Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Курсовая работа

по теме: «Анализ колебаний маятника переменной длины.»

Выполнил	
студент гр. в $3530904/00030$	В.С. Баганов
Руководитель	
профессор, к.т.н.	С.М. Устинов
	«» 202 г

 ${
m Caнкт-}\Pi{
m erep}{
m fypr}$ 2023

Содержание

1. Постановка задачи	3
2. План расчетной части курсовой работы	5
3. DECOMP и SOLVE	6
4. QUANC8	7
5. ZEROIN	8
6. Значения L, M, K и A, B, C, D	10
7. RKF45. Код программы ${ m C}{+}{+}$	11
8. Результат программы RKF45	14
9. Результат программы с возмущением по параметру ${f L}$ на 1%	16
$10. ext{C}$ равнение возмущения $ ext{L} = 1.01~\%$ (на $1~\%$)	18
$11. ext{Сравнение возмущения L} = 0.99~\%~ ext{(на 1 \%)}$	20
12.Оценка точности и влияния на точность погрешности исходных данных	
	22
13.Выволы	22

1. Постановка задачи

Анализ колебаний маятника переменной длины.

Маятник массой М, роль стержня которого выполняет пружина с жесткостью К, совершает сложные колебания относительно положения равновесия.

L - начальная длина пружины,

К - жесткость пружины,

х - удлинение пружины относительно положения равновесия, Θ

Рисунок 1.1. Схема маятника

Дифференциальное уравнение движения имеет вид:

$$\overset{\circ\circ}{x} + \frac{K}{M}x + g(1 - \cos\theta) - (L + x)(\overset{\circ}{\theta})^{2} = 0;$$

$$\overset{\circ\circ}{\theta} + \frac{g}{L + x}\sin\theta + \frac{2}{L + x}\overset{\circ}{x}\overset{\circ}{\theta} = 0;$$

g = 9.81

Начальные условия: X(0)=A; $\dot{x}(0)$ =B; $\dot{\theta}(0)$ =C; $\theta(0)=D$;

Построить графики изменения x и θ $t \in [0,1]$

и оценить погрешность результата и влияние на точность погрешности исходных данных.

Значения L, M, K, а также A, B, C, D задаются преподавателем.

Вариант N 14В.

Значения L, M, K являются решением системы уравнений:

$$\begin{cases} 46L-24M-42K=-1626.08\\ -24L+16M+18K=698.32\\ -42L+18M+49K=1898.76 \end{cases}$$

$$A=\left(\int_{0.5}^{0.8}\sqrt{1+x^3}\,dx-0.34031875\right)^4;$$

$$D=\left(x*+0.53727448\right)^4;$$
 где $x*-$ отрицательный корень уравнения: $e^{-X}+x^2=2$. $C=4,\ B=0$.

2. План расчетной части курсовой работы

Для решения дифференциальных уравнений движения маятника, необходимо получить коэффициенты L, M, K, а также A, B, C, D с помощью программ DECOMP и SOLVE (решим систему уравнений), QUANC8 (посчитаем определенный интеграл заданной функции), ZEROIN (найдем отрицательный корень уравнения). Далее мы должны преобразовать дифференциальные уравнения движения второго порядка к 4 уравнениям, выразив значения производных, и в программе RKF45 получить значение X и ϑ и их производных на промежутке времени от 0 до 4 используя начальные значения A, B, C, D.

Вторая часть курсовой работы будет посвящена анализу изменения результатов при возмущении параметра длинны L на 1% (увеличение на 0,01 и уменьшение на 0,99). Для удобства анализа данных, представим таблицы сравнения разности значений по модулю.

Прежде чем начать расчет, оценим как будет двигаться маятник. K - жесткость пружины, L+x - длинна маятника, причем величина x будет принимать как положительные, так и отрицательные значения (пружина будет сжиматься и растягиваться). M - масса груза, который будет качаться в разные стороны, отклоняясь в разные стороны, относительно центральной оси на угол ϑ Тетта, следовательно ϑ Тетта будет принимать отрицательные и положительные значения. C течением времени, значения ϑ Тетта и x (растяжение) должны затухать.

3. DECOMP # SOLVE

```
\begin{cases} 46L - 24M - 42K = -1626.08 \\ -24L + 16M + 18K = 698.32 \\ -42L + 18M + 49K = 1898.76 \end{cases}
```

```
use Environment
1
      implicit none
2
        character(*), parameter :: input_file = "../data/input.txt",
3
        → output_file = "output.txt"
                                                  :: In = 0, Out = 0, N = 0
        integer
4
                                        :: IPVT(:)
        integer, allocatable
5
                                                    :: COND = 0
        real
6
        real(R_), allocatable
                                        :: WORK(:), A(:,:), B(:)
       open (file=input_file, newunit=In)
9
          read (In, *) N
10
          allocate (A(N,N))
11
          read (In, *) A
12
       close (In)
13
14
       open (file=output_file, encoding=E_, newunit=Out)
15
           write (Out, "(a)") "Source matrix"
16
           write (Out, "("//N//"f10.3)") A
17
       close (Out)
18
19
      allocate (IPVT(N), WORK(N), B(N))
20
21
        call DECOMP(N, N, A, COND, IPVT, WORK)
22
        B = [-1626.08, 698.32, 1898.76]
23
        call SOLVE(N, N, A, B, IPVT)
24
25
        open (file=output file, encoding=E , newunit=Out, position='append')
26
          write (Out, *)
27
          write (Out, "("//N//"f10.4)") B
28
          close (Out)
29
```

Листинг 1: Код и результат программы DECOMP и SOLVE

```
Press ENTER or type command to continue
                                                   ~
cd ./bin; ./app;
cat bin/output.txt
Source matrix
           -24.000
                       -42.000
   46.000
   -24.000
              16.000
                        18.000
   -42.000
              18.000
                        49.000
    1.0000
              1.0000
                       39.2400
Press ENTER or type command to continue
```

