Анализ метода отбора признаков QPFS для обобщенно-линейных моделей

Александр Дмитриевич Толмачев

Московский физико-технический институт

Курс: Автоматизация научных исследований (практика, В.В. Стрижов)/Группа 821

Эксперт: В.В. Стрижов

Консультант: А. А. Адуенко

Задача отбора признаков в обобщенно-линейной модели

Цель

Исследовать проблему отбора признаков в обобщенно-линейной модели.

Исследуемая проблема

Требуется оценить точность метода QPFS в задаче отбора признаков и сравнить его с другими методами.

Метод решения

Рассматриваются задачи оптимизации в методе QPFS и других методах отбора признаков.

Применение квадратичной оптимизации для задачи отбора признаков

$$\begin{cases} \mathbf{z}^* = \arg\min_{\mathbf{z} \in [0,1]^n} \mathbf{z}^\mathsf{T} \mathsf{Q} \mathbf{z} - \mathbf{b}^\mathsf{T} \mathbf{z} \\ \|\mathbf{z}\|_1 \leq 1 \end{cases}$$

Q – матрица схожести между признаками

b – вектор схожести между признаком и целевым вектором.

au – порог, т.ч. $z_i^* > au \Leftrightarrow \mathrm{j}$ -ый признак отобран моделью

Замечаем, что очень важно правильно подбирать значение порога au, но даже при таком подходе мы можем отобрать много шумовых признаков...

Основная литература

- Irene Rodriguez-Lujan и др. "Quadratic Programming Feature Selection". в: Journal of Machine Learning Research 11 (апр. 2010), с. 1491—1516.
- Aleksandr Katrutsa ν Vadim Strijov. "Stresstest procedure for feature selection algorithms". B: Chemometrics and Intelligent Laboratory Systems 142 (февр. 2015). DOI: 10.1016/j.chemolab.2015.01.018.
- Alexandr Katrutsa ν Vadim V. Strijov. "Comprehensive study of feature selection methods to solve multicollinearity problem according to evaluation criteria". Β: Expert Syst. Appl 76 (2017), c. 1—11.

Постановка задачи метода QPFS

Добавим нормировку в оптимизируемый функционал:

$$\frac{1}{2}(1-\alpha)\mathbf{a}^{\mathsf{T}}\mathbf{Q}\mathbf{a} - \alpha\mathbf{b}^{\mathsf{T}}\mathbf{a} \to \min_{\mathbf{a}} \qquad \qquad \frac{1}{2}\tilde{\mathbf{a}}^{\mathsf{T}}\mathbf{Q}\tilde{\mathbf{a}} - \mathbf{b}^{\mathsf{T}}\tilde{\mathbf{a}} \to \min_{\tilde{\mathbf{a}}} \qquad (1)$$

$$\mathbf{s.t. a} \ge 0, \ \sum_{i=1}^{n} a_{i} \le 1. \qquad \mathbf{s.t. \tilde{a}} \ge 0, \ \sum_{i=1}^{n} \tilde{a}_{i} \le \beta$$

Q - матрица корреляций Пирсона между признаками

b - вектор корр-ий Пирсона между признаком и целевым вектором.

Признак j активен $\Leftrightarrow a_i > 0$.

Анализ решения задачи оптимизации

Таблица: Свойства решения в методе QPFS в зависимости от параметра α

α	Равенство	Неравенстсво
$\alpha = 0$	Исп-тся все признаки, $Qa^* = \eta$ е, $\eta > 0$	исключены все признаки
$\alpha \rightarrow 0$	Исп-тся все признаки, $Qa^* o \eta$ е, $\eta > 0$	Решение задачи (2)
$\alpha \to 1$	Сх-ся к отбору 1 го признака с максимальным b_j	То же, что и в «рав-во»
$\alpha = 1$	Отбор 1го признака с макс. b_j	То же, что и в «рав-во»

Связь с Lasso-моделью для линейной регрессии

$$\frac{1}{2}\|y - Xw\|_{2}^{2} + \tau\|w\|_{1} \to \min_{w}. \quad (3)$$

$$\frac{1}{2}w^{\mathsf{T}}\tilde{Q}w - \tilde{b}^{\mathsf{T}}w \to \min_{w}$$

$$\text{s.t. } \|w\|_{1} = \eta.$$

Если $\mathsf{x}_j^\mathsf{T} \mathsf{x}_j = 1, \ \mathsf{y}^\mathsf{T} \mathsf{y} = 1, \ \mathsf{y}^\mathsf{T} \mathsf{x}_j \geq 0, \ \mathsf{x}_j^\mathsf{T} \mathsf{x}_l \geq 0$ и $w^* \geq 0$, то эти задачи тождественны!

Вычислительный эксперимент

Цель

Выявить недостатки метода QPFS.

Выборка

Пусть $x_1 \sim \mathcal{N}(0,1)$, $y \sim \mathcal{N}(0,1)$, а $x_2 = x_1 + \varepsilon \cdot y$, где $\varepsilon = 0.001$.

Результаты

В методе QPFS может отбираться много шумовых признаков... При этом, $y=\frac{x_2-x_1}{\varepsilon}$, т.е. не выполнено одно из условий эквивалентности QPFS и Lasso.

Стабильность модели

$$\|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2 + \tau \lambda_{\mathsf{max}}(\mathbf{X}(\mathbf{w})^\mathsf{T}\mathbf{X}(\mathbf{w})) / \lambda_{\mathsf{min}}(\mathbf{X}(\mathbf{w})^\mathsf{T}\mathbf{X}(\mathbf{w})) \to \min_{\mathbf{w}},$$

В качестве апостериорного знания можно рассматривать индекс обусловленности, однако такая задача очень тяжела для оптимизации...

Заключение

Результаты

- проанализирован метод QPFS отбора признаков при различных постановках задач оптимизации,
- показана эквивалентность QPFS и Lasso при определенных условиях
- рассмотрены способы достижения стабильности модели

Направления будущей работы

- исследовать возможности применения байесовского подхода к методу QPFS при различных априорных распределениях,
- рассмотреть новые методы отбора признаков и сравнить их с QPFS