Sistemas Fotovoltaicos Autónomos Diseño

Oscar Perpiñán Lamigueiro http://oscarperpinan.github.io

Sistemas Fotovoltaicos Autónomos

Oscar Perpiñán
Lamigueiro
http://
oscarperpinan.
github.io

SFA

Sistemas

Fotovoltaicos Autónomos Oscar Perpiñán

- ► El dimensionado de un SFA consiste en decidir el tamaño del generador fotovoltaico y acumulador que serán capaces de proporcionar la energía requerida por una determinada carga a partir de la radiación disponible en la zona.
- Debido al comportamiento aleatorio tanto de la radiación como del consumo, la probabilidad de fallo no es nula.
- La solución es un compromiso entre el coste y la fiabilidad del sistema.

Dimensionado del SFA

Nomenclatura

721 1

Ejemplos

Configuración de generador

Nomenclatura

Objetivo
Ejemplos
Métodos de dimensionado
Configuración de generador y bat

Consumo: L.

Probabilidad de pérdida de carga: relación entre la energía que no puede suministrar el sistema fotovoltaico y la energía solicitada por la carga durante todo el período de funcionamiento.

$$LLP = \frac{E_{def}}{L}$$

Sistemas Fotovoltaicos Autónomos

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Nomenclatura

Capacidades normalizadas

Capacidad del generador: relación entre los valores medios de la energía que puede producir el generador y la energía consumida por la carga.

$$C_A = \frac{\eta_G \cdot A_G \cdot \overline{G_d}(\beta, \alpha)}{L}$$

Capacidad de acumulación: relación entre la capacidad útil del acumulador y la energía consumida por la carga.

$$C_s = \frac{C_U}{L} = \frac{C_B \cdot PD_{max}}{L}$$

Sistemas Fotovoltaicos Autónomos

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del SFA

Nomenclatura

Objetivo

Ejemplos

Configuración de generador

Nomenclatura

Objetivo

Ejemplos

Métodos de dimensionado

Configuración de generador y batería

- ▶ Diferentes valores de (C_A, C_S) pueden conducir al mismo valor de LLP.
- Cuanto mayor es el sistema, mayor es la fiabilidad, pero mayor es el coste.

Sistemas Fotovoltaicos Autónomos

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del SFA

Obietivo

Objetivo

Ejemplos

Configuración de generados v batería

Nomenclatura

Objetivo

Ejemplos

Métodos de dimensionado

Configuración de generador y batería

Generador grande, acumulador pequeño

- ► La **combinación de** *C*^A **alta y** *C*^S **baja** conduce a ciclados diarios con descargas profundas y ciclados estacionales cortos.
 - Las descargas profundas y frecuentes son perjudiciales para la batería,
 - La corta longitud de los ciclados estacionales es beneficiosa.
 - La estratificación será fácilmente compensable con sobrecargas controladas aplicando el mantenimiento adecuado.

Sistemas Fotovoltaicos Autónomos

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del SFA

Objetivo

Ejemplos

Configuración de generador y batería

Generador pequeño, acumulador grande

- ▶ La **combinación de** C_A **baja** y C_S **alta** conduce a ciclados diarios con descargas moderadas y ciclados estacionales largos.
 - La baja profundidad de descarga es beneficiosa para la batería,
 - La longitud de los ciclados estacionales puede favorecer la sulfatación y la estratificación.
 - Dado el tamaño relativo del generador frente al acumulador, la frecuencia de sobrecargas será baja y la estratificación no será tan fácilmente compensada.

Sistemas Fotovoltaicos Autónomos

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del SFA

Objetivo

Ejemplos

Configuración de generador y batería

oscarperpinan.

github.io

Sistemas

- Cuando LLP es muy alta (p.e. radioenlaces) o la demanda es muy elevada (poblados) el generador y acumulador serán excesivamente grandes.
- Es habitual incluir un grupo electrógeno que suministra la energía deficitaria y permite reducir el tamaño del SFA.
- Sinergia:
 - El grupo electrógeno reduce el tamaño del generador FV y el acumulador sin reducir fiabilidad.
 - ► El generador fotovoltaico reduce horas de funcionamiento del grupo: gasto en combustible y mantenimiento.

Nomenclatura Objetivo Ejemplos

Métodos de dimensionado

Configuración de generador y batería

Método del mes peor

- Determina el tamaño de batería y generador para abastecer el consumo durante el mes con peor relación entre radiación y consumo.
- Si el consumo es constante, el mes peor es aquel de menor radiación.
- Recomendaciones de expertos según zona geográfica y aplicación (tipología de consumo).

