

In the claims:

1. A lock-step synchronism fault-tolerant computer system including a plurality of computing modules having a processor and a memory in which each computing module processes the same instruction string in synchronization with each other, wherein

when detecting disagreement in a state of access to an external bus among said processors in each said computing module, if no fault is detected in the system including each said computing module, processing of resuming operation in synchronization is executed with respect to each said computing module after generating an interruption to all of said processors to execute delay adjustment for making a state of instruction execution among said computing modules be coincident.

2. The fault-tolerant computer system as set forth in claim 1, further comprising:

a fault detector which monitors existence/non-existence of a fault in the system;

a bus monitor which monitors a state of access of each said processor in each said computing module to the external bus;

interruption control means for, in a case where said bus monitor detects lack of synchronization in a state of access of each said processor in each said

computing module to the external bus, when said fault detector detects no fault, generating an interruption for notifying the detection result to each said processor;

15 inter-system communication control means connected to each said computing module for notifying a state of instruction execution among said processors in each said computing module, and

20 synchronization control means connected to each said computing module for generating a reset signal for resuming operation of all said computing modules in synchronization after conducting delay adjustment for making a state of instruction execution in each said computing module be coincident.

25 3. The fault-tolerant computer system as set forth in claim 2, wherein

5 each of all said processors includes an instructions number counter for counting the number of executed instructions in the processor, said instructions number counter fails to operate when said processors receive an interruption from said interruption control means and shift to a processor management mode for re-synchronization;

10 each said processor compares a value of its own instructions number counter with a value of instructions number counter received from each corresponding

processor in other computing modules;

15 said computing module, which does not include the
instructions number counter indicating the largest value
among all of the counters, conducts delay adjustment of
executing instructions until the instructions number
counter value coincides with the largest instructions
number counter value and when the values coincide, sends
20 a notification to the computing module which includes
the instructions number counter indicating the largest
value, and

25 said computing module, which includes the
instructions number counter indicating the largest value,
waits for receiving a notification from all the other
computing modules and when receiving all the
notifications, instructs said synchronization control
means to generate a reset signal for causing all the
computing modules to resume operation in synchronization
30 with each other.

4. The fault-tolerant computer system as set forth
in claim 3, wherein

5 in delay adjustment in which said computing
module whose said instructions number counter value is
not the largest executes instructions until the
instructions number counter value coincides with the
largest instructions number counter value,
said processor is set at a step execution mode

for shifting to said processor management mode after
10 executing one instruction, and

said processor repeats the processing of the step execution mode until the instructions number counter value coincides with the largest instructions number counter value.

15

5. The fault-tolerant computer system as set forth in claim 2, wherein

each of all said processors received an interruption from said interruption control means shifts 5 to a processor management mode for re-synchronization processing in which an instructions number counter for counting the number of executed instructions in the processor fails to operate and a program counter value is saved and stored;

10 each said processor reads an instructions number counter value of each processor and said saved program counter value and transmits the values to all other said computing modules;

15 each said processor compares the instructions number counter value with an instructions number counter value received from each processor in other computing modules;

20 said computing module whose said instructions number counter value is not the largest conducts delay adjustment of executing instructions until the

instructions number counter value coincides with the largest instructions number counter value and when the values coincide, sends a notification to the computing module which includes the instructions number counter
25 indicating the largest value, and

 said computing module which includes the instructions number counter indicating the largest value waits for receiving a notification from all the other computing modules receiving a notification from all the 30 other computing modules and when receiving all the notifications, instructs said synchronization control means to generate a reset signal for causing all the computing modules to resume operation in synchronization with each other.

35

6. The fault-tolerant computer system as set forth in claim 5, wherein

 in delay adjustment in which said computing module whose said instructions number counter value is 5 not the largest executes instructions until the instructions number counter value coincides with the largest instructions number counter value,

 said processor is set at a break point designation execution mode for shifting to said 10 processor management mode after executing up to an instruction at a specific position in a designated instruction string;

as said specific position in the instruction string, an instruction position indicated by the program counter value received from said computing module which includes the instructions number counter indicating the largest is designated to, and

after executing the instruction string up to said specific position in a designated instruction string said processor is shifted to the processor management mode.

7. The fault-tolerant computer system as set forth in claim 3, wherein

after reading a program execution state, said computing module, which includes the instructions number counter indicating the largest, waits for said notification from other computing modules;

after executing the delay adjustment processing, all the other computing modules, which does not include the instructions number counter indicating the largest value, read a program execution state and transmit the program execution state together with a notification of completion of the delay adjustment processing to the computing module which includes the instructions number counter indicating the largest, and

the computing module which includes the instructions number counter indicating the largest compares program execution states of all the computing

modules and when all coincide with each other, instructs
on generation of the reset signal for resuming
20 synchronization operation and when a computing module
whose program execution state is not coincident is
detected, instructs on the generation of the reset
signal for resuming operation in synchronization after
executing processing of cutting off and invalidating the
25 computing module.

8. The fault-tolerant computer system as set forth
in claim 2, wherein

a plurality of pairs of said fault detector, said
bus monitor, said interruption control means, said
5 inter-system communication control means and said
synchronization control means are provided.

9. A re-synchronization method in a lock-step system
fault-tolerant computer system including a plurality of
computing modules having a processor and a memory in
which each computing module processes the same
instruction string in synchronization with each other,
5 comprising the steps of:

when detecting disagreement in a state of access
to an external bus among said processors in each said
computing module, if no fault is detected in the system
10 including each said computing module, generating an
interruption to all of said processors, and

15 after executing delay adjustment for making an instruction execution state be coincident among said computing modules, executing processing of resuming operation in synchronization with respect to each said computing module.

10. The re-synchronization method of a fault-tolerant computer system as set forth in claim 9, further comprising the steps of:

5 monitoring existence/non-existence of a fault in the system;

 monitoring a state of access of each said processor in each said computing module to the external bus;

10 when detecting disagreement in a state of access of each said processor in each said computing module to the external bus, if no fault is detected, generating an interruption for notifying the detection result to all of said processors, and

15 after executing the delay adjustment for making a state of instruction execution be coincident among said computing modules, generating a reset signal for executing processing of resuming operation in synchronization of all said computing modules.

11. The re-synchronization method as set forth in claim 10, further comprising the steps of:

each of all said processors received said
interruption shifting to a processor management mode for
5 re-synchronization processing in which an instructions
number counter for counting the number of executed
instructions in the processor fails to operate;

each said processor comparing the read
instructions number counter value with an instructions
10 number counter value received from each processor in
other computing modules;

said computing module, which does not include the
instructions number counter indicating the largest value
among all of the counters, executing the delay
15 adjustment of executing instructions until the
instructions number counter value coincides with the
largest instructions number counter value and when the
values coincide, sending a notification to the computing
module which includes the instructions number counter
20 indicating the largest value, and

said computing module, which includes the
instructions number counter indicating the largest value,
waiting for receiving a notification from all the other
computing modules and when receiving all the
25 notifications, generating the reset signal for causing
all the computing modules to resume operation in
synchronization with each other.

12. The re-synchronization method as set forth in

claim 11, wherein

in the delay adjustment in which said computing module whose said instructions number counter value is not the largest executes instructions until the instructions number counter value coincides with the largest instructions number counter value;

said processor is set at a step execution mode for shifting to said processor management mode after executing one instruction, and

said processor repeats the processing of the step execution mode until the instructions number counter value coincides with the largest instructions number counter value.

15

13. The re-synchronization method as set forth in claim 10, wherein

each of all said processors received said interruption shifts to a processor management mode for re-synchronization processing in which an instructions number counter for counting the number of executed instructions in the processor fails to operate and a program counter value is saved and stored;

each said processor reads the instructions number counter value of each processor and said saved program counter value and transmits the values to all other said computing modules;

each said processor compares the instructions

number counter value with an instructions number counter
15 value received from each processor in other computing
modules;

20 said computing module whose said instructions
number counter value is not the largest executes the
delay adjustment of executing instructions until the
instructions number counter value coincides with the
largest instructions number counter value and when the
values coincide, sends a notification to the computing
module which includes the instructions number counter
indicating the largest value, and

25 said computing module which includes the
instructions number counter indicating the largest value
waits for receiving a notification from all the other
computing modules and when receiving all the
notifications, generates the reset signal for causing
30 all the computing modules to resume operation in
synchronization with each other.

14. The re-synchronization method as set forth in
claim 13, wherein

5 in delay adjustment in which said computing
module whose said instructions number counter value is
not the largest executes instructions until the
instructions number counter value coincides with the
largest instructions number counter value;

said processor is set at a break point

10 designation execution mode for shifting to said processor management mode after executing up to an instruction at a specific position in a designated instruction string;

15 as said specific position in the instruction string, an instruction position indicated by the program counter value received from said computing module which includes the instructions number counter indicating the largest is designated to, and

20 after executing the instruction string up to said specific position in a designated instruction string said processor is shifted to the processor management mode.

15. The re-synchronization method as set forth in claim 11, wherein

5 after reading a program execution state, said computing module, which includes the instructions number counter indicating the largest, waits for said notification from other computing modules;

10 after executing the delay adjustment processing, all the other computing modules, which does not include the instructions number counter indicating the largest value, read a program execution state and transmit the program execution state together with a notification of completion of the delay adjustment processing to the computing module which includes the instructions number

counter indicating the largest, and

15 the computing module which includes the
instructions number counter indicating the largest
compares program execution states of all the computing
modules and when all coincide with each other, instructs
on generation of the reset signal for resuming
20 synchronization operation and when a computing module
whose program execution state is not coincident is
detected, instructs on the generation of the reset
signal for resuming operation in synchronization after
executing processing of cutting off and invalidating the
25 computing module.

16. A re-synchronization program for executing re-
synchronization processing of a lock-step synchronism
fault-tolerant computer system including a plurality of
computing modules having a processor and a memory in
5 which each computing module processes the same
instruction string in clock synchronization with each
other, comprising the functions of:

10 when detecting disagreement in a state of access
to an external bus among said processors in each said
computing module, if no fault is detected in the system
including each said computing module, generating an
interruption to all of said processors, and

causing each said processor to resume operation
in synchronization after executing delay adjustment for

15 making an instruction execution state be coincident
 among said computing modules.

17. The re-synchronization program as set forth in
claim 16, further comprising the functions of:

 monitoring existence/non-existence of a fault in
the system;

5 monitoring a state of access of each processor in
each said computing module to the external bus,

 when detecting disagreement in a state of access
of each said processor in each said computing module to
the external bus, if no fault is detected in said fault
10 monitoring, generating an interruption for notifying the
detection result to each said processor, and

 generating a reset signal for resuming operation
in synchronization of all said computing modules after
executing the delay adjustment for making a state of
15 instruction execution be coincident among said computing
modules.

18. The re-synchronization program as set forth in
claim 17, comprising:

 the function of each of all said processors
received said interruption to shift to a processor
5 management mode for re-synchronization processing in
which an instructions number counter for counting the
number of executed instructions in the processor fails

to operate;

10 the function of each said processor to compare
the read instructions number counter value with an
instructions number counter value received from each
processor in other computing modules;

15 the function of said computing module, which does
not include the instructions number counter indicating
the largest value among all of the counters, to execute
the delay adjustment of executing instructions until the
instructions number counter value coincides with the
largest instructions number counter value and when the
values coincide, to send a notification to the computing
20 module which includes the instructions number counter
indicating the largest value, and

25 the function of said computing module , which
includes the instructions number counter indicating the
largest value, to wait for receiving a notification from
all the other computing modules and when receiving all
the notifications, instruct on generation of the reset
signal for causing all the computing modules to resume
operation in synchronization.

19. The re-synchronization program as set forth in
claim 18, comprising

5 in the delay adjustment in which said computing
module whose said instructions number counter value is
not the largest executes instructions until the

instructions number counter value coincides with the largest instructions number counter value;

the function of setting said processor at a step execution mode for shifting to said processor management mode after executing one instruction;

the function of said processor to repeat the processing of the step execution mode until the instructions number counter value coincides with the largest instructions number counter value.

15

20. The re-synchronization program as set forth in claim 18, comprising:

the function of each of all said processors received said interruption to shift to the processor management mode for re-synchronization processing in which an instructions number counter for counting the number of executed instructions in the processor fails to operate and a program counter value is saved and stored;

10

the function of each said processor to read the instructions number counter value of each processor and said saved program counter value and transmit the values to all other said computing modules;

the function of each said processor to compare the read instructions number counter value with an instructions number counter value received from each processor in other computing modules;

15

the function of said computing module whose said
instructions number counter value is not the largest to
20 execute the delay adjustment of executing instructions
until the instructions number counter value coincides
with the largest instructions number counter value and
when the values coincide, to send a notification to the
computing module which includes the instructions number
25 counter indicating the largest value, and

the function of said computing module which
includes the instructions number counter indicating the
largest value to wait for receiving a notification from
all the other computing modules and when receiving all
30 the notifications, instruct on generation of the reset
signal for causing all the computing modules to resume
operation in synchronization.

21. The re-synchronization program as set forth in
claim 20, comprising

in the delay adjustment in which said computing
module whose said instructions number counter value is
5 not the largest executes instructions until the
instructions number counter value coincides with the
largest instructions number counter value;

the function of setting said processor at a break
point designation execution mode for shifting to said
10 processor management mode after executing said processor
up to an instruction at a specific position in a

designated instruction string;

the function of, as said specific position in the
instruction string, designating an instruction position
indicated by the program counter value received from
said computing module which includes the instructions
number counter indicating the largest to, and

the function of shifting said processor to the
processor management mode after said processor executes
the instruction string up to said specific position in a
designated instruction string.

22. The re-synchronization program as set forth in
claim 20, comprising:

the function of said computing module, which
includes the instructions number counter indicating the
largest, to wait for said notification from other
computing modules after reading a program execution
state,

the function of all the other computing modules,
which does not include the instructions number counter
indicating the largest value, to read a program
execution state and transmit the program execution state
together with a notification of completion of the delay
adjustment processing to the computing module which
includes the instructions number counter indicating the
largest after executing the delay adjustment processing,
and

the function of the computing module which includes the instructions number counter indicating the largest to compare program execution states of all the computing modules and when all coincide with each other, instruct on generation of the reset signal for resuming operation in synchronization and when a computing module whose program execution state is not coincident is detected, instruct on the generation of the reset signal for resuming operation in synchronization after executing processing of cutting off and invalidating the computing module.