11f. Consider

$$f(z) = \sum_{k=0}^{\infty} \frac{k}{k^2 + 4} z^k.$$

For z=1, this sum diverges; for z=-1, this sum converges. For $z=e^{i\theta}$, $\theta\neq 0,\pi$, do as much as you can.

14. Circle?

54. Very involved.

Continued from previous lecture?:

Consider $f: U \to \mathbb{R}$ with U connected, $a \in U$.

Lemma 1. Suppose f(a) = 0 and $f^{(n)}(a) \neq 0$ for some n. Then there is some r > 0 such that $D(a, r) \subset U$ and f(z) has no zeros in $D(a, r) \setminus \{a\}$.

Define $D(a,r)^* = D(a,r) \setminus \{a\}.$

Proof. Take f holomorphic over $\overline{D(a,R)} \subset U$. Expanding at a,

$$f(z) = f(a) + \dots + \frac{f^{(k)}(a)}{k!} (z - a)^k + \dots$$

where $f^{(k)}(a)$ is the first nonzero derivative of f at a; this exists because there is at least one nonzero derivative, as assumed.

Then

$$g(z) = \sum_{\ell=k}^{\infty} \frac{f^{(\ell)}(a)}{\ell!} (z-a)^{\ell-k},$$

and

$$f(z) = (z - a)^k g(z).$$

Note that $g(a) = \frac{f^{(k)}(a)}{k!} \neq 0$.

Since g(z) converges in a small disk D(a,r) and is holomorphic, and since $g(a) \neq 0$, then there exists some small $r \leq R$ such that g(z) has no zeros in $D(a,r)^*$.

Corollary 1. If $f^{(n)}(a) = 0$ for all $n \ge 0$, then f(z) = 0 in some small disk D(a,r).

Now, this raises the question: can a holomorphic function f be zero over some small disk, but nevertheless be nonzero somewhere else over the same connected region U? Answer: No!

Take

$$\Sigma_n = \{ p \in U : f^{(n)}(p) = 0 \}.$$

Note that this is closed, because each $f^{(n)}$ is continuous.

Then

$$\Sigma_{\infty} = \bigcap_{n=0}^{\infty} \Sigma_n$$

is also closed.

Then, $p \in \Sigma_{\infty}$ implies that $f^{(n)}(p) = 0 \forall n$, which implies f(z) = 0 near p. Thus Σ_{∞} is closed.

Lemma 2. $\Sigma_{\infty} \subset U$ is open.

Proof. Let $p \in \Sigma_{\infty} \subset U$. To show Σ_{∞} is open at p, we need only to find some $\epsilon > 0$ such that $D(p, \epsilon) \subset \Sigma_{\infty}$.

Since $p \in \Sigma_{\infty}$, $f^{(n)}(p) = 0 \forall n$. Thus the power series expansion of f at p is identically zero, and thus for some small ϵ , $f(z) = 0 \forall z \in D(p, \epsilon)$, and thus $D(p, \epsilon) \subset \Sigma_{\infty}$.

The final result follows from noting that Σ_{∞} can only be both open and closed in U iff it is empty or equal to U.

Theorem 1. Let $U \subset \mathbb{R}$ be connected, and let $f: U \to \mathbb{R}$ be holomorphic. Suppose $\{p_n\} \to p$ in U such that $p_n \neq p \forall n$, and suppose $f(p_n) = 0 \forall n$. Then f = 0 on all of U.

Proof. We want to show that all the derivatives of f at p are zero. But f is continuous, so f(p) = 0. We claim that this means $f^{(n)}(p) = 0$ for all $n \ge 1$; otherwise, p is the only zero of f in some $D(p, \epsilon)$ with $\epsilon > 0$ by the previous result; this contradicts $p_n \to p$ with $p_n \ne p$ and $f(p_n) = 0$ (because some p_n must be in $D(p, \epsilon)^*$).

This proves that

$$\Sigma_{\infty} = \{ \alpha \in U : f^{(n)}(\alpha) = 0 \forall n \}$$

is nonempty, since it contains p.

