Domain - VLSI Design and Verification

Course Code	Course Title	Course Nature	Credits	Pre-requisite
DEVL0401	Digital System Design	Theory +	4	Nil
	using VERILOG	Practice		
DEVL0101	FPGA Architecture and	Theory	3	Nil
	Design			
DEVL0402	HDL Synthesis and	Theory +	4	Nil
	System Architecture	Practice		
DEVL403	System VERILOG	Theory +	4	Nil
		Practice		
DEVL0201	VLSI Verification	Practice	2	Nil
	Methodologies			
DEVL0102	VLSI Test Principle and	Theory	3	Nil
	Testable Design			
DEET0300	Project	Project	6	
				
DEET0800	Internship	Internship	4	
	<u> </u>		30	

Digital System Design using VERILOG

Course Title	Code	Type of course	T-P-PJ	Prerequisite
Digital System Design	DEVL0401	Theory & Practice	2-2-0	Nil
using VERILOG				

Objective

• To Make The Student Understand Advanced Digital System Design using Verilog Programming

Learning Outcome

- Student will be Able to Write Efficient Verilog Programme
- Student will be Able to Design Advanced Digital System Using Verilog HDL.

Evaluation Systems

Internal	Component	% of Marks	Method of Assessment
Examination	Internal Theory	20	Written Examination
	Internal Practice	30(20+10)	Lab Work + Learning Record
External	External Theory	30	Written Examination
Examination	External Practice	20	Lab Work
Total		100	

Course Outline

Module I: Introduction to VLSI Design

(10 Hours)

Theory

VLSI Design flow: Full Custom, ASIC and FPGA. Design Tools: CAD Tool Taxonomy, Editors, Simulators, Simulation System, Simulation Aids, Applications of Simulation, Synthesis Tools, and Introduction to Hardware Description Languages (HDL)

Practice

- 1. Introduction to Xilinx EDA Tool.
- 2. Introduction With XST Tool and ISIM Tool
- 3. Xilinx Tool Flow: Simulation and Synthesis

Module II: Verilog HDL

(12 Hours)

Introduction to Verilog HDL, Abstraction levels, basic concepts, Verilog primitives, keywords, data types, nets and registers, Verilog Modules and ports

- 4. Modulea and Port Declaration in Verilog Using Xilinx Tool.
- 5. Use of Different Data Types in Verilog Programing.

- 6. Design and Create Simulation Waveform for Different Digital Logic Gates Using Data Types-1
- 7. Design and Create Simulation Waveform for Different Digital Logic Gates Using Data Types-2

Module III: Verilog Operators (12 Hours)

Theory

Logical Operators, Bitwise and Reduction Operators, Concatenation and Conditional Operators, Relational and Arithmetic, Shift and Equality Operators, Operator Execution Order. Assignments: Types of Assignments, Continuous Assignment, Procedural Assignments, Blocking and Non-Blocking Assignments, Tasks and Functions

Practice

- 8. Design and Create Simulation Waveform for Different Digital Logic Gates Using Operators-1
- 9. Design and Create Simulation Waveform for Different Combinational Logic Circuit Using Operators-2
- 10. Design and Create Simulation Waveform for Different Combinational Logic Using Continuous Assignment Statements
- 11. Design and Create Simulation Waveform for Different Sequential Circuits Using Blocking and Non-Blocking Statements

Module IV: Verilog Modelling

(12 Hours)

Theory

Gate Type, Design Hierarchy, Gate Delay, Propagation Delay, Logic Simulation Dataflow-Level Modelling: Assignments, Behavioural Modeling: Always Block, Flow Control, If-Else, Case, Cases, While Loop, For Loop, Repeat

- 12. Design and Create Simulation Waveform for Full Adder Using Dataflow Modelling, Behavioral Modelling(if-else, case)
- 13. Design and Create Simulation Waveform for Sequential Circuits Using Behavioral Modelling (case, while loop, for loop, repeat)
- 14. Design and Create Simulation Waveform for Decoder Using Dataflow Modelling, Behavioral Modelling(if-else, case)
- 15. Design and Create Simulation Waveform for Multiplexer Using Behavioral Modelling(case, while loop, for loop, repeat)
- 16. Design and Create Simulation Waveform for Parity Generator and Parity Checker Using Dataflow Modelling, Behavioral Modelling(if-else, case)

Module V: Verilog for Verification

(14 Hours)

Theory

Design Verification and Testing, Test Bench Writing, Initial Statement, Verilog System Tasks: \$finish, \$stop, \$display, \$monitor, \$time, \$realtime, \$random, \$save, \$readmemh/\$writememh, \$fopen, \$fclose, Compiler Directives, ifdef, Array, Multi-Dimensional Array, Memory Modelling

Practice

- 17. Design and Create Simulation Waveform for Full Adder Using Continuous Assignment, Procedural Assignments With The Use of System Task and Functions-1
- 18. Design and Create Simulation Waveform for Full Subtractor Using Continuous Assignment, Procedural Assignments With the Use of System Task and Functions-2
- 19. Design and Create Simulation Waveform for Multiplexers Using Continuous Assignment, Procedural Assignments With the Use of System Task and Functions-3
- 20. Design and Create Simulation Waveform for Encoders Using Continuous Assignment, Procedural Assignments With the Use of System Task and Functions-4
- 21. Design And Create Simulation Waveform For Decoders Using Continuous Assignment, Procedural Assignments With the Use of System Task and Functions-5

Module VI: Combinational Logic Circuit Design (15 Hours) Theory

Logic Synthesis, RTL Synthesis, High-Level Synthesis, Synthesis Design Flow, Design and Analysis of Combinational Circuits, Synthesis of Combinational Circuits, Arithmetic Circuits, Initial Design And Optimization, Encoder, Decoder, De-Multiplexer Circuits, Multiplexer Circuits and their Implementation Using Verilog, Design of a 4-Bit Comparator, Design of a 4-Bit ALU and a Simple Processor Using Verilog

- 22. Design and Create Simulation Waveform for Full Adder Using Continuous Assignment and Procedural Assignments
- 23. Design and Create Simulation Waveform for Encoder and Decoder Using Continuous Assignment and Procedural Assignments
- 24. Design and Create Simulation Waveform for De-Multiplexer Using Continuous Assignment and Procedural Assignments
- 25. Design and Create Simulation Waveform For 4-Bit Comparator Using Continuous Assignment and Procedural Assignments
- 26. Design And Create Simulation Waveform For 4-Bit ALU Using Continuous Assignment and Procedural Assignments

Module VII: Sequential Logic Circuit Design

(15 Hours)

Theory

Synthesis of Sequential Circuits, Study of Synchronous and Asynchronous Sequential Circuits, Flip Flops, Shift Registers, Counters and their Design Using Verilog.

State Machine: Basic Finite State Machines (FSM) Structures, Mealy and Moore Type FSM, Mealy Vs. Moore, Common FSM Coding Style, Serial Adder Design Using FSM, FSM as an Arbiter Circuit, FIFO, Bus Interfaces.

