General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

T73-10656 CR-128706

LEC Document Number EPS-878

(NASA-CR-128706) ELECTRON-FROTON SPECTROMETER (EPS) CONFONENT DERATING SUMMARY (Lockheed Electronics Co.) 89 p HC 10.50 CSCL 14B

N73-26450

Unclas G3/14 62712

TECHNICAL LIBRARY **BUILDING 45**

JAC 2 3 1973

Manned Spacerraji Conjer-Houston, Texas 7705

Prepared by

Lockheed Electronics Company, Inc. Houston Aerospace Systems Division Houston, Texas Under Contract NAS 9-11373

For

National Aeronautics and Space Administration Manned Spacecraft Center Houston, Texas September 1972

LEC Document Number EPS-878

Prepared by

Lockheed Electronics Company, Inc.
Houston Aerospace Systems Division
Houston, Texas
Under Contract NAS 9-11373

For

National Aeronautics and Space Administration

Manned Spacecraft Center

Houston, Texas

September 1972

Prepared by:

P. Gleeson

Reliability and Quality

Assurance Engineer

Approved by:

B. E. Curtsinger

Engineering Supervisor

Approved by:

B. C. Hall

Program Manager

Electron/Proton Spectrometer Program Radiation Instrumentation Department

Lockheed Electronics Company, Inc. Houston Aerospace Systems Division Houston, Texas

1.0 INTRODUCTION

1.1 Scope

This document defines the derating factors and analysis of all components used in the Electron-Proton Spectrometer to determine effective system performance. The material presented herein is based on NASA Program Office requirements and may or may not be applicable to other aerospace programs.

1.2 General

This document gives basic information for defining the rating of electrical and electronic components. The derating percentages and application rates assist in obtaining reliable operation of component parts used in manned space mission requirements. (Refer to Appendix A.) Derating is necessary in meeting high reliability standards.

1.3 Applicable Documents

- 1.3.1 MSC-KA-D-69-44, Revision A, "Apollo Application Program. Ancillary Hardware General Requirements."
- 1.3.2 MIL-HDBK-217A, "Reliability Stress and Failure Rate Data for Electronics Equipment."
- 1.3.3 MSCM 5320, "Parts Reliability Requirements."

1.4 Derating and Application

The main embodiment of this document presents derating factors and stress rating of component by major subassemblies. Each derating has considered overall system operations and application.

1.5 Abbreviations and Glossary of Terminology Used in Text

1.5.1 Headings

- a. RATED Vendor rating of COMPONENT characteristics.
- b. OPERATING Characteristics under which COMPONENT will be used in the system.
- c. EPS DERATING REQUIREMENTS Required derating of COMPONENT characteristics to meet reliability requirements of the NASA and Skylab programs.

1.5.2 Abbreviations

- a. Integrated Circuit Parameters and Loading Definitions
 - (1) HUL- High Unit Load. The high unit load (HUL) for microcircuits used in the EPS is defined as $I = 5 \mu a$.
 - (2) LUL- Low Unit Load. The low unit load of the microcircuit used in this application is I = 0.16 ma.
 - (3) Vcc, Vdd Bias supply voltages

b. Transistor Parameters

- (1) VCEO Maximum rated DC collector to emitter voltage with base lead open.
- (2) VCE Operating DC collector to emitter voltage

- (3) VCBO Maximum rated DC collector to base voltage with emitter lead open.
- (4) VCB Operating DC collector to base voltage
- (5) VEBO Maximum rated reverse DC emitter to base voltage with collector lead open
- (6) VEB Operating DC emitter to base voltage
- (7) IC(MAX) Maximum rated DC collector current at maximum ambient temperature.
- (8) IC Operating DC collector current.
- (9) P Power dissipation of transistor, rated at maximum ambient temperature and operating.
- (10) HFE DC current gain

c. Diode Parameters

- (1) IF DC forward current, rated at maximum ambient temperature and operating.
- (2) VR DC reverse voltage, rated and operating.
- (3) P Power dissipation in diode, rated at maximum ambient temperature and operating.

d. Capacitor Parameters

(1) V - DC working voltage, rated at maximum ambient temperature and operating.

e. Resistor Parameters

- (1) P Power dissipation of resistor, rated at maximum ambient temperature and operating.
- (2) V Average DC voltage across resistor = I (AVG) R

f. Zener Diode Parameters

- (1) Vz Rated zener voltage
- (2) P Power dissipation in diode, rated at maximum ambient temperature and operating.

g. Unijunction Transistor Parameters

- (1) V B2 B1 Interbase voltage, rated and operating.
- (2) VEB Emitter to Base 1 reverse voltage at maximum ambient temperature and operating.
- (3) IBB Interbase current
- (4) P Power dissipation in device, rated at maximum ambient temperature and operating.

h. Transformers and Inductors

- (1) Vins. Core or winding insulation dielectric with standing voltage, rated and operating.
- (2) Vpeak Peak recurrent voltage across winding, rated and operating.
- (3) Tw Winding temperature, rated and operating.

i. Other Parameter Definitions

- (1) TA Ambient temperature
- (2) TC Case temperature
- (3) Tj Junction temperature, semiconductor

j. Subscript and Subnote Definitions

(1) A subscript "D" denotes the derated value of a parameter in accordance with AAP requirements. (i.e. VCEOD, IFD PD)

j. Continued

- (2) A subnote "peak" or "surge" indicates a transient or short term condition with time duration--1 second.
- (3) A subnote "max" indicates a maximum rated or operating value.

ELECTRON-PROTON SPECTROMETER COMPONENT DERATION SUMMARY

:		COMPONENT DERATE:		FAGE NO. I
		INPUT FILTI		21103 1 B. V
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL
Diode			$V_{\rm p} = 140V$	V = 32V
TAN TX - 1N4442	CR1 & CR2	$V_{R} = 200V$ $I_{F} = 1000 \text{ ma}$	$I_{\rm F}^{\rm R}=318$ ma	$I_{\rm F}^{\rm R}=30$ ma
Diode UT4010	CR3 & CR4	V _R = 100V I _F = 4000 ma	V _R = 60V I _F = 2550 ma	$v_R = 32V$ $I_F = 550 \text{ ma}$
Diode UT4010	CR5 & CR6	$V_{\rm F} = 100V \\ I_{\rm F}^{\rm R} = 4000 \text{ ma}$	$V_{R} = 60V$ $I_{F} = 2550$ ma	$V_R = 32V$ $I_F = 200 \text{ ma}$
Filter 8332-125	FL1, FL2, FL3, FL4	DCV = 100V	DCV = 70V	DCV = 32V
Capacitor T210D156K075PS 15 µf @ 75V	C1	75V	37.5V	32V
C062R104K1X1C	C2	1000	70 V	u
T210D156K75PS 15 µf @ 75V	С3	75V	37.5V	U
T210D156K75PS 15 µf @ 75V	C4	75V	37.5V	tt
T210D156K75PS 15 µf @ 75V	C5	75V	37.5V	11
T210D156K75PS 15 µf @ 75V	C6	75V	37.5V	II
C062R104K1X1C .1 µf @ 100V	C7	100V	70 V	1t
Resistors RCR05G4R7JS 4.7Ω	R1	125 mw	62.5 mw	4.2 mw
RCR052R7JS 2.7Ω	R3	125 mw	62.5 mw	0
RWR-81SR500FR 0.5Ω	R2	1 watt	450 mw	152 mw
RWR 815S1R300FR		l watt	450 mw	52 mw
Inductor 26 µh	Ll	Temp = 180°C Voltage = 500V	150°C 300V	65°C 32V
Inductor 65 µh	L2	Temp = 180°C Voltage = 500V	150°C 300V	65°C 32V

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

		LOW VOLTAGE POWE	R SUPPLY	LUMP - WILLIAM
COMPONENT	DÍAGRAM	MANUFACTURERS	EPS DERATING	ACTUAL
NAME & P/N Resistor	SYMBOL	RATING	REQUIREMENT	OPERATING LEVEL
RGS15C01 RCR20G392JP	R _{2A} 3.9K	500 mw	250 mw	197.5 mw
RCR20G392JP	R _{2B} 3.9K	500 mw	250 mw	197.5 mw
RCR07G101JP	R ₄ 100Ω	250 mw	125 mw	1.8 mw
RCR07G100JP	R ₅ 10Ω	250 mw	125 mw	0.5 mw
RCR07G472JP	R ₁₄ 4.7K	250 mw	1.25 mw	83 mw
RCR07G101JP	R ₁₅ 100Ω	250 mw	125 mw	0 mw
RCR07G470JP	R ₁₆ 47Ω	250 mw	125 mw	85 mw
RCR07G130JP	R ₂₁ 13Ω	250 mw	125 mw	11.7 mw
RNC 55	R ₁ 33.2K	100 mw	50 mw	27.5 mw
RNC 50	R ₃ 4.75K	50 mw	25 mw	22 mw
11	R ₆ 39.2K	li .	n	6.1 mw
11	R ₇ 5.62K	li li	H .	12.3 mw
n	R ₈ 2.21K		11	9.7 mw
If	R_9 2.21K		" ii	9.7 mw
H	R ₁₀ 18.2K		11	4.5 mw
11	R ₁₁ *	11	11	12.7 mw
!!	R ₁₂ *	II .	11	6.6 mw
ll l	R ₁₇ 28K	l II	11	0.7 mw
ti	R ₁₈ 11.5K	n	н	0.88 mw
11	R ₂₀ 6.98K	j	н	0.6 mw
li .	R ₂₂ 6.98K	1	11	1.3 mw
. 0	R ₃₃ 100K	н	į II	5.3 mw
: 11	R ₃₄ 10K	н	11	.63 mw
(: ti) 34 _	H H	н	.04 mw
	R ₃₈ 10K R ₃₉ 15K	II .	11	15 mw
3262-1-103	R ₁₉ 10K Pot	200 mw	100 mw	5 mw
· :				

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

		COMPONENT DERATIF	NG SUMMARY	PAGE NO.2
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL
Capacitor				
C062R332K2X1C	C1 22µf@50V	50V	25V	20V
	C8 22µf@50V	50V	25V	20V
	C2 3300pf@ 200V	200V	140V	17V
	C3 22µf@50V	50V	25 _V	20 V
	C4 4.7@10v	10A	5V	5 V
C052R102K2X1C	C5 1000@ 200V	200V	140V	3 V
C052R101K2X1C	C6 1000@ 200V	200V	140V	3 V
U	C7 47µf@20V	20V	10V	8.1V
II	C9 15@20V	20V	10V	8.1V
11	C10 47@20V	20V	10V	8.1V
ti	C11 15@20V	20V	1.0V	8.1V
ti	C12 68@15V	15V	7.5V	5.1V
ti	C13 22015V	15V	7.5V	5.1V
Ħ	C14 68@15V	15V	7.5V	5.1V
. ti	C15 22@15V	15V	7.50	5.1V
11	C16 3.9075V	75V	37.5V	26V
11	C17 3.9075V	75V	37.5V	26V
11	C18 3.9@75v	75V	37.5V	26V
н	C19 3.9075V	75 ^V	37.5V	26V
Filter				
8332-125	FL1 thru FL6	100V	70V	30V
8332-126	FL7	100V	70V	5V
8332-125	FL8	100V	70V	30V
: :				V
: : :	1			
:				

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

		COMP	ONENT DERATI	NG SUMMARY	PAGE NOT 3
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MA	NUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL
Diode					
UT4010	CR1	V IR F	100V 4000 ma	51V 2550 ma	30V 758 ma
JAN-TX 1N914	CR2 & CR3	V _R	75V 75 ma	45V 56 ma	14.4V .5 ma
1N4567A	CR4	V _Z IZ PD	6.4V .5 ma 400 mw	160 mw	6.4V .5 ma 3.2 mw
JAN-TX 1N914	CR5 & CR6	V _R	75V 75 ma	45V 56 ma	l ma
JAN-TX 1N746A	CR7	v _z	3.3V	.675 amps	3.3V .165 amps
	. t	PD	400 mw	100 mw	0
JAN-TX 1N914	CR8 & CR9	V _R	75V 75 ma	45V 56 ma	40V < 50 ma
JAN-TX 1N645	CR10	V IF	275V 400 ma	165V 262 ma	11V .2 ma
UT4010	CR12, CR13 CR14, CR15	V _R	100V 4000 ma	51V 2550 ma	20V 200 ma
UT4010	CR17, CR18 CR19, CR20	V _R	100V 4000 ma	51V 2550 ma	13V 840 ma
JAN-TX 1N645	CR22 & CR23	V _R	275V 400 ma	165V 262 ma	52V 15 ma
JAN-TX 1N758A	CR24	V _Z I _Z P _D	10V 20 ma 400 mw	100 mw	10V 1 ma 10 mw
		}		4	

