Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 249.9 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 7.00, tilsynelatende blå størrelseklass $m_B = 9.76$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 7.00, tilsynelatende blå størrelseklass $m_B = 8.76$

Stjerna C: Tilsynelatende visuell størrelseklasse m $_{\text{-}}\mathrm{V}=12.48,$ tilsynelatende

blå størrelseklass m_B = 14.24

Stjerna D: Tilsynelatende visuell størrelseklasse m_V = 12.48, tilsynelatende blå størrelseklass $m_B = 15.24$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.16 og store halvakse a=1.40 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.16 og store halvakse a=70.92 AU.

Filen 1F.txt

Ved bølgelengden 453.64 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figur E 4.00 3.75 Tilsynelatende størrelsklasse m_V 3.50 3.25 3.00 2.75 2.50 2.25 10 ò 20 30 60 70 40 50 Observasjonstid (dager)

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 13.60 solmasser, temperatur på 45.90 Kelvin og tetthet 9.84e-21 kg per kubikkmeter

Gass-sky B har masse på 16.80 solmasser, temperatur på 55.70 Kelvin og tetthet 9.50e-21 kg per kubikkmeter

Gass-sky C har masse på 17.50 solmasser, temperatur på 10.50 Kelvin og

tetthet 9.86e-21 kg per kubikkmeter

Gass-sky D har masse på 17.20 solmasser, temperatur på 29.80 Kelvin og tetthet 5.10e-21 kg per kubikkmeter

Gass-sky E har masse på 11.20 solmasser, temperatur på 80.20 Kelvin og tetthet 5.88e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer fra Planck-stråling alene

STJERNE B) stjernas overflate består hovedsaklig av helium

STJERNE C) stjernas energi kommer fra frigjort gravitasjonsenergi

STJERNE D) stjernas energi kommer hovedsaklig fra hydrogenfusjon i sentrum

STJERNE E) stjernas energi kommer hovedsaklig fra heliumfusjon i sentrum

Filen 1L.txt

Stjerne A har spektralklasse M1 og visuell tilsynelatende størrelseklasse m_V = $4.56\,$

Stjerne B har spektralklasse M1 og visuell tilsynelatende størrelseklasse m_V = $5.55\,$

Stjerne C har spektralklasse K2 og visuell tilsynelatende størrelseklasse m $_{-}\mathrm{V}$ = 5.55

Stjerne D har spektralklasse M4 og visuell tilsynelatende størrelseklasse m_V

= 2.66

Stjerne E har spektralklasse M4 og visuell tilsynelatende størrelseklasse m_V = 9.65

Filen 1P.txt

Partiklene har hastighetskomponent langs synsretningen som er Gaussisk fordelt med gjennomsnittsverdi på 100 m/s i retning mot deg

$Filen~2A/Oppgave 2A_Figur 1.png$

1 -

i

ź

3

Figur 1

10

9

8

7

6

5

4

3

2

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figur 3 10 9 8 y-posisjon (buesekunder) 7 6 5 3 2 1 . i ż ġ ż 10 x-posisjon (buesekunder)

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.38900000000000124345 AU.

Tangensiell hastighet er 59278.890902226870821323 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.834 AU.

Kometens avstand fra jorda i punkt 2 er r2=9.100 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=18.023.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9524 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00058 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=610.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9937 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 745.80 nm.

Filen 4A.txt

Stjernas masse er 2.01 solmasser.

Stjernas radius er 0.50 solradier.

Filen 4C.png

Figur 4C 2.4000 2.2000 2.0000 Sannsynlighetstetthet i 10⁻⁴ % 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -200 -600 -400 200 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 25.62 millioner K

Filen 4G.txt

Massen til det sorte hullet er 3.25 solmasser.

r-koordinaten til det innerste romskipet er r $=10.08~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=16.28~\mathrm{km}.$