Complex Numbers

Imaginary Quantity

The square root of a negative real number is called an imaginary quantity or imaginary number. e.g., $\sqrt{-3}$, $\sqrt{-7/2}$

The quantity $\sqrt{-1}$ is an imaginary number, denoted by 'i', called iota.

Integral Powers of Iota (i)

$$i=\sqrt{-1}$$
, $i^2=-1$, $i^3=-i$, $i^4=1$

So,
$$i^{4n+1} = i$$
, $i^{4n+2} = -1$, $i^{4n+3} = -i$, $i^{4n+4} = i^{4n} = 1$

In other words,

$$i^n = (-1)^{n/2}$$
, if n is an even integer $i^n = (-1)^{(n-1)/2}$.i, if is an odd integer

Complex Number

A number of the form z = x + iy, where $x, y \in R$, is called a complex number

The numbers x and y are called respectively real and imaginary parts of complex number z.

i.e.,
$$x = Re(z)$$
 and $y = Im(z)$

Purely Real and Purely Imaginary Complex Number

A complex number z is a purely real if its imaginary part is 0.

i.e., Im(z) = 0. And purely imaginary if its real part is 0 i.e., Re(z) = 0.

Equality of Complex Numbers

Two complex numbers $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$ are equal, if $a_2 = a_2$ and $b_1 = b_2$ i.e., Re (z_1) = Re (z_2) and Im (z_1) = Im (z_2) .

Algebra of Complex Numbers

1. Addition of Complex Numbers

Let $z_1 = (x_1 + iy_i)$ and $z_2 = (x_2 + iy_2)$ be any two complex numbers, then their sum defined as

$$z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$$

www.atazlearning.com

Properties of Addition

- (i) Commutative $z_1 + z_2 = z_2 + z_1$
- (ii) Associative $(z_1 + z_2) + z_3 = + (z_2 + z_3)$
- (iii) Additive Identity z + 0 = z = 0 + z

Here, 0 is additive identity.

2. Subtraction of Complex Numbers

Let $z_1 = (x_1 + iy_1)$ and $z_2 = (x_2 + iy_2)$ be any two complex numbers, then their difference is defined as

$$z_1 - z_2 = (x_1 + iy_1) - (x_2 + iy_2)$$

= $(x_1 - x_2) + i(y_1 - y_2)$

3. Multiplication of Complex Numbers

Let $z_1 = (x_1 + iy_i)$ and $z_2 = (x_2 + iy_2)$ be any two complex numbers, then their multiplication is defined as

$$z_1z_2 = (x_1 + iy_1)(x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$$

Properties of Multiplication

- (i) Commutative $z_1z_2 = z_2z_1$
- (ii) Associative $(z_1 z_2) z_3 = z_1(z_2 z_3)$
- (iii) Multiplicative Identity $z \cdot 1 = z = 1 \cdot z$

Here, 1 is multiplicative identity of an element z.

(iv) Multiplicative Inverse Every non-zero complex number z there exists a complex number z_1 such that $z.z_1 = 1 = z_1 \cdot z$

(v) Distributive Law

- (a) $z_1(z_2 + z_3) = z_1z_2 + z_1z_3$ (left distribution)
- (b) $(z_2 + z_3)z_1 = z_2z_1 + z_3z_1$ (right distribution)

4. Division of Complex Numbers

Let $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ be any two complex numbers, then their division is defined as

www.atazlearning.com

$$\begin{split} \frac{z_1}{z_2} &= \frac{(x_1 + iy_1)}{(x_2 + iy_2)} \\ &= \frac{(x_1x_2 + y_1y_2) + i(x_2y_1 - x_1y_2)}{x_2^2 + y_2^2} \end{split}$$

where $z_2 \# 0$.

