

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6679/01)

January 2009 6679 Mechanics M3 Mark Scheme

Question Number	Scheme	Marks	5
1	$N2L 3a = -\left(9 + \frac{15}{\left(t+1\right)^2}\right)$	B1	
	$3v = -9t + \frac{15}{t+1}(+A)$	M1 A1ft	
	$v = 0, t = 4 \implies 0 = -36 + 3 + A \implies A = 33$	M1 A1	
	$v = -3t + \frac{5}{t+1} + 11$		
	$t = 0 \implies v = 16$	M1 A1	(7) [7]
2 (a)	$(\leftarrow) \qquad T \sin \theta = \frac{4}{3} mg$	M1 A1	
	$(\uparrow) T\cos\theta = mg$	A1	
	$T^2 = \left(\frac{4}{3}mg\right)^2 + \left(mg\right)^2$	M1	
	Leading to $T = \frac{5}{3}mg$	A1	(5)
(b)	HL $T = \frac{\lambda x}{a} \implies \frac{5}{3}mg = \frac{3mge}{a}$ ft their T $e = \frac{5}{9}a$	M1 A1ft	
	$E = \frac{\lambda x^2}{2a} = \frac{3mg}{2a} \times \left(\frac{5}{9}a\right)^2 = \frac{25}{54}mga$	M1 A1	(4)
	2a 2a (9) 54 ⁻		[9]

Question Number	Scheme	Marks	i
3	$\omega = \frac{80 \times 2\pi}{60} \text{ rad s}^{-1} \left(= \frac{8\pi}{3} \approx 8.377 \right)$ Accept $v = \frac{16\pi}{75} \approx 0.67 \text{ ms}^{-1}$ as equivalent	B1	
	(\uparrow) $R = mg$	B1	
	For least value of μ (\leftarrow) $\mu mg = mr\omega^2$	M1 A1=A	۸1
	$\mu = \frac{0.08}{9.8} \times \left(\frac{8\pi}{3}\right)^2 \approx 0.57$ accept 0.573	M1 A1	(7)
			[7]
4 (a)	a = 8	B1	
	$T = \frac{25}{2} = \frac{2\pi}{\omega} \implies \omega = \frac{4\pi}{25} (\approx 0.502 \dots)$	M1 A1	
	$v^2 = \omega^2 \left(a^2 - x^2 \right) \implies v^2 = \left(\frac{4\pi}{25} \right)^2 \left(8^2 - 3^2 \right)$ ft their a, ω	M1 A1ft	
	$v = \frac{4\pi}{25} \sqrt{55} \approx 3.7 \text{ (m h}^{-1})$ awrt 3.7	M1 A1	(7)
(b)	$x = a \cos \omega t \implies 3 = 8 \cos \left(\frac{4\pi}{25}t\right)$ ft their a, ω	M1 A1ft	
	$t \approx 2.3602 \dots$	M1	(4)
	time is 12 22	A1 [(4) [11]

5 (a) Let x be the distance from the initial position of B to C	
Leading to $x = \frac{a}{6}$ $AC = \frac{7a}{6}$ (b) The greatest speed is attained when the acceleration of B is zero, that is where the forces on B are equal. $(R) T = mg \sin 30^{\circ} = \frac{6mge}{a}$ $e = \frac{a}{12}$ A1	A1=A1 (5) A1=A1 A1 (7) [12]

Question Number	Scheme	Marks
5	Alternative approach to (b) using calculus with energy.	
	Let distance moved by B be x CE $\frac{1}{2}mv^2 + \frac{6mg}{2a}x^2 = mgx\sin 30^\circ$ $v^2 = gx - \frac{6g}{a}x^2$	M1 A1=A1
	For maximum v $\frac{d}{dx}(v^2) = 2v\frac{dv}{dx} = g - \frac{12g}{a}x = 0$ $x = \frac{a}{12}$	M1 A1
	$v^2 = g\left(\frac{a}{12}\right) - \frac{6g}{a}\left(\frac{a}{12}\right)^2 = \frac{ga}{24}$	M1
	$v = \sqrt{\left(\frac{ga}{24}\right)}$	A1 (7)
	Alternative approach to (b) using calculus with Newton's second law.	
	As before, the centre of the oscillation is when extension is $\frac{a}{12}$ N2L $mg \sin 30^{\circ} - T = m\ddot{x}$	M1 A1
	$\frac{1}{2}mg - \frac{6mg\left(\frac{a}{12} + x\right)}{a} = m\ddot{x}$	M1 A1
	$\ddot{x} = -\frac{6g}{a}x \Rightarrow \omega^2 = \frac{6g}{a}$	A1
	$v_{\text{max}} = \omega a = \sqrt{\left(\frac{6g}{a}\right)} \times \frac{a}{12} = \sqrt{\left(\frac{ga}{24}\right)}$	M1 A1 (7)

