Training Sessions Outline on Python for Machine Learning and Neural Networks

Session 1: Introduction to Python for Machine Learning

Objectives:

- Set up and use virtual environments.
- Understand basic operations with NumPy.
- Perform data manipulation with Pandas.
- Create visualizations with Matplotlib.

Agenda:

1. Using Virtual Environments:

- Introduction to virtualenv and its benefits.
- Setting up and using virtualenv in Windows and Ubuntu.

2. Introduction to Python Libraries:

- Basic operations with NumPy (simulated data and provided dataset).
- Data manipulation with Pandas (simulated data and provided dataset).
- Data visualization with Matplotlib (simulated data and provided dataset).

Session 2: Introduction to Supervised Learning

Objectives:

- Understand the basics of supervised learning.
- Learn about different datasets (training, validation, testing).
- Apply a simple classifier on simulated data and evaluate using accuracy.

Agenda:

1. Introduction to Supervised Learning:

- What is supervised learning?
- Importance of different datasets (training, validation, testing).

2. Implementing a Simple Classifier:

- Build and train a simple classifier on simulated data.
- Evaluate the classifier using accuracy.

Homework:

- Implement a simple classifier on provided datasets.
- Evaluate the classifier's performance.

Session 3: Data Preprocessing

Objectives:

- Understand the importance of data preprocessing.
- Perform data cleaning, one-hot encoding, normalization, and centering.

Agenda:

- 1. Data Cleaning:
 - Handling missing data.
 - Removing duplicates.
- 2. Data Transformation:
 - One-hot encoding for labels.
 - Normalization and centering.
 - Other relevant preprocessing steps.

Homework:

• Clean and preprocess a provided dataset.

Session 4: Cross-Validation Techniques

Objectives:

- Understand the importance of cross-validation.
- Learn different cross-validation techniques.
- Apply cross-validation to evaluate model performance.

Agenda:

- 1. Introduction to Cross-Validation:
 - Definition and purpose of cross-validation.
 - Types of cross-validation (k-fold, stratified k-fold, etc.).
- 2. Implementing Cross-Validation:
 - Applying cross-validation to different models.
 - Evaluating model performance using cross-validation.

Homework:

 Implement cross-validation on provided datasets and evaluate model performance.

Session 5: Preventing Data Leakage

Objectives:

- Understand data leakage and its impact.
- Learn methods to prevent data leakage.

Agenda:

- 1. Introduction to Data Leakage:
 - Definition and examples.
 - Impact on model performance.
- 2. Preventing Data Leakage:
 - Proper train-test split.

Session 6: Feature Selection Methods

Objectives:

- Understand the importance of feature selection.
- Implement feature selection methods.

Agenda:

- 1. Introduction to Feature Selection:
 - Importance and benefits.
- 2. Greedy Forward LDA-Based Feature Selection:
 - Explanation and implementation.

Homework:

• Implement greedy forward LDA-based feature selection on a provided dataset.

Session 7: Support Vector Machines (SVM)

Objectives:

- Understand the theory behind SVM and RBF SVM.
- Implement and evaluate SVM models.

Agenda:

- 1. Introduction to SVM:
 - Theory and concepts of SVM.
 - Importance and applications of SVM.
- 2. Implementing SVM Models:
 - Build and train SVM and RBF SVM on simulated data.
 - Evaluate the models.

Homework:

• Implement and evaluate SVM models on provided datasets.

Session 8: Decision Trees and Random Forests

Objectives:

- Understand the theory behind decision trees and random forests.
- Implement and evaluate tree-based models.

Agenda:

- 1. Introduction to Decision Trees:
 - Theory and concepts of decision trees.
 - Importance and applications of decision trees.
- 2. Implementing Decision Trees and Random Forests:
 - o Build and train decision trees and random forests on simulated data.
 - Evaluate the models.

Homework:

• Implement and evaluate decision trees and random forests on provided datasets.

Session 9: Introduction to Unsupervised Learning

Objectives:

- Understand the basics of unsupervised learning.
- Implement simple unsupervised learning models.

Agenda:

1. Introduction to Unsupervised Learning:

- What is unsupervised learning?
- Types of unsupervised learning algorithms.

2. Implementing Models:

- K-means clustering.
- Principal Component Analysis (PCA).

Homework:

 Implement and evaluate simple unsupervised learning models on provided datasets.

Session 10: Neural Networks - MLP with Simulated Data

Objectives:

- Understand the basic structure and functioning of neural networks.
- Implement a simple MLP model on simulated data.

Agenda:

1. Basics of Neural Networks:

- Structure and activation functions.
- Forward and backward propagation.

2. Implementing MLP:

- Using TensorFlow/Keras to build a simple MLP.
- Training and evaluating the MLP on simulated data.

Homework:

• Build and train an MLP on provided datasets.

Session 11: Neural Networks - MLP with Real Dataset

Objectives:

- Apply an MLP model to a real dataset.
- Evaluate the performance of the MLP model.

Agenda:

1. Implementing MLP on Real Data:

- Build and train an MLP on the provided dataset.
- Evaluate the model's performance.

Homework:

• Fine-tune the MLP model and improve its performance on the provided dataset.

Session 12: Regularization Techniques in Neural Networks

Objectives:

- Understand the importance of regularization in neural networks.
- Implement dropout and batch normalization.

Agenda:

1. Introduction to Regularization:

- Overfitting and the need for regularization.
- Techniques: Dropout and Batch Normalization.

2. Implementing Regularization:

- Adding dropout to neural networks.
- Applying batch normalization.

Homework:

 Apply dropout and batch normalization to neural networks and evaluate the performance.

Session 13: Convolutional Neural Networks (CNN) with Simulated Data

Objectives:

- Understand the basics of CNNs.
- Implement a simple CNN model on simulated data.

Agenda:

1. Introduction to CNNs:

- Structure and functioning of CNNs.
- Convolutional layers, pooling layers, and fully connected layers.

2. Implementing CNN:

- Using TensorFlow/Keras to build a simple CNN.
- $\circ\,$ Training and evaluating the CNN on simulated data.

Homework:

• Build and train a CNN on provided datasets.

Session 14: Convolutional Neural Networks (CNN) with Real Dataset

Objectives:

- Apply a CNN model to a real dataset.Evaluate the performance of the CNN model.

Agenda:

- 1. Implementing CNN on Real Data:Build and train a CNN on the provided dataset.
 - Evaluate the model's performance.

Homework:

• Fine-tune the CNN model and improve its performance on the provided dataset.