COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

April 5, 2023

Lecture 26: Reductions 1

Regular $\not\subseteq$ Context-free $\not\subseteq$ Decidable $\not\subseteq$ Turing Recongizable

Undecidability

Regular $\not\subseteq$ Context-free $\not\subseteq$ Decidable $\not\subseteq$ Turing Recongizable

Undecidability

$$A_M = \{\langle M, w \rangle \mid w \in L(M)\}$$

$$E_M = \{ \langle M \rangle \mid L(M) = \emptyset \}$$

$$EQ_M = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$

Regular $\not\subseteq$ Context-free $\not\subseteq$ Decidable $\not\subseteq$ Turing Recongizable

Undecidability

$$A_M = \{ \langle M, w \rangle \mid w \in L(M) \}$$

$$E_M = \{ \langle M \rangle \mid L(M) = \emptyset \}$$

$$EQ_M = \{ \langle M_1, M_2 \rangle \mid L(M_1) = L(M_2) \}$$

• A_{TM} is undecidable.

Regular $\not\subseteq$ Context-free $\not\subseteq$ Decidable $\not\subseteq$ Turing Recongizable

Undecidability

$$A_{M} = \{\langle M, w \rangle \mid w \in L(M)\}$$

$$E_{M} = \{\langle M \rangle \mid L(M) = \emptyset\}$$

$$EQ_{M} = \{\langle M_{1}, M_{2} \rangle \mid L(M_{1}) = L(M_{2})\}$$

- $ightharpoonup A_{TM}$ is undecidable.
- Universal Turing Machines.

Definition

A reduction from problem P_1 to problem P_2 is an algorithm to convert instances of a problem P_1 to instances of problem P_2 that have same answers. In this case we say that P_2 is as hard as P_1 .

Definition

A reduction from problem P_1 to problem P_2 is an algorithm to convert instances of a problem P_1 to instances of problem P_2 that have same answers. In this case we say that P_2 is as hard as P_1 .

Theorem

If there is a reduction from problem P_1 to problem P_2 , then

- If P_1 is undecidable then so is P_2 .
- If P_1 is non-RE then so is P_2 .

Definition

A reduction from problem P_1 to problem P_2 is an algorithm to convert instances of a problem P_1 to instances of problem P_2 that have same answers. In this case we say that P_2 is as hard as P_1 .

Theorem

If there is a reduction from problem P_1 to problem P_2 , then

- If P_1 is undecidable then so is P_2 .
- If P_1 is non-RE then so is P_2 .
- If L is decidable then so is \overline{L} .

Definition

A reduction from problem P_1 to problem P_2 is an algorithm to convert instances of a problem P_1 to instances of problem P_2 that have same answers. In this case we say that P_2 is as hard as P_1 .

Theorem

If there is a reduction from problem P_1 to problem P_2 , then

- If P_1 is undecidable then so is P_2 .
- If P_1 is non-RE then so is P_2 .
- If L is decidable then so is \overline{L} .
- If L and \overline{L} are Turing recognizable then they are both decidable.

Reducing A_{TM} to another problem to prove undecidibility.

$$\mathsf{Halt} = \{(M, w) \mid M \text{ halts on } w\}$$

Reducing A_{TM} to another problem to prove undecidibility.

$$\mathsf{Halt} = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Reducing A_{TM} to another problem to prove undecidibility.

$$\mathsf{Halt} = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable.

Reducing A_{TM} to another problem to prove undecidibility.

$$\mathsf{Halt} = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let ${\cal H}$ be the TM deciding Halt.

Reducing A_{TM} to another problem to prove undecidibility.

$$\mathsf{Halt} = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let ${\cal H}$ be the TM deciding Halt.

 \mathcal{A} : Run \mathcal{H} on (M, w).

Reducing A_{TM} to another problem to prove undecidibility.

$$\mathsf{Halt} = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let ${\cal H}$ be the TM deciding Halt.

 \mathcal{A} : Run \mathcal{H} on (M, w). If it rejects then reject,

Reducing A_{TM} to another problem to prove undecidibility.

$$\mathsf{Halt} = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let ${\cal H}$ be the TM deciding Halt.

