Database Development and Design (CPT201)

Lecture 5a: Introduction to Query Optimisation 1

Dr. Wei Wang

Department of Computing

Learning Outcomes

- Introduction to Query Optimisation
 - Transformation of Relational Expressions

Evaluation of Expressions

- So far we have seen algorithms for individual operations
 - These have then to be combined to evaluate complex expressions, with multiple operations.
- Alternatives for evaluating an entire expression tree
 - Materialisation: generate results of an expression whose inputs are relations or relations that are already computed. Temporary relations must be materialised (stored) on disk.
 - **Pipelining**: pass on tuples to parent operations even as the operation is being executed.

Materialisation

- Materialised evaluation: evaluate one operation at a time, starting at the lowest-level. Use intermediate results materialised into temporary relations to evaluate nextlevel operations.
 - e.g., in figure below, compute and store the selection, then compute its join with customer and and store the result, and finally compute the projections on customer-name.

Materialisation cont'd

- Materialised evaluation is always applicable
- It may require considerable storage space.
 Moreover, cost of writing results to disk and reading them back can be quite high
 - Our cost formulas for operations ignore cost of writing final results to disk, so:
 - Overall cost = Sum of costs of individual operations + cost of writing intermediate results to disk
- Double buffering: use two output buffers for each operation, when one is full, write it to disk while the other is getting filled
 - Allows overlap of disk writes with computation and reduces execution time

Pipelining

- Pipelined evaluation: evaluate several operations simultaneously, passing the results of one operation on to the next.
 - e.g., in previous expression tree, don't store result of the selection
 - instead, pass tuples directly to the join.
 - Similarly, don't store result of join, pass tuples directly to projection.
- It is much cheaper than materialisation: there is no need to store a temporary relation to disk.
- Pipelining may not always be possible e.g., sort and hash-join where a preliminary phase is required over the whole relations.
- Pipelines can be executed in two ways: demand driven and producer driven.

Producer-Driven Pipelining

- In producer-driven (or eager or push) pipelining
 - Operators produce tuples eagerly and pass them up to their parents
 - buffer maintained between operators, child puts tuples in buffer, parent removes tuples from buffer
 - if buffer is full, child waits till there is space in the buffer, and then generates more tuples
 - System schedules operations that have space in output buffer and can process more input tuples.

Demand-Driven Pipelining

- In demand driven (or lazy, or pull) evaluation
 - system repeatedly requests next tuple from top level operation
 - Each operation requests next tuple from child operations as required, in order to output its next tuple
 - In between calls, operation has to maintain "state" so it knows what to return next.

Equivalent expressions

- Alternative ways of evaluating a given query
 - Equivalent expressions
 - Different algorithms for each operation

Evaluation Plan

 An evaluation plan defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated.

Cost-based query Optimisation

- Cost difference between evaluation plans for a query can be enormous
 - E.g. seconds vs. days in some cases
- Cost-based query optimisation
 - Find logically equivalent expressions of the given expression (but more efficient to execute)
 - Select a detailed strategy for processing the query, such as choosing the algorithm to use for executing an operation or choosing the specific indices to use
- Estimation of plan cost based on:
 - Statistical information about relations, e.g., number of tuples, number of distinct values for an attribute
 - Statistical estimation for intermediate results to compute cost of complex expressions
 - Cost formulae for algorithms, computed using statistics
 - It should be noted that since the cost is an estimate, the selected plan is not necessarily the least-costly plan; however, as long as the estimates are good, the plan will not be much more costly than it.

Transformation of Relational Expressions

- Two relational algebra expressions are said to be equivalent if the two expressions generate the same set of tuples on every legal database instance
 - Note: order of tuples is irrelevant
 - In SQL, inputs and outputs are multisets of tuples
 - Two expressions in the multiset version of the relational algebra are said to be equivalent if the two expressions generate the same multiset of tuples on every legal database instance.
- An equivalence rule says that expressions of two forms are equivalent if
 - Can replace expression of first form by second, or vice versa

Equivalence Rules

 Rule 1: Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$\sigma_{\theta_1 \wedge \theta_2}(E) = \sigma_{\theta_1}(\sigma_{\theta_2}(E))$$

Rule 2: Selection operations are commutative.

