REACT: A Framework for Rapid Exploration of Approximate Computing Techniques

Mark Wyse, André Baixo, Thierry Moreau, Bill Zorn James Bornholt, Adrian Sampson, Luis Ceze, Mark Oskin

University of Washington

Motivation

Understand current research

Investigate new techniques

Evaluate impact of existing techniques

Overview

Taxonomy

Dimensions

Conclusions

Framework

Details

Early Results

Taxonomy

Determinism

$$|P(x) - A(x)| \le \varepsilon \ \forall \ x$$

 $\Pr(|P(x) - A(x)| > \varepsilon) < P \ \forall \ x$

Granularity

Hardware/Software

Computational Resource(s)

Nondeterministic Deterministic Bit-Width Reduction Float-to-Fixed Conversion DRAM Refresh Rate **Fuzzy Memoization SRAM Soft Error Exposure** Hierarchical FPU Approximate Storage (PCM) Load Value Approximation Soft Fault Tolerance Lossy Compression and Data Packing Fine Synchronization Elision **Precision Scaling ALU Voltage Overscaling** Reduced-Precision FPU **Underdesigned Multiplier** Coarse Grained **Algorithm Selection** Code Perforation Error F. Interpolated Memoization Neural Acce. Neural Acceleration (ASIC, FPGA, GPU) Parallel Pattern Replacement Parameter Adjustment

REACT

A Framework for **R**apid **E**xploration of **A**pproximate **C**omputing **T**echniques

Application Profiler & Energy Model

Intel Pin tool
Insn Count + Arch Events

Custom, linear model
Simple, understandable
Validated against McPAT

Error Injection

ACCEPT
Runtime error injection
Simple API
Arbitrary error models

```
int i, p;
APPROX int a;
APPROX int data[N];
a = data[i] * p;
```

Approximation Models

Load Value Approximation

Drowsy SRAM

Neural Acceleration

Reduced Precision FPU

Low refresh rate DRAM

Voltage Overscaled ALU

Early Results - Sobel

Early Results – FFT1D

Conclusions

Coarse-grained superior to fine-grained

Coarse-grained, Nondeterministic!

Thank you!

Questions?