# Precision medicine: NGS variant analysis and interpretation for translational research

# Selecting the most relevant variants: How to filter

Fátima Al-Shahrour ● Javier Perales ● Elena Piñeiro

September 28, 2016





# Additional annotations

| chromosome      | PolyPhen score   | VEP's COSMIC ID              |
|-----------------|------------------|------------------------------|
| location        | Condel effect    | other IDs                    |
| mutation        | Condel score     | variation type               |
| gene            | SIFT effect      | HGVS cDNA                    |
| feature         | SIFT score       | HGVS protein                 |
| feature type    | gene HGNC        | GMAF 1000 genomes            |
| consequence     | protein position | GMAF 1000 genomes percentage |
|                 | amino acids      | ExAC percentage              |
| PolyPhen effect | dbSNP ID         | ExAC NFE percentage          |

Annotations from VEP

# Additional annotations

| chromosome      | PolyPhen score   | VEP's COSMIC ID              | COSMIC original ID |
|-----------------|------------------|------------------------------|--------------------|
| location        | Condel effect    | other IDs                    | Pfam               |
| mutation        | Condel score     | variation type               | Uniprot            |
| gene            | SIFT effect      | HGVS cDNA                    | Interpro           |
| feature         | SIFT score       | HGVS protein                 |                    |
| feature type    | gene HGNC        | GMAF 1000 genomes            |                    |
| consequence     | protein position | GMAF 1000 genomes percentage |                    |
| APPRIS category | amino acids      | ExAC percentage              |                    |
| PolyPhen effect | dbSNP ID         | ExAC NFE percentage          |                    |

Annotations from VEP

**Enrichment of VEP annotations** 

### Additional annotations

| chromosome      | PolyPhen score   | VEP's COSMIC ID              | COSMIC original ID               | ClinVar disease                 |
|-----------------|------------------|------------------------------|----------------------------------|---------------------------------|
| location        | Condel effect    | other IDs                    | Pfam                             | ClinVar clinical significance   |
| mutation        | Condel score     | variation type               | Uniprot                          | Homopolymer                     |
| gene            | SIFT effect      | HGVS cDNA                    | Interpro                         | Repeats                         |
| feature         | SIFT score       | HGVS protein                 | TumorPortal                      | CCLE gene                       |
| feature type    | gene HGNC        | GMAF 1000 genomes            | Role of the gene in tumorgenesis | Frequency of gene in COSMIC     |
| consequence     | protein position | GMAF 1000 genomes percentage | KEGG data                        | Frequency of mutation in COSMIC |
| APPRIS category | amino acids      | ExAC percentage              | KEGG path ID                     | Consensual role                 |
| PolyPhen effect | dbSNP ID         | ExAC NFE percentage          | ClinVar ID                       | VSCORE                          |

Annotations from VEP

**Enrichment of VEP annotations** 

Annotations from other sources

# KEGG pathways

http://www.genome.jp/kegg/pathway.html



### **KEGG PATHWAY Database**

Wiring diagrams of molecular interactions, reactions, and relations

- 1. Metabolism
- 2. Genetic Information Processing
- 3. Environmental Information Processing
- 4. Cellular Processes
- 5. OrganismalSystems
- 6. Human diseases
- 7. Drug development (structural relations between compounds)



# ClinVar

|     | Variation<br>Location                                                                                                               | Gene(s) | Condition(s)           | Frequency                           | Clinical<br>significance<br>(Last reviewed) | Review<br>status                        |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|-------------------------------------|---------------------------------------------|-----------------------------------------|
| 19. | NM_001005862.2(ERBB2):c.1376C>T (p.Pro459Leu) GRCh37: Chr17:37872145 GRCh38: Chr17:39715892                                         | ERBB2   | not specified          | GMAF:0.00040(T)                     | not provided<br>(Sep 19, 2013)              | no<br>assertion<br>provided             |
| 20. | NM_001005862.2(ERBB2):c.1703C>A (<br>p.Ala568Asp)<br>GRCh37: Chr17:37873628<br>GRCh38: Chr17:39717375                               | ERBB2   | not specified          |                                     | not provided<br>(Sep 19, 2013)              | no<br>assertion<br>provided             |
| 21. | NM_001005862.2(ERBB2):c.1870A>G (<br>p.lle624Val)<br>GRCh37: Chr17:37879585<br>GRCh38: Chr17:39723332                               | ERBB2   |                        | GO-ESP:0.00707(G<br>GMAF:0.00260(G) | Benign<br>(Feb 1, 1993)                     | no<br>assertion<br>criteria<br>provided |
| 22. | NM_001005862.2(ERBB2):c.1873A>G (<br>p.lle625Val)<br>GRCh37: Chr17:37879588<br>GRCh38: Chr17:39723335                               | ERBB2   |                        | GO-ESP:0.16854(G<br>GMAF:0.12140(G) | Benign<br>(Feb 1, 1993)                     | no<br>assertion<br>criteria<br>provided |
| 23. | NM_001005862.2(ERBB2):c.2173_2174<br>delTTinsCC (p.Leu725Pro)<br>GRCh37: Chr17:37880219-37880220<br>GRCh38: Chr17:39723966-39723967 | ERBB2   | Adenocarcinoma of lung |                                     | Pathogenic<br>(Sep 30, 2004)                | no<br>assertion<br>criteria<br>provided |

