

Closure Coefficient in Complex Directed Networks

Mingshan Jia, UTS mingshan.jia@student.uts.edu.au

Bogdan Gabrys UTS

Katarzyna Musial UTS

Clustering in Networks: The Local Clustering Coefficient

- A measure of cliquishness of a neighbourhood.
- The local clustering coefficient captures the degree to which the neighbours
 of a focal node connect to each other.

The focal node serves as the centre-node in an open triad.

Clustering in Networks: The Local Clustering Coefficient

Notation:

Let G = (V, E) be an undirected graph on a node set V and an edge set E. The adjacency matrix G is denoted as $A = \{a_{ij}\}$. $a_{ij} = 1$ if there is an edge between node i and node j, otherwise $a_{ij} = 0$. The degree of node i is denoted d_i .

• For any node $i \in V$, the **local clustering coefficient** is defined as:

where OTC(i) is the number of open triads with i as the centre-node.

$$T(i) = 2$$

$$OTC(i) = \frac{4 * 3}{2} = 6$$

$$C(i) = 0.33$$

Closure Coefficient

- Another measure of clustering for undirected networks.
- The **local closure coefficient** captures the degree to which the 2-hop neighbours of a focal node connect to the focal node itself.

The focal node serves as the end-node in an open triad.

Closure Coefficient

• For any node $i \in V$, the **local closure coefficient** is defined as:

$$E(i) = \frac{2 * T(i)}{OTE(i)} = \frac{\sum_{j} \sum_{k} a_{ij} a_{ik} a_{jk}}{\sum_{j \in N(i)} (d_j - 1)} , \qquad (2)$$

where OTE(i) is the number of open triads with i as the end-node. N(i) denotes the set of neighbours of node i.

$$T(i) = 2$$

 $OTE(i) = 4$ $E(i) = \frac{2 * 2}{4} = 1$

Closure Coefficient in Directed Networks

One bidirectional edge is counted as two unidirectional edges.

Closure Coefficient in Directed Networks

Notation:

Let $A = \{a_{ij}\}$ denote the adjacency matrix of a directed graph $G^D = (V, E)$. $a_{ij} = 1$ if there is an edge from node i to node j, otherwise $a_{ij} = 0$. N(i) denote the set of neighbours of node i, including both out-neighbours and in-neighbours. The degree of node i is denoted d_i .

$$d_i = d_i^{out} + d_i^{in} = \sum_j a_{ij} + \sum_i a_{ji}$$

• For any node $i \in V$, the **local directed closure coefficient** is defined as:

$$E^{D}(i) = \frac{2 * T^{D}(i)}{2 * OTE^{D}(i)}$$

$$= \frac{\sum_{j} \sum_{k} (a_{ij} + a_{ji}) (a_{ik} + a_{ki}) (a_{jk} + a_{kj})}{2 * \sum_{j \in N(i)} (a_{ij} + a_{ji}) (d_{i} - (a_{ij} + a_{ji}))}$$
(3)

$$E(i) = \frac{2 * T(i)}{OTE(i)}$$

$$T^{D}(i) = 4$$
 $OTE^{D}(i) = 7$
 $E^{D}(i) = \frac{2*4}{2*7} = 0.57$

Average Closure Coefficient in Directed Networks

In order to measure at the network-level, we propose the average directed closure coefficient.
 It is defined as the average of the local directed closure coefficient over all nodes:

$$\overline{E^D} = \frac{1}{|V|} \sum_{i \in V} E^D(i)$$
 (4)

$$\overline{E^D} = \frac{E^D(a) + E^D(b) + E^D(c) + E^D(d) + E^D(e)}{5} = 0.37$$

Two Types of Directed Closure Coefficient

Source Closure Coefficient & Target Closure Coefficient

For a given node i in a directed network, the **source closure coefficient**, denoted $E^{src}(i)$, and the **target closure coefficient**, denoted $E^{tgt}(i)$, are defined as:

$$E^{src}(i) = \frac{T^{src}(i)}{2 * OTE^{D}(i)} = \frac{\sum_{j} \sum_{k} (a_{ij} + a_{ji}) (a_{jk} + a_{kj}) a_{ik}}{2 * \sum_{j \in N(i)} (a_{ij} + a_{ji}) (d_i - (a_{ij} + a_{ji}))} , \quad (5)$$

$$E^{tgt}(i) = \frac{T^{tgt}(i)}{2 * OTE^{D}(i)} = \frac{\sum_{j} \sum_{k} (a_{ij} + a_{ji})(a_{jk} + a_{kj}) a_{ki}}{2 * \sum_{j \in N(i)} (a_{ij} + a_{ji})(d_i - (a_{ij} + a_{ji}))}$$
(6)
$$T^{src}(i) = 3$$
$$T^{tgt}(i) = 1$$

$$E^{D}(i) = E^{src}(i) + E^{tgt}(i)$$

$$T^{src}(i) = 7$$

 $T^{tgt}(i) = 1$
 $OTE^{D}(i) = 7$
 $E^{src}(i) = \frac{7}{2 * 7} = 0.50$
 $E^{tgt}(i) = \frac{1}{2 * 7} = 0.07$

