CS446: Machine Learning

Spring 2017

Problem Set 5

Zhuo Li(zhuol2)

Handed In: April 10, 2017

1. Neural Networks

(a) For each training example d, we know that we need to update weights on the opposite direction of the gradient (gradient descent). So we have

$$\Delta\omega_{ij} = -R \frac{\partial E_d}{\partial \omega_{ij}} \tag{1}$$

 ω_{ij} can only influence the output through net_j , such that

$$net_j = \sum \omega_{ij} x_{ij} \tag{2}$$

where x_{ij} is from the previous layer of unit j. From (1)(2) we have

$$\frac{\partial E_d}{\partial \omega_{ij}} = \frac{\partial E_d}{\partial \text{net}_j} \frac{\partial \text{net}_j}{\partial \omega_{ij}} = \frac{\partial E_d}{\partial \text{net}_j} x_{ij}$$
(3)

$$\Delta\omega_{ij} = -R \frac{\partial E_d}{\partial \text{net}_i} x_{ij} \tag{4}$$

Then we consider two cases:

i. Unit j is the output unit. So net_j can only influence the rest of the network through o_j . So

$$\frac{\partial E_d}{\partial \text{net}_i} = \frac{\partial E_d}{\partial o_i} \frac{\partial o_j}{\partial \text{net}_i} \tag{5}$$

We also have

$$E_d = \frac{1}{2} \sum_{k \in K} (t_k - o_k)^2 \tag{6}$$

$$o_j = max(0, net_j) \tag{7}$$

Thus

$$\frac{\partial o_j}{\partial \text{net}_j} = \begin{cases} 0 & \text{if } \text{net}_j \le 0\\ 1 & \text{otherwise} \end{cases}$$
 (8)

Then

$$\frac{\partial E_d}{\partial \text{net}_j} = \frac{1}{2} 2(t_j - o_j) \frac{\partial (t_j - o_j)}{\partial \text{net}_j}
= \begin{cases} 0 & \text{if } \text{net}_j \le 0 \\ -o_j(t_j - o_j) & \text{otherwise} \end{cases}$$
(9)

So

$$\Delta\omega_{ij} = -R \frac{\partial E_d}{\partial \text{net}_j} x_{ij} = R\delta_j x_{ij}$$

$$= \begin{cases} 0 & \text{if } \text{net}_j \le 0\\ R(t_j - o_j) o_j x_{ij} & \text{otherwise} \end{cases}$$
(10)

where

$$\delta_j \equiv \begin{cases} 0 & \text{if } \text{net}_j \le 0\\ (t_j - o_j)o_j & \text{otherwise} \end{cases}$$
 (11)

ii. Unit j is the hidden unit. So net_j can influence the network only through downstream(j). Then

$$\frac{\partial E_d}{\partial \text{net}_j} = \sum_{k \in \text{downstream}(j)} \frac{\partial E_d}{\partial \text{net}_k} \frac{\partial \text{net}_k}{\partial \text{net}_j}
= \sum_{k \in \text{downstream}(j)} -\delta_k \frac{\partial \text{net}_k}{\partial \text{net}_j}
= \sum_{k \in \text{downstream}(j)} -\delta_k \frac{\partial \text{net}_k}{\partial o_j} \frac{\partial o_j}{\partial \text{net}_j}
= \sum_{k \in \text{downstream}(j)} -\delta_k \omega_{jk} \frac{\partial o_j}{\partial \text{net}_j}$$
(12)

Rember what we have in (8)

$$\frac{\partial E_d}{\partial \text{net}_j} = \begin{cases} 0 & \text{if } \text{net}_j \le 0\\ \sum_{k \in \text{downstream}(j)} -\delta_k \omega_{jk} & \text{otherwise} \end{cases}$$
 (13)

So

$$\Delta\omega_{ij} = -R \frac{\partial E_d}{\partial \text{net}_j} x_{ij} = R\delta_j x_{ij}$$

$$= \begin{cases} 0 & \text{if } \text{net}_j \leq 0 \\ Rx_{ij} \sum_{k \in \text{downstream}(j)} \delta_k \omega_{jk} & \text{otherwise} \end{cases}$$
(14)

where

$$\delta_j \equiv \begin{cases} 0 & \text{if } \text{net}_j \le 0\\ \sum_{k \in \text{downstream}(j)} \delta_k \omega_{jk} & \text{otherwise} \end{cases}$$
 (15)

(b) i. From (6) we have the gradient of squared loss with respect to output o_k is

$$\frac{\partial E_d}{\partial o_k} = (o_k - t_k)$$

So we can have the following codes:

And (8) is the formula for the derivative of the rectifier function, then

```
def relu_derivative (z):
      #MPLEMENT THIS!
2
      (m, n) = z.shape
3
      derivative = np.zeros((m, n))
      for i in range (m):
           for j in range(n):
               if z[i, j] > 0:
                    derivative[i, j] = 1
               else:
                    derivative[i, j] = 0
10
      return derivative
  #endDef
12
```

ii. We can run the parameter_tuning.py, and get the following results for circles:

```
= circles =
   - size = 10 , R = 0.1 , func = relu , node = 10 -
  <Average Accuracy> 100.0
   - size = 10 , R = 0.1 , func = relu , node = 50
  <Average Accuracy> 100.0
  -- size = 10 , R = 0.1 , func = tanh , node = 10
  <Average Accuracy>
                     100.0
  -- size = 10 , R = 0.1 , func = tanh , node = 50
  <Average Accuracy>
                     100.0
  -- size = 10 , R = 0.01 , func = relu , node = 10
  <Average Accuracy>
                      100.0
11
  -- size = 10 , R = 0.01 , func = relu , node = 50
12
  <Average Accuracy>
                     100.0
  -- size = 10 , R = 0.01 , func = tanh , node = 10
  <Average Accuracy> 52.7647714604
  -- size = 10 , R = 0.01 , func = tanh , node = 50
  <a href="#"><Average Accuracy</a> 50.3448001274
  -- size = 50 , R = 0.1 , func = relu , node = 10
```

```
<Average Accuracy> 100.0
    -\operatorname{size} = 50 , R = 0.1 , func = relu , node = 50
  <Average Accuracy>
                         100.0
21
   -\operatorname{size} = 50 , R = 0.1 , func = \tanh , \operatorname{node} = 10
22
  <a href="#"><Average Accuracy> 66.0081223125</a>
23
   - size = 50 , R = 0.1 , func = tanh , node = 50
24
  <a href="#"><Average Accuracy</a> 57.1444497531
25
   -- size = 50 , R = 0.01 , func = relu , node = 10
26
  <Average Accuracy>
                         74.1025641026
27
   -\operatorname{size} = 50 , R = 0.01 , func = relu , node = 50
28
  <a>Average Accuracy> 99.6273291925</a>
29
  -- size = 50 , R = 0.01 , func = tanh , node = 10
30
  <Average Accuracy> 51.9190953974
  -- size = 50 , R = 0.01 , func = tanh , node = 50
32
  <a href="#"><Average Accuracy> 51.2581621277</a>
  -- size = 100 , R = 0.1 , func = relu , node = 10
34
  <Average Accuracy>
                         100.0
   - size = 100 , R = 0.1 , func = relu , node = 50
36
  <Average Accuracy>
                         100.0
37
  -- size = 100 , R = 0.1 , func = tanh , node = 10
38
  <Average Accuracy>
                         52.0074852684
  -- size = 100 , R = 0.1 , func = tanh , node = 50
40
  <Average Accuracy>
                         51.8633540373
41
  -- size = 100 , R = 0.01 , func = relu , node = 10
42
  <Average Accuracy>
                         65.0947603122
43
   - size = 100 , R = 0.01 , func = relu , node = 50
44
  <Average Accuracy>
                         74.7356266921
45
  -- size = 100 , R = 0.01 , func = tanh , node = 10
46
  <Average Accuracy> 52.668418538
47
   - size = 100 , R = 0.01 , func = tanh , node = 50
  <Average Accuracy>
                         51.2501990763
```

