Section 1.2.2

- 1 We have an edge for every distinct pairs of vertices, so $\binom{n}{2} = \frac{n(n-1)}{2}$.
- 2 We prove the contrapositive. Suppose $r_1 \neq r_2$, $|X| = r_1$ and $|Y| = r_2$. Then for $x \in X$, $deg(x) = r_2$ and for $y \in Y$ $deg(y) = r_1$, but $r_2 \neq r_1$, so K_{r_1,r_2} is not regular.
- 3 No, no matter which 4 vertices you choose, 2 of them will be in the same subset, and would have no edges between them.
- 4 a) $[A^3]_{j,j}$ equals the number of length 3 walks from v_j to itself. Length 3 closed walks form a triangle that contains v_j , but the walk v_j , v_x , v_y , v_j and v_j , v_y , v_x , v_j are both counted. These two walks form the same triangle, so we must divide the entry by two.
 - b) a) implies that $\frac{1}{2}\text{Tr}(A^3)$ equals the number of triangles that contains v_1 or v_2 or ... or v_n . However every triangle consists of three vertices, so we are counting every triangle 3 times. Thus the number of unique triangles is $\frac{1}{6}\text{Tr}(A^3)$.

5

- 6 a) Let i be the row with all positive entries in S_r . From 1. of Theorem 1.9, we know $ecc(v_i) = r$. Since for a < r, no row had all positive entries, none of the eccentricity for other vertices in G are less than r, so r is the smallest eccentricity, the radius of G.
 - b) Let i be the row with all positive entries in S_m , but not in S_{m-1} . From 1. of Theorem 1.9, $ecc(v_i) = m$, and since S_{m-1} contained zeros, all other eccentricities are $\leq m$, thus diam(G) = m.

Algorithm 1 Finding center of graph

- 7 1: S = [0], n by n zero matrix
 - 2: k = 0
 - 3: while everyrow of S has a 0 do
 - 4: $S += A^k$
 - 5: k += 1
 - 6: return k
 - 8 We prove the contrapositive. Suppose G was not complete. $\exists v_i, v_j \in V(G)$ such that $uv \notin E(G)$, meaning $A_{i,j} = 0$. If there exists a v_iv_j path, then $D_{i,j} > 0$. Otherwise, $D_{i,j} = \inf$. In either case, $D_{i,j} \neq 0$, thus $A \neq D$.