Edwest Year 12 Chemistry Solutions 2002

<u> Part 1</u>					
1	С	11	d	21	d
2	a	12	b	22	a
3	С	13	С	23	b
4	d	14	b	24	a
5	b	15	С	25	b
6	b	16	С	26	C
7	a	17	d	27	b
8	С	18	a	28	b
9	b	19	С	29	b
10	С	20	С	30	С

[30]

Part 2

2

1 (a) $2Cr^{3+}_{(aq)} + 3CO_3^{2-}_{(aq)} \longrightarrow Cr_2(CO_3)_{3(s)}$ green ppt. formed [3]

(b) $\operatorname{Cr}(\operatorname{OH})_{3(s)} + \operatorname{OH}^-_{(aq)} \stackrel{+}{\longrightarrow} \operatorname{Cr}(\operatorname{OH})_{4(aq)}^-$ white solid dissolves [3]

(c) $\operatorname{Cr_2O_7}^{2-}(aq) + 2\operatorname{OH}^{-}(aq) \longrightarrow 2\operatorname{CrO_4}^{2-}(aq) + \operatorname{H_2O}$ solution turns from orange to yellow [3]

(d) $\operatorname{Cr_2O_7^{2-}}(aq) + 3\operatorname{C_2H_5OH}(aq) + 8\operatorname{H}^+(aq) \longrightarrow 3\operatorname{CH_3CHO}(aq) + 2\operatorname{Cr}^{3+}(aq) + 7\operatorname{H_2O}$ solution turns from orange to green [3]

Description Names ethanoic acid ammonium nitrate Form weakly acidic solutions in water. 2-butene 1,2-dichloro-1-pentene Show geometric (cis/trans) isomerism. iron (II) hydroxide iodine Are coloured. sodium hydroxide aluminium hydroxide Are involved in the processing of bauxite. ethanoic acid ammonia Form hydrogen bonds. ammonium nitrate 1,1,2-trichloropropene Have a total of 9 atoms in their formula.

[12]

3 (a) $[H+] = 0.01 \times 2 = 0.02$ pH = -log[H+]

 $= -\log 0.02$ = 1.7 [1]

(b) [OH-] = 2.0 $[H+] [OH-] = 10^{-14}$ $[H+] = 10^{-14}/2.0 = 5 \times 10^{-15}$

 $pH = -log(5 \times 10^{-15}) = 14.3$ [2]

4

change	position	Explanation
Increased Temperature	To right	Forward reaction endothermic.
Reduce the volume	No change	Equal number of moles of gaseous products and reactants
Remove some of the NO(g)	To right	Conc. of NO reduced so reverse reaction reduced. OWTTE

[6]

5 $K = [CoCl_4]$ $[Co(H_2O)_6^{2+}][Cl^{-1}]^4$

[2]

6. (a)

Oxidation: $2Br^{-}_{(aq)} \longrightarrow Br_{2(l)} + 2e^{-}$ Reduction: $MnO_{4}^{-}_{(aq)} + 8H^{+}_{(aq)} + 5e^{-} \longrightarrow Mn^{2+}_{(aq)} + 4H_{2}O_{(l)}$:

Overall: $2MnO_{4}^{-}_{(aq)} + 16H^{+}_{(aq)} + 10Br^{-}_{(aq)} \longrightarrow 2Mn^{2+}_{(aq)} + 5Br_{2(l)} + 8H_{2}O_{(l)}$

> [3] [1]

- (b) required to facilitate the reduction of MnO_4^- (as seen in above reaction) (c) bromine and carbon tetrachloride are both <u>non-polar</u> compounds
 - therefore intermolecular bonding relies on dispersion forces therefore interactions within mixture are similar to those within pure substances

[3]

7.

(b) It contains a number of alcohol groups that can be oxidised to carbonyls.

[2]

[6]

[6]

8.

Species	Electron dot diagram	Shape (sketch or name)	Polarity
Cl ₂ O		bent/non-linear	polar
ClO ₃ -		(trigonal) pyramidal	polar

[3]

9. CH₃CH₂CHObutanal

or CH₃CH(CH₃)CHO 2-methylpropanal

CH₃COCH₂CH₃ butanone

CH₃CH(CH₃)CHO 2-methylpropanal

10. (a) $C + CO_2 \longrightarrow 2 CO$ [1]

- (b) calcium oxide (quick lime) and silicon oxide (silica) (<u>names</u> needed) [1]
- (c) chromium (Cr) nickel (Ni) [1]
- (d) reduce reactivity [1]

