Domande a risposta multipla

	1	2	3	4	5	6
a	X			X		X
b					X	
С						
d		X	X			

- 1. In un transistore MOS per applicazioni analogiche, assumendo che $v_{\rm GS}$ e $v_{\rm DS}$ non siano tali da danneggiare il dispositivo, la corrente di gate $i_{\rm G}$
 - (a) in condizioni statiche può considerarsi nulla indipendentemente da $v_{\rm GS}$ e da $v_{\rm DS}$
 - (b) in condizioni statiche può considerarsi nulla solo se $v_{\rm GS} < V_{\rm TH}$
 - (c) è sempre nulla, indipendentemente dalla frequenza dei segnali applicati
 - (d) in condizioni dinamiche non è generalmente nulla, ma è sempre indipendente da $v_{\rm GS}$ e $v_{\rm DS}$
- 2. Un amplificatore differenziale con ingressi v^+ e v^- fornisce in uscita una tensione $v_{\rm out}=100\,v^+-100v^-$. L'amplificazione differenziale $A_{\rm d}$ è pertanto:
 - (a) $A_{\rm d} = 20 \, {\rm dB}$
 - (b) $A_{\rm d} = 46 \, {\rm dB}$
 - (c) $A_{\rm d} = 100 \, {\rm dB}$
 - (d) $A_{\rm d} = 40 \, {\rm dB}$
- 3. Applicando all'ingresso di un amplificatore un segnale sinusoidale a frequenza 1kHz, lo spettro dell'uscita presenta componenti significative alle frequenze 1kHz, 2kHz, 3kHz e 4kHz, la cui ampiezza varia al variare dell'ampiezza della sinusoide applicata in ingresso. Da questo si può concludere che:
 - (a) la frequenza $f = 1 \,\mathrm{kHz}$ è al di fuori della banda passante dell'amplificatore
 - (b) l'amplificatore presenta quattro bande passanti
 - (c) l'amplificatore non è unidirezionale
 - (d) la relazione ingresso-uscita dell'amplificatore non è lineare
- 4. Un amplificatore di transresistenza descritto dai parametri R_m, R_{in}, R_{out}, è collegato ad una sorgente di segnale con resistenza interna R_S e pilota un carico R_{I_s}. Gli effetti di carico possono considerarsi trascurabili se
 - (a) $R_{\rm in} \ll R_{\rm S}$, $R_{\rm out} \ll R_{\rm L}$
 - (b) $R_{\rm in} \gg R_{\rm S}$, $R_{\rm out} \gg R_{\rm L}$
 - (c) $R_{\rm in} \ll R_{\rm S}$, $R_{\rm out} \gg R_{\rm L}$
 - (d) $R_{\rm m} \ll R_{\rm S}$, $R_{\rm m} \ll R_{\rm L}$
- 5. Un operazionale con prodotto banda-guadagno $f_{\rm T}$, amplificazione differenziale a bassa frequenza $A_{\rm d0}$, $R_{\rm in,d} \to \infty$, $R_{\rm out} = 0$ è utilizzato in un amplificatore di tensione non invertente con amplificazione di tensione $A_v < A_{\rm d0}$. La banda dell'amplificatore di tensione
 - (a) è indipendente da A_v e dalle caratteristiche dell'operazionale
 - (b) è inversamente proporzionale ad A.
 - (c) è proporzionale ad A_v
 - (d) indipendentemente da A_v , è pari al prodotto banda-guadagno dell'operazionale f_{T}
- 6. In un amplificatore invertente basato su operazionale ideale, il resistore che collega l'uscita con l'ingresso invertente è sostituito da un condensatore C. Il circuito che si ottiene
 - (a) si comporta come integratore invertente e presenta impedenza d'ingresso finita
 - (b) si comporta come derivatore invertente e presenta impedenza d'ingresso infinita
 - (c) si comporta come derivatore invertente e presenta impedenza d'ingresso pari all'impedenza condensatore C
 - (d) si comporta come integratore invertente e presenta impedenza d'ingresso infinita

Esercizio 1.

