

SOLAR ELECTRICITY BASICS & HANDS-ON

2015 REGIONAL CONFERENCES

PRESENTED BY THE EWB-USA ENERGY STANDING CONTENT COMMITTEE

INTRODUCTION What is the EWB-USA Energy Standing Content Committee?

- ESCC is a group of subjectmatter experts, with decades of experience in energy technologies
- Dedicated to serving EWB-USA energy projects through creation of guidelines, educational materials, and direct consultation

A few members of the ESCC

INTRODUCTIONWhy This Presentation?

- Common applications
- Components
- Resources
- Hands-on
- What it's not:
 - Comprehensive
 - Design focused (but other resources are available)

Solar pumping system, Cameroon (Georgia Tech Student Chapter)

APPLICATIONS Solar Lighting

- Major components
 - Solar module
 - Charge controller
 - Battery
 - Lights
- Benefits: Lights! Can improve education and economics
- Common failures
 - Batteries (more later)
 - Overuse of resources, causing batteries to fail
 - Lack of maintenance

Typical parts for a solar lighting system

APPLICATIONS Solar Water Pumping

- Major components
 - Solar module
 - Controls
 - Solar pump
 - Batteries (in some cases)
- Benefits: Water! Health benefits, agriculture, etc.
 Common failures or challenges
 - Pump failures
 - Limited water supply;
 needs increase over time

Typical parts for a solar water pumping system

APPLICATIONS Household or Facility Electricity Supply

- Major components
 - Solar module
 - Charge controller
 - Batteries
 - Inverter
 - Distribution wiring
- Benefits: Lights, appliances, etc.
- Common failures or challenges
 - Battery failure
 - Increased and unforeseen loads strain system
 - Lack of maintenance

Typical parts for household or facility electricity supply

SYSTEM COMPONENTS SOLAR ELECTRIC MODULES

Some Solar Terminology

- Cell: individual component that converts sunlight into DC electricity
- Module: A group of cells wired together in series (for desired voltage) and parallel (for desired current)
 - May be monocrystalline, polycrystalline, or thin film.
- Array: A group of modules or panels mechanically connected or grouped

A solar array

A single cell from a PV module

SYSTEM COMPONENTS Module performance

- Look at the specification label on an individual module or on manufacturer data sheets
- I/V Curves show power production for specific insolation & temperature
- Many factors such as sunlight intensity, shading, load resistance and cell temperature affect module performance

A single cell from a PV module

SYSTEM COMPONENTS Module specification labels

- Max Power (Pmax) = Max
 Power Current (Imp) x Max
 Power Voltage (Vpm)
- Open Circuit Voltage (Voc) = max voltage with no current flow
- Short Circuit Current (Isc) = max output current under no load
- @Voc, Isc: P = 0 watts

235 WATT

NU-Q235F4

NEC 2008 Compliant Module output cables: 12 AWG PV Wire

Maximum Power (Prnax)*	233 W
Tolerance of Pmax	+10%/-5%
Type of Cell	Monocrystalline silicor
Cell Configuration	60 in series
Open Circuit Voltage (Voc)	37.0 V
Maximum Power Voltage (Vpm)	30.1 V
Short Circuit Current (Isc)	8,50 A
Maximum Power Current (Ipm)	7.81 A
Module Efficiency (%)	14,4%
Maximum System (UC) voltage	600 A
Series Fuse Rating	15 A
NOCT	47.5°C
Temperature Coefficient (Pmax)	-0.485%/°C
Temperature Coefficient (Vod)	-0.351%/°C
Temperature Coefficient (Isc)	0.053%/°C

A single cell from a PV module

SYSTEM COMPONENTS Wiring

- For safety, wire size is determined by currents in the PV system
- For performance, wires are sized for appropriate voltage drop.
- Specific types of wires are required for various conditions.
- Electrical codes may specific color schemes, if and when wiring should be run in conduit, and details on how to properly size wiring
- Equipment and system grounding are usually required by electrical codes

Stranded copper wire

SYSTEM COMPONENTS Overcurrent Protection

- Circuit breakers and fuses
- Required to protect circuits from electrical current which exceeds wire ampacity
- Electrical codes often require ungrounded conductors be protected by overcurrent protection
- Make sure overcurrent protection is rated for AC or DC as appropriate, and for proper voltage.

