浅(くて広い)層学習

少データでお手軽機械学習 越智優真

自己紹介

- 千葉大学教育学部附属中学校3年4月から木更津工業高等専門学校情報工学科1年
- 機械学習
 - Kaggle, SIGNATE Expert
 - 専らデータサイエンスをしてる
- 量子コンピュータ
 - 未経験
 - 量子ビットって何?からはじまった
 - 数理科学の量子コンピュータ特集を買って読んでる(難しい)

アピールポイント

- 機械学習
 - QBoostとNNの融合
 - o スパースモデリング
- 実行速度
 - 並列処理
 - スパースモデリング
- 汎用性
 - 数値なら何でもOK
 - ハミルトニアンを書き換える必要なし
- 実用性
 - 重みの可視化が楽
 - 明示的な特徴抽出可
 - 様々なタスクにおいて高い精度を確認済み

作成したモデル(ハミルトニアン)の概要

- NNっぽさ
 - 疑似特徴抽出
 - 拡張可能
- アンサンブル学習っぽさ
 - QBoostの応用
 - n層作って平均化

アンサンブル学習 とNNの融合

QBoostとは(ざっくり)

$$H(w) = \sum_{i=1}^{S} \left(\frac{1}{N} \sum_{i=1}^{N} w_i h_i(x_{si}) - y_s \right)^2 + \lambda ||w||_0$$

QBoost

- アンサンブル機械学習
- 2乗誤差
- 正則化項の存在
- QUBO形式 入力と出力が離散値でつながっているため

表現力が低い

(汎用性が低い)

汎用性が低いことに対する

解決策

連続値の表現

- 理想は小数
- 現実は{-1, 1} ←← Ising Poly

重みを平均すれば連続に近くなる

ミニバッチ学習

表現力

- 特徴抽出をしたい
- 二値では表現不可

重みを多層化

QBoostをn個持ってきてn層と言ってるのと同義

つまりアンサンブルのアンサンブルです

表現力向上

- 元々は入力も二値にしている
- 現実は小数、整数お構いなし
- QBoostでは入力を{-1, 1}に 変換している
 - 表現力低下

入力を 正規化だ

データセット

- 量子ビットとの積をとるので 0以外の数が必要
 - 0の特徴量があると学習不可
- 負が存在しないので総和で[-1, 1]に 計算させるのは難しい
 - ならば負を用意→→→→→→

0を-1に補完

Binary Poly

→ Ising Poly

- 1. 抽象、汎用的なコーディング
- 2. スパースモデリング
- 3. 並列処理
- 4. 簡単な重みの可視化

工夫点

汎用、抽象的なコーディング

意識したこと

- 拡張性
- 汎用性
- 楽なコーディング&デバッギング
- 楽な実験管理

抽象かつ 汎用的な コーディング

例: PyTorch Dataset & DataLoader

- ミニバッチ御用
 - o iterableなので
- 前処理、augmentationもできる
- 柔軟
- 書きやすい

深層学習用のライブラリでも使える

```
class MyDataset(Dataset):
   def __init__(self, data, label):
        self.data = data
        self.label = label
   def len (self):
        return len(self.data)
   def __getitem__(self, idx):
        return self.data[idx, :],
self.label[idx]
ds = MyDataset(df, labels)
dl = DataLoader(ds, batch_size=bs)
```

例: Config管理

- コードは抽象、configは具体
 - o スッキリ
 - ライブラリとしても機能
- 読み/使い やすい
 - 汎用的

スパースモデリング

少データで高精度、狙えます

お気持ち

シンプルに。よりシンプルに、 本質を抽出せよ。

同様のデータを説明する仮説が二つ ある場合、より単純な方の仮説を選択 せよ。

オッカムの剃刀

Batch Size = 10で実験

MNISTの0ラベル 検証用データ300枚 重み係数1で3層 iterのみ変更させた データ数は bs x iter

並列処理

並列処理

● プロセス番号: CPUのコア数が最大

• 前処理: solverの定義

メイン: 計算(solve)

solver定義はローカル実行

→ 非同期処理可

solveはクラウド実行

→ 同期処理

MNISTだと緑1ブロックに 5~30秒かかる(データサイズと相関有)

simple

multi process

時間がかかる 前処理が爆速に

簡単な重みの可視化

方法

- 1. 学習
- 2. 学習済みの重みを取得
- 3. 要素ごとの平均
- 4. 以上

重み可視化の例

役に立つこと

- 人に説明できる
 - DNNの欠点は説明が難しいこと
 - 実用的
- 何で上手くいく/いかない かがわかる
 - フィードバック可
 - 指標+重みをみてモデルを評価できる

どんだけすごいの?

