- 1. (000001) 用列举法表示下列集合: (1) 十二生肖组成的集合;
- 2. (000002) 用描述法表示下列集合:

(2) 中国国旗上所有颜色组成的集合.

- (1) 平面直角坐标系中第一象限的角平分线上的所有点组成的集合;
- (2) 3 的所有倍数组成的集合.
- 3. (1000004) 已知方程 $x^2 + px + 4 = 0$ 的所有解组成的集合为 A, 方程 $x^2 + x + q = 0$ 的所有解组成的集合为 B, 且 $A \cap B = \{4\}$. 求集合 $A \cup B$ 的所有子集.
- 4. (000005) 已知集合 $A = (-2, 1), B = (-\infty, -2) \cup [1, +\infty)$. 求: $A \cup B, A \cap B$.
- 5. (000006) 已知全集 $U = (-\infty, 1) \cup [2, +\infty)$, 集合 $A = (-1, 1) \cup [3, +\infty)$. 求 \overline{A} .
- 6. (000007) 已知集合 $A = \{x|x^2 + px + q = 0\}, B = \{x|x^2 x + r = 0\}, 且 A \cap B = \{-1\}, A \cup B = \{-1,2\}.$ 求 实数 p、q、r 的值.
- 7. (1000009) 已知陈述句 α 是 β 的充分非必要条件. 若集合 $M=\{x|x$ 满足 $\alpha\},\ N=\{x|x$ 满足 $\beta\},\ 则\ M$ 与 N 的关系为 ().
 - A. $M \subset N$ B. $M \supset N$ C. M = N D. $M \cap N = \emptyset$
- 8. (000011) 若集合 $M = \{a | a = x + \sqrt{2}y, x, y \in \mathbf{Q}\}$, 则下列结论正确的是 ().

B. $M = \mathbf{Q}$

9. $_{(000012)}$ 若 lpha 是 eta 的必要非充分条件, eta 是 γ 的充要条件, γ 是 δ 的必要非充分条件, 则 δ 是 lpha 的______

C. $M \supset \mathbf{Q}$

D. $M \subset \mathbf{Q}$

- 10. (000013) 已知全集 $U = \{x | x$ 为不大于20的素数 }. 若 $A \cap \overline{B} = \{3,5\}, \overline{A} \cap B = \{7,19\}, \overline{A \cup B} = \{2,17\}, 则$ $A = ______, B = _____.$
- 11. (000014) 已知集合 $P = \{x | -2 \le x \le 5\}$, $Q = \{x | x \ge k + 1$ 且 $x \le 2k 1\}$, 且 $Q \subseteq P$. 求实数 k 的取值范围.
- 12. (000015) 已知全集 $U = \mathbf{R}$, 集合 $A = \{x | x \le a 1\}$, $B = \{x | x > a + 2\}$, $C = \{x | x < 0$ 或 $x \ge 4\}$, 且 $\overline{A \cup B} \subseteq C$. 求实数 a 的取值范围.
- 13. (000016) 已知集合 $A = \{x | (a-1)x^2 + 3x 2 = 0\}$. 是否存在这样的实数 a, 使得集合 A 有且仅有两个子集? 若存在, 求出实数 a 的值及对应的两个子集; 若不存在, 说明理由.
- 14. (000019) 已知非空数集 S 满足: 对任意给定的 $x, y \in S(x, y)$ 可以相同), 有 $x + y \in S$ 且 $x y \in S$.
 - (1) 哪个数一定是 S 中的元素? 说明理由;
 - (2) 若 S 是有限集, 求 S;

A. $M \subseteq \mathbf{Q}$

条件, γ 是 α 的_____ 条件.

(3) 若 S 中最小的正数为 5, 求 S.

- 15. (000026) 求不等式 $5 \le x^2 2x + 2 < 26$ 的所有正整数解.
- 16. (000028) 设关于 x 的不等式 $a_1x^2 + b_1x + c_1 > 0$ 与 $a_2x^2 + b_2x + c_2 > 0$ 的解集分别为 A、B, 试用集合运算表示下列不等式组的解集:

(1)
$$\begin{cases} a_1x^2 + b_1x + c_1 > 0, \\ a_2x^2 + b_2x + c_2 > 0; \\ a_1x^2 + b_1x + c_1 \le 0, \\ a_2x^2 + b_2x + c_2 > 0; \\ a_1x^2 + b_1x + c_1 \le 0, \\ a_2x^2 + b_2x + c_2 \le 0. \end{cases}$$
(3)
$$\begin{cases} a_1x^2 + b_1x + c_1 \le 0, \\ a_2x^2 + b_2x + c_2 \le 0. \end{cases}$$

- 17. (000037) 已知集合 $A = \{x | |x-a| < 2\}, B = \{x | \frac{2x-1}{x+2} < 1\},$ 且 $A \subseteq B$. 求实数 a 的取值范围.
- 18. (000045) 已知集合 $A = \{x|x^2 2x 3 > 0\}$, $B = \{x|x^2 + px + q \le 0\}$. 若 $A \cup B = \mathbb{R}$, 且 $A \cap B = [-2, -1)$, 求实数 p 及 q 的值.
- 19. (000073) 已知集合 $A = \{y|y = (\frac{1}{2})^x, \ x \in [-2,0)\}$,用列举法表示集合 $B = \{y|y = \log_3 x, \ x \in A$ 且 $y \in \mathbf{Z}\}$.
- 20. (000346) 设集合 $A = \{x | |x-2| < 1, x \in \mathbb{R}\},$ 集合 $B = \mathbb{Z},$ 则 $A \cap B = \underline{\hspace{1cm}}$.
- 21. (000356) 若集合 $A = \{x|y^2 = x, y \in \mathbf{R}\}, B = \{y|y = \sin x, x \in \mathbf{R}\}, 则 A \cap B = _____.$
- 22. (000377) 设全集 $U = \mathbf{R}$, 集合 $A = \{-1, 0, 1, 2, 3\}$, $B = \{x | x \ge 2\}$, 则 $A \cap \mathcal{C}_U B = \underline{\hspace{1cm}}$.
- 23. (000386) 设集合 $M = \{x | x^2 = x\}, N = \{x | \lg x \le 0\}, 则 M \cap N = _____.$
- 24. (000397) 已知集合 $A = \{x | \frac{1}{2} \le 2^x < 16\}, B = \{x | y = \log_2(9 x^2)\},$ 则 $A \cap B = \underline{\hspace{1cm}}$.
- 25. (000401) 已知 $f(x) = \sin \frac{\pi}{3} x$, $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$, 现从集合 A 中任取两个不同元素 s、t, 则使得 $f(s)\cdot f(t) = 0$ 发生的概率是______.
- 26. (000413) 集合 $\{x|\cos(\pi\cos x)=0, x\in[0,\pi]\}=$ _____(用列举法表示).
- 27. (000416) 已知 $U = \mathbf{R}$, 集合 $A = \{x | 4 2x \ge x + 1\}$, 则 $\mathcal{C}_U A = \underline{\hspace{1cm}}$.
- 28. (000426) 已知集合 $A = \{1, 2, 4, 6, 8\}, B = \{x | x = 2k, k \in A\}, 则 A \cap B = _____.$
- 29. (0000446) 若集合 $M = \{x|x^2 2x < 0\}, N = \{x||x| > 1\}, 则 <math>M \cap N =$ _____.
- 30. (000456) 设集合 $A = \{2, 3, 4, 12\}, B = \{0, 1, 2, 3\}, 则 A \cap B = _____.$
- 31. (000466) 已知集合 $A = \{1, 2, 5\}, B = \{2, a\}.$ 若 $A \cup B = \{1, 2, 3, 5\},$ 则 $a = _____.$
- 32. (000476) 已知全集 $U = \mathbb{N}$, 集合 $A = \{1, 2, 3, 4\}$, 集合 $B = \{3, 4, 5\}$, 则 $(\mathcal{C}_U A) \cap B = \dots$

- 33. (000496) 已知全集 $U = \mathbf{R}$, 集合 $A = \{x | |x-1| > 1\}$, $B = \{x | \frac{x-3}{x+1} < 0\}$, 则 $(\mathcal{C}_U A) \cap B = \underline{\hspace{1cm}}$.
- 34. (000506) 若全集 $U = \mathbf{R}$, 集合 $A = \{x | x \le 0$ 或 $x \ge 2\}$, 则 $\mathbb{C}_U A = \underline{\hspace{1cm}}$.
- 35. (000514) 数列 $\{a_n\}$ 的通项公式是 $a_n = 2n-1$ $(n \in \mathbb{N}^*)$, 数列 $\{b_n\}$ 的通项公式是 $b_n = 3n$ $(n \in \mathbb{N}^*)$, 令集合 $A = \{a_1, a_2, \dots, a_n, \dots\}$, $B = \{b_1, b_2, \dots, b_n, \dots\}$, $n \in \mathbb{N}^*$. 将集合 $A \cup B$ 中的所有元素按从小到大的顺序 排列, 构成的数列记为 $\{c_n\}$. 则数列 $\{c_n\}$ 的前 28 项的和 $S_{28} =$ _______.
- 36. (000526) 集合 $P = \{x | 0 \le x < 3, x \in \mathbf{Z}\}, M = \{x | x^2 \le 9\}, 则 P \cap M = ______.$
- 37. (000536) 设全集 $U = \{1, 2, 3, 4, 5\}$, 若集合 $A = \{3, 4, 5\}$, 则 $C_U A = \underline{\hspace{1cm}}$.
- 38. (000547) 已知集合 $A = \{x | 0 < x < 3\}, B = \{x | x^2 \ge 4\}, 则 A \cap B = _____.$
- 39. (000556) 设全集 $U = \mathbf{Z}$, 集合 $M = \{1, 2\}$, $P = \{-2, -1, 0, 1, 2\}$, 则 $P \cap \mathbb{C}_U M = \underline{\hspace{1cm}}$.
- 40. (000576) 已知集合 $A = \{1, 2, m\}, B = \{3, 4\}.$ 若 $A \cap B = \{3\},$ 则实数 m = 2.
- 41. (000596) 设全集 $U = \{1, 2, 3, 4\}$, 集合 $A = \{x | x^2 5x + 4 < 0, x \in \mathbf{Z}\}$, 则 $\mathcal{C}_U A = \underline{\hspace{1cm}}$.
- 42. (0000602) 若行列式 $\begin{vmatrix} 1 & 2 & 4 \\ \cos \frac{x}{2} & \sin \frac{x}{2} & 0 \\ \sin \frac{x}{2} & \cos \frac{x}{2} & 8 \end{vmatrix}$ 中元素 4 的代数余子式的值为 $\frac{1}{2}$,则实数 x 的取值集合为______.
- 43. (000617) 已知集合 $M = \{x | |x+1| \le 1\}, N = \{-1, 0, 1\}, 则 M \cap N = _$
- 44. (000627) 若全集 $U = \mathbf{R}$, 集合 $A = \{x | x \ge 1\} \cup \{x | x < 0\}$, 则 $\mathcal{C}_U A = \underline{\hspace{1cm}}$.
- 45. (000636) 集合 $A = \{1, 2, 3, 4\}, B = \{x | (x-1)(x-5) < 0\}, \text{ } M A \cap B = \dots$
- 46. (000656) 已知集合 $A = \{x | \ln x > 0\}, B = \{x | 2^x < 3\}, 则_____.$
- 47. (000666) 已知集合 $A = \{x | \frac{x-2}{x+1} \ge 0\}$, 集合 $B = \{y | 0 \le y < 4\}$, 则 $A \cap B =$ ______.
- 48. (000686) 已知集合 $A = \{x | x > -1, x \in \mathbf{R}\},$ 集合 $B = \{x | x < 2, x \in \mathbf{R}\},$ 则 $A \cap B =$ _____.
- 49. (000700) 集合 $A = \{1, 3, a^2\}$, 集合 $B = \{a+1, a+2\}$. 若 $B \cup A = A$, 则实数 a =_____.
- 50. (000706) 设全集 $U = \mathbb{R}$, 若集合 $A = \{2\}, B = \{x | -1 < x < 2\}$, 则 $A \cap (\mathcal{C}_U B) = \underline{\hspace{1cm}}$.
- 51. (000716) 已知集合 $U = \{-1, 0, 1, 2, -3\}, A = \{-1, 0, 2\},$ 则 $C_U A = \underline{\hspace{1cm}}$.
- 52. (000726) 集合 $A = \{x | \frac{x}{x-2} < 0\}, B = \{x | x \in \mathbf{Z}\}, 则 A \cap B 等于_____.$
- 53. (000736) 已知全集 $U = \mathbf{R}$, 集合 $A = \{x|x^2 2x 3 > 0\}$, 则 $\mathcal{C}_U A = \underline{\hspace{1cm}}$.
- 54. (000751) 从集合 $\{-1,1,2,3\}$ 随机取一个为 m,从集合 $\{-2,-1,1,2\}$ 随机取一个为 n,则方程 $\frac{x^2}{m}+\frac{y^2}{n}=1$ 表示双曲线的概率为______.

- 55. (000756) 已知集合 $A = \{1, 2, 3\}B = \{1, m\}$, 若 $3 m \in A$, 则非零实数 m 的数值是______.
- 56. (000768) 已知集合 $P = \{x | (x+1)(x-3) < 0\}, Q = \{x | |x| > 2\}, 则 P \cap Q = \underline{\hspace{1cm}}$
- 57. (000775) 平面上三条直线 x-2y+1=0, x-1=0, x+ky=0, 如果这三条直线将平面划分为六个部分,则实数 k 的取值组成的集合 A=______.
- 58. (000776) 已知集合 $A = \{1, 3, 5, 7, 9\}, B = \{0, 1, 2, 3, 4, 5\},$ 则图中阴影部分集合用列举法表示的结果是_____

- 59. (000836) 已知集合 $A = \{1, 2, m\}, B = \{2, 4\},$ 若 $A \cup B = \{1, 2, 3, 4\},$ 则实数 m =_____.
- 60. (000846) 已知全集 $U = \mathbf{R}$, 若集合 $A = \{x | \frac{x}{x-1} > 0\}$, 则 $\mathcal{C}_U A = \underline{\hspace{1cm}}$.
- 61. (000857) 设集合 $A = \{x | |x| < 2, x \in \mathbf{R}\}, B = \{x | x^2 4x + 3 \ge 0, x \in \mathbf{R}\}, 则 A \cap B = \underline{\hspace{1cm}}$
- 62. (000879) 若集合 $A = \{x | 3x + 1 > 0\}, B = \{x | |x 1| < 2\}, 则 A \cap B = _____.$
- 63. (000889) 从集合 $A=\{1,2,3,4,5,6,7,8,9,10\}$ 中任取两个数, 欲使取到的一个数大于 k, 另一个数小于 k(其中 $k\in A$) 的概率是 $\frac{2}{5},$ 则 k=_____.
- 64. (000891) 已知集合 $A = \{x | |x-2| < a\}, B = \{x | x^2 2x 3 < 0\},$ 若 $B \subseteq A$, 则实数 a 的取值范围是______.
- 65. (000899) 设集合 $M = \{x | x^2 = x\}, N = \{x | \log_2 x \le 0\}, 则 M \cup N = _____.$
- 67. (000910) 若集合 $A = \{x | y = \sqrt{x-1}, x \in \mathbf{R}\}, B = \{x | | x | \le 1, x \in \mathbf{R}\}, 则 A \cap B = \underline{\hspace{1cm}}$
- 68. (000932) 集合 $A = \{x | x^2 3x < 0\}, B = \{x | |x| < 2\}, 则 <math>A \cup B$ 等于_____.
- 69. (000942) 已知集合 $A = \{-1, 3, 2m 1\}$, 集合 $B = \{3, m^2\}$. 若 $B \subseteq A$, 则实数 m =_____.
- 70. (000962) 已知 $x \ge 1$, $y \ge 0$, 集合 $A = \{(x,y)|x+y \le 4\}$, $B = \{(x,y)|x-y+t=0\}$. 如果 $A \cap B \ne \emptyset$, 则 t 的取值范围是______.
- 71. (000964) 已知全集 $U = \mathbf{R}$, 集合 $A = \{x | (x-1)(x-4) \leq 0\}$, 则集合 A 的补集 $\mathcal{C}_U A = \underline{\hspace{1cm}}$
- 72. (000989) 判断下列各组对象是否组成集合. (T or F)
 - _____(1) 大于 0 的偶数全体.
 - _____(2) 绝对值小于 0 的实数全体.
 - _____(3) 很小的数的全体.

- 73. (000990) 用描述法或列举法 (自行择其一种) 表示下列集合.
 - (1) 大于 0 且小于 3 的实数的全体.
 - (2) 方程 $x^3 x = 0$ 的解的全体.
 - (3) 一次函数 y = 2x + 1 图像上所有点的全体.
 - (4) 被 3 除余 2 的整数的全体.
- 74. (000991) 用列举法表示下列集合:

$$(1) \left\{ x \left| \frac{6}{3-x} \in \mathbf{Z}, x \in \mathbf{Z} \right. \right\};$$

- (2) $\{(x,y)|x+y=4, x, y \in \mathbf{N}\}.$
- 75. (000992) 在直角坐标系中, 用图形表示下列集合:

$$(1) \ \{(x,y)| \ 2 < x < 6, 1 < y < 4, x, y \in \mathbf{R}\};$$

- (2) $\{(x,y) | 2 < x < 6, 1 < y < 4, x, y \in \mathbf{Z}\}.$
- 76. (000993) 集合 $\left\{a, \frac{b}{a}, 1\right\}$ 和 $\{0, a+b, a^2\}$ 表示同一个集合, 求实数 a, b 的值.
- 77. (000994) 已知 a 是实数, 集合 $M = \{x | ax^2 + 2x + a = 0\}$ 有且仅有一个元素. 求满足上述条件的 a 所构成的集合.
- 78. (000995) 已知非空集合 M 中的元素都是正整数, 且满足性质: 若 $x \in M$, 则 $4-x \in M$. 求满足条件的集合 M.
- 79. (000998) 满足 $\{a_1, a_2\} \subseteq A \subsetneq \{a_1, a_2, a_3, a_4, a_5, a_6\}$ 的集合 A 的个数是______.
- - (1) 集合 A 与集合 B 是相等的还是有真包含关系还是没有任何包含关系?
 - (2) 证明你的结论.
- 81. (001002) 设 a 是一个实数, 集合 $A = \{x | x < 2\}, B = \{x | x \le a\},$ 且 $A \subseteq B$.
 - (1) 实数 a 的取值范围为______;
 - (2) 试证明 (1) 的结论.
- 82. (001003) 已知集合 $A = \{1, 2\}, B = \{x | x^2 ax + a 1 = 0, x \in \mathbf{R}\}$, 若 B 不是 A 的真子集, 求实数 a 的值.
- 83. (001004) 设集合 $A = \{1, -1\}, B = \{x | x^2 2ax + b = 0, x \in \mathbb{R}\},$ 若 $B \subseteq A$ 且 $B \neq \emptyset$, 求实数 a, b 的值.
- 84. (001005) 设集合 $A = \{x | x^2 x + a = 0, x \in \mathbf{R}\}$, 求实数 a 的取值范围, 使得 $A \subseteq \mathbf{R}^+$.
- 85. (001008) 已知集合 $P \cap \{4,6\} = \{4\}$, $P \cap \{8,10\} = \{10\}$, $P \cap \{2,12\} = \{12\}$, 若 $P \subseteq \{2,4,6,10,12\}$, 则 P =______.
- 86. (1001010) 试用集合 A, B, C 的交, 并, 以及关于全集 U 的补运算表示下列文氏图所示的集合.

