_i) \times x_i$$

Nel nostro caso, essendo $g(\cdot)$ l'identità, $g'(\cdot)=1$, quindi $\frac{\partial \hat{y}}{\partial W_i}=x_i$

Usiamo come funzione di loss il MSE.

$$L = \frac{1}{2}Err^2 \equiv \frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(y - g(\sum_i W_i x_i))^2$$

- L'ottimizzazione avviene attraverso la discesa del gradiente.
- Deriviamo la loss rispetto all'output:

$$\frac{\partial L}{\partial \hat{y}} = \hat{y} - y = Err$$

▶ Deriviamo l'output rispetto al peso W_i :

$$\frac{\partial \hat{y}}{\partial W_i} = \frac{\partial g(\sum_i W_i x_i)}{\partial W_i} = g'(\sum_i W_i x_i) \times x_i$$

Nel nostro caso, essendo $g(\cdot)$ l'identità, $g'(\cdot)=1$, quindi $rac{\partial \hat{y}}{\partial W_i}=x_i$

► Regola di aggiornamento dei pesi:

$$W_i = W_i - \alpha \times (\hat{y} - y) \times x_i$$

Discesa del gradiente

La soluzione non artigianale

La soluzione non artigianale

```
class ToyNet(nn.Module):
    def train(self, x, y, epochs=40, lr=0.05):
        # train using SGD optimizer
        optimizer = torch.optim.SGD(self.parameters(), lr=lr)
        criterion = nn.MSELoss()
        for _ in range(epochs):
            optimizer.zero_grad()
            y_hat = self.forward(x).flatten()
            loss = criterion(y_hat, y)
            loss.backward()
            optimizer.step()
```

▶ Abbiamo utilizzato un esempio giocattolo per introdurre i concetti.

- ▶ Abbiamo utilizzato un esempio giocattolo per introdurre i concetti.
- In pratica, non si utilizza l'algoritmo come lo abbiamo implementato noi ma varianti più efficienti.

- ▶ Abbiamo utilizzato un esempio giocattolo per introdurre i concetti.
- In pratica, non si utilizza l'algoritmo come lo abbiamo implementato noi ma varianti più efficienti.
 - Non si calcola l'errore su un singolo esempio ma su un batch di esempi (Da qui discesa <u>stocastica</u>).

- ▶ Abbiamo utilizzato un esempio giocattolo per introdurre i concetti.
- In pratica, non si utilizza l'algoritmo come lo abbiamo implementato noi ma varianti più efficienti.
 - Non si calcola l'errore su un singolo esempio ma su un batch di esempi (Da qui discesa <u>stocastica</u>).
 - Si utilizzano varianti dell'algoritmo del gradiente (momentum, Nesterov, Adam, ...).

- ▶ Abbiamo utilizzato un esempio giocattolo per introdurre i concetti.
- In pratica, non si utilizza l'algoritmo come lo abbiamo implementato noi ma varianti più efficienti.
 - Non si calcola l'errore su un singolo esempio ma su un batch di esempi (Da qui discesa <u>stocastica</u>).
 - Si utilizzano varianti dell'algoritmo del gradiente (momentum, Nesterov, Adam, ...).
- ► Sarebbe stata più appropriata una funzione di attivazione come la sigmoide.

- ▶ Abbiamo utilizzato un esempio giocattolo per introdurre i concetti.
- In pratica, non si utilizza l'algoritmo come lo abbiamo implementato noi ma varianti più efficienti.
 - Non si calcola l'errore su un singolo esempio ma su un batch di esempi (Da qui discesa <u>stocastica</u>).
 - Si utilizzano varianti dell'algoritmo del gradiente (momentum, Nesterov, Adam, ...).
- ► Sarebbe stata più appropriata una funzione di attivazione come la sigmoide.
- Per un problema di classificazione, non si utilizza la funzione di errore MSE ma la cross-entropy.

- ▶ Abbiamo utilizzato un esempio giocattolo per introdurre i concetti.
- In pratica, non si utilizza l'algoritmo come lo abbiamo implementato noi ma varianti più efficienti.
 - Non si calcola l'errore su un singolo esempio ma su un batch di esempi (Da qui discesa <u>stocastica</u>).
 - Si utilizzano varianti dell'algoritmo del gradiente (momentum, Nesterov, Adam, ...).
- ► Sarebbe stata più appropriata una funzione di attivazione come la sigmoide.
- Per un problema di classificazione, non si utilizza la funzione di errore MSE ma la cross-entropy.
- ► La scelta degli iperparametri (numero di epoche, learning rate, ...) è molto importante.

Prossimi passi

Prossimi passi

- Modificare il dataset in modo che non sia più linearmente separabile.
 - Come si comporta l'algoritmo del percettrone?
 - Come si comporta la discesa del gradiente?
- Consultando la documentazione online di PyTorch, provare a:
 - Aggiungere una sigmoide come funzione di attivazione.
 - Utilizzare la cross-entropy come funzione di errore.
 - Soltanto la soluzione built-in di PyTorch funzionerà correttamente, modificare le altre è al di là dello scopo di questo esercizio.
 - ► Come cambia l'iperpiano di decisione?
 - Provare ad aggiungere un layer nascosto.
 - ▶ Provare a modificare gli iperparametri (numero di epoche, learning rate, ...).

Prossimi passi

Per plottare classificatori non lineari/con più layer, usare la seguente funzione:

```
def plot2(X.v. model. title=""):
    # define hounds of the domain
    min1. max1 = X[:, 0].min()-1. X[:, 0].max()+1
   \min 2, \max 2 = X[:, 1], \min()-1, X[:, 1], \max()+1
   # define the x and v scale
    x1grid, x2grid = np.arange(min1, max1, 0.025), np.arange(min2, max2, 0.025)
   # create all of the lines and rows of the grid
   xx, vy = np.meshgrid(x1grid, x2grid)
   # flatten each grid to a vector
   r1, r2 = xx.flatten(), vv.flatten()
    # horizontal stack vectors to create x1,x2 input for the model
    grid = \lceil \lceil x1, x2 \rceil for x1, x2 in zip(r1,r2) \rceil
    # make predictions for the grid
    vhat = model.forward(torch.tensor(grid, dtype=torch.float32)).detach().numpy()
    # reshape the predictions back into a grid
   zz = vhat.reshape(xx.shape)
    # plot the grid of x, y and z values as a surface
    plt.contourf(xx, vv, zz, cmap='viridis')
    # create scatter plot for samples from each class
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap='viridis', edgecolors='black')
    plt.title(title)
   # show the plot
   plt.pause(2)
   plt.clf()
```