ДЪРЖАВЕН ЗРЕЛОСТЕН ИЗПИТ ПО **МАТЕМАТИКА**

19 май 2009 г. – <u>Вариант 1</u>

УВАЖАЕМИ ЗРЕЛОСТНИЦИ,

Тестът съдържа 28 задачи по математика от два вида:

- 20 задачи със структуриран отговор с четири възможни отговора, от които само един е верен;
- 8 задачи със свободен отговор.

Първите 20 задачи (от 1. до 20. включително) в теста са от затворен тип с четири възможни отговора, обозначени с главни букви от A до Γ , от които само един е верен. Отговорите на тези задачи отбелязвайте със син/черен цвят на химикалката в листа за отговори, а не върху тестовата книжка. Отбелязвайте верния отговор със знака X в кръгчето с буквата на съответния отговор. Например:

Ако след това прецените, че първоначалният отговор не е верен и искате да го поправите, запълнете кръгчето с грешния отговор и отбележете буквата на друг отговор, който приемате за верен. Например:

За всяка задача трябва да е отбелязан не повече от един действителен отговор. Като действителен отговор на съответната задача се приема само този, чиято буква е отбелязана със знака ${\bf X}$.

Отговорите на **задачите със свободен отговор (от 21. до 28. вкл.)** запишете в предоставения **свитък за свободните отговори**, като за задачи **от 26. до 28. вкл.** запишете пълнете решения с необходимите обосновки.

ПОЖЕЛАВАМЕ ВИ УСПЕШНА РАБОТА!

1. Дадени са	безкрайните	десетични	периодични	дроби	P = 0, (15)	И	Q=0,(151).
Вярно е, че:							

- **A)** P > Q **B)** P = Q **Г)** P и Q не могат да се сравнят
- **2.** Стойността на израза $P = \sqrt{(5-4\sqrt{3})^2 + (\sqrt{3}-2)^2}$ е:
- **A)** $12 8\sqrt{3}$
- **Б)** 2
- **B)** $2 + 4\sqrt{3}$
- Γ) 12 4 $\sqrt{3}$
- 3. Допустимите стойности за израза $\left(\frac{1}{2x-1} + \frac{3x}{1-x^2}\right) : (x+2)$ са:
- **A)** $x \neq 0,5$; 1
- **B)** $x \neq 0,5$; ± 1 **B)** $x \neq 0,5$; ± 1 ; 2 Γ) $x \neq 0,5$; ± 1 , -2
- 4. Ако x_1 и x_2 са корените на уравнението $x^2-x-20=0$, x_3 и x_4 са корените на уравнението $1-20x^2-x=0$, то е вярно, че:
- **A)** $x_1.x_2 = x_3.x_4$

b) $\frac{1}{x_1.x_2} = x_3 + x_4$

B) $x_1.x_2.x_3.x_4 = -1$

- Γ) $x_1.x_2 = -x_3.x_4$
- 5. Колко общи точки имат графиките на функциите $f(x) = x^2 3x + 2$ и $g(x) = x^2 + 5x - 6$?
- **A)** 0
- **b**) 1
- **B)** 2
- **Γ**) 3
- 6. Корените на уравнението $\sqrt{1-x} = 5+x$ са:
- **A)** -3 и -8
- **Б)** −8
- Г) няма реални корени
- 7. Стойността на израза $\log_3 27 \lg \frac{1}{100} \log_5 1$ е равна на:
- **A)** 0
- **b**) 1
- **B)** 4
- **Γ**) 5
- 8. Решенията на неравенството $\frac{1}{r^2+1} < 1$ са:
- **A)** $x \in (-\sqrt{2}; \sqrt{2})$
- **b)** $x \in (-\infty; -\sqrt{2}) \cup (\sqrt{2}; +\infty)$
- **B)** $x \in (-\infty;0) \cup (0;+\infty)$ Γ) $x \in (-\infty;+\infty)$

9. На чертежа е построена единичната окръжност и права p, която се допира до окръжността в точка с абсциса 1. Едното рамо на ъгъл α пресича правата p в точка M, както е показано. За ъгъл α ординатата на точка M е стойността на функцията:

А) синус

Б) косинус

В) тангенс

Г) котангенс

10. Дадена е окръжност $k(O, r = 2 \ cm)$ и точки A и B от окръжността, такива че дължината на дъгата AB е $2,5 \ cm$. Мярката на острия $\angle AOB$ е:

- **A)** 0,25 rad
- **Б)** 1,25 rad
- **B)** 2 rad
- Γ) 2,5 rad

11. За геометричната прогресия $a_1, a_2, ..., a_6$ е известно, че $a_3.a_4 = -3$. Произведението $a_1.a_2.a_3.a_4.a_5.a_6$ е равно на:

A) 27

Б) 9

- **B)** -9
- Γ) -27

12. Нека $Q_{\scriptscriptstyle \parallel}$ е множество от 100 рационални числа и x е случайно избрано число от

 Q_1 . Вероятността числото $q = \sqrt{\left(1+x\right)^2}$ да е ирационално, е:

A) 0

- **b**) $\frac{1}{2}$
- **B**) 1
- Г) невъзможно да се определи

13. На чертежа AP:PC=2:3 и $PQ \parallel AB$. Ако AB=15 cm, то дължината на PQ е:

Б) 9 ст

B) 10 cm

 Γ) 21,5 cm

14. На чертежа ΔABC е правоъгълен и равнобедрен, AL е ъглополовящата на $\angle CAB$, а $S_1,\ S_2$ и S_3 са лицата на построените квадрати. Вярно е, че:

b)
$$2S_1 > S_2$$

B)
$$S_3 = \left(\frac{3}{2} + \sqrt{2}\right) S_2$$

$$\Gamma$$
) $S_1 + S_2 > S_3$

15. Ако за четириъгълника ABCD на чертежа е дадено, че S_{AOD} : $S_{DOC} = 3:1$ и DO: DB = 1:4, то НЕ Е вярно, че:

A) $DC \parallel AB$

- **B)** S_{AOB} : $S_{DOC} = 3:1$
- **6)** $S_{AOD} = S_{OBC}$ **1)** $S_{DOC} : S_{BCO} = 1:3$

16. Лицето на равнобедрен триъгълник с дължини на бедрото и на основата съответно 5 ст и 2 сте:

- **A)** $2\sqrt{6}$ cm^2 **B)** $4\sqrt{6}$ cm^2 **B)** 12 cm^2 Γ) $2\sqrt{3}$ cm^2

17. Ако най-голямата страна в разностранния $\triangle ABC$ е AB = R, където R е радиусът на описаната окръжност, то мярката на вътрешния ъгъл при върха $\,C\,$ е:

- A) 30°
- **Б)** 150°
- **B)** 60°
- **Γ**) 120°

18. Триъгълникът ABC на чертежа е равностранен с дължина на страната 19 cm и AD = 5 cm. Дължината на хордата CD е:

- **A)** 20 cm **B)** $20\sqrt{3}$ cm
- **B)** 21 *cm*
- Γ) $21\sqrt{3}$ cm

19. Точката G е медицентърът на $\triangle ABC$, точката $G^{'}$ е симетричната на G относно средата M на страната AB. Ако $S_{RMG^I} = 4$,

TO S_{ABC} e:

A) 12

Б) 24

B) 28

Г) 36

20. Равнобедрен трапец с основи $AB = 50 \ cm$ и $CD = 10 \ cm$, и бедро $AD = 29 \ cm$ има височина:

- **A)** 20 cm
- **Б)** 21 *cm*
- **B)** 30 cm
- **Γ**) 41 cm

21. Стойността на израза
$$A = \frac{\left(\frac{1}{2}\right)^x + 5\left(\frac{1}{2}\right)^x}{\left(\frac{1}{2}\right)^y}$$
 е по-голяма от 6.

Запишете по-голямото от числата х и у .

- **22.** В банка била вложена сума пари, при годишна сложна лихва 3%. След три години сумата нараснала на 21 854 лева и 54 стотинки. Каква сума в лева е била вложена първоначално?
- **23.** Намерете стойността на израза $tg15^{\circ}+cotg15^{\circ}$.
- **24.** Даден е равнобедрен $\triangle ABC$ с бедра AC = BC = 5 cm и основа AB = 8 cm. Намерете дължината на радиуса на описаната около $\triangle ABC$ окръжност.
- 25. Намерете броя на мобилните телефонни номера от вида 0887****ab, последните две цифри на които образуват двуцифрено число \overline{ab} , което е точен квадрат, а двуцифреното число, записано със същите цифри, но в обратен ред, е просто число.

<u>Пълните решения с необходимите обосновки на задачите от26. до 28. вкл. запишете в свитъка за свободните отговори!</u>

26. Решете уравнението
$$\sqrt{1+\frac{2}{x}} + \sqrt{\frac{x}{x+2}} = 4$$
.

- 27. Иван има в джоба си 2 монети по 10~cm., 4 монети по 20~cm., 4 монети по 50~cm. и 2 монети по 1~ns. Той изважда едновременно три монети по случаен начин. Каква е вероятността трите монети да са на обща стойност 1,20~ns?
- 28. В ΔABC медианата AM и ъглополовящата BL са перпендикулярни и имат една и съща дължина, равна на 4. Да се намери $P_{\Delta ABC}$.

