# Problem Solving Via Search



# **Learning Objectives**

After completing this lecture, you will be able to:-

- Explain basic problem-solving terminology
- Describe the strengths and weaknesses of metaheuristics
- Explain the general workings of genetic algorithms as a problem-solving metaheuristic
- Describe the main motivations for using genetic algorithms



## **Optimization**

Optimization is aimed at making something better (solving a problem)



- The result of optimization is a set of 'best' inputs/values/parameters (as judged by the process' output)
- The definition of 'best' depends on the problem
  - Generally a maximum/minimum of some kind



## **Objective Function**

- Any problem being optimized has some objectives
  - Minimal travel time, minimal cost, maximum profit
- The mathematical function describing this objective is called the objective function (or the cost function)
- The objective function depends on one or more decision variable which are the inputs to the process



## **Search Space**

- Solving a problem can be represented as a search task
  - 'Find' the solution
- The search space is then a set containing all possible solutions to the problem
- Optimization would therefore involve finding one (or a few) solutions in this search space
  - A good solution would maximize/minimize the objective function



# **Search Space**





## **Example Search Space: Romania**

- On holiday in Romania; currently in Arad
- Flight leaves tomorrow from Bucharest
- Formulate goal:
  - Be in Bucharest
- Formulate problem:
  - states: various cities
  - actions: drive between cities
- Find solution:
  - Sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest



# **Example Search Space: Romania**





Slide 8/107

# **Example Search Space: The 8-puzzle**





Start State

- States? locations of tiles
- Actions? move blank left, right, up, down
- Goal Test? goal state (given)
- Path Cost? 1 per move

Note: Optimal solution of N-Puzzle family is NP-hard!



# **Algorithms vs Heuristics**

In the context of problem-solving:-

- An algorithm specifies unambiguously how to solve a problem
- A heuristic is a technique for solving a problem quickly
  - A shortcut, trades off exactness/accuracy/precision
  - Can be based on intuition, experience, rules-of-thumb
  - Can be very reliable (provably admissible) or more than useless (actively harmful)



# **Tree Search Algorithms**

- Basic idea:
  - Offline, simulated exploration of state space by generating successors of already-explored states (a.k.a expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to *strategy* if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree















## Implementation: General Tree Search

```
function TREE-SEARCH(problem, fringe) returns a solution, or failure
   fringe \leftarrow Insert(Make-Node(Initial-State[problem]), fringe)
   loop do
       if fringe is empty then return failure
        node \leftarrow \text{Remove-Front}(fringe)
        if Goal-Test[problem](State[node]) then return Solution(node)
        fringe \leftarrow InsertAll(Expand(node, problem), fringe)
function Expand (node, problem) returns a set of nodes
   successors \leftarrow the empty set
   for each action, result in Successor-Fn[problem](State[node]) do
        s \leftarrow a \text{ new NODE}
        PARENT-NODE[s] \leftarrow node; ACTION[s] \leftarrow action; STATE[s] \leftarrow result
        PATH-COST[s] \leftarrow PATH-COST[node] + STEP-COST(node, action, s)
        Depth[s] \leftarrow Depth[node] + 1
        add s to successors
   return successors
```



## Implementation: States vs. Nodes

- A state is a (representation of) a physical configuration
- A **node** is a data structure constituting part of a search tree includes **state**, **parent node**, **action**, **path cost** g(x), **depth**



• The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states



# **Useful Concepts**

- State space: the set of all states reachable from the initial state by any sequence of actions
  - When several operators can be applied to each state, this gets large very quickly
- Path: a sequence of actions leading from one state  $s_j$  to another state  $s_k$
- Frontier: those states that are available for expanding, for applying legal actions to
- **Solution**: a path from the initial state  $s_i$  to a state  $s_f$  that satisfies the goal state



# **Basic Search Algorithms: Tree Search**

- How do we find the solutions for the previous problem formulations?
  - Enumerate in some order all possible paths from the initial state
  - Here: search through explicit tree generation
    - Root = initial state
    - Nodes and leafs generated through transition model
  - In general search generates a graph (same state through multiple paths) but we'll just look at trees in this lecture
    - Treats different paths to the same node as distinct



