§2.4 矩阵的谱半径及应用

一. 矩阵的谱半径

§2.4 矩阵的谱半径及应用

一. 矩阵的谱半径

1. 定义: 设 $A \in C^{n \times n}$, $\lambda_1, \lambda_2, \dots, \lambda_n$ 为 A 的 n 个特征值, 称

$$\rho(A) = \max_{j} |\lambda_{j}|$$

为 A 的谱半径。

2. 定理2.12: $\rho(A) \leq ||A||$.

证明:设 λ 是 A 的特征值,设 $\|\cdot\|_{\nu}$ 为 C^{n} 上与 $\|\cdot\|$ 相容的向量范数。由 $Ax = \lambda x$ 得

$$|\lambda| \|x\|_{v} = \|\lambda x\|_{v} = \|Ax\|_{v} \le \|A\| \|x\|_{v}$$

从而
$$|\lambda| \leq ||A||$$
, 故 $\rho(A) \leq ||A||$.

3. 例: 设 **A ∈ C^{n×n},则**

$$(1) \|A\|_2 \le \max\{\|A\|_{\infty}, \|A\|_1\}$$

- 3. 例:设 $A \in C^{n \times n}$,则
 - $(1) \|A\|_2 \le \max\{\|A\|_{\infty}, \|A\|_1\}$
 - (2) 当 A 是正规矩阵时, $\rho(A) = ||A||_2$.

注: 矩阵的谱半径是 *Cn×n* 上的一个函数,但它不是矩

阵范数。如设

$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, F = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

则 $A \neq 0$,但

$$\rho(A) = 0; \ \rho(A+B) = 1 > 0 = \rho(A) + \rho(B);$$

$$\rho(EF) = (1+\sqrt{5})/2 > 1 = \rho(E)\rho(F).$$

例 1: 试估计 A 的谱半径

$$A = \left(\begin{array}{ccc} 0 & 0.2 & 0.1 \\ -0.2 & 0 & 0.2 \\ -0.1 & -0.2 & 0 \end{array}\right)$$

解:
$$\|A\|_1 = \|A\|_{\infty} = 0.4$$
, $\|A\|_{m_1} = 1$, $\|A\|_{m_{\infty}} = 0.6$, $\|A\|_F = \sqrt{0.18} \approx 0.4243$, 于是 $\rho(A) \leq 0.4$.

4. 定理2.13: 设 A ∈ C^{n×n}, 对任意 ε > 0, 存在矩阵
 范数 ||·||_m 使

$$||A||_m \leq \rho(A) + \varepsilon$$

证明: 设 $P \in C_n^{n \times n}$ 使得

$$P^{-1}AP = J = \begin{pmatrix} \lambda_1 & \delta_1 & & & \\ & \lambda_2 & \ddots & & \\ & & \ddots & \delta_{n-1} & \\ & & & \lambda_n \end{pmatrix}, \quad \delta_i = 0$$
 或 1

$$\Leftrightarrow D = diag(1, \varepsilon, \varepsilon^2, \cdots, \varepsilon^{n-1}), 则有$$

$$D^{-1}P^{-1}APD = D^{-1}JD = \begin{pmatrix} \lambda_1 & \varepsilon \delta_1 & & \\ & \lambda_2 & \ddots & \\ & & \ddots & \varepsilon \delta_{n-1} \\ & & & \lambda_n \end{pmatrix}$$

于是

$$||D^{-1}P^{-1}APD||_{\infty} \leq \max_{i}(|\lambda_{i}|+\varepsilon) = \rho(A) + \varepsilon$$

规定

$$||B||_{m} = ||D^{-1}P^{-1}APD||_{\infty}, \quad B \in C^{n \times n}$$

则 $||B||_m$ 是 $B \in C^{n \times n}$ 上的一种矩阵范数且有

$$||A||_m = ||D^{-1}P^{-1}APD||_{\infty} \le \rho(A) + \varepsilon$$

二. 矩阵序列及在级数中的应用

1. 称满足 $\lim_{k\to\infty} A^k = 0$ 的矩阵 $A \in \mathbb{C}^{n \times n}$ 为收敛矩阵。

2. 定理2.14 矩阵 **A** 为收敛矩阵的充要条件为

$$\rho(A) < 1$$

证明:如果 A 为收敛矩阵,则对任一矩阵范数 ||·||

有
$$\lim_{k\to\infty} \|A^k\| = 0$$
。因为

$$(\rho(A))^k = \rho(A^k) \le ||A^k|| \to 0, \quad k \to \infty,$$

所以必有 $\rho(A) < 1$.

