Interpolating Manifestly Covariant Conformal Algebra (1 + 1) between IFD and LFD

Hariprashad Ravikumar¹

Guidance and Support by **Dr. Chueng Ji**²

 $^1{\rm New~Mexico~State~University,~USA}$ $^2{\rm North~Carolina~State~University,~USA}$

October 20, 2023

Outline

- Conformal Algebra
 - Special Conformal Transformations
- 2 Interpolating Conformal algebra
- 3 Boost as Rotations in 4D
- \blacksquare Interpolating Manifestly Covariant Conformal Algebra (1+1)
- **5** Interpolating D and K^3
- 6 Current Progress

Conformal Transformations

Let us consider a flat space in d dimensions and transformations thereof, which locally preserves the angle between any two lines. A conformal transformation is a smooth, invertible map $x \to x'$ such that

$$g'_{\rho\sigma}(x')\frac{\partial x'^{\rho}}{\partial x^{\mu}}\frac{\partial x'^{\sigma}}{\partial x^{\nu}} = \Lambda(x)g_{\mu\nu}(x), \tag{1.1}$$

where the positive function $\Lambda(x)$ is called the scale factor.

Furthermore, for flat spaces, the scale factor $\Lambda(x) = 1$ corresponds to the Poincaré group consisting of translations and rotations, respectively, Lorentz transformations.

Let us next consider the infinitesimal coordinate transformations which up to first order in a small parameter $\epsilon(x) << 1$ read

$$x'^{\rho} = x^{\rho} + \epsilon^{\rho}(x) + \mathcal{O}(\epsilon^2). \tag{1.2}$$

Conformal Transformations

For $d \geq 3$, there are ONLY 4 calsses of solutions for $\epsilon_{\mu}(x)$ of $x'_{\mu} = x_{\mu} + \epsilon_{\mu}(x) + \mathcal{O}(\epsilon^{2})$.

(Infinitesimal Translation)
$$\epsilon^{\mu}(x) = a^{\mu}$$
 (constant) (1.3)

(Infinitesimal Rotation)
$$\epsilon^{\mu}(x) = M^{\mu}_{\nu} x^{\nu}$$
 (1.4)

(Infinitesimal Scaling)
$$\epsilon^{\mu}(x) = \lambda x^{\mu}$$
 (1.5)

(Infinitesimal SCT)
$$\epsilon^{\mu}(x) = 2(b.x)x^{\mu} - x^2b^{\mu}$$
 (1.6)

The Finite conformal transformations are:

(translation)
$$x'^{\mu} = x^{\mu} + a^{\mu}$$
(rotation)
$$x'^{\mu} = M^{\mu}_{\nu} x^{\nu}$$
(dilatation)
$$x'^{\mu} = \alpha x^{\mu}$$
(SCT)
$$x'^{\mu} = \frac{x^{\mu} - b^{\mu} x^{2}}{1 - 2b \cdot x + b^{2} x^{2}}$$

SCT

Inversions are given by

$$\boxed{x^{\mu}} \longrightarrow \left| x'^{\mu} = \frac{x^{\mu}}{x^2} \right| \tag{1.7}$$

The SCTs can be understood as an inversion of x^{μ} , followed by a translation b^{μ} , and followed again by an inversion.

$$\boxed{x^{\mu}} \longrightarrow \boxed{x'^{\mu} = \frac{x^{\mu}}{x^{2}}} \longrightarrow \boxed{x''^{\mu} = \frac{x^{\mu}}{x^{2}} - b^{\mu}} \longrightarrow \boxed{x'''^{\mu} = \frac{\frac{x^{\mu}}{x^{2}} - b^{\mu}}{(\frac{x^{\mu}}{x^{2}} - b^{\mu})^{2}} = \frac{x^{\mu} - b^{\mu}x^{2}}{1 - 2b \cdot x + b^{2}x^{2}}}$$

Figure 1: Illustration of a finite SCT

Conformal algebra

The generators of conformal transformations are: $P^{\mu} = i\partial^{\mu}$ (translation), $M^{\mu\nu} = i \left(x^{\mu} \partial^{\nu} - x^{\nu} \partial^{\mu} \right)$ (rotation), $D = i x_{\mu} \partial^{\mu}$ (dilation or scaling), and $\mathfrak{K}^{\mu} = i \left(2 x^{\mu} x_{\nu} \partial^{\nu} - x^{2} \partial^{\mu} \right)$ (SCT). Therefore, the full Conformal algebra is given by

$$\begin{split} [P_{\mu}, P_{\nu}] &= 0; \ [\mathfrak{R}_{\mu}, \mathfrak{R}_{\nu}] = 0; \\ [D, P_{\mu}] &= -iP_{\mu}; \ [D, \mathfrak{R}_{\mu}] = i\mathfrak{R}_{\mu}; \\ [P_{\rho}, M_{\mu\nu}] &= i \left(g_{\rho\mu} P_{\nu} - g_{\rho\nu} P_{\mu} \right); \\ [\mathfrak{R}_{\rho}, M_{\mu\nu}] &= i \left(g_{\rho\mu} \mathfrak{R}_{\nu} - g_{\rho\nu} \mathfrak{R}_{\mu} \right); \\ [M_{\alpha\beta}, M_{\rho\sigma}] &= -i \left(g_{\beta\sigma} M_{\alpha\rho} - g_{\beta\rho} M_{\alpha\sigma} + g_{\alpha\rho} M_{\beta\sigma} - g_{\alpha\sigma} M_{\beta\rho} \right); \\ [\mathfrak{R}_{\mu}, P_{\nu}] &= -2i \left(g_{\mu\nu} D + M_{\mu\nu} \right); \ [D, M_{\mu\nu}] &= 0. \end{split}$$

Full conformal algebra in Interpolation

A comprehensive table of the **105 commutation** relations among the co-variant components of the Conformal generators is presented below:

	P_{\downarrow}	P_{i}	P_2	$K^{\hat{3}}$	$\mathcal{D}^{\hat{1}}$	$\mathcal{D}^{\hat{2}}$	J^3	$\mathcal{K}^{\hat{1}}$	K^2	$P_{\hat{-}}$	ЯĻ	Яį	Яż	Я÷	D
P_{\perp}	0	0	0	$i (\mathbb{C}P_{\perp} - \mathbb{S}P_{\perp})$	$iCP_{\hat{1}}$	$i\mathbb{C}P_2$	0	iSP_{i}	iSP_2	0	2iCD	$-2i\mathcal{D}^{\dagger}$	$-2i\mathcal{D}^2$	$2i(SD - K^3)$	iP_{\downarrow}
$P_{\hat{1}}$	0	0	0	0	iP_{\downarrow}	0	$-iP_2$	iP_	0	0	$2iD^{\hat{1}}$	-2iD	$-2iJ^{\hat{3}}$	$2iK^{\hat{1}}$	$iP_{\hat{1}}$
P_2	0	0	0	0	0	iP_{\perp}	iP_1	0	iP_{-}	0	$2iD^2$	$2iJ^3$	-2iD	$2iK^2$	iP_2
$K^{\hat{3}}$	$-i\left(\mathbb{C}P_{\perp} - \mathbb{S}P_{\perp}\right)$	0	0	0	$iSD^{\hat{1}} - iCK^{\hat{1}}$	$iSD^{\hat{2}} - iCK^{\hat{2}}$	0	$-iSK^{\hat{1}} - iCD^{\hat{1}}$	$-iSK^{\dot{2}} - iCD^{\dot{2}}$	$-i\left(SP_{\perp} + CP_{\perp}\right)$	$i\left(\mathbb{S}\mathfrak{K}_{\perp}-\mathbb{C}\mathfrak{K}_{\perp}\right)$	0	0	$-i\left(\mathbb{C}\mathfrak{K}_{\perp}+\mathbb{S}\mathfrak{K}_{\perp}\right)$	0
\mathcal{D}^{1}	$-i\mathbb{C}P_{\hat{1}}$	$-iP_{\downarrow}$	0	$-iSD^{\dagger} + iCK^{\dagger}$	0	$-i\mathbb{C}J^3$	$-iD^2$	iK^3	$-iSJ^3$	$-iSP_i$	$-i\mathbb{C}\mathfrak{K}_{\hat{1}}$	$-i\mathfrak{K}_{\downarrow}$	0	$-iSR_i$	0
\mathcal{D}^2	$-i\mathbb{C}P_2$	0	$-iP_{\downarrow}$	$-iSD^2 + iCK^2$	iCJ^3	0	$i\mathcal{D}^{1}$	iSJ^3	iK^3	$-iSP_2$	$-i\mathbb{C}\mathfrak{K}_2$	0	$-i\Re_{\dot{+}}$	$-iSR_2$	0
$J^{\hat{3}}$	0	iP_2	$-iP_{\hat{1}}$	0	$iD^{\hat{2}}$	$-iD^{\hat{1}}$	0	$iK^{\dot{2}}$	$-iK^{\hat{1}}$	0	0	$i\Re_2$	$-i\Re_{\hat{1}}$	0	0
\mathcal{K}^1	$-iSP_1$	$-iP_{\hat{-}}$	0	$iSK^{1} + iCD^{1}$	$-iK^3$	$-iSJ^3$	$-iK^2$	0	$i\mathbb{C}J^3$	$i\mathbb{C}P_1$	$-iSR_{\bar{1}}$	-iℜ <u>-</u>	0	iCR_1	0
\mathcal{K}^2	$-iSP_2$	0	$-iP_{\hat{-}}$	$iSK^2 + iCD^2$	iSJ^3	$-niK^3$	$i\mathcal{K}^1$	$-i\mathbb{C}J^3$	0	$i\mathbb{C}P_2$	$-iSR_2$	0	$-i\Re_{\dot{-}}$	iCR_2	0
$P_{\dot{-}}$	0	0	0	$i\left(SP_{\perp} + CP_{\perp}\right)$	$iSP_{\hat{1}}$	iSP_2	0	$-i\mathbb{C}P_{\hat{1}}$	$-i\mathbb{C}P_{\hat{2}}$	0	$2i(SD + K^{\hat{3}})$	$-2iK^{\hat{1}}$	$-2iK^{\hat{2}}$	$-2i\mathbb{C}D$	$iP_{\dot{-}}$
$\mathfrak{K}_{\downarrow}$	$-2i\mathbb{C}D$	$-2i\mathcal{D}^{\hat{1}}$	$-2i\mathcal{D}^2$	$-i\left(SR_{\perp}-CR_{\perp}\right)$	iCR_1	iCR_2	0	iSR_1	iSR_2	$-2i(SD + K^3)$	0	0	0	0	$-i\Re_{\dot+}$
$\mathfrak{K}_{\hat{1}}$	$2iD^{\hat{1}}$	2iD	$-2iJ^{\hat{3}}$	0	iR;	0	$-i\mathfrak{K}_{2}$	iR_	0	$2iK^{\hat{1}}$	0	0	0	0	$-i\Re_{\hat{1}}$
\mathfrak{K}_2	$2iD^2$	$2iJ^3$	2iD	0	0	iR_{\perp}	$i\Re_{\hat{1}}$	0	iR_	$2iK^2$	0	0	0	0	$-i\Re_2$
R.	$-2i(SD - K^3)$	$-2i\mathcal{K}^{\hat{1}}$	$-2i\mathcal{K}^2$	$i\left(\mathbb{C}\mathfrak{K}_{\perp}+\mathbb{S}\mathfrak{K}_{\perp}\right)$	iSA ₁	iSR_2	0	$-i\mathbb{C}\mathfrak{K}_{\mathbf{j}}$	$-i\mathbb{C}\mathfrak{K}_2$	2iℂD	0	0	0	0	$-i\Re_{\hat{-}}$
D	$-iP_{\downarrow}$	$-iP_{\hat{1}}$	$-iP_2$	0	0	0	0	0	0	$-iP_{\perp}$	iR _↓	$i\Re_{\hat{1}}$	$i\mathfrak{K}_{\underline{i}}$	iR_	0

Kinematic and dynamic generators of the Conformal $\operatorname{group}^{12}$

The generators of conformal transformations:

$$(translation) P^{\hat{\mu}} = i\partial^{\hat{\mu}} (2.1)$$

(dilation)
$$D = ix_{\hat{\mu}}\partial^{\hat{\mu}}$$
 (2.2)

(rotation)
$$M^{\hat{\mu}\hat{\nu}} = i \left(x^{\hat{\mu}} \partial^{\hat{\nu}} - x^{\hat{\nu}} \partial^{\hat{\mu}} \right)$$
 (2.3)

(SCT)
$$\mathfrak{K}^{\hat{\mu}} = i \left(2x^{\hat{\mu}} x_{\hat{\nu}} \partial^{\hat{\nu}} - x^2 \partial^{\hat{\mu}} \right)$$
 (2.4)

Since
$$\left[\mathfrak{K}^{\hat{+}}, x^{\hat{+}}\right] = i\left(2x^{\hat{+}}x^{\hat{+}} - (x^{\hat{\alpha}}.x_{\hat{\alpha}})\mathbb{C}\right) \to i(x^{0}.x^{0} + \vec{x}.\vec{x})$$
 as $\delta \to 0$, and $\left[\mathfrak{K}^{\hat{+}}, x^{\hat{+}}\right] = i\left(2x^{\hat{+}}x^{\hat{+}} - (x^{\hat{\alpha}}.x_{\hat{\alpha}})\mathbb{C}\right) \to i(2x^{+}.x^{+})$ as $\delta \to \pi/4$, the conformal generator (LF time component) \mathfrak{K}_{-} is Kinematic in LFD, but Dynamic in IFD. And $[D, x^{\hat{+}}] = ix^{\hat{+}}$, so D is always Kinematic in both IFD and LFD.

