A REPRESENTATION THEOREM FOR CAUSAL DECISION MAKING

Evan Piermont

Royal Holloway, University of London joint with

Joseph Y. Halpern

Cornell University

Aarhus Workshop --- May 2024

This paper

We represent causality via *structural equations*, and consider an agent's preference over *interventions*:

- Representation Theorem
 - How does an agent's subjective causal model influence her decision making
- ⋄ Identification Theorem
 - When can this model be recovered from observation

Causation and Counterfactuals

- Modern theories define causation through counterfactuals.
 - Requires evaluating worlds that do not exist
- ♦ We take a structural approach a la Pearl [2000]:
 - Equations directly encode causal mechanisms
 - Provide a succinct way of contemplating counterfactuals

Variables

- $\diamond \mathcal{U}$ and \mathcal{V} denote exogenous and endogenous variables, resp.
- $\diamond \ \mathcal{R}(Z) \subset \mathbb{R}$ is the range of $Z \in \mathcal{U} \cup \mathcal{V}$
- \diamond A *context* is a vector \vec{u} of values for all the exogenous variables \mathcal{U} .
 - Let $ctx = \prod_{U \in \mathcal{U}} \mathcal{R}(U)$ collect all contexts
- \diamond A resolution is a vector \vec{r} of values for all variables $\mathcal{U} \cup \mathcal{V}$.
 - \diamond Let $res = \prod_{Y \in \mathcal{U} \cup \mathcal{V}} \mathcal{R}(Y)$ collect all resolutions

Utility will be defined over res

♦ Beliefs will be defined over ctx

The US Federal Reserve is contemplating the economy.

The relevant variables are: the growth rate (gw), the prior interest rate (pr), the current interest rate (rate), inflation (inf), employment rate (emp):

$$\mathcal{U} = \left\{egin{align*} U_{gw} \ U_{pr} \end{array}
ight. \quad \mathcal{V} = \left\{egin{align*} rac{Y_{rt}}{X_{emp}} \ X_{inf} \end{array}
ight.$$

Utility is determined by the inflation rate and employment level:

$$\diamond \mathbf{u}(\vec{r}) = 2X_{emp} - X_{inf}.$$

- Does not know the growth rate:
 - \diamond believes $U_{qw}=1$ with prob α and $U_{qw}=0$ with prob $(1-\alpha)$.
- Contemplate interventions that set the interest rate:
 - This will casually effect the resolution
 - But exactly how might depend on the context

Causal Models

Given \mathcal{U} and \mathcal{V} with ranges \mathcal{R} , a causal model M consists of:

 $\diamond \mathcal{F} = \{F_X\}_{X \in \mathcal{V}}$, a set of **structural equations**, where

$$F_{\mathbf{X}}: \prod_{Y \in \mathcal{U} \cup (\mathcal{V} - \{\mathbf{X}\})} \mathcal{R}(Y) \to \mathcal{R}(\mathbf{X}).$$

- \diamond Call M recursive if there exists a partial order on \mathcal{V} :
 - $\diamond F_X$ is independent of the variables succeeding X

The causal equations are

$$\begin{aligned} \mathbf{Y}_{rt} &= U_{pr} & (F_{\mathbf{Y}_{rt}}) \\ \mathbf{X}_{inf} &= 1 - \mathbf{Y}_{rt} & (F_{\mathbf{X}_{inf}}) \\ \mathbf{X}_{emp} &= 1 - (\mathbf{Y}_{rt} \times (1 - U_{gw})) & (F_{\mathbf{X}_{inf}}) \end{aligned}$$

$$U_{gw} = 0$$

$$U_{pr} = 0$$

$$Y_{rt} = U_{pr}$$

$$X_{inf} = 1 - Y_{rt}$$

$$X_{emp} = 1 - (Y_{rt} \times (1 - U_{gw}))$$

$$U_{gw} = 0$$

$$U_{pr} = 0$$

$$Y_{rt} = 0$$

$$X_{inf} = 1 - Y_{rt}$$

$$X_{emp} = 1 - (Y_{rt} \times (1 - 0))$$

$$U_{gw} = 0$$

$$U_{pr} = 0$$

$$Y_{rt} = 0$$

$$X_{inf} = 1 - 0$$

$$X_{emp} = 1 - (0 \times (1 - 0))$$

$$U_{gw} = 0$$

$$U_{pr} = 0$$

$$Y_{rt} = 0$$

$$X_{inf} = 1$$

$$X_{emp} = 0$$

♦ When is decision making consistent causal reasoning via some model M? What kind of data is needed to answer this? Preferences over interventions

