Advanced Statistics: Application of supervised and unsupervised methods to biological data

Daniel Hill

2025-04-27

Abstract: Biological data with twenty features and four categorical class labels is explored and analysed using advanced statistical techniques in this report. Both supervised and unsupervised methods were implemented and evaluated, and the broad selection of models includes logistic regression, support vector machine, random forest, agglomerative hierarchical clustering, and gaussian mixture modelling. Comparing the results achieved using a selection of models with different underlying principles gives insight into the nature of the data. For example, the success of model-based clustering compared to hierarchical clustering and tree-based learning suggests the lack of hierarchy among the categorical labels, and the success of factor analysis as a dimensionality reduction technique suggests the presence of underlying biological mechanisms leading to several of the features arising together. Models achieving over 90% accuracy were produced, but all models performed notably worse at separating one of the categories that overlapped the other three.

Contents

1	Intro	oduction	4
2	Met 2.1 2.2 2.3 2.4	hods Data Description	4 4 7 7
3	3.1 3.2	Exploratory Data Analysis Findings Supervised Learning Results 3.2.1 Logistic Regression 3.2.2 Random Forest 3.2.3 SVM	8 8 8 13 18
	3.3	3.3.1 Agglomerative Hierarchical Clustering	18 18 18
4	Disc	cussion	18
5	Con	clusion	19
6	Refe	erences	19
Li	st o	f Figures	
	1 2	Feature and Class Correlation Matrix: highlighting relationships between variables and relationships with catagorical labels Distributions within feature columns: histograms showing scale and skewness	5
	3 4	of data	6 6 7
	5 6 7	Simple Logistic Regression ROC Plot: ROC plot for Class D vs Not Class D Regularized Logistic Regression	9 12 17
Li	st o	f Tables	
	1 2	Feature Descriptions	$\frac{4}{7}$

3	Simple Logistic Regression Confusion Matrix	8
4	Simple Logistic Regression Overall Statistics	8
5	Simple Logistic Regression Statistics by Class	8
6	Simple Logistic Regression with selected features Confusion Matrix	9
7	Simple Logistic Regression with selected features Overall Statistics	9
8	Simple Logistic Regression with selected features Statistics by Class	10
9	Simple Logistic Regression with selected features Confusion Matrix	10
10	Simple Logistic Regression with selected features Overall Statistics	10
11	Simple Logistic Regression with selected features Statistics by Class	10
12	Weighted Logistic Regression Confusion Matrix	11
13	Weighted Logistic Regression Overall Statistics	11
14	Weighted Logistic Regression Statistics by Class	11
15	Logistic Regression Performance with Different Regularization Parameters	12
16	Confusion Matrix for Best Regularized Logistic Regression Model (Decay $= 0.001$)	12
17	Basic Random Forest Confusion Matrix	13
18	Basic Random Forest Overall Statistics	13
19	Basic Random Forest Statistics by Class	13
20	Basic Random Forest Feature Importance	14
21	Random Forest (5 least important features removed) Confusion Matrix	14
22	Random Forest (5 least important features removed) Overall Statistics	14
23	Random Forest (5 least important features removed) Statistics by Class	15
24	Random Forest (5 least important features removed) Feature Importance	15
25	Random Forest (5 least important features removed) Confusion Matrix	15
26	Random Forest (5 least important features removed) Overall Statistics	15
27	Random Forest (5 least important features removed) Statistics by Class	16
28	Random Forest (5 least important features removed) Feature Importance	16
29	Tuned Random Forest Confusion Matrix	17
30	Tuned Random Forest Overall Statistics	17
31	Tuned Random Forest Statistics by Class	18

1 Introduction

this is a section where i write the introduction.

2 Methods

2.1 Data Description

20 features, a label with four catagorical classes. two groups of correlated features. Outliers removed using z score method. one feature transformed using logarithm. All features scaled and centered. All features numeric.

Bootstrapping was used to create a larger dataset.

