2(t)=1-cos(12011t)+1+6 (cos(12011t)+cos(24011t))
2 0 100 0100
Departamento de Engenharia Informática 3 Cos O - Cos NOTITI + 3 (COS (NOTIT)+COS (240T)
Universidade de Coimbra

Análise e Transformação de Dados

Frequência 2 – Exemplo de Questões "max = 2tī frmax	
maio de 2024 $3 \text{ maio de } 2024$ $1. \text{ Qual das seguintes frequências é a menor frequência de amostragem, } fs, \text{ de valor inteiro que}$	OHZ
verifica o Teorema da Amostragem para o sinal $x(t) = 1 + (\sin(90\pi t))^2 + 6\sin(60\pi t)\sin(180\pi t)$?	
☐ 61 Hz ☐ 91 Hz ☐ 121 Hz ☐ 181 Hz ☐ 241 Hz ☐ 361 Hz ☐ 481 Hz	
2. Qual o valor do período fundamental, N , e a frequência angular fundamental Ω_0 do sinal de tempo	
discreto $x[n]$ que resulta da amostragem do sinal $x(t) = 1 + (\sin(90\pi t))^2 + 6\sin(60\pi t)\sin(180\pi t)$	
com uma frequência de amostragem de 600 Hz? $ \frac{\chi(n) = \chi(t)}{t} = \frac{1}{1} $)
n[n] = los(0) + 1 - los(0,317n) + 3(los(0,217n) - los(0,417n)) = 3 pol(0) - los(0,317r)	ر(1
Resposta: $N = 20$ $\Omega_0 = 0.11$ rad $\Omega_0 = 2\pi + 0$ $+ 3(\cos(0.2\pi n) - \cos(0.4\pi))$	″) M))
$ \begin{aligned} \eta[\eta] &= \log(0) + \frac{1 - \log(0.317\eta)}{1 - \log(0.317\eta)} + \frac{3}{3} \left(\log(0.217\eta) - \cos(0.417\eta) \right) &= \frac{3}{2} \log(0) - \log(0.317\eta) \\ &= \frac{3}{2} \log(0) - \log(0.317\eta) - $	Γ ₂ , ,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$)
$\chi_{FT}(\omega) = \left\{ \frac{(40\pi - \omega)(40\pi + \omega)}{200\pi^2} , -40\pi < \omega < 40\pi \right\} \approx 6.11$	
a) Sabendo que a Transformada de Fourier Discreta (DFT) do correspondente sinal amostrado,	
$x[n]$, tem o valor $X_{DFT}[0] = 400$, calcule o valor da frequência de amostragem (em Hz)	
considerada na obtenção do sinal amostrado $x[n]$ a partir de $x(t)$?	
XDTPT (0) = fs XPT (0) = 400 = f1 = 50 Hz	
~	

b) Considerando um sinal periódico xp(t) de período $T_0 = 8s$, que coincide com o sinal x(t) durante um período, calcule o valor da componente c_0 da Série de Fourier complexa do sinal periódico xp(t)?

c) Pretendendo-se aplicar um filtro digital ideal ao sinal amostrado x[n] que elimine as frequências do sinal original x(t) superiores a 5Hz, diga que tipo de filtro usaria e com que frequência angular de corte Ω ?

frequência angular de corte Ω ?

Liste im filtro para - baixo

Liste = $\frac{1017 \text{ Rad s}^{-1}}{4 \text{ A}}$ The containing in the second of th

			omo identificar d	e forma exata
			1 01	1 / 1 / 2 0 (115
A = 1000 =	1HZ, Comu	preisoni	91 OU)U	volução 0.5HZ
(V) 1(0 U)	entao pont	diamist po	adding dl	mois 1000
resultou da amostragem (T_s e sendo $X_{DTFT}(\omega)$ a respet	=0.25s) de um sinal co tiva Transformada de Fo	ontínuo e periódio ourier de Tempo	co x(t) ao longo d	e um período,
$X_{DFT}[k] = 4X_{DTFT}(k\frac{\pi}{4}) \square \lor \not \square F$	$X_{DFT}[k] = X_{DTFT}(k\frac{\pi}{4})$	[₹]) Ø V □ F	$X_{DFT}[k] = \frac{1}{4}X_{l}$	$DTFT(k\frac{1}{4}) \square V \mid \square F$
		$0.03\pi n + \frac{\pi}{2} + \cos$	$[0.07\pi n]$, qual	o período da
		- 7 - 7 - (1	
N[u] = cos(o) - 5 cos [0,03 TM] + Cos [C	$0.0+\pi nJ$ J	ro = 0,011	Ī
$\Lambda_0 = \frac{2\pi}{N} \Rightarrow N =$	$\frac{2\pi}{0.01\text{N}} = 200$	omostros.		
Resposta: $N = 100$	iderando que a Transformada de Fourier Discreta (DFT) de um sinal periódico de tempo eto com $N=50$ e amostrado a 1Hz, resultou em $X_{DFT}[1]=-X_{DFT}[-1]=-50j$ e $X_{DFT}[50]=-X_{DFT}[-50]=-100$. ue <u>as opções corretas:</u> $\exists x[n]$ é par; $\exists x[n]$ é par; $\exists x[n]$ não é par nem ímpar; $\exists x[n]$ não é mpar nem ímpar; $\exists x[n]$ não é mpar nem ímpar; $\exists x[n]$ não é mpar nem ímpar; $\exists x[n]$ não é par nem ímpar; $\exists x[n]$ não é par nem ímpar; $\exists x[n]$ não é par nem ímpar; $\exists x[n]$ não é mpar nem ímpar; $\exists x[n]$ não é ímpar nem ímpar; $\exists x[n]$ não é ímpar nem ímpar; $\exists x[n]$ não é ímpar nem ímpar ne			
discreto com $N=50$ e amosti Indique <u>as opções corretas</u> : $\square x[n]$ é par; \square A frequência máxima	rado a 1Hz, resultou em : □ a é 50Hz;	$X_{ extit{DFT}}[1]$ =- $X_{ extit{DFT}}[-1]$ = $x[n]$ é ímpar; A frequência máx	$f-50j \in X_{DFT}[50] = X_{DFT$	GDFT[-50]=-100. fmax= AX 50
discreto com $N = 50$ result expressão da Série de Fouri	ou em $X_{DFT}[2] = -X_{DFT}[-2]$ er trigonométrica desse	$[] = -50j e X_{DFT}[5]$ sinal periódico d	$= X_{DFT}[-5] = -10$ e tempo discreto	0, complete a o:
$x[n] = \frac{2}{2} \cos[$	$\frac{211}{25} n + \left(-\frac{11}{2}\right) + \frac{1}{2}$	4 cos[12 25	_n+ <u> </u>	Anexo *1
$(f_s=1000\text{Hz})$, usando uma jar janela, o valor máximo de Qual o valor da frequência (nela de largura igual a 50 DFT é o 50º valor da Di (em Hz) a que ocorre o v	00ms sem sobrep FT. valor máximo de	osição, verificou DFT ?	i-se que, na 2ª Lianela. fo 2500 amostral
☐ 48 Hz ☐ 49 Hz [□ 50 Hz	□ 99 Hz	□ 100 Hz	☐ Nenhuma
© Análise e Transformação de Dados	_	^		
$\Delta f = \frac{1}{N} = \frac{1000}{500}$		\$50 = 49	x f1 = J0) HF

4. Suponha que o espetro de um sinal de tempo contínuo x(t) tem duas componentes às frequências 100Hz e 202.5Hz. Tendo obtido o correspondente sinal de tempo discreto de x[n], usando uma

- 10. Considere um sinal de tempo discreto não estacionário que resultou da amostragem de um sinal áudio de tempo contínuo a uma frequência de amostragem fs=4KHz. Pretendendo-se localizar temporalmente a ocorrência de duas notas musicais, o Ré (294Hz) e o Lá (440Hz), aplicou-se a DFT por janelas (STFT) com uma dimensão temporal de 100ms sem sobreposição.
 - a) Em cada janela, a que índice k da transformada X[k] corresponderá a nota musical Lá?

$$N = 0,1 \times 4000 = 400$$
 omostrol $M = \frac{1}{10} = \frac{4000}{10} = 10$
 $M = 0,1 \times 4000 = 400$ omostrol $M = \frac{1}{10} = \frac{1}{$

- musical Ré?

□ 0 Hz □ 1 Hz
$$\times$$
 4 Hz □ 6 Hz □ Nenhuma das opções

| C = 29,4 | Sino = 4 Hz |
| Farroy = $\frac{29 \times 10}{2017}$ | C) Determine a expressão do sinal $x[n]$ na 4^{2} janela da STFT, sabendo que se obteve:

 $X_{DFT}[k] = 40j \, \delta[k+5] + 80 \, \delta[k+2] + 80 \, \delta[k-2] - 40j \, \delta[k-5]$, $k = -\frac{N}{2}, ..., \frac{N}{2} - 1$.

