

Metody nieparametryczne

Statystyka i analiza danych 2017/2018

Jurek Błaszczyński, na podstawie slajdów Wojtka Kotłowskiego 3 czerwca 2018

Metody nieparametryczne

- Dotychczas stosowane testy (oprócz ostatanio wprowadzonego testu χ²) działają poprawnie tylko przy pewnych założeniach o populacji.
 - ullet Przykład: test T działa poprawnie, jeśli X ma rozkład normalny, itp.
- Złamanie tych założeń powoduje, że prawdopodobieństwo błędu I rodzaju może nie być na poziomie istotności α.
- Metody nieparametryczne czynią znacznie mniej założeń o populacji.
 - Ogólniejsze stosowalne w szerszym zakresie.
 - Słabsze moc testu jest niższa.

- Brak założeń o rozkładach X i Y.
- ullet Odpowiednik testu **sparowanego** T dla dwóch populacji.

- Brak założeń o rozkładach X i Y.
- Odpowiednik testu **sparowanego** *T* dla dwóch populacji.

Zasada działania: zamiast różnicy Y - X, testujemy jej **znak**:

$$S = \operatorname{sgn}(Y - X),$$

przy czym przypadki Y = X pomijamy.

X	Y	S
4	6	+
7	7	pomijamy
3	2	_
1	1.5	+
2	9	+
6	2	_

- Brak założeń o rozkładach X i Y.
- Odpowiednik testu sparowanego T dla dwóch populacji.

Zasada działania: zamiast różnicy Y - X, testujemy jej **znak**:

$$S = \operatorname{sgn}(Y - X),$$

przy czym przypadki Y = X pomijamy.

Wniosek: Niezależnie od oryginalnego rozkładu Y-X, zmienna S ma rozkład **dwupunktowy** z parametrem sukcesu:

$$p = P(S = +)$$

- Brak założeń o rozkładach X i Y.
- Odpowiednik testu sparowanego T dla dwóch populacji.

Zasada działania: zamiast różnicy Y - X, testujemy jej **znak**:

$$S = \operatorname{sgn}(Y - X),$$

przy czym przypadki Y = X pomijamy.

Wniosek: Niezależnie od oryginalnego rozkładu Y-X, zmienna S ma rozkład **dwupunktowy** z parametrem sukcesu:

$$p = P(S = +) = P(Y > X | Y \neq X)$$

Zredukowaliśmy problem do testu Z dla rozkładu dwupunktowego!

Przykład

W ramach zajęć 14 studentów napisało wejściówkę i wyjściówkę. Sprawdź na poziomie $\alpha=0.05$, czy studenci poszerzyli wiedzę w trakcie zajęć.

ID studenta	ocena z wejściówki	ocena z wyjściówki	
1	4.5	3.5	
2	3.5	4.5	
3	2.0	4.5	
4	5.0	5.0	
5	4.0	5.0	
6	3.5	4.5	
7	3.0	3.5	
8	2.0	3.5	
9	2.0	2.0	
10	4.5	4.0	
11	3.0	5.0	
12	4.0	3.5	
13	5.0	4.5	
14	2.0	3.5	

Przykład

W ramach zajęć 14 studentów napisało wejściówkę i wyjściówkę. Sprawdź na poziomie $\alpha=0.05$, czy studenci poszerzyli wiedzę w trakcie zajęć.

ID studenta	ocena z wejściówki	ocena z wyjściówki	S
1	4.5	3.5	_
2	3.5	4.5	+
3	2.0	4.5	+
4	5.0	5.0	pomiń
5	4.0	5.0	+
6	3.5	4.5	+
7	3.0	3.5	+
8	2.0	3.5	+
9	2.0	2.0	pomiń
10	4.5	4.0	_
11	3.0	5.0	+
12	4.0	3.5	_
13	5.0	4.5	_
14	2.0	3.5	+

Przykład

W ramach zajęć 14 studentów napisało wejściówkę i wyjściówkę. Sprawdź na poziomie $\alpha=0.05$, czy studenci poszerzyli wiedzę w trakcie zajęć.

ID studenta	ocena z wejściówki	ocena z wyjściówki	5
1	4.5	3.5	_
2	3.5	4.5	+
3	2.0	4.5	+
4	5.0	5.0	pomiń
5	4.0	5.0	+
6	3.5	4.5	+
7	3.0	3.5	+
8	2.0	3.5	+
9	2.0	2.0	pomiń
10	4.5	4.0	_
11	3.0	5.0	+
12	4.0	3.5	_
13	5.0	4.5	_
14	2.0	3.5	+

Liczba par znaczących n = 12; liczba sukcesów $S_n = 8$.

