K Nearest Neighbors (KNN)

Swara Salih

Basic Features

- Supervised learning classification AND regression technique
- Non-parametric
- "Lazy"--uses all/nearly all of the training data
- Feature similarity
- Groups
- Uses Euclidean Distance for calculating distance between centroid and k
 points

Application

"N-neighbors" = "k", the number of data points we set our centroid to group with

Examples from scikit-learn

Input data

Overfitting vs. Underfitting

• Low k vs high k

k-Nearest Neighbors: 1

k-Nearest Neighbors: 40

k-Nearest Neighbors: 25

Use Case: Predicting Landslides in Greece

 Predicted landslide susceptibility in the basin of the Selinounda River in Achaia County, Greece with KNN

Study area:

Landslide Variables

Table 1 Weight coefficients of group of experts.

Factors	Straight rank e1	Straight rank e2	Straight rank e3	Straight rank e4	Normalized weight
A. Engineering Geological Units	1	1	1	1	0.3334
B. Slope angle	2	3	2	2	0.2500
C. Slope aspect	4	4	4	5	0.1167
D. Distance from tectonic features	5	5	5	4	0.0833
E. Distance from river network	3	2	3	3	0.2167

Use of KNN to predict landslides

Table 2 Trial and error results.

k - nearest neighbours	maximum similarity index	correctly classified cases %	
5	0.973	72.22	
10	0.944	77.77	
15	0.914	80.55	
25	0.891	83.33	
36 (whole set)	0.822	86.11	

Results mapped and ROC Curve

Landslide

0.2

Figure 3 ROC curve: a success rate, b: prediction rate

a = 0.7533

b = 0.7208

Why do we use it?

Intuitive

Straightforward

Powerful

Fast