Lab 3

January 29, 2013

HW 2: Posterior densities

(Untruncated) [3.978, 5.916], (Truncated) [4.123, 5.791]

2/13

Posterior densities with the second data set

3/13

Prior predictive distribution

- $\pi(\theta)$: a prior for a parameter θ .
- $L(x|\theta)$: a data generating function.
- Prior predictive distribution:

$$\pi(x) = \int L(x|\theta)\pi(\theta)d\theta, \tag{1}$$

- Generate random samples from $x_i \sim \pi(x)$ for i = 1, ..., S.
 - 1. Generate $\theta^{(i)} \sim \pi(\theta)$.
 - 2. Generate $x^{(i)} \sim L(x \mid \theta^{(i)})$.

Lab 3 January 29, 2013 4 / 13

Normal distribution

 A random variable Y is said to be normally distributed Y ~ N(θ, σ²) if the pdf is given by

$$f(y \mid \theta, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2\sigma^2} (y - \theta)^2\right\}, \quad -\infty < y < \infty.$$
 (2)

- θ : mean, σ^2 : variance.
- Symmetric about θ , the mode, median and mean are equal to θ .
- If $Y \sim N(\theta, \sigma^2)$, then $aY \sim N(a\theta, a^2\sigma^2)$.
- If $Y \sim N(\theta, \sigma^2)$ and $X \sim N(\mu, \tau^2)$, then $aY + bX \sim N(a\theta + b\mu, a^2\sigma^2 + b^2\tau^2)$.

() Lab 3 January 29, 2013

5/13

Central limit theorem

Let $\{X_n, n \ge 1\}$ be i.i.d. random variables with $E(X_n) = \theta$ and $V(X_n) = \sigma^2 < \infty$. If $\bar{X}_n = \sum_{i=1}^n X_i/n$, then

$$\sqrt{n}\frac{\bar{X}_n - \theta}{\sigma} \to N(0, 1).$$
 (3)

Lab 3 January 29, 2013 8 / 13

Student's t distribution

• A random variable *X* follows *t* distribution if the pdf is

$$f(x|\nu) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}},$$
 (4)

9/13

where ν is the number of degrees of freedom.

• $\nu \to \infty$ corresponds to normal distribution.

Kolmogorov-Smirnov test

- KS test checks the sample is generated from the reference distribution.
- KS statistic relies on the empirical distribution for i.i.d. $\{X_i, i = 1, ..., n\}$,

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I_{X_i \le x},$$
 (5)

where $I_{X_i \le x}$ is an indicator function.

The statistic is

$$D_n = \sup_{x} |F_n(x) - F(x)|, \tag{6}$$

and $D_n \to 0$ if the null hypothesis is true.

Lab 3 January 29, 2013 11 / 13

Figure: CDFs of t dist with v = 1 (red: #=5, green: #=20).

Kolmogorov-Smirnov test

- x = rt(100, 1)
 ks.test(x,pt,1)
 D = 0.115, p-value = 0.1667
 ⇒ Fail to reject the hypothesis.
- y = rnorm(100, 0, 3)
 ks.test(y, pt, 1)\$ p
 0.0359
 ⇒ Reject the hypothesis.