

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C11D 3/18, 3/30, 3/04, 3/44, B08B 3/08		A1	(11) International Publication Number: WO 98/36045 (43) International Publication Date: 20 August 1998 (20.08.98)
(21) International Application Number: PCT/US98/02794 (22) International Filing Date: 14 February 1998 (14.02.98)		(81) Designated States: CN, ID, JP, KR, SG, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 08/801,911 14 February 1997 (14.02.97) US		Published <i>With international search report. With amended claims and statement.</i>	
(71) Applicant: EKC TECHNOLOGY, INC. [US/US]; 2520 Barrington Court, Hayward, CA 94545 (US). (71)(72) Applicant and Inventor: SMALL, Robert, J. [US/US]; 11418 Rampart Drive, Dublin, CA 94568 (US).			
(74) Agents: HIGGINS, Willis, E.; Cooley Godward LLP, 3000 El Camino Real, Five Palo Alto Square, Palo Alto, CA 94306-2155 (US) et al.			
(54) Title: POST CLEAN TREATMENT			
(57) Abstract			
<p>A composition for removal of chemical residues from metal or dielectric surfaces or for chemical mechanical polishing of a copper surface is an aqueous solution with a pH between about 3.5 and about 7. The composition contains a monofunctional, difunctional or trifunctional organic acid and a buffering amount of a quaternary amine, ammonium hydroxide, hydroxylamine, hydroxylamine salt, hydrazine or hydrazine salt base. A method in accordance with the invention for removal of chemical residues from a metal or dielectric surface comprises contacting the metal or dielectric surface with the above composition for a time sufficient to remove the chemical residues. A method in accordance with the invention for chemical mechanical polishing of a copper surface comprises applying the above composition to the copper surface, and polishing the surface in the presence of the composition.</p>			

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

POST CLEAN TREATMENT

INTRODUCTION

Technical Field

5 The National Technology Roadmap for the Semiconductor Industries (1994) indicates that the current computer chips with 0.35 micron feature sizes will be reduced to 0.18 micron feature size in 2001. The DRAM chip will have a memory of 1 gigabit, and a typical CPU will have 13 million transistors/cm² (currently they only contain 4 million). The number of metal layers (the "wires") will increase from
10 the current 2-3 to 5-6 and the operating frequency, which is currently 200 MHz, will increase to 500 MHz. This will increase the need for a three dimensional construction on the wafer chip to reduce delays of the electrical signals. Currently there are about 840 meters of "wires"/chip, but by 2001 (without any significant design changes) a typical chip would have 10,000 meters. This length of wire would
15 severely compromise the chip's speed performance.

20 Newer methods to etch, planarize and to clean the wafers after each of these critical steps must be developed. This invention deals with a new method for treating (preparing) a wafer after a wet chemistry process step (post etch residue cleaning step, PER). Specifically this invention deals with removing residual amines from amine-based wet chemical treatment. Usually the amine based chemistries are used to remove post etch residues ("polymer residues", "fences", vails, etc.). These chemical compositions are also applicable to post CMP cleaning and for polishing copper wafers in CMP planarization.

25 At some point during the wet chemical processing (for metal etching or post etch residue removal, etc.) of a wafer in the semiconductor industry (or flat panel displays, microelectromechanical devices, etc.) the material must "move through" a rinse step, or post clean treatment step. Such rinse steps are designed to remove the chemicals applied in the previous step and stop any further chemical effects from the previous chemicals. These solutions are also designed to reduce particulates on the substrate surfaces. Rinses are generally a two part system, i.e., one bath containing a "benign" organic chemical (benign solvents simply dilute the previous amine-based

chemistry, and can be isopropyl alcohol (IPA) or N-methylpyrrolidone (NMP)), followed by a water rinse, and finally a drying step which would consist of vapor IPA drying. In some facilities the product goes directly from the primary chemistry into either IPA or water. In some cases the water bath is saturated with CO₂ to adjust the 5 bath's pH to a slightly lower pH (acidic).

- As an example of the results obtained with a state of the art rinsing system, FIG. 1 is a graph of results obtained with a computer simulation by Sandia Laboratories using fluid flow equations for a Quick Dump Rinser (QDR), in which a water spray is directed onto wafer surfaces that have been treated with an amine 10 containing wet chemistry solution, with the water from the rinse accumulating in a bath containing the wafers. The bottom of the bath is then opened to dump the accumulated water rapidly. As shown, instead of the theoretical low amine levels remaining on the wafers as indicated by curve 4, higher amine levels remain, as indicated by typical curve 6 or worst case curve 8.
- 15 Several of the current rinse solvents have low flash (IPA flash point is 22°C, closed cup, NMP is 86°C, closed cup) and/or SARA Title III listings. A SARA Title III listing means that the chemical must be monitored and the quantities reported to the Federal government on a yearly basis. Isopropyl alcohol and NMP are among the list of several hundred compounds.
- 20 Relevant Literature

"Metal Corrosion in Wet Resist-Stripping Process", Pai, P.; Ting, C.; Lee, W.; Kuroda, R.

SEMI CMP User & Suppler Workshop; October 18-19, Austin, Texas.

Jairath, R. et al.; Proc. of Mat. Research Soc., Spring Meeting, Vol. 337, p.

25 121.

Fruitman, C. et al.; VMIC 1995, Santa Clara, California.

Scherber, D.; Planarization Technology, CMP; July 19, San Francisco, California.

30 Semiconductor Pure Water and Chemicals Seminar, March 4, 1996; Santa Clara, California.

Kaufman, F.; J. Electrochem. Soc., 138(11), p. 3460, 1991.

Allied Signal; "Hydroxylamine, Redox Properties".

SUMMARY OF THE INVENTION

The invention solves the following problems with the prior art:

- It reduces or eliminates corrosion problems
- 5 • It eliminates use of flammable solvents
- It eliminates SARA Title III Chemistries
- It lowers mobile and transition metal ions

The post clean treatment solution of this invention has the following features:

- Aqueous based
- 10 • Preferably has pH between 4.2 - 4.4
- High neutralization capacity
- Designed to control mobile and transition metal "trash" ions
- Possible repair of metal oxide damage.

In accordance with the invention, a composition for removal of chemical residues from metal or dielectric surfaces or for chemical mechanical polishing of a copper surface is an aqueous solution with a pH between about 3.5 and about 7. The composition contains a monofunctional, difunctional or trifunctional organic acid and a buffering amount of a quaternary amine, ammonium hydroxide, hydroxylamine, hydroxylamine salt, hydrazine or hydrazine salt base. A method in accordance with the invention for removal of chemical residues from a metal or dielectric surface comprises contacting the metal or dielectric surface with the above composition for a time sufficient to remove the chemical residues. A method in accordance with the invention for chemical mechanical polishing of a copper surface comprises applying the above composition to the copper surface, and polishing the surface in the presence 25 of the composition.

