МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМ. И. И. ПОЛЗУНОВА»

А.В. Сорокин

МОДЕЛЬ ЗАДАЧИ УПОРЯДОЧЕНИЯ NxM

Методические указания к практической самостоятельной работе по дисциплине «Моделирование»

Сорокин А.В. Модель задачи упорядочения nxm. Методические указания к практической самостоятельной работе по дисциплине «Моделирование» / А.В. Сорокин; Алт. госуд. технич. ун-т им. И.И. Ползунова. - Барнаул, 2022. – 17 с.

В методических указаниях материал дисциплине изложен ПО «Моделирование», используемый ДЛЯ выполнения практических заданий. Материал содержит описание задачи упорядочения на основе производственной задачи – обработки определенного количества деталей на более чем двух обрабатывающих станках. Рассматривается применение правил предпочтения Петрова на конкретном примере. В качестве альтернативного варианта поиска решения задачи упорядочения рассматривается «Генетический алгоритм». Материал снабжен большим количеством вариантов заданий для рассматриваемой задачи упорядочения. Методические указания обучающихся направлению для студентов, ПО «Программная инженерия», «Информатика и вычислительная техника».

Содержание

1. Задание к практической работе «Модель задачи упорядочения nxm»	4
2. Генетический алгоритм в теории расписаний	5
2.1. Постановка задачи теории расписаний	5
2.2. Решения задачи теории расписаний с использованием	
генетического алгоритма	5
3. Варианты заданий	12
4. Вопросы к практической работе	16
5. Список литературы	17

1. Задание к практической работе «Модель задачи упорядочения nxm»

- 1. Используя теоретический материал из Темы 1 Теории к управжнениям разобраться с правилами Петрова [1] для поиска субоптимального решения задачи упорядочения пхт, где n число деталей (партий деталей), т число станков.
- 2. Ознакомиться с формулами построения параметров P_{i1} , P_{i2} , λ_i и подмножеств D_1 , D_0 , D_2 .
- 3. Получить последовательности запуска деталей в обработку с использованием **4**-правил Петрова.
- 4. Получить последовательность запуска деталей в обработку с использованием генератора случайных чисел. В качестве генератора можно использовать мешок, в котором будут находиться бумажки в виде квадратов в количестве пштук, с надписями цифр 1, 2, 3, ..., п. Доставая по одной бумажке из мешка, мы можем получить случайную последовательность запуска (СПЗ). Чтобы приблизиться к оптимальному решению, как можно ближе, в общем случае необходимо сгенерировать достаточно большое число таких последовательностей. Такой подход случаен и не основан на каких-то закономерностях природы. В качестве альтернативы такого подхода можно предложить, например следующие алгоритмы, основанные на закономерностях природы, которые можно назвать алгоритмами с направленным случайным поиском: «Генетический алгоритм», «Муравьиный алгоритм», Алгоритм имитации отжига». Реализовывать их здесь не надо, достаточно просто ознакомиться. Для этого в разделе приводится один из разновидностей «Генетического алгоритма».

В итоге таблицу исходных данных, параметров и найденных последовательностей можно представить в виде:

Таблица 1

	(станки (оборудование)					пар	последовательности						
$d_i \setminus j$	1	2	3		<i>m</i> -1	m	P_{i1}	P_{i2}	λ_i	1	2	3	4	спз
1	<i>t</i> ₁₁	<i>t</i> ₁₂	<i>t</i> ₁₃		t_{1m-1}	t_{1m}	P_{11}	P_{12}	λ_{1}					
2	<i>t</i> ₂₁	t ₂₂	t ₂₃		t_{2m-1}	t_{2m}	P_{21}	P_{22}	λ_2					
3	<i>t</i> ₃₁	t ₃₂	<i>t</i> ₃₃		t_{3m-1}	t_{3m}	P_{31}	P_{32}	λ_3					
n-1	t_{n-11}	t_{n-12}	t_{n-13}		t_{n-1m-1}	t_{n-1m-1}	P_{n-11}	P_{n-12}	λ_{n-1}					
n	t_{n1}	t_{n2}	t_{n3}		t_{nm-1}	t_{nm}	P_{n1}	P_{n2}	λ_n					

