МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа физики и исследований им. Ландау

$\mathbf{\Lambda}$	Татематическая	статистика	Конспект
- 1 1	татематическая	Статистика.	NOHCHEKT

Автор:

Яренков Александр Владимирович

Долгопрудный 27 мая 2024 г.

Definitions

- Генеральная совокупность то, что дробится на выборки (т.к. всех данных слишком много) Выборка должна из себя представлять МОДЕЛЬ генеральной совокупности. Должна быть моделью. Тогда выборка называется РЕПРЕЗЕНТАТИВНОЙ.
- Простая случайная выборка (simple random sample (SRS))
- Стратифицированная выборка разбиваем ген совокупность на РАЗЛИЧНЫЕ по своей природе страты (группы)
- Групповая выборка разбиваем ген совокупность на ПОХОЖИЕ по своей природе страты (группы)
 - Т.о. чем меньше выборка, тем больше отклонение среднего выборки от среднего генеральной совокупности
- SE Standart Error стандартная ошибка генеральной совокупности
- ullet ESE Estimate Standart Error стандартная ошибка выборки делённая на \sqrt{n} , где n количество наблюдений в выборке
- Выборочное среднее среднее по выборке
- Распределение выборочных средних распределение, показывающее какие значения принимает среднее значение выборки из генеральной совокупности при многократном случайном выборе разных выборок. Согласно ЦПТ при количестве выборок стремящемся к бесконечности, мы получим нормальное распределение со средним значением генеральной совокупности и дисперсией в \sqrt{n} раз меньше дисперсии генеральной совокупности
- Гистограмма работает с численными данными, а столбчатая диаграмма с категориальными
- Число x является а-квантилем набора данных <=> $(a \cdot 100\%$ данных <= x) И $(100\% a \cdot 100\%$ данных >= x) Т.о. а квантиль, а * 100% перцентиль
- Ковариация мера совместной изменчивости двух величин
- Коэффициент корреляции Пирсона мера ЛИНЕЙНОЙ зависимости между двумя величинами. Поэтому в случае нелинейных зависимостей его применять не стоит. Также его не стоит применять при наличии выбросов, т.к. "под капотом" он считается как мат ожидание, а значит чувствителен к выбросам. Этот коэффициент помогает узнать связанность величин, но не помогает узнать что является следствием другого. Возможно, вообще связанность данных двух факторов связана с наличием некоего третьего фактора, влияющего на исходные два. То есть он лишь указывает на наличие ЛИНЕЙНОЙ зависимости, но не утверждает что она обязательно есть.
- Бинаризация преобразование числовой переменной в категориальную методом разделения на интервалы
- Нулевая гипотеза (H_0) гипотеза об отсутствии различий/изменений
- \bullet Альтернативная гипотеза (H_1) гипотеза о наличии различий/изменений
- Ошибка первого рода отклонение верной нулевой гипотезы. Вероятность совершить эту ошибку $-\alpha$. Или p-value максимально допустимая вероятность совершить ошибку первого рода
- Ошибка второго рода принятие неверной нулевой гипотезы. Вероятность совершить эту ошибку $-\beta$. Мощность статистического теста равна $1-\beta$.

Статистические тесты

Z-test

УСЛОВИЯ ПРИМЕНИМОСТИ: нормальное распределение случайной величины. знание дисперсии генеральной совокупности

Величина $z=\frac{x-Ex}{\sigma}$, где x - среднее выборки, Ex - среднее генеральной совокупности, σ - стандартная ошибка среднего, называется z-статистика. Статистика здесь в смысле некоторого числа, получаемого по данной формуле. Расчёт z-статистики и определение по ней возможность отклонить нулевую гипотезу и есть Z-тест. Например, если z=3, то это означает что среднее выборки находится на расстоянии 3σ от среднего генеральной совокупности. При значении $\alpha=0.05$ это означает, что у нас достаточно оснований отклонить нулевую гипотезу, так как это значение α это всё равно что 1.96σ

Двухпропорционный Z-test

 $H_0: p_1 = p_2$, где p_1 и p_2 - пропорции/доли УСЛОВИЯ ПРИМЕНИМОСТИ: ...

Рассчитываем значение $z=\frac{(p_1-p_2)}{\sqrt{p(1-p)(1/n_1+1/n_2)}},$ где n_1 - количество данных в выборке $1,\ n_2$ - количество данных в выборке 2, а $p=\frac{p_1n_1+p_2n_2}{n_1+n_2}$

T-test

Т-тесты хороши тем, что для их применения нам не нужно знать дисперсию по генеральной совокупности!

0.0.1 Одновыборочный

УСЛОВИЯ ПРИМЕНИМОСТИ: нормальное распределение выборочных средних

$$H_0 :< x >= \mu$$
.

Рассчитываем значение $t=\frac{\langle x \rangle - \mu}{ESE}$. Распределение имеет n-1 степеней свободы (количество независимых случайных величин). При $n \to \infty$ распределение Стьюдента стремится к стандартному нормальному распределению. При n>30 очень близко к нормальному. Пик у него ниже, а хвосты, соответственно выше.

0.0.2 двухвыборочный

УСЛОВИЯ ПРИМЕНИМОСТИ: независимость средних по выборкам И нормальные распределения выборочных средних

$$H_0:< x_1>=\mu_1< x_2>=\mu_2$$
 или $< x_1>-< x_2>=\mu_1-\mu_2$. Рассчитываем значение $t=\frac{(< x_1>-< x_2>)-(\mu_1-\mu_2)}{ESE}$.