In another aspect of the invention, chemical residues are removed from a metal or dielectric surface by contacting the metal or dielectric surface with an aqueous composition having a pH between about 3.5 and about 7 for a time sufficient to remove the chemical residues. In still another aspect of the invention, a copper surface is chemical mechanical polished by applying an aqueous composition having a pH between about 3.5 and about 7 to the copper surface, and polishing the surface in the presence of the composition.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a graph showing results obtained with a state of the art prior art process.

5 FIGURE 2 is a flow diagram showing a typical process sequence in which the post clean treatment of this invention is advantageously used.

FIGURE 3 is a graph showing corrosion rate of Al metal on a wafer versus amount of amine dissolved in a water rinse system.

FIGURE 4 is a Pourbaix diagram for Al.

10 FIGURES 5A-5C are scanning electron micrographs (SEMs) of comparative results obtained with and without use of the Post Clean Treatment of this invention.

FIGURES 6-8 are bar graphs showing results obtained with the invention.

DESCRIPTION OF SPECIFIC EMBODIMENTS

This invention concerns a new series of chemistries (Post Clean Treatment 15 solutions) that are designed to treat substrates. The Post Clean Treatments have six important features:

1. Neutralize significant quantities of hydroxylamine-based, amine-based and alkanolamine-based chemistries.

20 2. Can be used in post CMP cleaning to remove chemical additives and slurry particles from wafer surfaces.

3. Are aqueous solutions, which means that it has no flash point.

4. The ingredients are not on the SARA Title III lists.

25 5. Will reduce the level of mobile ions and "trash" transition metal ions absorbed on the surface of the wafer.

6. Is a mild oxidizing solution designed to "repair" damages to metal oxide films after the amine chemistry step.

7. Certain formulations will polish copper under CMP conditions.

8. Prevent amine precipitate from forming, as possibly seen in IPA rinses.

30 Turning now to the drawings, more particularly to FIG. 2, there is shown a typical process sequence in which the invention may be employed. After an etch step 10, an ashing step 12, a wet chemistry step 14 or both an ashing step 12 and a wet

chemistry step 14 are used to remove photoresist and etch residues. In accordance with the prior art, a carbonated water rinse 16, an isopropyl alcohol rinse 18 or an N-methyl pyrrolidone rinse 20 is employed to rinse debris and any remaining wet chemicals from the etched substrate. With the invention, the Post Clean Treatment solution rinse 22 is employed in place of the rinses 16, 18 or 20. A DI water rinse 24 completes the process sequence shown in FIG. 2.

Background

Post Etch Residue Chemistry Neutralization

An important feature for the Post Clean Treatment chemistry is it's ability to rapidly neutralize amine characteristics that will be carried out (drag out) of the bath with the wafers and boat. It is well understood that low concentrations (3-20%) of amines in water rinses can cause corrosion of metal structures, especially Al metal structures (see FIG. 3). The primary reason is that the amine reacts with water to form hydroxide anions:

The hydroxyl groups then attack the metal surface or grain boundaries to "etch" the structures.

One possible mechanism for this attack is that Al_2O_3 , an amphoteric material, can be removed by acids having a $\text{pH} < 4$ or bases having a $\text{pH} > 10$:

FIG. 3 illustrates the corrosion rate of Al metal on a wafer versus the amount of amines dissolved in a water rinse system. The diagram clearly shows that very small quantities of amines will be very corrosive to the metal.

Using an acid rinse solution composed of sulfuric acid or nitric acid ($K_a > 1$) would neutralize the amines, but unless the pH is carefully controlled to above 4, many metals are easily corroded (see FIG. 4, Pourbaix Diagram for Aluminum). It could be very difficult to control the chemical activity of the Post Clean Treatment rinse made with such acids during it's life time.

Several mineral acids, sulfuric and nitric acid are used to etch or remove metal oxide residues before plating procedures or to remove scale from boiler pipes. Many organic acids (citric, gluconic, acetic) have low enough pH's (1.5 to 2.3) to be used to remove metal oxides or scale. There are many commercial formulations which use 5 various types of acids to "pickle" metal structures. These procedures would be detrimental to processes in the semiconductor industry.

As this invention will show, the Post Clean Treatment solutions are not designed to remove metal oxides but to preserve the oxide layer. Therefore the solution's pH must be modified to only neutralize amine impurities without destroying 10 the metal oxide coatings.

Isopropyl alcohol rinse solutions are flammable, and the chemical is on the SARA Title III list. The carbonated water rinse solutions have only limited neutralization capacity because of the limited CO₂ solubility in water.

15 Post-Chemical Mechanical Planarization Clean Processes

Both the interdielectric layers and metal polishing processes for chemical mechanical planarization (CMP) processes, must eventually pass through a final cleaning step to remove traces of slurry and the chemistry. Though the process appears to be simple, i.e., a brush scrub and a rinse cycle, considerable effort is 20 being expanded to determine if the process should involve either single side, double-sided scrubbing, single wafer or batch processing, spray tools or even immersion tanks. Recently an engineering group working with post-clean CMP ranked wafer cleanliness (from slurry and pad particles and metallic contamination) as the most important issue in the post-clean step. Process reliability and defect metrology were 25 the other two important areas of concerns.

Residual particle levels must be <0.05 particle/cm², and 90% of these particles with less than 0.2 micron size. Line widths of 0.35 micron will require the removal of particles down to 0.035 micron or less. Incomplete particle removal will decrease wafer yield. Low defect (scratches) levels and acceptable planarity will also 30 be very important.

Most fabs have developed their own in-house technology for the post-clean CMP steps. Most of the "chemistries" involve DI water with either added ammonium

hydroxide or HF while some fabs are using the standard RCA SC-1 ($\text{NH}_4\text{OH}:\text{H}_2\text{O}_2:\text{H}_2\text{O}$) and SC-2 ($\text{HCl}:\text{H}_2\text{O}_2:\text{H}_2\text{O}$) cleaning steps traditionally used in the front end process.

There are five mechanisms for removing impurities (particles and/or ions) from the wafer surfaces:

- Physical desorption by solvents: Replacing a small number of strongly absorbed material with a large volume of weakly absorbed solvent (changing the interaction of the surface charges).
- Change the surface charge with either acids or bases: The Si-OH group can be protonated (made positive) in acid or made negative with bases by removing the proton.
- Ion complexion: Removing adsorbed metal ions by adding acid (i.e., ion exchange).
- Oxidation or decomposition of impurities: Oxidation of metals, organic materials or the surface of slurry particles will change the chemical forces between the impurities and substrate surface. The chemical reaction can either be through redox chemistry or free radicals.
- Etching the surface: The impurity and a certain thickness of the substrate surface is dissolved.

Silicon Oxide Chemistry

The mechanism for dielectric polishing is still being developed, but the polishing process appears to involve two concurrent processes; a mechanical process involving plastic deformation of the surface and, chemical attack by hydroxide (OH) to form silanol bonds.

$\text{SiO}_2 + 2\text{H}_2\text{O}$	$<====>$	$\text{Si}(\text{OH})_{4\text{(aq)}}$	pH < 9	$\log K_s = -2.7$	eq. 1
$\text{Si}(\text{OH})_4 + \text{OH}^-$	$<====>$	$\text{SiO}(\text{OH})_3^- + 2\text{H}_2\text{O}$	pH > 9	$\log K_s = -1.7$	eq. 2
$\text{SiO}(\text{OH})_3^-$	$=====>$	polynuclear species	pH > 10.5		eq. 3
$\text{Si}(\text{OH})_4 + \text{O}_2$	$=====>$	$(\text{HO})_3\text{Si}-\text{O}-\text{Si}(\text{OH})_3^- + \text{H}_2\text{O}$			eq. 4

Table I

In a slurry (colloidal suspension) the pH is important and for the silicon oxide system it needs to be in the 10 to 11.5 range. Currently CMP users are using silicon oxide-based slurries which were "buffered" with sodium hydroxide but now are being formulated with potassium or ammonium hydroxide solutions. Etch rates can be in the range of 1700Å/min.

If the pH is too high the polynuclear species may start to precipitate in an unpredictable manner. There is also the possibility of an oxidation process to form Si—O—Si bonds, eq. 4.

There are other important features of the silicon surface that will influence the etch rates and final surface conditions; (metal contamination and possibly micro scratches). As mentioned above, the typical silicon surface is terminated (covered) with -OH groups under neutral or basic conditions. The silicon surface is hydrophilic (the surface is "wettable"). These groups activate the surface to a number of possible chemical or physioabsorption phenomena. The Si-OH groups impair a weak acid effect which allows for the formation of salts and to exchange the proton (H^+) for various metals (similar to the ion exchange resins). These SiO⁻ and Si-OH groups can also act as ligands for complexing Al, Fe, Cu, Sn and Ca. Of course the surface is very dipolar and so electrostatic charges can accumulate or be dissipated depending on the bulk solution's pH, ion concentration or charge. This accumulated surface charge can be measured as the Zeta potential.

If the silicon (Si) surface underneath the oxide layer is exposed because of an over aggressive polishing process, this could cause electrochemical problems because silicon has a modest redox potential which will allow Cu, Au, Pt, Pb, Hg and Ag to "plate on" the silica surface. Exposure to light will also effect the 5 redox reaction for Cu. The light will "generate" electrons in the semiconductor Si material which then reduces the copper ion to Cu⁰.

CMP Metal Chemistry

It has also been determined that these Post Clean Treatment solutions can 10 be used to perform CMP planarization of copper metal films. This type of polishing relies on the oxidation of the metal surface and the subsequent abrasion of the oxide surface with an emulsion slurry. In this mechanism, the chemistry's pH is important. The general equations are (M=metal atom):

Under ideal conditions the rate of metal oxide (MO_x) formation (V_f) will 20 equal the rate of oxide polishing (V_p), (V_f=V_p). If the pH is too low (acidic) then the chemistry can rapidly penetrate the oxide and attack the metal (V_f < V_p), thus exposing the metal without any further oxide formation. This means that all metal surfaces, at high points and in valleys, are removed at the same rate.

Planarization of the surface is not achieved. This could cause metal plug 25 connectors to be recessed below ("dishing") the planarization surface which will lead eventually to poor step coverage and possible poor contact resistance.

When the pH is too high (caustic), then the oxide layer may become 30 impenetrable to the chemistry and the metal becomes passive, (V_f > V_p) and the metal polishing rate becomes slow. Metal polishing selectively to oxide generally ranges from 20 to 100:1, depending on the metal type. Tungsten metal should have selectivities >50:1 for the metal to oxide, and copper could have >140:1 metal to oxide selectivity. Etch rates can be up to 7000Å/min. The chemical diffusion rate and the type of metal oxide surface are important to the successful

planarization process. A detailed mechanism has been proposed by Kaufman, F.; J. Electrochem. Soc; 138 (11), p 3460, 1991.

Copper films present a difficult problem because it is a soft metal and is easily damaged by the slurry particles. The chemical additives can be very important to etch these imperfections.

Types of Chemicals

A variety of chemicals can be used in these Post Clean Treatment formulations.

10 Acids

There are a variety of organic chemistries that can be used in the Post Clean Treatment chemistries. The type of organic acid is very important. Some possible acids and their pK_a 's are as follows:

	<u>Monobasic</u>	pK_{a1}	pK_{a2}	pK_{a3}
	formic	3.8		
	acetic	4.8		
	propionic	4.9		
	n-butyric	4.9		
20	isobutyric	4.8		
	benzoic	4.2		
	<u>Dibasic</u>			
	ascorbic	4.2	11.6	
	gluconic	3.5	4.7	
25	malic	3.4	5.1	
	malonic	2.8	5.7	
	oxalic	1.3	4.3	

succinic	4.1	5.6	
tartaric	2.9	4.2	
<u>Tribasic</u>			
citric	3.1	4.8	6.9
gallic	4.2	8.9	

Table II

General structure for the acid

10

15

X = -OH, -NHR, -H, -Halogen, -CO₂H and -CH₂-CO₂H, -CHOH-CO₂H

R = generally aliphatic, H or aromatic

20

Concentrations can vary from 1 to 25 wt %. The important factor is the solubility of the acid and base products with any additional agents in the aqueous solutions.

Bases

25

The caustic component to adjust the pH of the buffer Post Clean Treatment can be composed of any common base, i.e., sodium, potassium, magnesium etc. hydroxides. The major problem is that these bases introduce mobile ions into the final formulation. Mobile ions can easily destroy computer chips being produced today in the semiconductor industry.

30

Other bases can include tetramethylammonium hydroxide (TMAH) or choline (both are quaternary amines) or ammonium hydroxide.

