SCORE FOLLOWING WITH HIDDEN TEMPO USING A SWITCHING STATE-SPACE MODEL

Yucong Jiang (yjiang3@richmond.edu) University of Richmond

Chris Raphael (craphael@indiana.edu) Indiana University Bloomington

Introduction

What is Score Following?

The score-following problem involves building a computer program that can trace musical events in a given musical score during a live performance.

Why Score Following?

- Page turner
- Automatic accompaniment systems
- Virtual score composition
- · Real-time audio enhancement/feedback

Monophonic music:

Polyphonic music:

Current Bottleneck

Existing score-following algorithms can still

stumble on some challenging cases, especially when the data model is not reliable: Shared notes among neighboring chords

- Blurring effects caused by fast playing
- Pedaling

Research Aims

-this aspect is especially meaningful in those challenging cases. • To understand the nature of this problem better through

• To present a new method designed to improve the timing model

- empirical experiments.
- 2. In the second diagram, the "time step" is the audio frame index.

1. In the first diagram, the "time step" is the **chord index**.

1. Kalman Filter Model for Tempo

a linear dynamical system:

 $\eta_k \sim N(0, \sigma_{n,k}^2), \ k = 2, \dots, K$

2. Frame-wise Representation

 $k_n = \min \{ k \in \{0, \dots, K\} : n\Delta < o_{k+1} \}$

 $o_k \approx \Delta \cdot \min \{ n \in \{1, \dots, N\} : k_n = k \}$

tempo

Computation

n = 1

Tree Representation

• [Chord Age]: the number of frames a

chord has lasted so far.

time (or with n)! **Approximation**

The tree grows exponentially with

label and age.

Mozart

Schumann

Piano Concerto No. 17 in G major, mvmt1

Piano Concerto in A minor, mvmt1

0[1]

Mozart

Schumann

3

Use a single Gaussian to approximate a

Frame-w	ise accuracy:	• higi	 high uncertainty 		baseline tempo tracking	
		∘ fata	al error	cura	cy < 40%) by either program:	
Haydn	Piano Sonata No. 24 in D major, mvmt2&3	Haydn_mvmt23	3			
Haydn	Piano Sonata No. 24 in D major, mvmt1	Haydn_mvmt1	1		(maderrial Roy model)	
Beethoven	Piano Sonata No. 31	Beethoven_31	8	Ü	(hidden Markov model)	
Beethoven	Piano Sonata No. 8 (Sonata Pathétique)	Beethoven_pathétiqu	ie 1	0		
Debussy	Prelude, No. 8 (La fille aux cheveux de lin)	Debussy_fille	3	0		
Debussy	Prelude, No. 2 (Violes)	Debussy_violes	1		Sampling rate: 8k Hz Hop size: 16 ms	
Schubert	Ständchen, D 957 No. 4 from Schwanengesang	Schubert_ständchen	4		15 solo piano pieces 50 excerpts Typical length: 40~90 second 48 minutes in total	
Schubert	Six Moments, D. 780 No. 2	Schubert_780	1			
Rachmaninoff	Prelude, Op. 3, No. 2	Rachmaninoff	5			
Liszt	Paganini S.141, No. 3 (La campanella)	Liszt	5			
Chopin	Ballade No. 1	Chopin_ballade	8	0		
Chopin	Prelude, Op. 28 No. 4	Chopin_prelude	2			
Chopin	Barcarolle, Op. 60	Chopin_barcarolle	2		45	

1.0

15 solo piano pieces 50 excerpts

- 48 minutes in total
- Sampling rate: 8k Hz Hop size: 16 ms

Time

correct hypotheses

An example of a typical scenario where the program was "confused" among neighboring chords, but was right about the general region:

failed excerpts 11 22.1%average accuracy 15.1%

The proposed method is measurably better than the baseline:

	baseline	tempo tracking
average accuracy	65.0%	69.1%
Table 5.10: Average	e accuraci	es of 38 excerpts.

is robust even with incorrect default tempo; recovers more easily

coefficient

 \bar{d}

df

p-value

0.009

Frame #940: true note index is 929

however, can suffer at fast playing places.

from mistakes;

Proposed method:

correct chord 930 931 932 933 934 935 936 109+0/1 109+1/4 110+0/1 110+1/4 110+1/2 111+0/1 Hypothesis score position (note index on top) Use a "movie" version of the barplot, which can show the hypothesis distribution one-by-one quickly through all frames of an excerpt, to inspect the nature of errors in these excerpts: Tempo

Excerpt Piece Baseline

#23	Liszt	25.7%	51.2% Baseline got lost half-way through after a section of 14 repeated chords in a row.			
#43	Beethoven_31	31.8%	46.5%	Incorrect default tempo.		
#46	Beethoven_31	34.0%	62.7%	14.4% higher accuracy among the other six excerpts (successfully followed).		
#15	Chopin_ballade	0.4%	27.2%	Baseline: completely lost near the beginning when the sound was blurring.		
#16	Chopin_ballade	0.3%	36.2%	Tempo: followed the region.		
#13	Chopin_ballade	11.8%	27.5%	Baseline: got lost starting around 1/3 through when the sound started to blur. Tempo: sometimes "confused," but always recovered.		
#19	Liszt	2.1%	18.6%	Both programs got lost near the beginning (repeated chords and patterns), but		
#21	Liszt	0.5%	13.4%	only the proposed method recovered.		

We can speculate that treating the tempo as a variable helps the program adapt to unpredictable performance variations, and that modeling the tempo as smooth

helps discriminate among hypotheses.