Лабораторная работа 1.1.1. Определение систематических и случайных погрешностей при измерении удельного сопротивления нихромовой проволоки

Калинин Даниил, Б01-110

07.09.2021

Цель работы: измерить удельное сопротивление проволоки и вычислить систематические и случайные погрешности при использовании таких измерительных приборов, как линейка, штангенциркуль, микрометр, амперметр, вольтметр, мост постоянного тока.

В работе используются: проволока из нихрома, линейка, штангенциркуль, микрометр, амперметр, вольтметр и мост постоянного тока, источник ЭДС, ключ и реостат.

Теоритическая справка:

Удельное сопротивление материала проволоки круглого сечения, изготовленной из одного материала и имеющей одну толщину, может быть определено по формуле:

$$\rho = \frac{R_{np}}{l} \frac{\pi d^2}{4} \tag{1}$$

Где R_{np} – сопротивление измеряемого участка проволоки, l – длина измеряемого участка проволоки, d – диаметр проволоки.

Пусть V и I – показания вольтметра и амперметра в каждой схеме соответственно. Тогда для схем (а) и (б) соответственно, сопротивление участка проволоки можно вычислить по следующим формулам:

Для схемы (а):

$$R_{np} = R_{np1} \left(1 + \frac{R_{np1}}{R_V}\right) \tag{2}$$

Для схемы (б):
$$R_{np} = R_{np2} (1 - \frac{R_A}{R_{nn2}}) \tag{3}$$

Где $R_{np1} = \frac{V_a}{I_a}$ — сопротивление рассчитанное по показаниям приборов в схеме (a), $R_{np2} = \frac{V_6}{I_6}$ — сопротивление рассчитанное по показаниям приборов в схеме (б), R_V — сопротивление вольтметра, R_A — сопротивление амперметра.

Ход работы:

Точность измерения с помощью штангенциркуля -0.1 мм., Точность измерения с помощью микрометра -0.01 мм.

1. Измеряем диаметр проволоки штангенциркулем (d_1) , и микрометром (d_2) на 10 различных участках, результат занесем в таблицу 1.

1		2						l		1
d_1 , mm	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
d_2 , MM	0.36	0.36	0.35	0.36	0.36	0.36	0.36	0.36	0.36	0.36

Таблица 1. Результаты измерений диаметра проволоки

Из таблицы 1 видно, что при измерении штангенциркулем присутствует только систематическая погрешность, определяемая погрешностью штангенциркуля. Расчитаем случайную погрешность при измерении d_2 по формуле:

$$\sigma_{cn} = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (d - \bar{d})} \tag{4}$$

Таким образом, получаем, что:

$$\sigma_{\rm \tiny c.n.MRMmp.} \approx 9.48 \cdot 10^{-7} \quad {\rm M}.$$

$$\sigma_{{\scriptscriptstyle cucm.Mkmmp.}} = 10^{-5} \quad \text{M.}, \sigma_{{\scriptscriptstyle cucm.umy.}} = 10^{-4} \quad \text{M.}$$

Откуда:

$$\sigma_{\text{мкммр.}} = \sqrt{\sigma_{\text{сл.мкмmp.}}^2 + \sigma_{\text{сист.мкмmp.}}^2} \approx 1.0044 \cdot 10^{-5} \text{м.} \approx \sigma_{\text{сист.мкмmp.}}$$
$$\sigma_{\text{umu.}} = \sigma_{\text{сист.umu.}} = 1 \cdot 10^{-4} \quad \text{м.}$$

Иначе говоря, проволку можно считать однородной по диаметру, а погрешность диаметра σ_d определяется только систематической погрешностью микрометра, т.е.:

$$d_2 = \bar{d}_2 + \sigma_d = (3.59 \pm 0.1) \cdot 10^{-4}$$
 M.

2. Определим площадь поперечного сечения проволоки

$$S = \frac{\pi d_2^2}{4}$$

$$S \approx 1.012 \cdot 10^{-7} \quad \mathrm{m}^2.$$

Вычислим величину погрешности σ_S по формуле:

$$\sigma_S = 2 \frac{\sigma_d}{d}$$

$$\sigma_S \approx 5.63 \cdot 10^{-9} \quad \text{m}^2.$$

Итак, $S = (1.012 \pm 0.0563) \cdot 10^{-7}$ м², то есть площадь поперечного сечения проволоки вычислена с точностью 5.89%

3. Оценим по формулам (2) и (3) величину погрешности при измерении R_{np} по каждой из схем.

Рис. 1. Чертеж схем (а) и (б).

Учтем, что $R_{np} \approx 5~O$ м, $R_V = 10^7~O$ м, $R_A = 64 \cdot 10^{-3}~O$ м. Тогда получим:

для схемы (a): $R_{np}/R_V=\frac{5}{10^7}=5\cdot 10^{-7}$ для схемы (б): $R_A/R_{np}=\frac{64\cdot 10^{-3}}{5}=0.0128$ Следовательно, меньшую ошибку дает схема (a).

4. Соберем схему (а).

5. Проведем опыты для проволоки длины $l_1 = (10 \pm 0.1)$ c_M , $l_2 = (20 \pm 0.1)$ c_M , $l_1 = (30 \pm 0.1)$ c_M . Показания вольтметра и амперметра записаны в таблицу 2, результаты измерения сопротивлений с помощью моста Р4833 записаны в таблицу 3.

