Математика. Часть А

К каждому заданию части A даны пять вариантов ответа, среди которых только один является верным. Выполните задание, сравните полученный ответ с предложенными. В бланке ответов под номером задания

поставьте крестик (×) в клеточке, номер которой соответствует номеру выбранного ответа.	В части А 18 заданий.
А1. Количество простых чисел, принадлежащих промежутку [1; 11], равно:	1) 7; 2) 6; 3) 5;
	4) 4; 5) 3.
A2. $ABCDA_1B_1C_1D_1$ – куб. Укажите правильное утверждение:	1) 1; 2) 2; 3) 3;
1) у куба 4 грани, 8 рёбер, 8 вершин, 2 диагонали.	4) 4; 5) 5.
2) у куба 6 граней, 12 рёбер, 12 вершин, 4 диагонали.	
3) у куба 6 граней, 12 рёбер, 8 вершин, 4 диагонали.	
4) у куба 8 граней, 12 рёбер, 8 вершин, 8 диагоналей.	
5) у куба 6 граней, 8 рёбер, 8 вершин, 2 диагонали.	
А3. Найти значение k , если известно, что график функции $y = kx + b$ проходит	1) 1; 2) 2; 3) 3;
через точки (2; 10) и (-8; -10).	4) 4; 5) 5.
	1) -2,5; 2) -3,2;
А4 . Найдите значение выражения $2,5 \cdot 0,1 - \left(-6,4 + \frac{2}{5} : 1,6\right)$.	3) 4,2; 4) 6,4;
	5) -2,8.
1.5 G	
А5. Сколько процентов соли содержится в растворе, если в 200 г раствора	1) 16; 2) 20; 3) 25;
содержится 150 г воды?	4) 30; 5) 35.
А6. Углы ABC и CBD — смежные, причем первый из них в 4 раза больше второго.	1) 82°; 2) 88°;
Определить величину тупого угла между перпендикуляром, проведенным из	3) 98°; 4) 102°;
точки B к прямой BC , и биссектрисой угла CBD .	5) 108°.
А7. Объем конуса равен 384. Найти площадь осевого сечения конуса, если длина	1) 121,4; 2) 134,8;
окружности в основании конуса равна 15.	3) 142,5; 4) 153,6;
	5) 160,4.
А8 . Расположите в порядке возрастания числа $\lg \sqrt[4]{10}$, $\frac{2}{3}$, $\frac{7}{18}$.	1) 1; 2) 2; 3) 3;
3, 18	4) 4; 5) 5.
1) $\lg \sqrt[4]{10}$, $\frac{2}{3}$, $\frac{7}{18}$; 2) $\frac{2}{3}$, $\lg \sqrt[4]{10}$, $\frac{7}{18}$; 3) $\frac{7}{18}$, $\frac{2}{3}$, $\lg \sqrt[4]{10}$; 4) $\lg \sqrt[4]{10}$, $\frac{7}{18}$, $\frac{2}{3}$; 5) $\frac{7}{18}$, $\lg \sqrt[4]{10}$, $\frac{2}{3}$.	
А9 . Найти сумму натуральных решений неравенства:	1) 6; 2) 8; 3) 10;
	4) 12; 5) 16.
$\frac{x-2}{2} - \frac{3(2-x)}{10} + \frac{7x+1}{4} \le \frac{x+11}{3} + \frac{13+16x}{20}.$	4) 12, 3) 10.
2 10 4 3 20	
	1) -10^{-6} ; 2) -10^{-3} ;
A10 . Представьте степень 1 числом, записанным в стандартном виде.	$3) 10^3;$ 4) $10^{-6};$
$\left(\frac{1}{0,001}\right)$	5) 10 ⁶ .
(15 4 12)	1) -115; 2) 44;
А11 . Вычислить $\left(\frac{15}{\sqrt{6}+1} + \frac{4}{\sqrt{6}-2} - \frac{12}{3-\sqrt{6}}\right) \cdot \left(\sqrt{6}+11\right)$.	/ / /
$(\sqrt{6}+1)(\sqrt{6}-2)(\sqrt{6})(\sqrt{6}+1)$	3) 115; 4) -44;
	5) 64
А12. Большее основание трапеции равно 24 см. Найти ее меньшее основание,	1) 12; 2) 16; 3) 8;
зная, что расстояние между серединами ее диагоналей равно 4 см.	4) 18; 5) 20.
А13 . Составить квадратное уравнение, корни которого равны $\frac{1}{x_1}$ и $\frac{1}{x_2}$,	1) $\frac{1}{3} \cdot x^2 + \frac{1}{5} \cdot x - 1 = 0$;
где x_1 и x_2 корни уравнения $3 \cdot x^2 + 5 \cdot x - 1 = 0$.	2) $x^2 - 5 \cdot x - 3 = 0$;
1 дс x_1 и x_2 корни уравнения $3 \cdot x + 3 \cdot x - 1 = 0$.	3) $5 \cdot x^2 + 3 \cdot x - 1 = 0$; 4) $x^2 - 5 \cdot x + 3 = 0$;
	4) $x^2 - 5 \cdot x + 3 = 0$:
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
A14 . Все рёбра правильной треугольной призмы равны 14. Через сторону	1) 98; 2) 50; 3) 64;
тить. Все реори привильной треутольной призмы равны та. терез сторону	11,70, 2,30, 3,04,

