Height of Quadtrees

I made a mistake in the theorem and the proof of the height of quadtrees. Here is the correction and more details on the proof. The corrections are written in red.

Theorem. Let d_{max} (resp. d_{min}) be the maximal distance (resp. minimal) distance between two points.

Then the height of the corresponding quadtree is at most $\log_2(d_{\text{max}}/d_{\text{min}}) + \frac{3}{2}$.

Proof. Let s be the size of the edges of the minimal square bounding box R. Let us prove that

$$s \leqslant d_{\text{max}}.$$
 (1)

To prove this, we will first prove that we can include all the points in a square of edge d_{\max} . Then, since R is the minimal bounding box, we get $s \leqslant d_{\max}$. Let \min_x (resp. \max_x) be the minimum (resp. maximum) of all x-coordinates of our points. Let \min_y and \max_y be the corresponding quantities for the y-coordinate. Then $\max_x - \min_x \leqslant d_{\max}$ (otherwise we would have points with distance $> d_{\max}$) and also $\max_y - \min_y \leqslant d_{\max}$. So the square of edge d_{\max} whose bottom left corner is (\min_x, \min_y) includes all the points.

Since s is the edge's size of R, the quadrants corresponding to nodes at depth 1 have size s/2, then the subquadrants at depth 2 have size s/4, ..., up to last level at depth h which have size $s/2^h$, where h is the height of the tree. Since all splits are necessary, it means that there exists a subquadrant at depth h-1 (of size $s/2^{h-1}$) that contains at least 2 points. These two points must have distance $\leq \sqrt{2} (s/2^{h-1})$ (diagonal of the subquadrant) and so

$$d_{\min} \leqslant \sqrt{2} \left(s/2^{h-1} \right). \tag{2}$$

Using Equations (1) and (2), we get $2^{h-1} \le \sqrt{2} \, s / d_{\min} \le \sqrt{2} \, d_{\max} / d_{\min}$. Taking the log in base-2, we get $h-1 \le \log_2(d_{\max}/d_{\min}) + 1/2$ and our result.