

### ICPC Template Manual



作者: 贺梦杰

August 20, 2019

## Contents

| 1 | <b>基础</b><br>1.1 测试                                                                                                                                 |                                                                                                                          | 4                                                    |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 2 | 搜索                                                                                                                                                  |                                                                                                                          | 5                                                    |
| 3 | 动态规划                                                                                                                                                |                                                                                                                          | 6                                                    |
| 4 | 4.1.1 反<br>4.1.2 反<br>4.1.3 反<br>4.1.4 反<br>4.2 后缀自动<br>4.3 KMP                                                                                     | ☑用: 一类同构判定的问题                                                                                                            | 7<br>8<br>8<br>9<br>10<br>11<br>12<br>12             |
| 5 | 数据结构                                                                                                                                                | 1                                                                                                                        | 13                                                   |
| 6 | 6.1.1 自<br>6<br>6<br>6.1.2 信<br>6<br>6.2 最小生成<br>6.2.1 K<br>6.2.2 P<br>6.3 树的直径<br>6.3.1 标<br>6.3.2 体<br>6.4 最近公共<br>6.4.1 标<br>6.4.2 T<br>6.5 树上差分 | 型源最短路径                                                                                                                   | 15 $15$ $16$ $16$ $17$ $17$ $21$ $21$ $21$ $22$ $22$ |
|   | 6.7 基环树 · 6.8 负环与差 6.8.1 负 6.8.2 差 6.9.1 ラ 6 6.9.2 ラ 6                                                                                              | 会分约束<br>近环<br>造分约束系统<br>章法与无向图连通性<br>に向图的割点与桥<br>の9.1.1 割边判定法则<br>の9.1.2 割点判定法则<br>に向图的双连通分量<br>の9.2.1 边双连通分量 e-DCC 与其缩点 | 23<br>26<br>27<br>27<br>28<br>28<br>28<br>28<br>28   |
|   | 6.9.3 ፟፟፟፟፟፟፟፟                                                                                                                                      | 大拉路问题                                                                                                                    | $\frac{29}{30}$                                      |

