

LECTURE 4: DIVIDE & CONQUER WITH BINARY SEARCH & MERGESORT

Harold Soh harold@comp.nus.edu.sg

1

ADMINISTRATIVE ISSUES

Start 2019-08-25 16:00 UTC

Problem Set 1

End 2019-09-09 16:00 UTC

Time elapsed 15:19:47

Time remaining 344:40:13

PS1 was released on Monday. Due in 2 weeks.

Note:

- Sign up on nus.kattis.com
- Submit only Java code
- Don't plagiarize

ADMINISTRATIVE ISSUES

Feeling confused or have questions?

Discussion Groups (Labs) and Tutorials start this week.

DG/Tutorials are being reorganized.

Will announce on piazza

Group	Members
B01 (CS2040S)	1
B02 (CS2040S)	8
B03 (CS2040S)	23
B04 (CS2040S)	2
B05 (CS2040S)	10
B06 (CS2040S)	1
B07 (CS2040S)	14
B08 (CS2040S)	23
B09 (CS2040S)	4

PATH TO MASTERY / COURSE STRUCTURE Search! Algorithm - Binary **Analysis** Balanced Search, and YOU -Big-Oh Search Trees ARE Trees **HERE** Abstract Data Sorting & Hashing and Types (ADTs) More Sorting! Hash Tables -Lists, Stacks - MergeSort, **Start Here** and Queues QuickSort, **Intro-Class** Heapsort Recess Week

QUIZZES: 20%

Quiz 1: Week 4 (during Lecture Slot)

Quiz 2: Week 7 (during Lecture Slot)

Quiz 3: Week 11 (during Lecture Slot)

All Dates To be Confirmed (TBC)
We will take the best 2/3 (10% each)

QUIZ 1

On **Sept 4**th

Please don't be late.

Covers everything up to **Quicksort** (tomorrow's lecture).

It's about feedback.

COURSE FEEDBACK

Please give your feedback! It's important!

https://forms.gle/9XYMGsWr2d98CzwQ7

Will post link on piazza

QUESTIONS BEFORE WE GET STARTED?

LEARNING OUTCOMES

By the end of this session, you should be able to:

- Use the divide and conquer strategy for problem solving
- Explain the binary search algorithm and prove its correctness
- Explain the mergesort algorithm as an example of the divide and conquer strategy.
- Analyze and describe the **performance of mergesort and** binary search using O(g(n)) notation.

LAST LECTURE

PROBLEM: CUSTOMER LOYALTY REWARDS

Get a list of customers ordered by their purchasing spend. Reward the k who spent the most.

PROBLEM: FIND CUSTOMERS SPENDING BETWEEN \$a AND \$b WHERE b > a

Data is in the customers array

Array sorted by customer spend

Homer proposes a simple algorithm:

```
start = findIndex(customers, $a)
end = findIndex(customers, $b)
for (int i=start; i<=end; i++)
    println(customers[i])</pre>
```


PROBLEM: FIND CUSTOMERS SPENDING BETWEEN \$a AND \$b WHERE b > a

Data is in the customers array

Array sorted by customer spend

Homer proposes a simple algorithm:

```
start = findIndex(customers, $a)
end = findIndex(customers, $b)
for (int i=start; i<=end; i++)
    println(customers[i])</pre>
```


WHAT IF THE ARRAY WAS UNSORTED?

How fast can you find the customer who spent \$a in an **unsorted array**?

- A. $O(n \log n)$
- B. O(n)
- C. $O(n^2)$
- D. O(1)

WHAT IF THE ARRAY WAS UNSORTED?

Linear search

How fast can you find the customer who spent \$a in an **unsorted array**?

- A. $O(n \log n)$
- B. O(n)
- C. $O(n^2)$
- D. O(1)

BUT OUR ARRAY IS SORTED

So we will <u>exploit</u> this fact!

Exploiting structure is a common approach in CS

Question: if A[i] < 11 then do we search to the left or right of i?

