The Buyer-Seller Problem

Takemyprocs

September 4, 2021

1 The Seller Problem: a basic framework

Suppose a seller is endowed with a fixed amount of m inputs, namely: $s_1, s_2, ..., s_m$. With them the seller can craft n products, namely: $x_1, x_2, ..., x_n$. Not all inputs may be required for crafting a particular product, so we define A as the technical matrix that captures the input requirements for each output:

$$A = \begin{pmatrix} s_1 & s_2 & \dots & s_n \\ s_2 & a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \ddots & \dots \\ s_m & a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

For instance, in order to craft 1 unit of product x_1 we need to use a_{11} units of input s_1 , a_{21} units of input s_2 , and so on. We assume technical coefficients a_{ij} are fixed. Recall that since not all inputs are required for crafting a particular product some of the elements in this matrix may be 0. Finally, we assume that only outputs can be sold freely at fixed prices: $p_1, p_2, ..., p_n$.

Given those conditions, we can write the seller problem as follows:

$$\max_{x_1, x_2, \dots, x_n} \quad p_1 x_1 + p_2 x_2 + \dots + p_n x_n
\text{s.t.} \quad a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le s_1
\qquad a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n \le s_2
\qquad \dots
\qquad a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le s_m
\qquad x_1, x_2, \dots, x_n \ge 0$$
(1)

Intuitively, the seller problem is to choose production quantities $x_1, x_2, ..., x_n$ in order to maximize earnings subject to input availability constraints. This resembles the linear programming canonical form. Therefore, we can use almost any mathematical software (e.g. Matlab, R or Python) to solve this problem. In order to apply this model we need information on technical coefficients, input endowments and prices. We provide an example in the next section.

2 An example

Suppose a seller is endowed with 98 units of input 1, 147 units of input 2, 182 units of input 3, 157 units of input 4 and 114 units of input 5. By using those inputs the seller can craft up to 6 different products, say $x_1, ..., x_6$. The input requirements for crafting each product are summarized in the technical matrix shown below:

$$A = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \\ s_1 & 5 & 0 & 0 & 0 & 0 & 4 \\ 0 & 5 & 0 & 0 & 0 & 4 \\ 0 & 0 & 5 & 0 & 3 & 4 \\ s_5 & 0 & 0 & 0 & 1 & 3 \end{bmatrix}$$

Finally, market prices for products 1 to 6 are 100.2, 80, 110.96, 120.11, 115.90 and 314 respectively. According to the basic framework described in the previous section we formulate the seller problem for this particular application as follows:

$$\max_{x_1, x_2, \dots, x_n} 100.2x_1 + 80x_2 + 110.96x_3 + 120.11x_4 + 115.90x_5 + 314x_6$$
s.t.
$$5x_1 + 4x_6 \le 98$$

$$5x_2 + 4x_6 \le 147$$

$$5x_3 + 3x_5 + 4x_6 \le 182$$

$$5x_4 + 3x_5 + 4x_6 \le 157$$

$$x_5 + 3x_6 \le 114$$

$$x_1, x_2, x_3, x_4, x_5, x_6 > 0$$
(2)

We use the package lpSolve (linear programming) in the R environment to solve this problem. As shown below, our code¹ provides us with optimal quantities for every product. Notice that quantity for product x_5 is null, this is an example of *corner solution* which is very common in the linear programming framework. This solution implies that, at faced prices, endowments and current technical requirements, is not profitable to craft product x_5 at all.

	product	quantity
[1,]	"x1"	"17"
[2,]	"x2"	"27"
[3,]	"x3"	"34"
[4,]	"x4"	"29"
[5,]	"x5"	"0"
[6,]	"x6"	"3"

¹See the seller.R script in GitHub.

3 Some extentions

Insofar we have described a basic framework of the seller problem. Under this model we assumed that inputs cannot be sold in the market like products, also we