1.	;2.	

87. (001013) 已知集合
$$M=\{(x,y)|y=x+1,\ x\in\mathbf{R}\},\ N=\{(x,y)|y=-x^2+4x,\ x\in\mathbf{R}\},\$$
则 $M\cap N=$ _______.

88. (001014) 已知集合
$$M = \{y|y = x+1, \ x \in \mathbf{R}\}, \ N = \{y|y = -x^2+4x, \ x \in \mathbf{R}\}, \ M \cap N = \underline{\hspace{1cm}}$$

- 89. (001015) 已知集合 $A = \{x \mid x^2 + px + q = 0\}, B = \{x \mid x^2 x + r = 0\}, 且 A \cap B = \{-1\}, A \cup B = \{-1, 2\}, 求$ 实数 p,q,r 的值.
- 90. (001016) 已知集合 $A = \{1, 2\}, B = \{x | mx^2 + 2mx 1 < 0, x \in \mathbf{R}\}$. 已知 $A \cap B = \{1\}$, 求实数 m 的取值范围.
- 91. (001017) 设 A, B 是两个集合, 求证: " $A \cap B = A$ " 当且仅当 " $A \subseteq B$ ".(用文氏图画一下并不算证明)
- 92. (001029) 设 f(x) 是 m 次多项式, g(x) 是 n 次多项式, m, n 均为正整数. 判断下列命题的真假 (T or F).
 - _____(1) 多项式 -2f(x) 的次数为 m;
 - _____(2) $\mathbf{3}$ $\mathbf{5}$ $\mathbf{5}$
 - _____(3) 多项式 $f(x) \times g(x)$ 的次数为 m + n;
 - _____(4) 多项式 $[f(x)]^2 + f(x) + 1$ 的次数为 2m;
- 93. (001152) 设 $f: A \rightarrow B$ 是集合 A 到集合 B 的映射, 则以下正确的是_____
 - A. A 中每一元素在 B 中必有像

- B. B 中每一元素在 A 中必有原像
- C. B 中每一元素在 A 中的原像是唯一的 D. A 中的不同元素的像必不同
- 94. (001153) 集合 $A = \{1,2,3\}$, 集合 $B = \{1,4\}$, 则可建立从 A 到 B 的不同映射共_____ 种, 从 B 到 A 的不同 映射共_____种.
- 95. (001159) 设集合 $A = \{-1,0,1\}, B = \{2,3,4,5,6\},$ 映射 $f: A \to B$, 对任意 $x \in A$, 都有 x + f(x) + xf(x) 是 奇数. 求满足条件的映射个数.
- 96. (001233) 求下列函数零点的集合, 并说明理由.
 - (1) 函数 $f(x) = x^3 + 3x + 1, x \in \mathbf{Z}$;
 - (2) 函数 $f(x) = x^3 3x + 1, x \in \mathbf{Z}$.

97.	7. (001392) 分别用角度制和弧度制写出始边在 x 轴的正半轴上, 终边在下列位置的角的集合.					
	例如: x 轴的正半轴: 角度制 $\underline{360^{\circ} \cdot k}$, $k \in \mathbb{Z}$; 弧度制 $\underline{2k\pi}$, $k \in \mathbb{Z}$.					
	(1) x 轴的负半轴: 角度制	; 弧度制;				
	(2) y 轴的正半轴: 角度制	弧度制;				
	(3) y 轴的负半轴: 角度制	: 弧度制;				
	(4) x 轴: 角度制; 弧度制_	;				
	(5) y 轴: 角度制; 弧度制_	;				
	(6) 坐标轴: 角度制; 弧度制	<u> </u>				
	(7) 坐标轴的角平分线: 角度制	; 弧度制;				
	(8) 直线 $y = \sqrt{3}x$: 角度制	; 弧度制				
98.	(001393)					
	(1) 终边和 $\frac{\pi}{3}$ 的终边重合的角的集合为	; 终边和 $\dfrac{\pi}{3}$ 的终边垂直的角的集合为				
	(2) 1 弧度角的终边逆时针旋转 2 弧度, 再顺时针旋转 3 弧度, 再逆时针旋转 4 弧度, 再逆时针旋转 5 弧度后, 所得角的大小为; 与其终边相同的角的集合为					
	(3) 终边和 $\frac{\pi}{3}$ 的终边关于 y 轴对称的角的集合为	,其中在 [-π,π) 内的角有;				
	(4) 终边和 $\frac{\pi}{3}$ 的终边关于 x 轴对称的角的集合为	, 其中在 [-π,π) 内的角有;				
	(5) 终边和 $\frac{\pi}{3}$ 的终边关于直线 $y=x$ 对称的角的	集合为, 其中在 [-π,π) 内的角有;				
	(6) 终边和 $\frac{\pi}{3}$ 的终边关于直线 $y = -x$ 对称的角的	J集合为,其中在 [-π, π) 内的角有;				

- (8) 若角 α 与角 β 的终边关于角 $\frac{\pi}{5}$ 的终边所在直线对称, 则角 α 与角 β 满足的关系式为______.
- 99. $_{(001394)}$ 如果 $_{\alpha}$ 是第三象限角,将 $_{\alpha}$ 的范围用集合表示出来,将 $_{2}$ 的范围用集合表示出来,并且在直角坐标系中用阴影表示 $_{2}^{\alpha}$ 的范围(注意边界若取得到用实线,若取不到用虚线表示).
- 100. (001395) 如果 α 是第二象限角,将 α 的范围用集合表示出来. 将 3α 和 $\frac{\alpha}{3}$ 的范围用集合表示出来,并且在直角 坐标系中分别用阴影表示 α , 3α 和 $\frac{\alpha}{3}$ 的范围(注意边界若取得到用实线,若取不到用虚线表示).
- 101. (001414) 已知集合 $M = \left\{ x \middle| x = \cos \frac{k\pi}{3}, \ k \in \mathbf{Z} \right\}, \ N = \left\{ y \middle| y = \sin \frac{2n+1}{6}\pi, \ n \in \mathbf{Z} \right\}, \ \bigcirc M \ __N(填入 "'⊊", "=", "⊋" 之一).$
- 102. (001503) 使函数 $y = 3 \cos 2x$ 取到最小值的所有 x 的集合是_____
- 103. (001543) 已知函数 $y = A \sin(\omega x + \varphi)$ 的振幅是 3,最小正周期为 $\frac{2\pi}{7}$,初相为 $\frac{\pi}{6}$,则使这个函数取到最大值的 x 的集合为_______.
- 104. (001592) 用集合的语言表述下列语句, 并用铅笔作出示意图 (画直线需用尺).
 - (1) 点 A 在平面 α 上: ______;
 - (2) 点 *B* 不在平面 β 上: ______;
 - (3) 平面 α 经过直线 AC: _____
 - (4) 直线 BC 与平面 α 相交于点 C: _____.
- 105. (001684) 设四棱柱的集合为 A, 平行六面体的集合为 B, 长方体的集合为 C, 正方体的集合为 D, 直平行六面体的集合为 E, 正四棱柱的集合为 E, 直四棱柱的集合为 E, 可四棱柱的集合为 E, 可由角体的集合为 E, 可由角体的 E, 可由角体的
- 106. (001992) 用集合的关系符号 " \subsetneq " 表示复数集 ${\bf C}$, 实数集 ${\bf R}$, 有理数集 ${\bf Q}$, 整数集 ${\bf Z}$ 和自然数集 ${\bf N}$ 的关系为_______.
- 107. (002016) 已知集合 $P = \{z | |z \mathbf{i}| = |z + \mathbf{i}|, \ z \in \mathbf{C}\}, \ Q = \{z | |z + 1| = 1, \ z \in \mathbf{C}\}, \ 则 \ P \cap Q = _$
- $108._{(002022)}$ 已知 $z+rac{1}{z}$ 是实数, 满足条件的复数 z 的集合在复平面上是什么图形? 请画出草图并说明理由.
- 109. (002255) 若圆 $x^2 + y^2 + 4x + 2by + b^2 = 0$ 与两坐标轴都相切, 那么 b 的值所组成的集合是______.

- 110. (002540) 已知集合 $M = \{a_1, a_2, a_3\}, P = \{b_1, b_2, b_3, b_4, b_5, b_6\}, 若 M$ 中的不同元素对应到 P 中的像不同, 则这 样的映射的个数共有______ 个.
- 111. (002693) 已知 $P = \{y = x^2 + 1\}, Q = \{y | y = x^2 + 1, x \in \mathbf{R}\}, E = \{x | y = x^2 + 1, x \in \mathbf{R}\}, F = \{(x, y) | y = x^2 + 1\}$ $x^2+1,\;x\in{\bf R}\},\,G=\{x|x\geq 1\},\,H=\{x|x^2+1=0,\;x\in{\bf R}\},\,$ 则各集合间关系正确的有______. (答案可 能不唯一)
 - (A) P = F (B) Q = E (C) E = F (D) $Q \subseteq G$ (E) $H \subseteq P$
- 112. (002697) 设全集 $U = \{2, 3, a^2 + 2a 3\}$, 集合 $A = \{|2a 1|, 2\}, C_U A = \{5\}, 则实数 <math>a = \underline{\hspace{1cm}}$.
- 113. (002700) 集合 $C = \{x | x = \frac{k}{2} \pm \frac{1}{4}, k \in \mathbf{Z}\}, D = \{x | x = \frac{k}{4}, k \in \mathbf{Z}\},$ 试判断 C 与 D 的关系, 并证明.
- 114. (002701) 集合 $A = \{x|x^2 + 4x = 0\}, B = \{x|x^2 + 2(a+1)x + a^2 1 = 0, x \in \mathbf{R}\}.$
 - (1) 若 $A \cap B = A$, 求实数 a 的取值范围;
 - (2) 若 $A \cup B = A$, 求实数 a 的取值范围
- 115. (002702) 若集合 A = [2,3], 集合 B = [a, 2a + 1].
 - (1) 若 $A \subseteq B$, 求实数 a 的取值范围;
 - (2) 若 $A \cap B \neq \emptyset$, 求实数 a 的取值范围.
- 116. (002703) 设全集 $U={\bf R}$, 集合 $A=\{x|f(x)=0\},\ B=\{x|g(x)=0\},\ C=\{x|h(x)=0,\ x\in{\bf R}\},$ 则方程 $\frac{f^2(x) + g^2(x)}{h(x)} = 0$ 的解集是_____(用 U, A, B, C 表示).
- 117. (002704)(1) 已知集合 $A = \{y|y=x^2, x \in \mathbf{R}\}, B = \{y|y=4-x^2, x \in \mathbf{R}\}, 则 A \cap B = \underline{\hspace{1cm}}$.
 - (2) 已知集合 $A = \{(x,y)|y=x^2, x \in \mathbf{R}\}, B = \{(x,y)|y=4-x^2, x \in \mathbf{R}\},$ 则 $A \cap B =$ ______
- 将满足条件的集合 A, B 写成有序集合对 (A, B), 则有序集合对 (A, B) 有______ 个.
- 119. (002708) 设集合 $A = \{x | x^2 + px + 1 = 0, x \in \mathbb{R}\}$, 若 $A \cap \mathbb{R}^+ = \emptyset$. 求实数 p 的取值范围.
- 120. (002709) 设函数 $f(x) = \lg(\frac{2}{x+1} 1)$ 的定义域为集合 A, 函数 $g(x) = \sqrt{1 |x+a|}$ 的定义域为集合 B.
 - (1) 当 a = 1 时, 求集合 B.
 - (2) 问: $a \ge 2$ 是 $A \cap B = \emptyset$ 的什么条件 (在"充分非必要条件、必要非充分条件、充要条件、既非充分也非 必要条件"中选一)? 并证明你的结论.
- 121. (002710) 如图, U 为全集, M, P, S 是 U 的三个子集, 则阴影部分所表示的集合是 (
 - A. $(M \cap P) \cap S$
- B. $(M \cap P) \cup S$
- C. $(M \cap P) \cap \mathcal{C}_U S$ D. $(M \cap P) \cup \mathcal{C}_U S$

122. (002711) 设集合 $A = \{5, \log_2(a+3)\}, B = \{a,b\},$ 若 $A \cap B = \{2\}, 则 A \cup B = _____.$ 123. (002712) 设集合 $A \cap \{-2,0,1\} = \{0,1\}, \ A \cup \{-2,0,2\} = \{-2,0,1,2\},$ 则满足上述条件的集合 A 的个数 124. (002713) 若集合 $A = \{x | x \leq 2\}, B = \{x | x \geq a\},$ 满足 $A \cap B = \{2\},$ 则实数 a =______ 125. (002714) 若集合 $M = [a-1, a+1], N = (-\infty, -1) \cup [2, +\infty),$ 且 $M \cap N = \emptyset$, 则实数 a 的取值范围为 . 127. (002716) 已知集合 $M = \{x | x = 3m+1, m \in \mathbf{Z}\}, N = \{y | y = 3m+2, m \in \mathbf{Z}\}, 若 x_0 \in M, y_0 \in N, 则 x_0 y_0$ 与集合 M,N 的关系是 (A. $x_0y_0 \in M$ 但 $x_0y_0 \notin N$ B. $x_0y_0 \in N$ 但 $x_0y_0 \notin M$ D. $x_0 y_0 \in M \perp x_0 y_0 \in N$ C. $x_0y_0 \notin M \coprod x_0y_0 \notin N$ 128. (002718) 设常数 $a \in \mathbf{R}$, 集合 $A = \{x | \frac{3-2x}{x-1} + 1 \ge 0, \ x \in \mathbf{R}\}, \ B = \{x | 2ax < a+x, \ x \in \mathbf{R}\}.$ 若 $A \cup B = B$, 求 a 的取值范围. 129. (002720) 设常数 $k \in \mathbf{R}$,关于 x 的不等式组 $\begin{cases} x^2 - x - 2 > 0, \\ 2x^2 + (2k+5)x + 5k < 0 \end{cases}$ 整数解的集合为 $\{-2\}$,求实数 k 的 取值范围. 130. (002723) 定义集合运算: $A \odot B = \{z | z = xy(x+y), x \in A, y \in B\}$, 设集合 $A = \{0,1\}, B = \{2,3\}$, 则集合 $A \odot B$ 的所有元素之和为_____ 131. (002725) 集合 $A = \{(x,y)|y=|x|+1\}, B = \{(x,y)|y=\frac{1}{2}x+a\},$ 若 $A \cap B = \emptyset$, 则 a 的取值范围是_______. 元素,则 a 的取值范围是_ 133. (002728) 设含有三个实数的集合既可以表示为 $\{a, \frac{b}{a}, 1\}$,又可以表示为 $\{a^2, a+b, 0\}$,那么 a+b=______. 134. (002729) 设 $f(x) = x^2 - 12x + 36$, $A = \{a | 1 \le a \le 10, a \in \mathbb{N}\}$, $B = \{b | b = f(a), a \in A\}$, 又设 $C = A \cap B$. 求 集合 C. 135. (002807) 已知关于 x 的不等式 $\frac{ax-5}{r^2-a} < 0$ 的解集为 M. (1) 当 a = 5 时, 求集合 M; (2) 若 $2 \in M$ 且 $5 \notin M$, 求实数 a 的取值范围.

C. {1}

D. $\{0,1\}$

136. (002913) 若集合 $A = \{y | y = x^{\frac{1}{3}}, -1 \le x \le 1\}, B = \{y | y = x^{-\frac{1}{2}}\}, 则 A \cap B$ 等于 (

B. [-1, 1]

A. (0,1]

A. 1 或 2

B. 1 或 3

C. 1 或 2 或 3

D. 1 或 2 或 3 或 4

- 138. (002956) 若集合 $A = \{y|y = 2 \cdot (\frac{1}{3})^{|x|}\}, \ B = \{a|\log_a(3a-1) > 0\}, \ \c M\ A \cap B = _____.$
- 139. (002970)* 已知函数 $f(x) = 1 + a \cdot (\frac{1}{2})^x + (\frac{1}{4})^x$.
 - (1) 当 a = 1 时, 求函数 y = f(x) 在 $(-\infty, 0)$ 上的值域;
 - (2) 对于定义在集合 D 上的函数 y=f(x), 如果存在常数 M>0, 满足: 对任意 $x\in D$, 都有 $|f(x)|\leq M$ 成立, 则称 f(x) 是 D 上的有界函数, 其中 M 称为函数 f(x) 的一个上界. 若函数 y=f(x) 在 $[0,+\infty)$ 上是以 3 为一个上界的有界函数, 求实数 a 的取值范围.
- 140. (003064) 在单位圆中分别画出适合下列条件的角 α 的终边的范围, 并写出角 α 的集合.
 - $(1)\,\sin\alpha\geq\frac{\sqrt{3}}{2};$
 - $(2) \cos \alpha \le -\frac{1}{2};$
 - (3) $\tan \alpha < -1$.
- 141. (003065) 与 -45° 角终边相同的角的集合是_____.
- 142. (003068) 若 $\sin \alpha \cdot \cos \alpha > 0$, 则 α 的值的集合是_____.
- 143. (003380) 如图, 用 35 个单位正方形拼成一个矩形, 点 P_1 、 P_2 、 P_3 、 P_4 以及四个标记为 " \blacktriangle " 的点在正方形的顶点处, 设集合 $\Omega = \{P_1, P_2, P_3, P_4\}$, 点 $P \in \Omega$, 过 P 作直线 l_P ,使得不在 l_P 上的 " \blacktriangle " 的点分布在 l_P 的两侧. 用 $D_1(l_P)$ 和 $D_2(l_P)$ 分别表示 l_P 一侧和另一侧的 " \blacktriangle " 的点到 l_P 的距离之和. 若过 P 的直线 l_P 中有且只有一条满足 $D_1(l_P) = D_2(l_P)$,则 Ω 中所有这样的 P 为_______.

