Q1(a).

Expanded	Equation Form-
Y = 1	utial weights are given randomly) are given that we have to consider MSE as the
ax:	mr.
1	MCF - 1 & (y(i) - y(i))2
Fox	gordient descent, we calculate the alterned
(1 <u>≤</u> <u>à</u> ≤ <u>5</u>)	gues wing: wj = wj - x d(L(w; & (xi), yi)))
wj	ights using: $ \omega_{j} = \omega_{j} - \alpha \left(L(\omega; \xi = (\chi^{(i)}, y^{(i)}) \right) $ $ = \omega_{j} - \alpha d \left(\frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - y^{(i)})^{2} \right) $ $ = d\omega_{j} \cdot N = 0 $
l wo	= w; - x d (1) = (w, x, + w, x, 2++ + w, x, - y))
الم وه	ω, - α d [1 Σ [ω, η, 1 + ω, η, 2 + ω, η, -y)]
W,=	$W_1 - \mathcal{R} = \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$

30 W/= W, = 20 M(i) Wy=Wy-2x 2x 11) Ws = Ws - \frac{5}{2} \chi \gamma_5 = Vector form: y= wx+b For gradient descent, we calculate the aftered weight using:
MSE = 1 = (wTx(i)-y(i))2 $W_1 = W_1 - \alpha d \left(\frac{1}{N} \sum_{i=1}^{N} \left(\frac{y_i}{y_i} - \frac{y_i}{y_i} \right)^2 \right)$ W, = W, - xd (1 \ \(\times \) $w_1 = \frac{1}{2} \frac{1}{2$

