Phase-type distributions

Fernando Zepeda

TU Berlin - Lufthansa Systems

September 27, 2016

Outline

ı					luction			
П	n	1	rn		111	ct	\sim	n
П	ш	ıL	ıv	u	ıu	Lι	ıv	ш

Markov Chains

Phase-type distributions

Classes

Canonical Representations

Introduction

Some data do not follow necessarily the form of any standard distribution (unconventional forms):

- Probability distributions may posses any shape
- Rugged and multimodal data distributions

The **phase-type** (**PH**) family of distributions have some useful properties in fitting this kind of data

- ▶ They are dense in the field of all positive-valued distributions $[0,\infty)$
- Thus, they can be used to approximate any positive-valued distribution Bladt. et al. (2003)
- Markovian properties make them analytically flexible

Motivation

Goal: Estimate

- Buying probabilities (and ticketing probabilities)
- Inter-arrival time of bookings

by fitting PH distributions to them given booking historical data

Markov Chains

Let **S** denote a countable set of states, and let $\{X(t)\}_{t\geq 0}^{\infty}$ be a stochastic process with state space **S**

▶ Let $n \in \mathbb{N}$ be the size of **S**

 $\{X(t)\}_{t\geq 0}^{\infty}$ is a continuous-time Markov chain **(CTMC)**, if it is characterized by the *Markov property*:

$$Prob(X(t_{k+1}) = x_{k+1}|X(t_k) = x_k, ..., X(t_0) = x_0) =$$

 $Prob(X(t_{k+1}) = x_{k+1}|X(t_k) = x_k)$

for any
$$t_{k+1} \geq t_k \geq \ldots \geq t_1 \geq t_0 \geq 0$$
 and $x_l \in \mathbf{S}$

The transition between states x are defined by the values $p_t(i,j)$ which are contained in a matrix with transition probabilities P_t

The state probabilities at time t are denoted by

$$p_t(j) = Prob(X(t) = j), j \in \mathbf{S}$$
 with $\sum_j p_t(j) = 1$

$$\pi(0) = [p_0(1), p_0(2), \dots, p_0(n)]$$
: initial probability vector

Random times between states transitions V_1, V_2, \ldots, V_n are exponentially distributed random variables with parameter $\lambda(i)$ for state i

 V_i : holding time in state i with distribution function:

$$Prob(V_i \leq t) = 1 - e^{-\lambda(i)t}, t \geq 0$$

The probabilistic behavior if the CTMC can be summarize in terms of its infinitesimal generator: a $n \times n$ matrix **Q** with components:

$$\mathbf{Q}(\mathbf{i},\mathbf{j}) = \begin{cases} -\lambda(i) & \text{if } i = j, \\ \lambda(i,j) & \text{if } i \neq j. \end{cases}$$

- ▶ Since $\lambda(i) \ge 0$, it follows $\mathbf{Q}(i,i) \le 0$: diagonal elements are non-positive
- ▶ Transition to j feasible in state i then $\mathbf{Q}(i,j) > 0$, otherwise $\mathbf{Q}(i,j) = 0$: non-diagonal elements must be non-negative
- $\triangleright \sum_{j} \mathbf{Q}(i,j) = 0$

Absorbing Markov Chains

Figure 1: Different Markov chains and their transition representation

Absorbing Markov Chains

Some definitions

A state j is reachable from another i when we have

$$p_t(i,j) = Prob(X(t+u) = j|X(u) = i) > 0$$

for some t

Def.

States i and j can communicate with each other if i is reachable from j and viceversa.

Let $\mathbf{C} \subset \mathbf{S}$. If all states in \mathbf{C} communicate, we call it communicating set

Def.

A subset **C** of the state space **S** is said to be closed if P(i,j) = 0 for any $i \in C, j \notin C$.

If ${\bf C}$ consists of a single state, say i, then i is said to be an absorbing state.

It holds for i that P(i, i) = 1: a process can never leave a closed set after entering it

Def.

A state $i \in \mathbf{S}$ is transient, if the probability of returning to i after leaving it is less than 1.

