SAT-Minesweeper

電機四 謝維勝 B07901085

Game rule:

遊戲目標:找到盤面上所有非地雷的格子,過程中不點擊任何含有地雷的格子

對任意盤面上的格子其周圍最多有8個地雷且確切周圍的地雷數量

會呈現在該格子上

Problem formulation

給定一個盤面,包含一些已經打開的數字和可能會有的一些已經標記的地雷,是否存在一個地雷分佈使得這個盤面能夠出現?

NP-completeness (NP)

We can check every grid with number and verify that the adjacent mines number is equal to the grid number. Assume we are given n grids,

We then need to check at most 8*n grids. Therefore, Checking the Minesweeper Consistency takes O(n), which is in polynomial time.

NP-completeness (NP-Hard)

Reduce to Minesweeper consistency problem to a well-known NP-hard problem SAT(Boolean satisfiability problem).

Let a_m denote there is a mine at a. a_i for $0 \le i \le 8$ denote there Is i mines in the neighboring squares around a, similarly for b,c,...,i.

1.
$$(a_m + a_0 + a_1 + \dots + a_8) = 1$$

2.
$$(a'_m + a'_0)(a'_m + a'_1) \dots (a'_7 + a'_8) = 1$$
 totallty $C\binom{10}{2}$ clauses.

3. For k = 0,1,...,8, if e_k is true, then k of a_m , b_m , c_m , d_m , f_m , g_m , i_m are true

Totally 90 variables needed!

а	b	С
d	е	f
g	h	i

For k = 0,1,...,8, if e_k is true, then k of a_m , b_m , c_m , d_m , f_m , g_m , i_m are true. Implication scheme:

Implication scheme:
$$e_0 \rightarrow a_m' b_m' c_m' d_m' f_m' g_m' h_m' i_m'$$
 Let $a_m' b_m' c_m' d_m' f_m' g_m' h_m' i_m' = 0000_0000$ $e_1 \rightarrow 10000000 + 01000000 + 00100000 + 000010000 + 000001000 + 000000100 + 00000001 \text{ C}\binom{8}{1}$ $e_2 \rightarrow 110000000 + \cdots \text{ C}\binom{8}{2}$ $e_3 \rightarrow 111000000 + \cdots \text{ C}\binom{8}{3}$

• • •

How to Convert these implication logic form to SOP form? Brute force -> exponential time and may generate Clauses up to $8^{28} = 1.93*10^{25}$, which is not realistic!

Sol: try to combine some intermediate clauses and observe them + think the other way.

```
e_1:
```

$$(e'_1 + a_m + b_m + c_m + d_m + f_m + g_m + h_m + i_m)(e'_1 + a'_m + b'_m)(e'_1 + a'_m + c'_m) \dots (e'_1 + b'_m + c'_m)(e'_1 + b'_m + d'_m) \dots (e'_1 + h'_m + i'_m) = 1$$
totally $C\binom{8}{0} + C\binom{8}{2}$

....

Thinks like the same way

Clauses number:

- e_0 : 8
- $e_1: C\binom{8}{0} + C\binom{8}{2}$
- e_2 : $C\binom{8}{1} + C\binom{8}{3}$
- $e_3: C\binom{8}{2} + C\binom{8}{4}$
- e_4 : $C\binom{8}{3} + C\binom{8}{5}$
- $e_5: C\binom{8}{4} + C\binom{8}{6}$
- $e_6: C\binom{8}{5} + C\binom{8}{7}$
- $e_7: C\binom{8}{6} + C\binom{8}{8}$


```
_1.txt ./output/test5_5_1.out
                       =====[MINISAT]=====
  Conflicts |
                 ORIGINAL
                                          LEARNT
                                                            Progress
              Clauses Literals |
                                Clauses Literals Lit/Cl
                91053
                        208218
                                                             0.000 %
                                                     -nan
SAT
2 2 2 X 2
X X 3 2 X
3 X 3 2 1
1 2 X 2 1
0 1 1 2 X
```

Easy

	0		1				3			5	
				3				5			
		2			2		2				
2			3		3	0		2	5		4
		4	3					4			2
				2	4						
2				1				5			
1			2						2		1
1	2				*	3	3	4		4	
1		1			1	X		2	2		

Medium

	4		3					2				2	2
3				3		4			5		5		
		2		1	1		1				5		
1			1	3					3			4	
	0							2	2	3	3		1
	1						1	2					
			2	4		5	3			3			1
		2	1	3					3		3	3	2
2		2	2	4			2				2		
	1			3		1		2			2	2	

Hard

2		4	2		1	2	1			
4				3				2		3
		4				3				
3				4					5	4
	5						2			
			4		3	3	3	3		3
4				2				2		
		3			5				5	
				2						4
	1					2				
1		1	1			2	3			
			0	1				3	2	

```
Conflicts |
               ORIGINAL
                                   LEARNT
                                                   Progress
            Clauses Literals | Clauses Literals Lit/Cl
             788880 1808250
                                             29.2
                                23
                                       671
2 X 4 2 2 1 2 1 1 1 X
4 X X X 3 X 2 X 2 3 3
X X 4 3 X 3 3 1 2 X X
3 4 3 3 4 X 3 2 3 5 4
X 5 X X 3 X X 2 X X X
X X X 4 3 3 3 3 3 4 3
4 X 5 X 2 3 X 3 2 X 2
2 X 3 2 X 5 X 5 X 5 X
1 2 2 2 2 X X 5 X X 4
0 1 X 1 1 2 2 4 X X X
1 2 1 1 1 1 2 3 X X 3
X 1 0 0 1 X 2 X 3 2 1
```

Mixed

											2		
2		4		2		4		3				5	
				2	2			5				3	
3	4					3				3	3	1	
	3			4					4		2	1	
		3	2	3				5		2			
			1		3								
4			1		1	2	3			2			0
				3		2	1		0				1
5		4				5			0				1
				4					2	3			
3			1	2	4	4						2	1
		0					1		2		1		

```
Conflicts |
                  ORIGINAL
                                          LEARNT
                                                            Progress
              Clauses Literals |
                                 Clauses Literals Lit/Cl
          0 | 1144122 2623014
                                                             0.000 %
                                                     -nan
SAT
0 1 X X 2 2 X 2 2 1 2 2 X X
3 3 1 1 2 4 4 3 2 X X 2 2 1
X 1 0 1 X 2 X 1 1 2 2 1 1 X
```


1	3	3	2	2
1	1	2	1	3
		_	_	_
3	2	4	1	1
	_	_	_	4
4	2	2	2	1
2	2	3	3	1

```
=========[MINISAT]====================
  Conflicts |
                 ORIGINAL
                                       LEARNT
                                                        Progress
             Clauses Literals | Clauses Literals Lit/Cl |
              439461 1006938
                                    12
                                            65
                                                         0.000 %
1 X 3 X 3 X 2 X 2
1 1 3 X 3 1 3 3 X
1 1 1 2 2 1 1 X 3
X 1 1 2 X 2 2 2 X
3 3 2 X 4 X 1 1 1
X X 3 2 X 2 2 1 1
4 X 2 2 2 3 2 X 1
X 3 3 2 X 3 X 3 2
2 X 2 X 3 X 3 X 1
```

Configure the Minesweeper plane to form various logic circuits.

$\mathbf{X} \longrightarrow$																
 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
 \boldsymbol{x}	1	x'	\boldsymbol{x}													
 1	1	1	1	1				1	1	1	1	1	1	1	1	
 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	

Figure 3: A wire.

Figure 4: (a) A bent wire. (b) A terminated wire.

Figure 5: A three-way splitter.

	1	1	1	$\mathbf{X'} \longrightarrow$									
··· 1	1	1	1	1	2	*	2	1	1	1	1	1	
$\cdots x'$	\boldsymbol{x}	1	x'	\boldsymbol{x}	3	x'	3	\boldsymbol{x}	x'	1	\boldsymbol{x}	x'	
··· 1	1	1	1	1	2	*	2	1	1	1	1	1	
					1	1	1						

Figure 6: A NOT gate.

Figure 9: An AND gate.

Figure 10: An OR gate

Figure 8: An XOR gate.

Polynomial time mapping from logic proposition to Minesweeper plane

Figure 14. A Minesweeper circuit for $(P \lor Q) \land (R \lor \neg Q)$

Reference

- 1.http://web.math.ucsb.edu/~padraic/ucsb_2014_15/ccs_problem_solving_w2015/NP3.pdf
- 2. http://web.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm
- 3. http://web.mat.bham.ac.uk/R.W.Kaye/minesw/minesw.pdf

Thank you for listening!