HO05: Álgebra relacional II

Aluno: Bernardo Ladeira Borges Kartabil

Matrícula: 838966

Turno: Manhã

QUESTÃO 1:

Projetar o primeiro nome e o último nome dos atores que são diretores;

```
atores = \rho id_ator \leftarrow id, first_name_ator \leftarrow first_name, last_name_ator \leftarrow last_name (actors) ator_diretor = atores \bowtie id_ator = id (directors) \pi first_name_ator,last_name_ator (ator_diretor)
```

```
1 atores = ρ id_ator ← id, first_name_ator ← first_name, last_name_ator ← last_name (actors)
2
3 ator_diretor = atores ⋈ id_ator = id (directors)
4
5 πfirst_name_ator,last_name_ator (ator_diretor)
6
```

```
T first_name_ator, last_name_ator
0 rows

ator_diretor = ⋈ id_ator = id
0 rows

atores = ρ id_ator←id, first_name_ator←first_name, last_name_ator←last_name
1091 rows

actors
1091 rows
```

```
Π first_name_ator, last_name_ator(ρ id_ator←id, first_name_ator←first_name, last_name_ator←last_name(actors)⋈ id_ator = id( directors))

Execution time: 0 ms
```

QUESTÃO 2:

Projetar o primeiro nome e o último nome dos atores que não são diretores;

QUESTÃO 3:

Projetar o primeiro nome e o último nome dos atores e diretores; π first_name, last_name (actors) $\cup \pi$ first_name, last_name (directors)

actors.first_name	actors.last_name	
'Chris'	'Anastasio'	
'Michael'	'Beach'	
'John'	'Bedford Lloyd'	
'Michael'	'Biehn'	
'Captain Kidd'	'Brewer Jr.'	
'Leo'	'Burmester'	
'Mike (I)'	'Cameron'	
'J. Kenneth'	'Campbell'	
'Michael (I)'	'Chapman'	
'Phillip'	'Darlington'	
< 1 2		

QUESTÃO 4:

Projetar o nome dos filmes que não são dirigidos por nenhum diretor:

 π name (movies) - π name (movies \bowtie (movies.id = movie_id) movies_directors)

QUESTÃO 5:

Projetar primeiro nome e o último nome dos atores que não atuaram em pelo menos dois filmes;

- -- Agrupa roles por actor_id e conta quantos filmes cada ator fez contagem_filmes = γ actor_id; count(movie_id)—film_count (roles)
- -- Filtra para obter apenas os atores com 2 ou mais filmes atores_com_2_ou_mais = σ film_count >= 2 (contagem_filmes)
- -- Junta com a tabela actors para obter informações dos atores atores_info = actors ⋈ (actors.id = actor_id) (atores_com_2_ou_mais)
- -- Projeta apenas primeiro e último nome desses atores nomes_atores_2_ou_mais = π first_name, last_name (atores_info)
- -- Projeta primeiro e último nome de todos os atores todos_nomes_atores = π first_name, last_name (actors)
- -- Faz a diferença para obter atores que NÃO atuaram em pelo menos dois filmes resultado = todos_nomes_atores nomes_atores_2_ou_mais resultado

 π first_name, last_name (actors) - π first_name, last_name (actors \bowtie (actors.id = actor_id) σ film_count \ge 2 Υ actor_id; COUNT(movie_id) \rightarrow film_count (roles))

Execution time: 1 ms

actors.first_name	actors.last_name
'Chris'	'Anastasio'
'Michael'	'Beach'
'John'	'Bedford Lloyd'
'Leo'	'Burmester'
'J. Kenneth'	'Campbell'
'Michael (I)'	'Chapman'
'Phillip'	'Darlington'
'Thomas F.'	'Duffy'
'Chris (I)'	'Elliott'
'Todd'	'Graff'
< 1 2	2 3 >

QUESTÃO 6:

Projetar, por gênero e ano, o número médio de filmes com menos de dois atores atuando.