Another base is hydroxylamine, as the free base, which can be used in conjunction with other hydroxylamine salts (sulfate, nitrate, chloride etc.). Other bases could include hydrazine and or its salts.

5 Oxidizers

Incorporating oxidizing agents is an important part of this invention. When the metal structures are cleaned of post etch residues or after a CMP planarization procedure the metal surface's oxide coating may have been damaged (lost). It is advantageous to have this damaged metal surface repaired before further 10 manufacturing procedures which could increase the damage and possibly render the device worthless. At times a mixture of hydrogen peroxide in IPA have been used as a separate process step. Some users will dip the wafers into a hydrogen peroxide bath for several seconds to minutes. The wafers are then finally rinsed in water and dried. The disadvantage is that a separate bath must be maintained 15 besides the usual rinse baths.

It would be a benefit if the oxidizing agent could be included in one of the rinse baths. Hydrogen peroxide is one of the most common commercially available oxidizers. Hydrogen peroxide has a short shelf life and could be a too aggressive oxidizer, which would form thick metal oxide films that could interfere 20 with subsequent processing steps.

The redox potential for hydrogen peroxide (acidic) and hydroxylamine (in acid and base) (E_v at SHE) are given:

Fortunately, few metal ions are reduced to the zero oxidation state when using hydroxylamine under reducing conditions (basic solutions). This is important in CMP processes to avoid contamination of the wafer surface with 30 metal particles.

Besides being a redox agent, hydroxylamine, like ammonia, can form complex salts with many metals including $\text{Al}(\text{SO}_4)_2 \cdot \text{NH}_2\text{OH} \cdot \text{H}_2\text{O}$ and $\text{Cu}(\text{X})_2 \cdot \text{NH}_2\text{OH} \cdot \text{H}_2\text{O}$.

Another important advantage of using hydroxylamine type compounds is their decomposition products. Depending on the solution pH, metal ions and concentration, hydroxylamine will decompose to water, nitrogen, ammonia and N_2O . The formation of nitrogen even takes place through a slow internal redox reaction at pHs above 8.

The hydroxylamine free base, besides being a good base, will under acidic conditions be a mild oxidizing agent. Such oxidizers have a good shelf life and will not form thick oxide films under normal processing conditions (up to 30 minutes).

Hydroxylamine is a more selective (controllable) oxidation and reducing agent. This dual capability is achieved by shifting the pH from the acid to basic media, i.e.

Other oxidizers could include ammonium peroxydisulfate, peracetic acid, urea hydroperoxide and sodium percarbonate or sodium perborate.

Concentrations can vary from 0.5 to 30 wt %.

Chelators

An added feature for this invention is to add small quantities of metal ion chelators which will form transition metal ion complexes. The chelators could include di-, tri-, tetra-, functional groups, i.e., EDTA, citric acid, oximes, lactic acid, 8-hydroxy quinoline and other well known agents that will chelate with metal ions under acid conditions. Other possible agents are polyethylene oxide, polyethylenimine and crown ethers. These latter two compounds have varying affinity for mobile ions (Li, Na, K, and certain alkaline earth ions).

Concentrations preferably vary from 0.01 to 10 wt %.

Surfactants

Surfactants (nonionics, anionics and cationics) can be included in these formulations. Though the surface tensions for the Post Clean Treatment solutions will be ~ 70 dynes/cm, there may be special situations where the surface tension needs to be reduced.

5

EXAMPLESIdea 1

The Post Clean Treatment solutions will contain various organic acids with
5 dissociating constants less than 1. Examples include formic, acetic, propanoic,
butyric acids, or difunctional or trifunctional water soluble organic acids, i.e.,
citric acid, etc.

If a Post Clean Treatment bath can only neutralize small quantities of
amines (one or two boat loads of wafers) this would increase the cost of ownership
10 for the wafer cleaning process, because of the frequent need to replace the
solution. This effect can be overcome by the following example.

Example 1

Experiments were done to determine the "buffering capacity" or amine
15 neutralization power of Post Clean Treatment. The chemistry was designed to
neutralize amines until the solution reaches pH 7. Once the pH goes above this
value (becomes more caustic) the possibility of metal corrosion increases.

The general procedure for the test was to use a 100 gm sample of the Post
Clean Treatment solution (89 parts water, 8 parts citric acid and 3 parts 50%
20 hydroxylamine) in a beaker with a magnetic stirring bar. The pH was monitored
with a Fisher pH meter that had a two point calibration.

Various amine chemistries were added until a pH of 7 was reached.

Chemistry	Percent in Final Sol.	Final pH
A = 55% DGA; 10% gallic acid; 30% HDA; 5% H ₂ O	13%	7
B = 27.5% DGA; 27.5% MEA; 30% HDA; 10% gallic acid; 5% H ₂ O	11.5%	7.2
C = 60% DGA; 5% catechol; 35% HDA	10.7%	7.1
D = 100% NMP	1666+%	6.2
E = 50 % NMP; 50% DGA	57%	7.4

Table III

(% in final solution = amine quantity/100 gm Post Clean Treatment + amine)

Abbreviations: DGA = diglycolamine; HDA = hydroxylamine (expressed as percentage of a commercially available 50 wt% aqueous solution); MEA = monoethanolamine; NMP = N-methyl pyrrolidone

The amine and amine/hydroxylamine chemistries are sold by EKC Technology, Inc., Hayward, CA.

The results show that adding composition D will never shift the pH above 7 and composition E has a similar, but smaller effect on the Post Clean Treatment.

The data for compositions A, B and C can be used to calculate the potential neutralization capacity, if we assume a typical rinse bath has 6.5 gal (24.6 liters), then the amount of added amines will range between 2.6 to 3.2 liters. Therefore if there is ~22 gm of dragout amine/25 wafer boat then the number of wafer boats will range from 120 to 145 boats.

Idea 2

Another method to test the "buffering capacity" of the Post Clean Treatment and to show that the solution will not etch metal films is by taking samples of the Post Clean Treatment solution used in Example 1 and adding 8 to

10 wt % of various types of hydroxylamine and/or amine chemistries. The
 5 blanket metal wafers were immersed in the "doped" solution for 30 minutes then
 rinsed in DI water. The resistivity (ohms/ cm²) of the films were measured before
 and after the test. The wt% of the EKC Technology chemistries from Table III of
 Example 1 is in parentheses.

