William Stallings Data and Computer Communications

Chapter 1
Introduction

A Communications Model

- **X** Source
 - □ generates data to be transmitted
- **X** Transmitter
 - Converts data into transmittable signals
- **X**Transmission System
 - Carries data
- **#**Receiver
 - Converts received signal into data
- **#** Destination

Simplified Communications Model - Diagram

(a) General block diagram

(b) Example

Key Communications Tasks

- **X** Transmission System Utilization
- **X** Interfacing
- **★ Signal Generation**
- **X** Synchronization
- **#** Exchange Management
- # Error detection and correction
- **X** Addressing and routing
- **#** Recovery
- ****** Message formatting
- **X** Security
- **#** Network Management

Simplified Data Communications Model

Networking

- **#**Point to point communication not usually practical
 - □ Devices are too far apart
 - △Large set of devices would need impractical number of connections
- **#**Solution is a communications network

Simplified Network Model

Wide Area Networks

- **X**Large geographical area
- **#**Crossing public rights of way
- **#**Rely in part on common carrier circuits
- ******Alternative technologies
 - Circuit switching
 - Packet switching
 - □ Frame relay
 - △ Asynchronous Transfer Mode (ATM)

Circuit Switching

- #Dedicated communications path established for the duration of the conversation
- **x**e.g. telephone network **x**e.g. telephone network

Packet Switching

- **#** Data sent out of sequence
- **#**Small chunks (packets) of data at a time
- ******Packets passed from node to node between source and destination
- **#**Used for terminal to computer and computer to computer communications

Frame Relay

- **#**Packet switching systems have large overheads to compensate for errors
- ****** Modern systems are more reliable
- #Errors can be caught in end system
- ****** Most overhead for error control is stripped out

Asynchronous Transfer Mode

- **X**ATM
- **#**Evolution of frame relay
- **X**Little overhead for error control
- #Fixed packet (called cell) length
- ******Anything from 10Mbps to Gbps
- **#**Constant data rate using packet switching technique

Integrated Services Digital Network

- **#ISDN**
- #Designed to replace public telecom system
- ******Wide variety of services
- **#**Entirely digital domain

Local Area Networks

- **#**Smaller scope
 - □ Building or small campus
- **#**Usually owned by same organization as attached devices
- **#** Data rates much higher
- **#**Usually broadcast systems
- **Now some switched systems and ATM are being introduced

Protocols

- **#**Used for communications between entities in a system
- **#**Must speak the same language
- **#**Entities
 - □ User applications
 - □e-mail facilities
- **X**Systems
 - **△**Computer

 - □ Remote sensor

Key Elements of a Protocol

- **#**Syntax
 - □ Data formats
- **#** Semantics
 - □ Control information
- **#**Timing
 - Speed matching
 - Sequencing

Protocol Architecture

- **X** Task of communication broken up into modules
- #For example file transfer could use three modules
 - □ File transfer application
 - Communication service module
 - Network access module

Simplified File Transfer Architecture

A Three Layer Model

- ****** Network Access Layer
- **#**Transport Layer
- ******Application Layer

Network Access Layer

- **#**Exchange of data between the computer and the network
- ****Sending computer provides address of destination**
- ****** May invoke levels of service
- #Dependent on type of network used (LAN, packet switched etc.)

Transport Layer

- ****** Reliable data exchange
- **#** Independent of network being used
- **X** Independent of application

Application Layer

- **#**Support for different user applications
- ₩e.g. e-mail, file transfer

Addressing Requirements

- **X**Two levels of addressing required
- **#** Each computer needs unique network address
- **#**Each application on a (multi-tasking) computer needs a unique address within the computer

Protocol Architectures and Networks

Protocols in Simplified Architecture

Protocol Data Units (PDU)

- ******At each layer, protocols are used to communicate
- ****Control information is added to user data at each layer**
- **X**Transport layer may fragment user data
- **#** Each fragment has a transport header added
 - □ Destination SAP
- #This gives a transport protocol data unit

Network PDU

- ******Adds network header
 - network address for destination computer
 - **△**Facilities requests

Operation of a Protocol Architecture

TCP/IP Protocol Architecture

- # Developed by the US Defense Advanced Research Project Agency (DARPA) for its packet switched network (ARPANET)
- **#**Used by the global Internet
- **X** No official model but a working one.
 - Application layer

Physical Layer

- #Physical interface between data transmission device (e.g. computer) and transmission medium or network
- **#**Characteristics of transmission medium
- **#**Signal levels
- **#** Data rates
- #etc.

Network Access Layer

- **#**Exchange of data between end system and network
- **#** Destination address provision
- **#** Invoking services like priority

Internet Layer (IP)

- **#**Systems may be attached to different networks
- ******Routing functions across multiple networks
- **#** Implemented in end systems and routers

Transport Layer (TCP)

- ****** Reliable delivery of data
- **#**Ordering of delivery

Application Layer

#Support for user applications **#**e.g. http, SMPT

TCP/IP Protocol Architecture Model

OSI Model

- **#**Open Systems Interconnection
- #Developed by the International Organization for Standardization (ISO)
- **#**Seven layers
- **X**A theoretical system delivered too late!
- **XTCP/IP** is the de facto standard

OSI Layers

- *****Application
- **#**Presentation
- **#**Session
- **#**Transport
- **#** Network
- **₩** Data Link
- **#**Physical

OSI v TCP/IP

Standards

- Required to allow for interoperability between equipment
- **X**Advantages
 - Ensures a large market for equipment and software
 - △Allows products from different vendors to communicate
- **#** Disadvantages

Standards Organizations

```
# Internet Society
# ISO
# ITU-T (formally CCITT)
# ATM forum
```

Further Reading

- **Stallings**, W. Data and Computer Communications (6th edition), Prentice Hall 1999 chapter 1
- ***Web site for Stallings book**
- ₩Web sites for IETF, IEEE, ITU-T, ISO
- **XInternet Requests for Comment (RFCs)**
- **#**Usenet News groups
 - comp.dcom.*