UMBC CSEE

Project- MIPS Simulator

Advanced Computer Architechture

Sandipan Dey

12/19/2009

<u>Design</u>

Test Cases run & their outputs

1. Project Statement Document (Project_Fall2009.pdf) Sample Test case

(The one in the project statement using the same data.txt reg.txt config.txt as specified in the document with the following slight change in inst.txt)

inst.txt

L.D F6, 779 (R2) ; char L.D F2, 45(R3) ; char MUL.D F0, F2, F4 SUB.D F8, F6, F2 DIV.D F10, F0, F6 ADD.D F6, F8, F2

; changing the offset from 34 to 779 since the target address must be in [256, 287] ; changing the offset slightly since the target address must be in [256, 287]

It generates the following output, which is **exactly identical** to one expected:

```
Disassembly

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

LD F6, 779(R2)

LD F2, 822(R3)

IF ID EX M1 M2 M3 M4 M5 M6 WB

MUL.D F0, F2, F4

SUB.D F8, F6, F2

IF ID S S S S S EX1 EX2 EX3 EX4 EX5 EX6 WB

DIV.D F10, F0, F6

ADD.D F6, F8, F2

IF ID S S S S EX1 EX2 EX3 EX4 WB

IF ID S S S S S EX1 EX2 EX3 EX4 WB
```

```
linux1[16]% simulator inst.txt data.txt reg.txt config.txt result.txt
assembling source file inst1.txt...
generating object file inst1.o...
object code:
11011100010001100000001100001011
01000100000000100011001000000001
parsing the config file config1.txt...
parsing done!
loading the data file data1.txt in memory at address 0x100...
data file loaded!
loading the registers file reg1.txt...
registers file loaded!
loading the object file inst1.0 at address 0x000 ...
object file successfully loaded...
starting execution...
finishing execution...
writing results to file result.txt...
LD F6, 779(R2)
                                          21
                              14
                                    26
ADD.D F6, F8, F2
Total number of access requests for instruction cache:
Total number of access requests for data cache:
Number of data cache hits:
```

2. Test case 5 (CMSC611_Test_Cases/Test_5/inst.txt)

```
L.D F0, 0(R0)
L.D F2, 64(R0)
L.D F4, 0(R0)
L.D F4, 120(R0)
L.D F6, 64(R0)
L.D F8, 0(R0)
L.D F6, 34(R2)
BEQ R1, R1, Loop
MUL.D F0, F2, F4
ADD.D F10, F4, F2
Loop: ADD.D F10, F2, F4
L.D F6, 34(R2)
MUL.D F0, F2, F4
ADD.D F10, F4, F2
LID F6, F4, F2
DIV.D F10, F4, F2
DIV.D F2, F8, F2
```

Ad	ctual Out	put					Expected	Output		
LD F0, 0(R0)	6	7	14	15		1.d f0, 0(r0)	6	7	14	15
LD F2, 64(R0)	12	13	20	21		1.d f2, 64(r0)	12	13	20	21
D F4, 0(R0)	18	19	26	27		1.d f4, 0(r0)	18	19	26	27
D F4, 120(R0)	24	26	33	34		l.d f4, 120(r0)	24	26	33	34
D F6, 64(R0)	31	32	39			1.d f6, 64(r0)	30	31	39	40
D F8, 0(R0)	37	38	45	46		1.d f8, 0(r0)	36	37	45	46
D F6, 34(R2)	43	44	51	52		1.d f6, 34(r2)	42	43	51	52
EQ R1, R1, I11	49					beq r1, r1, loop	48	49		
UL.D F0, F2, F4	55					mul.d f0,f2,f4	54			
DD.D F10, F2, F4	61	62				add.d f10,f2,f4	60	61	67	68
D F6, 34(R2)	67			71		1.d f6, 34(r2)	66	67	70	71
UL.D F0, F2, F4	73	74	80	81		mul.d f0, f2, f4	72	73	79	80
DD.D F10, F4, F2	79		86	87		add.d f10, f4, f2	78	79	85	86
IV.D F2, F8, F2		86	92	93		div.d f2, f8, f2	84	85	91	92
otal number of acces umber of instruction otal number of acces	cache	hits:			14	Total number of acce			nstructi	on cache: 14
umber of data cache		1	2 4454	odone.		Total number of acce Number of data cache		ts for d	ata cach	e: 8

```
Disassembly

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

LD FO, O(RO)

IF ID EX M1 M2 M3 M4 M5 M6 WB

LD F4, O(RO)

IF ID EX M1 M2 M3 M4 M5 M6 WB

LD F4, O(RO)

IF ID EX M1 M2 M3 M4 M5 M6 WB

LD F6, 64(RO)

IF ID EX M1 M2 M3 M4 M5 M6 WB

LD F6, 64(RO)

IF ID EX M1 M2 M3 M4 M5 M6 WB

LD F6, 64(RO)

IF ID EX M1 M2 M3 M4 M5 M6 WB

LD F6, 34(R2)

BEQ R1, R1, I11

MUL.D F0, F2, F4

ADD.D F10, F2, F8, F2
```

The only place where the actual output (<u>result v1.txt</u>) differs from expected output is the ID stage in the **4th instruction**. But since there is a **WAW hazard** detected in between the 3rd & 4th instructions (both having the same output register *F4*) at the beginning of the ID stage of the 4th instruction (25th cycle), the ID stage of 4th instruction can't complete (it can't enter the EX stage) before the 3rd one enters the WB stage. So it must stall at ID stage till 26th (the previous load completes fetching data at 26th cycle only). Also, the stall is **before** ID stage (as can be seen from the above figures), because in my design, a stall at a particular stage means before that stage (since stall after ID will mean stall before EX, it stalls before, not after ID). Also, since IF is stalled if ID is stalled (they are sequential in nature) there will be this extra one latency introduced everywhere.