# Simple Tree Search Example



function TREE-SEARCH(problem, strategy) return a solution or failure
Initialize frontier to the initial state of the problem
do

if the frontier is empty then return failure choose leaf node for expansion according to strategy & remove from frontier if node contains goal state then return solution else expand the node and add resulting nodes to the frontier





function TREE-SEARCH(problem, strategy) return a solution or failure Initialize frontier to the initial state of the problem do

if the frontier is empty then return failure

choose leaf node for expansion according to strategy & remove from frontier

if node contains goal state then return solution

else expand the node and add resulting nodes to the frontier





function TREE-SEARCH(problem, strategy) return a solution or failure

Initialize frontier to the *initial state* of the *problem* do

Determines search process!!

if the frontier is empty then return failure

choose leaf node for expansion according to strategy & remove from frontier

if node contains goal state then return solution

else expand the node and add resulting nodes to the frontier



#### 8-Puzzle: States and Nodes

- A state is a (representation of a) physical configuration
- A node is a data structure constituting part of a search tree
  - Also includes parent, children, depth, path cost g(x)
  - Here node=<state,parent-node,action,path-cost,depth>
- States do not have parents, children, depth, or path cost!



#### 8-Puzzle: States and Nodes



- The Expand function
  - Uses the Actions and Transition Model to create the corresponding states
    - Creates new nodes
    - Fills in the various fields



#### 8-Puzzle: Search Tree





# **Search Strategies**

- A search strategy defines the order of node expansion
- Strategies are evaluated along the following dimensions:
  - Completeness: does it always find a solution if one exists?
  - Time complexity: how long does it take to find a solution?
  - Space complexity: how much memory is needed to perform the search?
  - Optimality: does it always find the optimal solution?
- Time and space complexity are measured in terms of:
  - **b**: maximum branching factor of the search tree
  - d: depth of the least-cost solution
  - $\mathbf{m}$ : maximum depth of the state space (may be  $\infty$ )



## **Uninformed Search Strategies**

- Uninformed search strategies use only the information available in the problem definition (a.k.a blind search)
- Categories defined by expansion algorithm:
  - Breadth-first search
  - Uniform-cost search
  - Depth-first search
  - Depth-limited search
  - Iterative deepening search



#### **Breadth First Search**

- Expand shallowest unexpanded node
- Implementation:
  - Frontier is a FIFO queue, i.e. new successors at end





#### **Breadth First Search**

- Expand shallowest unexpanded node
- Implementation:
  - Frontier is a FIFO queue, i.e. new successors at end





#### **Breadth First Search**

- Expand shallowest unexpanded node
- Implementation:
  - Frontier is a FIFO queue, i.e. new successors at end





## **Breadth First Search: Properties**

- Complete? Yes (if b is finite)
- Time?  $1 + b + b^2 + b^3 + ... + b^d + b(b^{d-1}) = O(b^{d+1})$
- **Space?** O(bd+1) (keeps every node in memory)
- Optimal? Yes (if step cost is equal)

Space is the bigger problem (more than time)



## **Breadth First Search: Properties**

| Depth | Nodes            | Time    | Memory  |
|-------|------------------|---------|---------|
| 2     | 110              | .11 ms  | 107 kB  |
| 4     | 11,110           | 11 msec | 10.6 MB |
| 6     | 10 <sup>6</sup>  | 1.1 sec | 1 GB    |
| 8     | 108              | 2 mins  | 103 GB  |
| 10    | 1010             | 3 hrs   | 10 TB   |
| 12    | 10 <sup>12</sup> | 13 days | 1 PB    |
| 14    | 10 <sup>14</sup> | 3.5 yrs | 99 PB   |
| 16    | 10 <sup>16</sup> | 350 yrs | 1 EB    |

Space is the bigger problem (more than time)



#### **Uniform-Cost Search**

- Similar to BFS
- Expands node n with the lowest path cost
- Does not consider the number of steps a path has
  - instead it considers the total cost of the path
- Will be stuck in infinite loop if expanding a node that has zero cost leads to the same state



#### **Uniform-Cost Search**

- Expand least-cost unexpanded node
- Implementation:
  - Frontier is a priority queue ordered by path cost
  - Equivalent to breadth-fist search if step costs are all equal



# **Uniform-Cost Search: Properties**

- Complete? Yes (if step cost ≥ ε)
- Time? # of nodes with  $g \le cost$  of optimal solution  $O(b^{ceiling(C^*/\epsilon)})$  where C\* is optimal solution cost
- Space? # of nodes with  $g \le cost$  of optimal solution  $O(b^{ceiling(C^*/\epsilon)})$
- Optimal? Yes, nodes expanded in increasing order of g(n)