¹Chueng-Ryong Ji and Chad Mitchell, Phys. Rev. **D 64**, 085013 (2001).

²Chueng-Ryong Ji, Ziyue Li, and Alfredo Takashi Suzuki, Phys. Rev. **D 91**, 065020 (2015).

Boost as Rotations in 4D

The 4D Angular momentum tensor is given by:

$$M_{\mu\nu} = i(x_{\mu}\partial_{\nu} - x_{\nu}\partial_{\mu}) = \begin{pmatrix} 0 & -K^{1} & -K^{2} & -K^{3} \\ K^{1} & 0 & J^{3} & -J^{2} \\ K^{2} & -J^{3} & 0 & J^{1} \\ K^{3} & J^{2} & -J^{1} & 0 \end{pmatrix}.$$
(3.1)

$$[M^{\alpha\beta}, M^{\rho\sigma}] = -i \left(g^{\beta\sigma} M^{\alpha\rho} - g^{\beta\rho} M^{\alpha\sigma} + g^{\alpha\rho} M^{\beta\sigma} - g^{\alpha\sigma} M^{\beta\rho} \right)$$
(3.2)

There are $\frac{n(n-1)}{2}$ number of planes in n dimension:

Dimension	# of planes
1D	0
2D	1
3D	3
4D	6
5D	10
6D	15

(3.3)

We define the following 6×6 tensor in the projective-space-time:

$$J_{\hat{a},\hat{b}} = \begin{pmatrix} 0 & -D & -\frac{\Re_{\hat{+}}}{\sqrt{2}} & -\frac{\Re_{\hat{1}}}{\sqrt{2}} & -\frac{\Re_{\hat{2}}}{\sqrt{2}} & -\frac{\Re_{\hat{-}}}{\sqrt{2}} \\ D & 0 & \frac{P_{\hat{+}}}{\sqrt{2}} & \frac{P_{\hat{1}}}{\sqrt{2}} & \frac{P_{\hat{2}}}{\sqrt{2}} & \frac{P_{\hat{-}}}{\sqrt{2}} \\ \frac{\Re_{\hat{+}}}{\sqrt{2}} & -\frac{P_{\hat{+}}}{\sqrt{2}} & 0 & \mathcal{D}^{\hat{1}} & \mathcal{D}^{\hat{2}} & K^{3} \\ \frac{\Re_{\hat{1}}}{\sqrt{2}} & -\frac{P_{\hat{1}}}{\sqrt{2}} & -\mathcal{D}^{\hat{1}} & 0 & J^{3} & -\mathcal{K}^{\hat{1}} \\ \frac{\Re_{\hat{2}}}{\sqrt{2}} & -\frac{P_{\hat{2}}}{\sqrt{2}} & -\mathcal{D}^{\hat{2}} & -J^{3} & 0 & -\mathcal{K}^{\hat{2}} \\ \frac{\Re_{\hat{-}}}{\sqrt{2}} & -\frac{P_{\hat{-}}}{\sqrt{2}} & -K^{3} & \mathcal{K}^{\hat{1}} & \mathcal{K}^{\hat{2}} & 0 \end{pmatrix}_{(6\times6)}$$

$$(3.4)$$

Then, the simplified conformal algebra in interpolation is:

$$\left[J_{\hat{a}\hat{b}},J_{\hat{c}\hat{d}}\right] = -i\left(g_{\hat{b}\hat{d}}J_{\hat{a}\hat{c}} - g_{\hat{b}\hat{c}}J_{\hat{a}\hat{d}} + g_{\hat{a}\hat{c}}J_{\hat{b}\hat{d}} - g_{\hat{a}\hat{d}}J_{\hat{b}\hat{c}}\right) \tag{3.5}$$

where,

$$g_{\hat{a},\hat{b}} = \begin{pmatrix} 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbb{C} & 0 & 0 & \mathbb{S} \\ 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & \mathbb{S} & 0 & 0 & -\mathbb{C} \end{pmatrix}_{6 \times 6}$$

$$(3.6)$$

Isomorphism with Dirac matrices

Dirac³ has shown the existence of isomorphism between SO(4,2) conformal group and Dirac matrices. Later, Hepner⁴ has explicitly shown the isomorphism between the group of Dirac's four-row γ -matrices and the continuous conformal group in Euclidean space.

We show

$$J'_{a,b} = \begin{pmatrix} 0 & \gamma_5 & \frac{(1-\gamma_5)\gamma_0}{\sqrt{2}} & \frac{(1-\gamma_5)\gamma_1}{\sqrt{2}} & \frac{(1-\gamma_5)\gamma_2}{\sqrt{2}} & \frac{(1-\gamma_5)\gamma_3}{\sqrt{2}} \\ -\gamma_5 & 0 & \frac{(1+\gamma_5)\gamma_0}{\sqrt{2}} & \frac{(1+\gamma_5)\gamma_1}{\sqrt{2}} & \frac{(1+\gamma_5)\gamma_2}{\sqrt{2}} & \frac{(1+\gamma_5)\gamma_3}{\sqrt{2}} \\ \frac{-(1-\gamma_5)\gamma_0}{\sqrt{2}} & -\frac{-(1+\gamma_5)\gamma_0}{\sqrt{2}} & 0 & \gamma_0\gamma_1 & \gamma_0\gamma_2 & \gamma_0\gamma_3 \\ \frac{-(1-\gamma_5)\gamma_1}{\sqrt{2}} & -\frac{-(1+\gamma_5)\gamma_2}{\sqrt{2}} & \gamma_1\gamma_0 & 0 & \gamma_1\gamma_2 & \gamma_1\gamma_3 \\ \frac{-(1-\gamma_5)\gamma_2}{\sqrt{2}} & -\frac{-(1+\gamma_5)\gamma_2}{\sqrt{2}} & \gamma_2\gamma_0 & \gamma_2\gamma_1 & 0 & \gamma_2\gamma_3 \\ \frac{-(1-\gamma_5)\gamma_3}{\sqrt{2}} & -\frac{-(1+\gamma_5)\gamma_3}{\sqrt{2}} & \gamma_3\gamma_0 & \gamma_3\gamma_1 & \gamma_3\gamma_2 & 0 \end{pmatrix}.$$
 (3.7)

This $J'_{a,b}$ obeys the SO(4+1,1) algebra $[J_{ab},J_{cd}]=-i\left(g_{bd}J_{ac}-g_{bc}J_{ad}+g_{ac}J_{bd}-g_{ad}J_{bc}\right)$

³Dirac, P. A. M. Annals Math. 37, 429–442 (1936)

⁴Hepner, W. A. Nuovo Cim. 26, 351–368 (1962).

