东南大学电工电子实验中心 实验报告

第三次实验

头验名称:		时序,	逻辑电.	路	
院 (系):	自动化	专	业:	自动化	
姓 名:	邹滨阳	_学	号:	08022305	
实 验 室:	金智楼电子技	成	105	实验组别:	无
同组人员:	无	实验	时间:		月7日
评定成绩:		审阅]教师:		

一、实验目的

- 1、 掌握时序逻辑电路的一般设计过程
- 2、掌握时序逻辑电路的时延分析方法,了解时序电路对时钟信号相关参数的基本要求
- 3、 掌握时序逻辑电路的基本调试方法
- 4、 熟练使用示波器和逻辑分析仪观察波形图

二、实验原理(预习报告内容,如无,则简述相关的理论知识点。)

- 1、 访问 MOOC 平台第四章, 预习和本实验相关的内容
- 2、 广告流水灯 (第 10 周)
- a) 用 D 触发器 7474 分别设计一个模 8 异步行波计数器和模 8 同步计数器,电路包含一个输出信号 F, 当计数器计数值为 "7"的时候, F=1, 其他计数值则 F=0。在 Quartus 中进行时序仿真验证,并对两个仿真结果进行比较和分析

设计思路: 先列出状态转换表

Q ₂ n	Q ₁ n	Q ₀ n	Q ₂ n+1	Q₁n+1	Q ₀ n+1	CP ₂	CP ₁	CP ₀
0	0	0	0	0	1			1
0	0	1	0	1	0		1	1
0	1	0	0	1	1			1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1			1
1	0	1	1	1	0		1	1
1	1	0	1	1	1			1
1	1	1	0	0	0	1	1	1

所以需要 3 个 D 触发器

设计模 8 异步行波计数器:

 $Q_0n+1= \# Q_0n(CP_0\uparrow)$

 $Q_1n+1= \ddagger Q_1n(CP_1\uparrow = Q_0\uparrow)$

 $Q_2n+1= \neq Q_2n(CP_2\uparrow = Q_1\uparrow)$

所以可以画出电路图

时序仿真如下:

时序仿真分析:

总延迟接近 15ns 可见延迟很大

设计模 8 同步行波计数器:

绘制卡诺图

$Q_2n \setminus Q_1n Q_0n$	00	01	11	10
0	001	010	100	011
1	101	110	000	111

对于 Q₀n+1

$Q_2n \setminus Q_1n Q_0n$	00	01	11	10
0	1	0	0	1
1	1	0	0	1

可见
$$Q_0^{n+1}=\overline{Q_0^n}(CP\uparrow)$$
 $Q_0^{n+1}=Q_0^n\oplus 1(CP\uparrow)$

对于 Q₁n+1

$Q_2n \setminus Q_1n Q_0n$	00	01	11	10
0	0	1	0	1
1	0	1	0	1

$$_{\overrightarrow{\square}}$$
 $_{\overrightarrow{\square}}$ $Q_1^{n+1}=Q_0^n\oplus Q_1^n(CP\uparrow)$

对于 Q₂n+1

Q ₂ n \ Q ₁ n Q ₀ n	00	01	11	10
0	0	0	1	0
1	1	1	0	1

$$_{\overline{\Pi_1^r}|\overline{J_1^r}|}Q_1^{n+1}=\overline{Q_2^n}Q_1^nQ_0^n+Q_2^n(\overline{Q_1^n}+\overline{Q_0^n})=Q_2^n\oplus(Q_0^nQ_1^n)(CP\uparrow)$$

所以可以画出电路图:

时序仿真如下:

时序仿真分析:

延迟接近 2ns 可见延迟很小

综合比较:

模 8 同步行波计数器的时延比异步计数器小很多,会更加准确,所以应该采用同步计数器 b) 完成广告流水灯的设计,包含详细的设计过程和电路原理图

首先要利用原本的模八计数器,在脉冲的条件下实现输出数字从 0 到 7 的变化,从而实现流水灯的基本原理,接着把模八计数器和 74138 结合,根据输出的数字让 8 个端按次序置零,从而实现广告流水灯的效果

完成设计的电路图如下

仿真结果如下:

c) 完成广告流水灯的硬件电路搭接 先重新绘制电路图

完成搭建:

进行验证:

- 3、 序列发生器 (第 11 周)
 - a) 分别用集成计数器 74161 的同步置"0"和异步清"0"功能实现模 10 计数器,
- 在 Quartus 中进行时序仿真验证,并分析比较两种方法的区别

用 74161 的异步置 0 实现模 10 计数器

列出状态

次数	Qd	Qc	Qb	Qa	CLR
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	0

9	1	0	0	1	0
10	1	0	1	0	1

所以需要在 1010 时让 CLR=1 实现异步清零,所以可以得出 $CLR = \overline{Q_dQ_b}$ 所以可以根据 74161 的特性设计出电路图(注意接入使能端等信息):

时序仿真验证如下:

可以看出实现了异步清零的功能,让 Q 在 0 到 9 间切换(其中 10 为暂态),实现了模 10 计数器,但是可以看到最后的时间延迟还是占了一部分,会影响计数器的准确性,而且其他地方也存在部分时间延迟,如图所示:

变化由-6.777ns 的延迟,十分严重,且不同位数之间也有延迟

用 74161 的同步置 0 实现模 10 计数器(可以在进位的时候实现)

次数	Qd	Qc	Qb	Qa	RCO	LOAD
0	0	1	1	0	0	1
1	0	1	1	1	0	1
2	1	0	0	0	0	1
3	1	0	0	1	0	1
4	1	0	1	0	0	1
5	1	0	1	1	0	1
6	1	1	0	0	0	1
7	1	1	0	1	0	1
8	1	1	1	0	0	1
9	1	1	1	1	1(CP 上)	0

由于是异步置零,所以需要在 ABCD 口接成 0110, 然后在 1111 处于上升沿的时候 触发进位信号, 把进位信号导入 LOAD 里面实现异步清零, 导入 0110 从而实现循环 所以可以根据 74161 的特性设计出电路图(注意接入使能端等信息):

时序仿真验证如下:

可以看出实现了同步清零的功能,让 Q 在 6 到 15 间切换,实现了模 10 计数器,但是可以看到进位时的时间延迟还是占了一部分,会影响计数器的准确性,而且其他地方也存在部分时间延迟,如图所示:

由这张图可以看出可能存在暂时的波动使得进位为 1,但是其不处

于上升沿, 所以不会造成影响

-这时其他地方的时间延迟,和之前的时延原因相同,且不同位数之

间也有延迟

b) 分别用集成计数器 74161 和 4 位双向移位寄存器 74194 实现图 3.1 所示的 环形计数器,电路必须能自启动,并在 Quartus 中进行时序仿真验证

可以绘制出状态转换表为:

QAn	QBn	QCn	QDn	CLK	QAn+1	QBn+1	QCn+1	QDn+1
1	0	0	0	cp 上升	0	1	0	0
0	1	0	0	cp 上升	0	0	1	0
0	0	1	0	cp 上升	0	0	0	1
0	0	0	1	cp 上升	1	0	0	0

对于 74161 来说, 要通过组合逻辑电路来实现环形计数器, 且采用同步清零法

Qd	Qc	Qb	Qa	QA	QB	QC	QD
0	0	0	0	1	0	0	0
0	0	0	1	0	1	0	0
0	0	1	0	0	0	1	0
0	0	1	1	0	0	0	1

$$\overline{\,Q_A = \overline{Q_a}\, \overline{Q_b}\,}$$

$$\Omega_{\rm p} = \Omega \overline{\Omega_{\rm p}}$$

$$egin{aligned} Q_B &= Q_a \, \overline{Q_b} \ Q_D &= Q_a Q_b \end{aligned}$$

$$Q_C = \overline{Q_a} Q_b$$

$$LDN = \overline{Q_aQ_b}$$

所以可以画出电路图如下:

时序仿真结果如下:

可以看出还是会出现时延现象

对于 4 位双向移位寄存器 74194 来说:

СР	CR 非	S1	S0	Dsr	功能	QA	QB	QC	QD
上升	1	0	1	0	右移	1	0	0	0
上升	1	0	1	0	右移	0	1	0	0
上升	1	0	1	0	右移	0	0	1	0
上升	1	0	1	1	右移	0	0	0	1

显然 Dsr=QD

为了实现自启动,可以让当 QD=1 时或者(QA+QB+QC+QD)非=1 时,置数为 1000,然后保持右移,这时分为两种情况,如果 QABQBQCQD 中存在 1 时,由于右移 QD 一定会出现一,这时会置数为 1000,如果全是 0,则直接置数为 0001

СР	CR 非	S1	S0	Dsr	功能	QA	QB	QC	QD
上升	1	0	1	0	右移	1	0	0	0
上升	1	0	1	0	右移	0	1	0	0
上升	1	0	1	0	右移	0	0	1	0
上升	1	1	1	0	置数	0	0	0	1

所以可以画出电路图如下

时序仿真结果如下:

- c) 完成两种方法实现序列发生器的设计方案,包含详细的设计过程和电路原理图
- d) 完成两种方案序列发生器的硬件电路搭接
- 4、 4 位并行输入-串行输出曼切斯特编码电路(第 12 周)
- a) 完成 4 位并行输入-串行输出曼切斯特编码设计方案、包含详细的设计过程和 电路原理图

图 3.2 曼切斯特编码

由曼切斯特码的性质可以得出 $M = \overline{D}CP + \overline{CP}D = CP \oplus D$

所以可以根据把 D 分为 D0, D1, D2, D3 四个, 然后每 4 个周期用 74194 载入一次, 并在这四个周期内逐步右移, 一次输出 D, 接着再利用异或实现曼切斯特码。 然后可以利用 74161 来是实现每四位的重置

Q3	Q2	Q1	Q0	LND	S0
0	0	0	0	1	0(左移)
0	0	0	1	1	0(左移)
0	0	1	0	1	0(左移)
0	0	1	1	0	1(置数)

这个时候 QA=D

所以 S0=Q1Q0 LND=非(Q1Q0) $M=\overline{D}CP+\overline{CP}D=CP\oplus D$

所以可以设计出电路图

仿真模拟得:

可以看出有一定时延但是输出结果大致准确。

(提高)而为了给串行数据增加起始位和结束位,其中起始位为"0",结束位为"1",就会出现六种状态,这时候使用 74151 会比较方便

列出状态图

次数	QCQBQA	LDN	S0	74151 输出(D)
0	000	1	1(置数)	0
1	001	1	0(左移)	D0
2	010	1	0(左移)	D1
3	011	1	0(左移)	D2
4	100	1	0(左移)	D3
5	101	0	0(左移)	1

所以是 LND=非(QCQA) $S0 = \overline{QA} \ \overline{QB} \ \overline{QC}$

而 74151 在不同次数下的输出也如表所示, 所以可以画出电路图如下:

而仿真结果为:

对于输入数据 0001,显示被转化为 000011,加上了开头和结尾,符合预期,同时输出的 Q 除了存在部分毛刺,其余也基本符合要求

对于输入数据 1001,显示被转化为 010011,加上了开头和结尾,符合预期,同时输出的 Q 除了存在部分毛刺,其余也基本符合要求画出电路图:

完成实物预期搭建:

b) 自行设计合理的电路验证方案

使用 Electronics pioneer 验证

对于输入数据 1111

可以看到 D 为 011111, 输出的 M 符合预期 对于数据 1011

可以看到 D 为 010111,输出的 M 符合预期对于数据 0101

可以看到 D 为 001011,输出的 M 符合预期

综上所述,但是存在问题,就是当在次数 0 的时候变化时,D3D2D1D0 置数,所以如果在次数 0 的时候变化的话,次数 1,2,3,4 的时候会对应变化,所以不应该在 0 到 1 的时候置数,而是应该在 5 到 0 的时候置数,所以修改状态表如下:

次数	QCQBQA	LDN	SO SO	S1	状态	74151 输出
						(D)
0	000	1	0	0	保持	0
1	001	1	0	1	左移	D0
2	010	1	0	1	左移	D1
3	011	1	0	1	左移	D2
4	100	1	0	1	左移	D3
5	101	0	1	1	置数	1

对应的逻辑表达式如下 $S1=\overline{QA}\;\overline{QB}\;\overline{QC}\;S0=QAQC$ 所以修改电路图如下:

仿真验证在后面

c) 完成 4 位并行输入-串行输出曼切斯特编码硬件电路搭接

三、实验内容

1、 广告流水灯 (第 10 周课内验收)

用触发器、组合函数器件和门电路设计一个广告流水灯,该流水灯由 8 个 LED 组成,工作时始终为 1 暗 7 亮,且这一个暗灯循环右移。

- (1) 写出设计过程, 画出设计的逻辑电路图, 按图搭接电路(见预习报告)
- (2) 将单脉冲加到系统时钟端,静态验证实验电路(已经成果验收)
- (3) 将 TTL 连续脉冲信号加到系统时钟端,用示波器观察并记录时钟脉冲 CP、触发器的输出端 Q2、Q1、Q0 和 8 个 LED 上的波形,绘制波形如下

2、 序列发生器 (第 11 周课内验收)

分别用 MSI 计数器和移位寄存器设计一个具有自启动功能的 101001 序列信号发生器

(1) 写出设计过程,画出电路逻辑图

用 MSI 计数器实现 101001 序列信号发生器:

先画出 74161 的状态图,由题意可得应该是模 6 计数器

Qd	Qc	Qb	Qa	Q
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1

应该采用模6同步置0计数器,所以采用000-101这六个状态

画出卡诺图如下

Qc\QbQa	00	01	11	10
0	0 /	1	0	0
1 .	1	1	无意义	无意义

所以可以得出卡诺图为 $Q = \overline{Q_b}Q_a + Q_c = \overline{\overline{Q_b}Q_a}\overline{Q_c}$

画出电路图如下:

仿真结果如下:

符合预期的 010011, 即是 101001 的变种

但是可以引入74138来简化设计,

Qd	Qc	Qb	Qa	Q
0	0	0	0	0
0	0	0	1	1
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	1

重新设计电路图如下:

仿真结果如下:

	Name	Value at 16.65 ns	0 ps 16.65 ns	160. ₀ ns	320. _, 0 ns	480.0 ns	640. O ns	800. _, 0 ns	960. _, 0 ns
₽ 0	CP	A 1	Juu	mmmmm	wwww		mmmmm	nnnnnnn	TTTT I
◎ 1	Q	A 0	H^{1}	\neg					

基本符合预期结果 绘制电路图如下:

电路预搭建如下:

用移位寄存器实现 101001 序列信号发生器:

由于位数为 6,所以可以用 3 位寄存器实现,但是为了方便可以用 4 位来实现,具体考虑如下,首先是要实现 101001 的输出,但是可以用寄存器的置数功能先记忆一部分,然后再不断移位,为了方便可以把原式转化为 1101 然后 0110,0011,0001,0000,1000,当进入 1000 时,直接置数 1011,当满足 Q=0000 时,SR=1 其余时候 SR=0。这样可以实现自启动,由于 SR=0,所以 Q 一定会转化为 0000,然后变成 1000,最后是实现置数

操作	QD	QC	QB	QA	SR	S1
右移	1	0	1	1	0	0
右移	0	1	0	1	0	0
右移	0	0	1	0	0	0
右移	0	0	0	1	0	0
右移	0	0	0	0	1	0
置数	1	0	0	0	0	1

但是实际操作发现由于我们使用与非门,只要存在 0 很容易误判为 1,所以更改为以下表格的形式为:

	操作	QD	QC	QB	QA	SL	S0
有效操	左移	0	0	1	0	1	0
作	左移	1	0	0	1	1	0
	左移	1	1	0	0	1	0
	左移	1	1	1	0	1	0
	左移	1	1	1	1	0	0
	置数	0	1	1	1	1	1

如果出现0000或其他无效状态,都会逐渐左移,且输入为1,最终转化为1111,最后通过

逻辑判断转化为0111,然后启动置数,形成0010,从而实现自启动 所以可以列出表达式

$$S0 = \overline{\overline{Q_A Q_B Q_C \overline{Q_D}}} \ SL = \overline{Q_A Q_B Q_C Q_D}$$

所以可以画出电路图如下:

仿真结果如下:

可以绘制电路图如下:

预搭建结果如下:

- (2) 搭接电路,并用单脉冲静态验证实验结果 实验验证成功
- (3) 加入 TTL 连续脉冲,用示波器观察观察并记录时钟脉冲 CLK、序列输出端的波形。可以根据条件画出波形如下:

3、 4 位并行输入-串行输出曼切斯特编码电路(第 12 周) 仿真波形如下:

四、实验使用仪器设备(名称、型号、规格、编号、使用状况)

数字示波器, Tektronix TDS 2012C, 200MHz, 2 通道, 使用正常

集成电路,74LS00,四2输入与非门,使用正常

集成电路,74LS04, 六反相器,使用正常

集成电路,74LS74,双D触发器,使用正常

集成电路,74LS138,3线-8线译码器,使用正常

集成电路,74LS151,8线-1线数据选择器,使用正常

集成电路,74LS161,四位同步二进制计数器,使用正常

集成电路,74LS194,四位双向移位寄存器,使用正常

五、实验总结

本次实验主要是学习和掌握时序逻辑电路的设计和应用,包括广告流水灯、序列发生器和曼切斯特编码电路。

通过本次实验,我了解了时序逻辑电路的一般设计过程,包括确定状态数、状态转换表、状态转换图、卡诺图、逻辑表达式、电路图等,以及如何利用不同的器件和方法实现相同的功能,并比较其优缺点。我掌握了时序逻辑电路的时延分析方法,了解了时序电路对时钟信号相关参数的基本要求,以及如何避免和解决时序逻辑电路中可能出现的毛刺、竞争、冒险等问题。我掌握了时序逻辑电路的基本调试方法,包括使用单脉冲和连续脉冲验证电路的静态和动态性能,使用示波器和逻辑分析仪观察和记录电路的输入输出波形,分析和解释电路的工作原理和状态变化。

在实验过程中,我遇到了一些问题,比如在搭接电路时,有时会出现接线错误等问题,导致电路不能正常工作。为了解决这些问题,我需要耐心地检查和排除故障,使用示波器和逻辑分析仪观察和测试电路的输入输出波形,找出问题的原因和解决方法。

在实验过程中,我也思考了一些问题,比如如何避免和解决时序逻辑电路中可能出现的毛刺、竞争、冒险等问题,如何利用不同的器件和方法实现相同的功能,并比较其优缺点,如何优化电路的设计和性能,等等。

通过本次实验,我收获了很多,我了解了时序逻辑电路的一般设计过程,掌握了时序逻辑电路的时延分析方法,熟练了时序逻辑电路的基本调试方法,提高了我的实验能力和动手能力,也对时序逻辑电路有了更深入的理解和掌握。

六、参考资料 (预习、实验中参考阅读的资料)

《数字集成电路数据手册》,国防工业出版社

《数字逻辑与数字系统》,王银城等编著,清华大学出版社

《数字逻辑与数字系统设计》,陈宏等编著,高等教育出版社