CONTENTS

| 6.10.1 | 强连通分                                                                                                        | 量 (SCC)                                                                                                                                                                                                                                   | )判定                                              | 法则                | ]                 |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 31                                                                                                                                                                                                                                                                                                              |
|--------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.10.2 | $SCC \rightarrow I$                                                                                         | OAG                                                                                                                                                                                                                                       |                                                  |                   |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 31                                                                                                                                                                                                                                                                                                              |
| 6.10.3 | 有向图的                                                                                                        | 必经点与                                                                                                                                                                                                                                      | 必经边                                              | <u>.</u>          |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 31                                                                                                                                                                                                                                                                                                              |
| 6.10.4 | 2-SAT 问                                                                                                     | 题                                                                                                                                                                                                                                         |                                                  |                   |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 32                                                                                                                                                                                                                                                                                                              |
| 二分图    | 的匹配 .                                                                                                       |                                                                                                                                                                                                                                           |                                                  |                   |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 33                                                                                                                                                                                                                                                                                                              |
| 6.11.1 | 二分图判定                                                                                                       | 定                                                                                                                                                                                                                                         |                                                  |                   |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 33                                                                                                                                                                                                                                                                                                              |
| 6.11.2 | 二分图最                                                                                                        | 大匹配                                                                                                                                                                                                                                       |                                                  |                   |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 33                                                                                                                                                                                                                                                                                                              |
| 6.11.3 | 二分图带                                                                                                        | 权匹配                                                                                                                                                                                                                                       |                                                  |                   |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 33                                                                                                                                                                                                                                                                                                              |
| 二分图    | 的覆盖与狐                                                                                                       | 虫立集                                                                                                                                                                                                                                       |                                                  |                   |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                                                                                                                                                                                                                                                                                              |
| 6.12.1 | 二分图最                                                                                                        | 小点覆盖                                                                                                                                                                                                                                      |                                                  |                   |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                                                                                                                                                                                                                                                                                              |
|        | 6.12.1.1                                                                                                    | König's tl                                                                                                                                                                                                                                | heoren                                           | n                 |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                                                                                                                                                                                                                                                                                              |
| 6.12.2 | 二分图最                                                                                                        | 大独立集                                                                                                                                                                                                                                      |                                                  |                   |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                                                                                                                                                                                                                                                                                              |
| 6.12.3 | 有向无环                                                                                                        | 图的最小                                                                                                                                                                                                                                      | 路径点                                              | 覆盖                |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                                                                                                                                                                                                                                                                                              |
| 网络流    | 初步                                                                                                          |                                                                                                                                                                                                                                           |                                                  |                   |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 36                                                                                                                                                                                                                                                                                                              |
| 6.13.1 | 最大流.                                                                                                        |                                                                                                                                                                                                                                           |                                                  |                   |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 36                                                                                                                                                                                                                                                                                                              |
|        | 6.13.1.1                                                                                                    | Edmonds                                                                                                                                                                                                                                   | Karp                                             | 增广                | `路                |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 36                                                                                                                                                                                                                                                                                                              |
|        | 6.13.1.2                                                                                                    | Dinic                                                                                                                                                                                                                                     |                                                  |                   |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 36                                                                                                                                                                                                                                                                                                              |
|        | 6.13.1.3                                                                                                    | 二分图最                                                                                                                                                                                                                                      | 大匹配                                              | 的必                | が 減               | 力与                | 可                 | 行证                | 力 .               |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 37                                                                                                                                                                                                                                                                                                              |
| 6.13.2 | 最小割.                                                                                                        |                                                                                                                                                                                                                                           |                                                  |                   |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 37                                                                                                                                                                                                                                                                                                              |
|        | 6.13.2.1                                                                                                    | 最大流最                                                                                                                                                                                                                                      | 小割定                                              | 理                 |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 37                                                                                                                                                                                                                                                                                                              |
| 6.13.3 | 费用流.                                                                                                        |                                                                                                                                                                                                                                           |                                                  |                   |                   |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 37                                                                                                                                                                                                                                                                                                              |
|        | 6.13.3.1                                                                                                    | Edmonds                                                                                                                                                                                                                                   | Karp                                             | 增广                | `路                |                   |                   |                   |                   |                                                                                                                                                                                                                                                                                                                                     |                   |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                    |                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                     | 37                                                                                                                                                                                                                                                                                                              |
|        | 6.10.2<br>6.10.3<br>6.10.4<br>二分图<br>6.11.1<br>6.11.2<br>6.11.3<br>二分图<br>6.12.1<br>6.12.3<br>网络流<br>6.13.1 | 6.10.2 SCC -> I 6.10.3 有向图的 6.10.4 2-SAT 问 二分图的匹配 6.11.1 二分图制 6.11.2 二分图最 6.11.3 二分图带 二分图的覆盖与 6.12.1 二分图最 6.12.1 二分图最 6.12.1 二分图最 6.12.1 6.13.1 最大流 6.13.1 最大流 6.13.1.1 6.13.1.2 6.13.1.3 最小割 6.13.2 最小割 6.13.2 最州割 6.13.2.1 6.13.3 费用流 . | 6.10.2 SCC -> DAG 6.10.3 有向图的必经点与6.10.4 2-SAT 问题 | 6.10.2 SCC -> DAG 6.10.3 有向图的必经点与必经边 6.10.4 2-SAT 问题 二分图的匹配 6.11.1 二分图判定 6.11.2 二分图最大匹配 6.11.3 二分图带权匹配 二分图的覆盖与独立集 6.12.1 二分图最小点覆盖 6.12.1 二分图最大点覆盖 6.12.1.1 König's theorem 6.12.2 二分图最大独立集 6.12.3 有向无环图的最小路径点覆盖 网络流初步 6.13.1 最大流 6.13.1.1 Edmonds Karp 增广路 6.13.1.2 Dinic 6.13.1.3 二分图最大匹配的必须边与可行边 6.13.2 最小割 6.13.2 最小割 6.13.3 费用流 | 6.10.2 SCC -> DAG | 6.10.2 SCC -> DAG 6.10.3 有向图的必经点与必经边 6.10.4 2-SAT 问题 二分图的匹配 6.11.1 二分图判定 6.11.2 二分图最大匹配 6.11.3 二分图带权匹配 二分图的覆盖与独立集 6.12.1 二分图最小点覆盖 6.12.1.1 König's theorem 6.12.2 二分图最大独立集 6.12.3 有向无环图的最小路径点覆盖 网络流初步 6.13.1 最大流 6.13.1.1 Edmonds Karp 增广路 6.13.1.2 Dinic 6.13.1.2 Dinic 6.13.1.3 二分图最大匹配的必须边与可行边 6.13.2 最小割 6.13.2 最小割 6.13.3 费用流 | 6.10.2 SCC -> DAG 6.10.3 有向图的必经点与必经边 6.10.4 2-SAT 问题 二分图的匹配 6.11.1 二分图判定 6.11.2 二分图最大匹配 6.11.3 二分图带权匹配 二分图的覆盖与独立集 6.12.1 二分图最小点覆盖 6.12.1 二分图最小点覆盖 6.12.1.1 König's theorem 6.12.2 二分图最大独立集 6.12.3 有向无环图的最小路径点覆盖 网络流初步 6.13.1 最大流 6.13.1.1 Edmonds Karp 增广路 6.13.1.2 Dinic 6.13.1.2 Dinic 6.13.1.3 二分图最大匹配的必须边与可行边 6.13.2 最小割 6.13.1 最大流 6.13.1.1 最大流 | 6.10.2 SCC -> DAG 6.10.3 有向图的必经点与必经边 6.10.4 2-SAT 问题 二分图的匹配 6.11.1 二分图判定 6.11.2 二分图最大匹配 6.11.3 二分图带权匹配 二分图的覆盖与独立集 6.12.1 二分图最小点覆盖 6.12.1.1 König's theorem 6.12.2 二分图最大独立集 6.12.3 有向无环图的最小路径点覆盖 网络流初步 6.13.1 最大流 6.13.1.1 Edmonds Karp 增广路 6.13.1.2 Dinic 6.13.1.2 Dinic 6.13.1.3 二分图最大匹配的必须边与可行边 6.13.2 最小割 6.13.2 最小割 6.13.3 费用流 | 6.10.2 SCC -> DAG | 6.10.2 SCC -> DAG 6.10.3 有向图的必经点与必经边 6.10.4 2-SAT 问题  二分图的匹配 6.11.1 二分图判定 6.11.2 二分图最大匹配 6.11.3 二分图带权匹配  二分图的覆盖与独立集 6.12.1 二分图最小点覆盖 6.12.1.1 König's theorem 6.12.2 二分图最大独立集 6.12.3 有向无环图的最小路径点覆盖 网络流初步 6.13.1 最大流 6.13.1.1 Edmonds Karp 增广路 6.13.1.2 Dinic 6.13.1.2 Dinic 6.13.1.3 二分图最大匹配的必须边与可行边 6.13.2 最小割 6.13.2.1 最大流最小割定理 6.13.3 费用流 | 6.10.2 SCC -> DAG 6.10.3 有向图的必经点与必经边 6.10.4 2-SAT 问题  二分图的匹配 6.11.1 二分图判定 6.11.2 二分图最大匹配 6.11.3 二分图带权匹配  二分图的覆盖与独立集 6.12.1 二分图最小点覆盖 6.12.1.1 König's theorem 6.12.2 二分图最大独立集 6.12.3 有向无环图的最小路径点覆盖 网络流初步 6.13.1 最大流 6.13.1.1 Edmonds Karp 增广路 6.13.1.2 Dinic 6.13.1.2 Dinic 6.13.1.3 二分图最大匹配的必须边与可行边 6.13.2 最小割 6.13.2.1 最大流最小割定理 6.13.3 费用流 | 6.10.2 SCC -> DAG 6.10.3 有向图的必经点与必经边 6.10.4 2-SAT 问题 二分图的匹配 6.11.1 二分图判定 6.11.2 二分图最大匹配 6.11.3 二分图带权匹配 二分图的覆盖与独立集 6.12.1 二分图最小点覆盖 6.12.1.1 König's theorem 6.12.2 二分图最大独立集 6.12.3 有向无环图的最小路径点覆盖 网络流初步 6.13.1 最大流 6.13.1.1 Edmonds Karp 增广路 6.13.1.2 Dinic 6.13.1.3 二分图最大匹配的必须边与可行边 6.13.2 最小割 6.13.2 最小割 6.13.3 费用流 | 6.10.2 SCC -> DAG 6.10.3 有向图的必经点与必经边 6.10.4 2-SAT 问题  二分图的匹配 6.11.1 二分图判定 6.11.2 二分图最大匹配 6.11.3 二分图带权匹配  二分图的覆盖与独立集 6.12.1 二分图最小点覆盖 6.12.1.1 König's theorem 6.12.2 二分图最大独立集 6.12.3 有向无环图的最小路径点覆盖 网络流初步 6.13.1 最大流 6.13.1.1 Edmonds Karp 增广路 6.13.1.2 Dinic 6.13.1.3 二分图最大匹配的必须边与可行边 6.13.2 最小割 6.13.2 最小割 6.13.3 费用流 | 6.10.2 SCC -> DAG 6.10.3 有向图的必经点与必经边 6.10.4 2-SAT 问题  二分图的匹配 6.11.1 二分图判定 6.11.2 二分图最大匹配 6.11.3 二分图带权匹配 二分图的覆盖与独立集 6.12.1 二分图最小点覆盖 6.12.1.1 König's theorem 6.12.2 二分图最大独立集 6.12.3 有向无环图的最小路径点覆盖 网络流初步 6.13.1 最大流 6.13.1.1 Edmonds Karp 增广路 6.13.1.2 Dinic 6.13.1.3 二分图最大匹配的必须边与可行边 6.13.2 最小割 6.13.2 最小割 6.13.3 费用流 | 6.10.2 SCC -> DAG | 6.10.2 SCC -> DAG . 6.10.3 有向图的必经点与必经边 . 6.10.4 2-SAT 问题 . 二分图的匹配 . 6.11.1 二分图判定 . 6.11.2 二分图最大匹配 . 6.11.3 二分图带权匹配 . 二分图的覆盖与独立集 . 6.12.1 二分图最小点覆盖 . 6.12.1.1 König's theorem . 6.12.2 二分图最大独立集 . 6.12.3 有向无环图的最小路径点覆盖 . 网络流初步 . 6.13.1 最大流 . 6.13.1.1 Edmonds Karp 增广路 . 6.13.1.2 Dinic . 6.13.1.3 二分图最大匹配的必须边与可行边 . 6.13.2 最小割 . 6.13.2.1 最大流最小割定理 . 6.13.3 费用流 . | 6.10.2 SCC -> DAG 6.10.3 有向图的必经点与必经边 6.10.4 2-SAT 问题 二分图的匹配 6.11.1 二分图判定 6.11.2 二分图最大匹配 6.11.3 二分图带权匹配 二分图的覆盖与独立集 6.12.1 二分图最小点覆盖 6.12.1.1 König's theorem 6.12.2 二分图最大独立集 6.12.3 有向无环图的最小路径点覆盖 网络流初步 6.13.1 最大流 6.13.1.1 Edmonds Karp 增广路 6.13.1.2 Dinic 6.13.1.3 二分图最大匹配的必须边与可行边 6.13.2 最小割 6.13.21 最大流最小割定理 6.13.3 费用流 | 6.10.2 SCC -> DAG 6.10.3 有向图的必经点与必经边 6.10.4 2-SAT 问题 二分图的匹配 6.11.1 二分图判定 6.11.2 二分图最大匹配 6.11.3 二分图带权匹配 二分图的覆盖与独立集 6.12.1 二分图最小点覆盖 6.12.1.1 König's theorem 6.12.2 二分图最大独立集 6.12.3 有向无环图的最小路径点覆盖 网络流初步 6.13.1 最大流 6.13.1.1 Edmonds Karp 增广路 6.13.1.2 Dinic 6.13.1.3 二分图最大匹配的必须边与可行边 6.13.2 最小割 6.13.21 最大流最小割定理 6.13.3 费用流 | 6.10.2 SCC -> DAG . 6.10.3 有向图的必经点与必经边 . 6.10.4 2-SAT 问题 . 二分图的匹配 . 6.11.1 二分图判定 . 6.11.2 二分图最大匹配 . 6.11.3 二分图带权匹配 . 二分图的覆盖与独立集 . 6.12.1 二分图最小点覆盖 . 6.12.1 二分图最大水立集 . 6.12.2 二分图最大独立集 . 6.12.3 有向无环图的最小路径点覆盖 . 网络流初步 . 6.13.1 最大流 . 6.13.1.1 Edmonds Karp 增广路 . 6.13.1.2 Dinic . 6.13.1.3 二分图最大匹配的必须边与可行边 . 6.13.2 最小割 . 6.13.2 最小割 . 6.13.2.1 最大流最小割定理 . 6.13.3 费用流 . | 6.10.2 SCC -> DAG 6.10.3 有向图的必经点与必经边 6.10.4 2-SAT 问题  二分图的匹配 6.11.1 二分图判定 6.11.2 二分图最大匹配 6.11.3 二分图带权匹配  二分图的覆盖与独立集 6.12.1 二分图最小点覆盖 6.12.1.1 König's theorem 6.12.2 二分图最大独立集 6.12.3 有向无环图的最小路径点覆盖 网络流初步 6.13.1 最大流 6.13.1.1 Edmonds Karp 增广路 6.13.1.2 Dinic 6.13.1.3 二分图最大匹配的必须边与可行边 6.13.2 最小割 6.13.2.1 最大流最小割定理 6.13.3 费用流 | 6.10.2 SCC -> DAG<br>6.10.3 有向图的必经点与必经边<br>6.10.4 2-SAT 问题<br>二分图的匹配<br>6.11.1 二分图判定<br>6.11.2 二分图最大匹配<br>6.11.3 二分图带权匹配<br>二分图的覆盖与独立集<br>6.12.1 二分图最小点覆盖<br>6.12.1.1 König's theorem<br>6.12.2 二分图最大独立集<br>6.12.3 有向无环图的最小路径点覆盖<br>网络流初步<br>6.13.1 最大流<br>6.13.1.1 Edmonds Karp 增广路<br>6.13.1.2 Dinic<br>6.13.1.2 Dinic<br>6.13.1.3 二分图最大匹配的必须边与可行边<br>6.13.2 最小割<br>6.13.1 最大流最小割定理<br>6.13.3 费用流 | 6.10.2 SCC -> DAG 6.10.3 有向图的必经点与必经边 6.10.4 2-SAT 问题 二分图的匹配 6.11.1 二分图判定 6.11.2 二分图最大匹配 6.11.3 二分图带权匹配 二分图的覆盖与独立集 6.12.1 二分图最小点覆盖 6.12.1.1 König's theorem 6.12.2 二分图最大独立集 6.12.3 有向无环图的最小路径点覆盖 网络流初步 6.13.1 最大流 6.13.1.1 Edmonds Karp 增广路 6.13.1.2 Dinic 6.13.1.3 二分图最大匹配的必须边与可行边 6.13.2 最小割 6.13.2.1 最大流最小割定理 |