- 144. (003501) 用 "⊆"连接集合 Z、Q、R、C:_____.
- 145. (003533) 若集合 $A = \{z | |z + 5i| |z 5i| = 8\}, B = \{z | |z| = 4\}, 则 A \cap B = _____.$
- 146. (003610) 已知集合 $A = \{1, 2, 4\}, B = \{2, 4, 5\},$ 则 $A \cap B =$ _____.

- 147. (003631) 已知集合 $A = (-\infty, 3), B = (2, +\infty),$ 则 $A \cap B =$ _____.
- 148. (003672) 给定无穷数列 $\{a_n\}$, 若无穷数列 $\{b_n\}$ 满足: 对任意 $n \in \mathbb{N}^*$, 都有 $|b_n a_n| \le 1$, 则称 $\{b_n\}$ 与 $\{a_n\}$ "接近".
 - (1) 设 $\{a_n\}$ 是首项为 1, 公比为 $\frac{1}{2}$ 的等比数列, $b_n = a_{n+1} + 1$, $n \in \mathbb{N}^*$. 判断数列 $\{b_n\}$ 是否与 $\{a_n\}$ 接近, 并说明理由;
 - (2) 设数列 $\{a_n\}$ 的前四项为: $a_1=1$, $a_2=2$, $a_3=4$, $a_4=8$, $\{b_n\}$ 是一个与 $\{a_n\}$ 接近的数列, 记集合 $M=\{x|x=b_i,\ i=1,2,3,4\}$, 求 M 中元素的个数 m;
 - (3) 已知 $\{a_n\}$ 是公差为 d 的等差数列. 若存在数列 $\{b_n\}$ 满足: $\{b_n\}$ 与 $\{a_n\}$ 接近, 且在 $b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$ 中至少有 100 个为正数, 求 d 的取值范围.
- 149. (003673) 已知集合 $A = \{1, 2, 3, 4\}, B = \{3, 4, 5\}, 则 A \cap B = _____.$
- 150. (003684) 如图, 用 35 个单位正方形拼成一个矩形, 点 P_1, P_2, P_3, P_4 以及四个标记为 "▲" 的点在正方形的顶点 处, 设集合 $\Omega = \{P_1, P_2, P_3, P_4\}$, 点 $P \in \Omega$. 过 P 作直线 l_P , 使得不在 l_P 上的 "▲" 的点分布在 l_P 的两侧. 用 $D_1(l_P)$ 和 $D_2(l_P)$ 分别表示 l_P 一侧和另一侧的 "▲" 的点到 l_P 的距离之和. 若过 P 的直线 l_P 中有且只有一条满足 $D_1(l_P) = D_2(l_P)$, 则 Ω 中所有这样的 P 为

151. (003695) 设实数 a, b, c 满足: $ac \neq 0$ 且 $a \neq c$, 集合 $A = \{y|y = ax^2 + bx + c, x \in \mathbf{R}\}, B = \{y|y = cx^2 + bx + a\},$ 以下结论一定正确的是 ().

A. $A \subseteq B$

B. $B \subseteq A$

C. $A \cup B = \mathbf{R}$

D. $A \cap B \neq \emptyset$

- 152. (003702) 设 \overrightarrow{d} , \overrightarrow{b} , \overrightarrow{c} 是平面上的向量, $|\overrightarrow{a}|=1$, $|\overrightarrow{b}|=3$, $|\overrightarrow{c}|=4$, 且 $\overrightarrow{b}\cdot\overrightarrow{c}=0$, 实数 λ 满足 $0\leq\lambda\leq1$. 若 \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} 及 λ , 使得 $s=|\overrightarrow{a}-\lambda\overrightarrow{b}-(1-\lambda)\overrightarrow{c}|$ 是正整数, 则 s 的值的集合是______.
- 153. (003707) 若全集 $U = \{x|x^2 7x + 12 \le 0\}$,集合 $M = \{x|3 < x < 4\}$, $N = \left\{x\left|\frac{x-3}{4-x} \ge 0\right.\right\}$,则 $\mathbb{C}_U M \cap \mathbb{C}_U N = \underline{\qquad}$
- 154. (003719) 若集合 $A = \{x|x^2 2x < 0\}, B = \{x||x| < 1\}, 则 A \cup B$ 等于_____.
- 155. (003727) 从集合 $\{0,1,2,3\}$ 的所有非空子集中,等可能地取出一个. 则取出的非空子集中所有元素之和恰为 5 的概率为______.

- 156. (003745) 已知集合 $A = \{y | y = \sin x, x \in \mathbf{R}\}, B = \{x | x(2-x) > 0\}, \, \text{则 } A \cup B = \underline{\hspace{1cm}}$
- 157. (003760) 已知集合 $A = \{1, 3, \sqrt{m}\}, B = \{1, m\}, A \cup B = A, 则 m = _____.$
- 158. (003774) 已知集合 $A = \left\{ x \left| \frac{2x+1}{x+2} < 1, \ x \in \mathbf{R} \right. \right\}$, 函数 $f(x) = |mx+1| \ (m \in \mathbf{R})$. 函数 $g(x) = x^2 + ax + b \ (a, b \in \mathbf{R})$ \mathbf{R}) 的值域为 $[0, +\infty)$.
 - (1) 若不等式 f(x) < 3 的解集为 A, 求 m 的值;
 - (2) 在 (1) 的条件下, 若 $\left| f(x) 2f\left(\frac{x}{2}\right) \right| \le k$ 恒成立, 求 k 的取值范围;
 - (3) 若关于 x 的不等式 g(x) < c 的解集为 (m, m+6), 求实数 c 的值.
- 159. (003835) 若集合 $A = \{x | |x-2| \le 2\}, B = \{y | y = -x^2, -1 \le x \le 2\}, 则 A \cap B = ...$
- 160. (003860) 若集合 $M = \{y | y = x^2 1, x \in \mathbf{R}\},$ 集合 $N = \{x | y = \sqrt{3 x}, x \in \mathbf{R}\},$ 则 $M \cap N = \dots$.
 - A. $\{(-\sqrt{2}, 1), (\sqrt{2}, 1)\}$ B. $\{t | 0 \le t \le \sqrt{3}\}$ C. $\{t | -1 \le t \le 3\}$ D. $\{t | -\infty < t \le \sqrt{3}\}$

- 161. (003865) 集合 $\{y|y=2^{-x}\} \cap \{y|y=\lg x, \ 0 < x < 100\} = ____.$
- 162. (003887) 从集合 {1, 2, 3, 4, 5, 6, 7, 8, 9} 中任取两个不同的数, 则其中一个数恰是另一个数的 3 倍的概率为___
- 163. (003925) 已知集合 $A = \{x | x^2 2x \le 0\}, B = \{x | -1 < x < 1\}, 则 A \cap B = _____.$
- 164. (003940) 已知集合 $A = \{x|x = a + (a^2 1)\mathrm{i}\}(a \in \mathbf{R}, \mathrm{i}$ 是虚数单位), 若 $A \subseteq \mathbf{R}, \mathrm{i}$ 是。
- 165. (003953) 已知集合 M 是满足下列性质的函数 f(x) 的全体, 存在非零常数 T, 对任意 $x \in \mathbf{R}$, 有 f(x+T) = Tf(x)成立.
 - (1) 函数 f(x) = x 是否属于集合 M? 说明理由;
 - (2) 设 $f(x) \in M$, 且 T = 2, 已知当 1 < x < 2 时, $f(x) = x + \ln x$, 求当 -3 < x < -2 时, f(x) 的解析式.
- 166. (003957) 已知集合 $P = \{a, -1\}, Q = \{x | x^2 1 < 0, x \in \mathbf{Z}\},$ 如果 $P \cap Q \neq \emptyset$, 则实数 $a = \underline{\hspace{1cm}}$.
- 167. (004029) 设集合 A 是由所有满足下面条件的有序数组 $(x_1, x_2, x_3, x_4, x_5)$ 构成的: 每一个元素 x_i 等于 0.1.-1中之一, 其中 i=1,2,3,4,5. 那么集合 A 中满足条件 " $1 \le |x_1| + |x_2| + |x_3| + |x_4| + |x_5| \le 3$ "的元素有多少 个?
- 168. (004059) 已知集合 $A = \{-2, 1, 2\}, B = \{\sqrt{a} + 1, a\},$ 且 $B \subseteq A,$ 则实数 a 的值是______.
- 169. (004080) 集合 $A = \{1, 2, 3, 4\}, B = \{x | (x-1)(x-5) < 0\}, M A \cap B = \underline{\hspace{1cm}}$
- 170. (004091) 已知函数 $f(x) = \cos x$, 若对任意实数 $x_1 \cdot x_2$, 方程 $|f(x) f(x_1)| + |f(x) f(x_2)| = m(m \in \mathbf{R})$ 有解, 方程 $|f(x) - f(x_1)| - |f(x) - f(x_2)| = n(n \in \mathbf{R})$ 也有解, 则 m + n 的值的集合为____
- 171. (004110) 非空集合 A 中所有元素乘积记为 T. 已知集合 $M = \{1,4,5,7,8,9\}$, 从集合 M 的所有非空子集中任 选一个子集 A, 则 T(A) 为偶数的概率是_____(结果用最简分数表示).

万	成立, 则称集合 M 是 " Ω 集合	合". 给出下列 4 个集合: ① /	$(y_1) \in M$,存在 $(x_2, y_2) \in M$ $M = \{(x, y) y = \frac{1}{x} \}; ② M = 1$ 所有 " Ω 集合"的序号是($\{(x,y) y=e^x-2\};$ ③
	A. ②③	В. ③④	С. ①②④	D. ①3④
173. (0	$_{004123)}$ 设集合 $A = \{1, 2, 3\}, B$	$B=\{y y=\sin x,\;x\in\mathbf{R}\},$ 贝	$ \exists A \cap B = \underline{\hspace{1cm}}. $	
戶 ((则称 $\{a_n\}$ 具有性质 P . 1) 若无穷数列 $\{a_n\}$ 的前 n 2) 若无穷数列 $\{a_n\}$ 为等差数	项和为 $S_n=n^2+n+2$, 判数列, 首项 $a_1=-1$, 公差 d 数列, 首项 $a_1=1$, 公比 $q>$	$ x=a_n,\ n\in \mathbf{N}^*\}$. 若对任意 断 $\{a_n\}$ 是否具有性质 \mathbf{P} , 并 >0 , 且 $\{a_n\}$ 具有性质 \mathbf{P} , 求 0 , 问: 是否存在 q , 使得 $\{a_n\}$	说明理由; t d 的 值;
175. (0	$_{004144)}$ 已知集合 $M = \{x x +$	$ -1 \le 1$, $N = \{-1, 0, 1\}$, 贝	$J\ M\cap N=\underline{\hspace{1cm}}.$	
((式判断数列 a_n = n²(n ∈ 对于所有各项均为正整数 水正整数 m 的所有可 	N*) 是否为 "差增数列", 并 的 "差增数列"{a _n }, 其中 a 能取值的集合;	$\frac{2}{n} > x_{n+1}$,则称数列 $\{x_n\}$ 为说明理由; $1 = a_2 = 1, $ 若使得 $a_k = m$ $gx_1 + \lg x_2 + \dots + \lg x_{2020} = 0$	成立的序数 k 的最大值
177. ($_{004164)}$ 集合 $A = \{x x^2 - 2x < 0.004164\}$	$<0\}, B = \{x x < 1\}, M$ A	\cup B =	
" ' (,	接近". 1) 设 { a_n } 是首项为 1, 公比 说明理由; 2) 设数列 { a_n } 的前四项为 $M = \{x x = b_i, \ i = 1, 2, 3, 4\}$	为 $\frac{1}{2}$ 的等比数列, $b_n = a_{n+1}$: $a_1 = 1$, $a_2 = 2$, $a_3 = 4$, , 求 M 中元素的个数 m 的 的等差数列, 若存在数列 $\{b_n\}$	$\{b_n\}$ 满足: $\{b_n\}$ 与 $\{a_n\}$ 接	$\left\{ egin{aligned} & & & & & & \\ & & & & & & \\ & & & & & $
179. ($_{004227)}$ 已知集合 $A=\{1,3,m\}$	$\}, B = \{3, 5\}, 且 B \subseteq A, 则$	实数 m 的值是	
180. (0	$_{_{004271)}}$ 若集合 $A = \{2,4,6,8\}$	$B = \{x x^2 - 4x \le 0\}, $ 则 A	$A \cap B = \underline{\hspace{1cm}}$.	
	\mathbf{E}_{D04284} 已知函数 $f(x)=m\cdot 2^x$ 皆 $A=B,$ 且 A 、 B 都不是写		(x) = 0, x ∈ R }, 集合 B = { Ł (). C. [-3,5]	$x f(f(x)) = 0, x \in \mathbf{R}$. D. $[0,7)$

- 182. (004292) 已知集合 $P = \{x | (x+1)(x-3) < 0\}, Q = \{x | |x| > 2\}, 则 P \cap Q = _____.$
- 183. (004299) 平面上三条直线 x-2y+1=0, x-1=0, x+ky=0, 如果这三条直线将平面划分为六个部分,则实数 k 的取值组成的集合 A=______.
- 184. (004311) 设 $m \in \mathbb{R}$. 已知集合 $A = \{2,3\}, B = \{1,m\}.$ 若 $4-m \in A$, 则 $m = \underline{\hspace{1cm}}$.
- 185. (004330) 双曲线 Γ : $x^2 \frac{y^2}{h^2} = 1(b > 0)$.
 - (1) 若 Γ 的一条渐近线方程为 y = 2x, 求 Γ 的方程;
 - (2) 设 F_1 、 F_2 是 Γ 的两个焦点, P 为 Γ 上一点, 且 $PF_1 \perp PF_2$, $\triangle PF_1F_2$ 的面积为 9, 求 b 的值;
 - (3) 已知斜率为 2 的直线与 Γ 交于 A、B 两点, 点 M 是线段 AB 的中点, 设点 M 的横坐标的集合为 Ω . 若 $\{x|x=2n,\ n\in \mathbf{N}^*\}\subseteq\Omega$, 求正数 b 的取值范围.
- 186. (004343) 设 $P_1P_2P_3\cdots P_8$ 是平面直角坐标系中的一个正八边形, 点 P_i 的坐标为 (x_i,y_i) $(i=1,2,\cdots,8)$. 集合 $A=\{y|$ 存在 $i\in\{1,2,\cdots,8\}$, 使得 $y=y_i\}$, 则集合 A 的元素个数可能为_____(写出所有可能的值).
- 187. (004353) 已知全集 $U = \{x | x < 2\}$, 集合 $A = \{x | x < 1\}$, 则 $C_U A = \underline{\hspace{1cm}}$.
- 188. (004354) 设集合 $A = \{x | |x-2| < 1, \ x \in \mathbf{R}\}, \ B = \{x | \frac{x-3}{x-1} \ge 0\}, \ 则 \ A \cup B = _____.$
- 189. (004374) 设集合 $A = \{1, 2, 3\}, B = \{x | x < 3\}, 则 A \cap B = \underline{\hspace{1cm}}$
- 190. (004382) 已知常数 $m, n \in \mathbb{Z}$, 若对任意 $x \in [0, +\infty)$, 不等式 $(mx 2)(x^2 2n) \ge 0$ 恒成立, 则 m + n 的取值集合为______.
- 191. (004403) 设集合 $A = \{y|y = a^x, \ x > 0\}$ (其中常数 $a > 0, \ a \neq 1$), $B = \{y|y = x^k, \ x \in A\}$ (其中常数 $k \in \mathbf{Q}$), 则 "k < 0" 是 " $A \cap B = \emptyset$ " 的 ().
 - A. 充分非必要条件

B. 必要非充分条件

C. 充分必要条件

- D. 既非充分又非必要条件
- 192. (004414) 已知集合 $M=\{y|y=3\sin x, x\in {\bf R}\},\ N=\{x||x|< a\},\ {\it H}\ M\subseteq N,\ 则实数 a 的取值范围是______.$
- 193. (004421) 已知 M、N、 $P \subseteq \mathbf{R}$, $M = \{x | f(x) = 0\}$, $N = \{x | g(x) = 0\}$, $P = \{x | f(x)g(x) = 0\}$, 则集合 P 恒满 足的关系为 ().
 - A. $P = M \cup N$
- B. $P \neq \emptyset$
- C. $P = \emptyset$
- D. $P \subseteq (M \cup N)$
- 194. (004422) 已知 a_1 、 a_2 与 b_1 、 b_2 是 4 个不同的实数, 关于 x 的方程 $|x-a_1|+|x-a_2|=|x-b_1|+|x-b_2|$ 的解集为 A, 则集合 A 中元素的个数为 ().
 - A. 1 个

B. 0 个或 1 个或 2 个

C. 0 个或 1 个或 2 个或无限个

D. 1 个或无限个

- 195. (004424) 设 $\mu(x)$ 表示不小于 x 的最小整数, 例如 $\mu(0.3) = 1$, $\mu(-2.5) = 2$.
 - (1) **解方程** $\mu(x-1) = 3$;
 - (2) 设 $f(x) = \mu(x \cdot \mu(x)), n \in \mathbb{N}^*$, 试分别求出 f(x) 在区间 (0,1]、(1,2] 以及 (2,3] 上的值域; 若 f(x) 在区间 (0,n] 上的值域为 M_n , 求集合 M_n 中的元素的个数;
 - (3) 设实数 $a>0, g(x)=x+a\cdot\frac{\mu(x)}{x}-2, h(x)=\frac{\sin(\pi x)+2}{x^2-5x+7}$, 若对于任意 $x_1,x_2\in(2,4]$ 都有 $g(x_1)>h(x_2)$, 求实数 a 的取值范围.
- 196. (004432) 集合 $\{x|\cos(\pi\cos x)=0,\ x\in[0,\pi]\}=$ _____(用列举法表示).
- 197. (004435) 集合 $A = \{y | y = \log_{\frac{1}{2}} x x, 1 \le x \le 2\}, B = \{x | x^2 5tx + 1 \le 0\}, 若 A \cap B = A, 则实数 t 的取值范围是______.$
- 198. (004468) 设全集 $U = \mathbf{R}$ 集合 $A = \{-2, -1, 0, 1, 2\}, B = \{x | x \ge 0\}, 则 A \cap \mathbb{C}_U B = \underline{\hspace{1cm}}$
- 199. (004499) 已知集合 $M = \{1, 2, 3, \dots, 10\}$, 集合 $A \subseteq M$, 定义 M(A) 为 A 中元素的最大值, 当 A 取遍 M 的所有非空子集时, 对应的 M(A) 的和记为 S_{10} , 则 $S_{10} =$ ______.
- 200. (004510) 已知集合 $A = \{x | x > 0\}, B = \{x | x^2 \le 1\}, 则 A \cap B = _____.$
- 201. (004520) 设函数 $f(x) = |x-a| \frac{2}{x} + a$, 若关于 x 的方程 f(x) = 1 有且仅有两个不同的实数根, 则实数 a 的取值构成的集合为______.
- 202. (004552) 已知集合 $A = \{1, 2, 3, 4, 5\}, B = \{3, 5, 6\}, 则 A \cap B = _______$
- 203. (004562) 已知 $t \in \mathbb{R}$, 集合 $A = [t, t+1] \cup [t+4, t+9]$, 且 $0 \notin A$. 若存在正数 λ , 对任意 $a \in A$, 都有 $\frac{\lambda}{a} \in A$, 则 t 的值为______.
- 204. (004571) 若 $\{a_n\}$ 是等差数列, 公差 $d \in (0, \pi]$, 数列 $\{b_n\}$ 满足: $b_n = \sin(a_n)$, $n \in \mathbb{N}^*$, 记 $S = \{x | x = b_n, n \in \mathbb{N}^*\}$.
 - (1) 设 $a_1 = 0$, $d = \frac{2}{3}\pi$, 求集合 S;
 - (2) 设 $a_1 = \frac{\pi}{2}$, 试求 d 的值, 使得集合 S 恰有两个元素;
 - (3) 若集合 S 恰有三个元素, 且 $b_{n+T}=b_n$, 其中 T 为不超过 7 的正整数, 求 T 的所有可能值.
- 205. (004630) 已知集合 $A = \{x | x = 2n 1, n \in \mathbb{N}^*\}$, $B = \{x | x = 2^k, k \in \mathbb{N}^*\}$. 将 $A \cup B$ 的所有元素从小到大依次排列构成一个数列 $\{a_n\}$. 记 S_n 为数列 $\{a_n\}$ 的前 n 项和, 则使得 $a_n \in A$ 与 $S_{n-1} > 100a_n$ 同时成立的正整数 n 的最小值为______.
- 206. (004637) 设函数 $f(x) = \cos^2 x 2\sin x \cos x + 3\sin^2 x$.
 - (1) 求使 f(x) 取得最大值的 x 的集合;
 - (2) 设 $x_1, x_2 \in \mathbf{R}^+$, 且 $f(x_1) + f(x_2) = 4$. 求证: $x_1 + x_2 \ge \frac{\pi}{2}$.
- 207. (004651) 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , 且 $a_n + a_{n+1} = \frac{1}{2^n}$, 若数列 $\{S_n\}$ 收敛于常数 A, 则首项 a_1 取值的集合为______.

- 208. (004662) 集合 $A = \{-1, 2m-1\}, B = \{m^2\}, 若 B \subseteq A, 则实数 m = _____.$
- 209. (004676) 非空集合 $A \subseteq \mathbb{R}$, 且满足如下性质: 性质一: 若 $a,b \in A$, 则 $a+b \in A$; 性质二: 若 $a \in A$, 则 $-a \in A$, 则称集合 A 为一个"群". 以下叙述:
 - ① 若 A 为一个"群", 则 A 必为无限集; ② 若 A 为一个"群", 且 $a,b \in A$, 则 $a-b \in A$; ③ 若 A,B 都是 "群", 则 A∩B 必定是 "群"; ④ 若 A,B 都是 "群",且 A∪B≠A,A∪B≠B,则 A∪B 必定不是 "群". 中,正确的个数为(
 - B. 2 C. 3 A. 1 D. 4
- 210. (004683) 已知集合 $A = \{1, 2, 3, 4\}, B = \{x | x \leq \frac{5}{2}, x \in \mathbf{R}\}, 则 A \cap B = _____.$
- 211. (004697) 已知非空集合 A,B 满足: $A \cup B = R, \ A \cap B = \varnothing,$ 函数 $f(x) = \begin{cases} x^2, & x \in A, \\ & \text{对于下列两个} \\ 2x 1, & x \in B. \end{cases}$ 命题: ① 存在唯一的非空集合对 (A,B), 使得 f(x) 为偶函数; ② 存在无穷多非空集合对 (A,B), 使得方程
 - A. ① 正确, ② 错误

f(x) = 2 无解. 下面判断正确的是 ().

- B. ① 错误, ② 正确 C. ① 、② 都正确 D. ① 、② 都错误
- 212. (004724) 若集合 $A = (-\infty, 1), B = (0, +\infty),$ 则 $A \cap B =$
- 213. $_{(004731)}$ 已知集合 $A=\{-2,-1,-\frac{1}{2},\frac{1}{3},\frac{1}{2},1,2,3\}$,从集合 A 中任取一个元素 a,使函数 $y=x^a$ 是奇函数且在 $(0,+\infty)$ 上递增的概率为___
- 214. (004739) 对于定义在集合 D 上的两个函数 $y_1 = f_1(x)$ 与 $y_2 = f_2(x)$, 若对任意的 $x \in D$, 总有 $|f_2(x)| \le |f_1(x)|$ 成立, 则称函数 $f_1(x)$ 包裹函数 $f_2(x)$. 判断如下两个命题真假:
 - ① 函数 $f_1(x) = kx$ 包裹函数 $f_2(x) = x \cos x$ 的充要条件是 $|k| \ge 1$; ② 若对于任意 p > 0, $|f_1(x) f_2(x)| < p$ 对任意 $x \in D$ 都成立, 则函数 $f_1(x)$ 包裹函数 $f_2(x)$;

则下列选项正确的是().

A. ① 真, ② 假

- B. ① 假, ② 真
- C. ①、② 全假
- D. ①、② 全真
- 215. (004744) 已知数列 $\{a_n\}$ 满足: $a_1=1, a_{n+1}=-a_n$ 或 $a_{n+1}=a_n+2$, 对一切 $n\in \mathbf{N}^*$ 都成立. 记 S_n 为数列 $\{a_n\}$ 的前 n 项和. 若存在一个非零常数 $T \in \mathbb{N}^*$, 对于任意 $n \in \mathbb{N}^*$, $a_{n+T} = a_n$ 成立, 则称数列 $\{a_n\}$ 为周期 数列, T 是一个周期.
 - (1) 求 a_2 、 a_3 所有可能的值, 并写出 a_{2022} 的最小可能值 (不需要说明理由);
 - (2) 若 $a_n>0,$ 且存在正整数 $p,q(p\neq q),$ 使得 $\frac{a_p}{q}$ 与 $\frac{a_q}{p}$ 均为整数, 求 a_{p+q} 的值;
 - (3) 记集合 $S = \{n | S_n = 0, n \in \mathbb{N}^*\}$, 求证: 数列 $\{a_n\}$ 为周期数列的必要非充分条件为 "集合 S 为无穷集合".
- 216. (004765) 无穷数列 $\{a_n\}(n\in \mathbf{N}^*)$, 若存在正整数 t, 使得该数列由 t 个互不相同的实数组成, 且对于任意的正整 数 $n, a_{n+1}, a_{n+2}, \dots, a_{n+t}$ 中至少有一个等于 a_n , 则称数列 $\{a_n\}$ 具有性质 T, 集合 $P = \{p | p = a_n, n \in \mathbb{N}^*\}$.
 - (1) 若 $a_n = (-1)^n$, $n \in \mathbb{N}^*$, 判断数列 $\{a_n\}$ 是否具有性质 T;
 - (2) 数列 $\{a_n\}$ 具有性质 T, 且 $a_1 = 1$, $a_4 = 3$, $a_8 = 2$, $P = \{1, 2, 3\}$, 求 a_{11} 与 a_{14} 的值;

- (3) 数列 $\{a_n\}$ 具有性质 T, 记集合 $B = \{m|a_m = a_1, m \in \mathbb{N}^*\}$, 将集合 B 中的所有元素按从小到大的顺序排列, 得到数列 $\{i_n\}$, 记 $b_n = i_{n+1} i_n, n \in \mathbb{N}^*$. 证明: 若数列 $\{b_n\}$ 具有性质 T, 则数列 $\{b_n\}$ 是常数列.
- 217. (004766) 写出集合 {1,2} 的所有子集.
- 218. (004767) 已知集合 $A = \{x | 1 \le x < 3, x \in \mathbb{R}\}, B = \{x | x > 2, x \in \mathbb{R}\}.$ 求 $A \cap B, A \cup B$.
- 219. (004768) 已知集合 $U = \{x | x$ 取不大于30的质数 $\}$, A, B 是 U 的两个子集,且满足 $A \cap \mathbb{C}_U B = \{5, 13, 23\}$, $\mathbb{C}_A \cap B = \{11, 19, 29\}$, $\mathbb{C}_U A \cap \mathbb{C}_U B = \{3, 7\}$, 求 A, B.
- 220. (004769) 已知集合 $A = \{x|x^2 ax + a^2 19 = 0\}$, $B = \{x|x^2 5x + 6 = 0\}$, $C = \{x|x^2 + 2x 8 = 0\}$ 满足 $A \cap B \neq \emptyset$, $A \cap C = \emptyset$, 求实数 a 的值.
- 221. (004770) 已知集合 $A = \{x|x^2 5x + 4 \le 0\}$ 与 $B = \{x|x^2 2ax + a + 2 \le 0, \ a \in \mathbf{R}\}$ 满足 $B \subseteq A$, 求 a 的取值范围.
- 222. (004771) 已知集合 $A = \{x|x^2 + (\rho + 2)x + 1 = 0, x \in \mathbf{R}\}$, 且 $A \cap \mathbf{R}^+ = \emptyset$, 求实数 ρ 的取值范围.
- 223. (004772) 在 "① 难解的题目,② 方程 $x^2+1=0$ 在实数集内的解,③ 直角坐标平面内第四象限的一些点,④ 很多多项式"中,能够组成集合的是 ())
 - A. ② B. ①③ C. ②④ D. ①②④
- 224. (004773) 集合 $M = \{(x,y)|xy \ge 0, x \in \mathbb{R}, y \in \mathbb{R}\}$ 是指 ().
 - A. 第一象限内的点集

B. 第三象限内的点集

C. 在第一、三象限内的点集

- D. 不在第二、四象限内的点集
- 225. (004776) 下列各题中的 M 与 P 表示同一个集合的是 ().
 - A. $M = \{(1, -3)\}, P = \{(-3, 1)\}$
 - B. $M = \emptyset, P = \{0\}$
 - C. $M = \{y | y = x^2 + 1, x \in \mathbf{R}\}, P = \{(x, y) | y = x^2 + 1, x \in \mathbf{R}\}$
 - D. $M = \{y|y = x^2 + 1, x \in \mathbf{R}\}, P\{t|t = (y-1)^2 + 1, y \in \mathbf{R}\}$
- 226. (004777) 用列举法表示下列各集合.
 - (1) 不大于 6 的非负数整数所组成的集合: ;
 - (2) 方程 $x^3 x^2 x + 1 = 0$ 的解所组成的集合:______;
 - (3) $\{y|y=x^2-1, |x| \le 2, x \in \mathbf{Z}\}:$
 - (4) $\{(x,y)|y=x^2-1, |x| \le 2, x \in \mathbf{Z}\}$:_____;
 - (5) $\{(x,y)|x+y=5, x \in \mathbb{N}, y \in \mathbb{Z}\}:$ _____.
- 227. (004778) 若集合 $M = \{0, 2, 3, 7\}, P = \{x | x = ab, a, b \in M, a \neq b\}, 则 a = _____(用列举法表示).$
- 228. (004779) 若集合 $M = \{x | ax^2 + 2x + 1 = 0\}$ 只含一个元素, 则 a =

229.	. (004780) 已知集合 $A = \{ 小 + 6 $ 的自然数 $\}, B = \{ 小 + 10 $ 的质数 $\}, C = \{ 24 $ 和36的止公约数 $\},$ 用列举法表示: (1) $\{ y y \in A$ 且 $y \in C \};$					
	$(2) \{y y \in B \coprod y \notin C\}.$					
230.	(004781) 已知集合 $A = \{x \frac{15}{5} = 0.004781 \}$	$\frac{2}{x} \in \mathbf{N}, \ x \in \mathbf{Z}$ },用列举法表	示集合 A.			
231.	. (004782) 已知集合 $M=\{a,a+d,a+2d\},N=\{a,aq,aq^2\},$ 其中 $a\neq 0,M=N,$ 求 q 的值.					
232.	2. (004783) 已知集合 $A = \{x x = m^2 - n^2, \ m, n \in \mathbf{Z}\}$, 求证: (1) 任何奇数都是 A 的元素; (2) 偶数 $4k - 2(k \in \mathbf{Z})$ 不属于 A .					
233.	(004784) 数 0 与空集 Ø 之间的	的关系是 ()				
	A. $0 \in \emptyset$ 若集合 $M = \{x x \le 6\}, a =$	B. 0 ∉ Ø √5, 则下面结论正确的是(C. $0 = \emptyset$	D. $0 \subset \emptyset$		
	A. $\{a\} \subset M$ 已知集合 $M = \{y y=x^2 - y$		C. $\{a\} \notin M$ $\leq x \leq 4, x \in \mathbf{R}\}$, 则 M 与 F	D. a ∉ M ' 之间的关系是 ()		
	A. $M = P$	B. $M \subset P$	C. $M \supset P$	D. $M \not\subset P$ 且 $M \not\supset P$		
234.	(004785) 设集合 $M = \{(x,y) x\}$	$(x + y > 0, xy > 0), T = \{(x, y) \in \mathbb{R}^n : (x, y) \in \mathbb{R}^n : (x$	$y) x>0,y>0\}, 则 M 与 T$	的关系是()		
	A. $M\supset T$	B. $M = T$	C. $M \subset T$	D. $M \not\subset T \perp \!\!\!\perp M \not\supset T$		
235.	(004787) 若集合 $A = \{x -3 < \}$	$\{x < 5\} + B = \{x x < a\}$	满足 $A \subset B$, 则实数 a 的取 a	直范围是		
236.	(004788) 若集合 $A = \{x (x+1)\}$	$(2-x) < 0$, $B = \{x 4x + p$	<0 }, 且 $B\subset A$, 则实数 p 的	取值范围是		
237.	$_{(004789)}$ 若集合 $A = \{x x^2 +$ 为	$x - 6 = 0$ $= \{y ay$	$+1=0$ } 满足 $B\subset A$, 则	实数 a 所能取得一切值		
238.	$_{(004790)}(1)$ 满足 $\{a,b\}\subseteq A\subset$ (2) 满足 $\{1,2,3\}\subset B\subseteq \{1,$					
239.	(004791) 满足 $M \subseteq \{0,1,2\}$ 且	$M\subseteq\{0,2,4\}$ 的集合 M 有	· ().			
	A. 1 个	B. 2 个	C. 3 个	D. 4 个		
240.	$_{(004792)}$ 集合 $\{1,2,3\}$ 的子集	个数是 ().				
	A. 6	B. 7	C. 8	D. 9		
241.	(004794) 已知非空集合 P 满足数是 ().	$!: ① P \subseteq \{1, 2, 3, 4, 5\}; ② $		上述要求的集合 P 的个		
	A. 4	B. 5	C. 7	D. 31		

14.

15.

242. (004795) 设集合 $A = \{0, 1\}$, 集合 $B = \{x | x \subseteq A\}$, 则 A 与 B 的关系是______. 243. (004796) 已知集合 $A = \{x \mid -2 \le x \le 5\}, B = \{x \mid m+1 \le x \le 2m-1\}$ 满足 $B \subseteq A$, 求实数 m 的取值范围. 26. 已知集合 $M = \{x \mid -3 < x < 2\}, P = \{x \mid x < -\sqrt{2}$ 或 $x > \sqrt{2}\}$, 那么 $M \cap P$ 是 (). A. $\{x \mid -3 < x < -\sqrt{2} \vec{\mathbf{y}} \sqrt{2} < x < 2\}$ C. $\{x \mid -3 < x < -\sqrt{2}\}$ D. $\{x | \sqrt{2} < x < 2\}$ 244. (004797) 若集合 $P = \{y|y = x^2 + 1, x \in \mathbf{R}\}, Q = \{y|y = x + 1, x \in \mathbf{R}\}, 则 P \cap Q 是 ().$ A. $\{(0,1),(1,2)\}$ B. $\{0,1\}$ $C. \{1, 2\}$ D. $\{y | y \ge 1\}$ 245. (004798) 若集合 $M = \{(x,y)|x+y=0\}, P = \{(x,y)|x-y=2\}, 则 M \cap P$ 是 (). B. $\{x = 1\} \cup \{y = -1\}$ C. $\{1, -1\}$ A. (1, -1)D. $\{(1,-1)\}$ $246._{(004800)}$ 已知 P, M 是非空集合, 且 $P \neq M$, 则必定有(). A. $\emptyset \in P \cap M$ B. $\varnothing = P \cap M$ C. $\varnothing \subseteq P \cap M$ D. $\varnothing \subset P \cap M$ 247. (004801) 若集合 P, S 满足 $P \cap S = P$, 则下列关系式中恒成立的是 (A. $P \subset S$ B. $P \subseteq S$ C. P = SD. $P \supset S$ 248. (004802) 已知集合 $A = \{$ 平行四边形 $\}, B = \{$ 梯形 $\}, C = \{$ 对角线相等的四边形 $\}, 那么 B \cap C = _$ 249. (004803) 若集合 $P = \{y|y = x^2 - 6x + 10\}, M = \{y|y = -x^2 + 2x + 8\}, 则 P \cap M = _____.$ 250. (004804) 若集合 $S = \{x | x \le 2$ 或 $x \ge 3\}$, $T = \{x | 2 \le x \le 3\}$, 则 $S \cap T =$ _____. 251. (004805) 已知集合 $A = \{x \mid -2 \le x \le 4\}, B = \{x \mid x < a\},$ 且满足 $A \cap B \ne \emptyset$, 那么实数 a 的取值范围 是_____. 252. (004806) 已知集合 $P = \{x | -1 < x < 3\}, M = \{x | a < x < 2a\} (a > 0), 且 <math>P \cap M = \emptyset$, 则实数 a 的取值范围 是_____. 253. (004807) 记集合 $P = \{$ 等腰三角形 $\}$, $T = \{至少有一边为1, 至少有一内角为<math>36^{\circ}$ 的三角形 $\}$, 则 $P \cap T$ 的元素有 (). A. 2 个 B. 3 个 C. 4 个 D. 5 个 254. (004808) 若集合 $M = \{(x,y)|x-y=0\}, P = \{(x,y)|x+y+2=0\}, 则 M \cap P = _____.$

(2) 已知集合 $P = \{m^2, m+1, -3\}, Q = \{m-3, 2m-1, m^2+1\},$ 且 $P \cap Q = \{-3\},$ 求实数 m 的值.