FINDING 11: THE IDEA

2	4	4	5	6	7	8	9	11	17	23	28
2	4	4	5	6	7	8	9	11	17	23	28

FINDING 11: THE IDEA

FINDING 11: THE IDEA

2	4	4	5	6	7	8	9	11	17	23	28
2	4	4	5	6	7	8	9	11	17	23	28
2	4	4	5	6	7	8	9	11	17	23	28

FINDING 11

2	4	4	5	6	7	8	9	11	17	23	28
2	4	4	5	6	7	8	9	11	17	23	28
2	4	4	5	6	7	8	9	11	17	23	28

PSEUDOCODE FOR BINARY SEARCH


```
function binarySearch (A, key, n)
      low = 0
      high = n - 1
      while low <= high</pre>
            mid = (low + high)/2
             if key < A[mid] then</pre>
                   high = mid - 1
             else if key > A[mid]
                   low = mid + 1
             else
                   return mid
      return not_found
```

2	5	7	11	13
---	---	---	----	----

IS THE CODE CORRECT?

Let's make sure it works.

How?

PRE- AND POST-CONDITIONS

Precondition: condition that is true <u>before</u> some set of operations (e.g., a loop or a function)

Postcondition: condition that is true <u>after</u> some set of operations

"Programming by Contract"

CONDITIONS AND INVARIANTS

INVARIANTS

Invariant: condition that is true during some execution of a program or a set of operations

Loop Invariant: a condition that is true before (and after) each iteration of a loop

SO, IS BINARY SEARCH CORRECT?

Strategy: Establish 3 properties for the main loop

- Initialization: we've set up our invariant
- Preservation: the invariant is true at every iteration
- Termination: when the loop terminates,
 the desired result is true


```
function binarySearch (A, key, n)
      low = 0
      high = n - 1
      while low <= high</pre>
             mid = (low + high)/2
             if key < A[mid] then</pre>
                   high = mid - 1
             else if key > A[mid]
                   low = mid + 1
             else
                   return mid
      return not_found
```

Preconditions:

•

Postcondition:

lacktriangle


```
function binarySearch (A, key, n)
      low = 0
      high = n - 1
      while low <= high</pre>
             mid = (low + high)/2
             if key < A[mid] then</pre>
                   high = mid - 1
             else if key > A[mid]
                   low = mid + 1
             else
                   return mid
      return not_found
```

Preconditions:

- A is of size n
- A is sorted

Postcondition:

- A[mid] = key
- or key not found

"Programming by Contract"


```
function binarySearch (A, key, n)
      low = 0
      high = n - 1
      while low <= high</pre>
             mid = (low + high)/2
             if key < A[mid] then</pre>
                   high = mid - 1
             else if key > A[mid]
                   low = mid + 1
             else
                   return mid
      return not_found
```

Loop Invariant:

 $A[low] \le key \le A[high]$

(if key is in A)

Strategy: Work through the loop and consider each case.


```
function binarySearch (A, key, n)
      low = 0
      high = n - 1
      while low <= high</pre>
             mid = (low + high)/2
             if key < A[mid] then</pre>
                   high = mid - 1
             else if key > A[mid]
                   low = mid + 1
             else
                   return mid
      return not_found
```

Loop Termination:

A[mid] = key
or high < low (not_found)</pre>

Check: Is the desired condition true?

Ensure that our postcondition holds.

SO, IS BINARY SEARCH CORRECT?

Strategy: Establish 3 properties for the main loop

/Initialization: we've set up our invariant

Preservation: the invariant is true at every iteration

Termination: when the loop terminates, the desired result is true

SO, IS BINARY SEARCH CORRECT?

(well, almost, we'll cover that later)

What is the worst-case time complexity for binary search?

- A. $O(\log n)$
- B. O(n)
- C. $O(n^2)$
- D. 0(1)

HOW FAST IS BINARY SEARCH?

```
function binarySearch (A, key, n)
      low = 0
      high = n - 1
      while low <= high</pre>
             mid = (low + high)/2
             if key < A[mid] then</pre>
                   high = mid - 1
             else if key > A[mid]
                   low = mid + 1
             else
                   return mid
      return not_found
```

What is the worst-case time complexity for binary search?