# 基础

1.1. 测试 CHAPTER 1. 基础

### 1.1 测试

# 搜索

# 动态规划

## 字符串

4.1. 字符串 HASH CHAPTER 4. 字符串

### 4.1 字符串 Hash

39

40

41 }

}

```
1 #define ull unsigned long long
   #define P 131
2
3
   ull f[N], p[N];
   void Init()
4
5
6
       p[0] = 1, f[0] = 0;
7
       for (int i = 1; i <= n; i++)</pre>
8
9
           p[i] = p[i - 1] * P;
10
           f[i] = f[i - 1] * P + str[i];
11
12
   }
   ull Hash(int left, int right)
13
14
       return f[right] - f[left - 1] * p[right - left + 1];
15
16
   }
   4.1.1 应用:最长回文子串
   枚举回文子串的中心位置,求解从中心位置出发向左右两侧最长可扩展出多长的回文串,
      分奇、偶回文子串,二分长度。
   #define ull unsigned long long
1
   #define P 131
3
   const int N = 1e6 + 50;
   ull pre[N], suf[N], p[N];
   string str;
6
   int n;
7
   void Init()
8
9
       pre[0] = suf[0] = 0;
10
       for (int i = 1; i <= n; i++)
11
12
           pre[i] = pre[i - 1] * P + str[i - 1];
           suf[i] = suf[i - 1] * P + str[n - i];
13
14
15
   }
16
   ull Hash(int left, int right)
17
   {
       return pre[right] - pre[left - 1] * p[right - left + 1];
18
19
   }
20
   ull HashReverse(int left, int right)
21
   {
22
       //WA 这里注意推导
23
       return suf[n - left + 1] - suf[n - right] * p[right - left + 1];
24
   }
25
   #define ODD 1
26
   #define EVEN 2
   bool Judge(int pos, int len, int flag)
27
28
   {
29
       if (flag == ODD)
30
       {
31
           if (pos - len < 1 || pos > n || pos < 1 || pos + len > n)
32
               return false;
33
           return Hash(pos - len, pos) == HashReverse(pos, pos + len);
34
       }
35
       else
36
       {
37
           if (pos - len < 1 || pos - 1 > n || pos < 1 || pos + len - 1 > n)
38
               return false;
```

return Hash(pos - len, pos - 1) == HashReverse(pos, pos + len - 1);

4.1. 字符串 HASH CHAPTER 4. 字符串

```
42
   int Solve(int pos)
43
   {
44
        int ans = 1;
45
        //奇数
        int left = 0;
46
47
        int right = N;
48
        int mid;
49
        while (left < right)</pre>
50
51
            mid = (left + right + 1) >> 1;
52
            if (Judge(pos, mid, ODD))
53
                left = mid;
54
            else
                right = mid - 1;
55
        }
56
57
        ans = max(ans, 2 * left + 1);
58
        //偶数
        left = 0;
59
        right = N;
60
61
        while (left < right)</pre>
62
63
            mid = (left + right + 1) >> 1;
64
            if (Judge(pos, mid, EVEN))
                left = mid;
65
            else
66
                right = mid - 1;
67
68
69
        ans = max(ans, 2 * left);
70
        return ans;
71
   }
    4.1.2 应用: 后缀数组
 1 #define ull unsigned long long
 2 #define P 131
 3
   const int N = 3e5 + 50;
 4
   ull f[N], p[N];
 5
   char str[N];
   int SA[N], n, Height[N];
 6
 7
    void Init()
 8
    {
        p[0] = 1, f[0] = 0;
 9
        for (int i = 1; i <= n; i++)
10
11
            p[i] = p[i - 1] * P;
12
            f[i] = f[i - 1] * P + str[i];
13
14
15
   }
   ull Hash(int left, int right)
16
17
    {
18
        return f[right] - f[left - 1] * p[right - left + 1];
19
   }
20
   // k:[0,n) 表示后缀S(k,n-1)
21
   // 最长公共前缀
22
   int LCP(int a, int b)
23
    {
24
        int left = 0;
25
        int right = N;
26
        int mid;
27
        while (left < right)</pre>
28
29
            mid = (left + right + 1) >> 1;
            if (a + mid - 1 \le n \& b + mid - 1 \le n \& Hash(a, a + mid - 1) == Hash(b, b + mid - 1))
30
```

left = mid;

else

31 32 4.1. 字符串 HASH CHAPTER 4. 字符串

```
33
                 right = mid - 1;
34
35
        return left;
36
   }
37
   bool cmp(int a, int b)
38
    {
39
        int len = LCP(a, b);
40
        return str[a + len] < str[b + len];</pre>
41
    }
42
    void calc height()
43
    {
        Height[1] = 0;
44
        for (int i = 2; i <= n; i++)
45
            Height[i] = LCP(SA[i], SA[i - 1]);
46
47
48
   int main()
49
    {
        scanf("%s", str + 1);
50
        n = strlen(str + 1);
51
52
        for (int i = 1; i <= n; i++)
53
            SA[i] = i;
54
        Init();
55
        sort(SA + 1, SA + n + 1, cmp);
56
        calc_height();
57
   }
```

### 4.1.3 应用: 二维 Hash

给定一个 M 行 N 列的 01 矩阵 (只包含数字 0 或 1 的矩阵),再执行 Q 次询问,每次询问给出一个 A 行 B 列 的 01 矩阵,求该矩阵是否在原矩阵中出现过。

做法:选取两个不同的 P 值分别对行列进行 Hash 处理,应用二维前缀和求取矩阵 Hash 值。

```
#define P 131
1
   #define Q 13331
3
   #define ull unsigned long long
   void Init()
4
5
6
        char ch;
7
        for (int i = 1; i <= m; i++)
8
            for (int j = 1; j <= n; j++)</pre>
9
                cin >> ch, Hash[i][j] = Hash[i][j - 1] * P + ch;
10
        for (int i = 1; i <= m; i++)
11
            for (int j = 1; j <= n; j++)
12
                Hash[i][j] += Hash[i - 1][j] * Q;
13
   ull temp = Hash[i][j] - Hash[i - a][j] * q[a] - Hash[i][j - b] * p[b] + Hash[i - a][j - b] * q[a]
         * p[b];
```

