σ -Algebras

Morten Tryti Berg and Isak Cecil Onsager Rukan.

March 22, 2024

Definition 3.4 (σ -Algebra). A family \mathscr{A} of subsets of X with:

- (i) $X \in \mathcal{A}$,
- (ii) $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$,
- (iii) $(A_n)_{n\in\mathbb{N}}\in\mathscr{A}\Rightarrow\bigcup_{n\in\mathbb{N}}$

Theorem 3.5 (and Definition).

- (i) The intersection of arbitrarily many σ -algebras in X is againg a σ -algebra in X.
- (ii) For every system of sets $p \subset \mathcal{P}(X)$ there exists a smallest σ -algebra containing.

 This is the σ -algebra generated by p, denoted $\sigma(p)$, and $\sigma(p)$ is called its generator.

Definition 3.6 (Borel). The σ -algebra $\sigma(\mathcal{O})$ generated by the open sets $\mathcal{O} = \mathcal{O}_{\mathbb{R}^n}$ of \mathbb{R}^n is called **Borel** σ -algebra, and its members are called **Borel sets** or **Borel measurable sets**.