

Dependability: Parity, ECC, RAID

Instructor: Sean Farhat

This lecture is sponsored by:

(for legal purposes, it's actually not)

Systems & Fault Tolerance

- So far in this course:
 - How software works
 - How hardware works
 - How computers combine software/hardware
- Now:
 - What happens when the real world gets involved!
 - Things break in mysterious ways
 - We can "count on" things breaking!

How can we ensure the systems we've developed function reliably (or predictably) in the face of failure?

Measurements of Fault Tolerance, Mitigations

- Dependability
 - Avoiding failure! Build "strong" systems:)
- Redundancy
 - Replication!
 - Make copies of your important state/info so that if it breaks, you can use a replica
- Error Correcting
 - If we do incur some damage, how can we:
 - Find the problem? (Error detection)
 - Fix the problem? (Error correction)

Agenda

- Dependability
- Error Correcting Codes (ECC)
- RAID

What is Dependability?

- A component, or system, is considered <u>highly</u> dependable if it is <u>highly available</u>, or has a <u>low probability</u> of service outages.
 - Unlikely to encounter failures
 - Recovers quickly when failures occur
- The dependability of a system is determined by the overall dependability of its components

Dependability

- Fault: failure of a component
 - May or may not lead to system failure
 - Applies to any part of the system
- Repair: the act of restoring normal service after a fault

Dependability Measures

- Reliability: Mean Time To Failure (MTTF)
- Service interruption: Mean Time To Repair (MTTR)
- Mean Time Between Failures (MTBF)
 - MTBF = MTTR + MTTF
 - Availability = $\frac{MTTF}{MTTF}$ = $\frac{MTTF}{MTBF}$
 - Improving Availability
 - Increase MTTF: more reliable HW/SW + fault tolerance
 - Reduce MTTR: improved tools and processes for diagnosis and repair

Reliability Measures

- 1) MTTF, MTBF measured in hours/failure
 - e.g. "average HDD MTTF is 100,000 hr/failure"
- 2) Annualized Failure Rate (AFR)
 - Average rate of failures per year (%)

Availability Measures

- Availability = MTTF / (MTTF + MTTR) usually written as a percentage (%)
- Want high availability, so categorize by "number of 9s of availability per year"

```
-1 nine: 90% => 36 days of repair/year
```

- 2 nines: 99% => 3.6 days of repair/year

-3 nines: 99.9% => 526 min of repair/year

-4 nines: 99.99% => 53 min of repair/year

-5 nines: 99.999% => 5 min of repair/year

Dependability Example

1000 disks with <u>MTTF = 100,000 hr</u> and

MTTR = 100 hr

- MTBF = MTTR + MTTF = 100,100 hr

Dependability Example

- 1000 disks with MTTF = 100,000 hr and MTTR = 100 hr
 - -MTBF = MTTR + MTTF = 100,100 hr
 - Availability = MTTF/MTBF = 0.9990 = 99.9%

Calculating MTTR Example

- Faster repair to get 4 nines of availability?
- GOAL: Closer to x/x == 1, smaller MTTR!
 - -0.9999 = MTTF / (MTTF + MTTR)
 - $-0.9999 \times (MTTF + MTTR) = MTTF$
 - $-0.9999 \times MTTF + 0.9999 \times MTTR = MTTF$
 - $-0.9999 \times MTTR = 0.0001 \times MTTF$
 - Plug in MTTF = 100,000 hr
 - -MTTR = 10.001 hr

Dependability Design Principle

- No single points of failure
 - "Chain is only as strong as its weakest link"

- Dependability Corollary of Amdahl's Law
 - Doesn't matter how dependable you make one portion of system because dependability is limited by the part you do not improve

 In 2013, Google had 99.978% availability for their cloud clusters!

- There's a hardware glitch in our system that makes the Mean Time To Failure (MTTF) *decrease*. Are the following statements TRUE or FALSE?
- 1) Our system's Availability will increase.
- 2) Our system's Annualized Failure Rate (AFR) will increase.

