

Lista 5. Ortogonalidade e Ângulos – Gabarito

MTM5512 - Geometria Analítica

Exercício 1

Seja \mathcal{E} uma base ordenada ortonormal de V^3 . Determine um vetor unitário \vec{w} que seja ortogonal aos vetores $\vec{u} = (3, 1, 0)_{\mathcal{E}}$ e $\vec{v} = (4, -1, 3)_{\mathcal{E}}$.

Solução: Seja $\vec{w} = (a, b, c)_{\mathcal{E}}$. Para que \vec{u} seja ortogonal a \vec{u} devemos ter

$$\|\vec{u} + \vec{w}\|^2 = \|\vec{u}\|^2 + \|\vec{w}\|^2.$$

Lembrando que \mathcal{E} é ortonormal, temos

$$(3+a)^2 + (1+b)^2 + c^2 = 10 + a^2 + b^2 + c^2$$

e desenvolvendo a expressão, obtemos b=-3a. Agora para que \vec{w} seja ortogonal a \vec{v} , devemos ter

$$\|\vec{v} + \vec{w}\|^2 = \|\vec{v}\|^2 + \|\vec{w}\|^2,$$

e seguindo o mesmo raciocínio anterior, lembrando que b=3a, obtemos $c=-\frac{7}{3}a$. Para que \vec{w} seja unitário, devemos ter ||w||=1, isto é

$$1 = 1^2 = \|\vec{w}\|^2 = a^2 + 9a^2 + \frac{49}{9}a^2 = \frac{139}{9}a^2,$$

logo obtemos $a = \frac{3}{\sqrt{139}}$ ou $a = -\frac{3}{\sqrt{139}}$, e obtemos

$$\vec{w} = \left(\frac{3}{\sqrt{139}}, -\frac{9}{\sqrt{139}}, -\frac{7}{\sqrt{139}}\right)$$
 ou $\vec{w} = \left(-\frac{3}{\sqrt{139}}, \frac{9}{\sqrt{139}}, \frac{7}{\sqrt{139}}\right)$.

Exercício 2.....

Seja \mathcal{E} uma base ordenada ortonormal de V^3 . Calcule $\|\vec{u}\|$ para

(a) $\vec{u} = \vec{e}_1 + \vec{e}_2 + \vec{e}_3$.

Solução: Como a base $\mathcal E$ é ortonormal, temos

$$\|\vec{u}\| = \sqrt{1+1+1} = \sqrt{3}.$$

(b) $\vec{u} = (1, -2, 7)_{\mathcal{E}}.$

Solução: Como a base \mathcal{E} é ortonormal, temos

$$\|\vec{u}\| = \sqrt{1 + 4 + 49} = \sqrt{54}.$$

Exercício 3.....

Seja \mathcal{E} uma base ordenada ortonormal de V^3 . Mostre que os vetores $\vec{u} = (1, 1, -1)_{\mathcal{E}}, \vec{v} = (0, 1, 1)_{\mathcal{E}}$ e $\vec{w} = (2, -1, 1)_{\mathcal{E}}$ são dois a dois ortogonais.

Solução: Note que $\|\vec{u}\|^2 = 3$, $\|\vec{v}\|^2 = 2$ e $\|\vec{w}\|^2 = 6$. Ainda

$$\vec{u} + \vec{v} = (1, 2, 0)_{\mathcal{E}}, \text{ logo } ||\vec{u} + \vec{v}||^2 = 5,$$

 $\vec{u} + \vec{w} = (3, 0, 0)_{\mathcal{E}}, \text{ logo } ||\vec{u} + \vec{w}||^2 = 9 \text{ e}$
 $\vec{v} + \vec{w} = (2, 0, 2)_{\mathcal{E}}, \text{ logo } ||\vec{v} + \vec{w}||^2 = 8.$

Assim vemos facilmente que

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2,$$

$$\|\vec{u} + \vec{w}\|^2 = \|\vec{u}\|^2 + \|\vec{w}\|^2 \text{ e}$$

$$\|\vec{v} + \vec{w}\|^2 = \|\vec{v}\|^2 + \|\vec{w}\|^2,$$

o que mostra que $\vec{u} \perp \vec{v}$, $\vec{u} \perp \vec{w}$ e $\vec{v} \perp \vec{w}$.

Exercício 4.....

Sejam \mathcal{E} uma base ordenada ortonormal de V^3 e \vec{r} um vetor de V^3 que satisfaz as seguintes propriedades:

- $\|\vec{r}\| = \sqrt{5}$;
- \vec{r} é ortogonal ao vetor $(2,1,-1)_{\mathcal{E}}$;
- os vetores \vec{r} , $(1,1,1)_{\mathcal{E}}$ e $(0,1,-1)_{\mathcal{E}}$ sejam coplanares.