$l_1 = (10 \pm 0.1)$ cm		$l_2 = (20 \pm$	= 0.1) см	$l_3 = (30 \pm 0.1)$ cm		
V, B	I, дел	V, B	I, дел	V, B	І, дел	
	$(0.005 \frac{A}{\partial e_A})$		$\left (0.005 \frac{A}{\partial e_A}) \right $		$(0.005 \frac{A}{\partial e_A})$	
0.1735	33	0.3670	35	0.5510	35	
0.2149	40	0.4204	40	0.6390	40	
0.2443	45	0.4785	45	0.7215	45	
0.2707	50	0.5297	50	0.8122	50	
0.2971	55	0.5818	55	0.8800	55	
0.3192	60	-	-	0.9605	60	

Таблица 2. Показания вольтметра и амперметра

$l_1 = (10 \pm 0.1)$ cm	$l_2 = (20 \pm 0.1)$ cm	$l_3 = (30 \pm 0.1)$ cm
$R_{np} = 1.132$ OM	$R_{np} = 2.208$ OM	$R_{np} = 3.279$ OM

Таблица 3. Результаты измерения сопротивления проволоки на мосту.

- 6. Построим вольт-амперную характеристику для каждой длины проволоки по таблице 2 (рис. 2).
- 7. Из рисунка 2 определяем R_{cp} среднее сопротивление каждой проволки—, найдя тангенс угла наклона каждй прямой. Погрешность R_{cp} определяем по формуле:

$$\sigma_{R_{cp}} = R_{cp} \sqrt{\left(\frac{\sigma_V}{V_{max}}\right)^2 + \left(\frac{\sigma_I}{I_{max}}\right)^2} \tag{5}$$

Где σ_V — среднеквадратичная ошибка измерения вольтметром, σ_I — среднеквадратичная ошибка измерения амперметром, V_{max} — максимальное значение напряжения, полученное в эксперименте, I_{max} — максимальное значение силы тока, полученное в эксперименте.

Заметим, что ошибки $\sigma_V = \frac{\Delta x}{2} \approx 0.75$ мВ и $\sigma_I = \frac{\Delta x}{2} \approx 0.4$ мА равны половине абсолютной погрешности прибора соответственно.

- 8. Результаты расчетов занесем в таблицу 4
- 9. Согласно формуле (2) найдем окончательное значение сопротивления R_{np} для каждого участка проволоки. Ввиду малости поправки будем считать, что $\sigma_{R_{np}} \approx \sigma_{R_{cp}}$. Результаты знаносим в таблицу 5.

Рис. 2. График зависимости тока от напряжения для проволоки

l, cM	10	20	30
R_{cp} , $O_{\mathcal{M}}$	1.0748	2.1556	3.2699
$\sigma_{R_{cp}}, O_{\mathcal{M}}$	0.002864	0.004111	0.005052

Таблица 4. Результаты расчетов средних сопротивлений и их погрешностей из рисунка 2.

$l, c_{\mathcal{M}}$	10	20	30
R_{np} , O_M	1.074800116	2.155600456	3.269901069
$\sigma_{R_{np}}, O_{\mathcal{M}}$	0.002864	0.004111	0.005052

Таблица 5. Результаты расчетов сопротивлений проволоки и их погрешностей из рисунка 2.

10. Сравним результаты из таблицы 5 с результами измерений мостом Р4833 из таблицы 2. Заметим, что с учетом погрешностей эксперимента,

результаты совпадают.

11. По формуле (1) определим удельное сопротивлеие, а погрешность найдем по формуле:

$$\sigma_{\rho} = \rho \sqrt{\left(\frac{\sigma_R}{R}\right)^2 + \left(2\frac{\sigma_d}{d}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2} \tag{6}$$

Где σ_R — ошибка измерения сопротивления, σ_d — ошибка измерения диаметра проволоки, σ_l — ошибка измерения длины проволоки, ρ — расчетное значение удельного сопротивления, R — расчетное значение напряжения, d — расчетное значение диаметра проволоки, l — значение длины проволоки.

Результаты занесем в таблицу 6

l,	$c_{\mathcal{M}}$	10	20	30
ρ , 10	$O^{-6} O_{\mathcal{M}} \cdot \mathcal{M}$	1.0879	1.0909	1.1033
σ_{ρ} , 1	$0^{-8} O \mathcal{M} \cdot \mathcal{M}$	6.164	6.054	6.159

Таблица 6. Результаты расчетов удельного сопротивления проволки

Окончательное
$$\rho = \rho_{cp} = (1.094 \pm 0.0612) \cdot 10^{-6} \ O_{\mathcal{M}} \cdot \mathcal{M}$$
.

Заключение:

Полученное значение удельного сопротивления хорошо соотносится с табличными значениями. В различных справочниках табличное значение удельного сопротивления нихрома при 20° С варьируется от $1.05 \cdot 10^{-6}~OM \cdot M$ до $1.12 \cdot 10^{-6}~OM \cdot M$, в зависимости от процентного содержания компонент сплава. В конечном счете, это говорит о верности полученных результатов.