2.2 Exploratory Data Analysis Approach

find distributions within each feature, look for correlations between features, scatter between plots that features that have high correlation to the catagorical label or another feature, use PCA to visualize all data together, calculate hopkins statistic to determine the clustering tendency of the data

Table 1: Feature Descriptions

Variable Name	No. missing values	mean	Std deviation	min	25th %ile	median	75th %ile	max
X1	2	9.876	0.764	6.840	9.356	9.872	10.399	12.355
X2	0	10.151	1.040	6.538	9.445	10.138	10.855	14.021
X3	1	8.861	0.871	6.424	8.243	8.847	9.445	12.216
X4	2	8.939	1.275	3.875	8.088	8.926	9.805	13.351
X5	0	13.853	0.942	10.527	13.236	13.858	14.492	16.557
X6	0	8.151	1.026	4.815	7.447	8.134	8.856	11.871
X7	1	0.426	0.278	0.000	0.185	0.375	0.678	1.301
X8	3	0.234	0.197	0.000	0.102	0.170	0.300	1.230
X9	0	0.717	0.247	0.006	0.532	0.751	0.888	1.679
X10	0	0.378	0.155	0.000	0.281	0.372	0.469	1.199
X11	1	9.175	1.087	6.031	8.412	9.077	9.860	13.027
X12	0	11.930	0.977	8.046	11.290	11.913	12.594	15.478
X13	1	8.228	0.806	4.919	7.719	8.244	8.746	11.226
X14	2	7.846	1.238	3.574	7.022	7.884	8.689	12.413
X15	1	10.701	0.962	7.572	10.054	10.701	11.344	14.037
X16	1	7.814	1.052	3.801	7.132	7.830	8.521	11.668
X17	2	0.504	0.221	0.001	0.348	0.502	0.653	1.315
X18	3	0.682	0.204	0.004	0.544	0.686	0.819	1.390
X19	0	0.544	0.254	0.000	0.363	0.545	0.710	1.518
X20	0	0.589	0.231	0.012	0.434	0.587	0.746	1.353

 $\label{eq:Figure 1: Feature and Class Correlation Matrix: highlighting relationships between variables \\ and relationships with catagorical labels$

Histograms of All Columns X10 X1 X11 X12 X13 789101112 0.00.40.81.2 6 8 1012 8 101214 6 8 10 X14 X15 X16 X17 X18 150 100 50 0 Distribution 5.07.50.102.5 8 10 12 14 4 6 8 1012 0.0 0.5 1.0 0.00.51.0 Bimodal Normal X19 X4 X2 X20 ХЗ Skewed 0.00.51.01.5 8 101214 0.00.51.0 7 8 9101112 4 6 81012 X5 X6 X7 X8 Х9 0.00.40.81.2 12 14 16 6 8 1012 0.0 0.5 1.0 0.00.51.01.5

Figure 2: Distributions within feature columns: histograms showing scale and skewness of data

Value

Figure 3: Distributions within feature columns: Boxplots by class label by feature

Figure 4: **PCA plotting of class labels:** scatterplot showing clustering tendency of catagorical classes

Table 2: Hopkins Statistic Scores

Columns used	Hopkins Statistic Score
All Features + Label	0.9999591
All Features with Label Removed	0.9999062
All Features Binary Class D vs Rest	0.9999400
Features X2,X3,X7,X8,X9,X11	0.9968967
Features X17,X18,X19,X20	0.9983280
Features $X1, X4, X6, X10, X12, X13, X14, X15, X16$	0.9966129

2.3 Supervised Learning Methods

logistic regression - including class weighting and L2 regularization, and feature selection. Random forest, including feature selection and tuning of mtry. SVM, with feature selection and tuning of kernel selection, gamma and cost parameters.

2.4 Unsupervised Learning Methods

Agglomerative hierarchical clustering, including tuning of linking metric. Gaussian mixture model based clustering, including selecting a model, regularization using shrinkage parameter, and dimensionality reduction using factor analysis.