PH distributions and absorbing Markov chains

If every state in a Markov chain is either absorbing or transient, then the Markov chain is called *absorbing Markov chain*

Particularly interesting case: absorbing Markov chains with one single absorbing state

Assumption: state space **S** of the continuous time absorbing Markov process $\{X(t)\}_{t\geq 0}^{\infty}$ is finite and contains the set of **transient** states $\mathbf{S}_{\mathcal{T}} = \{1, \dots, n\}$ and a single absorbing state n+1

$$\mathbf{Q} = \left(\begin{array}{cc} \mathbf{D_0} & \mathbf{d_1} \\ \mathbf{0} & 0 \end{array} \right)$$

is the generator matrix, where:

- ▶ **D**₀: describes transitions between transient states
- $ightharpoonup d_1$: transition from transient states to the absorbing state
- ► row vector **0**: since no transition from the absorbing state to the transient states

$$\mathbf{Q} = \begin{pmatrix} \mathbf{D_0} & \mathbf{d_1} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{1} \times n & \mathbf{1} \times 1 \end{pmatrix}$$

is the generator matrix, where:

- ▶ **D**₀: describes transitions between transient states
- $ightharpoonup d_1$: transition from transient states to the absorbing state
- ► row vector **0**: since no transition from the absorbing state to the transient states

Since the states are transient, implies:

$$\lim_{t \to \infty} Prob(X(t) < n+1) = 0,$$

i.e. the absorption occurs with probability 1.

 ${\bf D_0}$ is invertible and matrix $(-{\bf D_0})^{-1}$ is the fundamental matrix of the absorbing CTMC

Def. Phase-type distribution (PHD)

A PHD is defined as the distribution of the lifetime X or the time to absorption from the set of transient states $\mathbf{S_T}$ of an absorbing continuous Markov process $\{X(t)\}_{t>0}^{\infty}$

Phase Type Distributions (PHD)

The Markov process starts in an arbitrary state from $\mathbf{S} = \mathbf{S_T} \cup \mathbf{S_A}$, so the vector

$$\pi = [\pi(1), \ldots, \pi(n)]$$

represents the inital probabilites for transient states and $\pi(n+1)$ gives the probability for a direct start in the absorbing (assumption: $\pi(n+1)=0$)

Phase Type Distributions (PHD)

Simple example

$$\boldsymbol{S} = \boldsymbol{S_T} \cup \boldsymbol{S_A} = \{1,2\} \cup \{3\}$$

$$\mathbf{Q} = \begin{pmatrix} -4.5 & 4 & 0.5\\ 2 & -2.5 & 0.5\\ \hline 0 & 0 & 0 \end{pmatrix}$$
$$\pi = \begin{bmatrix} \frac{1}{2}, \frac{1}{2} \end{bmatrix}$$

PHD Representation

We can say now that the random variable X describing the time until absorption is of phase-type with the vector-matrix tuple representation:

$$(\pi, \mathbf{D_0})$$

since the vectors $\mathbf{d_1}$ and the value $\pi(n+1)$ are implicitly given by the matrix $\mathbf{D_0}$

The size of the PHD is the size of the sub-generator matrix \mathbf{D}_0 , n

Analytical Properties of PHD

$$F(x) = \mathbb{1} - \pi e^{\mathbf{D_0} \times} \mathbb{1}$$
, for $x \ge 0$ (c.d.f.)
$$f(x) = \pi e^{\mathbf{D_0} \times} \mathbf{d_1}$$
, for $x \ge 0$ (p.d.f.)
$$\mu_i = E[X^i] = i! \pi (-\mathbf{D_0}^{-1})^i \mathbb{1}$$
, PHD i th moment

Note 1: $\mathbf{M} = -\mathbf{D_0^{-1}}$ is the moment matrix

$$\to \mu_i = E[X^i] = i! \pi \mathbf{M}^i \mathbb{1}$$

Note 2: $-\mathbf{D_0^{-1}}(i,j) = \mathbf{M}(i,j)$ is the expected total time spent in phase j before absorption, given that initial phase is i

PH Classes

Based on the structure of the underlying Markov chain several classes of PH distributions can be distinguished

