Nom:	Devoir à la maison 6	Classe : Maths Expertes
Prénom :		Pour le Mardi 23 Janvier

EXERCICE 1:

Le chiffrement affine est une méthode simple de codage d'un message.

À chaque lettre de l'alphabet, on commence par associer son rang dans l'alphabet, diminué de 1, comme l'indique le tableau. On obtient un entier x entre 0 et 25.

ΙΛ.	P		ו ח	E	I.	\mathcal{C}	П	ΙT	T	l K	T	1.7	NT.		D		D	Q	T	TT	1.7	7.7.7	v	V	7
A	ப		ן ע	Ľ	I.	G	11	I	J	17	L	101	11	0	I	Q	11	l D	1		V	vv	Λ	1	
	-1	0	0	4	-	C	-	0	0	10	11	10	10	1.4	1 -	1.0	1.77	10	10	20	0.1	20	0.2	9.4	25
1 0	1	2	3	4	5	6	1	18	9	10	- 11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
	1							l				l		l		l .					l			1 1	1 1

Le codage affine nécessite deux clés a et b, qui sont des entiers naturels compris entre 0 et 25.

On calcule alors le reste de ax + b dans la division euclidienne par 26.

On obtient un entier y tel que $y \equiv ax + b[26]$. (On choisit $y \in [0, 25]$).

On cherche à quelle lettre correspond cet entier y. Cette lettre d'arrivée code alors la lettre de départ.

Partie A : Dans cette partie, on choisit les clés a = 3 et b = 11.

La fonction de codage est donc $y \equiv 3x + 11[26]$.

- 1. a. Montrer que G est codé par D. Comment est codé S?
 - b. Remplir, sans justification, le tableau suivant :

Lettre	A	В	С	D	Е	F	G	Н	I	J	K	L	M	N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
y																										
Codage																										

- c. Quel mot est codé par VBUTSB?
- 2. On va maintenant chercher la fonction de décodage, c'est-à-dire l'expression de x en fonction de y.
 - a. Chercher l'inverse de 3 modulo 26.

(C'est-à-dire le nombre entier k tel que $0 \le k \le 25$ et $3k \equiv 1[26]$).

b. En déduire la fonction de décodage.

(C'est-à-dire déterminer a' et b' entier naturels tels que $x \equiv a'y + b'$ [26]).

c. Vérifier votre fonction de décodage avec la lettre D.

Partie B: Dans cette partie, on ne connaît pas les clés de codage a et b.

On sait que E est codé par I et que V est codé par T.

- 1. Écrire les deux congruences vérifiées par a et b.
- 2. Déterminer a puis b, puis la fonction de codage. (Aide: l'inverse de 17 modulo 26 est 23).
- 3. Déterminer la fonction de décodage. (Aide: l'inverse de 19 modulo 26 est 11).

(Remarque: Les amateurs de Python peuvent automatiser certaines étapes de l'exercice 2 avec des programmes. De plus un programme aurait pu aider à trouver "rapidement" les inverses modulo 26).

EXERCICE 2 : On considère les matrices
$$A = \begin{pmatrix} 4 & -6 \\ 1 & -1 \end{pmatrix}$$
 et $P = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$.

- 1. Montrer que la matrice P est inversible et déterminer sa matrice inverse.
- 2. Montrer que la matrice $P^{-1}AP$ est une matrice diagonale que l'on notera D et dont on donnera une expression.
- 3. Montrer que pour tout entier naturel n non nul, on a $D^n = \begin{pmatrix} 2^n & 0 \\ 0 & 1 \end{pmatrix}$.
- 4. Prouver, en utilisant $D=P^{-1}AP,$ que $D^n=P^{-1}A^nP$ pour $n\in\mathbb{N}^*.$
- 5. Déduire de ce qui précède une expression de A^n en fonction de $n \in \mathbb{N}^*$.