основания и середину противоположного этой стороне бокового ребра призмы	4) 112; 5) 140.
проведена секущая плоскость. Найти площадь сечения призмы этой плоскостью.	
$40x^3 + 160x^2 - 360x - 1440$	1) 108; 2) 112; 3) 121;
А15. Найти значение выражения $\frac{40x^3 + 160x^2 - 360x - 1440}{2x^2 + 5x - 12}$ при $x = 6,5$.	4) 130; 5) 133.
А16 . Найти наибольшее значение функции $f(x) = 5 - 2\sin^4 x - 2\cos^4 x$.	1) 1; 2) 2; 3) 3;
	4) 4; 5) 5.
A17 . Решите уравнение $2\log_2(x-2) + \log_2(x-4)^2 = 0$. В ответе укажите сумму	1) 9; 2) 6; 3) 12;
корней.	4) $6+\sqrt{2}$; 5) $3+\sqrt{2}$.
А 18. Для асфальтирования участка длиной 99 м используется два катка. Первый	1) 7; 2) 11;
каток был установлен в одном конце участка, другой - в противоположном.	3) 24; 4) 6;
Работать они начали одновременно. За первую минуту второй каток прошел 1,5 м,	5) 13.
а за каждую последующую - на 0,5 м больше, чем за предыдущую. Первый каток	
в каждую минуту проходил 5 м. Через сколько минут оба катка встретились?	

Часть В

Каждое из 12 заданий части В решите и получите ответ. Ответом должно быть целое число.

В1. Решить неравенство: $\frac{(x-5)(2-x)^2(x-6)^4(x+3)}{x^2(1-5x)^3(x-7)} \le 0.$

В ответе укажите сумму всех натуральных чисел, меньших 10.

- **B2**. Решить уравнение $1 + \sqrt{1 + x\sqrt{x^2 34}} = x$. В ответе укажите умноженную на 10 сумму корней или умноженный на 10 корень, если он единственный.
- **В3.** Если $(x_0; y_0)$ решение системы уравнений $\begin{cases} \frac{1}{2x-3y} + \frac{2}{3x-2y} = 0,75 \\ \frac{3}{2x-3y} \frac{4}{3x-2y} = 1 \end{cases}$, то $x_0 + 2y_0$ равно...
- **В4**. Вершины B u C при основании равнобедренного треугольника ABC соединены с серединой M его высоты, проведенной из аршины A. Эти прямые пересекают боковые стороны AC и AB треугольника в точках D и E соответственно. Найти площадь четырехугольника AEMD, если площадь треугольника ABC равна 186.
- площадь треугольника ABC равна 186. **B5**. Решить уравнение $5-4\cdot\sin^2 2x-4\cdot\cos 2x=0$ и найти число корней на промежутке $[-\pi;\pi]$.
- **B6**. Пассажир едет в трамвае и замечает, что параллельно трамвайной линии в противоположном направлении идет его приятель. Через минуту человек вышел из вагона и, чтобы догнать приятеля, пошел вдвое быстрее его, но в 4 раза медленнее трамвая. Через сколько минут пассажир догонит приятеля?
- **B7**. Решите уравнение $|x|x-1|-2x|=x^2-2$. В ответе укажите произведение корней.
- **В8**. В геометрической прогрессии с четным числом членов сумма всех ее членов в 3 раза больше суммы членов, стоящих на нечетных местах. Найдите знаменатель прогрессии.
- **В9**. Найдите сумму целых решений неравенства $\frac{14^{3x+5}-2^{2x+1}\cdot 7^{4x+9}}{1-x} \leq 0.$
- **B10**. Через точку A, лежащую на расстоянии 2r от центра окружности радиуса r, проведена прямая на расстоянии r/2 от центра окружности, пересекающая окружность в точках B и C.

Найдите длину отрезка AB, если $r = \frac{\sqrt{5} + 1}{\sqrt{3}}$.

- **В11**. Найдите значение выражения: $\left(\frac{2\cos 40^{\circ} \sin 70^{\circ}}{\sin 340^{\circ}}\right)^{2}$.
- $\sin 340^{\circ}$) **B12**. Решить неравенство $\cos^2(x-3) \cdot \log_3(6x-6-x^2) \ge 1$. В ответе укажите сумму целых решений.