# **Depth First Search**

- Expand deepest unexpanded node
- Implementation:
  - Frontier is a LIFO queue, i.e. put successors at front





# **Depth First Search**

- Expand deepest unexpanded node
- Implementation:
  - Frontier is a LIFO queue, i.e. put successors at front





- Expand deepest unexpanded node
- Implementation:
  - Frontier is a LIFO queue, i.e. put successors at front





- Expand deepest unexpanded node
- Implementation:
  - Frontier is a LIFO queue, i.e. put successors at front





- Expand deepest unexpanded node
- Implementation:
  - Frontier is a LIFO queue, i.e. put successors at front





- Expand deepest unexpanded node
- Implementation:
  - Frontier is a LIFO queue, i.e. put successors at front





- Expand deepest unexpanded node
- Implementation:
  - Frontier is a LIFO queue, i.e. put successors at front





- Expand deepest unexpanded node
- Implementation:
  - Frontier is a LIFO queue, i.e. put successors at front





- Expand deepest unexpanded node
- Implementation:
  - Frontier is a LIFO queue, i.e. put successors at front





- Expand deepest unexpanded node
- Implementation:
  - Frontier is a LIFO queue, i.e. put successors at front





- Expand deepest unexpanded node
- Implementation:
  - Frontier is a LIFO queue, i.e. put successors at front





- Expand deepest unexpanded node
- Implementation:
  - Frontier is a LIFO queue, i.e. put successors at front





#### **Depth First Search: Properties**

- Complete? No: fails in infinite-depth spaces, spaces with loops. If modified to avoid repeated states along path, then complete in finite spaces.
- **Time?**  $O(b^m)$ : terrible if m is much larger than d but if solutions are dense, may be much faster than BFS
- **Space?** O(bm) i.e. linear space!
- Optimal? No



#### Depth First vs Breadth First

#### Use depth first if:-

- Space is restricted
- There are many possible solutions with long paths and wrong paths can be detected quickly
- Search can be fine-tuned quickly
- Use breadth-first if:-
  - Possible infinite paths
  - Some solutions have short paths
  - Can quickly discard unlikely paths



#### **Search Conundrum**

#### Breadth First

- Complete
- Uses O(b<sup>d</sup>) space

#### Depth First

- Not complete unless m is bounded
- Uses  $O(b^m)$  time; terrible if m >> d
- But only uses O(bm) space
- How can we get the best of both?



#### Depth-limited Search: A Building Block

- Depth First search but with depth limit I
  - i.e. nodes at depth / have no successors
- Solves the infinite-path problem
- If I = d (by luck!) then optimal
- But:
  - If I < d then incompleteness results</li>
  - If *l* > *d* then not optimal
- Time complexity: O(bl)
- Space complexity: O(bl)



#### **Iterative Deepening Search**

- A general strategy to find best depth limit l
  - Key idea: use Depth-limited search as subroutine, with increasing I
  - Complete: Goal is always found at depth d, the depth of the shallowest goal-node
- Combines benefits of Depth First search and Breadth First search



#### **Iterative Deepening Search**

```
function Iterative-Deepening-Search (problem) returns a solution, or failure  \begin{array}{ll} \text{inputs: } problem, \text{ a problem} \\ \text{for } depth \leftarrow \text{ 0 to } \infty \text{ do} \\ result \leftarrow \text{Depth-Limited-Search} (problem, depth) \\ \text{if } result \neq \text{cutoff then return } result \end{array}
```



# Iterative Deepening Search (I = 0)

Limit = 0





# Iterative Deepening Search (I = 1)











# Iterative Deepening Search (I = 2)



# Iterative Deepening Search (I = 3)





#### **Iterative Deepening Search**

 Number of nodes generated in a depth-limited search to depth d with branching factor b:

$$N_{DIS} = b^0 + b^1 + b^2 + ... + b^{d-2} + b^{d-1} + b^d$$

 Number of nodes generated in an iterative deepening search to depth d with branching factor b:

$$N_{IDS} = (d+1)b^0 + db^1 + (d-b)b^2 ... + 3b^{d-2} + 2b^{d-1} + 1b^d$$

- For b = 10, d = 5
  - $-N_{DLS} = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111$
  - $-N_{IDS} = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456$
- Overhead = (123,456 111,111)/111,111 = 11%