3 Results

3.1 Exploratory Data Analysis Findings

most features are normally distributed except for X8 which is highly skewed. Features originally had different scales. X7, X8, X9 columns are correlated and correlate highly with the labels. X17, X18, X19 and X20 are highly correlated together and have very low correlation with the labels.

The PCA showed the four labels had some clustered structure, but also some significant overlap. The hopkins statistic showed there was a moderate clustering tendency, but that the label column when included made the clustering tendency extremely high. This is an initial suggestion that supervised learning would be more effective than unsupervised learning

3.2 Supervised Learning Results

3.2.1 Logistic Regression

Table 3: Simple Logistic Regression Confusion Matrix

		Reference			
Prediction	A	В	\mathbf{C}	D	
A	120	1	2	23	
В	0	130	0	16	
C	0	0	144	16	
D	20	7	1	73	

Table 4: Simple Logistic Regression Overall Statistics

	Statistic	Value
Accuracy	Accuracy	0.8445
Kappa	Kappa	0.7921
AccuracyLower	AccuracyLower	0.8115
AccuracyUpper	AccuracyUpper	0.8737
AccuracyNull	AccuracyNull	0.2658
AccuracyPValue McnemarPValue	AccuracyPValue McnemarPValue	0.0000 NaN

Table 5: Simple Logistic Regression Statistics by Class

Statistic	Class: A	Class: B	Class: C	Class: D
Sensitivity	0.8571	0.9420	0.9796	0.5703
Specificity	0.9370	0.9614	0.9606	0.9341
Pos Pred Value	0.8219	0.8904	0.9000	0.7228
Neg Pred Value	0.9509	0.9803	0.9924	0.8783

Precision	0.8219	0.8904	0.9000	0.7228
Recall	0.8571	0.9420	0.9796	0.5703
F1	0.8392	0.9155	0.9381	0.6376
Prevalence	0.2532	0.2495	0.2658	0.2315
Detection Rate	0.2170	0.2351	0.2604	0.1320
Detection Prevalence	0.2640	0.2640	0.2893	0.1826
Balanced Accuracy	0.8971	0.9517	0.9701	0.7522

Figure 5: Simple Logistic Regression ROC Plot: ROC plot for Class D vs Not Class D

Table 6: Simple Logistic Regression with selected features Confusion Matrix

		Reference			
Prediction	A	В	\mathbf{C}	D	
A	117	1	1	26	
В	0	130	0	15	
C	0	0	145	15	
D	23	7	1	72	

Table 7: Simple Logistic Regression with selected features Overall Statistics

	Statistic	Value
Accuracy	Accuracy	0.8391

Kappa	Kappa	0.7849
AccuracyLower	AccuracyLower	0.8057
AccuracyUpper	AccuracyUpper	0.8687
AccuracyNull	AccuracyNull	0.2658
AccuracyPValue	AccuracyPValue	0.0000
McnemarPValue	McnemarPValue	NaN

Table 8: Simple Logistic Regression with selected features Statistics by Class

Statistic	Class: A	Class: B	Class: C	Class: D
Sensitivity	0.8357	0.9420	0.9864	0.5625
Specificity	0.9322	0.9639	0.9631	0.9271
Pos Pred Value	0.8069	0.8966	0.9062	0.6990
Neg Pred Value	0.9436	0.9804	0.9949	0.8756
Precision	0.8069	0.8966	0.9062	0.6990
Recall F1	0.8357 0.8211	0.9420 0.9187	0.9864 0.9446	0.5625 0.6234
Prevalence	0.2532	0.2495	0.2658	0.2315
Detection Rate	0.2116	0.2351	0.2622	0.1302
Detection Prevalence	0.2622	0.2622	0.2893	0.1863
Balanced Accuracy	0.8840	0.9529	0.9747	0.7448

