Chapter 10

Planning Life Tests

William Q. Meeker and Luis A. Escobar

Iowa State University and Louisiana State University

Copyright 1998-2004 W. Q. Meeker and L. A. Escobar. Based on the authors' text *Statistical Methods for Reliability Data*, John Wiley & Sons Inc. 1998.

January 5, 2006 19h 14min

10 - 1

Planning Life Tests Chapter 10 Objectives

- Explain the basic ideas behind planning a life test.
- Use simulation to anticipate the results, analysis, and precision for a proposed test plan.
- Explain large-sample approximate methods to assess precision of future results from a reliability study.
- Compute sample size needed to achieve a specified degree of precision.
- Assess tradeoffs between sample size and length of a study.
- Illustrate the use of simulation to calibrate the easier-to-use large-sample approximate methods.
- Planning minimum size demonstration tests.

10 - 2

Basic Ideas in Test Planning

- The enormous cost of reliability studies makes it essential to do careful planning. Frequently asked questions include:
 - ► How many units do I need to test in order to estimate the .1 quantile of life?
 - ► How long do I need to run the life test?

Clearly, more test units and more time will buy more information and thus more precision in estimation.

 To anticipate the results from a test plan and to respond to the questions above, it is necessary to have some planning information about the life distribution to be estimated.

10 - 3

Engineering Planning Values and Assumed Distribution for Planning an Insulation Life Test

Want to estimate $t_{\cdot,1}$ of the life distribution of a newly developed insulation. Tests are run at higher than usual volts/thickness to cause failures to occur more quickly.

Information (planning values) from engineering

- Expect about 20% failures in the 1000 hour test and about 12% failures in the first 500 hours of the test.
- Willing to assume a Weibull distribution to describe failuretime.
- Equivalent information for **planning values**: $\eta^{\square} = 6464$ hours (or $\mu^{\square} = \log(6464) = 8.774$), $\beta^{\square} = .8037$ (or $\sigma^{\square} = 1/\beta^{\square} = 1.244$).

Starting point: Use simulated data to assess precision.

10 - 4

Weibull Probability Paper Showing the Insulation Life cdf Corresponding to the Test Planning Values $\eta^\square=6464$ and $\beta^\square=.8037$

Assessing the Variability of the Estimates For an Unrestricted Quantity

• For an unrestricted quantile y_p an approximate $100(1-\alpha)\%$ confidence interval is given by

$$\begin{aligned} [\underline{y}_p, \quad \widetilde{y}_p] &= \widehat{y}_p \pm z_{(1-\alpha/2)} \widehat{\mathsf{se}}_{\widehat{y}_p} \\ &= [\widehat{y}_p - D, \quad \widehat{y}_p + D] \end{aligned}$$

where $D = z_{(1-\alpha/2)}\widehat{se}_{\widehat{y}_p}$.

• The half-width D is an indication of the width of the interval and can be used to assess the variability in the estimates \hat{y}_p .

Assessing the Variability of the Estimates For a Positive Quantity

• For a positive quantile t_p an approximate $100(1-\alpha)\%$ confidence interval for $\log(t_p)$ is given by

$$\left\lceil \log(t_p), \quad \log(t_p) \right\rceil = \log(\hat{t}_p) \pm z_{(1-\alpha/2)} \widehat{\mathsf{Se}}_{\log(\hat{t}_p)}$$

Exponentiation yields a confidence interval for t_p

$$[t_p, \quad \tilde{t_p}] = [\hat{t_p}/R, \quad \hat{t_p}R]$$

where
$$R = \exp\left[z_{(1-\alpha/2)}\widehat{\mathrm{Se}}_{\log(\widehat{t}_p)}\right]$$
 .

• The factor R>1 is an indication of the width of the interval and can be used to assess the variability in the estimates \hat{t}_p .

10 - 7

Sample Size Formulas

ullet Approximate sample size to estimate the mean of a normal distribution with complete data and precision $D_T.$

$$n = \frac{z_{(1-\alpha/2)}^2 (\sigma^{\Box})^2}{D_T^2}$$

 $(\sigma^{\square})^2$ is a planning value for the variance σ^2 and D_T is the target half width of a $100(1-\alpha)\%$ confidence interval for μ .

ullet To estimate a quantile of a positive response with censored data and precision R_T .

$$n = \frac{z_{(1-\alpha/2)}^2 \mathsf{V}_{\log(\widehat{t}_p)}^{\square}}{[\log(R_T)]^2}$$

where $V_{\log(\widehat{t_p})}^{\square}$ is a planning value of the variance factor $V_{\log(\widehat{t_p})}$ which may depend on t_p^{\square} and the amount of censoring. R_T is the target precision factor for a $100(1-\alpha)\%$ confidence interval for t_p .

