Programación Funcional

 4^o Ingeniería Informática 2005

Práctica #2 (Extensión del λ -Cálculo)

Partimos de las definiciones de la práctica 1.

La sintaxis que entiende el lector de términos para las diferentes definiciones es:

donde *vari* son definiciones de expresiones (cuyos nombres tienen que estar en mayúsculas). Estas definiciones se reemplazaran en el término n (el último), que es el que se evaluará. un ejemplo de uso es:

```
let true := /x y. x
let false := /x y. y
let if := /p x y. p x y
let main := if true true false
```

Ejercicio 1 (Codificación de Valores) Implemente valores term para representar los siguientes λ -términos:

if	true	false	not
and	or	suma	mult
suc	es_cero	cero	nil
cons	hd	tl	es_nil

Opcional Implementar los siguientes λ -términos:

par	primero	segundo	
segundo	exp	pred	\mathbf{sub}

Ejercicio 2 (Opcional: Conversor de Números de Church) Implemente un par funciones para convertir enteros de CAML a números de Church, y viceversa.

```
int_of_nat: Tipos.term -> int
nat_of_int: int -> Tipos.term
```