Atiyah-MacDonald: Modules Exercises

James Pagan

March 2024

Contents

1	Problem 1	2
2	Problem 2	2
3	Problem 3	2
4	Problem 4	3

1 Problem 1

Proof. Let the modular inverse of m (mod n) be \mathfrak{m}^{-1} . Then for all $\mathfrak{a},\mathfrak{b}\in\mathbb{Z}_{\mathfrak{n}}\otimes\mathbb{Z}_{\mathfrak{m}}$,

$$a \otimes b = mm^{-1}a \otimes b = m_{-1}a \otimes mb = m^{-1}a \otimes 0 = 0.$$

We conclude that $\mathbb{Z}_n \otimes \mathbb{Z}_m = 0$.

2 Problem 2

Proof. Consider the exact sequence

$$\mathfrak{a} \xrightarrow{i} A \xrightarrow{\pi} A / \mathfrak{a} \longrightarrow 0,$$

where i is the inclusion map and π is the canonical epimorphism. Tensoring with M, we find that

$$\mathfrak{a} \otimes_A M \xrightarrow{\mathfrak{i} \otimes_A 1} A \otimes_A M \xrightarrow{\pi \otimes_A 1} (A / \mathfrak{a}) \otimes_A M \longrightarrow 0$$

is an exact sequence. Observe that $A \otimes_A M \cong M$ by the mapping f(a,x) = ax; hence there exists a surjective mapping

$$M \xrightarrow{(\pi \otimes_A 1) \circ g} (A / \mathfrak{a}) \otimes_A M,$$

where $g(x) = 1 \otimes_A x$. It is easy to verify that the kernel of this homomorphism is all elements of the form $\mathfrak{a} \otimes_A x$ for all elements $\mathfrak{a} \in \mathfrak{a}$ — in other words, $\mathfrak{a}M$. Hence the First Isomorphism Theorem yields

$$M / \mathfrak{a}M \cong (A / \mathfrak{a}) \otimes_A M.$$

This completes the proof.

3 Problem 3

Proof. Let m be the sole maximal ideal of A. Realize that $M \otimes_A N = 0$ implies that

$$(A/\mathfrak{m})\otimes_A(M\otimes_AN)\otimes_A(A/\mathfrak{m})\,=\,0\implies M_{(A/\mathfrak{m})}\otimes_AN_{(A/\mathfrak{m})}\,=\,0.$$

However, $M_{(A/\mathfrak{m})}$ are vector spaces over the field A/\mathfrak{m} . Thus we have (probably)

$$0=dim\left(M_{(A/\mathfrak{m})}\otimes_A N_{(A/\mathfrak{m})}\right)=dim\,M_{(A/\mathfrak{m})}\times dim\,N_{(A/\mathfrak{m})}.$$

Thus one of $M_{(A/\mathfrak{m})}$ or $N_{A/\mathfrak{m}}$ must be zero. Without loss of generality, let $M_{(A/\mathfrak{m})}$ be zero; thus by exercise 2,

$$M_{(A/\mathfrak{m})}\,=\,0 \implies (A/\mathfrak{m})\otimes_A M\,=\,0 \implies M/\mathfrak{m} M\,=\,0.$$

Thus since M is finitely-generated, $M = \mathfrak{m}M$. By Nakayama's Lemma, we conclude M = 0. This completes the proof.

4 Problem 4

Proof. We utilize the following lemma. The proof is straightforward, omitted for brevity:

Lemma 1. Let $P_i \xrightarrow{f_i} Q_i$ be homomorphisms of A-modules. Then

$$\bigoplus_{i} P_{i} \xrightarrow{\bigoplus_{i} f_{i}} Q_{i}$$

is injective if and only if each f_i is injective.

We are ready to tackle the problem at hand. Let $N_1 \stackrel{f}{\longrightarrow} N_2$ be any monomorphism of A-modules. Then

$$\bigoplus_{i} M_{i} \text{ is flat } \iff N_{1} \otimes \bigoplus_{i} M_{i} \stackrel{f \otimes \sum_{i} 1_{i}}{\longrightarrow} N_{2} \otimes \bigoplus_{i} N_{i} \text{ is injective }$$

$$\iff \bigoplus_{i} (N_{1} \otimes M_{i}) \stackrel{i}{\longrightarrow} \bigoplus_{i} (N_{2} \otimes M_{i}) \text{ is injective }$$

$$\iff N_{1} \otimes M_{i} \stackrel{f \otimes 1_{i}}{\longrightarrow} N_{2} \otimes M_{i} \text{ is injective for each } i$$

$$\iff M_{i} \text{ is flat for each } i.$$

This completes the proof. Hence, all free modules are flat.