§1. Planimetrie

Př:

*58. Jsou-li t_a , t_b , t_c těžnice trojúhelníka *ABC*, dokažte, že platí vztah $t_a + t_b + t_c < a + b + c$.

Ukáži, že $2t_a < b + c$:

Označme v jako výšku na starnu a. Dále nechť x,y jsou po řadě orientované vzdálenosti od paty výšky z A k B a středu AB. Požadovanou nerovnost pak lze vyjádřit takto:

$$2\sqrt{v^2 + \left(\frac{x+y}{2}\right)^2} < \sqrt{v^2 + x^2} + \sqrt{v^2 + y^2}$$

$$4v^2 + x^2 + y^2 + 4xy < 2v^2 + x^2 + y^2 + 2\sqrt{v^2 + x^2}\sqrt{v^2 + y^2}$$

$$2v^2 + 4xy < 2\sqrt{v^4 + 2v^2x^2 + v^2y^2 + x^2y^2}$$

$$2v^2 + 2x^2y^2 + 2v^2xy < 2v^4 + 4v^2x^2 + 2v^2y^2 + 2x^2y^2$$

$$0 < 2v^2$$

Požadovanou nerovnst získáme součtem těchto nerovností přes všechny strany. QED

***61.** Je dán ostroúhlý trojúhelník ABC, jehož obvod je 2s. Dokažte, že platí nerovnosti $s < v_a + v_b + v_c < 2s$, kde v_a , v_b , v_c jsou výšky trojúhelníka ABC.

Nechť O je ortocentrum.

1. $s < v_a + v_b + v_c$

Ukáži, že $a < v_b + v_c$. Z trojúhelníkové nerovnosti |BO| + |CO| < |BC|. Jelikož je ale trojúhelník ostroúhlý, tak O leží ve výškách, tedy $v_b + v_c < |BO| + |CO| < |BC|$.

Součtem těchto nerovností přes všechny strany dostaneme: $v_b+v_c+v_c+v_a+v_a+v_b< a+b+c \Leftrightarrow v_a+v_b+v_c<2s$

2. $v_a + v_b + v_c < 2s$ Evidentně $a < v_b$, protože výška je jediná nejkratší spojnicí vrcholu a protější strany. A jelikož trojúhelník není pravoúhlý, tak vyška není současně stranou.

Sečtením těchto nerovností přes starny dostaneme: $2s = a + b + c < v_b + v_c + v_a$

*62. Je dán ostroúhlý trojúhelník ABC. Osa úhlu γ a osa úhlu β se protínají v bodě P, kterým je vedena přímka $p \parallel BC$. Průsečíky přímky p se stranami AB a AC jsou M a N. Dokažte, že platí MN = NC + MB.

 $|\sphericalangle PBM|=|\sphericalangle PBC|=|\sphericalangle BPM|.$ Tedy trojúhelník BPM je rovnoramenný. Z toho plyne, že |BM|=|MP|. Analogicky |PN|=|NC|. V součtu tedy |BM|+|NC|=|MP|+|PN|=|MN|. QED

*103. Dvě kružnice $k_1 \equiv (S_1; r_1)$, $k_2 \equiv (S_2; r_2)$ se protínají ve dvou různých bodech A, B. Bodem A veďte přímku a, která protíná kružnice k_1 , k_2 v bodech $E \not\equiv A$, $F \not\equiv A$, bodem B přímku b, která protíná kružnice k_1 , k_2 v bodech $C \not\equiv B$, $D \not\equiv B$. Dokažte, že $CE \parallel DF$.

Dále budeme úhlit orientovaně modulo π :

Z tětivovosti platí: $\triangleleft CEA = \triangleleft CBA = \triangleleft DBA = \triangleleft DFA$. Tedy přímky CD a DF vzniknou z EF otočením o stejný úhel, tedy musí být rovnoběžné. QED

*292. Je dán trojúhelník ABC. Osa o úhlu ≮ ACB protíná stranu AB v bodě D. Dokažte, že platí vztah AD: AC = DB: BC. Zdůvodněte též, že trojúhelníky ADC a DBC nejsou podobné, i když se shodují v jednom úhlu a mají úměrné dvě dvojice stran.

Označme antirovnoběžku kBAvzhledem kCDprocházející Ajako x. Dále nechť $\{X\}=x\cap \overleftrightarrow{CD}.$

Platí, že |AX| = |AD|, protože X vznikne z D dle simetrice podle kolmice CD prcházející A (\overrightarrow{AD} je obrazem priAX z antirovnoběžnosti a DX je kolmé na osu.

Jelikož AC a AX jsou antirovnoběžky vzhledem k CD s BC a BX, tak $| \triangleleft CAX | = | \triangleleft CBD |$, tady trojúhelník CAX je podobný s CBD.

Z podobnosti tedy $AX:AC=AD:AC=DB:BC.\ QED$

Nejsou podobné, protože věta uss nefunguje :-(

A) Rovnice

*32. V kružnici jsou vedeny dvě tětivy dlouhé 30 cm a 34 cm. Kratší z nich má od středu dvakrát větší vzdálenost než delší tětiva. Určete poloměr kružnice.

$$r^2 = 15^2 + (2x)^2$$
$$r^2 = 17^2 + x^2$$

$$0 = 15^2 - 17^2 + 3x^2$$

$$x^{2} = \frac{64}{3}$$

$$r = \sqrt{17^{2} + \frac{64}{3}} = \sqrt{\frac{931}{3}} = \frac{7\sqrt{57}}{3}$$

*176. Žák uložil nastřádané peníze a po roce mu záložna připsala 15 Kčs úroků. Přidal k nim dalších 85 Kčs a po dalším roce měl na vkladní knížce i s úroky 420 Kčs. Jak velká částka byla uložena původně a kolikaprocentní byl úrok?

$$xu = 15$$

$$(x + xu + 85) \cdot (u + 1) = 420$$

$$(x + 100) \cdot (u + 1) = 420$$

$$15 + 100u + x + 100 = 420$$

$$100\frac{15}{x} + x = 305$$

$$1500 + x^{2} = 285x$$

$$(x - 5)(x - 300) = 0$$

$$x_1 = 5 \Rightarrow u_1 = 3$$

 $x_2 = 300 \Rightarrow u_2 = \frac{1}{20}$

***252.** Řešte rovnice: a) $x^2 + 6ix \pm 15 = 0$; b) $2x^2 - (5 - i)x + 6 = 0$; c) $(7 + i)x^2 - 5ix - 1 = 0$; d) $x^2 - (4 - 6i)x + 10 - 20i = 0$; e) $(1 + i)x^2 - (2 + i)x + 3 + i = 0$.

d)
$$D = (4 - 6i)^2 - 4(10 - 20i) = -60 + 32i = (2 + 8i)^2$$
$$x = \frac{-(4 - 6i) + (2 + 8i)}{2} = -1 + 7i$$
$$x = \frac{-(4 - 6i) - (2 + 8i)}{2} = -3 + i$$

e)
$$D = (2+i)^2 - 4(1+i)(3+i) - 5 - 12i = (2-3i)^2$$

 $x = \frac{2+i+(2-3i)}{2(1+i)} = \frac{2-i}{1+i} = \frac{1}{2} - \frac{3}{2}i \ x = \frac{2+i-(2-3i)}{2(1+i)} = \frac{i}{1+i} = \frac{1}{2} + \frac{1}{2}i$