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

		COMPONENT DERATIN	IQ BUMMANI	twon no. 4
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL
Transistor JAN-TX 2N2222A	Q].	VCB .75V VCE 40V VEB 6V PD: 500 mw @ 25 Ambient	45V 24V 3.6V 166 mw, T _J =100, T _A =50	<5V .7V .7V .2 mw
JAN-TX 2N3421	Q2	VCB 125V VCE 80V VEB 8V IC 3000 ma PD 1000 mw	75V 48V 4.8V 2.25 amps 286 mw, T _J =100°C T _A =50°C	31.5V 32V .7V 50 ma 10 mw
2N5333	Q3	VCB 100V VCE 80V VEB 6V IC 2000 ma PD 1000 mw	60V 48V 3.6V 1400 ma 286 mw, T _J =100°C T _A =50°C	32V 32V .7V 758 ma 125 mw
JAN-TX 2N494A	Q4	VEB 60V V _{B2-B1} 55V Peak I _E 2 amps PD 600 mw	36V 33V 1.5 amps 200 mw	14.4V 20V 1.4 amps 164 mw
JAN-TX 2N2907A	Q5 & Q6	VCB 60V VCE 40V VEB 5V IC 600 ma PD 400 mw	36V 24V 3V 450 ma 114 mw, T _J =100°C T _A =50°C	14.4V 12V .7V 2 ma 5 mw
JAN-TX 2N2484	Q7	VCB 60V VCE 60V VEB 6V IC 50 ma PD 360 mw	36V 36V 3.6V 37.5 ma 103 mw, T _J =100°C T _A =50°C	5V 5V .7V .5 ma 2.5 mw

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL
Transistor JAN-TX 2N3421	Q8	VCB 125V VCE 80V VEB 8V IC 3000 ma PD 1000 mw	75V 48V 4.8V 2.25 amp 286 mw, T _J =100°C T _A =50°C	20V 20V .7V 200 ma 0 mw
JAN-TX 2N3421	Q9 & Q10	VCB 125V VCE 30V VEB 8V IC 3000 ma PD 1000 mw, T=	75V 48V 4.8V 2.25 amps 286 mw, T _J =100°C T _A =50°C	42.5V 40V 2.5V 550 ma 84 mw
JAN-TX 2N2484	Qll	VCB 60V VCE 60V VEB 6V IC 50 ma PD 360 mw	36V 36V 3.6V 37.5 ma 103 mw, T _J =100°C	20V 20V .7V 4 ma 2 mw
Amplifier			TA=50°C	
A 723	Al	V ₊ to V ₋ 40V in-out Diff 40V V _{REC} Current 15ma PD 800 mw	- 24V 11.25 ma 340 mw, T _J =100, T _A =50 112 ma	25V 6V .26 ma 105 mw
Transformer				
gg 447 440	Т2	Temp 300°C	270°C	81°C
80530-1A	Core	Volt. 1000V	600V	10V
8083	Windings AWG 34 Temperature All	180°C	150°C	81°C
	Voltage - All	1500V	900V	10V

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

			i and papament	2 CHILLY T
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL
Inductors L1 0.4 mh Wire AWG 24 8078 Core 55121-W4	L1	Temp 180°C Voltage 2850V Temp 200°C Voltage 500V	150°C 1710V 170°C 300V	65°C 32V 70°C 32V
L2 & L3 .75 mh Wire AWG 28 8080 Core 55051-W4	L2 & L3	Temp 180°C Voltage 2400V Temp 200°C Voltage 500V	150°C 1440V 170°C 300V	65°C 10V 70°C 70V
L4 & L5 .06 mh Wire AWG 20 8076 Core 55051-W4	L4 & L5	Temp 180°C Voltage 3450V Temp 200°C Voltage 500V	150°C 2070V 170°C 300V	65° V 6V 70°C 6V
L6 .375 mh Wire AWG 28 8080 Core 55051-W4	L6	Temp 180°C Voltage 2400V Temp 200°C Voltage 500V	150°C 1440 170°C 300V	65°C 6V 70°C 6V
L7 & L8 Wire AWG 36 8084 Core 55040-W4	L7 & L8	Temp 180°C Voltage 1200V Temp 200°C Voltage 500V	150°C 720V 170°C 300V	65°C 26V 70°C 26V
I I				

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

COMPONENT NAME & P/N SYMBOL RATING REQUIREMENT OPERATING OPERATION OPERATI		FAGE NO.
52134-1A TI Core Temp 300°C Voltage 1000V 270°C 600 Volts 81°C 60 Volts Windings Temp-All Voltage Temp 180 150°C 81°C 8078 Primary Voltage 2850V 1710V 65V 8083 Feedback Voltage 1500V 900V 32V 8084 Start Voltage 1200V 720V 36V 8081 8 Volt Voltage 2100V 1260V 42V 8077 5 Volt Voltage 3150V 1890V 36V		ACTUAL OPERATING LEVEL
8083 Feedback Voltage 1500V 900V 32V 8084 Start Voltage 1200V 720V 36V 8081 8 Volt Voltage 2100V 1260V 42V 8077 5 Volt Voltage 3150V 1890V 36V 650V 6		60 Volts
8083 Feedback Voltage 1500V 900V 32V 8084 Start Voltage 1200V 720V 36V 8081 8 Volt Voltage 2100V 1260V 42V 8077 5 Volt Voltage 3150V 1890V 36V	8078	65V
8084 Start Voltage 1200V 720V 36V 8081 8 Volt Voltage 2100V 1260V 42V 8077 5 Volt Voltage 3150V 1890V 36V		32V
8081 8 Volt Voltage 2100V 1260V 42V 8077 5 Volt Voltage 3150V 1890V 36V		36V
8077 5 Volt Voltage 3150V 1890V 36V		42V
		36V
		65V

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

		COMPONENT DERATIN	ng summary	PAGE NO. 1
<u></u>		DETECTOR BIAS	SUPPLY	,
COMPONENT NAME & P/N	DIAGRAM	MANUFACTURERS	EPS DERATING	ACTUAL CPERATING LEVEL
<u> </u>	SYMBOL	RATING	REQUIREMENT	CPERATING DEVEL
Resistor				
RNC50	R1 14K	50 mw	25 mw 125 mw	5 mw 12 mw
RCR07G130JP RNC50	R2 13Ω R3 34.8K	250 mw 50 mw	25 mw	5 mw
RNC50	R4 22.1K	50 mw	25 mw	2.5 mw
3262W-1-103	R5 10K	200 mw	100 mw	5 mw
RNC50	R6 1K	50 mw	25 mw	10 mw
RN55	R7 13K	100 mw	50 mw	30 mw
MK-132	R8 50K	500 mw	250 mw	1 mw
MG-660	R9 10MΩ	500 mw	250 mw	12 mw
MK-132	R10 100K	500 mw 500 mw	250 mw 250 mw	1 mw 1 mw
MG-660 MG-660	R11 10MΩ R12 10MΩ	500 mw	250 mw	1 mw
PIG-000	1			
C052R101K2X1C	C1 100pf, 200V	200V	140V	30V
C052R332K2X1C	C2 3300pf,	200V	140V	10V
	2000	EOV	25V	20V
	C3 18µf, 50V	50V	250	1 200
828-1KV-X5T-	C4, C5	1000V	700V	360V
103	.01µf			
	C6, C7			
C052R102K2X1C	C8 1000pf,	200V	140V	3V
	2007	00011	1.40**	25V
C052R102K2X1C	C9 & C10 1000pf	200V	140V	250
	200V			1
	Cll Select-	200V	140V	50V
	ed			
•	I	1	I	i .

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

		DETECTOR BIAS SU	IDDI.V	
COMPONENT	DIAGRAM	MANUFACTURERS	EPS DERATING	ACTUAL
NAME & P/N	SYMBOL	RATING	REQUIREMENT	OPERATING LEVEL
Amplifier				
μ A723	Al	V_ to V_ 40V		30.8V
μΑ/23	VT	In-Out Diff: 40V	24V	11.3V
		V _{per} Current	11.25 ma	100 µa
		15 ma	7.40	100
		P _D 800 mw	340 mw,	196 mw
}			$T_{J}=100, T_{A}=50$	20
i I		I _C 150 ma	112 ma	30 ma
Transistor	-			
JAN-TX 2N3421	Q1 & Q2	V _{CB} 125V V _{CE} 80V V _{EB} 8V I _C 3000 ma P _D 1000 mw	75V	41.5 V
		VCE 80V	487	40V
_		VEB 3000 mg	4.8V 2250 ma	2.5V 30 ma
*		PC 1000 mw	286 mw, T _J =100	6 mw
:		D 2000 11111	T _A =50	•
			A	
Diode				
JAN-TX 1N914	CR1 & CR2	$rac{V_{R}}{I_{F}}$ (Surge) 500 ma	45V	39V
		IF (Surge) 500 ma		<50 ma
JAN-TX 1N649	CR3, CR4,	V _R 720V I _F 400 ma	432V	350V
	CR5 & CR6	I _F 400 ma	262 ma	10 ma
JAN-TX 1N649	CR7 & CR8	V 720V I _F 400 ma	432V	350V
		IF 400 ma	262 ma	10 µa
Transformer				
	TI			
Core		Temp 300°C	270°C	65°C
5200 2-1A		Voltage 1000V	600V	350V
<u>Windings</u>				
Prim 8085		Temp 180°C	150°C	65°C
		Voltage 1200V	720V	400V
Feedback AWG38		Temp 180°C	150°C	65°C
8085]	Voltage 1200V	720V	360V
Carondows		Temp 180°C	150°C	65°C
Secondary 8085		Temb Too C	130 0	
		Voltage 720V	432V	360V
Current - All				
	I	Į.	l .	ī

ELECTRON-PROTON SPECTRE ATTER COMPONENT DERATING SCHARY

£:5	P	REAMPLIFIER & DETE		
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	ESS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL
Resistor				
RNC50	R2	7.87K, 50mw,	25mw	2.2 mw
11	R3	7.15K, "	11	2.1 mw
RNC55	R4	255Ω, 100mw,	50mw	26 mw
RNC50	R5	604Ω, 50mw,	25mw	<1 mw
18	R6	1.21K, 50mw,	25mw	<1 mw
1712-4-100MΩ	R7	100MΩ, 500mw,	250mw	<1 mw
RNC55	R8	2.55K, 100mw,	50mw	25 mw
RNC50	R9,	93.1Ω, 50mw,	25mw	10 mw
11	R10	49.90, "	79	10 mw
11	Rl Select	60.4Ω, 64.9Ω, 69.8Ω, 50mw	I t	<10 mw
fl .	R1 Select	80.6Ω, 90.9Ω, 50mW, 100Ω	11	<10 mw
MK132	R22, R23	100K, 750mw,	375mw	<1 mw
MK132	R24	2.0MΩ, 750mw,	375mw	<1 mw
Capacitor				
RVC-12	Cl	.8-25pf, 500V	300V	<8V
RC33C1ROD(NPD)	C2	1.0±.5pf, 50V	30V	<5V
T210	C3	47μF, 6V	3.6V	<1V
T210	C4	3.3µF, 15V	9V	<8V
CKR06	C5, 6, 8	.01µF, 200V	100V	< 8V
T210	C7, C9	15µF, 20V	16V	<8V
RC12C	Cl2 Select	2.9, 3.3, 3.9pf, 50V	30V	<8V
	C13, 14, 15	.01µF, 1000V,	600V	<400V

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

h		COMPONENT DERATIN		PAGE NO. 2
		EAMPLIFIER & DETEC	The second secon	
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL
Coils		100-by 220 mg	65 mA, 110mw	<10 mA, <1 mw
MS90538-12	L1, L2, L4	100mhy, 220 mw, 133 mA	65 mA, LLOMW	
526-2930-130	L3	20mhy, 100 mA	50 mA	<10 mA,
Transistor				
SSC-1613	Ql	V _B =40V, I _C =50mA P=360mw		<5V, I _C =10mA, 40mw
SS-3515	Q2, Q4	V _B =60V, I _C =200mA P=360mw	V _B =30V, I _C =100mA	<8V, I _C 3mA, <20mw
SS-3520	Q3	V _B =20V, I _C =50mA, P=300mw	V _B =10V, I _C =25mA, P=368mw*	<8V, I _C =1mA, <10mw
Diode				
JAN-TX 1N649	CR1	V _{PIV} =720V, 400mA 600mw	,450V, 150mA, 250mw	V _{PIV} <10V, <1mw
			$\star_{T_J} = 100^{\circ}C$ T_A	= 50°C
:				
· ·				
· · · · · · · · · · · · · · · · · · ·				

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

		COMPONENT DERATIF		indu no. u
COMPONENT NAME & P/N	DIAGRAM SYMBOL	LEAKAGE MON: MANUFACTURERS RATING	ITOR EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL
Resistor				
RNC50H	R11	49.9K, 50mw,	25mw	<1 mw
it .	R12	4.99K, "	25mw	<1 mw
MK132	R , R13	2.5MΩ, 750mw,	315mw	<1 mw
MK132	R13	5.0MΩ, "	lt .	<1 mw
RNC50H	R1.4	2.67K, 50mw,	25mw	<1. mw
19	R15	80.6K, "	25mw	<1 mw
11	R16	49.9K, "	25mw	<1 mw
3260WM39501	R17	500Ω, 200mw,	100mw	<1 mw
RNC50K	R18	30.1Ω, 50mw,	25mw ,	<1 mw
11	R19	30.1Ω, "	" ,	<1 mw
RNC50H	R20	80.0K, "	25mw,	<1 mw
11	R21	267К, "	25mw,	<1 mw
Capacitor				
CKR06	C10	.01µF, 200V	100V	<17
CKR05	C11	100pf, 200V	100V	<8V
Amplifier				
LM108/883	211	V _B =±20V, I=10mA P=500mw	V _S =12V, I=5mA P=330mw	V _S < 8V, I <1mA P <16mw
Diode				
ln4567A	CR2	6.4V, 400mw	6.4V, 160mw	6.4V, 3.8mw,
1N4567A	CR3	u H	11 11	11 11
e [*]				
· ·	1	•	j .	II

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

PAGE NO. 1

PULSE AMPLIFIER

COMPONENT	DIAGRAM	PULSE AMPLIFI MANUFACTURERS	ER EPS DERATING	ACTUAL
NAME & P/N	SYMBOL	RATING	REQUIREMENT	OPERATING LEVEL
Resistor				
3260НМ39	Rl	P _D .2W	.1W	41 µW
MK132	R2	.75W	.375W	9.3 µW
RNC50	R3	.05W	25 mW	.08 mW
ţţ.	R4	11	11	1.75 mW
11	R5, R29	11	11	292 nW
H	R6	11	11	4.08 nW
U	R7, R31	H	11	.28 mW
11	R8, R33	H	ŧ	292 μW
11	R9, R32	ri .	1ŧ	.44 nW
If	R10, R11	11	ŧ1	30.5 μW
11	R12, R36	ř)	11	295 μ₩
If	R13, R37	H	51	10.7 µW
ti	R14, R38	11	"	4.78 mW
II	R15, R39	†I	11	4.08 mW
11	R16, R40	ti .	it	4.97 mW
11	R17, R41	ti .	п	565 μW
H	R18, R42	11	11	527 μW
11	R19, R43	11	11	527 μW
Ü	R20, R44	11	11	2.44 mW
н	R21, R24	11	н	57.5 μM
Ħ	R22, R23	н	11	.23 mW
11	R47, R49	11	11	.216 mW
	R45, R51	n	11	.054 mW
•				

ELECTRON-PROTON SPECTROMETER

		ELECTRON-PROTON SI COMPONENT DERATIN		PAGE NO. 2
		PULSE AMPL	FIER	
COMPONENT NAME & P/N	DIAGRAM SYMBOL	ACTUAL OPERATING LEVEL		
Resistor				
RNC50	R25, R52	.05W	25 mW	1.41 mW
11	R26, R46	lt .	н	1.13 mW
11	R27	11	11	1.38 mW
17	R28	11	и	25.7 nW
† 11	R34, R35	11	11	.448 mW
l)	R48	li .	11	.123 mW
11	R50	II .	II .	25.8 μW
11	R30	11	II	60 µW
	ļ			
				1

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

		PULSE AMPL		
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL
Capacitor			100300000000000000000000000000000000000	
RC37	Cl	50V	35V	7.2V
CSR13	C2, C17	50V	30V	8.06 mV
CKR06	C3, C18	200V	1400	8.06 mV
RC37	C4, C19	50V	35V	2.72V
RC37	C5, C20	50V	35V	2.72V
CSR13	C6, C23	15V	9V	7.9V
CKR06	C7, C24	200V	140V	7.9V
CKR06	C8, C21	100V	70V	1.46 mV
CSR13	C9, C22	15V	9V	7.9V
RC37	Cl0, C25	50V	35V	7.39V
RC37	Cl1, C26	50V	35V	3.3V
RC12	C12, C27	50V	35V	1.5V
CKR06	C13, C28	200V	140V	7.90
RC37	C14, C29	50V	35V	7.55V
RC37	C15, C30	50V	35V	7.9V
RC37	C16	50V	35V	6.6V
CKR06	C31, C32	200V	140V	8.1V

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

÷	PULSE AMPLIFIER						
	COMPO NAME	NENT & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL	
	Dio		0 21,100 0	2013 4410	s the figure a trace south a		
	JAN-TX	1N4153	CR1, CR2	P _D 500 mW ID 200 mA V _R 50V	142 mW 150 mA V _P 37.5V	l mV I _P 29.7 mA V _P .81V	
	JAN-TX	1N4153	CR3, CR4 CR12, CR13	P 500 mW ID 200 mA VF 50V	142 mW 150 mA V _p 37.5V	1 mV I _P 60 mA V _P .7V	
	JAN-TX	1N4153	CR5, CR18	P _D 500 mW ID 200 mA V _R 50V	142 mW 150 mA V _P 37.5V	.427 mW I _{DC 0} .7 mA	
	JAN-TX	1N4153	CR6, CR9 CR14, CR17	P 500 mW ID 200 mA VF 50V	142 mW 150 mA V _P 37.5V	2.42 mW I _{DC} 3.5 mA	
	JAN-TX	1N4153	CR7, CR8 CR15, CR16	P 500 mW ID 200 mA VF 50V	142 mW 150 mA V _p 37.5V	0 0 0	
	JAN-TX	1N4153	CR10, CR11	P 500 mW ID 200 mA V _R 50V	142 mW 150 mA V _P 37.5V	1 mV I _P 8.52 mA V _P .74V	
i.							

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

		COMPONENT DERATE	NG SUMMAKY	PAGE NO.
		PULSE AMPL	IFIER	
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL
Transistor				
2N4878	Q1, Q3	P _D 330 mW ID 10 mA VC 60V VCEO 7V	95 mW * 7.5 mA V _P 45V V _P 5.25V	.44 mW 60 µA V _P 8.4V V _P .18V
2N4878	Q2, Q4	P _D 330 mW ID 10 mA VC 60V VCEO 7V	95 mW * 7.5 mA V _P 45V V _P 5.25V	4.1 mW .4 mA V _P 6.25V V _P .5V
SS2638H	Q5, Q7	P _D 200 mW ID 30 mA VC 20V VCEO 4.5V	57 mW * 22.5 mA V _P 15V V _P 3.37V	24.3 mW 3.5 mA V _P 14.6V V _P 0V
SS2638H	Q6, Q8	P 200 mW ID 30 mA VC 20V VCEO 4.5V	57 mW * 22.5 mA V _P 15V V _P 3.37V	11.6 mW 1.5 mA V _P 14.3V V _P 0V
SS3520	Q9, Q11	P 200 mW ID 50 mA VC 20V VCEO 3V	57 mW * 37.5 mA V _P 15V V _P 2.25V	22.4 mW 3.5 mA V _P 13.0V V _P 0V
SS3520	Q10, Q12	P _D 200 mW ID 50 mA VC 20V VCEO VEBO 3V	57 mW * 37.5 mA V _P 15V V _P 2.25V	11.6 mW 1.5 mA V _P 14.4V V _P .2V
			* T _J = 100°C T _A	= 50°C

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

		COMPONENT DERAFIN	IG SUMMARY	PAGE NO. T
forten			HT DISCRIMINATOR 8	RESOLUTION MON
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL
Resistor				
RNC50H-4531FR	Rl	0.05W	0.025W	0.004W
" -3161FR	R2	įt.	•	0.004W
-1541FR	R3(C1)	11	11	0.008W
" -1471FR	R3 (C2)	11	н	
" -1501FR	R3 (C3)	н	11	н
" -1541FR	R3 (C4)	н	11	ti.
" -1541FR	R3 (C5)	11	n n	H
MK132-500K	R4(C1)	0.50W	0.375W	11
" -440K	R4 (C2)	н	11	n .
" -480K	R4 (C3)	"	"	11
" -550K	R4 (C4)	u	u u	11
" =590K	R4 (C5)	0	u u	11
RNC50H-7500FR	R5 (C1)	0.050W	0.025W	II
" -7150FR	R5 (C2)	"	· ·	н
" - 7870	R5 (C3)	"	H	11
" -1001FR	R5 (C4)	n	н	11
" -1131FR	R5 (C5)	п	11	n
3260HM39201	R6 (C1)	0.200V	0.100W	
If	R6 (C2)	n	H	rı .
	R6 (C3)	ű	н	u
O C	R6 (C4)	н	11	li li
3260HM39101	R6 (C5)	11	ıı ıı	11
RNC50H-4640FR	R7(C1)	0.050W	0.025W	0.000W
" -6040FR	R7 (C2)	U	"	•
" -4870FR	R7 (C3)	u	11	и
" -2940FR	R7 (C4)	ii ii	H	н
" -2670FR	R7 (C5)	II	lt .	11
" -2101FR	R8(C1)	11	н	H
. n <u> </u>	R8(C2)	н	1	P9
titi	R8(C3)	н	li ii	91
· _ ii	R8(C4)	11	li ii	n
" -1690FR	R8 (C5)	н	11	11

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

PAGE NO. 2

DUAL DIFFERENTIAL PULSE HEIGHT DISCRIMINATOR & RES. MON.

	DUAL DIFF	ERENTIAL PULSE HEI		
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL
Resistor				7
3260HM39500	R9 (C1)	0.05W	0.025W	0.014W
II .	R9 (C2)			
11	R9 (C3)			
n	R9 (C4)			
3260HM39201	R9 (C5)	0.00W	0.00W	0.000W
LO-OHMAGE	R10(C1)	u	N	11
	R10 (C2)	If	п	Iİ
	R10 (C3)	u	n	. 11
	R10(C4)	11	И	tt
	R10(C5)	tr	O .	11
RNC50H-1821FR	R11(C1)	0.05W	0.025W	0.000W
11 11	R11(C2)	11	IT	11
11	R11(C3)	v	н	ti .
11 11	Rll(C4)	U	II	11
" -1781FR	R11(C5)	N	11	ii
" -4531FR	R12	11	11	0.014W
" -3161FR	R13	11	lt .	0.004W
MK132-725K	R14(C1)	0.50W	0.25W	0.000W
11 11	R14(C2)	11	11	II
11 11	R14(C3)	И	l†	H
11 11	R14(C4)	11	II	11
" - 750K	R14(C5)	ıı ı	11	ıt
RNC50H-1690FR	R15	0.05W	0.025W	0.007W
11 11	R16	11	11	16
" -1001FR	R17	11	н	0.009W
" -1000FR	R18	lt .	и	0.000W
11 11	R19	11	11	0.000W
			L	
	}			

ELECTRON-PROTON STUCTROMETER COMPONENT DERATING SUMMARY

	DUAL DIFF	'ERENTIAL P	ULSE HE	IGHT DISCR	<u>IMINATOR</u>	& RES. MO	N.
COMPONENT	DIAGRAM	MANUFAC	TURERS	EPS DERATING [ACTU	AL
NAME & P/N	SYMBOL	RATI	NG	REQUIRE	MENT	OPERATING LEVEL	
Inductors							
9210-76 (MS50538 12)	- Ll	0.599Vdc	0.133A	0.359Vdc	0.043A	0.054Vdc	0.012A
lf 11	L2	11	Ħ	lt It	n	11	0
19 11	L3	11	11	 "	"	j)	#1
10 11	L4	11	11	u	11	•	11
Capacitors		{					
CKR05BX104KP	Cl	100Vdc		70Vdc		5.3Vdc	
n	C2	11		,,		11	
11	C3	,,,		11		3.5Vdc	
II	C4	"		11		11	
н	C5	ıı ıı				11	
17	C6	u		••		5.3Vdc	
O O	c7	11				17	
CKR05BX221KP	C8	200Vdc		140Vdc		5.3Vdc	
н	C9	"		11		u	
				1			
	{						
	}						
	}						
	j					ļ	
						{	
	-						
	{						
	}	})	-	,	

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

DUAL DIFFERENTIAL	PHLSE	HEIGHT	DISCRIMINATOR	8	RES.	MON.
DOUD DILLUMINITATION	+ 011011	1111 - 1111	D T D O Y T P 1 T 1 T 1 T T T T T T T T T T T T T	-	* **** **	