Closure Coefficient in Weighted Networks

Weighted undirected networks:

- Notation: Let $W = \{w_{ij}\}$ denote the weight matrix of a weighted graph G^W . $w_{ij} \in [0,1]$, all weights are normalized by the maximum weight. N(i) denote the set of neighbours of node i. The strength of node i is denoted $s_i = \sum_j w_{ij}$.
- The weighted closure coefficient of node i is defined as:

$$E^{W}(i) = \frac{\sum_{j} \sum_{k} w_{ij} w_{ik} w_{jk}}{\sum_{j \in N(i)} w_{ij} (s_i - w_{ij})} . \tag{7}$$

• When network becomes binary, $E^W(i) = E(i)$.

Closure Coefficient in Weighted Networks

Weighted directed networks:

- Notation:
 Let W = {w_{ij}} denote the weight matrix of a weighted directed graph G^{W,D}.
 w_{ij} ∈ [0, 1], all weights are normalized by the maximum weight.
 N(i) denote the set of neighbours of node i, including both out-neighbours and in-neighbours.
 - N(i) denote the set of neighbours of node i, including both out-neighbours and in-neighbours. The strength of node i is denoted $s_i = \sum_i w_{ij} + \sum_i w_{ji}$.
- The weighted directed closure coefficient of node i is defined as:

$$E^{W,D}(i) = \frac{\sum_{j} \sum_{k} (w_{ij} + w_{ji})(w_{ik} + w_{ki})(w_{jk} + w_{kj})}{2 * \sum_{j \in N(i)} (w_{ij} + w_{ji})(s_i - (w_{ij} + w_{ji}))}$$
(8)

• This definition can also be used in **weighted signed** networks (where $w_{ij} \in [-1, 1]$), only with a modified definition of $s_i = \sum_j |w_{ij}| + \sum_j |w_{ji}|$.

Computational Efficiency

• Local directed closure coefficient $E^D(i)$:

$$E^{D}(i) = \frac{\sum_{j} \sum_{k} (a_{ij} + a_{ji}) (a_{ik} + a_{ki}) (a_{jk} + a_{kj})}{2 * \sum_{j \in N(i)} (a_{ij} + a_{ji}) (d_i - (a_{ij} + a_{ji}))}$$

$$O(\overline{k}^{2})$$

• Average directed closure coefficient $\overline{E^D}$:

$$\overline{E^D} = \frac{1}{|V|} \sum_{i \in V} E^D(i) \qquad \qquad \boldsymbol{o}(\boldsymbol{n} \cdot \overline{\boldsymbol{k}}^2)$$

Experiments: Datasets

Table 1. Statistics of datasets, showing the number of nodes (|V|), the number of edges (|E|), the average degree (\bar{k}) , the proportion of reciprocal edges (r), the average directed clustering coefficient $(\bar{C}^{\mathcal{D}})$, and the average directed closure coefficient $(\bar{E}^{\mathcal{D}})$ defined in this paper. Datasets having timestamps on edge creation are superscripted by (τ) . Positively weighted networks are superscripted by (+), and networks having both positive and negative weights are superscripted by (\pm) .

Network	V	E	$ar{k}$	r	$\overline{C^{\mathcal{D}}}$	$\overline{E^{\mathcal{D}}}$	
$CollegeMsg^{ au}$	1,899	20,296	10.69	0.636	0.087	0.017	1 communication network
${ m Ado-Health}^+$	2539	12,969	5.11	0.388	0.090	0.071	2 friendship networks
BTC-Аррна $^{\pm, au}$	3783	24,186	6.39	0.832	0.046	0.006	3 trust networks
Wiki-Vote	7,115	104K	14.57	0.056	0.082	0.017	5 trust networks
Epinions $^{\pm, au}$	132K	841K	6.38	0.308	0.085	0.010	
$Digg\text{-}Friends^{\tau}$	280K	1,732K	6.19	0.212	0.075	0.008	2 citatian matematica
Arxiv-НерРн	34,546	422K	12.2	0.003	0.143	0.053	2 citation networks
US-PATENT	3,775K	$16{,}519\mathrm{K}$	4.38	0.000	0.038	0.019	
A sk U buntu $^{ au}$	79,155	199K	2.51	0.002	0.028	2e-4	2 online Q&A networks
$\operatorname{STACKOVERFLOW}^{ au}$	$2{,}465\mathrm{K}$	$16{,}266\mathrm{K}$	6.60	0.002	0.008	2e-4	2 1 co muyaha and myadush mahusayi.
Amazon	403K	3,387K	8.40	0.557	0.364	0.234	1 co-purchased product network
GOOGLE	876K	$5{,}105K$	5.83	0.307	0.370	0.097	1 hyperlink network

[G. Fagiolo, "Clustering in complex directed networks", 2007]

Experiments: Correlation with Local Directed Clustering Coef.

• The directed closure coefficient provides complementary information to the classic directed clustering coefficient.

Experiments: Link Prediction in Directed Networks

Classic neighbourhood based methods for undirected links:

- Common Neighbours Index (CN): $CN(x, y) = |N(x) \cap N(y)|$
- Adamic-Adar Index (AA): $AA(x,y) = \sum_{u \in N} \frac{1}{(x) \cap N(y)} \frac{1}{\log |N(u)|}$
- Resource Allocation Index (RA): $RA(s,t) = \sum_{u \in N} \frac{1}{(x) \cap N(y)} \frac{1}{|N(u)|}$

Variations of neighbourhood methods for directed links:

- Directed Common Neighbours Index (DiCN): $DiCN(s,t) = |N_{out}(s) \cap N_{in}(t)|$
- Directed Adamic-Adar Index (DiAA): $DiAA(s,t) = \sum_{u \in N_{out}(s) \cap N_{in}(t)} \frac{1}{\log |N(u)|}$
- Directed Resource Allocation Index (DiRA): $DiRA(s,t) = \sum_{u \in N_{out}(s) \cap N_{in}(t)} \frac{1}{|N(u)|}$

Experiments: Directed Closure Coefficient in Link Prediction

Proposed indices for directed links:

Closure Closeness Index (CCI):

$$CCI(s,t) = |N_{out}(s) \cap N_{in}(t)| \cdot (E^{src}(s) + E^{tgt}(t))$$

• Extra Closure Closeness Index (ECCI):

$$ECCI(s,t) = N(s) \cap N(t) | \cdot (E^{src}(s) + E^{tgt}(t))$$

Experiments: Directed Closure Coefficient in Link Prediction

Setup:

• Sampling:

In very large networks (n > 10K): we perform a randomised breadth first search sampling of 5K nodes on G^D , and repeat it many times according to the size of the dataset.

Experiments: Directed Closure Coefficient in Link Prediction

Table 2. Performance comparison of six methods on link prediction in directed networks (Precision %). RP (second column) gives the probability that a random prediction is correct. The best performance in each network is in bold type.

Network	RP	DiCN	DiAA	DiRA	CCI	ECCI
$CollegeMsg^\tau$	0.30	2.546	2.763	3.533	3.395	3.730
Ado-Health	0.10	8.404	8.406	8.304	10.23	11.07
$\mathrm{BTC} ext{-}\mathrm{Alpha}^{ au}$	0.05	8.588	9.269	7.313	8.418	9.226
Wiki-Vote	0.15	21.96	22.51	20.32	22.55	19.08
Epinions^{τ}	0.37	3.613	3.662	3.531	3.490	5.106
$Digg\text{-Friends}^\tau$	0.33	6.649	6.709	6.685	7.135	5.569
Arxiv-НерРн	0.16	20.35	21.51	20.72	20.07	21.49
US-PATENT	0.04	9.787	10.14	9.987	11.67	11.31
$AskUbuntu^{\tau}$	0.03	4.100	4.912	4.163	5.412	4.697
$\mathbf{StackOverflow}^{\tau}$	0.16	7.433	8.129	7.472	8.792	6.388
Amazon	0.06	23.71	27.94	27.43	26.76	29.46
GOOGLE	1.19	44.48	52.32	50.29	49.39	46.24

Conclusion

- The directed closure coefficient.
- The closure coefficient in weighted networks
- The source closure coefficient & the target closure coefficient
- Two neighbourhood based indices for directed link prediction
- The directed closure coefficient provides complementary information to the classic directed clustering coefficient.
- Including closure coefficient leads to significant improvement in directed link prediction.

$$E_i = \frac{2L_i}{\sum_{j \in N(i)} (d_j - 1)}$$