Линейная алгебра Векторные пространства

Х - множество

$$*: X \times X \to X$$

$$(x,y) \mapsto x * y$$

Аксиомы:

- 1. $\forall x, y, z \in X : x * (y * z) = (x * y) * z$ (ассоциативность)
- 2. $\exists e \in X \ \forall a \in X : e*a = a*e = a \ ($ нейтральный элемент)
- 3. $\forall a \in X \; \exists a' \in X : a*a' = a'*a = e \; \; (обратный элемент)$
- 4. $\forall a, b \in X : a * b = b * a$ (коммутативность)

Определение 1

Множество X с операцией * , удовлетворяющее аксиоме 1, называется полугруппой Определение 2

Множество X с операцией * , удовлетворяющее аксиомам 1-2, называется моноидом Определение 3

Множество X с операцией * , удовлетворяющее аксиомам 1-3, называется **группой** Определение 4

Множество X с операцией * , удовлетворяющее аксиомам 1-4, называется коммутативной или абелевой группой

Примеры:

- 1. (ℤ, +) группа
- 2. (№, +) полугруппа
- 3. $(\mathbb{N}_0, +)$ моноид
- 4. $(\mathbb{R}\setminus\{0\},\cdot)$ группа
- 5. Пусть A множество

X:= множество биективных отображений A o A

 id_A - нейтральный элемент

Если f(x)=y, то $\tilde{f}(y)=x$ – обратная функция $(f\circ \tilde{f}=\tilde{f}\circ f=id_A)$.

$$f(x) = x + 1$$
, $g(x) - 2x$, $id_A(x) = x$

$$f \circ g(x) = f(g(x)) = f(2x) = 2x + 1$$

$$g \circ f(x) = g(f(x)) = g(x+1) = 2x + 2 \neq 2x + 1$$

Следовательно, (X, \circ) – не коммутативная группа

Обозначения

- · мультипликативность, $1, x^{-1}$
- + аддитивность, 0, -x
- \circ относительно композиции, id, x^{-1}
- * абстрактная операция, e, x^{-1}

Пусть (R, +) – абелева группа

Определим отображение

$$\cdot: R \times R \to R$$

$$(a,b) \mapsto a \cdot b$$

Для $(R, +, \cdot)$ могут быть верны следующие аксиомы:

- 5. a(b+c) = ab + ac(b+c)a = ba + ca (дистрибутивность)
- 6. a(bc) = (ab)c (ассоциативность)
- 7. $\exists 1_R \, \forall a \in R : 1_R \cdot a = a \cdot 1_R = a$ (нейтральный элемент)
- 8. ab = ba (коммутативность)
- 9. $0_R \neq 1_R$
- 10. $\forall a \neq 0_R \; \exists a^{-1} : a \cdot a^{-1} = a^{-1} \cdot a = 1_R \; (\text{обратный элемент})$

Определение 5

 $(R,+,\cdot),$ удовлетворяющее аксиоме 5, называется **не ассоциативным кольцом без** единицы.

Определение 6

 $(R, +, \cdot)$, удовлетворяющее аксиомам 5-6, называется **ассоциативным кольцом без единицы**.

Определение 7

 $(R, +, \cdot)$, удовлетворяющее аксиоме 5-7, называется **ассоциативным кольцом с единицей**.

Определение 8

 $(R,+,\cdot)$, удовлетворяющее аксиомам 5-8, называется **коммутативным кольцом**. Примеры:

- 1. \mathbb{Z} –коммутативное кольцо
- $2. \mathbb{Q}, \mathbb{R}, \mathbb{C}$ поля
- 3. Рассмотрим $\mathbb{Z}_n=0,\ldots,n-1$ с операциями $+_n,\cdot_n$:

$$a +_n b = (a+b)\%n$$

$$a \cdot_n b = (a \cdot b) \% n$$

Обратимые элементы:

$$ax = 1 + ny$$

$$ax - ny = 1$$

Если (a,n)=1, есть решение, иначе – нет. \mathbb{Z}_p – поле $\Leftrightarrow p\in\mathbb{P}$

Определение 9

V – векторное пространство над полем F , если (V,+) – абелева группа, задано отображение $V\times F\to V$

 $(x,\alpha)\mapsto x\cdot \alpha$, удовлетворяющее аксиомам $\forall x,y\in V, \forall a,b\in F$:

5.
$$x \cdot (\alpha \cdot \beta) = (x \cdot \alpha) \cdot \beta$$

6.
$$(x + y) \cdot \alpha = x \cdot \alpha + y \cdot \alpha$$

 $x \cdot (\alpha + \beta) = x \cdot \alpha + x \cdot \beta$

7.
$$x \cdot 1_F = x$$

Примеры:

1. Множество векторов в \mathbb{R}^3

2.
$$F^{n} = \left\{ \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} | a_{i} \in F \right\}$$

$$\begin{pmatrix} a_{1} \\ \vdots \\ a_{n} \end{pmatrix} + \begin{pmatrix} b_{1} \\ \vdots \\ b_{n} \end{pmatrix} = \begin{pmatrix} a_{1} + b_{1} \\ \vdots \\ a_{n} + b_{n} \end{pmatrix}$$

$$A \in M_n(F), \alpha \in F$$

$$(A,\alpha)_{ij} = a_{ij} \cdot \alpha$$

$$(AB)\alpha = A(B\alpha)$$

Определение 1

$$(G,*), (H,\#)$$
– группа

 $\varphi:G \to H$ - гомоморфизм, если:

$$\varphi(g_1 * g_2) = \varphi(g_1) \# \varphi(g_2)$$

Определение 2

R, S-кольца

 $\varphi: R \to S$ - гомоморфизм, если:

$$\varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2)$$

$$\varphi(r_1 \cdot r_2) = \varphi(r_1) \cdot \varphi(r_2)$$

Для колец с $1:\varphi(1)=1$

Определение 3

U,V - векторные пространства над F

 $\varphi: U \to V$ - линейное отображение, если:

$$\varphi(u_1 + u_2) = \varphi(u_1) + \varphi(u_2)$$
$$\varphi(u\alpha) = \varphi(u)\alpha$$

Замечание

Изоморфизм – биективный гомоморфизм.