Con riferimento al circuito in figura, in cui sono date le tensioni ai nodi A e B nel punto di funzionamento a riposo:

- 1. verificare la regione di funzionamento di MP e determinarne i parametri del modello per il piccolo segnale;
- 2. considerando il condensatore C come un circuito aperto, valutare l'amplificazione di tensione $A_n = \frac{r_{\text{out}}}{r_{\text{in}}}$, la resistenza d'ingresso R_{in} e la resistenza d'uscita R_{out} in condizioni di piccolo segnale [sono richiesti: il circuito equivalente per il piccolo segnale, le espressioni simboliche (passaggi essenziali) ed i valori numerici].
- 3. determinare la funzione di trasferimento $A_v(s) = \frac{V_{\text{out}}}{V_{\text{in}}}$ e tracciarne i diagrammi di Bode di modulo e fase [sono richiesti: l'espressione della funzione di trasferimento, i valori numerici di costante moltiplicativa/poli/zeri di $A_v(s)$, i diagrammi di Bode quotati].

N)
$$V_{SG} = V_B - V_A = 0,7V$$
 $V_{TM} = 0,6V$
 $V_{SD} = V_D = 2,5V$ $V_{SG} - V_{TM} = 0,1V$
 $V_{SD} = V_D = 2,5V$ $V_{SG} - V_{TM} = 0,1V$
 $V_{SD} = V_D = 2,5V$ $V_{SG} - V_{TM} = 0,1V$
 $V_{SD} = V_D = 2,5V$ $V_{SG} - V_{TM} = 0,1V$
 $V_{SD} = V_D = 0,1V$
 $V_{SD} = V_D = 0,1V$
 $V_{SG} = V_D = 0,1V$

(- C) 25aB)

Nosy Domning Dolley D'N,

$$Ran = \frac{Ot}{Ot} = \frac{2420}{g_m + \frac{1}{Rs} + \frac{1}{Q}}$$

Esercizio 2.

Con riferimento al circuito in figura, assumendo $v_i = 6V$:

- 1. calcolare v_2 e la tensione v^+ dell'amplificatore operazionale OP2 [sono richieste le espressioni simboliche (passaggi essenziali) ed i valori numerici].
- calcolare le correnti i_L e i₀ indicate in figura [sono richieste le espressioni simboliche (passaggi essenziali) ed i valori numerici].

1)
$$N_2 = N_1 \cdot \frac{R_2}{R_1 + R_2 + R_3} = 6V \cdot \frac{2}{6} = 2V$$

$$N_{COP2}^{\dagger} = N_1 \cdot \frac{R_3}{R_1 + R_2 + R_3} = 6V \cdot \frac{3}{6} = 3V$$

2)
$$N_{\text{COP3}}^{\dagger} = N_{\text{COP2}} \cdot \frac{R_{2}}{R_{6} + R_{7}} = N_{\text{COP3}} = 3V \cdot \frac{5}{6} = 2,5V$$
 $N_{\text{COP3}, \text{OWL}} = N_{\text{COP3}}^{\dagger} + i_{R5} \cdot R_{5} = 2,5V - 12,5V = -10V$
 $N_{\text{COP3, OWL}} = \frac{V_{\text{COP3}}^{\dagger} - N_{\text{OWL}, OPL}}{R_{4}} = \frac{2,5V - 5V}{R_{4} + R_{2}} = -2,5mA$
 $N_{\text{OWL, OPL}} = \frac{R_{3} + R_{2}}{R_{4} + R_{2} + R_{3}} = 0$
 $N_{\text{COP3}, \text{OWL}} = \frac{R_{3} + R_{2}}{R_{4}} = 0$
 $N_{\text{COP3}, \text{OWL}} = \frac{N_{4} + R_{2}}{R_{4}} = -10 \text{ mA}$
 $N_{4} = -10 \text{ mA}$
 $N_{4} = -10 \text{ mA}$