Determine as coordenadas do vetor \vec{r} , se possível, na base \mathcal{E} .

Solução: Suponha que $\vec{r} = (a, b, c)_{\mathcal{E}}$. Para que \vec{r} seja ortogonal ao vetor $(2, 1, -1)_{\mathcal{E}}$, devemos ter

$$2a + b - c = 0$$
, isto é $c = 2a + b$.

Para que os vetores \vec{r} , $(1,1,1)_{\mathcal{E}}$ e $(0,1,-1)_{\mathcal{E}}$ sejam coplanares, devemos ter

$$0 = \begin{vmatrix} a & b & c \\ 1 & 1 & 1 \\ 0 & 1 & -1 \end{vmatrix} = c + b - 2a, \text{ isto } \acute{e} \ c = 2a - b.$$

Juntando as duas equações, tiramos b=0 e c=2a. Assim $\vec{r}=(a,0,2a)_{\mathcal{E}}$, e para que $\|\vec{r}\|=\sqrt{5}$, devemos ter

$$a^2 + 4a^2 = 5$$
, isto é $a = \pm 1$.

Portanto as opções para \vec{r} são

$$\vec{r} = (1, 0, 2)_{\mathcal{E}} \text{ ou } \vec{r} = (-1, 0, -2)_{\mathcal{E}}.$$

Exercício 5.....

Seja \mathcal{E} uma base ordenada ortonormal de V^3 . Encontra as coordenadas do vetor \vec{u} na base \mathcal{E} , que tem norma 75, é paralelo ao vetor $\vec{v} = (16, -15, 12)_{\mathcal{E}}$, e tem sentido oposto ao de \vec{v} .

Solução: Como \vec{u} deve ser paralelo ao vetor \vec{v} , deve existir $\alpha \in \mathbb{R}$ tal que $\vec{u} = (16\alpha, -15\alpha, 12\alpha)$. Para que $||\vec{u}|| = 75$, devemos ter

$$256\alpha^2 + 225\alpha^2 + 144\alpha^2 = 75^2 = 5625,$$

o que nos dá $\alpha^2 = 9$, assim obtemos $\alpha = \pm 3$. Como \vec{u} deve ter sentido oposto ao de \vec{v} , devemos ter $\alpha < 0$ e assim temos $\alpha = 3$ e o vetor é

$$\vec{u} = (-48, 45 - 36)_{\mathcal{E}}.$$

Exercício 6.....

Sejam ABC um triângulo e X o ponto de intersecção do segmento \overline{AB} com a bissetriz interna do ângulo $A\hat{C}B$.

(a) Mostre que o vetor \overrightarrow{CX} é paralelo ao vetor

$$\frac{\overrightarrow{CA}}{\|\overrightarrow{CA}\|} + \frac{\overrightarrow{CB}}{\|\overrightarrow{CB}\|}.$$

Solução: Considere o triângulo ABC na figura abaixo, onde \overrightarrow{CX} é a bissetriz interna do ângulo $A\hat{C}B$.

 \overrightarrow{S} Como $\frac{\overrightarrow{CA}}{\|\overrightarrow{CA}\|}$ e $\frac{\overrightarrow{CB}}{\|\overrightarrow{CB}\|}$ têm o mesmo comprimento (a

saber, ambos medem 1), sabemos que a diagonal do losango formado por esses vetores é igual à bissetriz interna do ângulo $A\hat{C}B$, e portanto \overrightarrow{CX} tem mesma direção e sentido da soma $\frac{\overrightarrow{CA}}{\|\overrightarrow{CA}\|} + \frac{\overrightarrow{CB}}{\|\overrightarrow{CB}\|}$, e portanto são paralelos.

(b) Seja $\mathcal{E} = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ uma base ordenada ortonormal de V^3 , e considere os vetores $\vec{u} = (2, -3, 6)_{\mathcal{E}}$ e $\vec{v} = (-1, 2, -2)_{\mathcal{E}}$. Calcule às coordenadas do vetor \vec{w} na base \mathcal{E} , tal que \vec{w} tem norma $3\sqrt{42}$ e é paralelo à bissetriz interna do ângulo formado pelos vetores \vec{u} e \vec{v} .

