Lista 7

Exercício 1 (Lema de Klingenberg, [dC79], Cap. X, Exer. 1) Seja M uma variedade Riemanniana completa com curvatura seccional $K \leq K_0$ onde K_0 é uma constante positiva. Sejam p, $q \in M$ e seja γ_0 e γ_1 duas geodésicas distinas unindo p a q com $\ell(\gamma_0) \leq \ell(\gamma_1)$. Admita que γ_0 é homotópica a γ_1 , isto é, existe uma família contínua de curvas α_t , $t \in [0,1]$ tal que $\alpha_0 = \gamma_0$ e $\alpha_1 = \gamma_1$. Prove que existe $t_0 \in [0,1]$ tal que

$$\ell(\gamma_0) + \ell(\alpha_{t_0}) \geqslant \frac{2\pi}{\sqrt{K_0}}$$

Solução. Primeiro vou mostrar como usar o teorema de Rauch para assegurar que para qualquer $p \in M$, a exponencial em $p \in M$ não possui pontos críticos na bola de raio $\pi/\sqrt{K_0}$ centrada em $0 \in T_pM$.

O seguinte argumento mostra que qualquer geodésica γ com velocidade unitária partindo de p não possui pontos conjugados antes de alcançar comprimento $\pi/\sqrt{K_0}$. Fixe um campo de Jacobi $J \in \mathfrak{X}^J_{\gamma}$ tal que J(0) = 0 e $\langle J, \gamma' \rangle = 0$. Para aplicar Rauch, considere uma geodésica unitária $\tilde{\gamma}$ em $S^n_{K_0}$, a esfera de curvatura constante K_0 , e um campo de Jacobi $\tilde{J} \in \mathfrak{X}^J_{\tilde{\gamma}}$ tal que $\tilde{J}(0) = 0$, $\langle \tilde{J}, \tilde{\gamma}' \rangle = 0$ e $|J'(0)| = |\tilde{J}'(0)|$. (\tilde{J} existe por ser a solução da equação de Jacobi junto com a condição de ortogonalidade com $\tilde{\gamma}'$.) Como $K \leqslant K_0$, pelo lema de Rauch concluímos que $0 \leqslant |\tilde{J}| \leqslant |J|$ para $t < \pi/\sqrt{K_0}$.

Agora vou argumentar por que isso assegura que \exp_p não pode ter pontos críticos em $p \in M$. Por contrapositiva, suponha que \exp_p tem um ponto crítico em $v \in T_pM$ e vamos mostrar que existe um ponto conjugado q a p ao longo de γ . Como v é um ponto crítico de \exp_p , existe um vetor não nulo $w \in \ker d_v \exp_p$. Considere uma curva c(s) tal que c(0) = v e c'(0) = w. Temos a seguinte variação por geodésicas de γ : $\gamma_{c(s)}(t) = \exp_p(tc(s))$. Note que em t = 0 todas as geodésicas ficam em p, pelo que o campo variacional J se anula em p. O fato de que $d_v \exp_p(w) = \frac{d}{ds} \Big|_{s=0} \exp_p(c(s)) = 0$, é exatamente o fato de que o campo variacional J se anula em $q = \gamma_v(1)$.

Portanto, \exp_p é um difeomorfismo local sobrejetivo em $B_{\pi/\sqrt{K_0}}$, mas pode não ser injetivo:

Note que podemos levantar tanto γ_0 quanto γ_1 por ser geodésicas, i.e. pegamos os vetores velocidade de cada uma e as linhas que eles geram no espaço tangente a p; é claro que essas curvas são levantamentos de exp_p. Note que se levantássemos a homotopia completa, necessariamente $\gamma_0 = \gamma_1$. Isso segue simplesmente de que não pode ter uma família contínua de curvas começando em um ponto e terminando em outro.

Dúvida Realmente meu argumento chegou até aqui: como estão construídos os levantamentos das curvas perto de γ_0 ? Em [dC79] simplesmente se afirma que é claro que podemos levantar as curvas perto de γ_0 , mas que não será possível levantar a homotopia completa.

Eu só sei que podemos levantar γ_0 e γ_1 usando as velocidades delas e o fato de que \exp_p manda esses vetores em essas curvas; mas as outras curvas da homotopia não são geodésicas e esse argumento não aplica.

Exercício 2 ([dC79], Cap. X, Exer. 2) Use o lema de Klingenberg do exercício anterior para provar o Teorema de Hadamard.

Solução. Suponha que M é uma variedade completa, simplesmente conexa e com curvatura positiva. Por completitude, sabemos que para qualquer $p\in M$ o domínio de exp_p é todo T_pM . Como $K\leqslant 0$ sabemos que M não pode ter pontos conjugados, de modo que exp_p é um difeomorfismo local. Também por completitude sabemos que exp_p é sobrejetiva: qualquer ponto q está ligado a p mediante uma geodésica, e essa geodésica coincide com uma geodésica partindo de p dada como a imagem de uma reta em T_pM sob exp_p .

Portanto, o desafio é provar que \exp_p também é injetiva. Suponha que não é o caso, i.e. considere dois pontos v_1 e v_2 em T_pM tais que $\exp_p v_1 = \exp_p v_2 := q$. As imagens das retas geradas por v_1 e v_2 sob \exp_p são duas geodésicas γ_1 e γ_2 em M ligando p e q.

Como M é simplesmente conexa, existe uma homotopia entre γ_1 e γ_2 . Podemos aplicar o lema de Klinenberg para obter uma curva α_{K_0} tal que

$$\ell(\gamma_1) + \ell(\alpha_{K_0}) \geqslant 2\pi/\sqrt{K_0}$$

para qualquer $K_0 > 0$. Isso mostra que o comprimento das curvas na homotopia não está limitado, o que não é possível já que a homotopia é uma função contínua definida em um compacto, pelo qual a sua imagem debe ser compacto e portanto limitado. \Box

Dúvida Teve um comentário discutido na monitoria com respeito à necessidade de usar o teorema de Whitney para assegurar que a homotopia seja suave: não usei esse fato.

Exercício 3 ([dC79], Cap. X, Exer. 3) Seja M uma variedade Riemanniana completa com curvatura seccional não positiva. Prove que

$$|(\operatorname{d}\exp_{\mathfrak{p}})_{\mathfrak{v}}(w)| \geqslant |w|$$

para todo $p \in M$, $v \in T_pM$ e $w \in T_v(T_pM)$.

Solução. Considere novamente a figura que usei no exercício 1:

Vamos usar o teorema de Rauch para comparar um campo de Jacobi ao longo de $\gamma(t)=t\nu$ no T_pM com um campo de Jacobi ao longo da curva $\tilde{\gamma}(t):=\exp_p(t\nu)$. Pegue a variação no T_pM dada por $f(t):=t(\nu+sw)$ onde estamos identificando $T_\nu T_pM$ com T_pM . É immediato que o campo variacional J é de Jacobi. De forma parecida, defina a variação $\tilde{f}(s,t):=\exp_p(t(\nu+sw))$. Note que \tilde{f} é uma variação por geodésicas e portanto o campo variacional \tilde{J} é de Jacobi. Mais explicitamente, os campos de Jacobi são dados por

$$J(t) = tw, \qquad \qquad \tilde{J}(t) = d_{t\nu} \exp_p(tw)$$

Agora note que estamos nas condições do teorema de Rauch. Em primeiro lugar, é imediato que J(0) = 0 e $\tilde{J}(0) = 0$. Depois, |J'(0)| = |w| e $|\tilde{J}'(0)| = |d_0 \exp_p(w)| = |w|$. Por último, a condição de ortogonalidade é consequência do lema de Gauss, pois as curvas "verticais" da variação em M percorrem esferas geodésicas.

Como a curvatura seccional de M é não negativa, concluímos que

$$|\mathsf{t} w| = |\tilde{\mathsf{J}}| \leqslant |\mathsf{J}| = |\mathsf{d}_{\mathsf{t} \mathsf{v}} \exp_{\mathsf{p}} \mathsf{t} w|$$

para toda t, incluindo t = 1.

Complemento Suponha adicionalmente que M é simplesmente conexa e prove que o mapa exponencial é uma expansão métrica, i.e. aumenta distâncias. Além disso, se M não é simplesmente conexa, o mapa exponencial pode não ser uma expansão métrica.

