

## Packaged Gas/Electric Rooftop Units

Precedent<sup>™</sup> 3 - 10Tons — 60 Hz





#### Introduction

## Packaged Rooftop Air Conditioners

Through the years, Trane has designed and developed the most complete line of Packaged Rooftop products available in the market today. Trane was the first to introduce the Micro—microelectronic unit controls—and has continued to improve and revolutionalize this design concept.

Electromechanical controls are available for simpler applications, and for the more sophisticated, ReliaTel™ microprocessor controls.

The ReliaTel control platform offers the same great features and functionality as the original Micro, with additional benefits for greater application flexibility.

With its sleek compact cabinet, rounded corners and beveled top Precedent continues to provide the highest standards in quality and reliability, comfort, ease of service, and the performance of Trane light commercial products.

Trane customers demand products that provide exceptional reliability, meet stringent performance requirements, and are competitively priced. Trane delivers with Precedent.

Precedent features cutting edge technologies: reliable compressors, Trane engineered ReliaTel controls, computer-aided run testing, and Integrated Comfort™ Systems. So, whether you're the contractor, the engineer, or the owner you can be certain Precedent Products are built to meet your needs.

It's HardTo Stop ATrane.®





## **Contents**

| Introduction                                            |
|---------------------------------------------------------|
| Features and Benefits                                   |
| <b>Application Considerations</b>                       |
| Selection Procedure                                     |
| Model Number Description                                |
| General Data                                            |
| Performance Data                                        |
| Cooling Performance Fan Performance Heating Performance |
| Controls                                                |
| Electric Power                                          |
| Dimension and Weights                                   |
| Mechanical Specifications                               |



#### **Factory Installed Options**

- Black Epoxy Pre-Coated Coils
- Dehumidification Option
- High Pressure Cutout
- Hinged Access Doors
- Novar Return Air Sensor
- Novar Unit Controls
- Phase Monitor
- Powered or Unpowered Convenience Outlet
- Supply and/or Return Air Smoke Detector
- Thermal Expansion Valve
- Through the Base Electrical Access
- Through the Base Electrical With Circuit Breaker
- Through the Base Electrical With Disconnect Switch
- Two-Inch Pleated Filters

#### **Factory or Field Installed Options**

- Clogged Filter/Fan Failure Switch
- Differential Pressure Switches
- Discharge Air Sensing Kit
- Economizer
- Electric Heaters
- Frostat
- LonTalk® Communications Interface
- Oversized Motors
- · Reference or Comparative Enthalpy
- Tool-less Hail Guards
- Trane Communications Interface (TCI)

#### **Field Installed Options**

- CO<sub>2</sub> Sensing
- Digital Display Zone Sensor
- DualThermistor Remote Zone Sensor
- High Static Drive
- Humidity Sensor
- Manual Outside Air Damper
- Motorized Outside Air Dampers
- Powered Exhaust
- Remote Potentiometer
- Roof Curb
- Thermostat
- Ventilation Override Accessory
- Zone Sensor



## Easy to Install, Service and Maintain

Because today's owners are very costconscious when it comes to service and maintenance, the Trane Precedent was designed with direct input from service contractors. This valuable information helped to design a product that would get the serviceman off the job quicker and save the owner money. Precedent does this by offering:

## Quality and Reliability ReliaTel™ Controls (LCI-R)



ReliaTel controls provide unit control for heating, cooling and ventilating utilizing input from sensors that measure outdoor and indoor temperature.

Quality and Reliability are enhanced through ReliaTel control and logic:

- prevents the unit from short cycling, considerably improving compressor life.
- ensures that the compressor will run for a specific amount of time which allows oil to return for better lubrication, enhancing the reliability of the compressor.

Precedent with ReliaTel reduces the number of components required to operate the unit, thereby reducing possibilities for component failure.

#### ReliaTel Makes Installing and Servicing Easy

ReliaTel eliminates the need for field installed anti-shortcycle timer and time delay relays. ReliaTel controls provide these functions as an integral part of the unit. The contractor no longer has to purchase these controls as options and pay to install them.

The wiring of the low voltage connections to the unit and the zone sensors is as easy as 1-1, 2-2, and 3-3. This simplified system makes wiring easier for the installer.

#### ReliaTel Makes Testing Easy

ReliaTel requires no special tools to run the Precedent unit through its paces. Simply place a jumper between Test 1 and Test 2 terminals on the Low Voltage Terminal Board and the unit will walk through its operational steps automatically.

— The unit automatically returns control to the zone sensor after stepping through the test mode a single time, even if the jumper is left on the unit.

As long as the unit has power and the "system on" LED is lit, ReliaTel is operational. The light indicates that the controls are functioning properly.

ReliaTel features expanded diagnostic capabilities when utilized with Trane Integrated Comfort™ Systems.

Some zone sensor options have central control panel lights which indicate the mode the unit is in and possible diagnostic information (dirty filters for example).

#### Other ReliaTel Benefits

The ReliaTel built-in anti-shortcycle timer, time delay relay and minimum "on" time control functions are factory tested to assure proper operation.

ReliaTel softens electrical "spikes" by staging on fans, compressors and heaters.

Intelligent Fallback is a benefit to the building occupant. If a component goes astray, the unit will continue to operate at predetermined temperature setpoint.

Intelligent Anticipation is a standard ReliaTel feature. It functions continuously as ReliaTel and zone sensor(s) work together in harmony to provide much tighter comfort control than conventional electro-mechanical thermostats.

The same ReliaTel Board fits all Precedent Packaged Gas/Electrics, Cooling with Electric Heat, and Heat Pump models. This provides standardization of parts for contractors. Less money is tied up in inventory with ReliaTel.

#### **Electromechanical Controls**

For the simpler job that does not require a building automation system, or expanded diagnostics capabilities, Precedent offers electromechnical controls. This 24-volt control includes the control transformer and contactor pressure lugs for power wiring.





## Outstanding Standard and Optional Components

#### **Black Epoxy Pre-Coated Coils**

The pre-coated coils are an economical option for protection in mildly corrosive environments.

#### **Cabinet Integrity**

For added water integrity, Precedent has a raised  $1\frac{1}{g}$ " lip around the supply and return of the downflow units to prevent water from blowing into the ductwork.

#### Clogged Filter/Fan Failure Switch

A dedicated differential pressure switch is available to achieve active fan failure indication and/or clogged filter indication.

These sensors allow a zone sensor service light or Integrated Comfort System to indicate a dirty filter or a fan that's not working. The field installation charges for these valuable feedback devices often eliminate them from consideration. Factory installation can make such features a good investment.

#### CO<sub>2</sub> Sensing

The CO<sub>2</sub> sensor has the ability to monitor space occupancy levels within the building by measuring the parts per million of CO<sub>2</sub> (Carbon Dioxide) in the air. As the CO<sub>2</sub> levels increase, the outside air damper modulates to meet the CO<sub>2</sub> space ventilation requirements. The CO<sub>2</sub> sensor kit is available as a field installed accessory.

#### Colored And Numbered Wiring

Save time and money tracing wires and diagnosing the unit.

#### Compressors

Precedent contains the best compressor technology available to achieve the highest possible performance. Our compressor line includes Trane built ClimaTuff® reciprocating and scrolls.



#### **Condenser Coil**

Precedent boasts a patent-pending 1+1+1 condenser coil, permanently gapped for easy cleaning.



### Dehumidification (Hot Gas Reheat) Option

This option allows for increased outdoor air ventilation. It reduces humidity levels while increasing comfort level in the air space. Cooling can operate without a demand for dehumidification. The hot gas reheat coil is designed to deliver maximum reheat temperatures and pivot to allow for easy access cleaning.



#### **Digital Display Zone Sensor**

The Digital LCD (Liquid Crystal Display) zone sensor has the look and functionality of standard zone sensors. This sensor should be utilized with ReliaTel™ controls.

#### Discharge Air Sensing Kit

Provides true discharge air sensing in heating models. The kit is functional only with the ReliaTel Options Module.

#### **Downflow And Horizontal Economizers**

The economizers come with three control options — dry bulb is standard, enthalpy and differential enthalpy are optional.

#### **Dual Thermistor Remote Zone Sensor**

This sensor will reduce the total number of remote sensors to obtain space temperature averaging. This sensor should be utilized with ReliaTel controls.



#### **Foil-Faced Insulation**

All panels in the evaporator section of the unit have cleanable foil-faced insulation. All edges are either captured or sealed to ensure no fibers get into the airstream.

#### **Factory Built Roof Curbs**

Available for downflow units. Only two roof curbs for the entire Precedent line simplifies curb selection.

#### **Flexibility**

Units are built to order in our standard "shortest in the industry" ship cycle time.

#### Fresh Air

0 - 25% manual or 0 - 50% motorized outside air hoods are available.

#### **High Pressure Cutout**

This factory-installed option is offered for units that do not have High Pressure Cutout as standard. All 3-phase units with scroll compressors include High Pressure cutout as standard.

#### **High Static Drive Accessory**

Available on many models, this high static drive accessory extends the capability of the standard motor. Avoid expensive motors and operating costs by installing this optimized sheave accessory.

#### **Hinged Access Doors**

These doors permit easy access to the

filter, fan/heat, and compressor/ control sections. They reduce the potential roof damage from screws or sharp access door corners.

#### LonTalk® Communications Interface

The LonTalk communications interface allows the unit to

communicate as a Tracer™ LCI-V device or directly with generic LonTalk Network Building Automation System Controls.



Phase monitor shall provide 100% protection for motors and compressors against problems caused by phase loss, phase imbalance, and phase reversal. Phase monitor is equipped with an LED that provides an ON or FAULT indicator.

#### **Power Exhaust Option**

This option is available on downflow units and provides exhaust of the return air, when using a downflow economizer, to maintain proper building pressurization. Great for relieving most building overpressurization problems.

#### **Progressive Tubular Heat Exchanger**

The compact cabinet features a tubular heat exchanger in low, medium and high heat capacities.

The heat exchanger is fabricated using stainless steel burners and corrosion-resistant aluminized steel tubes as standard on all models. It has an induced draft blower to pull the gas mixture through the burner tubes. The heater has a direct spark ignition system which doubles as a safety device to prove the flame.

Gas electric Precedent models exceed all California seasonal efficiency requirements. They also perform better than required to meet the California NOx emission requirements.

#### **Quick-Access Panels**

Remove two screws for access to the standardized internal components and wiring.

#### **Quick-Adjust Idler Arm**

With the Quick-Adjust Idler Arm, the belt and sheaves can be quickly adjusted without moving the mounted fan motor. The result is a major savings in time and money.



#### Reference or Comparative Enthalpy

Measures and communicates humidity while maximizing comfort control.

#### **Sloped Drain Pans**

Every Precedent unit has a noncorrosive, removable,

double-sloped drain pan that's easy to clean and reversible to allo w installation of drain trap on either side of the unit.

## Standardized Components

Components are placed in the same location on all Precedent units.

Familiarize yourself with one Precedent and you are familiar with every Precedent.

Due to standardized components throughout the Precedent line, contractors/owners can stock fewer parts.

### Supply and/or Return Air Smoke Detector

With this option installed, if smoke is detected, all unit operation will be shut

down. Reset will be manual at the unit. Return Air Smoke Detectors require minimum allowable airflow when used with certain models.

Thermal Expansion Valve Available for a wider range of applications.

### Trane Communication Interface (TCI)

Available factory or field installed. This module when applied with the ReliaTel™ easily interfaces with Trane's Integrated Comfort™ System.



#### **Tool-less Hail Guards**

Tool-less, hail protection quality coil guards shall be either factory or field-installed for condenser coil protection. This option protects the condenser coil from vandalism and/or hail damage.



#### **Unit Cabinet**

The compact cabinet with rounded corners takes up less room and is less costly to ship. The beveled and ribbed top is not only aesthetically pleasing, it is designed to prevent water from pooling.



#### VariTrac

When Trane's changeover VAV System for light commercial applications is coupled with Precedent, it provides the latest in technological advances for comfort management systems and can allow thermostat control in every zone served by VariTrac.

#### **Ventilation Override Accessory**

With the Ventilation Override Accessory installed, the unit can be set to transition to up to 3 different pre-programmed sequences for Smoke Purge, Pressurization, and Exhaust. The transition occurs when a binary input on the RTOM is closed (shorted). This would typically be a hard wired relay output from a smoke detector or fire control panel. The ventilation override kit is available as a field installed accessory.

#### **Zone Sensors**

Available in programmable, automatic and manual styles.

Precedent offers ultimate flexibility. Units are built to order in our standard "shortest in the industry" ship cycle time.

#### **Rigorous Testing**

All of Precedent's designs were rigorously rain tested at the factory to ensure water integrity.

Actual shipping tests were performed to determine packaging requirements. Units were test shipped around the country to determine the best packaging. Factory shake and drop tests were used as part of the package design process to help assure that the unit arrives at the job site in top condition.

Rigging tests include lifting a unit into the air and letting it drop one foot, assuring that the lifting lugs and rails hold up under stress.

We perform a 100% coil leak test at the factory. The evaporator and condenser coils are leak tested at 200 psig and pressure tested to 450 psig.

All parts are inspected at the point of final assembly. Sub-standard parts are identified and rejected immediately.

Every unit receives a 100% unit run test before leaving the production line to make sure it lives up to rigorous Trane requirements.

VariTrac™





#### Easy to Install

#### **Convertible Units**

- —The units ship in a downflow configuration. They can be easily converted to horizontal by simply moving two panels.
- Units come complete with horizontal duct flanges so the contractor doesn't have to field fabricate them. These duct flanges are a time and cost saver.



# Easy Access Low Voltage Terminal Board Precedent's Low Voltage Terminal Board is external to the electrical control cabinet. It is extremely easy to locate and attach the thermostat wire and test operation of all unit functions. This is another cost and time saving installation feature.



#### **Low Voltage Connections**

The wiring of the low voltage connections to the unit and the zone sensors is as simple as 1-1, 2-2, and 3-3. This simplified system makes it easy for the installer to wire.



#### **Electric Heaters**

Electric heat modules are available within the basic unit. If ordering the Through the Base Electrical option with an Electrical Heater, the heater must be factory installed.

### Powered or Unpowered Convenience

This option is a GFCI, 120v/15amp, 2 plug, convenience outlet, either powered or unpowered. This option can only be ordered when the Through the Base Electrical with either the Disconnect Switch, or Circuit Breaker, option is ordered.



#### **Single Point Power**

A single electrical connection powers the

#### **Single Side Service**

Single side service is standard on all units.

#### **Through the Base Condensate**

Every unit includes provisions for through the base condensate drain connections. This allows the drain to be connected through the roof curb instead of a roof penetration.

### Through the Base Electrical Utility Access

Factory provided through the base openings simplify wiring and piping. Because these utility openings frequently minimize the number of roof penetrations, the integrity of roofing materials is enhanced.





## Through the Base Electrical with Circuit Breaker

This option is a factory installed thermal magnetic, molded case, HACR Circuit Breaker with provisions for through the base electrical connections.



## Through the Base Electrical with Disconnect Switch

Factory installed 3-pole, molded case, disconnect switch with provisions for through the base electrical connections are available.

#### **Through the Base Utilities Access**

An electrical service entrance shall be provided allowing electrical access for both control and main power connections inside the curb and through the base of the unit. Option will allow for field installation of liquid-tight conduit and an external field installed disconnect switch.

### Unit Mounted Disconnect or Circuit Breaker

Codes require a method of assured unit shutdown for servicing. Field-installed disconnects sometimes interfere with service access. Factory installation of unit disconnects reduces costs, assures proper mounting and provides the opportunity to upgrade to unit circuit breaker protection.



Unit Mounted Disconnect or Circuit Breaker

Convenience Outlet

#### **Factory Installed Options**

A wide variety of Factory Installed Options (FIOPs) are available.

#### Added Efficiency

#### **Airflow**

Airflow is outstanding. The Precedent can replace an older machine with old ductwork and, in many cases, improve the comfort through better air distribution.

Belt or direct drive – standard or oversized supply fan motors meet a wide airflow range.

#### Cooling

Standard or High Efficiency Cooling available.

#### **Economizer**

Equipped with either dry bulb, reference or comparative enthalpy sensing, this feature provides free cooling as the outdoor temperature and/or humidity decreases. Economizers, correctly installed, offer a valuable energy savings. Factory-installed economizers save time and ensure proper installation.

#### **High Efficiency Motors**

This option is available with efficiency ratings from 86.5 up to 91.0. It is not available for all models.

#### **Low Ambient Cooling**

All Precedent microprocessor units have cooling capabilities down to 0°F as standard. Electromechanical models have cooling capabilities to 40°F as built, or to 0°F by adding the optional low ambient control (frostat).

#### **Oversized Motors**

Factory or field installed oversized motors available for high static applications.

#### One of our Finest Assets:

Trane Sales Representatives are a Support Group that can assist you with:

- Product
- Application
- Service
- Training
- Special Applications
- Specifications
- Computer Programs and much more

Precedent has the features and benefits that make it first class in the light commercial rooftop market.



## Application Considerations

Application of this product should be within the cataloged airflow and cooling considerations.

#### **Low Ambient Cooling**

The Precedent™ line features, with ReliaTel™ microprocessor controls, low ambient cooling down to 0°F. With electromechanical controls, Precedent features low ambient cooling to 40°F. The following options need to be included/ considered when low ambient applications are required: continuous fan operation, crankcase heaters, thermal expansion valves, frostat. Contact your localTrane Representative for more assistance with low ambient cooling applications.

#### **Barometric Relief**

This product line offers an optional barometric relief damper for use in conjunction with economizer option. This accessory consists of gravity dampers which open with increased pressure. As the building air pressure increases, the pressure in the unit return air section also increases, opening the dampers and relieving the conditioned space.

NOTE: THE EFFECTIVENESS OF BAROMETRIC RELIEF DAMPER DURING ECONOMIZING OPERATION IS SYSTEM RELATED.

PRESSURE DROP OF THE RETURN AIR SYSTEM SHOULD BE CONSIDERED TO CONTROL BUILDING PRESSURIZATION.

#### **Heating Operation**

The heat exchanger is manufactured with aluminized steel. To prevent condensation within the heat exchanger, do not exceed 50% outside air or a minimum mixed air temperature of 40°F.

#### Condensate Trap

The evaporator is a draw-thru configuration. A trap must be field provided prior to start-up on the cooling cycle.

#### Clearance Requirements

The recommended clearances identified with unit dimensions should be maintained to assure adequate service maximum capacity and peak operating efficiency. Actual clearances which appear inadequate should be reviewed with the local Trane sales personnel.

#### Jnit Pitch

These units have reversible sloped condensate drain pans. Units must be installed level, any unit slope must be toward the side of unit where condensate drain is connected.



### Selection Procedures

#### **Cooling Capacity**

#### Step 1

Calculate the building's total and sensible cooling loads at design conditions. Use the Trane calculation methods or any other standard accepted method.

Factors used in unit selection:

Α

Total Cooling Load: 58 MBh

В

Sensible Cooling Load: 40 MBh

С

Airflow: 2000 cfm

D

Electrical Characteristics: 460/60/3

F

Summer Design Conditions: Entering Evaporator Coil: 80 DB, 67 WB Outdoor

Ambient: 95

F

External Static Pressure: 0.52 in. wg

G

**Downflow Configuration** 

Н

**High Efficiency** 

ı

Economizer

#### Step 2

As a starting point, a rough determination must be made of the size of the unit. The final selection will be made after examining the performance at the given conditions. Divide the total cooling load by nominal BTUH per ton (12 MBh per ton); then round up to the nearest unit size.

58 MBh / 12 MBh = approx. 5 tons

#### Step 3

Examine gross capacity: Table PD-13 shows that a YHC060A4 has a gross cooling capacity of 62.4 MBh and 48.4 MBh sensible capacity at 2000 cfm and 95 DB outdoor ambient with 80 DB, 67 WB air entering the evaporator.

## To Find Capacity at Intermediate Conditions Not in the Table

When the design conditions are between two numbers that are in the capacity table, interpolation is required to approximate the capacity. Note: Extrapolation outside of the table conditions is not recommended.

#### Step 4

Verify the unit will have enough capacity to meet the building requirements by determining the net capacity, which includes heat generated by the fan. In order to select the correct unit which meets the building's requirements, the fan motor heat must be deducted from the gross cooling capacity. The amount of heat that the fan motor generates is dependent on the effort by the motor-cfm and static pressure. To determine the total unit static pressure add the external static pressure to the additional static created by the added features:

External Static (duct system)

0.52 wg
Standard Filter 1 in. 0.06 wg
from Table PD-89

Economizer 0.18 wg (100% Outside Air) from Table PD-89

Total Static Pressure 0.76 wg

Note: The Evaporator Fan Performance Table PD-64 has deducted the pressure drop for a 1 in. filter already in the unit (see note below Table PD-64). Therefore, the actual total static pressure is 0.76 -0.06 (from Table PD - 89) = 0.70 wg.

With 2000 cfm and 0.70 wg., Table PD-64 shows 1.07 bhp for this unit. Note below the table gives a formula to calculate Fan Motor Heat,

2.829 x bhp + .4024 = MBH. 2.829 x 1.07 + .4024 = 3.43 MBH.

Now subtract the fan motor heat from the gross cooling capacity of the unit: NetTotal Cooling Capacity = 62.4 MBH - 3.43 = 58.97 MBH.

Net Sensible Cooling Capacity = 48.4 MBH - 3.43 = 44.97 MBH.

#### Step 5

If the performance will not meet the required load of the building's total or sensible cooling load, try a selection at the next higher size unit.

#### **Heating Capacity**

**Step 1** — Calculate the building heating load using the Trane calculation form or other standard accepted method.

Step 2 — Size the system heating capacity to match the calculated building heating load. The following are building heating requirements:

- a. Total heating load of 60.0 MBh
- b. 2000 cfm
- c. Fuel Natural gas

For the YSC060A4 there are three heating capacities available, 60 MBh, 80 MBh and 130 MBh input models shown inTable PD-91. The output capacities of these furnaces are 48 MBh, 64 MBh and 104 MBh respectively. The medium heat model with 64 MBh best matches the building requirements, indicating a YHC060A4\*M should be selected.

#### **Air Delivery Selection**

External static pressure drop through the air distribution system has been calculated to be 0.7 inches of water. Enter Table PD-64 for a YHC060A4\*M at 2000 cfm and 0.70 static pressure. The standard belt drive motor will give the desired airflow with 1.07 bhp and 1094 rpm.

#### **Accessory Selection**

Select accessories needed to accommodate the application.



## Selection Procedure

#### **Dehumidification Selection**

Typical 10 ton YHC120A 3200 cfm Total Supply airflow 1280 cfm Outside Air (40%) 1920 cfm Return Air 0.35" External Static Pressure

OA Conditions

Part load day and raining
68°F db
67°F wb

RA' conditions 75°F db 63°F wb

#### Step 1: Determine the mixed/ entering air condition (MA')

MA' = (% outside air\*outside air dry-bulb temperature) + (% return air\*return air dry-bulb temperature)

MA' = (0.40\*68°F) + (0.60\*75°F)

MA' = 72.20°F db

## Note: Repeat for wet-bulb temperature (wb).

Plot on psychrometric chart.

MA' 72.2°F db 65°F wb

### Step 2: Determine the additional static pressure drop for a reheat unit

Table PD-89 shows a static pressure drop of 0.15" for the reheat coil and an additional .03 for the mandatory 2" pleated filters required when ordering the dehumidification option. Total static pressure =

1.0+0.015+0.03=1.045 (≤1.8 for manual calculations) Do not forget to also add any additional static from other accessories.

Table PD-82 (airflow table for 10 ton downflow unit) indicates that a standard motor and drive is needed for this airflow and static pressure range.



Chart C-1

#### Step 3a: Determine leaving evaporator temperature (SA')

Leaving UnitTemperature = SA' Utilizing the manual selection method as previously described and the formula

ΔTemp = gross sensible or latent cooling capacity in Bth

(cfm)(1.085)

Subtract your sensible  $\Delta$  temp from the entering db and latent  $\Delta$  temp from the entering wb or use the TOPSS<sup>TM</sup> program determine the leaving evaporator temperature (temperature without the addition of fan heat). 52.25 db 57.84 wb

## Step 3b: Determine leaving <u>unit</u> temperature in standard cooling mode

Repeat Step 3a substituting net sensible or latent capacity for gross sensible or latent capacity to find the leaving unit temperature including fan heat or refer to your TOPSS selection.
54.75 db

53.11 wb

### Step 4: Determine reheat temperature rise

Using the leaving <u>evaporator</u> temp (SA'), go to PD-92 and determine the reheat temperature rise for that particular cfm: ≘21.3°F db

Note: Reheat temperature rise is based on **supply airflow** and leaving **evaporator coil** temperature.

## Step 5: Determine leaving unit sensible temperature <u>with reheat</u> active (SA)

Reheat temperature (obtained in step 4)
+ (SA' + fan heat) = SA
(SA' + fan heat) = leaving unit
temperature in standard cooling mode
from step 3b.

21.3°F db + 54.75°F = 76°F db SA=76°F

Since reheat adds only sensible heat, follow the psychrometric chart to find the new wb temperature.

≅ 61°F wb

Consider Chart C-1. If the space relative humidity is equal to or above the space relative humidity setpoint, the Dehumidification option will:

- Energize compressor or both compressors (2 stage compressor units).
- Hot gas reheat valve is energized and hot gas is diverted to the reheat coil.
- Dehumidification/reheat is terminated when space humidity is reduced to 5% below relative humidity setpoint.

At MA', air enters the RTU. The RTU filters, cools, and dehumidifies the air as it moves through the evaporator coil. Air leaves the evaporator coil saturated at the preset dew point condition (SA') and is reheated by the hot gas reheat coil to deliver 76°F (SA) supply air to the space.



## **Model** Number **Description**

R 0 <u>1</u> 3 4.5.6 7 10 11 12,13 14 15 16 17 18 19 20 21 22 23 24 25

#### DIGIT 1 - Unit Function

Y = DX Cooling, Gas Heat

#### DIGIT 2 - Efficiency

S = Standard Efficiency

H = High Efficiency

#### DIGIT 3 - Airflow

C = Convertible

#### DIGITS 4,5,6 - Nominal Gross Cooling Capacity (MBh)

036 = 3 Ton

048 = 4 Ton 060 =

5 Ton

072 = 6 Ton

090 =71/2 Ton, Single Compressor

092 =71/2 Ton, Dual Compressors

102 =81/2 Ton 120 10 Ton

#### DIGIT 7 - Major Design Sequence

A = First

#### DIGIT 8 - Unit Voltage

1 = 208-230/60/1

3 = 208-230/60/3

4 = 460/60/3

W = 575/60/3

K = 380/60/3

#### DIGIT 9 - Unit Controls

E = Electromechanical

R = ReliaTel™ Microprocessor

#### DIGIT 10 - Heating Capacity

L = Low

M = Medium

H = High

#### DIGIT 11 - Minor Design Sequence

A = First Sequence

#### DIGITS 12, 13 - Service Sequence

\*\*= Factory Assigned

#### DIGIT 14 - Fresh Air Selection

A = Manual Outside Air Damper 0-50%

B = Motorized Outside Air Damper 0-50%

C = Economizer, Dry Bulb 0-100% without Barometric Relief

D = Economizer, Dry Bulb 0-100% with Barometric Relief

Economizer, Reference Enthalpy 0-100% without Barometric Relief

= Economizer, Reference Enthalpy 0-100% with Barometric Relief

G = Economizer, Comparative Enthalpy 0-100% without Barometric Relief

H = Economizer, Comparative Enthalpy 0-100% with Barometric Relief

#### DIGIT 15 - Supply Fan/Drive Type/Motor

0 = Standard Drive

1 = Oversized Motor

2 = Optional Belt Drive Motor

#### DIGIT 16 - Hinged Service AccessFilters

0 = Standard Panels/Standard Filters

A = Hinged Access Panels/Standard Filters

B = Standard Panels/2" Pleated Filters

C = Hinged Access Panels/2" Pleated Filters

#### DIGIT 17 - Condenser Coil Protection

0 = Standard Coil

1 = Standard Coil with Hail Guard

2 = Black Epoxy Pre-Coated Condenser

Black Epoxy Pre-Coated Condenser Coil with Hail Guard

#### DIGIT 18 - Through the Base Provisions

0 = NoThrough the Base Provisions

A = Through the Base Electric

B = Through the Base Gas Piping

C = Through the Base Electric and Gas **Piping** 

#### DIGIT 19 - Disconnect/Circuit Breaker/ Phase Monitor (3 phase only)

0 = No Disconnect/NoCircuit Breaker/No Phase Monitor

1 = Unit Mounted Non-Fused Disconnect

2 = Unit Mounted Circuit Breaker

= Phase Monitor

= Phase Monitor & Non-Fused Disconnect Switch

5 = Phase Monitor & Circuit Breaker

#### DIGIT 20 - Convenience Outlet

0 = No Convenience Outlet

A = Unpowered Convenience Outlet

B = Powered Convenience Outlet (3 phase only)

#### **DIGIT 21 - Communications Options**

0 = No Communications Interface

1 = Trane Communications Interface

2 = LonTalk® Communications Interface

3 = Novar 2024 Controls

4 = Novar 3051 Controls

#### DIGIT 22 - Refrigeration System Option

0 = Standard Refrigeration System

A = Thermal Expansion Valve (TXV)

B = Dehumidification (Hot Gas Reheat Coil)

#### DIGIT 23 - Refrigeration Controls

0 = No Refrigeration Control

1 = High Pressure Control

2 = Frostat

3 = Crankcase Heater

4 = High Pressure Control and Frostat

= High Pressure Control and Crankcase Heater

6 = Frostat and Crankcase Heater

= High Pressure Control, Frostat and Crankcase Heater

#### DIGIT 24 - Smoke Detector

0 = No Smoke Detector

A = Return Air Smoke Detector

B = Supply Air Smoke Detector

= Supply and Return Air Smoke Detectors

#### **DIGIT 25 - Monitoring Controls**

0 = No Monitoring Control

= Clogged Filter Switch

2 = Fan Failure Switch

3 = DischargeAir SensingTube

= Clogged Filter Switch and Fan Fail Switch

Clogged Filter Switch and Discharge Air Sensing Tube

6 = Fan Fail Switch and Discharge Air Sensing Tube

Clogged Filter and Fan Fail Switches and Discharge Air Sensing Tube

8 = Novar Return Air Sensor

Model number YSC036A3RLA\*\*C000C10001A10 describes a unit with the following characteristics: DX Cooling with natural gas heating, 3 ton nominal cooling capacity, 208-230/60/3 power supply, ReliaTeI<sup>TM</sup> controls, low heat model. 0-100% dry bulb economizer without barometric relief, standard direct drive motor, standard access panels, standard condenser coil with no coil protection, through the base electric and gas access, non-fused disconnect, no convenience outlet or communications interface, standard refrigeration coil, high pressure control, return air smoke detector, and clogged filter switch



## (3 - 4 Tons) Standard Efficiency

Table GD-1 — General Data

|                                        |             |            | 3 Ton Conve    | rtible Units |           |                   |           |            | 4Ton Conve | rtible Units         |            |         |
|----------------------------------------|-------------|------------|----------------|--------------|-----------|-------------------|-----------|------------|------------|----------------------|------------|---------|
|                                        |             | YSC036     | <b>4</b> 1     | YSC          | C036A3, A | 4, AW             | `         | YSC048A    | 1          | YSC04                | 8A3, A4,   | ΑW      |
| Cooling Performance <sup>1</sup>       |             |            |                |              |           |                   |           |            |            |                      |            |         |
| Gross Cooling Capacity                 |             | 37,400     |                |              | 37,400    |                   |           | 50,300     |            | 49,200               |            |         |
| SEER <sup>2</sup>                      | 10.5        |            |                | 10.7         |           |                   | 10.1      |            |            | 10.0                 |            |         |
| Nominal CFM / ARI Rated CFM            | 1,200/1,200 |            | 1              | ,200/1,20    | 0         | 1                 | ,600/1,60 | 0          | 1,6        | 500/1,600            |            |         |
| ARI Net Cooling Capacity               |             | 36,000     |                |              | 36,000    |                   |           | 48,000     |            |                      | 47,000     |         |
| System Power (KW)                      |             | 3.91       |                |              | 3.79      |                   |           | 5.28       |            |                      | 5.40       |         |
| Heating Performance <sup>4</sup>       |             |            |                |              |           |                   |           |            |            |                      |            |         |
| Heating Models                         | Low         | Medium     | High           | Low          | Medium    | High              |           | Medium     | High       | Low                  | Medium     | High    |
| Heating Input (Btu)                    | 60,000      | 80,000     | 120,000        | 60,000       | 80,000    | 120,000           | 60,000    | 80,000     | 120,000    | 60,000               | 80,000     | 120,000 |
| Heating Output (Btu)                   | 47,000      | 63,000     | 95,000         | 48,000       | 64,000    | 96,000            | 47,000    | 63,000     | 95,000     | 48,000               | 64,000     | 96,000  |
| AFUE %⁵                                | 80          | 80         | 80             | 81           | 81        | 81                | 80        | 80         | 80         | 81                   | 81         | 81      |
| Steady State Efficiency (%)            | 80          | 80         | 80             | 81           | 81        | 81                | 80        | 80         | 80         | 81                   | 81         | 81      |
| No. Burners                            | 2           | 2          | 3              | 2            | 2         | 3                 | 2         | 2          | 3          | 2                    | 2          | 3       |
| No. Stages                             | 1           | 1          | 1              | 1            | 1         | 1                 | 1         | 1          | 1          | 1                    | 1          | 1       |
| Gas Supply Line Pressure               |             |            |                |              |           |                   |           |            |            |                      |            |         |
| Natural (minimum/maximum)              |             | 4.5/14.0   |                |              | 4.5/14.0  |                   |           | 4.5/14.0   |            | 2                    | 1.5/14.0   |         |
| LP (minimum/maximum)                   |             | 10.0/14.0  | )              |              | 10.0/14.0 |                   |           | 10.0/14.0  | )          | 10.0/14.0<br>1/2 1/2 |            |         |
| Gas Connection Pipe Size (in.)         | 1/2         | 1/2        | 1/2            | 1/2          | 1/2       | 1/2               | 1/2       | 1/2        | 1/2        | 1/2                  | 1/2        | 1/2     |
| Compressor                             |             |            |                |              |           |                   |           |            |            |                      |            |         |
| No./Type                               | 1/Hermetic  |            |                | 1/Heri       | netic     |                   | 1/Scroll  |            |            | 1/Scroll             |            |         |
| Outdoor Sound Rating (dB) <sup>6</sup> |             | 83         |                |              | 83        | 3                 |           | 86         |            |                      | 82         |         |
| Outdoor Coil -Type                     |             | Lanced     |                |              | Lan       | ced               | Lanced    |            |            |                      | Lanced     |         |
| Tube Size (in.) OD                     |             | 0.3125     |                |              | 0.31      | 25                |           | 0.3125     |            |                      | 0.3125     |         |
| Face Area (sq ft)                      |             | 7.19       |                |              | 7.1       | 9                 |           | 6.17       |            |                      | 9.59       |         |
| Rows/FPI                               |             | 2/17       |                |              | 2/1       | 7                 |           | 2/17       |            |                      | 1/17       |         |
| Indoor Coil -Type                      |             | Lanced     |                |              | Lan       | ced               |           | Lanced     |            |                      | Lanced     |         |
| Tube Size (in.)                        |             | 0.3125     |                |              | 0.31      | 25                |           | 0.3125     |            |                      | .3125      |         |
| Face Area (sq ft)                      |             | 5.67       |                |              | 5.6       | 67                |           | 6.68       |            |                      | 6.17       |         |
| Rows/FPI                               |             | 2/16       |                |              | 2/1       | 6                 |           | 3/16       |            |                      | 3/16       |         |
| Refrigerant Control                    |             | Short Orif | fice           |              | Short (   | Orifice           | SI        | hort Orifi | ce         | S                    | hort Orifi | ce      |
| Drain Connection No./Size (in.)        |             | 1/¾ NP     | Γ              |              | 1/3/4     | NPT               |           | 1/¾ NPT    | -          |                      | 1/¾ NP     | Γ       |
| Outdoor Fan -Type                      |             | Propelle   | r              |              | Prop      | eller             |           | Propeller  | •          |                      | Propelle   | r       |
| No. Used/Diameter (in.)                |             | 1/22       |                |              | 1/2       | 22                |           | 1/22       |            |                      | 1/22       |         |
| DriveType/No. Speeds                   |             | Direct/1   |                |              | Dire      | ct/1              |           | Direct/1   |            |                      | Direct/1   |         |
| CFM                                    |             | 2,550      |                |              | 2,5       | 50                |           | 2,850      |            |                      | 3,610      |         |
| No. Motors/HP                          |             | 1/0.20     |                |              | 1/0.      | 20                |           | 1/0.33     |            |                      | 1/0.33     |         |
| Motor RPM                              |             | 1,075      |                |              | 1,0       | 75                |           | 1,075      |            |                      | 1,075      |         |
| Direct Drive Indoor Fan -Type          |             | FC Centrif | ugal           |              | FC Cent   | rifugal           | FC        | Centrifu   | gal        | F                    | C Centrifu | gal     |
| No. Used/Diameter (in.)                |             | 1/10 x 10  | )              |              | 1/10      | x 10              |           | 1/11 x 11  |            |                      | 1/11 x 11  |         |
| DriveType/No. Speeds                   |             | Direct/2   |                |              | Dire      | ct/2              |           | Direct/2   |            |                      | Direct/2   |         |
| No. Motors                             |             | 1          |                |              | 1         |                   |           | 1          |            |                      | 1          |         |
| Motor HP (Standard/Oversized)          |             | 0.33/0.50  | )              |              | 0.33/     | 0.50              |           | 0.60/0.80  | )          |                      | 0.60/0.80  | )       |
| Motor RPM (Standard/Oversized)         |             | 950/1,100  | ) <sup>9</sup> |              | 930/1     | ,100 <sup>9</sup> | 1         | ,000/1,10  | 0          |                      | 1,000/1,10 | 0       |
| Motor Frame Size (Standard/Oversiz     | zed)        | 48/48      |                |              | 48/       |                   |           | 48/48      |            |                      | 48/48      |         |



## (3 - 4 Tons) **Standard Efficiency**

Table GD-1 — Continued

|                                               | 3Ton Conver                  | rtible Units                  | 4Ton Con                      | vertible Units   |
|-----------------------------------------------|------------------------------|-------------------------------|-------------------------------|------------------|
|                                               | YSC036A1                     | YSC036A3, A4, AW              | YSC048A1                      | YSC048A3, A4, AW |
| Belt Drive Indoor Fan -Type                   | _                            | FC Centrifugal                | _                             |                  |
| No. Used/Diameter (in.)                       | _                            | 1/11 x 11                     | _                             | 1/11 x 11        |
| DriveType/No. Speeds                          | _                            | Belt/Variable Sheave          | _                             |                  |
| No. Motors                                    | _                            | 1                             | _                             | 1                |
| Motor HP (Standard/Oversized)                 | _                            | 1.00/—                        | _                             | 1.00/—           |
| Motor RPM (Standard/Oversized)                | _                            | 1,750/—                       | _                             | 1,750/—          |
| Motor Frame Size (Standard/Oversized)         | _                            | 56/—                          | _                             | 56/—             |
| Filters -Type Furnished 10                    | Throwaway                    | Throwaway                     | Throwaway                     | Throwaway        |
| (No.) Size Recommended                        | (2) 20 x 25 x 1 <sup>8</sup> | (2) $20 \times 25 \times 1^8$ | (2) $20 \times 25 \times 1^8$ | (2) 20 x 25 x 1  |
| Refrigerant Charge (Lbs of R-22) <sup>7</sup> | 3.8                          | 3.8                           | 4.4                           | 3.8              |

- 1. Cooling Performance is rated at 95 F ambient, 80 F entering dry bulb, 67 F entering wet bulb. Gross capacity does not include the effect of fan motor heat. ARI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air-Conditioner Equipment certification program, which is based on ARI Standard 210/240 except AK (380V/60 Hz).

  2. EER and/or SEER are rated at ARI conditions and in accordance with DOE test procedures.
- 3. Integrated Part Load Value is rated in accordance with ARI Standard 210/240 or 360. Units are rated at 80° F ambient, 80° F entering dry bulb, and 67° F entering wet bulb at ARI rated cfm.
- Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standards Institute standards.
   Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.
- AFUE is rated in accordance with DOE test procedures.

  Outdoor Sound Rating shown is tested in accordance with ARI Standard 270. For additional information refer to Table PD-90. Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions.
- 9. Motor RPM shown is low speed. High speed RPM is 1,060/1,145.

  10. Optional 2" pleated filters also available. 20 x 25 filter on medium and low heat models. 20 x 30 filter on high heat models



(5 - 6 Tons) Standard Efficiency

Table GD-2 — General Data

|                                         |        |              | 5Ton Co |        |                         |         |        | 6Ton Convertib       |         |
|-----------------------------------------|--------|--------------|---------|--------|-------------------------|---------|--------|----------------------|---------|
|                                         |        | YSC060A      | 1       | YSC    | 060A3, A4, A\           | N, AK   | YS     | C072A3, A4, AV       | /, AK   |
| Cooling Performance <sup>1</sup>        |        |              |         |        |                         |         |        |                      |         |
| Gross Cooling Capacity                  |        | 63,100       |         |        | 63,100                  |         |        | 72,000               |         |
| SEER/EER <sup>2</sup>                   |        | 9.90/—       |         |        | 10.20/—                 |         |        | $-/10.2^{12}$        |         |
| Nominal CFM / ARI Rated CFM             |        | 2,000/2,000  | )       |        | 2,000/2,000             |         |        | 2,400/2,100          |         |
| ARI Net Cooling Capacity                |        | 60,000       |         |        | 60,000                  |         |        | 69,000               |         |
| Integrated Part Load Value <sup>3</sup> |        | _            |         |        | _                       |         |        | _                    |         |
| System Power (KW)                       |        | 6.86         |         |        | 6.78                    |         |        | 6.77                 |         |
| Heating Performance <sup>4</sup>        |        |              |         |        |                         |         |        |                      |         |
| Heating Models                          | Low    | Medium       | High    | Low    | Medium <sup>13</sup>    | High    | Low    | Medium <sup>13</sup> | High    |
| Heating Input (Btu)                     | 60,000 | 80,000       | 130,000 | 60,000 | 80,000                  | 130,000 | 80,000 | 120,000              | 150,000 |
| Heating Output (Btu)                    | 47,000 | 63,000       | 103,000 | 48,000 | 64,000                  | 104,000 | 64,800 | 97,200               | 121,500 |
| AFUE%5                                  | 81     | 81           | 80      | 81     | 81                      | 80      | 81     | 81                   | 81      |
| Steady State Efficiency (%)             | 81     | 81           | 80      | 81     | 81                      | 80      | 81     | 81                   | 81      |
| No. Burners                             | 2      | 2            | 3       | 2      | 2                       | 3       | 2      | 3                    | 3       |
| No. Stages                              | 1      | 1            | 1       | 1      | 1                       | 1       | 1      | 1                    | 2       |
| Gas Supply Line Pressure                |        |              |         |        |                         |         |        |                      |         |
| Natural (minimum/maximum)               |        | 4.5/14.0     |         |        | 4.5/14.0                |         |        | 4.5/14.0             |         |
| LP (minimum/maximum)                    |        | 10.0/14.0    |         |        | 10.0/14.0               |         |        | 10.0/14.0            |         |
| Gas Connection Pipe Size (in.)          | 1/2    | 1/2          | 1/2     | 1/2    | 1/2                     | 1/2     | 1/2    | 1/2                  | 3/4     |
| Compressor                              |        | <u> </u>     |         | -      |                         | -       | -      |                      |         |
| No./Type                                |        | 1/Scroll     |         |        | 1/Scroll                |         |        | 1/Scroll             |         |
| Outdoor Sound Rating (dB)6              |        | 84           |         |        | 84                      |         |        | 88                   |         |
| Outdoor Coil -Type                      |        | Lanced       |         |        | Lanced                  |         |        | Lanced               |         |
| Tube Size (in.) OD                      |        | 0.3125       |         |        | 0.3125                  |         |        | 0.3125               |         |
| Face Area (sq ft)                       |        | 8.81         |         |        | 8.81                    |         |        | 13.88                |         |
| Rows/FPI                                |        | 2/17         |         |        | 2/17                    |         |        | 2/17                 |         |
| Indoor Coil -Type                       |        | Lanced       |         |        | Lanced                  |         |        | Lanced               |         |
| Tube Size (in.)                         |        | 0.3125       |         |        | 0.3125                  |         |        | 0.3125               |         |
| Face Area (sq ft)                       |        | 5.00         |         |        | 5.00                    |         |        | 9.89                 |         |
| Rows/FPI                                |        | 3/16         |         |        | 3/16                    |         |        | 2/16                 |         |
| Refrigerant Control                     | ,      | Short Orific | е       |        | Short Orifice           | )       |        | Short Orifice        |         |
| Drain Connection No./Size (in.)         |        | 1/¾ NPT      |         |        | 1/3/4 NPT               |         |        | 1/3/4 NPT            |         |
| Outdoor Fan -Type                       |        | Propeller    |         |        | Propeller               |         |        | Propeller            |         |
| No. Used/Diameter (in.)                 |        | 1/22         |         |        | 1/22                    |         |        | 1/26                 |         |
| DriveType/No. Speeds                    |        | Direct/1     |         |        | Direct/1                |         |        | Direct/1             |         |
| CFM                                     |        | 3,470        |         |        | 3,470                   |         |        | 6,100                |         |
| No. Motors/HP                           |        | 1/0.33       |         |        | 1/0.3315                |         |        | 1/0.7014             |         |
| Motor RPM                               |        | 1075         |         |        | 1,075                   |         |        | 1,075                |         |
| Direct Drive Indoor Fan -Type           | F      | C Centrifug  | al      |        | FC Centrifuga           | al      |        | N/A                  |         |
| No. Used/Diameter (in.)                 | -      | 1/11 x 118   |         |        | 1/11 x 11 <sup>8</sup>  |         |        | N/A                  |         |
| Drive Type/No. Speeds                   |        | Direct/2     |         |        | Direct/2                |         |        | N/A                  |         |
| No. Motors                              |        | 1            |         |        | 1                       |         |        | N/A                  |         |
| Motor HP (Standard/Oversized)           |        | 0.90/1.00    |         |        | 0.90/1.00 <sup>16</sup> |         |        | N/A                  |         |
| Motor RPM (Standard/Oversized)          |        | 985/1,080°   |         |        | 985/1,080°              |         |        | N/A                  |         |
| Motor Frame Size (Standard/Oversize     | ad)    | 48/48        |         |        | 48/48                   |         |        | N/A                  |         |



## (5 - 6 Tons) **Standard Efficiency**

#### Table GD-2 - Continued

|                                               | 5Ton Co                                                                                                                                           | onvertible                       | 6Ton Convertible     |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------|
|                                               | er (in.) — eeds — edds — edd/Oversized) — lard/Oversized) — (Standard/Oversized) — d <sup>11</sup> Throwaway nended (2) 20 x 25 x 1 <sup>10</sup> | YSC060A3, A4, AW, AK             | YSC072A3, A4, AW, AK |
| Belt Drive Indoor Fan -Type                   | _                                                                                                                                                 | FC Centrifugal                   | FC Centrifugal       |
| No. Used/Diameter (in.)                       | _                                                                                                                                                 | 1/11 x 11                        | 1/12 x 12            |
| DriveType/No. Speeds                          | _                                                                                                                                                 | Belt/Variable Sheave             | Belt/Variable Sheave |
| No. Motors                                    | _                                                                                                                                                 | 1                                | 1                    |
| Motor HP (Standard/Oversized)                 | _                                                                                                                                                 | 1.00/—                           | 1.00/2.0017          |
| Motor RPM (Standard/Oversized)                | _                                                                                                                                                 | 1,750/ —                         | 1,750/1,750          |
| Motor Frame Size (Standard/Oversized)         | _                                                                                                                                                 | 48/—                             | 56/56                |
| Filters -Type Furnished 11                    | Throwaway                                                                                                                                         | Throwaway                        | Throwaway            |
| (No.) Size Recommended                        | (2) $20 \times 25 \times 1^{10}$                                                                                                                  | (2) $20 \times 25 \times 1^{10}$ | (4) 16 x 25 x 2      |
| Refrigerant Charge (Lbs of R-22) <sup>7</sup> | 4.7                                                                                                                                               | 4.9                              | 7.1                  |

- 1. Cooling Performance is rated at 95 F ambient, 80 F entering dry bulb, 67 F entering wet bulb. Gross capacity does not include the effect of fan motor heat. ARI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air-Conditioner Equipment certification program, which is based on ARI Standard 210/240 except AK (380V/60 Hz) units.
- 2. EER and/or SEER are rated at ARI conditions and in accordance with DOE test procedures.

  3. Integrated Part Load Value is rated in accordance with ARI Standard 210/240 or 360. Units are rated at 80° F ambient, 80° F entering dry bulb, and 67° F entering wet bulb at ARI rated cfm.
- Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standards Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level. AFUE is rated in accordance with DOE test procedures.

  Outdoor Sound Rating shown is tested in accordance with ARI Standard 270. For additional information refer to Table PD-90.

  Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions.

  YSC060A1,3.4, W Oversized Motor and YSC060AK Standard Motor Fan Diameter is 12 x 11.

- Motor RPM shown is low speed. High speed RPM is 1100/1135.
- 10. Filter size shown is for low and medium heat models. High heat model filter size recommended is  $20 \times 30 \times 1$ . 11. Optional 2" pleated filters also available.
- YSC072A when used in a horizontal application has an EER of 10.1 and System Power (kW) of 6.83.
   Medium heat is not available for AK (380V/60 Hz) units.
   Outdoor motor is 0.75 hp for AK (380V/60 Hz) units.

- 15. Outdoor motor is 0.40 hp for AK (380V/60 Hz) units.
  16. Standard Motor is 1.00 hp for YSC060AK (380V/60 Hz) units.
  17. Standard Motor is 2.00 hp for the YSC072AK (380V/60 Hz) units.



(7½ - 8½ Tons) Standard Efficiency

Table GD-3 — General Data

|                                         |                 | 7½Ton (            | Convertible |                   |         | 8                  | ½Ton Converti        | ble     |  |
|-----------------------------------------|-----------------|--------------------|-------------|-------------------|---------|--------------------|----------------------|---------|--|
|                                         | Single Comp     |                    |             | ual Compres       |         |                    |                      |         |  |
|                                         | YSC090A3, A4    | , AW, AK           | YS          | C092A3, A4,       | AW      | YSC102A3,A4,AW, AK |                      |         |  |
| Cooling Performance <sup>1</sup>        |                 |                    |             |                   |         |                    |                      |         |  |
| Gross Cooling Capacity                  | 95,000          |                    |             | 92,000            |         |                    | 105,000              |         |  |
| EER <sup>2</sup>                        | 10.1            |                    |             | 10.48             |         |                    | 10.1                 |         |  |
| Nominal CFM / ARI Rated CFM             | 3,000/2,62      | 25                 |             | 3,000/2,625       | 5       |                    | 3,400/3,000          |         |  |
| ARI Net Cooling Capacity                | 90,000          |                    |             | 87,000            |         |                    | 100,000°             |         |  |
| Integrated Part Load Value <sup>3</sup> | _               |                    |             | 11.0 <sup>8</sup> |         |                    | 11.8°                |         |  |
| System Power (KW)                       | 8.91            |                    |             | 8.378             |         |                    | 9.9°                 |         |  |
| Heating Performance <sup>4</sup>        |                 |                    |             |                   |         |                    |                      |         |  |
| Heating Models                          | Low Medium      | <sup>11</sup> High | Low         | Medium            | High    | Low                | Medium <sup>11</sup> | High    |  |
| Heating Input (Btu)                     | 120,000 150,000 | 200,000            | 120,000     | 150,000           | 200,000 | 120,000            | 150,000              | 200,000 |  |
| Heating Output (Btu)                    | 97,200 121,500  | 162000             | 97,200      | 121,500           | 162000  | 97,200             | 121,500              | 162000  |  |
| AFUE%⁵                                  | 81 81           | 81                 | 81          | 81                | 81      | 81                 | 81                   | 81      |  |
| Steady State Efficiency (%)             | 81 81           | 80                 | 81          | 81                | 80      | 81                 | 81                   | 81      |  |
| No. Burners                             | 3 3             | 4                  | 3           | 3                 | 4       | 3                  | 3                    | 4       |  |
| No. Stages                              | 1 2             | 2                  | 1           | 2                 | 2       | 1                  | 2                    | 2       |  |
| Gas Supply Line Pressure                |                 |                    |             |                   |         |                    |                      |         |  |
| Natural (minimum/maximum)               | 4.5/14.0        |                    |             | 4.5/14.0          |         |                    | 4.5/14.0             |         |  |
| LP (minimum/maximum)                    | 10.0/14.0       | )                  |             | 10.0/14.0         |         |                    | 10.0/14.0            |         |  |
| Gas Connection Pipe Size (in.)          | 1/2 3/4         | 3/4                | 1/2         | 3/4               | 3/4     | 1/2                | 3/4                  | 3/4     |  |
| Compressor                              | 4/0 !!          |                    |             | 0/0 !!            |         |                    | 0.00                 |         |  |
| No./Type                                | 1/Scroll        |                    |             | 2/Scrolls         |         |                    | 2/Scrolls            |         |  |
| Outdoor Sound Rating (dB) <sup>6</sup>  | 90              |                    |             | 87                |         |                    | 86                   |         |  |
| Outdoor Coil -Type                      | Lanced          |                    |             | Lanced            |         |                    | Lanced               |         |  |
| Tube Size (in.) OD                      | 0.3125          |                    |             | 0.3125            |         |                    | 0.3125               |         |  |
| Face Area (sq ft)                       | 17.0            |                    |             | 17.0              |         |                    | 19.83                |         |  |
| Rows/FPI                                | 3/17            |                    |             | 2/17              |         |                    | 2/17                 |         |  |
| Indoor Coil -Type                       | Lanced          |                    |             | Lanced            |         |                    | Lanced               |         |  |
| Tube Size (in.)                         | 0.3125          |                    |             | 0.3125            |         |                    | 0.3125               |         |  |
| Face Area (sq ft)                       | 9.89            |                    |             | 9.89              |         |                    | 12.36                |         |  |
| Rows/FPI                                | 3/16            | ,                  |             | 3/16              |         |                    | 3/16                 |         |  |
| Refrigerant Control                     | Short Orifi     |                    |             | Short Orific      | е       |                    | Short Orifice        |         |  |
| Drain Connection No./Size (in.)         | 1/3/4 NP        |                    |             | 1/¾ NPT           |         |                    | 1/3/4 NPT            |         |  |
| Outdoor Fan -Type                       | Propelle        | r                  |             | Propeller         |         |                    | Propeller            |         |  |
| No. Used/Diameter (in.)                 | 1/26            |                    |             | 1/26              |         |                    | 1/26                 |         |  |
| DriveType/No. Speeds                    | Direct/1        |                    |             | Direct/1          |         |                    | Direct/1             |         |  |
| CFM                                     | 6200            |                    |             | 6500              |         |                    | 7100                 |         |  |
| No. Motors/HP                           | 1/0.7012        |                    |             | 1/0.70            |         |                    | 1/0.75               |         |  |
| Motor RPM                               | 1075            |                    |             | 1,075             |         |                    | 1,075                |         |  |



## (7½ - 8½ Tons) **Standard Efficiency**

#### Table GD-3 — Continued

|                                       | 7½Ton (              | Convertible                 | 8½Ton Convertible           |
|---------------------------------------|----------------------|-----------------------------|-----------------------------|
|                                       | Single Compressor    | Dual Compressor             |                             |
|                                       | YSC090A3, A4, AW, AK | YSC092A3, A4, AW            | YSC102A3,A4,AW, AK          |
| Belt Drive Indoor Fan -Type           | FC Centrifugal       | FC Centrifugal              | FC Centrifugal              |
| No. Used/Diameter (in.)               | 1/12 x 12            | 1/12 x 12                   | 1/15 x 15                   |
| DriveType/No. Speeds                  | Belt/Variable Sheave | Belt/Variable Sheave        | Belt/Variable Sheave        |
| No. Motors                            | 1                    | 1                           | 1                           |
| Motor HP (Standard/Oversized)         | 2.00/3.00            | 2.00/3.00                   | 2.00/3.00                   |
| Motor RPM (Standard/Oversized)        | 1,750/1,750          | 1,750/1,750                 | 1,750/1,750                 |
| Motor Frame Size (Standard/Oversized) | 56/56                | 56/56                       | 56/56                       |
| Filters -Type Furnished 10            | Throwaway            | Throwaway                   | Throwaway                   |
| (No.) Size Recommended                | (4) 16 x 25 x 2      | (4) 16 x 25 x 2             | $(4) 20 \times 25 \times 2$ |
| Refrigerant Charge (Lbs of R-22)7     | 11.9                 | 6.2 Circuit 1/3.4 Circuit 2 | 7.9 Circuit 1/4.0 Circuit 2 |

- 1. Cooling Performance is rated at 95 F ambient, 80 F entering dry bulb, 67 F entering wet bulb. Gross capacity does not include the effect of fan motor heat. ARI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air-Conditioner Equipment certification program, which is based on ARI Standard 210/240 except AK (380V/60 Hz) units.

- EER and/or SEER are rated at ARI conditions and in accordance with DOE test procedures.
   Integrated Part Load Value is rated in accordance with ARI Standard 210/240 or 360. Units are rated at 80° F ambient, 80° F entering dry bulb, and 67° F entering wet bulb at ARI rated cfm.
   Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standards Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level. AFUE is rated in accordance with DOE test procedures.

  Outdoor Sound Rating shown is tested in accordance with ARI Standard 270. For additional information refer to Table PD-90.

- Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions.
   YSC092A when applied in a horizontal configuration has a 10.1 EER, 10.7 Integrated Part Load Value, and 8.61 System Power (KW).
   YSC102A when applied in horizontal configuration has an 11.3 Integrated Part Load Value, 9.8 System Power (KW) and 99,000 ARI Net Cooling Capacity.
- 10. Optional 2" pleated filters also available.11. Medium heat is not available for AK (380V/60 Hz) units.
- 12. Outdoor motor is 0.75 hp for AK (380V/60 Hz) units.



## (10 Tons) Standard Efficiency

#### Table GD-4 — General Data

|                                         |         | 10Ton Convertible    |          |  |
|-----------------------------------------|---------|----------------------|----------|--|
|                                         | `       | /SC120A3, A4, AW, A  | AK       |  |
| Cooling Performance <sup>1</sup>        |         |                      |          |  |
| Gross Cooling Capacity                  |         | 118,000              |          |  |
| EER <sup>2</sup>                        |         | 10.2 <sup>8</sup>    |          |  |
| Nominal CFM / ARI Rated CFM             |         | 4,000/3,200          |          |  |
| ARI Net Cooling Capacity                |         | 114,000 <sup>8</sup> |          |  |
| Integrated Part Load Value <sup>3</sup> |         | 11.3 <sup>8</sup>    |          |  |
| System Power (KW)                       |         | 11.18 <sup>8</sup>   |          |  |
| Heating Performance <sup>4</sup>        |         |                      |          |  |
| Heating Models                          | Low     | Medium <sup>10</sup> | High     |  |
| Heating Input (Btu)                     | 150,000 | 200,000              | 250,000  |  |
| Heating Output (Btu)                    | 121,500 | 162,000              | 202,500  |  |
| AFUE% <sup>5</sup>                      | 81      | 81                   | 81       |  |
| Steady State Efficiency (%)             | 81      | 81                   | 81       |  |
| No. Burners                             | 3       | 4                    | 5        |  |
| No. Stages                              | 2       | 2                    | 2        |  |
| Gas Supply Line Pressure                |         |                      |          |  |
| Natural (minimum/maximum)               |         | 4.5/14.0             |          |  |
| LP (minimum/maximum)                    |         | 10.0/14.0            |          |  |
| Gas Connection Pipe Size (in.)          | 3/4     | 3/4                  | 3/4      |  |
| Compressor                              | ·       |                      | <u> </u> |  |
| No./Туре                                |         | 2/Scrolls            |          |  |
| Outdoor Sound Rating (dB) <sup>6</sup>  |         | 86                   |          |  |
| Outdoor Coil -Type                      |         | Lanced               |          |  |
| Tube Size (in.) OD                      |         | 0.3125               |          |  |
| Face Area (sq ft)                       |         | 19.83                |          |  |
| Rows/FPI                                |         | 2/17                 |          |  |
| Indoor Coil -Type                       |         | Lanced               |          |  |
| Tube Size (in.)                         |         | 0.3125               |          |  |
| Face Area (sq ft)                       |         | 12.36                |          |  |
| Rows/FPI                                |         | 4/16                 |          |  |
| Refrigerant Control                     |         | Short Orifice        |          |  |
| Drain Connection No./Size (in.)         |         | 1¾NPT                |          |  |



## (10 Tons) **Standard Efficiency**

#### Table GD-4 - Continued

|                                               | 10Ton Convertible           |  |
|-----------------------------------------------|-----------------------------|--|
|                                               | YSC120A3, A4, AW, AK        |  |
| Outdoor Fan -Type                             | Propeller                   |  |
| No. Used/Diameter (in.)                       | 1/26                        |  |
| DriveType/No. Speeds                          | Direct/1                    |  |
| CFM                                           | 7000                        |  |
| No. Motors/HP                                 | 1/0.75                      |  |
| Motor RPM                                     | 1,075                       |  |
| Belt Drive Indoor Fan -Type                   | FC Centrifugal              |  |
| No. Used/Diameter (in.)                       | 1/15 x 15                   |  |
| DriveType/No. Speeds                          | Belt/Variable Sheave        |  |
| No. Motors                                    | 1                           |  |
| Motor HP (Standard/Oversized)                 | 3.00/5.00                   |  |
| Motor RPM (Standard/Oversized)                | 1,750/3,450                 |  |
| Motor Frame Size (Standard/Oversized)         | 56/56                       |  |
| Filters -Type Furnished 9                     | Throwaway                   |  |
| (No.) Size Recommended                        | (4) 20 x 25 x 2             |  |
| Refrigerant Charge (Lbs of R-22) <sup>7</sup> | 7.2 Circuit 1/5.3 Circuit 2 |  |

- 10. Cooling Performance is rated at 95 F ambient, 80 F entering dry bulb, 67 F entering wet bulb. Gross capacity does not include the effect of fan motor heat. ARI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air-Conditioner Equipment certification program, which is based on ARI Standard 210/240 except AK (380V/60 Hz).

  EER and/or SEER are rated at ARI conditions and in accordance with DOE test procedures.

  Integrated Part Load Value is rated in accordance with ARI Standard 210/240 or 360. Units are rated at 80° F ambient, 80° F entering dry bulb, and 67° F entering wet bulb at ARI rated cfm.

- Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standards Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level. AFUE is rated in accordance with DOE test procedures.

- A Color State Indecoration with ACRI Standard 270. For additional information refer to Table PD-90.
   Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions.
   YSC120A when applied in a horizontal configuration has a 10.1 EER, 112,000 ARI Net Cooling Capacity, 10.7 Integrated Part Load Value and 11.09 System Power (KW).
- Optional 2" pleated filters also available.
   Medium heat is not available for AK (380V/60 Hz) units.



## (3 - 4Tons) High Efficiency

Table GD-5 — General Data

|                                        |        | on Convertible U |         |                      | on Convertible I       |         |  |
|----------------------------------------|--------|------------------|---------|----------------------|------------------------|---------|--|
|                                        | YH     | C036A1, A3, A4,  | AW      | YHC048A1, A3, A4, AW |                        |         |  |
| Cooling Performance <sup>1</sup>       |        |                  |         |                      |                        |         |  |
| Gross Cooling Capacity                 |        | 38,000           |         |                      | 49,800                 |         |  |
| SEER <sup>2</sup>                      |        | 12.50            |         |                      | 12.0                   |         |  |
| Nominal CFM / ARI Rated CFM            |        | 1,200 / 1,200    |         |                      | 1,600/1,600            |         |  |
| ARI Net Cooling Capacity               |        | 36,600           |         |                      | 47,500                 |         |  |
| System Power (KW)                      |        | 3.33             |         |                      | 4.48                   |         |  |
| Heating Performance <sup>3</sup>       |        |                  |         |                      |                        |         |  |
| Heating Models                         | Low    | Medium           | High    | Low                  | Medium                 | High    |  |
| Heating Input (Btu)                    | 60,000 | 80,000           | 120,000 | 60,000               | 80,000                 | 120,000 |  |
| Heating Output (Btu) <sup>7</sup>      | 48,000 | 64,000           | 96,000  | 48,000               | 64,000                 | 96,000  |  |
| AFUE %48                               | 81     | 81               | 81      | 81                   | 81                     | 81      |  |
| Steady State Efficiency (%)8           | 81     | 81               | 81      | 81                   | 81                     | 81      |  |
| No. Burners                            | 2      | 2                | 3       | 2                    | 2                      | 3       |  |
| No. Stages                             | 1      | 1                | 1       | 1                    | 1                      | 1       |  |
| Gas Supply Line Pressure               |        |                  |         |                      |                        |         |  |
| Natural (minimum/maximum)              |        | 4.5/14.0         |         |                      | 4.5/14.0               |         |  |
| LP (minimum/maximum)                   |        | 10.0/14.0        |         |                      | 10.0/14.0              |         |  |
| Gas Connection Pipe Size (in.)         | 1/2    | 1/2              | 1/2     | 1/2                  | 1/2                    | 1/2     |  |
| Compressor                             |        |                  |         |                      |                        |         |  |
| No./Type                               |        | 1/Scroll         |         |                      | 1/Scroll               |         |  |
| Outdoor Sound Rating (dB) <sup>5</sup> |        | 83               |         |                      | 85                     |         |  |
| Outdoor Coil -Type                     |        | Lanced           |         |                      | Lanced                 |         |  |
| Tube Size (in.) OD                     |        | 0.3125           |         |                      | 0.3125                 |         |  |
| Face Area (sq ft)                      |        | 7.19             |         |                      | 9.59                   |         |  |
| Rows/FPI                               |        | 2/17             |         |                      | 3/17                   |         |  |
| Indoor Coil -Type                      |        | Lanced           |         |                      | Lanced                 |         |  |
| Tube Size (in.)                        |        | 0.3125           |         |                      | 0.3125                 |         |  |
| Face Area (sq ft)                      |        | 6.68             |         |                      | 6.68                   |         |  |
| Rows/FPI                               |        | 3/16             |         |                      | 4/16                   |         |  |
| Refrigerant Control                    |        | Short Orifice    |         |                      | Short Orifice          |         |  |
| Drain Connection No./Size (in.)        |        | 1/3/4 NPT        |         |                      | 1/¾ NPT                |         |  |
| Outdoor Fan - Type                     |        | Propeller        |         |                      | Propeller              |         |  |
| No. Used/Diameter (in.)                |        | 1/22             |         |                      | 1/22                   |         |  |
| DriveType/No. Speeds                   |        | Direct/114       |         |                      | Direct/1 <sup>14</sup> |         |  |
| CFM                                    |        | 2,550            |         |                      | 3,050                  |         |  |
| No. Motors/HP                          |        | 1/0.20           |         |                      | 1/0.33                 |         |  |
| Motor RPM                              |        | 1,075            |         |                      | 1,075                  |         |  |



## (3 - 4 Tons) **High Efficiency**

#### Table GD-5 — Continued

|                                                  | 3Ton Convertible Units           | 4Ton Convertible Units           |  |
|--------------------------------------------------|----------------------------------|----------------------------------|--|
|                                                  | YHC036A1, A3, A4, AW             | YHC048A1, A3, A4, AW             |  |
| Direct Drive Indoor Fan -Type                    | FC Centrifugal                   | FC Centrifugal                   |  |
| No. Used/Diameter (in.)                          | 1/10 x10                         | 1/11 x 11                        |  |
| DriveType/No. Speeds                             | Direct/2                         | Direct/2                         |  |
| No. Motors                                       | 1                                | 1                                |  |
| Motor HP (Standard/Oversized)                    | 0.33/0.50                        | 0.60/0.80                        |  |
| Motor RPM (Standard/Oversized)                   | 950/1,100°                       | 930/1,000 <sup>9</sup>           |  |
| Motor Frame Size (Standard/Oversized)            | 48/48                            | 48/48                            |  |
| Belt Drive Indoor Fan -Type                      | FC Centrifugal                   | FC Centrifugal                   |  |
| No. Used/Diameter (in.)                          | 1/11 x 11                        | 1/11 x 11                        |  |
| DriveType/No. Speeds                             | Belt/Variable Sheave 12          | Belt/Variable Sheave 12          |  |
| No. Motors                                       | 1                                | 1                                |  |
| Motor HP (Standard/Oversized)                    | 1.00/—                           | 1.00/—                           |  |
| Motor RPM (Standard/Oversized)                   | 1,750/—                          | 1,750/—                          |  |
| Motor Frame Size (Standard/Oversized)            | 56/—                             | 56/—                             |  |
| Filters - Type Furnished 13                      | Throwaway                        | Throwaway                        |  |
| (No.) Size Recommended                           | (2) $20 \times 25 \times 1^{10}$ | $(2) 20 \times 25 \times 1^{10}$ |  |
| Optional Hot Gas Reheat Coil -Type <sup>15</sup> | Lanced                           | Lanced                           |  |
| Tube Size (in.)OD                                | 0.375                            | 0.375                            |  |
| Face Area (sq. ft.)                              | 2.22                             | 2.22                             |  |
| Rows/FPI                                         | 1/16                             | 1/16                             |  |
| Refrigerant Charge (Lbs of R-22) <sup>6</sup>    |                                  |                                  |  |
| Standard                                         | 5.3 <sup>11</sup>                | 7.7 <sup>11</sup>                |  |
| Optional Hot Gas Reheat Coil                     | 5.3                              | 8.5                              |  |

- 1. Cooling Performance is rated at 95 F ambient, 80 F entering dry bulb, 67 F entering wet bulb. Gross capacity does not include the effect of fan motor heat. ARI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Certified in accordance with the Unitary Air-Conditioner Equipment certification program, which is  $based \, on \, ARI \, Standard \, 210/240.$
- SEER are rated at ARI conditions and in accordance with DOE test procedures.
- 3. Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standards Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level. AFUE and Steady State Efficiency is rated in accordance with DOE test procedures.
- AFUE and Steady State Efficiency is rated in accordance with DUE test procedures.
   Outdoor Sound Rating shown is tested in accordance with ARI Standard 270. For additional information refer to Table PD-90.
   Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions.
   YHC036A1 and YHC048A1 Heating Output (Btu) is Low 47,000, Medium 63,000, High 95,000.
   YHC036A1 and YHC048A1 AFUE (%) and Steady State (%) is Low, Medium and High 80.0.
   Motor RPM shown is low speed. High speed Motor RPM is : YHC036A1,060/1,145, YHC048A1,000/1,100.
   Filter size shown is for low and medium heat models. High heat model filter size recommended is 20 x 30 x 1.

- 11. Refigerant charge shown is for three phase. YHC036A1 Refrigerant Charge is 4.5, YHC048A1 refrigerant charge is 8.1. 12. Belt Drive motor is not available for YHC036A1, YHC048A1
- 13. Optional 2" pleated filters also available.
- 14. With Dehumidification (Hot Gas Reheat) option: Direct/2.
- 15. Available on three-phase only.



(5 - 6 Tons) High Efficiency

Table GD-6 — General Data

|                                          |        |               | 5Ton Convert |        |               |         | 6Ton Convertible Units |                       |         |  |
|------------------------------------------|--------|---------------|--------------|--------|---------------|---------|------------------------|-----------------------|---------|--|
|                                          |        | YHC060A1      |              | YH     | C060A3, A4,   | AW      | Υ                      | HC072A3, A4,          | AW      |  |
| Cooling Performance <sup>1</sup>         |        |               |              |        |               |         |                        |                       |         |  |
| Gross Cooling Capacity                   |        | 62,100        |              |        | 62,400        |         |                        | 73,000                |         |  |
| SEER/EER <sup>2</sup>                    |        | 11.8 / —      |              |        | 12.0/ —       |         |                        | — /11.5 <sup>10</sup> |         |  |
| Nominal CFM / ARI Rated CFM              |        | 2,000 / 2,000 | )            |        | 2,000/2,000   |         |                        | 2,400/2,100           |         |  |
| ARI Net Cooling Capacity                 |        | 59,000        |              |        | 59,500        |         |                        | 70,000                |         |  |
| System Power (KW)                        |        | 5.73          |              |        | 5.56          |         |                        | 6.0910                |         |  |
| Heating Performance <sup>4</sup>         |        |               |              |        |               |         |                        |                       |         |  |
| Heating Models                           | Low    | Medium        | High         | Low    | Medium        | High    | Low                    | Medium                | High    |  |
| Heating Input (Btu)                      | 60,000 | 80,000        | 130,000      | 60,000 | 80,000        | 130,000 | 80,000                 | 120,000               | 150,000 |  |
| Heating Output (Btu)                     | 48,000 | 64,000        | 103,000      | 48,000 | 64,000        | 104,000 | 64,800                 | 97,200                | 121,500 |  |
| AFUE %⁵                                  | 81     | 81            | 80           | 81     | 81            | 80      | 81                     | 81                    | 81      |  |
| Steady State Efficiency (%) <sup>5</sup> | 81     | 81            | 80           | 81     | 81            | 80      | 81                     | 81                    | 81      |  |
| No. Burners                              | 2      | 2             | 3            | 2      | 2             | 3       | 2                      | 3                     | 3       |  |
| No. Stages                               | 1      | 1             | 1            | 1      | 1             | 1       | 1                      | 1                     | 2       |  |
| Gas Supply Line Pressure                 |        |               |              |        |               |         |                        |                       |         |  |
| Natural (minimum/maximum)                |        | 4.5/14.0      |              |        | 4.5/14.0      |         |                        | 4.5/14.0              |         |  |
| LP (minimum/maximum)                     |        | 10.0/14.0     |              |        | 10.0/14.0     |         |                        | 10.0/14.0             |         |  |
| Gas Connection Pipe Size (in.)           | 1/2    | 1/2           | 1/2          | 1/2    | 1/2           | 1/2     | 1/2                    | 1/2                   | 3/4     |  |
| Compressor                               |        |               |              |        |               |         |                        |                       |         |  |
| No./Type                                 |        | 1/Scroll      |              |        | 1/Scroll      |         |                        | 1/Scroll              |         |  |
| Outdoor Sound Rating (dB) <sup>6</sup>   |        | 84            |              |        | 84            |         |                        | 89                    |         |  |
| Outdoor Coil -Type                       |        | Lanced        |              |        | Lanced        |         |                        | Lanced                |         |  |
| Tube Size (in.) OD                       |        | 0.3125        |              |        | 0.3125        |         |                        | 0.3125                |         |  |
| Face Area (sq ft)                        |        | 10.96         |              | 10.96  |               |         | 17.00                  |                       |         |  |
| Rows/FPI                                 |        | 3/17          |              |        | 3/17          |         |                        | 3/17                  |         |  |
| Indoor Coil -Type                        |        | Lanced        |              |        | Lanced        |         |                        | Lanced                |         |  |
| Tube Size (in.)                          |        | 0.3125        |              |        | 0.3125        |         |                        | 0.3125                |         |  |
| Face Area (sq ft)                        |        | 7.71          |              |        | 7.71          |         |                        | 9.89                  |         |  |
| Rows/FPI                                 |        | 4/16          |              |        | 4/16          |         |                        | 3/16                  |         |  |
| Refrigerant Control                      |        | Short Orifice | е            | 9      | Short Orifice | 14      | Short Orifice          |                       |         |  |
| Drain Connection No./Size (in.)          |        | 1/¾ NPT       |              |        | 1/3/4 NPT     |         |                        | 1/3/4 NPT             |         |  |
| Outdoor Fan -Type                        |        | Propeller     |              |        | Propeller     |         |                        | Propeller             |         |  |
| No. Used/Diameter (in.)                  |        | 1/22          |              |        | 1/22          |         |                        | 1/26                  |         |  |
| DriveType/No. Speeds                     |        | Direct/1      |              |        | Direct/113    |         |                        | Direct/1              |         |  |
| CFM                                      |        | 3,170         |              |        | 3,370         |         |                        | 6100                  |         |  |
| No. Motors/HP                            |        | 1/0.33        |              |        | 1/0.33        |         |                        | 1/0.70                |         |  |
| Motor RPM                                |        | 1,075         |              |        | 1,075         |         |                        | 1,075                 |         |  |



## (5 - 6 Tons) **High Efficiency**

#### Table GD-6 - Continued

|                                                  | 5Ton Converti                   | ible Units                         | 6Ton Convertible Units           |
|--------------------------------------------------|---------------------------------|------------------------------------|----------------------------------|
|                                                  | YHC060A1                        | YHC060A3, A4, AW                   | YHC072A3, A4, AW                 |
| Direct Drive Indoor Fan -Type                    | FC Centrifugal                  | FC Centrifugal                     | _                                |
| No. Used/Diameter (in.)                          | 1/11 x 11 <sup>8</sup>          | 1/11 x 11 <sup>8</sup>             | _                                |
| DriveType/No. Speeds                             | Direct/2                        | Direct/2                           | _                                |
| No. Motors                                       | 1                               | 1                                  | _                                |
| Motor HP (Standard/Oversized)                    | 0.90/1.00                       | 0.90/1.00                          | _                                |
| Motor RPM (Standard/Oversized)                   | 985/1,080 <sup>9</sup>          | 985/1,080°                         | _                                |
| Motor Frame Size (Standard/Oversized)            | 48/48                           | 48/48                              |                                  |
| Belt Drive Indoor Fan -Type                      | FC Centrifugal                  | FC Centrifugal                     | FC Centrifugal                   |
| No. Used/Diameter (in.)                          | 1/11 x 11                       | 1/11 x 11                          | 1/12 x 12                        |
| DriveType/No. Speeds                             | Belt/Variable Sheave 11         | Belt/Variable Sheave <sup>11</sup> | Belt/Variable Sheave             |
| No. Motors                                       | 1                               | 1                                  | 1                                |
| Motor HP (Standard/Oversized)                    | 1.00/—                          | 1.00/—                             | 1.00/2.00                        |
| Motor RPM (Standard/Oversized)                   | 1,750/—                         | 1,750/—                            | 1750,1750                        |
| Motor Frame Size (Standard/Oversized)            | 56/—                            | 56/—                               | 56/56                            |
| Filters -Type Furnished                          | Throwaway                       | Throwaway                          | Throwaway                        |
| (No.) Size Recommended                           | $(2)20 \times 30 \times 1^{12}$ | (2) $20 \times 30 \times 1^{12}$   | (4) $16 \times 25 \times 2^{12}$ |
| Optional Hot Gas Reheat Coil -Type <sup>15</sup> | _                               | Lanced                             | _                                |
| Tube Size (in.)OD                                | _                               | 0.375                              | _                                |
| Face Area (sq. ft.)                              | _                               | 2.22                               | _                                |
| Rows/FPI                                         | _                               | 2/16                               | _                                |
| Refrigerant Charge (Lbs of R-22)7                | 70                              | 0.4                                | 10.7                             |
| Standard Optional Hot Gas Reheat Coil            | 7.9                             | 8.4<br>10.7                        | 10.7                             |
| Optional Hot Gas Reneat Coll                     |                                 | 10.7                               | <del>_</del>                     |

- 1. Cooling Performance is rated at 95 F ambient, 80 F entering dry bulb, 67 F entering wet bulb. Gross capacity does not include the effect of fan motor heat. ARI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air-Conditioner Equipment certification program,
- which is based on ARI Standard 210/240.

  2. EER and/or SEER are rated at ARI conditions and in accordance with DOE test procedures.
- Integrated Part Load Value is rated in accordance with ARI Standard 210/240 or 360. Units are rated at 80° F ambient, 80° F entering dry bulb, and 67° F entering wet bulb at ARI rated cfm.
   Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standards Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level.
- AFUE is rated in accordance with DOE test procedures.
- Outdoor Sound Rating shown is tested in accordance with ARI Standard 270. For additional information refer to Table PD-90.
   Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions.

- YHC060A Oversized Motor Fan Diameter is 12 x 11.
   Motor RPM shown is low speed. High speed Motor RPM is 1,100/1,135.
   YHC072A when applied in a horizontal configuration has an 11.3 EER and 6.2 System Power (kW).
- 11. Belt Drive Motor is not available for YHC060A1.
  12. 2\* pleated filters is a factory installed option. 2\* pleated filters is standard with the Dehumidification (Hot Gas Reheat) option.
  13. With Dehumidification (Hot Gas Reheat) option: Direct/2.
- 14. TXV is supplied from the factory as standard with the Dehumidification (Hot Gas Reheat) option.
- Available on three-phase only.



