Kirill Yukhin, Intel Lab, 14.11.2018

Top-down versus Bottom-up Parsing

❖ Top down:

- Recursive descent parsing
- LL(k) parsing
- ☐ Top to down and leftmost derivation
 - Expanding from starting symbol (top) to gradually derive the input string
- ☐ Can use a parsing table to decide which production to use next
- ☐ The power is limited
 - Many grammars are not LL(k)
 - Left recursion elimination and left factoring can help make some grammars LL(k), but after rewriting, the grammar can be very hard to comprehend
- ☐ Space efficient
- ☐ Easy to build the parse tree

Top-down versus Bottom-up Parsing

A Bottom up:

- ☐ Also known as shift-reduce parsing
 - LR family
 - Precedence parsing
- ☐ Shift: allow shifting input characters to the stack, waiting till a matching production can be determined
- ☐ Reduce: once a matching production is determined, reduce
- ☐ Follow the rightmost derivation, in a reversed way
 - Parse from bottom (the leaves of the parse tree) and work up to the starting symbol
- ☐ Due to the added "shift"
 - ⇒ More powerful
 - Can handle left recursive grammars and grammars with left factors
 - ⇒ Less space efficient

* How to build a predictive bottom-up parser?

Sentential form

- ☐ For a grammar G with start symbol S
 - A string α is a sentential form of G if S \Rightarrow * α
 - α may contain terminals and nonterminals
 - If α is in T*, then α is a sentence of L(G)
- ☐ Left sentential form: A sentential form that occurs in the leftmost derivation of some sentence
- ☐ Right sentential form: A sentential form that occurs in the rightmost derivation of some sentence

- * Example of the sentential form
 - \square E \rightarrow E * E | E + E | (E) | id
 - ☐ Leftmost derivation:

$$E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow id * E + E \Rightarrow id * id + id * id$$

- All the derived strings are of the left sentential form
- ☐ Rightmost derivation

$$E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow E + E * id \Rightarrow E + id * id \Rightarrow$$

 $E * E + id * id \Rightarrow E * id + id * id \Rightarrow id * id + id * id$

- All the derived strings are of the right sentential form
- **❖** Another example

$$\square$$
 S \rightarrow AB, A \rightarrow CD, B \rightarrow EF

$$\square$$
 S \Rightarrow AB \Rightarrow CDB

$$\square$$
 S \Rightarrow AB \Rightarrow AEF

Handle

☐ Given a rightmost derivation

$$S \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \ldots \Rightarrow \gamma_k \ (\alpha A w) \Rightarrow \gamma_{k+1} \ (\alpha \beta w) \Rightarrow \ldots \Rightarrow \gamma_n$$

- γ_i , for all i, are the right sentential forms
- From γ_k to γ_{k+1} , production $A \rightarrow \beta$ is used
- \square A handle of γ_{k+1} (= $\alpha\beta w$) is
 - the production $A \rightarrow \beta$ and the position of β in γ_{k+1}
 - Informally, β is the handle

The handle $A \rightarrow \beta$ in the parse tree for $\alpha \beta w$

- * Theorem
 - ☐ If G is unambiguous, then every right-sentential form has a unique handle
- Proof
 - ☐ G is unambiguous
 - ⇒ rightmost derivation is unique
 - \square Consider a right-sentential form γ_{k+1}
 - \Rightarrow A unique production $A \rightarrow \beta$ is applied to γ_k , and applied at a unique position
 - \Rightarrow A unique handle in γ_{k+1}
- **❖** But
 - ☐ During the derivation, the production rule is unique
 - ☐ During the reduction, can we uniquely determine the production that was used during the derivation?

- Viable prefix
 - ☐ Prefix of a right-sentential form, do not pass the end of the handle
 - \Box E.g., $\alpha\beta$
 - Or the prefix of $\alpha\beta$
- \star Example: $E \rightarrow E * E | E + E | (E) | id$

Meaning of LR

- * L: Process input from left to right
- * R: Use rightmost derivation, but in reversed order

* Traverse rightmost derivation backwards ☐ If reduction is done arbitrarily • It may not reduce to the starting symbol Need backtracking ☐ By follow the path of rightmost derivation All the reductions are guaranteed to be "correct" Guaranteed to lead to the starting symbol without backtracking ☐ That is: If it is always possible to correctly find the handle * How to find the handle for reduction for each right sentential form ☐ Use a stack to keep track of the viable prefix

☐ The prefix of the handle will always be at the top of the stack

- \bullet Consider a right-sentential form $\alpha\beta w$
 - \square Where A $\rightarrow \beta$ and β is a handle (let $\beta = \alpha'w'$)
 - \square Right to β is always a subsentence (T*)

* Example grammar

$$S \rightarrow ...$$

 $X \rightarrow aAB \mid ...$
 $Y \rightarrow aAC \mid ...$

- Cannot know what aw should be reduced to
 - □ ⇒ shift a to stack,

 reduce some part of w to A,

 shift A to stack, ...

 till something is clear
 - ☐ Shift adds power to parsing
 - ☐ How to systematically do this?

