BoolNet Inference MCF-7 breast (GSE47533)

Integrated analysis of microRNA and mRNA expression and association with HIF binding in MCF-7 cells under hypoxia (GSE47533)

Camps C, Saini HK, Mole DR, Choudhry H et al. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Mol Cancer 2014 Feb 11:13:28. PMID: 24517586

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47533

This SuperSeries is composed of the following SubSeries:

GSE47532 MCF-7 cells under hypoxia [miRNA] - Samples (11) - 822 miRNA

GSE47533 MCF-7 cells under hypoxia [mRNA] - GPL6884 - Samples (12)

GSE47602 MCF-7 cells under hypoxia (miRNA-Seq) - Samples (8) - missing

```
packages_cran = c("igraph", "BoolNet", "BiocManager", "tidyverse", "fs", "ff", "effectsize")
# Install and load packages
package.check <- lapply(packages_cran, FUN = function(x) {</pre>
  if (!require(x, character.only = TRUE)) {
    install.packages(x, dependencies = TRUE)
    library(x, character.only = TRUE)
})
# For oligo and ArrayExpress First install:
#install.packages('https://cran.r-project.org/src/contrib/Archive/ff/ff_2.2-14.tar.qz',repos=NULL)
# packages_bioconductor = c("Biobase", "GEOquery", "affyPLM", "ArrayExpress", "illuminaHumanv3.db")
# # Install and load packages
# package.check <- lapply(packages_bioconductor, FUN = function(x) {</pre>
   if (!require(x, character.only = TRUE)) {
#
      BiocManager::install(x, dependencies = TRUE)
#
      library(x, character.only = TRUE)
   7
#
# })
rm(package.check, packages_cran)
```

Load the pre-processed data

```
load("../data/data.GSE47533.Rdata")
cols <- colnames(expr.GSE47533)
rows <- rownames(expr.GSE47533)
expr.GSE47533 <- as.data.frame(matrix(effectsize::normalize(as.matrix(expr.GSE47533)), ncol = length(co
colnames(expr.GSE47533) <- cols
rownames(expr.GSE47533) <- rows</pre>
```

Selecting the HIF Genes

```
# Selected genes from HIF Axis
hif.symbols <- c("TP53", "HIF1A", "EP300", "MDM2", "VHL")
hif.probes <- anno.GSE47533$probes[anno.GSE47533$symbol %in% hif.symbols]

# Select the probes and genes
expr.GSE47533.hif <- data.frame(expr.GSE47533) %>%
   rownames_to_column('probes') %>%
   filter(probes %in% hif.probes) %>%
   merge(anno.GSE47533[anno.GSE47533$symbol %in% hif.symbols, c("probes", "symbol")], by = "probes") %>%
   #distinct(symbol, .keep_all = TRUE) %>% # Take the first one
   dplyr::select(!(probes)) %>%
   arrange(symbol)
```

Example of Binarizing

symbol	No.0.MC	Hy.16h.MC	Hy.32h.MC	Hy.48h.MC
EP300	0.3905888	0.4059010	0.3807511	0.3843123
HIF1A	0.3425241	0.2580229	0.2966044	0.3318575
HIF1A	0.4544587	0.3946856	0.4195721	0.4575903
HIF1A	0.3373892	0.2539398	0.3155750	0.3127921
MDM2	0.2387532	0.2707557	0.2344911	0.2914341
MDM2	0.1046909	0.0953542	0.1050768	0.1024391
MDM2	0.0802744	0.0708871	0.0802306	0.0856708
TP53	0.4333610	0.4631014	0.4197433	0.4349020
VHL	0.2860114	0.2518470	0.2895173	0.3811038
VHL	0.6636049	0.6479165	0.6242634	0.6568183
VHL	0.4648981	0.4494688	0.4277231	0.4031015
VHL	0.4393973	0.3727216	0.4281843	0.4088407

```
binarizeTimeSeries(breast1_MCF7[,-1], method="kmeans")$binarizedMeasurements %>%
  data.frame(.) %>%
  add_column(symbol = breast1_MCF7$symbol, .before=0) %>%
  knitr::kable(.)
```

