

Algoritma Supervised dan UnsupervisedLearning:

	Supervised Learning	Unsupervised Learning
	Linear Regression	K-Means
•	Decision Tree and Random Forest	 Hierarchical Clustering
•	Naive Bayes Classifier	DBSCAN
	Nearest Neighbour Classifier (KNN)	Association Rule
	 Artificial Neural Network 	Apriori Algorithm
	Support Vector Machine (SVM)	

Metode Klasifikasi Nearest Neighbor (K-NN)?

APA ITU K-NEAREST NEIGHBORS?

- Termasuk ke dalam pembelajaran supervised learning atau ada kelas output
- Menggunakan distance function atau similarity metric
- Bisa dipakai untuk permasalahan klasifikasi dan regresi
- Digunakan untuk mengklasifikasi atau memprediksi suatu kelas tertentu berdasarkan kelas mayoritas ketetanggaan terdekat.

BAGAIMANA PENERAPAN K-NN?

- Pendekatan untuk mencari kasus dengan menghitung kedekatan antara kasus baru dengan kasus lama
- Berdasarkan pada pencocokan bobot dari sejumlah fitur yang ada
- Misalkan: akan dicari solusi terhadap seorang pasien baru dengan menggunakan solusi dari pasien lama
- Untuk mencari kasus pasien mana yang akan digunakan, maka dihitung kedekatan kasus pasien baru dengan semua kasus pasien lama
- Kasus pasien lama dengan kedekatan terbesarlah yang akan diambil solusinya untuk digunakan pada kasus pasien baru

Contoh dataset yang dapat digunakan pada KNN

Input variabel Output/Class

Cuaca	Angin	Keputusan Main
Cerah	Kencang	Tidak
Mendung	Lemah	Ya
Hujan	Lemah	Ya
Cerah	Kencang	Ya
Cerah	Kencang	Ya
Mendung	Kencang	Ya
Hujan	Kencang	Tidak
Hujan	Lemah	Tidak
Cerah	Lemah	Ya
Hujan	Kencang	Ya
Cerah	Kencang	Tidak
Mendung	Lemah	Ya
Mendung	Lemah	Ya
Hujan	Kencang	Tidak

Flowchart Algoritma K-NN

- K pada K-NN terkait dengan jumlah tetangga terdekat yang dipilih
- Nilai ini harus ditentukan di awal
- Umumnya K yang dipilih berjumlah ganjil untuk menghindari munculnya jumlah jarak yang sama
- Umumnya nilai K akan bertambah sebanding dengan jumlah dataset
- Nilai K yang baik dapat dipilih dengan optimasi parameter menggunakan cross validation

Cuaca	Angin	Keputusan Main
Cerah	Kencang	Tidak
Mendung	Lemah	Ya
Hujan	Lemah	Ya
Cerah	Kencang	Ya
Cerah	Kencang	Ya
Mendung	Kencang	Ya
Hujan	Kencang	Tidak
Hujan	Lemah	Tidak
Cerah	Lemah	Ya
Hujan	Kencang	Ya
Cerah	Kencang	Tidak
Mendung	Lemah	Ya
Mendung	Lemah	Ya
Hujan	Kencang	Tidak
Hujan	Lemah	?

RUMUS MENGHITUNG JARAK

Rumus jarak yang digunakan:

Euclidean $\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$

LANJUT PADA LATIHAN STUDI KASUS MENGGUNAKAN MICROSOFT EXCEL