Comparisons Among Several Samples

KRUSKAL-WALLIS "NONPARAMETRIC ANOVA" WELCH'S ANOVA

Rank-Sum Test: Review

Rank-Sum Test: Discussion and Assumptions

- No distributional assumptions and resistant to outliers
- When t-test assumptions are met, the rank-sum test performs about 95.49% as well
- Performs arbitrarily better if the t-test assumptions are not (approximately) met
- Works well with ordinal data

(Realistically required for t-tools)

(NOMINAL: order is arbitrary. ORDINAL: order matters. INTERVAL: subtraction is meaningful. RATIO: multiplication is meaningful)

Works with censored values

(Censored means that the actual value was too large/small to

be accurately recorded)

- It still requires some assumptions:
 - 1. All observations are independent
 - 2. The Y values are ordinal

59 patients with arthritis who participated in a clinical trial were assigned to two groups, active and placebo. The response status: (excellent=5, good=4, moderate=3, fair=2, poor=1)

of each patient was recorded.

Rank-Sum Test: Hypotheses

For the rank-sum test, our null hypothesis is in terms of **DISTRIBUTIONS** instead of means

 H_0 : The <u>DISTRIBUTION</u> of the "new" method scores is the same as the <u>DISTRIBUTION</u> of the "traditional" method scores

The Alternative Hypotheses:

 H_A : The <u>DISTRIBUTION</u> of the "new" method scores is different from the <u>DISTRIBUTION</u> of the (<u>Two SIDED</u>) "traditional" method scores

 H_A : The <u>DISTRIBUTION</u> of the "new" method scores is <u>larger than</u> the <u>DISTRIBUTION</u> of the <u>(ONE SIDED)</u> "traditional" method scores

Note: "larger than" can be interpreted as "systematically higher than" in the sense that the probability of getting any value from one distribution is larger than for the other distribution

Kruskal-Wallis Test

Kruskal-Wallis test

- When there are/is...
 - extreme values/outliers
 - Small or very unequal sample sizes + lack of normality
 - strong evidence of unequal variances between groups

... a nonparametric version of ANOVA is preferable

Though there are various tests for detecting unequal variances, it is best practice to evaluate this assumption visually

Kruskal-Wallis test: Assumptions

- Resistant to outliers
- Works well with ORDINAL data (this is the main application in practice)

(NOMINAL: order is arbitrary. ORDINAL: order matters. INTERVAL: subtraction is meaningful. RATIO: multiplication is meaningful)

Can work with censored values

(Censored means that the actual value was too large/small to be accurately recorded)

- It still requires some assumptions:
 - 1. All observations are independent
 - 2. The groups are independent
 - 3. The Y values are ordinal
- •Under these assumptions, we can perform the following hypothesis tests

Kruskal-Wallis test: Hypotheses

For the Kruskal-Wallis test, the null hypothesis is in terms of **DISTRIBUTIONS** instead of means

 H_0 : The **DISTRIBUTION** of the groups are all the same

Under the null, we can immediately replace the observations with ranks from 1, ..., n

(Here,
$$n = n_1 + n_2 + \cdots + n_I$$
)

The sum of the ranks for each of the I groups divided by n_i is a natural test statistic

Like the rank-sum test, the alternative hypothesis is a bit nuanced

Kruskal-Wallis test: P-values

For the Kruskal-Wallis test, the null hypothesis is in terms of **DISTRIBUTIONS** instead of means

 H_0 : The <u>DISTRIBUTION</u> of the groups are all the same

 H_A : The <u>DISTRIBUTIONS</u> of the groups are <u>not</u> all the same

There are two main ways in which p-values are commonly reported:

- A normal approximation (which actually goes by the name of a 'Chi-Squared' distribution)
 - (We will return to what the 'Chi-Squared' distribution is next semester)
- An exact p-value
 - (The actual sampling distribution of the ranks is every combination of assigning observations to the groups)

Kruskal-Wallis test: Spock data

Initial Seed

(Normal approximation: Requires that $n_i > 5$ for each i)

56388143

PROC NPARIWAY DATA = spock WILCOXON;			
CLASS judge;	Monte Carlo Estimate for the	Monte Carlo Estimate for the Exact Test	
VAR percFemale;	Pr >= Chi-Square		
EXACT WILCOXON / MC;	Estimate	0.0003	
RUN;	99% Lower Conf Limit	<.0001	
	99% Upper Conf Limit	0.0007	
	Number of Samples	10000	

(Approximates the exact distribution with 10000 re-randomizations)

Kruskal-Wallis test: P-values

If we add the additional assumption that the **SHAPE OF THE DISTRIBUTIONS** are the same, then..

 H_0 : The <u>MEDIANS</u> of the groups are all the same

 H_A : The <u>MEDIANS</u> of the groups are <u>not</u> all the same

Now, if you reject H_0 , you can conclude that at least two groups have different medians

Welch's T-Tools

Creativity Study: Reminder

- \rightarrow Population mean: μ_I
- \rightarrow Population sd: σ_I
- \rightarrow Population mean: μ_E
- \rightarrow Population sd: σ_E
- •We additionally need to know/estimate the standard deviation of $ar{Y}_I ar{Y}_E$
- There are two ways mentioned in the book
 - Pooled SD
 - Welch's SD
- •To create the pooled SD, we need to assume that $\sigma_I = \sigma_E$
- •Then, we can form an estimate of this common standard deviation via

•
$$s_p = \sqrt{\frac{(n_I - 1) s_I^2 + (n_E - 1) s_E^2}{n_I + n_E - 2}}$$

•
$$SE(\bar{Y}_I - \bar{Y}_E) = \sqrt{\frac{\sigma_I^2}{n_I} + \frac{\sigma_E^2}{n_E}} \leftrightarrow SE(\bar{Y}_I - \bar{Y}_E) = s_p \sqrt{\frac{1}{n_I} + \frac{1}{n_E}}$$

What if this assumption isn't true?

Welch's t-Test

The only differences between Welch's t-Test and the "pooled" t-test are:

- The standard error $(SE(\bar{Y}_I \bar{Y}_E))$
- The degrees of freedom (df)

(The new degrees of freedom are formed via a Satterthwaite approximation)

Luckily, we already know how to get the output from a Welch's t-Test: PROC TTEST

Welch's ANOVA

Welch's ANOVA

Just like with Welch's t-test, we can test the hypothesis

$$H_0: \mu, \mu, ..., \mu$$

 $H_A: \mu_S, \mu_A, \mu_B, ..., \mu_F$

without the assumption of equal variances:

```
PROC GLM DATA = spock;
    CLASS judge;
    MODEL percFemale = judge;
    MEANS judge / WELCH;
RUN;
```

Welch's ANOVA for percFemale				
Source	DF	F Value	Pr > F	
judge	6.0000	7.49	0.0031	
Error	9.9246			

Level of judge		percFemale		
	N	Mean	Std Dev	
A	5	34.1200000	11.9418173	
В	6	33.6166667	6.5822235	
С	9	29.1000000	4.5929293	
D	2	27.0000000	3.8183766	
E	6	26.9666667	9.0101424	
F	9	26.8000000	5.9688776	
S	9	14.6222222	5.0387939	

Additional ANOVA assumption checks

Additional ANOVA assumption checks

```
ods graphics on;
PROC GLM DATA = spock plot=diagnostics;
    CLASS judge;
    MODEL percFemale = judge;
RUN;
ods graphics off;
```


(This is only some of the output)

```
PROC GLM DATA = spock;
    CLASS judge;
    MODEL percFemale = judge;
    MEANS judge / HOVTEST;
RUN;
```

 H_0 : Equal variances

 H_A : At least two variances unequal

Levene's Test for Homogeneity of percFemale Variand ANOVA of Squared Deviations from Group Means					e
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
judge	5	39361.8	7872.4	2.30	0.0641
Error	38	130130	3424.5		

(Note: it considered best practice to use visual checks for the variance assumption instead of hypothesis tests)