Coupling plant physiology and pest demography to understand plant-nematode interactions

Joseph Penlap, Suzanne Touzeau, Frédéric Grognard, Valentina Baldazzi

Inria Centre at Université Côte d'Azur

13th ECMTB, July 22-26, 2024, Toledo, Spain

Root-Knot Nematodes (RKN), Meloidogyne spp.

- small soil worms,
- obligate root endoparasites,
- ubiquitous polyphagous pest
- 14% of global crop losses worldwide [1]
 [1] Djian-Caporalino, EPPO Bulletin, 2012

Main impacts

- root deformation (galls)
- stunted growth and wilting

Plant variability

Strong variability in plant response to RKN parasitism among crop species

Plant variability

Strong variability in plant response to RKN parasitism among crop species

Which mechanisms underlie plant tolerance?

Problematic

Host-Pathogen interactions

Tion Physiolog

Epidemiological modeling

(Tankam et al., Mathematical Biosciences, 2020)

(Nilusmas et al., Evolutionary applications, 2020)

Ecological modeling

(Thornley, Annals of botany, 1972)

(Dewar, Functional Ecology, 1998)

Problematic

Host-Pathogen interactions

Stan Phatico

Epidemiological modeling

(Tankam et al., Mathematical Biosciences, 2020)

(Nilusmas et al., Evolutionary applications, 2020)

Ecological modeling

(Thornley, Annals of botany, 1972)

(Dewar, Functional Ecology, 1998)

Approach

- ➤ Model coupling plant ecophysiology & pest population dynamics
- ➤ Experimental data on 2 plant species (tomato & pepper)

Models 000

Plant model

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \\ \frac{dC_s}{dt} = \\ \end{cases}$$
Root
$$\begin{cases} \frac{dW_r}{dt} = \\ \frac{dC_r}{dt} = \\ \end{cases}$$
Fruit
$$\begin{cases} \frac{dW_f}{dt} = \\ \frac{dC_f}{dt} = \\ \end{cases}$$

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \\ \frac{dC_s}{dt} = \frac{\sigma_c f(\psi_s)}{U_{\text{Dtake}}} \end{cases}$$
Root
$$\begin{cases} \frac{dW_r}{dt} = \\ \frac{dC_r}{dt} = \\ \frac{dW_f}{dt} = \end{cases}$$
Fruit
$$\begin{cases} \frac{dW_f}{dt} = \\ \frac{dC_f}{dt} = \\ \frac{dC_f}{dt} = \end{cases}$$

$$-\underbrace{\frac{1}{W_s}\frac{dW_s}{dt}C_s}_{\text{Dilution}}$$

$$-\underbrace{\frac{1}{W_r}\frac{dW_r}{dt}C_r}_{\text{Dilution}}$$

$$-\underbrace{\frac{1}{W_f}\frac{dW_f}{dt}C_f}_{\text{Dilution}}$$

Models

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{\text{Uptake}} - \frac{1}{W_s} \underbrace{(T_r + T_f + T_a)}_{\text{Transport}} \\ \end{cases} - \underbrace{\frac{1}{W_s} \frac{dW_r}{dt}}_{\text{Dilution}}$$

$$\begin{cases} \frac{dW_r}{dt} = \\ \frac{dC_r}{dt} = \frac{1}{W_r} \underbrace{T_r}_{\text{Transport}} \\ \end{cases} - \underbrace{\frac{1}{W_r} \frac{dW_r}{dt}}_{\text{Dilution}}$$

$$\begin{cases} \frac{dW_f}{dt} = \\ \frac{dC_f}{dt} = \frac{1}{W_f} \underbrace{(T_f + T_a)}_{\text{Transport}} \\ \end{cases} - \underbrace{\frac{1}{W_r} \frac{dW_f}{dt}}_{\text{Dilution}} C_f \underbrace{\frac{dW_f}{dt}}_{\text{Dilution}} C_f \underbrace$$

