Projekt 1: Wskazanie optymalnej lokalizacji farmy fotowoltaicznej – analizy wielokryterialne (MCE)

Adrian Fabisiewicz (328935)

5 stycznia 2025

1 Wybór lokalizacji farmy fotowoltaicznej

co należy wziąć pod uwagę, wybierając lokalizację farmy fotowoltaicznej (rozważania teoretyczne, akty prawne wraz z cytowaniami źródeł / bibliografią)

2 Cel i analizowany obszar

Celem projektu było wskazanie optymalnej lokalizacji nowej farmy fotowoltaicznej dla obszaru gminy Świeradów-Zdrój (powiat lubański, województwo dolnośląskie).

3 Analizowane kryteria

Lp	Kryterium	Parametry	Źródło danych do kryterium
1	odległość od rzek i zbior- ników wodnych	jak najbliżej; nieprzekraczalna 100-metrowa strefa ochronna	BDOT10k(SWRS, PTWP)
2	odległość od budynków mieszkalnych	jak najdalej, powyżej 150m	BDOT10k(BUBD)
3	pokrycie terenu	powyżej 15m od lasu, optymalnie powyżej 100m od lasu	BDOT10k(PTLZ)
4	dostęp do dróg utwardzo- nych	jak największe zagęszczenie	BDOT10k(SKDR)
5	nachylenie stoków	jak najbardziej płasko	NMT
6	dostęp światła słonecz- nego	optymalnie: stoki południowe (SW-SE)	NMT
7	dobry dojazd od istotnych drogowych węzłów komu- nikacyjnych	jak najkrótszy czas dojazdu	BDOT10k(SKDR)
Łączenie kryteriów			
8	ocena przydatności terenu (próg przydatności)	$80\% \ / \ 90\% \ \mathrm{max.} \ \mathrm{przydatności}$	
9	przydatne działki / grupy działek	min 60% działki na terenie przydatnym	EGIB
10	powierzchnia i min. szero- kość obszaru	2ha / 50m	
11	koszt przyłącza do sieci SN (mapy kosztów)	jak najniższy	BDOT10k (wszystkie warstwy PT)

Tabela 1: Tabela z kryteriami lokalizacji

4 Realizacja

4.1 Ustalenie środowiska pracy i ścieżek do danych

```
import arcpy.analysis
  import arcpy.management
  import arcpy.sa
  geobaza = r"C:\Users\adria\Desktop\STUDIA_FOLDERY\analizy\MyProject12\
     MyProject12.gdb"
  arcpy.env.workspace = "in_memory"
  arcpy.env.outputCoordinateSystem = arcpy.SpatialReference("
     ETRS_1989_Poland_CS92")
  arcpy.env.extent = f"{geobaza}\\gmina_buffer"
  arcpy.env.mask = f"{geobaza}\\gmina_buffer"
  arcpy.env.cellSize = 5
  arcpy.env.overwriteOutput = True
11
12
  13
     swrs_0212_buffer = arcpy.analysis.Buffer(f'{geobaza}\\SWRS_L_0212', f'{
14
     water = arcpy.management.Merge([swrs_0210_buffer, swrs_0212_buffer, f'{
     geobaza\\PTWP_A_0210', f'{geobaza}\\PTWP_A_0212'], 'water')
  budynki = arcpy.management.Merge([f'{geobaza}\\BUBD_A_0210', f'{geobaza}\\)
     BUBD_A_0212'], 'budynki')
  ptlz = arcpy.management.Merge([f'{geobaza}\\PTLZ_A_0210', f'{geobaza}\\
     PTLZ_A_0212'], 'ptlz')
  nmt = f'{geobaza}\\nmt'
  drogi = arcpy.management.Merge([f'{geobaza}\\SKDR_L_0210', f'{geobaza}\\
19
     SKDR_L_0212'], 'drogi')
  wezly = f'{geobaza}\\wezly_raster'
  |dzialki = f'{geobaza}\\dzialki'
  pt_merged = f'{geobaza}\\PT_merged'
  linie_elektroenergetyczne = arcpy.management.Merge([f'{geobaza}\\
     SULN_L_0210', f'{geobaza}\\SULN_L_0212'], 'linie_elektroenergetyczne')
```

4.2 Kryterium 1

4.2.1 Kod

- 4.2.2 Wynik
- 4.3 Kryterium 2
- 4.3.1 Kod
- 4.3.2 Wynik
- 4.4 Kryterium 3
- 4.4.1 Kod
- 4.4.2 Wynik
- 4.5 Kryterium 4
- 4.5.1 Kod

- 4.5.2 Wynik
- 4.6 Kryterium 5
- 4.6.1 Kod
- 4.6.2 Wynik
- 4.7 Kryterium 6
- 4.7.1 Kod
- 4.7.2 Wynik
- 4.8 Kryterium 7
- 4.8.1 Kod
- 4.8.2 Wynik