Лекция 3

Внешние прерывания

Понятие прерывания

Микроконтроллер Прерывание (interrupt) – событие, требующие немедленной реакции со Прерываемая стороны процессора. Реакция состоит в Прерывающая программа программа том, что процессор прерывает обработку (обработчик) текущей программы (прерываемой Запрос программы) и переходит к выполнению прерывания некоторой другой программы (прерывающей программы), специально предназначенной для данного события. По завершении этой программы процессор возвращается к выполнению прерванной программы.

Прерывания бывают внутренними и внешними.

Внешние прерывания микроконтроллера ATtiny2313

PDIP/SOIC

Глобальное разрешение и глобальный запрет прерываний в регистре статуса SREG

Регистр управления внешними прерываниями микроконтроллера - MCUCR

Биты 1 и 0 - ISC01, ISC00: для настройки прерывания INT0

Биты 3 и 2 - ISC11, ISC10 : для настройки прерывания INT1

Режимы настройки ВП INT0

Биты регистра		
MCUCR		Описание
ISC01	ISC00	
0	0	ВП вызывается по низкому уровню
0	1	ВП вызывается по изменению логического уровня на выводе
1	0	ВП вызывается по заднему (спадающему) фронту
1	1	ВП вызывается по переднему (нарастающему) фронту

Режимы настройки ВП INT1

Биты регистра			
MCUCR		Описание	
ISC11	ISC10		
0	0	ВП вызывается по низкому уровню	
0	1	ВП вызывается по изменению логического уровня на выводе	
1	0	ВП вызывается по заднему (спадающему) фронту	
1	1	ВП вызывается по переднему (нарастающему) фронту	

Регистр маски прерываний – GIMSK

Бит **7 - INT1**: Разрешение внешнего Прерывания **INT1**Вызов прерывания на выводе INT1 разрешен, если бит INT1 текущего регистра и бит I в регистре SREG установлены в лог. 1.
Биты ISC11 и ISC10 в регистре MCUCR определяют в каком режиме будет считываться сигнал прерывания на выводе INT1.

Бит 5 - PCIE: Разрешение прерывания по изменению состояния выводов

Если бит PCIE установлен в единицу, и при этом установлен Флаг I регистра SREG, то прерывания по изменению состояния любого контакта разрешено.

Какие именно контакты будут вызывать прерывание, определяется индивидуально установкой регистра PCMSK.

Регистр Маски прерываний по изменению на любом из контактов PCINT7..0 - PCMSK

Каждый бит из PCINT7..0 отвечает за свой вывод.

Установка какого-нибудь бита из PCINT7..0 разрешает соответствующему I/O-выводу работать в качестве источника прерывания, при условии, что установлен бит PCIE в GIMSK.

Если какого-нибудь бит из PCINT7..0 очищен (ноль), то соответствующий I/O-вывод не будет работать в качестве источника прерывания.

Регистр флагов внешних прерываний – EIFR

Когда происходит изменение логического уровня на выводе INT1, то флаг INTF1 устанавливается в 1, благодаря чему вызывается прерывание. Этот флаг очищается аппаратно при запуске процедуры обработки прерывания.

Бит 6 – INTF0: Флаг внешнего прерывания INT0

Бит 5 - PCIF: Флаг прерывания по изменению состояния одного из выводов

Пример структуры программного кода для обработки внешних прерываний

```
#include <avr/io.h>
#include <avr/interrupt.h>
ISR(INT0_vect) //обработка прерывания INT0
// или SIGNAL(SIG_INTERRUPT0)
{ cli(); //запрещение прерываний на время обработки прерывания
 // подпрограмма, которая должна выполнятся при срабатывании прерывания INT0
 sei(); //разрешение прерываний
ISR(INT1_vect) //обработка прерывания INT1
// или SIGNAL(SIG_INTERRUPT1)
{ /*подпрограмма, которая должна выполнятся при срабатывании прерыв. INT1*/ }
int main(void)
 GIMSK=0b11000000; //разрешаем прерывание INT0 и INT1
 MCUCR=0b00001111;
 sei(); //Разрешение прерываний глобально по всей программе
 while(1)
                                                                            11
 { /*код программы, которая будет выполняться в основном цикле*/ }
```

```
#include <avr/io.h>
 2
    #include <avr/interrupt.h> //библиотека прерываний
 3
 4
    // подпрограмма обработки ВП INT0
    ISR(INT0 vect)
 6
 7
         // включение/выключение светодиода
8
9
10
         PORTB = PORTB ^{(1 << 2)};
11
    int main(void)
12
13
         // настройка вывода РВ2 на вывод данных
14
         DDRB = (1 << 2);
15
         PORTB = 0;
16
17
         //настройка ВП INT0 (передний фронт)
18
         MCUCR = 0b11;
19
20
         //разрешение прерывания INT0
21
         GIMSK = (1 << 6);
22
23
         // глобальное разрешение прерываний
24
         sei();
25
26
         while(1)
27
28
                             PD0/RXD
                                                   PB4/OC1B/PCINT4
                             PD1/TXD
                                             PB5/MOSI/DI/SDA/PCINT5
                             PD2/INTD/XCK/CKOUT
                                                PB6/MISO/DO/PCINT6
                             PD3/INT1
                                               PB7/USCK/SCL/PCINT7
```

PD4/T0 PD5/T1/OC0B PD6/ICP

ATTINY2313

Пример программы, демонстрирующей работу ВП INT0: включение/выключение светодиода (вывод микроконтроллера PB2) нажатием кнопки (вывод микроконтроллера INT0).

