PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:
C07D 207/00

A2

(11) International Publication Number: WO 00/21927

(43) International Publication Date: 20 April 2000 (20.04.00)

(21) International Application Number: PCT/GB99/03280

(22) International Filing Date: 5 October 1999 (05.10.99)

(30) Priority Data: 9821974.4 8 October 1998 (08.10.98) 14 December 1998 (14.12.98) 9827521.7 GB 9827883.1 17 December 1998 (17.12.98) GB 10 March 1999 (10.03.99) 9905518.8 GB 9907086.4 26 March 1999 (26.03.99) GB 9919362.5 16 August 1999 (16.08.99) GB

(71) Applicant (for all designated States except US): SMITHKLINE BEECHAM PLC [GB/GB]; New Horizons Court, Brentford, Middlesex TW8 9EP (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): COGHLAN, Matthew, Paul [GB/GB]; SmithKline Beecham Pharmaceuticals, New Frontiers Science Park South, Third Avenue, Harlow, Essex CM19 5AW (GB). FENWICK, Ashley, Edward [GB/GB]; SmithKline Beecham Pharmaceuticals, New Frontiers Science Park South, Third Avenue, Harlow, Essex CM19 5AW (GB). HAIGH, David [GB/GB]; SmithKline Beecham Pharmaceuticals, New Frontiers Science Park South, Third Avenue, Harlow, Essex CM19 5AW (GB). HOLDER, Julie,

Caroline [GB/GB]; SmithKline Beecham Pharmaceuticals, New Frontiers Science Park South, Third Avenue, Harlow, Essex CM19 5AW (GB). IFE, Robert, John [GB/GB]; SmithKline Beecham Pharmaceuticals, New Frontiers Science Park South, Third Avenue, Harlow, Essex CM19 5AW (GB). REITH, Alastair, David [GB/GB]; SmithKline Beecham Pharmaceuticals, New Frontiers Science Park South, Third Avenue, Harlow, Essex CM19 5AW (GB). SMITH, David, Glynn [GB/GB]; SmithKline Beecham Pharmaceuticals, New Frontiers Science Park South, Third Avenue, Harlow, Essex CM19 5AW (GB). WARD, Robert, William [GB/GB]; SmithKline Beecham Pharmaceuticals, New Frontiers Science Park South, Third Avenue, Harlow, Essex CM19 5AW (GB).

(74) Agent: RUTTER, Keith; SmithKline Beecham, Two New Horizons Court, Brentford, Middlesex TW8 9EP (GB).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: NOVEL METHOD AND COMPOUNDS

(57) Abstract

A method for the treatment of conditions associated with a need for inhibition of GSK-3, such as diabetes, dementias such as Alzheimer's disease and manic depression which method comprises the administration of a pharmaceutically effective, non-toxic amount of a compound of formula (I) or a pharmaceutically acceptable derivative thereof, wherein: R is hydrogen, alkyl, aryl, or aralkyl; R¹ is hydrogen, alkyl, aralkyl, hydroxyalkyl or alkoxyalkyl; R² is substituted or unsubstituted aryl or substituted or unsubstituted heterocyclyl; R³ is hydrogen, substituted or unsubstituted alkyl, cycloalkyl, alkoxyalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl or aralkyl wherein the aryl moiety is substituted or unsubstituted; or, R¹ and R³ together with the nitrogen to which they are attached form a single or fused, optionally substituted, saturated or unsaturated heterocylic ring; to a human or non-human mammal in need thereof.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Novel Method and Compounds

This invention relates to a novel method for the treatment and/or prophylaxis of conditions associated with a need for inhibition of glycogen synthase kinase-3 (GSK-3), especially diabetes, including chronic neurodegenerative conditions, including dementias such as Alzheimer's disease, neurotraumatic diseases, such as acute stroke, mood disorders such as schizophrenia and manic depression, and for the treatment and/or prophylaxis of hair loss and cancer, and to certain novel inhibitors of GSK-3 for use in such a method.

10

15

20

25

30

GSK-3 is a serine/threonine protein kinase composed of two isoforms (α and β) which are encoded by distinct genes. GSK-3 is one of several protein kinases which phosphorylates glycogen synthase (GS) (Embi *et al* Eur. J. Biochem. (107) 519-527 (1980)). The α and β isoforms have a monomeric structure of 49 and 47kD respectively and are both found in mammalian cells. Both isoforms phosphorylate muscle glycogen synthase (Cross *et al* Biochemical Journal (303) 21-26 (1994)) and these two isoforms show good homology between species (e.g. human and rabbit GSK-3 α are 96% identical).

Type II diabetes (or Non-Insulin Dependent Diabetes Mellitus, NIDDM) is a multifactorial disease. Hyperglycaemia is due to insulin resistance in the liver, muscle and other tissues coupled with inadequate or defective secretion of insulin from pancreatic islets. Skeletal muscle is the major site for insulin-stimulated glucose uptake and in this tissue, glucose removed from the circulation is either metabolised through glycolysis and the TCA cycle, or stored as glycogen. Muscle glycogen deposition plays the more important role in glucose homeostasis and Type II diabetic subjects have defective muscle glycogen storage.

The stimulation of glycogen synthesis by insulin in skeletal muscle results from the dephosphorylation and activation of glycogen synthase (Villar-Palasi C. and Larner J. Biochim. Biophys. Acta (39) 171-173 (1960), Parker P J et al., Eur. J. Biochem. (130) 227-234 (1983), and Cohen P. Biochem. Soc. Trans. (21) 555-567 (1993)). The phosphorylation and dephosphorylation of GS are mediated by specific kinases and phosphatases. GSK-3 is responsible for phosphorylation and deactivation of GS, while

glycogen bound protein phosphatase 1 (PP1G) dephosphorylates and activates GS. Insulin both inactivates GSK-3 and activates PP1G (Srivastava A K and Pandey S K Mol. and Cellular Biochem. (182) 135-141 (1998)).

35

40

Chen et al., Diabetes (43) 1234-1241 (1994) found that there was no difference in the mRNA abundance of PP1G between patients with Type II diabetes and control patients, suggesting that an increase in GSK-3 activity might be important in Type II diabetes. It has also recently been demonstrated that GSK-3 is overexpressed in Type II diabetic muscle and that an inverse correlation exists between skeletal muscle GSK-3α activity and insulin action (Nikoulina et al Glycogen Synthase Kinase-3 in Human Skeletal Muscle: Relationship To Insulin Resistance in Type II Diabetes. Diabetes (47(1)) 0028 Page A7 (1998) (Oral presentation)). Overexpression of GSK-3β and constitutively active GSK-3β (S9A, S9E) mutants in HEK-293 cells resulted in

supression of glycogen synthase activity (Eldar-Finkelman et al., PNAS (93) 10228-10233 (1996)) and overexpression of GSK-3β in CHO cells, expressing both insulin receptor and insulin receptor substrate 1 (IRS-1), resulted in an impairment of insulin action (Eldar-Finkelman and Krebs PNAS (94) 9660-9664 (1997)). Recent evidence for the involvement of elevated GSK-3 activity and the development of insulin resistance and type II diabetes in adipose tissue has emerged from studies undertaken in diabetes and obesity prone C57BL/6J mice (Eldar-Finkelman et al., Diabetes (48) 1662-1666 (1999)).

5

10

15

20

25

30

35

40

GSK-3 has been shown to phosphorylate other proteins *in vitro* including the eukaryotic initiation factor eIF-2B at Serine⁵⁴⁰ (Welsh *et al.*, FEBS Letts (421) 125-130 (1998)). This phosphorylation results in an inhibition of eIF-2B activity and leads to a reduction in this key regulatory step of translation. In disease states, such as diabetes, where there is elevated GSK-3 activity this could result in a reduction of translation and potentially contribute to the pathology of the disease.

Several aspects of GSK-3 functions and regulation in addition to modulation of glycogen synthase activity indicate that inhibitors of this enzyme may be effective in treatment of disorders of the central nervous system. GSK-3 activity is subject to inhibitory phosphorylation by PI 3 kinase-mediated or Wnt-1 class-mediated signals that can be mimicked by treatment with lithium, a low mM inhibitor of GSK-3 (Stambolic V., Ruel L.and Woodgett J.R. Curr. Biol. 1996 6(12): 1664-8).

GSK-3 inhibitors may be of value as neuroprotectants in treatment of acute stroke and other neurotraumatic injuries. Roles for PI 3-kinase signalling through PKB/akt to promote neuronal cell survival are well established, and GSK-3 is one of a number of PKB/akt substrates to be identified that can contribute to the inhibition of apoptosis via this pathway (Pap & Cooper, (1998) J. Biol. Chem. 273: 19929-19932). Evidence suggests that astrocytic glycogen can provide an alternative energy source to facilitate neuronal survival under conditions of glucose deprivation (for example see Ransom, B.R. and Fern, R. (1997) Glia 21: 134-141 and references therein). Lithium is known to protect cerebellar granule neurons from death (D'Mello et al., (1994) Exp. Cell Res. 211: 332-338 and Volonte et al (1994) Neurosci. Letts. 172: 6-10) and chronic lithium treatment has demonstrable efficacy in the middle cerebral artery occlusion model of stroke in rodents (Nonaka and Chuang, (1998) Neuroreport 9(9): 2081-2084). Wntinduced axonal spreading and branching in neuronal culture models has been shown to correlate with GSK-3 inhibition (Lucas & Salinas, (1997) Dev. Biol. 192: 31-44) suggesting additional value of GSK-3 inhibitors in promoting neuronal regeneration following neurotraumatic insult.

Tau and β-catenin, two known *in vivo* substrates of GSK-3, are of direct relevance in consideration of further aspects of the value of GSK-3 inhibitors in relation to treatment of chronic neurodegenerative conditions. Tau hyperphosphorylation is an early event in neurodegenerative conditions such as Alzheimer's disease (AD), and is postulated to promote microtubule disassembly. Lithium has been reported to reduce the phosphorylation of tau. enhance the binding of tau to microtubules, and promote microtubule assembly through direct and reversible inhibition of glycogen synthase kinase-3 (Hong M., Chen D.C., Klein P.S. and Lee V.M. J.Biol. Chem. 1997 272(40)

25326-32). β-catenin is phosphorylated by GSK-3 as part of a tripartite complex with axin, resulting in β-catenin being targetted for degradation (Ikeda *et al.*, (1998) EMBO J. 17: 1371-1384). Inhibition of GSK-3 activity is a key mechanism by which cytosolic levels of catenin are stabilised and hence promote β-catenin-LEF-1/TCF transcriptional activity (Eastman, Grosschedl (1999) Curr. Opin. Cell Biol. 11: 233). Rapid onset AD mutations in presenilin-1 (PS-1) have been shown to decrease the cytosolic β-catenin pool in transgenic mice. Further evidence suggests that such a reduction in available β-catenin may increase neuronal sensitivity to amyloid mediated death through inhibition of β-catenin-LEF-1/TCF transcriptional regulation of neuroprotective genes (Zhang *et al.*, (1998) Nature 395: 698-702). A likely mechanism is suggested by the finding that mutant PS-1 protein confers decreased inactivation of GSK-3 compared with normal PS-1 (Weihl, C.C., Ghadge, G.D., Kennedy, S.G., Hay, N., Miller, R.J. and Roos, R.P.(1999) J. Neurosci. 19: 5360-5369).

10

15

20

25

30

35

40

WO 97/41854 (University of Pennsylvania) discloses that an effective drug for the treatment of manic depression is lithium, but that there are serious drawbacks associated with this treatment. Whilst the precise mechanism of action of this drug for treatment of manic depression remains to be fully defined, current models suggest that inhibition of GSK-3 is a relevant target that contributes to the modulation of AP-1 DNA binding activity observed with this compound (see Manji et al., (1999) J. Clin. Psychiatry 60 (suppl 2): 27-39 for review).

GSK-3 inhibitors may also be of value in treatment of schizophrenia. Reduced levels of β-catenin have been reported in schizophrenic patients (Cotter D, Kerwin R, al-Sarraji S, Brion JP, Chadwich A, Lovestone S, Anderton B, Everall I. 1998 Neuroreport 9:1379-1383) and defects in pre-pulse inhibition to startle response have been observed in schizophrenic patients (Swerdlow et al., (1994) Arch. Gen. Psychiat. 51: 139-154). Mice lacking the adaptor protein dishevelled-1, an essential mediator of Wnt-induced inhibition of GSK-3, exhibit both a behavioural disorder and defects in pre-pulse inhibition to startle response (Lijam N, Paylor R, McDonald MP, Crawley JN, Deng CX, Herrup K, Stevens KE, Maccaferri G, McBain CJ, Sussman DJ, Wynshaw-Boris A. (1997) Cell 90: 895-905). Together, these findings implicate deregulation of GSK-3 activity as contributing to schizophrenia. Hence, small molecule inhibitors of GSK-3 catalytic activity may be effective in treatment of this mood disorder.

The finding that transient β -catenin stabilisation may play a role in hair development (Gat *et al.*, Cell (95) 605-614(1998)) suggests that GSK-3 inhibitors could be used in the treatment of baldness.

Certain substitued 3-amino-4-arylmaleimides are disclosed in Tetrahedron (1998), 54(9), 1745-1752; Liebigs Annalen 1894, 282, 81; BE 659639; J Amer Chem Soc 1958, 80, 1385; J. Prakt. Chem. (1979), 321(5), 787-96; Eur. J. Org. Chem. (1998), (7), 1467-1470; Chem. Heterocycl. Compd. (N. Y.) (1997), 33(1), 69-73; J. Prakt. Chem. (1987), 329(4), 587-91; Collect. Czech. Chem. Commun. (1985), 50(6), 1305-11; Tetrahedron (1984), 40(18), 3499-502; J. Prakt. Chem. (1983), 325(2), 293-300; J Prakt Chem 1983, 325 (2) 293-300; Tetrahedron (1980), 36, 1801-5; which compounds have no disclosed pharmaceutical utility.

Certain 3-amino-4-arylmaleimides are disclosed in Bioorg. Med. Chem. Lett. (1995), 5(1), 67-72; J. Med. Chem. (1992), 35(1), 177-84; Tetrahedron Lett. (1990), 31(36), 5201-4; EP 328026; Bioorg. Med. Chem. Lett. (1994), 4(24), 2845-50, which compounds are disclosed as being protein kinase C inhibitors or trypanothione reductase inhibitors. Certain 3-amino-4-arylmaleimides are disclosed in DE 4005969 and DE 4005970 as having activity as anti-allergics and immunotherapeutics.

United States Patent Number 3335147 discloses certain 3-amino-4-arylmaleimides as having topical anaesthetic activity. DE 19744257 discloses certain 3-amino-4-arylmaleimides as being tyrosine kinase inhibitors. Chem. Pharm. Bull. (1998), 46(4), 707-710 discloses certain 3-amino-4-arylmaleimides as being trypanothione reductase inhibitors. SA 672268 discloses certain 3-amino-4-arylmaleimides as being antimicrobials.

None of the above mentioned references discloses that the 3-amino-4-arylmaleimides possess GSK-3 inhibitor activity.

5

10

15

20

25

30

35

We have now discovered that a series of certain 3-amino-4-arylmaleimides are particularly potent and selective inhibitors of GSK-3. These compounds are indicated to be useful for the treatment and/or prophylaxis of conditions associated with a need for inhibition of GSK-3, such as diabetes, chronic neurodegenerative conditions, including dementias such as Alzheimer's disease, manic depression, mood disorders, such as schizophrenia, neurotraumatic diseases, such as acute stroke, hair loss, and cancer. Certain of these compounds are novel and such compounds comprise a further aspect of the invention. In addition, as indicated above it is considered that GSK-3 inhibitors per se are potentially useful in the treatment and/or prophylaxis of mood disorders, such as schizophrenia, neurotraumatic diseases, such as acute stroke, and for the treatment and/or prophylaxis of cancer and hair loss.

Accordingly, in a first aspect, the present invention provides a method for the treatment of conditions associated with a need for inhibition of GSK-3, such as diabetes, dementias such as Alzheimer's disease and manic depression which method comprises the administration of a pharmaceutically effective, non-toxic amount of a compound of formula (I):

or a pharmaceutically acceptable derivative thereof, wherein:

R is hydrogen, alkyl, aryl, or aralkyl:

R¹ is hydrogen, alkyl, aralkyl, hydroxyalkyl or alkoxyalkyl;

R² is substituted or unsubstituted aryl or substituted or unsubstituted heterocyclyl;

R³ is hydrogen. substituted or unsubstituted alkyl, cycloalkyl, alkoxyalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl or aralkyl wherein the aryl moiety is substituted or unsubstituted; or,

R¹ and R³ together with the nitrogen to which they are attached form a single or fused, optionally substituted, saturated or unsaturated heterocylic ring;

to a human or non-human mammal in need thereof.

Suitably, R is hydrogen, C₁₋₆alkyl, such as methyl or ethyl, or R is phenyl or benzyl.

Preferably, R is hydrogen.

5

10

15

20

25

Suitably, R^1 is hydrogen, C_{1-6} alkyl, such as methyl, ethyl, or R^1 is hydroxyethyl or methoxyethyl.

Preferably, R¹ is hydrogen.

When R² is substituted or unsubstituted aryl, examples of aryl groups include phenyl and naphthyl.

When R^2 is substituted or unsubstituted heterocyclyl, examples of heterocyclyl groups include indolyl, benzofuranyl, thienyl and benzothienyl.

When R^2 is substituted phenyl, suitable substituents include up to three groups independently selected from halo, $C_{1\text{-}6}$ alkoxy, nitro, perfluoro $C_{1\text{-}6}$ alkyl, benzoyl, $C_{1\text{-}6}$ alkoxycarbonyl, $C_{1\text{-}6}$ alkylsulphonyl, hydroxy, -O(CH₂)_wO- where w is 1 to 4,

phenoxy, benzyloxy, C_{1-6} alkoxy C_{1-6} alkyl, perfluoro C_{1-6} alkoxy, C_{1-6} alkylS-, perfluoro C_{1-6} alkylS-, (di C_{1-6} alkyl)N-, amino, C_{1-6} alkylcarbonylamino, substituted or unsubstituted ureido, phenylcarbonylamino, benzylcarbonylamino, styrylcarbonylamino, (di C_{1-6} alkoxy)(phenyl)C-, C_{1-6} alkyl, and phenyl.

Suitable substituents for ureido include fluorophenyl, phenyl C_{1-6} alkyl-, cyclohexyl, C_{1-6} alkenyl, C_{1-6} alkyl, and C_{1-6} alkoxyphenyl.

When R^2 is substituted indolyl, suitable substituents include C_{1-6} alkyl. When R^2 is substituted benzothienyl, suitable substituents include C_{1-6} alkyl. Suitably, R^2 is substituted or unsubstituted phenyl.

Favourably, R² is phenyl substituted with:

4-Cl: 3-Cl: 2-Cl: 2.4-di-Cl; 3.4-di-Cl; 3.5-di-Cl; 2.6-di-Cl; 2-F-6-Cl; 2-F; 3-F; 4-F; 2.3-di-F; 2.5-di-F; 2.6-di-F; 3,4-di-F; 3,5-di-F; 2,3,5-tri-F; 3,4,5-tri-F; 2-Br; 3-Br; 4-Br: 2-I; 4-I; 3-Cl-4-OMe; 3-NO₂-4-Cl; 2-OMe-5-Br; 2-NO₂; 3-NO₂; 4-NO₂; 2-CF₃; 3-CF₃; 4-CF₃; 3.5-di-CF₃; 4-PhC(O)-; 4-MeO(O)C-; 4-MeSO₂-; 4-OH; 2-OMe; 3-OMe; 4-OMe; 2,4-di-OMe; 2,5-di-OMe; 3,4-di-OMe; 3,4-OCH₂O-; 3,4,5-tri-OMe; 3-NO₂-4-OMe; 4-OnBu; 2-OEt; 2-OPh; 3-OPh; 4-OPh; 2-OCH₂Ph; 4-OCH₂Ph; 4-(MeOCH₂); 2-OCF₃; 4-OCF₃; 4-SMe; 3-SCF₃; 4-NMe₂; 3-NH₂; 3-(NHC(O)Me); 3-[NHC(O)NH(3-F-Ph)]; 3-[NHC(O)NH(CH₂)₂Ph]; 3-[NHC(O)NHCyclohexyl]; 3-

[NHC(O)NHCH₂CH=CH₂]; 3-[NHC(O)Ph]; 3-[NHC(O)CH₂Ph]; 3-[trans-NHC(O)CH=CHPh]; 3-[NHC(O)nPr]; 3-[NHC(O)NHEt]; 3-[NHC(O)NH(3-OMe-Ph)]; 4-[C(OMe)₂Ph]; 2-Me; 3-Me; 4-Me; 4-iPr; 2,5-di-Me; 3,5-di-Me, 4-Ph, 2,3-[(-

40 Ph)]; 4-[C(OMe)₂Ph]; 2-Me; 3-Me; 4-Me; 4-iPr; 2,5-di-Me; 3,5-di-Me, 4-Ph, 2,3-[(CH₂=CH₂-)], or 3,4-[(-CH₂=CH₂-)].

When R³ is alkyl, examples include methyl and ethyl.

When R³ is cycloalkyl, examples include cyclohexyl.

5

10

15

20

25

30

35

When R³ is alkoxyalkyl, examples include methoxyethyl.

When R³ is aralkyl, examples include benzyl and phenylethyl.

When R³ is substituted or unsubstituted aryl, examples include fluorenyl, phenyl, and dibenzofuryl.

When R³ is substituted or unsubstituted heterocyclyl, examples include thienyl, oxazolyl, benzoxazolyl, pyridyl, and pyrimidinyl.

When R¹ and R³ together with the nitrogen atom to which they are attached form a fused heterocyclic ring, which ring may be unsubstituted or substituted, examples include indolinyl, indolyl, oxindolyl, benzoxazolinonyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, benzimidazolyl, benzazepinyl, isoindolin-2-yl, and 1.3,3-trimethyl-6-azabicyclo[3.2.1]oct-6-yl.

When R¹ and R³ together with the nitrogen atom to which they are attached form a single heterocyclic ring, which ring may be unsubstituted or substituted, examples include 1-phenyl-1,3,8-triazaspiro-[4,5]-decan-4-one-8-yl, piperazinyl, pyrrolidinyl, piperidinyl, morpholinyl, thiomorpholinyl, and a pyridinium ring.

When R³ is substituted phenyl, suitable substituents include up to three groups independently selected from substituted or unsubstituted C₁₋₆alkyl, phenyl, benzyl, substituted or unsubstituted C1-6alkylS-, halo, hydroxy, substituted or unsubstituted C1-6alkoxy, substituted or unsubstituted phenoxy, indolyl, naphthyl, carboxy, C1-6alkoxycarbonyl, benzyloxy, pentafluorophenoxy, nitro, N-substituted or unsubstituted carbamoyl, substituted or unsubstituted C₁₋₆alkylcarbonyl, benzoyl, cyano, perfluoroC₁₋ 6alkylSO2-, C1-6alkylNHSO2-, oxazolyl, C1-6alkylcarbonylpiperazinyl, substituted or unsubstituted phenylS-, C₁₋₆alkylpiperazinyl-, cyclohexyl, adamantyl, trityl, substituted or unsubstituted C₁₋₆alkenyl, perfluoroC₁₋₆alkyl, perfluoroC₁₋₆alkoxy, $perfluoro C_{1-6} alkyl S-.\ aminosulphonyl,\ alkylaminosulphonyl,\ dialkylaminosulphonyl,$ $ary lamino sulphonyl,\ morpholino.\ (diC_{1-6}alkyl) amino,\ C_{1-6}alkylCONH-,$ (diC₁₋₆alkoxy)phenyl(CH₂)_nNHC(O)CH(phenyl)S- where n is 1 to 6, and C₁₋ 6alkylCON(C1-6alkyl)-, thiazolidinedionylC1-6alkyl, phenylCH(OH)-, substituted or unsubstituted piperazinylC₁₋₆alkoxy, substituted or unsubstituted benzoylamino; or -[CH=CH-C(O)O]-, $-[(CH=CH)_2]$ -, $-[(CH_2)_xN(C_{1-6}alkylcarbonyl)]$ -, $-(CH_2)_x$ -, $-(CH_2$ $SCH=N-.-SC(C_{1-6}alkyl)=N-.-OCF_{2}O-,-CH=N-NH-.-CH=CH-NH-,-OC(NHC_{1-6}alkyl)=N-.-OC(NHC_{1-6}alkyl)=N-.-OC(NHC_{1-6}alkyl)=N-.-OCF_{2}O-,-CH=N-NH-.-CH=CH-NH-.-OC(NHC_{1-6}alkyl)=N-.-OC(NHC_{1-6}alkyl)=$ $6alkyl)=N-.-OC(O)NH-.-C(O)NC_{1-6}alkylC(O)-.-[CH=CH-CH=N]-.-[CH=C(C_{1-6})]-.-[CH=CH-CH=N]-.-[CH=N]-.-[CH=N]-.-[CH=N]-.-[CH=N]-.-[CH=N]-.-[CH=N]-.-[CH=N]-.-[CH=N]-.-[CH=N]-.-[CH=N]-. 6 alkylcarbonyl) O]-, -C(O)NHC(O)-, -[(CH_2)_xC(O)]-, -N=N-NH-, -N=C(C_{1-6}alkyl)O-, -N=N-NH-, -N=C(C_{1-6}alkyl)O-, -N=N-N-NH-, -N=C(C_{1-6}alkyl)O-, -N=N-NH-, -N=C(C_{1-6}alkyl)O-, -N=N-NH-, -N-NH-, -N-NH-,$ $O(CH_2)_xO_{-}$, $-(CH_2)_xSO_2(CH_2)_{V_{-}}$,

-N(C_{1-6} alkylcarbonyl)(CH₂)_X- where x and y are independently 1 to 4, pyrimidin-2-yloxy, phenylamino, N-[pyrimidin-2-yl]-N-[C_{1-6} alkyl]amino, C_{1-6} alkylsulphonylamino, and 1.2,3-thiadiazolyl.

Suitable substituents for C₁₋₆alkyl include hydroxy, carboxy,

unsubstituted or N-substituted carbamoyl, N-morpholinylcarbonyl,

C₁₋₆alkylaminocarbonyl, fluoro, cyano, C₁₋₆alkyl, C₁₋₆alkoxycarbonylamino, amino,

C₁₋₆alkylcarbonylamino, benzoylamino, phenylaminocarbonylamino,

C₁₋₆alkoxycarbonyl, phosphono.

mono-or bis C_{1-6} alkylphosphonate, C_{1-6} alkylamino sulphonyl, and C_{1-6} alkylcarbonylamino C_{1-6} alkylamino CO-.

Suitable substituents for C_{1-6} alkylS- include carboxy, C_{1-6} alkoxycarbonyl, C_{1-6} alkoxy C_{1-6} alkylaminocarbonyl, unsubstituted or N-substituted carbamoyl, and fluoro.

Suitable substituents for C_{1-6} alkoxy include C_{1-6} alkoxy, phenyl, carboxy, C_{1-6} alkoxycarbonyl, unsubstituted or N-substituted carbamoyl, and phenyl. Suitable substituents for carbamoyl include C_{1-6} alkyl, and C_{1-6} alkoxy C_{1-6} alkyl. Suitable substituents for C_{1-6} alkylcarbonyl include carboxy, and

10 C₁₋₆alkoxycarbonyl.

5

15

25

30

40

Suitable substituents for phenylS- include chloro, nitro, carboxy, C_{1-6} alkylaminocarbonyl, unsubstituted or N-substituted carbamoyl, and C_{1-6} alkoxycarbonyl.

Suitable substituents for C_{1-6} alkenyl include (di C_{1-6} alkyl)aminocarbonyl, carboxy, C_{1-6} alkoxycarbonyl, carbamoyl, and phenyl.

Suitable substituents for piperazinylC₁₋₆alkoxy include methyl.

Suitable substituents for phenoxy include chloro.

Suitable substituents for benzoylamino include hydroxy.

When R³ is substituted benzofuryl, suitable substituents include

20 C₁₋₆alkylcarbonyl.

When R³ is substituted thienyl, suitable substituents include C₁₋₆alkylcarbonyl.

When R^3 is substituted oxazolyl, suitable substituents include C_{1-6} alkyl.

When R³ is substituted benzoxazolyl, suitable substituents include halo.

When R^3 is substituted pyridyl, suitable substituents include up to three substituents independently selected from C_{1-6} alkyl, C_{1-6} alkoxy, and halo.

Suitably, R³ is substituted or unsubstituted phenyl.

Favourably, R³ is phenyl substituted with;

2-Me; 2-Et; 2-iPr; 2-CH₂OH; 2-Ph; 2-CH₂Ph; 2-SMe; 2-F; 2-Cl; 2-OH; 2-

OMe: 2-OPh; 2-Me-5-F; 2-Me-3-Cl; 2-Me-4-Cl; 2-Me-5-Cl; 2-Me-3-Br; 2.3-di-Me; 2,4-di-Me: 2-Me-4-OH; 2-Me-4-OMe; 2-Me-5-CH₂OH; 2,4,6-tri-Me; 2-(2-Indolyl); (1-

Naphthyl); 2-Me-5-COOH; 2-Me-5-COOMe; 2-OH-5-COOH; 2-[O(CH₂)₂OMe]-5-[(CH₂)₂COOH]; 2-[SCH(Ph)CONH(CH₂)₂(3,4-di-OMePh)]; 3-Me; 3-Et; 3-CH₂OH; 3-CH₂OH-6-Me; 3-CH₂OH-4-OMe; 3-(CH₂NMe₂)-4-OMe; 3-[CH₂COOH]; 3-

[CH₂COOMe]; 3-[CH₂CONH₂]; 3-[CH₂CONHMe]; 3-[CH₂-(thiazolidine-2.4-dion-5-yl)]; 3-SMe; 3-F; 3-Cl; 3-Br; 3-I; 3-CF₃; 3-OH; 3-OMe; 3-OCH₂Ph; 3-OiPr; 3-OPh; 3-

O-pentafluorophenyl; 3-(OCH₂CO₂H); 3-(OCH₂CO₂Me); 3-(OCH₂CO₂Et); 3-NO₂; 3-CO₂H; 3-CO₂Me; 3-CONH₂; 3-CONHMe; 3-CONHCH₂CH₂OMe; 3-COMe; 3-COPh: 3-(COCH₂CH₂CO₂H); 3-(COCH₂CH₂CO₂Me); 3-CN; 3-SO₂CF3; 3-SO₂NH-

nBu: 3-(5-oxazolyl); 3-[4-methylpiperazin-1-yl]-4-OMe; 3-[O-(pyrimidin-2-yl)]; 3-OH-4-OMe; 3,4-di-OMe; 3,5-di-OMe; 3,4-di-Me; 3,5-di-Me; 3-[trans-CH=CHCONMe₂]-4-Cl: 3 F 4 Me; 3 Cl 4 Me; 3 Pr 4 Me; 3 F 4 Me; 3 F 4 Me; 3 Cl 4 Me; 3 Pr 4 Me; 3 F 4 Me; 3 F 4 Me; 3 Pr 4 Me; 3 P

Cl; 3-F-4-Me; 3-Cl-4-Me; 3-Br-4-Me; 3,5-di-F; 3,4-di-Cl; 3,5-di-Cl; 3,5-di-Br; 3-Cl-4-Br; 3-Cl-4-OH; 3-Br-4-OH; 3-F-4-OMe; 3-Cl-4-OMe; 3-Cl-4-SMe; 3-Br-4-Cl; 3-Br-4-OCF₃; 3-Br-5-CF₃; 3,5-di-Cl-4-OH; 3,5-di-Br-4-OH; 3,5-di-Cl-4-Me; 3,5

Br-4-Me; 3-[CH2CH(Me)CO2H]; 3-CO2H-4-Cl; 3-CO2Me-4-Cl; 3-CO2H-4-OH; 3-CONH2-4-Me; 3-NO2-4-OH; 3-CO2H-4-SPh; 3-CO2H-4-[S-(2-CO2H-Ph)]; 3-CO2H-4-[S-(2-CONHMe-Ph)]; 3-CO₂Et-4-[S-(2-CO₂Et-Ph)]; 3-CO₂H-4-[S-(3-CO₂H-Ph)]; 3-CO₂Me-4-[S-(4-Cl-Ph)]; 4-[N(Me)(Pyrimidin-2-yl)]; 4-Me; 4-nBu; 4-tBu; 4-Cyclohexyl; 4-Adamantyl; 4-CPh3; 4-CH2CN; 4-CH(OH)Me; 4-CH(OMe)Me; 4-5 CH2OH; 4-CH2NHC(O)t-Bu; 4-CH2NH2; 4-CH2NHCOMe; 4-CH2NHCOPh; 4-CH2NHCONHPh; 4-CH2CO2H; 4-CH2CO2Me; 4-[CH2P(O)(OH)2]; 4-[CH₂P(O)(OEt)₂]; 4-[CH₂SO₂NHMe]; 4-(CH₂)₂OH; 4-(CH₂)₂NH₂; 4-(CH2)2NHCOPh; 4-(CH2)2NHC(O)Ot-Bu; 4-[(CH2)2CO2H]; 4-[(CH2)2CO2Me]; 4-(CH2CH2CONH2); 4-[CH2CH2CONH(CH2)6NHCOMe]; 4-[(CH2)3CO2H]; 4-10 [(CH₂)₃CO₂Me]; 4-[CH=CH₂]; 4-(CH=CHCO₂H); 4-(CH=CHCO₂Et); 4-(CH=CHCONH₂); 4-(CH=CHPh); 4-(CH=CH(4-OHPh)); 4-[1,2,3-thiadiazol-4-yl]; 4-[OCH2-(1-methyl-piperazin-4-yl)]; 4-[4-methylpiperazin-1-yl]; 4-CF3; 4-SMe; 4-(SCH2CO2H); 4-(SCH2CO2Me); 4-[SCH2CONH(CH2)2OMe]; 4-SCF3; 4-[S-(4-NO2-Ph)]; 4-[S-(2-CO₂H-Ph)]; 4-[S-(3-CO₂H-Ph)]; 4-SO₂NH₂; 4-F; 4-Cl; 4-Br; 4-I; 4-15 OH; 4-OMe; 4-OnBu; 4-OPh; 4-[O-(4-Cl-Ph)]; 4-OCH2Ph; 4-OCH2CO2Me; 4-COPh; 4-COMe; 4-CONH2; 4-CO2H; 4-CN; 4-NO2; 4-morpholinyl; 4-[CH2CO-morpholin-lyl)]; 4-[CH2CONH(CH2)2OMe]; 4-[(CH2)2CONH(CH2)6NHC(O)Ot-Bu]; 4-[(CH₂)₂CONH(CH₂)₆NH₂]; 4-[(CH₂)₂CONH(CH₂)₆NH-biotinyl]; 4-NMe₂; 4-NHCOMe; 4-N(Me)COMe, 2,3-di-F; 4-[NHCO(Ph-2-OH)], 4-(phenylamino); 4-20 methylsulphonylamino, 2,4-di-F; 2,5-di-F; 2-OMe-3-F; 3-CH₂OMe; 3-CH(OH)Ph; 3,4,di-F; 3-CO₂H-4-CH₂CO₂H; 3-CO₂H-4-[S-(2-CO₂Et)Ph]; 3-CO₂Et-4-[S-(4-CO₂H)Ph]; 3-CONHMe-4-[S-(2-CONHMe)-Ph]; 3-[4-(dichloroacetyl)piperazin-1-yl]-4-OMe; 4-CH2CONH2; 4-SPh; 4-[S-(4-CO2H-Ph)]; and 4-OCH2CO2H. 25

When R^1 and R^3 together with the nitrogen atom to which they are attached form indolinyl, suitable substituents include C_{1-6} alkyl, perfluoro C_{1-6} alkyl, C_{1-6} alkyl, C_{1-6} alkyl, carboxy,

 C_{1-6} alkoxycarbonyl, C_{1-6} alkoxy, halo, t-butoxycarbonylpiperazin-1-yl, 4- $(C_{1-6}$ alkyl)piperazinyl, piperazinyl, amido, and nitro.