反之,如果 $\rho(A) < 1$,则有 $\varepsilon > 0$ 使得 $\rho(A) + \varepsilon < 1$ 。 存在某个矩阵范数 $\|\cdot\|$ 使得 $\|A\| \le \rho(A) + \varepsilon < 1$ 。 那 么

$$||A^k|| \le ||A||^k \le (\rho(A) + \varepsilon)^k \to 0.$$

所以 A 是收敛矩阵。

- 3. 若有 *C*^{n×n} 上的矩阵范数 ||·|| 使得 ||*A*|| < 1, 则 *A* 为收敛矩阵。
- 4. 设 ||·|| 是 C^{n×n} 上的矩阵范数,则对所有
 A ∈ C^{n×n},有

$$\rho(A) = \lim_{k \to \infty} ||A^k||^{1/k}.$$

例:矩阵

$$A = \begin{pmatrix} 0.1 & 0.5 & -0.3 \\ -0.4 & 0.4 & 0.1 \\ 0.3 & -0.2 & 0.3 \end{pmatrix}$$

是否为收敛矩阵?

解:由于 $||A||_{\infty} = 0.9 < 1$,所以 A 是收敛矩阵。

矩阵级数

5. 定义: 设 $\{A^{(k)}\}_{k=1}^{\infty}$ 是 $C^{n\times n}$ 上的矩阵序列,它们的 无穷和式

$$A^{(1)} + A^{(2)} + \cdots + A^{(k)} + \cdots$$

称为矩阵级数,记为 $\sum_{k=1}^{\infty} A^{(k)}$.

对任一正整数 N,称 $S^{(N)} = \sum_{k=1}^{N} A^{(k)}$ 为矩阵级数的部分和。如果部分和序列 $\{S^{(N)}\}$ 收敛于矩阵 S,则称矩阵级数收敛,其和为 S,记为 $\sum_{k=1}^{\infty} A^{(k)} = S$ 。不收敛的级数称为发散级数。

6. 定义:设 $A^{(k)} = (a_{ij}^{(k)}) \in C^{n \times n}$, $(k = 1, 2, \cdots)$ 。若 n^2 个数项级数

$$\sum_{k=1}^{\infty} a_{ij}^{(k)}, \quad i,j=1,2,\cdots,n.$$

均绝对收敛,则称矩阵级数 $\sum_{k=1}^{\infty} A^{(k)}$ 绝对收敛。

7. 定理: 矩阵级数 $\sum_{k=1}^{\infty} A^{(k)}$ 绝对收敛的充要条件是正项

级数 $\sum_{k=1}^{\infty} \|A^{(k)}\|$ 收敛,其中 $\|\cdot\|$ 是 $C^{n \times n}$ 上的任一矩阵范数。

矩阵幂级数

8. 设
$$A \in C^{n \times n}$$
, $a_k \in C$ $(k = 0, 1, 2, \cdots)$, 称矩阵级数
$$\sum_{k=0}^{\infty} a_k A^k$$
 为矩阵 A 的幂级数。

9. 定理: 设复变量幂级数 $\sum_{k=0}^{\infty} a_k z^k$ 的收敛半径为

 $R, A \in C^{n \times n}$,则

- (1) 当 $\rho(A) < R$ 时,矩阵幂级数 $\sum_{k=0}^{\infty} a_k A^k$ 绝对收敛:
- (2) 当 $\rho(A) > R$ 时,矩阵幂级数 $\sum_{k=0}^{\infty} a_k A^k$ 发散。

证明:
$$(1)$$
 当 $\rho(A)$ $<$ R 时,存在 ε $>$ 0 使得 $\rho(A) + \varepsilon < R$,从而 存在矩阵范数 $\|\cdot\|$ 使得 $\|A\| \le \rho(A) + \varepsilon < R$ 。那么有

$$||a_kA^k|| \leq |a_k|||A||^k \leq |a_k|(\rho(A)+\varepsilon)^k.$$

由于级数
$$\sum_{k=0}^{\infty} |a_k| (\rho(A) + \varepsilon)^k$$
 收敛,所以 $\sum_{k=0}^{\infty} ||a_k A^k||$ 收