DUAL DIFFERENTIAL PULSE HEIGHT DISCRIMINATOR & RES. MON.						
COMPONENT	DIAGRAM	MANUFACTURERS	EPS DERATING	ACTUAL OPERATING LEVEL		
NAME & P/N	SYMBOL	RATING	REQUIREMENT	OPERATING DEVEL		
Diodes	ļ					
JAN-TX 1N914	CR1	$V_{\text{Max}} = 75 \text{ Vdc}$	45 Vdc	8.2 Vdc		
		$P_D = .20W$.09W	0.001W		
		I _{Ave} .75 ma	56 ma	2 ma		
	į					
Integrated Circuits	1					
RA526K	Z1	$V_1 = +7.0 \text{ Vdc}$		+5.3 Vdc		
	Z 2	v ₂ +7.0 Vdc	 	+5.3 Vdc		
		V _{Sup} - 5.0 Vdc		-5.3 Vdc		
		V _{CM} + 5.0 Vdc	+ 3.0 Vdc	1.0 Vdc		
		V _D + 5. Vdc	+3.0 Vdc	+3.0 Vdc		
		I _{Out} +100 ma	+75 ma	3.2 ma		
SNC5473T-02	Z 3	$V_1 = 7.0 \text{ Vdc}$	6.2 Vdc	+5.3 Vdc		
		$V_2 = 4.5 \text{ Vdc}$	4.7 Vdc	+4.7 Vdc		
		+0.4 ma	+0.3 ma	+0.2 ma		
	:	I _{Out} - 110 ma	-12 ma	-0.36 ma		
!						
	<u> </u>					
:						
		-				
;	ļ					
	İ	(
	1	1				

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

NENT DERATING SUMMARY PAGE NO. 1

HEATER CONTROL						
COMPONENT NAME & P/N	DIAGRAM	MANUFACTURERS	EPS DERATING	ACTUAL OPERATING LEVEL		
	SYMBOL	RATING	REQUIREMENT	OPERALING DEVEN		
Resistor						
RNC50	R% 13.7K	50 mW	25 mW	3.6 mW		
11	R3 19.1K	"	II .	.43 mW		
11	R4 47.5K	ıı ıı	Ω	1.1 mW		
11	R5 45.3K	11	11	1.8 mW		
**	R6 49.9K	11	11	<1 mW		
U	R8 4.99K	11	11	8.7 mW		
11	R9 665Ω	н	н	1.2 mW		
II .	R10 619Ω	it .	11	5 mW		
ti	R11 1.91K	17	11	3.3 mW		
U	R12 2.61K	11	11	24.2 mW		
II	R13 10.0K	11	11	4.7 mW		
II .	R14 7.68K	II .	11	1 mW		
11	R17 4.99K	1Ì	11	.2 mW		
II	R18 20K	11	11	.8 mW		
RCR07G130JP	R2 13	250 mW	125 mW	30 mW		
RCR20G302JP	R15 3.0K	500 mW	250 mW	243 mW		
RCR07G104JP	R16 100K	250 mW	125 mW	.005 mW		
RCR07G225JP	R19 2.2MΩ	11	11	.17 mW		
RCR07G125JP	R20 1.2MΩ	11	11	.1 mW		
RCR07G104JP	R21 100K	11	11	.16 mW		
Capacitor						
C052R101K2X1C	C1 100pf @ 200V	200V	140V	7V		
C052R100K2X1C	C2 10µf @ 75V	75V	37.5V	30V		
11	C3 10µf @ 75V	75V	37.5V	30V		
	ļ					

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

DERATING SUMMARY PAGE NO. 2

HEATER CONTROL										
COMPONENT NAME & P/N	DIAG RAM SYMBOL		UFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL					
Transistor										
JAN TX 2N2484	Q1 & Q2	V _{CE} V _{EB} T _C	60V 60V 6V 50 ma 360 mW	36V 36V 3.6V 37.5 ma 103 mW	7V 6V 2V 3 ma 1 mW					
JAN TX 2N3421	Ω3	V _{CD} V _{CE} V _{EB} P _D I _C	125V 80V 8V 1 watt 3 Amps	75V 48V 4.8V 286 mv 2.25 amps	30V 1V 1.3 mW 6 ma					
JAN TX 2N3421	Q4	V _{CB} V _{CE} V _{EB} I _C I _B P _D	125V 80V 8V 3 amps 1 amp 1 watt	75V 48V 4.8V 2.25 amps .75 amp 286 mW	30V 30V 1V 100 ma 5 ma 25 mW					
JAN 2N2609	Q5	BV _{GS}	30V 300 mW	18V 100 mW	11V 1 mW					

2

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

	PAGE NO. 5								
HEATER CONTROL									
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL					
Amplifier									
μ A723	A1	V ₊ to V ₋ 40V		30V					
		In-Out Diff: 40V	24V	7V					
		V _{REF} Current 15 ma	11.25 ma	l ma					
		P _D 800 mW	340 mW	100 mW					
		^I C ^{150 ma}	112 ma	5 ma					
JAN TX 1N914	CR1	v _R 75v	45V	30V					
		I _F 75 ma	56 ma	l ma					
Resistor									
RTH06BS472J	R7	TOperate (Max) 125°C		50°C					
Heater									
112558-1	н1								
				•					

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

	COLUMNIT DESCRIPTION DOLLMINT TION NO. T							
TEMPERATURE MONITOR								
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL				
William d 1714	DIMBOD	IVAT TIA/2	KUZOTIOMIMI	OFDARI ING IDVID				
Resistor								
RNC50	R2, R9	50mW	25mW	<1mW				
3260WM39500	R3, R10	200mW	100mW	< lmW				
RNC50	R5, R12	50mW	2.5mW	<lmw< td=""></lmw<>				
3260WM39501	R6, R13	200mW	100mW	<1mW				
RNC50	R7, R14	50mW	25mW	<5mW				
MK-132	R1	.75W	375mW	80mW				
RNC55	R4	100mW	50mW	30mW				
RNC50	R8	50mW	25mW	3.5mW				
Diodes		}						
Diodes	<u> </u>							
1N4901A DT710415D	VRl	12.8V, 400mW	12.8V, 160mW	12.8V, 17mW				
1N4567A DT710415C	VR2	6.4V, 400mW	6.4V, 160mW	6.4V, 7mW				
51,20.00		}		,				
Transistors								
2N3811	Q1, Q2	500mW, V _{CB} =60V	75mw, * V _{CB} =80V	9mW, 8.61, .9ma				
ZNJOII	01, 02		T ====	Jim, G.O., Jima				
		I _C =50ma	I _C =5ma					
			$\star T_J = 100$ T_A	= 50				
			J	,				
		ĺ	-					
			}					
	}							
				ĺ				

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

PAGE NO. 1

DATA PROCESSOR (OUTPUT BUFFER) COMPONENT DIAGRAM MANUFACTURERS EPS DERATING ACTUAL NAME & P/N OPERATING LEVEL SYMPOL RATING REQUIREMENT Resistors RCR05 .092 mW 62.5 mW R1,3,5,7,9, 125 mW Resistor 1/8W 11,13,15,17, 19,21,23,25 Ü 8.1 mW R2,4,6,8,10, 12,14,16,18, 20,22,24,26 R27,28,29 <.3 mW R30,31,32, 33-R41 R42 <2.0 mW <30 mW R43 Capacitor 15 V 10.5 5.3 Cl Elect. Cap. 70 5.3 C2 100 V Ceramic Cap.

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

DATA PROCESSOR (OUTPUT BUFFER)									
COMPONENT	DIAGRAM		CTURERS	EPS DERAT		ACTUAL			
NAME & P/N	SYMBOL	RAT	ING	REQUIREMENT		OPERATING LEVEL			
Integrated Circuits		Rated				Actual	Actual		
		Voltage	Loading	Voltage L	oading	Voltage	Loading		
SN5401	Z1 - All Outputs	7.0 V	16 ma	6.2 V 1	2 ma	_5.3 V	11.87 ma		
SN54L01	Z2, Pin 14	8.0 V	10 loads		.5 oads	11	6 loads		
11	Z2, Pin 3	11	10 loads ISink 2.0 ma	II	10	11	*		
11	Z2, Pin 5	И	10 loads ISink 2 ma	н	91	11	*		
"	Z2, Pin 8	н	10 loads ISink 2 ma	11	P9	n	*		
SN5401	Z3, All Outputs	7.0 V	16 ma	6.2 V 1	.2 ma	II	11.87 ma		
SN54L01	Z4, Pin 8, Pin 14	8.0 V	10	6.8 V 7	. 5	11	*		
ti	Z4, Pin 5	8.0 V	1.0	6.8 V 7	.5	91	*		
SN5401	z 5	7.0 V	16 ma	6.2 V 1	2 ma	H	11.87 ma		
		ļ		*The load is a special SN5401 cho to be driven by Lo-Power device					
	Í	ĺ		I _{Sink} = 2	ma for	"0"			
				I _{Sink} Dera	ated =	1.5 ma			
				1 Low Powe	er Load	= .18 ma pability =	:		
	,				$\frac{1.5}{.18} =$	8.333 Low	Power Loads		
				Special De for 5401 Input		_	ion		
					7.2	Low Power	Loads		

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

PAGE NO. 1

DATA PROCESSOR (SEQUENCER CONTROL & LINE REC.) COMPONENT DIAGRAM MANUFACTURERS ACTUAL EPS DERATING NAME & P/N SYMBOL RATING REQUIREMENT OPERATING LEVEL Integrated Circuits Rated Rated Derated Derated Actual Voltage Loading Voltage Loading Voltage Z1, Pin 14 7.0 V 40 6.2 V 30 <5.3 VZl, Pin 8 Z1, Pin 5 Z1, Pin 3

Actual Loading SN5401 20 10 10 13 22, Pin 2 SN54L04 8.0 V 10 6.8 V 7.5 1 11 Z2. Pin 12 11 Z2. Pin 10 11 22, Pin 6 Z2, Pin 8 11 Z2. Pin 14 1. Z3, Pin 13 SN54L10 ĺ It Z3. Pin 5 1 Z3, Pin 3 3 Z4. Pin 9 SN54L73 11 Z4, Pin 8 1 11 24, Pin 12 3 Z4, Pin 13 1 *The load is a special SN5401 chosen to be driven by Lo-Power device I_{Sink} # 2 ma for "0" I_{Sink} perated = 1.5 ma 1 Low Power Load = .18 ma I_{Sink} perated Capability = $\frac{1.5}{.18}$ = 8.333 Low Special Derated Specification for 5401 Input $\leq 1.3 \text{ ma} = \frac{1.3}{18} = 7.2 \text{ Low Power}$

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

	DATA PROCE			ONTROL &	LINE REC.)	
COMPONENT NAME & P/N	DIAGRAM SYMBOL		ACTURERS	:	RATING	ACTI	
Integrated	DIMBOL	RA	TING	REQUIREMENT		OPERATI	NG LEVEL
Circuits		Rated	Rated	Derated	Derated	Actual	Actual
		Voltage		Voltage	Loading	Voltage	Loading
SN54L00	Z5, Pin 5	8 V	10	6.8 V	7.5	<5.3 V	2
IJ	25, Pin 8	n	lf .	ļ tr	II .	"	1.
11	Z5, Pin 3	ıt.	It	"	"	"	1
Not used	25, Pin 14						
96L02	26, Pin 7	7 V	12	6.2 V	9	t)	1
Not used							
SN54L20	27, Pin 10	8 V	10	6.8 V	7.5	ļ u	1
11	27, Pin 2	n)t	tt tt	H	11	1
11	Z8, Pin 10	11	0	"	11	11	1
If	Z8, Pin 2	i ii	O	н	11	11	1
U	29, Pin 10	11	11	11	ff.	tt.	4
II.	Z9, Pin 2		N	11	Ħ	11	1
11	Z10, Pin 10	н	u	н	IJ	10	4
11	Z10, Pin 2	+ 11	ti.	"	in	11	1.
11	Z11, Pin 10	"	11	· ·	II	11	1.
ti	Z11, Pin 2	11	H	n	II	11	1.
II .	Z12, Pin 10	n	11	u	ti .	10	1
11	Z12, Pin 2	ti	II.	l n	İt	11	1
IT	213, Pin 10	11	H	11	91	11	2
11	Z13, Pin 2	H	97	11	n	. "	1.

