1 Introduction

1 Introduction

This is the documentation for the geodetices files of the paparazzi project (paparazzi.nongnu.org). It should be a reference for the functions which are defined in the directory (paparazzi)/sw/airborne/math.

Martin: "Still missing: hmsl and the gc_of_gd_lat_d conversion"

1 Introduction 2

Contents

2 ECEF

Earth-Centered-Earth-Fixed coordinates belong to the easiest coordinates to compute, because they have a fixed frame and they don't have to regard the non-spherical shape of the earth. Though they are not intuitiv.

Fig. 1: ECEF coordinates

ECEF coordinates are defined using

$$p_{ECEF} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \tag{1}$$

available for the following simple types

- int32_t EcefCoor_i
- float EcefCoor_f
- double EcefCoor_d

2.1 Transformations from ECEF

to LTP

Gets the LLA-coordinates and a transformation matrix from ECEF to ENU out of ECEF coordinates.

First, the LLA coordinates (WGS-84) are computed from the ECEF coordinates. With the LLA-coordinates it is possible to construct a rotational matrix.

$$\mathbf{R}_{ecef2enu} = \begin{pmatrix} -\sin\lambda & \cos\lambda & 0\\ -\sin\varphi\cos\lambda & -\sin\varphi\sin\lambda & \cos\varphi\\ \cos\varphi\cos\lambda & \cos\varphi\sin\lambda & \sin\varphi \end{pmatrix}$$
(2)

Function ltp_def_from_ecef_i(LtpDef_i* def, EcefCoor_i* ecef) in File pprz_geodetic_int.c Function ltp_def_from_ecef_f(LtpDef_f* def, EcefCoor_f* ecef) in File pprz_geodetic_float.c Function ltp_def_from_ecef_d(LtpDef_d* def, EcefCoor_d* ecef) in File pprz_geodetic_double.c

to LLA

Generating LLA coordinates is made using the following calculations. These refer to [?] or [?] (pages 31-33).

$$a = 6,378,137\tag{3}$$

$$f = \frac{1}{298.257223563} \tag{4}$$

$$b = a \cdot (1 - f) \tag{5}$$

$$e^2 = \sqrt{2f - f^2} \tag{6}$$

$$e' = e\frac{a}{h} \tag{7}$$

$$E^2 = a^2 - b^2 (8)$$

$$r = \sqrt{x^2 + y^2} \tag{9}$$

$$F = 54b^2z^2 \tag{10}$$

$$G = r^2 + (1 - e^2)z^2 - e^2E^2$$
(11)

$$c = \frac{e^4 F r^2}{G^3} \tag{12}$$

$$s = \sqrt[3]{1 + c + \sqrt{c^2 + 2c}} \tag{13}$$

$$P = \frac{F}{3\left(s + \frac{1}{s} + 1\right)^2 G^2} \tag{14}$$

$$Q = \sqrt{1 + 2e^4 P} \tag{15}$$

$$r_0 = -\frac{Pe^2r}{1+Q} + \sqrt{\frac{1}{2}a^2\left(1+\frac{1}{Q}\right) - \frac{P(1-e^2)z^2}{Q(1+Q)} - \frac{1}{2}Pr^2}$$
 (16)

$$U = \sqrt{(r - e^2 r_0)^2 + z^2}$$

$$V = \sqrt{(r - e^2 r_0)^2 + (1 - e^2)z^2}$$
(17)
(18)

$$V = \sqrt{(r - e^2 r_0)^2 + (1 - e^2)z^2}$$
(18)

$$z_0 = \frac{b^2 z}{aV} \tag{19}$$

$$\varphi = \arctan\left(\frac{z + (e')^2 z_0}{r}\right) \tag{20}$$

$$\lambda = atan2(y, x) \tag{21}$$

$$h = U\left(\frac{b^2}{aV} - 1\right) \tag{22}$$

Function lla_of_ecef_i(LlaCoor_i* out, EcefCoor_i* in) in File pprz_geodetic_int.c Function lla_of_ecef_f(LlaCoor_f* out, EcefCoor_f* in)

```
in File pprz_geodetic_float.c
Function lla_of_ecef_d(LlaCoor_d* lla, EcefCoor_d* ecef)
   in File pprz_geodetic_double.c
```

to NED/ENU

With a know transformation matrix (see section ??) it is quite easy to rotate a vector into the ENU frame:

$$\overrightarrow{v}_{ENU} = \mathbf{R}_{ecef2enu} \overrightarrow{v}_{ECEF} \tag{23}$$

