UNIVERSITY OF LONDON

[II(3)E 2002]

B.ENG. AND M.ENG. EXAMINATIONS 2002

For Internal Students of the Imperial College of Science, Technology and Medicine

This paper is also taken for the relevant examination for the Associateship.

PART II : MATHEMATICS 3 (ELECTRICAL ENGINEERING)

Wednesday 29th May 2002 2.00 - 5.00 pm

Answer EIGHT questions.

Answers to Section A questions must be written in a different answer book from answers to Section B questions.

[Before starting, please make sure that the paper is complete; there should be 7 pages, with a total of 12 questions. Ask the invigilator for a replacement if your copy is faulty.]

Copyright of the University of London 2002

SECTION A [II(3)E 2002]

1. Show that the function

$$u(x, y) = \sin x \cosh y + 2\cos x \sinh y$$

satisfies Laplace's equation.

By integrating the Cauchy-Riemann equations directly, find the conjugate function v(x,y) and hence show that w=u+iv can be expressed as

$$w = (1 - 2i)\sin z + ic$$

where z = x + iy and c is an arbitrary real constant.

2. (i) Consider a complex function f(z) which can be written in the form

$$f(z) = \frac{1}{g(z)},$$

where g(z) has a simple zero at z = a.

Show that the residue of f(z) at z = a is 1/g'(a).

If, instead, g(z) has a double zero at z = a, show that the residue at z = a is

$$-\frac{2}{3} \frac{g'''(a)}{[g''(a)]^2}$$
.

(ii) If

$$f(z) = \frac{1}{z^4 + 1} ,$$

show that of the four simple poles lying on the unit circle, two are located in the upper half-plane at

$$z = e^{i\pi/4}$$
 and $z = e^{3i\pi/4}$.

By considering a semi-circular contour in the upper half-plane, show that

$$\int_{-\infty}^{\infty} \frac{dx}{x^4 + 1} = \frac{\pi}{\sqrt{2}}.$$

Recall that the residue of a complex function f(z) at a pole z = a of multiplicity m is given by the expression

$$\lim_{z \to a} \frac{1}{(m-1)!} \left[\frac{d^{m-1}}{dz^{m-1}} \left\{ (z-a)^m f(z) \right\} \right].$$

PLEASE TURN OVER

3. Consider the contour integral

$$\oint_C \frac{e^{iz} \, dz}{z(z^2+1)}$$

where the contour C is a semi-circle in the upper half of the complex plane, with an additional small semi-circular deformation below the pole at z=0.

Use the Residue Theorem to show that

$$\int_0^\infty \frac{\sin x \, dx}{x(x^2+1)} \; = \; \frac{\pi(e-1)}{2e} \; .$$

4. The tent function $\Lambda(t)$, the sinc-function sinc t, and the square wave $\Pi(t)$, are defined respectively by

$$\Lambda(t) = \begin{cases} 1+t, & -1 \le t \le 0, \\ 1-t, & 0 \le t \le 1, \\ 0, & \text{otherwise,} \end{cases}$$

$$\operatorname{sinc} t = \frac{\sin(t/2)}{(t/2)},$$

and

$$\Pi(t) = \begin{cases} 1, & -1/2 \le t \le 1/2, \\ 0, & \text{otherwise.} \end{cases}$$

Show that the Fourier transform of $\Pi(t)$ is given by

$$\overline{\Pi}(\omega) = \operatorname{sinc} \omega$$

and the Fourier transform of $\Lambda(t)$ is given by

$$\overline{\Lambda}(\omega) = \operatorname{sinc}^2 \omega.$$

5. (i) The Laplace transform $\mathcal{L}\{y(t)\}$ of a function y(t) is denoted as

$$\overline{y}(s) = \mathcal{L}\{y(t)\} = \int_0^\infty y(t)e^{-st} dt.$$

Show that, for Re(s) > 0,

$$\mathcal{L}\{\dot{y}(t)\} = s\overline{y}(s) - y(0),$$

$$\mathcal{L}\{\ddot{y}(t)\} = s^2 \overline{y}(s) - sy(0) - \dot{y}(0),$$

provided y(t) and $\dot{y}(t)$ vanish sufficiently fast as $t \to \infty$.

(ii) A function y(t) satisfies the differential equation

$$\ddot{y} + 3\dot{y} + 2y = f(t),$$

subject to the initial conditions $\dot{y}(0) = 0$ and $y(0) = \alpha$, a constant. f(t) is a given function that is not specified here. Using a Laplace transform and the Laplace Convolution Theorem, obtain the solution of this differential equation in the form

$$y(t) = \alpha \left(2e^{-t} - e^{-2t}\right) + \int_0^t \left\{e^{-(t-u)} - e^{-2(t-u)}\right\} f(u) du.$$

6. If a function f(t) is periodic in time t with fixed period T such that f(t) = f(t - T) with T > 0, show that for s > 0 its Laplace transform $\overline{f}(s)$ is given by

$$\overline{f}(s) = \frac{1}{1 - \exp(-sT)} \int_0^T f(t) \exp(-st) dt.$$

If f(t) is the periodic square wave of period T

$$f(t) = \begin{cases} 1, & 0 \le t \le T/2, \\ 0, & T/2 < t \le T, \end{cases}$$

show that its Laplace transform $\overline{f}(s)$ is given by

$$\overline{f}(s) = \frac{1}{s} \left(\frac{1 - \exp(-sT/2)}{1 - \exp(-sT)} \right).$$

Explain what happens in the limit $T \to \infty$.