Practice

- 27. Design and Create Simulation Waveform for SR-Flip Flop And D-Flip Flop Using Continuous Assignment and Procedural Assignments
- 28. Design and Create Simulation Waveform for JK-Flip Flop And T-Flip Flop Using Continuous Assignment and Procedural Assignments
- 29. Design and Create Simulation Waveform for Shift Registers(SISO,SIPO,PISO,PIPO) Using Continuous Assignment and Procedural Assignments
- 30. Design and Create Simulation Waveform for 2-Bit Ripple Counter Using Continuous Assignment and Procedural Assignments
- 31. Design and Create Simulation Waveform for 8-Bit Up/Down Synchronous Binary Counter Using Continuous Assignment and Procedural Assignments

Text Books

- 1. Palnitkar, Samir. "Verilog HDL: A Guide To Digital Design and Synthesis", Pearson Education India, 2003
- 2. Navabi, Zainalabedin, and Yuwen Xia. "Verilog Digital System Design: Register Transfer Level Synthesis, Testbench, and Verification", McGraw-Hill, 2006
- 3. Mishra, Kishore K. "Advanced chip design: Practical examples in Verilog", Create Space Independent Publishing Platform, 2013

Reference Books

- 1. Bhasker, Jayaram. "Verilog HDL Synthesis: A Practical Primer", Star Galaxy Publishing, 2008.
- 2. Wolf, Wayne. FPGA-Based System Design". Pearson education, 2004.
- 3. Ciletti, Michael D, "Advanced Digital Design with the Verilog HDL", Vol. 1. Upper Saddle River: Prentice Hall, 2003.

Session plan

Topic	No. of Sessions (in hrs.)	Activity	Assignment	Suggested Reading	
Module I [4 Hrs. Lecture+6 Hrs. Practice]					
Introduction To VLSI Design	4	Lecture	Assignment-	TB-1(Ch.1)	

_	Т	1	T	T
VLSI Design Flow: Full Custom,			1.1	
ASIC and FPGA, Design Tools:				
CAD Tool Taxonomy, Editors,				
Simulators, Simulation System,				
Simulation Aids, Applications of				
Simulation, Synthesis Tools,				
Introduction to Hardware				
Description Languages (HDL)				
Introduction To Xilinx EDA Tool.	6	Practice		
Introduction With XST Tool And				
ISIM Tool				
Xilinx Tool Flow: Simulation And				
Synthesis				
Module II	[4 Hrs. Lec	ture+8 Hrs.	Practice]	
Verilog HDL	4	Lecture	Assignment-	TB-1
Introduction to Verilog HDL,			2.1	(Ch.1,2,3,4)
Abstraction Levels, Basic			2.1	(CII.1,2,3,4)
Concepts, Verilog Primitives,				
Keywords, Data Types, Nets and				
Registers, Verilog Modules and				
Ports				
Module and Port Declaration in	8	Practice		
Verilog Using Xilinx Tool.				
Use of Different Data Types in				
Verilog Programing.				
Design and Create Simulation				
Waveform for Different Digital				
Logic Gates Using Data Types-1				
Design and Create Simulation				
Waveform For Different Digital				
Logic Gates Using Data Types-2				
<u> </u>	I [4 Hrs. Led	cture+8 Hrs.	Practice]	
Verilog Operators	4	Lecture	Assignment-	TB-1(Ch. 3,6)
Logical Operators, Bitwise and			3.1	, , ,
Reduction Operators,				
Concatenation and Conditional				
operators, Relational and				
Arithmetic, Shift and Equality				
Operators, Operator Execution				
Order. Assignments: Types Of				
Assignments, Continuous				
Assignment, Procedural				
Assignments, Blocking and Non-				
Blocking Assignments, Tasks and				
Functions.				
1. Design And Create Simulation	8	Practice		

		1	_	1
Waveform for Different Digital				
Logic Gates Using Operators-1				
2. Design and Create Simulation				
Waveform for Different				
Combinational Logic Circuit				
Using Operators-2				
3. Design And Create Simulation				
Waveform For Different				
Combinational Logic Using				
Continuous Assignment				
Statements				
4. Design And Create Simulation				
Waveform For Different				
Sequential Circuits Using				
Blocking And Non-Blocking				
Statements				
12 1111 1 1 111	7 [4 Hrs. Lec	cture+8 Hrs.	Practice1	
Verilog Modelling	4	Lecture	Assignment-	TB-1(Ch.6,7)
Gate Type, Design Hierarchy,	•	Lecture	4.1	1B 1(CII.0,7)
Gate Delay, Propagation Delay,			4.1	
Logic Simulation Dataflow-Level				
Modelling: Assignments,				
Behavioural Modeling: Always				
Block, Flow Control, If-Else,				
Case, Cases, While Loop, For				
Loop, Repeat				
1. Design and Create Simulation	8	Practice		
	0	Practice		
Waveform for Full Adder Using Dataflow Modelling,				
<u></u>				
Behavioral Modelling (If-Else,				
Case)				
2. Design and Create Simulation				
Waveform for Sequential				
Circuits Using Behavioral				
Modelling (Case, While Loop,				
For Loop, Repeat)				
3. Design and Create Simulation				
Waveform for Decoder Using				
Dataflow Modelling,				
Behavioral Modelling (If-Else,				
Case)				
4. Design and Create Simulation				
Waveform for Multiplexer				
Using Behavioral Modelling				
(Case, While Loop, For Loop,				
Repeat)				

5. Design and Create Simulation Waveform for Parity Generator and Parity Checker Using Dataflow Modelling,				
Behavioral Modelling (If-Else,				
Case)	[4]]	10 II	D4:1	
		ure+10 Hrs.	1	TED 1/CL 0)
Verilog For Verification	4	Lecture	Assignment-	TB-1(Ch.9)
Design Verification And Testing,			5.1	
Test Bench Writing, Initial				
Statement, Verilog system Tasks:				
\$Finish, \$Stop, \$Display, \$Monitor, \$Time, \$Realtime,				
\$Random, \$Save,				
\$Readmemh/\$Writememh,				
\$Fopen, \$Fclose, Compiler				
Directives, Ifdef, Array, Multi-				
Dimensional Array. Memory				
Modelling				
	[5 Hrs. Lect	ture+10 Hrs.	Practice]	
Combinational Logic Circuit	5	Lecture	Assignment-	TB-1(Ch.14)
Design			6.1	
Logic Synthesis, RTL Synthesis,				
High-Level Synthesis, Synthesis				
Design Flow, Design and Analysis				
of Combinational Circuits,				
Synthesis of Combinational				
Circuits, Arithmetic Circuits,				
Initial Design and Optimization,				
Encoder, Decoder, De-Multiplexer				
Circuits, Multiplexer Circuits and				
their Implementation Using				
Verilog, Design of a 4-Bit				
Comparator, Design of a 4-Bit				
ALU and a Simple Processor				
Using Verilog.				