$$-\underbrace{\frac{1}{W_f}\frac{dW_f}{dt}C_f}_{\text{Dilution}}$$

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s} W_s}_{\text{Growth}} \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{\text{Uptake}} - \frac{1}{W_s} \underbrace{(T_r + T_f + T_a)}_{\text{Transport}} - \underbrace{(f_c \quad) k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{\text{Growth}} \\ \frac{dW_r}{dt} = \underbrace{k_r f(\psi_r) \frac{C_r}{K_r + C_r} W_r}_{\text{Growth}} \\ \frac{dC_r}{dt} = \frac{1}{W_r} \underbrace{T_r}_{\text{Transport}} - \underbrace{(f_c \quad) k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{\text{Growth}} \\ - \underbrace{\frac{1}{W_r} \frac{dW_r}{dt} C_r}_{\text{Dilution}} \\ \frac{dW_f}{dt} = \underbrace{k_f f(\psi_f) \frac{C_f}{K_f + C_f} W_f}_{\text{Growth}} \\ \frac{dC_f}{dt} = \underbrace{\frac{1}{W_f} \underbrace{(T_f + T_a)}_{\text{Transport}} - \underbrace{(f_c \quad) k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{\text{Growth}} \\ - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_f}_{\text{Dilution}} \\ \frac{dW_f}{dt} = \underbrace{\frac{1}{W_f} \underbrace{(T_f + T_a)}_{\text{Transport}} - \underbrace{(f_c \quad) k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{\text{Growth}} \\ - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_f}_{\text{Dilution}} \\ \underbrace{\frac{1}{W_f} \underbrace{\frac{1}{W_f} C_f}_{\text{Dilution}}}_{\text{Dilution}} \\ \underbrace{\frac{1}{W_f} \underbrace{\frac{1}{W_f} C_f}_$$

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s} W_s}_{\text{Growth}} \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{\text{Uptake}} - \frac{1}{W_s} \underbrace{(T_r + T_f + T_a)}_{\text{Transport}} - \underbrace{(f_c + r_{g,s}) k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{\text{Respiration growth}} \\ - \underbrace{\frac{dW_r}{dt}}_{\text{Dilution}} \\ \frac{dC_r}{dt} = \underbrace{k_r f(\psi_r) \frac{C_r}{K_r + C_r} W_r}_{\text{Growth}} \\ \frac{dC_r}{dt} = \underbrace{\frac{1}{W_r} \underbrace{T_r}_{\text{Transport}} - \underbrace{(f_c + r_{g,r}) k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{\text{Respiration growth}} \\ - \underbrace{\frac{1}{W_r} \frac{dW_r}{dt} C_r}_{\text{Dilution}} \\ \frac{dW_f}{dt} = \underbrace{k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{\text{Growth}} \\ - \underbrace{\frac{1}{W_r} \frac{dW_f}{dt} C_f}_{\text{Dilution}} \\ - \underbrace{\frac{1}{W_r} \frac{dW_f}{dt} C_f}_{\text{Dilution}} \\ - \underbrace{\frac{1}{W_f} \frac{dW_f}{d$$

Dilution

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s} W_s}_{\text{Growth}} \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{\text{Uptake}} - \frac{1}{W_s} \underbrace{(T_r + T_f + T_a)}_{\text{Transport}} - \underbrace{(f_c + r_{g,s}) k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{\text{Growth}} - \underbrace{r_{m,s}}_{\text{Maintenance respiration}} - \underbrace{\frac{dW_s}{K_m + C_s}}_{\text{Dilution}} - \underbrace{\frac{dW_s}{K_m + C_s}}_{\text{Dilution}} - \underbrace{\frac{dW_r}{K_r + C_r}}_{\text{Growth}} \\ \begin{cases} \frac{dW_r}{dt} = \underbrace{k_r f(\psi_r) \frac{C_r}{K_r + C_r} W_r}_{\text{Growth}} \\ \frac{dC_r}{dt} = \frac{1}{W_r} \underbrace{\frac{T_r}{T_{ransport}} - \underbrace{(f_c + r_{g,r}) k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{\text{Growth}} - \underbrace{r_{m,r}}_{\text{Maintenance respiration}} - \underbrace{\frac{1}{W_r} \frac{dW_r}{dt} C_r}_{\text{Dilution}} \end{cases}$$

$$Fruit \begin{cases} \frac{dW_f}{dt} = \underbrace{k_f f(\psi_f) \frac{C_f}{K_f + C_f} W_f}_{\text{Growth}} \\ - \underbrace{\frac{dC_f}{dt}}_{\text{Growth}} - \underbrace{\frac{C_f}{K_r + C_f}}_{\text{Growth}} - \underbrace{\frac{C_f}{K_r + C_f}}_{\text{Maintenance respiration}} - \underbrace{\frac{dW_f}{K_r + C_f}}_{\text{Dilution}} - \underbrace{\frac{dW_f}{dt} C_f}_{\text{Dilution}} \end{cases}$$

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s} W_s}_{Growth} \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{Uptake} - \frac{1}{W_s} \underbrace{(T_r + T_f + T_a)}_{Transport} - \underbrace{(f_c + r_{g,s}) k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{Growth} - \underbrace{r_{m,s} \left(\frac{C_s^n}{K_m^n + C_s^n}\right)}_{Maintenance respiration} - \underbrace{\frac{dW_s}{W_s} C_s}_{Dilution} \\ \end{cases}$$

$$\begin{cases} \frac{dW_r}{dt} = \underbrace{k_r f(\psi_r) \frac{C_r}{K_r + C_r} W_r}_{Growth} \\ \frac{dC_r}{dt} = \frac{1}{W_r} \underbrace{T_r}_{Transport} - \underbrace{(f_c + r_{g,r}) k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{Growth} - \underbrace{r_{m,r} \left(\frac{C_r^n}{K_m^n + C_r^n}\right)}_{Maintenance respiration} - \underbrace{\frac{t_r}{W_r} \frac{dW_r}{dt} C_r}_{Dilution} \end{cases}$$

$$\begin{cases} \frac{dW_f}{dt} = \underbrace{k_f f(\psi_f) \frac{C_f}{K_f + C_f} W_f}_{Growth} \\ \end{cases}$$
Fruit
$$\begin{cases} \frac{dW_f}{dt} = \underbrace{k_f f(\psi_f) \frac{C_f}{K_f + C_f} W_f}_{Growth} - \underbrace{\frac{t_f}{K_f + C_f}}_{Growth} - \underbrace{\frac{t_f}{K_m^n + C_f^n}}_{Maintenance respiration} - \underbrace{\frac{t_f}{K_m^n + C_f^n}}_{Dilution} - \underbrace{\frac{t_f}{K_$$

Models

Mathematical equations

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s} W_s}_{\text{Growth}} - \underbrace{\Gamma_s W_s}_{\text{Natural mortality}} - \underbrace{\Gamma_s \left(\frac{K_m^n}{K_m^n + C_s^n}\right) W_s}, \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{\text{Uptake}} - \frac{1}{W_s} \underbrace{\left(T_r + T_f + T_a\right)}_{\text{Transport}} - \underbrace{\left(f_c + r_{g,s}\right) k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{\text{Growth}} - \underbrace{r_{m,s} \left(\frac{C_s^n}{K_m^n + C_s^n}\right)}_{\text{Maintenance respiration}} - \underbrace{\frac{dW_s}{dt} C_s}_{\text{Dilution}} \\ \end{cases}$$

