MA2500

FOUNDATIONS OF PROBABILITY AND STATISTICS

READING MATERIAL

2014-15

Version: 31/1/2015

Contents

1	Set	Theory	1			
	1.1	Elementary set theory	1			
	1.2	Sample space, outcomes and events	1			
	1.3	Countable unions and intersections	2			
	1.4	Collections of sets	3			
	1.5	Borel sets	4			
	1.6	Exercises	5			
2	Pro	bability Spaces	6			
	2.1	Probability measures	6			
	2.2	Null and almost-certain events	6			
	2.3	Properties of probability measures	7			
	2.4	Continuity of probability measures	8			
	2.5	Exercises	9			
3	Con	nditional Probability	10			
	3.1	·	10			
	3.2	Bayes' theorem	10			
	3.3	Independence	10			
	3.4	Conditional probability spaces	11			
	3.5	Exercises	13			
4	Random Variables 14					
	4.1	Random variables	14			
	4.2	Indicator variables	15			
	4.3	Simple random variables	15			
	4.4	Probability on $\mathbb R$	15			
	4.5	Exercises	16			
5	Dist	tributions	17			
	5.1	Probability on the real line	17			
	5.2	Cumulative distribution functions (CDFs)	17			
	5.3	Properties of CDFs	18			
	5.4	Discrete distributions and PMFs	19			
	5.5	Continuous distributions and PDFs	20			
	5.6	Exercises	20			
6	Transformations 22					
	6.1	Transformations of random variables	22			
	6.2	Support	23			
	6.3	Transformations of CDFs	23			
	6.4	Transformations of PMFs and PDFs	24			
	6.5	The probability integral transform	24			

MA2500 0. Contents

	6.6	Exercises	25
7	Exa	amples of transformations	27
	7.1	Standard normal CDF \longrightarrow Normal CDF	. 27
	7.2	Standard normal CDF \longrightarrow Chi-squared CDF \dots	. 27
	7.3	Standard uniform CDF \longrightarrow Exponential CDF	27
	7.4	Exponential CDF \longrightarrow Pareto CDF	28
	7.5	Normal PDF \longrightarrow Standard normal PDF	28
	7.6	Pareto PDF \longrightarrow Standard uniform PDF	29
	7.7	Normal PDF \longrightarrow Lognormal PDF	29
	7.8	$Lomax \ PDF \longrightarrow Logistic \ CDF \ \dots $	
	7.9	Exercises	
8	Seri	ies and Integrals	32
_	8.1	Motivation	
	8.2	Integrals	
_			
9		pectation	34
	9.1	Indicator variables	
	9.2	Simple random variables	
	9.3	Non-negative random variables	
	9.4	Signed random variables	
	9.5	Exercises	38
10	Con	mputation of Expectation	39
	10.1	Expectation with respect to CDFs	39
	10.2	P. Discrete distributions	40
	10.3	Continuous distributions	41
	10.4	Transformed variables	42
		Exercises	
11	Con	acentration Inequalities	44
		Markov's inequality	44
		Chebyshev's inequality	
		Bernstein's inequality	
		Exercises	
10	Dma	bability Congrating Functions	10
14		bability Generating Functions	48
		Generating functions	
		Probability generating functions	
10			
13		ment Generating Functions	52
		Moment generating functions	
	13.2	Characteristic functions	54
	13.3	B Exercises	55
14		e Law of Large Numbers	57
	14.1	Convergence	57
	14.2	The law of large numbers	57
		Bernoulli's law of large numbers*	
	14.4	Exercises	59

Lecture 1 Set Theory

1.1 Elementary set theory

A set is a collection of distinct *elements*.

- If a is an element of the set A, we denote this by $a \in A$.
- If a is not an element of A, we denote this by $a \notin A$.
- The *cardinality* of a set is the number of elements it contains.
- The *empty set* contains no elements, and is denoted by \emptyset .

1.1.1 Set relations

Let A, B be sets.

- If $a \in B$ for every $a \in A$, we say that A is a *subset* of B, denoted by $A \subseteq B$.
- If $A \subseteq B$ and $B \subseteq A$, we say that A is equal to B, denoted by A = B,
- If $A \subseteq B$ and $A \neq B$, we say that A is a proper subset of B, denoted by $A \subset B$.

1.1.2 Set operations

Let A, B and Ω be sets, with A, $B \subseteq \Omega$.

- The union of A and B is the set $A \cup B = \{a \in \Omega : a \in A \text{ or } a \in B\}.$
- The intersection of A and B is the set $A \cap B = \{a \in \Omega : a \in A \text{ and } a \in B\}.$
- The complement of A (relative to Ω) is the set $A^c = \{a \in \Omega : a \notin A\}$.

1.1.3 Set algebra

Commutative property: $A \cup B = B \cup A$

 $A \cap B = B \cap A$

Associative property: $(A \cup B) \cup C = A \cup (B \cup C)$

 $(A \cap B) \cap C = A \cap (B \cap C)$

Distributive property: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

1.2 Sample space, outcomes and events

Definition 1.1

- (1) Any process of observation or measurement whose outcome is uncertain is called a random experiment.
- (2) A random experiment has a number of possible outcomes.

- (3) Each time a random experiment is performed, exactly one of its outcomes will occur.
- (4) The set of all possible outcomes is called the *sample space*, denoted by Ω .
- (5) Outcomes are also called *elementary events*, and denoted by $\omega \in \Omega$.

Example 1.2

- $\{1, 2, \ldots, n\}$ is a finite sample space,
- $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ is a countably infinite sample space,
- [0, 1] is an uncountable sample space.

Definition 1.3

- (1) An event A is a subset of the sample space, Ω .
- (2) If outcome ω occurs, we say that event A occurs if and only if $\omega \in A$.
- (3) Two events A and B with $A \cap B = \emptyset$ are called disjoint or mutually exclusive.
- (4) The empty set \emptyset is called the *impossible event*.
- (5) The sample space itself is called the *certain event*.

Remark 1.4

- If A occurs and $A \subseteq B$, then B occurs.
- If A occurs and $A \cap B = \emptyset$, then B does not occur.

1.3 Countable unions and intersections

Definition 1.5

Let Ω be any set. The set of all subsets Ω is called its *power set*.

- If Ω is a finite set, its power set is also finite.
- If Ω is a countably infinite set, its power set is uncountable set (Cantor's Theorem).
- If Ω is an uncountable set, its power set is also uncountable.

