Domácí zábava z Kombinatorické teorie her, 3. série

Veškerá tvrzení precizně zdůvodněte.

- (3.1) Uvažme hry 0, 1, -1 a * a všechny součty každé hry s každou včetně sebe sama. Jak vypadají ekvivalenční třídy této množiny her dané relací =? Vše pochopitelně poctivě zdůvodněte. 2 body
- (3.2) Dokažte následující tvrzení. Dejte si pozor, abyste v důkazu používali výhradně axiomů a již dříve z axiomů dokázaných věcí. Hint: indukce dle narozenin.
 - (i) Pro každé tři hry G, H, J platí $(G + H) + J \equiv G + (H + J)$ (asociativita sčítání). 2 body
 - (ii) Pro každé dvě hry G, H platí $-(G+H) \equiv (-G) + (-H)$ (distributivita minus).
- (3.3) Dokažte, že následující tvrzení jsou ekvivalentní (technické Lemma z přednášky):
 - (1) $G \ge 0$
 - (2) L vyhraje jako 2. hráč hru G.
 - (3) Pro každou hru X platí: když L vyhraje jako 2. hráč hru X, potom L vyhraje jako 2. hráč hru G+X.
 - (4) Pro každou hru X platí: když L vyhraje jako 1. hráč hru X, potom L vyhraje jako 1. hráč hru G+X.

Možný postup: Ukažte, že $(3)\&(4)\Leftrightarrow(1)$, $(2)\Leftrightarrow(3)$, $(2)\Leftrightarrow(4)$.

3 body

(3.4) Uvažme následující posloupnost pozic v Dominování:

Tedy P_i vypadá jako i "vinglů" slepených k sobě. Dokažte, že $P_i = *$ pro lichá i a $P_i = 0$ pro sudá i.

3 body