- ❖ Shift-reduce operations in bottom-up parsing☐ Shift the input into the stack
 - Wait for the current handle to complete or to appear
 - Or wait for a handle that may complete later
 - ☐ Reduce
 - Once the handle is completely in the stack, then reduce
 - ☐ The operations are determined by the parsing table
- Parsing table includes
 - ☐ Action table
 - Determine the action of shift or reduce
 - To shift (current handle is not completely or not yet in stack)
 - To reduce (current handle is completely in stack)
 - ☐ Goto table
 - Determine which state to go to next

Parsing Table

❖ Idea ☐ Build a finite automata based on the grammar ☐ Follow the automata to construct the parsing tables Characteristic finite state automata (CFSA) ☐ Is the basis for building the parsing table But the automata is not a part of the parsing table ☐ States of the automata • Each state is represented by a set of LR(0) items o To keep track of what has already been seen (already in the stack) - In other words, keep track of the viable prefix o To track the possible productions that may be used for reduction ☐ State transitions Fired by grammar symbols (terminals or nonterminals)

- ❖ LR(0) Item of a grammar G
 - ☐ Is a production of G with a distinguished position
 - ☐ Position is used to indicate how much of the handle has already been seen (in the stack)
 - For production $S \rightarrow a B S$, items for it include

$$S \rightarrow \bullet a B S$$

$$S \rightarrow a \bullet B S$$

$$S \rightarrow a B \bullet S$$

$$S \rightarrow a B S \bullet$$

- o Left of are the parts of the handle that has already been seen
- o When \bullet reaches the end of the handle \Rightarrow reduction
- For production $S \rightarrow \varepsilon$, the single item is

$$S \rightarrow \bullet$$

- Closure function Closure(I)
 - ☐ I is a set of items for a grammar G
 - ☐ Every item in I is in Closure(I)
 - □ If A → α B β is in Closure(I) and B → γ is a production in G Then add B → • γ to Closure(I)
 - If it is not already there
 - Meaning
 - o When α is in the stack and B is expected next
 - o One of the B-production rules may be used to reduce the input to B
 - May not be one-step reduction though
 - ☐ Apply the rule until no more new items can be added

- ❖ Goto function Goto(I,X)
 - ☐ X is a grammar symbol
 - \square If $A \rightarrow \alpha \bullet X \beta$ is in I then $A \rightarrow \alpha X \bullet \beta$ is in Goto(I, X)
 - Let J denote the set constructed by this step
 - \square All items in Closure(J) are in Goto(I, X)
 - ☐ Meaning
 - If I is the set of valid items for some viable prefix γ
 - Then goto(I, X) is the set of valid items for the viable prefix γX

- Augmented grammar
 - ☐ G is the grammar and S is the staring symbol
 - \square Construct G' by adding production S' \rightarrow S into G
 - S' is the new starting symbol
 - E.g.: G: $S \rightarrow \alpha \mid \beta$ \Rightarrow G': $S' \rightarrow S$, $S \rightarrow \alpha \mid \beta$
 - ☐ Meaning
 - The starting symbol may have several production rules and may be used in other non-terminal's production rules
 - Add S' \rightarrow S to force the starting symbol to have a single production
 - When $S' \to S$ is seen, it is clear that parsing is done

- Given a grammar G ☐ Step 1: augment G ☐ Step 2: initial state • Construct the valid item set "I" of State 0 (the initial state) • Add S' \rightarrow • S into I o All expansions have to start from here ■ Compute Closure(I) as the complete valid item set of state 0 o All possible expansions S can lead into **□** Step 3: • From state I, for all grammar symbol X Construct J = Goto(I, X)Compute Closure(J)
 - Create the new state with the corresponding Goto transition o Only if the valid item set is non-empty and does not exist yet
 - ☐ Repeat Step 3 till no new states can be derived

Grammar G:

$$S \rightarrow E$$

 $E \rightarrow E + T \mid T$
 $T \rightarrow id \mid (E)$

☐ Step 1: Augment G

$$S' \rightarrow S$$
 $S \rightarrow E$ $E \rightarrow E + T \mid T$ $T \rightarrow id \mid (E)$

- **□** Step 2:
 - Construct Closure(I₀) for State 0
 - First add into $I_0: S' \rightarrow \bullet S$
 - Compute Closure(I₀)

$$S' \rightarrow \bullet S$$
 $S \rightarrow \bullet E$
 $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$
 $T \rightarrow \bullet id$ $T \rightarrow \bullet (E)$

Expect to see S next

S won't just appear May have to see E first and reduce it to S using this rule

```
❖ Step 3
                                                                                 I_0:
                                                                                   S' \rightarrow \bullet S \qquad S \rightarrow \bullet E
      \Box I_1
                                                                                   E \rightarrow \bullet E + T \qquad E \rightarrow \bullet T
             ■ Add into I_1: Goto(I_0, S) = S' \rightarrow S \bullet
                                                                                   T \rightarrow \bullet id \qquad T \rightarrow \bullet (E)
             ■ No new items to be added to Closure (I<sub>1</sub>)
      \square I_2
             ■ Add into I_2: Goto(I_0, E) = S \rightarrow E \bullet \nearrow E \rightarrow E \bullet + T

    No new items to be added to Cl

      \sqcup I_3
                                             When E is moved to the stack (after a reduction),
             • Add into I_3: Goto(I_0) these two are the possible handles
             ■ No new items to be |S \rightarrow E| • implies a reduction is to be done
                                                           o should be done if seeing Follow(S)
      \bigcup I_{4}
                                             E \rightarrow E \bullet + T implies + is expected to be the next input
             • Add into I_4: Goto(I_0, I_4) I_4
             ■ No new items to be added to Closure (I<sub>4</sub>)
```

❖ Step 3 \Box I₅ • Add into I_5 : Goto $(I_0, "(") = T \rightarrow (\bullet E)$ Closure(I₅) $E \rightarrow \bullet E + T \qquad E \rightarrow \bullet T$ $T \rightarrow \bullet \text{ id} \qquad T \rightarrow \bullet (E)$ \square No more moves from I_0 \square No possible moves from I_1 \Box I₆ • Add into I_6 : Goto $(I_2, +) = E \rightarrow E + \bullet T$

 \square No possible moves from I_3 and I_4

 $T \rightarrow \bullet id \qquad T \rightarrow \bullet (E)$

Closure(I₅)

I₀: $S' \rightarrow \bullet S \quad S \rightarrow \bullet E$ $E \rightarrow \bullet E + T \quad E \rightarrow \bullet T$ $T \rightarrow \bullet id \quad T \rightarrow \bullet (E)$

After seeing (, we expect E next E could be reduced from other E-production rules So, put E-productions in the set

- **\$** Step 3
 - \Box I_7
 - Add into I_7 : Goto(I_5 , E) = $T \to (E \bullet) \quad E \to E \bullet + T$
 - No new items to be added to Closure (I₇)
 - \square Goto(I_5 , T) = I_3
 - \square Goto(I_5 , id) = I_4
 - \square Goto(I_5 , "(") = I_5
 - \square No more moves from I_5
 - \square I_8
 - Add into I_8 : Goto $(I_6, T) = E \rightarrow E + T \bullet$
 - No new items to be added to Closure (I₈)
 - \square Goto(I_6 , id) = I_4
 - \square Goto(I_6 , "(") = I_5

- Step 3
 - \square I_9
 - Add into I_9 : Goto(I_7 , ")") = $T \rightarrow (E) \bullet$
 - No new items to be added to Closure (I₉)
 - $\Box \operatorname{Goto}(I_7, +) = I_6$
 - \square No possible moves from I_8 and I_9

Stack	Input	Action
0	id + id \$	S4
0 id 4	+ id \$	T→id,
		Goto[0,T]=3
0 T 3	+ id \$	E→T,
		Goto[0,E]=2
0 E 2	+ id \$	s6
0 E 2 + 6	id\$	S4
0 E 2 + 6 id 4	\$	T→id,
		Goto[6,T]=8
0 E 2 + 6 T 8	\$	E→E+T,
		Goto[0,E]=2
0 E 2	\$	S→E,
		Goto[0,S]=1
0 S 1	\$	accept

Building the Parsing Table

- ❖ Action [M, N]
 - M states
 - N tokens
 - \Box Actions =
 - Shift i: shift the input token into the stack and go to state i
 - Reduce i: reduce by the i-th production $\alpha \rightarrow \beta$
 - Accept
 - Error
- ❖ Goto [M, L]
 - M states
 - L non-terminals
 - \square Goto[i, j] = x
 - Move to state S_x

Building the Action Table

- ❖ If state I_i has item $A \rightarrow \alpha \bullet a \beta$, and
 - \Box Goto(I_i , a) = I_i
 - ☐ Next symbol in the input is a
- Then Action $[I_i, a] = I_i$
 - \square Meaning: Shift "a" to the stack and move to state I_i
 - Need to wait for the handle to appear or to complete
- ❖ If State I_i has item $A \rightarrow \alpha \bullet$
- \clubsuit Then Action[S, b] = reduce using A $\rightarrow \alpha$
 - ☐ For all b in Follow(A)
 - \square Meaning: The entire handle α is in the stack, need to reduce
 - ☐ Need to wait to see Follow(A) to know that the handle is ready
 - E.g. $S \rightarrow E \bullet E \rightarrow E \bullet + T$
 - Current input can be either Follow(S) or +

Building the Action Table

- \clubsuit If state has S' \to S₀ \bullet
- ❖ Then Action[S, \$] = accept
- Current state
 - ☐ The action to be taken depends on the current state
 - In LL, it depends on the current non-terminal on the top of the stack
 - In LR, non-terminal is not known till reduction is done
 - ☐ Who is keeping track of current state?
 - ☐ The stack
 - Need to push the state also into the stack
 - The stack includes the viable prefix and the corresponding state for each symbol in the viable prefix