### UniProt additional information

### UniProtKB - P00533 (EGFR\_HUMAN)



### PTM / Processing



Additional domains information: pfam and Interpro



low\_complexity

Pfam







| IIII IIKU      |                                                                                |                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                          | unuse_iyi                                                                                                                                                                                                                                                                                                                                                        |
|----------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Domain         | Start                                                                          | End                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                  |
| n/a            | 1                                                                              | 24                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                  |
| n/a            | 6                                                                              | 24                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                  |
| Recep L domain | 57                                                                             | 168                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                  |
| Furin-like     | 177                                                                            | 338                                                                                                                                                                                                                                        | Description:                                                                                                                                                                                                                                                                                                                             | Epidermal growth factor receptor EC=2.7.10.1                                                                                                                                                                                                                                                                                                                     |
| Recep L domain | 361                                                                            | 481                                                                                                                                                                                                                                        | Source organism:                                                                                                                                                                                                                                                                                                                         | Homo sapiens (Human)                                                                                                                                                                                                                                                                                                                                             |
| GF recep IV    | 505                                                                            | 637                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          | 1210 amino acids                                                                                                                                                                                                                                                                                                                                                 |
| n/a            | 646                                                                            | 667                                                                                                                                                                                                                                        | Reference Proteome:                                                                                                                                                                                                                                                                                                                      | <b>✓</b>                                                                                                                                                                                                                                                                                                                                                         |
| n/a            | 650                                                                            | 665                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                  |
|                | Domain  n/a  n/a  Recep L domain  Furin-like  Recep L domain  GF recep IV  n/a | Domain         Start           n/a         1           n/a         6           Recep L domain         57           Furin-like         177           Recep L domain         361           GF recep IV         505           n/a         646 | Domain         Start         End           n/a         1         24           n/a         6         24           Recep L domain         57         168           Furin-like         177         338           Recep L domain         361         481           GF recep IV         505         637           n/a         646         667 | Domain         Start         End           n/a         1         24           n/a         6         24           Recep L domain         57         168           Furin-like         177         338         Description:           Source organism:         Source organism:           GF recep IV         505         637           n/a         646         667 |

674 691

712 968

n/a

Pkinase Tyr

# Specific cancer information

- Relevance of the gene in carcinogenesis
  - TumorPortal
  - CCLE
  - COSMIC
- Frequency of the variant/gene in cancer
  - COSMIC
- Role of the gene in carcinogenesis (Oncogene or Tumor Suppressor)
  - COSMIC
  - oncodriveROLE

### TumorPortal

### http://www.tumorportal.org/



### Explore dataset by Genes

Click on a gene name to see what tumor types it is significantly mutated in (and other details).



### **TumorPortal**



### **CCLE**

### Cancer Cell Line Encyclopedia (CCLE)



The Cancer Cell Line Encyclopedia (CCLE) project is an effort to conduct a detailed genetic characterization of a large panel of human cancer cell lines. The CCLE provides public access analysis and visualization of DNA copy number, mRNA expression, mutation data and more, for 1000 cancer cell lines.

Contact: ccle-help@broadinstitute.org

### Data Info:

URL: http://www.broadinstitute.org/ccle

Description:

A link to the CCLE portal

### **Publication Info:**

URL: http://www.nature.com/nature/journal/v483/n7391/full/nature11003.html

Date: 3/29/2012

Notes:

Barretina, Caponigro, Stransky et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012 Mar 28;483(7391):603-7. doi: 10.1038/nature11003.

### COSMIC additional information



# Variant / gene frequency in COSMIC





# Variant / gene frequency in COSMIC





# Role of the gene as ONC or TSG



How frequencies can be interpreted? How genes can be actioned for therapy?

# Role of the gene as ONC or TSG



http://cancer.sanger.ac.uk/census/

The cancer Gene Census is an ongoing effort to catalogue those genes for which mutations have been causally implicated in cancer. The original census and analysis was published in <u>Nature</u> Reviews Cancer and supplemental analysis information related to the paper is also available.