4. QUANC8

$$A = \left(\int_{0.5}^{8} \sqrt{1 + x^3} dx - 0.34031875\right)^4$$

```
use Environment
1
      implicit none
2
        character(*), parameter
                                    :: output file = "output.txt"
3
                                    :: a = 0.5, b = 0.8, relerr = 0.001, abserr
4
        \rightarrow = 0, flag, errest, result, A
                                     :: Out = 0, nofun
        integer
5
6
        call QUANC8(fun, a, b, abserr, relerr, result, errest, nofun, flag)
       A = (result-0.34031875)**4
9
      open (file=output_file, encoding=E_, newunit=Out)
10
         write(Out, '(a, f19.15)') «A= ", A
11
      close (Out)
12
13
      contains
14
       real function fun(x)
15
          real x
16
          intent(in) x
17
          fun = SQRT(1 + x * x * x)
18
       end function fun
19
```

Листинг 2: Код и результат программы QUANC8

5. ZEROIN

$$D = (x * +0.53727448)^4$$

где х * - отрицательный корень уравнения: $e^{-x} + x^2 - 2 = 0$ Построив график функции, делаем вывод, что нас интересует промежуток от -1 до 0. В программе задаем данный промежуток AX = -1.0, BX = 0.0.


```
use Environment
2
        implicit none
3
        character(*), parameter :: output_file = "output.txt"
                                         :: AX = -1.0, BX = 0.0, Z, TOL = 1.0E-7,
        real(R_)
5
        \hookrightarrow D
                                         :: Out = 0
        integer
6
                                         :: ZEROIN
        real, external
        Z = ZEROIN(AX, BX, fun, TOL)
9
        D = (Z + 0.53727448)**4
10
11
      open (file=output_file, encoding=E_, newunit=Out)
12
         write(Out, '(a, f16.13)') "D = ", D
13
      close (Out)
14
15
      contains
16
       real function fun(x)
          real x
18
          intent(in) x
19
           fun = exp(-x)+(x*x) - 2
       end function fun
21
```

Листинг 3: Код и результат программы ZEROIN

6. Значения L, M, K и A, B, C, D

Значения L=1 , M=1 , $K=39{,}24$ получены с помощью DECOMP и SOLVE. Начальные условия:

X(0) = A = 0; получен с помощью QUANC8.

 $\dot{x}(0)=\mathrm{B}=0$; дано по условию.

 $\dot{ heta}(0)=\mathrm{C}=4$; дано по условию.

 $\theta(0)=\mathrm{D}=0;$ получен с помощью ZEROIN.

7. RKF45. Код программы C++

```
#include "rkf45.h"
1
     #include <string.h>
2
     #include <fstream>
3
     using namespace std;
5
6
     std::ofstream out("out.txt");
     char* cmathmsg(int routine, int flag)
9
10
         static char s[64];
11
         switch (routine)
12
         {
13
             case RKFINIT C:
14
                  switch (flag)
15
16
                      case 0: strcpy(s, "rkfinit(): normal return");
17
                          break;
18
                      case 1: strcpy(s,
19
                           "rkfinit(): could not allocate workspace");
                          break:
20
                      case 2: strcpy(s, "rkfinit() : illegal value for n");
21
                          break;
22
                      default: strcpy(s, "rkfinit(): no such error");
23
                  };
24
                  break;
25
26
             case RKF45 C:
27
                  switch (flag)
28
29
                      case -2: strcpy(s, "rkf45(): normal return");
30
                          break;
31
                      case 2: strcpy(s, "rkf45() : normal return");
32
                          break;
33
                      case 3: strcpy(s, "rkf45() : relerr too small");
34
                          break;
35
                      case 4: strcpy(s, "rkf45(): too many steps");
36
                          break;
37
                      case 5: strcpy(s,
                          "rkf45(): abserr needs to be nonzero");
                          break;
39
                      case 6: strcpy(s,
40
                           "rkf45() : stepsize has become too small");
                          break;
41
                      case 7: strcpy(s, "rkf45() : rkf45 is inefficient");
42
                          break;
43
                      case 8: strcpy(s, "rkf45(): invalid user input");
                          break;
45
                      default: strcpy(s, "rkf45() : no such error");
46
                  };
47
48
             default: strcpy(s, "CMATH : no such routine");
49
         return (s);
51
     }
52
53
```

```
double L = 1.00;
54
     //double L = 1.01;
55
     double M = 1;
56
     double K = 39.24;
57
     double g = 9.81;
58
59
     int f(int n, double t, double x[3], double dxdt[4])
60
61
62
63
64
         //x[0] - x
65
         //х[1] - тетта
66
         //x[2] - dx/dt
67
         //x[3] - dTeттa/dt
68
69
         dxdt[0]=x[2]; //dx[0]/dt=x[2] 1 -производная X-переменная
70
         dxdt[1]=x[3]; //dx[1]/dt=x[3] 1 -производная Тететта-переменная
71
         dxdt[2] = -(K/M) * x[0] - g * (1-cos(x[1])) + (L + x[0]) * (x[3])
72
          \rightarrow * x[3];
                                        // x''
         dxdt[3] = -(g * sin(x[1]) + 2 * x[2] * x[3]) / (L + x[0]);
73
                                       // ? "
         return (0);
74
     }
75
76
77
78
     int main()
79
     {
80
81
         out <<
82
          h, relerr, abserr, t1, t2, L, K, M, g;
         double
83
                  n, flag, nfe, maxfe, fail, step;
         int
         double
                 x[4], yp[4];
85
         n = 4;
86
         flag = 1;
87
         maxfe = 5000;
88
         relerr = 1.0e-4;
89
         abserr = 1.0e-4;
90
         rkfinit(n, &fail);
91
92
         out << ("%s\n\n", cmathmsg(RKFINIT C, fail));</pre>
93
94
         if (fail = 0)
95
         {
96
97
             x[0] = 0.0;
                                       // - x
                                       // - 🕴 тетта
             x[1] = 0.0;
                                       // - dx/dt
             x[2] = 0.0;
100
             x[3] = 4.0;
                                       // - dTeттa/dt 🛭
101
102
103
                                                                       [3]\n")
                                                        [1] x'[2]
             out << ("\nstep
                                                 x[0]
104
                  << ("-----
105
106
             for (step = 0; step \leq 160; ++step)
107
108
                  t2 = step * 0.025; //t+h
109
```

```
t1 = t2 - 0.025;
110
                     rkf45(f, n, x, yp, &t1, t2, &relerr, abserr,
111
                     % out << std::fixed << step << "\t\t" << t1 << "\t" << x[0] <<
112
113
                     \rightarrow "\t" <<x[1] &
                                                                           \ll"\t" \ll x[2]
114
                                                                           \rightarrow << "\t" << x[3]
                                                                           \rightarrow << "\n";
                     if (flag \neq 2)
115
116
                          out << ("%s\n", cmathmsg(RKF45_C, flag));</pre>
117
                          break;
118
                     }
119
                }
120
121
                rkfend();
122
                out << ("\n%s\n", cmathmsg(RKF45_C, flag)) << "\n"
123
                     << "nfe: " << nfe << "\n"</pre>
124
                     << "step size: " << h << "\n";</pre>
125
           }
126
127
           return 0;
129
      }
130
```

