

慶應義塾大学 「脳と行動」 2018年6月9日

パラリンピックブレイン

一二ューロリハモデルとしてのパラアスリートの脳一

東京大学・大学院・総合文化研究科教養学部・身体運動科学中澤公孝

パラアスリートは、損傷後の脳や身体組織の 回復可能性を示す最高のモデル

ニューロリハビリテーションの狙い

身体的トレーニングを用いて中枢神経系の再編成を誘導し、機能回復を図る

代償性変化と可塑的変化が脳の再編を導く

対照群

脊髄損傷者

Navigation TMSによる 脳機能地図の作成

手指伸筋支配領域が下肢 支配領域方向に拡張

"やる気"とリハビリ効果

効果に最も影響

科学的には未知

やる気を科学する やる気は脊髄の再編能力も高める!

脳への微弱な電気刺激(tDCs)

脳の報酬系へのtDCSで やる気に関連する部位の 活動性を高める

脊髄検査

"やる気"とハードトレーニング

パラアスリートは両者を実現するリハビリの 最適モデル

パラアスリートの脳

- 1. パラ幅跳び選手(片側膝下切断)
 - ✓ ロンドンパラ金メダリスト
- 2. パラ走り高跳び選手(片側膝下切断)
 - ✓ アジア記録保持者
- 3. パラ幅跳び選手(片側膝上切断)
 - ✓ リオパラ銀メダリスト
- 4. パラ水泳選手(脳性麻痺)
 - ✓ ロンドンパラ金メダリスト
- 5. パラパワーリフター(脊髄損傷)
 - ✓ リオパラ入賞
- 6. パラアーチェリー選手(先天性上肢欠損)
 - ✓ リオパラ4位

ニューロリハのターゲットは脳

脳の中の運動の小人

走り幅跳び

Markus Rehm

fMRI実験

(3テスラ)

✓ 被験者… Rehm 選手

健常走幅跳選手 5名 (PB: 7m03~7m56)

義足非競技者 2名

voxel size: $3 \times 3 \times 3$ mm

39 slices

slice thickness: 3.0 mm

FOV: 192 mm

TR: 2000 ms

TE: 25 ms

Flip angle: 90 deg

結果

下肢各関節周囲筋収縮時脳の活動領域

Hip Ankle Knee Right (義足側) Left

結果

膝関節周囲筋収縮時脳の活動領域

左膝関節

右膝関節

Rehm 選手

義足 非競技者

健常者 走幅跳 選手_{7m56}

走り高跳び

S選手

走高跳(T44)

PB … 2mO2 (アジア記録)

- 義足 • · 右足
- 踏切足左足

結果

膝関節周囲筋収縮時脳の活動領域

Left Knee (踏切)

Right Knee 義足

義足側膝運動時に顕著な両側性の賦活

膝下切断下腿義足パラ選手の脳 機能検査結果のまとめ

- 膝関節周囲筋収縮時にのみ左右両側性の活動
- 足関節、股関節活動時には片側のみ
 - > 義足に直結する関節運動時のみ両側性

- ✓ 優れたパフォーマンス達成のためには精密な 義足操作が必要
- ✓ 義足に直結する関節運動時のみに観察された両側性運動野活動は"精密な義足操作"に関連か

走り幅跳び(大腿切断)

山本 篤選手

走幅跳び(T42) リオパラ銀メダル

PB … 6m62 (アジア記録)

- 義足专美足
- 踏切足 • 右側

結果

下肢各関節周囲筋収縮時脳の活動領域

Ankle

Knee

Hip

Right

Left (義足側)

(半分欠損:切断部上収縮)

膝上切断大腿義足パラ選手の脳 機能検査結果のまとめ

- 切断側股関節周囲筋収縮時に左右両側性の活動
- 健側膝関節、股関節活動時にも両側性活動
 - ▶ 義足に直結する関節運動のみならず健側にも 両側性活動を観察

- ✓ 大腿義足での優れたパフォーマンス達成のためには義足と健側下肢の精密操作が必要
- ✓ 健側下肢にも観察された両側性運動野活動は "精密で特殊な義足と健側下肢の操作"に関連か

パラリンピック水泳選手

パラリンピック水泳選手 脳画像

脳性まひ

- 出生時に脳卒中が発生したと推察される
- ・ 右運動野、感覚野に広範な損傷
- 左半身に運動麻痺と感覚麻痺

TMS検査

I/O 特性:recruitment curve

損傷周囲域を 刺激して誘発電 位を得る

損傷周囲細胞の活性度(赤)が健常側(青)に比べてむしろ高い

脳運動野の活性度(MEP動員曲線)

水泳中の筋活動

20160109Cortney (Swimming: Crawl, fast, trial 1)

