

Rasterization

Want to do vector graphics on a raster device

Rasterization Primitives

- 2D
 - Point, line
 - Triangle
- 3D
 - Triangle

Rasterization

- Converts
 - Primitives
 - With floating point vertices

- into
 - Pixels
 - With integer coordinates

Rasterization of Lines

Drawing Lines

- Line is a series of pixel positions
- Intermediate discrete pixel positions calculated
- Staircase effect, "jaggies" (aliasing)

Line-Drawing Algorithms

- Line equation: $y = m \cdot x + b$
- Line path between two points:

$$m = \frac{y_1 - y_0}{x_1 - x_0}$$

$$b = y_0 - m \cdot x_0$$

Example

$$(x_0,y_0) = (20,41)$$

 $(x_1,y_1) = (30,44)$

$$m = \frac{44 - 41}{30 - 20} = \frac{3}{10}$$

$$b = 41 - \frac{3}{10} \cdot 20 = 35$$

$$y = \frac{3}{10} \cdot x + 35$$

X	у
21	$\frac{413}{10} \approx 41$
22	42
23	42
24	42
25	43
26	43
27	43
28	43
29	44
30	44

Example

X	у
21	$\frac{413}{10} \approx 41$
22	42
23	42
24	42
25	43
26	43
27	43
28	43
29	44
30	44

Example 2

$$(x_0,y_0) = (20,41)$$

$$(x_1,y_1) = (21,46)$$

X	y
21	46

$$m = \frac{46 - 41}{21 - 20} = \frac{5}{1} = 5$$

$$b = 41 - 5 \cdot 20 = -59$$

$$y = 5 \cdot x - 59$$

Résumé

- Quality
 - Works for some cases
 - If m < 1
- Performance
 - Division()
 - Round()
 - Floating point operation

DDA Line-Drawing Algorithm

- DDA (digital differential analyzer)
- Define $x_1 > x_0$ otherwise switch points

$$\Delta x = x_1 - x_0$$

$$\Delta y = y_1 - y_0$$

- Check if |m| < 1
 - Iterate along x
 - Otherwise iterate along y

Résumé

- Quality
 - Works
- Performance
 - Division()
 - Round()
 - Floating point operation

Bresenham's Line Algorithm

- Faster than simple DDA
 - Incremental integer calculations
 - Each step decision if draw upper or lower pixel

$$(x_0,y_0) = (10,11)$$

$$(x_1,y_1) = (13,13)$$

Bresenham's Line Algorithm

Bresenham's Line Algorithm

Bresenham's Line Algorithm (1/4)

Bresenham's Line Algorithm (1/4)

Bresenham's Line Algorithm (1/4)

$$y = m \cdot (x_k + 1) + b$$

$$d_{lower} = y - y_k =$$

$$= m \cdot (x_k + 1) + b - y_k$$

$$d_{upper} = (y_k + 1) - y =$$

= $y_k + 1 - m \cdot (x_k + 1) - b$

$$d_{lower} - d_{upper} =$$

$$= 2m \cdot (x_k + 1) - 2y_k + 2b - 1$$

Bresenham's Line Algorithm (2/4)

$$d_{lower} - d_{upper} =$$

$$= 2\mathbf{m} \cdot (\mathbf{x_k} + 1) - 2\mathbf{y_k} + 2\mathbf{b} - 1$$

$$m = \Delta y / \Delta x$$

$$(\Delta x = x_1 - x_0, \Delta y = y_1 - y_0)$$

decision parameter:

$$p_{k} = \Delta x \cdot (d_{lower} - d_{upper}) =$$

$$= 2\Delta y \cdot x_{k} - 2\Delta x \cdot y_{k} + c$$

 \rightarrow same sign as $(d_{lower} - d_{upper})$

Bresenham's Line Algorithm (3/4)

Current decision value:

$$p_{\mathbf{k}} = \Delta \mathbf{x} \cdot (\mathbf{d}_{\mathbf{lower}} - \mathbf{d}_{\mathbf{upper}}) = 2\Delta \mathbf{y} \cdot \mathbf{x}_{\mathbf{k}} - 2\Delta \mathbf{x} \cdot \mathbf{y}_{\mathbf{k}} + \mathbf{c}$$