Example 2

		<u>Before</u>	<u>After</u>
10	C (8%) Al	66.98 ± 0.814	67.11 ± 0.1.202
	Ti	2.527 ± 1.147	2.499 ± 1.038
	W	440.9 ± 0.583	440.2 ± 0.562
15	E (10%) Al	67.50 ± 3.030	66.73 ± 2.921
	Ti	2.476 ± 2.264	2.460 ± 2.313
	W	443.8 ± 0.466	442.9 ± 0.348
20	A (8%) Al	65.16 ± 1.990	64.95 ± 1.168
	Ti	2.523 ± 1.120	2.516 ± 1.147
	W	429.9 ± 1.302	429.7 ± 1.279

Within experimental error the results show that there was no loss in metal
 20 thickness.

Al=Al/0.5%Cu, 5000 Å; Ti=3000 Å; W=Ti100Å,W5000 Å

Table IV

25 Patterned wafers were tested with the Post Clean Treatment solution used
 in Example 1 doped with amine wet chemistries to simulate the effect of
 hydroxylamine and/or amine wet chemistries dragout. FIG. 5A shows a patterned
 wafer before processing with any wet chemistry as a control. The patterned
 wafers were immersed in the doped solutions for 30 minutes before being rinsed
 30 with DI water. FIG. 5B shows the results obtained with the Post Clean Treatment
 solution of Example 1 to which was added 10 weight percent of solution E (Table
 III). FIG. 5C shows the results obtained with the Post Clean Treatment solution

of Example 1 to which was added 8 weight percent of solution C (Table III). These SEM photographs further show that there is no attack of the metal structure after passing through the Post Clean Treatment solution "doped" with various hydroxylamine and/or amine chemistries.

5

Idea 3

Currently tungsten metal CMP planarization chemistries are either hydrogen peroxide or ferric nitrate solutions. Besides damaging the metal oxide films these chemistries can introduce mobile and transition metal ions on the metal 10 films.

The Post Clean Treatment solutions can be used as post CMP clean treatment chemistries. During CMP metal planarization the chemical-slurry solutions will damage the natural oxide films on the metal. The repair of this metal oxide layer requires an oxidizing reagent that is stable and is not going to contribute to mobile ion contamination, will not "stain" the equipment, and is generally environmentally friendly. Hydrogen peroxide systems are not stable and could form oxides several microns thick if not closely monitored.

Hydroxylamine (or its salts) in the acidic solution is a mild oxidizing agent ($E^{\circ} = -0.05$ V).

20

Example 3

The following data shows the effect of rinses composed of organic acids and buffered with either hydroxylamine or ammonium hydroxide to a final pH of 4.5

25

	Solution 1	Solution 2
Propionic acid	92 parts	92.5 parts
Water	808 parts	808 parts
Salicylic acid	1 part	0
Salicyclaldoxime	0.2 part	0
27% NH ₂ OH	31 part	

50% NH ₂ OH		35.6
pH	4.5	4.5

Table V

5 Titanium coupons (1.33 g) and a Ti wafer with 4000 Å were placed in the solutions for 24 hours at room temperature. The samples were rinsed with IPA and water and dried and then weighed.

	Solution 1	Solution 2
Ti coupon	-0.0071 %	+0.0075 %
Ti wafer	no change	no change

Table VI

10 The data shows that metal samples processed through hydroxylamine buffered solutions are not etched (loss weight) but have slight weight gain (gain oxide thickness).

15 Other post treatment solutions were also tested.

	Solution 3	Solution 4
Citric acid	75 parts	75 parts
water	825 parts	825 parts
27% NH ₄ OH	22.2 parts	
50% NH ₂ OH		18.6 parts
pH	4.5	4.5

Table VII

20 Titanium coupons and Ti wafers (4000Å) were placed in solution C of Example 1 that was heated to 65°C for 30 minutes. The samples were then transferred to an IPA solution or to the treatment solutions.

25

	IPA	Soluti n 3	Solution 4
Ti coupon	+0.023%	+0.014%	+0.020%
Ti wafer	n.d.	+0.044%	+0.030%

5

Table VIII

The data shows that though there is solution C chemistry being carried into the IPA or treatment solutions there was no adverse effects (weight loss). One practiced in the art would expect no effect from the IPA rinse, because there is no water to promote the corrosive hydroxide ion, but the aqueous Post Clean

- 10 Treatment solutions were able to successfully neutralize any hydroxyl/amine species formed from the solution C chemistry. Therefore there was no weight loss.

Idea 4

- 15 Another important feature of these post clean treatment solutions is that the metal features on the wafer must not be etched or corroded after leaving the amine cleaning chemistry. This is similar to the idea expressed above concerning the post CMP cleaning processes.

- 20 This idea was tested with wafers coated with various metals, generally between 3000 and 5000 Å.

Example 4

- Various metal blanket wafers, with 3000 to 5000 Å of, Al/(0.5%)Cu, Ti, TiW, W, Ta and Cu, were tested with the Post Clean Treatment solution of Example 1, at room temperature conditions. The solutions were stirred during the one hour test.

Each wafer (except the TiW) was measured with a Prometrix four point probe for determining blanket metal film thickness. The wafers were then individually immersed in the chemistry in beakers with magnetic stirring bars.

- 30 The wafers were rinsed with DI water and then dried with nitrogen. The wafers were measured again by four point probe.

Four point probe measurements show that the etch rate for Al/(0.5%)Cu, Ti, W and Ta were less than 1 Å/min. The copper wafer had an etch rate 17 Å/min.

The TiW wafer would not give a reading with the probe, therefore it was weighed to the nearest 0.01 mg. At the end of the test, the wafer gained 0.01 mg.

Within the accuracy of the measurements, since the accuracy of the four point probe measurements are to the nearest 1 Å/minute, Table IX summarizes the results for the metals tested, with the exception of copper.

10

Corrosion on Metals

15

Al/0.5% Cu	0 Å/min
Ti	0 Å/min
W	0 Å/min
TiW	0 Å/min

Post Clean Treatment Solution of Example 1, Room Temp. - 60 min.

Table IX

20

Except for the copper wafer (3000 Å with 100 Å Ti) results, the other etch rates are as expected from the above theoretical discussion. The Post Clean Treatment solution (example 1 composition) was designed to be buffered at pH 4 - 4.5 which should not attack the oxide films on metals. These results agree with the examples given above with the Ti wafers, Ti coupons and Al coupons.

25

Though the copper wafer had an 17 Å/min etch rate this is not excessive, for a typical 5 minute rinse the total loss will be only 85 Å.

Example 5

30

It is important to know if there will be any compatibility problems between the Post Clean Treatment solutions and substrates commonly encountered in the BEOL (Back End of the Line, after metal deposition) in the semiconductor processes. These substrates can be metals (W, Ti, Al, and possibly Cu) and also

dielectric materials which are usually boron phosphorus silicate glass (BPSG) (~5 wt % for both boron and phosphorous) and tetraethylorthosilicate (TEOS).