水泳中の筋電活動量の比較

上肢の筋

- ・ 麻痺側の筋活動が陸上に比べて水泳中に増大
- 陸上での最大筋電活動 量(黒棒)を超える活動
- 健常側には見られない 特徴

パラ水泳選手の脳機能検査結果のまとめ

- 脳画像:運動野・感覚野近辺に広範な損傷
 - > 運動と感覚のマヒは重度なはず
- ・ 脳の運動をつかさどる細胞の配列(運動野地図) が大幅に再編
 - > 幼少期からのトレーニングの結果か
- 水中では障がいがわからないほど運動機能が 回復
 - > 脳の再編能力が最大限発揮された可能性
 - > 水中での運動機能が大幅に改善
 - → 時間があれば最後に説明

なぜ水中では運動機能が改善? 一想定される神経機序一

- 1. Postural threat (転倒脅威)の減少 Horslen et al. 2013 J Neurophysiol
- 2. 自律神経活動の変化

Kamibayashi et al. 2009 JEK Hjortskov et al. 2005 JAP

POSTURAL THREATが潜在的に 神経筋応答を変調する

自律神経活動の影響

交感神経賦活手技暗算、ハンドグリップ、虚血、冷水

心拍数、血圧、**伸張反射**上昇

交感神経賦活により伸張反射は 亢進

H反射より**伸張反射が**上昇

筋紡錘、γ系が賦活か

想定される神経機序

Lower Postural Threat 転倒脅威小 ガンマ系ドライブ

亢進

痙縮 強

筋紡錘感度増強

水中での自律神経系変調

Horslen et al. 2013 J Neurophysiol

ガンマ系ドライブ減少

痙縮 弱

筋紡錘感度減弱

パワーリフター(脊髄損傷)

対象4名

パラ選手1;リオパラ入賞 パラ選手2;リオパラ出場

健常選手1;世界チャンピオン

健常選手2;全日本学生入賞

上肢・体幹機能マッピング

課題 (利き手側)

- ①ピンチング (示指と母指合わせる)
- ② グリッピング (グーのままカ入れる)
- ③上腕筋 (伸展筋-屈曲筋同時収縮)
- ④ 胸筋 (可能な限り右胸筋収縮)
- ⑤ 腹筋 (両側腹直筋収縮)
- ・いずれも力を入れるだけで大きく動かさない
- 1Hzのペースに合わせて力を入れる
- 各課題の努力度を揃える(最大の20%程度)

パラパワーリフターの脳

機能検査結果のまとめ

- 健常パワーリフターとの比較から、上腕筋収縮時の運動野 活動が手指の筋収縮に比べて大
 - ♪ パラパワーリフティングの競技特性と関連か?
 - ▶ 脊髄損傷後の脳の代償性変化とも関連?

- ✓ 脊髄損傷後の脳の代償性変化とトレーニング依存性の 可塑的変化、両者が関連している可能性大
- ✓ 下肢機能喪失後の代償性変化に、トレーニング効果が加わり、健常者以上の筋出力を可能とした可能性すら有り

等尺性筋力調節

- ・グリッピング
- **MVC**O
- ① 30% (上)
- ② 20% (中)
- ③ 10% (下)

(利き手側)

- ■面右の教示が出たらできるだけ 早く目標ラインに合わせる
- ・20秒間合わせ続ける

等尺性筋力調節変動係数

パラ選手の方が 安定

パラアーチェリー

Matt Stutzman 1982/12/11

2012 年 ロンドン

個人コンバウンド部門 銀メダル

2015年 トロント

パラパンアメリカンゲーム 銀メダル

2015年

「もっとも遠くの的を射抜いた」なアーチェリーギネス記録を樹立。 (前回の 200m を大きく上回る 283m を叩き出す)

2016年 リオパラリンピック 個人コンパウンド部門 4位 (利き足の怪我のため)

fMRIを用いたMotor Map

TMSを用いたMotor Map - TA -

TA-R

パラアスリート

一般健常者

先天性両側上肢欠損パラアーチェリー選手の脳 機能検査結果のまとめ

- fMRIとTMSを用いて運動野地図(motor map)を調査
- 下腿の筋をターゲットとして調べた
- 本来手指筋がある脳領域にまで下肢筋の領域が拡大

- ✓ 下肢の筋活動が手指を代行
- ✓ ペグ検査に見られたような巧緻性を下肢筋が獲得
- ✓ 脳支配領域の拡大が

結語

- > パラアスリートの脳はトレーニングに伴い再編
- ♪ パラアスリートにみる損傷後の中枢神経の再編、身体の再適応は、最大級のモチベーションとハードトレーニングの帰結であり、身体組織の適応能力、再編可能性を実証 → ニューロリハビリテーションの最良モデル
- ➤ 中枢神経の再編能力を知ることは、iPS細胞の臨床応用など、新たな再生医療実現後のリハビリにとって不可欠
 - → この面の研究の重要性