敛,故矩阵幂级数 $\sum_{k=0}^{\infty} a_k A^k$ 绝对收敛。

(2) 当 $\rho(A) > R$ 时,设 A 的特征值为 $\lambda_1, \lambda_2, \cdots, \lambda_n$

则一定有某个特征值的模大于 R,不妨设 $|\lambda_1| > R$ 。设

A 的 Jordan 矩阵为 J, 由 Jordan 定理,存在可逆矩阵

P 使得

$$P^{-1}AP = J = egin{pmatrix} \lambda_1 & \delta_1 & & & & & & & & & \\ & \lambda_2 & \ddots & & & & & & & \\ & & \ddots & \delta_{n-1} & & & & & & \lambda_n \end{pmatrix}, \quad \delta_i = 0$$
 或 1.

由于矩阵级数 $\sum_{k=0}^{\infty} a_k J^k$ 对角线元素为

$$\sum\limits_{k=0}^{\infty}a_k\lambda_j^k\;(j=1,2,\cdots,n)$$
, 其中有一项 $\sum\limits_{k=0}^{\infty}a_k\lambda_1^k$ 是发散

的,所以矩阵级数 $\sum_{k=0}^{\infty} a_k J^k$ 发散。而

Nanjing University of Science and Technology

10. 设复变量幂级数 $\sum_{k=1}^{\infty} a_k z^k$ 的收敛半径为

 $R, A \in C^{n \times n}$ 。若存在 $C^{n \times n}$ 上的矩阵范数 $\| \cdot \|$ 使

得 ||A|| < R,则矩阵幂级数 $\sum_{k=1}^{\infty} a_k A^k$ 绝对收敛。

$$\sum_{k=0}^{\infty} a$$

11. 设 $A \in C^{n \times n}$,则矩阵幂级数 $\sum_{k=0}^{\infty} A^k$ 收敛的充要条件 是 $\rho(A) < 1$, 且在收敛时,其和为 $(I - A)^{-1}$ 。

12. 设 $A \in C^{n \times n}$,如果存在矩阵范数 $\| \cdot \|$ 使得 $\|A\| < 1$,则 I - A 是可逆矩阵,且 $(I - A)^{-1} = \sum_{k=0}^{\infty} A^k .$

例: 判断以下矩阵幂级数的敛散性:

$$(1) \sum_{k=0}^{\infty} \frac{k}{5^k} \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}^k; \quad (2) \sum_{k=0}^{\infty} \frac{k+1}{3^k} \begin{pmatrix} 1 & -1 \\ -1 & 3 \end{pmatrix}^k;$$

(3)
$$\sum_{k=0}^{\infty} k(k+1) \begin{pmatrix} 0.1 & 0.5 & -0.3 \\ -0.4 & 0.4 & 0.1 \\ 0.3 & -0.2 & 0.3 \end{pmatrix}^{k}$$
.

§2.4 矩阵的条件数及应用

设 $A \in C_n^{n \times n}$, $b \in C^n$. 在求 A^{-1} 或解方程组 Ax = b时, 对于误差 δA 和 δb , 要研究 A^{-1} 和 $(A + \delta A)^{-1}$ 的 近似程度, 或 x 与 δx 的误差大小。

1. 定义:设 $A \in C_n^{n \times n}$, $\|\cdot\|$ 是 $C^{n \times n}$ 上的一个矩阵范数。矩阵 A 的条件数定义为

$$\operatorname{cond}(A) = \|A\| \|A^{-1}\|.$$

例:设
$$A \in C_n^{n \times n}$$
 是一个正规矩阵,则

$$\operatorname{cond}_{2}(A) = \|A\|_{2} \|A^{-1}\|_{2} = \frac{\max\{|\lambda| : \lambda \text{ 是 } A \text{ 的特征值}\}}{\min\{|\lambda| : \lambda \text{ 是 } A \text{ 的特征值}\}}$$

例: 设
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 3 \\ 3 & 4 & 5 \end{pmatrix}$$
, 求 A 的条件数
$$\operatorname{cond}_{\infty}(A) = \|A\|_{\infty} \|A^{-1}\|_{\infty}.$$

例: 设
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 3 \\ 3 & 4 & 5 \end{pmatrix}$$
, 求 A 的条件数
$$\operatorname{cond}_{\infty}(A) = \|A\|_{\infty} \|A^{-1}\|_{\infty}.$$