Assignments			
3. Design and Create Simulation			
Waveform for Shift Registers			
(SISO,SIPO,PISO,PIPO) Using			
Continuous Assignment and			
Procedural Assignments			
4. Design and Create Simulation			
Waveform for 2-Bit Ripple			
Counter using Continuous			
Assignment and Procedural			
Assignments			
5. Design and Create Simulation			
Waveform for 8-Bit Up/Down			
Synchronous Binary Counter			
Using Continuous Assignment			
and Procedural Assignments			
Total (In Hrs.)	90	30 Hrs.	
		lecture+60	
		Hrs.	
		Practice	

FPGA Architecture and Design

Course Title	Code	Type of course	T-P-PJ	Prerequisite
FPGA Architecture and	DEVL0101	Theory	3-0-0	Nil
Design				

Objective

• To Make the Student Understand of Various FPGA Architectures which Subsequently Enables them to Design and Implement Various Complex Digital Architectures Using Verilog and Subsequently Implement the Digital Architecture iyn FPGA

Learning Outcome

- Student will be Able to Design Digital Systems using Verilog.
- Student will be Able to implement Digital Design in FPGA.
- Student will be Able to Handle Different FPGA Architecture.

Evaluation Systems

Internal Examination	Component	% of Marks	Method of Assessment
	Internal Theory	30	Written examination
	Assignment	5	Report or Presentation + Learning Record
	Attendance	5	Based on class attended
External Examination	External Theory	60	Written examination
Total		100	

Course Outline

Module I: PLD (5 Hours)

Theory

Introduction to PLDS, General Structure and Classification: SPLD, CPLD, PAL, PLA, CPLD vs. FPGA.

Module II: FPGA (6 Hours)

Theory

Organization of FPGAs, FPGA Programming Technologies, Programmable Logic Block Architectures, Programmable Interconnects Programmable I/O Blocks in FPGAs, Dedicated Specialized Components of FPGAs, Applications of FPGAs.

Module III: SRAM Programmable FPGAs (6 Hours) Theory

Introduction, Programming Technology, Device Architecture, the Xilinx XC2000, XC3000 and XC4000 Architectures. **Anti-Fuse Programmed FPGAs:** Introduction, Programming Technology, Device Architecture.

Module IV: Design Applications

(6 Hours)

Theory

General Design Issues, Counter Examples, a Fast Video Controller, a Position Tracker for a Robot Manipulator, a Fast DMA Controller, Designing Counters with ACT Devices, Designing Adders and Accumulators with the ACT Architecture.

Module V: Xilinx FPGA Architecture

(6 Hours)

Theory

Features and Architectures, Configurable Logic Blocks (CLBs), Input Output Blocks (I/OB), Block RAM, Programming Interconnects, Digital Clock Manager (DCM), Power Distribution and Configuration.

Module VI: ACTEL FPGA Architecture

(8 Hours)

Theory

ACTEL Family, ACTEL Features and Logic Modules, C Modules and S Modules, I/O Modules, I/O Pad Drivers, Clock Networks. Intel and ALTERA FPGA Architecture.

Module VII: Embedded Processor Based Design

(8 Hours)

Theory

IP Cores, Hard Cores, Firm Core, Soft Cores, Advantages and Disadvantages of Hard, Firm, Soft Cores, FPGA Embedded Processor Types, Picking the Right Core Processor, Implementing a Design, DSP Based Design Flow.

Text Books

- 1. S.M. Trimberger, "Field-Programmable Gate Array Technology," Springer Science & Business Media,2012
- 2. W.Wolf, "FPGA-Based System Design," Pearson education, 2004
- 3. I Grout, "Digital Systems Design with FPGAS and CPLDS," Elsevier, 2011

Reference Books

- 1. J.V. Oldfield and R.C. Dorf, "Field-Programmable Gate Arrays", John Wiley & Sons, 1995
- 2. P.K. Chan and S.Mourad, "Digital System Design Using Field Programmable Gate Arrays," PTR Prentice Hall, 1994
- 3. R.C. Cofer and B.F.Harding, "Rapid System Prototyping with FPGAs: Accelerating the Design Process". Elsevier2006

Topics	No. of Sessions (in hrs.)	Activity	Assignment	Suggested Reading			
Module I[5 Hrs. Lecture]							
PLD PLD: Introduction to PLDS, General Structure and Classification: SPLD, CPLD	2	Lecture	Assignment-1.1	Text book-3 (Ch.1)			
PAL	1	Lecture	Assignment-1.2	Text book-3 (Ch.1)			
PLA	1	Lecture	Assignment-1.3	Text book-3 (Ch.1)			
CPLD vs. FPGA	1	Lecture	Assignment-1.4	Text book-3 (Ch.1)			
I	Module II[6]	Hrs. Lecture					
FPGA Organization of FPGAs, FPGA Programming Technologies	1	Lecture	Assignment-2.1	Text book-1 (Ch.2)			
Programmable Logic Block Architectures	1	Lecture	Assignment-2.2	Text book-1 (Ch.2)			
Programmable Interconnects	1	Lecture	Assignment-2.3	Text book-1 (Ch.2)			
Programmable I/O blocks in FPGAs	1	Lecture	Assignment-2.4	Text book-1 (Ch.2)			
Dedicated Specialized Components of FPGAs	1	Lecture	Assignment-2.5	Text book-1 (Ch.2)			
Applications of FPGAs	1	Lecture	Assignment-2.6	Text book-1 (Ch.2)			
Module III[6 Hrs. Lecture]							
SRAM Programmable FPGAs Introduction, Programming Technology	1	Lecture	Assignment-3.1	Text book-1 (Ch.2)			
Device Architecture, The Xilinx XC2000	1	Lecture	Assignment-3.2	Text book-1 (Ch.2)			

XC3000 Architecture	1	Lecture	Assignment-3.3	Text book-1 (Ch.2)		
XC4000 Architecture	1	Lecture	Assignment-3.4	Text book-1 (Ch.2)		
Anti-Fuse Programmed FPGAs: Introduction	1	Lecture	Assignment-3.5	Text book-1 (Ch.2)		
Programming Technology, Device Architecture	1	Lecture	Assignment-3.6	Text book-1 (Ch.2)		
Module IV[6 Hrs. Lecture]						
Design Applications General Design Issues, Counter Examples	1	Lecture	Assignment-4.1	Text book-1 (Ch.2)		
A Fast Video Controller	1	Lecture	Assignment-4.2	Text book-1 (Ch.2)		
A Position Tracker for a Robot Manipulator	1	Lecture	Assignment-4.3	Text book-1 (Ch.2)		
A Fast DMA Controller	1	Lecture	Assignment-4.4	Text book-1 (Ch.2)		
Designing Counters with ACT Devices	1	Lecture	Assignment-4.5	Text book-1 (Ch.3)		
Designing Adders and Accumulators with the ACT Architecture	1	Lecture	Assignment-4.6	Text book-1 (Ch.3)		
	Module V[6]	Hrs. Lecture	_			
Xilinx FPGA Architecture Features and Architectures, Configurable Logic Blocks (CLBs)	1	Lecture	Assignment-5.1	Text book-1 (Ch.2)		
Input Output Blocks (I/OB)	2	Lecture	Assignment-5.2	Text book-1 (Ch.2)		
Programming Interconnects	1	Lecture	Assignment-5.3	Text book- 1(Ch.2)		
Digital Clock Manager (DCM)	1	Lecture	Assignment-5.4	Text book-1 (Ch.2)		