10-8

10 - 9

Simulation as a Tool for Test Planning

- Use assumed model and planning values of model parameters to simulate data from the proposed study.
- Analyze the data perhaps under different assumed models.
- Assess precision provided.
- Simulate many times to assess actual sample-to-sample differences.
- Repeat with different sample sizes to gauge needs.
- Repeat with different input planning values to assess sensitivity to these inputs.

Any surprises?

ML Estimates from 50 Simulated Samples of Size $n=20,\,t_c=400$ from a Weibull Distribution with $\mu^\square=8.774$ and $\sigma^\square=1.244$

ML Estimates from 50 Simulated Samples of Size $n=80,\,t_c=400$ from a Weibull Distribution with $\mu^\square=8.774$ and $\sigma^\square=1.244$

ML Estimates from 50 Simulated Samples of Size $n = 20, t_c = 1000$ from a Weibull Distribution with $\mu^{\square}=8.774$ and $\sigma^{\square}=1.244$

ML Estimates from 50 Simulated Samples of Size $n = 80, t_c = 1000$ from a Weibull Distribution

10 - 14

Simulations of Insulation Life Tests

- ML estimates obtained from 50 simulated samples of size $n=20, 80, \text{ from a Weibull distribution with } \mu^{\square}=8.774, \sigma^{\square}=$ $1.244 (\beta^{\square} = .8037).$
- The vertical lines at $t_c = 400$, 1000 hours (shown with the thicker line) indicates the censoring time (end of the test).
- The horizontal line is drawn at p = .1 so to provide a better visualization of the distribution of estimates of $t_{.1}$.
- Results at $t_c = 400$ and n = 20 are highly variable.

10 - 15

10 - 17

Trade-offs Between Test Length and Sample Size

Geometric average \hat{R} factor from 50 simulated exponential samples ($\theta = 5$) for combinations of sample size n and test length t_c (conditional on $r \ge 1$ failures)

Test Length t_c	Sample 20	e Size n
400	12.9 (2)	2.84 (8)
1000	4.53 (4)	2.14 (16)

Numbers within parenthesis are the expected number of failures at each test condition.

10 - 16

Simulations of Insulation Life Tests-Continued

Some important points about the effect that sample size will have on our ability to make inferences:

- For the $t_c = 400$ and n = 5 simulation
 - ▶ Enormous amount of variability in the ML estimates.
 - ▶ For several of the simulated data sets, no ML estimates exist because all units were censored.
- ullet Increasing the experiment length to $t_c=1000$ and the sample size to n = 80 provides
 - ▶ A more stable estimation process.
 - ▶ A substantial improvement in precision.

Motivation for Use of Large-Sample Approximations of **Test Plan Properties**

Asymptotic methods provide:

- Simple expressions giving precision of a specified estimator as a function of sample size.
- Simple expressions giving needed sample size as a function of specified precision of a specified estimator.
- Simple tables or graphs that will allow easy assessments of tradeoffs in test planning decisions like sample size and test length.
- Can be fine tuned with simulation evaluation.

Asymptotic Variances

Under certain regularity conditions the following results hold asymptotically (large sample)

• $\hat{ heta} \mathrel{\dot{\sim}} \mathsf{MVN}(heta, \Sigma_{\widehat{ heta}})$, where $\Sigma_{\widehat{ heta}} = I_{ heta}^{-1}$, and

$$I_{\theta} = \mathsf{E}\left[-\frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta \partial \theta'}\right] = \sum_{i=1}^n \mathsf{E}\left[-\frac{\partial^2 \mathcal{L}_i(\theta)}{\partial \theta \partial \theta'}\right].$$

• For a scalar $g = g(\hat{\theta}) \sim NOR[g(\theta), Avar(\hat{g})]$, where

$$\mathsf{Avar}(\widehat{g}) = \left[\frac{\partial g(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right]' \Sigma_{\widehat{\boldsymbol{\theta}}} \left[\frac{\partial g(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}\right].$$

• When $g(\theta)$ is **positive** for all θ , then $\log[g(\hat{\theta})] \sim \text{NOR}\{\log[g(\theta)], \text{Avar}[\log(\hat{g})]\}$, where

$$\operatorname{Avar}[\log(\hat{g})] = \left(\frac{1}{g}\right)^2 \operatorname{Avar}(\hat{g}).$$

10 - 19

Asymptotic Approximate Standard Errors for a Function of the Parameters $g(\theta)$

Given an assumed model, parameter values (but not sample size), one can compute scaled asymptotic variances.

