Solve
$$Z_1 = Z_2$$
 for x_1

Daniel Fishbein

April 22, 2023

1 Given:

Figure 1: Given Neural Net

Figure 1 shows the given Neural Net that will be analysed.

 x_1, x_2 are the input neurons

[x] is the columnised vector notation of all "x" neurons of dimentions 1Xx y_1, y_2, y_3 are the hidden layers neurons

[y] is the columnised vector notation of all "y" neurons of dimentions 1Xy z_1, z_2 are the output neurons

[z] is the columnised vector notation of all "z" neurons of dimentions 1Xz

w denotes a weight

 $w_{y_1->z_2}$ denotes the weight from y_1 to z_2

 $[w_1]$ is the columnised vector notation of all " w_1 " weights of dimentions yXx $w_{11}w_{12}w_{13}...w_{1x}$

$$[w_1] = [& \vdots \\ w_{ij} \\ \vdots \\ w_{y1}w_{y2}w_{y3}...w_{yx}$$

 $[w_2]$ is the columnised vector notation of all " w_2 " weights of dimentions zXy

$$[w_2] = [\begin{array}{c} w_{11}w_{12}w_{13}...w_{1y} \\ \vdots \\ w_{ij} \\ \vdots \\ w_{z1}w_{z2}w_{z3}...w_{zy} \end{array}]$$

b deontes a bias

 b_{y_3} deontes the bias associated with neuron y_3

 $[b_1]$ is the columnised vector notation of all " b_1 " biases of dimentions 1 Xy

$$[b_1] = \begin{bmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{1y} \end{bmatrix}$$

 $[b_2]$ is the columnised vector notation of all " b_2 " biases of dimentions 1Xz

$$[b_2] = \begin{bmatrix} b_{11} \\ b_{21} \\ \vdots \\ b_{1z} \end{bmatrix}$$

The input to a y_i neuron will be denoted as:

$$y_i = \sigma(w_{x_1->y_i} * x_1 + w_{x_2->y_i} * x_2 + b_{y_i})$$

OR in vector notation:

$$[y] = \sigma([x][w_1] + [b_1])$$

Where
$$\sigma(x) = \frac{1}{1 + e^{-x}} = \frac{1}{1 + \exp[-x]}$$

The input to a z_i neuron will be denoted as:

$$z_i = \sigma(w_{y_1->z_i} * y_1 + w_{y_2->z_i} * y_2 + w_{y_3->z_i} * y_3 + b_{z_i})$$

OR in vector notation:

$$[z] = \sigma([y][w_2] + [b_2])$$

2 Solve $z_1 = z_2$ for x_1

$$z_1 = z_2 \tag{1}$$

NOTE: Observe I as the identity matrix

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \tag{2}$$

NOTE: Observe [x]I

$$[x]I = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

NOTE: Observe:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \\ 0 \end{bmatrix}$$

Denote:

$$[I_1] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Denote:

$$[I_2] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

we can rewrite: $z_1 = z_2$ as:

$$[z][I_1] = [z][I_2] \tag{3}$$

move everything to one side

$$[z][I_1] - [z][I_2] = 0 (4)$$

factor [z]

$$[z]([I_1] - [I_2]) = 0 (5)$$

expand $[I_1]$ and $[I_2]$

simplify

$$\begin{bmatrix} z \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0 \tag{7}$$

Denote:

$$[I_{1-2}] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 (8)

return to matrix notation

$$[z][I_{1-2}] = 0 (9)$$

expand [z]

$$[z] = \sigma([y][w_2] + [b_2]) \tag{10}$$

$$[z] = \sigma(\sigma([x][w_1] + [b_1])[w_2] + [b_2])$$
(11)

substatute eq.11 into eq.9

$$\sigma(\sigma([x][w_1] + [b_1])[w_2] + [b_2])[I_{1-2}] = 0$$
(12)

3 Conclusion

Not much of a paper, but it's a start.