CORRELAZIONE E INDIPENDENZA STOCASTICA

```
correlazione e indipendenza stocastica
def
   teo_ P(E_1/E_2)/P(E_1)=P(E_2/E_1)/P(E_2)
teo_ correlazione tra eventi (sensi)
```

$$\begin{array}{ccc} _teo_ & E_1 \text{ s.i. } E_2 \Rightarrow \neg E_1 \text{ s.i. } E_2 \\ & E_1 \text{ s.i. } E_2 \Rightarrow P(E_1' \land E_2') = P(E_1')P(E_2') \end{array}$$

** valgono per 2 eventi, n eventi, n partizioni di cardinalità finita **

def E_1 s.i. $E_2 \Leftrightarrow (E_1$ s.i. $E_2)$ e $(E_1$ s.i. $\neg E_2)$

condizioni affinché valutazione per fatt. su \mathbb{P}_G sia una prob.

 $_teo_$ E_1 s.i. $E_2 \Leftrightarrow$ la probabilità si fattorizza su $\mathbb{P}_G(E_1,E_2)$

 teo_- con ${}_2\xi,\,{}_1\xi$ disgiunti, ogni evento di Д $_L(\mathbb{P}_G({}_1\xi))$ s.i. Д $_L(\mathbb{P}_G({}_2\xi))$ teo_- se n partiz. finite s.i. \Rightarrow la prob. si fatt. su $\mathbf{A}_L(\mathbb{P}_1) \wedge \ldots \wedge \mathbf{A}_L(\mathbb{P}_n)$

def stocastica indipendenza (n numeri aleatori)

teo simmetria induce _teo_ teorema di Bayes simmetria induce indip. stocastica (n partizioni)