Random Projections for Classification: A Recovery Approach

Mehrdad Mahdavi

Toyota Technological Institute at University of Chicago May 2015

Randomized Algorithms in Large-Scale Learning

Large-Scale Learning

- Two main issues in modern data: size and dimensionality.
- Large data sizes can cause access and storage problem: parallelization (divide and conquer) or stochastic methods
- High-dimensional data suffer from statistical issues: make structural assumptions about the data such as *sparsity* or *low-rank*

Randomized Methods

Motivation: Use some kind of randomization (sampling) to reduce the cost of computation

Randomized Methods

Motivation: Use some kind of randomization (sampling) to reduce the cost of computation

Algorithms:

- Stochastic optimization for large-scale learning
- Randomized low-rank approximations for kernelized learning
- Random projections for high-dimensional learning
- Sketching for numerical linear algebra and matrix computation

■ An effective optimization method for learning from large data sizes

- An effective optimization method for learning from large data sizes
- Surrogate convex loss functions of non-convex 0-1 loss:

Examples:

- √ Hinge loss (Support Vector Machine (SVM)):
 - / Logistic loss (Logistic Regression):
 - Exponential loss (Boosting):

- $\ell(\mathbf{w}; (\mathbf{x}, y)) = \max(0, 1 y\langle \mathbf{w}, \mathbf{x} \rangle).$
- $\ell(\mathbf{w}; (\mathbf{x}, y)) = \log(1 + \exp(-y\langle \mathbf{w}, \mathbf{x} \rangle))$
- $\ell(\mathbf{w}; (\mathbf{x}, y)) = \exp(-y\langle \mathbf{w}, \mathbf{x} \rangle).$

- An effective optimization method for learning from large data sizes
- Surrogate convex loss functions of non-convex 0-1 loss:

Examples:

- √ Hinge loss (Support Vector Machine (SVM)):
 - / Logistic loss (Logistic Regression):
- √ Exponential loss (Boosting):

- $\ell(\mathbf{w}; (\mathbf{x}, y)) = \max(0, 1 y\langle \mathbf{w}, \mathbf{x} \rangle).$
- $\ell(\mathbf{w}; (\mathbf{x}, y)) = \log(1 + \exp(-y\langle \mathbf{w}, \mathbf{x} \rangle))$
- $\ell(\mathbf{w}; (\mathbf{x}, y)) = \exp(-y\langle \mathbf{w}, \mathbf{x} \rangle).$
- **■** Convex learning problems:

$$\min_{\mathbf{w} \in \mathcal{W}} \left[L_{\mathcal{S}}(\mathbf{w}) := \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{w}; (\mathbf{x}_i, y_i)) + \lambda \|\mathbf{w}\| \right]$$

Empirical risk minimization as a convex optimization problem:

$$\mathbf{w}_{t+1} = \Pi_{\mathcal{W}} \left(\mathbf{w}_t - \eta \mathbf{g}_t \right)$$

Empirical risk minimization as a convex optimization problem:

$$\mathbf{w}_{t+1} = \Pi_{\mathcal{W}} \left(\mathbf{w}_t - \eta \mathbf{g}_t \right)$$

Two regimes:

• GD: all samples per Iteration

[deterministic]

$$\mathbf{g}_t = \nabla L_{\mathcal{S}}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \nabla \ell(\mathbf{w}; (\mathbf{x}_i, y_i)) \mathbf{x}_i.$$

Empirical risk minimization as a convex optimization problem:

$$\mathbf{w}_{t+1} = \Pi_{\mathcal{W}} \left(\mathbf{w}_t - \eta \mathbf{g}_t \right)$$

Two regimes:

• GD: all samples per Iteration

[deterministic]

$$\mathbf{g}_t = \nabla L_{\mathcal{S}}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \nabla \ell(\mathbf{w}; (\mathbf{x}_i, y_i)) \mathbf{x}_i.$$

2 SGD: one sample per Iteration

[stochastic]

$$\mathbf{g}_t = \nabla \ell(\mathbf{w}; (\mathbf{x}_{i_t}, y_{i_t})) \mathbf{x}_{i_t}$$

where is random sample $(\mathbf{x}_{i_*}, y_{i_*})$ uniformly sampled from [n]

Empirical risk minimization as a convex optimization problem:

$$\mathbf{w}_{t+1} = \Pi_{\mathcal{W}} \left(\mathbf{w}_t - \eta \mathbf{g}_t \right)$$

Two regimes:

• GD: all samples per Iteration

[deterministic]

$$\mathbf{g}_t = \nabla L_{\mathcal{S}}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \nabla \ell(\mathbf{w}; (\mathbf{x}_i, y_i)) \mathbf{x}_i.$$

2 SGD: one sample per Iteration

[stochastic]

$$\mathbf{g}_t = \nabla \ell(\mathbf{w}; (\mathbf{x}_{i_t}, y_{i_t})) \mathbf{x}_{i_t}$$

where is random sample $(\mathbf{x}_{i_t}, y_{i_t})$ uniformly sampled from [n]

 \checkmark SGD: efficient for large-scale learning (independent of number of training examples n)

■ Low-rank approximation of symmetric positive semi-definite matrices such as Laplacian and kernel matrices

■ Low-rank approximation of symmetric positive semi-definite matrices such as Laplacian and kernel matrices

$$\sqrt{\text{ Let }\mathbf{K} \in \mathbb{R}^{n \times n}}$$
 be kernel matrix of n training samples $\mathcal{S} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}, \mathbf{x}_i \in \mathbb{R}^d$, with $\mathbf{K}_{i,j} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$

■ Low-rank approximation of symmetric positive semi-definite matrices such as Laplacian and kernel matrices

- $\sqrt{\text{Let } \mathbf{K} \in \mathbb{R}^{n \times n}}$ be kernel matrix of n training samples $\mathcal{S} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}, \mathbf{x}_i \in \mathbb{R}^d$, with $\mathbf{K}_{i,j} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$
- $\sqrt{\text{Randomly sample } m \ll n}$ training examples out of n samples

■ Low-rank approximation of symmetric positive semi-definite matrices such as Laplacian and kernel matrices

- $\sqrt{\text{Let } \mathbf{K} \in \mathbb{R}^{n \times n}}$ be kernel matrix of n training samples $\mathcal{S} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}, \mathbf{x}_i \in \mathbb{R}^d$, with $\mathbf{K}_{i,j} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$
- $\sqrt{\text{Randomly sample } m \ll n}$ training examples out of n samples

 $\sqrt{}$ Approximate the kernel matrix by $\widehat{\mathbf{K}} = \mathbf{C}\mathbf{W}^{\dagger}\mathbf{C}^{\top}$

Nyström Approximation

■ Matrix inversion lemma (Woodbury):

$$(\lambda \mathbf{I} + \mathbf{K})^{-1}$$

$$\approx (\lambda \mathbf{I} + \hat{\mathbf{K}})^{-1}$$

$$= (\lambda \mathbf{I} + \mathbf{C} \mathbf{W}^{\dagger} \mathbf{C}^{\top})^{-1}$$

$$= \frac{1}{\lambda} \left(\mathbf{I} - \mathbf{C} \underbrace{(\lambda \mathbf{I} + \mathbf{W}^{\dagger} \mathbf{C}^{\top} \mathbf{C})^{-1}}_{m \times m} \mathbf{W}^{\dagger} \mathbf{C}^{\top} \right)$$