Solução. Considere um ponto arbitrário $p \in M$, dos vetores $v,v' \in T_pM$ e as imagens deles sob \exp_p , digamos q e q'. A distância entre q e q' é a norma do vetor velocidade de alguma geodésica minimizante σ tal que $\sigma(0) = q$ e $\sigma(1) = q'$. (Essa geodésica existe porque M é completa.)

Queremos comprovar que essa curva σ é a curva "vertical" da variação por geodésicas do exercício anterior pegando w := v' - v. Essa curva que chamo de vertical é

$$\sigma(s) := exp_{\mathfrak{p}}(\nu + sw) = exp_{\mathfrak{p}}(\nu + s(\nu' - \nu))$$

(Ou seja, fixamos t=1 e variamos s.) Então é claro que ela chega em \mathfrak{q}' no tempo s=1. Então a construção do exercício anterior aplica, e para concluir só basta mostrar que σ é minimizante.

Se σ não for minimizante, teria que existir uma outra geodésica $\tilde{\sigma}$ ligando q e q' com comprimento menor. Como M é simplesmente conexa, essas duas curvas são homotópicas. Com um argumento análogo ao que usei no exercício 2, usando o lema de Klinenberg obtemos uma contradição usando que a curvatura de M é não positiva.

Para um contraexemplo simples podemos usar o toro plano, que tem curvatura não positiva. É claro que a exponencial não é uma expansão métrica porque não é injetiva.

Exercício 4 Seja $\gamma:[0,\alpha]\to M$ uma geodésica em uma variedade Riemanniana M. Prove que se γ é minimizante, então γ não possui pontos conjugados em $(0,\alpha)$. Encontre um exemplo de geodésica $\gamma:[0,\alpha]\to M$ sem pontos conjugados que não é minimizante.

Solução. Primeiro mostro um exemplo de geodésica sem pontos conjugados que não é minimzante. Considere o cilindro $S^1 \times \mathbb{R}$. Ele tem curvatura seccional constante igual a zero por ser um quociente de \mathbb{R}^2 . Isso significa que a equação de Jacobi vira $J'' + R_{\gamma}J^{\prime 0} = 0$. Pegando um marco referencial paralelo $E_i \in \mathfrak{X}_{\gamma}$, vemos que as funções coordenadas de J são lineares:

$$J'' = (J^{\mathfrak{i}} E_{\mathfrak{i}})'' = (J^{\mathfrak{i}})'' E_{\mathfrak{i}}$$

ou seja, $J^i=tu^i+\nu^i$. Agora sim, como J(t)=0 então $\nu^i=0$ para toda i, e como $J(t_{final})=0$, também $u^i=0$ e portanto J=0. Isto é: não tem pontos conjugados em espaços de curvatura constante igual a zero.

Porém, tem geodésicas se intersectam em $S^1 \times \mathbb{R}$, que portanto não são minimizantes depois dos pontos de interseção.

Agora vamos mostrar que se γ é uma geodésica minimizante, não possui pontos conjugados em (0,a). Suponha que $b \in (0,a)$ é tal que $\gamma(b)$ é conjugado a $\gamma(0)$. Seguindo a prova do teorema de Jacobi dada em aula, vamos mostrar que existe uma variação própria diferenciável por partes de γ tal que E''(0) < 0 onde E denota o funcional de energia.

Considere o campo de Jacobi J tal que J(0)=0, J(b)=0 que existe porque $\gamma(b)$ é conjugado a $\gamma(0)$. Estenda esse campo a \bar{J} como sendo 0 depois de b. Considere um outro campo $Z\in\mathfrak{X}_{\gamma}$. Temos que

$$I_{\alpha}(\overline{J} + Z, \overline{J} + Z) = I_{\alpha}(\overline{J}, \overline{J})^{\bullet} + 2I_{\alpha}(\overline{J}, Z) + I_{\alpha}(Z, Z)$$
(1)

onde a primeira parcela se anula porque \bar{J} satisfaz a equação de Jacobi antes de b e é constante zero depois de b. (E usamos que I_{α} é simétrica, que segue das simetrias de R.)