解: 因为
$$A^{-1} = \frac{1}{2} \begin{pmatrix} -3 & -2 & 3 \\ 1 & 4 & -3 \\ 1 & -2 & 1 \end{pmatrix}$$
, 所以 A 的条件数

为 $\operatorname{cond}_{\infty}(A) = \|A\|_{\infty} \|A^{-1}\|_{\infty} = 12 \times 4 = 48.$

- 2. 定理: 设 $A \in C_n^{n \times n}$, $\delta A \in C^{n \times n}$, 若对 $C^{n \times n}$ 上的 某一矩阵范数 $\|\cdot\|$ 有 $\|A^{-1}\delta A\| < 1$, 则
 - (1) $A + \delta A$ 可逆

(2)
$$\|(A + \delta A)^{-1}\| \le \frac{\|A^{-1}\|}{1 - \|A^{-1}\delta A\|}$$

$$(3) \ \frac{\|A^{-1} - (A + \delta A)^{-1}\|}{\|A^{-1}\|} \le \frac{\|A^{-1}\delta A\|}{1 - \|A^{-1}\delta A\|}$$

证明: (1)
$$\mathbf{A} + \delta \mathbf{A} = \mathbf{A}(\mathbf{I} + \mathbf{A}^{-1}\delta \mathbf{A})$$

(2) 因为

$$(A + \delta A)^{-1} = (I + A^{-1}\delta A)^{-1}A^{-1} = \sum_{k=0}^{\infty} (-1)^k (A^{-1}\delta A)^k A^{-1}.$$

所以
$$\|(A + \delta A)^{-1}\| \le \frac{\|A^{-1}\|}{1 - \|A^{-1}\delta A\|}$$

(3) 因为

$$||A^{-1} - (A + \delta A)^{-1}|| = \left|\left|\sum_{k=1}^{\infty} (-1)^{k+1} (A^{-1} \delta A)^k A^{-1}\right|\right|$$

$$\leq \sum_{k=1}^{\infty} \|A^{-1}\delta A\|^{k} \|A^{-1}\| = \frac{\|A^{-1}\delta A\|}{1 - \|A^{-1}\delta A\|} \|A^{-1}\|.$$

从而

$$\frac{\|A^{-1} - (A + \delta A)^{-1}\|}{\|A^{-1}\|} \le \frac{\|A^{-1}\delta A\|}{1 - \|A^{-1}\delta A\|}.$$

推论:设 $A \in C_n^{n \times n}$, $\delta A \in C^{n \times n}$. 若对 $C^{n \times n}$ 上某矩阵 范数 $\|\cdot\|$ 有 $\|A^{-1}\| \|\delta A\| < 1$, 则 (相对误差)

$$\frac{\|A^{-1} - (A + \delta A)^{-1}\|}{\|A^{-1}\|} \le \frac{\operatorname{cond}(A) \frac{\|\delta A\|}{\|A\|}}{1 - \operatorname{cond}(A) \frac{\|\delta A\|}{\|A\|}}$$

3. 定理: 设 $A \in C_n^{n \times n}$, $\delta A \in C^{n \times n}$, b, $\delta b \in C^n$. 若 对 $C^{n \times n}$ 上某矩阵范数 $\|\cdot\|$ 有 $\|A^{-1}\| \|\delta A\| < 1$, 则

的解满足 (相对误差)

$$\frac{\|x-\hat{x}\|_{\alpha}}{\|x\|_{\alpha}} \leq \frac{\operatorname{cond}(A)}{1-\operatorname{cond}(A)\frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|_{\alpha}}{\|b\|_{\alpha}}\right)$$