Isomorphism with Dirac matrices

The representation of the conformal group in terms of 4×4 gamma matrices are the following;

$$P_{\mu} = \frac{i}{2} (1 + \gamma_5) \gamma_{\mu}; \tag{3.8}$$

$$\mathfrak{K}_{\mu} = \frac{-i}{2} (1 - \gamma_5) \gamma_{\mu}; \tag{3.9}$$

$$K^{1} = \frac{i}{2}\gamma_{1}\gamma_{0}; \quad K^{2} = \frac{i}{2}\gamma_{2}\gamma_{0}; \quad K^{3} = \frac{i}{2}\gamma_{3}\gamma_{0};$$
 (3.10)

$$J^{1} = \frac{i}{2}\gamma_{2}\gamma_{3}; \quad J^{2} = \frac{i}{2}\gamma_{3}\gamma_{1}; \quad J^{3} = \frac{i}{2}\gamma_{1}\gamma_{2};$$
 (3.11)

$$D = \frac{-i}{2}\gamma_5. \tag{3.12}$$

We have:

$$J_{\hat{a}\hat{b}} = \begin{pmatrix} 0 & -D & -\frac{\bar{R}_{+}}{\sqrt{2}} & -\frac{\bar{R}_{-}}{\sqrt{2}} \\ D & 0 & \frac{\bar{R}_{+}}{\sqrt{2}} & -\frac{\bar{R}_{+}}{\sqrt{2}} \\ \frac{\bar{R}_{+}}{\sqrt{2}} & -\frac{\bar{P}_{+}}{\sqrt{2}} & 0 & K^{3} \\ \frac{\bar{R}_{+}}{\sqrt{2}} & -\frac{\bar{P}_{+}}{\sqrt{2}} & -K^{3} & 0 \end{pmatrix}_{(4\times4)}$$

$$(4.1)$$

Then, the 1+1 conformal algebra in LFD is given by

$$[J_{\hat{a}\hat{b}}, J_{\hat{c}\hat{d}}] = -i \left(g_{\hat{b}\hat{d}} J_{\hat{a}\hat{c}} - g_{\hat{b}\hat{c}} J_{\hat{a}\hat{d}} + g_{\hat{a}\hat{c}} J_{\hat{b}\hat{d}} - g_{\hat{a}\hat{d}} J_{\hat{b}\hat{c}} \right)$$
(4.2)

where,

$$g_{\hat{a}\hat{b}} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & \mathbb{C} & \mathbb{S} \\ 0 & 0 & \mathbb{S} & -\mathbb{C} \end{pmatrix}_{4\times4}$$
 (4.3)

From (4.2), one can write

$$J_{\hat{a}\hat{b}} = i(x_{\hat{a}}\partial_{\hat{b}} - x_{\hat{b}}\partial_{\hat{a}}) \tag{4.4}$$

where $\hat{a}, \hat{b} \in \{-2, -1, \hat{+}, \hat{-}\}.$

Let's say that $A^{\hat{a}}$ is hyper-4-vector; suppose $A^{\hat{a}}$ and B^a transform under 6d rotation:

$$A'^{\hat{a}} = R^{\hat{a}}_{\hat{b}} A^{\hat{b}}, \quad B'^{\hat{a}} = R^{\hat{a}}_{\hat{b}} B^{\hat{b}}.$$
 (4.5)

Then the inner products $A' \cdot B'$ and $A \cdot B$ can be written as

$$A_{\hat{b}}'B'^{\hat{b}} = (g_{\hat{a}\hat{b}}R^{\hat{a}}_{\hat{c}}R^{\hat{b}}_{\hat{d}})A^{\hat{c}}B^{\hat{d}}, \tag{4.6}$$

$$A_{\hat{b}}B^{\hat{b}} = g_{\hat{c}\hat{d}}A^{\hat{c}}B^{\hat{d}}.\tag{4.7}$$

In order for A'.B' = A.B to hold for any A and B, the coefficients of $A^{\hat{c}}B^{\hat{d}}$ should be the same term by term:

$$g_{\hat{a}\hat{b}}R^{\hat{a}}_{\ \hat{c}}R^{\hat{b}}_{\ \hat{d}} = g_{\hat{c}\hat{d}}.\tag{4.8}$$

Let's start by looking at a hyper-4d rotation transformation, which is (has to be) infinitesimally close to the identity:

$$R^{\hat{a}}_{\ \hat{b}} = g^{\hat{a}}_{\ \hat{b}} + \omega^{\hat{a}}_{\ \hat{b}} \ , \tag{4.9}$$

where $\omega_{\hat{k}}^{\hat{a}}$ is a set of small (real) numbers.

Inserting this into the defining condition, we get

$$g^{\hat{c}\hat{d}} = R^{\hat{c}}_{\hat{b}} R^{\hat{b}\hat{d}} , \qquad (4.10)$$

$$= (g^{\hat{c}}_{\hat{b}} + \omega^{\hat{c}}_{\hat{b}}) (g^{\hat{b}\hat{d}} + \omega^{\hat{b}\hat{d}}) ,$$

$$= g^{\hat{c}\hat{d}} + \omega^{\hat{c}\hat{d}} + \omega^{\hat{d}\hat{c}} + \mathcal{O}(\omega^{2}). \qquad (4.11)$$

Keeping terms to the first order in ω , we then obtain

$$\omega^{\hat{a}\hat{b}} = -\omega^{\hat{b}\hat{a}} \ . \tag{4.12}$$

Thus, it has 6 independent parameters:

$$\omega^{\hat{a}\hat{b}} = \begin{pmatrix} 0 & \omega^{\hat{-}2,\hat{-}1} & \omega^{\hat{-}2,\hat{+}} & \omega^{\hat{-}2,\hat{-}} \\ -\omega^{\hat{-}2,\hat{-}1} & 0 & \omega^{\hat{-}1,\hat{+}} & \omega^{\hat{-}1,\hat{-}} \\ -\omega^{\hat{-}2,\hat{+}} & -\omega^{\hat{-}1,\hat{+}} & 0 & \omega^{\hat{+},\hat{-}} \\ -\omega^{\hat{-}2,\hat{-}} & -\omega^{\hat{1},\hat{-}} & -\omega^{\hat{+},\hat{-}} & 0 \end{pmatrix}_{(4\times4)} . \tag{4.13}$$

