Practice Set 4

Sanket Deshpande

Problem 1: Optical Pumping

Figure 1: (a) (b) (c)

Figure 2: (b) (c) contd...

Problem 2: Laser Spectroscopy of Cs-133

a. Fig. 3 illustrates the hyperfine levels for the given transition of Cs-133. The red and blue group each refer to a doppler broadened group.

Figure 3: Hyperfine levels and allowed transitions for D-2 line of Cs-133

b. Identifying the peaks

Identifier	Relative Frequency [MHz]	Transition
A	0	$F = 4 \rightarrow F' = 3$
В	100.7	crossover $F = 4 \rightarrow F' = 3 \& F = 4 \rightarrow F' = 4$
С	201.5	$F = 4 \to F' = 4$
D	226.5	crossover $F = 4 \rightarrow F' = 3 \& F = 4 \rightarrow F' = 5$
Е	327.2	crossover $F = 4 \rightarrow F' = 4 \& F = 4 \rightarrow F' = 5$
F	452.9	$F = 4 \to F' = 5$
a	0	$F = 3 \to F' = 2$
b	75.8	crossover $F = 3 \to F' = 2 \& F = 3 \to F' = 3$
c	151.5	$F = 3 \rightarrow F' = 3$
d	176.5	crossover $F = 3 \rightarrow F' = 2 \& F = 3 \rightarrow F' = 4$
е	252.2	crossover $F = 3 \rightarrow F' = 3 \& F = 3 \rightarrow F' = 4$
f	353.0	$F = 3 \to F' = 4$

c. The following formula was derived in Lec #13 for hyperfine energy splittings:

$$\Delta E_{HFS} = \frac{A}{2} [F(F+1) - j(j+1) - I(I+1)]$$

and, if we choose F appropriately, we can write:

$$\Delta E(F \to F + 1) = \Delta E(F - 1 \to F)$$

therefore, we can write:

$$\Delta E(F \to F + 1) = \Delta E_{HFS}(F) - \Delta E_{HFS}(F - 1)$$

$$\Delta E(F \to F + 1) = \frac{A}{2} [F(F + 1) - j(j + 1) - I(I + 1)] - \frac{A}{2} [(F - 1)F - j(j + 1) - I(I + 1)]$$

$$\Delta E(F \to F + 1) = A.F$$

Here, $A = A_{n,l,j}$.

In the $6^2S_{1/2}$ state, the transition between F=3 and F=4 is denoted by $\nu_{3,4} = 9.192631770$ GHz. Hence:

$$\begin{split} h\nu_{3,4} &= A_{6^2S_{1/2}} \times F \\ A_{6^2S_{1/2}} &= \frac{h \times 9.192631770~GHz}{4} \\ A_{6^2S_{1/2}} &= h \times 2.2981579425~GHz \end{split}$$

In the $6^2P_{3/2}$ state, the transition between F=3 and F=4 is denoted by $\nu_{3,4}=201.287$ MHz. Hence:

$$\begin{split} h\nu_{3,4} &= A_{6^2P_{3/2}} \times F \\ A_{6^2P_{3/2}} &= \frac{h \times 201.287 \ MHz}{4} \\ A_{6^2P_{3/2}} &= h \times 50.32175 \ MHz \end{split}$$

d. Using the reference document, we can obtain the value of ω_o ; and the $\Delta\omega_D$ for this spectrum is approximated as the $\Delta\nu=A$ to D=452.9 MHz. We use these values in the equation derived in Lec # 21, slide 22:

$$T = \frac{\Delta\omega_D^2 c^2 m_{atom}}{8 \ln 2 k_B \omega_o^2}$$
$$T = 430.3642 K$$