Nyström Approximation

■ Matrix inversion lemma (Woodbury):

$$(\lambda \mathbf{I} + \mathbf{K})^{-1}$$

$$\approx (\lambda \mathbf{I} + \hat{\mathbf{K}})^{-1}$$

$$= (\lambda \mathbf{I} + \mathbf{C} \mathbf{W}^{\dagger} \mathbf{C}^{\top})^{-1}$$

$$= \frac{1}{\lambda} \left(\mathbf{I} - \mathbf{C} \underbrace{(\lambda \mathbf{I} + \mathbf{W}^{\dagger} \mathbf{C}^{\top} \mathbf{C})^{-1}}_{m \times m} \mathbf{W}^{\dagger} \mathbf{C}^{\top} \right)$$

- Only requires inversion of a $m \times m$ matrix: $(\lambda \mathbf{I} + \mathbf{W}^{\dagger} \mathbf{C}^{\top} \mathbf{C})^{-1}$
- $✓ O(n^3)$ versus $O(nmk) + O(m^3)$: efficient large-scale learning!
- ✓ SVMs, kernel ridge regression, KPCA, spectral clustering, and etc

Random Projections

■ An effective dimensionality reduction method

Random Projections

■ An effective dimensionality reduction method

■ Classification, clustering, range query (e.g., hashing)

■ Generate a sketch of data points with applications in regression, graph sparsification, numerical linear algebra

- Generate a sketch of data points with applications in regression, graph sparsification, numerical linear algebra
- Regression: often too slow to be of practical value

$$\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$

- Generate a sketch of data points with applications in regression, graph sparsification, numerical linear algebra
- Regression: often too slow to be of practical value

$$\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$

■ A sketching technique

- Generate a sketch of data points with applications in regression, graph sparsification, numerical linear algebra
- Regression: often too slow to be of practical value

$$\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$

- A sketching technique
 - $\sqrt{\text{Sample a random matrix } \mathbf{R}} \in \mathbb{R}^{r \times n}$

- Generate a sketch of data points with applications in regression, graph sparsification, numerical linear algebra
- Regression: often too slow to be of practical value

$$\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$

- A sketching technique
 - $\sqrt{}$ Sample a random matrix $\mathbf{R} \in \mathbb{R}^{r \times n}$
 - $\sqrt{}$ Compute a sketch of the data matrix \mathbf{X}

- Generate a sketch of data points with applications in regression, graph sparsification, numerical linear algebra
- Regression: often too slow to be of practical value

$$\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2$$

- A sketching technique
 - $\sqrt{\text{Sample a random matrix } \mathbf{R}} \in \mathbb{R}^{r \times n}$
 - $\sqrt{}$ Compute a sketch of the data matrix \mathbf{X}

√ Solve the sketched problem:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{R}\mathbf{X}\mathbf{w} - \mathbf{R}\mathbf{y}\|_2^2$$

Random Projections for High-dimensional Classification

 $lackbox{lnput: a set of training samples from } \mathcal{X} \subseteq \mathbb{R}^d \times \{-1, +1\}$

$$\mathcal{S} = ((\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n))$$

• Input: a set of training samples from $\mathcal{X} \subseteq \mathbb{R}^d \times \{-1, +1\}$

$$\mathcal{S} = ((\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n))$$

● A loss function: a differentiable convex loss function with Lipschitz gradient, e.g.,

$$\ell(z) = \ln\left(\log(1 + \exp(-z))\right)$$

lacktriangle Input: a set of training samples from $\mathcal{X} \subseteq \mathbb{R}^d \times \{-1, +1\}$

$$\mathcal{S} = ((\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n))$$

● A loss function: a differentiable convex loss function with Lipschitz gradient, e.g.,

$$\ell(z) = \ln\left(\log(1 + \exp(-z))\right)$$

lacktriangle The goal: learn a classifier $f: \mathbb{R}^d \to \{\pm 1\}$ from training set \mathcal{S} .

 $lackbox{lnput: a set of training samples from } \mathcal{X} \subseteq \mathbb{R}^d \times \{-1, +1\}$

$$\mathcal{S} = ((\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n))$$

● A loss function: a differentiable convex loss function with Lipschitz gradient, e.g.,

$$\ell(z) = \ln\left(\log(1 + \exp(-z))\right)$$

lacktriangle The goal: learn a classifier $f:\mathbb{R}^d o \{\pm 1\}$ from training set \mathcal{S} .

Method: Regularized ERM

• Solve the high-dimensional problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^n \ell(y_i \mathbf{x}_i^\top \mathbf{w}), \quad (\mathsf{P1})$$

Classify using the function

$$f(\mathbf{x}) = \operatorname{sign}\left(\mathbf{x}^{\top}\mathbf{w}_{*}\right)$$

where \mathbf{w}_* is the optimal solution of (P1).

Random Projection

A dimensionality reduction method

$$\mathbf{x} \in \mathbb{R}^d \to \frac{1}{\sqrt{m}} \mathbf{R}^\top \mathbf{x} \in \mathbb{R}^m$$

where $\mathbf{R} \in \mathbb{R}^{d \times m}$ is a (Gaussian) random matrix, i.e., $\mathbf{R}_{i,j} \sim \mathcal{N}(0,1)$.

Random Projection

A dimensionality reduction method

$$\mathbf{x} \in \mathbb{R}^d \to \frac{1}{\sqrt{m}} \mathbf{R}^\top \mathbf{x} \in \mathbb{R}^m$$

where $\mathbf{R} \in \mathbb{R}^{d \times m}$ is a (Gaussian) random matrix, i.e., $\mathbf{R}_{i,j} \sim \mathcal{N}(0,1)$.

■ Simple yet powerful (satisfying JL lemma)

Theorem 1 (Johnson and Lindenstrauss)

Given $\epsilon > 0$ and an integer n, let $m = \Omega(\epsilon^{-2} \log n)$. For every set $\mathcal{S} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ of n points in \mathbb{R}^d , \exists a mapping $\mathfrak{M} : \mathbb{R}^d \to \mathbb{R}^m$ such that for all $\mathbf{x}_i, \mathbf{x}_j \in \mathcal{S}$

$$(1 - \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|^2 \le \|\mathfrak{M}(\mathbf{x}_i) - \mathfrak{M}(\mathbf{x}_j)\|^2 \le (1 + \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|^2.$$

Random Projection

A dimensionality reduction method

$$\mathbf{x} \in \mathbb{R}^d \to \frac{1}{\sqrt{m}} \mathbf{R}^\top \mathbf{x} \in \mathbb{R}^m$$

where $\mathbf{R} \in \mathbb{R}^{d \times m}$ is a (Gaussian) random matrix, i.e., $\mathbf{R}_{i,j} \sim \mathcal{N}(0,1)$.

