Minimum Cost Walk in Weighted Graph

There is an undirected weighted graph with n vertices labeled from 0 to n - 1.

You are given the integer n and an array edges, where edges[i] = $[u_i, v_i, w_i]$ indicates that there is an edge between vertices u_i and v_i with a weight of w_i .

A walk on a graph is a sequence of vertices and edges. The walk starts and ends with a vertex, and each edge connects the vertex that comes before it and the vertex that comes after it. It's important to note that a walk may visit the same edge or vertex more than once.

The **cost** of a walk starting at node u and ending at node v is defined as the bitwise AND of the weights of the edges traversed during the walk. In other words, if the sequence of edge weights encountered during the walk is w_0 , w_1 , w_2 , ..., w_k , then the cost is calculated as $w_0 \& w_1 \& w_2 \& ... \& w_k$, where & denotes the bitwise AND operator.

You are also given a 2D array query, where query[i] = $[s_i, t_i]$. For each query, you need to find the minimum cost of the walk starting at vertex s_i and ending at vertex t_i . If there exists no such walk, the answer is -1.

Return the array answer, where answer[i] denotes the minimum cost of a walk for query i.

Example 1:

Input: n = 5, edges = [[0,1,7],[1,3,7],[1,2,1]], query = [[0,3],[3,4]]

Output: [1,-1]

Explanation:

To achieve the cost of 1 in the first query, we need to move on the following edges: 0->1 (weight 7), 1->2 (weight 1), 2->1 (weight 1), 1->3 (weight 7).

In the second query, there is no walk between nodes 3 and 4, so the answer is -1.

Example 2:

Input: n = 3, edges = [[0,2,7],[0,1,15],[1,2,6],[1,2,1]], query = [[1,2]]

Output: [0]

Explanation:

To achieve the cost of 0 in the first query, we need to move on the following edges: 1->2 (weight 1), 2->1 (weight 6), 1->2 (weight 1).

Constraints:

- $2 \le n \le 10^5$
- 0 <= edges.length <= 10⁵
- edges[i].length == 3
- 0 <= u_i, v_i <= n 1
- $u_i != v_i$
- $0 \le w_i \le 10^5$
- 1 <= query.length <= 10⁵
- query[i].length == 2
- $0 \le s_i, t_i \le n 1$
- $s_i != t_i$