30

35

40

When R¹ and R³ together with the nitrogen atom to which they are attached form piperazinyl, suitable substituents include alkylcarbonyl, alkyl, or aryl.

When R¹ and R³ together with the nitrogen atom to which they are attached form tetrahydroquinolinyl, suitable substituents include perfluoroC₁₋₆alkyl.

When R¹ and R³ together with the nitrogen atom to which they are attached form a pyridinium ring, suitable substituents include amino.

When R¹ and R³ together with the nitrogen atom to which they are attached form pyrrolidinyl, suitable substituents include hydroxy.

When R^1 and R^3 together with the nitrogen atom to which they are attached form piperidinyl, suitable substituents include benzyl, hydroxyC₁₋₆alkyl, C₁₋₆alkyl, hydroxy, carbamoyl, and C₁₋₆alkoxycarbonyl.

When R¹ and R³ together with the nitrogen atom to which they are attached form oxindolyl, suitable substituents include C₁₋₆alkyl.

There is a sub-group of compounds, falling wholly within formula (I), and being of formula (IA), wherein R, R^1 , R^2 and R^3 are as defined in relation to formula (I), with the proviso that formula (IA) does not include the following compounds, hereinafter referred to as List A:

- 3-phenyl-4-(4-methylpiperazino)-pyrrole-2,5-dione;
 3-[4-(diphenylmethyl)-1-piperazinyl]-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2.5-dione;
 3-phenyl-4-(4-phenylpiperazino)-pyrrole-2,5-dione;
 1-methyl-3-phenyl-4-(4-phenylpiperazino)-pyrrole-2,5-dione;
 1-ethyl-3-phenyl-4-(4-chlorophenylpiperazino)-pyrrole-2,5-dione;
- 1-allyl-3-phenyl-4-(4-methylpiperazino)-pyrrole-2,5-dione;
 3-indol-1-yl-4-(1-methyl-1H-indol-3-yl)-pyrrole-2,5-dione;
 1-(1-methyl-2,5-dioxo-4-phenylamino-2,5-dihydro-1H-pyrrol-3-yl)pyridinium chloride;
 1-[1-(4-methyl-pentyl)-2,5-dioxo-4-phenylamino-2,5-dihydro-1H-pyrrol-3-yl]pyridinium chloride;
- 1-(1-dodecyl-2.5-dioxo-4-phenylamino-2.5-dihydro-1H-pyrrol-3-yl)-pyridinium chloride; 3-[2-benzo[b]thien-2-yl-3-[4-(dimethylamino)-2,5-dihydro-2,5-dioxo-1H-pyrrol-3-yl]-1H-indol-1-yl]-carbamimidothioic acid, propyl ester; 3-(dimethylamino)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione; 3-(1H-indol-3-yl)-1-methyl-4-(phenylamino)-1H-pyrrole-2,5-dione;
- 3-(1H-indol-3-yl)-1-methyl-4-[[4-(trifluoromethyl)phenyl]amino]-1H-pyrrole-2.5-dione;
 3-(1H-indol-3-yl)-1-methyl-4-(methylamino)-1H-pyrrole-2,5-dione;
 3-(1H-imidazo[4,5-b]pyridin-l-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
 3-(6-chloro-9H-purin-9-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
 3-(6-amino-9H-purin-9-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
- 3-(1H-indol-3-yl)-1-methyl-4-(1H-pyrrolo[2,3-b]pyridin-1-yl)-1H-pyrrole-2,5-dione;
 3-(1H-indol-3-yl)-1-methyl-4-(1-piperidinyl)-1H-pyrrole-2,5-dione;
 1-acetyl-3-[2,5-dihydro-1-methyl-2,5-dioxo-4-[[4-(trifluoromethyl)phenyl]amino]-1H-pyrrol-3-yl]-1H-indole:
 - 3-(1H-benzimidazol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione:
- 3-(1H-benzotriazol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
 3-(1H-imidazol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
 3-(1H-indol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
 3-(1H-indazol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
 - 3-[3-[(dimethylamino)methyl]-1H-indol-1-yl]-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-
- 35 2.5-dione;
 - 3-(1H-benzimidazol-1-yl)-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
 - 3-(1H-indol-1-yl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione; 3-amino-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
 - 3-amino-4-(5-methoxy-1H-indol-3-yl)-1H-pyrrole-2,5-dione;
- 40 lH-Indole-1-carboxylic acid, 3-(4-amino-2,5-dihydro-1-methyl-2,5-dioxo-1H-pyrrol-3-yl)-, 1,1-dimethylethyl ester;
 - 3-(1H-indol-3-yl)-1-methyl-4-[(phenylmethyl)amino]-1H-pyrrole-2,5-dione;

Glycine, N-[2,5-dihydro-4-(1H-indol-3-yl)-1-methyl-2,5-dioxo-1H-pyrrol-3-yl]-, ethyl ester;

- 3-amino-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
- 3-[[3-[(3-aminopropyl)amino]propyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
- 5 [[3-[4-(3-aminopropyl)-1-piperazinyl]propyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
 - 3-(1H-indol-3-yl)-4-[[3-(4-methyl-1-piperazinyl)propyl]amino]-1H-pyrrole-2.5-dione; 1-[3-[(3-aminopropyl)amino]propyl]-3-[[3-[(3-aminopropyl)amino]propyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2.5-dione;
- 1-[3-[4-(3-aminopropyl)-1-piperazinyl]propyl]-3-[[3-[4-(3-aminopropyl)-1-piperazinyl]propyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
 3-(1H-indol-3-yl)-1-[3-(4-methyl-1-piperazinyl)propyl]-4-[[3-(4-methyl-1-piperazinyl)propyl]amino]-1H-pyrrole-2,5-dione;
 - 3,3'-[iminobis(3,1-propanediylimino)]bis[4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
- 3,3'-[1,4-piperazinediylbis(3,1-propanediylimino)]bis[4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
 - 3-[(5-aminopentyl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
 - 3-[[5-[(2-aminoethyl)amino]pentyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2.5-dione;
 - 3-[(2-aminoethyl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
- 3-[(6-aminohexyl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
 - 3-[(7-aminoheptyl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
 - 3-[[2-[(2-aminoethyl)amino]ethyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione; Benzenepropanamide, .alpha.-amino-N-[5-[[2,5-dihydro-4-(1H-indol-3-yl)-2,5-dio
 - Benzenepropanamide, .alpha.-amino-N-[5-[[2,5-dihydro-4-(1H-indol-3-yl)-2,5-dioxo-1H-pyrrol-3-yl]amino]pentyl]-, (S)-;
- Pentanoic acid, 4-amino-5-[[5-[[2,5-dihydro-4-(1H-indol-3-yl)-2,5-dioxo-1H-pyrrol-3-yl]amino]pentyl]amino]-5-oxo-. (S)-;
 - Pentanamide. 2-amino-5-[(aminoiminomethyl)amino]-N-[2-[[5-[[2,5-dihydro-4-(1H-indol-3-yl)-2.5-dioxo-1H-pyrrol-3-yl]amino]pentyl]amino]ethyl]-, (S)-;
 - Benzenepropanamide. .alpha.-amino-N-[2-[[5-[[2,5-dihydro-4-(1H-indol-3-yl)-2,5-dioxo-
- 30 lH-pyrrol-3-yl]amino]pentyl]amino]ethyl]-, (S)-;
 Butanamide, 4-[(aminoiminomethyl)amino]-N-[5-[[2,5-dihydro-4-(1H-indol-3-yl)-2,5
 - dioxo-1H-pyrrol-3-yl]amino]pentyl]-, (S)-; 3-phenyl-4-(diethylamino)-pyrrole-2,5-dione;
 - 3-phenyl-4-(benzylamino)-pyrrole-2,5-dione;
- 35 1-methyl-3-phenyl-4-(2-diethylaminoethylamino)-pyrrole-2,5-dione;
 - 1-allyl-3-phenyl-4-(2-dimethylaminoethylamino)-pyrrole-2,5-dione; and;
 - 1,3-diphenyl-4-piperidino-pyrrole-2,5-dione.

40

There is a further sub-group of compounds, falling wholly within formula (I), and being of formula (IB), wherein R, R¹, R² and R³ are as defined in relation to formula (I), with the proviso that formula (IB) does not include the following compounds, hereinafter referred to as List B:

- 3-(4-methylpiperazin-l-yl)-4-phenyl-pyrrole-2,5-dione;
- 3-(4-ethylpiperazin-l-yl)-4-phenyl-pyrrole-2,5-dione;

PCT/GB99/03280

```
WO 00/21927
 3-(4-chlorophenyl)-4-(4-methyl-piperazin-l-vl)-pyrrole-2,5-dione:
 3-[4-(diphenylmethyl)-1-piperazinyl]-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2.5-dione;
 3-phenyl-4-(4-methylpiperazino)-pyrrole-2,5-dione;
 3-phenyl-4-(4-phenylpiperazino)-pyrrole-2,5-dione;
 1-methyl-3-phenyl-4-(4-phenylpiperazino)-pyrrole-2,5-dione;
 1-ethyl-3-phenyl-4-(4-chlorophenylpiperazino)-pyrrole-2,5-dione;
 1-allyl-3-phenyl-4-(4-methylpiperazino)-pyrrole-2,5-dione:
 3-phenylamino-4-phenyl-1H-pyrrole-2,5-dione;
3-phenyl-4-piperidin-1-yl-pyrrole-2,5-dione;
3-(3.5-dimethyl-1-phenyl-1H-pyrazol-4-yl)-4-morpholin-4-yl-pyrrole-2,5-dione;
3-indol-1-yl-4-(1-methyl-1H-indol-3-yl)-pyrrole-2,5-dione;
1-(1-methyl-2,5-dioxo-4-phenylamino-2,5-dihydro-1H-pyrrol-3-yl)-pyridinium chloride;
1-1-(4-methyl-pentyl)-2,5-dioxo-4-phenylamino-2,5-dihydro-1H-pyrrol-3-yl)-pyridinium
chloride;
1-(1-dodecyl-2,5-dioxo-4-phenylamino-2,5-dihydro-1H-pyrrol-3-yl)-pyridinium chloride;
3-[2,5-dihydro-4-(1H-imidazol-1-yl)-1-methyl-2,5-dioxo-1H-pyrrol-3-yl]-1H-indole-1-
carboxylic acid. 1,1-dimethylethyl ester;
3-[2-benzo[b]thien-2-yl-3-[4-(dimethylamino)-2,5-dihydro-2,5-dioxo-1H-pyrrol-3-yl]-
1H-indol-1-yl]-carbamimidothioic acid, propyl ester;
3-(dimethylamino)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
3-(1H-indol-3-yl)-1-methyl-4-(phenylamino)-1H-pyrrole-2,5-dione;
3-(1H-indol-3-yl)-1-methyl-4-[[4-(trifluoromethyl)phenyl]amino]-1H-pyrrole-2,5-dione;
3-(1H-indol-3-yl)-1-methyl-4-(methylamino)-1H-pyrrole-2,5-dione;
3-(1H-imidazo[4,5-b]pyridin-l-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2.5-dione;
3-(6-chloro-9H-purin-9-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
3-(6-amino-9H-purin-9-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2.5-dione;
3-(1H-indol-3-yl)-1-methyl-4-(1H-pyrrolo[2,3-b]pyridin-1-yl)-1H-pyrrole-2.5-dione;
3-(1H-indol-3-yl)-1-methyl-4-(1-piperidinyl)-1H-pyrrole-2,5-dione;
1-acetyl-3-[2.5-dihydro-1-methyl-2.5-dioxo-4-[[4-(trifluoromethyl)phenyl]amino]-1H-
pyrrol-3-yl]-1H-indole:
3-(1H-benzimidazol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
3-(1H-benzotriazol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
3-(1H-imidazol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
3-(1H-indol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
3-(1H-indazol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
```

5

10

15

20

25

30

- 35
 - 3-[3-[(dimethylamino)methyl]-1H-indol-1-yl]-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
 - 3-(1H-benzimidazol-1-yl)-4-(1H-indol-3-yl)-1H-pyrrole-2.5-dione;
 - 3-(1H-indol-1-yl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione;
- 3-(3.5-dimethyl-1-phenyl-1H-pyrazol-4-yl)-4-(4-morpholinyl)-1H-pyrrole-2,5-dione; 40 3-amino-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione; 3-amino-4-(5-methoxy-1H-indol-3-yl)-1H-pyrrole-2,5-dione;

```
1H-Indole-1-carboxylic acid, 3-(4-amino-2.5-dihydro-1-methyl-2,5-dioxo-1H-pyrrol-3-
      vl)-, 1,1-dimethylethyl ester;
      3-(1H-indol-3-yl)-1-methyl-4-[(phenylmethyl)amino]-1H-pyrrole-2,5-dione;
      Glycine, N-[2,5-dihydro-4-(1H-indol-3-yl)-1-methyl-2,5-dioxo-1H-pyrrol-3-yl]-, ethyl
 5
      ester:
      3-amino-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
      1-(4-methylphenyl)-3-[(4-methylphenyl)amino]-4-phenyl-1H-pyrrole-2,5-dione;
      3-[[3-[(3-aminopropyl)amino]propyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2.5-dione;
      3-[[3-[4-(3-aminopropyl)-1-piperazinyl]propyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-
10
      dione;
      3-(1H-indol-3-yl)-4-[[3-(4-methyl-1-piperazinyl)propyl]amino]-1H-pyrrole-2,5-dione;
      1-[3-[(3-aminopropyl)amino]propyl]-3-[[3-[(3-aminopropyl)amino]propyl]amino]-4-(1H-
      indol-3-yl)-1H-pyrrole-2,5-dione;
      1-[3-[4-(3-aminopropyl)-1-piperazinyl]propyl]-3-[[3-[4-(3-aminopropyl)-1-
      piperazinyl]propyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
15
      3-(1H-indol-3-yl)-1-[3-(4-methyl-1-piperazinyl)propyl]-4-[[3-(4-methyl-1-
      piperazinyl)propyl]amino]- 1H-pyrrole-2,5-dione;
      3,3'-[iminobis(3,1-propanediylimino)]bis[4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
      3,3'-[1,4-piperazinediylbis(3,1-propanediylimino)]bis[4-(1H-indol-3-yl)-1H-pyrrole-2,5-
20
      dione;
      3-amino-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2,5-dione;
      3-[(5-aminopentyl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
      3-[[5-[(2-aminoethyl)amino]pentyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
      3-[(2-aminoethyl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
      3-[(6-aminohexyl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2.5-dione;
25
      3-[(7-aminoheptyl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
      3-[[2-[(2-aminoethyl)amino]ethyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
      Benzenepropanamide, .alpha.-amino-N-[5-[[2,5-dihydro-4-(1H-indol-3-yl)-2,5-
                                                                                     dioxo-
      1H-pyrrol-3-yl]amino]pentyl]-, (S)-;
      Pentanoic acid, 4-amino-5-[[5-[[2,5-dihydro-4-(1H-indol-3-yl)-2,5-dioxo-1H-pyrrol-3-
30
      vllamino|pentyl|amino|-5-oxo-, (S)-;
      Pentanamide. 2-amino-5-[(aminoiminomethyl)amino]-N-[2-[[5-[[2,5-dihydro-4-(1H-
      indol-3-vl)-2,5-dioxo-1H-pyrrol-3-yl]amino]pentyl]amino]ethyl]-, (S)-;
      Benzenepropanamide, .alpha.-amino-N-[2-[[5-[[2,5-dihydro-4-(1H-indol-3-yl)-2,5-dioxo-
35
      1H-pyrrol-3-yl]amino]pentyl]amino]ethyl]-, (S)-;
      Butanamide, 4-[(aminoiminomethyl)amino]-N-[5-[[2,5-dihydro-4-(1H-indol-3-yl)-2,5-
      dioxo-1H-pyrrol-3-yl]amino]pentyl]-, (S)-;
      3-(4-methylphenyl)-1-phenyl-4-(phenylamino)-1H-pyrrole-2,5-dione;
      1,3-bis(4-methylphenyl)-4-[(4-methylphenyl)amino]-1H-pyrrole-2,5-dione;p
      3-amino-1,4-diphenyl-1H-pyrrole-2,5-dione;
40
      3-(4-methylphenyl)-4-(4-morpholinyl)-1-phenyl-1H-pyrrole-2.5-dione;
      3-(4-methylphenyl)-1-phenyl-4-f(phenylmethyl)amino]-1H-pyrrole-2,5-dione;
      3-amino-4-(4-methylphenyl)-1-phenyl-1H-pyrrole-2,5-dione;
```

3-(3.5-dimethyl-1-phenyl-1H-pyrazol-4-yl)-4-(4-morpholinyl)-1H-pyrrole-2.5-dione;

3-(4-nitrophenyl)-1-phenyl-4-phenylamino-1H-pyrrole-2,5-dione;

3-amino-1-methyl-4-p-tolyl-1H-pyrrole-2,5-dione;

3-(2-diethylamino-ethylamino)-4-phenyl-pyrrole-2,5-dione;

3-[butyl-(2-diethylamino-ethyl)-amino]-4-phenyl-pyrrole-2,5-dione;

3-[benzyl-(2-dimethylamino-ethyl)-amino]-4-phenyl-pyrrole-2,5-dione;

3-[benzyl-(2-dimethylamino-ethyl)-amino]-1-methyl-4-phenyl-pyrrole-2,5-dione;

3-[benzyl-(2-dimethylamino-ethyl)-amino]-4-(4-chloro-phenyl)-pyrrole-2,5-dione;

3-[benzyl-(2-diethylamino-ethyl)-amino]-4-phenyl-pyrrole-2,5-dione;

3-[benzyl-(2-dimethylamino-ethyl)-amino]-4-(3-methoxy-phenyl)-pyrrole-2,5-dione;

3-(4-chloro-phenyl)-4-[2-(4-methyl-piperazin-1-yl)-ethylamino]-pyrrole-2,5-dione;

3-[2-(4-methyl-piperazin-1-yl)-ethylamino]-4-phenyl-pyrrole-2,5-dione;

3-phenyl-4-(diethylamino)-pyrrole-2,5-dione;

3-phenyl-4-(benzylamino)-pyrrole-2,5-dione;

15 1-methyl-3-phenyl-4-(2-diethylaminoethylamino)-pyrrole-2,5-dione;

1-allyl-3-phenyl-4-(2-dimethylaminoethylamino)-pyrrole-2,5-dione; and;

1.3-diphenyl-4-piperidino-pyrrole-2,5-dione.

It is considered that the compounds of formula (IB) are novel. Accordingly, the present invention also provides a compound of the above defined formula (IB) or a derivative thereof.

There is a subgroup of compounds falling wholly within formula (I) of formula (IC):

$$R^{10}$$
 R^{10}
 R^{10}
 R^{10}
 R^{11}
(IC)

25

30

35

20

5

wherein:

R and R¹ are as defined in relation to formula (I);

R¹⁰ represents hydrogen or one or more substituents, suitably up to three, selected from the list consisting of: alkoxycarbonyl, alkoxyalkyl, perfluoroalkyl, perfluoroalkylS-, perfluoroalkylO-, phenyl(di-C₁₋₆alkoxy)C-, benzoyl, C₁₋₆alkylSO₂-, -[(CH=CH)₂]-, phenyl, nitro, -OCH₂O-, benzyloxy, phenoxy, halo, hydroxy, alkyl, alkoxy, amino, mono- or di-alkyl amino or thioalkyl;

 R^{11} represents hydrogen or one or more substituents, suitably up to three, selected from the list consisting of: substituted or unsubstituted C_{1-6} alkyl, phenyl, benzyl, substituted or unsubstituted C_{1-6} alkylS-, halo, hydroxy, substituted or unsubstituted C_{1-6} alkoxy, substituted or unsubstituted phenoxy, indolyl, naphthyl, carboxy, C_{1-6}

6alkoxycarbonyl, benzyloxy, phenoxy, pentafluorophenoxy, nitro. substituted or unsubstituted carbamoyl, substituted or unsubstituted C₁₋₆alkylcarbonyl, benzoyl, cyano, perfluoroC₁₋₆alkylSO₂-, C₁₋₆alkylNHSO₂-, oxazolyl, substituted or unsubstituted phenylS-, C₁₋₆alkylpiperazinyl-, C₁₋₆alkylcarbonylpiperazinyl-, 1,2,3-thiadiazolyl, pyrimidin-2-yloxy, N-[pyrimidin-2-yl]-N-methylamino, phenylamino, C₁₋₆alkylsulphonylamino, N-morpholinylcarbonyl, cyclohexyl, adamantyl, trityl, substituted

6alkylsulphonylamino, N-morpholinylcarbonyl, cyclohexyl, adamantyl, trityl, substituted or unsubstituted C₁₋₆alkenyl, perfluoroC₁₋₆alkyl, perfluoroC₁₋₆alkoxy, perfluoroC₁₋₆alkylS-, aminosulphonyl, morpholino, (diC₁₋₆alkyl)amino, C₁₋₆alkylCONH-, (diC₁₋₆alkoxy)phenyl(CH₂)_nNHC(O)CH(phenyl)S- where n is 1 to 6, and C₁₋₆alkylCON(C₁₋₆

6alkyl)-, thiazolidinedionylC₁₋₆alkyl, phenylCH(OH)-, substituted or unsubstituted piperazinylC₁₋₆alkoxy, substituted or unsubstituted benzoylamino; or -(CH₂)_x-, -SCH=N-, -SC(C₁₋₆alkyl)=N-, -OCF₂O-, -[CH=CHC(O)O]-, -[N=CH-CH=CH]-, -CH=N-NH-, -CH=CH-NH-, -OC(NHC₁₋₆alkyl)=N-, -OC(O)NH-, -C(O)NMeC(O)-, -C(O)NHC(O)-, -(CH₂)_xC(O)-, -N=N-NH-, -N=C(C₁₋₆alkyl)O-, -O(CH₂)_xO-, -(CH₂)_xSO₂(CH₂)_y-,

and $-N(C_{1-6}alkylcarbonyl)(CH_2)_{X}$, where x and y are independently 1 to 4.

There is a subgroup of compounds within formula (IC) of formula (IC') wherein R, R^{1} , R^{10} and R^{11} are as defined in relation to formula (IC) with the proviso that

20 formula (IC') does not include:

5

30

40

3-phenylamino-4-phenyl-1H-pyrrole-2,5-dione;

1-(4-methylphenyl)-3-[(4-methylphenyl)amino]-4-phenyl-1H-pyrrole-2,5-dione;

3-(4-methylphenyl)-1-phenyl-4-(phenylamino)-1H-pyrrole-2,5-dione;

1,3-bis(4-methylphenyl)-4-[(4-methylphenyl)amino]-1H-yrrole-2,5-dione, or;

25 3-(4-nitrophenyl)-1-phenyl-4-phenylamino-1H-pyrrole-2,5-dione.

Suitably, R is hydrogen.

Suitably, R¹ is hydrogen.

Suitably, R¹⁰ represents hydrogen or one or more substituents selected from the list consisting of: halo, hydroxy, alkyl, alkylthio, alkoxy, amino or methylenedioxy, especially one or more halo and alkyl groups.

Favourably, R¹⁰ represents hydrogen or the substituents selected from the list consisting of: 2-Br, 2-Cl, 2-F, 2-OMe, 3-Cl, 3-F, 3-Me, 3-NH₂, 3-OMe, 4-Br, 4-Cl, 4-I, 4-Me, 4-OH, 4-OMe, 4-SMe, 2,3-di-F, 2,5-di-F, 2,6-di-F, 3,4-di-F,

35 3,5-di-F, 2,3,5-tri-F, 2,4-di-Cl, 2,4-di-OMe, 3,4-(OCH₂O) and 3,5-di-Me.

More favourably, R¹⁰ represents the substituents selected from the list consisting of: 2-Br, 2-Cl, 2-F, 2-OMe, 3-Cl, 3-F, 3-Me, 4-Br, 4-Cl, 4-I, 2,3-di-F, 2,5-di-F, 2,6-di-F, 3,4-di-F, 2,3-di-F, 2,3-di-F, 2,4-di-Cl and 3,5-di-Me.

Preferably, R¹⁰ represents the substituents selected from the list consisting of: 2-F, 2-OMe, 3-F, 4-Cl and 2,3-di-F.

Suitably, R¹¹ represents hydrogen or one or more substituents selected from the list consisting of: 2-F, 2-Me, 3-Br, 3-Cl, 3-F, 3-I, 3-OH, 3-OMe, 3-OPh, 3-SMe, 3-

CO₂H. 3-CH₂CO₂H. 3-CH₂CO₂Me. 3-CH₂CONH₂, 3-CH₂CONHMe. 3-CH₂OH. 4-Cl. 4-F. 4-Me. 4-NHCOMe. 4-NHPh. 4-NHSO₂Me. 4-NMe₂. 4-OMe. 4-COPh. 4-SMe, 4-CH₂CN. 4-SO₂NH₂. 4-(CH₂)₂OH. 4-CH(OH)Ph. 4-CH₂SO₂NHMe. 4-CH₂CO₂H. 4-(CH₂)₂CO₂H. 4-(CH₂)₂CO₂Me.

- 4-(CH₂)₂CONH₂, 4-(CH₂)₃CO₂H, 4-(CH₂)₃CONH₂, 4-CH=CHCO₂H,
 4-CH=CHCONH₂, 4-OCH₂CO₂H, 4-SCH₂CO₂H, 4-S-[2-CO₂H-Ph],
 4-S-[3-CO₂H-Ph], 4-CH₂(1,3-thiazolidin-2,4-dion-5-yl), 2,3-di-F, 2,4-di-F, 3,4-di-F, 3,5-di-F. 3-Cl-4-Br, 3-Cl-4-Me, 3-Br-4-Me, 3-Cl-4-OH, 3-Cl-4-OMe, 3,5-di-Me,
 3.5-di-OMe, 3,4-OC(O)NH-, 3,4-OCF₂O-, 3,5-di-Br-4-OH, 3,5-di-Cl-4-Me,
- 3.5-di-Cl-4-OH, 3-CO₂H-4-[S-(2-CO₂H)-Ph], 3-CO₂H-4-[S-(2-CONHMe)-Ph], 3-CO₂H-4-Cl, 3-F-4-Me, 3-F-4-OMe, -3,4-[(CH=N-NH)]-, -3,4-[(N=N-NH)]-, -3,4-[(NH-N=CH)]-, -3,4-[(CH₂)₃]-, -3,4-[(O(CH₂)₃O)]-, -3,4-[O-C(NHMe)=N]-, -3,4-[OCH₂O]-, -3,4-[S-C(NHMe)=N]- and -3,4-[S-CH=N]-.

Favourably, R¹¹ represents hydrogen or the substituents selected from the list consisting of: 2-F, 2-Me, 3-Cl, 3-F, 3-I, 3-OMe, 3-OPh, 3-SMe, 3-CH₂CO₂H, 3-CH₂CO₂Me, 3-CH₂CONH₂, 3-CH₂CONHMe, 3-CH₂OH, 4-Cl, 4-F, 4-Me, 4-NHCOMe, 4-NHPh, 4-NHSO₂Me, 4-NMe₂, 4-OMe, 4-COPh, 4-SMe, 4-CH₂CN, 4-SO₂NH₂, 4-(CH₂)₂OH, 4-CH(OH)Ph, 4- CH₂SO₂NHMe, 4-CH₂CO₂H, 4-(CH₂)₂CO₂H, 4-(CH₂)₂CO₂Me, 4-(CH₂)₂CONH₂, 4-(CH₂)₃CO₂H,

- 4-(CH₂)₃CONH₂, 4-CH=CHCONH₂, 4-OCH₂CO₂H, 4-SCH₂CO₂H, 4-S-[2-CO₂H-Ph], 4-S-[3-CO₂H-Ph], 4-CH₂(1,3-thiazolidin-2,4-dion-5-yl), 2.3-di-F, 2,4-di-F, 3,4-di-F, 3,5-di-F, 3-Cl-4-Br, 3-Cl-4-Me, 3-Br-4-Me, 3-Cl-4-OH, 3-Cl-4-OMe, 3,5-di-Me, 3,5-di-OMe, 3,4-[OC(O)NH], 3,4-[OCF₂O] 3.5-di-Cl-4-Me, 3-CO₂H-4-[S-(2-CONHMe)-Ph], 3-F-4-Me, 3-F-4-OMe,
- 25 3,4-[(CH=N-NH)], 3,4-[(N=N-NH)], 3,4-[(NH-N=CH)], 3,4-[(CH₂)₃], 3,4-[O(CH₂)₃O], 3,4-[O-C(NHMe)=N], 3,4-[OCH₂O], 3,4-[S-C(NHMe)=N] and 3,4-[S-CH=N].

More favourably, R^{11} represents the substituents selected from the list consisting of: 3-Cl , 3-Br, 4-OMe, 3.5-di-F, 4-CH₂SO₂NHMe, 4-(CH₂)₃CO₂H and 4-S-[3-CO₂H-Ph].

A particular compound of formula (IC) is that wherein R and R¹ each represent hydrogen and R¹⁰ and R¹¹ each have the following respective values:

	$\frac{R^{10}}{}$	<u>R11</u>
	4-C1	3-C1
	4-C1	3-Br
35	2-OMe	4-OMe
	4-Cl	4-CH ₂ SO ₂ NHMe
	2-OMe	3,5-di-F
	2-F	3,5-di-F
	3-F	4-(CH ₂) ₃ CO ₂ H
40	2,3-di-F-Ph	3,5-di-F.

It is considered that the compounds of formula (IC') are novel. Accordingly , the present invention also provides a compound of the above defined formula (IC') or a derivative thereof.

There is a subgroup of compounds falling wholly within formula (I) being of formula (ID):

wherein R and R¹ are as defined in relation to formula (I);

R²' is phenyl, substituted phenyl or indolyl;

 $R^{3'}$ is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, C_{1-6} alkylphenyl wherein the phenyl group is optionally substituted, alkoxyalkyl, substituted or unsubstituted heterocyclyl.

In one aspect, there is provided a compound of formula (I) as hereinbefore defined which excludes compounds of formula (ID).

