Artificial Intelligence --工具与应用

Yanghui Rao Assistant Prof., Ph.D School of Data and Computer Science, Sun Yat-sen University raoyangh@mail.sysu.edu.cn

SPSS Clementine

- Clementine作为一个受欢迎的数据挖掘平台,充分利用了计算机系统的运算能力和图形展示能力,快速有效的实现决策树分类或回归、关联规则挖掘、聚类等模型。
- Clementine操作步骤为:导入数据集—>数据集预处理—>建模—>评估模型。
- https://en.wikipedia.org/wiki/SPSS_Modeler

SPSS Clementine

Step 1: Input Data

Step 2: Set Features

Step 3: Select Models

Example: Decision Trees

• 新闻分享

- 。给定一篇新闻的58个属性(特征),比如新闻标题中词的个数(n_tokens_title)等等,预测这篇新闻在社交网络中被分享的次数(shares)。被分享的次数越多,表示这篇新闻越"热门/受欢迎"。
- 。shares: "1"代表popular (即该篇新闻为"热门/受 欢迎"的), "0"代表unpopular。

	global_ra	rate_pos	rate_nega	avg_posit	min_posit	max_posi	avg_negat	min_negat	max_nega	title_sub	title_se	abs_title	abs_title	shares
	0.016667	0.827957	0.172043	0. 402039	0. 1	1	-0. 22448	-0. 5	-0.05	0	0	0. 5	0	0
	0.015167	0.846939	0. 153061	0. 42772	0. 1	1	-0. 24278	-0. 5	-0.05	1	0. 5	0. 5	0. 5	0
	0.020619	0.6	0.4	0.566667	0.4	0.8	-0.125	-0.125	-0.125	0. 125	0	0. 375	0	1
٥	0. 030303	0. 5625	0. 4375	0. 298413	0. 1	0. 5	-0. 2381	-0.5	-0. 1	0	0	0. 5	0	0
	0.020833	0.648649	0. 351351	0. 40448	0. 1	1	-0.41506	-1	-0. 1	0	0	0. 5	0	1
ä	0.010695	0.714286	0. 285714	0. 435	0.2	0.7	-0. 2625	-0.4	-0. 125	0	0	0. 5	0	1
	0.029197	0.636364	0. 363636	0.37551	0.2	0.7	-0.31042	-0.6	-0.05	1	-1	0. 5	1	0
	0.052632	0.347826	0.652174	0. 4575	0. 16	1	-0.33789	-0. 7	-0. 1	1	-1	0. 5	1	1
	0. 011583	0. 571429	0. 428571	0. 249091	0. 136364	0. 5	-0. 13869	-0. 1875	-0. 05	0. 75	0. 55	0. 25	0. 55	0

• 输入训练集

源节点说明

- 可变文件:用于导入逗号等分隔了的ASCII数据。
- 固定文件:用于导入固定字段(字段未被分隔,但是始于相同的位置,并有固定长度)的ASCII数据。
- Excel: 用于导入Excel电子表格。
- SPSS文件:用于导入SPSS文件。
- SAS文件:用于导入SAS格式的文件。
- 数据库:用于通过ODBC导入数据。
- 用户输入:用于代替已存在的来源节点,也可通过在已存在节点上点击鼠标右键的方式使用该节点。

源节点说明

• 属性设置

属性类型

• 范围型: 如年龄

离散型:如职业

• 标志型: 如性别

• 集合型: 如日期

• 有序集型: 如学历

• 缺省型: 明确的变量类型

• 无类型: 不属于上述类型

• 选择模型

C5.0是C4.5 是于上法执内面 上法执内面进 的,行存进

• 训练模型

• 模型训练后的结果

变量重要性

- 将训练好的模型用于预测
 - 。输入测试集

Step 7 • 预测结果

				9
у	shares	\$C-shares	\$CC-shares	
0	0	0	0.711	•
0	0	0	0.711	333
0	0	0	0.860	
0	0	0	0.660	
0	0	0	0.833	
0	1	1	0.541	
0	1	1	0.525	
0	0	1	0.630	
0	0	0	0.685	
0	0	1	0.630	
0	1	0	0.633	
0	1	0	0.732	
0	1	1	0.742	
0	0	0	0.773	
7	0	0	0.577	
0	1	1	0.635	
0	0	0	0.833	
0	1	1	0.555	
0	1	1	0.635	
0	0	0	0.833	
0	1	1	1 0.635	
0	0	1	0.742	
0	0	0	0.833	
0	0	0	0.714	
0	0	0	0.711	
0	1	1	0.635	
0	0	1	0.630	
7	1	0	0.733	
6	0	1	0.630	
0	1	1	0.880	
0	1	1	0.742	
0	1	1	0.635	
0	0	0	0.525	
0	1	0	0.733	¥
_				