11. (a)
$$Ni^{2^{+}}_{(aq)} + 2e^{-} \longrightarrow Ni_{(s)}$$
 $E^{\circ} = -0.26 \text{ V}$ $Zn^{2^{+}}_{(aq)} + 2e^{-} \longrightarrow Zn_{(s)}$ $E^{\circ} = -0.76 \text{ V}$ $Zn_{(s)} \longrightarrow Zn^{2^{+}}_{(aq)} + 2e^{-}$ $E^{\circ} = +0.76 \text{ V}$ $E^{\circ}(\text{cell}) = -0.26 + 0.76 = +0.50 \text{ V}$ [2]

- (b) electrons move from Zn to Ni [1]
- (c) solid zinc dissolves

green colour of solution fades

Zn coated with Ni (2 of these gets full marks) [2]

(d) Zn is a <u>stronger reducing agent</u> than Ni.(as shown by the redox potentials)

or E° for the reaction: $Zn_{(s)} + Ni^{2+}_{(aq)} \longrightarrow Zn^{2+}_{(aq)} + Ni_{(s)}$ is positive. [2]

```
1.
                    Butane:
          (a)
                    m(C_4H_{10}) burned per hour = 500g/150 = 3.33g
                    M(C_4H_{10}) = 58.12
                    n(C_4H_{10}) = 3.33/58.12 = 0.05735
                    n(O_2) = (13/2) \times n(C_4H_{10})
                                                                                                                                                [3]
                              = (13/2) \times 0.05735
                                                              = 0.373 \text{ mol}
                    Methane:
                    Equation: CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O
                    Using PV = nRT
                    n(CH_4) = PV/RT = 200 \times 2.4/8.315 \times 293 = 0.197 \text{ mol}
                    n(O_2) = (2/1) \times 0.197
                                                             = 0.394 \text{ mol}
                                                                                                                                                [3]
                                                                                             Methane requires more oxygen
                    n(C_4H_{10}) = 0.05735 \times 10 \text{ hours}
          (b)
                                                             = 0.5735 \text{ mol}
                                                             = 2.294 \text{ mol}
                    n(CO_2) = (8/2) \times 0.5735
                    Using PV = nRT
                    v(CO_2) = nRT/P = 2.294 \times 8.315 \times 293/101.3
                                                                                  = 55.2 L
                                                                                                                                                [2]
                    n(C_4H_{10}) = 0.5735 \text{ mol}
          (c)
                    n(H_2O) = (10/2) \times 0.5735 = 2.867 \text{ mol}
                                                                                                                                                [2]
                    M(H_2O) = 18.016
                                                  m(H_2O) = 18.016 \times 2.867 = 51.7 g
2.
                    M(Na_2S_2O_5) = (22.99 \times 2) + (32.06 \times 2) + (16.00 \times 5) = 190.1
          (a)
                    m(Na_2S_2O_5) = 8 \times 0.440g = 3.52g
                                                   n(Na_2S_2O_5) = 3.52/190.1 = 1.85 \times 10^{-2} \text{ mol}
                                                                                                                                                [3]
                    n(SO_2) = (2/1) \times n(Na_2S_2O_5) = 2 \times 1.85 \times 10^{-2} = 3.70 \times 10^{-2} \text{mol}
                                                                                                                                                [1]
          (b)
                    m(SO_2) added per litre = 20mg = 0.020g
          (c)
                    volume = 100 L
                    total m(SO_2) = 0.020g \times 100 = 2.00g
                                                                        n(SO_2) = 2.00/64.06 = 3.122 \times 10^{-2} mol
                                                                                                                                                [2]
                    M(SO_2) = 64.06
                    Efficiency = (actual moles/predicted moles) \times 100
                                 = (3.122 \times 10^{-2}/3.70 \times 10^{-2}) \times 100
                                                                                  = 84 %
                                                                                                                                                [2]
          (d)
                    Increasing the pH will \underline{\text{remove H}^+_{(aq)}/\text{reduce H}^+_{(aq)}} and hence the equilibrium position will
                    shift to the left so efficiency will be reduced.
                                                                                                                                                [2]
                    % by mass = 370/(370 + 890) \times 100 = 29.3 \%
3.
                                                                                                                                                [1]
          (a)
          (b)
                    Q = 4 hours x 10 amps x 60 minutes x 60 seconds = 144 000 C
                    N(e^{-}) = 144\ 000/\ 9.649 \times 10^{4} = 1.492 \ mol
                                                                                                                                                [2]
          (c)
                    n(H_2SO_4) = 1.492
                                                   M(H_2SO_4) = 98.076
                                                                                  m(H_2SO_4) = 1.492 \times 98.076 = 146 g
                                                                                                                                                [2]
                    n(H_2O) = 1.492
                                                   M(H_2O) = 18.016
                                                                                  m(H_2O) = 1.492 \text{ x } 18.016 = 26.9 \text{ g}
                                                                                                                                                [1]
          (c)
                    new m(H_2SO_4) = 370 - 146 = 224 g
                    new m(H_2O) = 890 + 26.9 = 916.9 g
                                                                        % by mass = 224/(224 + 916.9) \times 100 = 19.6\%
                                                                        Therefore car will not start as % by mass < 22%
                                                                                                                                                [2]
          (e)
                    total n(H_2SO_4) = 370/98.076 = 3.77 \text{ mol}
                    volume = 1.08 L
                    c(H_2SO_4) = 3.77/1.08 = 3.49 \text{ mol } L^{-1}
                    in 100mL n(H_2SO_4) = 3.49 \text{ x} (100/1000) = 0.349 \text{ mol}
                    H_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O
                    n(NaOH) = (2/1) \times n(H_2SO_4)
                               = 2 \times 0.349 = 0.6986
                                                             V(NaOH) = n/c = 0.6986/2.00 = 0.349 L or 349 mL
                                                                                                                                                [4]
```