An instruction waiting in 1-cycle wide ID stage means that it has stalls either in the beginning or end of the ID stage (the cant wait inside the ID stage, since in practice it will be a D-type / T-type master-slave F/F, either the values will be stored in IF->ID latch (IF -> ID -> EX -> WB)

But having stall at the end of ID stage means that it must wait at the beginning of the EX stage, which is not the case here, that means it must wait at the beginning of it

3. Test case 6 (CMSC611_Test_Cases/Test_6/inst.txt)

LOOP: LW R4, 256(R0) LW R5, 260(R0) MUL.D F0,F2,F4 BEQ R1,R2,DONE DADD R1,R1,R1 SW R5, 256(R0) J LOOP DONE: DIV.D F10,F0,F6 L.D F6, 1024(R2)

MUL.D F20,F22,F24 ADD.D F21,F24,F22 DIV.D F22,F28,F22

simulator inst.txt data.txt reg.txt config.txt result.txt	writing results to f	ile res	ult.tx	t			
assembling source file inst.txt	LW R4, 256(R0)	4		10	11		
generating object file inst.o	LW R5, 260(R0)			1.4	15		
	MUL.D F0, F2, F4	12	1.3	1.9	20		
object code:	BEQ R1, R2, I8	16	17				
1000110000000100000000100000000	DADD R1, R1, R1	20	21	23	24		
1000110000000101000000100000100	SW R5, 256(R0)	24	25	30			
010001000000100000100000000010	J I1	28	29				
000100000010001000000000000000000000000	DIV.D F10, F0, F6	32					
00000000010000100001000011100	LW R4, 256(R0)	36	37	39	40		
1010110000000101000000100000000	LW R5, 260(R0)	40	41	46	47		
000010000000000000000000000000000000000	MUL.D FO, F2, F4	44	45	51	52		
0100010000001100000001010000011	BEQ R1, R2, I8	48	49				
1101110001000110000001000000000	DADD R1, R1, R1	52	53	55	56		
01000100000110001011010100000010	SW P5256 (RO)	5.6	.5.7	.62			
ве явля влавая ве с все явля ве ве являва.	(T. 1704)	50	6.0				
SC BBBC BBBBBC BC CBC CC BBC BC CBBBBBC C	TM 24 255 (20)	5.4	-65	6.7	5.8		
-	TW R6 - 0.60 03.04		68	77.6	76-		
	MODILLO MOLL MALL MA	170.	7/6	1754			
secretificate tilines secondidate foldate secondidate localitations.	MRG MAL MAL RE	77.6	1212				7
savehng dame t	DECEMBER AND RELEASE	60					7.
	DUNGER MYSSE MSE MA	# 5	#8	55.7	82		
isseiling time deite fille dettelliott in memory ett eddresse GefiGG	THE RES. THE CARL	4646	66.45	44.5			.7
tenne. Silher havedeatt	MODEL IN MODEL, MODEL, MODEL			44			4
tenestings time megineteres fille megulicativi	MONTH MAN, MAN, MAN	46	55° F		255		.7
regievere file lueded:	DENCE PER CONCE			5.377			2
	Manager accompany and seasoned						255
tessifring time eligeest fifice frantius sit schimese 0x000	Minoralescon auf Consentencestellaum						7.5
injess: Silve encommentality luminol	Manipulation of the second					4	4
	Mornington and disting apparent			are consum	E COMMENSAGE		
ricecricitans elementations and a l	Acceptable of the Control of the Con						f
intehing execution	leaved meaulite to fille	meau.it					2

For this test case the result is **exactly identical** to the one that is expected (<u>result_v1.txt</u>). Still it does not exactly match while comparing by diff for 2 reasons: 1) for difference in spaces, 2) During dissembling I **regenerate** the label names, but this time they are different (a label is named by *I10* if it corresponds to 10th instruction) 3) After dissembling, the source mnemonics my simulator generators are all in capital letters.

Ex	pected O	utput				Acti	ual Outp	out			
lw r4,256(r0)	4	5	10	11	writing results to fi	le resu	ult.tx	t			
lw r5,260(r0)		9	14	15							
mul.d f0, f2, f4	12	13	19	20	LW R4, 256(R0)			10	11		
beg r1, r2, done	16	17			LW R5, 260(R0)			14	15		
dadd r1,r1,r1	20	21	23	24	MUL.D F0, F2, F4		13	19			
sw r5,256(r0)	24	25	30		BEQ R1, R2, I8		17				
j loop	28	29			DADD R1, R1, R1		21	23	24		
div.d f10,f0,f6	32				SW R5, 256(R0)	24	25	30			
lw r4,256(r0)	36	37	39	40	J I1	28	29				
lw r5,260(r0)	40	41	46	47	DIV.D F10, F0, F6	32					
mul.d f0,f2,f4	44	45	51	52	LW R4, 256(R0)	36	37	39	40		
beg r1,r2,done	48	49			LW R5, 260(R0)	40	41	46	47		
dadd r1,r1,r1	52	53	55	56	MUL.D F0, F2, F4	44	45	51	52		
sw r5,256(r0)	56	57	62		BEQ R1, R2, I8	48	49				
j 100p	60	61			DADD R1, R1, R1		53	55	56		
lw r4,256(r0)	64	65	67	68	SW R5, 256(R0)		57	62			
lw r5,260(r0)	68	69	74	75	J I1		61				
mul.d f0,f2,f4	72	73	79	80	LW R4, 256(R0)	64		67	68		
beg r1, r2, done	76	77			LW R5, 260(R0)	68	69	74	75		
dadd r1,r1,r1	80				MUL.D F0, F2, F4	72	73	79	80		
div.d f10,f0,f6	84	85	91	92	BEQ R1, R2, I8	76	77				
1.d f6, 1024(r2)	88	89	94	95	DADD R1, R1, R1	80					
mul.d f20, f22, f24	92	93	99	100	DIV.D F10, F0, F6	84	85	91	92		
add.d f21, f24, f22	96	97	103	104	LD F6, 1024(R2)		89	94	95		
div.d f22, f28, f22	100	101	107	108	MUL.D F20, F22, F24	92	93		100		
					ADD.D F21, F24, F22	96	97	103	104		
					DIV.D F22, F28, F22	100	101	107	108		
Total number of acces	s reques	ts for i	nstructio	on cache: 25	Total number of acces	s reque	ests fo	or inst	ruction	cache:	25
Number of instruction	cache h	its:0			Number of instruction	cache	hits:				
					Total number of acces	s reque	ests fo	or data	cache:		
Total number of acces	s reques	ts for d	ata cache	e: 9	Number of data cache	hits:					
Number of data cache	hits:2										
-					saved results to file	result	.txt				