#### **Iterative Deepening Search: Properties**

- Complete? Yes
- Time?  $(d+1)b^0 + db^1 = (d-1)b^2 + ... + b^d = O(b^d)$
- Space? O(bd)
- Optimal? Yes, if step cost = 1



## **Summary of Search Algorithms so far**

| Criterion | Breadth<br>First                            | Uniform<br>Cost          | Depth First | Depth-<br>limited | Iterative<br>Deepening |
|-----------|---------------------------------------------|--------------------------|-------------|-------------------|------------------------|
| Complete? | Yes                                         | Yes                      | No          | No                | Yes                    |
| Time      | <i>O</i> ( <i>b</i> <sup><i>d</i>+1</sup> ) | $O(b^{C^*/\varepsilon})$ | $O(b^m)$    | $O(b^l)$          | $O(b^d)$               |
| Space     | $O(b^{d+1})$                                | $O(b^{C^*/\varepsilon})$ | O(bm)       | O(bl)             | O(bd)                  |
| Optimal?  | Yes                                         | Yes                      | No          | No                | Yes                    |



#### **Informed/Heuristic Search Strategies**

- Uses problem-specific knowledge in searching
- Find solutions more efficiently than an uninformed search
- It uses some scoring function to decide which paths or nodes seem promising
- Then the more promising nodes will be explored first before the less promising nodes



#### Informed/Heuristic Search Strategies

- Node expansion based on some estimate of distance to goal, extending current path
- General approach of informed search:
  - Best First Search: node selected for expansion based on an evaluation function f(n)
    - f(n) includes estimate of distance to goal
- Implementation:
  - Sort frontier queue monotonically by f(n)
  - Special cases: greedy search, A\* search



#### **Romania Revisited**



#### Straight-line distances to Bucharest

|                  | to Ducha | irest          |     |
|------------------|----------|----------------|-----|
| Arad             | 366      | Mehadia        | 241 |
| <b>Bucharest</b> | 0        | Neamt          | 234 |
| Craiova          | 160      | Oradea         | 380 |
| Dobreta          | 242      | Pitesti        | 100 |
| Eforie           | 161      | Rimnicu Vilcea | 193 |
| Fagaras          | 176      | Sibiu          | 253 |
| Giurgiu          | 77       | Timisoara      | 329 |
| Hirsova          | 151      | Urziceni       | 80  |
| Iasi             | 226      | Vaslui         | 199 |
| Lugoj            | 244      | Zerind         | 374 |
|                  |          |                |     |



#### **Greedy Best First Search**

"A rule of thumb, simplification, or educated guess that reduces or limits the search for solutions in domains that are difficult and poorly understood."

- Let evaluation function f(n) = h(n) (heuristic)
  - h(n) = estimated cost of the cheapest path from node
     n to goal node
  - If n is goal then h(n) = 0
- Here:  $h_{SLD}(n)$  = straight-line distance from n to Bucharest
- Ignores cost so far to get to that node g(n)







Arad

**Bucharest** 

Craiova

**Dobreta** 

**Fagaras** 

Giurgiu

Hirsova

Iasi

Lugoj

**Eforie** 

Straight-line distances

to Bucharest

366

160

242

161

176

77

151

226

244

Mehadia

Neamt

**Oradea** 

Pitesti

Sibiu

Urziceni

Vaslui

Zerind













#### **Greedy Best First Search: Properties**

- Optimal? No!
  - Found: Arad → Sibiu → Fagaras → Bucharest (450km)
  - Shortest: Araid → Sibiu → Rimnicu Vilcea → Pitesti → Bucharest (418 km)

#### Straight-line distances to Bucharest

|                  | to Buchar | rest           |
|------------------|-----------|----------------|
| Arad             | 366       | Mehadia        |
| <b>Bucharest</b> | 0         | Neamt          |
| Craiova          | 160       | Oradea         |
| Dobreta          | 242       | Pitesti        |
| Eforie           | 161       | Rimnicu Vilcea |
| Fagaras          | 176       | Sibiu          |
| Giurgiu          | 77        | Timisoara      |
| Hirsova          | 151       | Urziceni       |
| Iasi             | 226       | Vaslui         |
| Lugoj            | 244       | Zerind         |





#### **Greedy Best First Search: Properties**

- Complete? No
  - Can get stuck in loops e.g. lasi → Neamt → lasi → Neamt → ...