ФОРМУЛИ

Квадратно уравнение

$$ax^2+bx+c=0$$
 $x_{1,2}=rac{-b\pm\sqrt{b^2-4ac}}{2a}$ $ax^2+bx+c=a(x-x_1)(x-x_2)$ Формули на Виет $x_1+x_2=-rac{b}{a}$ $x_1x_2=rac{c}{a}$

Квадратна функция

Графиката на $y = ax^2 + bx + c$, $a \ne 0$ е парабола с връх точката $(-\frac{b}{2a}; -\frac{D}{4a})$

Корен. Степен и логаритъм

$$\sqrt[2k]{a^{2k}} = |a| \qquad \qquad 2^{k+1}\sqrt{a^{2k+1}} = a \; ; \qquad \text{при } k \in \mathbb{N}$$

$$\sqrt[n]{a^m} = a^{\frac{m}{n}} \qquad \qquad \sqrt[nk]{a^{mk}} = \sqrt[n]{a^m} \qquad \sqrt[nk]{a} = \sqrt[nk]{a} \; ; \; \text{при} \quad a > 0 \; , \; n \ge 2 \; , \; k \ge 2 \; \text{ и } n, \; m, \; k \in \mathbb{N}$$

$$\log_a b = x \Leftrightarrow a^x = b \quad \log_a a^x = x \qquad a^{\log_a b} = b \; ; \quad \text{при} \quad b > 0, \; a > 0, \; a \ne 1$$

Комбинаторика

Брой на пермутациите на n елемента: $P_n = 1.2.3...(n-1)n = n!$ Брой на вариациите на n елемента k -ти клас: $V_n^k = n.(n-1)...(n-k+1)$ Брой на комбинациите на n елемента k -ти клас: $C_n^k = \frac{V_n^k}{P_k} = \frac{n.(n-1)...(n-k+1)}{1.2.3...(k-1)k}$

Вероятност $P(A) = \frac{\textit{брой на благоприятните случаи}}{\textit{брой на възможните случаи}} 0 \le P(A) \le 1$

Прогресии

Аритметична прогресия:
$$a_n = a_1 + (n-1)d$$
 $S_n = \frac{a_1 + a_n}{2} \cdot n = \frac{2a_1 + (n-1)d}{2} \cdot n$ Геометрична прогресия: $a_n = a_1.q^{n-1}$ $S_n = \frac{a_n q - a_1}{q-1} = a_1 \cdot \frac{q^n - 1}{q-1}$ Формула за сложна лихва: $K_n = K.q^n = K.\left(1 + \frac{p}{100}\right)^n$

Зависимости в триъгълник

Правоъгълен триъгълник:
$$c^2 = a^2 + b^2$$
 $S = \frac{1}{2}ab = \frac{1}{2}ch_c$ $a^2 = a_1c$ $b^2 = b_1c$

$$h_c^2=a_1.b_1$$
 $r=rac{a+b-c}{2}$ $\sinlpha=rac{a}{c}$ $\coslpha=rac{b}{c}$ $tglpha=rac{a}{b}$ $\cot glpha=rac{b}{a}$ Произволен триъгълник: $a^2=b^2+c^2-2bc\coslpha$ $b^2=a^2+c^2-2ac\coseta$

Произволен триъгълник:
$$a^2 = b^2 + c^2 - 2bc \cos \alpha$$
 $b^2 = a^2 + c^2 - 2ac \cos \beta$

$$c^{2} = a^{2} + b^{2} - 2ab\cos\gamma \qquad \frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$$

Формула за медиана:
$$m_a^2 = \frac{1}{4} \left(2b^2 + 2c^2 - a^2 \right)$$
 $m_b^2 = \frac{1}{4} \left(2a^2 + 2c^2 - b^2 \right)$

$$m_c^2 = \frac{1}{4} (2a^2 + 2b^2 - c^2)$$

Формула за ъглополовяща:
$$\frac{a}{b} = \frac{n}{m}$$

$$l_c^2 = ab - nm$$

Формули за лице

Триъгълник:
$$S = \frac{1}{2}ch_c \qquad S = \frac{1}{2}ab\sin\gamma \qquad S = \sqrt{p(p-a)(p-b)(p-c)}$$

$$S = pr \qquad S = \frac{abc}{4R}$$

Успоредник:
$$S = ah_a$$
 $S = ab \sin \alpha$

Четириъгълник:
$$S = \frac{1}{2} d_1 d_2 \sin \varphi$$

Описан многоъгълник: S = pr

Тригонометрични функции

$lpha^{\scriptscriptstyle 0}$	0^{0}	30^{0}	45°	60°	90°
α rad	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \alpha$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\operatorname{tg} \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	_
$\cot \alpha$	_	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

	$-\alpha$	$90^{\circ} - \alpha$	$90^{\circ} + \alpha$	$180^{\circ} - \alpha$
sin	$-\sin \alpha$	$\cos \alpha$	$\cos \alpha$	$\sin \alpha$
cos	$\cos \alpha$	$\sin \alpha$	$-\sin \alpha$	$-\cos \alpha$
tg	$-tg\alpha$	$\cot\! lpha$	$-\cot \alpha$	$-tg\alpha$
cotg	$-\cot \alpha$	$\operatorname{tg} lpha$	$-tg\alpha$	$-\cot \alpha$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{\cot(\beta \pm \beta)} = \frac{\cot(\alpha \cot \beta)}{\cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \mp \tan \alpha \tan \beta}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cot(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \cot \beta)}{1 \cot(\beta \pm \beta)}$$

$$\sin(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot(\beta \pm \beta)}$$

$$\cos(\alpha \pm \beta) = \frac{\cot(\alpha \pm \beta)}{1 \cot($$