Deep Learning Lecture 5

Thomas Hofmann, ETH Zurich

24 October 2019

Section 9

Convolutional Sequence Models

Models for Sequences

- Many relevant application deal with sequences, e.g. time series (speech, sensors), sequences of symbols (language, biology)
- Vector-valued sequencs: $\mathbf{x}^t \in \mathbb{R}^d$, $t = 0, 1, 2, \dots$
- Symbol sequences: $\omega^t \in \Omega$, $t = 0, 1, 2, \ldots$, with Ω : alphabet
 - variable length sequences, how to represent?
 - translation invariance, how to incorporate?

From Symbols to Vectors

DNNs operate on real-valued vectors. How can we process (and learn with) symbol sequences? The answer is: via embeddings.

Definition (Symbol Embedding)

A d-dimensional symbol embedding is a mapping $z:\Omega\to\mathbb{R}^d$, which maps every symbol to a vector representation.

Definition (Sequence Matrix)

Given a symbol sequence $\omega^1, \ldots, \omega^s$ and an embedding z, the sequence matrix **Z** is defined via

$$\mathbf{Z} = \begin{bmatrix} z(\omega^1) & \dots & z(\omega^s) \end{bmatrix} \in \mathbb{R}^{d \times s}$$

DNN terminology: embedding "layer" = look-up layer.

Shortcut $\mathbf{z}_i := z(\omega_i)$.

Learnable Symbol Representations

- Embeddings are not fixed, but are learned from data!
- Gradient-based updates via backpropagation, compute $\nabla_{\mathbf{z}} \ell$
- Which embeddings are updated depends on which symbols occurred (and how often)
- Learn (just) embeddings in self-supervised learning (a.k.a. representation learning), e.g. word embeddings (word2vec, skipgram, GloVe)

Multi-Channel CNNs for NLP

Classical CNN architecture (Collobert & Weston 2008):

- look-up layers for words and (optionally) linguistic features
- 2 1d multi-channel convolution
- pooling over time (e.g. max)
- fully connected layers
- softmax classifier (e.g.)

Single-Channel Cross-Pooling CNNs for NLP

Alternative modern CNN architecture (Kalchbrenner et al. 2014):

- embedding layers
- (wide) one-channel convolutions
- max-k pooling (order preserving)
- ullet "dynamic" = k based on data
- cross-channel interactions via folding (parameter free)

Other work on CNNs for NLP

Themes and variants found in the recent literature

- Pham et al, 2017, Convolutional neural network language model: avoid max pooling, use batch normalization, (almost) competitve language model
- Severyn & Moschitti, 2015: Sentiment prediction for tweets

Section 10

Recurrent Networks

State Space Model

State Space Model

Given observation sequence x^1, \dots, x^s . Identify hidden activities h with the state of a dynamical system. Discrete time evolution of hidden state space sequence

$$\mathbf{h}^t = F(\mathbf{h}^{t-1}, \mathbf{x}^t; \theta), \quad \mathbf{h}^0 = \mathbf{0}, \quad t = 1, \dots, s$$

- Markov property: hidden state at time t depends on input of time t as well as previous hidden state
- extstyle exttime t

Recurrent Neural Network

How should F be chosen?

Recurrent Neural Network

Linear dynamical system w/ elementwise non-linearity

$$ar{F}(\mathbf{h}, \mathbf{x}; \theta) = \mathbf{W}\mathbf{h} + \mathbf{U}\mathbf{x} + \mathbf{b}, \quad \theta = (\mathbf{U}, \mathbf{W}, \mathbf{b}, \dots)$$

$$F = \mathbf{\sigma} \circ \bar{F}, \quad \sigma \in \{\text{logistic, tanh, ReLU, } \dots \}$$

Optionally produce outputs via

$$\mathbf{y} = H(\mathbf{h}; \theta), \quad H(\mathbf{h}; \theta) := \sigma(\mathbf{V}\mathbf{h} + \mathbf{c}), \quad \theta = (\dots, \mathbf{V}, \mathbf{c})$$

Unfolding of Recurrency

Recurrent network: feeding back activities (with time delays).

Unfold computational graph over time (also called unrolling)

Lossy Memorization

What does a recurrent neural network (RNN) do?

- Hidden state can be thought of as a noisy memory or a noisy data summary.
- Learn to memorize relevant aspects of partial observation sequence:

$$(\mathbf{x}^1, \cdots, \mathbf{x}^{t-1}) \mapsto \mathbf{h}^t$$

More powerful than just memorizing fixed-length context.

