Aufgaben zu "Fuzzy-Systeme"

- **Aufgabe 12:** Gegeben sind die triangulären Fuzzy-Zahlen $\tilde{A}_1 = (17, 2, 5)_{tri}$ und $\tilde{A}_2 = (54, 9, 7)_{tri}$
 - a) Skizzieren Sie die Zugehörigkeitsfunktionen von \tilde{A}_1 und \tilde{A}_2 .
 - b) Berechnen Sie die Fuzzy-Mengen $\tilde{B} = 2\tilde{A}_1 \oplus \tilde{A}_2$ und $\tilde{C} = \tilde{A}_2 \odot 2\tilde{A}_1$.
- **Aufgabe 13:** Gegeben ist die linguistische Variable "Größe" mit dem Term "lang" über der Grundmenge X = [0,180], der durch die Fuzzy-Menge $\tilde{L}(x)$ mit der Zugehörigkeitsfunktion

$$\mu_L(x) = \begin{cases} 0 & 0 \le x \le 120 \\ \frac{1}{30}x - 4 & 120 \le x \le 150 \\ 1 & 150 \le x \le 180 \end{cases}$$

Bestimmen Sie die Zugehörigkeitsfunktionen der modifizierten Terme

- a) "kurz" := "nicht lang"
- b) "nicht sehr lang"
- c) "lang oder nicht sehr kurz"
- **Aufgabe 14:** Gegeben ist die linguistische Variable "Gewicht" mit dem Term "leicht" über der Grundmenge X = [0,100], dem die Fuzzy-Menge $\tilde{L}(x)$ mit der Zugehörigkeitsfunktion

$$\mu_L(x) = \begin{cases} 1 & 0 \le x \le 30 \\ \frac{1}{20} \left(50 - x \right) & 30 \le x \le 50 \\ 0 & 50 \le x \le 100 \end{cases}$$

zugeordnet ist.

Bestimmen Sie die Zugehörigkeitsfunktionen der modifizierten Terme

- a) "nicht sehr leicht"
- b) "ziemlich schwer", wobei "schwer" dem Komplement zu "leicht" entspricht.
- **Aufgabe 15:** Gegeben sind die Grundmengen $X = \{\alpha, \beta, \gamma\}$, $Y = \{a, b, c\}$ und $Z = \{1, 2\}$, sowie die Fuzzy-Relationen \tilde{R} auf $X \times Y$ und \tilde{S} auf $Y \times Z$ mit den Zugehörigkeitsfunktionen

Bestimmen Sie die Max-Prod-Verkettung

$$\tilde{V} = \tilde{R} \circ_{MP} \tilde{S} = \left\{ \left(\left(x,z \right), \mu_{R \circ_{MP} S}(x,z) \right) : \left(x,z \right) \in X \times Z \right\}$$

Aufgabe 16: Gegeben sind die Grundmengen $X = \{a,b,c\}$, $Y = \{1,2,3\}$ und $Z = \{\alpha,\beta,\gamma,\delta\}$, sowie die Fuzzy-Relationen \tilde{R} auf $X \times Y$ und \tilde{S} auf $Y \times Z$ mit den Zugehörigkeitsfunktionen

- a) Bestimmen Sie die Max-Min-Verkettung $\tilde{U} = \tilde{R} \circ_{MM} \tilde{S} = \left\{ \left((x,z), \mu_{R \circ_{MM} S}(x,z) \right) : (x,z) \in X \times Z \right\}$
- b) Bestimmen Sie die Max-Prod-Verkettung $\tilde{V} = \tilde{R} \circ_{MP} \tilde{S} = \left\{ \left(\left(x,z \right), \mu_{R \circ_{MP} S}(x,z) \right) : \left(x,z \right) \in X \times Z \right\}$
- c) Gegeben sei weiterhin die Fuzzy-Menge $\tilde{A} = \{(a,0.5),(b,1.0),(c,0.4)\}$. Bestimmen Sie das Fuzzy-Inferenz-Bild von \tilde{A} bezüglich der Relation \tilde{R} bei Max-Min-Verkettung .

Aufgabe 17: Gegeben sei der linguistische Term α, α' und β durch die entsprechenden triangulären Fuzzy-Zahlen $\tilde{A}(x) = (150,12,15)_{tri}$, $\tilde{A}'(x) = (160,6,6)_{tri}$ und $\tilde{B}(x) = (29,7,5)_{tri}$. Welche Fuzzy-Menge B"(y) ergibt sich beim unscharfen Schließen mit Hilfe des erweiterten Modus ponenes nach Mamdani, wenn die Eingabegröße α' auf die Regel (WENN α DANN β) angewendet wird.

Aufgabe 18: Die Regelbank eines unscharfen Reglers, die die linguistischen Variablen v (Geschwindigkeit) und m (Menge) miteinander verknüpft, sei:

Die Terme der linguistischen Variablen seien gegeben durch

schnell:
$$\tilde{S} = \{(1;0),(2;0.5),(3;1)\}$$
 viel: $\tilde{V} = \{(10;0),(20;0.6),(30;1)\}$ langsam: $\tilde{L} = \{(1;1),(2;0.4),(3;0)\}$ wenig: $\tilde{W} = \{(10;1),(20;0.3),(30;0)\}$

- a) Bestimmen Sie die bezüglich Inklusion größte Lösung für die unscharfe Relation \tilde{R} des zur Regelbank gehörigen Relationalgleichungssystems.
- b) Bestimmen Sie den unscharfen Ausgangswert der Regelbank bei einer Fuzzy-Eingangsgröße $\tilde{E} = \{(1;0.2),(2;1),(3;0.1)\}$
- c) Welchen unscharfen Ausgangswert erhält man, wenn man auf den oben beschriebenen Regler die Max-Min-Inferenz-Methode anwendet.

Aufgabe 19: Die Regelbank eines unscharfen Reglers besteht aus den Regeln:

WENN
$$\alpha_1$$
 DANN β_1 WENN α_2 DANN β_2

Die Terme $\alpha_1, \alpha_2, \beta_1, \beta_2$ sind durch die Fuzzy-Mengen

$$\tilde{A}_1 = \{(1,0.0),(2,0.3),(3,0.7),(4,1.0)\}$$

$$\tilde{A}_2 = \{(1,0.8), (2,0.9), (3,0.3), (4,0.1)\}$$

$$\tilde{\mathbf{B}}_{1} = \{(1,1.0), (2,0.6), (3,0.1)\}$$

$$\tilde{B}_2 = \{(1,0.1),(2,0.7),(3,0.8)\}$$

gegeben.

Überprüfen Sie, ob die Fuzzy-Relation \tilde{R} mit der Zugehörigkeitsfunktion

Lösung des zugehörigen Relationalgleichungssystems $\tilde{B}_i = \tilde{A}_i \circ_{MM} \tilde{R}$, i=1,2 ist.