2015 School Year

Graduate School Entrance Examination Problem Booklet

Mathematics

Examination Time: 10:00 to 12:30

Instructions

- 1. Do not open this problem booklet until the start of the examination is announced.
- 2. If you find missing, misplaced, and/or unclearly printed pages in the problem booklet, ask the examiner.
- 3. Answer all of three problems appearing in this booklet, in Japanese or English.
- 4. You are given three answer sheets. You must use a separate answer sheet for each problem. You may continue to write your answer on the back of the answer sheet if you cannot conclude it on the front.
- 5. Fill the designated blanks at the top of each answer sheet with your examinee's number and the problem number you are to answer.
- 6. The blank pages are provided for rough work. Do not detach them from this problem booklet.
- 7. An answer sheet is regarded as invalid if you write marks and/or symbols and/or words unrelated to the answer on it.
- 8. Do not take either the answer sheets or the problem booklet out of the examination room.

Examinee's number	No.
-------------------	-----

Fill this box with your examinee's number.

(blank page for rough work)

Problem 1

Let A and b be defined as

$$A = \begin{pmatrix} -3 & 0 & 0 \\ -2 & -3 & 1 \\ 2 & -3 & -3 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

The partial derivative of a scalar-valued function f(x) with respect to $x = (x_1 \ x_2 \ x_3)^T$ is defined as

$$\frac{\partial}{\partial x}f(x) = \left(\frac{\partial}{\partial x_1}f(x) \ \frac{\partial}{\partial x_2}f(x) \ \frac{\partial}{\partial x_3}f(x)\right),$$

and a stationary point of f(x) is defined as x satisfying $\frac{\partial}{\partial x}f(x)=(0\ 0\ 0).$ x^T denotes the transpose of x. Answer the following questions .

- (1) Find the characteristic polynomial of A.
- (2) C is given as $C = A^5 + 9A^4 + 30A^3 + 36A^2 + 30A + 9I$ by using A and an identity matrix I. Calculate C.
- (3) Calculate the partial derivative of $x^T A x$ with respect to x.
- (4) Find a symmetric matrix \tilde{A} that satisfies equation $x^TAx = x^T\tilde{A}x$ for any vector x. Find eigenvalues $\lambda_1, \lambda_2, \lambda_3$ ($\lambda_1 \geq \lambda_2 \geq \lambda_3$), and eigenvectors v_1, v_2, v_3 . Choose the eigenvectors such that $V = (v_1 \ v_2 \ v_3)$ becomes an orthogonal matrix.
- (5) Prove that $x^T A x \leq 0$ holds for any real vector x.
- (6) Find a stationary point of function $g(x) = x^T A x + 2b^T x$.

Problem 2

Answer the following questions regarding curves on the xy-plane.

(1) Show that the foci of an ellipse:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \ (a > b > 0) \tag{*}$$

and those of a hyperbola:

$$\frac{x^2}{c^2} - \frac{y^2}{d^2} = 1 \ (c > d > 0) \tag{**}$$

are $(\pm\sqrt{a^2-b^2},0)$ and $(\pm\sqrt{c^2+d^2},0)$, respectively. Note that an ellipse (hyperbola) is a curve such that the sum (difference) of the distances from the foci to any point on the curve is constant.

(2) As for Eq. (*), consider the set E_u of ellipses such that $a^2 - b^2 = u^2$ (u is a positive constant). By writing the simultaneous equations that consist of Eq. (*) and the differential equation obtained by taking the derivative of Eq. (*) with respect to x, show that any ellipse in E_u satisfies

$$xyy'^{2} + (x^{2} - y^{2} - u^{2})y' - xy = 0,$$
 (***)

where
$$y' = \frac{\mathrm{d}y}{\mathrm{d}x}$$
.

- (3) As for Eq. (**), consider the set H_u of hyperbolae such that $c^2 + d^2 = u^2$. Show that any hyperbola in H_u satisfies Eq. (***).
- (4) Let C_u be the set of curves perpendicular to any ellipse in E_u . Let D_u be the set of curves obtained by removing from C_u the line x = 0 as well as all the curves including a point such that y' = 0. Find a differential equation that any curve in D_u satisfies.
- (5) Solve the differential equation that you found in Question (4). If necessary, rewrite the differential equation into a differential equation with respect to p with replacement such that $\alpha = x^2$, $\beta = y^2$, and $p = \frac{\mathrm{d}\beta}{\mathrm{d}\alpha}$.

Problem 3

Answer the following questions.

(1) Let X be a real-valued random variable. Let t be a real-valued variable. We define $\phi_X(t)$ for X as

$$\phi_X(t) = E_X[e^{tX}],$$

where $E_X[\cdot]$ denotes the expectation taken with respect to X. Supposing that $\phi_X(t)$ is finite in a neighborhood of t=0, give the mean and variance of X using $\phi_X'(0)$ and $\phi_X''(0)$. Here $\phi_X'(t)$ and $\phi_X''(t)$ denote the first- and second-order derivatives of $\phi_X(t)$ with respect to t, respectively.

(2) For a sequence of mutually independent random variables: $X_1, X_2, ..., X_N$, suppose that each X_j is identically generated according to the 1-dimensional normal distribution with mean μ and variance σ^2 . That is, the probability density function for each X_j is given by

$$p(X_j = x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

Then calculate $\phi_{X_i}(t)$. Also find a probability distribution according to which

$$Y = X_1 + X_2 + \cdots + X_N$$

is generated. You can use the fact that for random variables Z and W with $\phi_Z(t) = \phi_W(t)$, the probability distribution of Z is the same as that of W.

(3) Suppose that $N \in \{1, 2, ..., \infty\}$ as in Question (2) is generated according to the geometric distribution with parameter θ (0 < θ < 1) for which the probability function is given by

$$P(N = n) = (1 - \theta)^{n-1}\theta.$$

For
$$Y = X_1 + X_2 + \cdots + X_N$$
, define $\phi_Y(t)$ by

$$\phi_Y(t) = E_Y[e^{tY}].$$

Then calculate $\phi_Y(t)$ and express it using $\phi_{X_j}(t)$. Since $\phi_{X_j}(t)$ does not depend on j, you can write it as $\phi_X(t)$.

- (4) Calculate the mean and variance of Y in Question (3).
- (5) For given $\xi(> E_Y[Y])$, give an upper bound on the probability that Y in Question (3) exceeds ξ , as a function of μ , σ , θ , and ξ (not all of μ , σ , θ , and ξ have to be used).

4

(blank page for rough work)

(blank page for rough work)