 \mathcal{A} : Run \mathcal{H} on (M, w). If it rejects then reject, else do as per M on w.

Reducing A_{TM} to another problem to prove undecidibility.

$$\mathsf{Halt} = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let \mathcal{H} be the TM deciding Halt.

 \mathcal{A} : Run \mathcal{H} on (M, w). If it rejects then reject, else do as per M on w.

 ${\mathcal A}$ accepts (M,w) if M accepts w

Reducing A_{TM} to another problem to prove undecidibility.

$$\mathsf{Halt} = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let \mathcal{H} be the TM deciding Halt.

 \mathcal{A} : Run \mathcal{H} on (M, w). If it rejects then reject, else do as per M on w.

 ${\mathcal A}$ accepts (M,w) if M accepts w and rejects it if either M rejects w

Reducing A_{TM} to another problem to prove undecidibility.

$$\mathsf{Halt} = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let ${\cal H}$ be the TM deciding Halt.

 \mathcal{A} : Run \mathcal{H} on (M, w). If it rejects then reject, else do as per M on w.

 ${\mathcal A}$ accepts (M,w) if M accepts w and rejects it if either M rejects w or M loops forever on w.

Reducing A_{TM} to another problem to prove undecidibility.

$$\mathsf{Halt} = \{(M, w) \mid M \text{ halts on } w\}$$

We would like to show that Halt is undecidable.

Assume that Halt is decidable. Let \mathcal{H} be the TM deciding Halt.

 \mathcal{A} : Run \mathcal{H} on (M, w). If it rejects then reject, else do as per M on w.

 ${\mathcal A}$ accepts (M,w) if M accepts w and rejects it if either M rejects w or M loops forever on w.

 ${\mathcal H}$ decides Halt if and only if ${\mathcal A}$ decides A_{TM} .

The halting problem

Lemma

The halting problem, Halt = $\{(M, w) \mid M \text{ halts on } w\}$, is undecidable.

The halting problem

Lemma

The halting problem, Halt = $\{(M, w) \mid M \text{ halts on } w\}$, is undecidable.

If Halt is decidable then ${\cal A}$ decides A_{TM}

The halting problem

Lemma

The halting problem, Halt = $\{(M, w) \mid M \text{ halts on } w\}$, is undecidable.

If Halt is decidable then A decides A_{TM} , which is a contradiction.

Lemma

The emptiness problem for TMs, $E_{TM} = \{\langle M \rangle \mid L(M) = \emptyset \}$, is undecidable.

Assume for the sake of contradiction that it is decidable.

Lemma

The emptiness problem for TMs, $E_{TM} = \{\langle M \rangle \mid L(M) = \emptyset \}$, is undecidable.

Assume for the sake of contradiction that it is decidable. Let T be a machine that decides E_{TM} .

Lemma

The emptiness problem for TMs, $E_{TM} = \{\langle M \rangle \mid L(M) = \emptyset \}$, is undecidable.

Assume for the sake of contradiction that it is decidable. Let T be a machine that decides E_{TM} .

Let $T_{M,w}'$ be as follows:

Lemma

The emptiness problem for TMs, $E_{TM} = \{\langle M \rangle \mid L(M) = \emptyset \}$, is undecidable.

Assume for the sake of contradiction that it is decidable. Let T be a machine that decides E_{TM} .

Let $T'_{M,w}$ be as follows:

Lemma

The emptiness problem for TMs, $E_{TM} = \{\langle M \rangle \mid L(M) = \emptyset \}$, is undecidable.

Assume for the sake of contradiction that it is decidable. Let T be a machine that decides E_{TM} .

```
Let T_{M,w}' be as follows:
```

```
On input x  \{ \\ \text{if } w \neq x \text{ then reject} \\ \text{else do as per } M \\ \} \\ L(T'_{M,w}) = \left\{ \begin{array}{ll} \{w\} & \text{if } M \text{ acc } w \\ \varnothing & \text{otherwise} \end{array} \right.
```

Lemma

The emptiness problem for TMs, $E_{TM} = \{\langle M \rangle \mid L(M) = \emptyset \}$, is undecidable.

