Министерство образования и науки Российской Федерации Севастопольский государственный университет

Кафедра ИС

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе

по дисциплине «Методы информационной оптимизации систем и процессов»

Выполнил:

Ст. гр. ИС/м-21о Лисянский А. И.

Проверил:

Минкин С.И.

Севастополь

КИЦАТОННА

В документе представлен процесс получения спектра исследуемого сигнала и исследование характеристик. Выполнено определение погрешности дискретизации случайного непрерывного процесса. Рассчитано количество информации о входном процессе в выходных величинах дискретизированного сигнала. Найдена скорость получения данных.

В приложении А представлена модель Simulink, выполняющая генерацию исследуемого сигнала и сценарий для решения поставленных задач.

СОДЕРЖАНИЕ

4						
5						
2. I	ПОГРЕШНОСТЬ ,	ДИСКРЕТИЗАЦИИ	СЛ	УЧАЙНОГО Н	НЕПРЕРЫВНО	ГС
ПР	ОЦЕССА		•••••	•••••		7
3.	КОЛИЧЕСТВО	ИНФОРМАЦИИ	O	ВХОДНОМ	ПРОЦЕССЕ	В
ВЫ	ХОДНЫХ ВЕЛИЧ	ЧИНАХ ДИСКРЕТИ	130I	ВАННОГО СИ	ГНАЛА	. 11
4. (СКОРОСТЬ ПОЛУ	ЧЕНИЯ ДАННЫХ	•••••			. 13
3A]	КЛЮЧЕНИЕ		•••••		•••••	. 14
БИ	БЛИОГРАФИЧЕС	ский список	•••••		•••••	. 15
ПР	ИЛОЖЕНИЕ А		• • • • • • •			. 16

ВВЕДЕНИЕ

Целью курсового проектирования является нахождение характеристик случайного дискретизированного процесса с нестандартной статистической структурой.

В разделе «Постановка задачи» дана постановка задачи выполнения курсового проекта, описаны заданная корреляционная функция и получение по ней спектра.

В разделе «Погрешность дискретизации случайного непрерывного процесса» выполнено вычисление погрешности дискретизации заданного случайного процесса и полученного в результате фильтрации.

В разделе «Количество информации о входном процессе в выходных величинах дискретизованного сигнала» рассчитано количество информации для разного количества уровней дискретизации исходного процесса.

В разделе «Скорость получения данных» выполнен анализ зависимости скорости получения данных от степени фильтрованности сигнала.

1. ПОСТАНОВКА ЗАДАЧИ

По варианту задана спектральная плотность:

$$Sy = \frac{D\alpha}{\pi} \frac{1}{w^2 + \alpha^2} \tag{1}$$

Сигнал кодируется одиночными отсчётами.

Необходимо найти погрешность временной дискретизации случайного непрерывного процесса, количество информации о входном процессе в выходных величинах дискретизованного сигнала и требуемая скорость получения данных.

Провели преобразования и получили:

$$Sy = w(jw) * w(-jw)$$
 (2)

Итоговая функция:

$$w(jw) = \sqrt{k} \frac{1}{s+\alpha} \tag{3}$$

Для генерации сигнала была собрана модель Simulink, отправляющая сгенерированные отсчёты сценарию. Модель и сценарий представлены в приложении А.

Сгенерировали белый шум для дальнейшей обработки (рисунок 1). Коэффициенты $k=9,\,\alpha=1$

Рисунок 1 — График белого шума

Пропустили полученный сигнал через блок Transfer function, подставив туда полученную ранее функцию (рисунок 2).

Рисунок 2 — Полученный сигнал

2. ПОГРЕШНОСТЬ ДИСКРЕТИЗАЦИИ СЛУЧАЙНОГО НЕПРЕРЫВНОГО ПРОЦЕССА

Результатом дискретизации непрерывного случайного процесса является получение набора дискретных случайных чисел из соответствующего набора (одного из уровней), соответствующих моментам отсчета t_i исходного процесса X(t). Погрешность квантования, если разница между уровнями постоянна, можно вычислить по формуле [3]:

$$\varepsilon = x - kq \tag{4}$$

где k – используемый уровень,

q – разность между двумя соседними уровнями.

То есть погрешность равна разности исходного и квантованного сигнала. Полученный в результате прогона модели сигнал был квантован.

Графики исходного и квантованного сигнала и шума квантования представлены на рисунке 3.

Рисунок 3 — Графики исходного, квантованного сигналов и шума квантования

Построили их спектры (рисунок 4).

Рисунок 4 — Спектры исходного, квантованного сигналов и шума квантования

После чего произвели фильтрацию исходного процесса и обработан снова (рисунки 5-6)

Рисунок 5 — Пропущенный через фильтр, квантованный сигналы и шум квантования

Рисунок 6 — Спектр пропущенного через фильтр, квантованного сигналов и шума квантования

Пропущенный через фильтр процесс был ещё раз подвергнут фильтрации и обработан. Результаты представлены на рисунке 7, а соответствующие спектры – на рисунке 8.

Рисунок 7 – Пропущенный через фильтр дважды, квантованный процессы и шум квантования

Рисунок 8 – Спектр пропущенного через фильтр дважды, квантованного процессов и шума квантования

3. КОЛИЧЕСТВО ИНФОРМАЦИИ О ВХОДНОМ ПРОЦЕССЕ В ВЫХОДНЫХ ВЕЛИЧИНАХ ДИСКРЕТИЗОВАННОГО СИГНАЛА

При дискретизации сигнала определенная часть информации теряется из-за замены непрерывного сигнала отсчётами фиксированными по уровню и времени [4].

Был выполнен расчёт теории информации при условии выполнения квантования по уровню и разбитии исходного сигнала на 10-50 равных отрезков. Результат расчётов приведён в таблице 1.

Таблица 1 – Зависимость количества информации от количества уровней квантования

Количество уровней квантования	Количество информации
10	0.2132
20	0.6241
30	1.0168
40	1.3504
50	1.6312

Зависимость количества информации от отношения величины кванта к среднеквадратическому отклонению сгенерированного массива представлена на рисунке 9.

Энтропия и количество информации растёт с ростом частоты дискретизации, что соответствует росту количества данных получаемых из процесса.

Рисунок 9 — График зависимости количества информации от отношения величины кванта к среднеквадратическому отклонению сгенерированного массива.

4. СКОРОСТЬ ПОЛУЧЕНИЯ ДАННЫХ

Известно что при кодировании сигнала одиночными отсчётами скорость получения данных можно рассчитать по формуле [2]:

$$i_1 = \frac{l_1}{\tau},\tag{5}$$

где au – период дискретизации сигнала.

Был выполнен расчёт скорости получения данных для исходного процесса и пропущенного через фильтр. При расчёте разница между отчётами взята равной 0.2 мс. Результаты представлены в таблице 2.

Таблица 2 — Поведение скорости получения данных при пропускании сигнала через фильтр

Количество пропуско	в Количество информации	Скорость получения
сигнала через фильтр		данных (бит/мс)
0	0.0025	0.0124
1	4.4828e-05	2.2414e-04
2	8.6050e-09	4.3025e-08

С каждым пропуском через фильтр сигнал сглаживается, что приводит к потере части информации. С уменьшением количества информации уменьшается и скорость получения.

ЗАКЛЮЧЕНИЕ

В ходе выполнения курсовой работы было выполнено описание заданной корреяционной функции и получение по ней спектра.

Было выполнено вычисление погрешности дискретизации заданного случайного процесса и полученного в результате фильтрации.

Рассчитано количество информации для разного количества уровней дискретизации исходного процесса. Энтропия и количество информации растёт с ростом частоты дискретизации, что соответствует росту количества данных получаемых из процесса.

Проанализировали зависимость скорости получения данных от степени фильтрованности сигнала. С каждым пропуском через фильтр сигнал сглаживается, что приводит к потере части информации. С уменьшением количества информации уменьшается и скорость получения.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Методические указания к курсовому проектированию по дисциплине курсу «Методы информационной оптимизации систем и процессов»/ Сост. д.ф.-м.н, проф.С.В. Доценко, Севастополь: Изд-во СевГТУ, 2003. 14с.
 - 2. Лазарев Ю. MatLAB 5.х. Киев.: «Ирина», bhv, 2000. 383 с.
 - 3. Гнеденко Б.В. Курс теории вероятностей. M.: ФМ, 1961. 406 с.
- 4. Доценко С.В. Методы информационной оптимизации систем и процессов. Электронный конспект лекций. Севастополь, СевНТУ.
- 5. Доценко С.В. Теория информации и математическая статистика. Конспект лекций. Севастополь, СевНТУ.

ПРИЛОЖЕНИЕ А

Текст функции compute enthropy:

```
function [h, s, q, i] = compute_enthropy(x, n)
    [n1, ~] = hist(x, n);
    figure;
    hist(x, n);
    P1 = n1 / length(x);
    h = - (P1 * (log2(P1)'));
    s = std(x);
    q = (max(x) - min(x)) / n;
    i = (1 / 2) * log2(1 + (12 * s) / (q ^ 2));
end
```

Текст основного сценария:

```
close all;
clear all;
sim('miosp');
x = process;
n = 10 : 10 : 50;
h = zeros(1, 5);
s = zeros(1, 5);
q = zeros(1, 5);
i = zeros(1, 5);
for j = 1 : 5
    [a, b, c, d] = compute enthropy(x, n(j));
    h(j) = a
    s(j) = b
    q(j) = c
    i(j) = d
end
figure;
scatter(q ./ s, h);
figure;
scatter(q ./ s, i);
X0 = process;
char (13)
q = 0.2;
a = 0.9;
s = 1;
for i = 1 : 3
    X0 = X0 - mean(X0);
    XOcentr norm = (XO - mean(XO)) / std(XO);
    X0big = X0 / q;
    X0 round = round(X0big);
    X0quant = X0round * q;
    X0nois = X0 - X0quant;
    figure;
    grid on;
    subplot(3, 1, 1);
    plot(X0(1 : 100));
```

```
subplot(3, 1, 2);
    plot(X0quant(1 : 100));
    subplot(3, 1, 3);
    plot(X0nois(1 : 100));
    figure;
    subplot(3, 1, 1);
    pwelch(X0, [], [], [], 1);
subplot(3, 1, 2);
    pwelch(X0quant, [], [], [], 1);
    subplot(3, 1, 3);
    pwelch(X0nois, [], [], [], 1);
    mean(X0)
    std(X0)
    var(X0nois)
    s = std(X0);
    q2 = (max(X0) - min(X0));
    i2 = (1 / 2) * log2(1 + (12 * s) / (q2 ^ 2))
    im = i2 / q
    X0 = filter(s * sqrt(1 - a ^ 2), [1, -a], X0);
end
```

Модель Simulink для генерации сигнала

Рисунок 1 – Разработанная модель Simulink для генерации сигнала с шумом