Show a complete timing diagram for a 3-bit up/down counter that goes through the following sequence. Indicate when the counter is in the UP mode and when it is in the DOWN mode. Assume positive edge-triggering. 0, 1, 2, 3, 2, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0

Up pour up Down

Develop the Q output waveforms for a 74HC190 up/down counter with the input waveforms shown in Figure. A binary 0 is on the data inputs. Start with a count of 0000.

Develop the Q output waveforms for a 74HC190 up/down counter with the input waveforms shown in Figure. A binary 0 is on the data inputs. Start with a count of 0000.

- 3. Repeat above Problem if the CTEN is inverted with the other inputs the same.
 - 0 1 1 1 1 1 1 0 0 15 15 15 15 0 0 0
- 4. Determine the sequence of the counter in Figure

5. Determine the sequence of the counter in Figure 9-74. Begin with the counter cleared.

 Design a counter to produce the following sequence. Use J-K flip-flops. 00, 10, 01, 11, 00,

Patolo

N state

High

J. - 8 .

7. Design a counter to produce the following binary sequence. Use J-K flip-flops. 1, 4, 2, 5, 1, 6, 2, 1,

				<u> </u>		I				
Presont			Next state							
0,	٥,	٥,	٥,	8,	٥,		Q,	Qn+1		
0	0	U	1	0	0		0	0	0	×
ı	0	δ	0	1	0					
O	- 1	Э	1	0	T.		ව	1	l	×
U	0	l l	0	Э	(Ţ	٥	X	1
0	o	U	U	1	٥				,	·
ι	(٥	0	Ţ	0		1	1	×	0
0	ι	0	0	O	1					

0		۵.			۵		
8,8,00	c 	8,8,0	0	c 	8,8,0	0	١
00	, × ,	00		ı	201		,
01 L	2 3	01	2	3	01	2	3
+ 1	6 7	1 1	6	7	+ 1	6	7
100	4 × 5	0	4	S	10	4	5

ار کی		c	_ ⟨∂,		c	_ ⟨∂,		c
8,0,	0	- 1	80,	0	- 1	8,0,	0	- 1
00	,	(,	0 0	۰	ι	00	۰	ı,
01	× 2	3	0 1	2	3	ا ه	2	3
+ 1	6	7	1.7	6	7	1 1	6	7
10	× 4	0 5	10	4	S	10	4	S

Design a counter by using D -flip flop only with the irregular binary count sequence shown in the state diagram of Fig. Include Next-state table,

00	Y-00	01	11	(6
00	X	X	0	3
٥ (0	1	X	(8)
((×	X	0	
(5	X	X	1	0

$$D_0 = \overline{\Theta}_0 + \Theta_2 \Theta_1 + \Theta_2 \Theta_0 Y$$

$$+ \overline{\Theta}_2 \Theta_0 \overline{Y}$$

4. Determine the sequence of the counter in Figure.

1 (UI	
Q_1	Q_0
0	1
1	1
1	0
1	0
1	1
0	1
0	0
0	0

`