This can be conveniently parameterized using 6 anti-symmetric matrices as

$$\omega^{\hat{a}\hat{b}} = -i \sum_{\hat{c} \in \hat{J}} \omega^{\hat{c}\hat{d}} (J_{\hat{c}\hat{d}})^{\hat{a}\hat{b}} , \qquad (4.14)$$

where

$$(J_{\hat{c}\hat{d}})^{\hat{a}\hat{b}} = i(g^{\hat{a}}_{\hat{c}}g^{\hat{b}}_{\hat{d}} - g^{\hat{b}}_{\hat{c}}g^{\hat{a}}_{\hat{d}}). \tag{4.15}$$

then

$$\omega^{\hat{a}\hat{b}} = -i \sum_{\hat{c} < \hat{d}} \omega^{\hat{c}\hat{d}} (J_{\hat{c}\hat{d}})^{\hat{a}\hat{b}} = -i \sum_{\hat{c} > \hat{d}} \omega^{\hat{c}\hat{d}} (J_{\hat{c}\hat{d}})^{\hat{a}\hat{b}} = -\frac{i}{2} \omega^{\hat{c}\hat{d}} (J_{\hat{c}\hat{d}})^{\hat{a}\hat{b}} , \qquad (4.16)$$

where in the last expression, the sum over all values of \hat{c} and \hat{d} is implied. The infinitesimal transformation (hyper-4d rotation) ((??)) can then be written a

$$R^{\hat{a}}_{\ \hat{b}} = g^{\hat{a}}_{\ \hat{b}} - \frac{i}{2} \omega^{\hat{c}\hat{d}} (J_{\hat{c}\hat{d}})^{\hat{a}}_{\ \hat{b}} , \qquad (4.17)$$

The generator representation $(J_{\hat{c}\hat{d}})^{\hat{a}}_{\hat{b}}$ can be obtained by

$$(J_{\hat{c}\hat{d}})^{\hat{a}}_{\hat{b}} = (J_{\hat{c}\hat{d}})^{\hat{a}\hat{f}} g_{\hat{f}\hat{b}} \tag{4.18}$$

The representation matrices of conformal generators are defined by taking the first index to be superscript and the second subscript:

$$\frac{-\mathfrak{K}_{\hat{\mu}}}{\sqrt{2}} \equiv (J_{\hat{-2}\hat{\mu}})^{\hat{a}}_{\hat{b}} \; ; \quad \frac{P_{\hat{\mu}}}{\sqrt{2}} \equiv (J_{\hat{-1}\hat{\mu}})^{\hat{a}}_{\hat{b}} \; ; \quad -D \equiv (J_{\hat{-2}\hat{-1}})^{\hat{a}}_{\hat{b}} \; ; \quad K^{3} \equiv (J_{\hat{+},\hat{-}})^{\hat{a}}_{\hat{b}}. \tag{4.19}$$

where $a, b \in \{-2, -1, \hat{+}, \hat{-}\}$ and $\mu \in \{\hat{+}, \hat{-}\}$. Explicitly,

We define the conformal transformations in interpolation as those transformations preserving the light cone. This is equivalent to preserving angles and also equivalent to preserving ratios of lengths. Let's consider a hyper-4d vector;

$$\tilde{x}_{-1} = \frac{-\lambda}{\sqrt{2}};\tag{4.21}$$

$$\tilde{x}_{\hat{-2}} = \frac{-\lambda}{\sqrt{2}} (x^{\hat{\mu}}.x_{\hat{\mu}});$$
 (4.22)

$$\tilde{x}_{\hat{\mu}} = \lambda x_{\hat{\mu}}; \tag{4.23}$$

Now, let's consider the hyper-4d dot product,

$$g_{\hat{a}\hat{b}}\tilde{x}^{\hat{a}}\tilde{x}^{\hat{b}} = \tilde{x}^{\hat{2}}\tilde{x}_{\hat{2}} + \tilde{x}^{\hat{1}}\tilde{x}_{\hat{1}} + \tilde{x}^{\hat{\mu}}\tilde{x}_{\hat{\mu}}$$

$$(4.24)$$

$$\tilde{x}_{\hat{a}}.\tilde{x}^{\hat{a}} = -2\tilde{x}_{\hat{-2}}\tilde{x}_{\hat{-1}} + \tilde{x}^{\hat{\mu}}\tilde{x}_{\hat{\mu}} \qquad (: \tilde{x}_{\hat{-1}} = -\tilde{x}^{\hat{-2}} \& \tilde{x}_{\hat{-2}} = -\tilde{x}^{\hat{-1}}) \qquad (4.25)$$

$$\tilde{x}_{\hat{a}}.\tilde{x}^{\hat{a}} = -2\frac{-\lambda}{\sqrt{2}}(x^{\hat{\mu}}.x_{\hat{\mu}})\frac{-\lambda}{\sqrt{2}} + \lambda^2 x^{\hat{\mu}}x_{\hat{\mu}} = -\lambda^2 x^{\hat{\mu}}x_{\hat{\mu}} + \lambda^2 x^{\hat{\mu}}x_{\hat{\mu}}$$
(4.26)

$$\tilde{x}_{\hat{a}}.\tilde{x}^{\hat{a}} = 0 \tag{4.27}$$

then,

$$x_{\hat{\mu}} = -\frac{1}{\sqrt{2}} \frac{\tilde{x}_{\hat{\mu}}}{\tilde{x}_{\hat{-1}}}$$

$$(4.28)$$

$$\begin{bmatrix}
\frac{x_{\hat{\mu}}}{x^2} \\
\end{bmatrix} = -\frac{1}{\sqrt{2}} \frac{\tilde{x}_{\hat{\mu}}}{\tilde{x}_{\hat{-}1}} \frac{2\tilde{x}_{\hat{-}1}\tilde{x}_{\hat{-}1}}{\tilde{x}_{\hat{\mu}}\tilde{x}^{\hat{\mu}}} = -\frac{1}{\sqrt{2}} \frac{\tilde{x}_{\hat{\mu}}}{\tilde{x}_{\hat{-}1}} \frac{2\tilde{x}_{\hat{-}1}\tilde{x}_{\hat{-}1}}{2\tilde{x}_{\hat{-}2}\tilde{x}_{\hat{-}1}} = -\frac{1}{\sqrt{2}} \frac{\tilde{x}_{\hat{\mu}}}{\tilde{x}_{\hat{-}2}} \tag{4.29}$$

Also,
$$x^2 = \frac{\tilde{x}_{-2}}{\tilde{x}_{-1}}$$
.

Let's find the space-time transformation under each conformal generators in 1+1.

