Practice quiz on Types of Functions

TOTAL POINTS 6

1. Suppose that $A=\{1,2,10\}$ and $B=\{4,8,40\}$. Which of the following formulae do **not** define a function $f:A \to B$?

0 / 1 point

- $\bigcap f(a) = 4a$, for each $a \in A$
- $\bigcap f(1) = 5, f(2) = 8, \text{ and } f(10) = 40.$
- $\bigcap f(1) = 4, f(2) = 40, \text{ and } f(10) = 8.$
- - Incorrect

A function f:A o B is a rule which assigns an element $f(a)\in B$ to each $a\in A$. This is a perfectly fine rule. Don't be tricked by the fact that all of the elements in A get transformed into the same element in ${\it B}$. Nothing in the definition of function forbids that.

2. Suppose that A contains every person in the VBS study (see the second video in the course if you're confused here!). Suppose that $Y=\{+,-\}$ and $Z=\{H,S\}$

1 / 1 point

Suppose that T:A o Y is the function which gives T(a)=+ if person a tests positive and T(a)=- if they test negative.

Suppose that $D:A\to Z$ is the function which gives D(a)=H does not actually have VBS and D(a)= ${\cal S}$ if the person actually has VBS.

Which of the following must be true of person a if we have a false positive?

- \bullet T(a) = + and D(a) = H
- $\bigcap T(a) = \operatorname{and} D(a) = H$
- $\bigcap T(a) = \text{ and } D(a) = S$
- $\bigcap T(a) = + \text{ and } D(a) = S$

Recall that a false positive is a positive test result (so T(a)=+) which is misleading because the person actually does not have the disease (D(a)=H)

3. Consider the function $g:\mathbb{R} \to \mathbb{R}$ defined by $g(x)=x^2-1$. Which of the following points are *not* on the 1/1 point graph of q?

- \bigcirc (1,0)
- $\bigcirc (-1,0)$
- $\bigcirc (0,-1)$
- \bigcirc (2, -1)

Recall that the graph of g consists of all points (x,y) such that y=g(x) . Here g(2)=3
eq -1 , so the point (2,-1) is \emph{not} on the graph of g.

4. Let the point A=(2,4). Which of the following graphs does *not* contain the point A?

1/1 point

- lacksquare The graph of h(x) = x 1
- \bigcirc The graph of g(x) = x + 2
- igcirc The graph of $s(x)=x^2$
- \bigcirc The graph of f(x)=2x

The graph of h consists of all points (x,y) such that y=h(x). Here $h(2)=1\neq 4$, so the point (2,4) is *not* on the graph of h.

5.	Suppose that $h(x)=-3x+4$. Which of the following statements is true?	1 / 1 point
	○ <i>h</i> is a strictly increasing function	
	h is a strictly decreasing function	
	O All statements are correct	
	$igcup_h$ is neither a strictly increasing function nor a strictly decreasing function.	
	\checkmark Correct A function h is called strictly decreasing if whenever $a < b$, then $h(a) > h(b)$	
	Since the graph of \boldsymbol{h} is a line with negative slope, this is in fact true!	
6.	Suppose that $f:\mathbb{R} o\mathbb{R}$ is a strictly increasing function, with $f(3)=15$	1 / 1 point
	Which of the following is a possible value for $f(3.7)$?	
	O 14.7	
	○ 3	
	17	
	○ -3	
	\checkmark Correct A function f is called strictly increasing if whenever $a < b$, then $f(a) < f(b)$.	
	Since $f(3)=15$ is given and $3<3.7$, it must be that $15< f(3.7)$, and this answer satisfies that.	