• The variance factors $V_{\widehat{g}} = n \operatorname{Avar}(\widehat{g})$ and $V_{\log(\widehat{g})} = n \operatorname{Avar}[\log(\widehat{g})]$ may depend on the actual value of θ but they do **not** depend on n.

To compute these variance factors one uses planning values for θ (denoted by θ^\square) as discussed later.

ullet The asymptotic standard error for \widehat{g} and $\log(\widehat{g})$ are

$$Ase(\hat{g}) = \frac{1}{\sqrt{n}} \sqrt{V_{\hat{g}}}$$

$$Ase[log(\hat{g})] = \frac{1}{\sqrt{n}} \sqrt{V_{log(\hat{g})}}$$

ullet Easy to choose n to control Ase.

10 - 20

Sample Size Determination for Positive Functions of the Parameters

• When $g(\theta)>0$ for all θ , an approximate $100(1-\alpha)\%$ confidence interval for $\log[g(\theta)]$ is

$$\left[\log(g), \log(g)\right] = \log(\hat{g}) \pm (1/\sqrt{n}) z_{(1-\alpha/2)} \sqrt{\hat{\mathsf{V}}_{\log(\hat{g})}} = \log(\hat{g}) \pm \log(R)$$

Exponentiation yields a confidence interval for q

$$[g, \quad \tilde{g}] = [\hat{g}/R, \quad \hat{g}R]$$

$$R = \exp\left[(1/\sqrt{n})z_{\left(1-\alpha/2\right)}\sqrt{\widehat{\mathsf{V}}_{\log(\widehat{g})}}\right] = \widetilde{g}/\widehat{g} = \widehat{g}/\underline{\widetilde{g}} = \sqrt{\widetilde{g}/\underline{\widetilde{g}}}.$$

• Replace $\hat{\mathsf{V}}_{\log(\hat{g})}$ with $\mathsf{V}_{\log(\hat{g})}^\square$ and solve for n to compute the needed sample size giving

$$n = \frac{z_{(1-\alpha/2)}^2 \mathsf{V}_{\mathsf{log}(\widehat{g})}^{\square}}{[\mathsf{log}(R_R)]^2}.$$

10 - 21

Sample Size Determination for Positive Functions of the Parameters-Continued

Test plans with a sample size of

$$n = \frac{z_{(1-\alpha/2)}^2 \mathsf{V}_{\mathsf{log}(\widehat{g})}^{\square}}{[\mathsf{log}(R_T)]^2}.$$

provides confidence intervals for $g(\boldsymbol{\theta})$ with the following characteristics:

- In repeated samples approximately $100(1-\alpha)\%$ of the intervals will contain $g(\theta)$.
- In repeated samples $\hat{\mathsf{V}}_{\log(\widehat{g})}$ is random and if $\hat{\mathsf{V}}_{\log(\widehat{g})} > \mathsf{V}_{\log(\widehat{g})}^\square$ then the ratio $R = \sqrt{\widetilde{g}/g}$ will be greater than R_T .
- The ratio $R=\sqrt{\tilde{g}/g}$ will be greater than R_T with a probability of order .5

10 - 22

Sample Size Needed to Estimate the Mean of an Exponential Distribution Used to Describe Insulation Life

- Need a test plan that will estimate the mean life of insulation specimens at highly-accelerated (i.e., higher than usual voltage to get failure information quickly) conditions.
- Desire a 95% confidence interval with endpoints that are approximately 50% away from the estimated mean (so $R_T=1.5$).
- \bullet Can assume an exponential distribution with a mean $\theta^{\square} = 1000$ hours.
- Simultaneous testing of all units; must terminate test at 500 hours.