Feedforward vs. Recurrent Networks

- For any fixed length s, the unrolled recurrent network corresponds to a feedforward network with s hidden layers.
- However, inputs are processed in sequence and (optionally) outputs are produced in sequence.
- Main difference: sharing of parameters between layers same functions F and H at all layers / time steps.

Backpropagation through Time

- Backpropagation is straightforward: propagate derivatives backwards through time
- 2 Parameter sharing leads to sum over t, when dealing with derivatives of weights.
- **3** Define shortcut $\dot{\sigma}_i^t := \sigma'(\bar{F}_i(h^{t-1}, x^t))$. then

$$\frac{\partial \mathcal{R}}{\partial w_{ij}} = \sum_{t=1}^{s} \frac{\partial \mathcal{R}}{\partial h_i^t} \cdot \frac{\partial h_i^t}{\partial w_{ij}} = \sum_{t=1}^{s} \frac{\partial \mathcal{R}}{\partial h_i^t} \cdot \dot{\sigma}_i^t \cdot h_j^{t-1}$$

$$\frac{\partial \mathcal{R}}{\partial u_{ik}} = \sum_{t=1}^{s} \frac{\partial \mathcal{R}}{\partial h_i^t} \cdot \frac{\partial h_i^t}{\partial u_{ik}} = \sum_{t=1}^{s} \frac{\partial \mathcal{R}}{\partial h_i^t} \cdot \dot{\sigma}_i^t \cdot x_k^t$$

RNN Gradients

RNN where output is produced in last step: $y = y^s$

Remember backpropagation in MLPs:

$$\nabla_{\mathbf{x}} \mathcal{R} = \mathbf{J}_{F^1} \cdot \dots \cdot \mathbf{J}_{F^L} \nabla_{\mathbf{y}} \mathcal{R}$$

Shared weights: $F^t = F$, yet evaluated at different points

$$\nabla_{\mathbf{x}^t} \mathcal{R} = \left[\prod_{r=t+1}^s \mathbf{W}^\top \mathbf{S}(\mathbf{h}^r) \right] \cdot \underbrace{\mathbf{J}_H \cdot \nabla_{\mathbf{y}} \mathcal{R}}_{:=\mathbf{z}}$$

where

$$\mathbf{S}(\mathbf{h}^r) = \mathsf{diag}(\dot{\sigma}_1^r, \dots, \dot{\sigma}_n^r)$$

which is $\leq \mathbf{I}$ for $\sigma \in \{ \text{logistic, tanh, ReLU} \}$

Exploding and/or Vanishing Gradients

Spectral norm of matrix: largest singular value

$$\|\mathbf{A}\|_2 = \max_{\mathbf{x}: \|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\| = \sigma_{\max}(\mathbf{A}).$$

Note that $\|\mathbf{AB}\|_2 \leq \|\mathbf{A}\|_2 \cdot \|\mathbf{B}\|_2$, hence with $\mathbf{S}(\cdot) \leq \mathbf{I}$

$$\left\| \prod_{s=t+1}^{s} \mathbf{W}^{\top} \mathbf{S}(\mathbf{h}^{t}) \right\|_{2} \leq \left\| \prod_{s=t+1}^{s} \mathbf{W}^{\top} \right\|_{2} \leq \left\| \mathbf{W} \right\|_{2}^{s-t} = \left[\sigma_{\max}(\mathbf{W}) \right]^{s-t}$$

If $\sigma_{\max}(\mathbf{W}) < 1$, gradients are vanishing, i.e.

$$\|\nabla_{\mathbf{x}^t} \mathcal{R}\| \le \sigma_{\max}(\mathbf{W})^{s-t} \cdot \|\mathbf{z}\| \stackrel{(s-t) \to \infty}{\longrightarrow} 0$$

Conversely, if $\sigma_{\max}(\mathbf{J}_F) > 1$ gradients may explode.

(Depends on gradient direction, Pascanu, Mikolov, Bengio, 2013)

Bi-directional Recurrent Networks

Hidden state evolution does not always have to follow direction of time (or causal direction).

Define reverse order sequence

$$\mathbf{g}^t = G(\mathbf{x}^t, \mathbf{g}^{t+1}; \theta)$$

as model w/ separate parameters.

Now we can interweave hidden state sequences (see figure).

Backpropagation is also bi-directional.

Deep Recurrent Networks

Deep recurrent networks:

hierarchical hidden state:

$$\mathbf{h}^{t,1} = F^{1}(\mathbf{h}^{t-1,1}, \mathbf{x}^{t}; \theta),$$

$$\mathbf{h}^{t,l} = F^{l}(\mathbf{h}^{t-1,l}, \mathbf{h}^{t,l-1}; \theta) \ (l = 1, \dots, L)$$

Output connected to last hidden layer

$$\mathbf{y}^t = H(\mathbf{h}^{t,L}; \theta)$$

Can be combined with bi-directionality (how?).