Definition 1.6

Let A_1, A_2, \ldots be subsets of Ω .

(1) The (countable) union of $A_1, A_2, ...$ is the set

$$\bigcup_{i=1}^{\infty} A_i = \{\omega : \omega \in A_i \text{ for some } A_i\}.$$

(2) The (countable) intersection of $A_1, A_2, ...$ is the set

$$\bigcap_{i=1}^{\infty} A_i = \{ \omega : \omega \in A_i \text{ for all } A_i \}.$$

Theorem 1.7 (De Morgan's laws)

For a countable collection of sets $\{A_1, A_2, \ldots\}$,

- $(1) \left(\bigcup_{i=1}^{\infty} A_i\right)^c = \bigcap_{i=1}^{\infty} A_i^c,$
- $(2) \left(\bigcap_{i=1}^{\infty} A_i\right)^c = \bigcup_{i=1}^{\infty} A_i^c.$

Proof:

- (1) Let $a \in \left(\bigcup_{i=1}^{\infty} A_i\right)^c$. Then $a \notin \bigcup_{i=1}^{\infty} A_i$, and so $a \in A_i^c$ for all A_i . Hence $\left(\bigcup_{i=1}^{\infty} A_i\right)^c \subseteq \bigcap_{i=1}^{\infty} A_i^c$. Let $a \in \bigcap_{i=1}^{\infty} A_i^c$. Then $a \notin A_i$ for all A_i , and so $a \notin \bigcup_{i=1}^{\infty} A_i$. Hence $\bigcap_{i=1}^{\infty} A_i^c \subseteq \left(\bigcup_{i=1}^{\infty} A_i\right)^c$.
- (2) Applying part (1) to the collection of sets $\{A_1^c, A_2^c, \ldots\}$, $\left(\bigcup_{i=1}^{\infty} A_i^c\right)^c = \bigcap_{i=1}^{\infty} \left(A_i^c\right)^c = \bigcap_{i=1}^{\infty} A_i$. Taking the complement of both sides, $\left(\bigcap_{i=1}^{\infty} A_i\right)^c = \bigcap_{i=1}^{\infty} A_i^c$.

1.4 Collections of sets

Definition 1.8

Let Ω be any set. Any subset of its power set is called a collection of sets over Ω .

Let Ω be the sample space of some random experiment. If we are interested whether the events A and B occur, we must also be interested in

- the event $A \cup B$: whether event A occurs or event B occurs;
- the event $A \cap B$: whether event A occurs and event B occurs;
- the event A^c : whether the event A does not occur.

Thus we can not use arbitrary collections of sets over Ω as the basis for investigating random experiments. Instead, we allow only collections which are *closed* under certain set operations.

Definition 1.9

A collection of sets C over Ω is said to be

- (1) closed under complementation if $A^c \in \mathcal{C}$ for every $A \in \mathcal{C}$,
- (2) closed under pairwise unions if $A \cup B \in \mathcal{C}$ for every $A, B \in \mathcal{C}$,
- (3) closed under finite unions if $\bigcup_{i=1}^n A_i \in \mathcal{C}$ for every $A_1, A_2, \dots A_n \in \mathcal{C}$,
- (4) closed under countable unions if $\bigcup_{i=1}^{\infty} A_i \in \mathcal{C}$ for every $A_1, A_2, \ldots \in \mathcal{C}$.

Definition 1.10

A collection of sets \mathcal{F} over Ω is called a *field* over Ω if

- (1) $\Omega \in \mathcal{F}$,
- (2) \mathcal{F} is closed under complementation, and
- (3) \mathcal{F} is closed under pairwise unions.

Theorem 1.11 (Properties of fields)

Let \mathcal{F} be a field over Ω . Then

- (1) $\emptyset \in \mathcal{F}$,
- (2) \mathcal{F} is closed under set differences,
- (3) \mathcal{F} is closed under finite unions,
- (4) \mathcal{F} is closed under finite intersections.

Proof: See exercises.

Definition 1.12

A collection of sets \mathcal{F} over Ω is called a σ -field ("sigma-field") over Ω if

- (1) $\Omega \in \mathcal{F}$,
- (2) \mathcal{F} is closed under complementation, and
- (3) \mathcal{F} is closed under countable unions.

Theorem 1.13 (Properties of σ -fields)

Let \mathcal{F} be a σ -field over Ω . Then

- (1) $\emptyset \in \mathcal{F}$,
- (2) \mathcal{F} is closed under set differences,
- (3) \mathcal{F} is closed under finite unions,
- (4) \mathcal{F} is closed under finite intersections,
- (5) \mathcal{F} is closed under countable intersections.

Proof: See exercises.

1.5 Borel sets

In many situations of interest, random experiments yield outcomes that are real numbers.

Definition 1.14

- The open interval (a, b) is the set $\{x \in \mathbb{R} : a < x < b\}$.
- The closed interval [a, b] is the set $\{x \in \mathbb{R} : a \le x \le b\}$.

Definition 1.15

The Borel σ -field over \mathbb{R} is defined to be the smallest σ -field over \mathbb{R} that contains all open intervals.

Remark 1.16

- The Borel σ -field is usually denoted by \mathcal{B} , and includes all closed interval, all half-open intervals, all finite sets and all countable sets.
- The elements of \mathcal{B} are called *Borel sets* over \mathbb{R} .
- Borel sets can be thought of as the "nice" subsets of \mathbb{R} .

Proposition 1.17

The Borel σ -field over \mathbb{R} contains all closed intervals.

Proof: Any closed interval [a, b] can be written as a countable intersection of open intervals:

$$[a,b] = \bigcap_{n=1}^{\infty} \left(a - \frac{1}{n}, \ b + \frac{1}{n} \right).$$

Hence $[a, b] \in \mathcal{B}$, because

• for every $n \in \mathbb{N}$, $\left(a - \frac{1}{n}, b + \frac{1}{n}\right) \in \mathcal{B}$, and

• by Theorem 1.13, \mathcal{B} is closed under countable intersections.