symbol	No.0.MC	Hy.16h.MC	Hy.32h.MC	Hy.48h.MC
EP300	0	1	0	0
HIF1A	1	0	0	1
HIF1A	1	0	0	1
HIF1A	1	0	1	1
MDM2	0	1	0	1
MDM2	1	0	1	1
MDM2	1	0	1	1
TP53	0	1	0	0
VHL	0	0	0	1
VHL	1	1	0	1
VHL	1	1	0	0
VHL	1	0	1	1

```
binarizeTimeSeries(breast1_MCF7[,-1], method="kmeans")$binarizedMeasurements %>%
  data.frame(.) %>%
  aggregate(., list(symbol = breast1 MCF7$symbol), mean) %>%
  mutate_at(vars(-symbol), funs(ifelse(. >= 0.5, 1, 0))) %>%
  #rbind(., c("02", 1,0,0,0)) %>% # removing 02
 knitr::kable(.)
## Warning: `funs()` is deprecated as of dplyr 0.8.0.
## Please use a list of either functions or lambdas:
##
##
     # Simple named list:
    list(mean = mean, median = median)
##
##
     # Auto named with `tibble::lst()`:
##
##
    tibble::lst(mean, median)
##
##
     # Using lambdas
    list(~ mean(., trim = .2), ~ median(., na.rm = TRUE))
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
```

symbol	No.0.MC	Hy.16h.MC	Hy.32h.MC	Hy.48h.MC
EP300	0	1	0	0
HIF1A	1	0	0	1
MDM2	1	0	1	1
TP53	0	1	0	0
VHL	1	1	0	1

```
# Function to binarize according an consensus mean of probes, add the O2 state and rename
binNet <- function(b){

cols <- data.GSE47533$codes %in% names(b)

binarizeTimeSeries(b[,-1], method="kmeans")$binarizedMeasurements %>%

as.data.frame(.) %>%

aggregate(., list(symbol = b$symbol), mean) %>% # mean of binarized probes
```

```
mutate_at(vars(-symbol), funs(ifelse(. >= 0.5, 1, 0))) %% # consensus with a bies to 1 (>= 0.5)
  #rbind(., c("02", 1,0,0,0)) %>% # removing 02
   rename_at(vars(data.GSE47533$codes[cols]),
            ~paste0(substr(data.GSE47533$condition[cols],1,2),".",
                    data.GSE47533$time[cols],".",
                    substr(data.GSE47533$cell_line[cols],1,2), ".",
                    data.GSE47533$rep[cols])) %>%
  column to rownames("symbol")
# Function to calculate the mean and binarize after, according an consensus mean of probes
meanBinNet <- function(b){</pre>
  cols <- data.GSE47533$codes %in% names(b)</pre>
  b <-b %>%
  rename at(vars(data.GSE47533$codes[cols]),
            ~paste0(substr(data.GSE47533$condition[cols],1,2),".",
                    data.GSE47533$time[cols],".",
                    substr(data.GSE47533$cell line[cols],1,2), ".",
                    data.GSE47533$rep[cols])) %>%
  mutate(No.0.MC = rowMeans(dplyr::select(.,starts_with("No.0.MC")), na.rm = TRUE)) %>%
  mutate(Hy.16h.MC = rowMeans(dplyr::select(.,starts_with("Hy.16h.MC")), na.rm = TRUE)) %>%
  mutate(Hy.32h.MC = rowMeans(dplyr::select(.,starts_with("Hy.32h.MC")), na.rm = TRUE)) %>%
  mutate(Hy.48h.MC = rowMeans(dplyr::select(.,starts_with("Hy.48h.MC")), na.rm = TRUE)) %>%
  dplyr::select(c("symbol", "No.0.MC", "Hy.16h.MC", "Hy.32h.MC", "Hy.48h.MC"))
  binarizeTimeSeries(b[,-1], method="kmeans")$binarizedMeasurements %>%
  as.data.frame(.) %>%
  aggregate(., list(symbol = b$symbol), mean) %>% # mean of binarized probes
  mutate_at(vars(-symbol), funs(ifelse(. >= 0.5, 1, 0))) %>% # consensus with a bies to 1 (>= 0.5)
  #rbind(., c("02", 1,0,0,0)) %>%
  column_to_rownames("symbol")
}
breast MCF7.1 <-</pre>
expr.GSE47533.hif %>%
  dplyr::select(c("symbol", data.GSE47533$codes[data.GSE47533$rep == 1])) %>%
  binNet(.)
breast_MCF7.1 %>%
 knitr::kable(.)
```

	No.0.MC.1	Hy.16h.MC.1	Hy.32h.MC.1	Hy.48h.MC.1
EP300	0	1	0	0
HIF1A	1	0	0	1
MDM2	1	0	1	1
TP53	0	1	0	0
VHL	1	1	0	1

```
breast_MCF7.2 <-
expr.GSE47533.hif %>%
  dplyr::select(c("symbol", data.GSE47533$codes[data.GSE47533$rep == 2])) %>%
  binNet(.)

breast_MCF7.2 %>%
  knitr::kable(.)
```

