

Name: Wajiha Hanif Arain

Seat no.: B18158064

Class: BSSE- 4th semester

Course no.: BSSE-412

DISCRETE MATHEMATICS

Sir Mukesh Kumar Rathi

Oh + Palatinas
Ch: Relations Exercise: 9.1
1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Br. the set \$1,2,3,4,5,6].
=> Perouse (a,b) in Rigard only if a Rb are positive integers.
R= {(1,1), (1,2), (1,3), (1,0), 5), (1,6), (2,2), (
R= {(1,2), (1,3), (1,3), (1,1)(1,5), (1,6), (2,2), (2,1), (2,6), (2,3), (3,6), (4,4), (5,5), (6,6)} b) Display that relation graphically.
30 10 3
e) Display relation in tabular form.
R1123456
R 1 2 3 4 5 6 1 × × × × × × 2 × × × × 3 × × ×
2 x x x x x x x x x x x x x x x x x x x
4 × ×
a la la la la la la la la decide espetition of
2) \$(2,2).(2,3),(2,4),(3,2),(3,3),(3,4)}
2) 1(2,2).(2,3/4/2)
· Repetitive: not include (1.1), (4.4)
Symmetric: not, (2,11) but not (11,2)
2 . A. Samuelli C. S. Mexico (2)
Troughore, Yes it is, a,b) x(b,c) - (a,c), (2,2) , 2,5
a-must be 2013 (2,c)

6) (1,0,(1,2),(2,0),(2,2),(2,3),(4,4)} 10- Pettres Yes. Ho (1,1), (2,2), (2,2), (11,4) present. we Symmetrice Her ble bring both (1.2)(2,1) - Astropometrice No 10 10 . Transition to + + (1,2), (2,1) = (1,2) c) {(2,4),(4,2)} - Reflice No is Symmetrice Yes, (2,4), (4,2) · Adi Symmetric: No . Do not d) ((1,2), (2,3), (3,4)? · Replevince No · Symmetrice No es & Antisymmetric & Yes . Transitives No, some (12) 2 (23) in jelostice but (103) is not. e) {(1,1)(2,2),(3,3), (4,4)} Reflectives Ves us Symmetrice Yes 8. Thankitive: Nes { tovially} f) {(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)} · Reflereines No · Symmetrice No · Antisymmetrice No -Transitives No

Dec Determine colletter relation R on set of all real us is reflexive, symmetry autoymmeter. Plan bousitive where (x,y) ER if I only it. a) ne+y=0 · Reflexive: Not, b/c 2x+1x=0 to only time when is is O, but not for all. ex Septemblicat Yes, if very = 0 there y + 2 = 0; -3+3=0 => 3-3=0 · And Symmetric: Not , 2+ (-2)=0 & (-2)+2=0 ; 2 \pm -2 · Thomasitione: Not: 1+(-1)=0 2 (-1)+1=0 collide 1+1≠0. b) n= +y R= { (n,y) | n = +y } co Reflerière: Yes, re = re is always true! 25 Symmetric: Yes, if nexty then y= + w · Anhisymmetrics Not, 5 = -(-5) & (5) =-5 whil -5 75 restransitives Yes, n=+ y 2 y=+ n than n=+y=+(+2) x) reny is rational number. R= q(uy) 16e-y) is RNJ= ± Z We Replenives Yes, re-re-o & O is always rational. we Symmetrice Wes, if my is Rational than your is also. - Anti Eymmetric = Not, b/c 5-6 & 6-5 botte notion us Transitives Yes, my 2 y-2 is RN 2 mz is also. d) n=2y R={(n,y) | n=2y} · Reflexives Not, re-dy is only when new, not for od. · Symmetric: Not, 2 = 2(1) while 1 7 2(2) We Anti Symmetric: Yes , re=y=0 [re=dy = 2 (dri)=4re] can only true who · Ixensitive: Not sif n=2y & y=22 Hear x +22