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
W R4, 256(R0)
                               IF ID EX M1 M2 M3 M4 WB
                                             IF ID EX M1 M2 M3 M4 WB
W R5, 260(R0)
                                                           IF ID EX1 EX2 EX3 EX4 EX5 EX6 WB
EQ R1, R2, I8
                                                                        IF ID
                                                                                      IF ID EX M WB
                                                                                                    IF ID EX M1 M2 M3 M4
W R5, 256(R0)
                                                                                                                 IF ID
W R4, 256(R0)
W R5, 260(R0)
W R5, 260(R0)
UL.D FO, F2, F4
EQ R1, R2, I8
D F6, 1024(R2)
Errors:
```

Only things that are additionally output by the program are two **exceptions** that are caused by **divide-by-zero** (since I assumed all FP registers have initial values zeros, since they are not loaded from any file, unlike the integer registers). Also, I don't immediately stop the programs upon receiving the exception (otherwise in this case the output would not have been complete), only I don't execute the operation that would have raised the exception (e.g., divide by zero in this case). Also, for this test case, I needed to change my parser a little bit, since I wrote the bison parser to support only the backward branch / jump, now I added forward jump too, that requires feeling the unresolved symbols either by an 1-pass assembly (I did this) or by maintaining a list or by a 2-pass assembly.

4. Test case 2 modified (CMSC611 Test Cases/Test 2 modified/inst.txt)

A: L.D F16, 1024(R4) MUL.D F6,F7,F16 B: SUB.D F9,F16,F8 SUB.D F16,F1,F6 ADD.D F6,F2,F9 MUL.D F8,F9,F6 DADD R1,R5,R1 BEQ R1,R6,B DADD R1,R5,R1 DSUB R2,R3,R2 BEQ R2,R7,A DSUB R31,R31,R31

In this test case as we can see there are a few differences with the expected output (result_v1.txt). The first

difference that we can see is in the 5^{th} instruction. Here, the instruction is to be fetched at $15 + (5 + 1) + (5 + 1) = 27^{th}$ cycle according to result_v1.txt, but according to the logic implemented, it's fetched at $24 + (5 + 1) + (5 + 1) = 36^{th}$ cycle.

Since IF and ID are **strictly sequential**, if there is **stall** before ID, then IF must **stall** (otherwise the earlier instruction that is waiting at ID will be overwritten, since it will be waiting in the IF-ID latch only). Since the **FPADD** unit is **non-pipelined** according to the configuration, 5th SUB.D must wait in the ID stage (i.e., before the ID stage, in the IF-ID latch, for it can't wait in the ID-EX latch, because that means it has already left ID stage, that it can't do before the 4th instruction leaves the FPADD execution unit, which it does at 24th cycle). As soon as the 5th instruction completes the ID stage, the 6th instruction starts for the IF stage, it takes another 12 cycles for cache miss, resulting in 36th cycle for the IF to be complete for the 6th instruction. This difference in delay with the expected output is propagated to the next instructions that increased the overall latency from every instruction after this instruction. The following figures (program outputs) explains the situation.

E	pected Ou	utput				Actu	al Outp	out	
1.d f16, 1024(r4)	12	13	20	21	LD F16, 1024(R4)	12	13	20	21
mul.d f6, f7, f16	13	14	26	27	MUL.D F6, F7, F16	13	14	26	27
sub.d f9, f16, f8	14	15	24	25	SUB.D F9, F16, F8	14	15	24	25
sub.d f16, f1, f6	15	24	30	31	SUB.D F16, F1, F6	15	24	30	31
add.d f6, f2, f9	27	30	34	35	ADD.D F6, F2, F9	35	36	40	42
mul.d f8, f9, f6	30	31	40	41	MUL.D F8, F9, F6	36	37	46	47
dadd r1, r5, r1	31	32	35	36	DADD R1, R5, R1	37	38	40	41
beg r1, r6, b	32	34	33	50	BEQ R1, R6, I3	38	40		
dadd r1, r5, r1	44	31			DADD R1, R5, R1	51			
sub.d f9, f16, f8	45	46	50	51	SUB.D F9, F16, F8	52	53	57	58
	46	50	54	55	SUB.D F16, F1, F6	53	57	61	62
sub.d f16, f1, f6 add.d f6, f2, f9	50	54	58	55 59	ADD.D F6, F2, F9	57	61	65	67
mul.d f8, f9, f6	54	55	64	65	MUL.D F8, F9, F6	61	62	71	72
dadd r1, r5, r1	55	56	59	60	DADD R1, R5, R1	62	63	65	66
beg r1, r6, b	56	58	33	60	BEQ R1, R6, I3	63	65		
sub.d f9, f16, f8	58	50			SUB.D F9, F16, F8	65			
dadd r1, r5, r1	59	60	62	63	DADD R1, R5, R1	66	67	69	70
daud r1, r3, r1	60	61	63	64	DSUB R2, R3, R2	67	68	70	71
beg r2, r7, a	61	63	03	01	BEQ R2, R7, I1	68	70		
dsub r31,r31,r31	63	03			DSUB R31, R31, R31	70			
1.d f16, 1024(r4)	64	65	67	68	LD F16, 1024(R4)	71	72	74	75
mul.d f6, f7, f16	65	66	73	74	MUL.D F6, F7, F16	72	73	80	81
sub.d f9, f16, f8	66	67	71	72	SUB.D F9, F16, F8	73	74	78	79
sub.d f16, f1, f6	67	71	77	78	SUB.D F16, F1, F6	74	78	84	85
add.d f6, f2, f9	71	77	81	82	ADD.D F6, F2, F9	78	84	88	90
mul.d f8, f9, f6	77	78	87	88	MUL.D F8, F9, F6	84	85	94	95
dadd r1, r5, r1	78	79	82	83	DADD R1, R5, R1	85	86	88	89
beg r1, r6, b	79	81	UZ	00	BEQ R1, R6, I3	86	88		
dadd r1, r5, r1	81	82	84	85	DADD R1, R5, R1	88	89	91	92
dsub r2, r3, r2	82	83	85	86	DSUB R2, R3, R2	89	90	92	93
beg r2, r7, a	83	85	0.5	00	BEQ R2, R7, I1	90	92		
1.d f16, 1024(r4)	85	0.5			LD F16, 1024(R4)	92			
dsub r31,r31,r31	86	87	89	90	DSUB R31, R31, R31	93	94	96	97
Total number of acce. Number of instruction Total number of acce.	n cache h	its:30			Total number of acces Number of instruction Total number of acces	cache	hits:	30	
Number of data cache	nits:1				Number of data cache	hits:	1		

5. Test case 2_Config1 (CMSC_Test_Cases/Test_2_Config1/inst.txt)

As can be seen there is only one difference, that is again for the one stall before ID (at cycle 30, as opposed to after), as in the previous cases, this causes propagation of one-cycle extra delay than the one in result_v1.txt.

```
Disassembly

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

LD F16, 1024(R4)