Agora vou fazer uma pausa para lembrar como se escreve a forma do índica em geral. Por definição, a forma de índice é

$$I_{\mathfrak{a}}(V,W) := \int_{0}^{\mathfrak{a}} \langle V'W' \rangle - \int_{0}^{\mathfrak{a}} \langle R_{\gamma'}V, W \rangle$$

para quaisquer campos $V, W \in \mathfrak{X}_{\gamma}$.

Então reescrevemos isso usando que a conexão ao longo de γ é métrica:

$$\langle V, W' \rangle' = \langle V', W' \rangle + \langle V, W'' \rangle$$

$$\implies \langle V', W' \rangle = \langle V, W' \rangle' - \langle V, W'' \rangle$$

Substituindo obtemos que

$$\begin{split} \mathrm{I}_{\alpha}(V,W) &= \int_{0}^{\alpha} \left\langle V, W' \right\rangle' - \int_{0}^{\alpha} \left\langle V, W'' \right\rangle - \int_{0}^{\alpha} \left\langle R_{\gamma'} V, W \right\rangle \\ &= \left\langle V, W' \right\rangle \big|_{0}^{\alpha} - \int_{0}^{\alpha} \left\langle V, W'' \right\rangle - \int_{0}^{\alpha} \left\langle R_{\gamma'} W, V \right\rangle \\ &= \left\langle V, W' \right\rangle \big|_{0}^{\alpha} - \int_{0}^{\alpha} \left\langle V, R_{\gamma'} W \right\rangle \end{split}$$

Voltando ao nosso exercício, fixemos nossa atenção na parcela que está no meio em eq. (1). Pegando V = Z e $W = \overline{J}$ obtemos

$$\begin{split} I_{\alpha}(\overline{J},Z) &= \int_{0}^{\alpha} \left\langle Z,\overline{J}'' + R_{\gamma'}\overline{J} \right\rangle^{0} + \int_{0}^{\alpha} \left\langle Z,\overline{J}' \right\rangle' \\ &= \int_{0}^{b} \left\langle Z,\overline{J}' \right\rangle' + \int_{b}^{\alpha} \left\langle Z,\overline{J}' \right\rangle' = \left\langle Z(b),\overline{J}'(b) \right\rangle \end{split}$$

Agora pegue $\delta > 0$ arbitrário e considere a vizinhança de b dada por $(b-\delta,b+\delta)$. Defina Z como sendo

$$Z:=\overline{J}\phi$$

onde ϕ é uma função suave que vale 1 em b e zero fora de $(b - \delta, b + \delta)$.

Então fica claro que $I_{\alpha}(Z,Z)$ vai ser tão pequena quanto quisermos. Note ainda que a conta que já fizemos com a quantidade $I_{\alpha}(\overline{J},Z)$ fica inalterada com essa restrição em Z; não temos problemas de diferenciabilidade e as fórmulas continuam validas.

Concluímos que

$$I_{\alpha}(\overline{J}+Z,\overline{J}+Z)=-\left\langle \overline{J}(b)^{\prime},\overline{J}(b)^{\prime}\right
angle +constante$$
 pequena

Segue que γ não é um ponto mínimo da energia, e portanto não minimiza distância. \Box

Exercício 6 ([dC79], Exer. 1, Cap XI) Prove a seguinte versão do Teorema de Bonnet-Myers: se M é completa e a curvatura seccional K satisfaz K $\geq \delta > 0$, então M é compacta e diam $M \leq \pi/\sqrt{\delta}$, usando o Teorema de Comparação de Rauch e o teorema de Jacobi.

Solução. Vamos mostrar que nenhuma geodésica pode ser minimizante depois de alcançar comprimento $\pi/\sqrt{\delta}$. Buscando uma contradição, suponha que γ é uma geodésica parametrizada por comprimento de arco até algum tempo maior que $\pi/\sqrt{\delta}$. Escolha um campo de Jacobi J ao longo de γ ortogonal a γ' e tal que J(0)=0. Compare esse campo com um outro campo \tilde{J} ao longo de alguma geodésica $\tilde{\gamma}$ em S^n_{δ} satisfazendo que $\tilde{J}(0)$, $\tilde{J} \perp \tilde{\gamma}'$ e $|J|=|\tilde{J}|$. (De novo, esse campo existe porque é a solução da equação de Jacobi em S^n_{δ} junto com a condição de ortogonalidade.)

