

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 11-055219

(43)Date of publication of application : 26.02.1999

(51)Int.CI.

H04J 13/02
H04B 1/04
H04B 7/24

(21)Application number : 09-218005

(71)Applicant : MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing : 29.07.1997

(72)Inventor : MIYA KAZUYUKI
UESUGI MITSURU

(54) CDMA RADIO TRANSMITTING DEVICE AND CDMA RADIO RECEIVING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To suppress the generation of unnecessary frequency components at the time of loading multi-rate data in CDMA (code division multiple access) transmission, and to eliminate hearing aid problems and influences on peripheral equipment or the like.

SOLUTION: Variable data 101 are assembled for each frame unit by a frame assembling circuit 102, and time-multiplied with fixed data 103 by a slot assembling circuit 104. At this time, the slot assembling circuit 104 reads the position information of the fixed data in each slot from a memory in a frame number 112 and a slot number 113, and operates time multiplication by a random pattern using a superframe as a repeating cycle based on the information. The slot assembled signal is processed by primary modulation by a modulating circuit 105, and CDMA modulated by a diffusing circuit 106, and amplified by a radio part 107, and transmitted from an antenna 108. When the variable data are obtained at a low rate, conversion is operated so that data amounts can be made constant by repeating the same signal by the frame assembling circuit 102.

LEGAL STATUS

[Date of request for examination] 07.03.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 3190859

[Date of registration] 18.05.2001

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-55219

(43)公開日 平成11年(1999)2月26日

(51) Int.Cl.⁶
H04J 13/02
H04B 1/04
7/24

識別記号

F I
H04J 13/00
H04B 1/04
7/24

F
R
E

審査請求 未請求 請求項の数16 FD (全13頁)

(21)出願番号 特願平9-218005

(22)出願日 平成9年(1997)7月29日

(71)出願人 000005821
松下電器産業株式会社
大阪府門真市大字門真1006番地
(72)発明者 宮 和行
神奈川県横浜市港北区綱島東四丁目3番1
号 松下通信工業株式会社内
(72)発明者 上杉 充
神奈川県横浜市港北区綱島東四丁目3番1
号 松下通信工業株式会社内
(74)代理人 弁理士 鰐田 公一

(54)【発明の名称】CDMA無線送信装置及びCDMA無線受信装置

(57)【要約】

【課題】 CDMA伝送においてマルチレートのデータを収納する際に生じる不要周波数成分の発生を抑え、ヒアリングエイド問題や周辺機器等への影響を解消すること。

【解決手段】可変データ101はフレーム組立回路102によりフレーム単位で組立られた後、スロット組立回路104において固定データ103と時間多重される。このときスロット組立回路104は、フレーム番号112およびスロット番号113から、各スロットでの固定データの配置位置情報をメモリより読み出し、その情報を基に、スーパーフレームを繰り返し周期としたランダムパターンにより時間多重を行う。スロット組立された信号は変調回路105で1次変調を施し、拡散回路106でCDMA変調した上で、無線部107で增幅してアンテナ108から送信する。可変データが低レートの場合は、フレーム組立回路102において、同一信号を繰り返すこと等により、データ量が一定量になるように変換を行う。

【特許請求の範囲】

【請求項 1】 データ量が時間変化する可変データと時間変化しない固定データとを時間多重する際に、少なくとも可変データが存在しない場合は固定データの送信タイミングがランダム化するように固定データの配置位置を制御することを特徴とする CDMA 無線送信装置。

【請求項 2】 複数の固定データの配置パターンが記憶されたデータ保持手段と、可変データのデータ量を変換するデータ量変換手段と、前記データ保持手段から配置パターンを読み出して固定データと可変データとを配置パターンを用いて時間多重する時間多重手段と、時間多重された信号を変調する変調手段と、この変調手段の出力を無線送信する無線手段とを具備する CDMA 無線送信装置。

【請求項 3】 データ保持手段は、固定データの配置パターンをフレーム番号及びスロット番号に対応させて複数フレームを区切りとするスーパーフレームに収納されるスロット数だけ保持し、

時間多重手段は、フレーム番号及びスロット番号を用いて前記データ保持手段から配置パターンを読み出す、ことを特徴とする請求項 2 記載の CDMA 無線送信装置。

【請求項 4】 データ保持手段は、固定データをスロットの前半に集中するように配置した複数の配置パターンからなる第 1 配置パターン群と、固定データをスロット全体に亘りランダム化した複数の配置パターンからなる第 2 配置パターン群とを保持し、
時間多重手段は、可変データのデータ量が大きい場合は第 1 配置パターン群を使用し、可変データ量が小さい又は存在しない場合は第 2 配置パターン群を使用する、ことを特徴とする請求項 2 又は請求項 3 記載の CDMA 無線送信装置。

