条件付き変分オートエンコーダを 用いたビデオゲームのレベル生成

京都工芸繊維大学 吉貞 心(6Q-02)・飯間 等

背景

- 近年のゲーム開発は大規模化&複雑化が進んでいる
 - 機械による開発支援が必須化している
- 近年生成AIによるコンテンツ生成が流行している
 - ゲームコンテンツにも応用することで、開発への直接的な支援に繋がると期待されている

先行研究

- 敵対的生成ネットワーク(GAN)による生成[1]
 - 学習・生成したゲームレベルが本物かどうか検知&学習する
 - 生成したゲームレベルは開発者の意図通りのものとは限らない
- Mario GPTによる生成[2]
 - 開発者が自然言語によって要求を指定できる言語処理ベースの手法
 - 使用できる言葉(little, manyなど)が限られ、生成されるゲームレベル も限定的

^[1] R.R. Torrado, A. Khalifa, M.C. Green, N. Justesen, S. Risi, J. Togelius, "Bootstrapping Conditional GANs for Video Game Level Generation," Proceedings of 2020 IEEE Conference on Games, pp.41-48, Osaka, Japan, August, 2020.

^[2] S. Sudhakaran, M. Gonzalez-Duque, C. Glanois, M. Freiberger, E. Najarro, and S. Risi, "MarioGPT: Open-Ended Text2Level Generation through Large Language Models," Proceedings of the 37th Annual Conference on Neural Information Processing Systems, 2023.

目的

- 少数のゲームレベルから開発者の要求通りの ゲームレベルを生成する
 - ゲーム開発初期段階では学習に使えるゲームレベルは少数しか準備できない
 - 開発初期のうちから要求を満たすゲームレベル を制作できれば、コンテンツを生成する点だけ でなくデバッグ対象の早期発見にも繋がる
- 開発時間とコストの面で改善が期待できるの ではないか

ゲームレベルの例 4

提案手法

- 条件付き変分オートエンコーダ(Conditional Variational Autoencoder: CVAE)を使用
 - ・生成モデルの1種

提案手法

提案手法

提案手法 ①要求の指定

• 今回想定する要求は4項目

要求項目	関連するオブジェクト	
壁の数	壁	
敵の数	敵	
アバターと鍵との距離	アバター、鍵、床	
アバターと扉との距離	アバター,扉,床	

- 要求は0~1の実数値で指定
 - 0に近いほど生成する数/距離は小さく、1に近いほど生成する数/距離は大きくなる
 - 柔軟な要求を実現している

提案手法 ①学習データ作成

- ゲームレベルは情報量が多い
 - そのまま学習させるとオブジェクトの形状な

ど正しく復元できない恐れがある

- オブジェクト毎に0,1データを生成
 - 冗長な情報を削減

提案手法 ①学習データ作成

- 開発者の要求に合わせた学習データを作成
 - 例:壁の数を増やしたい
 - 学習データに壁のオブジェクト情報をもつ0,1データを作成
- 学習は要求項目毎に実行
 - 学習データとラベルの情報が1対1対応
 - 要求別の学習データ間に相関は無いため学習 器を分けている

要求項目	関連するオブジェクト	
壁の数	壁	
敵の数	敵	
アバターと鍵との距離	アバター、鍵、床	
アバターと扉との距離	アバター,扉,床	

提案手法 ②オブジェクト生成

- ・出力の実数値データを0,1データに変換
 - ゲームレベルにおいて実数値は意味をもたな い
 - オブジェクトが存在するかどうかを示す0,1 データに変換する

• 閾値を定めて実数値データとの比較でオ ブジェクトを生成

提案手法 ③閾値の更新

- 閾値を動的に更新することで要求を満た すゲームレベル生成を実現している
 - 閾値を小さくする→オブジェクトの個数は増加
 - 閾値を大きくする→オブジェクトの個数は減少
- 閾値は要求それぞれで固有に設ける

提案手法 ③閾値の更新

• 更新手法1:1エポック毎に1つずつ更新

• 各要求は相互に影響し合っている

• 学習結果により全要求の閾値を同時更新して も改善できないことがある

 $Thres = Thres + sign \cdot update$ $update = \gamma \cdot update$

Thres:閾値 sign:1 or -1 update:閾値更新幅 $\gamma:$ 更新率(=0.9)

提案手法 ③閾値の更新

• 更新手法2:差分進化法による更新

- 1. パラメータセット $x = [x^1, ..., x^n]$ を用意し、 x^k のkを決める(初期はk = 0)
- 2. パラメータ χ^{now} でゲームレベルを生成
- 3. x^{now} での生成結果が x^k での結果を上回れば、 $x^k \leftarrow x^{now}$
- 4. req ←ラベル1が最も多く出現した要求項目番号
- 5. reqに対応する要求について、 $k \leftarrow argmax_k |x^{now}[req] x^k[req]|$
- 6. $m^k \leftarrow x^a + F * (x^b x^c)$ (F: const)
- 7. if $Prob = R : y_j^k \leftarrow m_j^k$, $else: y_j^k \leftarrow x_j^k (if \ j = req : y_{req}^k = x^{now}[req])$

R=1-(要求<math>jのラベル1個数割合)

提案手法④ゲームレベルのアーカイブ化

- 生成したゲームレベルをアーカイブ化
 - 生成したゲームレベルも学習データに加える
 - 初期にゲームレベルが少数しかない問題を解消している
 - 機械学習に必要な学習データ数を確保

実験

ゲームとしてGVGAIのZeldaを用いた

• 初期ゲームレベル数5, エポック数1200として, 生成実験を 行った

• 学習が進んだときの要求を満たしたゲームレベル生成数の検証と, 閾値の更新手法1,2に対して生成結果の比較を行う

• 更新手法1:1エポック毎に1つずつ更新

	要求值:要求達成率(%)		
要求項目	(a) 要求1	(b) 要求2	(c) 要求3
壁の数	0.5 : 58.40	0.6 : 58.62	0.2 : 60.00
敵の数	0.3 : 69.20	0.3 : 69.23	0.6 : 55.33
アバターと鍵との距離	0.3 : 60.35	0.6 : 16.67	0.3 : 61.38
アバターと扉との距離	0.4 : 39.80	0.4 : 43.06	0.8 : 3.58
生成総数	2656	2970	5386
要求達成総数:達成率(%)	278 : 10.89	100 : 3.37	43 : 0.80

• 更新手法2:差分進化法

	要求値:要求達成率(%)		
要求項目	(a) 要求1	(b) 要求2	(c) 要求3
壁の数	0.5 : 31.98	0.6 : 9.84	0.2 : 45.17
敵の数	0.3 : 37.80	0.3 : 39.93	0.6 : 39.49
アバターと鍵との距離	0.3 : 61.54	0.6 : 20.55	0.3 : 62.33
アバターと扉との距離	0.4 : 45.82	0.4 : 47.45	0.8 : 4.45
生成総数	4553	5479	6974
要求達成総数:達成率(%)	156 : 6.22	18:0.33	37 : 0.53

- 要求1の更新手法比較
 - 差分進化法は後半の傾きが 大きい
 - 学習が進むにつれて閾値が最 適化されていると考えられる
 - 1つずつ更新する手法は一定割合で増加

要求を満たした生成数

- ・要求2の更新手法比較
 - 1つずつ更新する手法で傾きが急増している箇所あり
 - このあたりで閾値がほぼー 定になっていた
 - 差分進化法では思うように 生成数が増えなかった

要求を満たした生成数

- ・要求3の更新手法比較
 - 差分進化法は後半の傾きが大きい
 - 1つずつ更新する手法でも傾きが急増する箇所あり

要求を満たした生成数

• 実際に生成できたゲームレベル

	要求 (壁の数,敵の数,アバターと鍵との距離,アバターと扉との距離)			
	(a) 要求1 (0.5, 0.3, 0.3, 0.4)	(b) 要求2 (0.6, 0.3, 0.6, 0.4)	(c) 要求3 (0.2, 0.6, 0.3, 0.8)	
1つずつ更新する手法				
差分進化法				

考察

- 学習が進むにつれて要求に近いゲームレベルの生成数が増加している
 - 提案手法が有効であるとともに、閾値の最適化により開発者の要求を満たすゲームレベルが生成できることを意味する
- 一部の要求にはあまり応えられていない
 - 特に大きな値で要求した時の要求達成率が低い
 - 初期の学習データによる影響が大きいと考えられる
 - 要求1が初期のゲームレベル5つに比較的近いものであることから,要求1の達成率が高くなっている

まとめ

- CVAEによるゲームレベル生成手法について提案した
 - 少数のゲームレベルから開発者の要求を満たすゲームレベルを生成することに成功した
- より多様な要求への対応や他のゲームプロトタイプへ応用できるか
 - 昨今は3Dゲームが主流
 - 様々なゲームへの適用方法を検討したい