Logistic Regression For Price Classification

predict the classification of house above or below the medain house value

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns

# set_option to format our numeric values
   # pd.set_option('display.precision',2) # precison mean the numbers after the dice

# reset all options, *** ignore the warning that may appear ***
#pd.reset_option('all')

housing_data=pd.read_csv('housing.csv')

housing_data.sample(5)
```

Out[1]:

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	househol
13783	-117.06	34.03	27.0	1945.0	446.0	859.0	418
1706	-122.32	37.95	37.0	1887.0	353.0	895.0	359
8385	-118.36	33.98	45.0	1559.0	305.0	891.0	34.
7753	-118.11	33.91	19.0	3056.0	759.0	1561.0	740
16120	-122.46	37.78	52.0	2594.0	622.0	1421.0	590
4							>

Data preparation

```
In [2]: housing_data.shape
Out[2]: (20640, 10)
```

```
In [3]: housing data.info()
         <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 20640 entries, 0 to 20639
        Data columns (total 10 columns):
              Column
                                   Non-Null Count Dtype
          0
              longitude
                                   20640 non-null float64
              latitude
                                   20640 non-null float64
          1
          2
              housing median age 20640 non-null float64
          3
              total rooms
                                   20640 non-null float64
          4
              total bedrooms
                                   20433 non-null float64
          5
              population
                                   20640 non-null
                                                    float64
          6
              households
                                   20640 non-null float64
          7
              median income
                                   20640 non-null float64
          8
              median house value 20640 non-null float64
          9
              ocean proximity
                                   20640 non-null object
        dtypes: float64(9), object(1)
        memory usage: 1.6+ MB
In [4]: # drop of fix null values, here wil just drop all rows with nulls
        housing data=housing data.dropna()
        housing_data.shape
Out[4]: (20433, 10)
In [5]: # check to see if this field is a categorical field
        housing_data['ocean_proximity'].unique()
Out[5]: array(['NEAR BAY', '<1H OCEAN', 'INLAND', 'NEAR OCEAN', 'ISLAND'],
               dtype=object)
In [6]: # convert the categorical columns to numeric data, this will add 4 new columns ar
        housing data=pd.get dummies(housing data,columns=['ocean proximity']) # this ster
        housing data.shape
Out[6]: (20433, 14)
In [7]: housing data.head()
Out[7]:
            longitude latitude housing_median_age total_rooms total_bedrooms population households
         0
              -122.23
                       37.88
                                          41.0
                                                     880.0
                                                                   129.0
                                                                             322.0
                                                                                        126.0
         1
              -122.22
                       37.86
                                          21.0
                                                    7099.0
                                                                  1106.0
                                                                            2401.0
                                                                                       1138.0
         2
              -122.24
                       37.85
                                          52.0
                                                                   190.0
                                                    1467.0
                                                                             496.0
                                                                                        177.0
         3
              -122.25
                       37.85
                                          52.0
                                                    1274.0
                                                                   235.0
                                                                             558.0
                                                                                        219.0
              -122.25
                       37.85
                                          52.0
                                                    1627.0
                                                                   280.0
                                                                             565.0
                                                                                        259.0
```

```
In [31]: #we need to find out if there is any outliers i our data
    # will draw boxplot for all columns
    fig,ax=plt.subplots(figsize=(15,8))
    bp=sns.boxplot(data=housing_data)
    bp.set_xticklabels(bp.get_xticklabels(),rotation=90) # label rotation
```



```
In [9]: # will draw boxplot for all columns
fig,ax=plt.subplots(figsize=(10,8))
bp=sns.boxplot(data=housing_data['median_house_value'])
```


In [10]: # now we need to find out the max of 'median_house_value' to remove the outliers
housing_data.describe()

Out[10]:

population	total_bedrooms	total_rooms	housing_median_age	latitude	longitude	
20433.0000	20433.000000	20433.000000	20433.000000	20433.000000	20433.000000	count
1424.9469	537.870553	2636.504233	28.633094	35.633221	-119.570689	mean
1133.2084	421.385070	2185.269567	12.591805	2.136348	2.003578	std
3.0000	1.000000	2.000000	1.000000	32.540000	-124.350000	min
787.0000	296.000000	1450.000000	18.000000	33.930000	-121.800000	25%
1166.0000	435.000000	2127.000000	29.000000	34.260000	-118.490000	50%
1722.0000	647.000000	3143.000000	37.000000	37.720000	-118.010000	75%
35682.0000	6445.000000	39320.000000	52.000000	41.950000	-114.310000	max

In [11]: # filter the data using loc and get the count housing_data.loc[housing_data['median_house_value']==500001].count() # 958 rows of data could skewness يحرف our training model result, so it is better

0+[11].	1	050
out[II]:	longitude	958
	latitude	958
	housing_median_age	958
	total_rooms	958
	total_bedrooms	958
	population	958
	households	958
	median_income	958
	<pre>median_house_value</pre>	958
	ocean_proximity_<1H OCEAN	958
	ocean_proximity_INLAND	958
	ocean_proximity_ISLAND	958
	ocean_proximity_NEAR BAY	958
	ocean_proximity_NEAR OCEAN	958
	dtype: int64	

In [12]: # housing_data.drop(rows or columns indexies)
housing_data=housing_data.drop(housing_data.loc[housing_data['median_house_value'
housing_data.shape

Out[12]: (19475, 14)

Train our model - spliting data