Power Distribution and Configuration	1	Lecture	Assignment-5.5	Text book-1 (Ch.2)
N	Iodule VI[8	Hrs. Lectur	e]	
ACTEL FPGA Architecture ACTEL Family, ACTEL Features and Logic Modules	1	Lecture	Assignment-6.1	Text book-1 (Ch.3)
C Modules and S Modules	2	Lecture	Assignment-6.2	Text book-1 (Ch.3)
I/O MODULEs	1	Lecture	Assignment-6.3	Text book-1 (Ch.3)
Clock Networks	1	Lecture	Assignment-6.4	Text book- 1(Ch.3)
I/O Pad Drivers	1	Lecture	Assignment-6.5	Text book-1 (Ch.3)
Intel and ALTERA FPGA Architecture	2	Lecture	Assignment-6.6	Text book-1 (Ch.3)
N	Iodule VII[8	Hrs. Lectur	<u>:e]</u>	1
Embedded Processor based Design IP Cores, Hard Cores, Firm Core, Soft cores	2	Lecture	Assignment-7.1	Text book-5 (Ch.2)
Advantages and Disadvantages of Hard Firm, Soft Cores	2	Lecture	Assignment-7.2	Text book-5 (Ch.2)
FPGA Embedded Processor Types, Picking the Right Core Processor and Implementing a Design, DSP Based Design Flow	3	Lecture	Assignment-7.3	Text book-5 (Ch.2)
Total (in Hrs.)	45	45 Hrs. Lecture		

HDL Synthesis and System Architecture

Course Title	Code	Type of course	T-P-PJ	Prerequisite
HDL Synthesis and System	DEVL0402	Theory & Practice	2-2-0	Nil
Architecture				

Objective

• To Make Students Learn the Advanced Digital System Architecture, the RTL Level Synthesis and Address the Timing Issues Associated with the Digital System Architecture

Learning Outcome

- Students Will be Able to Design and Synthesize a Complex Digital Functional Block Using Verilog HDL
- Students Will be Able to Demonstrate an Understanding of Issues Involved in Digital Design Such as Technology Choice, Timing Analysis, Tool-Flow and Testability

Evaluation Systems

Internal	Component	% of Marks	Method of Assessment
Examination	Internal Theory	20	Written Examination
	Internal Practice	30(20+10)	Lab Work + Learning Record
External	External Theory	30	Written Examination
Examination	External Practice	20	Lab Work
Total		100	

Course Outline

Module I: HDL Architecture Design

(12 Hours)

Theory

Design of Various Subsystems by Verilog HDL in Xilinx ISE and Also They Will Check the Performance of Each Circuit in Terms of Area, Speed And Power. Sub Systebook-2, Ch.3m Design, Hardware Description Language (HDLs), Register Transfer Design, Pipeline and Data Path

Practice

1. RTL Design Of 4-Bit, 8-Bit and 16-Bit ALU and Their Performance Evaluation

Module II: HDL Architecture Design

(11 Hours)

Theory

Adders, Multipliers, Memories, PLAs, Buses and Network on chips

Practice

2. RTL Design of Data Path Architecture

Module III: Static Time Analysis

(12 Hours)

Theory

Basic Concepts of Static Time Analysis (STA) Used in the Design and They Will Solve Various Timing Related Issue in Their Design.], Timing and Delay and the Concept of STA, Types of Delay, Models- Distributed, Lumped Resource

Practice

3. RTL Design of Pipelined Architecture and Its Performance Evaluation

Module IV: Static Time Analysis (STA)

(12 Hours)

Theory

Pin to Pin Delay Model, Path Delay Modelling, Timing Checks Delay Back Annotations

Practice

- 4. RTL Design of various adder topologies/architectures
- 5. Ripple Carry Adder
- 6. Carry Skip Adder
- 7. Carry Increment Adder
- 8. Carry Look Ahead Adder
- 9. Carry Save Adder
- 10. Carry Select Adder
- 11. Carry Bypass Adder
- 12. Ling adder
- 13. Prefix adder
- 14. Parallel prefix adder
- 15. Conditional Sum adder

Module V: Floorplaning, Routing, Placement

(15 Hours)

Theory

Advanced Simulations, Coding For Synthesis, Synthesis Optimization

- RTL Design of Various Multiplier Architectures
- 16. RTL Design of Booth Multiplier Architectures
- 17. RTL Design of Combinational Multiplier
- 18. RTL Design of wallace Tree Multiplier
- 19. RTL Design of Array Multiplier
- 20. RTL Design of Sequential Multiplier
- 21. RTL Design of Serial Parallel Multiplier
- 22. RTL Design of MAC Unit Design

Module VI: Floorplaning

(15 Hours)

Theory

Floor Planning & Place and Route Optimization, Floorplaning Styles and Methodology, Global Routing

Practice

RTL Design Of Various Memory Units:

- 23. Single Port RAM Design in Read First Mode
- 24. Single Port RAM Design in Write First Mode
- 25. Single Port RAM Design in No Change Mode
- 26. Single Port RAM Design With Asynchronous Read
- 27. Single Port RAM Design With False Asynchronous Read
- 28. Single Port Block RAM Design With Enable
- 29. Dual Port RAM With Asynchronous Read
- 30. Dual Port RAM With False Synchronous Read
- 31. Dual Port RAM With Synchronous Read
- 32. ROM Design With Registered Output
- 33. ROM Design With Registered Address

Module VII: Floorplaning, Routing, Placement

(13 Hours)

Theory

Clock Distribution, Power Distribution, Packaging and Pads

Practice

34. RTL Design of PLAs

Text Books

- 1. Bhasker, J., "Verilog HDL Synthesis: A Practical Primer". Star Galaxy Publishing, 1998
- 2. Camposano, R. and Wolf, W. eds., "High-Level VLSI Synthesis" (Vol. 136). Springer Science & Business Media, 2012