Interventions

An intervention

$$\mathbf{do}[Y_1 \leftarrow y_1, \dots, Y_n \leftarrow y_n]$$

is a mediation that sets the values of $Y_1 \dots Y_n \in \mathcal{V}$:

- $\diamond y_i \in \mathcal{R}(\underline{Y}_i)$
- \diamond abbreviated as $\mathbf{do}[\vec{Y} \leftarrow \vec{y}]$
- interventions only on endogenous variables.

A conditional intervention is of the form:

if ϕ then A else B

- $\diamond \phi$ is a true/false valued question about the variable values
 - \diamond such as "the value of X is positive", etc
- ♦ A and B are conditional interventions
- These is constructed recursively starting with interventions
- \diamond **if** ϕ **then** A shorthand for when $B = \emptyset$

For a resolution $\vec{r} \in \mathbf{res}$ let

if \vec{r} then A else B

denote the conditional intervention on \vec{r} being true.

 \diamond i.e., do A if all variables coincide with \vec{r} , else do B

Preference

Observable: preference relation \succeq over conditional interventions:

- Interventions allow the DM to change the resolution
- Conditioning allows contracting away uncertainty about context

A **causally sophisticated** decision maker would understand the effect of conditional interventions via a causal model

Interventions and Causal models

Given the model M, the intervention

$$\mathbf{do}[Y_1 \leftarrow y_1, \dots, Y_n \leftarrow y_n]$$

induces a counterfactual model, $\mathcal{F}_{\operatorname{do}[\stackrel{\circ}{Y}\leftarrow \vec{y}]}$ where

 F_{Y_i} is replaced by the constant function $F'_{Y_i} = y_i$

The intervention $\mathbf{do}[Y_{rt} \leftarrow 1]$ sets the current rate to 1:

$$U_{gw} = 0$$

$$U_{pr} = 0$$

$$Y_{rt} = 1$$

$$X_{inf} = 1 - Y_{rt}$$

$$X_{emp} = 1 - (Y_{rt} \times (1 - U_{gw}))$$

$$U_{gw} = 0$$

$$U_{pr} = 0$$

$$Y_{rt} = 1$$

$$X_{inf} = 1 - Y_{rt}$$

$$X_{emp} = 1 - (Y_{rt} \times (1 - 0))$$

$$U_{gw} = 0$$

$$U_{pr} = 0$$

$$Y_{rt} = 1$$

$$X_{inf} = 1 - 1$$

$$X_{emp} = 1 - (1 \times (1 - 0))$$

$$U_{gw} = 0$$

$$U_{pr} = 0$$

$$Y_{rt} = 1$$

$$X_{inf} = 0$$

$$X_{emp} = 0$$

Given a (recursive) model M and conditional intervention A, let

$$\beta_A^{\mathsf{M}}:\mathsf{ctx}\to\mathsf{res}$$

transform contexts into resolutions in the obvious way:

- ⋄ M plus context determines ex-ante resolution
- ♦ This resolution determines the 'clause' of *A* in force, hence an intervention
- This intervention determines a (recursive) counterfactual model
- Along with context, this determines the ex-post resolution

Representation

A causally sophisticated agent's preferences are parameterized by

- ⋄ M a recursive model capturing causal relationships
- $\diamond \ \mathbf{u} : \mathbf{res}
 ightarrow \mathbb{R}$ value of a resolution of all uncertainty
- $\ \ \, \diamond \;\; \mathbf{p} \in \Delta(\mathtt{ctx}) \mathsf{belief} \; \mathsf{capturing} \; \mathsf{uncertainty} \; \mathsf{about} \; \mathsf{the} \; \mathsf{values} \; \mathsf{of} \; \\ \mathsf{exogenous} \; (\mathsf{hence} \; \mathsf{endogenous}) \; \mathsf{variables} \; \\$

