

ATSSS IN 3GPP SA2

DIETER GLUDOVACZ MAR 2022

ATSSS - ARCHITECTURE

- The Access Traffic Steering Switching and Splitting (ATSSS) function comprises two components:
- in the User Equipment (UE) and
 - in the **5G Core**.

ATSSS - WHAT DOES IT STAND FOR

4

STUDY ON ATSSS IN 5GS; PHASE 3 (FS_ATSSS_PH3) - REL18

Study captured in Technical Report 23.700-53

Scope: enhance the ATSSS feature by:

- Support new steering functionalities that can steer/switch/split non-TCP traffic flows (e.g. UDP traffic flows and IP traffic flows). Two types of such steering functionalities are studied: (i) a steering functionality based on the QUIC protocol and its multipath extensions, and (ii) a steering functionality based on the DCCP protocol and its multipath extensions.
- Support redundant traffic steering for both GBR and non-GBR traffic flows. With redundant traffic steering, a traffic flow (GBR or non-GBR) can be replicated on multiple access paths and, therefore, can improve transmission reliability and reduce packet latency.
- Support traffic switching between one non-3GPP access path, from a UE to a N3IWF in a PLMN, and another non-3GPP access path, from the UE to a TNGF in the same PLMN.
- Support the establishment of a MA PDU Session with one 3GPP access path via 5GC and one non-3GPP access path via ePDG/EPC. This is to complement the existing ATSSS capability that supports the establishment of a MA PDU Session with one non-3GPP access path via 5GC and one 3GPP access path via EPC.

STUDY ON ATSSS IN 5GS; PHASE 3 (FS_ATSSS_PH3) - REL18

Status: Study started in 3GPP SA2. Agreed Scope, Architectural Assumptions and Principles, 4 key issues and 3 solutions.

Key Issues (Work Tasks)

- #2: New steering functionalities for non-TCP traffic
- #3: Support of redundant traffic steering
- #5: Switching traffic of an MA PDU Session between two non-3GPP access paths
- #6: Supporting MA PDU Session with one 3GPP access path via 5GC and one non-3GPP access path via ePDG/EPC

Solutions

- #1: New steering mode Redundancy steering mode with packet loss rate
- #2: Support non-3GPP access leg of MA-PDU Session with PDN connection in EPC
- #3: MP-DCCP based Steering Functionality

FS_ATSSS_PH3 STATUS - WORKING PLAN FOR STUDY PHASE

							A GLOB
	Study phase						
	Feb, 22	Apr, 22	May, 22	TSG#96	Aug, 22	TSG#97	Oct, 22
	SA2#149e	SA2#150e	SA2#151e	June, 22	SA2#152	Sep, 22	SA2#153
Study TUs	0.5	1.5	1		2		1
Normative TUs							
Max <u>Tdocs</u>	15	45	30		60		30
Contributions on general topics	Done	Updates	Updates				
(skeleton, scope, KIs,)	(2 ENs in KIs)	only (UO)	only (UO)				
Solutions for WT#2.1 (2+0.5)		X	Х	_	UO		UO
Solutions for WT#2.2 (1+0.5)	1 solution	X	X	mation	UO	- le	UO
Conclusions for WT#2.1 and WT#2.2				ma.	X	roval	Х
Solutions for WT#3 (1+0.5)	1 solution	Х	Х	Je	UO	Ар	UO
Conclusions for WT#3				or Ir	Х	for /	Х
Solutions for WT#5.1 (1.5+0.75)		Х	X	TR for Info X O O O O O O O O O O O O	TR f	UO	
Conclusions for WT#5.1				-	X	'	Х
Solutions for WT#6 (0.5+0.25)	1 solution	Х	X		UO		UO
Conclusions for WT#6					Х		Х

- Still not clear whether the TR will be ready for approval in Sep. 2022.
- Current plan is to fully complete the study in Oct. 2022.

KEY ISSUE #2: NEW STEERING FUNCTIONALITIES FOR NON-TCP TRAFFIC (1/3)

This key issue aims at studying new steering functionalities (in addition to the existing ATSSS-LL and MPTCP steering functionalities defined in TS 23.501 [2]), which can be used to support steering, switching and **splitting of non-TCP traffic flows** (e.g. UDP traffic flows and IP traffic flows). Presently, traffic splitting of non-TCP traffic flows is not fully supported with the ATSSS-LL because this steering functionality may introduce out of order delivery, which can severely impact the transport performance.

Editor's note: Whether support of steering, switching and splitting of **Ethernet traffic** flows is required is FFS.

KEY ISSUE #2: NEW STEERING FUNCTIONALITIES FOR NON-TCP TRAFFIC (2/3)

More specifically, this key issue aims to:

1) Continue the Rel-17 study of the QUIC-based steering functionality and its multipath extensions by considering some of the aspects that were left open (see clause 8.2 of TR 23.700-93 [5]). The resolution of these aspects may lead to new solutions, in addition to those specified in TR 23.700-93 [5], and any of them should **support per-packet splitting**. For example, it will be considered whether the QUIC-based steering functionality will apply other IETF protocols, such as the MASQUE protocol, and whether a single multipath QUIC connection can support one or multiple steering modes.

The study of the QUIC-based steering functionality is based on the QUIC protocol [6], its multipath extensions (e.g. draft-ietf-quic-multipath [10]) and, possibly, on other relevant documents specified by IETF, such as RFC 9001 [7], RFC 9002 [8], draft-ietf-quic-datagram [9].

Any security aspects associated with the QUIC protocol mandating the usage of TLS 1.3 for key exchange, authentication, and negotiation of security and performance parameters (see RFC 9001 [7]), will be studied in conjunction with SA WG3.

2) Study a new steering functionality based on the DCCP protocol RFC 4340 [11] and its multipath extensions draft-ietf-tsvwg-multipath-dccp [12] that provide **support for per-packet splitting**.

The conclusions of the study will identify which one of the above two steering functionalities may be specified in the normative phase.

KEY ISSUE #2: NEW STEERING FUNCTIONALITIES FOR NON-TCP TRAFFIC (3/3)

This key issue shall also consider the following additional aspects:

- How the new steering functionalities can co-exist with MPTCP and ATSSS-LL;
- What is the impact on the user plane performance (e.g. additional overhead) for each one of the new steering functionalities;
- Whether it is needed and how to negotiate the support of the new steering functionalities between the UE and the network;
- Whether it is needed and how to enhance PCC rules, ATSSS rules and N4 rules to support the new steering functionalities;
- UE impacts in order to support each one of the new steering functionalities;
- How to treat out-of-order delivery caused by per packet-splitting.

POTENTIAL IETF DEPENDENCIES (NON-EXHAUSTIVE)

- [6] IETF RFC 9000: "QUIC: A UDP-Based Multiplexed and Secure Transport".
- [7] IETF RFC 9001: "Using TLS to Secure QUIC".
- [8] IETF RFC 9002: "QUIC Loss Detection and Congestion Control".
- [9] draft-ietf-quic-datagram: "An Unreliable Datagram Extension to QUIC".
- [10] draft-ietf-quic-multipath: "Multipath Extension for QUIC".
- [11] IETF RFC 4340: "Datagram Congestion Control Protocol (DCCP)".
- [12] draft-ietf-tsvwg-multipath-dccp: "DCCP Extensions for Multipath Operation with Multiple Addresses".
- [15] IETF RFC 4336: "Problem Statement for the Datagram Congestion Control Protocol (DCCP)".

Note: IETF draft documents cannot be formally referenced by 3GPP until they are published as an RFC.

POTENTIAL IETF DEPENDENCIES (NON-EXHAUSTIVE)

- [16] draft-amend-tsvwg-multipath-framework: "A multipath framework for UDP traffic over heterogeneous access networks".
- [17] IEEE AINAW, "Out-of-Order Transmission for In-Order Arrival Scheduling for Multipath TCP", DOI:10.1109/WAINA.2014.122.
- [18] draft-amend-iccrg-multipath-reordering: "Multipath sequence maintenance".
- [19] IETF RFC 4341: "Profile for Datagram Congestion Control Protocol (DCCP) Congestion Control ID 2: TCP-like Congestion Control".
- [20] IETF RFC 4342: "Profile for Datagram Congestion Control Protocol (DCCP) Congestion Control ID 3: TCP-Friendly Rate Control (TFRC)".
- [21] IETF RFC 5622: "Profile for Datagram Congestion Control Protocol (DCCP) Congestion ID 4: TCP-Friendly Rate Control for Small Packets (TFRC-SP)".
- [22] draft-romo-iccrg-ccid5: "Profile for Datagram Congestion Control Protocol (DCCP) Congestion Control ID 5".

Note: IETF draft documents cannot be formally referenced by 3GPP until they are published as an RFC

ATSSS ARCHITECTURE

"Low Layer steering functionality" operates below the IP layer (such as ATSSS-LL), in contrast a

"High Layer steering functionality" that operates above the IP layer (such as MPTCP).