The census is not static but rather is updated regularly/as needed. In particular we are grateful to Felix Mitelman and his colleagues in providing information on more genes involved in uncommon translocations in leukaemias and lymphomas. Currently, more than 1% of all human genes are implicated via mutation in cancer. Of these, approximately 90% have somatic mutations in cancer, 20% bear germline mutations that predispose to cancer and 10% show both somatic and germline mutations.

| Show 10          | ▼ entries                                               |                     |                                     |               |         |          |                                                                                                                                                                                                                                  | Export: CSV TSV Sea                                             | rch:                                   |                |                         |                   |            |
|------------------|---------------------------------------------------------|---------------------|-------------------------------------|---------------|---------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|----------------|-------------------------|-------------------|------------|
| Gene<br>Symbol A | Name                                                    | Entrez<br>GeneId 🌲  | Genome Location                     | Chr<br>Band 🏺 | Somatic | Germline | Tumour<br>Types(Somatic)                                                                                                                                                                                                         | Tumour<br>Types(Germline) 🏺                                     | Cancer<br>Syndrome \$                  | Tissue<br>Type | Molecular<br>Genetics 🛊 |                   |            |
| BRAF             | v-raf murine<br>sarcoma viral<br>oncogene<br>homolog B1 | <u>673</u> ₽        | 7:140734597-140924703               | 7q34          | yes     |          | melanoma;<br>colorectal; papillary<br>thyroid; borderline<br>ovarian; NSCLC;<br>cholangiocarcinoma;<br>pilocytic<br>astrocytoma;<br>Spitzoid tumour;<br>pancreas acinar<br>carcinoma;<br>melanocytic nevus;<br>prostate; gastric |                                                                 |                                        | E; O           | Dom                     | $\longrightarrow$ | ONC        |
| BRCA1            | familial<br>breast/ovarian<br>cancer gene 1             | <u>672</u> <b>₽</b> | 17:43045678-43124096                | 17q21         | yes     | yes      | ovarian                                                                                                                                                                                                                          | breast; ovarian                                                 | hereditary<br>breast/ovarian<br>cancer | Е              | Rec                     |                   | 700        |
| BRCA2            | familial<br>breast/ovarian<br>cancer gene 2             | 675 <b>©</b>        | 13:32316461-32398770<br><b>6</b> e! | 13q12         | yes     | yes      | breast; ovarian;<br>pancreatic                                                                                                                                                                                                   | breast; ovarian;<br>pancreatic;<br>leukaemia (FANCB;<br>FANCD1) | hereditary<br>breast/ovarian<br>cancer | L; E           | Rec                     |                   | <b>TSG</b> |

### **OncodriveROLE**

### Classifying cancer driver genes into Loss of Function and Activating roles.

We developed the machine-learning based approach OncodriveROLE to classify cancer driver genes into to Activating or Loss of Function roles for cancer gene development. Here you can download the code of the method, and browse the results of applying OncodriveROLE to two recently published list of driver genes (HCDs and Cancer5000) in the respective tabs Plots, Gene classification and performance. You may adjust the cut-offs with the sliders to the left, download the results according to the selected cut-offs or directly download the classifier to use with your own data. For further information please refer to the manuscript.



# Filtering process

Once variants have been annotated we can remove the non likely relevant using the annotation information.

We can select manually those that seem more relevant according to a **set of criteria**.

A useful tool for the selection is the prioritization based on a **score calculation** computed from selected annotations. This provides a ranked list of variants with the most relevant at the top.

Components in the selection criteria and score calculation vary with the pathology or condition under study.

# Filtering criteria

Remove artifacts

### Possible artifacts

Table 1 | Main characteristics of current NGS technologies

| Technology | Run type   |            |           | Maximum read         | Quality | Error     | Refs     |
|------------|------------|------------|-----------|----------------------|---------|-----------|----------|
|            | Single end | Paired end | Mate pair | length               | scores  | rates     |          |
| Illumina   | Yes        | Yes        | Yes       | 300 bp               | >30     | 0.0034-1% | 59       |
| SOLiD      | Yes        | Yes        | Yes       | 75 bp                | >30     | 0.01-1%   | 60       |
| IonTorrent | Yes        | Yes        | No        | 400 bp               | ~20     | 1.78%     | 22       |
| 454        | Yes        | Yes        | No        | ~700 bp (up to 1 kb) | >20     | 1.07-1.7% | 53,61    |
| Nanopore   | Yes        | No         | No        | 5.4–10kb             | NA      | 10-40%    | 62-66    |
| PacBio     | Yes        | No         | No        | ~15 kb (up to 40 kb) | <10     | 5-10%     | 22,67–69 |

454, 454 pyrosequencing (Roche); NA, not applicable; Nanopore, Oxford Nanopore Technologies; NGS, next-generation sequencing; PacBio, Pacific Biosciences; SOLiD, sequencing by oligonucleotide ligation and detection (Thermo Fisher).

Nature Reviews Genetics 17,459-469(2016)doi:10.1038/nrg.2016.57

Sequencing strategies differ in different aspects as the error rates they produce and the kind of sequencing errors they introduce

### Possible artifacts

### Base-calling errors

- Indel errors: Rare in Illumina. Main source of errors in IonTorrent and 454.
- Substitution errors: Dominant in Illumina and SOLiD platforms.



### Possible artifacts

### Base-calling errors

- Indel errors: Rare in Illumina. Main source of errors in IonTorrent and 454.
- Substitution errors: Dominant in Illumina and SOLiD platforms.



### **Detection**

Quality filters

Homopolymeric regions

Repetition in same technology output

Check in IGV

Repetition can indicate a polymorphism if it is present in at least a 1% of the population.

- Repetition can indicate a frequent cancer alteration if its presence is validated in multiple cancer samples.
- Otherwise, it can be an artifact (especially in genes acting as tumor suppressor)

Adapted from: Ross et al. Genome Biology 2013 14:R51 doi:10.1186/gb-2013-14-5-r51

# Filtering criteria

### Remove artifacts

- High number of repetitions without high frequency in population or in cancer samples.
- Indels located in homopolymeric regions in data from sensitive platforms to this artifact.
- Variants in positions with very low coverage.

Remove variants located in **no functional genes**: BACs, pseudogenes, ...

Remove polymorfisms: Population frequency in 1000 Genomes project, ExAC, ... >= 1% (if not interested in germline information)

# Filtering criteria

### Keep variants with relevant consequences at transcriptional level:

transcript\_ablation | splice\_donor\_variant | splice\_acceptor\_variant | stop\_gained | frameshift\_variant | stop\_lost | start\_lost | transcript\_amplification | inframe\_insertion | inframe\_deletion | missense\_variant | protein\_altering\_variant | splice\_region\_variant | incomplete\_terminal\_codon\_variant | stop\_retained\_variant

Keep variants with predicted relevant consequence at protein level: damaging in predictors, affecting domains

Keep variants with clinical significance: pathogenic ClinVar

Keep variants relevant in the pathology: pathogenic COSMIC, gene or variant frequently mutated in cancer, ...

# Score calculation: an example



| Feature                         | Value                                                                        | Weight ONC                                                                      | Weight TSG                                                          |  |
|---------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------|--|
| Score prediction by PolyPhen    | > 0.435                                                                      | 0.125/3                                                                         |                                                                     |  |
| Score prediction by Sift        | <= 0.05                                                                      | 0.12                                                                            | 25/3                                                                |  |
| Score prediction by CONDEL      | > 0.468                                                                      | 0.12                                                                            | 25/3                                                                |  |
| COSMIC                          | Pathogenic by<br>FATHMM<br>prediction                                        | 0.125/3                                                                         | 0.03125                                                             |  |
| Frequency of mutation in COSMIC | >= 100                                                                       | 0.125/3                                                                         |                                                                     |  |
|                                 | < 100                                                                        | (0.125 / 3) * (log(mutation<br>frequency) / log(maximum<br>mutation frequency)) |                                                                     |  |
| Frequency of gene in COSMIC     | >= 100                                                                       | 0.125/3                                                                         | 0.03125                                                             |  |
|                                 | < 100                                                                        | (0.125 / 3) * (log(gene<br>frequency) / log(maximum<br>gene frequency))         | 0.03125 * (log(gene<br>frequency) / log(maximum<br>gene frequency)) |  |
| VEP consequence                 | stop gain<br>frameshift<br>missense<br>inframe insertion<br>inframe deletion |                                                                                 |                                                                     |  |
| GMAF                            | < 1                                                                          | 0.12                                                                            | 25/2                                                                |  |
| EXAC                            | < 1                                                                          | 0.12                                                                            | 25/2                                                                |  |
| DOMAINS                         | Listed as<br>relevant in<br>cancer or<br>previous last<br>protein domain     | 0.125                                                                           |                                                                     |  |
|                                 | Within a domain<br>in other<br>circumstances                                 |                                                                                 |                                                                     |  |
| CLINVAR                         | Pathogenic                                                                   | 0.1                                                                             | 125                                                                 |  |
| ZYGOSITY                        | Homozygous                                                                   | 0.125                                                                           | 0.1875                                                              |  |
| ESSENTIALITY SCORE              |                                                                              | 0.125 * ES                                                                      |                                                                     |  |

**Impact** Pathogenicity Frequencies **Impact** Frequencies **Impact** Pathogenicity

**Impact** 

# THE END

Fátima Al-Shahrour falshahrour@cnio.es

Javier Perales-Patón jperales@cnio.es

Elena Piñeiro-Yáñez epineiro@cnio.es