- A. $O(\log n)$
- B. O(n)
- C. $O(n^2)$
- D. O(1)

HOW FAST IS BINARY SEARCH?

```
function binarySearch (A, key, n)
      low = 0
      high = n - 1
      while low <= high</pre>
             mid = (low + high)/2
             if key < A[mid] then</pre>
                   high = mid - 1
             else if key > A[mid]
                   low = mid + 1
             else
                   return mid
      return not_found
```

What is the worst-case time complexity for binary search?

- A. $O(\log n)$
- B. O(n)
- C. $O(n^2)$
- D. O(1)

TIME COMPLEXITY OF BINARY SEARCH

https://bit.ly/2LvG9bq

 \overline{n}

TIME COMPLEXITY OF BINARY SEARCH

n 2 4 4 5 6 7 8 9 11 17 23 28

Iteration 1: n

Iteration 2: n/2

Iteration 3: n/4

•••

Iteration $k: n/2^k = 1$

If $n/2^k = 1$, what is k in terms of n?

A.
$$k = 2^n$$

B.
$$k = 2/n$$

C.
$$k = \log(n)$$

D. Am I in CS or Math?

TIME COMPLEXITY OF BINARY SEARCH

n 2 4 4 5 6 7 8 9 11 17 23 28

Iteration 1: n

Iteration 2: n/2

Iteration 3: n/4

•••

Iteration $k: n/2^k = 1$

Each iteration takes c time so $T(n) = c \log n = O(\log n)$ If $n/2^k = 1$, what is k in terms of n?

A.
$$k = 2^n$$

B.
$$k = 2/n$$

C.
$$k = \log(n)$$

D. Am I in CS or Math?

WHAT IS THE DIFFERENCE?

SPACE COMPLEXITY OF BINARY SEARCH

```
function binarySearch (A, key, n)
      low = 0
      high = n - 1
      while low <= high</pre>
             mid = (low + high)/2
             if key < A[mid] then</pre>
                   high = mid - 1
             else if key > A[mid]
                   low = mid + 1
             else
                   return mid
      return not_found
```

What is the worst-case space complexity for binary search?

- A. $O(n \log n)$
- B. O(n)
- C. O(1)
- D.

SPACE COMPLEXITY OF BINARY SEARCH

```
function binarySearch (A, key, n)
      low = 0
      high = n - 1
      while low <= high</pre>
             mid = (low + high)/2
             if key < A[mid] then</pre>
                   high = mid - 1
             else if key > A[mid]
                   low = mid + 1
             else
                   return mid
      return not_found
```

What is the worst-case space complexity for binary search?

- A. $O(n \log n)$
- B. O(n)
- **C.** 0(1)
- D.

DIVIDE & CONQUER STRATEGY: THE 3 STEPS

- 1. (Deviously) Split your problem into subproblems.
- 2. (Gleefully) Solve each subproblem (recursively).
- 3. (Cleverly) Combine the solutions for each subproblem to produce a solution to the original problem.

is the basis for many efficient algorithms

BACK TO OUR INITIAL PROBLEM

find customers spending between and between a

Array sorted by customer spend

```
start = findIndex(customers, $a)
end = findIndex(customers, $b)
for (int i=start; i<=end; i++)
    println(customers[i])</pre>
```

What is the worst-case time complexity for algorithm on the left if you use binary search for findIndex?

- A. $O(n \log n)$
- B. O(n)
- C. O(1)
- D.

BACK TO OUR INITIAL PROBLEM

find customers spending between a and b where $b \ge a$

Array sorted by customer spend

```
start = findIndex(customers, $a)
end = findIndex(customers, $b)
for (int i=start; i<=end; i++)
    println(customers[i])</pre>
```

What is the worst-case time complexity for algorithm on the left if you use binary search for findIndex?

- A. $O(n \log n)$
- B. O(n)
- C. O(1)
- What is the worst-case time complexity for algorithm on the left if you use binary search for findIndex?
 - A. $O(n \log n)$
 - B. *O*(
 - C. O(1)
 - D.