MUL.D F6, F7, F16

SUB.D F9, F16, F8

SUB.D F16, F1, F6

ADD.D F6, F2, F9

MUL.D F8, F9, F6

DADD R1, R5, R1

BEQ R1, R6, I3

DADD R1, R5, R1

DADD R1, R5, R1
```

E	pected O	utput				Actua	al Outp	ut	
l.d f16, 1024(r4)	6	7	14	15	LD F16, 1024(R4)	6	7	14	15
nul.d f6, f7, f16		8	20	21	MUL.D F6, F7, F16			20	21
ub.d f9, f16, f8	13	14	18	19	SUB.D F9, F16, F8	13	14	18	19
ub.d f16, f1, f6	14	15	24	25	SUB.D F16, F1, F6	14	15	24	25
dd.d f6, f2, f9	20	21	25	26	ADD.D F6, F2, F9	20	21	25	26
ul.d f8, f9, f6	21	22	31	32	MUL.D F8, F9, F6	21	22	31	32
add r1, r5, r1	27	28	30	31	DADD R1, R5, R1	27	28		31
eq r1, r6, b	28	30			BEQ R1, R6, I3	28			
add r1, r5, r1	34				DADD R1, R5, R1	35			
ub.d f9, f16, f8	35	36	40	41	SUB.D F9, F16, F8	36	37	41	42
ub.d f16, f1, f6	36	37	41	42	SUB.D F16, F1, F6	37	38	42	43
dd.d f6, f2, f9	37	38	44	45	ADD.D F6, F2, F9	38	39	45	46
ul.d f8, f9, f6	38	39	50	51	MUL.D F8, F9, F6	39	40	51	52
add r1, r5, r1	39	40	42	43	DADD R1, R5, R1	40	41	43	44
eq r1, r6, b	40	42			BEQ R1, R6, I3	41	43		
ub.d f9, f16, f8	42				SUB.D F9, F16, F8	43			
add r1, r5, r1	43	44	46	47	DADD R1, R5, R1	44	45	47	48
sub r2, r3, r2	44	45	47	48	DSUB R2, R3, R2	45	46	48	49
eq r2, r7, a	50	51			BEQ R2, R7, I1	51	52		
sub r31,r31,r31	51				DSUB R31, R31, R31	52			
.d f16, 1024(r4)	52	53	55	56	LD F16, 1024(R4)	53	54	56	57
ul.d f6, f7, f16	53	54	61	62	MUL.D F6, F7, F16	54	55	62	63
ub.d f9, f16, f8	54	55	59	60	SUB.D F9, F16, F8	55	56		61
ub.d f16, f1, f6	55	56	65	66	SUB.D F16, F1, F6	56	57	66	67
dd.d f6, f2, f9	56	62	67	68	ADD.D F6, F2, F9	57	63	67	69
ul.d f8, f9, f6	62	63	72	73	MUL.D F8, F9, F6	63	64	73	74
add r1, r5, r1	63	64	66	67	DADD R1, R5, R1	64	65	67	68
eq r1, r6, b	64	66			BEQ R1, R6, I3	65	67		
add r1, r5, r1	66	67	69	70	DADD R1, R5, R1	67	68		71
sub r2, r3, r2	67	68	70	71	DSUB R2, R3, R2	68		71	72
eq r2, r7, a	68	70			BEQ R2, R7, I1	69	71		
.d f16, 1024(r4)	70				LD F16, 1024(R4)	71			
sub r31,r31,r31	71	72	74	75	DSUB R31, R31, R31	72	73	75	76
otal number of acces			nstructi	on cache: 33	Total number of acces				
umber of instruction	n cache h	its:27			Number of instruction			27	
					Total number of acces			r data	cache: 2
otal number of acces		ts for d	ata cach	ne: 2	1Number of data cache	hits:			
umber of data cache	hits:1								

6. Test case 2_Config2 (CMSC_Test_Cases/Test_2_Config2/inst.txt)

As before, the difference is again for the stalls before ID (at cycle 46, according to my implementation, the next fetch can start at this cycle, not before that since ID is in stall), as in the previous cases, this causes propagation of extra delays than the one in result_v1.txt as shown in the following results.

Ex	pected Ou	tput				Actu	ıal Outp	out		
1.d f16, 1024(r4)	20	21	42	43	LD F16, 1024(R4)	20	21	42	43	
mul.d f6, f7, f16	22	23	48	49	MUL.D F6, F7, F16	21	22	48	49	
sub.d f9, f16, f8	24	25	46	47	SUB.D F9, F16, F8	22	23	46	47	
sub.d f16, f1, f6	26	46	52	53	SUB.D F16, F1, F6	23	46	52	53	
add.d f6, f2, f9	46	52	56	57	ADD.D F6, F2, F9		66		72	
mul.d f8, f9, f6	52	53	62	63	MUL.D F8, F9, F6	66	67	76	77	
dadd r1, r5, r1	54	55	57	58	DADD R1, R5, R1	67			71	
beq r1, r6, b	56	57			BEQ R1, R6, I3					
dadd r1, r5, r1	76				IDADD R1, R5, R1	89				
sub.d f9, f16, f8	78	79	83	84	SUB.D F9, F16, F8	90	91	95	96	
sub.d f16, f1, f6	80	83	87	88	ISUB.D F16, F1, F6	91		99	100	
add.d f6, f2, f9	83	87	91	92	IADD.D F6, F2, F9	95	99	103	105	
mul.d f8, f9, f6	87	88	97	98	MUL.D F8, F9, F6	99	100	109	110	
dadd r1, r5, r1	89	90	92	93	IDADD R1, R5, R1	100	101	103	104	
beq r1, r6, b	91	92			IBEQ R1, R6, I3	101	103			
sub.d f9, f16, f8	93				SUB.D F9, F16, F8	103				
dadd r1, r5, r1	95	96	98	99	IDADD R1, R5, R1	104	105	107	108	
isub r2, r3, r2	97	98	100	101	IDSUB R2, R3, R2	105	106	108	109	
peq r2, r7, a	99	100			BEQ R2, R7, I1	106	108			
dsub r31,r31,r31	101				DSUB R31, R31, R31	108				
l.d f16, 1024(r4)	103	104	107	108	ILD F16, 1024(R4)	109	110	112	113	
mul.d f6, f7, f16	105	106	113	114	MUL.D F6, F7, F16	110	111	118	119	
sub.d f9, f16, f8	107	108	112	113	SUB.D F9, F16, F8	111	112	116	117	
sub.d f16, f1, f6	109	112	117	118	SUB.D F16, F1, F6	112	116	122	123	
add.d f6, f2, f9	112	117	121	122	ADD.D F6, F2, F9	116	122	126	128	
mul.d f8, f9, f6	117	118	127	128	IMUL.D F8, F9, F6	122	123	132	133	
dadd r1, r5, r1	119	120	122	123	DADD R1, R5, R1	123	124	126	127	
peg r1, r6, b	121	122			BEQ R1, R6, I3	124	126			
dadd r1, r5, r1	123	124	126	127	DADD R1, R5, R1	126	127	129	130	
isub r2, r3, r2	125	126	128	129	DSUB R2, R3, R2	127	128	130	131	
peq r2, r7, a	127	128			BEQ R2, R7, I1	128	130			
l.d f16, 1024(r4)	129				LD F16, 1024(R4)	130				
isub r31,r31,r31	131	132	134	135	DSUB R31, R31, R31	131	132	134	135	
Total number of acces			nstructi	on cache: 33	Total number of acces			or ins	truction cache:	
Number of instruction	n cache hi	its:30			Number of instruction					
					Total number of acces	ss requ	ests f	or data	a cache: 2	
Total number of acce: Number of data cache		ts for da	ata cach	e: 2	Number of data cache	hits:	1			