Next decision value:

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x \cdot (y_{k+1} - y_k)$$

Starting decision value:

$$\mathbf{p_0} = 2\Delta \mathbf{y} - \Delta \mathbf{x}$$

Bresenham's Line Algorithm (4/4)

- 1. Store left line endpoint in (x_0, y_0)
- 2. Draw pixel (x_0,y_0)
- 3. Calculate constants Δx , Δy , $2\Delta y$, $2\Delta y$, $2\Delta y$ and obtain $p_0 = 2\Delta y \Delta x$
- 4. At each x_k along the line, perform test:

```
if p_k \le 0
then draw (x_k + 1, y_k); p_{k+1} = p_k + 2\Delta y
else draw (x_k + 1, y_k + 1); p_{k+1} = p_k + 2\Delta y - 2\Delta x
```

5. Perform step 4 ($\Delta x - 1$) times

Bresenham: Example

k	p_k	$(\mathbf{x}_{k+1}, \mathbf{y}_{k+1})$
		(20,41)
0	- 4	(21,41)
1	2	(22, 42)
2	-12	(23, 42)
3	- 6	(24, 42)
4	0	(25, 43)
5	-14	(26, 43)
6	- 8	(27, 43)
7	- 2	(28, 43)
8	4	(29,44)
9	-10	(30,44)

$$\mathbf{p_0} = 2\Delta \mathbf{y} - \Delta \mathbf{x}$$

if
$$p_k \le 0$$

then draw pixel (x_k+1)

then draw pixel (x_k+1,y_k) ;

$$p_{k+1} = p_k + 2\Delta y$$

else draw pixel (x_k+1,y_k+1) ;

$$p_{k+1} = p_k + 2\Delta y - 2\Delta x$$

Résumé

- Quality
 - Works
- Performance
 - No division()
 - No round()
 - No floating point operation
- Good idea
 - Adaptable to circles, other curves
 - Look at what cases are relevant in praxis

Flood-Fill Algorithm

- Pixel filling of area
 - Start from interior point
 - "Flood" internal region

Flood-Fill: Boundary and Seed Point

- Area must be distinguishable from boundaries
- Example
 - Area defined within multiple color boundaries

Flood-Fill: Who is my Neighbour?

- 4-connected means, that a connection is only valid in these 4 directions
- 8-connected means, that a connection is valid in these 8 directions

Flood-Fill: Connectedness

4-connected

8-connected

Flood-Fill: Connectedness

4-connected

8-connected

Simple Flood-Fill Algorithm

```
void floodFill4(x, y, new, old)
  int color = getPixel (x, y);
  if (color == old) {
    drawPixel (x, y, new);
    floodFill4 (x-1, y, new, old); // left
    floodFill4 (x, y+1, new, old); // up
    floodFill4 (x+1, y, new, old); // right
    floodFill4 (x, y-1, new, old); // down
```

Bad Behavior of Simple Flood-Fill

recursion sequence

Span Flood-Fill Algorithm

- FloodFill4 produces too high stacks (recursion!)
- Solution
 - Incremental horizontal fill (left to right)
 - Recursive vertical fill (first up then down)

Triangle Rasterization

Scan Converting a Triangle

Edge Walking

Edge Equations

Edge Walking

- 1. Sort vertices in y
- 2. Walk down edges from extremal y-point
- 3. Compute spans
- 4. Switch in 3rd edge
- Repeat 2 and 3 until lowest point

Possible Cases

Left or right y middle point

2 highest/lowest points

Edge Equations

- Defines positive/negative half-spaces
- Reverse spaces by multiplication by -1
- $\bullet \quad E(x,y) = Ax + By + C$
- Value for pixels?
 - $E(P_x, P_y)$

Given 2 points $\binom{x_0}{y_0}\binom{x_1}{y_1}$, compute A,B,C

1. Setup equation system

$$Ax_0 + By_0 + C = 0$$
 $Ax_1 + By_1 + C = 0$

Matrix representation

$$\begin{bmatrix} x_0 & y_0 \\ x_1 & y_1 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} + \begin{bmatrix} C \\ C \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \leftrightarrow \begin{bmatrix} x_0 & y_0 \\ x_1 & y_1 \end{bmatrix} \begin{bmatrix} A \\ B \end{bmatrix} = -C \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

