Machine Learning for Economists

Prediction

Anthony Strittmatter

Outline

- General Machine Learning Framework
- 2 Regularised Regressions
- Trees and Random Forests
- Other Machine Learning Methods (Backup)

Literature

- Mullainathan and Spiess (2017): "Machine Learning: An Applied Econometric Approach", Journal of Economic Perspectives, 31 (2), pp. 87-106, download.
- Hastie, Tibshirani, and Friedman (2009): "Elements of Statistical Learning", 2nd ed., Springer, download.
- James, Witten, Hastie, and Tibshirani (2013): "An Introduction to Statistical Learning", Springer, download.

General Machine Learning Framework

Supervised Machine Learning in One Expression

Objective function:

$$\min \sum \underbrace{L(Y,f(X))}_{\text{loss function}} \text{ over } \underbrace{f \in F}_{\text{function class}} \text{ s.t. } \underbrace{R(f) \leq c}_{\text{complexity restriction}}$$

- Loss function $L(\cdot)$: quadratic, absolute, etc.
- Function class F: linear (e.g., LASSO), non-linear (e.g., Logit-LASSO), non-parametric (e.g., tree, neural net)
- Complexity restriction $R(f) \le c$: depth of tree, number of hidden layers, LASSO penalty, etc.
- Complexity level c: tuning parameter for max. complexity

Source: Francis Diebold's "No Hesitations" blog

General ML Procedure

- Select a ML method (e.g., LASSO).
- ② Draw randomly a hold-out-sample from the data.
- Stimate the machine learning model using different complexity levels c.
- 4 Select the optimal complexity level c^* .
- **⑤** Predict \widehat{Y} using c^* and extrapolate the fitted values to the retarded hold-out-sample.
- 6 Evaluate the prediction power of the ML method in the hold-out-sample.

Selection of the Optimal Complexity

- Van der Vaart, Dudoit, and van der Laan (2006) show that cross-validation (CV) tuning approximates the optimal complexity.
- Concrete implementation of CV:
 - Number of CV-folds: 5-20?
 - Performance measure: MSE, Variance, Gini-index?
 - Ad-hoc extensions: "one standard-error rule" for tuning the LASSO.
- Alternatives to CV:
 - Some alternatives (e.g., AIC, BIC) rely on assumptions about the sampling process.
 - Rare theoretical guidance applies only to specific methods (see, e.g., Belloni, Chen, Chernozhukov, and Hansen, 2012, for the LASSO).

Cross-Validation (CV) Algorithm

The Firewall Principle

Why do we use the hold-out-sample to evaluate the prediction power?

- If we try many tuning parameter values, we may end up overfitting even in cross-validation samples.
- The cross-validation samples are smaller than the hold-out-sample, which may lead to underestimation of the prediction power.
- The cross-validation performance is an aggregation over multiple different prediction functions, which differs from the single prediction function we finally estimate.

Prediction Performance in Housing Price Example

	In-Sample		Hold-Out-Sample	
	MSE	R^2	MSE	R^2
OLS	0.589	47.30%	0.674	41.70%
LASSO	0.603	46.00%	0.656	43.30%
Shallow Tree	0.675	39.60%	0.758	34.50%

Source: Mullainathan and Spiess (2017)

Honest Inference

- Using the same data to train and estimate the ML model might lead to overfitting.
- For example, there is a risk that extreme outliers are grouped in the same leave of a tree which may increase the variance.
- To avoid this, we split the data in training and estimation samples.
- The training sample is used to select the ML model, e.g., with a CV procedure.
- The selected ML model is used for predicting Y in the estimation sample.
- \bullet The fitted values \widehat{Y} are extrapolated to the hold-out-sample for an assessment of the prediction power.
- Potential gain: Better coverage of confidence intervals.
- Price to pay: Smaller samples, less precise predictions.