Solução: Calculando a bissetriz interna do ângulo formado pelos vetores \vec{u} e \vec{v} , temos

$$\frac{\vec{u}}{\|\vec{u}\|} = \frac{1}{\sqrt{4+9+16}}(2, -3, 6)_{\mathcal{E}} = \left(\frac{2}{7}, -\frac{3}{7}, \frac{6}{7}\right)_{\mathcal{E}},$$

е

$$\frac{\vec{v}}{\|\vec{v}\|} = \frac{1}{\sqrt{1+4+4}}(-1,2,-2)_{\mathcal{E}} = \left(-\frac{1}{3},\frac{2}{3},-\frac{2}{3}\right)_{\mathcal{E}}.$$

Assim

$$\frac{\vec{u}}{\|\vec{u}\|} + \frac{\vec{v}}{\|\vec{v}\|} = \Big(-\frac{1}{21}, \frac{5}{21}, \frac{4}{21} \Big)_{\mathcal{E}},$$

e para que \vec{w} seja paralelo à $\frac{\vec{u}}{\|\vec{u}\|} + \frac{\vec{v}}{\|\vec{v}\|}$ deve existir $\alpha \in \mathbb{R}$ tal que

$$\vec{w} = \left(-\frac{1}{21}\alpha, \frac{5}{21}\alpha, \frac{4}{21}\alpha\right)_{\mathcal{E}}.$$

Agora nos resta encontrar valores de α para que $\|\vec{w}\| = 3\sqrt{42}$, isto é,

$$9(42)^{2} = \|\vec{w}\|^{2} = \frac{\alpha^{2}}{21^{2}} + \frac{25\alpha}{21^{2}} + \frac{16\alpha^{2}}{21^{2}} = \frac{42\alpha^{2}}{21^{2}},$$

e portanto encontramos $\alpha = \pm 63$.

Logo as possibilidades para \vec{w} são:

$$\vec{w} = (-3, 15, 12)_{\mathcal{E}}$$
 ou $\vec{w} = (3, -15, -12)_{\mathcal{E}}$.

Exercício 7.....

Seja \mathcal{E} uma base ortonormal de V^3 . Determine as coordenadas do vetor \vec{u} na base \mathcal{E} , de modo que \vec{u} ortogonal ao vetor $\vec{v} = (2, -3, 12)_{\mathcal{E}}$ e paralelo ao vetor $\vec{w} = (-6, 4, -2)_{\mathcal{E}}$.

Solução: Para que \vec{u} seja paralelo a \vec{w} , deve existir $\lambda \in \mathbb{R}$ tal que $\vec{u} = (-6\lambda, 4\lambda, -2\lambda)_{\mathcal{E}}$. Agora, para que \vec{u} seja ortogonal a \vec{v} , devemos ter $\vec{u} \bullet \vec{v} = 0$, de onde encontramos $\lambda = 0$. Assim $\vec{u} = \vec{0}$.

Exercício 8.....

Seja \mathcal{E} uma base ortonormal de V^3 . Um vetor \vec{u} forma com os vetores \vec{e}_1 e \vec{e}_2 ângulos de $\frac{\pi}{3}$ e $\frac{2\pi}{3}$, respectivamente. Determine as coordenadas do vetor \vec{u} na base \mathcal{E} , sabendo que $||\vec{u}|| = 2$.

Solução: Se $\vec{u} = (a, b, c)_{\mathcal{E}}$, temos $\vec{u} \bullet \vec{e}_1 = a$ e $\vec{u} \bullet \vec{e}_2 = b$, e encontramos a = 1 e b = -1 (usando os cossenos dos ângulos dados e $||\vec{u}|| = 2$). Finalmente, como $||\vec{u}|| = 2$, encontramos $c^2 = 2$, assim $c = \pm \sqrt{2}$. Portanto as coordenadas de \vec{u} são

$$\vec{u} = (1, -1, \sqrt{2})_{\mathcal{E}}$$
 ou $\vec{u} = (1, -1, -\sqrt{2})_{\mathcal{E}}$.

Exercício 9

Sendo \mathcal{E} uma base ortonormal de V^3 , $\vec{u}=(2,-3,2)_{\mathcal{E}}$ e $\vec{v}=(4,-1,2)_{\mathcal{E}}$, calcule o seno do ângulo entre \vec{u} e \vec{v} .

Solução: Sabemos que

$$\cos(\theta) = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{15}{\sqrt{17}\sqrt{21}}.$$

Usando a relação $\sin^2(\theta) + \cos^2(\theta) = 1$ (e lembrando que $\theta \in [0, \pi]$, logo $\sin(\theta) \ge 0$) temos

$$\operatorname{sen}(\theta) = \frac{2\sqrt{11}}{\sqrt{17}\sqrt{7}}.$$

Exercício 10.....

Sejam A um ponto no espaço e $\vec{u}, \vec{v}, \vec{w}$ três vetores. Defina $B = A + \vec{u}, C = A + \vec{v}$ e $D = A + \vec{w}$.