其中 $\|\cdot\|_{\alpha}$ 是 C^n 上与矩阵范数 $\|\cdot\|$ 相容的向量范

数。

证明: 因为

$$x - \hat{x} = A^{-1}b - (A + \delta A)^{-1}(b + \delta b)$$

$$= [A^{-1} - (A + \delta A)^{-1}]b - (A + \delta A)^{-1}\delta b$$

$$= \sum_{k=1}^{\infty} (-1)^{k+1} (A^{-1}\delta A)^k A^{-1}b$$

$$+ \sum_{k=0}^{\infty} (-1)^{k+1} (A^{-1}\delta A)^k A^{-1}\delta b.$$

所以,利用 $\|\mathbf{b}\|_{\alpha} = \|\mathbf{A}\mathbf{x}\|_{\alpha} \leq \|\mathbf{A}\|\|\mathbf{x}\|_{\alpha}$,可得

$$||x-\hat{x}||_{\alpha} \leq \sum_{k=1}^{\infty} (||A^{-1}|| ||\delta A||)^{k} ||x||_{\alpha}$$

$$+ \sum_{k=0}^{\infty} (\|A^{-1}\| \|\delta A\|)^{k} \|A^{-1}\| \|\delta b\|_{\alpha}$$

$$= \frac{\|A^{-1}\| \|\delta A\|}{1 - \|A^{-1}\| \|\delta A\|} \|x\|_{\alpha} + \frac{1}{1 - \|A^{-1}\| \|\delta A\|} \|A^{-1}\| \|\delta b\|_{\alpha}$$

$$\leq \frac{\operatorname{cond}(A)}{1 - \operatorname{cond}(A) \frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|_{\alpha}}{\|b\|_{\alpha}} \right) \|x\|_{\alpha}$$

4. 一般地,如果条件数 cond(A) 较小(接近 1),就 称 A 关于求矩阵逆或求解线性方程组为良态的或好 条件的; 如果条件数 cond(A) 较大,就称 A 关于求 矩阵逆或求解线性方程组为病态的或坏条件的。

常用条件数:

$$cond_{\infty}(A) = \|A\|_{\infty} \|A^{-1}\|_{\infty}$$
 $cond_{2}(A) = \|A\|_{2} \|A^{-1}\|_{2} = \sqrt{\frac{\mu_{1}}{\mu_{n}}}$

 μ_1, μ_n 分别为 $A^H A$ 的最大与最小特征值。

几个例题

1

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1+\varepsilon \end{pmatrix}, \quad \varepsilon > 0.$$

证明对任意范数,当 $\epsilon \rightarrow 0$ 时有

 $\operatorname{cond}(A) = O(\varepsilon^{-1})$ 。因而矩阵 A 是病态的。

证明:可以求得 A 的特征值为

$$\lambda_1 = (2 + \varepsilon + \sqrt{4 + \varepsilon^2})/2, \quad \lambda_2 = (2 + \varepsilon - \sqrt{4 + \varepsilon^2})/2.$$

由于 A 为对称矩阵,所以对谱范数有

$$egin{aligned} \operatorname{cond}_2(A) = & rac{\lambda_1}{\lambda_2} = rac{2+arepsilon+\sqrt{4+arepsilon^2}}{2+arepsilon-\sqrt{4+arepsilon^2}} \ & = & rac{1}{arepsilon} \left(2+\sqrt{4+arepsilon^2} + rac{arepsilon}{2}\sqrt{4+arepsilon^2} + rac{arepsilon^2}{2} + arepsilon
ight) \ & = & O(arepsilon^{-1}), \quad (lacksquare arepsilon o 0 \, lacksquare). \end{aligned}$$

因为 $C^{n \times n}$ 上所有矩阵范数是等价的,所以对任意范数,当 $\varepsilon \to 0$ 时有 $\operatorname{cond}(A) = O(\varepsilon^{-1})$ 。因而矩阵 A 是病态的。

2. 设
$$A = \begin{pmatrix} -1 & i & 0 \\ -i & 0 & -i \\ 0 & i & -1 \end{pmatrix}$$
, $\delta(A) \in C^{3 \times 3}$, $0 \neq b \in C^3$.

为使线性方程组 Ax = b 的解 x 与 $(A + \delta(A))x = b$ 的解 \hat{x} 的相对误差 $\frac{\|\hat{x} - x\|_2}{\|x\|_2} \le 10^{-4}$, 问 $\frac{\|\delta(A)\|_2}{\|A\|_2}$ 应不超过何值?

