

Model Sensitivity and Variables for HPTPC

Patrick Dunne - Imperial College London

Overview

- Will present a preliminary study on 2p2h model sensitivity of the HPTPC
- Previous presentation on Single Transverse Variables (STV)
- ▶ Will show more information on hadron kinematics and new transverse variables

Single Transverse Variables - Reminder and Naming

- ▶ Use hadronic information to estimate nuclear effects
- Variables are all used frequently at hadron colliders
- Naming that is emerging in neutrino physics is different
- In hadron colliders: $\delta p_T = p_T^{miss}$, $\delta \phi_T = \pi \Delta \phi(lep, had)$, $\delta \alpha_T = \pi \Delta \phi(lep, p_T^{miss})$
- Personally find hadron collider naming more intuitive

Other Transverse Variables - Reminder

▶ Particularly for p_T^{miss} context is important

▶ Both events have the same $p_T^{miss}\delta p_T$ but on the right this is clearly more significant compared to uncertainties on visible object momenta

HPTPC Study - Reminder

- HPTPC-like and ND280-like momentum thresholds (below) and efficiencies (see Mark's talk 10th October) were applied to ND280 MC truth
- Same as shown previously
- Then calculated transverse variables
- Only make sense in samples with a proton or a pion

Particle	ND280 Threshold/MeV	HPTPC Threshold/MeV
μ	100	15
π	120	16
р	450	60
e	100	1

HPTPC Study

- Truth information is used to determine which events truly belong in the sample ("correct"), and which are "fakes"
- Distributions of transverse variables are shown for both
- Have seen previously that transverse variables look similar in ND280 and HPTPC
- Will show today effect of 2p2h model on variable shapes in ND280 and HPTPC
- 2p2h Describes interactions between neutrino and 2 nucleons
- MC is generated with Nieves model
- Use reweighting to study Martini model

$CC0\pi1p$

- Look at sample with 1 proton and no pions
- Compare detectors (N events is arbitrary)

$CC0\pi1p$

▶ Look at sample with 1 proton and no pions

Discussion of 2p2h

- ▶ Results from CC0π1p don't show much discriminating power from HPTPC
- ► Expect there may be more power in $CC0\pi Np$ because Martini and Nieves predict different proton multiplicities
- Caveat, reweighting is only done as a function of E_{ν} so may not accurately describe hadron kinematics

$CC0\pi Np$

- ▶ Look at sample with >=1 proton and no pions
- Compare detectors (N events is arbitrary)

$CC0\pi Np$

► Look at sample with >=1 proton and no pions

- ▶ HPTPC may have some sensitivity to interaction model
- Slightly better than ND280 for the chosen parameters in terms of difference in rate
- Need to choose the right sample
- ightharpoonup Caveat: Reweighting that was done is only a function of E_{ν} so may not accurately describe hadron kinematics
- ► Next step is to look at fake data studies for more models and see if 2p2h reweighting can be improved