Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет систем управления и робототехники

Отчет по лабораторной работе №1			
«Моделирование линейных динамических	систем»		

Выполнил: студент гр. R3238

Кравченко Д.В.

Преподаватели: Перегудин А. А.

1. Цель работы

Ознакомление с основными представлениями и принципами построения линейных стационарных динамических систем, а также приемами моделирования в программной среде MATLAB/Simulink.

2. Материалы работы

Вариант №14

a_0	a_1	a_2	b_0	b_1	b_2
5	16	4	6	5	7

Таблица 1. Параметры одноканальной модели В-В для Варианта
 №14

1.1 Схема моделирования одноканальной динамической системы:

Схема моделирования №1

1.2 Моделирование вынужденного движения:

График №1 Зависимость y(t) при u(t) = 1

График №2 Зависимость y(t) при $u(t) = 2\sin(t)$

График №3 Зависимость u(t) при u(t) = 1

График №4 Зависимость u(t) при $u(t) = 2\sin(t)$

1.3 Моделирование свободного движения системы:

<i>y</i> (0)	y [·] (0)	y¨(0)
1	0.5	0.7

Таблица №2 Начальные условия

График №5 Свободное движение y(t) при u(t) = 0(t)

1.4 Моделирование свободного движения системы:

$a_{11}(p)$	$a_{12}(p)$	$a_{21}(p)$	$a_{22}(p)$	$b_{11}(p)$	$b_{12}(p)$	$b_{21}(p)$	$b_{22}(p)$
p+13	p+5	p+3	p+7	4	5	3	1

Таблица №3 Параметров многоканальной модели В-В

Схема моделирования №2

График №6 Зависимость y1(t) и y2(t) при u1(t) = 1(t) и u2(t)=2sin(t)

График №7 Зависимость u1(t) = 1(t) и u2(t)=2sin(t)

2.1 Моделирование одноканальной линейной динамической системы:

А	В	С
0 -7	5	2
1 -6	2	4

Схема моделирования №2

2.2 Моделирование вынужденного движения системы:

График №8 Зависимость y(t) при u(t) = 1(t)

2.3 Моделирование свободного движения системы:

$x_1(0)$	$x_2(0)$
2	0.7

График №10 Зависимость у(t) при u(t) = 0(t)

2.4 Моделирование многоканальной динамической системы:

А	В	С
0 -7	5 3	29
1 -6	12 1	81

Графики №11 и №12 Зависимость y1(t) и y2(t) при u1(t) = 1(t) и u2(t)=2sin(t); Зависимость u1(t) = 1(t) и u2(t) = 2sin(t)

3. Выводы

В данной лабораторной работе было проведено исследование моделей в форме В-В и В-С-В: Построение моделей в соответствие с вариантом и её дальнейшие исследование.