Листинг 4: RKF45. Код программы C+

8. Результат программы RKF45

rkfin: step	it() :	normal x[0]	$\begin{array}{c} \text{return} \\ \theta [1] \end{array}$	x'[2]	θ'[3]
))	0.000000	0.004970	0.099568	0.395174	3.948401
1	0.025000	0.019523	0.196620	0.762219	3.801181
2	0.050000	0.042642	0.288996	1.076814	3.578466
3	0.075000	0.072775	0.375134	1.320999	3.306671
4	0.100000	0.108013	0.454139	1.483970	3.011826
5	0.125000	0.146260	0.525711	1.561435	2.715075
5	0.150000	0.185379	0.590000	1.554272	2.430997
7	0.175000	0.223306	0.647438	1.467099	2.168004
3	0.200000	0.258126	0.698607	1.307104	1.929717
9	0.225000	0.288128	0.744134	1.083190	1.716490
10	0.250000	0.311837	0.784627	0.805404	1.526680
11	0.275000	0.328039	0.820640	0.484543	1.357543
12	0.300000	0.335799	0.852649	0.131876	1.205800
13	0.325000	0.334464	0.881046	-0.241082	1.067937
14	0.350000	0.323672	0.906131	-0.622779	0.940328
15	0.375000	0.303347	0.928116	-1.001812	0.819226
16	0.400000	0.273696	0.947114	-1.367120	0.700668
17	0.425000	0.235194	0.963135	-1.708160	0.580292
18	0.450000	0.188572	0.976072	-2.015058	0.453094
19	0.475000	0.134801	0.985683	-2.278737	0.313087
20	0.500000	0.075064	0.991559	-2.490985	0.152889
21	0.525000		0.993083	-2.644450	-0.036779
22	0.550000		0.989378	-2.732530	-0.267614
23	0.575000			-2.749123	-0.554092
24	0.600000			-2.688212	-0.913210
25	0.625000			-2.543313	-1.362619
26	0.650000			-2.306956	-1.915304
27	0.675000			-1.970769	-2.568219
28	0.700000			-1.527266	-3.283751
29	0.725000			-0.974863	-3.970874
30	0.750000		0.565989	-0.326105	-4.488831
31	0.775000		0.450389	0.385619	-4.699993
32	0.800000		0.334009	1.109320	-4.553255
33	0.825000		0.225139	1.791370	-4.119362
34	0.850000		0.129266	2.391014	-3.537885
35	0.875000		0.048393	2.885457	-2.936770
36	0.900000		-0.018062	3.265683	-2.392778
37	0.925000		-0.071975	3.530218	-1.935373
38	0.950000		-0.115565	3.680932	-1.565714
39	0.975000		-0.150900	3.721214	-1.272661
40	1.000000		-0.179717	3.655508	-1.041898
41	1.025000		-0.203401	3.489396	-0.859992
42	1.050000		-0.223029	3.229796	-0.715721
43	1.075000		-0.239426	2.885098	-0.600195
44	1.100000		-0.253221	2.465197	-0.506535
45	1.125000		-0.264891	1.981425	-0.429454
46	1.150000		-0.274797	1.446393	-0.364868
47	1.175000		-0.283211	0.873772	-0.309576
48	1.200000		-0.290332	0.278013	-0.260999
+0 49	1.225000		-0.296299	-0.325962	-0.216979
50	1.25000		-0.301203	-0.923098	-0.210979
50 51	1.275000		0.30TZ03	-1.498546	-0.175003

```
52
            1.300000
                          0.515502
                                        -0.307947
                                                       -2.038010
                                                                      -0.093476
58
      53
                          0.458309
            1.325000
                                        -0.309734
                                                        -2.528080
                                                                       -0.048782
59
      54
            1.350000
                          0.389611
                                        -0.310340
                                                        -2.956533
                                                                       0.001504
60
      55
            1.375000
                          0.311086
                                        -0.309587
                                                        -3.312610
                                                                      0.060512
61
      56
            1.400000
                          0.224660
                                        -0.307208
                                                       -3.587239
                                                                      0.132344
62
      57
            1.425000
                          0.132464
                                        -0.302817
                                                       -3.773200
                                                                      0.222522
63
      58
            1.450000
                          0.036784
                                        -0.295867
                                                       -3.865214
                                                                       0.338545
64
      59
            1.475000
                          -0.059986
                                          -0.285591
                                                         -3.859941
                                                                        0.490576
65
     60
            1.500000
                          -0.155389
                                          -0.270927
                                                         -3.755849
                                                                        0.692067
66
                                          -0.250436
     61
            1.525000
                          -0.246955
                                                         -3.552965
                                                                        0.959846
67
      62
            1.550000
                           -0.332224
                                          -0.222227
                                                         -3.252497
                                                                        1.312409
68
     63
            1.575000
                          -0.408783
                                          -0.183986
                                                         -2.856506
                                                                        1.763858
69
     64
                                                         -2.368041
            1.600000
                          -0.474278
                                          -0.133237
                                                                        2.309641
70
     65
            1.625000
                          -0.526459
                                          -0.068093
                                                         -1.792681
                                                                        2.902454
71
     66
            1.650000
                          -0.563285
                                          0.011360
                                                       -1.142413
                                                                      3.430087
72
     67
            1.675000
                          -0.583149
                                          0.101518
                                                        -0.440838
                                                                      3.731517
73
                                                       0.275647
     68
            1.700000
                          -0.585201
                                          0.194965
                                                                     3.681301
74
75
      69
            1.725000
                          -0.569586
                                          0.282672
                                                       0.966041
                                                                     3.286596
      70
            1.750000
                          -0.537393
                                          0.357552
                                                       1.597641
                                                                     2.683745
76
      71
            1,775000
                          -0.490350
                                         0.416516
                                                       2.152153
                                                                     2.037577
77
      72
            1.800000
                          -0.430490
                                          0.460009
                                                                     1.458348
                                                       2.622344
78
      73
            1.825000
                          -0.359955
                                          0.490359
                                                       3.005915
                                                                     0.988802
79
      74
                                          0.510365
            1.850000
                          -0.280926
                                                       3.301672
                                                                     0.628644
80
      75
            1.875000
                          -0.195613
                                          0.522552
                                                       3.508371
                                                                     0.359709
81
      76
            1.900000
                          -0.106258
                                         0.528931
                                                       3.624938
82
                                                                     0.160482
      77
            1.925000
                          -0.015121
                                         0.530998
                                                       3.651046
                                                                     0.012041
83
      78
                          0.075547
                                        0.529831
            1.950000
                                                      3.587635
                                                                    -0.100453
84
      79
            1.975000
                          0.163536
                                        0.526182
                                                      3.437254
                                                                    -0.188069
85
     80
                                                                    -0.258906
            2.000000
                          0.246721
                                        0.520567
                                                      3.204237
86
     81
            2.025000
                          0.323110
                                        0.513327
                                                      2.894751
                                                                    -0.318897
87
                          0.390887
     82
            2.050000
                                        0.504675
                                                      2.516737
                                                                    -0.372466
88
     83
            2.075000
                                        0.494729
                                                      2.079780
                                                                    -0.423027
                          0.448455
89
     84
                          0.494476
                                        0.483526
                                                                    -0.473355
90
            2.100000
                                                      1.594914
     85
            2.125000
                          0.527904
                                        0.471043
                                                      1.074390
                                                                    -0.525863
91
     86
            2.150000
                          0.548009
                                        0.457196
                                                      0.531403
                                                                    -0.582816
92
                          0.554402
                                        0.441846
     87
            2.175000
                                                      -0.020192
                                                                     -0.646518
93
     88
            2.200000
                          0.547046
                                        0.424793
                                                      -0.566187
                                                                     -0.719474
94
     89
            2.225000
                          0.526258
                                        0.405771
                                                      -1.092311
                                                                     -0.804551
95
      90
            2.250000
                          0.492713
                                        0.384436
                                                      -1.584520
                                                                     -0.905149
96
     91
            2.275000
                          0.447428
                                        0.360350
                                                      -2.029249
                                                                     -1.025374
97
     92
            2.300000
                          0.391753
                                        0.332963
                                                      -2.413633
                                                                     -1.170218
98
     93
            2.325000
                          0.327350
                                                                     -1.345688
                                        0.301584
                                                      -2.725672
99
      94
            2.350000
                          0.256165
                                        0.265365
                                                      -2.954344
                                                                     -1.558814
100
     95
            2.375000
                          0.180411
                                        0.223265
                                                      -3.089673
                                                                     -1.817347
101
     96
            2.400000
                          0.102533
                                        0.174056
                                                      -3.122799
                                                                     -2.128809
102
     97
            2.425000
                          0.025186
                                        0.116339
                                                      -3.046169
                                                                     -2.498335
103
     98
            2.450000
                          -0.048812
                                         0.048663
                                                       -2.854100
                                                                       -2.924584
104
      99
            2.475000
                          -0.116535
                                          -0.030249
                                                         -2.544111
                                                                        -3.393214
      100
              2.500000
                            -0.175060
                                           -0.121065
                                                          -2.119489
                                                                         -3.868979
106
      101
              2.525000
                           -0.221658
                                           -0.223256
                                                          -1.593149
                                                                         -4.291050
107
              2.550000
      102
                           -0.254085
                                           -0.334509
                                                          -0.991463
                                                                         -4.580298
108
      103
              2.550000
                            -0.254085
                                           -0.334509
                                                          -0.991463
                                                                         -4.580298
109
      rkf45()
                        rkf45
                                  is
                                          inefficientrkf45()
                                                                         rkf45
                                                                                   is
110
          inefficient
      \hookrightarrow
     nfe:
                                 619
111
```

