1. Regneregler potenser og røtter

Potenser og røtter for reelle tall

For reelle tall, hvor a > 0 og b > 0:

$$a^{0} = 1$$

$$a^{-n} = \frac{1}{a^{n}}$$

$$a^{m} \cdot a^{n} = a^{m+n}$$

$$(a \cdot b)^{n} = a^{n} \cdot b^{n}$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

$$a^{\frac{m}{n}} = \sqrt[n]{a^{m}} = (\sqrt[n]{a})^{m}$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

2. Komplekse tall

Komplekse tall

z komplekst tall, x, y, a, b, c, d reelle

$$i^{2} = -1 \quad \text{normal form: } z = x + iy$$
$$(a+ib)(c+id) = (ac-bd) + i(ad+bc)$$
$$\frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{c^{2}+d^{2}}$$

Polarform $z = x + iy = r(\cos \theta + i \sin \theta) = re^{i\theta}$

$$r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

$$(r(\cos\theta + i\sin\theta))^n = r^n(\cos n\theta + i\sin n\theta), \ n \in \mathbb{N}$$

3. Lineær algebra

Gauss-eliminering

Gauss-eliminering har som mål å omforme en matrise ${\bf A}$ til en trappematrise ${\bf U}$. Til det brukes tre operasjoner

 $(\mathbf{A} \cdot \mathbf{B})^{\top} = \mathbf{B}^{\top} \cdot \mathbf{A}^{\top}$

- (1) Addere multiplum av rad i til rad j.
- (2) Bytte om på radene i og j.
- (3) Multiplisere rad i med ikke-negativ skalar.

Lineære transformasjoner

En transformasjon T fra \mathbb{R}^n til \mathbb{R}^m kalles lineær hvis og bare hvis

- (1) $T(c\mathbf{x}) = cT(\mathbf{x})$, for alle $\mathbf{x} \in \mathbb{R}^n$ og alle $c \in \mathbb{R}$.
- (2) $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$, for alle $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

Transformasjonsmatrisen til T er matrisen

$\begin{bmatrix} T(\mathbf{e}_1) & T \end{bmatrix}$	$T(\mathbf{e}_2) \cdots T(\mathbf{e}_n)$
Speiling om 1. akse	$\left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right]$
Speiling om 2. akse	$\left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right]$
Speiling om lin- jen $x_1 = x_2$	$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right]$
Rotasjon om ori- go	$ \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} $
Skalering	$\left[\begin{array}{cc} k_1 & 0 \\ 0 & k_2 \end{array}\right]$

Invers matrise

Anta at A er en kvadratisk matrise av orden n. A^{-1} eksisterer $\Leftrightarrow rang(A) = n \Leftrightarrow det(A) \neq 0$. For $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ er $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

Underrom / lineært spenn

En vektormengde V i \mathbb{R}^n er et underrom i \mathbb{R}^n hvis og bare hvis

- (1) \mathbf{u} og \mathbf{v} er vilkårlige vektorer i V, så er $\mathbf{u} + \mathbf{v}$ en vektor i V,
- (2) c er et vilkårlig tall og **u** er en vilkårlig vektor i V, så er c**u** en vektor i V.

Vektormengden S er et **generatormengde** for V hvis og bare hvis enhver vektor i V kan skrives som en lineærkombinasjon over S.

 $V = \operatorname{Linspan} S$ (det lineære spennet til S).

En **basis** for V er en l.u. generatormengde for V.

Elementære linjeoperasjoner på en matrise bevarer eventuelle lineære sammenhenger mellom søylene i matrisen.

Egenverdier og egenvektorer

For lineær transformasjon/matrise A, så er en egenvektor en vektor $\mathbf{v} \neq \mathbf{0}$ en egenvektor dersom det finnes tall λ slik at $A\mathbf{v} = \lambda \mathbf{v}$

Karakteristisk likning: $det(A - \lambda I) = 0$

Hvis en kvadratisk matrise M har basis av egenvektorer $\mathbf{v}_1, ..., \mathbf{v}_n$ med egenverdier $\lambda_1, \lambda_2, ..., \lambda_n$, og

$$P = [\mathbf{v}_1 | \mathbf{v}_2 | ... | \mathbf{v}_n]$$

$$D = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_n)$$

så er AP = PD og $A^{-1} = PD^{-1}P^{-1}$.

Systemer

Et system kalles

konsistent: hvis det har en eller flere løsninger. inkonsistent: hvis det har ingen løsninger.

4. Flervariabel kalkulus

Funksjoner av flere variable

Den partielle deriverte til f(x,y) mh
pxer

$$\frac{\partial f}{\partial x}(x,y) = f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}.$$

Høyere ordens deriverte noteres f.eks. $\frac{\partial^2 f}{\partial x \partial y} = f_{yx}$. (Her deriveres først mhp y, deretter mhp x).

Andrederivert-testen

La f ha kontinuerlige partielle andrederiverte på en liten disk som inneholder et kritisk punkt (a,b). Diskriminanten er gitt ved

$$D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - f_{xy}(a,b)^{2}.$$

Hvis D > 0 og $f_{xx} > 0$, så er f(a,b) lokalt minimum. Hvis D > 0 og $f_{xx} < 0$, så er f(a,b) lokalt maximum. Hvis D < 0, så er f(a,b) sadelpunkt.

Tangentplan

Planet gjennom punkt (a,b,c) med normalvektor \mathbf{n} er gitt ved $\mathbf{n} \cdot [x-a, y-b, z-c] = \mathbf{0}$. Tangentplanet til f(x,y) i (a,b,f(a,b)) har normalvektor $\mathbf{n} = [-f_x(a,b), -f_y(a,b), 1]$.

5. FØLGER, REKKER OG TAYLORPOLYNOM

Konvergens

Følgen $a_1, a_2, ...$ konvergerer mot L dersom det for hver $\epsilon > 0$ finnes N slik at $|a_n - L| < \epsilon$ for alle n > N

Følgen divergerer mot ∞ dersom det for all M finnes N slik at $a_n > M$ for alle n > N

Rekken $\sum_{k=1}^{\infty} a_k$ konvergerer mot S dersom følgen av delsummer $S_n = \sum_{k=1}^n a_k$ konvergerer mot S.

Noen rekker

Geometrisk rekke $\sum c_n$ hvor $\frac{c_{n+1}}{c_n} = r$ for alle n. Geometrisk rekke kan skrives $\sum_{n=0}^{\infty} ar^n$ hvor a er første ledd. Rekken konvergerer når r < 1 med sum $\frac{a}{1-r}$ og divergerer når $r \geq 1$

med sum $\frac{a}{1-r}$ og divergerer når $r \geq 1$ **p-rekke** $\sum_{n=0}^{\infty} \frac{1}{n^p}$ konvergerer for p > 1 og divergerer ellers. Når p=1 får vi den harmoniske rekka $\sum \frac{1}{n}$ som divergerer, selv om leddene går mot null.

Konvergenstester for rekker

Gitt rekken $\sum_{k=1}^{\infty} c_k$, o

- nte-leddstest Hvis følgen (c_k) ikke går mot 0, så divergerer rekken $\sum c_k$
- Sammenligningstest Gitt at $0 \le c_k \le b_k$ for alle k > N så Hvis $\sum b_k$ konvergerer, så konvergerer

 $\overline{\text{Hvis}} \sum c_k$ divergerer, så divergerer $\sum b_k$

- Grenseammenligningstest Gitt at $\lim_{n\to\infty} \frac{b_n}{c_n} = L$, hvor $0 \le L \le \infty$ Hvis $0 \le L < \infty$, så vil enten begge rekkene konvergere, eller begge divergere. Hvis $\sum c_n$ konvergerer og $L < \infty$, så konvergerer $\sum b_n$ Hvis $\sum c_n$ divergerer, og 0 < L, så divergerer $\sum b_n$
- Forholdstesten Hvis $\lim_{n\to\infty} \left| \frac{c_{n+1}}{c_n} \right| < 1$, så konvergerer $\sum c_n$

