Plansza

Rozważmy następującą planszę złożoną z trójkątów równobocznych:

Każdy wierzchołek na planszy jest opisany przez dwie współrzędne x, y w sposób przedstawiony na rysunku. Niektóre krawędzie są oznaczone białym lub czarnym kółkiem. Obowiązują dwie podstawowe zasady poruszania się po planszy:

- Wolno przechodzić tylko po krawędziach oznaczonych kółkami.
- Podczas wędrówki po planszy trzeba na zmianę przechodzić po krawędziach oznaczonych białymi i czarnymi kółkami; tzn. przez krawędź z białym kółkiem można przejść tylko wówczas, gdy poprzedni ruch był przez krawędź z czarnym kółkiem, i na odwrót. W pierwszym ruchu można przejść albo przez krawędź z białym kółkiem, albo przez krawędź z czarnym kółkiem.

Zadanie

Napisz program, który obliczy długość najkrótszej ścieżki z punktu wejściowego planszy do punktu wyjściowego. Długość ścieżki to liczba krawędzi (lub równoznacznie, kółek), przez które ta droga przechodzi. Możesz założyć, że taka droga zawsze istnieje.

Wejście

Pierwszy wiersz zawiera dwie liczby całkowite W i H oznaczające odpowiednio szerokość i wysokość planszy (1<=W,H<=500). Drugi wiersz zawiera cztery liczby całkowite: X_1 , Y_1 , X_2 , Y_2 ($0 \le X_1$, $X_2 \le W$; $0 \le Y_1$, $Y_2 \le H$), (X_1 , Y_1) są współrzędnymi punktu wejściowego planszy, a (X_2 , Y_2) są współrzędnymi punktu wyjściowego.

W kolejnych 2H + 1 wierszach znajdują się opisy krawędzi: wiersze nieparzyste (3-ci, 5-ty itd.) opisują krawędzie poziome, a wiersze parzyste: (4-ty, 6-ty itd.) opisują pozostałe krawędzie. Każdy wiersz zawiera ciąg liter **n**, **w** oraz **b**, gdzie **n** oznacza, że na danej krawędzi nie ma kółka, a **w** i **b** oznaczają, że na danej krawędzi jest białe (w) lub czarne (b) kółko. Pomiędzy literami zapisanymi w wierszu nie ma odstępów. Oczywiście każdy wiersz nieparzysty zawiera dokładnie W liter, a każdy wiersz parzysty 2W +1 liter.

Wyjście

Twój program powinien wypisać jedną liczbę całkowitą (oznaczająca długość najkrótszej ścieżki od punktu wejściowego do punktu wyjściowego planszy) w pierwszym (i jedynym) wierszu.

Przykład

WEJŚCIE 2 1 0 0 2 1 bb nwwnw bn WYJŚCIE 6 UWAGI Przykład 1 Prosta plansza. Jedyna z możliwych najkrótszych ścieżek jest: (0,0)!(1,0)!(0,1)!(1,0)!(2,0)!(2,1) Poniższy rysunek przedstawia planszę oraz najkrótszą ścieżkę:

WEJŚCIE 5 4 0 2 5 2 nnbnn nnnwwbwnnnn nbbbn nnwbwwbwwnn bwwww nnbwbbwwbnn nwwwn nnnnbwbbnnn nnnnhwbbnnn nnwnn	UWAGI Przykład 2 Ten opis zawiera plansze przedstawiona na rysunku w treści zadania. Najkrótsza ścieżka jest: (0,2)!(1,2)!(1,1)!(2,1)!(2,0)! (3,0)!(3,1)!(3,2)!(4,1)!(3,1)! (3,0)!(2,0)!(2,1)!(1,1)!(1,2)! (1,3)!(2,3)!(2,4)!(3,4)!(3,3)! (4,3)!(4,2)!(5,2) (Długości: 22)