$$\begin{cases} \frac{dW_r}{dt} = \underbrace{k_r f(\psi_r) \frac{C_r}{K_r + C_r} W_r}_{\text{Growth}} - \underbrace{\Gamma_r W_r}_{\text{Natural mortality}} - \underbrace{\Gamma_r \left(\frac{K_m^n}{K_m^n + C_r^n}\right) W_r}_{\text{Natural mortality}}, \\ \frac{dC_r}{dt} = \underbrace{\frac{1}{W_r}}_{\text{Transport}} \underbrace{T_r}_{\text{Crowth}} - \underbrace{\left(f_c + r_{g,r}\right) k_r f(\psi_r) \frac{C_r}{K_r + C_r}}_{\text{Natural mortality}} - \underbrace{\frac{C_r^n}{K_m^n + C_r^n}}_{\text{Maintenance respiration}} - \underbrace{\frac{1}{W_r}}_{\text{Dilution}} \underbrace{\frac{dW_r}{dt} C_r}_{\text{Dilution}} \\ \frac{dW_f}{dt} = \underbrace{k_f f(\psi_f) \frac{C_f}{K_f + C_f} W_f}_{\text{Growth}} - \underbrace{\Gamma_f W_f}_{\text{Natural mortality}} - \underbrace{\Gamma_f \left(\frac{K_m^n}{K_m^n + C_r^n}\right) W_f}_{\text{Additional mortality due to carbon shortage}} \\ \frac{dC_f}{dt} = \underbrace{\frac{1}{W_f} \underbrace{\left(T_f + T_a\right)}_{\text{Transport}} - \underbrace{\left(f_c + r_{g,f}\right) k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{\text{Growth}} - \underbrace{r_{m,f} \left(\frac{C_r^n}{K_m^n + C_r^n}\right)}_{\text{Dilution}} - \underbrace{\frac{1}{W_f}}_{\text{Dilution}} \underbrace{\frac{dW_f}{dt} C_f}_{\text{Dilution}} \\ \underbrace{\frac{dC_f}{dt} = \frac{1}{W_f} \underbrace{\left(T_f + T_a\right)}_{\text{Transport}} - \underbrace{\left(f_c + r_{g,f}\right) k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{\text{Growth}} - \underbrace{r_{m,f} \left(\frac{C_r^n}{K_m^n + C_r^n}\right)}_{\text{Dilution}} - \underbrace{\frac{1}{W_f}}_{\text{Dilution}} \underbrace{\frac{dW_f}{dt} C_f}_{\text{Dilution}} \\ \underbrace{\frac{dC_f}{dt} = \frac{1}{W_f} \underbrace{\left(T_f + T_a\right)}_{\text{Transport}} - \underbrace{\left(f_c + r_{g,f}\right) k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{\text{Growth}} - \underbrace{r_{m,f} \left(\frac{C_r^n}{K_m^n + C_r^n}\right)}_{\text{Dilution}} - \underbrace{\frac{1}{W_f}}_{\text{Dilution}} \underbrace{\frac{1}{W_f}}_{\text{Dilution}} \\ \underbrace{\frac{1}{W_f}}_{\text{Dilution}} - \underbrace{\frac{1}{W_f}}_{\text{Dilution}} \underbrace{\frac{1}{W_f}}_{\text{Dilution}} - \underbrace{\frac{1}{W_f}}_{\text{Dilution}} \underbrace{\frac{1}{W_f}}_{\text{Dilution}} - \underbrace{\frac{1}{W_f}}_{\text{Dilution}} + \underbrace{\frac{1}{W_f}}_{\text{Dilution}} + \underbrace{\frac{1}{W_f}}_{\text{Dilution}} + \underbrace{\frac{1}{W_f}}_{\text{Dilution}} + \underbrace{\frac{1}{W_f}}_{\text{Dilution}} + \underbrace{\frac{1}{W_f}$$

Integrated plant-pest model

Plant status on RKN development

Free
$$\begin{cases} \frac{dE}{dt} = \underbrace{r(C_r)F} - \underbrace{hE}_{Egg\ laying} - \underbrace{\mu_e E}_{Egg\ hatching} - \underbrace{\mu_e E}_{Mortality} \\ \frac{dJ_2}{dt} = \underbrace{hE}_{Egg\ hatching} - \underbrace{\mu_J_2 W_r}_{Larvae\ infection} - \underbrace{\mu_{J_2} J_2}_{Mortality} \\ \frac{dJ}{dt} = \underbrace{\Omega(C_r)\beta J_2 W_r}_{RKN\ entry} - \underbrace{\eta J}_{Maturation} - \underbrace{\mu_j J}_{Mortality} \\ \frac{dF}{dt} = \underbrace{\eta J}_{Maturation} - \underbrace{\mu_F F}_{Maturation}$$