### 4.1.4 应用:一类同构判定的问题

参考: 杨弋《Hash 在信息学竞赛中的一类应用》

4.2. 后缀自动机 CHAPTER 4. 字符串

### 4.2 后缀自动机

```
const int MAXLEN = 1e6 + 50;
 1
 2
    namespace SAM
 3
    {
        struct state
 4
 5
 6
            int len, link, next[26];
 7
        } st[MAXLEN * 2];
 8
        int sz, last;
 9
        void SAM_Init()
10
        {
            st[0].len = 0, st[0].link = -1;
11
12
            sz++, last = 0;
13
        }
        void SAM_Extend(int c)
14
15
            int cur = sz++;
16
17
            st[cur].len = st[last].len + 1;
18
            int p = last;
19
            while (p != -1 && !st[p].next[c])
20
            {
21
                 st[p].next[c] = cur;
22
                 p = st[p].link;
23
            if (p == -1)
24
25
                 st[cur].link = 0;
26
            else
27
            {
28
                 int q = st[p].next[c];
29
                 if (st[q].len == st[p].len + 1)
30
                     st[cur].link = q;
31
                 else
32
                 {
33
                     int clone = sz++;
34
                     st[clone].len = st[p].len + 1;
35
                     memcpy(st[clone].next, st[q].next, sizeof(st[clone].next));
36
                     st[clone].link = st[q].link;
37
                     while (p != -1 && st[p].next[c] == q)
38
                     {
39
                         st[p].next[c] = clone;
                         p = st[p].link;
40
41
42
                     st[q].link = st[cur].link = clone;
43
                 }
44
            }
45
            last = cur;
46
47
        int id[MAXLEN * 2], c[MAXLEN * 2];
48
        void Topo()
49
        {
50
            //计数排序
51
            for (int i = 1; i < sz; i++)</pre>
52
                 c[st[i].len]++;
            for (int i = 1; i < MAXLEN; i++)</pre>
53
54
                 c[i] += c[i - 1];
            for (int i = 1; i < sz; i++)
55
56
                 id[c[st[i].len]--] = i;
57
   } // namespace SAM
58
```

4.3. KMP CHAPTER 4. 字符串

### 4.3 KMP

```
// KMP
1
2
   next[1] = 0;
3
   for (int i = 2, j = 0; i <= n; i++) {
4
        while (j > 0 && a[i] != a[j+1]) j = next[j];
5
        if (a[i] == a[j+1]) j++;
6
        next[i] = j;
7
   }
8
   for (int i = 1, j = 0; i \leftarrow m; i++) {
9
10
        while (j > 0 \&\& (j == n \mid | b[i] != a[j+1])) j = next[j];
        if (b[i] == a[j+1]) j++;
11
        f[i] = j;
12
        // if (f[i] == n), 此时就是A在B中的某一次出现
13
14
   }
```

字符串循环元可利用 next 数组求解。

### 4.4 最小表示法

```
// 最小表示法
2 int n = strlen(s + 1);
   for (int i = 1; i <= n; i++) s[n+i] = s[i];
3
4
   int i = 1, j = 2, k;
   while (i <= n \&\& j <= n) {
5
6
        for (k = 0; k < n \&\& s[i+k] == s[j+k]; k++);
7
        if (k == n) break; // s likes "aaaaa"
8
        if (s[i+k] > s[j+k]) {
9
            i = i + k + 1;
10
            if (i == j) i++;
        } else {
11
            j = j + k + 1;
12
            if (i == j) j++;
13
14
        }
15
   ans = min(i, j);
16
```

## 数据结构

图论

6.1. 最短路 CHAPTER 6. 图论

### 6.1 最短路

### 6.1.1 单源最短路径

#### 6.1.1.1 Dijkstra

```
void Dijkstra()
2
   {
3
        memset(dist, 0x3f, sizeof(dist));
4
        memset(vis, 0, sizeof(vis));
        priority_queue<pii, vector<pii>, greater<pii>> q;
5
6
        dist[1] = 0;
7
        q.push({dist[1], 1});
8
        while (!q.empty())
9
10
            int x = q.top().second;
11
            q.pop();
12
            if (!vis[x])
13
14
                vis[x] = 1;
15
                for (auto it : v[x])
16
                {
                     int y = it.first;
17
                     if (dist[y] > dist[x] + it.second)
18
19
20
                         dist[y] = dist[x] + it.second;
21
                         q.push({dist[y], y});
22
                     }
23
                }
24
            }
25
        }
   }
26
```

### 6.1.1.2 Bellman-Ford 和 SPFA

void SPFA()

1

```
2
    {
3
        memset(dis, 0x3f, sizeof(dis));
4
        memset(vis, 0, sizeof(vis));
        queue<int> q;
5
        dis[1] = 0;
6
7
        vis[1] = 1;
8
        q.push(1);
9
        while (!q.empty())
10
11
            int x = q.front();
12
            q.pop();
13
            vis[x] = 0;
            for (int i = 0; i < v[x].size(); i++)</pre>
14
15
                 int y = v[x][i].first;
16
17
                 int z = v[x][i].second;
18
                 if (dis[y] > dis[x] + z)
19
                 {
20
                     dis[y] = dis[x] + z;
21
                     if (!vis[y])
22
                         q.push(y), vis[y] = 1;
23
                 }
24
            }
25
        }
26
   }
    例题分析
```

POJ3662 Telephone Lines(分层图最短路/二分答案,双端队列 BFS) P1073 最优贸易(原图与反图,枚举节点)

P3008 [USACO11JAN] 道路和飞机 Roads and Planes (DAG, 拓扑序, 连通块)

6.1. 最短路 CHAPTER 6. 图论

### 6.1.2 任意两点间最短路径

### 6.1.2.1 Floyd

```
1
   void get_path(int i, int j)
 2
   {
 3
        if (!path[i][j])
 4
            return;
 5
        get_path(i, path[i][j]);
 6
        p.push_back(path[i][j]);
 7
        get_path(path[i][j], j);
 8
   }
 9
   void Floyd()
10
   {
11
        memcpy(d, a, sizeof(d));
        for (int k = 1; k <= n; k++)
12
13
            for (int i = 1; i < k; i++)</pre>
14
15
16
                for (int j = i + 1; j < k; j++)
17
                {
18
                    //注意溢出
19
                    ll temp = d[i][j] + a[i][k] + a[k][j];
20
                    if (ans > temp)
21
22
                         ans = temp;
23
                         p.clear();
24
                         p.push_back(i);
25
                         get_path(i, j);
26
                         p.push_back(j);
27
                         p.push_back(k);
28
                    }
29
                }
30
31
            for (int i = 1; i <= n; i++)
32
33
                for (int j = 1; j <= n; j++)
34
                {
35
                    11 \text{ temp = } d[i][k] + d[k][j];
36
                    if (d[i][j] > temp)
37
                    {
38
                         d[i][j] = temp;
39
                         path[i][j] = k;
40
                    }
41
                }
42
            }
43
44
   }
    例题分析
       POJ1094 Sorting It All Out (传递闭包)
       POJ1734 Sightseeing trip (无向图最小环)
       POJ3613 Cow Relays (离散化,广义矩阵乘法,快速幂)
```