## (7½ - 10 Tons) **High Efficiency**

Table CD-7 - Coneral Data

|                                         |               | onvertible<br>3, A4, AV |        |     |         | Ton Convert<br>C102A3, A4, |          |         | 10Ton Converti<br>HC120A3, A4, |          |
|-----------------------------------------|---------------|-------------------------|--------|-----|---------|----------------------------|----------|---------|--------------------------------|----------|
| OEDf1                                   | 1 HC092F      | 3, A4, AV               | v      |     | YП      | C102A3, A4,                | AVV      | Ť       | HC 120A3, A4,                  | AVV      |
| Cooling Performance <sup>1</sup>        | 0.4           | 000                     |        |     |         | 100.000                    |          |         | 117000                         |          |
| Gross Cooling Capacity                  |               | .000                    |        |     |         | 103,000                    |          |         | 117,000                        |          |
| EER <sup>2</sup>                        |               | 1.58                    |        |     |         | 11.59                      |          |         | 11.210                         |          |
| Nominal CFM / ARI Rated CFM             | -,            | /2,625                  |        |     |         | 3,400/3,000                |          |         | 4,000/3,200                    |          |
| ARI Net Cooling Capacity                |               | 000 <sup>8</sup>        |        |     |         | 98,000°                    |          |         | 109,00010                      |          |
| Integrated Part Load Value <sup>3</sup> |               | l.8 <sup>8</sup>        |        |     |         | 11.8º                      |          |         | 11.710                         |          |
| System Power (KW)                       | 7.            | 33 <sup>8</sup>         |        |     |         | 8.52 <sup>9</sup>          |          |         | 9.7310                         |          |
| leating Performance <sup>4</sup>        |               |                         |        |     |         |                            |          |         |                                |          |
| Heating Models                          | Low Me        | dium                    | High   |     | Low     | Medium                     | High     | Low     | Medium                         | High     |
| Heating Input (Btu)                     | 120,000 150   | ,000 20                 | 00,000 |     | 120,000 | 150,000                    | 200,000  | 150,000 | 200,000                        | 250,00   |
| Heating Output (Btu)                    | 97,200 121    | ,500 1                  | 62000  |     | 97,200  | 121,500                    | 162000   | 121,500 | 162,000                        | 202,50   |
| AFUE% <sup>5</sup>                      | ,             | 31                      | 81     |     | 81      | 81                         | 81       | 81      | 81                             | 81       |
| Steady State Efficiency (%)             |               | 31                      | 80     |     | 81      | 81                         | 80       | 81      | 81                             | 81       |
| No. Burners                             |               | 3                       | 4      |     | 3       | 3                          | 4        | 3       | 4                              | 5        |
| No. Stages                              |               | 2                       | 2      |     | 1       | 2                          | 2        | 2       | 2                              | 2        |
| Gas Supply Line Pressure                | •             | _                       | -      |     | •       | _                          | -        | _       | _                              | _        |
| Natural (minimum/maximum)               | 4 5           | 14.0                    |        |     |         | 4.5/14.0                   |          |         | 4.5/14.0                       |          |
| LP (minimum/maximum)                    |               | /14.0                   |        |     |         | 10.0/14.0                  |          |         | 10.0/14.0                      |          |
| Gas Connection Pipe Size (in.)          | 1/2           | 3/4                     |        | 3/4 | 1/2     | 3/4                        | 3/4      | 3/4     | 3/4                            | 3/4      |
| Compressor                              | 1/2           | 3/4                     |        | 3/4 | 1/2     | 3/4                        | 3/4      | 3/4     | 3/4                            | 3/4      |
| No./Type                                | 2/Sc          | rolls                   |        |     |         | 2/Scrolls                  |          |         | 2/Scrolls                      |          |
| Outdoor Sound Rating (dB)6              | (             | 91                      |        |     |         | 89                         |          |         | 88                             |          |
| Outdoor Coil -Type                      | Lar           | nced                    |        |     |         | Lanced                     |          |         | Lanced                         |          |
| Tube Size (in.) OD                      | 0.3           | 125                     |        |     |         | 0.3125                     |          |         | 0.3125                         |          |
| Face Area (sq ft)                       | 1             | 7.5                     |        |     |         | 19.83                      |          |         | 27.21                          |          |
| Rows/FPI                                | 3.            | 17                      |        |     |         | 3/17                       |          |         | 3/17                           |          |
| ndoor Coil -Type                        |               | nced                    |        |     |         | Lanced                     |          |         | Lanced                         |          |
| Tube Size (in.)                         |               | 125                     |        |     |         | 0.3125                     |          |         | 0.3125                         |          |
| Face Area (sq ft)                       |               | 2.36                    |        |     |         | 12.36                      |          |         | 12.36                          |          |
| Rows/FPI                                |               |                         |        |     |         | 4/16                       |          |         | 5/16                           |          |
| Refrigerant Control                     | -             | Orifice                 |        |     |         | Short Orifice              | _        |         | Short Orifice                  |          |
| 3                                       |               | NPT                     |        |     |         | 1/34 NPT                   | 3        |         | 1/34 NPT                       | ;        |
| Drain Connection No./Size (in.)         |               |                         |        |     |         |                            |          |         |                                |          |
| Outdoor Fan -Type                       |               | oeller                  |        |     |         | Propeller                  |          |         | Propeller                      |          |
| No. Used/Diameter (in.)                 |               | 26                      |        |     |         | 1/26                       |          |         | 1/26                           |          |
| DriveType/No. Speeds                    |               | ect/1                   |        |     |         | Direct/1                   |          |         | Direct/1                       |          |
| CFM                                     |               | 200                     |        |     |         | 6600                       |          |         | 7000                           |          |
| No. Motors/HP                           | 1/0           | ).70                    |        |     |         | 1/0.75                     |          |         | 1/0.75                         |          |
| Motor RPM                               | 10            | )75                     |        |     |         | 1,075                      |          |         | 1,075                          |          |
| Belt Drive Indoor Fan -Type             |               | ntrifugal               |        |     | ı       | C Centrifuga               | al       |         | FC Centrifuga                  | al       |
| No. Used/Diameter (in.)                 | 1/15          | x 15                    |        |     |         | 1/15 x 15                  |          |         | 1/15 x 15                      |          |
| DriveType/No. Speeds                    | Belt/Varia    | ble Sheav               | /e     |     | Belt    | Variable Sh                | eave     | Be      | elt/Variable Sho               | eave     |
| No. Motors                              |               | 1                       |        |     |         | 1                          |          |         | 1                              |          |
| Motor HP (Standard/Oversized)           | 2.00          | /3.00                   |        |     |         | 2.00/3.00                  |          |         | 3.00/5.00                      |          |
| Motor RPM (Standard/Oversized)          | 1.750         | /1,750                  |        |     |         | 1,750/1,750                |          |         | 1,750/3,450                    |          |
| Motor Frame Size (Standard/Oversize     |               | 5/56                    |        |     |         | 56/56                      |          |         | 56/56                          |          |
| Filters -Type Furnished <sup>11</sup>   | Throv         | vaway                   |        |     |         | Throwaway                  |          |         | Throwaway                      |          |
| (No.) Size Recommended                  | (4) 20        | x 25 x 2                |        |     | (       | 4) 20 x 25 x               | 2        |         | (4) 20 x 25 x                  | 2        |
| Optional Reheat Coil -Type              |               | nced                    |        |     |         | Lanced                     |          |         | Lanced                         |          |
| Tube Size (in.) OD                      |               | 375                     |        |     |         | 0.375                      |          |         | 0.375                          |          |
| Face Area (sq. ft.)                     |               | .19                     |        |     |         | 5.19                       |          |         | 5.19                           |          |
| Rows/FPI                                |               | 16                      |        |     |         | 2/16                       |          |         | 2/16                           |          |
| Refrigerant Charge (Lbs of R-22)7       | 6.4 Circuit 1 | 16.2 Circ               | uit 2  |     | 74 Cir  | cuit 1/7.1 C               | irouit 2 | 11 0 (  | Circuit 1/7.3 C                | irouit 2 |

- 1. Cooling Performance is rated at 95 F ambient, 80 F entering dry bulb, 67 F entering wet bulb. Gross capacity does not include the effect of fan motor heat. ARI capacity is net and includes the effect of fan motor heat. Units are suitable for operation to ±20% of nominal cfm. Units are certified in accordance with the Unitary Air-Conditioner Equipment certification program, which is based on
- EER and/or SEER are rated at ARI conditions and in accordance with DOE test procedures.

  Integrated Part Load Value is rated in accordance with ARI Standard 210/240 or 360. Units are rated at 80° F ambient, 80° F entering dry bulb, and 67° F entering wet bulb at ARI rated cfm.
- Heating Performance limit settings and rating data were established and approved under laboratory test conditions using American National Standards Institute standards. Ratings shown are for elevations up to 2000 feet. For elevations above 2000 feet, ratings should be reduced at the rate of 4% for each 1000 feet above sea level. AFUE is rated in accordance with DOE test procedures.
- Outdoor Sound Rating shown is tested in accordance with ARI Standard 270. For additional information refer to Table PD-90.
- Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions. YHC092A when applied in a horizontal configuration has an 11.3 EER, 89,000 ARI Net Cooling Capacity, 11.4 Integrated Part Load Value, and 7.88 System Power (KW). YHC102A when applied in horizontal configuration has an 11.3 EER, 11.3 IPLV, 97,000 ARI Net Cooling Capacity and 8.58 System Power (KW).
- 10. YHC120A when applied in a horizontal configuration has an 10.7 EER, 11.2 IPL, 108,000 ARI Net Cooling and 10.09 System Power (KW). 11. Optional 2" pleated filters also available.



## **Performance** (3 Ton) **Data**

**Standard Efficiency** 

Table PD-1 - Gross Cooling Capacities (MBH) 3 Ton Single/Three Phase YSC036A1, A3, A4, AW

|         |      |      |      |      |      |      |      |      |      |      | Ambi | entTer | nperat | ure (F)        | )    |      |      |      |      |      |      |      |      |      |      |
|---------|------|------|------|------|------|------|------|------|------|------|------|--------|--------|----------------|------|------|------|------|------|------|------|------|------|------|------|
|         |      |      |      | 8    | 5    |      |      |      |      | 9    | 5    |        |        |                |      | 10   | 05   |      |      |      |      | 1    | 15   |      |      |
|         | Ente | r. — |      |      |      |      |      |      |      |      |      |        |        |                |      |      |      |      |      |      |      |      |      |      |      |
|         | Dry  |      |      |      |      |      |      |      |      |      | Ente | ring V | let Bu | b (F)          |      |      |      |      |      |      |      |      |      |      |      |
| CFM     | Bulb |      | 61   | 6    | 57   | 7    | 3    | 16   | 1    | 6    | 7    | 7      | 3      | <sub>1</sub> 6 | 31   | 6    | 7    | 7    | 3    | 6    | 31   | 6    | 57   | 7    | 73   |
| Airflow | (F)  | MBH  | SHC  | MBH    | SHC    | MBH            | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  |
|         | 75   | 34.6 | 29.0 | 38.6 | 22.3 | 40.6 | 14.7 | 31.2 | 27.3 | 36.6 | 21.1 | 39.5   | 13.8   | 28.2           | 25.6 | 33.4 | 19.6 | 37.8 | 12.9 | 25.1 | 24.1 | 29.6 | 18.2 | 35.5 | 11.9 |
| 1080    | 80   | 35.6 | 35.0 | 38.8 | 27.3 | 41.0 | 20.2 | 32.6 | 32.6 | 36.8 | 26.6 | 39.8   | 19.5   | 30.0           | 30.0 | 33.5 | 25.2 | 38.0 | 18.5 | 27.3 | 27.3 | 29.9 | 23.5 | 35.6 | 17.5 |
| 1000    | 85   | 37.6 | 37.6 | 39.2 | 32.5 | 41.5 | 24.7 | 35.6 | 35.6 | 37.2 | 32.2 | 40.1   | 24.2   | 32.8           | 32.8 | 34.2 | 31.0 | 38.2 | 23.8 | 30.1 | 30.1 | 30.7 | 29.3 | 35.8 | 23.0 |
|         | 90   | 39.3 | 39.3 | 39.7 | 37.6 | 42.0 | 29.2 | 37.8 | 37.8 | 37.9 | 37.6 | 40.4   | 29.1   | 35.7           | 35.7 | 35.7 | 35.7 | 38.5 | 28.9 | 33.0 | 33.0 | 32.9 | 32.9 | 36.0 | 28.4 |
|         | 75   | 35.6 | 30.9 | 39.0 | 22.8 | 40.9 | 14.9 | 32.2 | 29.2 | 37.3 | 22.1 | 39.8   | 14.1   | 29.0           | 27.5 | 34.3 | 20.7 | 38.2 | 13.1 | 25.9 | 25.9 | 30.4 | 19.0 | 36.0 | 12.1 |
| 1200    | 80   | 36.7 | 36.7 | 39.3 | 28.4 | 41.4 | 20.6 | 34.3 | 34.3 | 37.4 | 28.1 | 40.2   | 20.3   | 31.4           | 31.4 | 34.5 | 26.9 | 38.4 | 19.3 | 28.6 | 28.6 | 30.7 | 25.2 | 36.1 | 18.3 |
| 1200    | 85   | 38.7 | 38.7 | 39.7 | 33.9 | 41.9 | 25.3 | 37.0 | 37.0 | 37.9 | 34.0 | 40.5   | 25.0   | 34.5           | 34.5 | 35.3 | 33.2 | 38.7 | 24.8 | 31.5 | 31.5 | 31.7 | 31.6 | 36.3 | 24.2 |
|         | 90   | 40.2 | 40.2 | 40.4 | 39.2 | 42.3 | 30.1 | 38.8 | 38.8 | 38.8 | 38.8 | 40.9   | 30.2   | 37.1           | 37.1 | 37.0 | 37.0 | 39.1 | 30.3 | 34.6 | 34.6 | 34.6 | 34.6 | 36.6 | 30.0 |
|         | 75   | 36.4 | 32.6 | 39.4 | 23.5 | 41.1 | 15.1 | 33.2 | 31.0 | 37.7 | 23.0 | 40.1   | 14.3   | 29.8           | 29.3 | 34.9 | 21.8 | 38.5 | 13.4 | 26.8 | 26.8 | 30.9 | 20.0 | 36.3 | 12.4 |
| 1320    | 80   | 37.7 | 37.7 | 39.7 | 29.4 | 41.6 | 20.9 | 35.7 | 35.7 | 37.9 | 29.3 | 40.4   | 21.2   | 32.7           | 32.7 | 35.2 | 28.5 | 38.7 | 19.9 | 29.8 | 29.8 | 31.4 | 26.8 | 36.5 | 19.0 |
| 1320    | 85   | 39.4 | 39.4 | 40.2 | 35.2 | 42.1 | 25.9 | 37.9 | 37.9 | 38.5 | 35.6 | 40.8   | 25.7   | 35.9           | 35.9 | 36.2 | 35.3 | 39.1 | 25.7 | 32.9 | 32.9 | 32.9 | 32.9 | 36.7 | 25.3 |
|         | 90   | 40.8 | 40.8 | 40.9 | 40.5 | 42.6 | 30.8 | 39.7 | 39.7 | 39.6 | 39.6 | 41.2   | 31.2   | 38.0           | 38.0 | 38.0 | 38.0 | 39.5 | 31.6 | 35.9 | 35.9 | 35.9 | 35.9 | 37.1 | 31.5 |
|         | 75   | 37.0 | 34.1 | 39.7 | 24.0 | 41.3 | 15.3 | 34.1 | 32.8 | 38.0 | 23.7 | 40.3   | 14.5   | 30.6           | 30.6 | 35.5 | 22.7 | 38.7 | 13.6 | 27.7 | 27.7 | 31.4 | 21.0 | 36.6 | 12.6 |
| 1440    | 80   | 38.4 | 38.4 | 40.0 | 30.3 | 41.8 | 21.2 | 36.7 | 36.7 | 38.3 | 30.5 | 40.8   | 21.0   | 33.9           | 33.9 | 35.8 | 30.0 | 39.0 | 20.4 | 30.8 | 30.8 | 32.0 | 28.4 | 36.8 | 19.7 |
| 1440    | 85   | 40.0 | 40.0 | 40.6 | 36.3 | 42.4 | 26.4 | 38.7 | 38.7 | 39.0 | 37.0 | 41.2   | 26.7   | 36.8           | 36.8 | 36.8 | 36.8 | 39.4 | 26.6 | 34.2 | 34.2 | 34.2 | 34.2 | 37.0 | 26.4 |
|         | 90   | 41.4 | 41.4 | 41.4 | 41.4 | 42.9 | 31.6 | 40.3 | 40.3 | 40.3 | 40.3 | 41.5   | 32.1   | 38.7           | 38.7 | 38.7 | 38.7 | 39.9 | 32.7 | 36.7 | 36.7 | 36.7 | 36.7 | 37.6 | 33.0 |

Notes:

1. All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

2. MBH = Total Gross Capacity

3. SHC = Sensible Heat Capacity



## **Performance** (4 Ton) **Data**

# (4 Ton) Standard Efficiency

Table PD-2 - Gross Cooling Capacities (MBH) 4 Ton Single Phase YSC048A1

|         |      |      |      |      |      |      |      |      |      |      | Ambi | entTen | nperat | ure (F) |      |      |      |      |      |      |      |      |      |      |      |
|---------|------|------|------|------|------|------|------|------|------|------|------|--------|--------|---------|------|------|------|------|------|------|------|------|------|------|------|
|         |      |      |      | 8    | 5    |      |      |      |      | 9    | 15   |        |        |         |      | 10   | 05   |      |      |      |      | 1    | 15   |      |      |
|         | Ente | r    |      |      |      |      |      |      |      |      |      |        |        |         |      |      |      |      |      |      |      |      |      |      |      |
|         | Dry  |      |      |      |      |      |      |      |      |      | Ente | ring W | let Bu | b (F)   |      |      |      |      |      |      |      |      |      |      |      |
| CFM     | Bulb | 6    | 1    | 6    | 57   | 7    | 3    | 6    | 1    | 6    | 57   | 7      | 3      | 6       | 1    | 6    | 7    | 7    | 3    | 6    | 1    | 6    | 7    | 7    | 3    |
| Airflow | (F)  | MBH  | SHC  | MBH    | SHC    | MBH     | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  |
|         | 75   | 45.5 | 38.7 | 52.4 | 30.0 | 56.4 | 20.1 | 41.6 | 36.6 | 49.0 | 28.3 | 54.4   | 18.9   | 37.6    | 34.5 | 44.4 | 26.7 | 51.8 | 17.5 | 33.5 | 32.3 | 39.8 | 24.5 | 48.0 | 15.8 |
| 1440    | 80   | 46.5 | 46.5 | 52.5 | 37.6 | 56.8 | 28.1 | 43.2 | 43.2 | 49.1 | 35.9 | 54.8   | 26.7   | 39.9    | 39.9 | 44.6 | 33.8 | 52.0 | 25.2 | 36.5 | 36.5 | 40.1 | 31.6 | 48.2 | 23.4 |
|         | 85   | 50.3 | 50.3 | 53.0 | 45.1 | 57.4 | 34.9 | 47.0 | 47.0 | 49.7 | 43.7 | 55.0   | 33.9   | 43.6    | 43.6 | 45.3 | 41.6 | 52.2 | 32.8 | 40.2 | 40.2 | 41.0 | 39.5 | 48.3 | 31.0 |
|         | 90   | 53.3 | 53.3 | 53.8 | 52.5 | 57.7 | 41.1 | 50.8 | 50.8 | 50.8 | 50.8 | 55.5   | 41.0   | 47.5    | 47.5 | 47.5 | 47.5 | 52.5 | 40.1 | 44.0 | 44.0 | 44.0 | 44.0 | 48.6 | 38.6 |
|         | 75   | 46.8 | 41.3 | 53.1 | 31.3 | 56.9 | 20.5 | 42.7 | 39.1 | 50.1 | 29.7 | 55.0   | 19.2   | 38.7    | 37.0 | 45.4 | 27.5 | 52.4 | 17.9 | 34.4 | 34.4 | 40.8 | 25.4 | 48.9 | 16.3 |
| 1000    | 80   | 48.7 | 48.7 | 53.4 | 39.5 | 57.5 | 28.9 | 45.2 | 45.2 | 50.3 | 38.2 | 55.4   | 27.8   | 41.8    | 41.8 | 45.7 | 36.0 | 52.7 | 26.3 | 38.2 | 38.2 | 41.1 | 33.9 | 49.1 | 24.7 |
| 1600    | 85   | 52.2 | 52.2 | 53.9 | 47.5 | 58.1 | 36.1 | 49.3 | 49.3 | 51.0 | 46.7 | 55.7   | 35.3   | 45.7    | 45.7 | 46.7 | 44.7 | 52.9 | 34.5 | 42.1 | 42.1 | 42.1 | 42.1 | 49.2 | 33.0 |
|         | 90   | 54.9 | 54.9 | 54.9 | 54.9 | 58.4 | 42.8 | 52.7 | 52.7 | 52.7 | 52.7 | 56.2   | 42.9   | 49.8    | 49.8 | 49.8 | 49.8 | 53.3 | 42.5 | 46.2 | 46.2 | 46.2 | 46.2 | 49.7 | 41.3 |
|         | 75   | 48.1 | 43.8 | 53.6 | 32.5 | 57.3 | 20.8 | 43.8 | 41.6 | 50.8 | 31.1 | 55.5   | 19.6   | 39.8    | 39.5 | 46.3 | 29.0 | 52.9 | 18.2 | 35.8 | 35.8 | 41.5 | 26.7 | 49.6 | 16.7 |
| 1700    | 80   | 50.5 | 50.5 | 54.0 | 41.2 | 58.0 | 29.6 | 47.1 | 47.1 | 51.1 | 40.3 | 55.9   | 29.0   | 43.4    | 43.4 | 46.7 | 38.2 | 53.2 | 27.4 | 39.8 | 39.8 | 42.0 | 36.0 | 49.7 | 25.8 |
| 1760    | 85   | 53.6 | 53.6 | 54.8 | 49.8 | 58.6 | 37.1 | 51.1 | 51.1 | 52.0 | 49.4 | 56.3   | 36.6   | 47.7    | 47.7 | 48.1 | 47.9 | 53.5 | 36.1 | 43.9 | 43.9 | 43.9 | 43.9 | 49.9 | 34.9 |
|         | 90   | 56.1 | 56.1 | 56.1 | 56.1 | 59.0 | 44.2 | 54.2 | 54.2 | 54.1 | 54.1 | 56.9   | 44.8   | 51.5    | 51.5 | 51.5 | 51.5 | 54.1 | 44.7 | 48.2 | 48.2 | 48.2 | 48.2 | 50.5 | 43.9 |
|         | 75   | 49.1 | 46.3 | 54.2 | 33.5 | 57.7 | 21.2 | 44.9 | 44.0 | 51.5 | 32.4 | 55.9   | 20.0   | 40.7    | 40.7 | 47.1 | 30.4 | 53.3 | 18.6 | 37.0 | 37.0 | 42.2 | 28.1 | 50.1 | 17.0 |
| 4000    | 80   | 51.9 | 51.9 | 54.6 | 42.7 | 58.4 | 30.1 | 48.8 | 48.8 | 51.8 | 42.2 | 56.3   | 30.2   | 45.0    | 45.0 | 47.7 | 40.4 | 53.7 | 28.5 | 41.2 | 41.2 | 42.9 | 38.2 | 50.3 | 26.9 |
| 1920    | 85   | 54.7 | 54.7 | 55.5 | 51.8 | 59.1 | 38.1 | 52.5 | 52.5 | 52.9 | 51.8 | 56.8   | 37.8   | 49.4    | 49.4 | 49.4 | 49.4 | 54.1 | 37.6 | 45.5 | 45.5 | 45.5 | 45.5 | 50.5 | 36.6 |
|         | 90   | 57.1 | 57.1 | 57.1 | 57.1 | 59.4 | 45.6 | 55.3 | 55.3 | 55.3 | 55.3 | 57.4   | 46.4   | 52.8    | 52.8 | 52.8 | 52.8 | 54.7 | 46.7 | 49.8 | 49.8 | 49.8 | 49.8 | 51.3 | 46.2 |

Table PD-3 — Gross Cooling Capacities (MBH) 4 Ton Three Phase YSC048A3, A4, AW

|         |      |      |      |      |      |      |      |      |      |      | Ambi | entTen | nperat | ure (F) |      |      |      |      |      |      |      |      |      |      | -    |
|---------|------|------|------|------|------|------|------|------|------|------|------|--------|--------|---------|------|------|------|------|------|------|------|------|------|------|------|
|         |      |      |      | 8    | 5    |      |      |      |      | 9    | 5    |        |        |         |      | 10   | )5   |      |      |      |      | 11   | 15   |      |      |
|         | Ente | r    |      |      |      |      |      |      |      |      |      |        |        |         |      |      |      |      |      |      |      |      |      |      |      |
|         | Dry  |      |      |      |      |      |      |      |      |      | Ente | ring W | let Bu | lb (F)  |      |      |      |      |      |      |      |      |      |      |      |
| CFM     | Bulb | 6    | 1    | 6    | 57   | 7    | 3    | 6    | 1    | 6    | 7    | 7      | 3      | 6       | 31   | 6    | 7    | 7    | 3    | 6    | 1    | 6    | 7    | 7    | 3    |
| Airflow | (F)  | MBH  | SHC  | MBH    | SHC    | MBH     | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  |
|         | 75   | 44.8 | 38.6 | 51.4 | 29.8 | 56.1 | 20.1 | 41.0 | 36.6 | 48.2 | 28.2 | 53.7   | 18.9   | 37.3    | 34.7 | 44.2 | 26.4 | 50.8 | 17.6 | 33.4 | 32.7 | 39.6 | 25.2 | 47.1 | 16.0 |
| 1440    | 80   | 46.0 | 46.0 | 51.6 | 37.4 | 56.5 | 27.9 | 42.9 | 42.9 | 48.3 | 35.8 | 54.0   | 26.6   | 39.7    | 39.7 | 44.4 | 34.0 | 51.0 | 25.2 | 36.4 | 36.4 | 40.0 | 32.0 | 47.2 | 23.6 |
| 1440    | 85   | 49.6 | 49.6 | 52.0 | 44.8 | 56.7 | 34.8 | 46.8 | 46.8 | 48.9 | 43.6 | 54.2   | 34.0   | 43.6    | 43.6 | 45.1 | 41.8 | 51.2 | 32.7 | 40.3 | 40.3 | 41.0 | 39.8 | 47.4 | 31.1 |
|         | 90   | 52.5 | 52.5 | 52.9 | 52.2 | 57.2 | 41.6 | 50.2 | 50.2 | 50.1 | 50.1 | 54.6   | 41.1   | 47.2    | 47.2 | 47.2 | 47.2 | 51.5 | 40.1 | 43.9 | 43.9 | 43.9 | 43.9 | 47.7 | 38.6 |
|         | 75   | 46.1 | 41.1 | 52.1 | 31.1 | 56.7 | 20.5 | 42.1 | 39.0 | 49.1 | 29.6 | 54.4   | 19.3   | 38.3    | 37.1 | 45.1 | 27.8 | 51.5 | 18.0 | 34.3 | 34.3 | 40.6 | 25.7 | 47.9 | 16.5 |
| 1600    | 80   | 48.1 | 48.1 | 52.4 | 39.3 | 57.2 | 29.0 | 44.9 | 44.9 | 49.2 | 37.9 | 54.7   | 27.7   | 41.5    | 41.5 | 45.4 | 36.2 | 51.7 | 26.3 | 38.1 | 38.1 | 41.0 | 34.2 | 48.0 | 24.8 |
| 1000    | 85   | 51.4 | 51.4 | 53.0 | 47.3 | 57.7 | 36.7 | 48.7 | 48.7 | 50.0 | 46.4 | 55.0   | 35.5   | 45.6    | 45.6 | 46.3 | 44.8 | 51.9 | 34.6 | 42.1 | 42.1 | 42.1 | 42.1 | 48.2 | 33.0 |
|         | 90   | 54.2 | 54.2 | 54.2 | 54.2 | 58.0 | 43.5 | 51.9 | 51.9 | 51.9 | 51.9 | 55.4   | 43.2   | 49.1    | 49.1 | 49.1 | 49.1 | 52.3 | 42.5 | 45.9 | 45.9 | 45.9 | 45.9 | 48.7 | 41.3 |
|         | 75   | 47.2 | 43.5 | 52.8 | 32.3 | 57.3 | 20.9 | 43.3 | 41.5 | 49.8 | 30.9 | 54.9   | 19.7   | 39.1    | 39.1 | 45.8 | 29.1 | 52.0 | 18.3 | 35.6 | 35.6 | 41.3 | 27.1 | 48.5 | 16.8 |
| 1760    | 80   | 49.7 | 49.7 | 53.1 | 41.0 | 57.8 | 30.1 | 46.7 | 46.7 | 50.1 | 40.0 | 55.3   | 28.8   | 43.3    | 43.3 | 46.2 | 38.3 | 52.3 | 27.4 | 39.7 | 39.7 | 41.8 | 36.3 | 48.7 | 25.9 |
| 1700    | 85   | 52.8 | 52.8 | 53.8 | 49.7 | 58.1 | 37.7 | 50.3 | 50.3 | 51.0 | 49.1 | 55.6   | 37.0   | 47.2    | 47.2 | 47.2 | 47.2 | 52.5 | 36.1 | 43.7 | 43.7 | 43.7 | 43.7 | 48.9 | 34.9 |
|         | 90   | 55.5 | 55.5 | 55.5 | 55.5 | 58.7 | 45.3 | 53.4 | 53.4 | 53.4 | 53.4 | 56.1   | 45.2   | 50.7    | 50.7 | 50.7 | 50.7 | 53.1 | 44.7 | 47.6 | 47.6 | 47.6 | 47.6 | 49.5 | 43.8 |
|         | 75   | 48.2 | 45.8 | 53.3 | 33.4 | 57.8 | 21.3 | 44.4 | 43.8 | 50.4 | 32.1 | 55.4   | 20.0   | 40.3    | 40.3 | 46.5 | 30.4 | 52.5 | 18.6 | 36.6 | 36.6 | 41.9 | 28.3 | 49.0 | 17.2 |
| 1000    | 80   | 51.0 | 51.0 | 53.7 | 42.7 | 58.3 | 31.1 | 48.1 | 48.1 | 50.7 | 41.9 | 55.7   | 29.6   | 44.7    | 44.7 | 47.0 | 40.3 | 52.8 | 28.4 | 41.1 | 41.1 | 42.6 | 38.3 | 49.2 | 26.9 |
| 1920    | 85   | 53.9 | 53.9 | 54.6 | 51.8 | 58.6 | 38.7 | 51.6 | 51.6 | 51.9 | 51.5 | 56.2   | 38.4   | 48.6    | 48.6 | 48.6 | 48.6 | 53.1 | 37.7 | 45.2 | 45.2 | 45.2 | 45.2 | 49.4 | 36.6 |
|         | 90   | 56.6 | 56.6 | 56.6 | 56.6 | 59.3 | 47.0 | 54.6 | 54.6 | 54.5 | 54.5 | 56.8   | 47.1   | 52.0    | 52.0 | 52.0 | 52.0 | 53.8 | 46.9 | 49.0 | 49.0 | 49.0 | 49.0 | 50.3 | 46.1 |

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

2. MBH = Total Gross Capacity

3. SHC = Sensible Heat Capacity

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow

table notes.

MBH = Total Gross Capacity

SHC = Sensible Heat Capacity



### **Performance** (5 - 6 Ton) **Standard Efficiency Data**

Table PD-4 — Gross Cooling Capacities (MBH) 5 Ton Single/Three Phase YSC060A1,A3,A4,AW, AK

|         |      |      |      |      |      |      |      |      |      |      | Ambi | entTen | nperat | ure (F) |      |      |      |      |      |      |      |      |              |      |      |
|---------|------|------|------|------|------|------|------|------|------|------|------|--------|--------|---------|------|------|------|------|------|------|------|------|--------------|------|------|
|         |      |      |      | 8    | 5    |      |      |      |      | 9    | 15   |        |        |         |      | 10   | 05   |      |      |      |      | 11   | 15           |      |      |
|         | Ente | r    |      |      |      |      |      |      |      |      |      |        |        |         |      |      |      |      |      |      |      |      |              |      |      |
|         | Dry  |      |      |      |      |      |      | ı    |      |      | Ente | ring W | let Bu | b (F)   |      |      |      |      |      | ı    |      |      |              |      |      |
| CFM     | Bulb | 6    | 1    | 6    | 7    | 7    | 3    | 6    | 31   | 6    | 57   | 7      | 3      | 6       | 31   | 6    | 7    | 7    | 3    | 6    | 1    | 6    | <del>7</del> | 7    | 3    |
| Airflow | (F)  | MBH  | SHC  | MBH    | SHC    | MBH     | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC          | MBH  | SHC  |
|         | 75   | 57.4 | 49.1 | 64.8 | 37.9 | 69.2 | 25.3 | 53.3 | 47.0 | 61.8 | 36.3 | 67.2   | 24.1   | 49.4    | 45.0 | 57.6 | 34.3 | 64.3 | 22.8 | 45.2 | 42.9 | 52.4 | 32.7         | 60.6 | 21.2 |
| 1800    | 80   | 59.0 | 59.0 | 65.1 | 47.1 | 69.8 | 35.0 | 55.6 | 55.6 | 62.0 | 45.7 | 67.6   | 33.8   | 52.2    | 52.2 | 57.8 | 43.9 | 64.6 | 32.3 | 48.6 | 48.6 | 52.8 | 41.6         | 60.8 | 30.6 |
| 1000    | 85   | 63.1 | 63.1 | 65.7 | 56.2 | 70.2 | 42.9 | 60.3 | 60.3 | 62.7 | 55.3 | 68.0   | 42.3   | 56.8    | 56.8 | 58.9 | 53.6 | 64.9 | 41.3 | 52.9 | 52.9 | 54.0 | 51.4         | 61.0 | 39.9 |
|         | 90   | 66.4 | 66.4 | 66.9 | 65.2 | 70.8 | 51.0 | 64.1 | 64.1 | 64.1 | 64.1 | 68.5   | 50.8   | 61.1    | 61.1 | 61.1 | 61.1 | 65.4 | 50.1 | 57.5 | 57.5 | 57.5 | 57.5         | 61.5 | 49.0 |
|         | 75   | 59.0 | 52.2 | 65.7 | 39.4 | 69.8 | 25.7 | 54.9 | 50.1 | 62.8 | 37.9 | 67.8   | 24.6   | 50.7    | 48.0 | 58.9 | 36.1 | 64.9 | 23.2 | 46.5 | 45.9 | 53.5 | 33.8         | 61.3 | 21.6 |
| 2000    | 80   | 61.3 | 61.3 | 66.0 | 49.2 | 70.2 | 35.6 | 58.1 | 58.1 | 63.1 | 48.2 | 68.1   | 34.8   | 54.4    | 54.4 | 59.2 | 46.6 | 65.3 | 33.7 | 50.6 | 50.6 | 54.0 | 44.3         | 61.5 | 32.0 |
| 2000    | 85   | 65.1 | 65.1 | 66.8 | 59.1 | 70.9 | 44.2 | 62.5 | 62.5 | 64.0 | 58.5 | 68.7   | 43.8   | 59.3    | 59.3 | 60.4 | 57.3 | 65.7 | 43.1 | 55.2 | 55.2 | 55.8 | 55.2         | 61.8 | 41.9 |
|         | 90   | 68.1 | 68.1 | 68.0 | 68.0 | 71.6 | 52.9 | 65.9 | 65.9 | 65.9 | 65.9 | 69.4   | 52.9   | 63.1    | 63.1 | 63.1 | 63.1 | 66.3 | 52.5 | 59.7 | 59.7 | 59.7 | 59.7         | 62.4 | 51.7 |
|         | 75   | 60.3 | 55.2 | 66.3 | 40.6 | 70.2 | 26.1 | 56.3 | 53.1 | 63.6 | 39.5 | 68.2   | 25.0   | 52.0    | 51.0 | 59.9 | 37.8 | 65.4 | 23.6 | 47.7 | 47.7 | 54.5 | 35.4         | 61.8 | 22.0 |
| 2200    | 80   | 63.1 | 63.1 | 66.8 | 51.2 | 70.8 | 37.9 | 60.2 | 60.2 | 64.0 | 50.5 | 68.7   | 35.6   | 56.5    | 56.5 | 60.3 | 49.1 | 65.8 | 34.6 | 52.4 | 52.4 | 55.2 | 46.9         | 62.1 | 33.3 |
| 2200    | 85   | 66.5 | 66.5 | 67.7 | 61.6 | 71.5 | 45.4 | 64.2 | 64.2 | 65.0 | 61.3 | 69.4   | 45.2   | 61.2    | 61.2 | 61.7 | 60.5 | 66.4 | 44.7 | 57.3 | 57.3 | 57.3 | 57.3         | 62.5 | 43.8 |
|         | 90   | 69.4 | 69.4 | 69.3 | 69.3 | 72.2 | 54.6 | 67.3 | 67.3 | 67.3 | 67.3 | 70.1   | 54.9   | 64.6    | 64.6 | 64.6 | 64.6 | 67.1 | 54.8 | 61.2 | 61.2 | 61.2 | 61.2         | 63.2 | 54.2 |
|         | 75   | 61.5 | 58.0 | 66.9 | 41.8 | 70.6 | 26.5 | 57.6 | 56.0 | 64.2 | 40.8 | 68.6   | 25.4   | 53.0    | 53.0 | 60.6 | 39.3 | 65.9 | 24.0 | 49.1 | 49.1 | 55.4 | 37.1         | 62.2 | 22.4 |
| 2400    | 80   | 64.5 | 64.5 | 67.5 | 53.0 | 71.2 | 38.8 | 61.8 | 61.8 | 64.7 | 52.5 | 69.1   | 36.4   | 58.3    | 58.3 | 61.1 | 51.4 | 66.3 | 35.5 | 53.9 | 53.9 | 56.3 | 49.5         | 62.5 | 34.3 |
| 2400    | 85   | 67.7 | 67.7 | 68.5 | 63.9 | 72.0 | 46.5 | 65.4 | 65.4 | 65.9 | 63.9 | 69.9   | 46.5   | 62.5    | 62.5 | 62.5 | 62.5 | 66.9 | 46.2 | 58.9 | 58.9 | 58.9 | 58.9         | 63.0 | 45.5 |
|         | 90   | 70.4 | 70.4 | 70.4 | 70.4 | 72.8 | 56.1 | 68.4 | 68.4 | 68.4 | 68.4 | 70.6   | 56.6   | 65.8    | 65.8 | 65.8 | 65.8 | 67.7 | 56.8 | 62.4 | 62.4 | 62.4 | 62.4         | 63.9 | 56.5 |

Table PD-5 — Gross Cooling Capacities (MBH) 6 Ton Three Phase YSC072A3,A4,AW, AK

|         |     |       |      |      |      |      |      |      |      |      | Ambi | entTen | nperat | ure (F) | )    |      |      |      |      |      |      |      |      |      |      |
|---------|-----|-------|------|------|------|------|------|------|------|------|------|--------|--------|---------|------|------|------|------|------|------|------|------|------|------|------|
|         |     |       |      | 8    | 5    |      |      |      |      | 9    | 5    |        |        |         |      | 10   | )5   |      |      |      |      | 11   | 15   |      |      |
|         | Er  | nter. |      |      |      |      |      |      |      |      |      |        |        |         |      |      |      |      |      |      |      |      |      |      |      |
|         | Dr  | У     |      |      |      |      |      |      |      |      | Ente | ring W | Vet Bu | b (F)   |      |      |      |      |      | ı    |      |      |      |      |      |
| CFM     | Bι  | dlu   | 61   | 6    | 7    | 7    | 3    | 6    | 1    | 6    | 7    | 7      | 3      | 6       | 1    | 6    | 7    | 7    | 3    | 6    | 1    | 6    | 7    | 7    | '3   |
| Airflow | (F) | MBH   | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH    | SHC    | MBH     | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  |
|         | 75  | 65.9  | 55.0 | 73.4 | 43.5 | 76.7 | 28.3 | 61.0 | 52.5 | 70.7 | 40.9 | 75.4   | 27.3   | 56.3    | 50.1 | 66.3 | 38.8 | 73.2 | 26.0 | 51.7 | 47.7 | 60.9 | 36.4 | 70.3 | 24.6 |
| 0100    | 80  | 67.6  | 66.2 | 73.7 | 52.2 | 77.5 | 38.9 | 63.2 | 63.2 | 70.9 | 51.1 | 76.0   | 37.8   | 59.2    | 59.2 | 66.4 | 49.1 | 73.7 | 36.4 | 55.3 | 55.3 | 61.0 | 46.6 | 70.6 | 34.9 |
| 2160    | 85  | 71.4  | 71.4 | 74.2 | 61.9 | 78.6 | 47.4 | 68.5 | 68.5 | 71.4 | 61.3 | 76.5   | 46.6   | 64.4    | 64.4 | 67.3 | 59.7 | 74.0 | 46.0 | 60.4 | 60.4 | 62.2 | 57.3 | 70.8 | 45.0 |
|         | 90  | 74.6  | 74.6 | 75.3 | 71.3 | 79.3 | 55.7 | 72.4 | 72.4 | 72.8 | 71.3 | 77.2   | 55.5   | 69.5    | 69.5 | 69.5 | 69.5 | 74.6 | 55.4 | 65.7 | 65.7 | 65.6 | 65.6 | 71.2 | 54.8 |
|         | 75  | 67.7  | 58.3 | 74.0 | 43.8 | 77.1 | 28.7 | 62.9 | 55.9 | 71.7 | 42.6 | 75.9   | 27.7   | 57.9    | 53.4 | 67.9 | 40.8 | 73.7 | 26.4 | 53.2 | 51.0 | 62.4 | 38.3 | 70.9 | 25.0 |
| 2400    | 80  | 69.7  | 69.7 | 74.6 | 54.1 | 78.0 | 39.5 | 66.2 | 66.2 | 72.0 | 53.6 | 76.6   | 39.2   | 61.8    | 61.8 | 68.0 | 52.0 | 74.3 | 37.9 | 57.8 | 57.8 | 62.6 | 49.6 | 71.3 | 36.3 |
| 2400    | 85  | 73.4  | 73.4 | 75.3 | 64.5 | 79.0 | 48.2 | 70.9 | 70.9 | 72.7 | 64.5 | 77.2   | 47.9   | 67.4    | 67.4 | 69.1 | 63.6 | 74.8 | 47.6 | 63.2 | 63.2 | 64.2 | 61.4 | 71.7 | 47.0 |
|         | 90  | 76.2  | 76.2 | 76.5 | 74.3 | 79.9 | 57.1 | 74.3 | 74.3 | 74.3 | 74.3 | 77.9   | 57.4   | 71.7    | 71.7 | 71.7 | 71.7 | 75.5 | 57.7 | 68.5 | 68.5 | 68.4 | 68.4 | 72.2 | 57.5 |
|         | 75  | 69.1  | 61.4 | 74.7 | 44.9 | 77.4 | 29.0 | 64.5 | 59.1 | 72.5 | 44.3 | 76.2   | 28.1   | 59.4    | 56.6 | 69.0 | 42.5 | 74.2 | 26.9 | 54.7 | 54.2 | 63.6 | 40.1 | 71.3 | 25.4 |
| 2040    | 80  | 71.6  | 71.6 | 75.3 | 55.8 | 78.4 | 40.0 | 68.6 | 68.6 | 72.8 | 55.8 | 77.0   | 41.1   | 64.2    | 64.2 | 69.1 | 54.7 | 74.6 | 38.6 | 60.0 | 60.0 | 63.9 | 52.4 | 71.9 | 37.7 |
| 2640    | 85  | 74.8  | 74.8 | 76.1 | 66.8 | 79.4 | 49.1 | 72.7 | 72.7 | 73.8 | 67.3 | 77.8   | 49.3   | 69.7    | 69.7 | 70.5 | 66.9 | 75.4 | 49.1 | 65.7 | 65.7 | 66.1 | 65.4 | 72.3 | 48.7 |
|         | 90  | 77.4  | 77.4 | 77.5 | 76.8 | 80.3 | 58.4 | 75.8 | 75.8 | 75.8 | 75.8 | 78.5   | 59.0   | 73.4    | 73.4 | 73.3 | 73.3 | 76.2 | 59.7 | 70.5 | 70.5 | 70.5 | 70.5 | 73.0 | 59.8 |
|         | 75  | 70.2  | 64.1 | 75.2 | 45.8 | 77.6 | 29.4 | 66.1 | 62.3 | 73.1 | 45.4 | 76.5   | 28.5   | 60.9    | 59.7 | 69.8 | 44.2 | 74.5 | 27.3 | 56.2 | 56.2 | 64.7 | 41.9 | 71.7 | 25.8 |
| 2000    | 80  | 72.9  | 72.9 | 75.9 | 57.4 | 78.7 | 40.4 | 70.3 | 70.3 | 73.6 | 57.8 | 77.3   | 41.8   | 66.5    | 66.5 | 70.1 | 57.1 | 75.2 | 41.1 | 62.0 | 62.0 | 65.2 | 55.2 | 72.1 | 38.5 |
| 2880    | 85  | 75.9  | 75.9 | 76.8 | 68.8 | 79.7 | 49.9 | 74.0 | 74.0 | 74.7 | 69.8 | 78.5   | 50.6   | 71.3    | 71.3 | 71.6 | 69.8 | 75.9 | 50.4 | 67.8 | 67.8 | 67.7 | 67.7 | 72.9 | 50.1 |
|         | 90  | 78.3  | 78.3 | 78.3 | 78.3 | 80.7 | 59.6 | 76.8 | 76.8 | 76.8 | 76.8 | 79.0   | 60.5   | 74.6    | 74.6 | 74.6 | 74.6 | 76.7 | 61.6 | 71.9 | 71.9 | 71.9 | 71.9 | 73.7 | 61.9 |

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow

table notes.

2. MBH = Total Gross Capacity

<sup>3.</sup> SHC = Sensible Heat Capacity

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

<sup>2.</sup> MBH = Total Gross Capacity
3. SHC = Sensible Heat Capacity



### **Performance** (7½Ton) (7½Ton) Standard Efficiency **Data**

Table PD-6 — Gross Cooling Capacities (MBH) 7½ Ton Single Compressor Three Phase YSC090A3,A4,AW, AK

|         |     |       |       |       |       |       |      |       |       |       | Ambi  | entTen | nperat | ure (F) | )    |      |      |       |      |      |      |      |                                               |      |          |
|---------|-----|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|--------|--------|---------|------|------|------|-------|------|------|------|------|-----------------------------------------------|------|----------|
|         |     |       |       | 8     | 35    |       |      |       |       | 9     | 5     |        |        |         |      | 10   | 05   |       |      |      |      | 1    | 15                                            |      |          |
|         |     | iter. |       |       |       |       |      |       |       |       |       |        |        |         |      |      |      |       |      |      |      |      |                                               |      |          |
|         | Dr  | У     |       |       |       |       |      | ı     |       |       | Ente  | ring W | /et Bu | b (F)   |      |      |      |       |      |      |      |      |                                               |      |          |
| CFM     | Bu  | ılb   | 61    | 6     | 57    |       | 3    | 6     | 1     | 6     |       | 7      | _      | 6       |      | 6    |      | 7     | 3    | 6    | 1    | 6    | <u> 7                                    </u> | 7    | <u> </u> |
| Airflow | (F) | MBH   | SHC   | MBH   | SHC   | MBH   | SHC  | MBH   | SHC   | MBH   | SHC   | MBH    | SHC    | MBH     | SHC  | MBH  | SHC  | MBH   | SHC  | MBH  | SHC  | MBH  | SHC                                           | MBH  | SHC      |
|         | 75  | 87.4  | 73.8  | 96.2  | 56.7  | 98.8  | 36.7 | 80.6  | 70.3  | 93.3  | 54.3  | 98.8   | 35.6   | 73.5    | 66.6 | 86.9 | 51.2 | 96.8  | 33.9 | 66.6 | 63.1 | 78.4 | 48.2                                          | 92.8 | 31.8     |
| 2700    | 80  | 89.6  | 88.9  | 96.6  | 68.7  | 100.0 | 49.9 | 83.4  | 83.4  | 93.5  | 68.3  | 99.9   | 50.2   | 77.6    | 77.6 | 87.2 | 65.3 | 97.4  | 48.2 | 71.6 | 71.6 | 78.9 | 61.5                                          | 92.9 | 46.0     |
| 2700    | 85  | 94.2  | 94.2  | 97.5  | 81.6  | 101.2 | 60.4 | 90.4  | 90.4  | 94.4  | 82.2  | 100.9  | 61.9   | 84.8    | 84.8 | 88.5 | 79.8 | 97.8  | 61.4 | 78.5 | 78.5 | 80.7 | 76.2                                          | 93.2 | 59.9     |
|         | 90  | 98.0  | 98.0  | 98.7  | 93.9  | 102.3 | 71.0 | 95.8  | 95.8  | 96.2  | 95.8  | 101.2  | 72.9   | 91.6    | 91.6 | 91.6 | 91.6 | 98.5  | 74.3 | 86.0 | 86.0 | 86.0 | 86.0                                          | 93.7 | 73.5     |
|         | 75  | 89.7  | 78.4  | 96.7  | 57.3  | 99.1  | 37.2 | 83.0  | 75.0  | 94.6  | 56.7  | 99.2   | 36.1   | 75.8    | 71.3 | 88.9 | 53.9 | 97.5  | 34.5 | 68.7 | 67.7 | 80.3 | 50.1                                          | 93.8 | 32.5     |
| 3000    | 80  | 92.2  | 92.2  | 97.5  | 70.9  | 100.3 | 50.4 | 87.4  | 87.4  | 95.0  | 71.8  | 100.4  | 50.9   | 81.4    | 81.4 | 89.3 | 69.5 | 98.3  | 50.3 | 75.0 | 75.0 | 81.1 | 65.8                                          | 94.1 | 48.1     |
| 3000    | 85  | 96.5  | 96.5  | 98.5  | 84.4  | 101.5 | 61.2 | 93.8  | 93.8  | 96.1  | 86.6  | 101.6  | 63.4   | 88.9    | 88.9 | 91.0 | 85.5 | 98.8  | 63.7 | 82.5 | 82.5 | 83.7 | 82.1                                          | 94.4 | 63.1     |
|         | 90  | 99.5  | 99.5  | 99.9  | 97.0  | 102.6 | 72.3 | 98.2  | 98.2  | 98.2  | 98.2  | 101.9  | 75.0   | 94.9    | 94.9 | 94.9 | 94.9 | 99.7  | 77.4 | 90.1 | 90.1 | 90.0 | 90.0                                          | 95.3 | 77.7     |
|         | 75  | 91.5  | 82.5  | 97.7  | 59.0  | 99.3  | 37.7 | 85.2  | 79.6  | 95.5  | 58.8  | 99.5   | 36.6   | 78.0    | 76.0 | 90.5 | 56.5 | 98.0  | 35.1 | 70.5 | 70.5 | 82.1 | 52.8                                          | 94.5 | 33.2     |
| 3300    | 80  | 94.4  | 94.4  | 98.1  | 72.8  | 100.5 | 55.0 | 90.7  | 90.7  | 96.2  | 74.8  | 100.8  | 51.6   | 84.7    | 84.7 | 91.1 | 73.5 | 98.9  | 51.5 | 78.0 | 78.0 | 83.2 | 70.0                                          | 95.0 | 50.1     |
| 3300    | 85  | 98.0  | 98.0  | 99.2  | 86.8  | 101.7 | 62.0 | 96.1  | 96.1  | 97.5  | 90.5  | 102.0  | 64.7   | 92.0    | 92.0 | 93.1 | 90.6 | 99.5  | 65.6 | 86.2 | 86.2 | 86.2 | 86.2                                          | 95.4 | 65.8     |
|         | 90  | 100.5 | 100.5 | 100.7 | 99.4  | 102.8 | 73.4 | 99.9  | 99.9  | 99.9  | 99.9  | 102.4  | 76.8   | 97.2    | 97.2 | 97.2 | 97.2 | 100.5 | 80.1 | 93.0 | 93.0 | 93.0 | 93.0                                          | 96.5 | 81.4     |
|         | 75  | 92.9  | 86.2  | 98.1  | 59.9  | 99.4  | 38.2 | 87.3  | 84.1  | 96.3  | 60.6  | 99.8   | 37.2   | 79.6    | 79.6 | 91.7 | 58.9 | 98.3  | 35.7 | 72.9 | 72.9 | 83.7 | 55.4                                          | 95.1 | 33.8     |
| 3600    | 80  | 96.0  | 96.0  | 98.6  | 74.3  | 100.7 | 56.8 | 93.1  | 93.1  | 97.1  | 77.5  | 101.0  | 55.7   | 87.6    | 87.6 | 92.5 | 77.2 | 99.5  | 52.7 | 80.7 | 80.7 | 85.1 | 74.1                                          | 95.5 | 51.6     |
| 3000    | 85  | 99.0  | 99.0  | 99.7  | 88.7  | 101.8 | 62.7 | 97.8  | 97.8  | 98.6  | 93.7  | 102.3  | 65.8   | 94.4    | 94.4 | 94.4 | 94.4 | 100.0 | 67.3 | 89.1 | 89.1 | 89.1 | 89.1                                          | 96.3 | 68.3     |
|         | 90  | 101.1 | 101.1 | 101.1 | 101.1 | 103.0 | 74.4 | 101.0 | 101.0 | 101.0 | 101.0 | 102.8  | 78.4   | 98.9    | 98.9 | 98.9 | 98.9 | 101.2 | 82.4 | 95.1 | 95.1 | 95.1 | 95.1                                          | 97.5 | 84.6     |

Table PD-7 — Gross Cooling Capacities (MBH) 71/2 Ton Dual Compressors Three Phase YSC092A3,A4,AW

| -       |     |       |       |       |       |       |      |      |      |      | Ambi | entTen | nperat | ure (F) |      |      |      |      |      |      |      |      |      |      |      |
|---------|-----|-------|-------|-------|-------|-------|------|------|------|------|------|--------|--------|---------|------|------|------|------|------|------|------|------|------|------|------|
|         |     |       |       | 8     | 15    |       |      |      |      | 9    | 5    |        | -      |         |      | 10   | )5   |      |      |      |      | 1    | 15   |      |      |
|         | Er  | nter. |       |       |       |       |      |      |      |      |      |        |        |         |      |      |      |      |      |      |      |      |      |      |      |
|         | Dr  | У     |       |       |       |       |      | ı    |      |      | Ente | ring W | et Bul | b (F)   |      |      |      |      |      | ı    |      |      |      |      |      |
| CFM     | Βι  | ılb   | 61    | 6     | 57    | 7     | 3    | 6    | 1    | 6    | 7    | 7      | 3      | 6       | 31   | 6    | 7    | 7    | 3    | 6    | 1    | 6    | 7    | 7    | 3    |
| Airflow | (F) | MBH   | SHC   | MBH   | SHC   | MBH   | SHC  | MBH  | SHC  | MBH  | SHC  | MBH    | SHC    | MBH     | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  |
|         | 75  | 84.6  | 72.9  | 93.9  | 55.3  | 98.4  | 36.4 | 78.2 | 69.6 | 90.1 | 53.3 | 96.9   | 35.1   | 71.8    | 66.3 | 83.9 | 50.4 | 94.0 | 33.3 | 65.3 | 63.1 | 76.5 | 47.1 | 89.4 | 31.2 |
| 2700    | 80  | 86.8  | 86.8  | 94.4  | 68.5  | 99.6  | 50.0 | 81.8 | 81.8 | 90.5 | 67.5 | 98.0   | 49.7   | 76.4    | 76.4 | 84.3 | 64.7 | 94.5 | 47.5 | 70.9 | 70.9 | 77.1 | 61.4 | 89.6 | 45.3 |
| 2700    | 85  | 92.2  | 92.2  | 95.4  | 81.7  | 100.8 | 61.3 | 88.4 | 88.4 | 91.5 | 81.5 | 99.0   | 62.4   | 83.2    | 83.2 | 85.8 | 79.3 | 94.9 | 60.9 | 77.6 | 77.6 | 79.0 | 76.1 | 89.9 | 59.3 |
|         | 90  | 96.3  | 96.3  | 96.9  | 94.4  | 102.0 | 72.8 | 93.6 | 93.6 | 93.6 | 93.6 | 99.3   | 73.4   | 89.6    | 89.6 | 89.6 | 89.6 | 95.8 | 74.0 | 84.5 | 84.5 | 84.5 | 84.5 | 90.6 | 73.0 |
|         | 75  | 86.8  | 77.5  | 94.7  | 57.0  | 98.9  | 37.1 | 80.5 | 74.4 | 91.5 | 55.8 | 97.6   | 35.7   | 74.0    | 71.1 | 85.6 | 53.1 | 94.8 | 34.0 | 67.1 | 67.1 | 78.2 | 49.8 | 90.5 | 31.9 |
| 3000    | 80  | 90.1  | 90.1  | 95.6  | 71.2  | 100.2 | 50.8 | 85.4 | 85.4 | 92.0 | 71.1 | 98.7   | 50.7   | 79.9    | 79.9 | 86.3 | 68.9 | 95.5 | 49.6 | 74.1 | 74.1 | 79.1 | 65.7 | 90.8 | 47.4 |
| 3000    | 85  | 94.7  | 94.7  | 96.8  | 85.3  | 101.4 | 62.7 | 91.5 | 91.5 | 93.3 | 86.2 | 99.7   | 63.7   | 86.9    | 86.9 | 88.2 | 84.9 | 96.1 | 63.5 | 81.3 | 81.3 | 81.2 | 81.2 | 91.2 | 62.6 |
|         | 90  | 98.3  | 98.3  | 98.3  | 98.3  | 102.7 | 74.8 | 96.2 | 96.2 | 96.1 | 96.1 | 100.3  | 76.2   | 92.7    | 92.7 | 92.7 | 92.7 | 97.1 | 77.5 | 88.0 | 88.0 | 88.0 | 88.0 | 92.2 | 77.4 |
|         | 75  | 88.7  | 81.9  | 95.7  | 58.9  | 99.3  | 37.6 | 82.6 | 79.0 | 92.5 | 58.2 | 98.1   | 36.2   | 75.5    | 75.5 | 87.1 | 55.7 | 95.4 | 34.6 | 69.6 | 69.6 | 79.6 | 52.4 | 91.3 | 32.5 |
| 3300    | 80  | 92.3  | 92.3  | 96.5  | 73.7  | 100.7 | 51.5 | 88.4 | 88.4 | 93.2 | 74.4 | 99.3   | 51.7   | 82.9    | 82.9 | 87.9 | 72.8 | 96.1 | 51.0 | 76.9 | 76.9 | 80.8 | 69.8 | 91.7 | 49.5 |
| 3300    | 85  | 96.5  | 96.5  | 97.8  | 88.4  | 102.0 | 63.9 | 93.8 | 93.8 | 94.8 | 90.3 | 100.0  | 65.0   | 89.8    | 89.8 | 89.8 | 89.8 | 96.9 | 65.8 | 84.4 | 84.4 | 84.4 | 84.4 | 92.3 | 65.5 |
|         | 90  | 99.7  | 99.7  | 99.7  | 99.7  | 103.3 | 76.5 | 98.0 | 98.0 | 98.0 | 98.0 | 101.1  | 78.5   | 94.9    | 94.9 | 94.9 | 94.9 | 98.1 | 80.6 | 90.7 | 90.7 | 90.7 | 90.7 | 93.5 | 81.3 |
|         | 75  | 90.2  | 85.7  | 96.4  | 60.6  | 99.7  | 38.1 | 84.6 | 83.6 | 93.3 | 60.0 | 98.5   | 36.8   | 77.9    | 77.9 | 88.2 | 58.1 | 96.0 | 35.2 | 71.8 | 71.8 | 80.9 | 55.0 | 92.0 | 33.2 |
| 3600    | 80  | 94.0  | 94.0  | 97.2  | 75.8  | 101.0 | 52.1 | 90.7 | 90.7 | 94.3 | 77.4 | 99.7   | 52.6   | 85.6    | 85.6 | 89.2 | 76.6 | 96.6 | 52.0 | 79.5 | 79.5 | 82.3 | 73.8 | 92.5 | 51.5 |
| 3000    | 85  | 97.8  | 97.8  | 98.7  | 91.1  | 102.4 | 65.0 | 95.6 | 95.6 | 96.1 | 93.9 | 100.5  | 66.3   | 91.9    | 91.9 | 91.9 | 91.9 | 97.6 | 67.9 | 86.9 | 86.9 | 86.9 | 86.9 | 93.1 | 68.2 |
|         | 90  | 100.8 | 100.8 | 100.8 | 100.8 | 103.7 | 78.1 | 99.3 | 99.3 | 99.3 | 99.3 | 101.7  | 80.7   | 96.6    | 96.6 | 96.6 | 96.6 | 98.9 | 83.4 | 92.7 | 92.7 | 92.7 | 92.7 | 94.6 | 84.9 |

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

2. MBH = Total Gross Capacity

3. SHC = Sensible Heat Capacity

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

<sup>2.</sup> MBH = Total Gross Capacity
3. SHC = Sensible Heat Capacity



## **Data**

## Performance (8½ - 10 Ton) **Standard Efficiency**

Table PD-8 — Gross Cooling Capacities (MBH) 8½ Ton Three Phase YSC102A3, A4, AW, AK

|         |      |          |      |       |       |       |      |       |       |       | Ambi  | entTen | nperat         | ture (F) |       |       |       |       |      |       |       |       |       |       |      |
|---------|------|----------|------|-------|-------|-------|------|-------|-------|-------|-------|--------|----------------|----------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|------|
|         |      |          |      | 8     | 5     |       |      |       |       | 9     | 5     |        |                |          |       | 10    | )5    |       |      |       |       | 11    | 5     |       |      |
|         | Ente | r.       |      |       |       |       |      |       |       |       |       |        |                |          |       |       |       |       |      |       |       |       |       |       |      |
|         | Dry  |          |      |       |       |       |      |       |       |       | Ente  | ring W | <i>l</i> et Bu | lb (F)   |       |       |       |       |      |       |       |       |       |       |      |
| CFM     | Bulb | 61       |      | 6     | 7     | 7     | 3    | 6     | 1     | 6     | 7     | 7      | 3              | 6        | 31    | 6     | 7     | 7     | 3    | 6     | 1     | 6     | 7     | 7     | 3    |
| Airflow | (F)  | MBH S    | HC   | MBH   | SHC   | MBH   | SHC  | MBH   | SHC   | MBH   | SHC   | MBH    | SHC            | MBH      | SHC   | MBH   | SHC   | MBH   | SHC  | MBH   | SHC   | MBH   | SHC   | MBH   | SHC  |
|         | 75   | 96.3 8   | 2.3  | 106.6 | 62.7  | 112.5 | 41.5 | 89.0  | 78.5  | 103.2 | 60.6  | 110.9  | 40.0           | 81.8     | 74.9  | 96.6  | 57.5  | 107.6 | 38.1 | 74.9  | 71.3  | 87.6  | 55.2  | 102.5 | 35.8 |
| 3060    | 80   | 98.0 9   | 0.8  | 107.2 | 77.1  | 113.7 | 57.0 | 92.9  | 91.4  | 103.4 | 76.3  | 111.5  | 57.1           | 86.3     | 86.2  | 96.9  | 73.3  | 108.2 | 54.0 | 80.2  | 80.2  | 88.1  | 69.4  | 102.8 | 51.5 |
| 3000    | 85   | 103.9 10 | 03.9 | 108.1 | 91.7  | 114.8 | 69.6 | 100.1 | 100.1 | 104.3 | 91.7  | 112.4  | 70.0           | 94.3     | 94.3  | 98.3  | 89.5  | 108.6 | 68.9 | 87.6  | 87.6  | 89.9  | 85.7  | 103.1 | 67.1 |
|         | 90   | 108.6 10 | 08.6 | 109.6 | 105.7 | 116.0 | 82.4 | 105.9 | 105.9 | 105.9 | 105.9 | 113.2  | 83.0           | 101.6    | 101.6 | 101.9 | 100.2 | 109.3 | 83.4 | 95.6  | 95.6  | 95.6  | 95.5  | 103.6 | 82.3 |
|         | 75   | 98.7     | 37.2 | 107.8 | 65.9  | 113.0 | 42.0 | 91.8  | 83.8  | 104.7 | 63.7  | 111.8  | 40.7           | 84.2     | 80.0  | 98.7  | 60.5  | 108.6 | 38.9 | 76.3  | 76.3  | 89.6  | 58.6  | 103.7 | 36.5 |
| 3400    | 80   | 101.6 10 | 0.00 | 108.5 | 80.1  | 114.6 | 58.1 | 96.9  | 96.5  | 105.0 | 80.1  | 112.8  | 57.8           | 90.3     | 90.3  | 99.1  | 77.9  | 109.3 | 56.3 | 83.8  | 83.8  | 90.3  | 74.0  | 104.0 | 53.8 |
| 3400    | 85   | 106.8 10 | 06.8 | 109.6 | 95.7  | 115.8 | 71.4 | 103.6 | 103.6 | 106.2 | 96.7  | 114.0  | 70.7           | 98.7     | 98.7  | 100.9 | 95.5  | 109.8 | 71.7 | 91.7  | 91.7  | 91.7  | 91.7  | 104.3 | 70.7 |
|         | 90   | 111.0 1  | 11.0 | 111.0 | 111.0 | 117.0 | 84.9 | 108.8 | 108.8 | 108.9 | 107.2 | 114.4  | 86.1           | 105.1    | 105.1 | 105.0 | 104.8 | 110.7 | 87.4 | 99.8  | 99.8  | 99.7  | 99.7  | 105.2 | 87.1 |
|         | 75   | 100.7 9  | 1.7  | 109.2 | 64.5  | 114.0 | 42.8 | 93.8  | 88.7  | 106.1 | 66.5  | 113.5  | 41.7           | 85.4     | 85.4  | 100.4 | 63.3  | 109.4 | 39.6 | 79.4  | 77.5  | 91.3  | 59.4  | 104.6 | 37.2 |
| 3740    | 80   | 104.1 10 | 03.6 | 109.6 | 82.9  | 115.3 | 59.0 | 100.0 | 100.0 | 106.6 | 84.3  | 113.7  | 59.0           | 94.0     | 94.0  | 100.9 | 82.2  | 109.6 | 60.2 | 87.0  | 87.0  | 92.2  | 78.5  | 105.1 | 56.0 |
| 3740    | 85   | 108.9 10 | 08.9 | 110.9 | 99.2  | 116.6 | 73.0 | 106.7 | 106.7 | 108.3 | 102.4 | 114.8  | 74.4           | 102.0    | 102.0 | 102.0 | 102.0 | 110.8 | 74.3 | 95.6  | 95.6  | 96.4  | 93.7  | 105.5 | 73.9 |
|         | 90   | 112.8 1  | 12.8 | 112.8 | 112.8 | 117.8 | 87.2 | 111.8 | 111.8 | 111.8 | 111.2 | 116.0  | 90.0           | 107.7    | 107.7 | 107.7 | 107.7 | 111.9 | 90.9 | 102.9 | 102.9 | 102.9 | 102.9 | 106.6 | 91.4 |
|         | 75   | 102.3 9  | 5.8  | 110.2 | 66.1  | 114.6 | 43.5 | 95.2  | 95.2  | 106.7 | 68.3  | 113.1  | 42.2           | 88.2     | 88.2  | 101.6 | 65.9  | 110.1 | 40.3 | 81.6  | 80.6  | 92.7  | 62.1  | 105.3 | 38.1 |
| 4000    | 80   | 106.2 10 | 06.2 | 110.5 | 85.3  | 115.9 | 59.8 | 102.8 | 102.8 | 107.4 | 86.8  | 114.3  | 60.0           | 97.4     | 97.4  | 102.4 | 86.2  | 111.0 | 58.6 | 89.9  | 89.9  | 94.1  | 82.9  | 105.9 | 58.2 |
| 4080    | 85   | 110.5 1  | 10.5 | 111.9 | 102.3 | 117.2 | 74.4 | 108.3 | 108.3 | 109.2 | 105.1 | 115.5  | 76.3           | 104.5    | 104.5 | 104.4 | 104.4 | 111.5 | 77.2 | 98.7  | 98.7  | 99.0  | 97.4  | 106.4 | 76.8 |
|         | 90   | 114.2 1  | 14.2 | 114.2 | 114.2 | 118.5 | 89.3 | 112.7 | 112.7 | 112.7 | 112.7 | 116.8  | 92.7           | 109.7    | 109.7 | 109.7 | 109.7 | 112.9 | 94.2 | 105.2 | 105.2 | 105.2 | 105.2 | 107.8 | 95.4 |

Table PD-9 - Gross Cooling Capacities (MBH) 10 Ton Three Phase YSC120A3, A4, AW, AK

|         |      |             |             |             |             | Ambi        | entTemperat  | ure (F)     |                   |             |                   |             |
|---------|------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------------|-------------|-------------------|-------------|
|         |      |             | 85          |             |             | 95          |              |             | 105               |             | 115               |             |
|         | Ente | r.          |             |             |             |             |              |             |                   |             |                   |             |
|         | Dry  |             |             |             |             | Ente        | ering Wet Bu | lb (F)      |                   |             |                   |             |
| CFM     | Bulb | 61          | 67          | 73          | 61          | 67          | 73           | 61          | 677               |             |                   | 73          |
| Airflow | (F)  | MBH SHC      | MBH SHC     | MBH SHC MBH       | SHC MBH     | SHC MBH SHC       | MBH SHC     |
|         | 75   | 108.6 95.7  | 120.5 71.5  | 126.0 46.0  | 100.1 91.3  | 115.5 68.8  | 123.6 43.3   | 91.0 86.5   | 107.2 64.9 119.3  | 41.0 82.2   | 82.0 96.5 60.1    | 113.1 37.9  |
| 3600    | 80   | 112.8 112.8 | 121.2 89.2  | 127.5 65.7  | 106.3 106.3 | 116.1 88.1  | 124.8 62.8   | 98.5 98.5   | 108.2 84.5 120.1  | 60.5 90.5   | 90.5 97.8 79.7    | 113.6 57.4  |
| 3000    | 85   | 119.5 119.5 | 122.6 106.9 | 129.0 78.5  | 114.8 114.8 | 117.7 107.0 | 126.2 79.2   | 108.2 108.2 | 110.5 104.5 121.8 | 76.8 100.1  | 100.1 100.1 100.1 | 114.2 76.6  |
|         | 90   | 124.3 124.3 | 124.6 123.6 | 130.4 93.6  | 121.0 121.0 | 121.0 121.0 | 127.6 95.7   | 116.0 116.0 | 116.0 116.0 122.0 | 95.1 109.4  | 109.4 109.4 109.4 | 115.3 94.5  |
|         | 75   | 111.6 102.3 | 121.7 73.9  | 126.7 46.9  | 103.4 98.1  | 117.1 72.3  | 124.5 42.7   | 94.2 93.4   | 109.5 68.7 120.2  | 41.9 85.3   | 85.3 98.8 64.0    | 114.3 38.8  |
| 4000    | 80   | 116.7 116.7 | 122.6 92.7  | 128.2 64.5  | 111.1 111.1 | 118.0 93.0  | 125.7 64.2   | 103.4 103.4 | 110.8 90.4 121.4  | 63.2 95.0   | 95.0 100.6 85.8   | 114.9 60.3  |
| 4000    | 85   | 122.3 122.3 | 124.2 111.4 | 129.7 80.2  | 118.5 118.5 | 120.0 113.1 | 127.1 81.6   | 112.8 112.8 | 113.6 112.1 122.6 | 82.1 105.1  | 105.1 105.1 105.1 | 115.6 80.4  |
|         | 90   | 126.9 126.9 | 126.4 126.4 | 131.3 96.0  | 123.7 123.7 | 123.7 123.7 | 128.7 99.0   | 119.3 119.3 | 119.3 119.3 124.1 | 100.7 113.4 | 113.4 113.4 113.4 | 117.1 100.0 |
|         | 75   | 114.1 108.4 | 122.5 75.8  | 127.3 47.7  | 106.5 104.9 | 118.4 75.8  | 124.9 45.4   | 97.1 97.1   | 111.3 72.3 121.3  | 40.2 88.6   | 88.6 100.9 67.7   | 115.1 39.7  |
| 4400    | 80   | 119.5 119.5 | 123.8 96.1  | 128.9 65.5  | 114.7 114.7 | 119.5 97.3  | 126.3 69.2   | 107.7 107.7 | 112.9 95.9 122.2  | 64.9 99.0   | 99.0 103.1 91.7   | 115.8 63.2  |
| 4400    | 85   | 124.9 124.9 | 125.5 115.5 | 130.4 81.9  | 121.1 121.1 | 121.8 118.3 | 127.9 83.7   | 116.0 116.0 | 116.0 116.0 123.6 | 85.0 109.2  | 109.2 109.2 109.2 | 116.8 84.0  |
|         | 90   | 127.9 127.9 | 128.0 128.0 | 132.0 98.3  | 126.1 126.1 | 125.6 125.6 | 129.5 101.8  | 121.7 121.7 | 121.7 121.7 125.3 | 104.7 116.2 | 116.2 116.2 116.2 | 118.5 104.7 |
|         | 75   | 116.1 113.8 | 123.1 77.6  | 127.8 48.5  | 108.9 108.9 | 119.2 78.1  | 125.4 46.2   | 100.5 100.5 | 112.8 76.1 121.4  | 43.6 91.6   | 91.6 102.6 71.3   | 115.8 40.6  |
| 4000    | 80   | 121.4 121.4 | 124.5 98.6  | 129.4 66.4  | 117.3 117.3 | 120.8 101.1 | 126.9 66.5   | 111.1 111.1 | 114.6 100.9 122.9 | 66.4 102.5  | 102.5 105.4 97.5  | 116.5 65.7  |
| 4800    | 85   | 126.0 126.0 | 126.4 118.6 | 130.9 83.4  | 122.9 122.9 | 123.2 122.6 | 128.5 85.6   | 118.4 118.4 | 118.4 118.4 124.3 | 87.5 112.1  | 112.1 112.1 112.1 | 117.8 87.3  |
|         | 90   | 129.1 129.1 | 129.1 129.1 | 132.5 100.4 | 127.2 127.2 | 126.9 126.9 | 130.2 104.4  | 124.0 124.0 | 123.7 123.7 126.2 | 108.0 118.2 | 118.2 118.2 118.2 | 119.7 108.9 |

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow

table notes.

2. MBH = Total Gross Capacity 3. SHC = Sensible Heat Capacity

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow

table notes.

