Some group and ring theory problems.

Problem 1. This is Problem 11 off of McNulty's list of group theory problems: Prove that a group G cannot have four distinct proper subgroups H_0 , H_1 , H_2 , and H_3 so that $H_0 \leq H_1 \leq H_2 \leq G$, $H_0 = H_2 \cap H_3$, and $H_1H_3 = G$. Hint: Under these assumptions show that $H_1 = H_2$, which will contradict that the subgroups are distinct. As $H_1 \leq H_2$ it is enough to show $H_2 \leq H_1$. So let $h_2 \in H_2$ with the goal of showing $h_2 \in H_1$. As $G = H_1H_3$ we have

$$h_2 = h_1 h_3$$
 for some $h_1 \in H_1$ and $h_3 \in H_3$.

Then show

$$h_3 = h_1^{-1} h_2 \in H_2 \cap H_3 = H_0 \subseteq H_1$$

and conclude $h_2 = h_1 h_3 \in H_1$.

Problem 2. Let G be a finite group and $A, B \leq G$ subgroups and define

$$AB = \{ab : a \in A, b \in B\}.$$

- (a) Give an example of G, A, and B such that the set AB is not a subgroup of G.
- (b) Show the size of AB is

$$|AB| = \frac{|A||B|}{|A \cap B|}$$

(c) Show that AB is a subgroup of G if and only if AB = BA.

Problem 3. Let the finite group G act on the finite set X. For each $g \in G$ let

$$X^g = \{x \in X : gx = x\}$$

be the set of points fixed by g. Show

Number of orbits of
$$G$$
 on $X = \frac{1}{|G|} \sum_{g \in G} |X^g|$.

That is the number of orbits is the average number of fixed points of the action. $\hfill\Box$

Problem 4. This problem is just to review some definitions. Let R be a ring and I and J ideals of R. Then let

$$I+J=\{i+j:i\in I,j\in J\}$$

$$IJ=\left\{\sum_{\ell}i_{\ell}j_{\ell}:i_{\ell}\in I,j_{\ell}\in J, \text{the sum has only finitely terms.}\right\}$$

A more verbal description of IJ is that it is the set of all finite sums of products ij with $i \in I$ and $j \in J$.

- (a) Show that I + J and IJ are ideals of R.
- (b) Show

$$IJ \subset I \cap J$$
.

(c) Give an example where $IJ \neq I \cap J$.

Problem 5. Let $R = \mathbb{Z}$ (or more generally an principal ideal domain) and let $I = \langle a \rangle$ and $J = \langle b \rangle$. Prove the following

- (a) $I+J=\langle\gcd(a,b)\rangle$. In particular a and b are relatively prime if and only if I+J=1.
- (b) $IJ = \langle ab \rangle$.
- (c) $I \cap J = \langle \text{lcm}(a, b) \rangle$, where lcm(a, b) is least common multiple of a and b

Problem 6. Let I, J be ideals in the ring R with I + J = R (in which case, motivated by the previous problem, we say I and J are relatively prime.) Show $IJI \cap J$.

Problem 7. Let I and J be ideals in the ring R with I+J=R. Show that for any positive integers m and n that $I^m+J^n=R$.

Problem 8. Let R be a ring, I and J ideals in R with I+J=1. Define $\phi \colon R/(I\cap J) \to R/I \times R/J$ by

$$\phi(r+I\cap J) = (r+I, r+J).$$

Show ϕ is an isomorphism.