Exercises in Sections 3 and 4 Solutions

Section 3: Integral dependence

Exercise 3.4. Let R be a subring of a commutative ring S and suppose that S is integral over R. Is the contraction map $c: \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ injective? Prove your claims.

Solution. The contraction map need not be injective or surjective. Take for instance $R=\mathbb{Z}$ and $S=\mathbb{Q}$, or more generally an ID R with $\operatorname{Spec}(R)\neq\{(0)\}$, and a field containing R as subring. Then $\operatorname{Spec}(S)=\{(0)\}$ shows that the contraction $\operatorname{Spec}(S)\to\operatorname{Spec}(R)$ is not surjective.

Similarly, let R = k be a field and let S = k[x]. Then the contraction map is not injective since $\operatorname{Spec}(S) \neq \{(0)\} = \operatorname{Spec}(R)$.

Section 4: Prime and maximal ideal spectra

Exercise 4.1. Find $V(1176) \subseteq \operatorname{Spec}(\mathbb{Z})$.

Solution. We factorise $1176 = 2^3 \cdot 3 \cdot 7^2$. Therefore $V(1176) = \{(2), (3), (7)\}$.

Exercise 4.2. Let $R = \mathbb{Q}[x]$ and let $f = x^3 - 3x^2 + 2x$.

- i. Find V((f)).
- ii. Let $I = (x^2 + 1)$ and set $\overline{R} = R/I$. Find $V((\overline{f})) \subseteq \operatorname{Spec}(\overline{R})$.

Solution.

- i. We factorise f = x(x-1)(x-2). Since $\mathbb{Q}[x]$ is a PID and x, x-1, x-2 are irreducible (hence prime), $V((f)) = \{(x), (x-1), (x-2)\}.$
- ii. Note that $f = (x^2 + 1)(x 3) + (x + 3)$, and so f + I = (x + 3) + I in R/I, where $(x + 3 + I) \in \text{MaxSpec}(R/I)$ since $(R/I)/((x + 3 + I)/I) \cong \mathbb{Q}$. Therefore $V((f + I)) = \{(x + 3 + I)\}$.

Exercise 4.3. Let $R = \mathbb{Z} \times \mathbb{Z}/42$. Find all the idempotents of R.

Solution. The idempotents of R are all the elements of the form $(e, f) \in R$ such that $e \in \{0, 1\}$ and $f \in \{0, 1, 7, 15, 21, 22, 28, 36\}$.

Exercise 4.5. Let R = k[x] where k is a field. Prove that there exist proper open subsets U, U' of $\operatorname{Spec}(R)$ such that $\operatorname{Spec}(R) = U \cup U'$.

Solution. Pick $f,g\in R$ two coprime noninvertible polynomials. Note that this is possible, e.g. x+1 and, either x+a for $a\neq 1$, if $k\neq \mathbb{F}_2$, or x^2+x+1 if $k=\mathbb{F}_2$. By Bézout's theorem, and since R is a PID, there exist $s,t\in R$ such that 1=sf+tg. Then $\emptyset=V(fR+gR)=V(fR\cup gR)=V(fR)\cap V(gR)$. Equivalently, taking complements, $\operatorname{Spec}(R)=U_f\cup U_g$. Since $f,g\notin R^\times$, the open sets U_f,U_g are proper.

Exercise 4.6. Let $f: R \to S$ be a ring homomorphism with R, S commutative. Suppose that f is surjective. Prove that $\operatorname{im}(f^*) = V(\ker(f))$, where f^* is the induced function $f^*: \operatorname{Spec}(S) \to \operatorname{Spec}(R)$, defined by $f^*(P) = f^{-1}(P)$ for $P \in \operatorname{Spec}(S)$. (The map f^* defines a homeomorphism $\operatorname{Spec}(S) \to V(\ker(f))$.

Solution. By definition,

$$\operatorname{im}(f^*) = \{ P \in \operatorname{Spec}(R) \mid \exists \ Q \in \operatorname{Spec}(S) \text{ s.t. } P = f^{-1}(Q) \} = \{ P \in \operatorname{Spec}(R) \mid f(P) \in \operatorname{Spec}(S) \},$$

since the surjectivity of f implies that $Q = ff^{-1}(Q) = f(P)$ for all $Q \in \operatorname{Spec}(S)$.

On the other hand, $V(\ker(f)) = \{P \in \operatorname{Spec}(R) \mid \ker(f) \subseteq P\}$, that is, $P \in V(\ker(f))$ if and only if $(0) \subseteq f(P) \in \operatorname{Spec}(S)$, which holds for any prime ideal of S. The result follows.

Exercise 4.7. Let R be a commutative ring and let $P \in \operatorname{Spec}(R)$. Consider the ideal $I = (\{e = e^2 \in P\})$ generated by the idempotents of R lying in P.

- i. Prove that the only idempotents of R/I are 0,1.
- ii. Prove that the prime ideals containing I form the connected component of $\operatorname{Spec}(R)$ containing P. Solution.
- i. Let $(e+I)^2=e+I$ in R/I, for some $e\in R$. Equivalently, $e^2-e\in I\subseteq P$. Since $e^2-e=e(e-1)$ and P is prime, we may assume $e\in P$ (else replace e with 1-e). Write

$$e^{2} - e = \sum_{i=1}^{n} a_{i}e_{i}$$
, and $f = e \prod_{i=1}^{n} (1 - e_{i})$

for some $a_i \in R$ and some idempotents $e_i \in I$ for all i. We calculate

$$f^{2} = e^{2} \prod_{i=1}^{n} (1 - e_{i})^{2} = \left(e + \sum_{i=1}^{n} a_{i} e_{i}\right) \prod_{i=1}^{n} (1 - e_{i}) = f + \left(\sum_{i=1}^{n} a_{i} e_{i}\right) \prod_{i=1}^{n} (1 - e_{i}) = f$$

since each summand in the right hand term involves an expression of the form $e_i(1-e_i)=0$. Hence f is an idempotent and $f\in P$ because $e\in P$. It follows that $f\in I$.

Using that $\prod_{i=1}^n (1-e_i)$ is an idempotent, we see that $0=f^2-f=(e^2-e)\prod_{i=1}^n (1-e_i)=(e-1)f$. Moreover, $((f-1)e)^2=(f-1)e\in P$ implies that $(f-1)e\in I$, and therefore $e=(1-f)e+f\in I$ too.

ii. Any prime ideal containing I contains e for all $e=e^2\in P$, by definition of I. So the result follows from Theorem 4.10 and the correspondence between the ideals of R containing I and those of R/I.

Exercise 4.8. Let R be a commutative ring and let I be a minimal ideal of R. That is, $I \neq 0$ and the only ideals of R contained in I are 0 and I. Suppose that $I^2 \neq 0$. Prove that there exists an idempotent $e \in R$ such that I = Re.

Solution. Since $I^2 \neq 0$, choose $a \in I$ such that $aI \neq 0$. Note that aI is an ideal of R with $aI \subseteq aR \subseteq I$. By minimality of I, we muct have equality, aI = aR = I. So there exists $e \in I$ such that ae = a. Similarly, $0 \neq eI \subseteq eR \subseteq I$ implies eR = I.

Hence the equality $ae^{\overline{2}}=(ae)e=ae$ implies $a(e^2-e)=0$. Let $J=\{x\in I\mid ax=0\}$. Then $e^2-e\in J$ shows that $J\neq\emptyset$, and note that J is an ideal of R. Moreover, since $ae=a\neq0$, we have $e\notin J$. Thus J is properly contained in I. By minimality of I, we must have J=(0), and therefore $e^2-e=0$, as required.