### 6.2 最小生成树

#### 6.2.1 Kruskal

基干并查集

```
void Init()
1
2
   {
3
       for (int i = 1; i <= n; i++)
4
            fa[i] = i;
5
   }
6
   int Find(int x)
7
8
        if (x == fa[x])
9
           return x;
10
       return fa[x] = Find(fa[x]);
11
   }
12
   void Kruskal()
13
   {
14
       Init();
15
       sort(e.begin(), e.end());
16
        int ans=0;
17
       for (int i = 0; i < e.size(); i++)</pre>
18
19
            int u = e[i].u, v = e[i].v;
20
            int fu = Find(u), fv = Find(v);
21
            if (fu != fv)
22
23
                fa[fu] = fv;
24
                ans += e[i].w;
25
            }
26
       }
27
   }
   6.2.2 Prim
   void Prim()
1
2
   {
3
       memset(vis, 0, sizeof(vis));
4
       memset(d, 0x3f, sizeof(d));
5
       d[1] = 0;
6
       int temp = n;
7
       int ret = 0;
8
       while (temp--)
9
10
            int min_pos = 0;
            for (int i = 1; i <= n; i++)
11
                if (!vis[i] && (!min_pos || d[i] < d[min_pos]))</pre>
12
13
                    min pos = i;
14
            if (min pos)
15
16
                vis[min_pos] = 1;
17
                ret += d[min_pos];
                for (int i = 1; i <= n; i++)
18
19
                    if (!vis[i]) d[i] = min(d[i], weight[min_pos][i]);
20
           }
21
       }
22
   }
    例题分析
       走廊泼水节 (Kruskal, 最小生成树扩充为完全图)
       POJ1639 Picnic Planning (度限制最小生成树,连通块,树形 DP)
1 #include <algorithm>
2 #include <cstring>
3 #include <iostream>
```

```
4
   #include <map>
    #include <string>
 6
    #include <vector>
 7
    using namespace std;
 8
    #define inf 0x3f3f3f3f
 9
    #define N 25
10
    #define M 500
11
    map<string, int> name;
12
    struct edge
13
    {
14
        int u, v, w;
        bool operator<(const edge &e) const</pre>
15
16
17
             return w < e.w;
18
19
    };
20
    int n, s, ptot = 0, a[N][N], ans, fa[N], d[N], ver[N];
21
    vector<edge> e;
    bool vis[N][N];
    edge dp[N]; //dp[i] 1...i路径上的最大边
24
    void Init()
25
    {
26
        for (int i = 1; i <= ptot; i++)</pre>
27
            fa[i] = i;
28
    }
29
    int Find(int x)
30
    {
31
        if (x == fa[x])
32
            return x;
33
        return fa[x] = Find(fa[x]);
34
    }
35
    void Kruskal()
36
    {
37
        Init();
38
        sort(e.begin(), e.end());
39
        for (int i = 0; i < e.size(); i++)</pre>
40
41
             int u = e[i].u, v = e[i].v;
42
             if (u != 1 && v != 1)
43
             {
44
                 int fu = Find(u), fv = Find(v);
45
                 if (fu != fv)
46
                 {
47
                     fa[fu] = fv;
                     vis[u][v] = vis[v][u] = 1;
48
49
                     ans += e[i].w;
50
                 }
51
            }
52
        }
53
    }
    void DFS(int cur, int pre)
54
55
    {
56
        for (int i = 2; i <= ptot; i++)</pre>
57
             if (i != pre && vis[cur][i])
58
59
60
                 if (dp[i].w == -1)
61
                     if (dp[cur].w < a[cur][i])</pre>
62
63
                     {
                          dp[i].u = cur;
64
65
                          dp[i].v = i;
66
                          dp[i].w = a[cur][i];
67
                     else
68
                          dp[i] = dp[cur];
69
```

```
70
                  DFS(i, cur);
 71
 72
             }
 73
         }
 74
     }
 75
     int main()
 76
     {
 77
         ios::sync_with_stdio(false);
 78
         cin.tie(0);
 79
         cin >> n;
 80
         string s1, s2;
 81
         int len;
         name["Park"] = ++ptot;
 82
         memset(a, 0x3f, sizeof(a));
 83
 84
         memset(d, 0x3f, sizeof(d));
 85
         //Park: 1
 86
         for (int i = 0; i < n; i++)</pre>
 87
         {
              cin >> s1 >> s2 >> len;
 88
 89
              if (!name[s1])
 90
                  name[s1] = ++ptot;
 91
              if (!name[s2])
 92
                  name[s2] = ++ptot;
              int u = name[s1], v = name[s2];
 93
              a[u][v] = a[v][u] = min(a[u][v], len); //无向图邻接矩阵
 94
95
              e.push_back({u, v, len});
 96
97
         cin >> s; //度数限制
98
         ans = 0;
99
         Kruskal();
100
         for (int i = 2; i <= ptot; i++)</pre>
101
              if (a[1][i] != inf)
102
103
              {
                  int rt = Find(i);
104
105
                  if (d[rt] > a[1][i])
106
                      d[rt] = a[1][i], ver[rt] = i;
107
              }
108
         }
109
         for (int i = 2; i <= ptot; i++)</pre>
110
111
              if (d[i] != inf)
112
              {
113
                  s--;
114
                  ans += d[i];
                  vis[1][ver[i]] = vis[ver[i]][1] = 1;
115
116
              }
117
118
         while (s-- > 0)
119
             memset(dp, -1, sizeof(dp));
120
121
              dp[1].w = -inf;
122
              for (int i = 2; i <= ptot; i++)</pre>
123
              {
                  if (vis[1][i])
124
125
                      dp[i].w = -inf;
126
127
              DFS(1, -1);
              int w = -inf;
128
129
              int v;
              for (int i = 2; i <= ptot; i++)</pre>
130
131
132
                  if (w < dp[i].w - a[1][i])</pre>
133
                  {
134
                      w = dp[i].w - a[1][i];
135
                      v = i;
```

```
136
                }
137
            if (w <= 0)
138
139
                break;
            ans -= w;
140
141
            vis[1][v] = vis[v][1] = 1;
142
            \label{eq:vis} vis[dp[v].u][dp[v].v] = vis[dp[v].v][dp[v].u] = 0;
143
        }
        cout << "Total miles driven: " << ans << endl;</pre>
144
        system("pause");
145
146
        return 0;
147 }
       POJ2728 Desert King (最优比率生成树,0/1 分数规划,二分)
       黑暗城堡(最短路径生成树计数,最短路,排序)
```

6.3. 树的直径 CHAPTER 6. 图论

### 6.3 树的直径

### 6.3.1 树形 DP 求树的直径

仅能求出直径长度,无法得知路径信息,可处理负权边。

```
1
   int dp[N];
   //dp[rt] 以rt为根的子树 从rt出发最远可达距离
3
4
       对于每个结点x f[x]:经过节点x的最长链长度
   */
5
6
   void DP(int rt)
7
8
       dp[rt]=0;//单点
9
       vis[rt]=1;
10
       for(int i=head[rt];i;i=nxt[i])
11
           int s=ver[i];
12
           if(!vis[s])
13
14
           {
15
               DP(s);
16
               diameter=max(diameter,dp[rt]+dp[s]+edge[i]);
17
               dp[rt]=max(dp[rt],dp[s]+edge[i]);
18
           }
19
       }
20
   }
```

### 6.3.2 两次 BFS/DFS 求树的直径

无法处理负权边,容易记录路径

```
void DFS(int start,bool record_path)
2
   {
3
       vis[start]=1;
4
       for(int i=head[start];i;i=nxt[i])
5
6
           int s=ver[i];
7
           if(!vis[s])
8
           {
9
               dis[s]=dis[start]+edge[i];
               if(record_path) path[s]=i;
10
11
               DFS(s,record_path);
12
13
14
       vis[start]=0;//清理
15
   例题分析
      P3629 [APIO2010] 巡逻(两种求树直径方法的综合应用)
      P1099 树网的核(枚举)
```

### 6.4 最近公共祖先 (LCA)

### 6.4.1 树上倍增

```
void BFS()
1
2
    {
        queue<int> q;
3
4
        q.push(1);
5
        d[1] = 1;
6
        while (!q.empty())
7
8
            int x = q.front();
9
            q.pop();
10
            for (int i = head[x]; i; i = nxt[i])
```

6.5. 树上差分 CHAPTER 6. 图论

```
11
            {
                 int y = ver[i];
12
13
                 if (!d[y])
14
                 {
15
                     d[y] = d[x] + 1;
16
                     fa[y][0] = x;
17
                     for (int j = 1; j <= k; j++)
18
19
                         fa[y][j] = fa[fa[y][j - 1]][j - 1];
20
21
                     q.push(y);
22
23
            }
        }
24
25
    }
26
    int LCA(int x, int y)
27
28
        if (d[x] < d[y])
29
            swap(x, y);
30
        for (int i = k; i >= 0; i--)
31
            if (d[fa[x][i]] >= d[y])
32
                x = fa[x][i];
        if(x == y)
33
34
            return y;
        for (int i = k; i >= 0; i--)
35
36
            if (fa[x][i] != fa[y][i])
37
                x = fa[x][i], y = fa[y][i];
38
        return fa[x][0];
39
    }
    6.4.2 Tarjan
    int Find(int x)
 1
 2
    {
 3
        if (x == fa[x])
 4
            return x;
        return fa[x] = Find(fa[x]);
 5
 6
    }
 7
    void Tarjan(int x)
 8
    {
 9
        vis[x] = 1;
        for (int i = head[x]; i; i = nxt[i])
10
11
12
            int y = ver[i];
            if (!vis[y])
13
14
15
                 Tarjan(y);
16
                 fa[y] = x;
17
            }
18
19
        for (int i = 0; i < q[x].size(); i++)</pre>
20
21
            int y = q[x][i].first, id = q[x][i].second;
22
            if (vis[y] == 2)
23
                 lca[id] = Find(y);
24
25
        vis[x] = 2;
26
    }
```

### 6.5 树上差分

例题分析

POJ3417 Network (LCA, 树上差分, 边覆盖)

6.6. LCA 的综合应用 CHAPTER 6. 图论

6302 雨天的尾巴(LCA,树上差分,点覆盖,权值线段树,线段树合并) P1600 天天爱跑步(LCA,树上差分)

### 6.6 LCA 的综合应用

例题分析

```
CH56C 异象石 (dfn 时间戳, LCA)
       P4180 【模板】严格次小生成树 [BJWC2010] (树上倍增)
   #include <algorithm>
2 #include <iostream>
3 #include <math.h>
4 #include <queue>
5 #include <stdio.h>
6 using namespace std;
   const int N = 1e5 + 50;
7
8 const int M = 6e5 + 50;
   #define ll long long
9
10 #define pii pair<int, int>
   #define inf 0x3f3f3f3f
11
   int n, m, k, F[N][20], d[N], fa[N];
12
13
   int head[N], ver[M], nxt[M], edge[M], tot;
14
   11 G[N][20][2];
15
   void add(int x, int y, int z)
16
   {
        ver[++tot] = y, nxt[tot] = head[x], head[x] = tot, edge[tot] = z;
17
   }
18
19
   struct edge
20
   {
21
        int x, y, z;
22
        bool used;
23
        bool operator<(const edge &e) const</pre>
24
        {
25
            return z < e.z;</pre>
26
27
   } e[M];
28
   int Find(int x)
29
   {
30
        if (fa[x] == x)
            return x;
31
32
        return fa[x] = Find(fa[x]);
33
   }
34
   11 Kruskal()
35
   {
36
        for (int i = 1; i <= n; i++)
37
            fa[i] = i;
38
        sort(e + 1, e + 1 + m);
39
        11 \text{ ans} = 0;
40
        int cnt = 0;
41
        for (int i = 1; i <= m; i++)
42
43
            int fx = Find(e[i].x), fy = Find(e[i].y);
            if (fx != fy)
44
45
            {
46
                fa[fx] = fy;
47
                ans += e[i].z;
48
                e[i].used = true;
49
                cnt++;
50
                if (cnt >= n - 1)
                    break;
51
52
            }
53
        }
54
        return ans;
55
   void BFS()
```

6.6. LCA 的综合应用 CHAPTER 6. 图论

```
57
    {
58
         k = log2(n) + 1;
59
         queue<int> q;
60
         q.push(1), d[1] = 1;
61
         for (int i = 0; i <= k; i++)
             G[1][i][0] = G[1][i][1] = -inf;
62
63
         while (q.size())
64
         {
65
             int x = q.front();
66
             q.pop();
67
             for (int i = head[x]; i; i = nxt[i])
68
69
                 int y = ver[i];
70
                 if (!d[y])
71
72
                      d[y] = d[x] + 1;
                      F[y][0] = x;
73
74
                      G[y][0][0] = edge[i];
75
                      G[y][0][1] = -inf;
76
                      for (int j = 1; j <= k; j++)
77
                      {
78
                          F[y][j] = F[F[y][j - 1]][j - 1];
                          G[y][j][0] = max(G[y][j - 1][0], G[F[y][j - 1]][j - 1][0]);
79
                          if (G[y][j-1][0] == G[F[y][j-1]][j-1][0])
80
                              G[y][j][1] = max(G[y][j - 1][1], G[F[y][j - 1]][j - 1][1]);
81
                          else if (G[y][j - 1][0] > G[F[y][j - 1]][j - 1][0])
82
83
                              G[y][j][1] = max(G[F[y][j - 1]][j - 1][0], G[y][j - 1][1]);
84
                          else
85
                              G[y][j][1] = max(G[y][j - 1][0], G[F[y][j - 1]][j - 1][1]);
86
87
                      q.push(y);
88
                 }
89
             }
90
    }
91
    pii LCA(int x, int y)
92
93
94
         ll val1 = -inf, val2 = -inf;
95
         if (d[y] > d[x])
             swap(x, y);
96
97
         for (int i = k; i >= 0; i--)
98
99
             if (d[F[x][i]] >= d[y])
100
             {
101
                 if (G[x][i][0] > val1)
102
                      val1 = G[x][i][0], val2 = max(val2, G[x][i][1]);
103
                 else if (G[x][i][0] < val1)</pre>
104
                      val2 = max(val2, G[x][i][0]);
105
                 x = F[x][i];
106
             }
107
         if(x == y)
108
109
             return make_pair(val1, val2);
110
         for (int i = k; i >= 0; i--)
111
             if (F[x][i] != F[y][i])
112
113
                 val1 = max(val1, max(G[x][i][0], G[y][i][0]));
114
                 val2 = max(val2, (val1 == G[x][i][0]) ? G[x][i][1] : G[x][i][0]);
115
                 val2 = max(val2, (val1 == G[y][i][0]) ? G[y][i][1] : G[y][i][0]);
116
117
                 x = F[x][i], y = F[y][i];
118
119
120
         val1 = \max(\text{val1}, \max(G[x][0][0], G[y][0][0]));
121
         val2 = max(val2, (val1 == G[x][0][0]) ? G[x][0][1] : G[x][0][0]);
122
         val2 = max(val2, (val1 == G[y][0][0]) ? G[y][0][1] : G[y][0][0]);
```

6.6. LCA 的综合应用 CHAPTER 6. 图论

```
123
         return make_pair(val1, val2);
124 }
125 int main()
126
    {
127
         scanf("%d%d", &n, &m);
128
         for (int i = 1; i <= m; i++)</pre>
129
             scanf("%d%d%d", &e[i].x, &e[i].y, &e[i].z), e[i].used = false;
130
         11 sum = Kruskal(), ans = 0x3f3f3f3f3f3f3f3f3f3f;
131
         for (int i = 1; i <= m; i++)
132
             if (e[i].used)
                 add(e[i].x, e[i].y, e[i].z), add(e[i].y, e[i].x, e[i].z);
133
         BFS();
134
135
         for (int i = 1; i <= m; i++)
136
         {
137
             if (!e[i].used)
138
             {
139
                 pii temp = LCA(e[i].x, e[i].y);
                 if (e[i].z > temp.first)
140
141
                      ans = min(ans, sum - temp.first + e[i].z);
142
                 else if (e[i].z == temp.first)
143
                      ans = min(ans, sum - temp.second + e[i].z);
144
             }
         }
145
146
         cout << ans << endl;</pre>
147
         //system("pause");
148
         return 0;
149
    }
```

6.7. 基环树 CHAPTER 6. 图论

### 6.7 基环树

6.8. 负环与差分约束 CHAPTER 6. 图论

### 6.8 负环与差分约束

### 6.8.1 负环

例题分析

POJ3621 Sightseeing Cows (0/1 分数规划, SPFA 判定负环)

### 6.8.2 差分约束系统

例题分析

POJ1201 Intervals (单源最长路)

### 6.9 Tarjan 算法与无向图连通性

### 6.9.1 无向图的割点与桥

#### 6.9.1.1 割边判定法则

```
1
   void Tarjan(int x, int in_edge)
2
   {
3
        dfn[x] = low[x] = ++num;
4
        for (int i = head[x]; i; i = nxt[i])
5
            int y = ver[i];
6
7
            if (!dfn[y])
8
            {
9
                Tarjan(y, i);
10
                low[x] = min(low[x], low[y]);
                if (low[y] > dfn[x])
11
12
                    bridge[i] = bridge[i ^ 1] = true;
13
14
                }
15
            else if (i != (in_edge ^ 1))
16
17
                low[x] = min(low[x], dfn[y]);
18
        }
19
    }
```

#### 6.9.1.2 割点判定法则

```
void Tarjan(int x)
1
2
    {
3
        dfn[x] = low[x] = ++num;
4
        int flag = 0;
5
        for (int i = head[x]; i; i = nxt[i])
6
7
            int y = ver[i];
8
            if (!dfn[y])
9
            {
10
                Tarjan(y);
                low[x] = min(low[x], low[y]);
11
                if (low[y] >= dfn[x])
12
13
                {
                     flag++;
14
                     if (x != root || flag >= 2)
15
16
                         cut[x] = true;
17
                }
18
            }
19
            else
20
                low[x] = min(low[x], dfn[y]);
21
        }
22
   }
```

例题分析

P3469 [POI2008]BLO-Blockade (割点,连通块计数)

