ZILFIMIAN

KNN2/KNN (Q9L10)

42% (8/19)

- 1. KNN is
- A data-driven method
- (B) model-driven method
- C I do not know

X 2.

- 2. The dependent variable of the classification is
 - (A) categorical
 - B) numeric
 - C I do not know

/

- 3. KNN can be used for regression
- A Yes
- B) No
- (c) I do not know

× 4. In the case of KNN classification we use

- A average of outcomes
- B) majority voting scheme
- (c) I do not know

/

- 5. Which of these errors will increase constantly by increasing k?
- A train error
- B test error
- (c) both
- (D) I do not know

/

- 6. This function can be used to perform KNN classificationin R
- A knn()
- B k_nn()
- (c) knnreg()
- D knearneib()
- (E) I do not know

	<u>C</u>	I do not know	
×	10. A B C	In the case of small k we have overfitting underfitting it depends on the situation I do not know	
~	11. A B C	Why do we need scaling in KNN? to avoid overfitting to avoid underfitting to have "equal" weights for variables I do not know	
~	12. A B C	Let k = n, (n- number of observations), K-NN is same as random guessing everything will be classified as the most probable class (in total) everything will be classified as the least probable class (in total) I do not know	
	Mary		Page 2 o

 \times 7. With the increase of k, the decision boundary will be

simplified

more complex

I do not know

I do not know

X 8. KNN algorithm is sensitive to outliers

is a supervised learning algorithm. ig(B ig) is an unsupervised learning algorithm.

unchanged

True False

9. KNN

X	13.	This function can be used to perform K-NN regression in R		
	(A)	knn.reg		
	В	knnforreg		
	C	regknn		
	D	knnforregression		
	E	I do not know		
×	14.	Do you need to worry about scaling with one explanatory variable?		
	(A)	No		
	В	Yes		
	C	I do not know		
×	15	n - the number of observation,		
	m -	the number of explanatory variables		
	When n=k, m=1, the decision boundary for regression is			
	(A)	a line		
	B	a stepwise constant function		
	C	a stepwise quadratic function		
	D	I do not know		
×	16.	Which of these algorithms can be used to fill the missing values		
	A	KNN for regression		
	B	KNN for classification		
	C	both		
	D	I do not know		
×	17. ?	Which one is better: KNN regression or Linear regression		
	A	KNN outperform LR if the parametric form that has been selected is close to the true form of f		
	B	LR outperform KNN if the parametric form that has been selected is close to the true form of f		
	\bigcirc	KNN will always outperform the LR		
		I do not know		

Mary Page 3 of 4

/	18.	Which one is the Disadvantage of KNN?
	A	required assumptions
	B	cannot be applied for regression
	C	difficult to perform
	D	the problem of high dimensional data
	E	I do not know
×	19.	The best k for train set equals to
	A	1
	В	2
	C	0
		I do not know

20. What is the Parzen window

Mary Page 4 of 4