Rechnerarchitektur Labor 1

Löse auf Papier und erkläre die folgenden Übungen:

 1. Wandle von Basis 10 in 2 und dann in 16 die folgenden Zahlen um: 4 10 15 32
 2. Konvertieren Sie von Basis 10 zu 16 und dann zu 2 die folgenden Zahlen: 3 11 16 17
 3. Konvertieren Sie von Basis 2 zu Basis 16 die folgenden Zahlen: 1010 0111 1111 10001010 110101111
 4. Konvertieren Sie von Basis 16 zu Basis 2 die folgenden Zahlen: 3 A F 2B F8
 5. Führen Sie die folgenden Operationen in Basis 2 aus (ohne zu Basis 10 zu konvertieren): 1+1 10+10 111+1 1010-1 1000-10
 6. Führen Sie die folgenden Vorgänge auf Basis 16 aus (ohne Konvertierung auf Basis 10): 9+1 8+2 F+1 10+A 10-2 B-3

- 7. Prüfen Sie anhand von mindestens zwei der Komplementaritätsregeln, ob:
 - \bullet In einer 2-Byte-Sequenz sind die Zahlen (9A7D) $_{16}$ und (7583) $_{16}$ komplementär.
 - ullet In einer 4-Byte-Sequenz sind die Zahlen (000F095D) $_{16}$ und (FFF0F6A3) $_{16}$ komplementär
 - ullet In einer 2-Byte-Sequenz sind die Zahlen (4BA1) $_{16}$ und (5C93) $_{16}$ komplementär
 - ullet In einer 1-Byte-Sequenz sind die Zahlen (7F) $_{16}$ und (81) $_{16}$ komplementär
 - In einer 2-Byte-Sequenz sind die Zahlen (732A)₁₆und (4E58)₁₆ komplementär
- 8. Stellen Sie die folgenden Zahlen in einem Byte dar, in Zeichendarstellung und ohne Zeichendarstellung:
 - (11001)₂
 - (1010)₂
 - (11001)₂
 - (1011)₂
 - (1110111)₂
 - (10111)₂
 - (110)₂
 - (11)₂
- 9. Stellen Sie die folgenden Zahlen in zwei Bytes dar, in Zeichendarstellung und ohne Zeichendarstellung:
 - (11001010)₂
 - (1110010)₂
 - $(11001010)_2$
 - (1010110)₂
 - (11010)₂
 - (10010)₂
 - (0010111)₂
 - **(010101)**₂