```
In [13]: # we need to convert our data to be classification (LogisticRegression)
         # will get the median and compare to see if price below or above the median
         median=housing data['median house value'].median()
         median
Out[13]: 173800.0
In [14]: # will add new column call above median
         housing data['above median']=(housing data['median house value']-median)>0
         housing data.sample(5)
         # we see blow if the price is below median (179700.0) will be False otherwaise wi
Out[14]:
                 longitude latitude housing_median_age total_rooms total_bedrooms population househol
           7426
                  -118.20
                           33.95
                                               35.0
                                                        1924.0
                                                                       520.0
                                                                                2101.0
                                                                                            54
           4930
                  -118.25
                           33.99
                                               42.0
                                                                       574.0
                                                        2261.0
                                                                                2496.0
                                                                                            527
           7913
                  -118.08
                           33.88
                                               27.0
                                                         923.0
                                                                       186.0
                                                                                1014.0
                                                                                            204
           10226
                  -117.88
                           33.87
                                               35.0
                                                        1919.0
                                                                       349.0
                                                                                1302.0
                                                                                            34
           11975
                  -117.43
                           33.99
                                               18.0
                                                        3307.0
                                                                       547.0
                                                                                1738.0
                                                                                            457
In [15]: # now we need to get two sets of data
         # x for train (features) and y for prediction (target)
         # since we need to predict the median_house_value, so we need to drop it from our
         X=housing data.drop(['median house value','above median'],axis=1) # axis=0 => row
         Y=housing data['above median'] # our output will be True or False (classification
In [16]: X.columns
Out[16]: Index(['longitude', 'latitude', 'housing_median_age', 'total_rooms',
                 'total_bedrooms', 'population', 'households', 'median_income',
                 'ocean_proximity_<1H OCEAN', 'ocean_proximity_INLAND',</pre>
                 'ocean proximity ISLAND', 'ocean proximity NEAR BAY',
                 'ocean proximity NEAR OCEAN'],
                dtype='object')
In [17]: # we use the train data to train our model, and later will use the test data to n
         from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2)
In [18]: x_train.shape,x_test.shape
Out[18]: ((15580, 13), (3895, 13))
In [19]: y train.shape,y test.shape
Out[19]: ((15580,), (3895,))
```

Apply LogisticRegression

Normalization scales all numersic features to be between 0 and 1.

Note: Having features in the same scale can vastly improve the performance of your ML model.

fit=Fit the linear model on the training data i.e. train the linear model using our features and target values.

```
In [20]: from sklearn.linear_model import LogisticRegression
# the liblinear solver is a good choice for samll dataset and binary classificati
logistic_model=LogisticRegression(solver='liblinear').fit(x_train,y_train)
```

evaluation training score

print the evaluation score, this shown how well our linear model capture the underlying variation in our training data

```
In [25]: # to take a look on our model prediction using our eyes
#we want to compare between our actual data and predicted data
df_pred_actual=pd.DataFrame({'predicted':y_pred,'actual':y_test})
df_pred_actual.head(10)
```

Out[25]:

	predicted	actual
5093	False	False
499	False	False
4565	False	False
5546	True	True
12194	True	False
5165	False	False
11168	True	True
8298	True	True
18013	True	True
12425	False	False

evaluate the accuracy for our test data - using accuracy_score

```
In [26]: from sklearn.metrics import accuracy_score
    print('Testing_score :',accuracy_score(y_test,y_pred))
    # we can see the score about 82%, that mean 82% of our model predication is corre
    Testing_score : 0.824390243902439
In [30]: # here we can't plot our prediction because it is just True/False values
```