Resolução Lema do Bombeamento

Linguagens Formais e Compiladores Prof^a. Jerusa Marchi

1. Lema do Bombeamento

(a) Aplique o Lema do Bombeamento e demonstre que a seguinte linguagem não é Regular.

$$L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ e } j = i + k\}$$

Seja p o comprimento do bombeamento, então $a^pb^{2p}c^p$ pertence a L. Agora, suponha que L seja regular, então o lema do bombeamento deve valer para L. Ou seja, existe p tal que, para todo w em L, $|w| \ge p$, podemos escrever w = xyz com:

i.
$$|xy| \leq p$$

ii.
$$|y| > 0$$

iii. para todo $i \ge 0$, xy^iz pertence a L

Considerando os itens i e ii, xy contém somente a's e y contém pelo menos um a. Ao bombear y^i tem-se $a^{p-1}a^ib^{2p}c^p$ para $i \ge 2$, o que fará com que o número de a's +c's seja diferente do número de b's. Portanto, L não é Regular.

(b) Aplique o Lema do Bombeamento e demonstre que a seguinte linguagem não é Regular.

$$L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ e } k = i + j\}$$

Seja p o comprimento do Bombeamento e seja $w=a^pb^pc^{2p}$ pertencente a L. Suponha L regular, então o lema do bombeamento vale para w e portanto w=xyz. Considere y=a. Ao bombear y^i tem-se $a^{p-1}a^ib^pc^{2p}$, para $i\geq 2$ tem-se que o número de c's é menor que o número de a's mais o número de b's e $w\not\in L$. Contradição.

(c) Aplique o Lema do Bombeamento e demonstre que a seguinte linguagem não é Regular.

$$L = \{a^n b^m c^p d^q \mid n, m, p, q \ge 0 \text{ e } n \ne q \text{ e } m = p\}$$

Seja h o comprimento do Bombeamento tal que h=n+m e seja $w=a^nb^mc^pd^q$ tal que $n\neq q$ e m=p pertencente a L. Suponha L regular, então o lema do bombeamento vale para w e portanto w=xyz. Considere $y=b^m$. Ao bombear y^i tem-se $a^n(b^m)^ic^pd^q$, para $i\geq 2$ tem-se que o número de b's difere do número de c's e portanto $w\not\in L$. Contradição.

(d) Aplique o Lema do Bombeamento e demonstre que a seguinte linguagem não é Regular.

$$L = \{a^n b^m c^p d^q \mid n, m, p, q \ge 0 \text{ e } n + m = p + q\}$$

Seja h o comprimento do Bombeamento e seja $w=a^hb^mc^pd^q$ tal que h+m=p+q pertencente a L. Suponha L regular, então w=xyz. Considere y=a. Ao bombear y^i tem-se $a^{h-1}a^ib^mc^pd^q$, para $i\geq 2$ tem-se que o número de a's $+m\geq p+q$. Logo $w\not\in L$. Contradição.

(e) Aplique o Lema do Bombeamento e demonstre que a seguinte linguagem não é Regular.

$$L = \{wcw^r \mid w \in \{a, b\}^*\}$$

Seja p o comprimento do Bombeamento tal que p=|w| e seja $s=wcw^r$ pertencente a L. Suponha L regular, então o lema do bombeamento vale para s e portanto w=xyz. Considere y=w. Ao bombear y^i tem-se $\underbrace{www...w}_i cw^r$ ou seja $s \not\in L$. Contradição.