• 剪枝参数设置

→ shares	X
(\$\)	②
模型名称: • 自动 () 自定义	
☑ 使用分区数据	
輸出类型: ◎ 决策树 ○ 规则集	
□组符号	
□ 使用推进 试验次数:	10 🕏
	10 💂
模式: 简单 ③ 专家	
修剪严重性: 90 ♣	
每个子分支的最小记录数: 2 ♣	
☑ 使用全局修剪 ☑ 辨别属性	
字段 模型 成本 分析 注解	
确定 ▶ 执行 取消	应用 重置

- 用于可视化数据集、检查新导出字段的分布和关联, 方便对数据进行探索性分析。
- 图形包含以下节点:

。图(散点图)、分布图(条形图)、直方图(柱形图)、集 合、多重散点图、网络图、时间散点图、评估图

Example: Apriori

- 超市售货
 - 某超市共有20种商品:意大利面、牛奶、水、饼干、咖啡、奶油蛋糕、酸奶、速冻蔬菜、金枪鱼、啤酒、番茄汁、可乐、大米、果汁、咸饼干、油、速冻鱼、冰淇淋、奶酪、罐头肉
 - · 46243位顾客的交易数据。对于每一次交易数据, 若购买了特定的商品,则相应的列为1;否则为0
- 关联规则挖掘能够发现频繁被同时购买的商品组合,从而能够为超市商品的排架、促销等提供参考

Input Data

ID	意大利面		1	牛奶		水	饼干 咖啡		奶	奶油蛋糕		酸	酸奶		速冻蔬菜		金枪鱼			
1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1
2	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0
4	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
6	1	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
7	0	1	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
8	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
10	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
12	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	1	1	0	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0
14	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
16	0	1	0	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
17	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

- 右键——"Select All"——"Set Type"----Flag,
 "Set Direction"----Both
- 将特征 "ID"的Type单独设置为Typeless

• 点击 "Execute"后得到结果

Weka

- WEKA is a machine learning tool
 - Tools for pre-processing data
 - Many popular machine learning algorithms
 - Visualization tools
 - Experiment management tools
- An open source package
 - Written in Java
 - Available under the GNU Public License
- http://www.cs.waikato.ac.nz/~ml/weka/

Weka

- WEKA has many algorithms useful for text mining
 - Classification: decision trees, Naïve Bayes, ...
 - Clustering: k-means, EM, ...
- Using WEKA for text mining
 - Feature selection (outside of WEKA) to reduce the size of the problem
- E. Frank. "Machine learning with WEKA." Department of Computer Science, University of Waikato, New Zealand.

Weka Input

- WEKA input must be in ARFF format
- @relation weather

以下为属性定义:

- @attribute outlook {sunny, overcast, rainy}
- @attribute temperature real
- @attribute humidity real
- @attribute windy {TRUE, FALSE}
- @attribute play {yes, no}
- The last attribute is the class to be predicted

Weka Input

 WEKA input must be in ARFF format @data sunny,85,85,FALSE,no sunny,80,90,TRUE,no overcast,83,86,FALSE,yes rainy,70,96,FALSE,yes rainy,68,80,FALSE,yes rainy,65,70,TRUE,no

Weka Input

- 将CSV转换为ARFF最迅捷的办法是使用 WEKA所带的命令行工具
 - 。运行WEKA的主程序,在菜单中找到"Simple CLI" 模块,它可提供命令行功能。在新窗口最下方输 入框写入: java weka.core.converters.CSVLoader filename.csv > filename.arff
- 在WEKA 3.5中提供了一个"Arff Viewer"模块,可以用它打开一个CSV文件将进行浏览,然后另存为ARFF文件。或者进入"Exploer"模块,从上方的按钮中打开CSV文件然后另存为ARFF文件

Input Dataset

Dataset Statistics

• Select the panel corresponding to the task to be performed and click on "Choose" to select the algorithm to be used

Start the task by clicking the "Start" button

• Whenever the results have been received, they are visualized in the "Classifier output" panel