Sample Size Needed to Estimate the Mean of an Exponential Distribution Used to Describe Insulation Life-Continued

• ML estimate of the exponential mean is $\hat{\theta}=TTT/r$, where TTT is the total time on test and r is the number of failures. It follows that

$$\mathsf{V}_{\widehat{\theta}} = n\mathsf{Avar}(\widehat{\theta}) = \frac{n}{\mathsf{E}\left[-\frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta^2}\right]} = \frac{\theta^2}{1 - \mathsf{exp}\left(-\frac{t_c}{\theta}\right)}$$

from which

$$\mathsf{V}_{\log(\widehat{\theta})}^{\square} = \frac{\mathsf{V}_{\widehat{\theta}}^{\square}}{[\theta^{\square}]^2} = \frac{1}{1 - \exp\left(-\frac{500}{1000}\right)} = 2.5415.$$

Thus the number of needed specimens is

$$n = \frac{z_{(1-\alpha/2)}^2 \mathsf{V}_{\log(\widehat{\theta})}^{\square}}{[\log(R_T)]^2} = \frac{(1.96)^2 2.5415}{[\log(1.5)]^2} \approx 60.$$

Location-Scale Distributions and Single Right Censoring Asymptotic Variance-Covariance

Here we specialize the computation of sample sizes to situations in which

- log(T) is location-scale Φ with parameters (μ, σ) .
- \bullet When the data are Type I singly right censored at t_c . In

$$\begin{split} \frac{n}{\sigma^2} \Sigma_{(\hat{\mu}, \hat{\sigma})} \; &= \; \frac{1}{\sigma^2} \begin{bmatrix} \mathsf{V}_{\hat{\mu}} & \mathsf{V}_{(\hat{\mu}, \hat{\sigma})} \\ \mathsf{V}_{(\hat{\mu}, \hat{\sigma})} & \mathsf{V}_{\hat{\sigma}} \end{bmatrix} = \begin{bmatrix} \frac{\sigma^2}{n} I_{(\mu, \sigma)} \end{bmatrix}^{-1} = \begin{bmatrix} f_{11} & f_{12} \\ f_{12} & f_{22} \end{bmatrix}^{-1} \\ &= \; \left(\frac{1}{f_{11} f_{22} - f_{12}^2} \right) \begin{bmatrix} f_{22} & -f_{12} \\ -f_{12} & f_{11} \end{bmatrix} \end{split}$$
 where the f_{ij} values depend only on Φ and the standard-

ized censoring time $\zeta_c = [\log(t_c) - \mu]/\sigma$ [or equivalently, the proportion failing by t_c , $\Phi(\zeta_c)$].

10 - 25

Location-Scale Distributions and Single Right Censoring **Fisher Information Elements**

The f_{ij} values are defined as:

$$f_{11} = f_{11}(\zeta_c) = \frac{\sigma^2}{n} \mathbb{E} \left[-\frac{\partial^2 \mathcal{L}_i(\mu, \sigma)}{\partial \mu^2} \right]$$

$$f_{22} = f_{22}(\zeta_c) = \frac{\sigma^2}{n} \mathbb{E} \left[-\frac{\partial^2 \mathcal{L}_i(\mu, \sigma)}{\partial \sigma^2} \right]$$

$$f_{12} = f_{12}(\zeta_c) = \frac{\sigma^2}{n} \mathbb{E} \left[-\frac{\partial^2 \mathcal{L}_i(\mu, \sigma)}{\partial \mu \partial \sigma} \right]$$

The f_{ij} values are available from tables or algorithm LSINF for the SEV (Weibull), normal (lognormal), and logistic (loglogistic) distributions.

For a single fixed censoring time, the asymptotic variancecovariance factors $\frac{1}{\sigma^2} V_{\widehat{\mu}}$, $\frac{1}{\sigma^2} V_{\widehat{\sigma}}$, and $\frac{1}{\sigma^2} V_{(\widehat{\mu}, \widehat{\sigma})}$ are easily tabulated as a function of ζ_c .