■ Simple yet powerful (satisfying JL lemma)

Theorem 1 (Johnson and Lindenstrauss)

Given $\epsilon > 0$ and an integer n, let $m = \Omega(\epsilon^{-2} \log n)$. For every set $\mathcal{S} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$ of n points in \mathbb{R}^d , \exists a mapping $\mathfrak{M} : \mathbb{R}^d \to \mathbb{R}^m$ such that for all $\mathbf{x}_i, \mathbf{x}_i \in \mathcal{S}$

$$(1 - \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|^2 \le \|\mathfrak{M}(\mathbf{x}_i) - \mathfrak{M}(\mathbf{x}_j)\|^2 \le (1 + \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|^2.$$

- \checkmark The gist of proof: the squared length of a vector is sharply concentrated around its mean when projected onto a random m-dimensional subspace
- ✓ Classification, clustering, regression, manifold learning, hashing

Random Projection for Classification

RP for ERM

• Apply random projection to reduce the dimensionality

$$\widehat{\mathbf{x}}_i = \frac{1}{\sqrt{m}} \mathbf{R}^{\top} \mathbf{x}_i$$

Random Projection for Classification

RP for ERM

Apply random projection to reduce the dimensionality

$$\widehat{\mathbf{x}}_i = \frac{1}{\sqrt{m}} \mathbf{R}^\top \mathbf{x}_i$$

2 Solve the low-dimensional problem

$$\min_{\mathbf{z} \in \mathbb{R}^m} \frac{\lambda}{2} \|\mathbf{z}\|^2 + \sum_{i=1}^n \ell(y_i \mathbf{z}^\top \widehat{\mathbf{x}}_i), \quad (\mathsf{P2})$$

Random Projection for Classification

RP for ERM

Apply random projection to reduce the dimensionality

$$\widehat{\mathbf{x}}_i = \frac{1}{\sqrt{m}} \mathbf{R}^\top \mathbf{x}_i$$

Solve the low-dimensional problem

$$\min_{\mathbf{z} \in \mathbb{R}^m} \frac{\lambda}{2} \|\mathbf{z}\|^2 + \sum_{i=1}^n \ell(y_i \mathbf{z}^\top \widehat{\mathbf{x}}_i), \quad (\mathsf{P2})$$

Classify using the function

$$\hat{f}(\mathbf{x}) = \operatorname{sign}\left(\frac{1}{\sqrt{\mathbf{m}}}\mathbf{x}^{\top}\mathbf{R}\mathbf{z}_{*}\right) = \operatorname{sign}\left(\mathbf{x}^{\top}\widehat{\mathbf{w}}\right)$$

where \mathbf{z}_* is the optimal solution of (P2) and $\widehat{\mathbf{w}} = \frac{\mathbf{R}\mathbf{z}_*}{\sqrt{m}}$

Random Projection for Classification

RP for ERM

Apply random projection to reduce the dimensionality

$$\widehat{\mathbf{x}}_i = \frac{1}{\sqrt{m}} \mathbf{R}^\top \mathbf{x}_i$$

Solve the low-dimensional problem

$$\min_{\mathbf{z} \in \mathbb{R}^m} \frac{\lambda}{2} \|\mathbf{z}\|^2 + \sum_{i=1}^n \ell(y_i \mathbf{z}^\top \widehat{\mathbf{x}}_i), \quad (\mathsf{P2})$$

Classify using the function

$$\hat{f}(\mathbf{x}) = \operatorname{sign}\left(\frac{1}{\sqrt{m}}\mathbf{x}^{\top}\mathbf{R}\mathbf{z}_{*}\right) = \operatorname{sign}\left(\mathbf{x}^{\top}\widehat{\mathbf{w}}\right)$$

where \mathbf{z}_* is the optimal solution of (P2) and $\widehat{\mathbf{w}} = \frac{\mathbf{R}\mathbf{z}_*}{\sqrt{m}}$

lacktriangle Let's call $\widehat{\mathbf{w}} \in \mathbb{R}^d$ the naive solution to original learning problem

Random Projections and Recovery Problem

Question I

 $\sqrt{\ }$ Is naive solution $\widehat{\mathbf{w}}=\frac{1}{\sqrt{m}}\mathbf{R}\mathbf{z}_*$ a good classifier?

Question I

 $\sqrt{\ }$ Is naive solution $\widehat{\mathbf{w}}=\frac{1}{\sqrt{m}}\mathbf{R}\mathbf{z}_*$ a good classifier? Yes.

Theorem 2

If the data set $\{(\mathbf{x}_i,y_i)\}_{i=1}^n$ is linearly separable by normalized margin $\gamma \in (0,1)$, then for any $\delta,\epsilon \in (0,1)$ and any

$$m \ge \frac{12}{3\epsilon^2 - 2\epsilon^3} \ln \frac{6n}{\delta},$$

w.p at least $1 - \delta$, the data set $\{(\mathbf{R}^{\top}\mathbf{x}_i, y_i)\}_{i=1}^n$ is linearly separable by margin

$$\gamma - \frac{2\epsilon}{1 - \epsilon}.$$

- We note this holds for normalized margin defined as $\gamma = y_i \frac{\mathbf{u}^\top \mathbf{x}_i}{\|\mathbf{u}\| \|\mathbf{x}_i\|}$
- The argument can be generalized to error allowed margin

[Balcan et. al., COLT'04, Shi et. al., ICML'12]

Question II

 $\sqrt{\ }$ Is naive solution $\widehat{\mathbf{w}}=\frac{1}{\sqrt{m}}\mathbf{R}\mathbf{z}_*$ a good approximation of \mathbf{w}_* ?

Question II

- $\sqrt{\ }$ Is naive solution $\widehat{\mathbf{w}}=\frac{1}{\sqrt{m}}\mathbf{R}\mathbf{z}_*$ a good approximation of \mathbf{w}_* ? No.
 - $\blacksquare \ \widehat{\mathbf{w}}$ lies in a random subspace spanned by the column vectors in $\mathbf{R}!$

Question II

 $\sqrt{}$ Is naive solution $\widehat{\mathbf{w}}=\frac{1}{\sqrt{m}}\mathbf{R}\mathbf{z}_*$ a good approximation of \mathbf{w}_* ?

 $\blacksquare \ \widehat{\mathbf{w}}$ lies in a random subspace spanned by the column vectors in $\mathbf{R}!$

Theorem 3 (Distance of a Random Subspace to a Fixed Point)

For any $0 < \varepsilon \le 1/3$, with a probability at least $1 - \exp(-(d-r)/32) - \exp(-m/32) - \delta$, we have

$$\|\widehat{\mathbf{w}} - \mathbf{w}_*\|_2 \ge \frac{1}{2} \sqrt{\frac{d-r}{m}} \left(1 - \frac{\varepsilon \sqrt{2(1+\varepsilon)}}{1-\varepsilon} \right) \|\mathbf{w}_*\|_2,$$

provided

$$m \ge \frac{(r+1)\log(2r/\delta)}{c\varepsilon^2}$$
,

where constant c is at least 1/4.

[Lectures in Geometric Functional Analysis, Roman Vershynin]

A Natural Question

■ From low-dimensional solution to original high-dimensional optimal solution

The Recovery Problem

Is it possible to accurately recover \mathbf{w}_* , the optimal solution of

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^n \ell(y_i \mathbf{w}^\top \mathbf{x}_i), \quad (P1)$$

from \mathbf{z}_* , the optimal solution of

$$\min_{\mathbf{z} \in \mathbb{R}^m} \frac{\lambda}{2} \|\mathbf{z}\|^2 + \sum_{i=1}^n \ell(y_i \mathbf{z}^\top \widehat{\mathbf{x}}_i), \quad (P2)$$

 \blacksquare Is it possible to accurately recover the optimal solution $\mathbf{w}_* \in \mathbb{R}^d$ based on $\mathbf{z}_* \in \mathbb{R}^m$, the optimal solution to low-dimensional optimization problem?