7. The double integral I_1 is given by

$$I_1 = \int \int_A e^{-\alpha(x^2+y^2)} dx dy ,$$

where A is the finite region enclosed by the curve $x^2 + y^2 = R^2$.

Sketch the region of integration A and, upon using the substitution $x = r \cos \theta$, $y = r \sin \theta$ (polar coordinates), show that

$$I_1 = \frac{\pi}{\alpha} (1 - e^{-\alpha R^2}).$$

Calculate $\lim_{R \to \infty} I_1$ and hence deduce the value of the integral

$$I_2 = \int_{-\infty}^{+\infty} e^{-\alpha x^2} dx.$$

Hint: relate I_2^2 to I_1 .

8. (i) Show that

$$\operatorname{div}(\operatorname{curl} \mathbf{A}) = 0, \operatorname{curl}(\nabla \phi) = \mathbf{0}$$

for a general three-dimensional vector field **A** and scalar field ϕ .

(ii) Suppose that A satisfies the relation

$$\operatorname{curl} \mathbf{A} = \lambda \mathbf{A}$$

for some scalar λ .

Prove the following results:

- (a) div A = 0;
- (b) $\nabla^2 \mathbf{A} + \lambda^2 \mathbf{A} = \mathbf{0}$;

(c)
$$\lambda = \frac{\text{curl} \mathbf{A} \cdot \text{curl}(\text{curl} \mathbf{A})}{(\text{curl} \mathbf{A}) \cdot (\text{curl} \mathbf{A})}$$
.

You may assume the vector identity: $\operatorname{curl}(\operatorname{curl} \mathbf{A}) = \nabla(\operatorname{div} \mathbf{A}) - \nabla^2 \mathbf{A}$.

9. (i) Show that

$$\int_C \left\{ (x^2 + 2xy + 3y^2)dx + (x^2 + 6xy + 2y^2)dy \right\}$$

is independent of the path C, joining the initial point to the final point.

Evaluate the integral for a path C from (0, 0) to (1, 2).

(ii) Let C be a circle in the x-y plane with centre at the origin and radius 1, described in the counter-clockwise direction. Let R be the region inside the circle.

Evaluate

$$\oint_C \{(2x-y)dx + (x-2y)dy \}$$

- (a) directly, and
- (b) using Green's Theorem.

Green's Theorem in the plane states that:

$$\oint_C (Pdx + Qdy) = \int \int_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy.$$

10. Consider a two-dimensional region R bounded by a closed piecewise smooth curve C. Using Green's Theorem in a plane (see below), choose the components of a vector field $\mathbf{v}(x,y)$ in terms of P(x,y) and Q(x,y) to prove the two-dimensional form of Stokes's Theorem

$$\int \int_{R} \mathbf{k}.(\operatorname{curl} \mathbf{v}) \, dx dy = \oint_{C} \mathbf{v}.d\mathbf{r} \tag{1}$$

where $\mathbf{r} = x\mathbf{i} + y\mathbf{j}$.

If $\mathbf{v} = y^2\mathbf{i} + x^2\mathbf{j}$, and R is the finite region bounded by the hyperbola $y = \frac{1}{4x}$, and the lines x = 1 and y = x, sketch the region R in the x - y plane and, by evaluating the line integral on the right hand side of (1), or otherwise, show that

$$\int \int_R \mathbf{k}.(\operatorname{curl} \mathbf{v}) \, dx dy = \frac{5}{48}.$$

Green's Theorem in a plane states that for a two-dimensional region R bounded by a closed, piecewise smooth curve C, then

$$\oint_C \left\{ P(x,y)dx + Q(x,y)dy \right\} = \int \int_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

PLEASE TURN OVER

SECTION B [II(3)E 2002]

11. (i) Events E_1 and E_2 are exclusive and E_2 and E_3 are independent. Draw a Venn diagram to illustrate the most general structure for these events. Suppose that $pr(E_1) = p_1$, $pr(E_2) = p_2$, $pr(E_3) = p_3$ and $pr(E_1 | E_3) = p_{13}$. Express $pr(E_2 | E_3)$, $pr(E_1 \cap E_3)$, $pr(E_3 | E_1)$ and $pr(E_1 | E_2)$ in terms of p_1 , p_2 , p_3 and p_{13} .

- (ii) The insulating material in a transformer is subject to three types of deterioration, D_1 , D_2 and D_3 . From extensive historical data, the probabilities are well estimated as $pr(D_1) = 0.1$, $pr(D_2) = 0.05$, $pr(D_3) = 0.01$, and $pr(D_1 \cup D_2) = 0.12$. It is also known that D_1 and D_3 occur independently, and that D_2 and D_3 are exclusive. Compute the probabilities of the following states of deterioration:
 - (a) D_1 and D_3 both present;
 - (b) D_1 and D_2 both present;
 - (c) D_1 , D_2 and D_3 all present;
 - (d) D_2 present, given that D_1 is present;
 - (e) D_1 present, given that D_3 is present.
- 12. (i) The discrete random variables X_1 and X_2 have joint probability function $p(x_1, x_2)$ and marginal probability functions $p_1(x_1)$ and $p_2(x_2)$, respectively. Write down an expression that defines the expected value $E(X_1)$ and prove that $E(X_1 + X_2) = E(X_1) + E(X_2)$.
 - (ii) The random variables X_1 and X_2 are independent with distributions $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$, respectively. What are the distributions of $X_1 + X_2$ and $2X_1 3X_2$?
 - (iii) The random variable X_3 has mean μ_3 and variance σ_3^2 , X_4 has mean μ_4 and variance σ_4^2 and X_3 and X_4 are correlated with correlation coefficient ρ . Calculate the mean and variance of $2X_3 3X_4$.
 - (iv) The energy requirements of two systems, which have to satisfy varying loads, are random variables with distributions well-approximated by N(1.41, 0.11) and N(1.11, 0.07). Because of other demands, which themselves vary randomly, the available supply is distributed as N(3.66, 0.18). The two system requirements and the supply are independent random variables.