2. MBH = Total Gross Capacity

3. SHC = Sensible Heat Capacity



# (3 - 4 Tons) High Efficiency

Table PD-10 - Gross Cooling Capacities (MBH) 3 Ton YHC036A1, A3, A4, AW

|         |             |      |      |      |      |      |      |      |      |      |      | An   | nbient | Tempe | erature | (F)  |      |      |      |      |      |      |      |      |      |
|---------|-------------|------|------|------|------|------|------|------|------|------|------|------|--------|-------|---------|------|------|------|------|------|------|------|------|------|------|
|         |             |      |      | 8    | 5    |      |      |      |      | 9    | 5    |      |        |       |         | 10   | )5   |      |      |      |      | 11   | 15   |      |      |
|         | Ente<br>Dry | r.   |      |      |      |      |      |      |      |      |      | En   | tering | Wet B | ulb (F) |      |      |      |      |      |      |      |      |      |      |
| CFM     | Bulb        | 6    | 1    | 6    | 7    | 7    | 3    | 6    | 1    | 6    | 7    | 7    | 3      | 6     | 1       | 6    | 7    | 7    | 3    | 6    | 1    | 6    | 7    | 7    | 3    |
| Airflow | (F)         | MBH  | SHC    | MBH   | SHC     | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  |
|         | 75          | 34.2 | 29.2 | 39.8 | 22.7 | 43.1 | 15.2 | 31.1 | 27.4 | 37.0 | 21.2 | 41.3 | 14.1   | 28.0  | 25.7    | 33.3 | 19.8 | 39.0 | 12.9 | 24.8 | 24.0 | 29.8 | 18.1 | 36.1 | 11.6 |
| 1000    | 80          | 34.9 | 34.9 | 40.0 | 28.5 | 43.5 | 21.3 | 32.3 | 32.3 | 37.1 | 27.1 | 41.6 | 20.1   | 29.7  | 29.7    | 33.5 | 25.3 | 39.2 | 18.8 | 27.1 | 27.1 | 30.0 | 23.6 | 36.2 | 17.5 |
| 1080    | 85          | 37.9 | 37.9 | 40.3 | 34.3 | 44.0 | 26.5 | 35.3 | 35.3 | 37.5 | 33.0 | 41.9 | 25.6   | 32.6  | 32.6    | 34.0 | 31.3 | 39.5 | 24.6 | 30.0 | 30.0 | 30.6 | 29.6 | 36.4 | 23.2 |
|         | 90          | 40.5 | 40.5 | 40.9 | 40.0 | 44.5 | 31.7 | 38.4 | 38.4 | 38.4 | 38.4 | 42.3 | 31.0   | 35.7  | 35.7    | 35.7 | 35.7 | 39.7 | 30.3 | 32.9 | 32.9 | 32.9 | 32.9 | 36.7 | 29.0 |
|         | 75          | 35.3 | 31.2 | 40.4 | 23.7 | 43.5 | 15.5 | 32.0 | 29.4 | 37.8 | 22.4 | 41.8 | 14.4   | 28.8  | 27.7    | 34.1 | 20.6 | 39.5 | 13.2 | 25.5 | 25.5 | 30.5 | 18.8 | 36.7 | 11.9 |
| 1200    | 80          | 36.7 | 36.7 | 40.7 | 30.0 | 44.0 | 21.9 | 33.9 | 33.9 | 38.0 | 28.9 | 42.1 | 20.9   | 31.2  | 31.2    | 34.4 | 27.1 | 39.8 | 19.7 | 28.5 | 28.5 | 30.8 | 25.3 | 36.9 | 18.4 |
| 1200    | 85          | 39.6 | 39.6 | 41.1 | 36.3 | 44.6 | 27.4 | 37.1 | 37.1 | 38.5 | 35.4 | 42.5 | 26.8   | 34.3  | 34.3    | 35.1 | 33.8 | 40.0 | 26.0 | 31.5 | 31.5 | 31.5 | 31.5 | 37.1 | 24.8 |
|         | 90          | 41.9 | 41.9 | 41.9 | 41.9 | 45.1 | 33.0 | 39.9 | 39.9 | 39.9 | 39.9 | 42.9 | 32.6   | 37.6  | 37.6    | 37.6 | 37.6 | 40.4 | 32.1 | 34.7 | 34.7 | 34.7 | 34.7 | 37.4 | 31.1 |
|         | 75          | 36.2 | 33.2 | 40.9 | 24.7 | 43.8 | 15.8 | 32.8 | 31.4 | 38.4 | 23.4 | 42.1 | 14.7   | 29.4  | 29.4    | 34.8 | 21.7 | 39.9 | 13.5 | 26.5 | 26.5 | 31.0 | 19.9 | 37.2 | 12.2 |
| 1320    | 80          | 38.2 | 38.2 | 41.2 | 31.4 | 44.4 | 22.4 | 35.4 | 35.4 | 38.7 | 30.5 | 42.6 | 21.7   | 32.5  | 32.5    | 35.2 | 28.9 | 40.2 | 20.5 | 29.7 | 29.7 | 31.5 | 27.1 | 37.4 | 19.2 |
| 1320    | 85          | 40.8 | 40.8 | 41.8 | 38.1 | 45.0 | 28.3 | 38.7 | 38.7 | 39.4 | 37.6 | 43.1 | 28.0   | 35.9  | 35.9    | 36.2 | 36.2 | 40.5 | 27.2 | 32.9 | 32.9 | 32.9 | 32.9 | 37.6 | 26.2 |
|         | 90          | 42.9 | 42.9 | 42.9 | 42.9 | 45.6 | 34.2 | 41.1 | 41.1 | 41.1 | 41.1 | 43.4 | 34.0   | 38.9  | 38.9    | 38.9 | 38.9 | 41.0 | 33.8 | 36.3 | 36.3 | 36.3 | 36.3 | 38.1 | 33.1 |
|         | 75          | 37.1 | 35.1 | 41.3 | 25.5 | 44.1 | 16.1 | 33.6 | 33.3 | 38.9 | 24.4 | 42.4 | 15.0   | 30.4  | 30.4    | 35.5 | 22.8 | 40.2 | 13.8 | 27.5 | 27.5 | 31.5 | 21.0 | 37.5 | 12.5 |
| 1440    | 80          | 39.4 | 39.4 | 41.7 | 32.6 | 44.7 | 22.9 | 36.8 | 36.8 | 39.3 | 32.1 | 42.9 | 22.3   | 33.8  | 33.8    | 35.9 | 30.6 | 40.6 | 21.4 | 30.8 | 30.8 | 32.1 | 28.8 | 37.8 | 20.1 |
| 1440    | 85          | 41.7 | 41.7 | 42.4 | 39.7 | 45.3 | 29.0 | 39.8 | 39.8 | 40.1 | 39.5 | 43.5 | 29.0   | 37.3  | 37.3    | 37.3 | 37.3 | 40.9 | 28.3 | 34.2 | 34.2 | 34.2 | 34.2 | 38.0 | 27.6 |
|         | 90          | 43.7 | 43.7 | 43.7 | 43.7 | 45.9 | 35.3 | 42.1 | 42.1 | 42.1 | 42.1 | 43.9 | 35.3   | 40.0  | 40.0    | 40.0 | 40.0 | 41.5 | 35.4 | 37.5 | 37.5 | 37.5 | 37.5 | 38.6 | 34.9 |

Notes:

|         |             |      |      |      |      |      |      |      |      |      |      | An   | nbient | Tempe | erature | (F)  |      |      |      |      |      |      |      |      |      |
|---------|-------------|------|------|------|------|------|------|------|------|------|------|------|--------|-------|---------|------|------|------|------|------|------|------|------|------|------|
|         |             |      |      | 8    | 5    |      |      |      |      | 9    | 5    |      |        |       |         | 10   | )5   |      |      |      |      | 11   | 15   |      |      |
|         | Ente<br>Dry |      |      |      | _    | _    |      |      |      |      | _    |      | _      | Wet B |         |      | _    | _    | -    |      |      |      | _    | _    |      |
| CFM     | Bulb        | 6    | 1    | 6    | /    |      | 3    | 6    | 1    | 6    |      |      | 3      | 6     |         | 6    |      |      | 3    | 6    | 1    | 6    |      |      | '3   |
| Airflow | (F)         | MBH  | SHC    | MBH   | SHC     | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  |
|         | 75          | 45.3 | 39.9 | 51.4 | 30.3 | 54.9 | 19.9 | 41.1 | 37.7 | 48.4 | 28.8 | 53.1 | 18.7   | 37.1  | 35.6    | 43.9 | 26.7 | 51.0 | 17.4 | 33.2 | 33.2 | 39.3 | 24.6 | 47.8 | 16.0 |
| 1440    | 80          | 47.1 | 47.1 | 52.0 | 38.4 |      |      | 43.8 |      |      | 36.9 |      | 27.2   | 40.3  |         |      | 34.9 |      | 25.6 |      | 36.9 | 39.8 | 32.8 | 47.9 | 24.1 |
| 1440    | 85          | 50.5 | 50.5 | 52.5 | 46.3 |      |      | 47.8 | 47.8 | 49.4 |      | 54.9 | 34.9   | 44.3  |         |      |      |      | 33.6 | 40.9 | 40.9 | 40.9 | 40.9 | 48.1 | 32.2 |
|         | 90          | 53.1 | 53.1 | 53.5 | 53.5 | 56.9 | 41.4 | 51.2 | 51.2 | 51.2 | 51.2 | 54.6 | 41.4   | 48.4  | 48.4    | 48.4 | 48.4 | 52.0 | 41.2 | 45.0 | 45.0 | 45.0 | 45.0 | 48.6 | 40.2 |
|         | 75          | 46.7 | 42.7 | 52.7 | 31.9 | 55.2 |      | 42.4 |      | 49.4 | 30.3 |      | 19.3   | 38.2  |         | 45.0 | 28.4 |      | 17.8 | 34.7 | 34.7 | 40.2 | 26.2 | 48.6 | 16.4 |
| 1600    | 80          | 49.2 | 49.2 | 52.8 | 40.4 | 55.9 | -    |      |      |      | 39.4 |      |        | 42.3  |         |      | 37.5 | 51.9 | 26.9 | 38.7 | 38.7 | 40.9 | 35.3 | 48.7 | 25.4 |
| 1000    | 85          | 52.1 | 52.1 | 53.5 | 48.8 | 56.6 | 35.4 | 49.9 |      |      | 48.3 |      | 36.8   | 46.7  | 46.7    | 47.0 | 46.8 |      |      |      | 43.0 | 42.9 | 42.9 | 49.0 |      |
|         | 90          | 54.5 | 54.5 | 54.8 | 54.8 | 57.4 | 42.7 | 52.8 | 52.8 | 52.8 | 52.8 | 55.2 | 42.9   | 50.5  | 50.5    | 50.5 | 50.5 | 52.9 | 43.5 | 47.4 | 47.4 | 47.4 | 47.4 | 49.6 | 43.0 |
|         | 75          | 47.8 | 45.4 | 53.2 | 33.4 | 00.0 |      | 43.7 | 43.3 | 50.1 | 31.8 | 54.7 | 19.6   | 39.7  | 39.7    | 46.0 | 30.0 | 51.9 | 18.2 | 36.1 | 36.1 | 41.0 | 27.7 | 49.1 | 16.8 |
| 1760    | 80          | 50.6 | 50.6 | 53.4 | 42.1 | 56.2 | 28.7 | 47.8 | 47.8 | 50.5 | 41.5 | 55.7 | 29.4   | 44.1  | 44.1    | 46.7 | 39.9 | 52.4 | 28.1 | 40.4 | 40.4 | 41.9 | 37.8 | 49.3 | 26.7 |
| 1700    | 85          | 53.1 | 53.1 | 54.2 | 50.9 | 57.0 | 36.2 | 51.4 | 51.4 | 51.6 | 51.0 | 56.2 |        | 48.6  |         | 48.6 | 48.6 | 52.8 | 36.7 | 44.9 | 44.9 | 44.9 | 44.9 | 49.7 |      |
|         | 90          | 55.1 | 55.1 | 55.7 | 55.7 | 57.7 | 43.8 | 53.9 | 53.9 | 53.9 | 53.9 | 55.6 | 44.3   | 51.9  | 51.9    | 51.9 | 51.9 | 53.5 | 45.6 | 49.2 | 49.2 | 49.2 | 49.2 | 50.5 | 45.7 |
|         | 75          | 48.8 | 48.1 | 53.6 | 34.4 | 55.7 | 20.9 | 45.0 | 45.0 |      | 33.2 |      | 20.0   | 41.0  | 41.0    | 46.8 | 31.5 | 52.3 | 18.5 | 37.3 | 37.3 | 41.7 | 29.3 | 49.6 | 17.2 |
| 1920    | 80          | 51.7 | 51.7 | 53.9 | 43.5 |      | -    | 49.3 |      | 51.2 | 43.5 |      |        | 45.8  |         | 47.6 | 42.3 |      |      | 41.8 | 41.8 | 42.8 | 40.2 | 49.8 | 27.9 |
| 320     | 85          | 53.9 | 53.9 | 54.8 | 52.7 | 57.2 | 36.9 | 52.4 | 52.4 |      |      |      |        | 50.0  |         |      | 50.0 |      |      | 46.6 | 46.6 | 46.6 | 46.6 | 50.3 | 38.1 |
|         | 90          | 55.7 | 55.7 | 56.3 | 56.3 | 58.0 | 44.8 | 54.7 | 54.7 | 54.7 | 54.7 | 56.0 | 45.6   | 53.0  | 53.0    | 53.0 | 53.0 | 54.0 | 47.4 | 50.5 | 50.5 | 50.5 | 50.5 | 51.2 | 48.1 |

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

<sup>2.</sup> MBH = Total Gross Capacity
3. SHC = Sensible Heat Capacity

Notes:

1. All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

MBH = Total Gross Capacity
 SHC = Sensible Heat Capacity



## (5 Ton) **High Efficiency**

Table PD-12 — Gross Cooling Capacities (MBH) 5 Ton Single Phase YHC060A1

|         |      |      |      |      |      |      |      |      |      |      |      | An   | nbient | Tempe | erature | (F)  |      |      |      |      |      |      |      |      |      |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|--------|-------|---------|------|------|------|------|------|------|------|------|------|------|
|         |      |      |      | 8    | 35   |      |      |      |      | 9    | 5    |      |        |       |         | 10   | )5   |      |      |      |      | 1′   | 15   |      |      |
|         | Ente | r.   |      |      |      |      |      |      |      |      |      |      |        |       |         |      |      |      |      |      |      |      |      |      |      |
|         | Dry  |      |      |      |      |      |      |      |      |      |      | En   | tering | Wet B | ulb (F) |      |      |      |      |      |      |      |      |      |      |
| CFM     | Bulb | 6    | 1    | 6    | 57   | 7    | 3    | 6    | 31   | 6    | 7    | 7    | 3      | 6     | 31      | 6    | 7    | 7    | 3    | 6    | 31   | 6    | 7    | 7    | 73   |
| Airflow | (F)  | MBH  | SHC    | MBH   | SHC     | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  |
|         | 75   | 56.2 | 48.2 | 64.3 | 37.8 | 68.4 | 24.8 | 51.4 | 45.6 | 60.5 | 35.2 | 66.7 | 23.5   | 46.8  | 43.2    | 55.3 | 32.8 | 63.9 | 21.9 | 42.2 | 40.8 | 50.0 | 31.0 | 59.9 | 20.1 |
| 1000    | 80   | 57.6 | 57.6 | 64.6 | 46.6 | 69.3 | 34.7 | 53.7 | 53.7 | 60.7 | 44.8 | 67.3 | 33.1   | 49.8  | 49.8    | 55.5 | 42.3 | 64.2 | 31.5 | 45.9 | 45.9 | 50.5 | 39.9 | 60.1 | 29.6 |
| 1800    | 85   | 62.2 | 62.2 | 65.2 | 55.8 | 70.1 | 42.6 | 58.4 | 58.4 | 61.4 | 54.5 | 68.0 | 42.2   | 54.5  | 54.5    | 56.5 | 52.0 | 64.6 | 40.9 | 50.6 | 50.6 | 51.6 | 49.7 | 60.3 | 39.0 |
|         | 90   | 65.8 | 65.8 | 66.3 | 64.9 | 70.9 | 50.8 | 63.0 | 63.0 | 63.0 | 63.0 | 68.2 | 52.0   | 59.3  | 59.3    | 59.2 | 59.2 | 65.0 | 49.9 | 55.3 | 55.3 | 55.3 | 55.3 | 60.7 | 48.5 |
|         | 75   | 57.8 | 51.4 | 65.2 | 38.8 | 69.6 | 25.4 | 52.9 | 48.8 | 61.8 | 37.0 | 67.3 | 23.9   | 48.2  | 46.3    | 56.5 | 34.6 | 64.6 | 22.4 | 43.3 | 43.3 | 51.2 | 32.1 | 60.9 | 20.7 |
| 2000    | 80   | 60.3 | 60.3 | 65.6 | 48.8 | 69.8 | 35.2 | 56.2 | 56.2 | 62.1 | 47.6 | 68.0 | 34.6   | 52.1  | 52.1    | 56.9 | 45.1 | 65.0 | 32.9 | 48.1 | 48.1 | 51.7 | 42.7 | 61.2 | 31.1 |
| 2000    | 85   | 64.4 | 64.4 | 66.3 | 58.7 | 70.7 | 43.8 | 61.2 | 61.2 | 63.0 | 58.1 | 68.7 | 43.9   | 57.1  | 57.1    | 58.2 | 56.0 | 65.4 | 42.8 | 53.0 | 53.0 | 53.0 | 53.0 | 61.4 | 41.5 |
|         | 90   | 67.6 | 67.6 | 67.6 | 67.6 | 71.6 | 52.5 | 65.2 | 65.2 | 65.2 | 65.2 | 69.5 | 53.3   | 62.0  | 62.0    | 62.0 | 62.0 | 66.0 | 52.6 | 58.0 | 58.0 | 58.0 | 58.0 | 62.0 | 51.8 |
|         | 75   | 59.4 | 54.5 | 65.7 | 40.1 | 69.3 | 25.6 | 54.3 | 51.9 | 62.7 | 38.7 | 67.7 | 24.3   | 49.6  | 49.4    | 57.6 | 36.3 | 65.1 | 22.8 | 45.0 | 45.0 | 52.2 | 33.8 | 61.6 | 21.1 |
| 2200    | 80   | 62.4 | 62.4 | 66.3 | 50.7 | 70.3 | 35.8 | 58.4 | 58.4 | 63.1 | 50.1 | 68.5 | 35.4   | 54.2  | 54.2    | 58.2 | 47.9 | 65.7 | 34.2 | 50.0 | 50.0 | 52.9 | 45.4 | 61.9 | 32.5 |
| 2200    | 85   | 66.0 | 66.0 | 67.3 | 61.2 | 71.2 | 44.8 | 63.3 | 63.3 | 64.2 | 61.3 | 69.4 | 45.3   | 59.4  | 59.4    | 59.9 | 59.8 | 66.1 | 44.6 | 55.2 | 55.2 | 55.2 | 55.2 | 62.2 | 43.7 |
|         | 90   | 68.9 | 68.9 | 68.9 | 68.9 | 72.2 | 54.0 | 66.9 | 66.9 | 66.9 | 66.9 | 70.2 | 55.4   | 64.0  | 64.0    | 64.0 | 64.0 | 66.8 | 55.1 | 60.4 | 60.4 | 60.4 | 60.4 | 63.0 | 54.6 |
|         | 75   | 60.6 | 57.4 | 66.1 | 41.5 | 69.7 | 26.0 | 55.6 | 54.9 | 63.4 | 40.3 | 68.1 | 24.7   | 50.8  | 50.8    | 58.5 | 38.0 | 65.5 | 23.2 | 46.5 | 46.5 | 53.0 | 35.5 | 62.1 | 21.5 |
| 2400    | 80   | 64.0 | 64.0 | 67.0 | 52.5 | 70.6 | 38.5 | 60.4 | 60.4 | 63.9 | 52.4 | 69.0 | 36.1   | 56.1  | 56.1    | 59.2 | 50.5 | 66.1 | 35.8 | 51.8 | 51.8 | 54.0 | 48.1 | 62.5 | 33.8 |
| 2400    | 85   | 67.2 | 67.2 | 68.0 | 63.5 | 71.5 | 50.9 | 64.9 | 64.9 | 65.3 | 64.2 | 69.9 | 46.6   | 61.4  | 61.4    | 61.4 | 61.4 | 67.0 | 46.8 | 57.2 | 57.2 | 57.2 | 57.2 | 62.9 | 45.6 |
|         | 90   | 69.8 | 69.8 | 69.8 | 69.8 | 72.6 | 55.3 | 68.1 | 68.1 | 68.1 | 68.1 | 70.8 | 57.1   | 65.5  | 65.5    | 65.5 | 65.5 | 67.5 | 57.3 | 62.2 | 62.2 | 62.2 | 62.2 | 63.9 | 57.2 |

Table PD-13 — Gross Cooling Capacities (MRH) 5 Ton Three Phase YHC060A3 A4 AW

|         |      |      |      |      |      |      |      |      |      |      |      | An   | nbient | Tempe | erature | (F)  |      |      |      |      |      |           |      |      |      |
|---------|------|------|------|------|------|------|------|------|------|------|------|------|--------|-------|---------|------|------|------|------|------|------|-----------|------|------|------|
|         |      |      |      | 8    | 15   |      |      |      |      | 9    | 5    |      |        |       |         | 10   | 05   |      |      |      |      | 11        | 15   |      |      |
|         | Ente | r.   |      |      |      |      |      |      |      |      |      |      |        |       |         |      |      |      |      |      |      |           |      |      |      |
|         | Dry  |      |      |      |      |      |      |      |      |      |      | En   | tering | Wet B | ulb (F) |      |      |      |      |      |      |           |      |      |      |
| CFM     | Bulb | 6    | 1    | 6    | 57   | 7    | 3    | 6    | 1    | 6    | 7    | 7    | 3      | 6     | 1       | 6    | 57   | 7    | 3    | 6    | 1    | 6         | 7    | 7    | 3    |
| Airflow | (F)  | MBH  | SHC    | MBH   | SHC     | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | $M\!B\!H$ | SHC  | MBH  | SHC  |
|         | 75   | 56.6 | 49.0 | 64.4 | 37.5 | 67.7 | 24.7 | 52.0 | 46.8 | 60.9 | 35.7 | 66.2 | 23.3   | 47.0  | 44.2    | 55.9 | 33.3 | 63.6 | 21.8 | 42.3 | 41.7 | 50.0      | 30.7 | 59.8 | 20.0 |
| 1000    | 80   | 58.5 | 58.5 | 64.6 | 47.0 | 68.6 | 34.7 | 54.7 | 54.7 | 61.2 | 45.5 | 66.8 | 33.3   | 50.6  | 50.6    | 56.3 | 43.2 | 64.1 | 31.7 | 46.4 | 46.4 | 50.5      | 40.5 | 60.0 | 29.8 |
| 1800    | 85   | 62.9 | 62.9 | 65.3 | 56.4 | 69.4 | 42.2 | 59.6 | 59.6 | 61.9 | 55.5 | 67.7 | 42.3   | 55.6  | 55.6    | 57.3 | 53.2 | 64.3 | 41.1 | 51.2 | 51.2 | 51.9      | 50.7 | 60.3 | 39.5 |
|         | 90   | 66.2 | 66.2 | 66.4 | 65.6 | 70.3 | 50.3 | 63.7 | 63.7 | 63.7 | 63.7 | 68.4 | 51.2   | 60.3  | 60.3    | 60.3 | 60.3 | 64.9 | 50.3 | 56.4 | 56.4 | 56.3      | 56.3 | 60.8 | 49.1 |
|         | 75   | 58.3 | 52.5 | 65.0 | 39.1 | 68.1 | 25.1 | 53.6 | 50.0 | 62.0 | 37.6 | 66.6 | 23.8   | 48.6  | 47.7    | 57.2 | 35.4 | 64.2 | 22.3 | 43.8 | 43.8 | 51.2      | 32.7 | 60.6 | 20.5 |
| 2000    | 80   | 61.1 | 61.1 | 65.6 | 49.2 | 69.0 | 34.6 | 57.3 | 57.3 | 62.4 | 48.4 | 67.5 | 34.8   | 53.2  | 53.2    | 57.8 | 46.2 | 64.7 | 33.2 | 48.7 | 48.7 | 52.0      | 43.6 | 60.9 | 31.4 |
| 2000    | 85   | 64.9 | 64.9 | 66.4 | 59.2 | 69.9 | 43.1 | 62.1 | 62.1 | 63.4 | 59.1 | 67.8 | 43.0   | 58.4  | 58.4    | 59.2 | 57.5 | 64.9 | 43.9 | 54.0 | 54.0 | 54.0      | 54.0 | 61.2 | 42.0 |
|         | 90   | 67.7 | 67.7 | 67.7 | 67.7 | 70.8 | 51.7 | 65.7 | 65.7 | 65.7 | 65.7 | 68.6 | 52.2   | 62.8  | 62.8    | 62.8 | 62.8 | 65.9 | 52.9 | 59.0 | 59.0 | 59.0      | 59.0 | 61.9 | 52.3 |
|         | 75   | 59.9 | 55.8 | 65.8 | 40.7 | 68.4 | 25.5 | 55.2 | 53.4 | 62.9 | 39.5 | 67.0 | 24.2   | 50.0  | 50.0    | 58.3 | 37.3 | 64.6 | 22.7 | 45.6 | 45.6 | 52.4      | 34.7 | 61.2 | 21.0 |
| 0000    | 80   | 63.1 | 63.1 | 66.3 | 51.0 | 69.3 | 35.2 | 59.7 | 59.7 | 63.5 | 51.0 | 67.9 | 35.1   | 55.5  | 55.5    | 59.0 | 49.2 | 65.4 | 34.5 | 50.8 | 50.8 | 53.4      | 46.6 | 61.6 | 32.9 |
| 2200    | 85   | 66.4 | 66.4 | 67.2 | 61.6 | 70.2 | 43.9 | 64.0 | 64.0 | 64.6 | 62.4 | 68.8 | 44.9   | 60.6  | 60.6    | 60.6 | 60.6 | 66.0 | 45.1 | 56.4 | 56.4 | 56.4      | 56.4 | 62.0 | 44.2 |
|         | 90   | 68.7 | 68.7 | 68.7 | 68.7 | 71.2 | 52.8 | 67.1 | 67.1 | 67.1 | 67.1 | 69.7 | 54.9   | 64.5  | 64.5    | 64.5 | 64.5 | 66.9 | 55.8 | 61.0 | 61.0 | 61.0      | 61.0 | 62.9 | 55.3 |
|         | 75   | 61.2 | 59.0 | 66.2 | 41.7 | 68.6 | 25.9 | 56.3 | 56.3 | 63.6 | 41.3 | 67.3 | 24.6   | 51.9  | 51.9    | 59.2 | 39.0 | 65.0 | 23.1 | 47.2 | 47.2 | 53.4      | 36.6 | 61.7 | 21.4 |
| 0.400   | 80   | 64.5 | 64.5 | 67.0 | 53.1 | 69.6 | 35.6 | 61.6 | 61.6 | 64.2 | 53.3 | 68.2 | 35.7   | 57.5  | 57.5    | 60.1 | 52.1 | 65.8 | 35.5 | 52.8 | 52.8 | 54.7      | 49.6 | 62.1 | 34.3 |
| 2400    | 85   | 67.3 | 67.3 | 68.1 | 64.0 | 70.5 | 44.7 | 65.4 | 65.4 | 65.6 | 65.2 | 69.1 | 46.0   | 62.4  | 62.4    | 62.3 | 62.3 | 66.6 | 46.8 | 58.4 | 58.4 | 58.4      | 58.4 | 62.6 | 46.2 |
|         | 90   | 69.4 | 69.4 | 69.5 | 69.5 | 71.5 | 53.9 | 68.1 | 68.1 | 68.1 | 68.1 | 70.1 | 56.3   | 65.7  | 65.7    | 65.7 | 65.7 | 67.6 | 58.0 | 62.5 | 62.5 | 62.5      | 62.5 | 63.7 | 57.9 |

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

<sup>2.</sup> MBH = Total Gross Capacity
3. SHC = Sensible Heat Capacity

Notes:
1. All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

<sup>2.</sup> MBH = Total Gross Capacity
3. SHC = Sensible Heat Capacity



## (6 - 7½ Ton) High Efficiency

Table PD-14 - Gross Cooling Capacities (MBH) 6 Ton Three Phase YHC072A3,A4,AW

|         |     |       |      |      |             |      |      |      |      |      | Ambi | entTen | nperat | ure (F) |      |      |      |      |      |      |      |      |      |      |      |
|---------|-----|-------|------|------|-------------|------|------|------|------|------|------|--------|--------|---------|------|------|------|------|------|------|------|------|------|------|------|
|         |     |       |      | 8    | 35          |      |      |      |      | 9    | 5    |        |        |         |      | 10   | )5   |      |      |      |      | 11   | 15   |      |      |
|         | Er  | nter. |      |      |             |      |      |      |      |      |      |        |        |         |      |      |      |      |      |      |      |      |      |      |      |
|         | Dr  | γ     |      |      |             |      |      | ı    |      |      |      | -      | Vet Bu |         |      |      |      |      |      | I    |      |      |      |      |      |
| CFM     | Βι  | ılb   | 61   | 6    | 57 <u> </u> | 7    | 3    | 6    | 1    | 6    | i7   | 7      | 3      | 6       | 1    | 6    | 7    | 7    | 3    | 6    | 1    | 6    | 7    | 7    | 3    |
| Airflow | (F) | MBH   | SHC  | MBH  | SHC         | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH    | SHC    | MBH     | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  | MBH  | SHC  |
|         | 75  | 67.3  | 56.6 | 73.6 | 42.5        | 74.5 | 27.6 | 61.6 | 53.5 | 71.8 | 41.9 | 75.1   | 26.6   | 55.8    | 50.4 | 66.8 | 38.7 | 74.1 | 25.3 | 49.8 | 47.2 | 59.9 | 36.3 | 71.3 | 23.5 |
| 2160    | 80  | 68.7  | 68.2 | 73.8 | 51.7        | 75.4 | 37.0 | 63.6 | 63.6 | 72.0 | 52.1 | 76.0   | 38.1   | 58.9    | 58.9 | 66.9 | 49.7 | 74.7 | 36.4 | 54.1 | 54.1 | 60.2 | 46.5 | 71.5 | 34.5 |
| 2100    | 85  | 72.2  | 72.2 | 74.5 | 61.4        | 76.2 | 44.5 | 69.2 | 69.2 | 72.5 | 62.8 | 76.8   | 46.1   | 64.6    | 64.6 | 67.8 | 60.9 | 75.0 | 46.2 | 59.5 | 59.5 | 61.3 | 57.7 | 71.7 | 45.4 |
|         | 90  | 74.7  | 74.7 | 75.3 | 70.6        | 77.0 | 51.9 | 73.4 | 73.4 | 73.7 | 73.2 | 77.7   | 55.1   | 70.1    | 70.1 | 70.1 | 70.1 | 75.6 | 56.1 | 65.4 | 65.4 | 65.4 | 65.4 | 72.1 | 55.8 |
| -       | 75  | 69.0  | 60.1 | 74.0 | 43.3        | 74.5 | 27.9 | 63.5 | 57.2 | 72.7 | 43.1 | 75.2   | 27.0   | 57.5    | 54.0 | 68.4 | 40.9 | 74.5 | 25.7 | 51.8 | 51.0 | 61.5 | 37.6 | 72.0 | 24.0 |
| 2400    | 80  | 70.7  | 70.7 | 74.3 | 52.9        | 75.4 | 37.2 | 66.8 | 66.8 | 73.0 | 54.6 | 76.2   | 37.8   | 61.9    | 61.9 | 68.7 | 53.0 | 75.1 | 37.4 | 56.7 | 56.7 | 61.9 | 49.8 | 72.4 | 36.1 |
| 2400    | 85  | 73.8  | 73.8 | 75.0 | 63.0        | 76.2 | 44.9 | 71.9 | 71.9 | 73.8 | 66.0 | 77.1   | 47.0   | 67.9    | 67.9 | 69.7 | 65.4 | 75.5 | 47.5 | 62.7 | 62.7 | 63.6 | 62.4 | 72.6 | 47.7 |
|         | 90  | 75.6  | 75.6 | 75.9 | 72.4        | 77.0 | 52.5 | 75.2 | 75.2 | 75.1 | 75.1 | 78.0   | 56.3   | 72.8    | 72.8 | 72.7 | 72.7 | 76.4 | 58.2 | 68.8 | 68.8 | 68.8 | 68.8 | 73.2 | 59.0 |
|         | 75  | 70.3  | 63.2 | 74.2 | 43.9        | 74.6 | 28.3 | 65.2 | 60.8 | 73.2 | 44.5 | 75.4   | 27.4   | 59.2    | 57.7 | 69.6 | 42.9 | 74.7 | 26.2 | 53.2 | 53.2 | 62.9 | 39.8 | 72.5 | 24.6 |
| 2640    | 80  | 72.3  | 72.3 | 74.5 | 53.9        | 75.4 | 37.4 | 69.5 | 69.5 | 73.8 | 56.7 | 76.3   | 38.2   | 64.6    | 64.6 | 70.0 | 56.1 | 75.6 | 38.5 | 59.2 | 59.2 | 63.5 | 53.0 | 73.0 | 37.7 |
| 2040    | 85  | 74.7  | 74.7 | 75.3 | 64.3        | 76.2 | 45.2 | 73.7 | 73.7 | 74.7 | 68.7 | 77.3   | 47.6   | 70.5    | 70.5 | 71.3 | 69.3 | 76.1 | 48.9 | 65.6 | 65.6 | 65.6 | 65.6 | 73.4 | 49.7 |
|         | 90  | 76.1  | 76.1 | 76.2 | 73.6        | 76.9 | 53.0 | 76.2 | 76.2 | 76.2 | 76.2 | 78.1   | 57.2   | 74.5    | 74.5 | 74.5 | 74.5 | 76.9 | 59.9 | 71.2 | 71.2 | 71.2 | 71.2 | 74.1 | 61.7 |
|         | 75  | 71.3  | 65.8 | 74.3 | 44.4        | 74.6 | 28.7 | 66.8 | 64.4 | 73.7 | 45.6 | 75.5   | 27.8   | 60.5    | 60.5 | 70.6 | 44.8 | 74.9 | 26.6 | 55.1 | 55.1 | 64.1 | 41.8 | 72.9 | 25.0 |
| 2000    | 80  | 73.3  | 73.3 | 74.7 | 54.8        | 75.4 | 37.6 | 71.4 | 71.4 | 74.4 | 58.5 | 76.4   | 38.5   | 67.0    | 67.0 | 71.0 | 58.9 | 75.9 | 39.1 | 61.4 | 61.4 | 64.9 | 56.2 | 73.3 | 38.6 |
| 2880    | 85  | 75.1  | 75.1 | 75.5 | 65.3        | 76.2 | 45.6 | 74.8 | 74.8 | 75.4 | 70.8 | 77.4   | 48.2   | 72.4    | 72.4 | 72.4 | 72.4 | 76.4 | 49.9 | 68.2 | 68.2 | 68.1 | 68.1 | 74.0 | 51.5 |
|         | 90  | 76.3  | 76.3 | 76.3 | 74.5        | 76.9 | 53.5 | 76.9 | 76.9 | 76.9 | 76.9 | 78.2   | 58.0   | 75.7    | 75.7 | 75.7 | 75.7 | 77.2 | 61.3 | 72.9 | 72.9 | 72.9 | 72.9 | 74.8 | 64.1 |
| Notes:  |     |       |      |      |             |      |      | •    |      |      |      |        |        |         |      |      |      |      |      | •    |      |      |      |      |      |

Table PD-15 — Gross Cooling Capacities (MBH) 71/2 Ton Dual Compressors Three Phase YHC092A3,A4,AW

|         |     |       |       |       |       |       |      |       |       |       | Ambi  | ent Ten | nperat | ure (F) |      |      |      |       |      |       |      |      |      |      |      |
|---------|-----|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|---------|--------|---------|------|------|------|-------|------|-------|------|------|------|------|------|
|         |     |       |       | 8     | 5     |       |      |       |       | 9     | 5     |         |        |         |      | 10   | 05   |       |      |       |      | 1    | 15   |      |      |
|         | Er  | nter. |       |       |       |       |      |       |       |       |       |         |        |         |      |      |      |       |      |       |      |      |      |      |      |
|         | Dr  | γ     |       |       |       |       |      | ı     |       |       | Ente  | ering W | let Bu | lb (F)  |      |      |      |       |      | 1     |      |      |      |      |      |
| CFM     | Bι  | ılb   | 61    | 6     | 57    | 7     | 3    | 6     | 1     | 6     | 7     | 7       | 3      | 6       | 31   | 6    | 7    | 7     | 3    | 6     | 1    | 6    | 7    | 7    | 3    |
| Airflow | (F) | MBH   | SHC   | MBH   | SHC   | MBH   | SHC  | MBH   | SHC   | MBH   | SHC   | MBH     | SHC    | MBH     | SHC  | MBH  | SHC  | MBH   | SHC  | MBH   | SHC  | MBH  | SHC  | MBH  | SHC  |
|         | 75  | 85.7  | 72.4  | 95.8  | 56.8  | 99.9  | 37.1 | 79.3  | 69.3  | 92.0  | 53.7  | 98.8    | 35.8   | 72.8    | 66.0 | 85.9 | 50.8 | 96.1  | 34.2 | 66.1  | 62.6 | 78.5 | 49.1 | 91.8 | 32.2 |
| 2700    | 80  | 87.5  | 87.0  | 96.2  | 68.5  | 101.1 | 50.4 | 81.8  | 81.8  | 92.4  | 67.4  | 99.6    | 50.2   | 76.6    | 76.6 | 86.2 | 64.6 | 96.7  | 48.0 | 71.1  | 71.1 | 79.0 | 61.4 | 92.0 | 45.8 |
| 2700    | 85  | 92.8  | 92.8  | 97.0  | 81.6  | 102.3 | 61.3 | 88.5  | 88.5  | 93.1  | 81.1  | 100.3   | 61.3   | 83.4    | 83.4 | 87.1 | 78.6 | 97.0  | 60.9 | 77.9  | 77.9 | 80.3 | 75.4 | 92.3 | 59.4 |
|         | 90  | 97.2  | 97.2  | 98.3  | 94.2  | 103.5 | 72.4 | 94.3  | 94.3  | 94.3  | 94.3  | 101.1   | 73.1   | 90.0    | 90.0 | 90.0 | 90.0 | 97.8  | 73.7 | 84.9  | 84.9 | 84.9 | 84.9 | 92.9 | 72.7 |
|         | 75  | 87.9  | 77.0  | 96.6  | 57.3  | 100.4 | 37.6 | 81.5  | 73.7  | 93.5  | 56.1  | 99.4    | 36.4   | 74.9    | 70.5 | 87.8 | 53.4 | 96.9  | 34.8 | 67.4  | 67.4 | 80.5 | 50.2 | 92.8 | 32.8 |
| 2000    | 80  | 90.5  | 90.5  | 97.4  | 71.2  | 101.6 | 51.1 | 85.6  | 85.6  | 94.0  | 71.0  | 100.4   | 50.9   | 80.2    | 80.2 | 88.2 | 68.7 | 97.3  | 49.8 | 74.5  | 74.5 | 81.0 | 65.5 | 93.2 | 47.9 |
| 3000    | 85  | 95.6  | 95.6  | 98.4  | 85.1  | 102.9 | 62.5 | 92.2  | 92.2  | 95.0  | 85.8  | 101.3   | 63.3   | 87.3    | 87.3 | 89.5 | 84.1 | 98.1  | 63.3 | 81.8  | 81.8 | 82.9 | 81.2 | 93.6 | 62.5 |
|         | 90  | 99.4  | 99.4  | 99.9  | 98.1  | 104.1 | 74.1 | 97.2  | 97.2  | 97.2  | 97.2  | 102.1   | 75.5   | 93.6    | 93.6 | 93.5 | 93.5 | 99.1  | 77.0 | 88.88 | 88.8 | 88.7 | 88.7 | 94.4 | 76.9 |
|         | 75  | 89.8  | 81.3  | 97.5  | 59.0  | 100.7 | 38.1 | 83.6  | 78.2  | 94.6  | 58.3  | 99.8    | 37.1   | 77.0    | 75.0 | 89.2 | 55.9 | 97.5  | 35.4 | 70.0  | 70.0 | 82.1 | 52.8 | 93.6 | 33.4 |
| 3300    | 80  | 93.2  | 93.2  | 98.3  | 73.5  | 102.0 | 51.7 | 88.9  | 88.9  | 95.2  | 74.2  | 101.0   | 52.0   | 83.4    | 83.4 | 89.8 | 72.6 | 97.9  | 50.6 | 77.6  | 77.6 | 82.8 | 69.5 | 94.1 | 49.9 |
| 3300    | 85  | 97.6  | 97.6  | 99.4  | 88.0  | 103.3 | 67.9 | 94.9  | 94.9  | 96.5  | 90.0  | 101.9   | 64.8   | 90.5    | 90.5 | 91.7 | 89.4 | 99.0  | 67.3 | 85.2  | 85.2 | 85.1 | 85.1 | 94.7 | 65.2 |
|         | 90  | 100.9 | 100.9 | 100.9 | 100.9 | 104.6 | 75.6 | 99.2  | 99.2  | 99.2  | 99.2  | 102.8   | 77.7   | 96.1    | 96.1 | 96.1 | 96.1 | 100.1 | 80.0 | 91.8  | 91.8 | 91.8 | 91.8 | 95.7 | 80.7 |
|         | 75  | 91.5  | 85.3  | 98.2  | 60.6  | 101.0 | 38.6 | 85.5  | 82.6  | 95.4  | 60.2  | 100.2   | 37.5   | 78.5    | 78.5 | 90.5 | 58.3 | 98.0  | 35.9 | 72.4  | 72.4 | 83.4 | 55.2 | 94.3 | 34.0 |
| 2600    | 80  | 95.2  | 95.2  | 99.0  | 75.4  | 102.3 | 56.8 | 91.5  | 91.5  | 96.3  | 77.2  | 101.5   | 52.7   | 86.3    | 86.3 | 91.3 | 76.3 | 98.4  | 51.4 | 80.4  | 80.4 | 84.4 | 73.4 | 94.7 | 51.4 |
| 3600    | 85  | 99.1  | 99.1  | 100.2 | 90.6  | 103.6 | 69.8 | 96.9  | 96.9  | 97.8  | 93.6  | 102.4   | 66.1   | 93.1    | 93.1 | 93.1 | 93.1 | 99.7  | 69.8 | 88.0  | 88.0 | 87.9 | 87.9 | 95.6 | 67.8 |
|         | 90  | 101.9 | 101.9 | 101.9 | 101.9 | 105.0 | 76.9 | 100.7 | 100.7 | 100.7 | 100.7 | 103.4   | 79.6   | 98.0    | 98.0 | 97.9 | 97.9 | 100.8 | 82.5 | 94.0  | 94.0 | 94.0 | 94.0 | 96.7 | 84.1 |

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

2. MBH = Total Gross Capacity

3. SHC = Sensible Heat Capacity

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

MBH = Total Gross Capacity

<sup>3.</sup> SHC = Sensible Heat Capacity



(81/2 - 10 Ton) **High Efficiency** 

Table PD-16 - Gross Cooling Capacities (MBH) 81/2 Ton Three Phase YHC102A3,A4,AW

|         |     |       |       |       |       |       |      |       |       |       | Ambi  | entTen | nperat | ure (F) |       |       |       |       |      |       |       |       |       |       |      |
|---------|-----|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|--------|--------|---------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|------|
|         |     |       |       | 8     | 5     |       |      |       |       | 9     | 15    |        |        |         |       | 10    | 05    |       |      |       |       | 11    | 15    |       |      |
|         | Er  | nter. |       |       |       |       |      |       |       |       |       |        |        |         |       |       |       |       |      |       |       |       |       |       |      |
|         | Dr  | γ     |       |       |       |       |      | ı     |       |       | Ente  | ring W | et Bu  | b (F)   |       |       |       |       |      | ı     |       |       |       |       |      |
| CFM     | Βι  | ılb   | 61    | 6     | 7     | 7     | 3    | 6     | 31    | 6     | i7    | 7      | 3      | 6       | 1     | 6     | 7     | 7     | 3    | 6     | 1     | 6     | 7     | 7     | 3    |
| Airflow | (F) | MBH   | SHC   | MBH   | SHC   | MBH   | SHC  | MBH   | SHC   | MBH   | SHC   | MBH    | SHC    | MBH     | SHC   | MBH   | SHC   | MBH   | SHC  | MBH   | SHC   | MBH   | SHC   | MBH   | SHC  |
|         | 75  | 94.0  | 81.8  | 105.7 | 62.8  | 110.8 | 40.9 | 86.3  | 77.8  | 100.7 | 59.7  | 109.7  | 39.3   | 79.0    | 74.2  | 92.4  | 56.0  | 105.5 | 37.1 | 71.8  | 70.5  | 84.0  | 53.1  | 99.6  | 34.6 |
| 2000    | 80  | 96.9  | 96.9  | 106.2 | 77.6  | 112.0 | 56.0 | 90.6  | 90.6  | 101.1 | 75.9  | 110.1  | 55.4   | 84.5    | 84.5  | 92.9  | 72.2  | 106.1 | 53.2 | 78.3  | 78.3  | 84.7  | 68.5  | 99.8  | 50.6 |
| 3060    | 85  | 103.5 | 103.5 | 107.2 | 92.9  | 113.2 | 68.7 | 98.6  | 98.6  | 102.2 | 92.1  | 111.6  | 70.3   | 92.1    | 92.1  | 94.5  | 88.8  | 106.4 | 68.8 | 85.8  | 85.8  | 86.7  | 85.2  | 100.0 | 66.5 |
|         | 90  | 108.4 | 108.4 | 109.0 | 107.7 | 114.4 | 81.6 | 105.0 | 105.0 | 105.0 | 105.0 | 112.6  | 84.9   | 99.9    | 99.9  | 99.9  | 99.9  | 107.3 | 83.9 | 93.5  | 93.5  | 93.5  | 93.5  | 100.8 | 82.6 |
|         | 75  | 96.6  | 87.2  | 107.1 | 64.7  | 111.4 | 41.5 | 88.7  | 83.3  | 102.4 | 62.6  | 110.7  | 40.1   | 81.4    | 79.6  | 94.4  | 59.1  | 106.6 | 37.9 | 74.2  | 74.2  | 85.9  | 55.4  | 101.1 | 35.5 |
| 2400    | 80  | 100.9 | 100.9 | 107.7 | 81.0  | 112.7 | 56.9 | 94.9  | 94.9  | 103.0 | 80.4  | 111.7  | 57.5   | 88.3    | 88.3  | 95.2  | 77.1  | 107.3 | 55.7 | 81.8  | 81.8  | 86.8  | 73.4  | 101.4 | 53.1 |
| 3400    | 85  | 106.6 | 106.6 | 108.9 | 97.4  | 114.0 | 70.2 | 102.6 | 102.6 | 104.4 | 97.8  | 112.8  | 72.9   | 96.5    | 96.5  | 97.6  | 95.6  | 108.0 | 72.4 | 89.9  | 89.9  | 89.8  | 89.8  | 101.8 | 70.8 |
|         | 90  | 110.8 | 110.8 | 110.8 | 110.8 | 115.3 | 83.8 | 108.1 | 108.1 | 108.1 | 108.1 | 114.0  | 88.5   | 103.8   | 103.8 | 103.8 | 103.8 | 108.9 | 88.3 | 97.8  | 97.8  | 97.8  | 97.8  | 102.8 | 87.9 |
|         | 75  | 98.9  | 92.5  | 107.4 | 65.9  | 112.0 | 42.2 | 91.2  | 88.7  | 103.7 | 65.4  | 111.1  | 40.7   | 83.5    | 83.5  | 96.3  | 62.2  | 107.5 | 38.7 | 76.9  | 76.9  | 87.5  | 58.4  | 102.2 | 36.2 |
| 2740    | 80  | 103.7 | 103.7 | 108.8 | 84.0  | 113.3 | 57.7 | 98.7  | 98.7  | 104.5 | 84.5  | 112.4  | 58.7   | 91.7    | 91.7  | 97.3  | 81.9  | 108.3 | 57.6 | 85.0  | 85.0  | 88.8  | 78.2  | 102.6 | 55.5 |
| 3740    | 85  | 108.8 | 108.8 | 110.1 | 100.9 | 114.6 | 76.9 | 105.4 | 105.4 | 106.4 | 103.0 | 113.7  | 75.1   | 100.2   | 100.2 | 100.2 | 100.2 | 109.3 | 75.7 | 93.4  | 93.4  | 93.4  | 93.4  | 103.1 | 74.4 |
|         | 90  | 112.3 | 112.3 | 112.1 | 112.1 | 115.9 | 85.7 | 110.4 | 110.4 | 110.4 | 110.4 | 114.9  | 91.4   | 106.5   | 106.5 | 106.5 | 106.5 | 110.2 | 92.3 | 101.3 | 101.3 | 101.3 | 101.3 | 104.4 | 92.7 |
|         | 75  | 100.9 | 97.3  | 108.1 | 67.4  | 112.5 | 42.9 | 93.1  | 93.1  | 104.7 | 67.9  | 111.5  | 41.4   | 86.2    | 86.2  | 97.8  | 65.2  | 108.2 | 39.4 | 79.4  | 79.4  | 88.8  | 61.3  | 103.0 | 36.9 |
| 4000    | 80  | 105.9 | 105.9 | 109.5 | 86.2  | 113.8 | 58.4 | 101.6 | 101.6 | 105.8 | 88.2  | 112.8  | 59.6   | 94.9    | 94.9  | 99.1  | 86.5  | 109.2 | 59.6 | 87.9  | 87.9  | 90.6  | 82.8  | 103.5 | 57.8 |
| 4080    | 85  | 110.2 | 110.2 | 110.9 | 103.4 | 115.1 | 79.5 | 107.6 | 107.6 | 107.6 | 107.6 | 114.1  | 76.6   | 103.0   | 103.0 | 103.0 | 103.0 | 109.9 | 77.6 | 96.6  | 96.6  | 96.6  | 96.6  | 104.2 | 77.7 |
|         | 90  | 112.9 | 112.9 | 112.9 | 112.9 | 116.5 | 87.5 | 112.2 | 112.2 | 112.2 | 112.2 | 115.4  | 93.4   | 108.6   | 108.6 | 108.6 | 108.6 | 111.3 | 95.9 | 103.9 | 103.9 | 103.9 | 103.9 | 105.8 | 97.0 |

Table PD-17 — Gross Cooling Capacities (MBH) 10 Ton Three Phase YHC120A3,A4,AW

|         |      |            |       |       |       |       |      |       |       |       | Ambi  | entTen | nperat | ure (F) |       |       |       |       |       |       |       |       |       |       |           |
|---------|------|------------|-------|-------|-------|-------|------|-------|-------|-------|-------|--------|--------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----------|
|         |      |            |       | 8     | 5     |       |      |       |       | ç     | 95    |        |        |         |       | 10    | 05    |       |       |       |       | 11    | 15    |       |           |
|         | Ent  | ter.       |       |       |       |       |      |       |       |       |       |        |        |         |       |       |       |       |       |       |       |       |       |       |           |
|         | Dry  | ,          |       |       |       |       |      | ı     |       |       | Ente  | ring W | /et Bu | b (F)   |       |       |       |       |       | İ     |       |       |       |       |           |
| CFM     | Bull | b <u>6</u> | 1     | 6     | 7     | 7     | 3    | 6     | 1     | 6     | 57    | 7      | 3      | 6       | 1     | 6     | 7     | 7     | 3     | 6     | 1     | 6     | 7     | 7     | <u>'3</u> |
| Airflow | (F)  | MBH        | SHC   | MBH   | SHC   | MBH   | SHC  | MBH   | SHC   | MBH   | SHC   | MBH    | SHC    | MBH     | SHC   | MBH   | SHC   | MBH   | SHC   | MBH   | SHC   | MBH   | SHC   | MBH   | SHC       |
|         | 75   | 107.0      | 94.4  | 117.4 | 75.0  | 123.4 | 46.0 | 98.7  | 90.1  | 114.7 | 68.8  | 121.9  | 44.4   | 88.5    | 88.5  | 107.2 | 65.3  | 118.6 | 42.2  | 82.3  | 78.8  | 97.8  | 61.1  | 113.6 | 39.6      |
| 2000    | 80   | 110.9      | 108.6 | 119.9 | 88.2  | 125.0 | 62.5 | 104.5 | 104.1 | 115.2 | 87.5  | 123.4  | 62.3   | 97.7    | 97.7  | 107.8 | 84.3  | 119.4 | 60.8  | 90.6  | 90.6  | 98.5  | 80.1  | 114.3 | 58.3      |
| 3600    | 85   | 117.6      | 117.6 | 120.9 | 105.0 | 126.6 | 76.7 | 113.1 | 113.1 | 116.5 | 105.8 | 124.9  | 78.1   | 106.9   | 106.9 | 107.0 | 107.0 | 120.9 | 78.1  | 99.9  | 99.9  | 100.0 | 100.0 | 114.8 | 76.5      |
|         | 90   | 122.5      | 122.5 | 122.4 | 122.4 | 128.2 | 91.1 | 119.6 | 119.6 | 119.6 | 117.1 | 126.4  | 94.1   | 115.0   | 115.0 | 114.7 | 114.6 | 121.6 | 94.3  | 109.0 | 109.0 | 109.0 | 109.0 | 115.8 | 94.3      |
|         | 75   | 109.8      | 100.5 | 119.4 | 71.9  | 122.5 | 46.5 | 99.7  | 99.7  | 116.1 | 71.5  | 121.7  | 45.0   | 92.5    | 92.5  | 110.1 | 69.1  | 119.4 | 43.0  | 85.6  | 83.4  | 100.9 | 65.0  | 114.6 | 40.5      |
| 4000    | 80   | 114.6      | 114.1 | 120.8 | 90.1  | 124.1 | 68.3 | 109.3 | 109.3 | 117.0 | 91.2  | 123.4  | 62.7   | 102.3   | 102.3 | 110.8 | 89.9  | 120.6 | 62.5  | 94.8  | 94.8  | 101.9 | 86.0  | 115.5 | 61.1      |
| 4000    | 85   | 120.5      | 120.5 | 122.3 | 107.9 | 125.9 | 76.4 | 117.0 | 117.0 | 118.6 | 110.2 | 125.0  | 78.8   | 111.6   | 111.6 | 111.8 | 111.8 | 122.1 | 80.4  | 104.7 | 104.7 | 105.8 | 102.6 | 116.3 | 79.7      |
|         | 90   | 125.2      | 125.2 | 124.2 | 124.2 | 127.6 | 90.9 | 122.4 | 122.4 | 121.7 | 120.9 | 126.6  | 95.1   | 118.5   | 118.5 | 118.3 | 118.3 | 123.6 | 98.4  | 113.1 | 113.1 | 113.3 | 113.3 | 117.7 | 98.6      |
|         | 75   | 112.3      | 106.1 | 121.2 | 74.8  | 124.6 | 47.6 | 103.6 | 103.6 | 117.1 | 75.5  | 123.0  | 46.0   | 96.7    | 93.9  | 111.2 | 72.2  | 120.0 | 43.7  | 88.6  | 88.0  | 102.0 | 68.2  | 115.3 | 41.2      |
| 4400    | 80   | 117.6      | 117.6 | 122.5 | 94.7  | 126.3 | 64.2 | 113.0 | 113.0 | 118.4 | 95.8  | 124.7  | 64.4   | 106.3   | 106.3 | 112.2 | 94.9  | 121.5 | 64.3  | 98.8  | 98.8  | 103.5 | 91.1  | 116.1 | 62.8      |
| 4400    | 85   | 122.4      | 122.4 | 124.3 | 113.8 | 128.0 | 79.6 | 119.6 | 119.6 | 119.6 | 119.6 | 126.4  | 81.8   | 115.1   | 115.1 | 115.5 | 111.7 | 122.7 | 83.0  | 109.1 | 109.1 | 108.8 | 107.4 | 117.2 | 83.2      |
|         | 90   | 126.0      | 126.0 | 127.1 | 125.0 | 129.6 | 95.2 | 124.3 | 124.3 | 124.2 | 124.2 | 128.0  | 99.4   | 120.9   | 120.9 | 120.9 | 120.9 | 123.9 | 101.2 | 116.1 | 116.1 | 116.1 | 116.1 | 118.8 | 103.3     |
|         | 75   | 113.4      | 113.4 | 121.8 | 76.2  | 125.0 | 48.4 | 107.6 | 104.0 | 118.5 | 77.0  | 123.5  | 46.9   | 99.6    | 98.2  | 112.7 | 75.4  | 120.5 | 44.8  | 91.6  | 91.6  | 103.7 | 71.6  | 115.9 | 41.9      |
| 4000    | 80   | 119.5      | 119.5 | 123.2 | 97.0  | 126.7 | 64.8 | 115.8 | 115.8 | 119.8 | 99.6  | 125.2  | 65.3   | 109.8   | 109.8 | 113.9 | 99.4  | 122.1 | 65.5  | 102.3 | 102.3 | 105.5 | 96.3  | 117.2 | 66.8      |
| 4800    | 85   | 124.3      | 124.3 | 125.2 | 116.6 | 128.4 | 80.7 | 121.5 | 121.5 | 121.5 | 121.5 | 126.9  | 83.3   | 117.5   | 117.5 | 117.6 | 115.4 | 123.7 | 85.6  | 111.8 | 111.8 | 111.8 | 111.8 | 118.5 | 86.4      |
|         | 90   | 127.5      | 127.5 | 128.0 | 126.7 | 130.1 | 96.9 | 126.0 | 126.0 | 125.5 | 125.5 | 128.6  | 101.5  | 122.6   | 122.6 | 123.0 | 123.0 | 125.5 | 105.5 | 118.2 | 118.2 | 118.2 | 118.2 | 120.3 | 107.5     |
| Notoo:  |      |            |       |       |       |       |      |       |       |       |       |        |        |         |       |       |       |       |       | •     |       |       |       |       |           |

#### Notes:

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow

table notes.

2. MBH = Total Gross Capacity

<sup>3.</sup> SHC = Sensible Heat Capacity

<sup>1.</sup> All capacities shown are gross and have not considered indoor fan heat. To obtain **NET** cooling capacity subtract indoor fan heat. For indoor fan heat formula, refer to appropriate airflow table notes.

MBH = Total Gross Capacity

SHC = Sensible Heat Capacity



### **Performance** (3 - 5 Tons) **Data**

(3 - 5 Tons) **Standard Efficiency** 

Table PD-18 - Direct Drive Evaporator Fan Performance 3, 4, and 5 Ton YSC036A, YSC048A, YSC060A - Low and Medium Heat

|       |                      |              | E            |                   |              | (Inches of W | ater) & Moto | •            | • *                            |            |
|-------|----------------------|--------------|--------------|-------------------|--------------|--------------|--------------|--------------|--------------------------------|------------|
|       |                      |              | High S       | Standard<br>Speed |              | Speed        | High         | Speed        | zed Motor <sup>2</sup><br>I ow | Speed      |
| Tons  | Unit<br>Model No.    | CFM          | ESP          | BHP               | ESP          | BHP          | ESP          | BHP          | ESP                            | BHP        |
| 10115 | Model No.            | 960          | 0.81         | 0.36              | 0.61         | 0.28         | 0.96         | 0.39         | 0.89                           | 0.35       |
|       |                      | 1020         | 0.77         | 0.37              | 0.57         | 0.28         | 0.94         | 0.33         | 0.86                           | 0.47       |
|       |                      | 1080         | 0.73         | 0.38              | 0.50         | 0.29         | 0.91         | 0.43         | 0.82                           | 0.39       |
|       |                      | 1140         | 0.69         | 0.39              | 0.42         | 0.29         | 0.88         | 0.44         | 0.77                           | 0.40       |
| 3     | YSC036A**L,M         | 1200         | 0.66         | 0.40              | 0.34         | 0.30         | 0.84         | 0.45         | 0.74                           | 0.41       |
| 3     | Horizontal Airflow   | 1260         | 0.60         | 0.41              | 0.26         | 0.30         | 0.80         | 0.46         | 0.70                           | 0.42       |
|       |                      | 1320         | 0.55         | 0.42              | 0.14         | 0.31         | 0.75         | 0.48         | 0.65                           | 0.4        |
|       |                      | 1380         | 0.49         | 0.42              | 0.05         | 0.31         | 0.70         | 0.49         | 0.59                           | 0.4        |
|       |                      | 1440         | 0.44         | 0.43              | _            | _            | 0.64         | 0.52         | 0.54                           | 0.4        |
|       |                      | 1280         | 0.88         | 0.53              | 0.76         | 0.47         | 1.15         | 0.67         | 0.94                           | 0.5        |
|       |                      | 1360         | 0.82         | 0.54              | 0.70         | 0.47         | 1.10         | 0.68         | 0.89                           | 0.5        |
|       |                      | 1440         | 0.75         | 0.54              | 0.63         | 0.48         | 1.05         | 0.70         | 0.83                           | 0.6        |
|       |                      | 1520         | 0.68         | 0.55              | 0.55         | 0.48         | 1.00         | 0.73         | 0.76                           | 0.63       |
| 4     | YSC048A**L,M         | 1600         | 0.61         | 0.55              | 0.46         | 0.49         | 0.95         | 0.75         | 0.69                           | 0.6        |
| •     | Horizontal Airflow   | 1680         | 0.52         | 0.56              | 0.33         | 0.49         | 0.90         | 0.78         | 0.60                           | 0.6        |
|       |                      | 1760         | 0.42         | 0.56              | 0.18         | 0.50         | 0.85         | 0.82         | 0.45                           | 0.6        |
|       |                      | 1840         | 0.32         | 0.57              | 80.0         | 0.50         | 0.78         | 0.83         | 0.30                           | 0.7        |
|       |                      | 1920         | 0.22         | 0.57              | _            | _            | 0.70         | 0.85         | 0.20                           | 0.7        |
|       |                      | 1600         | 0.85         | 0.78              | 0.77         | 0.64         | 1.15         | 0.90         | 1.00                           | 0.8        |
|       |                      | 1700         | 0.80         | 0.82              | 0.63         | 0.65         | 1.10         | 0.94         | 0.90                           | 0.8        |
|       |                      | 1800         | 0.75         | 0.85              | 0.51         | 0.65         | 1.00         | 0.98         | 0.80                           | 0.9        |
|       |                      | 1900         | 0.65         | 0.88              | 0.41         | 0.65         | 0.93         | 1.02         | 0.70                           | 0.9        |
| 5     | YSC060A**L,M3        | 2000         | 0.55         | 0.90              | 0.25         | 0.66         | 0.85         | 1.05         | 0.60                           | 0.9        |
|       | Horizontal Airflow   | 2100         | 0.45         | 0.93              | 0.09         | 0.66         | 0.75         | 1.10         | 0.45                           | 0.9        |
|       |                      | 2200         | 0.35         | 0.95              | 0.00         | 0.67         | 0.65         | 1.12         | 0.30                           | 0.9        |
|       |                      | 2300         | 0.25         | 0.97              | _            | _            | 0.55         | 1.17         | 0.10                           | 0.9        |
|       |                      | 2400         | 0.15         | 1.00              |              | _            | 0.43         | 1.20         |                                |            |
|       |                      | 960          | 0.81         | 0.36              | 0.61         | 0.28         | 0.96         | 0.39         | 0.89                           | 0.3        |
|       |                      | 1020         | 0.77         | 0.37              | 0.57         | 0.28         | 0.94         | 0.41         | 0.86                           | 0.4        |
|       |                      | 1080         | 0.73<br>0.69 | 0.38              | 0.50         | 0.29         | 0.91         | 0.43<br>0.44 | 0.82<br>0.77                   | 0.3<br>0.4 |
|       | YSC036A**L.M         | 1140<br>1200 | 0.69         | 0.39<br>0.40      | 0.42<br>0.34 | 0.29<br>0.30 | 0.88<br>0.84 | 0.44         | 0.77                           | 0.4        |
| 3     | Downflow Airflow     | 1200         | 0.60         | 0.40              | 0.34         | 0.30         | 0.84         | 0.45<br>0.46 | 0.74                           | 0.4        |
|       | DOWITIOW AITHOW      | 1320         | 0.55         | 0.41              | 0.26         | 0.30         | 0.80         | 0.48         | 0.70                           | 0.4        |
|       |                      | 1380         | 0.55         | 0.42              | 0.14         | 0.31         | 0.75         | 0.49         | 0.65                           | 0.4        |
|       |                      | 1440         | 0.43         | 0.42              | U.US         | -<br>-       | 0.70         | 0.43         | 0.54                           | 0.4        |
|       |                      | 1280         | 0.93         | 0.53              | 0.81         | 0.47         | 1.20         | 0.67         | 0.99                           | 0.5        |
|       |                      | 1360         | 0.33         | 0.53              | 0.75         | 0.47         | 1.15         | 0.68         | 0.94                           | 0.5        |
|       |                      | 1440         | 0.80         | 0.54              | 0.73         | 0.48         | 1.10         | 0.70         | 0.88                           | 0.5        |
|       |                      | 1520         | 0.73         | 0.55              | 0.60         | 0.48         | 1.05         | 0.73         | 0.81                           | 0.6        |
|       | YSC048A**L.M         | 1600         | 0.66         | 0.55              | 0.51         | 0.49         | 1.00         | 0.75         | 0.74                           | 0.6        |
| 4     | Downflow Airflow     | 1680         | 0.57         | 0.56              | 0.38         | 0.49         | 0.95         | 0.78         | 0.65                           | 0.6        |
|       | 20111110117 11111011 | 1760         | 0.47         | 0.56              | 0.23         | 0.50         | 0.90         | 0.82         | 0.50                           | 0.6        |
|       |                      | 1840         | 0.37         | 0.57              | 0.13         | 0.50         | 0.83         | 0.83         | 0.35                           | 0.7        |
|       |                      | 1920         | 0.27         | 0.57              | _            | _            | 0.75         | 0.85         | _                              | _          |
|       |                      | 1600         | 0.90         | 0.78              | 0.82         | 0.64         | 1.20         | 0.90         | 1.05                           | 0.8        |
|       |                      | 1700         | 0.85         | 0.82              | 0.68         | 0.65         | 1.15         | 0.94         | 0.95                           | 0.8        |
|       |                      | 1800         | 0.80         | 0.85              | 0.56         | 0.65         | 1.05         | 0.98         | 0.85                           | 0.9        |
|       |                      | 1900         | 0.70         | 0.88              | 0.46         | 0.65         | 0.98         | 1.02         | 0.75                           | 0.9        |
| =     | YSC060A**L,M3        | 2000         | 0.60         | 0.90              | 0.30         | 0.66         | 0.90         | 1.05         | 0.65                           | 0.9        |
| 5     | Downflow Airflow     | 2100         | 0.50         | 0.93              | 0.14         | 0.66         | 0.80         | 1.10         | 0.50                           | 0.9        |
|       |                      | 2200         | 0.40         | 0.95              | 0.05         | 0.67         | 0.70         | 1.12         | 0.35                           | 0.9        |
|       |                      | 2300         | 0.30         | 0.97              | _            | _            | 0.60         | 1.17         | 0.15                           | 0.9        |
|       |                      | 2400         | 0.20         | 1.00              | _            | _            | 0.48         | 1.20         | _                              | _          |

Fan motor heat (MBH) =  $3.72 \times \text{Fan Bhp} + .24$ .

RT-PRC006-EN

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Notes:

1. Data includes pressure drop due to wet coil and filters.

2. 5 ton oversized motor performance is with 12x11 FC Centrifugal blower wheel.

3. YSC060AK\* uses a 1.0 hp direct drive motor and 12x11 FC Centrifugal blower wheel. Refer to oversized motor column for the standard motor performance data. 37



### **Performance** (3 - 5 Tons) **Data**

**Standard Efficiency** 

Table PD-19 — Direct Drive Evaporator Fan Performance 3, 4 and 5 Ton YSC036A, YSC048A, YSC060A — High Heat

|      |                    |      |        |       |          | sure (Inches | or vvater) & |       | •                    |       |
|------|--------------------|------|--------|-------|----------|--------------|--------------|-------|----------------------|-------|
|      |                    |      |        |       | rd Motor |              |              |       | d Motor <sup>2</sup> |       |
|      | 11-5               |      | High S | Speed | Low      | Speed        | High S       | Speed | Low                  | Speed |
| Tons | Unit<br>Model No.  | CFM  | ESP    | BHP   | ESP      | BHP          | ESP          | BHP   | ESP                  | BHP   |
|      |                    | 960  | 0.76   | 0.36  | 0.56     | 0.28         | 0.91         | 0.39  | 0.84                 | 0.35  |
|      |                    | 1020 | 0.72   | 0.37  | 0.52     | 0.28         | 0.89         | 0.41  | 0.81                 | 0.47  |
|      |                    | 1080 | 0.68   | 0.38  | 0.45     | 0.29         | 0.86         | 0.43  | 0.77                 | 0.39  |
|      |                    | 1140 | 0.64   | 0.39  | 0.37     | 0.29         | 0.83         | 0.44  | 0.72                 | 0.40  |
|      | YSC036A**H         | 1200 | 0.61   | 0.40  | 0.29     | 0.30         | 0.79         | 0.45  | 0.69                 | 0.41  |
|      | Horizontal Airflow | 1260 | 0.55   | 0.41  | 0.21     | 0.30         | 0.75         | 0.46  | 0.65                 | 0.42  |
|      |                    | 1320 | 0.50   | 0.42  | 0.09     | 0.31         | 0.70         | 0.48  | 0.60                 | 0.44  |
|      |                    | 1380 | 0.44   | 0.42  | 0.00     | 0.31         | 0.65         | 0.49  | 0.54                 | 0.45  |
|      |                    | 1440 | 0.39   | 0.43  | -        | _            | 0.59         | 0.52  | 0.49                 | 0.48  |
|      |                    | 1280 | 0.88   | 0.53  | 0.76     | 0.47         | 1.15         | 0.67  | 0.94                 | 0.56  |
|      |                    | 1360 | 0.82   | 0.54  | 0.70     | 0.47         | 1.10         | 0.68  | 0.89                 | 0.58  |
|      |                    | 1440 | 0.75   | 0.54  | 0.63     | 0.48         | 1.05         | 0.70  | 0.83                 | 0.60  |
|      |                    | 1520 | 0.68   | 0.55  | 0.55     | 0.48         | 1.00         | 0.73  | 0.76                 | 0.63  |
|      | YSC048A**H         | 1600 | 0.61   | 0.55  | 0.46     | 0.49         | 0.95         | 0.75  | 0.69                 | 0.64  |
|      | Horizontal Airflow | 1680 | 0.52   | 0.56  | 0.33     | 0.49         | 0.90         | 0.78  | 0.60                 | 0.66  |
|      |                    | 1760 | 0.42   | 0.56  | 0.18     | 0.50         | 0.85         | 0.82  | 0.45                 | 0.68  |
|      |                    | 1840 | 0.32   | 0.57  | 0.08     | 0.50         | 0.78         | 0.83  | 0.30                 | 0.70  |
|      |                    | 1920 | 0.22   | 0.57  | -        | _            | 0.70         | 0.85  | 0.20                 | 0.73  |
|      |                    | 1600 | 0.85   | 0.78  | 0.77     | 0.64         | 1.15         | 0.90  | 1.00                 | 0.85  |
|      |                    | 1700 | 0.80   | 0.82  | 0.63     | 0.65         | 1.10         | 0.94  | 0.90                 | 0.89  |
|      |                    | 1800 | 0.75   | 0.85  | 0.51     | 0.65         | 1.00         | 0.98  | 0.80                 | 0.91  |
|      |                    | 1900 | 0.65   | 0.88  | 0.41     | 0.65         | 0.93         | 1.02  | 0.70                 | 0.94  |
|      | YSC060A**H3        | 2000 | 0.55   | 0.90  | 0.25     | 0.66         | 0.85         | 1.05  | 0.60                 | 0.95  |
|      | Horizontal Airflow | 2100 | 0.45   | 0.93  | 0.09     | 0.66         | 0.75         | 1.10  | 0.45                 | 0.96  |
|      |                    | 2200 | 0.35   | 0.95  | 0.00     | 0.67         | 0.65         | 1.12  | 0.30                 | 0.96  |
|      |                    | 2300 | 0.25   | 0.97  | _        | _            | 0.55         | 1.17  | 0.10                 | 0.97  |
|      |                    | 2400 | 0.15   | 1.00  | _        | _            | 0.43         | 1.20  | _                    | _     |
|      |                    | 960  | 0.76   | 0.36  | 0.56     | 0.28         | 0.91         | 0.39  | 0.84                 | 0.35  |
|      |                    | 1020 | 0.72   | 0.37  | 0.52     | 0.28         | 0.89         | 0.41  | 0.81                 | 0.47  |
|      |                    | 1080 | 0.68   | 0.38  | 0.45     | 0.29         | 0.86         | 0.43  | 0.77                 | 0.39  |
|      |                    | 1140 | 0.64   | 0.39  | 0.37     | 0.29         | 0.83         | 0.44  | 0.72                 | 0.40  |
|      | YSC036A**H         | 1200 | 0.61   | 0.40  | 0.29     | 0.30         | 0.79         | 0.45  | 0.69                 | 0.41  |
|      | Downflow Airflow   | 1260 | 0.55   | 0.41  | 0.21     | 0.30         | 0.75         | 0.46  | 0.65                 | 0.42  |
|      |                    | 1320 | 0.50   | 0.42  | 0.09     | 0.31         | 0.70         | 0.48  | 0.60                 | 0.44  |
|      |                    | 1380 | 0.44   | 0.42  | 0.00     | 0.31         | 0.65         | 0.49  | 0.54                 | 0.45  |
|      |                    | 1440 | 0.39   | 0.43  | _        | _            | 0.59         | 0.52  | 0.49                 | 0.48  |
|      |                    | 1280 | 0.93   | 0.53  | 0.81     | 0.47         | 1.20         | 0.67  | 0.99                 | 0.56  |
|      |                    | 1360 | 0.87   | 0.54  | 0.75     | 0.47         | 1.15         | 0.68  | 0.94                 | 0.58  |
|      |                    | 1440 | 0.80   | 0.54  | 0.68     | 0.48         | 1.10         | 0.70  | 0.88                 | 0.60  |
|      |                    | 1520 | 0.73   | 0.55  | 0.60     | 0.48         | 1.05         | 0.73  | 0.81                 | 0.63  |
|      | YSC048A**H         | 1600 | 0.66   | 0.55  | 0.51     | 0.49         | 1.00         | 0.75  | 0.74                 | 0.64  |
|      | Downflow Airflow   | 1680 | 0.57   | 0.56  | 0.38     | 0.49         | 0.95         | 0.78  | 0.65                 | 0.66  |
|      |                    | 1760 | 0.47   | 0.56  | 0.23     | 0.50         | 0.90         | 0.82  | 0.50                 | 0.68  |
|      |                    | 1840 | 0.37   | 0.57  | 0.13     | 0.50         | 0.83         | 0.83  | 0.35                 | 0.70  |
|      |                    | 1920 | 0.27   | 0.57  | _        | _            | 0.75         | 0.85  | _                    | _     |
|      |                    | 1600 | 0.90   | 0.78  | 0.82     | 0.64         | 1.20         | 0.90  | 1.05                 | 0.85  |
|      |                    | 1700 | 0.85   | 0.82  | 0.68     | 0.65         | 1.15         | 0.94  | 0.95                 | 0.89  |
|      |                    | 1800 | 0.80   | 0.85  | 0.56     | 0.65         | 1.05         | 0.98  | 0.85                 | 0.91  |
|      |                    | 1900 | 0.70   | 0.88  | 0.46     | 0.65         | 0.98         | 1.02  | 0.75                 | 0.94  |
|      | YSC060A**H3        | 2000 | 0.60   | 0.90  | 0.30     | 0.66         | 0.90         | 1.05  | 0.65                 | 0.95  |
|      | Downflow Airflow   | 2100 | 0.50   | 0.93  | 0.14     | 0.66         | 0.80         | 1.10  | 0.50                 | 0.96  |
|      |                    | 2200 | 0.40   | 0.95  | 0.00     | 0.67         | 0.70         | 1.12  | 0.35                 | 0.96  |
|      |                    | 2300 | 0.30   | 0.97  | _        | _            | 0.60         | 1.17  | 0.15                 | 0.97  |
|      |                    | 2400 | 0.20   | 1.00  | _        |              | 0.48         | 1.20  | -                    |       |

Fan motor heat (MBH) = 3.72 x Fan Bhp + .24.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Data includes pressure drop due to wet coil and filters.
 5 ton oversized motor performance is with 12x11 FC Centrifugal blower wheel.
 YSC060AK\* uses a 1.0 hp direct drive motor and 12x11 FC Centrifugal blower wheel. Refer to oversized motor column for the standard motor performance data.



### **Performance** (3 Ton) Data

## **Standard Efficiency**

Table PD-20 — Belt Drive Evaporator Fan Performance — 3 Ton — YSC036A3,A4,AW\*L, M — Low and Medium Heat —Downflow Airflow

|      |      |         |        |           |         |          |          | Externa  | al Static | Pressure | (Inches | of Wate | r)      |         |         |       |      |      |      |      |
|------|------|---------|--------|-----------|---------|----------|----------|----------|-----------|----------|---------|---------|---------|---------|---------|-------|------|------|------|------|
|      | .1   | 0       | .2     | 20        | .3      | 30       | .4       | Ю        |           | 50       | .6      | 60      | .7      | 70      | 3.      | 30    | .9   | 0    | 1.0  | )0   |
| CFM  | RPM  | BHP     | RPM    | BHP       | RPM     | BHP      | RPM      | BHP      | RPM       | BHP      | RPM     | BHP     | RPM     | BHP     | RPM     | BHP   | RPM  | BHP  | RPM  | BHP  |
|      | 1-HP | Standar | d Moto | r & Field | Supplie | ed Low S | Static D | rive (1) |           |          |         | 1       | -HP Sta | ndard N | lotor & | Drive |      |      |      |      |
| 960  | _    | _       | 570    | 0.14      | 634     | 0.18     | 690      | 0.22     | 741       | 0.27     | 791     | 0.31    | 836     | 0.36    | 879     | 0.41  | 922  | 0.46 | 961  | 0.52 |
| 1080 | 537  | 0.14    | 606    | 0.18      | 669     | 0.23     | 724      | 0.27     | 773       | 0.32     | 819     | 0.36    | 864     | 0.41    | 906     | 0.47  | 946  | 0.52 | 985  | 0.58 |
| 1200 | 581  | 0.18    | 645    | 0.22      | 705     | 0.27     | 759      | 0.33     | 807       | 0.38     | 851     | 0.42    | 894     | 0.48    | 935     | 0.53  | 973  | 0.59 | 1011 | 0.65 |
| 1320 | 627  | 0.23    | 686    | 0.28      | 742     | 0.33     | 795      | 0.39     | 842       | 0.44     | 885     | 0.50    | 927     | 0.55    | 966     | 0.61  | 1003 | 0.67 | 1040 | 0.73 |
| 1440 | 673  | 0.29    | 728    | 0.34      | 780     | 0.39     | 831      | 0.45     | 878       | 0.52     | 921     | 0.58    | 960     | 0.64    | 998     | 0.69  | 1034 | 0.76 | 1070 | 0.82 |

#### Table PD-20 — Continued

|      |      |      | Exte  | rnal Sta | tic Pressi | ure (Inch | es of Wa  | iter)    |          |         |
|------|------|------|-------|----------|------------|-----------|-----------|----------|----------|---------|
|      | 1.1  | 10   | 1.3   | 20       | 1.3        | 30        | 1.4       | 40       | 1.5      | 50      |
| CFM  | RPM  | BHP  | RPM   | BHP      | RPM        | BHP       | RPM       | BHP      | RPM      | BHP     |
|      |      |      |       | 1-HI     | P Standa   | ard Moto  | or & Driv | ve       |          |         |
| 960  | 1000 | 0.57 | 1037  | 0.63     | 1072       | 0.69      | 1106      | 0.75     | 1139     | 0.81    |
| 1080 | 1022 | 0.64 | 1058  | 0.70     | 1093       | 0.76      | 1127      | 0.82     | 1161     | 0.89    |
| 1200 | 1047 | 0.71 | 1083  | 0.77     | 1117       | 0.83      | 1150      | 0.90     | 1183     | 0.97    |
| 1320 | 1075 | 0.79 | 1108  | 0.85     | 1141       | 0.92      | 1174      | 0.99     | 1206     | 1.06    |
| 1440 | 1104 | 0.88 | 1137  | 0.95     | 1170       | 1.02      | 1201      | 1.09     | 1231     | 1.16    |
|      |      |      | 1-HPS | tandar   | d Motor    | & Field   | Supplie   | d High S | tatic Dr | ive (2) |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other

Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

- 1. Field Supplied Fan Sheave AK69 required. Field Supplied Belt may be
- 2. Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-21 — Belt Drive Evaporator Fan Performance — 3 Ton — YSC036A3,A4,AW\*H — High Heat —Downflow Airflow

|      |      |        |         | •         |         |          |          |          |           |          | •       |          | •       |         |         |       |      |      |      |      |
|------|------|--------|---------|-----------|---------|----------|----------|----------|-----------|----------|---------|----------|---------|---------|---------|-------|------|------|------|------|
|      |      |        |         |           |         |          |          | Extern   | al Static | Pressure | (Inches | of Water | r)      |         |         |       |      |      |      |      |
|      | .1   | 0      | .2      | 20        | .3      | 30       | .4       | 40       | .5        | 50       | .6      | 60       | .7      | 70      | 3.      | 30    | .9   | 0    | 1.0  | 00   |
| CFM  | RPM  | BHP    | RPM     | BHP       | RPM     | BHP      | RPM      | BHP      | RPM       | BHP      | RPM     | BHP      | RPM     | BHP     | RPM     | BHP   | RPM  | BHP  | RPM  | BHP  |
|      | 1-HP | Standa | rd Moto | r & Field | Supplie | ed Low S | Static D | rive (1) |           |          |         | 1        | -HP Sta | ndard N | lotor & | Drive |      |      |      |      |
| 960  | 503  | 0.11   | 578     | 0.15      | 641     | 0.19     | 696      | 0.23     | 747       | 0.27     | 796     | 0.32     | 841     | 0.36    | 884     | 0.42  | 926  | 0.47 | 966  | 0.52 |
| 1080 | 548  | 0.15   | 616     | 0.19      | 678     | 0.23     | 731      | 0.28     | 780       | 0.32     | 826     | 0.37     | 870     | 0.42    | 912     | 0.47  | 952  | 0.53 | 991  | 0.59 |
| 1200 | 593  | 0.19   | 657     | 0.23      | 716     | 0.28     | 768      | 0.33     | 815       | 0.38     | 859     | 0.43     | 901     | 0.49    | 942     | 0.54  | 980  | 0.60 | 1017 | 0.66 |
| 1320 | 640  | 0.24   | 698     | 0.29      | 754     | 0.34     | 806      | 0.40     | 852       | 0.45     | 895     | 0.51     | 935     | 0.56    | 974     | 0.62  | 1012 | 0.68 | 1048 | 0.74 |
| 1440 | 688  | 0.31   | 742     | 0.35      | 794     | 0.41     | 844      | 0.47     | 890       | 0.53     | 931     | 0.59     | 970     | 0.65    | 1009    | 0.71  | 1045 | 0.77 | 1080 | 0.84 |

Table PD-22 - Continued

|      |      |         |         | Extern  | al Static | Pressur | e (Inches | of Wate | er)  |      |  |
|------|------|---------|---------|---------|-----------|---------|-----------|---------|------|------|--|
|      | 1.1  | 10      | 1.3     | 20      | 1.3       | 30      | 1.4       | 40      | 1.   | 50   |  |
| CFM  | RPM  | BHP     | RPM     | BHP     | RPM       | BHP     | RPM       | BHP     | RPM  | BHP  |  |
|      | 1    | -HP Sta | ndard N | lotor & | Drive     |         |           |         |      |      |  |
| 960  | 1005 | 0.58    | 1041    | 0.64    | 1076      | 0.70    | 1110      | 0.76    | 1142 | 0.82 |  |
| 1080 | 1029 | 0.65    | 1064    | 0.71    | 1099      | 0.77    | 1133      | 0.83    | 1166 | 0.90 |  |
| 1200 | 1053 | 0.72    | 1089    | 0.78    | 1123      | 0.85    | 1156      | 0.91    | 1189 | 0.98 |  |
| 1320 | 1082 | 0.80    | 1116    | 0.87    | 1150      | 0.93    | 1182      | 1.00    | 1214 | 1.07 |  |
| 1440 | 1113 | 0.90    | 1146    | 0.97    | 1178      | 1.04    | 1209      | 1.11    | 1240 | 1.18 |  |
|      |      |         |         | 1-HI    | P Standa  | ard Mot | or &      |         |      |      |  |
|      |      |         | Fiel    | d Suppl | ied High  | Static  | Drive (2) | )       |      |      |  |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to

- other options/accessories
  Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

  1. Field Supplied Fan Sheave AK69 required. Field Supplied Belt may be
- 2. Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary.

 $\label{prop:prop:commercial} \textbf{Factory supplied motors, in commercial equipment, are definite purpose}$ motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be



## Performance (3 Ton) Data Standa

(3 Ton) **Standard Efficiency** 

1-HP Standard Motor & Field Supplied High Static Drive (2)

1-HP Standard Motor & Field Supplied High Static Drive (2)

Table PD-22 — Belt Drive Evaporator Fan Performance — 3 Ton — YSC036A3,A4,AW\*L, M — Low and Medium Heat — Horizontal Airflow

|       |           |         |            |          |     |      |     | Extern | al Static | Pressure | (Inches | of Wate | r)       |         |         |       |      |      |      |      |
|-------|-----------|---------|------------|----------|-----|------|-----|--------|-----------|----------|---------|---------|----------|---------|---------|-------|------|------|------|------|
|       | .1        | 0       |            | 20       | .3  | 30   | .4  | 10     |           | 50       | .6      | 60      | .7       | 0       | 3.      | 30    | .9   | 0    | 1.0  | 00   |
| CFM   | RPM       | BHP     | RPM        | BHP      | RPM | BHP  | RPM | BHP    | RPM       | BHP      | RPM     | BHP     | RPM      | BHP     | RPM     | BHP   | RPM  | BHP  | RPM  | BHP  |
| 1-HPS | tandard   | Motor 8 | & Field \$ | Supplied | I   |      |     |        |           |          |         | 1       | -HP Star | ndard N | lotor & | Drive |      |      |      |      |
| Low S | tatic Dri | ve (1)  |            |          |     |      |     |        |           |          |         |         |          |         |         |       |      |      |      |      |
| 960   | 552       | 0.13    | 631        | 0.17     | 699 | 0.22 | 759 | 0.27   | 811       | 0.33     | 858     | 0.38    | 902      | 0.44    | 943     | 0.49  | 980  | 0.54 | 1017 | 0.60 |
| 1080  | 598       | 0.17    | 675        | 0.22     | 739 | 0.27 | 798 | 0.33   | 850       | 0.38     | 898     | 0.44    | 941      | 0.50    | 982     | 0.57  | 1020 | 0.63 | 1056 | 0.69 |
| 1200  | 645       | 0.22    | 720        | 0.28     | 781 | 0.33 | 837 | 0.39   | 889       | 0.45     | 937     | 0.51    | 981      | 0.58    | 1021    | 0.65  | 1059 | 0.72 | 1095 | 0.79 |
| 1320  | 693       | 0.28    | 766        | 0.34     | 825 | 0.40 | 879 | 0.47   | 929       | 0.53     | 976     | 0.60    | 1020     | 0.67    | 1061    | 0.74  | 1099 | 0.81 | 1135 | 0.89 |
| 1440  | 743       | 0.35    | 811        | 0.42     | 871 | 0.49 | 922 | 0.55   | 970       | 0.62     | 1016    | 0.69    | 1059     | 0.77    | 1099    | 0.84  | 1138 | 0.92 | 1174 | 1.00 |

#### Table PD-22 - Continued

External Static Pressure (Inches of Water) 1.50 1.10 1.20 1.30 1.40 RPM BHP RPM RPM RPM RPM CFM BHE BHP BHP BHF 1-HP Standard Motor & Drive 960 1052 0.65 1086 0.71 0.83 1185 0.90 1080 1090 0.75 1123 0.81 1154 0.87 1185 0.93 1215 0.99 1200 1130 0.86 1162 0.92 1193 0.99 1224 1.05 1253 1.12 1320 1169 0.96 1203 1.04 1233 1.12 1263 1.19 1292 1.26 1440 1208 1.08 1241 1.16 1273 1.25 1303 1.33 1332 1.41 1-HP Standard Motor & Field Supplied High Static Drive (2)

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Notes:

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

Fan Motor Heat (MBH) =  $2.829 \times Fan BHP + .4024$ .

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-23 — Belt Drive Evaporator Fan Performance — 3 Ton — YSC036A3,A4,AW\*H — High Heat — Horizontal Airflow

|      |          |          |          |         |       |      |     | Extern | al Static | Pressure | (Inches | of Wate | r)       |         |         |       |      |      |      |      |
|------|----------|----------|----------|---------|-------|------|-----|--------|-----------|----------|---------|---------|----------|---------|---------|-------|------|------|------|------|
|      | .1       | 0        | .2       | 20      | .3    | 30   | .4  | 10     | .5        | 60       | .6      | 60      | .7       | 0       | 3.      | 80    | .9   | 0    | 1.0  | )0   |
| CFM  | RPM      | BHP      | RPM      | BHP     | RPM   | BHP  | RPM | BHP    | RPM       | BHP      | RPM     | BHP     | RPM      | BHP     | RPM     | BHP   | RPM  | BHP  | RPM  | BHP  |
| 1-HI | P Standa | ard Mot  | or & Fie | ld Supp | olied |      |     |        |           |          |         | 1       | -HP Star | ndard N | lotor & | Drive |      |      |      |      |
| Lov  | w Static | Drive (1 | 1)       |         |       |      |     |        |           |          |         |         |          |         |         |       |      |      |      |      |
| 960  | 563      | 0.13     | 639      | 0.18    | 707   | 0.23 | 766 | 0.28   | 817       | 0.33     | 864     | 0.39    | 908      | 0.44    | 947     | 0.49  | 985  | 0.55 | 1020 | 0.60 |
| 1080 | 611      | 0.18     | 685      | 0.23    | 748   | 0.28 | 806 | 0.34   | 858       | 0.39     | 905     | 0.45    | 947      | 0.51    | 988     | 0.58  | 1026 | 0.64 | 1061 | 0.70 |
| 1200 | 660      | 0.23     | 732      | 0.29    | 792   | 0.34 | 847 | 0.40   | 899       | 0.46     | 945     | 0.53    | 989      | 0.59    | 1029    | 0.66  | 1066 | 0.73 | 1102 | 0.80 |
| 1320 | 711      | 0.29     | 781      | 0.36    | 838   | 0.42 | 890 | 0.48   | 940       | 0.55     | 986     | 0.61    | 1029     | 0.68    | 1070    | 0.76  | 1106 | 0.83 | 1142 | 0.90 |
| 1440 | 762      | 0.37     | 829      | 0.44    | 885   | 0.51 | 935 | 0.57   | 983       | 0.64     | 1028    | 0.71    | 1070     | 0.79    | 1111    | 0.86  | 1148 | 0.94 | 1183 | 1.02 |

### Table PD-23 - Continued

External Static Pressure (Inches of Water) 1.20 1.30 1.50 RPM BHP BHP RPM BHP RPM RPM BHP **CFM** 1-HP Standard 1-HP Standard Motor & Field **Motor & Drive Supplied High Static Drive (2)** 0.78 1156 0.84 1188 960 0.66 1090 0.71 1123 0.90 1056 1080 1096 0.76 0.82 1159 0.88 1190 0.94 1220 1.00 1128 1200 1135 0.87 1168 0.93 1199 1.00 1.07 1.13 1229 1259 0.98 1.06 1241 1320 1177 1209 1.14 1270 1.21 1299 1.28 1440 1217 1.10 1250 1.18 1281 1.27 1311 1.35 1339 1.43

For Standard Evaporator Fan Speed (RPM), reference Table PD-86

Notes:

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

<sup>1.</sup> Field Supplied Fan Sheave AK69 required. Field Supplied Belt may be necessary.

<sup>2.</sup> Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary.

<sup>1.</sup> Field Supplied Fan Sheave AK69 required. Field Supplied Belt may be necessary.

<sup>2.</sup> Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



## Performance (4 Ton) Data Standa

## (4 Ton) Standard Efficiency

Table PD-24 — Belt Drive Evaporator Fan Performance — 4 Ton — YSC048A3,A4,AW\*L,M — Low and Medium Heat —Downflow Airflow

|      |     |      |        |          |           |         |         | Extern | al Static | Pressure | (Inches | of Wate | r)       |         |         |       |      |      |      |      |
|------|-----|------|--------|----------|-----------|---------|---------|--------|-----------|----------|---------|---------|----------|---------|---------|-------|------|------|------|------|
|      | .1  | 0    | .2     | 20       | .3        | 30      | .4      | 10     | .5        | 0        | .6      | 60      | .7       | 0       | 3.      | 80    | .9   | 0    | 1.0  | 0    |
| CFM  | RPM | BHP  | RPM    | BHP      | RPM       | BHP     | RPM     | BHP    | RPM       | BHP      | RPM     | BHP     | RPM      | BHP     | RPM     | BHP   | RPM  | BHP  | RPM  | BHP  |
|      |     |      | 1-HP S | tandar   | l Motor   | & Field | Supplie | ed     |           |          |         | 1       | -HP Star | ndard N | lotor & | Drive |      |      |      |      |
|      |     |      | Lo     | ow Stati | c Drive ( | 1)      |         |        |           |          |         |         |          |         |         |       |      |      |      |      |
| 1280 | 604 | 0.21 | 666    | 0.25     | 724       | 0.30    | 778     | 0.36   | 826       | 0.41     | 870     | 0.47    | 911      | 0.52    | 952     | 0.58  | 990  | 0.63 | 1026 | 0.69 |
| 1440 | 665 | 0.29 | 720    | 0.34     | 773       | 0.38    | 824     | 0.44   | 872       | 0.51     | 916     | 0.57    | 956      | 0.63    | 994     | 0.69  | 1030 | 0.75 | 1065 | 0.81 |
| 1600 | 726 | 0.38 | 777    | 0.44     | 826       | 0.49    | 873     | 0.54   | 919       | 0.61     | 961     | 0.68    | 1002     | 0.75    | 1039    | 0.82  | 1074 | 0.89 | 1109 | 0.95 |
| 1760 | 789 | 0.50 | 836    | 0.56     | 881       | 0.61    | 924     | 0.67   | 967       | 0.73     | 1008    | 0.81    | 1048     | 0.89    | 1085    | 0.97  | 1120 | 1.04 | 1154 | 1.12 |
| 1920 | 851 | 0.63 | 896    | 0.70     | 938       | 0.76    | 978     | 0.82   | 1018      | 0.88     | 1057    | 0.96    | 1095     | 1.04    | 1131    | 1.13  | 1167 | 1.21 | 1199 | 1.30 |

### Table PD-24 - Continued

|      |      |         |         | Extern  | al Static | Pressur | e (Inches | of Wate | r)   |      |
|------|------|---------|---------|---------|-----------|---------|-----------|---------|------|------|
|      | 1.1  | 10      | 1.      | 20      | 1.3       | 30      | 1.4       | 40      | 1.5  | 50   |
| CFM  | RPM  | BHP     | RPM     | BHP     | RPM       | BHP     | RPM       | BHP     | RPM  | BHP  |
|      | 1    | -HP Sta | ndard N | lotor & | Drive     |         |           |         |      |      |
| 1280 | 1062 | 0.76    | 1097    | 0.82    | 1130      | 0.88    | 1163      | 0.95    | 1195 | 1.02 |
| 1440 | 1100 | 0.88    | 1133    | 0.94    | 1166      | 1.01    | 1198      | 1.08    | 1228 | 1.15 |
| 1600 | 1141 | 1.02    | 1173    | 1.09    | 1205      | 1.16    | 1235      | 1.23    | 1265 | 1.31 |
| 1760 | 1185 | 1.19    | 1215    | 1.26    | 1246      | 1.33    | 1275      | 1.41    | 1304 | 1.49 |
| 1920 | 1230 | 1.37    | 1260    | 1.45    | _         | _       |           | _       | l –  | _    |

1-HP Standard Motor & Field Supplied High Static Drive (2) For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standardfilters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other ontions/accessories.

other options/accessories Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

- 1. Field Supplied Fan Sheave AK61 required. Field Supplied Belt may be necessary.
- Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-25 — Belt Drive Evaporator Fan Performance — 4 Ton — YSC048A3,A4,AW\*H — High Heat — Downflow Airflow

|      |     |      |     |                    |     |      |         | Extern | al Static | Pressure | (Inches | of Wate | r)        |         |         |       |      |      |      |      |
|------|-----|------|-----|--------------------|-----|------|---------|--------|-----------|----------|---------|---------|-----------|---------|---------|-------|------|------|------|------|
|      | .1  | 0    | .2  | 20                 | .3  | 30   | .4      | 40     | .5        | 50       | .6      | 60      | .7        | 70      | 3.      | 30    | .9   | 0    | 1.0  | )0   |
| CFM  | RPM | BHP  | RPM | BHP                | RPM | BHP  | RPM     | BHP    | RPM       | BHP      | RPM     | BHP     | RPM       | BHP     | RPM     | BHP   | RPM  | BHP  | RPM  | BHP  |
|      |     |      |     | Standa<br>w Statio |     |      | ld Supp | olied  |           |          |         | 1       | I-HP Star | ndard N | lotor & | Drive |      |      |      |      |
| 4000 | 040 | 0.00 |     |                    |     | ,    | 700     | 0.07   | 005       | 0.40     | 070     | 0.40    | 000       | 0.50    | 000     | 0.50  | 007  | 0.05 | 4004 | 0.74 |
| 1280 | 618 | 0.22 | 678 | 0.26               | 735 | 0.31 | 788     | 0.37   | 835       | 0.42     | 879     | 0.48    | 920       | 0.53    | 960     | 0.59  | 997  | 0.65 | 1034 | 0.71 |
| 1440 | 680 | 0.30 | 735 | 0.35               | 787 | 0.40 | 838     | 0.46   | 884       | 0.52     | 926     | 0.59    | 966       | 0.64    | 1004    | 0.70  | 1040 | 0.77 | 1075 | 0.83 |
| 1600 | 744 | 0.40 | 794 | 0.45               | 842 | 0.50 | 888     | 0.56   | 933       | 0.64     | 975     | 0.71    | 1015      | 0.78    | 1051    | 0.84  | 1086 | 0.91 | 1120 | 0.97 |
| 1760 | 808 | 0.52 | 854 | 0.58               | 899 | 0.64 | 941     | 0.69   | 984       | 0.76     | 1024    | 0.84    | 1063      | 0.92    | 1099    | 1.00  | 1134 | 1.07 | 1167 | 1.14 |
| 1920 | 873 | 0.66 | 916 | 0.73               | 957 | 0.79 | 997     | 0.85   | 1037      | 0.92     | 1075    | 0.99    | 1112      | 1.08    | 1148    | 1.17  | 1183 | 1.25 | 1214 | 1.33 |

### Table PD-25 — Continued

|      |      |         |         | Extern  | al Static  | Pressure | e (Inches | of Wate | r)   |      |
|------|------|---------|---------|---------|------------|----------|-----------|---------|------|------|
|      | 1.1  | 10      | 1.3     | 20      | 1.3        | 30       | 1.4       | 40      | 1.9  | 50   |
| CFM  | RPM  | BHP     | RPM     | BHP     | RPM        | BHP      | RPM       | BHP     | RPM  | BHP  |
|      | 1    | -HP Sta | ndard N | lotor & | Drive      |          |           |         |      |      |
| 1280 | 1069 | 0.77    | 1104    | 0.83    | 1137       | 0.90     | 1169      | 0.96    | 1202 | 1.04 |
| 1440 | 1109 | 0.89    | 1142    | 0.96    | 1174       | 1.03     | 1205      | 1.10    | 1236 | 1.17 |
| 1600 | 1153 | 1.04    | 1184    | 1.11    | 1214       | 1.18     | 1244      | 1.26    | 1275 | 1.33 |
| 1760 | 1197 | 1.22    | 1228    | 1.29    | 1258       | 1.36     | 1287      | 1.44    | _    | _    |
| 1920 | 1245 | 1.41    | 1274    | 1.49    | <b>'</b> – | _        | _         | _       | _    | _    |
|      |      |         | 1-H     | P Stand | ard Mot    | or &     |           |         |      |      |
|      |      |         | Fiel    | d Suppl | ied High   | Static   | Drive (2) | )       |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to

other options/accessories
Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

- Field Supplied Fan Sheave AK61 required. Field Supplied Belt may be necessary.
- 2. Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



## Performance (4 Ton) Data Standa

## (4 Ton) **Standard Efficiency**

Table PD-26 — Belt Drive Evaporator Fan Performance — 4 Ton — YSC048A3,A4,AW\*L, M — Low and Medium Heat — Horizontal Airflow

|      |         |         |          |         |         |      |      | Extern | al Static | Pressure | (Inches | of Wate | r)       |         |         |       |      |      |      |      |
|------|---------|---------|----------|---------|---------|------|------|--------|-----------|----------|---------|---------|----------|---------|---------|-------|------|------|------|------|
|      | .1      | 0       | .2       | 20      | .3      | 80   | .4   | 0      | .5        | 50       | .6      | 60      | .7       | 0       | 3.      | 80    | .9   | 0    | 1.0  | 10   |
| CFM  | RPM     | BHP     | RPM      | BHP     | RPM     | BHP  | RPM  | BHP    | RPM       | BHP      | RPM     | BHP     | RPM      | BHP     | RPM     | BHP   | RPM  | BHP  | RPM  | BHP  |
|      | 1-HP St | tandard | Motor    | & Field | Supplie | d    |      |        |           |          |         | 1       | -HP Star | ndard N | lotor & | Drive |      |      |      |      |
|      | Low S   | tatic D | rive (1) |         |         |      |      |        |           |          |         |         |          |         |         |       |      |      |      |      |
| 1280 | 669     | 0.25    | 744      | 0.31    | 805     | 0.37 | 860  | 0.44   | 911       | 0.50     | 959     | 0.56    | 1003     | 0.63    | 1045    | 0.70  | 1082 | 0.77 | 1119 | 0.85 |
| 1440 | 733     | 0.34    | 803      | 0.41    | 864     | 0.48 | 916  | 0.55   | 965       | 0.62     | 1011    | 0.69    | 1055     | 0.76    | 1096    | 0.83  | 1134 | 0.91 | 1171 | 0.99 |
| 1600 | 800     | 0.45    | 864      | 0.53    | 923     | 0.60 | 974  | 0.68   | 1021      | 0.75     | 1064    | 0.83    | 1106     | 0.91    | 1147    | 0.99  | 1185 | 1.07 | 1221 | 1.15 |
| 1760 | 868     | 0.58    | 926      | 0.67    | 982     | 0.75 | 1033 | 0.83   | 1079      | 0.92     | 1121    | 1.00    | 1161     | 1.08    | 1199    | 1.17  | 1237 | 1.26 | 1273 | 1.35 |
| 1920 | 937     | 0.74    | 989      | 0.83    | 1042    | 0.92 | 1092 | 1.01   | 1138      | 1.10     | 1179    | 1.19    | 1217     | 1.28    | 1254    | 1.38  | 1290 | 1.47 | _    |      |

#### Table PD-26 - Continued

|      |      |         | Exte    | rnal Sta | tic Press | ure (Incl | nes of Wa | iter) |      |      |
|------|------|---------|---------|----------|-----------|-----------|-----------|-------|------|------|
|      | 1.1  | 10      | 1.2     | 20       | 1.3       | 30        | 1.4       | 40    | 1.9  | 50   |
| CFM  | RPM  | BHP     | RPM     | BHP      | RPM       | BHP       | RPM       | BHP   | RPM  | BHP  |
|      | 1-   | -HP Sta | ndard N | lotor &  | Drive     |           |           |       |      |      |
| 1280 | 1154 | 0.92    | 1187    | 1.00     | 1218      | 1.07      | 1248      | 1.14  | 1277 | 1.21 |
| 1440 | 1205 | 1.07    | 1237    | 1.15     | 1270      | 1.24      | 1300      | 1.32  | 1330 | 1.40 |
| 1600 | 1256 | 1.23    | 1290    | 1.33     | 1322      | 1.42      | _         | _     | _    | _    |
| 1760 | 1307 | 1.43    | _       | _        | _         | _         | _         | _     | _    | _    |
| 1920 |      |         | _       |          |           |           |           |       |      | _    |

1-HP Standard Motor & Field Supplied High Static Drive (2)

### 1-HP Standard Motor & Field Supplied High Static Drive (2)

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

due to other options/accessories Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

- Field Supplied Fan Sheave AK61 required. Field Supplied Belt may be necessary.
   Field Supplied Fan Sheave AK41 required. Field Supplied Belt
- Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-27 — Belt Drive Evaporator Fan Performance — 4 Ton — YSC048A3,A4,AW\*H — High Heat — Horizontal Airflow

|      |          |      |          |         |       |      |      | Extern | al Static | Pressure | (Inches | of Wate | r)       |         |          |       |      |      |      |      |
|------|----------|------|----------|---------|-------|------|------|--------|-----------|----------|---------|---------|----------|---------|----------|-------|------|------|------|------|
|      | .1       | 0    | .2       | 20      | .3    | 30   | .4   | 0      | .5        | 0        | .6      | 0       | .7       | 0       | 3.       | 30    | .9   | 0    | 1.0  | 00   |
| CFM  | RPM      | BHP  | RPM      | BHP     | RPM   | BHP  | RPM  | BHP    | RPM       | BHP      | RPM     | BHP     | RPM      | BHP     | RPM      | BHP   | RPM  | BHP  | RPM  | BHP  |
|      |          |      | or & Fie | ld Supp | olied |      |      |        |           |          |         | 1       | -HP Star | ndard N | /lotor & | Drive |      |      |      |      |
|      | v Static |      | 1)       |         |       |      |      |        |           |          |         |         |          |         |          |       |      |      |      |      |
| 1280 | 686      | 0.27 | 758      | 0.33    | 817   | 0.39 | 871  | 0.45   | 922       | 0.51     | 968     | 0.58    | 1013     | 0.64    | 1053     | 0.72  | 1091 | 0.79 | 1127 | 0.86 |
| 1440 | 753      | 0.36 | 821      | 0.43    | 878   | 0.50 | 930  | 0.57   | 977       | 0.63     | 1022    | 0.70    | 1066     | 0.78    | 1107     | 0.85  | 1145 | 0.93 | 1180 | 1.01 |
| 1600 | 821      | 0.48 | 884      | 0.55    | 941   | 0.63 | 990  | 0.70   | 1035      | 0.78     | 1078    | 0.86    | 1120     | 0.93    | 1160     | 1.02  | 1197 | 1.10 | 1234 | 1.18 |
| 1760 | 891      | 0.62 | 949      | 0.70    | 1004  | 0.78 | 1052 | 0.87   | 1096      | 0.95     | 1137    | 1.03    | 1176     | 1.12    | 1214     | 1.20  | 1251 | 1.29 | 1287 | 1.38 |
| 1920 | 962      | 0.78 | 1015     | 0.87    | 1067  | 0.97 | 1115 | 1.06   | 1158      | 1.15     | 1198    | 1.24    | 1235     | 1.33    | 1271     | 1.42  |      | _    | _    |      |

### Table PD-27 — Continued

|      |      |         | Exte    | ernal Sta | tic Press | ure (Inch | nes of Wa | iter)    |       |      |
|------|------|---------|---------|-----------|-----------|-----------|-----------|----------|-------|------|
|      | 1.1  | 10      | 1.3     | 20        | 1.3       | 30        | 1.4       | 40       | 1.9   | 50   |
| CFM  | RPM  | BHP     | RPM     | BHP       | RPM       | BHP       | RPM       | BHP      | RPM   | BHP  |
|      | 1    | -HP Sta | ndard N | lotor &   | Drive     |           |           |          |       |      |
| 1280 | 1160 | 0.94    | 1194    | 1.01      | 1224      | 1.08      | 1254      | 1.15     | 1283  | 1.22 |
| 1440 | 1214 | 1.09    | 1247    | 1.18      | 1278      | 1.26      | 1308      | 1.34     | 1338  | 1.43 |
| 1600 | 1268 | 1.26    | 1300    | 1.35      | 1331      | 1.44      | _         | _        | _     | _    |
| 1760 | 1321 | 1.47    | _       | _         | _         | _         | _         | _        | _     | _    |
| 1920 | _    | _       | _       | _         | _         | _         | _         | _        | _     | _    |
|      | 1    | -HP Sta | ndard N | lotor &   | Field Su  | pplied H  | High Sta  | tic Driv | e (2) |      |

### 1-HP Standard Motor & Field SuppliedHigh Static Drive (2)

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

- 1. Field Supplied Fan Sheave AK61 required. Field Supplied Belt may be necessary.
- 2. Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



## Performance (5 Ton) Data Standa

## (5 Ton) Standard Efficiency

Table PD-28 — Belt Drive Evaporator Fan Performance — 5 Ton — YSC060A3,A4,AW \*L,M — Low and Medium Heat — Downflow Airflow

|      |      |      |        |          |           |         |         | Externa | al Static | Pressure | (Inches | of Wate | r)       |         |         |       |      |      |      |      |
|------|------|------|--------|----------|-----------|---------|---------|---------|-----------|----------|---------|---------|----------|---------|---------|-------|------|------|------|------|
|      | .1   | 0    | .2     | 20       | .3        | 30      | .4      | Ю       | .5        | 0        | .6      | 60      | .7       | 0       | 3.      | 80    | .9   | 0    | 1.0  | 10   |
| CFM  | RPM  | BHP  | RPM    | BHP      | RPM       | BHP     | RPM     | BHP     | RPM       | BHP      | RPM     | BHP     | RPM      | BHP     | RPM     | BHP   | RPM  | BHP  | RPM  | BHP  |
|      |      |      | 1-HP S | tandard  | l Motor   | & Field | Supplie | ed      |           |          |         | 1       | -HP Star | ndard N | lotor & | Drive |      |      |      |      |
|      |      |      | Lo     | w Static | c Drive ( | 1)      |         |         |           |          |         |         |          |         |         |       |      |      |      |      |
| 1600 | 747  | 0.40 | 797    | 0.46     | 846       | 0.51    | 893     | 0.57    | 938       | 0.64     | 981     | 0.72    | 1020     | 0.79    | 1056    | 0.85  | 1091 | 0.92 | 1125 | 0.99 |
| 1800 | 828  | 0.56 | 873    | 0.62     | 917       | 0.68    | 960     | 0.74    | 1002      | 0.81     | 1042    | 0.89    | 1081     | 0.97    | 1118    | 1.05  | 1152 | 1.13 | 1185 | 1.20 |
| 2000 | 909  | 0.75 | 951    | 0.82     | 992       | 0.89    | 1031    | 0.95    | 1069      | 1.01     | 1107    | 1.09    | 1144     | 1.18    | 1179    | 1.27  | 1213 | 1.37 | 1246 | 1.45 |
| 2200 | 992  | 0.98 | 1031   | 1.06     | 1068      | 1.13    | 1104    | 1.20    | 1139      | 1.27     | 1175    | 1.35    | 1209     | 1.43    | _       | _     | _    | _    | _    | _    |
| 2400 | 1075 | 1.26 | 1111   | 1.34     | 1145      | 1.42    | 1179    | 1.50    | _         | _        | _       | _       | _        | _       | _       | _     | _    | _    | _    | _    |

#### Table PD-28 - Continued

|      |      |      | Ext     | ternal St | atic Pres | sure (In | ches of V | Vater) |      |      |
|------|------|------|---------|-----------|-----------|----------|-----------|--------|------|------|
|      | 1.1  | 10   | 1.2     | 20        | 1.3       | 30       | 1.4       | 40     | 1.9  | 50   |
| CFM  | RPM  | BHP  | RPM     | BHP       | RPM       | BHP      | RPM       | BHP    | RPM  | BHP  |
|      |      |      | 1-HP St | andard    | Motor 8   | Drive    |           |        |      |      |
| 1600 | 1158 | 1.05 | 1190    | 1.13      | 1221      | 1.20     | 1251      | 1.27   | 1281 | 1.35 |
| 1800 | 1216 | 1.28 | 1246    | 1.35      | 1276      | 1.43     | _         | _      | _    | _    |
| 2000 | _    | _    | _       | _         | _         | _        | _         | _      | _    | _    |
| 2200 | _    | _    | _       | _         | _         | _        | _         | _      | _    | _    |
| 2400 | _    | _    | _       | _         | _         | _        | _         | _      | _    | _    |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

Fan Motor Heat (MBH) =  $2.829 \times Fan BHP + .4024$ 

 Field Supplied Fan Sheave AK56 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-29 — Belt Drive Evaporator Fan Performance — 5 Ton — YSC060A3,A4,AW \*H — High Heat —Downflow Airflow

|      |           |         |           | •             |         |      |      |        |           |          |         |         | •        |         |          |       |      |      |      |      |
|------|-----------|---------|-----------|---------------|---------|------|------|--------|-----------|----------|---------|---------|----------|---------|----------|-------|------|------|------|------|
|      |           |         |           |               |         |      |      | Extern | al Static | Pressure | (Inches | of Wate | r)       |         |          |       |      |      |      |      |
|      | .1        | 0       | .2        | 20            | .3      | 80   | .4   | 10     | .5        | 0        | .6      | 60      | .7       | 0       | 3.       | 30    | .9   | 0    | 1.0  | 10   |
| CFM  | RPM       | BHP     | RPM       | BHP           | RPM     | BHP  | RPM  | BHP    | RPM       | BHP      | RPM     | BHP     | RPM      | BHP     | RPM      | BHP   | RPM  | BHP  | RPM  | BHP  |
| 1    | 1-HP Star | ndard N | lotor &   | Field S       | upplied |      |      |        |           |          |         | 1       | -HP Star | ndard N | /lotor & | Drive |      |      |      |      |
|      | L         | _ow Sta | tic Drive | e <b>(1</b> ) |         |      |      |        |           |          |         |         |          |         |          |       |      |      |      |      |
| 1600 | 764       | 0.42    | 814       | 0.47          | 862     | 0.53 | 909  | 0.60   | 953       | 0.67     | 994     | 0.74    | 1032     | 0.81    | 1069     | 0.88  | 1103 | 0.94 | 1136 | 1.01 |
| 1800 | 848       | 0.58    | 892       | 0.65          | 936     | 0.70 | 978  | 0.77   | 1020      | 0.84     | 1059    | 0.92    | 1098     | 1.01    | 1132     | 1.09  | 1166 | 1.16 | 1198 | 1.24 |
| 2000 | 932       | 0.79    | 973       | 0.86          | 1013    | 0.92 | 1051 | 0.98   | 1090      | 1.06     | 1127    | 1.14    | 1163     | 1.23    | 1197     | 1.32  | 1231 | 1.42 | 1262 | 1.50 |
| 2200 | 1017      | 1.03    | 1055      | 1.11          | 1091    | 1.18 | 1127 | 1.25   | 1162      | 1.32     | 1196    | 1.40    | 1231     | 1.49    | _        | _     | _    | _    | _    | _    |
| 2400 | 1103      | 1.32    | 1138      | 1.41          | 1171    | 1.49 | _    | _      | _         | _        | _       | _       | _        | _       | _        | _     | _    | _    | _    | _    |

#### Table PD-29 — Continued

|      |      |         |         | Extern  | al Static | Pressur | e (Inches | of Wate | er)  |      |
|------|------|---------|---------|---------|-----------|---------|-----------|---------|------|------|
|      | 1.1  | 10      | 1.:     | 20      | 1.3       | 30      | 1.4       | 40      | 1.   | 50   |
| CFM  | RPM  | BHP     | RPM     | BHP     | RPM       | BHP     | RPM       | BHP     | RPM  | BHP  |
|      | 1    | -HP Sta | ndard N | lotor & | Drive     |         |           |         |      |      |
| 1600 | 1168 | 1.08    | 1201    | 1.15    | 1231      | 1.22    | 1261      | 1.30    | 1290 | 1.37 |
| 1800 | 1229 | 1.31    | 1259    | 1.39    | 1288      | 1.46    | _         | _       | _    | _    |
| 2000 | _    | _       | _       | _       | _         | _       | _         | _       | _    | _    |
| 2200 | _    | _       | _       | _       | _         | _       | _         | _       | _    | _    |
| 2400 | _    | _       | _       | _       | _         | _       | _         | _       | _    | _    |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

Fan Motor Heat (MBH) =  $2.829 \times Fan BHP + .4024$ .

 Field Supplied Fan Sheave AK56 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



## Performance (5 Ton) Data Standa

## (5 Ton) **Standard Efficiency**

Table PD-30 — Belt Drive Evaporator Fan Performance — 5 Ton — YSC060A3,A4,AW\*L,M — Low and Medium Heat — Horizontal Airflow

|      |      |      |      |      |      |      |      | Extern | al Static | Pressure | (Inches | of Wate | r)   |      |      |      |      |      |      |      |
|------|------|------|------|------|------|------|------|--------|-----------|----------|---------|---------|------|------|------|------|------|------|------|------|
|      | .1   | 0    | .2   | 20   | .3   | 80   | .4   | Ю      | .5        | 50       | .6      | 60      | .7   | 70   | 3.   | 80   | .90  | 0    | 1.0  | 10   |
| CFM  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP    | RPM       | BHP      | RPM     | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |      |      |      |      |      |      |      |        | 1-ł       | IP Stan  | dard Mo | tor & D | rive |      |      |      |      |      |      |      |
| 1600 | 825  | 0.48 | 889  | 0.56 | 946  | 0.64 | 996  | 0.71   | 1041      | 0.79     | 1084    | 0.87    | 1126 | 0.95 | 1166 | 1.03 | 1204 | 1.11 | 1240 | 1.20 |
| 1800 | 913  | 0.66 | 971  | 0.75 | 1025 | 0.84 | 1074 | 0.92   | 1117      | 1.01     | 1158    | 1.09    | 1197 | 1.18 | 1235 | 1.27 | 1272 | 1.36 | 1307 | 1.45 |
| 2000 | 1003 | 0.89 | 1054 | 0.98 | 1105 | 1.08 | 1153 | 1.18   | 1196      | 1.27     | 1235    | 1.37    | 1272 | 1.46 | 1308 | 1.50 | _    | _    | _    | _    |
| 2200 | 1094 | 1.16 | 1140 | 1.26 | 1187 | 1.37 | 1232 | 1.48   | _         | _        | _       | _       | _    | _    | _    | _    | _    | _    | _    | _    |
| 2400 | 1185 | 1.48 | l –  | _    | _    | _    | _    | _      | _         | _        | _       | _       | _    | _    | _    | _    | _    | _    | _    | _    |
|      |      |      |      |      |      |      |      |        |           |          |         |         |      |      |      |      |      |      |      |      |

1-HP Standard Motor & Field Supplied Low Static Drive (1)

#### Table PD-30 - Continued

|      |      |      | Exte | ernal Sta | tic Press | ure (Inch | nes of Wa | iter) |     |     |
|------|------|------|------|-----------|-----------|-----------|-----------|-------|-----|-----|
|      | 1.1  | 10   | 1.3  | 20        | 1.3       | 30        | 1.4       | 40    | 1.5 | 50  |
| CFM  | RPM  | BHP  | RPM  | BHP       | RPM       | BHP       | RPM       | BHP   | RPM | BHP |
|      |      |      | 1-HP | Standar   | d Moto    | & Driv    | е         |       |     |     |
| 1600 | 1274 | 1.28 | 1307 | 1.37      | 1338      | 1.46      | _         | _     | _   | _   |
| 1800 | _    | _    | _    | _         | _         | _         | _         | _     | _   | _   |
| 2000 | _    | _    | _    | _         | _         | _         | _         | _     | _   | _   |
| 2200 | _    | _    | _    | _         | _         | _         | _         | _     | _   | _   |
| 2400 | _    | _    | _    | _         | _         | _         | _         | _     | _   | _   |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

1. Field Supplied Fan Sheave AK56 required. Field Supplied Belt may be

 Field Supplied Fan Sheave AK56 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-31 — Belt Drive Evaporator Fan Performance — 5 Ton — YSC060A3,A4,AW \*H— High Heat — Horizontal Airflow

|      |      |      |      | -    |      |      |      |        |           |          |         |         | _    |      |      |      |      |      |      |      |
|------|------|------|------|------|------|------|------|--------|-----------|----------|---------|---------|------|------|------|------|------|------|------|------|
|      |      |      |      |      |      |      |      | Extern | al Static | Pressure | (Inches | of Wate | r)   |      |      |      |      |      |      |      |
|      | .1   | 0    | .2   | 20   | .3   | 30   | .4   | 10     | .5        | 50       | .6      | 0       | .7   | 70   | 8.   | 80   | .9   | 0    | 1.0  | 00   |
| CFM  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP    | RPM       | BHP      | RPM     | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |      |      |      |      |      |      |      |        | 1-1-      | IP Stan  | dard Mo | tor & D | rive |      |      |      |      |      |      |      |
| 1600 | 847  | 0.51 | 910  | 0.59 | 964  | 0.66 | 1011 | 0.74   | 1056      | 0.82     | 1098    | 0.89    | 1140 | 0.97 | 1179 | 1.06 | 1217 | 1.14 | 1252 | 1.23 |
| 1800 | 938  | 0.70 | 995  | 0.79 | 1047 | 0.87 | 1093 | 0.96   | 1135      | 1.05     | 1175    | 1.13    | 1213 | 1.22 | 1251 | 1.31 | 1287 | 1.40 | 1323 | 1.49 |
| 2000 | 1030 | 0.94 | 1082 | 1.03 | 1131 | 1.13 | 1176 | 1.23   | 1217      | 1.32     | 1255    | 1.42    | 1292 | 1.50 | _    | _    | _    | _    | _    | _    |
| 2200 | 1123 | 1.23 | 1170 | 1.33 | 1216 | 1.44 | _    | _      | _         | _        | _       | _       | _    | _    | _    | _    | _    | _    | _    | _    |
| 2400 | -    | _    | _    | _    | _    | _    | _    | _      | _         | _        | _       | _       | _    | _    | _    | _    | _    | _    | _    | _    |
|      |      |      |      |      |      |      |      |        |           |          |         |         |      |      |      |      |      |      |      |      |

1-HP Standard Motor & Field Supplied Low Static Drive (1)

#### Table PD-31 - Continued

|      |      |         |         | External | Static Pr | essure | (Inches o | f Water) |
|------|------|---------|---------|----------|-----------|--------|-----------|----------|
|      | 1.1  | 10      | 1.2     | 20       | 1.3       | 30     | 1.4       | 40       |
| CFM  | RPM  | BHP     | RPM     | BHP      | RPM       | BHP    | RPM       | BHP      |
|      | 1    | -HP Sta | ndard N | lotor &  | Drive     |        |           |          |
| 1600 | 1285 | 1.31    | 1317    | 1.40     | 1348      | 1.49   | _         | _        |
| 1800 | _    | _       | _       | _        | _         | _      | _         | _        |
| 2000 | _    | _       | _       | _        | _         | _      | _         | _        |
| 2200 | _    | _       | _       | _        | _         | _      | _         | _        |
| 2400 | _    | _       | _       | _        | _         | _      | _         | _        |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories.

due to other options/accessories Fan Motor Heat (MBH) =  $2.829 \times Fan BHP+.4024$ .

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### (6 Ton) Standard Efficiency

|  | Table PD-32 — Belt Dr | ive Evaporator Fan Performance - | – 6 Ton <i>-</i> | - YSC072A3,A4,AW *L,M | <ul> <li>Low and Medium Heat</li> </ul> | —Downflow Airflow |
|--|-----------------------|----------------------------------|------------------|-----------------------|-----------------------------------------|-------------------|
|--|-----------------------|----------------------------------|------------------|-----------------------|-----------------------------------------|-------------------|

|      |     |        |         |         |         |         |         | Extern   | al Static | Pressure | (Inches | of Wate | r)  |      |         |         |        |       |     |      |
|------|-----|--------|---------|---------|---------|---------|---------|----------|-----------|----------|---------|---------|-----|------|---------|---------|--------|-------|-----|------|
|      | .1  | 0      | .2      | 20      | .3      | 30      | .4      | 40       | .5        | 50       | .6      | 50      | .7  | 70   | 3.      | 30      | .9     | 0     | 1.0 | 00   |
| CFM  | RPM | BHP    | RPM     | BHP     | RPM     | BHP     | RPM     | BHP      | RPM       | BHP      | RPM     | BHP     | RPM | BHP  | RPM     | BHP     | RPM    | BHP   | RPM | BHP  |
|      |     | 1-HP S | Standar | d Motor | & Field | Supplie | d Low S | tatic Dr | ive (1)   |          |         |         |     | 1-   | HP Star | ndard M | otor & | Drive |     |      |
| 1920 | _   | _      | _       | _       | 583     | 0.35    | 638     | 0.42     | 687       | 0.49     | 732     | 0.56    | 777 | 0.64 | 817     | 0.71    | 857    | 0.80  | 895 | 0.88 |
| 2160 | _   | _      | 559     | 0.36    | 613     | 0.43    | 666     | 0.51     | 715       | 0.59     | 759     | 0.67    | 800 | 0.75 | 841     | 0.83    | 879    | 0.92  | 915 | 1.01 |
| 2400 | _   | _      | 597     | 0.46    | 647     | 0.54    | 695     | 0.62     | 743       | 0.71     | 788     | 0.80    | 828 | 0.88 | 866     | 0.97    | 902    | 1.06  | 938 | 1.15 |
| 2640 | 585 | 0.49   | 636     | 0.59    | 684     | 0.66    | 728     | 0.75     | 772       | 0.84     | 815     | 0.94    | 856 | 1.03 | 894     | 1.13    | 930    | 1.23  | 963 | 1.32 |
| 2880 | 629 | 0.63   | 677     | 0.73    | 722     | 0.81    | 763     | 0.89     | 803       | 0.99     | 844     | 1.09    | 884 | 1.20 | 923     | 1.31    | 958    | 1.41  | 990 | 1.51 |

#### Table PD-32 - Continued

|      |      |         |         |         |      |      | Ex      | ternal S | tatic Pres | sure (In | ches of V | Vater)  |      |      |      |      |      |      |      |      |
|------|------|---------|---------|---------|------|------|---------|----------|------------|----------|-----------|---------|------|------|------|------|------|------|------|------|
|      | 1    | .10     | 1       | .20     | 1    | .30  | 1       | .40      | 1.         | 50       | 1.0       | 60      | 1    | .70  | 1.8  | 80   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM  | BHP     | RPM     | BHP     | RPM  | BHP  | RPM     | BHP      | RPM        | BHP      | RPM       | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 1 H  | P Stand | lard Mo | tor & D | rive |      | 1HF     | Stand    | ard Mot    | tor & Hi | gh Stati  | c Drive | Kit  |      |      |      |      |      |      |      |
|      |      |         |         |         |      |      |         |          |            |          |           |         |      |      |      |      |      |      |      |      |
| 1920 | 931  | 0.96    | 965     | 1.04    | 999  | 1.12 | 1030    | 1.20     | 1062       | 1.29     | 1092      | 1.37    | 1120 | 1.45 | 1150 | 1.54 | 1177 | 1.63 | 1204 | 1.71 |
| 2160 | 951  | 1.10    | 984     | 1.19    | 1018 | 1.29 | 1049    | 1.37     | 1080       | 1.46     | 1110      | 1.55    | 1139 | 1.65 | 1168 | 1.74 | 1196 | 1.84 | 1222 | 1.93 |
| 2400 | 973  | 1.25    | 1006    | 1.35    | 1039 | 1.45 | 1070    | 1.55     | 1100       | 1.65     | 1129      | 1.76    | 1158 | 1.86 | 1186 | 1.96 | 1213 | 2.06 | 1241 | 2.16 |
| 2540 | 996  | 1.42    | 1029    | 1.52    | 1060 | 1.63 | 1091    | 1.74     | 1121       | 1.85     | 1150      | 1.96    | 1178 | 2.07 | 1206 | 2.18 | 1233 | 2.30 | _    | _    |
| 2880 | 1023 | 1.62    | 1054    | 1.72    | 1085 | 1.83 | 1114    | 1.95     | 1143       | 2.06     | 1172      | 2.18    | 1200 | 2.30 | _    | _    | _    | _    | _    | _    |
|      |      |         |         |         |      | 2 HF | Oversi: | zed Mo   | tor & Dr   | ive      |           |         |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Notes:

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-33 — Belt Drive Evaporator Fan Performance — 6 Ton — YSC072A3,A4,AW \*H— High Heat — Downflow Airflow

|      |                                 |         |        |           |         |       |          | Extern   | al Static | Pressure | (Inches | of Wate | r)      |         |         |       |      |         |       |      |
|------|---------------------------------|---------|--------|-----------|---------|-------|----------|----------|-----------|----------|---------|---------|---------|---------|---------|-------|------|---------|-------|------|
|      | .1                              | 0       | .2     | 20        | .3      | 30    | .4       | 10       |           | 50       | .6      | 60      | .7      | 70      | 3.      | 30    | .9   | 0       | 1.0   | 00   |
| CFM  | RPM BHP RPM BHP RPM BHP RPM BHP |         |        |           |         |       |          |          |           | BHP      | RPM     | BHP     | RPM     | BHP     | RPM     | BHP   | RPM  | BHP     | RPM   | BHP  |
|      | 1-HP                            | Standar | d Moto | r & Field | Supplie | d Low | Static D | rive (1) |           |          |         | 1       | -HP Sta | ndard N | lotor & | Drive |      |         |       |      |
| 1920 | _                               | _       | 559    | 0.32      | 618     | 0.39  | 668      | 0.46     | 715       | 0.53     | 759     | 0.61    | 802     | 0.69    | 842     | 0.77  | 881  | 0.85    | 917   | 0.93 |
| 2160 | _                               | _       | 600    | 0.42      | 654     | 0.49  | 705      | 0.57     | 749       | 0.65     | 791     | 0.73    | 831     | 0.81    | 870     | 0.90  | 907  | 0.99    | 943   | 1.08 |
| 2400 | 594                             | 0.46    | 644    | 0.53      | 692     | 0.61  | 741      | 0.70     | 786       | 0.79     | 826     | 0.88    | 864     | 0.97    | 900     | 1.05  | 936  | 1.15    | 971   | 1.24 |
| 2640 | 643                             | 0.60    | 691    | 0.67      | 734     | 0.76  | 778      | 0.85     | 822       | 0.95     | 862     | 1.05    | 899     | 1.14    | 935     | 1.24  | 967  | 1.33    | 1001  | 1.43 |
| 2880 | 693                             | 0.76    | 737    | 0.84      | 778     | 0.93  | 818      | 1.03     | 858       | 1.13     | 898     | 1.24    | 935     | 1.35    | 970     | 1.45  | 1003 | 1.55    | 1034  | 1.66 |
|      |                                 |         |        |           |         |       |          |          |           |          |         |         |         |         |         |       | 2-H  | P Over  | sized |      |
|      |                                 |         |        |           |         |       |          |          |           |          |         |         |         |         |         |       | Mo   | tor & E | Drive |      |

### Table PD-33 - Continued

|      |      |          |         |          |          |         |           | Extern | al Static | Pressure | (Inches | of Water | r)   |      |      |      |      |      |      |      |
|------|------|----------|---------|----------|----------|---------|-----------|--------|-----------|----------|---------|----------|------|------|------|------|------|------|------|------|
|      | 1.1  | 10       | 1.2     | 20       | 1.3      | 30      | 1.4       | 40     | 1.!       | 50       | 1.0     | 60       | 1.   | 70   | 1.8  | 80   | 1.9  | 90   | 2.0  | 00   |
| CFM  | RPM  | BHP      | RPM     | BHP      | RPM      | BHP     | RPM       | BHP    | RPM       | BHP      | RPM     | BHP      | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 1-H  | IP Stand | dard Mo | tor & Hi | gh Stati | c Drive | Kit       |        |           |          |         |          |      |      |      |      |      |      |      |      |
|      | (or  | 2 HP ov  | ersized | Motor8   | Drive)   |         |           |        |           |          |         |          |      |      |      |      |      |      |      |      |
| 1920 | 952  | 1.01     | 985     | 1.09     | 1019     | 1.17    | 1050      | 1.26   | 1080      | 1.34     | 1110    | 1.42     | 1139 | 1.51 | 1167 | 1.60 | 1192 | 1.68 | 1220 | 1.77 |
| 2160 | 977  | 1.17     | 1010    | 1.26     | 1043     | 1.36    | 1073      | 1.44   | 1103      | 1.53     | 1133    | 1.63     | 1161 | 1.72 | 1189 | 1.81 | 1216 | 1.91 | 1242 | 2.00 |
| 2400 | 1004 | 1.34     | 1037    | 1.44     | 1068     | 1.55    | 1099      | 1.65   | 1128      | 1.75     | 1156    | 1.85     | 1185 | 1.95 | 1212 | 2.05 | 1239 | 2.16 | 1265 | 2.26 |
| 2640 | 1033 | 1.54     | 1064    | 1.64     | 1095     | 1.75    | 1125      | 1.87   | 1153      | 1.97     | 1182    | 2.09     | 1210 | 2.20 | _    | _    | _    | _    | _    | _    |
| 2880 | 1065 | 1.76     | 1096    | 1.88     | 1124     | 1.99    | 1153      | 2.10   | 1182      | 2.22     | _       | -        | _    | _    | _    | _    | _    | _    | _    | _    |
|      |      |          |         | 2-H      | P Oversi | zed Mo  | tor & Dri | ive    |           |          |         |          |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Notes:

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

<sup>1-</sup>HP Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

<sup>2-</sup>HP Fan Motor Heat (MBH) = 3.000 x Fan BHP+.5000 1. Field Supplied Fan Sheave AK84 and Belt AX34 required.

<sup>1-</sup>HP Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

<sup>2-</sup>HP Fan Motor Heat (MBH) =  $3.000 \times Fan BHP + .5000$ 



## **Performance**

### (6 Ton) **Standard Efficiency**

Table PD-34 — Belt Drive Evaporator Fan Performance — 6 Ton — YSC072AK \*L — Low Heat —Downflow Airflow

|      |     |         |          |          |         |         |     | Extern | al Static | Pressure | (Inches | of Water | r)     |         |         |       |     |      |     |      |
|------|-----|---------|----------|----------|---------|---------|-----|--------|-----------|----------|---------|----------|--------|---------|---------|-------|-----|------|-----|------|
|      | .1  | 0       | .2       | 20       | .3      | 30      | .4  | 10     | .5        | 50       | .6      | 60       | .7     | 70      | 3.      | 30    | .9  | 0    | 1.0 | 00   |
| CFM  | RPM | BHP     | RPM      | BHP      | RPM     | BHP     | RPM | BHP    | RPM       | BHP      | RPM     | BHP      | RPM    | BHP     | RPM     | BHP   | RPM | BHP  | RPM | BHP  |
|      |     | 2-HP St | andard   | Motor 8  | Field S | upplied |     |        |           |          |         | 2-       | HP Sta | ndard N | lotor & | Drive |     |      |     |      |
|      |     | Lo      | ow Stati | ic Drive | (1)     |         |     |        |           |          |         |          |        |         |         |       |     |      |     |      |
| 1920 | _   | _       | _        | _        | 583     | 0.35    | 638 | 0.42   | 687       | 0.49     | 732     | 0.56     | 777    | 0.64    | 817     | 0.71  | 857 | 0.80 | 895 | 0.88 |
| 2160 | _   | _       | 559      | 0.36     | 613     | 0.43    | 666 | 0.51   | 715       | 0.59     | 759     | 0.67     | 800    | 0.75    | 841     | 0.83  | 879 | 0.92 | 915 | 1.01 |
| 2400 | _   | _       | 597      | 0.46     | 647     | 0.54    | 695 | 0.62   | 743       | 0.71     | 788     | 0.80     | 828    | 0.88    | 866     | 0.97  | 902 | 1.06 | 938 | 1.15 |
| 2640 | 585 | 0.49    | 636      | 0.59     | 684     | 0.66    | 728 | 0.75   | 772       | 0.84     | 815     | 0.94     | 856    | 1.03    | 894     | 1.13  | 930 | 1.23 | 963 | 1.32 |
| 2880 | 629 | 0.63    | 677      | 0.73     | 722     | 0.81    | 763 | 0.89   | 803       | 0.99     | 844     | 1.09     | 884    | 1.20    | 923     | 1.31  | 958 | 1.41 | 990 | 1.51 |

### Table PD-34 - Continued

|      |                                                                      |      |      |      |      |      | Ex   | ternal S | tatic Pres | sure (In | ches of V | Vater)  |      |      |      |      |      |      |      |      |
|------|----------------------------------------------------------------------|------|------|------|------|------|------|----------|------------|----------|-----------|---------|------|------|------|------|------|------|------|------|
|      | 1                                                                    | .10  | 1    | .20  | 1    | .30  | 1    | .40      | 1.         | 50       | 1.0       | 60      | 1    | 1.70 | 1.8  | 30   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM                                                                  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP      | RPM        | BHP      | RPM       | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 2 HP Standard Motor & Drive 2 HP Standard Motor & High Static Drive) |      |      |      |      |      |      |          |            |          |           |         |      |      |      |      |      |      |      |      |
| 1920 | 931                                                                  | 0.96 | 965  | 1.04 | 999  | 1.12 | 1030 | 1.20     | 1062       | 1.29     | 1092      | 1.37    | 1120 | 1.45 | 1150 | 1.54 | 1177 | 1.63 | 1204 | 1.71 |
| 2160 | 951                                                                  | 1.10 | 984  | 1.19 | 1018 | 1.29 | 1049 | 1.37     | 1080       | 1.46     | 1110      | 1.55    | 1139 | 1.65 | 1168 | 1.74 | 1196 | 1.84 | 1222 | 1.93 |
| 2400 | 973                                                                  | 1.25 | 1006 | 1.35 | 1039 | 1.45 | 1070 | 1.55     | 1100       | 1.65     | 1129      | 1.76    | 1158 | 1.86 | 1186 | 1.96 | 1213 | 2.06 | 1241 | 2.16 |
| 2640 | 996                                                                  | 1.42 | 1029 | 1.52 | 1060 | 1.63 | 1091 | 1.74     | 1121       | 1.85     | 1150      | 1.96    | 1178 | 2.07 | 1206 | 2.18 | 1233 | 2.30 | _    | _    |
| 2880 | 1023                                                                 | 1.62 | 1054 | 1.72 | 1085 | 1.83 | 1114 | 1.95     | 1143       | 2.06     | 1172      | 2.18    | 1200 | 2.30 | _    | _    | _    | _    | _    | _    |
|      |                                                                      |      |      |      |      |      | 2 H  | P Stand  | lard Mot   | or & Hi  | gh Static | c Drive |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop

due to other options/accessories 2-HP Fan Motor Heat (MBH) =  $3.000 \times \text{Fan}$  BHP+.5000

1. Field Supplied Fan Sheave AK84 and Belt AX34 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-35 — Belt Drive Evaporator Fan Performance — 6 Ton — YSC072AK \*H— High Heat — Downflow Airflow

|      |     |         |       |            |         |          |           | Extern | al Static | Pressure | (Inches | of Wate | r)       |         |         |       |      |         |          |       |
|------|-----|---------|-------|------------|---------|----------|-----------|--------|-----------|----------|---------|---------|----------|---------|---------|-------|------|---------|----------|-------|
|      | .1  | 0       | .2    | 20         | .3      | 30       | .4        | 10     | .5        | 50       | .6      | 60      | .7       | 70      | 3.      | 30    | .9   | 0       | 1.0      | 00    |
| CFM  | RPM | BHP     | RPM   | BHP        | RPM     | BHP      | RPM       | BHP    | RPM       | BHP      | RPM     | BHP     | RPM      | BHP     | RPM     | BHP   | RPM  | BHP     | RPM      | BHP   |
|      | 2   | HP Std. | Motor | & Field \$ | Supplie | d Low St | tatic Dri | ive    |           |          |         | 2       | 2 HP Sta | ndard N | lotor & | Drive |      |         |          |       |
| 1920 | _   | _       | 559   | 0.32       | 618     | 0.39     | 668       | 0.46   | 715       | 0.53     | 759     | 0.61    | 802      | 0.69    | 842     | 0.77  | 881  | 0.85    | 917      | 0.93  |
| 2160 | _   | _       | 600   | 0.42       | 654     | 0.49     | 705       | 0.57   | 749       | 0.65     | 791     | 0.73    | 831      | 0.81    | 870     | 0.90  | 907  | 0.99    | 943      | 1.08  |
| 2400 | 594 | 0.46    | 644   | 0.53       | 692     | 0.61     | 741       | 0.70   | 786       | 0.79     | 826     | 0.88    | 864      | 0.97    | 900     | 1.05  | 936  | 1.15    | 971      | 1.24  |
| 2640 | 643 | 0.60    | 691   | 0.67       | 734     | 0.76     | 778       | 0.85   | 822       | 0.95     | 862     | 1.05    | 899      | 1.14    | 935     | 1.24  | 967  | 1.33    | 1001     | 1.43  |
| 2880 | 693 | 0.76    | 737   | 0.84       | 778     | 0.93     | 818       | 1.03   | 858       | 1.13     | 898     | 1.24    | 935      | 1.35    | 970     | 1.45  | 1003 | 1.55    | 1034     | 1.66  |
|      |     |         |       |            |         |          |           |        |           |          |         |         |          |         |         |       | 2 H  | P Stan  | dard M   | lotor |
|      |     |         |       |            |         |          |           |        |           |          |         |         |          |         |         |       | & F  | ligh St | atic Dri | ive   |

#### Table PD-35 - Continued

|      |           |          |           |       |      |      |      | Extern | al Static | Pressure | (Inches | of Wate | r)        |          |          |      |      |      |      |      |
|------|-----------|----------|-----------|-------|------|------|------|--------|-----------|----------|---------|---------|-----------|----------|----------|------|------|------|------|------|
|      | 1.1       | 10       | 1.3       | 20    | 1.3  | 30   | 1.4  | 40     | 1.        | 50       | 1.0     | 60      | 1.7       | 70       | 1.8      | 80   | 1.9  | 00   | 2.0  | 00   |
| CFM  | RPM       | BHP      | RPM       | BHP   | RPM  | BHP  | RPM  | BHP    | RPM       | BHP      | RPM     | BHP     | RPM       | BHP      | RPM      | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 2 HP Star | ndard IV | lotor & [ | Drive |      |      |      |        |           | 2-H      | P Stand | ard Mo  | tor & Hig | jh Stati | ic Drive |      |      |      |      |      |
| 1920 | 952       | 1.01     | 985       | 1.09  | 1019 | 1.17 | 1050 | 1.26   | 1080      | 1.34     | 1110    | 1.42    | 1139      | 1.51     | 1167     | 1.60 | 1192 | 1.68 | 1220 | 1.77 |
| 2160 | 977       | 1.17     | 1010      | 1.26  | 1043 | 1.36 | 1073 | 1.44   | 1103      | 1.53     | 1133    | 1.63    | 1161      | 1.72     | 1189     | 1.81 | 1216 | 1.91 | 1242 | 2.00 |
| 2400 | 1004      | 1.34     | 1037      | 1.44  | 1068 | 1.55 | 1099 | 1.65   | 1128      | 1.75     | 1156    | 1.85    | 1185      | 1.95     | 1212     | 2.05 | 1239 | 2.16 | 1265 | 2.26 |
| 2640 | 1033      | 1.54     | 1064      | 1.64  | 1095 | 1.75 | 1125 | 1.87   | 1153      | 1.97     | 1182    | 2.09    | 1210      | 2.20     | _        | _    | _    | _    | _    | _    |
| 2880 | 1065      | 1.76     | 1096      | 1.88  | 1124 | 1.99 | 1153 | 2.10   | 1182      | 2.22     | _       | _       | _         | _        | _        | _    | _    | _    | _    |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop

due to other options/accessories

2-HP Fan Motor Heat (MBH) = 3.000 x Fan BHP+.5000

Field Supplied Fan Sheave AK84 and Belt AX34 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### (6 Ton) **Standard Efficiency**

|                                |                                                          |                                                   |                          |                                    |                                            |                                                                    |                                                 | Extern                                                                    | al Static                                 | Pressure                                  | (Inches                            | of Wate                                     | r)                               |                                    |                                    |                           |                    |                   |                   |             |
|--------------------------------|----------------------------------------------------------|---------------------------------------------------|--------------------------|------------------------------------|--------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------|---------------------------------------------|----------------------------------|------------------------------------|------------------------------------|---------------------------|--------------------|-------------------|-------------------|-------------|
|                                | .1                                                       | 0                                                 | .2                       | 20                                 | .3                                         | 30                                                                 | .4                                              | 10                                                                        | .5                                        | 50                                        | .6                                 | 60                                          | .7                               | 0                                  | 3.                                 | 30                        | .9                 | 0                 | 1.0               | 00          |
| CFM                            | RPM                                                      | BHP                                               | RPM                      | BHP                                | RPM                                        | BHP                                                                | RPM                                             | BHP                                                                       | RPM                                       | BHP                                       | RPM                                | BHP                                         | RPM                              | BHP                                | RPM                                | BHP                       | RPM                | BHP               | RPM               | BHP         |
|                                | 1-H                                                      | IP Stan                                           | dard Mo                  | tor & Fi                           | ield Sup                                   | plied                                                              |                                                 |                                                                           |                                           |                                           |                                    |                                             | 1-                               | HP Sta                             | ndard N                            | lotor &                   | Drive              |                   |                   |             |
|                                | Lo                                                       | w Static                                          | c Drive (                | 1)                                 |                                            |                                                                    |                                                 |                                                                           |                                           |                                           |                                    |                                             |                                  |                                    |                                    |                           |                    |                   |                   |             |
| 1920                           | _                                                        | _                                                 | 576                      | 0.32                               | 636                                        | 0.40                                                               | 687                                             | 0.46                                                                      | 733                                       | 0.54                                      | 778                                | 0.62                                        | 821                              | 0.70                               | 864                                | 0.78                      | 906                | 0.86              | 946               | 0.95        |
| 2160                           | 575                                                      | 0.37                                              | 619                      | 0.43                               | 674                                        | 0.50                                                               | 726                                             | 0.59                                                                      | 770                                       | 0.66                                      | 812                                | 0.74                                        | 852                              | 0.82                               | 890                                | 0.92                      | 930                | 1.01              | 968               | 1.10        |
| 2400                           | 629                                                      | 0.49                                              | 669                      | 0.55                               | 713                                        | 0.62                                                               | 763                                             | 0.71                                                                      | 809                                       | 0.81                                      | 849                                | 0.89                                        | 887                              | 0.97                               | 923                                | 1.06                      | 959                | 1.16              | 994               | 1.27        |
| 2640                           | 684                                                      | 0.63                                              | 721                      | 0.71                               | 757                                        | 0.78                                                               | 802                                             | 0.86                                                                      | 846                                       | 0.96                                      | 888                                | 1.07                                        | 925                              | 1.16                               | 959                                | 1.25                      | 993                | 1.34              | 1027              | √ 1.45      |
| 2880                           | 740                                                      | 0.80                                              | 774                      | 0.89                               | 807                                        | 0.97                                                               | 843                                             | 1.05                                                                      | 885                                       | 1.14                                      | 925                                | 1.26                                        | 964                              | 1.38                               | 998                                | 1.48                      | 1030               | 1.57              | 1062              | \1.67       |
|                                |                                                          |                                                   |                          |                                    |                                            |                                                                    |                                                 |                                                                           |                                           |                                           |                                    |                                             |                                  |                                    |                                    |                           |                    | HP Ove            | rsized<br>d Drive |             |
|                                |                                                          |                                                   |                          |                                    |                                            |                                                                    |                                                 |                                                                           |                                           |                                           |                                    |                                             |                                  |                                    |                                    |                           |                    |                   |                   |             |
| Table                          | PD-36 -                                                  | – Com                                             | tinued                   |                                    |                                            |                                                                    |                                                 |                                                                           | 1-HP S                                    | tandard                                   | l Motor 8                          | & High                                      | Static E                         | Orive (o                           | r 2-HP (                           | Oversiz                   | ed Mo              | tor)              |                   |             |
| Table                          | PD-36 -                                                  | – Con                                             |                          |                                    |                                            |                                                                    | Ex                                              | ternal S                                                                  | tatic Pres                                | ssure (In                                 |                                    |                                             | l Motor 8                        | & High                             | Static E                           | Orive (o                  | r 2-HP (           | Oversiz           | ed Mo             | tor)        |
| Table                          |                                                          | – <i>Con</i>                                      |                          | 1.20                               | 1                                          | .30                                                                |                                                 | ternal S                                                                  |                                           | ssure (In                                 | ches of V                          |                                             |                                  | <b>&amp; High</b><br>.70           |                                    | <b>Orive (o</b><br>80     | <b>r 2-HP (</b>    |                   |                   | tor)        |
| Table CFM                      |                                                          |                                                   |                          | 1.20<br>BHP                        | 1<br>RPM                                   | .30<br>BHP                                                         |                                                 |                                                                           |                                           |                                           | ches of V                          | Vater)                                      |                                  |                                    |                                    |                           |                    |                   |                   | 2.00        |
| CFM                            | 1                                                        | .10<br>BHP                                        | RPM                      | BHP                                |                                            | BHP                                                                | RPM                                             | I.40<br>BHP                                                               | 1.<br>RPM                                 | 50                                        | ches of V                          | Vater)<br>60                                | 1                                | .70                                | 1.8                                | 80                        | 1.9                | 90                | 2                 | 2.00        |
| CFM 1-H                        | 1<br>RPM                                                 | .10<br>BHP<br>ard                                 | RPM                      | BHP<br>HP Stan                     | RPM                                        | BHP<br>otor & H                                                    | RPM<br>ligh Stat                                | I.40<br>BHP<br>tic Drive                                                  | 1.<br>RPM                                 | 50                                        | ches of V                          | Vater)<br>60                                | 1                                | .70                                | 1.8                                | 80                        | 1.9                | 90                | 2                 | 2.00        |
| CFM 1-H Mc 1920                | 1<br>RPM<br><b>IP Stand</b>                              | .10<br>BHP<br>ard                                 | RPM                      | BHP<br>HP Stan                     | RPM<br>dard <b>M</b> o                     | BHP<br>otor & H                                                    | RPM<br>ligh Stat                                | I.40<br>BHP<br>tic Drive                                                  | 1.<br>RPM                                 | 50                                        | ches of V                          | Vater)<br>60<br>BHP                         | 1                                | .70                                | 1.8                                | 80<br>BHP                 | 1.9                | 90<br>BHP<br>1.79 | 2                 | 2.00        |
| CFM<br>1-H                     | 1<br>RPM<br>IP Standa                                    | .10<br>BHP<br>ard                                 | RPM 1-l                  | BHP<br>HP Standor 2 H              | RPM<br>dard Mo<br>P Overs                  | BHP<br>otor & H<br>ized Mo                                         | RPM<br>ligh Stat<br>tor & Di                    | I.40<br>BHP<br>tic Drive<br>rive)                                         | 1.<br>RPM<br>• Kit                        | 50<br>BHP                                 | ches of V<br>1.0<br>RPM            | Vater)<br>60<br>BHP                         | 1<br>RPM                         | .70<br>BHP                         | 1.8<br>RPM                         | 80<br>BHP                 | 1.9<br>RPM         | 90<br>BHP         | 2<br>RPM          | 2.00<br>BHP |
| CFM 1-H Mc 1920                | 1<br>RPM<br>IP Standa<br>otor & D<br>985                 | .10<br>BHP<br>ard<br>rive<br>1.04<br>1.19<br>1.37 | RPM 1-1                  | BHP<br>HP Stand<br>(or 2 H<br>1.13 | RPM<br>dard Mo<br>P Overs<br>1057          | BHP<br>otor & H<br>ized Mo<br>1.22                                 | RPM<br>ligh Stat<br>tor & Di<br>1090            | I.40<br>BHP<br>tic Drive<br>rive)<br>1.31                                 | 1. RPM  • Kit  1123                       | 50 BHP                                    | ches of V<br>1.0<br>RPM<br>1155    | Vater)<br>60<br>BHP                         | 1<br>RPM<br>1185                 | .70<br>BHP                         | 1.i<br>RPM                         | 80<br>BHP                 | 1.9<br>RPM<br>1241 | 90<br>BHP<br>1.79 | 2<br>RPM<br>1268  | 2.00<br>BHP |
| CFM 1-H Mc 1920 2160 2400 2540 | 1<br>RPM<br>IP Standa<br>otor & D<br>985<br>1005         | .10<br>BHP<br>ard<br>irive<br>1.04<br>1.19        | RPM 1-1 1020 1040        | BHP Stand (or 2 H 1.13 1.29        | RPM<br>dard Mo<br>P Oversi<br>1057<br>1075 | BHP<br>otor & H<br>ized Mo<br>1.22<br>1.38<br>1.58<br>1.79         | RPM<br>ligh Stat<br>tor & Di<br>1090<br>1110    | 1.40<br>BHP<br>tic Drive<br>rive)<br>1.31<br>1.48                         | 1.<br>RPM<br>• <b>Kit</b><br>1123<br>1143 | 50<br>BHP<br>1.41<br>1.59<br>1.78<br>2.01 | 1.0<br>RPM<br>1155<br>1176         | Vater)<br>60<br>BHP<br>1.50<br>1.69         | 1<br>RPM<br>1185<br>1206         | .70<br>BHP<br>1.60<br>1.80         | 1.8<br>RPM<br>1213<br>1235         | 80<br>BHP<br>1.69<br>1.90 | 1.9<br>RPM<br>1241 | 90<br>BHP<br>1.79 | 2<br>RPM<br>1268  | 2.00<br>BHP |
| CFM 1-H Mo 1920 2160 2400      | 1<br>RPM<br>IP Standa<br>otor & D<br>985<br>1005<br>1029 | .10<br>BHP<br>ard<br>rive<br>1.04<br>1.19<br>1.37 | RPM 1-1-1 1020 1040 1063 | BHP Stand (or 2 H 1.13 1.29 1.47   | RPM dard Mo P Overs 1057 1075 1098         | BHP<br>otor & H<br>ized Mo<br>1.22<br>1.38<br>1.58<br>1.79<br>2.02 | RPM ligh Stat tor & Di 1090 1110 1130 1152 1181 | 1.40<br>BHP<br>tic Drive<br>rive)<br>1.31<br>1.48<br>1.68<br>1.90<br>2.14 | 1. RPM 2 Kit 1123 1143 1162               | 1.41<br>1.59<br>1.78<br>2.01<br>2.27      | 1.0<br>RPM<br>1155<br>1176<br>1194 | Vater)<br>60<br>BHP<br>1.50<br>1.69<br>1.89 | 1<br>RPM<br>1185<br>1206<br>1223 | .70<br>BHP<br>1.60<br>1.80<br>2.00 | 1.8<br>RPM<br>1213<br>1235<br>1254 | 80<br>BHP<br>1.69<br>1.90 | 1.9<br>RPM<br>1241 | 90<br>BHP<br>1.79 | 2<br>RPM<br>1268  | 2.00<br>BHP |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

F1-HP Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024. 2-HP Fan Motor Heat (MBH) = 3.000 x Fan BHP+.5000.

1. Field Supplied Fan Sheave AK84 and Belt AX34 required. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be

| Table PD-37 - | - Relt Drive | Evanorator | Fan Performance . | – 6 Ton – | YSC072A3.A4.AW *H | — High Heat | —Horizontal Δirflow |
|---------------|--------------|------------|-------------------|-----------|-------------------|-------------|---------------------|

|       |       |       |        |          |           |          |     | Externa | al Static | Pressure | e (Inches | of Wate  | r)        |         |         |          |           |        |         |           |
|-------|-------|-------|--------|----------|-----------|----------|-----|---------|-----------|----------|-----------|----------|-----------|---------|---------|----------|-----------|--------|---------|-----------|
|       | .1    | 10    |        | 20       | .3        | 30       | .4  | 10      |           | 50       |           | 60       | .7        | 70      | 3.      | 30       | .9        | 0      | 1.0     | 0         |
| CFM   | RPM   | BHP   | RPM    | BHP      | RPM       | BHP      | RPM | BHP     | RPM       | BHP      | RPM       | BHP      | RPM       | BHP     | RPM     | BHP      | RPM       | BHP    | RPM     | BHP       |
|       |       | 1-HP  | Standa | rd Moto  | r & Field | l Suppli | ed  |         |           |          |           |          | 1-        | HP Sta  | ndard N | lotor &  | Drive     |        |         |           |
|       |       |       | Lo     | w Static | Drive (1  | )        |     |         |           |          |           |          |           |         |         |          |           |        |         |           |
| 1920  | 551   | 0.30  | 613    | 0.37     | 668       | 0.44     | 715 | 0.51    | 761       | 0.58     | 804       | 0.67     | 847       | 0.75    | 890     | 0.83     | 930       | 0.92   | 969     | 1.00      |
| 2160  | 608   | 0.41  | 661    | 0.48     | 714       | 0.56     | 760 | 0.64    | 802       | 0.72     | 842       | 0.80     | 882       | 0.90    | 920     | 0.99     | 958       | 1.08   | 996     | 1.17      |
| 2400  | 667   | 0.55  | 710    | 0.62     | 760       | 0.71     | 806 | 0.80    | 847       | 0.88     | 885       | 0.96     | 921       | 1.06    | 957     | 1.16     | 992       | 1.27   | 1027    | 1.37      |
| 2640  | 726   | 0.72  | 762    | 0.79     | 809       | 0.87     | 853 | 0.98    | 894       | 1.09     | 930       | 1.17     | 965       | 1.26    | 998     | 1.36     | 1031      | 1.47   | 1063    | 1.58      |
| 2880  | 786   | 0.91  | 818    | 0.99     | 857       | 1.08     | 900 | 1.18    | 939       | 1.30     | 976       | 1.41     | 1009      | 1.51    | 1042    | 1.61     | 1073      | 1.71   | 1103    | 1.82      |
|       |       |       |        |          |           |          |     |         |           |          |           |          |           |         | 2-      | -HP Ove  | ersized   | Motor  | & Drive | <u>'</u>  |
| Toblo | PD-37 | Con   | tinuad |          |           |          |     |         |           |          |           | 4 UD C4- | and and N | 1-4 0   | Himb Co | tatia D  | /a        | LID O  |         | -I N/I 4- |
| iabie | TU-3/ | — com | uriuea |          |           |          |     |         |           |          |           | 1-mp Sta | andard N  | iotor & | righ 5  | tatic Di | ive (or a | 2-MP U | versize | a word    |

| iabie | FD-37 | – Con | unuea    |         |           |          |          |          |            |          |           | 1-MP 5ta | andard iv | lotor & | nign 5 | tatic Di | ive (or | 2-NP U | versize | a ivioto |
|-------|-------|-------|----------|---------|-----------|----------|----------|----------|------------|----------|-----------|----------|-----------|---------|--------|----------|---------|--------|---------|----------|
|       |       |       |          |         |           |          | Ex       | ternal S | tatic Pres | sure (In | ches of V | Vater)   |           |         |        |          |         |        |         |          |
|       | 1     | .10   | 1        | 1.20    | 1         | .30      | 1        | 1.40     | 1.         | 50       | 1.        | 60       | 1         | .70     | 1.     | 80       | 1.9     | Ю      | 2.      | .00      |
| CFM   | RPM   | BHP   | RPM      | BHP     | RPM       | BHP      | RPM      | BHP      | RPM        | BHP      | RPM       | BHP      | RPM       | BHP     | RPM    | BHP      | RPM     | BHP    | RPM     | BHP      |
| ·-    |       | 1-H   | IP Stand | lard Mo | otor & Hi | igh Stat | ic Drive | •        |            |          |           |          |           |         |        |          |         |        |         |          |
|       |       | Kit   | (or 2 HP | Oversiz | zed Mote  | or & Dri | ve)      |          |            |          |           |          |           |         |        |          |         |        |         |          |
| 1920  | 1007  | 1.09  | 1044     | 1.19    | 1078      | 1.28     | 1111     | 1.37     | 1142       | 1.46     | 1172      | 1.56     | 1203      | 1.65    | 1230   | 1.75     | 1257    | 1.84   | _       | _        |
| 2160  | 1032  | 1.26  | 1068     | 1.36    | 1102      | 1.46     | 1135     | 1.56     | 1167       | 1.66     | 1198      | 1.77     | 1229      | 1.88    | 1259   | 1.98     | _       | _      | _       | _        |
| 2400  | 1061  | 1.47  | 1095     | 1.57    | 1128      | 1.67     | 1161     | 1.78     | 1191       | 1.88     | 1223      | 2.00     | 1254      | 2.11    | 1282   | 2.23     | _       | _      | _       | _        |
| 2640  | 1095  | 1.70  | 1126     | 1.81    | 1157      | 1.92     | 1189     | 2.03     | 1219       | 2.15     | 1250      | 2.26     | _         | _       | _      | _        | _       | _      | _       | _        |
| 2880  | 1133  | 1.94  | 1162     | 2.06    | 1191      | 2.19     | 1221     | 2.30     | _          | _        | _         | _        | _         | _       | _      | _        | _       | _      | _       | _        |
|       |       |       |          | 2-H     | P Oversi  | zed Mo   | tor & Dr | ive      |            |          |           |          |           |         |        |          |         |        |         |          |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories 1-HP Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024. 2-HP Fan Motor Heat (MBH) = 3.000 x Fan BHP+.5000

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

<sup>1.</sup> Field Supplied Fan Sheave AK84 and Belt AX34 required.