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

DATA PROCESSOR (SEQUENCER CONTROL & LINE REC.)								
COMPONENT NAME & P/N	DIAGRAM SYMBOL		CTURERS	EPS DERATING REQUIREMENT		ACTU OPERATIN		
Integrated	OTMBOD	IVEN I	TIMO	KEZUTKI	DMDIAT.	OPERMITE	HAVALL DI	
Circuits		Rated	Rated	Derated	Derated	Actual	Actual	
		Voltage	Loading		Loading	Voltage	Loading	
SN54L04	Z14, Pin 10	8.0 V	10	6.8 V	7.5	<5.3 V	4	
11	Z14, Pin 12	ll ll	ti	l#	17	11	4	
11	Z14, Pin 6	11	lt .	n	11	#	3	
tt	Z14, Pin 8	н	Ħ	17	,11	H .	6	
lf .	Z14, Pin 14	ti i	n	#	11	11	1.	
u .	Z14, Pin 2	U	in .	11	H	H	4	
SN54L00	Z15, Pin 14	l)	li .	"	11	П	1	
Ħ	Z15, Pin 5	11	H	11	H	11	2	
tt	Z15, Pin 3	11	ti	11	H	0	3	
		lt.	11) 1	ir	11	2	
SN54L73	Z16, Pin 12	17	Ħ	11	11) i	3	
11	Z16, Pin 13	le .	H	n	91	lt .	2	
11	Z16, Pin 9	11	11	11	н	11	7	
11	Z16, Pin 8	11	(I	11	11	11	1.	
0	Z17, Pin 12	11	11	11	91	11	1	
o o	Z17, Pin 13	n .	H	11	11	11	1.	
••	Z17, Pin 9	11	ti	l II	11	11	1	
11	Z17, Pin 8	"	ti	н	11	11	1	
ļ								
,								
;					!			
				J				

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

	DATA PRO	CESSOR (SEQUENCER	CONTROL & LINE RE	C.)	
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS	EPS DERATING	ACTUAL	
Integrated	LOAMIC	RATING	REQUIREMENT	OPERATING LEVEL	
Circuits					
		Rated Rated Voltage Loading	Derated Derated Voltage Loading	Actual Actual Voltage Loading	
SN54L04	J	8 V 10	6.8 V 7.5	<5.3 V 3	
#	Z18, Pin 10	10 11	1 11 11	" 4	
II .	Z18, Pin 14	11 11	11 11	" 4	
I I	Z18, Pin 8)	11 0	1	
H	Z18, Pin 6	11 11	11 11	" 1	
11	Z18, Pin 0	10 10		" 1	
SN54L00	219, Pin 5	11 (1	" "	3	
U UULPCNG	Z19, Pin 3	 11 11	1 11 11	" 4	
n .	Z19, Pin 3	# #	11 11	" 2	
11	Z19, Pin 14 Z19, Pin 8	11 11	ti ti	<u> </u>	
SN54L73	Z19, Pin 8 Z20, Pin 12	11 11	11 11	" 5	
נושכמם	220, Pin 12 220, Pin 13	 11 15	11	" 5	
11	Z20, Pin 13	11 11	H H	6	
11		10 11	11 11	0	
	Z20, Pin 8	u u		4	
SN54L04	Z21, Pin 14] '' '' '' '' '' '' '' '' '' '' '' '' ''	0 Л	,	
и	Z21, Pin 6	11 11	11 11	*	
"	Z21, Pin 10	,	0 0	0	
		, "	***	4	
	:				
	1				
	}				
	1	1	1	Į	

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

PAGE NO. 5

DATA PROCESSOR (SEQUENCER CONTROL & LINE REC.) COMPONENT ACTUAL DIAGRAM MANUFACTURERS EPS DERATING NAME & P/N SYMBOL RATING REQUIREMENT OPERATING LEVEL Integrated Circuits Rated Rated Derated Derated Actual Actual Voltage Loading Voltage Voltage Loading Loading <5.3 V SN54L73 Z22, Pin 9 8.0 V 10 6.8 V 7.5 3 11 3 Z22, Pin 8 11 N/A 11 N/A Z22, Pin 8 SN54L00 6 ** Z23, Pin 14 2 Z23, Pin 5 2 Z24, Pin 3 1 SN54L10 11 Z24, Pin 13 1 11 u Z24, Pin 5 2 2 SN54L10 Z25, Pin 13 ## ** 96L02 Z26, Pin 7 7.0 V 12 6.2 V 9 1 11 It Z26, Pin 9 q 1 **Z27** 36 V 21.6 V LM111

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

DATA PROCESSOR (SEQUENCER CONTROL & LINE REC.)								
COMPONENT	DATA PRO		TURERS	EPS DEF		ACTUZ	AT.	
NAME & P/N	SYMBOL	RATI		REQUIREMENT		OPERATING LEVEL		
Diode								
		Rated Voltage	Rated Loading	Derated Voltage	Derated Loading	Actual Voltage	Actual Loading	
HP5082-2827	CRI	PRV=19V I _F =55ma	700 mW	11.5 I _F = 41	315 mW	$1.7 V I_F = .54$.108 mW	
Resistor		-			į			
Resistor 22K	R1, R14, R16		125 mW		62.5 mW	,	<.25 m₩	
Resistor 1K	R2, R15, R17		11		11		<5 m₩	
Resistor 1K	R3, R18, R19		lf .		11		11	
Resistor 10K	R5, R6, R7	 	11		1)		_<.5 mW	
Resistor 100Ω	R8		0		11			
Resistor 10.5K	R9		50		25 mW		.5 mW	
Resistor 51.1K	R10		50		11		25 mW	
Resistor 64K	R11		50		11		2.0 mW	
Resistor 2.94K	R12		50		fr fr		.75 mW	
Resistor 1K	R13	 	125 mW		62.5 mW		12.5 mW	
Resistor 10K	R20		125 mW		62.5 mW		_<2.5 mW	
Resistor 1K	R21		125 mW		62.5 mW		10 μW	
Capacitors								
Ceramic 100Pf	C1, C2, C3	50 V		35 V		_<5.3 V		
Ceramic .1 μf	C4	100 V		70 V		11		
Elect 3.3 µf	C5	15 V		10.5 V		11		
	}	}						
	ļ							
	}					 		
	}					ļ		
	1				_			

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

	DA	TA PROCESSOR (A/D		
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL
Resistor				
MG660	R2	600 mW	300 mW	2.5 μW
RNC50 4.99K	R3	50 mW	25 mW	0
RNC50 11.3K	R4	II .	l II	0
RNC50 9.53K	R5	H	l II	2.5 μW
RNC50 47.5K	R6	H	u	.l mW
Pot. 3260H 10K	R7	200 mW	100 mW	.09 mW
:		50 mW	25 mW	.9 mW
RNC50 Selected	R8	10 INW	1 25 HWA	5 mW
RNC50 4.99K	R9			
MG660 10M	R10	600 mW	300 mW	2.5 µW
RNC50 49.9K	R11	50 mW	25 mW	.2 mW
RNC50 49.9K	R12	"	, , , , , , , , , , , , , , , , , , ,	.2 mW
RNC50 49.9K	R13			.2 mW
RNC50 4.99K	R14	1f	•	5 mW
Capacitor				
Ceramic .1 µf	C3, 4, 6, 7 9, 10, 11, 13, 14	100 V	70 V	8 V
Ceramic 100Pf	C5, 8, 16	50 V	35 V	8 V
Ceramic .01 µf	C12	100 V	70 V	8 V
Polycarbonate 2 µf	C15	50 V	35 V	5 V
Zener Diode				
ln4567A Zener	VR1	400mW @ 3.2mW/°C 336mW @ 70°C 52 ma	39 ma 250 mW	3.4 mW .5 ma

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

	!	DATA PROCESSOR (A/	'D CONVERTER)	
COMPONENT	DIAGRAM	MANUFACTURERS	EPS DERATING	ACTUAL
NAME & P/N	SYMBOL	RATING	REQUIREMENT	OPERATING LEVEL
Integrated Circuits				
			Danshu 3 57u 3 ks ac	Actual Actual
LM108		-	Derated Voltage	Voltage Loading
	23, 21, 22	Supply Voltage ±20 V	±12 V	±8 V ± 8 V 5 V max. 6.4 mW
	Diff. Input	Volt Limited to Su	pply V. ± 8	V -1 111/V
	Power Dissip	ation 500 mW (150°	C/W)	
	I _{out} - Devic	e is short - Circu	it protected	
LM111	Z 4	Supply V 36 V. Total	21.6 V	+8 V
	Diff. Input	 Voltage ±30 V [Cla	mped (+) and (-) '	vith Diodes
		ation 500 mW (150°	1	4
		,		
DAS2132	Z 5		+10.8 V t be derated for proper operation	
	Current swit test current	ched is \leq .1 ma, w	hich is 1/10 of m	anufacturers
	Voltage swit test voltage		which is 1/2 man	ufacturers
	(
	ļ			
	: "			
ı				
: 				
:				

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

	D	ATA PROCESSOR (A/I	CONVERTER)			
COMPONENT	DIAGRAM	MANUFACTURERS	EPS DERATING	ACTUAL		
NAME & P/N	SYMBOL	RATING	REQUIREMENT	OPERATING LEVEL		
<u>Diode</u>						
1N914	CR1, CR2	PRV 250 mW 75 V	45 V 175 mW	5 V .01 mW		
		$I_F = 100 \text{ ma} I_{FD}$	= 50 Actual < 1	ma		
;						
				I		
	<u> </u>					
년 F · · · · · · · · · · · · · · · · · · ·						

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

ONENT DERATING SUMMARY PAGE NO. 1

DATA PROCESSOR (A/D CONTROL)								
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFA RAT	CTURERS ING	EPS DERATING REQUIREMENT			ACTUAL OPERATING LEVEL	
Integrated Circuits		Rated	Rated	Derated	Derated	Actual	Actual	
		Voltage		Voltage	-	Voltage	-	
SN54L01	Z1, Pin 14	8.0 V	10	6.8 V	7.5	_≤5.3 V	*	
0	Zl, Pin 8	11	ti .	11	Ħ	i)	.,	
11	Zl, Pin 5	11	Ü	H	н	Fg	*	
11	Zl, Pin 3	111	Ņ1	11	II	11	*	
SN54L93	Z2, Pin 13	11	11	11	11	11	7	
н	Z2, Pin 9	11	11	1 1	Ħ	11	5	
n .	Z2, Pin 10	lt .	11	11	u	11	5	
II .	Z2, Pin 12	11	Ħ	11	41	11	5	
SN54L00	Z2, Pin 3	11	H	11	91	t)	1	
0	23, Pin 5	11	li	fr fr	ŧ1	11	6	
11	Z3, Pin 8	li li	H	P†	O .	н	2	
11	Z3, Pin 14	ti	lt	t1	1t	Ħ	2	
SN54L73	Z4, Pin 12	11	ti	11	11	91	4	
11	Z4, Pin 9	11	11	10	11	11	5	
96L02	Z5, Pin 9	7.0 V	12	6.2 V	9	H	3	
SN54L01	Z6, Pin 14	8.0 V	10	6.8 V	7.5	n	*	
"	Z6, Pin 8	Ħ	11	11	10	H	*	
11	26, Pin 5	u	ţí	.,	11	11	*	
11	Z6, Pin 3	!!	11	,,	11	н	*	
	20, 1111 5							
			d is a sp er device		5401 chose	en to be d	driven by	
į) Ia =	2 ma for	"0"				
		I D	erated =	1.5 ma				
п					a			
		I Sink Do	erated Ca	pability	$=\frac{1.5}{.18}=1$	8.333 Low	Power Loads	
				H	ation for			
		I Inpu	t <u>≤</u> 1.3 m	$a = \frac{1.3}{18}$	= 7.2 Low	Power Loa	ads	
			•	• 10				
	l	i		I		1		

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

				/	,	- 110	
COMPONENT	DIAGRAM		ESSOR (A) CTURERS	D CONTROL		ACT!	UAL
NAME & P/N	SYMBOL	RAT		REQUIREMENT		OPERATING LEVEL	
Integrated Circuits		Rated Voltage	Rated	Derated Voltage		Actual Voltage	Actual Loading
SN54L93	 Z7, Pin 13	8.0 V	10	6.8 V	7.5	<5.3 V	4
11	27, Pin 9	0.0 0	11	10.00	11		2
11	27, Pin 3	H	11	11	10	11	2
11	{	11	H	1	89	11	4
	Z7, Pin 12	N1	11	,,	ę j	"	*
SN54L01	Z8, Pin 14	, " , "	11	1	P5	,,	*
	Z8, Pin 8						•
"	28, Pin 5	11	ff .	i ii	**	11	т
"	Z8, Pin 3	11	ti .	"	11	11	*
SN54L93	Z9, Pin 13	11	H	**	11	11	4
II .	Z9, Pin 9	11	11	11	11	U U	2
11	Z9, Pin 10	H	11	••	tt -	11	2
11	29, Pin 12	tı .	Ħ	,,	ři .	11	4
SN54L30	Z10, Pin 12	IŤ.	11	11	\$1	н	1
SN54L20	Zll, Pin 2	н	11	,,	11	H	1
SN54L04	Z12, Pin 10	"	u .	••	n n	11	1.
il	Z12, Pin 8	11	ji.	11	11	11	3
19	Z12, Pin 12	lt .	u	11	11	11	1
11	Z12, Pin 14	u u	11	11	n	! !	1
it	Z12, Pin 6	11	II		н	11	2
lf .	Z12, Pin 2	11	Į1	11	11	10	5
	212, F111 2						٠.
		Lo-Powe	er device		5401 chos	en to be	driven by
	ļ	Isink =	= 2 ma fo	r "o"			:
		Isink D	Derated =	1.5 ma			
	Í	1 Low F	Power Loa	d = .18 ma	a		
		I _{Sink} [erated C	apability	$=\frac{1.5}{.18}=$	8.333 Lo	w Power Load:
		Special	L Derated	Specifica	ation for	5401	
		Io Inp	out <u><</u> 1.3	$ma = \frac{1.3}{.18}$	= 7.2 Lo	w Power I	Loads
	-					1	
	1	i		Ĭ		į	

