# Section 2: Reflexivity, Symmetry, and Transitivity

- <u>Definition</u>: Let R be a binary relation on A.
- R is *reflexive* if for all  $x \in A$ ,  $(x,x) \in R$ . (Equivalently, for all  $x \in A$ ,  $x \in A$ .)
- R is *symmetric* if for all  $x, y \in A$ ,  $(x, y) \in R$  implies  $(y, x) \in R$ . (Equivalently, for all  $x, y \in A$ ,  $x \in R$  y implies that  $y \in R$  x.)
- R is *transitive* if for all  $x,y,z \in A$ ,  $(x,y) \in R$  and  $(y,z) \in R$  implies  $(x,z) \in R$ . (Equivalently, for all  $x,y,z \in A$ ,  $x \in A$ ,

#### Examples

- Reflexive: The relation R on {1,2,3} given by R = {(1,1), (2,2), (2,3), (3,3)} is reflexive. (All loops are present.)
- Symmetric: The relation R on {1,2,3} given by R = {(1,1), (1,2), (2,1), (1,3), (3,1)} is symmetric. (All paths are 2-way.)
- Transitive: The relation R on {1,2,3} given by R = {(1,1), (1,2), (2,1), (2,2), (2,3), (1,3)} is transitive. (If I can get from one point to another in 2 steps, then I can get there in 1 step.)

#### Violations of the Properties

- Why is  $R = \{(1,1), (2,2), (3,3)\}$  not reflexive on  $\{1,2,3,4\}$ ?
  - Because (4,4) is missing.
- Why is  $R = \{(1,2), (2,1), (3,1)\}$  not symmetric? Because (1,3) is missing.
- Why is  $R = \{(1,2), (2,3), (1,3), (2,1)\}$  not transitive?
  - Because (1,1) and (2,2) are missing.
- Is {(1,1), (2,2), (3,3)} symmetric? transitive? Yes! Yes!

#### The Transitive Closure

- <u>Definition</u>: Let R be a binary relation on a set A. The *transitive closure* of R is the binary relation R<sup>t</sup> on A satisfying the following three properties:
  - 1.  $R^t$  is transitive;
  - 2. R is a subset of  $R^t$ ;
  - 3. If S is any other transitive relation that contains R, then S contains R<sup>t</sup>.
- In other words, the transitive closure of R is the *smallest* transitive relation containing R.

## Example of the Transitive Closure

• Given the relation R on {1,2,3,4},



its transitive closure is:



### Properties of Equality

- Consider the Equality (=) relation on R:
  Equality is reflexive since for each x ∈ R, x = x.
  Equality is symmetric since for each x,y ∈ R, if x = y, then y = x.
  - Equality is transitive since for each  $x, y, z \in \mathbf{R}$ , if x = y and y = z, then x = z.
- As a graph, the relation contains only loops, so symmetry and transitivity are vacuously satisfied!

### Properties of Congruence Mod p

- Let p be an integer greater than 1, and consider the relation on **Z** given by:
  - $R = \{(x,y) \mid x,y \in \mathbb{Z} \text{ and } x \equiv y \bmod p\}.$
- When we say  $x \equiv y \mod p$ , this means (x y) = kp for some integer k.
- Now, R is reflexive since (x x) = 0 = 0p, for all integers x.
- Moreover, R is symmetric, since if  $x \equiv y \mod p$ , then (x y) = kp, thus (y x) = (-k)p, implying that  $y \equiv x \mod p$ .

#### Congruence Mod p (cont'd.)

- Finally, R is transitive. Why?
- Let  $x \equiv y \mod p$  and  $y \equiv z \mod p$ . This means there are integers k and j such that (x - y) = kpand (y - z) = jp. Hence, (x - z) = (x - y) + (y - z)= kp + jp = (k + j)p. Therefore,  $x \equiv z \mod p$ .

#### Properties of Inequality

• Consider the Inequality (< or >) relation on  $\mathbf{R}$ : Inequality is *not* reflexive since for no  $x \in \mathbf{R}$  is it true that x < x.

Inequality is *not* symmetric since for each  $x,y \in \mathbb{R}$ , if x < y is true, then y < x is false.

Inequality is transitive since for each  $x, y, z \in \mathbf{R}$ , if x < y and y < z, then x < z.

• Inequality is so pathelogically unsymmetric, that we define a special property to describe it.

### The Anti-symmetry Property

- <u>Definition</u>: A relation R on a set A is called *anti*symmetric if  $(x,y) \in R$  and  $(y,x) \in R$  implies x = y.
- This is equivalent to requiring that if  $x \neq y$  and  $(x,y) \in \mathbb{R}$ , then  $(y,x) \notin \mathbb{R}$ . (All streets are oneway.)
- Example:  $R = \{(1,1), (1,2), (3,2), (3,3)\}$  is antisymmetric.
- Is every relation symmetric or anti-symmetric?
- No! Consider  $R = \{(1,2), (2,1), (1,3)\}.$