1.6 Exercises

Exercise 1.1

- 1. Let \mathcal{F} be a field over Ω . Show that
 - (a) $\emptyset \in \mathcal{F}$,
 - (b) \mathcal{F} is closed under set differences,
 - (c) \mathcal{F} is closed under pairwise intersections,
 - (d) \mathcal{F} is closed under finite unions,
 - (e) \mathcal{F} is closed under finite intersections.
- 2. Let \mathcal{F} be a σ -field over Ω . Show that
 - (a) \mathcal{F} is closed under finite unions,
 - (b) \mathcal{F} is closed under finite intersections.
 - (c) \mathcal{F} is closed under countable intersections.

Exercise 1.2

- 1. Let $\Omega = \{1, 2, 3, 4, 5, 6\}$.
 - (a) What is the smallest σ -field containing the event $A = \{1, 2\}$?
 - (b) What is the smallest σ -field containing the events $A = \{1, 2\}$, $B = \{3, 4\}$ and $C = \{5, 6\}$?
- 2. Let \mathcal{F} and \mathcal{G} be σ -fields over Ω .
 - (a) Show that $\mathcal{H} = \mathcal{F} \cap \mathcal{G}$ is a σ -field over Ω .
 - (b) Find a counterexample to show that $\mathcal{H} = \mathcal{F} \cup \mathcal{G}$ is not necessarily a σ -field over Ω .

Lecture 2 Probability Spaces

2.1 Probability measures

Definition 2.1

Let Ω be a sample space, and let \mathcal{F} be a σ -field over Ω . A probability measure on (Ω, \mathcal{F}) is a function

$$\mathbb{P}: \ \mathcal{F} \ \rightarrow \ [0,1]$$

$$A \mapsto \mathbb{P}(A)$$

such that $\mathbb{P}(\Omega) = 1$, and for any countable collection of pairwise disjoint events $\{A_1, A_2, \ldots\}$,

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

The triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a *probability space*.

Remark 2.2

• The second property is called *countable additivity*.

Remark 2.3

In the more general setting of measure theory:

- The elements of \mathcal{F} are called measurable sets.
- The pair (Ω, \mathcal{F}) is called a measurable space.
- The triple $(\Omega, \mathcal{F}, \mathbb{P})$ is called a measure space.

Example 2.4

A fair six-sided die is rolled once. A probability space $(\Omega, \mathcal{F}, \mathbb{P})$ for the experiment is given by

- $\Omega = \{1, 2, 3, 4, 5, 6\},\$
- $\mathcal{F} = \mathcal{P}(\Omega)$, where $\mathcal{P}(\Omega)$ denotes the power set of Ω ,
- $\mathbb{P}(A) = |A|/|\Omega|$ for every $A \in \mathcal{F}$ (where |A| denotes the cardinality of A).

If we are only interested in odd and even numbers, we can instead take

- $\Omega = \{1, 2, 3, 4, 5, 6\},\$
- $\mathcal{F} = \{\emptyset, \{1, 3, 5\}, \{2, 4, 6\}, \{1, 2, 3, 4, 5, 6\}\}$
- $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{1,3,5\}) = 1/2$, $\mathbb{P}(\{2,4,6\}) = 1/2$, $\mathbb{P}(\{1,2,3,4,5,6\}) = 1$.

2.2 Null and almost-certain events

Definition 2.5

(1) If $\mathbb{P}(A) = 0$, we say that A is a null event.

MA2500 2. Probability Spaces

(2) If $\mathbb{P}(A) = 1$, we say that A occurs almost surely (or "with probability 1").

Remark 2.6

- A null event is not the same as the impossible event (\emptyset) .
- An event that occurs almost surely is not the same as the certain event (Ω) .

Example 2.7

A dart is thrown at a dartboard.

- The probability that the dart hits a given point of the dartboard is 0.
- The probability that the dart does not hit a given point of the dartboard is 1.

2.3 Properties of probability measures

Theorem 2.8 (Properties of probability measures)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $A, B \in \mathcal{F}$.

- (1) Complementarity: $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$.
- (2) $\mathbb{P}(\emptyset) = 0$,
- (3) Monotonicity: if $A \subseteq B$ then $\mathbb{P}(A) \leq \mathbb{P}(B)$.
- (4) Addition rule: $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$.

Proof:

(1) Since $A \cup A^c = \Omega$ is a disjoint union and $\mathbb{P}(\Omega) = 1$, it follows by additivity that

$$1 = \mathbb{P}(\Omega) = \mathbb{P}(A \cup A^c) = \mathbb{P}(A) + \mathbb{P}(A^c).$$

(2) Since $\emptyset = \Omega^c$ and $\mathbb{P}(\Omega) = 1$, it follows by complementarity that

$$\mathbb{P}(\emptyset) = \mathbb{P}(\Omega^c) = 1 - \mathbb{P}(\Omega) = 1 - 1 = 0.$$

(3) Let $A \subseteq B$ and let us write $B = A \cup (B \setminus A)$.

Since A and $B \setminus A$ are disjoint sets, it follows by additivity that

$$\mathbb{P}(B) = \mathbb{P}[A \cup (B \setminus A)] = \mathbb{P}(A) + \mathbb{P}(B \setminus A).$$

Hence, because $\mathbb{P}(B \setminus A) \geq 0$, it follows that $\mathbb{P}(B) \geq \mathbb{P}(A)$.

- (4) Let us write:
 - $A \cup B = (A \setminus B) \cup (B \setminus A) \cup (A \cap B)$
 - $A = (A \setminus B) + (A \cap B)$
 - $B = (B \setminus A) + (A \cap B)$

These are disjoint unions, so by additivity,

- $\mathbb{P}(A \cup B) = \mathbb{P}(A \setminus B) + \mathbb{P}(B \setminus A) + \mathbb{P}(A \cap B)$
- $\mathbb{P}(A) = \mathbb{P}(A \setminus B) + \mathbb{P}(A \cap B)$
- $\mathbb{P}(B) = \mathbb{P}(B \setminus A) + \mathbb{P}(A \cap B)$

Hence $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$, as required.

MA2500 2. Probability Spaces

2.4 Continuity of probability measures

Theorem 2.9 (Continuity of probability measures)

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.

(1) For an increasing sequence of events $A_1 \subseteq A_2 \subseteq ...$ in \mathcal{F} ,

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \lim_{n \to \infty} \mathbb{P}(A_n).$$

(2) For a decreasing sequence of events $B_1 \supseteq B_2 \supseteq \ldots$ in \mathcal{F} ,

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty} B_n\right) = \lim_{n \to \infty} \mathbb{P}(B_n).$$

Proof: To prove the first part, let $A_1 \subseteq A_2 \subseteq ...$ be an increasing sequence of events, and

$$A = \bigcup_{i=1}^{\infty} A_i.$$

We can write A as a disjoint union

$$A = A_1 \cup (A_2 \setminus A_1) \cup (A_3 \setminus A_2) \cup \dots$$

Since the sets $A_{i+1} \setminus A_i$ are disjoint, by countable additivity we have

$$\mathbb{P}(A) = \mathbb{P}(A_1) + \mathbb{P}(A_2 \setminus A_1) + \mathbb{P}(A_3 \setminus A_2) + \dots$$

Furthermore, $A_i \subseteq A_{i+1}$ means that $A_{i+1} = (A_{i+1} \setminus A_i) \cup A_i$ is a disjoint union, so

$$\mathbb{P}(A_{i+1} \setminus A_i) = \mathbb{P}(A_{i+1}) - \mathbb{P}(A_i).$$

Hence

$$\mathbb{P}(A) = \mathbb{P}(A_1) + \left[\mathbb{P}(A_2) - \mathbb{P}(A_1)\right] + \left[\mathbb{P}(A_3) - \mathbb{P}(A_2)\right] + \dots$$

$$= \left[\mathbb{P}(A_1) - \mathbb{P}(A_1)\right] + \left[\mathbb{P}(A_2) - \mathbb{P}(A_2)\right] + \left[\mathbb{P}(A_3) - \mathbb{P}(A_3)\right] + \dots$$

$$= \lim_{n \to \infty} \mathbb{P}(A_n).$$

To prove the second part, let $B_1 \supseteq B_2 \supseteq \dots$ be a decreasing sequence of events, and

$$B = \bigcap_{i=1}^{\infty} B_i.$$

Let $A_i = B_i^c$ and $A = B^c$. Then $A_1 \subseteq A_2 \subseteq ...$ is an increasing sequence, and

$$A = \bigcup_{i=1}^{\infty} A_i.$$

Hence by the first part of the theorem,

$$\mathbb{P}(B) = 1 - \mathbb{P}(A)$$

$$= 1 - \lim_{n \to \infty} \mathbb{P}(A_n)$$

$$= \lim_{n \to \infty} (1 - \mathbb{P}(A_n))$$

$$= \lim_{n \to \infty} \mathbb{P}(B_n).$$

MA2500 2. Probability Spaces

2.5 Exercises

Exercise 2.1

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $A, B, C \in \mathcal{F}$. Show that

$$\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C) + \mathbb{P}(A \cap B \cap C)$$

This is called the inclusion-exclusion principle.

- 2. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
 - (a) Show that $\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)$ for all $A, B \in \mathcal{F}$. This is called *subadditivity*.
 - (b) Show that for any sequence A_1, A_2, \ldots of events in \mathcal{F} ,

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

This is called *countable subadditivity*.

Exercise 2.2

- 1. Let A and B be events with probabilities $\mathbb{P}(A) = 3/4$ and $\mathbb{P}(B) = 1/3$.
 - (a) Show that $\frac{1}{12} \leq \mathbb{P}(A \cap B) \leq \frac{1}{3}$, and construct examples to show that both extremes are possible.
 - (b) Find corresponding bounds for $\mathbb{P}(A \cup B)$.
- 2. A roulette wheel consists of 37 slots of equal size. The slots are numbered from 0 to 36, with odd-numbered slots coloured red, even-numbered slots coloured black, and the slot labelled 0 coloured green. The wheel is spun in one direction and a ball is rolled in the opposite direction along a track running around the circumference of the wheel. The ball eventually falls on to the wheel and into one of the 37 slots. A player bets on the event that the ball stops in a red slot, and another player bets on the event that the ball stops in a black slot.
 - (a) Define a suitable sample space Ω for this random experiment, and identify the events of interest.
 - (b) Find the smallest field \mathcal{F} over Ω that contains the events of interest.
 - (c) Define a suitable probability measure (Ω, \mathcal{F}) to represent the game.

Exercise 2.3

- 1. A biased coin has probability p of showing heads. The coin is tossed repeatedly until a head occurs. Describe a suitable probability space for this experiment.
- 2. A fair coin is tossed repeatedly.
 - (a) Show that a head eventually occurs with probability one.
 - (b) Show that a sequence of 10 consecutive tails eventually occurs with probability one.
 - (c) Show that any finite sequence of heads and tails eventually occurs with probability one.

Lecture 3 Conditional Probability

3.1 Conditional probability

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $B \in \mathcal{F}$.

Definition 3.1

If $\mathbb{P}(B) > 0$, the conditional probability of A given B is defined to be

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

3.2 Bayes' theorem

Definition 3.2

A countable collection of sets $\{A_1, A_2, \ldots\}$ is said to form a partition of a set B if

- (1) $A_i \cap A_j = \emptyset$ for all $i \neq j$, and
- (2) $B \subseteq \bigcup_{i=1}^{\infty} A_i$.

Theorem 3.3 (The Law of Total Probability)

If $\{A_1, A_2, \ldots\}$ is a partition of B, then

$$\mathbb{P}(B) = \sum_{i=1}^{\infty} \mathbb{P}(B \cap A_i) = \sum_{i=1}^{\infty} \mathbb{P}(B|A_i)\mathbb{P}(A_i)$$

Theorem 3.4 (Bayes' Theorem)

If $\{A_1, A_2, \ldots\}$ is a partition of B where $\mathbb{P}(B) > 0$, then

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\sum_{i} \mathbb{P}(B|A_i)\mathbb{P}(A_j)}$$

3.3 Independence

Definition 3.5

Two events A and B are said to be independent if $\mathbb{P}(A|B) = \mathbb{P}(A)$, or equivalently,

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Definition 3.6

A collection of events $\{A_1, A_2, \ldots\}$ is said to be

- (1) pairwise independent if $\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j)$ for all $i \neq j$.
- (2) totally independent if, for every finite subset $\{B_1, B_2, \dots, B_m\} \subset \{A_1, A_2, \dots\}$,

$$\mathbb{P}(B_1 \cap B_2 \cap \ldots \cap B_m) = \mathbb{P}(B_1)\mathbb{P}(B_2)\cdots\mathbb{P}(B_m).$$

This can also be written as $\mathbb{P}\left(\bigcap_{j=1}^{m} B_j\right) = \prod_{j=1}^{m} \mathbb{P}(B_j)$.

