Network layer: "data plane" roadmap

- Network layer: overview
 - data plane
 - control plane
- What's inside a router
 - input ports, switching, output ports
 - buffer management, scheduling
- IP: the Internet Protocol
 - datagram format
 - addressing
 - network address translation
 - IPv6

- Generalized Forwarding, SDN
 - match+action
 - OpenFlow: match+action in action

28

Middleboxes

Network Layer: Internet

host, router network layer functions:

IP Datagram format: IPv4

IP addressing: introduction of IPv4 address

IP address:

- identifier in the network layer
 is unique with some exceptions
- IP address is 32-bit (for IPv4)
 - dotted-decimal notation
- associated with each host or router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)

dotted-decimal IP address notation:

29

IP fragmentation/reassembly

- link-layer frame have payload length limit, called MTU (max. transmission unit)
 - different link types have different MTUs
 - Ethernet: 1500, WiFi: 2304 (bytes)
- oversized IP datagram is divided ("fragmented") by router
 - one datagram becomes several smaller datagrams (fragments)
 - "reassembled" only at destination
 - IP header bits used to identify and order these fragments

IP fragmentation/reassembly

example:

- Given a 4000-byte datagram before being fragmented
 - 20-byte IP header
 - 3980-byte data
- Given MTU = 1500 bytes
 - each fragment contains
 - 20-byte IP header
 - at most 1480-byte data
- Q: How many fragments needed?

$$\left[\frac{3980}{1480}\right] = 3$$

- Q: offset of each fragment?
 - For 2^{st} fragment: $\frac{1480}{8} = 185$

32

Subnet

■ What's a subnet?

- device interfaces that can reach each other without passing through an intervening router
- Recipe for defining subnets:
 - detach each interface from its host or router, creating "islands" of isolated networks
 - each isolated network is called a subnet

Subnet

- structure of IP addresses within a subnet:
 - subnet part: devices in same subnet have common high order bits
 - host part: remaining low order bits
 - dotted-decimal notation of subnet:

11011111 00000001 00000001 xxxxxxxx = 223.1.1.0/24 11011111 00000001 0000001x xxxxxxxx = 11011111 00000001 00000000 1xxxxxxx =

35

Subnet

- For the host 223.1.1.1 in the subnet 223.1.1.0/24, its setting is as follows
 - IP address: 223.1.1.1
 - subnet mask: /24 or 255.255.255.0

• gateway:

IP address (assignment and routing): CIDR

CIDR: Classless InterDomain Routing (pronounced "cider")

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # of bits in subnet portion of address

36