Possible applications: feature selection [?]

Outline

- Randomization for Large-Scale Learning
- 2 Random Projections and Recovery Problem
- The Algorithm
 The Main Idea
 Dual Random Projection
 An Iterative Extension
- 4 Theoretical Analysis
 The Low-rank Case
 The Full-rank Case
 The Sparse Case
- **5** Empirical Study Recovery and Accuracy
- **6** Conclusion

 $oldsymbol{0}$ Project the data and compute $\mathbf{z}_* \in \mathbb{R}^m$

2 Compute $\widehat{m{lpha}}_* \in \mathbb{R}^m$ from $\mathbf{z}_* \in \mathbb{R}^m$

8 Compute $oldsymbol{lpha}_* \in \mathbb{R}^n$ from $\widehat{oldsymbol{lpha}}_* \in \mathbb{R}^n$

 $oldsymbol{4}$ Compute $\mathbf{w}_* \in \mathbb{R}^d$ from $oldsymbol{lpha}_* \in \mathbb{R}^n$

Outline

- Randomization for Large-Scale Learning
- 2 Random Projections and Recovery Problem
- 3 The Algorithm
 The Main Idea
 Dual Random Projection
- 4 Theoretical Analysis
 The Low-rank Case
 The Full-rank Case
 The Sparse Case
- 6 Empirical Study Recovery and Accuracy
- **6** Conclusion

Primal and Dual Problems

√ The primal problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^n \ell(y_i \mathbf{x}_i^\top \mathbf{w}), \quad (\mathbf{P1})$$

Primal and Dual Problems

√ The primal problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^n \ell(y_i \mathbf{x}_i^\top \mathbf{w}), \quad (\mathbf{P1})$$

 $\sqrt{\ell(z)}$ can be written as

$$\ell(z) = \max_{\alpha \in \Omega} \alpha z - \ell_*(\alpha),$$

where $\ell_*(\alpha)$ is the convex conjugate of $\ell(z)$.

Primal and Dual Problems

√ The primal problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \sum_{i=1}^n \ell(y_i \mathbf{x}_i^\top \mathbf{w}), \quad (\mathbf{P1})$$

 $\sqrt{\ell(z)}$ can be written as

$$\ell(z) = \max_{\alpha \in \Omega} \alpha z - \ell_*(\alpha),$$

where $\ell_*(\alpha)$ is the convex conjugate of $\ell(z)$.

√ The dual problem

$$\max_{\boldsymbol{\alpha} \in \Omega^n} - \sum_{i=1}^n \ell_*(\alpha_i) - \frac{1}{2\lambda} \boldsymbol{\alpha}^\top \mathbf{G} \boldsymbol{\alpha}, \quad (\mathbf{D1})$$

where $\mathbf{G} = \operatorname{diag}(\mathbf{y}) \mathbf{X}^{\top} \mathbf{X} \operatorname{diag}(\mathbf{y})$.

From Primal to Dual

Proposition 1

Let $\mathbf{w}_* \in \mathbb{R}^d$ be the optimal primal solution to (P1), and $\alpha_* \in \mathbb{R}^n$ be the optimal dual solution to (D1). We have

$$\mathbf{w}_* = -\frac{1}{\lambda} \mathbf{X} \operatorname{diag}(\mathbf{y}) \boldsymbol{\alpha}_*,$$
$$[\boldsymbol{\alpha}_*]_i = \nabla \ell \left(y_i \mathbf{x}_i^{\top} \mathbf{w}_* \right), \ i = 1, \dots, n.$$

Observation 1

We can construct $\mathbf{w}_* \in \mathbb{R}^d$ from $\boldsymbol{\alpha}_* \in \mathbb{R}^n$, and vice versa.

Primal and Dual Problems after Random Projection

 \checkmark The primal problem

$$\min_{\mathbf{z} \in \mathbb{R}^m} \frac{\lambda}{2} \|\mathbf{z}\|^2 + \sum_{i=1}^n \ell(y_i \mathbf{z}^\top \widehat{\mathbf{x}}_i), \quad (\mathbf{P2})$$

where
$$\widehat{\mathbf{x}}_i = \frac{1}{\sqrt{m}} \mathbf{R}^{\top} \mathbf{x}_i$$
.

Primal and Dual Problems after Random Projection

 \checkmark The primal problem

$$\min_{\mathbf{z} \in \mathbb{R}^m} \frac{\lambda}{2} \|\mathbf{z}\|^2 + \sum_{i=1}^n \ell(y_i \mathbf{z}^\top \widehat{\mathbf{x}}_i), \quad (\mathbf{P2})$$

where $\widehat{\mathbf{x}}_i = \frac{1}{\sqrt{m}} \mathbf{R}^{\top} \mathbf{x}_i$.

√ The dual problem

$$\max_{\boldsymbol{\alpha} \in \Omega^n} - \sum_{i=1}^n \ell_*(\alpha_i) - \frac{1}{2\lambda} \boldsymbol{\alpha}^\top \widehat{\mathbf{G}} \boldsymbol{\alpha}, \quad (D2)$$

where $\widehat{\mathbf{G}} = \mathrm{diag}(\mathbf{y}) \mathbf{X}^\top \left(\frac{\mathbf{R} \mathbf{R}^\top}{m} \right) \mathbf{X} \mathrm{diag}(\mathbf{y}).$

Relation between Primal and Dual Solutions

Proposition 2

Let $\mathbf{z}_* \in \mathbb{R}^m$ be the optimal primal solution to (P2), and $\widehat{\alpha}_* \in \mathbb{R}^n$ be the optimal dual solution to (D2). We have

$$\mathbf{z}_* = -\frac{1}{\lambda} \frac{1}{\sqrt{m}} \mathbf{R}^\top \mathbf{X} \operatorname{diag}(\mathbf{y}) \widehat{\boldsymbol{\alpha}}_*,$$

$$[\widehat{\boldsymbol{\alpha}}_*]_i = \nabla \ell \left(\frac{y_i}{\sqrt{m}} \mathbf{x}_i^{\mathsf{T}} \mathbf{R} \mathbf{z}_* \right), \ i = 1, \dots, n.$$

Observation 2

We can construct $\mathbf{z}_* \in \mathbb{R}^m$ from $\widehat{\boldsymbol{\alpha}}_* \in \mathbb{R}^n$, and vice versa.

√ The first dual problem

$$\max_{\boldsymbol{\alpha} \in \Omega^n} - \sum_{i=1}^n \ell_*(\alpha_i) - \frac{1}{2\lambda} \boldsymbol{\alpha}^\top \mathbf{G} \boldsymbol{\alpha}, \quad (D1)$$

where $\mathbf{G} = \operatorname{diag}(\mathbf{y}) \mathbf{X}^{\top} \mathbf{X} \operatorname{diag}(\mathbf{y})$.

