Mécanique Quantique

Brandon LIN

November 16, 2023

Contents

Ondes et Particules, Fonction d'onde ______ Page 3_____

	1.1	Introduction Pourquoi Faire — 3 • Phénomène d'interférence — 3 • Électrons : Particule ou onde ? — 5	3
	1.2	Fonction d'onde, Statistiques	7
	1.2	Définitions — 7 • Condition de normalisation — 8 • Produit scalaire - Notation de Dirac — 8 statistiques — 9 • Distribution Gaussienne — 10 • Distribution de Dirac — 11 • Ondes de de • Principe de superposition — 12	8 • Prédiction
Chapter 2		Représentation en position et en impulsion, Opérateurs	_ Page 13
	2.1	Transformée de Fourier Transformée de Fourier en impulsion — 13 • Égalité de Parseval-Plancherel — 13 • Transformet dérivation — 14 • Exemples — 14	13 née de Fourier
	2.2	Fonction d'onde en implusion Définition — 16 • Mesure de l'impulsion — 16 • Valeurs moyennes de grandeurs dépendant de 16	16 l'impulsion —
	2.3	Opérateur impulsion 1 dimension — 17 • 3 dimension — 18 • Cas d'ondes de de Broglie — 18 • Notation de l Commutateur — 19	17 Dirac — 18 •
	2.4	Principe de correspondance Relation entre la position et l'impulsion — 19 • Principe de correspondance — 19 • Application — 20	19 en mécanique
Chapter 3		Relation de Heisenberg	_ Page 21
	3.1	Relation d'incertitude de Heisenberg (Inégalité spectrale) Inégalité spectrale — 21 • Remarques — 21	21
	3.2	Régime classique et quantique Exemple macroscopique — 22 • Exemple microscopique — 22	22
	3.3	Stabilité des atomes	23
	3.4	Relation de Heisenberg temps-énergie	24
Chapter 4		Mécanique ondulatoire	_ Page 25
	4.1	Équation de Schrödinger	26
		Forme générale — 26 • Propriétés — 27 • Équation de Schrödinger indépendante du temps — 20 0 une équation de Schrödinger — 20 2 • Courant de probabilité — 20 2	28 • Résoudre
	4.2	Particule libre Parquet d'ondes de de Broglie — 31 • Quantité de mouvement moyenne — 31	31

Chapter 1

4.3	Barrière de potentiel	32
	Continuité de fonction d'onde — 32 • État d'une marche de potentiel — 32 • Densité de courant de probable 32	oilité
	-34 • Effet tunnel -35 • État d'une barrière de potentiel -35	
4.4	Puits de potentiel	36
	Puits de potentiel infini — $36 \bullet $ Puits de potentiel fini — $38 $	

Chapter 1

Ondes et Particules, Fonction d'onde

- Onde de de Broglie
 - La relation de Einstein-Planck et la relation de de Broglie
 - Estimation de l'ordre de grandeur de la longueur de de Broglie pour une particule microscopique ou macroscopique
- Fonction d'onde
 - Fonction d'onde (amplitude de probabilité), la relation avec la densité de probabilité
 - Condition de normalisation de la fonction d'onde
 - Phase additive de la fonction d'onde
 - Produit scalaire par la notation de Dirac, d'efinition d'orthogonalité
 - Statistique : valeur moyenne, incertitude de la position
 - Exemple : Gaussienne, état localisé, onde de Broglie (méthode de normalisation)

1.1 Introduction

1.1.1 Pourquoi Faire

Phénomènes expérimentaux imconpréhensible dans le cadre de la physique classique.

• Rayonnement du corp noir, Effet photo électrique : Énergie de rayonnement n'est pas continue, et l'énergie de photon :

$$E = hf = \hbar\omega$$

• Stabilité d'atom + spectre atomique : Niveau d'énergie atomique discrètes et transition entre deux niveaux ΔE :

$$\Delta E = h f$$

• Capacité thermique du solide (cristal)

1.1.2 Phénomène d'interférence

Interférence de Young : 2 fentes + 1 sonde (détecteur)

Proposition 1.1.1 Balles (particule)

Figure 1.1: Interférence de Young - Balles

Probabilité totale = sum de probabilité : Interférence de probabilité.

$$P_{12} = P_1 + P_2$$

Proposition 1.1.2 Onde d'eau (onde)

Figure 1.2: Interférence de Young - Onde d'eau

Interférence d'amplitude complexe, mais pas l'intensité.

$$\underline{h_{12}} = \underline{h_1} + \underline{h_2}, \ I_{12} \neq I_1 + I_2$$

Proposition 1.1.3 Électrons (objet microscopique)

Figure 1.3: Interférence de Young - Électrons

• Frange d'interférence d'électron et l'onde d'eau sont similaires, cela nous inspire de penser que les objets microscopiques interfèrent comme une onde classique.

Électrons \iff Ondes, Amplitude de probabilité \iff Amplitude complexe

Claim 1.1.1 Fonction d'onde

Les électrons sont décrit par une amplitude de probabilité. Nous l'appelons la fonction d'onde, notant ψ , qui est un nombre complex.

 Pour une onde classique, intensité = |amplitude complexe|², et en même temps, pour les électrons, probabilité = |amplitude de probabilité|².

$$P_1 = |\psi_1|^2$$
, $P_2 = |\psi_2|^2$, $P_{12} = |\psi_1 + \psi_2|^2$

• Nous conclusons que, pour les électrons, la fonction d'onde s'interferent.

1.1.3 Électrons : Particule ou onde ?

Proposition 1.1.4 Dualité onde-corpuscule

- Les électrons se propagent et interfèrent comme une onde classique
- Les électrons sont affichés sur écran comme des particules classiques.

Conclusion: Ni onde classique, ni particule classique

Theorem 1.1.1 Relation de Einstein-Planck

$$E = \hbar \omega, \overrightarrow{p} = \hbar \overrightarrow{k} \quad (E = pc)$$

Theorem 1.1.2 Relation de de Broglie

- Généralisation de photon à tous objets
- λ propriété ondulatoire, p propriété particulaire

$$\lambda = \frac{h}{p}$$

Application de la relation de de Broglie : SEM (Scanning electron microscope)

Question 1: Relation de de Broglie

Mais pourquoi les balles interfèrent pas ?

Réponse:

Dans l'expérience interférence de Young, l'interfrange vaut $\lambda D/a$. Rappelons que la longueur d'onde de de Broglie :

$$\lambda = \frac{h}{p} \text{ avec } p = mv$$

- Pour un électron, $m \approx 10^{-30} \text{kg}$, $v \approx 10^6 \text{m/s}$, $\lambda \approx 10^{-9} \text{m}$, observable.
- Pour un balle, $m\approx 10^{-2}{\rm kg},\, v\approx 500{\rm m/s},\, {\rm donc}\,\,\lambda\approx 10^{-34}{\rm m},\, {\rm non\text{-}observable}.$

1.2 Fonction d'onde, Statistiques

1.2.1 Définitions

Definition 1.2.1: Fonction d'onde

Toutes les propriétés mécaniques d'une particule peuvent être déterminées de façon probabilitste à partir d'une fonction de la position et du temps à valeurs complexes:

 $\psi(M,t)$ appelée fonction d'onde de la particule.

Différence fondamentale entre classique et quantique :

• Système classique : décrit par les grandeurs physiques

- Mécanique classique : \overrightarrow{r} , \overrightarrow{p}

– Thermodynamique : P, U, S, T, V, \dots

- Électromagnétisme : \overrightarrow{E} , \overrightarrow{B} , ρ , \overrightarrow{j} ,...

• Système quantique : décrit uniquement par la fonction d'onde $\psi(M,t)$

Definition 1.2.2: Densité de probabilité de présence

- Amplitude de probabilité : $\psi(M,t)$
- Densité de probabilité de présence au point M à l'instant t: $\rho(M,t)$

Proposition 1.2.1 Postulat : Relation entre l'amplitude et densité de probabilité de présence

Relation entre ψ et ρ

$$\rho(M,t) = |\psi(M,t)|^2 = \psi^*(M,t)\psi(M,t)$$

Note:-

 ψ est semblable à l'amplitude complexe A dans l'optique ondulatoire, et ρ semblable à I.

Proposition 1.2.2 Probabilité de trouver la particule dans un volume élémentaire

• Probabilité de trouver la particule dans $\mathrm{d}V_M$ à t :

$$dP_{M,t,dV_m} = \rho(M,t) \times dV_M$$

• Probabilité de trouver la particule dans V:

$$P_{t,V} = \iiint_V \rho(M,t) \mathrm{d}V_M = \iiint_V |\psi(M,t)|^2 \mathrm{d}V_M = \iiint_V \psi^*(M,t) \psi(M,t) \mathrm{d}V_M$$

• Cas unidimensionnel

$$\mathrm{d}P_{x,t,\mathrm{d}x} = \rho(x,t) \times \mathrm{d}x, \; P_{t,L} = \int_L \rho(x,t) \mathrm{d}x = \int_L |\psi(x,t)|^2 \mathrm{d}x$$

Proposition 1.2.3 Dimension de la fonction d'onde

• Dimension 3D : $\dim(\rho) = L^{-3}$, donc $\dim(\psi) = L^{-3/2}$.

Proof: P pas de dimension, et dim $V_M = L^3$

(2)

1.2.2 Condition de normalisation

Definition 1.2.3: Condition de normalisation

On peut toujours trouver l'électron qu'on cherche dans tout l'espace, donc, la fonction d'onde doit respecter la **condition de normalisation** :

• Cas général :

$$\iiint_{\text{tout l'espace}} \rho(M,t) \mathrm{d}V_M = \iiint_{\text{tout l'espace}} |\psi(M,t)|^2 \mathrm{d}V_M = \iiint_{\text{tout l'espace}} \psi^*(M,t) \psi(M,t) \mathrm{d}V_M = 1$$

• Cas unidimensionnel

$$\int_{-\infty}^{+\infty} |\psi(M,t)|^2 \mathrm{d}x = \int_{-\infty}^{+\infty} \psi_1^*(x,t) \psi_2(x,t) \mathrm{d}x = 1$$

(On va utiliser la notation de l'intégration du cas unidimensionnel)

Proposition 1.2.4 Espace Hilbertien

 $\psi \in \mathcal{L}^2$ (Espace Hilbertien, espace vectoriel complexe muni d'un produit scalaire hermitien), le module au carré de la fonction $\psi(x,t)$ doit être sommable

Proposition 1.2.5

Densité de probabilité inchangé en multipliant $e^{i\alpha}$ avec α constant.

$$\psi' = \psi \times \exp(i\alpha)$$
 avec $\alpha = C_{te} \implies |\psi'|^2 = |\psi|^2$

Definition 1.2.4: Phase de la fonction d'onde

Comme α ne change pas la probabilité de présence,

La phase de la fonction d'onde est définie à une constante additive près : α indépendant de M

1.2.3 Produit scalaire - Notation de Dirac

Definition 1.2.5: Notation de Dirac - Produit scalaire de fonction d'onde

Produit scalaire (hermitien) s'écrit sous la notation de Dirac

$$\langle \psi_1 | \psi_2 \rangle = \int_{-\infty}^{+\infty} \psi_1^*(M, t) \psi_2(M, t) dV_M$$

Norme d'une fonction d'onde :

$$\|\psi\|^2 = \langle \psi | \psi \rangle$$

Proposition 1.2.6 Notation de Dirac

Propriétés :

• $\langle \psi_1 | \psi_2 \rangle = \langle \psi_2 | \psi_1 \rangle^*$

• $\langle \psi_1 | \lambda \psi_2 \rangle = \lambda \langle \psi_1 | \psi_2 \rangle$

• $\langle \lambda \psi_1 | \psi_2 \rangle = \lambda^* \langle \psi_1 | \psi_2 \rangle$

• $\langle \psi_1 | \psi_2 + \psi_3 \rangle = \langle \psi_1 | \psi_2 \rangle + \langle \psi_1 | \psi_3 \rangle$

• $\langle \psi_1 + \psi_2 | \psi_3 \rangle = \langle \psi_1 | \psi_3 \rangle + \langle \psi_2 | \psi_3 \rangle$

Proposition 1.2.7 Condition de normalisation sous la notation de Dirac

$$\langle \psi | \psi \rangle = 1$$

Definition 1.2.6: Orthogonalité de la fonction d'onde

Orthogonalité : ψ_1 et ψ_2 sont **orthogonaux** si

$$\langle \psi_1 | \psi_2 \rangle = 0$$

Question 2

Si ψ est normalisé, écrire la relation vérifiée de α_1 et α_2 , la condition de normalisation de $\psi = \alpha_1 \psi_1 + \alpha_2 \psi_2$ su ψ_1 et ψ_2 sont normalisées et orthogonaux.

Proof:

$$\langle \psi | \psi \rangle = 1 \implies \int (\alpha_1 \psi_1 + \alpha_2 \psi_2)^* (\alpha_1 \psi_1 + \alpha_2 \psi_2) dV$$

$$\implies |\alpha_1|^2 \int \psi_1^* \psi_1 + \alpha_1^* \alpha_2 \int \psi_1^* \psi_2 + \alpha_2^* \alpha_1 \int \psi_2^* \psi_1 + |\alpha_2|^2 \int \psi_2^* \psi_2 = 1$$

$$\implies |\alpha_1|^2 \langle \psi_1 | \psi_1 \rangle + \alpha_1^* \alpha_2 \langle \psi_1^* \psi_2 \rangle + \alpha_2^* \alpha_1 \langle \psi_2 | \psi_1 \rangle + |\alpha_2|^2 \langle \psi_2 | \psi_1 \rangle = 1$$

$$\implies |\alpha_1|^2 + |\alpha_2|^2 = 1$$

1.2.4 Prédiction statistiques

Definition 1.2.7: Position moyenne

• 1D:

$$\left| \langle x \rangle = \int_{-\infty}^{+\infty} x \rho(x, t) \mathrm{d}x = \int_{-\infty}^{+\infty} \varphi^*(x, t) x \varphi(x, t) \mathrm{d}x \right|$$

• 3D:

$$\langle \overrightarrow{OM} \rangle = \iiint_{\text{Tout l'espace}} \psi^*(M,t) \; \overrightarrow{OM} \; \psi(M,t) \; \mathrm{d}V_M$$

Definition 1.2.8: Largeur de distribution

Dans le cas unidimensionnel, la largeur de distribution, notée Δx est définie par :

$$\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

La largeur Δx caractérise l'<u>étalement de la fonction d'onde</u> : Une faible largeur signifie que la particule est bien localisé.

 Δx peut être considéré comme une incertitude fondamentale.

Proposition 1.2.8 Grandeurs dépendant de la position

La valeur moyenne et la largeur statistique de la distribution de f(M,t) sont données par :

$$\langle f(M,t)\rangle = \iiint \psi^*(M,t)f(M,t)\psi(M,t)\mathrm{d}V_M, \quad \Delta f = \sqrt{\langle f^2(M,t)\rangle - \langle f(M,t)\rangle^2}$$

1.2.5 Distribution Gaussienne

Example 1.2.1 (Distribution Gaussienne 1D)

• Distribution de Gauss 1D :

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

vérifiant
$$\langle x \rangle = \mu, \, \langle x^2 \rangle = \sigma^2 + \mu^2, \, \Delta x = \sigma$$

• Fonction d'onde de forme gaussienne : Comme $|\psi_L(x)|^2$ est une distribution de Gauss 1D, on remplace σ par L et μ par x_0 ,

$$\psi_L(x) = \frac{1}{(2\pi L^2)^{1/4}} \exp\left(-\frac{(x-x_0)^2}{4L^2}\right)$$

vérifiant $\langle x \rangle = x_0$ et $\Delta x = L$

Figure 1.4: Fonction d'onde Gaussienne 1D

1.2.6 Distribution de Dirac

Example 1.2.2 (Distribution de Dirac)

À partir de l'exemple précédent, lorsque $L \to 0$, toutes les mesures de position donneront la même valeur x_0 . Donc,

Definition 1.2.9: Distribution de Dirac

On définie la **distribution de Dirac**, la limite d'une suite de fonction $(\psi_L)_{L\in\mathbb{R}}$:

$$\delta(x - x_0) = \lim_{L \to 0} \psi_L^2(x)$$

Proposition 1.2.9 Propriétés de la distribution de Dirac

• Normalisé :

$$\int_{-\infty}^{+\infty} \delta(x - x_0) \mathrm{d}x = 1$$

• Échantillonnage : Une particule qui se trouve dans l'état $\psi_{L\to 0}(x)$ a une position parfaitement déterminée.

$$\int_{-\infty}^{+\infty} f(x)\delta(x-x_0)\mathrm{d}x = f(x_0)$$

• Relation importante

$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \exp ikx \, dk$$

• Utilisé pour décrire une distribution ponctuelle.

État de la position défini : $\psi_{x_0} = \delta(x - x_0)$, $\langle x \rangle = x_0$, $\Delta x = 0$ (d'un point de vue physique).

1.2.7 Ondes de de Broglie

Pour une particule libre, la **Relation de de Broglie** relie λ et p et \overrightarrow{k} le vecteur d'onde, et l'énergie à la pulsation : grandeurs ne sont définies que pour une OPPM.