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

DATA PROCESSOR (A/D CONTROL)								
COMPONENT	DIAGRAM		CTURERS	EPS DERATING		ACTUAL OPERATING LEVEL		
NAME & P/N Integrated	SYMBOL	RAT	ING	REQUIREMENT		OPERATIN	التالاتانا كا	
Circuits								
		Rated Voltage	Rated Loading	Derated Voltage	Derated Loading	Actual Voltage	Actual Loading	
SN54L00	Z13, Pin 3	8.0 V	10	6.8 V	7.5	_<5.3 V	2	
11	Z13, Pin 5	11	II .	# 1	11	11	1	
11	Z13, Pin 14	10	16	11	11	10	1	
H	Z13, Pin 8	11	o o	11	11	11	1	
SN54L73	Z14, Pin 12	H	II .	"	11	IJ	4	
U	Z14, Pin 9	48	н	"	11	"	1	
11	Z14, Pin 8	11	11	,,	11	II	1	
SN54L00	Z15, Pin 5	11	11	11	H	11	4	
n .	Z15, Pin 3	*1	**	,,	II .	t ș	6	
n	Z15, Pin 8	11	17	U	11	11	1.	
SN54L01	Z16, Pin 3	IF	II	, ,,	11	11		
SN54L01	216, Pin 14	11	11	H	H	11		
	,							
					:			
Resistors								
Resistor 22K	R1	125 mW		62.5 mW		.25 mW		
Resistor 1K	R2	11				<5 mW		
Resistor 10K	R3					<2.5 mW		
Resistor 1K	R4	11		.,		<.5 mW		
Resistor in	R4					Z. 3 IIIW		
Capacitors								
Ceramic 100 Pf	Cl	50 V		35 V		<5.3 V		
Ceramic .1 µf	C2	100 V		70 V		11		
Elect 3.3 µf	C3	15 V		10.5 V		fi i		
	load is a sp			Į.		Ä		
Isi.	nk = 2 ma for nk Derated =	"O" 1.5 ma	-	1	_	ification	for 5401	
	hk bw Power Load			Input <	1.3 ma =	.18 =		
I _{c:}	Derated Ca	pability	· =	7.2	Low Powe	r Loads		
21	1	.333 Low		hđc				
	.18	•333 TOM	LOMET DO	aus				
	1							

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

	DAT	A PROCESS	OR (COUNT	ER MEMORY	· :)		
COMPONENT	DIAGRAM	MANUFA	CTURERS	EPS DERATING		ACT	
NAME & P/N	SYMBOL	RAT	ING	REQUIRE	MENT	OPERATING LEVEL	
Integrated Circuits		[
		Rated Voltage	Rated Loadings	Derated Voltage		Actual Voltage	Actual Loading
SN54L04	Z1, Pin 12	8.0 V	1.0	6.8 V	7.5	<u>≼</u> 5.3 V	6
11	Z1, Pin 10	11	11	11	11	11	6
11	Z1, Pin 2	11	tı	11	**	11	6
It	21, Pin 6	"	ti	11	ti .	11	6
11	Z1, Pin 8	\$1	n	H	ti	, 1	1
11	Z1, Pin 14	11	11	11	n	11	6
SN54L93	Z2, Pin 13) "	н	ti .	11	11	3
Ħ	Z2, Pin 9] "	ti .	H	H	11	1.
lt .	Z2, Pin 10	11	u .	11	n	H	1
If	Z2, Pin 12	"	II	11	11	11	3
11	Z5, Pin 13		н	11	tt .	ti ti	3
11	25, Pin 9	h 11	11	10	II	11	1.
II .	Z5, Pin 10) n	11	11	11	***	1.
tt	25, Pin 12	1 11	II .	11	II	11	3
II .	26, Pin 13	11	11	II.	11	n	3
It	Z6, Pin 9	"	It	11	į į	ļ "	1
II .	26, Pin 10	11	U	11	Ц	14	1
И	Z6, Pin 12	n n	H	11	31	11	3
						<u></u>	
		}					
						ĺ	
				ļ		•	
				{			
	}	1		J		j	

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

PAGE NO. 2

DATA PROCESSOR (COUNTER MEMORY) COMPONENT MANUFACTURERS ACTUAL DIAGRAM EPS DERATING NAME & P/N SYMBOL REQUIREMENT OPERATING LEVEL RATING Integrated Circuits Rated Rated Derated Derated Actual Actual Voltage Loading Voltage Loading Voltage Loading SN54L93 Z9, Pin 13 8.0 V 10 6.8 V 7.5 <5.3 V 3 11 Z9, Pin 9 # н 1 29, Pin 10 1 11 Z9, Pin 12 н 3 11 11 Z10, Pin 13 11 3 11 Z10, Pin 9 Ħ 11 Ħ 1 o Z10, Pin 10 11 11 Ħ 1. 1É Z10, Pin 12 11 11 3 Z13, Pin 13 11 11 11 3 Z13, Pin 9 11 11 1 11 Z13, Pin 10 Ħ 1 11 Z13, Pin 12 Ħ н H 1 SN54L95 Z3, Pin 9 11 • 1 11 Z4, Pin 9 11 Ħ 1 11 11 11 27, Pin 9 11 1 Z8, Pin 9 11 11 1 11 11 Z11, Pin 9 1 Z12, Pin 9 11 2

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

		ATA PROCE	SSOR (COL				
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFA RAT	CTURERS ING	EPS DERATING REQUIREMENT		ACTUAL OPERATING LEVEL	
Integrated Circuit		Rated	Rated	Derated	Derated	Actual	Actual Loading
CNEAT AT	giá pia o	Voltage	Loading	6.8 V	Loading	Voltage	2
SN54L01	Z14, Pin 8	8.0 V	10	и и	7.5	<5.3 V	2
"	Z14, Pin 3	<i>"</i>	•		•		2
Resistor							
RNC50 4.99K	R1	50 mW		25 mW		5 mW	
RCR05 1.0K	R2	125 mW		62.5 mW		.36 mW	
Capacitor							
.luf Ceramic	Cl	100 V		70 V		<5.3 V	
33µf Elect	C2	15 V		10.5 V		<5.3 V	
•						-	
	<u> </u>			ļ			
	}						
						1	
	}						
	1						
	}						
		1				1	

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

	מת	TA PROCESSOR (MONI		then her T
COMPONENT	DIAGRAM	MANUFACTURERS	EPS DERATING	ACTUAL
NAME & P/N	SYMBOL	RATING	REQUIREMENT	OPERATING LEVEL
Resistor				
RNC50				
Resistor 10.0K		50 Mw	25 mW	2.5 mW
22.1K	R3	"	II .	5.8 mW
21.5K	R4	H	II	1.2 mW
78.7K	R5	II	n	4 mW
100K	R6	II	H	2.5 mW
6.2K	R7	11	II .	4 mW
4.99K	R8	н	11	.06 mW
24.9K	R9	11	11	.25 mW
8.66K	R10	11	11	1.8 mW
8.66K		11	44	1.8 mW
5.11K		11	11	1.2 mW
5.11K		н	11	1.2 mW
100K	R14	11	11	5.3 mW
10.0K		11	n .	.53 mW
10.01	1125			• • •
Diodo				
Diode	an 1	PRV 75V 250mW	PRV 45V 1.75mW	PRV 8V 0 for
JAN TX 1N914	CR1	PRV 75V 250MW	VF @100ma	VF=.01 normal
				1.25ma
JAN TX 1N914	CR2	PRV 75V 250mW	45V 175mW	8V <15 μW
JAN TX 1N914	CR3	PRV 75V 250mW	45V 175mW	8V <1.5 µW
]		
				й
	£			
	1		it	The state of the s

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

COMPONENT DEPOSITING POPULARY THOS IN A							
	DATA PROCESSOR (MULTIPLEXER)						
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS RATING	EPS DERATING REQUIREMENT	ACTUAL OPERATING LEVEL			
Multiplexer							
		Rated Voltage		Actual Voltage			
HS-1000	zı +v _{cc}			<5.3			
O	-V _{EE}	-15		-8.0			
11	Analog Input	±10 V	0	0 +5V			
Resistor							
RNC50 1K	R1	50 mW	25 mW	_<25 mW			
Inductor							
90538-12	rı	133 ma	93 ma	.65 mW 12 ma			
Miller	1.2	220 mW 133 ma	12 mW 93 ma	3.5 mW 28 ma			
Ceramic .lµf	C1	100 V	70 V	<5.3 V			
11 11	C2	100 V	70 V	_<8.3 V			
				71			

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

PAGE NO. 1

1

2

1

		DATA PROC	ESSOR (DA	ATA COMPR	ESSOR)		
COMPONENT NAME & P/N	DIAGRAM SYMBOL	1	CTURERS ING	EPS DERATING REQUIREMENT		ACTUAL OPERATING LEVEL	
Integrated Circuits	GIFINOD		41117		M11, 94-61 -		
		Rated Voltage	Rated Loading	Derated Voltage	Derated Loading	Actual Voltage	Actual Loading
96L02	Z1, Pin 10, Pin 6		12 Loads		8.4		1
SN54L73	Z2, Pin 12	8.0 V	10	6.8 V	7.5	<5.3 V	4
If	22, Pin 13	111	tt	"	+1	II .	4
II	22, Pin 9	11	11	11	Ħ	11	4
SN54L04	23, Pin 14	"	†I		ti	}1	1.
н	23, Pin 2	11	1)	"	11	11	7
0	23, Pin 6	"	11	.,	11	H	7
11	23, Pin 8	ti	O	lt .	ti	H	ı
11	Z3, Pin 12	11	n	11	H	H	2
SN54L73	Z4, Pin 12	lt .	H	ı,	n	11	2
60	Z4, Pin 13	"	17	.,	H	11	1
15	Z4, Pin 9	"	O	H "	п	11	2
u u	Z4, Pin 8	l u	If	"	ti	11	1
If	25, Pin 12	11	†I	"	н	91	2

25, Pin 13

25, Pin 9

25, Pin 8

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY DATA PROCESSOR (DATA COMPRESSOR)

		A PROCESS	OR (DATA	COMPRESS	OR)		
COMPONENT NAME & P/N	DIAGRAM SYMBOL		CTURERS ING	EPS DE REQUIR	RATING EMENT		TUAL ING LEVEL
Integrated							
Circuits							
		Rated Voltage	Rated Loading	Derated Voltage	Derated Loading	Actual Voltage	Actual Loading
SN54L73	Z6, Pin 12	8.0 V	10	6.8 V	7.5	<5.3 V	2
U	Z6, Pin 13	U	n	11	11	11	1
11	Z6, Pin 9	li ji	ti .	, ,,	n	H	2
11	Z6, Pin 8	н	ıţ	l n	II .	17	1
Ħ	27, Pin 12	11	11	0	II.	11	1
н	27, Pin 13	ij	11	и	H	п	1
11	Z7, Fin 9	ŧ1	11	Ü	11	U	2
11	27, Pin 8	H	11	11	11	••	0
SN54L01	Z8, Pin 5	11	11	11	ır	11	*
H	Z8, Pin 8	10	11	\$0	#1	11	*
ii .	Z8, Pin 14	11	11	11	tí	li li	*
u .	z8, Pin 3	11	II	11	11	t t	*
H	Z9, Pin 3	H	I I	11	tt.	11	*
11	Z9, Pin 5	11	11	11	H	H	*
H	Z9, Pin 8	11	11	11	H	jŧ	*
j.	Z9, Pin 14	н	n	11	11	t t	*
9N54L93	Z10, Pin 9	11	Ü	"	11	11	ı
11	Z10, Pin 13	11	11	11	H	u	2
,,	Z10, Pin 10	H	41	11	Ir	†ŧ	1
••	Z10, Pin 12	11	16	it	u	1f	1.
- (1 - (1 - (1 - (1 - (1 - (1 - (1 - (1	*The load is device	a specia	al SN5401	chosen t	to be driv	en by Lo	-Power
	I _{Sink} = 2 m I _{Sink} Derat	na for "0' ed = 1.5	ma	for 540]			tion
	1 Tow Power	Toad ⊭	18 ma	Io Input	t <u>≤</u> 3 ma =	1.3 .18	
	I _{Sink} Derat	ed Capabi	.lity =	7.2 I	Low Power	Loads	
	$\frac{1.5}{.18} = 8.33$	3 Low Pow	er Loads				
				l			