Здесь
$$P_{i1} = \sum_{j=1}^{\frac{m}{2}} t_{ij}$$
 , если m – четно, $P_{i1} = \sum_{j=1}^{\frac{m}{2}+1} t_{ij}$, если m – нечетно,

$$P_{i2} = \sum_{j=rac{m}{2}+1}^m t_{ij}$$
 , если m — четно, $P_{i2} = \sum_{j=rac{m}{2}+1}^m t_{ij}$, если m — нечетно,

$$\lambda_i = P_{i2} - P_{i1}.$$

Множества

$$D_1 = \left\{ d_i \mid \lambda_i > 0 \right\}, \ D_0 = \left\{ d_i \mid \lambda_i = 0 \right\}, \ D_0 = \left\{ d_i \mid \lambda_i < 0 \right\}, \ D_{1,0} = \left\{ d_i \mid \lambda_i \geq 0 \right\} = D_1 \cup D_0$$

необходимы для построения последовательностей по правилам Петрова (см. «Тема 2. Использование правил Петрова для решения задач упорядочения»)

5. Научиться высчитывать время окончания обработки всех n деталей на m станках с помощью табличного метода:

Таблица 2

$d_i \setminus j$	1	2	3	•••	<i>m</i> -1	m	T_i^{osc}
1	t_{11}/T_{11}	t_{12}/T_{12}	t_{12}/T_{13}		$t_{1,m-1}/T_{1,m-1}$	t_{1m}/T_{1m}	T_1^{osc}
2	t_{21}/T_{21}	t_{22}/T_{22}	t_{23}/T_{23}		$t_{2m-1}/T_{2,m-1}$	t_{2m}/T_{2m}	T_2^{osc}
3	t_{31}/T_{31}	t_{32}/T_{32}	t_{33}/T_{33}		$t_{3,m-1}/T_{3,m-1}$	t_{3m}/T_{3m}	T_3^{osc}
•••							
n-1	$t_{n-1,1}/T_{n-1,1}$	$t_{n-1,2}/T_{n-1,2}$	$t_{n-1,3}/T_{n-1,3}$		$t_{n-1,m-1}/T_{n-1,m-1}$	$t_{n-1,m-1}/T_{n-1,m-1}$	$T_{n-1}^{o ext{tot}}$
n	t_{n1}/T_{n1}	t_{n2}/T_{n2}	t_{n3}/T_{n3}		$t_{n,m-1}/T_{n,m-1}$	t_{nm}/T_{nm}	T_n^{osc}
T_j^{np}	T_1^{np}	T_2^{np}	T_3^{np}		T_{m-1}^{np}	T_m^{np}	$T^{np} \setminus T^{osc}$

Формулы для расчетов

$$T_{ij}$$
= t_{ij} + $\max(T_{i-1,j};T_{i,j-1}),$ при $T_{i,j-1}$ = 0 , берется $T_{i,j-2}$, если $T_{i,j-2}$ = 0 , то берется $T_{i,j-3}$ и т.д. при $T_{i-1,j}$ = 0 , берется $T_{i-2,j}$, если $T_{i-2,j}$ = 0 , то берется $T_{i-3,j}$ и т.д.
$$T^{np} = \sum_{j=1}^m T_j^{np}$$
 - суммарный простой всех станков,

 $T^{osc} = \sum_{i=1}^{n} T_{i}^{osc}$ - суммарное время ожидания для всех деталей.

Оптимальным считается последовательность с наименьшим значением T_{nm} – время окончания обработки всех п деталей на m станках. Если для несколько

последовательностей имеют одинаковое наименьшее время, то вторым критерием выбора является суммарное время ожидание T^{ox} , а третьим критерием суммарный простой T^{np} .

6. Уметь строить график Ганта для задачи упорядочения nxm (с n деталями и m станками), например следующего вида.

