S. Liechti, S. Leontsinis University of Zurich

Can be done with the same dataset, ignoring the previous parts

PHY451 Particle Physics I 30th May 2023

Introduction

- Example of the Drell-Yan process lepton pair production via quark-antiquark annihilation
- •4-momentum of lepton pair (LO)

• E =
$$(x_1+x_2)\sqrt{s/2}$$

•
$$p_z = (x_1 - x_2) \sqrt{s/2}$$

- $Q^2 = E^2 p_z^2 = x_1x_2s$
- •rapidity (y) definition: $x_1/x_2 = (E+p_z)/(E-p_z) = e^{2y}$
- $x_{1,2} = (Q/\sqrt{s}) e^{\pm y}$

For a given Q^2 , the rapidity relates the x_1 and x_2 of the two partons

Introduction

•In addition to the cross section

- What processes produce W:
 protons have more up's than downs -> assymmetry in W
- •measure W (lepton) charge asymmetry
- At LHC, being a pp collider, we expect to observe a W charge asymmetry
- •Cross-section asymmetry depends on the momentum fraction x of the partons
 - dependence on rapidity y of Q (W)
 - •for a given Q, rapidity relates the x₁ and x₂ of the two partons
- Difficult to reconstruct W rapidity
 - use lepton charge asymmetry
- Measure the W charge asymmetry in the phase-space
 - •muon $p_T > 30$ GeV and $|\eta| < 0.4$

W charge asymmetry measurement

- In case that Data / MC agreement is not good
 - •need to estimate the background in a data-driven method
- Use MC samples to validate our fit function
- Use
 - double Gaussian for signal
 - error function for background
 - combination of the above for data

Already discrepancy in peak height

QCD Peak: small # -> weighting gives it a

Fit results

W mass p

W charge asymmetry measurement - option 1

- •fit_sig = ROOT.TF1("fit_sig","gaus(0)+gaus(3)",0,150)
- •fit_sig.SetParameters(500,100,10,300,50,40)
- •fit_bkg = ROOT.TF1("fit_bkg","[0]*(TMath::Erf((x-[1])/[2])+1.)",0,150)
- •fit_bkg.SetParameters(10,60,-10)
- •fit_bkg_sig = ROOT.TF1("fit_bkg_sig","[0]*(TMath::Erf((x-[1])/[2])+1)+gaus(3)+gaus(6)",0,150)
- •sig.Fit(fit_sig) bkg.Fit(fit_bkg)
- •for i in range(9):
- if i==0:
 - fit_bkg_sig.SetParameter(i,fit_bkg.GetParameter(i))
- elif i<=2: ## we fix background parameters, but the normalization
 - fit_bkg_sig.FixParameter(i,fit_bkg.GetParameter(i))
- else:
 - fit_bkg_sig.SetParameter(i,fit_sig.GetParameter(i-3))

Be careful on the statistical uncertainty computation!

W charge asymmetry measurement - option 2

RooFit and extended maximum likelihood fits

- Measure asymmetry as the ratio of the difference to the sum of N(W+) and N(W-)
 - •since the W⁺ and W⁻ events are independent
 - •errors combined in quadrature

Extra:

- Task is to make the measurement for $|\eta| < 0.4$
- •In case you want and have time
 - •[O.O, O.4]
 - •[0.4, 0.8]

This is not flat; there is a trend

• [O.8, 1.5]

=> Then compare with theory or literature

- •[1.5, 1.8]
- •[1.8, 2.1]

backup

