```
Reconstruct data
In [1]:
         import pandas as pd
         import numpy as np
         import pygplates as pygp
         from pmagpy import ipmag, pmag
         import matplotlib.pyplot as plt
         import cartopy
         import cartopy.crs as crs
         import seaborn as sns
         pd.set_option('display.max_columns', None)
       Import rotation model and continental polygons (if needed)
In [2]:
         rotation_model = 'data/example_rotfile.rot'
         static_polygons = pygp.FeatureCollection('data/example_polygons.gpml')
       Import data
In [3]:
         fname = 'data/Liz_Data.xlsx'
         bugs = pd.read_excel(fname, engine='openpyxl')
        Have a look at the data...
```

```
In [4]: bugs.head()
```

Out[4]:		accepted_name	max_ma	min_ma	ref_author	ref_pubyr	phylum	class	order	fam
	0	Neocalmonia quadricosta	383.7	382.4	Morzadec	2002	Arthropoda	Trilobita	Phacopida	Acastic
	1	Radiopyge heratensis	387.7	372.2	Farsan	1981	Arthropoda	Trilobita	Phacopida	Acastic
	2	Radiopyge heratensis	382.7	372.2	Farsan	1981	Arthropoda	Trilobita	Phacopida	Acastic
	3	Radiopyge heratensis	382.7	372.2	Farsan	1981	Arthropoda	Trilobita	Phacopida	Acastic
	4	Radiopyge heratensis	382.7	372.2	Farsan	1981	Arthropoda	Trilobita	Phacopida	Acastic

```
In [5]: bugs['mean_age'] = bugs.apply(lambda row: (row.max_ma + row.min_ma)/2, axis=1)
```

```
In [6]: sns.histplot(data = bugs, x = 'mean_age')
```

Out[6]: <AxesSubplot:xlabel='mean_age', ylabel='Count'>

Set age range and filter data accordingly

```
In [7]:
    time = 390
    age_window = 10

    tmin = time-age_window
    tmax = time+age_window

tbugs = bugs.loc[((tmin <= bugs['min_ma']) & (bugs['min_ma'] <= tmax)) | ((bugs['min_ma']) | ((bugs['m
```

In [8]: tbugs.head(15)

Out[8]:		accepted_name	max_ma	min_ma	ref_author	ref_pubyr	phylum	class	order
	0	Neocalmonia quadricosta	383.7	382.4	Morzadec	2002	Arthropoda	Trilobita	Phacopida
	1	Radiopyge heratensis	387.7	372.2	Farsan	1981	Arthropoda	Trilobita	Phacopida
	2	Radiopyge heratensis	382.7	372.2	Farsan	1981	Arthropoda	Trilobita	Phacopida
	3	Radiopyge heratensis	382.7	372.2	Farsan	1981	Arthropoda	Trilobita	Phacopida
	4	Radiopyge heratensis	382.7	372.2	Farsan	1981	Arthropoda	Trilobita	Phacopida

	accepted_name	max_ma	min_ma	ref_author	ref_pubyr	phylum	class	order
5	Radiopyge heratensis	382.7	372.2	Farsan	1981	Arthropoda	Trilobita	Phacopida
51	Gondwanaspis dracula	382.7	372.2	Feist and McNamara	2007	Arthropoda	Trilobita	Odontopleurida
52	Gondwanaspis dracula	382.7	372.2	Feist and McNamara	2007	Arthropoda	Trilobita	Odontopleurida
53	Gondwanaspis spinosa	382.7	372.2	Feist and McNamara	2007	Arthropoda	Trilobita	Odontopleurida
101	Proetus (Devonoproetus) sparsinodosus	393.3	387.7	Feist and Talent	2000	Arthropoda	Trilobita	Proetida
102	Phacops (Phacops) brocki	387.7	382.7	Feist and Talent	2000	Arthropoda	Trilobita	Phacopida
103	Phacops (Phacops) brocki	388.1	383.7	Feist and Talent	2000	Arthropoda	Trilobita	Phacopida
104	Phacops (Phacops) brocki	387.7	382.7	Feist and Talent	2000	Arthropoda	Trilobita	Phacopida
216	Acanthopyge (Lobopyge) campbelli	409.1	388.1	Chatterton and Wright	1986	Arthropoda	Trilobita	Lichida
217	Crotalocephalus struszi	409.1	388.1	Chatterton and Wright	1986	Arthropoda	Trilobita	Proetida