Remark 3.7

Total independence implies pairwise independence, but not vice versa.

3.4 Conditional probability spaces

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and let $B \in \mathcal{F}$.

Theorem 3.8

The family of sets $\mathcal{G} = \{A \cap B : A \in \mathcal{F}\}$ is a σ -field over B.

Remark 3.9

 \mathcal{G} contains all sets of the form $A \cap B$, where A is some element of \mathcal{F} . This means that $A' \in \mathcal{G}$ if and only if there is some $A \in \mathcal{F}$ for which $A' = A \cap B$.

Proof: To show that \mathcal{G} is a σ -field over B, we need to show that

- (1) $B \in \mathcal{G}$,
- (2) if $A' \in \mathcal{G}$ then $B \setminus A' \in \mathcal{G}$, and
- (3) if $A'_1, A'_2, \ldots \in \mathcal{G}$ then $\bigcup_{i=1}^{\infty} A'_i \in \mathcal{G}$.
- (1) Clearly, $B \in \mathcal{G}$ because there is a set $A \in \mathcal{F}$ for which $B = A \cap B$, namely the set B istelf.
- (2) Let $A' \in \mathcal{G}$. Then there exists a set $A \in \mathcal{F}$ for which $A' = A \cap B$.

The complement of A' relative to B can be written as

$$B \setminus A' = B \setminus (A \cap B) = [(A \cap B)^c] \cap B.$$

- ullet is closed under pairwise unions and complementation.
- Since $A, B \in \mathcal{F}$, it thus follows that $(A \cap B)^c \in \mathcal{F}$.
- Hence $B \setminus A'$ can be written as $[(A \cap B)^c] \cap B$ where $[(A \cap B)^c] \in \mathcal{F}$
- This shows that $B \setminus A \in \mathcal{G}$.
- (3) Let A'_1, A'_2 , be elements of \mathcal{G} . Then for each A'_i there exists some $A_i \in \mathcal{F}$ such that $A'_i = A_i \cap B$. Using the fact that set intersection is distributive over set union,

$$\cup_i A_i' = \cup_i (A_i \cap B) = (\cup_i A_i) \cap B.$$

- \bullet \mathcal{F} is closed under countable unions.
- Since $A_1, A_2, \ldots \in \mathcal{F}$, it thus follows that $\cup_i A_i \in \mathcal{F}$.
- Hence $\cup_i A'_i$ can be written in the form $(\cup_i A_i) \cap B$ where $\cup_i A_i \in \mathcal{F}$.
- This shows that $\cup_i A'_i \in \mathcal{G}$.

Thus we have shown that \mathcal{G} is a σ -field over B, as required.

Theorem 3.10

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, let $B \in \mathcal{F}$, and let $\mathcal{G} = \{A \cap B : A \in \mathcal{F}\}$. If $\mathbb{P}(B) > 0$, then

$$\mathbb{Q}: \quad \mathcal{G} \quad \to \quad [0,1]$$

$$A' \quad \mapsto \quad \mathbb{P}(A'|B)$$

is a probability measure on (B, \mathcal{G}) .

Remark 3.11

 $(B,\mathcal{G},\mathbb{Q})$ is called a conditional probability space..

Proof: To show that \mathbb{Q} is a probability measure on (B, \mathcal{G}) , we need to show that

- $\mathbb{Q}(B) = 1$,
- $\mathbb{Q}(\bigcup_i A_i') = \sum_i \mathbb{Q}(A_i')$ whenever the $A_i' \in \mathcal{G}$ are pairwise disjoint.

First,

$$\mathbb{Q}(B) = \mathbb{P}(B|B) = \frac{\mathbb{P}(B \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1.$$

To prove countable additivity, let A'_1, A'_2, \ldots be pairwise disjoint events in \mathcal{G} . Then, using the fact that set intersection is distributive over set union,

$$\begin{split} \mathbb{Q}(\cup_i A_i') &= \mathbb{P}(\cup_i A_i' \,|\, B) = \frac{\mathbb{P}\big[(\cup_i A_i') \cap B\big]}{\mathbb{P}(B)} \\ &= \frac{\mathbb{P}\big[\,\cup_i \,(A_i' \cap B)\big]}{\mathbb{P}(B)} \\ &= \frac{\sum_i \mathbb{P}(A_i' \cap B)}{\mathbb{P}(B)} \quad \text{because the } A_i' \text{ are disjoint,} \\ &= \sum_i \frac{\mathbb{P}(A_i \cap B)}{\mathbb{P}(B)} \\ &= \sum_i \mathbb{Q}(A_i'). \end{split}$$

Thus we have shown that \mathbb{Q} is a probability measure on (Ω, \mathcal{G}) , as required.

Remark 3.12

We have shown that \mathbb{Q} is a probability measure on (B,\mathcal{G}) . Using an almost identical argument, it can be shown that \mathbb{Q} is also a probability measure on (Ω,\mathcal{F}) .

- In the probability space $(B, \mathcal{G}, \mathbb{Q})$, outcomes $\omega \notin B$ are excluded from consideration.
- In the probability space $(\Omega, \mathcal{F}, \mathbb{Q})$, outcomes $\omega \notin B$ are assigned probability zero.

3.5 Exercises

Exercise 3.1 [Revision]

- 1. Let Ω be a sample space, and let A_1, A_2, \ldots be a partition of Ω with the property that $\mathbb{P}(A_i) > 0$ for all i.
 - (a) Show that $\mathbb{P}(B) = \sum_{i=1}^{\infty} \mathbb{P}(B|A_i)\mathbb{P}(A_i)$.
 - (b) Show that $\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\sum_{j=1}^{\infty} \mathbb{P}(B|A_j)\mathbb{P}(A_j)}$.

