Staatsexamen 66116 / 2018 / Frühjahr / Thema Nr. 2 / Teilaufgabe Nr. 1 / Aufgabe Nr. 6

Aufgabe 6: Normalformen [Synthese-Algorithmus bei Relationenschema A-F]

Gegeben sei das Relationenschema R(A,B,C,D,E,F), sowie die Menge der zugehörigen funktionalen Abhängigkeiten F.

$$FA = \begin{cases} \{C \} \rightarrow \{B \}, \\ \{B \} \rightarrow \{A \}, \\ \{C, E \} \rightarrow \{D \}, \\ \{E \} \rightarrow \{F \}, \\ \{C, E \} \rightarrow \{F \}, \\ \{C, E \} \rightarrow \{A \}, \end{cases}$$

(a) Bestimmen Sie den Schlüsselkandidaten der Relation *R* und begründen Sie, warum es keine weiteren Schlüsselkandidaten gibt.

C und *E* kommen auf keiner rechten Seite vor. Sie müssen deshalb immer Teil des Schlüsselkandidaten sein.

$$AttrH\"ulle(F, \{C, E\}) = \{A, B, C, D, E, F\}$$

Daraus folgt, dass { C, E } ein Superschlüssel ist.

AttrHülle(
$$F$$
, { C , $E \setminus E$ }) = { A , B , C } $\neq R$
AttrHülle(F , { C , $E \setminus C$ }) = { E , F } $\neq R$

 $\{C, E\}$ kann nicht weiter minimiert werden.

(b) Überführen Sie das Relationenschema R mit Hilfe des Synthesealgorithmus in die dritte Normalform. Führen Sie hierfür jeden der vier Schritte durch und kennzeichnen Sie Stellen, bei denen nichts zu tun ist.

- Kanonische Überdeckung

— Die kanonische Überdeckung - also die kleinst mögliche noch äquivalente Menge von funktionalen Abhängigkeiten kann in vier Schritten erreicht werden.

- Linksreduktion

— Führe für jede funktionale Anhängigkeit $\alpha \to \beta \in F$ die Linksreduktion durch, überprüfe also für alle $A \in \alpha$, ob A überflüssig ist, d. h. ob $\beta \subseteq AttrHülle(F, \alpha - A)$.

$$D \notin AttrH"ulle(F, \{C, E \setminus E\}) = \{A, C, B\}$$

 $D \notin AttrH"ulle(F, \{C, E \setminus C\}) = \{E, F\}$

$$\{\,\textbf{C},\,\textbf{E}\,\,\} \to \!\!\!\{\,\textbf{F}\,\,\}$$

$$F \notin AttrH\ddot{u}lle(F, \{C, E \setminus E\}) = \{A, C, B\}$$

$$F \in AttrH\ddot{u}lle(F, \{C, E \setminus C\}) = \{E, F\}$$

$$FA = \left\{ \begin{cases} \{C \} \rightarrow \{B \}, \\ \{B \} \rightarrow \{A \}, \\ \{C, E \} \rightarrow \{D \}, \\ \{E \} \rightarrow \{F \}, \\ \{E \} \rightarrow \{F \}, \\ \{C \} \rightarrow \{A \}, \end{cases} \right\}$$

- Rechtsreduktion

— Führe für jede (verbliebene) funktionale Abhängigkeit $\alpha \to \beta$ die Rechtsreduktion durch, überprüfe also für alle $B \in \beta$, ob $B \in AttrHülle(F - (\alpha \to \beta) \cup (\alpha \to (\beta - B)), \alpha)$ gilt. In diesem Fall ist B auf der rechten Seite überflüssig und kann eleminiert werden, d. h. $\alpha \to \beta$ wird durch $\alpha \to (\beta - B)$ ersetzt. —

Α

$$A \notin AttrHülle(F \setminus \{B\} \rightarrow \{A\}, \{B\}) = \{B\}$$

$$A \in AttrHülle(F \setminus \{C\} \rightarrow \{A\}, \{C\}) = \{A,B,C\}$$

$$FA = \left\{ \begin{cases} \{C\} \rightarrow \{B\}, \\ \{B\} \rightarrow \{A\}, \\ \{C,E\} \rightarrow \{D\}, \\ \{E\} \rightarrow \{F\}, \\ \{E\} \rightarrow \{F\}, \\ \{C\} \rightarrow \{\emptyset\}, \end{cases} \right.$$

F

$$F \in AttrH\ddot{u}lle(F \setminus \{E\} \rightarrow \{F\}, \{E\}) = \{E, F\}$$

$$FA = \left\{ \begin{array}{c} \{C\} \rightarrow \{B\}, \\ \{B\} \rightarrow \{A\}, \\ \{C, E\} \rightarrow \{D\}, \\ \{E\} \rightarrow \{\emptyset\}, \\ \{E\} \rightarrow \{F\}, \\ \{C\} \rightarrow \{\emptyset\}, \end{array} \right.$$

- Löschen leerer Klauseln

— Entferne die funktionalen Abhängigkeiten der Form $\alpha \to \emptyset$, die im 2. Schritt möglicherweise entstanden sind.

$$FA =$$

$$\{C\} \to \{B\},\$$

$$\{B\} \to \{A\},\$$

$$\{C, E\} \to \{D\},\$$

$$\{E\} \to \{F\},\$$

- Vereinigung

— Fasse mittels der Vereinigungsregel funktionale Abhängigkeiten der Form $\alpha \to \beta_1, \dots, \alpha \to \beta_n$, so dass $\alpha \to \beta_1 \cup \dots \cup \beta_n$ verbleibt.

Ø Nichts zu tun

- Relationsschemata formen

— Erzeuge für jede funktionale Abhängigkeit $\alpha \to \beta \in F_c$ ein Relationenschema $\mathcal{R}_\alpha := \alpha \cup \beta$.

$$\begin{array}{l} R_1(\,\underline{C},B\,) \\ R_2(\,\underline{B},A\,) \\ R_3(\,\underline{C},E,D\,) \\ R_4(\,\underline{E},F\,) \end{array}$$

- Schlüssel hinzufügen

— Falls eines der in Schritt 2. erzeugten Schemata R_{α} einen Schlüsselkandidaten von \mathcal{R} bezüglich F_c enthält, sind wir fertig, sonst wähle einen Schlüsselkandidaten $\mathcal{K} \subseteq \mathcal{R}$ aus und definiere folgendes zusätzliche Schema: $\mathcal{R}_{\mathcal{K}} := \mathcal{K}$ und $\mathcal{F}_{\mathcal{K}} := \emptyset$ —

Ø Nichts zu tun

- Entfernung überflüssiger Teilschemata

— Eliminiere diejenigen Schemata R_{α} , die in einem anderen Relationenschema $R_{\alpha'}$ enthalten sind, d. h. $R_{\alpha}\subseteq R_{\alpha'}$.

Ø Nichts zu tun