COL759: Cryptography August 2023

Problem 1: Perfect 2 time security

Solution:

Problem 2: Secure/Insecure PRGs and PRFs

Solution:

(a) PRGs

i.
$$\mathcal{G}' = \left\{ G'_n : \{0,1\}^{2n} \to \{0,1\}^{3n} \right\}_{n \in \mathbb{N}}$$
, where
$$G'_n(s_1 \mid\mid s_2) = G_n(s_1) \land G_n(s_2).$$

ii.
$$\mathcal{G}' = \left\{ G'_n : \{0,1\}^{2n} \to \{0,1\}^{3n} \right\}_{n \in \mathbb{N}}$$
, where

$$G'_n(s_1 || s_2) = G_n(s_1) \oplus G_n(s_2).$$

(b) PRFs

i.
$$\mathcal{F}' = \left\{ F'_n : \{0,1\}^n \times \{0,1\}^{2n} \to \{0,1\}^n \right\}_{n \in \mathbb{N}}$$
 where
$$F'_n(k,(x_1,x_2)) = F_n(k,x_1) \oplus F_n(k,x_2).$$

The given family \mathcal{F}' is **insecure**. Consider a PPT attacker \mathcal{A} who sends $poly(\lambda)$ distinct (x_i, x_i) queries to the challenger. If the challenger chooses b = 0 then it will end up sending

$$F_n(k, x_i) \oplus F_n(k, x_i) = 0^n$$

for each of the queries. The attacker outputs 0 if all the responses are 0 and 1 otherwise. Advantage of the attacker is close to 1.

ii.
$$\mathcal{F}'=\left\{F_n':\left\{0,1\right\}^n\times\left\{0,1\right\}^n\rightarrow\left\{0,1\right\}^n\right\}_{n\in\mathbb{N}}$$
 where

$$F'_n(k,x) = F_n(k,x) \oplus x.$$

The given family is secure. Given an adversary \mathcal{A} which breaks PRF security of \mathcal{F}' , we can construct an adversary \mathcal{B} which breaks the security of \mathcal{F} .

Problem 2(b)(ii)

- Challenger picks a uniformly random bit $b \leftarrow \{0,1\}$ and a seed $s \leftarrow \{0,1\}^n$.
- The adversary A makes polynomially many queries to B, who passes them to the challenger. Challenger replies as in the PRF Game.
- Upon receiving the response y_i of each query, \mathcal{B} sends $y_i \oplus x_i$ to \mathcal{A}
- After polynomially many queries, \mathcal{B} forwards the response send by \mathcal{A} (b') and wins if b = b'.

Figure 1: Reduction for Problem 2(b)(ii)

Problem 3: PRG Security does not imply Related-Key-PRG Security

Solution:

Problem 4: Constructing PRFs from PRGs

Solution: