CC7711

Inteligência Artificial e Robótica

Prof. Dr. Flavio Tonidandel

Aprendizado por Reforço: Para quê?

- Muitas vezes o uso de aprendizagem supervisionada é impraticável
 - Como obter exemplos de treinamento corretos para uma determinada situação? E se o ambiente for desconhecido?
- Exemplos:
 - Criança adquirindo coordenação motora
 - Robô interagindo com um ambiente para atingir objetivo(s)
 - Futebol de Robôs
- Mas como obter um sistema que aprende sem exemplos de treinamento ?!??!?

O que é aprendizagem por reforço?

• Premissa:

- A cada instante de tempo t, o agente está em um estado s.
- No estado s ele executa a ação a e vai para o estado s´
- Avalia-se o estado s´ e dá uma recompensa para o agente
- Assim, a ação a no estado s possui um valor para o agente

- Se escolha correta, ganha uma recompensa (ganha valor) senão recebe um castigo (perde valor)
- Aprendizagem por reforço :
 - Escolher uma *política de ações* que maximize o total de recompensas recebidas pelo agente

Premissas do Aprendizado por Reforço

- Especificar o que fazer, e não como fazer
 - Isso é feito por meio da função de recompensa
- Geralmente, encontra as melhores soluções finais
 - Baseado nas experiências atuais, não há suposições do programador
- Em suma:
- Menos tempo humano é necessário para encontrar uma boa solução
 - Não é necessário definir heurísticas, técnicas para solucionar o problema, etc.
 - Precisa apenas definir o sistema de aprendizado e deixar o sistema aprender!

Algumas aplicações

JOGO de GAMÃO

- Modelagem do jogo:
 - Vitória: +100
 - Derrota: 100
 - Zero para os demais estados do jogo (delayed reward)
 - DELAYED REWARD -> deixa para dar recompensa no final de um processo
 - Após 1 milhão de partidas contra ele mesmo, joga tão bem quanto o melhor jogador humano

Futebol de Robôs

- Time Brainstormers de Futebol de Robôs (Robocup)
 - Time cujo conhecimento é obtido 100% por técnicas de aprendizagem por reforço

Markov Decision Processes

- formalmente, um MDP é dado por:
 - Um conjunto de estados, $S = \{s_1, s_2, ..., s_n\}$
 - Um conjunto de ações, $A = \{a_1, a_2, \dots, a_m\}$
 - Uma função de Recompensa, R: $S \times A \times S \rightarrow \Re$
 - Uma função de transição de estados,
 - T: $S \times A \rightarrow S$
- Queremos aprender a politica π : S \rightarrow A, ou seja, dado estados em S temos as melhores ações em A a serem aplicadas. Politica = sequência de estados e ações
- Propriedades de Markov
 - Tudo que precisa para tomar decisão está incluído no estado
 - Não há como consultar o passado (estados anteriores)

Tomando Decisões

- Com a <u>recompensa estabelecida</u>, o que precisamos é tomar uma decisão em cada estado:
 - Multiplas ações (A e B)
 - Cada ação tem uma recompensa associada a ela

- O objetivo é maximizar a recompensa
 - Basta pegar a ação com a maior recompensa para o estado atual.

Markov Decision Processes (MDP)

- Podemos generalizar o exemplo anterior para decisões multi-sequenciais
 - Cada decisão afeta a decisão seguinte
- Isto é formalmente modelado como Processo de Decisão de Markov (PDM ou MDP (inglês))

Políticas

- Existem 3 políticas para o MDP abaixo:
 - 1. $0 \rightarrow 1 \rightarrow 3 \rightarrow 5$
 - 2. $0 \rightarrow 1 \rightarrow 4 \rightarrow 5$
 - 3. $0 \rightarrow 2 \rightarrow 4 \rightarrow 5$
- Qual é a melhor?

Politicas

Ordene as politicas pelas recompensas

1.
$$0 \rightarrow 1 \rightarrow 3 \rightarrow 5 = 1 + 1 + 1 = 3$$

2.
$$0 \rightarrow 1 \rightarrow 4 \rightarrow 5 = 1 + 1 + 10 = 12$$

3.
$$0 \rightarrow 2 \rightarrow 4 \rightarrow 5 = 2 - 1000 + 10 = -988$$

Função Estado-ação

- Podemos definir um valor sem especificar a política
 - Especificar o valor de escolher a ação a a partir do estado s
 - Isto é a função de qualidade estado-ação, Q

Funções valor

•
$$Q(s, a) = R(s, a, s') + max_{a'} Q(s', a')$$

s' é o próximo estado

- Forma:
 - Próxima recompensa + o melhor que posso fazer a partir do próximo estado
- Se nós temos a função valor, então achar a melhor politica é fácil:
 - $-\pi(s) = arg max_a Q(s, a)$
 - arg max f(x) significa o argumento que torna a f(x) máxima

Política ótima

- Mas...
- Nós estamos procurando pela política ótima: $\pi^*(s)$
 - Isso significa que nenhuma política gera recompensa maior que π^*
- Política ótima define Funções valor ótimas:

$$Q^*(s,a) = R(s,a,s') + argmax_{a'}Q^*(s',a')$$

Aprendizado por Reforço

- O que acontece se nós não tivermos o MDP completo ?
 - Ou seja, precisamos aprender as recompensas associadas
 - Bem.. Sabemos sobre os estados e as ações
 - Não sabemos sobre o modelo do sistema (função de transição) ou a função de recompensa
- Podemos aprender pela experiência e executando ações para gerar tais experiências
- Este é o principal objetivo do aprendizado por reforço...

