$$(Z_7, +_7)$$

$$Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$$

 $\mathbf{Week} = \{Sun, Mon, Tue, Wed, Thu, Fri, Sat\}$

*	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	4 5 6 0 1 2 3	4	5

Four days after a friday is a tuesday. For example: $5*4=5+_74=9\pmod{7}=2$

$$(Z_7^*, \times_7)$$

$$Z_7 = \{1, 2, 3, 4, 5, 6\}$$

*	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	4 1 5 2 6 3	2	1

For example : $5 * 4 = 5 \times_7 4 = 20 \pmod{7} = 6$

Symmetric Group, S_3

$$S_3 = \{(), (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\}$$

*	()	$(1\ 2)$	$(1\ 3)$	$(2\ 3)$	$(1\ 2\ 3)$	$(1\ 3\ 2)$
()	()	(12)	(13)	(23)	$(1\ 2\ 3)$	$(1\ 3\ 2)$
$(1\ 2)$	(1 2)	()	$(1\ 2\ 3)$	$(1\ 3\ 2)$	$(1\ 3)$	$(2\ 3)$
$(1\ 3)$	(1 3)	$(1\ 3\ 2)$	()	$(1\ 2\ 3)$	$(2\ 3)$	$(1\ 2)$
$(2\ 3)$	(2 3)	$(1\ 2\ 3)$	$(1\ 3\ 2)$	()	$(1\ 2)$	$(1\ 3)$
$(1\ 2\ 3)$	$(1\ 2\ 3)$	$(2\ 3)$	$(1\ 2)$	$(1\ 3)$	$(1\ 3\ 2)$	()
$(1\ 3\ 2)$	$(1\ 3\ 2)$	$(1\ 3)$	$(2\ 3)$	$(1\ 2)$	()	$(1\ 2\ 3)$

For example: $(1\ 3)*(1\ 2) = (1\ 3\ 2)$

Dihedral Group, D_8

$$D_8 = \{e, \sigma, \sigma^2, \sigma^3, \mu, \mu\sigma, \mu\sigma^2, \mu\sigma^3\}$$

*	e	σ	σ^2	σ^3	μ	$\mu\sigma$	$\mu\sigma^2$	$\mu\sigma^3$
\overline{e}	e	σ	σ^2	σ^3	μ		$\mu\sigma^2$	$\mu\sigma^3$
σ	σ	σ^2	σ^3	e	$\mu\sigma^3$	μ	$\mu\sigma$	$\mu\sigma^2$
σ^2	σ^2	σ^3		σ	$\mu\sigma^2$	$\mu\sigma^3$		$\mu\sigma$
σ^3	σ^3	e.	σ	σ^2	$\mu\sigma$	$\mu\sigma^2$	$\mu\sigma^3$	μ
μ	μ	$\mu\sigma$	$\mu\sigma^2$	$\mu\sigma^3$	e	σ	σ^2	σ^3
$\mu\sigma$	$\mu\sigma$	$\mu\sigma^2$	$\mu\sigma^{3}$	μ	σ^3	e	σ	σ^2
$\mu\sigma^2$	$\mu\sigma^2$	$\mu\sigma^3$	μ	$\mu\sigma$	σ^2	σ^3	e	σ
$\mu\sigma^3$	$\mu\sigma^3$	μ	$\mu\sigma$	$\mu\sigma^2$	σ	σ^2	σ^3	e

 $(Hint:\sigma\mu=\mu\sigma^3)$ For example: $\mu\sigma*\mu\sigma^2=\mu(\sigma\mu)\sigma^2=\sigma$