3. Solve

$$\begin{bmatrix} A \\ B \end{bmatrix} = \frac{-c}{\begin{vmatrix} x_0 & y_0 \\ x_1 & y_1 \end{vmatrix}} \begin{bmatrix} \begin{vmatrix} 1 & y_0 \\ 1 & y_1 \\ x_0 & 1 \\ x_1 & 1 \end{bmatrix} = \frac{-c}{x_0 y_1 - y_0 x_1} \begin{bmatrix} y_1 - y_0 \\ x_0 - x_1 \end{bmatrix}$$

4. Choose *C*

Edge Equations for the Triangle

$$E_0 = A_0 x + B_0 y + C_0 = 0$$

 $E_1 = A_1 x + B_1 y + C_1 = 0$

Testing Pixels

- Find bounding box
- Test \cap ($E_i > 0$) for each pixel
- Happy?

Barycentric Coordinates of P

■ Define P = C +
$$u\overrightarrow{CA} + v\overrightarrow{CB}$$

= $uA + vB + (1 - u - v)C$

$$= uA + vB + wC$$
 with $1 = u + v + w$

Triangle can also be 3d

BC – Special Points

Barycentric Coordinates – Invariance

BC – Inside Triangle Test

- Also outside triangle
- In triangle if (u, v, w) all same sign
 - For CCW $(u, v, w) \ge 0$

1.2	1.0	0.8	0.6	0.4	0.2	0.0	-0.2
-1.4	-1.2	-1.0	-0.8	-0.6	- <mark>0.4</mark>	-0.2	0.0
1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
1.2	1.0	0.8	0.6	0.4	0.2	0.0	-0.2
-1.2	-1.0	-0.8	-0.6	- <mark>0.4</mark>	-0.2	0.0	0.2
1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
1.2	1.0	0.8	0.6	0.4	0.2	0.0	- <mark>0.2</mark>
-1.0	-0.8	-0.6	- <mark>0.4</mark>	-0.2	0.0	0.2	0.4
0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8
1.2	1.0	0.8	0.6	0.4	0.2	0.0	- <mark>0.2</mark>
-0.8	-0.6	-0.4	- <mark>0.2</mark>	0.0	0.2	0.4	0.6
0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
1.2	1.0	0.8	0.6	0.4	0.2	0.0	- <mark>0.2</mark>
-0.6	- <mark>0.4</mark>	-0.2	0.0	0.2	0.4	0.6	0.8
0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
1.2	1.0	0.8	0.6	0.4	0.2	0.0	-0.2
-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0
0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
1.2	1.0	0.8	0.6	0.4	0.2	0.0	-0.2
-0.2	0.0	0.2	0.4	0.6	0.8	1.0	1.2
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.2	1.0	0.8	0.6	0.4	0.2	0.0	-0.2
0.0	0.2	0.4	0.6	0.8	1.0	1.2	1.4
-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2

BC – Color Interpolation

- \blacksquare P = uA + vB + wC
- $P = u\langle Green \rangle + v\langle Blue \rangle + w\langle Red \rangle$
- A.k.a. Gouraud interpolation

Interpolation

- Interpolate per point (a.k.a vertex) attributes (ex.: colors, z-value) over the triangle
- Attribute value for a point P
 - Easy with barycentric coordinates
 - P = uA + vB + wC
 - $P_{attrib.} = uA_{attrib.} + vB_{attrib.} + wC_{attrib.}$

Barycentric Coordinates of P (2D)

$$P = C + u\overrightarrow{CA} + v\overrightarrow{CB}$$

$$(\overrightarrow{CA} \quad \overrightarrow{CB}) \begin{pmatrix} u \\ v \end{pmatrix} = P - C$$

$$(A - C \quad B - C) \begin{pmatrix} u \\ v \end{pmatrix} = P - C$$

Barycentric Coordinates of P (2D)

Cramer's Rule

$$\binom{u}{v} = \frac{1}{|A-C-B-C|} \begin{pmatrix} |P-C-B-C| \\ |A-C-P-C| \end{pmatrix}$$

Point is inside triangle iff (means if and only if)

$$u \ge 0 \cap v \ge 0 \cap (u + v) \le 1$$