For $\mathfrak{K}_{\hat{\perp}}$:

$$\begin{pmatrix}
\tilde{x}'_{\hat{-}2} \\
\tilde{x}'_{\hat{-}1} \\
\tilde{x}'_{\hat{+}} \\
\tilde{x}'_{\hat{-}}
\end{pmatrix} = \exp\left(-ib^{\hat{+}}\mathfrak{K}_{\hat{+}}\right) \begin{pmatrix}
\tilde{x}_{\hat{-}2} \\
\tilde{x}_{\hat{-}1} \\
\tilde{x}_{\hat{+}} \\
\tilde{x}_{\hat{-}}
\end{pmatrix}$$
(4.30)

$$\begin{pmatrix}
\tilde{x}'_{\hat{-}2} \\
\tilde{x}'_{\hat{-}1} \\
\tilde{x}'_{\hat{+}} \\
\tilde{x}'_{\hat{-}}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
\mathbb{C}(b^{\hat{+}})^2 & 1 & \sqrt{2}b^{\hat{+}} & 0 \\
\sqrt{2}\mathbb{C}b^{\hat{+}} & 0 & 1 & 0 \\
\sqrt{2}\mathbb{S}b^{\hat{+}} & 0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
\tilde{x}_{\hat{-}2} \\
\tilde{x}_{\hat{-}1} \\
\tilde{x}_{\hat{+}} \\
\tilde{x}_{\hat{-}}
\end{pmatrix}$$
(4.31)

$$\begin{pmatrix}
\tilde{x}'_{\hat{-}2} \\
\tilde{x}'_{\hat{-}1} \\
\tilde{x}'_{\hat{+}} \\
\tilde{x}'_{\hat{-}}
\end{pmatrix} = \begin{pmatrix}
\tilde{x}_{\hat{-}2} \\
\mathbb{C}(b^{\hat{+}})^2 \tilde{x}_{\hat{-}2} + \tilde{x}_{\hat{-}1} + \sqrt{2}b^{\hat{+}} \tilde{x}_{\hat{+}} \\
\sqrt{2}\mathbb{C}b^{\hat{+}} \tilde{x}_{\hat{-}2} + \tilde{x}_{\hat{+}} \\
\sqrt{2}\mathbb{S}b^{\hat{+}} \tilde{x}_{\hat{-}2} + \tilde{x}_{\hat{-}}
\end{pmatrix}$$
(4.32)

On space-time, this transformation gives

$$x'_{\hat{+}} = \frac{-1}{\sqrt{2}} \frac{\tilde{x}'_{\hat{+}}}{\tilde{x}'_{\hat{-}1}} \tag{4.33}$$

$$= \frac{-1}{\sqrt{2}} \frac{\sqrt{2}\mathbb{C}b^{\hat{+}}\tilde{x}_{\hat{-2}} + \tilde{x}_{\hat{+}}}{\mathbb{C}(b^{\hat{+}})^{2}\tilde{x}_{\hat{-2}} + \tilde{x}_{\hat{-1}} + \sqrt{2}b^{\hat{+}}\tilde{x}_{\hat{+}}}$$
(4.34)

$$= \frac{-1}{\sqrt{2}} \frac{\sqrt{2}\mathbb{C}b^{\hat{+}}\frac{\tilde{x}_{-2}}{\tilde{x}_{-1}} + \frac{\tilde{x}_{\hat{+}}}{\tilde{x}_{-1}}}{\mathbb{C}(b^{\hat{+}})^{2}\frac{\tilde{x}_{-2}}{\tilde{x}_{-1}} + 1 + \sqrt{2}b^{\hat{+}}\frac{\tilde{x}_{\hat{+}}}{\tilde{x}_{-1}}}$$
(4.35)

$$= -\frac{1}{\sqrt{2}} \frac{\sqrt{2}\mathbb{C}b^{\hat{+}}x^2 + \left(-\sqrt{2}x_{\hat{+}}\right)}{\mathbb{C}(b^{\hat{+}})^2x^2 + 1 + \sqrt{2}b^{\hat{+}}\left(-\sqrt{2}x_{\hat{+}}\right)}$$
(4.36)

$$x'_{\hat{+}} = \frac{x_{\hat{+}} - \mathbb{C}b^{\hat{+}}x^2}{1 - 2b^{\hat{+}}x_{\hat{+}} + \mathbb{C}(b^{\hat{+}})^2x^2}$$
(4.37)

Transformation of $x_{\hat{+}}$ under conformal transformation

In the interpolation form:

Generators	$x'_{\hat{+}}$	x'			
$\mathfrak{K}_{\hat{+}}$	$x'_{\hat{+}} = \frac{x_{\hat{+}} - \mathbb{C}b^{\hat{+}}x^2}{1 - 2b^{\hat{+}}x_{\hat{+}} + \mathbb{C}(b^{\hat{+}})^2x^2}$	$x'_{\hat{-}} = \frac{x_{\hat{-}} - \mathbb{S}b^{\hat{+}}x^2}{1 - 2b^{\hat{+}}x_{\hat{+}} + \mathbb{C}(b^{\hat{+}})^2x^2}$			
£_	$x'_{\hat{+}} = \frac{x_{\hat{+}} - \mathbb{S}b^{\hat{-}}x^2}{1 - 2b^{\hat{-}}x_{\hat{-}} - \mathbb{C}(b^{\hat{-}})^2x^2}$	$x'_{\hat{-}} = \frac{x_{\hat{-}} + \mathbb{C}b^{\hat{-}}x^2}{1 - 2b^{\hat{-}}x_{\hat{-}} - \mathbb{C}(b^{\hat{-}})^2x^2}$			
$P_{\hat{+}}$	$x'_{\hat{+}} = x_{\hat{+}} + \mathbb{C}a^{\hat{+}}$	$x'_{\hat{-}} = x_{\hat{-}} + \mathbb{S}a^{\hat{+}}$			
$P_{\hat{-}}$	$x'_{\hat{+}} = x_{\hat{+}} + \mathbb{S}a^{\hat{-}}$	$x'_{\hat{-}} = x_{\hat{-}} - \mathbb{C}a^{\hat{-}}$			
D	$x'_{\hat{+}} = e^{-lpha} x_{\hat{+}}$	$x_{\hat{-}}'=e^{-lpha}x_{\hat{-}}$			
K^3	$x'_{\hat{+}} = (\cosh \eta_3 - \mathbb{S} \sinh \eta_3) x_{\hat{+}} + (\mathbb{C} \sinh \eta_3) x_{\hat{-}}$	$x'_{\hat{-}} = (\mathbb{C}\sinh\eta_3)x_{\hat{+}} + (\cosh\eta_3 + \mathbb{S}\sinh\eta_3)x_{\hat{-}}$			

where, $x_{\hat{+}} = x_0 \cos \delta + x_3 \sin \delta$, and $x_{\hat{-}} = x_0 \sin \delta - x_3 \cos \delta$

Transformation of x_0 and x_3 under conformal transformation

In the instant form limit: $\delta \longrightarrow 0$, $\mathbb{S} \longrightarrow 0$, and $\mathbb{C} \longrightarrow 1$.

