Transforming data using linear Algebra (L-3)

	CLA	ssmy
	Date	Johns
1	Page	11

	add more samples that mimics the original day gry =
	Every given point in subspace is sum of basis very
S 10 75 5	$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ 0 \end{bmatrix} + \begin{bmatrix} b \\ 1 \end{bmatrix} = a + b + b + c + c + c + c + c + c + c + c$
	(a, b) -> also specify which subspace.
	(a,b) might be diff in same 20 space.
	TO -> original subspace on a program
A. To	TI -> Transformed subspace.
-2	Ti matrix apply it on b in to.
	Parallel lines -> new basis yectors.
	cony?
	Any transformation, changes into a new subspace
	Any transformation, changes into a new subspace Dist-based algo (NN) changes on the transformer-points.
	Civen an mage -> 1t gmes description

	Gnen a dataset we need to load dataset
	extract features
	get Hole Pixels (i). sum (i) iterate over i.
	colors -> features plotted in 22
	we took existing training samples and applied
	transformations.
	New basis can be determined through machematical
	pols.
y to see a constitution	eigen vectors & eigen-values
	Best transformation vector
	Features: # of boundary pixels
	# of hole pixels
	If scale of features very diff
-	=> Normalization (setting offset)
	(If scales are off)
	ip value -> [] -> Normalized
3 140	Vailve S.
	(suppose we have (a,b) Goz-min
	max -min
	LHSX Transformation = x-min
	matrix max-my
	Scale it for any
	Bias vector: } -min(x) number of features
	mex (x) - min (x)
	$\frac{-mn(4)}{max(4)-mn(4)}$
	(() () () () () () () () () (