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

<u> </u>			SOR (DATA				
COMPONENT	DIAGRAM		ACTURERS	1	ERATING		TUAL
NAME & P/N	SYMBOL	RAT	ring	REQUII	REMENT	OPERAT	ING LEVEL
Integrated				1			
Circuits		Rated	Rated	Derated	Derated	Actual	Actual
		Voltage	Voltage		Loading	Voltage	
SN54L01	Z11, Pin 3	8.0 V	10	6.8 V	7.5	_<5.3 V	*
11	Z11, Pin 14	11	10	0.5 V	7.3		*
II		,, ,,	U	"	"	11	*
	Z11, Pin 5						
11	Zll, Pin 8	11	II	н	11	11	*
SN5401	Z12, Pin 5	7.0 V	40	6.2 V	30	11	I _{Sink} =
						}	11.87
(I	Z12, Pin 3	H	11		11	11	17
It	Z12, Pin 8	ıi	11		H		16
n	Z12, Pin 14	**	If	,,	11	lı ıı	10
SN54L00	Z13, Pin 3	8.0 V	1.0	6.8 V	7.5		
# DN34E00		0.U V	T.O	0.0 V	/ • D		1
	Z13, Pin 14			}			6
11	Z13, Pin 8	11	(I	11	It	†I	2
H	Z13, Pin 5	H	**	"	ti .	11	1
						į	(Standard Load)
SN54L73	Z14, Pin 12	11	11	"	11	н	4
н	Z14, Pin 9	••	11	"	51	11	2
11	Z14, Pin 8	11	11	"	11	11	2
11	Z15, Pin 9	11	If	,,	ur .	iı	2
O .	Z15, Pin 8	11	It	li li	**	lt .	2
H	Z15, Pin 12	11	11	11	11	11	3
16		11	11		JI .	11	_
	Z15, Pin 13						1
	*The load is device	a specia	al SN5401	chosen t	to be drive	en by Lo	-Power
	I _{Sink} = 2 m	 a for "O"	1	Speci	al Derate	d specif	ication
	Sink "	201 0		for 5		T DPCCII	10001011
	I _{Sink} Derat	eu = 1.5	ma		nput <u>≤</u> 1.3	ma = 1.	3 =
	1 Low Power	Load = .	18 ma 1	5 _ 0 1	7.2 Low Por	l.	.8
	I _{Sink} Derat			цв – '	• 2 HOW PO	Mer noad	. .
	8.333 Low	rower Lo	aas				
						1	

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

					አረጥ	TAT.
SYMBOL				***		NG LEVEL
				Derated Loading		Actual Loading
Z16, Pin 12	8.0 V	10	6.8 V	7.5	_<5.3 V	1
Z16, Pin 13	11	11	11	H	11	3.
Z17, Pin 12	. II	11) 	11	1)	5
Z18, Pin 12	ti	11	11	lt .	l‡	3
Z19, Pin 5	II	11	•1	ii	н	2
Z19, Pin 3	11	11	11	11	11	1
Z19, Pin 14	lt .	II	11	11	†ı	1.
	11	11	"	it	11	2
Z20, Pin 3	11	11	н	11	" (st	l andard Power Load)
Z20, Pin 5		11	11	11	11	1
Z20, Pin 14	n i	If	11	Ħ	lı lı	3
Z21, Pin 14	н	11	u	н	" (St	l andard Power Load)
Z21, Pin 2	11	n	! ••	11	u	1.
Z21, Pin 10	11	11	"	11	н	1
Z21, Pin 6	11	ti .	11	11	" (St	l andard Power Load)
Z21, Pin 8	11	11	91	11	11	6
	DIAGRAM SYMBOL Z16, Pin 12 Z16, Pin 13 Z17, Pin 12 Z18, Pin 12 Z19, Pin 5 Z19, Pin 3 Z19, Pin 3 Z19, Pin 3 Z19, Pin 14 Z19, Pin 8 Z20, Pin 3 Z20, Pin 5 Z20, Pin 14 Z21, Pin 14 Z21, Pin 10 Z21, Pin 6	DIAGRAM SYMBOL RATE Rated Voltage Z16, Pin 12 8.0 V Z16, Pin 13 " Z17, Pin 12 " Z18, Pin 12 " Z19, Pin 5 " Z19, Pin 3 " Z19, Pin 3 " Z20, Pin 3 " Z20, Pin 3 " Z20, Pin 4 " Z21, Pin 14 " Z21, Pin 10 " Z21, Pin 6 "	DIAGRAM SYMBOL Rated Rated Voltage Loading Z16, Pin 12 8.0 V 10 " " " " " " " " " " " " " " " " " "	DIAGRAM SYMBOL RATING REQUIR Rated Rated Voltage Loading Voltage Z16, Pin 12 8.0 V 10 6.8 V Z16, Pin 13 " " " Z17, Pin 12 " " " Z18, Pin 12 " " " Z19, Pin 5 " " " Z19, Pin 3 " " " Z19, Pin 8 " " " Z20, Pin 3 " " " Z20, Pin 14 " " " Z21, Pin 14 " " " Z21, Pin 16 " " " Z21, Pin 6 " " " Z21, Pin 6 " " " "	Rated Rated Voltage Loading Z16, Pin 12 8.0 V 10 6.8 V 7.5 Z16, Pin 12 " " " " " Z17, Pin 12 " " " " " " " " Z18, Pin 12 " " " " " " " " " " " Z19, Pin 5 " " " " " " " " " Z19, Pin 3 " " " " " " " " " " " " " " Z19, Pin 8 " " " " " " " " " " " " " " " " " "	DIAGRAM

ELECTRON-PROTON SPECTROMETER COMPONENT DERATING SUMMARY

DATA PROCESSOR (DATA COMPRESSOR)

DATA PROCESSOR (DATA COMPRESSOR)								
COMPONENT NAME & P/N	DIAGRAM SYMBOL	MANUFACTURERS	EPS DERATING	ACTUAL				
WANTE & F/N	SIMBOL	RATING	REQUIREMENT	OPERATING LEVEL				
Resistors				J				
		Rated	Derated	Actual				
		Loading	Loading	Loading				
RNC50	R1	50 mW	25 mW	5.19 mW				
Resistor	70 70	50 mil	7) C LT	20 4				
RNC50	R2, R3	50 mW	25 mW	20.4 mW				
RNC50	R4	50 mW	25 mW	.653 mW				
RNC50	R5	50 mW	25 mW	2.6 mW				
22K	R9, R6, R11 R13	125 mW	62.5 mW	1.3 mW				
lK	R7, R10, R12, R14	125 mW	62.5 mW	3.6 μW				
lK	R8, R16, R17, R15, R25, R19, R18, R24	125 mW	62.5 mW	<5 mW				
18K	R23	50 mW	25 mW	<.3 mW				
10K	R21; R22,	125 mW	62.5 mW	<.5 mW				
	R20			1				
Capacitors								
Ceramic Cap.	C1	50 V	35 V	<5.3 V				
Ceramic Cap. 100 Pf	C2, C3, C4,	50 V	35 V					
Ceramic Cap. .01µf	C6	100 V	70 V	11				
Elect	С7	1.5 V	10.5 V	li li				
Transistor								
JAN TX 2N2222	Q1	V _{CEO} =40V	24V	<10.6V				
		V _{CB} =75V 500mW	45V 245mW					
		$V_{EB} = 6V$	3.6♥	<u><</u> 2.8∨				
JAN TX 2N2222	Q2	V _{CEO} =40	24V	<10.6V				
		V _{CB} =75 500mW	45V 245mW	<10.6V 2.5 mW				
		V _{EB} =6	3.6V					

APPENDIX

DERATING GUIDELINES FOR EEE PARTS, EPS EXPERIMENT

1.0 Introduction

These guidelines give basic information for defining the rating of electrical, electronic and electromechanical parts. The derating percentages and application notes will assist the designer in obtaining reliable operation of component parts used in manned space mission requirements. This document shall be used to the extent specified in the contract.

2.0 Purpose

Derating is a technique whereby a part is selected to have a manufacturer's rating well in excess of the stress values that the part will actually experience. By decreasing mechanical, thermal and electrical stresses, the possibility of degradation or catastrophic failure is lessened.

3.0 Resistor Derating

3.1 <u>Derating Factors</u>

The resistor derating factors shown in Table 3.1 will require the application of the principles shown in the following sections. In all cases the derated percentages do not include the known or allowed changes due to temperature or frequency. The applicable percentages or ratios should be applied to the characteristics or ratings taking into consideration the temperature or frequency of actual operation.

3.2 <u>Precautions</u>

3.2.1 Power Deratings

The objective of power deratings is to establish the worst case hot spot temperature for the resistor. The power in a resistor causes the temperature to rise above ambient temperature by an amount directly related to the amount of power dissipated. The maximum power can vary due to maximum voltage limitation.

Table 3-1
RESISTOR DERATING

Resistor Type (Fixed, unless	Maximum Permissible Percentage of Manufacturer's Stress Rating					
othervise noted)	Rated Power (See Note 2)	Voltage (See Note 1)	Current			
Composition	50	80	75			
Film, High Stability	50	80	75			
Film, Gen'l Purpose	50	80	75			
Wirewound Accurate	50	80	75			
Wirewound Power	50	80	75			
Thermistor	50	80	75			
Variable, all		80	75			
			(See Note 3)			

NOTES:

- 1. Voltage applied should be no more than \sqrt{RP} , where P is the derated maximum power, but in no case should the voltage exceed 80% of the published rating as shown in this table.
- 2. The derating percentage is applied after the permissible power is determined from the manufacturer's rating when all conditions and recommendations are observed. Rated power figure shown is based on resistors being mounted separately. Multiply rated power by 0.8 when resistors are mounted in close proximity.
- 3. Current in variable resistors is as designated for any portion of the winding.

3.2.1 (continued)

Computations of derated power apply to the maximum power permissible under conditions of voltage or ambient pressure. The derating percentage is applied after the permissible power is determined from the manufacturer's rating when all conditions and recommendations are observed.

- 3.2.1.2 The thermal conductivity implied by the listed derating is based on the following assumptions:
 - a. The resistor is mounted in air at normal atmospheric pressures.
 - b. Air is free to circulate by normal convection.
 - c. The device is attached by its leads to an infinite heat sink placed at the rated distance from the body.
 - d. The ability of a resistor to dissipate heat will be decreased by:
 - 1. longer leads
 - 2. restricted air circulation
 - 3. radiant heat reflected from adjacent areas
 - 4. reduced air pressures.
 - e. The ability of a resistor to dissipate heat will be increased by:
 - 1. shorter leads
 - 2. increased air circulation
 - 3. surrounding the resistor with an encapsulating having a thermal conductivity superior to air.
- 3.2.1.2 Chassis mounted resistors are designed to conduct most of the heat through the chassis. The rated power assumes the connection is made to an infinite heat sink. Power ratings require reduction in accordance with the thermal resistivity of the mounting surface and its temperature.

3.2.2 Voltage Derating

The voltage shall be derated to a percentage of the maximum allowable voltage as determined from the manufacturers rating. This voltage may be limited by derated power as well as the maximum voltage of the resistor. The derated voltage shall be the smaller of the two voltages.

$$v_d = c_v v_r$$

$$V_{d} = \sqrt{P_{d}R}$$

where:

V_d = derated voltage

P_d = derated power

C_v = derating constant= percentage derating/100

V_r = rated voltage

R = resistance value

3.2.3 Maximum Hot Spot Temperature

The maximum hot spot temperature of a resistor is defined as the highest temperature of any point on the resistor due to any combination of ambient temperature rise due to heating.

3.2.4 <u>Inductance Effects</u>

All resistors have inductance which varies from very small values for some film types. This effect increases as the number of forms required to spiral a resistor and is normally maximum on a wire wound resistor. Wire wound resistances termed noninductive are wound to decrease inductance but this is usually only effective for very low frequencies.

3.2.5 <u>Capacitance Effects</u>

Capacitance effects in resistors are usually much less serious than inductive effects but consideration is necessary and increasingly important as frequency is increased.

3.2.6 Resistance Change with Frequency

The change of resistance with frequency due to skin effects and other causes can become very severe at frequencies above 2 MHz. Some types of resistors will have effective high frequency resistance (as low as 30 percent at 50 MHz in one case). In general, the thickness of the resistance element and value of resistance must be considered. The ratio of resistance at any frequency/dc resistance is nearest to 1 for very thin films and very low resistance values.

3.2.7 <u>Current in Variable Resistance</u>

The current in a variable resistance computed from allowable power is determined for the full winding and maximum resistance. The current in any portion of the winding shall not exceed the derated current determined for the full winding.

3.3 Examples

Power Rating

Maximum continuous rated watts @ 70°C ambient based on load life test

Temperature deratings

1/2W resistor

$$P = 0.5 - \frac{0.5}{80} (T - 70)$$

@ T = 85°C F = 0.5 -
$$\frac{0.5}{80}$$
 (15) = 0.5 - $\frac{7.5}{80}$ = 0.406W

1/4W resistor

$$P = 0.25 - \frac{0.25}{80}$$
 (t - 70)
 $Q T = 85^{\circ}C$ $P = 0.25 - \frac{0.25}{80}$ (15) = 0.25 - 0.0469
= 0.203W

1/8W resistor

$$P = 0.125 - \frac{0.125}{60}$$
 (T - 70)
 $Q T = 85^{\circ}C$ $P = 0.125 - \frac{0.125}{60}$ (15) = 0.125 - 0.0312
 $= 0.094W$

3.3 (continued)

ģ

For 1/2W resistor derated to 85°C ambient temp.

