HW: Propositional function

- 1. Determine the truth value of each of the following statements. Domain of the function is R
 - a. $\forall x, |x| = x$;
 - b. $\exists x, x^2 = x$
- 2. Let A = {1,2,3,4,5} Determine the truth value of the following statements
 - a. $\exists x \in A(x + 3 = 10)$
 - b. $\forall x \in A(x + 3 \le 7)$
- 3. Negate the following statements and write them symbolically using the quantifiers:
 - a. All students live in the dormitories
 - b. All mathematician majors are male
 - c. Some students are 25 years or older
- 4. Negate each of the following statements:
 - a. $\forall xp(x) \land \exists yq(y)$
 - b. $\exists xp(x) \lor \forall yp(y)$
- 5. Find a counter example for each of the following statements, B = {2,3,...8,9}
 - a. $\forall x \in B, x + 5 < 12$
 - b. $\forall x \in B, x \text{ is prime}$
- 6. Determine the truth value of the following statements, where A = {1,2,3}
 - a. $\exists x \forall y, x^2 < y + 1$
 - b. $\forall x \exists y, x^2 + y^2 < 12$
- 7. Let p(x): "X is taking a math course." Domain: all the students. Write each of the following propositions in words:
 - a. $\forall x p(x)$
 - b. $\exists x \sim p(x)$
 - c. $\sim (\forall xp(x))$
- 8. Let p(x): "X is a professional athlete", q(x): "X plays soccer". Domain = all people. Write each proposition in words
 - a. $\forall x(p(x) \rightarrow q(x))$
 - b. $\exists x(q(x) \rightarrow p(x))$
- 9. Let the statements "X is an accountant" and "X owns a Porsha" write each of the following statements symbolically
 - a. All accountants own Porsha
 - b. All accountants own Porsha
 - c. Someone who owns a Porsha is an accountant
- 10. Write each stamen symbolically
 - a. All men do not cheat on their wives
 - b. Every environmental problem is not a tragedy
- 11. The proposition function "if x and y are distinct people", then "x is taller than y". Write each proposition in words
 - a. $\forall x \forall y T(x,y)$
 - b. $\exists x \exists x T(x,y)$

CSC 28 - 01 SU22

12 JUNE 2022

1. q. $\forall x, |x| = x$; Domain: Real Numbers |-3| = -3

The statement is false for negative numbers.

b. $\exists x$, $x^2 \in x$ Domain: Real Numbers $1^2 = 1$

The statement is true

2. A = {1,2,3,4,5}

 $a. \exists x \in A (x+3 = 10)$

x+3=10 showing x=7, we verified that there is x=7 no equivalent in the domain.

the statement is false.

b. ∀x ∈ A (x +3 <= 7)

X+3 <= 7 Any number less than or equal to 4. X <= 4 since the domain included 5, the statement is false.

3. a. NEGATION: some students doesn't live in dormitories

D: All students

p(x): lives in dormitories $\sim (\forall x \in D \ p(x)) \equiv \exists x \in D \sim p(x)$

b. NEGATION: some mathematicians are not male

D: All mathematician majors

p(x): male

C. NEGATION: All students are not 25 years or older

D: students

p(x): 25 years or older

 $(x)q \sim G \otimes x = ((x)q G \otimes x =) \sim$

4. q. $\sim (\forall x p(x) \land \exists y q(y))$

 $(Y)p \sim YV \vee (X)q \sim xE$

b. ~ (∃xp(x) ∨ ∀yp(y))

 $(Y)q \sim YE \wedge (X)q \sim XV$

5. B = { 2,3,...,8,9}

q. $\forall x \in B$, x + 5 < 12

X < 7 B includes 7,8,9 as counter example

b. $\forall x \in B$, x is prime

4,6,8,9 are not prime as counter example

6. A = {1,2,3}

a. 3x y, x2 < y+1

For x = 1, every y satisfy the statement

 $1^2 < 1 + 1 = 1 < 2$

the statement is correct.

b. $\forall x \exists y, x^2 + y^2 < 12$

For y=1, every x satisfy the condition

 $3^2 + 1^2 < 12 = 10 < 12$

the statement is correct.

7. $\rho(x)$: X is taking a math course Domain: all the students

q. $\forall x p(x)$

All of the students are taking a math course.

b. $\exists x \sim p(x)$

some of the students are not taking a math course.

 $C. \sim (\forall x \rho(x))$

Not all of the students are taking a math course.

8. p(x): x is a professional athlete Domain: all people

q(x): x plays soccer

 $a. \forall x (p(x) \rightarrow q(x))$

All professional athletes play soccer

b. $\exists x (q(x) \rightarrow p(x))$

Everyone who plays soccer are professional athlete

9. p(x): x is an accountant

q(x): x owns a Porsha

a. All accountant owns Porsha

Domain: All accountant

Ax d(x)

b. All accountant owns Porsha

Domain: All people

 $Ax \in D$ $b(x) \rightarrow d(x)$

c. Someone who owns Porsha is an accountant

 $\exists x \ \rho(x) \land q(x)$

10. a. All men do not cheat on their wives

p(x): men

Domain: All men

q(x): cheat on their wives

 $Ax \sim d(x)$

b. Every environmental problem is not a tragedy.

p(x): environmental problem

q(x): tragedy

Domain: All environmental problem

 $\forall x \sim q(x)$

11. Q. 4x 4y T(x,y)

If all x and y are distinct people, then x is taller than y.

(Y,X)TyExE .d

If some x and some y are distinct people,

then x is taller than y.