Задача 10-2. Заряженный стержень

Тонкий диэлектрический стержень AB, положительно заряженный с постоянной линейной плотностью λ , находится в воздухе (вакууме).

1.1 Рассмотрим малый участок $FG = \Delta l$ стержня, который виден из точки C пространства под малым углом $\Delta \varphi$, (см. рис.), причем $\Delta \varphi << \varphi$. Покажите, что модуль ΔE напряженности электростатического поля, создаваемого этим участком стержня в точке C, пропорционален величине угла $\Delta \varphi$, и может быть представлен в виде $\Delta E = k_1 \cdot \Delta \varphi$. Найдите коэффициент пропорциональности k_1 .

1.2 Докажите, что вектор напряженности электростатического поля, создаваемого стержнем AB, направлен вдоль биссектрисы DC угла ACB, (см. рис.). Данный результат Вы можете использовать в последующих пунктах задачи, даже если не смогли его доказать.

1.4 Найдите выражение E(h) для модуля напряженности электростатического поля, создаваемого тонким заряженным с постоянной линейной плотностью λ бесконечным стержнем, на расстоянии h от него.

1.5 Два тонких длинных (бесконечных), заряженных с постоянной поверхностной плотностью $\lambda = 25\,\mathrm{hKn/m}$ стержня скрещиваются в пространстве под прямым углом (см.рис.). Расстояние между ближайшими точками стержней $h = 1,0\,\mathrm{m}$. Найдите силу \vec{F} электростатического отталкивания стержней

Математическая подсказка: площадь S под графиком функции

 $y(x) = \cos(x)$ на участке от нуля до x, вычисляется по формуле $S = \sin(x)$.

