Infinite Computations – WS 2015/2016

Exercises – Series 2

October 30, 2015

Exercise 6. (Bachelor)

1+2 points

- (a) Let Σ be a finite alphabet and let UP be the set of all ultimately periodic ω -words over Σ . Show that UP is not regular. (You may use the closure properties of the class of regular ω -languages.)
- (b) Consider the following Büchi automaton \mathcal{A} . Give a Büchi automaton recognizing the complement of $L(\mathcal{A})$. (You can construct the automaton directly, without using the complementation construction from the lecture.)

Exercise 7. (Bachelor + Master)

3+3 points

Consider the following Büchi automata over the alphabet $\Sigma = \{a, b\}$:

Apply the following steps to obtain a nondeterministic Büchi automaton (NBA) recognizing $L(A_1) \cap L(A_2)$:

- (a) Construct a generalized Büchi automaton (GNBA) \mathcal{A} recognizing $L(\mathcal{A}_1) \cap L(\mathcal{A}_2)$ as shown in the lecture.
- (b) Construct an NBA A' that is equivalent to the GNBA A, using the construction presented in the lecture.

Consider the following Büchi automaton A over the alphabet $\Sigma = \{a, b\}$.

- (a) Give graphical representations of the six transition profiles of A.
- (b) Draw the transition profile automaton TP(A).

Exercise 9. (Bachelor + Master)

3 points

We show that complementation of Büchi automata is easy if we start with a *deterministic* Büchi automaton:

Let $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$ be a deterministic Büchi automaton. Give a formal construction of a nondeterministic Büchi automaton \mathcal{B} recognizing the complement of $L(\mathcal{A})$ such that the number of states of \mathcal{B} is polynomial in |Q|. Show the correctness of your construction.

Exercise 10. (Master)

3 points

For a nondeterministic Büchi automaton $\mathcal{A} = (Q, \Sigma, q_0, \Delta, F)$, let $\Delta(P, a)$ be the set of states that are reachable from a state in P via input a, i.e., $\Delta(P, a) = \{q \in Q \mid \exists p \in P : (p, a, q) \in \Delta\}$.

We define *simple Büchi automata* as nondeterministic Büchi automata with the property that $\Delta(\{q\}, a) \cap F \neq \emptyset$ for all $q \in F, a \in \Sigma$. In other words, each final state allows for each letter a transition again to a final state.

Let $\mathcal{A} = (Q, \Sigma, q_0, \Delta, F)$ be a simple Büchi automaton. Give a formal construction of a *deterministic* Büchi automaton \mathcal{B} with $L(\mathcal{B}) = L(\mathcal{A})$. Show the correctness of your construction.

Please always consider announcements made in the L^2P course room.

You can hand in your solutions until 12:15 on Friday, November 6, 2015, before the beginning of the lecture or at the drop box at the Chair i7.