Assume for the sake of contradiction that it is decidable. Let T be a machine that decides E_{TM} .

```
Let T'_{M,w} be as follows:
```

Let A be as follows:

```
On input x \{  \text{if } w \neq x \text{ then reject}   \text{else do as per } M \} \\ L(T'_{M,w}) = \left\{ \begin{array}{ll} \{w\} & \text{if } M \text{ acc } w \\ \varnothing & \text{otherwise} \end{array} \right.
```

Lemma

The emptiness problem for TMs, $E_{TM} = \{\langle M \rangle \mid L(M) = \emptyset \}$, is undecidable.

Assume for the sake of contradiction that it is decidable. Let T be a machine that decides E_{TM} .

Let A be as follows:

```
Let T'_{M,w} be as follows:
On input x
                                                            On input M, w
                                                                    Create machine T'_{M.w}.
       if w \neq x then reject
                                                                    If T on \langle T'_{M,w} \rangle rejects
       else do as per M
                                                                    then accept
L(T'_{M,w}) = \begin{cases} \{w\} & \text{if } M \text{ acc } w \\ \emptyset & \text{otherwise} \end{cases}
                                                                    else reject
```

This shows that if E_{TM} is decidable then A_{TM} is decidable.

Lemma

The equality problem for TMs, $EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}$, is undecidable.

Lemma

The equality problem for TMs, $EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}$, is undecidable.

Assume for the sake of contradiction that EQ_{TM} is decidable. Let M be the TM for it.

Lemma

The equality problem for TMs, $EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}$, is undecidable.

Assume for the sake of contradiction that EQ_{TM} is decidable. Let M be the TM for it.

Let M_1 be a machine that rejects all strings. That is, $L(M_1) = \emptyset$.

Lemma

The equality problem for TMs, $EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}$, is undecidable.

Assume for the sake of contradiction that EQ_{TM} is decidable. Let M be the TM for it.

Let M_1 be a machine that rejects all strings. That is, $L(M_1) = \emptyset$.

Given a machine M_2 as an input, use M to check whether $L(M_2)$ = $L(M_1)$

Lemma

The equality problem for TMs, $EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}$, is undecidable.

Assume for the sake of contradiction that EQ_{TM} is decidable. Let M be the TM for it.

Let M_1 be a machine that rejects all strings. That is, $L(M_1) = \emptyset$.

Given a machine M_2 as an input, use M to check whether $L(M_2) = L(M_1)$, i.e. to check whether $L(M_2) = \emptyset$ or not.

Equality for TM

Lemma

The equality problem for TMs, $EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}$, is undecidable.

Assume for the sake of contradiction that EQ_{TM} is decidable. Let M be the TM for it.

Let M_1 be a machine that rejects all strings. That is, $L(M_1) = \emptyset$.

Given a machine M_2 as an input, use M to check whether $L(M_2) = L(M_1)$, i.e. to check whether $L(M_2) = \emptyset$ or not.

This implies that if EQ_{TM} is decidable then E_{TM} is decidable.

Equality for TM

Lemma

The equality problem for TMs, $EQ_{TM} = \{(M_1, M_2) \mid L(M_1) = L(M_2)\}$, is undecidable.

Assume for the sake of contradiction that EQ_{TM} is decidable. Let M be the TM for it.

Let M_1 be a machine that rejects all strings. That is, $L(M_1) = \emptyset$.

Given a machine M_2 as an input, use M to check whether $L(M_2) = L(M_1)$, i.e. to check whether $L(M_2) = \emptyset$ or not.

This implies that if EQ_{TM} is decidable then E_{TM} is decidable.

But from the previous result we know that E_{TM} is undecidable.

Lemma

 $REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular} \}$ is undecidable.

Lemma

 $REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular} \}$ is undecidable.

Assume for the sake of contradiction that a TM R is a TM that decides $\mathsf{REG}_{TM}.$

Lemma

 $REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular} \}$ is undecidable.

