Code: 9A05407

B.Tech II Year II Semester (R09) Regular & Supplementary Examinations, April/May 2013

FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 hours Max Marks: 70

Answer any FIVE questions All questions carry equal marks

1 (a) Describe the following languages over the input set $A = \{a, b\}$

(i)
$$L_1 = \{a, ab, abb, aba\}$$
 (ii) $L_2 = \{a^n b^n \mid n > 1\}$ (iii) $L_3 = \{a^n b^n \mid n > 0\}$

(b) What is the Kleen closure? Let $\sum = \{a,b\}$ obtain:

$$\Sigma^* = \Sigma_0 \cup \Sigma_1 \cup \Sigma_2 \cup \Sigma_3 - \cdots$$
.

- 2 Find the Minimal DFA's for the language $L = \{a^n b^m, n \ge 2, m \ge 1\}$.
- 3 (a) Write a regular expression to denote a language L which accepts all the strings which begin or end with either 00 or 11.
 - (b) Construct a R.E. for the language which accept all strings with at least two c's over the set $\Sigma = \{c, b\}$
 - (c) Construct a R.E for the language over the set $\Sigma = \{a, b\}$ in which the total number of a's are divisible by 3.
- 4 (a) Construct the CFG for set of all strings over {a, b} consisting of equal number of a's and b's
 - (b) Give CFG for $L = \{a^n b^m | n >= 1, m > 1\}.$
- 5 (a) In a CFG, a variable A is live if A ==>* x. Give a recursive definition and corresponding algorithm to find live variables in a given CFG.
 - (b) Convert the following CFG into CNF.

S → ABC / BaB

 $A \rightarrow Aa/BaC/a$

 $B \rightarrow bBb/a$

 $C \rightarrow aC/bC/c$

- 6 (a) Define a PDA. Design a PDA for $L = \{xcx^r / x \in \{a, b\}^*\}$. Process the string abbacabba. Note: x^r stands for reverse of the string x.
 - (b) What do you mean by an instantaneous description of a PDA? Explain with example.
- 7 (a) How can we compute a function using TM? Design a TM for computing f(x,y) = x + y, where x and y are any two positive integers.
 - (b) Discuss about Chuch's hypothesis.
- 8 (a) What is PCP? Find the solution to the following instance of PCP.

$$W = (1, 10111, 10)$$
 and $X = (111, 10, 0)$

(b) Discuss in detail about LBA model with one example.

2

Code: 9A05407

B.Tech II Year II Semester (R09) Regular & Supplementary Examinations, April/May 2013

FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 hours Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- Design a finite automation that reads strings made up of letters in the word CHARIOT and recognize those strings that contain the word 'CAT' as a substring.
- 2 Using the algorithm minDFSM. Minimize the FSM in the figure below.

- 3 (a) What is the closure property of regular sets?
 - (b) What is the relationship between finite automata and regular expression?
 - (c) Give the R.E for the language such that every string will have at least one 'a' followed by at least one 'b'.
- 4 (a) Write the procedure for the conversion of right linear grammar to left-linear grammar.
 - (b) Explain the properties of deviation trees.
- 5 (a) State and prove pumping lemma for Context Free Languages.
 - (b) Using pumping lemma, prove that $L = \{ a^i b^i c^i / i > = 1 \}$ is not a CFL.
- When do you say that a language L is recognized or accepted by a PDA? Design PDA for $L = \{a^i b^j c^k / j > = i + k \text{ and } i, j, k > 0\}$. Process the string aaabbbbbbccc using instantaneous description.
- 7 (a) Write about the process of combining different TMs with example.
 - (b) Design a TM for $L = \{x \in \{a, b\}^*/x \text{ contains even no. of a's and odd no. of b's}\}$. Show the moves of the TM for the input string abaabba.
- 8 (a) Define LR (0) grammar. Specify a grammar and show that it is LR (0).
 - (b) Discuss the P and NP computational complexity of problems with suitable examples.

Code: 9A05407

B.Tech II Year II Semester (R09) Regular & Supplementary Examinations, April/May 2013 FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 hours Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- Draw a DFA that recognizes the language of all strings of 0's and 1's for length ≥1 that, if they were interpreted as binary representations of integers, would represent integers evenly divisible by 3. Leading 0's are permissible.
- Prove the theorem "if L is accepted by an NFA with ε transitions then L is accepted by an NFA without ε transitions".
- 3 (a) Discuss the applications of a regular expression.
 - (b) Explain and prove 'if L_1 and L_2 are two languages then L_1 U L_2 is regular.
- 4 (a) Explain in detail about right and left linear grammars with example.
 - (b) Explain the equivalence and differences between regular grammar and finite automata.
- 5 (a) Show that if L is a CFL and F is finite set, L-F is a CFL.
 - (b) Decide whether $L = \{ a^n b^m a^m b^n / m, n > = 0 \}$ is a CFL or not? Justify your answer.
- 6 (a) Construct PDA for accepting the language $L = \{xcx^r / x \in \{a, b\}^*\}$ by empty stack.
 - (b) Compare and contrast the regular languages and context free languages.
- 7 (a) Discuss in detail about any three modifications that can be done to the basic model of a Turing Machine.
 - (b) Design a TM for recognizing $L = \{ x \in \{a, b, c\}^* / x \text{ contains a or b in the third position from right end.} \}$
- 8 (a) Define P and NP problems with examples.
 - (b) What is PCP? Explain why PCP with two lists x = (01, 1, 1) and y = (0101, 10, 11) has no solution?

4

Code: 9A05407

B.Tech II Year II Semester (R09) Regular & Supplementary Examinations, April/May 2013

FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 hours Max Marks: 70

Answer any FIVE questions All questions carry equal marks

- Design an NFA to accept strings with 1's and 0's such that string contains two consecutive 1's or two consecutive 0's.
- 2 Prove the theorem 'Let L be a set accepted by non-deterministic finite automata, then there exists a DFA that accepts L".
- 3 (a) Explain and prove "The complement of regular language is regular"
 - (b) Explain and prove "if L_1 and L_2 are two regular languages then $L_1 \cap L_2$ is regular.
- 4 (a) Let L be the language $(0^n 1^n 2^n | n \epsilon N)$ is L context free? i.e. there is a grammar that generates L. Explain.
 - (b) Prove the theorem "Let $G = (v_n, \Sigma_1, P, S)$ be a CFG. Then $s \Rightarrow \infty$ if and only if there is a derivation tree for G with yield ∞ "
- 5 (a) Show that context free languages are not closed under complement.
 - (b) Convert the CFG with following productions into GNF.

 $A \rightarrow BC$ $B \rightarrow CA/b$

C → AB/a

- 6 (a) Prove that the PDA accepting a language L by final state is no more powerful than PDA accepting L by empty stack.
 - (b) Construct a PDA for $L = \{ a^{2n} b^n / n >= 1 \}$. Show the moves of the PDA for aaaabb.
- 7 (a) Design a TM for recognizing $L = \{ wcw / w \in \{a, b\}^* \}$. Show the moves of the TM for the string abbcabb.
 - (b) Give a brief note on counter machines.
- 8 (a) Explain in detail about PCP and MPCP.
 - (b) b) Write about Universal Turing Machine.