```
Disassembly

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

LD F16, 1024(R4)

MUL.D F6, F7, F16

SUB.D F9, F16, F8

SUB.D F16, F1, F6

ADD.D F6, F2, F9
```

7. Test cases 1/3/4 (CMSC Test Cases/Test 1/3/4/inst.txt)

The outputs generated again differs a little bit from the ones generated in result_v1.txt. Some of them have some problem with termination. One can control the termination of the simulator by setting the **MAX_INS** macro, which is introduced to **prevent infinite loops.** Still the outputs that are generated are shown and compared to the expected output, they are nearly the same, as seen from the following output (for Test case 1). The one-cycle discrepancy is again due to the assumption of stall before ID.

Expe	ected Ou		Actual Output						
lw r0, 1024(r10)	5	6	13	14	LW RO, 1024(R10)	5	6	13	14
lw r1, 1024(r11)	10	11	14	15	LW R1, 1024(R11)	10	11	14	15
lw r2, 1024(r12)	15	16	23	24	LW R2, 1024(R12)	15	16	23	24
lw r4, 1024(r13)	20	21	24	25	LW R4, 1024(R13)	20	21	24	25
dsub r0, r0, r1	25	26	28	29	DSUB RO, RO, R1	25	26	28	29
add.d f2, f4, f6	30	31	35	36	ADD.D F2, F4, F6	30	31	35	36
bne r0, r2, 11	35	36			BNE RO, R2, I5	35	36		
sw r0, 1024(r14)	40				SW RO, 1024(R14)	40			
dsub r0, r0, r1	41	42	44	45	DSUB RO, RO, R1	41	42	44	45
add.d f2, f4, f6	42	43	48	49	ADD.D F2, F4, F6	42	43	47	49
bne r0, r2, 11	43	44			BNE RO, R2, I5	43	44		
dsub r0, r0, r1	44	45	47	48	DSUB RO, RO, R1	44	45	47	48
add.d f2, f4, f6	45	48	53	54	ADD.D F2, F4, F6	45	47	51	53
bne r0, r2, 11	48	49			BNE RO, R2, I5	47	48		
dsub r0, r0, r1	49	50	52	53	DSUB RO, RO, R1	48	49	51	52
add.d f2, f4, f6	50	53	57	58	ADD.D F2, F4, F6	49	51	55	56
bne r0, r2, 11	53	54			BNE RO, R2, I5	51	52		
dsub r0, r0, r1	54				DSUB RO, RO, R1	52			
sw r0, 1024(r14)	55	56	63		SW RO, 1024(R14)	53	54	61	
lw r3, 1024(r9)	60	61	64	65	LW R3, 1024(R9)	58	59	62	63
dsub r0, r0, r1	65	66	68	69	DSUB RO, RO, R1	63	64	66	67
dsub r2, r2, r1	70	71	73	74	DSUB R2, R2, R1	68	69	71	72
mul.d f8, f2, f4	75	76	82	83	MUL.D F8, F2, F4	73	74	80	81
add.d f8, f8, f10	80	82	86	87	ADD.D F8, F8, F10	78	80	84	85
dadd r14,r14,r4	85	86	88	89	DADD R14, R14, R4	84	85	87	88
bne r0, r3, 12	90	91			BNE RO, R3, I6	89	90		
dadd r0, r1, r3	95				DADD RO, R1, R3	94			
add.d f2, f4, f6	100	101	105	106	ADD.D F2, F4, F6	99	100	104	105
bne r0, r2, 11	105	106			BNE RO, R2, I5	104	105		
sw r0, 1024(r14)	110	111	118		SW RO, 1024(R14)	109	110	117	
'lw r3, 1024(r9)	115	116	119	120	LW R3, 1024(R9)	114	115	118	119
dsub r0, r0, r1	120	121	123	124	DSUB RO, RO, R1	119	120	122	123
dsub r2, r2, r1	125	126	128	129	DSUB R2, R2, R1	124	125	127	128
mul.d f8, f2, f4	130	131	137	138	MUL.D F8, F2, F4	129	130	136	137
add.d f8, f8, f10	135	137	141	142	ADD.D F8, F8, F10	134	136	140	141
dadd r14,r14,r4	140	141	143	144	DADD R14, R14, R4	140	141	143	144
bne r0, r3, 12	145	146			BNE RO, R3, I6	145	146		
add.d f2, f4, f6	150				ADD.D F2, F4, F6	150	151	155	156
dadd r0, r1, r3	155	156	158	159	BNE RO, R2, I5	155	156		

