Attack on Galois RLWE

Kristin Lauter, Kate Stange, Hao Chen

August 29, 2015

Abstract

We describe a new attack on decision RLWE for number fields based on χ^2 test, and give examples of Galois fields vulnerable to our attack. Then, we analyze the security of cyclotomic extensions under our attack, using Fourier analysis on finite fields. Also, we sharpen the attack in [ELOS] and give examples of vulnerable instnaces of cryptographic size. Finally, we discuss the effect of modulus switching on our attacks.

1 Introduction

Let K be a number field with ring of integers $R = \mathcal{O}_K$. The {it canonical embedding} of K is

$$\iota: K \to \mathbb{C}^n$$

 $x \mapsto (\sigma_1(x), \cdots, \sigma_n(x))$

To work with real vector spaces, we define the adjusted embedding

$$\tilde{\iota}: K \to \mathbb{R}^n$$

 $x \mapsto (\sigma_1(x), \dots, \sigma_{r_1}(x), \Re(\sigma_{r_1+1})(x), \Im(\sigma_{r_1+1})(x), \dots, \Re(\sigma_{r_1+r_2})(x), \Im(\sigma_{r_1+r_2})(x))$

It turns out that $\tilde{\iota}(R)$ is a lattice in \mathbb{R}^n . Let $w = (w_1, \dots, w_n)$ be a \mathbb{Z} -basis for R.

Definition 1.1. The canonical (resp. adjusted) embedding matrix of w, denoted by A_w (resp. \tilde{A}_w), is the n-by-n matrix whose i-th column is $\sigma(w_i)$ (resp. $\tilde{\sigma}(w_i)$).

The two embedding matrices are related in a simple way: let T denote the matrix

$$T =$$

Then we have

$$\tilde{A_w} = T^* A_w.$$

Definition 1.2. The discrete lattice gaussian

1.1 Ring LWE problems for general number fields

Definition 1.3. An *RLWE instance* is a tuple $\mathcal{R} = (K, q, \sigma)$, where K is a number field with ring of integers $R = \mathcal{O}_K$, q is a prime, $\sigma > 0$, and $s \in R/qR$.

Definition 1.4. Let $\mathcal{R} = (K, q, s)$ be an RLWE instance, and let R be the ring of integers of K. The *error distribution* of \mathcal{R} , denote by $D_{\mathcal{R}}$, is the discrete lattice Gaussian

$$D_{\mathcal{R}} = D_{\tilde{\iota}(R),\sigma}$$
.

Let n denote the degree of K, and let V denote the covolume of the lattice $\tilde{\iota}(R)$. As is pointed out by [ELOS], when analyzing the error distribution, one needs to take into account the sparsity of the lattice $\tilde{\iota}(R)$, which is measured by V, In light of this, we define a relative version of the standard deviation:

$$\sigma_0 = \frac{\sigma}{V^{\frac{1}{n}}}.$$

Definition 1.5 (RLWE distribution). Let $\mathcal{R} = (K, q, \sigma, s)$ be an RLWE instance with error distribution $D_{\mathcal{R}}$, We let R_q denote R/qR, then a sample from the *RLWE distribution* of \mathcal{R} is a tuple

$$(a, b = as + e \pmod{qR}) \in (R_q)^2,$$

where the first coordinate a is chosen uniformly at random in R_q , and $e \leftarrow D_{\mathcal{R}}$. We abbreviate and write $(a,b) \leftarrow \mathcal{R}$.

The RLWE problem has two versions, referred to as search and decision, respectively.

Definition 1.6 (Search). Let \mathcal{R} be an RLWE intance. The search Ring-LWE problem, denoted by $SRLWE(\mathcal{R})$, is to discover s given access to arbitrarily many independent samples $(a,b) \leftarrow \mathcal{R}$.

Definition 1.7 (Decision). Let \mathcal{R} be an RLWE intance. The *decision Ring-LWE* problem, denoted by $DRLWE(\mathcal{R})$, is to distinguish between the same number of independent samples in two distributions on $R_q \times R_q$. The first is the RLWE distribution of \mathcal{R} , and the second consists of uniformly random and independent samples from $R_q \times R_q$.

2 search-to-decision reduction

We prove the reduction of SRLWE for Galois extensions to an intermediate problem, denoted by $SRLWE(\mathbb{R},\mathfrak{q})$ (the same problem is denoted by \mathfrak{q}_i -LWE in [LPR]), of recovering the secret modulo some prime ideal \mathfrak{q} of K lying above q. This result can be viewed as a generalization of [EHL, Theorem 2] to primes of higher degree. Since our Algorithm are targeting at $SRLWE(\mathbb{R},\mathfrak{q})$, we could attack SRLWE for any Galois RLWE instances we found vulnerable to Algorithm . We remark that a search-to-decision reduction theorem for higher degree primes can be proved by carrying out almost the exact same proof of [EHL, Theorem 2].

Definition 2.1. Given an RLWE instance $R = (K, q, \sigma, s)$ and a prime ideal \mathfrak{q} of K lying above q. The problem $SRLWE(R, \mathfrak{q})$ is: given access to arbitrarily many independent samples $(a, b) \leftarrow \mathcal{R}$, find $s \pmod{\mathfrak{q}}$.

We prove the reduction from SRLWE(R) to $SRLWE(R, \mathfrak{q})$ when q is unramified. We recall some algebraic number theoretical facts in the following

Lemma 2.2.

Now we are ready to state and prove

Theorem 2.3. Let $\mathcal{R} = (K, q, \sigma, s)$ be an RLWE instance with K/\mathbb{Q} Galois and q unramified in K. Let $f = f(q; K/\mathbb{Q})$. Suppose there is an algorithm \mathscr{A} which solves $SRLWE(\mathcal{R}, \mathfrak{q})$ using a list S of samples. Assume that the running time of the algorithm \mathscr{A} is t. Then the problem $SRLWE(\mathcal{R})$ can be solved in time $T = \frac{n}{t}t + C$ using the samples in S.

Proof. Galois group acts transitively. Let $\mathfrak{q}_1 = \mathfrak{q}, \dots, \mathfrak{q}'_n$ denote the primes of K above q, then n' = n/f, and since $R/qR = \prod_{\mathfrak{q}_i \mid q} R/\mathfrak{q}_i R$, it suffices to recover $s \mod \mathfrak{q}_i$ for $1 \le i \le n'$.

Now for each i, take $\sigma \in Gal(K/\mathbb{Q})$, such that $\sigma_i(\mathfrak{q}) = \mathfrak{q}_i$, and run the algorithm on $(\sigma_i^{-1}(S), \mathfrak{q}_i)$. The algorithm outputs $\sigma_i^{-1}(s) \pmod{\mathfrak{q}}$, which is equal to $s \pmod{\mathfrak{q}_i}$. Hence we have recovered s. The complexity estimate comes from the fact that we are applying the algorithm n' times.

Remark 2.4. Note that in the complexity computation above we have chosen to neglect the time taken by applying Galois automorphisms to the samples, because the runtime depends hugely on the instance and on the way we represent the samples. For example, for sub-cyclotomic fields and the normal integral basis, the Galois autormophisms are simply permutations of coordinates, so it could be done very fast.

Remark 2.5. Although theorem is stated for any unramified prime, we, from an attacker's perspective, still take primes of small degree, since the search space for $s \pmod{\mathfrak{q}}$ is of size q^f , and it is bad when f is large.

- 3 χ^2 attack
- 4 sub-cyclotomics and vulnerable instances
- 4.1 Background
- 4.2 A note on searching
- 5 Invulnerability of cyclotomic extensions
- 6 Sharpening [ELOS] attack
- 7 Modulus Swtiching