Building the Goto Table

- $If Goto(I_i, A) = I_j$
- \clubsuit Then Goto[i, A] = j
- Meaning
 - \square When a reduction $X \to \alpha$ taken place
 - \Box The non-terminal X is added to the stack replacing α
 - ☐ What should the state be after adding X
 - ☐ This information is kept in Goto table

Building the Parsing Table -- Example

```
Follow(S) = {$}
Follow(E) = {+, ), $}
Follow(T) = {+, ), $}
```

	+	id	()	\$	S	Е	T
0		4	5			1	2	3
1					Acc			
2	6				S→E			
3	E-T			$E \rightarrow T$	$E \rightarrow T$	15		
4	T-A				→id		h	
5		4	5					3
6		4	5					8
7	6			9				
8	E→E+T			E→E+T	E→E+T			
9	T→(E)			T→(E)	T→(E)			

LR Parsing Algorithm

- Elements
 - ☐ Parser, parsing tables, stack, input
- **❖** Initialization
 - ☐ Append the \$ at the end of the input
 - ☐ Push state 0 into the stack
 - On the top of the stack, it is always a state
 - It is the current state of parsing

LR Parsing Algorithm

- Steps
 - \square If Action[x, a] = y
 - x is the current state, on the top of the stack
 - *a* is the input token
 - \Box Then shift a into the stack and put y on top of the stack
 - \square If Action[x, a] = A $\rightarrow \alpha$
 - Note that *a* is in Follow(A)
 - ☐ Then
 - x is the current state, on the top of the stack
 - Pop the handle α and all the state corresponding to α out of the stack
 - y is the state on the top of the stack after popping
 - Check Goto table, if Goto[y, A] = z
 - Push A and then z into the stack

LR Parsing - Example

	+	id	()	\$	S	Е	T			
C		1	5			1	1	2			
_	Rightmost derivation:										
$_{L}^{I}S$	$\frac{1}{2}S \Rightarrow E \Rightarrow E + T \Rightarrow E + id \Rightarrow T + id \Rightarrow id + id$										
2											
3	Reverse trace back:										
\vdash	Reduce left most input first.										
4	I →1d			I →1d	l→ıd						
5		4	5				7	3			
6		4	5					8			
7	6			9							
8	Е→Е+			E→E+T	E → E+T						
	T										
9	$T \rightarrow (E)$			T→(E)	T→(E)						

Stack	Input	Action
0	id + id \$	S4
0 id 4	+ id \$	T→id,
		Goto[0,T]=3
0 T 3	+ id \$	E→T,
		Goto[0,E]=2
0 E 2	+ id \$	s6
0 E 2 + 6	id \$	S4
0 E 2 + 6 id 4	\$	T→id,
		Goto[6,T]=8
0 E 2 + 6 T 8	\$	E→E+T,
		Goto[0,E]=2
0 E 2	\$	S→E,
		Goto[0,S]=1
0 S 1	\$	accept

LR Parsing -- Anoth

 $S \rightarrow (S) \mid AB$ $A \rightarrow Aa \mid a$ $B \rightarrow Bb \mid b$

Follow(S) = {\$,)} Follow(A) = {a, b} Follow(B) = {\$,), b}

		()	a	b	\$	S	A	В
(0	1		9			?	4	
	1	1		9			2	4	
4	2		3						
	3		$S\rightarrow (S)$			$S\rightarrow (S)$			
2	4			7	8				5
Å	5		S→AB		6	S-AB			
(6		B→Bb		B→Bb	B→Bb			
	7			A→Aa	A→Aa				
8	8		В→в		В→в	В→в			
Í	9			A→a	A→a				

LR Parsing -- Looking into the Automata

LR Parsing -- The RM Deriv

	()	a	b	\$	S	A	В
0	1		9			?	4	
1	1		9			2	4	
2		3						
3		$S\rightarrow (S)$			$S\rightarrow (S)$			
4			7	8				5
5		S→AB		6	S→AB			
6		B→Bb		B→Bb	B→Bb			
7			A→Aa	A→Aa				
8		В→в		В→в	В→в			
9			A→a	A→a				

Input: ((abbb))\$

Stack	Input	Action
0	((aabbb))\$	S1
0(1	(aabbb))\$	S1
0(1(1	aabbb))\$	S9
0(1(1a9	abbb))\$	A→a
0(1(1A4	abbb))\$	S6
0(1(1A4a7	bbb))\$	A→Aa
0(1(1A4	bbb))\$	S8
0(1(1A4b8	bb))\$	В→в
0(1(1A4B5	bb))\$	S6
0(1(1A4B5b6	b))\$	B→Bb
0(1(1A4B5	b))\$	S6
0(1(1A4B5b6))\$	B→Bb
0(1(1A4B5))\$	S→AB
0(1(1S2))\$	S3
0(1(1S2)3)\$	$S \rightarrow (S)$
0(1S2)\$	S3
0(1S2)3	\$	$S \rightarrow (S)$
0S	\$?accept