Листинг 5: Результат программы

9. Результат программы с возмущением по параметру L на 1%

kfini tep	t(): norma	l return x[0]	θ[1]	x'[2]	θ'[3]
	0.000000	0.005019	0.099569	0.399138	3.948521
	0.025000	0.019720	0.196627	0.769935	3.801637
	0.050000	0.043074	0.289021	1.087879	3.579423
	0.075000	0.073520	0.375191	1.334860	3.308226
	0.100000	0.109133	0.454242	1.499967	3.014021
I	0.125000	0.147798	0.525878	1.578847	2.717919
ı	0.150000	0.187363	0.590245	1.572354	2.434485
	0.175000	0.225743	0.647779	1.485115	2.172133
	0.200000	0.261005	0.699059	1.324348	1.934497
l .	0.225000	0.291422	0.744713	1.099006	1.721949
.0	0.250000	0.315501	0.785352	0.819196	1.532868
1	0.275000	0.332018	0.821530	0.495789	1.364539
2	0.300000	0.340022	0.853725	0.140136	1.213712
.3	0.325000	0.338853	0.882332	-0.236164	1.076908
4	0.350000	0.328139	0.907658	-0.621469	0.950545
.5	0.375000	0.307800	0.929916	-1.004286	0.830931
.6	0.400000	0.278038	0.949228	-1.373468	0.714169
.7	0.425000	0.239329	0.965613	-1.718388	0.595989
.8	0.450000	0.192404	0.978975	-2.029105	0.471499
9	0.475000	0.138235	0.989087	-2.296484	0.334861
0	0.500000	0.078010	0.995558	-2.512281	0.178883
1	0.525000	0.013113	0.997795	-2.669142	-0.005479
2	0.550000	-0.054901	0.994953	-2.760505	-0.229643
3	0.575000	-0.124317	0.985864	-2.780366	
4	0.600000	-0.193275	0.968973	-2.722875	-0.856736
5	0.625000	-0.259764	0.942288	-2.581785	
6	0.650000	-0.321608	0.903405	-2.349914	
7	0.675000	-0.376435	0.849726	-2.019103	
8	0.700000	-0.421674	0.779030	-1.581750	
9	0.725000	-0.454611	0.690546	-1.035417	
0	0.750000	-0.472620	0.586311	-0.390817	
1	0.775000	-0.473586	0.471995	0.320970	-4.666907
2	0.800000	-0.456423	0.355975	1.050409	-4.556651
3	0.825000	-0.421373	0.246662	1.743502	-4.149209
4	0.850000	-0.369910	0.149857	2.357796	-3.580424
5	0.875000	-0.304349	0.067878	2.868639	-2.981337
6	0.900000	-0.227428	0.000347	3.265685	-2.433694
7	0.925000	-0.142033	-0.054520		-1.970714
8	0.950000	-0.051051	-0.098924		-1.595562
9	0.975000	0.042686	-0.134945	3.767711	-1.297892
0	1.000000	0.136439	-0.164346	3.715016	-1.063563
1	1.025000	0.227586	-0.188538	3.560243	-0.879059
2	1.050000	0.313656	-0.208619	3.310094	-0.733005
3	1.075000	0.392364	-0.225433	2.972766	-0.616361
.4	1.100000	0.461649	-0.239623	2.558005	-0.522130
5	1.125000	0.519712	-0.251681	2.077033	-0.444941
6	1.150000	0.565053	-0.261978	1.542406	-0.380658
7	1.175000	0.596499	-0.270794	0.967789	-0.326059
8	1.200000	0.613230	-0.278340	0.367683	-0.278572
	T • Z W W W W W	A.0T252A	-v.2/0340	W.JU/DOJ	-w.Z/03/Z

```
50
             1,250000
                           0.601125
                                         -0.290169
                                                        -0.848705
                                                                       -0.196707
56
      51
             1.275000
                           0.572526
                                         -0.294611
                                                                       -0.158762
                                                        -1.434727
57
      52
             1.300000
                           0.529675
                                         -0.298105
                                                        -1.986413
                                                                       -0.120511
58
      53
                                                        -2.490077
             1.325000
                           0.473606
                                         -0.300619
                                                                       -0.080074
59
                                         -0.302072
      54
             1.350000
                           0.405676
                                                        -2.933200
                                                                       -0.035242
60
      55
                           0.327543
             1.375000
                                         -0.302322
                                                        -3.304713
                                                                       0.016736
61
      56
             1.400000
                           0.241116
                                         -0.301146
                                                        -3.595243
                                                                       0.079449
62
      57
                           0.148519
                                         -0.298220
                                                        -3.797290
             1.425000
                                                                       0.157711
63
      58
             1.450000
                           0.052035
                                         -0.293077
                                                        -3.905348
                                                                       0.258077
64
     59
             1.475000
                                                                        0.389485
                           -0.045936
                                          -0.285058
                                                         -3.915932
65
     60
              1.500000
                           -0.142936
                                          -0.273245
                                                         -3.827495
                                                                        0.563917
66
     61
             1.525000
                           -0.236487
                                          -0.256377
                                                         -3.640226
                                                                        0.796737
67
     62
             1.550000
                           -0.324136
                                          -0.232773
                                                         -3.355715
                                                                        1.105751
68
     63
             1.575000
                           -0.403484
                                          -0.200318
                                                         -2.976588
                                                                        1.506932
69
     64
             1.600000
                           -0.472206
                                          -0.156624
                                                         -2.506397
                                                                        2.003346
70
     65
             1.625000
                           -0.528088
                                          -0.099595
                                                         -1.950482
                                                                        2.564418
71
     66
                           -0.569096
             1.650000
                                          -0.028582
                                                         -1.318771
                                                                        3.101755
72
     67
                           -0.593551
                                          0.054082
73
             1.675000
                                                        -0.630393
                                                                       3.469736
      68
             1.700000
                           -0.600401
                                          0.142292
                                                        0.083524
                                                                      3.527953
74
      69
             1,725000
                           -0.589483
                                          0.227563
                                                        0.784635
                                                                      3,241249
75
      70
             1.750000
                           -0.561565
                                          0.302309
                                                        1.438741
                                                                      2.711181
76
     71
             1.775000
                           -0.518124
                                          0.362438
                                                        2.023884
                                                                      2.097582
77
      72
             1.800000
                                          0.407547
                                                        2.529496
                                                                      1.524648
                           -0.461035
78
      73
             1.825000
                           -0.392350
                                          0.439504
                                                        2.951057
                                                                      1.050090
79
      74
                                                        3.285931
             1.850000
                           -0.314204
                                          0.460949
                                                                      0.682554
80
      75
             1.875000
                           -0.228795
                                          0.474404
                                                        3.531782
                                                                      0.407583
81
      76
             1.900000
                                          0.481928
                                                                      0.204580
                           -0.138374
                                                        3.686557
82
      77
             1.925000
                           -0.045237
                                          0.485073
                                                        3.748998
                                                                      0.054458
83
      78
                           0.048306
                                         0.484963
             1.950000
                                                       3.719146
                                                                     -0.058063
      79
             1.975000
                           0.139965
                                         0.482387
                                                       3.598714
                                                                     -0.144451
85
     80
                           0.227516
                                         0.477888
                                                       3.391278
                                                                     -0.213087
             2.000000
86
     81
             2.025000
                           0.308849
                                         0.471829
                                                       3.102342
                                                                     -0.270069
87
     82
                                                       2.739303
             2.050000
                           0.382015
                                         0.464444
                                                                     -0.319887
88
     83
             2.075000
                           0.445273
                                         0.455866
                                                       2.311325
                                                                     -0.365950
89
     84
             2.100000
                           0.497129
                                         0.446155
                                                       1.829159
                                                                     -0.410965
90
     85
             2.125000
                           0.536379
                                         0.435307
                                                       1.304905
                                                                     -0.457224
91
     86
             2.150000
                           0.562134
                                         0.423266
                                                       0.751749
                                                                     -0.506824
92
     87
             2.175000
                           0.573842
                                         0.409921
                                                       0.183663
                                                                     -0.561846
93
     88
             2.200000
                           0.571313
                                         0.395110
                                                       -0.384904
                                                                      -0.624513
94
     89
                           0.554715
             2.225000
                                         0.378611
                                                       -0.939340
                                                                      -0.697347
95
     90
             2.250000
                           0.524584
                                         0.360133
                                                       -1.465177
                                                                      -0.783337
96
     91
             2.275000
                           0.481812
                                         0.339304
                                                       -1.948375
                                                                      -0.886113
97
     92
             2,300000
                           0.427632
                                         0.315650
                                                       -2.375569
                                                                      -1.010154
98
     93
                           0.363604
                                         0.288574
                                                       -2.734275
             2.325000
                                                                      -1.160984
     94
             2.350000
                           0.291585
                                         0.257322
                                                       -3.013028
                                                                      -1.345334
100
     95
             2.375000
                           0.213706
                                         0.220962
                                                       -3.201456
                                                                      -1.571151
101
     96
             2.400000
                           0.132342
                                         0.178346
                                                       -3.290312
                                                                      -1.847210
102
     97
             2.425000
                           0.050088
                                         0.128112
                                                       -3.271503
                                                                      -2.181905
103
     98
             2.450000
                           -0.030279
                                          0.068716
                                                        -3.138289
                                                                       -2.580460
104
     99
             2.475000
                                                         -2.885956
                           -0.105833
                                          -0.001421
                                                                        -3.039638
105
      100
             2.500000
                           -0.173573
                                          -0.083612
                                                         -2.513483
                                                                        -3.539451
106
      101
                           -0.230551
             2.525000
                                          -0.178357
                                                         -2.026716
                                                                        -4.033819
107
      102
             2.550000
                           -0.274096
                                          -0.284633
                                                         -1.442892
                                                                        -4.447217
108
      103
                                                         -0.794413
             2.575000
                           -0.302153
                                          -0.399281
                                                                        -4.688847
109
      104
             2.575000
                           -0.302153
                                          -0.399281
                                                         -0.794413
                                                                        -4.688847
110
      rkf45(): rkf45 is inefficientrkf45(): rkf45 is inefficient
111
     nfe:
                              625
112
      step size:
                       0.053288
113
```

