Pulsed Neutron Source ProtoDUNE-I Analysis Update

Michael Mulhearn (speaking), Jingbo Wang, Robert Svoboda, Yashwanth Sai Bezawada, Junying Huang

Data Collection and Reconstruction

 This analysis uses data from I0 days of running in 2020 during ProtoDUNE-I using a deuteron-deuteron (DD) generator to produce E=2.5 MeV neutrons:

$$D + D \rightarrow n + {}^{3}He$$

- Random Trigger Mode:
 - DDG Off: E = 650 V/cm; 2 Hz Trigger Frequency
 - DDG Off: E = 350 V/cm; 5 Hz Trigger Frequency (Analyzed Here)
 - DDG On: E = 650 V/cm; 2 Hz Trigger Frequency
 - DDG On: E = 350 V/cm; 5 Hz Trigger Frequency (Analyzed Here)
- Pulsed Trigger Mode (Only for DDG On):
 - E = 350 V/cm, 5% duty Cycle, ~175 μ s pulse width, ~4 Hz
 - E = 0 V/cm, 5% duty Cycle, ~175 μ s pulse width, ~4 Hz
- Data Analysis includes 3 modules:
 - "hitpdune" for reconstructing hits
 - "reco3d" for extracting spacepoints
 - "dbscan3d" described on next slide

LANL DD Generator

Spacepoint Clustering

 Clustering of spacepoints is performed by density-based spatial clustering of applications with noise in 3D (DBScan3D):

- DBScan3D parameters:
 - Neighborhood radius (epsilon) 2 cm,
 - Minimum spacepoints per cluster 3.
 - Cosmic rays partially removed by a cut on slice size, described next.
- We further uses clusters of spacepoints (slices) as neutron candidates for further analysis.

Monte Carlo Simulation

- GEANT geometry modified to include DD shielding material.
- 1500 neutrons per event injected w/ textfile generator.
 - Isotropic with E=2.5 MeV
 - protodune_corsika_cmc for Cosmics
 - protodunesp_39ar for Ar39
- Updates to γ generation from neutron capture (new physics list available in LArSoft)
- Same reconstruction chain as data.

Slice Size

Simulated slice size for neutrons, cosmics, and Ar-39.

Cut on Slice Size

We cut at slice size <13 to remove (some) cosmics.

Slice Size Data vs MC

y-position of slices

- Apparent Inefficiency near top of detector observed in Data but not MC.
- DD induced signal clearly seen in both MC and data.... but are these neutrons?

Neutron Captures

- MC confirms that we are seeing gammas from neutron capture in the LAr.
- Attenuation looks daunting, however we are at neutron kinetic energy E=2.5 MeV
- ARTIE experiment preliminary results confirm anti-resonance feature at 57 keV.

Increased Statistics

- Currently using less than 1% of collected data.
- Current team focus is on using grid submission to handle more events:
 - Recent increase to 269 events (factor of 10) with more to come.

Conclusion

- Monte Carlo simulation of DD data describes key features in the data.
- An efficiency effect at top of detector still needs to be understood.
- We see a clear neutron capture signal in the LAr from the DD generator.
- Planned Improvements:
 - More statistics in data and MC (less than 1% of data is used so far)
 - Normalization of MC to data.
 - Second clustering with larger neighborhood radius approporiate for neutrons (energy of neutron from sum of hits associated with space points?)
 - Comparisons with Pandora.
 - See Jingbo's talk for future improvements to performance of DD generator.