浙江大学实验报告

专业: 电子信息工程

姓名: 邢毅诚

学号: <u>3190105197</u>

日期: 2021-10-13

地点: 教二-125

课程名称: 电力电子技术 指导老师: 俞勇祥 成绩:

实验名称: 直流斩波电路的研究 实验类型: 验证实验 同组学生姓名: 王斌浩

一、 实验目的

1. 熟悉六种直流斩波电路(Buck chopper、Boost chopper、Buck-Boost chopper、Cuk chopper、Sepic chopper、Zeta chopper)的工作原理及特点。

2. 掌握六种直流斩波电路在负载电流连续时的工作状态以及负载波形。

二、 实验内容

1. 按照六种直流斩波的结构分别连接对应的试验线路, 电路图如下图所示:

图 1: 实验电路图

- 2. 分别观察六种直流斩波电路在不同占空比的 PWM 波时的工作情况,并记录负载电压。
- 3. 计算六种直流斩波在负载电流连续时的负载电压,同实验结果进行比较,并分析。

三、 实验内容与数据

1. Buck 电路

根据理论推导,可计算的 Buck 电路的理论输出电压 U_o 表达式如下:

$$U_o = DU_D \tag{1}$$

其中, D 为 PWM 波的占空比,根据此公示可以计算出理论负载电压。

按照图 1 电路图所示接线,将示波器与 PWM 输出波形的两端相连,调节 PWM 输出旋钮分别使示波器中显示的 PWM 波形占空比达到对应数值,记录此时的电阻电压。获得实验数据与理论数据如下所示:

PWM 占空比	10%	20%	30%	40%	50%	60%	70%	80%
实测负载电压(V)	1.71	2.98	4.35	5.85	7.25	8.74	10.24	11.7
理论负载电压(V)	1.5	3	4.5	6	7.5	9	10.5	12
相对误差	14.00%	-0.67%	-3.33%	-2.50%	-3.33%	-2.89%	-2.48%	-2.50%

表 1: Buk 电路实验数据

Vo/V

可以看到,实测负载电压与理论负载电压大致相同,可以认为实验结果正确。记录 PWM 占空比为 10% 时,二极管 V_D 和负载两端的电压波形如下图所示:

28 24 2.0 1.6 1.2 0.4 0.4 0.9 0.04 0.08 0.12 0.16 0.20 T/ms

图 2: 占空比为 10% 的 V_D 波形

图 3: 占空比为 10% 的负载波形

记录 PWM 占空比为 50% 时,二极管 V_D 和负载两端的电压波形如下图所示:

图 5: 占空比为 50% 的负载波形

记录 PWM 占空比为 80% 时,二极管 V_D 和负载两端的电压波形如下图所示:

图 6: 占空比为 80% 的 V_D 波形

图 7: 占空比为 80% 的负载波形

2. Boost 电路

根据理论推导,可计算的 Boost 电路的理论输出电压 U_o 表达式如下:

$$U_o = \frac{U_D}{1 - D} \tag{2}$$

其中, D 为 PWM 波的占空比,根据此公示可以计算出理论负载电压。

按照图 1 电路图所示接线,将示波器与 PWM 输出波形的两端相连,调节 PWM 输出旋钮分别使示波器中显示的 PWM 波形占空比达到对应数值,记录此时的电阻电压。获得实验数据与理论数据如下所示:

姓名: 邢毅诚

PWM 占空比	10%	20%	30%	40%	50%	60%	70%	80%
实测负载电压(V)	16.12	18.18	20.3	23.7	28.4	35.7	47.3	68.9
理论负载电压(V)	16.66667	18.75	21.42857	25.0	30.0	37.5	50.0	75.0
相对误差	-3.28%	-3.04%	-5.27%	-5.20%	-5.33%	-4.80%	-5.40%	-8.13%