For a transformation into the NED-frame you have to do an additional ENU/NED-transformation. Function enu_of_ecef_vect_i(EnuCoor_i* enu, LtpDef_i* def, EcefCoor_i* ecef) in File pprz_geodetic_int.c

Function ned_of_ecef_vect_i(NedCoor_i* ned, LtpDef_i* def, EcefCoor_i* ecef) in File pprz_geodetic_int.c

Function enu_of_ecef_vect_f(EnuCoor_f* enu, LtpDef_f* def, EcefCoor_f* ecef) in File pprz_geodetic_float.c

Function ned_of_ecef_vect_f(NedCoor_f* ned, LtpDef_f* def, EcefCoor_f* ecef) in File pprz_geodetic_float.c

Function enu_of_ecef_vect_d(EnuCoor_d* enu, LtpDef_d* def, EcefCoor_d* ecef) in File pprz_geodetic_double.c

Function ned_of_ecef_vect_d(NedCoor_d* ned, LtpDef_d* def, EcefCoor_d* ecef) in File pprz_geodetic_double.c

The transformation of a point is very similiar. Instead of a point you use a difference vector between the desired point p_d and the center of the local tangent plane p_0 .

$$\overrightarrow{v}_{ECEF} = p_d - p_0 \tag{24}$$

Function enu_of_ecef_point_i(EnuCoor_i* enu, LtpDef_i* def, EcefCoor_i* ecef) in File pprz_geodetic_int.c

Function ned_of_ecef_point_i(NedCoor_i* ned, LtpDef_i* def, EcefCoor_i* ecef) in File pprz_geodetic_int.c

Function enu_of_ecef_point_f(EnuCoor_f* enu, LtpDef_f* def, EcefCoor_f* ecef) in File pprz_geodetic_float.c

Function ned_of_ecef_point_f(NedCoor_f* ned, LtpDef_f* def, EcefCoor_f* ecef) in File pprz_geodetic_float.c

Function enu_of_ecef_point_d(EnuCoor_d* enu, LtpDef_d* def, EcefCoor_d* ecef) in File pprz_geodetic_double.c

Function ned_of_ecef_point_d(NedCoor_d* ned, LtpDef_d* def, EcefCoor_d* ecef) in File pprz_geodetic_double.c

2.2 Transformations to ECEF

from LLA

Calculating the ECEF coordinates out of LLA coordinates is a slightly easier task than the other way round. The following way refers to [?]. With the known constants

$$a = 6,378,137 \tag{25}$$

$$f = \frac{1}{298.257223563}$$

$$e^2 = \sqrt{2f - f^2}$$
(26)

$$e^2 = \sqrt{2f - f^2} \tag{27}$$

the value

$$\chi = \sqrt{1 - e^2 \sin^2 \varphi} \tag{28}$$

can be precomputed and used in

$$x = \left(\frac{a}{\chi} + h\right)\cos\varphi\cos\lambda\tag{29}$$

$$y = \left(\frac{a}{\chi} + h\right)\cos\varphi\sin\lambda\tag{30}$$

$$z = \left(\frac{a}{\chi}(1 - e^2) + h\right)\sin\varphi\tag{31}$$

Function ecef_of_lla_i(EcefCoor_i* out, LlaCoor_i* in)

in File pprz_geodetic_int.c

Function ecef_of_lla_f(EcefCoor_f* out, LlaCoor_f* in)

in File pprz_geodetic_float.c

Function ecef_of_lla_d(EcefCoor_d* ecef, LlaCoor_d* lla)

in File pprz_geodetic_double.c

from NED/ENU

With a know transformation matrix (see section ??) it is quite easy to rotate a vector from the ENU-frame to the ECEF-frame. Since

$$\mathbf{R}_{enu2ecef} = \mathbf{R}_{ecef2enu}^{-1} = \mathbf{R}_{ecef2enu}^{T}$$
(32)

a transformation is done as follows

$$\overrightarrow{v}_{ECEF} = \mathbf{R}_{enu2ecef} \overrightarrow{v}_{ENU} \tag{33}$$

For a transformation from the NED-frame you have to do an additional ENU/NED-transformation before

Function ecef_of_enu_vect_d(EcefCoor_d* ecef, LtpDef_d* def, EnuCoor_d* enu) in File pprz_geodetic_double.c