RKN effects on plant growth

$$\text{Root} \left\{ \begin{array}{l} \frac{dW_r}{dt} = k_r f(\psi_r) \frac{C_r}{K_r + C_r} W_r - \gamma_r \left(1 + \frac{K_m^n}{K_m^n + C_r^n}\right) W_r - \underbrace{\Omega(C_r) \, \epsilon \, \beta \, J_2 \, W_r}_{\text{Infected roots}} \\ \frac{dG}{dt} = \underbrace{\Omega(C_r) \, \epsilon \, \beta \, J_2 \, W_r}_{\text{Gall formation}} + \underbrace{k_g f(\psi_r) \frac{C_r}{K_r + C_r} G}_{\text{Natural mortality}} - \underbrace{\Gamma_r \, G}_{\text{Natural mortality}} \\ \frac{dC_r}{dt} = \frac{1}{(W_r + G)} \underbrace{T_r}_{\text{Transport}} - \underbrace{(f_c + r_{g,r}) \left(\frac{k_r W_r + k_g G}{W_r + G}\right) f(\psi_r) \frac{C_r}{K_r + C_r}}_{\text{Growth}} - \underbrace{r_{m,r} \left(\frac{C_r^n}{K_m^n + C_r^n}\right)}_{\text{Maintenance respiration}} - \underbrace{c_{rh} C_r}_{\text{Rhizodeposition}} \\ - \underbrace{\frac{C_r}{(W_r + G)} \left(\frac{dW_r}{dt} + \frac{dG}{dt}\right)}_{\text{dilution}} - \underbrace{\gamma(C_r) \, F}_{\text{RKN feeding}} \right\}$$

Calibration of models

Steps

- > select parameters to be estimated based on sensitivity analysis
- ➤ least squares criterion between model simulations and data
- ➤ find parameter values that minimize the criterion
 - Global search: ARS (Adaptive Random Searches)
 - Local search: Nelder-Mead from *minimize()* python module

Strategy

- > calibration of plant model on control data
- ➤ calibration of plant-RKN model on inoculated plants & RKN data

Which data?

+ weekly number of leaves

Calibration of plant model

Global sensitivity analysis on plant model

Features

- goal: identify the most influential parameters
- inputs: 26 parameters, outputs: W_s , W_r , W_f , C_s , C_r , C_f

Plant traits that most affect **root biomass** (W_r) dynamics

Global sensitivity analysis on plant model

Features

- goal: identify the most influential parameters
- inputs: 26 parameters, outputs: W_s , W_r , W_f , C_s , C_r , C_f

Plant traits that most affect **root biomass** (W_r) dynamics

Tomato parameter estimation

Tomato dynamics

Predicted number of leaves

Pepper parameter estimation

Pepper dynamics

Predicted number of leaves

Calibration of full model

Global sensitivity analysis on full model

Features

- inputs: 15 parameters, plant parameters are fixed
- outputs: W_s , W_r , W_f , C_s , C_r , C_f , E_g , J_2 , J, F, G

Interaction traits that most affect J-larvae dynamics

Global sensitivity analysis on full model

Features

- inputs: 15 parameters, plant parameters are fixed
- outputs: W_s , W_r , W_f , C_s , C_r , C_f , E_g , J_2 , J, F, G

Interaction traits that most affect **J-larvae** dynamics

Calibration on tomato

Plant parameter patterns (Tomato vs Pepper)

Shoot reduction vs plant age at infection

a. Cucumber dynamics (Experimental results¹)

b. Tomato dynamics (Model simulations)

¹Kayani et al., Crop Protection, 2017

➤ Modeling

- mechanistic model of plant functioning
- plant model coupled to RKN population dynamics

➤ Calibration

- plant parameters (8/26) & interaction parameters (6/15)
- better estimates for pepper than tomato
- estimation of pepper interaction parameters [ongoing]
- comparison of dynamical patterns of 2 species: insights on the origin of tolerance [ongoing]

Global sensitivity analysis (GSA)

Goal: Identifying the most influential parameters

inputs : all parameters, outputs : model variables along time
(vector)

Steps

- fractional factorial design to explore parameter space
- 2. PCA to reduce output and capture its variability
- 3. ANOVA to compute sensitivity indices (SI)

$$SI_{..} = \frac{SS_{..}}{TSS}, \qquad GSI = \sum_{k=1}^{components} SI_k \times inertia_k$$

SS = sum of squares, TSS = total sum of squares

Data from ArchiNem project

- ➤ 2 plant species: tomato, pepper
- ➤ 2 plant categories:
 - control
 - inoculated by nematodes
- ➤ 6 replicates (90 plants)
- weekly number of leaves

- destructive measures, 3 points in time:
 - plant: fresh and dry masses for shoot, root and fruit
 - nematodes: number of galls, egg masses and egg per egg masses

Allometric relationship

Equation

$$W_s^{\text{leaf}} = a L^b$$
,

a, b allometric coefficients & weekly number of leaves (L).

