# DSA 8430 Parallel Computing for Data Analytics

**Divide and Conquer** 

# Module Topics

- Divide and Conquer Concepts
- Parallel Computing at the machine level, GPU
- Parallel Patterns
- GPU Acceleration of Neural Networks
- Notes on Module Infrastructure

## Divide and Conquer

4 hours of Compute

4 workers working on a problem ¼ the size!

1 hour of compute

1 hour of compute

1 hour of compute

1 hour of compute

# Divide and Conquer

1 hour to get a 4-hour solution

# Divide and Conquer

Goal
Minimize
Computing
Latency

Divide Work into Sub-Problems

SP<sub>1</sub>

SP 2

SP N

**Recombine Partial Solutions** 

## Divide and Conquer - Variants

#### **Numerous Patterns**

- Fork-Join
  - Map-Reduce
  - Hadoop/Spark
- Reduction
- Stencil
- Geometric
   Decomposition



#### Divide and Conquer - Variants

Image Source: https://www.researchgate.net/figure/Schematic-of-GPU-computing\_fig2\_304612009





#### **Platforms**

 Typical Cluster & Grid Computing

#### Hardware

- Multi-Core CPU
- Field-Programmable Gate Arrays (FPGA)
- Graphics Processing Units (GPU)

Image Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

## Neural Network Training

#### Training Convolutional Neural Network

- Reduction Pattern
  - Neural Network Dot-Products
- Stencil Pattern
  - Convolution
  - Pooling

#### DSA Europa (TensorFlow)

CPU based training

#### NSF Nautilus (TensorFlow)

GPU based training