Representation

Subjective Causal Utility

(M, p, u) is a subjective causal utility representation of \succeq :

$$A \succeq B$$

if and only if

$$\sum_{\vec{u} \in \mathtt{ctx}} \mathbf{u}(\beta_A^{\mathbf{M}}(\vec{u})) \mathbf{p}(\vec{u}) \geq \sum_{\vec{u} \in \mathtt{ctx}} \mathbf{u}(\beta_B^{\mathbf{M}}(\vec{u})) \mathbf{p}(\vec{u}).$$

The utility of the Federal Reserve is determined by the inflation rate and employment level, and is given by

$$\mathbf{u}(\vec{r}) = 2X_{emp} - X_{inf}.$$

$\operatorname{do}[Y_{rt} \leftarrow 1]$

$$\mathbf{u} \circ \beta$$

$$U_{gw} = 1 \qquad 2 \times 1 - 1 = 1$$

$$U_{gw} = 0 \qquad 2 \times 1 - 1 = 1$$

$$U_{gw} = 0 \qquad 2 \times 1 - 1 = 1$$

$$U_{gw} = 0 \qquad 0 \qquad 0 \qquad 0$$

 $\operatorname{do}[Y_{rt} \leftarrow 0]$

$$\operatorname{do}[Y_{rt} \leftarrow 1]$$

- \diamond Preference between setting interest rate at 1 or 0 depends on belief about U_{aw} .
- ⋄ The conditional intervention

if
$$(U_{gw} = 1)$$
 then do $[Y_{rt} \leftarrow 1]$ else do $[Y_{rt} \leftarrow 0]$

dominates

♦ Adapted from Blume, Easley, Halpern (2021)

♦ In the spirit of Krantz, Luce, Suppes & Tversky (1971)

Call **r** null if

(if
$$\vec{r}$$
 then A) \sim (if \vec{r} then B) for all A and B

- \diamond Conditioning on \vec{r} trivializes preference
- \diamond The DM does not believe \vec{r} is possible

Ax 1: Model Uniqueness

For each $\vec{u} \in \text{ctx}$, there is at most one $\vec{r} \in \text{res}$ such that $\vec{r}|_{\mathcal{U}} = \vec{u}$ and \vec{r} is non-null.

- For each context, there is at most one consistent resolution considered possible
- ⋄ i.e., given the context, there is no uncertainty about the resolution
- Implies the casual model is certain

For each $\vec{r} \in \text{res}$, write

$$\operatorname{do}[\vec{Y} \leftarrow \vec{y}] \rightsquigarrow_{\vec{r}} (X = x)$$

as shorthand for the indifference relation

if
$$\vec{r}$$
 then $\mathbf{do}[\vec{Y} \leftarrow \vec{y}, X \leftarrow x] \sim \mathbf{if} \vec{r}$ then $\mathbf{do}[\vec{Y} \leftarrow \vec{y}]$.

- \diamond If setting \vec{Y} to \vec{y} yields $\vec{X} = x$, then the agent is indifferent from making such a further intervention on \vec{X} .
- ♦ However, definition allows for indifference between distinct values of *X*

No Intervention	$\mathbf{do}[\textcolor{red}{Y_{rt}} \leftarrow 1]$	$\mathbf{do}[\mathbf{\textit{Y}}_{rt} \leftarrow 1, \mathbf{\textit{X}}_{emp} \leftarrow 0]$
$U_{gw} = 0$ $U_{pr} = 0$ $Y_{rt} = U_{pr}$ $X_{inf} = 1 - Y_{rt}$ $X_{emp} = 1 - (Y_{rt} \times (1 - U_{gw}))$	$U_{gw} = 0$ $U_{pr} = 0$ $Y_{rt} = 1$ $X_{inf} = 1 - Y_{rt}$ $X_{emp} = 1 - (Y_{rt} \times (1 - U_{gw}))$	$U_{gw} = 0$ $U_{pr} = 0$ $Y_{rt} = 1$ $X_{inf} = 1 - Y_{rt}$ $X_{emp} = 0$