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del

Objetivo

Ejemplos

Métodos de dimensionado Configuración de generador y batería

Método del LLP

Sistemas Fotovoltaicos Autónomos

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del

Nomenciatura

Eiemplos

Métodos de dimensionado Configuración de generado

Comoumno

Relación entre tamaño de generador y LLP

$$C_s = 3$$

Sistemas Fotovoltaicos Autónomos

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del

Nomenclatura

Objetivo

Métodos de dimensionado

Configuración de generador y batería

Nomenclatura Obietivo

Ejemplos Métodos de dimensionado

Configuración de generado y batería

Consumo

- Este proceso de cálculo se apoya en series de valores de radiación solar que reproducen el comportamiento estadístico de la irradiación.
- La predicción del comportamiento del sistema limitada por la incertidumbre asociada.
- Los ejercicios de cálculo para probabilidades de pérdida de carga inferiores a $LLP = 10^{-2}$ carecen de utilidad.

Recordatorio

«[...] los modelos de simulación muy exactos pueden proporcionar números también muy exactos, pero ello no significa que se traduzcan automáticamente en predicciones también muy exactas.»

Valores según el UTS for SHS

- ► Electrificación rural:
 - $C_A = 1.1$
 - ▶ $3 \le C_S \le 5$
- ► Aplicaciones profesionales:
 - ► $1.2 \le C_A \le 1.3$
 - ▶ $5 \le C_S \le 8$

Nomenclatura Objetivo Ejemplos Métodos de dimensionado

Configuración de generador y batería

- En general, la batería impone la tensión de trabajo (no hay buscador de MPP). Supondremos $V_{mpp} \simeq V_b$
- Carga en Ah

$$Q_L = L/V_b$$

Sistemas Fotovoltaicos Autónomos

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del

Nomenclatura

Eiemplos

Ejemplos

Configuración de generador

y batería

$$Q_B = \frac{C_S \cdot Q_L}{PD}$$

► Hay que elegir el número de vasos en serie adecuados a V_b

Sistemas Fotovoltaicos Autónomos

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del

Nomenclatura

Ejemplos

Métados de dimension

Configuración de generador y batería

$$C_A = \frac{\eta_G \cdot A_G \cdot \overline{G_d}(\beta, \alpha)}{Q_L \cdot V_b}$$

 Corriente de funcionamiento (determina número de ramas)

$$I_g^* \cdot V_b = \eta_G \cdot A_G \cdot G_{stc}$$
$$I_g^* = \frac{C_A \cdot Q_L \cdot G_{stc}}{\overline{G_d}(\beta, \alpha)}$$

 Hay que elegir el número de módulos en serie adecuados a V_b Sistemas Fotovoltaicos Autónomos

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del

Nomenclatura

Objetivo

Ejemplos

Configuración de generador v batería

oscarperpinan.

github.io

Configuración de generador

 $\beta = |\phi| + 10^{\circ}$

 Para instalaciones con consumo menor en meses de baja radiación se busca maximizar radiación en equinoccios.

$$\beta = |\phi|$$

 Para instalaciones con uso predominante en verano (hemisferio Norte) conviene emplear un ángulo inferior a la latitud.

$$\beta = |\phi| - 10^{\circ}$$

► En general, la inclinación **debe superar** los 15°.

Consumo
Estimación del consumo
Escenarios de Consumo

Energía total requerida por las cargas

$$L_T = \frac{L_{dc}}{\eta_r} + \frac{L_{ac}}{\eta_{inv}}$$

► Energía producida por el generador

$$L = \frac{L_T}{\eta_{bat} \cdot \eta_c}$$

Como valores orientativos pueden utilizarse $\eta_{inv} = 0.9$, $\eta_r = 0.95$, $\eta_{bat} = 0.85$ y $\eta_c = 0.98$.

Distribución del consumo

Sistemas Fotovoltaicos Autónomos

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del SFA

Consumo

Estimación del consumo Escenarios de Consumo

Relación entre el consumo y la fiabilidad

- La variación en el consumo se amplifica en la variación de la LLP.
- Diseño robusto: funcionamiento en amplio abanico de condiciones (ambientales y humanas).

Sistemas Fotovoltaicos Autónomos

Oscar Perpiñán Lamigueiro http:// oscarperpinan. github.io

Dimensionado del

Consumo

Estimación del consumo Escenarios de Consumo

Consumo

Estimación del consumo

Escenarios de Consumo

$$C_A = 1.1$$
$$3 \le C_s \le 5$$

120 Wh/dia

- ▶ Iluminación
- ► Radio
- ► TV b/n,
- Sin frigorífico

250 Wh/dia

- Iluminación
- Radio
- ► TV color
- ► Sin frigorífico

Valores recomendados

$$C_A = 1.1$$
$$3 \le C_s \le 5$$

1000 Wh/dia

- Iluminación
- radio
- ► TV color
- Con frigorífico eficiente

Valores recomendados

$$C_A = 1.1$$

 $C_S = 5$

$$C_S = 5$$

► Todo AC

► 500 Wh/dia por vivienda.

Valores recomendados

$$C_A = 1.1$$

 $C_S = 5$