- Structure of PH representation often has an impact on its application
- Some structures allow more efficient solutions

Most important distinction:

1. Acyclic phase-type distributions (APH)

2. General phase-type distributions

PH Classes

Based on the structure of the underlying Markov chain several classes of PH distributions can be distinguished

- Structure of PH representation often has an impact on its application
- Some structures allow more efficient solutions

Most important distinction:

1. Acyclic phase-type distributions (APH)

2. General phase-type distributions

PH Classes

Based on the structure of the underlying Markov chain several classes of PH distributions can be distinguished

- Structure of PH representation often has an impact on its application
- Some structures allow more efficient solutions

Most important distinction:

- 1. Acyclic phase-type distributions (APH)
 - ▶ Hyper-Erlang distributions
 - Hyper-Exponential distributions
- 2. General phase-type distributions

Hyper-Erlang distributions (HEr PHD)

Figure 2: Hyper-Erlang distribution with two branches $(\beta, m, \mathbf{b}, \lambda) = ([\beta_1, \beta_2], 2, [3, 2], [\lambda_1, \lambda_2])$

Size of the Hyper-Erlang distribution: $n = \mathbf{b}1$

 $\underline{\mathsf{Special\ case}}\colon\left(\beta, \mathit{m}, \mathbf{b}, \lambda\right) = \left([\beta_1 = 1], 1, \mathbf{b}, \lambda_1\right) \to \mathsf{Erlang\ distr}.$

Hyper-Exponential distributions (HEx PHD)

Figure 3: Hyper-Exponential distribution with four branches $(\beta, n, \lambda) = ([\beta_1, \beta_2, \beta_3, \beta_4], 4, [\lambda_1, \lambda_2, \lambda_3, \lambda_4])$

Special case: $(\beta, n, \lambda) = ([\beta = 1], 1, \lambda_1) \rightarrow \text{Exponential distr.}$

Note: HEx are subclass of HEr when $\mathbf{b} = 1$ and $\mathbf{m} = n$

Canonical Representation for APH distributions CF-1

Def.

The Canonical Form 1 (CF-1 form) is a bi-diagonal representation (β, Λ) , where β initial probabilities and rates λ_i in Λ are in increasing order: $\lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$

Figure 4: APH distribution in CF-1 form

Canonical Representation for APH distributions

Every acyclic phase type distribution (APH) with a Markovian representation of size n has an unique CF-1 representation of the same size.

- ▶ A general APH has n-1 initial probabilities and n^2 entries in the sub-generator matrix $\mathbf{D_0}$, i.e. the number of parameters is $n^2 + n 1$
- ▶ In the CF-1 form $\mathbf{D_0}$ is an upper bi-diagonal matrix with $\lambda_{i,i} = -\lambda_{i+1,i}$, therefore the CF-1 form has 2n-1 parameters

PH-Fitting Tools

Two general classes of algorithms

- Analytical: direct computation of parameters
 - ▶ Moment Matching: μ_1, μ_2, μ_3
- Statistical: maximum likelihood method (iterative process)
 - G-FIT: Hyper-Erlang distributions
 - PhFit: Acyclic PHD CF-1 form

Summary

- PHD can be used to approximate any positive-valued distribution
- ▶ They represent the distribution of the time to absorption of an absorbing continuous time Markov process $\{X(t)\}_{t>0}^{\infty}$
- ▶ They are defined by the tuple $(\pi, \mathbf{D_0})$
- Two big families: Hyper-Erlang and Hyper-Exponential distributions
- Acyclic phase-type distributions deserve an special attention
- ▶ They can be reduced in a canonical form in order to estimate their parameters (2n-1)
- Fitting techniques

References

Bucholtz, Kriege & Felko (2014). Input Modeling with Phase-Type Distributions and Markov Models: Theory and Applications

Cumani, A (1982). On the canonical representation of homogeneous Markov processes modelling failure-time distributions microelectronics and reliability 22. 582-602.

Reinicke, P & Horváth G. (2012). Phase-type distributions for realistic modeling in discrete-event simulation. *In Proceedings of the 5th International ICST Conference on Simulation Tools and Techniques* (pp.283-290). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).