e) my >0 R= {(my) |my >0} ce. Reflexives: Yes; re-re 20. always greater the au O. w - Symmetrice de , re. y 20 2 y 2020 Econmulative * Adi symmetrice Not. [-2] 9-13 >0 2 [-11] >0 while -2 x 1 Transitives Not, re-1. y=0 2 z=1 ther zrezo =1x1 f) ry=0 R= q(20,y) / ry=0} · Reflerine Not , rey # rose +0, only when re-o not for all. wo Symmetrice Yes . rey = 0 their you = 0 · Antisymmetrice Not, co1(1)=0 2 (0)(0)=0 whe 0 \$1 · Transitives Not, n=-1, y=0, z=1 llan 24=0, y=0 (g) re= 1 R= q(re) 1 res)} re= } · Reflexives Not , re-re #1 - Symmetrice Not , real & y= 0 1600 (any) (R & (y, w) &R · Anti symmetrica - Transfire: h) ru=1 or y=1 · Reflerance: Not, co, o) is not in R. (line 0+1) to Symmetric= Yes, of real Ry=0 then (usy) ER Ru (g. 20) ER · Auti Symmetric: Not , rue 1 & y=0 " · leasifives Not, neo, y=1, z=2 tun (x,y) & le (yoz) ER while (noz) FR

Oto Determine whether relation Por est of all integers is reflexive, eyenmetry antisymmetric Blow transitive, where (my) ER if and and only if a) nu + y - Reflexive: Not, since it not the case 1/1 Immetric: You , if nexty then openmen you . Antisymmetric: Not, 1/2 & also 2/1 · Transitives Not, 1+2 & 2x1 but it in not to case 1+1 *b) a = ±y rey >1 · Reflexive: Not, b/c (0,0) not "Symmetric: Yes, commutative property Enduding. of multiplication. my = you. of of · Antisymmetric: Not, (23) & (3,2) - Transitives at by batte wie or -ve table & (b.de botti include. Yes Lica, DER c) ne-y is rediend number n= y±1 00 · Reflexine: Not, since (1,1) not include. Symmetrie: Yes, aczy-1 extinatent to years, so a ly severed into · Andiexamotric: Noto (1,2) & (2,1) in uldian. · Transitives Not. " " is relation but (1.1) not. * a = y (mod 7) ne-y multiple of 7 " re-y= It t= same integra Reflexive= Yes, 2-2=7.0 lall cell re. ce. Symmetrice Ves ou-yett, y-u=7(-b) ey=au (mod 7). · Antisymmetrics Not, 2=9 & 9=2(mod +). or Transitives Yes, may eyez . = m-y=15 & y-2-71 11-Z=75+71 n-z = 7(s+t) RL-2 = (mal)

e) is multiple of yer - Replemine you · Commetties Not. 6 multiple of 2 but 2 not multiple of 6. · Andisymmetrics Not. 2 is milliple of -2 but 2 wife veril. but 240 en. Transitive: Yes , is multiple of y (unity) & y multiple of & (yes? 1100, nu=+ (s=) = (ts) z. f) at ey both negatives on batte nonnegative. we Reflecine: Yes . sine a la citta bette un on nome ve. w. Symmetric: Yes · Adjegmmetric: No. Since 5 related to 6 & 6 related to 5 but 5# es Transitive: Yes, a related to b. I brilled to a tran all three must be we an non-me. g) 2 = y2 · Reflexive: Not. 17 + 172 · Symmetric: Not, 289= 17° but not the cose 17=2892 we And exponentice Ves, (rey) e(y, w), then re-y2 eyere some with · Transcritice: | well-nd = nell-nd (1 + ne + nd = 0/1 y also of 1 Not 36-42 & 4=22 but 16 \$22 h) rezy · Reflacive: Not, 17 × 172 · Separatrice Not 280 > 132 put not 13 > 2892 es Andergonnetics (reg) 2 (year). Then uzy 2 & yzar

```
Dans Let R = $(1,0), (2,3), (3,4)}
               Rz= ((1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(3,2),(8,3),(3,4)?
                $ (,2,37 to $1,2,3,4)
          DR, UR2
        → [(1,1),(1,2),(2,1)(2,2),(2,3),(3,1),(2,2),(3,3),(3,4)}
= 5=)
         b) RINR2
         ⇒ f(1,2), (2,3), (3,4)}
           OR, -R2
         => 5 %
#6
          d) R2-R1
         $ (1.1), (2,1), (2,2), (3,1), (3,2), (3,3)
      836 Fende
                                            R= 56,6) & R2 1 a>b}
          a) R. . R .
                                          R2= $(a,b) ER2 | a > b}
       · (a, b) E R -- > a > b 3 a > c - R = g(a, b) ER la 2 b}
       · (b,c) ER, - > b>c
                                          R= { (a,b) e R 1 a = b}
                                            Rs = { (a, b) (R) | oc = b}
           RIOR = R. Trais live.
                                            Ro= $(a, b) (R) a + b}
          6) R1 0 R2
       · (a,b) & R2 - a > b }
       · (b,0) (R, -> b>c
           R. - R2 = R.
          c) R, 0 R3
       · (a,b) & R3 - a 26 }
       · (b.c) + R, -> b>c
           R, 0R3 = R.
```