	No.0.MC.2	Hy.16h.MC.2	Hy.32h.MC.2	Hy.48h.MC.2
EP300	0	0	1	0
HIF1A	1	0	0	1
MDM2	0	1	0	0
TP53	1	1	0	0
VHL	1	0	0	1

```
breast_MCF7.3 <-
expr.GSE47533.hif %>%
  dplyr::select(c("symbol", data.GSE47533$codes[data.GSE47533$rep == 3])) %>%
  binNet(.)

breast_MCF7.3 %>%
  knitr::kable(.)
```

	No.0.MC.3	Hy.16h.MC.3	Hy.32h.MC.3	Hy.48h.MC.3
EP300	0	0	1	0
HIF1A	1	0	0	1
MDM2	0	0	0	1
TP53	1	1	1	0
VHL	1	0	0	1

```
breast_MCF7.mean <-
cbind(breast_MCF7.1, breast_MCF7.2,breast_MCF7.3) %>%
    tibble::rownames_to_column('gene') %>%
    mutate_at(vars(-gene), as.numeric) %>%
    mutate(No.0.MC = rowMeans(dplyr::select(.,starts_with("No.0.MC")), na.rm = TRUE)) %>%
    mutate(Hy.16h.MC = rowMeans(dplyr::select(.,starts_with("Hy.16h.MC")), na.rm = TRUE)) %>%
    mutate(Hy.32h.MC = rowMeans(dplyr::select(.,starts_with("Hy.32h.MC")), na.rm = TRUE)) %>%
    mutate(Hy.48h.MC = rowMeans(dplyr::select(.,starts_with("Hy.48h.MC")), na.rm = TRUE)) %>%
    dplyr::select(c("No.0.MC", "Hy.16h.MC", "Hy.32h.MC", "Hy.48h.MC"), "gene")) %>%
    mutate_at(c("No.0.MC", "Hy.16h.MC", "Hy.32h.MC", "Hy.48h.MC"), funs(ifelse(. >= 0.5, 1, 0))) %>%
    tibble::column_to_rownames('gene')
```

	No.0.MC	$_{ m Hy.16h.MC}$	${ m Hy.32h.MC}$	Hy.48h.MC
EP300	0	0	1	0
HIF1A	1	0	0	1

	No.0.MC	Hy.16h.MC	Hy.32h.MC	Hy.48h.MC
MDM2	0	0	0	1
TP53	1	1	0	0
VHL	1	0	0	1

```
breast.meanBin <-
expr.GSE47533.hif %>%
  dplyr::select(c("symbol", data.GSE47533$codes)) %>% meanBinNet(.)

breast.meanBin %>%
  knitr::kable(.)
```

	No.0.MC	Hy.16h.MC	Hy.32h.MC	Hy.48h.MC
EP300	0	0	1	0
HIF1A	1	0	0	1
MDM2	0	0	0	1
TP53	1	1	0	0
VHL	1	0	0	1

```
# All breast cancer nets merged:
all.nets <- reconstructNetwork(list(breast_MCF7.1, breast_MCF7.2, breast_MCF7.3),
                                method="bestfit",returnPBN=TRUE,readableFunctions=TRUE)
all.p <- plotNetworkWiring(all.nets, plotIt=F)</pre>
# # Mean of replicate breast cancer net without 02 :
# mean.nox.net <- reconstructNetwork(breast_MCF7.mean[c(1:5),],</pre>
                                  method="bestfit",returnPBN=TRUE,readableFunctions=TRUE)
#
# mean.nox.p <- plotNetworkWiring(mean.nox.net, plotIt=F)</pre>
# Mean of replicate breast cancer net with only Hypoxia state:
# mean.hyp.net <- reconstructNetwork(breast MCF7.mean[,c("Hy.16h.MC", "Hy.32h.MC", "Hy.48h.MC")],
                                  method="bestfit",returnPBN=TRUE,readableFunctions=TRUE)
#
# mean.hyp.p <- plotNetworkWiring(mean.hyp.net, plotIt=F)</pre>
# Mean AFTER binarize the replicates of breast cancer net :
mean.net <- reconstructNetwork(breast_MCF7.mean,</pre>
                                method="bestfit",returnPBN=TRUE,readableFunctions=TRUE)
mean.p <- plotNetworkWiring(mean.net, plotIt=F)</pre>
```