解: 因为
$$|\lambda I - A| = (\lambda + 1)(\lambda - 1)(\lambda + 2)$$
, 所以

$$\operatorname{cond}_2(A) = \|A\|_2 \|A^{-1}\|_2 = 2$$
。 从

$$\frac{\|\hat{x} - x\|_2}{\|\mathbf{x}\|_2} \le \frac{\operatorname{cond}_2(A)}{1 - \operatorname{cond}_2(A) \frac{\|\delta A\|_2}{\|A\|_2}} \frac{\|\delta A\|_2}{\|A\|_2} \le 10^{-4},$$

即

$$\frac{2}{1-2\frac{\|\delta A\|_2}{\|A\|_2}}\frac{\|\delta A\|_2}{\|A\|_2}\leq 10^{-4},$$

得

$$\frac{\|\delta A\|_2}{\|A\|_2} \le \frac{1}{2.0002} \times 10^{-4} \le \frac{1}{2} \times 10^{-4} = 5 \times 10^{-5}.$$

3. 设
$$A \in C^{n \times n}$$
 满足 $\sum_{i=1}^{n} a_{ij} = 1$ $(j = 1, 2, \dots, n)$, $a_{ij} \geq 0$, 证明 $\rho(A) = 1$.

证明: 首先 $\rho(A) \leq ||A||_1 = 1$, 其次 因为

$$det(I - A) = \begin{vmatrix} 1 - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & 1 - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & 1 - a_{nn} \end{vmatrix}$$

所以 $\lambda = 1$ 为 A 的一个特征值,从而 $\rho(A) \ge 1$,故 $\rho(A) = 1$.

4. 设
$$A = \begin{pmatrix} 1 & -2 & 2 \\ -2 & -2 & 4 \\ 2 & 4 & -2 \end{pmatrix}$$

选取
$$C^{3\times3}$$
 上的范数 $\|\cdot\|_{\alpha}$ 使 $k_{\alpha}(A) = \|A\|_{\alpha}\|A^{-1}\|_{\alpha}$ 最小。

解:因为 A 是对称矩阵,所以 $\|A\|_2 = \rho(A)$.而对 $C^{3\times 3}$ 上任一范数 $\|\cdot\|$ 有 $\rho(A) \leq \|A\|$. 所以选范数 $\|\cdot\|_2$ 可使 k_0 最小,即有

$$k_2(A) = ||A||_2 ||A^{-1}||_2 = \left|\frac{\lambda_1}{\lambda_3}\right|$$

因为
$$det(\lambda I - A) = (\lambda - 2)^2(\lambda + 7)$$
, $\lambda_1 = -7$, $\lambda_3 = 2$, 则 $k_2(A) = \frac{7}{2}$.

5. 设 ||·|| 是 C^{n×n} 上的范数, 对任意 A ∈ C^{n×n}, 定义 ||A||_{*} = ||A^H||, 证明: (1) ||·||_{*} 是 C^{n×n} 上范数; (2) ||A|| ||A||_{*} ≥ ||A||₅.

证明: (1) 按定义易证。

(2) 我们有

$$||A||_2^2 = \rho(AA^H) \le ||AA^H||$$

 $\le ||A|| \, ||A^H|| = ||A|| \, ||A||_*$

- 6. 设 $A \in C^{n \times n}$, A 不可逆
 - (1) 证明 $r(A) = r(A^2)$ 的充要条件是 A 的形如 λ^s 的 初等因子均是一次的:
 - (2) 当 $r(A) = r(A^2)$ 时, 试由 A 的 Jordan 分解式构造矩阵 B, 使得 ABA = A, BAB = B, AB = BA.

证明: (1) 若 A 的形如 λ^s 的初等因子 (设为 t 个)均

是一次的,则存在可逆矩阵 P 使

$$A = P^{-1} \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & 0 & \\ & & & \ddots & \\ & & & \ddots & \\ & & & & J_r \end{pmatrix} F$$

其中 J_i 为对应 λ_i ($\neq 0$) 的 Jordan 块。 则 r(A) = n - t.

而

$$A^2 = P^{-1} \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & 0 & \\ & & & 1 \\ & & & \ddots & \\ & & & & f_r^2 \end{pmatrix} F$$

所以 $r(A^2) = n - t = r(A)$.

反之,若
$$r(A^2) = r(A)$$
, 而 A 有一个 λ^2 的初等因子,

则

则
$$r(A) = n - t + 1$$
. 但

$$A^2 = P^{-1} \begin{pmatrix} 0 & & & \\ & \ddots & & \\ & & 0 & \\ & & & 1 \\ & & & \ddots & \\ & & & & f_r^2 \end{pmatrix} F$$

所以
$$r(A^2) = n - t$$
, 得到矛盾。