LR Parsing -- The RM De

S $(8) \Rightarrow (S)$ $(7) \Rightarrow ((S))$ $(6) \Rightarrow ((AB))$ $(5) \Rightarrow ((ABb))$ $(4) \Rightarrow ((ABbb))$ $(3) \Rightarrow ((Abbb))$ $(2) \Rightarrow ((Aabbb))$ $(1) \Rightarrow ((aabbb))$ traverse the rightmost derivation $\Rightarrow ((A\mathbf{Bbb}))$ backwards $\Rightarrow ((Aabbb))$

 \Rightarrow ((aabbb))

Stack	Input	Action	Order
0	((aabbb))\$	S1	
0(1	(aabbb))\$	S1	
0(1(1	aabbb))\$	S9	
0(1(1a9	abbb))\$	A→a	(1)
0(1(1A4	abbb))\$	S6	
0(1(1A4a7	bbb))\$	A→Aa	(2)
0(1(1A4	bbb))\$	S8	
0(1(1A4b8	bb))\$	В→в	(3)
0(1(1A4B5	bb))\$	S6	
0(1(1A4B5b6	b))\$	B→Bb	(4)
0(1(1A4B5	b))\$	S6	
0(1(1A4B5b6))\$	B→Bb	(5)
0(1(1A4B5))\$	S→AB	(6)
0(1(1S2))\$	S3	
0(1(1S2)3)\$	$S\rightarrow (S)$	(7)
0(1S2)\$	S3	
0(1S2)3	\$	$S\rightarrow (S)$	(8)
0S	\$?accept	

SLR Parsing

- **\display** LR
 - ☐ L: input scanned from left
 - ☐ R: traverse the rightmost derivation path
- **LR(0) = SLR(1)**
 - \Box The LR parser we discussed is LR(0)
 - 0 in LR: lookahead symbol with the item (will be clear later)
 - \square LR(0) is also called SLR(1)
 - Simple LR
 - 1 in SLR: lookahead symbol

Example:

$$A \rightarrow Aa \mid a$$

Follow(A) = $\{a, \$\}$

	a	\$	A
0	3		1
1	2		
2	A→Aa	A→Aa	
3	A→a	A→a	

Unclear accepting state Incorrect state transition

Stack	Input	Action
0	aaa\$	S3
0a3	aa\$	A→a,
		Goto[0,A]=1
0A1	aa\$	S2
0A1a2	a\$	A→Aa
		Goto[0,A]=1
0A1	a\$	S2
0A1a2	\$	A→Aa
		Goto[0,A]=1
0A1	\$	

	Not	LL
u	INOU	L

Left recursive grammar

But is SLR(1)

First a got reduced to A

- The remaining a's got reduced with the already generated A (Aa)
- In LR, it is reduction based, when seeing 'a', 'A \rightarrow a' is the only choice, after there is A, then reduce Aa by $A \rightarrow Aa$

Example:

 $A \rightarrow aA \mid a$ Follow(A) = $I_0 \begin{tabular}{l} $A \to \bullet$ aA \\ $A \to \bullet$ a \end{tabular}$ Potential shift-reduce conflict shift: expect to see 'a' reduce: follow(A) only has \$ \Rightarrow no problem

	1	1	A→a	2	
	2		A→aA		
_					•
Unclear accepti	ing	state			

Stack	Input	Action
0	aaa\$	S1
0a1	aa\$	S1
0a1a1	a\$	S1
0a1a1a1	\$	A→a
		Goto[1,A]=2
0a1a1A2	\$	A→aA
		Goto[1,A]=2
0a1A2	\$	same as above
0A?	\$	

 $A \rightarrow \bullet a$

 $A \rightarrow aA \bullet$

□ Not LL(1)

Productions for A have left factors

- \Box But is SLR(1)
 - All 'a's got shifted to stack
 - Final 'a', seeing \$, got reduced to 'A'
 - All 'a's in stack got reduced with newly generated 'A's

The input string is actually acceptable

If [0,\$] is *accept*, will accept ε

***** Example:

 \Rightarrow conflict

$$A \rightarrow aAa \mid a$$
Follow(A) = {\$, a}

 $0 \quad 1$
Shift-reduce conflict
 $1 \quad 1 \quad A \rightarrow a \quad 2$

 $A \rightarrow a$

 $A\rightarrow aA$

Stack	Input	Action
0	aaa\$	S1
0a1	aa\$	A→a
0A?	aa\$	

 \Box Not LL(1)

reduce: follow(A) has \$, a

- Productions for A have left factors
- \Box Not SLR(1)
 - Has shift-reduce conflict

Example:

$$S \rightarrow Ax \mid By$$
 Follow(S) = {\$}
 $A \rightarrow aA \mid a$ Follow(A) = {x}
 $B \rightarrow aB \mid a$ Follow(B) = {y}

