Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 5 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження складних

циклічних алгоритмів»

Варіант<u>22</u>

Виконав студент <u>ІП-13, Музичук Віталій Андрійович</u> (шифр, прізвище, ім'я, по батькові)

Перевірила <u>Вєчерковська Анастасія Сергіївна</u> (прізвище, ім'я, по батькові)

Лабораторна робота 4 Дослідження складних циклічних алгоритмів

Мета — дослідити особливості роботи складних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 22

Натуральне число називається паліндромом, якщо його запис читається однаково з початку та з кінця (наприклад, 575, 9). Знайти всі паліндроми з інтервалу [1000000,1000000000].

Постановка задачі

Для отримання послідовності паліндромів ми використаємо арифметичний цикл. У тілі цього циклу перевіряємо чи число з даного нам проміжку дорівнює цьому ж інвертованому числу. Число інвертується за допомогою ітераційного циклу, за формулою invertNumber = invertNumber * 10 + currentNumber % 10, для кожної цифри, допоки currentNumber > 0. Якщо це твердження справджується, тоді дане число є паліндромом і ми виводимо його, якщо ні — продовжуємо цикл допоки не вийдемо з даного інтервалу.

Побудова математичної моделі

Складемо таблицю змінних

Змінна	Тип	Ім'я	Призначення
Поточне значення числа	Цілий	currentNumber	Початкове значення
Інвертоване значення числа	Дійсний	invertNumber	Початкове значення
Лічильник циклу	Цілий	i	Ітераційна змінна
Мінімальне число паліндрома	Цілий	minPalindrom	Початкове значення
Максимальне число падіндрома	Цілий	maxPalindrom	Початкове значення

1) Використаємо символ "%" для позначення остачі від цілочиельного ділення

Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначаємо основні дії

Крок 2. Деталізація арифметичного циклу

Крок 3. Деталізуємо дію ітераційного циклу

Крок 4. Деталізуємо розгалуження

Псевдокод

```
крок 1
```

початок

деталізація арифметичного циклу деталізуємо дію ітераційного циклу деталізуємо дію розгалуження кінець

крок 2

початок

```
minPalindrome = 1000000
maxPalindrome = 1000000000
```

для і від minPalindrome до maxPalindrome повторити

invertNumber = 0 currentNumber = i деталізуємо дію ітераційного циклу

деталізуємо дію розгалуження

все повторити кінець

```
крок 3
початок
minPalindrome = 1000000
maxPalindrome = 10000000000
для і від minPalindrome до maxPalindrome повторити
     invertNumber = 0
     currentNumber = i
     поки currentNumber > 0 повторити
           invertNumber = invertNumber * 10 + currentNumber % 10
           currentNumber = currentNumber / 10
     все повторити
     currentNumber = i
     деталізуємо дію розгалуження
все повторити
кінець
крок 4
початок
minPalindrome = 1000000
maxPalindrome = 10000000000
для і від minPalindrome до maxPalindrome повторити
     invertNumber = 0
     currentNumber = i
     поки currentNumber > 0 повторити
           invertNumber = invertNumber * 10 + currentNumber % 10
           currentNumber = currentNumber / 10
     все повторити
     currentNumber = i
     якщо currentNumber == invertNumber
           T0
                виведення currentNumber
     все якшо
все повторити
кінець
```

Блок-схема

Крок 1

Крок 2

Крок 3

Крок 4

Випробування алгоритму:

Блок	Дія
	Початок
1	i = 1000000;
2	invertNumber = 0; currentNumber = i = 1000000;
3	currentNumber > 0 = true;
4	invertNumber = $0*10 + 0 = 0$;
5	currentNumber = 100000;
6	currentNumber > 0 = true;
7	invertNumber = $0*10 + 0 = 0$;
8	currentNumber = 10000;
9	currentNumber > 0 = true;
10	invertNumber = $0*10 + 0 = 0$;
11	currentNumber = 1000;
12	currentNumber > 0 = true;
13	invertNumber = $0*10 + 0 = 0$;
14	currentNumber = 100;
15	currentNumber > 0 = true;
16	invertNumber = $0*10 + 0 = 0$;
17	currentNumber = 10;
18	currentNumber > 0 = true;
19	invertNumber = $0*10 + 0 = 0$;
20	currentNumber = 10;
21	currentNumber > 0 = true;
22	invertNumber = $0*10 + 0 = 0$;
23	currentNumber = 1;
24	currentNumber > 0 = true;
25	invertNumber = $0*10 + 1 = 1$;
26	currentNumber = 0;
27	currentNumber > 0 = false;
28	currentNumber = i = 1000000;
29	currentNumber == invertNumber = false;
30	i = 1000001;
31	invertNumber = 0; currentNumber = i = 1000001;
32	currentNumber > 0 = true;
33	invertNumber = 0*10 + 1 = 1;
34	currentNumber = 100000;
35	currentNumber > 0 = true;
36	invertNumber = $0*10 + 1 = 1$;
37	currentNumber = 100000;

38	currentNumber > 0 = true;
39	invertNumber = $1*10 + 0 = 10$;
40	currentNumber = 10000;
41	currentNumber > 0 = true;
42	invertNumber = $10*10 + 0 = 100$;
43	currentNumber = 1000;
44	currentNumber > 0 = true;
45	invertNumber = $100*10 + 0 = 1000$;
46	currentNumber = 100;
47	currentNumber > 0 = true;
48	invertNumber = $1000*10 + 0 = 10000$;
49	currentNumber = 10;
50	currentNumber > 0 = true;
51	invertNumber = $10000*10 + 0 = 100000$;
52	currentNumber = 1;
53	currentNumber > 0 = true;
54	invertNumber = $100000*10 + 1 = 1000001$;
55	currentNumber = 0;
56	currentNumber > 0 = false;
57	currentNumber = i = 1000001;
58	currentNumber == invertNumber (1000001 == 1000001) = true;
59	виведення 1000001
60	i = 1000002;
61	•••
•••	
•••	
•••	виведення 99999999
	Кінець

Висновки:

На цій практичній ми дослідили специфікації складних алгоритмів з використанням різних видів циклів та розгалужень одночасно в одній програмі. В майбутньому це дозволилить нам реалізовувати більш складні математичні задачі за допомогою різних мов програмування.