Exercise 3.2

- 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space. Let $B \in \mathcal{F}$ with $\mathbb{P}(B) > 0$, and consider the function $\mathbb{Q} : \mathcal{F} \to [0, 1]$ defined by $\mathbb{Q}(A) = \mathbb{P}(A|B)$.
 - (a) Show that $(\Omega, \mathcal{F}, \mathbb{Q})$ is a probability space.
 - (b) If $C \in \mathcal{F}$ and $\mathbb{Q}(C) > 0$, show that $\mathbb{Q}(A|C) = \mathbb{P}(A|B \cap C)$.
- 2. A random number N of dice are rolled. Let A_k be the event that N = k, and suppose that $\mathbb{P}(A_k) = 2^{-k}$ for $k \in \{1, 2, ...\}$ (and zero otherwise). Let S be the sum of the scores shown on the dice. Find the probability that:
 - (a) N=2 given that S=4,
 - (b) S = 4 given that N is even,
 - (c) N=2 given that S=4 and the first die shows 1,
 - (d) the largest number shown by any dice is r (where S is unknown).
- 3. Let $\Omega = \{1, 2, ..., p\}$ where p is a prime number. Let \mathcal{F} be the power set of Ω , and let $\mathbb{P} : \mathcal{F} \to [0, 1]$ be the probability measure on (Ω, \mathcal{F}) defined by $\mathbb{P}(A) = |A|/p$, where |A| denotes the cardinality of A. Show that if A and B are independent events, then at least one of A and B is either \emptyset or Ω .

Lecture 4 Random Variables

4.1 Random variables

Random variables are functions that transform abstract sample spaces to the real numbers.

Definition 4.1

Let Ω be the sample space of some random experiment, and let \mathcal{F} be a σ -field of events over Ω . A random variable on (Ω, \mathcal{F}) is a function

$$X: \Omega \to \mathbb{R}$$

$$\omega \mapsto X(\omega)$$

with the property that $\{\omega: X(\omega) \in B\} \in \mathcal{F}$ for every $B \in \mathcal{B}$, where \mathcal{B} is the Borel σ -field over \mathbb{R} .

Remark 4.2

- The set $\{\omega: X(\omega) \in B\}$ contains precisely those outcomes that are mapped by X into the set B.
- X is a random variable only if every set of this form is an element of the σ -field \mathcal{F} .
- This condition means that, for any Borel set B, the probability that X takes a value in B is well-defined.

Let us define the following notation:

$$\{X \in B\} = \{\omega : X(\omega) \in B\}$$

- The expression $\{X \in B\}$ should not be taken literally: X is a function, while B is a subset of the real numbers
- Instead, think of $\{X \in B\}$ as the event that X takes a value in B.
- The condition $\{X \in B\} \in \mathcal{F}$ ensures that the probability of this event is well-defined.

We denote the probability of $\{X \in B\}$ by $\mathbb{P}(X \in B)$, by which we mean

$$\mathbb{P}(X \in B) = \mathbb{P}\big(\{\omega : X(\omega) \in B\}\big)$$

MA2500 4. RANDOM VARIABLES

Proposition 4.3

A function $X: \Omega \to \mathbb{R}$ is a random variable if and only if $\{X \leq x\} \in \mathcal{F}$ for every $x \in \mathbb{R}$.

[Proof omitted.]

Remark 4.4

To check whether or not a function $X : \Omega \to \mathbb{R}$ is a random variable, by the proposition we need not verify that $\{X \in B\} \in \mathcal{F}$ for all Borel sets $B \in \mathcal{B}$. Instead, it is enough to verify only that the sets $\{\omega : X(\omega) \le x\}$ are included in \mathcal{F} (for every $x \in \mathbb{R}$).

4.2 Indicator variables

The elementary random variable is the *indicator variable* of an event A.

Definition 4.5

The *indicator variable* of an event A is the random variable $I_A: \Omega \to \mathbb{R}$ defined by

$$I_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A, \\ 0 & \text{if } \omega \notin A. \end{cases}$$

Theorem 4.6

Let A and B be any two events. Then

- (1) $I_{A^c} = 1 I_A$
- $(2) I_{A \cap B} = I_A I_B$
- (3) $I_{A \cup B} = I_A + I_B I_{A \cap B}$

Proof: Exercise. Note that for two functions to be equal, they must be equal at every point of their common domain, so for the first part we need to show that $I_{A^c}(\omega) = 1 - I_A(\omega)$ for every $\omega \in \Omega$, and similarly for parts (2) and (3).

4.3 Simple random variables

Definition 4.7

A simple random variable is one that takes only finitely many values.

If $X: \Omega \to \mathbb{R}$ is a simple random variable, it can be represented as:

$$X(\omega) = \sum_{i=1}^{n} a_i I_{A_i}(\omega)$$

where

- $\{a_1, a_2, \ldots, a_n\} \subset \mathbb{R}$ is the range of X, and
- $\{A_1, A_2, \dots, A_n\}$ is a partition of the sample space, Ω .

4.4 Probability on \mathbb{R}

Definition 4.8

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X : \Omega \to \mathbb{R}$ be a random variable on (Ω, \mathcal{F}) . The function

$$\mathbb{P}_X: \mathcal{B} \to [0,1]$$
 $B \mapsto \mathbb{P}(X \in B).$

MA2500 4. RANDOM VARIABLES

is called the distribution of X.

Theorem 4.9

 \mathbb{P}_X is a probability measure on $(\mathbb{R}, \mathcal{B})$.

Proof: First we need to show that $\mathbb{P}_X(\mathbb{R}) = 1$:

$$\mathbb{P}_X(\mathbb{R}) = \mathbb{P}(X \in \mathbb{R}) = \mathbb{P}(\{\omega : X(\omega) \in \mathbb{R}\}) = 1.$$

We also need to show that \mathbb{P}_X is countably additive. If B_1, B_2, \ldots is a sequence of pairwise disjoint sets in \mathcal{B} , then

$$\begin{split} \mathbb{P}_{X} \big(\bigcup_{i=1}^{\infty} B_{i} \big) &= \mathbb{P} \big(\big\{ \omega : X(\omega) \in \bigcup_{i=1}^{\infty} B_{i} \big\} \big) \\ &= \mathbb{P} \big(\bigcup_{i=1}^{\infty} \{ \omega : X(\omega) \in B_{i} \} \big) \\ &= \sum_{i=1}^{\infty} \mathbb{P} \big(\{ \omega : X(\omega) \in B_{i} \} \big) \quad \text{because the } B_{i} \text{ are disjoint,} \\ &= \sum_{i=1}^{\infty} \mathbb{P}_{X}(B_{i}), \end{split}$$

which concludes the proof.

Remark 4.10

A random variable X transforms an abstract probability space $(\Omega, \mathcal{F}, \mathbb{P})$ into a more tractable probability space $(\mathbb{R}, \mathcal{B}, \mathbb{P}_X)$, where we can apply the methods of *real analysis*.

