正睿 2018 提高组十连测 Day6

A. Tiny Counting

这里你需要解决一道微型计数题——关于人畜无害的四元组。

给定长度为 n 的数组 S,下标为 $1\sim n$,你需要统计有多少个四元组 (a,b,c,d) 满足: $1\leq a< b\leq n; 1\leq c< d\leq n; S_a< S_b; S_c> S_d$,且 a,b,c,d 互不相等。

输入格式

第一行一个正整数 n 表示 S 数组的长度。

第二行 n 个正整数,表示 S 数组的值。

输出格式

一行一个正整数表示四元组的数目。

样例一

input

1 4 3 2

output

3

explanation

 $(a,b,c,d) \in \{(1,2,3,4), (1,3,2,4), (1,4,2,3)\}.$

样例二

input

```
5
9 1 0 0 5
```

output

8

样例三

见样例数据下载。

限制与约定

对于 20% 的数据, $n \leq 100$;

对于 50% 的数据, $n \le 1000$;

另外 20% 的数据, $0 \le S_i \le 1$;

对于 100% 的数据, $n \le 10^5$; $0 \le S_i \le 10^9$.

时间限制: 2s

空间限制: 512 MB

下载

样例数据下载

B. Medium Counting

这里你需要解决一道中型计数题——关于捉摸不定的字典序。

有 n 个字符串,分别记为 S_1, S_2, \dots, S_n ,它们由小写字母和?组成,你需要给每个?都填上一个小写字母。

你需要统计,有多少种不同的给?填上字母的方法,使得对于每个 $i\in[1,n-1]$, S_i 的字典序**严格小于** S_{i+1} 的字典序。

输入格式

第一行一个正整数 n 表示字符串的数目。

接下来 n 行每行一个字符串,表示 S_i 。

输出格式

输出一行一个整数表示合法的填写方案数对 990804011 取模的结果。

样例一

input

```
2
z?
?a
```

output

0

explanation

没有可行解。

样例二

input

```
2
a?
?a
```

output

650

样例三

见样例数据下载。

限制与约定

 $\diamondsuit L = \max\{|S_i|\}:$

对于 20% 的数据, $nL \leq 10$;

对于 40% 的数据, $n \leq 10$;

对于 60% 的数据, $n \leq 30$;

另有 10% 的数据, $L \leq 2$;

对于 100% 的数据, $1 \le n \le 50, 1 \le L \le 20$.

时间限制: 2 s

空间限制: 512 MB

下载

样例数据下载

C. Huge Counting

这里你需要解决一道巨型计数题——关于无穷无尽的高维整点。

有一个定义在 k 维非负整点上的函数 $f(x_1,x_2,\cdots,x_k):N_0^k o\{0,1\}$,定义方法如下:

若存在 $j \in [1, k], x_j = 0$,则 $f(x_1, x_2, \cdots, x_k) = 0$

若对于 $j \in [1, k]$ 都有 $x_j = 1$,则 $f(x_1, x_2, \dots, x_k) = 1$

否则 $f(x_1,x_2,\cdots,x_k)=\sum_{j=1}^k f(x_1,x_2,\cdots,x_{j-1},x_j-1,x_{j+1},\cdots,x_k) \mod 2$

现在给出 k,并对每一维坐标给出区间 l_j, r_j ,求:

$$\sum_{x_1 \in [l_1,r_1], x_2 \in [l_2,r_2], \cdots, x_k \in [l_k,r_k]} f(x_1,x_2,\cdots,x_k)$$

输入格式

第一行一个正整数 T 表示数据组数,接下来 T 组数据,对于每组数据:

第一行一个正整数 k 表示维度。

接下来 k 行每行两个整数表示 l_i, r_i 。

输出格式

输出答案对 990804011 取模的结果。

样例—

input

output

3 5

explanation

对于第一组数据,有 (1), (2), (3) 三个点。对于第二组数据,有 (1,2), (1,3), (1,4), (2,3), (3,2) 五个点。

样例二

见样例数据下载。

限制与约定

对于全部数据, $1 \le T \le 10; 1 \le k \le 9; 1 \le l_j, r_j \le 10^{15}$.

本题采用子任务评分,只有通过一个子任务的全部数据才可以得到该子任务的分数,否则不得分。

子任务	分值	k	其他约定
1	1	= 1	无
2	4	=3	$r_j \leq 1000$
3	7	=3	$r_j \leq 10^5$
4	15	= 3	$r_j \leq 10^{15}$
5	9	=9	$\prod r_j leq 10^5$
6	14	=9	$\prod (r_j - l_j + 1) \leq 10^5$
7	17	=9	$l_j=1$
8	33	= 9	无

时间限制:3s

空间限制: 512 MB

下载

样例数据下载