Definition 1.2.10: Ondes de de Broglie

Les ondes de de Broglie : états de quantité de mouvement bien définie :

$$\psi_{\overrightarrow{p}}(M,t) = A \exp[i(\overrightarrow{k}.\overrightarrow{OM} - \omega t)] = \boxed{A \exp\left[\frac{i}{\hbar}(\overrightarrow{p}.\overrightarrow{OM} - Et)\right]}$$

avec $\overrightarrow{p} = h \overrightarrow{k}$, $E = \hbar \omega$

Proposition 1.2.10 Normalisation de ondes de de Broglie

• Ils ne peuvent pas être normalisées dans tout l'espace :

$$\int_{-\infty}^{+\infty} |\psi_p(x,t)|^2 \mathrm{d}x = \int_{-\infty}^{+\infty} |A|^2 \mathrm{d}x \to \infty$$

• Méthodes de normalisation (1D) : Dans $x \in [-L_{\text{max}}/2, L_{\text{max}}/2]$,

$$\psi_p(x,t) = \frac{1}{\sqrt{L_{\max}}} \exp\left[\frac{i}{\hbar}(px - Et)\right]$$

• Méthodes de normalisation (3D) : Dans $x \in V_{\text{max}}$,

$$\psi_{\overrightarrow{p}}(x,t) = \frac{1}{\sqrt{V_{\max}}} \exp \left[\frac{i}{\hbar} (\overrightarrow{p}.\overrightarrow{OM} - Et) \right]$$

Proposition 1.2.11 Probabilité de présence

 $\forall M$, $|\psi_p(M,t)|^2 = |A|^2$ donc la densité de probabilité de présence est uniforme. Cela implique que la particule peut se trouver n'importe où dans la région considérée, avec la même probabilité.

1.2.8 Principe de superposition

Proposition 1.2.12 Énoncé de la principe de superposition

Si $\psi_1(M,t)$ et $\psi_2(M,t)$ deux fonctions d'ondes possibles pour le système considéré, alors :

 $\psi(M,t)=\alpha_1\psi_1(M,t)+\alpha_b\psi_2(M,t)$ est également une fonction d'onde possible pour le système.

Chapter 2

Représentation en position et en impulsion, Opérateurs

- Représentation en impulsion
 - Fonction d'onde en représentation en position et en impulsion, la transformation entre les deux
 - Exemple : état localisé, onde de de Broglie
 - La valeur moyenne de la position et impulsion dans la représentation en position et en impulsion,
 l'opérateur impulsion
 - La valeur moyenne d'impulsion par la notation de Dirac
 - Commutateur de la position et l'impulsion
- Principe de correspondance et exemples

2.1 Transformée de Fourier

2.1.1 Transformée de Fourier en impulsion

Definition 2.1.1: Transformée de Fourier en implusion

Pour une fonction de la position f(x), on peut écrire g(p) qui est appelée **Transformée de Fourier en impulsion** de la fonction f(x):

$$f(x) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} g(p)e^{ipx/\hbar} dp, \ g(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} f(x)e^{-ipx/\hbar} dx$$

D'un point de vue physique, f(x) signifie que f(x) est considérée comme une combinaison linéaire continue de fonctions sinusoïdales de x, de période $\lambda = h/p$.

2.1.2 Égalité de Parseval-Plancherel

Proposition 2.1.1 Égalité de Parseval-Plancherel

Soit $f_1(x)$, $f_2(x)$. Soit

$$f_1(x) \iff g_1(p), \quad f_2(x) \iff g_2(p)$$

Nous avons

$$\int_{-\infty}^{+\infty} f_1^*(x) f_2(x) dx = \int_{-\infty}^{+\infty} g_1^*(p) g_2(p) dp$$
 (2.1)

En particulier, en prenant $f_1(x)=f_2(x)=f(x)$ donc $g_1(p)=g_2(p)=g(p)$, on a

$$\int_{-\infty}^{+\infty} |f(x)|^2 \mathrm{d}x = \int_{-\infty}^{+\infty} |g(p)|^2 \mathrm{d}p$$

Transformée de Fourier et dérivation

Proposition 2.1.2 Transformée de Fourier et dérivation

$$\left[f(x) \iff g(p) \right] \implies \left[f_n(x) = \frac{\partial^{(n)} f(x)}{\partial x^{(n)}} \iff g_n(p) = \left(\frac{ip}{\hbar} \right)^n g(p) \right] \tag{2.2}$$

Proof: Soit $f_1(x) = f'(x)$, donc

$$g_{1}(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} f'(x) \exp(-i\frac{px}{\hbar}) dx$$

$$= \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \exp(-i\frac{px}{\hbar}) df$$

$$= \frac{1}{\sqrt{2\pi\hbar}} \left[f \exp\left(-i\frac{px}{\hbar}\right) \Big|_{-\infty}^{+\infty} - \left(-\frac{ip}{\hbar}\right) \int_{-\infty}^{+\infty} f \exp\left(-i\frac{px}{\hbar}\right) dx \right]$$

$$= 0 + \frac{ip}{\hbar} \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} f(x) \exp\left(-i\frac{px}{\hbar}\right) dx$$

$$= \frac{ip}{\hbar} g(p)$$

Récurrence.

2.1.4 Exemples

Proposition 2.1.3 Transformée de Fourier de la distribution de Dirac

$$f(x)=\delta(x-x_0)\iff g(p)=\frac{1}{\sqrt{2\pi\hbar}}\exp\left(-i\frac{px_0}{\hbar}\right)$$
 On a $\langle x\rangle=x_0,\,\Delta x=0,\,\Delta p\to\infty$

Proof:

$$g(p) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \delta(x - x_0) \exp\left(-i\frac{px}{\hbar}\right) \mathrm{d}x = \frac{1}{\sqrt{2\pi\hbar}} \exp\left(-i\frac{px_0}{\hbar}\right)$$

Proposition 2.1.4 Transformée de Fourier de l'onde de de Broglie

$$f(x) = A e^{ip_0 x/\hbar} e^{-iEt/\hbar} \iff g(p) = \frac{A e^{-iEt/\hbar}}{\sqrt{2\pi\hbar}} 2\pi\hbar \delta(p-p_0) \propto \delta(p-p_0)$$
 On a $\Delta x \to \infty$, $\langle p \rangle = p_0$, $\Delta p = 0$

2.2 Fonction d'onde en implusion

2.2.1 Définition

Definition 2.2.1: Représentation de la fonction d'onde en impulsion et en position

Représentation de la fonction d'onde en impulsion : $\varphi(p,t)$ Représentation de la fonction d'onde en position : $\psi(x,t)$

• Cas 1D

$$\psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \varphi(p,t) e^{ipx/\hbar} dp, \quad \varphi(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \psi(x,t) e^{-ipx/\hbar} dx$$
 (2.3)

• Cas 3T

$$\psi(M,t) = \frac{1}{(2\pi\hbar)^{3/2}} \iiint \varphi(\overrightarrow{p},t) e^{\frac{i}{\hbar}\overrightarrow{p}.\overrightarrow{OM}} \mathrm{d}p_x \mathrm{d}p_y \mathrm{d}p_z, \quad \varphi(\overrightarrow{p},t) = \frac{1}{(2\pi\hbar)^{3/2}} \iiint \psi(M,t) e^{-\frac{i}{\hbar}\overrightarrow{p}.\overrightarrow{OM}} \mathrm{d}V_M$$
(2.4)

2.2.2 Mesure de l'impulsion

La probabilité de mesure de l'impulsion de la particule dans l'intervalle [p, p + dp] est donnée par :

$$dP_{p,t,dp} = |\varphi(p,t)|^2 dp \tag{2.5}$$

Justifications:

• D'après l'égalité de Parseval-Plancherel, $\varphi(p,t)$ est normalisée :

$$\int_{-\infty}^{+\infty} |\varphi(p,t)|^2 \mathrm{d}p = 1 \tag{2.6}$$

• Pour une onde de de Broglie,

$$\varphi(p,t) \propto \delta(p-p_0) \tag{2.7}$$

De même façon, dans le cas tridimensionnel :

$$dP_{p,t,d\overrightarrow{p}} = |\varphi(\overrightarrow{p},t)|^2 d^3 \overrightarrow{p}$$
 (2.8)

2.2.3 Valeurs moyennes de grandeurs dépendant de l'impulsion

On obtient immédiatement :

$$\langle p \rangle(t) = \int_{-\infty}^{+\infty} p |\varphi(p,t)|^2 \mathrm{d}p = \int_{-\infty}^{+\infty} \varphi^*(p,t) p \varphi(p,t) \mathrm{d}p \tag{2.9}$$

- Onde de de Broglie : $\langle p \rangle = p_0$
- Plus généralement, pour une onde g(p) :

$$\langle g \rangle = \int_{-\infty}^{+\infty} g(p) |\varphi(p,t)|^2 \mathrm{d}p, \ \Delta p = \sqrt{\langle p^2 \rangle - \langle p \rangle^2}$$
 (2.10)

2.3 Opérateur impulsion

2.3.1 1 dimension

Quantité de mouvement p

D'après

- $\varphi(p,t)$ transformée de Fourier de $\psi(x,t)$.
- Les équations 2.9 et 2.2 démontre que $p\varphi(p,t)$ est la transformée de Fourier de la fonction $\frac{\hbar}{i}\frac{\partial}{\partial x}\psi(x,t)$,
- En utilisant le théorème de Parseval-Plancherel 2.1

On obtient enfin,

$$\sqrt{\langle p \rangle(t)} = \int_{-\infty}^{+\infty} \varphi^*(p,t) \times p \varphi(p,t) dp = \int_{-\infty}^{+\infty} \psi^*(x,t) \frac{\hbar}{i} \frac{\partial}{\partial x} \psi(x,t) dx$$
 (2.11)

On définit :

Definition 2.3.1: Opérateur impulsion

$$\hat{p} = -i\hbar \frac{\partial}{\partial x} \tag{2.12}$$

défini par son action sur une fonction $\psi(x,t)$ quelconque :

$$(\hat{p}\psi)(x,t) = -i\hbar \frac{\partial \psi}{\partial x} \tag{2.13}$$

Nous avons simplement:

$$\langle p \rangle (t) = \int_{-\infty}^{+\infty} \psi^*(x, t) (\hat{p}\psi)(x, t) dx$$
 (2.14)

Conclusion : La quantité de mouvement p comporte comme un opérateur dans la représentation en position.