3

 $M(SO_4) = 96.06$

4.

<u>SO₄²⁻:</u>

 $M(BaSO_4) = 233.36$

 $n(BaSO_4)$ in 25.0 mL = 3.58/233.36 = 1.534 x 10^{-2} mol

```
n(SO_4) in 25.0 mL = 1.534 x 10^{-2} mol
                    n(SO_4) in 250 mL = 1.534 x 10^{-2} x 10 = 0.1534 mol
                    m(SO_4) in original (anhydrous) sample = 0.1534 x 96.06 = 14.74
                    % (SO<sub>4</sub>) in original (anhydrous) sample = (14.74/21.2) \times 100 = 69.5 \%
                    \%(Fe) in anhydrous sample = 100 - 69.5 = 30.5 \%
          <u>Fe</u>
                    M
                               (55.85)
                                                              (96.06)
                               Fe
                                                              <u>SO<sub>4</sub>:</u>
                               30.5 %
                    %
                                                              69.5%
                               30.5/55.85
                                                              69.5/96.06
                    n
                              = 0.546
                                                              = 0.723
                              0.546/0.546
                                                             0.723/0.546
                    ratio
                                                             1.33
                              1
                              3
                                                              4
                                                                                                                                                [4]
                                                                                  so anhydrous salt = Fe_3(SO_4)_4
                              x = 3
                                                             y = 4
                    M(Fe_3(SO_4)_4) = 551.8
                                                             M(H_2O) = 18.016
                    m(Fe_3(SO_4)_4) = 21.2 g
                                                             m(H_2O) = 24.0 - 21.2 = 2.8 g
                               (Fe_3(SO_4)_4)
                                                              H_2O
                    mass
                               21.2g
                                                              2.8 g
                              21.2/551.8
                                                              2.8/18.016
                    n
                              = 0.0385
                                                              = 0.1554
                              0.0385/0.0385
                                                              0.1554/0.0385
                    ratio
                              1
                                                              4
                                                                                                                                                [3]
                                                                                  so hydrated salt = Fe_3(SO_4)_4.4H_2O
                                                             z = 4
                    (b)
                              M(Fe_3(SO_4)_4.4H_2O) = 623.85
                                                                        m(Fe_3(SO_4)_4.4H_2O) = 5.00 g
                                                                        efficiency = 75/100
                               M(Fe) = 55.85
                              m(Fe) = (55.85 \times 3)/623.85) \times 5.00 \text{ g x } (75/100)
                                                                                                                                                [3]
                    n(S_2O_3^{2-}) = 0.100 \times 0.0155 = 1.55 \times 10^{-3} \text{ mol}
5.
                                                                                                                                                [2]
          (a)
          (b)
                    n(I_2)
                              = (1/2) \times n(S_2O_3^{2-})
                              = (1/2) x 1.55 x 10^{-3} = 7.75 x 10^{-4} n(ClO^{-}) = 7.75 x 10^{-4} mol
                                                                                                                                                [2]
                    n(ClO^{-}) in 250 mL = 7.75 x 10^{-4} x (250/25) = 7.75 x 10^{-3} mol
          (c)
                                                                                                                                                [1]
                    V(bleach) = 5.00 \text{ mL} = 5.00 \text{ x } 10^{-3} \text{ L}
          (d)
                              (i)
                                         c = n/V = 7.75 \times 10^{-3}/5.00 \times 10^{-3} = 1.55 \text{ mol } L^{-1}
                                                                                                                                                [1]
                               (ii)
                                         M(NaClO)
                                                             = 74.44
                                                              = 74.44 \times 7.75 \times 10^{-3} = 0. g
                                         m(NaClO)
                                         concentration = 0.5769/5.00 \times 10^{-3}
                                                                                                                                                [2]
                                                                                            = 115.4 \text{ g L}^{-1}
```

Part 4 Guidelines for marking.

