РАСПОЗНАВАНИЕ ЛИЦ

Новосибирск, МАОУ «ЛИЦЕЙ №176»

ПОТЕМИН РОМАН

10 «А» КЛАСС

Шунаев Никита
Александрович Методист,
Региональный координатор
Олимпиады НТИ в НСО
ГАУ ДО НСО «ОЦРТДиЮ»
РРЦ «Детский технопарк»

ПОЧЕМУ ЭТО АКТУАЛЬНО?

УДОБСТВО

Сегодня благодаря системам распознавания лиц можно совершать многие действия, связанные с определением личности человека или контура его лица.

Например, разблокировка телефона с помощью лица, маски в Instagram и многое-многое другое.

БЕЗОПАСНОСТЬ

Идентификация человека по его лицу является одним из наиболее точных способов подтверждения личности человека. С помощью данной системы можно определять преступников или людей, находящихся в «черном списке» для посещения того или иного мероприятия.

Например, распознавания лиц во время ЧМ-2018.

АЛГОРИТМ

ПОИСК ЛИЦ ОЦЕНКА ОРИЕТИРА

СРАВНЕНИЕ

1 Поиск лиц на изображении

Гистограмма ориентированных градиентов

Гистограмма ориентированных градиентов

Input image

Histogram of Oriented Gradients

Гистограмма ориентированных градиентов

HOG face pattern generated From lots of face images

Гистограмма ориентированных градиентов

Ричард Фейнман, физик

Карл Саган, астрофизик

Проецирование ЛИЦ Аффинные преобразование

ОДИН ЧЕЛОВЕК **-РАЗНЫЕ УСЛОВИЯ**

МL ДЛЯ ПОИСКА 68 ОРИЕНТИРОВ

68 Ориентиров на тестовом изображении

68 Ориентиров на каждом лице

АФФИННЫЕ ПРЕОБРАЗОВАНИЯ

Изображение

68 Ориентиров

Аффинное преобразование

ПЕРЕВЕРНУТЫЕ ЛИЦА

Кодирование изображений EMBEDDING

Autoencoder

Сверточная нейронная сеть

AUTOENCODER

AUTOENCODER

INPUT IMAGE

128 Measurements Generated from Image

0.045223236083984 0.060309179127216 -0.01981477253139 0.065554238855839 0.1226262897253 0.036750309169292 0.14114324748516 -0.061901587992907 -0.10568545013666 -0.074287034571171 0.0061761881224811 -0.21055991947651 0.11345765739679 0.19372203946114 0.084853030741215 0.0064811296761036 -0.16582328081131 -0.0072777755558491 -0.059730969369411 0.11478432267904 0.14841195940971 0.049525424838066 -0.051016297191381 -0.062812767922878 0.0048638740554452 -0.11443792283535 0.014683869667351 -0.081752359867096 0.037022035568953 0.12788131833076 -0.094398014247417 -0.10034311562777

0.097496084868908

0.12529824674129

0.030809439718723

0.036050599068403

-0.097486883401871

-0.0066401711665094 -0.14131525158882

-0.048540540039539

-0.12567175924778

-0.061418771743774

0.046741496771574

-0.12113650143147

0.061606746166945

0.061989940702915

0.10904195904732 -0.019414527341723

0.15245945751667

-0.12216668576002

0.083934605121613

0.087945111095905

-0.021407851949334

-0.018298890441656

-0.011014151386917

0.0093679334968328

0.058139257133007

-0.024210374802351

-0.057223934680223

-0.0098039731383324

0.020220354199409

0.0040337680839002

0.051597066223621

0.023535015061498

-0.1281466782093 0.17521631717682 0.10801389068365 0.0731306001544 -0.029626874253154 -0.15958009660244 -0.031351584941149 -0.15042643249035 -0.12728653848171 -0.065365232527256 0.14746543765068 0.0041091227903962 0.021352224051952 -0.086726233363152 0.09463594853878 0.21180312335491 -0.035577941685915 -0.036901291459799 -0.070026844739914 -0.089621491730213 0.078333757817745 0.13227833807468 -0.14132921397686 -0.13407498598099 -0.039491076022387 0.071997955441475 0.05228154733777 -0.031709920614958 0.11009479314089 0.18632389605045 -0.11768248677254 -0.040977258235216

0.032084941864014 0.020976085215807 -0.00052163278451189 -0.1318951100111 -0.0059557510539889 0.043374512344599 -0.053343612700701 0.078198105096817 -0.076289616525173 0.12369467318058 0.056418422609568 0.089727647602558 -0.0085843298584223 -0.022388197481632 0.020696049556136 -0.050584398210049 -0.072376452386379 -0.034365277737379 -0.045013956725597 -0.013955107890069 -0.17898085713387 -0.072600327432156 0.0050511928275228 -0.014829395338893 -0.043765489012003 -0.012062266469002 0.012774495407939 0.069833360612392 0.11638788878918 -0.015336792916059 0.10281457751989 -0.082041338086128

4 Предсказание threshold

МЕТРИКА

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

$$\frac{True\ Positive}{True\ Positive + False\ Positive}$$

$$Recall = \frac{True\ Positive}{True\ Positive + False\ Negative}$$

МЕТРИКА

СРАВНИВАЕМ ИЗОБРАЖЕНИЯ

IMAGE IN DATA-FRAME

INPUT IMAGE

РЕЗУЛЬТАТ СРАВНЕНИЯ 128 ИЗМЕРЕНИЙ

Сергей Брин,google

Программа для идентификации людей

Герман Греф

Андрей Травников

СПАСИБО!

ВОПРОСЫ?

vk:@sklearn

github.com/poteminr