3. Sherwani, N.A., "Algorithms For VLSI Physical Design Automation". Springer Science & Business Media, 2012

Topic	No. of Sessions	Activity	Assignment	Suggested Reading
	(in hrs.)			
Module I [4 Hrs.	Lecture+8	Hrs. Practi	ice]	
Hdl Architecture Design	4	Lecture	Assignment-	
Sub System Design, Hardware			1.1	
Description Language (HDLs), Register				
Transfer Design, Pipeline and Data Path				
RTL Design of 4-Bit,8-Bit and 16-Bit	8	Practice		
ALU and Their Performance Evaluation				
Module II [3 Hrs.	Lecture+8	Hrs. Pract	ice]	
HDL Architecture Design	3	Lecture	Assignment-	
Adders, Multipliers, Memories, PLA,			2.1	
Buses and Network On Chips				
RTL Design of Data Path Architecture	8	Practice		
Module III [4 Hrs. Lecture+8 Hrs. Practice]				
Static Time Analysis (STA)	4	Lecture	Assignment-	
Timing And Delay And The Concept Of			3.1	
STA, Types of Delay, Models-				
Distributed, Lumped				
RTL Design of Any Pipelined	8	Practice		
Architecture and Its Performance				
Evaluation				
Module IV [4 Hrs.	Lecture+8	Hrs. Pract	tice]	
Static Time Analysis(STA)	4	Lecture	Assignment-	
Pin To Pin Delay Model, Path Delay			4.1	
Modelling, Timing Checks Delay Back				
Annotations.				
RTL Design Of Various Adder:	8	Practice		
Topologies/Architectures				
Ripple Carry Adder, Carry Skip Adder				
Carry Increment Adder, Carry Look				
Ahead Adder, Carry Save Adder				
Carry Select Adder, Carry Bypass Adder				
Ling Adder, Prefix Adder, Parallel Prefix				

Adder ,Conditional Sum Adder					
Module V [5 Hrs.]	Lecture+10	Hrs. Prac	tice]		
Floorplaning, Routing, Placement Advanced Simulations, Coding for Synthesis, Synthesis Optimization	5	Lecture	Assignment-5.1	TB-3 (Ch. 6,7,8)	
RTL Design of Various Multiplier Architectures Booth Multiplier, Combinational Multiplier, Wallace Tree Multiplier	10	Practice			
RTL Design of Various Multiplier Architectures: Array Multiplier Sequential Multiplier , Serial Parallel Multiplier , MAC Unit Design					
Module VI [5 Hrs.	Lecture+10	Hrs. Prac	ctice]		
Floorplaning, Routing, Placement Floor Planning & Place and Route Optimization, Floorplaning Styles and Methodology, Global Routing	5	Lecture	Assignment-6.1	TB-3 (Ch.6,7,8)	
RTL Design Of Various Memory Units Single Port RAM Design In Read First Mode Single Port RAM Design in Write First Mode Single Port RAM Design in No Change Mode Single Port RAM Design With Asynchronous Read Single Port RAM Design with False Asynchronous Read Single Port Block RAM Design With Enable Dual Port RAM With Asynchronous Read , Dual Port RAM With False Synchronous Read , Dual Port RAM With Synchronous Read ROM Design With Registered Output ROM Design With Registered Address	10	Practice			
Module VII [5 Hrs. Lecture+8 Hrs. Practice]					
Floorplaning, Routing, Placement	5	Lecture	Assignment-	TB-3	

Clock Distribution, Power Distribution,			7.1	(Ch.11)
Packaging and Pads.				
RTL Design of PLAs	8	Practice		
Total (In Hrs.)	90	30 Hrs.		
		Lecture		
		and 60		
		Hrs.		
		Practice		

System VERILOG

Course Title	Code	Type of course	T-P-PJ	Prerequisite
System VERILOG	DEVL403	Theory & Practice	2-2-0	Nil

Objective

 To Make The Student Understand System Verilog Language And Demonstrate How To Build Verification Environment For Performing Verifications Of VLSI Circuits Using SystemVerilog

Learning Outcome

- Students will Be Able to Use Any Simulation or Synthesis Tool that Support System Verilog
- Students will Learn How to Take Advantage of The System Verilog Language to Make RTL Design ad Synthesis More Productive

Evaluation Systems

Internal	Component	% of Marks	Method of Assessment
Examination	Internal Theory	20	Written Examination
	Internal Practice	30(20+10)	Lab Work + Learning Record
External	External Theory	30	Written Examination
Examination	External Practice	20	Lab Work
Total		100	

Course Outline

Module I: Data Types, Array, Queue

(16 Hrs.)

Theory

Different Data Types, User-Defined and Enumerated Types: String Data Types, Event Data Types, User-Defined Types, Enumerated Types, Nets, Reg, Logic, Type Casting, Constants, Attributes.

Array: Packed Array and Unpacked Array, Dynamic, Associate Array, Its Methods, QUEUE Operators and Expressions, Control Structure: If-Else, Switch. Loop

Practice

- 1. Write A Program to Find Out the Frequency of Character in a String
- 2. Write A Program to Remove All Characters From a String Keeping All Numbers

Module II: Tasks and Functions (10 Hrs.)

Theory

Tasks, functions, Enhancements to tasks and functions, Task and function argument passing, Import and export functions, System Tasks and System Functions

Practice

- 3. Write a Program to Convert Celsius To Fahrenheit Using Simple Task
- 4. Write a Program to Calculate Parity Using Function

Module III: Processes

(12 Hrs.)

Theory

Combinational Logic, Latch Logic, Sequential Logic, Fork Join (Join, Join_Any, Join_None), Event Controls, Process Control

Practice

- 5. Write a Program to Dynamically Reverse the Bit Position in System Verilog
- 6. Write a Program to Write a Program Contents of Two Registers With and Without a Temporary Register

Module IV: Object Oriented Programming

(16 Hrs.)

Theory

OOP Basics, Classes-Object and Handles, Polymorphism, Inheritance, Composition, Creating New Object, Object Deallocation, Static Variables Vs. Global Variables, Class Routines, Defining Routines Outside Of The Class, Using One Class Inside Another, Dynamic Objects, Public Vs. Private

Practice

- 7. Write a Program to Show Inheritance and Polymorphism by Creating an Object
- 8. Write a Program Showing The Use Of Class Properties by Creating an Object and Deleting that
- 9. Write a Program and Declare a Static and Global Variable and Show their Use in Subroutine
- 10. Write a Program of 2 Numbers by Using Class Object Concept
- 11. Write a Program to Show Arithmetic Operations Using Class Subroutines

Module V: Interface

(14 Hrs.)

Theory

Clocking Blocks, Program Block, Interface Concepts, Interfaces: Interface Declarations, Using Interfaces as MODULE Ports, Instantiating and Connecting Interfaces, Referencing Signals Within an Interface, Interface Modports, Using Tasks and Functions in Interfaces, Parameterized Interfaces, Virtual Interfaces, Using Procedural Blocks in Interfaces, Reconfigurable Interfaces, Verification With Interfaces

Practice

12. Write a Program to Perform a Multiplication Using Function of a Class

- 13. Write a Program to Perform an Event At 20ns Using Task of a Class
- 14. Write a Program to Show the Difference Between Task and Function

Module VI: Randomization

(14 Hrs.)

Theory

Randomization, Constraints: Randomization in Systemverilog, Constraint Details, Controlling Multiple Constraints, Common Randomization Problems, Iterative and Array Constraints, Random Controls, Random Generators, Random Device Configuration

Practice

- 15. Write a Program by using rand Variables and Randomize them using Randomization Function
- 16. Write a Program to Show the Difference between rand and randc Variables
- 17. Write a Program using Constraints within Randomization Variables

Module VII: Coverage (8 Hrs.)