PROBLEM SOLVED!

BUT...

BOSS CALLS YOU INTO HIS OFFICE (3)

CUSTOMERS ARE BEING MISSED!

YOUR ALGORITHM HAS A BUG!!!

YOU'RE FIRED!

OK... YOU'RE NOT FIRED...
BUT FIX THE BUG!

WHAT'S WRONG WITH THE ALGORITHM?

Data is in the Customers array Array sorted by customer spend

```
start = findIndex(customers, $a)
end = findIndex(customers, $b)
for (int i=start; i<=end; i++)
    println(customers[i])</pre>
```

Is something wrong with the algorithm?

- A. Yes!
- B. Nooooo! Boss is dumb
- C.

WHAT'S WRONG WITH THE ALGORITHM?

Data is in the Customers array Array sorted by customer spend

```
start = findIndex(customers, $a)
end = findIndex(customers, $b)
for (int i=start; i<=end; i++)
    println(customers[i])</pre>
```

Is something wrong with the algorithm?

- A. Yes!
- B. Nooooo! Boss is dumb

C.

BINARY SEARCH: FINDING 11


```
low = 0
high = n - 1
while low <= high
mid = (low + high )/2
if key < A[mid] then
high = mid - 1
else if key > A[mid]
low = mid + 1
else
return mid
```

return not_found

Question: what happens

now?

Uh oh! A Bug!

 2
 4
 4
 11
 11
 11
 11
 11
 11
 17
 23
 28

```
start = findIndex(customers, $a)
end = findIndex(customers, $b)
for (int i=start; i<=end; i++)
    println(customers[i])</pre>
```



```
start = findFirstIndex(customers, $a)
end = findIndex(customers, $b)
for (int i=start; i<=end; i++)
    println(customers[i])</pre>
```



```
start = findFirstIndex(customers, $a)
end = findLastIndex(customers, $b)
for (int i=start; i<=end; i++)
    println(customers[i])</pre>
```


 2
 4
 4
 11
 11
 11
 11
 11
 11
 11
 17
 23
 28

```
start = findFirstIndex(customers, $a)
end = findLastIndex(customers, $b)
for (int i=start; i<=end; i++)
    println(customers[i])</pre>
```



```
idx = binarySearch(customers, $a)
start = searchLeft(customers, idx, $a)
```


What is the time complexity of this algorithm? O(n)

We know that idx **may** be the first occurence of 11, but anything to the right will not be.

- Still can get rid of ½ the array!
- Store a candidate result = 5

2	4	4	11	11	11	11	11	11	17	23	28
2	4	4	11	11	11	11	11	11	17	23	28
2	4	4	11	11	11	11	11	11	17	23	28
2	4	4	11	11	11	11	11	11	17	23	28

• Return result = 3

BINARY SEARCH FIRST

```
function binarySearchFirst (A, key, n)
       low = 0
       high = n - 1
       result = not_found
       while low <= high</pre>
               mid = (low + high)/2
               if key < A[mid] then</pre>
                      high = mid - 1
               else if key == A[mid] then
                      result = mid
                      high = mid - 1
               else
                      low = mid + 1
       return result
```

What is the worst case computational complexity of binarySearchFirst()?

- A. $O(\log n)$
- B. O(n)
- C. $O(n^2)$
- D. O(1)

BINARY SEARCH FIRST

```
function binarySearchFirst (A, key, n)
       low = 0
       high = n - 1
       result = not_found
       while low <= high</pre>
               mid = (low + high)/2
               if key < A[mid] then</pre>
                      high = mid - 1
               else if key == A[mid] then
                      result = mid
                      high = mid - 1
               else
                      low = mid + 1
       return result
```

What is the worst case computational complexity of binarySearchFirst()?