График Ганта

Рис.1 Графики Ганта для последовательности 5-2-4-3-1

Возьмем пример из литературы [1] пример 7-ю деталями и 7-ю станками

Таблица 3

d_i \ станки	1	2	3	4	5	6	7
1	10	8	5	12	11	0	6
2	3	0	6	10	13	2	7
3	4	5	15	0	20	3	1
4	7	10	0	8	11	9	12
5	9	11	3	7	0	5	4
6	5	7	11	3	13	10	0
7	3	6	7	5	10	9	4

Рассчитаем соответствующие параметры, последовательности запуска деталей в обработку [1] запишем их в таблицу

Таблица 4

d_i		станки					Параметры			Варианты последовательностей					
	1	2	3	4	5	6	7	P_{i1}	P_{i2}	λ_i	1	2	3	4	спз
1	10	8	5	12	11	0	6	35	29	-6	2	4	2	4	2
2	3	0	6	10	13	2	7	19	32	13	7	2	7	2	5
3	4	5	15	0	20	3	1	24	24	0	3	7	4	7	1
4	7	10	0	8	11	9	12	25	40	15	4	3	3	3	7
5	9	11	3	7	0	5	4	30	16	-14	6	6	6	1	4
6	5	7	11	3	13	10	0	26	26	0	1	1	1	6	6
7	3	6	7	5	10	9	4	21	28	7	5	5	5	5	3

Первая последовательность дает следующую таблицу и время окончания обработки

Таблица 5

$d_i \setminus$ станки	1	2	3	4	5	6	7	T_i^{osc}
2	3 / 3	0 /	6/9	10 / 19	13 / 32	2/34	7 / 41	0
7	3 / 6	6 / 12	7 / 19	5 / 24	10 / 42	9 / 51	4 / 55	11
3	4 / 10	5 / 17	15 / 34	0 /	20 / 62	3 / 65	1 / 66	18
4	7 / 17	10 / 27	0 /	8 / 35	11 / 73	9 / 82	12 / 94	37
6	5 / 22	7 / 34	11 / 45	3 / 48	13 / 86	10 / 96	0 /	47
1	10 / 32	8 / 42	5 / 50	12 / 62	11 / 97	0 /	6 / 103	51
5	9 / 41	11 / 53	3 / 56	7 / 69	0 /	5 / 101	4 / 107	68
T_j^{np}	0	6	9	24	19	63	73	194\232

2-я последовательность:

Таблица 6

<i>d_i</i> \ станки	1	2	3	4	5	6	7	T_i^{osc}
4	7 / 7	10 / 17	0 /	8 / 25	11 / 36	9 / 45	12 / 57	0
2	3 / 10	0 /	6 / 16	10 / 35	13 / 49	2 / 51	7 / 64	23
7	3 / 13	6 / 23	7/30	5 / 40	10 / 59	9 / 68	4 / 72	28
3	4 / 17	5 / 28	15 / 45	0 /	20 / 79	3 / 82	1 / 83	35
6	5 / 22	7 / 35	11 / 56	3 / 59	13 / 92	10 /102	0 /	53
1	10 / 32	8 / 43	5 / 61	12 / 73	11 / 103	0 /	6 /109	57
5	9 / 41	11 / 54	3 / 64	7 / 80	0 /	5 /107	4 /113	74
T_j^{np}	0	7	17	35	25	69	79	232\270

3-я последовательность:

Таблица 7

<i>d_i</i> \	1	2	3	4	5	6	7	T_i^{ook}
2	3 / 3	0 /	6/9	10 / 19	13 / 32	2 / 34	7 / 41	0
7	3 / 6	6 / 12	7 / 19	5 / 24	10 / 42	9 / 51	4 / 55	11
4	7 / 13	10 / 23	0 /	8 / 32	11 / 53	9 / 62	12 / 74	17
3	4 / 17	5 / 28	15 / 43	0 /	20 / 73	3 / 76	1 / 77	29
6	5 / 22	7 / 35	11 / 54	3 / 57	13 / 86	10 / 96	0 /	47
1	10 / 32	8 / 43	5 / 59	12 / 71	11 / 97	0 /	6 /103	51
5	9 / 41	11 / 54	3 / 62	7 / 78	0 /	5 /101	4 /107	68
T_j^{np}	0	7	15	33	29	63	45	192\223

4-я последовательность:

Таблица 8

<i>d_i</i> \ станки	1	2	3	4	5	6	7	T_i^{ooc}
4	7 / 7	10 / 17	0 /	8 / 25	11 / 36	9 / 45	12 / 57	0
2	3 / 10	0 /	6/6	10 / 25	13 / 49	2 / 51	7 / 64	23
7	3 / 13	6 / 23	7 / 30	5 / 35	10 / 59	9 / 68	4 / 72	28
3	4 / 17	5 / 28	15 / 45	0 /	20 /79	3 / 82	1 / 83	35
1	10 / 27	8 / 36	5 / 50	12 / 62	11 / 90	0 /	6 / 96	49
6	5 / 32	7 / 43	11 / 61	3 / 65	13 / 103	10 /113	0 /	64
5	9/31	11 / 54	3 / 64	7 / 72	0 /	5 /118	4 /122	83
T_j^{np}	0	7	17	27	35	80	88	254\282

Случайная последовательность запуска:

Таблица 9

d_i \ станки	1	2	3	4	5	6	7	T_i^{osc}
2	3 / 3	0 /	6/9	10 / 19	13 / 32	2 / 34	7 / 41	0
5	9 / 12	11 / 23	3 / 26	7 / 33	0 /	5 /39	4 /45	6
1	10 / 22	8 / 31	5/36	12 / 48	11 / 59	0 /	6 / 65	13
4	7 / 29	10 / 41	0 /	8 / 56	11 / 70	9 / 79	12 /91	34
7	3 / 32	6 / 47	7 / 54	5 / 61	10 / 80	9 / 89	4 / 95	51
6	5 / 37	7 / 54	11 / 65	3 / 68	13 / 93	10 /103	0 /	54
3	4 / 41	5 / 59	15 / 80	0 /	20 /113	3 / 115	1 / 116	68
T_j^{np}	0	12	33	23	35	77	82	262\226

из таблиц 5-9 видно, что оптимальной будет последовательность 1 из таблицы 5 и ее время окончания будет равно $T_{\tau \eta}$ =107. Для нее график Ганта будет иметь вид

Рис.2 График Ганта для последовательности 2-7-3-4-6-1-5 с $T_{\tau \iota \iota}$ =107

Выводимая информация

При выполнении задания должны выводиться таблица с исходными значениями с исходным порядком согласно заданному варианту [1], и с вариантами последовательности построенными по правилам Петрова и случайной последовательности запуска, , график Ганта для исходной таблицы значений трудоемкостей обработки и для таблицы с оптимальным порядком.

2. Генетический алгоритм в теории расписаний

Для получения случайной последовательности можно использовать генетические алгоритмы. Примером такого алгоритма, является алгоритм, описанный ниже.

2.1. Постановка задачи теории расписаний

Рассматривается система обслуживания, состоящая из М машин (станков) и N работ (деталей). Очередность выполнения операций задаётся перестановкой. Для системы задана матрица длительностей выполнения работ (матрица трудоемкостей обработки деталей).

Необходимо найти расписание работ минимальной длины (Последовательность запуска деталей в обработку с минимальным временем окончания обработки).

2.2. Решения задачи теории расписаний с использованием генетического алгоритма

Особь — перестановка, соответствующая расписанию (порядку обработки).

- 1. В качестве функции приспособленности выступает длина расписания.
- 2. В алгоритме используется рулеточный отбор.
- 3. Все особи популяции делятся на две группы по принадлежности в определённому полу.
- 4. Четная перестановка считается женской особью, нечетная мужской.
- 5. Родительская пара формируется из двух особей разного пола.
- 6. После выбора родителей происходит скрещивание со 100% вероятностью, при этом, если получившаяся особь уже существует в популяции, то происходит мутация путем случайной транспозиции в перестановке.
- 7. Потомки получаются умножением квадрата одной из перестановок на другую или простым умножением перестановок.
- 8. Такое скрещивание гарантирует получение до четырех различных перестановок (по две разной четности).
- 9. Затем и потомки, и родители возвращаются в популяцию, из которой были взяты родители.
- 10. Каждой особи популяции ставится в соответствие число её возраст (изначально равный нулю).
- 11. При каждом скрещивании возраст всей популяции (кроме полученных на данном этапе потомков) возрастает на единицу.
- 12. Как только возраст особи достигает определенного порога, она заносится в так называемую критическую область.
- 13. При занесении в эту область особь сохраняет способность к скрещиванию, но подвержена риску смерти при каждом скрещивании особей популяции.
- 14. При этом на каждое скрещивание приходится смерть от одной до четырех особей критической области.
- 15. Если популяция вырождается, она принимает решение о слиянии с какой-нибудь другой популяцией или об объявлении войны, исход которой зависит от суммарной приспособленности мужчин и лидеров.