0.946

MNISTのサンプルのAUC score

申し分ない性能

0と5の

重みを可視化させたもの

サンプル実装

- データ
 - MNIST
 - o 20 x 20 pixels
 - 訓練100枚
 - 検証300枚
- モデル(QBoost)
 - □ 重み: 3層
 - 重みの係数:1
 - ο 正則化係数λ: 2
- 結果
 - ラベルごとの平均AUC: 0.946
 - シンプルな数字程良い性能

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

タスクごとのAUC 学習は150データのみ

- MNIST
 - 手書き数字画像、400 pixels
 - 0.946
- Fashion-MNIST
 - 服や靴の画像、400 pixels
 - 0.946
- EMNIST
 - 手書き英文字画像、400 pixels
 - 0.865
- otto
 - Kaggle多クラス分類コンペ 特徴量 93個のテーブルデータ
 - o **0.879**

どんなデータでも OK

ハミルトニアンをいいじる必要なし

お手軽AI爆誕!

解決

- 幅広いデータを受け入れる
 - 0以外の数値なら何でも
- 並列処理
 - 環境にもよるが最高で5倍高速化
- 多層化
 - 層の数と精度の関係
 - データが多い:相関高
 - データが少ない:相関低
- スパースモデリング
 - うまくいった
 - 層は多すぎると過学習しやすい

これから

- 自動特徴抽出
 - n次多項式
 - 畳み込み
- 小さなバグ
 - 重みを正規化するときにInf, NaNになることが たまにある
- パラメータのチューニング
 - NNの勾配降下法っぽいことをしてうまくやりたい
- 異常検知系タスク
 - 特徴抽出次第だが期待大

以上です

ありがとうございました

これより後ろに補足を 書いてあるので時間があれば 目を通してもらえればと 思います!

正則化係数λ

重みは係数k、L層のw

データ数S、特徴量数Nの入力x、出力y

 $= \sum_{i=1}^{S} \left(\frac{1}{N} \sum_{i=1}^{N} \left(\sum_{i=1}^{L} k w_{li}\right) x_{si} - y_{s}\right)^{2} + \lambda \sum_{i=1}^{L} \sum_{s=1}^{L} \left(\sum_{i=1}^{L} k w_{li}\right) x_{si} - y_{s}$

 $w_{li} \in \{-1, 1\}$

 $y_s \in \{0, 1\}$

 $x_{si} \in [0, 1]$

 $\lambda \in \mathbb{R}$

自作データセットで 試す方法

- 1. データのパスを記載
- 2. カラムを指定して説明変数と従属変数にわける
- 3. (必要ならば) 前処理等を行う
- 4. パラメータを設定
- 5. 実行!

特徴量、ラベル
train_ds = MyDataset(train[:, 1:], train[:, 0])
valid ds = MyDataset(val[:, 1:], val[:, 0])

model:
 timeout: 3000 # ms 計算時間
訓練に使うデータは(batch_size * n_iter)個
 batch_size: 20 # バッチサイズ
 n_iter: 5 # ループ数
 l: 2 # 正則化項
 each_weight: 1 # 重み係数
 length_weight: 3 # 重みの層の数
 multiprocessing: true:], val[:, 0])

正則化項

正則化風項

- 重みの和
- -1と1のバランスを良くする

思いつきだがノイズが軽減され、 スコアも上がった

$$\lambda \sum_{l=1}^{L} \sum_{i=1}^{N} w_{li}$$

正則化風項の力

- 重みの和で表される
- 係数λが大きいほど1の重みは少なくなる

下はMNISTの0のラベルをλのみを変えて学習させた後の 重みを可視化させたもの

 $\lambda = 0$ score 0.87

 $\lambda = 2$ score 0.95