- A. O(logn)
- B. O(n)
- C. $O(n^2)$
- D. O(1)

BINARY SEARCH FIRST CORRECTNESS


```
function binarySearchFirst (A, key, n)
       low = 0
       high = n - 1
       result = not_found
       while low <= high</pre>
               mid = (low + high)/2
               if key < A[mid] then</pre>
                      high = mid - 1
               else if key == A[mid] then
                      result = mid
                      high = mid - 1
               else
                      low = mid + 1
       return result
```

Preconditions:

- A is of size n
- A is sorted

Postcondition:

- A[mid] = key
- A[mid] is the first occurrence of key

YOU CAN FIND THE LAST INDEX IN A SIMILAR WAY


```
start = findFirstIndex(customers, $a)
end = findLastIndex(customers, $b)
for (int i=start; i<=end; i++)
    println(customers[i])</pre>
```

ADDENDUM

The code has another bug! Can you spot it?

- What if start or end is not_found? Can we modify the pre and postconditions?
- Or can we modify the code below to do proper checking?
- Or can we modify binary search to return the next largest/smallest item?

```
start = findFirstIndex(customers, $a)
end = findLastIndex(customers, $b)
for (int i=start; i<=end; i++)
    println(customers[i])</pre>
```

WRITING CORRECT PROGRAMS

Programming Pearls by Jon Bentley (published in 1986).

Binary search used in Sun JDK.

But there's a bug.

BUG WITH BINARY SEARCH

```
function binarySearchFirst (A, key, n)
       low = 0
       high = n - 1
       result = not_found
       while low <= high</pre>
             mid = (low + high)/2
This can
              if key < A[mid] then</pre>
                     high = mid - 1
overflow!
              else if key == A[mid] then
                     result = mid
                     high = mid - 1
              else
                     low = mid + 1
       return result
```


BUG WITH BINARY SEARCH

```
function binarySearchFirst (A, key, n)
       low = 0
       high = n - 1
       result = not_found
       while low <= high</pre>
              mid = low + ((high-low)/2)
              if key < A[mid] then</pre>
                     high = mid - 1
              else if key == A[mid] then
                     result = mid
                     high = mid - 1
              else
                     low = mid + 1
       return result
```


PROBLEM SOLVED!

INTERIM SUMMARY

Divide and Conquer:

- Split into sub-problems
- Solve sub-problems
- Combine sub-solutions

Program Correctness

- Be careful with your Pre & Post Conditions
- Invariances are useful!

QUESTIONS?

PROBLEM: NARUTO'S SORT IS TOO SLOW!

We now have more than a million customers!

Naruto's Insertion sort is now too slow.

We need a better method!

Can we apply divide and conquer?

Yes!

DIVIDE & CONQUER STRATEGY: THE 3 STEPS

- 1. (Deviously) Split your problem into subproblems.
- 2. (Gleefully) Solve each subproblem (recursively).
- 3. (Cleverly) Combine the solutions for each subproblem to produce a solution to the original problem.

MERGESORT: THE ALGORITHM

7 3 9 5 7 1 6 2

```
function mergeSort(A, low, high)
  if low < high
    mid = (high + low)/2
    mergeSort(A, low, mid)
    mergeSort(A, mid+1, high)
    merge(A, low, mid, high)</pre>
```


THE MERGE STEP

3 5 7 9

1 2 6 7

MERGE PSEUDOCODE

Initialization.

Iterate through helper

At each iteration, compare the elements in the two segments and copy over the smaller element

Copy over the remaining items from the left segment (if needed)

```
function merge(int low, int mid, int high)
    for i = low to high
       buffer[i] = A[i]
    i = low
    j = mid + 1
    k = low
    while i <= mid and j <= high
        if buffer[i] <= buffer[j]</pre>
            A[k] = buffer[i]
            i++
        else
            A[k] = buffer[j]
            j++
        k++
    while i <= middle
        A[k] = buffer[i]
        k++
        1++
```

MERGE: CORRECT?

Initialization

Termination

```
function merge(int low, int mid, int high)
    for i = low to high
       buffer[i] = A[i]
    i = low
    j = mid + 1
    k = low
    while i <= mid and j <= high
        if buffer[i] <= buffer[j]</pre>
            A[k] = buffer[i]
            i++
        else
            A[k] = buffer[j]
            j++
        k++
    while i <= middle
        A[k] = buffer[i]
        k++
        1++
```

MERGE: WHAT IS THE LOOP INVARIANT?