Определение 4

V - векторное пространство над полем F

v - строка элементов "длины" I над V

a - столбец "высоты" I, почти все элементы которого равны 0

Тогда va - линейная комбинация набора v с коэффициентами .

Определение 5

 $Uanal \in V$

U является векторным пространством относительно тех же операций, которые заданы в V. Тогда U - подпространство V

Лемма

 $U \subseteq V$

 $\forall u_1, u_2 \in U, \alpha \in F$:

 $u_1 + u_2 \in U, u_1 \alpha \in U$ Тогда U - подпространство. Если U - подпространство в V, то пишут $U \subseteq V$.

Определение 6

 $v = \{v_i | i \in I\}$, где $v_i \in V \, \forall i \in I$

 $\langle v \rangle$ - наименьшее подпространство, содержащее все v_i

Лемма

 $< v > = \{ va | a -$ столбец высоты I над F, где почти всюду элементы равны нулю $\} = U$

Доказательство

$$v_i \in \langle v \rangle \Rightarrow v_i a_i \in \langle v \rangle$$

$$\Rightarrow v_{i_1}a_{i_1}a + \dots + v_{i_k}a_{i_k} \in \langle v \rangle$$

$$\Rightarrow < v >$$
 содержит все варианты комбинаций. $va + vb = v(a + b) \in U$

$$(va)\alpha = v(a\alpha) \in U$$

 \Rightarrow множество линейных комбинаций – подпространство U - подпространство, содержащее $v_i \forall i \in I$

< v >а – наименьшее подпространство, содержащее v_i

$$\Rightarrow < v > \subseteq U$$
 тогда $< v > = U$

Определение 7

Если < v>= V, то v – система образующих пространство V Базис – система образующих.

 F^I – множество функций из I в F= множество столбцов высоты I

 ^{I}V – множество строк длины I

Набор элементов из V , заиндексирванных множеством I – это функция $f:I \to V$ $i \mapsto f_c$

Определение 8

 $v \in {}^{I}V$

$$v$$
 – линейно независим, если $\forall a \in F^I, a \neq 0 \Rightarrow va \neq 0$

Теорема

 $v \subseteq V$ (можно считать, что v - строка длины v

Следующие утверждения эквивалентны:

- $1. \ v$ линейно независимая система образующих
- 2. v максимальная линейно-независимая система
- $3. \ v$ минимальная система образующих
- 4. $\forall x \in V \exists ! a \in F^v : x = va = \sum_{t \in v} t \cdot a_t$ (почти все элементы равны 0)

4

Доказательство

$$(1)\Rightarrow (4)$$
 – доказали ранее $(1)\Rightarrow (2)$ $x\in V\setminus v$

 $x=va(a\in F^v)$ $va=x\cdot 1=0$ — линейная зависимость набора $v\cup x$ Т.о. любой набор , строго содержащий v, линейно зависим $\Rightarrow v$ — максимальный. $(1)\Rightarrow (2)$ $x\in V\setminus v\subseteq V\cup x$ —линейно зависим $va+xa_x=0$ $a\neq 0$ Если $a_x=0\Rightarrow va=0\Rightarrow a=0$?! Значит $a_x\neq 0$ $va=c\cdot (-a_x)$ $va=c\cdot (-a_x)$ $va=v\cdot \frac{a}{-a_x}\Rightarrow v$ —система образующих.

Лемма Цорна

Пусть \mathbb{A} – набор подмножеств (не всех) множества X.

Если объединение любой цепи из \mathbb{A} , принадлежащей \mathbb{A} , то в \mathbb{A} существует максимальный элемент.

 $M\in\mathbb{C}$ - максимальная, если $M\subseteq M'\subseteq\mathbb{A}\Rightarrow M=M'$

Теорема (о существовании базиса)

V – векторное пространства

X – линейное независимое подмножество V

Y – система образующих V

 $X \subseteq Y$

Тогда существует базис Z пространства $V:X\subseteq Z\subseteq Y$

Доказательство

 $\mathbb{A}-$ множество всех линейно независимых подмножеств, лежащих между X и Y. $X\in \mathbb{A}$ $\mathbb{C}\subseteq \mathbb{A}$

 $X \subseteq \cup C \in \mathbb{C} \subseteq Y$

Пусть $\cup C \in \mathbb{C}$ – линейно зависимый. То есть $\exists u_1,...,u_2 \in /...$

. . .

Пусть v - базис V.

$$\forall x \in V \exists ! x_v \in F^v : x = v \cdot x_v$$
$$v = (v_1, \dots, v_n), \ x_v = ;$$

$$x = v_1 \alpha_1 + \ldots = v \cdot x_v$$