257. (004811)(1) 已知集合 $A=\{2,3,a^2+1\}, B=\{a^2+a-4,2a+1,-\frac{13}{4}\},$ 且 $A\cap B=\{2\},$ 求实数 a 的值;

256. (004810) 若集合 $A = \{y|y=x^2\}, B = \{y|y=1-\sqrt{x}, x \geq 0\}, 则 A \cap B = _____.$

- 258. (004812) 已知集合 $M = \{2,3,m^2+4m+2\}, P = \{0,7,m^2+4m-2,2-m\},$ 且 $M \cap P = \{3,7\},$ 求实数 m 的 值和集合 P.
- 259. (004813) 已知集合 $A = \{2, 4, a^3 2a^2 a + 7\}, B = \{-4, a 3, a^2 2a + 2, a^3 + a^2 + 3a + 7\}$ 满足 $A \cap B = \{2, 5\},$ 求实数 a 的值.
- 260. (004814) 已知集合 $P = \{x | x^2 ax + a^2 8a + 19 = 0\}, Q = \{x | x^2 4x + 3 = 0\}, R = \{x | x^2 7x + 12 = 0\},$ 且 $P \cap Q \neq \emptyset$, $P \cap R = \emptyset$, 求实数 a 的值.
- 261. (004815) 已知集合 $P = \{x | -2 \le x \le 5\}$, $Q = \{x | k+1 \le x \le 2k-1\}$, 求使 $P \cap Q = \emptyset$ 的实数 k 的取值范围.
- 262. (004816) 若集合 $M = \{y | y = x^2 + 1, x \in \mathbf{R}\}, P = \{y | y = 5 x^2, x \in \mathbf{R}\}, 则 M \cup P$ 等于 (
 - A. **R**

- B. $\{y|1 \le y \le 5\}$ C. $\{x|-5 \le x \le 1\}$ D. $\{(-\sqrt{2},3), (\sqrt{2},3)\}$
- 263. (004817)43. 集合 $M = \{x|x = t^2 + 3t + 2, t \in \mathbb{R}\}$ 与 $P = \{y|y = k^2 3k + 2, k \in \mathbb{R}\}$ 之间的关系是 (
 - A. $M \cap P = \emptyset$

- B. $M \cap P = \{0\}$
- C. $M \cap P = \{(x, y) | x \in \mathbf{R}, y \in \mathbf{R} \}$
- D. $M \cap P$
- 264. (004818) 设集合 $M = \{x | a_1 x^2 + b_1 x + c_1 = 0\}, N = \{x | a_2 x^2 + b_2 x + c_2 = 0\},$ 方程 $(a_1 x^2 + b_1 x + c_1)(a_2 x^2 + b_2 x + c_3 = 0)$ $b_2x + c_2) = 0$ 的解集是 ().
- 265. (004820) 若集合 M, P 满足 $M \cap P = P, 则一定有 ()$.
 - A. M = P
- B. $M \subset P$
- C. $M \cup P = M$
- D. $P \subset M$
- 266. (004821) 若 M, P 是两个非空集合, 且对于 M 中的任何一个元素 x, 都有 $x \notin P$, 则有 ().
 - A. $M \supset P$
- B. $M \subseteq P$
- C. $M \cap P = \emptyset$

- 268. (004823) 已知 S,T 是两个非空集合,且 $S \not\subseteq T,T \not\subseteq S,$ 若 $X=S\cap T,$ 则 $S\cup X=$
- 269. (004824) 满足条件 $\{a,b\} \cup M = \{a,b,c,d\}$ 的所有集合 M 的个数是 (
 - A. 1

B. 2

C. 3

- D. 4
- 271. (004826) 已知 a < 0 < b < |a|, 且集合 $A = \{x | a < x \le b, x \in \mathbf{R}\}$, 则 $A \cap B = \underline{\hspace{1cm}}$, $A \cup B = \underline{\hspace{1cm}}$.
- 272. (004827) 已知集合 $A = \{x|x^2 + px + q = 0\}, B = \{x|x^2 + (p-1)x q + 5 = 0\}$ 满足 $A \cap B = \{1\},$ 求 $A \cup B$.
- 273. (004828) 已知集合 A, B 的元素均为实数, 且 $A = \{2, 4, a^3 + a + 7\}, B = \{-5, a + 3, a^2 2a + 2\}$ 满足 $A \cap B = \{2, 5\}, \; \Re A \cup B.$
- 274. (004829)(1) 已知集合 $A = \{1,3,a\}, B = \{a^2,1\}$ 满足 $A \cup B = \{1,3,a\},$ 求实数 a 的值;
 - (2) 已知集合 $A = \{1, 2, 3, m\}$, $B = \{m^2, 3\}$ 满足 $A \cup B = \{1, 2, 3, m\}$, 求实数 m 的值.

275.	. (004831) 若集合 $A = \{x -2 < x < 1$ 或 $x > 1\}$, $B = \{x a \le x \le b\}$ 满足 $A \cup B = \{x x > -2\}$, $A \cap B = \{x 1 < x \le 3\}$, 求 a,b 的值.				
276.	. (004834) 若全集 $U = \{x x \ge -3\}$, 集合 $A = \{x x > 1\}$, 则 A 的补集 $C_U A = $				
277.	. (004837) 已知全集 $U = \{2, 4, 3 - a^2\}$, 集合 $P = \{2, a^2 - a + 2\}$, $C_U P = \{-1\}$, 则实数 a 的取值等于				
278.	5. (004838) 已知集合 A,B 都是全集 $U=\{1,2,3,4\}$ 的子集, 若 $\mathbb{C}_U A\cap B=\{1\}, A\cap B=\{3\}, \mathbb{C}_U A\cap \mathbb{C}_U B=\{2\},$ 则 $A=__ B=__\$				
279.		$U = \{-4, -3, -2, -1, 0, 1, 2, 0\}$ $B = \{-3\}, $	$3,4$ }, 集合 $A = \{-3, a^2, a+1\}$	$, B = \{a - 3, 2a - 1, a^2 + 1\}, $ 其	
280.). (004842) 已知全集 $U=\{$ 小于 10 的自然数 $\}$,其子集 A,B 满足 $\mathbb{C}_U A\cap \mathbb{C}_U B=\{1,9\},\ A\cap B=\{2\},\ \mathbb{C}_U A\cap B=\{4,6,8\},$ 求集合 A 和 B .				
281.	$1{(004854)}$ 已知命题 "非空集合 M 的元素都是集合 P 的元素"是假命题,给出下列命题: ① M 中的元素都不是 P 的元素; ② M 中有不属于 P 的元素; ③ M 中有 P 的元素; ④ M 中的元素不都是 P 的元素.其中假命题的个数是 $($ $).$				
	A. 1	B. 2	C. 3	D. 4	
282.	 (2. (004871) 已知集合 A = {x x < -3或x > 5}, B = {x a ≤ x ≤ 8}. (1) 求实数 a 的取值范围, 使它成为 A ∩ B = {x 5 < x ≤ 8} 的充要条件; (2) 求实数 a 的一个值, 使它成为 A ∩ B = {x 5 < x ≤ 8} 的一个充分不必要条件; (3) 求实数 a 的一个值, 使它成为 A ∩ B = {x 5 < x ≤ 8} 的一个必要不充分条件. 				
283.	(004881) 若集合 A	$= \{-1, 1\}, B = \{x mx = 1\}$,且 $B \subseteq A$,则实数 m 的值为	().	
	A. 1	В. –1	C. 1 或 −1	D. 1 或 -1 或 0	
284.	 4. (004883) 有限集合 S 中元素的个数记作 card(S), 设 A, B 都是有限集合, 给出下列命题: ① A∩B = Ø 的充要条件是 card(A∪B) = card(A) + card(B); ② A⊆B 的必要不充分条件是 card(A) ≤ card(B); ③ A⊆B 的充要条件是 card(A) = card(B). 其中真命题的个数点(). 				
	A. 0	B. 1	C. 2	D. 3	
285.	(004884) 已知集合	$A = \{-1, 3, 2m - 1\}, B = \{$	$\{3, m^2\}$,若 $B \subseteq A$,则实数 $m = 1$	·	
286.	(004891) 若集合 A 是	$= \{x x^2 + x - 6 = 0\}, B =$	$= \{x mx + 1 = 0\}, \ \mbox{\it M} \ \ \mbox{\it B} \ \mbox{\it \rlap{\sl E}} \ \ A$	的真子集的一个充分不必要条件	
287.	$_{(004914)}$ 已知集合 (1) 若 $C_UB=M$		$B = \{x (x+a)(x+b) > 0\},\$	$a \neq b, M = \{x x^2 - 2x - 3 \le 0\}.$	

- (2) 若 -1 < b < a < 1, 求 $A \cap B$;
- (3) 若 -3 < a < -1, 且 $a^2 1 \in C_U A$, 求实数 a 的取值范围.
- 288. (004919) 已知集合 $M = \{x||x| > 2\}, N = \{x|x < 3\},$ 则下列结论正确的是 ().
 - A. $M \cup N = M$

B. $M \cap N = \{x | 2 < x < 3\}$

C. $M \cup N = R$

- D. $M \cap N = \{x | x < -2\}$
- 289. (004920) 已知集合 $M = \{x | |x+1| \le 2\}, P = \{x | x \le 2 \text{ 或 } x \ge 3\}, 则 M, P$ 之间的关系是 ().
 - A. $M \supset P$
- B. $M \supset P$
- C. $M \subseteq P$
- D. $M \subset P$
- 290. (004962) 已知集合 $M = \{x|x^2 7x + 10 \le 0\}$, $N = \{x|x^2 (2-m)x + 5 m \le 0\}$, 且 $N \subseteq M$, 求实数 m 的取值范围.
- 291. (004963) 已知集合 $A = \{x|x^2 + 4x + p < 0\}, B = \{x|x^2 x 2 > 0\},$ 且 $A \subseteq B$, 求实数 p 的取值范围.
- 292. (004964) 已知集合 $A = \{x|x^2 + ax + 1 \le 0\}$, $B = \{x|x^2 3x + 2 \le 0\}$, 且 $A \subseteq B$, 求实数 a 的取值范围
- 293. (004965) 已知集合 $A = \{x|x^2 2x 3 \le 0\}$, $B = \{x|x^2 + px + q < 0\}$, 且 $A \cap B = \{x|-1 \le x < 2\}$, 求实数 p,q 的关系式及其取值范围.
- 294. (004966) 已知集合 $A = \{x|-2 < x < -1$ 或 $x > \frac{1}{2}\}, B = \{x|x^2 + ax + b \le 0\},$ 且 $A \cup B = \{x|x+2 > 0\},$ $A \cap B = \{x|\frac{1}{2} < x \le 3\},$ 求 a,b 的值.
- 295. (005164) 已知集合 $\{x|x<-2$ 或 $x>3\}$ 是集合 $\{x|2ax^2+(2-ab)x-b>0\}$ 的子集, 求实数 a,b 的取值范围.
- 296. (005165) 已知集合 $A = \{x | \frac{2x-1}{x^2+3x+2} > 0\}, B = \{x | x^2+ax+b \le 0\},$ 且 $A \cap B = \{x | \frac{1}{2} < x \le 3\},$ 求实数 a,b 的取值范围.
- 297. (005166) 已知集合 $A = \{x | (x+2)(x+1)(2x-1) > 0\}, B = \{x | x^2 + ax + b \le 0\},$ 且 $A \cup B = \{x | x + 2 > 0\},$ $A \cap B = \{x | \frac{1}{2} < x \le 3\},$ 求实数 a, b 的值.
- 298. (005170) 已知集合 $A = \{x|x-a>0\}, B = \{x|x^2-2ax-3a^2<0\},$ 求 $A\cap B$ 与 $A\cup B$.
- 299. (005204) 已知集合 $M = \{x | \log_3(x-m) > 1\}$ 与 $P = \{x | 3^{5-3x} \geq \frac{1}{3}\}$ 满足 $M \cap P \neq \emptyset$, 求实数 m 的取值范围.
- 300. (005283) 设映射 $f: X \to Y$, 其中 X, Y 是非空集合, 则下列语句中正确的是 ().
 - A. Y 中每一个元素必有原像

- B. Y 中的各元素只能有一个原像
- C.X 中的不同元素在 Y 中的像也不同
- D. Y 中至少存在一个元素, 它有原像
- 301. (005284) 集合 $M = \{a, b, c\}$ 与 $P = \{x, y, z\}$ 之间建立起四种对应关系 (如图), 则下列结论中正确的是 ().

- A. 只有 f_2, f_3 是从 M 到 P 的映射
- B. 只有 f_2 , f_4 是从 M 到 P 的映射
- C. 只有 f_3 , f_4 是从 M 到 P 的映射
- D. f_1, f_2, f_3, f_4 都是从 M 到 P 的映射
- 302. (005287) 已知集合 $M=\{x|0\leq x\leq 6\},\ P=\{0\leq y\leq 3\},\ 则下列对应关系中, 不能作为从 <math>M$ 到 P 的映射的 是().

- A. $f: x \mapsto y = \frac{1}{2}x$ B. $f: x \mapsto y = \frac{1}{3}x$ C. $f: x \mapsto y = x$ D. $f: x \mapsto y = \frac{1}{6}x$
- 303. (005289) 若映射 $f:A\to B$ 的像集是 Y, 原像的集合是 X, 则 X 与 A 的关系是_____, Y 和 B 的关系
- $304._{(005292)}$ 已知 $f: x \mapsto y = x^2$ 是从集合 R 到集合 $M = \{x | x \ge 0\}$ 的一个映射, 则 M 中的元素 1 在 R 中的原 像是______, M 中的元素 t(t > 0) 在 R 中的原像是_
- 305. (005293) 从集合 {a} 到 {b, c} 的不同映射有 个.
- 306. (005294) 从集合 $\{1,2\}$ 到 $\{5,6\}$ 的不同映射有______ 个.
- 307. (005295) 已知集合 $A = \mathbf{Z}, B = \{x | x = 2n+1, n \in \mathbf{Z}\}, C = \mathbf{R},$ 且从 A 到 B 的映射是 $x \mapsto 2x-1$, 从 B 到 C的映射是 $x \mapsto \frac{1}{3x+1}$, 则从 A 到 C 的映射是______.
- $308.~_{(005296)}f$ 是集合 $X = \{a, b, c\}$ 到集合 $Y = \{d, e\}$ 的一个映射, 则满足映射条件的 "f" 共有 ().
 - A. 5 个
- B. 6 个

C. 7 个

- 309. (005297) 若 f: y = 3x + 1 是从集合 $A = \{1, 2, 3, k\}$ 到集合 $B = \{4, 7, a^4, a^2 + 3a\}$ 的一个映射, 求自然数 a, k的值及集合 A, B.
- 310. (005602) 已知集合 $M=\{x|(x+1)^2\leq 1\},\ P=\{y|y=4^x-a\cdot 2^{x+1}+1,\ x\in M,\ \frac{3}{4}< a\leq 1\},$ 且全集 $U=\mathbf{R},$ 求 $\mathcal{C}_U(M \cup P)$.
- 311. (005648) 已知集合 $M = \{x, xy, \lg(xy)\}, P = \{0, |x|, y\},$ 且满足 M = P, 求实数 x, y 的值.
- 312. (005796) 已知集合 $A = \{x|x^2 ax + a^2 19 = 0\}, B = \{x|\log_2(x^2 5x + 8) = 1\}, C = \{x|x^2 + 2x 8 = 0\}$ 满足 $A \cap B \neq \emptyset$, $A \cap C \neq \emptyset$, 求实数 a 的值.
- 313. (005816) 已知 $f(x) = x^2 + ax + b(a, b$ 均为实数), 集合 $A = \{x | x = f(x), x \in \mathbf{R}\} = \{-1, 3\}, B = \{x | x = b(x), x \in \mathbf{R}\}$ $f[f(x)], x \in \mathbf{R}$, 用列举法求集合.
- 314. (005817) 已知实数集 R 的子集 P 满足两个条件: ① $1 \notin P$; ② 若实数 $a \in P$, 则 $\frac{1}{1-a} \in P$. 求证:
 - (1) 若 $2 \in P$, 则 P 中必含有其他两个数, 并求出这两个数;
 - (2) 集合 P 不可能是单元素集.
- 315. (005818) 已知集合 A, B, C 满足 $A \cap B = A, B \cap C = B$, 求证: $A \subseteq C$.
- 316. (005819) 已知集合 $A = \{x | x = a^2 + 1, a \in \mathbb{N}\}, B = \{y | y = b^2 4b + 5, b \in \mathbb{N}\},$ 求证: $A \subset B$.