Behind here lies the answer

```
function merge(int low, int mid, int high)
    for i = low to high
       buffer[i] = A[i]
    i = low
    j = mid + 1
    k = low
    while i <= mid and j <= high
        if buffer[i] <= buffer[j]</pre>
            A[k] = buffer[i]
            i++
        else
            A[k] = buffer[j]
            j++
        k++
    while i <= middle
        A[k] = buffer[i]
        k++
        i++
```

MERGE: WHAT IS THE LOOP INVARIANT?

```
let L = buffer[low, ..., mid]
R = buffer[mid+1, ..., high]
```

A[low, k-1] contains the k-1 smallest elements of L and R in sorted order.

L[i] and R[j] contain the smallest items in their respective arrays not yet copied to A.

```
function merge(int low, int mid, int high)
    for i = low to high
       buffer[i] = A[i]
    i = low
    j = mid + 1
    k = low
    while i <= mid and j <= high
        if buffer[i] <= buffer[j]</pre>
            A[k] = buffer[i]
            i++
        else
            A[k] = buffer[j]
            j++
        k++
    while i <= middle
        A[k] = buffer[i]
        k++
        1++
                                       90
```

MERGE: WHAT IS THE LOOP INVARIANT?

```
let L = buffer[low, ..., mid]
R = buffer[mid+1, ..., high]
```

A[low, k-1] contains the k-1 smallest elements of L and R in sorted order.

L[i] and R[j] contain the smallest items in their respective arrays not yet copied to A.

Verify the loop invariant holds at each iteration!

```
function merge(int low, int mid, int high)
    for i = low to high
       buffer[i] = A[i]
    i = low
    j = mid + 1
    k = low
    while i <= mid and j <= high
        if buffer[i] <= buffer[j]</pre>
            A[k] = buffer[i]
            i++
        else
            A[k] = buffer[j]
            j++
        k++
    while i <= middle
        A[k] = buffer[i]
        k++
        i++
                                       91
```


HOW LONG DOES MERGE TAKE?

What is the worst-case time complexity for merging?

- A. $O(n \log n)$
- B. O(n)
- C. $O(n^2)$
- D. O(1)
- E. I wish you would stop asking these complexity questions!

HOW LONG DOES MERGE TAKE?

What is the worst-case time complexity for merging?

- A. $O(n \log n)$
- B. O(n)
- C. $O(n^2)$
- D. O(1)
- E. I wish you would stop asking these complexity questions!

MERGESORT: WHAT IS THE RUNNING TIME?

function MergeSort(A, low, high)
 if low < high
 mid = (high + low)/2
 MergeSort(A, low, mid)
 MergeSort(A, mid+1, high)
 Merge(A, low, mid, high)</pre>

What is the worst-case time complexity for mergesort?

- A. $O(n \log n)$
- B. O(n)
- C. $O(n + \log n)$
- D.

MERGESORT: WHAT IS THE RUNNING TIME?

function MergeSort(A, low, high)
 if low < high
 mid = (high + low)/2
 MergeSort(A, low, mid)
 MergeSort(A, mid+1, high)
 Merge(A, low, mid, high)</pre>

What is the worst-case time complexity for mergesort?

- A. $O(n \log n)$
- B. O(n)
- C. $O(n + \log n)$
- D.

MERGESORT RUNNING TIME

```
function MergeSort(A, low, high)
  if low < high
    mid = (high + low)/2
    MergeSort(A, low, mid)
    MergeSort(A, mid+1, high)
    Merge(A, low, mid, high)</pre>
```

MERGESORT RUNNING TIME

```
function MergeSort(A, low, high)

if low < high c_1

mid = (high + low)/2 c_2

MergeSort(A, low, mid) T(n/2)

MergeSort(A, mid+1, high) T(n/2)

Merge(A, low, mid, high) c_3n
```