Function ecef_of_ned_vect_d(EcefCoor_d* ecef, LtpDef_d* def, NedCoor_d* ned) in File pprz_geodetic_double.c

The transformation of a point is very similar. After transforming into the ECEF-frame you add the position of the center p_0 to the result.

$$\overrightarrow{p}_{ECEF} = p + p_0 \tag{34}$$

Function ecef_of_enu_point_d(EcefCoor_d* ecef, LtpDef_d* def, EnuCoor_d* enu) in File pprz_geodetic_double.c

Function ecef_of_ned_point_d(EcefCoor_d* ecef, LtpDef_d* def, NedCoor_d* ned) in File pprz_geodetic_double.c

3 LLA 7

3 LLA

LLA coordinates (longitude, lattitude, attitude) are the more intuitive way to express a position on the earth's surface. The values "longitude" and "lattitude" are angles and therefore in degrees or radians and the "attitude" is in meters above the surface of the earth's approximated shape.

Fig. 2: LLA coordinates

LLA coordinates are defined using

$$p_{LLA} = \begin{pmatrix} \varphi \\ \lambda \\ h \end{pmatrix} \tag{35}$$

available for the following simple types

- int32_t LlaCoor_i
- float LlaCoor_f
- double LlaCoor_d

3.1 Simple Operations

Assigning

It is either possible to assign every single value of LLA-coordinate

$$pos = \begin{pmatrix} \varphi \\ \lambda \\ h \end{pmatrix} \tag{36}$$

Function LLA_ASSIGN(pos, lat, lon, alt) in File pprz_geodetic.h

3 LLA

or to copy one coordinate to another pos1 = pos2Function LLA_COPY(pos1, pos2) in File pprz_geodetic.h

3.2 Trasnformation from LLA

to ECEF

Calculating the ECEF coordinates out of LLA coordinates is a slightly easier task than the other way round. The following way refers to [?]. With the known constants

$$a = 6,378,137\tag{37}$$

$$f = \frac{1}{298.257223563}$$

$$e^2 = \sqrt{2f - f^2}$$
(38)

$$e^2 = \sqrt{2f - f^2} (39)$$

the value

$$\chi = \sqrt{1 - e^2 \sin^2 \varphi} \tag{40}$$

can be precomputed and used in

$$x = \left(\frac{a}{\chi} + h\right)\cos\varphi\cos\lambda\tag{41}$$

$$y = \left(\frac{a}{\chi} + h\right)\cos\varphi\sin\lambda\tag{42}$$

$$z = \left(\frac{a}{\chi}(1 - e^2) + h\right)\sin\varphi\tag{43}$$

Function ecef_of_lla_i(EcefCoor_i* out, LlaCoor_i* in)

in File pprz_geodetic_int.c

Function ecef_of_lla_f(EcefCoor_f* out, LlaCoor_f* in)

in File pprz_geodetic_float.c

Function ecef_of_lla_d(EcefCoor_d* ecef, LlaCoor_d* lla)

in File pprz_geodetic_double.c

3.3 Transforming to LLA

from ECEF

Generating LLA coordinates is made using the following calculations. These refer to [?] or [?] (pages 31-33).

$$a = 6,378,137 (44)$$

$$f = \frac{1}{298.257223563} \tag{45}$$

3 LLA 9

$$b = a \cdot (1 - f) \tag{46}$$

$$e^2 = \sqrt{2f - f^2} (47)$$

$$e' = e\frac{a}{b} \tag{48}$$

$$E^2 = a^2 - b^2 (49)$$

$$r = \sqrt{x^2 + y^2} \tag{50}$$

$$F = 54b^2z^2 \tag{51}$$

$$G = r^2 + (1 - e^2)z^2 - e^2E^2$$
(52)

$$c = \frac{e^4 F r^2}{C^3} \tag{53}$$

$$s = \sqrt[3]{1 + c + \sqrt{c^2 + 2c}} \tag{54}$$

$$P = \frac{F}{3\left(s + \frac{1}{s} + 1\right)^2 G^2} \tag{55}$$

$$Q = \sqrt{1 + 2e^4 P} \tag{56}$$

$$r_0 = -\frac{Pe^2r}{1+Q} + \sqrt{\frac{1}{2}a^2\left(1+\frac{1}{Q}\right) - \frac{P(1-e^2)z^2}{Q(1+Q)} - \frac{1}{2}Pr^2}$$
 (57)

