

计算机组成原理

第二章 数据表示

2.5 CRC校验及其实现

CRC校验的基本原理

•增加冗余码(校验位)

有效信息(k位) 校验信息(r位)

 $N = k + r \le 2^r - 1$

●生成多项式G(x)

收发双方约定的一个(r+1)位二进制数,发送方利用G(X)对信息多项式做模2除运算,生成校验 码。接收方利用G(X)对收到的编码多项式做模2除运算检测差错及错误定位。

•G(x)应满足的条件

- A、最高位和最低位必须为1;
- B、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0;
- C、不同位发生错误时,模2除运算后余数不同;
- D、对不为0余数继续进行模2除运算应使余数循环。

1 CRC校验的基本原理

●常见生成多项式G(x)

N	K	码距d	G(x)多项式	G(x)
7	4	3	x ³ +x+1	1011
7	4	3	$x^3 + x^2 + 1$	1101
7	3	4	$x^4 + x^3 + x^2 + 1$	11101
7	3	4	$x^4 + x^2 + x + 1$	10111
15	11	3	x ⁴ +x+1	10011
15	7	5	$x^8 + x^7 + x^6 + x^4 + 1$	111010001
31	26	3	x ⁵ +x ² +1	100101
31	21	5	$x^{10}+x^9+x^8+x^6+x^5+x^3+1$	11101101001
63	57	3	x ⁶ +x+1	1000011
63	51	5	$x^{12}+x^{10}+x^5+x^4+x^2+1$	1010000110101

2 模2除运算

•模2运算规则

a)加/减运算 (异或运算,加不进位,减不借位)

$$0\pm0=0$$
 , $0\pm1=1$, $1\pm0=1$, $1\pm1=0$

b)模2除法

按模2减,求部分余数,不借位。

- 2 模2除运算
 - c)上商原则
 - ①部分余数首位为1时,商为1,减除数;
 - ②部分余数首位为0时,商为0,减0;
 - ③当部分余数的位数小于除数的位数时,该余数即为最后余数。

```
1 0 1
                     商
                     首位为1
1 0 1
                     模2减,商1
       1 0 1
                     首位为0
         0 1 1
                     减0,
                           商 0
         0 0 0
                     首位为1
          1 1 0
                    模2减,商1
          1 0 1
                     余数位数少于除数, 为最后余数
            1 1
```

3 CRC 编码方法

- (1)根据待校验信息的长度k , 按照 k+r \le 2 1 确定校验位r的位数 如对4位信息 1100 进行CRC编码 , 根据 4+r \le 2 1 得 ${\bf r}_{min}$ = 3
- (2)根据r 和生成多项式的选择原则,选择位数为r+1 的生成多项式G(X)=1011
- (3)进行下列变化

有效信息(k位) 校验信息(r位) 1100 000

即:将待校验的二进制信息Q(X)逻辑左移 r 位,得到Q(X)'

3 CRC编码

(4)对Q(X)'按模2运算法则除G(x),求CRC编码中的r位校验信息

(5)用得到的余数替换Q(X)'的最后r位即可得到对应的CRC编码

1100 000 — 1100 010 即为1100 的CRC 编码

CRC的检错与纠错

接收方利用G(X)对收到的编码多项式做模2除运算

余数为0说明传输没有错误

CRC的检错与纠错

接收方利用G(X)对收到的有错编码多项式做模2除运算

余数不为0说明传输有错

4 CRC的检错与纠错

• (7,4)编码不同数位出错对应的余数

A ₁ ~A ₇	余数	出错位
1100 <mark>010</mark>	000	无
110001 <mark>1</mark>	001	7
11000 <mark>0</mark> 0	010	6
1100 <mark>1</mark> 10	100	5
110 <mark>1</mark> 010	011	4
11 <mark>1</mark> 0010	110	3
1 <mark>0</mark> 00010	111	2
0 100010	101	1

$A_1 \sim A_7$	余数	出错位
1100101	000	无
110010 <mark>0</mark>	001	7
11001 <mark>1</mark> 1	010	6
1100 <mark>0</mark> 01	100	5
110 <mark>1</mark> 101	101	4
11 <mark>1</mark> 0101	111	3
1 <mark>0</mark> 00101	011	2
0 100101	110	1

G(X) = 1011

G(X) = 1101

4 CRC的检错与纠错

• 一位出错情况下余数的循环特性

4 (

CRC的检错与纠错

• 利用出错情况下余数的循环特性进行纠错

A ₁ ~A ₇	余数	出错位
1100 <mark>010</mark>	000	无
110001 <mark>1</mark>	001	7
11000 <mark>0</mark> 0	010	6
1100 <mark>1</mark> 10	100	5
110 <mark>1</mark> 010	011	4
11 <mark>1</mark> 0010	110	3
1000010	111	2
0 100010	101	1

若余数不为0,一边对余数补0继续做模2除,同时让被检测的校验码循环左移,当余数为101时,出错位也移到A1位置。通过异运算纠正后继续循环左移和执行余数模2除法,直到修改后的出错位回原位。不需对每一位提供纠正电路。

当位数增多时,循环码校验能有效地降低硬件 代价,这是它得以广泛应用的主要原因。

第二章

2.5 CRC校验及其实现

5 CRC 编码的实现

•硬件实现方式

N	K	码距d	G(x)多项式	G(x)
7	4	3	x ³ +x+1	1011
7	4	3	x ³ +x ² +1	1101
7	3	4	$x^4 + x^3 + x^2 + 1$	11101
7	3	4	x ⁴ +x ² +x+1	10111
15	11	3	x ⁴ +x+1	10011
15	7	5	$x^8 + x^7 + x^6 + x^4 + 1$	111010001
31	26	3	x ⁵ +x ² +1	100101
31	21	5	$x^{10} + x^9 + x^8 + x^6 + x^5 + x^3 + 1$	11101101001
63	57	3	x ⁶ +x+1	1000011
63	51	5	$x^{12} + x^{10} + x^5 + x^4 + x^2 + 1$	1010000110101

5 CRC 的应用

•软件实现方式

```
#define CRC INIT Oxffff //CCITT初始CRC为全1
#define GOOD CRC OxfOb8 //校验时计算出的固定结果值
/****下表是常用ccitt 16, 生成式1021反转成8408后的查询表格****/
unsigned short do crc(unsigned short reg init, unsigned char *message, unsigned int len)
    unsigned short crc reg = reg init;
        crc reg = (crc reg >> 8) \(^\) crc16 ccitt table \( \) (crc reg \(^\) \(^\) message++) & 0xff \( \);
      return crc reg; }
```

5 CRC 的应用

•关于CRC的国际标准(节选)

标准名称	生成多项式	表示法(省略了最高位1)
CRC-1	X+1 (用途:硬件,也称为奇偶校验位)	0x1 (1 1)
CRC-5-CCITT	X ⁵ +X ³ +X +1 (ITU G.704标准)	0xB (1 01011)
CRC-5-USB	X ⁵ + X ² +1 (USB信令包)	0x5
CRC-7	X ⁷ +X ³ +X+1 (用途:通信系统)	0x9
CRC-8-ATM	X ⁸ +X ² +X +1 (用途: ATM HEC)	0x7
CRC-12	X ¹² + X ¹¹ + X ³ + X ² + X + 1 (通信系统)	0x80F
CRC-16-CCITT	$X^{16} + X^{12} + X^{5} + 1$ (X25,V.41,Bluetooth,PPP, IrDA)	0x1021
CRC-32-MPEG2	IEEE 802.3 以太网协议	IEEE 802.3