√ The first dual problem

$$\max_{\alpha \in \Omega^n} - \sum_{i=1}^n \ell_*(\alpha_i) - \frac{1}{2\lambda} \alpha^\top \mathbf{G} \alpha, \quad (D1)$$

where $\mathbf{G} = \operatorname{diag}(\mathbf{y}) \mathbf{X}^{\top} \mathbf{X} \operatorname{diag}(\mathbf{y})$.

 $\sqrt{}$ The second dual problem

$$\max_{\boldsymbol{\alpha} \in \Omega^n} - \sum_{i=1}^n \ell_*(\alpha_i) - \frac{1}{2\lambda} \boldsymbol{\alpha}^\top \widehat{\mathbf{G}} \boldsymbol{\alpha}, \quad (D2)$$

where
$$\widehat{\mathbf{G}} = \operatorname{diag}(\mathbf{y}) \ \mathbf{X}^\top \left(\frac{\mathbf{R} \mathbf{R}^\top}{m} \right) \mathbf{X} \ \operatorname{diag}(\mathbf{y}).$$

√ The first dual problem

$$\max_{\alpha \in \Omega^n} - \sum_{i=1}^n \ell_*(\alpha_i) - \frac{1}{2\lambda} \alpha^\top \mathbf{G} \alpha, \quad (D1)$$

where $\mathbf{G} = \operatorname{diag}(\mathbf{y}) \mathbf{X}^{\top} \mathbf{X} \operatorname{diag}(\mathbf{y})$.

√ The second dual problem

$$\max_{\boldsymbol{\alpha} \in \Omega^n} - \sum_{i=1}^n \ell_*(\alpha_i) - \frac{1}{2\lambda} \boldsymbol{\alpha}^\top \widehat{\mathbf{G}} \boldsymbol{\alpha}, \quad (D2)$$

where
$$\widehat{\mathbf{G}} = \operatorname{diag}(\mathbf{y}) \ \mathbf{X}^{\top} \left(\frac{\mathbf{R}\mathbf{R}^{\top}}{m} \right) \mathbf{X} \ \operatorname{diag}(\mathbf{y}).$$

Observation 3

We can approximate α_* by $\widehat{\alpha}_*$, when m is large enough.

√ The first dual problem

$$\max_{\alpha \in \Omega^n} - \sum_{i=1}^n \ell_*(\alpha_i) - \frac{1}{2\lambda} \alpha^\top \mathbf{G} \alpha, \quad (D1)$$

where $\mathbf{G} = \operatorname{diag}(\mathbf{y}) \mathbf{X}^{\top} \mathbf{X} \operatorname{diag}(\mathbf{y})$.

 $\sqrt{}$ The second dual problem

$$\max_{\boldsymbol{\alpha} \in \Omega^n} - \sum_{i=1}^n \ell_*(\alpha_i) - \frac{1}{2\lambda} \boldsymbol{\alpha}^\top \widehat{\mathbf{G}} \boldsymbol{\alpha}, \quad (D2)$$

where $\widehat{\mathbf{G}} = \operatorname{diag}(\mathbf{y}) \ \mathbf{X}^{\top} \left(\frac{\mathbf{R}\mathbf{R}^{\top}}{m} \right) \mathbf{X} \ \operatorname{diag}(\mathbf{y}).$

Observation 3

We can approximate α_* by $\widehat{\alpha}_*$, when m is large enough.

The expectation

$$\mathbb{E}\left[\widehat{\boldsymbol{G}}\right] = \operatorname{diag}(\boldsymbol{y}) \boldsymbol{X}^{\top} \mathbb{E}\left[\frac{\boldsymbol{R}\boldsymbol{R}^{\top}}{m}\right] \boldsymbol{X} \operatorname{diag}(\boldsymbol{y}) = \operatorname{diag}(\boldsymbol{y}) \boldsymbol{X}^{\top} \boldsymbol{I} \; \boldsymbol{X} \operatorname{diag}(\boldsymbol{y}) = \boldsymbol{G}$$

Putting Everything Together

Observations

We can construct $\mathbf{w}_* \in \mathbb{R}^d$ from $\boldsymbol{\alpha}_* \in \mathbb{R}^n$, and vice versa.

We can construct $\mathbf{z}_* \in \mathbb{R}^m$ from $\widehat{\alpha}_* \in \mathbb{R}^n$, and vice versa.

We can approximate α_* by $\widehat{\alpha}_*$, when m is large enough.

Putting Everything Together

Observations

We can construct $\mathbf{w}_* \in \mathbb{R}^d$ from $\alpha_* \in \mathbb{R}^n$, and vice versa. We can construct $\mathbf{z}_* \in \mathbb{R}^m$ from $\widehat{\alpha}_* \in \mathbb{R}^n$, and vice versa. We can approximate α_* by $\widehat{\alpha}_*$, when m is large enough.

The main idea

- **1** Construct $\widehat{\alpha}_* \in \mathbb{R}^n$ from $\mathbf{z}_* \in \mathbb{R}^m$
- **2** Use $\widehat{\alpha}_* \in \mathbb{R}^n$ to approximate $\alpha_* \in \mathbb{R}^n$
- **3** Construct $\mathbf{w}_* \in \mathbb{R}^d$ from $\boldsymbol{\alpha}_* \in \mathbb{R}^n$

- 1: **Input:** input patterns $\mathbf{X} \in \mathbb{R}^{d \times n}$, binary class assignment $\mathbf{y} \in \{-1, +1\}^n$, and sample size m
- 2: Sample a Gaussian random matrix $\mathbf{R} \in \mathbb{R}^{d \times m}$
- 3: Compute $\widehat{\mathbf{X}} = [\widehat{\mathbf{x}}_1, \dots, \widehat{\mathbf{x}}_n] = \mathbf{R}^{\top} \mathbf{X} / \sqrt{m}$

- 1: **Input:** input patterns $\mathbf{X} \in \mathbb{R}^{d \times n}$, binary class assignment $\mathbf{y} \in \{-1, +1\}^n$, and sample size m
- 2: Sample a Gaussian random matrix $\mathbf{R} \in \mathbb{R}^{d imes m}$
- 3: Compute $\widehat{\mathbf{X}} = [\widehat{\mathbf{x}}_1, \dots, \widehat{\mathbf{x}}_n] = \mathbf{R}^{\top} \mathbf{X} / \sqrt{m}$
- 4: Obtain the primal solution $\mathbf{z}_* \in \mathbb{R}^m$ by solving

$$\min_{\mathbf{z} \in \mathbb{R}^m} \frac{\lambda}{2} \|\mathbf{z}\|^2 + \sum_{i=1}^n \ell(y_i \mathbf{z}^\top \widehat{\mathbf{x}}_i), \quad (P2)$$

- 1: **Input:** input patterns $\mathbf{X} \in \mathbb{R}^{d \times n}$, binary class assignment $\mathbf{y} \in \{-1, +1\}^n$, and sample size m
- 2: Sample a Gaussian random matrix $\mathbf{R} \in \mathbb{R}^{d imes m}$
- 3: Compute $\widehat{\mathbf{X}} = [\widehat{\mathbf{x}}_1, \dots, \widehat{\mathbf{x}}_n] = \mathbf{R}^{\top} \mathbf{X} / \sqrt{m}$
- 4: Obtain the primal solution $\mathbf{z}_* \in \mathbb{R}^m$ by solving

$$\min_{\mathbf{z} \in \mathbb{R}^m} \frac{\lambda}{2} \|\mathbf{z}\|^2 + \sum_{i=1}^n \ell(y_i \mathbf{z}^\top \widehat{\mathbf{x}}_i), \quad (P2)$$