10. Сравнение возмущения L=1.01~% (на 1~%)

step	KF45 сравнени t	$\Delta \times [0]$.01 % (на 1 %) Δθ[1]	Δx'[2]	Δθ'[3]
0	0.000000	0,000049	0,00000100	0,003964	0,00012
1	0.025000	0,000197	0,00000700	0,007716	0,000456
2	0.050000	0,000432	0,000024999	0,011065	0,000957
3	0.075000	0,000745	0,00005699	0,013861	0,00155
4	0.100000	0,001120	0,000103	0,015997	0,00219
5	0.125000	0,001538	0,000167	0,017412	0,002844
6	0.150000	0,001984	0,000245	0,018082	0,003488
7	0.175000	0,002437	0,000341	0,018016	0,004129
8	0.200000	0,002879	0,000452	0,017244	0,00478
9	0.225000	0,003294	0,000579	0,015816	0,005459
10	0.250000	0,003664	0,000725	0,013792	0,00618
11	0.275000	0,003979	0,000890	0,011246	0,00699
12	0.300000	0,004223	0,001076	0,00826	0,00791
13	0.325000	0,004389	0,001286	0,004918	0,00897
14	0.350000	0,004467	0,001527	0,00131	0,01021
15	0.375000	0,004453	0,001800	0,002474	0,01170
16	0.400000	0,004342	0,002114	0,006348	0,01350
17	0.425000	0,004135	0,002478	0,010228	0,01569
18	0.450000	0,003832	0,002903	0,014047	0,01840
19	0.475000	0,003434	0,003404	0,017747	0,02177
20	0.500000	0,002946	0,003999	0,021296	0,02599
21	0.525000	0,002371	0,004712	0,024692	0,0313
22	0.550000	0,001712	0,005575	0,027975	0,03797
23	0.575000	0,000972	0,006625	0,031243	0,04629
24	0.600000	0,000148	0,007905	0,034663	0,05647
25	0.625000	0,000764	0,009463	0,038472	0,06839
26	0.650000	0,001781	0,011333	0,042958	0,081179
27	0.675000	0,002920	0,013511	0,048334	0,09246
28	0.700000	0,004204	0,015906	0,054484	0,09774
29	0.725000	0,005644	0,018298	0,060554	0,09101
30	0.750000	0,007216	0,020322	0,064712	0,06832
31	0.775000	0,008843	0,021606	0,064649	0,03308
32	0.800000	0,010400	0,021966	0,058911	0,00339
33	0.825000	0,011745	0,021523	0,047868	0,02984
34	0.850000	0,012764	0,020591	0,033218	0,04253
35	0.875000	0,013391	0,019485	0,016818	0,04456
36	0.900000	0,013601	0,018409	2E06	0,04091
37	0.925000	0,013395	0,017455	0,016449	0,03534
38	0.950000	0,012786	0,016641	0,032055	0,029848
39	0.975000	0,011802	0,015955	0,046497	0,02523
40	1.000000	0,010473	0,015371	0,059508	0,02166
41	1.025000	0,008840	0,014863	0,070847	0,01906
42	1.050000	0,006946	0,014410	0,080298	0,017284
43	1.075000	0,004842	0,013993	0,087668	0,016166
44	1.100000	0,002581	0,013598	0,092808	0,01559
45	1.125000	0,000221	0,013210	0,095608	0,01548
46	1.150000	0,002179	0,012819	0,096013	0,01579
47	1.175000	0,004559	0,012417	0,094017	0,01648
48	1.200000	0,006860	0,011992	0,089670	0,01757
49	1.225000	0,009024	0,011535	0,083077	0,01909
50	1.250000	0,010996	0,011034	0,074393	0,02110
51	1.275000	0,012728	0,010475	0,063819	0,02370
52	1.300000	0,014173	0,009842	0,051597	0,02703
53	1.325000	0,015297	0,009115	0,038003	0,03129