- 317. (005820) 已知集合 $A = \{x | x = 12a + 8b, \ a, b \in \mathbf{Z}\}, B = \{x | x = 20c + 16d, \ c, d \in \mathbf{Z}\},$ 求证: A = B.
- 318. (005824) 已知集合 $A = \{(x,y) | \frac{y-3}{x-2} = a+1\}, B = \{(x,y) | (a^2-1)x + (a-1)y = 15\}$ 满足 $A \cap B = \emptyset$, 求实 数 a 的值.
- 319. (005825) 已知集合 $A = \{x|x^2 (a+1)^2x + 2a^3 + 2a \le 0, x \in \mathbf{R}\}, B = \{x|x^2 3(a+1)x + 6a + 2 \le 0, x \in \mathbf{R}\}$ 满足 $A \subseteq B$, 求实数 a 的取值范围.
- 320. (005826) 从集合 $A = \{1, 2, 3\}$ 到集合 $M = \{0, 1\}$ 可以建立几个不同的映射?
- 321. (005827) 从集合 $P = \{1, 2\}$ 到集合 $Q = \{3, 4, 5\}$ 可以建立几个不同的映射?
- 322. (005837) 已知集合 $A = \{x | x^2 5x + 4 \le 0\}, B = \{x | x^2 2ax + a + 2 \le 0\}$ 满足 $A \supseteq B \ne \emptyset$, 求实数 a 的取值 范围.
- 323. (005850) 已知函数 $f(x) = \log_3(x^2 4mx + 4m^2 + m + \frac{1}{m-1})$, 集合 $M = \{m|m > 1, m \in \mathbf{R}\}$.
 - (1) 求证: 当 $m \in M$ 时, f(x) 的定义域为 $x \in \mathbb{R}$; 反之, 若 f(x) 对一切实数 x 都有意义, 则 $m \in M$;
 - (2) 当 $m \in M$ 时, 求 f(x) 的最小值;
 - (3) 求证: 对每一个 $m \in M$, f(x) 的最小值都不小于 1.
- $324.~_{(005871)}$ 集合 $M = \{\alpha | \alpha = k \cdot 90^{\circ}, k \in \mathbb{N}\}$ 中各角的终边都在 ().
 - A. x 轴的正半轴上

B. y 轴的正半轴上

C. x 轴或 y 轴上

- D. x 轴正半轴或 y 轴的正半轴上
- 325. (005876) 集合 $M = \{x|x = \frac{k\pi}{2} \pm \frac{\pi}{4}, \ k \in \mathbf{Z}\}$ 与 $P = \{x|x = \frac{k\pi}{4}, \ k \in \mathbf{Z}\}$ 之间的关系是(

- B. $M \supset P$
- C. M = P
- D. $M \cap P = \emptyset$

- 326. (005877) 与 -45° 角终边相同的角的集合是__
- $327.~_{(005879)}$ 终边落在 x 轴负半轴上的角的集合为___
- 328. (005880) 终边落在第一、三象限角平分线上的角的集合为_____
- 329. (005882) 若角 α 的终边和函数 y=-|x| 的图像重合, 则 α 的集合是_
- 330. (005891) 若集合 $A = \{x | k\pi + \frac{\pi}{3} \le x < k\pi + \frac{\pi}{2}, k \in \mathbf{Z}\}, B = \{x | 4 x^2 \ge 0\}, 则 A \cap B = _____.$
- 331. (005902) 直角坐标平面内, 终边过点 $(1,-\sqrt{3})$ 的所有角组成的集合可表示成______.
- 332. (005927) 若 $\alpha \in (0,2\pi)$,则适合 $\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} \sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} = 2\cot\alpha$ 的角 α 的集合是 ().
 - A. $\{\alpha | 0 < \alpha < \pi\}$

B.
$$\{\alpha | 0 < \alpha < \frac{\pi}{2}\pi < \alpha < \frac{3\pi}{2}\}$$

C. $\{\alpha | 0 < \alpha < \pi \alpha = \frac{3\pi}{2}\}$

- B. $\{\alpha | 0 < \alpha < \frac{\pi}{2}\pi < \alpha < \frac{3\pi}{2}\}$ D. $\{\alpha | 0 < \alpha < \frac{\pi}{2} \frac{3\pi}{2} < \alpha < 2\pi\}$
- 333. (006018) 若集合 $M = \{\theta | \sin \theta \geq \frac{1}{2}, 0 \leq \theta \leq \pi \}, \ P = \{\theta | \cos \theta \leq \frac{1}{2}, 0 < \theta \leq \pi \}, \ \text{则 } M \cap P = ______.$

334.	(006526) 满足不等式 2 arccos	$x - \arccos(-x) > 0$ 的 x	的取值集合为	<u>_</u> ·
335.	(006527) 满足不等式 arccos 3:	$x < \arccos(2 - 5x)$ 的 x 的	取值集合为	_•
336.	(006528) 满足不等式 arccos(2	$(2x^2-1) < \arccos x$ 的 x 的	」取值集合为	
337.	(006529) 满足不等式 arccos <i>x</i>	$> \arcsin x$ 的 x 的取值集	合为	
338.	(006996) 下列结论中, 正确的	是 ().		
	A. 复平面内, 原点是实轴	与虚轴的公共点		
	B. 实数的共轭复数一定是	上实数, 虚数的共轭复数一定	定是虚数	
		所有向量所组成的集合是-		
		屯虚数 xi, 则实数集 R 与约		
339.				$\{-1,3\}$ 满足 $M \cap N \neq \emptyset$, 则 m
	A. 0 或 3	B1 或 3	C1 或 6	D. 3
340.	(007024) 根据条件, 在复平面	内画出复数对应点的集合所	所表示的图形: 1 ≤ Re($ z \leq 2(\operatorname{Re}(z) \ \textbf{\textit{ξ}} \ \ z \ \ \textbf{\textit{0}} \ \ \ \textbf{\textit{0}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
341.	(007025) 根据条件,在复平面内画出复数对应点的集合所表示的图形: $1 \le z \le 2$ 且 $\mathrm{Im}(z) < 0(\mathrm{Im}(z)$ 表示 z 的虚部).			
342.	(007026) 已知两个复数集 M 的交集为非空集合, 求 λ 的		R } 及 $N = \{z z = 2 \text{ co} \}$	$s \theta + (\lambda + 3 \sin \theta)i, \lambda \in \mathbf{R}, \theta \in \mathbf{R}$
	(007060) 已知两个复数集合 A (1) 当 $b = 0$ 时, 求集合 B (2) 当 $A \cap B = \emptyset$ 时, 求 b (3) 若复数 $z_1 = 1 + 2ai$, $z_1 = 1 + 2ai$, $z_2 = 1 + 2ai$, $z_3 = 1 + 2ai$, $z_4 = 1 + 2ai$, $z_5 = $	所对应的区域; 的取值范围; $z_2=a+\mathrm{i}(a\in\mathbf{R}),$ 集合 A	2	$b \in \mathbf{R}$ }. $, B = \{ z z - z_2 \le 2\sqrt{2} \} $ 满足
344.	$_{(007373)}$ 若集合 $M = \{-1, 1, 1, \dots, n\}$ 个.	$\{a,b,r\in M,$ 则 $\{x\}$	$-a)^2 + (y-b)^2 = r^2$	所表示的不同圆共有
345.	$_{(007384)}$ 若集合 $A=\{a_1,a_2,$ 从集合 B 到集合 A 可建立			丁建立 个不同的映射,
346.	$_{(007408)}$ 已知集合 $M=\{a_1,a_2\}$ 样的映射个数共有 (a_1,a_2)	$\{a_2, a_3\}, P = \{b_1, b_2, b_3, b_4, b_4, b_4, b_4, b_4, b_4, b_4, b_4$	$\{b_5,b_6\}$,若 M 中的不同	元素对应到 P 中的不同像, 则这
	A. 3	B. 20	C. 64	D. 120

	确定的不同点的个数是 ().		
	A. 11	B. 12	C. 23	D. 24
348.	$_{(007497)}$ 从集合 $M=\{1,2,3,$ 这样的映射有几种?	$\{4,5\}$ 到集合 $N = \{a,b,c\}$	的映射 $,$ 要求集合 N 中的元素	《在集合 M 中都有原像,
349.	(007503) 从集合 $\{51, 52, 53, \cdots$	· ,99} 中任选 2 个数, 使这	2 个数的和为偶数, 有多少种	不同的选法?
350.	(007524) 已知集合 A 和集合 B 的个数: (1) C ⊂ (A ∪ B), 且 C 中含 (2) C ∩ A ≠ Ø.		含有 4 个元素, 试求同时满足	下列两个条件的集合 C
351.	(007579) 若集合 P = {所有小	于 1993 的正奇数 $\}$, 则 P 的	非空真子集的个数是 ().	
	A. 2 ⁹⁹⁶	B. $2^{996} - 2$	C. $2^{996} - 1$	D. 2^{995}
352.	(007624) 设含有 10 个元素的集	$oxedsymbol{c}$ 合的全部子集为 S , 其中由	3 个元素组成的子集数为 T, J	则 $rac{T}{S}$ 的值为
353.	(007634) 求满足 $\{a,b\}\subset A\subseteq$	$\{a,b,c,d,e,f,g\}$ 的集合 A	的个数.	
354.	$_{(007635)}$ 设集合 $A=\{0,2,5,7\}$ 个数.	$7,9\},$ 从集合 A 中任取两个	元素相乘, 它们的积组成集合	B, 求集合 B 的子集的
355.	$_{(007669)}$ 设集合 $P=\{a_1,a_2,$ $\{A_1,A_2,A_3\}$ 共有多少个?	\cdots,a_n }, 在 P 中取子集 A	$A_1, A_2, A_3, \notin A_1 \cap A_2 \cap A_3$; = ∅,这样子集的集合
356.	$^{(007674)}$ 设自然数 $N=\{1,2,$ 之和为 $\frac{1}{12}{\rm P}^5_{100},$ 求 $m.$	3,…} 的子集中含有 4 个为	元素的子集的个数记为 m , 且 i	这 m 个集合中所有元素
357.	(007680) 用列举法表示下列集	合:		
	(1) 十二生肖名称的集合;			
	(2) 10 以内的素数组成的集 (3) $\{y y=x^2-1, -1 < x < 0\}$			
358	(007681) 用描述法表示下列集			
000.	(1)被3除余数等于1的整			
	(2) 比 1 大又比 10 小的实数	姓组成的集合;		
	(3) 平面直角坐标系内横轴_	上的点的坐标组成的集合.		
359.	(007683) 集合 $\{(x,y) xy\geq 0,$	$x \in \mathbf{R}, \ y \in \mathbf{R}$ 是指(
	A. 第一象限内的所有点		B. 第三象限内的所有点	
	C. 第一象限和第三象限内	的所有点	D. 不在第二象限、第四象限	内的所有点

347. (007446) 从集合 $P=\{1,2,3\},\ Q=\{1,4,5,6\}$ 这两个集合中各取一个元素作为平面直角坐标系中点的坐标,能

- 360. (007684) 用适当的方法表示下列集合:
 - (1) 方程 $x^2 2 = 0$ 的实数解组成的集合;
 - (2) 两直线 y = 2x + 1 和 y = x 2 的交点组成的集合.
- 361. (007685) 已知集合 $A = \{2, (a+1)^2, a^2 + 3a + 3\}$, 且 $1 \in A$, 求实数 a 的值.
- 362. (007686) 指出下列各集合之间存在的关系:
 - (1) $A = \{x | x^2 2x + 1 = 0\}, B = \{x | x^2 1 = 0\};$
 - (2) $A = \{1, 2, 4, 8\}, B = \{x | x \neq 8 \text{ in } E \text{ 5} \}$.
- 363. (007688) 若集合 $A = \{x | x = 2n + 1, n \in \mathbf{Z}\}$, 集合 $B = \{x | x = 4n 1, n \in \mathbf{Z}\}$, 则 A、B 的关系是 ().
 - A. $A \subseteq B$
- B. A = B
- C. $A \subsetneq B$
- D. $B \subsetneq A$
- 364. (007689) 已知集合 $A = \{1\}$, 集合 $B = \{x|x^2 3x + a = 0\}$, 且 $A \subseteq B$, 求实数 a 的值.
- 365. (007690) 已知集合 $A = \{x, y\}$, 集合 $B = \{2x, 2x^2\}$, 且 A = B, 求集合 A.
- 366. (007691) 已知集合 $S = \{1, 2\}$, 集合 $T = \{x | ax^2 3x + 2 = 0\}$, 且 S = T, 求实数 a 的值.
- 367. (007692) 已知 a 是常数, 集合 $M = \{x | x^2 + x 6 = 0\}$, 集合 $N = \{y | ay + 2 = 0\}$, 且 $N \subseteq M$, 求实数 a 的值.
- 368. (007693) 已知所有菱形组成的集合为 A, 所有矩形组成的集合为 B, 求 $A \cap B$.
- 369. (007694) 已知集合 $A = \{x | x \le 7\}$, 集合 $B = \{x | x < 2\}$, 集合 $C = \{x | x > 5\}$, 求 $A \cap B$, $A \cap C$, $A \cap (B \cap C)$.
- 370. (007695) 已知集合 $A = \{(x,y)|y = -x+1\}$, 集合 $B = \{(x,y)|y = x^2-1\}$, 求 $A \cap B$.
- 371. (007696) 已知集合 $A = \{x | x$ 是锐角三角形 $\}$, 集合 $B = \{x | x$ 是钝角三角形 $\}$, 求 $A \cap B$, $A \cup B$.
- 372. (007697) 已知集合 $A = \{x|x^2 + px + 15 = 0\}$, 集合 $B = \{x|x^2 5x + q = 0\}$, 且 $A \cap B = \{3\}$, 求 p、q 的值和 $A \cup B$.
- 373. (007698) 已知集合 $A = \{x | x \le 1\}$, 集合 $B = \{x | x \ge a\}$, 且 $A \cup B = \mathbf{R}$, 求 a 的取值范围.
- 374. (007699) 已知集合 $A = \{x | x$ 是平行四边形 $\}$, 集合 $U = \{x | x$ 是至少有一组对边平行的四边形 $\}$, 求 $\mathcal{C}_U A$.
- 375. (007700) 设 $U = \mathbf{R}$, 集合 $A = \{x | 4 x > 2x + 1\}$, 求 $\mathcal{C}_U A$.
- 376. (007701) 已知集合 $U = \{x | 0 < x \le 10, \ x \in \mathbb{N}\}$, 集合 $A = \{1, 2, 4, 5, 9\}$, 集合 $B = \{4, 6, 7, 8, 10\}$, 求 $C_U A$, $C_U B$, $C_U A \cup C_U B$, $C_U A \cap C_U B$, $C_U (A \cap B)$, $C_U (A \cup B)$, 并指出其中相等的集合.
- 377. (007703) 已知集合 $A = \{1, 4, x\}$, 集合 $B = \{1, x^2\}$, 且 $A \cup B = A$, 求 x 的值及集合 $A \setminus B$.
- 378. (007704) 已知集合 $A = \{x | -2 \le x \le 4\}$, 集合 $B = \{x | -3 < x < 2\}$, 集合 $C = \{x | -3 \le x < 0\}$, 求 $A \cup B$, $(A \cap B) \cup C$, $(A \cup C) \cap (B \cup C)$.
- 379. (007705) 已知集合 $U = \{x | x \ge 2\}$, 集合 $A = \{y | 3 \le y < 4\}$, 集合 $B = \{z | 2 \le z < 5\}$, 求 $\mathcal{C}_U A \cap B$, $\mathcal{C}_U B \cup A$.

- 380. (007706) 已知集合 $U = \{a, b, c, d, e, f\}$, 集合 $A = \{a, b, c, d\}$, $A \cap B = \{a\}$, $\mathcal{C}_U(A \cup B) = \{f\}$, 求集合 B.
- 381. (007730) 有下列四组命题: ① P: 集合 $A \subseteq B$, $B \subseteq C$, $C \subseteq A$, Q: 集合 A = B = C; ② P: $A \cap B = A \cap C$, Q: B=C; ③ P:(x-2)(x-3)=0, $Q:\frac{x-2}{x-3}=0;$ ④ P: 抛物线 $y=ax^2+bx+c(a\neq 0)$ 过原点, Q:c=0.其中 P 是 Q 的充要条件的有 (
 - A. (1) (2)
- B. (1) (4)
- C. (2) 、(3)
- D. (2) (4)
- 382. (007737) 填空: 已知集合 $A = \{a | a \ \text{具有性质} \ p\}, B = \{b | b \ \text{具有性质} \ q\}.$
 - (1) 若 $A \subseteq B$, 则 p 是 q 的______ 条件;
 - (2) 若 $A \supseteq B$, 则 p 是 q 的______ 条件;
 - (3) 若 A = B, 则 p 是 q 的______ 条件.
- 383. (007743) 下列命题中正确的是 ().
 - A. 自然数集 N 中最小的数是 1

- B. 空集是任何集合的真子集
- C. 如果 $A \subseteq B$, 且 $A \neq B$, 那么 A 是 B 的真子集 D. $\{y|y=x+3, x \in \mathbb{N}\}$ 中的最小值是 4
- 384. (007745) 已知 I 是全集. 若 $M \times P \times S$ 是 I 的 3 个子集, 则图中阴影部分所表示的集合是 (

- A. $(M \cap P) \cap S$
- B. $(M \cap P) \cup S$
- C. $(M \cap P) \cap \mathcal{C}_I S$ D. $(M \cap P) \cup \mathcal{C}_I S$
- 385. (007750) 若方程 $x^2 + px + 4 = 0$ 的解集为 A, 方程 $x^2 + x + q = 0$ 的解集为 B, 且 $A \cap B = \{4\}$, 则集合 $A \cup B$ 的所有子集是_____.
- 386. (007752) 已知集合 $A = \{x \mid -2 < x \le 1\}$, 集合 $B = \{x \mid x \ge 1x < -2\}$, 求 $A \cup B$, $A \cap B$.
- 387. (007753) 已知集合 $A = \{x | -1 < x < 1$ 或 $x \ge 3\}$, 集合 $U = \{x | x \ge 2x < 1\}$, 求 $\mathcal{C}_U A$.
- 388. (007755) 已知集合 $A = \{x | x^2 + px + q = 0\}$, 集合 $B = \{x | x^2 x + r = 0\}$, 且 $A \cap B = \{-1\}$, $A \cup B = \{-1, 2\}$, 求 p、q、r 的值.
- 389. (007756) 已知全集 $U=\mathbf{R}$, 集合 $A=\{x|x\leq a-1\}$, 集合 $B=\{x|x>a+2\}$, 集合 $C=\{x|x<0$ 或 $x\geq 4\}$. 若 $C_U(A \cup B) \subseteq C$, 求实数 a 的取值范围.
- 390. (007757) 若集合 $M = \{a | a = x + \sqrt{2}y, x, y \in \mathbf{Q}\}$, 则下列结论正确的是 ().
 - A. $M \subseteq \mathbf{Q}$
- B. $M = \mathbf{Q}$
- C. $M \supseteq \mathbf{Q}$ D. $M \subseteq \mathbf{Q}$
- 391. (007760) 已知集合 $P = \{x | -2 \le x \le 5\}$, 集合 $Q = \{x | k+1 \le x \le 2k-1\}$, 且 $Q \subseteq P$, 求实数 k 的取值范围.

- 392. $_{(007761)}$ 已知集合 $A=\{x|(a-1)x^2+3x-2=0\}$,是否存在这样的实数 a,使得集合 A 有且仅有两个子集? 若存在,求出实数 a 的值及对应的两个子集;若不存在.请说明理由.
 393. $_{(007793)}$ 已知集合 $U=\mathbf{R}$,且集合 $A=\{x|x^2-16<0\}$,集合 $B=\{x|x^2-4x+3\geq 0\}$,求: (1) $A\cap B$; (2) $A\cup B$; (3) $\mathbb{C}_U(A\cap B)$;
- 394. (007919) 已知集合 $A = \{x | 1 \le x \le 4\}$, $f(x) = x^2 + px + q$ 和 $g(x) = x + \frac{4}{x}$ 是定义在 A 上的函数, 且在 x_0 处同时取到最小值, 并满足 $f(x_0) = g(x_0)$, 求 f(x) 在 A 上的最大值.
- 395. (007961) 已知集合 $M = \{y | y = 2^x, x \in \mathbf{R}\},$ 集合 $N = \{y | y = x^2, x \in \mathbf{R}\},$ 求 $M \cap N$.
- 396. (007980) 若集合 $A = \{y|y = x^2 + 2c + 3\}$, 集合 $B = \{y|y = x + \frac{4}{x}\}$, 则 $A \cup B = \underline{\hspace{1cm}}$.
- 397. (007981) 已知 $x,y \in \mathbf{R}$, 集合 $\alpha = \{(x,y)|xy \geq 0\}$, 集合 $\beta = \{(x,y)||x+y| = |x| + |y|\}$, 用推出关系表示 α 与 β 的关系
- 398. (007985) 若集合 $A = \{x|0.1 < \frac{1}{x} < 0.3, \ x \in \mathbf{N}\}$, 集合 $B = \{x||x| \le 5, \ x \in \mathbf{Z}\}$, 则 $A \cup B$ 中的元素个数是 ().
 - A. 11 B. 13 C. 15 D. 17
- 399. (007988) 已知集合 $A = \{x|3x^2+x-2 \geq 0, \ x \in \mathbf{R}\},$ 集合 $B = \{x|\frac{4x-3}{x-3} > 0, \ x \in \mathbf{R}\},$ 求 $A \cap B$.
- 400. (007990) 已知集合 $A = (-2, -1) \cup (0, +\infty)$, 集合 $B = \{x | x^2 + ax + b \le 0\}$, 且 $A \cap B = (0, 2]$, $A \cup B = (-2, +\infty)$, 求实数 $a \times b$ 的值.
- 401. (007995) 已知集合 $A = \{x | |x-a| < 2\}$, 集合 $B = \{x | \frac{2x-1}{x-2} < 1\}$, 且 $A \subseteq B$, 求实数 a 的取值范围.
- 402. (007996) 已知全集 $U = \mathbf{R}$, 集合 $A = \{x | x^2 + px + 12 = 0\}$, 集合 $B = \{x | x 5x q = 0\}$, 满足 $(C_U A) \cap B = \{2\}$. 求实数 p 与 q 的值.
- 403. (008107) 写出终边在 x 轴与 y 轴的夹角的平分线上的角的集合 (分别用角度制和弧度制来表示).
- 404. (008108) 在平面直角坐标系中, 用阴影部分表示集合: $\{\alpha|30^{\circ} + k \cdot 360^{\circ} \le \alpha \le 60^{\circ} + k \cdot 360^{\circ}, k \in \mathbf{Z}\}$.
- 405. (008109) 第一象限角的集合是_____.

(4) $C_U A \cup C_U B$.

- 406. (008110) 终边在坐标轴上的角的集合是 .
- 407. (008111) 写出与 60° 终边相同的角的集合 S, 并写出 S 中适合不等式 $-360^{\circ} \le \alpha < 720^{\circ}$ 的元素 α .
- 408. (008112) 写出与 -21° 终边相同的角的集合 S, 并写出 S 中适合不等式 $-360^{\circ} \le \alpha < 720^{\circ}$ 的元素 α .
- 409. (008245) 求函数 $y = 2 \sin x$ 取得最大值和最小值的 x 的集合, 并求出其最大值和最小值.

- $410.~_{\scriptscriptstyle{(008246)}}$ 求函数 $y=3\sin(2x-\frac{\pi}{3})$ 取得最大值和最小值的 x 的集合, 并求出其最大值和最小值.
- 411. (008260) 已知 $0 \le x \le 2\pi$, 求适合下列条件的角 x 的集合:
 - (1) 角 x 的正弦函数、余弦函数都是增函数;
 - (2) 角 x 的正弦函数是减函数, 余弦函数是增函数.
- 412. (008264) 求函数 $y = \sqrt{3} \sin x + \cos x$ 取得最大值和最小值的 x 的集合, 并求出其最大值和最小值.
- 413. (008265) 求函数 $y = 2 + |\cos x|$ 取得最大值和最小值的 x 的集合, 并求出其最大值和最小值.
- $414._{(008278)}$ 已知 $0 \le x \le 2\pi$, 求使角 x 的正弦函数、正切函数都是增函数的角 x 的集合.
- 415. (008279) 已知 $0 \le x \le 2\pi$, 求使角 x 的余弦函数是减函数, 正切函数是增函数的角 x 的集合.
- 416. (008345) 已知函数 $y = \frac{1}{2}a\cos x(\cos x + \sqrt{3}\sin x) + 1$, 且函数的图像过点 $P(\frac{\pi}{6}, \frac{7}{4})$.
 - (1) 求函数的解析式;
 - (2) 当 y 取最大值时, 求自变量 x 的集合.
- 417. (008721) 如图, B, C 是线段 AD 的三等分点, 分别以图中各点为起点和终点的非零向量组成集合 T, 试写出集合 T 中所有的元素.

- 418. (008789) 已知集合 $A = \{(x,y)|x-y-1=0,\ x,y\in\mathbf{R}\},$ 集合 $B = \{(x,y)|ax-y+2=0,\ x,y\in\mathbf{R}\},$ 且 $A\cap B=\varnothing,$ 求实数 a 的值.
- 419. (008970) 用集合的关系符号表示复数集 C、实数集 R、有理数集 Q、整数集 Z 和自然数集 N 的关系为______
- 420. (008987) 已知复数 z 分别满足下列条件, 复数 z 在复平面上对应点 Z, 画出点 Z 的集合对应的图形.
 - (1) |z| = 3;
 - (2) |z| < 3;
 - $(3) \ 2 \le |z| \le 5.$
- 421. (009003) 已知 |z-2| = |z-2i|, 写出复数 z 在复平面上所对应的点 Z 的集合是什么图形.
- 422. (009059) 已知复数 z 分别满足下列条件, 写出它在复平面上对应的点 Z 的集合分别是什么图形.
 - (1) |z i| = |z 3|;
 - (2) |z 1 + i| = |z i 3|;
 - (3) $z\overline{z} + z + \overline{z} = 0$.
- 423. (10090160) 已知集合 $A = \{z | z = 2a 1 + a^2 i, a \in \mathbf{R}\}$. 当实数 a 变化时, 说明集合 A 中元素在复平面上所对应的点的轨迹表示何种曲线.
- 424. (009078) 集合 $\{z|z=i^n+\frac{1}{i^n},\ n\in \mathbf{N}^*\}$ 用列举法可表示为______.

- 425. (009111) 用集合语言表示下列语句并画图表示:
 - (1) 点 M 是平面 α 与平面 β 的公共点;
 - (2) 平面 α 与平面 β 没有公共点, 且直线 l 与平面 α 和平面 β 分别交于点 A 和点 B;
 - (3) 平面 α 与平面 β 交于直线 l, 且直线 l 与平面 γ 没有公共点.
- 426. (009116) 用集合语言表示下列语句并画图: 如果平面 α 与平面 β 交于直线 l, 平面 α 与平面 γ 交于直线 n, 平面 β 与平面 γ 交于直线 n, 且直线 l 与直线 m 平行, 那么直线 l、m、n 两两平行.
- 427. (009165) 画出下列点、直线和平面之间的位置关系图, 并用集合符号表示.
 - (1) 直线 l 在平面 α 上, 点 M 在平面 α 上, 但不在直线 l 上;
 - (2) 平面 α 与平面 β 交于直线 l. 直线 a 与平面 α 、平面 β 都没有公共点.
- 428. (009166) 将下列集合符号表述改为自然语言表述,并判断它们是否正确.
 - (1) $A \in \beta$, $B \in \beta \Rightarrow AB \notin \beta$;
 - (2) $A \in \alpha$, $B \in \alpha$, $C \in AB \Rightarrow C \in \alpha$.
- 429. (009192) 四棱柱集合 A、平行六面体集合 B、长方体集合 C、正方体集合 D 之间有怎样的包含关系? 用文氏图表示出来.
- 430. (009256) 已知集合 $M = \{-3, -2, -1, 0, 1, 2\}$, 点 P(a, b) 在直角坐标平面上, 且 $a, b \in M$.
 - (1) 平面上共有多少个满足条件的点 P?
 - (2) 有多少个点 P 在第二象限内?
 - (3) 有多少个点 P 不在直线 y = x 上?
- 431. (009273) 已知抛物线方程为 $y = ax^2 + bx + c$, 集合 $M = \{-2, -1, 0, 1, 2, 3, 4\}$, $a, b, c \in M$, 且 a, b, c 两两不相等, 满足条件的抛物线中, 过原点的抛物线有多少条?
- 432. (009296)(1) 计算 $C_2^0 + C_2^1 + C_2^2$;
 - (2) 计算: $C_3^0 + C_3^1 + C_3^2 + C_3^3$;
 - (3) 猜想 $C_n^0 + C_n^1 + C_n^2 + \cdots + C_n^{n-1} + C_n^n (n \in \mathbb{N}^*)$ 的值, 并证明你的结果;
 - (4) 你能否利用第(3) 题来求一个集合的子集的个数? 为什么?
- 433. (009301) 已知集合 AB 都含有 12 个元素, $A\cap B$ 含有 4 个元素, 集合 C 含有 3 个元素, 且 $C \subsetneq A \cup B$, $C \cap B \neq \emptyset$, 求满足条件的集合 C 的个数.
- 434. (009392) 用集合语言表示下列语句, 并画图表示: 点 P 在直线 l 上, 点 P 不在平面 α 上, 直线 l 与平面 α 相交 于 O;
- 435. (009393) 用集合语言表述下图中空间的点、直线和平面的关系.

- 436. (009426) 判断下列各组对象能否组成集合. 若能组成集合, 指出是有限集还是无限集; 若不能组成集合, 请说明理由.
 - (1) 上海市现有各区的名称;
 - (2) 末位是 3 的自然数;
 - (3) 比较大的苹果.
- 437. (009428) 用列举法表示下列集合:
 - (1) 能整除 10 的所有正整数组成的集合;
 - (2) 绝对值小于 4 的所有整数组成的集合.
- 438. (009429) 用描述法表示下列集合:
 - (1) 全体偶数组成的集合;
 - (2) 平面直角坐标系中 x 轴上所有点组成的集合.
- 439. (009430) 用区间表示下列集合:
 - (1) $\{x | -1 < x \le 5\};$
 - (2) 不等式 -2x > 6 的所有解组成的集合.
- 440. (009433) 写出所有满足 $\{a\} \subset M \subset \{a,b,c,d\}$ 的集合 M.
- 441. (009435) 已知全集为 R, 集合 $A = \{x | -2 < x \le 1\}$. 求 A.
- 442. (009436) 已知集合 $A = \{1, 2, 3, 4, 5\}, B = \{2, 4, 6, 8\}, C = \{3, 4, 5, 6\}.$ 求:
 - (1) $(A \cap B) \cup C$, $(A \cup C) \cap (B \cup C)$;
 - (2) $(A \cup B) \cap C$, $(A \cap C) \cup (B \cap C)$.
- 443. (009438) 判断下列命题的真假, 并说明理由:
 - (1) 所有偶数都不是素数;
 - (2) {1} 是 {0,1,2} 的真子集;
 - (3) 0 是 {0,1,2} 的真子集;
 - (4) 如果集合 A 是集合 B 的子集, 那么 B 不是 A 的子集.
- 444. (009540) 分别用集合的形式表示终边位于第三象限的所有角和终边位于 y 轴正半轴上的所有角.
- 445. (009563) 分别求满足下列条件的角 x 的集合:
 - (1) $2\sin(x+\frac{\pi}{3})=1, x\in[0,2\pi];$

- (2) $\cos(2x + \frac{\pi}{4}) = -\frac{1}{2}$; (3) $\tan(3x + \frac{\pi}{4}) = -1$.
- 446. (009610) 写出满足 $\tan \alpha = \sqrt{3}$ 的所有 α 的集合.
- 447. (009664) 如图, 用集合语言描述下列图形中的点、直线、平面之间的位置关系.

- 448. (1009995) 设定义在 $[0,+\infty)$ 上的函数 f(x) 的值域为 A_f . 若对任意满足 $f(x)=f(\frac{1}{x+1})$ 的函数 f(x), 集合 $\{y|y=f(x), x \in [0,a]\}$ 总可以取得 A_f 中的所有值, 则实数 a 的取值范围为____
- 449. (009996) 若集合 $A = [-1, 2), B = \mathbf{Z},$ 则 $A \cap B = ($
 - A. $\{-2, -1, 0, 1\}$ B. $\{-1, 0, 1\}$
- C. $\{-1,0\}$
- D. $\{-1\}$
- 450. (009999) 设集合 $\Omega = \{(x,y) | (x-k)^2 + (y-k^2)^2 = 4|k|, k \in \mathbb{Z}\}$. 关于命题: ① "存在直线 l, 使得集合 Ω 中不 存在点在 l 上, 而存在点在 l 两侧"; ② "存在直线 l, 使得集合 Ω 中存在无数点在 l 上" 的真假判断, 正确的 是().
 - A. ①和②都是真命题

B. ①是真命题, ②是假命题

C. ①是假命题, ②是真命题

- D. ①和②都是假命题
- 451. (010016) 设随机变量 X 的取值在集合 {0,1,2} 中.
 - (1) 若 $P(X=1)=\frac{1}{2},$ 求期望 E[X] 的最大可能值 M 与 E[X] 的最小可能值 m 之差;
 - (2) 猜测方差 D[X] 的最大可能值, 并证明你的猜测.
- 452. (010017) 用列举法表示下列集合:
 - (1) 10 以内的所有素数组成的集合;
 - (2) $\{y|y=x-1, \ 0 \le x \le 3, \ x \in \mathbf{Z}\}.$
- 453. (010018) 用描述法表示下列集合:
 - (1) 被 3 除余 1 的所有自然数组成的集合;
 - (2) 比 1 大又比 10 小的所有实数组成的集合;
 - (3) 平面直角坐标系中坐标轴上所有点组成的集合.
- 454. (010019) 集合 $\{(x,y)|xy>0, x,y为实数\}$ 是指 (
 - A. 第一象限内的所有点组成的集合
- B. 第三象限内的所有点组成的集合
- C. 第一象限和第三象限内的所有点组成的集合
- D. 不在第二象限也不在第四象限内的所有点组成 的集合

- 455. (010020) 用符号 "⊂""="或"⊃"连接集合 A 与 B:
 - (1) $A = \{x|x^2 2x + 1 = 0\}, B = \{x|x^2 1 = 0\};$
- 456. (010021) 已知集合 $A = \{1\}$, $B = \{x|x^2 3x + a = 0\}$. 是否存在实数 a, 使得 $A \subset B$? 若存在, 求 a 的值; 若不存在, 说明理由.
- 457. (010022) 已知集合 $A = \{x, y\}, B = \{2x, 2x^2\},$ 且 A = B. 求集合 A.
- 458. (010023) 已知集合 $A = \{x | x \le 7\}, B = \{x | x < 2\}, C = \{x | x > 5\}.$ 求: $A \cap B, A \cap C, A \cap (B \cap C)$.
- 459. (010024) 已知集合 $A = \{(x,y)|y=-x+1\}, B = \{(x,y)|y=x^2-1\}.$ 求 $A \cap B$.
- 460. (010025) 已知全集 $U = \mathbf{R}$, 集合 $A = \{x | 4 x > 2x + 1\}$. 求 \overline{A} .
- 461. (010026) 已知集合 $A = \{2, (a+1)^2, a^2 + 3a + 3\}$, 且 $1 \in A$. 求实数 a 的值.
- 462. (010027) 已知集合 $A = \{x | x = 2n + 1, n \in \mathbf{Z}\}, B = \{x | x = 4n 1, n \in \mathbf{Z}\}.$ 判断集合 $A = \{B \in \mathbf{Z}\}$ 的包含关系, 并证明你的结论.
- 463. (010028) 设 a 是实数, 集合 M = {x|x²+x-6=0}, N = {y|ay+2=0}. 是否存在 a, 使得 N ⊂ M? 若存在, 求这些 a 的值; 若不存在, 说明理由.
- 464. (010029) 已知集合 $A = \{1, 4, x\}, B = \{1, x^2\},$ 且 $A \cup B = A$. 求 x 的值及集合 $A \cup B$.
- 465. (010033) 下列各组中, α 是 β 的什么条件?
 - (1) α : 四边形 ABCD 的四条边等长, β : 四边形 ABCD 是正方形;
 - (2) α : $\triangle ABC$ 与 $\triangle DEF$ 全等, β : $\triangle ABC$ 与 $\triangle DEF$ 的周长相等;
 - (3) α : x 是 2 的倍数, β : x 是 6 的倍数;
 - (4) α: 集合 $A \subseteq B$, $B \subseteq C$, $C \subseteq A$, β : 集合 A = B = C;
 - (5) α : $A \cap B = A \cap C$, β : B = C.
- 466. (010069) 设全集为 R, 集合 $A = \{x|x^2 2x 3 \ge 0\}$, $B = \{x|x^2 + x 2 < 0\}$. 求:
 - (1) $A \cup B$;
 - (2) $A \cap B$;
 - (3) $\overline{A \cap B}$;
 - (4) $\overline{A} \cup \overline{B}$.
- 467. (010221) 写出与下列各角的终边重合的所有角组成的集合 S, 并写出 S 中适合不等式 $-360^{\circ} \le \alpha < 720^{\circ}$ 的元素 α :
 - $(1) 60^{\circ};$
 - $(2) -21^{\circ}$.
- 468. (010224) 写出终边在直线 y=x 上的所有角组成的集合. (分别用角度制和弧度制来表示)

- 469. (010276) 求下列函数的最大值和最小值, 并指出使其取得最大值和最小值时的所有 x 值的集合:
 - (1) $y = 2 3\sin x, x \in \mathbf{R}$;
 - (2) $y = -\sin^2 x + 2\sin x + 2, x \in \mathbf{R};$
 - (3) $y = 2\sin x 5, x \in \left[-\frac{\pi}{3}, \frac{5\pi}{6}\right];$
 - (4) $y = \cos^2 x \sin x$, $x \in \mathbf{R}$.
- 470. (010291) 求下列函数的最大值和最小值, 并指出使其取得最大值和最小值时 x 的集合:
 - (1) $y = 3^{\cos 2x}, x \in \mathbf{R};$
 - $(2) y = \cos x \sin^2 x, x \in \mathbf{R}.$
- 471. (010413) 证明: 集合 $M = \{z | z = \cos \theta + i \sin \theta, \ \theta \in \mathbf{R}\}$ 中的所有复数在复平面上所对应的点在同一个圆上.
- 472. (010430) 用集合符号表述下列语句, 并将语句所描述的图形画在图中:

- (1) 点 A 在平面 α 上:_____;
- (2) 平面 α 经过直线 AC: ;
- (3) 点 B 不在平面 β 上:
- (4) 直线 BC 平行于平面 β:_____.
- 473. (010538) 下列哪些是不确定的事件?
 - (1) 学生甲明天竞选班长成功;
 - (2) 两支足球队明天比赛, 主场队取胜;
 - (3) 若集合 A、B、C 满足 $A \subseteq B \subseteq C$, 则 $A \subseteq C$.
- - (1) A、C 同时发生;
 - (2) B、C 至少有一个发生;
 - (3) A、B 同时发生.
- 475. (010634) 已知集合 $A = \{(x,y)|2x (a+1)y 1 = 0\}$, $B = \{(x,y)|ax y + 1 = 0\}$, 且 $A \cap B = \emptyset$. 求实数 a 的值.
- 476. (010834) 设集合 $A = \{(x,y)|x \in \mathbf{Z}, y \in \mathbf{Z}, \exists |x| \le 6, |y| \le 7\}$, 则集合 A 中有多少个元素?