5: Construct the dual solution $\widehat{m{lpha}}_* \in \mathbb{R}^n$ by

$$[\widehat{oldsymbol{lpha}}_*]_i =
abla \ell \left(rac{y_i}{\sqrt{m}} \mathbf{x}_i^{ op} \mathbf{R} \mathbf{z}_*
ight), \ i = 1, \dots, n$$

- 1: **Input:** input patterns $\mathbf{X} \in \mathbb{R}^{d \times n}$, binary class assignment $\mathbf{y} \in \{-1, +1\}^n$, and sample size m
- 2: Sample a Gaussian random matrix $\mathbf{R} \in \mathbb{R}^{d \times m}$
- 3: Compute $\widehat{\mathbf{X}} = [\widehat{\mathbf{x}}_1, \dots, \widehat{\mathbf{x}}_n] = \mathbf{R}^{\top} \mathbf{X} / \sqrt{m}$
- 4: Obtain the primal solution $\mathbf{z}_* \in \mathbb{R}^m$ by solving

$$\min_{\mathbf{z} \in \mathbb{R}^m} \frac{\lambda}{2} \|\mathbf{z}\|^2 + \sum_{i=1}^n \ell(y_i \mathbf{z}^\top \widehat{\mathbf{x}}_i), \quad (P2)$$

5: Construct the dual solution $\widehat{oldsymbol{lpha}}_* \in \mathbb{R}^n$ by

$$[\widehat{\boldsymbol{lpha}}_*]_i = \nabla \ell \left(\frac{y_i}{\sqrt{m}} \mathbf{x}_i^{\top} \mathbf{R} \mathbf{z}_* \right), \ i = 1, \dots, n$$

6: Compute $\widetilde{\mathbf{w}} \in \mathbb{R}^d$ by

$$\widetilde{\mathbf{w}} = -\frac{1}{\lambda} \mathbf{X} \operatorname{diag}(\mathbf{y}) \widehat{\boldsymbol{\alpha}}_*$$

7: Output: the recovered solution $\widetilde{\mathbf{w}}$

The Key Difference

■ The naive solution

$$\widehat{\mathbf{w}} \propto \mathbf{R} \mathbf{z}_*$$

■ The recovered solution by DRP

$$\widetilde{\mathbf{w}} \propto \mathbf{X}(\widehat{\boldsymbol{\alpha}}_* \circ \mathbf{y})$$

Example: Square Loss

 $\sqrt{}$ The square loss

$$\ell(z) = \frac{1}{2}(1-z)^2$$

√ The low-dimensional optimization problem

$$\min_{\mathbf{z} \in \mathbb{R}^m} \frac{\lambda}{2} \|\mathbf{z}\|^2 + \frac{1}{2} \sum_{i=1}^n (1 - y_i \mathbf{z}^\top \widehat{\mathbf{x}}_i)^2$$

 $\sqrt{}$ The optimal solution

$$\mathbf{z}_* = \left(\lambda \mathbf{I} + \widehat{\mathbf{X}} \widehat{\mathbf{X}}^{\top} \right)^{-1} \widehat{\mathbf{X}} \mathbf{y}$$

 $\sqrt{}$ The dual solution

$$\widehat{\boldsymbol{lpha}}_* = \operatorname{diag}(\mathbf{y}) \widehat{\mathbf{X}}^{\top} \mathbf{z}_* - \mathbf{1}$$

√ The recovered solution

$$\widetilde{\mathbf{w}} = -\frac{1}{\lambda} \mathbf{X} \operatorname{diag}(\mathbf{y}) \widehat{\boldsymbol{\alpha}}_*$$

Example: Square Loss

√ The original optimization problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{2} \sum_{i=1}^n (y_i - \mathbf{x}_i^\top \mathbf{w})^2$$

 $\sqrt{}$ The optimal solution

$$\mathbf{w}_* = \left(\lambda \mathbf{I} + \mathbf{X} \mathbf{X}^\top\right)^{-1} \mathbf{X} \mathbf{y} = \mathbf{X} \left(\lambda \mathbf{I} + \mathbf{X}^\top \mathbf{X}\right)^{-1} \mathbf{y}$$

 $\sqrt{}$ The recovered solution by DRP

$$\widetilde{\mathbf{w}} = \mathbf{X} \left(\lambda \mathbf{I} + \mathbf{X}^{\top} \frac{\mathbf{R} \mathbf{R}^{\top}}{m} \mathbf{X} \right)^{-1} \mathbf{y}$$

 $m = \Omega(r \log r)$ is required to ensure $\mathbf{X}^{ op} \frac{\mathbf{R} \mathbf{R}^{ op}}{m} \mathbf{X} pprox \mathbf{X}^{ op} \mathbf{X}$

Example: Square Loss

√ The original optimization problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{\lambda}{2} \|\mathbf{w}\|^2 + \frac{1}{2} \sum_{i=1}^n (y_i - \mathbf{x}_i^\top \mathbf{w})^2$$

 $\sqrt{}$ The optimal solution

$$\mathbf{w}_* = \left(\lambda \mathbf{I} + \mathbf{X} \mathbf{X}^\top\right)^{-1} \mathbf{X} \mathbf{y} = \mathbf{X} \left(\lambda \mathbf{I} + \mathbf{X}^\top \mathbf{X}\right)^{-1} \mathbf{y}$$

 $\sqrt{}$ The recovered solution by DRP

$$\widetilde{\mathbf{w}} = \mathbf{X} \left(\lambda \mathbf{I} + \mathbf{X}^{\top} \frac{\mathbf{R} \mathbf{R}^{\top}}{m} \mathbf{X} \right)^{-1} \mathbf{y}$$

 $m = \Omega(r \log r)$ is required to ensure $\mathbf{X}^{ op} \frac{\mathbf{R} \mathbf{R}^{ op}}{m} \mathbf{X} pprox \mathbf{X}^{ op} \mathbf{X}$

√ The naive solution

$$\widehat{\mathbf{w}} = \frac{\mathbf{R}\mathbf{R}^{\top}}{m} \mathbf{X} \left(\lambda \mathbf{I} + \mathbf{X}^{\top} \frac{\mathbf{R}\mathbf{R}^{\top}}{m} \mathbf{X} \right)^{-1} \mathbf{y}$$

 $m = \Omega(d\log d)$ is required to ensure $rac{\mathbf{R}\mathbf{R}^ op}{m} pprox \mathbf{I}$

Outline

- Randomization for Large-Scale Learning
- 2 Random Projections and Recovery Problem
- 3 The Algorithm
 The Main Idea
 Dual Random Projection
 An Iterative Extension
- 4 Theoretical Analysis
 The Low-rank Case
 The Full-rank Case
 The Sparse Case
- 6 Empirical Study Recovery and Accuracy
- **6** Conclusion

Motivation

 $\sqrt{\mbox{ Suppose the reconstruction error satisfying}}$

$$\|\widetilde{\mathbf{w}} - \mathbf{w}_*\|_2 \le \epsilon \|\mathbf{w}_*\|_2$$

with a small $\epsilon \leq 1$, i.e., multiplicative NOT additive!