Test znaków – przykład

X – ocena z wejściówki, Y – ocena z wyjściówki

Układ hipotez:

$$H_0: p = P(Y > X | Y \neq X) = \frac{1}{2}$$

 $H_1: p > \frac{1}{2}$

- Dane:
 - liczba par znaczących n = 12
 - liczba sukcesów $S_n = 8$
- Statystyka testowa. Ponieważ $np_0 = n(1-p_0) = 12 \cdot \frac{1}{2} > 5$, korzystamy z Centralnego Twierdzenia Granicznego:

$$Z = \frac{S_n - np_0}{\sqrt{np_0(1 - p_0)}} \sim N(0, 1).$$
$$Z = \frac{8 - 12 \cdot 0.5}{\sqrt{12 \cdot 0.5 \cdot 0.5}} = \frac{2}{\sqrt{3}} \simeq 1.15.$$

• **Zbiór krytyczny** dla $\alpha = 0.05$: $C_{\rm kr} = (1.64, \infty)$. **Wniosek**: Nie ma podstaw do odrzucenia H_0 .

Test Wilcoxona

- Odpowiednik testu sparowanego T dla dwóch populacji.
- Silniejszy od testu znaków, ale słabszy od testu T.
- Zakłada jedynie, że różnice Y-X można ze sobą porównywać (większa/mniejsza/równa).

Układ hipotez:

 H_0 : median(Y - X) = 0

 H_1 : median $(Y - X) \neq 0$ (lub odpowiednia wersja jednostronna)

Wymaga skomplikowanych obliczeń na **rangach modułów różnic**, które najlepiej przeprowadzić na przykładzie.

Używamy następującej obserwacji: gdy H_0 jest prawdziwe, znaki różnic są równo prawdopodobne.

wejściówka	wyjściówka	różnica	moduł różnicy	ranga
4.5	3.5			
3.5	4.5			
2.0	4.5			
5.0	5.0			
4.0	5.0			
3.5	4.5			
3.0	3.5			
2.0	3.5			
2.0	2.0			
4.5	4.0			
3.0	5.0			
4.0	3.5			
5.0	4.5			
2.0	3.5			

wejściówka	wyjściówka	różnica	moduł różnicy	ranga
4.5	3.5	-1		
3.5	4.5	1		
2.0	4.5	2.5		
5.0	5.0	0		
4.0	5.0	1		
3.5	4.5	1		
3.0	3.5	0.5		
2.0	3.5	1.5		
2.0	2.0	0		
4.5	4.0	-0.5		
3.0	5.0	2		
4.0	3.5	-0.5		
5.0	4.5	-0.5		
2.0	3.5	1.5		

wejściówka	wyjściówka	różnica	moduł różnicy	ranga
4.5	3.5	-1	1	
3.5	4.5	1	1	
2.0	4.5	2.5	2.5	
5.0	5.0	0	0	
4.0	5.0	1	1	
3.5	4.5	1	1	
3.0	3.5	0.5	0.5	
2.0	3.5	1.5	1.5	
2.0	2.0	0	0	
4.5	4.0	-0.5	0.5	
3.0	5.0	2	2	
4.0	3.5	-0.5	0.5	
5.0	4.5	-0.5	0.5	
2.0	3.5	1.5	1.5	

wejściówka	wyjściówka	różnica	moduł różnicy	ranga
4.5	3.5	-1	1	5 – 8
3.5	4.5	1	1	5 - 8
2.0	4.5	2.5	2.5	12
5.0	5.0	0	0	_
4.0	5.0	1	1	5 - 8
3.5	4.5	1	1	5 - 8
3.0	3.5	0.5	0.5	1 - 4
2.0	3.5	1.5	1.5	9 - 10
2.0	2.0	0	0	_
4.5	4.0	-0.5	0.5	1 - 4
3.0	5.0	2	2	11
4.0	3.5	-0.5	0.5	1 - 4
5.0	4.5	-0.5	0.5	1 - 4
2.0	3.5	1.5	1.5	9 – 10

Rangujemy **niezerowe** moduły od najmniejszego (ranga 1) do największego (ranga 12).

wejściówka	wyjściówka	różnica	moduł różnicy	ranga
4.5	3.5	-1	1	6.5
3.5	4.5	1	1	6.5
2.0	4.5	2.5	2.5	12
5.0	5.0	0	0	_
4.0	5.0	1	1	6.5
3.5	4.5	1	1	6.5
3.0	3.5	0.5	0.5	2.5
2.0	3.5	1.5	1.5	9.5
2.0	2.0	0	0	_
4.5	4.0	-0.5	0.5	2.5
3.0	5.0	2	2	11
4.0	3.5	-0.5	0.5	2.5
5.0	4.5	-0.5	0.5	2.5
2.0	3.5	1.5	1.5	9.5

Rangujemy **niezerowe** moduły od najmniejszego (ranga 1) do największego (ranga 12).

