МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшегообразования

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТАЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА №51				
ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ	_			
ПРЕПОДАВАТЕЛЬ				
Доцент, КТН должность, уч. степень, звание подпись, дата	Н.В.Марковская инициалы, фамилия			
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №1				
по курсу: НАДЕЖНОСТЬ ИНФОКОММУНИКАЦОННЫХ	СИСТЕМ			

Санкт-Петербург 2022 Б.А.Карханин инициалы, фамилия

СТУДЕНТ ГР. № 5912

Оглавление

Цель работы	3
Исходные данные	
Переборный алгоритм вычисления вероятности связности вершин	
Декомпозиция	
Вывод	

Цель работы

В ходе выполнения работы необходимо вычислить вероятность существования пути между заданными вершинами в графе с помощью алгоритма полного перебора и декомпозиции, построить зависимость вероятности существования пути в случайном графе от вероятности существования ребра.

Исходные данные

Пусть задан случайный граф $\tilde{G}(X, Y, P)$, где $X = \{x_i\}$ – множество вершин, $Y = \{(x_i, x_j)\}$ – множество ребер, $P = \{p_i\}$ – множество вероятностей существования ребер, причем: $P = \{p_i\} : p_i = p$ для $\forall i$

Согласно полученному варианту, дан граф с параметрами $\tilde{G}(6,9,P)$, где $P=\{p\}$ и p пробегает значения от 0 до 1 с шагом 0,1. Граф изображен ниже:

Рисунок 1. Исходный граф

Необходимо вычислить вероятность существования пути между вершинами 2 и 5 $(P_{cB}(2,5))$ и построить зависимость вероятности существования пути в случайном графе от вероятности существования ребра.

Переборный алгоритм вычисления вероятности связности вершин

Рассмотрим множество $\Gamma = \{g_1, \ldots, g_N\}$ всех возможных неслучайных графов, которые можно получить на основе случайного. Каждый такой граф g_i может появиться с вероятностью $P(g_i)$. Среди них выделим подмножество $\Gamma' = \{g'_1, \ldots, g'_K\}$, где $K \leq N$, в котором путь из вершины 2 в 5 существует. Тогда $\Pr\{\text{путь 2,5}\} = \sum_{i=1}^k P(g'_i)$.

Данный метод реализуется программно. Для данного графа существует 2 l=2 9 = 512 различных подграфов. Краткие итоги работы программы приведены ниже.

Количество ребер в	Вероятность	Общее число	Количество
подграфе	появления	подграфов с	подграфов, где есть
		заданным	путь (2,5)
		количеством ребер	
0	0	1	0
1	$p(1-p)^{8}$	9	0
2	$p^2(1-p)^7$	36	2
3	$p^3(1-p)^6$	84	18
4	$p^4(1-p)^5$	126	61
5	$p^5(1-p)^4$	126	97
6	$p^6(1-p)^3$	84	77
7	$p^7(1-p)^2$	36	35
8	$p^{8}(1-p)$	9	9
9	$(1-p)^9$	1	1

Таким образом, получаем: $\Pr\{\text{путь 2,5}\} = p^2(1-p)^7 + p^3(1-p)^6 + p^4(1-p)^5 + p^5(1-p)^4 + p^6(1-p)^3 + p^7(1-p)^2 + p^8(1-p) + (1-p)^9$

После работы программы в файл выводится таблица результатов, которая приведена ниже:

P	Pr{путь 2,5}
0	0
0.1	0.023429332000000004
0.2	0.10205030400000005
0.3	0.23507589600000006
0.4	0.4054343680000001
0.5	0.5859375
0.6	0.7483806720000001
0.7	0.872369344
0.8	0.9507471359999999
0.9	0.989307108
1	1.0

Декомпозиция

Рисунок 3. Декомпозиция

Объединяя решения, получаем в итоге: $\Pr\{\text{путь }2,5\}=2P^9-7P^8+9P^6-5P^4+4P^3+2P^2+4P^7-8P^5\ p(1-p)8$ Тогда, получаем таблицу для различных p:

P	Pr{путь 2,5}
0	0
0.1	0.0234293320000000
0.2	0.102050304000000
0.3	0.235075896000000
0.4	0.405434368
0.5	0.5859375
0.6	0.748380672
0.7	0.872369344
0.8	0.950747136
0.9	0.989307108
1.0	1.0

Вывод

В ходе выполнения лабораторной работы была рассчитана зависимость вероятности существования пути в графе вручную по средствам декомпозиции и программно, по средствам полного перебора (Брут Форс).

Глядя на полученные результаты, можно сделать следующие выводы: 1) зависимость вероятности существования пути прямая: с увеличением Р вероятность существования тоже увеличивается; 2) Графики повторяют друг друга, а значит разница крайне мала, что свидетельствует о корректной работе программы.