- There's a hardware glitch in our system that makes the Mean Time To Failure (MTTF) decrease. Are the following statements TRUE or FALSE?
- 1) Our system's Availability will increase.
- 2) Our system's Annualized Failure Rate (AFR) will increase.

- There's a hardware glitch in our system that makes the Mean Time To Failure (MTTF) decrease. Are the following statements TRUE or FALSE?
- Our system's Availability will increase.
- 2) Our system's Annualized Failure Rate (AFR) will increase.


```
Availability = MTTF / (MTTF + MTTR)
```

As MTTF shrinks, our fraction is outweighed by MTTR:

```
100/(100 + 50) \rightarrow 66\%

50/(50 + 50) \rightarrow 50\%

10/(10 + 50) \rightarrow 16\%
```

Availability decreases (less 9's, lower percentage)

- There's a hardware glitch in our system that makes the Mean Time To Failure (MTTF) decrease. Are the following statements TRUE or FALSE?
- 1) Our system's Availability will increase.
- 2) Our system's Annualized Failure Rate (AFR) will increase.

MTTF = "Mean time to Failure" = average time until something goes wrong!

If this number /decreases/, this means failures happen more often!

100 years until failure, 50 years until failure, 10 years until failure, etc.

Failures happening more often == an increased rate of failures per year

8/4/20

Agenda

- Dependability
- Error Correcting Codes (ECC)
- RAID

Great Idea: Dependability via Redundancy

 Redundancy so that a failing piece doesn't make the whole system fail

Great Idea: Dependability via Redundancy

- Applies to everything from datacenters to memory
 - Redundant datacenters so that can lose 1 datacenter but Internet service stays online
 - Redundant routes so can lose nodes but Internet doesn't fail
 - Redundant disks so that can lose 1 disk but not lose data (Redundant Arrays of Independent Disks/RAID)

Redundant memory bits of so that can lose 1 bit but no data (Error Correcting)

Code/ECC Memory)

Error Detection/Correction Codes

- Memory systems generate errors (accidentally flipped-bits)
 - DRAMs store very little charge per bit
 - "Soft" errors occur occasionally when cells are struck by alpha particles or other environmental upsets
 - "Hard" errors occur when chips permanently fail
 - Problem gets worse as memory systems get denser and larger

Error Detection/Correction Codes

- Protect against errors with EDC/ECC
- Extra bits are added to each M-bit data chunk to produce an N-bit "code word" (N>M)
 - Extra bits are a function of the data
 - Each data word value is mapped to a valid code word
 - Certain errors change valid code words to invalid ones (i.e. you can tell something is wrong)

Detecting/Correcting Code Concept

- Detection: fails code word validity check
- Correction: can map to nearest valid code word

Hamming Distance

Hamming distance = # of bit changes to get from one code

word to another

•
$$p = 0\underline{1}1\underline{0}11$$
,
 $q = 0\underline{0}1\underline{1}11$, $Hdist(p,q) = 2$

•
$$p = 011011$$
,
 $q = 110001$, $Hdist(p,q) = 3$

• If all code words are valid, then

Richard Hamming (1915-98) Turing Award Winner

min Hdist between valid code words is 1

Change one bit, at another valid code word

Why does this matter?

- If the entire "space" of possible codewords is valid, we can't tell if our word has errors (maybe it morphed into another valid word!)
- If some words are valid, and others are invalid, we can detect errors
- If there are a small subset of valid words and a large subset of invalid words, we can trace/track our errors and revert them!
 - Wait really????

3-Bit Visualization Aid

- Want to be able to see Hamming distances
 - Show code words as nodes, Hdist of 1 as edges
- For 3 bits, show each bit in a different dimension:

Minimum Hamming Distance 2

- If 1-bit error, is code word still valid?
 - No! So can detect
- If 1-bit error, know which code word we came from?
 - No! Equidistant, so cannot correct

Minimum Hamming Distance 3

- How many bit errors can we detect?
 - Two! Takes 3 errors to reach another valid code word
- If 1-bit error, know which code word we came from?
 - Yes!

