+++UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS

DEPARTAMENTO DE MATEMATICA

21/11/22

1. (25 ptos) Sea S el sólido limitado por el manto cónico $z = \sqrt{x^2 + y^2}$, el hemisferio $\sqrt{x^2 + y^2 + z^2} = 2$ y los planos z = 1, x = 0 e y = x.

Calcule el volumen V(S) del sólido S:

- a) Usando coordenadas cilíndricas
- b) Usando coordenadas esféricas

Resp. Notar que el sólido S esta conformado por una parte en el primer octante y su simétrica en el octante $\mathbb{R}^- \times \mathbb{R}^- \times \mathbb{R}^+$.

Ahora, sea S_e la parte del cono $z=\sqrt{x^2+y^2}$ en el primer octante limitado por el hemisferio $\sqrt{x^2+y^2+z^2}=2$ y los planos x=0 e y=x, y sea S_c la parte del cono en el primer octante limitado por los planos z=1, x=0 e y=x. Por simetría,

$$V(S) = 2(V(S_e) - V(S_c))$$

a. Usando coordenadas cilíndricas

En coordenadas cilíndricas S_e se describe mediante:

$$S_e = \left\{ (r, \theta, z) / \frac{\pi}{4} \le \theta \le \frac{\pi}{2}, \ 0 \le r \le \sqrt{2}, r \le z \le \sqrt{4 - r^2} \right\}$$

Así,

$$V_e = \int_{\frac{\pi}{4}}^{\pi/2} \int_0^{\sqrt{2}} \int_r^{\sqrt{4-r^2}} r dz \, dr \, d\theta = \frac{1}{3} \pi \left(2 - \sqrt{2}\right)$$

Por otro lado S_c es un octavo del cono de altura 1 y radio basal $r=\sqrt{2}$, luego

$$V_c = \frac{1}{8} \left(\frac{\pi}{3} \right) = \frac{\pi}{24}$$

Luego,

$$V(S) = 2\left(\frac{1}{3}\pi\left(2 - \sqrt{2}\right) - \frac{\pi}{24}\right) = 2\left(\frac{5}{8}\pi - \frac{\sqrt{2}}{3}\pi\right) \approx 2 * (0.48253)$$
 13 ptos

b. Usando coordenadas esféricas

 S_e se describe en coordenadas cilindricas mediante

$$S_e = \{ (\rho, \theta, \phi) / \frac{\pi}{4} \le \theta \le \frac{\pi}{2}, \ 0 \le \phi \le \pi/4, 0 \le \rho \le 2 \}$$

Así,

$$V_e = \int_{-\frac{\pi}{4}}^{\pi/2} \int_0^{\pi/4} \int_0^2 \rho^2 \sin\phi d\rho \ d\phi \ d\theta = \frac{1}{3} \pi \left(2 - \sqrt{2} \right)$$

y luego

$$V(S) = 2\left(\frac{1}{3}\pi\left(2 - \sqrt{2}\right) - \frac{\pi}{24}\right) = 2\left(\frac{5}{8}\pi - \frac{\sqrt{2}}{3}\pi\right) \approx 2 * 0.48253$$
 12 ptos

Nota: Si en el informe los estudiantes consideran solo la parte en el primer octante,

evaluar con el puntaje de 25 puntos como máximo.

2. (15 ptos) Suponga que una partícula se mueve en la trayectoria C definida por

$$\sigma(t) = (2\cos t, 2\sin t, t), \text{ con } t \ge 0.$$

- a. Si cuando $t = \pi$ la partícula abandona la trayectoria C y sigue por la tangente a C en $(-2,0,\pi)$ ¿Cuáles son las coordenadas del punto en que se encuentra la particula en el instante $t = 2\pi$?
- **b**. Calcule la longitud del trayecto recorrido por la partícula entre t = 0 y $t = 2\pi$.
- **a.** La tangente a C cuando $t = \pi$ esta dada por

$$T: (x,y,z) = \sigma(\pi) + \sigma'(\pi)(t-\pi)$$

esto es

$$T: (x,y,z) = (-2,-2(t-\pi),t)$$

Así, la posición de la partícula cuando $t=2\pi$ es es el punto P de coordenadas $=(-2,-2\pi,2\pi)$, ya que esta sigue la tangente T.