【請求項 5】 可変データのデータ量に応じて、可変データ部に相当する区間の送信パワを変化させるレベル制御手段を備えた請求項 1 乃至請求項 4 のいずれかに記載の CDMA 無線送信装置。

【請求項 6】 固定データが、パイロット信号、送信電力制御信号、伝送レート情報信号のいずれか又はそれらの組み合わせであることを特徴とする請求項 1 乃至請求項 5 のいずれかに記載の CDMA 無線送信装置。

【請求項 7】 固定データと可変データとが時間多重された信号を受信した場合に、送信側で時間多重の際に使用した固定データの配置パターンと同じ配置パターンを使用して可変データと固定データとを分離することを特徴とする CDMA 無線受信装置。

【請求項 8】 受信信号をダウンコンバートする無線手段と、この無線手段の出力信号を復調する復調手段と、送信側で可変データと固定データとの時間多重に使用する固定データの配置パターンと同じ配置パターンが記憶されたデータ保持手段と、このデータ保持手段から送信側で使用した配置パターンと同じ配置パターンを読み出し前記復

調手段の出力する復調信号を前記配置パターンを使用して可変データと固定データとに分離する分離手段とを具備する CDMA 無線受信装置。

【請求項 9】 データ保持手段は、固定データの配置パターンをフレーム番号及びスロット番号に対応させて複数フレームを区切りとするスーパーフレームに収納されるスロット数だけ保持し、

分離手段は、送信側と同期のとられたフレーム番号及びスロット番号を用いて前記データ保持手段から配置パターンを読み出す、ことを特徴とする請求項 8 記載の CDMA 無線受信装置。

【請求項 10】 データ保持手段は、固定データをスロットの前半に集中するように配置した複数の配置パターンからなる第 1 配置パターン群と、固定データをスロット全体に亘りランダム化した複数の配置パターンからなる第 2 配置パターン群とを保持し、

分離手段は、可変データのデータ量が大きい場合は第 1 配置パターン群を使用し、可変データ量が小さい又は存在しない場合は第 2 配置パターン群を使用する、ことを特徴とする請求項 8 又は請求項 9 記載の CDMA 無線受信装置。

【請求項 11】 固定データが、パイロット信号、送信電力制御信号、伝送レート情報信号のいずれか又はそれらの組み合わせであることを特徴とする請求項 7 乃至請求項 10 のいずれかに記載の CDMA 無線受信装置。

【請求項 12】 無線基地局装置に対して CDMA 方式による無線送信を行う移動局装置であり、請求項 1 乃至請求項 6 のいずれかに記載の CDMA 無線送信装置を備えたことを特徴とする移動局装置。

【請求項 13】 移動局装置から CDMA 方式で無線送信される信号を受信する無線基地局装置であり、請求項 7 乃至請求項 11 のいずれかに記載の CDMA 無線受信装置を備えたことを特徴とする無線基地局装置。

【請求項 14】 請求項 12 記載の移動局装置と、請求項 13 記載の無線基地局装置とを備えた移動体通信システム。

【請求項 15】 複数の固定データの配置パターンを記憶しておき、データ送信周期に同期して配置パターンを選択し、データ伝送量に応じて可変データのデータ量を変換し、選択した配置パターンを使用してデータ量の変換された可変データと固定データとを時間多重し、この時間多重した信号を変調した後、アップコンバートして送信することを特徴とする CDMA 無線送信方法。

【請求項 16】 送信側で可変データと固定データとの時間多重に使用する固定データの配置パターンと同じ配置パターンを記憶しておき、アンテナからの受信信号をダウンコンバートしてから復調し、この復調信号を送信側で使用した配置パターンと同じ配置パターンを使用して可変データと固定データとに分離することを特徴とする CDMA 無線受信方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、ディジタル無線通信などに用いるCDMA無線伝送装置に関する。

【0002】

【従来の技術】ディジタル無線通信における回線接続方式の一つに、同一の帯域で複数局が同時に通信を行うことのできる多元アクセス方式があり、多元アクセス方式の中でも周波数利用効率を改善できるものとしてCDMA方式がある。

【0003】CDMA (Code Division Multiple Access) とは符号分割多元接続のことと、情報信号のスペクトルを、本来の情報帯域幅に比べて十分に広い帯域に拡散して伝送するスペクトル拡散通信によって多元接続を行う技術のことである。スペクトル拡散多元接続 (SSMA) という場合もある。拡散において拡散系列符号をそのまま情報信号に乘じる方式を直接拡散方式と呼んでいる。

【0004】図12に、従来のCDMA送信装置の概略の構成例を示す。同図に示すCDMA送信装置では、可変データ1201はフレーム組立回路1202によりフレーム単位で組立てられた後、スロット組立回路1203において固定データ1204と時間多重される。このとき、スロット組立回路1203には、時間多重のタイミングを制御するため、スロットタイミング、シンボルタイミングおよびデータレート情報1205等が入力される。

【0005】図13にスロット組立回路を示す。可変データである送信データ1301および固定データ1204はタイミング制御回路1302によって制御されるスイッチ1303により時間多重し出力する。スロット組立回路1203において、スロット組立された信号は変調回路1206で1次変調を施し、拡散回路1207でCDMA変調した上で、無線部1208で増幅してアンテナ1209から送信する。

【0006】ここで、上記CDMA送信装置で用いられる無線信号のデータフォーマットについて説明する。

【0007】図14は、無線信号フォーマットの一例である。送信信号はスロットを基本構成として、Kスロットで1フレームを構成し、さらにNフレームでスーパーフレームと呼ばれる長周期を構成する。図15に、1スロットにおける送信信号フォーマットの例を示している。スロットは、データ量が時間的に一定である固定データ部、および時間的に変化する可変データ部の2種から構成されているものとする。固定データとしては、受信側で同期検波を行うための既知信号であるバイロットシンボルや送信電力等の制御信号や可変データ部のデータ量を伝送するためのレート情報などが伝送される。また、可変データ部としては、音声情報や画像情報のように時間的にデータ量が変化する符号化データが伝送される。

【0008】図15 (a) に示すスロットは、音声伝送

において有音時などのデータレートが高い場合、同図 (b) に示すスロットは、無音時などのデータが無い場合、同図 (c) (d) に示すスロットは、低レート時などのデータ量が少ない場合のスロット構成を示している。

【0009】図16に従来のCDMA送信装置の送信パワをフレーム毎に示している。例えば、送信データのレートが高い場合は、同図 (a) のように、固定データ1601と同じパワーで可変データ1602を送信する。また、データ

10 タが無い場合は、同図 (b) のように、固定データ1603は (a) と同じように送信するが、可変データ1604はパワ0とする。更に、データレートが低い場合は、同図 (c) のように固定データ1605は (a) と同じように送信するが、可変データ1606は同一信号を繰り返して送信する代わりに小さなパワーで送信する。このことで可変データ1606の品質は固定データ1605の品質と同等にすることができる。同時に可変データ1606を低パワーで送信するため、その部分において他ユーザに与える干渉を低減することができる。また、データレートが低い場合は、同図 (d) のように固定データ1607は (a) と同じように送信し、可変データ1608も同一のパワーで送信するがデータが少ないと途中で打ち切ることも可能である。このことで可変データ1608の品質は固定データ1607の品質と同等にすることができる。

【0010】このことから、データレートが高い場合は、図16 (a) のような送信パワのパターンとなり、データがない場合は図16 (b) のような送信パワのパターンになり、データレートが低い場合は図16 (c) あるいは (d) のような送信パワのパターンになる。

30 【0011】一方、受信側となるCDMA受信装置では、図17に示すように、アンテナ1701で受信した信号は、無線部1702によりダウンコンバートされた後、逆拡散回路1703で逆拡散を施され、復調回路1704により復調され、スロット分解回路1705により復調器出力を固定データ部と可変データ部とに分離し、可変データ部についてはフレーム分解回路1707により受信データとして出力する。スロット分解回路1705では、図18に示すように、可変データと固定データとが時間多重された復調器出力1801は、スロットタイミング、シンボルタイミングおよびデータレート情報等1803を基にタイミング制御回路1802によって制御されるスイッチ1804により固定データ1805と可変データ1806に分離し出力する。

40 【0012】

【発明が解決しようとする課題】しかしながら、上記従来の送信装置では、図16 (b) ~ (c) に示すように、データがない場合およびデータのレートが低い場合に、送信エネルギーのON/OFFにより送信パワのパターンが特定の周期のパルス信号となり、その結果特定の周波数成分に大きなパワーの線スペクトルが存在し、これが補聴器に混入して特定の周波数の不要音を発生する

50

いわゆるヒアリングエイド問題を生じさせたり、周辺機器に影響を与える可能性がある。図19には、1.6 kHz周期で送信をON/OFFした場合の周波数スペクトルの例が示されている。この場合、可聴域である1.6 kHzや3.2 kHzに不要音を発生させる線スペクトルが発生している。

【0013】本発明は、以上のような実情に鑑みてなされたものであり、CDMA伝送においてマルチレートのデータを収納する際に生じる不要周波数成分の発生を抑え、ヒアリングエイド問題を解消でき、周辺機器への影響を防止できるCDMA無線伝送装置を提供することを目的とする。

【0014】

【課題を解決するための手段】本発明は、上記課題を解決するために、以下のような手段を講じた。

【0015】請求項1記載の発明は、データ量が時間変化する可変データと時間変化しない固定データとを時間多重する際に、少なくとも可変データが存在しない場合は固定データの送信タイミングがランダム化するように固定データの配置位置を制御する構成を探る。

【0016】この構成により、可変データのデータレートが低い場合又は可変データが存在しない場合などに固定データの送信タイミングがランダム化するので、送信パワのON/OFFタイミングがランダム化され、スロット毎にパルスが生じるのを抑制でき、特定の周波数成分に大きなパワの線スペクトルが発生するのを抑えることができる。

【0017】請求項2記載の発明は、複数の固定データの配置パターンが記憶されたデータ保持手段と、可変データのデータ量を変換するデータ量変換手段と、前記データ保持手段から配置パターンを読み出して固定データと可変データとを配置パターンを用いて時間多重する時間多重手段と、時間多重された信号を変調する変調手段と、この変調手段の出力を無線送信する無線手段とを具備する構成を探る。

【0018】この構成により、データ伝送量に応じてデータ量が変換された可変データが、データ保持手段から読み出した配置パターンを使用して固定データと時間多重されるので、固定データの配置をスロット毎に異ならせることができ、可変データのデータレートが低い場合又は可変データが存在しない場合であっても送信パワのON/OFFタイミングがランダム化される。

【0019】請求項3記載の発明は、請求項2記載のCDMA無線送信装置において、データ保持手段は、固定データの配置パターンをフレーム番号及びスロット番号に対応させて複数フレームを区切りとするスーパーフレームに収納されるスロット数だけ保持し、時間多重手段は、フレーム番号及びスロット番号を用いて前記データ保持手段から配置パターンを読み出す、といった構成を探る。

【0020】この構成により、移動体無線通信システムなどでは送信側と受信側とで同期保持されているスロット番号とフレーム番号とを用いて固定データの配置パターンを制御することができ、受信側でのスロットの分解が容易になる。また、スーパーフレームに収納されるスロット数だけ配置パターンを保持することから、スロット番号が同一であってもフレーム番号が異なれば配置パターンを異ならせることができる。また、固定データの送信タイミングをランダム化する配置パターンがスーパーフレーム周期で繰り返されるため、固定データの送信タイミングを至近距離にある周辺機器に影響を与えない程度にランダム化される。

【0021】請求項4記載の発明は、請求項2又は請求項3記載のCDMA無線送信装置において、データ保持手段は、固定データをスロットの前半に集中するように配置した複数の配置パターンからなる第1配置パターン群と、固定データをスロット全体に亘りランダム化した複数の配置パターンからなる第2配置パターン群とを保持し、時間多重手段は、可変データのデータ量が大きい場合は第1配置パターン群を使用し、可変データ量が小さい又は存在しない場合は第2配置パターン群を使用する、といった構成を探る。

【0022】この構成により、可変データのデータ量が少ない場合または無い場合には、スロット毎の送信タイミングを確実にランダム化することにより、特定の周波数成分に大きなパワの線スペクトルが発生するのを抑えることが可能になる。また、データレートが高い場合には、特定の周波数成分に大きなパワの線スペクトルが発生することなく、かつ固定データがスロットの前半に集中しているため、TCP受信およびSIR測定を特性の劣化なく行うことができる。

【0023】請求項5記載の発明は、請求項1乃至請求項4のいずれかに記載のCDMA無線送信装置において、可変データのデータ量に応じて、可変データ部に相当する区間の送信パワを変化させるレベル制御手段を備える構成を探る。

【0024】この構成により、可変データが低レート時の場合には、データ量が一定量になるように同一信号を繰り返して送信するとともに可変データ部を固定データ部に比べて小さなパワで送信することができ、可変データの品質は固定データの品質と同等にすることができますだけでなく、可変データ部において、他ユーザに対して与える干渉を低減することができる。

【0025】請求項6記載の発明は、請求項1乃至請求項5のいずれかに記載のCDMA無線送信装置において、固定データが、パイロット信号、送信電力制御信号、伝送レート情報信号のいずれか又はそれらの組み合わせとする構成を探る。

【0026】この構成により、パイロット信号、送信電力制御信号、伝送レート情報信号の送信パワのON/OFFタ

タイミングをランダム化することができる。

【0027】請求項7記載の発明は、固定データと可変データとが時間多重された信号を受信した場合に、送信側で時間多重の際に使用した固定データの配置パターンと同じ配置パターンを使用して可変データと固定データとを分離する構成を探る。

【0028】この構成により、ランダム化された送信タイミングから固定データと可変データとを分離することにより正確な受信を可能にすることができる。

【0029】請求項8記載の発明は、受信信号をダウンコンバートする無線手段と、この無線手段の出力信号を復調する復調手段と、送信側で可変データと固定データとの時間多重に使用する固定データの配置パターンと同じ配置パターンが記憶されたデータ保持手段と、このデータ保持手段から送信側で使用した配置パターンと同じ配置パターンを読み出し前記復調手段の出力する復調信号を前記配置パターンを使用して可変データと固定データとに分離する分離手段とを具備する構成を探る。

【0030】この構成により、ダウンコンバートおよび復調した受信信号を、記憶してある配置パターンおよびデータレート情報を用いて、ランダム化された送信タイミングから固定データと可変データとを分離することにより正確な受信を可能にするものである。

【0031】請求項9記載の発明は、請求項8記載のCDMA無線受信装置において、データ保持手段は、固定データの配置パターンをフレーム番号及びスロット番号に対応させて複数フレームを区切りとするスーパーフレームに収納されるスロット数だけ保持し、分離手段は、送信側と同期のとられたフレーム番号及びスロット番号を用いて前記データ保持手段から配置パターンを読み出す、といった構成を探る。

【0032】この構成により、移動体無線通信システムなどでは送信側と受信側とでスロット番号とフレーム番号とが同期保持されているので、送信側でランダム化された固定データを受信側で容易にスロット分解できるものとなる。

【0033】請求項10記載の発明は、請求項8又は請求項9記載のCDMA無線受信装置において、データ保持手段は、固定データをスロットの前半に集中するように配置した複数の配置パターンからなる第1配置パターン群と、固定データをスロット全体に亘りランダム化した複数の配置パターンからなる第2配置パターン群とを保持し、分離手段は、可変データのデータ量が大きい場合は第1配置パターン群を使用し、可変データ量が小さい又は存在しない場合は第2配置パターン群を使用する、といった構成を探る。

【0034】この構成により、送信側において可変データのデータレートが高い場合に、固定データをスロットの前半に集中するように配置したスロットで伝送しても、正確に受信することができる。

【0035】請求項11記載の発明は、請求項7乃至請求項10のいずれかに記載のCDMA無線受信装置において、固定データが、パイロット信号、送信電力制御信号、伝送レート情報信号のいずれか又はそれらの組み合わせである、といった構成を探る。

【0036】この構成により、パイロット信号、送信電力制御信号、伝送レート情報信号をランダム化して伝送しても正確に受信することができる。

【0037】請求項12記載の発明は、無線基地局装置10に対してCDMA方式による無線送信を行う移動局装置であり、請求項1乃至請求項6のいずれかに記載のCDMA無線送信装置を備えた構成を探る。

【0038】この構成により、固定データをランダム化した信号を送信することができ、送信パワのON/OFFタイミングをランダム化できる移動局装置を実現できる。

【0039】請求項13記載の発明は、移動局装置からCDMA方式で無線送信される信号を受信する無線基地局装置であり、請求項7乃至請求項11のいずれかに記載のCDMA無線受信装置を備えた構成を探る。

【0040】この構成により、移動局装置から固定データをランダム化した信号を受信しても固定データと可変データとを正確に分離できる無線基地局装置を実現できる。

【0041】請求項14記載の発明は、請求項12記載の移動局装置と、請求項13記載の無線基地局装置とを備えた移動体通信システムであり、送信パワのON/OFFタイミングをランダム化できる作用を有する。

【0042】請求項15記載の発明は、複数の固定データの配置パターンを記憶しておき、データ送信周期に同期して配置パターンを選択し、データ伝送量に応じて可変データのデータ量を変換し、選択した配置パターンを使用してデータ量の変換された可変データと固定データとを時間多重し、この時間多重した信号を変調した後、アップコンバートして送信するようにしたものであり、固定データの送信タイミングをランダム化できる作用を有する。

【0043】請求項16記載の発明は、送信側で可変データと固定データとの時間多重に使用する固定データの配置パターンと同じ配置パターンを記憶しておき、アンテナからの受信信号をダウンコンバートしてから復調し、この復調信号を送信側で使用した配置パターンと同じ配置パターンを使用して可変データと固定データとに分離するようにしたものであり、ランダム化された固定データを含んだ受信信号を正確に固定データと可変データとに分離できる作用を有する。

【0044】
【発明の実施の形態】以下、本発明の実施の形態について、図面を参照して詳細に説明する。

【0045】(実施の形態1) 図1に、本発明にかかる実施の形態1のCDMA送信装置の構成例を示す。本実50

施の形態 1 の CDMA 送信装置は、可変データ 101 をフレーム単位で組み立てるフレーム組立回路 102、フレーム単位に組み立てられた可変データと固定データ 103 とを時間多重したスロットを生成するスロット組立回路 104、時間多重した信号を 1 次変調する変調回路 105、1 次変調された信号を CDMA 変調する拡散回路 106、CDMA 変調した信号を送信用に増幅等する無線部 107 及び無線送信を行うアンテナ 108 を備えている。

【0046】上記スロット組立回路 104 は、スロットタイミング 105、シンボルタイミング 106、データレート情報 107、フレーム番号 108、スロット番号 109 が入力される。図 2 に示すように、可変データ 101' 及び固定データ 103 をタイミング制御回路 201 によって制御されるスイッチ 202 により時間多重している。メモリ 203 に、フレーム番号 112 及びスロット番号 113 と固定データ 103 の配置パターンとの関係を記憶している。タイミング制御回路 201 は、フレーム番号 112 及びスロット番号 113 から各スロットでの固定データの配置パターン（スロット内での各シンボルの配置位置）情報をメモリ 203 から読み出し、その情報を基にスイッチ 202 を制御する。

【0047】ここで、メモリ 203 に記憶した固定データの配置パターン情報をについて、図 3 及び図 4 を参照して説明する。

【0048】図 3 に、無音時などの可変データが無い場合の第 1 スロットから第 4 スロットまでの固定データの配置パターンを示している。各スロットに 5 シンボルの固定データが配置されるが、その位置は全てのスロットで異なっている。メモリ 203 の記憶容量により記憶可能な配置パターン情報に限りがあるため、適当な数の配置パターンを記憶させる必要がある。本実施の形態では、図 4 に示すように、複数のフレームで構成されるスーパーフレーム 401 内では全てのスロットで異なる配置パターンとなるように設定しており、スロット当たり 5 シンボルの固定データの配置位置は、スーパーフレーム 401 が繰り返し周期となる。フレーム番号とスロット番号とを組み合わせたメモリアドレスにそれぞれ対応する配置パターンを格納しておくことにより、スーパーフレーム内ではランダムに固定データの配置パターンを読み出すことができる。

【0049】次に、以上のように構成された CDMA 送信装置の動作について説明する。可変データ 101 はフレーム組立回路 102 によりフレーム単位で組立られた後、スロット組立回路 104 において固定データ 103 と時間多重される。

【0050】このとき、スロット組立回路 104 には時間多重のタイミングを制御するために、スロットタイミング 105、シンボルタイミング 106 およびデータレート情報 107 に加えて、フレーム番号 108 およびス

10

20

30

40

50

ロット番号 109 が入力される。スロット組立回路 104 のタイミング制御回路 201 は、データレート情報 101 が可変データ 101 が無いことを示している場合、メモリ 203 に対してその時のフレーム番号 205 及びスロット番号 206 に応じたメモリアドレスにアクセスして固定データの配置パターンを読み出す。そして、その情報を基にスイッチ 202 を制御する。

【0051】また、スロット組立回路 104 のタイミング制御部 201 は、データレート情報から可変データ 101 が低レートであると判断した場合、固定データのランダム化は行わずに、可変データ 101 の同一信号を繰り返すこと等により、データ量が一定量になるように変換を行う。

【0052】スロット組立された信号は、変調回路 105 で 1 次変調を施し、拡散回路 111 で CDMA 変調した上で、無線部 107 で増幅してアンテナ 108 から送信される。

【0053】図 5 は、可変データが無い場合の 1 フレーム区間における送信出力パワの様子を示したものである。固定データの送信パワのみになるが、従来とは異なり、送信パワの ON/OFF タイミングがランダム化されているため、スロット毎にパルスが生じるのを防ぎ、特定の周波数成分に大きなパワの線スペクトルが発生するのを抑えることができる。

【0054】このように実施の形態 1 によれば、可変データが低レートのときは同一信号を繰り返すなどによりデータ量が一定になるように変換し、可変データが無い場合は各スロットにおけるシンボルの固定データ配置位置をランダム化するので、スロット毎にパルスが生じるのを防ぎ、特定の周波数成分に大きなパワの線スペクトルが発生するのを抑えることができる。

【0055】また、実施の形態 1 によれば、固定データの配置パターンの長周期の繰り返し周期をスーパーフレームとしているので、スロット番号が同一であってもフレーム番号が異なれば固定データの配置パターンが異なるので、可変データが存在しないときの固定データの周期性をランダム化できる。

【0056】（実施の形態 2）この実施の形態 2 は、上述した実施の形態 1 の CDMA 送信装置から固定データをランダム化して送信された信号の受信信号から固定データと可変データとを分離することのできる CDMA 受信装置の例である。

【0057】図 6 は、本発明にかかる実施の形態 2 の CDMA 受信装置の構成例を示す。本実施の形態の CDMA 受信装置は、アンテナ 601、アンテナ 601 で受信された信号をダウンコンバートする無線部 602、ダウンコンバートされた信号を逆拡散処理する逆拡散回路 603、逆拡散した信号を復調する復調回路 604、固定データの配置パターン情報を用いて復調器出力を固定データ 605 と可変データ 606 とに分離するスロット分解

回路 607、フレーム単位に分割された可変データ 606 を元の状態の受信データ 608 に変換するフレーム分解回路 609 を備えている。

【0058】上記スロット分解回路 607 は、スロットタイミング 610、シンボルタイミング 611、データレート情報 612、フレーム番号 613、スロット番号 614 が入力される。図 7 に示すように、復調器出力 701 をタイミング制御回路 702 によって制御されるスイッチ 703 により固定データ 605 と可変データ 606 に分離している。メモリ 704 に、上記実施の形態 1 のメモリ 203 と同じ配置パターン情報をフレーム番号 613 及びスロット番号 610 の組み合わせをメモリアドレスとして格納しておく。タイミング制御回路 702 は、フレーム番号 613 及びスロット番号 614 から各スロットでの固定データの配置パターン情報をメモリ 704 から読み出し、その情報を基にスイッチ 703 を制御する。