D₁

LED-YELLOW

<TEXT>

R1

200

«TEXT»

=14

=15

=16 =17

₩18

19

```
#include <avr/interrupt.h> //библиотека прерываний
    // подпрограмма обработки ВП INT1
    ISR(INT1 vect)
                                                          Пример программы,
 6
                                                          демонстрирующей работу ВП
        // включение/выключение светодиода
        PORTB = PORTB ^(1 << 2);
                                                          INT1: включение/выключение
                                                          светодиода (вывод
10
11
    int main(void)
                                                           микроконтроллера РВ2)
12 - {
                                                          нажатием кнопки (вывод
13
        // настройка вывода РВ2 на вывод данных
                                                          микроконтроллера INT1).
        DDRB = (1 << DDB2);
14
15
16
        //настройка ВП INT1 (задний фронт)
17
        MCUCR = (1 << ISC11);
18
19
        //разрешение прерывания INT1
20
        GIMSK = (1 << INT1);
21
22
        // глобальное разрешение прерываний
23
        sei();
24
                                                        IO/PCINTO
                                                                                     D1
                                                                13
                                                                        R1
25
        while(1)
                                                        11/PCINT1
                                                                14
                                                        A/PCINT2
26
                                                                =15
                                                                        200
                                                        A/PCINT3
27
                                                                =16
                                                                                     LED-YELLOW
                                                                        KTEXT>
                                                        B/PCINT4
                                                                =17
                                                                                     <TEXT>
                             PD1/TXD
                                             PB5/MOSI/DI/SDA/PCINT5
                                                                18
                             PD2/INT0/XCK/CKOUT
                                               PB6/MISO/DO/PCINT6
                                                                19
                             PD3/INT1
                                              PB7/USCK/SCL/PCINT7
                             PD4/T0
                        9■
                            PD5/T1/OC0B
                             PD6/ICP
                            ATTINY2313
```

kTEXT>

#include <avr/io.h>

Пример программы, демонстрирующей работу ВП INT0 и INT1: вкл./выкл. светодиода (вывод PB2) нажатием кнопки (вывод INT0) и вкл./выкл.

светодиода (вывод PB3) нажатием кнопки (вывод INT1).

```
#include <avr/io.h>
    #include <avr/interrupt.h> //библиотека
    // подпрограмма обработки ВП INT0
    ISR(INT0 vect)
 6 +
        // включение/выключение светодиода
 8
        PORTB = PORTB ^{(1 << 2)};
 9
10
11
    // подпрограмма обработки ВП INT1
12
    ISR(INT1 vect)
13 -
        // включение/выключение светодиода
14
15
        PORTB ^= (1 << 3);
16
```

PD1/TXD

PD3/INT1

PD5/T1/OC0B

PD4/TO

PD6/ICP

ATTINY2313 <TEXT>

PD2/INT0/XCK/CKOUT

```
int main(void)
18
19 - {
20
        // настройка вывода РВ2 на вывод данных
        DDRB = (1 << DDB2) | (1 << DDB3);
21
22
23
        //настройка ВП INTO (передний фронт)
24
        MCUCR = (1 << ISC00) | (1 << ISC01);
25
        //настройка ВП INT1 (передний фронт)
26
        MCUCR |= (1 << ISC10) | (1 << ISC11);
27
28
        //разрешение прерываний INTO и INT1
29
        GIMSK = (1 << INT0) | (1 << INT1);
30
31
        // глобальное разрешение прерываний
32
        sei();
33
34
        while(1)
35
36
PB1/AIN1/PCINT1
                      RΙ
               14
```



```
#include <avr/io.h>
    #include <avr/interrupt.h>
 3
 4
    // подпрограмма обработки
    //не настраиваемого прерывания
    ISR(PCINT vect)
 7 -
 8
        // включение (передний фронт) и
        // выключение (задний фронт) светодиодов
10
        PORTB = PORTB ^ ((1 << PB2) | (1 << PB3));
11
12
13
    int main(void)
14 -
15
        // настройка выводов РВ2 и РВ3
16
        DDRB = (1 << DDB2) | (1 << DDB3);
17
18
        // разрешение ВП на выводах
19
        // PCINTO u PCINT1
20
        PCMSK = 0b11;
21
22
        //разрешение
23
        //не настраиваемого
24
        //прерывания
25
                                  U1
        GIMSK = (1 << PCIE);
26
27
        sei();
28
29
        while(1)
30
```

Пример программы, демонстрирующей работу не настраиваемого ВП: вкл. и выкл. светодиодов (вывода РВ2 и РВ3) нажатием кнопок (вывода РСІNТ0 и РСІNТ1).


```
#include <avr/io.h>
    #include <avr/interrupt.h>
   // подпрограмма обработки
    //не настраиваемого прерывания
    ISR(PCINT vect)
       if (PINB & (1 << PINB0))
            PORTB ^= (1 << PB2);
10
11
      if (PINB & (1 << PINB1))
12
            PORTB ^= (1 << PB3);
13
14
    int main(void)
15
16 - {
        DDRD = 0xFF;
17
18
19
        // настройка выводов РВ2 и РВ3
        DDRB = (1 << DDB2) | (1 << DDB3);
20
21
22
        // разрешение ВП на выводах
23
        // PCINTO u PCINT1
        PCMSK = (1 << PCINT0) | (1 << PCINT1);
24
25
26
        //разрешение не настраиваемого прерывания
27
        GIMSK = (1 << PCIE);
28
        // глобальное разрешение прерываний
29
30
        sei();
31
32
        while(1)
33
```

PD5/T1/OC0B PD6/ICP

ATTINY2313

kTEXT>

Пример программы, демонстрирующей работу не настраиваемого ВП: вкл./выкл. светодиода (вывод РВ2) нажатием кнопки (вывод РСІNТ0) и вкл./выкл. светодиода (вывод РВ3) нажатием кнопки (вывод РСІNТ1).