Stack Input Action 0 aaax\$ S3 0a3 aax\$ S1 0a3a3a3 x\$ A→a Goto[3,A]=6 0a3a3A6 x\$ A→aA Goto[3,A]=6 0a3A6 x\$ same as above 0A1 x\$ S4 0A1x4 \$ S→Ax 0S \$			
0a3 aax\$ S3 0a3a3 ax\$ S1 0a3a3a3 x\$ A \rightarrow a Goto[3,A]=6 AaA Goto[3,A]=6 0a3A6 x\$ same as above 0A1 x\$ S4 0A1x4 \$ S \rightarrow Ax	Stack	Input	Action
0a3a3 ax\$ S1 0a3a3a3 x\$ $A \rightarrow a$ Goto[3,A]=6 A \rightarrow aA 0a3a3A6 x\$ $A \rightarrow aA$ Goto[3,A]=6 asame as above 0A1 x\$ S4 0A1x4 \$ S \rightarrow Ax	0	aaax\$	S3
0a3a3a3 x\$ $A \rightarrow a$ Goto[3,A]=6 0a3a3A6 x\$ $A \rightarrow aA$ Goto[3,A]=6 0a3A6 x\$ same as above 0A1 x\$ S4 0A1x4 \$ $S \rightarrow Ax$	0a3	aax\$	S3
Goto[3,A]=6 0a3a3A6	0a3a3	ax\$	S1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0a3a3a3	x\$	A→a
Goto[3,A]=6 0a3A6			Goto[3,A]=6
$\begin{array}{c cccc} 0a3A6 & x\$ & same as above \\ 0A1 & x\$ & S4 \\ 0A1x4 & \$ & S \rightarrow Ax \end{array}$	0a3a3A6	x\$	A→aA
$\begin{array}{c cccc} 0A1 & x\$ & S4 \\ 0A1x4 & \$ & S \rightarrow Ax \end{array}$			Goto[3,A]=6
$0A1x4$ \$ $S \rightarrow Ax$	0a3A6	x\$	same as above
	0A1	x\$	S4
0S \$	0A1x4	\$	$S \rightarrow Ax$
	OS ~	\$	

Unclear accepting state S does not appear at the right hand side So, no Goto info

Continue with the example:

```
S \rightarrow Ax \mid By

A \rightarrow aA \mid a

B \rightarrow aB \mid a
```

- \Box Not LL(k)
 - $S \rightarrow Ax$ and $S \rightarrow By$, First(Ax) and First(By) are 'a'
 - Even with large k, First_k of both will have "aa...a"
- \Box Is SLR(1)
 - No problem with $A \rightarrow aA$ and $A \rightarrow a$, they lead to different states
 - No problem with $A \rightarrow a$ and $B \rightarrow a$, just go back to the same state
 - o ⇒ During parsing, 'a' continuously got shifted into the stack
 - o When x or y appears, reduce
 - By that time, it is clear which rule to use for reduction
 - Follow(A) = $\{x\}$, if seeing x, reduce with A \rightarrow a
 - Follow(B) = $\{y\}$, if seeing y, reduce with B \rightarrow a

***** Example:

 $S \rightarrow Ax \mid By$ $A \rightarrow Aa \mid a$

 $B \rightarrow Ba \mid a$

Stack	Input	Action
0	aaax\$	S3
0a3	aax\$	Reduction
		Multiple productions

Have to make decision too soon, right at the first 'a'

 $Follow(S) = \{\$\}$

 $Follow(A) = \{x, a\}$

 $Follow(B) = \{y, a\}$

Continue with the example:

$$S \rightarrow Ax \mid By$$

 $A \rightarrow Aa \mid a$
 $B \rightarrow Ba \mid a$

- □ Not LL
 - $S \rightarrow Ax$ and $S \rightarrow By$, First(Ax) and First(By) are 'a'
 - Even with large k, First_k of both A and B will have "aa…a" (A and B are both in S's productions)
- □ Not SLR either
 - Not SLR(k), for any k
 - Even with large k, Follow_k of both A and B will have "aa...a"

Example:

$$S \to (X \mid [Y])$$

$$X \rightarrow A) \mid B$$

$$Y \rightarrow A \mid B$$

$$A \rightarrow \epsilon$$

$$B \rightarrow \epsilon$$

- \Box Not SLR(1)
- \Box Is LL(1)

First(A) =
$$\{ \epsilon \}$$

First(B) = $\{ \epsilon \}$
First(X) = $\{ \epsilon, \},] \}$
First(Y) = $\{ \epsilon, \},] \}$
First(S) = $\{ (, [\}) \}$

reduce-reduce conflict Both A and B has]/) in their follow sets

Follow(S) =
$$\{\$\}$$

Follow(X) = $\{\$\}$
Follow(Y) = $\{\$\}$
Follow(A) = $\{\]$, $\}$

 $Follow(B) = \{], \}$

The rules of each nonterminal have different first symbols $A \rightarrow \epsilon$ and $B \rightarrow \epsilon$ are from different nonterminals