 $\sqrt{\ }$ Applying dual random projection to recover

$$\Delta \mathbf{w} = \mathbf{w}_* - \widetilde{\mathbf{w}},$$

the reconstruction error will be

$$\epsilon \|\Delta \mathbf{w}\|_2 \le \epsilon^2 \|\mathbf{w}_*\|_2$$

Motivation

 $\sqrt{\ }$ Suppose the reconstruction error satisfying

$$\|\widetilde{\mathbf{w}} - \mathbf{w}_*\|_2 \le \epsilon \|\mathbf{w}_*\|_2$$

with a small $\epsilon \leq 1$, i.e., multiplicative NOT additive!

 $\sqrt{\ }$ Applying dual random projection to recover

$$\Delta \mathbf{w} = \mathbf{w}_* - \widetilde{\mathbf{w}},$$

the reconstruction error will be

$$\epsilon \|\Delta \mathbf{w}\|_2 \le \epsilon^2 \|\mathbf{w}_*\|_2$$

Implication

We can reduce the reconstruction error *exponentially* by running Dual Random Projection *iteratively*.

An Iterative Extension

- 1: Sample a Gaussian random matrix $\mathbf{R} \in \mathbb{R}^{d imes m}$
- 2: Compute $\widehat{\mathbf{X}} = \mathbf{R}^{\top} \mathbf{X} / \sqrt{m}$
- 3: Initialize $\widetilde{\mathbf{w}}^0 = \mathbf{0}$
- 4: for $t = 1, \dots, T$ do
- 5: Obtain $\mathbf{z}_{*}^{t} \in \mathbb{R}^{m}$ by solving the following optimization problem

$$\min_{\mathbf{z} \in \mathbb{R}^m} \frac{\lambda}{2} \left\| \mathbf{z} + \frac{1}{\sqrt{m}} \mathbf{R}^\top \widetilde{\mathbf{w}}^{t-1} \right\|_2^2 + \sum_{i=1}^n \ell \left(y_i \mathbf{z}^\top \widehat{\mathbf{x}}_i + y_i [\widetilde{\mathbf{w}}^{t-1}]^\top \mathbf{x}_i \right)$$

6: Construct the dual solution $\widehat{\pmb{lpha}}_*^t \in \mathbb{R}^n$ using

$$[\widehat{\boldsymbol{\alpha}}_*^t]_i = \nabla \ell \left(y_i \widehat{\mathbf{x}}_i^\top \mathbf{z}_*^t + y_i [\widetilde{\mathbf{w}}^{t-1}]^\top \mathbf{x}_i \right), \ i = 1, \dots, n$$

- 7: Update the solution by $\widetilde{\mathbf{w}}^t = -\mathbf{X}\mathrm{diag}(\mathbf{y})\widehat{\boldsymbol{\alpha}}_*^t/\lambda$
- 8: end for
- 9: **Output** the recovered solution $\widetilde{\mathbf{w}}^T$
- Note that the random projections is applied only once!

Outline

- Randomization for Large-Scale Learning
- Random Projections and Recovery Problem
- The Algorithm

 The Main Idea

 Dual Random Projection

 An Iterative Extension
- 4 Theoretical Analysis
 The Low-rank Case
 The Full-rank Case
 The Sparse Case
- **5** Empirical Study Recovery and Accuracy
- **6** Conclusion

The Reconstruction Error

 $\sqrt{}$ We denote by r the rank of matrix \mathbf{X} , and assume $r \ll \min(d, n)$.

Theorem 4

For any $0 < \varepsilon \le 1/2$, with a probability at least $1 - \delta$, we have

$$\|\widetilde{\mathbf{w}} - \mathbf{w}_*\|_2 \le \frac{\varepsilon}{1 - \varepsilon} \|\mathbf{w}_*\|_2,$$

provided

$$m \ge \frac{(r+1)\log(2r/\delta)}{c\varepsilon^2},$$

where constant c is at least 1/4.

The Reconstruction Error

 $\sqrt{}$ We denote by r the rank of matrix \mathbf{X} , and assume $r \ll \min(d,n)$.

Theorem 4

For any $0 < \varepsilon \le 1/2$, with a probability at least $1 - \delta$, we have

$$\|\widetilde{\mathbf{w}} - \mathbf{w}_*\|_2 \le \frac{\varepsilon}{1 - \varepsilon} \|\mathbf{w}_*\|_2,$$

provided

$$m \ge \frac{(r+1)\log(2r/\delta)}{c\varepsilon^2},$$

where constant c is at least 1/4.

Implication

To accurately recover \mathbf{w}_* , when number of required random projections is $\Omega(r \log r)$, we have:

$$\|\widetilde{\mathbf{w}} - \mathbf{w}_*\|_2 \le O\left(\sqrt{\frac{r}{m}}\right) \|\mathbf{w}_*\|_2$$

The Sketch of the Proof

$$\begin{split} & \sqrt{~\mathsf{Show}} \\ & \widehat{\mathbf{G}} = \mathrm{diag}(\mathbf{y}) \mathbf{X}^\top \left(\frac{\mathbf{R} \mathbf{R}^\top}{m} \mathbf{X} \right) \mathrm{diag}(\mathbf{y}) \approx \mathrm{diag}(\mathbf{y}) \mathbf{X}^\top \mathbf{X} \mathrm{diag}(\mathbf{y}) = \mathbf{G} \end{split}$$

A concentration inequality

Let $\mathbf{A} \in \mathbb{R}^{r \times m}$ be a standard Gaussian random matrix. For any $0 < \varepsilon \leq 1/2$, with a probability at least $1 - \delta$, we have

$$\left\| \frac{1}{m} \mathbf{A} \mathbf{A}^{\top} - \mathbf{I} \right\|_{2} \le \varepsilon,$$

provided

$$m \ge \frac{(r+1)\log(2r/\delta)}{c\varepsilon^2},$$

where c is a constant whose value is at least 1/4.

which implies $\widehat{lpha}_*pproxlpha_*$

√ Show

$$\widetilde{\mathbf{w}} = -\frac{1}{\lambda}\mathbf{X}\mathrm{diag}(\mathbf{y})\widehat{\boldsymbol{\alpha}}_* \approx -\frac{1}{\lambda}\mathbf{X}\mathrm{diag}(\mathbf{y})\boldsymbol{\alpha}_* = \mathbf{w}_*$$

The Reconstruction Error of the Iterative Algorithm

Theorem 5

Let $\widetilde{\mathbf{w}}^T$ be the solution recovered after T iterations. For any $0 < \varepsilon < 1/2$, with a probability at least $1 - \delta$, we have

$$\|\widetilde{\mathbf{w}}^T - \mathbf{w}_*\|_2 \le \left(\frac{\varepsilon}{1-\varepsilon}\right)^T \|\mathbf{w}_*\|_2,$$

provided

$$m \ge \frac{(r+1)\log(2r/\delta)}{c\varepsilon^2},$$

where constant c is at least 1/4.

The Reconstruction Error of the Iterative Algorithm

Theorem 5

Let $\widetilde{\mathbf{w}}^T$ be the solution recovered after T iterations. For any $0 < \varepsilon < 1/2$, with a probability at least $1 - \delta$, we have

$$\|\widetilde{\mathbf{w}}^T - \mathbf{w}_*\|_2 \le \left(\frac{\varepsilon}{1-\varepsilon}\right)^T \|\mathbf{w}_*\|_2,$$

provided

$$m \ge \frac{(r+1)\log(2r/\delta)}{c\varepsilon^2},$$

where constant c is at least 1/4.

