CS/COE0447: Computer Organization and Assembly Language

Logic Design Introduction (Brief?)

Appendix C: The Basics of Logic Design

modified by Bruce Childers Sangyeun Cho

Dept. of Computer Science University of Pittsburgh

Logic design?

- Digital hardware is implemented by way of logic design
- Digital circuits process and produce two discrete values: 0 and 1
- Example: 1-bit full adder (FA)

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Layered design approach

- Logic design is done using logic gates
- Often we design a desired function using high-level languages and somewhat higher level than logic gates
- Two approaches in design
 - Top down
 - Bottom up

We'll do logic bottom up

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Logic gates

2-input AND

2-input OR

A

Y=A | B

2-input NAND

Y=~(A & B)

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Y=A & B

Describing a function

- Output_A = F(Input₀, Input₁, ..., Input_{N-1})
- $Output_B = F'(Input_0, Input_1, ..., Input_{N-1})$
- Output_C = F''(Input₀, Input₁, ..., Input_{N-1})
- ...
- Methods
 - Truth table
 - · Sum of products
 - Product of sums

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

	Input			Output	
	Α	В	C _{in}	S	C _{out}
	0	0	0	0	0
\Rightarrow	0	0	1	1	0
\Rightarrow	0	1	0	1	0
\Rightarrow	0	1	1	0	1
\Rightarrow	1	0	0	1	0
\Rightarrow	1	0	1	0	1
\Rightarrow	1	1	0	0	1
\Rightarrow	1	1	1	1	1

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Sum of products

	Input	Output		
Α	В	C _{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = A'B'C_{in} + A'BC_{in}' + AB'C_{in}' + ABC_{in}$$

$$S = A'B'C_{in} + A'BC_{in}' + AB'C_{in}' + ABC_{in}$$

$$C_{out} = A'BC_{in} + AB'C_{in} + ABC_{in}' + ABC_{in}$$

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Combinational vs. sequential logic

- Combinational logic = function
 - A function whose outputs are dependent only on the current inputs
 - As soon as inputs are known, outputs can be determined
- Sequential logic = combinational logic + memory
 - Some memory elements (i.e., "state")
 - · Outputs are dependent on the current state and the current inputs
 - Next state is dependent on the current state and the current inputs

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

13

Combinational logic inputs : outputs CS/CoE1541: Intro. to Computer Architecture University of Pittsburgh

Combinational logic

- Any combinational logic can be implemented using sum of products or product of sums
- Input-output relationship can be defined in the truth table format
- From the truth table, each output function can be derived
- Boolean expressions can be further manipulated (e.g., to reduce cost) using various Boolean algebraic rules

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Boolean algebra

- Boole, George (1815~1864): mathematician and philosopher; inventor of Boolean Algebra, the basis of all computer arithmetic
- Binary values: {0,1}
- Two binary operations: AND (×/·), OR (+)
- One unary operation: NOT (~)

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

17

Boolean algebra

- Binary operations: AND (×/·), OR (+)
 - Idempotent
 - a·a = a+a = a
 - Commutative
 - $a \cdot b = b \cdot a$
 - a+b = b+a
 - Associative
 - $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - a+(b+c) = (a+b)+c
 - Distributive
 - $a \cdot (b+c) = a \cdot b + a \cdot c$
 - $a+(b\cdot c) = (a+b)\cdot (a+c)$

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Boolean algebra

- De Morgan's laws
 - ~(a⋅b) = ~a + ~ b ____
 - \sim (a+b) = \sim a· \sim b
- More...
 - $a+(a\cdot b) = a$
 - $a \cdot (a+b) = a$
 - ~~a = a
 - $a + \sim a = 1$
 - $a \cdot (\sim a) = 0$

It is not true I ate the sandwich and the soup.

same as:

I didn't eat the sandwich or I didn't eat the soup.

It is not true that I went to the store or the library.

same as:

I didn't go to the store and I didn't go to the library.

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

19

Expressive power

- With AND/OR/NOT, we can express any function in Boolean algebra
 - Sum (+) of products (·)
- What if we have NAND/NOR/NOT?
- What if we have NAND only?
- What if we have NOR only?

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Using NAND only

University of Pittsburgh

CS/CoE1541: Intro. to Computer Architecture

Using NOR only (your turn)

- Can you do it?
- NOR is ¬(A + B)

$$\begin{array}{lll} \underline{NOT} & \underline{AND} & \underline{OR} \\ = \neg (A + A) & = \neg (\neg (A + A) + \neg (B + B)) & = \neg (\neg (A + B) + \neg (A + B)) \\ = \neg A \land \neg A & = \neg (\neg A \land \neg A + \neg B \land \neg B) & = (A + B) \land (A + B) \\ = \neg A & = \neg (\neg A + \neg B) & = A + B \\ & = \neg (\neg A) \land \neg (\neg B) \\ & = A \land B \end{array}$$

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

Using NOR only (your turn)

- Can you do it?
- NOR is ¬(A + B)
 - I.e., We need to write NOT, AND, and OR in terms of NOR

$$\begin{array}{lll} \underline{NOT} & \underline{AND} & \underline{OR} \\ = \neg A & = A \land B & = A + B \\ = \neg A \land \neg A & = \neg (\neg A) \land \neg (\neg B) & = (A + B) \land (A + B) \\ = \neg (A + A) & = \neg (\neg A + \neg B) & = \neg (\neg (A + B) + \neg (A + B)) \\ & = \neg (\neg (A \land \neg A + \neg B \land \neg B) \\ & = \neg (\neg (A + A) + \neg (B + B)) \end{array}$$

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

23

Using NOR only (your turn)

CS/CoE1541: Intro. to Computer Architecture

University of Pittsburgh