A DC-rated fuse

A DC circuit breaker

SYSTEM COMPONENTS

Combiner Boxes

A rooftop DC array combiner

SYSTEM COMPONENTS Charge Controllers

- Monitors battery voltage
- Prevent batteries from becoming overcharged by regulating current
- Types: shunt, single-stage, diversion, pulse width modulation (PWM), MPPT
- PWM: most used
- Multi-stage charging algorithms: Bulk, absorption, and float
- Discharge protection (LVD)
- Many use maximum power point tracking (MPPT) to gain maximum energy
- Some controllers come in pre-wired enclosures also containing inverters and disconnects

A 6A charge controller with load terminals

2015 REGIONAL CONFERENCES

SYSTEM COMPONENTS Batteries

- Chemical storage of direct current electricity
- Storage for cloudy days, night, emergency backup
- Weakest link in the PV system: inefficient, susceptible to overcharging or overdischarge
- Can be divided into "deep-cycle" and "shallow-cycle construction
- Lead acid recommended for EWB-USA projects
 - Liquid vented
 - Valve Regulated Lead Acid (VLRA)

A small sealed lead acid battery

SYSTEM COMPONENTS Inverters

- Converts voltage from DC to AC
- Solar panels produce a DC voltage but many loads you power will require AC
- Desired features:
 - Efficient often used with loads less than rated capacity
 - Frequency regulation
 - Ease of servicing in the field
 - Reliable, modular
- Each type of inverter (grid-tied, gridtied with battery, stand-alone) has additional special features

A 300-watt true sine wave inverter

SYSTEM COMPONENTS Disconnects

- Required to disconnect each piece of equipment in the PV system from power sources
- Must be easily accessible
- Can be circuit breakers or switched fuses (fuses are not considered disconnects)

A disconnect switch

BEST PRACTICES & ADDITIONAL INFO ESCC RESOURCES

Recommendations for Solar PV Projects

- Detailed recommendations for design, installation, start-up and testing, and documentation.
- On EWB-USA member website, under Project Resources>EWB-USA Guidelines.
- Appendices include definition of terms, a list of related standards, and a checklist

Design Checklist for Solar PV Projects

Steca charge controller, SureSine inverter, and 63A DC circuit breaker

BEST PRACTICES & ADDITIONAL INFO ESCC RESOURCES

EWB-USA Energy Blog

- Available at ewbusaenergy.blogspot.com
- A variety of original content and links to existing content
- Recent articles/links include:
 - An Introduction to the Failure Modes and Effects Analysis
 - Battery Operation & Maintenance (O&M) Tutorial
 - Solar PV Array
 Maintenance Checklist
 - More!

A recent post on the ESCC blog

BEST PRACTICES & ADDITIONAL INFO OTHER RESOURCES

- Technical best practices
 PowerPoint (available on request)
- Community-Driven
 Empowerment—An EWB-USA
 Approach to Solar PV in
 Developing Communities
 - Hardcopies available here, or electronic by request

Connecting microhydroelectric system penstock sections, Guatemala (Marquette University Student Chapter)

BEST PRACTICES & ADDITIONAL INFO ESCC Contact and Services Provided

Contact Us:

- Email: ewbenergy@gmail.com
- Blog: ewbusaenergy.blogspot.com

We Can Help With:

- Coaching services
- Informal consultation and pre-TAC review
- Post TAC hold or denial consultation
- Informal mentorship
- Travel as professional mentors
- Resources

Battery bank with wiring tray and charge controllers

