Ondas Irreais

Gubi

21 de novembro de 2015

Vamos simular uma chuva fantasiosa em um planeta imaginário, gerando ondas irreais. Para compor um cenário um pouco mais surrealista, um material especial cobre toda a borda do lago retangular, absorvendo completamente as ondas que nela tocam.

1 O programa

O programa deve simular uma chuva neste lago. Cada gota produz uma onda irreal que se propaga de acordo com a função

$$h(\rho,t) = (\rho - v \cdot t) \cdot e^{(-(\rho - v \cdot t)^2)} \cdot e^{-t/10}$$

onde h é a altura da água com relação à superfície do lago em repouso. Os parâmetros são ρ , em coordenadas polares (ρ, θ) , a partir do ponto de queda da onda e t, o tempo desde a queda da gota. Note que h não depende de θ . A velocidade de propagação da onda é v. Valores da altura (ou profundidade) menor do que ϵ podem ser desprezados.

Os parâmetros de simulação são fornecidos em um arquivo texto, passado como primeiro argumento. Os outros argumento é o número de processadores utilizado.

2 Arquivo de entrada

O arquivo de entrada possui os seguintes parâmetros, um por linha:

• Tamanho do lago, um par de valores entre parênteses: (larg, alt)

- Tamanho da matriz, outro par de valores entre parênteses: (L, H)
- Tempo (virtual) de simulação: T
- ullet Velocidade de propagação da onda: v
- Limiar de altura ϵ
- Número de iterações: N_{iter}
- Probabilidade de surgimento de uma gota, por iteração: P
- Semente para o gerador aleatório: s

Este é um exemplo de entrada:

```
(1000, 2000)
(500, 100)
120
10
0.001
1000
12.4
7623891
```

Simulação 3

A simulação é feita por uma sequência de N_{iter} passos, chamados timesteps. Cada timestep equivale, portanto, a $\frac{T}{N_{iter}}$ segundos. Em cada passo estas operações devem ser efetuadas, nesta ordem:

- 1. Calcular o nível do lago em cada ponto (propagação das ondas).
- 2. Verificar, por sorteio, se uma nova gota deve aparecer e sortear sua posição.

4 Saída

A saída será formada por dois arquivos, com os seguintes conteúdos:

- 1. Imagem final do lago em formato PPM, tipo P3 (colorido ASCII)
- 2. Média e o desvio padrão da altura do lago, em cada ponto.

Considere a superfície do lago em repouso como altura 0 e representados em preto. Valores positivos devem ser representados em azul e negativos em vermelho.

Para determinar a intensidade de cor, use o seguinte algoritmo:

- 1. Seja h_{max} a altura máxima do líquido
- 2. Seja p_{max} a profundidade máxima
- 3. Seja $\Delta = \frac{\max(h_{max}, -p_{max})}{255}$
- 4. Seja h(x,y) a altura do líquido no ponto (x,y)
- 5. Seja (x_i, y_j) o ponto no lago correspondente ao pixel (i, j) da imagem.
- 6. Para cada pixel (i, j) da imagem, o valor da componente azul (ou vermelha, se $h(x_i, y_j) < 0$), é dado por

$$\left\lceil \frac{h(x_i, y_j)}{\Delta} \right\rceil$$

O segundo arquivo é uma tabela de 4 colunas: posição x, posição y, valor médio e desvio padrão. Cada linha deve conter estes valores no formato de impressão "%12.7f".

4.1 Formato *PPM*

O formato é bastante simples:

- A primeira linha contém o tipo da imagem, com dois caracteres:
 - P1 Bitmap, em modo ascii
 - **P2** Greyscale, modo ascii

P3 Colorida, modo ascii

P4 Bitmap, binária

P5 Greyscale, binária

P6 Colorida, binária

As linhas seguintes podem começar com '#' e servem como comentários. Em seguida vem um par de inteiros representando a largura e a altura da imagem. O próximo inteiro indica o valor máximo de uma componente, no nosso caso, será 255.

Em seguida são colocados os valores de cada pixel. Para o formato P3 são triplas de inteiros, com as componentes RGB. No P6 são triplas de bytes. Para mais informações, procure pelo formato Netpbm no Google ou similar.

Que a velocidade esteja com vocês.