Math 440 – Real Analysis II Homework 2

Amandeep Gill

February 27, 2015

Problem 1 Test the following series for convergence.

(a)
$$\sum_{k=1}^{\infty} \frac{k+1}{2k^3-k}$$
 Does converge

Proof: Let
$$a_k = \frac{1}{k^2}$$
, then $\lim_{k \to \infty} \frac{s_k}{a_k} = \lim_{k \to \infty} \frac{(k+1)(k^2)}{2k^3 - k} = \frac{1}{2}$
Since $\frac{1}{2} \in \mathbb{R}^+$, $\sum_{k=1}^{\infty} \frac{k+1}{2k^3 - k}$ converges by the Limit Comparison Test.

(b)
$$\sum_{n=1}^{\infty} \frac{p^n}{n!}$$
, $p \in \mathbb{R}$ Does converge

Proof: Using the ratio test, let
$$L = \lim_{k \to \infty} (\frac{p^{k+1}}{(k+1)!})(\frac{k!}{p^k}) = \lim_{k \to \infty} \frac{p}{k+1} = 0$$

Since $L < 1$, the series $\sum_{n=1}^{\infty} \frac{p^n}{n!}$ does converge.

Problem 2 Suppose $a_k \ge 0$ for all $k \in \mathbb{N}$ and $\sum a_k < \infty$. Prove that the following converge or give an example where the series does not.

(a)
$$\sum_{k=1}^{\infty} a_k^2$$
 is guaranteed to converge

Proof: By assumption $a_k \ge 0$ for all $k \in \mathbb{N}$, so $a_k = |a_k|$ and $\sum |a_k| = \sum a_k$. The series is thus absolutely convergent, so for some $m = \max\{a_1, a_2, \ldots\}, \ m \sum a_k = \sum ma_k < \infty$. Since $a_k \le m$, $a_k^2 \le ma_k$, the series $\sum_{k=1}^{\infty} a_k^2$ converges by the Weierstrass M-test.

$$\text{(b)} \sum_{k=1}^{\infty} \frac{a_k^2}{1+a_k}$$

Proof: pf