Thevenin's Theorem and its Applications

Presentation · June 2017		
DOI: 10.13140/RG.2.2.27671.57768		
CITATIONS		READS
0		22,683
1 author:		
	Professor G R Sinha	
	Myanmar Institute of Information Technology Mandalay Myanmar	
	204 PUBLICATIONS 430 CITATIONS	
	SEE PROFILE	
Some of the authors of this publication are also working on these related projects:		
Project	Breast Cancer View project	
Project	Reliable CAD system for Breast cancer detection View project	

Thevenin's Theorem and its Application

By

Dr G R Sinha

IEEE Senior Member & Fellow IETE
Professor, Department of Electronics and Communication Engineering
CMR Technical Campus, Hyderabad

Outline of Lecture

- Lecture Objectives
- Thevenin's Theorem
- Examples
- Application

Lecture Objectives

- To understand Thevenin's theorem and simplify electrical networks into simple equivalent circuits using the theorem.
- To study an application of the theorem.

Thevenin's Theorem

Thevenin's theorem states that a linear and bilateral network can be replaced by an equivalent circuit consisting of a voltage source V_{Th} in series with a resistance R_{Th} .

where V_{Th} is the open-circuit voltage across load terminals, and R_{Th} is the input or equivalent resistance at the terminals when all the independent sources are turned off.

Thevenin's Theorem (contd..)

Determination of R_{Th} (Thevenin's Resistance):

The resistance seen by the load, with removed load and all **independent** sources turned off (Voltage sources replaced by short circuits & current sources replaced by open circuits).

Thevenin's Theorem (contd..)

Determination of V_{Th} (Thevenin's Voltage):

The voltage across the load under open circuit condition, also called as

open circuit voltage.

Determining the voltage drop across R_L

Find the voltage across the 100 Ω load.

$$\begin{array}{cccc} & -86 + 80I_S + 6I_S = 0 & \to & I_S = 1A \\ & V_{AB} = 6I_S + 30I_S = & \to & 36V \end{array}$$

$$50I_S + 30(I_S + 1) + 6I_S = 0$$

$$I_S = \frac{-15}{43} A$$

Example # 5 (contd..)

Applications of Thevenin's Theorem

- To determine Change in Load Voltage: To predict range of load voltage variation due to change in load resistance.
- To obtain Norton's equivalent circuit.
- To determine Maximum power that can be transferred to Load from the network.

Maximum Power Transfer Theorem

Maximum power transfer from a circuit to a variable load occurs when the load resistance equals the source resistance, $R_L = R_{TH}$.

$$p = i^2 R_L = \left[V_{Th} / (R_{Th} + R_L) \right]^2 R_L$$

This power is maximum when

$$\partial p/\partial R_L = 0$$

This gives:
$$R_L = R_{Th}$$

$$p_{\text{max}} = \left[V_{Th} / (R_{Th} + R_L) \right]^2 R_L |_{R_L = R_{Th}}$$

$$p_{\text{max}} = \left[V_{Th} / (2R_{Th}) \right]^2 R_{Th} = V_{Th}^2 / 4 R_{Th}$$

Sincere Thanks with Inspiring Equation

$$E = mc^2$$

E= Excellence, m = Motivation, C = Commitment

```
c = 0.5 (Half hearted) E = ¼
c = 2 (Doubly enthused) E = 4
```