COMP S264F Discrete Mathematics Tutorial 7: Functions (2) – Suggested Solution

Question 1.

(a) No. When x = -2, $f(-2) = \sqrt{-2} \notin \mathbb{R}$.

(b) Yes. As x^2 is non-negative, $\sqrt{x^2+1}$ is a real number.

(c) No. When x = 0, $f(0) = \sqrt{0^2 + 1} = \pm 1$ which has two values.

(d) No. When x = 4, $f(4) = \frac{1}{4^2 - 16} = \frac{1}{0}$ which is undefined.

Question 2. To deal with this type of question, it is better to think of a bijective function first. An arrow diagram will be helpful for your thinking. First, try to draw the arrow diagram and define a bijective function f_{bi} . Then, we can have the solution of (c). Next, we can adapt the arrow diagram such that it matches (a) and (b), respectively. Here is one of the possible solutions:

1

(a)
$$f(x) = f_{sur}(x) = \begin{cases} -2x & \text{if } x < 0\\ 1 & \text{if } x = 0\\ 2x - 1 & \text{if } x > 0 \end{cases}$$

(b)
$$f(x) = f_{in}(x) = \begin{cases} -2x & \text{if } x < 0\\ 2x + 3 & \text{if } x \ge 0 \end{cases}$$

(c)
$$f(x) = f_{bi}(x) = \begin{cases} -2x & \text{if } x < 0\\ 2x + 1 & \text{if } x \ge 0 \end{cases}$$

Question 3.

(a)
$$A = \{1, 2, 3, 4\}$$

 $B = \{6, 7, 8, 9\}$
 $|A| = |B| = 4$

(b) Define
$$f: A \to B$$
 such that $f(x) = x + 1$.
Let $x, y \in A$. $f(x) = f(y) \implies x + 1 = y + 1$
 $\implies x = y$
 $\implies f$ is injective.

For any
$$b \in B$$
, $b = f(a) \implies b = a + 1$
 $\implies a = b - 1$

Since b is even, a = b - 1 is odd. We have $a \in A$, so f is surjective. Hence, f is bijective $\implies A$ and B have the same cardinality.

(c) Define
$$f: A \to B$$
 such that $f(x) = 3x$.
Let $x, y \in A$. $f(x) = f(y) \implies 3x = 3y$
 $\implies x = y$
 $\implies f$ is injective.

For any
$$b \in B$$
, $b = f(a) \implies b = 3a$
 $\implies a = \frac{b}{3}$

Since b=3k for some integer k, we have $a=k\in\mathbb{Z}$, i.e., $a\in A$, so f is surjective. Hence, f is bijective $\implies A$ and B have the same cardinality.

(d) Define
$$f: A \to B$$
 such that $f(x) = 3x + 2$.
Let $x, y \in A$. $f(x) = f(y) \implies 3x + 2 = 3y + 2$
 $\implies x = y$
 $\implies f$ is injective.

For any
$$b \in B$$
, $b = f(a) \implies b = 3a + 2$
 $\implies b - 2 = 3a$
 $\implies a = \frac{b-2}{3}$

$$\therefore 2 < b < 5$$

$$\therefore a = \frac{b-2}{3} > \frac{2-2}{3} = 0$$
 and $a = \frac{b-2}{3} < \frac{5-2}{3} = 1$

As $a = \frac{b-2}{3} \in \mathbb{R}$ and 0 < a < 1, we have $a \in A$ and thus f is surjective.

Hence, f is bijective \implies A and B have the same cardinality.

Question 4.

(a) Consider the following grid with a path $(0,0), (0,1), (1,0), (2,0), (1,1), (0,2), (0,3), (1,2), \dots$

We can define a bijective function $f: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ such that f(i) is the (i+1)-th node in the path of the grid, implying that $\mathbb{N} \times \mathbb{N}$ is countable.

(b) (i) First, assume both A_0 and A_1 are countable.

By (a), as f is a bijective function from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$. To show that $A_0 \times A_1$ is countable, it suffices to show that there is a bijective function $g: \mathbb{N} \times \mathbb{N} \to A_0 \times A_1$.

As A_0 and A_1 are countable, there are two bijective functions $p: \mathbb{N} \to A_0$ and $q: \mathbb{N} \to A_1$.

Therefore, we can define a bijective function $g: \mathbb{N} \times \mathbb{N} \to A_0 \times A_1$ such that

$$g(x,y) = (p(x), q(y)) .$$

It follows that $A_0 \times A_1$ is countable.

(ii) Next, assume $A_0 \times A_1$ is countable.

Let k be some element in A_1 .

Then, $A_0 \times \{k\} \subseteq A_0 \times A_1$ is also countable, which implies A_0 is countable.

Similarly, A_1 is countable by the same argument.

In conclusion, the Cartesian product $A_0 \times A_1$ is countable if and only if both A_0, A_1 are countable.

(c) We prove that statement by mathematical induction on n.

Base case. The base case is proven in (b).

Inductive step. Assume that for some integers $k \geq 1$, $A_0 \times A_1 \times \cdots \times A_k$ is countable if and only if A_0, A_1, \ldots, A_k are all countable.

Consider any set A_{k+1} . Then,

 $A_0, A_1, \ldots, A_{k+1}$ are countable

 $\Leftrightarrow (A_0 \times A_1 \times \cdots \times A_k \text{ is countable}) \wedge (A_{k+1} \text{ is countable})$ (by the induction hypothesis)

 $\Leftrightarrow (A_0 \times A_1 \times \cdots \times A_k) \times A_{k+1}$ is countable (by the result of (b))

(d) Let $C = \{(x, y) \mid x, y \in \mathbb{Z} \text{ and } y \neq 0 \text{ and } x, y \text{ are relatively prime}\}.$

By definition, there is a bijective function $f: C \to \mathbb{Q}$ such that for any $(x,y) \in C$, $f(x,y) = \frac{x}{y}$.

To show that \mathbb{Q} is countable, it suffices to show that C is countable.

Note that $C \subseteq \mathbb{Z} \times \mathbb{Z}$. As \mathbb{Z} is countable, by (b), $\mathbb{Z} \times \mathbb{Z}$ is countable and thus C is countable.

Question 5.

(a) Yes. Since the cardinality of A is small, we can prove it by exhaustion. By drawing the arrow diagram of f, we can find that f is bijective.

(b) No. Consider x = 1.5 and y = 2.5. $L.H.S. = \lceil 1.5 + 2.5 \rceil = \lceil 4 \rceil = 4$.

$$L.H.S. = |1.5 + 2.5| = |4| = 4.$$

 $R.H.S. = [1.5] + [2.5] = 2 + 3 = 5 \neq L.H.S..$

(c) Yes. Let n = 2k + 1 for some integer k.

$$\frac{n^2}{4} = \frac{(2k+1)^2}{4}$$
$$= \frac{4k^2 + 4k + 1}{4}$$
$$= k^2 + k + \frac{1}{4}$$

Since $k^2 + k$ is an integer, $L.H.S. = \left| \frac{n^2}{4} \right| = \left| k^2 + k + \frac{1}{4} \right| = k^2 + k + \left| \frac{1}{4} \right| = k^2 + k$.

$$R.H.S. = \left(\frac{n-1}{2}\right) \left(\frac{n+1}{2}\right) = \left(\frac{(2k+1)-1}{2}\right) \left(\frac{(2k+1)+1}{2}\right)$$

$$= \frac{2k(2k+2)}{4}$$

$$= \frac{4k^2 + 4k}{4}$$

$$= k^2 + k$$

$$= L.H.S.$$