Como K $\geqslant \delta$ e $\tilde{\gamma}$ não tem pontos conjugados, concluímos que $|J| \leqslant |\tilde{J}|$. Mas $\tilde{J}(\pi/\sqrt{\delta}) = 0$, de modo que também J se anula quando γ nesse tempo. Então J é um campo de Jacobi ao longo de γ , e pelo exercício anterior não é minimizante depois desse tempo. Como γ é parametrizada por comprimento de arco, segue o resultado. (O fato de M ser compacta segue de que ela tem um diâmetro finito, pois ela é um conjunto fechado e limitado.)

Observação A diferença com o teorema de Bonnet-Myers é que aquele é para Ric.

Exercício 7 Suponha Mⁿ uma variedade Riemanniana com curvatura seccional $K_M \ge 1$. Suponha que γ é uma geodésica em M de comprimento $\ell(\gamma) > \pi$. Prove que $\mathfrak{i}(\gamma) \ge n-1$, onde $\mathfrak{i}(\gamma)$ denota o índice de Morse de γ .

Solução. Lembre o seguinte fato geral mostrado em aula:

$$\dim\{J \in \mathfrak{X}_{\gamma}^{J} : J(0) = 0, J \perp \gamma\} = n - 1 \tag{2}$$

Isso segue das seguintes observações:

- (a) dim $\mathfrak{X}^{J}_{\gamma}=2n$ porque são soluções de n equações diferenciais ordinárias de segunda ordem, i.e. cada campo de Jacobi está determinado pelas condições iniciais J(0) e J'(0).
- (b) $\dim\{J \in \mathfrak{X}^{J}_{\nu} : J(0) = 0\} = n$.
- (c) dim{ $J \in \mathfrak{X}_{\gamma}^{J}: J \perp \gamma'$ } = 2n-2. Para confirmar isso note que pelas simetrias de R e a equação de Jacobi tem-se que $\langle J, \gamma' \rangle'' = 0$, pelo que $\langle J, \gamma' \rangle = \alpha + bt$ para dois números reais α , b. Segue que qualquer $J \in \mathfrak{X}_{\gamma}^{J}$ se escreve como $J(t) = \alpha \gamma'(t) + bt \gamma'(t) + \hat{J}(t)$ para algum \hat{J} perpendicular a γ' . (Supondo que $|\gamma'| = 1$.) Então se $J \perp \gamma$, temos que $\alpha = b = 0$, então tiramos dois números do 2n que tínhamos.
- (d) Segue eq. (2).

Lembre também que o teorema do índice de Morse (cf. [dC79]) diz que o índice $i(\gamma)$ é igual ao numero de pontos $\gamma(t)$, $0 < t < \alpha$ conjugados a $\gamma(0)$ ao longo de γ contando a multiplicidade (a multiplicidade de um ponto conjugado é a dimensão do espaço de campos de Jacobi que se anulam nos extremos).

Portanto para nosso exercício basta achar n-1 pontos conjugados a $\gamma(0)$. Isso fica resolvido tomando n-1 campos de Jacobi ortogonais a γ' , que sabemos que existem pelo comentário anterior. Aplicando para cada um deles o teorema de comparação de Rauch como no exercício anterior comprovamos que eles se anulam quando γ atinge comprimento π , obtendo assim os n-1 pontos conjugados que buscávamos.

Note que γ pode ter ainda mais pontos conjugados depois de $\gamma(\pi)$, de modo que o índice i (γ) pode ser ainda maior.

 $\mbox{D\'uvida}~$ Estudando a prova do teorema do índice de Morse, usamos que kernel da forma do índice I_{γ} consiste exatamente dos campos de Jacobi (usando conta que fiz no exercício 4, e graças à simetria de I_{γ}). Então parece que não estamos buscando n-1 campos de campos de Jacobi linearmente independes: estamos buscando n-1 campos linearmente independentes tais que I_{α} restrita ao espaço gerado por esses campos seja negativa definida.

References

[dC79] M.P. do Carmo. *Geometria Riemanniana*. Escola de geometria diferencial. Instituto de Matemática Pura e Aplicada, 1979.