- -- Junta filmes com papéis filmes_com_papeis = movies ⋈ (movies.id = movie_id) roles
- -- Agrupa por id e ano do filme, contando número de atores em cada filme contagem_atores = γ id, year; count(actor_id)→actor_count (filmes_com_papeis)
- -- Filtra para selecionar apenas filmes com menos de 2 atores filmes_menos_2_atores = σ actor_count < 2 (contagem_atores)
- -- Projeta e renomeia actor_count para film_count filme_ano_contagem = π id, year, actor_count—film_count (filmes_menos_2_atores)
- -- Renomeia a relação para filtered_movies para maior clareza filtered_movies = ρ filtered_movies (filme_ano_contagem)
- -- Junta com a tabela de gêneros para obter o gênero de cada filme filmes_com_generos = movies_genres ⋈ (movies_genres.movie_id = filtered_movies.id) (filtered_movies)
- -- Projeta apenas os atributos relevantes genero_ano_contagem = π genre, year, film_count (filmes_com_generos)
- -- Agrupa por gênero e ano, calculando a média de filmes resultado = γ genre, year; avg(film_count)→avg_films (genero_ano_contagem)

resultado

```
Algebra Relacional

Algebra Multiconjunto SQL Editor de Grupo

1 -- Junta filmes com papéis
2 filmes_com_papéis = movies ⋈ (movies.id = movie_id) roles
3 -- Agrupa por id e ano do filme, contando número de atores em cada filme
5 contagem_atores = γ id, year; count(actor_id)→actor_count (filmes_com_papeis)
6 -- Filtra para selecionar apenas filmes com menos de 2 atores
8 filmes_menos_2_atores = σ actor_count < 2 (contagem_atores)
9 -- Projeta e renomeia actor_count para film_count
11 filme_ano_contagem = π id, year, actor_count→film_count (filmes_menos_2_atores)
12 -- Renomeia a relacão para filtered_movies para maior clareza
14 filtered_movies = ρ filtered_movies (filme_ano_contagem)
15 -- Junta com a tabela de gêneros para obter o gênero de cada filme
17 filmes_com_generos = movies_genres ⋈ (movies_genres.movie_id = filtered_movies.id) (filtered_movies)
18 -- Projeta apenas os atributos relevantes
20 genero_ano_contagem = π genre, year, film_count (filmes_com_generos)
21 -- Agrupa por gênero e ano, calculando a média de filmes
22 -- Agrupa por gênero e ano, calculando a média de filmes
23 resultado = γ genre, year; avg(film_count)→avg_films (genero_ano_contagem)
25 resultado
```


movine gange gange	filtared maying year	ava filme
movies_genres.genre	filtered_movies.year	avg_films
'Documentary'	2005	1
'Documentary'	1953	1
'Short'	1953	1
'Action'	2006	1
'Drama'	2006	1
'War'	2006	
	< 1 →	

OBSERVAÇÕES:

Achei esse Hands-on 05 muito mais complexo que o Hands-on 04. Isso porque, além das novas operações utilizadas, quando o professor corrigiu o HO04, ele disse para mim que era melhor não utilizar o modo de indexação da calculadora Relax, apesar de permitido, pois poderia gerar conflitos no futuro. Além disso, ele afirmou que a prática de renomear as relações e os atributos era de grande importância. Então, passei um grande tempo e tive muito esforço para reaprender a sintaxe da calculadora sem utilizar a indexação, pois queria seguir o conselho do professor.

FONTES EXTERNAS UTILIZADAS NESSA ATIVIDADE:

Biblioteca da calculadora rela $X \rightarrow \underline{https://dbis-uibk.github.io/relax/help}$

Junção de Dados - Álgebra Relacional - Junção Interna, Externa à Esquerda, à Direita e Completa → https://www.youtube.com/watch?v=V-CvggzYuwk

Álgebra Relacional de Dados - Exercícios - Junção, Seleção, Projeção e Operações sobre Conjuntos → https://www.youtube.com/watch?v=xX3GiXEcNwM

Operações sobre Conjuntos de Dados - União, Intersecção e Diferença - Álgebra Relacional de Dados → https://www.youtube.com/watch?v=J3BlrfLkC0A

OBS: As vezes os vídeos tem sintaxes diferentes, porém eu tento abstrair a ideia e comparar com o que o professor ensinou, mas continuo estudando na linha das 2 sintaxes que ele permitiu.