Honest Algorithm

Cross-Fitting

- To improve the finite sample performance <u>Chernozhukov et al. (2017)</u> propose different cross-fitting procedures.
- For example, we could partition the data in two samples A and B (and a hold-out-sample).
- Train the ML model in each sample separately.
- Fit \widehat{Y}_A in sample A using the model trained in sample B (and extrapolate fitted values to hold-out-sample).
- Fit \widehat{Y}_B in sample B using the model trained in sample A (and extrapolate fitted values to hold-out-sample).
- Finally, $\widehat{Y} = \frac{1}{2}(\widehat{Y}_A + \widehat{Y}_B)$.
- Potentially more than two cross-fitting samples can be used.

Data transformations

- The way how we encode and transform our data can affect the performance of the ML method
- Transformations of outcome variable Y:
 - ML methods do not guide us regarding the appropriate transformation (e.g., levels, logarithm).
- Transformations of covariates X:
 - Different measures for same variable: We can include many different measures of the same variable (e.g., level, logarithm, squared, cubic) and the ML algorithm will disregard them if not needed.
 - Same variable on different aggregation levels: ML methods select an appropriate aggregation level.
 - Standardisation: Usually, we standardise all X variables by the means and standard deviations in the training sample.

Regularised Regressions

Regularised Regressions

$$\min_{\beta} \left\{ \sum_{i=1}^{N} \left(Y_i - \beta_0 - \sum_{j=1}^{p} X_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} p(\beta_j) \right\}$$

where $\lambda \geq 0$ is the tuning parameter and the number of covariates p can be high-dimensional $(p \gg N)$.

Choice of penalty function $p(\cdot)$:

- Ridge: $p(\beta_i) = \beta_i^2$
 - LASSO: $p(\beta_i) = |\beta_i|$ (Least Absolute Shrinkage and Selection Operator)
 - Elastic Net: $p(\beta_j) = \alpha |\beta_j| + (1 \alpha)\beta_j^2$
 - Best Subset Selection: $p(\beta_j) = 1\{\beta_j \neq 0\}$
- \rightarrow Note that coefficient size depends on the scaling of X_j . It is best practice to standardise X_i .

Summation Notation

• OLS residual sum of squares (RSS):

$$RSS = \sum_{i=1}^{N} (Y_i - \beta_0 - \sum_{j=1}^{p} X_{ij} \beta_j)^2$$

- Penalized regression:
 - Lagrangian operator

$$\min_{\beta} \{RSS + \lambda \sum_{j=1}^{p} p(\beta_j)\}$$

Constrained regression

$$\min_{\beta} \{RSS\} \text{ s.t. } \sum_{j=1}^{p} p(\beta_j) \leq c$$

Constraint Regions

Ridge Coefficients

Ridge: Variance-Bias Trade-Off

LASSO Coefficients

LASSO: Variance-Bias Trade-Off

Post-LASSO

- Coefficients of LASSO $\widehat{\beta}_i$ are inconsistent when $\lambda_N > 0$ (asymptotically)
- Post-LASSO:

$$\min_{\alpha} \sum_{i=1}^{N} \left(Y_i - \alpha_0 - \sum_{j=1}^{p} 1\{\widehat{\beta}_j \neq 0\} X_{ij} \alpha_j \right)^2$$

- Coefficients of Post-LASSO are consistent.
- Model selection consistency depends on the first-step LASSO estimates.
- Alternatives:
 - Adaptive LASSO: $\lambda_j^* = \lambda/|\widehat{\beta}_j|^{\gamma}$ (Zou, 2006).
 - Conservative LASSO: $\lambda_j^* = \lambda / \max(|\widehat{\beta_j}|, \lambda)$ (Caner and Kock, 2018).

Simple Example

- Consider X = I with dimension p = N.
- OLS model

$$\sum_{j=1}^{p} (Y_j - \beta_j)^2,$$

such that the estimated OLS coefficients are $\widehat{\beta}_j = Y_j$.

Ridge model

$$\sum_{j=1}^{p} (Y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2,$$

such that the estimated Ridge coefficients are $\widehat{\beta}_j^{\,R}=\widehat{\beta}_j/(1+\lambda).$

Simple Example (cont.)