4.5 Exercises

Exercise 4.1

- 1. Let Ω be the sample space of some random experiment, and let \mathcal{F} be a σ -field over Ω .
 - (a) For any $A \in \mathcal{F}$, show that the function $X : \Omega \to \mathbb{R}$, defined by

$$X(\omega) = \begin{cases} 1 & \text{if } \omega \in A, \\ 0 & \text{if } \omega \notin A, \end{cases}$$

is a random variable on (Ω, \mathcal{F}) .

(b) Let $A_1, A_2, \ldots, A_n \in \mathcal{F}$ be a partition of Ω and let $a_1, a_2, \ldots, a_n \in \mathbb{R}$. Show that the function $X : \Omega \to \mathbb{R}$, defined by

$$X(\omega) = \sum_{i=1}^n a_i I_{A_i}(\omega) \quad \text{where} \quad I_A(\omega) = \begin{cases} 1 & \text{if } \omega \in A, \\ 0 & \text{if } \omega \notin A, \end{cases}$$

is a random variable on (Ω, \mathcal{F}) .

Lecture 5 Distributions

5.1 Probability on the real line

Let $X:\Omega\to\mathbb{R}$ be a random variable, and recall the probability measure on (\mathbb{R},\mathcal{B}) , defined by

$$\mathbb{P}_X(B) = \mathbb{P}(X \in B) = \mathbb{P}(\{\omega : X(\omega) \in B\}),$$

where \mathcal{B} is the Borel σ -field over \mathbb{R} .

Definition 5.1

- (1) The distribution of X is the probability measure $\mathbb{P}_X(B) = \mathbb{P}(X \in B)$.
- (2) The cumulative distribution function (CDF) of X is the function $F(x) = \mathbb{P}(X \le x)$.
- (3) The survival function (SF) of X is the function $S(t) = \mathbb{P}(X > t)$.

Remark 5.2

The survival function is also called the *complementary* distribution function. If X represents the *lifetime* of some random system, then $S(t) = \mathbb{P}(X > t)$ is the probability that the system survives beyond time t. In this context, F(t) = 1 - S(t) is called the *lifetime distribution function*.

5.2 Cumulative distribution functions (CDFs)

Proposition 4.3 states that $X: \Omega \to \mathbb{R}$ is a random variable if and only if the sets $\{X \leq x\}$ are *events* over Ω :

$$\{X \le x\} = \{\omega : X(\omega) \le x\} \in \mathcal{F} \text{ for all } x \in \mathbb{R}.$$

It can be shown that the probability measure

$$\mathbb{P}_X(B) = \mathbb{P}(X \in B) = \mathbb{P}(\{\omega : X(\omega) \in B\}),$$

is uniquely defined by the values it takes on the events $\{X \leq x\}$ for $x \in \mathbb{R}$. Consequently, the distribution of a random variable is uniquely determined by its *cumulative distribution function* (CDF):

Definition 5.3

The cumulative distribution function (CDF) of a random variable $X:\Omega\to\mathbb{R}$ is the function

$$F: \mathbb{R} \longrightarrow [0,1]$$

$$x \mapsto \mathbb{P}(X \le x).$$

Theorem 5.4

Let $F : \mathbb{R} \to [0,1]$ be a CDF. Then there is a unique probability measure $\mathbb{P}_F : \mathcal{B} \to [0,1]$ on the real line with the property that

$$\mathbb{P}_F((a,b]) = F(b) - F(a)$$

for every such half-open interval $(a, b] \in \mathcal{B}$.

[Proof omitted.]

• The triple $(\mathbb{R}, \mathcal{B}, \mathbb{P}_F)$ is sometimes called the *probability space induced by F*.

Remark 5.5

Compare the probability measure \mathbb{P}_F of the interval $(a, b] \subset \mathbb{R}$ to the usual measure of its *length*:

- Length: $\mathbb{L}((a,b]) = b a$
- Probability measure: $\mathbb{P}_F((a,b]) = F(b) F(a)$.

Thus $\mathbb{P}_F((a,b])$ quantifies the "amount of probability" in any given interval (a,b].

5.3 Properties of CDFs

Theorem 5.6

A cumulative distribution function $F: \mathbb{R} \to [0,1]$ has the following properties:

- (1) if x < y then $F(x) \le F(y)$,
- (2) $F(x) \to 0$ as $x \to -\infty$,
- (3) $F(x) \to 1$ as $x \to +\infty$, and
- (4) $F(x+h) \to F(x)$ as $h \downarrow 0$ (right continuity).

Proof:

(1) To show that F is increasing, let x < y and consider the events

$$A = \{X \le x\} = \{\omega : X(\omega) \le x\},$$

$$B = \{X \le y\} = \{\omega : X(\omega) \le y\}.$$

By construction, $F(x) = \mathbb{P}(A)$ and $F(y) = \mathbb{P}(B)$ so by the monotonicity of probability measures (Theorem 2.8),

$$x < y \Rightarrow A \subseteq B \Rightarrow \mathbb{P}(A) \leq \mathbb{P}(B) \Rightarrow F(x) \leq F(y).$$

(2) To show that $F(x) \to 0$ as $x \to -\infty$, let

$$B_n = \{X \le -n\} = \{\omega : X(\omega) \in (-\infty, -n]\}$$
 for $n = 1, 2, ...$

so that $F(-n) = \mathbb{P}(X \le -n) = \mathbb{P}(B_n)$.

The sequence B_1, B_2, \ldots is decreasing $(B_{n+1} \subseteq B_n)$, with

$$\bigcap_{n=1}^{\infty} B_n = \emptyset,$$

because for any x, there exists an n such that $x \notin (-\infty, -n]$.

By the continuity of probability measures (Theorem 2.9),

$$\lim_{n \to \infty} F(-n) = \lim_{n \to \infty} \mathbb{P}(B_n) = \mathbb{P}\left(\bigcap_{n=1}^n B_n\right) = \mathbb{P}(\emptyset) = 0,$$

and because F(x) is an increasing function,

$$\lim_{n \to \infty} F(-n) = 0 \quad \Leftrightarrow \quad \lim_{x \to -\infty} F(x) = 0.$$

(3) To show that $F(x) \to 1$ as $x \to \infty$, let

$$A_n = \{X \le n\} = \{\omega : X(\omega) \in (-\infty, n]\} \text{ for } n = 1, 2, \dots,$$

so that
$$F(n) = \mathbb{P}(X \leq n) = \mathbb{P}(A_n)$$
.