Film thickness for blanket 3" BPSG (3000 Å, densified) and a 3" TEOS (5000 Å) wafers were determined with a Geartner Scientific L115 ellipsometer.

5 Both wafers were immersed in the Post Clean Treatment solution used in example 1 for 60 minutes at room temperature, then rinsed with DI water and dried with nitrogen. The samples were then returned for film thickness determination.

Within the limits of the experiment there was no significant changes in film thickness. The initial mean TEOS thickness value was 5119 Å (std. dev. 144.6 Å, 10 3σ) with a final mean value of 5128 Å (std. dev. 145.3 Å, 3σ). The BPSG means thickness values (before) were 3095 Å (std. dev. 215 Å, 3σ)

Idea 6

Another important feature of this invention is the ability to reduce or lower 15 the level of certain transition and mobile ions that might be absorbed on the wafer surface. These ions are introduced onto the wafers as impurities in the cleaning chemistries or as particulate from the process equipment or redeposit plasma etch residues generated during the etching process.

One way of illustrating this chelation effect for removing transition and 20 mobile metal cations from a wafer surface is to monitor a Post Clean Treatment solution before and after immersion in the solution.

Example 6

Three inch wafers with 3000 Å PBSG or 5000 Å TEOS were dipped into a 25 solution composed of ~100 ppb sodium, potassium, calcium, and iron (III). The wafers where then dried with a nitrogen flow. The wafers were then immersed in the Post Clean Treatment solution of Example 1 for 20 minutes. Samples of the solution, before and after, were then analyzed by GFAA.

	BPSG		TEOS		
	Metal (ppb)	before	after	before	after
30	Na	44	63	43	52

K	8	23	11	15
Fe	91	105	96	106
Cu	5	5	5	5
Pb	189	196	202	201
Mn	5	5	5	5
Zn	14	17	17	18
Ni	10	5	13	16

Table X

The results show that the Na, K, Ca and Fe cations have increased in the solutions after each test. The combination of the aqueous solution and chelation agents (citric acid and hydroxylamine) help to remove the metal contaminates.

The last five metal (Cu to Ni) are given to the typical background values.

15 Example 7

Three inch wafers with 5000 Å thermal silicon dioxide were dipped into a solution composed of ~ 100 ppb each of sodium, potassium, calcium, and iron. The wafers were dried with a nitrogen flow. The wafers were then cleaved into sections and then immersed into either DI water or the Post Clean Treatment solution of Example 1. Samples were immersed for 20 minutes at room temperature. The samples were then removed and rinsed in IPA and dried with a nitrogen flow. The samples were analyzed by TXRF (Total X-ray Fluorescence) (1^{10} atoms/cm 2). Under these conditions only the potassium, calcium and iron can be measured. It is generally assumed that the sodium concentrations (atoms/cm 2) will parallel the potassium values.

		<u>Thermal Oxide</u>	
		before	after
Post Clean Treatment Solution of Example 1	K	60	<20
DI water	K	60	600

Post Clean Treatment Solution of Example 1	Ca	80	10
DI water	Ca	80	6200
Post Clean Treatment Solution of Example 1	Fe	700	50
DI water	Fe	700	2300

Table XI

FIG. 6 is a graph of the above results, showing the significant improvement in mobile ion control obtained with the Post Clean Treatment solutions, while a DI water rinse actually increases the amount of mobile ions present.

Example 8

Three inch wafer with 5000 Å BPSG and 3000 Å TEOS were dipped into a solution composed of ~ 100 ppb each of sodium, potassium, calcium, and iron. The wafers were dried with a nitrogen flow. The wafers were then cleaved into sections and then immersed into either DI water or the Post Clean Treatment solution of Example 1. Samples were immersed for 20 minutes at room temperature. The samples were then removed and rinsed in IPA and dried with a nitrogen flow. The samples were analyzed for iron by TXRF (Total X-ray Fluorescence). The units are 10^6 atoms/cm².

	BPSG		TEOS	
	before	after	before	after
Post Clean Treatment Solution A	800	200	2600	90
DI water	600	500	2500	800

30

Table XII

FIGS. 7 and 8 are graphs of the results obtained, expressed as a percent change of mobile ions in the case of the BPSG results, and expressed as 10^{10} atoms/cm² in the case of the TEOS results.

- As the results show, the wafers processed through the Post Clean
5 Treatment solution of Example 1 had significantly lower residual metal ions left on the wafer surface.

In summary, the Post Clean Treatment solution of this invention is aqueous, non flammable and DI water drain compatible (no special EPA handling is required). It effectively rinses traces of amine and basic (> 7 pH) chemistries
10 from wafer surfaces, thus eliminating the corrosion possibility of amine based chemistries and excess OH⁻ ions from a DI water rinse. The Post Clean Treatment solution can be used after pre-diffusion cleans, pre-implantation cleans and pre-deposition cleans under essentially the same conditions described above. The solution can also be used for post chemical mechanical polishing cleaning, and
15 as a chemical mechanical polishing solution for copper substrates.

The invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the appended claims.

WHAT IS CLAIMED IS:

1. A composition for removal of chemical residues from metal or dielectric surfaces or for chemical mechanical polishing of a copper surface, which
5 comprises an aqueous solution with a pH between about 3.5 and about 7 and containing:

- (a) a monofunctional, difunctional or trifunctional organic acid; and
(b) a buffering amount of a quaternary amine, ammonium hydroxide, hydroxylamine, hydroxylamine salt, hydrazine or hydrazine salt base.

10

2. The composition of claim 1 in which the organic acid has the general formula:

15

wherein X is -OH, -NHR, -H, -Halogen, -CO₂H or -CH₂-CO₂H, -CHOH-CO₂H
20 and R is hydrogen or an alkyl, aryl, alkaryl or aralkyl group having from 1 to about 20 carbon atoms.

25

3. The composition of claim 2 in which the organic acid is present in an amount of from about 1 weight percent to about 25 weight percent.