1. <u>Breathalyser</u>

$$2K_2Cr_2O_7 + 3CH_3CH_2OH + 8H_2SO_4 \xrightarrow{AqNO3} 2 Cr_2(SO_4)_3 + 2K_2SO_4 + 11H_2O + 3CH_3CO_2H$$

Points that could be included:

Reduction reaction:
$$\operatorname{Cr_2O_7^{2-}}_{(aq)} + 6e^- + 8H^+_{(aq)} \longrightarrow 2\operatorname{Cr}^{3+}_{(aq)} + 7H_2O$$

colour change orange to green

Oxidation reaction:
$$C_2H_5OH_{(aq)} + H_2O_{(l)} \longrightarrow CH_3COOH_{(aq)} + 4H^+_{(aq)} + 4e^-$$

Sulphuric acid used as a source of hydrogen ions

Silver nitrate to catalyse the reaction

Photo cell produces a current based on colour comparism

[max 7]

Fuel Cell

Points that could be included:

Alcohol oxidised to ethanoic acid: $C_2H_5OH_{(aq)} + H_2O_{(l)} \longrightarrow CH_3COOH_{(aq)} + 4H^+_{(aq)} + 4e^-$

Platinum acts as the oxidising agent by absorbing the electrons into the circuit.

This is therefore the anode in the cell (oxidation occurring)

Possible diagram:

The amount of current depends on the rate of the redox reactions occurring.

[max 7]

Differences:

Could mention:

<u>Breathalyser</u> <u>Fuel Cell</u>

Current from photo cell direct from redox cell

Colour change no change Oxidising agent dichromate oxygen

Similarities:

Could mention:

Use of catalyst (silver nitrate and platinum)

Ethanol oxidised to ethanoic acid(same 'anode reaction')

Reading from electric current dependent on this reaction.

[max 8]

3. Table A

The pH depends on the concentration of hydrogen ions in solution

Higher the [H⁺(aq)], the lower the pH

This depends on the concentration of the acid and the strength of the acid (degree of dissociation)

These all have the same concentration

HCl and HNO₃ are monoprotic, strong acids (total dissociation), so have the same pH:

$$HCl_{(aq)} \longrightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)}$$

 H_2SO_4 is a diprotic acid so $[H^+_{(aq)}]$ is higher and pH is reduced:

$$H_2SO_{4(aq)} \longrightarrow 2H^+_{(aq)} + SO_4^{2-}_{(aq)}$$

remainder are weak acids, e.g:

$$HI_{(aq)} \rightleftharpoons H^{+}_{(aq)} + I^{-}_{(aq)}$$
 $CH_{3}COOH_{(aq)} \rightleftharpoons H^{+}_{(aq)} + CH_{3}COO^{-}_{(aq)}$

Could compare strength of HI compared to HCl and explain in terms of bond polartity.

Could rank them in strength CHOOH > CH₃COOH > HI

Suggest reasons why CHOOH dissociates more readily than CH₃COOH

[max 10]

Table B

Points to mention:

HCl + NaOH(pH = 7.0)

Salt produced is NaCl

No hydrolysis reactions with Na⁺ or Cl⁻

So H⁺ and OH⁻ are equal

$HCl_+ NH_4OH (pH = 4.0)$

Salt produced is NH₄Cl

hydrolysis reaction with NH₄⁺:

$$NH_4^+(aq) + H_2O_{(l)} \longrightarrow NH_3(aq) + H_3O^+(aq)$$

$$\underline{\text{or}} \, \text{NH}_{4}^{\ +}_{(aq)} \longrightarrow \text{NH}_{3(aq)} + \text{H}^{+}_{(aq)}$$

So H^+ is in excess so pH < 7

$CH_3COOH + NaOH (pH = 9.0)$

Salt produced is Na CH₃COO

hydrolysis reaction with CH₃COO -:

$$CH_3COO^-_{(aq)} + H_2O_{(l)} \longrightarrow CH_3COOH_{(aq)} + OH^-_{(aq)}$$

So OH⁻ is in excess so pH > 7

$20mL \ of \ HCl + 19 \ mL \ NaOH \ (pH = 2.6)$

Salt produced is NaCl

But only 19 of the 20mL of acid is neutralised

So H⁺ is in excess

pH still low as pH scale is logarithmic

[max10]