$$\sigma_{\theta_1}(\sigma_{\theta_2}(E)) = \sigma_{\theta_2}(\sigma_{\theta_1}(E))$$

 Rule 3: Only the last one in a sequence of projection operations is needed, the others can be omitted.

$$\Pi_{L_1}(\Pi_{L_2}(...(\Pi_{L_n}(E))...)) = \Pi_{L_1}(E)$$

- Rule 4: Selections can be combined with Cartesian products and theta joins.
 - (a). $\sigma_{\theta}(E_1 \times E_2) = E_1 \bowtie_{\theta} E_2$
 - (b). $\sigma_{\theta 1}(\mathsf{E}_1 \bowtie_{\theta 2} \mathsf{E}_2) = \mathsf{E}_1 \bowtie_{\theta 1 \land \theta 2} \mathsf{E}_2$

Equivalence Rules cont'd

 Rule 5: Theta-join operations (and natural joins) are commutative.

$$E_1 \bowtie_{\theta} E_2 = E_2 \bowtie_{\theta} E_1$$

- Rule 6.
 - (a) Natural join operations are associative:

$$(E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)$$

• (b) Theta joins are associative in the following manner:

$$(E_1 \bowtie_{\theta_1} E_2) \bowtie_{\theta_2 \land \theta_3} E_3 = E_1 \bowtie_{\theta_1 \land \theta_3} (E_2 \bowtie_{\theta_2} E_3)$$

where θ_2 involves attributes from only E_2 and E_3 .

Equivalence Rules cont'd

- Rule 7. The selection operation distributes over the theta join operation under the following two conditions:
 - (a) When θ_0 involves only the attributes of one of the expressions (E_1) being joined.

$$\sigma_{\theta_0}(\mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2) = (\sigma_{\theta_0}(\mathsf{E}_1)) \bowtie_{\theta} \mathsf{E}_2$$

• (b) When θ_1 involves only the attributes of E_1 and θ_2 involves only the attributes of E_2 .

$$\sigma_{\theta_1} \wedge_{\theta_2} (\mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2) = (\sigma_{\theta_1}(\mathsf{E}_1)) \bowtie_{\theta} (\sigma_{\theta_2}(\mathsf{E}_2))$$

Pictorial Depiction of Equivalence Rules

Equivalence Rules cont'd

- Rule 8. The projection operation distributes over the theta join operation as follows:
 - (a) Let L1 and L2 be attributes from E1 and E2, if θ involves only attributes from $L_1 \cup L_2$:

$$\prod_{L_1 \cup L_2} (E_1 \bowtie_{\theta} E_2) = (\prod_{L_1} (E_1)) \bowtie_{\theta} (\prod_{L_2} (E_2))$$

- (b) Consider a join $E_1 \bowtie_{\theta} E_2$.
 - let L_1 and L_2 be sets of attributes from E_1 and E_2 , respectively.
 - let L_3 be attributes of E_1 that are involved in join condition θ , but are not in $L_1 \cup L_2$, and
 - let L_4 be attributes of E_2 that are involved in join condition θ , but are not in $L_1 \cup L_2$.

$$\prod_{L_{1} \cup L_{2}} (E_{1} \bowtie_{\theta} E_{2}) = \prod_{L_{1} \cup L_{2}} ((\prod_{L_{1} \cup L_{3}} (E_{1})) \bowtie_{\theta} (\prod_{L_{2} \cup L_{4}} (E_{2})))$$

Equivalence Rules cont'd

 Rule 9. The set operations union and intersection are commutative (set difference is not commutative)

$$E_1 \cup E_2 = E_2 \cup E_1$$

 $E_1 \cap E_2 = E_2 \cap E_1$

Rule 10. Set union and intersection are associative.

$$(E_1 \cup E_2) \cup E_3 = E_1 \cup (E_2 \cup E_3)$$

 $(E_1 \cap E_2) \cap E_3 = E_1 \cap (E_2 \cap E_3)$

■ Rule 11. The selection operation distributes over \cup , \cap and \neg .

$$\sigma_{\theta}(E_1 - E_2) = \sigma_{\theta}(E_1) - \sigma_{\theta}(E_2)$$
Also:
$$\sigma_{\theta}(E_1 - E_2) = \sigma_{\theta}(E_1) - E_2$$
and similarly for \cap in place of -, but not for \cup