What is the probability that the supply can meet the demand from the two systems?

For part (iv) you may use the following table of values of the standard normal distribution function.

\boldsymbol{x}	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9
$\Phi(x)$	0.5000	0.5398	0.5793	0.6179	0.6554	0.6915	0.7257	0.7580	0.7881	0.8159
\boldsymbol{x}	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9
$\Phi(x)$	0.8413	0.8643	0.8849	0.9032	0.9192	0.9332	0.9452	0.9554	0.9641	0.9713
\boldsymbol{x}	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9
$\Phi(x)$	0.9772	0.9821	0.9861	0.9893	0.9918	0.9938	0.9953	0.9965	0.9974	0.9981

END OF PAPER

DEPARTMENT MATHEMATICS

MATHEMATICAL FORMULAE

(dot) product:
$$a \cdot b = a_1b_1 + a_2b_2 + a_3b_3$$

 $a = a_1i + a_2j + a_3k = (a_1, a_2, a_3)$

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

Scalar triple product:

$$[a, b, c] = a.b.c = b.c.a = c.a \times b = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

 $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{c} \cdot \mathbf{a})\mathbf{b} - (\mathbf{b} \cdot \mathbf{a})\mathbf{c}$ Vector triple product:

2. SERIES

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 + \dots \quad (\alpha \text{ arbitrary, } |x| < 1)$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \ldots + \frac{x^{n}}{n!} + \ldots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots,$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots,$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{(n+1)} + \dots (-1 < x \le 1)$$

3. TRIGONOMETRIC IDENTITIES AND HYPERBOLIC FUNCTIONS

 $\sin(a+b) = \sin a \cos b + \cos a \sin b$;

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$.

 $\cos iz = \cosh z$; $\cosh iz = \cos z$; $\sin iz = i \sinh z$; $\sinh iz = i \sin z$.

4. DIFFERENTIAL CALCULUS

(a) Leibniz's formula:

$$D^{n}(fg) = f D^{n}g + \binom{n}{1} Df D^{n-1}g + \ldots + \binom{n}{r} D^{r}f D^{n-r}g + \ldots + D^{n}f g.$$

(b) Taylor's expansion of f(x) about x = a:

$$f(a+h)=f(a)+hf'(a)+h^2f''(a)/2!+\ldots+h^nf^{(n)}(a)/n!+\epsilon_n(h),$$

Datu

(c) Taylor's expansion of f(x, y) about (a, b):

where $c_n(h) = h^{n+1} f^{(n+1)}(a+\theta h)/(n+1)!$, $0 < \theta < 1$.

$$f(a+h, b+k) = f(a, b) + [hf_x + kf_y]_{a,b} + 1/2! \left[h^2 f_{xx} + 2hkf_{xy} + k^2 f_{yy} \right]_{a,b} + \dots$$

sheet

(d) Partial differentiation of f(x, y):

i. If
$$y = y(x)$$
, then $f = F(x)$, and $\frac{dF}{dx} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{dy}{dx}$

ii. If
$$x = x(t)$$
, $y = y(t)$, then $f = F(t)$, and $\frac{dF}{dt} = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt}$.

iii. If
$$x = x(u, v)$$
, $y = y(u, v)$, then $f = F(u, v)$, and

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u}, \quad \frac{\partial F}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}$$

(e) Stationary points of f(x, y) occur where $f_x = 0$, $f_y = 0$ simultaneously. Let (a,b) be a stationary point: examine $D=\{f_{xx}f_{yy}-(f_{xy})^2\}_{a.b.}$

If D>0 and $f_{xx}(a,b)<0$, then (a,b) is a maximum;

If D > 0 and $f_{xx}(a, b) > 0$, then (a, b) is a minimum; If D < 0 then (a, b) is a saddle-point.

(f) Differential equations:

i. The first order linear equation dy/dx + P(x)y = Q(x) has an integrating factor $I(x) = \exp[\int P(x)(dx)]$, so that $\frac{d}{dx}(Iy) = IQ$.

ii. P(x, y)dx + Q(x, y)dy = 0 is exact if $\partial Q/\partial x = \partial P/\partial y$.

MATHEMA
MATHE
MATHE

S
1. VECTOR ALGEBRA

5. INTEGRAL CALCULUS

- (a) An important substitution: $\tan(\theta/2)=t$: $\sin\theta=2t/(1+t^2)\,,\;\cos\theta=(1-t^2)/(1+t^2)\,,\;d\theta=2\,dt/(1+t^2)\,.$
 - (b) Some indefinite integrals:

$$\int (a^2 - x^2)^{-1/2} dx = \sin^{-1} \left(\frac{x}{a}\right), \quad |x| < a.$$

$$\int (a^2 + x^2)^{-1/2} dx = \sinh^{-1} \left(\frac{x}{a} \right) = \ln \left\{ \frac{x}{a} + \left(1 + \frac{x^2}{a^2} \right)^{1/2} \right\}.$$

$$\int (x^2 - a^2)^{-1/2} dx = \cosh^{-1} \left(\frac{x}{a} \right) = \ln \left| \frac{x}{a} + \left(\frac{x^2}{a^2} - 1 \right)^{1/2} \right|.$$

$$\int (a^2 + x^2)^{-1} dx = \left(\frac{1}{a}\right) \tan^{-1} \left(\frac{x}{a}\right).$$

6. NUMERICAL METHODS

(a) Approximate solution of an algebraic equation:

If a root of f(x)=0 occurs near x=a, take $x_0=a$ and $x_{n+1}=x_n-[f(x_n)/f'(x_n)], \ n=0,1,2\dots$

(Newton Raphson method).

- (b) Formulae for numerical integration: Write $x_n = x_0 + nh$, $y_n = y(x_n)$.
- i. Trapezium rule (1-strip): $\int_{z_0}^{z_1} y(x) dx \approx (h/2) \left[y_0 + y_1 \right]$.
- ii. Simpson's rule (2-strip): $\int_{T_0}^{x_2} y(x) dx \approx (h/3) \left[y_0 + 4y_1 + y_2 \right]$.
- (c) Richardson's extrapolation method: Let $I=\int_a^b f(x)dx$ and let I_1 , I_2 be two estimates of I obtained by using Simpson's rule with intervals h and h/2.

$$1+(I_2-I_1)/15$$
.

Then, provided h is small enough,

is a better estimate of I.

7. LAPLACE TRANSFORMS

e^{-sT}/s , $(s, T > 0)$	$s/(s^2 + \omega^2), (s > 0)$ $H(t - T) = \begin{cases} 0, & t < T \\ 1, & t > T \end{cases}$	$s/(s^2+\omega^2), \ (s>0)$	coswt
$\omega/(s^2+\omega^2), \ (s>0)$	sin <i>u</i> t	1/(s-a), (s>a)	e e f
$n!/s^{n+1}$, $(s>0)$	$t^n(n=1,2\ldots)$	1/s	
		F(s)G(s)	$\int_0^t f(u)g(t-u)du$
F(s)/s	J ² ₀ f(t)4t	$(\partial/\partial\alpha)F(s,\alpha)$	$(\theta/\partial\alpha)f(t,\alpha)$
-dF(s)/ds	tf(t)	F(s-a)	eut f(t)
$s^2F(s) - sf(0) - f'(0)$	d^2f/dt^2	sF(s) - f(0)	1p/fp
aF(s) + bG(s)	af(t) + bg(t)	$F(s) = \int_0^\infty e^{-st} f(t) dt$	f(t)
Transform	Function	Transform	Function

8. FOURIER SERIES

If f(x) is periodic of period 2L, then f(x+2L)=f(x), and

$$f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{L} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{L}, \text{ where}$$

$$a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$
, $n = 0, 1, 2, ..., and$

$$b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx, \quad n = 1, 2, 3, \dots$$

Parseval's theorem

$$\frac{1}{L} \int_{-L}^{L} \{J(x)\}^2 dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} \left(a_n^2 + b_n^2\right).$$

September 2000

	SILUTIMY - PARTZ - MATHI 3 - 2002	
	MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION / SOLUTION	PAPER
	SESSION: 2001-2002	3
	Please write on this side only, legibly and neatly, between the margins	QUESTION
-	Flease write oil this add only, reguly and reasy, between the many	SOLUTION
	U = Sin's coshy + 2 cos x sinhy	15
	Ux = conx cooky - 1 sinh sinhy, Uy = sinh sinhy + 2 con x cosky	
	Unx= - in x cosky - 2 conx sinly; uyy = sin x cosky +2 cosksinhy	5
	$= \frac{u_{nn} + u_{yy} = 0}{u_{nn} + u_{yy}}$	
	Hence I a conjugate fraction v such that (CRegratha)	
	$V_y = U_x = \cos x \cos hy - 2hin h h h h h h h h h h h h h h h h h h $	
	$V_{x} = -uy = -\sin x \sin y - 2\cos x \cos x$	
	ntegrate: 1) -> V = cooks inhy - 2 sinn cooky + A(x)	
	$V = \cos x + \sin y - 2 \sin x \cos y + B(y)$	
	A = 0 = cont = c	5
	V = cosninky - 2 sinh early + c	
	- W= u+iV = sinx coshy + 2 coxxinhy + i (coxxinhy-2 sinx coshy)	
	= (1-2i) sintemply + (2+i) continue to	2
	= (1-2i) { sinx worky + i con xtinky} + e,	
	Now $cis(iy) = \frac{1}{2} \left(e^{i(iy)} + e^{-i(iy)} \right) = \frac{1}{2} \left(e^{y} + e^{-y} \right) = coshy$	2
	$\sin(iy) = \frac{1}{2i} \left(e^{i(iy)} - e^{-i(iy)} \right) = \frac{1}{2i} (e^{-y} - e^{y}) = i \sin hy$	
	$= (1-2i) \{ \sin x \cos(iy) + \cos x \sin(iy) \} + c_1$	
	= (1-2i) sin (xtiy) + 1	1,
	= (1-2i) sin2 + e,	
- 1		1

Setter: J.D. GIBBON Checker: NEOBENT

. .)

Setter's signature: J.D. Gillion
Checker's signature: Art doubet

EXAMINATION QUESTION / SOLUTION

SESSION: 2001-2002

Please write on this side only, legibly and neatly, between the margins

SOLUTION 16

3

4

$$f = \frac{1}{g(2)}$$
; Expand $g(2)$ as a Toylor slines about $z = a$
 $g(2) = g(a) + (z-a)g'(a) + z(z-a)^2g''(a) + f(z-a)^3g''(a)...$

i) If g has a simple zero at z=a them g(a) =0 but

ii) if g has a double zero at 2 = a then g'(a) = 0 also.

$$f(z) = [(z-a)g'(a) +]^{-1}$$
so Res of $f(z)$ at $z=a$ is $\frac{1}{g'(a)}$

ii) Acs. of f(z) at z=awith a dorse pole is $\lim_{z\to a} \frac{d}{dz} \left\{ \frac{(z-a)^2}{\frac{1}{2}(z-a)^2} \frac{1}{9} \frac{(a)}{(a)} + \frac{(z-a)^3}{6} \frac{1}{9} \frac{1}{9} \frac{(a)}{(a)} + \frac{(z-a)^3}{6} \frac{1}{9} \frac{1$ = lim == [= g"(u) + = (2-a)g"(a) + ...] -1

 $= -\frac{1}{6}g'''(a)\left(\frac{1}{2}g''(a)\right)^{-2} = -\frac{2}{3}\cdot\frac{g'''(a)}{(a''(a))^{2}}$

$$\int_{Z^{4}H}^{d2} = \lim_{R \to \infty} \left(\int_{-R}^{R} \frac{dx}{x^{4}+1} + \int_{H_{R}}^{d2} \frac{dx}{x^{4}+1} \right)$$

$$= \lim_{R \to \infty} \left(\int_{-R}^{R} \frac{dx}{x^{4}+1} + \int_{H_{R}}^{d2} \frac{dx}{x^{4}+1} \right)$$

$$= \lim_{R \to \infty} \int_{-R}^{H_{R}} \frac{dx}{x^{4}+1} = 0$$

$$= \lim_{R \to \infty} \int_{-R}^{R} \frac{dx}{x^{4}+1} = 0$$

From formula above:

Res. at e 3xi/4 is 4 e 3xi/4

Ales. at e 3xi/4 is 1/4 e 9xi/4 because degree of de.

Now {e -3 = 1/4} = {-e = 1/4} = -= = -2i sin = /4 = -2i/52 $\int_{-\infty}^{\infty} \frac{dx}{x^{n+1}} = \frac{2\pi}{2\sqrt{x}} = \frac{\pi}{\sqrt{x}}$

Setter: J. D. GIBBON

Checker: LEDBERG

Checker's signature: 200 Apo book

Setter's signature: T.D. & How

4

poles

4

EXAMINATION QUESTION / SOLUTION

SESSION: 2001-2002 E 3

QUESTION

SOLUTION

17

3

PAPER

Please write on this side only, legibly and neatly, between the margins

6	e iz	_dz
J_{c}	7 (22+1)

Within C there are

-R -- R

huo himple poles:
$$z=0$$
 and $z=i$

i) Res. at $z=0$ is 1

ii) Res. at $z=i$ is $\frac{e^{-1}}{i \times 2i} = -\frac{1}{2}e^{-1}$ Sum is $1-\frac{1}{2}e^{-1}$

$$\oint_{C} = \int_{-R}^{-r} + \int_{Y} + \int_{R}^{R} + \int_{H_{R}}$$
 Take $R \Rightarrow \infty$

a) By Jordan's Lemma
$$\int_{H_R} \rightarrow 0$$
 as $R \rightarrow 0$ become, for integrals of the type $\int_{H_R} e^{iaz}f(z)dz$ i) $a=1>0$
b) Small Semi-eircle is $Z=re^{i\theta}$, $x\leq 0\leq 2\pi$
as $Z\rightarrow \infty$ with the degree of denominator >).

b) I well semi-eircle is
$$Z = f e^{i\theta}$$
, $K \le 0 \le 2\pi$

as $Z \to \infty$ with the degree of denominator >1.

i him $\int \frac{e^{i\frac{2}{d}} d^2}{Z(2^2+1)} = \lim_{t\to 0} \int_{K}^{2\pi} \frac{\exp(ire^{i\theta})ie^{i\theta}d\theta}{e^{i\theta}(f^2e^{2i\theta}f)} = \lim_{t\to 0} \int_{K}^{2\pi} \frac{\exp(ire^{i\theta})ie^{i\theta}d\theta}{e^{i\theta}(f^2e^{2i\theta}f)} = \lim_{t\to 0} \int_{K}^{2\pi} \frac{\exp(ire^{i\theta}f)ie^{i\theta}d\theta}{e^{i\theta}(f^2e^{2i\theta}f)} = \lim_{t\to 0} \int_{K}^{2\pi} \frac{\exp(ire^{i\theta}f)ie^{i\theta}d\theta}{e^{i\theta}(f^2e^{2i\theta}f)} = \lim_{t\to 0} \frac{2\pi}{f^2e^{2i\theta}f} = \lim_{t\to 0} \frac{2$

ii)
$$f(z) = \frac{1}{2(z^2+1)} \rightarrow 0$$

as $z \rightarrow \infty$ with the degree of denominator >1

iii) $f(z)$ has only potes in upper half-plane

c)
$$\lim_{R \to \infty} \left(\int_{-R}^{-x} + \int_{x}^{R} \right) \frac{e^{ix} dx}{ix(x^{2}+1)} = \int_{-\infty}^{\infty} \frac{e^{ix} dx}{ix(x^{2}+1)}$$

$$= \int_{0}^{\infty} \frac{\left(e^{ix} \vec{k} e^{-ix}\right) dx}{ix(x^{2}+1)} = 2i \int_{0}^{\infty} \frac{e^{ix} dx}{ix(x^{2}+1)}$$

$$\int_0^\infty \frac{\operatorname{Givn} dn}{x(x^2 + 1)} = \frac{\pi}{2} \left(1 - \frac{1}{c}\right)$$

Setter: J.D. GIBBON

Checker: AENBERT

Setter's signature: J.D. Giran

Checker's signature: Dr Wbet

3

3

3

3

EXAMINATION QUESTION / SOLUTION

SESSION:

2001-2002

EL

PAPER

3

QUESTION

Please write on this side only, legibly and neatly, between the margins

SOLUTION

5

5

$$\frac{1}{1}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} T(t) dt$$

$$= \int_{-1/L}^{1/L} (1 \cdot e^{-i\omega t}) dt + 0$$

$$= -\frac{1}{i\omega} \left[e^{-i\omega/2} - e^{-i\omega/2} \right] = \frac{\sin \omega/2}{\omega/2}$$

$$= 5/N \epsilon \omega$$

$$\underline{\Lambda}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} \Lambda(t) dt$$

$$= \int_{-1}^{0} (itt) e^{-i\omega t} dt + \int_{0}^{1} (i-t) e^{-i\omega t} dt$$

Non
$$\int e^{-i\omega t} dt = \frac{i}{\omega} \left[e^{-i\omega t} \right]$$

$$\int t e^{-i\omega t} dt = \frac{i}{\omega} \int t d(e^{-i\omega t}) = \frac{i}{\omega} \left[t e^{-i\omega t} \right] - \frac{i}{\omega} \int e^{-i\omega t} dt$$

$$= \frac{i}{\omega} \left[t e^{-i\omega t} \right] + \frac{i}{\omega} \left[e^{-i\omega t} \right]$$

$$\frac{1}{2} \cdot \tilde{\Lambda}(\omega) = \frac{1}{2} \left[e^{-i\omega} - e^{i\omega} \right] + \frac{1}{2} \left[0 + e^{i\omega} \right] + \frac{1}{2} \left[1 - e^{i\omega} \right] \\
- \frac{1}{2} \left[e^{-i\omega} - 0 \right] - \frac{1}{2} \left[e^{-i\omega} - 1 \right] \\
= \frac{1}{2} \left[2 - e^{i\omega} - e^{-i\omega} \right] = \frac{2}{2} \left[1 - \cos \omega \right]$$

$$2. \quad \overline{\Lambda}(\omega) = 4 \frac{\sin^2 \frac{1}{2}\omega}{\omega^2} = \sin^2 \omega$$

Setter: J. D. GIBBON

Checker: NEWENT

Setter's signature: J.D. Lo. No.

Checker's signature: Ir wort

EXAMINATION QUESTION / SOLUTION

SESSION: 2001-2002

E5

_

PAPER

QUESTION

Please write on this side only, legibly and neatly, between the margins

2(y)= 50 e-0+ gd+ = 10 e-1+ dy						
= [ye-1+] + 5 50 y e-1+dr	\$>0					
$= s \overline{y}(s) - y(0)$						

SOLUTION 19

 $\mathcal{J}(\ddot{y}) = \int_{0}^{\infty} e^{-tt} \ddot{y} dt = \int_{0}^{\infty} e^{-tt} d(\dot{y})$ $= \left[\dot{y} e^{-tt} \right]_{0}^{\infty} + i \int_{0}^{\infty} e^{-tt} \dot{y} dt$ $= -\dot{y}(0) + i \left(i \cdot \ddot{y}(i) - y(0) \right)$ 1>0

2

 $= s^2 \overline{y}(s) - \dot{y}(o) - r y(o)$

3

(ii) Now apply above formulae to ij + 2 ij + 1 y = f(t)

-. 52 g(s) - y(s) -1y(s) + 35 g(s) -3y(s) + 2g(s) = f(s)

 $(5^{2} + 35 + 2) \overline{g}(s) = (5+6) y(0) + \overline{f}(1)$

 $f(s) = \frac{(s+3)y(s)}{(s+1)(s+2)} + \frac{\bar{f}(s)}{(s+1)(s+2)} = \left(\frac{2}{s+1} - \frac{1}{s+2}\right) + \frac{\bar{f}(s)}{s+1} - \frac{\bar{f}(s)}{s+2}$

Invert:

 $y(t) = (2e^{-t} - e^{-2t})y(0) + 2^{-1}\left(\frac{\bar{f}(s)}{(s+1)}\right) - 2^{-1}\left(\frac{\bar{f}(s)}{s+2}\right)$

Convolution Thm: $Z(f * g) = \overline{f}(1)\overline{g}(s)$ (Formula sheet)