Conjugate of a Complex Number

If z = x + iy is a complex number, then conjugate of z is denoted by z

i.e.,
$$z = x - iy$$

Properties of Conjugate

- (i) $(\bar{z}) = z$
- (ii) $z + \bar{z} \Leftrightarrow z$ is purely real
- (iii) $z \bar{z} \Leftrightarrow z$ is purely imaginary

(iv) Re(z) =
$$\frac{z + \overline{z}}{2}$$

(v)
$$\operatorname{Im}(z) = \frac{z - \overline{z}}{2i}$$

(vi)
$$\overline{z_1 + z_2} = \overline{z}_1 + \overline{z}_2$$

(vii)
$$\overline{z_1 - z_2} = \overline{z}_1 - \overline{z}_2$$

(viii)
$$\overline{z_1 \cdot z_2} = \overline{z}_1 \cdot \overline{z}_2$$

(ix)
$$\overline{\left(\frac{z_1}{z_2}\right)} = \overline{z}_1, z_2 \neq 0$$

(x)
$$z_1\ \overline{z}_2\pm\overline{z}_1\ z_2=2\operatorname{Re}(\overline{z}_1\ z_2)=2\operatorname{Re}(z_1\ \overline{z}_2)$$

$$(xi) (\overline{z})^n = (\overline{z}^n)$$

(xii) If
$$z = f(z_1)$$
, then $\overline{z} = f(\overline{z}_1)$

(xii) If
$$z = f(z_1)$$
, then $\bar{z} = f(\bar{z}_1)$
(xiii) If $z = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$, then $\bar{z} = \begin{vmatrix} \bar{a}_1 & \bar{a}_2 & \bar{a}_3 \\ \bar{b}_1 & \bar{b}_2 & \bar{b}_3 \\ \bar{c}_1 & \bar{c}_2 & \bar{c}_3 \end{vmatrix}$

where a_i , b_i , c_i ; (i = 1, 2, 3) are complex numbers.

(xiv)
$$z\bar{z} = {\text{Re}(z)}^2 + {\text{Im}(z)}^2$$

Modulus of a Complex Number

If z = x + iy, then modulus or magnitude of z is denoted by |z| and is given by

$$|\mathbf{z}| = \mathbf{x}^2 + \mathbf{y}^2.$$

It represents a distance of z from origin.

In the set of complex number C, the order relation is not defined i.e., $z_1 > z_2$ or $z_i < z_2$ has no meaning but $|z_1| > |z_2|$ or $|z_1| < |z_2|$ has got its meaning, since |z| and $|z_2|$ are real numbers.

Properties of Modulus

- (i) |z| ≥ 0
- (ii) If |z| = 0, then z = 0 i.e., Re(z) = 0 = Im(z)
- (iii) $-|z| \le \text{Re}(z) \le |z| \text{ and } -|z| \le \text{Im } (z) \le |z|$
- (iv) $|z| = |\tilde{z}| = |-z| = |-\bar{z}|$
- $(v) z\bar{z} = |z|^2$
- (vi) $|z_1 z_2| = |z_1| |z_2|$

In general

$$|z_1 z_2 z_3 \dots z_n| = |z_1| |z_2| |z_3| \dots |z_n|$$

(vii)
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$$
, provided $z_2 \neq 0$

(viii) $|z_1 \pm z_2| \le |z_1| + |z_2|$

In general

$$|z_1 \pm z_2 \pm z_3 \pm \dots \pm z_n| \le |z_1| + |z_2| + |z_3| + \dots + |z_n|$$

- (ix) $|z_1 \pm z_2| \ge |z_1| |z_2|$
- $(x) |z^n| = |z|^n$
- (xi) $||z_1| |z_2|| \le |z_1 + z_2| \le |z_1| + |z_2|$ greatest possible value of $|z_1+z_2|$ is $|z_1|+|z_2|$ and least possible value of $|z_1+z_2|$ is

$$||z_1| - |z_2||$$

$$\begin{aligned} (\text{xii}) &|z_1 + z_2|^2 = (z_1 + z_2) (\bar{z}_1 + \bar{z}_2) \\ &= |z_1|^2 + |z_2|^2 + z_1 \bar{z}_2 + z_2 \bar{z}_1 \\ &= |z_1|^2 + |z_2|^2 + 2 \operatorname{Re}(z_1 \bar{z}_2) \\ &= |z_1|^2 + |z_2|^2 + 2|z_1| |z_2| \cos(\theta_1 - \theta_2) \end{aligned}$$

$$\begin{aligned} (\text{xiii}) &|z_1 - z_2|^2 = (z_1 - z_2)(\bar{z}_1 - \bar{z}_2) \\ &= |z_1|^2 + |z_2|^2 - (z_1\bar{z}_2 + \bar{z}_1z_2) \\ &= |z_1|^2 + |z_2|^2 - 2\operatorname{Re}(z_1\bar{z}_2) \\ &= |z_1|^2 + |z_2|^2 - 2|z_1||z_2|\cos(\theta_1 - \theta_2) \end{aligned}$$

