Cours sino-français Hefei, automne 2022 Topologie algébrique - Examen du 6 novembre (durée 3 heures)

L'évaluation prend en compte la rédaction: on demande des solutions argumentées. Néanmoins, certaines questions peuvent avoir des réponses très courtes. Barême indicatif: 4+3+13.

I

Dans \mathbb{R}^3 , on définit un cercle Γ et deux droites Δ et D, par:

$$\Gamma = \{(x, y, 0), (x, y) \in \mathbb{R}^2, x^2 + y^2 = 1\}, \Delta = \{(0, 0, z), z \in \mathbb{R}\}, D = \{(2, 0, z), z \in \mathbb{R}\}.$$

- 1. Déterminer les groupes fondamentaux des espaces suivants (on donnera soit une présentation, soit un isomorphisme avec un groupe connu).
 - (a) $X = \mathbb{R}^3 \setminus (\Gamma \cup \Delta)$,
 - (b) $Y = \mathbb{R}^3 \setminus (\Gamma \cup D)$.
- 2. Est-ce que X et Y sont homéomorphes ?

II

Calculer l'homologie du quotient: $Z = [0,1] \times S^1 \times S^1/(1,\alpha,\beta) \sim (0,\alpha^{-1},\beta^{-1}).$

III

On appelle involution libre sur un espace topologique X, tout homéomorphisme $\tau: X \to X$, tel que $\tau \circ \tau$ est l'identité de X et $\tau(x) \neq x$ pour tout x. Dans le cas où X est une variété orientée, une involution libre $\tau: X \to X$ est dite orientée si et seulement si τ est de degré local égal à 1 en tout point.

- 1. (a) Montrer que si $\tau: M \to M$ est une involution libre sur une variété M, alors le quotient $B = M/\tau$, obtenu en identifiant $\tau(x)$ à x pour tout x, est une variété.
 - (b) Montrer que si $\tau: M \to M$ est une involution libre orientée sur une variété M orientée, alors le quotient $B = M/\tau$ est une variété orientée.
- 2. Etant donnée une involution libre $\tau: X \to X$ avec quotient associé $p: X \to B = X/\tau$, on définit le transfert sur les cochaînes, $T: C^*(X, \mathbb{Z}/2\mathbb{Z}) \to C^*(B, \mathbb{Z}/2\mathbb{Z})$. Ce transfert est dual de celui défini sur les chaînes:

$$\langle T(f), \sigma \rangle = \langle f, \tilde{\sigma} + \tilde{\sigma} \circ \tau \rangle$$
,

où $\tilde{\sigma}$ et $\tilde{\sigma} \circ \tau$ sont les deux relevés du simplexe singulier σ .

(a) Montrer qu'avec la projection et le transfert on obtient une suite exacte courte de complexes de cochaînes: T est un morphisme de cochaînes, et pour chaque n on a une suite exacte

$$0 \longrightarrow C^n(B, \mathbb{Z}/2\mathbb{Z}) \xrightarrow{C^n(p)} C^n(X, \mathbb{Z}/2\mathbb{Z}) \xrightarrow{T} C^n(B, \mathbb{Z}/2\mathbb{Z}) \longrightarrow 0$$

- (b) Déduire une suite exacte longue en cohomologie à coefficients modulo 2. On précisera les homomorphismes qui apparaissent dans cette suite, en particulier le connectant noté β .
- (c) Dans le cas où la caractéristique d'Euler $\chi(B)$ est définie, quelle relation y a-t-il entre $\chi(B)$ et $\chi(X)$?
- 3. Pour une involution libre τ sur un espace X connexe par arc, on note c_{τ} l'image du générateur de $H^0(B, \mathbb{Z}/2\mathbb{Z})$ par le connectant de la suite exacte longue de transfert: $c_{\tau} = \beta(1) \in H^1(B, \mathbb{Z}/2\mathbb{Z})$.
 - (a) Montrer que si $\tau: X \to X$ est une involution libre sur un espace connexe par arc, alors c_{τ} est non nul.
 - (b) Montrer que la sphère S^2 n'a pas d'involution libre orientée.
 - (c) Quelles sont les surfaces compactes orientées qui ont une involution libre orientée ?
- 4. (a) Identifier la surface obtenue en formant le revêtement d'orientation de la surface non orientée de genre $g, P_q, g \ge 1$.
 - (b) Montrer que toutes les surfaces orientées compactes ont une involution libre non orientée τ .
 - (c) Démontrer le théorème de Borsuk-Ulam pour les surfaces orientées Σ_g , $g \geq 2$, avec une involution non orientée τ : Pour toute application continue $f: \Sigma_g \to \mathbb{R}^2$, il existe $x \in \Sigma_g$ tel que $f(\tau(x)) = f(x)$.