There is a subgroup of compounds within formula (ID) of formula (ID') wherein R, R¹, R^{2'} and R^{3'} are as defined in relation to formula (ID) with the proviso that formula (ID') does not include the following compounds, hereinafter referred to as List D':

3-[2-benzo[b]thien-2-yl-3-[4-(dimethylamino)-2,5-dihydro-2,5-dioxo-1H-pyrrol-3-yl]-

20 1H-indol-1-yl]-carbamimidothioic acid,propyl ester;

3-(dimethylamino)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;

3-(1H-indol-3-yl)-1-methyl-4-(phenylamino)-1H-pyrrole-2,5-dione;

3-(1H-indol-3-yl)-1-methyl-4-[[4-(trifluoromethyl)phenyl]amino]-1H-pyrrole-2.5-dione;

3-(1H-indol-3-yl)-1-methyl-4-(methylamino)-1H-pyrrole-2,5-dione;

25 3-(6-chloro-9H-purin-9-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2.5-dione;

3-(6-amino-9H-purin-9-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2.5-dione;

1-acetyl-3-[2,5-dihydro-1-methyl-2,5-dioxo-4-[[4-(trifluoromethyl)phenyl]amino]-1H-pyrrol-3-yl]-1H-indole;

3-amino-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;

30 3-amino-4-(5-methoxy-1H-indol-3-yl)- 1H-pyrrole-2.5-dione;

1H-Indole-1-carboxylic acid, 3-(4-amino-2,5-dihydro-1-methyl-2,5-dioxo-1H-pyrrol-3-yl)-, 1,1-dimethylethyl ester;

3-(1H-indol-3-yl)-1-methyl-4-[(phenylmethyl)amino]-1H-pyrrole-2,5-dione;

Glycine, N-[2,5-dihydro-4-(1H-indol-3-yl)-1-methyl-2,5-dioxo-1H-pyrrol-3-yl]-, ethyl

35 ester;

10

15

3-amino-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;

3-[[3-[(3-aminopropyl)amino]propyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;

```
3-[[3-[4-(3-aminopropyl)-1-piperazinyl]propyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
```

- 3-(1H-indol-3-yl)-4-[[3-(4-methyl-1-piperazinyl)propyl]amino]-1H-pyrrole-2,5-dione;
- 1-[3-[(3-aminopropyl)amino]propyl]-3-[[3-[(3-aminopropyl)amino]propyl]amino]-4-(1H-
- 5 indol-3-yl)-1H-pyrrole-2,5-dione;

dione;

- 1-[3-[4-(3-aminopropyl)-1-piperazinyl]propyl]-3-[[3-[4-(3-aminopropyl)-1-
- piperazinyl]propyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
- 3-(1H-indol-3-yl)-1-[3-(4-methyl-1-piperazinyl)propyl]-4-[[3-(4-methyl-1-piperazinyl)propyl]amino]-1H-pyrrole-2,5-dione;
- 3,3'-[iminobis(3,1-propanediylimino)]bis[4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione; 3,3'-[1,4-piperazinediylbis(3,1-propanediylimino)]bis[4-(1H-indol-3-yl)-1H-pyrrole-2,5-
 - 3-amino-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2,5-dione;
 - 3-[(5-aminopentyl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione:
- 3-[[5-[(2-aminoethyl)amino]pentyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
 - 3-[(2-aminoethyl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2.5-dione:
 - 3-[(6-aminohexyl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2.5-dione;
 - 3-[(7-aminoheptyl)amino]-4-(1H-indol-3-yl)-1H-pyrrole-2.5-dione;
 - 3-[[2-[(2-aminoethyl)amino]ethyl]amino]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
- Benzenepropanamide, .alpha.-amino-N-[5-[[2,5-dihydro-4-(1H-indol-3-yl)-2,5-dioxo-1H-pyrrol-3-yl]amino]pentyl]-, (S)-;
 - Pentanoic acid, 4-amino-5-[[5-[[2,5-dihydro-4-(1H-indol-3-yl)-2,5-dioxo-1H-pyrrol-3-yl]amino]pentyl]amino]-5-oxo-, (S)-;
 - Pentanamide, 2-amino-5-[(aminoiminomethyl)amino]-N-[2-[[5-[[2,5-dihydro-4-(1H-
- 25 indol-3-yl)-2,5-dioxo-1H-pyrrol-3-yl]amino]pentyl]amino]ethyl]-, (S)-;
 - Benzenepropanamide, .alpha.-amino-N-[2-[[5-[[2,5-dihydro-4-(1H-indol-3-yl)-2,5-dioxo-1H-pyrrol-3-yl]amino]pentyl]amino]ethyl]-, (S)-;
 - Butanamide, 4-[(aminoiminomethyl)amino]-N-[5-[[2,5-dihydro-4-(1H-indol-3-yl)-2,5-dioxo-1H-pyrrol-3-yl]amino]pentyl]-, (S)-;
- 30 3-amino-1.4-diphenyl-1H-pyrrole-2,5-dione;
 - 3-(4-methylphenyl)-1-phenyl-4-[(phenylmethyl)aminol-1H-pyrrole-2.5-dione:
 - 3-amino-4-(4-methylphenyl)-1-phenyl-1H-pyrrole-2,5-dione;
 - 3-amino-1-methyl-4-p-tolyl-1H-pyrrole-2.5-dione;
 - 3-(2-diethylamino-ethylamino)-4-phenyl-pyrrole-2,5-dione;
- 35 3-[butyl-(2-diethylamino-ethyl)-amino]-4-phenyl-pyrrole-2,5-dione;
 - 3-[benzyl-(2-dimethylamino-ethyl)-amino]-4-phenyl-pyrrole-2,5-dione;
 - 3-[benzyl-(2-dimethylamino-ethyl)-amino]-1-methyl-4-phenyl-pyrrole-2,5-dione;
 - 3-[benzyl-(2-dimethylamino-ethyl)-amino]-4-(4-chloro-phenyl)-pyrrole-2.5-dione:
 - 3-[benzyl-(2-diethylamino-ethyl)-amino]-4-phenyl-pyrrole-2,5-dione;
- 40 3-[benzyl-(2-dimethylamino-ethyl)-amino]-4-(3-methoxy-phenyl)-pyrrole-2,5-dione;
 - 3-(4-chloro-phenyl)-4-[2-(4-methyl-piperazin-1-yl)-ethylamino]-pyrrole-2,5-dione;
 - 3-[2-(4-methyl-piperazin-1-yl)-ethylamino]-4-phenyl-pyrrole-2,5-dione;
 - 3-phenyl-4-(diethylamino)-pyrrole-2,5-dione;

3-pheny1-4-(benzylamino)-pyrrole-2,5-dione;

5

10

15

20

25

30

35

1-methyl-3-phenyl-4-(2-diethylaminoethylamino)-pyrrole-2,5-dione, and;

1-allyl-3-phenyl-4-(2-dimethylaminoethylamino)-pyrrole-2,5-dione.

Suitably R² is indolyl, phenyl or phenyl substituted with one or more, suitably up to three, substituents selected from the list consisting of: halo, haloalkyl, alkoxy, nitro, alkyl and alkoxy.

Examples of R² include phenyl, indol-3-yl, 2-methoxyphenyl, 3-fluorophenyl, 3-nitrophenyl, 4-chlorophenyl, 4-iodophenyl, 4-(trifluoromethyl)phenyl and 2,3-difluorophenyl.

Suitably R^3 ' represents hydrogen, C_{1-6} alkyl, cyclohexyl, phenyl, fluorenyl, C_{1-2} alkylphenyl, C_{1-6} alkoxy C_{1-2} alkyl or a substituted or unsubstituted single or a single or fused ring heterocyclyl group having 5 or 6 ring atoms and up to 3 hetero atoms in each ring, such as oxazolyl, benzofuranyl, dibenzofuranyl, pyridinyl, quinolinyl, pyrimidinyl.

Examples of R³ include hydrogen, ethyl, cyclohexyl, phenyl, fluoren-2-yl, benzyl, phenyl(CH₂)₂-, MeO(CH₂)₂-, 4-methyloxazol-2-yl, 2-acetylbenzofuran-5-yl, dibenzofuran-2-yl, dibenzofuran-3-yl, 2-methylpyridin-3-yl 2,6-dimethylpyridin-3-yl, 2-chloropyridin-5-yl, quinolin-3-yl, pyrimidin-2-yl.

It is considered that the compounds of formula (ID') are novel. Accordingly, the present invention also provides a compound of the above defined formula (ID') or a derivative thereof.

There is a subgroup of compounds falling wholly within formula (I) being of formula (IE):

R O N O (IE)

wherein R is as defined in relation to formula (I);

R10' represents hydrogen or one or more, suitably up to three, substituents selected from the list consisting of: alkoxy, halo, and nitro;

P'-Q' represents $-(CH_2)_aO(CH_2)_b$ -, $-(CH_2)_aS(CH_2)_b$ -, $-(CH_2)_c$ -, - $(CH_2)_dCH(G)(CH_2)_e$ -, $-(CH_2)_aN(ZZ)(CH_2)_b$ -, where a. b, d, and e are independently 1 to 4, c is 1 to 6, ZZ is hydrogen, alkyl, aryl, or alkylcarbonyl, and G is alkyl, amido, hydroxyalkyl, aralkyl, or hydroxy.

There is a subgroup of compounds within formula (IE) of formula (IE') wherein R, R 10', and P'-Q' are as defined in relation to formula (IE) with the proviso that formula (IE') does not include:

3-phenyl-4-piperidin-1-yl-pyrrole-2,5-dione;

3-(4-methylpiperazin-l-yl)-4-phenyl-pyrrole-2,5-dione;

3-(4-ethylpiperazin-l-yl)-4-phenyl-pyrrole-2,5-dione;

3-(4-chlorophenyl)-4-(4-methyl-piperazin-l-yl)-pyrrole-2,5-dione;

3-(4-methylphenyl)-4-(4-morpholinyl)-1-phenyl-1H-pyrrole-2,5-dione

3-phenyl-4-(4-methylpiperazino)-pyrrole-2,5-dione;

3-phenyl-4-(4-phenylpiperazino)-pyrrole-2,5-dione;

1-methyl-3-phenyl-4-(4-phenylpiperazino)-pyrrole-2,5-dione:

1-ethyl-3-phenyl-4-(4-chlorophenylpiperazino)-pyrrole-2,5-dione;

10 1-allyl-3-phenyl-4-(4-methylpiperazino)-pyrrole-2,5-dione, and;

1.3-diphenyl-4-piperidino-pyrrole-2,5-dione.

Suitably, R¹⁰ is methoxy, chloro, or nitro.

Examples of R¹⁰ include 4-methoxy, 4-chloro, 2,4-dichloro, and 3-nitro.

Examples of -P'-Q'- include -(CH₂)₄-, -(CH₂)₂O(CH₂)₂-, -(CH₂)₃CH(Me)CH₂-, -(CH₂)₃CH(CONH₂)CH₂-, -(CH₂)₃CH(CH₂OH)CH₂-, -(CH₂)₂CH(CH₂Ph)(CH₂)₂-, -

(CH₂)₂CH(OH)(CH₂)₂-, -(CH₂)₅-, and -(CH₂)S(CH₂)₂-

It is considered that the compounds of formula (IE') are novel. Accordingly, the present invention also provides a compound of the above defined formula (IE') or a derivative thereof.

There is a subgroup of compounds falling wholly within formula (I) being of formula (IF):

$$R^{10^{\circ}} \longrightarrow R^{12a^{\circ}}$$

$$R^{12b^{\circ}} \longrightarrow R^{12b^{\circ}}$$

25

30

35

5

15

20

wherein R is as defined in relation to formula (I);

R10" is one or more, suitably up to three, substituents selected from the list consisting of perfluoroalkyl, halo, nitro, alkoxy, arylcarbonyl, alkyl;

Z is a bond or an alkylene chain;

-X-Y- is -CH=N, -(CH₂)_t-, -(CH₂)_uCH(U)-, -(U)CH(CH₂)_u-, -CH=CH-, - (CH₂)_vC(alkyl)₂-, -C(O)C(alkyl)₂-, -C(O)O-, where t, u, and v are independently 1 to 4, and U is alkyl, carboxy, alkoxycarbonyl, hydroxyalkyl, and amido;

R12a', R12b', and R12c' are each independently hydrogen, nitro, alkoxy, 4-ethylpiperazin-1-yl, 4-BOC-piperazin-1-yl, 4-methyl-piperazin-1-yl, 4-methyl-piperazin-1-yl, halo, alkyl, piperazin-1-yl, perfluoroalkyl, and alkylsulphonylamino.

Suitably, Z is a bond or a C_{1-2} alkylene chain.

Examples of Z include a bond, methylene or ethylene.

Examples of -X-Y- are -CH=N-, -(CH₂)₂-, -CH(Me)CH₂-, -CH=CH-,

-CH(CO₂H)CH₂-, -CH(CO₂Me)CH₂-, -(CH₂)₃-, -CH(CH₂OH)CH₂-,

-CH₂CH(CH₂OH)-, -CH₂CH(Me)-, -CH₂C(Me)₂-, -CH(CONH₂)CH₂-, -C(O)C(Me)₂-, and -C(O)O-

Examples of R^{12a'}, R^{12b'}, and R^{12c'} include hydrogen, nitro, fluoro, methoxy, 4-ethylpiperazin-1-yl, 4-BOC-piperazin-1-yl, 4-methyl-piperazin-1-yl, 4-methyl-piperazin-1-yl, chloro, bromo, trifluoromethyl, and methanesulphonylamino.

Preferably, Z is a bond.

Preferably, -X-Y- is -(CH₂)₂- or -CH(CH₂OH)CH₂-, -CH(Me)CH₂-, -

 $CH_2CH(Me)$ -, or $-CH_2C(Me)_2$ -.

Preferably, R^{12b}' is fluorine.

Preferably, R^{12a'} is fluorine.

Most preferably, R¹⁰" is 2-Br, 2-Cl, 2-F, 2-OMe, 3-Cl, 3-F, 3-Me, 4-Br, 4-Cl, 4-I, 2.3-di-F, 2.5-di-F, 2,6-di-F, 3,4-di-F, 3,5-di-F, 2,3-5-tri-F, 2,4-di-Cl, 3,5-di-Me;

Z is a bond:

-X-Y- is –(CH₂)₂- or –CH(CH₂OH)CH₂-, -CH(Me)CH₂-, -CH₂CH(Me)-, or – CH₂C(Me)₂-,

R^{12b'} is fluorine; and

R^{12a'} is fluorine.

It is considered that the compounds of formula (IF) are novel. Accordingly, the present invention also provides a compound of the above defined formula (IF) or a derivative thereof.

There is a subgroup of compounds falling wholly within formula (I) being of formula (IG):

$$R^{13}$$
 R^{13}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}
 R^{1}

30

35

5

10

15

20

25

wherein R and R¹ are as defined in relation to formula (I);

A is N(alkyl), oxygen, or sulphur.

Examples of A are N(methyl), oxygen, and sulphur.

Preferably, A is sulphur.

R¹¹" is one or more, suitably up to three, substituents selected from the group consisting of hydrogen, halo, alkyl, alkylthio, -S-CH=N-, phenoxy, -(CH₂)_w-, hydroxy,

carboxy, $-O(CH_2)_XO$ -, hydroxyalkyl, and alkylaminosulphonylalkyl, where w and x are independently 1 to 4.

Examples of R¹¹" are hydrogen, bromo, methyl, methylthio, chloro, -S-CH=N-, phenoxy, -(CH₂)₃-, hydroxy, carboxy, -O(CH₂)O-, fluoro, hydroxymethyl, and MeNHSO₂CH₂-.

Preferably, R¹¹" is 3-Br, 4-Me, 4-SMe, 3-Br-4-Me, 3-Cl, 3,4-[S-CH=N]-, 3-OPh, 3.4-[(CH₂)₃]-, 3-SMe, hydrogen, 3,5-diBr-4-OH, 3,5-diCl-4-OH, 3-CO₂H-4-Cl, 3,4-[-OCH₂O]-, 3-Cl-4-OH, 3,5-diF, 3-CH₂OH, 3-OH, or 4-CH₂SO₂NHMe.

R¹³ is one or more, suitably up to two, substituents selected from the group consisting of -(CH=CH)₂- and hydrogen.

Examples of R¹³ include 4,5-[(CH=CH)₂]- and hydrogen. Preferably, R¹³ is hydrogen.

It is considered that the compounds of formula (IG) are novel. Accordingly, the present invention also provides a compound of the above defined formula (IG) or a derivative thereof.

There is a subgroup of compounds falling wholly within formula (I) being of formula (IH):

 R^{14} R^{14} R^{15} R^{15} R^{11} R^{11} R^{11} R^{11} R^{11} R^{11}

wherein R and R¹ are as defined in relation to formula (I):

 R^{11} " is $-[(CH_2)_{aa}]$ -, where aa is 1 to 4;

R¹⁴ is hydrogen;

5

10

15

20

25

30

35

R¹⁵ is alkyl, unsubstituted or substituted phenylamino, unsubstituted or substituted phenylalkylamino, cyclohexylamino, alkenylamino, phenyl, benzyl, styryl, or alkylamino.

Examples of R¹¹" include 3,4-[(CH₂)₃].

Suitably, R¹⁵ is C₁₋₆alkyl, (halophenyl)amino, phenylalkylamino, cyclohexylamino, propenylamino, phenyl, benzyl, styryl, propyl, ethylamino, or (methoxyphenyl)amino.

Examples of R¹⁵ include methyl, (3-fluorophenyl)amino, phenylethylamino, cyclohexylamino, propenylamino, phenyl, benzyl, trans-styryl, n-propyl, ethylamino, and (3-methoxyphenyl)amino.

It is considered that the compounds of formula (IH) are novel. Accordingly, the present invention also provides a compound of the above defined formula (IH) or a derivative thereof.

There is a subgroup of compounds falling wholly within formula (I) being of formula (IJ):

$$R^{10}$$
 R^{10}
 R^{10}
 R^{17}
 R^{17}
 R^{17}

wherein R and R¹ are as defined in relation to formula (I);

R¹⁰" represents one or more, suitably up to three, substituents independently selected from alkoxy or halo;

R¹⁶ represents one or more, suitably up to three, substituents independently selected from hydrogen, carboxy, alkoxycarbonyl, or alkylaminocarbonyl;

R¹⁷ represents one or more, suitably up to three, substituents independently selected from carboxy, alkoxycarbonyl, halo, alkylaminocarbonyl, nitro, or hydrogen;

W is sulphur, oxygen, or substituted or unsubstituted NH.

Suitably, W is sulphur or oxygen. Favourably, W is sulphur.

Suitably, R¹⁰" is C₁₋₆alkoxy, chloro, or fluoro.

Examples of R¹⁰" are methoxy, 4-chloro, 2-chloro, and 2,3-difluoro.

Favourably, R¹⁰" is 2.3-difluoro.

Suitably, R¹⁶ is hydrogen, carboxy, C₁₋₆alkoxycarbonyl, or

C₁₋₆alkylaminocarbonyl.

15

20

25

30

35

Examples of R¹⁶ are carboxy, hydrogen, ethoxycarbonyl, methoxycarbonyl, and methylaminocarbonyl.

Favourably, R¹⁶ is hydrogen.

Suitably, R^{17'} is carboxy, C₁₋₆alkoxycarbonyl, halo, C₁₋₆alkylaminocarbonyl, nitro, or hydrogen;

Examples of R¹⁷ are 2-carboxy, 3-carboxy, 4-carboxy, 4-chloro,

2-methylaminocarbonyl, 4-nitro, hydrogen, and 2-ethoxycarbonyl.

Favourably, R¹⁷ is 3-carboxy.

It is considered that the compounds of formula (IJ) are novel. Accordingly, the present invention also provides a compound of the above defined formula (IJ) or a derivative thereof.

There is a subgroup of compounds falling wholly within formula (I) being of formula (IK):

$$R^{18}$$
 R^{18}
 R^{11}
 R^{11}
 R^{11}
 R^{11}
 R^{11}
 R^{11}

5

10

wherein R and R¹ are as defined in relation to formula (I);

R¹¹"" represents one or more, suitably up to three, substituents independently selected from halo and hydroxy;

R^{18'} represents one or more, suitably up to three, substituents independently selected from hydrogen, alkyl, and -(CH=CH)₂-;

A is sulphur.

Suitably, R¹¹" is chloro or hydroxy.

Examples of R¹¹" are 3-chloro and 3,5-dichloro-4-hydroxy.

Suitably, R^{18'} is hydrogen, C₁₋₆alkyl, or -(CH=CH)₂-.

Examples of R¹⁸ include hydrogen, methyl, and 3-methyl-4,5-[(CH=CH)₂]-.

It is considered that the compounds of formula (IK) are novel. Accordingly, the present invention also provides a compound of the above defined formula (IK) or a derivative thereof.

20

15

There is a subgroup of compounds falling wholly within formula (I) being of formula (IL):

25

30

wherein R is as defined in relation to formula (I);

 R^{2} " is unsubstituted or substituted heterocyclyl or unsubstituted or substituted aryl;

R^{19'} is unsubstituted or substituted heterocyclyl, or a quaternised salt thereof.

There is a subgroup of compounds within formula (IL) of formula (IL') wherein R, R^{2} ", and R^{19} ' are as defined in relation to formula (IL) with the proviso that (IL') does not include the following compounds, hereinafter referred to as List L':

3-indol-1-yl-4-(1-methyl-1H-indol-3-yl)-pyrrole-2.5-dione:

- 1-(1-methyl-2.5-dioxo-4-phenylamino-2,5-dihydro-1H-pyrrol-3-yl)-pyridinium chloride;
- 1-1-(4-methyl-pentyl)-2,5-dioxo-4-phenylamino-2,5-dihydro-1H-pyrrol-3-yl)-pyridinium chloride;
- 1-(1-dodecyl-2,5-dioxo-4-phenylamino-2,5-dihydro-1H-pyrrol-3-yl)-pyridinium chloride; 3-[2,5-dihydro-4-(1H-imidazol-1-yl)-1-methyl-2,5-dioxo-1H-pyrrol-3-yl]-1H-indole-1-carboxylic acid, 1.1-dimethylethyl ester;
 - 3-(1H-imidazo[4,5-b]pyridin-l-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione:
 - 3-(1H-indol-3-yl)-1-methyl-4-(1H-pyrrolo[2,3-b]pyridin-1-yl)-1H-pyrrole-2,5-dione;
- 3-(1H-indol-3-yl)-1-methyl-4-(1-piperidinyl)-1H-pyrrole-2,5-dione;
 - 3-[4-(diphenylmethyl)-1-piperazinyl]-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2.5-dione;
 - 3-(1H-benzimidazol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
 - 3-(1H-benzotriazol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
 - 3-(1H-imidazol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
- 3-(1H-indol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
 - 3-(1H-indazol-1-yl)-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
 - 3-[3-[(dimethylamino)methyl]-1H-indol-1-yl]-4-(1H-indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione;
 - 3-(1H-benzimidazol-1-yl)-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione;
- 20 3-(1H-indol-1-yl)-4-(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione, and;
 - 3-(3,5-dimethyl-1-phenyl-1H-pyrazol-4-yl)-4-(4-morpholinyl)-1H-pyrrole-2,5-dione.

Suitably, $R^{2'''}$ is thienyl, phenyl, or phenyl substituted with one or more halogen groups.

Examples of R²" include phenyl, 3-thienyl, 2-thienyl, 4-chlorophenyl, and 2,4-dichlorophenyl.

Favourably, R²" is phenyl, 3-thienyl, 4-chlorophenyl, or 2,4-dichlorophenyl. Suitably, R¹⁹ is indolinyl, pyridinium halide, azabicyclooctanyl, or

triazaspirodecanonyl.

25

30

Examples of R¹⁹ include indolin-1-yl, 3-amino-1-pyridinium chloride, 2-methylindolin-1-yl, 1,3,3-trimethyl-6-azabicyclo[3.2.1]octan-6-yl, and 1-phenyl-1.3,8-triazaspiro-[4,5]-decan-4-one-8-yl.

Favourably, R^{19'} is indolin-1-yl, or 2-methylindolin-1-yl.

It is considered that the compounds of formula (IL') are novel. Accordingly, the present invention also provides a compound of the above defined formula (IL') or a derivative thereof.

Certain of the compounds of formula (I) may contain at least one chiral carbon, 40 and hence they may exist in one or more stereoisomeric forms. The present invention encompasses all of the isomeric forms of the compounds of formula (I) whether as individual isomers or as mixtures of isomers, including racemates.

Alkyl groups referred to herein, including those forming part of other groups, include straight or branched chain alkyl groups containing up to six carbon atoms, said carbon atoms being optionally substituted with up to five, suitably up to three, groups selected from the list consisting of aryl, heterocyclyl, alkylthio, alkenylthio, alkynylthio, arylthio, heterocyclylthio, alkoxy, arylalkoxy, arylalkylthio, amino, mono- or dialkylamino, cycloalkyl, cycloalkenyl, carboxy and esters thereof, phosphonic acid and esters thereof, mono- or dialkylaminosulphonyl, aminosulphonyl, cyano, alkylcarbonylamino, arylcarbonylamino, hydroxy, and halogen.

5

10

15

20

25

30

35

40

Alkenyl and alkynyl groups referred to herein include straight and branched chain alkenyl groups containing from two to six carbon atoms, said carbon atoms being optionally substituted with up to five, suitably up to three, groups including those substituents described hereinbefore for the alkyl group.

Cycloalkyl and cycloalkenyl groups referred to herein include groups having between three and eight ring carbon atoms, which carbon atoms are optionally substituted with up to five, suitably up to three, groups including those substituents described hereinbefore for the alkyl group.

When used herein the term "aryl" includes phenyl and biphenyl groups, for example naphthyl, especially phenyl.

Suitably optional substituents for any aryl group include up to three substituents selected from the list consisting of halo, alkyl, alkenyl, substituted alkenyl, arylalkyl, alkoxy, alkoxyalkyl, haloalkyl, haloalkyloxy, hydroxy, hydroxyalkyl, nitro, amino, cyano, cyanoalkyl, mono- and di-N-alkylamino, acyl, acylamino, N-alkylacylamino, acyloxy, carboxy, carboxyalkyl, carboxyalkylcarbonyl, carboxyalkenyl, ketoalkylester, carbamoyl, carbamoylalkyl, mono- and di-N-alkylcarbamoyl, alkoxycarbonyl, alkoxycarbonylalkyl, aryloxy, arylthio, aralkyloxy, aryloxycarbonyl, ureido, guanidino, morpholino, adamantyl, oxazolyl, aminosulphonyl, alkylaminosulphonyl, alkylthio, haloalkylthio, alkylsulphinyl, alkylsulphonyl, cycloalkyl, heterocyclyl, heterocyclylalkyl, trityl, substituted trityl, mono- or bis-alkylphosphonate or mono- or bis-alkylphosphonateC1-6alkyl or any two adjacent substituents on the phenyl ring together with the carbon atoms to which they are attached form a carbocyclic ring or a heterocyclic ring.

When used herein the terms "heterocyclyl" and "heterocyclic" suitably include, unless otherwise defined, aromatic and non-aromatic, single and fused, rings suitably containing up to four heteroatoms in each ring, each of which is selected from oxygen, nitrogen and sulphur, which rings, may be unsubstituted or substituted by, for example, up to three substituents. Each ring suitably has from 4 to 7, preferably 5 or 6, ring atoms. A fused heterocyclic ring system may include carbocyclic rings and need include only one heterocyclic ring.

Substituents for any heterocyclyl or heterocyclic group are suitably selected from halogen, alkyl, arylalkyl, alkoxy, alkoxyalkyl, haloalkyl, hydroxy, amino, mono- and di-N-alkyl-amino, acylamino, carboxy salts, carboxy esters, carbamoyl, mono- and di-N-alkylcarbonyl, aryloxycarbonyl, alkoxycarbonylalkyl, aryl, oxy groups, ureido, guanidino, sulphonylamino, aminosulphonyl, alkylthio, alkylsulphinyl, alkylsulphonyl, heterocyclyl and heterocyclylalkyl.

When used herein 'halo' includes iodo, bromo, chloro or fluoro, especially chloro or fluoro.

Suitable derivatives of the compounds of the invention are pharmaceutically acceptable derivatives.

Suitable derivatives of the compounds of the invention include salts and solvates.

Suitable pharmaceutically acceptable derivatives include pharmaceutically acceptable salts and pharmaceutically acceptable solvates.

5

10

15

20

25

30

35

40

Suitable pharmaceutically acceptable salts include metal salts, such as for example aluminium, alkali metal salts such as lithium, sodium or potassium, alkaline earth metal salts such as calcium or magnesium and ammonium or substituted ammonium salts, for example those with lower alkylamines such as triethylamine, hydroxy alkylamines such as 2-hydroxyethylamine, bis-(2-hydroxyethyl)-amine or tri-(2-hydroxyethyl)-amine, cycloalkylamines such as bicyclohexylamine, or with procaine, dibenzylpiperidine, N-benzyl- β -phenethylamine, dehydroabietylamine, N,N'-bisdehydroabietylamine, glucamine, N-methylglucamine or bases of the pyridine type such as pyridine, collidine, quinine or quinoline.

Suitable pharmaceutically acceptable salts also includes pharmaceutically acceptable acid addition salts, such as those provided by pharmaceutically acceptable inorganic acids or organic acids.

Suitable pharmaceutically acceptable acid addition salts provided by pharmaceutically acceptable inorganic acids includes the sulphate, nitrate, phosphate, borate, hydrochloride and hydrobromide and hydroiodide.

Suitable pharmaceutically acceptable acid addition salts provided by pharmaceutically acceptable organic acids includes the acetate, tartrate, maleate, fumarate, malonate, citrate, succinate, lactate, oxalate, benzoate, ascorbate, methanesulphonate, α -keto glutarate and α -glycerophosphate.

Suitable pharmaceutically acceptable solvates include hydrates.

For the avoidance of doubt when used herein the term "diabetes" includes diabetes mellitus, especially Type 2 diabetes, and conditions associated with diabetes mellitus.

The term 'conditions associated with diabetes' includes those conditions associated with the pre-diabetic state, conditions associated with diabetes mellitus itself and complications associated with diabetes mellitus.

The term 'conditions associated with the pre-diabetic state' includes conditions such as insulin resistance, impaired glucose tolerance and hyperinsulinaemia.

The term 'conditions associated with diabetes mellitus itself include hyperglycaemia, insulin resistance and obesity. Further conditions associated with diabetes mellitus itself include hypertension and cardiovascular disease, especially atherosclerosis and conditions associated with insulin resistance. Conditions associated with insulin resistance include polycystic ovarian syndrome and steroid induced insulin resistance.

The term 'complications associated with diabetes mellitus' includes renal disease, especially renal disease associated with Type II diabetes, neuropathy and retinopathy.

glomerular sclerosis, nephrotic syndrome, hypertensive nephrosclerosis and end stage renal disease.

A further aspect of the invention provides a process for the preparation of a compound of the invention, which process comprises reaction of a compound of formula (II):

wherein R and R² are as defined in formula (I) and L is a leaving group, with a compound of formula (III):

wherein R^1 and R^3 are as defined in formula (I); and thereafter, if required, carrying out one or more of the following optional steps:

- (i) converting a compound of formula (I) to a further compound of formula (I);
- (ii) removing any necessary protecting group;

5

10

15

20

25

30

35

(iii) preparing an appropriate derivative of the compound so formed.

Examples of suitable leaving groups, L, are chloro, bromo, triflate, and hydroxy.

The reaction between the compounds of formulae (II) and (III) is carried out in any suitable solvent, for example 1-methyl-2-pyrrolidinone, tetrahydrofuran, 0.880 ammonia, or methanol, under conventional amination conditions at any temperature providing a suitable rate of formation of the required product, generally an elevated temperature, over a suitable reaction time.

Suitable reaction temperatures include those in the range of 60°C to 220°C and, as appropriate, the reflux temperature of the solvent. When the compound of formula (III) is a weak nucleophile, then the reaction may be assisted by, for example, using temperatures at the upper end of this range, generating the anion of the compound of formula (III) in situ using, for example, sodium hydride, or by using a basic catalyst such as triethylamine. Conventional methods of heating also include the use of microwave heating devices, for example a microwave reactor, such as a 100 watt reactor.

The reaction products are isolated using conventional methods. Typically, the reaction mixture is cooled, the residue acidified and the products extracted using solvent extraction, suitably using an organic solvent.

The reaction products are purified by conventional methods, such as chromatography and trituration.

Crystalline product may be obtained by standard methods.

Crystalline product may be obtained by standard methods.

In a preferred aspect, a solution of the compound of formula (II) and a compound of formula (III) in methanol is heated to reflux from between 1 to 4 days, then cooled and concentrated. The residue is then acidified with hydrochloric acid, and extracted with ethyl acetate. The organic extracts are then washed with water, brine, dried with anhydrous magnesium sulphate, and the solvent is removed. The product is then purified by standard methods such as trituration or chromatography, on silica gel, to afford the desired compound.

The above mentioned conversion of a compound of formula (I) into another compound of formula (I) includes any conversion which may be effected using conventional procedures. but in particular the said conversions include any combination of:

(i) converting one group R into another group R;

5

10

20

25

30

35

- (ii) converting one group R³ into another group R³;
- 15 (iii) converting one group R¹⁰ into another group R¹⁰, and;
 - (iv) converting one group R¹¹ into another group R¹¹.

The above mentioned conversions (i) to (iv) may be carried out using any appropriate method under conditions determined by the particular groups chosen.

Thus, suitable conversions of one group R into another group R, as in conversion (i), include:

- (a) converting a group R which represents hydrogen into a group R which represents an alkyl or arylalkyl group; such conversion may be carried out using an appropriate conventional alkylation procedure, for example treating an appropriately protected compound of formula (I) with an alkylating agent; and
- (b) converting a group R which represents an alkyl group into a group R where R represents hydrogen; such conversion may be carried out using an appropriate dealkylation procedure, for example treating an appropriately protected compound of formula (I) with aqueous base followed by ammonium hydroxide.

Suitable conversions of one group NR^1R^3 into another group NR^1R^3 , as in conversion (ii), include: converting a group NR^1R^3 which represents arylamino into another group NR^1R^3 which represents alkylamino; such conversion may be carried out using an appropriate conventional procedure, for example treating an appropriately protected compound of formula (I) with an alkylamine.

Suitable conversions of one group R^{10} into another group R^{10} , as in conversion (iii), include:

- (a) converting a group R^{10} which represents nitro into a group R^{10} which represents amino, such conversion may be carried out using a conventional reduction procedure, for example hydrogenating an appropriately protected compound of formula (I);
- (b) converting a group R¹⁰ which represents nitro into a group R¹⁰ which represents acetylamino, such conversion may be carried out using an appropriate conventional reductive acylation procedure, for example hydrogenating an appropriately protected

compound of formula (I) followed by acylation of the resultant amino group with an acylating agent;

5

15

35

40

- (c) converting a group R¹⁰ which represents amino into a group R¹⁰ which represents a substituted urea, such conversion may be carried out using an appropriate conventional amidation procedure, for example treating an appropriately protected compound of formula (I) with an appropriately substituted isocyanate;
- (d) converting a group R¹⁰ which represents amino into a group R¹⁰ which represents acylamino, such conversion may be carried out using an appropriate conventional acylation procedure, for example treating an appropriately protected compound of
- formula (I) with an acylating agent, or treating an appropriately protected compound of formula (I) with a suitable carboxylic acid in the presence of activating agents such as a mixture of 1-hydroxybenzotriazole and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide, and;
 - (e) converting a group R¹⁰ which represents iodo into a group R¹⁰ which represents alkoxycarbonyl, such conversion may be carried out using an appropriate procedure, for example treating an appropriately protected compound of formula (I) with carbon monoxide and methanol in the presence of a palladium (0) complex.

Suitable conversions of one group R^{11} into another group R^{11} , as in conversion (iv), include:

- 20 (a) converting a group R¹¹ which represents a t-BOC-protected amino group into a group R¹¹ which represents amino, such conversion may be carried out using an appropriate conventional deprotection procedure, for example deprotecting a t-BOC-protected compound of formula (I) with trifluoroacetic acid;
- (b) converting a group R¹¹ which represents a carboxylic acid group into a group R¹¹
 which represents an amide group, such conversion may be carried out using an appropriate conventional procedure, for example treating an appropriately protected compound of formula (I) with an amine in the presence of suitable activating agents such as a mixture of 1-hydroxybenzotriazole and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide: and
- 30 (c) converting a group R¹¹ which represents alkoxycarbonyl into a group R¹¹ which represents carbamoyl, such conversion may be carried out using an appropriate conventional procedure, for example treating an appropriately protected compound of formula (I) with methanolic ammonia solution followed by aqueous ammonia.

The above mentioned conversions may as appropriate be carried out on any of the intermediate compounds mentioned herein.

Suitable protecting groups in any of the above mentioned reactions are those used conventionally in the art. The methods of formation and removal of such protecting groups are those conventional methods appropriate to the molecule being protected. Thus for example a benzyloxy group may be prepared by treatment of the appropriate compound with a benzyl halide, such as benzyl bromide, and thereafter, if required, the benzyl group may be conveniently removed using catalytic hydrogenation or a mild ether cleavage reagent such as trimethylsilyl iodide or boron tribromide.