## **Performance**

### (6 Ton) **Standard Efficiency**

Table PD-38 — Belt Drive Evaporator Fan Performance — 6 Ton — YSC072AK \*L — Low Heat —Horizontal Airflow

|      |      |        |         |          |          |       |     | Extern | al Static | Pressure | (Inches | of Wate | r)  |         |         |         |       |      |      |      |
|------|------|--------|---------|----------|----------|-------|-----|--------|-----------|----------|---------|---------|-----|---------|---------|---------|-------|------|------|------|
|      | .1   | 0      | .2      | 20       | .3       | 30    | .4  | Ю      | .5        | 50       | .6      | 60      | .7  | 0       | 3.      | 30      | .9    | 0    | 1.0  | 00   |
| CFM  | RPM  | BHP    | RPM     | BHP      | RPM      | BHP   | RPM | BHP    | RPM       | BHP      | RPM     | BHP     | RPM | BHP     | RPM     | BHP     | RPM   | BHP  | RPM  | BHP  |
|      | 2 HF | Standa | ard Mot | or & Lov | v Static | Drive |     |        |           |          |         |         | 2   | HP Star | ndard N | lotor & | Drive |      |      |      |
| 1920 | 522  | 0.27   | 576     | 0.32     | 636      | 0.40  | 687 | 0.46   | 733       | 0.54     | 778     | 0.62    | 821 | 0.70    | 864     | 0.78    | 906   | 0.86 | 946  | 0.95 |
| 2160 | 575  | 0.37   | 619     | 0.43     | 674      | 0.50  | 726 | 0.59   | 770       | 0.66     | 812     | 0.74    | 852 | 0.82    | 890     | 0.92    | 930   | 1.01 | 968  | 1.10 |
| 2400 | 629  | 0.49   | 669     | 0.55     | 713      | 0.62  | 763 | 0.71   | 809       | 0.81     | 849     | 0.89    | 887 | 0.97    | 923     | 1.06    | 959   | 1.16 | 994  | 1.27 |
| 2640 | 684  | 0.63   | 721     | 0.71     | 757      | 0.78  | 802 | 0.86   | 846       | 0.96     | 888     | 1.07    | 925 | 1.16    | 959     | 1.25    | 993   | 1.34 | 1027 | 1.45 |
| 2880 | 740  | 0.80   | 774     | 0.89     | 807      | 0.97  | 843 | 1.05   | 885       | 1.14     | 925     | 1.26    | 964 | 1.38    | 998     | 1.48    | 1030  | 1.57 | 1062 | 1.67 |

#### Table PD-38 - Continued

2 HP Standard Motor & High Static Drive

|      |      |      |      |      |      |      | Ex   | ternal S | tatic Pres | sure (In | ches of V | Vater)  |      |      |      |      |      |      |      |      |
|------|------|------|------|------|------|------|------|----------|------------|----------|-----------|---------|------|------|------|------|------|------|------|------|
|      | 1    | .10  | 1    | .20  | 1    | 1.30 | 1    | .40      | 1.         | 50       | 1.6       | 60      | 1    | .70  | 1.8  | 30   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP      | RPM        | BHP      | RPM       | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |      |      |      |      |      |      | 2 H  | P Stand  | ard Mo     | tor & Hi | gh Stati  | c Drive | Kit  |      |      |      |      |      |      |      |
| 1920 | 985  | 1.04 | 1020 | 1.13 | 1057 | 1.22 | 1090 | 1.31     | 1123       | 1.41     | 1155      | 1.50    | 1185 | 1.60 | 1213 | 1.69 | 1241 | 1.79 | 1268 | 1.88 |
| 2160 | 1005 | 1.19 | 1040 | 1.29 | 1075 | 1.38 | 1110 | 1.48     | 1143       | 1.59     | 1176      | 1.69    | 1206 | 1.80 | 1235 | 1.90 | 1264 | 2.00 | _    | _    |
| 2400 | 1029 | 1.37 | 1063 | 1.47 | 1098 | 1.58 | 1130 | 1.68     | 1162       | 1.78     | 1194      | 1.89    | 1223 | 2.00 | 1254 | 2.11 | _    | _    | _    | _    |
| 2640 | 1058 | 1.56 | 1090 | 1.68 | 1121 | 1.79 | 1152 | 1.90     | 1184       | 2.01     | 1214      | 2.13    | 1244 | 2.24 | _    | _    | _    | _    | _    | _    |
| 2880 | 1093 | 1.78 | 1123 | 1.90 | 1152 | 2.02 | 1181 | 2.14     | 1211       | 2.27     | _         | _       | _    | _    | _    | _    | _    | _    | _    | _    |

#### 2 HP Standard Motor & Drive

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Notes:

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2-HP Fan Motor Heat (MBH) = 3.000 x Fan BHP+.5000.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-39 — Belt Drive Evaporator Fan Performance — 6 Ton — YSC072AK\*H — High Heat —Horizontal Airflow

|      |     |      |     |          |          |      |     | Externa | al Static | Pressure | (Inches | of Water | r)   |        |          |         |         |         |          |      |
|------|-----|------|-----|----------|----------|------|-----|---------|-----------|----------|---------|----------|------|--------|----------|---------|---------|---------|----------|------|
|      | .1  | 0    | .2  | 20       | .3       | 0    | .4  | Ю       | .5        | 50       | .6      | 60       | .7   | 0      | 3.       | 80      | .90     | 0       | 1.0      | 0    |
| CFM  | RPM | BHP  | RPM | BHP      | RPM      | BHP  | RPM | BHP     | RPM       | BHP      | RPM     | BHP      | RPM  | BHP    | RPM      | BHP     | RPM     | BHP     | RPM      | BHP  |
|      |     | 2 HP |     | rd Moto  |          |      | ed  |         |           |          |         |          | 2    | HP Sta | ndard IV | lotor & | Drive   |         |          |      |
|      |     |      | Lov | v Static | Drive (1 | )    |     |         |           |          |         |          |      |        |          |         |         |         |          |      |
| 1920 | 551 | 0.30 | 613 | 0.37     | 668      | 0.44 | 715 | 0.51    | 761       | 0.58     | 804     | 0.67     | 847  | 0.75   | 890      | 0.83    | 930     | 0.92    | 969      | 1.00 |
| 2160 | 608 | 0.41 | 661 | 0.48     | 714      | 0.56 | 760 | 0.64    | 802       | 0.72     | 842     | 0.80     | 882  | 0.90   | 920      | 0.99    | 958     | 1.08    | 996      | 1.17 |
| 2400 | 667 | 0.55 | 710 | 0.62     | 760      | 0.71 | 806 | 0.80    | 847       | 0.88     | 885     | 0.96     | 921  | 1.06   | 957      | 1.16    | 992     | 1.27    | 1027     | 1.37 |
| 2640 | 726 | 0.72 | 762 | 0.79     | 809      | 0.87 | 853 | 0.98    | 894       | 1.09     | 930     | 1.17     | 965  | 1.26   | 998      | 1.36    | 1031    | 1.47    | 1063     | 1.58 |
| 2880 | 786 | 0.91 | 818 | 0.99     | 857      | 1.08 | 900 | 1.18    | 939       | 1.30     | 976     | 1.41     | 1009 | 1.51   | 1042     | 1.61    | 1073    | 1.71    | 1103     | 1.82 |
|      |     |      |     |          |          |      |     |         |           |          |         |          |      | 2 H    | P Stand  | lard Mo | tor & H | ligh St | atic Dri | ve   |

#### Table PD-39 - Continued

|      |      |      |      |      |      |      | Ex   | ternal S | tatic Pres | ssure (In | ches of V | Vater)  |      |      |      |      |      |      |     |     |
|------|------|------|------|------|------|------|------|----------|------------|-----------|-----------|---------|------|------|------|------|------|------|-----|-----|
|      | 1    | .10  | 1    | .20  | 1    | .30  | 1    | .40      | 1.         | 50        | 1.0       | 60      | 1    | .70  | 1.8  | 30   | 1.9  | 90   | 2.  | .00 |
| CFM  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP      | RPM        | BHP       | RPM       | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM | BHP |
|      |      |      |      |      |      |      | 2 H  | P Stand  | ard Mo     | tor & H   | igh Stati | c Drive | •    |      |      |      |      |      |     |     |
| 1920 | 1007 | 1.09 | 1044 | 1.19 | 1078 | 1.28 | 1111 | 1.37     | 1142       | 1.46      | 1172      | 1.56    | 1203 | 1.65 | 1230 | 1.75 | 1257 | 1.84 | _   | _   |
| 2160 | 1032 | 1.26 | 1068 | 1.36 | 1102 | 1.46 | 1135 | 1.56     | 1167       | 1.66      | 1198      | 1.77    | 1229 | 1.88 | 1259 | 1.98 | _    | _    | _   | _   |
| 2400 | 1061 | 1.47 | 1095 | 1.57 | 1128 | 1.67 | 1161 | 1.78     | 1191       | 1.88      | 1223      | 2.00    | 1254 | 2.11 | 1282 | 2.23 | _    | _    | _   | _   |
| 2640 | 1095 | 1.70 | 1126 | 1.81 | 1157 | 1.92 | 1189 | 2.03     | 1219       | 2.15      | 1250      | 2.26    | _    | _    | _    | _    | _    | _    | _   | _   |
| 2880 | 1133 | 1.94 | 1162 | 2.06 | 1191 | 2.19 | 1221 | 2.30     | _          | _         | _         | _       | _    | _    | _    | _    | _    | _    | _   | _   |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2-HP Fan Motor Heat (MBH) = 3.000 x Fan BHP+.5000

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

 $<sup>1. \ \</sup> Field \, Supplied \, Fan \, Sheave \, AK84 \, and \, Belt \, AX34 \, required.$ 



# (7½ Ton) Standard Efficiency

| Table | PD-40 - | – Belt  | Drive E | vapora  | tor Fan | Perfort | nance - | – <i>7</i> ½ 7 | ōn — Y     | SC090,    | 092A3,A   | 4,AW,    | AK *L -          | – Low   | Heat -    | -Dow     | nflow A  | Airflow | ,        |      |
|-------|---------|---------|---------|---------|---------|---------|---------|----------------|------------|-----------|-----------|----------|------------------|---------|-----------|----------|----------|---------|----------|------|
|       |         |         |         |         |         |         |         | Extern         | al Static  | Pressur   | e (Inches | of Wate  | r)               |         |           |          |          |         |          |      |
|       | .1      | 10      |         | 20      | .:      | 30      | .4      | 40             | .!         | 50        |           | 60       |                  | 70      | 3.        | 30       | .9       | 0       | 1.0      | 00   |
| CFM   | RPM     | BHP     | RPM     | BHP     | RPM     | BHP     | RPM     | BHP            | RPM        | BHP       | RPM       | BHP      | RPM              | BHP     | RPM       | BHP      | RPM      | BHP     | RPM      | BHP  |
|       |         |         |         |         | 2       | -HP Sta | ndard M | otor &         | Field Su   | pplied    |           |          | 2-               | HP Sta  | ndard N   | /lotor 8 | Drive    |         |          |      |
|       |         |         |         |         |         |         | Low Sta | atic Driv      | re (1)     | -         |           |          |                  |         |           |          |          |         |          |      |
| 2400  | _       | _       | _       | _       | 676     | 0.59    | 726     | 0.67           | 773        | 0.77      | 815       | 0.85     | 854              | 0.94    | 891       | 1.03     | 928      | 1.12    | 963      | 1.22 |
| 2700  | _       | _       | 682     | 0.68    | 727     | 0.76    | 770     | 0.85           | 814        | 0.95      | 856       | 1.06     | <sup>1</sup> 895 | 1.16    | 931       | 1.25     | 965      | 1.35    | 998      | 1.45 |
| 3000  | 693     | 0.79    | 738     | 0.89    | 780     | 0.97    | 819     | 1.07           | 858        | 1.18      | 898       | 1.29     | 936              | 1.40    | 972       | 1.52     | 1006     | 1.63    | 1038     | 1.73 |
| 3300  | 753     | 1.03    | 795     | 1.14    | 834     | 1.23    | 871     | 1.33           | 906        | 1.45      | 942       | 1.56     | 978              | 1.69    | 1014      | 1.81     | 1048     | 1.94    | 1080     | 2.06 |
| 3600  | 814     | 1.31    | 853     | 1.44    | 890     | 1.55    | 925     | 1.65           | 958        | 1.76      | 991       | 1.88     | 1023             | 2.01    | 1057      | 2.14     | 1088     | 2.28    | 1121     | 2.41 |
|       |         |         |         |         |         |         |         |                |            |           |           |          |                  |         |           |          | 3-HP     | Overs   | ized Mo  | otor |
| Table | PD-40 · | – Con   | tinued  |         |         |         |         |                |            |           |           |          |                  |         |           |          |          |         |          |      |
|       |         |         |         |         |         |         | Ex      | ternal S       | tatic Pres | ssure (In | ches of V | Vater)   |                  |         |           |          |          |         |          |      |
|       | 1       | .10     | 1       | 1.20    | •       | 1.30    | 1       | 1.40           | 1.         | 50        | 1.        | 60       | 1                | .70     | 1.8       | 80       | 1.9      | 90      | 2        | .00  |
| CFM   | RPM     | BHP     | RPM     | BHP     | RPM     | BHP     | RPM     | BHP            | RPM        | BHP       | RPM       | BHP      | RPM              | BHP     | RPM       | BHP      | RPM      | BHP     | RPM      | BHP  |
|       | 2- H    | IP Stan | dard Mo | tor & D | rive    |         |         |                | 2-H        | IP Stand  | dard Mo   | tor & Hi | gh Stati         | c Drive | Kit (or 3 | 3-HP O   | /ersizec | Moto    | r & Driv | /e)  |
| 2400  |         |         |         |         |         |         |         |                |            | 1.73      | 1151      | 1.83     | 1180             | 1.93    | 1207      | 2.03     | 1235     | 2.14    | 1261     | 2.24 |
| 2700  |         |         |         |         |         |         | 1123    | 1.89           | 1153       | 2.00      | 1181      | 2.12     | 1209             | 2.23    | 1236      | 2.35     | 1262     | 2.47    | 1288     | 2.58 |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

1099

1139

1181

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data

1.95

2.29

2.68

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2.07

2.42

2.81

1158

1195

1236

2.19

2.54

2.95

1128

1167

1208

2-HP Fan Motor Heat (MBH) = 2.000 x Fan BHP+.5000. 3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.4750

1. Field Supplied Motor Sheave 1VL40L x 7/8 and Fan Sheave AK71 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

1267

1301

2.55

2.92

3.33

1240

1274

1311

2.68

3.05

1293

1325

2.81

3.18

1319

1351

2.94

3.33

Table PD-41 — Belt Drive Evaporator Fan Performance — 7½ Ton — YSC090,092A3,A4,AW \*M— Medium Heat —Downflow Airflow

1185

1222

1261

3-HP Oversized Motor & Drive

2.31

2.66

3.07

1213

1248

1287

2.43

2.79

3.21

|      | External Static Pressure (Inches of Water) |        |         |           |          |         |          |           |      |      |      |      |      |        |         |         |       |                       |       |      |  |  |  |  |  |  |
|------|--------------------------------------------|--------|---------|-----------|----------|---------|----------|-----------|------|------|------|------|------|--------|---------|---------|-------|-----------------------|-------|------|--|--|--|--|--|--|
|      | .1                                         | 0      | .2      | 20        | .3       | 30      | .4       | Ю         | .5   | 0    | .6   | 60   | .7   | 0      | 3.      | 30      | .9    | 0                     | 1.0   | 10   |  |  |  |  |  |  |
| CFM  | RPM                                        | BHP    | RPM     | BHP       | RPM      | BHP     | RPM      | BHP       | RPM  | BHP  | RPM  | BHP  | RPM  | BHP    | RPM     | BHP     | RPM   | BHP                   | RPM   | BHP  |  |  |  |  |  |  |
|      | 2-HP                                       | Standa | rd Moto | or & Fiel | d Suppli | ied Low | Static E | Prive (1) |      |      |      |      | 2-   | HP Sta | ndard N | lotor & | Drive |                       |       |      |  |  |  |  |  |  |
| 2400 | _                                          | _      | 662     | 0.56      | 711      | 0.65    | 759      | 0.74      | 802  | 0.83 | 842  | 0.91 | 879  | 1.00   | 916     | 1.09    | 951   | 1.19                  | 986   | 1.29 |  |  |  |  |  |  |
| 2700 | 676                                        | 0.67   | 721     | 0.75      | 764      | 0.84    | 809      | 0.94      | 851  | 1.04 | 891  | 1.14 | 927  | 1.24   | 961     | 1.34    | 994   |                       |       |      |  |  |  |  |  |  |
| 3000 | 741                                        | 0.89   | 783     | 0.98      | 822      | 1.08    | 861      | 1.19      | 901  | 1.30 | 939  | 1.41 | 975  | 1.52   | 1009    | 1.64    | 1041  | 1 1.74 <u>1071 1.</u> |       |      |  |  |  |  |  |  |
| 3300 | 807                                        | 1.17   | 846     | 1.26      | 882      | 1.37    | 917      | 1.48      | 953  | 1.60 | 989  | 1.72 | 1024 | 1.85   | 1058    | 1.97    | 1089  |                       |       | 2.21 |  |  |  |  |  |  |
| 3600 | 874                                        | 1.50   | 910     | 1.60      | 944      | 1.71    | 976      | 1.83      | 1008 | 1.95 | 1041 | 2.08 | 1074 | 2.22   | 1107    | 2.35    | 1138  | 8 2.49 1168 2         |       | 2.62 |  |  |  |  |  |  |
|      |                                            |        |         |           |          |         |          |           |      |      |      |      |      |        |         |         | 3-H   | 3-HP Oversized Motor  |       |      |  |  |  |  |  |  |
|      |                                            |        |         |           |          |         |          |           |      |      |      |      |      |        |         |         |       | &                     | Drive | \    |  |  |  |  |  |  |

#### Table PD-41 — Continued

| iabic | יד-טיו                                                                                                                                                      | - 0011 | unaca |      |      |      |      |          |            |          |           |          |          |         |       |      |      |      |      |      |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|------|------|------|------|----------|------------|----------|-----------|----------|----------|---------|-------|------|------|------|------|------|
|       |                                                                                                                                                             |        |       |      |      |      | Ex   | ternal S | tatic Pres | sure (In | ches of V | Vater)   |          |         |       |      |      |      |      |      |
|       | 1                                                                                                                                                           | .10    | 1     | 1.20 | 1    | 1.30 | 1    | .40      | 1.5        | 50       | 1.6       | 60       | 1        | .70     | 1.8   | 30   | 1.9  | 90   | 2.   | .00  |
| CFM   | RPM                                                                                                                                                         | BHP    | RPM   | BHP  | RPM  | BHP  | RPM  | BHP      | RPM        | BHP      | RPM       | BHP      | RPM      | BHP     | RPM   | BHP  | RPM  | BHP  | RPM  | BHP  |
|       |                                                                                                                                                             |        |       |      |      |      |      |          | 2-H        | P Stanc  | lard Mo   | tor & Hi | igh Stat | ic Driv | e Kit |      |      |      |      |      |
|       | 2-HP Standard Motor & Drive (or 3-HP Oversized Motor & Drive) 100 1019 1.39 1051 1.49 1083 1.60 1113 1.70 1141 1.80 1171 1.90 1199 2.01 1225 2.10 1252 2.20 |        |       |      |      |      |      |          |            |          |           |          |          |         |       |      |      |      |      |      |
| 2400  | 1019                                                                                                                                                        | 1.39   | 1051  | 1.49 | 1083 | 1.60 | 1113 | 1.70     | 1141       | 1.80     | 1171      | 1.90     | 1199     | 2.01    | 1225  | 2.10 | 1252 | 2.20 | 1278 | 2.31 |
| 2700  | 1058                                                                                                                                                        | 1.65   | 1089  | 1.76 | 1120 | 1.87 | 1149 | 1.99     | 1178       | 2.10     | 1205      | 2.21     | 1232     | 2.33    | 1259  | 2.45 | 1284 | 2.56 | 1310 | 2.68 |
| 3000  | 1101                                                                                                                                                        | 1.96   | 1131  | 2.08 | 1160 | 2.20 | 1187 | 2.31     | 1215       | 2.44     | 1243      | 2.57     | 1269     | 2.69    | 1295  | 2.82 | 1321 | 2.95 | 1346 | 3.08 |
| 3300  | 1147                                                                                                                                                        | 2.33   | 1176  | 2.45 | 1204 | 2.58 | 1230 | 2.70     | 1256       | 2.82     | 1282      | 2.96     | 1308     | 3.09    | 1333  | 3.23 | 1358 | 3.36 | _    | _    |
| 3600  | 1196                                                                                                                                                        | 2.75   | 1223  | 2.88 | 1250 | 3.02 | 1276 | 3.15     | 1301       | 3.28     | 1325      | 3.41     | _        | _       | _     | _    | _    | _    | _    | _    |
|       |                                                                                                                                                             |        |       |      |      |      |      |          | 3.H        | D Over   | izad Ma   | tor & Di | ivo      |         |       |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Notes:

3000

3300

3600

1070

1110

1151

1.85

2.18

2.55

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories 2-HP Fan Motor Heat (MBH) = 2.000 x Fan BHP+.5000.

3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.4750.

Field Supplied Motor Sheave 1VL40Lx7/8 and Fan Sheave AK71 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

2-HP Standard Motor & High Static Drive (or 3-HP Oversized Motor)



## **Performance**

(7½ Ton) **Standard Efficiency** 

Table PD-42 — Belt Drive Evaporator Fan Performance — 7½ Ton — YSC090,092A3,A4,AW, AK \*H — High Heat —Downflow Airflow

| 2-HP Standard Motor & Field Supplied Low Static Drive (1)  2400 697 0.62 745 0.71 790 0.80 830 0.89 869 0.98 906 1.07 941 1.16 976 1.26 1009 1.3  2700 717 0.74 760 0.83 804 0.93 847 1.03 887 1.13 922 1.23 958 1.33 991 1.43 1024 1.53 1055 1.6  3000 787 0.99 826 1.09 865 1.20 905 1.31 943 1.42 979 1.54 1012 1.64 1044 1.76 1075 1.87 1105 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |     |      |     |          |     |      |      | Extern | al Static | Pressure | (Inches | of Water | r)   |        |          |         |         |        |       |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------|-----|----------|-----|------|------|--------|-----------|----------|---------|----------|------|--------|----------|---------|---------|--------|-------|------|
| 2-HP Standard Motor & Field Supplied Low Static Drive (1)  2400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | .1  | 0    |     | 20       | .3  | 30   | .4   | 10     | .5        | 50       | .6      | 0        | .7   | 0      | 3.       | 30      | .9      | 0      | 1.0   | 0    |
| Low Static Drive (1)           2400         -         -         697         0.62         745         0.71         790         0.80         830         0.89         869         0.98         906         1.07         941         1.16         976         1.26         1009         1.3           2700         717         0.74         760         0.83         804         0.93         847         1.03         887         1.13         922         1.23         958         1.33         991         1.43         1024         1.53         1055         1.6           3000         787         0.99         826         1.09         865         1.20         905         1.31         943         1.42         979         1.54         1012         1.64         1044         1.76         1075         1.87         1105         1.8 | CFM  | RPM | BHP  | RPM | BHP      | RPM | BHP  | RPM  | BHP    | RPM       | BHP      | RPM     | BHP      | RPM  | BHP    | RPM      | BHP     | RPM     | BHP    | RPM   | BHP  |
| 2400     —     —     697     0.62     745     0.71     790     0.80     830     0.89     869     0.98     906     1.07     941     1.16     976     1.26     1009     1.2       2700     717     0.74     760     0.83     804     0.93     847     1.03     887     1.13     922     1.23     958     1.33     991     1.43     1024     1.53     1055     1.6       3000     787     0.99     826     1.09     865     1.20     905     1.31     943     1.42     979     1.54     1012     1.64     1044     1.76     1075     1.87     1105     1.8                                                                                                                                                                                                                                                                                        |      |     |      | 2   | 2-HP Sta |     |      |      | pplied |           |          |         |          | 2-   | HP Sta | ndard IV | lotor & | Drive   |        |       |      |
| 3000 <u>787 0.99 826 1.09</u> 865 1.20 905 1.31 943 1.42 979 1.54 1012 1.64 1044 1.76 1075 1.87 1105 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2400 | _   | _    | 697 | 0.62     |     |      | . ,  | 0.80   | 830       | 0.89     | 0.98    | 906      | 1.07 | 941    | 1.16     | 976     | 1.26    | 1009   | 1.36  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2700 | 717 | 0.74 | 760 | 0.83     | 804 | 0.93 | 847  | 1.03   | 887       | 1.13     | 922     | 1.23     | 958  | 1.33   | 991      | 1.43    | 1024    | 1.53   | 1055  | 1.64 |
| 3300 858 130 894 141 929 152 965 164 1001 177 1036 189 1068 2.01 1099 2.13 1129 2.25 \ 1157 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3000 | 787 | 0.99 | 826 | 1.09     | 865 | 1.20 | 905  | 1.31   | 943       | 1.42     | 979     | 1.54     | 1012 | 1.64   | 1044     | 1.76    | 1075    | 1.87   | 1105  | 1.98 |
| 000 000 1.00 004 1.41 020 1.02 000 1.04 1001 1.77 1000 1.00 1.00 2.01 1000 2.10   1120 2.20   1107 2.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3300 | 858 | 1.30 | 894 | 1.41     | 929 | 1.52 | 965  | 1.64   | 1001      | 1.77     | 1036    | 1.89     | 1068 | 2.01   | 1099     | 2.13    | 1129    | 2.25 \ | 1157  | 2.37 |
| 3600 930 1.66 963 1.78 995 1.90 1028 2.03 1061 2.16 1093 2.30 1126 2.43 1157 2.57 1185 2.70 \ 1212 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3600 | 930 | 1.66 | 963 | 1.78     | 995 | 1.90 | 1028 | 2.03   | 1061      | 2.16     | 1093    | 2.30     | 1126 | 2.43   | 1157     | 2.57    | 1185    | 2.70   | √1212 | 2.83 |
| 3-HP Oversized Motor & Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |     |      |     |          |     |      |      |        |           |          |         |          | 3    | -HP Ov | ersized  | Motor 8 | & Drive |        | \     |      |

2-HP Standard Motor & High Static Drive (or 3-HP Oversized Motor)

### Table PD-42 - Continued

|      |      |         |         |         |         |         | Ex   | ternal S | tatic Pres | sure (In | ches of V | Vater)  |            |        |           |          |         |      |      |      |
|------|------|---------|---------|---------|---------|---------|------|----------|------------|----------|-----------|---------|------------|--------|-----------|----------|---------|------|------|------|
|      | 1    | .10     | 1       | .20     | 1       | .30     | 1    | 1.40     | 1.         | 50       | 1.0       | 60      | 1          | .70    | 1.5       | 80       | 1.9     | 0    | 2.   | .00  |
| CFM  | RPM  | BHP     | RPM     | BHP     | RPM     | BHP     | RPM  | BHP      | RPM        | BHP      | RPM       | BHP     | RPM        | BHP    | RPM       | BHP      | RPM     | BHP  | RPM  | BHP  |
|      | 2    | -HP Sta | ndard N | lotor & | Drive   |         | 2-HF | Standa   | ard Mot    | or & Hig | gh Static | Drive I | Kit (or 3- | HP Ove | ersized l | Viotor 8 | & Drive |      |      |      |
| 2400 | 1042 | 1.46    | 1073    | 1.56    | 1104    | 1.67    | 1134 | 1.77     | 1163       | 1.87     | 1190      | 1.97    | 1218       | 2.08   | 1244      | 2.18     | 1271    | 2.28 | 1296 | 2.38 |
| 2700 | 1086 | 1.75    | 1117    | 1.86    | 1146    | 1.97    | 1174 | 2.09     | 1203       | 2.21     | 1230      | 2.32    | 1255       | 2.44   | 1282      | 2.55     | 1308    | 2.67 | 1333 | 2.78 |
| 3000 | 1134 | 2.09    | 1163    | 2.21    | 1191    | 2.33    | 1218 | 2.45     | 1245       | 2.58     | 1272      | 2.70    | 1298       | 2.83   | 1323      | 2.96     | 1348    | 3.09 | 1372 | 3.22 |
| 3300 | 1185 | 2.49    | 1212    | 2.61    | 1238    | 2.74    | 1265 | 2.87     | 1292       | 3.01     | 1316      | 3.13    | 1341       | 3.27   | 1366      | 3.41     | _       | _    | _    | _    |
| 3600 | 1239 | 2.96    | 1265    | 3.09    | 1290    | 3.22    | 1316 | 3.36     | _          | _        | _         | _       | _          | _      | _         | _        | _       | _    | _    | _    |
|      |      |         | 3-H     | P Overs | ized Mo | tor & D | rive |          |            |          |           |         |            |        |           |          |         |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories 2-HP Fan Motor Heat (MBH) = 2.000 x Fan BHP+.5000.

3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.4750

Field Supplied Motor Sheave 1VL40L x 7/8 and Fan Sheave AK71 required. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-43 — Belt Drive Evaporator Fan Performance — 71/2 Ton — YSC090,092A3,A4,AW, AK \*L — Low Heat — Horizontal Airflow

|      |                                       |             |       |      |          |          |         | Extern | al Static | Pressure | (Inches | of Wate | r)   |        |         |         |         |      |      |      |
|------|---------------------------------------|-------------|-------|------|----------|----------|---------|--------|-----------|----------|---------|---------|------|--------|---------|---------|---------|------|------|------|
|      | .1                                    | 0           | .2    | 20   | .3       | 80       | .4      | Ю      | .5        | 50       | .6      | 60      | .7   | 0      | 3.      | 30      | .9      | 0    | 1.0  | 00   |
| CFM  | RPM                                   | BHP         | RPM   | BHP  | RPM      | BHP      | RPM     | BHP    | RPM       | BHP      | RPM     | BHP     | RPM  | BHP    | RPM     | BHP     | RPM     | BHP  | RPM  | BHP  |
|      |                                       |             | 2-HPS |      | Motor    |          | Supplie | d      |           |          |         |         | 2-   | HP Sta | ndard N | lotor & | Drive   |      |      |      |
|      |                                       |             |       | Low  | Static D | rive (1) |         |        |           |          |         |         |      |        |         |         |         |      |      |      |
| 2400 | 653                                   | 0.53        | 694   | 0.59 | 745      | 0.67     | 793     | 0.77   | 835       | 0.86     | 874     | 0.94    | 911  | 1.03   | 948     | 1.13    | 982     | 1.23 | 1017 | 1.34 |
| 2700 |                                       |             |       |      |          |          |         |        |           | 1.09     | 927     | 1.19    | 963  | 1.28   | 997     | 1.38    | 1030    | 1.48 | 1061 | 1.60 |
| 3000 |                                       |             |       |      |          |          |         | 1.24   | 943       | 1.35     | 981     | 1.48    | 1017 | 1.60   | 1050    | 1.70    | 1081    | 1.80 | 1111 | 1.90 |
| 3300 | 872                                   | 100 000 000 |       |      |          |          |         |        | 998       | 1.67     | 1036    | 1.80    | 1071 | 1.93   | 1104    | 2.07    | 1135    | 2.19 | 1164 | 2.30 |
| 3600 | 00 946 1.65 973 1.75 1000 1.85 1025 1 |             |       |      |          |          |         |        | 1057      | 2.06     | 1091    | 2.17    | 1125 | 2.31   | 1158    | 2.46    | 1189    | 2.61 | 1219 | 2.75 |
|      |                                       |             |       |      |          |          |         |        |           |          |         |         | 3    | -HP Ov | ersized | Motor 8 | & Drive | 1    | \    |      |

2-HP Standard Motor & High Static Drive (or 3-HP Oversized Motor)

|      |          |         |          |      |          |         | EX       | lemai 3 | tatic Fres | sure (III | cries or v | valer)  |         |       |         |      |      |      |      |      |
|------|----------|---------|----------|------|----------|---------|----------|---------|------------|-----------|------------|---------|---------|-------|---------|------|------|------|------|------|
|      | 1        | .10     | 1        | .20  | 1        | .30     | 1        | .40     | 1.9        | 50        | 1.0        | 60      | 1       | .70   | 1.8     | 30   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM      | BHP     | RPM      | BHP  | RPM      | BHP     | RPM      | BHP     | RPM        | BHP       | RPM        | BHP     | RPM     | BHP   | RPM     | BHP  | RPM  | BHP  | RPM  | BHP  |
| 2-H  | IP Stand | lard Mo | tor & Dr | ive  | 2-H      | P Stand | ard Mo   | tor & H | igh Stati  | c Drive   | Kit (or 3  | 3-HP Ov | ersized | Motor | & Drive | )    |      |      |      |      |
| 2400 | 1053     | 1.44    | 1087     | 1.55 | 1121     | 1.65    | 1153     | 1.76    | 1185       | 1.86      | 1217       | 1.98    | 1246    | 2.08  | 1277    | 2.20 | 1306 | 2.32 | 1334 | 2.44 |
| 2700 | 1093     | 1.71    | 1124     | 1.83 | 1156     | 1.95    | 1187     | 2.06    | 1218       | 2.18      | 1248       | 2.30    | 1277    | 2.42  | 1306    | 2.53 | 1333 | 2.65 | 1361 | 2.78 |
| 3000 | 1141     | 2.02    | 1170     | 2.15 | 1198     | 2.28    | 1227     | 2.41    | 1255       | 2.54      | 1283       | 2.67    | 1311    | 2.79  | 1339    | 2.93 | 1365 | 3.05 | 1391 | 3.18 |
| 3300 | 1192     | 2.41    | 1220     | 2.52 | 1247     | 2.65    | 1272     | 2.78    | 1299       | 2.92      | 1325       | 3.07    | 1350    | 3.21  | 1376    | 3.36 | _    | _    | _    | _    |
| 3600 | 1246     | 2.87    | 1272     | 2.99 | 1298     | 3.11    | 1323     | 3.24    | 1348       | 3.37      | _          | _       | _       | _     | _       | _    | _    | _    | _    | _    |
|      |          |         |          | 3-H  | P Oversi | zed Mo  | tor & Dr | ive     |            |           |            |         |         |       |         |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Refer to Table PD-89 to determine additional static pressure drop

 Field Supplied Motor Sheave 1VL40L x 7/8 and Fan Sheave AK71 required. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data

due to other options/accessories 2-HP Fan Motor Heat (MBH) = 2.000 x Fan BHP+.5000.

<sup>3-</sup>HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.4750.



### (7½ Ton) Standard Efficiency

| Table | PD-44 -                              | – Belt | Drive E | vaporat | or Fan | Perform | nance - | - 7½ To | on — Y    | SC090,0  | 092A3,A   | 4,AW *  | ·M — 1  | /lediun | Heat    | —Horiz | ontal . | Airflov | v    |      |
|-------|--------------------------------------|--------|---------|---------|--------|---------|---------|---------|-----------|----------|-----------|---------|---------|---------|---------|--------|---------|---------|------|------|
|       |                                      |        |         |         |        |         |         | Extern  | al Static | Pressure | e (Inches | of Wate | r)      |         |         |        |         |         |      |      |
|       | .1                                   | 0      | .2      | 20      | .3     | 80      | .4      | 10      | .5        | 50       | .6        | 60      |         | 70      | .8      | 80     | .9      | 0       | 1.0  | 00   |
| CFM   | RPM                                  | BHP    | RPM     | BHP     | RPM    | BHP     | RPM     | BHP     | RPM       | BHP      | RPM       | BHP     | RPM     | BHP     | RPM     | BHP    | RPM     | BHP     | RPM  | BHP  |
|       | 2-HP Standard Motor & Field Supplied |        |         |         |        |         |         |         |           |          |           | 2-HPS   | tandard | Motor   | & Drive |        |         |         |      |      |
|       | Low Static Drive (1)                 |        |         |         |        |         |         |         |           |          |           |         |         |         |         |        |         |         |      |      |
| 2400  | 680                                  | 0.57   | 729     | 0.65    | 778    | 0.74    | 823     | 0.84    | 862       | 0.92     | 900       | 1.00    | 936     | 1.10    | 972     | 1.20   | 1006    | 1.31    | 1041 | 1.41 |
| 2700  | 756                                  | 0.79   | 795     | 0.87    | 841    | 0.97    | 884     | 1.08    | 923       | 1.18     | 959       | 1.27    | 992     | 1.36    | 1025    | 1.47   | 1057    | 1.58    | 1089 | 1.70 |
| 3000  | 833                                  | 1.07   | 865     | 1.16    | 906    | 1.25    | 946     | 1.36    | 985       | 1.49     | 1020      | 1.61    | 1052    | 1.71    | 1083    | 1.81   | 1114    | 1.91    | 1143 | 2.03 |
| 3300  | 910                                  | 1.41   | 938     | 1.50    | 972    | 1.60    | 1010    | 1.70    | 1047      | 1.84     | 1081      | 1.97    | 1114    | 2.11    | 1144    | 2.22   | 1173    | 2.33    | 1200 | 2.44 |
| 3600  | 988                                  | 1.81   | 1014    | 1.91    | 1042   | 2.01    | 1076    | 2.12    | 1110      | 2.25     | 1143      | 2.39    | 1175    | 2.54    | 1205    | 2.69   | T1234   | 2.82    | 1260 | 2.94 |

### Table PD-44 - Continued

#### 2-HP Standard Motor & High Static Drive (or 3-HP Oversized Motor)

3-HP Oversized Motor & Drive

|      |      |                                           |         |         |         |         | Ex      | ternal S | tatic Pres | sure (In | ches of V | Vater) |      |      |      |      |      |      |      |      |
|------|------|-------------------------------------------|---------|---------|---------|---------|---------|----------|------------|----------|-----------|--------|------|------|------|------|------|------|------|------|
|      | 1    | .10                                       | 1       | .20     | 1       | .30     | 1       | .40      | 1.         | 50       | 1.0       | 60     | 1    | .70  | 1.8  | 80   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM  | BHP                                       | RPM     | BHP     | RPM     | BHP     | RPM     | BHP      | RPM        | BHP      | RPM       | BHP    | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 2-HP | Standa                                    | rd Moto | or      | 2-      | HP Star | ndard M | otor &   | High Sta   | tic Driv | e Kit     |        |      |      |      |      |      |      |      |      |
|      |      | & Drive (or 3-HP Oversized Motor & Drive) |         |         |         |         |         |          |            |          |           |        |      |      |      |      |      |      |      |      |
| 2400 | 1076 | 1.51                                      | 1110    | 1.62    | 1143    | 1.72    | 1176    | 1.83     | 1206       | 1.94     | 1238      | 2.05   | 1267 | 2.16 | 1297 | 2.28 | 1325 | 2.40 | 1353 | 2.52 |
| 2700 | 1120 | 1.82                                      | 1152    | 1.93    | 1183    | 2.05    | 1214    | 2.17     | 1243       | 2.28     | 1273      | 2.40   | 1302 | 2.52 | 1330 | 2.64 | 1357 | 2.76 | 1385 | 2.89 |
| 3000 | 1172 | 2.15                                      | 1201    | 2.29    | 1229    | 2.42    | 1257    | 2.55     | 1285       | 2.68     | 1312      | 2.80   | 1340 | 2.93 | 1367 | 3.06 | 1395 | 3.19 | 1421 | 3.33 |
| 3300 | 1227 | 2.56                                      | 1255    | 2.69    | 1281    | 2.83    | 1307    | 2.97     | 1333       | 3.11     | 1359      | 3.26   | 1384 | 3.40 | _    | _    | _    | _    | _    | _    |
| 3600 | 1287 | 3.06                                      | 1312    | 3.18    | 1337    | 3.31    | 1361    | 3.45     | _          | _        | _         | _      | _    | _    | _    | _    | _    | _    | _    | _    |
|      |      |                                           | 3-H     | P Overs | ized Mo | tor & D | rive    |          |            |          |           |        |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2-HP Fan Motor Heat (MBH) = 2.000 x Fan BHP+.5000. 3-HP Fan Motor Heat (MBH) =  $2.900 \times Fan BHP + .4750$ .

Field Supplied Motor Sheave 1VL40L x 7/8 and Fan Sheave AK71 required.

Factory supplied motors, in commercial equipment, are definite purpose motors. specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-45 — Belt Drive Evaporator Fan Performance — 7½ Ton — YSC090,092A3,A4,AW, AK \*H— High Heat —Horizontal Airflow

|       |         |        |          |           |          |      |      | Extern | al Static | Pressure | (Inches   | of vvate | r)      |          |          |          |        |         |         |      |
|-------|---------|--------|----------|-----------|----------|------|------|--------|-----------|----------|-----------|----------|---------|----------|----------|----------|--------|---------|---------|------|
|       | .1      | 0      | .2       | 20        | .3       | 30   | .4   | 0      | .5        | 50       | .6        | 60       | .7      | 0        | 3.       | 30       | .9     | 0       | 1.0     | 10   |
| CFM   | RPM     | BHP    | RPM      | BHP       | RPM      | BHP  | RPM  | BHP    | RPM       | BHP      | RPM       | BHP      | RPM     | BHP      | RPM      | BHP      | RPM    | BHP     | RPM     | BHP  |
|       | 2-HP    | Standa | ard Moto | or & Fiel | d Suppli | ied  |      | 2-     | HP Stan   | dard Mo  | otor & D  | rive     |         |          |          |          |        |         |         |      |
|       |         | Lo     | w Static | Drive (1  | 1)       |      |      |        |           |          |           |          |         |          |          |          |        |         |         |      |
| 2400  | 713     | 0.62   | 764      | 0.71      | 811      | 0.81 | 851  | 0.89   | 889       | 0.97     | 926       | 1.07     | 962     | 1.17     | 997      | 1.28     | 1031   | 1.38    | 1067    | 1.48 |
| 2700  | 790     | 0.86   | 837      | 0.96      | 880      | 1.07 | 919  | 1.17   | 955       | 1.26     | 989       | 1.36     | 1022    | 1.46     | 1054     | 1.57     | 1086   | 1.69    | 1117    | 1.80 |
| 3000  | 869     | 1.16   | 910      | 1.26      | 950      | 1.38 | 989  | 1.50   | 1023      | 1.62     | 1056      | 1.72     | 1086    | 1.82     | 1116     | 1.92 \   | 1146   | 2.04    | 1175    | 2.17 |
| 3300  | 949     | 1.53   | 985      | 1.63      | 1023     | 1.75 | 1058 | 1.88   | 1092      | 2.02     | 1124      | 2.15     | 1154    | 2.26     | 1182     | 2.37     | 1210   | 2.48    | 1237    | 2.60 |
| 3600  | 1029    | 1.97   | 1061     | 2.07      | 1096     | 2.19 | 1130 | 2.33   | 1162      | 2.48     | 1193      | 2.63     | 1222    | 2.77     | 1250     | 2.89     | 1276   | 3.01    | 1302    | 3.13 |
|       |         |        |          |           |          |      |      |        | 3         | -HP Ove  | ersized N | /lotor & | Drive   |          |          |          | \      |         |         |      |
|       |         | _      |          |           |          |      |      |        |           |          | 2-HP St   | andard   | Motor 8 | L High S | Static D | rive (or | 3-HP 0 | versize | ed Moto | or)  |
| Iable | PD-45 - | – Cont | tinued   |           |          |      |      |        |           |          |           |          |         | g        |          |          |        |         |         |      |

| Table | PD-45    | – Cont  | tinued  |         |      |         |         |           |            |          | 2-HP St   | andard | Motor 8 | & High S | Static D | rive (or | 3-HP C | versiz | ed Mote | or)  |
|-------|----------|---------|---------|---------|------|---------|---------|-----------|------------|----------|-----------|--------|---------|----------|----------|----------|--------|--------|---------|------|
|       |          |         |         |         |      |         | Ex      | ternal S  | tatic Pres | sure (In | ches of V | Vater) |         |          |          |          |        |        |         |      |
|       | 1        | .10     | 1       | 1.20    | 1    | .30     | 1       | 1.40      | 1.         | 50       | 1.0       | 60     | 1       | 1.70     | 1.5      | 80       | 1.9    | 90     | 2.      | .00  |
| CFM   | RPM      | BHP     | RPM     | BHP     | RPM  | BHP     | RPM     | BHP       | RPM        | BHP      | RPM       | BHP    | RPM     | BHP      | RPM      | BHP      | RPM    | BHP    | RPM     | BHP  |
|       | 2-HP Sta | ndard   |         |         | 2-1  | HP Stan | dard Mo | otor & H  | ligh Sta   | tic Driv | e Kit     |        |         |          |          |          |        |        |         |      |
|       | Motor 8  | Drive   |         |         |      | (or 3   | -HP Ove | ersized N | /lotor &   | Drive)   |           |        |         |          |          |          |        |        |         |      |
| 2400  | 1101     | 1.59    | 1134    | 1.69    | 1166 | 1.80    | 1197    | 1.90      | 1229       | 2.02     | 1259      | 2.13   | 1287    | 2.25     | 1317     | 2.37     | 1344   | 2.48   | 1373    | 2.61 |
| 2700  | 1148     | 1.92    | 1180    | 2.04    | 1210 | 2.15    | 1241    | 2.27      | 1269       | 2.39     | 1299      | 2.51   | 1326    | 2.62     | 1354     | 2.74     | 1383   | 2.88   | 1409    | 3.00 |
| 3000  | 1204     | 2.30    | 1232    | 2.43    | 1260 | 2.56    | 1287    | 2.69      | 1316       | 2.82     | 1344      | 2.95   | 1370    | 3.07     | 1397     | 3.20     | 1423   | 3.34   | _       | _    |
| 3300  | 1264     | 2.74    | 1290    | 2.87    | 1316 | 3.02    | 1342    | 3.16      | 1367       | 3.30     | 1393      | 3.45   | _       | _        | _        | _        | _      | _      | _       | _    |
| 3600  | 1327     | 3.26    | 1352    | 3.39    | _    | _       | _       | _         | _          | _        | _         | _      | _       | _        | _        | _        | _      | _      | _       | _    |
|       | 3-H      | P Overs | ized Mo | tor & D | rive |         |         |           |            |          |           |        |         |          |          |          |        |        |         |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2-HP Fan Motor Heat (MBH) = 2.000 x Fan BHP+.5000. 3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.4750.

Field Supplied Motor Sheave 1VL40L x 7/8 and Fan Sheave AK71 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### (8½ Ton) **Standard Efficiency**

|      |                      |      |     | External Static Pressure (Inches of Water) .10 .20 .30 .40 .50 .60 .70 |     |      |         |      |     |        |     |      |     |      |     |        |         |         |         |      |
|------|----------------------|------|-----|------------------------------------------------------------------------|-----|------|---------|------|-----|--------|-----|------|-----|------|-----|--------|---------|---------|---------|------|
|      | .1                   | 0    | .2  | 20                                                                     | .3  | 30   | .4      | 10   |     | 50     | .6  | 60   | .7  | 70   | 3.  | 30     | .9      | 0       | 1.0     | 00   |
| CFM  | RPM                  | BHP  | RPM | BHP                                                                    | RPM | BHP  | RPM     | BHP  | RPM | BHP    | RPM | BHP  | RPM | BHP  | RPM | BHP    | RPM     | BHP     | RPM     | BHP  |
|      |                      |      |     |                                                                        | 2-  |      | ndard M |      |     | pplied |     |      |     |      | 2-  | HP Sta | ndard l | Motor 8 | k Drive |      |
|      | Low Static Drive (1) |      |     |                                                                        |     |      |         |      |     |        |     |      |     |      |     |        |         |         |         |      |
| 2720 | _                    | _    | _   | _                                                                      | 608 | 0.59 | 649     | 0.70 | 689 | 0.82   | 728 | 0.94 | 764 | 1.06 | 798 | 1.19   | 829     | 1.33    | 859     | 1.46 |
| 3060 | _                    | _    | 615 | 0.65                                                                   | 654 | 0.75 | 692     | 0.87 | 728 | 0.99   | 764 | 1.13 | 799 | 1.26 | 833 | 1.39   | 864     | 1.53    | 894     | 1.68 |
| 3400 | 625                  | 0.72 | 665 | 0.83                                                                   | 702 | 0.95 | 736     | 1.06 | 770 | 1.19   | 804 | 1.34 | 836 | 1.49 | 868 | 1.63   | 899     | 1.78    | 928     | 1.93 |
| 3740 | 681                  | 0.93 | 716 | 1.05                                                                   | 752 | 1.18 | 784     | 1.31 | 815 | 1.44   | 846 | 1.58 | 876 | 1.74 | 906 | 1.90   | 935     | 2.06    | 963     | 2.22 |
| 4080 | 737                  | 1.19 | 769 | 1.31                                                                   | 802 | 1.45 | 833     | 1.60 | 862 | 1.73   | 891 | 1.87 | 919 | 2.03 | 947 | 2.20   | 974     | 2.37    | 1001    | 2.55 |

#### Table PD-46 - Continued

|      |      |         |          |         |      |      | Ex   | ternal S | tatic Pres | sure (In | ches of V | Vater)  |      |      |      |      |      |      |      |      |
|------|------|---------|----------|---------|------|------|------|----------|------------|----------|-----------|---------|------|------|------|------|------|------|------|------|
|      | 1    | .10     | 1        | .20     | 1    | .30  | 1    | .40      | 1.9        | 50       | 1.0       | 60      | 1    | .70  | 1.5  | 80   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM  | BHP     | RPM      | BHP     | RPM  | BHP  | RPM  | BHP      | RPM        | BHP      | RPM       | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 2-H  | P Stand | lard Mot | or & Dr | ive  |      |      |          | 3-H        | P Overs  | ized Mo   | tor & D | rive |      |      |      |      |      |      |      |
| 2720 | 888  | 1.61    | 916      | 1.76    | 943  | 1.91 | 970  | 2.07     | 996        | 2.22     | 1021      | 2.37    | 1046 | 2.53 | 1071 | 2.69 | 1096 | 2.86 | 1119 | 3.02 |
| 3060 | 922  | 1.82    | 949      | 1.98    | 976  | 2.14 | 1001 | 2.31     | 1026       | 2.47     | 1051      | 2.65    | 1074 | 2.81 | 1098 | 2.99 | 1120 | 3.16 | 1144 | 3.34 |
| 3400 | 957  | 2.08    | 984      | 2.24    | 1011 | 2.41 | 1035 | 2.58     | 1060       | 2.75     | 1083      | 2.93    | 1106 | 3.11 | 1128 | 3.29 | _    | _    | _    | _    |
| 3740 | 992  | 2.39    | 1018     | 2.55    | 1045 | 2.72 | 1070 | 2.90     | 1095       | 3.08     | 1117      | 3.25    | 1140 | 3.44 | _    | _    | _    | _    | _    | _    |
| 4080 | 1028 | 2.73    | 1053     | 2.90    | 1079 | 3.07 | 1104 | 3.26     | 1128       | 3.44     | _         | _       | _    | _    | _    | _    | _    | _    | _    | _    |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2-HP Fan Motor Heat (MBH) = 2.000 x Fan BHP+.5000. 3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.4750.

1. Field Supplied Fan Sheave AK79 and Belt AX38 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-47 — Belt Drive Evaporator Fan Performance — 8½ Ton — YSC102A3,A4,AW, AK \*H— High Heat —Downflow Airflow

|      |     |                      |     |      |     |         |         | Externa  | al Static | Pressure | (Inches | of Water | r)  |      |     |         |        |       |         |      |
|------|-----|----------------------|-----|------|-----|---------|---------|----------|-----------|----------|---------|----------|-----|------|-----|---------|--------|-------|---------|------|
|      | .1  | 0                    | .2  | 20   | .3  | 80      | .4      | 40       |           | 50       | .6      | 60       | .7  | 70   | 3.  | 30      | .9     | 0     | 1.0     | 00   |
| CFM  | RPM | BHP                  | RPM | BHP  | RPM | BHP     | RPM     | BHP      | RPM       | BHP      | RPM     | BHP      | RPM | BHP  | RPM | BHP     | RPM    | BHP   | RPM     | BHP  |
|      |     |                      |     |      | 2-  | HP Star | ndard M | otor & F | ield Su   | plied    |         |          |     |      | 2   | -HP Sta | andard | Motor | & Drive | 9    |
|      |     | Low Static Drive (1) |     |      |     |         |         |          |           |          |         |          |     |      |     |         |        |       |         |      |
| 2720 | _   | _                    | _   | _    | 619 | 0.62    | 661     | 0.74     | 700       | 0.85     | 738     | 0.97     | 773 | 1.09 | 807 | 1.23    | 838    | 1.36  | 868     | 1.51 |
| 3060 | 586 | 0.58                 | 629 | 0.68 | 667 | 0.79    | 705     | 0.91     | 741       | 1.04     | 776     | 1.17     | 810 | 1.30 | 843 | 1.44    | 874    | 1.58  | 904     | 1.72 |
| 3400 | 642 | 0.76                 | 681 | 0.88 | 717 | 1.00    | 751     | 1.12     | 785       | 1.25     | 817     | 1.40     | 849 | 1.55 | 881 | 1.69    | 911    | 1.84  | 940     | 1.99 |
| 3740 | 698 | 0.99                 | 735 | 1.12 | 769 | 1.25    | 800     | 1.37     | 831       | 1.51     | 862     | 1.66     | 892 | 1.82 | 920 | 1.98    | 950    | 2.14  | 977     | 2.30 |
| 4080 | 756 | 1.26                 | 789 | 1.40 | 821 | 1.54    | 851     | 1.68     | 879       | 1.82     | 908     | 1.97     | 936 | 2.13 | 964 | 2.30    | 991    | 2.48  | 1017    | 2.66 |

#### Table PD-47 - Continued

|      |      |         |         |         |      |      | Ex   | ternal S | tatic Pres | sure (In | ches of V | Vater) |      |         |          |          |       |      |      |      |
|------|------|---------|---------|---------|------|------|------|----------|------------|----------|-----------|--------|------|---------|----------|----------|-------|------|------|------|
|      | 1.   | .10     | 1       | .20     | 1    | .30  | 1    | .40      | 1.9        | 50       | 1.6       | 60     | 1    | .70     | 1.8      | 30       | 1.9   | 0    | 2.   | .00  |
| CFM  | RPM  | BHP     | RPM     | BHP     | RPM  | BHP  | RPM  | BHP      | RPM        | BHP      | RPM       | BHP    | RPM  | BHP     | RPM      | BHP      | RPM   | BHP  | RPM  | BHP  |
|      | 2-H  | P Stand | ard Mot | or & Dr | ive  |      |      |          |            |          |           |        | 3-H  | P Overs | sized Mo | otor & I | Orive |      |      |      |
| 2720 | 896  | 1.65    | 923     | 1.80    | 950  | 1.95 | 977  | 2.11     | 1003       | 2.26     | 1029      | 2.42   | 1053 | 2.57    | 1078     | 2.74     | 1102  | 2.90 | 1124 | 3.06 |
| 3060 | 932  | 1.88    | 959     | 2.04    | 985  | 2.20 | 1010 | 2.36     | 1034       | 2.53     | 1058      | 2.70   | 1082 | 2.87    | 1105     | 3.05     | 1129  | 3.22 | 1151 | 3.39 |
| 3400 | 969  | 2.15    | 996     | 2.31    | 1020 | 2.48 | 1045 | 2.65     | 1070       | 2.83     | 1093      | 3.00   | 1116 | 3.19    | 1138     | 3.37     | _     | _    | _    | _    |
| 3740 | 1005 | 2.47    | 1032    | 2.64    | 1058 | 2.81 | 1083 | 2.99     | 1106       | 3.16     | 1129      | 3.35   | _    | _       | _        | _        | _     | _    | _    | _    |
| 4080 | 1044 | 2.83    | 1069    | 3.01    | 1095 | 3.19 | 1119 | 3.37     | _          | _        | _         | _      | _    | _       | _        | _        | _     | -    | _    | _    |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop

due to other options/accessories

2-HP Fan Motor Heat (MBH) = 2.000 x Fan BHP+.5000. 3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.4750.

<sup>1.</sup> Field Supplied Fan Sheave AK79 and Belt AX38 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### (8½ Ton) Standard Efficiency

| Table PD-48 — Belt Drive | Evaporator Fan Performance | - 8½ Ton - | - YSC102A3.A4.AW. AK | *L.M — Low and | l Medium Heat · | -Horizontal Airflow |
|--------------------------|----------------------------|------------|----------------------|----------------|-----------------|---------------------|
|                          |                            |            |                      |                |                 |                     |

|      |     |      |         |         |           |      |        | Externa | al Static | Pressure | (Inches         | of Water | r)       |          |         |         |       |      |      |      |
|------|-----|------|---------|---------|-----------|------|--------|---------|-----------|----------|-----------------|----------|----------|----------|---------|---------|-------|------|------|------|
|      | .1  | 0    | .2      | 20      | .3        | 30   | .4     | Ю       | .5        | 50       | .6              | 60       | .7       | 0        | 3.      | 0       | .9    | 0    | 1.0  | 0    |
| CFM  | RPM | BHP  | RPM     | BHP     | RPM       | BHP  | RPM    | BHP     | RPM       | BHP      | RPM             | BHP      | RPM      | BHP      | RPM     | BHP     | RPM   | BHP  | RPM  | BHP  |
|      |     | 2    | -HP Sta | ndard M |           |      | pplied |         |           |          |                 |          | 2-       | HP Sta   | ndard N | lotor & | Drive |      |      |      |
|      |     |      |         |         | atic Driv | . ,  |        |         |           |          |                 |          |          |          |         |         |       |      |      |      |
| 2720 | 607 | 0.59 | 655     | 0.69    | 697       | 0.80 | 744    | 0.93    | 791       | 1.07     | 834             | 1.21     | 871      | 1.34     | 904     | 1.46    | 933   | 1.58 | 962  | 1.70 |
| 3060 | 672 | 0.81 | 715     | 0.92    | 755       | 1.04 | 792    | 1.16    | 834       | 1.31     | 876             | 1.47     | 917      | 1.63     | 953     | 1.78    | 985   | 1.93 | 1013 | 2.06 |
| 3400 | 739 | 1.09 | 776     | 1.20    | 814       | 1.34 | 849    | 1.47    | 882       | 1.61     | 920             | 1.77     | 958      | 1.94     | 996     | 2.12    | 1030  | 2.29 | 1063 | 2.47 |
| 3740 | 807 | 1.43 | 839     | 1.54    | 875       | 1.69 | 907    | 1.83    | 938       | 1.98     | 969             | 2.13     | 1003     | 2.30     | 1037    | 2.49    | 1072  | 2.69 | 1106 | 2.88 |
| 4080 | 875 | 1.83 | 903     | 1.95    | 935       | 2.10 | 968    | 2.26    | 997       | 2.42     | 1025            | 2.58     | 1053     | 2.74     | 1084    | 2.93    | 1116  | 3.13 | 1148 | 3.34 |
|      |     |      |         |         |           |      |        |         |           |          | 3- <del>l</del> | IP Over  | sized Mo | otor & [ | Orive   |         |       |      |      |      |

#### Table PD-48 — Continued

|      |      |         |          |          |      |      | Ex   | ternal S | tatic Pres | ssure (In | ches of V | Vater) |         |         |          |       |      |      |      |      |
|------|------|---------|----------|----------|------|------|------|----------|------------|-----------|-----------|--------|---------|---------|----------|-------|------|------|------|------|
|      | 1    | .10     | 1        | .20      | 1    | .30  | 1    | 1.40     | 1.         | 50        | 1.0       | 60     | 1       | .70     | 1.       | 80    | 1.9  | 0    | 2    | .00  |
| CFM  | RPM  | BHP     | RPM      | BHP      | RPM  | BHP  | RPM  | BHP      | RPM        | BHP       | RPM       | BHP    | RPM     | BHP     | RPM      | BHP   | RPM  | BHP  | RPM  | BHP  |
|      | 2-H  | P Stand | lard Mot | tor & Dr | ive  |      |      |          |            |           |           | 3-H    | P Overs | sized M | otor & I | Orive |      |      |      |      |
| 2720 | 988  | 1.81    | 1013     | 1.93     | 1037 | 2.05 | 1061 | 2.17     | 1084       | 2.28      | 1106      | 2.40   | 1128    | 2.52    | 1150     | 2.64  | 1172 | 2.76 | 1192 | 2.88 |
| 3060 | 1040 | 2.19    | 1065     | 2.33     | 1090 | 2.46 | 1113 | 2.59     | 1136       | 2.72      | 1158      | 2.86   | 1179    | 2.99    | 1199     | 3.12  | 1220 | 3.25 | 1239 | 3.38 |
| 3400 | 1091 | 2.62    | 1117     | 2.78     | 1141 | 2.92 | 1165 | 3.07     | 1188       | 3.22      | 1210      | 3.37   | _       | _       | _        | _     | _    | _    | _    | _    |
| 3740 | 1137 | 3.07    | 1166     | 3.27     | 1193 | 3.44 | _    | _        | _          | _         | _         | _      | _       | _       | _        | _     | _    | _    | _    | _    |
| 4080 | _    | _       | _        | _        | _    | _    | _    | _        | _          | _         | _         | _      | _       | _       | _        | _     | _    | _    | _    | _    |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Notes:

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2-HP Fan Motor Heat (MBH) = 2.000 x Fan BHP+.5000. 3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.4750.

Field Supplied Fan Sheave AK79 and Belt AX38 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-49 — Belt Drive Evaporator Fan Performance — 8½ Ton — YSC102A3,A4,AW, AK \*H— High Heat —Horizontal Airflow

|      |     |      |         |         |           |          |        | Extern | al Static | Pressure | (Inches | of Water | r)   |         |         |          |       |      |      |      |
|------|-----|------|---------|---------|-----------|----------|--------|--------|-----------|----------|---------|----------|------|---------|---------|----------|-------|------|------|------|
|      | .1  | 0    | .2      | 20      | .3        | 30       | .4     | 40     | .5        | 50       | .6      | 60       | .7   | 0       | 3.      | 30       | .9    | 0    | 1.0  | )0   |
| CFM  | RPM | BHP  | RPM     | BHP     | RPM       | BHP      | RPM    | BHP    | RPM       | BHP      | RPM     | BHP      | RPM  | BHP     | RPM     | BHP      | RPM   | BHP  | RPM  | BHP  |
|      |     | 2    | -HP Sta | ndard M | lotor & I | Field Su | pplied |        |           |          |         |          | 2-   | HP Sta  | ndard N | lotor &  | Drive |      |      |      |
|      |     |      |         | Low Sta | atic Driv | re (1)   |        |        |           |          |         |          |      |         |         |          |       |      |      |      |
| 2720 | 625 | 0.63 | 671     | 0.73    | 713       | 0.84     | 762    | 0.98   | 807       | 1.12     | 849     | 1.26     | 883  | 1.38    | 915     | 1.50     | 944   | 1.62 | 971  | 1.74 |
| 3060 | 692 | 0.86 | 734     | 0.98    | 772       | 1.10     | 811    | 1.23   | 854       | 1.38     | 896     | 1.54     | 934  | 1.70    | 969     | 1.85     | 997   | 1.99 | 1026 | 2.12 |
| 3400 | 760 | 1.15 | 799     | 1.28    | 834       | 1.41     | 868    | 1.55   | 903       | 1.70     | 942     | 1.87     | 980  | 2.04    | 1016    | 2.22     | 1049  | 2.39 | 1079 | 2.56 |
| 3740 | 828 | 1.50 | 863     | 1.64    | 898       | 1.79     | 929    | 1.94   | 960       | 2.08     | 993     | 2.25     | 1027 | 2.44    | 1062    | 2.63     | 1096  | 2.82 | 1127 | 3.02 |
| 4080 | 898 | 1.92 | 929     | 2.07    | 962       | 2.23     | 992    | 2.39   | 1020      | 2.55     | 1048    | 2.71     | 1078 | 2.89    | 1110    | 3.09     | 1142  | 3.30 | _    | _    |
|      |     |      |         |         |           |          |        |        |           |          |         |          | 3-H  | P Overs | sized M | otor & l | Drive |      |      |      |

#### Table PD-49 - Continued

|      |      |         |          |          |      |      | Ex   | ternal S | tatic Pres | sure (In | ches of V | Vater) |          |      |      |      |      |      |      |      |
|------|------|---------|----------|----------|------|------|------|----------|------------|----------|-----------|--------|----------|------|------|------|------|------|------|------|
|      | 1    | .10     | 1        | .20      | 1    | 1.30 | 1    | .40      | 1.         | 50       | 1.0       | 60     | 1        | .70  | 1.   | 80   | 1.9  | 0    | 2    | .00  |
| CFM  | RPM  | BHP     | RPM      | BHP      | RPM  | BHP  | RPM  | BHP      | RPM        | BHP      | RPM       | BHP    | RPM      | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 2-H  | P Stand | lard Mot | tor & Dr | ive  |      |      |          |            | 3-HI     | P Oversi  | zed Mo | tor & Dr | ive  |      |      |      |      |      |      |
| 2720 | 998  | 1.86    | 1022     | 1.97     | 1046 | 2.09 | 1069 | 2.21     | 1092       | 2.33     | 1115      | 2.45   | 1136     | 2.56 | 1158 | 2.69 | 1179 | 2.80 | 1200 | 2.93 |
| 3060 | 1052 | 2.26    | 1077     | 2.39     | 1101 | 2.52 | 1124 | 2.66     | 1146       | 2.79     | 1167      | 2.92   | 1188     | 3.05 | 1209 | 3.18 | 1229 | 3.31 | 1249 | 3.45 |
| 3400 | 1106 | 2.71    | 1131     | 2.86     | 1155 | 3.01 | 1179 | 3.16     | 1202       | 3.31     | 1222      | 3.45   | _        | _    | _    | _    | _    | _    | _    | _    |
| 3740 | 1157 | 3.21    | 1185     | 3.39     | _    | _    | _    | _        | _          | _        | _         | _      | _        | _    | _    | _    | _    | _    | _    | _    |
| 4080 | _    | _       | _        | _        | _    | _    | _    | _        | _          | _        | _         | _      | _        | _    | _    | _    | _    | _    | _    | _    |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2-HP Fan Motor Heat (MBH) = 2.000 x Fan BHP+.5000.

<sup>3-</sup>HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.4750.

<sup>1.</sup> Field Supplied Fan Sheave AK79 and Belt AX38 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### (10 Ton) **Standard Efficiency**

| Table | PD-50 -      | – Belt | Drive E | vapora | tor Fan | Perforn | nance -  |           |            |          |           |        | •       | Low an  | nd Med   | dium H | eat —   | Down   | flow A  | irflow |
|-------|--------------|--------|---------|--------|---------|---------|----------|-----------|------------|----------|-----------|--------|---------|---------|----------|--------|---------|--------|---------|--------|
|       |              | 10     | ,       | 20     | ,       |         |          |           |            |          | e (Inches |        |         | 70      |          | 00     | _       | ^      | 4.0     | 20     |
|       |              | 10     |         | 20     |         | 30      |          | 40        |            | 50       |           | 50     |         | 70      |          | 80     | .9      |        | 1.0     |        |
| CFM   | RPM          | BHP    | RPM     | BHP    | RPM     | BHP     | RPM      | BHP       | RPM        | BHP      | RPM       | BHP    | RPM     | BHP     | RPM      | BHP    | RPM     | BHP    | RPM     | BHP    |
|       |              |        |         |        | 3-      | HP Star | ndard M  |           |            | plied    |           |        |         |         |          |        |         |        |         |        |
|       |              |        |         |        |         |         | Low Sta  | atic Driv | e (1)      |          |           |        |         |         |          |        |         |        |         |        |
| 3200  | _            | _      | _       | _      | _       | _       | 727      | 1.00      | 763        | 1.14     | 798       | 1.28   | 832     | 1.42    | 863      | 1.56   | 895     | 1.71   | 924     | 1.86   |
| 3600  | _            | _      | 717     | 1.03   | 751     | 1.15    | 784      | 1.28      | 816        | 1.42     | 848       | 1.57   | 879     | 1.73    | 910      | 1.89   | 940     | 2.05   | 968     | 2.20   |
| 4000  | 746          | 1.21   | 780     | 1.35   | 813     | 1.49    | 843      | 1.62      | 873        | 1.76     | 902       | 1.92   | 931     | 2.09    | 959      | 2.26   | 986     | 2.43   | 1014    | 2.61   |
| 4400  | 814          | 1.57   | 845     | 1.73   | 876     | 1.88    | 905      | 2.03      | 932        | 2.18     | 959       | 2.34   | 985     | 2.51    | 1012     | 2.69   | 1037    | 2.88   | 1063    | 3.07   |
| 4800  | 883          | 2.02   | 911     | 2.18   | 940     | 2.35    | 967      | 2.52      | 993        | 2.68     | 1018      | 2.84   | 1042    | 3.01    | 1067     | 3.20   | 1091    | 3.39   | 1115    | 3.59   |
|       |              |        |         |        |         |         |          |           |            |          |           | 3      | -HP Sta | ndard N | /lotor & | Drive  |         |        |         |        |
| Table | PD-50        | – Con  | tinued  |        |         |         |          |           |            |          |           |        |         |         |          | 5-HP O | versize | d Moto | r & Dri | ve     |
|       |              |        |         |        |         |         | E×       | ternal S  | tatic Pres | sure (In | ches of V | Vater) |         |         |          |        |         |        |         |        |
|       | 1            | 1.10   | •       | 1.20   | 1       | .30     |          | 1.40      |            | 50       |           | 60     | 1       | 1.70    | 1.       | .80    | 1.9     | 90     | 2.      | .00    |
| CFM   | RPM          | BHP    | RPM     | BHP    | RPM     | BHP     | RPM      | BHP       | RPM        | BHP      | RPM       | BHP    | RPM     | BHP     | RPM      | BHP    | RPM     | BHP    | RPM     | BHP    |
|       |              |        |         |        | 3-H     | P Stand | lard Mot | tor & Dr  | ive        |          |           |        |         |         |          |        |         |        |         |        |
| 3200  | 952          | 2.01   | 979     | 2.18   | 1004    | 2.34    | 1029     | 2.51      | 1053       | 2.68     | 1078      | 2.86   | 1101    | 3.04    | 1124     | 3.23   | 1146    | 3.41   | 1169    | 3.59   |
| 3600  | 996          | 2.37   | 1023    | 2.53   | 1049    | 2.71    | 1073     | 2.88      | 1097       | 3.07     | 1120      | 3.25   | 1142    | 3.43    | 1164     | 3.63   | 1186    | 3.83   | 1207    | 4.02   |
| 3000  |              | 0.70   | 4007    | 2.00   | 1092    | 3.14    | 1117     | 3.33      | 1141       | 3.51     | 1164      | 3.70   | 1186    | 3.90    | 1208     | 4.10   | 1228    | 4.30   | 1249    | 4.51   |
| 4000  | 1041         | 2.79   | 1067    | 2.96   | 1032    | 3.14    | 1117     | 5.55      | 1 11-71    | 0.01     | 110-      |        |         |         |          |        |         |        |         |        |
|       | 1041<br>1088 | 3.26   | 1113    | 3.45   | 1137    | 3.64    | 1162     | 3.84      | 1185       | 4.04     | 1207      | 4.23   | 1229    | 4.43    | 1252     | 4.65   | 1273    | 4.85   | 1293    | 5.06   |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories 3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.475. 5-HP Fan Motor Heat (MBH) = 2.950 x Fan BHP+.470.

1. Field Supplied Motor Sheave 1VM50 x 7/8", Fan Sheave AK89 and Belt AX40 required.

Trane's factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

5-HP Oversized Motor & Drive

#### Table PD-51— Belt Drive Evaporator Fan Performance — 10 Ton — YSC120A3,A4,AW, AK \*H— High Heat — Downflow Airflow

|      |     |                      |     |         |          |         |         | Extern   | al Static | Pressure | (Inches | of Wate | r)   |      |      |         |         |        |       |      |
|------|-----|----------------------|-----|---------|----------|---------|---------|----------|-----------|----------|---------|---------|------|------|------|---------|---------|--------|-------|------|
|      | .1  | 0                    | .2  | 20      | .3       | 80      | .4      | 10       | .5        | 50       | .6      | 60      | .7   | 0    | 3.   | 80      | .90     | 0      | 1.0   | 00   |
| CFM  | RPM | BHP                  | RPM | BHP     | RPM      | BHP     | RPM     | BHP      | RPM       | BHP      | RPM     | BHP     | RPM  | BHP  | RPM  | BHP     | RPM     | BHP    | RPM   | BHP  |
|      |     |                      |     |         | 3-       | HP Star | ndard M | otor & F | ield Sup  | plied    |         |         |      |      |      |         |         |        |       |      |
|      |     | Low Static Drive (1) |     |         |          |         |         |          |           |          |         |         |      |      |      |         |         |        |       |      |
| 3200 | _   | 723                  |     |         |          |         |         |          |           |          |         |         |      |      |      |         | 921     | 1.84   | 949   | 2.00 |
| 3600 | 721 | 1.04                 | 755 | 1.17    | 787      | 1.29    | 820     | 1.44     | 851       | 1.59     | 882     | 1.75    | 913  | 1.90 | 942  | 2.06    | 971     | 2.22   | 999   | 2.39 |
| 4000 | 793 | 1.40                 | 824 | 1.54    | 854      | 1.67    | 883     | 1.82     | 913       | 1.98     | 941     | 2.15    | 969  | 2.32 | 997  | 2.50    | 1024    | 2.67   | 1050  | 2.85 |
| 4400 | 866 | 1.83                 | 895 | 1.98    | 923      | 2.13    | 949     | 2.28     | 976       | 2.45     | 1003    | 2.63    | 1029 | 2.81 | 1054 | 3.00    | 1079    | 3.20   | 1104  | 3.39 |
| 4800 | 939 | 2.34                 | 967 | 2.51    | 992      | 2.67    | 1017    | 2.84     | 1042      | 3.01     | 1066    | 3.19    | 1090 | 3.38 | 1114 | 3.58    | 1138    | 3.79   | 1161  | 4.00 |
|      |     |                      | 3-H | P Stand | lard Mot | or & Dr | ive     |          |           |          |         |         |      |      | 5-H  | P Overs | sized M | otor & | Drive |      |

#### Table PD-51 - Continued

|      |      |      |         |         |          |        | Ex       | ternal S | tatic Pres | ssure (In | ches of V | Vater) |      |      |      |      |      |      |      |      |
|------|------|------|---------|---------|----------|--------|----------|----------|------------|-----------|-----------|--------|------|------|------|------|------|------|------|------|
|      | 1    | l.10 | 1       | .20     | 1        | .30    |          | .40      | 1.         |           |           | 60     | 1    | .70  | 1.8  | 80   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM  | BHP  | RPM     | BHP     | RPM      | BHP    | RPM      | BHP      | RPM        | BHP       | RPM       | BHP    | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |      | 3-H  | P Stand | ard Mot | or & Dri | ve     |          |          |            |           |           |        |      |      |      |      |      |      |      |      |
| 3200 | 976  | 2.16 | 1001    | 2.32    | 1027     | 2.49   | 1051     | 2.66     | 1075       | 2.84      | 1098      | 3.02   | 1120 | 3.19 | 1143 | 3.38 | 1166 | 3.57 | 1189 | 3.75 |
| 3600 | 1025 | 2.55 | 1052    | 2.73    | 1076     | 2.90   | 1100     | 3.09     | 1122       | 3.27      | 1145      | 3.46   | 1167 | 3.66 | 1188 | 3.85 | 1210 | 4.05 | 1230 | 4.25 |
| 4000 | 1076 | 3.03 | 1101    | 3.20    | 1126     | 3.40   | 1149     | 3.58     | 1172       | 3.77      | 1194      | 3.97   | 1216 | 4.18 | 1236 | 4.38 | 1257 | 4.59 | 1277 | 4.80 |
| 4400 | 1129 | 3.58 | 1153    | 3.77    | 1176     | 3.97   | 1200     | 4.17     | 1222       | 4.37      | 1244      | 4.57   | 1266 | 4.78 | 1286 | 4.99 | 1307 | 5.21 | 1326 | 5.43 |
| 4800 | 1184 | 4.21 | 1207    | 4.42    | 1229     | 4.63   | 1252     | 4.84     | 1274       | 5.06      | 1295      | 5.27   | 1315 | 5.48 | 1336 | 5.70 | _    | _    | _    | _    |
|      |      |      |         | 5.H     | P Oversi | zed Mo | tor & Dr | ive      |            |           |           |        |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop

due to other options/accessories

3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.475. 5-HP Fan Motor Heat (MBH) = 2.950 x Fan BHP+.470.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

<sup>1.</sup> Field Supplied Motor Sheave 1VM50 x 7/8", Fan Sheave AK89 and Belt AX40 required.



# (10 Ton) Standard Efficiency

|       | 1 0-32 - | - Den   | DIIVE L  | vapora  | tor rair | renon  | ilalice - |           | al Static  |          |           | •       | <b>.,M</b> — L | LOVV all | iu ivieu | iuiii ri | еас — | HUHZU | illai A | IIIIOW |
|-------|----------|---------|----------|---------|----------|--------|-----------|-----------|------------|----------|-----------|---------|----------------|----------|----------|----------|-------|-------|---------|--------|
|       | .1       | 0       | .2       | 20      | .3       | 30     | .4        | 10        |            | 50       |           | 50      |                | 0        | 3.       | 30       | .9    | 0     | 1.0     | 00     |
| CFM   | RPM      | BHP     | RPM      | BHP     | RPM      | BHP    | RPM       | BHP       | RPM        | BHP      | RPM       | BHP     | RPM            | BHP      | RPM      | BHP      | RPM   | BHP   | RPM     | BHP    |
|       |          |         |          |         | 3-       | HP Sta | ndard M   | otor & F  | ield Su    | plied    |           |         | 3-             | HP Sta   | ndard N  | lotor &  | Drive |       |         |        |
|       |          |         |          |         |          |        | Low Sta   | atic Driv | e (1)      |          |           |         |                |          |          |          |       |       |         |        |
| 3200  | _        | _       | 761      | 1.10    | 798      | 1.22   | 834       | 1.35      | 875        | 1.51     | 916       | 1.68    | 955            | 1.85     | 991      | 2.01     | 1022  | 2.16  | 1050    | 2.31   |
| 3600  | 799      | 1.35    | 836      | 1.48    | 872      | 1.63   | 904       | 1.77      | 936        | 1.91     | 972       | 2.09    | 1009           | 2.28     | 1045     | 2.47     | 1079  | 2.66  | 1111    | 2.84   |
| 4000  | 881      | 1.81    | 913      | 1.96    | 947      | 2.12   | 977       | 2.28      | 1006       | 2.44     | 1035      | 2.60    | 1066           | 2.78     | 1100     | 2.99     | 1133  | 3.20  | 1165    | 3.41   |
| 4400  | 963      | 2.39    | 992      | 2.54    | 1023     | 2.71   | 1052      | 2.89      | 1079       | 3.06     | 1106      | 3.23    | 1132           | 3.41     | 1160     | 3.61     | 1189  | 3.82  | 1219    | 4.05   |
| 4800  | 1045     | 3.07    | 1072     | 3.23    | 1099     | 3.41   | 1127      | 3.61      | 1154       | 3.80     | 1179      | 3.98    | 1203           | 4.17     | 1227     | 4.36     | 1251  | 4.56  | 1278    | 4.80   |
|       |          |         |          |         |          |        |           |           |            | 5-H      | P Oversi  | ized Mo | tor & Dr       | ive      |          |          |       |       |         |        |
| Table | PD-52 -  | – Con   | tinued   |         |          |        |           |           |            |          |           |         |                |          |          |          |       |       |         |        |
|       |          |         |          |         |          |        | Ex        | ternal St | tatic Pres | sure (In | ches of V | Vater)  |                |          |          |          |       |       |         |        |
|       | 1        | .10     | 1        | .20     | 1        | .30    |           | .40       |            | 50       |           | 60      | 1              | .70      | 1.8      | 30       | 1.9   | 0     | 2       | .00    |
| CFM   | RPM .    | BHP     | RPM .    | BHP     | RPM .    | BHP    | RPM .     | BHP       | RPM        | BHP      | RPM       | BHP     | RPM .          | BHP      | RPM      | BHP      | RPM   | BHP   | RPM     | BHP    |
|       | 3-H      | P Stand | lard Mot | or & Dr | ive      |        |           |           |            |          |           |         | 5-H            | P Overs  | sized Mo | otor & I | Orive |       |         |        |
| 3200  | 1077     | 2.45    | 1103     | 2.60    | 1126     | 2.73   | 1150      | 2.87      | 1171       | 3.01     | 1193      | 3.15    | 1214           | 3.29     | 1233     | 3.42     | 1253  | 3.56  | 1274    | 3.71   |
| 3600  | 1140     | 3.02    | 1165     | 3.18    | 1190     | 3.34   | 1214      | 3.51      | 1235       | 3.66     | 1257      | 3.82    | <b>1279</b>    | 3.98     | 1298     | 4.13     | 1317  | 4.28  | 1338    | 4.45   |
| 4000  | 1196     | 3.62    | 1225     | 3.83    | 1252     | 4.03   | 1276      | 4.22      | 1299       | 4.40     | 1321      | 4.58    | 1342           | 4.76     | 1363     | 4.94     | 1383  | 5.11  | 1401    | 5.28   |
| 4400  | 1250     | 4.28    | 1280     | 4.52    | 1307     | 4.75   | 1334      | 4.98      | 1359       | 5.20     | 1384      | 5.43    | 1405           | 5.62     | _        | _        | _     | _     | _       | _      |
| 4400  | 1230     | 4.20    | 1200     | 4.52    | 1007     | 4.75   | 1004      | 1.00      |            |          |           |         |                |          |          |          |       |       |         |        |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Notes:

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories 3-HP Fan Motor Heat (MBH) =  $2.900 \times \text{Fan BHP} + .475$ .

5-HP Fan Motor Heat (MBH) = 2.950 x Fan BHP+.470.

1. Field Supplied Motor Sheave 1VM50 x 7/8", Fan Sheave AK89 and Belt AX40 required. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-53 — Belt Drive Evaporator Fan Performance — 10 Ton — YSC120A3,A4,AW, AK \*H— High Heat — Horizontal Airflow

|      |      |      |      |        |          |           |         | Externa | al Static | Pressure | (Inches | of Water | r)       |        |         |         |       |      |      |      |
|------|------|------|------|--------|----------|-----------|---------|---------|-----------|----------|---------|----------|----------|--------|---------|---------|-------|------|------|------|
|      | .1   | 0    | .2   | 20     | .3       | 30        | .4      | 10      | .5        | 50       | .6      | 60       | .7       | 0      | 3.      | 30      | .9    | 0    | 1.0  | 0    |
| CFM  | RPM  | BHP  | RPM  | BHP    | RPM      | BHP       | RPM     | BHP     | RPM       | BHP      | RPM     | BHP      | RPM      | BHP    | RPM     | BHP     | RPM   | BHP  | RPM  | BHP  |
|      |      |      | 3-HP | Standa | rd Moto  | or & Fiel | d Suppl | ied     |           |          |         |          | 3-       | HP Sta | ndard N | lotor & | Drive |      |      |      |
|      |      |      |      | Lo     | w Static | Drive (1  | I)      |         |           |          |         |          |          |        |         |         |       |      |      |      |
| 3200 | 768  | 1.12 | 805  | 1.25   | 842      | 1.38      | 884     | 1.54    | 924       | 1.71     | 962     | 1.88     | 998      | 2.04   | 1028    | 2.19    | 1055  | 2.34 | 1082 | 2.48 |
| 3600 | 856  | 1.56 | 888  | 1.70   | 921      | 1.84      | 955     | 2.00    | 992       | 2.19     | 1028    | 2.37     | 1063     | 2.57   | 1096    | 2.75    | 1126  | 2.93 | 1153 | 3.10 |
| 4000 | 943  | 2.10 | 973  | 2.26   | 1002     | 2.41      | 1031    | 2.58    | 1062      | 2.76     | 1096    | 2.96     | 1129     | 3.17   | 1161    | 3.38    | 1192  | 3.59 | 1222 | 3.81 |
| 4400 | 1031 | 2.76 | 1060 | 2.94   | 1086     | 3.11      | 1113    | 3.28    | 1139      | 3.45     | 1167    | 3.66     | 1198     | 3.89   | 1228    | 4.11    | 1257  | 4.34 | 1287 | 4.58 |
| 4800 | 1119 | 3.45 | 1146 | 3.74   | 1171     | 3.93      | 1195    | 4.11    | 1219      | 4.30     | 1243    | 4.50     | 1270     | 4.72   | 1297    | 4.96    | 1325  | 5.21 | 1353 | 5.46 |
|      |      |      |      |        |          |           |         |         |           |          |         | 5-HI     | P Oversi | zed Mo | tor & D | rive    |       |      |      |      |

#### Table PD-53 - Continued

|      |      |         |          |          |      |      | Ex   | ternal S | tatic Pres | ssure (In | ches of V | Vater) |      |         |          |          |       |      |      |      |
|------|------|---------|----------|----------|------|------|------|----------|------------|-----------|-----------|--------|------|---------|----------|----------|-------|------|------|------|
|      | 1    | .10     | 1        | .20      | 1    | .30  | 1    | .40      | 1.5        | 50        | 1.0       | 60     | 1    | .70     | 1.8      | 30       | 1.9   | 0    | 2.   | .00  |
| CFM  | RPM  | BHP     | RPM      | BHP      | RPM  | BHP  | RPM  | BHP      | RPM        | BHP       | RPM       | BHP    | RPM  | BHP     | RPM      | BHP      | RPM   | BHP  | RPM  | BHP  |
|      | 3-H  | P Stand | lard Mot | tor & Dr | ive  |      |      |          |            |           |           |        | 5-H  | P Overs | sized Me | otor & I | Orive |      |      |      |
| 3200 | 1107 | 2.62    | 1131     | 2.76     | 1154 | 2.90 | 1176 | 3.04     | 1197       | 3.17      | 1218      | 3.32   | 1238 | 3.46    | 1257     | 3.59     | 1276  | 3.73 | 1296 | 3.87 |
| 3600 | 1178 | 3.27    | 1202     | 3.42     | 1224 | 3.58 | 1247 | 3.74     | 1268       | 3.90      | 1288      | 4.05   | 1308 | 4.21    | 1328     | 4.37     | 1346  | 4.52 | 1366 | 4.69 |
| 4000 | 1249 | 4.01    | 1273     | 4.19     | 1296 | 4.38 | 1318 | 4.56     | 1339       | 4.73      | 1361      | 4.91   | 1380 | 5.08    | 1399     | 5.26     | 1418  | 5.44 | _    | _    |
| 4400 | 1315 | 4.81    | 1340     | 5.03     | 1366 | 5.26 | 1389 | 5.48     | 1410       | 5.67      | _         | _      | _    | _       | _        | _        | _     | _    | _    | _    |
| 4800 | 1379 | 5.71    | _        | _        | _    | _    | _    | _        | _          | _         | _         | _      | _    | _       | _        | _        | _     | -    | _    |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.475.

