ASSIGNMENT II MSO 202 A

POWER SERIES, ANALYTIC FUNCTIONS, AND INTEGRATION

Exercise 0.1 : Does there exist a holomorphic function f = u + iv on the complex plane such that $u(x,y) = x^2$ and $v(x,y) = y^2$?

Exercise 0.2: Find the radius of convergence (for short, RoC) of the following power series:

- $\begin{array}{l} (1) \ \sum_{n=1}^{\infty} \frac{z^n}{n}.\\ (2) \ \sum_{n=1}^{\infty} z^{n!}.\\ (3) \ \sum_{n=1}^{\infty} n^{(-1)^n} z^n.\\ (4) \ \sum_{n=2}^{\infty} (\log n)^2 z^n.\\ (5) \ \sum_{n=2}^{\infty} a_n z^n, \text{ where } a_n \text{ is the number of prime numbers less than} \end{array}$

Exercise 0.3: Show that $f(z) = \frac{1}{1-z}$ defines an analytic function on the unit disc centered at 0, that is, for every |a| < 1, f(z) = $\sum_{n=0}^{\infty} a_n (z-a)^n$ in some disc centered at a.

Exercise 0.4: Let $p(z) = a_0 + a_1 z + \cdots + a_n z^n$ be a polynomial and let γ denote the unit circle with parametrization $z(t) = e^{it}$, $0 \le t \le 2\pi$. Show that

$$\int_{\gamma} (p(z) + p(1/z))dz = (2\pi i)a_1.$$

Exercise 0.5: Let γ be a circle of radius 2 centered at 0. Verify the following (without Cauchy Integral Formula):

- (1) $\int_{\gamma} \frac{1}{z-1} dz = 2\pi i$. (2) $\int_{\gamma} \frac{1}{z-3} dz = 0$.

Conclude that

$$\int_{\gamma} \frac{1}{(z-1)(z-3)} dz = -\pi i.$$

Exercise 0.6 : Let γ be the unit circle with following parametrizations:

$$z_1(t) = e^{it} (0 \le t \le 2\pi),$$

 $z_2(t) = e^{2it} (0 \le t \le 2\pi).$

Can you explain (with and without computations) why the integral of $\frac{1}{z}$ along the parametrizations z_1 and z_2 of the unit circle differ?

Exercise 0.7: Let \mathbb{D} be the unit disc centered at 0 and let $f: \mathbb{D} \to \mathbb{C}$ be a holomorphic function. Prove that if Re(f'(z)) > 0 for all $z \in \mathbb{D}$ then f is injective.