Theory

Semaphores, Mailboxes, Functional Coverage: Coverage Models Cover Points and Bins, Cross Coverage, Regression Testing

Practice

- 18. Define 3 Bins And Also Their Coverage Points And Find Out The Coverage
- 19. Write Down the Script which Shows us the Regression Testing
- 20. Define 4 Bins Which Holds the Coverage Points and Show the Coverage as 50%

Text Books

- Sutherland, Stuart, Simon Davidmann, and Peter Flake, "SystemVerilog for Design Second Edition: A Guide to Using System Verilog for Hardware Design and Modeling", Springer Science & Business Media, 2006
- 2. Spear, Chris. "SystemVerilog for Verification: a Guide to Learning the Testbench Language Features," Springer Science & Business Media, 2008

Reference Books

- 1. System Verilog, 3.1a, Language reference manual
- 2. Vijayaraghavan, Srikanth, and MeyyappanRamanathan. "A Practical Guide for SystemVerilog Assertions". Springer Science & Business Media, 2005
- 3. Bergeron, J. "Writing Testbenches Using SystemVerilog.—NY", Springer Science and Busir ness Media." (2006)

Topic	No. of	Activity	Assignment	Suggested
	Sessions			Reading

	(in hrs.)				
Module I [6 Hrs. Lecture+10 Hrs. Prac	` '			1	
Data Types, Array, Queue New Data	6	Lecture	Assignment-1	TB-1 (Ch.5),	
Types, Tasks and Functions, Interfaces,				TB-2 (Ch.2)	
Clocking Blocks, Different Data Types,					
User-Defined and Enumerated Types:					
String Data Types, Event Data Types,					
User-Defined Types, Enumerated					
Types, Array: Packed Array and					
Unpacked Array, Dynamic, Associate					
Array, Its Methods, QUEUE Operators					
and Expressions, Control Structure: If-					
Else, Switch. Loop					
Write a Program to Find Out the	10	Practice			
Frequency of Character in a String					
Write A Program To Remove All					
Characters From a String Keeping All					
Numbers					
Module II [4 Hrs. Lecture+6 Hrs. Practice]					
Tasks And Functions Tasks,	4	Lecture	Assignment-2	TB-1(Ch.6)	
Functions, Enhancements to Tasks and					
Functions, Task and Function,					
Argument Passing, Import and Export					
Functions, System Tasks and System					
Functions, VCD Data Synthesis					
Write A Program to Convert Celsius to	6	Practice			
Fahrenheit Using Simple Task					
Write a Program to Calculate Parity					
Using Function					
Module III [4 I		e+8 Hrs. Pi			
Combinational Logic, Latch Logic,	4	Lecture	Assignment-3		
Sequential Logic, Fork Join (Join,					
Join_Any, Join_None), Event Controls,					
Process Control					
Write a Program to Dynamically	8	Practice			
Reverse the Bit Position in System					
Verilog					
Write a Program Contents of Two					
Registers With and Without a					
Temporary Register					

Module IV [6 Hrs. Lecture+10 Hrs. Practice]						
Object Oriented Programming	6	Lecture	Assignment-4	TB-2(Ch.4)		
Object Oriented Programming: OOP						
Basics, Classes-Object and Handles,						
Polymorphism, Inheritance,						
Composition, Creating New Object,						
Object Deallocation, Static Variables						
vs. Global Variables, Class Routines,						
Defining Routines Outside of the Class,						
Using One Class Inside Another,						
Dynamic Objects, Public vs. Private						
Write a Program to Show Inheritance	10	Practice				
and Polymorphism by Creating an						
Object						
Write A Program Showing the Use of						
Class Properties by Creating an Object						
and Deleting that						
Write a Program and Declare a Static						
and Global Variable and Show their						
Use in Subroutine						
Write A Program of 2 Numbers by						
Using Class Object Concept						
Write a Program to Show Arithmetic						
Operations Using Class Subroutines						
Module V [4 H	rs. Lecture	+10 Hrs. Pı	ractice]			
Interface	4	Lecture	Assignment-5	TB-1(Ch.10)		
Clocking Blocks , Program Block ,						
Interface Concepts, Interfaces: Interface						
Declarations, Using Interfaces as						
MODULE Ports, Instantiating and						
Connecting Interfaces, Referencing						
Signals Within an Interface, Interface						
Modports, Using Tasks and Functions						
In Interfaces, Parameterized Interfaces,						
Virtual Interfaces, Using Procedural						
Blocks in Interfaces, Reconfigurable						
Interfaces, Verification With Interfaces						
Write a Program to Perform a	10	Practice				
Multiplication Using Function of a						
Class						

Write a Program to Perform an Event at						
20ns Using Task of a Class						
Write A Program to Show the						
Difference Between Task and Function						
Module VI [4 Hrs. Lecture+10 Hrs. Practice]						
Randomization , Constraints:	4	Lecture	Assignment-6	TB-2(Ch.6)		
Randomization in System Verilog,						
Constraint Details, Controlling Multiple						
Constraints, Common Randomization						
Problems, Iterative and Array						
Constraints, Random Controls, Random						
Generators, Random Device						
Configuration						
Write a Program by Using Rand	10	Practice				
Variables and Randomize them Using						
Randomization Function						
Write a Program to Show the						
Difference Between Rand and Randc						
Variables						
Write a Program Using Constraints						
Within Randomization Variables						
Module VII[2 I	Hrs. Lectur	e+6 Hrs. Pi	ractice]			
Coverage	2	Lecture	Assignment-7	TB-1(Ch.12)		
Semaphores, Mailboxes, Functional						
Coverage: Coverage Models, Cover						
Points and Bins, Cross Coverage,						
Regression Testing						
Define 3 Bins and Also their Coverage	6	Practice				
Points and Find Out the Coverage						
Write Down the Script Which Shows us						
the Regression Testing						
Define 4 Bins Which Holds the						
Coverage Points and Show the						
Coverage as 50%						
Total (In Hrs.)	90	30 Hrs.				
		Lecture				
		& 60				
		Hrs.				
		Practice				

VLSI Verification Methodologies

Course Title	Code	Type of course	T-P-PJ	Prerequisite
VLSI Verification	DEVL0201	Practice	0-2-0	Nil
Methodologies				

Objective

• The Objective of this Course ss to Involve Students in Theory and Practice of Verifications VLSI Circuits Using Methods Such as Universal Verification and Open Verification Methodology

Learning Outcome

- Student will Gain Knowledge of Various Verification Techniques Employed for Verifying VLSI Chips
- Students will Develop Skills of Performing Verification of the Complex VLSI Chips.