LASSO model

$$\sum_{j=1}^{p} (Y_{j} - \beta_{j})^{2} + \lambda \sum_{j=1}^{p} |\beta_{j}|,$$

such that the estimated LASSO coefficients are

$$\widehat{\beta}_{j}^{L} = \left\{ \begin{array}{ll} \widehat{\beta}_{j} - \lambda/2 & \text{if } \widehat{\beta}_{j} > \lambda/2, \\ \widehat{\beta}_{j} + \lambda/2 & \text{if } \widehat{\beta}_{j} < -\lambda/2, \\ 0 & \text{if } |\widehat{\beta}_{j}| \leq \lambda/2, \end{array} \right.$$

which corresponds to the soft-thresholding operator

$$\widehat{\beta}_{j}^{L} = sign(\widehat{\beta}_{j})(|\widehat{\beta}_{j}| - \lambda/2)_{+}$$

Simple Example (cont.)

Oracle Property

Setup:

- Structural model: $Y_i = \beta_0 + \sum_{j=1}^K X_{ij} \beta_j + U_i$
- The vector X_i has p > K dimensions
- Estimated LASSO model: $\widehat{Y}_i = \widehat{\beta}_0 + \sum_{j=1}^p X_{ij}\widehat{\beta}_j + \lambda \sum_{j=1}^p |\widehat{\beta}_j|$

Oracle property:

• Model selection consistency: When $N \to \infty$,

$$Pr(\widehat{\beta}_j = 0) \stackrel{p}{\to} 1$$

for all $\widehat{eta}_j \in \{\widehat{eta}_{K+1},...,\widehat{eta}_p\}$ (irrelevant covariates)

• Coefficient estimation consistency: When $N \to \infty$,

$$Pr(|\widehat{\beta}_j - \beta_j| > \varepsilon) \xrightarrow{p} 0$$

for any $\varepsilon>0$ and all $\widehat{eta}_i\in\{\widehat{eta}_0,...,\widehat{eta}_K\}$ (relevant covariates)

Minimum assumptions required:

• Sparsity $(K \ll N)$ and relevant covariates have to be roughly orthogonal to the irrelevant ones ("irrepresentability condition")

Matrix Notation

• Ridge:

$$\min_{\beta} \left\{ (Y - X\beta)'(Y - X\beta) + \lambda \|\beta\|_2^2 \right\}$$

with $\|\beta\|_2^2 = \beta'\beta = \sum_{j=1}^p \beta_j^2$ (squared l_2 -norm), $\widehat{\beta} = (X'X + \lambda I)^{-1}X'Y$, and I being the identity matrix

Lasso:

$$\min_{\beta} \left\{ (Y - X\beta)'(Y - X\beta) + \lambda \|\beta\|_1 \right\}$$

with
$$\|oldsymbol{eta}\|_1 = \sum_{j=1}^p |oldsymbol{eta}_j|$$
 (l_1 -norm)

Coordinate Descent Algorithm for LASSO

$$\min_{\beta} \left\{ \frac{1}{2N} \sum_{i=1}^{N} (Y_i - \beta_0 - \sum_{j=1}^{p} X_{ij} \beta_j)^2 + \lambda_s \sum_{j=1}^{p} |\beta_j| \right\}$$

- (1) Specify a grid of s = 1,...S tuning parameters $\lambda_s \in \{\lambda_1, \lambda_2, ..., \lambda_S\}$
- (2) Take residuals $Y_i^* = Y_i \frac{1}{N} \sum_{i=1}^{N} Y_i$ and initialise $\beta_i = 0$
- (3) Circulate repeatedly over all j = 1,...,p until convergence:
 - (a) Compute the partial residuals by $r_{ij} = Y_i^* \sum_{k \neq j} X_{ik} \beta_k$
 - (b) Calculate the simple univariate OLS coefficient $\tilde{eta}_j = \frac{1}{N} \sum_{i=1}^N X_{ij} r_{ij}$
 - (c) Update β_i with the soft-thresholding operator:

$$\beta_j = sign(\tilde{\beta}_j)(|\tilde{\beta}_j| - \lambda_s)_+$$

(4) Repeat (3) for s = 1, ..., S

Note: Standardisation of X is required

Logit-Lasso (Backup)