Where appropriate individual isomeric forms of the compounds of formula (I) may be prepared as individual isomers using conventional procedures.

The absolute stereochemistry of compounds may be determined using conventional methods, such as X-ray crystallography.

5

10

15

20

25

30

35

40

The derivatives of the compounds of formula (I), including salts and/or solvates, may be prepared and isolated according to conventional procedures.

The compounds of formula (II) are known compounds or they may be prepared using methods analogous to those used to prepare such compounds such as those described in International Patent Application, Publication Number WO97/34890 and Wiley, R.H. and Slaymaker, S.C. J. Am. Chem. Soc. (80) 1385 (1958). The compounds of formula (II) may be inter-converted in an analogous manner to the above mentioned inter-conversions of the compounds of formula (I).

The compounds of formula (III) are either commercially available, or are reported in the chemical literature, or are prepared by analogy with known conventional literature procedures, for example those disclosed in *Chem. Ber.*, 1892, 25, 2977, *J. Amer. Chem. Soc.*, 1948, 70, 4174-4177, *Synthesis* 1977, 859, *J. Med. Chem.*, 1994, 37, 3956, *Synthesis* 1994, 1413, and *Tetrahedron*, 1991, 47, 2661, or in standard reference texts of synthetic methodology such as J. March, Advanced Organic Chemistry, 3rd Edition (1985). Wiley Interscience.

As stated above, the compounds of formula (I), or pharmaceutically acceptable derivatives thereof, are indicated to be useful as inhibitors of glycogen synthase kinase-3.

Thus the present invention further provides a compound of formula (I), or a pharmaceutically acceptable derivative thereof, for use as an inhibitor of glycogen synthase kinase-3, and especially for use in the treatment of conditions associated with a need for the inhibition of glycogen synthase kinase-3, such as diabetes, especially Type 2 diabetes, dementias, such as Alzheimer's disease and manic depression.

The present invention also provides the use of a compound of formula (I), or a pharmaceutically acceptable derivative thereof, for the manufacture of a medicament for the treatment of conditions associated with a need for the inhibition of glycogen synthase kinase-3, such as diabetes, especially Type 2 diabetes, dementias, such as Alzheimer's disease and manic depression.

As indicated above, formula (I) comprises a sub-group of compounds of formula (IA). In a further aspect of this invention, there is provided a compound of formula (IA), or a pharmaceutically acceptable derivative thereof, for use as an active therapeutic substance.

Accordingly, the invention also provides a pharmaceutical composition which comprises a compound of formula (IA), or a pharmaceutically acceptable derivative thereof, and a pharmaceutically acceptable carrier.

Preferably, the compounds of formula (I), or pharmaceutically acceptable derivatives thereof are administered as pharmaceutically acceptable compositions.

As indicated above it is considered that GSK-3 inhibitors per se are potentially useful in the treatment and/or prophylaxis of mood disorders, such as schizophrenia,

neurotraumatic diseases, such as acute stroke, and for the treatment and/or prophylaxis of cancer and hair loss.

Accordingly, in a further aspect the invention provides a method for the treatment and/or prophylaxis of mood disorders, such as schizophrenia, in a mammal, such as a human, which method comprises the administration of a pharmaceutically acceptable amount of a GSK-3 inhibitor.

The invention also provides a method for the treatment and/or prophylaxis of neurotraumatic diseases in a mammal, such as a human, which method comprises the administration of a pharmaceutically acceptable amount of a GSK-3 inhibitor.

5

10

15

20

25

30

35

40

Neurotraumatic diseases include both open or penetrating head trauma, such as caused by surgery, or a closed head trauma injury, such as caused by an injury to the head region ischaemic stroke, including acute stroke, particularly to the brain area, transient ischaemic attacks following coronary by-pass and cognitive decline following other transient ischaemic conditions.

Further provided is a method for the treatment and/or prophylaxis of cancer, in a mammal, such as a human, which method comprises the administration of a pharmaceutically acceptable amount of a GSK-3 inhibitor.

In addition there is provided a method for the treatment and/or prophylaxis of hair-loss, in a mammal, such as a human, which method comprises the administration of a pharmaceutically acceptable amount of a GSK-3 inhibitor.

Thus, the invention also provides the use of a GSK-3 inhibitor for the manufacture of a medicament for the treatment and/or prophylaxis of mood disorders, schizophrenia, neurotraumatic diseases, cancer or hair-loss.

A suitable GSK-3 inhibitor is a compound of formula (I) or a pharmaceutically acceptable derivative thereof.

The active compounds are usually administered as the sole medicament agent but they may be administered in combination with other medicament agents as dictated by the severity and type of disease being treated. For example in the treatment of diabetes, especially Type 2 diabetes, a compound of formula (I), or a pharmaceutically acceptable derivative thereof, may be used in combination with other medicament agents, especially antidiabetic agents such as insulin secretagogues, especially-sulphonylureas, insulin sensitisers, especially glitazone insulin sensitisers (for example thiazolidinediones), or with biguanides or alpha glucosidase inhibitors or the compound of formula (I), or a pharmaceutically acceptable derivative thereof, may be administered in combination with insulin.

The said combination comprises co-administration of a compound of formula (I), or a pharmaceutically acceptable derivative thereof, and an additional medicament agent or the sequential administration of a compound of formula (I), or a pharmaceutically acceptable derivative thereof, and the additional medicament agent.

Co-administration includes administration of a pharmaceutical composition which contains both a compound of formula (I), or a pharmaceutically acceptable derivative thereof, and the additional medicament agent or the essentially simultaneous

administration of separate pharmaceutical compositions of a compound of formula (I), or a pharmaceutically acceptable derivative thereof, and the additional medicament agent.

The compositions of the invention are preferably adapted for oral administration. However, they may be adapted for other modes of administration.

The compositions may be in the form of tablets, capsules, powders, granules. lozenges, suppositories, reconstitutable powders, or liquid preparations, such as oral or sterile parenteral solutions or suspensions.

5

10

15

20

25

30

35

40

In order to obtain consistency of administration it is preferred that a composition of the invention is in the form of a unit dose.

Preferably the composition are in unit dosage form. A unit dose will generally contain from 0.1 to 1000 mg of the active compound.

Generally an effective administered amount of a compound of the invention will depend on the relative efficacy of the compound chosen, the severity of the disorder being treated and the weight of the sufferer. However, active compounds will typically be administered once or more times a day for example 2, 3 or 4 times daily, with typical total daily doses in the range of from 0.1 to 800 mg/kg/day.

Suitable dose forms for oral administration may be tablets and capsules and may contain conventional excipients such as binding agents, for example syrup, acacia, gelatin, sorbitol, tragacanth, or polyvinylpyrrolidone; fillers, for example lactose, sugar, maize-starch, calcium phosphate, sorbitol or glycine; tabletting lubricants, for example magnesium stearate; disintegrants, for example starch, polyvinylpyrrolidone, sodium starch glycollate or microcrystalline cellulose; or pharmaceutically acceptable wetting agents such as sodium lauryl sulphate.

The solid oral compositions may be prepared by conventional methods of blending, filling or tabletting. Repeated blending operations may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are of course conventional in the art. The tablets may be coated according to methods well known in normal pharmaceutical practice, in particular with an enteric coating.

Oral liquid preparations may be in the form of, for example, emulsions, syrups, or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, for example sorbitol, syrup, methyl cellulose, gelatin, hydroxyethylcellulose, carboxymethylcellulose, aluminium stearate gel, hydrogenated edible fats; emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non-aqueous vehicles (which may include edible oils), for example almond oil, fractionated coconut oil, oily esters such as esters of glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate or sorbic acid; and if desired conventional flavouring or colouring agents.

For parenteral administration, fluid unit dosage forms are prepared utilizing the compound and a sterile vehicle, and, depending on the concentration used, can be either suspended or dissolved in the vehicle. In preparing solutions the compound can be dissolved in water for injection and filter sterilized before filling into a suitable vial or

ampoule and sealing. Advantageously, adjuvants such as a local anaesthetic, a preservative and buffering agents can be dissolved in the vehicle. To enhance the stability, the composition can be frozen after filling into the vial and the water removed under vacuum. Parenteral suspensions are prepared in substantially the same manner, except that the compound is suspended in the vehicle instead of being dissolved, and sterilization cannot be accomplished by filtration. The compound can be sterilized by exposure to ethylene oxide before suspending in the sterile vehicle. Advantageously, a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the compound.

The formulations mentioned herein are carried out using standard methods such as those described or referred to in reference texts such as the British and US Pharmacopoeias, Remington's Pharmaceutical Sciences (Mack Publishing Co.), Martindale The Extra Pharmacopoeia (London, The Pharmaceutical Press) or the above mentioned publications.

Suitable methods for preparing and suitable unit dosages for the additional medicament agent, such as the antidiabetic agent mentioned herein include those methods and dosages described or referred to in the above mentioned reference texts.

GSK-3 Assays

5

10

15

25

30

35

40

Types of GSK-3 assay used to test the compounds of the invention include the following:

Type 1: The GSK-3 specific peptide used in this assay was derived from the phosphorylation site of glycogen synthase and its sequence is:

YRRAAVPPSPSLSRHSSPHQ(S)EDEEE. (S) is pre-phosphorylated as is glycogen synthase in vivo and the three consensus sites for GSK-3 specific phosphorylation are underlined. The buffer used to make up the glycogen synthase peptide and $[\gamma$ -33P] ATP consisted of MOPS 25mM, EDTA 0.2mM, MgAcetate 10mM, Tween-20 0.01% and mercaptoethanol 7.5mM at pH 7.00.

The compounds were dissolved in dimethyl sulphoxide (DMSO) to a final concentration of 100mM. Various concentrations were made up in DMSO and mixed with the substrate – (GSK-3 peptide) solution (to a final concentration-20uM) described-in the above section along with rabbit or human GSK-3α and GSK-3β (final concentration 0.5U/ml enzyme). The reactions were initiated with the addition of [γ-³³P] ATP (500cpm/pmole) spiked into a mixture of ATP (final concentration of 10μM). After 30 min at room temperature the reaction was terminated by the addition of 10μl of H₃PO₄ / 0.01% Tween-20 (2.5%). A volume (10μl) of the mixture was spotted onto P-30 phosphocellulose paper (Wallac & Berthold, EG&G Instruments Ltd, Milton Keynes). The paper was washed four times in H₃PO₄ (0.5%), 2 mins for each wash, air dried and the radioactive phosphate incorporated into the synthetic glycogen synthase peptide, which binds to the P-30 phosphocellulose paper. was counted in a Wallac microbeta scintillation counter.

Analysis of Data: Values for IC₅₀ for each inhibitor were calculated by fitting a four-parameter logistic curve to the model: cpm=lower+(upper-lower) $/(1 + (concentration/IC_{50})^{slope})$.

Type 2: This protocol is based on the ability of the kinase to phosphorylate a biotinylated 26 mer peptide, sequence of which derived from the phosphorylation site of glycogen synthase and its sequence is Biot- YRRAAVPPSPSLSRHSSPHQ(S)EDEEE, with (S) is a pre-phosphorylated serine as is glycogen synthase in vivo and the three consensus sites for GSK-3 specific phosphorylation are underlined. The phosphorylated biotinylated peptide is then captured onto streptavidin coated SPA beads (Amersham Technology), where the signal from the 33P is amplified via the scintillant contained in the beads.

5

10

15

20

25

30

The kinase was assayed at a concentration of 10 nM final in 25 mM MOPS buffer, pH 7.0 containing 0.01% Tween-20, 7.5 mM 2-mercaptoethanol, 10 mM Magnesium acetate, and 10 uM [γ -³³P]-ATP. After 60 minutes incubation at room temperature, the reaction was stopped by addition of 50 mM EDTA solution containing the Streptavidin coated SPA beads to give a final 0.5 mgs of beads per assay well in a 384 microtiter plate format.

10 mM stock solutions of the compounds of the invention in 100% DMSO are generated as a first step in the screening process. The second step involves the creation of dose response plates where these compounds are diluted across the plate where the final low and high concentrations are to be 0.008 and 10 uM final in the kinase assay. The third step involves the creation of the assay plates. This is achieved by transferring the compounds from four 96 dose response plates to one 384 assay plate on the Robocon Robolab system. The fourth step is to perform the assay as described and count the resulting plates in the Trilux (Wallac 1450 microbeta liquid scintillation and luminescence counter). The final step is data acquisition and analysis where IC50 values are generated for each compound in duplicate by fitting a four parameter logistic curve to the model: cpm = lower + (upper-lower) / (1 + (concentration / IC50) slope) in a batch manner.

The most potent compounds of the present invention show IC_{50} values in the range of from between 10 to 100 nM.

No adverse toxicological effects are expected for the compounds of the invention, when administered in accordance with the invention.

The following Examples illustrate the invention, but do not limit it in any way.

Example 1

3-(3-Bromophenylamino)-4-(4-chlorophenyl)-1H-pyrrole-2,5-dione

A solution of 3-bromoaniline (2.27 mL, 0.020 mol) and 3-chloro-4-(4-chlorophenyl)-1H-pyrrole-2.5-dione (2.02 g, 0.0083 mol; prepared by analogy with the methods described in WO97/34890 and Wiley, R.H. and Slaymaker, S.C. J. Am. Chem. Soc. (80) 1385 (1958)) in methanol (50 mL) was heated at reflux for 40 hours, cooled and concentrated. The residue was acidified with aqueous hydrochloric acid (1M, 200 mL) and extracted with ethyl acetate (3 x 200 mL). The combined organic solutions were washed with water and brine, dried with magnesium sulphate, evaporated and the residue chromatographed on silica gel using dichloromethane-diethyl ether (gradient from 100:0 to 95:5 v/v) as eluent to afford the title compound as a solid.

15 H NMR (DMSO-d₆): δ6.70-7.30 (8H, m), δ9.65 (1H, br), δ10.90 (1H, br).
 MS (APCI +ve): [M+H]⁺ at m/z 377/379/381 (C₁₆H₁₀BrClN₂O₂ requires [M+H]⁺ at m/z 377/379/381).

Example 2

3-(4-Benzoylphenylamino)-4-(4-chlorophenyl)-1H-pyrrole-2,5-dione
 A sealed tube (comprising threaded glass tube with resealable cap) containing a mixture of 4-aminobenzophenone (0.147 g, 0.75 mmol), 3-chloro-4-(4-chlorophenyl)-1H-pyrrole-2.5-dione (0.061 g, 0.25 mmol) and 1-methyl-2-pyrrolidinone (0.5 mL) was irradiated in a microwave reactor for 12 minutes at 100 Watts. The mixture was diluted with aqueous hydrochloric acid (5 mL) and extracted with ethyl acetate (2 x 5 mL). The combined organic solutions were evaporated and the residue chromatographed on silica gel using dichloromethane as eluent to afford the title compound as a solid.

¹H NMR (DMSO-d₆): δ6.85 (2H, d), δ7.00 (2H, d), δ7.25 (2H, d), δ7.35 (2H, d), δ7.50-7.70 (5H, m), δ9.95 (1H, s), δ10.95 (1H, s)
MS (APCI -ve): [M]⁻. at m/z 402/404 (C₂₃H₁₅ClN₂O₃ requires [M]⁻. at m/z 402/404)

Example 3

30

3-(3-Bromo-4-methylphenylamino)-4-(3-nitrophenyl)-1H-pyrrole-2,5-dione

- A mixture of 3-bromo-4-methylaniline (0.220 g, 1.18 mmol), 3-chloro-4-(3-nitrophenyl)-1H-pyrrole-2,5-dione (0.100 g, 0.40 mmol) and 1-methyl-2-pyrrolidinone (1.0 mL) was heated in an oil bath at 200°C for 51 minutes. The mixture was diluted with aqueous hydrochloric acid (5 mL) and extracted with ethyl acetate (5 mL). The combined organic solutions were evaporated and the residue chromatographed on silica gel using
- dichloromethane as eluent to afford the title compound, a solid, following trituration with dichloromethane-hexane (90:10 v/v).

 l_{H} NMR (CDCl₃): $\delta 2.24$ (3H, s), $\delta 6.65$ -7.70 (7H, m, reduces to 5H on D₂O exchange) and $\delta 8.05$ (2H, m).

MS (APCI -ve): $[M-H]^-$ at m/z 400/402 ($C_{17}H_{12}BrN_3O_4$ requires $[M-H]^-$ at m/z 400/402).

Example 4

3-(4-Methylphenylamino)-4-(4-hydroxyphenyl)-1H-pyrrole-2,5-dione

A mixture of 3-hydroxy-4-(4-hydroxyphenyl)-1H-pyrrole-2,5-dione (103 mg, 0.5 mmol) and 4-methylaniline (59 mg, 0.55 mmol) in 1-methyl-2-pyrrolidinone (1mL) was heated in a sealed tube at 150°C for 24hours. The reaction mixture was dissolved in ethyl acetate(20 mL) and washed with 1N HCl (2 x 20 mL), water (3 x 20 mL) and brine (20 mL). The solution was dried over magnesium sulphate, evaporated and the residue chromatographed on silica gel using dichloromethane-diethyl ether (gradient from 100:0 to 90:10 v/v) as eluent to afford the title compound as a solid.

15

25

30

5

10

 1 H NMR (DMSO-d₆): δ2.35 (3H, s), δ6.50 (2H, d), δ6.64 (2H, d), δ6.77 (2H, d), δ6.90 (2H, d), δ9.26 (1H, br), δ9.44 (1H, br), δ10.64 (1H, br). MS (APCI +ve): [M+H]⁺ at m/z 295 (C₁₇H₁₄N₂O₃ requires [M+H]⁺ at m/z 295).

20 Example 5

3-(N-Methyl-N-phenylamino)-4-(indol-3-yl)-1H-pyrrole-2,5-dione.

A mixture of 3-(N-methyl-N-phenylamino)-4-(indol-3-yl)-1-methyl-1H-pyrrole-2,5-dione (Table B. Example B1; 2.00 g, 0.006 mol), aqueous potassium hydroxide solution (10% w/v, 2 L), ethanol (50 mL) and n-butanol (200 mL) was heated at reflux for 5 hours. The cooled reaction mixture was filtered and the filtrate acidified to pH 1 by addition of conc. hydrochloric acid. The mixture was cooled to 0°C and the resulting solid filtered, washed with water and recrystallised from acetonitrile to give the corresponding maleic anhydride. This anhydride (0.4 g, 1.25 mmol) was suspended in a mixture of concentrated aqueous ammonium hydroxide and DMF and heated in stainless steel bomb at 130°C for 4 hours. The resulting mixture was diluted with water and extracted with dichloromethane and the dried organic solution evaporated to give a solid. This was chromatographed on silica gel using a gradient of 0-5% (v/v) of methanol in dichloromethane as eluent to afford the title compound, a solid.

1H NMR (DMSO-d₆): δ3.07 (3H, s), δ6.75-7.45 (9H, m), δ7.68 (1H, s), δ10.70 (1H, br) and δ11.70 (1H, br).
 MS (APCI +ve): [M+H]⁺ at m/z 318 (C₁₉H₁₅N₃O₂ requires [M+H]⁺ at m/z 318).

Further elution of the chromatography column afforded 3-amino-4-(indol-3-yl)-1H-40 pyrrole-2.5-dione (Table B, Example B2) as a byproduct.

Example 6

3-(Indan-5-ylamino)-4-(3-aminophenyl)-1H-pyrrole-2,5-dione

3-(Indan-5-ylamino)-4-(3-nitrophenyl)-1H-pyrrole-2,5-dione (Table A, Example A359; 0.3 g, 0.9 mmol) and 10% Pd/C (60 mg) in ethanol (25 mL) was hydrogenated at atmospheric temperature and pressure for 2 hours. The reaction mixture was filtered through Kieselguhr and the filtrate concentrated in vacuo to give an orange solid. The crude product was taken up in dichloromethane (10 mL) and treated with di-tert-butyl dicarbonate (0.216 g, 1 mmol) and the mixture stirred at ambient temperature for 18 hours. The reaction mixture was poured into saturated aqueous sodium bicarbonate (10 mL) and extracted into dichloromethane (3x10 mL). The combined organics were washed with brine, dried over anhydrous sodium sulfate and concentrated in vacuo.

10 Chromatography on silica gel using dichloromethane-methanol gave the product *amine* as an orange powder.

 1 H NMR (DMSO-d₆): δ1.85 (2H, quintet), δ2.50 (2H, t), δ2.66 (2H, t), δ4.82 (2H, s), δ5.89 (1H, d), δ6.36 (2H, m), δ6.47 (1H, s), δ6.25 (2H, m), δ6.85 (1H, d), δ9.13 (1H, br) and δ10.58 (1H, br).

MS (APCI +ve): $[M+H]^+$ at m/z 320 (C₁₉H₁₇N₃O₂ requires $[M+H]^+$ at m/z 320)

Example 7

5

15

30

35

3-(Indan-5-ylamino)-4-(3-acetylaminophenyl)-1H-pyrrole-2,5-dione

- 3-(Indan-5-ylamino)-4-(3-nitrophenyl)-1H-pyrrole-2,5-dione (Table A, Example A359;
 0.3 g, 0.9 mmol) and 10% Pd/C (60 mg) in ethanol (25 mL) was hydrogenated at atmospheric temperature and pressure for 2 hours. The reaction mixture was filtered through Kieselguhr and the filtrate concentrated in vacuo to give an orange solid. The crude product was taken up in dichloromethane (5 mL) and treated with acetic anhydride
 (85 μL, 0.9 mmol) and stirred for 3 hours at ambient temperature. The reaction mixture was poured onto saturated aqueous sodium bicarbonate solution (10 mL) and extracted into ethyl acetate (3x10 mL). The combined organics were washed with brine, dried over anhydrous sodium sulfate and concentrated in vacuo. Chromatography on silica gel using dichloromethane-methanol gave the desired compound as an orange powder.
 - ¹H NMR (DMSO-d₆): δ1.83(2H. quintet), δ2.02 (3H, s), δ2.45 (2H, t). δ2.66 (2H, t), δ6.41 (2H, m). δ6.59 (1H, d). δ6.84 (2H, d), δ6.90 (1H, t), δ7.38 (1H, d), δ9.30 (1H, bs), δ9.68 (1H, s) and δ10.61 (1H, bs)] MS (APCI –ve): [M-H]⁻ at m/z 360 ($C_{21}H_{19}N_{3}O_{3}$ requires [M-H]⁻ at m/z 360).

Example 8

 $\label{lem:condition} 3- (Indan-5-ylamino)-4-[3-[(3-fluorophenylaminocarbonyl)amino] phenyl]-1 H-pyrrole-2, 5-dione$

3-(Indan-5-ylamino)-4-(3-aminophenyl)-1H-pyrrole-2.5-dione (Table A, Example A599; 0.08 g, 0.3 mmol) in dichloromethane (10 mL) was was treated with 3-fluorophenyl isocyanate (0.038mg, 0.3 mmol). The mixture was shaken on an orbital shaker for 72 hours. Saturated aqueous sodium bicarbonate (5 mL) was added, shaking continued for 5

minutes and the organic layer transferred directly onto a column of silica gel. Elution with dichloromethane gave the product as a yellow solid.

¹H NMR (DMSO-d₆): δ1.78 (2H, quintet), δ2.44 (2H, t), δ2.62 (2H, t), δ6.47 (2H, m), δ6.61 (1H, dd), δ6.83 (2H, m), δ6.93 (2H, m), δ7.09 (1H, dd), δ7.28 (2H, m), δ7.45 (1H, dd), δ8.42 (1H, br), δ8.72 (1H, br), δ9.30 (1H, br) and δ10.65 (1H, br). MS (APCI -ve) [M]⁻ at m/z 456 (C₂₆H₂₁FN₄O₃ requires [M]⁻ at m/z 456).

Example 9

- 3-(Indan-5-ylamino)-4-[3-(benzoylamino)phenyl]-1H-pyrrole-2,5-dione
 3-(5-Indan-5-ylamino)-4-(3-aminophenyl)-1H-pyrrole-2,5-dione (Table A, Example A599; 0.100 g, 0.3 mmol) in dichloromethane (3 mL) was added to a solution of benzoic acid (0.042 g, 0.33 mmol), 1-hydroxybenzotriazole (0.047 g, 0.33 mmol) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (0.063 g, 0.33 mmol in dichloromethane (5 mL). The mixture was shaken on an orbital shaker for 72 hours. Saturated aqueous sodium bicarbonate (5 mL) was added, shaking continued for 5 minutes and the organic layer transferred directly onto a column of silica gel. Elution with dichloromethane gave the product as a yellow solid.
- 1H NMR (DMSO-d₆): δ1.83 (2H, quintet), δ2.43 (2H, t), δ2.57 (2H, t), δ6.42 (1H, s), δ6.30 (2H, m), δ6.83 (1H, d), δ7.02 (1H, t), δ7.22 (1H, s), δ7.56 (4H, m), δ7.86 (2H, dd), δ9.38 (1H, br), δ9.98 (1H, br) and δ10.68 (1H, bs).
 MS (APCI -ve): [M-H]⁻ at m/z 422 (C₂₆H₂₁N₃O₃ requires [M-H]⁻ at m/z 422)
- 25 Example 10
 3-[4-(2-Aminoethyl)phenylamino]-4-(2-methoxyphenyl)-1H-pyrrole-2,5-dione
 A solution of 3-[4-[2-(t-butoxycarbonylamino)ethyl]phenylamino]-4-(2-methoxyphenyl)1H-pyrrole-2.5-dione (0.060 g. 0.13 mmol) and trifluoroacetic acid (4 drops) in dry DCM
 (5 mL) was stirred for 18 hours at room temperature. The suspension was diluted with
 30 ethyl acetate (10 mL), poured onto sodium bicarbonate (20 mL) and extracted with ethyl acetate (3 x 10 mL). The combined organic solutions were washed with brine, dried with magnesium sulfate, evaporated and the residue triturated with a mixture of hexanedichloromethane (95:5 v/v) to afford the title compound as an orange solid.
- 1H NMR (CDCl₃); δ1.52 (2H, br), δ2.59 (2H, t), δ2.83 (2H, t), δ3.16 (3H, s), δ6.44 (1H, d), δ6.58 (2H, d), δ6.79 (2H,d), δ6.97-6.93 (1H, m), δ7.22-7.17 (3H, m) and δ7.33 (1H, d).
 MS (APCI +ve): [M+H]⁺ at m/z 338 (C₁9H₁9N₃O₃ requires [M+H]⁺ at 338).
- Example 11
 3-(3-Fluoro-4-methylphenylamino)-4-[4-(methoxycarbonyl)phenyl]-1H-pyrrole-2,5dione

A mixture of 3-(3-Fluoro-4-methylphenyl-amino)-4-(4-iodophenyl)-1H-pyrrole-2,5-dione (Example A705, 126 mg, 0.3 mmol), tetrakis(triphenyl phosphine)-palladium(0) (35 mg, 0.03 mmol) and methanol (10 mL) was placed in a 50mL two necked round bottomed flask. One arm of the flask was sealed with a septum and to the other arm was fitted a reflux condenser, topped with a multiway tap connected respectively to vacuum, a carbon monoxide cylinder and to a balloon. Using the multiway tap, the flask was alternately evacuated and flushed with carbon monoxide, and the process repeated several times to unsure an atmosphere of carbon monoxide within the flask. The balloon was charged with carbon monoxide and this was then opened to the reaction flask for the duration of the reaction in order to maintain a slight positive pressure of carbon monoxide within the flask. Triethylamine (100 uL, 0.7 mmol) was added and the mixture heated at reflux for 16 hours. The mixture was cooled and diluted with ethyl acetate and the resulting solution washed with aqueous hydrochloric acid (1M, 50 mL), water (50 mL) and brine (50 mL). The organic solution was dried over magnesium sulphate and evaporated to afford a solid. This was chromatographed on silica gel using dichloromethane-ether (98:2 v/v) as eluent to afford the title compound, a solid.

¹H NMR (CDCl₃); δ 2.14 (3H, s), δ 3.90 (3H, s), δ 6.35–7.30 (7H, m) and δ 7.82 (2H, m). MS (APCI +ve): [M+H]⁺ at m/z 355 (C₁9H₁₅FN₂O₄ requires [M+H]⁺ at 355).

Example 12

3-[4-[2-[N-[6-(Acetylamino)hexyl]aminocarbonyl]ethyl]phenylamino]-4-(3-nitrophenyl)-1H-pyrrole-2,5-dione

A solution of triethylamine (81 mg, 0.8 mmol) in dry N, N-dimethylformamide (5 mL) was added to a mixture of 3-[4-[2-(hydroxycarbonyl)ethyl]phenylamino]-4-(3-nitrophenyl)-1H-pyrrole-2.5-dione (Example A763, 152 mg, 0.4 mmol), N-(6-aminohexyl)acetamide hydrochloride (78 mg, 0.4 mmol), 1-(3-dimethylamino-propyl)-3-ethylcarbodiimide hydrochloride (77 mg, 0.4 mmol) and 1-hydroxybenzotriazole (54 mg, 0.4 mmol) and the resulting mixture stirred at room temperature for 18 hours. The mixture was diluted with ethyl acetate (25 mL) and washed successively with water (2 x 25 mL), saturated aqueous sodium bicarbonate solution (25 mL), water (2 x 25 mL), brine (25 mL), dried over magnesium sulphate and concentrated. The residue was redissolved in dichloromethane-methanol (1:1 v/v), filtered and evaporated to afford the title compound as a foam.

35

5

10

15

20

¹H NMR (DMSO-d₆); δ 1.10-1.40 (8H, m), δ 1.77 (3H, s), δ 2.15 (2H, m), δ 2.55 (2H, m), δ 3.00 (4H, m), δ 6.62 (2H, d), δ 6.77 (2H, d), δ 7.20-7.90 (6H, m), δ 9.80 (1H, br) and δ 10.85 (1H, br).

MS (APCI +ve): $[M+H]^+$ at m/z 522 (C₂₇H₃₁N₅O₆ requires $[M+H]^+$ at 522).

40

Example 13

3-[4-(trans-2-carboxyethenyl)phenylamino]-4-(4-chlorophenyl)-1H-pyrrole-2,5-dione

A mixture of *trans*-4-aminocinnamic acid (0.205 g, 1.26 mmol), 3-chloro-4-(4-chlorophenyl)-1H-pyrrole-2.5-dione (0.123 g, 0.51 mmol) and 1-methyl-2-pyrrolidinone (1.0 mL) was heated in a sealed tube in a hotblock set at 69°C for 28.5 hours. The mixture was diluted with aqueous hydrochloric acid (10 mL) and extracted with ethyl acetate (2x20 mL). The combined organics were washed with brine (2x10 mL), dried over anhydrous magnesium sulphate and evaporated to dryness. The residue was triturated with a mixture of dichloromethane and ethyl acetate to afford the title compound as a solid.

10 1H NMR (DMSO-d₆): δ6.35 (1H, d), 6.74 (2H, d), 6.99 (2H, d), 7.19(2H, d), 7.35 (2H, d), 7.42 (1H, d), 9.76 (1H, br), 10.89(1H, br) and δ12.23 (1H, br).

MS (APCI +ve): [M+H]⁺ at m/z 369/371 (C₁₉H₁₃N₂O₄ requires [M+H]⁺ at m/z 369/371).

15 Example 14

20

3-[4-(trans-2-carbamoylethenyl)phenylamino]-4-(4-chlorophenyl)-1 H-pyrrole-2, 5-dione

3-[4-[trans-2-(ethoxycarbonyl)ethenyl]phenylamino)-4-(4-chlorophenyl)-1H-pyrrole-2,5-dione (50mg, 0.126mmol) was dissolved in 2N methanolic ammonia (5ml) and allowed to stand at room temp for 12days. Aqueous ammonia (d 0.88, 5ml) was added and the solution stood at room temp for a further 8 days. The mixture was evaporated to dryness and the residue triturated with methanol then ether to give the title compound as a solid.

1H NMR (DMSO-d₆): δ10.75(1H, br), δ9.7 (1H, br), δ7.44 (1H, br), δ7.2 (5H, m), δ7.2 (3H, m), δ6.74 (2H, d), δ6.41 (1H, d).

MS (APCI +ve): [M+H]⁺ at m/z 368/370 (C₁₉H₁₄ClN₃O₃ requires [M+H]⁺ at m/z 368/370).

30 Example 15

3-(Indol-1-yl)-4-(3-nitrophenyl)-1H-pyrrole-2,5-dione

Sodium hydride (60% dispersion in mineral oil, 30 mg, 0.75 mmol) was added to a solution of indole (88 mg, 0.75 mmol) in THF (2 mL) at room temperature. The mixture was stirred for 30 minutes prior to the addition of a solution of 1-(tert-

- butyldimethylsilyl)-3-chloro-4-(3-nitrophenyl)-1H-pyrrole-2,5-dione (Procedure method 1, 180 mg, 0.5 mmol) in THF (1 mL). The mixture was stirred for 45 minutes then diluted with ethyl acetate (80 mL), washed with dilute hydrochloric acid (20 mL), dried (MgSO₄) and concentrated. The residue was chromatographed on silica gel using a gradient of hexane-ethyl acetate to afford the title compound, a solid.
- 40

 1 H NMR (CD₃OD); δ6.42 (1H, d), 6.77 (1H, d), 6.82 (1H, t), 7.00-7.60 (5H, m) and 8.05-8.25 (2H, m).

 MS (APCI +ve): [M+H] + at m/z 334 (C₁₈H₁₁N₃O₄ requires [M+H]+ at 334).

Example 16

5

3-Amino-4-(3-nitrophenyl)-1H-pyrrole-2,5-dione

3-chloro-4-(3-nitrophenyl)-1H-pyrrole-2,5-dione (1.0 g, 4 mmol) was suspended in a mixture of ethanol (20 mL) and aqueous 880 ammonia (5 mL) and the mixture heated to 80°C whilst ammonia gas was bubbled through the mixture for 4 hours. The mixture was cooled and concentrated and the residue chromatographed on silica gel using hexane-ethyl acetate (gradient from 1:1 v/v) as eluent to afford the title compound as a solid.

1H NMR (CD₃COCD₃); δ6.77 (2H, br), 7.60 (1H, t), 8.04 (2H, m), 8.50 (1H, t) and 9.33 (1H, br).
 MS (APCI +ve): [M+H] + at m/z 234 (C₁₀H₇N₃O₄ requires [M+H]+ at 234).

