Optimization for Data Science September 20, 2019

- (6 POINTS) Describe in depth the stochastic variance reduced gradient methods.
- 2. (7 POINTS) Describe in depth the Frank-Wolfe method and its main variants.
- 3. (8 POINTS) Given the following problem:

$$\min_{x \in \Delta} \frac{1}{2} x^{\top} Q x + c^{\top} x,$$

with $\Delta = \{x \in \mathbb{R}^n : e^\top x = 1, \ x \ge 0\}$ and $Q \in \mathbb{R}^{n \times n}$ positive definite matrix. Calculate the computational cost of performing the exact line search at a point $x_k \in \Delta$ when using the Pairwise Frank-Wolfe direction (assume that the gradient is given).

- 4. (7 POINTS) Consider the Boosting problem and explain PROs and CONs of using the Gradient method for solving it and calculate the gradient at a point w_k . Suggest an alternative solution method (please motivate the answer).
- 5. (4 POINTS) Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable on \mathbb{R}^n and bounded from below. Let $\{x_k\}$ be an infinite sequence such that for all k we have

(a)
$$\nabla f(x_k)^\top d_k < 0;$$

(b)
$$f(x_{k+1}) = f(x_k + \alpha_k d_k) \le f(x_k) + \gamma \alpha_k \nabla f(x_k)^\top d_k$$
 with $\gamma \in (0, 1)$;

(c) there exists a value $\mu > 0$ such that

$$\alpha_k \ge \mu \frac{|\nabla f(x_k)^\top d_k|}{\|d_k\|^2}.$$

Prove that

$$\sum_{k=0}^{\infty} \left(\frac{\nabla f(x_k)^{\top} d_k}{\|d_k\|} \right)^2 < \infty.$$