 $P_{D_{max}} = 0.406 \text{ watts}$

Flight derating to 40% yield

 $P_{\text{Fmax}} = 0.1624W = 162.4 \text{ mw}$

For 1/4W resistor

 $P_{D_{max}} = 0.203 \text{ watts}$

 $P_{Fmax} = 81.2 \text{ mw}$

For 1/8W resistor

 $P_{D_{\text{max}}} = 94 \text{ mw}$

 $P_{F_{max}} = 37.6 \text{ mw}$

4.0 Semiconductor Derating

4.1 Derating Factors

The Semiconductor device derating factors, shown in Table 4-1, shall be applied after all deratings stated or implied by the part manufacturer have been used in the circuit design. Table 4-1 shows the maximum allowable percentage of voltage and current and the limit of junction temperature to be applied.

5.0 Power Derating

The objective of power derating is to hold the worstcase junction temperature to a value lower than the normal permissible rating. The actual temperature rise per unit of power will be considerably less, but is not a value which can be readily determined for each unit.

5.1 Junction Temperature Derating

Junction temperature derating requires the determination of ambient temperature or case temperature. The worst-case ambient temperature or case temperature for the part shall be established for the area and for the environmental conditions which will be encountered in service. The ambient temperature for a device which does not include some means for thermal connection to a mounting surface shall

Table 4-1
SEMICONDUCTOR DEVICE DERATING FACTORS

Semiconductor	Max.	Vol	tage Deratin		Current	
Type	Junction Temp T	Design Max V _{max}	Continuous Peak ^V Peak	Instant Surge ^V Surge	Derate 1	
Diode, General Purpose	Silicon, 100°C	60%	75%	90%	75%	
Diode, Switching, Low Pover	Silicon, 100°C	60%	75%	90%	75%	
Diode, Switching, Power	Silicon, 100°C	60%	75%	90%	75%	
Diode, Rectifier, Low Power	Silicon, 100°C	60%	75%	90%	75%	
Diode, Rectifier, Power	Silicon, 100°C	60%	75%	90%	75%	
Diode, Regulator, Low Power	Silicon, 100°C		Reverse Voltage Cannot be Derated			
Diode, Regulator Power	Silicon, 100°C	Rever be De	75%			
Diode, Voltage Reference	Silicon, 100°C	Reverse Voltage and Cur- rent Cannot be Derated			75%	
Transistor, High Frequency	Silicon, 100°C	60%	75%	90%	75%	
Transistor, High Freq. Power	Silicon, 100°C	60%	75%	90€	75%	
Transistor, Switch, Low Power	Silicon, 100°C	60%	75%	90%	75%	
Transistor, Switch, High Power	Silicon, 100°C	60%	75%	90%	75%	
Transistor, Gen. Purpose	Silicon, 100°C	60%	75%	90%	75%	
Transistor, Gen. Purpose, Power	Silicon, 100°C	60%	75%	90%	75%	
Transistor, Field Effect, Junction	Silicon, 100°C	60%	75%	90%	75%	
Integrated Circuit, Digital Logic	Silicon, 100°C	60%	75% where appl	90%	75%	
Integrated Circuit, Linear Amplifier	Silicon, 100°C	60%	75% where appl	905	75%	

5.1 (continued)

include the temperature rise due to the device adjacent devices and any heating effect which can be encountered in service.

5.2 Thermal Resistivity to Air

The thermal resistivity to air is expressed in degrees C per watt (or milliwatt) or its reciprocal; derating factor, which is usually expressed in milliwatts per degree C.

5.3

The maximum power for devices rated to case temperature is established as follows: Devices used in spacecraft application are generally thermally connected to a heat sink, since flowing air is usually not available as a coolant. By proper power derating, the case temperature can be controlled.

The thermal resistivity, junction to case (θ_{j-c}) or the thermal derating factor, is used to determine acceptable power for a maximum junction temperature whem the case temperature is controlled.

Maximum power shall be determined from the case temperature of the device measured under the most severe operating conditions. The equation to be used is:

$$P_{\mathbf{w}}(\text{max}) = \frac{T_{jo} - T_{c}}{\theta_{j-c}}$$

where:

 θ_{j-c} is the thermal resistance of the device rated to case

T is the measured case temperature

T io is the derated junction temperature.

Where a cooling medium is available, the above formula can be used by substituting the manufacturer's thermal resistivity rating where available for the device rated to air (θ_{j-1}) for the θ_{j-1} in the equation above. θ_{j-1} is established for the conductance of air at one foot per second velocity and at 25°C. Where the coolant differs from that conductance, the derating shall be changed to correspond.

5.4 (continued)

Continuous peak voltage is the voltage at the peak of any signal or continuous condition which is a normal part of the design conditions. A continuous peak voltage is the highest voltage which can be observed on an oscilloscope under any normal operating condition.

Design maximum voltage is the highest average voltage. This is essentially the dc voltage as read by a dc meter. The ac signals can be superimposed on the dc voltage allowing a higher peak voltage providing the continuous peak voltage is not exceeded.

6.0 Integrated Circuit Deratings

6.1 Derating Factors

The percentage power and voltage deratings of the semiconductor section are also applicable to integrated circuits where pertinent. Normally the limitations of the discrete devices have been incorporated into the design of the internal circuits and cannot be changed. The pertinent deratings for design of equipment is to select the permissible voltage swings of power supply and the input signal to 60 percent of the acceptable limits of the manufacturer's data sheet as shown below:

6.2 Precautions

Power supply voltage derating shall be determined as follows:

Derated Minimum Voltage $(V_{MIN}(d)) = V_{NOM} - 0.6 (V_{NOM} - V_{MIN})$

Derated Maximum Voltage $(V_{MAX} (d)) = V_{NOM} + 0.6 (V_{MAX} - V_{NOM})$

where V_{NOM} = Manufacturer's rated nominal voltage

V_{MAX} = Manufacturer's rated maximum voltage

V_{MTN} = Manufacturer's rated minimum voltage.

Fan in and fan out loading shall be held to 75% of manufacturer's rated load.

6.2 <u>Voltage Derating</u>

The voltage rating of a device can vary with temperature, frequency or bias condition. The rated voltage implied by the tabulated ratings is the voltage compensated for all factors determined from the manufacturer's data sheet. The reliability derating consists of the application of a percentage figure to the voltage determined from all factors of the rating. Three separate deratings are given to cover the conditions which can be experienced in any design situation.

Instantaneous Peak Voltage Derating - This derating is the most important and least understood derating, and is required to protect the device against the high voltage transient spike of voltages which can occur on power lines, as a result of magnetic energy stored in inductors, transformers or relay coils. Transient spikes also can result from momentary unstable conditions which cause high amplitude oscillation during switching turnon or turnoff.

Transient spike or oscillating conditions in test sets, life test racks or due to the discharge of leakage or static electricity will cause minute breakdown of surfaces or the bulk of the semiconductor. The minute breakdown may not cause failure but can cause a substantial increase in the probability of failure during service.

Lightning transients which enter a circuit along power lines or couple from conducting structural members are a frequent cause of failure or damage which increases the probability of failure during service.

7.0 Capacitor Deratings

7.1 Use of Table 7-1

The capacitor denating factors, shown in Table 7-1, shall be applied after all denatings, stated or implied by the part manufacturer, have been used in the circuit design. The table shows the maximum allowable percentage of voltage and current to be applied to the conventionally denated condition for use in manned spaceflight applications.

7.2 <u>Procautions</u>

- 7.2.1 Do not exceed the current rating of any capacitor, taking into account the duty cycle. Provide series resistance in charge/discharge circuits. In particular, solid tantalum types shall have an effective series impedance of at least 3 ohms/volt.
- 7.2.2 Include dc, superimposed peak ac, peak pulse and peak transients when calculating the voltage impressed on capacitors.
- 7.2.3 The manufacturer's recommendation for frequency, ripple voltage, temperature, etc., shall also be followed for further derating.

Table 7-1
TABULATED DERATINGS FOR CAPACITORS

	Maximum Permissible Percentage of Manufacturer's Stress Rating						
Capacitor Type	Applicable Note	Maximum DCWV	Voltage	Current			
Fixed: Ceramic	1	100-200	70	70			
Electrolytic Tantalum Foil (Non-Sclid) Non-polarized	3	6-150	70	70			
Polarized	2&3	6-150	70	70			
Electrolytic (Solid)	For polar- ized and non-polar- ized.	up to 35	70	70			
Non-polarized	3	Above 50 to 75	65	70			
Polarized	2&3	Above 50 to 75	60	70			
Plastic or Paper Plastic	1		90	70			
Glass & Vitreous Enamel	1		90	70			
Mica	1.		90	70			
Variable: Air		250-1000	30	70			
Ceramic		200-500	50	70			
Glass		500-1250	50	70			

NOTES:

- 1. The specified working voltage of a capacitor is the maximum voltage which can be applied for any period of time without a risk of damage or destruction of the dielectric.
- 2. Signal or ripple voltages on a capacitor can cause damage to a polarized capacitor by impressing a very short duration reverse voltage on the dielectric. Unintentional oscillation can be a cause of occasional overload on a capacitor.

Table 7-1 (continued)

3. Circuit designs must include series protection to limit the surge current to within the derated current limit under any combination of voltage which can be encountered from ripple, continuous signal, momentary transient or unstable conditions.

8.0 Transformers, Coils and Chokes Derating

The ratings and deratings of transformers, chokes and coils are covered in the following paragraphs. Transformers are frequently designed for a particular application and often become a major source of heating of other components. Two major considerations result: derating of transformers must include consideration of their heating of other components, and transformers are seldom rated by power, and derating requires control of ambient plus wanding temperature rise to insure a maximum winding temperature.

8.1 <u>Derating Voltage</u>

8.1.1 Winding Voltages

Winding voltages are fixed voltages and cannot be derated to any significant degree as a means of improving reliability. The small changes in output voltages due to factors other than turns ratio is included in the expansion factors in Table 8-1.

8.1.2 Voltages Between Windings or Windings and Case

The voltages present between any two windings, between any winding and case or between any winding and shield as specified, shall be derated in accordance with the voltage derating factors of Table 8-1.

8.2 Power Derating

The power dissipated in a transformer shall be derated to control the winding temperature to the maximum derated temperature under full load conditions which are normal to the worst case service conditions.

Temperature rise shall be determined for service conditions by measurement of winding resistance using the procedure of MIL-T-27B, Section 4.8.10.

The total power in any transformer shall be controlled to provide the derated temperature independent of the maximum allowable current in any individual winding after derating. Restated, this means that the total temperature rise cannot be exceeded, though the total derated currents and voltages would indicate a higher derated power.

8.2 (continued)

The insulation grade of a transformer is rated for maximum operating temperatures. The transformer grade normally includes the maximum operating temperature rating. Deratings shown by Table 8-1 are allowances of temperature to be subtracted from the maximum rated temperature to determine derated temperature. All considerations of frequency, or Other factors included in the manufacturers data shall be allowed prior to the application of this reliability derating temperature.

8.3 <u>Derating Current</u>

The maximum current in each winding shall be derated in accordance with the percentage deratings shown in Table 8-1. The derated current shall be considered as the largest current which can flow in the winding under any combination of operating conditions.

Inrush transient currents shall be limited to the maximum allowable inrush or surge rating of the transformer as shown in Table 8-1.

The current in all windings combined shall not cause a combined excess of power dissipation or temperature in excess of derated temperature.

Table 8-1

TABULATED DERATINGS FOR
TRANSFORMERS, COILS AND CHOKES

	Max. Permissible Percent of Mfg's Stress Pating				Winding
Type of Coil	Ncte Applicable Section	Voltage		Current Rated Temp.	
		Maximum	Transient	Operating	Less
Coil, Irductor Saturable Reactor	8.1-8.3	60ક	908	60%	30°C
Coil, Radio Frequency, Fixed	8.1-8.3	60%	90%	70%	30°C
Inductor, Gen.	8.1-8.3	60%	90%	70%	30°C
Transformer, Audio	8.1-8.3	60%	90%	70%	30°C
Transformer Pulse Low Power	8.1-8.3	60%	90%	70%	30°C
Transformer, Power	8.1-8.3	60ቄ	90%	70%	30°C
Transformer, Radio Frequency	8.1-8.3	60ቄ	90%	70%	30°C
Transformer, Saturable Core	8.1-8.3	60%	90.8	50%	30°C

EXAMPLES OF SEMICONDUCTOR CHARTS

ļi ķ

in the opening the

)

i i

A Control of the Control of the

THE RESERVE AND ASSESSED.