Generators	x'_0	x_3'		
\mathfrak{K}_0	$x_0' = \frac{x_0 - b_0 x^2}{1 - 2b_0 x_0 + (b_0)^2 x^2}$	$x_3' = \frac{x_3}{1 - 2b_0x_0 + (b_0)^2x^2}$		
$-\mathfrak{K}_3$	$x'_0 = \frac{x_0}{1 - 2b_3x_{\hat{-}} - (b_3)^2 x^2}$	$x_3' = \frac{x_3 + b_3 x^2}{1 - 2b_3 x_3 - (b_3)^2 x^2}$		
P_0	$x_0' = x_0 + a_0$	$x_3' = x_3$		
$-P_3$	$x_0' = x_0$	$x_3' = x_3 - a_3$		
D	$x_0' = e^{-\alpha} x_0$	$x_3' = e^{-\alpha} x_3$		
K^3	$x_0' = (\cosh \eta_3)x_0 - (\sinh \eta_3)x_3$	$x_3' = -(\sinh \eta_3)x_0 + (\cosh \eta_3)x_3$		

Transformation of x_{+} under conformal transformation

In the light front limit: $\delta \longrightarrow \frac{\pi}{4}$, $\mathbb{C} \longrightarrow 0$, and $\mathbb{S} \longrightarrow 1$.

Generators	x'_+	x'_
\mathfrak{K}_+	$x'_{+} = \frac{x_{+}}{1 - 2b^{+}x_{+}}$	$\boxed{x' = x}$
\mathfrak{K}_{-}	$x'_{+} = x_{+}$	$x'_{-} = \frac{x_{-}}{1 - 2b^{-}x_{-}}$
P_{+}	$x'_{+} = x_{+}$	$x'_{-} = x_{-} + a^{+}$
P_	$x'_{+} = x_{+} + a^{-}$	$x'_{-} = x_{-}$
D	$x'_{+} = e^{-\alpha}x_{+}$	$x'_{-} = e^{-\alpha}x_{-}$
K^3	$x'_{+} = (\cosh \eta_3 - \sinh \eta_3)x_{+}$	$x'_{-} = (\cosh \eta_3 + \sinh \eta_3)x_{-}$

where,
$$x_{+} = \frac{x_{0} + x_{3}}{\sqrt{2}}$$
, and $x_{-} = \frac{x_{0} - x_{3}}{\sqrt{2}}$

Let's introduce the interpolating $D_{\hat{+}}$ and $D_{\hat{-}}$ as:

$$\begin{bmatrix} D_{\hat{+}} \\ D_{\hat{-}} \end{bmatrix} = \begin{bmatrix} \cos \delta & \sin \delta \\ \sin \delta & -\cos \delta \end{bmatrix} \begin{bmatrix} D \\ K^3 \end{bmatrix}$$
 (5.1)

therefore,

$$D_{\hat{+}} = \cos \delta D + \sin \delta K^3, \tag{5.2}$$

$$D_{\hat{-}} = \sin \delta D - \cos \delta K^3. \tag{5.3}$$

We can also write

$$\begin{bmatrix} D \\ K^3 \end{bmatrix} = \begin{bmatrix} \cos \delta & \sin \delta \\ \sin \delta & -\cos \delta \end{bmatrix} \begin{bmatrix} D_{\hat{+}} \\ D_{\hat{-}} \end{bmatrix}$$
 (5.4)

therefore,

$$D = \cos \delta D_{\hat{\perp}} + \sin \delta D_{\hat{-}},\tag{5.5}$$

$$K^3 = \sin \delta D_{\hat{\perp}} - \cos \delta D_{\hat{-}}. \tag{5.6}$$

The commutation relations among all interpolating conformal generators in two dimensional are given below:

Table 1: 1 + 1 conformal algebra in the interpolation form.

	$P_{\dot{+}}$	A_	D:_	P_	я́	D_{\downarrow}
P_{\downarrow}	0	$2i((\mathbb{S}\cos\delta - \sin\delta)D_{+} + (\mathbb{S}\sin\delta + \cos\delta)D_{-})$	$i\left((\sin\delta + \mathbb{S}\cos\delta)P_{+} - \mathbb{C}\cos\delta P_{-}\right)$	0	$2i\mathbb{C}(\cos\delta D_{\perp} + \sin\delta D_{\perp})$	$i\left((\cos\delta - S\sin\delta)P_{+} + C\sin\delta P_{-}\right)$
A:	$-2i((\mathbb{S}\cos\delta - \sin\delta)D_{+} + (\mathbb{S}\sin\delta + \cos\delta)D_{-})$	0	$-i\left((\sin\delta + S\cos\delta)R_{-} + C\cos\delta R_{+}\right)$	$2i\mathbb{C}(\cos \delta D_{+} + \sin \delta D_{-})$	0	$-i\left((\cos\delta - \mathbb{S}\sin\delta)\mathfrak{K}_{\perp} - \mathbb{C}\sin\delta\mathfrak{K}_{\perp}\right)$
D_{-}	$-i\left((\sin \delta + \mathbb{S}\cos \delta)P_{+} - \mathbb{C}\cos \delta P_{-}\right)$	$i\left((\sin \delta + \mathbb{S}\cos \delta)\mathfrak{K}_{-} + \mathbb{C}\cos \delta\mathfrak{K}_{+}\right)$	0	$-i\left((\sin \delta - \mathbb{S}\cos \delta)P_{-} - \mathbb{C}\cos \delta P_{+}\right)$	$i\left((\sin \delta - \mathbb{S}\cos \delta)\mathfrak{K}_{\perp} + \mathbb{C}\cos \delta\mathfrak{K}_{\perp}\right)$	0
P_{-}	0	$-2i\mathbb{C}(\cos \delta D_{+} + \sin \delta D_{-})$	$i\left((\sin \delta - \mathbb{S}\cos \delta)P_{-} - \mathbb{C}\cos \delta P_{+}\right)$	0	$2i((\mathbb{S}\cos\delta+\sin\delta)D_{+}+(\mathbb{S}\sin\delta-\cos\delta)D_{-})$	$i\left((\cos \delta + \mathbb{S} \sin \delta)P_{-} + \mathbb{C} \sin \delta P_{+}\right)$
яĻ	$-2i\mathbb{C}(\cos \delta D_{\perp} + \sin \delta D_{\perp})$	0	$-i\left((\sin \delta - S\cos \delta)R_{\perp} + C\cos \delta R_{\perp}\right)$	$-2i((\mathbb{S}\cos\delta + \sin\delta)D_{\perp} + (\mathbb{S}\sin\delta - \cos\delta)D_{-})$	0	$-i\left((\cos\delta + \mathbb{S}\sin\delta)\mathfrak{K}_{\perp} - \mathbb{C}\sin\delta\mathfrak{K}_{\perp}\right)$
$D_{\hat{+}}$	$-i\left((\cos \delta - S \sin \delta)P_{\perp} + C \sin \delta P_{\perp}\right)$	$i\left((\cos \delta - S \sin \delta)R_{-} - C \sin \delta R_{+}\right)$	0	$-i\left((\cos \delta + S \sin \delta)P_{-} + C \sin \delta P_{+}\right)$	$i\left((\cos \delta + S \sin \delta)R_{\perp} - C \sin \delta R_{\perp}\right)$	0