Równe moduły dzielą się rangami (przydzielamy średnią rangę).

wejściówka	wyjściówka	różnica	moduł różnicy	ranga
4.5	3.5	-1	1	6.5
3.5	4.5	1	1	6.5
2.0	4.5	2.5	2.5	12
5.0	5.0	0	0	_
4.0	5.0	1	1	6.5
3.5	4.5	1	1	6.5
3.0	3.5	0.5	0.5	2.5
2.0	3.5	1.5	1.5	9.5
2.0	2.0	0	0	_
4.5	4.0	-0.5	0.5	2.5
3.0	5.0	2	2	11
4.0	3.5	-0.5	0.5	2.5
5.0	4.5	-0.5	0.5	2.5
2.0	3.5	1.5	1.5	9.5

Sumujemy osobno rangi dodatnich różnic i rangi ujemnych różnic:

$$\Sigma_{+} = 6.5 + 12 + 6.5 + 6.5 + 2.5 + 9.5 + 11 + 9.5 = 64$$

 $\Sigma_{-} = 6.5 + 2.5 + 2.5 + 2.5 = 14$

X – ocena z wejściówki, Y – ocena z wyjściówki

Układ hipotez:

$$H_0$$
: median $(Y - X) = 0$
 H_1 : median $(Y - X) > 0$

- Dane: n = 12 (liczba par znaczących), $\Sigma_+ = 64$, $\Sigma_- = 14$.
- Statystyka testowa $T = \min\{\Sigma_+, \Sigma_-\}$. Otrzymujemy T = 14.
- Wartość krytyczną $T_{\rm kr}$ otrzymujemy z tablic, np. tutaj. Dla n=12 i lpha=0.05, $T_{\rm kr}=17$.

Zbiór krytyczny:
$$\textit{C}_{\mathrm{kr}} = [0, \textit{T}_{\mathrm{kr}}]$$
 (zawsze $\leq \textit{T}_{\mathrm{kr}}$)

 $T \leq T_{kr} \Longrightarrow \mathbf{Odrzucamy} \ H_0$, studenci się czegoś nauczyli.

Współczynnik korelacji rangowej Spearmana

- Nieparametryczny współczynnik korelacji.
- Zasada obliczania: zamień X i Y na rangi i policz na tym zwykły współczynnik korelacji Pearsona.

Przykład:

X	Y	
0.3	2.5	
1.7	1.2	
2.2	1.2	
-1.1	-0.9	
0.2	5	
0.3	-3	
-0.5	-3	
-4.1	-1	

Współczynnik korelacji rangowej Spearmana

- Nieparametryczny współczynnik korelacji.
- Zasada obliczania: zamień X i Y na rangi i policz na tym zwykły współczynnik korelacji Pearsona.

Przykład:

X	rangi X	Y	rangi Y
0.3	5.5	2.5	7
1.7	7	1.2	5.5
2.2	8	1.2	5.5
-1.1	2	-0.9	4
0.2	4	5	8
0.3	5.5	-3	1.5
-0.5	3	-3	1.5
-4.1	1	-1	3

Współczynnik korelacji rangowej Spearmana

- Nieparametryczny współczynnik korelacji.
- Zasada obliczania: zamień X i Y na rangi i policz na tym zwykły współczynnik korelacji Pearsona.

Przykład:

X	rangi X	Y	rangi Y
0.3	5.5	2.5	7
1.7	7	1.2	5.5
2.2	8	1.2	5.5
-1.1	2	-0.9	4
0.2	4	5	8
0.3	5.5	-3	1.5
-0.5	3	-3	1.5
-4.1	1	-1	3

Współczynnik korelacji między rangami:

$$r_s = 0.358$$

Wsp. korelacji Pearsona vs. Spearmana

Wsp. korelacji Pearsona vs. Spearmana

