PROBLÉME III (extrait de X-ENS MP 2011)

On note E le \mathbb{R} -espace vectoriel des suites réelles. On considère l'endomorphisme Δ de E qui à toute suite $u = (u_n)_{n \in \mathbb{N}}$ de E associe la suite de terme général $(\Delta u)_n = u_{n+1} - u_n$ pour tout $n \in \mathbb{N}$.

On pose, pour k et n dans \mathbb{N} , $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ si $n \ge k$. On convient que 0! = 1 et que $\binom{n}{k} = 0$ si k > n.

Les candidats vérifieront la convergence des séries qu'ils rencontrent, même si cela n'est pas explicitement demandé.

Première partie : suites complètement monotones.

Pour tout $p \in \mathbb{N}^*$, on note Δ^p le p-ième itéré de Δ , défini par $\Delta^p = \Delta \circ \Delta^{p-1}$ pour $p \geqslant 1$, et par $\Delta^0 = \mathrm{Id}_E$.

On dira qu'une suite $(u_n)_{n\in\mathbb{N}}$ est complètement monotone si pour tous entiers naturels p et n on a

$$(-1)^p (\Delta^p u)_n > 0.$$

- 1. Soit f une fonction définie sur \mathbb{R}_+ , à valeurs réelles et indéfiniment dérivable. On considère la suite de terme général $u_n = f(n)$.
 - a) Montrer que, pour tout entier $p \ge 1$ et tout entier n, il existe un réel x dans l'intervalle n, n+p tel que

$$(\Delta^p u)_n = f^{(p)}(x).$$

On pourra raisonner par récurrence en considérant la fonction $g: x \mapsto f(x+1) - f(x)$ et la suite de terme général $v_n = g(n)$.

- b) On considère la suite de terme général $a_n = \frac{1}{n+1}$. Montrer que $(a_n)_{n \in \mathbb{N}}$ est complètement monotone.
- **2.** a) Démontrer que pour tout $p \ge 1$ on a :

$$(\Delta^p u)_n = \sum_{k=0}^p (-1)^{p-k} \binom{p}{k} u_{n+k}.$$

b) Soit $b \in]0,1[$. On considère la suite de terme général $b_n = b^n$. Calculer $(\Delta^p b)_n$ pour tous les entiers naturels n et p et en déduire que $(b_n)_{n \in \mathbb{N}}$ est complètement monotone.

Soit ω une fonction continue et positive sur [0,1], et non identiquement nulle. Jusqu'à la fin de la première partie, on considère la suite de terme général $u_n = \int_0^1 t^n \omega(t) dt$.

3. a) Montrer que la série de terme général $(-1)^k u_k$ converge et que

$$\sum_{k=0}^{+\infty} (-1)^k u_k = \int_0^1 \frac{\omega(t)}{1+t} \, \mathrm{d}t \,.$$

- b) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est complètement monotone.
- c) Démontrer que

$$\sum_{k=0}^{+\infty} (-1)^k u_k = \frac{1}{2} \sum_{p=0}^{+\infty} \int_0^1 \left(\frac{1-t}{2} \right)^p \omega(t) \, \mathrm{d}t \,.$$

d) En déduire que l'on a

$$\sum_{k=0}^{+\infty} (-1)^k u_k = \sum_{p=0}^{+\infty} \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0.$$

4. Déduire des questions précédentes que

$$\ln 2 = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} = \sum_{p=0}^{+\infty} \frac{1}{(p+1)2^{p+1}}.$$

- **5.** On pose $\varepsilon_n = \frac{1}{2} \sum_{k=0}^n \int_0^1 \left(\frac{1-t}{2}\right)^k \omega(t) dt$.
 - a) Montrer que

$$\varepsilon_n = \sum_{p=0}^n \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0.$$

b) On pose
$$S = \sum_{k=0}^{+\infty} (-1)^k u_k$$
. Montrer que $|S - \varepsilon_n| \leqslant \frac{S}{2^{n+1}}$.

Seconde partie: Transformée d'Euler.

Dans cette partie, on se donne une suite $(u_n)_{n:\in\mathbb{N}}$ telle que la série de terme général $(-1)^n u_n$ soit convergente, et on note S sa somme. On ne suppose aucune autre propriété particulière de cette suite. Le but est de démontrer que

$$S = \sum_{k=0}^{+\infty} (-1)^k u_k = \sum_{n=0}^{+\infty} \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0.$$

On dit que la série $\sum \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0$ est la transformée d'Euler de la série $\sum (-1)^k u_k$.

- **6. a)** Montrer que pour tout $\in \mathbb{N}$ on a $\lim_{n \to +\infty} (\Delta^p u)_n = 0$.
 - **b)** Montrer que pour toute suite $(r_n)_{n\in\mathbb{N}}$ de limite nulle on a $\lim_{p\to+\infty}\frac{1}{2^p}\sum_{k=0}^p\binom{p}{k}r_k=0$.
- 7. a) Montrer que pour tout $n \in \mathbb{N}$ on a

$$u_n = \sum_{p=0}^{+\infty} \left(\frac{(-1)^p}{2^p} (\Delta^p u)_n - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_n \right).$$

b) Montrer que pour tout $p \in \mathbb{N}$ on a

$$\frac{(-1)^p}{2^{p+1}}(\Delta^p u)_0 = \sum_{n=0}^{+\infty} (-1)^n \left(\frac{(-1)^p}{2^p} (\Delta^p u)_n - \frac{(-1)^{p+1}}{2^{p+1}} (\Delta^{p+1} u)_n \right).$$

8. a) On pose $E_n = \sum_{p=0}^n \frac{(-1)^p}{2^{p+1}} (\Delta^p u)_0$. Montrer que

$$E_n - S = -\frac{1}{2^{n+1}} \sum_{p=0}^{n+1} {n+1 \choose p} \left(\sum_{k=p}^{+\infty} (-1)^k u_k \right).$$

b) Conclure.