Note:-

En général, chaque grandeur physique correspond un opérateur en mécanique quantique.

Fonction g(p) développable en série

Pour une fonction

$$g(p) = \sum_{n} g_n p^n \tag{2.15}$$

Donc, la valeur moyenne de g associée à $\psi(x,t)$ par

$$\langle g \rangle = \sum_{n} g_n \int_{-\infty}^{+\infty} \psi^*(x, t) (\hat{p}^n \psi)(x, t) dx$$
 (2.16)

Proof: D'après l'équation 2.2 :

$$\langle p^n \rangle(t) = \int_{-\infty}^{+\infty} \psi^*(p, t) p^n \psi(x, t)$$
 (2.17)

$$= \int_{-\infty}^{+\infty} \left(\frac{\hbar}{i}\right)^n \psi(x,t) \tag{2.18}$$

(2)

En introduisant

$$g(p) = \sum_{n} g_n p^n \implies \hat{g} = \sum_{n} g_n \hat{p}^n \tag{2.19}$$

On a encore

$$\hat{g} = \int_{-\infty}^{+\infty} \psi^*(x, t)(\hat{g}\psi)(x, t) dx \tag{2.20}$$

2.3.2 3 dimension

Dans les trois directions cartésiennes

$$\hat{p}_x = -i\hbar \frac{\partial}{\partial x}, \ \hat{p}_y = -i\hbar \frac{\partial}{\partial y}, \ \hat{p}_z = -i\hbar \frac{\partial}{\partial z}$$
 (2.21)

Definition 2.3.2: Opérateur quantité de mouvement (opérateur impulsion)

$$\hat{\vec{p}} = -i\hbar \, \overrightarrow{\text{grad}} \tag{2.22}$$

On peut montrer que

$$\hat{p}^2 = \hat{p}_x^2 + \hat{p}_y^2 + \hat{p}_z^2 = -\hbar^2 \Delta \tag{2.23}$$

2.3.3 Cas d'ondes de de Broglie

À une dimension, pour

$$\psi_{p_0}(x,t) = A \exp \frac{i}{\hbar} (p_0.x - Et)$$

En utilisant l'expression de 2.12 :

$$\hat{p}\psi_{p_0} = p_0\psi_{p_0} \tag{2.24}$$

Definition 2.3.3: État propre de l'opérateur impulsion, valeur propre

En ce sens, nous disons que une onde de de Broglie est un **état propre** de l'opérateur impulsion, avec la valeur propre $\overrightarrow{p_0}$ la quantité de mouvement associé.

2.3.4 Notation de Dirac

Rappel:

$$\langle \psi_1 | \psi_2 \rangle = \int_{-\infty}^{+\infty} \psi_1^*(x, t) \psi_2(x, t) \mathrm{d}x \tag{2.25}$$

On introduit de façon, pour un opérateur \hat{A} linéaire agissant sur les fonctions d'onde :

$$\langle \psi_1 | \hat{A} | \psi_2 \rangle = \int_{-\infty}^{+\infty} \psi_1^*(x, t) (\hat{A} \psi_2)(x, t) \mathrm{d}x$$
 (2.26)

Par exemple, on a déjà vu :

$$\begin{cases} \langle \psi_1 | \hat{p} | \psi_2 \rangle = \int_{-\infty}^{+\infty} \psi_1^*(x, t) (\hat{p} \psi_2)(x, t) \mathrm{d}x = \langle p \rangle \\ \langle \psi_1 | \hat{x} | \psi_2 \rangle = \int_{-\infty}^{+\infty} \psi_1^*(x, t) (\hat{x} \psi_2)(x, t) \mathrm{d}x = \int_{-\infty}^{+\infty} \psi_1^*(x, t) (x \psi_2)(x, t) \mathrm{d}x = \langle x \rangle \end{cases}$$
(2.27)

Definition 2.3.4: Opérateur position

Nous introduisons l'opérateur position agissant sur les fonctions d'onde :

$$\hat{x}\psi(x,t) = x\psi(x,t) \tag{2.28}$$

2.3.5 Commutateur

En général, les opérateurs sont non commutable.

Definition 2.3.5: Commutateur de deux opérateurs

Nous le définissons comme

$$[\hat{A}, \hat{B}] = \hat{A}\hat{B} - \hat{B}\hat{A} \tag{2.29}$$

Si deux opérateurs commutent nous avons

$$[\hat{A}, \hat{B}] = 0 \tag{2.30}$$

Exemple

Les deux opérateurs \hat{x} et \hat{p}_x ne commutent pas, en effet (\hat{I} l'opérateur identité)

$$[\hat{x}, \hat{p}_x] = i\hbar \hat{I} \tag{2.31}$$

Pour les autre dimensions, on obtient :

$$[\hat{x}, \hat{p}_y] = [\hat{y}, \hat{p}_z] = \dots = 0$$
 (2.32)

Proof: Calcul direct:

$$[\hat{x}, \hat{p}_x]f = (\hat{x}\hat{p}_x - \hat{p}_x\hat{x})f \tag{2.33}$$

$$= x \left(-i\hbar \frac{\partial f}{\partial x} \right) - \left(-i\hbar \frac{\partial}{\partial x} (xf) \right) \tag{2.34}$$

$$= -i\hbar x \frac{\partial f}{\partial x} + i\hbar f \times 1 + i\hbar x \frac{\partial f}{\partial x}$$
 (2.35)

2.4 Principe de correspondance

2.4.1 Relation entre la position et l'impulsion

La position x et l'impulsion p correspond chaqune un opérateur

• Dans la représentation en position $\psi(x,t)$:

$$\hat{x} = x, \ \hat{p} = -i\hbar \frac{\partial}{\partial x} \tag{2.36}$$

• Dans la représentation en impulsion $\varphi(p,t)$: (admis)

$$\hat{p} = p, \ \hat{x} = -i\hbar \frac{\partial}{\partial p} \tag{2.37}$$

2.4.2 Principe de correspondance

Theorem 2.4.1 Principe de correspondance

Toute grandeur physique A = f(x, p) est assoicée à un opérateur \hat{A} linéaire. \hat{A} est obtenue en remplaçant :

- $x \rightarrow \hat{x}$
- $p \rightarrow -i\hbar \frac{\partial}{\partial x}$

Exemples

- $V(x) \rightarrow \hat{V}$ tel que $\hat{V}\psi = V\psi$
- Fonction polynomiale de p :

$$A(p) = \sum_{n} c_{n} p^{n} \implies \hat{A}\psi(p, t) = \sum_{n} c_{n} (-i\hbar)^{n} \frac{\partial^{n} \psi}{\partial x^{n}}(x, t)$$
 (2.38)

• Fonction développables en séries entières :

$$A(p) = \exp\left(-\frac{ip}{\hbar}x_0\right) \implies (\hat{A}\psi)(x,t) = \sum_{n=0}^{\infty} \frac{1}{n!} (-x_0)^n \frac{\partial^n(x,t)}{\partial x^n} = \psi(x - x_0, t)$$
 (2.39)

Proof: Réviser le cours Séries Entières.

On la note l'opérateur de translation de x_0

2.4.3 Application en mécanique

Position	$x o \hat{x}$	$ec{r} ightarrow \hat{ec{r}}$
Énergie potentielle	$V(x,t) o \hat{V}(x,t)$	$V(M,t) o \hat{V}(M,t)$
Quantité de mouvement	$p \to -i\hbar \frac{\partial}{\partial x}$	$ec{p} ightarrow \hat{ec{p}} = -i\hbar ext{grad}$
Énergie cinétique	$E_c = rac{p^2}{2m} ightarrow -rac{\hbar^2}{2m}rac{\partial^2}{\partial x^2}$	$E_c = \frac{\ \vec{p}\ ^2}{2m} \to -\frac{\hbar^2}{2m} \Delta$
Énergie mécanique	$E_m \to \hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + \hat{V}(x,t)$	$E_m \to \hat{H} = -\frac{\hbar^2}{2m}\Delta + \hat{V}(M,t)$
Moment cinétique	nul	$ec{L} = ec{r} \wedge ec{p} ightarrow \hat{ec{L}} = \hat{ec{r}} \wedge \hat{ec{p}}$

Figure 2.1: Opérateurs utiles

Remarque : opérateur hamiltonien : \hat{H}

Chapter 3

Relation de Heisenberg

Relation de Heisenberg

- Relation de Heisenberg position-impulsion
- La critère du régime classique et quantique
- Justifier la stabilité des atomes par la relation de Heisenberg
- Relation de Heisenberg temps-énergie

3.1 Relation d'incertitude de Heisenberg (Inégalité spectrale)

À chaque instant, on définit

- l'extension spatial du paquet d'ondes $\Delta x(t) = \sqrt{\langle x^2 \rangle \langle x \rangle^2}$, adaptée à fonction $\psi(x,t)$
- la largeur en impulsion du même paquet $\Delta p(t) = \sqrt{\langle p^2 \rangle \langle p \rangle^2}$, adaptée à fonction $\varphi(p,t)$

(Par exemple :
$$\langle x^2 \rangle = \int x^2 |\psi(x,t)|^2 dx$$
)

3.1.1 Inégalité spectrale

À chaque instant, elle sont liées par l'inégalité spectrale :

$$\Delta x(t) \times \Delta p(t) \ge \frac{\hbar}{2} \tag{3.1}$$

3.1.2 Remarques

Points à noter :

• Égalité est pris lorsque les la fonction $\psi(x)$ est sous la forme gaussienne

$$\psi(x) \propto \exp\left(-\frac{x^2}{a^2}\right)$$
 (3.2)

• Relation est relié avec le fait que $[\hat{x}, \hat{p}] \neq 0$. (Voir chapitre suivant) choisissons une autre couple pour que elles sont commutable, donc on n'a aucune borne inférieure non nulle :

$$\Delta x \Delta p_y \ge 0 \tag{3.3}$$

• À trois dimensions, de la même façon

$$\Delta x \times \Delta p_x \ge \frac{\hbar}{2}, \ \Delta y \times \Delta p_y \ge \frac{\hbar}{2}, \Delta z \times \Delta p_z \ge \frac{\hbar}{2}$$
(3.4)

• Pour les paquet d'ondes relativement bien localisées : En ordre de grandeur,

$$\Delta x \times \Delta p \cong \hbar \tag{3.5}$$

Conclusion évident :

- Plus la position de la particule est connue avec certitude, moins cela est le cas de son impulsion
- On ne peut connaître avec certitude, la position et l'impulsion de la particule en même temps
- E.g. Les états parfaitement déterminés en position sont totalement indéterminés en impulsion, elle sont des grandeurs incompatibles

3.2 Régime classique et quantique

3.2.1 Exemple macroscopique

Une goutte d'eau : Régime classique

- On veut que l'indétermination quantique sur la position soit plus faible que $1\mu m$.
- L'incertitude en vitesse est de l'ordre de :

$$\Delta v = \frac{\Delta p}{m} \approx \frac{\hbar}{m\Delta x} \approx 10^{-22} \text{m.s}^{-1}$$
 (3.6)

• Longueur de de Broglie :

$$\lambda = \frac{h}{p} \ll \frac{h}{\Delta p} \ll \Delta x \ll L \tag{3.7}$$

• La caractère probabiliste est totalement négligée.

3.2.2 Exemple microscopique

Électron: Régime quantique

- $m \approx 10^{-30}$ kg, dans l'atome d'hydrogène, l'électron est confiné dans une sphère de rayon proche du rayon de Bohr $a_0 = 53$ pm, et $\Delta x \approx a_0$
- Effet quantique importante :

$$\Delta v = \frac{\Delta p}{m} \approx \frac{\hbar}{m\Delta x} = 2 \times 10^6 \text{m.s}^{-1}$$
 (3.8)

• Longueur de de Broglie comparable avec la dimension caractéristique du système :

$$\frac{p}{m} \approx \frac{\hbar}{ma_0} \implies a_0 \approx \lambda = \frac{h}{p} \tag{3.9}$$

3.3 Stabilité des atomes

Résultat observé : Si l'électron tome sur le noyaux : Δx très petit, donc Δp suffisament grand pour s'échapper. La relation de Heisenberg permet de montrer que l'énergie de l'atome est nécessairement bornée inférieurement par une valeur non nulle.

• L'énergie totale : Énergie cinétique + Énergie potentielle électrostatique

$$E = \frac{p^2}{2m} - \frac{e^2}{4\pi\varepsilon_0 r} \tag{3.10}$$

• Modèle : un état possédant la symétrie : (Symétrie sphérique impose $\langle p_x \rangle = \langle x \rangle = 0$)

$$\langle p^2 \rangle = \langle p_x^2 \rangle + \langle p_y^2 \rangle + \langle p_z^2 \rangle = 3\langle p_x^2 \rangle = 3\Delta p_x^2, \ \langle r^2 \rangle = 3\Delta x^2$$
 (3.11)

• On admet que, en ordre de grandeur :

$$\langle \frac{1}{r} \rangle = \langle r^2 \rangle^{-1/2} \tag{3.12}$$

• Nous aurons donc

$$\langle E \rangle = \frac{3\Delta p_x^2}{2m} - \frac{e^2}{4\pi\varepsilon_0\sqrt{3}\Delta x} \tag{3.13}$$

$$\geq \frac{3\Delta p_x^2}{2m} - \frac{e^2 2\Delta p_x}{4\pi\varepsilon_0 \sqrt{3}\hbar} = E_{min,H}(\Delta p_x)$$
(3.14)

- En fonction de Δp_x , la valeur moyenne de l'énergie passe par un minimum tel que

$$\frac{\mathrm{d}E_{min,H}}{\mathrm{d}\Delta p_x} = \frac{3\Delta p_{x,min}}{m} - \frac{2e^2}{4\pi\varepsilon_0\sqrt{3}\hbar} \approx 1,3a_0 \tag{3.15}$$

avec $a_0 = \frac{\hbar^2 \times 4\pi\varepsilon_0}{me^2}$ le rayon de Bohr

• L'énergie minimale possible est

$$E_0 = -\frac{4}{18} \frac{\hbar^2}{ma_0^2} = -\frac{4}{9} R_H \tag{3.16}$$

où R_H la constante de Rydberg = 13,6eV

3.4 Relation de Heisenberg temps-énergie

Comme onn peut réaliser une transformation de Fourier en temps de la fonction d'onde :

$$\psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \underline{\psi}(x,E) \exp\left(-\frac{iEt}{\hbar}\right) dE \iff \underline{\psi}(x,E) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \psi(x,t) \exp\left(\frac{iEt}{\hbar}\right) dt$$
(3.17)

L'inégalité conduit alors

$$\Delta E \times \Delta t \ge \frac{\hbar}{2} \tag{3.18}$$

Conclusion : La durée de vie est infinie (ou une énergie est connue), si l'atome est dans un niveau stationnaire.

On observe des **niveau fondamental**, comme seuls les niveaux ne pouvant pas se désexciter radiativement ont une énergie parfaitement définie. Sinon

$$\Delta E \approx \frac{\hbar}{\tau} \tag{3.19}$$

Chapter 4

Mécanique ondulatoire

Équation de Schrödinger

- Équation de Schrödinger dépendante du temps : en 3D et 1D
- Conservation de la norme
- Équation de Schrödinger indépendante du temps : condition et forme État stationnaire
- Courant de probabilité et équation de continuité
- Exemple : particule libre (V = 0)

4.1 Équation de Schrödinger

Équation de Schrödinger

- Équation de Schrödinger dépendante du temps : en 3D et 1D
- Conservation de la norme
- Équation de Schrödinger indépendante du temps : condition et forme État stationnaire
- Courant de probabilité et équation de continuité

Note:-

L'expérience du Principe fondamentale dynamique démontre que

• Pour un système de N particule :

$$\overrightarrow{F}_i = \overrightarrow{\nabla} V_i = m_i \frac{\mathrm{d}^2 \overrightarrow{r_i}}{\mathrm{d}t^2} \tag{4.1}$$

• Équation d'évolution est une équation différentielle de l'ordre 2. Si on connaît les <u>positions initiales</u> et les vitesses initiales, on connâit l'évolution temporelle du système.

Le système quantique est décrit par la fonction d'onde, et l'équation d'évolution est équation différentielle d'ordre 1.