5-HP Fan Motor Heat (MBH) = 2.950 x Fan BHP+.470.

<sup>1.</sup> Field Supplied Motor Sheave 1VM50 x 7/8", Fan Sheave AK89 and Belt AX40 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



(3 - 5 Tons) **High Efficiency** 

Table PD-54— Direct Drive Evaporator Fan Performance 3, 4 and 5 Ton YHC036A\*\*L,M, YHC048A\*\*L,M, YHC060A\*\*L,M - Low and Medium Heat

|      |                     |              |              |              | al Static Pres<br>ard Motor | ssure (Inche | s of Water) 8<br>— |              | ver (Bhp) <sup>1</sup><br>ed Motor <sup>2</sup> |              |
|------|---------------------|--------------|--------------|--------------|-----------------------------|--------------|--------------------|--------------|-------------------------------------------------|--------------|
|      | Unit                |              | High         | Speed        | Low                         | Speed        | High S             | Speed        | Low S <sub>I</sub>                              | peed         |
| Tons | Model No.           | CFM          | ESP          | BHP          | ESP                         | BHP          | ESP                | BHP          | ESP                                             | BHP          |
|      |                     | 960          | 0.74         | 0.36         | 0.56                        | 0.28         | 0.89               | 0.38         | 0.82                                            | 0.35         |
|      |                     | 1020         | 0.69         | 0.37         | 0.49                        | 0.28         | 0.85               | 0.39         | 0.77                                            | 0.36         |
|      |                     | 1080         | 0.65         | 0.38         | 0.44                        | 0.29         | 0.82               | 0.41         | 0.74                                            | 0.38         |
|      |                     | 1140         | 0.61         | 0.39         | 0.37                        | 0.29         | 0.77               | 0.43         | 0.69                                            | 0.40         |
| 3    | YHC036A**L,M        | 1200         | 0.55         | 0.40         | 0.29                        | 0.30         | 0.74               | 0.44         | 0.65                                            | 0.41         |
| 3    | Horizontal Airflow  | 1260         | 0.51         | 0.41         | 0.19                        | 0.30         | 0.70               | 0.45         | 0.61                                            | 0.42         |
|      |                     | 1320         | 0.46         | 0.42         | 0.10                        | 0.31         | 0.67               | 0.47         | 0.57                                            | 0.44         |
|      |                     | 1380         | 0.41         | 0.43         | 0.00                        | 0.31         | 0.64               | 0.48         | 0.52                                            | 0.45         |
|      |                     | 1440         | 0.34         | 0.44         | _                           | _            | 0.57               | 0.51         | 0.45                                            | 0.48         |
|      |                     | 1280         | 0.85         | 0.53         | 0.74                        | 0.47         | 1.11               | 0.67         | 0.90                                            | 0.56         |
|      |                     | 1360         | 0.78         | 0.54         | 0.66                        | 0.47         | 1.06               | 0.68         | 0.85                                            | 0.58         |
|      |                     | 1440         | 0.71         | 0.54         | 0.60                        | 0.48         | 1.01               | 0.70         | 0.80                                            | 0.60         |
|      |                     | 1520         | 0.64         | 0.55         | 0.51                        | 0.48         | 0.96               | 0.73         | 0.72                                            | 0.63         |
| 1    | YHC048A**L,M        | 1600         | 0.55         | 0.55         | 0.39                        | 0.49         | 0.89               | 0.75         | 0.63                                            | 0.64         |
| 4    | Horizontal Airflow  | 1680         | 0.46         | 0.56         | 0.27                        | 0.49         | 0.84               | 0.78         | 0.54                                            | 0.66         |
|      |                     | 1760         | 0.37         | 0.56         | 0.12                        | 0.50         | 0.79               | 0.82         | 0.37                                            | 0.68         |
|      |                     | 1840         | 0.26         | 0.57         | 0.00                        | 0.50         | 0.70               | 0.83         | 0.24                                            | 0.70         |
|      |                     | 1920         | 0.16         | 0.57         | _                           | _            | 0.62               | 0.85         | 0.13                                            | 0.73         |
|      |                     | 1600         | 0.99         | 0.78         | 0.89                        | 0.64         | 1.32               | 0.90         | 1.18                                            | 0.85         |
|      |                     | 1700         | 0.92         | 0.80         | 0.76                        | 0.65         | 1.24               | 0.94         | 1.08                                            | 0.89         |
|      |                     | 1800         | 0.32         | 0.85         | 0.75                        | 0.65         | 1.16               | 0.98         | 0.97                                            | 0.03         |
|      |                     | 1900         | 0.77         | 0.88         | 0.56                        | 0.65         | 1.15               | 1.02         | 0.87                                            | 0.94         |
|      | YHC060A**L,M        | 2000         | 0.77         | 0.90         | 0.30                        | 0.66         | 0.98               | 1.02         | 0.87                                            | 0.94         |
| 5    | Horizontal Airflow  |              |              | 0.90         |                             |              |                    |              |                                                 |              |
|      | Horizoniai Airiiow  | 2100<br>2200 | 0.59<br>0.46 | 0.93         | 0.25<br>0.10                | 0.66<br>0.67 | 0.89<br>0.78       | 1.10<br>1.12 | 0.63<br>0.42                                    | 0.96<br>0.96 |
|      |                     | 2300         | 0.46         | 0.94         |                             |              | 0.78               | 1.12         | 0.42                                            | 0.96         |
|      |                     | 2400         | 0.37         | 0.95         | _                           | _            | 0.55               | 1.17         | 0.18                                            | 0.97         |
|      |                     | 960          | 0.74         | 0.36         | 0.56                        | 0.28         | 0.89               | 0.38         | 0.82                                            | 0.35         |
|      |                     | 1020         | 0.74         | 0.30         | 0.36                        | 0.28         | 0.85               | 0.39         | 0.82                                            | 0.36         |
|      |                     | 1020         | 0.65         | 0.37         | 0.43                        | 0.28         | 0.83               | 0.33         | 0.77                                            | 0.38         |
|      |                     | 1140         | 0.65         | 0.39         | 0.44                        | 0.29         | 0.82               | 0.41         | 0.69                                            | 0.38         |
|      | YHC036A**L.M        | 1200         | 0.55         | 0.39         | 0.37                        | 0.29         | 0.77               | 0.43         | 0.65                                            | 0.40         |
| 3    | Downflow Airflow    |              | 0.55         | 0.40         | 0.29                        | 0.30         | 0.74               | 0.44         |                                                 | 0.41         |
|      | DOWNIIOW AIRIOW     | 1260         |              |              |                             |              |                    |              | 0.61                                            |              |
|      |                     | 1320<br>1380 | 0.46<br>0.41 | 0.42<br>0.43 | 0.10<br>0.00                | 0.31<br>0.31 | 0.67<br>0.64       | 0.47<br>0.48 | 0.57<br>0.52                                    | 0.44<br>0.45 |
|      |                     | 1380         | 0.41         | 0.43         | 0.00<br>—                   | 0.31<br>—    | 0.64               | 0.48<br>0.51 | 0.52                                            | 0.45<br>0.48 |
|      |                     |              | 0.34         | 0.44         | 0.79                        | 0.47         | 1.16               | 0.67         |                                                 |              |
|      |                     | 1280         |              |              |                             |              |                    |              | 0.95                                            | 0.56         |
|      |                     | 1360         | 0.83         | 0.54         | 0.71                        | 0.47         | 1.11               | 0.68         | 0.90                                            | 0.58         |
|      |                     | 1440         | 0.76         | 0.54         | 0.65                        | 0.48         | 1.06               | 0.70         | 0.85                                            | 0.60         |
|      | VI ICO40 4 ** 1 * 4 | 1520         | 0.69         | 0.55         | 0.56                        | 0.48         | 1.01               | 0.73         | 0.77                                            | 0.63         |
| 4    | YHC048A**L,M        | 1600         | 0.60         | 0.55         | 0.44                        | 0.49         | 0.94               | 0.75         | 0.68                                            | 0.64         |
|      | Downflow Airflow    | 1680         | 0.51         | 0.56         | 0.32                        | 0.49         | 0.89               | 0.78         | 0.59                                            | 0.66         |
|      |                     | 1760         | 0.42         | 0.56         | 0.17                        | 0.50         | 0.84               | 0.82         | 0.42                                            | 0.68         |
|      |                     | 1840         | 0.31         | 0.57         | 0.05                        | 0.50         | 0.75               | 0.83         | 0.29                                            | 0.70         |
|      |                     | 1920         | 0.21         | 0.57         | -                           |              | 0.67               | 0.85         |                                                 | _            |
|      |                     | 1600         | 1.04         | 0.78         | 0.94                        | 0.64         | 1.37               | 0.90         | 1.23                                            | 0.85         |
|      |                     | 1700         | 0.97         | 0.80         | 0.81                        | 0.65         | 1.29               | 0.94         | 1.13                                            | 0.89         |
|      |                     | 1800         | 0.92         | 0.85         | 0.70                        | 0.65         | 1.21               | 0.98         | 1.02                                            | 0.91         |
|      |                     | 1900         | 0.82         | 0.88         | 0.61                        | 0.65         | 1.20               | 1.02         | 0.92                                            | 0.94         |
| 5    | YHC060A**L,M        | 2000         | 0.74         | 0.90         | 0.45                        | 0.66         | 1.03               | 1.05         | 0.81                                            | 0.95         |
|      | Downflow Airflow    | 2100         | 0.64         | 0.93         | 0.30                        | 0.66         | 0.94               | 1.10         | 0.68                                            | 0.96         |
|      |                     | 2200         | 0.51         | 0.94         | 0.15                        | 0.67         | 0.83               | 1.12         | 0.47                                            | 0.96         |
|      |                     | 2300         | 0.42         | 0.95         | _                           | _            | 0.73               | 1.17         | 0.23                                            | 0.97         |
|      |                     | 2400         | 0.31         | 0.97         | _                           | _            | 0.60               | 1.20         | _                                               | _            |

Fan motor heat (MBH) =  $3.72 \times \text{Fan Bhp} + .24$ .

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Notes:

1. Data includes pressure drop due to wet coil and filters.



(3 - 5 Tons) (3 - 5 Tons) High Efficiency

Table PD-55 - Direct Drive Evaporator Fan Performance 3, 4 and 5 Ton YHC036A\*\*H, YHC048A\*\*H, YHC060A\*\*H - High Heat

|      |                    |              |              |              | al Static Pres<br>ard Motor | ssure (Inches | s of Water) 8 |              | ver (Bhp) <sup>1</sup><br>red Motor <sup>2</sup> |              |
|------|--------------------|--------------|--------------|--------------|-----------------------------|---------------|---------------|--------------|--------------------------------------------------|--------------|
|      | Unit               |              | High         | Speed        | Low                         | Speed         | High 9        | Speed        | Low S                                            | peed         |
| Tons | Model No.          | CFM          | ESP          | BHP          | ESP                         | BHP           | ESP           | BHP          | ESP                                              | BHP          |
|      |                    | 960          | 0.74         | 0.36         | 0.56                        | 0.28          | 0.89          | 0.38         | 0.82                                             | 0.35         |
|      |                    | 1020         | 0.69         | 0.37         | 0.49                        | 0.28          | 0.85          | 0.39         | 0.77                                             | 0.36         |
|      |                    | 1080         | 0.65         | 0.38         | 0.44                        | 0.29          | 0.82          | 0.41         | 0.74                                             | 0.38         |
|      |                    | 1140         | 0.61         | 0.39         | 0.37                        | 0.29          | 0.77          | 0.43         | 0.69                                             | 0.40         |
| 3    | YHC036A**H         | 1200         | 0.55         | 0.40         | 0.29                        | 0.30          | 0.74          | 0.44         | 0.65                                             | 0.41         |
|      | Horizontal Airflow | 1260         | 0.51         | 0.41         | 0.19                        | 0.30          | 0.70          | 0.45         | 0.61                                             | 0.42         |
|      |                    | 1320<br>1380 | 0.46         | 0.42         | 0.10<br>0.00                | 0.31          | 0.67          | 0.47         | 0.57<br>0.52                                     | 0.44         |
|      |                    | 1440         | 0.41<br>0.34 | 0.43<br>0.44 | U.UU                        | 0.31<br>—     | 0.64<br>0.57  | 0.48<br>0.51 | 0.52                                             | 0.45<br>0.48 |
|      |                    | 1280         | 0.85         | 0.53         | 0.74                        | 0.47          | 1.11          | 0.67         | 0.45                                             | 0.48         |
|      |                    | 1360         | 0.85         | 0.53         | 0.74                        | 0.47          | 1.11          | 0.67         | 0.90                                             | 0.58         |
|      |                    | 1440         | 0.78         | 0.54         | 0.60                        | 0.48          | 1.00          | 0.70         | 0.80                                             | 0.60         |
|      |                    | 1520         | 0.64         | 0.55         | 0.51                        | 0.48          | 0.96          | 0.73         | 0.72                                             | 0.63         |
| _    | YHC048A**H         | 1600         | 0.55         | 0.55         | 0.39                        | 0.49          | 0.89          | 0.75         | 0.63                                             | 0.64         |
| 4    | Horizontal Airflow | 1680         | 0.46         | 0.56         | 0.27                        | 0.49          | 0.84          | 0.78         | 0.54                                             | 0.66         |
|      |                    | 1760         | 0.37         | 0.56         | 0.12                        | 0.50          | 0.79          | 0.82         | 0.37                                             | 0.68         |
|      |                    | 1840         | 0.26         | 0.57         | 0.00                        | 0.50          | 0.70          | 0.83         | 0.24                                             | 0.70         |
|      |                    | 1920         | 0.16         | 0.57         | _                           | _             | 0.62          | 0.85         | 0.13                                             | 0.73         |
|      |                    | 1600         | 0.94         | 0.78         | 0.84                        | 0.64          | 1.27          | 0.90         | 1.13                                             | 0.85         |
|      |                    | 1700         | 0.87         | 0.80         | 0.71                        | 0.65          | 1.19          | 0.94         | 1.03                                             | 0.89         |
|      |                    | 1800         | 0.82         | 0.85         | 0.60                        | 0.65          | 1.11          | 0.98         | 0.92                                             | 0.91         |
|      |                    | 1900         | 0.72         | 0.88         | 0.51                        | 0.65          | 1.10          | 1.02         | 0.82                                             | 0.94         |
| 5    | YHC060A**H         | 2000         | 0.64         | 0.90         | 0.35                        | 0.66          | 0.93          | 1.05         | 0.71                                             | 0.95         |
|      | Horizontal Airflow | 2100         | 0.54         | 0.93         | 0.20                        | 0.66          | 0.84          | 1.10         | 0.58                                             | 0.96         |
|      |                    | 2200         | 0.41         | 0.94         | 0.05                        | 0.67          | 0.73          | 1.12         | 0.37                                             | 0.96         |
|      |                    | 2300         | 0.32         | 0.95         | _                           | _             | 0.63          | 1.17         | 0.13                                             | 0.97         |
|      |                    | 2400         | 0.21         | 0.97         |                             |               | 0.50          | 1.20         |                                                  |              |
|      |                    | 960          | 0.74         | 0.36         | 0.56                        | 0.28          | 0.89          | 0.38         | 0.82                                             | 0.35         |
|      |                    | 1020         | 0.69         | 0.37         | 0.49                        | 0.28          | 0.85          | 0.39         | 0.77                                             | 0.36         |
|      |                    | 1080         | 0.65         | 0.38         | 0.44                        | 0.29          | 0.82          | 0.41         | 0.74                                             | 0.38         |
|      | YHC036A**H         | 1140<br>1200 | 0.61<br>0.55 | 0.39<br>0.40 | 0.37<br>0.29                | 0.29<br>0.30  | 0.77<br>0.74  | 0.43<br>0.44 | 0.69<br>0.65                                     | 0.40<br>0.41 |
| 3    | Downflow Airflow   | 1260         | 0.55         | 0.40         | 0.29                        | 0.30          | 0.74          | 0.45         | 0.65                                             | 0.41         |
|      | DOWNIIOW AIRIOW    | 1320         | 0.46         | 0.41         | 0.10                        | 0.31          | 0.67          | 0.43         | 0.57                                             | 0.42         |
|      |                    | 1380         | 0.41         | 0.43         | 0.00                        | 0.31          | 0.64          | 0.48         | 0.52                                             | 0.45         |
|      |                    | 1440         | 0.34         | 0.44         | _                           | _             | 0.57          | 0.51         | -                                                | _            |
|      |                    | 1280         | 0.90         | 0.53         | 0.79                        | 0.47          | 1.16          | 0.67         | 0.95                                             | 0.56         |
|      |                    | 1360         | 0.83         | 0.54         | 0.71                        | 0.47          | 1.11          | 0.68         | 0.90                                             | 0.58         |
|      |                    | 1440         | 0.76         | 0.54         | 0.65                        | 0.48          | 1.06          | 0.70         | 0.85                                             | 0.60         |
|      |                    | 1520         | 0.69         | 0.55         | 0.56                        | 0.48          | 1.01          | 0.73         | 0.77                                             | 0.63         |
| 4    | YHC048A**H         | 1600         | 0.60         | 0.55         | 0.44                        | 0.49          | 0.94          | 0.75         | 0.68                                             | 0.64         |
| +    | Downflow Airflow   | 1680         | 0.51         | 0.56         | 0.32                        | 0.49          | 0.89          | 0.78         | 0.59                                             | 0.66         |
|      |                    | 1760         | 0.42         | 0.56         | 0.17                        | 0.50          | 0.84          | 0.82         | 0.42                                             | 0.68         |
|      |                    | 1840         | 0.31         | 0.57         | 0.05                        | 0.50          | 0.75          | 0.83         | 0.29                                             | 0.70         |
|      |                    | 1920         | 0.21         | 0.57         | _                           | _             | 0.67          | 0.85         | _                                                | _            |
|      |                    | 1600         | 0.99         | 0.78         | 0.89                        | 0.64          | 1.32          | 0.90         | 1.18                                             | 0.85         |
|      |                    | 1700         | 0.92         | 0.80         | 0.76                        | 0.65          | 1.24          | 0.94         | 1.08                                             | 0.89         |
|      |                    | 1800         | 0.87         | 0.85         | 0.65                        | 0.65          | 1.16          | 0.98         | 0.97                                             | 0.91         |
|      | \#10000 4 × × 1 1  | 1900         | 0.77         | 0.88         | 0.56                        | 0.65          | 1.15          | 1.02         | 0.87                                             | 0.94         |
| 5    | YHC060A**H         | 2000         | 0.69         | 0.90         | 0.40                        | 0.66          | 0.98          | 1.05         | 0.76                                             | 0.95         |
|      | Downflow Airflow   | 2100         | 0.59         | 0.93         | 0.25                        | 0.66          | 0.89          | 1.10         | 0.63                                             | 0.96         |
|      |                    | 2200<br>2300 | 0.46<br>0.37 | 0.94<br>0.95 | 0.10<br>0.00                | 0.67          | 0.78          | 1.12         | 0.42<br>0.18                                     | 0.96<br>0.97 |
|      |                    | 7400         | 0.37         | บ ฯ๖         | 0.00                        | 0.68          | 0.68          | 1.17         | UTX                                              | 0.97         |

Fan motor heat (MBH) = 3.72 x Fan Bhp + .24.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Notes:

Data includes pressure drop due to wet coil and filters.

Ton oversized motor peformance is with 12 x 11 FC Centrifugal blower fan.



### (3 Ton) High Efficiency

Table PD-56 — Evaporator Fan Performance — 3 Ton — YHC036A3,A4,AW\*L, M — Low and Medium Heat —Downflow Airflow

|      |                                      |      |     |      |     |      |     | Extern | al Static | Pressure | (Inches | of Wate | r)        |         |         |       |      |      |      |      |
|------|--------------------------------------|------|-----|------|-----|------|-----|--------|-----------|----------|---------|---------|-----------|---------|---------|-------|------|------|------|------|
|      | .1                                   | 0    | .2  | 20   | .3  | 30   | .4  | 10     | .5        | 50       | .6      | 60      | .7        | 70      | 3.      | 30    | .9   | 0    | 1.0  | 00   |
| CFM  | RPM                                  | BHP  | RPM | BHP  | RPM | BHP  | RPM | BHP    | RPM       | BHP      | RPM     | BHP     | RPM       | BHP     | RPM     | BHP   | RPM  | BHP  | RPM  | BHP  |
|      | 1-HP Standard Motor & Field Supplied |      |     |      |     |      |     |        |           |          |         | 1       | I-HP Star | ndard N | lotor & | Drive |      |      |      |      |
|      | Low Static Drive (1)                 |      |     |      |     |      |     |        |           |          |         |         |           |         |         |       |      |      |      |      |
| 960  | _                                    | _    | 570 | 0.14 | 634 | 0.18 | 690 | 0.22   | 741       | 0.27     | 791     | 0.31    | 836       | 0.36    | 879     | 0.41  | 922  | 0.46 | 961  | 0.52 |
| 1080 | 537                                  | 0.14 | 606 | 0.18 | 669 | 0.23 | 724 | 0.27   | 773       | 0.32     | 819     | 0.36    | 864       | 0.41    | 906     | 0.47  | 946  | 0.52 | 985  | 0.58 |
| 1200 | 581                                  | 0.18 | 645 | 0.22 | 705 | 0.27 | 759 | 0.33   | 807       | 0.38     | 851     | 0.42    | 894       | 0.48    | 935     | 0.53  | 973  | 0.59 | 1011 | 0.65 |
| 1320 | 627                                  | 0.23 | 686 | 0.28 | 742 | 0.33 | 795 | 0.39   | 842       | 0.44     | 885     | 0.50    | 927       | 0.55    | 966     | 0.61  | 1003 | 0.67 | 1040 | 0.73 |
| 1440 | 673                                  | 0.29 | 728 | 0.34 | 780 | 0.39 | 831 | 0.45   | 878       | 0.52     | 921     | 0.58    | 960       | 0.64    | 998     | 0.69  | 1034 | 0.76 | 1070 | 0.82 |

#### Table PD-56 - Continued

|      |      |      | Exte   | ernal Sta | tic Press | ure (Incl | nes of Wa   | ater)    |          |         |
|------|------|------|--------|-----------|-----------|-----------|-------------|----------|----------|---------|
|      | 1.1  | 10   | 1.2    | 20        | 1.3       | 30        | 1.4         | 40       | 1.5      | 50      |
| CFM  | RPM  | BHP  | RPM    | BHP       | RPM       | BHP       | RPM         | BHP      | RPM      | BHP     |
|      |      |      | 1-HI   | P Stand   | ard Mot   | or & Dri  | ive         |          |          |         |
| 960  | 1000 | 0.57 | 1037   | 0.63      | 1072      | 0.69      | 1106        | 0.75     | 1139     | 0.81    |
| 1080 | 1022 | 0.64 | 1058   | 0.70      | 1093      | 0.76      | 1127        | 0.82     | 1161     | 0.89    |
| 1200 | 1047 | 0.71 | 1083   | 0.77      | 1117      | 0.83      | 1150        | 0.90     | 1183     | 0.97    |
| 1320 | 1075 | 0.79 | 1108   | 0.85      | 1141      | 0.92      | <b>1174</b> | 0.99     | 1206     | 1.06    |
| 1440 | 1104 | 0.88 | 1137   | 0.95      | 1170      | 1.02      | 1201        | 1.09     | 1231     | 1.16    |
|      |      |      | 1-HP S | tandar    | d Motor   | & Field   | Supplie     | d High S | tatic Dr | ive (2) |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

- Field Supplied Fan Sheave AK69 required. Field Supplied Belt may be necessary.
- necessary.

  2. Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-57— Belt Drive Evaporator Fan Performance — 3 Ton — YHC036A3,A4,AW\*H — High Heat —Downflow Airflow

|      |     |                                                             |     |      |         |      |       |        |           | ,        | ,       |          |         |         |       |      |      |      |      |      |
|------|-----|-------------------------------------------------------------|-----|------|---------|------|-------|--------|-----------|----------|---------|----------|---------|---------|-------|------|------|------|------|------|
|      |     |                                                             |     |      |         |      |       | Extern | al Static | Pressure | (Inches | of Wate  | r)      |         |       |      |      |      |      |      |
|      | .1  | 10                                                          | .2  | 20   | .3      | 30   | .4    | 40     | .5        | 50       | .6      | 60       | .7      | 70      | 3.    | 30   | .9   | 0    | 1.0  | )0   |
| CFM  | RPM | BHP                                                         | RPM | BHP  | RPM     | BHP  | RPM   | BHP    | RPM       | BHP      | RPM     | BHP      | RPM     | BHP     | RPM   | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |     | 1-HP Standard Motor & Field Supplie<br>Low Static Drive (1) |     |      |         |      | olied |        |           |          | 1       | -HP Star | ndard N | lotor & | Drive |      |      |      |      |      |
|      |     | Low Static Drive                                            |     |      | Drive ( | 1)   |       |        |           |          |         |          |         |         |       |      |      |      |      |      |
| 960  | 503 | 0.11                                                        | 578 | 0.15 | 641     | 0.19 | 696   | 0.23   | 747       | 0.27     | 796     | 0.32     | 841     | 0.36    | 884   | 0.42 | 926  | 0.47 | 966  | 0.52 |
| 1080 | 548 | 0.15                                                        | 616 | 0.19 | 678     | 0.23 | 731   | 0.28   | 780       | 0.32     | 826     | 0.37     | 870     | 0.42    | 912   | 0.47 | 952  | 0.53 | 991  | 0.59 |
| 1200 | 593 | 0.19                                                        | 657 | 0.23 | 716     | 0.28 | 768   | 0.33   | 815       | 0.38     | 859     | 0.43     | 901     | 0.49    | 942   | 0.54 | 980  | 0.60 | 1017 | 0.66 |
| 1320 | 640 | 0.24                                                        | 698 | 0.29 | 754     | 0.34 | 806   | 0.40   | 852       | 0.45     | 895     | 0.51     | 935     | 0.56    | 974   | 0.62 | 1012 | 0.68 | 1048 | 0.74 |
| 1440 | 688 | 0.31                                                        | 742 | 0.35 | 794     | 0.41 | 844   | 0.47   | 890       | 0.53     | 931     | 0.59     | 970     | 0.65    | 1009  | 0.71 | 1045 | 0.77 | 1080 | 0.84 |

#### Table PD-57 — Continued

|      |      |      | Ex   | ternal St | tatic Pres | sure (In | ches of V | /ater)   |          |           |
|------|------|------|------|-----------|------------|----------|-----------|----------|----------|-----------|
|      | 1.1  | 10   | 1.2  | 20        | 1.3        | 30       | 1.4       | 40       | 1.5      | 50        |
| CFM  | RPM  | BHP  | RPM  | BHP       | RPM        | BHP      | RPM       | BHP      | RPM      | BHP       |
|      |      |      | 1-HI | P Stand   | ard Mot    | or & Dr  | ive       |          |          |           |
| 960  | 1005 | 0.58 | 1041 | 0.64      | 1076       | 0.70     | 1110      | 0.76     | 1142     | 0.82      |
| 1080 | 1029 | 0.65 | 1064 | 0.71      | 1099       | 0.77     | 1133      | 0.83     | 1166     | 0.90      |
| 1200 | 1053 | 0.72 | 1089 | 0.78      | 1123       | 0.85     | 1156      | 0.91     | 1189     | 0.98      |
| 1320 | 1082 | 0.80 | 1116 | 0.87      | 1150       | 0.93     | 1182      | 1.00     | 1214     | 1.07      |
| 1440 | 1113 | 0.90 | 1146 | 0.97      | 1178       | 1.04     | 1209      | 1.11     | 1240     | 1.18      |
|      |      |      | 1-H  | P Stand   | ard Mot    | or & Fie | eld Supp  | lied Hig | h Static | Drive (2) |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

Fan Motor Heat (MBH) =  $2.829 \times \text{Fan BHP} + .4024$ .

- Field Supplied Fan Sheave AK69 required. Field Supplied Belt may be necessary.
- Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### (3 Ton) High Efficiency

Table PD-58 — Evaporator Fan Performance — 3 Ton — YHC036A3,A4,AW\*L, M — Low and Medium Heat — Horizontal Airflow

|        |           |         |           |          |     |      |     | Externa | al Static | Pressure | (Inches | of Wate | r)        |         |         |       |      |      |        |      |
|--------|-----------|---------|-----------|----------|-----|------|-----|---------|-----------|----------|---------|---------|-----------|---------|---------|-------|------|------|--------|------|
|        | .1        | 0       | .2        | 20       | .3  | 30   | .4  | Ю       |           | 50       | .6      | 60      | .7        | 0       | 3.      | 30    | .9   | 0    | 1.0    | 00   |
| CFM    | RPM       | BHP     | RPM       | BHP      | RPM | BHP  | RPM | BHP     | RPM       | BHP      | RPM     | BHP     | RPM       | BHP     | RPM     | BHP   | RPM  | BHP  | RPM    | BHP  |
| 1-HP S | tandard   | Motor 8 | & Field S | Supplied | ı   |      |     |         |           |          |         | 1       | I-HP Star | ndard N | lotor & | Drive |      |      |        |      |
| Low St | tatic Dri | ve (1)  |           |          |     |      |     |         |           |          |         |         |           |         |         |       |      |      |        |      |
| 960    | 552       | 0.13    | 631       | 0.17     | 699 | 0.22 | 759 | 0.27    | 811       | 0.33     | 858     | 0.38    | 902       | 0.44    | 943     | 0.49  | 980  | 0.54 | 1017   | 0.60 |
| 1080   | 598       | 0.17    | 675       | 0.22     | 739 | 0.27 | 798 | 0.33    | 850       | 0.38     | 898     | 0.44    | 941       | 0.50    | 982     | 0.57  | 1020 | 0.63 | 1056   | 0.69 |
| 1200   | 645       | 0.22    | 720       | 0.28     | 781 | 0.33 | 837 | 0.39    | 889       | 0.45     | 937     | 0.51    | 981       | 0.58    | 1021    | 0.65  | 1059 | 0.72 | 1095   | 0.79 |
| 1320   | 693       | 0.28    | 766       | 0.34     | 825 | 0.40 | 879 | 0.47    | 929       | 0.53     | 976     | 0.60    | 1020      | 0.67    | 1061    | 0.74  | 1099 | 0.81 | 1135   | 0.89 |
| 1440   | 743       | 0.35    | 811       | 0.42     | 871 | 0.49 | 922 | 0.55    | 970       | 0.62     | 1016    | 0.69    | 1059      | 0.77    | 1099    | 0.84  | 1138 | 0.92 | , 1174 | 1.00 |

#### Table PD-58 - Continued

|       |         |        | Exte      | ernal Sta | atic Press | ure (Incl | nes of Wa | ater) |      |      |
|-------|---------|--------|-----------|-----------|------------|-----------|-----------|-------|------|------|
|       | 1.1     | 10     | 1.:       | 20        | 1.3        | 30        | 1.4       | 40    | 1.   | 50   |
| CFM   | RPM     | BHP    | RPM       | BHP       | RPM        | BHP       | RPM       | BHP   | RPM  | BHP  |
| 1-    | HP Stan | dard N | lotor & I | Orive     |            |           |           |       |      |      |
| 960   | 1052    | 0.65   | 1086      | 0.71      | 1120       | 0.77      | 1152      | 0.83  | 1185 | 0.90 |
| 1080  | 1090    | 0.75   | 1123      | 0.81      | 1154       | 0.87      | 1185      | 0.93  | 1215 | 0.99 |
| 1200  | 1130    | 0.86   | 1162      | 0.92      | 1193       | 0.99      | 1224      | 1.05  | 1253 | 1.12 |
| 1320  | 1169    | 0.96   | 1203      | 1.04      | 1233       | 1.12      | 1263      | 1.19  | 1292 | 1.26 |
| 1440  | 1208    | 1.08   | 1241      | 1.16      | 1273       | 1.25      | 1303      | 1.33  | 1332 | 1.41 |
| 1-HPS | tandard | Motor  | & Field S | Supplie   | d High S   | tatic Dr  | ive (2)   |       |      |      |

### 1-HP Standard Motor & Field Supplied High Static Drive (2)

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.
Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

- 1. Field Supplied Fan Sheave AK69 required. Field Supplied Belt may be necessary.
- 2. Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-59 — Belt Drive Evaporator Fan Performance — 3 Ton — YHC036A3,A4,AW\*H — High Heat — Horizontal Airflow

|      |                                                             |         |     |      |     |      |     | Extern | al Static | Pressure | (Inches | of Wate | r)       |         |         |       |      |      |      |      |
|------|-------------------------------------------------------------|---------|-----|------|-----|------|-----|--------|-----------|----------|---------|---------|----------|---------|---------|-------|------|------|------|------|
|      | .1                                                          | 0       | .2  | 20   | .3  | 30   | .4  | 10     | .5        | 50       | .6      | 60      | .7       | 70      | 3.      | 80    | .9   | 0    | 1.0  | 00   |
| CFM  | RPM                                                         | BHP     | RPM | BHP  | RPM | BHP  | RPM | BHP    | RPM       | BHP      | RPM     | BHP     | RPM      | BHP     | RPM     | BHP   | RPM  | BHP  | RPM  | BHP  |
|      | -HP Standard Motor & Field Supplied<br>Low Static Drive (1) |         |     |      |     |      |     |        |           |          |         | 1       | -HP Star | ndard N | lotor & | Drive |      |      |      |      |
| Lov  | w Static                                                    | Drive ( | 1)  |      |     |      |     |        |           |          |         |         |          |         |         |       |      |      |      |      |
| 960  | 563                                                         | 0.13    | 639 | 0.18 | 707 | 0.23 | 766 | 0.28   | 817       | 0.33     | 864     | 0.39    | 908      | 0.44    | 947     | 0.49  | 985  | 0.55 | 1020 | 0.60 |
| 1080 | 611                                                         | 0.18    | 685 | 0.23 | 748 | 0.28 | 806 | 0.34   | 858       | 0.39     | 905     | 0.45    | 947      | 0.51    | 988     | 0.58  | 1026 | 0.64 | 1061 | 0.70 |
| 1200 | 660                                                         | 0.23    | 732 | 0.29 | 792 | 0.34 | 847 | 0.40   | 899       | 0.46     | 945     | 0.53    | 989      | 0.59    | 1029    | 0.66  | 1066 | 0.73 | 1102 | 0.80 |
| 1320 | 711                                                         | 0.29    | 781 | 0.36 | 838 | 0.42 | 890 | 0.48   | 940       | 0.55     | 986     | 0.61    | 1029     | 0.68    | 1070    | 0.76  | 1106 | 0.83 | 1142 | 0.90 |
| 1440 | 762                                                         | 0.37    | 829 | 0.44 | 885 | 0.51 | 935 | 0.57   | 983       | 0.64     | 1028    | 0.71    | 1070     | 0.79    | 1111    | 0.86  | 1148 | 0.94 | 1183 | 1.02 |

#### Table PD-59 - Continued

|      |        |          | Exte | ernal Sta | tic Press | ure (Inch | nes of Wa | ater)    |          |      |
|------|--------|----------|------|-----------|-----------|-----------|-----------|----------|----------|------|
|      | 1.1    | 10       | 1.3  | 20        | 1.3       | 30        | 1.4       | 40       | 1.9      | 50   |
| CFM  | RPM    | BHP      | RPM  | BHP       | RPM       | BHP       | RPM       | BHP      | RPM      | BHP  |
|      | 1-HP S | tandard  | i    |           |           | 1-HP S    | Standar   | d Moto   | & Field  |      |
|      | Motor  | r & Driv | re   |           |           | Suppl     | ied High  | 1 Static | Drive (2 | )    |
| 960  | 1056   | 0.66     | 1090 | 0.71      | 1123      | 0.78      | 1156      | 0.84     | 1188     | 0.90 |
| 1080 | 1096   | 0.76     | 1128 | 0.82      | 1159      | 0.88      | 1190      | 0.94     | 1220     | 1.00 |
| 1200 | 1135   | 0.87     | 1168 | 0.93      | 1199      | 1.00      | 1229      | 1.07     | 1259     | 1.13 |
| 1320 | 1177   | 0.98     | 1209 | 1.06      | 1241      | 1.14      | 1270      | 1.21     | 1299     | 1.28 |
| 1440 | 1217   | 1 10     | 1250 | 1 12      | 1281      | 1 27      | 1211      | 1 35     | 1339     | 1.43 |

#### 1-HP Standard Motor & Field Supplied High Static Drive (2)

For Standard Evaporator Fan Speed (RPM), reference Table PD-85.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-88 to determine additional static pressure drop due to other options/accessories

Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

- Field Supplied Fan Sheave AK69 required. Field Supplied Belt may be necessary.
- Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### (4 Ton) High Efficiency

Table PD-60 — Belt Drive Evaporator Fan Performance — 4 Ton — YHC048A3,A4,AW\*L,M — Low and Medium Heat — Downflow Airflow

|      |                      |      |        |         |       |         |         |      | al Static | Pressure | (Inches | of Wate | r)       |         |         |       |      |      |      |      |
|------|----------------------|------|--------|---------|-------|---------|---------|------|-----------|----------|---------|---------|----------|---------|---------|-------|------|------|------|------|
|      | .1                   | 0    | .2     | 20      | .3    | 80      | .4      | 10   | .5        | 50       | .6      | 60      | .7       | 0       | 3.      | 30    | .9   | 0    | 1.0  | 10   |
| CFM  | RPM                  | BHP  | RPM    | BHP     | RPM   | BHP     | RPM     | BHP  | RPM       | BHP      | RPM     | BHP     | RPM      | BHP     | RPM     | BHP   | RPM  | BHP  | RPM  | BHP  |
|      |                      |      | 1-HP S | tandard | Motor | & Field | Supplie | ed   |           |          |         | 1       | -HP Star | ndard N | lotor & | Drive |      |      |      |      |
|      | Low Static Drive (1) |      |        |         |       |         |         |      |           |          |         |         |          |         |         |       |      |      |      |      |
| 1280 | 614                  | 0.22 | 675    | 0.26    | 733   | 0.31    | 787     | 0.37 | 834       | 0.42     | 878     | 0.48    | 919      | 0.53    | 959     | 0.59  | 997  | 0.65 | 1034 | 0.71 |
| 1440 | 676                  | 0.30 | 731    | 0.34    | 784   | 0.39    | 835     | 0.46 | 883       | 0.52     | 925     | 0.58    | 965      | 0.64    | 1003    | 0.70  | 1039 | 0.76 | 1075 | 0.83 |
| 1600 | 739                  | 0.40 | 789    | 0.45    | 838   | 0.50    | 885     | 0.56 | 931       | 0.63     | 973     | 0.70    | 1012     | 0.77    | 1049    | 0.84  | 1085 | 0.91 | 1118 | 0.97 |
| 1760 | 803                  | 0.51 | 850    | 0.57    | 894   | 0.63    | 938     | 0.69 | 981       | 0.76     | 1021    | 0.83    | 1061     | 0.92    | 1097    | 0.99  | 1131 | 1.07 | 1164 | 1.14 |
| 1920 | 867                  | 0.65 | 911    | 0.72    | 952   | 0.78    | 993     | 0.84 | 1033      | 0.91     | 1071    | 0.99    | 1110     | 1.07    | 1145    | 1.16  | 1180 | 1.25 | 1213 | 1.33 |

#### Table PD-60 - Continued

|      |      |      | Ext      | ternal St | atic Pres | sure (Inc | ches of W | /ater) |      |      |
|------|------|------|----------|-----------|-----------|-----------|-----------|--------|------|------|
|      | 1.1  | 10   | 1.3      | 20        | 1.3       | 30        | 1.4       | 40     | 1.5  | 50   |
| CFM  | RPM  | BHP  | RPM      | BHP       | RPM       | BHP       | RPM       | BHP    | RPM  | BHP  |
|      |      | 1-H  | P Standa | ard Mot   | or & Driv | ve        |           |        |      |      |
| 1280 | 1069 | 0.77 | 1104     | 0.83      | 1138      | 0.90      | 1170      | 0.97   | 1203 | 1.04 |
| 1440 | 1109 | 0.89 | 1141     | 0.96      | 1175      | 1.03      | 1205      | 1.10   | 1236 | 1.17 |
| 1600 | 1151 | 1.04 | 1183     | 1.11      | 1215      | 1.19      | 1246      | 1.26   | 1275 | 1.33 |
| 1760 | 1197 | 1.21 | 1227     | 1.29      | 1258      | 1.36      | 1287      | 1.44   | _    | _    |
| 1920 | 1243 | 1.41 | 1274     | 1.49      |           | _         | _         | _      | -,   | _    |

1-HP Standard Motor & Field Supplied High Static Drive (2)

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other options/accessoriesdue to other options/accessories Fan Motor Heat (MBH) =  $2.829 \times Fan BHP+.4024$ .

- Field Supplied Fan Sheave AK61 required. Field Supplied Belt may be necessary.
- Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-61 — Belt Drive Evaporator Fan Performance — 4 Ton — YHC048A3,A4,AW\*H — High Heat — Downflow Airflow

|      |     |                                                       |        |         |         |         |         |        |           |          | ,,      |          |          |         |         |       |      |      |      |      |
|------|-----|-------------------------------------------------------|--------|---------|---------|---------|---------|--------|-----------|----------|---------|----------|----------|---------|---------|-------|------|------|------|------|
|      |     |                                                       |        |         |         |         |         | Extern | al Static | Pressure | (Inches | of Water | r)       |         |         |       |      |      |      |      |
|      | .1  | 0                                                     | .2     | 20      | .3      | 30      | .4      | Ю      | .5        | 50       | .6      | 60       | .7       | 0       | 3.      | 80    | .9   | 0    | 1.0  | 0    |
| CFM  | RPM | BHP                                                   | RPM    | BHP     | RPM     | BHP     | RPM     | BHP    | RPM       | BHP      | RPM     | BHP      | RPM      | BHP     | RPM     | BHP   | RPM  | BHP  | RPM  | BHP  |
|      |     |                                                       | 1-HP S | tandard | l Motor | & Field | Supplie | ed     |           |          |         | 1        | -HP Star | ndard N | lotor & | Drive |      |      |      |      |
|      |     | 1-HP Standard Motor & Field S<br>Low Static Drive (1) |        |         |         |         |         |        |           |          |         |          |          |         |         |       |      |      |      |      |
| 1280 | 627 | 0.23                                                  | 688    | 0.27    | 745     | 0.32    | 797     | 0.38   | 844       | 0.43     | 887     | 0.49     | 928      | 0.54    | 967     | 0.60  | 1006 | 0.66 | 1042 | 0.72 |
| 1440 | 691 | 0.31                                                  | 746    | 0.36    | 798     | 0.41    | 848     | 0.47   | 894       | 0.54     | 936     | 0.60     | 975      | 0.66    | 1012    | 0.72  | 1049 | 0.78 | 1085 | 0.85 |
| 1600 | 756 | 0.41                                                  | 806    | 0.47    | 854     | 0.52    | 901     | 0.58   | 945       | 0.66     | 987     | 0.73     | 1025     | 0.79    | 1061    | 0.86  | 1096 | 0.93 | 1129 | 1.00 |
| 1760 | 822 | 0.54                                                  | 868    | 0.60    | 912     | 0.65    | 955     | 0.71   | 997       | 0.79     | 1038    | 0.87     | 1076     | 0.95    | 1111    | 1.02  | 1145 | 1.10 | 1178 | 1.17 |
| 1920 | 889 | 0.69                                                  | 931    | 0.75    | 972     | 0.81    | 1012    | 0.88   | 1051      | 0.95     | 1090    | 1.03     | 1127     | 1.11    | 1162    | 1.20  | 1196 | 1.29 | 1228 | 1.37 |

### Table PD-61 — Continued

| 1.10   1.20   1.30   1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40   1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40     1.40 |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1-HP Standard Motor & Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.50        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P RPM BHP   |
| 1200 1077 0.79 1112 0.95 1145 0.91 1179 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| 1200 1077 0.76 1112 0.05 1145 0.51 1176 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 1210 1.05 |
| 1440 1118 0.91 1150 0.98 1183 1.05 1214 1.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 1244 1.19 |
| 1600 1162 1.06 1193 1.13 1225 1.21 1255 1.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3 1285 1.36 |
| 1760 1208 1.24 1239 1.32 1268 1.39 1297 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ' – –       |
| 1920 1258 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |

1-HP Standard Motor & Field Supplied High Static Drive (2)

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

- Field Supplied Fan Sheave AK61 required. Field Supplied Belt may be necessary.
- Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### (4 Ton) **High Efficiency**

Table PD-62— Belt Drive Evaporator Fan Performance — 4 Ton — YHC048A3,A4,AW\*L,M — Low and Medium Heat — Horizontal Airflow

|      |                                                                                           |         |         |      |      |      |      | Extern | al Static | Pressure | (Inches | of Wate | r)        |            |      |      |      |      |      |      |
|------|-------------------------------------------------------------------------------------------|---------|---------|------|------|------|------|--------|-----------|----------|---------|---------|-----------|------------|------|------|------|------|------|------|
|      | .1                                                                                        | 0       | .2      | 20   | .3   | 30   | .4   | Ю      | .5        | 50       | .6      | 60      | .7        | 0          | 3.   | 80   | .9   | 0    | 1.0  | 10   |
| CFM  | RPM                                                                                       | BHP     | RPM     | BHP  | RPM  | BHP  | RPM  | BHP    | RPM       | BHP      | RPM     | BHP     | RPM       | BHP        | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 1-H                                                                                       | P Stand | ard Mot | or & |      |      |      |        |           |          |         |         |           |            |      |      |      |      |      |      |
|      | 1-HP Standard Motor &<br>Field Supplied Low Static Drive (1)<br>681 0.26 755 0.32 816 0.3 |         |         |      |      |      |      |        |           | 1-HI     | Standa  | ard Mot | or & Driv | <i>r</i> e |      |      |      |      |      |      |
| 1280 | 681                                                                                       | 0.26    | 755     | 0.32 | 816  | 0.38 | 870  | 0.45   | 921       | 0.51     | 968     | 0.58    | 1013      | 0.65       | 1053 | 0.72 | 1091 | 0.79 | 1127 | 0.86 |
| 1440 | 748                                                                                       | 0.36    | 817     | 0.43 | 876  | 0.49 | 927  | 0.56   | 976       | 0.63     | 1022    | 0.70    | 1065      | 0.78       | 1106 | 0.85 | 1144 | 0.93 | 1180 | 1.01 |
| 1600 | 816                                                                                       | 0.47    | 879     | 0.55 | 937  | 0.62 | 987  | 0.70   | 1033      | 0.78     | 1076    | 0.85    | 1119      | 0.93       | 1158 | 1.01 | 1197 | 1.10 | 1233 | 1.18 |
| 1760 | 885                                                                                       | 0.61    | 943     | 0.69 | 999  | 0.78 | 1049 | 0.86   | 1093      | 0.94     | 1135    | 1.03    | 1174      | 1.11       | 1213 | 1.20 | 1250 | 1.29 | 1286 | 1.38 |
| 1920 | 956                                                                                       | 0.77    | 1009    | 0.86 | 1062 | 0.96 | 1110 | 1.05   | 1154      | 1.14     | 1195    | 1.23    | 1232      | 1.32       | 1269 | 1.41 | 1304 | 1.50 | - ,  | _    |

#### 1-HP Standard Motor & Field Supplied High Static Drive (2)

#### Table PD-62 - Continued

|      |      |         | Exte      | ernal Sta | atic Press | ure (Inch | nes of Wa | ater)    |      |      |
|------|------|---------|-----------|-----------|------------|-----------|-----------|----------|------|------|
|      | 1.1  | 10      | 1.3       | 20        | 1.3        | 30        | 1.4       | 40       | 1.9  | 50   |
| CFM  | RPM  | BHP     | RPM       | BHP       | RPM        | BHP       | RPM       | BHP      | RPM  | BHP  |
|      |      |         | Standard  |           |            |           |           |          |      |      |
|      |      | Moto    | r & Drive |           |            |           |           |          |      |      |
| 1280 | 1162 | 0.94    | 1193      | 1.01      | 1225       | 1.09      | 1255      | 1.16     | 1284 | 1.23 |
| 1440 | 1214 | 1.09    | 1247      | 1.18      | 1278       | 1.26      | 1309      | 1.35     | 1337 | 1.43 |
| 1600 | 1268 | 1.27    | 1300      | 1.35      | 1332       | 1.45      | _         | _        | _    | _    |
| 1760 | 1320 | 1.47    | _         | _         | _          | _         | _         |          |      |      |
| 1920 | _    | _       | _         | _         | _          | _         | _         | _        | _    | _    |
|      | 1-H  | P Stand | lard Mot  | tor & Fid | eld Supp   | lied Hig  | h Static  | Drive (2 | 2)   |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other

options/accessories Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

Field Supplied Fan Sheave AK61 required. Field Supplied Belt may be necessary.
 Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary.
 Factory supplied motors, in commercial equipment, are definite purpose motors,

specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-63 — Belt Drive Evaporator Fan Performance — 4 Ton — YHC048A3,A4,AW\*H — High Heat — Horizontal Airflow

|      |                                     |         |         |       |      |      |         | Extern  | al Static | Pressure | (Inches | of Wate | r)   |      |      |      |      |      |      |      |
|------|-------------------------------------|---------|---------|-------|------|------|---------|---------|-----------|----------|---------|---------|------|------|------|------|------|------|------|------|
|      | .1                                  | 0       | .2      | 20    | .3   | 80   | .4      | 10      | .5        | 50       | .6      | 60      | .7   | 0    | 3.   | 0    | .9   | 0    | 1.0  | 00   |
| CFM  | RPM                                 | BHP     | RPM     | BHP   | RPM  | BHP  | RPM     | BHP     | RPM       | BHP      | RPM     | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 1-H                                 | P Stand | ard Mot | tor & |      |      |         |         |           |          |         |         |      |      |      |      |      |      |      |      |
|      | Field Supplied Low Static Drive (1) |         |         |       | )    | 1-HI | P Stand | ard Mot | or & Dri  | ive      |         |         |      |      |      |      |      |      |      |      |
| 1280 | 698                                 | 0.28    | 769     | 0.34  | 828  | 0.40 | 881     | 0.46    | 932       | 0.52     | 978     | 0.59    | 1021 | 0.66 | 1061 | 0.73 | 1099 | 0.81 | 1134 | 0.88 |
| 1440 | 767                                 | 0.37    | 834     | 0.44  | 890  | 0.51 | 941     | 0.58    | 988       | 0.65     | 1034    | 0.72    | 1077 | 0.80 | 1116 | 0.87 | 1153 | 0.95 | 1190 | 1.03 |
| 1600 | 837                                 | 0.50    | 899     | 0.57  | 955  | 0.65 | 1003    | 0.72    | 1048      | 0.80     | 1091    | 0.88    | 1132 | 0.96 | 1171 | 1.04 | 1209 | 1.12 | 1245 | 1.21 |
| 1760 | 908                                 | 0.64    | 966     | 0.73  | 1020 | 0.81 | 1067    | 0.89    | 1110      | 0.98     | 1151    | 1.06    | 1190 | 1.15 | 1228 | 1.23 | 1264 | 1.32 | 1300 | 1.41 |
| 1920 | 981                                 | 0.82    | 1035    | 0.91  | 1085 | 1.00 | 1133    | 1.09    | 1174      | 1.18     | 1213    | 1.27    | 1250 | 1.37 | 1286 | 1.46 |      | _    | -,   |      |
|      |                                     |         |         |       |      |      |         |         |           |          |         |         |      |      |      |      |      |      |      |      |

#### Table PD-63 — Continued

|      |      |         | Exte                  | rnal Sta | tic Press | ure (Inch | nes of Wa | ater)    |      |      |
|------|------|---------|-----------------------|----------|-----------|-----------|-----------|----------|------|------|
|      | 1.1  | 10      | 1.2                   | 20       | 1.3       | 30        | 1.4       | 40       | 1.9  | 50   |
| CFM  | RPM  | BHP     | RPM                   | BHP      | RPM       | BHP       | RPM       | BHP      | RPM  | BHP  |
|      |      |         | Standard<br>r & Drive |          |           |           |           |          |      |      |
| 1280 | 1169 | 0.96    | 1201                  | 1.03     | 1231      | 1.10      | 1262      | 1.17     | 1290 | 1.24 |
| 1440 | 1222 | 1.11    | 1256                  | 1.20     | 1286      | 1.28      | 1317      | 1.37     | 1346 | 1.45 |
| 1600 | 1278 | 1.29    | 1311                  | 1.38     | 1342      | 1.48      | _         | _        | _    | _    |
| 1760 | _    | _       | _                     | _        | _         | _         | _         | _        | _    | _    |
| 1920 | _    | _       | _                     | _        | _         | _         | _         |          |      |      |
|      | 1-H  | P Stand | lard Mot              | or & Fie | eld Supp  | lied Hig  | h Static  | Drive (2 | 2)   |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Notes: Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other

Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

1. Field Supplied Fan Sheave AK61 required. Field Supplied Belt may be necessary.

1-HP Standard Motor & Field Supplied High Static Drive (2)

2. Field Supplied Fan Sheave AK41 required. Field Supplied Belt may be necessary. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### (5 Ton) **High Efficiency**

Table PD-64 — Belt Drive Evaporator Fan Performance — 5 Ton — YHC060A3,A4,AW\*L,M — Low and Medium Heat — Downflow Airflow

|      |                      |      |         |         |           |         |       | Externa | al Static | Pressure | (Inches | of Wate | r)       |         |         |       |      |      |      |      |
|------|----------------------|------|---------|---------|-----------|---------|-------|---------|-----------|----------|---------|---------|----------|---------|---------|-------|------|------|------|------|
|      | .1                   | 0    | .2      | 20      | .3        | 0       | .4    | 0       | .5        | 50       | .6      | 60      | .7       | 0       | 3.      | 30    | .9   | 0    | 1.0  | 0    |
| CFM  | RPM                  | BHP  | RPM     | BHP     | RPM       | BHP     | RPM   | BHP     | RPM       | BHP      | RPM     | BHP     | RPM      | BHP     | RPM     | BHP   | RPM  | BHP  | RPM  | BHP  |
|      |                      | 1-H  | P Stand | lard Mo | tor & Fie | ld Supp | olied |         |           |          |         | 1       | -HP Star | ndard N | lotor & | Drive |      |      |      |      |
|      | Low Static Drive (1) |      |         |         |           |         |       |         |           |          |         |         |          |         |         |       |      |      |      |      |
| 1600 | 704                  | 0.36 | 757     | 0.41    | 806       | 0.47    | 853   | 0.52    | 899       | 0.58     | 942     | 0.65    | 984      | 0.72    | 1021    | 0.79  | 1058 | 0.85 | 1092 | 0.92 |
| 1800 | 777                  | 0.49 | 828     | 0.56    | 872       | 0.62    | 915   | 0.67    | 957       | 0.73     | 998     | 0.80    | 1038     | 0.88    | 1076    | 0.96  | 1112 | 1.04 | 1146 | 1.11 |
| 2000 | 851                  | 0.66 | 900     | 0.73    | 942       | 0.80    | 981   | 0.87    | 1019      | 0.93     | 1057    | 0.99    | 1094     | 1.07    | 1130    | 1.15  | 1165 | 1.24 | 1199 | 1.33 |
| 2200 | 927                  | 0.86 | 973     | 0.94    | 1012      | 1.02    | 1049  | 1.09    | 1084      | 1.17     | 1119    | 1.23    | 1153     | 1.30    | 1188    | 1.38  | 1220 | 1.46 | _    | _    |
| 2400 | 1003                 | 1.10 | 1045    | 1.19    | 1084      | 1.28    | 1119  | 1.36    | 1152      | 1.44     | _       | _       | _        | _       | _       | _     | _    | _    | _    | _    |

#### Table PD-64 - Continued

|      |      |                             |      | Extern | al Static | Pressure | e (Inches | of Wate | r)   |      |  |  |  |
|------|------|-----------------------------|------|--------|-----------|----------|-----------|---------|------|------|--|--|--|
|      | 1.1  | 10                          | 1.2  | 20     | 1.3       | 30       | 1.4       | 40      | 1.5  | 50   |  |  |  |
| CFM  | RPM  | BHP                         |      |        | RPM       | BHP      | RPM       | BHP     | RPM  | BHP  |  |  |  |
|      |      | 1-HP Standard Motor & Drive |      |        |           |          |           |         |      |      |  |  |  |
| 1600 | 1125 | 0.98                        | 1158 | 1.06   | 1190      | 1.13     | 1220      | 1.20    | 1250 | 1.27 |  |  |  |
| 1800 | 1178 | 1.19                        | 1209 | 1.26   | 1239      | 1.33     | 1269      | 1.41    | 1296 | 1.48 |  |  |  |
| 2000 | 1232 | 1.42                        | 1263 | 1.50   | _         | _        | _         | _       | _    | _    |  |  |  |
| 2200 | _    | _                           | _    | _      | _         | _        | _         | _       | _    | _    |  |  |  |
| 2400 | _    | _                           | _    | _      | _         | _        | _         | _       | _    | _    |  |  |  |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

1. Field Supplied Fan Sheave AK56 required. Field Supplied Belt may

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-65 — Belt Drive Evaporator Fan Performance — 5 Ton — YHC060A3,A4,AW\*H — High Heat — Downflow Airflow

|      |                                      |      | -    |      |      |      |      | -    |           |          | ,       |         |         |         | -        |       | -    |      |      |      |
|------|--------------------------------------|------|------|------|------|------|------|------|-----------|----------|---------|---------|---------|---------|----------|-------|------|------|------|------|
|      | Ex                                   |      |      |      |      |      |      |      | al Static | Pressure | (Inches | of Wate | r)      |         |          |       |      |      |      |      |
|      | .1                                   | 0    | .2   | 20   | .3   | 30   | .4   | 10   | .5        | 50       | .6      | 60      | .7      | 0       | 3.       | 30    | .9   | 0    | 1.0  | )0   |
| CFM  | RPM                                  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM       | BHP      | RPM     | BHP     | RPM     | BHP     | RPM      | BHP   | RPM  | BHP  | RPM  | BHP  |
|      | 1-HP Standard Motor & Field Supplied |      |      |      |      |      |      | ed   |           |          |         | 1       | -HP Sta | ndard N | /lotor & | Drive |      |      |      |      |
|      | Low Static Drive (1)                 |      |      |      |      |      |      |      |           |          |         |         |         |         |          |       |      |      |      |      |
| 1600 | 723                                  | 0.38 | 774  | 0.43 | 822  | 0.48 | 869  | 0.54 | 914       | 0.60     | 957     | 0.68    | 997     | 0.75    | 1035     | 0.81  | 1070 | 0.88 | 1104 | 0.94 |
| 1800 | 801                                  | 0.52 | 847  | 0.58 | 891  | 0.64 | 933  | 0.70 | 975       | 0.76     | 1015    | 0.83    | 1054    | 0.91    | 1091     | 0.99  | 1126 | 1.07 | 1160 | 1.15 |
| 2000 | 878                                  | 0.70 | 922  | 0.77 | 962  | 0.84 | 1001 | 0.90 | 1039      | 0.96     | 1076    | 1.03    | 1113    | 1.11    | 1149     | 1.20  | 1183 | 1.28 | 1217 | 1.38 |
| 2200 | 957                                  | 0.91 | 999  | 0.99 | 1036 | 1.07 | 1072 | 1.14 | 1107      | 1.21     | 1142    | 1.28    | 1176    | 1.35    | 1209     | 1.43  | _    | _    | _    | _    |
| 2400 | 1036                                 | 1.17 | 1076 | 1.26 | 1111 | 1.34 | 1144 | 1.42 | 1177      | 1.50     | _       | _       | _       | _       | _        | _     | _    | _    | _    | _    |

#### Table PD-65 - Continued

|      |      |                             |      | Extern | al Static | Pressure | e (Inches | of Wate | er)  |      |  |  |  |  |  |
|------|------|-----------------------------|------|--------|-----------|----------|-----------|---------|------|------|--|--|--|--|--|
|      | 1.1  | 10                          | 1.3  | 20     | 1.3       | 30       | 1.4       | 10      | 1.9  | 50   |  |  |  |  |  |
| CFM  | RPM  | BHP                         | RPM  | BHP    | RPM       | BHP      | RPM       | BHP     | RPM  | BHP  |  |  |  |  |  |
|      |      | 1-HP Standard Motor & Drive |      |        |           |          |           |         |      |      |  |  |  |  |  |
| 1600 | 1137 | 1.01                        | 1168 | 1.08   | 1199      | 1.15     | 1230      | 1.22    | 1260 | 1.29 |  |  |  |  |  |
| 1800 | 1191 | 1.22                        | 1222 | 1.29   | 1252      | 1.37     | 1281      | 1.44    | 1310 | 1.50 |  |  |  |  |  |
| 1000 | 1248 | 1.46                        | _    | _      | _         | _        | _         | _       | _    | _    |  |  |  |  |  |
| 2200 | _    | _                           | _    | _      | _         | _        | _         | _       | _    | _    |  |  |  |  |  |
| 2400 | _    | _                           | _    | _      | _         | _        | _         | _       | _    | _    |  |  |  |  |  |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data. Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

1. Field Supplied Fan Sheave AK56 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### (5 Ton) **High Efficiency**

Table PD-66 — Belt Drive Evaporator Fan Performance — 5 Ton — YHC060A3,A4,AW\*L,M — Low and Medium Heat — Horizontal Airflow

|      |      |      |      |      |      |                             |      | Extern | al Static | Pressure | (Inches | of Wate | r)   |      |      |      |      |      |      |      |
|------|------|------|------|------|------|-----------------------------|------|--------|-----------|----------|---------|---------|------|------|------|------|------|------|------|------|
|      | .1   | 0    | .2   | 20   | .3   | 30                          | .4   | Ю      | .5        | 50       | .6      | 60      | .7   | 0    | 3.   | 80   | .90  | )    | 1.0  | 0    |
| CFM  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP                         | RPM  | BHP    | RPM       | BHP      | RPM     | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |      |      |      |      |      | 1-HP Standard Motor & Drive |      |        |           |          |         |         |      |      |      |      |      |      |      |      |
| 1600 | 775  | 0.42 | 837  | 0.50 | 898  | 0.57                        | 952  | 0.65   | 1000      | 0.72     | 1044    | 0.79    | 1086 | 0.87 | 1127 | 0.95 | 1166 | 1.03 | 1203 | 1.11 |
| 1800 | 856  | 0.58 | 912  | 0.66 | 967  | 0.74                        | 1020 | 0.83   | 1069      | 0.91     | 1112    | 1.00    | 1152 | 1.08 | 1189 | 1.16 | 1227 | 1.25 | 1263 | 1.34 |
| 2000 | 939  | 0.77 | 990  | 0.86 | 1040 | 0.96                        | 1089 | 1.05   | 1136      | 1.14     | 1180    | 1.24    | 1219 | 1.33 | 1256 | 1.42 | 1292 | 1.50 | _    | _    |
| 2200 | 1023 | 1.01 | 1070 | 1.11 | 1115 | 1.21                        | 1160 | 1.31   | 1205      | 1.41     | _       | _       | _    | _    | _    | _    | _    | _    | _    | _    |
| 2400 | 1108 | 1.29 | 1151 | 1.39 | 1193 | 1.50                        | _    | _      | _         | _        | _       | _       | _    | _    | _    | _    | _    | _    | _    | _    |
|      |      |      |      |      |      |                             |      |        |           |          |         |         |      |      |      |      |      |      |      |      |

1-HP Standard Motor & Field Supplied Low Static Drive (1)

Table PD-66 - Continued

|      |                             |      | Exte | rnal Sta | tic Press | ure (Inch | nes of Wa | ater) |  |  |  |  |
|------|-----------------------------|------|------|----------|-----------|-----------|-----------|-------|--|--|--|--|
|      | 1.1                         | 10   | 1.2  | 20       | 1.3       | 30        | 1.4       | 40    |  |  |  |  |
| CFM  | RPM                         | BHP  | RPM  | BHP      | RPM       | BHP       | RPM       | BHP   |  |  |  |  |
|      | 1-HP Standard Motor & Drive |      |      |          |           |           |           |       |  |  |  |  |
| 1600 | 1239                        | 1.19 | 1272 | 1.28     | 1304      | 1.37      | 1336      | 1.46  |  |  |  |  |
| 1800 | 1299                        | 1.43 | _    | _        | _         | _         | _         | _     |  |  |  |  |
| 2000 | _                           | _    | _    | _        | _         | _         | _         | _     |  |  |  |  |
| 2200 | _                           | _    | _    | _        | _         | _         | _         | _     |  |  |  |  |
| 2400 | _                           | _    | _    | _        | _         | _         | _         | _     |  |  |  |  |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data: Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

1. Field Supplied Fan Sheave AK56 required. Field Supplied Belt may be necessary.
Factory supplied motors, in commercial equipment, are definite purpose

motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-67 — Belt Drive Evaporator Fan Performance — 5 Ton — YHC060A3,A4,AW\*H — High Heat — Horizontal Airflow

|                             |      |      |       |      |      |      |      | Extern | al Static | Pressure | e (Inches | of Wate | r)   |      |      |      |      |      |      |      |
|-----------------------------|------|------|-------|------|------|------|------|--------|-----------|----------|-----------|---------|------|------|------|------|------|------|------|------|
|                             | .1   | 0    | .2    | 20   | .3   | 30   | .4   | 10     | .5        | 50       | .6        | 60      | .7   | 0    | 3.   | 30   | .9   | 0    | 1.0  | 00   |
| CFM                         | RPM  | BHP  | RPM   | BHP  | RPM  | BHP  | RPM  | BHP    | RPM       | BHP      | RPM       | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
| 1-HP Standard Motor & Drive |      |      |       |      |      |      |      |        |           |          |           |         |      |      |      |      |      |      |      |      |
| 1600                        | 796  | 0.45 | 858   | 0.52 | 917  | 0.60 | 969  | 0.67   | 1015      | 0.75     | 1059      | 0.82    | 1100 | 0.90 | 1141 | 0.98 | 1178 | 1.06 | 1216 | 1.14 |
| 1800                        | 881  | 0.61 | 935   | 0.70 | 991  | 0.78 | 1042 | 0.87   | 1087      | 0.95     | 1129      | 1.03    | 1168 | 1.12 | 1206 | 1.20 | 1244 | 1.29 | 1279 | 1.38 |
| 2000                        | 967  | 0.82 | 1016  | 0.91 | 1066 | 1.01 | 1115 | 1.10   | 1160      | 1.19     | 1201      | 1.28    | 1239 | 1.38 | 1275 | 1.47 | _    | _    | _    | _    |
| 2200                        | 1054 | 1.07 | 1099  | 1.17 | 1144 | 1.27 | 1189 | 1.38   | 1233      | 1.48     | _         | _       | _    | _    | _    | _    | _    | _    | _    | _    |
| 2400                        | 1141 | 1.37 | 1183  | 1.48 | _    | _    | _    | _      | _         | _        | _         | _       | _    | _    | _    | _    | _    | _    | _    | _    |
|                             |      |      | 1.700 | 0    |      |      |      |        |           |          |           |         |      |      |      |      |      |      | _    |      |

1-HP Standard Motor & Field Supplied High Static Drive (1)

Table PD-67 - Continued

|      |      |      | Exte   | rnal Sta | itic Press | ure (Inch | nes of Wa | ater) |     |     |
|------|------|------|--------|----------|------------|-----------|-----------|-------|-----|-----|
|      | 1.1  | 10   | 1.2    | 20       | 1.3        | 30        | 1.4       | 40    | 1.5 | 50  |
| CFM  | RPM  | BHP  | RPM    | BHP      | RPM        | BHP       | RPM       | BHP   | RPM | BHP |
|      |      |      | 1-HP 9 | Standar  | d Moto     | & Driv    | re        |       |     |     |
| 1600 | 1251 | 1.22 | 1283   | 1.31     | 1315       | 1.40      | 1345      | 1.49  |     |     |
| 1800 | 1313 | 1.47 | _      | _        | _          | _         | _         | _     |     |     |
| 2000 | _    | _    | _      | _        | _          | _         | _         | _     |     |     |
| 2200 | _    | _    | _      | _        | _          | _         | _         | _     |     |     |
| 2400 | _    | _    | _      | _        | _          | _         | _         | _     |     |     |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

1. Field Supplied Fan Sheave AK56 required. Field Supplied Belt may be necessary.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### (6 Ton) **High Efficiency**

Table PD-68— Belt Drive Evaporator Fan Performance — 6 Ton — YHC072A3,A4,AW\*L,M — Low and Medium Heat — Downflow Airflow

|      |                                                              |      |     |      |     |      | Pressure | (Inches | of Wate | r)   |     |      |          |         |         |       |     |      |      |      |
|------|--------------------------------------------------------------|------|-----|------|-----|------|----------|---------|---------|------|-----|------|----------|---------|---------|-------|-----|------|------|------|
|      | .1                                                           | 0    | .2  | 20   | .3  | 30   | .4       | 10      | .5      | 50   | .6  | 60   | .7       | 70      | 3.      | 30    | .9  | 0    | 1.0  | )0   |
| CFM  | RPM                                                          | BHP  | RPM | BHP  | RPM | BHP  | RPM      | BHP     | RPM     | BHP  | RPM | BHP  | RPM      | BHP     | RPM     | BHP   | RPM | BHP  | RPM  | BHP  |
|      | 1-HP Standard Motor & Field Supplied<br>Low Static Drive (1) |      |     |      |     |      |          |         |         |      |     | 1    | I-HP Sta | ndard N | lotor & | Drive |     |      |      |      |
| 1920 | _                                                            | _    | _   | _    | 597 | 0.37 | 652      | 0.44    | 700     | 0.51 | 745 | 0.58 | 788      | 0.66    | 829     | 0.74  | 869 | 0.82 | 906  | 0.91 |
| 2160 | _                                                            | _    | 575 | 0.38 | 629 | 0.46 | 683      | 0.54    | 730     | 0.62 | 774 | 0.70 | 815      | 0.78    | 854     | 0.86  | 893 | 0.95 | 929  | 1.04 |
| 2400 | 561                                                          | 0.41 | 615 | 0.49 | 664 | 0.57 | 714      | 0.65    | 762     | 0.74 | 805 | 0.83 | 844      | 0.92    | 882     | 1.01  | 918 | 1.10 | 954  | 1.20 |
| 2640 | 606                                                          | 0.53 | 657 | 0.62 | 703 | 0.70 | 747      | 0.79    | 792     | 0.88 | 835 | 0.98 | 875      | 1.08    | 912     | 1.18  | 947 | 1.27 | 980  | 1.37 |
| 2880 | 651                                                          | 0.67 | 699 | 0.77 | 743 | 0.85 | 785      | 0.94    | 825     | 1.05 | 867 | 1.15 | 906      | 1.26    | 943     | 1.37  | 978 | 1.47 | 1010 | 1.58 |

| Table | PD-68                                                                   | – Con | tinued |      |      |      |             |          |            |           |           |        |      |      | 2    | 2-HP Ov | ersized | Moto | r & Driv | re   |
|-------|-------------------------------------------------------------------------|-------|--------|------|------|------|-------------|----------|------------|-----------|-----------|--------|------|------|------|---------|---------|------|----------|------|
|       |                                                                         |       |        |      |      |      | Ex          | ternal S | tatic Pres | ssure (In | ches of V | Vater) |      |      |      |         |         |      |          |      |
|       | 1                                                                       | .10   | 1      | .20  | 1    | 1.30 | 1           | 1.40     | 1.         | 50        | 1.0       | 60     | •    | 1.70 | 1.5  | 80      | 1.9     | 90   | 2.       | .00  |
| CFM   | RPM                                                                     | BHP   | RPM    | BHP  | RPM  | BHP  | RPM         | BHP      | RPM        | BHP       | RPM       | BHP    | RPM  | BHP  | RPM  | BHP     | RPM     | BHP  | RPM      | BHP  |
|       | 1-HP Standard Motor & Drive 1-HP Standard Motor & High Static Drive Kit |       |        |      |      |      |             |          |            |           |           |        |      |      |      |         |         |      |          |      |
|       | (or 2 HP Oversized Motor & Drive)                                       |       |        |      |      |      |             |          |            |           |           |        |      |      |      |         |         |      |          |      |
| 1920  | 941                                                                     | 0.99  | 977    | 1.07 | 1009 | 1.15 | 1041        | 1.23     | 1073       | 1.32      | 1103      | 1.40   | 1132 | 1.49 | 1159 | 1.57    | 1187    | 1.66 | 1213     | 1.75 |
| 2160  | 964                                                                     | 1.13  | 997    | 1.23 | 1031 | 1.32 | 1061        | 1.41     | 1093       | 1.50      | 1123      | 1.60   | 1151 | 1.69 | 1179 | 1.78    | 1207    | 1.87 | 1234     | 1.97 |
| 2400  | 988                                                                     | 1.29  | 1020   | 1.39 | 1054 | 1.50 | 1085        | 1.60     | 1114       | 1.70      | 1143      | 1.80   | 1171 | 1.90 | 1200 | 2.01    | 1227    | 2.11 | 1254     | 2.21 |
| 2640  | 1014                                                                    | 1.47  | 1046   | 1.58 | 1077 | 1.69 | <b>1107</b> | 1.80     | 1138       | 1.91      | 1166      | 2.02   | 1193 | 2.13 | 1222 | 2.25    | _       | _    | _        | _    |
| 2880  | 1042                                                                    | 1.68  | 1073   | 1.79 | 1103 | 1.90 | 1132        | 2.02     | 1162       | 2.14      | 1190      | 2.26   | _    | _    | _    | _       | _       | _    | _        | _    |
|       |                                                                         |       |        |      |      |      | 2-H         | P Overs  | ized Mo    | tor & D   | rive      |        |      |      |      |         |         |      |          |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

1-HP Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024. 2-HP Fan Motor Heat (MBH) = 3.000 x Fan BHP+.5000

1. Field Supplied Fan Sheave AK84 and Belt AX34 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-69 — Belt Drive Evaporator Fan Performance — 6 Ton — YHC072A3,A4,AW\*H — High Heat — Downflow Airflow

|                       | Λ                 | _                                |                                                                                                                                                           |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                     | -Atomi               | ai Static                                                                                                                                                                                                                                                                                                                                                                                                | Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of Water | 7)                   |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                      |                      |
|-----------------------|-------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------|----------------------|
| .10 .20 .30 .40       |                   |                                  |                                                                                                                                                           |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                     | -0                   | .5                                                                                                                                                                                                                                                                                                                                                                                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60       | .7                   | 0                    | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                   | .90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | )    | 1.0                  | 10                   |
| RPM                   | BHP               | RPM                              | BHP                                                                                                                                                       | RPM                                                                                                                                                                                                                    | BHP                                                                                                                                                                                                                                                                  | RPM                                                                                                                                                                                                                                                                                                                                 | BHP                  | RPM                                                                                                                                                                                                                                                                                                                                                                                                      | BHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BHP      | RPM                  | BHP                  | RPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BHP                  | RPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BHP  | RPM                  | BHP                  |
|                       |                   |                                  |                                                                                                                                                           |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      | Supplie                                                                                                                                                                                                                                                                                                                             | ed                   |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1        | -HP Stai             | ndard IV             | lotor &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drive                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                      |                      |
| 574 0.34 631 0.41 681 |                   |                                  |                                                                                                                                                           |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                     |                      | 727                                                                                                                                                                                                                                                                                                                                                                                                      | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.63     | 814                  | 0.71                 | 853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.79                 | 892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.87 | 928                  | 0.95                 |
| 562                   | 0.36              | 616                              | 0.44                                                                                                                                                      | 671                                                                                                                                                                                                                    | 0.52                                                                                                                                                                                                                                                                 | 719                                                                                                                                                                                                                                                                                                                                 | 0.60                 | 763                                                                                                                                                                                                                                                                                                                                                                                                      | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.76     | 845                  | 0.84                 | 884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.93                 | 921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.02 | 957                  | 1.11                 |
| 612                   | 0.48              | 662                              | 0.56                                                                                                                                                      | 711                                                                                                                                                                                                                    | 0.65                                                                                                                                                                                                                                                                 | 759                                                                                                                                                                                                                                                                                                                                 | 0.74                 | 802                                                                                                                                                                                                                                                                                                                                                                                                      | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.91     | 879                  | 1.00                 | 916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.09                 | 951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.19 | 986                  | 1.29                 |
| 663                   | 0.63              | 709                              | 0.71                                                                                                                                                      | 754                                                                                                                                                                                                                    | 0.80                                                                                                                                                                                                                                                                 | 798                                                                                                                                                                                                                                                                                                                                 | 0.90                 | 842                                                                                                                                                                                                                                                                                                                                                                                                      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.10     | 917                  | 1.19                 | 951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.29                 | 986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.39 | 1018                 | 1.49∖                |
| 715                   | 0.80              | 758                              | 0.88                                                                                                                                                      | 799                                                                                                                                                                                                                    | 0.98                                                                                                                                                                                                                                                                 | 840                                                                                                                                                                                                                                                                                                                                 | 1.08                 | 880                                                                                                                                                                                                                                                                                                                                                                                                      | 1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.30     | 955                  | 1.41                 | 990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.51                 | 1022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.62 | 1053                 | 1.72                 |
|                       |                   |                                  |                                                                                                                                                           |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                      |                      |
|                       | 562<br>612<br>663 | 562 0.36<br>612 0.48<br>663 0.63 | Lo           -         -         574           562         0.36         616           612         0.48         662           663         0.63         709 | Low Station           -         -         574         0.34           562         0.36         616         0.44           612         0.48         662         0.56           663         0.63         709         0.71 | Low Static Drive (*           -         574         0.34         631           562         0.36         616         0.44         671           612         0.48         662         0.56         711           663         0.63         709         0.71         754 | Low Static Drive (1)           -         -         574         0.34         631         0.41           562         0.36         616         0.44         671         0.52           612         0.48         662         0.56         711         0.65           663         0.63         709         0.71         754         0.80 | Low Static Drive (1) | -         -         574         0.34         631         0.41         681         0.48           562         0.36         616         0.44         671         0.52         719         0.60           612         0.48         662         0.56         711         0.65         759         0.74           663         0.63         709         0.71         754         0.80         798         0.90 | Low Static Drive (1)           -         -         574         0.34         631         0.41         681         0.48         727           562         0.36         616         0.44         671         0.52         719         0.60         763           612         0.48         662         0.56         711         0.65         759         0.74         802           663         0.63         709         0.71         754         0.80         798         0.90         842 | Low Static Drive (1)           -         -         574         0.34         631         0.41         681         0.48         727         0.55           562         0.36         616         0.44         671         0.52         719         0.60         763         0.68           612         0.48         662         0.56         711         0.65         759         0.74         802         0.83           663         0.63         709         0.71         754         0.80         798         0.90         842         1.00 | Name     | Low Static Drive (1) | Low Static Drive (1) | No.   No. | Low Static Drive (1) | No.   No. | Name | Low Static Drive   1 | Low Static Drive (1) |

| 1-HP Standard Motor & High Static Drive Kit (or 2-HP Oversized Motor |
|----------------------------------------------------------------------|
|----------------------------------------------------------------------|

|      |                                                                                                           |         |      |      |      |         | Ex       | ternal S  | ches of V | Vater) |      |      |      |      |      |      |      |      |      |      |
|------|-----------------------------------------------------------------------------------------------------------|---------|------|------|------|---------|----------|-----------|-----------|--------|------|------|------|------|------|------|------|------|------|------|
|      | 1                                                                                                         | .10     | 1    | .20  | 1    | .30     | 1        | 1.40      | 1.9       | 50     | 1.0  | 60   | 1    | .70  | 1.8  | 80   | 1.9  | 0    | 2.   | .00  |
| CFM  | RPM                                                                                                       | BHP     | RPM  | BHP  | RPM  | BHP     | RPM      | BHP       | RPM       | BHP    | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 1-HP Standard 1-HP Standard Motor & High Static Drive Kit Motor & Drive (or 2 HP Oversized Motor & Drive) |         |      |      |      |         |          |           |           |        |      |      |      |      |      |      |      |      |      |      |
|      | Mo                                                                                                        | tor & D | rive |      |      | (or 2   | 2 HP Ove | ersized l | Wotor &   | Drive) |      |      |      |      |      |      |      |      |      |      |
| 1920 | 963                                                                                                       | 1.04    | 997  | 1.12 | 1028 | 1.20    | 1061     | 1.28      | 1090      | 1.36   | 1119 | 1.45 | 1149 | 1.54 | 1177 | 1.63 | 1203 | 1.71 | 1229 | 1.80 |
| 2160 | 990                                                                                                       | 1.21    | 1023 | 1.30 | 1055 | 1.39    | 1086     | 1.48      | 1115      | 1.57   | 1144 | 1.66 | 1173 | 1.76 | 1200 | 1.85 | 1227 | 1.95 | 1253 | 2.04 |
| 2400 | 1019                                                                                                      | 1.39    | 1051 | 1.49 | 1083 | 1.60    | 1113     | 1.70      | 1141      | 1.80   | 1171 | 1.90 | 1199 | 2.01 | 1225 | 2.10 | 1252 | 2.20 | _    | _    |
| 2640 | 1050                                                                                                      | 1.59    | 1081 | 1.70 | 1111 | 1.81    | 1141     | 1.93      | 1170      | 2.04   | 1198 | 2.15 | 1226 | 2.27 | _    | _    | _    | _    | _    | _    |
| 2880 | 1084                                                                                                      | 1.83    | 1114 | 1.94 | 1143 | 2.06    | 1172     | 2.18      | 1199      | 2.30   | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    |
|      |                                                                                                           |         |      |      | 2-H  | P Overs | ized Mo  | tor & Di  | rive      |        |      |      |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories 1-HP Fan Motor Heat (MBH)  $= 2.829 \times \text{Fan BHP} + .4024$ .

<sup>2-</sup>HP Fan Motor Heat (MBH) =  $3.000 \times Fan BHP + .5000$ 

<sup>1.</sup> Field Supplied Fan Sheave AK84 and Belt AX34 required.
Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



## **Performance**

### (6 Ton) **High Efficiency**

| lable PD-/0 - | – Belt Drive E | vaporator Fan | Performance — | 6 Ion — | YHC0/2A3,A4,AW*L | .,IVI — | Low and Mediu | ım Heat – | - Horizontal Airflow | / |
|---------------|----------------|---------------|---------------|---------|------------------|---------|---------------|-----------|----------------------|---|
|               |                |               |               |         |                  |         |               |           |                      |   |

|      |                                                              |      |     |      |     |      |     | Externa | al Static | Pressure | (Inches | of Water | r)      |         |          |         |        |        |       |      |
|------|--------------------------------------------------------------|------|-----|------|-----|------|-----|---------|-----------|----------|---------|----------|---------|---------|----------|---------|--------|--------|-------|------|
|      | .1                                                           | 0    | .2  | 20   | .3  | 30   | .4  | Ю       | .5        | 50       | .6      | 60       | .7      | 0       | 8.       | 0       | .90    | 0      | 1.0   | 0    |
| CFM  | RPM                                                          | BHP  | RPM | BHP  | RPM | BHP  | RPM | BHP     | RPM       | BHP      | RPM     | BHP      | RPM     | BHP     | RPM      | BHP     | RPM    | BHP    | RPM   | BHP  |
|      | 1-HP Standard Motor & Field Supplied<br>Low Static Drive (1) |      |     |      |     |      |     |         |           |          |         | 1        | -HP Sta | ndard N | /lotor & | Drive   |        |        |       |      |
| 1920 | 20 – 591 0.34 649 0.42                                       |      |     |      |     | ,    | 699 | 0.48    | 745       | 0.56     | 789     | 0.64     | 834     | 0.72    | 877      | 0.81    | 918    | 0.89   | 957   | 0.97 |
| 2160 | 587                                                          | 0.38 | 633 | 0.44 | 690 | 0.52 | 740 | 0.61    | 784       | 0.68     | 825     | 0.76     | 865     | 0.85    | 904      | 0.95    | 943    | 1.04   | 981   | 1.13 |
| 2400 | 643                                                          | 0.51 | 682 | 0.58 | 732 | 0.65 | 781 | 0.75    | 825       | 0.84     | 864     | 0.92     | 902     | 1.01    | 938      | 1.11    | 974    | 1.21   | 1010  | 1.32 |
| 2640 | 700                                                          | 0.66 | 736 | 0.74 | 775 | 0.81 | 822 | 0.90    | 866       | 1.01     | 906     | 1.11     | 942     | 1.20    | 976      | 1.29    | 1009   | 1.40   | 1042  | 1.51 |
| 2880 | 756                                                          | 0.84 | 790 | 0.93 | 823 | 1.01 | 864 | 1.09    | 907       | 1.20     | 947     | 1.32     | 983     | 1.43    | 1017     | 1.53    | 1048   | 1.62   | 1080  | 1.73 |
|      |                                                              |      |     |      |     |      |     |         |           |          |         |          |         |         | 2-H      | P Overs | ized M | otor & | Drive | 1    |

### Table PD-70 - Continued

#### 1-HP Standard Motor & High Static Drive (or 2-HP Oversized Motor)

|      |                                                          |      |      |      |          |         | Ex        | ternal S | tatic Pres | sure (In | ches of V | Vater) |      |      |      |          |      |                     |          |       |
|------|----------------------------------------------------------|------|------|------|----------|---------|-----------|----------|------------|----------|-----------|--------|------|------|------|----------|------|---------------------|----------|-------|
|      | 1                                                        | .10  | 1    | .20  | 1        | .30     | 1         | .40      | 1.9        | 50       | 1.0       | 60     | 1    | .70  | 1.8  | 30       | 1.9  | 90                  | 2        | .00   |
| CFM  | RPM                                                      | BHP  | RPM  | BHP  | RPM      | BHP     | RPM       | BHP      | RPM        | BHP      | RPM       | BHP    | RPM  | BHP  | RPM  | BHP      | RPM  | BHP                 | RPM      | BHP   |
| 1-H  | P Stand                                                  | ard  |      | 1-H  | P Standa | ard Mot | tor & Hig | jh Stati | C          |          |           |        |      |      |      |          |      |                     |          |       |
| Mo   | Motor & Drive Drive Kit(or 2 HP Oversized Motor & Drive) |      |      |      |          |         |           |          |            |          |           |        |      |      |      |          |      |                     |          |       |
| 1920 | 996                                                      | 1.06 | 1033 | 1.16 | 1067     | 1.25    | 1102      | 1.35     | 1134       | 1.44     | 1165      | 1.53   | 1195 | 1.63 | 1223 | 1.72     | 1251 | 1.82                | 1277     | 1.91  |
| 2160 | 1018                                                     | 1.23 | 1054 | 1.32 | 1090     | 1.42    | 1123      | 1.52     | 1156       | 1.63     | 1188      | 1.73   | 1218 | 1.84 | 1247 | 1.94     | 1276 | 2.05                | 1304     | 2.16  |
| 2400 | 1044                                                     | 1.42 | 1079 | 1.52 | 1112     | 1.62    | 1145      | 1.73     | 1177       | 1.83     | 1208      | 1.94   | 1240 | 2.06 | 1268 | 2.17     | 1298 | 2.29                | _        | _     |
| 2640 | 1075                                                     | 1.62 | 1107 | 1.74 | 1139     | 1.85    | 1170      | 1.96     | 1201       | 2.08     | 1232      | 2.19   | _    | _    | _    | _        | 2-H  | P Over              | sized M  | lotor |
| 2880 |                                                          |      |      |      |          |         |           |          |            |          | _         | _      | _    | _    | _    | _        | &F   | ieldSu <sub>l</sub> | pplied F | ligh  |
|      |                                                          |      |      |      | 2-H      | P Overs | ized Mo   | tor & D  |            |          |           |        |      |      |      | tic Driv |      |                     |          |       |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

1-HP Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024. 2-HP Fan Motor Heat (MBH) = 3.000 x Fan BHP+.5000

Field Supplied Fan Sheave AK84 and Belt AX34 required.
 Field Supplied Fan Sheave AK54 and Belt AX30 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-71 — Belt Drive Evaporator Fan Performance — 6 Ton — YHC072A3,A4,AW\*H — High Heat — Horizontal Airflow

|      |        |         |          |           |          |      |     | Extern | (Inches | of Wate | r)  |      |                                    |         |         |       |      |      |      |       |
|------|--------|---------|----------|-----------|----------|------|-----|--------|---------|---------|-----|------|------------------------------------|---------|---------|-------|------|------|------|-------|
|      | .1     | 0       | .2       | 20        | .3       | 0    | .4  | Ю      | .5      | 50      | .6  | 60   | .7                                 | 0       | 3.      | 30    | .9   | 0    | 1.0  | 0     |
| CFM  | RPM    | BHP     | RPM      | BHP       | RPM      | BHP  | RPM | BHP    | RPM     | BHP     | RPM | BHP  | RPM                                | BHP     | RPM     | BHP   | RPM  | BHP  | RPM  | BHP   |
|      | 1-HP S | tandard | Motor    | & Field   | Supplied | ł    |     |        |         |         |     | 1    | -HP Star                           | ndard N | lotor & | Drive |      |      |      |       |
|      |        | Low     | Static E | Orive (1) |          |      |     |        |         |         |     |      |                                    |         |         |       |      |      |      |       |
| 1920 | 565    | 0.31    | 627      | 0.39      | 680      | 0.46 | 727 | 0.52   | 772     | 0.61    | 816 | 0.69 | 859                                | 0.77    | 902     | 0.86  | 942  | 0.94 | 981  | 1.03  |
| 2160 | 621    | 0.43    | 677      | 0.50      | 729      | 0.59 | 774 | 0.66   | 816     | 0.74    | 856 | 0.83 | 895                                | 0.93    | 934     | 1.02  | 973  | 1.11 | 1009 | 1.21  |
| 2400 | 680    | 0.57    | 729      | 0.65      | 778      | 0.74 | 823 | 0.84   | 862     | 0.92    | 900 | 1.00 | 936                                | 1.10    | 972     | 1.20  | 1006 | 1.31 | 1041 | 1.41\ |
| 2640 | 741    | 0.75    | 782      | 0.82      | 828      | 0.92 | 872 | 1.03   | 911     | 1.13    | 947 | 1.21 | 981                                | 1.31    | 1014    | 1.41  | 1048 | 1.53 | 1079 | 1.64  |
| 2880 | 802    | 0.95    | 837      | 1.04      | 880      | 1.13 | 921 | 1.24   | 960     | 1.36    | 995 | 1.47 | 1028 1.56 1060 1.66 1091 1.77 1122 |         |         |       |      | 1.89 |      |       |
|      |        |         |          |           |          |      |     |        |         |         |     |      | 2-HP Oversized Motor & Drive       |         |         |       |      |      |      |       |
|      |        |         |          |           |          |      |     |        |         |         |     |      | •                                  |         |         |       |      |      |      |       |

1-HP Standard Motor & High Static Drive Kit (or 2-HP Oversized Motor)

### Table PD-71 — Continued

|      | External Static Pressure (Inches of Water) |         |         |         |           |         |         |          |            |           |           |        |      |      |      |         |          |      |      |      |
|------|--------------------------------------------|---------|---------|---------|-----------|---------|---------|----------|------------|-----------|-----------|--------|------|------|------|---------|----------|------|------|------|
|      |                                            |         |         |         |           |         | Ex      | ternal S | tatic Pres | ssure (In | ches of V | Vater) |      |      |      |         |          |      |      |      |
|      | 1                                          | .10     | 1       | 1.20    | 1         | .30     | 1       | .40      | 1.         | 50        | 1.0       | 60     | 1    | .70  | 1.8  | 80      | 1.9      | 90   | 2    | .00  |
| CFM  | RPM                                        | BHP     | RPM     | BHP     | RPM       | BHP     | RPM     | BHP      | RPM        | BHP       | RPM       | BHP    | RPM  | BHP  | RPM  | BHP     | RPM      | BHP  | RPM  | BHP  |
|      | 1-H                                        | P Stand | lard Mo | tor & H | igh Stati | c Drive | Kit     |          |            |           |           |        |      |      |      |         |          |      |      |      |
|      | (or 2 HP Oversized Motor & Drive)          |         |         |         |           |         |         |          |            |           |           |        |      |      |      |         |          |      |      |      |
| 1920 | 1018                                       | 1.12    | 1054    | 1.21    | 1089      | 1.31    | 1122    | 1.40     | 1154       | 1.50      | 1184      | 1.59   | 1212 | 1.69 | 1241 | 1.78    | 1268     | 1.88 | 1293 | 1.97 |
| 2160 | 1045                                       | 1.30    | 1081    | 1.40    | 1114      | 1.50    | 1149    | 1.61     | 1181       | 1.71      | 1211      | 1.81   | 1241 | 1.92 | 1270 | 2.03    | 1298     | 2.13 | 1324 | 2.24 |
| 2400 | 1076                                       | 1.51    | 1110    | 1.62    | 1143      | 1.72    | 1176    | 1.83     | 1206       | 1.94      | 1238      | 2.05   | 1267 | 2.16 | 1297 | 2.28    | <b>-</b> | _    | _    | _    |
| 2640 | 1111                                       | 1.75    | 1144    | 1.87    | 1174      | 1.98    | 1205    | 2.09     | 1236       | 2.21      | _         | _      | _    | _    | _    | _       | _        | _    | _    | _    |
| 2880 | 1151                                       | 2.02    | 1180    | 2.14    | 1209      | 2.27    | _       | _        | _          | _         | _         | _      | _    | _    | -    | _       | _        | _    | _    | _    |
|      |                                            |         |         |         | 2-H       | P Overs | ized Mo | tor & D  | rive       |           |           |        |      |      |      | P Overs |          |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories 1-HP Fan Motor Heat (MBH) = 2.829 x Fan BHP+.4024.

1. Field Supplied Fan Sheave AK84 and Belt AX34 required.

2. Field Supplied Fan Sheave AK54 and Belt AX30 required. Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

<sup>2-</sup>HP Fan Motor Heat (MBH) = 3.000 x Fan BHP+.5000



### (7½ Ton) **High Efficiency**

| Table PD-72 — Belt Drive Evaporator I | Fan Performance — 7½-Ton | – YHC092A3,A4,AW *L,M | 1 — Low and Medium Heat | —DownflowAirflow |
|---------------------------------------|--------------------------|-----------------------|-------------------------|------------------|
|                                       |                          |                       |                         |                  |

|      |                      |      |     |                             |     |      |         | Extern | al Static | Pressure | (Inches | of Water | -)  |      |     |      |     |      |     |      |
|------|----------------------|------|-----|-----------------------------|-----|------|---------|--------|-----------|----------|---------|----------|-----|------|-----|------|-----|------|-----|------|
|      | .1                   | 0    | .2  | 20                          | .3  | 30   | .4      | 10     |           | 50       | .6      | 60       | .7  | 70   | 3.  | 30   | .9  | 0    | 1.0 | 00   |
| CFM  | RPM                  | BHP  | RPM | BHP                         | RPM | BHP  | RPM     | BHP    | RPM       | BHP      | RPM     | BHP      | RPM | BHP  | RPM | BHP  | RPM | BHP  | RPM | BHP  |
|      |                      |      |     |                             | 2-  |      | ndard M |        |           | plied    |         |          |     |      |     |      |     |      |     |      |
|      | Low Static Drive (1) |      |     |                             |     |      |         |        |           |          |         |          |     |      |     |      |     |      |     |      |
| 2400 | _                    | _    | _   | _                           | _   | _    | 613     | 0.58   | 656       | 0.68     | 696     | 0.79     | 732 | 0.91 | 765 | 1.03 | 798 | 1.16 | 829 | 1.30 |
| 2700 | _                    | _    | _   | _                           | 605 | 0.58 | 647     | 0.69   | 687       | 0.81     | 726     | 0.93     | 762 | 1.05 | 796 | 1.18 | 828 | 1.32 | 857 | 1.45 |
| 3000 | _                    | _    | 606 | 0.62                        | 645 | 0.72 | 684     | 0.83   | 721       | 0.96     | 758     | 1.09     | 792 | 1.22 | 826 | 1.36 | 858 | 1.49 | 888 | 1.64 |
| 3300 | 609                  | 0.66 | 650 | 0.77                        | 688 | 0.89 | 723     | 1.00   | 758       | 1.13     | 792     | 1.27     | 825 | 1.41 | 857 | 1.56 | 888 | 1.70 | 918 | 1.85 |
| 3600 | 658                  | 0.84 | 695 | 0.96                        | 731 | 1.08 | 764     | 1.20   | 796       | 1.33     | 828     | 1.47     | 859 | 1.63 | 890 | 1.79 | 920 | 1.94 | 949 | 2.10 |
|      |                      |      |     | 2-HP Standard Motor & Drive |     |      |         |        |           |          |         |          |     |      |     |      |     |      |     |      |

#### Table PD-72 - Continued

|      |     |      |      |         |         |          | Ex   | ternal S | tatic Pres | sure (In | ches of V | Vater) |          |      |      |      |      |      |      |      |
|------|-----|------|------|---------|---------|----------|------|----------|------------|----------|-----------|--------|----------|------|------|------|------|------|------|------|
|      | 1   | .10  | 1    | .20     | 1       | .30      | 1    | .40      | 1.         | 50       | 1.6       | 60     | 1        | 1.70 | 1.5  | 80   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM | BHP  | RPM  | BHP     | RPM     | BHP      | RPM  | BHP      | RPM        | BHP      | RPM       | BHP    | RPM      | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |     |      | 2-H  | P Stand | ard Mot | or & Dri | ive  |          |            |          |           |        |          |      |      |      |      |      |      |      |
| 2400 |     |      |      |         |         |          |      |          |            |          |           |        |          | 1072 | 2.59 | 1095 | 2.75 |      |      |      |
| 2700 | 886 | 1.60 | 915  | 1.75    | 942     | 1.90     | 969  | 2.05     | 995        | 2.21     | 1020      | 2.36   | 1045     | 2.51 | 1069 | 2.67 | 1093 | 2.83 | 1117 | 3.00 |
| 3000 | 916 | 1.79 | 944  | 1.94    | 970     | 2.10     | 995  | 2.26     | 1020       | 2.43     | 1044      | 2.59   | 1069     | 2.76 | 1092 | 2.93 | 1116 | 3.10 | 1139 | 3.27 |
| 3300 | 947 | 2.01 | 974  | 2.16    | 1000    | 2.33     | 1026 | 2.50     | 1050       | 2.67     | 1073      | 2.84   | 1097     | 3.02 | 1119 | 3.20 | 1141 | 3.38 | _    | _    |
| 3600 | 976 | 2.25 | 1004 | 2.42    | 1030    | 2.58     | 1056 | 2.76     | 1080       | 2.94     | 1103      | 3.12   | 1126     | 3.30 | _    | _    | _    | _    | _    | _    |
|      |     |      |      |         |         |          |      |          |            | 3-H      | P Oversi  | zed Mo | tor & Dr | ive  |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2-HP Fan Motor Heat (MBH) =  $2.000 \times \text{Fan BHP} + .5000$ . 3-HP Fan Motor Heat (MBH) =  $2.900 \times \text{Fan BHP} + .4750$ .

1. Field Supplied Fan Sheave AK79 and Belt AX38 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-73 — Belt Drive Evaporator Fan Performance — 71/2-Ton — YHC092A3,A4,AW \*H — High Heat —DownflowAirflow

|      |                                                |      |     |      |     |      |     | Extern | al Static | Pressure | (Inches | of Water | r)       |         |         |      |      |      |      |      |
|------|------------------------------------------------|------|-----|------|-----|------|-----|--------|-----------|----------|---------|----------|----------|---------|---------|------|------|------|------|------|
|      | .1                                             | 10   | .2  | 20   | .3  | 30   | .4  | 10     |           | 50       | .6      | 60       | .7       | 70      | 8.      | 30   | .9   | 0    | 1.0  | 00   |
| CFM  | RPM                                            | BHP  | RPM | BHP  | RPM | BHP  | RPM | BHP    | RPM       | BHP      | RPM     | BHP      | RPM      | BHP     | RPM     | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 2-HP Standard Motor & Field Supplied           |      |     |      |     |      |     |        |           |          |         |          |          |         |         |      |      |      |      |      |
|      | Low Static Drive (1)                           |      |     |      |     |      |     |        |           |          |         |          |          |         |         |      |      |      |      |      |
| 2400 | 623 0.60 664 0.70 703 0.82 739 0.93 <u>773</u> |      |     |      |     |      |     |        |           |          |         |          |          |         | 1.06    | 804  | 1.19 | 835  | 1.32 |      |
| 2700 | _                                              | _    | _   | _    | 617 | 0.61 | 658 | 0.73   | 698       | 0.84     | 736     | 0.96     | 771      | 1.08    | 804     | 1.21 | 835  | 1.35 | 865  | 1.49 |
| 3000 | _                                              | _    | 619 | 0.65 | 658 | 0.75 | 696 | 0.87   | 733       | 1.00     | 770     | 1.13     | 804      | 1.26    | 837     | 1.40 | 868  | 1.54 | 897  | 1.69 |
| 3300 | 625                                            | 0.70 | 666 | 0.82 | 702 | 0.93 | 737 | 1.05   | 771       | 1.19     | 805     | 1.33     | 838      | 1.47    | 870     | 1.62 | 900  | 1.76 | 929  | 1.91 |
| 3600 | 675                                            | 0.89 | 713 | 1.02 | 747 | 1.14 | 779 | 1.26   | 811       | 1.40     | 843     | 1.55     | 874      | 1.70    | 904     | 1.86 | 934  | 2.02 | 962  | 2.17 |
|      |                                                |      |     |      |     |      |     |        |           |          |         | 2-HI     | P Standa | ard Mot | or & Dr | ive  |      |      |      |      |

#### Table PD-73 - Continued

|      |     |                          |      |         |         |         | Ex   | ternal S | tatic Pres | sure (In | ches of V | Vater) |          |      |      |      |      |      |      |      |
|------|-----|--------------------------|------|---------|---------|---------|------|----------|------------|----------|-----------|--------|----------|------|------|------|------|------|------|------|
|      | 1   | l.10                     | 1    | .20     | 1       | .30     | 1    | .40      | 1.9        | 50       | 1.6       | 60     | 1        | .70  | 1.8  | 80   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM | BHP                      | RPM  | BHP     | RPM     | BHP     | RPM  | BHP      | RPM        | BHP      | RPM       | BHP    | RPM      | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |     |                          | 2-H  | P Stand | ard Mot | or & Dr | ive  |          |            |          |           |        |          |      |      |      |      |      |      |      |
| 2400 | 864 | 1.46                     | 895  | 1.60    | 923     | 1.74    | 951  | 1.88     | 977        | 2.02     | 1003      | 2.17   | 1028     | 2.32 | 1053 | 2.47 | 1078 | 2.63 | 1100 | 2.78 |
| 2700 | 894 | 894 1.64 921 1.79 948 1. |      |         |         |         | 974  | 2.09     | 1001       | 2.24     | 1027      | 2.40   | 1052     | 2.56 | 1076 | 2.72 | 1100 | 2.88 | 1124 | 3.05 |
| 3000 | 925 | 1.83                     | 952  | 1.99    | 978     | 2.15    | 1004 | 2.32     | 1029       | 2.48     | 1052      | 2.65   | 1076     | 2.82 | 1100 | 2.99 | 1123 | 3.15 | 1146 | 3.33 |
| 3300 | 958 | 2.06                     | 984  | 2.22    | 1010    | 2.39    | 1035 | 2.56     | 1059       | 2.73     | 1082      | 2.91   | 1105     | 3.09 | 1128 | 3.28 | _    | _    | _    | _    |
| 3600 | 990 | 2.33                     | 1017 | 2.50    | 1043    | 2.66    | 1067 | 2.84     | 1091       | 3.02     | 1114      | 3.20   | 1137     | 3.39 | _    | _    | _    | _    | _    | _    |
|      |     |                          |      |         |         |         |      |          |            | 3-H      | P Oversi  | zed Mo | tor & Dr | ive  |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2-HP Fan Motor Heat (MBH) =  $2.000 \times \text{Fan BHP} + .5000$ . 3-HP Fan Motor Heat (MBH) =  $2.900 \times \text{Fan BHP} + .4750$ 

<sup>1.</sup> Field Supplied Fan Sheave AK79 and Belt AX38 required

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



(7½ Ton) **High Efficiency** 

|      |     |      |     |      |     |         |         | Extern    | al Static | Pressure | (Inches | of Water | r)  |      |      |      |      |      |      |      |
|------|-----|------|-----|------|-----|---------|---------|-----------|-----------|----------|---------|----------|-----|------|------|------|------|------|------|------|
|      | .1  | 0    | .2  | 20   | .3  | 80      | .4      | 10        |           | 50       | .6      | 60       | .7  | 70   | 3.   | 80   | .9   | 0    | 1.0  | 0    |
| CFM  | RPM | BHP  | RPM | BHP  | RPM | BHP     | RPM     | BHP       | RPM       | BHP      | RPM     | BHP      | RPM | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |     |      |     |      | 2-  | HP Star | ndard M |           |           | pplied   |         |          |     |      |      |      |      |      |      |      |
|      |     |      |     |      |     |         | Low Sta | itic Driv | e (1)     |          |         |          |     |      |      |      |      |      |      |      |
| 2400 | _   | _    | 599 | 0.52 | 650 | 0.62    | 703     | 0.75      | 751       | 0.87     | 789     | 0.98     | 823 | 1.08 | 855  | 1.19 | 885  | 1.29 | 912  | 1.39 |
| 2700 | 604 | 0.58 | 651 | 0.68 | 694 | 0.79    | 741     | 0.91      | 789       | 1.06     | 832     | 1.19     | 868 | 1.32 | 900  | 1.44 | 931  | 1.56 | 959  | 1.68 |
| 3000 | 661 | 0.77 | 705 | 0.88 | 744 | 1.00    | 783     | 1.12      | 826       | 1.26     | 869     | 1.42     | 909 | 1.58 | 945  | 1.73 | 976  | 1.86 | 1004 | 1.99 |
| 3300 | 719 | 1.00 | 758 | 1.11 | 797 | 1.25    | 832     | 1.37      | 867       | 1.51     | 907     | 1.68     | 946 | 1.85 | 983  | 2.02 | 1017 | 2.18 | 1048 | 2.34 |
| 3600 | 779 | 1.28 | 813 | 1.39 | 850 | 1.54    | 883     | 1.68      | 915       | 1.82     | 948     | 1.97     | 984 | 2.15 | 1020 | 2.33 | 1055 | 2.52 | 1088 | 2.71 |
|      |     |      |     |      |     |         | 3-H     | P Overs   | sized M   | otor &   | Drive   |          |     |      |      |      |      |      |      |      |

#### Table PD-74 - Continued

|      |      |      |      |         |          |         | Ex       | ternal S | tatic Pres | sure (In | ches of V | Vater) |      |      |      |      |      |      |      |      |
|------|------|------|------|---------|----------|---------|----------|----------|------------|----------|-----------|--------|------|------|------|------|------|------|------|------|
|      | 1    | .10  | 1    | .20     | 1        | .30     | 1        | 1.40     | 1.5        | 50       | 1.0       | 60     | 1    | .70  | 1.3  | 80   | 1.9  | 90   | 2    | .00  |
| CFM  | RPM  | BHP  | RPM  | BHP     | RPM      | BHP     | RPM      | BHP      | RPM        | BHP      | RPM       | BHP    | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |      |      | 2-H  | P Stand | lard Mot | or & Dr | ive      |          |            |          |           |        |      |      |      |      |      |      |      |      |
| 2400 | 939  | 1.50 | 965  | 1.60    | 990      | 1.71    | 1014     | 1.81     | 1039       | 1.92     | 1063      | 2.03   | 1085 | 2.14 | 1108 | 2.25 | 1131 | 2.36 | 1154 | 2.49 |
| 2700 | 985  | 1.79 | 1010 | 1.91    | 1034     | 2.03    | 1058     | 2.14     | 1081       | 2.26     | 1104      | 2.38   | 1126 | 2.50 | 1148 | 2.62 | 1169 | 2.74 | 1190 | 2.86 |
| 3000 | 1031 | 2.12 | 1056 | 2.25    | 1081     | 2.39    | 1104     | 2.51     | 1127       | 2.65     | 1148      | 2.77   | 1169 | 2.90 | 1190 | 3.03 | 1210 | 3.16 | 1231 | 3.30 |
| 3300 | 1077 | 2.50 | 1102 | 2.64    | 1127     | 2.78    | 1151     | 2.93     | 1174       | 3.07     | 1194      | 3.21   | 1216 | 3.36 | _    | _    | _    | _    | _    | _    |
| 3600 | 1120 | 2.89 | 1146 | 3.06    | 1172     | 3.22    | 1195     | 3.38     | _          | _        | _         | _      | _    | _    | _    | _    | _    | _    | _    | _    |
|      |      |      |      | 3-H     | P Oversi | zed Mo  | tor & Dr | ive      |            |          |           |        |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories 2-HP Fan Motor Heat (MBH) =  $2.000 \times$  Fan BHP+.5000. 3-HP Fan Motor Heat (MBH) =  $2.900 \times$  Fan BHP+.4750

Field Supplied Fan Sheave AK79 and Belt AX38 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-75 — Belt Drive Evaporator Fan Performance — 7½-Ton — YHC092A3,A4,AW \*H — High Heat —Horizontal Airflow

|      |                                                                           |      |     | •    |          |         |          |           |           |          |         |         | •    |      |      |         |         |        |       |      |
|------|---------------------------------------------------------------------------|------|-----|------|----------|---------|----------|-----------|-----------|----------|---------|---------|------|------|------|---------|---------|--------|-------|------|
|      |                                                                           |      |     |      |          |         |          | Extern    | al Static | Pressure | (Inches | of Wate | r)   |      |      |         |         |        |       |      |
|      | .1                                                                        | 10   | .:  | 20   | .3       | 30      | .4       | 40        | .!        | 50       | .6      | 60      | .7   | 70   | 3.   | 30      | .90     | 0      | 1.0   | 00   |
| CFM  | RPM                                                                       | BHP  | RPM | BHP  | RPM      | BHP     | RPM      | BHP       | RPM       | BHP      | RPM     | BHP     | RPM  | BHP  | RPM  | BHP     | RPM     | BHP    | RPM   | BHP  |
|      |                                                                           |      |     |      | 2-       | HP Star | ndard M  | otor & F  | ield Su   | pplied   |         |         |      |      |      |         |         |        |       |      |
|      |                                                                           |      |     |      |          |         | Low Sta  | atic Driv |           |          |         |         |      |      |      |         |         |        |       |      |
| 2400 | <b>Low Static Drive (1</b> )<br>100 — 613 0.54 666 0.66 718 0.78 762 0.90 |      |     |      |          |         |          |           |           |          |         |         | 833  | 1.11 | 864  | 1.22    | 893     | 1.32   | 920   | 1.42 |
| 2700 | 621                                                                       | 0.61 | 667 | 0.72 | 710      | 0.83    | 759      | 0.97      | 804       | 1.10     | 846     | 1.24    | 880  | 1.36 | 911  | 1.48    | 941     | 1.60   | 968   | 1.72 |
| 3000 | 680                                                                       | 0.81 | 723 | 0.93 | 761      | 1.05    | 802      | 1.18      | 845       | 1.33     | 888     | 1.49    | 925  | 1.64 | 959  | 1.79    | 988     | 1.92   | 1016  | 2.05 |
| 3300 | 740                                                                       | 1.06 | 780 | 1.19 | 816      | 1.31    | 850      | 1.45      | 889       | 1.60     | 928     | 1.77    | 966  | 1.94 | 1002 | 2.11    | 1036    | 2.28   | 1063  | 2.42 |
| 3600 | 800                                                                       | 1.35 | 837 | 1.49 | 1.91     | 971     | 2.08     | 1007      | 2.27      | 1043     | 2.45    | 1077    | 2.64 | 1108 | 2.83 |         |         |        |       |      |
|      |                                                                           |      |     | 2-H  | P Standa | ard Mot | or & Dri | ve        |           |          |         |         |      |      | 3-H  | P Overs | sized M | otor & | Drive |      |

### Table PD-75 — Continued

|      | External Static Pressure (Inches of Wa |      |      |         |          |         |          |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------|----------------------------------------|------|------|---------|----------|---------|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|      | 1                                      | .10  | 1    | 1.20    | 1        | .30     | 1        | 1.40 | 1.   | 50   | 1.0  | 60   | 1    | .70  | 1.8  | 30   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM                                    | BHP  | RPM  | BHP     | RPM      | BHP     | RPM      | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |                                        |      | 2-H  | P Stand | lard Mot | or & Dr | ive      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 2400 | 946                                    | 1.53 | 972  | 1.64    | 997      | 1.74    | 1022     | 1.84 | 1045 | 1.95 | 1069 | 2.06 | 1092 | 2.17 | 1115 | 2.28 | 1137 | 2.40 | 1160 | 2.52 |
| 2700 | 994                                    | 1.84 | 1019 | 1.95    | 1043     | 2.07    | 1066     | 2.18 | 1089 | 2.30 | 1112 | 2.42 | 1134 | 2.54 | 1155 | 2.66 | 1177 | 2.78 | 1197 | 2.90 |
| 3000 | 1043                                   | 2.18 | 1067 | 2.31    | 1091     | 2.44    | 1114     | 2.57 | 1137 | 2.70 | 1158 | 2.83 | 1178 | 2.96 | 1200 | 3.09 | 1220 | 3.22 | 1240 | 3.35 |
| 3300 | 1090                                   | 2.57 | 1116 | 2.72    | 1140     | 2.86    | 1162     | 3.00 | 1185 | 3.15 | 1206 | 3.29 | 1227 | 3.43 | _    | _    | _    | _    | _    | _    |
| 3600 | 137                                    | 3.00 | 1163 | 3.17    | 1188     | 3.33    | _        | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    |
|      |                                        |      |      | 3-H     | P Oversi | zed Mo  | tor & Dr | ive  |      |      |      |      |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2-HP Fan Motor Heat (MBH) = 2.000 x Fan BHP+.5000. 3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.4750

<sup>1.</sup> Field Supplied Fan Sheave AK79 and Belt AX38 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### (8½ Ton) **High Efficiency**

Table PD-76— Belt Drive Evaporator Fan Performance — 81/2-Ton — YHC102A3,A4,AW \*L — Low Heat — Downflow Airflow

|      | External Static Pressure (Inches of Water) .10 .20 .30 .40 .50 .60 .70 |      |     |      |     |         |         |          |          |       |      |      |      |      |      |         |         |          |       |      |
|------|------------------------------------------------------------------------|------|-----|------|-----|---------|---------|----------|----------|-------|------|------|------|------|------|---------|---------|----------|-------|------|
|      | .1                                                                     | 0    | .2  | 20   | .3  | 30      | .4      | 10       |          | 50    | .6   | 60   | .7   | 70   | 3.   | 30      | .9      | 0        | 1.0   | 0    |
| CFM  | RPM                                                                    | BHP  | RPM | BHP  | RPM | BHP     | RPM     | BHP      | RPM      | BHP   | RPM  | BHP  | RPM  | BHP  | RPM  | BHP     | RPM     | BHP      | RPM   | BHP  |
|      |                                                                        |      |     |      | 2-  | HP Star | ndard M | otor & F | ield Su  | plied |      |      |      |      |      |         |         |          |       |      |
|      |                                                                        |      |     |      |     |         |         |          |          |       |      |      |      |      |      |         |         |          |       |      |
| 2720 | _                                                                      | _    | _   | _    | 621 | 0.62    | 662     | 0.74     | 1.11     | 810   | 1.24 | 841  | 1.38 | 871  | 1.52 |         |         |          |       |      |
| 3060 | 587                                                                    | 0.58 | 630 | 0.69 | 668 | 0.79    | 707     | 0.92     | 743      | 1.05  | 779  | 1.18 | 814  | 1.32 | 846  | 1.45    | 878     | 1.60     | 907   | 1.75 |
| 3400 | 643                                                                    | 0.77 | 683 | 0.89 | 718 | 1.00    | 753     | 1.13     | 787      | 1.26  | 820  | 1.41 | 853  | 1.56 | 884  | 1.71    | 915     | 1.86     | 944   | 2.02 |
| 3740 | 699                                                                    | 0.99 | 736 | 1.12 | 770 | 1.25    | 802     | 1.38     | 833      | 1.52  | 864  | 1.67 | 894  | 1.83 | 925  | 2.00    | 953     | 2.16     | 982   | 2.33 |
| 4080 | 757                                                                    | 1.26 | 790 | 1.40 | 823 | 1.55    | 853     | 1.69     | 882      | 1.83  | 910  | 1.98 | 938  | 2.15 | 967  | 2.32    | 994     | 2.50     | 1021  | 2.68 |
|      |                                                                        |      |     |      |     | 2-HI    | P Stand | ard Mot  | or & Dri | ve    |      |      |      |      | 3-H  | IP Over | sized N | /lotor 8 | Drive |      |

#### Table PD-76 - Continued

|      |      |      |      |         |          |          | Ex       | ternal S | tatic Pres | sure (In | ches of V | Vater) |      |      |      |      |      |      |      |      |
|------|------|------|------|---------|----------|----------|----------|----------|------------|----------|-----------|--------|------|------|------|------|------|------|------|------|
|      | 1    | .10  | 1    | 1.20    | 1        | .30      | 1        | 1.40     | 1.9        | 50       | 1.0       | 60     | 1    | 1.70 | 1.8  | 80   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM  | BHP  | RPM  | BHP     | RPM      | BHP      | RPM      | BHP      | RPM        | BHP      | RPM       | BHP    | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |      |      | 2-H  | P Stand | lard Mot | or & Dri | ive      |          |            |          |           |        |      |      |      |      |      |      |      |      |
| 2720 | 900  | 1.67 | 927  | 1.82    | 954      | 1.97     | 980      | 2.12     | 1006       | 2.28     | 1032      | 2.44   | 1057 | 2.60 | 1082 | 2.76 | 1105 | 2.92 | 1129 | 3.09 |
| 3060 | 936  | 1.90 | 962  | 2.06    | 989      | 2.22     | 1014     | 2.39     | 1039       | 2.56     | 1062      | 2.73   | 1085 | 2.90 | 1109 | 3.07 | 1133 | 3.25 | 1155 | 3.43 |
| 3400 | 973  | 2.17 | 999  | 2.34    | 1025     | 2.51     | 1050     | 2.68     | 1074       | 2.86     | 1097      | 3.04   | 1120 | 3.22 | 1142 | 3.41 | _    | _    | _    | _    |
| 3740 | 1010 | 2.50 | 1036 | 2.66    | 1062     | 2.84     | 1087     | 3.01     | 1110       | 3.19     | 1134      | 3.39   | _    | _    | _    | _    | _    | _    | _    | _    |
| 4080 | 1047 | 2.86 | 1073 | 3.04    | 1098     | 3.22     | 1123     | 3.40     | _          | _        | _         | _      | _    | _    | _    | _    | _    | _    | _    | _    |
|      |      |      |      | 3-H     | P Oversi | zed Mo   | tor & Dr | ive      |            |          |           |        |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2-HP Fan Motor Heat (MBH) = 2.000 x Fan BHP+.5000. 3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.4750

1. Field Supplied Fan Sheave AK79 and Belt AX38 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected

Table PD-77 — Belt Drive Evaporator Fan Performance — 8½-Ton — YHC102A3,A4,AW \*M— Medium Heat —Downflow Airflow

|      | External Static Pressure (Inches of Water) |                                                              |     |      |          |         |          |      |     |      |     |      |     |      |     |         |         |        |       |      |
|------|--------------------------------------------|--------------------------------------------------------------|-----|------|----------|---------|----------|------|-----|------|-----|------|-----|------|-----|---------|---------|--------|-------|------|
|      | .1                                         | 0                                                            | .2  | 20   | .3       | 30      | .4       | 10   |     | 50   | .6  | 60   |     | 70   | 3.  | 30      | .9      | 0      | 1.0   | 0    |
| CFM  | RPM                                        | BHP                                                          | RPM | BHP  | RPM      | BHP     | RPM      | BHP  | RPM | BHP  | RPM | BHP  | RPM | BHP  | RPM | BHP     | RPM     | BHP    | RPM   | BHP  |
|      |                                            | 2-HP Standard Motor & Field Supplied<br>Low Static Drive (1) |     |      |          |         |          |      |     |      |     |      |     |      |     |         |         |        |       |      |
|      |                                            |                                                              |     |      |          |         |          |      |     |      |     |      |     |      |     |         |         |        |       |      |
| 2720 | _                                          | 623 0.63 664 0.75 704 0.87 742 0.99 <u>778</u>               |     |      |          |         |          |      |     |      |     |      |     |      |     | 1.24    | 842     | 1.38   | 872   | 1.53 |
| 3060 | 589                                        | 0.58                                                         | 632 | 0.69 | 670      | 0.80    | 709      | 0.92 | 745 | 1.06 | 781 | 1.19 | 815 | 1.32 | 848 | 1.46    | 880     | 1.60   | 909   | 1.75 |
| 3400 | 645                                        | 0.77                                                         | 685 | 0.89 | 721      | 1.01    | 755      | 1.13 | 789 | 1.27 | 822 | 1.42 | 854 | 1.57 | 886 | 1.72    | 916     | 1.87   | 945   | 2.02 |
| 3740 | 702                                        | 1.00                                                         | 739 | 1.14 | 772      | 1.26    | 804      | 1.39 | 836 | 1.53 | 867 | 1.69 | 897 | 1.85 | 926 | 2.01    | 956     | 2.18   | 984   | 2.34 |
| 4080 | 759                                        | 1.27                                                         | 793 | 1.42 | 826      | 1.56    | 856      | 1.70 | 884 | 1.84 | 913 | 2.00 | 941 | 2.16 | 969 | 2.34    | 996     | 2.52   | 1024  | 2.70 |
|      |                                            |                                                              |     | 2-HI | P Standa | ard Mot | or & Dri | ve   |     |      |     |      |     |      | 3-H | P Overs | sized M | otor & | Drive |      |

### Table PD-77 - Continued

|      |      |      |      |         |          |         | E×       | ternal S | tatic Pres | sure (In | ches of V | Vater) |      |      |      |      |      |      |      |      |
|------|------|------|------|---------|----------|---------|----------|----------|------------|----------|-----------|--------|------|------|------|------|------|------|------|------|
|      | 1    | .10  | 1    | 1.20    | 1        | .30     | 1        | 1.40     | 1.9        | 50       | 1.0       | 60     | 1    | .70  | 1.8  | 80   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM  | BHP  | RPM  | BHP     | RPM      | BHP     | RPM      | BHP      | RPM        | BHP      | RPM       | BHP    | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |      |      | 2-H  | P Stand | lard Mot | or & Dr | ive      |          |            |          |           |        |      |      |      |      |      |      |      |      |
| 2720 | 900  | 1.67 | 928  | 1.82    | 955      | 1.98    | 982      | 2.14     | 1008       | 2.29     | 1033      | 2.45   | 1057 | 2.60 | 1083 | 2.77 | 1107 | 2.94 | 1129 | 3.10 |
| 3060 | 936  | 1.91 | 964  | 2.07    | 989      | 2.23    | 1015     | 2.39     | 1039       | 2.56     | 1063      | 2.73   | 1088 | 2.92 | 1111 | 3.09 | 1134 | 3.26 | 1157 | 3.44 |
| 3400 | 974  | 2.18 | 1001 | 2.35    | 1027     | 2.52    | 1051     | 2.69     | 1075       | 2.87     | 1098      | 3.05   | 1121 | 3.23 | 1144 | 3.42 | _    | _    | _    | _    |
| 3740 | 1011 | 2.50 | 1038 | 2.68    | 1064     | 2.85    | 1089     | 3.03     | 1113       | 3.22     | 1135      | 3.40   | _    | _    | _    | _    | _    | _    | _    | _    |
| 4080 | 1050 | 2.87 | 1076 | 3.05    | 1101     | 3.24    | 1126     | 3.43     | _          | _        | _         | _      | _    | _    | _    | _    | _    | _    | _    | _    |
|      |      |      |      | 3-H     | P Oversi | zed Mo  | tor & Dr | ive      |            |          |           |        |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories 2-HP Fan Motor Heat (MBH) =  $2.000 \times$  Fan BHP+.5000.

3-HP Fan Motor Heat (MBH) =  $2.900 \times Fan BHP + .4750$ 

1. Field Supplied Fan Sheave AK79 and Belt AX38 required.
Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



(8½ Ton) **High Efficiency** 

| Table PD-78 — Belt Drive | Evaporator Fan Performance - | – 8½-Ton – | - YHC102A3,A4,AW *H | <ul><li>High Heat –</li></ul> | Downflow Airflow |
|--------------------------|------------------------------|------------|---------------------|-------------------------------|------------------|
|                          |                              |            |                     |                               |                  |

|      |     |                                                                                   |                                                           |      |     |        |          | Extern  | al Static | Pressure | (Inches | of Wate | r)  |      |     |         |        |        |       |      |
|------|-----|-----------------------------------------------------------------------------------|-----------------------------------------------------------|------|-----|--------|----------|---------|-----------|----------|---------|---------|-----|------|-----|---------|--------|--------|-------|------|
|      | .1  | 0                                                                                 | .2                                                        | 20   | .3  | 30     | .4       | 40      |           | 50       | .6      | 60      |     | 70   | 3.  | 30      | .9     | 0      | 1.0   | 0    |
| CFM  | RPM | BHP                                                                               | RPM                                                       | BHP  | RPM | BHP    | RPM      | BHP     | RPM       | BHP      | RPM     | BHP     | RPM | BHP  | RPM | BHP     | RPM    | BHP    | RPM   | BHP  |
|      |     |                                                                                   |                                                           |      | 2-  | HP Sta | ndard M  |         |           | pplied   |         |         |     |      |     |         |        |        |       |      |
|      |     | <b>Low Static Drive (1)</b> 590 0.55 633 0.66 674 0.77 713 0.89 750 1.01 786 1.14 |                                                           |      |     |        |          |         |           |          |         |         |     |      |     |         |        |        |       |      |
| 2720 | _   | _                                                                                 | - 590 0.55 633 0.66 674 0.77 713 0.89 <u>750 1.01 786</u> |      |     |        |          |         |           |          |         |         |     |      | 818 | 1.28    | 850    | 1.42   | 879   | 1.56 |
| 3060 | 602 | 0.62                                                                              | 643                                                       | 0.72 | 682 | 0.83   | 719      | 0.96    | 756       | 1.09     | 791     | 1.23    | 825 | 1.36 | 857 | 1.50    | 889    | 1.65   | 917   | 1.80 |
| 3400 | 660 | 0.82                                                                              | 698                                                       | 0.94 | 733 | 1.05   | 767      | 1.18    | 801       | 1.32     | 834     | 1.48    | 866 | 1.62 | 897 | 1.77    | 927    | 1.92   | 956   | 2.08 |
| 3740 | 718 | 1.06                                                                              | 754                                                       | 1.19 | 787 | 1.32   | 818      | 1.45    | 849       | 1.60     | 880     | 1.76    | 910 | 1.92 | 939 | 2.08    | 968    | 2.24   | 996   | 2.41 |
| 4080 | 777 | 1.35                                                                              | 811                                                       | 1.49 | 841 | 1.63   | 870      | 1.77    | 899       | 1.92     | 928     | 2.08    | 956 | 2.26 | 983 | 2.43    | 1011   | 2.61   | 1037  | 2.79 |
|      |     |                                                                                   |                                                           |      |     | 2-H    | P Standa | ard Mot | or & Dri  | ve       |         |         |     |      | 3-H | P Overs | ized M | otor & | Drive |      |

#### Table PD-78 - Continued

|      |                            |      |      |         |          |         | Ex       | ternal S | tatic Pres | sure (In | ches of V | Vater) |      |      |      |      |      |      |      |      |
|------|----------------------------|------|------|---------|----------|---------|----------|----------|------------|----------|-----------|--------|------|------|------|------|------|------|------|------|
|      | 1                          | .10  | 1    | .20     | 1        | .30     | 1        | .40      | 1.         | 50       | 1.0       | 60     | 1    | 1.70 | 1.   | 80   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM                        | BHP  | RPM  | BHP     | RPM      | BHP     | RPM      | BHP      | RPM        | BHP      | RPM       | BHP    | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |                            |      | 2-H  | P Stand | lard Mot | or & Dr | ive      |          |            |          |           |        |      |      |      |      |      |      |      |      |
| 2720 | 907                        | 1.71 | 934  | 1.86    | 960      | 2.01    | 987      | 2.17     | 1014       | 2.33     | 1039      | 2.48   | 1063 | 2.64 | 1088 | 2.81 | 1112 | 2.97 | 1134 | 3.13 |
| 3060 | 945 1.95 971 2.11 997 2.28 |      |      |         |          |         | 1022     | 2.45     | 1047       | 2.62     | 1070      | 2.79   | 1094 | 2.96 | 1117 | 3.14 | 1141 | 3.31 | _    | _    |
| 3400 | 985                        | 2.24 | 1010 | 2.40    | 1036     | 2.58    | 1060     | 2.76     | 1084       | 2.93     | 1106      | 3.11   | 1130 | 3.31 | _    | _    | _    | _    | _    | _    |
| 3740 | 1023                       | 2.58 | 1049 | 2.75    | 1075     | 2.93    | 1099     | 3.11     | 1122       | 3.29     | _         | _      | _    | _    | _    | _    | _    | _    | _    | _    |
| 4080 | 1063                       | 2.96 | 1089 | 3.15    | 1114     | 3.34    | _        | _        | _          | _        | _         | _      | _    | _    | _    | _    | _    | _    | _    | _    |
|      |                            |      |      | 3-H     | P Oversi | zed Mo  | tor & Dr | ive      |            |          |           |        |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories 2-HP Fan Motor Heat (MBH) =  $2.000 \times \text{Fan BHP} + .5000$ .

3-HP Fan Motor Heat (MBH) =  $2.900 \times Fan BHP + .4750$ 

1. Field Supplied Fan Sheave AK79 and Belt AX38 required.
Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-79 — Belt Drive Evaporator Fan Performance — 81/2-Ton — YHC102A3,A4,AW \*L— Low Heat — Horizontal Airflow

|      |       |         |          |          |          |      |     | Extern | al Static | Pressure | e (Inches | of Wate | r)       |      |      |      |      |      |      |      |
|------|-------|---------|----------|----------|----------|------|-----|--------|-----------|----------|-----------|---------|----------|------|------|------|------|------|------|------|
|      | .1    | 0       | .:       | 20       | .3       | 30   | .4  | 10     | .5        | 50       | .6        | 60      | .7       | 70   | 3.   | 30   | .9   | 0    | 1.0  | 00   |
| CFM  | RPM   | BHP     | RPM      | BHP      | RPM      | BHP  | RPM | BHP    | RPM       | BHP      | RPM       | BHP     | RPM      | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |       |         |          | & Field  | l Suppli | ed   |     |        |           |          |           |         |          |      |      |      |      |      |      |      |
|      | Low S | tatic D | rive (1) |          |          |      |     |        |           |          |           |         |          |      |      |      |      |      |      |      |
| 2720 | 622   | 0.62    | 669      | 0.73     | 711      | 0.84 | 760 | 0.97   | 807       | 1.12     | 849       | 1.26    | 884      | 1.38 | 915  | 1.50 | 944  | 1.62 | 972  | 1.74 |
| 3060 |       |         |          |          |          |      |     | 1.22   | 853       | 1.38     | 895       | 1.54    | 934      | 1.70 | 968  | 1.85 | 998  | 1.99 | 1026 | 2.13 |
| 3400 | 756   | 1.14    | 795      | 1.27     | 832      | 1.40 | 866 | 1.54   | 901       | 1.69     | 941       | 1.86    | 979      | 2.04 | 1015 | 2.22 | 1049 | 2.40 | 1079 | 2.56 |
| 3740 | 824   | 1.49    | 859      | 1.62     | 895      | 1.78 | 926 | 1.92   | 957       | 2.07     | 990       | 2.24    | 1025     | 2.42 | 1061 | 2.62 | 1095 | 2.82 | 1127 | 3.02 |
| 4080 | 893   | 1.90    | 925      | 2.05     | 958      | 2.21 | 988 | 2.37   | 1017      | 2.53     | 1046      | 2.70    | 1075     | 2.88 | 1108 | 3.08 | 1140 | 3.29 | _    | _    |
|      | 2-H   | P Stanc | dard Mo  | tor & Dr | ive      |      |     |        |           | 3-H      | P Oversi  | zed Mo  | tor & Dr | ive  |      |      |      |      |      |      |

#### Table PD-79 - Continued

|      |                     |      |      |         |          |         | Ex       | ternal St | tatic Pres | ssure (In | ches of V | Vater) |      |      |      |      |      |      |      |      |
|------|---------------------|------|------|---------|----------|---------|----------|-----------|------------|-----------|-----------|--------|------|------|------|------|------|------|------|------|
|      | 1                   | .10  | 1    | .20     | 1        | .30     | 1        | 1.40      | 1.         | 50        | 1.0       | 60     | 1    | .70  | 1.8  | 30   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM                 | BHP  | RPM  | BHP     | RPM      | BHP     | RPM      | BHP       | RPM        | BHP       | RPM       | BHP    | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |                     |      | 2-H  | P Stanc | lard Mot | or & Dr | ive      |           |            |           |           |        |      |      |      |      |      |      |      |      |
| 2720 | 998                 | 1.86 | 1024 | 1.98    | 1047     | 2.10    | 1071     | 2.22      | 1094       | 2.33      | 1115      | 2.45   | 1138 | 2.57 | 1159 | 2.69 | 1181 | 2.82 | 1201 | 2.94 |
| 3060 | 1053 2.26 1078 2.39 |      |      |         | 1102     | 2.53    | 1125     | 2.66      | 1146       | 2.79      | 1169      | 2.93   | 1190 | 3.06 | 1210 | 3.19 | 1230 | 3.32 | 1250 | 3.45 |
| 3400 | 1106                | 2.71 | 1131 | 2.86    | 1156     | 3.02    | 1179     | 3.16      | 1201       | 3.31      | 1223      | 3.45   | _    | _    | _    | _    | _    | _    | _    | _    |
| 3740 | 1158                | 3.21 | 1185 | 3.39    | _        | _       | _        | _         | _          | _         | _         | _      | _    | _    | _    | _    | _    | _    | _    | _    |
| 4080 | _                   | _    | _    | _       | _        | _       | _        | _         | _          | _         | _         | _      | _    | _    | _    | _    | _    | _    | _    | _    |
|      |                     |      |      | 3-H     | P Oversi | zed Mo  | tor & Dr | ive       |            |           |           |        |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2-HP Fan Motor Heat (MBH) =  $2.000 \times \text{Fan BHP} + .5000$ . 3-HP Fan Motor Heat (MBH) =  $2.900 \times \text{Fan BHP} + .4750$ .

<sup>1.</sup> Field Supplied Fan Sheave AK79 and Belt AX38 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### (8½ Ton) **High Efficiency**

Table PD-80 — Belt Drive Evaporator Fan Performance — 81/2-Ton — YHC102A3,A4,AW \*M — Medium Heat — Horizontal Airflow

|      |         |           |         |         |          |      |     | Extern | al Static | Pressure | e (Inches | of Water | r)       |          |       |      |      |      |      |      |
|------|---------|-----------|---------|---------|----------|------|-----|--------|-----------|----------|-----------|----------|----------|----------|-------|------|------|------|------|------|
|      | .1      | 0         | .2      | 20      | .3       | 80   | .4  | 40     | .5        | 50       | .6        | 60       | .7       | 70       | 3.    | 80   | .9   | 0    | 1.0  | 0    |
| CFM  | RPM     | BHP       | RPM     | BHP     | RPM      | BHP  | RPM | BHP    | RPM       | BHP      | RPM       | BHP      | RPM      | BHP      | RPM   | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 2-HP St | andard    | Motor 8 | & Field | Supplie  | d    |     |        |           |          |           |          |          |          |       |      |      |      |      |      |
|      | Low Sta | atic Driv | /e (1)  |         |          |      |     |        |           |          |           |          |          |          |       |      |      |      |      |      |
| 2720 | 625     |           |         |         |          | 0.84 | 763 | 0.98   | 809       | 1.13     | 851       | 1.27     | 885      | 1.39     | 917   | 1.51 | 946  | 1.63 | 974  | 1.75 |
| 3060 | 691     |           |         |         |          |      |     | 1.23   | 856       | 1.39     | 897       | 1.55     | 936      | 1.71     | 970   | 1.86 | 1001 | 2.00 | 1028 | 2.14 |
| 3400 | 759     | 1.15      | 798     | 1.28    | 835      | 1.41 | 868 | 1.55   | 904       | 1.70     | 943       | 1.87     | 982      | 2.05     | 1019  | 2.23 | 1052 | 2.41 | 1082 | 2.57 |
| 3740 | 827     | 1.50      | 863     | 1.64    | 898      | 1.79 | 930 | 1.94   | 960       | 2.09     | 994       | 2.26     | 1029     | 2.44     | 1064  | 2.64 | 1098 | 2.84 | 1130 | 3.03 |
| 4080 | 897     | 1.92      | 929     | 2.07    | 962      | 2.23 | 992 | 2.39   | 1021      | 2.55     | 1049      | 2.72     | 1079     | 2.90     | 1112  | 3.10 | 1144 | 3.31 | _    | _    |
|      |         | 2-HI      | P Stand | ard Mot | or & Dri | ve   |     |        |           |          | 3-H       | IP Overs | sized Mo | otor & D | Prive |      |      |      |      |      |

### Table PD-80 - Continued

|      |      |      |      |         |          |         | Ex       | ternal S | tatic Pres | sure (In | ches of V | Vater) |      |      |      |      |      |      |      |      |
|------|------|------|------|---------|----------|---------|----------|----------|------------|----------|-----------|--------|------|------|------|------|------|------|------|------|
|      | 1    | .10  | 1    | 1.20    | 1        | .30     | •        | 1.40     | 1.         | 50       | 1.0       | 60     | 1    | 1.70 | 1.3  | 80   | 1.9  | 90   | 2.   | .00  |
| CFM  | RPM  | BHP  | RPM  | BHP     | RPM      | BHP     | RPM      | BHP      | RPM        | BHP      | RPM       | BHP    | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |      |      | 2-H  | P Stanc | lard Mot | or & Dr | ive      |          |            |          |           |        |      |      |      |      |      |      |      |      |
| 2720 | 1000 | 1.87 | 1025 | 1.99    | 1048     | 2.10    | 1072     | 2.22     | 1095       | 2.34     | 1117      | 2.46   | 1139 | 2.58 | 1161 | 2.70 | 1182 | 2.82 | 1203 | 2.95 |
| 3060 | 1054 | 2.27 | 1080 | 2.41    | 1103     | 2.53    | 1126     | 2.67     | 1149       | 2.80     | 1170      | 2.93   | 1192 | 3.07 | 1211 | 3.20 | 1231 | 3.33 | _    | _    |
| 3400 | 1108 | 2.73 | 1134 | 2.88    | 1158     | 3.03    | 1181     | 3.17     | 1204       | 3.33     | _         | _      | _    | _    | _    | _    | _    | _    | _    | _    |
| 3740 | 1160 | 3.23 | 1187 | 3.41    | _        | _       | _        | _        | _          | _        | _         | _      | _    | _    | _    | _    | _    | _    | _    | _    |
| 4080 | _    | _    | _    | _       | _        | _       | _        | _        | _          | _        | _         | _      | _    | _    | _    | _    | _    | _    | _    | _    |
|      |      |      |      | 3-H     | P Oversi | zed Mo  | tor & Dr | ive      |            |          |           |        |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2-HP Fan Motor Heat (MBH) = 2.000 x Fan BHP+.5000. 3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.4750

1. Field Supplied Fan Sheave AK79 and Belt AX38 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-81 — Belt Drive Evaporator Fan Performance — 8½-Ton — YHC102A3,A4,AW \*H— High Heat —Horizontal Airflow

|      |                                           |          |          |          |          |      |          | Extern | al Static | Pressure | (Inches | of Wate | r)      |      |      |      |      |      |      |      |
|------|-------------------------------------------|----------|----------|----------|----------|------|----------|--------|-----------|----------|---------|---------|---------|------|------|------|------|------|------|------|
|      | .1                                        | 10       | .2       | 20       | .3       | 30   | .4       | 10     | .5        | 50       | .6      | 60      | .7      | 0    | 3.   | 80   | .9   | 0    | 1.0  | 00   |
| CFM  | RPM                                       | BHP      | RPM      | BHP      | RPM      | BHP  | RPM      | BHP    | RPM       | BHP      | RPM     | BHP     | RPM     | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 2-HP                                      | Standar  | d Moto   | r & Fiel | d Suppli | ied  |          |        |           | 2-HP     | Standar | d Motor | & Drive | Y    |      |      |      |      |      |      |
|      | Low S                                     | Static D | rive (1) |          |          |      |          |        |           |          |         |         |         |      |      |      |      |      |      |      |
| 2720 | Low Static Drive (1)<br>640 0.66 684 0.77 |          |          | 0.77     | 729      | 0.89 | 778      | 1.03   | 823       | 1.17     | 863     | 1.31    | 896     | 1.43 | 926  | 1.55 | 955  | 1.67 | 982  | 1.79 |
| 3060 |                                           |          |          |          |          |      |          | 1.29   | 872       | 1.45     | 913     | 1.61    | 950     | 1.77 | 983  | 1.92 | 1011 | 2.05 | 1038 | 2.19 |
| 3400 | 778                                       | 1.21     | 817      | 1.35     | 851      | 1.48 | 885      | 1.62   | 924       | 1.78     | 963     | 1.96    | 1000    | 2.14 | 1035 | 2.30 | 1067 | 2.49 | 1095 | 2.65 |
| 3740 | 848                                       | 1.58     | 885      | 1.73     | 917      | 1.88 | 948      | 2.03   | 979       | 2.18     | 1014    | 2.36    | 1050    | 2.56 | 1084 | 2.76 | 1118 | 2.96 | 1148 | 3.15 |
| 4080 | 919                                       | 2.02     | 952      | 2.18     | 984      | 2.35 | 1012     | 2.50   | 1041      | 2.67     | 1070    | 2.84    | 1102    | 3.04 | 1135 | 3.25 | _    | _    | _    | _    |
|      |                                           |          |          |          |          | 3-H  | P Oversi | zed Mo | tor & Dr  | ive      |         |         |         |      |      |      |      |      |      |      |

#### Table PD-81 - Continued

|      |                                                                          |      |      |         |          |         | Ex       | cternal S | tatic Pres | ssure (In | ches of V | Vater) |      |      |      |      |      |      |      |      |
|------|--------------------------------------------------------------------------|------|------|---------|----------|---------|----------|-----------|------------|-----------|-----------|--------|------|------|------|------|------|------|------|------|
|      | 1                                                                        | .10  | 1    | 1.20    | 1        | 1.30    |          | 1.40      |            | 50        |           | 60     | 1    | .70  | 1.8  | 30   | 1.9  | 90   | 2    | .00  |
| CFM  | RPM                                                                      | BHP  | RPM  | BHP     | RPM      | BHP     | RPM      | BHP       | RPM        | BHP       | RPM       | BHP    | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |                                                                          |      | 2-H  | P Stand | lard Mot | or & Dr | ive      |           |            |           |           |        |      |      |      |      |      |      |      |      |
| 2720 | 1007                                                                     | 1.90 | 1032 | 2.02    | 1056     | 2.14    | 1079     | 2.26      | 1101       | 2.38      | 1124      | 2.50   | 1146 | 2.62 | 1167 | 2.74 | 1189 | 2.86 | 1209 | 2.98 |
| 3060 | 1007 1.90 1032 2.02 1056 2.14 1079<br>1064 2.32 1090 2.46 1113 2.59 1135 |      |      |         |          |         |          |           | 1157       | 2.85      | 1178      | 2.98   | 1199 | 3.12 | 1220 | 3.26 | 1240 | 3.39 | _    | _    |
| 3400 | 1121                                                                     | 2.80 | 1146 | 2.95    | 1170     | 3.10    | 1193     | 3.25      | 1215       | 3.40      | _         | _      | _    | _    | _    | _    | _    | _    | _    | _    |
| 3740 | 1177                                                                     | 3.34 | _    | _       | _        | _       | _        | _         | _          | _         | _         | _      | _    | _    | _    | _    | _    | _    | _    | _    |
| 4080 | _                                                                        | _    | _    | _       | _        | _       | _        | _         | _          | _         | _         | _      | _    | _    | _    | _    | _    | _    | _    | _    |
|      |                                                                          |      |      | 3-H     | P Oversi | zed Mo  | tor & Dr | ive       |            |           |           |        |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

2-HP Fan Motor Heat (MBH) = 2.000 x Fan BHP+.5000

<sup>3-</sup>HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.4750

<sup>1.</sup> Field Supplied Fan Sheave AK79 and Belt AX38 required

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### (10 Ton) **High Efficiency**

|      |          |          |         |         |          |         |          | Extern   | al Static | Pressure | (Inches | of Wate | r)   |      |      |      |      |         |       |      |
|------|----------|----------|---------|---------|----------|---------|----------|----------|-----------|----------|---------|---------|------|------|------|------|------|---------|-------|------|
|      | .1       | 0        | .2      | 20      | .3       | 30      | .4       | 40       | .5        | 50       | .6      | 60      | .7   | 0    | 3.   | 30   | .9   | 0       | 1.0   | 10   |
| CFM  | RPM      | BHP      | RPM     | BHP     | RPM      | BHP     | RPM      | BHP      | RPM       | BHP      | RPM     | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP     | RPM   | BHP  |
|      | 3-HP Sta | andard l | Motor 8 | Field S | Supplied | Low St  | atic Dri | ive (1)  |           |          |         |         |      |      |      |      |      |         |       |      |
| 3200 | _        |          |         |         |          |         |          |          |           |          |         |         |      |      | 1.63 | 910  | 1.78 | 938     | 1.93  |      |
| 3600 | _        | _        | 735     | 1.10    | 768      | 1.22    | 802      | 1.36     | 834       | 1.50     | 866     | 1.66    | 897  | 1.82 | 927  | 1.98 | 957  | 2.14    | 985   | 2.30 |
| 4000 | 767      | 1.29     | 802     | 1.44    | 833      | 1.58    | 863      | 1.71     | 892       | 1.87     | 922     | 2.04    | 951  | 2.21 | 979  | 2.39 | 1006 | 2.56    | 1034  | 2.74 |
| 4400 | 837      | 1.69     | 869     | 1.85    | 899      | 2.00    | 926      | 2.15     | 953       | 2.31     | 980     | 2.48    | 1007 | 2.66 | 1033 | 2.85 | 1059 | 3.04    | 1085  | 3.24 |
| 4800 | 908      | 2.16     | 937     | 2.33    | 965      | 2.50    | 991      | 2.67     | 1017      | 2.83     | 1041    | 3.00    | 1066 | 3.19 | 1090 | 3.38 | 1115 | 3.59    | 1139  | 3.80 |
|      |          |          |         |         | 3-H      | P Stand | ard Mot  | tor & Dr | ive       |          |         |         |      |      |      |      | 5-H  | IP Over | sized |      |
|      |          |          |         |         |          |         |          |          |           |          |         |         |      |      |      |      | Mo   | tor & E | Prive |      |

#### Table PD-82 - Continued

|      |      |      |      |         |          |         | E×   | ternal S | tatic Pres | sure (In | ches of V | Vater) |      |      |      |      |      |      |      |      |
|------|------|------|------|---------|----------|---------|------|----------|------------|----------|-----------|--------|------|------|------|------|------|------|------|------|
|      | 1    | .10  | 1    | 1.20    | 1        | .30     | 1    | 1.40     | 1.         | 50       | 1.0       | 60     | 1    | .70  | 1.8  | 80   | 1.9  | 0    | 2.   | .00  |
| CFM  | RPM  | BHP  | RPM  | BHP     | RPM      | BHP     | RPM  | BHP      | RPM        | BHP      | RPM       | BHP    | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |      |      | 3-H  | P Stanc | lard Mot | or & Dr | ive  |          |            |          |           |        |      |      |      |      |      |      | -    |      |
| 3200 | 966  | 2.10 | 992  | 2.26    | 1018     | 2.43    | 1042 | 2.60     | 1066       | 2.78     | 1091      | 2.96   | 1114 | 3.15 | 1136 | 3.33 | 1159 | 3.51 | 1182 | 3.70 |
| 3600 | 1013 | 2.47 | 1039 | 2.64    | 1065     | 2.82    | 1089 | 3.00     | 1113       | 3.19     | 1135      | 3.38   | 1157 | 3.56 | 1179 | 3.76 | 1201 | 3.97 | 1221 | 4.16 |
| 4000 | 1060 | 2.92 | 1086 | 3.10    | 1111     | 3.28    | 1135 | 3.47     | 1159       | 3.66     | 1182      | 3.86   | 1203 | 4.05 | 1224 | 4.26 | 1246 | 4.47 | 1266 | 4.68 |
| 4400 | 1110 | 3.43 | 1134 | 3.62    | 1159     | 3.82    | 1183 | 4.02     | 1205       | 4.22     | 1229      | 4.43   | 1251 | 4.64 | 1272 | 4.84 | 1292 | 5.05 | 1313 | 5.27 |
| 4800 | 1162 | 4.01 | 1185 | 4.22    | 1209     | 4.44    | 1231 | 4.64     | 1253       | 4.86     | 1276      | 5.07   | 1298 | 5.30 | 1319 | 5.51 | 1338 | 5.73 | _    | _    |
|      |      |      | 5-H  | P Overs | ized Mo  | tor & D | rive |          |            |          |           |        |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils. No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories 3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.475.

5-HP Fan Motor Heat (MBH) = 2.950 x Fan BHP+.470.

 $1. \ \ Field \, Supplied \, Motor \, Sheave \, 1 VM50 \, x \, 7/8 \, inch, Fan \, Sheave \, AK89, and \, Belt \, AX40 \, required.$ 

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-83— Belt Drive Evaporator Fan Performance — 10-Ton — YHC120A3,A4,AW \*H— High Heat —Downflow Airflow

|      | External Static Pressure (Inches of Water) .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00 |                                                           |                                                                                |      |     |       |     |      |     |      |      |      |      |      |          |        |        |       |         |      |
|------|-------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------|------|-----|-------|-----|------|-----|------|------|------|------|------|----------|--------|--------|-------|---------|------|
|      | .1                                                                                  | 0                                                         | .2                                                                             | .7   | 70  | 3.    | 30  | .9   | 0   | 1.0  | 00   |      |      |      |          |        |        |       |         |      |
| CFM  | RPM                                                                                 | BHP                                                       | RPM                                                                            | BHP  | RPM | BHP   | RPM | BHP  | RPM | BHP  | RPM  | BHP  | RPM  | BHP  | RPM      | BHP    | RPM    | BHP   | RPM     | BHP  |
|      |                                                                                     | 3-HP Standard Motor & Field Supplied Low Static Drive (1) |                                                                                |      |     |       |     |      |     |      |      |      |      |      |          |        |        |       | ard Mot | tor  |
|      | Low S                                                                               |                                                           |                                                                                |      |     | & Dri | ive |      |     |      |      |      |      |      |          |        |        |       |         |      |
| 3200 | _                                                                                   | _                                                         | _                                                                              | _    | 739 | 1.05  | 774 | 1.19 | 809 | 1.33 | 843  | 1.47 | 874  | 1.61 | 905      | 1.76   | 935    | 1.92  | 963     | 2.08 |
| 3600 | 738                                                                                 | 1.11                                                      | 772                                                                            | 1.23 | 805 | 1.37  | 838 | 1.52 | 869 | 1.68 | 900  | 1.84 | 930  | 2.00 | 960      | 2.16   | 988    | 2.32  | 1016    | 2.49 |
| 4000 | 813                                                                                 | 1.49                                                      | 844                                                                            | 1.63 | 873 | 1.77  | 903 | 1.93 | 932 | 2.10 | 961  | 2.27 | 989  | 2.45 | 1017     | 2.63   | 1043   | 2.80  | 1070    | 2.98 |
| 4400 | 889                                                                                 | 1.95                                                      | 917                                                                            | 2.10 | 944 | 2.25  | 971 | 2.42 | 998 | 2.59 | 1024 | 2.78 | 1050 | 2.97 | 1076     | 3.17   | 1101   | 3.37  | 1126    | 3.56 |
| 4800 | 964                                                                                 | 2.50                                                      | 50 991 2.66 1016 2.83 1040 3.00 1065 3.18 1090 3.38 <u>1114 3.58 1138 3.79</u> |      |     |       |     |      |     |      | 1161 | 4.00 | 1184 | 4.22 |          |        |        |       |         |      |
|      | 55. 2.55 55. 2.55 15.5 2.55 10.50 10.00 10.00 10.00 10.00 1                         |                                                           |                                                                                |      |     |       |     |      |     |      |      |      |      |      | IP Overs | ized M | otor & | Drive |         |      |

### Table PD-83 - Continued

|      | External Static Pressure (Inches of Water) |      |      |         |         |         |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------|--------------------------------------------|------|------|---------|---------|---------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|      |                                            |      |      |         |         |         |      |      |      |      |      |      |      |      |      | 2.   | .00  |      |      |      |
| CFM  | RPM                                        | BHP  | RPM  | BHP     | RPM     | BHP     | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 3-HP Standard Motor & Drive                |      |      |         |         |         |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 3200 |                                            |      |      |         |         |         |      |      |      |      |      |      |      |      |      | 3.68 | 1200 | 3.85 |      |      |
| 3600 | 1042                                       | 2.66 | 1067 | 2.84    | 1091    | 3.02    | 1115 | 3.21 | 1138 | 3.40 | 1160 | 3.59 | 1181 | 3.78 | 1203 | 3.98 | 1224 | 4.19 | 1244 | 4.39 |
| 4000 | 1095                                       | 3.17 | 1120 | 3.35    | 1145    | 3.54    | 1167 | 3.73 | 1190 | 3.93 | 1212 | 4.14 | 1233 | 4.35 | 1253 | 4.55 | 1273 | 4.76 | 1293 | 4.97 |
| 4400 | 1150                                       | 3.75 | 1174 | 3.95    | 1197    | 4.15    | 1221 | 4.36 | 1243 | 4.56 | 1265 | 4.77 | 1285 | 4.97 | 1306 | 5.20 | 1326 | 5.42 | 1345 | 5.65 |
| 4800 | 1208                                       | 4.42 | 1231 | 4.64    | 1253    | 4.86    | 1275 | 5.07 | 1297 | 5.29 | 1317 | 5.50 | 1338 | 5.72 | _    | _    | _    | _    | _    | _    |
|      |                                            |      | 5-H  | P Overs | ized Mo | tor & D | rive |      |      |      |      |      |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.475.

5-HP Fan Motor Heat (MBH) = 2.950 x Fan BHP+.470.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

<sup>1.</sup> Field Supplied Motor Sheave 1VM50 x 7/8 inch, Fan Sheave AK89, and Belt AX40 required



### (10 Ton) **High Efficiency**

| Table PD-84 - | <ul> <li>Belt Drive Evaporator Fan Performance</li> </ul> | - 10-Ton - | – YHC120A3,A4,AW *L,M – | - Low and Medium Heat - | <ul> <li>Horizontal Airflow</li> </ul> |
|---------------|-----------------------------------------------------------|------------|-------------------------|-------------------------|----------------------------------------|
|               |                                                           |            |                         |                         |                                        |

|      |                        |         |         |           |          |      |      | Externa | Pressure | ssure (Inches of Water) |         |          |      |      |      |      |      |      |      |      |
|------|------------------------|---------|---------|-----------|----------|------|------|---------|----------|-------------------------|---------|----------|------|------|------|------|------|------|------|------|
|      | .1                     | .10 .20 |         |           |          | 0    | .40  |         | .5       | .50                     |         | 60       | .7   | 0    | 3.   | 80   | .90  | 0    | 1.00 |      |
| CFM  | RPM                    | BHP     | RPM     | BHP       | RPM      | BHP  | RPM  | BHP     | RPM      | BHP                     | RPM     | BHP      | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 3-HP St                | andard  | Motor 8 | & Field S | Supplied | t    |      |         |          |                         |         |          |      |      |      |      |      |      |      |      |
|      | Low Static Drive (1)   |         |         |           |          |      |      |         |          |                         |         |          |      |      |      |      |      |      |      |      |
| 3200 | — 777 1.15             |         |         |           | 814      | 1.28 | 853  | 1.42    | 895      | 1.59                    | 936     | 1.76     | 973  | 1.93 | 1008 | 2.09 | 1037 | 2.24 | 1064 | 2.38 |
| 3600 | 819 1.42 857 1.57      |         | 1.57    | 890       | 1.71     | 922  | 1.85 | 957     | 2.02     | 994                     | 2.20    | 1032     | 2.39 | 1067 | 2.58 | 1099 | 2.77 | 1131 | 2.96 |      |
| 4000 | 902                    | 1.91    | 936     | 2.07      | 968      | 2.23 | 998  | 2.39    | 1027     | 2.55                    | 1058    | 2.73     | 1091 | 2.93 | 1124 | 3.14 | 1158 | 3.36 | 1189 | 3.57 |
| 4400 | 986                    | 2.50    | 1016    | 2.68      | 1047     | 2.86 | 1075 | 3.03    | 1101     | 3.20                    | 1128    | 3.39     | 1155 | 3.58 | 1186 | 3.80 | 1217 | 4.03 | 1246 | 4.25 |
| 4800 | 00 1070 3.22 1098 3.40 |         | 3.40    | 1127      | 3.60     | 1153 | 3.79 | 1178    | 3.98     | 1203                    | 4.17    | 1227     | 4.37 | 1251 | 4.57 | 1279 | 4.80 | 1307 | 5.05 |      |
|      |                        |         | /       |           |          |      |      |         | 5-H      | P Overs                 | ized Mo | otor & D | rive |      |      |      |      |      |      |      |

3-HP Standard Motor& Drive

#### Table PD-84 - Continued

|      | External Static Pressure (Inches of Water)        |      |      |         |          |      |          |        |          |      |      |      |      |      |      |      |      |      |      |      |
|------|---------------------------------------------------|------|------|---------|----------|------|----------|--------|----------|------|------|------|------|------|------|------|------|------|------|------|
|      | 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 |      |      |         |          |      |          |        |          |      |      |      |      |      |      | .00  |      |      |      |      |
| CFM  | RPM BHP RPM BHP RPM BHP RPM BHP RPM BHP RPM BHP F |      |      |         |          |      |          |        |          |      |      |      |      |      | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      |                                                   |      | 3-H  | P Stanc | lard Mot |      |          |        |          |      |      |      |      |      |      |      |      |      |      |      |
| 3200 | 1090                                              | 2.53 | 1115 | 2.67    | 1139     | 2.81 | 1161     | 2.95   | 1183     | 3.09 | 1205 | 3.23 | 1225 | 3.37 | 1246 | 3.51 | 1265 | 3.65 | 1284 | 3.78 |
| 3600 | 1157                                              | 3.13 | 1181 | 3.29    | 1205     | 3.45 | 1228     | 3.61   | 1250     | 3.77 | 1272 | 3.93 | 1293 | 4.09 | 1312 | 4.24 | 1331 | 4.40 | 1351 | 4.56 |
| 4000 | 1218                                              | 3.78 | 1246 | 3.99    | 1271     | 4.18 | 1294     | 4.36   | 1317     | 4.55 | 1338 | 4.72 | 1360 | 4.91 | 1379 | 5.07 | 1398 | 5.25 | 1418 | 5.43 |
| 4400 | 1276                                              | 4.49 | 1304 | 4.73    | 1333     | 4.97 | 1359     | 5.20   | 1383     | 5.42 | 1405 | 5.62 | _    | _    | _    | _    | _    | _    | _    | _    |
| 4800 | 1336                                              | 5.30 | 1363 | 5.56    | _        | _    | _        | _      | _        | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    |
|      |                                                   |      |      |         |          | 5-H  | P Oversi | zed Mo | tor & Dr | ive  |      |      |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86. Notes:

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

3-HP Fan Motor Heat (MBH) =  $2.900 \times Fan$  BHP+.475.

5-HP Fan Motor Heat (MBH) =  $2.950 \times$  Fan BHP+.470. 1. Field Supplied Motor Sheave 1VM50  $\times$  7/8 inch, Fan Sheave AK89, and Belt AX40 required.

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.

