1 Manual Solutions

1.1 Bisection Method

Bisection Method

$$\mathbf{f}(\mathbf{X}) = X^3 - X - 2 = 0$$

 $f(X) = X^3 - X - 2 = 0$ interval [1,2]

$$f(X) = X^3 - X - 2 = 0$$
 $f(1) = 1^3 - 1 - 2$
 $= \underline{2}$
 $F(1) < 0$

$$f(2) = 2^3-2-2$$

= 4 $F(2) > 0$

Since f(1)<0. f(2)>0; a root exists between 1 and 2

$$C = \left(\frac{1+2}{2}\right)$$

$$= \frac{1.5}{1.5}$$

$$f(1.5) = 1.5^{3} - 1.5 - 2$$

$$= \frac{-0.125}{1.5}$$

therefore, updated Interval [1.5,2]

Table 1:Iteration Table.

<u>Iterations</u>	<u>a</u>	<u>F(a)</u>	<u>b</u>	<u>F(b)</u>	<u>c</u>	<u>F(c)</u>	<u>update</u>
1	1.00000000	-2.00000000	2.00000000	4.00000000	1.50000000	-0.12500000	a=c
2	1.50000000	-0.12500000	2.00000000	4.00000000	1.75000000	1.60937500	b=c
3	1.50000000	-0.12500000	1.75000000	1.60937500	1.62500000	0.66601562	b=c
4	1.50000000	-0.12500000	1.62500000	0.66601562	1.56250000	0.25219727	b=c
5	1.50000000	-0.12500000	1.56250000	0.25219727	1.53125000	0.05911255	b=c

So 1.53125000 considered as a \mathbf{root} according to Bisection Method after 5 iterations