DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING SUBJECTCODE: 21MT2103RA PROBABILITY STATISTICS AND QUEUING THEORY

Tutorial 8: Correlation and Linear regression Confidence limits and intervals, Statistical tests			s of significance: Null and Alternate Hypothesis		
Date o	f the Session: //	Time of the Session:	to		
Learn	ing outcomes:	my of to phugar	00		
•	Student will be able to understand cond	cept of liner regression and correlation	· • • • • • • • • • • • • • • • • • • •		
•	Student will be able to understand cond	cept of null and alternate hypothesis			

PRE-TUTORIAL

1. Explain the concept of linear regression

Linear Regression:

Linear Regression:

Linear Regression attempts to model the relationship

Linear regression attempts to model the relationship

between two variables by fitting a linear equation to

between two variables by fitting a linear equation to

observed data.

One variable is considered to an independent variable.

another is considered to be a dependent variable.

A linear regression line has an equation of the form

y=mx+l

The Cincal regression model provides a slopped straight line representing the relationship between the variables.

y= 20+0, 1+ E

y = Dependent Variable

/ x = Independent Variable

ao = intercept of the line

a, = Linear regression coefficient

E = vandom error

2. Explain the concept of Null and alternate hypothesis.

Solution:

sample means (or) propertions (or) (no diff) proportion & a population means (or) proportion. An other words the difference equals to o.

Atternate hypothesis: At is a claim about the population that is contradictory to Ho Ewe conclude when we reject Ho.

A type II error appears when the null hypothusis is false but mistakely fails to be refused. It is losing to state that what is present and a miss. A type II croor is also known as false negative, in an experiment cheking for a condition with a final outcome of true or false.

The false of the I error is represented by the Greek lend.

The rate level of type I error is represented by the Greek letter β (beta) and linked to the power of a test (which equals 1- β).

IN-TUTORIAL:

1. Calculate the correlation coefficient between variables in the SAS built-in dataset called Fish, which contains various measurements for 159 different fish caught in a lake in Finland

Solution:

Proc corr data = sashelp.fish; vas Height width;

The first table displays summary statistics for both Height

The second table displays the Person correlation between two variables, including a produce that tells us if The correlation is statistically significant.

from the output we can see.

- · Pearson correlation coefficient 0.79288
- This tells as there is a strong positive correlation between Reight and that the correlation is statisally signific Significant since The p-value is less than <=0.05.

2 Determine a simple linear regression model using hours as the predictor variable and score as the response variable for a dataset that contains the total hours studied and final exam score for 15 students Canada Marka

Obs	hours	score
1	1	64
2	2	66
3	4	76
4	5	73
5	5	74
6	6	81
7	6	83
8	7	82
9	8	80
10	10	88
11	11	84
12 13	11	82
	12	91
14	12	93
15	14	89

Solution:

we'll create a dataset that contains the total hairs Geate the para studied and final exam score for 15. students. we'll to fit a sample linear regression model using hours as the predictor variable and score as the ruponsible varible.

```
data examidata;
input hours score;
datalines;
    64
2
    60
4
    76
   73
5
   74
6
   81
   83
6
7
    82
8
    80
10
    88
11
    24
    82
11
12
12 93
14 89;
run;
Proc print data = cram_data.
```

Post Tutorial

1. Visualize Correlation with a Scatterplot using "sashelp.fish" Data set Solution:

Proc corr data = sashelp.fish; vas Height Width; run;

from The plot we can see The strong positive correlation between theights and width.

As height increases, width tends to increase as well.

As the loop to left-corner of the plot we can also see the fortal observations used, the correlation, and the p-value for the correlation coefficient.

(For Evaluators use only)

		ē			
Comme				torl	if Anyl
C	, _ £	the	Evall	10111	11 2
Comme	nt oi	uic	17 (42		

Evaluator's Observa	tion
Evaluace Coured	out of
Marks Secured:	aluator;
Full Name of the Ev	andator.
Signature of the Eva	luator:
Date of Evaluation	