Then we have the optimal parameters for **circles**:

```
[Optimal Batch Size] 10
[Optimal Learning Rate] 0.1
[Optimal Activation Function] relu
[Optimal Hidden Layer Width] 10
[Maximum Accuracy] 100.0%
And results for mnist:
```

```
<a href="#"></a>Average Accuracy>
                            96.9621801688
    - size = 10 , R = 0.1 , func = tanh , node = 50
  <Average Accuracy>
                            96.9038261068
    -\operatorname{size} = 10 , R = 0.01 , \operatorname{func} = \operatorname{relu} , \operatorname{node} = 10
10
  <Average Accuracy>
                            96.6199395025
11
   -- size = 10 , R = 0.01 , func = relu , node = 50
12
  <a href="#"><Average Accuracy> 96.4864811173</a>
13
   - \text{ size} = 10 \text{ , } R = 0.01 \text{ , } \text{func} = \text{tanh} \text{ , } \text{node} = 10
14
  <Average Accuracy>
                            96.8787634501
15
    -\operatorname{size} = 10 , R = 0.01 , func = \tanh , node = 50
16
  <Average Accuracy>
                           96.1944075876
17
   -- size = 50 , R = 0.1 , func = relu , node = 10
18
  <a href="#"><Average Accuracy> 96.2193238624</a>
   -- size = 50 , R = 0.1 , func = relu , node = 50
20
  <a href="#"><Average Accuracy> 96.4613139022</a>
   -- size = 50 , R = 0.1 , func = tanh , node = 10
22
  <Average Accuracy>
                            96.9455135544
   - size = 50 , R = 0.1 , func = tanh , node = 50
24
  <Average Accuracy>
                           96.5115019505
25
   -- size = 50 , R = 0.01 , func = relu , node = 10
26
  <Average Accuracy>
                           96.6199604142
27
   - size = 50 , R = 0.01 , func = relu , node = 50
28
  <a href="#"><Average Accuracy> 96.6700439041</a>
29
   -\operatorname{size} = 50 , R = 0.01 , func = \tanh , \operatorname{node} = 10
30
  <Average Accuracy>
                            96.394689268
31
    -\operatorname{size} = 50 , R = 0.01 , func = \tanh , \operatorname{node} = 50
32
  <Average Accuracy>
                            96.261084501
33
   -- size = 100 , R = 0.1 , func = relu , node = 10
34
                            96.3945847096
  <Average Accuracy>
35
   - size = 100 , R = 0.1 , func = relu , node = 50
36
  <Average Accuracy>
                            96.5949291251
37
    -\operatorname{size} = 100 , R = 0.1 , func = \tanh , \operatorname{node} = 10
  <Average Accuracy>
                            96.8787320826
39
    -\operatorname{size} = 100 , R = 0.1 , func = \tanh , \operatorname{node} = 50
                            96.2945431999
  <Average Accuracy>
41
   - size = 100 , R = 0.01 , func = relu , node = 10
42
  <Average Accuracy>
                            96.7201378498
43
   -- size = 100 , R = 0.01 , func = relu , node = 50
44
  <Average Accuracy>
                            96.761856665
45
    -\operatorname{size} = 100 , R = 0.01 , func = \tanh , \operatorname{node} = 10
  <a href="#"><Average Accuracy> 96.2527930172</a>
47
    -\operatorname{size} = 100 , R = 0.01 , func = \tanh , \operatorname{node} = 50
  <Average Accuracy>
                            96.2193865975
```

Then we have the optimal parameters for **circles**:

[Optimal Batch Size] 10 [Optimal Learning Rate] 0.1 [Optimal Activation Function] tanh [Optimal Hidden Layer Width] 10 [Maximum Accuracy] 96.9621801688%

iii. Run the *plot_learning_curve.py*, we can get learning curves in Figure 1 and Figure 2.

Figure 1: Learning Curve for Circles

Figure 2: Learning Curve for MNIST

• In Figure 1, we can find that the performance of Perceptron is terrible with accuracy between 50% and 60%. This is because the circle dataset is

not linearly separable, while Perceptron can only learn linear functions. Neural network performs much better and reach nearly 100% accuracy after a few iterations.

• In Figure 2, Perceptron can learn quite well with the average accuracy around 95%, but it is still not as good as neural network. In this case, we can also find that it takes more iterations for neural networks converging.

2. Multi-class classification

(a) i. \bullet **OvA**: We learn k classifiers.

• AvA: We learn $\binom{k}{2}$ classifiers.

ii. \bullet **OvA**: We use m examples to learn each classifier.

• **AvA**: Wwe use $\frac{2m}{k}$ examples to learn each classifier.

iii. • OvA: We use the winner takes all (WTA) strategy, such that $f(x) = argmax_i\omega_i^T x$. The "score" $\omega_i^T x$ can be thought of as the probability that x has label i.

• **AvA**: We have two options to make a decision. One is to classify example x to take label i if i wins on x more oftern than any j = 1, ..., k. Alternatively, we can do a tournament. Starting with n/2 pairs, continue with the winners and go down iteratively.

iv. • OvA: We need to train O(k) (linear) number of classifiers.