Evaluation Systems

Internal Examination	Component	% of Marks	Method of Assessment
	Internal Practice	50 (40+10)	Lab work + Learning Record
External Examination	External Practice	50	Lab work
Total		100	

Course Outline

Module I: (5 Hours)

Practice

History of Testing, Introduction to Universal Verification Methodology (UVM): Typical UVM Testbench Architecture, UVM Library Class

Module II: Introduction to UVM(10 Hours)

Practice

UVM Basics: UVM TB Architecture, Creating UVCs and Environment, Creating agent, UVM simulation phases, Test Flow

Module III: Transaction Level Modelling (TLM) (10 Hours)

Practice

Overview, TLM, TLM1, Merit, Demerit, TLM 2, Implementation

Module IV (10 Hours)

Practice

Creating and Using UVM Testbench: Configuring UVM Environment: UVM Sequences, UVM Sequencers, Connecting DUT-Virtual Interfaces, Virtual Sequences and Sequencers, Transaction Class

Module V (10 Hours)

Practice

Creating and Using UVM Testbench: Creating UVM Environment: Building a Scoreboard, Building Reusable Environments, Connecting Multiple UVCs

Module VI (7 Hours)

Practice

Use of Verification Components: Test Plan And Coverage: Creating Test Plan from Specification Coverage: Code Coverage and Functional Coverage

Module VII (8 Hours)

Practice

Assertion Based Methodology: Immediate Assertion, Simple Assertions, Sequences, Sequence composition, Assertion Coverage

Text Books

- 1. R. Salemi, "The UVM Primer: A Step-By-Step Introduction To The Universal Verification Methodology" Boston Light Press, 2013
- **2.** V.R. Cooper, "Getting Started with UVM: A Beginner's Guide," Austin: Verilab Publishing, 2013
- **3.** H. Height, "A Practical Guide To Adopting The Universal Verification Methodology (UVM)" Lulu. Com, 2010
- 4. C. Spear, "SystemVerilog for verification: A Guide to Learning The Testbench Language Features," Springer Science & Business Media, 2008

Topic	No. of	Activity	Suggested
	Sessions (in		Reading

	hrs.)	
Design of UART Protocol by using Verilog		Practice
Design of I2C master Protocol by using Verilog		Practice
Design of I2C slave Protocol by using Verilog		Practice
Design of Asynchronous FIFO by using Verilog		Practice
Designs of SPI protocol Transmitter by using		Practice
Verilog		
Design of DMA by using Verilog		Practice
Verification of UART Protocol by using UVM		Practice
Verification of I2C master Protocol by using		Practice
UVM		
Verification of I2C slave Protocol by using UVM		Practice
Verification of Asynchronous FIFO by using		Practice
UVM		
Verification of SPI Protocol by using UVM		Practice
Verification of AMBA AXI Protocol by using		Practice
UVM		
Verification of AMBA AHB protocol by using		Practice
UVM		
Verification of AMBA APB protocol by using		Practice
UVM		
Verification of DMA by using UVM		Practice
Total(in hrs.)	60	60 hrs.
		Practice

VLSI Test Principle and Testable Design

Course Title	Code	Type of course	T-P-PJ	Prerequisite
VLSI Test Principle and	DEVL0102	Theory	3-0-0	Nil
Testable Design				

Objective

• To Make the Student Understands Defects and Faults in VLSI Chips Different Test Pattern Generation Techniques and Understand Design-For-Testability.

Learning Outcome

- Students will Be Familiar with the Testing and Verification Methodology of VLSI Circuits
- Student will Develop Skill of Testing Complex Analog, Digital and Mixed Signal Chips

Evaluation Systems

	Component	% of Marks	Method of Assessment
Internal Examination	Internal Theory	30	Written examination
	Assignment	5	Report or Presentation + Learning Record
	Attendance	5	Based on class attended
External Examination	External Theory	60	Written examination
Total		100	

Course Outline

Module I: Introduction to VLSI testing, Fault modelling (10 Hours)

Theory

Trends, Moore's Law, Realization, Why Testing, Verification Vs Testing, Ideal Test, Real Test, Level of Testing, Cost of Testing, Role of testing, Real Defects, Faults, Errors and Failures, Overheads, Types, Basic Testing Principle, Design Flow, Characterization, Manufacturing Test, Stress Test, Bathtub Component Failure Curve, Parametric Test, Functional Test, ATPG, Test Specification and Plan, Test Program Generation, Test Data Analysis, Yield, Clustered VLSI Defects, Defect Level

Motivation of Fault Model, Why Fault Model, Some Real Defects, Fault Models, Logic Modelling, Behavioural Fault Models, Functional Level, Structural Level, Stuck at Fault Model, Bridging Fault, Switch Level Fault, Stuck Open/Short Fault, Geometric Fault, Delay Testing, Gate Delay Fault, Path Delay Fault, Redundant Fault, Operational Fault, Fault Collapsing, Fault Dropping, Fault Equivalence, Fault Dominance

Module II: Logic Simulation

(5 Hours)

Theory

Basic Concept, Modelling for Simulation, Logic Model of MOS Circuit, Signal States for Simulation, Determining Gate Values, Two Valued Truth Table, True Value Simulation, Compiled Code Algorithm, Logic Levelization Algorithm, Event Driven Simulation, Parallel Simulation of Multiple Vectors

Module III: Fault Simulation

(5 Hours)

Theory

Motivation, Uses of Fault Simulator, How to Simulate Fault, Fault Simulation Algorithm, Serial Algorithm, Parallel Fault Simulation, Deductive Fault Simulation, Concurrent Fault Simulation, Critical Path Tracing, Fault Sampling, Random Sampling Model, Probability Density of Sample Coverage, Sampling Error Bounds

Module IV: Testability Analysis

(5 Hours)

Theory

Origin, Types of Measures in SCOAP, Range of SCOAP Measures, Controllability and Observability of Basic Gates, Error for Stems and Reconverging Fan-out, Correlation Error, Sequential Example, Combinational and Sequential Controllability and Observability, Testability Computation Algorithm

Module V: Combinational ATPG, Sequential Test Generation (8 Hours) Theory

Test Generation, Test Pattern, Test Generation Methods, Boolean Difference, Roth's 5 Valued and Muth's 9 Valued Algebra, Deterministic ATPG, Decision Tree for Branch and Bound Search, Backtracking, Common Concepts for Structural Test Generation, Line Justification in a Fanout Free Circuit, Fault Propagation, Backtracking TG Algorithm, D Frontier, J Frontier, D Algorithm, Definition of Singular Cover, D cubes, D Intersection. D and 9V Algorithm Value Computation and Decision Tree, PODEM

Sequential Circuit, Test Generation Method, Time Frame Expansion Method, Implementation of ATPG, Cycle Free Circuits, Asynchronous Model

Module VI: Design for Testability

(5 Hours)

Theory

Basic Concept, Ad hoc DFT Method, Structured Method, Scan Path Design, Scan Cell Design, Muxed D Scan FF, Clocked Scan Cell, Level Sensitive Scan Cell. LSSD- Adding Scan Structure in Circuit, Combinational test vectors, Scan Testing Time, Multiple Scan Path, Scan Overheads, Hierarchical Scan, Optimum Scan Layout, Scan Area Overhead, Automated Scan Design, Different LSSD structure, LSSD Design Rule, Advantages and Drawback. Partial Scan Design- Objective, Architecture, Partial Scan Method, MVFS Problem, Test

Generation, Flip Flop for Partial Scan, Random Access Scan(RAS), RAS Flip Flop, Scan Hold Flip Flop