Example 17

3-[4-[2-methoxyethylaminocarbonylmethylthio]phenylamino]-4-(4-chlorophenyl)-1H-pyrrole-2,5-dione

A solution of 2-methoxyethylamine in THF (0.32M, 1 mL) was added to a mixture of 3-[4-(carboxymethylthio)phenylamino]-4-(4-chlorophenyl)-1H-pyrrole-2.5-dione (Example A941, 117 mg, 0.3 mmol), 1-(3-dimethylamino-propyl)-3-ethylcarbodiimide

- hydrochloride (57 mg, 0.3 mmol) and 1-hydroxybenzotriazole (40 mg, 0.3 mmol) in dry THF (1 mL). The resulting solution was stirred at room temperature for 57 hours, then diluted with ethyl acetate (50 mL) and washed with dilute hydrochloric acid (1M, 50 ml), water (50 mL) and brine (50 mL), dried over magnesium sulphate and evaporated. The resulting gum was chromatographed on silica gel using dichloromethane-methanol (98:2 v/v) as eluent to afford the title compound, a solid.
 - ¹H NMR (DMSO-d₆) d 3.20 (3H. s), 3.21 (2H, m), 3.25 (2H, t), 3.50 (2H, s), 6.60-7.20 (8H, m), 8.10 (1H. t, exchanges with D_2O), 9.65 (1H, br, exchanges with D_2O) and 10.82 (1H, br, exchanges with D_2O).
- 30 MS (APCI+ve) $[M+H]^+$ at m/z 446/448. $C_{21}H_{20}ClN_3O_4S$ requires $[M+H]^+$ at m/z 446/448.

Example 18

3-(2-Methoxyethylamino)-4-(4-iodophenyl)-1H-pyrrole-2,5-dione

- A solution of 3-(3-fluoro-4-methylphenylamino)-4-(4-iodophenyl)-1H-pyrrole-2,5-dione (Example A705, 126 mg, 0.3 mmol) and 2-methoxyethylamine (0.2 mL, 2.3 mmol) in DMF (2 mL) was stirred at room temperature for 113 hours then diluted with hydrochloric acid (0.5M, 50 mL) and extracted with ethyl acetate (50 mL). The ethyl acetate solution was washed with water (2 x 50 mL) and brine (50 mL), dried over magnesium sulphate and evaporated. The residue was chromatographed on silica gel
- magnesium sulphate and evaporated. The residue was chromatographed on silica gel using dichloromethane-diethyl ether (99:1 v/v) as eluent to afford the title compound, a solid.

 1 H NMR (CDCl₃): 3.25 (2H, m), 3.35 (3H, s), 3.40 (2H, t), 5.67 (1H, br, exchanges with D₂O), 6.95 (1H, br, exchanges with D₂O), 7.05 (2H, d) and 7.70 (2H, d). MS (APCI+ve) [M+H]⁺ at m/z 373. $C_{13}H_{13}IN_{2}O_{3}$ requires [M+H]⁺ at m/z 373.

5 Example 19

10

20

25

3-Amino-1-[4-(4-chlorophenyl)-2,5-dioxo-1H-pyrrol-3-yl]pyridinium chloride

A mixture of 3-chloro-4-(4-chlorophenyl)-1H-pyrrole-2,5-dione (100 mg, 0.41 mmol)
and 3-aminopyridine (42.7 mg, 0.45 mmol) in dry THF (2.5 mL) was heated at 50°C for
2 hours then stirred at room temperature overnight. The resulting suspension was filtered
and the solid washed with dichloromethane (20 mL), then hexane (10 mL) to give the title
compound as a solid.

'H NMR (DMSO): δ 7.07 (2H,br), δ 7.43 (2H,d), δ 7.61 (2H,d), δ 7.93-7.81 (2H,m), δ 8.10-8.07 (2H,m) and δ 12.07 (1H,br).

MS (APCI+ve): $[M+H]^+$ at m/z 301/303 (C₁₅H₁₁N₃O₂Cl requires $[M+H]^+$ at m/z 301/303)

Example 20

3-[5-methoxy-6-[4-ethylpiperazin-1-yl]-indolin-1-yl]-4-[3-fluorophenyl]-1H-pyrrole-2, 5-dione

A solution of 3-chloro-4-(3-fluorophenyl)-1H-pyrrole-2,5-dione (100 mg, 0.44 mmol.), 5-methoxy-6-[4-ethylpiperazin-1-yl]-indoline (156 mg, 0.44 mmol.) and triethylamine (0.12 mL, 0.88 mmol.) in dry 1-methylpyrrolidin-2-one (2 mL) was heated under argon at 65 C for 36 h. The mixture was allowed to stand overnight at RT then diluted with water (80 mL) and extracted with ethyl acetate (3 x 60 mL). The combined organic solutions were washed with water (2 x 60 mL), brine, dried with magnesium sulphate, evaporated and the residue triturated with a mixture of dichloromethane and hexane to afford the title compound as a solid.

30

 1 H NMR (DMSO-d₆): δ10.80 (1H, br), δ 7.23-7.17 (1H, m), δ 7.00 (1H, t), δ 6.92-6.85 (3H, m), δ 5.44 (1H, s), δ 4.42 (2H, t), δ 3.71 (3H, s), δ 3.12 (2H, t), δ 2.29 (10H, br.s), δ 0.96 (3H, t)

MS (APCI+ve): $[M+H]^+$ at m/z 451 (C₂₅H₂₇N₄O₃F requires $[M+H]^+$ at m/z 451)

35

Example 21

3-[2-(Hydroxymethyl)indolin-1-yl]-4-(3-nitrophenyl)-1H-pyrrole-2,5-dione single enantiomer

A solution of racemic 3-[2-(Hydroxymethyl)indolin-1-yl]-4-(3-nitrophenyl)-1H-pyrrole-2.5-dione (Example D102, 30mg) in acetone (1ml) was separated into it's two enantiomers by repeated high pressure liquid chromatography of aliquots of the solution. The chromatography was performed on a waters 6000 instrument equipped with a 10mm chiracel AD column using hexane-ethanol (85:15 v/v) as eluent at 5 ml min⁻¹. The solvent

was removed at reduced pressure to give the separated enantiomers as solids. Enantiomer 1 (12mg, 100% chiral purity), enantiomer 2 (11mg, 96% chiral purity).

¹H NMR (MeOH): δ 2.07-2.25 (2H,m), 2.48 (1H,dd), 2.65 (1H,dd), 4.10 (1H,hept), 4.45 (1H,d), 5.33 (1H,t), 5.52 (1H,t), 5.95 (1H, d), 6.16 (1H,t), 6.42 (1H, d), 6.78 (1H,dd), 6.85 (1H, d).

MS (APCI+ve) [M+H]⁺ at m/z 366. (C₁₉H₁₅IN₃O₅ requires [M+H]⁺ at m/z 366).

Example 22

3-(3,5-Di-fluorophenylamino)-4-(2,3-di-fluorophenyl)-1H-pyrrole-2,5-dione
A solution of 3,5-difluoroaniline (161 mg, 0.00125 mol) and 3-chloro-4-(2,3-di-fluorophenyl)-1H-pyrrole-2,5-dione (122 mg, 0.0005mol) in methanol (2 mL) was heated in a sealed tube at 65°C for 8 days. The mixture was acidified with aqueous hydrochloric acid (1M) and extracted with ethyl acetate. The combined organic solutions were washed with water and brine, dried with magnesium sulphate, evaporated and the residue triturated with hexane-dichloromethane (95:5 v/v) to afford the title compound as a solid.

¹H NMR (DMSO-d₆): δ 6.40 (2H, m), δ 6.75 (1H, m), δ 7.00-7.40 (3H, m), δ 10.00 (1H, br) and δ 11.00 (1H, br).

20 MS (APCI +ve): $[M+H]^+$ at m/z 337 (C₁₆H₈F₄N₂O₂ requires $[M+H]^+$ at m/z 337).

Procedure Method 1

1-(tert-Butyldimethylsilyl)-3-chloro-4-(3-nitrophenyl)-1H-pyrrole-2,5-dione Triethylamine (1.1 mL, 8 mmol) was added to a stirred suspension of tert-

- butylchlorodimethylsilane (0.66 g, 4.4 mmol) and 3-chloro-4-(3-nitrophenyl)-1H-pyrrole-2,5-dione (1.0 g, 4 mmol) in dichloromethane (15 mL) at room temperature. The mixture was stirred overnight then chromatographed directly on silica gel using a hexane-acetone gradient to afford the title compound.
- 30 ¹H NMR (CDCl₃); δ0.51 (6H, s), 0.98 (9H, s), 7.70 (1H, t), 8.27 (2H, m) and 8.80 (1H, m).
 MS (APCI –ve): [M–H] ⁻ at m/z 366/368 (C₁₆H₁₉ClN₂O₄Si requires [M–H] ⁻ at 366/368).
- The following additional procedures (Procedure Methods 2 & 3) serve to illustrate a typical preparation of a non commercial aniline, by a method analogous to that described in *Synthesis* 1994, 1413.:-

Procedure Method 2

40 3-[(4-Nitrophenyl)thio|benzoic acid

A suspension of potassium carbonate (18g) in acetone (140 mL) at ambient temperature was treated with 3-mercaptobenzoic acid (10g, 64.4 mmol, 1 eq) followed by 4-nitrofluorobenzene (18g, 127.7 mmol, 2 eq). The resultant mixture was stirred for 18h

and then poured onto saturated sodium bicarbonate and washed with ethyl acetate. The basic aqueous layer was acidified with 5N HCl and extracted into ethyl acetate (3x100 mL). The combined organics were dried with anhydrous sodium sulphate and concentrated *in vacuo* to give the product as a solid.

5

 1 H NMR (DMSO): 87.35 (2H, d), 7.66 (1H, t), 7.81 (1H, m), 8.06 (2H, m), 8.16 (2H, d), and 13.31 (1H. bs).

MS (APCI-ve): [M-H]⁻ at m/z 274 (C₁₃H₉NO₄S requires [M-H]⁻ at m/z 274)

10 Procedure Method 3

3-[(4-Aminophenyl)thio]benzoic acid

A mixture of 3-[(4-nitrophenyl)thio]benzoic acid (11.2g, 40.7 mmol) and 10% Pd/C (0.5g) in ethanol (250 mL) was hydrogenated at atmospheric temperature and pressure for 24h. The mixture was filtered through Celite and concentrated *in vacuo* to give the required aniline as a solid.

¹H NMR (DMSO): δ5.59 (2H, bs), 6.64 (2H, d), 7.28 (3H, m), 7.37 (1H, t), 7.52 (1H, s), 7.65 (1H, d), and 12.32 (1H, bs).MS (APCI+ve): $[M+H]^+$ at m/z 246 (C₁₃H₁₁NO₂S requires $[M+H]^+$ at m/z 246).

20

15

The further examples described herein were prepared according to the methods disclosed herein, with particular reference to Examples 1 to 22 above. Examples 1 to 22 themselves are shown as examples A1, A2, A3, A424, B3, A599, F1, F2, F6, A702, A770, A772, A832, A833, D19, B25, A968, B28, I3, D36, D109 and A929 respectively in Tables A, B, D, F and I.

The following tables of examples illustrate the invention, but do not limit it in any way.

Table A

more substituents R 10 and group R3 of formula (I) is a phenyl ring, optionally substituted by one or more substituents R 11 and substituents R, Encompassing compounds of general formula (XXX-1), wherein group R² of formula (I) is a phenyl ring, optionally substituted by one or R', R'0 and R'1 are listed in Table A.

]

(XXX-1)

For	Procedure	See	Example	No.		. 2
[M+H] ⁺ Observed;	(Unless [M] or	[M-H] are	Indicated)		377/379/381	402/404 [M]-
R ^{II}					3-Br	4-COPh
\mathbb{R}^{10}					4-CI	4-CI
R¹					X	H
R					工	Н
Example	Š.				Al	A2

	, ,									,															
3	1	1	1	-	-	1	1	1	1	1	1	1	_	1	1		1	1	1	1	1	1	1	1	-
400/402 [M-H]-	265	279	295	279	299/301	277 [M-H]-	295	337	321	313/315	309	293	327/329	323	341	375/377	371	355	389	385	311	350	311	357	283
3-Br-4-Me	Н	Н	4-0Me	4-Me	4-CI	2-Me	2-OMe	4-OnBu	4-nBu	4-CI	4-0Me	Н	4-CI	4-0Me	Н	4-CI	4-OMe	H	4-CI	4-0Me	4-SMe	4-(1-Morpholinyl)	3-SMe	3-OPh	4-F
3-NO2	Н	Н	H	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	Me	H	Н	Н	Н	Н	H	Н	Me	Me	Et	Ēŧ	Et	Ph	Ph	Ph	CH2Ph	CH2Ph .	CH2Ph	Н	Н	Н	. Н	Н
A3	A4	A5	9Y	A7	A8	49	A10	A11	A12	A13	A14	A15	A16	A17	A18	A19	A20	A21	A22	A23	A24	A25	A26	A27	A28

		-								T															
	-																						- -	- -	
329/331	325	778	387	341	313	341	351	295	329/331	333/335/337	329/331	371/373	391/393	345/347	367/369	317/319	345/347	367/769	355/357	106/301	195/675/17	333/225/227	313/215	349/351	387
4-OMe	2-OMe	4-0nBu	3-0Ph	3-SMe	4-F	4-SMe	4-nBu	H	4-CI	3-CI	2-OMe	4-OnBu	3-0Ph	3-SMe	4-CF3	4-F	4-SMe	3-CF3	4-nBu	H	2-Me-4-CI	4-CI	2-Me	2.3-[/-CH=CH-17]	4-OnBu
4-CI	4-OMe	4-OMe	4-0Me	4-OMe	4-0Me	4-OMe	4-OMe	4-0Me	4-OMe	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-Cl	4-CI	4-CI	4-CI	4-CI	2,3-[(-CH=CH-)2]
Н	Н	Н	H	H	I	H	Н	Н	Н	Н	Н	Н	Н	H	Н	H	H	H	Н	Н	Н	H	Н	H	표
. Н	Н	Н	Н	Н	Н	Н	H	Н	Н	H	H	H	H	Н	Н	Н	Н	Н	Н	Н	Н	H	H	Н	Н
A29	A30	A31	A32	A33	A34	A35	A36	A37	A38	A39	A40	A41	A42	A43	A44	A45	A46	A47	A48	A49	A50	A51	A52	A53	A54

1	1	1	1	1	1	1	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	1	
331 [M-H]-	361	371	315	325	329/331	309	385	355	299	345 [M-H]-	359 [M-H]-	375	349 [M-H]-	365/367 [M-H]-	379	379	345 [M-H]-	361	363	365/367	349 [M-H]-	409/411 [M-H]-	457 [M-H]-	439	375 [M]-
4-F	4-SMe	4-nBu	H	4-OMe	3-CI	2-Me	4-OMe	Н	3-CI	2-Me	2-Et	2-iPr	2-F	2-CI	2-SMe	3-SMe	3-Me	3-Et	3-OMe	3-CI	3-F	3-Br	3-I·	3-ОСН2Рһ	3-CONH2
2,3-[(-CH=CH-)2]	2,3-[(-CH=CH-)2]	2,3-[(-CH=CH-)2]	2,3-[(-CH=CH-)2]	4-0Me	4-OMe	4-0Me	3,4,5-tri-OMe	3,4,5-tri-OMe	Н	4-CF3	4-CF3	4-CF3	4-CF3	4-CF3	4-CF3	4-CF3	4-CF3	4-CF3	4-CF3	4-CF3	4-CF3	4-CF3	4-CF3	4-CF3	4-CF3
Н	Н	H	Н	Н	Н	Н	Н	H	H	H	Н	Н	H	Н	H	H	H	H	H	Н	H	王	Н	H	Н
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	H	Н	H	н	Н	H	Н	Н	Н	Н
A55	A56	A57	A58	A59	A60	A61	A62	A63	A64	A65	99Y	A67	89Y	A69	A70	A71	A72	A73	A74	A75	A76	A77	A78	A79	A80

-		- -	1 -	-		. _		-		. -	-	-		-	-	-	-	-			-	-		-	.
389/391	327/329	341/343	317/319	345/347	313/315	327/329	329/331	315/317 [M-H]-	423/425 [M-H]-	405/407	342/344	377 fM-H1-	347	361	309	351	335	323	401	325	421	339	355	351	387
4-Cl	2-Et	2-iPr	2-F	2-SMe	3-Me	3-Et	3-0Me	3-F	3-1	3-ОСН2Рһ	3-CONH2	3-SMe	3-Me	3-Et	4-Me	4- <i>t</i> Bu	3,4-[(CH2)3]	3,5-di-Me	3-OCH2Ph	3-0Me	3-1	3,4-[OCH20]	3,5-di-OMe	4-nBu	3-OPh
3,4,5-tri-OMe	4-CI	4-CI	4-CI	4-CI	2-CF3	2-CF3	2-CF3	4-OMe	4-OMe	4-OMe	4-OMe	4-OMe	4-0Me	4-0Me	4-0Me	4-OMe	3-OMe	3-OMe							
Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Ξ	H	Н	Н	Н	H	Н	Н	Н	H	Н	Ŧ	Н	Н	Н
Н	Н	Н	Н	H	H	H	Н	Н	Н	Н	Н	Н	I	Н	Н	Н	Н	Н	Н	Н	Н	H	I	H	H
A81	A82	A83	A84	A85	A86	A87	A88	A89	A90	A91	A92	A93	A94	A95	96V	A97	A98	A99	A100	A101	A102	A103	A104	A105	A106

1	1	1	1	1	1	1	11	1	1	1	1	1	1	1	1	_	1			1	1	1	1	1	-
341	309	351	323	401	325	421	339	355	325	335	395	351.	387	341	309	351	335	323	401	325	421	355	325	363	363
4-SMe	4-Me	4- <i>t</i> Bu	3,5-di-Me	3-OCH2Ph	3-OMe	3-1	3,4-[OCH2O]	3,5-di-OMe	4-OMe	3,4-[(CH2)3]	4-SCF3	4-nBu	3-OPh	4-SMe	4-Me	4-tBu	3,4-[(CH2)3]	3,5-di-Me	3-OCH2Ph	3-OMe	3-I	3,5-di-OMe	4-OMe	3-CF3	3-CF3
3-OMe	3-OMe	3-OMe	3-OMe	3-OMe	3-OMe	3-OMe	3-OMe	3-0Me	3-OMe	3-0Me	3-OMe	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe	4-OMe
Н	Н	Н	Н	Н	Н	Н	Н	Н	H	H	Н	H	Н	Н	Н	H	H	Н	H	Н	Н	Н	H	H	Н
H	Н	H	Н	Н	Н	Н	Н	H	H	H	H	I	H	Н	Н	H	I	H	H	I	H	Н	H	H	Н
A107	A108	A109	A110	A111	A112 ·	A113	A114	A115	A116	A117	A118	A119	A120	A121	A122	A123	A124	A125	A126	A127	A128	A129	A130	A131	A132

	- -	- -	- -	2 (2 0	2 6	2 0	2	2	,	-		. -		- -	. _	-	-		,	. -		-	-	-
3,43	330	347	333	383	401	358	437	333	347	381/383	325	315	315/317	279	355	313/315	309	324	309	377	355	412 [M]-	397	387	355
3-CF3	3.4-[OCH2O]	H	H	2,3-[(-CH=CH-)2]	4-CF3	4-CN	4-COPh	H	2-Me	2-Me-4-Cl	3-CH20H	2,3-[(-CH=CH-)2]	3-0H	H	H	H	H	H	H	4-C02H	4-Me	4-OnBu	4-nBu	4-SMe	2-Me
3-OMe	2-OMe	4-CF3	4-CF3	4-CF3	4-CF3	4-CF3	4-CF3	2-CF3	2-CF3	4-CF3	4-OMe	Н	4-CI	H	4-Ph	4-CI	4-OMe	3-NO2	3-0Me	4-CF3	4-Ph	4-Ph	4-Ph	4-Ph	4-Ph
H	Н	Me	H	H	H	H	H	H	Н	Н	Н	Н	Н	Me	Me	Me	Me	Me	Me	Н	Н	Н	Н	Н	Н
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	H	H	Н	Н	Н	Н	H	H
A133	A134	A135	A136	A137	A138	A139	A140	A141	A142	A143	A144	A145	A146	A147	A148	A149	A150	A151	A152	A153	A154	A155	A156	A157	A158

1	1	1	1	1	1	1	-1	1	1	1	1	1	1	-		. 1	1	1	1	2	1	1		1	
387	433	375/377	383	417/419 [M-H]-	407 [M]-	357	324	382	356	324	356	402.	344/346	376/378/380 [M-H]-	350 [M-H]-	388/390	375 [M-H]-	326	396	378	369	427	411	401	401
3-SMe	3-OPh	3-CI	3-COMe	3-Br	3-(5-Oxazolyl)	3-0H	4-Me	4-OnBu	4-SMe	2-Me	3-SMe	3-OPh	3-CI	3,5-di-Cl	3-СОМе	3-Br	3-(5-Oxazolyl)	3-ОН	4-nBu	4-NO2	4-Me	4-OnBu	4- <i>n</i> Bu	4-SMe	3-SMe
4-Ph	4-Ph	4-Ph	4-Ph	4-Ph	4-Ph	4-Ph	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	3-N02	3-NO2	3-NO2	4-CF3	3,4,5-tri-OMe	3,4,5-tri-OMe	3,4,5-tri-OMe	3,4,5-tri-OMe	3.4.5-tri-OMe
Н	H	E	H	H	H	Н	Н	Н	Н	Н	Н	H	н	Н	Н	H	Н	H	Н	H	H	Н	Н	Н	H
Н	H	Н	H	Н	Н	H	H	Н	Н	H	H	Н	Н	H	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	H
A159	A160	A161	A162	A163	A164	A165	A166	A167	A168	A169	A170	A171	A172	A173	A174	A175	A176	A177	A178	A179	A180	A181	A182	A183	A184

1.	1	-	_	_	1	1	_	2	2	-	-	-	-	-	-	_	1	1	1	-	-	-	-	-	_
397	422	371	333	337 [M-H]-	309	329	331 [M-H]-	323/325 [M]-	375	353/355	355/357	449/451	391/393	381/383	389/391	411/413/415/417	459/461/463	367/369/371/373	367/369/371/373	383/385/387/389	335/337	377/379/381	425/427	344/346	315/317
3-COMe	3-(5-Oxazolyl)	3-0H	4-CF3	4-(CH2)20H	4-(CH2)20H	4-OMe	3-CF3	4-CN	2,4,6-tri-Me	2,3-[(CH2)4]	4-1Bu	4-CH2P(O)(OEt)2	4-OPh	4-(Cyclohexyl)	2-CH2Ph	4-Br-3-Cl	4-I-3-CI	3,4-di-Cl	3,5-di-Cl	3,5-di-Cl-4-OH	3,5-di-F	4-Br	4-I	3-NO2	2-0H
3,4,5-tri-OMe	3,4,5-tri-OMe	3,4,5-tri-OMe	Н	4-OMe	Н	2-CI	Н	4-CI	4-CF3	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-Cl	4-CI	4-CI	4-Cl	4-Cl	4-CI	4-CI
Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H.	H	Н	Н
Н	Н	Н	Н	Н	Н	H	H	H	H	H	H	H	H	H	Н	Н	Н	H	H	H	Н	Н	H	H	H
A185	A186	A187	A188	A189	A190	A191	A192	A193	A194	A195	A196	A197	A198	A199	A200	A201	A202	A203	A204	A205	A206	A207	A208	A209	A210

_		-	-	1		-	-	-	-	-	-	_	-	-	-	1		-	-	-	-	-	-		1
315/317	469/471/473/475	343/345	339/341	339/341	391/393/395	391/393/395	347/349/351	331/333	331/333	313/315	329/331	329/331	329/331	356/358	327/329	327/329	327/329	327/329	343/345	343/345	343/345	359/361	338/340	338/340	341/343
4-0H	3,5-di-Br-4-Me	3,4-[OCH2O]	3,4-[CH=N-NH]	3,4-[NH-N=CH]	3-Br-2-Me	3-Br-4-Me	3-CI-2-Me	3-F-4-Me	3-F-6-Me	4-Me	2-СН2ОН	3-СН2ОН	4-OH-2-Me	4-NHCOMe	2,3-di-Me	2,4-di-Me	3,4-di-Me	3,5-di-Me	3-CH2OH-6-Me	4-OMe-2-Me	4-(СН2)2ОН	3,5-di-OMe	4-CH2CN	3,4-[CH=CH-NH]	3-СОМе
4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-Cl	4-Cl	4-CI	4-CI	4-Cl	4-CI	4-CI	4-CI	4-CI	4-Cl	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI
H	H	Н	H	H	Н	H	I	H	H	H	I	Н	H	H	王	H	H	I	H	H	H	H	H	H	H
H	H	H	Н	H	H	F	I	H	Н	H	H	H	H	H	H	H	Н	Н	H	Н	H	Н	Н	H	Н
A211	A212	A213	A214	A215	A216	A217	A218	A219	A220	A221	A222	A223	A224	A225	A226	A227	A228	A229	A230	A231	A232	A233	A234	A235	A236

	1	1		_	-	3	1	1	_	1	1	1	-	1	1	-		1	-	1	-	-		-	1
357/359	337/339 [M-H]-	370/372	357/359	370/372	401	340/342 [M-H]-	297	329	317/319	331/333	375	329 .	339	323	309	313	313	343/345	309	341	313/315	345/347	333/335/337	347/349/351	391/393
4-CH2CO2H	3,4-[(CH2)3]	4-N(Me)COMe	3-0iPr	4-(CH2)2CONH2	3-OPh	4-CONH2	2-Me	3-SMe	3-CI	4-CI-2-Me	3-OPh	4-SMe	4- <i>t</i> Bu	3,4-[(CH2)3]	3-Me	3-F	2-F	4-CI-2-Me	2-Me	3-SMe	2-Me	3-SMe	3-CI	4-CI-2-Me	3-0Ph
4-CI	4-CI	4-CI	4-CI	4-CI	3,4-[OCH2O]	4-Cl	4-F	. 4-F	4-F	4-F	4-F	4-F	4-F	4-F	2-OMe	2-OMe	2-0Me	2-0Me	2-OMe	2-0Me	3-CI	3-CI	3-CI	3-CI	3-CI
Н	H	Н	Н	H	H	Н	H	H	H	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	Н	H	H	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	H	Н	н
A237	A238	A239	A240	A241	A242	A243	A244	A245	A246	A247	A248	A249	A250	A251	A252	A253	A254	A255	A256	A257	A258	A259	A260	A261	A262

1	-	-	1	1	-	1		1	1	1	1	1	-		1		-	-	-	1	-	1		_	1
345/347	355/357	339/341	329	333	363/365	329	361	349/351	405	437	425/427	439/441	483	437	447	431	309	313	309	341	329/331	329/331	361/363	373/375	393/395
4-SMe	4- <i>t</i> Bu	3,4-[(CH2)3]	3-Me	3-F	4-CI-2-Me	2-Me	3-SMe	3-Cl	2-Me	3-SMe	3-Cl	4-CI-2-Me	3-OPh	4-SMe	4- <i>t</i> Bu	3,4-[(CH2)3]	3-Me	3-F	2-Me	3-SMe	3-CI	3-CI	3-Br	3-Br	3-Br
3-CI	3-CI	3-CI	3,4-[(-CH=CH-)2]	3,4-[(-CH=CH-)2]	3,4-[(-CH=CH-)2]	3,4-[(-CH=CH-)2]	3,4-[(-CH=CH-)2]	3,4-[(-CH=CH-)2]	4-[4-1	4-1	4-1	4-1	4-I	4-1	4-1	4-OMe	4-0Me	3-0Me	3-0Me	3-0Me	2-0Me	4-F	4-OMe	3,4-[(-CH=CH-)2]
Н	H	H	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	H	H	Н	Н	Н
H	H	Ŧ	H	工	H	H	I	H	H	H	H	H	H	I	H	I	I	H	H	H	H	H	H	I	Н
A263	A264	A265	A266	A267	A268	A269	A270	A271	A272	A273	A274	A275	A276	A277	A278	A279	A280	A281	A282	A283	A284	A285	A286	A287	A288

	1	T-	1	т-	т	1	T	T-	T-		Ť	-		_		_		_	т —	1				
_	3		_	3	3	-	-	3	3		3	_	-	-	3	3	3	-	-		-		-	
469/471	342/344 [M-H]-	411/413/415/417	377/379/381	391/393	333/335	345/347	345/347	337 [M]-	297/299 Fragment	ion [M-CO2H]-	320	355/357	375/377/379 [M]-	313/315	347/349/351	356/358 [M-H]-	414	379/381	411/413	357/359	389/391	357/359	409/411/413/415 [M-	435/437
3-Br	4-NO2	3-Br	3-Br	3-0Ph	3-CI	3-SMe	4-SMe	4-CONH2	4-CO2H		4-CN	4-nBu	3-Br	4-Me	3-CI-6-Me	3-Cl-4-Me	4-COPh	3-Br	3-Br	3-Br	3-SMe	4-Me	3,5-di-Cl	3-OPh
4-1	4-CI	3,4-di-Cl	3-CI	2-Cl	2-CI	2-Cl	2-CI	3-OMe	4-CI		4-OMe	2-CI	2-CI	2-CI	4-CI	3-NO2	3-NO2	3,5-di-F	3-CF3	4-Me	4-Br	4-Br	4-Br	4-Br
H	Н	Н	Н	Н	Н	H	Н	Н	H	-	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	н	Н
H	H	I	H	H	Н	Н	Н	Н	Н		H	H	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
A289	A290	A291	A292	A293	A294	A295	A296	A297	A298		A299	A300	A301	A302	A303	A304	A305	A306	A307	A308	A309	A310	A311	A312

	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
383/385	325	293	371	319	325·	357	325	403	351	357	379	347	399/401/403 [M-H]-	425	373	379	347	315	367/369/371 [M]-	393	341	347	379/381/383	347/349/351	399/401/403/405/407
3,4-[(CH2)3]	3-SMe	4-Me	3-OPh	3,4-[(CH2)3]	4-SMe	3-SMe	4-Me	3-0Ph	3,4-[(CH2)3]	4-SMe	3-SMe	4-Me	3,5-di-Cl	3-0Ph	3,4-[(CH2)3]	4-SMe	3-SMe	4-Me	3,5-di-Cl	3-0Ph	3,4-[(CH2)3]	4-SMe	3-SMe	4-Me	3,5-di-Cl
4-Br	4-Me	4-Me	4-Me	4-Me	4-Me	4-SMe	4-SMe	4-SMe	4-SMe	4-SMe	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3-CF3	3,5-di-F	3,5-di-F	3,5-di-F	3,5-di-F	3,5-di-F	3,5-di-F	3,4-di-Cl	3,4-di-Cl	3,4-di-Cl
Н	I	H	H	H	Ή	H	н	H	H	Н	H	王	田	H	H	E	H	H	H	Н	Н	H	H	H	Н
Н	Н	Н	Н	H	Н	Н	Н	H	H	H	Н	Н	Н	Н	Н	Н	H	H	H	Н	Н	Н	Н	Н	Н
A313	A314	A315	A316	A317	A318	A319	A320	A321	A322	A323	A324	A325	A326	A327	A328	A329	A330	A331	A332	A333	A334	A335	A336	A337	A338

	\top	Ţ.	<u> </u>	_	$\overline{}$	т—		т-	T -	_	_	_		_	_	-		7			, .				
	-	- -	-	. -	-	_		-	-	_	.	. -	. -	- -	.	. _	- -		. -	-	• -	-	. -	•	
[M-H]-	423/425/427 IMI-	373/375/377	379/381/383	389/391	355/357 [M]-	409/411/413/415 [M-	H]-	435/437	383/385	389/391	356	324	376/378/380 [M-H]-	402	350	356	389/391	353 fM1-	392/394/396 [M-H]-	366	482/484/486	350	470/472FM-H1-	454/456[M-H]-	349
	3-OPh	3,4-[(CH2)3]	4-SMe	3-SMe	4-Me	3,5-di-Cl		3-OPh	3,4-[(CH2)3]	4-SMe	3-SMe	4-Me	3,5-di-Cl	3-0Ph	3,4-[(CH2)3]	4-SMe	4-SMe	4-N02	3,5-di-Cl-4-OH	4-tBu	3,5-di-Br-4-OH	3,4-[(CH2)3]	3-Br-4-0CF3	3-Br-5-CF3	4-CH2CN
	3,4-di-Cl	3,4-di-Cl	3,4-di-Cl	3-Br	3-Br	3-Br		3-Br	3-Br	3-Br	4-N02	4-NO2	4-NO2	4-NO2	4-NO2	4-NO2	4-Br	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	3-N02	3-NO2
	H	Н	H	Н	Н	H		H	H	H	H	Н	Н	Н	H	H	H	Н	Н	H	Н	Н	Н	Н	Н
	Н	Н	Н	H	Н	н		Ŧ	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	H	Н	H	Н	Н	H	H
	A339	A340	A341	A342	A343	A344		A345	A346	A347	A348	A349	A350	A351	A352	A353	A354	A355	A356	A357	A358	A359	A360	A361	A362

	1	1	1		1	1	1	1	1	1	1	1	3	3	1	1	1	1	1	1	1	1	1	1	-
381	326[M-H]-	342	342/344[M-H]-	340	338	328	344[M-H]-	367	402	378[M-H]-	416	422[M-H]-	353 [M]-	333 [M]-	359/361	341/343 [M-H]-	403/405	360/362	371/373	375/377/379 [M-H]-	385/387	429/431[M-H]-	403/405	471/473/475/477	541/543
4-(CH2)2CONH2	3-F	3-F-4-Me	4-CI	4-OMe	3-Et	2-F	3,5-di-F	3,4-[S-CH=N]	4-OPh	4-trans-CH=CHCO2H	4-OCH2Ph	3-CO(CH2)2CO2Me	3-N02	4-CN	4-0Н-3-СО2Н	3-C02H	4-SCH2CO2Me	4-OH-3-NO2	4-(СН2)2СО2Н	4-CI-3-CO2H	4-(СН2)3СО2Н	3-SO2CF3	3-COPh	3,5-di-Br-4-OH	4-CPh3
3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	3-N02	3-NO2	3-NO2	3-N02	3-NO2	3-NO2	3-NO2	3-NO2	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-CI	4-Cl
Н	Н	Н	Н	Н	· H	Н	H	H	H	H	H	H	Н	Н	Н	H	Н	H	Н	Н	Н	н	H	Н	Н
Н	Н	Н	Н	. Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	H	Н	Н	Н
A363	A364	A365	A366	A367	A368	A369	A370	A371	A372	A373	A374	A375	A376	A377	A378	A379	A380	A381	A382	A383	A384	A385	A386	A387	A388