• **AvA**: We need to train $O(k^2)$ (quadratic) number of classifiers.

(b) I prefer **OvA** than **AvA**. Because we have better computational complexity of **OvA** over **AvA**. **OvA** has more examples to learn than **AvA** as well.

(c) The analysis above doesn't hold for **Kernel Perceptron**. In this case, we need dual representations, **AvA** has smaller learning problems in terms of number of examples, thus being preferable when ran in dual. And it is also more expressive. So I prefer **AvA** in this case.

(d) • \mathbf{OvA} : We have m examples supplied for each classifier and k classifiers to learn. So the overall complexity is

$$O(dm^2)k = O(kdm^2)$$

• **AvA**: We have $\frac{m}{k}$ examples supplied for each classifier and $\binom{k}{2}$ classifiers to learn. So the overall complexity is

$$O(d(\frac{m}{k})^2)\binom{k}{2} = O(\frac{dm^2}{k^2})O(k^2) = O(dm^2)$$

So AvA is the most efficient.

(e) • \mathbf{OvA} : We have m examples supplied for each classifier and k classifiers to learn. So the overall complexity is

$$O(d^2m)k = O(kd^2m)$$

• AvA: We have $\frac{m}{k}$ examples supplied for each classifier and $\binom{k}{2}$ classifiers to learn. So the overall complexity is

$$O(d^2(\frac{m}{k}))\binom{k}{2} = O(\frac{d^2m}{k})O(k^2) = O(kd^2m)$$

So **OvA** and **AvA** are in the same order of time complexity. We cannot say which one is the most efficient.

- (f) Counting: For each example, we need first predict with all the classifiers, which take m(m-1)/2, i.e. $O(m^2)$, time complexity. Then we do a majority vote, which takes O(1) time. So the overall time complexity is $O(m^2)$.
 - **Knockout**: For each round, we knocked out half of the classifiers. So the overall time complexity is O(log m).

3. Probability Review

- (a) i. Let X be the random variable donating the number of children in a family.
 - Town A: Since each family has just one child. So

$$E[X] = 1$$

• Town B: We have

$$E[X] = \sum_{k=0}^{\infty} k \times P(X = k)$$

$$= 1 \times \frac{1}{2} + 2 \times (\frac{1}{2})^{2} + 3 \times (\frac{1}{2})^{3} + \dots$$
(1)

To compute this, we multiply both sides of (1) by 2.

$$2E[X] = 1 + 2 \times (\frac{1}{2}) + 3 \times (\frac{1}{2})^2 + \dots$$
 (2)

Subtract both sides of (2) with corresponding sides of (1).

$$E[X] = 1 + \frac{1}{2} + (\frac{1}{2})^2 + \dots$$

$$= \lim_{k \to \infty} \frac{1 \times (1 - (\frac{1}{2})^k)}{1 - \frac{1}{2}}$$

$$= 2$$
(3)

ii. Let X, Y be the random variable donating the numbers of boys and girls, respectively, in the town at the end of one generation. And there are N_A families in Town A and N_B in Town B.

• Town A: Since each family has just one child with equal possibility to be a boy or a girl. So

$$E[X] = E[Y] = N_A/2$$

Then

$$\frac{E[X]}{E[Y]} = \frac{N_A/2}{N_A/2} = 1$$

• Town B: Each family will have exactly one boy. So

$$E[X] = N_B$$

For girls

$$E[Y] = N_B$$

$$= N_B \left(\sum_{k=0}^{\infty} k \times P(Z = k) \right)$$

$$= N_B \left(1 \times \left(\frac{1}{2} \right)^2 + 2 \times \left(\frac{1}{2} \right)^3 + 3 \times \left(\frac{1}{2} \right)^4 + \dots \right)$$
(1)

where Z is the random variable donating number of girls in each family. Use the same method as in (i)

$$2E[Y] = N_B \left(1 \times \frac{1}{2} + 2 \times (\frac{1}{2})^2 + 3 \times (\frac{1}{2})^3 + \ldots\right)$$
 (2)

From (1)(2), we have

$$E[Y] = N_B \left(\frac{1}{2} + (\frac{1}{2})^2 + (\frac{1}{2})^3 + \dots\right)$$

$$= N_B \lim_{k \to \infty} \frac{\frac{1}{2} \left(1 - (\frac{1}{2})^k\right)}{1 - \frac{1}{2}}$$

$$= N_B$$
(3)

