# Rajalakshmi Engineering College

Name: Naren S

Email: 241901066@rajalakshmi.edu.in

Roll no: 241901066 Phone: 6382463115

Branch: REC

Department: I CSE (CS) FA

Batch: 2028

Degree: B.E - CSE (CS)



241901066

# NeoColab\_REC\_CS23231\_DATA STRUCTURES

REC\_DS using C\_Week 4\_MCQ\_Updated

Attempt : 1 Total Mark : 20 Marks Obtained : 18

Section 1: MCQ

1. What will the output of the following code?

```
#include <stdio.h>
#include <stdib.h>
typedef struct {
   int* arr;
   int front;
   int rear;
   int size;
} Queue;
Queue* createQueue() {
   Queue* queue = (Queue*)malloc(sizeof(Queue));
   queue->arr = (int*)malloc(5 * sizeof(int));
   queue->front = 0;
   queue->rear = -1;
   queue->size = 0;
```

```
return queue;
int main() {
     Queue* queue = createQueue();
     printf("%d", queue->size);
     return 0;
   }
   Answer
   0
                                                                     Marks: 1/1
   Status: Correct
       What will be the output of the following code?
   #include <stdio.h>
   #include <stdlib.h>
   #define MAX SIZE 5
   typedef struct {
     int* arr;
     int front;
     int rear;
     int size;
   } Queue;
   Queue* createQueue() {
   Queue* queue = (Queue*)malloc(sizeof(Queue));
     queue->arr = (int*)malloc(MAX_SIZE * sizeof(int));
     queue->front = -1;
     queue->rear = -1;
     queue->size = 0;
     return queue;
   int isEmpty(Queue* queue) {
     return (queue->size == 0);
   int main() {
printf("Is the queue empty? %d", isEmpty(queue)); return 0;
```

```
241901066
   Is the queue empty? 1

Status: Correct
Answer
    3. What will be the output of the following code?
    #include <stdio.h>
    #define MAX_SIZE 5
    typedef struct {
int ro
      int arr[MAX_SIZE];
      int size;
    } Queue;
    void enqueue(Queue* queue, int data) {
      if (queue->size == MAX_SIZE) {
        return;
      }
      queue->rear = (queue->rear + 1) % MAX_SIZE;
      queue->arr[queue->rear] = data;
      queue->size++;
int dequeue(Queue* queue) {
      if (queue->size == 0) {
        return -1;
      }
      int data = queue->arr[queue->front];
      queue->front = (queue->front + 1) % MAX_SIZE;
      queue->size--;
      return data;
    int main() {
                                                 241901066
queue.front = 0;
queue.rear
```

241901066

241901066

24,190,1066

241901066

Marks: 1/1

```
queue.size = 0;
enqueue(&queue, 1);
enqueue(&queue, 2);
enqueue(&queue, 3);
printf("%d ", dequeue(&queue));
printf("%d ", dequeue(&queue));
enqueue(&queue, 4);
enqueue(&queue, 5);
printf("%d ", dequeue(&queue));
printf("%d ", dequeue(&queue));
return 0;
}

Answer

1 2 3 4

Status: Correct

Marks: 1/1
```

4. In a linked list implementation of a queue, front and rear pointers are tracked. Which of these pointers will change during an insertion into a non-empty queue?

**Answer** 

Only rear pointer

Status : Correct Marks : 1/1

5. After performing this set of operations, what does the final list look to contain?

241001066

```
InsertFront(10);
InsertFront(20);
InsertRear(30);
DeleteFront();
InsertRear(40);
InsertRear(10);
DeleteRear();
InsertRear(15);
```

```
display();
Answer
    10 30 40 15
    Status: Correct
                                                                      Marks: 1/1
    6. What is the functionality of the following piece of code?
    public void function(Object item)
      Node temp=new Node(item,trail);
                                                                          241901066
      if(isEmpty())
        head.setNext(temp);
        temp.setNext(trail);
      else
        Node cur=head.getNext();
        while(cur.getNext()!=trail)
           cur=cur.getNext();
       cur.setNext(temp);
      size++;
    Answer
    Insert at the rear end of the dequeue
    Status: Correct
                                                                      Marks: 1/1
```

7. A normal queue, if implemented using an array of size MAX\_SIZE, gets full when

Rear = MAX\_SIZE - 1

Status: Correct Marks: 1/1

8. In what order will they be removed If the elements "A", "B", "C" and "D" are placed in a queue and are deleted one at a time

Answer

**ABCD** 

Status: Correct Marks: 1/1

9. What are the applications of dequeue?

Answer

A-Steal job scheduling algorithm

Status: Wrong Marks: 0/1

10. The essential condition that is checked before insertion in a queue is?

Answer

Overflow

Status: Correct Marks: 1/1

11. Which operations are performed when deleting an element from an array-based queue?

Answer

Dequeue

Status: Correct Marks: 1/1

12. Front and rear pointers are tracked in the linked list implementation of a queue. Which of these pointers will change during an insertion into the EMPTY queue?

# Answer

Both front and rear pointer

Status: Correct Marks: 1/1

13. In linked list implementation of a queue, the important condition for a queue to be empty is?

#### Answer

FRONT is null

Status: Correct Marks: 1/1

14. Which of the following properties is associated with a queue?

## Answer

First In First Out

Status: Correct Marks: 1/1

15. When new data has to be inserted into a stack or queue, but there is no available space. This is known as

#### Answer

overflow

Status: Correct Marks: 1/1

16. Insertion and deletion operation in the queue is known as

## Answer

**Enqueue and Dequeue** 

Status: Correct Marks: 1/1

17. Which one of the following is an application of Queue Data Structure?

## Answer

When data is transferred asynchronously (data not necessarily received at same rate as sent) between two processes

Status: Wrong Marks: 0/1

18. The process of accessing data stored in a serial access memory is similar to manipulating data on a

#### Answer

Queue

Status: Correct Marks: 1/1

19. What does the front pointer in a linked list implementation of a queue contain?

#### Answer

The address of the first element

Status: Correct Marks: 1/1

20. Which of the following can be used to delete an element from the front end of the queue?

# **Answer**

public Object deleteFront() throws emptyDEQException(if(isEmpty())throw new emptyDEQException("Empty");else{Node temp = head.getNext();Node cur = temp.getNext();Object e = temp.getEle();head.setNext(cur);size--;return e;}}

Status: Correct Marks: 1/1