Министерство науки и высшего образования Российской Федерации Новосибирский государственный технический университет Кафедра автоматизированных систем управления

Лабораторная работа №6 «Настройка ПИД регулятора»

Группа: АВТ-813 Преподаватель:

Студент: Достовалов Дмитрий Николаевич,

Чернаков Кирилл Заведующий кафедрой АСУ, доцент

кафедры Автоматизированных

систем управления

Новосибирск

2020

Цель работы: найти параметры ПИД регулятора, обеспечивающие заданные показатели качества управления

1. Общая структура исследуемой системы. ередаточная функция, в соответствии с вариантом задания

Вариант 40.

Рис. 1 – Структурная схема системы

2. Передаточная функция объекта управления, в соответствии с вариантом задания

Согласно варианту передаточная функция ОУ выглядит следующим образом:

$$W = \frac{4,69}{6,34p^2 + 1,26p + 2,78}$$

3. Передаточная функция устройства управления, в соответствии с вариантом задания

Согласно варианту передаточная функция УУ выглядит следующим образом:

$$W = 5,27 + 8,35 * \frac{1}{p} + 8,73 * p$$

$$W = \frac{8,73p^2 + 5,27p + 8,35}{p}$$

4. Структурная схема в Matlab для получения переходной характеристики системы

Рис. 2 — Структурная схема системы в Matlab

5. График переходной характеристики из Matlab

Рис. 3 – График переходной характиристики из Matlab

6. Значения показателей качества для системы с исходными настройками регулятора

Установившееся значение у при $t \to \infty : 1,0001104$

Величину статической ошибки (абсолютную и относительную):

Абсолютная: $\delta(t) = \nu - y(t) = 1 - 1,0001104 = -0,0001104$

Относительная:
$$\delta(t)\% = \left(1 - \frac{y(t)}{\nu}\right) * 100\% = \left(1 - \frac{1,0001104}{1}\right) * 100\% = -0.01104\%$$

Перерегулирование (абсолютное и относительное значение):

Абсолютное:
$$\sigma=h_{max}-h_{\infty}=1,4722-1,0001104=0,47209$$

Относительное: $\sigma\%=\frac{h_{max}-h_{\infty}}{h_{\infty}}*100\%=\frac{1,4722-1,0001104}{1,0001104}*100\%==47,204\%$

Время, когда первый раз достигается значение у, равное установившемуся (t_1) : 1,425

Время достижения максимального значения (t_2): 2,754

Для определения длительности переходного процесса (времени регулирования) считать, что процесс считается завершенным, когда значение у отличается от установившегося значения менее чем на 5%.

Возьмем 5%. Тогда получим 1,0001104 * 0,05 = 0,050006, а границы коридора: [0,9501;1,05012]

Время регулирования (t_3) : 10,15

7. Значения параметров регулятора, подобранные вами для достижения заданного показателя качества

Заданный показатель качества: уменьшить время регулирования на 30%.

Время регулирования (t_3) : 10,15

Требуемое время
$$t^* = 10,15 - 10,15 * 0,3 = 7,105$$

$$k_p = 8.54$$

$$k_{i} = 6$$

$$k_d = 15$$

8. График переходной характеристики из Matlab для системы с новыми настройками регулятора

Рис.4 – График переходной характеристики из Matlab для системы с новыми настройками регулятора

9. Значения показателей качества для системы с новыми настройками регулятора.

Установившееся значение у при t → ∞ : 1,00006282

Величину статической ошибки (абсолютную и относительную):

Абсолютная:
$$\delta(t) = \nu - y(t) = 1 - 1,00006282 = -0,00006282$$

Относительная:
$$\delta(t)\% = \left(1 - \frac{y(t)}{\nu}\right) * 100\% = \left(1 - \frac{1,00006282}{1}\right) * 100\% = -0,006282\%$$

Перерегулирование (абсолютное и относительное значение):

Абсолютное:
$$\sigma = h_{max} - h_{\infty} = 1{,}314 - 1{,}00006282 = 0{,}31394$$

Относительное:
$$\sigma\% = \frac{h_{max} - h_{\infty}}{h_{\infty}} * 100\% = \frac{1,314 - 1,00006282}{1,00006282} * 100\% =$$

$$= 31,392\%$$

Время, когда первый раз достигается значение у, равное установившемуся (t_1) : 2,03065

Время достижения максимального значения (t_2) : 4,017

Для определения длительности переходного процесса (времени регулирования) считать, что процесс считается завершенным, когда значение у отличается от установившегося значения менее чем на 5%.

Возьмем 5%. Тогда получим 1,00006282*0,05=0,050003, а границы коридора: [0,95006;1,05007]

Время регулирования (t_3) : 7

10. Выводы об изменении показателей качества и ваша оценка значимости

Характер процесса сохранился, остался затухающим.

При

- увеличении k_p с 5,27 до 8.54;
- уменьшении k_i с 8,35 до 6;
- увеличении k_d с 8,73 до 15;
- время регулирования t_3 меняется с 10,15 до 7 (требовалось 7,105, но между этими числами допустимая небольшая погрешность 1,47%);
- значение у при $t \to \infty$ изменилось с 1,0001104 до 1,00006282, что является допустимым (погрешность 0,005%).

Время регулирования уменьшилось на заданное значение (на 30%), без значительного изменения значения, к которому стремится функция, значит цель работы была достигнута.