Table 9: Simple Logistic Regression with selected features Confusion Matrix

		Reference			
Prediction	A	В	С	D	
A	104	5	12	21	
В	3	123	0	17	
C	14	0	134	17	
D	19	10	1	73	

Table 10: Simple Logistic Regression with selected features Overall Statistics

	Statistic	Value
Accuracy	Accuracy	0.7848
Kappa	Kappa	0.7123
AccuracyLower	AccuracyLower	0.7482
AccuracyUpper	AccuracyUpper	0.8184
AccuracyNull	AccuracyNull	0.2658
AccuracyPValue McnemarPValue	AccuracyPValue McnemarPValue	0.0000 NaN

Table 11: Simple Logistic Regression with selected features Statistics by Class

Statistic	Class: A	Class: B	Class: C	Class: D
Sensitivity	0.7429	0.8913	0.9116	0.5703
Specificity	0.9080	0.9518	0.9236	0.9294
Pos Pred Value	0.7324	0.8601	0.8121	0.7087
Neg Pred Value	0.9124	0.9634	0.9665	0.8778
Precision	0.7324	0.8601	0.8121	0.7087
Recall F1	0.7429 0.7376	0.8913 0.8754	0.9116 0.8590	0.5703 0.6320
Prevalence	0.7570 0.2532	0.8754 0.2495	0.8590 0.2658	0.0320 0.2315
Detection Rate	0.1881	0.2224	0.2423	0.1320
Detection Prevalence	0.2568	0.2586	0.2984	0.1863
Balanced Accuracy	0.8254	0.9216	0.9176	0.7499

Table 12: Weighted Logistic Regression Confusion Matrix

		Reference			
Prediction	A	В	\mathbf{C}	D	
A	118	1	2	23	
В	0	130	0	16	
C	0	0	144	16	
D	22	7	1	73	

Table 13: Weighted Logistic Regression Overall Statistics

	Statistic	Value
Accuracy	Accuracy	0.8445
Kappa	Kappa	0.7921
AccuracyLower	AccuracyLower	0.8115
AccuracyUpper	AccuracyUpper	0.8737
AccuracyNull	AccuracyNull	0.2658
AccuracyPValue McnemarPValue	AccuracyPValue McnemarPValue	0.0000 NaN

Table 14: Weighted Logistic Regression Statistics by Class

Statistic	Class: A	Class: B	Class: C	Class: D
Sensitivity	0.8429	0.9420	0.9796	0.5703
Specificity	0.9370	0.9614	0.9606	0.9294
Pos Pred Value	0.8194	0.8904	0.9000	0.7087
Neg Pred Value	0.9462	0.9803	0.9924	0.8778
Precision	0.8194	0.8904	0.9000	0.7087
Recall	0.8429	0.9420	0.9796	0.5703
F1	0.8310	0.9155	0.9381	0.6320
Prevalence	0.2532	0.2495	0.2658	0.2315
Detection Rate	0.2134	0.2351	0.2604	0.1320

Detection Prevalence	0.2604	0.2640	0.2893	0.1863
Balanced Accuracy	0.8900	0.9517	0.9701	0.7499

Table 15: Logistic Regression Performance with Different Regularization Parameters

Decay	Accuracy	Kappa	F1 Score (A)	F1 Score (B)	F1 Score (C)	F1 Score (D)
0.001	0.8445	0.7921	0.8392	0.9155	0.9381	0.6376
0.01	0.8445	0.7921	0.8392	0.9155	0.9381	0.6376
0.1	0.8445	0.7921	0.8392	0.9155	0.9381	0.6376
0.5	0.8427	0.7897	0.8351	0.9123	0.9381	0.6376
1	0.8391	0.7849	0.8322	0.9053	0.9381	0.6316
2 10	0.8391 0.8336	0.7849 0.7776	0.8293 0.8315	0.9053 0.9010	0.9412 0.9320	0.6316 0.6133

Effect of Regularization on Logistic Regression Performance

Figure 6: Regularized Logistic Regression

Table 16: Confusion Matrix for Best Regularized Logistic Regression Model (Decay = 0.001)

	Reference			
Prediction	A	В	\mathbf{C}	D
A	120	1	2	23
В	0	130	0	16
C	0	0	144	16

logistic regression was not great. weighting did nothing, as expected. regularization didn't really do anything. feature selection did not improve the model. We saw that the model particularly underperformed at classifying class D correctly.