Assume for the sake of contradiction that a TM R is a TM that decides REG_{TM} .

Let $R_{M,w}^{\prime}$ be s.t.

$$L(R'_{M,w}) = \left\{ \begin{array}{cc} \{0^n 1^n \mid n \ge 0\} & \text{ if } M \text{ rej } w \\ \Sigma^* & \text{ if } M \text{ acc } w \end{array} \right.$$

Lemma

 $REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular} \}$ is undecidable.

Assume for the sake of contradiction that a TM R is a TM that decides $\mathsf{REG}_{TM}.$

Let $R_{M,w}^{\prime}$ be s.t.

$$L(R'_{M,w}) = \left\{ \begin{array}{cc} \{0^n 1^n \mid n \ge 0\} & \text{if } M \text{ rej } w \\ \Sigma^* & \text{if } M \text{ acc } w \end{array} \right.$$

If we get such an $R_{M,w}^{\prime}$ we can design A as a follows.

Lemma

 $REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular} \}$ is undecidable.

Assume for the sake of contradiction that a TM R is a TM that decides $\mathsf{REG}_{TM}.$

Let $R_{M,w}^{\prime}$ be s.t.

$$L(R'_{M,w}) = \left\{ \begin{array}{cc} \{0^n 1^n \mid n \ge 0\} & \text{if } M \text{ rej } w \\ \Sigma^* & \text{if } M \text{ acc } w \end{array} \right.$$

If we get such an $R_{M,w}^{\prime}$ we can design A as a follows.

Lemma

 $REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular} \}$ is undecidable.

Assume for the sake of contradiction that a TM R is a TM that decides $\mathsf{REG}_{TM}.$

Let $R_{M,w}^{\prime}$ be s.t.

Let A be as follows:

$$L(R'_{M,w}) = \begin{cases} \{0^n 1^n \mid n \ge 0\} & \text{if } M \text{ rej } w \\ \Sigma^* & \text{if } M \text{ acc } w \end{cases}$$

If we get such an $R_{M,w}^{\prime}$ we can design A as a follows.

Lemma

 $REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular} \}$ is undecidable.

Assume for the sake of contradiction that a TM R is a TM that decides $\mathsf{REG}_{TM}.$

Let $R'_{M,w}$ be s.t.

$$L(R'_{M,w}) = \begin{cases} \{0^n 1^n \mid n \ge 0\} & \text{if } M \text{ rej } w \\ \Sigma^* & \text{if } M \text{ acc } w \end{cases}$$

If we get such an $R'_{M,w}$ we can design A as a follows.

Let A be as follows:

Lemma

 $REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular} \}$ is undecidable.

Lemma

 $REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular} \}$ is undecidable.

Assume for the sake of contradiction that a TM R be a TM that decides $\mathsf{REG}_{TM}.$

Let $R_{M,w}'$ be as follows:

Lemma

```
REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular} \} is undecidable.
```

Assume for the sake of contradiction that a TM R be a TM that decides $\mathsf{REG}_{TM}.$

```
Let R'_{M,w} be as follows:
```

```
On input x {  \{ & \text{if } x = 0^n 1^n \\ & \text{then accept} \\ & \text{else run } M \text{ on } w \text{ and} \\ & \text{if } M \text{ acc } w \text{ then accept} \}
```

Lemma

```
REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular} \} is undecidable.
```

Assume for the sake of contradiction that a TM R be a TM that decides $\mathsf{REG}_{TM}.$

```
Let R_{M,w}^{\prime} be as follows: Let A be as follows:
```

```
On input x {  \{ & \text{if } x = 0^n 1^n \\ & \text{then accept} \\ & \text{else run } M \text{ on } w \text{ and} \\ & \text{if } M \text{ acc } w \text{ then accept} \}
```

Lemma

```
REG_{TM} = \{\langle M \rangle \mid L(M) \text{ is regular} \} is undecidable.
```

Assume for the sake of contradiction that a TM R be a TM that decides $\mathsf{REG}_{TM}.$

```
Let A be as follows:
```