4. The composition of claim 3 in which the quarternary amine is tetramethylammonium hydroxide or choline.

30

5. The composition of claim 2 in which the composition has a ph between about 4 and about 6.

6. The composition of claim 5 in which the organic acid is present in an amount of from about 2 to about 11 weight percent.
7. The composition of claim 1 additionally comprising:
 - 5 (c) a chelation agent which will complex with transition metal ions and mobile ions.
8. The composition of claim 7 in which the chelation agent is ethylene diamine tetraacetic acid, an oxime, 8-hydroxy quinoline, a polyalkylenepolyamine or a crown ether.
 - 10 9. The composition of claim 1 additionally comprising:
 - (c) an oxidizing agent which will maintain metal film oxide layers.
 - 15 10. The composition of claim 9 in which the oxidizing agent comprises ammonium peroxydisulfate, peracetic acid, urea hydroperoxide, sodium percarbonate or sodium perborate.
 11. A method for removal of chemical residues from a metal or dielectric surface, which comprises contacting the metal or dielectric surface with a composition in accordance with claim 1 for a time sufficient to remove the chemical residues.
 - 20 12. A method for chemical mechanical polishing of a copper surface which comprises applying a composition in accordance with claim 1 to the copper surface, and polishing the surface in the presence of the composition.
 13. A method for removal of chemical residues from a metal or dielectric surface, which comprises contacting the metal or dielectric surface with an aqueous composition having a pH between about 3.5 and about 7 for a time sufficient to remove the chemical residues.
 - 25 30

14. The method of claim 13 in which the aqueous composition contains a monofunctional, difunctional or trifunctional organic acid.
15. The method of claim 13 in which the pH of the aqueous composition is adjusted with a buffering amount of a quaternary amine, ammonium hydroxide, hydroxylamine, hydroxylamine salt, hydrazine or hydrazine salt base.
16. The method of claim 13 in which the aqueous composition includes a chelation agent which will complex with transition metal ions and mobile ions.
17. The method of claim 16 in which the chelation agent is ethylene diamine tetraacetic acid, an oxime, 8-hydroxy quinoline, a polyalkylenopolyamine or a crown ether.
18. The method of claim 13 in which the aqueous composition includes an oxidizing agent which will maintain metal film oxide layers.
19. The method of claim 18 in which the oxidizing agent comprises ammonium peroxydisulfate, peracetic acid, urea hydroperoxide, sodium percarbonate or sodium perborate.
20. The method of claim 13 in which the aqueous composition has a pH between about 4 and about 6.
21. A method for chemical mechanical polishing of a copper surface which comprises applying an aqueous composition having a pH between about 3.5 and about 7 to the copper surface, and polishing the surface in the presence of the composition.
22. The method of claim 21 in which the aqueous composition contains a monofunctional, difunctional or trifunctional organic acid.

23. The method of claim 21 in which the pH of the aqueous composition is adjusted with a buffering amount of a quaternary amine, ammonium hydroxide, hydroxylamine, hydroxylamine salt, hydrazine or hydrazine salt base.
- 5 24. The method of claim 21 in which the aqueous composition includes a chelation agent which will complex with transition metal ions and mobile ions.
- 10 25. The method of claim 24 in which the chelation agent is ethylene diamine tetraacetic acid, an oxime, 8-hydroxy quinoline, a polyalkylenepolyamine or a crown ether.
26. The method of claim 21 in which the aqueous composition includes an oxidizing agent which will maintain metal film oxide layers.
- 15 27. The method of claim 26 in which the oxidizing agent comprises ammonium peroxydisulfate, peracetic acid, urea hydroperoxide, sodium percarbonate or sodium perborate.
- 20 28. The method of claim 21 in which the aqueous composition has a pH between about 4 and about 6.

AMENDED CLAIMS

[received by the International Bureau on 3 July 1998 (03.07.98);
 original claims 1, 3, 5 and 9 amended;
 original claims 2 and 10 cancelled; new claims 29-38 added;
 remaining claims unchanged (5 pages)]

1. A composition for removal of chemical residues from metal or dielectric surfaces, the chemical residues having been applied in a previous process step, and for stopping further chemical effects from the chemical residues, which comprises an aqueous solution with a pH between about 3.5 and about 7 and containing:

(a) a monofunctional, difunctional or trifunctional organic acid having the general formula:

wherein X is -OH, -NHR, -H, -Halogen, -CO₂H or -CH₂-CO₂H, -CHOH-CO₂H and R is hydrogen or an alkyl, aryl, alkaryl or aralkyl group having from 1 to about 20 carbon atoms; and

(b) a buffering amount of a quaternary amine, ammonium hydroxide, hydroxylamine, hydroxylamine salt, hydrazine or hydrazine salt base.

Cancel Claim 2.

3. The composition of claim 1 in which the organic acid is present in an amount of from about 1 weight percent to about 25 weight percent.

4. The composition of claim 3 in which the quaternary amine is tetramethylammonium hydroxide or choline.

5. The composition of claim 1 in which the composition has a pH between about 4 and about 6.

6. The composition of claim 5 in which the organic acid is present in an amount of from about 2 to about 11 weight percent.

7. The composition of claim 1 additionally comprising:

(c) a chelation agent which will complex with transition metal ions and mobile ions.

8. The composition of claim 7 in which the chelation agent is ethylene diamine tetraacetic acid, an oxime, 8-hydroxy quinoline, a polyalkylenopolyamine or a crown ether.
9. The composition of claim 1 additionally comprising:
 - (c) an ammonium peroxydisulfate, peracetic acid, urea hydroperoxide, sodium percarbonate or sodium perborate oxidizing agent.

Cancel Claim 10.

11. A method for removal of chemical residues from a metal or dielectric surface, which comprises contacting the metal or dielectric surface with a composition in accordance with claim 1 for a time sufficient to remove the chemical residues.
12. A method for chemical mechanical polishing of a copper surface with comprises applying a composition in accordance with claim 1 to the copper surface, and polishing the surface in the presence of the composition.
13. A method for removal of chemical residues from a metal or dielectric surface, which comprises contacting the metal or dielectric surface with an aqueous composition having a pH between about 3.5 and about 7 for a time sufficient to remove the chemical residues.
14. The method claim 13 in which the aqueous composition contains a monofunctional, difunctional or trifunctional organic acid.
15. The method of claim 13 in which the pH of the aqueous composition is adjusted with a buffering amount of quaternary amine, ammonium hydroxide, hydroxylamine, hydroxylamine salt, hydrazine or hydrazine salt base.
16. The method of claim 13 in which the aqueous composition includes a chelation agent which will complex with transition metal ions and mobile ions.
17. The method of claim 16 in which the chelation agent is ethylene diamine tetraacetic acid, an oxime, 8-hydroxy quinoline, a polyalkylenopolyamine or a crown ether.

18. The method of claim 13 in which the aqueous composition includes an oxidizing agent which will maintain metal film oxide layers.
19. The method of claim 18 in which the oxidizing agent comprises ammonium peroxydisulfate, peracetic acid, urea hydroperoxide, sodium percarbonate or sodium perborate.
20. The method of claim 13 in which the aqueous composition has a pH between about 4 and about 6.
21. A method for chemical mechanical polishing of a copper surface which comprises applying an aqueous composition having a pH between about 3.5 and about 7 to the copper surface, and polishing the surface in the presence of the composition.
22. The method of claim 21 in which the aqueous composition contains a monofunctional, difunctional or trifunctional organic acid.
23. The method of claim 21 in which the pH of the aqueous composition is adjusted with a buffering amount of a quaternary amine, ammonium hydroxide, hydroxylamine, hydroxylamine salt, hydrazine or hydrazine salt base.
24. The method of claim 21 in which the aqueous composition includes a chelation agent which will complex with transition metal ions and mobile ions.
25. The method of claim 24 in which the chelation agent is ethylene diamine tetraacetic acid, an oxime, 8-hydroxy quinoline, a polyalkylenepolyamine or a crown ether.
26. The method of claim 21 in which the aqueous composition includes an oxidizing agent which will maintain metal film oxide layers.
27. The method of claim 26 in which the oxidizing agent comprises ammonium peroxydisulfate, peracetic acid, urea hydroperoxide, sodium percarbonate or sodium perborate.

28. The method of claim 21 in which the aqueous composition has a pH between about 4 and about 6.
29. The composition of claim 1 in which hydroxylamine is present in the buffering amount.
30. A composition for removal of chemical residues from metal or dielectric surfaces, the chemical residues having been applied in a previous process step, and for stopping further chemical effects from the chemical residues, which comprises an aqueous solution with a pH between about 3.5 and about 7 and containing:
 - (a) a monofunctional, difunctional or trifunctional organic acid selected from the group consisting of formic, acetic, propionic, n-butyric, isobutyric, benzoic, ascorbic, gluconic, malic, malonic, oxalic, succinic, tartaric, citric and gallic acids; and
 - (b) a buffering amount of a quaternary amine, ammonium hydroxide, hydroxylamine, hydroxylamine salt, hydrazine or hydrazine salt base.
31. The composition of claim 30 in which the organic acid is citric acid.
32. The composition of claim 31 in which the composition has a pH between about 4 and about 6.
33. The composition of claim 32 in which the citric acid is present in an amount of from about 2 to about 11 weight percent.
34. The composition of claim 33 in which hydroxylamine is present in the buffering amount.
35. The composition of claim 30 in which the organic acid is present in an amount of from about 1 weight percent to about 25 weight percent.
36. The composition of claim 30 additionally comprising:
 - (c) an ammonium peroxydisulfate, peracetic acid, urea hydroperoxide, sodium percarbonate or sodium perborate oxidizing agent.

37. The composition of claim 30 additionally comprising:
 - (c) a chelation agent which will complex with transition metal ions and mobile ions.
38. The composition of claim 37 in which the chelation agent is ethylene diamine tetraacetic acid, an oxime, 8-hydroxy quinoline, a polyalkylene polyamine or a crown ether.--

STATEMENT UNDER ARTICLE 19

By this amendment certain of the claims have been rewritten to define the invention with more particularity over the principal EP 578,507 reference cited in the Search Report issued by the USPTO as ISA on May 5, 1998. This Report listed ten references, two in category Y. However, as far as Applicant is able to tell, none of the references cited in the Search Report, taken alone or in combination, discloses a composition for removal of chemical residues applied in a previous process step, such as post etch residues having the combination of ingredients and properties as claimed, i.e., an organic acid solution with a buffering agent to achieve a pH between about 3.5 and 7. Similarly, the prior art fails to teach or suggest a method for removing such chemical residues with an aqueous composition having a pH between about 3.5 and 7. There is further no suggestion of a chemical mechanical polishing method using an aqueous composition. It should be noted that the compositions used in the EP 578,507 reference have an alkaline pH, with no suggestion of providing an acid pH composition. This is a significant distinction, since hydroxylamine functions as an oxidizing agent in the claimed pH range.

Applicant submits that because the references fail to disclose the claimed compositions and methods, the references cannot render obvious this invention as claimed. There is no basis for modifying the references to arrive at the claimed subject matter.

Accordingly, the pending claims are believed to define patentable subject matter.

1 / 6

FIG.-1**FIG.-2****FIG.-3**

2 / 6

FIG. 5A

4 / 6

FIG._5B

5 / 6

FIG._5C

6 / 6

FIG._6**FIG._7****FIG._8**

INTERNATIONAL SEARCH REPORT

International application No. PCT/US98/02794

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :C11D 3/18, 3/30, 3/04, 3/44; B08B 3/08

US CL :510/175, 255, 259, 264, 254; 134/2, 3, 40, 41

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 510/175, 255, 259, 264, 254; 134/2, 3, 40, 41

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

None

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS, CAS ONLINE

search terms: hydroxylamine, gallic, choline, tetramethylammonium hydroxide, hydrazine

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	EP 578,507 A (EKC TECHNOLOGY, INC.) 12 January 1994 (12-01-94), see page 5, lines 44-48; page 6, lines 42-55; page 7, lines 26-55; and page 8, lines 1-14.	1-28
Y	MORRISON, R.T., et al., Organic Chemistry, 3rd edition, Allyn and Bacon, Inc., pages 787 and 788, especially Table 24.1.	1979, 1-28
A	US 5,597,420 A (WARD) 28 January 1997 (28-01-97).	
A	US 5,571,447 A (WARD ET AL) 05 November 1996 (05-11-96).	
A	US 5,563,119 A (WARD) 08 October 1996 (08-10-96).	
A	US 5,560,857 A (SAKON ET AL) 01 October 1996 (01-10-96).	

 Further documents are listed in the continuation of Box C.

See patent family annex.

A	Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
E	document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
L	earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
O	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Z"	document member of the same patent family
P	document referring to an oral disclosure, use, exhibition or other means		
	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

23 MARCH 1998

Date of mailing of the international search report

05 MAY 1998

Name and mailing address of the ISA/US
 Commissioner of Patents and Trademarks
 Box PCT
 Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

DOUGLAS J. MCGINTY

Telephone No. (703) 308-0661

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US98/02794

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 5,556,482 A (WARD ET AL) 17 September 1996 (17-09-96).	
A	US 5,498,293 A (ILARDI ET AL) 12 March 1996 (12-03-96).	
A	US 5,419,779 A (WARD) 30 May 1995 (30-05-95).	
A	US 5,334,332 A (LEE) 02 August 1994 (02-08-94).	

