Hourly Energy Consumption in The U.S.

By: Daniel Cwynar, Peter Stoermer, Sarahana Shrestha and Brian Buckley

Which Dataset Did We Choose?

- https://www.kaggle.com/datasets/robikscube/hourly-energy-con sumption?select=pjm hourly est.csv
- The attributes are energy companies around the U.S. and how much they consume hourly

df =	pd.read_csv("pjm_h	ourly_est	t.csv")										
df													
✓ 0.3s													
	Datetime	AEP	COMED	DAYTON	DEOK	DOM	DUQ	EKPC	FE	NI	PJME	PJMW	PJM_Load
0	1998-12-31 01:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	29309.0
1	1998-12-31 02:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	28236.0
2	1998-12-31 03:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	27692.0
3	1998-12-31 04:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	27596.0
4	1998-12-31 05:00:00	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	27888.0

178257	2018-01-01 20:00:00	21089.0	13858.0	2732.0	4426.0	18418.0	1962.0	2866.0	9378.0	NaN	44284.0	8401.0	NaN
178258	2018-01-01 21:00:00	20999.0	13758.0	2724.0	4419.0	18567.0	1940.0	2846.0	9255.0	NaN	43751.0	8373.0	NaN
178259	2018-01-01 22:00:00	20820.0	13627.0	2664.0	4355.0	18307.0	1891.0	2883.0	9044.0	NaN	42402.0	8238.0	NaN
178260	2018-01-01 23:00:00	20415.0	13336.0	2614.0	4224.0	17814.0	1820.0	2880.0	8676.0	NaN	40164.0	7958.0	NaN
178261	2018-01-02 00:00:00	19993.0	12816.0	2552.0	4100.0	17428.0	1721.0	2846.0	8393.0	NaN	38608.0	7691.0	NaN
178262 ro	ws × 13 columns												

Preprocessing:

df3 is for the second cluster

df3 = df3.reset index(drop = True)

df3 = df.copv()

df3

includes companies aep dayton pjmw dug ekpc

& (df["DUQ"].isnull() == False) & (df["EKPC"].isnull() == False)]

else:

df2

df2["Season"][i] = "Fall"

```
df = pd.read csv("pjm hourly est.csv")
 df["Datetime"] = pd.to_datetime(df["Datetime"], format = "%Y-%m-%d %H:%M:%S")
                                                                     df2 = pd.get dummies(df2, columns = ["Season"], prefix = "", prefix sep= "")
df2["Season"] = 0
                                                                     df2
for i in range(0,len(df2)):
   if df2["Datetime"][i].month == 12 or df2["Datetime"][i].month == 1 or df2["Datetime"][i].month == 2:
      df2["Season"][i] = "Winter"
   elif df2["Datetime"][i].month == 3 or df2["Datetime"][i].month == 4 or df2["Datetime"][i].month == 5:
      df2["Season"][i] = "Spring"
   elif df2["Datetime"][i].month == 6 or df2["Datetime"][i].month == 7 or df2["Datetime"][i].month == 8:
      df2["Season"][i] = "Summer"
```

df3 = df3[["Datetime","AEP","DAYTON","PJMN", "DUQ", "EKPC"]][(df3["AEP"].isnull() == False) & (df["DAYTON"].isnull() == False) &

Cluster #1

kmeans = KMeans(n_clusters = 4, init = "k-means++", max_iter = 300, n_init = 50, random_state =100)
n_init is number of times the algorithm will run with centroid different seeds
random state is random number for making centroid

- Separated data to have three main companies to remove most null values, chose (DEOK, DOM, DUQ) years from 2012-2018
- Standardized data (0-1), Used K-means
- Used elbow method to find best number of clusters in df
- Number of clusters: 4, n_init and random_state optimal

How to Get Meaning From Cluster #1

A possibility is that it represents seasons

	Fall	Spring	Summer	Winter
cluster				
0	0.326964	0.396249	0.159165	0.117622
1	0.120504	0.155909	0.317660	0.405927
2	0.081975	0.058093	0.671131	0.188801
3	0.270028	0.313510	0.165482	0.250980

- Separated data to have five main companies, chose (AEP, DAYTON, PJMW, DUQ, EKPC) years from 2013-2018
- Standardized data (0-1), used K-means
- Used elbow method to find best number of clusters in df

Number of clusters: 2

How to Get Meaning From Cluster #2

 It can represent night and day or working hours vs non working hours

Day is considered from 7am to 6pm and night from 7pm to 7am

Day	Night
0.433263	0.566737
0.613022	0.386978
	0.433263

Cluster #3

```
br = Birch(threshold = 0.1, branching_factor = 50, n_clusters= 3)
#threshold: radius of the subcluster
#branching_factor is the maximum # of subclusters in each node
```

- Chose three companies from around the U.S. (COMED, FE, DOM) years from 2013-2018 (Illinois, Pennsylvania/others, Virginia), respectively
- Standardized data (0-1), Used PCA, and BIRCH clustering

Number of clusters: 3

How to Get Meaning From Cluster #3

 Could the algorithm have influences from the companies and their locations?

- Most likely not
- The computer is not biased, based on where the company is located