Implication

We can recover the optimal solution with a relative error ϵ , i.e.,

$$\|\mathbf{w}_* - \widetilde{\mathbf{w}}^T\|_2 \le \epsilon \|\mathbf{w}_*\|_2$$

by using $\log_{(1-\epsilon)/\epsilon} 1/\epsilon$ iterations.

Outline

- 1 Randomization for Large-Scale Learning
- 2 Random Projections and Recovery Problem
- 3 The Algorithm
 The Main Idea
 Dual Random Projection
 An Iterative Extension
- 4 Theoretical Analysis
 The Low-rank Case
 The Full-rank Case
 The Sparse Case
- **5** Empirical Study Recovery and Accuracy
- **6** Conclusion

The Reconstruction Error

Theorem 6

Assume \mathbf{w}_* lies in the subspace spanned by the first k left singular vectors of \mathbf{X} , and the loss $\ell(\cdot)$ is γ -smooth. For any $0<\varepsilon\leq 1$, with a probability at least $1-\delta$, we have

$$\|\widetilde{\mathbf{w}} - \mathbf{w}_*\|_2 \le \frac{\varepsilon}{1 - \varepsilon} \left(1 + \frac{\sqrt{\lambda}}{\sqrt{\gamma}\sigma_k} \right) \|\mathbf{w}_*\|_2,$$

provided

$$m \ge \frac{\bar{r}\sigma_1^2}{c\varepsilon^2(\lambda/\gamma + \sigma_1^2)}\log\frac{2d}{\delta},$$

where σ_i is the *i*-th singular value of **X**, $\bar{r} = \sum_{i=1}^d \frac{\sigma_i^2}{\lambda/\gamma + \sigma_i^2}$, and the constant c is at least 1/32.

Discussions

/ Similar to the low-rank case, the number of required random projections is $\Omega(\bar{r}\log d)$

$$\bar{r} = \sum_{i=1}^{d} \frac{\sigma_i^2}{\lambda/\gamma + \sigma_i^2}$$

- $\sqrt{}$ The number $ar{r}$ is closely related to the numerical $\sqrt{rac{\lambda}{\gamma}}$ -rank of ${f X}$ [?].
 - ullet X has numerical u-rank $r_{
 u}$ if

$$\sigma_{r_{\nu}} > \nu \geq \sigma_{r_{\nu}+1}.$$

• Using the notation of numerical rank, we have

$$\bar{r} \leq r_{\sqrt{\lambda/\gamma}} + \sum_{i=r,\sqrt{\lambda/\gamma}+1}^{d} \frac{\sigma_i^2}{\lambda/\gamma + \sigma_i^2} = O(r_{\sqrt{\lambda/\gamma}})$$

if
$$\sigma_i \ll \sqrt{\lambda/\gamma}$$
 for $i > r_{\sqrt{\lambda/\gamma}}$.

Outline

- Randomization for Large-Scale Learning
- 2 Random Projections and Recovery Problem
- 3 The Algorithm
 The Main Idea
 Dual Random Projection
 An Iterative Extension
- 4 Theoretical Analysis
 The Low-rank Case
 The Full-rank Case
 The Sparse Case
- **6** Empirical Study Recovery and Accuracy
- **6** Conclusion

Reconstruction Error for Sparse Solutions

■ Recovery error when the optimal solution is known to be sparse i.e., $\|\mathbf{w}_*\|_0 \leq s$

Theorem 7

When the optimal solution \mathbf{w}_* is s-sparse, we can bound the error by

$$\|\widetilde{\mathbf{w}} - \mathbf{w}_*\|_2 \le O\left(\sqrt{\frac{r}{m}}\right) \|\mathbf{w}_*\|_2$$

provided

$$m \ge O(s \log d)$$
.

 \blacksquare It can be generalized to cases where \mathbf{w}_* is approximately sparse

Outline

- 1 Randomization for Large-Scale Learning
- 2 Random Projections and Recovery Problem
- The Algorithm
 The Main Idea
 Dual Random Projection
 An Iterative Extension
- Theoretical Analysis
 The Low-rank Case
 The Full-rank Case
 The Sparse Case
- **5** Empirical Study Recovery and Accuracy
- 6 Conclusion

A Preliminary Empirical Study

- √ rcv1.binary from Libsvm
 - 20,242 samples and 47,236 features
 - Half for training, and half for testing
- √ The reconstruction error

A Preliminary Empirical Study

- √ rcv1.binary from Libsvm
 - 20,242 samples and 47,236 features
 - Half for training, and half for testing
- √ Accuracy

Relative Error Recovery

■ Synthetic data set

$$\sqrt{d} = 20,000$$

$$\sqrt{n} = 50,000$$

$$\sqrt{r} = 10$$

$$\sqrt{\ell(x)} = \ln(1 + \exp(-x)), \ \lambda = 1/n$$

 \blacksquare Relative errore: $\frac{\|\tilde{\mathbf{w}_*} - \mathbf{w}_*\|}{\|\mathbf{w}_*\|}$ and $\frac{\|\hat{\mathbf{w}_*} - \mathbf{w}_*\|}{\|\mathbf{w}_*\|}$

Running Time

■ Majority of running time of DRP is spent on random projection!

Relative Error of Iterative Extension

Running Time of Iterative Extension

- √ We considered a novel problem for classification
 - Recovering the optimal solution to the high-dimensional optimization problem based on solution obtained from random projection

- $\sqrt{}$ We considered a novel problem for classification
 - Recovering the optimal solution to the high-dimensional optimization problem based on solution obtained from random projection
- √ We proposed a simple algorithm, named Dual Random Projection
 - Using the dual solution of the low-dimensional optimization problem to recover the optimal solution

- $\sqrt{\ }$ We considered a novel problem for classification
 - Recovering the optimal solution to the high-dimensional optimization problem based on solution obtained from random projection
- √ We proposed a simple algorithm, named Dual Random Projection
 - Using the dual solution of the low-dimensional optimization problem to recover the optimal solution
- $\sqrt{}$ Theoretical analysis shows that
 - ullet When ${f X}$ is of low rank, we can recover the optimal solution by using $\Omega(r\log r)$ projections
 - A similar result also holds when the data matrix can be well approximated by a low rank matrix.
 - ullet Also we show the recovery error when ${f w}_*$ is sparse

- $\sqrt{}$ We considered a novel problem for classification
 - Recovering the optimal solution to the high-dimensional optimization problem based on solution obtained from random projection
- √ We proposed a simple algorithm, named **Dual Random Projection**
 - Using the dual solution of the low-dimensional optimization problem to recover the optimal solution
- $\sqrt{}$ Theoretical analysis shows that
 - ullet When ${f X}$ is of low rank, we can recover the optimal solution by using $\Omega(r\log r)$ projections
 - A similar result also holds when the data matrix can be well approximated by a low rank matrix.
 - ullet Also we show the recovery error when ${f w}_*$ is sparse
- $\sqrt{}$ Empirical results demonstrate the merits of proposed algorithm