$$U = \sqrt{(r - e^2 r_0)^2 + z^2} \tag{58}$$

$$V = \sqrt{(r - e^2 r_0)^2 + (1 - e^2)z^2}$$
(59)

$$z_0 = \frac{b^2 z}{aV} \tag{60}$$

$$\varphi = \arctan\left(\frac{z + (e')^2 z_0}{r}\right) \tag{61}$$

$$\lambda = atan2(y, x) \tag{62}$$

$$h = U\left(\frac{b^2}{aV} - 1\right) \tag{63}$$

Function lla_of_ecef_i(LlaCoor_i* out, EcefCoor_i* in)

in File pprz_geodetic_int.c

Function lla_of_ecef_f(LlaCoor_f* out, EcefCoor_f* in)

in File pprz_geodetic_float.c

Function lla_of_ecef_d(LlaCoor_d* lla, EcefCoor_d* ecef)

in File pprz_geodetic_double.c

4 LTP 10

4 LTP

The Local Tangent Plane (LTP) is an approximation of the earth at a fixed position. It is defined using an ECEF position, a LLA position and a rotational matrix to convert between them. *Please note that the matrix transforms from ECEF to ENU!*

It is available for the following simple types:

sinmple type	struct name	p_{ECEF}	p_{LLA}	$\mathbf{R}_{ltp_of_ecef}$	
int32_t	LtpDef_i	EcefCoor_i ecef	LlaCoor_i lla	INT32Mat33 ltp_of_ecef	The
float	$LtpDef_f$	$EcefCoor_f ecef$	LlaCoor_f lla	FloatMat33 ltp_of_ecef	тпе
double	$LtpDef_d$	EcefCoor_d ecef	LlaCoor_d lla	DoubleMat33 ltp_of_ecef	
fixed-point struct has hmsl (height above mean sea level) as an additional parameter.					

4.1 Transformations to LTP

from ECEF

Gets the LLA-coordinates and a transformation matrix from ECEF to ENU out of ECEF coordinates.

First, the LLA coordinates (WGS-84) are computed from the ECEF coordinates. With the LLA-coordinates it is possible to construct a rotational matrix.

$$\mathbf{R}_{ecef2enu} = \begin{pmatrix} -\sin\lambda & \cos\lambda & 0\\ -\sin\varphi\cos\lambda & -\sin\varphi\sin\lambda & \cos\varphi\\ \cos\varphi\cos\lambda & \cos\varphi\sin\lambda & \sin\varphi \end{pmatrix}$$
(64)

Function ltp_def_from_ecef_i(LtpDef_i* def, EcefCoor_i* ecef) in File pprz_geodetic_int.c

Function ltp_def_from_ecef_f(LtpDef_f* def, EcefCoor_f* ecef) in File pprz_geodetic_float.c

Function ltp_def_from_ecef_d(LtpDef_d* def, EcefCoor_d* ecef) in File pprz_geodetic_double.c

5 NED / ENU 11

5 NED / ENU

North-East-Down or East-North-Up coordinates are fixed in the local tangent plane. NED and ENU coordinates are defined using

$$p_{NED} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \qquad p_{ENU} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \tag{65}$$

available for the following simple types

- int32_t NedCoor_i and EnuCoor_i
- float NedCoor_f and EnuCoor_f
- double NedCoor_d and EnuCoor_d

5.1 Transformation between NED and ENU

The transformation between NED and ENU is rather simple. It can be expressed using a rotational matrix:

$$p_{NED} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} p_{ENU} \qquad p_{ENU} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} p_{NED} \tag{66}$$

or directly switching the values

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}_{NED} = \begin{pmatrix} y \\ x \\ -z \end{pmatrix}_{ENU}$$
(67)

Function ENU_OF_TO_NED(po, pi)

in File pprz_geodetic.h

Function INT32_VECT2_ENU_OF_NED(o, i)

in File pprz_geodetic_int.h

Function INT32_VECT2_NED_OF_ENU(o, i)

in File pprz_geodetic_int.h

Function INT32_VECT3_ENU_OF_NED(o, i)

in File pprz_geodetic_int.h

Function INT32_VECT3_NED_OF_ENU(o, i)

in File pprz_geodetic_int.h

5.2 Transformation from NED/ENU

to ECEF

With a know transformation matrix (see section ??) it is quite easy to rotate a vector from the ENU-frame to the ECEF-frame. Since

$$\mathbf{R}_{enu2ecef} = \mathbf{R}_{ecef2enu}^{-1} = \mathbf{R}_{ecef2enu}^{T} \tag{68}$$

a transformation is done as follows

$$\overrightarrow{v}_{ECEF} = \mathbf{R}_{enu2ecef} \overrightarrow{v}_{ENU} \tag{69}$$

For a transformation from the NED-frame you have to do an additional ENU/NED-transformation before.