Exercise: 9.3

Ozo Represent each of those relations on [1.2,3,4] with materia (with elements of this set listed in increasing order).

2) {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}

_	1	2	3	4	1
1	0	t	1	1	1
2	0	0	١	1	
3	0	0	0	1	1
4	0	0	0	0	
100					

6) {(1,1), (1,4), (2,2), (3,3), (4,1)}

	1	2	3	4.	7
1	1	0	0	1	
2	0	1	0	0	
3	0	0	1	0	1
4	1	0	0	0	1
				_	ď.

a) {(1,2), (1,3), (1,4), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4), (4,1) (4,2), (4,3)}

	1	2	3	4
1	0	1	1	1
2	1	0	1	1
3	1	1	0	1
4	1	1	1	0

(a) 6.				-	
Dec 1 6 - { (con (10, (a), (c, 0, 0, 0, 0, 0, 0), (12), (a 2), (200	(8.12 n Co.	1.14.0	10.00	
(5.4) (3.4) (2.4) (1.4) (1.4) (2.6) (1.6) (4.00	6.5) (2.3	20	Y	1.2
6 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	5,57,	[(4,27)	2		
のうでからいかっていかっていから		13)2(4,3)			
कर्षा करा करा का का का करा	1.4) C4	(4) (3,4)	(6.3)	5	
ماد وروى، روس وي روس المرس المرس	3)(4,1)	(3,1)(5,1))(2,1),	(1,0).	(40,00)
- SCHOLED)	1.67	(2,1)}			
のっちついいのかにかいめいから	255	(3-5).(5-	300	87. (4	3
+53 (XX)					
क्ष्रिक हैं। क्ष्रिक क	4304	(इ.2) (2.	7(20)	(341)	2) (12) 1/20,150
3	1				
Ro= 「いろういっかっくいろっくいっかっていかくいい。(3つい)。	. \	2	3	4	5_
(600)-(10)-(4,0(3,0) (5,0) (2,0)-(100)(4,0)	1	1	1	1	1
(30) ((50)) ((30)) ((10)) ((10)) ((25))	i	1	1	1	1
3	1	1	1	1	1
4	7	1	1	1	1
	1	1	1	1	1
	,	Aud I			

Statement of the Control of the Cont

F) R* The matrix of Ro is your of first water displayed above and answers to prest (a) through (d) manually: ME" - ME V ME EN V MEEN V MEEN V MEERS = 1 1 1 1 1 Exercise: 9.5 Die Which of trese Relations on 90,1,2,37 are egaindence Relation Determine properties of requiredence robbian that atten lacks. 6, 5(0,0), (0,0), (2,0), (2,3), (3,2), (3,3) · Riplani vez Not, (1,1) not prostat Symmetrice Ves · Transitives Not, [0,0], (2,2,13,3) are transitive in (0,2), (2,0) - (0,0) ~ (2,3), (3,2) - (2,2) ac (0,2), (2,3) → (0,3) × Not present

This holdion is not equivalence.

d) f(0,0), (1,1), (1,3), (2,2), (2,3), (3,0), (3,3), (3,3)} w - Replantines Yes 4 Symmetric: Yes · Transitive: Not, \$(0,0), (1,1), (2,2), (3)} in transitive. (1,3) (3,1) -> (1,1) = (2,3), (3,2) -1(2,2) w (1,3),(3,2) -> (1,2) x (1,2) not provid This relation pe not equivalence Ozue Determine reletter relation represented by tose zero-as matrix are equivalore relation. 6) 1010 O I O I Symmatric of Scame 1 0 1 0 Thousefiver. 0 1 0 1 In order to cheek /determine whether relation are equivalen relation, are need to dell reflectiveity, Symmetric & transitive This relation is two reflexives symmetric and transitive · No, this relation is equinalene relation.

Que 9: 15.00 a poset if s to set of all people in world & Ca, DGR where and be one people. If i a is no shorter than b? Reflective to , can be. · Anti-Symmetrice Notes a R to law have some larget . Time so linco must suno, So No shoute mens a & talk on have egued height as be since his people can have some bright. Noto posets b) a weight more tran by - Reflexives Not, a weights wine there b. · Onti- Symmelice · housilines = Not post. e) a=b ou a is descendant of bp · Reflexives

- Auto- Symmetrics

" Time setince

d) a aid to do not have common friend?

· Reflexives

· Adi- Symmetrice

· Thousand we

Ch: Gragh

Exercise: 10.1 10-1:2126.33,50 130,40

Types	Edges	Multiple Edges Allowed?	Loops allowed
Simple Graph		No	No
Multi- (quaple	Undirected	Yes	No
Pseudograph	*	Yes	Yes
Staple digraph	Direct	No	No
Dieset multzugel.	A.	Yes .	Yes
nined Caroph 10	sived + undirect	Yes	Yes

- 2) What kind of graph There is an edge Hew vertices.

 representing cities if there is an interstate highway blow though

 Simple Graph
- b) Those to an edge blus vertices representing eities for each interstate highway blus them?
- > Multigraphe, because it also present of having atmost two extges connecting the some vertices.
- e) Those is a carge blew restrices representing cities for each cateristate highway you team, of there is a loop at venteur representing a city of there is an interstate highway that eicles this city?

 Pseudograph ble loops
- -> Pseudograph, b/e loops are also count.

\$23: Coustact call graphs for set of seven telephone north

\$555-0011, \$55-1221, \$55,1333, \$55-8888, \$55,2222, \$55-00

\$555-1200. If there were 3 calls from \$55-0011 to \$55.

\$ the calls from \$55-8888 to \$555-0011, two calls from

\$555-2222 to \$555-0091, two calls from \$555-1221 to

each of the other number, I one only from \$555-1235

to each of the \$555-0011,555-1221 of \$555-1200.

Exercise: 10-2

Bro that no of verters the no. of edges & dogree of

· Vertices 5

· Edges 13

- Degree 5 deg(a)= 6, deg(b)= 6, deg(d) 5, deg(d) 5,

Eye tind some of degrees of vedices of above graphe and verify that it equals twice the number of edges in graph.

The sum of adjectogrees is: 6+6+6+5+3 = 26, which is trained the number of edges (13).

De Determine no. of nectices and edges and find indgree & out-degree of each venter for the given directed multigraph

· Nesticase 4

· Edgess 8

· In-dogress dog (a)=2, dog (b)=3

dog(a)=2, dog(d)=1

· Ot-dagree : deg'(a) - 2, deg'(b) = 34

deg'(c) = 1, deg'(d) = 1

(m.b.t) (padal)

O10 : For previous graph, determine sun of indegrees & out-degrees of vertices. Show that that they are both equal to no of edges in geoph. som of degree (indegree + out-degrees) ones 2+4+1+1=8, which is equal to the number of edges in the digraph. Ou: What does degree of verten in Hollgwood graph represents what closs neighbourhood of verten represents what do isolated and pendant vertices represent => In Hollywood quaple, V= Set of all bloss, E= has woulded together · we do not use loop by person is not work with himself /herself. · Degree of realize is no. of edges that connect to visitine. . The neighbourhood of verters 4 are all verters consulted to · Neighbourhood of veiline 4= All people that a worked with on mories on two sleaves. . A verter is isolated if verter has a degree-· I soluted water = An actors who sidned work with comp other actor on movies to share . A ventur is prendant if rester has degree I · Readout vorter All outers who also work with exactly one along

Des Determine whater graph is bipartile. (Theorem 1) & arrive the guestion by determining whether it passible. to assign either had as blese to each restor so that no two adjacent assyr some colour V= 5 b, d, e] -> Yes. This is complete Bipartite Graph. Every edge jois westice in off pasts. Take garef to be one & glordiet to be other. Vi = { a, b, d, e } V2 = 9 c, f 8 -> Yes, This is complete Biparlite Graph. Every edge going exertises in off parts. Take fa, b, d, e] to be one & gc, f]

-	-	-	4
tru	encise	:	·T

Oze Which of these propositions? What are trette volues of those that are propositions

- a) Do not pass go. => Not proposition
- 6) wheat time is it? > Not proposition
- c) There are no black thes in Maine => Noposition (False)
- d) 4+2c=5 - Not proposition (now. contains)
- e) The moon is made of green cheese → Proposition (False)
- f) 2" > 100
- Not proposition

any must is regular of each of these proposition. 2) Irennifer & teja are friends. => Tennifer & Teja are not friends.