【0059】なお、実施の形態 1 の CDMA 無線送信装置と実施の形態 2 の CDMA 無線受信装置とを用いて移動体無線通信システムを構築した場合、CDMA 無線送信装置及び CDMA 無線受信装置におけるスロットタイミング (109、610)、シンボルタイミング (110、611)、データレート情報 (111、612)、フレーム番号 (112、613)、スロット番号 (113、614) はお互いに同期がとられているため同一データである。

【0060】次に、以上のように構成された CDMA 受信装置の動作について説明する。アンテナ 601 で受信された信号が無線部 602 によりダウンコンバートされ、逆拡散回路 603 で逆拡散処理された上で、復調回路 604 により復調され、スロット分解回路 605 に入力される。

【0061】スロット分解回路 605 のタイミング制御回路 702 では、入力するデータレート情報が可変データの存在しないことを示していれば、復調器出力 701 に含まれた固定データの配置パターンがランダム化しているので、配置パターンに応じたスロット分解が必要になる。

【0062】本実施の形態では、タイミング制御回路 702 がメモリ 704 に対してそのときのフレーム番号 613 とスロット番号とを組み合わせたメモリアドレスにアクセスして送信側で固定データのランダム化に使用したものと同じ配置パターンを読み出す。そして、可変データと固定データとが時間多重された復調器出力 701 に対して、読み出した配置パターンに基づいてスイッチ 703 を制御して固定データ 605 と可変データ 606 とに分離して出力する。

【0063】復調器出力が固定データ 605 と可変データ 606 とに分離されたならば、可変データ 606 についてはフレーム分解回路 609 により受信データ 608

として出力される。

【0064】このように実施の形態 2 によれば、メモリ 704 にフレーム番号とスロット番号とに対応させて固定データの配置パターンを記憶して、受信信号のフレーム番号 613 及びスロット番号 614 により送信時と同じ配置パターンを取得できるようにしたので、ランダム化された送信タイミングから固定データ 605 と可変データ 606 とを分離することができ、正確な受信が可能になる。

10 【0065】(実施の形態 3) この実施の形態 3 は、可変データが低レートの場合に、データ量が一定量になるように同一信号を繰り返して挿入する一方、可変データ部を固定データ部に比べて小さなパワで送信する CDMA 無線送信装置の例である。

【0066】図 8 は、本発明にかかる実施の形態 3 の CDMA 送信装置の構成例を示す。本実施の形態の CDMA 送信装置は、可変データ 101 をフレーム単位で組み立てるフレーム組立回路 102、フレーム単位に組み立てられた可変データの送信パワに相当するレベルを制御するレベル制御回路 801、レベル制御した可変データと固定データ 103 とを時間多重したスロットを生成するスロット組立回路 104、時間多重した信号を 1 次変調する変調回路 105、1 次変調された信号を CDMA 変調する拡散回路 106、CDMA 変調した信号を送信用に増幅等する無線部 107 及び無線送信を行うアンテナ 108 を備えている。

【0067】レベル制御回路 801 は、データレート情報が低レートを示している場合に、可変データ部が固定データ部に比べて小さなパワで送出されるように可変データ部のレベルを下げる働きをする。

【0068】次に、以上のように構成された実施の形態 3 の動作について説明する。フレーム組立回路 102 では、可変データ 101 のフレーム化を行う一方、データレート情報 110 から可変データ 101 のデータレートを判断し、低レートであればデータ量が一定量になるように同一信号を繰り返す。

【0069】レベル制御回路 801 では、フレーム組立回路 102 と同様に、データレート情報 110 から可変データ 101 のデータレートを判断する。可変データ 101 が低レートであれば、フレーム組立回路 102 から出力される可変データは同一信号が繰り返されているので、その信号のレベルを下げるよう制御する。例えば、可変データの同一信号を 2 回繰り返すことにより信号の時間長が 2 倍にされていれば、レベルを 1/2 に下げる。これにより可変データは送信パワを下げても固定データの品質と同等にできる。

【0070】スロット組立回路 104 では、レベル制御回路 801 でレベル制御された可変データが入力すると、そのとき入力しているデータレート情報が可変データが低レートであることを示すことになる。したがつ

て、上述した実施の形態1と同様に、メモリ203からフレーム番号112とスロット番号113とに基づいて固定データの配置パターンを読み出し、ランダム化された固定データの配置パターンに基づいて、固定データ103と可変データとが時間多重される。図9は、レベル制御された可変データとランダム化された固定データとを時間多重したスロットを示している。