10 - 26

Table of Information Matrix Elements and Variance Factors

Table C.20 provides for the normal/lognormal distributions, as functions of the standardized censoring time ζ_c :

- $100\Phi(\zeta_c)$, the percentage in the population failing by the standardized censoring time.
- Fisher information matrix elements f_{11}, f_{22} , and f_{12} .
- The asymptotic variance-covariance factors $\frac{1}{\sigma^2}V_{\widehat{\mu}}, \frac{1}{\sigma^2}V_{\widehat{\sigma}},$ and $\frac{1}{\sigma^2} V_{(\widehat{\mu},\widehat{\sigma})}$.
- Asymptotic correlation $\rho_{(\widehat{\mu},\widehat{\sigma})}$ between $\widehat{\mu}$ and $\widehat{\sigma}$.
- The σ -known asymptotic variance factor $\frac{1}{\sigma^2} \mathsf{V}_{\widehat{\mu}|\sigma} = n\mathsf{Avar}(\widehat{\mu})$, and the μ -known factor $\frac{1}{\sigma^2} \mathsf{V}_{\widehat{\sigma}|\mu} = n\mathsf{Avar}(\widehat{\sigma})$.

10 - 27

10 - 29

Large-Sample Asymptotic Variance for Estimators of Functions of Location-Scale Parameters

It is straightforward to compute asymptotic variance factors for functions of parameters. For example, when $\hat{g} = g(\hat{\mu}, \hat{\sigma})$

$$\begin{split} \mathsf{Avar}(\hat{g}) &= \left[\frac{\partial g}{\partial \mu}\right]^2 \mathsf{Avar}(\hat{\mu}) + \left[\frac{\partial g}{\partial \sigma}\right]^2 \mathsf{Avar}(\hat{\sigma}) + 2\left[\frac{\partial g}{\partial \mu}\right] \left[\frac{\partial g}{\partial \sigma}\right] \mathsf{Acov}(\hat{\mu}, \hat{\sigma}) \\ \mathsf{Avar}[\log(\hat{g})] &= \left(\frac{1}{g}\right)^2 \mathsf{Avar}(\hat{g}). \end{split}$$

Thus

$$\begin{split} \mathsf{V}_{\widehat{g}} &= \left[\frac{\partial g}{\partial \mu}\right]^2 \mathsf{V}_{\widehat{\mu}} + \left[\frac{\partial g}{\partial \sigma}\right]^2 \mathsf{V}_{\widehat{\sigma}} + 2\left[\frac{\partial g}{\partial \mu}\right] \left[\frac{\partial g}{\partial \sigma}\right] \mathsf{V}_{(\widehat{\mu},\widehat{\sigma})} \\ \mathsf{V}_{\log(\widehat{g})} &= \left(\frac{1}{g}\right)^2 \mathsf{V}_{\widehat{g}}; \quad \mathsf{V}_{\exp(\widehat{g})} = \exp(2g) \mathsf{V}_{\widehat{g}} \end{split}$$

10 - 28

Sample Size to Estimate a Quantile of ${\it T}$ when log(T) is Location-Scale (μ, σ)

- Let $g(\theta) = t_p$ be the p quantile of T. Then $\log(t_p) = \mu +$ $\Phi^{-1}(p)\sigma$, where $\Phi^{-1}(p)$ is the p quantile of the standardized random variable $Z = [\log(T) - \mu]/\sigma$.
- \bullet From the previous results, n is given by

$$n = \frac{z_{(1-\alpha/2)}^2 \mathsf{V}_{\mathsf{log}(\widehat{t}_p)}^{\square}}{[\mathsf{log}(R_T)]^2}$$

 $n \ = \ \frac{z_{(1-\alpha/2)}^2 \mathsf{V}_{\mathsf{log}(\widehat{\iota}_p)}^\square}{[\mathsf{log}(R_T)]^2}$ where $\mathsf{V}_{\mathsf{log}(\widehat{\iota}_p)}^\square$ is obtained by evaluating

$$\mathsf{V}_{\mathsf{log}(\hat{t}_p)} = \left\{ \mathsf{V}_{\widehat{\mu}} + \left[\Phi^{-1}(p) \right]^2 \mathsf{V}_{\widehat{\sigma}} + 2 \left[\Phi^{-1}(p) \right] \mathsf{V}_{(\widehat{\mu}, \widehat{\sigma})} \right\}$$
 at $\boldsymbol{\theta}^{\square} = (\mu^{\square}, \sigma^{\square}), \zeta_c^{\square} = [\mathsf{log}(t_c) - \mu^{\square}] / \sigma^{\square}$.

• Figure 10.5 gives $\frac{1}{\sigma^2} \mathsf{V}_{\log(\hat{t}_p)}$ as a function of $p_c = \Pr(Z \leq \zeta_c)$ for the Weibull distribution. To obtain n one also needs to specify Φ and a target value R_T for $R = \tilde{g}/\hat{g} = \hat{g}/\tilde{g} = \sqrt{\tilde{g}/\tilde{g}}$.

Sample Size Needed to Estimate $t_{.1}$ of a Weibull Distribution Used to Describe Insulation Life

- Again expect about 20% failures in the 1000 hour test and 12% failures in the first 500 hours. Equivalent information: $\mu^{\square} = 8.774, \ \sigma^{\square} = 1.244 \ (or \ \beta^{\square} = 1/1.244 = .8037).$
- Need a test plan that will estimate the Weibull .1 quantile (so p = .1) such that a 95% confidence interval will have endpoints that are approximately 50% away from the estimated mean (so $R_T=$ 1.5). For a 1000-hour test, $p_c=$.2.
- By computing from tables and formula or from Figure 10.5, $\frac{1}{\sigma^2} V_{\log(\hat{t}_p)} = 7.28 \text{ so } V_{\log(\hat{t}_p)}^{\square} = 7.28 \times (1.244)^2 = 11.266.$

Thus,
$$n = \frac{z_{(1-\alpha/2)}^2 V_{\log(\hat{t}_{.1})}^{\square}}{[\log(R_T)]^2} = \frac{(1.96)^2 (11.266)}{[\log(1.5)]^2} \approx 263.$$

Variance Factor $\frac{1}{\sigma^2} V_{\log(\hat{t}_p)}$ for ML Estimation of Weibull Distribution Quantiles as a Function of p_c , the Population Proportion Failing by Time t_c and p, the Quantile of Interest (Figure 10.5)

10 - 31

Variance Factor $\frac{1}{\sigma^2} \mathsf{V}_{\mathsf{log}(\hat{t}_p)}$ for ML Estimation of Lognormal Distribution Quantiles as a Function of p_c , the Population Proportion Failing by Time t_c and p, the Quantile of Interest (Figure 10.6)

10 - 32

Figures for Sample Sizes to Estimate Weibull, Lognormal, and Loglogistic Quantiles

Figures give plots of the factor $\frac{1}{\sigma^2} \mathsf{V}_{\log(\hat{t}_p)}$ for quantile of interest p as a function of $p = \mathsf{Pr}(Z \leq \zeta_c)$ for the Weibull, lognormal, and loglogistic distributions. Close inspection of the plots indicates the following:

- Increasing the length of a life test (increasing the expected proportion of failures) will always reduce the asymptotic variance. After a point, however, the returns are diminishing.
- Estimating quantiles with p large or p small generally results in larger asymptotic variances than quantiles near to the expected proportion failing.

10 - 33

Generalization: Location-Scale Parameters and Multiple Censoring

In some applications, a life test may run in parts, each part having a different censoring time (e.g., testing at two different locations or beginning as lots of units to be tested are received). In this case we need to generalize the single-censoring formula. Assume that a proportion δ_i ($\sum_{i=1}^k \delta_i = 1$) of data are to be run until right censoring time t_{c_i} or failure (which ever comes first). In this case,

$$\begin{array}{rcl} \frac{n}{\sigma^2} \Sigma_{(\widehat{\mu}, \widehat{\sigma})} & = & \frac{1}{\sigma^2} \left[\begin{array}{c} \bigvee_{\widehat{\mu}} & \bigvee_{(\widehat{\mu}, \widehat{\sigma})} \\ \bigvee_{(\widehat{\mu}, \widehat{\sigma})} & \bigvee_{\widehat{\sigma}} \end{array} \right] = \left[\frac{\sigma^2}{n} I_{(\mu, \sigma)} \right]^{-1} \\ & = & \left(\frac{1}{J_{11} J_{22} - J_{12}^2} \right) \left[\begin{array}{c} J_{22} & -J_{12} \\ -J_{12} & J_{11} \end{array} \right] \end{array}$$

where $J_{11} = \sum_{i=1}^k \delta_i f_{11}(z_{c_i}), J_{22} = \sum_{i=1}^k \delta_i f_{22}(z_{c_i})$, and $J_{12} = \sum_{i=1}^k \delta_i f_{12}(z_{c_i})$ where $z_{c_i} = (\log(t_{c_i}) - \mu)/\sigma$.

In this case, the asymptotic variance-covariance factors $\frac{1}{\sigma^2} \mathsf{V}_{\widehat{\mu}}, \ \frac{1}{\sigma^2} \mathsf{V}_{\widehat{\sigma}},$ and $\frac{1}{\sigma^2} \mathsf{V}_{(\widehat{\mu},\widehat{\sigma})}$ depend on Φ , the standardized censoring times z_{c_i} , and the proportions $\delta_i, i=1,\ldots k$.

10 - 34

Test Plans to Demonstrate Conformity with a Reliability Standard

Objective: to find a sample size to **demonstrate** with some level of confidence that reliability exceeds a given standard.

ullet The reliability is specified in terms of a quantile, say t_p .

The customer requires demonstration that

$$t_p > t_p^{\dagger}$$

where t_p^{\dagger} is a specified value.

For example, for a component to be installed in a system with a 1-year warranty, a vendor may have to demonstrate that $t_{.01}$ exceeds $24 \times 365 = 8760$ hours.

 Equivalently, in terms of failure probabilities the reliability requirement could be specified as

$$F(t_e) < p^{\dagger}$$
.

For the example, $t_e = 8760$ and $p^{\dagger} = .01$.

Minimum Sample Size Reliability Demonstration Test Plans

- In general the demonstration that $t_p > t_p^{\dagger}$ is successful at the $100(1-\alpha)\%$ level of confidence if $t_p > t_p^{\dagger}$.
- Suppose that failure-times are Weibull with a given β . A **minimum sample size** test plan is one that has a particular sample size n (depending on β , α , p and amount of time available for testing).
- ullet The minimum sample size test plan is: Test n units until t_c where n is the smallest integer greater than

$$\frac{1}{k^{\beta}} imes \frac{\log(\alpha)}{\log(1-p)}$$

and $k = t_c/t_p^{\dagger}$.

 If there is zero failures during the test the demonstration is successful.

10 - 35

Minimum Sample Size for a 99% Reliability Demonstration for $t_{.1}$ with Given β

10 - 37

Justification for the Weibull Zero-Failures Test Plan

Suppose that failure-times are Weibull with a given β and zero failures during a test in which n units are tested until t_c . Using the results in Chapter 8, to obtain $100(1-\alpha)\%$ lower bounds for η and t_p are

$$\begin{split} \eta &=& \left[\frac{2nt_c^\beta}{\chi^2_{(1-\alpha;2)}}\right]^{\frac{1}{\beta}} = \left[\frac{nt_c^\beta}{-\log(\alpha)}\right]^{\frac{1}{\beta}} \\ t_p &=& \eta \times [-\log(1-p)]^{\frac{1}{\beta}}. \end{split}$$

 \bullet Using the inequality $t_{p}>t_{p}^{\dagger}$ and solving for the smallest integer n such that

$$n \geq rac{1}{k^{eta}} imes rac{\mathsf{log}(lpha)}{\mathsf{log}(1-p)}$$

gives the needed minimum sample size, where $k=t_c/t_p^\dagger$

10 - 38

Justification for the Weibull Zero-Failures Test Plan (Continued)

- For tests with k<1, which implies extrapolation in time, having a specified value of β greater than the true value is conservative (the confidence level is greater than the nominal).
- ullet For tests with k>1 having a specified value of eta less than the true value is conservative (in the sense that the demonstration is still valid).
- When k=1 the value of β does not effect the sample size.

Additional Comments on Zero-Failure Test Plans

- The inequality $t_p>t_p^\dagger$ can be solved for n, k, β , or α .
- Zero-failure test plans can be obtained for any distribution that has one unknown parameter.
- ullet The ideas here can be extended to test plans with one or more failures. Such test plans require more units but provide a higher probability of successful demonstration for a given $t_p^{\dagger} > t_p$.

10 - 40

10 - 39

Other Topics in Chapter 10

- Uncertainty in planning values and sensitivity analysis.
- Location-scale distributions and limited test positions.
- Variance factors for location-scale parameters and batch testing.
- Test planning for non-location-scale distributions.
- Sample size to estimate: unrestricted functions of the parameters, the mean of an exponential, the hazard function of a location-scale distribution.