	([)		\$
S	$S \rightarrow (X$	$S \rightarrow [Y]$			
X			$X \rightarrow A$	$X \rightarrow B$	
Y			$Y \rightarrow B$)	$Y \rightarrow A$	
Α			$A \rightarrow \varepsilon$	$A \rightarrow \epsilon$	
В			$B \rightarrow \epsilon$	$B \to \varepsilon$	

SLR Parser Family

* Consider grammar G

$$S \rightarrow A b c \mid B b d$$

$$A \rightarrow a$$

$$B \rightarrow a$$

\Box G is SLR(2)

- Lookahead two characters will resolve the conflict
- Follow₂(A) = $\{bc\}$, Follow₂(B) = $\{bd\}$
- Action[4, bc] = $A \rightarrow a$
- Action[4, bd] = $B \rightarrow a$

SLR Parser Family

Consider grammar G

$$S \rightarrow A b^{k-1}c \mid B b^{k-1}d$$

 $A \rightarrow a$
 $B \rightarrow a$

- \Box G is SLR(k) not SLR(k-1)
 - Need to lookahead k characters in the Follow set
 - Follow_{k-1}(A) = $\{b^{k-1}\}$, Follow_{k-1}(B) = $\{b^{k-1}\}$
 - Follow_k(A) = $\{b^{k-1}c\}$, Follow_k(B) = $\{b^{k-1}d\}$

SLR and **LR**

* Consider grammar G

$$S \rightarrow L = R$$

$$S \rightarrow R$$

$$R \rightarrow L$$

$$L \rightarrow R$$

$$L \rightarrow id$$

 $L \rightarrow id$

>	$R \to L \bullet I_5$								
1	<i>†</i>								
Ī		*	id	=	\$	S	L	R	
I		,	Iu	_	D	3	L	N	
l	0	7	9			1	2	6	
	1				Acc				
ĺ	2			$R \rightarrow L$	R→L				
ı				3					
	3	7	9				5	4	
	4				S→L=R				
l	5			R→L	R→L				
	6				S→R				
	7	7	9				5	8	
	8			R→*L	R→*L				
	9			L→id	L→id				

 $S \rightarrow L = R \bullet$

SLR and **LR**

- Grammar G has shift-reduce conflict
 - ☐ Not helpful by looking further ahead the Follow set
 - Follow_k(L) = {\$, =id\$, =*id\$, =**id\$, ..., =*...*id\$, =*...*id, =*...*}
 - Follow_k(R) = Follow_k(L)
 - \Rightarrow This is not SLR(k)
 - o Further lookahead will not help with distinguishing Follow_k(R) from Follow_k(L)

SLR and **LR**

- * What is the problem?
 - ☐ Lookahead information is too crude
 - ☐ Need to distinguish
 - If L \rightarrow * R is from S \Rightarrow L = R \Rightarrow *R = R, then Follow(R) = {=, \$}
 - If $L \to R$ is from $S \Rightarrow R \Rightarrow L \Rightarrow R$, then Follow(R) = $\{\$\}$
- **Solution:**
 - \square Carry the specific lookahead information with the LR(0) item
 - \Box The item becomes LR(1) item
 - ☐ Use the lookahead symbol(s) with the item to identify the correct reduction rule to apply
- Canonical LR Parsing
 - \Box The parsing scheme based on LR(1) item

LR(1) Item

- ❖ LR(1) Item of a grammar G
 - \square [A $\rightarrow \alpha \bullet \beta$, a]
 - \square A $\rightarrow \alpha \bullet \beta$ is an LR(0) item
 - \square a is the lookahead symbol (a terminal in Follow(A))
 - \square [A $\rightarrow \alpha \bullet$, a] implies
 - $S \Rightarrow * \delta A \gamma \Rightarrow \delta \alpha \gamma$
 - a is in First(γ \$)
 - I.e., "a" follows A in a right sentential form
- ♦ When $[A \rightarrow \alpha \bullet, a]$ is in the state
 - \Rightarrow Reduction (same as SLR)
 - ☐ But only if "a" is seen in the input string
- ❖ Next, need to define Closure and Goto functions for LR(1) items

Building the Automata

- Changes to Closure(I)
 If A → α B β is in Closure(I) and B → γ is a production in G
 Then add B → γ to Closure(I)
 ⇒
 If [A → α B β, a] is in Closure(I) and B → γ is a production in G
 Then add [B → γ, c] to Closure(I)
 - For all $c, c \in First(\beta a)$
- Changes to Goto(I,X)
 - \square If $A \rightarrow \alpha \bullet X \beta$ is in I then $A \rightarrow \alpha X \bullet \beta$ is in Goto(I, X)
 - \Rightarrow
 - \square If $[A \rightarrow \alpha \bullet X \beta, a]$ is in I then $[A \rightarrow \alpha X \bullet \beta, a]$ is in Goto(I, X)
 - Simply carry the lookahead symbol over

