$\textit{Optimization toolbox} \ of \ Matlab^{TM}$

I. Optimisation algorithms

For more details, use the command help (e.g. help $\mbox{fminbnd}$) or doc (e.g. doc $\mbox{fminbnd}$)

	Mathematical formulation	Matlab solver
One variable unconstrained	$\min_{x \in \mathbb{R}} f(x)$	fminbnd
optimization problem		(Golden search or parabolic interpolation)
One variable unconstrained	$\min_{x \in \mathbb{R}^n} J(x)$	Fminunc (quasi-Newton)
optimization problem	$x \in \mathbb{R}^n$	
		Fminsearch (Nelder and Mead)
Constrained optimization	$\min_{\mathbf{x} \in \mathbb{R}^n} J(\mathbf{x})$	Fmincon
r · · · · · ·		Several algorithms (SQP,
	$c(x) \le 0, c_{eq}(x) = 0$	interior point,)
	$s.t. \left\{ Ax \le b, A_{eq} x = b_{eq} \right\}$	
	$l \le x \le u$	
Multi-objective optimization	$\min_{x,\gamma} \gamma$	fgoalattain
problems	$ J(x)-goal \leq w\gamma$	
	$c(x) \le 0, c_{eq}(x) = 0$	
	$\begin{cases} s.t. \\ Ax \leq b, A_{cc}x = b_{cc} \end{cases}$	
	$s.t.\begin{cases} J(x) - goal \le w\gamma \\ c(x) \le 0, c_{eq}(x) = 0 \\ Ax \le b, A_{eq}x = b_{eq} \\ l \le x \le u \end{cases}$	
Linear Programming	$\min_{x} c^T x$	Linprog
	$Ax \le b, A_{eq}x = b_{eq}$	Simplex or interior points
	s.t. $\begin{cases} Ax \le b, A_{eq}x = b_{eq} \\ l \le x \le u \end{cases}$	
Integer Linear Programming	$\min_{x} c^{T} x$ t.q.	intlinprog
	$\begin{cases} Ax \leq b, A_{eq} x = b_{eq} \\ \vdots \end{cases}$	
	$\begin{cases} x_i \text{ integer} \end{cases}$	
Quadratic Programmin		quadprog
	$\min_{x} \frac{1}{2} x^T H x + f^T x$	
	$s.t.\begin{cases} Ax \le b, A_{eq}x = b_{eq} \\ l \le x \le u \end{cases}$	
	$l \leq x \leq u$	
Linear Least Square problem	$\min_{x} \left\ Cx - d \right\ ^2$	lsqlin
	s.t. $\begin{cases} Ax \le b, A_{eq}x = b_{eq} \\ l \le x \le u \end{cases}$	
	$l \le x \le u$	
NonLinear Least Square problem	$\min_{x} \ F(x)\ ^2 \text{t.q.}$	lsqnonlin
•	$l \le x \le u$	

II. Main stopping conditions and optimization options (via optimset or optimoptions)

Important remark: Depending on the used version of Matlab, use either optimset (previous versions) or optimoptions (last versions). See matlab document to choose the adequate command. optimset still works in last version of Matlab, but for some solvers, optimoptions must be used to change options. Try to use optimoptions.

Use help optimoptions for more details on the parameters.

Parameter	Description and value	
Display	Level of display.	
	Possible values: 'notify' (default)	
	'final' 'off' 'none' 'iter'	
MaxIter	Maximum number of iterations	
TolFun, TolX, TolCon/	Termination tolerance on (respectively):	
ConstraintTolerance	the function value, the decision variable,	
(depending on the Matlab version)	constraints.	
GradObj	The gradient of the objective function is	
	provided by the user (if set to on).	
GradConstr	The gradient of the constraints is provided by the	
	user (if set to on).	
LargeScale	To set to on for large scale problems	
Algorithm	To choose the algorithm to be used (depending	
	on the used optimization algorithm)	
HessianApproximation	Method of Hessian approximation:	
	'bfgs','lbfgs', {'lbfgs',Positive	
	<pre>Integer}, or 'finite-difference'.</pre>	
OptimalityTolerance	Termination tolerance on the first-order	
	optimality.	

III.Some examples to call solvers

Hereafter, options is set using optimoptions (or optimset). If a parameter is equal to the default value, it can be chosen as [].

- [x, fval, exitflag, output] = fminsearch(fun, x0, options, user parameters)
- [x, fval, exitflag, output] = fminunc(fun, x0, options, user parameters)

- [x, fval, exitflag, output] = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nl_con, options, user parameters)
- [x, fval, attaingoal, exitflag, output] = fgoalattain(fun, x0, goal, w, A, b, Aeq, beq, lb, ub, nl_con, options, user parameters)
- [x, fval, exitflag, output] = linprog(f, A, b, Aeq, beq, lb, ub, x0, options, user parameters)
- [x, fval, exitflag, output] = quadprog(f, A, b, Aeq, beq, lb, ub, x0, options, user parameters)
- [x, resnorm, residual, exitflag, output] = lsqlin(C, d, A, b, Aeq, beq, lb, ub, x0, options, user parameters)
- [x, resnorm, residual, exitflag, output] = lsqnonlin(fun, x0, lb, ub, options, user parameters)