3.2.2 Random Forest

Table 17: Basic Random Forest Confusion Matrix

		Reference			
Prediction	A	В	\mathbf{C}	D	
A	130	0	1	20	
В	0	135	0	15	
C	0	0	145	8	
D	10	3	1	85	

Table 18: Basic Random Forest Overall Statistics

	Statistic	Value
Accuracy	Accuracy	0.8951
Kappa	Kappa	0.8598
AccuracyLower	AccuracyLower	0.8665
AccuracyUpper	AccuracyUpper	0.9194
AccuracyNull	AccuracyNull	0.2658
AccuracyPValue McnemarPValue	AccuracyPValue McnemarPValue	0.0000 NaN

Table 19: Basic Random Forest Statistics by Class

Statistic	Class: A	Class: B	Class: C	Class: D
Sensitivity	0.9286	0.9783	0.9864	0.6641
Specificity	0.9492	0.9639	0.9803	0.9671
Pos Pred Value	0.8609	0.9000	0.9477	0.8586
Neg Pred Value	0.9751	0.9926	0.9950	0.9053
Precision	0.8609	0.9000	0.9477	0.8586
Recall F1	0.9286 0.8935	0.9783 0.9375	0.9864 0.9667	0.6641 0.7489
Prevalence	0.8933 0.2532	0.9375	0.9667	0.7489
	000-		000	0.20-0
Detection Rate	0.2351	0.2441	0.2622	0.1537
Detection Prevalence	0.2731	0.2712	0.2767	0.1790
Balanced Accuracy	0.9389	0.9711	0.9833	0.8156

Table 20: Basic Random Forest Feature Importance

	A	В	С	D	MeanDecreaseAccuracy	MeanDecreaseGini
X7	50.178	123.195	48.798	8.689	94.272	360.168
X8	70.546	24.694	59.057	-9.548	69.003	249.545
X10	49.286	22.251	58.352	20.140	65.924	137.078
X9	36.026	30.389	57.324	12.945	59.435	243.792
X11	41.100	10.247	40.549	26.969	54.407	109.409
Х3	27.326	28.103	32.068	11.605	44.401	109.383
X2	21.802	15.885	12.888	9.189	27.226	64.198
X1	5.962	14.128	7.705	14.315	21.040	52.068
X14	13.434	0.341	7.159	6.457	14.516	39.462
X18	11.272	5.765	5.430	-0.569	12.927	26.816
X13	8.198	-0.523	10.302	5.309	12.894	29.595
X4	13.610	3.251	-1.849	7.126	12.437	39.760
X5	10.726	-0.609	-0.043	7.295	10.755	34.441
X12	7.179	0.349	7.800	5.186	10.384	30.063
X19	3.480	4.531	2.829	-1.073	5.023	20.314
X16	2.354	2.495	-0.401	4.082	4.629	25.166
X17	4.903	2.814	1.571	-1.040	4.548	21.503
X20	6.057	2.140	1.583	-1.709	4.516	22.280
X6	1.262	-0.676	2.216	1.539	2.255	24.902
X15	0.444	3.233	0.437	0.290	2.025	24.404

Table 21: Random Forest (5 least important features removed) Confusion Matrix

	Reference			
Prediction	A	В	\mathbf{C}	D
A	129	1	0	20
В	0	134	0	13
C	0	0	145	6
D	11	3	2	89

