DOCUMENTATION FOR QUESTION 2:

PART 1:

Converting CFG to PDA:

The PDA will have only one state {q}.

The start symbol of CFG will be the start symbol in the PDA.

All non-terminals of the CFG will be the stack symbols of the PDA and all the terminals of the CFG will be the input symbols of the PDA.

Example:

Suppose the given CFG is:

S -> aSa | bSb | A | bB

A -> a | ^

B -> b | ^

Then its corresponding PDA will be,

 $d(q,^{s},S) -> (q,aSa)$

 $d(q,^{\Lambda},S) \rightarrow (q,bSb)$

 $d(q,^{\Lambda},S) -> (q,A)$

 $d(q,^{A},S) -> (q,bB)$

 $d(q,^{A},A) -> (q,a)$

 $d(q,^{\Lambda},A) -> (q,^{\Lambda})$

 $d(q,^{A},B) -> (q,b)$

 $d(q,^{\Lambda},B) -> (q,^{\Lambda})$

 $d(q,a,a) -> ^{\land}$

 $d(q,b,b) \rightarrow ^{\wedge}$

Solution approach:

The contents of the file are stored in 'rules' & for all the productions of each non-terminal, the corresponding delta function is displayed.

In the end, for all the terminals, popping operation is done.

PART 2:

Converting PDA TO CFG:

Example:

Transition Table for the PDA:

Move number	State	Input	Stack Symbol	Move(s)
1	q0	а	Z	(q0,AZ)

2	q0	b	Z	(q0,BZ)
3	q0	а	А	(q0,AA)
4	q0	b	А	(q0,BA)
5	q0	а	В	(q0,AB)
6	q0	b	В	(q0,BB)
7	q0	С	Z	(q1,Z)
8	q0	С	А	(q1,A)
9	q0	С	В	(q1,B)
10	q1	а	А	(q1,^)
11	q1	b	В	(q1,^)
12	q1	٨	Z	(q1,^)

The CFG would be

S -> [q0,Z,xi]

 $[q0,Z,x0] \rightarrow a[q0,A,x1][x1,Z,x0]$

 $[q0,Z,x0] \rightarrow b[q0,B,x1][x1,Z,x0]$

 $[q0,A,x0] \rightarrow a[q0,A,x1][x1,A,x0]$

[q0,A,x0] -> b [q0,B,x1][x1,A,x0]

[q0,B,x0]-> a [q0,A,x1][x1,B,x0]

[q0,B,x0] -> b [q0,B,x1][x1,B,x0]

 $[q0,Z,x0] \rightarrow c[q1,Z,x0]$

[q0,A,x0] -> c[q1,A,x0]

 $[q0,B,x0] \rightarrow c[q1,B,x0]$

[q1,A,q1]->a

[q1,B,q1] -> b

[q1,Z,q1]->^

The total no. of productions for the above CFG are 35 allowing all combinations of xi.

They are computed as follows:

Productions for start symbol = no. of states in the PDA

= 2

Productions for moves with two terms = $6*(2^2)$

Productions for moves with one term = $3*(2^1)$

Productions for moves with one term which is $^{\land}$ = 3*1

Adding all we get, total_num_productions = 2 + 24 + 6 + 3

Note: Here xi indicates the total no. of states in the PDA. In the above eg. there only 2 states q0 & q1. So, x0 can be q0 & x1 can be q1. And then we consider all of their combinations.

Let P be productions in grammar G = (V,Σ,S,P)

The set P contains the following productions & only these:

- 1. For every $q \in Q$, the productions $S \rightarrow [q0,Z,q]$ is in P.
- 2. For every $q,q1 \in Q$, if d(q,a,A) contains $(q1,^{\wedge})$, then the production $[q,A,q1] \rightarrow a$ is in
- 3. For every $q,q1 \in Q$, if d(q,a,A) contains (q1,B1,B2,B3,...,Bm), then for every choice of $q2,...,qm+1 \in Q$, the production $[q,A,qm+1] \rightarrow a[q1,B1,q2][q2,B2,q3]....[qm,Bm,qm+1]$ is in P.

Solution approach:

The data (pda transition table) is stored from the file in pda 2D vector.

Then for every move, the template is displayed & productions are computed allowing all combinations of the xi.