Lesson Objectives

- 1. Basic Terms Involving Absolute Value
- 2. Solve an Absolute Value Equation
- 3. Solve an Absolute Value Inequality

A. Basic Terms Involving Al	osolute Value		
The ABSOLUTE VALUE of a number IS its		from	on a number line.
AE	SOLUTE VALUE IS	DISTANCE	
What is always true about a D	ISTANCE? It is always		_! It can NEVER be negative
The same is true about the ab	solute value of a num	ber. It is always	s positive.
Suppose you are standing at Z	ERO on a basic horizo	ontal number lir	ne:
-4 -3 -2	-1 0	1 :	2 3 4
Where do you go so that you are	e a DISTANCE of 2 units	away from zero	? You go to
-4 -3 -2	-1 0	1	2 3 4
That is to say, you can go eithe	er 2 units to the	(– 2) or 2 (units to the (+2
This situation can be modeled	using an absolute va	ue equation:	x = 2
			ne distance is 2 from zero
So with the equation: $ x = 2$, you are to find num	bers that are	units from
The solutions can be modeled	using two equations	x=-2	or $x=2$
	Go 2 units to the LEFT	of zero or	go 2 units to the RIGHT
This type of solution, $x = -2$ or	x = 2, can also be w	ritten in a simpl	ified version: $x = \pm 2$.
That format, $x=\pm 2$, is read a	is "x equals plus or m	inus 2."	
So, remember the following:			
EXAMPLE: Solve the absolution	ute value equation:	-4x = -3	[2.5.27]
Remember that absolute value	e is a distance. In this	equation, the o	listance number is .
But distance can't be		-	
In general: "stu	ıff" = negative	means	"NO SOLUTION"

B. Solve an Absolute Value Equation (by hand – symbolically)

• Step 1 –	the absolute value part, if needed.			
 Step 2 – the distance number (opposite the A.V. stuff). If distance number is NEGATIVE – STOP! Equation has NO SOLUTION. If distance number is – ignore A.V. bars; make equation (ONE solution) If distance number is POSITIVE – keep going; there will be equations (TWO solutions) 				
• Step 3 – "	" and ma	ke 2 separate equation	ns	
• Step 4 – each equation.				
• Step 5 –	your solution((s).		
EXAMPLE: Solve the	equation for x.	3+6x =0	[2.5.39]	
Step 1 – ISOLATE		attached to the o	utside of the A.V. part tracted)	
Step 2 – INSPECT	. Distance number,	, means ignore A.V.	bars & make equation	
Step 3 – BRANCH. (Not needed, since there is only one equation.)				
Step 4 – SOLVE.	3+6x =0	onverts to		
Step 5 – WRITE. EXAMPLE: Solve for	The solution is: $x = b$. $ b + 9 $	+ 8 = 10 [2.5	-8]	
Step 1 – ISOLATE.	Given: $ b + 9 + 8$	= 10 (Subtract 8)		
		(do NOT subtract	: 9yet!)	

Step 2 – INSPECT.

The distance number, ____, is POSITIVE – make 2 equations

Step 3 – BRANCH. Make 2 separate equations: |b + 9| = 2

Start BOTH equations with _____:

Step 4 – SOLVE. (Subtract 9)

Step 5 – WRITE. b =____ or b =____

• **EXAMPLE:** Find the solution set for the equation. 4|3x| + 5 = 37 [*Blitzer 4.3.19]

Step 1 – ISOLATE. Given: 4|3x| + 5 = 37 (Subtract 5)

(Divide by 4)

(do NOT divide by 3....yet!)

Step 2 – INSPECT. The distance number, ____, is POSITIVE – make 2 equations

Step 3 – BRANCH. Make 2 separate equations: |3x| = 8

Start BOTH equations with _____

Step 4 – SOLVE. Solve each equation. (divide by 3)

Step 5 – WRITE. Write your solutions. $x = \underline{\hspace{1cm}}$ or $x = \underline{\hspace{1cm}}$ also $x = \underline{\hspace{1cm}}$

C. **Solve** an **Absolute Value Inequality** (by hand – symbolically) 1. Solving a Greater-Than type Absolute Value Inequality (_____ is "____") **EXAMPLE:** Solve the inequality. |1 - 2x| > 6Focus for now on the information outside the inequality: _____ Where would you need to be so that you are **greater than 6** units away from zero? -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 or Right piece is _____ Left piece is _____ In EACH piece graphed above, the distance is greater than 6 units away from zero on the number line. This is what we'll use to set up the solution process for this inequality. (More is "or") |1 - 2x| > 6(BOTH inequalities will start with _____) or _____ (right piece) (Solve each inequality) (subtract 1) or (Divide by -2) !! – remember, you don't always reverse) or (VERY IMPORTANT! Swap places to mimic number line; smaller on left, larger on right) or Set Builder Notation: $\{x \mid \underline{\hspace{1cm}}\}$ **WRITE** the solution. Interval Notation: If given |A| > B setup is: A < -BSo, in general: or A > BSolution is: $(-\infty, \text{smaller}) \cup (\text{larger}, \infty)$ parentheses are used on 2 solutions If given $|A| \ge B$ setup is: $A \le -B$ or $A \le B$ Solution is: $(-\infty, smaller] \cup [larger, \infty)$ brackets are used on 2 solutions

2. Solving a Less-Than type Absolute Value Inequality (is " ")

• **EXAMPLE:** Solve the inequality.

$$|3 - 5x| \le 8$$

[2.5.75]

Focus for now on the information outside the inequality:

Where would you need to be so that you are less than or equal to 8 units away from zero?

This segment above shows staying a distance of less than or equal to 8 units from zero.

So, notice that this graph shows all points with a distance _____ – 8 and +8.

That is written as a compound inequality: $-8 \le \text{distance} \le 8$

This is what we'll use to set up the solution process for this inequality.

Given:

$$|3 - 5x| \le 8$$

(Less is "Nest")

Setup to Solve: "Nest" the 3 – 5x in the middle

Subtract 3:

Divide by – 5 and **REVERSE!**:

(Remember, you won't always reverse)

You need to "pivot" (or "dab") this inequality, to match the number line: smaller $\le x \le \text{larger}$

WRITE the solution. Set Builder Notation: $\{x | \underline{\hspace{1cm}} \}$

Interval Notation: _____

So, in general: If given |A| < B setup is: -B < A < +B

Solution is: (smaller, larger) parentheses are used

If given $|A| \le B$ setup is: $-B \le A \le +B$

Solution is: [smaller, larger] brackets are used

3. Solve Applications with Absolute Value Inequalities

• **EXAMPLE:** The inequality describes the range of monthly average temperatures T in degrees Fahrenheit at a certain location. Find an equivalent expression and monthly average temperatures.

$$|T - 49| \le 29$$
 [2.5.117] (Less is "nest")

Setup to solve:

Add 49:

The inequality is equivalent to: interval notation: _____

Interpret this solution:

If the high and low monthly average temperatures satisfy the inequality, then the monthly averages are always within _____ degrees of ____° F.

How do we get this?

The "within" 29 degrees part represents a _____, so use the **DISTANCE** number (away from the inequality) for "_____

The "of" 49° F part represents a _____ (center point), so use the value the absolute value.

(center point, location) (distance)

Sources Used:

- Solving Absolute Value Inequalities, https://www.youtube.com/watch?v=BhFj7Rkyc5E&t=180s, Gdawg Enterprises, © 2009, using phrases "More is 'OR', Less is 'Nest'".
- 2. Number Line Inequalities (modified) from Desmos, https://www.desmos.com/calculator/evxn1e1njv, © 2019, Desmos, Inc.
- 3. Wrong Way sign, Driver's Prep website, https://driversprep.com/wrong-way/
- 4. Dab icon, ICONFINDER website, https://www.iconfinder.com/icons/2657453/celebrate celebration dab dabbing pose posture icon
- 5. MyLab Math for Algebra for College Students, 8th Edition, Blitzer, Pearson Education Inc.
- 6. MyLab Math for *College Algebra with Modeling and Visualization*, 6th Edition, Rockswold, Pearson Education Inc.