* الاشتقاقية *

. D_f دالة معرفة على مجال D_f من $\mathbb R$ و عدد من

1 الاشتقاقية

	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$	a عند f قابلية اشتقاق الدالة
$f_d^{\prime}(a) = f_g^{\prime}(a)$ إذا كان	$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'_d(a)$	a على يمين f على يمين
a فإن f قابلة للاشتقاق عند	$\lim_{x \xrightarrow{\leq} a} \frac{f(x) - f(a)}{x - a} = f'_g(a)$	a على يسار f على على الدالة

2 مشتقات الدوال المألوفة

f(x)	f'(x)	مجال قابلية الاشتقاق	
$a\in\mathbb{R}$ حيث a	0	$\mathbb R$	
X	1	$\mathbb R$	
a x	а	$\mathbb R$	
$n \in \mathbb{N}^* - \{1\}$ حيث x^n	$n.x^{n-1}$	$\mathbb R$	
$\frac{1}{x}$	$\frac{-1}{x^2}$	ℝ*	
$n \in \mathbb{N}^* - \left\{1\right\} \xrightarrow{x^n}$	$\frac{-n}{x^{n+1}}$	R *	
\sqrt{x}	$\frac{1}{2\sqrt{x}}$]0;+∞[
cos x	− sin <i>x</i>	$\mathbb R$	
sin x	cos x	$\mathbb R$	
$\cos(a x + b)$	$-a\sin(a x+b)$	\mathbb{R}	
$\sin(a x + b)$	$a\cos(a x+b)$	\mathbb{R}	

③ المشتقات و العمليات على الدوال

uov	u ⁿ	\sqrt{u}	$\frac{u}{v}$	$\frac{1}{v}$	u×v	a u	u±v	الدالة
v'.u'(v)	$n \times u^{n-1} \times u'$ $n \in \mathbb{N}^* - \{1\}$	$\frac{u'}{2\sqrt{u}}$	$\frac{u'v-v'u}{v^2}$	$-\frac{v'}{v^2}$	u'v-v'u	a u'	$u' \pm v'$	الدالة المشتقة

④ التفسيرات الهندسية للاشتقاقية

التفسير الهندسي	الاستنتاج	النهاية
معادلته: (C_f) يقبل عند النقطة $A(x_0;f(x_0))$ مماساً $A(x_0;f(x_0))$ عند النقطة $A(x_0;f(x_0))$ معادلته: $y=f'(x_0)(x-x_0)+f(x_0)$	x_0 تقبل الاشتقاق عند $f'ig(x_0ig)=a$ وَ	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = a$
مماساً موازي $Aig(x_0;fig(x_0ig)ig)$ يقبل عند النقطة $Aig(x_0;fig(x_0ig)ig)$ مماساً موازي $y=fig(x_0ig)$ معادلته: $y=fig(x_0ig)$	x_0 تقبل الاشتقاق عند $f'ig(x_0ig)=0$ و $f'ig(x_0ig)=0$	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 0$
يقبل عند النقطة $A(x_0;f(x_0))$ نصف $A(x_0;f(x_0))$ يقبل عند النقطة $A(x_0;f(x_0))$ نصف $xy=f'_d(x_0)(x-x_0)+f(x_0)$ مماس معادلته:	تقبل الاشتقاق على يمين $f'_d\left(x_0 ight)=a$ وَ x_0	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = a$
يقبل عند النقطة $A(x_0;f(x_0))$ نصف $A(x_0;f(x_0))$ يقبل عند النقطة $A(x_0;f(x_0))$ نصف x $y=f'_g(x_0)(x-x_0)+f(x_0)$ مماس معادلته: $f_g(x_0)=0$	f تقبل الاشتقاق على يسار $f_g'\left(x_0 ight)=b$ وَ x_0	$\lim_{x \longrightarrow x_0} \frac{f(x) - f(x_0)}{x - x_0} = b$
يقبل عند النقطة $A(x_0;f(x_0))$ نصفي $A(x_0;f(x_0))$ يقبل عند النقطة زاوية . مماسين حيث A تسمى نقطة زاوية . $f(x_0)$	لا تقبل الاشتقاق عند x_0 و $f_g'(x_0) eq f_d'(x_0)$	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \neq$ $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$
$Aig(x_0;fig(x_0ig)ig)$ يقبل على يمين النقطة $Aig(x_0;fig(x_0ig)ig)$ نصف مماس عمودي موجه نحو الأعلى معادلته $x=x_0$	غير قابلة للاشتقاق f على يمين x_0	$\lim_{x \to \infty} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$
$Aig(x_0;fig(x_0ig)ig)$ يقبل على يمين النقطة $Aig(x_0;fig(x_0ig)ig)$ نصف مماس عمودي موجه نحو الأسفل معادلته $x=x_0$	غير قابلة للاشتقاق f على يمين x_0	$\lim_{x \to \infty} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$
$Aig(x_0;fig(x_0ig)ig)$ يقبل على يسار النقطة $Aig(x_0;fig(x_0ig)ig)$ يقبل على يسار النقطة $x=x_0$ نصف مماس عمودي موجه نحو الأسفل معادلته $x=x_0$	غير قابلة للاشتقاق f على يسار x_0	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = +\infty$
$Aig(x_0;fig(x_0ig)ig)$ يقبل على يسار النقطة $Aig(x_0;fig(x_0ig)ig)$ نصف مماس عمودي موجه نحو الأعلى معادلته $x=x_0$	غير قابلة للاشتقاق f على يسار x_0	$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = -\infty$