Calcolatori Elettronici T Ing. Informatica

Traccia soluzione 19 Gennaio 2024

Dispositivi e segnali presenti nel sistema.

Dispositivi di memoria:

RAM 8000000h:FFFFFFFFh, 4 banchi da 512 MB EPROM_8 2000000h:207FFFFh, 4 banchi da 2 MB EPROM_512 0000000h:1FFFFFFh, 4 banchi da 128 MB

Porte di input, output e altri chip-select e/o segnali:

CS_INPUT_0 4000000h CS_INPUT_1 4000001h CS_FREEZE 4000002h

Sebbene indispensabile in un sistema reale, si omette la rete di avvio perché non strettamente necessaria per le specifiche finalità del problema in oggetto.

Segnali di decodifica di memorie, periferiche e segnali:

```
CS RAM 0
                           = BA31 \cdot BE0
            = BA31 \cdot BE0= BA31 \cdot BE1
CS RAM 1
CS RAM 2
                  = BA31 \cdot BE2
CS RAM 3
                          = BA31 \cdot BE3
CS INPUT 0 = BA31*\cdot BA30\cdot BE0
CS\_INPUT\_1 = BA31*\cdot BA30 \cdot BE1
CS FREEZE = BA31*\cdot BA30\cdot BE2
CS\_EPROM\_8\_0 = BA31*\cdot BA30*\cdot BA29\cdot BE0
CS\_EPROM\_8\_1 = BA31*\cdot BA30*\cdot BA29\cdot BE1
CS_EPROM_8_2 = BA31*·BA30*·BA29·BE2
CS_EPROM_8_3 = BA31*·BA30*·BA29·BE3
CS_EPROM_512_0 = BA31*·BA30*·BA29*·BE0
CS_EPROM_512_1 = BA31*·BA30*·BA29*·BE1
CS\_EPROM\_512\_2 = BA31*\cdot BA30*\cdot BA29*\cdot BE2
CS EPROM 512 3 = BA31*\cdot BA30*\cdot BA29*\cdot BE3
```

Nel sistema sono presenti due porte in input, INPUT_PORT_0 e INPUT PORT 1 dalle quali saranno eseguite solo letture contemporanee.

Il segnale di interrupt inviato al DLX risulta:

INT_DLX = INT_INPUT_1 INT_INPUT_0

Nel sistema è anche presente una porta in output attraverso la quale è necessario trasferire, quando possibile e in funzione di un segnale proveniente dall'esterno, il dato letto da INPUT_PORT_1 contemporaneamente all'esecuzione di tale operazione.

Al fine di poter eseguire un trasferimento verso la porta in output durante le letture dalle due porte in input, è necessario che:

- la porta in output sia pronta a eseguire un trasferimento
- sia asserito il segnale TRANSFER_OUT proveniente dall'esterno

Tuttavia, è necessario adottare una opportuna sincronizzazione al fine di generare due segnali **OUTPUT_READY** e **TRANSFER_OUT_ENABLED**, come mostrato nelle pagine successive, che consentono di condizionare il chip-select della porta in output.

I due segnali originali **TRANSFER_OUT** e **INT_OUTPUT** necessari per la finalità delineata in precedenza subiscono un doppio campionamento al fine di sintetizzare i due segnali **OUTPUT_READY** e **TRANSFER_OUT_ENABLED** come seque.

Il codice dell'interrupt handler risulta:

```
; R25=40000000h
0000000
             LHI R25,0x4000
00000004
              LBU R26,0x0002(R25)
                                   ; CS FREEZE (dummy read)
             LHI R27,0xB000
                              ; R27=B0000000h
00000008
             LHU R26,0x0000(R25); legge 16 bit da porte in input
000000C
00000010
                 R26,0x0000(R27) ; scrive 16 bit a B0000000h
              SH
00000014
              RFE
```

Interfacciamento RAM

Interfacciamento EPROM_512

Interfacciamento EPROM_8

