ACS234 Maths and Data Modelling

Tutorial 9 Wednesday 1pm online

- High Order ODE
- RK4 method

ODE

1st-order ODF system

	1st-order ODE system	nth-order ODE		
Formula	$\frac{dy}{dt} = f(t, y) \qquad y(t_0) = y_0$	$\frac{dy^n}{dt} = f(t, y(t), y'(t), \dots, y^{n-1}(t), u(t))$		
Example	$\frac{dy}{dt} = y \qquad y(0) = 1 \qquad y(t) = \exp(t)$	$\frac{dy^2}{dt} = -\frac{dy}{dt} + 6y y(t) = A \exp(2t) + B \exp(-3t)$		
Euler	$y_{i+1} = y_i + hf(t_i, y_i)$ $t_{i+1} = t_i + h$	$x_1(t) = y(t)$ $\dot{x}_1(t) = x_2(t)$ $\dot{x}_2(t) = y'(t)$ $\dot{x}_2(t) = x_3(t)$		
Mid Point	$y_{i+\frac{1}{2}} = y_i + \frac{h}{2}f(t_i, y_i)$ $t_{i+\frac{1}{2}} = t_i + \frac{h}{2}$ $y_{i+1} = y_i + hf(t_{i+\frac{1}{2}}, y_{i+\frac{1}{2}})$	$x_n(t) = y^{n-1}(t) \dot{x}_{n-1}(t) = x_n(t) \dot{x}_n(t) = f(t, x_1(t), \dots, x_n(t))$		
Heun	$y_{i+1}^{p} = y_i + hf(t_i, y_i) \qquad t_{i+1} = t_i + h$ $y_{i+1} = y_i + \frac{h}{2} [f(t_i, y_i) + f(t_{i+1}, y_{i+1}^{p})]$	Method: —> state-space model (simultaneous equations of n 1st-order ODEs) > apply a numerical method (e.g. Euler's, Mid-point, Heun's, RK4) to each of the n 1st-order ODEs >> in each step, the values of the state variables are updated simultaneously in each step of calculation >> when all state variables are updated, move to the next step of calculation		
RK4	$y_{i+1} = y_i + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$ $k_1 = f(t_i, y_i)$ $k_2 = f(t_i + \frac{h}{2}, y_i + \frac{hk_1}{2})$ $k_3 = f(t_i + \frac{h}{2}, y_i + \frac{hk_2}{2})$			

Exercice 1

Compute the first two steps of the RK4 with the 1st order ODE system below with the given step size h and the initial condition. Compare with the results obtained in Tutorial 8 Exercice 1a.

$$h = 0.1$$
 $\frac{dy}{dt} = 3y$ $y(0) = 2$

Exercice 2

Use classical RK4 method to solve the second-order below (cf hand out):

$$y''(t) = -y'(t) + sin(ty)$$
 $y(0) = 1$ $y'(0) = 2$

Exercice 1 - solution

Analytical solution : $f(t) = 2 \exp(3t)$ f(0) = 2

	Analytical	Euler	Mid Point	Heun	RK4
y1	2.699	2.6	2.69	2.69	
y2	3.64	3.38	3.61805	3.61805	

$$k_1 = f(t_0, y_0) = 3 \times 2 = 6$$

$$k_2 = f(t_0 + \frac{h}{2}, y_0 + \frac{hk_1}{2}) = 3 \times 2.3 = 6.9$$

$$k_3 = f(t_0 + \frac{h}{2}, y_0 + \frac{hk_2}{2}) = 3 \times 2.345 = 7.035$$

$$k_4 = f(t_0 + h, y_0 + hk_3) = 3 \times 2.7035 = 8.1105$$

$$y_1 = y_0 + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 2.699675$$

$$k_1 = 8.099025$$

$$k_2 = 9.31387875$$

$$k_3 = 9.4961068125$$

$$k_4 = 10.9478570438$$

$$y_2 = y_1 + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4) = 3.64412255281$$

Exercice 2 - solution

$$x''(t) = -x'(t) + sin(tx)$$
 $x(0) = 1$ $x'(0) = 2$

$$x'_2(t) = -x_2(t) + sin(tx_1(t))$$
 $x_2(0) = 2$ (b)

Calculating $k_{1,1}$ and $k_{1,2}$: