Cycles de vie classiques (2)

PAE: 1er avis estudiantin 2017

Cycle classique	Nombre de votes	Justifications
Cascade	7	Analyse en 1 fois, sans pouvoir y revenir; note non rejouable
Prototyping	0	
Modèle en Y	0	Avis prof : importance de la conception
Modèle en V	2	Test fonctionnels prévus
Spirale	13	Contact avec le client; livrables réguliers

Jusqu'à présent, théoriquement

«Points de synchronisation » : « attente » qu'une étape soit terminée

Pratiquement

2 points de contact avec le client

A l'intérieur de ces points, pas ou peu d'interactions avec

le client

Un pas plus loin...

Parties de produit livrées plus tôt + feedback utilisateur Travail en parallèle possible vers ...

les modèles à incréments

Processus Unifié (Unified Process)

Unifié: pourquoi?

- Années 90, une 50aine de méthodes orientées Objet
- Pas de consensus → recherches d'un langage commun :
 - UML
- UML = ensemble d'outils normalisés ; MAIS besoin d'une méthode
- Processus Unifié (PU Unified Process UP) :
 - Méthode
 - Couverture complète du SDLC pour les développements orientés Objet
 - Lien avec UML

PU méthode

- PU est piloté par les cas d'utilisation
- PU est centré sur l'architecture logicielle
- PU est à base de composants
- •PU est une méthode de développement de logiciels itérative et incrémentale

PU piloté par les cas d'utilisation

Modèle de tests

PU centré sur l'architecture

- Architecte dessine une image complète d'un bâtiment avant le début de la construction
- Image complète du système avant son implémentation

PU itératif et incrémental

• L'idée de base :

- Développer un système au travers de cycles répétés (itération) et en petites avancées (incrément)
- Chaque itération peut reprendre plusieurs activités

 (activités qui vont des spécifications jusqu'à la vérification
 (/validation))
- Chaque incrément va ajouter de nouvelles fonctionnalités.
- Avantage majeur :
 - On peut tirer avantage de ce que l'on a appris durant l'itération précédente
 - Réduction des risques

PU itératif et incrémental

- Réduire les risques :
 - Prendre en charge très tôt dans le processus de développement, les risques importants
 - Définir une architecture qui guidera le développement logiciel
 - Fournir une infrastructure préfabriquée (framework) pour prendre en compte non seulement les exigences de base mais aussi les changements futurs
 - Développer progressivement le système, de façon incrémentale.

Itératif

Itératif: Pros

- Gestion précoce des risques : limitation des coûts, en termes de risques, à une itération.
- Progrès visibles rapidement
- Tests et intégration se font de manière « continue »
- Avancées évaluées au fur et à mesure de l'implémentation
- Gestion de la complexité et rythme de développement soutenu grâce à des objectifs clairs et à CT
- Feed-back rapide des utilisateurs besoin des utilisateurs se dév. au cours des itérations successives

Itératif: Cons

- Définition de l'itération : demande du temps, risqué
- Lourd à mettre en œuvre

Inadéquat pour les petits projets

PU: 4 phases

- •La création (inception) : la vision du projet est encore approximative. On y élaborera surtout les cas d'utilisation.
- L'élaboration : (la vision y est plus élaborée. Le noyau du projet sera implémenté, les risques élevés résolus. La plupart des besoins seront identifiés.
- La construction : (implémentation des éléments de risque et complexité plus faibles. Préparation du déploiement.)
- La transition : **B-tests et déploiement.**

Phase 1: création

- Développer la vision du projet
- Définir la portée du projet
- Réduire les risques majeurs
- S'assurer de la viabilité commerciale

• 1 seule phase - pas d'itération

Phase 2: élaboration

- Développer l'architecture de référence
- Avoir compris l'essentiel des besoins
- Réduire les risques élevés (risques de moindre gravité qu'en phase de création)
- Peut avoir plusieurs <u>itérations</u>

Phase 3: construction

- Développer le système
- Réduire les risques
- Vérifier l'utilisabilité du produit
- Peut avoir plusieurs <u>itérations</u>

Phase 4: transition

S'assurer que le produit est livrable

- Déployer
- Former les utilisateurs
- Mettre en production
- Peut avoir plusieurs itérations

PU: cycle de vie

Temps

Besoin - analyse - conception - implémentation - tests

cascade

PU: cycle de vie & management

Exercices

Exercice 2 : dessinez le cycle de vie employé, <u>à votre</u> <u>avis</u>, dans le cadre du cours de PAE.

Livrable	Date Livraison
Rapport d'analyse initiale	Début S3
Implémentation architecture & analyse uc	Fin S5
Revue du code / Démo d'avancement	S7-S9
Implémentation du reste	Fin S10
Implémentation demande changement	Début S12
Rapport final & démo	S12

ORGA entreprises 26 12-03-17

PAE: le SVYpirale

	t0	t1	t2	t2'	t2''	t3	t3'	t4	t5	
	S3	S5		S7	S10		début S12	S12	S12	
	Spécifications									
***************************************	Analyse formelle	tormalla (uc) +	Analyse formelle (C)			New Analyse formelle			ion	
		Conception	Conception (C)			-			Validation	
		Codage (Connexion)	Codage	Codage	Codage		Codage			
		Vérification		Code review	Vérification		Vérification			
Output	Rapport d'analyse initiale	Implémentation architecture + rapport		Démonstration partielle	Implémentation du reste		Implémentation du changement	Rapport Final &	Démo	

de travail PAE: le SVYpirale Analyse Conception Implémentation Test In+1 In+2 Im Im+1 Itération I1 12 In t0 t2 t2' t2" t1 t3 t4 t3 t5 S12 S12 **S10** début S12 Spécifications Analyse New **Analyse** Analyse Analyse formelle (uc) + formelle formelle (C) Validation formelle corrections Conception Conception (C)

Besoin

Inception Elaboration

Codage

Vérification

Implémentation

du changement

Rapport Final &

Démo

Construction

Transition

Quantité

Est un PU, pas une cascade, ni Y ou V, ni spirale!

Codage

Vérification

du reste

Implémentation

Codage

Rapport

initiale

Output d'analyse

(Connexion)

Vérification

Implémentation

architecture +

rapport

Codage

Codage

Code review

partielle

Démonstration