## Straight-line distances to Bucharest

| to Bucharest |                                                          |  |  |  |  |
|--------------|----------------------------------------------------------|--|--|--|--|
| 366          | Mehadia                                                  |  |  |  |  |
| 0            | Neamt                                                    |  |  |  |  |
| 160          | Oradea                                                   |  |  |  |  |
| 242          | Pitesti                                                  |  |  |  |  |
| 161          | Rimnicu Vilcea                                           |  |  |  |  |
| 176          | Sibiu                                                    |  |  |  |  |
| 77           | Timisoara                                                |  |  |  |  |
| 151          | Urziceni                                                 |  |  |  |  |
| 226          | Vaslui                                                   |  |  |  |  |
| 244          | Zerind                                                   |  |  |  |  |
|              | 366<br>0<br>160<br>242<br>161<br>176<br>77<br>151<br>226 |  |  |  |  |





#### **Greedy Best First Search: Properties**

- Optimal? No
- Complete? No, can get stuck in loops
- Time?
  - O(bm) worst case (like Depth First Search)
  - But a good heuristic can give dramatic improvement
- Space?
  - O(bm) keeps all nodes in memory



#### A\* Search

- Best-known form of Best First Search
- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
  - $-g(n) = \cos t \sin t \cos r = \cosh n$
  - -h(n) = estimated cost from n to goal
  - f(n) =estimated total cost of path through n to goal
- Implementation: Sort frontier queue by increasing *f*(*n*)



#### **A\* Search: Admissible Hueristics**

- Let h(n) be an admissible heuristic
  - A heuristic is admissible if it never overestimates the cost to reach the goal i.e it is optimistic
  - Formally:  $\forall n$  where n is a node  $h(n) \leq h^*(n)$  where  $h^*(n)$  is the true cost from n  $h(n) \geq 0$  so h(G) = 0 for any goal G
- Example
  - $h_{SLD}(n)$  never overestimates the actual road distance
- Theorem: if h(n) is admissible, A\* using Tree Search is optimal















UEMH3163/UECS2053/UECS2153 Artificial Intelligence Slide 77/107



## **A\* Search: Proof of Optimality**

 Suppose some suboptimal goal G<sub>2</sub> has been generated and is in the frontier. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

$$\begin{array}{ccc}
f(G_2) & > & f(G) \\
h(n) & \leq & h^*(n) \\
g(n) + h(n) & \leq & g(n) + h^*(n) \\
f(n) & \leq & f(G)
\end{array}$$



 $\therefore f(G_2) > f(n)$  and A\* will never select  $G_2$  for expansion



### **Consistent Heuristics**

• A heuristic is **consistent** if for every node *n*, every successor *n'* of *n* is generated by any action *a* 

$$h(n) \le c(n, a, n') + h(n')$$

If h is consistent, we have

$$f(n') = g(n') + h(n')$$
  
=  $g(n) + c(n, a, n') + h(n')$   
 $\geq g(n) + h(n) = f(n)$ 



i.e. f(n) is non-decreasing along any path

 Theorem: If h(n) is consistent, A\* using GRAPH-SEARCH is optimal



## Admissible Heuristics: 8-puzzle

E.g. for the 8-puzzle



Start State



- $h_1(n)$  = number of misplaced tiles
- $h_2(n)$  = total Manhattan distance

(i.e. no. of squares from desired location of each tile)

• 
$$h_1(S) = ?$$

• 
$$h_2(S) = ?$$



#### **Manhattan Distance**





## Admissible Heuristics: 8-puzzle

E.g. for the 8-puzzle



Start State



- $h_1(n)$  = number of misplaced tiles
- $h_2(n)$  = total Manhattan distance

(i.e. no. of squares from desired location of each tile)

• 
$$h_1(S) = 8$$

• 
$$h_2(S) = 3+1+2+2+3+3+2 = 18$$



### A\* Search: Drawback

- Requires a lot of memory (still less than uninformed search) since it needs to keep all the generated nodes in memory
- Because of above, not practical for many large-scale problems



#### **Metaheuristics**

- A heuristic meant to find/generate/select a heuristic
  - Solution to optimization problem!
- Many are inspired by nature
  - Swarm intelligence
    - Particle Swarm Optimization
    - Ant Colony Optimization
  - Simulated Annealing
  - Evolutionary Programming/Genetic Algorithms



#### **Metaheuristics**

- A higher-level procedure/heuristic for finding a sufficiently good solution (which is itself an algorithm/heuristic)
- Good for search spaces too large to reasonably sample
- Good for incomplete/imperfect information
- Effectively are strategies to guide the search process in order to select solutions
  - Usable for a variety of problems (problemindependent)



#### **Metaheuristics**

- Do not guarantee a globally optimal solution (in general)
- Not greedy (in general)
- May sometimes lead to a (temporary) deterioration of the solution
  - This allows them to explore the solution space more thoroughly
- Goal is to efficiently explore the search space to find a near-optimal (good enough) solution



## **Genetic Algorithms**

- Search-based optimization techniques based on the principles of genetics and natural selection
- Adaptive heuristic search algorithms that belong to the class of evolutionary algorithms (these simulate processes in natural system for evolution)
- Frequently used to solve optimization problems, finding near-optimal solutions to difficult problems



## **Genetic Algorithms History**

- Developed in 1960s by John Holland, students, and colleagues in U. Michigan (including David E Goldberg)
- Result of a formal study of the phenomenon of adaptation as it occurs in nature
- Attempt to import the mechanisms of natural adaptation into computer systems
- Popularity increased in late 1980's
- Based on Darwin's theory of evolution, where the best should survive and create new offspring



## **Genetic Algorithms History**

 "Survival of the Fittest" – the process of natural selection which means species who can adapt to changes in their environment are more likely to survive and reproduce, with adaptations passed on



• A robust search and optimization mechanism



### **Biology of Natural Selection**

- Cells contain chromosomes, which contain genes
- Aspects of an organism (e.g. hair colour, height) depend on the organism's genes
- A collection of genes is called a genotype
- A collection of traits/characteristics is called a phenotype
- Reproduction recombines genes from parents, along with some amount of mutation (errors) in copying
- Fitness of an organism determines its likelihood of reproducing



## **Biology of Natural Selection**





### **Biology of Natural Selection**

- Genes are the basic building blocks for an organism
- A **chromosome** is a sequence of genes
- Biologists distinguish between the **genotype** (genes and chromosomes) and the phenotype (the actual physical characteristic/expression in the organism)
  - You may have 'tall genes' but a separate medical condition affecting your spine may leave you short
- In genetic algorithms, "genes" may describe a possible solution without actually being the solution itself



## **Finding Solutions**

- Suppose you have a problem that you don't know how to solve...
  - No algorithm for solving it exists/is known
- There are a seemingly unlimited number of possible ways to solve it
  - Search space very large/infinite
- What can you do?



## **Finding Solutions**

- An exhaustive search may work
  - Time taken depends on search space
- Gradient descent may be helpful
  - Directs the exhaustive search, but time taken still depends on search space
- Blind search (random generate and test) may actually be better than the above
  - Need to know what sort of solution is 'good enough'



## **Finding Solutions**

Try this "smarter" idea

- Generate a set of random solutions
- Repeat the following
  - Test each solution and rank them
  - Remove bad solutions
  - Keep good solutions, duplicate/modify them
- Stop when the solution is 'good enough'
- GA! Intelligently exploits random search to direct search



#### **Evolution**

- Individuals (a candidate solution) in population (a set of solutions) compete for resources and mating opportunity
- Those individuals who are successful (fitness) then mate (recombine) to create more offspring (better solutions) than others
- Genes from 'fittest' parent propagate through the generations, sometimes creating better offspring (than either parent)
- Each successive generation is thus more suited for their environment



## **Genetic Algorithm Fundamentals**

- We have a pool/population of possible solutions
- These solutions undergo recombination and mutation (like in natural genetics) producing new children (better than earlier solutions) and the process is repeated over various generations
- Each individual (candidate solution) has a fitness value (based on its objective function value), with the fitter individuals having a higher chance of recombining (mating) to yield "fitter" individuals
- Keep "evolving" till we reach a stopping criterion till we get a good enough solution