Potensrekker Taylorrekker og Taylorpolynom

Potensrekken om x = a er $\sum_{n=0}^{\infty} c_n (x-a)^n$. For den gjelder:

- Det finnes r > 0 slik at rekken konvergerer for alle $x \mod |x-a| < r$ og divergerer når |x-a| > r. r kalles konvergensradiusen til rekka
- \bullet Rekken konvergerer for alle x
- Rekken konvergerer kun når x = 0

Potensrekken $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} \cdot (x-a)^k$ kalles for Taylorrekken til funksjonen f om a.

Taylorpolynom av grad n om x = a (her er $f^{(k)}$ den k'te deriverte til f)

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k$$

Det finnes c mellom a og x slik at restleddet $E_n(x)$ (feilen) er gitt ved

$$E_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

6. Mengdelære

Mengdelovene

Alle mengder er inneholdt i en universalmengde U. Komplementer noteres med strek $\bar{A} = A^c$

Kommutative lover: $A \cap B = B \cap A$ $A \cup B = B \cup A$

Assosiative lover: $(A \cap B) \cap C = A \cap (B \cap C)$ $(A \cup B) \cup C = A \cup (B \cup C)$

Distributive lover: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Identitetslover: $A \cap U = A$ $A \cup \emptyset = A$

Negasjonslover: $A \cup \bar{A} = U$ $A \cap \bar{A} = \emptyset$

Dobbel negativ-lov: $\overline{(\bar{A})} = A$

Idempotente lover: $A \cap A = A$ $A \cup A = A$ Universalgrenselover: $A \cup U = U$ $A \cap \emptyset = \emptyset$

DeMorgans lover: $\overline{(A\cap B)} = \bar{A} \cup \bar{B} \qquad \overline{(A\cup B)} = \bar{A} \cap \bar{B}$

Absorpsjonslover: $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$

Komplement av U og \emptyset : $\bar{U} = \emptyset$ $\bar{\emptyset} = U$

Mengdedifferensloven: $A - B = A \setminus B = A \cap \bar{B}$

Noen mengde-konstruksjoner

Kartesisk produkt: $A \times B = \{\langle a, b \rangle \mid a \in A, b \in B\}$ Skrivemåten (a, b) brukes også for ordnete par $\langle a, b \rangle$ Potensmengde: Mengden av alle delmengder, $\mathcal{P}(A) = \{U \mid U \subseteq A\}$

Tallmengder

 $\mathbb{N} = \{0,1,2,..\}$: De naturlige tallene

 $\mathbb{N}_{+} = \{1, 2, 3, ..\}$: De positive naturlige tallene.

 $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$ Heltallene.

 $\mathbb{Q} = \left\{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{N}_+ \text{ De rasjonale tallene} \right.$

 \mathbb{R} De reelle tall (definisjon ikke pensum)

7. Funksjoner

Funksjoner

En funksjon f er gitt ved et definisjonsområde X og en verdiområde Y, og en regel som til hvert element $x \in X$ tilordner ett element $f(x) = y \in Y$

En funksjon er

- injektiv dersom $x_1 \neq x_2$ impliserer at $f(x_1) \neq f(x_2)$
- surjektiv dersom det for alle $y \in Y$, eksisterer $x \in X$ slik at f(x) = y
- bijektiv dersom den er både injektiv og surjektiv.