 5

Setter: J. D. GIBBON

Setter's signature: J.D. Line

Checker's signature: and destroy

Checker: WENREM

EXAMINATION QUESTION / SOLUTION

2001-2002 **SESSION:**

E 6

PAPER

Please write on this side only, legibly and neatly, between the margins

J. f(H) e-1+ dt = J. f(He-1+d+ + J_f(H) e-s+d+ +

SOLUTION 20

Consider
$$\int_{T}^{2T} f(t) e^{-tt} dt$$

and define T = t - T, 10

$$\int_{T}^{2T} f[\tau] e^{-\delta \tau} d\tau = \int_{0}^{T} e^{-S(T+T)} f(T+T) d\tau$$

$$= e^{-ST} \int_{0}^{T} e^{-ST} f(\tau) d\tau$$

``;}

: clusty
$$\int_{nT}^{(nH)T} = e^{-dnT} \int_{0}^{T} e^{-dt} f(t) dt$$

$$\int_{0}^{T} f(t) e^{-st} dt = \int_{0}^{T/2} 1. e^{-st} dt + 0 = -\frac{1}{5} \left[e^{-(t)} \right]_{0}^{T/2}$$

$$= \frac{1}{5} \left(1 - e^{-(T/2)} \right)$$

$$f(s) = f\left(\frac{1-e^{-1T/2}}{1-e^{-1T}}\right)$$

When T>0 (5>0), f(1) = {. This is the L.T. of

Setter: J.D. GIBBON

Setter's signature: V.D. Rina Checker's signature: A Colobert

Checker: NECLBEM

10

3

2

EXAMINATION QUESTION / SOLUTION

2001-2002 **SESSION:**

E7

PAPER

Please write on this side only, legibly and neatly, between the margins

QUESTION 21 SOLUTION

21

Jacobian: $\frac{\partial x}{\partial r} \frac{\partial y}{\partial \theta} - \frac{\partial x}{\partial \theta} \frac{\partial y}{\partial r} = \Gamma(\cos^2\theta + \sin^2\theta) = \Gamma.$

 $x^2+y^2=R^2$ - circle of radius R

the area of integration

Region $X^2+y^2 < R^2 \implies 0 < \theta < 2\pi, 0 < r < R$ also x2+y2=r2. Therefore I = Srdr S e - dr 2 do

To calculate I, substitute r=u:

 $I_1 = \pi \int du e^{-\alpha u} = \frac{\pi}{\alpha} e^{-\alpha u} \Big|_{\Omega}^{R^2} = \frac{\pi}{\alpha} (1 - e^{-\alpha R^2})$

Therefore the limit I, (00) = lim I,

Observe that $I_2^2 = \left[\int dx e^{-dx^2} \right]^2 = \int dx \int dy e^{-d(x^2 + y^2)}$

Hence $I_2 = \sqrt{\frac{\pi}{\alpha}}$

A. Gogolic Checker's signature: Enelyew Walton

Setter: Gogolin

Checker: WALTON

MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION/SOLUTION

200/ - 2002_ **SESSION:**

F 8

QUESTION

PAPER

Please write on this side only, legibly and neatly, between the margins

SOLUTION 23

4 MARKS

(a)(i)

 $= \hat{c}(A_{3y} - A_{2z}) - \hat{j}(A_{3x} - A_{1z}) + \hat{k}(A_{2x} - A_{1y})$ $= \frac{\partial (A_{3y} - A_{2z})^{7}}{\partial x}$ $= 0, \text{ as required} \cdot (a)(ii) | (a)(i$ So div (arl A) = 2 (A3y-A2Z) + 2 (A1Z-A3x) + 2 (A2x-A1y)

(a) (ii) 3 MARKS

(b)(i)

2 MARKS

(ii)

(b) Cul $A = \lambda A$ (*)

(a) (i) Let $A = A_1 \hat{i} + A_2 \hat{j} + A_3 \hat{k}$

Then $Curl A = \int_{x}^{x} \int_{y}^{x} h$

(i) Taking div of both sides: $\operatorname{div}(\operatorname{Curl} A) = \lambda \operatorname{div} A$

=0 by (a) \Rightarrow div A=0

 $= \hat{\iota}(\varphi_{zy} - \varphi_{yz})$ $-\hat{J}(\varphi_{zx}-\varphi_{xz}) + \hat{k}(\varphi_{yx}-\varphi_{xy})$ = Q, as required.

(ii) Take Curl of both sides:

 $Curl(Curl A) = \lambda Curl A$

V(divA)-V2A (given in question)

But div A = 0 of $\nabla^2 A = -\lambda \text{ Cw}(A = -\lambda^2 A)$ (using (*)) Hence $\nabla^2 A + \lambda^2 A = 0$

3 MARKS

(iii)

3 MARKS.

Using (ii) we have Cwl (Cwl A) = > Cwl A So RHS of (iii) becomes $(Cwe A).(\lambda Cwe A) = \lambda$, as required. (Curl A). (Curl A)

A. WALTON Checker: A GOGOLIN

Setter's signature: Crabeur Walton

Checker's signature: A Gogolin

MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION / SOLUTION

2001-2002 SESSION:

3 QUESTION

PAPER

Please write on this side only, legibly and neatly, between the margins

SOLUTION 24

(1) We know that Sifdx + gdy) is independent of the path joining the initial point to the final point if $\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$. Here, $f = (x^2 + 2xy + 3y^2)$, $g = (x^2 + 6xy + 2y^2)$,

so $\frac{\partial f}{\partial y} = 2x + 6y = \frac{\partial g}{\partial x}$, as required. Let the path be y= 2x, Then

 $\int_C = \int_0^1 \left\{ (x^2 + 4x^2 + 12x^4) dx + (x^2 + 12x^2 + 8x^2) \cdot 2 dx \right\}$ = 1 59 x2dx $=\frac{1}{7}.59$

4

4

(ii) (a) Put x=wo, y=xin0

Then dx = - modo dy = wodo,

and the integral = $\int_{1}^{2\pi} -(2\cos\theta - \sin\theta)\sin\theta + (\cos\theta - 2\sin\theta)\cos\theta d\theta$ = \int (cos20+ sin20) - 4 sin 0 con 0] d0 $= \int_{0}^{2\pi} (1-2\sin 2\theta) d\theta$ $= [0 + cn20]^{2\pi}$

4

3

(b) Apply green's Theorem with

We ger

.'. The integral = $\iint 2 dxdy = 2A$ where $A = area of the arche = <math>2\pi$.