(xiv)
$$z_1 \overline{z}_2 + \overline{z}_1 z_2 = 2|z_1||z_2|\cos(\theta_1 - \theta_2)$$

(xv) $|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2\{|z_1|^2 + |z_2|^2\}$

(xv)
$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2\{|z_1|^2 + |z_2|^2\}$$

(xvi)
$$|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 \Leftrightarrow \frac{z_1}{z_2}$$
 is purely imaginary.

(xvii)
$$|az_1 - bz_2|^2 + |bz_1 + az_2|^2 = (a^2 + b^2)(|z_1|^2 + |z_2|^2)$$

where $a, b \in R$.

(xviii) z is unimodulus, if |z| = 1

Reciprocal/Multiplicative Inverse of a Complex Number

Let z = x + iy be a non-zero complex number, then

$$z^{-1} = \frac{1}{z} = \frac{1}{x + iy} = \frac{1}{x + iy} \times \frac{x - iy}{x - iy}$$
$$= \frac{x - iy}{x^2 + y^2}$$
$$= \frac{x}{x^2 + y^2} + \frac{i(-y)}{x^2 + y^2}$$

Here, z^{-1} is called multiplicative inverse of z.

Argument of a Complex Number

Any complex number z=x+iy can be represented geometrically by a point (x, y) in a plane, called Argand plane or Gaussian plane. The angle made by the line joining point z to the origin, with the x-axis is called argument of that complex number. It is denoted by the symbol arg (z) or amp (z).

Argument (z) = $\theta = \tan^{-1}(y/x)$

Argument of z is not unique, general value of the argument of z is $2n\pi + \theta$. But arg (0) is not defined.

A purely real number is represented by a point on x-axis.

A purely imaginary number is represented by a point on y-axis.

There exists a one-one correspondence between the points of the plane and the members of the set C of all complex numbers.

The length of the line segment OP is called the modulus of z and is denoted by |z|.

i.e., length of $OP = \sqrt{x^2 + y^2}$.

Principal Value of Argument

The value of the argument which lies in the interval $(-\pi, \pi]$ is called principal value of argument.

- (i) If x > 0 and y > 0, then arg (z) = 0
- (ii) If x < 0 and y > 0, then arg $(z) = \pi 0$
- (iii) If x < 0 and y < 0, then arg $(z) = -(\pi \theta)$ (iv) If x > 0 and y < 0, then arg $(z) = -\theta$

Properties of Argument

(1)
$$arg(\bar{z}) = -arg(z)$$

(ii)
$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) + 2k\pi \ (k = 0, 1 \text{ or } - 1)$$

In general,

$$arg(z_1z_2z_3...z_n) = arg(z_1) + arg(z_2) + arg(z_3)$$

$$+ ... + \arg(z_n) + 2k\pi (k = 0, 1 \text{ or } -1)$$

(iii)
$$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) + 2k\pi(k = 0, 1 \text{ or } = -1)$$

(iv)
$$\arg(z_1\bar{z}_2) = \arg(z_1) - \arg(z_2)$$

(v)
$$\arg\left(\frac{z}{\bar{z}}\right) = 2 \arg(z) + 2 k\pi \ (k = 0, 1 \text{ or } -1)$$

(vi)
$$\arg(z^n) = n \arg(z) + 2k\pi (k = 0, 1 \text{ or } -1)$$

(vii) If
$$\arg\left(\frac{z_2}{z_1}\right) = \theta$$
, then $\arg\left(\frac{z_1}{z_2}\right) = 2k\pi - \theta$, $k \in I$

(viii) If
$$arg(z) = 0 \Rightarrow z$$
 is real

(ix)
$$\arg(z) - \arg(-z) = \begin{cases} \pi, & \text{if } \arg(z) > 0 \\ -\pi, & \text{if } \arg(z) < 0 \end{cases}$$

(x) If
$$|z_1 + z_2| = |z_1 - z_2|$$
, then $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) = \frac{\pi}{2}$

(xi) If
$$|z_1 + z_2| = |z_1| + |z_2|$$
, then arg $(z_1) = \arg(z_2)$

(xii) If
$$|z-1| = |z+1|$$
, then arg $(z) = \pm \frac{\pi}{2}$

(xiii) If
$$\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$$
, then $(z) = 1$

(xiv) If
$$\arg\left(\frac{z+1}{z-1}\right) = \frac{\pi}{2}$$
, then z lies on circle of radius unity and centre at origin.