Building the Action Table

- \bullet If state has item [A $\rightarrow \alpha \bullet$ a β , b]
 - ☐ Add the shift action to the Action table (same as before)
- \bullet If state has $[S' \to S_0 \bullet, \$]$
 - ☐ Add accept to Action table (same as before)
- \clubsuit If State I_i has item $[A \to \alpha \bullet, b]$
 - \square Action[S, b] = reduce using A $\rightarrow \alpha$
 - Not for all terminals in Follow(A)
 - Only for all terminals in the lookahead part of the item
- Goto table construction is the same as before

- ❖ The parsing algorithm is the same for the LR family
 - ☐ Only the table is different
- * LR is more powerful
 - \square An SLR(1) grammar is always an LR(1), but not vice versa
 - \Box LR(1)
 - Use one lookahead symbol in the item
 - \Box LR(k)
 - Use k lookahead symbols in the item
 - \square LR(2) grammar

$$S \rightarrow A b c \mid B b d$$

$$A \rightarrow a$$

$$B \rightarrow a$$

• SLR(2) also

reduce-reduce

conflict in LR(1)

SLR and LR

***** Example:

$$S \rightarrow (X \mid [Y])$$

$$X \rightarrow A) \mid B]$$

$$Y \rightarrow A \mid B$$

$$A \rightarrow \epsilon$$

$$B \rightarrow \epsilon$$

- \Box Not SLR(1)
- \Box Is LR(1)

- LR is more powerful than SLR
- But LR has a larger number of states
 - ☐ Higher space consuming
 - Common programming language has hundreds of states and hundreds of terminals
 - Approximately 100 X 100 table size
 - ☐ Can the number of states in LR be reduced?
 - Some states in LR are duplicated and can be merged

LALR

- ☐ LookAhead LR
- \square Try to merge states in LR(1) automata
- \Box When the core items in two LR(1) states are the same
 - \Rightarrow merge them

- Can merging states introduce conflicts?
 - ☐ Cannot introduce shift-reduce conflict
 - ☐ May introduce reduce-reduce conflict
- **A** Cannot introduce shift-reduce conflict?
 - ☐ Assume: two LR states I1, I2 are merged into an LALR state I
 - ☐ If conflict, I must have items
 - $[A \rightarrow \alpha \bullet, a]$ and $[B \rightarrow \beta \bullet a\delta, b]$
 - o In fact, α and β have to be the same, otherwise, they won't come to the same state
 - If they are from different states, they are different core items, cannot be merged into I
 - If I1 has $[A \to \alpha \bullet, a]$ and $[B \to \alpha \bullet b\delta, c]$ and I2 has $[A \to \alpha \bullet, d]$ and $[B \to \alpha \bullet b\delta, e]$
 - o To have a conflict, we should have b = d or b = a, shift-reduce conflicts were there in I1 and I2 already!

Introducing reduce-reduce conflict?

$$S \rightarrow aAd \mid bBd \mid bAe \mid aBe$$

 $A \rightarrow c \qquad B \rightarrow c$

Another LALR example

$$S \rightarrow CC$$

$$C \rightarrow cC$$

$$C \rightarrow d$$
First(C) = {c, d}
$$First(S) = {c, d}$$

$$Follow(S) = {\$}$$

$$Follow(C) = {c,d,\$}$$

- Delay error detection?
 - $S \rightarrow CC, C \rightarrow cC, C \rightarrow d$
 - Parse string ccd\$
 - ☐ LR stack
 - 0c3c3d5, seeing \$ ⇒ reduce using C → d only if seeing {c, d}, not \$
 ⇒ error

- Delay error detection?
 - ☐ LALR stack
 - 0c3c3d5, seeing $\$ \Rightarrow$ reduce using $C \rightarrow d$, goto 4 (0c3c3C4)
 - 0c3c3C4, seeing \Rightarrow Reduce by C \rightarrow cC, goto 4 (0c3C4)
 - 0c3C4, seeing $\$ \Rightarrow$ Reduce by C \rightarrow cC, goto 2 (0C2)
 - 0C2, seeing $\$ \Rightarrow$ error, only allow seeing c, d, C

- ***** LALR
 - ☐ Can also be constructed using SLR procedure
 - ☐ But add lookahead symbols
- ❖ SLR, LR, LALR
 - ☐ LR is most powerful and SLR is least powerful
 - \Box LALR(1) is most commonly used
 - All reasonable languages are LALR(1)
 - Has the same number of states as SLR(1)

Grammar Class Hierarchy

Bottom-up Parsing -- Summary

- Read textbook Sections 4.5-4.6
- Bottom-up Parsing
 - ☐ Handle and viable prefix
 - ☐ SLR parsing
 - SLR(1) = LR(0)
 - **■** SLR(k)
 - ☐ Canonical LR Parsing
 - LR(1)
 - LR(k)
 - ☐ LALR