Table 22: Random Forest (5 least important features removed) Overall Statistics

	Statistic	Value
Accuracy	Accuracy	0.8987
Kappa	Kappa	0.8647
AccuracyLower	AccuracyLower	0.8705
AccuracyUpper	AccuracyUpper	0.9226
AccuracyNull	AccuracyNull	0.2658
AccuracyPValue McnemarPValue	AccuracyPValue McnemarPValue	0.0000 NaN

Table 23: Random Forest (5 least important features removed) Statistics by Class

Statistic	Class: A	Class: B	Class: C	Class: D
Sensitivity	0.9214	0.9710	0.9864	0.6953
Specificity	0.9492	0.9687	0.9852	0.9624
Pos Pred Value	0.8600	0.9116	0.9603	0.8476
Neg Pred Value	0.9727	0.9901	0.9950	0.9129
Precision	0.8600	0.9116	0.9603	0.8476
Recall	0.9214	0.9710	0.9864	0.6953
F1 Prevalence	0.8897 0.2532	$0.9404 \\ 0.2495$	0.9732 0.2658	0.7639 0.2315
Detection Rate	0.2333	0.2423	0.2622	0.1609
Detection Prevalence	0.2712	0.2658	0.2731	0.1899
Balanced Accuracy	0.9353	0.9698	0.9858	0.8288

Table 24: Random Forest (5 least important features removed) Feature Importance

	A	В	С	D	MeanDecreaseAccuracy	MeanDecreaseGini
X7	58.778	170.331	58.103	12.361	115.060	393.832
X8	79.792	25.300	76.407	-9.359	87.035	261.263
X10	58.892	25.012	68.278	21.863	81.340	156.837
X9	43.211	33.091	75.760	16.200	74.779	269.860
X11	44.359	10.145	46.135	29.869	60.058	119.295
Х3	30.197	28.932	32.616	14.103	48.321	114.500
X2	21.424	16.846	12.326	9.676	28.820	63.799
X1	5.386	14.134	9.653	14.498	21.435	50.625
X14	13.600	4.097	6.321	9.991	18.016	39.849
X4	14.789	4.920	-1.521	11.160	17.127	41.036
X5	12.953	2.051	-2.077	8.866	12.988	35.297
X12	7.641	-0.037	8.708	6.206	11.506	32.122
X13	5.177	-0.472	9.949	6.446	11.252	31.485
X18	6.163	-1.981	2.941	-0.384	3.670	27.229
X16	2.665	0.627	-0.780	3.256	3.275	27.314

Table 25: Random Forest (5 least important features removed) Confusion Matrix

		Reference			
Prediction	A	В	C	D	
A	123	3	2	22	
В	3	133	0	12	
C	4	0	143	12	
D	10	2	2	82	

Table 26: Random Forest (5 least important features removed) Overall Statistics

	Statistic	Value
Accuracy	Accuracy	0.8698
Kappa	Kappa	0.8259
AccuracyLower	AccuracyLower	0.8389
AccuracyUpper	AccuracyUpper	0.8967
AccuracyNull	AccuracyNull	0.2658
AccuracyPValue	AccuracyPValue	0.0000
McnemarPValue	McnemarPValue	NaN

Table 27: Random Forest (5 least important features removed) Statistics by Class

Statistic	Class: A	Class: B	Class: C	Class: D
Sensitivity	0.8786	0.9638	0.9728	0.6406
Specificity	0.9346	0.9639	0.9606	0.9671
Pos Pred Value	0.8200	0.8986	0.8994	0.8542
Neg Pred Value	0.9578	0.9877	0.9898	0.8993
Precision	0.8200	0.8986	0.8994	0.8542
Recall F1	0.8786 0.8483	0.9638 0.9301	0.9728 0.9346	$0.6406 \\ 0.7321$
Prevalence	0.2532	0.2495	0.2658	0.2315
Detection Rate	0.2224	0.2405	0.2586	0.1483
Detection Prevalence	0.2712	0.2676	0.2875	0.1736
Balanced Accuracy	0.9066	0.9638	0.9667	0.8038