Parity Bit

- Describes whether a group of bits contains an even or odd number of 1's
 - Define 1 = odd and 0 = even
 - Can use XOR to compute parity bit!
- Adding the parity bit to a group will always result in an even number of 1's ("even parity")
 - 0b100 Parity: 1, 0b101 Parity: 0
- If we know number of 1's must be even, can we figure out what a single missing bit should be?
 - $-10?11 \rightarrow$ missing bit is 1

Parity: Simple Error Detection Coding

Add parity bit when writing block of data:

- Check parity on block read:
 - Error if odd number of 1s
 - Valid otherwise

- Minimum Hamming distance of parity code is 2
- Parity of code word = 1 indicates an error occurred:
 - 2-bit errors not detected (nor any even # of errors)
 - Detects an odd # of errors

Parity Examples

- 1) Data 0101 0101
 - 4 ones, even parity now
 - Write to memory0101 0101 0to keep parity even
- 2) Data 0101 0111
 - 5 ones, odd parity now
 - Write to memory:0101 0111 1to *make* parity even

- 3) Read from memory 0101 0101 0
 - 4 ones → even parity, so no error
- 4) Read from memory 1101 0101 0
 - 5 ones → odd parity,so error
- What if error in parity bit?
 - Can detect!

How to Correct 1-bit Error?

- Recall: Minimum distance for correction?
 - Three
- Richard Hamming came up with a mapping to allow Error Correction at min distance of 3
 - Called Hamming ECC for Error Correction Code

Hamming ECC (1/2)

- Use extra parity bits to allow the position identification of a single error
 - Interleave parity bits within bits of data to form code word
 - Note: Number bits starting at 1 from the left
- 1) Use *all* bit positions in the code word that are powers of 2 for parity bits (1, 2, 4, 8, 16, ...)
- 2) All other bit positions are for the data bits (3, 5, 6, 7, 9, 10, ...)

Hamming ECC

Hamming ECC (2/2)

- 3) Set each parity bit to create even parity for *a group* of the bits in the code word
 - The position of each parity bit determines the group of bits that it checks
 - Parity bit p checks every bit whose position number in binary has a 1 in the bit position corresponding to p
 - Bit 1 (0001₂) checks bits 1,3,5,7, ... (XXX1₂)
 - Bit 2 (0010₂) checks bits 2,3,6,7, ... (XX1X₂)
 - Bit 4 (0100₂) checks bits 4-7, 12-15, ... (X1XX₂)
 - Bit 8 (1000₂) checks bits 8-15, 24-31, ... (1XXX₂)

Hamming ECC

Hamming ECC

- A byte of data: 10011010
- Create the code word, leaving spaces for the parity bits:

$$\underline{}_{1} \underline{}_{2} \mathbf{1}_{3} \underline{}_{4} \mathbf{0}_{5} \mathbf{0}_{6} \mathbf{1}_{7} \underline{}_{8} \mathbf{1}_{9} \mathbf{0}_{10} \mathbf{1}_{11} \mathbf{0}_{12}$$

Calculate the parity bits:

```
— Parity bit 1 group (1, 3, 5, 7, 9, 11):
   ? 1 001 1010 \rightarrow
– Parity bit 2 group (2, 3, 6, 7, 10, 11):
   ??1 001 1010 \rightarrow
— Parity bit 4 group (4, 5, 6, 7, 12):
   ??1?001 1010 \rightarrow
– Parity bit 8 group (8, 9, 10, 11, 12):
   ??1?001?1010 \rightarrow
```

• Valid code word: <u>01110010</u>1010

Original data: 1 001 1010

Suppose we read $0_11_21_31_40_50_61_70_81_91_{10}1_{10}1_{10}0_{12}$ instead – fix the error! But how would we figure out where the error is if we *just* see the code word? Hmm....

- Let's examine the parity bits that are dependent on bit 10
 - Maybe we can figure out a pattern?

