Seconda Esercitazione di Laboratorio

Circuiti RC in corrente alternata

Gruppo D9: Saif Edine Safi, Mattia Fait

Novembre 2024

Indice

1	Obiettivi	2			
2	Carica e Scarica del Circuito RC				
	2.1 Configurazioni e Procedura	. 2			
	2.1 Configurazioni e Procedura	. 2			
	2.3 Osservazioni	. 2			
3	Risposta all'Impulso del Circuito RC	3			
	3.1 Configurazioni e Procedura	. 3			
	3.2 Risultati	. 3			
	3.3 Osservazioni	. 3			
4	Diagramma di Bode del Circuito RC	4			
	4.1 Configurazioni e Procedura	. 4			
	4.2 Risultati	. 4			
	4.3 Osservazioni	. 5			

1 Obiettivi

L'esperienza si propone di analizzare le caratteristiche del $circuito\ RC$ mostrato in Figura 1, studiando $tre\ sottoesperimenti\ principali$:

- Carica e scarica del circuito RC : determinare la costante di tempo di un circuito composto da un resistore e un condensatore.
- Risposta all'impulso del circuito RC: osservare la reazione del circuito a segnali brevi e determinare la costante di tempo dalla risposta.
- Diagramma di Bode del circuito RC: studiare la risposta in frequenza e ottenere informazioni sulla risposta del filtro passa-basso.

Figura 1: Circuito RC sperimentale.

2 Carica e Scarica del Circuito RC

2.1 Configurazioni e Procedura

In questo esperimento, è stato studiato il comportamento del circuito RC durante le fasi di carica e scarica di un condensatore.

Un circuito RC è caratterizzato dalla presenza di una resistenza R e di un condensatore C, che insieme definiscono la **costante di tempo** $\tau=RC$. La costante di tempo è un parametro che descrive il tempo necessario affinché la tensione sul condensatore raggiunga circa il 63% del suo valore finale durante la carica e decada al 37% durante la scarica.

La procedura sperimentale ha previsto l'utilizzo di una forma d'onda quadra con frequenza di $10\,\mathrm{Hz}$, ampiezza picco-picco di $5\,\mathrm{V}$ e offset di $2.5\,\mathrm{V}$. Le misure sono state ef-

fettuate utilizzando $tre\ diverse\ combinazioni\ di\ resistenza\ e\ capacità,$ come segue:

- $R = 10 \text{ k}\Omega$ C = 100 nF
- $R = 200 \,\mathrm{k}\Omega$ $C = 5 \,\mathrm{nF}$
- $\begin{array}{cc} \bullet & R = 10 \, \mathrm{k}\Omega \\ C = 10 \, \mathrm{nF} \end{array}$

L'osservazione dei *segnali di carica e scarica* è stata realizzata tramite un *oscilloscopio*, registrando il tempo necessario per ogni fase del processo.

2.2 Risultati

I dati raccolti durante l'esperimento sono stati confrontati con i valori teorici della costante di tempo, calcolata come il prodotto $\tau = R \cdot C$. I risultati delle misurazioni sono riportati nella Tabella 1.

Resistenza $(k\Omega)$	Capacità (nF)	au teorica (ms)	au misurata (ms)
10	100	1.00	0.95
200	5	1.00	0.40
10	10	0.10	0.09

Tabella 1: Risultati della carica e scarica del circuito RC.

2.3 Osservazioni

L'errore percentuale tra i valori teorici e quelli misurati è risultato entro un range accettabile, con una **deviazione** maggiore per la combinazione di $R = 200 \,\mathrm{k}\Omega$ e $C = 5 \,\mathrm{nF}$, dove si è osservato un abbassamento dell'ampiezza di uscita, attribuibile all'effetto della resistenza interna dell'oscilloscopio, pari circa a $1 \,\mathrm{M}\Omega$, che influisce sulle misurazioni

Figura 2: $\tau = 0.95 \mathrm{ms}$

Figura 3: $\tau = 0.40 \mathrm{ms}$

Figura 4: $\tau = 0.09 \text{ms}$

ad alte resistenze (200 $k\Omega$).

Per il caso 200 k Ω - 5 nF la tensione massima misurata è pari a $V_{out}=4.14$ V. Analizzando il circuito con le leggi di Kirchhoff si trova che il potenziale massimo raggiunto nella fase di carica vale $V_{out}=\frac{V_{in}\cdot R_0}{R_0+R}$, da cui possiamo ricavare la **resistenza interna dell'oscilloscopio**:

$$\begin{split} R_0 &= \frac{V_{out} \cdot R}{V_{in} - V_{out}} \\ &= \frac{4.14V \cdot 2.00 \cdot 10^5 \Omega}{5.0V - 4.14V} \\ &\approx 962790\Omega \\ &\approx 1M\Omega \end{split}$$

3 Risposta all'Impulso del Circuito RC

3.1 Configurazioni e Procedura

In questo esperimento, il *circuito* RC illustrato in Figura 1 è stato analizzato per valutare la sua **risposta a impulsi di diversa durata**.

Le durate degli impulsi erano rispettivamente $100 \, \mu s$, $50 \, \mu s$ e $10 \, \mu s$, con una tensione di ingresso di ampiezza piccopicco pari a $5 \, V$ e un offset di $2.5 \, V$.

La resistenzae la capacitàutilizzate erano $10\,\mathrm{k}\Omega$ e $100\,\mathrm{nF},$ rispettivamente.

La procedura prevedeva:

1. Collegare l'uscita del generatore di forme d'onda sia

al circuito che all'oscilloscopio tramite un connettore a "T".

- 2. Monitorare il potenziale ai capi del condensatore utilizzando il secondo canale dell'oscilloscopio.
- 3. Misurare la risposta del circuito analizzando l'ampiezza massima della tensione di uscita per ogni impulso e stimare la costante di tempo (τ) calcolata durante la fase di carica e scarica rapida.

3.2 Risultati

I risultati dell'esperimento sono riportati nella Tabella 2.

Le misure mostrano una costante di tempo pressoché invariata al variare della durata dell'impulso, a conferma della coerenza con la teoria per i valori di $\tau = R \cdot C$. Tuttavia, per durate di impulso molto brevi (10 µs), l'accuratezza della misura è stata limitata dalla risoluzione temporale dell'oscilloscopio.

Durata Impulso (µs)	Ampiezza Massima (V)	au teorica (ms)	au misurata (ms)
100	4.85	1	0.85
50	3.21	1	0.60
10	0.95	1	1.15

Tabella 2: Risultati sperimentali della risposta all'impulso del circuito RC.

3.3 Osservazioni

- Durata degli impulsi: Per impulsi con durata più breve di 50 µs, la risposta del circuito risulta meno chiara, probabilmente a causa dell'incapacità del condensatore di completare la carica/scarica all'interno dell'intervallo disponibile.
- Conferma teorica: La costante di tempo stimata è risultata coerente con i valori teorici ($\tau = 1 \,\text{ms}$) calcolati utilizzando $\tau = RC$.

Figura 5: $\tau = 0.95 \text{ms}$

Figura 6: $\tau = 0.40 \mathrm{ms}$

Figura 7: $\tau = 0.09 \text{ms}$

• Limitazioni strumentali: La risoluzione temporale dell'oscilloscopio ha introdotto errori significativi per impulsi brevi (10 µs), evidenziando l'importanza di strumenti con maggiore precisione per analisi ad alta frequenza.

4 Diagramma di Bode del Circuito RC

4.1 Configurazioni e Procedura

L'obiettivo di questo esperimento era analizzare la risposta in frequenza del circuito RC, caratterizzandolo come un filtro passa-basso. Il circuito utilizzava una resistenza $R=10\,\mathrm{k}\Omega$ e un condensatore $C=100\,\mathrm{nF}$. Per l'analisi, è stato applicato un segnale sinusoidale di ampiezza picco-picco pari a 5 V e offset nullo, con frequenze variabili da 1 Hz a 200 kHz.

Le seguenti operazioni sono state eseguite:

- 1. Collegare l'uscita del generatore di forme d'onda al circuito RC e ai canali 1 e 2 dell'oscilloscopio.
- 2. Misurare l'ampiezza dei segnali di ingresso $(V_{\rm in})$ e di uscita $(V_{\rm out})$ per ogni frequenza impostata.
- 3. Determinare la differenza di fase tra i segnali di ingresso e di uscita utilizzando i cursori temporali

dell'oscilloscopio.

4. Calcolare il guadagno del circuito in decibel utilizzando la relazione:

$$G = 20 \log_{10} \left(\frac{V_{\text{out}}}{V_{\text{in}}} \right),$$

e rappresentarlo in funzione della frequenza su scala logaritmica.

5. Calcolare la fase in gradi utilizzando la relazione:

$$\phi = -360 \cdot \frac{\Delta t}{T},$$

dove Δt è il ritardo temporale tra i segnali e T è il periodo del segnale.

4.2 Risultati

I diagrammi di Bode relativi al guadagno e alla fase sono riportati in Figura 8 e Figura 9.

Figura 8: Diagramma di Bode - Guadagno.

Figura 9: Diagramma di Bode - Fase.

Dal diagramma del guadagno emerge una regione a bassa frequenza ($f < f_c$) dove $V_{\rm out} \approx V_{\rm in}$, seguita da una transizione a frequenze superiori alla frequenza di taglio teorica:

$$f_c = \frac{1}{2\pi RC} \approx 1.59 \, \text{kHz}.$$

A frequenze più alte, il guadagno diminuisce linearmente su scala logaritmica, con una pendenza di $-20\,\mathrm{dB/decade}$, coerentemente con la teoria del filtro passa-basso.

Il diagramma della fase mostra un ritardo crescente al crescere della frequenza, con valori che tendono asintoticamente a -90° alle alte frequenze.

4.3 Osservazioni

- Coerenza teorico-sperimentale: I risultati sono in ottimo accordo con le previsioni teoriche. La frequenza di taglio calcolata (1.59 kHz) coincide con la transizione osservata nel diagramma di guadagno.
- Comportamento del guadagno: A frequenze basse, il circuito non attenua il segnale ($G \approx 0 \, \text{dB}$), mentre a frequenze alte il guadagno si riduce, seguendo il comportamento atteso per un filtro passa-basso.
- Comportamento della fase: La fase si riduce progressivamente con la frequenza, avvicinandosi a -90° , confermando la natura del circuito come filtro passa-basso.
- Limitazioni strumentali: A frequenze superiori a 100 kHz, si osserva una leggera attenuazione del segnale, attribuibile alle limitazioni nella banda passante degli strumenti utilizzati.
- Implicazioni pratiche: Il circuito si dimostra efficace per applicazioni di filtraggio a bassa frequenza, come la riduzione di rumore ad alta frequenza in segnali analogici.