(xv) (a) If
$$z = 1 + \cos \theta + i \sin \theta$$
, then $\arg (z) = \frac{\theta}{2}$ and $|z| = 2 \cos \frac{\theta}{2}$

(b) If
$$z = 1 + \cos \theta - i \sin \theta$$
, then $\arg(z) = -\frac{\theta}{2}$ and $|z| = 2\cos \frac{\theta}{2}$

(c) If
$$z = 1 - \cos \theta + i \sin \theta$$
, then $\arg (z) = \frac{\pi}{2} - \frac{\theta}{2}$ and $|z| = 2 \sin \frac{\theta}{2}$

(d) If
$$z = 1 - \cos \theta - i \sin \theta$$
, then

$$\arg(z) = \frac{\pi}{4} - \frac{\theta}{2} \text{ and } |z| = \sqrt{2} \left(\cos \frac{\theta}{2} + i \sin \frac{\theta}{2} \right)$$

(xvi) If
$$|z_1| \le 1$$
, $|z_2| \le 1$, then

(a)
$$|z_1 - z_2|^2 \le (|z_1| - |z_2|)^2 + [\arg(z_1) - \arg(z_2)]^2$$

(b)
$$|z_1 + z_2|^2 \ge (|z_1| + |z_2|)^2 - [\arg(z_1) - \arg(z_2)]^2$$

Square Root of a Complex Number

If z = x + iy, then

$$\sqrt{z} = \sqrt{x + iy} = \pm \left[\frac{\sqrt{|z| + x}}{2} + i \frac{\sqrt{|z| - x}}{2} \right], \text{ for } y > 0$$

$$= \pm \left[\sqrt{\frac{|z| + x}{2}} - i \sqrt{\frac{|z| - x}{2}} \right], \text{ for } y < 0$$

Polar Form

If z = x + iy is a complex number, then z can be written as

$$z = |z| (\cos \theta + i \sin \theta)$$
 where, $\theta = \arg (z)$

this is called polar form.

If the general value of the argument is 0, then the polar form of z is

 $z = |z| [\cos (2n\pi + \theta) + i \sin (2n\pi + \theta)]$, where n is an integer.

Eulerian Form of a Complex Number

If z = x + iy is a complex number, then it can be written as

$$z = re^{i0}$$
, where

$$r=\left|z\right|$$
 and $\theta=arg\left(z\right)$

This is called Eulerian form and $e^{i\theta} = \cos\theta + i\sin\theta$ and $e^{-i\theta} = \cos\theta - i\sin\theta$.

De-Moivre's Theorem

A simplest formula for calculating powers of complex number known as De-Moivre's theorem.

If $n \in I$ (set of integers), then $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$ and if $n \in Q$ (set of rational numbers), then $\cos n\theta + i \sin n\theta$ is one of the values of $(\cos \theta + i \sin \theta)^n$.

(i) If $\frac{p}{q}$ is a rational number, then

$$(\cos\theta + i\sin\theta)^{p/q} = \left(\cos\frac{p}{q}\theta + i\sin\frac{p}{q}\theta\right)$$

(ii)
$$\frac{1}{\cos\theta + i\sin\theta} = (\cos\theta - i\sin\theta)^n$$

(iii) More generally, for a complex number $z = r(\cos \theta + i \sin \theta) = re^{i\theta}$

$$z^{n} = r^{n} (\cos \theta + i \sin \theta)^{n}$$
$$= r^{n} (\cos n\theta + i \sin n\theta) = r^{n} e^{in\theta}$$

(iv)
$$(\sin \theta + i \cos \theta)^n = \left[\cos \left(\frac{n\pi}{2} - n\theta\right) + i \sin \left(\frac{n\pi}{2} - n\theta\right)\right]$$

$$\begin{aligned} \text{(v) } &(\cos\theta_1 + i\sin\theta_1)(\cos\theta_2 + i\sin\theta_2) \dots (\cos\theta_n + i\sin\theta_n) \\ &= \cos(\theta_1 + \theta_2 + \dots + \theta_n) + i\sin(\theta_1 + \theta_2 + \dots + \theta_n) \end{aligned}$$