8. Logikk

Symbol	Mening
$\neg p \text{ (eller } \sim p)$	ikke p
$p \wedge q$	$p \circ q$
$p \lor q$	p eller q
$P \equiv Q$	P er ekvivalent med Q
$p \rightarrow q$	p impliserer q
$p \leftrightarrow q$	p hvis og bare hvis q
∴ (eller ⊨)	Derfor

Symbol	Mening
P(x)	Predikat i x: parametrisert
	utsagn med x som parame-
	ter
$P(x) \Rightarrow Q(x)$	Sannhetsmengden til $P(x)$
	er inneholdt i
	sannhetsmengden til $Q(x)$.
$P(x) \Leftrightarrow Q(x)$	Sannhetsmengden til $P(x)$
	er lik sannhetsmengden til
	Q(x).
\forall	For alle
3	Det eksisterer

Logikklovene

Kommutative lover: $p \wedge q \equiv q \wedge p$ $p \vee q \equiv q \vee p$

Assosiative lover: $(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$

Distributive lover: $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$ $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$

 $\begin{array}{ll} \text{Identitetslover:} & p \wedge \mathbf{t} \equiv p & p \vee \mathbf{c} \equiv p \\ \text{Negasjonslover:} & p \vee \neg p \equiv \mathbf{t} & p \wedge \neg p \equiv \mathbf{c} \end{array}$

Dobbel negativ-lov: $\neg(\neg p) \equiv p$

Idempotente lover: $p \wedge p \equiv p$ $p \vee p \equiv p$ Universalgrenselover: $p \vee \mathbf{t} \equiv \mathbf{t}$ $p \wedge \mathbf{c} \equiv \mathbf{c}$

DeMorgans lover: $\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$

Absorpsjonslover: $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$

Negasjon av \mathbf{t} og \mathbf{c} : $\neg \mathbf{t} \equiv \mathbf{c}$ $\neg \mathbf{c} \equiv \mathbf{t}$

 $\mathbf{t} = 1 = \top = \text{ "tautologi"}$ $\mathbf{c} = 0 = \bot = \text{ "selvmotsigelse"}$

Bevis

Et bevis er en rekke logiske slutninger som viser at konklusjonen i et logisk argument (dvs. det vi vil vise) er en logisk konsekvens av premissene (dvs. det vi antar i en formodning).

Vis: $p \Rightarrow q$ eller < kvantor > : P(x)

• Direkte bevis: $(q \rightarrow q_1 \rightarrow q_2 \rightarrow \cdots \rightarrow q)$

• Kontrapositive bevis: $\langle \neg q \rightarrow \neg p \rangle$

• Bevis ved tilfeller: $\langle p = (p_1 \lor p_2), p_1 \to q, p_2 \to q \rangle$

• Motsigelsesbevis: $\langle \neg (P(x)) \implies \bot \rangle$

• Eksistensbevis: «Her er den! P(42) fungerer! :-)» (liksom: moteksempel)

Inferens-regler

Modus Ponens	$\begin{array}{c} p \to q \\ p \\ \vdots q \end{array}$	Elimina
Modus Tollens	$ \begin{array}{ccc} & & & \downarrow & \downarrow \\ & & & p \rightarrow q & \\ & & \neg q & \\ & \vdots & \neg p & \\ \end{array} $	Transit
Generalisering	$\begin{array}{c} p \\ \therefore p \vee q \end{array}$	Oppidal
Spesialisering	$\begin{array}{ccc} p \wedge q & p \wedge q \\ \therefore & p & \therefore & q \end{array}$	Oppdel feller
Konjunksjon	$p \\ q$	Motsige
	$\therefore p \wedge q$	

		$p \lor q$		$p \lor q$
Eliminasjon		$\neg q$		$\neg p$
	·:.	p	<i>:</i> .	q
		$p \rightarrow q$		
Transitivitet		$q \rightarrow r$		
	·	$p \to r$		
		$p \lor q$		
Oppdeling i til-		$p \to r$		
feller		$q \to r$		
lener	·	r		
Motsigelse		$\neg p \to \mathbf{c}$		
	·:	p		