Convert to GPlates feature format

```
point_features = []
for idx, row in tbugs.iterrows():
    point = pygp.PointOnSphere(tbugs.lat[idx], tbugs.lng[idx])
    point_feature = pygp.Feature()
    point_feature.set_geometry(point)
    point_feature.set_valid_time(tmax, tmin)
    point_features.append(point_feature)
```

Get plate IDs

```
assigned_point_features = pygp.partition_into_plates(
    static_polygons,
    rotation_model,
    point_features,
    properties_to_copy = [pygp.PartitionProperty.reconstruction_plate_id])
```

Reconstruct

```
reconstruction_time = time
reconstructed_point_features = []
reconstructed_static_polygons = []
pygp.reconstruct(assigned_point_features, rotation_model, reconstructed_point_feature
pygp.reconstruct(static_polygons, rotation_model, reconstructed_static_polygons, rec
```

Extract data

```
In [12]:
    recon_lats, recon_lons = [], []
    for reconstructed_feature in reconstructed_point_features:
        recon_lats.append(reconstructed_feature.get_reconstructed_geometry().to_lat_lon(
        recon_lons.append(reconstructed_feature.get_reconstructed_geometry().to_lat_lon(

    recon_poly_lats, recon_poly_lons = [], []
    for reconstructed_feature in reconstructed_static_polygons:
        recon_poly = reconstructed_feature.get_reconstructed_geometry().to_lat_lon_array
        recon_poly_lats.append([i[0] for i in recon_poly])
        recon_poly_lons.append([i[1] for i in recon_poly])
```

Plot

```
fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(1,1,1, projection=crs.Robinson())
ax.set_global()
ax.gridlines()

#can plot coastlines, etc. here...
for i in range(len(recon_poly_lats)):
    plt.plot(recon_poly_lons[i], recon_poly_lats[i], transform=crs.PlateCarree(), co
plt.scatter(recon_lons, recon_lats, s=1, alpha=0.5, transform=crs.PlateCarree())
```

Out[13]: <matplotlib.collections.PathCollection at 0x24f90897490>


```
In [14]:
    tbugs['rlng'] = recon_lons
    tbugs['rlat'] = recon_lats
```

```
In [15]: fams = tbugs.groupby('family')
```

Out[15]: dict_keys(['Acastidae', 'Aulacopleuridae', 'Calmoniidae', 'Calymenidae', 'Cheirurida e', 'Dalmanitidae', 'Harpetidae', 'Homalonotidae', 'Lichidae', 'NO_FAMILY_SPECIFIE D', 'Odontopleuridae', 'Otarionidae', 'Phacopidae', 'Phillipsiidae', 'Proetidae', 'R orringtoniidae', 'Scharyiidae', 'Styginidae', 'Tropidocoryphidae'])

Acastidae 43

Aulacopleuridae

Calmoniidae

Calymenidae 3

2.00

Cheiruridae

1 Dalmanitidae 2

1.0 0.8 Oonut Count 0.4 0.2 0.0 6.6 6.8 7.0 7.2 7.4

Harpetidae 22

Homalonotidae 65

Lichidae 45

NO_FAMILY_SPECIFIED 6

Phacopidae 298

Phillipsiidae 3

2.00 0 1.75 1.50 1.25 100 0.75 0.50 0.25 0.00 | 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5

Proetidae 323

5000 - 4000 - 4000 - 2000 - 1000 - 25 50 75 100 125 150 175

Rorringtoniidae

2

Scharyiidae 5

5 -Count Ò

Styginidae 10

t 10 8 ò

Tropidocoryphidae 35

In []: