PYTHON FOR DATASCIENCE

MAXENCE GUEGNOLLE - MARTIN DE COMBARIEU

BERLIN AIRBNB ANALYSIS

CAN WE PREDICT THE PRICE OF A NEW PLACE?

HOW WE PROCESSED

- Data
 - DataSet Selection
 - Data Exploration
 - Data Cleaning
- Features
 - Feature Analysis
 - Feature Engineering
- Model
- Conclusion

BERLIN AIRBNB DATA

Price related

Price

Cleanning Fee

Extra People

Security Deposit

kaggle

Amenities

Position

Longitude

Latitude

DATA EXPLORATION

	latitude	longitude	price	security_deposit	cleaning_fee	extra_people	minimum_nights
0	52.534537	13.402557	\$60.00	\$200.00	\$30.00	\$28.00	4
1	52.548513	13.404553	\$17.00	\$0.00	\$0.00	\$0.00	2
2	52.534996	13.417579	\$90.00	\$200.00	\$50.00	\$20.00	62
3	52.498855	13.349065	\$26.00	\$250.00	\$30.00	\$18.00	5
4	52.543157	13.415091	\$42.00	\$0.00	\$0.00	\$24.00	2
5	52.533031	13.416047	\$180.00	\$400.00	\$80.00	\$10.00	6
6	52.547846	13.405562	\$70.00	\$500.00	\$0.00	\$0.00	90
7	52.510514	13.457850	\$120.00	NaN	NaN	\$13.00	30
8	52.504792	13.435102	\$90.00	\$500.00	\$50.00	\$20.00	60
9	52.529071	13.412843	\$45.00	\$0.00	\$18.00	\$26.00	3
10	52.495476	13.421821	\$49.00	\$0.00	\$50.00	\$15.00	5
11	52.536952	13.407615	\$129.00	\$500.00	\$49.00	\$24.00	3
12	52.502733	13.434620	\$70.00	\$500.00	\$40.00	\$18.00	60
13	52.494851	13.428501	\$98.00	\$300.00	\$50.00	\$25.00	3
14	52.534348	13.405577	\$160.00	\$150.00	\$40.00	\$35.00	3
15	52.489714	13.379748	\$65.00	\$500.00	\$50.00	\$0.00	60
16	52.530791	13.418084	\$90.00	\$200.00	\$35.00	\$5.00	3
17	52.530259	13.419467	\$90.00	\$200.00	\$55.00	\$5.00	4
18	52.544062	13.421377	\$197.00	\$250.00	\$50.00	\$40.00	3
19	52.546719	13.405117	\$70.00	\$1,660.00	NaN	\$0.00	90

DATA CLEANING - PRICE

```
df['security_deposit'] = df['security_deposit'].fillna(0)
df['cleaning_fee'] = df['cleaning_fee'].fillna(0)
df['extra_people'] = df['extra_people'].fillna(0)
```

DATA CLEANING - AMENITIES

{TV, "Cable TV", Wifi, Kitchen, Gym, Heating, "Family/kid friendly", "Smoke detector", Essentials, Shampoo, "Lock on bedroom door", Hangers, "Hair dryer", Iron, "Laptop friendly workspace", "Private living room", Bathtub, "Hot water", "Bed linens", "Extra pillows and blankets", Microwave, "Coffee maker", Refrigerator, Dishwasher, "Dishes and silverware", "Cooking basics", Stove, "Luggage dropoff allowed", "Long term stays allowed"}

AMENITIES - REPARTITION

DISTANCE TO BERLIN CENTER

```
from geopy.distance import great_circle

def distance_to_center(lat,long):
    berlin_centre = (52.5027778, 13.404166666666667)
    airbnb = (lat, long)
    return great_circle(berlin_centre, airbnb).km

df['distance'] = df.apply(lambda x: distance_to_center(x.latitude, x.longitude), axis=1)
```

DISTANCE TO BERLIN CENTER

PRICE PREDICTION

- Train/Test Split
- Standardization
- RandomForest
 - Mean Absolute Error: 22.72 \$
 - Score: 28.03 %
- XGBoost
 - Mean Absolute Error: 21.25 \$
 - Score: 35.2 %

PREDICTING PRICE

CONCLUSION