Specific impacts

- clonal reproduction
- reduced water and nutrient uptake
- hijacking of plant resources (carbon)

Criterion for estimating plant parameters

Allometric relationship

$$W_s^{\mathsf{leaf}} = a \ L^b,$$

a, b allometric coefficients & weekly number of leaves (L).

Cost function

$$\begin{split} \textit{err} &= \alpha_s \left[\frac{1}{2} \sum_{i=1}^2 \left(\frac{\left(W_s^{sol}\right)_i - \left(W_s^{obs}\right)_i}{\left(W_s^{obs}\right)_i} \right)^2 + \frac{1}{2} \sum_{i=1}^2 \left(\frac{\left(W_r^{sol}\right)_i - \left(W_r^{obs}\right)_i}{\left(W_r^{obs}\right)_i} \right)^2 + \left(\frac{W_f^{sol} - W_f^{obs}}{W_f^{obs}} \right)^2 \right] \\ &+ \beta_s \underbrace{\left[\frac{1}{12} \sum_{i=1}^{12} \left(\frac{\left(W_s^{sol}\right)_i - \left(W_s^{leaf}\right)_i}{\left(W_s^{leaf}\right)_i} \right)^2 \right]}_{\text{Addiotional data of Ws obtained via allometry} \end{split}$$

- α_s and $\beta_s = (1 \alpha_s)$ are the weighted coefficients
- W_k^{sol} and W_k^{obs} are model predictions and data respectively. $k := \{s = shoot, r = root, f = fruit\}$

Criterion for estimating interaction parameters

Cost function

$$\begin{split} \textit{err} &= \alpha_c \underbrace{\left[\frac{1}{2} \sum_{i=1}^{2} \left(\frac{\left(W_s^{sol}\right)_i - \left(W_s^{obs}\right)_i}{\left(W_s^{obs}\right)_i}\right)^2 + \frac{1}{2} \sum_{i=1}^{2} \left(\frac{\left(W_r^{sol}\right)_i - \left(W_r^{obs}\right)_i}{\left(W_r^{obs}\right)_i}\right)^2 + \left(\frac{W_f^{sol} - W_f^{obs}}{W_f^{obs}}\right)^2\right]}_{\text{Inoculated plant}} \\ &+ \beta_c \underbrace{\left[\left(\frac{G^{sol} - G^{obs}}{G^{obs}}\right)^2 + \frac{1}{2} \sum_{i=1}^{2} \left(\frac{F_i^{sol} - F_i^{obs}}{F_i^{obs}}\right)^2 + \frac{1}{2} \sum_{i=1}^{2} \left(\frac{r_i^{sol} - r_i^{obs}}{r_i^{obs}}\right)^2\right]}_{\text{Nematodes}} \end{split}$$

- α_c and $\beta_c = (1 \alpha_c)$ are the weighted coefficients
- G^{sol} , F^{sol} , r^{sol} are nematode model predictions of galls, females and egg-laying
- G^{obs} , F^{obs} , r^{obs} are nematode data

$$\text{Shoot} \begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s) \frac{C_s}{K_s + C_s}} W_s - \underbrace{\Gamma_s \left(\frac{K_m^n}{K_m^n + C_s^n}\right) W_s,}_{\text{Additional mortality due to carbon shortage}} \\ \frac{dC_s}{dt} = \underbrace{\sigma_c f(\psi_s)}_{\text{Uptake}} - \frac{1}{W_s} \underbrace{\left(\frac{T_r + T_f + T_a}{T_f + T_a}\right) - \left(f_c + r_{g,s}\right) k_s f(\psi_s) \frac{C_s}{K_s + C_s}}_{\text{Growth}} - \underbrace{r_{m,s} \left(\frac{C_s}{K_m^n + C_s^n}\right) - \frac{1}{W_s} \frac{dW_s}{dt} C_s}_{\text{Maintenance respiration}} - \underbrace{\frac{dW_r}{dt}}_{\text{Maintenance respiration}} - \underbrace{\frac{C_r}{K_m^n + C_r^n}}_{\text{Natural mortality}} W_r, \\ \underbrace{\frac{dC_r}{dt}}_{\text{Additional mortality}} - \underbrace{\frac{C_r}{K_m^n + C_r^n}}_{\text{Maintenance respiration}} - \underbrace{\frac{dW_r}{K_r^n + C_r^n}}_{\text{Rhizodeposition}} - \underbrace{\frac{dW_r}{W_r} C_r}_{\text{Rhizodeposition}} - \underbrace{\frac{dW_r}{W_r} C_r}_{\text{Maintenance respiration}} - \underbrace{\frac{dW_r}{K_m^n + C_r^n}}_{\text{Additional mortality due to carbon shortage}} \\ \underbrace{\frac{dW_f}{dt}}_{\text{Growth}} = \underbrace{k_f f(\psi_f) \frac{C_f}{K_f + C_f}}_{\text{Growth}} W_f - \underbrace{\Gamma_f W_f}_{\text{Natural mortality}} - \underbrace{\Gamma_f \left(\frac{K_m^n}{K_m^n + C_r^n}\right) W_f}_{\text{Additional mortality due to carbon shortage}} \\ \underbrace{\frac{dC_f}{dt}}_{\text{Growth}} = \underbrace{\frac{1}{W_f} \underbrace{\left(\frac{T_f}{f} + T_a\right)}_{\text{Natural mortality}}} - \underbrace{\left(\frac{C_f}{K_f^n + C_f}\right)}_{\text{Maintenance respiration}} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_f}_{\text{dilution}} \\ \underbrace{\frac{dC_f}{dt}}_{\text{Transport}} = \underbrace{\frac{1}{W_f} \underbrace{\left(\frac{T_f}{f} + T_a\right)}_{\text{Natural mortality}} - \underbrace{\left(\frac{C_f}{K_f^n + C_f}\right)}_{\text{Maintenance respiration}} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_f}_{\text{dilution}} \\ \underbrace{\frac{dC_f}{dt}}_{\text{Maintenance respiration}} - \underbrace{\frac{C_f}{K_m^n + C_f^n}}_{\text{Maintenance respiration}} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_f}_{\text{dilution}} \\ \underbrace{\frac{dC_f}{dt}}_{\text{Maintenance respiration}} - \underbrace{\frac{C_f}{K_m^n + C_f^n}}_{\text{Maintenance respiration}} - \underbrace{\frac{1}{W_f} \frac{dW_f}{dt} C_f}_{\text{dilution}} \\ \underbrace{\frac{dC_f}{dt}}_{\text{Maintenance respiration}} - \underbrace{\frac{C_f}{K_m^n + C_f^n}}_{\text{Maintenance respiration}} - \underbrace{\frac{C_f}{K_m^n + C_f^n}}_{\text{dilution}} + \underbrace{\frac{C_f}{K_m^n + C_f^n}}_{\text{Maintenance respiration}} - \underbrace{\frac{C_f}{K_m^n + C_f^n}}_{\text{dilution}} + \underbrace{\frac{C_f}{K_m^n + C_f^n}}_{\text{Maintenance respiration}} - \underbrace{\frac{C_f}{K_m^n + C_f^n}}_{\text{dilution}}$$

The carbon flow³ T in phloem vessels $T = q C_s$, with q the volume flow rate

Then,

$$\begin{cases} (q_r + q_f) R_{ph,s} + q_r R_{ph,r} = (C_s - C_r) \\ (q_r + q_f) R_{ph,s} + q_f R_{ph,f} = (C_s - C_f) \end{cases}$$

$$\begin{cases} T = \frac{(C_s - C_r)}{R_{ph}} C_s \\ R_{ph,..} = \frac{r_{ph,..}}{W^{\alpha}..} \end{cases}$$