	T	Т		T		T	7	T			Т	1	Τ-	7	Τ	7	.1.	1	$\overline{}$	1	$\overline{}$	1	_	Т-	T
-	-			-	٠	-					3	۳	-	4		,	4	-	-	-		-			-
355/357 [M-H]-	433/435	373/375 Fragment	ion [M-C7H502]-	443/445 [M-H]-		411/413/415/417	391/393	311/313 Fragment	ion [M –	CH4N02SJ+	352 [M-H]-	414	371/373	359/361	447/449	415	327	351[M-H]-	319[M-H]-	345[M-H]-	337[M-H]-	305[M-H]-	331[M-H]-	337[M-H]-	351[M-H]-
3-СН2СО2Н	4-(1-Adamantyl)	3-CO2H-4-[S-(2-	CO2H-Ph)]	2-[O(CH2)20Me]-5-	(СН2)2СО2Н	3-Br-4-Cl	2-0Ph	4-CH2SO2NHMe			4-C02H	3-COPh	3-СН2СО2Ме	3-Br	4-COPh	4-COPh	4-SMe	3-SMe	4-Me	3,4-[(CH2)3]	3-SMe	4-Me	3,4-[(CH2)3]	4-SMe	4-SMe
4-Cl	4-CI	4-CI		4-CI	•	4-CI	4-CI	4-CI		·	3-NO2	3-NO2	4-CI	4-0H	4-Br	4-SMe	4-0H	4-iPr	4-iPr	4-iPr	3,5-di-Me	3,5-di-Me	3,5-di-Me	3,5-di-Me	4-iPr
H	Н	Н	-	H		H	н	Έ			H	Н	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	Н		H		Н	H	I			H	H	H	Н	Н	Н	Н	Н	H	H	H	H	H	H	H
A389	A390	A391		A392		A393	A394	A395			A396	A397	A398	A399	A400	A401	A402	A403	A404	A405	A406	A407	A408	A409	A410

1	-			-	_	-	1	-	-	-	-	-	4	-	1	1	1	1	-	1	1			3	4
387/389[M-H]-	355/357[M-H]-	381/383[M-H]-	387/389[M-H]-	446[M]-	414[M]-	468/470/472 [M]-	440[M]-	446[M]-	401[M-H]-	369[M]-	395[M-H]-	401[M-H]-	295	415[M-H]-	409[M-H]-	415[M-H]-	371	337[M-H]-	363[M-H]-	373/375 [M-H]-	373/375 [M-H]-	341/343 [M-H]-	369/371	352	371[M-H]-
3-SMe	4-Me	3,4-[(CH2)3]	4-SMe	3-SMe	4-Me	3,5-di-Cl	3,4-[(CH2)3]	4-SMe	3-SMe	4-Me	3,4-[(CH2)3]	4-SMe	4-Me	3-SMe	3,4-[(CH2)3]	4-SMe	3-SMe	4-Me	3,4-[(CH2)3]	4-SMe	3-SMe	4-Me	3,4-[(CH2)3]	4-COMe	3-0Ph
2-Br	2-Br	2-Br	2-Br	3,5-bis-CF3	3,5-bis-CF3	3,5-bis-CF3	3,5-bis-CF3	3,5-bis-CF3	4-OPh	4-0Ph	4-0Ph	4-OPh	4-0H	4-OCH2Ph	4-OCH2Ph	4-OCH2Ph	3,4-di-OMe	3,4-di-OMe	3,4-di-OMe	3-CI-4-OMe	3-CI-4-OMe	3-Cl-4-0Me	3-CI-4-OMe	3-NO2	4-ОН
H	H	Н	Н	H	Н	Н	H	Н	Н	Н	Н	Н	H	H	H	Н	Н	H	Н	Н	Н	Н	Н	H	Н
H	. н	王	H	H	Н	H	I	Н	Н	Н	H	Н	Н	Н	Н	H	Н	Н	Н	Н	H	Н	Н	Н	Н
A411	A412	A413	A414	A415	A416	A417	A418	A419	A420	A421	A422	A423	A424	A425	A426	A427	A428	A429	A430	A431	A432	A433	A434	A435	A436

4	4			1						3		.]_													
-						-		-	_			-								L					
371/373fM-Hl-	321	383fM-H1-	434[M-H]-	492[M]-	461[M-H]-	419/421 [M-H]-	415[M-H]-	447[M-H]-	383[M-H]-	347/349/351	353[M-H]-	323	349	355	387/389	401/403	293	319	325	371	375/377/379 [M-H]-	397[M-H]-	353[M-H]-	321[M-H]-	307[M-H]-
3-Br-4-Me	3,4-[(CH2)3]	3-OPh	3-OPh	3-0Ph	3-0Ph	3-OPh	3-OPh	3-OPh	4-Me	3-CI-4-Me	3-SMe	4-Me	3,4-[(CH2)3]	4-SMe	3-Br	3-Br-4-Me	4-Me	3,4-[(CH2)3]	4-SMe	3-OPh	4-CI	3-OPh	3-SMe	4-Me	Н
4-0H	4-0H	3,5-di-Me	2-Br	3,5-bis-CF3	4-OCH2Ph	3-CI-4-OMe	3,4-di-OMe	4-OPh	4-OCH2Ph	2-CI	3,4-[OCH20]	3,4-[OCH20]	3,4-[OCH20]	3,4-[OCH2O]	3,4-[OCH20]	3,4-[OCH2O]	2-Me	2-Me	2-Me	3-Me	3-Br	4-iPr	4-CH2OMe	4-CH20Me	4-CH2OMe
Н	Н	H	Н	H	Ή	H	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	Н	Н	Н	Ή	Н	H	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	H	H	Ŧ	Ŧ	H	Н
A437	A438	A439	A440	A441	A442	A443	A444	A445	A446	A447	A448	A449	A450	A451	A452	A453	A454	A455	A456	A457	A458	A459	A460	A461	A462

-	1	-		1	1	1		-	-		-	_	-	1	-	_	_	_	1			_			1
399[M-H]-	347[M-H]-	353[M-H]-	385/387[M-H]-	399/401[M-H]-	313/315	369[M-H]-	337[M-H]-	323[M-H]-	415[M-H]-	363[M-H]-	369[M-H]-	401/403 [M-H]-	415/417[M-H]-	393[M-H]-	361[M-H]-	347[M-H]-	439[M-H]-	387[M-H]-	425/427[M-H]-	439/441 [M-H]-	393[M-H]-	409[M-H]-	377[M-H]-	363[M-H]-	455[M-H]-
3-0Ph	3,4-[(CH2)3]	4-SMe	3-Br	3-Br-4-Me	4-CI	3-SMe	4-Me	Н	3-OPh	3,4-[(CH2)3]	4-SMe	3-Br	3-Br-4-Me	3-SMe	4-Me	Н	3-0Ph	3,4-[(CH2)3]	3-Br	3-Br-4-Me	4-SMe	3-SMe	4-Me	Н	3-OPh
4-CH2OMe	4-CH2OMe	4-CH2OMe	4-CH2OMe	4-CH2OMe	2-Me	2,5-di-OMe	2,5-di-OMe	2,5-di-OMe	2,5-di-OMe	2,5-di-OMe	2,5-di-OMe	2,5-di-OMe	2,5-di-OMe	4-0CF3	4-0CF3	4-0CF3	4-0CF3	4-0CF3	4-0CF3	4-OCF3	4-0CF3	3-SCF3	3-SCF3	3-SCF3	3-SCF3
Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н
A463	A464	A465	A466	A467	A468	A469	A470	A471	A472	A473	A474	A475	A476	A477	A478	A479	A480	A481	A482	A483	A484	A485	A486	A487	A488

. [Τ	Т	Т	Т	T	Т	\top	T	\top	Т	T-	-	Т-	T	Т	\top	-	Τ-	$\overline{}$	T	Τ-	_	1	т-	_
	-	.			-	-	-	. -	.	. -	.	. -	. -	.	. -	•	•	. -	-	. -	.	.			1
403[M-H]-	409[M-H]-	441/443fM-H1-	455/457[M-H]-	333/335/337	356/358	352	352	411/413 [M-H]-	401/403	325	371/373	329	297	351/353/355	375	323	329	361/363	375/377	379/381/383	347/349/350	425/427/429	373/375/377	379/381/383	411/413/415/417
3,4-[(CH2)3]	4-SMe	3-Br	3-Br-4-Me	4-CI	3,4-[S-CH=N]	3,4-[S-CH=N]	3,4-[S-CH=N]	4-CH=CHCO2H	4-CH(OMe)Me	3-SMe	3-Br-4-Me	3-SMe	4-Me	3,5-di-Cl	3-0Ph	3,4-[(CH2)3]	4-SMe	3-Br	3-Br-4-Me	3-SMe	4-Me	3-OPh	3,4-[(CH2)3]	4-SMe	3-Br
3-SCF3	3-SCF3	3-SCF3	3-SCF3	3-CI	4-CI	2-OMe	4-0Me	4-Br	4-Br	2-Me	2-Me	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	2,4-di-Cl	2,4-di-Cl	2,4-di-Cl	2,4-di-Cl	2,4-di-Cl	2,4-di-Cl
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	н	E	H	Н	Н	Н	Н	Н	Н	Н	Н
H	H	Н	Н	Н	·· H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H
A489	A490	A491	A492	A493	A494	A495	A496	A497	A498	A499	A500	A501	A502	A503	A504	A505	A506	A507	A508	A509	A510	A511	A512	A513	A514

-	-	-	-		-	-		-	-		-		1		4	1	1	1	1	1		-	1	-	1
425/427/429/431	325	293	319	325	357/359	371/373	388/390[M-H]-	356/358[M-H]-	410/412/414/416[M-	H]-	434/436[M-H]-	384/386	390/392	434/436/438[M-H]-	338	368	448	356/358	420/422/424[M-H]-	338[M-H]-	351[M-H]-	410[M-H]-	336[M-H]-	352[M-H]-	352[M-H]-
3-Br-4-Me	3-SMe	4-Me	3,4-[(CH2)3]	4-SMe	3-Br	3-Br-4-Me	3-SMe	4-Me	3,5-di-Cl	·	3-OPh	3,4-[(CH2)3]	4-SMe	3-Br-4-Me	3,4-[S-CH=N]	3,4-[S-CH=N]	3,4-[S-CH=N]	3,4-[S-CH=N]	3-Br	3-CH2OH	3-CONH2	3-0CH2C02Et	3,4-di-Me	3-C02H	3,4-[OCH2O]
2,4-di-Cl	3-Me	3-Me	3-Me	3-Me	. 3-Me	3-Me	4-CI-3-NO2	4-CI-3-NO2	4-CI-3-NO2		4-CI-3-NO2	4-CI-3-NO2	4-CI-3-NO2	4-CI-3-NO2	4-0H	4-SMe	4-1	2-CI	4-CI-3-NO2	3-NO2	3-NO2	3-NO2	3-N02	3-NO2	3-NO2
Н	Н	H	H	Н	H	Н	H	I	Н		Н	Н	Н	H	H	H	Н	H	H	H	H	H	I	I	Н
Н	H	I	H	I	H	H	H	H	Н		Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
A515	A516	A517	A518	A519	A520	A521	A522	A523	A524		A525	A526	A527	A528	A529	A530	A531	A532	A533	A534	A535	A536	A537	A538	A539

	-		1	-	-	-	-	-		1		-	_	1	-	1	1	1	-	1	-	_	-	-	1
380[M-H]-	396[M-H]-	391/393/395	327/329	359/361	343/345	343/345	391/393/395	435/437/439	371/373	403/405	387/389	387/389	299/301	343/345	279	311	295	358/360 [M-H]-	374/376	358	464/466/468 [M-H]-	478/480/482 [M-H]-	338	310	371
3-CH2CO2Me	3-0CH2C02Me	3-CI-4-Me	3-CI-4-Me	3-CI-4-Me	·3-CI-4-Me	3-Cl-4-Me	3-Br-4-Me	3-Br-4-Me	3-Br-4-Me	3-Br-4-Me	3-Br-4-Me	3-Br-4-Me	H	Н	Н	H	Н	3-Cl-4-OH	3-CI-4-OMe	3-F-4-0Me	3,5-di-Br	3,5-di-Br-4-Me	3,5-di-Me	Н	3-OPh
3-NO2	3-NO2	4-Br	4-Me	4-SMe	2-OMe	4-OMe	2-CI	4-Br	4-Me	4-SMe	2-OMe	4-0Me	. 2-CI	4-Br	4-Me	4-SMe	2-OMe	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	2-Me
Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	. Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	H	H	Н	H	H	Н	Н	Н	Н	Н	Н
A540	A541	A542	A543	A544	A545	A546	A547	A548	A549	A550	A551	A552	A553	A554	A555	A556	A557	A558	A559	A560	A561	A562	A563	A564	A565

-	-	1	1	-	1		-	-	-	-	-	-	-	1	1	1	1	-		-	-	-	1	-	
352 [M-H]-	366 [M-H]-	460	415 [M-H]-	398 [M-H]-	324 [M-H]-	394 [M-H]-	380 [M-H]-	412 [M-H]-	410	350	350	336	400/402	358	384 [M-H]-	323	311	373/375	337	399	327	467/469/471	334	366	329/321
4-(СН2)2ОН	4-CH2CO2H	4-CH2P(O)(OEt)2	4-CH2SO2NHMe	4-SCH2C02H	4-0H	4-(CH2)3CO2H	4-CH2CO2Me	4-SCH2CO2Me	4-(CH2)3CO2Me	3,4-[CH=N-NH]	3,4-[NH-N=CH]	3,4-[S-CH=N]	3,4-[S-CH=N]	3,4-[S-CH=N]	2-Ph	3-Et	3-0H	3-Br	3-COMe	3-COPh	3-F-4-Me	3,5-di-Br-4-OH	4-CH2CN	4-(CH2)2CONH2	4-CI
3-NO2	3-NO2	3-NO2	3-N02	3-NO2	3-N02	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	3-NO2	4-Me	4-Br	3,5-di-F	3-NO2	2-OMe	2-OMe	2-0Me	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe
H		I	H	I I	H	H	H	H	E		; ; ; ; ;		E	H	H	H	H	H	H	F	E	H	H	H	Н
Н	: I	: =			: =	H	E	H	H		: =	H	H	H	: =	: =		H	I	I	H	I	H	H	Н
A 566	A567	895 V	0954	A 570	A571	A572	A573	A574	A575	A 576	A 577	4578	A579	A 580	A 581	A 582	A 583	A584	A 585	A 586	A 587	A588	A589	A590	A591

			1	Τ	T	T		T	T	Τ	Τ	T		T	Τ	T	T	Τ	Τ	Τ	T :	T	Τ	T	T
-	-	.	-	_	-	- -	9	-	-		-	.	. _	-	-	-	-	-		-	. -	. -	. -	• -	-
387	401	343	357/359 [M-H]-	345/347	407/409/411	457/459	320	385 [M-H]-	435 [M]-	340	331	441/443	379/381/383	363 [M-H]-	371	433/435 [M-H]-	401 [M-H]-	447 [M-H]-	395 [M-H]-	357	403	447/449 [M-H]-	349 [M-H]-	428 [M]-	377
4-0Ph	4-OCH2Ph	3-F-4-0Me	3-CI-4-OMe	3-CI-4-OH	4-Br-3-Cl	3-Br-4-0CF3	3,4-[(CH2)3]	2-Ph	4-1	3-N02	3,5-di-F	3-Br-5-CF3	3,5-di-Cl-4-OH	4-trans-CH=CHC02H	4-Me	3-Br	4-SMe	3-0Ph	3,4-[(CH2)3]	Н	3-SMe	3-Br-4-Me	4-Me	3-0Ph	3,4-[(CH2)3]
2-0Me	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe	3-NH2	4-SMe	3-NO2	2-OMe	2-OMe	2-OMe	2-OMe	2-OMe	3-OPh	3-OPh	3-OPh	3-OPh	3-OPh	3-0Ph	3-OPh	3-OPh	4-OnBu	4-OnBu	4-OnBu
Н	Н	Н	Н	Н	H ·	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	н	н	Н	Н
Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	H	Н	H	Н	Н	Н	H	Н	Н	Н	Н	Н	Н
A592	A593	A594	A595	A596	A597	A598	A599	A600	A601	A602	A603	A604	A605	A606	A607	A608	A609	A610	A611	A612	A613	A614	A615	A616	A617

1		1	1	1	-	_	-	1	1	1	1	1	1	-		1	1	1	1	1	1	1	1	-	-
337	383	427/429 [M-H]-	347/349/351	331/333/335 [M-H]-	.377/379/381 [M-H]-	389/391	345/347	344 [M-H]-	327/329	369/371 [M-H]	419/421/423 [M-H]-	375/377/379 [M-H]-	386/388 [M-H]-	323	323	385	337 [M-H]-	433/435 [M-H]-	313/315	436 [M-H]-	362 [M-H]-	342/344 [M-H]-	422 [M-H]-	383	417/419 Fragment
H	3-SMe	3-Br-4-Me	4-Me	Н	3-SMe	3-Br	3-CI	3-NO2	3,4-di-Me	3,4-di-Me	3-Br	3-CI	3-NO2	3,4-di-Me	3,4-di-Me	3,4-di-Me	3,4-di-Me	4-Br	3-CI	4-(CH2)2NHCO2rBu	2,3-[(CH2)4]	3-N02	4-CH2NHCO2/Bu	4-SMe	3-CI
4-OnBu	4-OnBu	4-OnBu	2,6-di-Cl	2,6-di-Cl	2,6-di-Cl	4-SMe	4-SMe	3,5-di-F	2-CI	4-Br	4-Br	4-Br	3-Br	2-OMe	3-0Me	3-OPh	4-SMe	3-OPh	4-Me	2-OMe	3-NO2	3-CI	2-OMe	4-OnBu	4-C(OMe)2Ph
H	Н	Ŧ	I	H	H	Н	Н	H	F	H	H	Н	Н	Н	H ·	Н	Н	Н	H	н	Н	Н	Н	Н	Н
Н	Н	H	H	Н	Н	Н	H	H	Н	Ħ	Н	Н	Н	Н	Н	Н	Н	Н	H	H	Н	Н	H	Н	Н
A618	A619	A620	A621	A622	A623	A624	A625	A626	A627	A628	A629	A630	A631	A632	A633	A634	A635	A636	A637	A638	A639	A640	A641	A642	A643

	-					-	_	_		_ -																
ion [M-OMe]+	403/405	375/175	344/370	344/340	3251 H-HJ-	33/[M-H]-	323[M-H]-	415[M-H]-	360M tr	403/404	115/A17fW UT	388/300 FM LT	373/375 [M LI]	727 fM tn	-[U-M] /C+	300/366	353	373/375	240	402/405	403/403	355	370	433/435[M-H]-	419/421[M-H]-	300FA11
	3-CI	3-CI	3-CI	2 CMS	J-SIME	711	TI C	3-0Fn	4-SMe	3-Br	3-Br-4-Me	3-CI-4-SMe	3-Cl-4-SMe	4-CH2NHBoc	4-NMe2	4-NMe2	4-NMe2	3-OMe	3-0Me	3 4-di-OMe	3.4-di-OMe	3.4.4: O.4.	3,4-di-OMe	3-Br-4-Me	3-Br	4-SMe
	4-COPh	3-N02-4-0Me	2-NO2	2 4-di-OMe	2 4-di-OMe	2,4-di-OMe	2,1-di-OMe	2,4-di-OMe	2,4-di-OMe	2,4-di-OMe	2,4-di-OMe	3-NO2	2-OMe	3-NO2	4-Br	2-OMe	3-NO2	3-NO2	3-N02	4-Br	2-OMe	3-NO2	70NI-C	4-S02Me	4-SU2Me	4-SO2Me
	·	Н	H	H	Ξ	I		H	Н	H	H	H	I	Ŧ	H	H	H	H	H	H	E	I				I
	E	Н	H	H	H	H	H	H	Н	Н	Н	Н .	Н	Н	Н	H	H	Н	Н	王	H	H		= =		I
	A644	A645	A646	A647	A648	A649	A650	A651	A652	A653	A654	A655	A656	A657	A658	A659	A660	A661	A662	A663	A664	A665	A666	A667	4669	App8

1	1	1	. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	-
382[M]-	434[M]-	342[M]-	356[M]-	388[M]-	327[M-H]-	295[M-H]-	373[M-H]-	321[M-H]-	327[M-H]-	359/361[M-H]-	373/375[M-H]-	391/393[M-H]-	377/379[M-H]-	345[M-H]-	339[M-H]-	391[M-H]-	299[M-H]-	313[M-H]-	345[M-H]-	351	338	326	376[M-H]-	414[M-H]-	386[M-H]-
3,4-[(CH2)3]	3-OPh	H	4-Me	3-SMe	3-SMe	4-Me	3-0Ph	3,4-[(CH2)3]	4-SMe	3-Br	3-Br-4-Me	3-Br-4-Me	3-Br	4-SMe	3,4-[(CH2)3]	3-OPh	Н	4-Me	3-SMe	3,4-[N=N-NH]	2-Me	2-OH	3-CF3	3-0CH2Ph	3-C02H-4-Cl
4-SO2Me	4-SO2Me	4-SO2Me	4-SO2Me	4-SO2Me	2-F	2-F	2-F	2-F	2-F	2-F	2-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	3-N02	3-N02	3-N02	3-N02	3-NO2	3-NO2
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Me	Н	Н	Н	·H
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
A669	A670	A671	A672	A673	A674	A675	9/9Y	A677	8/9Y	A679	A680	A681	A682	A683	A684	A685	A686	A687	A688	4689	A690	A691	A692	A693	A694

	Т	7	Τ.	T		\top	T	_	1	Τ.	T.	7	_	_	_	1		_	-	-	γ.			<u>.</u>	
	_	-	.	-		-	10	-			_				-		-	-	-			-			-
368	340	436	402/404	380	432/434	451 [M-H]-	338	281[M-H]-	470/472 [M-H]-	421 [M-H]-	405/407	383/385/387/389	471/473/475/477	377/379/381	343/345	315/317	343/345	339/341	349/351/353	437/439/441	343/345	309	281	309	305
3-C02Me	2-OMe	3-1	3-C02Me-4-CI	3,4-[(CH2)3]	3-Br-4-Me	4-(CH2)2NHBoc	4-(CH2)2NH2	H	4-CH2NHBoc	3-F-4-Me	3-CI	3,5-di-Cl-4-OH	3,5-di-Br-4-OH	3-C02H-4-CI	3-C02H	3-0H	3,4-[OCH20]	3,4-[(CH2)3]	3,5-di-Cl-4-OH	3,5-di-Br-4-OH	3-C02H-4-CI	3-C02H	3-0H	3,4-[OCH2O]	3,4-[(CH2)3]
3-NO2	3-NO2	3-NO2	3-NO2	3-NO2-4-OMe	3-N02-4-OMe	3-NO2	2-OMe	2-F	4-Br	4-I	2-OCH2Ph	2-CI	2-CI	2-Cl	2-CI	2-CI	2-CI	2-Cl	Н	H	H	X	Н	Н	Н
Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н
Н	H	工	Н	Н	· H	Н	Н	Н	H	H	Н	H	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H
A695	A696	A697	A698	A699	A700	A701	A702	A703	A704	A705	A706	A707	A708	A709	A710	A711	A712	A713	A714	A715	A716	A717	A718	A719	A720

1	1	3 1	1 1	H]- 1	. 1		1	1	1	1	1	1	1	-	1			1	1	1	1	1	1	-	-
340	386	427/429/431/433	515/517/519/521	419/421/423 [M-H]-	387/389	359/361	387/389	475/477/479	263/565/567	469/471	435	407	435	363/365/367	451/453/455	357/359	323	295	323	367/369/371	455/457/459	361/363	327	299	
H	4-SMe	3,5-di-CI-4-OH	3,5-di-Br-4-OH	3-C02H-4-CI	3-C02H	3-ОН	3,4-[OCH2O]	3,5-di-Cl-4-OH	3,5-di-Br-4-OH	3-C02H-4-CI	3-C02H	3-ОН	3,4-[OCH2O]	3,5-di-Cl-4-OH	3,5-di-Br-4-OH	3-C02H-4-Cl	3-C02H	3-ОН	3,4-[OCH2O]	3,5-di-Cl-4-OH	3,5-di-Br-4-OH	3-C02H-4-CI	3-C02H	н0-ғ	•
3-N02-4-0Me	3-N02-4-OMe	4-Br	4-Br	4-Br	· 4-Br	4-Br	4-Br	4-1	4-1	4-1	4-1	4-1	4-1	3-Me	3-Me	3-Me	3-Me	3-Me	3-Me	3-F	3-F	3-F	3-F	3-F	
H	Н	Н	Н	H	H	Н	H	H	H	H	Н	H	H	H	Н	H	H	Н	H	H	Н	Н	н	Н	
H	H	H	Н	Н	Ė	Ξ	I	H	H	I	I	Ι	H	E	H	I	I	H	Н	H	Н	Н	Н	Н	_
A721	A722	A723	A724	A725	A726	A727	A728	A729	A730	A731	A732	A733	A734	A735	A736	A737	A738	A739	A740	A741	A742	A743	A744	A745	

	T	Т	T	ī	T	1	T	T	T-	т-	T :	1	1	т-	$\overline{}$	Τ-	T-	Т		_					.
-	-		-					-	10	10			4					-	-	-				=	_
379/381/383	467/469/471	339	311	379/381/383	467/469/47:1	373/375	339	311	337 [M-H]-	322 [M-H]-	336	352	359/361	354	345/347	380fM-H1	396	385/387	367	381	381/383/385/387	397/399		355	327/329
3,5-di-Cl-4-OH	3,5-di-Br-4-OH	3-C02H	3-0H	3,5-di-Cl-4-OH	3,5-di-Br-4-OH	3-C02H-4-Cl	3-C02H	3-0H	4-CH2NH2	4-CH2NH2	3,4-[S-CH=N]	3,4-[S-CH=N]	3-C02H-4-Cl	4-SMe	3-OH-4-OMe	4-(CH2)2CO2H	4-(CH2)2CO2Me	4-(CH2)2CO2Me	4-(СН2)2СО2Н	4-(CH2)2CO2Me	3,5-di-Cl-4-Me	4-trans-	CH=CHCO2Et	3-F-4-Me	2-Me
4-OMe	4-OMe	4-OMe	4-OMe	3-OMe	3-0Me	3-0Me	3-0Me	3-0Me	3-NO2	2-OMe	3-Me	3-0Me	4-0H	4-NMe2	4-CI	3-NO2	3-NO2	4-CI	2-OMe	2-OMe	4-CI	4-CI		4-CO2Me	4-CI
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н		Н	Me
H	H	Н	H	H	H	Ŧ	H	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н		H	H
A747	A748	A749	A750	A751	A752	A753	A754	A755	A756	A757	A758	A759	A760	A761	A762	A763	A764	A765	A766	A767	A768	A769		A770	A771

12	12	12		1	-	1	-	1	1	-	-	-1	-	-	1	-
522	511/513	507	377/379/381	465/467/469	371/373	337	323	337	391/393/395	479/481/483	385/387	351	337	351	427/429/431/433	515/517/519/521
4- [(CH2)2CONH(CH2)6 - NHCOMe]	4- [(CH2)2CONH(CH2)6 - NHCOMe]	4- [(CH2)2CONH(CH2)6 - NHCOMe]	3,5-di-Cl-4-OH	3,5-di-Br-4-OH	3-C02H-4-CI	3-C02H	3-0Me	3,4-[OCH2O]	3,5-di-Cl-4-0H	3,5-di-Br-4-OH	3-C02H-4-Cl	3-C02H	3-0Me	3,4-[OCH2O]	3,5-di-Cl-4-OH	3,5-di-Br-4-OH
3-NO2	4-CI	2-ОМе	3,5-di-Me	3,5-di-Me	3,5-di-Me	3,5-di-Me	3,5-di-Me	3,5-di-Me	4-iPr	4-iPr	4-iPr	4-iPr	4-iPr	4-iPr	2-Br	2-Br
H	I	н	H	Н	Н	Н	Н	Н	I	Н	Н	Н	Н	Н	H	Н
H	H	н	Н	Н	Н	H	H	H	Н	Н	Н	Н	H	H	H	Н
A772	A773	A774	A775	A776	A777	A778	A779	A780	A781	A782	A783	A784	A785	A786	A787	A788

· [Т		7	\top			\neg		T	_		_				.	·-	_	_						
-	-	- -	- -	- -	- -	- -	-	- -	-	-	.		_	-		-					-				1
307/360	3071307	387/380	355	413/415/417/410	501/503/505/507	407/409/411	371/373 [M-H]-	359/361	363/365/367	451/453/455	323	309.	323	415/417/419/421/423	[M-H]-	503/505/507/509/511	[M-H]-	377/379/381	363/365/367	375/377/379fM-HJ-	381/383/385/387[M-	H.	343/345	329/331	373/375
3-CO2H	3-0Me	3.4-[OCH20]	3-0Me	3.5-di-CI-4-OH	3.5-di-Br-4-OH	3-C02H-4-CI	3-C02H	3-0Me	3,5-di-Cl-4-OH	3,5-di-Br-4-OH	3-C02H	3-0Me	3,4-[OCH2O]	3,5-di-Cl-4-OH		3,5-di-Br-4-OH		3-C02H	3-0Me	3,4-[OCH20]	3,5-di-CI-4-OH		3-C02H	3-OMe	3,4-[OCH2O]
2-Br	2-Br	2-Br	3,4-di-OMe	3-CI-4-OMe	3-CI-4-OMe	3-CI-4-0Me	3-CI-4-OMe	3-CI-4-OMe	4-Me	4-Me	4-Me	4-Me	4-Me	2,4-di-CI		2,4-di-Cl		2,4-di-Cl	2,4-di-Cl	2,4-di-Cl	3-CI		3-CI	3-Cl	3-Cl-4-OMe
H	H	H	H	H	Н	H	н	Н	Н	H	Н	Н	Н	H		H		H	H	Н	Н		F	Н	Н
H	H	H	H	Н	Н	Н	Н	Н	Н	H	Н	H	Н	I		I		F	H	H	H		H	H	H
A789	A790	A791	Å792	A793	A794	A795	A796	A797	A798	A799	A800	A801	A802	A803		A804	200	A805	A806	A807	A808		A809	A810	A811

-			-	-	1	-	1	1	-	1	-		1		-	-	-	-		-		4	4	23	14
425/427/429/431[M-	H)-	393/395/397 [M-H]-	365/367/369 [M-H]-	343/345	381/383	387/389[M-H]-	354/356	379/381	371/373	383/385/387[M-H]-	415/417/419/421/423	[M-H]-	415/417/419/421/423	[M-H]-	367/369/371	363/365/367	392/394/396 [M-H]-	441/443/445	441/443/445	426/428/430/432 [M-	HJ-	331/333	375/377	369/371	368/370
3,5-di-Cl-4-OH		3,5-di-Cl-4-OH	3,5-di-Cl-4-OH	3,4-[OCH2O]	3,4-[CO(CH2)4]	3,4-[CH2SO2CH2]	3,4-[0-C(Me)=N]	3,4-[OCF20]	3,4-[O(CH2)3O]	3,5-di-Cl-4-OH	3,5-di-Cl-4-OH		3,5-di-Cl-4-OH		3,5-di-Cl-4-OH	3,5-di-Cl-4-OH	3,5-di-Cl-4-OH	3,5-di-Cl-4-OH	3,5-di-Cl-4-OH	3,5-di-Cl-4-OH		3-CI-4-OH	3-Br-4-OH	4-trans-CH=CHCO2H	4-trans-
3-Br		4-SMe	4-F	3-CI	4-CI	4-CI	4-CI	4-CI	4:CI	2,3-di-F	2,6-di-Cl		3,4-di-Cl		2-F	2-Me	4-NO2	3-OPh	4-OPh	3-N02-4-CI		4-0H	4-0H	4-CI	4-CI
Н		H	Н	Н	Н	Н	Н	Н	Н	Н	Н		Н		Н	Н	Н	Н	Н	Н		Н	Н	Н	Н
H		H	H	H	I	H	H	H	H	Н	I	-	Н	•	王	I	I	Ŧ	X	H		H	Н	H	Н
A812		A813	A814	A815	A816	A817	A818	A819	A820	A821	A822		A823		A824	A825	A826	A827	A828	A829		A830	A831	A832	A833

	T	-T-	7	Т	Т	_	т-	_	Τ-		_	_		-			_				- -				
17	-	- -	-	-	- -	- -	-	.	.	.	-	-	. -	.	.	-	-	- -	.	.	•	• -	. -	. -	- -
	343/345	401/403/405 FM-H1-	392/395/397 [M-H].	383/385/387 [M-H].	481/483	377/379[M-H]-	340	340	356/358	415/417/419 [M-H]-	447/449/451 [M-H]-	431/433/435 [M-H]-	415/417/419 [M-H]-	483/485/487 [M-H]-	393/395/397	455/457/459	399/401/403	354/356	340	400/402	400/402	389/391/393 [M-H]-	420/422	349/351	357/359
CH=CHCONH2	4-OMe	3.5-di-Cl-4-OH	3.5-di-Cl-4-OH	3.5-di-Cl-4-0H	3-f0C6F51	2,3-[OCF20]	3,4-[S-CH=N]	3,4-[S-CH=N]	3,4-[S-CH=N]	3,5-di-Cl-4-OH	3,5-di-Cl-4-OH	3,5-di-Cl-4-0H	3,5-di-CI-4-OH	3,5-di-Cl-4-OH	3,5-di-Cl-4-OH	3,5-di-Cl-4-OH	3,5-di-Cl-4-0H	3,4-[N=C(Me)-0]	3,4-[S-CH=N]	3,4-[S-CH=N]	3,4-[S-CH=N]	3-C02H-4-CI	4-CH2SO2NHMe	3,5-di-F	3,4-[OCH20]
	4-CI	3,4,5-tri-F	2-N02	3,5-di-F	4-CI	4-CI	2-F	3-F	3-CI	4-CF3	3-SCF3	4-0CF3	3-CF3	3,5-bis-CF3	3,4-[OCH20]	2-OCH2Ph	3,4-[(-CH=CH-)2]	, 4-Cl	4-F	3-Br	2-Br	4-CI	4-CI	4-CI	4-Cl
	Me	H	I	Ŧ	H	I	Н	Н	H.	Н	Н	H	Н	н	H	Ξ	H	Н	Н	Н	Н	H	Н	Н	Н
	Н	Н	Н	Н	H	н	Н	H	Н	H	Н	H	Ŧ	I	Н	Н	Н	Н	Н	Н	Н	Me	Me	Me	Me
	A834	A835	A836	A837	A838	A839	A840	A841	A842	A843	A844	A845	A846	A847	A848	A849	A850	A851	A852	A853	A854	A855	A856	A857	A858