100 101 102 103	2.500000 2.525000 2.550000 2.575000	0,001487 0,008893 0,020011 0,048068	0,044899 0,049876 0,064772	0,433567 0,451429 0,197050	0,257231 0,133081 0,108549
101 102	2.525000 2.550000	0,008893 0,020011	0,044899 0,049876	0,451429	0,133081
101	2.525000	0,008893	0,044899		
		•			
		0 001/07	0,037453	0 , 393994	0,329528
99	2.475000	0,010702	0,028828	0,341845	0,353576
98	2.450000	0,018533	0,020053	0,284189	0,344124
97	2.425000	0,024902	0,011773	0,225334	0,31643
96	2.400000	0,029809	0,004290	0,167513	0,281599
95	2.375000	0,033295	0,002303	0,111783	0,246196
94	2.350000	0,035420	0,008043	0,058684	0,21348
93	2.325000	0,036254	0,013010	0,008603	0,184704
92	2.300000	0,035879	0,017313	0,038064	0,160064
91	2.275000	0,034384	0,021046	0,080874	0,139261
90	2.250000	0,031871	0,024303	0,119343	0,121812
89	2.225000	0,028457	0,027160	0,152971	0,107204
88	2.200000	0,024267	0,029683	0,181283	0,094961
87	2.175000	0,019440	0,031925	0,203855	0,084672
86 07	2.150000	0,014125	0,033930	0,220346	0,075992
85 86	2.125000	0,008475	0,035736	0,230515	0,068639
84 05	2.100000	0,002653	0,037371	0,234245	0,06239
83	2.075000	0,003182	0,038863	0,231545	0,057077
82	2.050000	0,008872	0,040231	0,222566	0,052579
81 82	2.025000	0,014261	0,041498	0,207591	0,048828
80 81	2.000000	0,019205 0,014261	0,042679 0,041498	0,187041 0,207591	0,045819
79 80	1.975000	0,023571 0,019205	0,043795	0,161460 0,187041	0,043618
			0,044868 0,043795		0,04239
7 <i>7</i> 78	1.950000	0,030110		0,131511	
77	1.925000	0,030116	0,047003	0,097952	0,042417
76	1.900000	0,032116	0,047003	0,061619	0,044098
75	1.875000	0,033182	0,048148	0,023411	0,047874
74	1.850000	0,033278	0,049416	0,015741	0,05391
73	1.825000	0,032395	0,050855	0,054858	0,061288
72	1.800000	0,030545	0,052462	0,092848	0,0663
71	1.775000	0,027774	0,054078	0,128269	0,060005
70	1.750000	0,024172	0,055243	0,158900	0,027436
69	1.725000	0,019897	0,055109	0,181406	0,045347
68	1.700000	0,015200	0,052673	0,192123	0,153348
67	1.675000	0,010402	0,047436	0,189555	0,261781
66	1.650000	0,005811	0,039942	0,176358	0,328332
65	1.625000	0,001629	0,031502	0,157801	0,338036
64	1.600000	0,002072	0,023387	0,138356	0,306295
63	1.575000	0,005299	0,016332	0,120082	0,256926
62	1.550000	0,008088	0,010546	0,103218	0,206658
61	1.525000	0,010468	0,005941	0,087261	0,163109
60	1.500000	0,012453	0,002318	0,071646	0,12815
59	1.475000	0,014050	0,000533	0,055991	0,101091
58	1.450000	0,015251	0,002790	0,040134	0,080468
57	1.425000	0,016055	0,004597	0,024090	0,064811
56	1.400000	0,016456	0,006062	0,008004	0,052895
55	1.375000	0,016457	0,007265	0,007897	0,043776
54	1.350000	0,016065	0,008268	0,023333	0,036746

Листинг 6: Сравнение возмущения L = 1.01 % (на 1 %)

11. Сравнение возмущения L=0.99~% (на 1 %)

=====R step	KF45 сравнени t	е возмущения 0 ∆х[0]	.99 % (на 1 %) Δθ[1]	Δx'[2]	Δθ'[3]
0	0.000000	0,000049	0,000001	0,003963	0,000122
1	0.025000	0,000196	0,0000007	0,007715	0,00046
2	0.050000	0,000432	0,0000259	0,011065	0,000976
3	0.075000	0,000745	0,0000580	0,01386	0,001586
4	0.100000	0,001120	0,000105	0,015996	0,00224
5	0.125000	0,001539	0,000169	0,01741	0,002902
6	0.150000	0,001984	0,000250	0,01808	0,003559
7	0.175000	0,002437	0,000347	0,018012	0,004212
8	0.200000	0,002879	0,000461	0,017238	0,004877
9	0.225000	0,003293	0,000592	0,015805	0,005571
10	0.250000	0,003664	0,000740	0,013778	0,006318
11	0.275000	0,003978	0,000908	0,011228	0,007145
12	0.300000	0,004222	0,001098	0,008235	0,008082
13	0.325000	0,004387	0,001314	0,004886	0,009166
14	0.350000	0,004464	0,001558	0,001269	0,010443
15	0.375000	0,004448	0,001837	0,002526	0,011966
16	0.400000	0,004337	0,002159	0,006412	0,013809
17	0.425000	0,004128	0,002532	0,010310	0,01606
18	0.450000	0,003821	0,002966	0,014148	0,018838
19	0.475000	0,003421	0,003479	0,017874	0,022294
20	0.500000	0,002929	0,004089	0,021455	0,026621
21	0.525000	0,002350	0,004820	0,024894	0,03206
22	0.550000	0,001685	0,005703	0,028234	0,038889
23	0.575000	0,000938	0,006778	0,031577	0,047389
24	0.600000	0,000106	0,008088	0,035094	0,057738
25	0.625000	0,000820	0,009679	0,039029	0,069762
26	0.650000	0,001852	0,011582	0,043657	0,082448
27	0.675000	0,003010	0,013786	0,049166	0,093221
28	0.700000	0,004317	0,016188	0,055368	0,097343
29	0.725000	0,005777	0,018546	0,061297	0,088786
30	0.750000	0,007363	0,020491	0,065016	0,064154
31	0.775000	0,008990	0,021655	0,064235	0,027903
32	0.800000	0,010527	0,021888	0,057692	0,008107
33	0.825000	0,011831	0,021344	0,045974	0,0331
34	0.850000	0,012797	0,020350	0,030894	0,044272
35	0.875000	0,013363	0,019216	0,014285	0,045235
36	0.900000	0,013509	0,018131	0,002579	0,041004
37	0.925000	0,013238	0,017178	0,018956	0,03518
38	0.950000	0,012569	0,016370	0,034409	0,029616
39	0.975000	0,011528	0,015689	0,048631	0,02501
40	1.000000	0,010150	0,015110	0,061368	0,021488
41	1.025000	0,008474	0,014607	0,072385	0,018947
42	1.050000	0,006547	0,014157	0,081473	0,017223
43	1.075000	0,004418	0,013741	0,088451	0,016165
44	1.100000	0,002143	0,013343	0,093176	0,015654
45	1.125000	0,000221	0,012954	0,095551	0,015609
46	1.150000	0,002615	0,012560	0,095526	0,015981
47	1.175000	0,004978	0,012152	0,093108	0,016753
48	1.200000	0,007251	0,011719	0,088357	0,017933
49	1.225000	0,009377	0,011251	0,081384	0,019562
50	1.250000	0,011303	0,010736	0,072352	0,021708
51	1.275000	0,012979	0,010161	0,061467	0,024476
52	1.300000	0,014363	0,009506	0,048979	0,028019
53	1.325000	0,015417	0,008752	0,035162	0,032546

