Exercice 1 7pt

On va démontrer le résultat suivant : si x > 0, alors $e^x > 1 + x + \frac{x^2}{2}$.

- 1. On considère la fonction g définie sur \mathbb{R} par $g(x) = e^x (1+x)$.
 - (a) Calculez g' et étudiez son signe.
 - (b) Faites un tableau de variations et justifiez que g(x) atteint son minimum en x = 0.
 - (c) Étudiez le signe de g(x) en fonction de x.
- 2. On considère désormais la fonction $f(x) = e^x (1 + x + \frac{x^2}{2})$.
 - (a) Montrez que f'(x) = q(x).
 - (b) Faire un tableau de variations pour f.
 - (c) Calculez f(0) et en déduire le résultat énoncé au début de l'exercice.
- 3. On considère la fonction h définie sur \mathbb{R}^* par $h(x) = \frac{e^x}{x}$. Montrez que si x > 0, alors $h(x) > \frac{x}{2}$; en déduire que $h(x) \xrightarrow[x \to +\infty]{} +\infty$.
- 4. On considère la fonction i définie sur \mathbb{R} par $i(x) = x e^x$. Montrez que si x > 0, alors $i(x) < -1 - \frac{x^2}{2}$; en déduire que $i(x) \xrightarrow[x \to +\infty]{} -\infty$.

Corrigé:

1.

(a)
$$g'(x) = e^x - 1$$
, $g'(x) > 0$ ssi $x > 0$ et $g'(x) = 0$ ssi $x = 0$.

(b)

x	$-\infty$	0		$+\infty$
g'(x)	_	0	+	
g(x)		g(0) = 0		<i></i>

g est décroissante sur l'intervalle $]-\infty,0]$ et croissante sur l'intervalle $[0,+\infty[$; sur $]-\infty,+\infty[$, elle atteint donc un minimum en 0 dont la valeur est g(0)=0.

(c)
$$g(x) > 0$$
 ssi $x \neq 0$ et $g(x) = 0$ ssi $x = 0$.

2.

(a)
$$f'(x) = e^x - (0 + 1 + \frac{2x}{2}) = g(x)$$
.

(b)

x	$-\infty$		0		$+\infty$
f'(x) = g(x)		+	0	+	
f(x)			f(0) = 0)	<i></i>

- (c) $f(0) = e^0 1 = 0$. Puisque f est strictement croissante sur l'intervalle $[0, +\infty[$, si x > 0, alors f(x)) > f(0), autrement dit $e^x (1 + x + \frac{x^2}{2}) > 0$, d'où $e^x > 1 + x + \frac{x^2}{2}$.
- 3. Si x > 0, alors $e^x > 1 + x\frac{x^2}{2} > \frac{x^2}{2}$ puisque 1 + x > 0; ainsi $h(x) = \frac{e^x}{x} > \frac{x}{2}$. Comme $\frac{x}{2} \xrightarrow[x \to +\infty]{} +\infty$, on a $h(x) \xrightarrow[x \to +\infty]{} +\infty$.
- 4. Si x > 0, alors $-e^x < -1 x \frac{x^2}{2}$; donc $i(x) = e^x x < -1 \frac{x^2}{2}$ et comme $-1 x \xrightarrow[x \to +\infty]{} -\infty$, on a $i(x) \xrightarrow[x \to +\infty]{} -\infty$.

Exercice 2, tiré d'un sujet de bac 2022.

10pt

On considère les deux fonctions f et g définies sur l'intervalle $[0; +\infty[$ par

$$f(x) = 0.06(-x^2 + 13.7x)$$
 et $g(x) = (-0.15x + 2.2)e^{0.2x} - 2.2$.

On admet que les fonctions f et g sont dérivables et on note f' et g' leurs fonctions dérivées respectives.

1. On donne le tableau de variations complet de la fonction f sur l'intervalle $[0; +\infty[$.

x	0	6,85	$+\infty$
f(x)	0	f(6,85)	$-\infty$

- (a) Justifier la limite de f en $+\infty$.
- (b) Justifier les variations de la fonction f.
- (c) Résoudre l'équation f(x) = 0.

2.

- (a) Déterminer la limite de q en $+\infty$.
- (b) Démontrer que, pour tout réel x appartenant à $[0; +\infty]$ on a

$$g'(x) = (-0.03x + 0.29)e^{0.2x}.$$

- (c) Étudier les variations de la fonction g et dresser son tableau de variations sur $[0; +\infty[$. Préciser une valeur approchée à 10^{-2} près du maximum de g.
- (d) Montrer que l'équation g(x) = 0 admet une unique solution non nulle et déterminer, à 10^{-2} près, une valeur approchée de cette solution.

Corrigé:

1.

(a)
$$f(x) = -0.06x(x - 13.7)$$
. Losque $x \to +\infty$, $-0.06x \to -\infty$ et $(x - 13.7) \to +\infty$, donc $f(x) \xrightarrow[x \to +\infty]{} -\infty$.

- (b) f'(x) = 0.06(-2x + 13.7), donc f'(x) = 0 ssi 2x 13.7 = 0 ssi x = 6.85, et f'(x) > 0 ssi x > 6.85.
- (c) f(x) = 0 ssi -0.06x = 0 ou x 13.7 = 0, donc l'équation admet deux solutions, x = 0 et x = 13.7.

2.

- (a) Lorsque $x \to +\infty$, $e^{0,2x} \to +\infty$ et $-0.15x + 2.2 \to -\infty$, donc $g(x) \xrightarrow[x \to +\infty]{} -\infty$.
- (b) On pose u(x) = -0.15x + 2.2 et $v(x) = e^{0.2x}$, alors u'(x) = -0.15 et $v'(x) = 0.2e^{0.2x}$, donc $g'(x) = u'(x)v(x) + u(x)v'(x) = -0.15e^{0.2x} + (-0.15x + 2.2)0.2e^{0.2x} = (-0.03x + 0.29)e^{0.2x}$.
- (c) $e^{0,2x} > 0 \ \forall x \in \mathbb{R}$ et -0.03x + 0.29 > 0 ssi $x < \frac{29}{3} = 9 + \frac{1}{3}$, on a donc le tableau de variations suivant :

x	0		<u>29</u> 3		$+\infty$
g'(x)		+	0	_	
g(x)	0 —	<i>g</i> ($\left(\frac{29}{3}\right) \simeq 2,$	98	$-\infty$

Sur le tableau de variations on voit que g(x) admet un maximum en $x = \frac{29}{3}$, à la calculatrice on trouve $g(\frac{29}{3}) \simeq 2{,}98$.

(d) La fonction g est continue et strictement décroissante sur l'intervalle $\left[\frac{29}{3}, +\infty\right[$. Comme $g\left(\frac{29}{3}\right) > 0$ et $g(x) \xrightarrow[x \to +\infty]{} -\infty$, par le théorème des valeurs intermédiaires il existe un unique $x \in \left[\frac{29}{3}, +\infty\right[$ tel que g(x) = 0. On sait qu'il n'en existe pas sur l'intervalle $\left]0, \frac{29}{3}\right[$ car g est srictement croissante sur cet intervalle et que g(0) = 0.

Par lecture graphique sur la calculatrice on trouve $x \simeq 13,74$.

Exercise 3 3pt

Soient a et b deux réels. Si $e^a = 4$ et $e^b = 5$, combien valent e^{a+b} , e^{2a} et e^{-b} ?

Corrigé : $e^{a+b} = e^a e^b = 20$, $e^{2a} = (e^a)^2 = 16$, $e^{-b} = \frac{1}{e^b} = \frac{1}{5}$.