No Intervention	$\mathbf{do}[Y_{rt} \leftarrow 1]$	$\mathbf{do}[Y_{rt} \leftarrow 1, X_{emp} \leftarrow 0]$
$U_{gw} = 0$ $U_{pr} = 0$ $Y_{rt} = 0$ $X_{inf} = 1 - Y_{rt}$ $X_{emp} = 1 - (Y_{rt} \times (1 - 0))$	$U_{gw} = 0$ $U_{pr} = 0$ $Y_{rt} = 1$ $X_{inf} = 1 - Y_{rt}$ $X_{emp} = 1 - (Y_{rt} \times (1 - 0))$	$U_{gw} = 0$ $U_{pr} = 0$ $Y_{rt} = 1$ $X_{inf} = 1 - Y_{rt}$ $X_{emp} = 0$

No Intervention	$\mathbf{do}[\textcolor{red}{Y_{rt}} \leftarrow 1]$	$\mathbf{do}[\underline{Y}_{rt} \leftarrow 1, \underline{X}_{emp} \leftarrow 0]$
$U_{gw} = 0$	$U_{gw} = 0$	$U_{gw} = 0$
$U_{pr} = 0$	$U_{pr} = 0$	$U_{pr} = 0$
$Y_{rt} = 0$	$Y_{rt} = 1$	$Y_{rt} = 1$
$X_{inf} = 1 - 0$	$X_{inf} = 1 - 1$	$X_{inf} = 1 - 1$
$X_{emp} = 1 - (0 \times (1 - 0))$	$X_{emp} = 1 - (1 \times (1 - 0))$	$X_{emp} = 0$

No Intervention	$\mathbf{do}[\textcolor{red}{Y_{rt}} \leftarrow 1]$	$\mathbf{do}[\textcolor{red}{\mathbf{Y}_{rt}} \leftarrow 1, \textcolor{red}{\mathbf{X}_{emp}} \leftarrow 0]$
$U_{gw} = 0$	$U_{gw} = 0$	$U_{gw} = 0$
$U_{pr} = 0$	$U_{pr} = 0$	$U_{pr} = 0$
$Y_{rt}=0$	$Y_{rt} = 1$	$Y_{rt} = 1$
$X_{inf} = 1$	$X_{inf} = 0$	$X_{inf} = 0$
$X_{emp} = 1$	$X_{emp} = 0$	$X_{emp} = 0$

Ax 2: Definiteness

Fix non-null $\vec{r} \in \text{res}$, endogenous variables, \vec{Y} , and values $\vec{y} \in \mathcal{R}(\vec{Y})$. Then for variable X, there exists some $x \in \mathcal{R}(X)$ such that

$$\mathbf{do}[\vec{Y} \leftarrow \vec{y}] \sim \succ_{\vec{r}} (X = x)$$

- ◆ There is some value of *X* which is consistent with any intervention
- May not be unique (i.e., indifference between resolutions)
- \diamond Ax2*: if the value x is unique

Ax 3: Centeredness

For $\vec{r} \in \mathbf{res}$, vector of endogenous variables \vec{Y} , and endogenous variable $X \notin \vec{Y}$, we have

$$\mathbf{do}[\vec{Y} \leftarrow \vec{r}|_{\vec{Y}}] \leadsto_{\vec{r}} (X = \vec{r}|_X)$$

 Trivial interventions (setting variables to their current value) has no consequence For $X, Y \in \mathcal{V}$, say that X is unaffected by Y if

$$\mathbf{do}[\vec{Z} \leftarrow \vec{z}] \rightsquigarrow_{\vec{r}} (X = x) \qquad \text{iff} \qquad \mathbf{do}[\vec{Z} \leftarrow \vec{z}, Y \leftarrow y] \rightsquigarrow_{\vec{r}} (X = x)$$

for all $\vec{r} \in \text{res}$, \vec{Z} and values for the variables.

- X is unaffected by Y if there is no intervention on Y that changes the decision maker's perception of X
- \diamond If this relation does not hold, then X is affected by Y, written $Y \rightsquigarrow X$.

Ax 4: Recursivity

→ is acyclic

⋄ There are no cycles of variable dependence

Theorem

 \gtrsim satisfies Ax1-4 and cancellation if and only if there exists a subjective causal utility representation, (M, p, u).

Moreover, if Ax2* holds, then **M** is unique.

Each axiom helps discipline how counterfactuals are constructed:

Definiteness: There exists some counterfactual world

Model Uniqueness: It is unique

Centeredness: It is minimally different than the current world

Recursivity: Closeness is consistent across contexts

These properties suffice to prove the existence of a structural model.