Memory Units

Long-Term Dependencies

- Sometimes: important to model long-term dependencies ⇒ network needs to memorize features from the distant past
- Recurrent network: hidden state needs to preserve memory
- Conflicts with short-term fluctuations and vanishing gradients
- Onclusion: difficult to learn long-term dependencies with standard recurrent network (see DL Section 10.7)
- Popular remedy: gated units

LSTM: Overall Architecture

Long-Short-Term-Memory: unit for memory management

LSTM: Flow of Information

- Information propagates along the chain like on a conveyor belt.
- Information can flow unchanged and is only selectively changed (vector addition) by σ -gates.

LSTM: Forget Gate

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Meeping or forgetting of stored content?

LSTM: Input \rightarrow Memory Value

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Preparing new input information to be added to the memory.

LSTM: Updating Memory

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Combining stored and new information.

LSTM: Output Gate

$$o_{t} = \sigma (W_{o} [h_{t-1}, x_{t}] + b_{o})$$
$$h_{t} = o_{t} * \tanh (C_{t})$$

Computing output selectively.

Gated Memory Units

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

- Memory state = output. Modifications to logic (Cho et al, 2014).
- Convex combination of old and new information.

Gated Memory Units

GRUs and LSTMs can learn active memory strategies: what to memorize, overwrite and recall when.

Successful use cases

- handwriting recognition
- speech recognition (also: Google)
- machine translation
- image captioning

Notoriously difficult to understand what units learn...

Resource-hungry. Slow in learning.

Language Modeling

MODEL	TEST PERPLEXITY	NUMBER OF PARAMS [BILLIONS]
SIGMOID-RNN-2048 (JI ET AL., 2015A)	68.3	4.1
INTERPOLATED KN 5-GRAM, 1.1B N-GRAMS (CHELBA ET AL., 2013)	67.6	1.76
SPARSE NON-NEGATIVE MATRIX LM (SHAZEER ET AL., 2015)	52.9	33
RNN-1024 + MAXENT 9-GRAM FEATURES (CHELBA ET AL., 2013)	51.3	20
LSTM-512-512	54.1	0.82
LSTM-1024-512	48.2	0.82
LSTM-2048-512	43.7	0.83
LSTM-8192-2048 (No Dropout)	37.9	3.3
LSTM-8192-2048 (50% DROPOUT)	32.2	3.3
2-LAYER LSTM-8192-1024 (BIG LSTM)	30.6	1.8
BIG LSTM+CNN INPUTS	30.0	1.04
BIG LSTM+CNN INPUTS + CNN SOFTMAX	39.8	0.29
BIG LSTM+CNN INPUTS + CNN SOFTMAX + 128-DIM CORRECTION	35.8	0.39
BIG LSTM+CNN INPUTS + CHAR LSTM PREDICTIONS	47.9	0.23

from Jozefowicz et al, 2016

- evaluation on corpus w/ 1B words
- 2 number of parameters can be in the 100Ms or even Bs!
- ullet ensembles can reduce perplexity to pprox 23 (best result 06/2016)

Section 12

Differentiable Memory

Neural Turing Machine: Architecture

- RNN controls an external memory bank
- ② Reminiscent of Turing machine, but: each cell $M_i \in \mathbb{R}^d$

from Olah & Carter, 2016: http://distill.pub/2016/augmented-rnns

Neural Turing Machine: Differentiable Memory

- **①** Compute attention distribution $(\alpha_i)_i$, $\alpha_i \geq 0$ s.t. $\sum_i \alpha_i = 1$.
- **2** Read out expected memory content: $r \leftarrow \sum_i \alpha_i M_i$.
- **3** Write uses weights $(\beta_i)_i$, $\beta_i \in [0, 1]$, $M_i \leftarrow (1 \beta_i)M_i + \beta_i w$.

Neural Turing Machine: Memory Controller

- **①** Associative memory access with query (key) $q \in \mathbb{R}^d$.
- Cells are scored via softmax.

Neural Turing Machine: Memory Controller

- Ability to shift relative to content-selected locations (convolution).
- Additional accentuation to sharpen attention distribution.

Differentiable Memory: Discussion

- NTM architectures can learn loops and simple programs. However, no real-world applications.
- Other architectures:
 - Neural random access machines (Kurach et al, 2015)
 - Differentiable data structures like stacks and queues (Grefenstette et al., 2015; Joulin & Mikolov, 2015)
- Direction of future research