Question Number	Scheme	Marks
6 (a)	$\int y^2 dx = \int (4 - x^2)^2 dx = \int (16 - 8x^2 + x^4) dx$ $= 16x - \frac{8x^3}{3} + \frac{x^5}{5}$ $\left[16x - \frac{8x^3}{3} + \frac{x^5}{5} \right]_0^2 = \frac{256}{15}$	M1 A1
	$\int xy^{2} dx = \int x (4 - x^{2})^{2} dx = \int (16x - 8x^{3} + x^{5}) dx$ $= 8x^{2} - 2x^{4} + \frac{x^{6}}{6}$ $\left[8x^{2} - 2x^{4} + \frac{x^{6}}{6} \right]_{0}^{2} = \frac{32}{3}$ $\overline{x} = \frac{\int xy^{2} dx}{\int y^{2} dx} = \frac{32}{3} \times \frac{15}{216} = \frac{5}{8} *$	M1 A1 M1A1 M1 A1 (10)
(b)	$A \times \overline{x} = (\pi r^2 l) \times \frac{l}{2}$ $\frac{256}{15} \pi \times \frac{5}{8} = \pi \times 16l \times \frac{l}{2}$ Leading to $l = \frac{2\sqrt{3}}{3}$ accept exact equivalents or awrt 1.15	M1 A1 ft M1 A1 (4) [14]

Question Number	Scheme	Marks
7 (a)	Let speed at C be u $CE \qquad \frac{1}{2}mu^2 - \frac{1}{2}m\left(\frac{ag}{4}\right) = mga(1 - \cos\theta)$ $u^2 = \frac{9ga}{4} - 2ga\cos\theta$	M1 A1
	$mg\cos\theta \left(+R\right) = \frac{mu^2}{a}$	M1 A1
	$mg\cos\theta = \frac{9mg}{4} - 2mg\cos\theta \qquad \text{eliminating } u$	M1
	Leading to $\cos \theta = \frac{3}{4} *$	M1 A1 (7)
(b)	At C $u^2 = \frac{9ga}{4} - 2ga \times \frac{3}{4} = \frac{3}{4}ga$	B1
	$(\rightarrow) \qquad u_x = u\cos\theta = \sqrt{\left(\frac{3ga}{4}\right)} \times \frac{3}{4} = \sqrt{\left(\frac{27ga}{64}\right)} = 2.033\sqrt{a}$	M1 A1ft
	$\left(\downarrow\right) \qquad u_y = u\sin\theta = \sqrt{\left(\frac{3ga}{4}\right)} \times \frac{\sqrt{7}}{4} = \sqrt{\left(\frac{21ga}{64}\right)} = 1.792\sqrt{a}$	M1
	$v_y^2 = u_y^2 + 2gh \implies v_y^2 = \frac{21}{64}ga + 2g \times \frac{7}{4}a = \frac{245}{64}ga$	M1 A1
	$\tan \psi = \frac{v_y}{u_x} = \sqrt{\left(\frac{245}{27}\right)} \approx 3.012 \dots$	M1
	$\psi \approx 72^{\circ}$ awrt 72° Or 1.3° (1.2502°) awrt 1.3°	A1 (8) [15]
	Alternative for the last five marks Let speed at P be v.	
	CE $\frac{1}{2}mv^2 - \frac{1}{2}m\left(\frac{ag}{4}\right) = mg \times 2a$ or equivalent	M1
	$v^2 = \frac{17mga}{4}$	M1 A1
	$\cos \psi = \frac{u_x}{v} = \sqrt{\left(\frac{27}{64} \times \frac{4}{17}\right)} = \sqrt{\left(\frac{27}{272}\right)} \approx 0.315$	M1
	$\psi \approx 72^{\circ}$ awrt 72°	A1
	Note: The time of flight from C to P is $\frac{\sqrt{235} - \sqrt{21}}{8} \sqrt{\left(\frac{a}{g}\right)} \approx 1.38373 \sqrt{\left(\frac{a}{g}\right)}$	