# **Genetic Algorithms Fundamentals**

| Nature                                             | Genetic Algorithm                                                          |  |
|----------------------------------------------------|----------------------------------------------------------------------------|--|
| The environment (full of challenges)               | Optimization problem                                                       |  |
| Individuals living in that environment             | Feasible solutions (population)                                            |  |
| Individual's degree of adaptation                  | Solution quality (fitness)                                                 |  |
| A population of individuals                        | A set of feasible solutions                                                |  |
| Selection, recombination, and mutation             | Stochastic operators (selection, crossover, and mutation)                  |  |
| Evolution of populations to suit their environment | Iteratively applying stochastic operators on the set of feasible solutions |  |



## **Motivation for Genetic Algorithms**

- In general, genetic algorithms are used to deliver a 'good enough' (not necessarily the best) solution 'fast-enough'
  - We are not perfectionists; we are engineers!
- Normally, genetic algorithms are used when the following conditions are fulfilled:-
  - Problem is difficult
  - Gradient-based methods fail
  - Fast (and good) solution needed



Traveling Salesman Problem (TSP)

- Imagine you need to visit 5 cities (you know all the distances)
- What is the shortest round-trip to follow? ABCDEA?
   ADECBA?
- How to solve this?
  - Check all possibilities (brute force)
  - Only works for small problems
  - Take factorial time n!





- The TSP is an NP-Complete problem
- Complexity of such problems (for brute force) is O(N!)
- Even the most powerful computing systems could take a very long time (years, decades, centuries) to solve these problems
- GAs can be an efficient tool to provide usable near-optimal solutions in a shorter amount of time
- What if a tour guide needed to solve TSP for 30 cities?





| n  | n!                        | n       | n!                                |
|----|---------------------------|---------|-----------------------------------|
| 0  | 1                         | 25      | 1.551121004×10 <sup>25</sup>      |
| 1  | 1                         | 50      | 3.041409320×10 <sup>64</sup>      |
| 2  | 2                         | 70      | 1.197857167×10 <sup>100</sup>     |
| 3  | 6                         | 100     | 9.332621544×10 <sup>157</sup>     |
| 4  | 24                        | 450     | 1.733368733×10 <sup>1000</sup>    |
| 5  | 120                       | 1000    | 4.023872601×10 <sup>2567</sup>    |
| 6  | 720                       | 3249    | 6.412337688×10 <sup>10000</sup>   |
| 7  | 5,040                     | 10000   | 2.846259681×10 <sup>35659</sup>   |
| 8  | 40,320                    | 25206   | 1.205703438×10 <sup>100000</sup>  |
| 9  | 362,880                   | 100000  | 2.824229408×10 <sup>456573</sup>  |
| 10 | 3,628,800                 | 205023  | 2.503898932×10 <sup>1000004</sup> |
| 11 | 39,916,800                | 1000000 | 8.263931688×10 <sup>5565708</sup> |
| 12 | 479,001,600               |         |                                   |
| 13 | 6,227,020,800             |         |                                   |
| 14 | 87,178,291,200            |         |                                   |
| 15 | 1,307,674,368,000         |         |                                   |
| 16 | 20,922,789,888,000        |         |                                   |
| 17 | 355,687,428,096,000       |         |                                   |
| 18 | 6,402,373,705,728,000     |         |                                   |
| 19 | 121,645,100,408,832,000   |         |                                   |
| 20 | 2,432,902,008,176,640,000 |         |                                   |



- **Deterministic Polynomial Time**: A Turing Machine takes at most O(nc) steps for a string of length *n*
- Non-deterministic Polynomial Time: A Turing Machine takes at most O(nc) steps on each computation path for a string of length n

  Non deterministic
  TMs

Deterministic TM

Computation

O 

Initial Configuration

O 

Accept/Reject

Configuration

Reject

Non deterministic TM

Computation

Initial

Configuration

Reject

NTM accepts



#### **Motivation 2: Gradient Based Methods Fail**

 Gradient-based methods start at a random point and move in the gradient direction to reach maxima/minima

This can be very efficient for single-peaked objective

**functions** 

 In most real-world situation, the problem space has many peaks and many valleys, so gradient based methods will fail due to local optima







#### **Motivation 3: Fast (and Good) Solution Needed**

- Some difficult problems (like the TSP) have real-world applications like path finding and VLSI design
- For example, GPS navigation systems need to compute the 'optimal' path from one arbitrary location to another
- Multi-hour (or even multi-minute) computations are not acceptable for such applications, even if the results are perfect
- A 'good enough' solution which is delivered on time (a few seconds) is required



### **End of Lecture**