### 6.9.2 无向图的双连通分量

### 6.9.2.1 边双连通分量 e-DCC 与其缩点

```
1  void DFS(int x)
2  {
3     color[x] = dcc;
4     for (int i = head[x]; i; i = nxt[i])
5     {
6         int y = ver[i];
7         if (!color[y] && !bridge[i])
```

```
DFS(y);
8
9
10
   }
11
   void e_DCC()
12
    {
13
        dcc = 0;
        for (int i = 1; i <= n; i++)
14
            if (!color[i])
15
16
                ++dcc, DFS(i);
17
        totc = 1;
        for (int i = 2; i <= tot; i++)</pre>
18
19
            int u = ver[i ^ 1], v = ver[i];
20
21
            if (color[u] != color[v])
22
                add_c(color[u], color[v]);
23
        }
24
   }
    6.9.2.2 点双连通分量 v-DCC 与其缩点
1
    void Tarjan(int x)
2
    {
3
        dfn[x] = low[x] = ++num;
4
        int flag = 0;
5
        stack[++top] = x;
6
        if (x == root && !head[x])
7
8
            dcc[++cnt].push_back(x);
9
            return;
10
11
        for (int i = head[x]; i; i = nxt[i])
12
13
            int y = ver[i];
            if (!dfn[y])
14
15
                Tarjan(y);
16
                low[x] = min(low[x], low[y]);
17
                if (low[y] >= dfn[x])
18
19
                {
20
                     flag++;
21
                     if (x != root || flag >= 2)
22
                         cut[x] = true;
23
                     cnt++;
24
                     int z;
25
                     do
26
                     {
27
                         z = stack[top--];
                         dcc[cnt].push_back(z);
28
                     } while (z != y);
29
30
                     dcc[cnt].push_back(x);
31
                }
32
            }
33
            else
34
                low[x] = min(low[x], dfn[y]);
35
    }
36
37
    void v_DCC()
38
    {
39
        cnt = 0;
40
        top = 0;
41
        for (int i = 1; i <= n; i++)
42
        {
43
            if (!dfn[i])
44
                root = i, Tarjan(i);
45
        }
```

```
46
      // 给每个割点一个新的编号(编号从cnt+1开始)
47
      num = cnt;
48
      for (int i = 1; i <= n; i++)
49
          if (cut[i]) new_id[i] = ++num;
50
       // 建新图,从每个v-DCC到它包含的所有割点连边
51
      tc = 1;
52
      for (int i = 1; i <= cnt; i++)</pre>
53
          for (int j = 0; j < dcc[i].size(); j++)</pre>
54
              int x = dcc[i][j];
55
              if (cut[x]) {
56
57
                 add_c(i, new_id[x]);
58
                 add_c(new_id[x], i);
59
60
              else c[x] = i; // 除割点外, 其它点仅属于1个v-DCC
61
          }
62
   }
   例题分析
      POJ3694 Network (e-DCC 缩点, LCA, 并查集)
      POJ2942 Knights of the Round Table (补图, v-DCC, 染色法奇环判定)
   6.9.3 欧拉路问题
   欧拉图的判定
      无向图连通, 所有点度数为偶数。
      欧拉路的存在性判定
      无向图连通,恰有两个节点度数为奇数,其他节点度数均为偶数
   // 模拟系统栈,答案栈
1
   void Euler() {
2
3
       stack[++top] = 1;
4
      while (top > 0) {
5
          int x = stack[top], i = head[x];
          // 找到一条尚未访问的边
6
7
          while (i && vis[i]) i = Next[i];
8
          // 沿着这条边模拟递归过程,标记该边,并更新表头
9
          if (i) {
10
              stack[++top] = ver[i];
11
              head[x] = Next[i];
              vis[i] = vis[i ^ 1] = true;
12
13
14
          // 与x相连的所有边均已访问,模拟回溯过程,并记录于答案栈中
15
          else {
16
              top--;
17
              ans[++t] = x;
18
          }
19
       }
20
   }
   例题分析
      POJ2230 Watchcow (欧拉回路)
```

### 6.10 Tarjan 算法与有向图连通性

### 6.10.1 强连通分量 (SCC) 判定法则

```
void Tarjan(int x)
1
2
   {
3
       dfn[x]=low[x]=++num;
4
        stack[++top]=x,in stack[x]=true;
5
        for(int i=head[x];i;i=nxt[i])
6
7
            int y=ver[i];
            if(!dfn[y])
8
9
            {
10
                Tarjan(y);
11
                low[x]=min(low[x],low[y]);
12
            else if(in_stack[y])
13
14
                low[x]=min(low[x],dfn[y]);
15
        if(dfn[x]==low[x])
16
17
18
            cnt++;
19
            int y;
20
            do
21
22
                y=stack[top--],in_stack[y]=false;
23
                color[y]=cnt, scc[cnt].push_back(y);
24
            } while (x!=y);
25
       }
26
   }
    6.10.2 SCC -> DAG
   void SCC()
1
2
3
        for (int i = 0; i <= n; i++)
            if (!dfn[i])
4
                Tarjan(i);
5
6
       //缩点
7
       for (int x = 1; x <= n; x++)
8
9
            for (int i = head[x]; i; i = nxt[i])
10
            {
11
                int y = ver1[i];
12
                if (color[x] != color[y])
13
                    add_c(color[x], color[y]);
14
            }
15
        }
16
   }
    例题分析
       POJ1236 Network of Schools (SCC->DAG, 入度出度)
       P3275 [SCOI2011] 糖果 (SPFA TLE, SCC->DAG, Topo, DP)
```

### 6.10.3 有向图的必经点与必经边

对于有向无环图 (DAG):

在原图中按照拓扑序进行动态规划,求出起点 S 到图中每个点 x 的路径条数 fs[x]。在反图上再次按照拓扑序进行动态规划,求出每个点 x 到终点 x 的路径条数 ft[x]。显然,fs[T] 表示从 x 到 x 的路径总条数。根据乘法原理:

1: 对于一条有向边 (x,y),若 fs[x]\*ft[y]=fs[T],则 (x,y) 是有向无环图从 S 到 T 的必经边。

2: 对于一个点 x,若 fs[x]\*ft[x]=fs[T],则 x 是有向无环图从 S 到 T 的必经点。

路径条数规模较大,可对大质数取模后保存,但有概率误判。

例题分析

6703 PKU ACM Team's Excursion (DAG 必经边, 枚举, DP)

### 6.10.4 2-SAT 问题

6.11. 二分图的匹配 CHAPTER 6. 图论

### 6.11 二分图的匹配

### 6.11.1 二分图判定

一张无向图是二分图, 当且仅当图中不存在奇环(长度为奇数的环)。

```
1
   //染色法判定奇环
   bool DFS(int x,int color)
3
4
       vis[x]=color;
5
       for(int i=head[x];i;i=nxt[i])
6
7
           int y=ver[i];
8
           if(!vis[y])
9
10
               if(!DFS(y,3-color)) return false;
11
           }
12
           else if(vis[y]==color) return false;
13
14
       return true;
15
   }
      例题分析
      P1525 关押罪犯(判定二分图,二分)
```

### 6.11.2 二分图最大匹配

- 二分图匹配的模型要素
  - 1: 节点能分成独立的两个集合,每个集合内部有0条边。"0要素"
  - 2: 每个节点只能与 1 条匹配边相连。"1 要素"

```
\\匈牙利算法
1
   \\在主函数中对每个左部节点调用寻找增广路时,需要对 vis 重置。
   bool DFS(int x)
3
4
   {
5
       for (int i = head[x]; i; i = nxt[i])
6
       {
7
          int y = ver[i];
8
          if (!vis[y])
9
10
              vis[y] = 1;
              if (!match[y] || DFS(match[y]))
11
12
              {
13
                 match[y] = x;
14
                 return true;
15
              }
16
          }
17
18
      return false;
19
   }
      例题分析
      6801 棋盘覆盖(奇偶染色)
      6802 車的放置(行列)
      6803 导弹防御塔(二分,拆点多重匹配)
```

### 6.11.3 二分图带权匹配

二分图带权最大匹配的前提是匹配数最大,然后再最大化匹配边的权值总和。

```
    /*KM 稠密图上效率高于费用流,但是有较大局限性,只能在满足"带权最大匹配一定是完备匹配"的图中正确求解。
    w[][]:边权
    la[], lb[]: 左,右部点顶标
    visa[], visb[]: 访问标记,是否在交错树中
    ans: Σw[match[i]][i]
    */
    bool DFS(int x)
```

6.11. 二分图的匹配 CHAPTER 6. 图论

```
8
    {
 9
        visa[x] = true;
10
        for (int y = 1; y <= n; y++)
11
12
            if (!visb[y])
13
            {
                double temp = fabs(la[x] + lb[y] - w[x][y]);//对于浮点数,相等子图的判定
14
15
                if (temp < eps)</pre>
16
                {
17
                     visb[y] = true;
18
                     if (!match[y] || DFS(match[y]))
19
                     {
20
                         match[y] = x;
21
                         return true;
22
                     }
23
                }
24
                else
25
                     upd[y] = min(upd[y], la[x] + lb[y] - w[x][y]);
26
            }
27
28
        return false;
29
    }
    void KM()
30
31
    {
        for (int i = 1; i <= n; i++)
32
33
        {
34
            la[i] = -inf;
35
            lb[i] = 0;
36
            for (int j = 1; j <= n; j++)</pre>
                la[i] = max(la[i], w[i][j]);
37
38
39
        for (int i = 1; i <= n; i++)
40
41
            while (true)
42
                memset(visa, 0, sizeof(visa));
43
                memset(visb, 0, sizeof(visb));
44
                for (int j = 1; j <= n; j++)</pre>
45
46
                     upd[j] = inf;
47
                if (DFS(i))
48
                     break;
49
                else
50
                {
51
                     delta = inf;
52
                     for (int j = 1; j <= n; j++)
53
                         if (!visb[j])
                             delta = min(delta, upd[j]);
54
55
                     for (int j = 1; j <= n; j++)
56
                     {
                         if (visa[j])
57
58
                             la[j] -= delta;
                         if (visb[j])
59
60
                             lb[j] += delta;
61
                     }
62
                }
            }
63
64
        }
    }
65
       例题分析
       POJ3565 Ants (三角形不等式,二分图带权最小匹配)
```