The sequence A_1, A_2, \ldots is increasing $(A_n \subseteq A_{n+1})$, with

$$\bigcup_{n} A_{n=1}^{\infty} = \Omega,$$

because for any x, there exists an n such that $x \in (-\infty, n]$.

By the continuity of probability measures,

$$\lim_{n\to\infty} F(n) = \lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}\left(\bigcup_{n=1}^{\infty} A_n\right) = \mathbb{P}(\Omega) = 1,$$

and because F(x) is an increasing function,

$$\lim_{n\to\infty}F(n)=1\quad\Leftrightarrow\quad \lim_{x\to\infty}F(x)=1.$$

(4) To show that F(x) is right-continuous, let

$$B_n = \left\{ \omega : X(\omega) \in \left(-\infty, x + \frac{1}{n} \right] \right\}$$

so that $F(x+1/n) = \mathbb{P}(X \le x+1/n) = \mathbb{P}(B_n)$.

The sequence B_1, B_2, \ldots is decreasing $(B_{n+1} \subseteq B_n)$, with

$$\bigcap_{n=1}^{\infty} B_n = (-\infty, x],$$

so

$$\mathbb{P}\left(\bigcap_{n=1}^{\infty} B_n\right) = \mathbb{P}\left(\left\{\omega : X(\omega) \in (-\infty, x]\right\}\right) = \mathbb{P}\left(\left\{\omega : X(\omega) \le x\right\}\right) = F(x).$$

By the continuity of probability measures,

$$F(x) = \mathbb{P}\left(\bigcap_{n=1}^{\infty} B_n\right) = \lim_{n \to \infty} \mathbb{P}(B_n) = \lim_{n \to \infty} F\left(x + \frac{1}{n}\right).$$

which concludes the proof.

Theorem 5.7

Let $F : \mathbb{R} \to [0,1]$ be a function with properties (i)-(iv) of Theorem 5.6. Then F is a cumulative distribution function.

[Proof omitted.]

Remark 5.8

The last two theorems make no explicit reference to random variables:

- many different random variables can have the same distribution function;
- a distribution function can represent many different random variables.

5.4 Discrete distributions and PMFs

The range of a random variable $X:\Omega\to\mathbb{R}$ is the set of all possible values it can take:

Range
$$(X) = \{x \in \mathbb{R} : X(\omega) = x \text{ for some } \omega \in \Omega\}.$$

Definition 5.9

- $X: \Omega \to \mathbb{R}$ is called a discrete random variable if its range is a countable subset of \mathbb{R} .
- A discrete random variable is described by its probability mass function (PMF),

$$f: \mathbb{R} \to [0,1]$$

 $k \mapsto \mathbb{P}(X=k),$

which must have the property that $\sum_{k} f(k) = 1$.

• A probability mass function defines a discrete probability measure on \mathbb{R} ,

$$\begin{array}{ccc} \mathbb{P}_X: & \mathcal{B} & \to & [0,1] \\ & B & \mapsto & \displaystyle\sum_{k \in B} \mathbb{P}(X=k), \end{array}$$

• The triple $(\mathbb{R}, \mathcal{B}, \mathbb{P}_X)$ is called a discrete probability space over \mathbb{R} .

5.5 Continuous distributions and PDFs

Definition 5.10

• A cumulative distribution function $F : \mathbb{R} \to [0,1]$ is said to be absolutely continuous if there exists an integrable function $f : \mathbb{R} \to [0,\infty)$ such that

$$F(x) = \int_{-\infty}^{x} f(t) dt$$
 for all $x \in \mathbb{R}$.

- The function $f: \mathbb{R} \to [0, \infty)$ is called the *probability density function* (PDF) of F.
- The triple $(\mathbb{R}, \mathcal{B}, \mathbb{P}_F)$ is called a *continuous probability space* over \mathbb{R} .

Definition 5.11

A continuous random variable is one whose distribution function is absolutely continuous.

If $X: \Omega \to \mathbb{R}$ is a continuous random variable, then

- f(x) = F'(x) for all $x \in \mathbb{R}$.
- Probabilities correspond to areas under the curve f(x):

$$\mathbb{P}_X\big((a,b]\big) = \mathbb{P}(a < X \le b) = F(b) - F(a) = \int_a^b f(x) \, dx.$$

• Note that $\mathbb{P}(X=x)=0$ for all $x\in\mathbb{R}$.

Remark 5.12

The continuity of a random variable $X : \Omega \to \mathbb{R}$ refers to the continuity of its distribution function, and *not* to the continuity (or otherwise) of itself as a function on Ω .

5.6 Exercises

Exercise 5.1

- 1. Let F and G be CDFs, and let $0 < \lambda < 1$ be a constant. Show that $H = \lambda F + (1 \lambda)G$ is also a CDF.
- 2. Let X_1 and X_2 be the numbers observed in two independent rolls of a fair die. Find the PMF of each of the following random variables:

(a)
$$Y = 7 - X_1$$
,

- (b) $U = \max(X_1, X_2),$
- (c) $V = X_1 X_2$.
- (d) $W = |X_1 X_2|$.
- 3. The PDF of a continuous random variable X is given by $f(x) = \begin{cases} cx^2 & 1 \le x \le 2, \\ 0 & \text{otherwise.} \end{cases}$
 - (a) Find the value of the constant c, and sketch the PDF of X.
 - (b) Find the value of P(X > 3/2).
 - (c) Find the CDF of X.
- 4. The PDF of a continuous random variable X is given by $f(x) = \begin{cases} cx^{-d} & \text{for } x > 1, \\ 0 & \text{otherwise.} \end{cases}$
 - (a) Find the range of values of d for which f(x) is a probability density function.
 - (b) If f(x) is a density function, find the value of c, and the corresponding CDF.
- 5. Let $f(x) = \frac{ce^x}{(1+e^x)^2}$ be a PDF, where c is a constant. Find the value of c, and the corresponding CDF.
- 6. Let X_1, X_2, \ldots be independent and identically distributed observations, and let F denote their common CDF. If F is unknown, describe and justify a way of estimating F, based on the observations. [Hint: consider the indicator variables of the events $\{X_j \leq x\}$.]