The following figures present the output fragments for Test_4 (the output consists of a huge number of lines, first few lines are shown here, again the **maximum number of instructions** to be executed can be controlled by the **MAX_INS** macro in cpu.h), which the simulator generates the following exception as well: "Exception: out of range access with address: 290 (should be in [256, 287]), Instruction: SD F3, 8(R29)!"

Disassembly	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
LW R1, 0(R31)									IF	ID	EX	M1	M2	МЗ	M4	M5	M6	M7	WB																	
LW R4, 20(R31)										IF	ID	EX						M1	M2	МЗ	M4	M5	M6	M7	M8	WB										
LW R3, 28(R31)											IF	ID	EX												M1	M2	МЗ	M4	M5	M6	M7	M8	WB			
DSUB R2, R4, R3												IF	ID	S																			EX	M	WB	
LD F2, 4(R31)																					IF												ID	EX	M	WB
LD F3, 12(R31)																																	IF	ID	EX	M1
LD F4, 12(R31)																																		IF	ID	EX
ADD.D F3, F3, F2																																			IF	S
MUL.D F4, F4, F2																																				

	Expected Out	put			Actual Output
lw r1, 0(r31)	9	10	18	19	LW R1, 0(R31) 9 10 18 19
lw r4, 20(r31)	11	12	25	26	LW R4, 20(R31) 10 11 25 26
lw r3, 28(r31)	13	18	32	33	LW R3, 28(R31) 11 12 32 33
dsub r2,r4,r3	18	25	34	35	DSUB R2, R4, R3 12 13 34 35
1.d f2, 4(r31)	27	33	36	37	LD F2, 4(R31) 21 33 35 36
1.d f3, 12(r31)	33	34	43	44	LD F3, 12(R31) 33 34 42 43
1.d f4, 12(r31)	35	36	45	46	LD F4, 12(R31) 34 35 43 44
add.d f3,f3,f2	37	43	47	48	ADD.D F3, F3, F2 35 42 46 47
mul.d f4,f4,f2	46	47	53	54	MUL.D F4, F4, F2 50 51 57 58
1.d f5, 12(r31)	48	49	52	53	LD F5, 12(R31) 51 52 54 55
div.d f5,f5,f2	50	52	62	63	DIV.D F5, F5, F2 52 54 64 65
s.d f3, -8(r29)	52	53	61		SD F3, 8(R29) 54 55 57
s.d f4, -8(r29)	61	62	65		SD F4, 8(R29) 63 64 66
s.d f5, -8(r29)	63	64	67		SD F5, 8(R29) 64 65 67
dsub r1, r1, r2	65	66	68	69	DSUB R1, R1, R2 65 66 68 69
bne r0,r1,loop	67	68			BNE R0, R1, I5 66 68
j end	76				J IO 76
1.d f2, 4(r31)	78	79	82	83	LD F2, 4(R31) 77 78 80 81
1.d f3, 12(r31)	80	81	84	85	LD F3, 12(R31) 78 79 81 82
1.d f4, 12(r31)	82	83	86	87	LD F4, 12(R31) 79 80 82 83
add.d f3,f3,f2	84	85	89	90	ADD.D F3, F3, F2 80 81 85 87
mul.d f4,f4,f2	86	87	93	94	MUL.D F4, F4, F2 81 82 88 89
1.d f5, 12(r31)	88	89	92	93	LD F5, 12(R31) 82 83 85 86
div.d f5,f5,f2	90	92	102	103	DIV.D F5, F5, F2 83 85 95 96
s.d f3, -8(r29)	92	93	96		SD F3, 8(R29) 85 86 88
s.d f4, -8(r29)	94	95	98		SD F4, 8(R29) 86 87 89
s.d f5, -8(r29)	96	97	104		SD F5, 8(R29) 87 88 96
dsub r1,r1,r2	98	99	105	106	DSUB R1, R1, R2 88 89 97 98
bne r0,r1,loop	100	101			BNE RO, R1, I5 89 91
1.d f2, 4(r31)	102	104	107	108	LD F2, 4(R31) 91 92 98 99
1.d f3, 12(r31)	104	105	109	110	LD F3, 12(R31) 92 93 99 100
1.d f4, 12(r31)	106	107	111	112	LD F4, 12 (R31) 93 94 100 101
add.d f3,f3,f2	108	109	113	114	ADD.D F3, F3, F2 94 99 103 105
mul.d f4,f4,f2	110	111	117	118	MUL.D F4, F4, F2 99 100 106 107
1.d f5, 12(r31)	112	113	116	117	LD F5, 12 (R31) 100 101 103 104
div.d f5,f5,f2	114	116	126	127	DIV.D F5, F5, F2 101 103 113 114
s.d f3, -8(r29)	116	117	120		SD F3, 8 (R29) 103 104 106

8. Test Case done in the class with configurations from the project document

A: L.D F16, 1032(R4) MUL.D F6, F7, F16 B: SUB.D F9, F16, F8 SUB.D F16, F1, F6 ADD.D F6, F2, F4 MUL.D F8, F4, F6 DADD R1, R5, R1 BNE R1, R6, B

LD F16, 1032(R4)	6	7	14	15
MUL.D F6, F7, F16	7	8	20	21
SUB.D F9, F16, F8	13	14	18	19