· Logistic log-likelihood function:

$$L = \sum_{i=1}^{N} (Y_i X_i \beta - log(1 + exp(X_i \beta)))$$

Logit-Lasso:

$$\min_{oldsymbol{eta}} \left\{ -L + \lambda \sum_{j=1}^{p} |oldsymbol{eta}|
ight\}$$

- Log likelihood function can be approximated by repeated application of weighted LASSO (proximal Newton iterations, Lee, Sun, and Saunders, 2014)
- Can be estimated with a coordinate descend algorithm with weighted soft-thresholding
- If $p \gg N$ we cannot let λ go down to zero
- See <u>Hastie</u>, <u>Tibshirani and Wainwright (2016)</u> for a comprehensive summary of logit-Lasso

Trees and Random Forests

Tree

- Trees partition the sample into mutually exclusive groups l_j, which are called leaves.
- Let $\pi = \{l_1,...,l_{\#(\pi)}\}$ be the terminal leaves of a specific tree or sample partition.
- Let $l_j \equiv l_j(x, \pi)$ be the respective leaf (for $j = 1, ..., \#(\pi)$).
- The leaf $l_j(x,\pi)$ of tree π is a function of the covariates X such that $x \in l_j$.
- Let $\#(\pi)$ be the number of terminal leaves in tree π .

Example: Shallow Tree

Log Salary of Baseball Players

Example: Shallow Tree (cont.)

Recursive Partitioning

- Trees select the leaves with a top-down, greedy algorithm, which is called recursive partitioning.
- Top-down because we start with a root (tree without leaves) and successively add splits.
- *Greedy* because at each step of the tree building we add the split that improves the prediction power best (instead of looking ahead).

Tree Building Algorithm

- (1) Start with the entire sample (root).
- (2) For each predictor X_i and cut-point s define the pair of half-planes

$$l_1^{(j,s)} = \{X|X_j < s\} \text{ and } l_2^{(j,s)} = \{X|X_j \ge s\}.$$

- Calculate the mean outcomes $ar{Y}_1$ and $ar{Y}_2$ in each half-plane, respectively.
- Seek the covariate X_{i1}^* and the cut-point s_1^* that minimise

$$\sum_{i:X_i\in I_1^{(j,s)}} (Y_i - \bar{Y}_1)^2 + \sum_{i:X_i\in I_2^{(j,s)}} (Y_i - \bar{Y}_2)^2.$$

Tree Building Algorithm (cont.)

(2) For each predictor X_i and cut-point s define the triple of half-planes

$$l_1^{(j,s)} = \{X|X_{j1}^* < s_1^*, X_j < s\}, \ l_2^{(j,s)} = \{X|X_{j1}^* < s_1^*, X_j \geq s\}, \ \text{and} \ l_3^{(j,s)} = \{X|X_{j1}^* \geq s_1^*\}$$

and

$$l_1^{(j,s)} = \{X|X_{j1}^* \geq s_1^*, X_j < s\}, \ l_2^{(j,s)} = \{X|X_{j1}^* \geq s_1^*, X_j \geq s\}, \ \text{and} \ l_3^{(j,s)} = \{X|X_{j1}^* < s_1^*\}.$$

- Calculate the mean outcomes \bar{Y}_1 , \bar{Y}_2 , and \bar{Y}_3 in each half-plane, respectively.
- Seek the covariate X_{i2}^* and the cut-point s_2^* that minimise

$$\sum_{i:X_i\in l_1^{(j,s)}}(Y_i-\bar{Y}_1)^2+\sum_{i:X_i\in l_2^{(j,s)}}(Y_i-\bar{Y}_2)^2+\sum_{i:X_i\in l_3^{(j,s)}}(Y_i-\bar{Y}_3)^2.$$

(3) Continue until some stopping rule is reached (e.g., max. tree size, min. terminal leave size, min. MSE gain).

