10

5

1

5

3

-

3

3

3

9

9

-

1

7

1

e) If i is less than (2-p)/1, then we want to pad the acray with (-10). We want to pad with e-p-21 number of (-10) in order the i-th order statistic to be the median. After we have paded we apply the Median' function. That will be the desidered answer because we need to find the i+2-p-di= = 2-p-i-th element, which is the median. Similarly if i > (e-p) /2, we can pad with li-z+p times (+ 0) and apply the Median function. The Handard algorithm, we need to do 1.8003-8001= = 1013360000 . Strassen's method will take (18.4002) + (4.8.2002) + 141. 18 1802) + (x3. 18. 1800 202) + (x4. 18. 223) + (x2. (2. 253-- 252) = 573900625, which is less than the standard algorithm. 3. a) For this algorithm we need 31 block multiplications and each block is of site " = -s T(n) \$ 32T(= 1) + 0(n2) => By the master theorem because logist > 2 then the algorithm is assymptotically bounded by O(n 2.5) question we know

following is true: T(n) = walled c. n 2.5 = e. 2 5k We know that T(4k) = 32T(4k-1) + 144. (4k-1)2 = $= 32T(u^{k-1}) + (94 + 16 = 32T(u^{k-1}) + 9.44 =$ $= 9.14 + 25.9 + 1(k-1) + - + (25)^{k-1}.9.4 + 32^{k}.T(1) =$ = 9.24 + 9.24 + 1.2.4 + 1.2.4 + 3.2 + 1.2.4 == 9.24k [(124 -- + 2k-1] + 25k = = 9.2 Wk . (2 k -1) +2 TK = = 9.25k - 9.24k + 25k = = 10.2805k - 9.24k = 10.25k=> the upper bound for c is 10. => T(4K) < 10.25K b) We want to solve the inequality: 10.25k < 2.20k - 2 mk /: 2 kk + 0 Let x = 2 => the inequality (=> 0 \(\) 1. x = -10x-1 Buttlette => for x & (-0,1) v (5,1,+0) the onequality is true but x >0 => x 25,1 => 2 × 25,1 => k 2 log, 5, 1 = 2, 35 => n has to be at least 16 for this method to be more efficient than the conventional one But because n is a prower of 4, then is has to be more or equal to 64. 4. a) so the minimum number of elements of a true heap of side height h is when for all levels jetel, h-1] it is filled, and on the last level there is only one node.

20,21, --- 126-21 = => the stre will be = 2 k-1 - 1 + 1 = The maximum number of elements is: 20-121--- +2k-1 -2k-1 =2k-1 b) The smallest element resides in one of the believe leaves. This can be proven by counterpositive. It it is not one of the leaves, then it has a child node But because it is a max neap that would mean the smallest element is not actually the smallest C) A min - heap satisfies the property: for every is A heap stre is true that Alil = Allili and Alil = Alizhill which is true because the array is ordered not a max-heap because A[9] > A[4] on The sequence 28 23 14 1 6 (W) (7) (2) 5 5. The worst case for the function "max-heapity" is when the heap is a min-neap. For each of the Mealus modes at neight h, the function will run at least while I (h), where height is the length of the longest path from the node to the a leaf. => h = log (size of the subtree => for the idealellite root, "max heapify" selle is I (logal.

<u>C.</u>
When we remove an element from the near there
will be a gap. Take the subtree, where rever is the
wode which is the smallest and contains both the
node that we want to remove and the last node.
If the element we want removed is the root of that
subtree, we just replace each of the removed modes
with of the children and the on the last change
we take the last mode of the texe. If the ele-
ment is not the root we replace the removed
node with englock its parent node until we
reach the root and then repeat the same procedure as
before. Maximum number of swaps is blogen =>
O(logn).
<u>4</u> .
The running time is O(nlogu) because if the array is
sorted, we still have to run the "max-heapity" frenc-
Hon at each o iteration. Analogically, if the array is
sorted in decreasing order it would still take Olulogu)
because at each Herotton we need to call "max-hea-
vity".
b
8.
We take the first entry of each of the sorted arrays and build a water neap. Delete the root and pront the
direct successor of the deleted element from that
array. Run min-heapify" to build the min-heap
and respect the process.

France Correct