- 16. Если особей слишком много, то часть их может отделиться и образовать новую популяцию.
- 17. Если наблюдается слишком большая разница в количествах мужчин и женщин, то возможно объявление войны (как правило, если мужчин больше) или решение о молитве (в этом случае вероятность рождения мужчин при каждом скрещивании возрастает на некоторое время).

3. Варианты заданий

№1

d_i \ станки	1	2	3	4	5	6	7
1	6	1	16	2	7	5	11
2	3	11	3	16	4	2	6
3	12	12	14	0	14	15	9
4	5	10	9	13	7	10	12
5	9	8	17	14	15	9	1
6	3	10	10	15	3	2	4
7	0	10	4	8	1	4	15

№2

d_i \ станки	1	2	3	4	5	6	7
1	2	8	7	10	3	13	1
2	3	8	4	1	11	3	16
3	4	0	7	4	2	4	13
4	7	13	2	6	11	3	8
5	16	6	0	14	8	6	7
6	15	2	16	0	9	11	8
7	16	13	16	1	5	13	5

№3

d_i \ станки	1	2	3	4	5	6	7
1	9	5	4	3	15	4	7
2	9	10	5	4	7	1	9
3	14	16	8	7	7	12	1
4	1	5	4	0	2	4	4
5	11	9	14	16	4	2	14
6	6	11	0	7	12	5	0
7	14	10	4	3	10	5	16

№4

d_i ∖ станки	1	2	3	4	5	6	7
1	12	9	17	6	13	1	15
2	8	0	1	12	2	3	14
3	10	9	15	2	15	9	10
4	4	11	0	12	5	8	3
5	8	12	14	2	0	15	4
6	16	7	2	11	0	10	15
7	9	6	4	8	8	11	0

№5

d_i \ станки	1	2	3	4	5	6	7
1	3	13	6	10	2	12	8
2	11	4	2	9	1	15	8
3	12	0	15	12	6	16	14
4	6	9	10	8	0	3	8
5	3	9	2	11	6	2	6
6	7	14	10	3	12	1	11
7	13	8	9	7	0	2	12

№6

d_i \ станки	1	2	3	4	5	6	7
1	13	5	2	3	6	7	17
2	5	12	17	6	3	10	12
3	6	11	0	8	7	4	6
4	9	0	1	17	8	5	10
5	16	12	10	3	2	10	2
6	7	11	12	0	10	5	15
7	17	3	11	11	4	14	15

№7

				_			
d_i \ станки	1	2	3	4	5	6	7
1	9	6	11	14	13	9	4
2	4	7	1	12	7	8	11
3	10	0	11	16	0	15	5
4	7	13	5	9	5	9	11
5	7	8	9	6	3	6	12
6	5	12	11	2	0	11	1
7	3	12	0	10	7	16	4

d_i \ станки	1	2	3	4	5	6	7
1	4	10	12	8	15	11	15
2	11	6	5	2	14	0	8
3	14	15	13	5	12	7	11
4	6	10	8	10	3	10	4
5	12	7	1	3	5	10	2
6	11	7	4	0	1	11	10
7	0	7	12	4	9	10	7

№9

d_i \ станки	1	2	3	4	5	6	7
1	3	13	6	10	2	12	8
2	11	4	2	9	1	15	8
3	12	0	15	12	6	16	14
4	6	9	10	8	0	3	8
5	3	9	2	11	6	2	6
6	7	14	10	3	12	1	11
7	13	8	9	7	0	2	12

№10

d_i \ станки	1	2	3	4	5	6	7
1	8	4	11	13	12	7	14
2	6	7	6	7	6	4	9
3	9	11	0	5	0	11	2
4	9	0	10	6	13	3	3
5	9	12	7	12	5	4	7
6	1	6	4	6	5	10	12
7	12	11	3	13	0	8	13

№11

d_i \ станки	1	2	3	4	5	6	7
1	13	8	15	14	8	11	12
2	5	8	11	10	14	1	9
3	9	0	9	16	0	10	15
4	9	2	13	8	4	11	9
5	2	10	0	8	2	1	0
6	2	14	16	13	0	14	2
7	11	9	0	4	4	16	14

