builds on code from Homework 5

XOR problem

this is an example do not copy

create your own problem

must be non-linearly separable

create neural networks to learn each of these classification problems using Keras (using multi-layer neural networks)

Q1. create an XOR problem

- Q2. create a neural network that learns XOR problem
- pick network architecture and its settings
- hold out 20% of the training data for validation
- document your explorations and justifications

Q3. plot training accuracy x epoch, plot loss and val_loss by epoch, show "3D plot" of testing patterns

Q4. create your own problem

this is an example do not copy

Q5. create a neural network that learns your problem

Q6. plot training accuracy x epoch, plot loss and val_loss by epoch, show "3D plot" of testing patterns

Note that sometimes you can hit long plateaus in the error surface, depending on the random initialization of the weight and the randomization of the training patterns.

We're looking for your architecture to learn the problems most of the time

Note that sometimes you can hit long plateaus in the error surface, depending on the random initialization of the weight and the randomization of the training patterns.

We're looking for your architecture to learn the problems most of the time

Reminder: implementing multi-layer networks in Keras

sigmoid activation function

sigmoid activation function

sigmoid activation function

Reminder: implementing multi-layer networks in Keras

```
from tensorflow.keras import models
from tensorflow.keras import layers
network = models.Sequential()
nin = 4
nhid1 = 5
nhid2 = 2
nout = 3
network.add(layers.Dense(nhid1,
                         activation='sigmoid',
                         input shape=(nin,)))
network.add(layers.Dense(nhid2,
                         activation='sigmoid'))
network.add(layers.Dense(nout,
                         activation='sigmoid'))
```

Reminder: implementing multi-layer networks in Keras

```
network.compile(optimizer='sqd',
                loss='mean squared error',
                metrics=['accuracy', 'mse'])
history = network.fit(train patterns,
                       train teach,
                       verbose=True,
                      validation split=.1,
                       epochs=20,
                      batch size=128)
out test = network.predict(test patterns)
```

Softmax Output Nodes

$$o_k = \frac{\exp(net_k)}{\sum_{m} \exp(net_m)}$$

 $\frac{\exp(net_k)}{\sum \exp(net_m)}$ softmax output activation function often used with classification networks

guarantees that the output activities sum to one - like probabilities

Softmax Output Nodes

$$o_k = \frac{\exp(net_k)}{\sum_{m} \exp(net_m)}$$

 $\frac{\exp(net_k)}{\sum \exp(net_m)}$ softmax output activation function often used with classification networks

in a real neural model, this would be implemented by "divisive normalization"

> guarantees that the output activities sum to one - like probabilities

$$o_k = \frac{1}{1 + \exp(-net_k)}$$

imagine a single output node assuming a sigmoidal activation

$$o_k = \frac{1}{1 + \exp(-net_k)} = \frac{\exp(net_k)}{\exp(net_k) + 1}$$

imagine a single output node assuming a sigmoidal activation

$$o_k = \frac{\exp(net_k)}{\sum_{m} \exp(net_m)}$$

softmax output activation is in a sense a generalization of the sigmoid

$$o_k = \frac{1}{1 + \exp(-net_k)} = \frac{\exp(net_k)}{\exp(net_k) + 1}$$

imagine a single output node assuming a sigmoidal activation

$$o_k = \frac{\exp(net_k)}{\sum_{m} \exp(net_m)}$$

softmax output activation is in a sense a generalization of the sigmoid, but where outputs activations sum to 1.0 (like probabilities)

metrics
additional
information
stored

Softmax Output Nodes

& Categorical Cross-Entropy Loss

$$o_k = \frac{\exp(net_k)}{\sum_{m} \exp(net_m)}$$

(instead of mean-squared error)
a different objective (loss) function

$$Err = C = -\sum_{k} t_{k} \ln(o_{k})$$

categorical cross-entropy (assuming incremental learning)

Softmax Output Nodes & Categorical Cross-Entropy Loss

$$o_k = \frac{\exp(net_k)}{\sum_{m} \exp(net_m)}$$

 $o_k = \frac{\exp(net_k)}{\sum \exp(net_m)}$ (*instead of mean-squared error*) a different **objective** (**loss**) function (instead of mean-squared error)

$$Err = C = -\sum_{k} t_{k} \ln(o_{k})$$

 $-\frac{\partial C}{\partial w_{ik}} = \sum_{k'} \frac{\partial C}{\partial o_k} \frac{\partial o_k}{\partial net_k} \frac{\partial net_k}{\partial w_{ik}}$

$$-\frac{\partial C}{\partial w_{jk}} = (t_k - o_k) \frac{\partial net_k}{\partial w_{jk}} = (t_k - o_k) h_j$$

after a bunch of Calculus and algebra

note that this also helps with the vanishing gradient problem at output layer

categorical cross-entropy (assuming incremental learning)

Softmax Output Nodes & Categorical Cross-Entropy Loss

need to use this for any classification networks (including Homework 6)

classification network with multiple output nodes

Sigmoid Output Nodes & Binary Cross-Entropy Loss

need to use this for any classification networks (including Homework 6)

classification network with single (binary) output

it might <u>not</u> be better than sdg

additional information stored

Choice of Optimizers

differences between optimizers is a mathematics/ engineering/computation topic, not a computational neuroscience topic

more modern optimizers, like adam, can fit parameters of a neural network more efficiently than sgd, but potentially at the cost of poorer generalization - the "right" optimizer depends on the neural network and the goals of modeling

https://keras.io/api/optimizers/