(a) Mostre que

$$(A-B) \bullet (C-D) + (B-C) \bullet (A-D) + (B-D) \bullet (C-A) = 0.$$

Solução: Note que $A-B=-\vec{u},\ C-D=\vec{v}-\vec{w},\ B-C=\vec{u}-\vec{v},\ A-D=-\vec{w},\ B-D=\vec{u}-\vec{w}$ e $C-A=\vec{v},$ assim a identidade acima é equivalente a

$$\vec{u} \bullet (\vec{w} - \vec{v}) + \vec{w} \bullet (\vec{v} - \vec{u}) + \vec{v} \bullet (\vec{u} - \vec{w}) = 0,$$

que é facilmente verificada.

(b) Use a identidade acima para mostrar que as alturas de um triângulo sem interceptam no mesmo ponto.

Solução: Considere o triângulo ABC e D o ponto de intersecção das alturas que partem do ponto A e do ponto C. Assim $(A-B) \bullet (C-D) = 0$ e $(B-C) \bullet (A-D) = 0$, e portanto $(B-D) \bullet (C-A) = 0$ pela identidade acima, o que mostra que a altura que sai de B passa pelo ponto D.

Exercício 11.....

Demonstre a **identidade do paralelogramo**: a soma dos quadrados dos comprimentos das diagonais é igual à soma dos quadrados dos comprimentos do quatro lados; isto é, mostre que

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = 2\|\vec{u}\|^2 + 2\|\vec{v}\|^2.$$

Solução: Temos

$$\|\vec{u} + \vec{v}\|^2 + \|\vec{u} - \vec{v}\|^2 = (\vec{u} + \vec{v}) \bullet (\vec{u} + \vec{v}) + (\vec{u} - \vec{v}) \bullet (\vec{u} - \vec{v}),$$

e desenvolvendo a expressão do lado direito, provamos o resultado.

Exercício 12....

Seja \mathcal{E} uma base ortonormal de V^3 . Encontre a projeção do vetor $\vec{u} = (3, -1, 1)_{\mathcal{E}}$ na direção do vetor $\vec{v} = (1, 5, 4)_{\mathcal{E}}$.

Solução: Para encontrar tal projeção, precisamos de versor de \vec{v} , isto é, precisamos de $\vec{w} = \frac{\vec{v}}{\|\vec{v}\|}$. Como $\|\vec{v}\| = \sqrt{42}$, logo $\vec{w} = \frac{1}{\sqrt{42}}(1,5,4)_{\mathcal{E}}$. Assim

$$\mathrm{proj}_{\vec{v}}(\vec{u}) = (\vec{u} \bullet \vec{w})\vec{w} = -\frac{1}{21}(1, 5, 4)_{\mathcal{E}} = (-\frac{1}{21}, -\frac{5}{21}, -\frac{4}{21})_{\mathcal{E}}.$$

Exercício 13.....

Sejam \mathcal{E} uma base ortogonal de V^3 , \vec{u} um vetor não-nulo e α um número real.

(a) Mostre que o vetor $\vec{v} = \frac{\alpha}{\|\vec{u}\|^2} \vec{u}$ satisfaz

$$\vec{v} \bullet \vec{u} = \alpha$$
.

(b) Fixe dois vetores LI $\vec{w_1}$ e $\vec{w_2}$ tais que $\vec{w_i} \perp \vec{u}$, i = 1, 2. Mostre que dados $\beta, \gamma \in \mathbb{R}$ o vetor

$$\vec{w} = \beta \vec{w}_1 + \gamma \vec{w}_2 + \vec{v},\tag{1}$$

satisfaz $\vec{w} \bullet \vec{u} = \alpha$.

- (c) Mostre que qualquer vetor ortogonal a \vec{u} deve ser combinação linear de $\vec{w_1}$ e $\vec{w_2}$. Dica: Use o fato que $\{\vec{w_1}, \vec{w_2}, \vec{u}\}$ é uma base para V^3 .
- (d) Mostre que dado \vec{x} satisfazendo $\vec{x} \bullet \vec{u} = \alpha$, então existem $\beta, \gamma \in \mathbb{R}$ tais que \vec{x} é dado pela equação (1).

Dica: Note primeiro que $(\vec{x} - \vec{v}) \bullet \vec{u} = 0$.

Olha só: você acabou de mostrar que o conjunto solução da equação $\vec{x} \bullet \vec{u} = \alpha$ é o conjunto dos vetores $\vec{x} = \beta \vec{w}_1 + \gamma \vec{w}_2 + \vec{v}$ para $\beta, \gamma \in \mathbb{R}$.

5