4.1.1 Forme générale

Équation de Schrödinger 3D et 1D

Theorem 4.1.1 Équation de Schrödinger

On pose V(M,t) (réelle) la <u>énergie potentielle</u> dépendant éventuellement du temps. Le postulat fondamental : la fonction d'onde vérfie

$$-\frac{\hbar^2}{2m}\Delta\psi(M,t) + V(M,t)\psi(M,t) = i\hbar\frac{\partial\psi}{\partial t}(M,t) \tag{4.2}$$

Dans le cas 1D:

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi(x,t)}{\partial x^2} + V(x,t)\psi(x,t) = i\hbar\frac{\partial\psi}{\partial t}(x,t) \tag{4.3}$$

Rappel: Dans la partie 2.4.3, on a déjà vu que:

$$E_m = \frac{\|\vec{p}\|^2}{2m} + V(x,t) \to \hat{H} = -\frac{\hbar^2}{2m}\Delta + \hat{V}(M,t)$$
 (4.4)

Theorem 4.1.2

Avec l'opérateur hamiltonien

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x, t) \tag{4.5}$$

On obtient

$$\hat{H}\psi = i\hbar \frac{\partial \psi}{\partial t} \tag{4.6}$$

4.1.2 Propriétés

Linéarité

Elle est compatible avec le **principe de superpostion** : Si ψ_1 et ψ_2 sont des solutions, alors toute combinaison linéaire est également solution.

Conservation de la norme

Theorem 4.1.3

Une fonction $\psi(M,t)$ vérifiant l'équation de Schrödinger garde une norme constante.

Proof: Posons

$$N(t) = \int_{-\infty}^{+\infty} |\psi(x,t)|^2 \mathrm{d}x = \int_{-\infty}^{+\infty} \psi^*(x,t)\psi(x,t) \mathrm{d}x \tag{4.7}$$

Donc,

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \int_{-\infty}^{+\infty} \frac{\partial \psi^*}{\partial t} \psi \, \mathrm{d}x + \int_{-\infty}^{+\infty} \psi^* \frac{\partial \psi}{\partial t} \, \mathrm{d}x \tag{4.8}$$

$$= 2\operatorname{Re}\left(\int_{-\infty}^{+\infty} \frac{\partial \psi^*}{\partial t} \psi \, \mathrm{d}x\right) \quad (1^* = 2, \text{ utiliser 2D coor.})$$
(4.9)

$$=2\operatorname{Re}\left(\int_{-\infty}^{+\infty}\frac{i}{\hbar}\left(-\frac{\hbar^{2}}{2m}\frac{\partial^{2}\psi^{*}}{\partial x^{2}}+V(x,t)\psi^{*}\right)\psi\,\mathrm{d}x\right)\tag{4.10}$$

$$= -\frac{\hbar}{m} \operatorname{Re} \left(i \int_{-\infty}^{+\infty} \left(\frac{\partial^2 \psi^*}{\partial x^2} \right) \psi \, \mathrm{d}x \right) \, \left(V(x,t) \text{ disparaît car la partie imag. pur} \right) \tag{4.11}$$

$$= -\frac{\hbar}{m} \operatorname{Re} \left(i \times \left[\psi \frac{\partial \psi^*}{\partial x} \right]_{-\infty}^{+\infty} - i \times \int_{-\infty}^{+\infty} |\frac{\partial \psi}{\partial x}|^2 dx \right) \text{ (IPP)}$$

La première terme est nulle car la fonction d'onde et ses dérivées sont dominées par des fonctions intégrables, donc nécessairement tendent vers 0 à l'infini.

La deuxième terme est nulle car c'est la partie imaginaire.

Enfin,

$$\frac{\mathrm{d}N}{\mathrm{d}t} = 0\tag{4.13}$$

Justification d'une onde de de Broglie

Pour une particule libre (V = 0) décrite par une onde de Broglie unidimensionnelle :

$$\psi = A \exp \frac{i}{\hbar} (px - Et) \tag{4.14}$$

Nous avons

$$i\hbar \frac{\partial \psi}{\partial t} = E\psi, \ -\frac{\hbar^2}{2m} \frac{\partial^2 \psi}{\partial x^2} = \frac{p^2}{2m} \psi$$
 (4.15)

Les ondes de de Broglie vérifient dans le mesure où l'énergie de la particule est donné par

$$E = \frac{p^2}{2m} \tag{4.16}$$

4.1.3 Équation de Schrödinger indépendante du temps

Forme générale

Nous considérons des situations où l'énergie potentielle est indépendant du temps, pour que \hat{H} indépendant du temps :

$$-\frac{\hbar^2}{2m}\Delta\psi(M,t) + V(M)\psi(M,t) = i\hbar\frac{\partial\psi}{\partial t}(M,t) \tag{4.17}$$

On obtient une expression séparant des variables :

$$\psi(M,t) = \widetilde{\psi}(M) \exp\left(-\frac{iEt}{\hbar}\right) \tag{4.18}$$

avec

- \bullet E l'énergie du système
- $\widetilde{\psi}(M)$ l'état stationnaire qui sont les états propres de \hat{H} , les énergies associées sont des valeurs propres de l'hamiltonien.

Les deux satisfait :

Theorem 4.1.4 Équation de Schrödinger indépendante du temps (ou stationnaire)

$$-\frac{\hbar^2}{2m}\Delta\widetilde{\psi}(M) + V(M)\widetilde{\psi}(M) = E\widetilde{\psi}(M) \quad \text{ou} \quad \boxed{\hat{H}\widetilde{\psi} = E\widetilde{\psi}}$$
 (4.19)

État stationnaire

• Densité de probabilité indépendante du temps

$$|\psi(M,t)|^2 = |\widetilde{\psi}(M)|^2 \tag{4.20}$$

• La valeur moyenne de A pour un système dans l'état stationnaire est indépendant du temps

$$\langle A \rangle = \langle \psi | \hat{A} | \psi \rangle = \int \psi^*(M, t) \hat{A} \psi^*(M, t) dV = \int \widetilde{\psi}^*(M) \hat{A} \widetilde{\psi}(M) dV$$
 (4.21)

4.1.4 Résoudre une équation de Schrödinger

La solution générale de $\hat{H}\psi=i\hbar\frac{\partial\psi}{\partial t}$ est la combinaison linéarie des solutions de l'équation de Schrödinger indépendante du temps $\hat{H}\widetilde{\psi}=E\widetilde{\psi}$, avec chaque état stationnaire correspond à un niveau d'énergie.

$$\psi(M,t) = \sum_{n} C_n \widetilde{\psi}_n(M) \exp\left(-\frac{iE_n t}{\hbar}\right)$$
(4.22)

Avec les coefficients :

$$C_n = c_n(t=0) = \int_0^a \widetilde{\psi}_n^*(x) \times \widetilde{\psi}(x, t=0) dx = \langle \widetilde{\psi}_n | \widetilde{\psi}(x, t=0) \rangle$$
 (4.23)

Exemple: à voir.

4.1.5 Courant de probabilité

- Rappel en électromagnétisme et en mécanique de fluide, la densité de courant a une expression : $\overrightarrow{j} = \rho \overrightarrow{v}$
- La vitesse de la particule associée à l'opérateur et son moyenne :

$$\hat{\overrightarrow{v}} = \frac{\hat{\overrightarrow{p}}}{m} \implies \langle \overrightarrow{v} \rangle = \iiint \psi^* \frac{\hat{\overrightarrow{p}}}{m} \psi dV_M$$
 (4.24)

• Donc de même, définissions la quantité

$$\boxed{\overrightarrow{J} = \operatorname{Re}\left(\frac{1}{m}\psi^*\widehat{\overrightarrow{p}}\psi\right)} = \frac{\hbar}{2im}\left(\psi^*\overline{\operatorname{grad}}\psi - \psi\overline{\operatorname{grad}}\psi^*\right)$$
(4.25)

Proof: En sachant que $Re(a) = \frac{a+a^*}{2}$

$$\overrightarrow{J} = \frac{-\hbar}{m} \operatorname{Re}(i\psi^* \overrightarrow{\operatorname{grad}}\psi) = \frac{-\hbar}{2m} (i\psi^* \overrightarrow{\operatorname{grad}}\psi - i\psi \overrightarrow{\operatorname{grad}}\psi^*)$$
(4.26)

(2)

• Si la fonction d'onde est réelle, le courant de probabilité est nul.

Proof: Seulement \overrightarrow{p} contenant i, et les autres quantités sont réelles.

• Exemple d'onde de de Broglie :

$$\psi(M,t) = C \exp\left(\frac{i}{\hbar}(\overrightarrow{p}.\overrightarrow{OM} - Et)\right) \implies \overrightarrow{j} = \frac{|\psi|^2}{m}\overrightarrow{p} = \rho(M,t)\overrightarrow{v}$$
 (4.27)

Proof:

$$\overrightarrow{j} = \operatorname{Re}\left(\frac{1}{m}\psi^* \widehat{\overrightarrow{p}}\psi\right) \tag{4.28}$$

$$=\operatorname{Re}\left(\frac{1}{m}\psi_{\overrightarrow{p_0}}^*\times(-i\hbar\overrightarrow{\operatorname{grad}}\psi_{\overrightarrow{p_0}})\right) \tag{4.29}$$

$$= \operatorname{Re}\left(\frac{1}{m}\psi_{\overrightarrow{p_0}}^* \times \left(-i\hbar\frac{i}{\hbar}\overrightarrow{p_0}.\psi_{\overrightarrow{p_0}}\right)\right) \tag{4.30}$$

$$=|A|^2 \times \frac{\overrightarrow{p_0}}{m} \tag{4.31}$$

• Conservation de conservation de la densité de probabilité, analogue aux équations de conservation de charge et de masse :

$$\left| \frac{\partial \rho}{\partial t} + \operatorname{div} \overrightarrow{J} = 0 \right| \tag{4.32}$$

Proof: On le divise dans deux parties :

Permier terme
 D'après l'équation de Schrödinger,

$$\frac{\partial}{\partial t}\psi = \frac{1}{i\hbar} \left(-\frac{\hbar^2}{2m} \Delta \psi + V\psi \right) \tag{4.33}$$

$$\frac{\partial}{\partial t}\psi^* = \frac{-1}{i\hbar} \left(-\frac{\hbar^2}{2m} \Delta \psi^* + V \psi^* \right) \tag{4.34}$$

Donc

$$\frac{\partial \rho}{\partial t} = \frac{\partial}{\partial t} (\psi^* \psi) = \psi^* \frac{\partial \psi}{\partial t} + \psi \frac{\partial \psi^*}{\partial t}$$
(4.35)

$$= \frac{1}{i\hbar} \times \left[-\frac{\hbar^2}{2m} (\psi^* \Delta \psi - \psi \Delta \psi^*) \right]$$
 (4.36)

$$= -\frac{\hbar}{2im} (\psi^* \Delta \psi - \psi \Delta \psi^*) \tag{4.37}$$

– Deuxième terme (Rappel : $\overrightarrow{\nabla}^2 = \Delta)$

$$\overrightarrow{\nabla}.\overrightarrow{j} = \frac{\hbar}{2im}\overrightarrow{\nabla}.(\psi^*\overrightarrow{\nabla}\psi - \psi\overrightarrow{\nabla}\psi^*) \tag{4.38}$$

$$= \frac{\hbar}{2im} (\overrightarrow{\nabla} \psi^* . \overrightarrow{\nabla} \psi + \psi^* \overrightarrow{\nabla}^2 \psi - \overrightarrow{\nabla} \psi . \overrightarrow{\nabla} \psi^* - \psi \overrightarrow{\nabla}^2 \psi^*)$$
 (4.39)

4.2 Particule libre

4.2.1 Parquet d'ondes de de Broglie

Dans le cas unidimensionnelle particulier, la particule libre V(x) = 0 est décrit par un **paquet d'ondes libres**, qui est la superpostion d'ondes de de Broglie libre :

$$\psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} g(p) \exp\left(\frac{i}{\hbar}(px - Et)\right) dp$$
(4.40)

Proof: Exemple classique de résolution d'équation de Schrödinger.

• D'après l'équation de Schrödinger indépendante du temps, comme V=0 :

$$\hat{H}\widetilde{\psi_n} = E\psi_n \implies -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2 \widetilde{\psi}}{\mathrm{d}x^2} = E\widetilde{\psi}$$
 (4.41)

$$\widetilde{\psi} = C_1 \exp\left(i\frac{\sqrt{2mE}}{\hbar}x\right) + C_2 \exp\left(-i\frac{\sqrt{2mE}}{\hbar}x\right) = C \exp\left(i\frac{p}{\hbar}x\right)$$
 (4.42)

• On sait que la forme générale sous la forme :

$$\psi(M,t) = \int C(p)e^{ipx/\hbar}e^{-iEt/\hbar}dp = \frac{1}{\sqrt{2\pi\hbar}}\int g(p)e^{ipx/\hbar}e^{-iEt/\hbar}dp \qquad (4.43)$$

• Résoudre g(p): (Transformée de Fourier)

$$\psi(t=0) = \frac{1}{\sqrt{2\pi\hbar}}g(p)e^{ipx/\hbar}dp \implies g(p) = \frac{1}{\sqrt{2\pi\hbar}}\int \psi(x,t=0)e^{-ipx/\hbar}dx \tag{4.44}$$

(2)

Transformation de Fourier inverse donne :

$$g(p) = \varphi(p,0) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \psi(x,0) \exp\left(-ip\frac{x}{\hbar}\right)$$
 (4.45)

Pour un paquet d'ondes libre, on a :

$$\varphi(p,t) = g(p) \exp\left(-iE\frac{t}{\hbar}\right) \tag{4.46}$$

4.2.2 Quantité de mouvement moyenne

La quantité de mouvement est indépendante du temps :

$$\langle p \rangle (t) = \langle p \rangle (0) \tag{4.47}$$

Proof:
$$\langle p \rangle(t) = \int_{-\infty}^{+\infty} \varphi^*(p,t) p \varphi(p,t) dp$$

Toutes les fonctions dépendant du p est une constante au cours du temps. Preuve identitque à celui d'au-dessus.

4.3 Barrière de potentiel

4.3.1 Continuité de fonction d'onde

D'après l'équation de Schrödinger stationnaire,

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\widetilde{\psi} + V(x)\widetilde{\psi} = E\widetilde{\psi}$$
 (4.48)

$$-\frac{\hbar^2}{2m} \int_{0^-}^{0^+} \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}}{\mathrm{d}x} \widetilde{\psi} \right) \mathrm{d}x = \int_{0^-}^{0^+} (E - V(x)) \widetilde{\psi} \mathrm{d}x \tag{4.49}$$

$$-\frac{\hbar^2}{2m}\widetilde{\psi}'|_{0^-}^{0^+} = \int_{0^-}^{0^+} (E - V(x))\widetilde{\psi} dx$$
 (4.50)

À x = 0, pour une ...

- Discontinuité fini, $\widetilde{\psi}'|_{0^-}^{0^+} \longrightarrow 0$, donc $\widetilde{\psi}'$ est continue.
- Discontinuité infini, $\widetilde{\psi}'|_{0^-}^{0^+} \not\longrightarrow 0$, donc $\widetilde{\psi}'$ peut être discontinue.

On admet que la fonction d'onde est toujours continue au passage par une discontinuité.

4.3.2 État d'une marche de potentiel

D'après l'équation de Schrödinger stationnaire,

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}\widetilde{\psi} + \frac{2m(E - V(x))}{\hbar^2}\widetilde{\psi} = 0 \tag{4.51}$$

Notons $M = \frac{2m(E-V(x))}{\hbar^2}$

- Si $M > 0 \iff E > V(x)$, on obtient une solution ondulatoire
- Si $M < 0 \iff E < V(x)$, on obtient une solution exponentielle

Marche de potentiel - Faible énergie

Figure 4.1: Barrière de Potentiel

• Pour la partie x < 0, la solution est

$$\widetilde{\psi}(x<0) = \alpha e^{-ikx} + \beta e^{ikx}, \quad k = \frac{\sqrt{2mE}}{\hbar}$$
(4.52)

• Pour la partie x > 0, la solution est

$$\widetilde{\psi}(x>0) = \gamma e^{-qx} + \delta e^{+qx}, \quad q = \frac{\sqrt{2m(V_0 - E)}}{\hbar} \tag{4.53}$$

La fonction d'onde ne tend pas vers infini quand $x \to \infty$ (nécessité de normalisation) donc $\delta = 0$. La solution est

$$\widetilde{\psi}(x>0) = \gamma e^{-qx} \tag{4.54}$$

- Condition de continuité de $\widetilde{\psi}$ et $\widetilde{\psi}$ à x=0

$$\begin{cases} \alpha + \beta = \gamma \\ ik(\alpha - \beta) = -q\gamma \end{cases} \tag{4.55}$$

• On obtient le rapport entre coefficients :

$$\frac{\gamma}{\alpha} = \frac{2k}{k+iq}, \quad \frac{\beta}{\alpha} = \frac{k-iq}{k+iq}$$
 (4.56)

Proof:

$$\alpha + \beta = \gamma \implies 1 + \frac{\beta}{\alpha} = \frac{\gamma}{\alpha}, \quad ik(\alpha - \beta) = -q\gamma \implies 1 - \frac{\beta}{\alpha} = \frac{iq}{k}\frac{\gamma}{\alpha}$$
 (4.57)

Marche de potentiel - Haute énergie

L'équation de Schrödinger stationnaire :

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}\widetilde{\psi} + \frac{2m(E - V(x))}{\hbar^2}\widetilde{\psi} = 0, \quad E > V_0 > 0$$
 (4.58)