"Deep" Tree

Log Salary of Baseball Players

Source: James, Witten, Hastie, Tibshirani (2013)

Selecting Optimal Tree Size

- → Pruning the complexity of trees can improve out-of-sample prediction power.
- \rightarrow Select optimal tree size π with cross-validation.

Source: James, Witten, Hastie, Tibshirani (2013)

Complexity Pruning

- (A) Use recursive partitioning to grow the deep tree π_0 in the training data.
- (B) For each value of α a subtree $\pi \subseteq \pi_0$ minimises

$$\sum_{j=1}^{\#(\pi)} \sum_{i:X_i \in I_j} (Y_i - \bar{Y}_j)^2 + \alpha \#(\pi). \tag{1}$$

Obtain a sequence of best subtrees.

- (C) Use cross-validation to choose α . Partition the sample in k folds. For each fold:
 - (a) Repeat steps (A) and (B) in the kth-fold.
 - (b) Evaluate the MSE using equation (1).
 - (c) Average the MSE across the k folds for each value of α and select the α that minimises the average MSE.
- (D) Return to the subtree from (B) with the selected value of α .

Prediction

• For the selected tree π^* use the estimation sample to predict

$$\widehat{Y}_i = \sum_{i=1}^{\#(\pi^*)} \frac{1}{\sum_{i=1}^N 1\{X_i \in l_j(x, \pi^*)\}} \sum_{i=1}^N 1\{X_i \in l_j(x, \pi^*)\} \cdot Y_i.$$

• This is equivalent to the linear regression

$$\min_{\beta} \sum_{i=1}^{N} \left(Y_i - \sum_{j=1}^{\#(\pi^*)} 1\{X_i \in l_j(x, \pi^*)\} \beta_j \right)^2.$$

Advantages and Disadvantages of Trees

Advantages:

- Shallow trees are very easy to understand.
- Shallow trees can be displayed graphically in a nice way.
- Trees automatically handle interactions between covariates.
- It is not necessary to transform covariates as long as they have an order.

Disadvantages:

• Often trees are unstable and have a high variance.

Random Forests

- Build G deep trees π_g on different subsets of the data (subsampling or bootstrapping) and covariates.
 - → decorrelated trees
- These trees are overfitted in the sample and will have a high out-of-sample variance.
- To overcome this problem, we aggregate the trees

$$\widehat{Y}_i^{RF} = \frac{1}{G} \sum_{g=1}^G \widehat{Y}_i^{\pi_g}.$$

- This procedure is often called bootstrap-aggregation ("bagging").
- We loose interoperability but gain prediction power compared to (shallow) trees.
- Tuning parameters: Forest size, subsample selection, covariate selection, tree size, honest inference, etc.

Random Forests: Weighted Representation

• Tree weights:

$$\alpha_{ig}(x) = \frac{1\{X_i \in l_j(x, \pi_g)\}}{\sum_{i=1}^{N} 1\{X_i \in l_j(x, \pi_g)\}}$$

Forest weights:

$$\alpha_i(x) = \frac{1}{G} \sum_{i=1}^{G} \alpha_{ig}(x)$$

• Predicted outcome:

$$\widehat{\mu}(x) = \sum_{i=1}^N lpha_i(x) Y_i ext{ and } \widehat{Y}_i = \widehat{\mu}(X_i)$$

Random Forest: Weighted Representation (cont.)

Source: Athey, Tibshirani, Wager (2018)

Other Machine Learning Methods (Backup)

Neural Networks

Input layer, output layer, hidden layer, neurons

- Neurons network function: $f(X) = F(\sum_i w_i g(x_i))$
- Types of neural nets: Feedforward, Recurrent, Autoencoder, etc.
- Econometric references: Farell, Liang, and Misra (2018), Hartford, Lewis, Leyton-Brown, and Taddy (2016)

Other (Supervised) Machine Learning Methods

- Best Subset Selection, Forward Selection
- Boosting (Luo and Spindler, 2017)
- k-Nearest Neighbours, Kernel, Splines
- Ensemble Methods (Künzel, Sekhon, Bickel, and Yu, 2018)
- etc.