Setter:

G.D. JAMOS

Setter's signature: 4 Gares

Checker: A.J. MESTEL

Checker's signature: 5.497

EXAMINATION QUESTION / SOLUTION

SESSION: 2001-2002 E 10

PAPER

QUESTION

Please write on this side only, legibly and neatly, between the margins

i) Chore v= iP+fO; dr = idx+jdy => v.dr= Pdx+ Udy A. culy = 1 - 12 by 2= = On-Py. Hence repult

SOLUTION ४०

5

ii) fe = fe, + fez + fe, I G'dx+ x'dy) $=\frac{1}{4}\int_{-1}^{1}\left(\frac{1}{4\pi}z-1\right)dx$ = -4[4++1], - 七 { 七+1 - 七- 七} = 一店

C2: x=1, y: 2>1

Jc2 (y dn +x dy) = 1 dy < 3/4

2

2

2

2

2

Total: f. (y2dx+x2dy) = - 16+ = - = 16-7 = 七(七-子) = 54,

 $\int_{C_3} (y^2 dx + x^2 dy) = 2 \int_{x^2}^{x^2} dx = \frac{7}{3} \left[x^3 \right]_{x}^{x^2} = -\frac{7}{3} \cdot \frac{3}{3} = -\frac{7}{12}$

[I have cleaved the answer by doing the area integral

over R how different ways: LHS = $2\iint (x-y) dx dy = 2 \int_{y_{\perp}}^{x} \left(\int_{Au}^{x} (x-y) dy \right) dx = 2 \int_{y_{\perp}}^{y_{\perp}} \left(\int_{Au}^{x} (x-y) dy \right) dx = 2 \int_{y_{\perp}}^{y_{\perp}} \left(\int_{Au}^{x} (x-y) dy \right) dx$ $= \int_{1}^{1} \left(x^{2} - \frac{1}{2} + \frac{1}{16x^{2}} \right) dx = \left[\frac{x^{3}}{3} - \frac{x}{2} - \frac{x^{-1}}{11} \right]_{1/2}^{1} = \sqrt{16x^{2}}$

Setter : J. B. CIBBON

Checker: A. WALTON

Setter's signature: J.D. Gilver

Checker's signature: Crebew Walton

MATHEMATICS FOR ENGINEERING STUDENTS EXAMINATION QUESTION / SOLUTION

SESSION: 2001-2002

EII

PAPER EE2 (3

QUESTION

solution 33

Please write on this side only, legibly and neatly, between the margins

(i) Venn diagram - as seen $\operatorname{pr}(E_2 \mid E_3) = p_2$ $\operatorname{pr}(E_1 \cap E_3) = p_{13}p_3$ $\operatorname{pr}(E_3 \mid E_1) = p_{13}p_3/p_1$ $\operatorname{pr}(E_1 \mid E_2) = 0$

- (ii) (a) prob= $pr(D_1) \times pr(D_3) = 0.001$;
 - (b) prob= $pr(D1 \cap D2) = pr(D_1) + pr(D_2) pr(D1 \cup D2)$ = 0.1 + 0.05 - 0.12 = 0.03;
 - (c) $pr(D_1 \cap D_2 \cap D_3) = 0$ since D_2 and D_3 exclusive;
 - (d) $pr(D_2 \mid D_1) = pr(D_2 \cap D_1)/pr(D_1) = 0.03/0.1 = 0.30;$
 - (e) $pr(D_1 \mid D_3) = pr(D_1) = 0.1$, since independent

2

}

İ

l

1

-

2

2

2

2

(15

Setter: MJ CROWDER

Checker: AT WALDEN

Setter's signature:

MT Crowder

Checker's signature:

ANULL

EXAMINATION QUESTION / SOLUTION

SESSION: 2001-2002

E 12

PAPER EE2(3)

QUESTION

2.

Please write on this side only, legibly and neatly, between the margins

OLUTION 34

(i) Expression:
$$E(X_1) = \sum_{x_1} x_1 p_1(x_1)$$

(iv) $prob = pr(Supply \ge Dem1 + Dem2)$,

Proof:
$$E(X_1 + X_2) = \sum_{x_1, x_2} (x_1 + x_2) p(x_1, x_2)$$

$$= \sum_{x_1, x_2} x_1 p(x_1, x_2) + \sum_{x_1, x_2} x_2 p(x_1, x_2)$$

$$= \sum_{x_1} x_1 p_1(x_1) + \sum_{x_2} x_2 p_2(x_2) = E(X_1) + E(X_2)$$

(ii)
$$N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

$$N(2\mu_1 - 3\mu_2, 4\sigma_1^2 + 9\sigma_2^2)$$

(iii) mean=
$$2\mu_3 - 3\mu_4$$

variance= $4\sigma_3^2 - 12\rho\sigma_3\sigma_4 + 9\sigma_4^2$

so prob =
$$1 - \Phi(1.14/0.6) = 1 - \Phi(1.9) = 0.0287$$

15

3

Setter: MT CROWDER

Checker: AT WALLEN

(13.₁₀)

Setter's signature: MJ Crowder

Checker's signature: ANULL