ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA ĐIỆN-ĐIỆN TỬ BỘ MÔN KỸ THUẬT ĐIỆN TỬ

LUẬN VĂN TỐT NGHIỆP

HỆ THỐNG NHẬN DẠNG NGƯỜI BẰNG GIỌNG NÓI VÀ KHUÔN MẶT

GVHD: ThS. Hồ Trung Mỹ

SV: Lê Tiến Đạt MSSV: 1710948

SV: Võ Mai Trí Luận MSSV: 1712083

Nội dung

- 1. Giới thiệu tổng quan
- 2. Nhiệm vụ đề tài
- 3. Phát triển phần mềm
- 4. Đặc tả hệ thống
- 5. Thiết kế phần cứng
- 6. Kết quả thực hiện
- 7. Kết luận và hướng phát triển

PART 1 GIỚI THIỆU TỔNG QUAN

1. Giới thiệu tổng quan

- Định nghĩa sinh trắc học: là công nghệ sử dụng những thuộc tính vật lý, đặc điểm sinh học riêng của mỗi cá nhân như vân tay, khuôn mặt, mống mắt,...để nhận diện, xác thực bảo mật.
- Định nghĩa nhận dạng giọng nói: là phân chia và đính nhãn ngôn ngữ cho tín hiệu tiếng nói
- Định nghĩa nhận dạng khuôn mặt: là tự động xác định hoặc nhận dạng một người từ một bức ảnh kỹ thuật số hoặc một khung hình video

1. Giới thiệu tổng quan

<u> Ứng dụng:</u>

- ☐Bảo mật, ngân hàng
- □Điều khiển và giao tiếp không dây
- □Quảng cáo thông minh
- □Pháp y, y tế
- **...**

Nhiệm vụ, công việc cần lầm:

- > Tìm tài liệu tham khảo về lý thuyết nhận dạng giọng nói và khuôn mặt
- > Tìm hiểu các giải thuật, đánh giá, lựa chọn và thực hiện
- > Thu thập dữ liệu cho luận văn, xây dựng bộ từ vựng nhỏ (10 từ).
- > Tìm hiểu, thiết kế và thực hiện phần cứng
- > Mô phỏng giải thuật trên MATLAB và thực thi giải thuật trên phần cứng

3. Phát triển phần mềm

PART 3 PHÁT TRIỂN PHẦN MỀM

3. Phát triển phần mềm

NHẬN DẠNG GIỌNG NÓI:

>TRÍCH XUẤT ĐẶC TRƯNG GIỘNG NÓI

>HUẨN LUYỆN CÁC VECTOR ĐẶC TRƯNG

>NHẬN DẠNG GIỌNG NÓI

TRÍCH XUẤT ĐẶC TRƯNG GIỌNG NÓI:

MFCC - Mel frequency cepstral coefficient

Ưu điểm	Nhược điểm
 Loại bỏ những thông tin quá chi tiết tập trung vào những thông tin về cấu trúc âm thanh. 	Nhạy cảm với nhiễu
 Dễ hiểu và tính toán dễ dàng. 	 Sự lựa chọn các bộ lọc tam giác thường là tự ý và không dựa trên một lập luận vững
 Được sử dụng rộng rãi và hiệu quả đã được kiểm chứng. 	chắc nào

B1: TIÈN NHẨN (PRE-EMPHASIS)

- Các âm ở tần số thấp có mức năng lượng cao.
- Các âm ở tần số cao lại có mức năng lượng khá thấp, chứa nhiều thông tin về âm vị.

$$x'[t_d] = x[t_d] - \alpha x[t_d - 1]$$

$$0.95 < \alpha < 0.99$$

Lê Tiến Đạt & Võ Mai Trí Luận

- B2 : PHÁT HIỆN ĐIỂM ĐẦU CUỐI CỦA TỪ.
- Tìm ra điểm bắt đầu và kết thúc của 1 từ trong tín hiệu.
- Sử dụng phương pháp 2 ngưỡng dựa trên năng lượng trung bình ngắn hạn (short-term average energy) và trung bình tỷ lệ vượt qua điểm 0 (short-term average zero-crossing rate).

B2 : PHÁT HIỆN ĐIỂM ĐẦU CUỐI CỦA TỪ.