MCF7 breast cancer

```
# MCF7 breast cancer - 4 time-points
breast_MCF7.1.net <- reconstructNetwork(breast_MCF7.1, method="bestfit",returnPBN=TRUE,readableFunction
breast_MCF7.2.net <- reconstructNetwork(breast_MCF7.2, method="bestfit",returnPBN=TRUE,readableFunction
breast_MCF7.3.net <- reconstructNetwork(breast_MCF7.3, method="bestfit",returnPBN=TRUE,readableFunction
breast_MCF7.1.p <- plotNetworkWiring(breast_MCF7.1.net, plotIt=F)
breast_MCF7.2.p <- plotNetworkWiring(breast_MCF7.2.net, plotIt=F)
breast_MCF7.3.p <- plotNetworkWiring(breast_MCF7.3.net, plotIt=F)</pre>
```

Mean BEFORE binarize the replicates of breast cancer net:

```
par(mfrow = c(1,1))
plot(meanBin.p, vertex.label.color="#440154ff", vertex.color="lightblue", vertex.frame.color="white", l
    main="MCF7 breast\n 4 time-points, Mean BEFORE binarize replicates")
```

MCF7 breast 4 time-points, Mean BEFORE binarize replicates

print(meanBin.net)

```
## Probabilistic Boolean network with 5 genes
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL
## Transition functions:
## Alternative transition functions for gene EP300:
## EP300 = (TP53 & !VHL) ( probability: 0.125, error: 0)
## EP300 = (!TP53 & VHL) | (TP53 & !VHL) ( probability: 0.125, error: 0)
## EP300 = (!HIF1A & TP53) ( probability: 0.125, error: 0)
## EP300 = (!HIF1A & TP53) | (HIF1A & !TP53) ( probability: 0.125, error: 0)
## EP300 = (!EP300 & !VHL) ( probability: 0.125, error: 0)
## EP300 = (!EP300 & !VHL) | (EP300 & VHL) ( probability: 0.125, error: 0)
## EP300 = (!EP300 & !HIF1A) ( probability: 0.125, error: 0)
## EP300 = (!EP300 & !HIF1A) | (EP300 & HIF1A) ( probability: 0.125, error: 0)
##
## Alternative transition functions for gene HIF1A:
## HIF1A = (!TP53) ( probability: 0.5, error: 0)
## HIF1A = (EP300) ( probability: 0.5, error: 0)
## Alternative transition functions for gene MDM2:
## MDM2 = (!TP53) ( probability: 0.5, error: 0)
```

```
## MDM2 = (EP300) ( probability: 0.5, error: 0)
##
## Alternative transition functions for gene TP53:
## TP53 = (VHL) ( probability: 0.5, error: 0)
## TP53 = (HIF1A) ( probability: 0.5, error: 0)
##
## Alternative transition functions for gene VHL:
## VHL = (!TP53) ( probability: 0.5, error: 0)
## VHL = (EP300) ( probability: 0.5, error: 0)
try({
sink("../data/ATOTS_inferred_GSE47533_meanBin.bn")
cat("targets, factors\n")
cat("EP300, (!TP53 | HIF1A) \n")
cat("HIF1A, !EP300 \n")
cat("MDM2, (TP53 | !HIF1A)\n")
cat("TP53, EP300\n")
cat("VHL, (!TP53 | HIF1A)\n")
sink()}, silent = T)
net <- loadNetwork("../data/ATOTS_inferred_GSE47533_meanBin.bn")</pre>
print(net)
## Boolean network with 5 genes
##
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL
## Transition functions:
## EP300 = (!TP53 | HIF1A)
## HIF1A = !EP300
## MDM2 = (TP53 | !HIF1A)
## TP53 = EP300
## VHL = (!TP53 | HIF1A)
attr.syn <- getAttractors(net, type = "synchronous")</pre>
plotAttractors(attr.syn, title = "MCF7 breast, mean Before binarize replicates")
```

MCF7 breast, mean Before binarize replicates Attractors with 4 state(s)


```
## $`4`
       Attr1.1 Attr1.2 Attr1.3 Attr1.4
## EP300
           0
                  1
                          1
## HIF1A
            1
                           0
## MDM2
                    0
                           0
             1
## TP53
## VHL
             0
```

Mean AFTER binarize the replicates of breast cancer net:

```
# MCF7 breast cancer - 4 time-points
par(mfrow = c(1,3))
plot(breast_MCF7.1.p, vertex.label.color="#440154ff", vertex.color="lightblue", vertex.frame.color="whimain="MCF7 breast\n 4 time-points, replicate 1")
plot(breast_MCF7.2.p, vertex.label.color="#440154ff", vertex.color="lightblue", vertex.frame.color="whimain="MCF7 breast\n 4 time-points, replicate 2")
plot(breast_MCF7.3.p, vertex.label.color="#440154ff", vertex.color="lightblue", vertex.frame.color="whimain="MCF7 breast\n 4 time-points, replicate 3")
```