- 477. (010843) 在方程 ax + by = 0 中,设系数 a、b 是集合 $\{0,1,2,3,5,7\}$ 中两个不同的元素. 求这些方程所表示的不同直线的条数.
- 478. (020001) 判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.
 - (1) 上海市控江中学 2022 年入学的全体高一年级新生;
 - (2) 中国现有各省的名称;
 - (3) 太阳、2、上海市;
 - (4) 大于 10 且小于 15 的有理数;
 - (5) 末位是 3 的自然数;
 - (6) 影响力比较大的中国数学家;
 - (7) 方程 $x^2 + x + 3 = 0$ 的所有实数解;
 - (8) 函数 $y = \frac{1}{x}$ 图像上所有的点;
 - (9) 在平面直角坐标系中, 到定点 (0,0) 的距离等于 1 的所有点;
 - (10) 不等式 3x 10 < 0 的所有正整数解;
 - (11) 所有的平面四边形.
- $479._{(020003)}$ 对于一个确定的实数 x, 由 x, -x, |x|, $-\sqrt{x^2}$ 中的一个值或几个值组成的所有集合中, 元素的个数最多有多少个?
- 480. (020004) 已知关于 x 的方程 $\sqrt{x^2 + 4x + a} = x + 2$, 若以该方程的所有解为元素组成的集合是无限集, 求实数 a 满足的条件.
- 481. (020005) 用列举法表示下列集合:
 - (1) 12 以内的素数组成的集合;
 - (2) 绝对值小于 3 的所有整数的集合;
 - (3) $\{x | \frac{6}{3-x} \in \mathbf{N}, \ x \in \mathbf{Z}\};$
 - (4) $\{y|y=x^2-1, |x| \le 2, x \in \mathbf{Z}\};$
 - (5) $\{(x,y)|y=x^2-1, |x| \le 2, x \in \mathbf{Z}\};$
 - (6) $\{(x,y)|x+y=5, x \in \mathbb{N}, y \in \mathbb{N}\}.$
- 482. (020006) 用描述法表示下列集合:
 - (1) 所有奇数组成的集合;
 - (2) 被 3 除余数等于 2 的正整数的集合;
 - (3) 不小于 10 的实数组成的集合;
 - (4) 绝对值大于 4 的所有整数组成的集合;
 - (5) 平面直角坐标系内 y 轴上的点的坐标组成的集合;
 - (6) 在直线 y = 2x + 1 上所有的点的坐标组成的集合.
- 483. (020007) 用区间表示下列集合:
 - (1) $\{x \mid -2 < x < 7\};$

- (2) $\{x \mid -2 \leq x \leq 7\};$ (3) $\{x | -2 \le x < 7\};$ (4) 不等式 2x < 5 的解集;
- (5) 不等式 -x < 5 的解集;
- (6) 非负实数集.
- 484. (020008) 用适当的方法表示下列集合:
 - (1) 能被 10 整除的所有正整数组成的集合;
 - (2) 能整除 10 的所有正整数组成的集合;
 - (3) 方程 $x^2 + 2 = 0$ 的实数解组成的集合;

(4) 方程组
$$\begin{cases} 2x + y = 0, & \text{的所有解组成的集合;} \\ x - y + 3 = 0 & \text{0.5} \end{cases}$$

- 485. (020010) 集合 $\{(x,y)|xy \ge 0, x \in \mathbb{R}, y \in \mathbb{R}\}$ 是指 (
 - A. 第一象限内的所有点

- B. 第三象限内的所有点
- C. 第一象限和第三象限内的所有点
- D. 不在第二象限、第四象限内的所有点
- 486. (020011) 若集合 M = {0,2,3,7}, P = {x|x = ab, a,b ∈ M, a ≠ b}. 用列举法写出集合 P.
- 487. (020012) 已知集合 $A = 2, a^2, a$, 且 $1 \in A$, 求实数 a 的值.
- 488. (020013) 设集合 $M = \{a | a = x^2 y^2, x, y \in \mathbf{Z}\}$, 下列数中不属于 M 的为 ().
 - A. 3

B. 6

C. 9

- D. 12
- 489. (020014) 已知集合 $A = \{x | x = a + \sqrt{2}b, \ a, b \in \mathbf{Z}\},$ 若 $x_1, x_2 \in A$, 证明: $x_1x_2 \in A$.
- 490. (020015) 已知集合 $A = \{x | (k+1)x^2 + x k = 0\}$ 中只有一个元素, 求实数 k 的值.
- 492. (020018) 已知集合 $A = \{1, 2\}$, 集合 $B = \{1, 2, 3, 4, 5\}$. 若集合 M 满足 $A \subset M$ 且 $M \subseteq B$, 则这样的集合 M有_____个.
- 493. (020019) 满足 $\{a,b\} \subset M \subset \{a,b,c,d,e\}$ 的集合 M 有______ 个.
- 494. (020021) 下列各选项中, M 与 P 表示同一个集合的有

①
$$M = \{(1, -3)\}, P = \{(-3, 1)\};$$
 ② $M = \{1, -3\}, P = \{-3, 1\};$ ③ $M = \emptyset, P = \{\emptyset\};$ ④ $M = \{y|y = x^2 + 1, x \in \mathbf{R}\}, P = \{(x, y)|y = x^2 + 1, x \in \mathbf{R}\};$ ⑤ $M = \{y|y = x^2 + 1, x \in \mathbf{R}\}, P = \{t|t = y^2 + 1, y \in \mathbf{R}\};$ ⑥ $M = \{y|y = x^2 + 1, x \in \mathbf{R}\}, P = \{t|t = y^2 + 1, y \in \mathbf{R}\};$

- **6** $M = \{y | y = x^2 + 1, x \in \mathbf{R}\}, P = \{x | y = \sqrt{x 1}, x \in \mathbf{R}\}.$
- 495. (020023) 设常数 $x, y \in \mathbb{R}$, 已知集合 $A = \{x, y\}, B = \{2x, x^2\},$ 且 A = B, 求集合 A.
- 496. (020024) 证明: 集合 $A = \{1, 2, 3\}$ 是集合 $B = \{0, 1, 2, 3, 4, 5, 6\}$ 的子集.

- 497. (020025) 判断集合 $A = \{n | n = 2k 1, k \in \mathbb{Z}\}, B = \{n | n = 2m + 1, m \in \mathbb{Z}\}$ 的关系, 并说明理由.
- 498. (020026) 证明集合 $A = \{n | n = 2k 1, k \in \mathbb{N}\}$ 不是集合 $B = \{n | n = 2m + 1, m \in \mathbb{N}\}$ 的子集, 且集合 A 真包含集合 B.
- 499. (020027) 已知集 $B = \{0, 2, 4\}, C = \{0, 2, 6\},$ 若集合 A 满足 $A \subseteq B, A \subseteq C,$ 写出所有满足条件的集合 A.
- 500. (020028) 已知集合 A = {1}, B = {x|x ⊆ A}, 用列举法表示集合 B. 并指出 A 与 B 的关系.
- 501. (020029) 若集合 $A = \{2, a, a+3\}, B = \{2, 3, 5, 8\},$ 且 $B \supset A$, 则 a 的值为______
- 502. (020030) 设常数 $a \in \mathbf{R}$. 若集合 $A = (-\infty, 5)$ 与 $B = (-\infty, a]$ 满足 $A \subseteq B$,则 a 的取值范围是______. 证明: 1° 当 a_______ 时,任取 $x \in A$,则________,所以 $x \in B$,即 $A \subseteq B$. 2° 当 a_______ 时,取 $x_1 =$ _______,则______,所以 $x_1 \in A$ 且 $x_1 \notin B$. 由 1° 、 2° 可得结论.
- 503. (020032) 已知集合 $A = \{1\}$, 集合 $B = \{x|x^2 2x + a = 0\}$, 且 $A \subset B$, 求实数 a 的取值范围.
- 504. (020033) 已知集合 $S = \{1, 2\}$, 集合 $T = \{x | ax^2 3x + 2 = 0\}$, 且 S = T, 求实数 a 的取值范围.
- 505. (020034) 已知集合 $S = \{1, 2\}$, 集合 $T = \{x | ax^2 3x + 2 = 0\}$, 且 $S \supseteq T$, 求实数 a 的取值范围.
- 506. (020035) 证明: 集合 $A = \{x | x = 6n 1, n \in \mathbf{Z}\}$ 是 $B = \{x | x = 3n + 2, n \in \mathbf{Z}\}$ 的真子集.
- 507. (020036) 设常数 $a \in \mathbf{R}$, 已知集合 $\{A = x | x^2 1 = 0\}$, 集合 $\{B = x | (x 1)(x a) = 0\}$. (1) 若 $B \subset A$, 求 a 值的集合;
 - (2) 若 B 不是 A 的子集, 求 a 值的集合.
- 508. (020037) 已知集合 $A = \{x | 0 < x < a\}, B = \{x | 1 < x < 2\},$ 若 $B \subseteq A$, 则实数 a 的取值范围为______.
- 509. (020038) 已知集合 A = [-2, 5], B = [m+1, 2m-1], 满足 $B \subseteq A$, 则实数 m 的取值范围为______.
- 510. (020039) 已知非空集合 P 满足: ① $P \subseteq \{1, 2, 3, 4, 5\}$; ② 若 $a \in P$, 则 $6 a \in P$, 符合上述要求的集合 P 的个数是______.
- 511. (020040) 已知集合 $A = \{1, 1+d, 1+3d\}$, 集合 $B = \{1, q, q^2\}$, 其中 $d \cdot q \in \mathbb{R}$, 且 $d \neq 0$. 若 A = B, 求 q 的值.
- 512. (020041) 已知 $A = \{x | x = a + \sqrt{2}b, \ a, b \in \mathbf{N}\}$, 若集合 $B = \{x | x = \sqrt{2}x_1, \ x_1 \in A\}$, 证明 $B \subset A$.
- 513. (020043) 已知任一集合 A, 则
 - (1) $A \cap A = _{\underline{\hspace{1cm}}};$
 - $(2) A \cap \varnothing = \underline{\hspace{1cm}};$
 - (3) $A \cup A = ____;$
 - $(4) A \cup \varnothing = \underline{\hspace{1cm}}.$
- 514. (020050) 已知集合 $A = \{x | x \le 1\}$, 集合 $B = \{x | x \ge a\}$, 且 $A \cup B = \mathbf{R}$, 则 a 的取值范围为______

- 515. (020051) 设常数 $a \in \mathbf{R}$. 已知集合 $A = \{x | x^2 3x + 2 = 0, x \in \mathbf{R}\}$, 集合 $B = \{x | 2x^2 x + 2a = 0, x \in \mathbf{R}\}$.
 - (1) 若 $A \cup B = B$, 求 a 的值的集合;
 - (2) 若 $A \cap B = B$, 求 a 的值的集合.
- 516. (020052) 已知集合 $A = (-\infty, -1) \cup (6, +\infty)$, 集合 B = (5 a, 5 + a). 若 $11 \in B$, 则 $A \cup B =$ ______.
- 517. (020053) 已知集合 $P = \{x | -2 \le x \le 5\}$, $Q = \{x | x > k+1$ 且 $x < 2k-1\}$, 若 $P \cap Q = \emptyset$, 求实数 k 的取值范围.
- 518. (020054) 已知集合 A = (x,y)|x+y=0, 集合 $B = \{(x,y)|y=x-2\}$, 集合 $C = \{(x,y)|y=x+b\}$. 若 $(A \cup C) \cap (B \cup C) = C$, 求实数 b.
- 519. (020055) 设常数 $m \in \mathbf{R}$. 若集合 $A = \{1,2,3\}$, 集合 $B = \{m^2,3\}$, 且 $A \cup B = \{1,2,3,m\}$, 则 m 的值 是______.
- 520. (020056) 设常数 $a \in \mathbb{R}$. 已知集合 $A = \{x | x \le 1\}$, 集合 $B = \{x | x > a\}$, 且 $A \cap B = \emptyset$, 则 a 的取值范围为______.
- 521. (020060) 已知集合 $U = \{x | x \ge 2\}$, 集合 $A = \{y | 3 \le y < 4\}$, 集合 $B = \{z | 2 \le z < 5\}$, 则 $\overline{A} \cap B = \underline{\hspace{1cm}}$; $\overline{B} \cup A = \underline{\hspace{1cm}}$.
- 522. (020063) 设常数 $a \in \mathbb{R}$, 已知全集 $U = \mathbb{R}$, 集合 $A = \{x | -2 < x < 2\}$, 集合 $B = \{x | x > a\}$. 若 $A \cap \overline{B} = A$, 则 a 的取值范围为______.
- 523. (020064) 设常数 $a \in \mathbb{R}$, 全集 $U = \mathbb{R}$. 集合 $A = \{x | x < 2\}$, $B = \{x | x > a\}$. 若 $\overline{A} \subseteq B$, 则 a 的取值范围为______.
- 524. (020065) 用集合 A、B 的运算式表示图中的阴影部分:

525. (020067) 已知全集 $U = A \cup B = \{x | 0 \le x \le 10, x \in \mathbb{N}\}, A \cap \overline{B} = \{1, 3, 5, 7\}.$ 则集合 $B = \underline{\hspace{1cm}}$

526. (020068) 若全集 $U = \{(x,y)|x \in \mathbf{R}, y \in \mathbf{R}\}$, 集合 $A = \{(x,y)|\frac{y}{x} = 1\}$, 集合 $B = \{(x,y)|y \neq x\}$, 则 $\overline{A \cup B} =$ _____.

528. (020071	, 判断下列命题的直假,	并在相应的括号内值λ	"直" 武"假"

- (2) $2\sqrt{3} > 3\sqrt{2}$ H. $1 \le 1$;______;
- (3) 如果 a、b 都是奇数, 那么 ab 也是奇数;______;
- (4) {1} 是 {0,1,2} 的真子集;______;
- (5) 1 是 {0,1,2} 的真子集;______;
- (6) 若 x < -2 或 x > 2, 则 $x^2 > 1$;
- (7) 如果 |a| < 2, 那么 a < 2;________;
- (8) 对任意实数 a, b, 方程 (a+1)x + b = 0 的解为 $x = -\frac{b}{a+1};$ ______;
- (10) 若关于 x 的方程 $ax^2 + bx + c = 0 (a \neq 0)$ 的两实数根之积是正数, 则 ac > 0; _______;
- (11) 若某个整数不是偶数,则这个数不能被 4 整除;_____;
- (12) 合数一定是偶数;_____;
- (13) 所有的偶数都是素数或合数;_____;
- (14) 所有的偶数都是素数或所有的偶数都是合数;_____;
- (15) 如果 $A \subset B, B \supset C$, 那么 A = C;_______;
- (16) 空集是任何集合的真子集;______;
- (18) 若 $A \cap B \neq \emptyset$, $B \subset C$, 则 $A \cap C \neq \emptyset$; _______;
- (19) 存在一个三角形, 它的任意两边的平方和小于第三边的平方;_____;
- (20) 对于任意一个三角形, 存在一组两边的平方和不等于第三边的平方;______.
- 529. (020073) 已知命题 "非空集合 M 的元素都是集合 P 的元素 "是假命题,给出下列命题: ① M 中的元素都不是 P 的元素;② M 中有不属于 P 的元素;③ M 中有 P 的元素;④ M 中的元素不都是 P 的元素.其中真命 题有
- 530. (020084) 有限集合 S 中元素的个数记作 card(S), 设 A, B 都是有限集合, 给出下列命题:
 - ① $A \cap B = \emptyset$ 的一个充要条件是 $card(A \cup B) = card(A) + card(B)$;

- $A \subseteq B$ 的一个必要不充分条件是 $\operatorname{card}(A) \leq \operatorname{card}(B)$;
- A 不是 B 的子集的一个充分不必要条件是 $\operatorname{card}(A) > \operatorname{card}(B)$;
- A = B 的一个充要条件是 card(A) = card(B).

其中真命题的个数是().

A. 0 B. 1 C. 2 D. 3