- Calculate the parity bits for $0_11_21_31_40_50_61_70_81_91_{10}1_{11}0_{12}$
 - Parity bit 1 group (1, 3, 5, 7, 9, 11): 0 + 1 + 0 + 1 + 1 + 1 = 4 (EVEN)
 - Parity bit 2 group (2, 3, 6, 7, 10, 11): 1 + 1 + 0 + 1 + 1 + 1 = 5 (ODD)
 - Parity bit 4 group (4, 5, 6, 7, 12): 1 + 0 + 0 + 1 + 0 = 2 (EVEN)
 - Parity bit 8 group (8, 9, 10, 11, 12): 0 + 1 + 1 + 1 + 0 = 3 (ODD)

Graphic of Hamming Code

0 1 1 1 0 0 1 0 1 1 1 0

Bit position		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Encoded data bits		p1	p2	d1	р4	d2	d3	d4	р8	d5	d6	d7	d8	d9	d10	d11
	p1	Х		X		X		Х		X		Х		X		X
Parity	p2) —	X	X			X	X			Х	Х			X	X
bit	p4				X	X	X	X					X	X	X	X
coverage (p8) —							X	X	Х	Х	X	X	X	Χ

- Looks like p2 and p8 were responsible
 - o p2 & p8 will be the only incorrect parity bits IFF bit 10 is incorrect
 - O Notice that 2 + 8 = 10
 - O Seems like incorrect parity bits tell us where the error is... o:

• Valid code word: <u>011100101010</u>

Recover original data: 1 001 1010

Suppose we see $0_11_21_31_40_50_61_70_81_91_{10}1_{10}0_{12}$ instead – fix the error!

How to figure out where the error is? Hmm....

- Check the parity bits responsible for bit 10
 - Parity bits 2 and 8 are incorrect
 - As 2+8=10, bit position 10 is the bad bit, so flip it!
- Corrected value: 011100101010

Hold on...

 This tells you which bit of the code word is incorrect!

Going in reverse:

We see $0_11_21_31_40_50_61_70_81_91_{10}1_{11}0_{12}$

Figure out which bit is wrong:

$$p_1: 0_1 1_3 0_5 1_7 1_9 1_{11} = even number of 1's: 0$$

$$p_2$$
: $1_2 1_3 0_6 1_7 1_{10} 1_{11} = odd number of 1's: 1$

$$p_4: 1_4O_5O_61_7O_{12} = even number of 1's: 0$$

$$p_8: 0_8 1_9 1_{10} 1_{11} 0_{12} = odd number of 1's: 1$$

Incorrect code bit:

$$0b p_8 p_4 p_2 p_1 = 0b 1010 = 10!$$
 So flip bit 10

Is This Enough?

- For 1-bit error detection: parity bit
- For 1-bit error correction: Hamming ECC

- What about more bits?
 - For 2-bit error detection: modified Hamming ECC! (see bonus slides)
 - For 2-bit error correction: more advanced schemes such as Reed-Solomon codes (CS 70)

Agenda

- Dependability
- Error Correcting Codes (ECC)
- RAID

RAID: Redundant Array of Inexpensive/Independent Disks

- Files are "shared" across multiple disks
 - Concurrent disk accesses improve throughput
- Redundancy yields high data availability
 - Service still provided to user, even if some components (disks) fail
- Contents reconstructed from data redundantly stored in the

array

- Can detect when data is corrupted
- Can fix data/restore correct version
- Like before, but "bit" is now "disk"

48

RAID 0: Data Striping

logical record

10010011 11001101 ...

- "Stripe" data across all disks
 - Generally faster accesses (access disks in parallel)
 - No redundancy, cannot tolerate any failures
 - Bit-striping shown here, can do in larger chunks

RAID 1: Disk Mirroring

- Each disk is fully duplicated onto its "mirror"
 - Very high availability can be achieved
- Bandwidth sacrifice on write:
 - Logical write = two physical writes
 - Logical read = one physical read
- Most expensive solution: 100% capacity overhead

RAID 2-4: Data Striping + Parity

- Logical data is striped across disks
 - 2: bit, 3: byte, 4: block
- Parity disk P contains parity of other disks
- If any one disk fails, can
 use other disks to recover data!
 - We have to know which disk failed
- Must update Parity data on EVERY write
 - Logical write = min 2 to max N physical reads and writes
 - parity_{new} = data_{old} \oplus data_{new} \oplus parity_{old}

Updating the Parity Data

- Examine small write in RAID 3 (1 byte)
 - 1 logical write = 2 physical reads + 2 physical writes
 - Same concept applies for later RAIDs, too

					D_0	חו	ח	ח	Р	
D_0'	D_0	Р	P'		<u> </u>	<u> </u>	D ₂	D ₃	•	
0	0	0	0		olo	l data				ld parity
0	0	1	1			Read)			2. Read)
0	1	0	1	new XOR	,			XOR	1,_	,
0	1	1	0	$ \begin{array}{c} \text{new} \\ \text{data} \end{array} $ D_0	++-			XOIL	+(+)	flip if changed
1	0	0	1	10	nly if I	oit			T	
1	0	1	0	 	nange	d				
1	1	0	0							
1	1	1	1	(3. Write	D'	D	D_2	ח	D'	(4. Write)
				·	<u>D</u> 0'	$oldsymbol{U}_1$		D_3	<u> </u>	

Inspiration for RAID 5

- When writing to a disk, need to update Parity
- Small writes are bottlenecked by Parity Disk: Write to D0, D5 but also write to P disk twice!

RAID 5: Interleaved Parity

Independent writes possible because of interleaved parity

Example: write to D0, D5 uses disks 1, 2, 4, 5

Newer RAID

- RAID 6 RAID 5 with more parity blocks, so can tolerate 2 failed disks
- RAID 10 really just RAID 1 + 0,
- You can setup a RAID array on your computer (if you have enough disks) and choose which version you want!

Modern Use of RAID and ECC (1/2)

- RAID 0 has no redundancy
- RAID 1 is too expensive
- RAID 2 is obsolete due to on-disk ECC
- RAID 3 is not commonly used (bad I/O rates)

- Typical modern code words in DRAM memory systems:
 - 64-bit data blocks (8 B) with 72-bit codes (9 B)
 - $-d = 64 \rightarrow p = 7, +1 \text{ for DED}$

Modern Use of RAID and ECC (2/2)

- Common failure mode is bursts of bit errors, not just 1 or 2
 - Network transmissions, disks, distributed storage
 - Contiguous sequence of bits in which first, last, or any number of intermediate bits are in error
 - Caused by impulse noise or by fading signal strength; effect is greater at higher data rates
- Other tools: cyclic redundancy check, Reed-Solomon, Fountain Codes, LaGrange

Summary

- Great Idea: Dependability via Redundancy
 - Reliability: MTTF & Annual Failure Rate
 - Availability: % uptime = MTTF/MTBF
- Memory Errors:
 - Hamming distance 2: Parity for Single Error Detect
 - Hamming distance 3: Single Error Correction Code + encode bit position of error
 - Hamming distance 4: SEC/Double Error Detection
- RAID:
 - Many different flavors, all with their pros/cons
 - Generally: disks are cheap enough that many of them + some smart organization yields safe storage

Bonus Slides

How does 2-bit detection work for Hamming ECC?

Hamming ECC "Cost"

- Space overhead in single error correction code
 - Form p + d bit code word, where p = # parity bits and d = # data bits
- Want the p parity bits to indicate either "no error" or 1-bit error in one of the p + d places
 - Need $2^p \ge p + d + 1$, thus $p \ge \log_2(p + d + 1)$
 - For large d, p approaches $\log_2(d)$

Hamming Single Error Correction, Double Error Detection (SEC/DED)

 Adding extra parity bit covering the entire SEC code word provides double error detection as well!

- Let H be the position of the incorrect bit we would find from checking p₁, p₂, and p₄ (0 means no error) and let P be parity of complete code word (p's & d's)
 - -H=0P=0, no error
 - H≠0 P=1, correctable single error (P=1 \rightarrow odd # errors)
 - H≠0 P=0, double error detected (P=0 \rightarrow even # errors)
 - H=0 P=1, an error occurred in p₈ bit, not in rest of word

8/4/20 CS 61C Su20 - Lecture 25 65

SEC/DED: Hamming Distance 4

1-bit error (one 0)

1-bit error (one 1) Nearest 0000