№12

d_i \ станки	1	2	3	4	5	6	7
1	8	6	3	9	3	2	12
2	14	1	1	7	9	2	12
3	3	8	10	2	10	3	1
4	9	3	0	8	7	10	14
5	10	8	9	14	0	9	15
6	8	3	11	0	15	1	6
7	10	2	8	4	1	5	9

№13

d_i \ станки	1	2	3	4	5	6	7
1	13	11	5	4	12	2	1
2	9	10	7	1	8	0	12
3	4	7	2	8	8	1	4
4	2	0	15	11	2	10	10
5	3	13	5	9	0	9	8
6	0	3	4	1	9	8	6
7	11	7	7	1	4	11	1

№14

d_i \ станки	1	2	3	4	5	6	7
1	8	5	9	5	5	6	11
2	8	5	14	14	7	1	7
3	13	0	6	2	7	8	1
4	6	7	5	0	12	4	2
5	2	10	1	9	13	3	0
6	0	0	3	11	2	3	12
7	15	13	11	16	3	4	9

№15

d_i ∖ станки	1	2	3	4	5	6	7
1	12	7	12	10	11	9	6
2	16	13	0	5	5	2	8
3	9	12	10	10	13	6	3
4	11	0	3	11	1	3	10
5	2	1	11	9	5	11	7
6	2	4	2	11	6	0	2
7	8	1	2	4	10	3	12

d_i \ станки	1	2	3	4	5	6	7
1	3	2	11	12	6	2	8
2	4	12	6	7	7	2	2
3	14	9	0	12	3	1	2
4	8	9	2	6	1	10	2
5	1	14	3	4	5	6	7
6	6	6	3	1	12	10	1
7	2	10	4	0	10	11	8

№17

d_i \ станки	1	2	3	4	5	6	7
1	5	11	7	4	9	4	5
2	3	8	5	1	6	8	2
3	7	9	2	10	4	12	8
4	14	13	9	6	10	0	11
5	6	11	0	15	13	10	6
6	4	15	3	6	5	8	2
7	4	13	4	9	10	9	2

№18

d_i \ станки	1	2	3	4	5	6	7
1	3	11	8	6	2	4	6
2	3	8	5	1	6	8	2
3	15	3	12	10	9	2	1
4	8	3	9	6	0	9	11
5	6	15	0	15	13	10	6
6	4	0	3	6	5	8	9
7	7	11	4	9	10	7	2

№19

d_i \ станки	1	2	3	4	5	6	7
1	3	2	13	11	6	3	9
2	4	13	6	7	8	6	2
3	5	4	8	2	9	11	9
4	8	11	12	6	7	9	1
5	4	14	3	3	5	6	7
6	7	6	3	1	2	5	9
7	2	10	7	5	6	11	8

№20

d_i \ станки	1	2	3	4	5	6	7
1	3	2	11	12	6	2	8
2	4	12	3	7	7	2	2
3	4	8	0	12	9	1	9
4	13	9	2	6	1	0	2
5	1	14	3	4	5	6	7
6	16	6	3	1	2	10	1
7	2	10	4	0	10	11	8

№21

d_i \ станки	1	2	3	4	5	6	7
1	3	2	13	11	6	3	9
2	4	13	6	7	8	6	2
3	5	4	8	2	9	5	9
4	8	11	12	6	7	9	1
5	4	4	3	3	5	6	7
6	7	6	3	1	2	5	9
7	2	10	7	5	6	2	8

№22

d_i \ станки	1	2	3	4	5	6	7
1	3	2	13	11	6	3	9
2	14	13	6	7	8	6	2
3	5	4	3	2	9	5	9
4	8	11	5	6	7	9	1
5	4	4	3	3	5	6	7
6	7	6	3	1	2	1	9
7	2	10	7	5	6	2	11

№23

d_i \ станки	1	2	3	4	5	6	7
1	3	1	13	11	6	3	9
2	4	12	6	7	8	5	2
3	5	4	8	2	9	5	7
4	8	11	12	6	7	8	0
5	4	4	3	3	5	6	8
6	7	2	3	1	2	5	5
7	3	10	7	5	6	0	8

d_i \ станки	1	2	3	4	5	6	7
1	3	0	13	11	6	1	9
2	4	13	6	7	8	0	6
3	5	1	8	2	9	5	9
4	8	11	12	6	7	5	1
5	4	4	0	3	5	6	7
6	4	6	3	1	2	5	6
7	3	9	7	5	4	0	8