Rule 12. The projection operation distributes over union

$$\Pi_{\mathsf{L}}(E_1 \cup E_2) = (\Pi_{\mathsf{L}}(E_1)) \cup (\Pi_{\mathsf{L}}(E_2))$$

Banking Example

Example: Pushing Selections

 Query: Find the names of all customers who have an account at some branch located in Brooklyn.

```
\Pi_{customer\_name}(\sigma_{branch\_city} = "Brooklyn"(branch \bowtie (account \bowtie depositor)))
```

- Transformation using rule 7a (distribute the selection). $\Pi_{customer_name}((\sigma_{branch_city = "Brooklyn"} (branch)) \bowtie (account \bowtie depositor))$
- Performing the selection as early as possible reduces the size of the relation to be joined.

Example: Multiple Transformations

Query: Find the names of all customers with an account at a Brooklyn branch whose account balance is over \$1000.

```
\Pi_{customer\_name}(\sigma_{branch\_city = "Brooklyn" \land balance > 1000} (branch \bowtie (account \bowtie depositor)))
```

Transformation using join associatively (Rule 6a and 7a):

```
\Pi_{customer\_name} ((\sigma_{branch\_city} = "Brooklyn" \land balance > 1000 (branch \bowtie account)) \bowtie depositor)
```

Second form provides an opportunity to apply the "perform selections early" rule, resulting in the subexpression 7b

```
\sigma_{branch\_city = "Brooklyn"} (branch) \bowtie \sigma_{balance > 1000} (account)
```

Thus a sequence of transformations can be useful

Multiple Transformations cont'd

(b) Tree after multiple transformations

Transformation Example: Pushing Projections

 $\Pi_{customer_name}((\sigma_{branch_city = "Brooklyn"} (branch) \bowtie account) \bowtie depositor)$

When we compute

```
(\sigma_{branch\_city = "Brooklyn"} (branch) \bowtie account)
```

we obtain a relation whose schema is: (branch_name, branch_city, assets, account_number, balance)

Push projections using equivalence rules 8b; eliminate unneeded attributes from intermediate results to get: $\Pi_{customer_name}((\Pi_{account_number}((\sigma_{branch_city = "Brooklyn"}(branch) \bowtie account)))) \land (HINT: L1 is null, L2 is customer_name; L3=L4=account_number)$

Performing projection as early as possible reduces the size of the tuples to be joined.

Join Ordering Example

• For all relations r_1 , r_2 , and r_3 ,

$$(r_1 \bowtie r_2) \bowtie r_3 = r_1 \bowtie (r_2 \bowtie r_3)$$

(Join Associativity)

• If $r_2 \bowtie r_3$ is quite large and $r_1 \bowtie r_2$ is small, we choose

$$(r_1 \bowtie r_2) \bowtie r_3$$

so that we compute and store a smaller temporary relation.

Join Ordering Example cont'd

Consider the expression

```
\Pi_{customer\_name} ((\sigma_{branch\_city} = "Brooklyn" (branch))\bowtie (account \bowtie depositor))
```

■ Could compute account ⋈ depositor first, and join result with

```
\sigma_{branch\_city = "Brooklyn"}(branch)
but account \bowtie depositor is likely to be a large
relation.
```

- Only a small fraction of the bank's customers are likely to have accounts in branches located in Brooklyn
 - it is better to compute first

$$\sigma_{branch_city} = "Brooklyn" (branch) \bowtie account$$

Enumeration of Equivalent Expressions

- Query optimisers use equivalence rules to systematically generate expressions equivalent to the given expression
- The approach is very expensive in space and time

```
procedure genAllEquivalent(E)
EQ = \{E\}
repeat
Match each expression <math>E_i in EQ with each equivalence rule R_j
if any subexpression e_i of E_i matches one side of R_j
Create a new expression <math>E' which is identical to E_i, except that e_i is transformed to match the other side of R_j
Add E' to EQ if it is not already present in EQ
until no new expression can be added to EQ
```


End of Lecture

- Summary
 - Transformation of Relational Expressions
- Reading
 - Textbook chapter 13.1, 13.2, 13.3, and 13.4

20/10/12