Module VII: Built In Self-Test

(7 Hours)

Theory

Motivation, Basic Architecture, Hierarchy, Multipurpose Register Application, Drawback and Advantages, Techniques, Pattern Generation, Exhaustive and Pseudo Exhaustive Method, Random Pattern Testing, LFSR- Types, Analysis using Polynomial Representation, Properties, LFSR as Pseudo Random Pattern Generator, Test Response Compaction- Compaction Techniques, BIST Compression Techniques, Ones Count, Transition Count, Parity Check, Syndrome Check, Signature Analysis, LFSR Response Compacter, MISR, Modular MISR, Multiple Signature Check, Aliasing Probability

BIST Architecture- Built in Logic Block Observer (BILBO), BILBO in Different Modes, STUMS, Circular Self-Test Path BIST

Text Books

- 1. M. Bushnelland, V. Agrawal, "Essentials of Electronic testing for Digital, Memory and Mixed-Signal VLSI circuits" (Vol. 17), Springer Science & Business Media, 2004
- 2. M.Abramovici, M.A. Breuer, and A.D.Friedman, "Digital Systems Testing and Testable Design" (Vol. 2). New York: Computer science press,1990

Reference Books

- 1. N.K. Jha, and S. Gupta, "Testing of Digital Systems", Cambridge University Press, 2003
- 2. L.T.Wang, C.W. Wu, and X.Wen,. "VLSI Test Principles and Architectures: Design for Testability", Elsevier,2006

Topic	No. of	Activity	Assignment	Suggested
	Sessions			Reading
	(in hrs.)			
Module I [1	0 Hrs. Lect	ure]		1
Introduction to VLSI testing, Fault	10	Lecture	Assignment	TB-1
Modelling			1.1	(Ch.4,5)
Trends, Moore's Law, Realization, Why				
Testing, Verification Vs Testing, Ideal Test,				
Real Test, Level of Testing, Cost of Testing,				
Role of testing, Real Defects, Faults, Errors				
and Failures, Overheads, Types, Basic				
Testing Principle, Design Flow,				
Characterization, Manufacturing Test, Stress				
Test, Bathtub Component Failure Curve,				
Parametric Test, Functional Test, ATPG, Test				
Specification and Plan, Test Program				
Generation, Test Data Analysis, Yield,				
Clustered VLSI Defects, Defect Level				
Motivation, Why Fault Model, Some Real				
Defects, Fault Models, Logic modelling,				
Behavioural Fault models, Functional Level,				
Structural Level, Stuck at Fault Model,				
Bridging Fault, Switch Level Fault, Stuck				
Open/Short Fault, Geometric Fault, Delay				
Testing, Gate Delay Fault, Path Delay Fault,				
Redundant Fault, Operational Fault, Fault				
Collapsing, Fault Dropping, Fault				
Equivalence, Fault Dominance				
Module II [Hrs. Lecti	ure]		
Logic Simulation	5	Lecture	Assignment	TB-1
Basic Concept, Modelling For Simulation,			2.1	(Ch.5)
Logic Model of MOS Circuit, Signal States				
for Simulation, Determining Gate Values,				
Two Valued Truth Table, True Value				
Simulation, Compiled Code Algorithm,				
Logic Levelization Algorithm, Event Driven				
Simulation, Parallel Simulation of Multiple				
Vectors				
Module III [5 Hrs. Lect	ure]		

Fault Simulation	5	Lecture	Assignment	TB-1	
Motivation, Uses of Fault Simulator, How to		Lecture	3.1	(Ch.5)	
simulate fault, Fault simulation Algorithm,			3.1	(CII.3)	
Serial Algorithm, Parallel Fault Simulation,					
Deductive Fault Simulation, Concurrent Fault					
Simulation, Critical Path Tracing, Fault					
Sampling, Random Sampling Model,					
Probability Density of Sample Coverage,					
Sampling Error Bounds					
Module IV [5 Hrs. Lect	•	Assisanment	TD 1	
Testability Analysis	3	Lecture	Assignment	TB-1	
Origin, Types of measures in SCOAP, Range			4.1	(Ch.5,6)	
of SCOAP measures, Controllability and					
Observability of Basic Gates, Error for Stems					
and Reconverging Fan-out, Correlation Error,					
Sequential Example, Combinational and					
Sequential Controllability and Observability,					
Testability Computation Algorithm					
Module V [8	1	_	T	1	
Combinational ATPG, Sequential Test	8	Lecture	Assignment	TB-1	
Generation			5.1	(Ch.7,8)	
Test Generation, Test Pattern, Test					
Generation Methods, Boolean Difference,					
Roth's 5 Valued and Muth's 9 Valued					
Algebra, Deterministic ATPG, Decision Tree					
for Branch and Bound Search, Backtracking,					
Common Concepts for Structural Test					
Generation, Line Justification in a Fanout					
free Circuit, Fault Propagation, Backtracking					
TG Algorithm, D Frontier, J Frontier, D					
Algorithm, Definition of Singular Cover, D					
cubes, D Intersection. D and 9V algorithm					
Value Computation and Decision tree,					
PODEM					
Module VI [5 Hrs. Lecture]					
Design For Testability	5	Lecture	Assignment	TB-1	
Basic Concept, Ad hoc DFT Method,			6.1	(Ch.14)	
Structured Method, Scan Path Design, Scan					
Cell Design, Muxed D Scan FF, Clocked					
Scan Cell, Level Sensitive Scan Cell. LSSD-					

Adding Scan Structure in Circuit, Combinational test vectors, Scan Testing Time, Multiple Scan Path, Scan Overheads, Hierarchical Scan, Optimum Scan Layout, Scan Area Overhead, Automated Scan Design, Different LSSD structure, LSSD design rule, Advantages and Drawback. Partial Scan Design-Objective, Architecture, Partial Scan Method, MVFS problem, Test				
Generation, Flip Flop for Partial Scan,				
Random Access Scan(RAS), RAS Flip Flop,				
Scan Hold Flip Flop				
Module VII	7 Hrs. Lec	ture]		
Built In Self-Test	7	Lecture	Assignment	TB-1
Motivation, Basic Architecture, Hierarchy,			7.1	(Ch.15)
Multipurpose Register application,				
Drawback and Advantages, Techniques,				
Pattern Generation, Exhaustive and Pseudo				
Exhaustive Method, Random Pattern				
Testing, LFSR- Types, Analysis using				
Polynomial Representation, Properties,				
LFSR as Pseudo Random Pattern				
Generator, Test Response Compaction-				
Compaction Techniques, BIST				
Compression Techniques, Ones Count,				
Transition Count, Parity Check, Syndrome				
Check, Signature Analysis, LFSR				
Response Compacter, MISR, Modular				
MISR, Multiple Signature Check, Aliasing				
Probability PIST Architecture Puilt In Logic Pleak				
BIST Architecture- Built In Logic Block Observer (BILBO), BILBO in different				
Modes, STUMS, Circular Self-Test Path				
BIST				
Total (in Hrs.)	45	45 Hrs.		
(11 11 00)		Lecture		