Lecture Outline

Reminders to self:

- ☐ Turn on lecture recording to Cloud
- ☐ Turn on Zoom microphone
- Last Lecture
 - Finished Shift Registers
 - Started Counters
 - Three-bit synchronous binary counter
 - Brief look at binary ripple counter (not synchronous)
 - Formal design procedures
- Today's Lecture
 - Review HW 11-1
 - Continue Counters
 - Other count sequences
 - Counter design with other types of flip-flops (D first)
 - Up and Down counter

Handouts and Announcements

Announcements

ECE2060

- Homework Problems 12-2 and 12-3
 - Posted on Carmen this morning
 - Due: 11:59pm Thursday 3/9
- Homework Reminder
 - HW 12-1 posted on Carmen 3/1
 - Due: 11:25am Wednesday 3/8
- Read for Monday: No new reading assignment
 Previous assignment was pages 395-402
- Mini-Exam 3 regrade continuing
 - A-some C regraded
 - W-Z regraded

Handouts and Announcements

Announcements

ECE2060

- Mini-Exam 4 Reminder
 - Available 5pm Monday 3/6 through 5:00pm Tuesday 3/7
 - Due in Carmen PROMPTLY at 5:00pm on 3/7
 - Designed to be completed in ~36 min, but you may use more
 - When planning your schedule:
 - I recommend building in 10-15 min extra
 - To allow for downloading exam, signing and dating honor pledge, saving solution as pdf, and uploading to Carmen
 - I also recommend not procrastinating
- Exam review topics available on Carmen
- Sample Mini-Exams 5 and 6 from Au20 also available

Homework 11-1

The inverters have a propagation delay of 3 ns.

The two-input NAND gates have a propagation delay of 4 ns.

Complete the timing diagrams for each of the input pulses shown for Part a) and Part b).

The vertical lines are spaced 1ns apart.

The reset input has R = 0 at all times in this problem.

ECE2060 Homework 11-1

The inverters have a propagation delay of 3 ns.

The two-input NAND gates have a propagation delay of 4 ns.

Complete the timing diagrams for each of the input pulses shown for Part a) and Part b).

The vertical lines are spaced 1ns apart.

The reset input has R = 0 at all times in this problem.

Counters

- Implementation of the 3-bit binary counter using D flip-flops: $Q^+ = D$
- $D_A = A^+; D_B = B^+; D_C = C^+$
- Inspecting the transition table to fill the K-maps

BA	0	1
00	1	1
01	0	0
11	0	0
10	1	1

Present State			Next State		
C	В	Α	C+	B^+	A^+
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

$$D_C = A'C + B'C + ABC'$$

$$= C(A' + B') + ABC'$$

$$= C(AB)' + C'(AB)$$

$$= C \oplus AB$$

Counters

• Implementation of the 3-bit binary counter using D flip-flops

- This figure from textbook uses same XOR input structure to D_A as for D_B and D_C to invert A
 - · An invertercould be used instead
 - · Orthe A'output of the flip flop
 - See last paragraph of Section 11.7 for conversion of D flip-flop to T flipflop using XOR

COLLEGE OF ENGINEERING

ECE2060

Counters

4-bit BCD counter using T flip-flops

D	C	B	A	D^+	C +	B^+	A^+	T_D	$T_{\mathcal{C}}$	T_B	T_A
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	1
0	0	1	1	0	1	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	1
0	1	0	1	0	1	1	0	0	0	i	1
0	1	1	0	0	1	1	1	0	0	0	1
0	1	1	1	1	0	0	0	1	- 1	-1	1
1	0	0	0	1	0	0	1	0	0	0	1
1	0	0	1	0	0	0	0		0	0	1
1	0	1	0	-	-	-	-	X	X	X	X
1	0	1	1	-	-	-	-	X	X	X	X
1	1	0	0	-	-	-	-	X	X	X	X
1	1	0	1	-	-	-	-	X	X	X	X
1	1	1	0	-	-	-	-	X	X	X	X
1	1	1	1	-	-	-	-	X	X	X	X

Remember the requirement for counters with T flip-flops from last lecture:

$$T_{A}(D,C,B,A) = 1$$

$$T_{B}(D,C,B,A) = \underset{+}{\sum} m(1,3,5,7) \\ +\underset{+}{\sum} d(10,11,12,13,14,15)$$

$$T_{C}(D,C,B,A) = \underset{+}{\sum} m(3,7) \\ +\underset{+}{\sum} d(10,11,12,13,14,15)$$

$$T_{D}(D,C,B,A) = \underset{+}{\sum} m(7,4) \\ +\underset{+}{\sum} d(10,11,12,13,14,15)$$

COLLEGE OF ENGINEERING

ECE2060

Counters

4-bit BCD counter using T flip-flops

$$T_{A}(D,C,B,A) = 1$$

$$T_{B}(D,C,B,A) = \sum m(1,3,5,7) + \sum d(10,11,12,13,14,15)$$

$$T_{C}(D,C,B,A) = \sum m(3,7) + \sum d(10,11,12,13,14,15)$$

$$T_{D}(D,C,B,A) = \sum m(7,9) + \sum d(10,11,12,13,14,15)$$

$$T_{D}(D,C,B,A) = \sum m(7,9) + \sum d(10,11,12,13,14,15)$$

Counters

4-bit BCD counter using T flip-flops

$$T_A(D,C,B,A)=1$$

$$T_B(D, C, B, A) = \sum m(1,3,5,7) + \sum d(10,11,12,13,14,15)$$

$$T_C(D, C, B, A) = \sum m(3,7) + \sum d(10,11,12,13,14,15)$$

$$T_D(D, C, B, A) = \sum m(7,9) + \sum d(10,11,12,13,14,15) = AD + ABC$$

The design of the rest of this BCD counter is left as homework

Counters

3-bit Gray-Code counter using T flip-flops

Count sequence does not have to be straight binary: Gray-Code as an example

C	\boldsymbol{B}	A	C +	B^+	A^+	$T_{\mathcal{C}}$	T_B	T_A
0	0	0	0	0	1	0	0)
0	0	1	0	1	-	0	1	0
0	1	0	-	1	0	1	0	D
0	1	1	0	l	0	0	0	1
1	0	0	0	0	0	1	0	0
1	0	1	1	0	0	0	O	1
1	1	0	1	1	1	0	O	1
1	1	1	1	0	1	0	1	O

$$T_A(C,B,A) = \sum m(O,3,5,6)$$

$$T_B(C,B,A) = \sum m(1,7)$$

$$T_C(C,B,A) = \sum m(2,4)$$

COLLEGE OF ENGINEERING

ECE2060

Counters

$$T_A(C, B, A) = \sum_{} m(0,3,5,6)$$
 $T_B(C, B, A) = \sum_{} m(1,7)$
 $T_C(C, B, A) = \sum_{} m(2,4)$

BA	0	1
00	1	
01		1
11	1	
10		1

- Note that each of the 8 minterms appears exactly once.
- No Reduction for SOP form
- But do you see the useful pattern?

Counters

$$T_C = C'BA' + CB'A'$$

$$T_B = C'B'A + CBA$$

$$T_A = C'B'A' + C'BA + CB'A + CBA'$$

Counters

3-bit Binary Up-Down counter using D flip-flops

Bi-directional Transition Graph

Table of Present and Next States for both directions

	$C^+B^+A^+$			
CBA	U	D		
000	001	111		
001	010	000		
010	011	001		
011	100	010		
100	101	011		
101	110	100		
110	111	101		
111	000	110		

Control Bits U and D

•
$$U = D = 0 \Rightarrow$$

•
$$U = 1$$
; $D = 0 \Rightarrow$

•
$$U = 0$$
; $D = 1 \Rightarrow$

•
$$U = D = 1 \Rightarrow \text{not allowed}$$

COLLEGE OF ENGINEERING

ECE2060

Counters

3-bit Binary Up-Down counter using D flip-flops

	$C^+B^+A^+$		
CBA	U	D	
000	001	111	
001	010	000	
010	011	001	
011	100	010	
100	101	011	
101	110	100	
110	111	101	
111	000	110	

Next state of A is A' either Up or Down

$$D_A = A^+ = A \oplus (U + D)$$

$$D_B = B^+ = B \oplus (UA + DA')$$

$$D_C = C^+ = C \oplus (UAB + DA'B')$$

When U = 1, D = 0 these equations reduce to the same expressions on slides 6 & 7

When U = 0, D = 1 these equations reduce to

$$D_A = A^+ = A \oplus 1 = A'$$

$$D_B = B^+ = B \oplus A'$$

$$D_C = C^+ = C \oplus A'B'$$

COLLEGE OF ENGINEERING

ECE2060

Counters

3-bit Binary Up-Down counter using D flip-flops

$$D_A = A^+ = A \oplus (U + D)$$

$$D_B = B^+ = B \oplus (UA + DA')$$

$$D_C = C^+ = C \oplus (UAB + DA'B')$$