SUB.D F16, F1, F6	14	15	24	25
ADD.D F6, F2, F4	20	21	25	26
MUL.D F8, F4, F6	21	22	31	32
DADD R1, R5, R1	27	28	30	31
BNE R1, R6, I3	28	30		
SUB.D F9, F16, F8	36	37	41	42
SUB.D F16, F1, F6	37	38	42	43
ADD.D F6, F2, F4	38	39	43	45
MUL.D F8, F4, F6	39	40	49	50
DADD R1, R5, R1	40	41	43	44
BNE R1, R6, I3	41	43		
SUB.D F9, F16, F8	43	44	53	54
SUB.D F16, F1, F6	44	50	54	55
ADD.D F6, F2, F4	50	51	55	57
MUL.D F8, F4, F6	51	52	61	62
DADD R1, R5, R1	52	53	55	56
BNE R1, R6, I3	53	55		
SUB.D F9, F16, F8	55	56	65	66
SUB.D F16, F1, F6	56	62	66	67
ADD.D F6, F2, F4	62	63	67	69
MUL.D F8, F4, F6	63	64	73	74
DADD R1, R5, R1	64	65	67	68
BNE R1, R6, I3	65	67		
SUB.D F9, F16, F8	67	68	77	78
SUB.D F16, F1, F6	68	74	78	79
ADD.D F6, F2, F4	74	75	79	81
MUL.D F8, F4, F6	75	76	85	86
DADD R1, R5, R1	76	77	79	80
BNE R1, R6, I3	77	79		

Couple of important things to be mentioned:

- 1) If there is a parse error, a syntax error message will be generated from the parser.
- 2) A HALT instruction is inserted silently at the end of all instruction (to detect the end of execution).
- 3) log.txt and pipeline.txt can be viewed to find useful information about step by step execution of instructions / hazards / cache contents / BTB contents / registers / memory and everything.
- 4) result of the execution in desired format is written in result.txt.

The supported subset of MIPs instruction set

Instruction Class	Instruction Mnemonic
Data Transfers	LW, SW, L.D, S.D
Arithmetic/ logical	DADD, DSUB, ADD.D, MUL.D, DIV.D, SUB.D
Control	J, BEQ, BNE

Reduced MIPS instruction set

31 20	20 21	20 10 13		0
110111	base	rt	offset	
6	5	5	16	-
Format:	LD rt, offset	(base)	MIPS	III
Purpose:	To load a dou	bleword from men	nory.	
Description:	rt ← memory	base+offset]		
effective ad	idress are fetch		nemory location specified by the PR rt. The 16-bit signed offset is a address.	
SD			Store Doub	lewor
0.4 0.0	25 24	20 40 45		

Purpose: To compare GPRs then do a PC-relative conditional branch

Description: if (rs ≠ rt) then branch

LD

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-relative effective target address.

If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after the instruction in the delay slot is executed.

The grammar for MIPS instruction set assembler

 $Instruction_List \rightarrow Instruction_List \ Instruction \mid \varepsilon$

 $Instruction \rightarrow DataTransferInstruction \mid ArithmeticLogicalIntruction \mid ControlInstruction$

 $DataTransferInstruction \rightarrow DTOperation DTOperands$

 $ArithmetidLogicalIntruction \rightarrow ALUOperation ALUOperands$

Control → Jump | Branch

 $Jump \rightarrow J'$ Address

Branch → BranchOperation BranchOperands

 $DTOperation \rightarrow "LW" \mid "LD" \mid "SW" \mid "S.D"$

DTOperands → REG ',' Address '(' GPR')'

 $ALUOperation \rightarrow "DADD" \mid "DSUB" \mid "ADD.D" \mid "SUB.D" \mid "MULT.D" \mid "DIV.D"$

ALUOperands → REG ',' REG ',' REG

BranchOperation → "BEQ" | "BNE"

 $BranchOperands \rightarrow REG', 'REG', 'Address$

 $Address \rightarrow [0-9]+$

 $REG \rightarrow GPR \mid FPR$

 $GPR \rightarrow R[0-9]+$

 $FPR \rightarrow F[0-9] +$

The GUI Version of the simulator