- 11. Dado um sinal de tempo discreto, x[n], obtido com uma frequência de amostragem $f_s = 1$ KHz, 1000 HZ
 - considere a decomposição de nível 3, apresentada na figura, resultante aplicação da Transformada de Wavelet Discreta (DWT) com a wavelet da família Daubechies de ordem 9.
 - a) Efetue a caraterização tempo-frequência do sinal x[n] a partir da reconstrução do sinal com base nos coeficientes a₃ e d₃, preenchendo a seguinte tabela:

n	0 – 499	500 -999	1000 – 1499	1500 -1999
A partir de (d3:	$f \in [\underline{616}, \underline{115}] \text{ Hz,}$ $C = \underline{3}$		$f \in [\underline{\lambda}, \underline{5}, \underline{125}]$ [Hz, $C = \underline{2}$	
A partir de a3 :	f = 0 Hz, C = 0 f = 0 Hz, C = 1	f = 6 Hz, $C = 2$	f = Hz, $C =$	$f = 0 \text{ Hz, C} = \frac{2}{2}$ $f = \frac{10}{10} \text{ Hz, C} = \frac{2}{2}$

© Análise e Transformação de Dados @ DEI - FCTUC 2023/2024 - Frequência 2 - exemplo de questões

[0,500][0,125]

resultado	da reconstrução	o do sinal com	base nesse coe	`		
□ a5	☐ d5	□ a6	□ d6	⊠ a7	□ d7	
		1	•			
Cancidara	oquinto cório to	mnord				
ı	eguinte série te	- 1/ \	20			
t(h) 0	4 (8)	12 16				
T(C) 9	8 10/	14 Na		do andono O	outropologe line	
		•	extrapolação		extrapolação linea	
interpolac	ão linear. 🛴 🖟	10W1		utimo	Ultimos	2 100
T(96) :	14			que labes	ultim is colento	s dud
()						
$\mathcal{W}_{\mathcal{A}}$.	$=\frac{14-10}{1}$	- = 1 , 1	-1161 = 7	7(12)+m	(16-12) = 1 $m \times (16-12) = 1$	4+4=
	12-0	,	-14.	 1.	,	
\mathcal{M}	<u> 12-14</u>	=-0,25	7(16) <u>~</u>	1 (12) +	mx(16-12) =	13
	ر کرکت que foi identific	ado um model	o Auto Regres	sivo AR(3) com	os coeficientes a_1 =	= 2.0,
b) Supondo	$a_3 = 0.1$, aplique					•
b) Supondo	3 , I I	•				
b) Supondo					,	
b) Supondo $a_2 = -1.2$,	a, T(C	-4)+a	1 T(C-2	1) + az =	$\Gamma((-1))$	
b) Supondo $a_2 = -1.2,$	a ₁ T(C					
b) Supondo $a_2 = -1.2,$	a ₁ T(C = 2T(1)					

AR (p) Mondel $T(t) = \alpha_0 + \alpha_1 + (t-1) + \alpha_2 + (t-2) + \dots + \alpha_p + (t-p) + \epsilon_p$

$$\chi[n] = \frac{1}{N} \sum_{k=0}^{N-1} \chi[k] e^{jk} \int_{0}^{\infty} n \in [0, N-1]$$

$$N=50 \quad m=2.5$$

$$\Omega_{0} = \frac{2\pi}{N} \approx \Omega_{0} = \frac{\pi}{25} \text{ Rad}$$

$$N=50 \quad m=215$$

$$N_{0} = \frac{2\pi}{N} \text{ es } \Lambda_{0} = \frac{\pi}{25} \text{ Rad}$$

$$N[n] = \sum_{m=0}^{M} C_{m} \cos(m \Omega_{0} n + \theta_{m}) = \frac{\pi}{25} \cos(2\pi n + \theta_{0}) + C_{0} \cos(\frac{\pi}{2} n + \theta_{0})$$

$$= \frac{C_2 \cos \left(2\pi n + \theta_2\right) + C_5 \cos \left(\frac{\pi}{5}n + \theta_5\right) = 4}{C_2 \cos \left(2\pi n + \theta_2\right) + C_5 \cos \left(\frac{\pi}{5}n + \theta_5\right) = 4}$$

$$C_{2} = C_{2} \cos \left(\frac{2\pi}{5} n + \theta_{2} \right) + C_{5} \cos \left(\frac{\pi}{5} n + \theta_{5} \right) = *$$

$$C_{2} = \frac{x[2]}{50} = \frac{-50j}{50} = -j$$

$$C_{5} = \frac{x[5]}{50} = \frac{-100}{50} = -2$$

$$C_{5} = \frac{x[5]}{50} = \frac{-100}{50} = -2$$

$$\frac{\partial}{\partial s} = T$$

$$= \left[\left(\frac{\cos(4n + \theta_2) + c_5}{100} + \frac{\cos(4n + \theta_5)}{100} \right) \left(\frac{u[n-3N] - u[n-4N]}{u[n-3N] - u[n-4N]} \right]$$

$$= \left[\left(\frac{x}{2} + \frac{x}{100} \right) + \frac{x}{2} + \frac{x}{2} \right] = \frac{2|c_2|}{2} = \frac{2|c$$

 $\int \left[\frac{2}{5} \cos \left(\frac{17}{100} n \right) + \frac{1}{5} \cos \left(\frac{17}{40} n - \frac{17}{2} \right) \right] \left[u \left[n - 1200 \right] - u \left[n - 1600 \right] \right]$