Năng lượng trung bình ngắn hạn:

- x(n): tín hiệu tiếng nói trong miền thời gian.
- w(n): hàm cửa sổ.
- Inc: độ chồng lấn khung.
- fn : tổng số khung của tín hiệu.

yi(n) = w(n)*x((i-1)*inc+n),1 \le n \le L, 1 \le i \le fn
$$E(i) = \sum_{n=0}^{L-1} yi^2(n)$$

Trung bình tỉ lệ vượt qua điểm 0 :

- Tỷ lệ vượt mức 0 trung bình ngắn hạn cho biết số lần dạng sóng tín hiệu tiếng nói vượt qua trục hoành (điểm 0) trong khung tín hiệu tiếng nói

$$Z(i) = \frac{1}{2} \sum_{n=0}^{L-1} |sgn[yi(n)] - sgn[yi(n-1)]|$$

$$sgn[x] = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases}$$

- T1 = 0.5
- T2 = 1.5
- T3 = 0.7

- B3 : Phân khung và cửa số hóa.
- -Tín hiệu được phân thành những khung, mỗi khung N mẫu, độ chồng lấp overlap có M mẫu: M thường xấp xỉ 1/3N, với N = 256 để dễ cho việc tính toán FFT.

- Cửa sổ hóa :
- Giảm sự không liên tục giữa điểm đầu và điểm cuối của mỗi khung frame.
- Gọi cửa sổ là w(n), $0 \le n \le N 1$, với N là số phần tử trong mỗi frame. Tín hiệu sau khi cửa số hóa như sau:

$$y_l(n) = x_l(n) * w(n) (0 \le n \le N-1)$$

Cửa sổ Hamming :

$$w(n) = 0.54 - 0.46 \times cos(\frac{2\pi n}{N})$$
; $n = 0..N-1$

- B4: Fast Fourier Transerform
- Chuyển đổi tín hiệu miền thời gian sang miền tần số

$$X[k] = \sum_{n=0}^{N-1} x[n] \exp(-j \frac{2\pi}{N} kn)$$

B5 : Dãy bộ lọc Mel

- chuyển giữa Hert (f) và Mel (m):
- mel(f) = 2595*log(1+ f /700)
- $f = 700(10^{m/2595} 1)$

$$H_m(k) = 0$$
 iff $k < f(m-1)$

$$= \frac{k - f(m-1)}{f(m) - f(m-1)}$$
 iff $f(m-1) \le k < f(m)$

$$= 1$$
 iff $k = f(m)$

$$= \frac{f(m+1) - k}{f(m+1) - f(m)}$$
 iff $f(m) < k \le f(m+1)$

$$= 0$$
 iff $k > f(m+1)$

 Xác định mel – spectrum, cho biên độ phổ tần số sau bước FFT ở trên qua bộ lọc mel, với công thức tính như sau:

$$\tilde{S}(l) = \sum_{k=0}^{N/2} X(k) * M_i(k)$$

B6:Cepstrum:

- Chuyển đổi logarit của mel spectrum về miền thời gian, kết quả được gọi là mel frequency cepstrum cofficients (MFCC)
- Ở bước này dùng DCT (Discrete cosin transform – biến đổi cosin rời rạc)

$$\hat{C} = \sum_{k=1}^{K} \log(\hat{S}_k) * \cos[n*(k-\frac{1}{2})\frac{\pi}{K}]$$
n=0,1,...,K-1

Acoustic vectors của từ "Một"

- Lượng tử vector (VQ-Vector Quantization).
- VQ là phương pháp ánh xạ những vector trong một không gian lớn thành một số lượng hữu hạn các vector.

Ưu điểm	Khuyết điểm
 Giảm thiểu lượng dữ liệu lưu trữ Giảm thời gian tính toán độ giống nhau giữa các vector phổ Biểu diễn rời rạc về mặt âm học của tiếng nói 	 Việc lượng tử vector chắc chắn dẫn đến sai số lượng tử hóa Việc chọn kích thước codebook cho VQ không đơn giản

VQ – Vector Quantization:

Khoảng cách Euclid :

$$l = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \dots + (b_n - a_n)^2}$$

- VD trong không gian 2D:

- LBG (Linde, Buzo & Gray, 1980)

 Tính trung bình khoảng cách đến từng codeword trong codebook:

$$D_Q(X,\mathbf{C}) = \frac{1}{T} \sum_{i=1}^T d_q (x_i, C)$$

Trong đó : $d_q(x_i, C) = \min d(x_i, c_j)$.

 Tìm ra từ có khoảng cách trung bình nhỏ nhất.

- Thực hiện so sánh khoảng cách nhỏ nhất với ngưỡng để kiểm tra xem người nói có phải chính chủ hay không.
- Phương pháp đặt ngưỡng cho mỗi số:

	Người 1	Người 2	Người 3	Người 4	Người 5	Người 6	Người 7	Người 8	Người 9
Số	15.4147	18.9229	15.8128	15.4156	15.6370	19.7145	19.3576	16.0500	16.7429
0	4266	5762	6256	5584	9608	5184	5198	6931	2398
Số	15.5605	15.5228	13.0628	15.2301	16.2204	14.0026	12.8321	13.7268	11.4517
1	7074	6313	5997	0278	102	4675	8126	1987	5156
Số	14.4388	23.7796	15.8376	15.5285	18.4963	15.9899	16.8372	18.0326	16.0888
2	6039	97	6771	1754	7392	2353	7752	0528	7528
Số	9.66744	16.0929	12.0866	13.4684	17.3324	12.1943	16.0245	13.5451	15.1026
3	9517	8267	1326	1954	422	0592	1582	5841	7093
Số	9.76098	11.5950	14.4779	14.8771	11.6202	12.0511	13.0307	15.9760	13.9294
4	4447	6482	3232	702	9577	4167	8879	6923	8427
Số	15.0185	18.5316	16.6080	12.7980	14.9944	18.2034	18.4876	16.4459	15.2925
5	5099	2763	4455	4334	4397	6573	6671	2178	5209
Số	12.4740	16.9183	13.9271	13.3679	15.0162	14.2346	14.6738	13.1669	14.9628
6	4805	0886	9869	4655	2485	3601	8807	1818	1554
Số	15.0136	15.5681	13.9472	13.9434	19.7734	12.0151	12.1484	13.8789	13.4468
7	2958	4945	5694	1132	7563	1598	879	5161	1764
Số	11.1714	13.7390	13.5267	12.6129	10.8478	16.0597	12.4895	14.7148	13.3708
8	9841	8183	6961	1265	784	4478	3103	9099	9957
Số	16.1901	14.1475	14.7700	11.1798	14.5319	15.3404	11.9661	13.6537	11.2168
9	7603	3185	6076	5802	9862	8951	6509	0812	2549

Người 10(chính chủ)	Người 11	Người 12	Người 13	Người 14	Người 15	Người 16	Người 17	Người 18	Người 19	Người 20
8.2410796	12.013	12.112	10.866	11.209	10.056	11.201	11.343	10.646	9.6090	13.131
47	69928	7066	34537	32506	04623	41602	32472	59749	93362	32071
8.2445561	8.6005	8.7374	9.8001	11.684	10.508	10.322	9.3655	11.815	12.442	9.2149
99	82972	55526	07544	89786	60291	37134	24374	37648	87071	59728
7.4881997	11.592	11.330	9.3293	9.8658	9.8651	11.585	11.081	11.758	10.039	12.157
42	68409	8309	81851	72959	2916	36235	08461	80688	87224	49359
8.3086287	11.402	9.3893	10.757	9.8914	9.6979	9.8828	8.6717	10.473	8.3788	12.190
72	07637	65364	80865	82842	96923	85776	83587	43352	35429	51654
7.4736496	9.5439	8.0102	12.696	8.9982	7.5548	8.0367	8.4973	9.7740	8.4961	9.1560
26	65003	37153	5971	6301	02562	04988	1339	84302	82224	51422
8.6197216	12.025	10.508	10.821	8.7396	10.964	10.579	9.1178	10.149	8.9154	12.365
83	96163	95676	36028	34	32466	9341	81206	46689	3092	08833
8.5372540	13.322	12.779	12.445	11.598	9.8186	10.020	12.243	12.844	11.986	12.331
45	52186	37849	68348	07541	06102	60224	24851	68344	08441	59053
8.1398757	10.464	10.150	12.154	10.054	11.249	12.306	9.2692	10.237	11.074	11.832
5	10112	13374	43704	86513	29545	11	9868	47511	73463	48932
7.1868237	7.4206	10.092	9.9339	9.0478	7.4473	9.3719	8.9148	7.5850	7.4603	10.421
	98899	14174	71901	89999	21164	61173	04973	92332	71394	79596
7.2264676	8.2749	9.0793	9.4704	8.8519	10.122	8.8388	9.3128	8.3345	8.1559	10.078
09	52822	19249	95072	80573	58168	885	85935	21924	27249	53864