In the limit $\delta \longrightarrow 0$, we recover the commutation relations among all instant form conformal generators in two dimensional as given below:

Table 2: 1 + 1 conformal algebra in IFD

	P_0	$-\mathfrak{K}_3$	$-K^3$	$-P_3$	\mathfrak{K}_0	D
P_0	0	$-2iK^3$	iP_3	0	2iD	iP_0
$-\mathfrak{K}_3$	$2iK^3$	0	$-i\mathfrak{K}_0$	2iD	0	$i\mathfrak{K}_3$
$-K^3$	$-iP_3$	$i\mathfrak{K}_0$	0	iP_0	$-i\mathfrak{K}_3$	0
$-P_3$	0	-2iD	$-iP_0$	0	$2iK^3$	$-iP_3$
\mathfrak{K}_0	-2iD	0	$i\mathfrak{K}_3$	$-2iK^3$	0	$-i\mathfrak{K}_0$
D	$-iP_0$	$-i\mathfrak{K}_3$	0	iP_3	$i\mathfrak{K}_0$	0

In the limit $\delta \longrightarrow \frac{\pi}{4}$, we recover the commutation relations among all light-front conformal generators in two dimensional as given below:

Table 3: 1 + 1 conformal algebra in LFD

	P_{+}	R_	D_{-}	P_	\mathfrak{K}_+	D_{+}
P_{+}	0	$2\sqrt{2}iD_{-}$	$\sqrt{2}iP_{+}$	0	0	0
R_	$-2\sqrt{2}iD_{-}$	0	$-\sqrt{2}i\mathfrak{K}_{-}$	0	0	0
D_{-}	$-\sqrt{2}iP_{+}$	$\sqrt{2}i\mathfrak{K}_{-}$	0	0	0	0
P_	0	0	0	0	$2\sqrt{2}iD_{+}$	$\sqrt{2}iP_{-}$
\mathfrak{K}_+	0	0	0	$-2\sqrt{2}iD_{+}$	0	$-\sqrt{2}i\mathfrak{K}_{+}$
D_{+}	0	0	0	$-\sqrt{2}iP_{-}$	$\sqrt{2}i\mathfrak{K}_{+}$	0

where,
$$D_{\pm} = \frac{D \pm K^3}{\sqrt{2}}$$
, $\mathfrak{K}_{\pm} = \frac{\mathfrak{K}_0 \pm \mathfrak{K}_3}{\sqrt{2}}$, and $P_{\pm} = \frac{P_0 \pm P_3}{\sqrt{2}}$.

We find⁵ that SO(2,2) splits into a direct sum of two identical algebras:

$$SO(2,2) \simeq SO(1,2) \oplus SO(1,2)$$
 (5.7)

Lets make two new 3×3 anti symmetric tensors, namely J_{ab}^+ and J_{ab}^- . Where, $a, b \in \{0, 1, 2\}$.

$$J_{ab}^{+} = \frac{1}{2} \begin{pmatrix} 0 & P_{+} & D - K^{3} \\ -P_{+} & 0 & \tilde{\Re}_{-} \\ -D + K^{3} & -\tilde{\Re}_{-} & 0 \end{pmatrix}_{3\times3} ; \quad J_{ab}^{-} = \frac{1}{2} \begin{pmatrix} 0 & P_{-} & D + K^{3} \\ -P_{-} & 0 & \tilde{\Re}_{+} \\ -D - K^{3} & -\tilde{\Re}_{+} & 0 \end{pmatrix}_{3\times3}$$
 (5.8)

and with the new metric g_{ab} ,

$$g_{ab} = \frac{1}{2} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}_{3 \times 3}$$
 (5.9)

they fulfill the SO(1,2) commutation relations;

$$[J_{ab}^{\pm}, J_{cd}^{\pm}] = -i \left(g_{bd} J_{ac}^{\pm} - g_{bc} J_{ad}^{\pm} + g_{ac} J_{bd}^{\pm} - g_{ad} J_{bc}^{\pm} \right); \qquad [J_{ab}^{+}, J_{cd}^{-}] = 0$$

These are perfectly consistent with the above table in the LFD limit.

⁵Daniel Meise's Relations between 2D and 4D Conformal Quantum Field Theory

Also, we have:

$$J_{a,b} = \begin{pmatrix} 0 & -D & -\frac{\Re_{+}}{\sqrt{2}} & -\frac{\Re_{-}}{\sqrt{2}} \\ D & 0 & \frac{P_{+}}{\sqrt{2}} & \frac{P_{-}}{\sqrt{2}} \\ \frac{\Re_{+}}{\sqrt{2}} & -\frac{P_{+}}{\sqrt{2}} & 0 & K^{3} \\ \frac{\Re_{-}}{\sqrt{2}} & -\frac{P_{-}}{\sqrt{2}} & -K^{3} & 0 \end{pmatrix}_{(4\times4)}$$
(5.10)

Then, the simplified conformal algebra in LFD is:

$$[J_{ab}, J_{cd}] = -i \left(g_{bd} J_{ac} - g_{bc} J_{ad} + g_{ac} J_{bd} - g_{ad} J_{bc} \right) \tag{5.11}$$

where,

$$g_{a,b} = \begin{pmatrix} 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}_{4 \times 4}$$
 (5.12)

Current Progress

- Finding and verifying the basis for 4×4 projective-space-time representations and 4×4 gamma matrices (projective-space-time spinors) representations.
- \bullet Finding this new 3×3 projective-space-time representations.
- Understanding the split in conformal algebra in LFD: $SO(2,2) \simeq SO(1,2) \oplus SO(1,2)$
- Connecting our calculations to some suitable physical process to extract the physics of the conformal group.