9. Kombinatorikk

Formler for kombinatorikk

	Ordnet utvalg	Uordnet utvalg
Med tilbakelegging	n^r	$\begin{pmatrix} n+r-1 \\ r \end{pmatrix}$
Uten tilbakelegging	$\frac{n!}{(n-r)!}$	$\begin{pmatrix} n \\ r \end{pmatrix}$

$$\left(\begin{array}{c} n \\ r \end{array}\right) = \frac{n!}{r!(n-r)!}$$

Antall elementer i en union

$$|A \cup B| = |A| + |B| - |A \cap B|$$

10. Tallteori

Symboler

Symbol	Mening
$d \mid n$	Det finnes et heltall k slik at $n = dk$.
$d \nmid n$	d deler ikke n
$\gcd(a,b)$	Største felles divisor av a og b
$a \equiv b (\bmod n)$	$n \mid (a-b)$

Aritmetikkens fundamentalteorem

Gitt et heltall n eksisterer det et positivt heltall k, forskjellige primtall $p_1, p_2, p_3, \ldots, p_k$ og positive heltall $e_1, e_2, e_3, \ldots, e_k$ slik at

$$n = p_1^{e_1} \cdot p_2^{e_2} \cdot p_3^{e_3} \cdot \dots \cdot p_k^{e_k}.$$

Videre er denne måten å skrive n som et produkt av primtall på unik bortsett fra rekkefølgen på faktorene.

Euklids algoritme

Euklids algoritme brukes til å bestemme $\gcd(A,B)$ for to heltall A og B, der vi antar at $A>B\geq 0$.

- 1. Hvis B = 0, er gcd(A, B) = A.
- 2. Hvis ikke, finn q og r slik at

$$A = Bq + r$$
 slik at $0 \le r < B$.

Da er gcd(A, B) = gcd(B, r).

3. Sett A := B og B := r og gå tilbake til trinn 1.

Lineære diofantiske ligninger

En lineær diofantisk likning er på formen ax + by = c, der a, b, c er gitte heltall, og vi vil finne heltallsløsninger for x og y. En slik likning har heltallsløsninger hvis og bare hvis $gcd(a, b) \mid c$.

Regneregler for kongruenser

La a, b, c, d, n være heltall slik at n > 1, og anta at $a \equiv c \pmod{n}$ og $b \equiv d \pmod{n}$. Da har vi at

- a) $(a+b) \equiv (c+d) \pmod{n}$
- b) $(a-b) \equiv (c-d) \pmod{n}$
- c) $ab \equiv cd \pmod{n}$
- d) $a^m \equiv c^m \pmod{n}$ for alle positive heltall m.

Tips for å regne ut a%n

Tips for å regne ut a%n.

- (1) Tast inn a inn på kalkulator.
- (2) Tast minustast.
- (3) Tast inn n
- (4) Trykk =-tasten inntil tallet er mindre enn n.

11. RSA

RSA er offentlig nøkkel-kryptografi. Et RSA-kryptosystem er basert på to (helst veldig store) primtall p og q.

Prosedyre for å finne nøkler

- 1. Finn et tall e som er relativt primisk med (p-1)(q-1) og finn så en positiv invers d til dette tallet modulo (p-1)(q-1).
- 2. La n = pq. Da blir (n, e) offentlig nøkkel og
- 3. (n,d) privat nøkkel.

Kryptering og dekryptering

Du ønsker å sende en melding M. Du må da kjenne mottakerens offentlige nøkkel (n, e).

- Den krypterte meldingen C er gitt ved

$$C \equiv M^e \pmod{n}$$
.

- C dekrypteres av mottakerenved å beregne $M \equiv C^d \pmod{n}$.

12. Grafer

Veier i grafer (uten parallele kanter)

vei: Sekvens av kanter (eller kanter og hjørner, viktig er insidensen)

 $(v_1v_2), (v_2v_3), (v_3v_4), \dots, (v_{n-1}v_n).$

lukket: En vei er lukket om den starter og stopper i samme hjørne. $(v_1 = v_n)$

spor: Vei som ikke gjentar kanter. sti: Vei som ikke gjentar hjørner.

krets: Et lukket spor.

sykel: En krets som ikke gjentar noe hjørne bortsett fra start og slutt

Eulervei: Er et spor som inneholder alle hjørner og kanter i G.

