扫码签到

强化学习基础

目录

- 1. 策略迭代
- 2. 值迭代
- 3. 实验任务及报告提交要求

单智能体RL形式化定义:

由六元组构成的马尔可夫决策过程定义,

具体定义如下:

Markov Decision Process(MDP) $(S, A, R, T, P_0, \gamma)$

- S denotes the state space
- A is the action space
- R = R(s, a) is the reward function
- $T: S \times A \times S \rightarrow [0,1]$ is the state transition function
- P_0 is the distribution of the initial state
- γ is a discount factor
- Goal: find the optimal policy that maximizes expected reward

从一个初始化的策略出发,先进行策略评估(policy evaluate),然后改进策略(policy improvement),评估改进的策略,再进一步改进策略,经过不断迭代更新,直达策略收敛,这种算法被称为"策略迭代"

策略迭代算法

- 策略迭代算法
 - ① 先给定初始策略 π ,求解线性方程,计算出 π 相应的值函数 V

$$V(s) = R(s, \pi(s)) + \gamma \sum_{s'} T(s, a, s') V(s').$$

② 基于计算出的值函数 V,按下式更新策略

$$\pi(s) \leftarrow argmax_a \left\{ R(s,a) + \gamma \sum_{s'} T(s,a,s') V(s') \right\}$$

- ③ 不断重复步骤 1, 2, 直到收敛
- 策略迭代算法最终收敛到最优值
 - 收敛到最优值所需的迭代不大于 |A||S| (确定性策略的总数目)

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r+\gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
- $stable \leftarrow true$

For each $s \in S$:

$$old\text{-}action \leftarrow \pi(s)$$

$$\pi(s) \leftarrow \operatorname{arg\,max}_a \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

https://blog.csdn.net/qq 30615903

实例:一个4×4的小网格世界,左上角和右下角是目的地,每个格子行动方向为上下左右,每走一步reward-1,求一个在每个状态都能以最少步数到达目的地的最优行动策略。解决思路:我们从最开始的随机(1/4)策略开始,对其进行policy evaluation,然后进行policy iteration by acting greedy

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r+\gamma V(s')]$$

$$V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r+\gamma V(s')]$$
 $\pi(s) \leftarrow \operatorname{argmax}_a \sum_{s',r} p(s',r|s,a)[r+\gamma V(s')]$

 v_k for the Random Policy

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

k = 0

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0			
-1.0	-1.0	-1.0	0.0

	0.0	-2.4	-2
-3	-2.4	-2.9	-3
1 – 3	-2.9	-3.0	-2
	3.0	2.0	2

值迭代

对每一个当前状态 s,对每个可能的动作 a 都计算一下采取 这个动作后到达的下一个状态的期望价值。看看哪个动作可以到达的状态的期望价值函数最大,就将这个最大的期望价值函数作为当前状态的价值函数 V(s),循环执行这个步骤,直到价值函数收敛。

值迭代

值迭代算法

• 值迭代(value iteration)算法求 V_t^* 序列,借助于辅助 $Q_t^a(s)$,其直观含义为:在 s 执行 a,然后执行 t-1 步的最优策略所产生的预期回报

```
对所有 s \in S, V_0(s) := 0; t := 0;
      loop
              t := t + 1:
              loop 对所有 s \in S
                     loop 对所有 a \in A
                            Q_t^a(s) := R(s, a) + \gamma \sum_{s'} T(s, a, s') V_{t-1}(s')
                     end loop
              V_t(s) := \max_a Q_t^a(s) (Bellman equation)
              end loop
      until |V_t(s) - V_{t-1}(s)| < \epsilon 对所有 s \in S 成立
```

3 实验任务及报告提交要求

实验任务

- 基于Gym库中的Frozen Lake环境在vi_and_pi.py中实现策略迭代和值迭代算 法,并输出算法收敛后的路径。详细任务查看附件中的Homework.md
- □ 1.实现vi_and_pi.py中的策略评估、策略提升、策略迭代函数。2. 实现 vi_and_pi.py中的值迭代函数。

报告提交要求

- □ 提交一个压缩包。压缩包命名为: "学号_姓名", 例如: 20220525_张 =
- □ 压缩包包含三部分: code文件夹和实验报告pdf文件
 - □ Code文件夹: 存放实验代码
 - Pdf文件格式参考发的模板
- □ 如果需要提交新版本,则在压缩包后面加_v1等。如"学号_姓名 _v1.zip",以此类推。

参考

价值迭代和策略迭代:

- https://www.bilibili.com/video/BV1bd4y1z7nT/?vd_source=fe8
 a61bc42546259ff5da93db830dc1a
- https://www.bilibili.com/video/BV1at4y1P7P4/?spm_id_from=
 333.788&vd_source=fe8a61bc42546259ff5da93db830dc1a
- https://zhuanlan.zhihu.com/p/32311522?refer=mlexplained