- (vi) $(\sin \theta \pm i \cos \theta)^n \neq \sin n\theta \pm i \cos n\theta$
- (vii) $(\cos \theta + i \sin \phi)^n \neq \cos n\theta + i \sin n\phi$

The nth Roots of Unity

The nth roots of unity, it means any complex number z, which satisfies the equation $z^n = 1$ or $z = (1)^{1/n}$

or
$$z = \cos(2k\pi/n) + i\sin(2k\pi/n)$$
, where $k = 0, 1, 2, ..., (n - 1)$

Properties of nth Roots of Unity

- 1. nth roots of unity form a GP with common ratio $e^{(i2\pi/n)}$.
- 2. Sum of nth roots of unity is always 0.
- 3. Sum of nth powers of nth roots of unity is zero, if p is a multiple of n
- 4. Sum of pth powers of nth roots of unity is zero, if p is not a multiple of n.
- 5. Sum of pth powers of nth roots of unity is n, ifp is a multiple of n.
- 6. Product of nth roots of unity is $(-1)^{(n-1)}$.
- 7. The nth roots of unity lie on the unit circle |z| = 1 and divide its circumference into n equal parts.

The Cube Roots of Unity

Cube roots of unity are 1, ω , ω^2 ,

where
$$\omega = -1/2 + i\sqrt{3}/2 = e^{(i2\pi/3)}$$
 and $\omega^2 = (-1 - i\sqrt{3})/2$

$$\omega^{3r+1} = \omega$$
, $\omega^{3r+2} = \omega^2$

Properties of Cube Roots of Unity

(i)
$$1 + \omega + \omega^{2r} =$$

0, if r is not a multiple of 3.

3, if r is, a multiple of 3.

(ii)
$$\omega^3 = \omega^{3r} = 1$$

(iii)
$$\omega^{3r+1} = \omega$$
, $\omega^{3r+2} = \omega^2$

- (iv) Cube roots of unity lie on the unit circle |z| = 1 and divide its circumference into 3 equal parts.
- (v) It always forms an equilateral triangle.
- (vi) Cube roots of -1 are -1, $-\omega$, $-\omega^2$.

Important Identities

(i)
$$x^2 + x + 1 = (x - \omega)(x - \omega^2)$$

(ii)
$$x^2 - x + 1 = (x + \omega)(x + \omega^2)$$

(iii)
$$x^2 + xy + y^2 = (x - y\omega)(x - y\omega^2)$$

(iv)
$$x^2 - xy + y^2 = (x + \omega y)(x + y\omega^2)$$

(v)
$$x^2 + y^2 = (x + iy)(x - iy)$$

(vi)
$$x^3 + y^3 = (x + y)(x + y\omega)(x + y\omega^2)$$

(vii)
$$x^3 - y^3 = (x - y)(x - y\omega)(x - y\omega^2)$$

(viii)
$$x^2 + y^2 + z^2 - xy - yz - zx = (x + y\omega + z\omega^2)(x + y\omega^2 + z\omega)$$

or $(x\omega + y\omega^2 + z)(x\omega^2 + y\omega + z)$
or $(x\omega + y + z\omega^2)(x\omega^2 + y + z\omega)$

(ix)
$$x^3 + y^3 + z^2 - 3xyz = (x + y + z)(x + \omega y + \omega^2 z)(x + \omega^2 y + \omega z)$$

Geometrical Representations of Complex Numbers

1. Geometrical Representation of Addition

If two points P and Q represent complex numbers z_1 and z_2 respectively, in the Argand plane, then the sum $z_1 + z_2$ is represented

by the extremity R of the diagonal OR of parallelogram OPRQ having OP and OQ as two adjacent sides.

2. Geometrical Representation of Subtraction

Let $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ia_2$ be two complex numbers represented by points P (a_1, b_1) and Q (a_2, b_2) in the Argand plane. Q' represents the complex number $(-z_2)$. Complete the parallelogram OPRQ' by taking OP and OQ' as two adjacent sides.