SÓ	NGƯỚNG
KHÔNG	8.6
MỘT	8.1
HAI	7.9
ВА	6.5
BÓN	8.7
NĂM	9.0
SÁU	8.3
BÅY	8.6
TÁM	8.0
CHÍN	9.0

3. Thuật toán PCA

Thuật toán PCA:

Principal Component Analysis về cơ bản là một phương pháp giảm kích thước đơn giản, biến đổi các cột của bộ dữ liệu thành một tập các đặc trưng mới

Ưu điểm	Nhược điểm
 Dễ cài đặt Dễ tìm đặc trưng tiêu biểu của đối tượng Thực hiện tốt với độ phân giải cao Đơn giản và dễ áp dụng với các thuật toán khác (SVM, NN,) 	 Phụ thuộc vào tập huấn luyện (giống về góc chụp, kích thước, tư thế, độ sáng,) Nhạy cảm với nhiễu Độ chính xác không quá cao

3. Thuật toán PCA

Phần huấn luyện:

Ma trận phương sai: X=X-X_{tb}

Ma trận hiệp phương sai:

$$Q = \frac{1}{N} \sum_{i=0}^{n} Xi * Xi'$$

Trị riêng và vector riêng:

$$A \in \mathbb{R}^{nxn} Ax = \lambda x$$

3. Thuật toán PCA

Phần nhận dạng:

3. Thuật toán PCA

Phương pháp tìm ngưỡng cho nhận dạng khuôn mặt:

PART 4 ĐẶC TẢ HỆ THỐNG

4. Đặc tả hệ thống

Yêu cầu thiết kế:

- Bộ từ vựng: "Không", "Một", "Hai", "Ba", "Bốn", "Năm", "Sáu", "Bảy", "Tám", "Chín"
- > Thời gian xử lí và nhận dạng dưới 0.5s
- > Thời gian trễ không đáng kể
- ➤ Độ chính xác của nhận dạng trên 80%
- Có thể hoạt động trong thời gian dài
- ➤ Điện năng tiêu thụ thấp

4. Đặc tả hệ thống

· Sơ đồ khối:

PART 5 THIẾT KẾ PHẦN CỨNG

5. Thiết kế phần cứng

STM32F4 Discovery là gì?

- > 32-bit ARM Cortex-M4, 1 MB Flash, 192 KB RAM
- Bộ xử lý âm thanh: MP45DT02, ST MEMS audio sensor, omnidirectional digital microphone.
- ➤ Thư viện DSP

5. Thiết kế phần cứng

Raspberry Pi là gì?

- Raspberry Pi là một máy tính rất nhỏ gọn, kích thước hai cạnh như bằng khoảng một cái thẻ ATM và chạy hệ điều hành Linux.
- Có thể sử dụng Raspberry Pi như một máy vi tính bởi người ta đã tích hợp mọi thứ cần thiết trong đó.

Cách thức hoạt động:

5. Thiết kế phần cứng

Sơ đồ chi tiết:

PART 6 KẾT QUẢ

BIỂU ĐỒ SO SÁNH HIỆU QUẢ NHẬN DẠNG TRUNG BÌNH

7. Kết luận, hướng phát triển

PART 7 KẾT LUẬN & HƯỚNG PHÁT TRIỂN

7. Kết luận, hướng phát triển

Kết luận

- Nghiên cứu và áp dụng thành công bài toán nhận dạng giọng nói và khuôn mặt
- Nghiên cứu các phương pháp trích chọn đặc trưng và huấn luyện:
 MFCC, VQ, PCA,...
- Nắm được thêm kiến thức về xử lý tín hiệu số, vi điều khiển, máy tính nhúng
- Cải thiện kỹ năng lập trình
- Còn sai sót trong khâu nhận dạng và làm phần cứng
- Cần cải thiện thuật toán

7. Kết luận, hướng phát triển

Hướng phát triển:

- Nghiên cứu tối ưu hóa phần cứng bằng vi điều khiển mạnh hơn
- ➤ Phát triển thuật toán phức tạp hơn: LBG, Neural Network, HMM,...
- ➤ Mở rộng bộ dữ liệu
- >Làm mô hình cho ứng dụng mở khóa cửa

CẢM ƠN THẦY CỐ VÀ CÁC BẠN ĐÃ LẮNG NGHE