Aprendendo as Funções valor

- Nós ainda queremos aprender a função valor
 - Somos forçados a aproximá-la interativamente
 - Baseado nas experiências do mundo
- Vamos falar sobre um dos principais algoritmos:
 - Q-learning
 - Q Learning aproxima a função Q, que por sua vez, encontra a solução final sem termos o grafo completo.

Funções valores...melhores

- Podemos introduzir um termo na função para evitar que valores altos saturem o sistema e o faça entrar em loopings.
 - Chamado de fator de desconto, γ
 - Interpretação:
 - Medida de incerteza herdada do mundo. Permite ao agente dar importância para valores no future e considerer apenas parte dos valores maximos de Q
 - $0 \le \gamma \le 1$
 - $Q(s, a) = R(s, a, s') + \gamma max_{a'} Q(s', a')$

Q Learning

 Algoritmo de aprendizagem para computar a função Q ótima (valor das ações)

$$\pi^*(s) = \operatorname{argmax}_a[Q(s,a)]$$

• $Q^*(s_t,a_t) = r(s_t,a_t) + \gamma \max_{a'} [Q(s_{t+1},a')]$

Esta tabela geralmente é enorme e ocupa muita memória!

Q-Learning (estados sem recompensa)

Atualiza-se Q(s_t) após observar o estado s_{t+1}

•
$$Q(s_1,a_{right}) = r + \gamma max_a, Q(s_2,a')$$

= 0 + 0.9 max{63,81,100}
= 90

Q-Learning (e com recompensa)

Atualiza-se Q(s_t) após observar o estado s_{t+1} e recompensa recebida

•
$$Q(s_1,a_{right}) = 10 + \gamma max_{a'}Q(s_2,a')$$

= 10 + 0.9 max{63,81,100}
= 100

Q-Learning

- Q-learning aproxima, iterativamente, a função valor estado-ação, Q
 - Não iremos estimar a MDP diretamente
 - Aprende a função valor e a política simultaneamente
- Mantém a estimativa de Q(s, a) em uma tabela
 - Atualiza essas estimativas conforme agrega mais experiência
 - A estimativa não depende da política de exploração

Tabela Q 80 estados x 4 ações

Algoritmo Q-Learning

- 1. Inicialize Q(s,a) para valores randomicos pequenos, $\forall s$, a
- 2. Observe estado, s
- 3. Escolha uma ação, a, e execute
- 4. Observe o próximo estado, s', e recompensa de s', r
- 5. $Q(s, a) \leftarrow (1 \alpha)Q(s, a) + \alpha(r + \gamma \max_{a'}Q(s', a'))$
- 6. Volte para 2
- $0 \le \alpha \le 1$ é a taxa de aprendizado

Um dilema!

 Se eu sempre escolher o valor Máximo para Q, eu posso cair em uma armadilha!!

Dilema: Explorar ou Usufruir?

- Usufruir
 - Escolher a ação que atualmente está com maior valor Q(s,a)
- Explorar
 - Escolher uma ação randômica, para que seu valor Q(s,a) seja atualizado
- Dilema
 - Dado que eu aprendi que Q(s,a) vale 100, vale a pena tentar executar a ação a' se Q(s,a') por enquanto vale 20 ?
 - Depende do ambiente, da quantidade de ações já tomadas e da quantidade de ações restantes

ε-Greedy

- Formula para resolver o "Dilema":
- ε-Greedy: Exploração Aleatória
 - Dado um valor de q aleatório:

$$\pi(s_{i}) = \begin{cases} a_{random} & \text{se } q \leq \varepsilon, \\ \arg \max_{\alpha} \hat{Q}_{i}(s_{i}, a_{i}) & \text{caso contrário,} \end{cases}$$

- O sistema irá escolher uma ação aleatória se q <= ϵ ou escolherá a ação de maior recompensa se q > ϵ
- Espera-se, com isso, que com muitas iterações possa-se chegar a solução ótima (política ótima)

Exemplo de Exploração

Considerações

- AR irá solucionar muitos dos seus problemas, entretanto:
 - Precisa de MUITO treinamento
 - Pegar ações aleatórias pode ser perigoso... e demorado
 - Leva muito tempo para aprender
 - Nem todos os problemas se encaixam no formato MDP
 - ...
 - Claro... o algoritmo encontra a solução ótima (provado teoricamente) em infinitas iterações !!
 - Ou seja, por vezes temos que nos contentar com soluções sub-ótimas.

Bibliografia de Aprend. por Reforço

Para aprofundamento nos assuntos desta aula, segue a seguinte referência bibliográfica

- Russel & Norvig (Artificial Intelligence)
 - Capítulo 21
- Alguns slides desta aula foram baseados no slides:
- Hugo Pimentel de Santana."Aprendizado por Reforço". UFPE
- Bill Smart. "Reinforcement Learning: User's Guide". Washington University. USA. http://www.cse.wustl.edu/~wds/