The sum of z_1 and $-z_2$ is represented by the extremity R of the diagonal OR of parallelogram OPRQ'. R represents the complex number $z_1 - z_2$.

3. Geometrical Representation of Multiplication of Complex Numbers

R has the polar coordinates $(r_1r_2,\,\theta_1+\theta_2)$ and it represents the complex numbers $z_1z_2.$

4. Geometrical Representation of the Division of Complex Numbers

R has the polar coordinates $(r_1/r_2, \theta_1 - \theta_2)$ and it represents the complex number z_1/z_2 . |z|=|z| and arg (z)=- arg (z). The general value of arg (z) is $2n\pi-$ arg (z).

If a point P represents a complex number z, then its conjugate i is represented by the image of P in the real axis.

Concept of Rotation

Let z_1 , z_2 and z_3 be the vertices of a \triangle ABC described in anti-clockwise sense. Draw OP and OQ parallel and equal to AB and AC, respectively. Then, point P is $z_2 - z_1$ and Q is $z_3 - z_1$. If OP is rotated through angle a in anti-clockwise, sense it coincides with OQ.

Important Points to be Remembered

- (a) $ze^{i\alpha}$ a is the complex number whose modulus is r and argument $\theta + \alpha$.
- (b) Multiplication by $e^{-i\alpha}$ to z rotates the vector OP in clockwise sense through an angle α .
- (ii) If z_1 , z_2 , z_3 and z_4 are the affixes of the points A, B,C and D, respectively in the Argand plane.
- (a) AB is inclined to CD at the angle arg $[(z_2 z_1)/(z_4 z_3)]$.
- (b) If CD is inclines at 90° to AB, then arg $[(z_2 z_1)/(z_4 z_3)] = \pm (\pi/2)$.
- (c) If z_1 and z_2 are fixed complex numbers, then the locus of a point z satisfying arg $[((z-z_1)/(z-z_2))] = \pm (\pi/2)$.

Logarithm of a Complex Number

Let z = x + iy be a complex number and in polar form of z is $re^{i\theta}$, then

$$\log(x + iy) = \log(re^{i\theta}) = \log(r) + i\theta$$

$$\log(\sqrt{x^2 + y^2}) + itan^{-1}(y/x)$$

or
$$log(z) = log(|z|) + iamp(z)$$
,

In general,

$$z = re^{i(\theta + 2n\pi)}$$

$$\log z = \log|z| + i \arg z + 2n\pi i$$

Applications of Complex Numbers in Coordinate Geometry

Distance between complex Points

(i) Distance between $A(z_1)$ and B(1) is given by

$$AB = |z_2 - z_1| = \sqrt{(x_2 + x_1)^2 + (y_2 + y_1)^2}$$

where $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$

(ii) The point P (z) which divides the join of segment AB in the ratio m: n is given by

$$z = (mz_2 + nz_1)/(m+n)$$

If P divides the line externally in the ratio m:n, then

$$z = (mz_2 - nz_1)/(m-n)$$

Triangle in Complex Plane

- (i) Let ABC be a triangle with vertices A (z_1) , B (z_2) and C (z_3) then
- (a) Centroid of the \triangle ABC is given by

$$z = 1/3(z_1 + z_2 + z_3)$$

(b) Incentre of the AABC is given by

$$z = (az_1 + bz_2 + cz_3)/(a + b + c)$$

(ii) Area of the triangle with vertices $A(z_1)$, $B(z_2)$ and $C(z_3)$ is given by

$$\Delta = \frac{1}{2} \begin{bmatrix} z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \\ z_3 & \overline{z}_3 & 1 \end{bmatrix}$$

For an equilateral triangle,

$$z_1^2 + z_2^2 + z_3^2 = z_2 z_3 + z_3 z_1 + z_1 z_2$$

(iii) The triangle whose vertices are the points represented by complex numbers z_1 , z_2 and z_3 is equilateral, if

$$\frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} + \frac{1}{z_1 - z_2} = 0$$
i.e.,
$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_3$$

Straight Line in Complex Plane

(i) The general equation of a straight line is az + az + b = 0, where a is a complex number and b is a real number.