Если распределение не является нормальным, то можно подробить генеральную совокупность на выборки случайным образом. И тогда в этих выборках, возможно, будет приближённо наблюдаться нормальное распределение.

U-test Манна-Уитни

УСЛОВИЯ ПРИМЕНИМОСТИ: Независимость выборок. В каждой из выборок должно быть не менее 3 значений признака. Либо в одной выборке 2 значения, но во второй тогда не менее 5.

Для использования u-test'a нужно:

- 1. Составить единый ранжированный по возрастанию ряд из двух выборок $(i \in \{1, 2\})$. Если есть одинаковые числа, то в качестве ранга берётся среднее арифметическое рангов одинаковых чисел.
- 2. Считаем следующие величины: n_i количество наблюдений в выборке i. R_i сумма рангов в выборке i
- 3. $U = \min\{n_1 n_2 + \frac{n_1(n_1+1)}{2} R_1, \ n_1 n_2 + \frac{n_2(n_2+1)}{2} R_2\}$

Далее по таблице для избранного уровня статистической значимости определить критическое значение критерия для данных выборок 1 и 2. Если наше значение U меньше, чем критическое, то есть статистически значимая разница, иначе - нет.

КРИТЕРИЙ СЛАБО ЧУВСТВИТЕЛЕН К ВЫБРОСАМ! ВСЕ ПРЕДЫДУЩИЕ КРИТЕРИИ СИЛЬНО ЧУВСТВИТЕЛЬНЫ К ВЫБРОСАМ

Дисперсионный анализ. F-test

В отличие от предыдущих тестов, дисперсионный анализ позволяет сравнивать 3 и более выборок. Все предыдущие же работали либо с одной выборкой, либо с двумя.

Пусть N - количество выборок. < x > - среднее по всем выборкам (по сути по генеральной совокупности), $< x_i >$ - среднее по $i_{\text{той}}$ выборке. n_i - количество элементов в $i_{\text{той}}$ выборке. < x >=

$$\sum_{j=i}^{N} \langle x_i \rangle n = \sum_{i=1}^{N} n_i$$

$$SST($$
 Squared Sum Totals (полная сумма квадратов $))=\sum_{j=1}^{n}\left(x_{j}-< x>\right) ^{2}$

SSW(Squared Sum Within (Полная сумма квадратов внутри группы $)) = \sum_{i=1}^{N} \sum_{j=1}^{n_i} (x_j - \langle x_i \rangle)^2$

$$SSB((\Pi$$
олная сумма квадратов межгрупповая)) = $\sum_{i=1}^{N} \left(< x > - < x_i > \right)^2$

SST = SSW + SSB. Если SSW > SSB, то группы в целом одинаковые и бОльшая часть имеющейся дисперсии - это дисперсия внутри групп. Если же SSW < SSB, то группы в целом разные и бОльшая часть дисперсии - это дисперсия между группами.

F-статистика будет равна:

$$F = \frac{\frac{SSB}{N-1}}{\frac{SSW}{n-N}} = \frac{\frac{1}{N-1} \sum_{i=1}^{N} (\langle x \rangle - \langle x_i \rangle)^2}{\frac{1}{n-N} \sum_{i=1}^{N} \sum_{j=1}^{n_i} (x_j - \langle x_i \rangle)^2}$$

где N-1 - число степеней свободы для SSB, n-N - число степеней свободы для SSW.

Из формулы видно, что $F|_{SSB\to 0}\to 0$. Это означает, что если разница между группами очень мала, то есть группы одинаковые, то есть будет утверждаться H_0 , то значение F-статистики очень мало.

Также $F|_{SSW\to 0}\to \infty$. Это означает, что если разница внутри групп очень мала, то есть группы сами по себе разные, то есть будет отрицаться H_0 , то значение F-статистики будет большим

ANOVA

ANOVA = ANalysis Of VAriances - дисперсионный анализ

УСЛОВИЯ ПРИМЕНИМОСТИ: Нормальность распределения в группах и гомогенность (примерное равенство) дисперсий всех групп.

Эффект множественных сравнений

Если мы подтвердим отвержение H_0 , то узнаем что хотя бы 2 средних отличаются друг от друга. Но какие? Можно начать сравнивать попарно. Но если групп больше чем 2, то и сравнений мы будем проводить гораздо больше (C_n^2) . А значит вероятность получить большое р-значение высока.

 $1-(1-\alpha)^{(C_n^2)}$ - вероятность того, что хотя бы одно наблюдение окажется неверным. При $n\to\infty$ эта вероятность стремится к 1.

Как это исправить?

Чтобы это исправить можно сделать поправку Бонферрони: поделить уровень значимости на число сравнений C_n^2 . При n=2 мы будем делить на единицу, так что в предельном случае всё сохраняется. Но тогда допустимую ошибку первого рода мы делаем сильно низкой.

Поэтому могут использовать Критерий Тьюки со статистикой $\frac{\langle x_i \rangle - \langle x_j \rangle}{\sqrt{\frac{SSW}{2}(\frac{1}{n_i} + \frac{1}{n_j})}}$ для определения статистической значимости различия средних по выборкам i и j.

Двухфакторный ANOVA

При наличии нескольких факторов, каждый из них может по-разному влиять на дисперсию между группами. Также есть вероятность, что только наличие двух факторов вместе взятых, и никак не по отдельности, может оказать влияние на дисперсии между группами. $SST = SSW + SSB_{\text{factor A}} + SSB_{\text{factor B}} + SSB_{\text{factor B}}$.

Далее применяем F-test.