If Σ_{∞} is both closed and open in some connected domain U, and is also nonempty, then $\Sigma_{\infty} = U$. \square Corollary 2. Suppose $f, g: U \to \mathbb{R}$ are both holomorphic, with U connected. Suppose $\gamma \subset U$ is some (piecewise C^1 ?) arc in U, and

$$f|_{\gamma} = g|_{\gamma}.$$

Then f = g on U.

Proof. By the previous result, f - g has infinitely close zeros (along γ), so f - g = 0 on all of U.

Example: $\sin 2x = 2 \sin x \cos x$, for $x \in \mathbb{R}$. This implies $\sin(2z) = 2 \sin z \cos z$ for all $z \in \mathbb{R}$, since we can take any arc $\gamma \subset \mathbb{R} \subset \mathbb{R}$, and use the previous corollary.

Expanding on connectedness:

U is connected iff for all $p,q \in U$, there is some arc γ connecting p and q. Take some subset $V \subset U$ that is both closed and open in U, then assume $p \in V$, and assume for contradiction $q \notin V$. Since γ is continuous, the preimage $\gamma^{-1}(U)$ is both closed and open in [0,1], but the only such set is all of [0,1]; i.e. $q \in V$, which is a contradiction. Thus, either V contains both p and q, or neither; thus V is empty or V = U.

Theorem 2. Riemann extension theorem (i.e. removable singularity): Suppose $f: D(a,r)^* \to \mathbb{R}$ is holomorphic. Suppose $\lim_{z\to a} f(z) = \alpha$ exists in \mathbb{R} . Then f extends to a holomorphic function on D(a,r), i.e. there exists $\tilde{f}: D(a,r) \to \mathbb{R}$ holomorphic such that

$$\tilde{f}|_{D(a,r)^*} = f.$$

Proof. Note that there is only one possible extension, i.e.

$$\tilde{f}(z) = \begin{cases} \alpha = \lim_{w \to a} f(w) & \text{if } z = a\\ f(z) & \text{otherwise} \end{cases}$$

since \tilde{f} must be C^0 , i.e. continuous.

We need to show that \tilde{f} is holomorphic. One way is to show that

$$\tilde{f}'(a) = \lim_{h \to 0} \frac{\tilde{f}(a+h) - \tilde{f}(a)}{h}$$

exists, but this may be difficult.

Instead, use a power series expansion, or rather prove the result for a modified function with similar power series. In particular, show $g(z) = (z - a)\tilde{f}(z)$ is holomorphic on $D(a, r)^*$, which has no difficulty. Then

$$g'(a) = \lim_{h \to 0} \frac{g(a+h) - g(a)}{h} = \lim_{h \to 0} \frac{h\tilde{f}(a+h)}{h} = \tilde{f}(a) = \alpha,$$

so g is holomorphic.

Then, either g(z)=0 for all $z\in D(a,r)$, in which case $\tilde{f}=0$ is holomorphic; or g is not identically zero, and $g(z)=(z-a)^k\tilde{g}(z)$, with $\tilde{g}(a)\neq 0,\ k\geq 1$ (with \tilde{g} holomorphic).

Then $\tilde{f}(z) = \frac{g(z)}{z-a} = (z-a)^{k-1}\tilde{g}(z)$ is holomorphic.

Another alternative: Morera's theorem: If $f \in C^0(D(a,r))$ and $\oint_{\gamma} f = 0$ for all closed arcs γ , then f is holomorphic on D(a,r). The proof of this uses the existence of an antiderivative F of \tilde{f} on a disc (using the taxicab-style path from a to z for integration; this is well-defined iff integrals on closed paths are zero), after which direct calculation implies that the Cauchy-Riemann equations are satisfied, and F is holomorphic. Then, $\tilde{f} = F'$ is holomorphic.

Left to verify: \tilde{f} as defined has zero integral over every closed curve γ , and in particular every rectangular closed curve. Idea: over the integration path, cut the loop into two (if needed) pieces avoiding the point a, and use continuity at a (we know closed curves not surrounding a will have zero integral by holomorphicity of f).