表 2: Boost 电路实验数据

可以看到,实测负载电压与理论负载电压大致相同,可以认为实验结果正确。

3. Buck-Boost 电路

根据理论推导,可计算的 Buck-Boost 电路的理论输出电压 U_o 表达式如下:

$$U_o = \frac{DU_D}{1 - D} \tag{3}$$

其中, D 为 PWM 波的占空比,根据此公示可以计算出理论负载电压。

按照图 1 电路图所示接线,将示波器与 PWM 输出波形的两端相连,调节 PWM 输出旋钮分别使示波器中显示的 PWM 波形占空比达到对应数值,记录此时的电阻电压。获得实验数据与理论数据如下所示:

PWM 占空比	10%	20%	30%	40%	50%	60%	70%	80%
实测负载电压 (V)	1.91	3.64	6.28	9.32	14.17	20.9	33.0	54.7
理论负载电压(V)	1.67	3.75	6.43	10.0	15.0	22.5	35.0	60.0
相对误差	14.60%	-2.93%	-2.31%	-6.80%	-5.53%	-7.11%	-5.71%	-8.83%

表 3: Buck-Boost 电路实验数据

可以看到,实测负载电压与理论负载电压大致相同,可以认为实验结果正确。

4. Cuk 电路

根据理论推导,可计算的 Cuk 电路的理论输出电压 U_o 表达式如下:

$$U_o = \frac{DU_D}{1 - D} \tag{4}$$

其中, D 为 PWM 波的占空比,根据此公示可以计算出理论负载电压。

按照图 1 电路图所示接线,将示波器与 PWM 输出波形的两端相连,调节 PWM 输出旋钮分别使示波器中显示的 PWM 波形占空比达到对应数值,记录此时的电阻电压。获得实验数据与理论数据如下所示:

PWM 占空比	10%	20%	30%	40%	50%	60%	70%	80%
实测负载电压 (V)	1.61	3.46	5.99	9.22	14.27	21.0	32.9	55.3
理论负载电压(V)	1.67	3.75	6.43	10.0	15.0	22.5	35.0	60.0
相对误差	-3.40%	-7.73%	-6.82%	-7.80%	-4.87%	-6.67%	-6.00%	-7.83%

表 4: Cuk 电路实验数据

可以看到,实测负载电压与理论负载电压大致相同,可以认为实验结果正确。

四、 心得与体会

1. 关于纹波电压的分析

观察图 3 的波形,可以计算出占空比为 D=10% 输出的电压的纹波大小为: $U(D=0.1)=U_{max}-U_{min}=2.4V$

观察图 5 的波形,可以计算出占空比为 D=50% 输出的电压的纹波大小为: $U(D=0.5)=U_{max}-U_{min}=5V$

观察图 7 的波形,可以计算出占空比为 D=80% 输出的电压的纹波大小为: $U(D=0.8)=U_{max}-U_{min}=3V$

同时,根据理论知识,我们可以得到,输出电压的纹波电压为:

$$\Delta u = \frac{(1-D)D}{16LCf_s^2} U_D \tag{5}$$

易得:

$$\Delta u(D=0.5) > \Delta u(D=0.8) > \Delta u(D=0.1)$$
 (6)

在一定程度上也验证了我们实验结果的正确性。

2. 关于误差的分析

绘制各个电路在不同 PWM 情况下的误差,如下图所示:

图 8: 误差分析

首先,可以看到,大部分的电路在 PWM 占空比为 10% 时,相对误差都较大。这可能是由于占空比过小时,输出电压的波形已经有了一定的失真,进而导致产生的相对误差较大;当 PWM 占空比为 80%,相对误差也较大,原因也与 PWM 占空比为 10% 的情况相同。

3. 实验感想

在本次实验中,我们分别测量了 Buck 电路, Boost 电路, Buck-Boost 电路, Cuk 电路在不同 PWM 占空比的情况下的输出电压以及电压波形。通过这次实验,我进一步了解了直流斩波电路的相关原理,同时,对在实验中出现的一些情况进行了分析,总体而言,收获颇多。