6) There are 13 stones in a baker's dozen. => There are not 13 tems in a baken's dozen.

THE STREET SON THERE AND THE STREET c) Abby sent more them 100 tent messages every day This is not the case that Aldry sent more than 100 tent miss everyday. d) I 21 is a perfect square. = 121 to not a perfect square. Os: Let p and of be propositions, as an English sentence. p. I bought a lottery ticket this week. Lg: I won the million dollar jackpot. Eupress each of these propositions as our English Bentonce. 2) 7p; I did'it bought a lattery traket this week. b) p vq; I bought a latery ticket this week, on I won the million dollar jackpot. c) p - q; If I bought a lottery ticket this week, then I wenthe million dollar jackpot. of pra; I bought a littley taket this week, and I wan the million dollar jackpd. e) p exq: I bought a lottery ticket this week of and only if I won the million dollar jackpet. A -p -> - q & I didn't wont a lottery taket this works than I didn't won the million dollar jackpot. q) -p 1 -q; I didn't bought a lottery ticket this neek and I didn't won the million dollar jourpot.

Tool b) of V (PAQ): I didn't bought a lattery ticket this week are either I bought a lottery ticket this week and I won the million dollar jackpost. Ore Let prop er be propositions. p: You have the flu Vi You miss. the find examination isle r: You pass the course. Empress ous English sentence. 2) p-> q; If you have the flu, then you miss the final enomination. b) 79 +> 1; This is not the case that you miss the find enamination if and only if you pass the course. the c) 9-> 71; If you miss the find enormination, then you didn't pass the course. of proper; you have the flu on you miss the final enomination or you pass the course. e) (p > - r) V (n -> 74); If you have the flutten you didn't pass the course or either if you miss the find enomination than you didn't pass the course. f) (pra) V(- qrr); You have the flu and you miss ek the find evernication or either you don't miss the final enamination and you pass the course.

ok. e) That you get the got implies that you had to best -> If you get the job than you had the best wedentely f) The beach ender whomever their is a stourn. => If there is a storm, then beach enodes. ce. 8) It is necessary to have a valed password to by out the server > It you have to logion to server tran you have an wated passersand. b) : You will reach the summit unless you began your demb too late. > If you begin your climb too late learly than you will reach the summit. Ogge State converse, contrapositive, and inverse of each of trese condition statements. 9.1P, 77-7P, 7P-79 2) If it know snows tonight, then I will stay at home · O 9f I will stay at home, that it snows tonight. @ If I will not stay at home, that it not snows tonight. 3) If it not snows torright than I will not stay at home.

F

T

F

F

e) (q->-	(o) (c)	() q				6		
0) (9-	47	v			6. 200/2/02			
IP	- q	TP	THE RESERVE THE PERSON NAMED IN		6v->=qp)+>(pe			
T	T	F			F			
T	F	F	T	F	F	- 0		
F	Т	T	T	F		-		
F	F	T	T	T	T			
				NE PERSON	3/1	-		
Ever: 12					58 80 mg	250		
	-							
8:20 Relate	to a habi	itants .	& island	of K	nights &			
C szo Kelme	00 ac	' \$	alle	whose	migrat du	Jany		
Linones Lil IL	+ H O V	g race	o o	No.	Knight du	5		
tell the truth & knowes always lie. You encouter two								
people, A RB. Delormène of possible, what A RB are &								
If they address you in the ways described. If								
you & cannot allement what there two people are, can'								
Oper A sorys "The two of us are both knight" & B sorys cotting.								
Ope A says " One of us is knowns " & B says atting.								
"A is knive"								
=> If we suppose A is knight so in this case A&B both be								
Venignets. Which & contradiction. So, we consider B								
as knig	ut & say	OF IS	frive".	So. Hase	be thus	19 5		
	A -> kna	ve	5339		out.	0		
B -> Knight								
		0		-	7-12-12-12-12-12-12-12-12-12-12-12-12-12-	-		
-			-			-		

Door A says "I am not the spy" B says I am not the spy"

C say "A is spy" B - Spy c-> knowe Que Show that each conditional statement in En. 10 is a trustology without using truthe table. - ITP A (PVQ EPN(PVP))-r endition lew a) -[-PA(PVr)]Vr [7(7P) V 7(PVY)] V r . Domongenis law [PV(7PV 197)]VV · double negertions Negation law (PV7P) 1 (7r Vr) TAT b) $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$

c)[p4p->7]->7

[PA(7PVQ)]-92 [(PA7P)V(PAD)]-92 [PV(PAD)]-92 (PAQ)-92 T(PAQ)VQ TPVTVVQ 7PVTVVQ

Conditional law distributive " Negation law Idontity law Conditional " demongras y

> Domination of Board

a) [(PVV)) 1(P-9) 1 (Q->+) [x->v

		igunia and	guanania	G. OHOHOSHIPP		
I Ris	t	ot 1.0	alos to	ansc. Y	to absorptionals	
C 15	Doy	(bye)	= P	neidal		
	P	19	PAS	PV(PA9)		
	T	T	T	T		
	1+	1.6	Ŧ	T	THE RESERVE	
	F	T	F	F		
	F	IF	F	1 AF		
. 9	PA(PV	P = (P	131 10		The same has	
	P	9	PUN	PN (PUD)	LONG TO THE STATE OF	
	1	T .	T	T		
	T	F	1 T	T		
	F	T	T	F		
	OF !	F	- F	AF.	3. 3. 4. 3.99	
Rive	Determin	ne culu	thear (-1	P 1 (p-)) -> - T is foutalogy.	
	RoH-Sc					
⇒ P			B. S. Park			
	1					
1000	41		464			

	1000	1000				

Deze Show that (p-y) 1 (post) and polight) are Take R-11-5, P > (QAY) = 7PV(QAY) conditioned = (7PVD) ACTPV r) debtholine = (P-y) 1 (P-y) conditional here R. H.s = L. H.s Dace Sleaves that p - 1(2- >1) and v > (pv) are logically equivalent 7P->(79,VN) conditional
7(7P)V (79,VN) " double negation TO V(PUN) a -> (PUN) conditional. have R-His= L. H.S

It paid be statement the world a contains letter a". What buth value. 2) Provange BP (Teman) Lotrue. 14 false c) P(true ol) P(False) 4 false La true Is Let PGD be statement "he spend more than five how every weekday in class? When domai for re consist all studends. Fuppose couls quantification in English. a) In Pro - There facist a student, who spends more than five his in every weekday in class. 6) Yu P(1) - All the students have spend more than five hours every weekday in class. WAL ME P => There fruit a student who did not spend more than five hours every weekday in dass. d) 4u - P(2) => All the students did not spend make them five hows every weekday in class.

Que For each of these statements find domain for which Statement is true & dominin for which statement is false. a) Everyone is studying disorde contractions. > False Domain: Student of University. b) treyoner is adoutton 21 years -> True Domaine 19 loss than 2000 years. alja. => False Domains All c) Everytoo people have the same raction. => True Domaine Siblings (Brother/ Sister) = False Domaine Stranger / Friend d) No two d/ people have the some grownotice. => True Donnaine Friends Stranger → False Domains formily Dase Translate in two ways each of those statements into logical expressions using predicators, quantifiers & logical connecting trist let domnie consist of student in you class & second, let it consist of all people. 2) Someone in your class can speak Hudin => A(w)= Handi spenker B(w) at no in your class * 1st Domain -> Fre A(re) * 2nd Domaii -> Fre [B(w) ~ M(re)]

b) Everyone in your class is friendly.
* 1st Domain ->
There is a person in your class who was not born in carifonis
A(n) = born in California C(n) = on person in clas
* 1 DAman -> T(w) [7 A(w)]
* 2nd Domai ->](n) [c(n) -> 7 Alay]
A strobent in your class has been in a movies
Mai)= been à movée Ba)= re student à days
* Et Domain -> J(n) [A(n)]
* 2nd Domain ->](n)[B(n) AA(n)]