07 ptos

b. Calcule la longitud del trayecto recorrido por la partícula entre t = 0 y $t = 2\pi$. Sea L la longitud del trayecto recorrido por la partícula entre t = 0 y $t = 2\pi$, entonces

$$L = l(c) + l(T)$$

donde l(c) es la longitud del trayecto recorrido a lo largo de la curva C entre t=0 y $t=\pi$ y l(T) es la longitud del trayecto rectilineo a lo largo de la tangente T entre $t=\pi$ y $t=2\pi$, entonces

$$L = \int_0^{\pi} \|\sigma'(t)\| dt + \sqrt{5} \pi$$
$$= \int_0^{\pi} \sqrt{5} dt + \sqrt{5} \pi$$

Así, la longitud del trayecto recorrido por la partícula entre t=0 y $t=2\pi$ es $L=2\sqrt{5}\pi$

08 ptos

3. (20 ptos) Sea R la región del plano acotada por las rectas y = x e y = -x + 4 y el arco de circunferencia $y = 2 - \sqrt{2 - (x - 2)^2}$, y sean F, G los campos vectoriales definidos por

$$F(x,y) = \left(-y(x-2)^2, x(y-2)^2\right)$$

$$G(x,y) = \left(\frac{1-y}{(x-2)^2 + (y-1)^2}, \frac{x-2}{(x-2)^2 + (y-1)^2}\right)$$

respectivamente. Calcule cada una de las siguientes integrales de línea

a)
$$\int_C F \cdot dr$$

b) $\int_C G \cdot dr$

donde C es la frontera de la región R recorrida en sentido antihorario.

Resp.

a. Sean $P(x,y) = -y(x-2)^2$ y $Q(x,y) = x(y-2)^2$, $(x,y) \in \mathbb{R}^2$. Claramente R es un simple conexo contenido en el dominio de F, entonces aplicamos el teorema de Green para regiones simple conexas para calcular $\int_C F \cdot dr$.

$$\int_{C} F \cdot dr = \iint_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) d(x, y)$$
$$= \iint_{R} \left((x - 2)^{2} + (y - 2)^{2} \right) d(x, y)$$

Usando coordenadas polares (modificadas)

$$x = 2 + r\cos\theta$$
, $y = 2 + r\sin\theta$

donde $\frac{5}{4}\pi \le \theta \le \frac{7}{4}\pi$, $0 \le r \le \sqrt{2}$

$$\iint_{R} ((x-2)^{2} + (y-2)^{2}) d(x,y) = \int_{\frac{5}{4}\pi}^{\frac{7}{4}\pi} \int_{0}^{\sqrt{2}} r^{3} dr d\theta$$
$$= \frac{\pi}{2}$$

Luego,

$$\int_C F \cdot dr = \frac{\pi}{2}$$

10 ptos

b. Claramente G no esta definida en el punto (2,1), y como este es un punto en el interior de la región R, entonces para calcular $\int_C G \cdot dr$ aplicamos el teorema de Green para regiones multiconexas.

$$\int_C G \cdot dr = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) d(x,y) + \int_{\gamma} G \cdot dr$$
donde $P(x,y) = \frac{1-y}{(x-2)^2 + (y-1)^2}$, $Q(x,y) = \frac{x-2}{(x-2)^2 + (y-1)^2}$, γ es la circunferencia $(x-2)^2 + (y-1)^2 = 4$ recorrida en sentido antihorario y D es la región entre las curvas C y γ .

Como

$$\frac{\partial Q}{\partial x}(x,y) = \frac{\partial P}{\partial y}(x,y) = \frac{(y-1)^2 - (x-2)^2}{\left[(x-2)^2 + (y-1)^2\right]^2}$$

entonces

$$\int_C G \cdot dr = \int_{\gamma} G \cdot dr$$

Ahora, representando γ mediante $r(t) = (2 + 2\cos t, 1 + 2\sin t)$, con $0 \le t \le 2\pi$ se tiene que

$$\int_{\gamma} G \cdot dr = \int_{0}^{2\pi} \left(-\frac{\sin t}{2}, \frac{\cos t}{2} \right) \cdot (-2\sin t, 2\cos t) dt$$
$$= \int_{0}^{2\pi} dt = 2\pi$$

Luego,

$$\int_C G \cdot dr = 2\pi$$
 10 ptos