• Pour la partie x < 0, la solution est encore

$$\widetilde{\psi}(x<0) = \alpha e^{-ikx} + \beta e^{ikx}, \quad k = \frac{\sqrt{2mE}}{\hbar}$$
 (4.59)

• Pour la partie x > 0, la solution est

$$\widetilde{\psi}(x>0) = \gamma e^{+ik'x} + \delta e^{-ik'x}, \quad q = \frac{\sqrt{2m(E-V_0)}}{\hbar}$$
(4.60)

Comme on ne considère que l'onde transmise de gauche à droite,

$$\widetilde{\varphi}(x > 0) = \gamma e^{ik'x} \tag{4.61}$$

• Condition de continuité à x = 0:

$$\begin{cases} \alpha + \beta = \gamma \\ ik(\alpha - \beta) = ik'\gamma \end{cases}$$
 (4.62)

On obtient

$$\frac{\gamma}{\alpha} = \frac{2k}{k+k'}, \frac{\beta}{\alpha} = \frac{k-k'}{k+k'} \tag{4.63}$$

Marche de potentiel - Énergie négative

L'équation de Schrödinger stationnaire :

$$-\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} \widetilde{\psi} - \frac{2m(V(x) - E)}{\hbar^2} \widetilde{\psi} = 0, \quad E < 0 < V_0$$
 (4.64)

• Pour la partie x < 0, la solution est :

$$\widetilde{\psi}(x < 0) = \alpha e^{qx}, \quad q = \sqrt{\frac{-2mE}{\hbar^2}}$$
 (4.65)

• Pour la partie x > 0, la solution est :

$$\widetilde{\psi}(x>0) = \gamma e^{-q'x}, \quad q = \sqrt{\frac{2m}{\hbar^2}(V_0 - E)}$$
 (4.66)

• Condition de continuité :

$$\begin{cases} \alpha = \gamma \\ q\alpha = -q'\gamma \end{cases} \tag{4.67}$$

Donc $\alpha = \gamma = 0$

• En ce cas, $\widetilde{\psi} = 0$ donc impossible.

4.3.3 Densité de courant de probabilité

Faible énergie

Les densité de courant de probabilité pour chaque onde :

• Onde incidente $\gamma_{in}(x < 0) = \alpha e^{+ikx}$

$$\overrightarrow{j}_i = |\alpha|^2 \frac{\hbar k}{m} \overrightarrow{e_x} \tag{4.68}$$

Proof:

$$\overrightarrow{j}_{i} = \operatorname{Re}\left(\frac{1}{m}\alpha^{*}e^{-ikx}(-i\hbar)\frac{\mathrm{d}}{\mathrm{d}x}\alpha e^{ikx}\right)\overrightarrow{e_{x}}$$
(4.69)

(2)

• Onde réfléchie $\gamma_{re}(x<0)=\beta e^{-ikx}$

$$\overrightarrow{j}_r = -|\beta|^2 \frac{\hbar k}{m} \overrightarrow{e_x} \tag{4.70}$$

• Onde évanescante :

$$\overrightarrow{j}_{ev} = \overrightarrow{0} \tag{4.71}$$

Le coefficient de réflecton, on l'appelle réflexion totale :

$$R = |\beta/\alpha|^2 = 1 \tag{4.72}$$

Haute énergie

Densité de courant de probabilité :

• Onde incidente : (encore)

$$\overrightarrow{j_i} = |\alpha|^2 \frac{\hbar k}{m} \overrightarrow{e_x} \tag{4.73}$$

• One réfléchie : (encore)

$$\overrightarrow{j_i} = -|\beta|^2 \frac{\hbar k}{m} \overrightarrow{e_x} \tag{4.74}$$

• Onde transmise:

$$\overrightarrow{j_t} = |\gamma|^2 \frac{\hbar k'}{m} \overrightarrow{e_x} \tag{4.75}$$

Coefficient de reflection :

$$R = |\overrightarrow{j_r}/\overrightarrow{j_i}| = |\beta/\alpha|^2 = \left(\frac{k - k'}{k + k'}\right)^2 \tag{4.76}$$

Coefficient de transmission :

$$T = |\overrightarrow{j_t}/\overrightarrow{j_i}| = |\gamma/\alpha|^2 \frac{k'}{k} = \left(\frac{2k}{k+k'}\right)^2 \frac{k'}{k} \tag{4.77}$$

On obtient la conservation de la probabilité de présence de particule :

$$R + T = 1 \tag{4.78}$$

4.3.4 Effet tunnel

La probabilité de présence de la particule à x>0 est non nulle :

$$|\widetilde{\psi}(x>0)|^2 \propto e^{-2qx} \tag{4.79}$$

On note le **longueur caractéristique** pour décrite le phénomène que la probabilité de présence décroîte exponentiellement :

$$l = \frac{1}{2q} = \frac{\hbar}{2\sqrt{2m(V_0 - E)}}\tag{4.80}$$

4.3.5 État d'une barrière de potentiel

4.4 Puits de potentiel

4.4.1 Puits de potentiel infini

Figure 4.2: Puits de Potentiel Infini

Montrons d'abord que $\psi(x)=0$ dans la région où $V(x)\to\infty$.

Proof: Lorsque $E < V_0$, $\widetilde{\psi} = \gamma e^{-qx}$, on obtient le longueur caractéristique :

$$l = \frac{1}{2q} = \frac{\hbar}{2\sqrt{2m(V_0 - E)}} \xrightarrow{V_0 \to \infty} 0$$
 (4.81)

(2)

État stationnaire

Dans la région $x \in [0, a]$:

$$\hat{H}\widetilde{\psi} = E\widetilde{\psi} \implies \widetilde{\psi} = \alpha_1 e^{ikx} + \alpha_2 e^{ikx} = C_1 \cos kx + C_2 \sin kx \tag{4.82}$$

Pour conformer à des conditions limites :

$$\begin{cases} \widetilde{\psi}(0) = 0 \implies C_1 = 0 \implies \widetilde{\psi} = C_2 \sin kx \\ \widetilde{\psi}(a) = 0 \implies C_2 \sin kx = 0 \implies ka = n\pi, \ n = 1, 2, \dots \end{cases}$$
(4.83)

k ne peut que prendre certain valeurs, les **énergies propres** :

$$\frac{\sqrt{2mE}}{\hbar} = n\pi \implies \boxed{E_n = \frac{(n\pi\hbar)^2}{2ma^2}, \quad n \in \mathbb{Z}^*}$$
(4.84)

Note: $E_p = E_{-p}$ pour tout $p \in \mathbb{N}$.

Les fonctions propres (états stationnaires):

$$\widetilde{\psi}_n = C_2 \sin \frac{n\pi}{a} x, \ n \neq 0 \tag{4.85}$$

On détermine le coefficient C_2 d'après la condition de normalisation :

$$\int_0^a |C_2|^2 \sin^2 \frac{n\pi x}{a} dx = 0 \tag{4.86}$$

$$|C_2|^2 \int_0^a \frac{1 - \cos^2(n\pi x/a)}{2} dx = 1$$
 (4.87)

$$|C_2|^2 \left(\frac{a}{2} - \frac{1}{2} \int_0^a \frac{\cos 2n\pi x}{a} dx\right) = 1$$
 (4.88)

$$|C_2|^2 = \frac{2}{a} \implies C_2 = \sqrt{\frac{2}{a}}$$
 (4.89)

(On choisit $C_2 \in \mathbb{R}$), donc

$$\widetilde{\psi}_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right), \quad n \in \mathbb{Z}^*$$
 (4.90)

Mesure de l'énergie

Le résultat de la mesure de l'énergie de la particule :

$$\langle E \rangle = \sum_{n} E_n P(E_n) = \sum_{n} E_n |\langle \widetilde{\psi}_n | \psi \rangle|^2 = E_n |c_n|^2$$
(4.91)

ou bien

$$\langle E \rangle = \langle \psi | \hat{H} | \psi \rangle \tag{4.92}$$

Proof: Les deux expressions sont identiques à cause de l'orthogonalité des fonctions d'ondes stationnaires.

$$\langle E \rangle = \int \psi^* \hat{H} \psi = \int \sum_m c_m^* \widetilde{\psi}_m^* \hat{H} \sum_n c_n \widetilde{\psi}_n$$
 (4.93)

$$= \int \sum_{m} c_{m}^{*} \widetilde{\psi}_{m}^{*} \sum_{n} c_{n} E_{n} \widetilde{\psi}_{n} \tag{4.94}$$

$$= \sum_{m,n} c_m^* c_n E_n \int \widetilde{\psi}_m^* \widetilde{\psi}_n \tag{4.95}$$

$$=\sum_{m,n}c_m^*c_nE_n\delta_{m,n}\tag{4.96}$$

$$=\sum_{n}c_{n}^{*}c_{n}E_{n}\tag{4.97}$$

4.4.2 Puits de potentiel fini

Figure 4.3: Puits de Potentiel Fini