1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-	-	1	1
397/399/401/403	399/401	385/387	453/455/457	347	341	390/392/394	390/392/394	317 [M-H]-	390	355	313	317/319	347/349	333/335	-[H-M] <i>1</i> 98	311	331/333	283	315/317 [M-H]-	329/331	363/365/367	349/351/353	385/387	359/361	360/362
3,5-di-Cl-4-OH	4-(CH2)2CO2Me	4-(СН2)2СО2Н	3,5-di-Cl-4-OH	4-SMe	3,4-[(CH2)3]	3,4-[S-CH=N]	3,4-[S-CH=N]	3,5-di-F	4-CH2SO2NHMe	4-(СН2)2СО2Н	3-0Me	3-CI	3-CI-4-0Me	3-CI-4-OH	4-(СН2)3С02Н	3,5-di-Me	3-CI-4-Me	Н	3-F	3-0Me	3-CI-4-OMe	3-CI-4-OH	4-(CH2)3CO2H	3,5-di-OMe	3-N02-4-OH
4-Cl	4-CI	4-CI	4-COPh	3,4-di-F	3,4-di-F	2,4-di-Cl	3,4-di-CI	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	2-CI	2-CI	2-CI	2-CI	2-CI	2-CI	2-CI
H	H	H	Н	H	Н	Н	Н	н	H	H	Н	Н	H	H	H	H	H	н	Н	н	H	H	Н	н	H
Me	Me	Me	X	田	H	H	工	H	H	I	Н	H	H	H	H	H	H	H	Ξ	Н	H	Н	Н	Н	H
A859	A860	A861	A862	A863	A864	A865	998A	A867	A868	A869	A870	A871	A872	A873	A874	A875	A876	A877	A878	A879	A880	A881	A882	A883	A884

		T										Γ	T					Τ	Γ	T	Τ	Τ	T		T
	-	-	-		-	- -	.			_	_	-	-	-		-		-		-	_		-		_
449/451	356/358	370/372	329/331	363/365/367	349/351/353	322/324 [M-H]-	357/359	371/373	347/349/351	359	343 [M-H]-	356/358	356/358	380/382[M-H]-		380/382[M-H]-		358	367/369	445/447 [M-H]-	385/387 [M-H]-	371/373	390/392/394	377/379/381	349/351/353
4-CH2P(O)(OEt)2	4-NHCOMe	4-(CH2)2CONH2	3-СН2ОН	3-CI-4-0Me	3-CI-4-OH	3-CN	3-C02Me	2-Me-5-C02Me	3-CI-4-Me	3-C02Me	3-C02H	2,3-[S-CH=N]	3,4-[N=CH-S]	3,4-	[(CH2)2N(COMe)]	3,4-	[N(COMe)(CH2)2]	3,4-[S-CH=N]	3,4-[CH=CHCO-0]	4-CH2NHCONHPh	4-OCH2CO2Me	4-(CH2)2CO2H	3,4-[S-CH=N]	3-C02H-4-CI	3-Cl-4-OH
2-CI	2-CI	2-CI	2-CI	4-CI	4-CI	4-Cl	4-Cl	4-CI	4-CI	3,4-di-F	3,4-di-F	4-CI	4-CI	4-CI		4-CI		3,4-di-F	4-CI	2-CI	4-CI	2-CI	2,6-di-Cl	3-Cl	3-CI
Н	Н	н	Н	Н	I	H	Н	Н	Н	Н	Н	Н	Н	H		H		Н	Н	Н	Н	Н	Н	Н	H
H	н	Н	H	I	H	Н	Н	Н	Н	Н	Н	Н	王	H		I		H	H	H	H	н	Ŧ	Ŧ	H
A885	A886	A887	A888	A889	A890	A891	A892	A893	A894	A895	A896	A897	A898	A899		A900		· A901	A902	A903	A904	A905	A906	A907	A908

-	-	1	1	13	13	13	13	13	13	13	1	1	1	1	1	1	I	1	1	22	1	-	1	1	
335/337	329/331	315/317	406/408	407/409/411 [M-H]-	391/393/395 [M-H]-	419/421/423 [M-H]-	439/441/443	441/443/445	425/427/429	457/459/461	445/447 [M-H]-	368/868/168	379/381	395/397 [M-H]-	377/379 [M-H]-	388/390	11/379 [M-H]	345	363	337	313	331	349	331	338 [M-H]-
3,5-di-F	3-СН2ОН	3-OH	4-CH2SO2NHMe	3,5-di-Cl-4-0H	3,5-di-Cl-4-0H	3,5-di-Cl-4-OH	3,5-di-CI-4-OH	3,5-di-CI-4-0H	3,5-di-CI-4-OH	3,5-di-Cl-4-OH	4-CH2NHCONHPh	3-CO2Me-4-CI	3-C02H-4-Cl	3-C02H-4-CI	3-C02H-4-CI	3-C02H-4-CI	3-C02H-4-CI	3,4-[OCH2O]	3,4-[OCH2O]	3,5-di-F	3-СН2ОН	3-CH20H	3-СН2ОН	3-СН2ОН	3-СН2ОН
3-CI	3-CI	3-CI	3-CI	2,4-di-OMe	2-0Et	4-OnBu	3,4,5-tri-OMe	2-OPh	4-Ph	2-OMe-5-Br	4-CI	4-CI	2,3-di-F	3,4,5-tri-F	3,5-di-F	2-NO2	3,4-di-F	2,3-di-F	3,4,5-tri-F	2,3-di-F	2-F	2,3-di-F	3,4,5-tri-F	3,5-di-F	2-NO2
H	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	H	Н	Н	Н	Н	H	H	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	Н	Н	Н.	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
A909	A910	A911	A912	A913	A914	A915	A916	A917	"A918	A919	A920	A921	A922	A923	A924	A925	A926	A927	A928	A929	A930	A931	A932	A933	A934

	-	-	-	-	13	13	-	-		-	-	-	-	-		-		-					-	-	-
331	387	363/365/367	317	317	399/401/403	389/391	357/359	409/411/413/415	[M-H]-	383/385/387/389	367/369/371 [M-H]-	363/365/367	349/351/353	438/440/442 [M-H]-	419/421 [M-H]-	386 [M]-	391/393 [M-H]-	379	451/453/455	417/419	423/425/427	409/411	403/405	389/391	323
3-СН2ОН	3-CH2OH	3-СН2ОН	3-OH	3-0H	3,5-di-Cl-4-OH	4-SCH2C02H	3,4-[0(CH2)20]	3-C02H-4-CI		3-CI-4-OH	3,5-di-F	3-СН2ОН	3-0H	4-CH2SO2NHMe	3-C02H-4-Cl	3,4-[OCH2O]	3-Cl-4-OH	3,5-di-F	3-C02H-4-CI	3,4-[OCH2O]	3-Cl-4-OH	3,5-di-F	3-CH20H	3-ОН	3,4-[OCH2O]
3,4-di-F	2-OPh	2,4-di-Cl	2,3-di-F	3,5-di-F	2,3-[(-CH=CH-)2]	4-CI	4-CI	3,4-di-Cl		3,4-di-Cl	3,4-di-Cl	3,4-di-Cl	3,4-di-Cl	3,4-di-Cl	4-SO2Me	4-SO2Me	4-SO2Me	4-SO2Me	2-OMe-5-Br	2-OMe-5-Br	2-OMe-5-Br	2-OMe-5-Br	2-OMe-5-Br	2-OMe-5-Br	2-Me
Н	Н	Н	Н	H	H	H	H	H		Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H
Н	Н	Н	Н	H	H	Н	H	I		H	Н	H	H	H	H	Н	H	Н	H	Н	Н	Н	H	H	H
A935	A936	A937	A938	A939	A940	A941	A942	A943		A944	A945	A946	A947	A948	. A949	A950	A951	A952	A953	A954	A955	A956	A957	A958	A959

PCT/GB99/03280

-	-	-	-		-			17		1	_					1					1	_			
329/331	309	295	419/421/423 [M-H]-	387/389	393/395/397	379/381	401/403	446/448		361/363	411/413/415/417	327	345	354	345	401	377/379/381	333/335	351/353	369/371	351/353	360/362	351/353	407/409	383/385/387/389
3-CI-4-OH	3-СН2ОН	3-0H	3-C02H-4-Cl	3,4-[OCH2O]	3-CI-4-OH	3,5-di-F	4-trans-CH=CHPh	4-SCH2CO-	NH(CH2)20Me	3-C02H-4-Cl	3-C02H-4-Cl	3,4-[OCH2O]	3,4-[OCH2O]	3,4-[OCH2O]	3,4-[OCH2O]	3,4-[OCH2O]	3,4-[OCH2O]	3-Cl-4-OH	3-CI-4-OH	3-CI-4-OH	3-Cl-4-OH	3-Cl-4-OH	3-CI-4-OH	3-Cl-4-OH	3-CI-4-OH
2-Me	2-Me	2-Me	3-Br	3-Br	3-Br	3-Br	4-CI	4-CI		2-F	2,4-di-Cl	2-F	3,5-di-F	2-NO2	3,4-di-F	2-OPh	3,4-di-Cl	2-F	2,3-di-F	3,4,5-tri-F	3,5-di-F	2-NO2	3,4-di-F	2-OPh	2,4-di-Cl
H	H	H	Н	Н	Н	Н	Н	Н	· ·	Н	H	H	Н	H	Н	Н	H	H	H	H	H	Н	H	H	Н
H	Н	H	Н	Н	Н	H	H	H		Н	H	H	Н	Н	H	Н	Н	Н	Н	H	Н	Н	Н	Н	Н
A960	A961	A962	A963	A964	A965	A966	A967	A968		A969	A970	A971	A972	A973	A974	A975	A976	A977	A978	A979	A980	A981	A982	A983	A984

							Γ		T		T	\top	T					Τ	T	T	Τ	T	T	T	Ţ
-	- -	-		-	-	- -	•	-	. -	3	-	13				-	13	13	13	-	. -	-	-	-	
319	353 [M-H]-	335 [M-H]-	335 [M-H]-	299	335	326	317	373	349/351/352	420/422 [M-H]-	434/436	350/352	343/345	391/393	405/407/409 [M-H]-	418	355/357 [M-H]-	357/359	359/361	317/319	395/397/399	363/365	331/333	361/363	
3.5-di-F	3,5-di-F	3,5-di-F	3,5-di-F	3-0H	3-0H	3-0H	3-0H	3-0H	3-0H	4-SO2NH2	3-SO2NHnBu	2,3-[N=CH-CH=CH]	3-CI	3-CI	3-CI	3-SO2NHnBu	2-Me-5-C02H	3-СН2СО2Н	2-0H-5-CO2H	Н	3-Br	4-SMe	4-Me	3,4-[OCH20]	
2-F	3,4,5-tri-F	3,5-di-F	3,4-di-F	2-F .	3,4,5-tri-F	2-N02	3,4-di-F	2-0Ph	2,4-di-Cl	4-Br	4-CI	4-CI	2-0Et	2-OPh	2-OMe-5-Br	3-F	4-CI	2-CI	4-CI	2-F-6-CI	2-F-6-CI	2-F-6-CI	2-F-6-CI	2-F-6-Cl	1000
Н	Н	H	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	1
Н	Н	Н	Н	H	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	H	H	Н	Н	H	Н	Н	Н	H	н	7
A985	A986	A987	A988	A989	A990	A991	A992	A993	A994	A995	A996	A997	A998	A999	A1000	A1001	A1002	A1003	A1004	. A1005	A1006	A1007	A1008	A1009	~ C101 V

-	-	_	-	-		-	-	-	_	-	13	13	13	13	_	13	13	13	1	1				
424/426	391	297	297	313	301	343	453/455/457	433	301	313	416	354.	368/370 [M-H]-	385/387/389	498	375/377/379 {M-H]-	399/401/403/405 [M- H]-	431/433/435 [M-H]-	306 [M-H]-	351/353/355	403 [M-H]-	522/524		
4-CH2SO2NHMe	Н	2-Me	3-Me	3-CH2OH	3-F ·	3,5-di-OMe	3,5-di-Br-4-Me	4-CH2P(O)(OEt)2	4-F	4-OMe	4-CH2NHCOPh	4-CH2NHCOMe	4-CH2NHCOMe	3,5-di-Cl-4-OH	4-CH2SO2NHMe	3,5-di-Cl-4-0H	3,5-di-Cl-4-OH	3,5-di-Cl-4-OH	3-CN	3,4-di-Cl	4-Me	3-[trans-	CH=CHCONMe2]-4-	CI
2-F-6-CI	4-1	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	4-CI	2,6-di-F	4-1	2,5-di-Me	2-F-6-Cl	2-0CF3	3-F	3-F	4-I	4-I		
H	Н	Н	H	H	丰	H	H	I	H	I	H	H	I	二	H	H	H	Н	H	H	H	Н		
Н	H	H	H	Н	H	Н	Н	Н	H	Н	H	H	Н	H	H	Н	H	H	H	H	H	H		
A1011	A1012	A1013	A1014	A1015	A1016	A1017	A1018	A1019	A1020	A1021	A1022	A1023	A1024	A1025	A1026	A1027	A1028	A1029	A1030	A1031	A1032	A1033		

			÷												T							 -			
-			1	_	-	_		-	-	-	-	-	-	-	-	-	-	-	13	13	20		-	-	_
412/414 [M-H]-			301	331/333	327	387	325	354	335/337	351/353/355	335/337	327/329	425/427	383/385	388/390	457/459/461 [M-H]-	462	375	347/349/351 [M-I]-	430	411		363/365/367 [M-H]-	383/385/387	425/427/429/431
3-[trans-	CH=CHCONMe2]-4-	5	2-F	2-Me-5-CI	2-Me-4-0Me	3-COPh	3-COMe	4-(CH2)2CONH2	3-CI	3-CI	3-CI	3-CI	3-CI	3-CI	4-(CH2)2CONH2	3,5-di-CI	4-(CH2)2CONH2	4-OPh	3,5-di-Cl-4-OH	4-(CH2)2NHCOPh	3-[4-Methylpiperazin-	1-yl]-4-0Me	3,5-di-Cl-4-Me	3,5-di-Cl-4-Me	3,5-di-Cl-4-Me
3-F			3-F	3-F	3-F	3-F	3-F	3-F	2,6-di-F	2-F-6-CI	2,5-di-F	2,5-di-Me	.2-I	2-0CF3	2-F-6-CI	4-1	4-1	3-F	4-I	3-F	3-F		3-F	2,3-di-F	4-Br
Н			H	Н	Н	н	н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H		H	王	Н
Н		-	F	H	I	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	I		Н	H	H
A1034			A1035	A1036	A1037	A1038	A1039	A1040	A1041	A1042	A1043	A1044	A1045	A1046	A1047	A1048	A1049	A1050	A1051	A1052	A1053		A1054	A1055	A1056

	-	-	-				-	-	-	-	1	-		-	_		-	-	-	1	-	1	-	-	-
379/381	427/429	307	405	363	473/475/477	381/383/385/387	361/363/365	415/417/419/421/423	469/471	379/381	347	339.	437	395	347	315	315	345	337	435	393	341	333	431	389
3-Br	3-Br	4-Me	4-Me	4-Me	3,5-di-Cl-4-Me	3,5-di-Cl-4-Me	3,5-di-Cl-4-Me	3,5-di-Cl-4-Me	3-Br	3-Br	4-SMe	4-SMe	4-SMe	4-SMe	4-SMe	4-Me	4-Me	3,4-[OCH2O]	3,4-[OCH2O]	3,4-[OCH2O]	3,4-[OCH2O]	3,4-[(CH2)3]	3,4-[(CH2)3]	3,4-[(CH2)3]	3,4-[(CH2)3]
2,5-di-F	2-OCF3	2,5-di-Me	2-1	2-0CF3	4-1	2-CI	3-Me	2,4-di-Cl	2-1	2,6-di-F	2,5-di-F	2,5-di-Me	2-1	2-0CF3	2,6-di-F	2,5-di-F	2,6-di-F	2,5-di-F	2,5-di-Me	2-1	2-0CF3	2,5-di-F	2,5-di-Me	2-I	2-0CF3
H	Н	H	H	H	H	Н	Н	H	H	H	H	Н	H	Н	Н	Н	Н	H	Н	Н	H	H	Н	Н	H
H	H	H	H	H	Н	H	H	H	H	Н	H	Н	H	н	Н	H	Н	H	Н	Н	H	Н	H	H	H
A1057	A1058	A1059	A1060	A1061	A1062	A1063	A1064	A1065	A1066	A1067	A1068	A1069	A1070	A1071	A1072	A1073	A1074	A1075	A1076	A1077	A1078	A1079	A1080	A1081	A1082

	1			T							T	T				Τ	T	T	Ţ.	T	Τ	T	T		İ
-		-			-	-	-	-	-	-	-	-	_	-	-	-		-	-	-	-	-		ı	-
341	420	301	293	391	349	301	358	372	358	358	402	340	354	340	340	384	351	339	355	311	325	363	366		355
3,4-[(CH2)3]	4-(CH2)2CONH2	Н	H	Н	H	H	3-CH2CONH2	3-CH2CONHMe	3-CONHMe	3-CONH2-4-Me	3-CONH(CH2)20Me	3-CH2CONH2	3-CH2CONHMe	3-CONHMe	3-CONH2-4-Me	3-CONH(CH2)20Me	3-CF3	4-nBu	4-OnBu	2-Et	2-iPr	3,4-[OCF20]	3,4-	[(CH2)2N(COMe)]	3,4-[0(CH2)30]
2,6-di-F	2-0CF3	2,5-di-F	2,5-di-Me	2-I	2-0CF3	2,6-di-F	2,3-di-F	2,3-di-F	2,3-di-F	-2,3-di-F	2,3-di-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F		3-F
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	· H	Н	Н	Н	Н	Н	Н	·H		H
Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	H		H
A1083	A1084	A1085	A1086	A1087	A1088	A1089	A1090	A1091	A1092	A1093	A1094	A1095	A1096	A1097	A1098	A1099	A1100	A1101	A1102	A1103	A1104	A1105	A1106		A1107

	1	1	1	1	. 1	1	1	1	1	1	1	1	1	1	-	1	1	1	1	1		1		1	-
311	343	445/447	341	326	315	409	389	410 [M-H]-	317/319	340	389	339.	363	375/377	331/333	325 [M-H]-	375	373	395/397/399	341	413 [M-H]-	311	311	331/333	313
3,4-di-Me	3,4-di-OMe	3-Br-4-OCF3	3-C02Me	3-CONH2	3-F-4-Me	3-I	3-ОСН2Рћ	4-CH2NHBOC	4-Cl	4-NHCOMe	4-OCH2Ph	4- <i>t</i> Bu	2,3-[OCF20]	2-Me-3-Br	2-Me-3-Cl	2-Me-5-CH2OH	2-OPh	3,4-[CH2SO2CH2]	3-Br-4-Cl	3-0 <i>i</i> Pr	3-S02CF3	2,3-di-Me	2,4-di-Me	2-Me-4-Cl	2-OMe
3-F	3.F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F	3-F
Н	Н	Н	Н	H	H	Н	E	H	Н	Н	Н	Н	Н	н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	Н	Н	H	H	Н	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Н	Н	Н	Н	Н	Н
A1108	A1109	A1110	A1111	A1112	A1113	A1114	A1115	A1116	A1117	A1118	A1119	A1120	A1121	A1122	A1123	A1124	A1125	A1126	A1127	A1128	A1129	A1130	A1131	A1132	A1133

	_	Т	1		т	$\overline{}$	Τ-	_	_	_		_										,		•	
-	-	_	-	-	-		-	-		1		-	_	13	_	1	<u>. </u>	-	1.	13		13		13	
359	329	311	364	372	462	372	345	383/385/387	408	400	498	456.	408	432/434	358	417/419		425/427	421	352		370		507/509/511	
2-Ph	2-SMe	3-Et	4-(CH2)2CONH2	4-(CH2)2CONH2	4-(CH2)2CONH2	4-(CH2)2CONH2	3,4-[OCH2O]	3,5-di-Cl-4-Me	4-CH2SO2NHiMe	4-CH2SO2NHMe	4-CH2SO2NHMe	4-CH2SO2NHMe	4-CH2SO2NHMe	4-CH2NHCOPh	3,4-[S-CH=N]	4-trans-CH=CH-(4-	OH-Ph)	4-Cl	4-0Me	4-trans-	CH=CHCONH2	4-trans-	CH=CHCONH2	3-[4-(COCHCI2)-	Piperazin-1-yl]-4-0Me
3-F	3-F	3-F	2,5-di-Me	2,5-di-F	Z-I	2,6-di-F	2,6-di-F	3,5-di-F	2,5-di-F	2,5-di-Me	2-1	2-0CF3	2,6-di-F	4-CI	2,3-di-F	4-CI		4-I	4-I	3-F		2,3-di-F		3-F	
Н	H	Н	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H		Н	Н	I		н		H	
Н	Ξ	H	H	H	H	Н	Н	Н	Н	Н	Н	H	Н	H	Ŧ	工		Н	H	H		H		H	
A1134	A1135	A1136	A1137	A1138	A1139	A1140	A1141	A1142	A1143	A1144	A1145	A1146	A1147	A1148	A1149	A1150		A1151	A1152	A1153		A1154		A1155	

H
1
1
ı
1
I
l
2,3-di-F
1

	Т	т-	T-			_	_	Τ-							· ·	_	_	•	_				
	-		-		-			_	•		_	3	,	7	-	-		-	-		-		
337	337.	409	393	392	349	349/351	394	430			410	343/345	200	/60	342	341	341	379 [M-H]-	367/369/371 [M-H]-	327 [M-H]-	317 [M-H]-	363/365 [M-H]-	343 [M-H]-
2,3-di-F	2,5-di-F	4-SPh	4-OPh	4-NHPh	2-OMe-3-F	3-CI-4-Me	4-NHSO2Me	3-[CH2-(1,3-	Thiazolidine-2,4-dion-	5-yl)]	4-[OCH2-(1-Methyl-piperazin-4-yl)]	H	Ŋ	=	3,4-[N=N-NH]	3,4-[CH=N-NH]	3,4-[NH-N=CH]	3,4-[OCF20]	3,5-di-Cl	3,5-di-Me	2-F	3-CI-4-OMe	3-СО2Н
2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F			3-F	2-CI	2 5. di. Ma	21,110-0,0	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F
Н	Н	Н	Н	Н	Н	н	н	H			I	(CH2)20 H	OC(CHJ)	OZ(ZIIO)	Н	Н	Н	Н	Н	Н	Н	Н	Н
Н	H	Н	H	H	Н	Н	Н	Н			田	Н	H	e 1	Н	Н	Н	Н	Н	Н	Н	Н	Н
A1178	A1179	A1180	A1181	A1182	A1183	A1184	A1185	A1186			A1187	A1188	A1189		A1190	A1191	A1192	A1193	A1194	A1195	A1196	A1197	A1198

	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	_	-
319	333	425 [M-H]-	329 [M-H]-	370 [M-H]-	317 [M-H]-	333/335 [M-H]-	358	331	358	343 [M-H]-	405 [M-H]-	438/440/442 [M-H]-	402/404/406 [M-H]-	367/369/371 [M-H]-	345/347/349 [M-H]-	365/367/369/371 [M- H]-	331/333/335 [M-H]-	424 [M-H]-	390	353 [M-H]-	333	351/353 [M-H]-	359	319
3-F	3-F-4-Me	3-I	3-0Me	4-CH2CH2CONH2	4-F	4-CI	4-NHCOMe	4-OMe	4-CH2CONH2	3-CH20Me	3-CH(OH)Ph	4-CH2SO2NHMe	4-CH2CH2CONH2	3,5-di-F	4-Me	3-Cl	Н	4-CH2SO2NHMe	4-CH2CH2CONH2	3,5-di-F	4-Me	3-CI	3,4-[(CH2)3]	Н
2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	3,5-di-Cl	3,5-di-Cl	3,5-di-Cl	3,5-di-Cl	3,5-di-Cl	3,5-di-Cl	2,3,5-tri-F	2,3,5-tri-F	2,3,5-tri-F	2,3,5-tri-F	2,3,5-tri-F	2,3,5-tri-F	2,3,5-tri-F
H	H	H	Н	H	H	Н	Н	H	Н	H	H	Н	Н	Н	Н	H	H	H	Н	H	H	Н	H	Н
H	H	Н	H	Н	H	Н	H	Н	Н	Н	Н	Н	H	Н	H	Н	H	H	H	Н	Н	Н	Н	Н
A1199	A1200	A1201	A1202	A1203	A1204	A1205	A1206	A1207	A1208	A1209	A1210	A1211	A1212	A1213	A1214	A1215	A1216	A1217	A1218	A1219	A1220	A1221	A1222	A1223

	T	_	_	$\overline{}$	'		т-		_	-				-	,	<u>. </u>		_			,				
-	_		-	-			20		-	-		-			12			10			6			13	_
373	349	345	340	371/373/375 [M-H]-	401		399		357 [M-H]-	426 [M-H]-		416			578 [M-H]-			480			706			385 [M-H]-	
3,4-[O(CH2)30]	3-F-4-0Me	4-(CH2)20H	4-CH2CN	3,4-[(CH2)3]	3-[CO2H]-4-	[СН2СО2Н]	4-[4-Methyl-piperazin-	[l-yl]	3,4-[O(CH2)20]	4-[CH2CO-	(Morpholin-1-yl)]	4-	[CH2CONH(CH2)20	Me]	4-	[(CH2)2CONH(CH2)6	NHB0C]	4-	[(CH2)2CONH(CH2)6	NH2]	4-	[(CH2)2CONH(CH2)6	NH-Biotinyl]	3-	[CH2CH(Me)CO2H]
2,3-di-F	2,3-di-F	2,3-di-F	2,3-di-F	3,5-di-Cl	2,3-di-F		2,3-di-F		2,3-di-F	2,3-di-F		2,3-di-F			3-N02			3-N02			3-NO2			2,3-di-F	
Н	н	Н	Н	Н	H		н		Н	H		王		-	H			H			Н	-		I	
Н	H	Н	Н	Н	H				Н	H		H			H			I			H			H	
A1224	A1225	A1226	A1227	A1228	A1229		A1230		A1231	A1232		A1233			A1234			A1235			A1236			A1237	

13	13		13	·	
401/403/405 [M-H]-	415/417/419/421/423 FM-H1-	337	391		
3,5-di-Cl-4-OH	3,5-di-Cl-4-OH	2,3-di-F	4-[SCH2CO2H]		
2,3,5-tri-F	3,5-di-CI	3,5-di-F	2,3-di-F		
H	Н	Н	H		
H	Н	Н	H		
A1238	A1239	A1240	A1241		

Table B

Encompassing compounds of general formula (I) and substituents R, R¹, R² and R³ are listed in Table B.

. 0	X - R	
α-z	<u> </u>	Ξ
	, , , , , , , , , , , , , , , , , , ,	

For Procedure See Example No.	3	5	5	-		
[M+H] ⁺ Observed; (Unless [M] ⁻ or [M-H] ⁻ are Indicated)	332	228	318	189	279	369
R	Ph	Н	Ph	Н	CH2Ph	CH2Ph
R ²	Indol-3-yl	Indol-3-yl	Indol-3-yl	Ph	Ph	hd .
_ ~	Me	Н	Me	Н	H	Н
x	Me	Н	Н	Н	Н	СН2РҺ
Example No.	Bl	B2	B3	. B4	B5	B6

-	-	-	-		·		-	-		-	-	-	-	1	-	-	1			16	13	18	18	13	13
313	323	279/281	327/329	341/343	245	293	307	339/341		315	338	352 ·	314 [M-H]-	383	396 [M-H]-	389/391	389/391	381/383		234	328/330	281/283	373	314/316	332/334/336 [M-H]-
Et	CH2Ph	亞	CH2Ph	(CH2)2Ph	Et	CH2Ph	(CH2)2Ph	(СН2)20Ме		4-Me-Oxazol-2-yl	CH2Ph	(CH2)2Ph	Cyclohexyl	Fluoren-2-yl	Fluoren-2-yl	Dibenzofuran-2-yl	Dibenzofuran-3-yl	(2-Acetylbenzofuran-	5-yl)	Н	2,6-di-Me-pyridin-3-yl	(CH2)20Me	(CH2)20Me	2-Methylpyridin-3-yl	2-Chloropyridin-5-yl
4-CF3-Ph	4-OMe-Ph	4-CI-Ph	4-CI-Ph	4-CI-Ph	Ph	Ph	Ph	4-CI-Ph		3-NO2-Ph	3-NO2-Ph	3-NO2-Ph	3-NO2-Ph	2-OMe-Ph	3-NO2-Ph	4-CI-Ph	4-CI-Ph	4-CI-Ph		3-N02-Ph	4-CI-Ph	4-CI-Ph	4-I-Ph	4-Cl-Ph	4-CI-Ph
Ē	Me	西	Me	Me	五	Me	Me	(CH2)20	Me	H	Me	Me	H	H	H	H	H	H		Н	H	H	Н	H	Н
Н	H	H	H	H	H	H	H	Н		H	H	I	I	H	H	Н	Н	Н		Н	Н	H	Н	Н	Н
B7	B8	B9	B10	B11	B12	B13	B14	B15		B16	B17	B18	B19	B20	B21	B22	B23	B24		B25	B26	B27	B28	B29	B30

			_			
	13	13	71	16	21	13
	350/352	301/303	202120	219 FM-H1.	[** ***]	330
	Quinolin-3-yl	Pyrimidin-2-vl				2,6-di-Me-pyridin-3-yl
	4-CI-Ph	4-CI-Ph		3-F-Ph		2,3-di-F-Ph
,	I	Н		I		I
•	Н	Н	,	Me	,	H
ָרָ	B31	B32	200	B33	200	B34

Table C

more substituents R¹⁰ and the moiety -NR¹R³ of formula (I) represents a heterocyclyl moiety of general formula (XXX-3) and substituents R, Encompassing compounds of general formula (XXX-2), wherein group R² of formula (I) is a phenyl ring, optionally substituted by one or R¹⁰ and P-Q are listed in Table C.