Eulerkrets: Er en Eulervei som også er en

Hamiltonsti: Er en sti som inneholder hver node nøyaktig en gang.

Hamiltonsykel: Er en sykel som inneholder alle hjørner i G.

Begreper

Graden: til en node er antall tilstøtende kanter Totalgraden: til en graf er summen av gradene over alle nodene i grafen.

sammenhengende: En urettet graf er sammenhengende hvis det for hvert par av hjørner a og b finnes en vei som forbinder $a \mod b$.

komponent: en ikke-sammenhengende graf består av noen sammenhengende komponenter. Enhver komponent er da en maksimal sammenhengende delgraf (delgraf hvor det ikke er mulig å legge til flere noder slik at den forblir sammenhengende)

isomorfi: En 1-1 avbilding av hjørnene i en graf G_1 til hjørnene i en annen graf G_2 er en isomorfi hvis den er 1-1 på kantene også.

isomorfi-invariant: En egenskap som ikke endres ved isomorfier.

- Antall hjørner
- Antall kanter
- Ei rekke med gradene til alle hjørnene
- Antall komponenter

Induktivt definerte mengder og rekursivt definerte funksjoner

En **induktivt definert mengde** M er den minste mengden som inneholder en gitt basismengde M_0 og som er lukket under et gitt sett med operasjoner på elementer i mengden.

- (1) (Basissteget) $M_0 \subseteq M$
- (2) (Indukskjonsstedet) Alle elementer konstruert fra elementer i M ved de gitte operasjonene, er også med i M.

En **rekursivt definert funksjon** f med definisjonsmengde M som er definert induktivt, er definert på følgende måte:

- (1) (Basissteget) Spesifiser en verdi f(x) for hver x i basismengden M_0 .
- (2) (Rekursjonssteget) For hver $x \in M$ som fremkommer fra et induksjonssteg fra elementer $x_1, ..., x_k$ og en operasjon, så er f(x) definert fra verdiene $f(x_1), ..., f(x_k)$ og operasjonen, (og avhenger kun av disse).

Prims algoritme

Prims algoritme For en vektet (urettet) graf G = (V, E, w) med n noder, og med vekter w(e) for kanter $e \in E$, så bygges et utspenntre med minste totale vekt w ved følgende induktive algoritme:

- (1) (Basistilfelle) Initialiser treet med en vilkårlig valgt node, $V(T_1) = \{v_1\}$
- (2) (Induktive trinn) Gitt at vi har tre T_{k-1} . Velg en kant e_k med lavest mulig vekt w_k , som har en node $u \in V(T_{k-1})$ og en node $v_k \notin V(T_{k-1})$. T_k får vi ved å legge noden v_k og kanten e_k til T_{k-1} .
- (3) Algoritmen avsluttes når n=k, dvs. når alle nodene i grafen er med i T_k .

Da vil T_n være et minimalt utspenntre, med totalvekt

$$w = \sum_{k=1}^{n} w_k$$

Søke-algoritmer

Dybde først søk (DFS) For en graf G = (V, E), så traverseres nodene ved følgende rekursive algoritme. **Visited** er nodene som er besøkt.

```
DFS(G,n, Visited):
   add n to Visited
   for each neighbour node v of n:
      if v not in Visited:
        DFS(G,v, Visited)
```

Dette vil besøke alle nodene hvis grafen er sammenhengende.

Bredde først søk (BFS) For en graf G = (V, E), så traverseres nodene ved følgende algoritme.

- Besøk startnoden, $V_0 = \{\text{startnode}\}\$
- Så lengde det er ubesøkte noder:
 - Besøk alle nabo-noder til V_k som ikke allerede er besøkt
 - La V_{k+1} være unionen av V_k og de nylig besøkte.

Nodene i V_k utgjør lag k.