Сполиоо	значение	0,0120935	0,01997143	0,100114067	0,0752155
103	2.575000	0,016815	0,161088	1,023011	0,03717
102	2.550000	0,023549	0,046354	0,418153	0,01875
101	2.525000	0,013010	0,044167	0,420169	0,15212
100	2.500000	0,002756	0,039051	0,396498	0,24978
99	2.475000	0,006666	0,032059	0,354915	0,30221
98	2.450000	0,014907	0,024265	0,303220	0,31596
97	2.425000	0,021791	0,016475	0,247186	0,30401
96	2.400000	0,027259	0,009176	0,190324	0,27851
95	2.375000	0,031317	0,002590	0,134538	0,24795
94	2.350000	0,034004	0,003222	0,080837	0,21731
93	2.325000	0,035381	0,008296	0,029832	0,18906
92	2.300000	0,035521	0,012703	0,017998	0,16413
91	2.275000	0,034511	0,016532	0,062184	0,14268
90	2.250000	0,032447	0,019865	0,102236	0,12446
89	2.225000	0,029438	0,022778	0,137659	0,10906
88	2.200000	0,025607	0,025338	0,167967	0,09609
87	2.175000	0,021086	0,027599	0,192724	0,08513
86	2.150000	0,016020	0,029608	0,211560	0,07586
85	2.125000	0,010560	0,031404	0,224204	0,06799
84	2.100000	0,004862	0,033018	0,230494	0,06129
83	2.075000	0,000912	0,034477	0,230395	0,05559
82	2.050000	0,006604	0,035806	0,224002	0,05076
81	2.025000	0,012061	0,037022	0,211550	0,04673
80	2.000000	0,017134	0,038149	0,193404	0,04351
79	1.975000	0,021688	0,039206	0,170058	0,04116
78 70	1.950000	0,025600	0,040216	0,142122	0,03988
77 70	1.925000	0,028762	0,041211	0,110307	0,03998
76 77		0,031088	0,042231	0,075406	0,04195
	1.900000		=		
7 4 75	1.875000	0,032513	0,044373	0,000238	0,03370
73 74	1.850000	0,032991	0,044575	0,000238	0,05376
73	1.825000	0,032498	0,047770	0,039209	0,06384
72	1.800000	0,031034	0,047770	0,077699	0,07416
71	1.775000	0,028626	0,049693	0,114517	0,07750
70	1.750000	0,025337	0,051472	0,147799	0,05981
69	1.725000	0,021291	0,052362	0,174473	0,00395
68	1.700000	0,016703	0,051305	0,190481	0,09447
67	1.675000	0,011882	0,047493	0,192924	0,20952
66	1.650000	0,007162	0,041074	0,182902	0,29585
65	1.625000	0,002799	0,033175	0,165305	0,32643
64	1.600000	0,001085	0,025162	0,145370	0,30844
63	1.575000	0,004475	0,017962	0,126106	0,26518
62	1.550000	0,007403	0,011946	0,108307	0,21624
61	1.525000	0,009900	0,007110	0,091658	0,17186
60	1.500000	0,011991	0,003286	0,075589	0,13540
59	1.475000	0,013681	0,000274	0,059656	0,10684
58	1.450000	0,014973	0,002111	0,043627	0,08494
57	1.425000	0,015861	0,004017	0,027467	0,06826
56	1.400000	0,016345	0,005557	0,011278	0,05556
55	1.375000	0,016426	0,006819	0,004736	0,04584
			0,007868		0,03835

Листинг 7: Сравнение возмущения L = 0.99 % (на 1 %)

12. Оценка точности и влияния на точность погрешности исходных данных

Благодаря программе RKF45, а именно ее возможности автоматически менять шаг интегрирования, мы получили данные с высокой точностью. Мы провели расчет с возмущением по параметру L (длинна маятника) на 1 % увеличения (L=1.01) и уменьшения (L=0.99). Получив и сравнив данные, среднее значение разности по модулю :

```
при L = 1 и L = 1.01 получили:
```

Среднее значение

 $\Delta \times [0] = 0.01259375$

 $\Delta \vartheta [1] = 0.01999576$

 $\Delta x' [2] = 0.09369419$

 $\Delta \vartheta' [3] = 0.081081$

при L=1 и L=0.99 получили:

Среднее значение

 $\Delta \times [0] = 0.0120935$

 $\Delta \vartheta [1] = 0.01997143$

 $\Delta x' [2] = 0.100114067$

 $\Delta \vartheta'[3] = 0.075215587$

13. Выводы

Можно сделать вывод, при возмущении параметров на 1%, среднее отклонение по результатам х [0] и ϑ [1] будет около 1%, благодаря тому, что мы использовали программу RKF45, которая снижает накапливаемую погрешность