Table 28: Random Forest (5 least important features removed) Feature Importance

	A	В	С	D	MeanDecreaseAccuracy	MeanDecreaseGini
X7	46.928	131.294	62.714	11.698	106.991	394.017
X9	45.490	33.844	117.233	20.621	88.116	329.713
X10	48.203	24.909	58.850	21.496	66.109	148.005
X11	42.252	13.808	42.799	27.582	52.903	116.436
X3	27.622	36.977	36.642	15.727	52.104	125.651
X2	21.159	18.514	12.862	11.968	31.020	73.567
X1	7.424	16.590	11.568	14.707	23.943	62.662
X14	13.939	2.007	7.069	9.486	16.032	46.087
X4	12.400	5.259	3.249	10.335	15.806	48.080
X13	6.283	1.648	9.093	6.989	12.536	36.913
X18	9.273	5.833	7.010	3.238	12.423	32.457
X5	10.625	1.883	-1.438	9.410	11.117	39.770
X12	5.089	0.856	8.879	6.496	10.821	38.286
X20	6.161	2.901	5.964	-0.197	7.679	28.957
X6	4.089	-0.262	5.483	3.494	6.711	30.751
X17	3.116	5.812	4.081	-0.494	6.341	27.301
X19	3.203	3.596	3.133	1.176	5.410	26.548
X15	1.684	3.629	3.830	-1.466	3.806	28.961
X16	2.068	1.645	-0.925	3.210	3.320	30.286

-0.05263158 0.01 0.03508772 0.01 0.01818182 0.01 -0.02777778 0.01

Figure 7: Optimal mtry for Random Forest

Table 29: Tuned Random Forest Confusion Matrix

		Reference				
Prediction	A	В	\mathbf{C}	D		
A	126	2	1	17		
В	2	132	0	11		
C	0	0	144	4		
D	12	4	2	96		

Table 30: Tuned Random Forest Overall Statistics

	Statistic	Value
Accuracy	Accuracy	0.8951
Kappa	Kappa	0.8598
AccuracyLower	AccuracyLower	0.8665
AccuracyUpper	AccuracyUpper	0.9194
AccuracyNull	AccuracyNull	0.2658
AccuracyPValue McnemarPValue	AccuracyPValue McnemarPValue	0.0000 NaN

Table 31: Tuned Random Forest Statistics by Class

Statistic	Class: A	Class: B	Class: C	Class: D
Sensitivity	0.9000	0.9565	0.9796	0.7500
Specificity	0.9516	0.9687	0.9901	0.9576
Pos Pred Value	0.8630	0.9103	0.9730	0.8421
Neg Pred Value	0.9656	0.9853	0.9926	0.9271
Precision	0.8630	0.9103	0.9730	0.8421
Recall F1	0.9000 0.8811	0.9565 0.9329	0.9796 0.9763	0.7500 0.7934
Prevalence	0.2532	0.2495	0.2658	0.2315
Detection Rate	0.2278	0.2387	0.2604	0.1736
Detection Prevalence	0.2640	0.2622	0.2676	0.2061
Balanced Accuracy	0.9258	0.9626	0.9849	0.8538

The random forest performed well without any configuration. feature selection was not effective. still struggled at seperating class D. mtry was tuned.

3.2.3 SVM

sym was good but not as good as random forest. lots of tuning. feature selection was uneffective

3.3 Unsupervised Learning Results

3.3.1 Agglomerative Hierarchical Clustering

ahc was good not great.

3.3.2 Gaussian Mixed Model Clustering

Gaussian mixed model clustering performed very well. dimensionality reduction using factor analysis was slightly effective.

4 Discussion

the final model had good overall accuracy but caution is advised when using a ml model with this data due to the poor performance in class D - if false positives or false negatives in this class have serious implications, some models become immediately unusable.

- Conclusion
- References