Table PD-85 — Belt Drive Evaporator Fan Performance — 10-Ton — YHC120A3,A4,AW \*H— High Heat —Horizontal Airflow

|      |        |          |          |           |          |      |      | Extern | al Static | Pressure | (Inches   | of Wate | r)      |      |      |      |      |      |      |      |
|------|--------|----------|----------|-----------|----------|------|------|--------|-----------|----------|-----------|---------|---------|------|------|------|------|------|------|------|
|      | .1     | 0        | .2       | 20        | .3       | 80   | .4   | 10     | .5        | i0       | .6        | 60      | .7      | 0    | .80  |      | .90  |      | 1.0  | 00   |
| CFM  | RPM    | BHP      | RPM      | BHP       | RPM      | BHP  | RPM  | BHP    | RPM       | BHP      | RPM       | BHP     | RPM     | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 3-HP 9 | Standar  | d Moto   | r & Field | d Suppli | ed   |      |        |           | 3-HP     | Standar   | d Motor | & Drive |      |      |      |      |      |      |      |
|      | Low S  | Static D | rive (1) |           |          |      |      |        |           |          |           |         |         |      |      |      |      |      |      |      |
| 3200 | 785    | 1.18     | 821      | 1.31      | 861      | 1.46 | 903  | 1.62   | 944       | 1.80     | 981       | 1.96    | 1014    | 2.12 | 1043 | 2.27 | 1070 | 2.41 | 1095 | 2.55 |
| 3600 | 874    | 1.64     | 907      | 1.78      | 939      | 1.93 | 977  | 2.11   | 1014      | 2.30     | 1050      | 2.49    | 1084    | 2.69 | 1115 | 2.87 | 1144 | 3.05 | 1169 | 3.21 |
| 4000 | 964    | 2.21     | 994      | 2.37      | 1023     | 2.53 | 1053 | 2.71   | 1087      | 2.91     | 1121      | 3.12    | 1154    | 3.33 | 1185 | 3.55 | 1215 | 3.76 | 1242 | 3.96 |
| 4400 | 1055   | 2.91     | 1082     | 3.08      | 1109     | 3.25 | 1135 | 3.43   | 1164      | 3.64     | 1194      | 3.86    | 1225    | 4.09 | 1255 | 4.32 | 1284 | 4.56 | 1312 | 4.79 |
| 4800 | 1146   | 3.74     | 1171     | 3.92      | 1196     | 4.11 | 1220 | 4.31   | 1244      | 4.51     | 1271      | 4.73    | 1298    | 4.97 | 1327 | 5.22 | 1354 | 5.47 | 1382 | 5.74 |
|      |        |          |          |           |          |      |      | 5-H    | P Oversi  | zed Mo   | tor & Dri | ive     |         |      |      |      |      |      |      |      |

### Table PD-85 - Continued

|      | External Static Pressure (Inches of Water)                                                |      |      |      |          |        |          |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------|-------------------------------------------------------------------------------------------|------|------|------|----------|--------|----------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|      | 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00                                         |      |      |      |          |        |          |      |      |      |      |      |      |      |      | .00  |      |      |      |      |
| CFM  | RPM                                                                                       | BHP  | RPM  | BHP  | RPM      | BHP    | RPM      | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  | RPM  | BHP  |
|      | 3-HP Standard Motor & Drive                                                               |      |      |      |          |        |          |      |      |      |      |      |      |      |      |      |      |      |      |      |
| 3200 | 1120 2.70 1143 2.84 1166 2.98 1188 3.12 1208 3.25 1229 3.39 1249 3.53 1269 3.67 1289 3.82 |      |      |      |          |        |          |      |      |      |      |      |      |      |      | 1308 | 3.96 |      |      |      |
| 3600 | 1194                                                                                      | 3.37 | 1217 | 3.53 | 1240     | 3.69   | 1262     | 3.85 | 1282 | 4.01 | 1303 | 4.17 | 1322 | 4.32 | 1341 | 4.48 | 1361 | 4.64 | 1378 | 4.79 |
| 4000 | 1269                                                                                      | 4.16 | 1292 | 4.34 | 1314     | 4.52   | 1335     | 4.70 | 1356 | 4.88 | 1377 | 5.06 | 1397 | 5.24 | 1415 | 5.41 | _    | _    | _    | _    |
| 4400 | 1339                                                                                      | 5.02 | 1365 | 5.25 | 1388     | 5.47   | 1410     | 5.67 | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    |
| 4800 | _                                                                                         | _    | _    | _    | _        | _      | _        | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    | _    |
|      |                                                                                           |      |      | 5-H  | P Oversi | zed Mo | tor & Dr | ive  |      |      |      |      |      |      |      |      |      |      |      |      |

For Standard Evaporator Fan Speed (RPM), reference Table PD-86.

Data includes pressure drop due to standard filters and wet coils.

No accessories or options are included in pressure drop data.

Refer to Table PD-89 to determine additional static pressure drop due to other options/accessories

3-HP Fan Motor Heat (MBH) = 2.900 x Fan BHP+.475. 5-HP Fan Motor Heat (MBH) = 2.950 x Fan BHP+.470.

<sup>1.</sup> Field Supplied Motor Sheave 1VM50 x 7/8 inch, Fan Sheave AK89, and Belt AX40 required

Factory supplied motors, in commercial equipment, are definite purpose motors, specifically designed and tested to operate reliably and continuously at all cataloged conditions. Using the full horsepower range of our fan motors as shown in our tabular data will not result in nuisance tripping or premature motor failure. Our product's warranty will not be affected.



### Table PD-86— Standard Motor & Sheave/Fan Speed (Rpm)

|      | Unit        | 6Turns | 5Turns | 4Turns | 3Turns | 2Turns | 1Turn |        |
|------|-------------|--------|--------|--------|--------|--------|-------|--------|
| Tons | Model No.   | Open   | Open   | Open   | Open   | Open   | Open  | Closed |
| 3    | Y*C036A     | NA     | 745    | 819    | 894    | 968    | 1043  | 1117   |
| 4    | Y*C048A     | NA     | 833    | 916    | 1000   | 1083   | 1167  | 1250   |
| 5    | Y*C060A     | NA     | 897    | 987    | 1077   | 1166   | 1256  | 1346   |
| 6    | Y*C072A     | N/A    | 723    | 779    | 835    | 890    | 946   | 1002   |
| 71/2 | Y*C090,092A | N/A    | 835    | 891    | 946    | 1002   | 1057  | 1113   |
| 81/2 | Y*C102A     | N/A    | 787    | 847    | 908    | 968    | 1029  | 1089   |
| 10   | Y*C120A     | N/A    | 908    | 969    | 1029   | 1090   | 1150  | 1211   |

Factory set at 3 turns open.

### Table PD-87— Standard Motor & High Static Drive Accessory Sheave/Fan Speed (Rpm)

|            | Unit           | 6Turns | 5Turns | 4Turns | 3Turns | 2Turns | 1Turn |        |
|------------|----------------|--------|--------|--------|--------|--------|-------|--------|
| Tons       | Model No.      | Open   | Open   | Open   | Open   | Open   | Open  | Closed |
| 6          | Y*C072A3,A4,AW | N/A    | 831    | 895    | 959    | 1022   | 1086  | 1150   |
| 6          | YSC072AK       | N/A    | 958    | 1022   | 1086   | 1150   | 1214  | 1278   |
| <b>7</b> ½ | YSC090,092A    | N/A    | 958    | 1022   | 1086   | 1150   | 1214  | 1278   |

Factory set at 3 turns open.

### Table PD-88 — Oversized Motor & Drive Sheave/Fan Speed (Rpm)

|            | Unit             | 6Turns | 5Turns | 4Turns | 3Turns | 2Turns | 1Turn |        |
|------------|------------------|--------|--------|--------|--------|--------|-------|--------|
| Tons       | Model No.        | Open   | Open   | Open   | Open   | Open   | Open  | Closed |
| 6          | Y*C072A3, A4, AW | N/A    | 958    | 1022   | 1086   | 1150   | 1214  | 1278   |
| <b>7</b> ½ | Y*C090,092A      | N/A    | 1068   | 1150   | 1232   | 1315   | 1397  | 1479   |
| 81/2       | Y*C102A          | N/A    | 958    | 1022   | 1086   | 1150   | 1214  | 1278   |
| 10         | Y*C120A          | 1050   | 1135   | 1200   | 1275   | 1350   | 1425  | N/A    |

Factory set at 3 turns open.

 $<sup>^{\</sup>star}\,Indicates\,both\,standard\,and\,high\,efficiency\,units.$ 

<sup>\*</sup>Indicates both ReliaTel and Electromechanical controls.



Table PD-89 - Static Pressure Drops Through Accessories (Inches Water Column)

|            |              |              | •                    | agn Accessories   | •            | Fronci       | mizer with O | A/RA Dampe   | re <sup>2</sup> |
|------------|--------------|--------------|----------------------|-------------------|--------------|--------------|--------------|--------------|-----------------|
|            | Unit         |              | Standard             | Through           | 2" Pleated   | 100% OA      |              | 100% OA      | 100% RA         |
| Tons       | Model No     | CFM          | Filters <sup>1</sup> | Reheat Coil (WC)  | Filters      | Down         |              |              | izontal         |
| 10113      | WIOGETTVO    | 960          | 0.03                 | Herieat Con (VVC) | 0.05         | 0.05         | 0.01         | 0.05         | 0.00            |
|            | YSC036A      | 1200         | 0.03                 | _                 | 0.05         | 0.05         | 0.01         | 0.05         | 0.00            |
|            | 13C030A      | 1440         | 0.04                 | _                 | 0.10         | 0.10         | 0.02         | 0.07         | 0.01            |
| 3          | _            | 960          | 0.00                 | .03               | 0.04         | 0.10         | 0.03         | 0.10         | 0.00            |
| 3          | YHC036A      | 1200         | 0.02                 | .03<br>.04        | 0.04         | 0.05         | 0.01         | 0.05         | 0.00            |
|            |              | 1440         | 0.04                 | .06               | 0.07         | 0.10         | 0.03         | 0.10         | 0.01            |
|            |              | 1280         | 0.04                 | _                 | 0.06         | 0.08         | 0.03         | 0.08         | 0.01            |
|            | YSC048A      | 1600         | 0.05                 | _                 | 0.09         | 0.12         | 0.04         | 0.12         | 0.01            |
| 1          |              | 1920         | 0.08                 | _                 | 0.12         | 0.17         | 0.06         | 0.17         | 0.02            |
|            |              | 1280         | 0.04                 | .05               | 0.06         | 0.08         | 0.03         | 0.08         | 0.01            |
|            | YHC048A      | 1600         | 0.05                 | .07               | 0.09         | 0.12         | 0.04         | 0.12         | 0.01            |
|            |              | 1920         | 0.08                 | .09               | 0.12         | 0.17         | 0.06         | 0.17         | 0.02            |
|            |              | 1600         | 0.10                 | _                 | 0.15         | 0.12         | 0.04         | 0.12         | 0.01            |
|            | YSC060A      | 2000         | 0.15                 | _                 | 0.22         | 0.18         | 0.07         | 0.18         | 0.02            |
| _          | _            | 2400         | 0.22                 |                   | 0.29         | 0.26         | 0.10         | 0.26         | 0.04            |
| 5          | YHC060A      | 1600<br>2000 | 0.04<br>0.06         | 0.07<br>0.10      | 0.07<br>0.10 | 0.12<br>0.18 | 0.04<br>0.07 | 0.12<br>0.18 | 0.01<br>0.02    |
|            | THCUOUA      | 2400         | 0.00                 | 0.10              | 0.10         | 0.16         | 0.07         | 0.16         | 0.02            |
|            |              | 1920         | 0.03                 | 0.14              | 0.07         | 0.10         | 0.10         | 0.26         | 0.04            |
| 3          | Y*C072A      | 2400         | 0.04                 | _                 | 0.09         | 0.10         | 0.02         | 0.08         | 0.02            |
| ,          | 1 00/24      | 2880         | 0.09                 | _                 | 0.12         | 0.13         | 0.02         | 0.10         | 0.02            |
|            |              | 2400         | 0.06                 | _                 | 0.09         | 0.11         | 0.02         | 0.08         | 0.02            |
|            | YSC090, 092A | 3000         | 0.10                 | _                 | 0.13         | 0.14         | 0.05         | 0.12         | 0.05            |
| <b>7</b> ½ | 100000,0021  | 3600         | 0.14                 | _                 | 0.18         | 0.21         | 0.07         | 0.25         | 0.08            |
| . , _      | _            | 2400         | 0.04                 | .10               | 0.06         | 0.11         | 0.02         | 0.08         | 0.02            |
|            | YHC092A      | 3000         | 0.06                 | .14               | 0.09         | 0.14         | 0.05         | 0.12         | 0.05            |
|            |              | 3600         | 0.09                 | .19               | 0.13         | 0.21         | 0.07         | 0.25         | 0.08            |
|            |              | 2720         | 0.05                 | _                 | 0.08         | 0.12         | 0.03         | 0.09         | 0.04            |
|            | YSC102A      | 3400         | 80.0                 | _                 | 0.11         | 0.19         | 0.06         | 0.18         | 0.06            |
| 31/2       |              | 4080         | 0.12                 | _                 | 0.16         | 0.30         | 0.07         | 0.31         | 0.09            |
|            |              | 2720         | 0.05                 | .12               | 0.08         | 0.12         | 0.03         | 0.09         | 0.04            |
|            | YHC102A      | 3400         | 0.08                 | .17               | 0.11         | 0.19         | 0.06         | 0.18         | 0.06            |
|            |              | 4080         | 0.12                 | .23               | 0.16         | 0.30         | 0.07         | 0.31         | 0.09            |
|            |              | 3200         | 0.07                 | _                 | 0.10         | 0.17         | 0.05         | 0.14         | 0.05            |
|            | YSC120A      | 4000         | 0.11                 | _                 | 0.15         | 0.26         | 0.07         | 0.30         | 0.08            |
| 10         | _            | 4800         | 0.16                 |                   | 0.20         | 0.34         | 0.09         | 0.35         | 0.10            |
|            | YHC120A      | 3200<br>4000 | _                    | 0.15<br>0.22      | 0.10<br>0.15 | 0.17<br>0.26 | 0.05<br>0.07 | 0.14<br>0.30 | 0.05<br>0.08    |
|            |              |              |                      |                   | U. 10        | U.ZU         |              | U.JU         | U.UO            |

Notes:

1. Tested with standard filters (3-5 tons 1", 6-10 tons 2"). Difference in pressure drop should be considered when utilizing optional 2" pleated filters.

2. OA = Outside Air and RA = Return Air.



Table PD-90— Outdoor Sound Power Level - dB (ref. 10 -12 Watts)

|            | Unit           |     |     |     | Octav | e Center Fr | equency |      |      | Overall |
|------------|----------------|-----|-----|-----|-------|-------------|---------|------|------|---------|
| Tons       | Model No.      | 63. | 125 | 250 | 500   | 1000        | 2000    | 4000 | 8000 | dBA     |
| 3          | Y*C036A        | 86  | 83  | 81  | 80    | 78          | 74      | 69   | 68   | 83      |
|            | YSC048A1       | 92  | 87  | 84  | 83    | 81          | 76      | 72   | 69   | 86      |
| 4          | YSC048A3,A4,AW | 90  | 84  | 78  | 77    | 76          | 72      | 70   | 68   | 82      |
|            | YHC048A        | 92  | 86  | 83  | 82    | 81          | 75      | 72   | 69   | 85      |
|            | YSC060A        | 94  | 87  | 83  | 82    | 79          | 75      | 73   | 69   | 84      |
| 5          | YHC060A        | 94  | 87  | 82  | 81    | 78          | 74      | 72   | 69   | 84      |
|            | YSC072A        | 90  | 94  | 90  | 87    | 83          | 78      | 74   | 67   | 88      |
| 6          | YHC072A        | 91  | 95  | 90  | 87    | 84          | 79      | 75   | 68   | 89      |
|            | YSC090A        | 92  | 95  | 91  | 88    | 84          | 80      | 75   | 68   | 90      |
| <b>7</b> ½ | YSC092A        | 89  | 93  | 88  | 85    | 81          | 76      | 72   | 66   | 87      |
|            | YHC092A        | 92  | 96  | 92  | 89    | 85          | 80      | 76   | 69   | 91      |
|            | YSC102A        | 88  | 92  | 87  | 84    | 80          | 75      | 72   | 65   | 86      |
| 81/2       | YHC102A        | 91  | 95  | 90  | 87    | 84          | 79      | 75   | 68   | 89      |
| 10         | YSC120A        | 91  | 88  | 84  | 82    | 81          | 76      | 73   | 67   | 86      |
| 10         | YHC120A        | 94  | 89  | 87  | 85    | 84          | 78      | 75   | 69   | 88      |
| Moto:      |                |     |     |     |       |             |         |      |      |         |

Note:

Tests follow ARI270-95.

Table PD-91 - Gas-Fired Heating Capacities

|            |                       | Unit                                       | Heating                | Heating                          | AirTemp. |
|------------|-----------------------|--------------------------------------------|------------------------|----------------------------------|----------|
| Tons       | Efficiency            | Model No.                                  | Input MBH <sup>1</sup> | Output MBH <sup>1</sup>          | Rise, F  |
|            |                       | Y*C036A1*L                                 | 60.0                   | 47.0                             | 25-55    |
|            |                       | Y*C036A3, A4, AW*L                         | 60.0                   | 48.0                             | 25-56    |
| 3          | Standard and          | Y*C036A1*M                                 | 80.0                   | 63.0                             | 35-65    |
| 3          | High Efficiency       | Y*C036A3, A4, AW*M                         | 80.0                   | 64.0                             | 35-65    |
|            |                       | Y*C036A1*H                                 | 120.0                  | 95.0                             | 55-85    |
|            |                       | Y*C036A3, A4, AW*H                         | 120.0                  | 96.0                             | 55-85    |
|            |                       | Y*C048A1*L,                                | 60.0                   | 47.0                             | 15-45    |
|            |                       | Y*C048A3, A4, AW *L                        | 60.0                   | 48.0                             | 15-45    |
|            | Standard and          | Y*C048A1*M                                 | 80.0                   | 63.0                             | 20-50    |
| 4          | High Efficiency       | Y*C048A3, A4, AW*M                         | 80.0                   | 64.0                             | 20-50    |
|            | ,                     | Y*C048A1*H                                 | 120.0                  | 95.0                             | 40-70    |
|            |                       | Y*C048A3, A4, AW *H                        | 120.0                  | 96.0                             | 40-70    |
|            |                       | YSC060A1*L                                 | 60.0                   | 47.0                             | 10-40    |
|            |                       | YSC060A3, A4, AW, AK*L                     | 60.0                   | 48.0                             | 10-40    |
|            |                       | YSC060A1*M                                 | 80.0                   | 63.0                             | 15-45    |
|            | Standard Eff.         | YSC060A3 A4, AW*M                          | 80.0                   | 64.0                             | 15-45    |
|            |                       | YSC060A1*H                                 | 130.0                  | 103.0                            | 35-65    |
| _          |                       | YSC060A3, A4, AW, AK*H                     | 130.0                  | 104.0                            | 35-65    |
| 5          |                       | YHC060A1*L                                 | 60.0                   | 47.0                             | 10-40    |
|            | 11: 1 Em              | YHC060A3, A4, AW, AK*L                     | 60.0                   | 48.0                             | 10-40    |
|            | High Eff.             | YHC060A1*M                                 | 80.0                   | 63.0                             | 15-45    |
|            |                       | YHC060A3,A4,AW*M                           | 80.0                   | 64.0                             | 15-45    |
|            |                       | YHC060A1*H                                 | 130.0                  | 103.0                            | 35-65    |
|            |                       | YHC060A3, A4, AW, AK*H                     | 130.0                  | 104.0                            | 35-65    |
|            | Standard and          | Y*C072A1, A3, A4, AW, AK*L                 | 80.0                   | 64.8                             | 15-45    |
| 6          | High Efficiency       | Y*C072A1, A3, A4, AW*M                     | 120.0/84               | 97.2/68                          | 20-50    |
|            | riigir Emciency       | Y*C072A1, A3, A4, AW, AK*H                 | 150.0/105              | 121.5/85                         | 25-55    |
|            | Standard and          | Y*C090,092A1, A3, A4, AW, AK*L             | 120.0/84               | 97.2/68                          | 20-50    |
| <b>7</b> ½ | High Efficiency       | Y*C090,092A1, A3, A4, AW*M                 | 150.0/105              | 121.5/85                         | 25-55    |
|            | night Efficiency      | Y*C090,092A1, A3, A4, AW, AK*H             | 200.0/140              | 162.0/113                        | 35-65    |
|            | Standard and          | Y*C102A1, A3, A4, AW, AK*L                 | 120.0/84               | 97.2/68                          | 15-45    |
| 81/2       | High Efficiency       | Y*C102A1, A3, A4, AW*M                     | 150.0/105              | 121.5/85                         | 20-50    |
|            | riigii Eiliciency     | Y*C102A1, A3, A4, AW, AK*H                 | 200.0/140              | 162.0/113                        | 35-65    |
|            | Standard and          | Y*C120A1, A3, A4, AW, AK*L                 | 150.0/105              | 121.5/85                         | 20-50    |
| 10         |                       | Y*C120A1, A3, A4, AW*M                     | 200.0/140              | 162.0/113                        | 25-55    |
|            | High Efficiency       | Y*C120A1, A3, A4, AW, AK*H                 | 250.0/175              | 202.5/141.8                      | 35-65    |
| Dations of | aa ara far alamatiana | in to 2 000 ft. For higher elevations, re- |                        | = f 40/ === 1 000 ft =  ====ti== |          |

Ratings shown are for elevations up to 2,000 ft. For higher elevations, reduce ratings at a rate of 4% per 1,000 ft. elevation. Note:

<sup>1.</sup> For two stage heaters, Second stage is total heating capacity. Second Stage / First Stage.

<sup>\*</sup>Indicates both standard and high efficiency airflow.



Table PD-92— Hot Gas Reheat Temperature Rise<sup>3</sup>

| SCFM |      | Leav | ing Evapor | ator Dry Bu | ılb [F] |      |      |      |
|------|------|------|------------|-------------|---------|------|------|------|
| Tons | SCFM | 35   | 40         | 45          | 50      | 55   | 60   | 65   |
|      | 960  | 17.6 | 17.3       | 17.0        | 16.6    | 16.2 | 15.8 | 15.5 |
|      | 1080 | 16.7 | 16.4       | 16.1        | 15.7    | 15.4 | 15.0 | 14.6 |
| 3    | 1200 | 15.8 | 15.5       | 15.2        | 14.9    | 14.5 | 14.1 | 13.8 |
|      | 1320 | 14.9 | 14.6       | 14.3        | 14.0    | 13.6 | 13.3 | 12.9 |
|      | 1440 | 14.0 | 13.8       | 13.5        | 13.1    | 12.8 | 12.4 | 12.0 |
| Tons | SCFM | 35   | 40         | 45          | 50      | 55   | 60   | 65   |
|      | 1280 | 19.0 | 18.7       | 18.4        | 18.1    | 17.9 | 17.5 | 17.2 |
|      | 1440 | 17.9 | 17.7       | 17.4        | 17.1    | 16.9 | 16.5 | 16.2 |
| 4    | 1600 | 16.9 | 16.6       | 16.4        | 16.1    | 15.8 | 15.5 | 15.2 |
|      | 1760 | 15.9 | 15.6       | 15.4        | 15.1    | 14.8 | 14.5 | 14.2 |
|      | 1920 | 14.8 | 14.6       | 14.4        | 14.1    | 13.8 | 13.5 | 13.2 |
| Tons | SCFM | 35   | 40         | 45          | 50      | 55   | 60   | 65   |
|      | 1600 | 20.3 | 20.1       | 19.9        | 19.7    | 19.5 | 19.3 | 19.0 |
|      | 1800 | 19.1 | 18.9       | 18.7        | 18.5    | 18.4 | 18.1 | 17.8 |
| 5    | 2000 | 17.9 | 17.8       | 17.6        | 17.4    | 17.2 | 16.9 | 16.6 |
|      | 2200 | 16.8 | 16.6       | 16.4        | 16.2    | 16.0 | 15.7 | 15.4 |
|      | 2400 | 15.6 | 15.4       | 15.2        | 15.1    | 14.9 | 14.6 | 14.3 |
| Tons | SCFM | 35   | 40         | 45          | 50      | 55   | 60   | 65   |
|      | 2400 | 16.7 | 17.3       | 18.0        | 18.7    | 19.3 | 20.1 | 20.9 |
|      | 2700 | 14.9 | 15.5       | 16.1        | 16.7    | 17.3 | 18.0 | 18.7 |
| 71/2 | 3000 | 13.1 | 13.7       | 14.2        | 14.7    | 15.2 | 15.9 | 16.5 |
|      | 3300 | 11.4 | 11.8       | 12.3        | 12.7    | 13.1 | 13.7 | 14.3 |
|      | 3600 | 9.6  | 10.0       | 10.3        | 10.7    | 11.1 | 11.6 | 12.2 |
| Tons | SCFM | 35   | 40         | 45          | 50      | 55   | 60   | 65   |
|      | 2720 | 16.6 | 17.4       | 18.2        | 18.9    | 19.7 | 20.3 | 21.0 |
|      | 3060 | 14.7 | 15.3       | 15.9        | 16.6    | 17.2 | 17.7 | 18.1 |
| 81/2 | 3400 | 12.7 | 13.2       | 13.7        | 14.2    | 14.7 | 15.0 | 15.3 |
|      | 3740 | 10.7 | 11.1       | 11.4        | 11.8    | 12.2 | 12.3 | 12.5 |
|      | 4080 | 8.7  | 9.0        | 9.2         | 9.4     | 9.6  | 9.7  | 9.7  |
| Tons | SCFM | 35   | 40         | 45          | 50      | 55   | 60   | 65   |
|      | 3200 | 18.7 | 19.5       | 20.3        | 21.2    | 22.0 | 22.7 | 23.4 |
|      | 3600 | 16.2 | 17.2       | 18.1        | 19.1    | 20.1 | 20.8 | 21.6 |
| 10   | 4000 | 13.8 | 14.9       | 15.9        | 17.0    | 18.1 | 19.0 | 19.8 |
|      | 4400 | 11.3 | 12.5       | 13.7        | 14.9    | 16.1 | 17.1 | 18.1 |
|      | 4800 | 8.9  | 10.2       | 11.5        | 12.9    | 14.2 | 15.3 | 16.3 |
| NI-1 |      |      |            |             |         |      |      |      |

Notes:

1. Temperature rise does not account for indoor fan heat.

2. 70 deg OD Ambient Temperature.

3. For units with the Dehumidification (Hot Gas Reheat) option.



### **Controls**

### ReliaTel™ Controlled Units

**Zone Sensors** are the building occupant's comfort control devices for Precedent™ units with the Micro control:

### **Manual Changeover**

Heat, Cool or Off System Switch. Fan Auto or Off Switch.

One temperature setpoint lever.



## Manual/Automatic Changeover

Auto, Heat, Cool or Off System Switch. Fan Auto or Off Switch. Two temperature setpoint levers.

Optional Status Indication LED lights, System On, Heat, Cool, or Service.



#### **Remote Sensor**

Sensor(s) available for all zone sensors to provide remote sensing capabilities.



### Integrated Comfort™ System

Sensor(s) available with optional temperature adjustment and override

butions to provide central control through a Trane Integrated Comfort™ system.



### **Dual Thermistor Remote Zone Sensor**

This sensor will allow the customer to reduce the total number of remote sensors to obtain space temperature averaging. This sensor should be utilized with ReliaTel controls.

### **Digital Display Zone Sensor**

The Digital LCD (Liquid Crystal Display) zone sensor has the look and functionality of standard zone

of standard zone sensors. This sensor includes a digital display of set point adjustment and space temperature in F (Fahrenheit) or C (Celsius). Includes FAN and SYSTEM buttons (supports the service functions of the standard sensor). E-squared memory stores last



programmed set points. Requires 24VAC (Volts AC). This sensor should be utilized with ReliaTel™ controls.

#### **Programmable Night Setback**

Auto or manual changeover with sevenday programming. Keyboard selection of



Heat, Cool, Fan, Auto, or On. All programmable sensors have System On, Heat, Cool, Service LED/indicators as standard. Night Setback Sensors have one (1) Occupied, one (1) Un-occupied, and two (2) Override programs per day.

### **Humidity Sensor**

Field installed, wall-mounted or ductmounted humidity sensor is used to control activation of the hot gas reheat dehumidification

option. The humidity sensor can be set for humidity levels between 40% and 60% relative humidity by adjusting the Relia Tel Options Module.



### CO, Sensing

The CO<sub>2</sub> sensor shall have the ability to monitor space occupancy levels within

the building by measuring the parts per million of CO<sub>2</sub> (Carbon Dioxide) in the air. As the CO<sub>2</sub> levels increase, the outside air damper modulates to meet the CO<sub>2</sub> space ventilation requirements.



The CO<sub>2</sub> accessory shall be available as field installed.



### **Controls**

# Electromechanically Controlled Units

### **Conventional Thermostats**

The building occupant's comfort control devices for electromechanically controlled units.

### **Manual Changeover**

One Heat, One CoolThermostat. Heat, Cool or Off System Switch. Fan Auto or On Switch. Set Point Dial. Adjustable Heat Anticipator.



### **Automatic Changeover**

One Heat, Two CoolThermostat. Off, Auto System Switch. Auto/On Fan Switch.



## Programmable Electronic Night Setback Thermostat

Heating setback and cooling setup with 7-day, 5-1-1 programming capability. Available in two heating/cooling or one heating/cooling versions with automatic changeover.





(Standard Efficiency)

Table ED-1 — Unit Wiring - Standard Efficiency

|      |           |               | Standard In | door Fan Motor               | Oversize In | door Fan Motor               | Optional Belt Dri | ve Indoor Fan Motor          |
|------|-----------|---------------|-------------|------------------------------|-------------|------------------------------|-------------------|------------------------------|
|      |           | Unit          | Minimum     | Maximum Fuse                 | Minimum     | Maximum Fuse                 | Minimum           | Maximum Fuse                 |
|      | Unit      | Operating     | Circuit     | Size or Maximum              | Circuit     | Size or Maximum              | Circuit           | Size or Maximum              |
| Tons | Model No. | Voltage Range | Ampacity    | Circuit Breaker <sup>1</sup> | Ampacity    | Circuit Breaker <sup>1</sup> | Ampacity          | Circuit Breaker <sup>1</sup> |
|      | YSC036A1  | 187-253       | 25.3        | 40                           | 27.7        | 40                           | _                 | -                            |
| 3    | YSC036A3  | 187-253       | 17.9        | 25                           | 20.3        | 30                           | 20.6              | 30                           |
|      | YSC036A4  | 414-506       | 9.2         | 15                           | 10.4        | 15                           | 10.6              | 15                           |
|      | YSC036AW  | 517-633       | 7.7         | 15                           | 8.3         | 15                           | 8.3               | 15                           |
|      | YSC048A1  | 187-253       | 34.0        | 50                           | 36.1        | 50                           | _                 | _                            |
|      | YSC048A3  | 187-253       | 23.9        | 35                           | 26.0        | 40                           | 25.3              | 35                           |
| 1    | YSC048A4  | 414-506       | 12.8        | 20                           | 14.4        | 20                           | 13.6              | 20                           |
|      | YSC048AW  | 517-633       | 9.8         | 15                           | 10.6        | 15                           | 10.0              | 15                           |
|      | YSC060A1  | 187-253       | 47.3        | 60                           | 49.0        | 60                           | _                 | _                            |
|      | YSC060A3  | 187-253       | 31.5        | 50                           | 33.6        | 50                           | 30.3              | 45                           |
| 5    | YSC060A4  | 414-506       | 16.0        | 25                           | 16.3        | 25                           | 15.6              | 25                           |
|      | YSC060AW  | 517-633       | 12.2        | 15                           | 12.8        | 20                           | 11.8              | 15                           |
|      | YSC060AK  | 342-418       | 19.6        | 30                           | _           | _                            | _                 | _                            |
|      | YSC072A3  | 187-253       | 32.7        | 50                           | 34.0        | 50                           | _                 | _                            |
| 3    | YSC072A4  | 414-506       | 17.6        | 25                           | 18.2        | 25                           | _                 | _                            |
|      | YSC072AW  | 517-633       | 12.8        | 20                           | 13.6        | 20                           | _                 | _                            |
|      | YSC072AK  | 342-418       | 23.2        | 35                           | _           | _                            | _                 | _                            |
|      | YSC090A3  | 187-253       | 42.7        | 60                           | 45.8        | 60                           | _                 | _                            |
|      | YSC090A4  | 414-506       | 22.6        | 35                           | 24.1        | 35                           | _                 | _                            |
|      | YSC090AW  | 517-633       | 17.6        | 25                           | 18.8        | 25                           | _                 | _                            |
| 71/2 | YSC090AK  | 342-418       | 28.9        | 40                           | 29.9        | 45                           | _                 | _                            |
| //2  | YSC092A3  | 187-253       | 38.9        | 50                           | 42.0        | 50                           | _                 | _                            |
|      | YSC092A4  | 414-506       | 20.5        | 25                           | 22.0        | 25                           | _                 | _                            |
|      | YSC092AW  | 517-633       | 15.5        | 20                           | 16.7        | 20                           | _                 | _                            |
|      | YSC102A3  | 187-253       | 45.1        | 60                           | 48.2        | 60                           |                   | _                            |
| 31/2 | YSC102A4  | 414-506       | 24.0        | 30                           | 25.5        | 35                           | _                 | _                            |
|      | YSC102AW  | 517-633       | 19.5        | 25                           | 20.7        | 25                           | _                 | _                            |
|      | YSC102AK  | 342-418       | 29.6        | 40                           | 31.1        | 40                           | _                 | _                            |
|      | YSC120A3  | 187-253       | 52.6        | 60                           | 56.6        | 70                           | _                 | _                            |
| 10   | YSC120A4  | 414-506       | 26.9        | 35                           | 28.9        | 35                           | _                 | _                            |
|      | YSC120AW  | 517-633       | 21.8        | 25                           | 23.5        | 30                           | _                 | _                            |
|      | YSC120AK  | 342-418       | 32.8        | 40                           | 35.6        | 45                           | _                 | _                            |

Notes:
1. HACR breaker per NEC.



(High Efficiency)

Table ED-2 - Unit Wiring - High Efficiency

|      |           |               | Standard | Indoor Fan Motor             | Oversize | Indoor Fan Motor             | Belt Drive | Indoor Fan Motor             |
|------|-----------|---------------|----------|------------------------------|----------|------------------------------|------------|------------------------------|
|      |           | Unit          | Minimum  | Maximum Fuse                 | Minimum  | Maximum Fuse                 | Minimum    | Maximum Fuse                 |
|      | Unit      | Operating     | Circuit  | Size or Maximum              | Circuit  | Size or Maximum              | Circuit    | Size or Maximum              |
| Tons | Model No. | Voltage Range | Ampacity | Circuit Breaker <sup>1</sup> | Ampacity | Circuit Breaker <sup>1</sup> | Ampacity   | Circuit Breaker <sup>1</sup> |
|      | YHC036A1  | 187-253       | 23.9     | 40                           | 26.3     | 40                           | _          | _                            |
| 3    | YHC036A3  | 187-253       | 17.2     | 25                           | 19.6     | 30                           | 19.9       | 30                           |
|      | YHC036A4  | 414-506       | 9.0      | 15                           | 10.2     | 15                           | 10.4       | 15                           |
|      | YHC036AW  | 517-633       | 7.1      | 15                           | 7.7      | 15                           | 7.7        | 15                           |
|      | YHC048A1  | 187-253       | 29.4     | 45                           | 31.5     | 50                           | _          | _                            |
|      | YHC048A3  | 187-253       | 21.2     | 30                           | 23.3     | 35                           | 22.6       | 35                           |
| 4    | YHC048A4  | 414-506       | 11.0     | 15                           | 12.6     | 15                           | 11.8       | 15                           |
|      | YHC048AW  | 517-633       | 8.3      | 15                           | 9.1      | 15                           | 8.5        | 15                           |
|      | YHC060A1  | 187-253       | 39.5     | 60                           | 41.2     | 60                           | _          | _                            |
|      | YHC060A3  | 187-253       | 30.0     | 45                           | 31.7     | 45                           | 28.8       | 45                           |
| 5    | YHC060A4  | 414-506       | 14.7     | 20                           | 15.0     | 20                           | 14.3       | 20                           |
|      | YHC060AW  | 517-633       | 11.8     | 15                           | 12.4     | 15                           | 11.4       | 15                           |
|      | YHC072A3  | 187-253       | 34.8     | 50                           | 36.1     | 50                           | _          | _                            |
| 6    | YHC072A4  | 414-506       | 17.5     | 25                           | 18.1     | 25                           | _          | _                            |
|      | YHC072AW  | 517-633       | 13.5     | 20                           | 14.3     | 20                           | _          | _                            |
|      | YHC092A3  | 187-253       | 38.1     | 50                           | 41.2     | 50                           | _          | _                            |
| 71/2 | YHC092A4  | 414-506       | 19.4     | 25                           | 20.9     | 25                           | _          | _                            |
|      | YHC092AW  | 517-633       | 14.8     | 15                           | 16.0     | 20                           | _          | _                            |
|      | YHC102A3  | 187-253       | 42.3     | 50                           | 45.4     | 60                           | _          | _                            |
| 81/2 | YHC102A4  | 414-506       | 21.4     | 25                           | 22.9     | 30                           | _          | _                            |
|      | YHC102AW  | 517-633       | 16.6     | 20                           | 17.8     | 20                           | _          | _                            |
|      | YHC120A3  | 187-253       | 48.6     | 60                           | 52.6     | 60                           | _          | _                            |
| 10   | YHC120A4  | 414-506       | 25.3     | 30                           | 27.3     | 35                           | _          | _                            |
|      | YHC120AW  | 517-633       | 19.9     | 25                           | 21.6     | 25                           | _          | _                            |

Notes:
1. HACR breaker per NEC.



Table ED-3 — Electrical Characteristics — Evaporator Fan Motors — Direct Drive

|      |           |     | Standa  | rd Evapor | ator Fan M | otor |      |     | Oversiz | ed Evapor | ator Fan N | 1otor |       |
|------|-----------|-----|---------|-----------|------------|------|------|-----|---------|-----------|------------|-------|-------|
|      | Unit      |     |         |           |            | Am   | nps  |     |         |           |            | An    | nps   |
| Tons | Model No. | No. | Volts   | Phase     | HP         | FLA  | LRA  | No. | Volts   | Phase     | HP         | FLA   | LRA   |
|      | Y*C036A1  | 1   | 208-230 | 1         | .33        | 2.30 | 3.90 | 1   | 208-230 | 1         | .50        | 4.70  | 9.80  |
| 3    | Y*C036A3  | 1   | 208-230 | 1         | .33        | 2.30 | 3.90 | 1   | 208-230 | 1         | .50        | 4.70  | 9.80  |
| 3    | Y*C036A4  | 1   | 460     | 1         | .33        | 1.10 | 2.00 | 1   | 460     | 1         | .50        | 2.30  | 5.20  |
|      | Y*C036AW  | 1   | 575     | 1         | .33        | 1.10 | 1.80 | 1   | 460     | 1         | .50        | 1.70  | 3.60  |
|      | Y*C048A1  | 1   | 208-230 | 1         | .60        | 3.60 | 6.60 | 1   | 208-230 | 1         | .80        | 5.70  | 13.60 |
| 4    | Y*C048A3  | 1   | 208-230 | 1         | .60        | 3.60 | 6.60 | 1   | 208-230 | 1         | .80        | 5.70  | 13.60 |
| 4    | Y*C048A4  | 1   | 460     | 1         | .60        | 1.70 | 2.80 | 1   | 460     | 1         | .80        | 3.30  | 7.20  |
|      | Y*C048AW  | 1   | 575     | 1         | .60        | 1.50 | 2.40 | 1   | 575     | 1         | .80        | 2.30  | 5.80  |
|      | Y*C060A1  | 1   | 208-230 | 1         | .90        | 6.20 | 14.0 | 1   | 208-230 | 1         | 1.00       | 7.90  | 16.40 |
| _    | Y*C060A3  | 1   | 208-230 | 1         | .90        | 6.20 | 14.0 | 1   | 208-230 | 1         | 1.00       | 7.90  | 16.40 |
| 5    | Y*C060A4  | 1   | 460     | 1         | .90        | 2.90 | 6.60 | 1   | 460     | 1         | 1.00       | 3.20  | 8.20  |
|      | Y*C060AW  | 1   | 575     | 1         | .90        | 2.10 | 4.90 | 1   | 575     | 1         | 1.00       | 2.70  | 5.00  |
|      | YSC060AK  | 1   | 380     | 1         | 1.00       | 4.30 | 8.30 | N/A | N/A     | N/A       | N/A        | N/A   | N/A   |

Table ED-4 — Electrical Characteristics — Evaporator Fan Motors — Belt Drive

|      |           |     | Standa  | rd Evapora | tor Fan M | otor |       |     | Oversiz | ed Evapor | ator Fan M | 1otor |        |
|------|-----------|-----|---------|------------|-----------|------|-------|-----|---------|-----------|------------|-------|--------|
|      | Unit      |     |         |            |           | An   | nps   |     |         |           |            | An    | nps    |
| Tons | Model No. | No. | Volts   | Phase      | HP        | FLA  | LRA   | No. | Volts   | Phase     | HP         | FLA   | LRA    |
| 3    | Y*C036A3  | 1   | 208-230 | 3          | 1.0       | 5.0  | 32.2  | _   | _       | _         | _          | _     | _      |
|      | Y*C036A4  | 1   | 460     | 3          | 1.0       | 2.5  | 16.1  | _   | _       | _         | _          | _     | _      |
|      | Y*C036AW  | 1   | 575     | 3          | 1.0       | 1.7  | 13.2  | _   | _       | _         | _          | _     | _      |
|      | Y*C048A3  | 1   | 208-230 | 3          | 1.0       | 5.0  | 32.2  | _   | _       | _         | _          | _     | _      |
| 4    | Y*C048A4  | 1   | 460     | 3          | 1.0       | 2.5  | 16.1  | _   | _       | _         | _          | _     | _      |
|      | Y*C048AW  | 1   | 575     | 3          | 1.0       | 1.7  | 13.2  | _   | _       | _         | _          | _     | _      |
|      | Y*C060A3  | 1   | 208-230 | 3          | 1.0       | 5.0  | 32.2  | _   | _       | _         | _          | _     | _      |
| 5    | Y*C060A4  | 1   | 460     | 3          | 1.0       | 2.5  | 16.1  | _   | _       | _         | _          | _     | _      |
|      | Y*C060AW  | 1   | 575     | 3          | 1.0       | 1.7  | 13.2  | _   | _       | _         | _          | _     | _      |
|      | YSC060AK  | 1   | 380     | 1          | 1.0       | 4.3  | 8.3   | _   | _       | _         | _          | _     | _      |
|      | Y*C072A3  | 1   | 208-230 | 3          | 1.00      | 5.00 | 32.20 | 1   | 208-230 | 3         | 2.00       | 6.30  | 48.00  |
| 3    | Y*C072A4  | 1   | 460     | 3          | 1.00      | 2.50 | 16.10 | 1   | 460     | 3         | 2.00       | 3.10  | 24.00  |
|      | Y*C072AW  | 1   | 575     | 3          | 1.00      | 1.70 | 13.20 | 1   | 575     | 3         | 2.00       | 2.50  | 18.20  |
|      | YSC072AK  | 1   | 380     | 3          | 2.0       | 4.9  | 35.0  | _   | _       | _         | _          | _     | _      |
|      | YSC090A3  | 1   | 208-230 | 3          | 2.00      | 6.30 | 48.00 | 1   | 208-230 | 3         | 3.00       | 9.40  | 83.00  |
|      | YSC090A4  | 1   | 460     | 3          | 2.00      | 3.10 | 24.00 | 1   | 460     | 3         | 3.00       | 4.60  | 42.00  |
|      | YSC090AW  | 1   | 575     | 3          | 2.00      | 2.50 | 18.20 | 1   | 575     | 3         | 3.00       | 3.70  | 31.00  |
|      | YSC090AK  | 1   | 380     | 3          | 2.0       | 4.9  | 3.50  | 1   | 3.80    | 3         | 3.0        | 6.4   | 51.1   |
| 71/2 | Y*C092A3  | 1   | 208-230 | 3          | 2.00      | 6.30 | 48.00 | 1   | 208-230 | 3         | 3.00       | 9.40  | 83.00  |
|      | Y*C092A4  | 1   | 460     | 3          | 2.00      | 3.10 | 24.00 | 1   | 460     | 3         | 3.00       | 4.60  | 42.00  |
|      | Y*C092AW  | 1   | 575     | 3          | 2.00      | 2.50 | 18.20 | 1   | 575     | 3         | 3.00       | 3.70  | 31.00  |
|      | Y*C102A3  | 1   | 208-230 | 3          | 2.00      | 6.30 | 48.00 | 1   | 208-230 | 3         | 3.00       | 9.40  | 83.00  |
| 31/2 | Y*C102A4  | 1   | 460     | 3          | 2.00      | 3.10 | 24.00 | 1   | 460     | 3         | 3.00       | 4.60  | 42.00  |
|      | Y*C102AW  | 1   | 575     | 3          | 2.00      | 2.50 | 18.20 | 1   | 575     | 3         | 3.00       | 3.70  | 31.00  |
|      | YSC102AK  | 1   | 380     | 3          | 2.0       | 4.9  | 35.0  | 1   | 380     | 3         | 3.0        | 6.4   | 51.1   |
|      | Y*C120A3  | 1   | 208-230 | 3          | 3.00      | 9.40 | 83.00 | 1   | 208-230 | 3         | 5.00       | 13.40 | 112.00 |
| 10   | Y*C120A4  | 1   | 460     | 3          | 3.00      | 4.60 | 42.00 | 1   | 460     | 3         | 5.00       | 6.60  | 56.00  |
|      | Y*C120AW  | 1   | 575     | 3          | 3.00      | 3.70 | 31.00 | 1   | 575     | 3         | 5.00       | 5.40  | 41.00  |
|      | YSC120AK  | 1   | 380     | 3          | 3.0       | 6.4  | 51.1  | 1   | 380     | 3         | 5.0        | 10.8  | 66.5   |

 $<sup>\</sup>ensuremath{^{*}}$  Indicates both standard and high efficiency airflow.



(Standard Efficiency)

Table ED-5 — Electrical Characteristics — Compressor Motor And Condenser Motor — Standard Efficiency

|            |           |     | Compressor Motor |       |         |      |           |        |     | Condenser Fan Motors |     |      |      |  |  |
|------------|-----------|-----|------------------|-------|---------|------|-----------|--------|-----|----------------------|-----|------|------|--|--|
|            | Unit      |     |                  |       |         |      | Am        | ps     |     |                      |     | An   | nps  |  |  |
| Tons       | Model No. | No. | Volts            | Phase | HP²     | RPM  | RLA       | LRA    | No. | Phase                | HP  | FLA  | LRA  |  |  |
|            | YSC036A1  | 1   | 208-230          | 1     | 3.1     | 3450 | 17.2      | 104.0  | 1   | 1                    | .20 | 1.5  | 2.5  |  |  |
| 3          | YSC036A3  | 1   | 208-230          | 3     | 3.1     | 3450 | 11.3      | 74.0   | 1   | 1                    | .20 | 1.5  | 2.5  |  |  |
|            | YSC036A4  | 1   | 460              | 3     | 3.1     | 3450 | 6.0       | 37.6   | 1   | 1                    | .20 | 0.6  | 1.3  |  |  |
|            | YSC036AW  | 1   | 575              | 3     | 3.1     | 3450 | 4.9       | 30.4   | 1   | 1                    | .20 | 0.5  | 1.2  |  |  |
|            | YSC048A1  | 1   | 208-230          | 1     | 3.9     | 3450 | 22.7      | 131.0  | 1   | 1                    | .33 | 2.0  | 6.6  |  |  |
|            | YSC048A3  | 1   | 208-230          | 3     | 3.9     | 3450 | 14.6      | 91.0   | 1   | 1                    | .33 | 2.0  | 6.6  |  |  |
| 4          | YSC048A4  | 1   | 460              | 3     | 3.9     | 3450 | 7.9       | 46.0   | 1   | 1                    | .33 | 1.2  | 2.5  |  |  |
|            | YSC048AW  | 1   | 575              | 3     | 3.9     | 3450 | 6.1       | 37.0   | 1   | 1                    | .33 | 0.7  | 1.5  |  |  |
|            | YSC060A1  | 1   | 208-230          | 1     | 5.1     | 3450 | 31.3      | 144.0  | 1   | 1                    | .33 | 2.0  | 6.6  |  |  |
| _          | YSC060A3  | 1   | 208-230          | 3     | 5.1     | 3450 | 18.6      | 128.0  | 1   | 1                    | .33 | 2.0  | 6.6  |  |  |
| 5          | YSC060A4  | 1   | 460              | 3     | 5.1     | 3450 | 9.5       | 63.0   | 1   | 1                    | .33 | 1.2  | 2.5  |  |  |
|            | YSC060AW  | 1   | 575              | 3     | 5.1     | 3450 | 7.5       | 49.0   | 1   | 1                    | .33 | 0.7  | 1.5  |  |  |
|            | YSC060AK  | 1   | 380              | 3     | 5.1     | 3450 | 11.4      | 64     | 1   | 1                    | .40 | 1.1  | 4.3  |  |  |
|            | YSC072A3  | 1   | 208-230          | 3     | 6       | 3450 | 19.0      | 156    | 1   | 1                    | .70 | 3.85 | 9.30 |  |  |
| 6          | YSC072A4  | 1   | 460              | 3     | 6       | 3450 | 10.1      | 75     | 1   | 1                    | .70 | 2.50 | 5.80 |  |  |
|            | YSC072AW  | 1   | 575              | 3     | 6       | 3450 | 7.7       | 54     | 1   | 1                    | .70 | 1.54 | 3.60 |  |  |
|            | YSC072AK  | 1   | 380              | 3     | 6       | 3450 | 12.2      | 70     | 1   | 1                    | .75 | 2.5  | 7.7  |  |  |
|            | YSC090A3  | 1   | 208-230          | 3     | 7.5     | 3450 | 26.0      | 181.5  | 1   | 1                    | .70 | 3.85 | 9.30 |  |  |
|            | YSC090A4  | 1   | 460              | 3     | 7.5     | 3450 | 13.6      | 95.0   | 1   | 1                    | .70 | 2.50 | 5.80 |  |  |
|            | YSC090AW  | 1   | 575              | 3     | 7.5     | 3450 | 10.9      | 69.0   | 1   | 1                    | .70 | 1.54 | 3.60 |  |  |
|            | YSC090AK  | 1   | 380              | 3     | 7.5     | 3450 | 16.4      | 106.3  | 1   | 1                    | .75 | 2.5  | 7.7  |  |  |
| <b>7</b> ½ | YSC092A3  | 2   | 208-230          | 3     | 4/2.8   | 3450 | 14.7/10.3 | 91/77  | 1   | 1                    | .70 | 3.85 | 9.30 |  |  |
|            | YSC092A4  | 2   | 460              | 3     | 4/2.8   | 3450 | 7.6/5.4   | 50/39  | 1   | 1                    | .70 | 2.50 | 5.80 |  |  |
|            | YSC092AW  | 2   | 575              | 3     | 4/2.8   | 3450 | 5.8/4.2   | 37/31  | 1   | 1                    | .70 | 1.54 | 3.60 |  |  |
|            | YSC102A3  | 2   | 208-230          | 3     | 5.1/2.8 | 3450 | 18.6/10.3 | 128/77 | 1   | 1                    | .75 | 4.0  | 9.4  |  |  |
| 81/2       | YSC102A4  | 2   | 460              | 3     | 5.1/2.8 | 3450 | 10.0/5.4  | 63/39  | 1   | 1                    | .75 | 2.8  | 6.8  |  |  |
|            | YSC102AW  | 2   | 575              | 3     | 5.1/2.8 | 3450 | 8.2/4.2   | 49/31  | 1   | 1                    | .75 | 2.4  | 6.2  |  |  |
|            | YSC102AK  | 1   | 380              | 3     | 5.1/2.8 | 3450 | 12.1/6.6  | 64/39  | 1   | 1                    | 7.5 | 2.5  | 7.7  |  |  |
|            | YSC120A3  | 2   | 208-230          | 3     | 5.1/3.9 | 3450 | 18.6/14.7 | 128/91 | 1   | 1                    | .75 | 4.0  | 9.4  |  |  |
| 10         | YSC120A4  | 2   | 460              | 3     | 5.1/3.9 | 3450 | 9.5/7.4   | 63/46  | 1   | 1                    | .75 | 2.8  | 6.8  |  |  |
|            | YSC120AW  | 2   | 575              | 3     | 5.1/3.9 | 3450 | 7.8/5.8   | 49/37  | 1   | 1                    | .75 | 2.4  | 6.2  |  |  |
|            | YSC120AK  | 1   | 380              | 3     | 5.1/3.9 | 3450 | 11.5/9.0  | 64/54  | 1   | 1                    | .75 | 2.5  | 7.7  |  |  |



(High Efficiency)

Table ED-6 - Electrical Characteristics - Compressor Motor And Condenser Motor - High Efficiency

|            |           | Compressor Motor |         |       |         |      | Condenser Fan Motors |                  |     |       |     |      |      |
|------------|-----------|------------------|---------|-------|---------|------|----------------------|------------------|-----|-------|-----|------|------|
|            | Unit      |                  |         |       |         |      | Am                   | nps <sup>1</sup> |     |       |     | An   | nps  |
| Tons       | Model No. | No.              | Volts   | Phase | HP²     | RPM  | RLA                  | LRA              | No. | Phase | HP² | FLA  | LRA  |
|            | YHC036A1  | 1                | 208-230 | 1     | 2.8     | 3450 | 16.1                 | 88.0             | 1   | 1     | .20 | 1.5  | 2.5  |
|            | YHC036A3  | 1                | 208-230 | 3     | 2.8     | 3450 | 10.7                 | 77.0             | 1   | 1     | .20 | 1.5  | 2.5  |
| 3          | YHC036A4  | 1                | 460     | 3     | 2.8     | 3450 | 5.8                  | 39.0             | 1   | 1     | .20 | 0.6  | 1.3  |
|            | YHC036AW  | 1                | 575     | 3     | 2.8     | 3450 | 4.4                  | 31.0             | 1   | 1     | .20 | 0.5  | 1.2  |
|            | YHC048A1  | 1                | 208-230 | 1     | 3.5     | 3450 | 19.0                 | 109.0            | 1   | 1     | .33 | 2.0  | 6.6  |
|            | YHC048A3  | 1                | 208-230 | 3     | 3.5     | 3450 | 12.5                 | 88.0             | 1   | 1     | .33 | 2.0  | 6.6  |
| 4          | YHC048A4  | 1                | 460     | 3     | 3.5     | 3450 | 6.5                  | 44.0             | 1   | 1     | .33 | 1.2  | 2.5  |
|            | YHC048AW  | 1                | 575     | 3     | 3.5     | 3450 | 4.9                  | 34.0             | 1   | 1     | .33 | 0.7  | 1.5  |
|            | YHC060A1  | 1                | 208-230 | 1     | 4.5     | 3450 | 25.0                 | 169.0            | 1   | 1     | .33 | 2.0  | 6.6  |
|            | YHC060A3  | 1                | 208-230 | 3     | 4.5     | 3450 | 17.4                 | 124.0            | 1   | 1     | .33 | 2.0  | 6.6  |
| 5          | YHC060A4  | 1                | 460     | 3     | 4.5     | 3450 | 7.8                  | 59.6             | 1   | 1     | .33 | 1.2  | 2.5  |
|            | YHC060AW  | 1                | 575     | 3     | 4.5     | 3450 | 6.2                  | 49.4             | 1   | 1     | .33 | 0.9  | 1.5  |
|            | YHC072A3  | 1                | 208-230 | 3     | 5.7     | 3450 | 20.7                 | 156              | 1   | 1     | .70 | 3.85 | 9.30 |
| 6          | YHC072A4  | 1                | 460     | 3     | 5.7     | 3450 | 10                   | 75               | 1   | 1     | .70 | 2.50 | 5.80 |
|            | YHC072AW  | 1                | 575     | 3     | 5.7     | 3450 | 8.2                  | 54               | 1   | 1     | .70 | 1.54 | 3.60 |
|            | YHC092A3  | 2                | 208-230 | 3     | 3.5/3.3 | 3450 | 12.4/12.4            | 88/88            | 1   | 1     | .70 | 3.85 | 9.30 |
| <b>7</b> ½ | YHC092A4  | 2                | 460     | 3     | 3.5/3.3 | 3450 | 6.4/5.8              | 44/44            | 1   | 1     | .70 | 2.50 | 5.80 |
|            | YHC092AW  | 2                | 575     | 3     | 3.5/3.3 | 3450 | 4.8/4.8              | 34/34            | 1   | 1     | .70 | 1.54 | 3.60 |
|            | YHC102A3  | 2                | 208-230 | 3     | 3.9/3.5 | 3450 | 14.7/12.4            | 91/88            | 1   | 1     | .75 | 4.0  | 9.4  |
| 81/2       | YHC102A4  | 2                | 460     | 3     | 3.9/3.5 | 3450 | 7.1/6.4              | 50/44            | 1   | 1     | .75 | 2.8  | 6.8  |
|            | YHC102AW  | 2                | 575     | 3     | 3.9/3.5 | 3450 | 5.4/4.8              | 37/34            | 1   | 1     | .75 | 2.4  | 6.2  |
|            | YHC120A3  | 2                | 208-230 | 3     | 4.8/3.5 | 3450 | 17.3/12.4            | 124/88           | 1   | 1     | .75 | 4.0  | 9.4  |
| 10         | YHC120A4  | 2                | 460     | 3     | 4.8/3.5 | 3450 | 9.0/6.4              | 59.6/44          | 1   | 1     | .75 | 2.8  | 6.8  |
|            | YHC120AW  | 2                | 575     | 3     | 4.8/3.5 | 3450 | 7.1/4.8              | 49.4/34          | 1   | 1     | .75 | 2.4  | 6.2  |

Nutes.

1. Amp draw for each motor; multiply value by numbers of motors to determine total amps.

2. HP for each compressor.



Table ED-7 — Electrical Characteristics — Inducer Motor

| Unit                                  |        |      |           |         |       |      |
|---------------------------------------|--------|------|-----------|---------|-------|------|
| Model No.                             | Stages | HP   | RPM       | Volts   | Phase | LRA  |
| Y*C036-060A                           | 1      | 1/35 | 3000      | 208-230 | 1     | 0.6  |
| Y*C072A*L,M                           |        |      |           |         |       |      |
| Y*C090,092,102A*L                     | 1      | 1/35 | 3000/3000 | 208-230 | 1     | 0.6  |
| Y*C072A*H                             |        |      |           |         |       |      |
| Y*C090, 092,102A*M,H<br>Y*C120A*L,M,H | 2      | 1/15 | 3500      | 208-230 | 1     | 0.42 |

Table ED-8— Electrical Characteristics — Power Exhaust

| Tons | Volts   | Phase | HP   | RPM <sup>1</sup> | FLA | LRA  |  |
|------|---------|-------|------|------------------|-----|------|--|
| 6-10 | 208-230 | 1     | 0.87 | 1075             | 5.7 | 16.3 |  |
| 6-10 | 460     | 1     | 0.87 | 1075             | 3.3 | 6.8  |  |
| 6-10 | 575     | 1     | 0.87 | 1075             | 2.3 | 5.4  |  |

Note: 1. Two speed.

<sup>\*</sup>Indicates both standard and high efficiency airflow.



# **Jobsite Connections**



### Typical Number Of Wires

| ٨  | Zone Sensors                                |
|----|---------------------------------------------|
| Α- | Manual Changeover                           |
|    | Manual/Auto Changeover with                 |
|    | Status Indication LED's                     |
|    | Programmable Night Setback                  |
|    | with Status Indication LED's                |
|    | Thermostats                                 |
| A— | 4 Wires, 24-volts                           |
| _  | 0.D W. 10 IW. (1)                           |
| B- | 3 Power Wires + 1 Ground Wire (three phase) |
|    | 2 Power Wires + 1 Ground Wire (single phase |

For specific wiring information, see the installation instructions.

All wiring except power wires is low voltage.

All customer supplied wiring to be copper and must conform to applicable electrical codes (such as NEC or CEC) and local electrical codes. Wiring shown dotted is to be furnished and installed by the customer.



# Dimensional Data

(3 - 5 Tons)

All dimensions are in inches/millimeters.



3, 4, and 5 Ion Standard Efficiency — High Heat 3 and 4 Ton High Efficiency — High Heat 5 Ton — High Efficiency — Low, Medium, and High Heat





# Dimensional Data

(3 - 5 Tons)

All dimensions are in inches/millimeters.

3-5 Tons — Downflow Airflow Supply and Return; Through the Base Utilities



3-5 Tons — Horizontal Airflow Supply and Return



3-5 Tons — Unit Clearance and Roof Opening



# Dimensional Data

(3 - 5 Tons)

All dimensions are in inches/millimeters.



3-5 Tons - Roof Curb





# Dimensional Data

(6 - 10 Tons)

All dimensions are in inches/millimeters.

6 Ton Standard and High Efficiency 7½ Ton Standard Efficiency







# Dimensional Data

(6 - 10 Tons)

All dimensions are in inches/millimeters.

6-10 Tons — Downflow Airflow Supply and Return; Through the Base Utilities



6-10 Tons - Horizontal Airflow Supply and Return



6-10 Tons — Unit Clearance and Roof Opening





# Dimensional Data

(6 - 10 Tons)

All dimensions are in inches/millimeters.



6-10 Tons — Roof Curb



6-10 Tons — Downflow Duct Connections — Field Fabricated



# **Data**

# **Dimensional** (3 - 5 Tons) Options/ Accessories



3-5 Tons - Economizer, Manual, or Motorized Damper Hood



3-5 Tons - Swing Diameter for Hinged Door(s) Option



3-5 Tons — Barometric Relief Damper Hood



3-5 Tons — Height of Gas Pipe required from Inside Base of Unit to Gas Shut off assembly (Factory Provided)



# **Data**

# **Dimensional** (6 - 10 Tons) Options/ Accessories



6-10 Tons - Economizer and Barometric Relief Damper Hoods

6-10 Tons - Power Exhaust



6-10 Tons - Swing Diameter for Hinged Door(s) Option



6-10 Tons - Height of Gas Pipe required from Inside Base of Unit to Gas Shut off assembly (Factory Provided)



# Weights

Table W-1 - Maximum Unit And Comer Weights (Lbs) And Center Of Gravity Dimensions (In.)

|      | Unit      | nit Maximum Weights (Lbs) <sup>2</sup> |      |     | Corner We | Center of Gravity (In.) |     |        |       |
|------|-----------|----------------------------------------|------|-----|-----------|-------------------------|-----|--------|-------|
| Tons | Model No. | Shipping                               | Net  | Α   | В         | С                       | D   | Length | Width |
|      | YSC036A   | 572                                    | 480  | 151 | 124       | 96                      | 109 | 32     | 19    |
| 3    | YHC036A   | 589                                    | 497  | 158 | 128       | 101                     | 110 | 32     | 19    |
|      | YSC048A   | 597                                    | 505  | 159 | 130       | 108                     | 109 | 33     | 19    |
| 4    | YHC048A   | 631                                    | 539  | 166 | 133       | 114                     | 126 | 32     | 20    |
|      | YSC060A   | 614                                    | 522  | 169 | 134       | 105                     | 114 | 32     | 18    |
| 5    | YHC060A   | 666                                    | 574  | 179 | 140       | 119                     | 136 | 32     | 20    |
|      | YSC072A   | 878                                    | 735  | 249 | 193       | 132                     | 161 | 39     | 21    |
| 6    | YHC072A   | 915                                    | 772  | 249 | 198       | 141                     | 184 | 39     | 22    |
|      | YSC090A   | 963                                    | 820  | 273 | 208       | 146                     | 193 | 38     | 22    |
| 71/2 | YSC092A   | 965                                    | 822  | 277 | 222       | 147                     | 175 | 40     | 21    |
|      | YHC092A   | 1066                                   | 923  | 306 | 243       | 165                     | 210 | 39     | 22    |
| 01/  | YSC102A   | 1042                                   | 899  | 297 | 243       | 165                     | 194 | 40     | 21    |
| 81/2 | YHC102A   | 1100                                   | 957  | 310 | 252       | 175                     | 220 | 40     | 22    |
| 10   | YSC120A   | 1063                                   | 958  | 317 | 261       | 177                     | 202 | 41     | 21    |
| 10   | YHC120A   | 1203                                   | 1060 | 342 | 277       | 197                     | 245 | 40     | 22    |

#### Notes:

- Corner weights are given for information only.
   Weights are approximate.



Table W-2 — Factory-installed Options Net Weights (Lbs)<sup>1,2</sup>

|                                         | Net'    | Weight   |
|-----------------------------------------|---------|----------|
| Accessory                               | 3-5Tons | 6-10Tons |
| Economizer                              | 26      | 36       |
| Barometric Relief                       | 7       | 10       |
| Powered Exhaust                         | _       | 80       |
| Motorized Outside Air Damper            | 20      | 30       |
| Manual Outside Air Damper               | 16      | 26       |
| Roof Curb                               | 70      | 115      |
| Oversized Motor                         | 5       | 8        |
| Belt Drive Motor                        | 31      | _        |
| Smoke Detector, Return                  | 7       | 7        |
| Smoke Detector, Supply                  | 5       | 5        |
| Coil Guards                             | 12      | 20       |
| Hinged Doors                            | 10      | 12       |
| Powered Convenience Outlet              | 38      | 38       |
| Through the Base Electrical             | 8       | 13       |
| Through the Base Gas                    | 5       | 5        |
| Unit Mounted Circuit Breaker            | 5       | 5        |
| Unit Mounted Disconnect                 | 5       | 5        |
| Novar Control                           | 8       | 8        |
| Dehumidification (Hot Gas Reheat) Coil  | 15      | 25       |
| • • • • • • • • • • • • • • • • • • • • |         |          |

- Notes:

  1. Weights for options not listed are < 5 lbs.

  2. Net weight should be added to unit weight when ordering factory-installed accessories.



#### General

The units shall be convertible airflow. The operating range shall be between 115°F and 0°F in cooling as standard from the factory for units with microprocessor controls. Operating range for units with electromechanical controls shall be between 115°F and 40°F. Cooling performance shall be rated in accordance with ARI testing procedures. All units shall be factory assembled, internally wired, fully charged with R-22, and 100 percent run tested to check cooling operation, fan and blower rotation, and control sequence before leaving the factory. Wiring internal to the unit shall be colored and numbered for simplified identification. Units shall be UL listed and labeled, classified in accordance to UL 1995/CAN/CSA No. 236-M90 for Central Cooling Air Conditioners. Canadian units shall be CSA Certified.

### Casing

Unit casing shall be constructed of zinc coated, heavy gauge, galvanized steel. Exterior surfaces shall be cleaned, phosphatized, and finished with a weather-resistant baked enamel finish. Unit's surface shall be tested 1000 hours in a salt spray test in compliance with ASTM B117. Cabinet construction shall allow for all maintenance on one side of the unit. Service panels shall have lifting handles and be removed and reinstalled by removing only a single fastener while providing a water and air tight seal. All exposed vertical panels and top covers in the indoor air section shall be insulated with a cleanable foil-faced, fire-retardent permanent, odorless glass fiber material. The base of the unit shall be insulated with 1/2 inch, 1 pound density foil-faced, closed-cell material. All insulation edges shall be either captured or sealed. The unit's base pan shall have no penetrations within the perimeter of the curb other than the raised 11/, inch high downflow supply/ return openings to provide an added water integrity precaution, if the condensate drain backs up. The base of the unit shall have provisions for forklift and crane lifting, with forklift capabilities on three sides of the unit.

### **UnitTop**

The top cover shall be one piece construction or where seams exist, it shall be double-hemmed and gasket-sealed. The ribbed top adds extra strength and prevents water from pooling on unit top.

#### Filters

One inch, throwaway filters shall be standard on all 3-5 ton units. The filter rack can be converted to two inch capability. Two inch filters shall be factory supplied on all 6-10 ton units. Optional 2-inch pleated filters shall be available.

#### Compressors

All 3 ton standard units shall have directdrive, hermetic, reciprocating type compressors. The reciprocating type compressors have a centrifugal oil pump providing positive lubrication to moving parts. Motor shall be suction gas-cooled and shall have a voltage utilization range of plus or minus 10 percent of unit nameplate voltage. Crankcase heater, internal temperature, and currentsensitive motor overloads shall be included for maximum protection. Compressors shall have internal spring isolation and sound muffling to minimize vibration transmission and noise. Low pressure switches shall be standard.

3 ton high efficiency and 4-10 ton standard and high efficiency units shall have direct-drive, hermetic, scroll type compressors with centrifugal type oil pumps. Motor shall be suction gas-cooled and shall have a voltage utilization range of plus or minus 10 percent of unit nameplate voltage. Internal overloads shall be provided with the scroll compressors. Crankcase heaters shall be included on 7½ ton standard efficiency units.

### Refrigerant Circuits

Each refrigerant circuit offers a choice of independent fixed orifice expansion devices or thermal expansion valve. Service pressure ports, and refrigerant line filter driers are factory-installed as standard. An area shall be provided for replacement suction line driers.

### **Evaporator and Condenser Coils**

Internally finned, 5/16" copper tubes mechanically bonded to a configured aluminum plate fin shall be standard. Coils shall be leak tested at the factory to ensure the pressure integrity. The evaporator coil and condenser coil shall be leak tested to 200 psig and pressure tested to 450 psig. The condenser coil shall have a patent pending 1+1+1 hybrid coil designed with slight gaps for ease of cleaning. A removeable, reversible, double-sloped condensate drain pan with provision for through the base condensate drain is standard.

#### Gas Heating Section

The heating section shall have a progressive tubular heat exchanger design using stainless steel burners and corrosion resistant steel throughout. An induced draft combustion blower shall be used to pull the combustion products through the firing tubes. The heater shall use a direct spark ignition (DSI) system. On initial call for heat, the combustion blower shall purge the heat exchanger for 20 seconds before ignition After three unsuccessful ignition attempts, the entire heating system shall be locked out until manually reset at the thermostat/zone sensor. Units shall be suitable for use with natural gas or propane (field-installed kit) and also comply with the California requirement for low NOx emissions.

### **Outdoor Fans**

The outdoor fan shall be direct-drive, statically and dynamically balanced, draw-through in the vertical discharge position. The fan motor shall be permanently lubricated and shall have built-in thermal overload protection.

### **Indoor Fan**

All 3-5 ton 3-phase units offer a choice of direct-drive, FC, centrifugal fans or belt driven, FC centrifugal fans with adjustable motor sheaves. 3-5 ton direct drive oversized motors shall be available for high static operations. All 6-10 ton units shall have belt drive motors with an adjustable idler-arm assembly for quick-adjustment to fan belts and motor sheaves. All motors shall be thermally protected. All indoor fan motors meet the U.S. Energy Policy Act of 1992 (EPACT).



#### **Controls**

Unit shall be completely factory-wired with necessary controls and contactor pressure lugs or terminal block for power wiring. Unit shall provide an external location for mounting a fused disconnect device.

A choice of microprocessor or electromechanical controls shall be available.

Microprocessor controls provide for all 24 volt control functions. The resident control algorithms shall make all heating, cooling, and/or ventilating decisions in response to electronic signals from sensors measuring indoor and outdoor temperatures. The control algorithm maintains accurate temperature control, minimizes drift from set point, and provides better building comfort. A centralized Microprocessor shall provide anti-short cycle timing and time delay between compressors to provide a higher level of machine protection.

24-volt electromechanical control circuit shall include control transformer and contactor pressure lugs for power wiring. Units shall have single point power entry as standard.

### **Factory Installed Options**

#### **Black Epoxy Pre-Coated Coils**

The black epoxy coils have a thermoset vinyl coating that is bonded to the aluminum fin stock prior to the finstamping process. The pre-coated coils are an economical option for protection in mildly corrosive environments.

### **Dehumidification Option**

The dehumidification (hot gas reheat) option shall provide increased dehumidification. The option shall consist of a hot-gas reheat coil located on the leaving air side of the evaporator coil prepiped and circuited.

The option shall be equipped with crankcase heater(s), low pressure switch(es), Frostat™, and a thermostatic expansion valve(s) (TXV) as standard.

#### **High Pressure Cutout**

This is offered for units that do not have High Pressure cutout as standard. All 3phase units with scroll compressors include High Pressure Cutout as standard.

### **Hinged Access Doors**

Sheet metal hinges are available on the Filter/Evaporator, Supply Fan/Heat, and the Compressor/Control Access Doors.

### **Novar Return Air Sensor**

This option, when used in conjunction with Novar Controls, will contain a factory provided and wired zone temperature sensor located in the return air stream.

### **Novar Unit Controls**

Optional Novar rooftop unit controls shall be installed and tested. The Novar electronic thermostat module will interface to the unit microprocessor and will control the unit to the desired stage of cooling or heating.

#### **Phase Monitor**

Phase monitor shall provide 100% protection for motors and compressors against problems caused by phase loss, phase imbalance, and phase reversal. Phase monitor is equipped with an LED that provides an ON or FAULT indicator.

### Powered or Unpowered Convenience Outlet

This is a GFCI, 120v/15amp, 2 plug, convenience outlet, either powered or unpowered. When the convenience outlet is powered, a service receptacle disconnect will be available. The convenience outlet is powered from the line side of the disconnect or circuit breaker, and therefore will not be affected by the position of the disconnect or circuit breaker. This option can only be ordered when the Through the Base Electrical with either the Disconnect Switch or Circuit Breaker option is ordered.

### Supply and/or Return Air Smoke Detector

With this option, if smoke is detected, all unit operation will be shut down. Reset will be manual at the unit. Return Air Smoke Detectors require minimum allowable airflow when used with certain models. See the Installation, Operation, and Maintenance (IOM) manual for the models affected and the minimum allowable airflow required. This option is available for microprocessor controlled units.

### Thermal Expansion Valve

All units shall have a short orifice refrigerate control metering device. For more exact refrigerant flow, when using unit in low airflow applications, a Thermal Expansion Valve option shall be available.

#### Through the Base Electrical Access

An electrical service entrance shall be provided allowing electrical access for both control and main power connections inside the curb and through the base of the unit. Option will allow for field installation of liquid-tight conduit and an external field-installed disconnect switch.



### Through the Base Electrical with Circuit Breaker

This option is a thermal magnetic, molded case, HACR Circuit Breaker with provisions for through the base electrical connections. The circuit breaker will be installed in a water tight enclosure in the unit with access through a swinging door. Wiring will be provided from the switch to the unit high voltage terminal block. The circuit breaker will provide overcurrent protection, be sized per NEC and UL guidelines, and be agency recognized by UL/CSA.

### Through the Base Electrical with Disconnect Switch

This 3-pole, molded case, disconnect switch with provisions for through the base electrical connections are available. The disconnect switch will be installed in the unit in a water tight enclosure with access through a swinging door. Wiring will be provided from the switch to the unit high voltage terminal block. The switch will be UL/CSA agency recognized. **Note:** The disconnect switch will be sized per NEC and UL guidelines but will not be used in place of unit overcurrent protection.

### Through the Base Gas Piping

The unit shall include a standard through the base gas provision. This option shall have all piping necessary including, black steel, manual gas shut-off valve, elbows, and union. The manual shut-off valve shall include a 1/8" NPT pressure tap. This assembly will require minor field labor to install.

### **Two-Inch Pleated Filters**

Two inch pleated media filters shall be available on all models.

# Factory or Field Installed Options

### Clogged Filter/Fan Failure Switch

A dedicated differential pressure switch is available to achieve active fan failure indication and/or clogged filter indication. These indications will be registered with either a zone sensor with status indication lights or an Integrated Comfort™ System. This option is available for microprocessor controlled units.

#### **Differential Pressure Switches**

These sensors allow individual fan failure and dirty filter indication for microprocessor controlled units. The fan failure switch will disable all unit functions and "flash" the Service LED on the zone sensor. The dirty filter switch will light the Service LED on the zone sensor and will allow continued unit operation.

#### **Discharge Air Sensing**

This option provides true discharge air sensing in heating models. This sensor is a status indicator readable through Tracer™ orTracker™. This option is available for microprocessor controlled units.

#### **Economizer**

This accessory shall be available with or without barometric relief. The assembly includes fully modulating 0-100 percent motor and dampers, minimum position setting, preset linkage, wiring harness with plug, spring return actuator and fixed dry bulb control. The barometric relief shall provide a pressure operated damper that shall be gravity closing and shall prohibit entrance of outside air during the equipment "off" cycle. Optional solid state or differential enthalpy control shall be available for either factory or field installation. The economizer arrives in the shipping position and shall be moved to the operating position by the installing contractor.

#### **Electric Heaters**

Electric heat modules shall be available for installation within basic unit. Electric heater elements shall be constructed of heavy-duty nickel chromium elements internally delta connected for 240 volt, wye connected for 480 and 600 volt. Staging shall be achieved through ReliaTel™. Each heater package shall have automatically reset high limit control operating through heating element contactors. All heaters shall be individually fused from the factory, where required, and shall meet all NEC and CEC requirements when properly installed. Power assemblies shall provide singlepoint connection. Electric heat modules shall be UL listed or CSA certified.

#### **Frostat**

This option is to be utilized as a safety device. The Frostat opens when temperatures on the evaporator coil fall below 10°F. The temperature will need to rise to 50°F before closing. This option should be utilized in low airflow or high outside air applications.

#### LonTalk® Communication Interface

This option shall be provided to allow the unit to communicate as a Tracer™ LCI-R device or directly with generic LonTalk Network Building Automation System Controls.

#### **Oversized Motors**

Direct drive oversized motors shall be available for high static applications.

### Reference or Comparative Enthalpy

Reference Enthalpy is used to measure and communicate outdoor humidity. The unit receives and uses this information to provide improved comfort cooling while using the economizer. Comparative Enthalpy measures and communicates humidity for both outdoor and return air conditions, and return air temperature. The unit receives and uses this information to maximize use of economizer cooling, and to provide maximum occupant comfort control. Reference or Comparative Enthalpy option shall be available when a factory or field installed Downflow Economizer is ordered. This option is available on all downflow models.

### **Tool-less Hail Guards**

Tool-less, hail protection quality coil guards are available for condenser coil protection.

### **Trane Communication Interface**

This option shall be provided to interface ReliaTel $^{\text{TM}}$  controlled units with the Trane Integrated Comfort $^{\text{TM}}$  systems.



### **Field Installed Options**

### CO<sub>2</sub> Sensing

The CO<sub>2</sub> sensor shall have the ability to monitor space occupancy levels within the building by measuring the parts per million of CO<sub>2</sub> (Carbon Dioxide) in the air. As the CO<sub>2</sub> levels increase, the outside air damper modulates to meet the CO<sub>2</sub> space ventilation requirements.

#### **Digital Display Zone Sensor**

The Digital LCD (Liquid Crystal Display) zone sensor has the look and functionality of standard zone sensors. This sensor includes a digital display of set point adjustment and space temperature in F (Fahrenheit) or C (Celsius). Includes FAN and SYSTEM buttons (supports the service functions of the standard sensor). E-squared memory stores last programmed set points. Requires 24 VAC (Volts AC). This sensor should be utilized with ReliaTel™ controls.

### **Dual Thermistor Remote Zone Sensor**

This sensor will allow the customer to reduce the total number of remote sensors to obtain space temperature averaging. This sensor should be utilized with ReliaTel controls.

### **High Static Drive**

The high static drive option shall allow the standard motor on the 6 and 7½ ton units to operate with improved external static capabilities.

#### **Humidity Sensor**

This wall-mounted humidity sensor is used to control activation of the hot gas reheat dehumidification option. The humidity sensor can be set for humidity levels between 40% and 60% relative humidity by adjusting the Relia Tel Options Module.

#### **Humidity Sensor**

This duct-mounted humidity sensor is used to control activation of the hot gas reheat dehumidification option. The humidity sensor can be set for humidity levels between 40% and 60% relative humidity by adjusting the Relia Tel Options Module.

#### Manual Outside Air Damper

This rain hood and screen shall provide up to 50 percent outside air.

### **Motorized Outside Air Dampers**

Manually set outdoor air dampers shall provide up to 50 percent outside air. Once set, outdoor air dampers shall open to set position when indoor fan starts. The damper shall close to the full closed position when indoor fan shuts down.

#### **Powered Exhaust**

The powered exhaust, available for 6-10 ton units, shall provide exhaust of return air, when using an economizer, to maintain better bulding pressurization.

### Remote Potentiometer

The minimum position setting of the economizer shall be adjusted with this accessory.

### **Roof Curb**

The roof curb shall be designed to mate with the unit's downflow supply and return and provide support and a water tight installation when installed properly. The roof curb design shall allow field-fabricated rectangular supply/return ductwork to be connected directly to the curb. Curb design shall comply with NRCA requirements. Curb shall be shipped knocked down for field assembly and shall include wood nailer strips.

#### **Thermostat**

Two stage heating and cooling operation or one stage heating and cooling shall be available in either manual or automatic changeover. Automatic programmable electronic with night set back shall also be available.

#### **Ventilation Override Accessory**

With the Ventilation Override Accessory installed, the unit can be set to transition up to 3 different pre-programmed sequences for Smoke Purge, Pressurization, and Exhaust. The transition occurs when a binary input on the RTOM is closed (shorted). This would typically be a hard wired relay output from a smoke detector or fire control panel. The ventilation override accessory shall be available as field installed.

#### **Zone Sensor**

This control shall be provided to interface with the Micro equipped units and shall be available in either manual, automatic programmable with night setback, with system malfunction lights, or remote sensor options.















# Trane A business of American Standard Companies www.trane.com

For more information contact your local dealer (distributor), local district office, or e-mail us at comfort@trane.com

| Literature Order Number | RT-PRC006-EN                             |
|-------------------------|------------------------------------------|
| File Number             | PL-UN-RT-YSC/YHC3-10TONS-PRC006-EN-10-04 |
| Supersedes              | PL-UN-RT-YSC/YHC3-10TONS-PRC006-EN-08-04 |
| Stocking Location       | 10-04 Webb/Mason                         |

Trane has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice.