

Congratulations! You passed!

Next Item

1/1 point

1.

In this quiz, you will practice changing from the standard basis to a basis consisting of orthogonal vectors.

Given vectors $\mathbf{v} = \begin{bmatrix} 5 \\ -1 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

$$\mathbf{v_b} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$

$$\mathbf{v_b} = egin{bmatrix} -3 \ 2 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

The vector ${f v}$ is projected onto the two vectors ${f b_1}$ and ${f b_2}.$

1/1 point $\begin{array}{l} \text{Changing basis} \left[\begin{array}{c} 10 \\ -5 \end{array} \right] \text{, } \mathbf{b_1} = \left[\begin{array}{c} 3 \\ 4 \end{array} \right] \text{ and } \mathbf{b_2} = \left[\begin{array}{c} 4 \\ -3 \end{array} \right] \text{ all written in the standard basis, what is } \mathbf{v} \text{ in the basis} \\ \text{5/5 points (100\%)} \end{array}$

$$\mathbf{v_b} = \begin{bmatrix} 2 \\ 11 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 11/5 \\ 2/5 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 2/5 \\ 11/5 \end{bmatrix}$$

Correct

The vector \mathbf{v} is projected onto the two vectors $\mathbf{b_1}$ and $\mathbf{b_2}$.

$$\mathbf{v_b} = \begin{bmatrix} -2/5 \\ 11/5 \end{bmatrix}$$

3. Given vectors $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $\mathbf{b_1} = \begin{bmatrix} -3 \\ 1 \end{bmatrix}$ and $\mathbf{b_2} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ all written in the standard basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$ and $\mathbf{b_2}$? You are given that $\mathbf{b_1}$ and $\mathbf{b_2}$ are orthogonal to each other.

$$\mathbf{v_b} = \begin{bmatrix} 5/4 \\ -5/2 \end{bmatrix}$$

$$\mathbf{v_b} = egin{bmatrix} -2/5 \ 5/4 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} -2/5 \\ 4/5 \end{bmatrix}$$

Correct

The vector ${f v}$ is projected onto the two vectors ${f b_1}$ and ${f b_2}.$

1/1 point

4.

Given vectors
$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
, $\mathbf{b_1} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 1 \\ -2 \\ -1 \end{bmatrix}$ and $\mathbf{b_3} = \begin{bmatrix} -1 \\ 2 \\ -5 \end{bmatrix}$ all written in the standard basis, what

is v in the basis defined by b_1 , b_2 and b_3 ? You are given that b_1 , b_2 and b_3 are all pairwise orthogonal to each other.

$$\mathbf{v_b} = egin{bmatrix} 3 \ -1 \ -2 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} -3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$$

$$\mathbf{v_b} = egin{bmatrix} -3/5 \ -1/3 \ 2/15 \end{bmatrix}$$

$$\mathbf{v_b} = \begin{bmatrix} 3/5 \\ -1/3 \\ -2/15 \end{bmatrix}$$

Correct

The vector v is projected onto the vectors b_1, b_2 and b_3 .

1/1 point

5.

Given vectors
$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{b_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$, $\mathbf{b_2} = \begin{bmatrix} 0 \\ 2 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{b_3} = \begin{bmatrix} 0 \\ 1 \\ 2 \\ 0 \end{bmatrix}$ and $\mathbf{b_4} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 3 \end{bmatrix}$ all written in the standard

basis, what is \mathbf{v} in the basis defined by $\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$ and $\mathbf{b_4}$? You are given that $\mathbf{b_1}$, $\mathbf{b_2}$, $\mathbf{b_3}$ and $\mathbf{b_4}$ are all pairwise orthogonal to each other.

$$\mathbf{v_b} = egin{bmatrix} 1 \ 0 \ 1 \ 1 \end{bmatrix}$$

Correct

The vector v is projected onto the vectors b_1, b_2, b_3 and b_4 .

$$\mathbf{v_b} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

