

목차

- 프로젝트 소개
- 팀원 소개
- 시스템 구성도
- 이론적 배경
- 개발 과정, 이슈리스트
- 프로젝트 결과
- 활용방안
- 향후 연구 방안
- 개발 일정
- 참고 자료

- Here's Paper
 오늘 일어난 일, 생각나는 일을 적어보세요!
- Classify your Feeling
 지금 느끼고 있는 감정을 객관화해 드립니다.
- Heal with Music그 감정을 기반으로 추천된 노래를 즐겨보세요~

팀원 소개

지능기전공학부 무인이동체공학 17011755 김해린

- 데이터 수집, 분석
- 데이터 시각화(pca)
- Kobert 모델 이용
- Web front-end(html,css,javascript)

지능기전공학부 스마트기기공학 17011862 이세미

- 데이터 수집, 분석
- 데이터 시각화(wordcloud)
- Istm 모델 이용
- Web back-end(flask)

시스템 구성도

- 감정언어가 포함된 텍스트 데이터를 사용해 감정 카테고리를 구별하는 모델을 만드는 것
 - 문제 정의: 지도학습, 분류, 배치학습
 - 성능측정지표: cross entropy

이론적 배경 Federated learning

• 학습 패러다임: 연합학습

연합학습(Federated Learning)의 개념도. 각 스마트폰이 마스터 모델을 받아(A) 각자 데이터에 적용해 활용하면 (B) 추가로 학습된 내용만 서버로 보내져(C) 데이터의 이동 없이도 인 공지능을 학습시킬 수 있다.

출처: Google AI Blog

- 장점
 직접적인 개인정보 노출을 방지함.
- 단점역추적이 가능함.
- Example

Hospitals

이론적 배경 LSTM

Recurrent Neural Network

Cell state

• 단점: 가까운 거리에 있는 정보에 의존적이다.

RNN neural network: 1 tanh layer

Long short-term memory

LSTM neural network: 4 layers

1. Forget gate layer

3. Cell state update

2. Input gate layer

4. Output gate layer

이론적 배경 BERT

BERT

Pre-trainig of Deep Bidirectional Transformers for Language Understanding

대량의 코퍼스 > BERT > 데이터 > 모델 > 분류

언어모델링(Pre-training) 과정

Input

Figure 2: BERT input representation. The input embeddings is the sum of the token embeddings, the segmentation embeddings and the position embeddings.

Token Embedding + Segment Embedding + Position Embedding

Pre-Training

MLM(Masked Language Model)

NSP(Next Sentence Prediction)

Transfer Learning

BERT experiments result

 구글 <u>BERT base multilingual cased</u>의 한국어 성능 한계

Korean BERT pre-trained cased (KoBERT)

개발 과정 Version 1

Data: 기쁨 슬픔 우울 분노 설렘

model accuracy

model loss

개발 과정 Version 1 ISSUE

- ✓우울, 슬픔 클래스의 유사도가 높음.
- ✔Overfitting 가능성이 높음.

현재의 기분상태를 표현해주세요!

[우울하다.] 검색 결과에 따른 현재 기분은 "슬픔"로 추정되는 군요.

model loss model loss 0.40 0.12 validation 0.35 0.10 0.30 s 0.25 train loss 0.06 validation loss 0.20 0.04 0.15 0.02 0.10 0.00 3.0 epoch 1.0 1.5 2.0 2.5 Istm kobert

개발 과정 Version 2

• Data: 기쁨 슬픔 놀람 분노

Model: Istm, kobert

충남대학교 사회과학대학 심리학과/ 뇌과학 연구소(2012). 한국어 감정표현단어의 추출과 범주화

개발 과정 Version 2 ISSUE

- ✓ 각 클래스 별 데이터 개수가 동일하지 않아서 편향 될 가능성이 높음. 기쁨 5739개, 슬픔 8639개, 화남 6252개, 놀람 4385개
- ✓ '분노'와 유사도 높음.
- ✓ Overfitting 가능성이 높음.

개발 과정 Version 3

- ✓ pretrain 모델이 들어간 kobert로 모델 결정
- ✓ 오버피팅 문제 해결하기 위해 kobert dropout = 0.5 -> 0.3
- ✓ 데이터의 독립성과 양을 위해 놀람과 공포를 포함하는 감정인 불안으로 변경
- Data: 기쁨 슬픔 분노 불안 (각 8000개)

Model: kobert

F1 score and confusion matrix

	precision	recall	f1—score	support
happy unstable sad angry	0.99 1.00 0.99 0.99	0.99 1.00 0.98 0.99	0.99 1.00 0.99 0.99	2415 2410 2368 2311
accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	9504 9504 9504

프로젝트 결과 구성도

프로젝트 결과 웹GIF

활용 방안

- ◆ 다이어리 어플과 결합
- ◆ 음악 스트리밍 서비스 플랫폼과의 결합

MUSIC MATE

카드 다이어리 - 카드에 하루를 담는 일기 & 다이어리

By sallymusic

향후 연구 방안

- ◆ 개인정보의 보안성 강화
 - Federated learning + 암호학 기법(동형암호)
 - Differential privacy
- ◆ 자체 데이터 수집 활성화
 - 동시 접속자 수에 대한 이슈

- ◆ 사용자 맞춤형 서비스 구축
 - 사용자가 해당 감정에서 자주 듣는 음악을 데이터로 분석하여 사용자 맞춤형 추천 음악 리스트를 구축한다.

개발 일정

주차	내용
1 (9/12-9/18)	데이터 수집
2 (9/19-9/25)	모델 학습
3 (9/26-10/2)	데이터 분석
4 (10/3-10/9)	데이터 수집, 분석, 학습
5 (10/10-10/16)	데이터 수집, 분석, 학습
6 (10/17-10/23)	중간고사 준비
7 (10/24-10/30)	데이터 수집, 분석, 학습
8 (10/31-11/6)	웹 백엔드 개발
9 (11/7-11/13)	웹 프론트엔드 개발
10 (11/14-11/16)	보고서, 발표자료 완성

Reference

- Federated learning
 https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
- Lstm https://dgkim5360.tistory.com/entry/understanding-long-short-term-memory-lstm-kr
- Bert

https://ebbnflow.tistory.com/151

https://mino-park7.github.io/nlp/2018/12/12/bert-%EB%85%BC%EB%AC%B8%EC%A0%95%EB%A6%AC/?fbclid=IwAR3S-8iLWEVG6FGUVxoYdwQyAzG0GpOUzVEsFBd0ARFg4eFXqCyGLznu7w

kobert
 https://github.com/SKTBrain/KoBERT?fbclid=IwAR3SdR1I5f4Wc
 Bujj-TITLKXDCUMvg2l8xhgQqIm5pogC6WQT6Lfk6KRNVs#why

• 충남대학교 사회과학대학 심리학과/ 뇌과학 연구소(2012). 한국어 감정표현단어의 추출과 범주화

감사합니다!

김해린 이세미