Acceleration & Analyze

GPGPU Assignment #3
Implement Poisson Editing for image cloning on the GPUs.
2017 spring

Successive Over-Relaxation Method (SOR)

 SOR is just a interpolation/extrapolation between current values and the values of the next iteration.

$$C'_{b,SOR} = \omega C'_b + (1 - \omega)C_b.$$

- Usually, we use ω < 1 to ensure the convergence while ω > 1 to accelerate the convergence.
- Choose larger ω (e.g., 2) initially, and decrease it to 1 later after a few iterations.

SOR Evaluation

- I tuned the ω in the first five iterations, and set $\omega=1$ for the rest of iterations to see the its effect on convergence.
- Simply determine if it has reached the convergence by eyes.

ω	iterations	Time(us)
1	20000	2044880
1.2	16000	1617444
1.4	14000	1494285
1.6	12000	1233999
1.8	11000	1145667
2.0	10000	1051008
2.5	10000	1044487
3	15000	1553770

Interesting examples and results

My_target

My_background

My_result