³Minchin et al., Journal of Experimental Botany, 1993

Therefore,

$$\begin{cases} (q_r + q_f)R_{ph,s} + q_r \ R_{ph,r} = (C_s - C_r) \\ (q_r + q_f)R_{ph,s} + q_f \ R_{ph,f} = (C_s - C_f) \end{cases}$$

Therefore,

$$\begin{cases} (q_r + q_f)R_{ph,s} + q_r \ R_{ph,r} = (C_s - C_r) \\ (q_r + q_f)R_{ph,s} + q_f \ R_{ph,f} = (C_s - C_f) \end{cases} \qquad \begin{cases} T_r = q_r C_s \\ T_f = \left(\frac{W_s^n}{I^n + W_s^n}\right) q_f C_s \end{cases}$$

Water transport

Shoot
$$\begin{cases} \frac{dW_s}{dt} = \underbrace{k_s f(\psi_s)}_{K_s + C_s} \underbrace{W_s - \sum_{\text{Natural mortality}}}_{\text{Orowth}} - \underbrace{\sum_{\text{Natural mortality}}}_{\text{Natural mortality}} - \underbrace{\sum_{\text{Additional mortality}}}_{\text{Additional mortality}} \underbrace{W_s, \underbrace{K_m^r + C_s^r}_{\text{Ns}}}_{\text{Natural mortality}} - \underbrace{\frac{dC_s}{dt}}_{\text{Transport}} - \underbrace{\frac{dC_s}{k_m^r + C_s^r}}_{\text{Orowth}} \underbrace{W_s f(\psi_s)}_{\text{K_s + C_s}} - r_{m,s} \left(\underbrace{\frac{C_s^r}{K_m^r + C_s^r}}_{\text{Natural mortality}} - \underbrace{\frac{dW_s}{k_m^r + C_s^r}}_{\text{Growth}} \right) W_r, \\ \underbrace{\frac{dC_r}{dt}}_{\text{Growth}} = \underbrace{\frac{dC_r}{dt}}_{\text{Natural mortality}} - \underbrace{\frac{C_r}{K_m^r + C_r^r}}_{\text{Natural mortality}} - \underbrace{\frac{C_r^r}{K_m^r + C_r^r}}_{\text{Natural mortality}} - \underbrace{\frac{C_r^r}{K_m^r + C_r^r}}_{\text{Natural mortality}} - \underbrace{\frac{dW_r}{K_m^r + C_r^r}}_{\text{Natural mortality}} - \underbrace{\frac{C_r^r}{K_m^r + C_r^r}}_{\text{Natural mortality}} - \underbrace{\frac{C_r^r}{K_m^r + C_r^r}}_{\text{Natural mortality}} - \underbrace{\frac{C_r^r}{K_m^r + C_r^r}}_{\text{Natural mortality}} - \underbrace{\frac{dW_r}{K_m^r + C_r^r}}_{\text{Natural mortality}} - \underbrace{\frac{C_r^r}{K_m^r + C_r^r}}_{\text{Natural mortality}} - \underbrace{\frac{C_r^r}{K_m^r + C_r^r}}_{\text{Natural mortality}} - \underbrace{\frac{dW_r}{K_m^r + C_r^r}}_{\text{Natural mortality}} - \underbrace{\frac{C_r^r}{K_m^r + C_r^r}}_{\text{Natural mortality}$$

Water transport

Transpiration process *E* guiding water flow, $E = \sigma_W W_s f(\psi_s)$,

$$\psi_r = \psi_{sol} - R_{sr}E,$$
 $\psi_s = \psi_r - R_{xv}E,$ $\psi_f = \psi_s.$

where ψ_{sol} the soil water potential and R.. resistances.

$$R_{sr} = \frac{r_{sr}}{W_r^{\alpha_r}}, \quad R_{xy,..} = \frac{r_{xy,..}}{W_{..}^{\alpha_{..}}}.$$

Water regulation function

$$f(\psi) = \frac{\psi^n}{K^n + \psi^n}$$