### 6.12 二分图的覆盖与独立集

### 6.12.1 二分图最小点覆盖

二分图最小覆盖模型特点:

每条边有 2 个端点, 二者至少选择一个。"2 要素"

### 6.12.1.1 König's theorem

二分图最小点覆盖包含的点数等于二分图最大匹配包含的边数。 例题分析 POJ1325 Machine Schedule (二分图最小覆盖)

POJ2226 Muddy Fields (行列连续块,二分图最小覆盖)

### 6.12.2 二分图最大独立集

无向图 G 的最大团等于其补图 G'的最大独立集。(补图转化)设 G 是有 n 个节点的二分图, G 的最大独立集的大小等于 n 减去最大匹配数。例题分析6901 骑士放置(奇偶染色)

### 6.12.3 有向无环图的最小路径点覆盖

给定一张有向无环图,要求用尽量少的不相交的简单路径,覆盖有向无环图的所有顶点(也就是每个顶点恰好被覆盖一次)。这个问题被称为有向无环图的最小路径点覆盖,简称"最小路径覆盖"。

有向无环图 G 的最小路径点覆盖包含的路径条数,等于 n (有向无环图的点数)减去拆点二分图 G2 的最大匹配数。

若简单路径可相交,即一个节点可被覆盖多次,这个问题称为有向无环图的最小路径可重复点覆盖。

对于这个问题,可先对 G 求传递闭包,得到有向无环图 G',再在 G'上求一般的(路径不可相交的)最小路径点覆盖。

例题分析

6902 Vani 和 Cl2 捉迷藏(最小路径可重复点覆盖,构造方案)

```
// 构造方案, 先把所有路径终点 (左部非匹配点) 作为藏身点
2 for (int i = 1; i <= n; i++) succ[match[i]] = true;</pre>
3 for (int i = 1, k = 0; i <= n; i++)
       if (!succ[i]) hide[++k] = i;
4
   memset(vis, 0, sizeof(vis));
5
   bool modify = true;
6
   while (modify) {
7
       modify = false;
8
9
        // 求出 next(hide)
10
       for (int i = 1; i <= ans; i++)</pre>
11
            for (int j = 1; j <= n; j++)
12
                if (cl[hide[i]][j]) vis[j] = true;
13
       for (int i = 1; i <= ans; i++)
            if (vis[hide[i]]) {
14
15
                modify = true;
16
                // 不断向上移动
17
                while (vis[hide[i]]) hide[i] = match[hide[i]];
            }
18
19
   }
   for (int i = 1; i <= ans; i++) printf("%d ", hide[i]);</pre>
   cout << endl;</pre>
```

6.13. 网络流初步 CHAPTER 6. 图论

### 6.13 网络流初步

### 6.13.1 最大流

### 6.13.1.1 Edmonds Karp 增广路

```
bool BFS() {
1
2
       memset(vis, 0, sizeof(vis));
3
       queue<int> q;
4
       q.push(S); vis[S] = 1;
       incf[S] = inf; // 增广路上各边的最小剩余容量
5
6
       while (q.size()) {
           int x = q.front(); q.pop();
8
           for (int i = head[x]; i; i = Next[i])
9
               if (edge[i]) {
10
                   int y = ver[i];
                   if (vis[y]) continue;
11
                   incf[y] = min(incf[x], edge[i]);
12
13
                   pre[y] = i; // 记录前驱, 便于找到最长路的实际方案
14
                   q.push(y), vis[y] = 1;
15
                   if (y == t) return 1;
16
               }
17
       }
       return 0;
18
19
   }
   void Update() { // 更新增广路及其反向边的剩余容量
20
21
       int x = t;
       while (x != s) {
22
23
           int i = pre[x];
24
           edge[i] -= incf[t];
           edge[i ^ 1] += incf[t]; // 利用"成对存储"的xor 1技巧
25
26
           x = ver[i ^ 1];
27
28
       maxflow += incf[t];
29
   6.13.1.2 Dinic
   //可加入当前弧优化 (&): 在增广时复制head[]到cur[], 在增广时同步修改cur[], 目的是递归时跳过已增广的边。
1
2
   bool BFS()
3
4
       memset(d, 0, sizeof(d));
       queue<int> q;
5
6
       q.push(S);
7
       d[S] = 1; //不为1 陷入死循环
8
       while (q.size())
9
10
           int x = q.front();
11
           q.pop();
12
           for (int i = head[x]; i; i = nxt[i])
13
               int y = ver[i];
14
15
               if (edge[i] && !d[y])
16
               {
17
                   d[y] = d[x] + 1;
                   q.push(y);
18
                   if (y == T)
19
20
                       return true;
21
               }
22
           }
23
24
       return false;
25
26
   int Dinic(int x, int flow)
27
   {
```

6.13. 网络流初步 CHAPTER 6. 图论

```
28
        if(x == T)
29
            return flow;
30
        int rest = flow, k;
31
        for (int i = head[x]; i && rest; i = nxt[i])
32
33
            int y = ver[i];
34
            if (edge[i] \&\& d[y] == d[x] + 1)
35
            {
36
                 k = Dinic(y, min(edge[i], rest));
                 if (!k)
37
38
                     d[y] = 0;
39
                 edge[i] -= k;
                 edge[i ^ 1] += k;
40
41
                 rest -= k;
42
43
        }
44
        return flow - rest;
45
   }
```

### 6.13.1.3 二分图最大匹配的必须边与可行边

在一般的二分图中, 可以用最大流计算任一组最大匹配。

此时:必须边的判定条件为: (x,y) 流量为 1 ,并且在残量网络上属于不同的 SCC。可行边的判定条件为: (x,y) 流量为 1 ,或者在残量网络上属于同一个 SCC。例题分析

CH17C 舞动的夜晚 (Dinic, Tarjan, 二分图可行边)

### 6.13.2 最小割

### 6.13.2.1 最大流最小割定理

任何一个网络的最大流量等于最小割中边的容量之和。 例题分析

POJ1966 Cable TV Network (枚举, 点边转化)

### 6.13.3 费用流

### 6.13.3.1 Edmonds Karp 增广路

BFS 寻找增广路 -> SPFA 寻找单位费用之和最小的增广路(将费用作为边权,在残量网络上求最短路)。 注意: 反向边的费用为相反数。

```
bool SPFA()
2
   {
3
        memset(dis, 0xcf, sizeof(dis));//-inf
4
        memset(vis, 0, sizeof(vis));
5
        queue<int> q;
6
        dis[S] = 0, vis[S] = 1, incf[S] = 1 << 30;
7
        q.push(S);
8
        while (q.size())
9
10
            int x = q.front();
11
            q.pop();
12
            vis[x] = 0;
13
            for (int i = head[x]; i; i = nxt[i])
14
15
                if (edge[i])
16
                {
                     int y = ver[i];
17
                     if (dis[y] < dis[x] + cost[i])</pre>
18
19
20
                         dis[y] = dis[x] + cost[i];
21
                         incf[y] = min(incf[x], edge[i]);
22
                         pre[y] = i;
23
                         if (!vis[y])
24
                              q.push(y), vis[y] = 1;
```

6.13. 网络流初步 CHAPTER 6. 图论

```
25
                    }
26
                }
27
            }
28
29
        if (dis[T] == 0xcfcfcfcf)
           return false;
30
31
        return true;
32
   }
33
   int max_flow, ans;
34
   void Update()
35
   {
36
        int x = T;
37
        while (x != S)
38
39
            int i = pre[x];
40
            edge[i] -= incf[T];
            edge[i ^ 1] += incf[T];
41
42
            x = ver[i ^ 1];
43
        max_flow += incf[T];
44
        ans += incf[T] * dis[T];
45
46 }
    例题分析
       POJ3422 Kaka's Matrix Travels (点边转化, 费用流)
```