MERGESORT RUNNING TIME

```
function MergeSort(A, low, high)
  if low < high</pre>
                                       C_1
     mid = (high + low)/2
                                       C_2
     MergeSort(A, low, mid)
                                      T(n/2)
     MergeSort(A, mid+1, high)
                                      T(n/2)
     Merge(A, low, mid, high)
                                       c_3n
                T(n) = 2T(n/2) + cn
```


Make a Guess

Substitute into the Recurrence Relation

T(n) = 2T(n/2) + cn

Prove using mathematical induction

Prove the base cases

(you can fill in the missing steps here. Hint: lg(a/b) = lg(a) - lg(b))

$$T(n) = 2T(n/2) + cn$$

$$T(n) = 2T(n/2) + cn$$

how deep does it go?

$$T(n) = 2T(n/2) + cn$$

Level	Number
0	1
1	2
2	4
3	8
4	16
• • •	• • •
h	n

$$n = 2^{h}$$

does this look familiar?

TIME COMPLEXITY OF BINARY SEARCH

4 5 6 23 n4 28

Iteration 1: n

Iteration 2: n/2

Iteration 3: n/4

•••

Iteration $k: n/2^k = 1$

If $n/2^k = 1$, what is k in terms of n?

A.
$$k = 2^n$$

B.
$$k = 2/n$$

C.
$$k = \log(n)$$

D. Am I in CS or Math?

$$T(n) = 2T(n/2) + cn$$

Level	Number
0	1
1	2
2	4
3	8
4	16
• • •	• • •
h	n

$$n = 2^{h}$$

$$T(n) = 2T(n/2) + cn$$

Level	Number
0	1
1	2
2	4
3	8
4	16
•••	•••
h	n

$$n = 2^h$$

$$\log n = h$$

$$h = \log n$$

MERGESORT: RECURSE "DOWNWARDS"

$$T(n) = 2T(n/2) + cn$$

MERGESORT: RECURSE "DOWNWARDS"

MERGESORT: RECURSE "DOWNWARDS"

MERGESORT: WHAT IS THE RUNNING TIME?

function MergeSort(A, low, high)
 if low < high
 mid = (high + low)/2
 MergeSort(A, low, mid)
 MergeSort(A, mid+1, high)
 Merge(A, low, mid, high)</pre>

What is the worst-case time complexity for mergesort?

- A. $O(n \log n)$
- B. O(n)
- C. $O(n + \log n)$
- D.

OK... LET'S TAKE A BREATHER

Mergesort is $O(n \log n)$

Derivation required:

- Thinking through the steps.
- Breaking down the recursive calls
- Summing up the costs

CAN WE DO BETTER THAN $O(n \log n)$ FOR A COMPARISON BASED SORT?

No

Proof: Chapter 2 of Sedgewick and Wayne or Chapter 8 of CLRS (or wait for CS3230)

Key Idea:

- Any sorting algorithm must output a permutation of the input
- There are n! possible permutations.
- So, $n! \le l \le 2^h$ where l is the number of leaves, and h is the height of the binary tree.
- Take logarithms to show: $h \ge \log n! = \Omega(n \log n)$ using Stirling's approximation

REAL WORLD PERFORMANCE

PROBLEM FIXED: YOUR SORT IS FAST!

We now have more than a million customers!

All of them are happily served!

You and Naruto get yet another promotion & a bonus!

LEARNING OUTCOMES

By the end of this session, you should be able to:

- Use the divide and conquer strategy for problem solving
- Explain the binary search algorithm and prove its correctness
- Explain the mergesort algorithm as an example of the divide and conquer strategy.
- Analyze and describe the **performance of mergesort and** binary search using O(g(n)) notation.

OTHER TAKE AWAYS

Divide & Conquer:

- Split
- Solve
- Combine

Don't Panic when you face a complicated problem (e.g., recurrence relation)!

- Break down the problem and think through the cases.
- Build up a solution from the cases

This is also Divide & Conquer!

BEFORE NEXT LECTURE

Go to Visualgo.net and do the Sorting Module:

- https://visualgo.net/en/sorting
- Review: 11 (Quicksort)-12
- Optional: 13 onwards

QUESTIONS?

