2023 年度京都大学線形代数学(演義) A 第3回宿題解答例

中安淳

2023年5月19日

- 宿題 13

a,b を $(a,b) \neq (0,0)$ を満たす実数として、平面上の原点 を通る直線 $\ell: ax+by=0$ を考える。平面上の点 (x,y)から ℓ へ引いた垂線と ℓ の交点を (s,t) とする時、(x,y)を (s,t) に対応させる写像 $f: \mathbb{R}^2 \to \mathbb{R}^2$ は線形写像である ことを示し、f を表現する行列 A を求めよ。

(s,t) を計算すると、 ℓ 上の点なので

$$as + bt = 0.$$

また、(x,y) と (s,t) を通る直線がベクトル (a,b) と平行なので

$$b(x-s) = a(y-t).$$

以上より連立一次方程式

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ ay - bx \end{pmatrix}$$

を得てこれを解くと

$$\begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ ay - bx \end{pmatrix}$$

$$= \frac{1}{a^2 + b^2} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} 0 \\ ay - bx \end{pmatrix}$$

$$= \frac{1}{a^2 + b^2} \begin{pmatrix} -aby + b^2x \\ a^2y - abx \end{pmatrix}$$

$$= \frac{1}{a^2 + b^2} \begin{pmatrix} b^2 & -ab \\ -ab & a^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} .$$

よって、f は線形写像でありそれを表現する行列は

$$A = \frac{1}{a^2 + b^2} \begin{pmatrix} b^2 & -ab \\ -ab & a^2 \end{pmatrix}.$$

$$A = I - \frac{\boldsymbol{a} \otimes \boldsymbol{a}}{\boldsymbol{a} \cdot \boldsymbol{a}}$$

と表されます。高次元への一般化も容易で便利な公式です。

行列
$$A = \begin{pmatrix} 0 & i & 1 & -i \\ i & 2 & -i & -1 \\ 1 & -i & 0 & i \\ -i & -1 & i & 2 \end{pmatrix}$$
 の逆行列を求めよ。

解答
$$X = I - A = \begin{pmatrix} 1 & -i & -1 & i \\ -i & -1 & i & 1 \\ -1 & i & 1 & -i \\ i & 1 & -i & -1 \end{pmatrix}$$
 はべき零行列で

$$X^2 = Q$$

がわかる。よって、第5回講義の最後の問にあるようにA=I-X は正則行列で、 $A(I+X)=I-X^2=I$ なので、 $A^{-1} = I + X$ である。従って A の逆行列は $A^{-1} = I + X =$

$$\begin{pmatrix} 2 & -i & -1 & i \ -i & 0 & i & 1 \ -1 & i & 2 & -i \ i & 1 & -i & 0 \end{pmatrix}$$
である。

き零行列 X を思いつくのは至難の業だと思いま す。そのような場合はn次元のケーリー・ハミルトンの定理か ら逆行列は元の行列の高々n-1次の多項式で表されるという 事実があるので、 A^2 などの計算から始めることが有効です。

$$A^{2} = \begin{pmatrix} -1 & 2i & 2 & -2i \\ 2i & 3 & -2i & -2 \\ 2 & -2i & -1 & 2i \\ -2i & -2 & 2i & 3 \end{pmatrix} = 2A - I.$$

注意
$$\mathbf{a} = (a,b)$$
 とおくと、テンソル積 $\mathbf{a} \otimes \mathbf{a} = \begin{pmatrix} a^2 & ab \\ ab & b^2 \end{pmatrix}$ と $\mathbf{A} = (a,b)$ とおくと、テンソル積 $\mathbf{a} \otimes \mathbf{a} = \begin{pmatrix} a^2 & ab \\ ab & b^2 \end{pmatrix}$ と 内積 $\mathbf{a} \cdot \mathbf{a} = a^2 + b^2$ を用いて、今回の行列 A は $\mathbf{A} = I - \frac{\mathbf{a} \otimes \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}$ $\mathbf{A} = I - \frac{\mathbf{a} \otimes \mathbf{a}}{\mathbf{a} \cdot \mathbf{a}}$ である。

をするのが良いです。