Then

$$\frac{E[X]}{E[Y]} = \frac{N_B}{N_B} = 1$$

(b) i. Proof: From the chain rule, we have

$$P(A,B) = P(A|B)P(B) \tag{1}$$

$$P(A,B) = P(B|A)P(A)$$
 (2)

So from (1)(2) we will have

$$P(A|B)P(B) = P(B|A)P(A)$$

Then

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

ii. From the chain rule, we can rewrite as

$$P(A, B, C) = P(A|B, C)P(B, C) = P(A|B, C)P(B|C)P(C)$$

(c) Proof: According to the definition of expectation:

$$E[X] = 1 \times P(X = 1) + 0 \times P(X = 0)$$
$$= 1 \times P(A)$$
$$= P(A)$$

(d) i. No.

We can calculate

$$P(X = 0) = 1/15 + 1/10 + 4/15 + 8/45 = 11/18$$

$$P(Y = 0) = 1/15 + 1/15 + 4/15 + 2/15 = 8/15$$

And

$$P(X = 0, Y = 0) = 1/15 + 4/15 = 1/3$$

Then

$$P(X = 0, Y = 0) \neq P(X = 0)P(Y = 0)$$

So X is not independent of Y.

ii. Yes. We need to prove for any $x, y, z \in \{0, 1\}$:

$$P(X = x, Y = y|Z = z) = P(X = x|Z = z)P(Y = y|Z = z)$$

We have:

$$P(Z=0) = 1/15 + 1/15 + 1/10 + 1/0 = 1/3P(Z=1) = 1 - P(Z=0) = 2/3$$
(1)

We have:

$$P(X=0|Z=0) = \frac{1/15 + 1/10}{1/3} = 1/2$$
 (2)

$$P(X=1|Z=0) = \frac{1/15 + 1/10}{1/3} = 1/2$$
 (3)

$$P(Y=0|Z=0) = \frac{1/15 + 1/15}{1/3} = 2/5 \tag{4}$$

$$P(Y=1|Z=0) = \frac{1/10 + 1/10}{1/3} = 3/5$$
 (5)

$$P(X=0|Z=1) = \frac{4/15 + 8/45}{2/3} = 2/3 \tag{6}$$

$$P(X=1|Z=1) = \frac{2/15 + 4/45}{2/3} = 1/3 \tag{7}$$

$$P(Y=0|Z=1) = \frac{4/15 + 2/15}{2/3} = 3/5 \tag{8}$$

$$P(Y=1|Z=1) = \frac{8/45 + 4/45}{2/3} = 2/5 \tag{9}$$

And:

$$P(X = 0, Y = 0|Z = 0) = \frac{1/15}{1/3} = 1/5$$

$$= P(X = 0|Z = 0)P(Y = 0|Z = 0)$$
(10)

$$P(X = 0, Y = 1|Z = 0) = \frac{1/10}{1/3} = 3/10$$

$$= P(X = 0|Z = 0)P(Y = 1|Z = 0)$$
(11)

$$P(X = 1, Y = 0|Z = 0) = \frac{1/15}{1/3} = 1/5$$

$$= P(X = 1|Z = 0)P(Y = 0|Z = 0)$$
(12)

$$P(X = 1, Y = 1|Z = 0) = \frac{1/10}{1/3} = 3/10$$

$$= P(X = 1|Z = 0)P(Y = 1|Z = 0)$$
(13)

$$P(X = 0, Y = 0|Z = 1) = \frac{4/15}{2/3} = 2/5$$

$$= P(X = 0|Z = 1)P(Y = 0|Z = 1)$$
(14)

$$P(X = 0, Y = 1|Z = 1) = \frac{8/45}{2/3} = 4/15$$

$$= P(X = 0|Z = 1)P(Y = 1|Z = 1)$$
(15)

$$P(X = 1, Y = 0|Z = 1) = \frac{2/15}{2/3} = 1/5$$

$$= P(X = 1|Z = 1)P(Y = 0|Z = 1)$$
(16)

$$P(X = 1, Y = 1|Z = 1) = \frac{4/45}{2/3} = 2/15$$

$$= P(X = 1|Z = 1)P(Y = 1|Z = 1)$$
(17)

So X is conditionally independent of Y given Z.

iii.

$$P(X = 0|X + Y > 0) = \frac{P(X = 0, X + Y > 0)}{P(X + Y > 0)}$$
$$= \frac{1/10 + 8/45}{1 - 1/15 - 4/15}$$
$$= 5/12$$