Лабораторная работа 6

Модель «хищник-жертва»

Абу Сувейлим Мухаммед Мунифович

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы 4.1 Реализация модели в хсоз	7 9 13
5	Вывод	14
6	Библиография	15

Список иллюстраций

4.1	Задать переменные окружения в хсоз для модели	7
4.2	Модель «хищник-жертва» в хсоз	8
4.3	Задать начальные значения в блоках интегрирования	8
4.4	Задать начальные значения в блоках интегрирования	8
4.5	Динамика изменения численности хищников и жертв модели 1 при	
	$a = 2, b = 1, c = 0; 3, d = 1, x(0) = 2, y(0) = 1 \dots \dots$	9
4.6	Фазовый портрет модели 1	9
4.7	Модель «хищник–жертва» в xcos с применением блока Modelica .	10
4.8	Параметры блока Modelica для модели 1	10
4.9	Параметры блока Modelica для модели 1	11
4.10	Динамика изменения численности хищников и жертв модели 1 при	
	a=2,b=1,c=0;3,d=1,x(0)=2,y(0)=1 используя modelica	11
4.11	Фазовый портрет модели 1 используя modelica	11
4.12	Динамика изменения численности хищников и жертв модели 1	
	при $a=2,b=1,c=0;3,d=1,x(0)=2,y(0)=1$ используя	
	OpenModelica	12
4.13	Фазовый портрет модели 1 используя OpenModelica	12

1 Цель работы

• Приобретение навыков моделирования в Xcos, modelica и OpenModelica.

2 Задание

Модель «хищник–жертва» (модель Лотки — Вольтерры) представляет собой модель межвидовой конкуренции (описание модели см. например в [1]). В математической форме модель (1) имеет вид:

$$\begin{cases} \dot{x} = ax - bxy; \\ \dot{y} = cxy - dy, \end{cases}$$

где x - количество жертв; y - количество хищников; a,b,c,d - коэффициенты, отражающие взаимодействия между видами: a - коэффициент рождаемости жертв; b - коэффициент убыли жертв; c - коэффициент рождения хищников; d - коэффициент убыли хищников.

Нужно:

Реализовать модель «хищник – жертва» в Xcos, modelica и OpenModelica. Постройть графики изменения численности популяций и фазовый портрет.

3 Теоретическое введение

Модель Лотки — Вольтерры (модель Лотки — Вольтерра) [1] — модель взаимодействия двух видов типа «хищник — жертва», названная в честь своих авторов (Лотка, 1925; Вольтерра 1926), которые предложили модельные уравнения независимо друг от друга.

Такие уравнения можно использовать для моделирования систем «хищник — жертва», «паразит — хозяин», конкуренции и других видов взаимодействия между двумя видами [2].

В математической форме предложенная система имеет следующий вид:

$$\begin{split} \frac{dx}{dt} &= ax(t) - bx(t)y(t) \\ \frac{dy}{dt} &= -cx(t) + dx(t)y(t) \end{split}$$

В этой модели x – число жертв, y - число хищников. Коэффициент а описывает скорость естественного прироста числа жертв в отсутствие хищников, с естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (xy). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

4 Выполнение лабораторной работы

4.1 Реализация модели в хсоз

1. В меню Моделирование, Задать переменные окружения зададим значения коэффициентов a, b, c, d (рис. 1):

Рис. 4.1: Задать переменные окружения в хсоз для модели

2. Для реализации модели (1) в дополнение к блокам CLOCK_c, CSCOPE, TEXT_f, MUX, INTEGRAL_m, GAINBLK_f, SUMMATION, PROD_f потребуется блок CSCOPXY — регистрирующее устройство для построения фазового портрета. Готовая модель «хищник–жертва» представлена на рис. 2:

Рис. 4.2: Модель «хищник-жертва» в хсоѕ

3. В параметрах блоков интегрирования необходимо задать начальные значения x(0)=2, y(0)=1 (рис. 3):

Рис. 4.3: Задать начальные значения в блоках интегрирования

Рис. 4.4: Задать начальные значения в блоках интегрирования

- 4. В меню Моделирование, Установка необходимо задать конечное время интегрирования, равным времени моделирования: 30.
- 5. Результат моделирования представлен на рис. 5:

Рис. 4.5: Динамика изменения численности хищников и жертв модели 1 при a=2,b=1,c=0;3,d=1,x(0)=2,y(0)=1

Рис. 4.6: Фазовый портрет модели 1

4.2 Реализация модели с помощью блока Modelica в xcos

6. Для реализации модели (6.1) с помощью языка Modelica потребуются следующие блоки xcos: CLOCK_c, CSCOPE, CSCOPXY, TEXT_f, MUX, CONST_m и MBLOCK (Modelica generic). Как и ранее, задаём значения коэффициентов а, b, c, d (см. рис. 1). Готовая модель «хищник–жертва» представлена на рис. 7:

Рис. 4.7: Модель «хищник-жертва» в хсоз с применением блока Modelica

7. Параметры блока Modelica представлены на рис. 8:

Рис. 4.8: Параметры блока Modelica для модели 1

Рис. 4.9: Параметры блока Modelica для модели 1

8. Результат моделирования совпадёт с рис. 5 и 6:

Рис. 4.10: Динамика изменения численности хищников и жертв модели 1 при a=2,b=1,c=0;3,d=1,x(0)=2,y(0)=1 используя modelica

Рис. 4.11: Фазовый портрет модели 1 используя modelica

9. Код на языке Modelica в OpenModelica:

10. Результат моделирования:

Рис. 4.12: Динамика изменения численности хищников и жертв модели 1 при a=2,b=1,c=0;3,d=1,x(0)=2,y(0)=1 используя OpenModelica

Рис. 4.13: Фазовый портрет модели 1 используя OpenModelica

4.3 Исходный код

4.3.1 Управжение

```
model lab06_OM
//input variables
Real a = 2, b = 1, c = 0.3, d = 1;
    //output variables
Real x(start=2), y(start=1);
equation
    // model Lotki-Voltattri
    der(x)= a*x - b*x*y;
    der(y) = c*x*y - d*y;
end lab06_OM;
```

5 Вывод

• Изучали как работать с хосs, modelica и OpenModelica. [3]

6 Библиография

- 1. Турчин П.В. Лекция №14. Популяционная динамика. Биологическое образование в МФТИ, 2012.
- 2. Ю. О. Основ экологии. Мир, 1986. 376 с.
- 3. Korolkova A., Kulyabov D. Моделирование информационных процессов. 2014.