For Procedure See Example No.	-	-		_	
[M+H] ⁺ Observed; (Unless [M] ⁻ or [M-H] ⁻ are Indicated)	289	277/279	293/295	305/307	332/334[M-H]-
P-Q	(CH2)20(CH2)2	(CH2)4	(CH2)20(CH2)2	(CH2)3CH(Me)CH2	(CH2)3CH(CONH2)CH2
R ¹⁰	4-OMe	4-CI	4-CI	4-CI	4-CI
~	H	H	H	H	H
Example No.	[]	22	ຣ	2	ಬ

_			Τ.	1	_	_	_	_	_		
	-	_	1	-	-	-	1	-	1	-	
300	330	243	321/323	291/293	381/383	307/309	316	325/327/329	327/329/331	341/343/345 [M-H]-	·
(CH2)3CH(CONH2)CH2	(CH2)3CH(CONH2)CH2	(CH2)4	(СН2)3СН(СН2ОН)СН2	(CH2)5	(CH2)2CH(CH2Ph)(CH2)2	(CH2)2CH(OH)(CH2)2	(CH2)3CH(Me)CH2	(CH2)5	(CH2)2O(CH2)2	(CH2)2S(CH2)2	
Н	4-OMe	Н	4-CI	4-CI	4-CI	4-CI	3-NO2	2,4-di-Cl	2,4-di-Cl	2,4-di-Cl	
Н	H	Н	Н	H	H .	Н	Н	Н	H	H	
9) (Y	C2	8 2 8	හ	C10	C11	C12	C13	C14	CIS	912	

Table D

Encompassing compounds of general formula (XXX-4), wherein group R² of formula (I) is a phenyl ring, optionally substituted by one or more substituents R¹⁰ and the moiety -NR¹R³ of formula (I) represents a heterocyclyl moiety of general formula (XXX-5), optionally substituted by substituents R^{12a}, R

For Procedure See Example No.	2	-	-
[M+H] [†] Observed; (Unless [M] ⁻ or [M-H] ⁻ are Indicated)	358	325/327	339/341
7	puoq	pooq	CH2
X-X	CH=N	(CH2)2	(CH2)2
R ¹²⁶	H	H	H
R ^{12b}	Н	Н	Н
R ^{12a}	H	H	H
R ¹⁰	4-CF3	4-CI	4-Cl
~	H	E	I
Examp le No.	DI	D2	D3

_	_	-	T-			_	Т-	1	т —	_			_		т—	-								
-	_	_	1	-	-	1	-	1	_	-	-	1	-	-	15	-		1				-	-	1
339/341	370/372	350	321	353/355	364	359	327	336	321	325/327	335	335	339/341	341	334	380	-	327	392 [M-H]-	417	325/327	369/371	369/371	305
pouq	ponq	CH2	pouq	(CH2)2	(CH2)2	pooq	pouq	pouq	pouq	. puoq	CH2	pooq	pond	pooq	pond	puoq		puoq	pood	pond	pond	pooq	pooq	pooq
(CH2)3	(CH2)2	(CH2)2	(CH2)2	(CH2)2	(CH2)2	(CH2)2	(CH2)2	(CH2)2	(CH2)2	(CH2)2	(CH2)2	CH(Me)CH2	CH(Me)CH2	CH(Me)CH2	CH=CH	сн(созн)сн	2	(CH2)2	CH(CO2Me)C H2	(CH2)2	(CH2)2	(CH2)2	(CH2)2	(CH2)2
Н	Н	Н	H	Н	Н	H	H	H	H	Н	Н	Н	Н	H	Н	Н		Н	Н	Н	Н	Н	H	Н
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	H	Ξ	H	H		Н	Н	Н	Н	Н	Н	Н
Н	N02	H	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н		Н	Н	H	H	Ħ	Н	Н
4-CI	4-CI	3-N02	4-OMe	4-CI	3-N02	3-CF3	3,5-di-F	3-N02	2-OMe	2-CI	2-OMe	2-OMe	2-CI	3,5-di-F	3-N02	3-N02		3,4-di-F	3-N02	4-1	3-CI	4-Br	3-Br	2-Me
Н	Н	Н	Н	Н	Н	H	Н	Н	Н	H	H	H	н	Н	Н	Н		H	I	H	Н	Н	Н	Н
D4	DS	D6	D7	D8	D3	D10	D11	D12	D13	D14	DIS	D16	D17	D18	D19	D20		D21	D22	D23	D24	D25	D26	D27

											\neg	_						\neg			_			
1	-	-	-	-	-			20			-	-	-	-	-			-		-	-	20		20
309	359/361/363	369/371	309	394 [M]-	336	343 [M-H]-	335	451			323	341	323	319	383/385	335	339/341	431	319	333	323	521 [M-H]-		441/443
pooq	pooq	pooq	pooq	pooq	pooq	pooq	pooq	puoq			pond	pooq	puoq	pooq	pooq		puoq							
(CH2)2	(CH2)2	(CH2)2	(CH2)2	(CH2)2	· (CH2)2	(CH2)2	(CH2)2	(CH2)2			CH(Me)CH2	СН(Ме)СН2	CH(Me)CH2	CH(Me)CH2	(CH2)3	(CH2)2		(CH2)2						
Н	Н	H	H	Н	Н	H	Н	Н			Н	Н	H	H	Н	Н	Н	Н	Н	Н	H	Н		H
Н	H	Н	Н	Н	Н	H	Ŧ	OMe			Н	H	H	H	H	H	I	H	H	H	Н	OMe		D
H	H	H	I	H	I	H	H	[4-Ethyl-	piperazin-	1-yl]	Н	H	Н	H	Н	H	Н	H	H	I	Н	[4-(BOC)-	Piperazin-	[4-Me-
3-F	2,4-di-Cl	2-Br	2-F	4-COPh	2-N02	3,4,5-tri-F	2-0Et	3-F			3-F	2,3-di-F	2-F	2-Me	2-Br	4-OMe	4-CI	4-I	3-Me	3,5-di-Me	3-F	3-F		3-F
H	Н	H	Н	Н	Н	Н	Н	H			H	н	H	н	H	Н	H	H	H	Н	Н	Н		Н
D28	D29	D30	D31	D32	D33	D34	D35	D36			D37	D38	D39	D40	D41	D42	D43	D44	D45	D46	D47	D48		D49

		20					-		1							-	20		20		20		20
		421		355/357		351	339		357		357		349		339/341	323	.421 [M-H]-		355/357		339		357
		puoq		pooq	-	pond	pond		pooq		puoq		puoq		pooq	pouq	pooq		pooq		pooq		puoq
		(CH2)2		СН(СН2ОН)С	H2	CH(CH2OH)C H2	СН(СН2ОН)С	H2	сн(снзон)с	H2	СН(СН2ОН)С	H2	сн(снзон)с	H2	CH2CH(Me)	CH2CH(Me)	(CH2)2		СН2СН(СН20	H)	СН2СН(СН20	H)	СН2СН(СН20
		Н		H	מ	-	Н		Н		H		Н		Н	Н	Н		Н		Н		Н
		Me		Н	ī	Ę	Н		Н		H		Н		Н	Н	OMe		H		工		H
Piperazin-	[-yl]	[4-Me-	Piperazin- 1-yl]	Н	П	G	Н		Ħ		Ħ		H		Н	н	[Piperazin-	1-yl]	Н		H		H
		3-F		2-CI	2.0Me	2-OIME	3-F		2,3-di-F		3,5-di-F		3,5-di-Me		2-CI	3-F	3-F		2-CI		3-F		2,3-di-F
		н		H	Ξ	1	H		H		H		Ξ		Ŧ	王	H		Ξ		工		H
		D20		D51	D52		D53		D54		D55		D26		D57	D58	D29		09Q		D61	,	D62

	20		_		-	-	-	-	-		-	-	-			-	1	-	-	_	-		-	-	
	325 [M-H]-	355	357	405/407	353/355	343/345	372	349	341	387	405/407	. 345	345	409	425	355/357	403/405/407	403/405/407	343/345	370/372	407/409	423/425	333	347	379
	CH2	puoq	pond	pouq	pouq	puoq	puoq	pond	pooq	pond	pouq	pond	pond	pond	pooq	puoq	puoq	puoq	puoq	puoq	puoq	puoq	puoq	puoq	puoq
H)	CH2	CH2C(Me2)	(CH2)2	(CH2)2	CH2C(Me2)	(CH2)2	(CH2)2	(CH2)2	CH2CH(Me)	(CH2)2 (CH2)2	(CH2)2	(CH2)2	(CH2)2	(CH2)2	(CH2)2	CH2CH(Me)	CH2C(Me)2	(CH2)2							
	I	F	H	Н	H	H	H	H	н	H	Br	H	н	Н	Н	Н	Br	Н	Н	H	H	E	H	H	Н
	H	H	H	Br	H	Ŀ	H	H	H	OMe	H	Ţ.	Н	Me	OMe	H	H	Br	H	H	Me	OMe	H	Н	ОМе
	F	I	OMe	H	H	H	N02	OMe	H	OMe	H	H	Ľ	CF3	CF3	OMe	H	H	F	NO2	CF3	CF3	H	H	OMe
	2 3-di-F	2,3 di -F	2,3-di-F	2 3-di-F	2-Cl	2-CI	2.3-di-F	3.5-di-Me	2.3-di-F	2.3-di-F	2.3-di-F	2.3-di-F	2.3-di-F	2.3-di-F	2.3-di-F	2-CI	2-CI	2-Cl	2-CI	2-CI	2-Cl	2-CI	3.5-di-Me	3.5-di-Me	3,5-di-Me
	Ħ	: =	I	I	: =	I	: =	H	H	H	H	: =	Н	H	H	I	I	Ξ	H	: =	Ξ	: 1	H	I	E
	נאָט	790	DAS	7990	190	1068	090	D70	170	D72	D73	D74	075	176	D77	D78	D70	D80	18.0	787	783	D84	1)85	086	D87

	Т		т																					
-	- -	-	-	-		-		-	-	3		3		3			1	13		13		13	•	15
397/399	397/399	337	420	418/420		327	319	385/387	364	368/370		370		362		359/361/363	343 [M-H]-	366		447		415 [M-CO2H]-		459
bond	pond	pond	puoq	pouq		pond	ponq	pooq	pond	pond		puoq		puoq		pooq	pond	pooq		pooq		puoq		pooq
(CH2)2	(CH2)2	(CH2)2	· (CH2)2	(CH2)2		(CH2)2	(CH2)2	(CH2)2	(CH2)2	CH(CONH2)C	H2	CH(CONH2)C	H2	CH(CONH2)C	H2	(CH2)2	(CH2)2	СН(СН2ОН)С	H2.	сн(снзон)с	H2	сн(созн)сн	2	C(=0)-C(Me)2
Br	Н	H	H	H	:	F	Н	Н	Н	H		Н		H		Н	Н	Н		Н		Н		Н
Н	Br	н	NHSO2 Me	NHS02	Me	H	Н	OMe	Н	Н		Н		Н		Н	Н	Н		H		I	•	Н
H	Ŧ	Ŀ	H	Н	11	E .	Н	OMe	N02	Н		Ħ		Ħ		Н	Н	H		H		工		H
3,5-di-Me	3,5-di-Me	3,5-di-Me	2,3-di-F	2-CI	2 4: E	7-ID-C,7	3,5-di-Me	2-CI	3,5-di-Me	2-CI		2,3-di-F		3,5-di-Me		3,5-di-Cl	2,3,5-tri-F	3-N02		4-1		4-I		4-1
Н	H	Н	H	н	ı	= :	H	H	H	I		H		I		H	Ŧ	I		I		I		E
D88	D89	D30	D91	D92	D93		D94	D95	960	D97		860 —		66Q		000	D101	D102		D103		D104	3	D105

15	15	15	21			21			21			21			21			21			
378	352	433	366			366			447			341			447			341			
puoq	puoq	puoq	puoq			puoq	*********		puoq			pooq			puoq	•		puoq			
C(=0)-C(Me)2	C(=0)-0-	-0-(0=)	СН(СН2ОН)С	H2	Isomer 1	СН(СН2ОН)С	H2	Isomer 2	сн(снзон)с	H2	Isomer 1	СН(СН2ОН)С	H2	Isomer 1	СН(СН2ОН)С	H2	Isomer 2	СН(СН2ОН)С	H2	Isomer 2	
Н	Н	Н	Н		_	H			H			H	-		Н			H			
H	Н	Н	Н			Н			Н			Н			Н			Н			
H	Н	H	Н			Н			H			Н			Н			H			
3-N02	3-N02	4-1	3-N02			3-NO2			4-I			3,5-di-F			4-1			3,5-di-F			
H	H	H	Н			H			H			H			Н			Н			
D106	D107	D108	D109			D110			D111			D112			D113			D114			

Table E

substituted by one or more substituents R¹³ and group R³ of formula (I) is a phenyl ring, optionally substituted by one or more substituents R¹¹ and R¹³ are listed in Table E. Encompassing compounds of general formula (XXX-6), wherein group R² of formula (I) is a (3-heterocyclyl) moiety (XXX-7), optionally

For Procedure See Example No.	4	4	4	4
[M+H] ⁺ Observed; (Unless [M] ⁻ or [M-H] ⁻ are Indicated)	396/398	332	364	397/399
4	N(Me)	N(Me)	N(Me)	0
R ¹³	4,5-[(-CH=CH-)2]	4,5-[(-CH=CH-)2]	4,5-[(-CH=CH-)2]	4,5-[(-CH=CH-)2]
R'I	3-Br	4-Me	4-SMe	3-Br-4-Me
ה	Н	Н	H	Н
~	Н	H	Ξ	Н
Example No.	El	E2	E3	E4

4	-	4	4	4	-	-	-	-	-	_	1	-	-	1	13		-	-	-			-	-		-
363/365	303/305 [M-H]-	375	410	358	315[M-H]-	283[M-H]-	269[M-H]-	361[M-H]-	309[M-H]-	347/349[M-H]-	315[M-H]-	441/443/445[M-H]-	355/357	353/355/357 [M-H]-	405/407/409	349/341	315	319/321[M-H]-	307	299[M-H]-	287	365	371/373	337	378
S	S	N(Me)	N(Me)	N(Me)	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
H	Н	4,5-[(-CH=CH-)2]	4,5-[(-CH=CH-)2]	4,5-[(-CH=CH-)2]	Н	Н	H	Н	Н	Н	Н	Н	4,5-[(-CH=CH-)2]	H	4,5-[(-CH=CH-)2]	Н	H	Н	Н	Н	Н	4,5-[(-CH=CH-)2]	4,5-[(-CH=CH-)2]	4,5-[(-CH=CH-)2]	H
3-Br-4-Me	3-CI	3.4-[S-CH=N]	3-OPh	3,4-[(CH2)3]	3-SMe	4-Me	Н	3-OPh	3,4-[(CH2)3]	3-Br	4-SMe	3,5-di-Br-4-OH	3-CI	3,5-di-Cl-4-OH	3,5-di-Cl-4-OH	3-C02H-4-Cl	3,4-[OCH2O]	3-Cl-4-OH	3,5-di-F	3-СН2ОН	3-0H	3,4-[OCH20]	3-Cl-4-OH	3-0H	4-
H	H	E	H	H	H	H	H	H	Н	H	H	H	Н	H	H	Ξ	H	H	H	H	H	H	H	Н	Н
H	H		E	H	H	H	H	H	H	H	Н	H	H	H	H	H	H	H	H	H	H	H	Н	H	Н
E5 .	E6	E7	E8	E9	E10	E11	E12	E13	E14	E15	E16	E17	E18	E19	E20	E21	E22	E23	E24	E25	E26	E27	E28	E29	E30

CH2SO2NHMe

Table F

substituted by substituents R¹⁴ and R¹⁵ and group R³ of formula (I) is a phenyl ring, optionally substituted by one or more substituents R¹¹ and R¹⁵ are listed in Table F. Encompassing compounds of general formula (XXX-8), wherein group R² of formula (I) is a moiety of formula (XXX-9), optionally

, ro	2 N N N N N N N N N N N N N N N N N N N	Ř ¹⁵ (XXX-9)
0 W—N	R. N.	R ¹⁵ (XXXX-8)

		_		_	
	Procedure See Example No.	,	,	0	0
[M+H]+ Observed;	(Unless [M]" or [M-H]" are Indicated)	מוזיאטטער	300 [M-11]-	(10) /27	456 [M]-
R ¹⁵		, ,	Me	. 14 4 3111	NH[3-F-Ph]
RH			I		H
R.11			3.4-[(CH2)3]		3,4-[(CH2)3]
la C	1		-		H
ď	4		<u>-</u>		Ξ
Tvomnle	No.		<u> </u>		F.7

		,						
8	∞	∞	6	6	6	6	8	8
467	443 [M-H]-	403	422 [M-H]-	436 [M-H]-	450	390	389 [M-H]-	469
NH(CH2)2Ph	NH[Cyclohexyl]	NHCH2CH=CH2	Ph	CH2Ph	trans-CH=CHPh	n-Pr	NHEt	NH[3-OMe-Ph]
H	H	H	Ŧ	H	H	H	H	H
3,4-[(CH2)3]	3,4-[(CH2)3]	3,4-[(CH2)3]	3,4-[(CH2)3]	3,4-[(CH2)3]	3,4-[(CH2)3]	3,4-[(CH2)3]	3,4-[(CH2)3]	3,4-[(CH2)3]
Н	Н	Н	H	Н	H	Н	Н	H
Н	Н	Н	Н	Н	H	Н	Н	Н
·F3	F4	F5	F6	F7	F8	F9	F10	F11

Table G

R¹⁷ and substituents R, R¹, R¹⁶, W, R¹⁶ and R¹⁷ are listed in Table G. The position of substituent R¹⁶ is indicated by the locants 2 or 3 in more substituents R¹⁰ and group R³ of formula (I) is a moiety of formula (XXX-11), optionally substituted by one or more substituents R¹⁶ and Encompassing compounds of general formula (XXX-10), wherein group R² of formula (I) is a phenyl ring, optionally substituted by one or structure (XXX-10).

For Procedure See Example	
[M+H] ⁺ Observed; (Unless [M] ⁻ or [M-H] ⁻ are Indicated)	491
RIA	2-C02H
2. 2.	3-С02Н 2-С02Н
≽	S
R ¹⁰	2-OMe
_ 	Н
2	H
Example No.	15

				-		_	_												
-	- -	-		-	-	_	- -	·	·	-	. -	•	- -	-	ı		-	-	
449/451 [M-H].	550/552 [M]-	497/499/501 [M-H]-		508/510		450/452 [M-H]-	425/427/429	451/453	449/451 [M-H]-	489 [M-H]-	493 [M-H]-	495/497	453	523			523 [M-H]-	451 [M-H]-	525
3-C02H	2-C02Et	4-CI		2-	CONHMe	4-NO2	4-CI	2-C02H	H	2-C02H	2-C02H	3-СО2Н	3-СО2Н	2-	CONHMe		2-CO2Et	4-C02H	4-C02H
Н	3-C02Et	3-	CO2Me	3-C02H	•	Н	H	Н	3-C02H	3-C02H	3-C02H	3-C02H	H	3-	CONHM	Ð	3-C02H	Н	3-C02Et
S	S	S		S		S	0	S	S	S	S	S	S	S			S	S	S
4-CI	4-CI	4-CI		4-CI		4-CI	4-CI	4-CI	4-CI	4-OMe	2-CI	4-CI	2,3-di-F	2,3-di-F			2,3-di-F	2,3-di-F	2,3-di-F
H	H	H		I		Н	Н	Н	Н	Н	Н	Н	H	Н	*		Н	Н	Н
H	F	н		H		H	Н	Н	Н	Н	Н	I	H	Н			H	Н	Н
G2	G3	G4		S		8	. G7	85 28	65	G10	G11	G12	G13	G14			G15	G16	G17

Table H

substituted by one or more substituents R¹⁸ and group R³ of formula (I) is a phenyl ring, optionally substituted by one or more substituents R¹¹ and R¹⁸ are listed in Table H. Encompassing compounds of general formula (XXX-12), wherein group R² of formula (I) is a (2-heterocyclyl) moiety (XXX-13), optionally

$$R^{18} \longrightarrow R^{11}$$

$$(XXX-12)$$

$$(XXX-13)$$

Example	2	RI	R'II	R. ¹⁸	V	[M+H]+ Observed;	For
Ž					•	(Unless [M]- or	Procedure
					•	[M-H] are	See
-						Indicated)	Example
							No.
H	H	H	3-Cl	H	S	305/307	1
H2	H	H	3-CI	3-Me-4,5-[(-CH=CH-	S	369/371	_
)2]			
H3	H	H	3,5-di-Cl-4-0H	H	S	355/357/359	1

. 13	
419/421/423	
S	
3-Me-4,5-[(-CH=CH-)2]
3,5-di-Cl-4-OH	,
Н	
Н	
H4	

Table]

Encompassing compounds of general formula (XXX-14), wherein the moiety NR¹R³ of formula (I) is represented by a general substituent R¹⁹ and substituents R, R² and R¹⁹ are listed in Table I.

N.	→ R ⁵⁸	-14)
x−z	R ²	XXX

For Procedure See Example No.	1	1	19		-	-	1
[M+H] ⁺ Observed; (Unless [M] ⁻ or [M-H] ⁻ are Indicated)	297	297	301/303		311	311	393/395/397
R IS	1-Indolinyl	1-Indolinyl	(3-Amino-1-pyridinium	chloride)	2-Me-Indolin-1-yl	2-Me-Indolin-1-yl	[1,3,3-Trimethyl-6-
R ²	3-Thienyl	2-Thienyl	4-CI-Ph		2-Thienyl	3-Thienyl	2,4-di-CI-Ph
u	H	H	H.		H	H	Н
Example No.	II	12	13		14	I5	91

2,4-di-Cl-Ph

Claims

WO 00/21927

1. A method for the treatment of conditions associated with a need for inhibition of GSK-3, such as diabetes, dementias such as Alzheimer's disease and manic depression which method comprises the administration of a pharmaceutically effective, non-toxic amount of a compound of formula (I):

10

15

20

5

or a pharmaceutically acceptable derivative thereof, wherein:

R is hydrogen, alkyl, aryl, or aralkyl;

R¹ is hydrogen, alkyl, aralkyl, hydroxyalkyl or alkoxyalkyl;

R² is substituted or unsubstituted aryl or substituted or unsubstituted heterocyclyl;

R³ is hydrogen, substituted or unsubstituted alkyl, cycloalkyl, alkoxyalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl or aralkyl wherein the aryl moiety is substituted or unsubstituted; or,

R¹ and R³ together with the nitrogen to which they are attached form a single or fused, optionally substituted, saturated or unsaturated heterocylic ring;

to a human or non-human mammal in need thereof.

2. A compound of formula (IB),

25

30

or a derivative thereof, wherein:

R is hydrogen, alkyl, aryl, or aralkyl;

R¹ is hydrogen, alkyl, aralkyl, hydroxyalkyl or alkoxyalkyl;

R² is substituted or unsubstituted aryl or substituted or unsubstituted heterocyclyl;

R³ is hydrogen, substituted or unsubstituted alkyl, cycloalkyl, alkoxyalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl or aralkyl wherein the aryl moiety is substituted or unsubstituted; or,

R¹ and R³ together with the nitrogen to which they are attached form a single or fused, optionally substituted, saturated or unsaturated heterocylic ring; with the proviso that formula (IB) does not include the compounds contained in List B.

3. A compound according to claim 2 of formula (IC')

$$R^{10}$$
 R^{10}
 R^{10}
 R^{11}
(IC')

wherein;

5

10

15

20

R and R1 are as defined in relation to formula (I) in claim 1;

 R^{10} represents hydrogen or one or more substituents, suitably up to three, selected from the list consisting of: alkoxycarbonyl, alkoxyalkyl, perfluoroalkyl, perfluoroalkylS-, perfluoroalkylO-, phenyl(di-C₁₋₆alkoxy)C-, benzoyl, C₁₋₆alkylSO₂-, -[(CH=CH)₂]-, phenyl, nitro, -OCH₂O-, benzyloxy, phenoxy, halo, hydroxy, alkyl, alkoxy, amino, mono- or di-alkyl amino or thioalkyl;

 R^{11} represents hydrogen or one or more substituents, suitably up to three, selected from the list consisting of: substituted or unsubstituted $C_{1\text{-}6}$ alkyl, phenyl, benzyl, substituted or unsubstituted $C_{1\text{-}6}$ alkylS-, halo, hydroxy, substituted or unsubstituted $C_{1\text{-}6}$ alkoxy, substituted or unsubstituted phenoxy, indolyl, naphthyl, carboxy, $C_{1\text{-}6}$ alkoxycarbonyl, benzyloxy, phenoxy, pentafluorophenoxy, nitro, substituted or unsubstituted carbamoyl, substituted or unsubstituted $C_{1\text{-}6}$ alkylcarbonyl, benzoyl, cyano, perfluoro $C_{1\text{-}6}$ alkylSO₂-, $C_{1\text{-}6}$ alkylNHSO₂-, oxazolyl, substituted or unsubstituted

phenylS-, C_{1-6} alkylpiperazinyl-, C_{1-6} alkylcarbonylpiperazinyl-, 1.2,3-thiadiazolyl, pyrimidin-2-yloxy, N-[pyrimidin-2-yl]-N-methylamino, phenylamino, C_{1-6}

6alkylsulphonylamino, N-morpholinylcarbonyl, cyclohexyl, adamantyl, trityl, substituted or unsubstituted C₁₋₆alkenyl, perfluoroC₁₋₆alkyl, perfluoroC₁₋₆alkoxy, perfluoroC₁₋₆alkylS-, aminosulphonyl, morpholino, (diC₁₋₆alkyl)amino, C₁₋₆alkylCONH-, (diC₁₋₆alkoxy)phenyl(CH₂)_nNHC(O)CH(phenyl)S- where n is 1 to 6, and C₁₋₆alkylCON(C₁₋₆alkyl)-, thiazolidinedionylC₁₋₆alkyl, phenylCH(OH)-, substituted or unsubstituted piperazinylC₁₋₆alkoxy, substituted or unsubstituted benzoylamino;

or -(CH₂)_x-, -SCH=N-, -SC(C₁₋₆alkyl)=N-, -OCF₂O-, -[CH=CHC(O)O]-, -[N=CH-CH=CH]-, -CH=N-NH-, -CH=CH-NH-, -OC(NHC₁₋₆alkyl)=N-, -OC(O)NH-, -C(O)NMeC(O)-, -C(O)NHC(O)-, -(CH₂)_xC(O)-, -N=N-NH-, -N=C(C₁₋₆alkyl)O-, -O(CH₂)_xO-, -(CH₂)_xSO₂(CH₂)_y-,

and -N(C₁₋₆alkylcarbonyl)(CH₂)_x-, where x and y are independently 1 to 4; with the proviso that (IC') does not include:
3-phenylamino-4-phenyl-1H-pyrrole-2,5-dione;

1-(4-methylphenyl)-3-[(4-methylphenyl)amino]-4-phenyl-1H-pyrrole-2,5-dione;

3-(4-methylphenyl)-1-phenyl-4-(phenylamino)-1H-pyrrole-2,5-dione;

1,3-bis(4-methylphenyl)-4-[(4-methylphenyl)amino]-1H-yrrole-2,5-dione, or;

3-(4-nitrophenyl)-1-phenyl-4-phenylamino-1H-pyrrole-2,5-dione.

4. A compound according to claim 3 wherein

5 R and R¹ each represent hydrogen, and;

R¹⁰ and R¹¹ are defined as follows:

when R¹⁰ is 4-Cl, then R¹¹ is 3-Cl, 3-Br, or 4-CH₂SO₂NHMe;

when R¹⁰ is 2-OMe, then R¹¹ is 4-OMe or 3,5-di-F;

when R¹⁰ is 2-F, then R¹¹ is 3.5-di-F:

10 when R^{10} is 3-F, then R^{11} is 4-(CH₂)₃CO₂H;

when R¹⁰ is 2,3-di-F-Ph, then R¹¹1 is 3,5-di-F.

5. A compound according to claim 2 of formula (ID')

15

20

wherein R and R¹ are as defined in relation to formula (I) in claim 1;

R²' is phenyl, substituted phenyl or indolyl;

R³' is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, C₁₋₆ alkylphenyl wherein the phenyl group is optionally substituted, alkoxyalkyl, substituted or unsubstituted heterocyclyl, with the proviso that formula (ID') does not include the compounds contained in List D'.

6. A compound according to claim 2 of formula (IE')

25

wherein R is as defined in relation to formula (I) in claim 1;

R¹⁰ represents hydrogen or one or more, suitably up to three, substituents selected from the list consisting of: alkoxy, halo, and nitro;

P'-Q' represents $-(CH_2)_aO(CH_2)_b$ -, $-(CH_2)_aS(CH_2)_b$ -, $-(CH_2)_c$ -, $-(CH_2)_dCH(G)(CH_2)_e$ -, $-(CH_2)_aN(ZZ)(CH_2)_b$ -, where a, b, d, and e are independently 1 to 4, c is 1 to 6, ZZ is hydrogen, alkyl, aryl, or alkylcarbonyl, and G is alkyl, amido, hydroxyalkyl, aralkyl, or hydroxy, with the proviso that (IE') does not include:

3-phenyl-4-piperidin-1-yl-pyrrole-2,5-dione;

3-(4-methylpiperazin-l-yl)-4-phenyl-pyrrole-2,5-dione;

3-(4-ethylpiperazin-l-yl)-4-phenyl-pyrrole-2,5-dione;

3-(4-chlorophenyl)-4-(4-methyl-piperazin-l-yl)-pyrrole-2,5-dione;

3-(4-methylphenyl)-4-(4-morpholinyl)-1-phenyl-1H-pyrrole-2,5-dione

3-phenyl-4-(4-methylpiperazino)-pyrrole-2,5-dione;

3-phenyl-4-(4-phenylpiperazino)-pyrrole-2,5-dione;

1-methyl-3-phenyl-4-(4-phenylpiperazino)-pyrrole-2,5-dione;

1-ethyl-3-phenyl-4-(4-chlorophenylpiperazino)-pyrrole-2,5-dione;

1-allyl-3-phenyl-4-(4-methylpiperazino)-pyrrole-2,5-dione, and;

1,3-diphenyl-4-piperidino-pyrrole-2,5-dione.

7. A compound according to claim 2 of formula (IF)

10

15

20

5

wherein R is as defined in relation to formula (I) in claim 1;

R10" is one or more, suitably up to three, substituents selected from the list consisting of perfluoroalkyl, halo, nitro, alkoxy, arylcarbonyl, alkyl;

Z is a bond or an alkylene chain;

-X-Y- is -CH=N, -(CH₂)_t-, -(CH₂)_uCH(U)-, -(U)CH(CH₂)_u-, -CH=CH-, - (CH₂)_vC(alkyl)₂-, -C(O)C(alkyl)₂-, -C(O)O-, where t, u, and v are independently 1 to 4, and U is alkyl, carboxy, alkoxycarbonyl, hydroxyalkyl, and amido;

R12a', R12b', and R12c' are each independently hydrogen, nitro, alkoxy, 4-ethylpiperazin-1-yl, 4-BOC-piperazin-1-yl, 4-methyl-piperazin-1-yl, 4-methyl-piperazin-1-yl, halo, alkyl, piperazin-1-yl, perfluoroalkyl, and alkylsulphonylamino.

8. A compound according to claim 2 of formula (IG)

$$R^{13}$$

$$R^{13}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

$$R^{1}$$

wherein R and R¹ are as defined in relation to formula (I) in claim 1;

A is N(alkyl), oxygen, or sulphur.

Examples of A are N(methyl), oxygen, and sulphur.

Preferably, A is sulphur.

 R^{11} " is one or more, suitably up to three, substituents selected from the group consisting of hydrogen, halo, alkyl, alkylthio, -S-CH=N-, phenoxy, -(CH₂)_w-, hydroxy, carboxy, -O(CH₂)_xO-, hydroxyalkyl, and alkylaminosulphonylalkyl, where w and x are independently 1 to 4.

9. A compound according to claim 2 of formula (IH)

$$R^{14}$$
 R^{15}
 R^{15}
 R^{11}
 R^{11}
 R^{11}
 R^{11}
 R^{11}
 R^{11}

15

20

5

10

wherein R and R¹ are as defined in relation to formula (I) in claim 1;

 R^{11} " is -[(CH₂)_{aa}]-, where aa is 1 to 4;

R¹⁴ is hydrogen;

R^{15'} is alkyl, unsubstituted or substituted phenylamino, unsubstituted or substituted phenylalkylamino, cyclohexylamino, alkenylamino, phenyl, benzyl, styryl, or alkylamino.

10. A compound according to claim 2 of formula (IJ)

wherein R and R1 are as defined in relation to formula (I) in claim 1;

 R^{10} " represents one or more, suitably up to three, substituents independently selected from alkoxy or halo;

R¹⁶ represents one or more, suitably up to three, substituents independently selected from hydrogen, carboxy, alkoxycarbonyl, or alkylaminocarbonyl;

R¹⁷ represents one or more, suitably up to three, substituents independently selected from carboxy, alkoxycarbonyl, halo, alkylaminocarbonyl, nitro, or hydrogen; W is sulphur, oxygen, or substituted or unsubstituted NH.

11. A compound according to claim 2 of formula (IK)

$$R^{18}$$
 A
 R^{1}
 R^{11}
 R^{11}
 R^{11}
 R^{11}

15

20

10

wherein R and R 1 are as defined in relation to formula (I) in claim 1;

R¹¹"" represents one or more, suitably up to three, substituents independently selected from halo and hydroxy;

R^{18'} represents one or more, suitably up to three, substituents independently selected from hydrogen, alkyl, and –(CH=CH)₂-;

A is sulphur.

12. A compound according to claim 2 of formula (IL')

25

wherein R is as defined in relation to formula (I) in claim 1;

5

10

15

20

30

 R^{2} " is unsubstituted or substituted heterocyclyl or unsubstituted or substituted aryl;

R¹⁹' is unsubstituted or substituted heterocyclyl, or a quaternised salt thereof, with the proviso that formula (IL') does not include the compounds contained in List L'.

13. A process for the preparation of a compound of the invention which process comprises reaction of a compound of formula (II):

O N O (II)

wherein R and R^2 are as defined in formula (I) in claim 1 and L is a leaving group, with a compound of formula (III):

H N R³

wherein R^1 and R^3 are as defined in formula (I) in claim 1; and thereafter, if required, carrying out one or more of the following optional steps:

- (i) converting a compound of formula (I) to a further compound of formula (I);
- (ii) removing any necessary protecting group;
- (iii) preparing an appropriate derivative of the compound so formed.
- 14. A compound of formula (I) according to claim 1 for use in conditions associated with a need for inhibition of glycogen synthase kinase-3.
 - 15. Use of a compound of formula (I) according to claim 1 for the manufacture of a medicament for the treatment of conditions associated with a need for the inhibition of glycogen synthase kinase-3.
 - 16. A compound of formula (IA)

wherein

5

15

R is hydrogen, alkyl, aryl, or aralkyl;

R1 is hydrogen, alkyl, aralkyl, hydroxyalkyl or alkoxyalkyl;

R² is substituted or unsubstituted aryl or substituted or unsubstituted heterocyclyl;

R³ is hydrogen, substituted or unsubstituted alkyl, cycloalkyl, alkoxyalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl or aralkyl wherein the aryl moiety is substituted or unsubstituted; or,

10 R¹ and R³ together with the nitrogen to which they are attached form a single or fused, optionally substituted, saturated or unsaturated heterocylic ring; or a pharmaceutically acceptable derivative thereof, for use as an active therapeutic substance, with the proviso that formula (IA) does not include the compounds contained in List A.

17. A pharmaceutical composition which comprises a compound of formula (IA)

20 wherein

30

--- R is hydrogen, alkyl, aryl, or aralkyl;

R1 is hydrogen, alkyl, aralkyl, hydroxyalkyl or alkoxyalkyl;

R² is substituted or unsubstituted aryl or substituted or unsubstituted heterocyclyl;

R³ is hydrogen, substituted or unsubstituted alkyl, cycloalkyl, alkoxyalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl or aralkyl wherein the aryl moiety is substituted or unsubstituted; or,

R¹ and R³ together with the nitrogen to which they are attached form a single or fused, optionally substituted, saturated or unsaturated heterocylic ring;

or a pharmaceutically acceptable derivative thereof, and a pharmaceutically acceptable carrier, with the proviso that formula (IA) does not include the compounds contained in List A.

18. A method for the treatment and/or prophylaxis of mood disorders in a mammal, which method comprises the administration of a pharmaceutically acceptable amount of a GSK-3 inhibitor.

- 5 19. A method for the treatment and/or prophylaxis of neurotraumatic diseases in a mammal, which method comprises the administration of a pharmaceutically acceptable amount of a GSK-3 inhibitor.
- 20. A method for the treatment and/or prophylaxis of cancer, in a mammal, which method comprises the administration of a pharmaceutically acceptable amount of a GSK-3 inhibitor.
 - 21. A method for the treatment and/or prophylaxis of hair-loss, in a mammal, which method comprises the administration of a pharmaceutically acceptable amount of a GSK-3 inhibitor.
 - 22. Use of a GSK-3 inhibitor for the manufacture of a medicament for the treatment and/or prophylaxis of mood disorders, schizophrenia, neurotraumatic diseases, cancer or hair-loss.
 - 23. A compound of formula (I)

or a derivative thereof, wherein:

R is hydrogen, alkyl, aryl, or aralkyl;

R¹ is hydrogen, alkyl, aralkyl, hydroxyalkyl or alkoxyalkyl;

R² is substituted or unsubstituted aryl or substituted or unsubstituted heterocyclyl;

R³ is hydrogen, substituted or unsubstituted alkyl, cycloalkyl, alkoxyalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heterocyclyl or aralkyl

wherein the aryl moiety is substituted or unsubstituted; or,

R¹ and R³ together with the nitrogen to which they are attached form a single or fused, optionally substituted, saturated or unsaturated heterocylic ring; with the proviso that the compounds of formula (ID)

35

30

15

20

5

wherein R and R 1 are as defined in relation to formula (I); R 2 ' is phenyl, substituted phenyl or indolyl; R 3 ' is hydrogen, alkyl, cycloalkyl, phenyl, substituted phenyl, C $_{1-6}$ alkylphenyl wherein the phenyl group is optionally substituted, alkoxyalkyl, substituted or unsubstituted heterocyclyl; are excluded.

THIS PAGE BLANK (USPTO)