№25

d_i \ станки	1	2	3	4	5	6	7
1	9	5	4	3	15	6	7
2	9	11	5	4	7	1	9
3	14	15	8	7	7	12	1
4	1	5	3	0	2	3	4
5	11	9	14	16	4	2	14
6	7	11	0	7	13	5	0
7	14	10	4	3	10	6	16

№26

d_i \ станки	1	2	3	4	5	6	7
1	12	9	16	6	13	1	15
2	8	0	1	12	2	4	14
3	10	9	16	2	15	9	11
4	4	11	0	12	5	9	3
5	8	12	14	2	0	9	5
6	16	6	2	11	0	9	15
7	9	6	5	8	8	11	1

№27

d_i ∖ станки	1	2	3	4	5	6	7
1	8	5	4	3	15	5	7
2	9	9	Б	4	7	0	9
3	14	15	8	7	7	12	1
4	1	3	3	0	2	1	4
5	9	9	14	16	4	2	12
6	6	11	0	7	13	4	0
7	14	10	3	3	10	5	16

№28

d_i \ станки	1	2	3	4	5	6	7
1	12	8	16	6	13	0	15
2	6	0	1	12	2	2	14
3	10	8	16	2	15	8	11
4	3	11	0	12	5	8	3
5	7	12	14	2	0	9	4
6	17	6	2	11	0	8	15
7	8	6	5	7	8	10	1

№29

d_i \ станки	1	2	3	4	5	6	7
1	6	5	4	3	15	3	7
2	9	11	2	4	7	1	6
3	10	15	8	7	3	12	1
4	1	3	3	0	2	3	2
5	11	5	14	16	4	2	10
6	4	11	0	7	13	1	0
7	11	10	4	3	10	3	16

d_i \ станки	1	2	3	4	5	6	7
1	12	9	12	6	13	1	11
2	5	0	1	12	2	4	11
3	10	7	16	2	13	9	11
4	8	11	0	12	5	9	7
5	8	11	14	2	0	8	5
6	14	6	2	11	0	7	15
7	7	6	5	8	6	11	1

4. Вопросы к практической работе

- 1. Какие показатели производственного процесса можно выделить при решении задачи упорядочения, с использованием правил Петрова?
- 2. Какие ограничения имеются в задаче упорядочения, решаемой с помощью правил Петрова?
- 3. В чем суть подхода решения задачи упорядочения с использованием правил Петрова?
- 4. Как определяются параметры P_{i1} , P_{i2} , λ_i при решении упорядочения с использованием правил Петрова?
- 5. В чем суть правил Петрова?
- 6. Как избавиться от неопределенностей в правилах Петрова?
- 7. Какими способами можно определить время окончания обработки последней детали последовательности запуска на последнем станке?
- 8. Как определить время простоя станка с использованием матричного метода?
- 9. Как определить время ожидания (пролеживания) детали перед обработкой с использованием матричного метода?
- 10. С каким экономическим показателем связана величина время ожидания детали перед обработкой?
- 11. Сколько вариантов последовательностей запуска деталей в обработку может быть в задаче упорядочения для m станков и n деталей?
- 12. Достоинства и недостатки алгоритма с использованием правил Петрова по сравнению с алгоритмом Джонсона?
- 13. Цель использования «Генетического алгоритма» для поиска решения задачи упорядочения?
- 14. Какие способы можно использовать для поиска решения задачи упорядочения?

5. Список литературы

- Сорокин А.В. Использование правил Петрова для решения задачи упорядочения. Методические указания к практической работе по дисциплине «Моделирование» / А.В. Сорокин; Алт. госуд. технич. ун-т им. И.И. Ползунова.. Барнаул, 2022. 16 с.
- 2. Гладков, Л.А. Генетические алгоритмы: учебник / Л.А. Гладков, В.В. Курейчик, В.М. Курейчик; под ред. В.М. Курейчик. Москва: Физматлит, 2010. 317 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=68417 (дата обращения: 01.02.2021). ISBN 978-5-9221-0510-1. Текст: электронный.