【0071】スロット組立された信号は、変調回路105で1次変調を施し、拡散回路111でCDMA変調した上で、無線部107で増幅してアンテナ108から送信される。

【0072】このような実施の形態3によれば、可変データの品質を固定データの品質と同等にすることができるだけでなく、可変データの送信パワを下げることができる所以可変データ部が他ユーザに対して与える干渉を低減することができる。

【0073】(実施の形態4) 本発明にかかる実施の形態4は、固定データをスロットの前半に集中するように配置した高レート用配置パターンと、固定データをスロット内でランダムに配置した低レート又はデータ無し用配置パターンとを、可変データのデータレートに対応して切替えるCDMA無線送信装置である。

【0074】本実施の形態のCDMA無線送信装置は、実施の形態3として説明したCDMA無線送信装置と基本構成は同じであり、スロット組立回路104の一部構成及び処理内容が異なる。ここでは、実施の形態3と異なる部分について詳しく説明する。

【0075】図10は、本実施の形態のCDMA無線送信装置に備えたスロット組立回路104'の一部の構成であり、メモリ1001とアドレス発生部1002の部分を示している。メモリ1001は、高レート用パターン領域1003と低レートデータ無し用パターン領域1004とを有する。高レート用パターン領域1003には、図11(a)に示すように固定データをスロットの前半に集中するように配置した配置パターンの幾つかが記憶されている。また、低レートデータ無し用パターン領域1004には、図11(b)(c)に示すように固定データをスロット内でランダムに配置した配置パターンが記憶されている。両領域1003、1004の配置パターンともフレーム番号とスロット番号に対応させて配置パターンを記憶しているのは実施の形態1、3と同様であるが、高レート用パターン領域1003の配置パターンについては固定データのランダム化の必要性が低いため1つの配置パターンに複数のスロット番号を割り付けてメモリ資源の有効活用を図るようにしても良い。

【0076】次に、以上のように構成された実施の形態4の動作について説明する。スロット組立回路104'において、有音時などの可変データのデータレートが高い場合は、アドレス発生部1002が高レート用パターン領域1003を選択する一方、その時に入力するフレーム番号112及びスロット番号113の組み合わせからメモリア

ドレスを発生する。発生したメモリアドレスからは固定データをスロットの前半に集中するように配置した配置パターンが読み出されてタイミング制御回路201に与えられスイッチ202の制御に用いられる。その結果、図11(a)に示すように固定データをスロットの前半に集中する送信パターンとなる。

【0077】また、無音時又は低レート時などの可変データのデータレートが低い又はデータが無い場合は、アドレス発生部1002が低レート又はデータ無し用パターン領域1004を選択する一方、その時に入力するフレーム番号112及びスロット番号113の組み合わせからメモリアドレスを発生する。発生したメモリアドレスからは固定データをランダム化した中の一つの配置パターンが読み出されてタイミング制御回路201に与えられスイッチ202の制御に用いられる。その結果、図11(b)(c)に示すように固定データがランダム化された送信パターンとなる。

【0078】ところで、固定データがパイロットシンボルおよび送信電力制御信号(TPC)から構成されている場合を考える。論文「コヒーレントDS-CDMA移動通信におけるSIRベース送信電力制御の効果」および「DS-CDMA下りチャネルにおける瞬時値変動追従型送信電力制御法の検討」によれば、受信信号の固定データを用いてSIRの測定を行い、その結果を基に送信電力制御信号を決定し送信するためには、固定データをスロットの前半に集中して配置する必要性がある。また、固定データ内のパイロットシンボルを用いてTPCの同期検波を行い次スロットでの送信電力を制御するためには、やはり固定データをスロットの前半に集中させつつ、固定データのランダム化を図った場合には、ランダム化が不十分に行えないために、特定の周波数成分に大きなパワーの線スペクトルが発生してしまう問題がある。ただし、特性の周波数成分に線スペクトルを生じさせるのは、固定データ部と可変データ部との送信電力比が大きくなる場合、すなわちデータがない場合または低レート時の場合である。また、各スロット毎の送信電力制御においてSIR測定を一部の固定データのみを用いて行うと測定精度が低下する。同様に、一部のパイロットシンボルのみでTPCの同期検波を行うと受信特性が劣化する。

【0079】一方、送信電力制御において、TPCの受信特性およびSIR測定精度が重要なのは、平均送信電力が大きいため他ユーザへの干渉が大きくなるデータレートが高い場合である。このとき、固定データ部と可変データ部との送信電力比は変わらないか、または極めて小さくなるため、固定データの送信タイミングのランダム化は不要またはある程度集中しても、特定の周波数成分に大きなパワーの線スペクトルが発生することはない。

【0080】よって、本実施の形態4のように可変データのデータレートが高いときは、固定データをスロット

【図 3】

【図 4】

【図 5】

【図 19】

【図 6】

【図 7】

【図 10】

【図 8】

【図 11】

【図 1 2】

【図 1 3】

【図 1 4】

【図 1 6】

【図 1 5】

【図 1 7】

[図 18]