MCF7 breast 4 time-points, replicate 1

MCF7 breast 4 time-points, replicate 2

MCF7 breast 4 time-points, replicate 3

par(mfrow = c(1,1))
plot(mean.p, vertex.label.color="#440154ff", vertex.color="lightblue", vertex.frame.color="white", layor
 main="MCF7 breast\n 4 time-points, Mean replicates")

MCF7 breast 4 time-points, Mean replicates

print(mean.net)

```
## Probabilistic Boolean network with 5 genes
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL
## Transition functions:
## Alternative transition functions for gene EP300:
## EP300 = (TP53 & !VHL) ( probability: 0.125, error: 0)
## EP300 = (!TP53 & VHL) | (TP53 & !VHL) ( probability: 0.125, error: 0)
## EP300 = (!HIF1A & TP53) ( probability: 0.125, error: 0)
## EP300 = (!HIF1A & TP53) | (HIF1A & !TP53) ( probability: 0.125, error: 0)
## EP300 = (!EP300 & !VHL) ( probability: 0.125, error: 0)
## EP300 = (!EP300 & !VHL) | (EP300 & VHL) ( probability: 0.125, error: 0)
## EP300 = (!EP300 & !HIF1A) ( probability: 0.125, error: 0)
## EP300 = (!EP300 & !HIF1A) | (EP300 & HIF1A) ( probability: 0.125, error: 0)
##
## Alternative transition functions for gene HIF1A:
## HIF1A = (!TP53) ( probability: 0.5, error: 0)
## HIF1A = (EP300) ( probability: 0.5, error: 0)
## Alternative transition functions for gene MDM2:
## MDM2 = (!TP53) ( probability: 0.5, error: 0)
```

```
## MDM2 = (EP300) ( probability: 0.5, error: 0)
##
## Alternative transition functions for gene TP53:
## TP53 = (VHL) ( probability: 0.5, error: 0)
## TP53 = (HIF1A) ( probability: 0.5, error: 0)
##
## Alternative transition functions for gene VHL:
## VHL = (!TP53) ( probability: 0.5, error: 0)
## VHL = (EP300) ( probability: 0.5, error: 0)
# sink("ATOTS_inferred.bn")
# cat("targets, factors\n")
# cat("EP300, (TP53 & !VHL) | (!TP53 & VHL) | (TP53 & !VHL) | (!HIF1A & TP53) | (!HIF1A & TP53) | (HIF
# cat("HIF1A, !TP53 | EP300 \n")
# cat("MDM2, TP53 & !VHL \n")
# cat("TP53, VHL | HIF1A\n")
# cat("VHL, !TP53 | !EP300\n")
# sink()
try({
sink("../data/ATOTS_inferred_GSE47533.bn")
cat("targets, factors\n")
cat("EP300, (!HIF1A & TP53) | (HIF1A & !TP53)\n")
cat("HIF1A, EP300\n")
cat("MDM2, EP300\n")
cat("TP53, HIF1A\n")
cat("VHL, !TP53\n")
sink()}, silent = T)
net <- loadNetwork("../data/ATOTS_inferred_GSE47533.bn")</pre>
print(net)
## Boolean network with 5 genes
## Involved genes:
## EP300 HIF1A MDM2 TP53 VHL
## Transition functions:
## EP300 = (!HIF1A & TP53) | (HIF1A & !TP53)
## HIF1A = EP300
## MDM2 = EP300
## TP53 = HIF1A
## VHL = !TP53
attr.syn <- getAttractors(net, type = "synchronous")</pre>
plotAttractors(attr.syn, title = "MCF7 breast, mean After binarize replicates")
```

MCF7 breast, mean After binarize replicates Attractors with 1 state(s)

MCF7 breast, mean After binarize replicates Attractors with 7 state(s)


```
## $`1`
##
     Attr1.1
## EP300
         0
           0
## HIF1A
## MDM2
           0
## TP53
           0
## VHL
           1
## $`7`
       Attr2.1 Attr2.2 Attr2.3 Attr2.4 Attr2.5 Attr2.6 Attr2.7
## EP300
          1
                0 1
                            1 1
                                           0
                       0
## HIF1A
           0
                 1
                              1
                                    1
                                           1
                                                  0
                        0
## MDM2
           0
                  1
                              1
                                    1
                                           1
                                                  0
                       1
## TP53
           0 0
0 1
           0
                 0
                             0
                                    1
                                           1
                                                  1
## VHL
                       1
                             0
                                    1
```