5 NED / ENU 12

 $Function \ \texttt{ecef_of_enu_vect_d}(\texttt{EcefCoor_d*} \ \texttt{ecef}, \ \texttt{LtpDef_d*} \ \texttt{def}, \ \texttt{EnuCoor_d*} \ \texttt{enu}) \\ in \ File \ \texttt{pprz_geodetic_double.c}$

Function ecef_of_ned_vect_d(EcefCoor_d* ecef, LtpDef_d* def, NedCoor_d* ned) in File pprz_geodetic_double.c

The transformation of a point is very similar. After transforming into the ECEF-frame you add the position of the center p_0 to the result.

$$\overrightarrow{p}_{ECEF} = p + p_0 \tag{70}$$

Function ecef_of_enu_point_d(EcefCoor_d* ecef, LtpDef_d* def, EnuCoor_d* enu) in File pprz_geodetic_double.c

Function ecef_of_ned_point_d(EcefCoor_d* ecef, LtpDef_d* def, NedCoor_d* ned) in File pprz_geodetic_double.c

5.3 Transformation to NED/ENU

from ECEF

With a know transformation matrix (see section ??) it is quite easy to rotate a vector into the ENU frame:

$$\overrightarrow{v}_{ENU} = \mathbf{R}_{ecef2enu} \overrightarrow{v}_{ECEF} \tag{71}$$

For a transformation into the NED-frame you have to do an additional ENU/NED-transformation. Function enu_of_ecef_vect_i(EnuCoor_i* enu, LtpDef_i* def, EcefCoor_i* ecef) in File pprz_geodetic_int.c

Function ned_of_ecef_vect_i(NedCoor_i* ned, LtpDef_i* def, EcefCoor_i* ecef) in File pprz_geodetic_int.c

Function enu_of_ecef_vect_f(EnuCoor_f* enu, LtpDef_f* def, EcefCoor_f* ecef) in File pprz_geodetic_float.c

Function ned_of_ecef_vect_f(NedCoor_f* ned, LtpDef_f* def, EcefCoor_f* ecef) in File pprz_geodetic_float.c

Function enu_of_ecef_vect_d(EnuCoor_d* enu, LtpDef_d* def, EcefCoor_d* ecef) in File pprz_geodetic_double.c

Function ned_of_ecef_vect_d(NedCoor_d* ned, LtpDef_d* def, EcefCoor_d* ecef) in File pprz_geodetic_double.c

The transformation of a point is very similar. Instead of a point you use a difference vector between the desired point p_d and the center of the local tangent plane p_0 .

$$\overrightarrow{v}_{ECEF} = p_d - p_0 \tag{72}$$

Function enu_of_ecef_point_i(EnuCoor_i* enu, LtpDef_i* def, EcefCoor_i* ecef) in File pprz_geodetic_int.c

Function ned_of_ecef_point_i(NedCoor_i* ned, LtpDef_i* def, EcefCoor_i* ecef) in File pprz_geodetic_int.c

Function enu_of_ecef_point_f(EnuCoor_f* enu, LtpDef_f* def, EcefCoor_f* ecef) in File pprz_geodetic_float.c

Function ned_of_ecef_point_f(NedCoor_f* ned, LtpDef_f* def, EcefCoor_f* ecef) in File pprz_geodetic_float.c

Function enu_of_ecef_point_d(EnuCoor_d* enu, LtpDef_d* def, EcefCoor_d* ecef) in File pprz_geodetic_double.c

Function ned_of_ecef_point_d(NedCoor_d* ned, LtpDef_d* def, EcefCoor_d* ecef) in File pprz_geodetic_double.c

 $5\ \mathsf{NED}\ /\ \mathsf{ENU}$

from LLA

This functions transforms a point from the LLA coordinates in the ECEF-frame and then into the NED-/ENU-frame. Function enu_of_lla_point_i(EnuCoor_i* enu, LtpDef_i* def, LlaCoor_i* lla)

```
in File pprz_geodetic_int.c
Function ned_of_lla_point_i(NedCoor_i* ned, LtpDef_i* def, LlaCoor_i* lla)
in File pprz_geodetic_int.c
```