- (ii) The complex and real slopes of the line az + az are -a/a and -i[(a + a)/(a a)].
- (iii) The equation of straight line through z_1 and z_2 is $z = tz_1 + (1 t)z_2$, where t is real.
- (iv) If z_1 and z_2 are two fixed points, then $|z z_1| = z z_2|$ represents perpendicular bisector of the line segment joining z1 and z2.
- (v) Three points z_1 , z_2 and z_3 are collinear, if

$$\begin{vmatrix} z_1 & \overline{z}_1 & 1 \\ z_2 & \overline{z}_2 & 1 \\ z_3 & \overline{z}_3 & 1 \end{vmatrix} = 0$$

This is also, the equation of the line passing through 1, z_2 and z_3 and slope is defined to be $(z_1 - z_2)/z_1 - z_2$

(vi) **Length of Perpendicular** The length of perpendicular from a point z_1 to az + az + b = 0 is given by $|az_1 + az_1 + b|/2|a|$

(vii) arg
$$(z - z_1)/(z - z_2) = \beta$$

Locus is the arc of a circle which the segment joining z_1 and z_2 as a chord.

- (viii) The equation of a line parallel to the line az + az + b = 0 is $az + az + \lambda = 0$, where $\lambda \in \mathbb{R}$.
- (ix) The equation of a line parallel to the line az + az + b = 0 is $az + az + i\lambda = 0$, where $\lambda \in \mathbb{R}$.
- (x) If z_1 and z_2 are two fixed points, then I z z11 =I z z21 represents perpendicular bisector of the segment joining A(z1) and B(z2).
- (xi) The equation of a line perpendicular to the plane $z(z_1-z_2)+z(z_1-z_2)=|z_1|^2-|z_2|^2$.
- (xii) If z₁, z₂ and z₃ are the affixes of the points A, B and C in the Argand plane, then

(a)
$$\angle BAC = arg[(z_3 - z_1/z_2 - z_1)]$$

(b)
$$[(z_3-z_1)/(z_2-z_1)] = |z_3-z_1|/|z_2-z_1|$$
 (cos α + isin α), where $\alpha = \angle BAC$.

- (xiii) If z is a variable point in the argand plane such that $arg(z) = \theta$, then locus of z is a straight line through the origin inclined at an angle θ with X-axis.
- (xiv) If z is a variable point and z_1 is fixed point in the argand plane such that $(z z_1) = \theta$, then locus of z is a straight line passing through the point z_1 and inclined at an angle θ with the X-axis.

(xv) If z is a variable point and z_1 , z_2 are two fixed points in the Argand plane, then

(a)
$$|z - z_1| + |z - z_2| = |z_1 - z_2|$$

Locus of z is the line segment joining z_1 and z_2 .

(b)
$$|z - z_1| - |z - z_2| = |z_1 - z_2|$$

Locus of z is a straight line joining z_1 and z_2 but z does not lie between z1 and z_2 .

(c)
$$arg[(z-z_1)/(z-z_{2)}] = 0$$
 or π

Locus z is a straight line passing through z_1 and z_2 .

(d)
$$|z - z_1|^2 + |z - z_2|^2 = |z_1 - z_2|^2$$

Locus of z is a circle with z_1 and z_2 as the extremities of diameter.

Circle in Complete Plane

(i) An equation of the circle with centre at z_0 and radius r is

$$|\mathbf{z} - \mathbf{z}_0| = \mathbf{r}$$

or
$$zz - z_0z - z_0z + z_0$$

- $|z z_0| < r$, represents interior of the circle.
- $|z z_0| > r$, represents exterior of the circle.
- $|z z_0| \le r$ is the set of points lying inside and on the circle $|z z_0| = r$. Similarly, $|z z_0| \ge r$ is the set of points lying outside and on the circle $|z z_0| = r$.
- General equation of a circle is

$$zz - az - az + b = 0$$

where a is a complex number and b is a real number. Centre of the circle = -a

Radius of the circle = $\sqrt{aa - b}$ or $\sqrt{|a|^2 - b}$

(a) Four points z_1 , z_2 , z_3 and z_4 are concyclic, if

$$[(z_4 - z_1)(z_2 - z_3)]/[(z_4 - z_3)(z_2 - z_1)]$$
 is purely real.

(ii)
$$|z - z_1|/|z - z_2| = k \Rightarrow$$
 Circle, if $k \ne 1$ or Perpendicular bisector, if $k = 1$

(iii) The equation of a circle described on the line segment joining z_1 and z_1 as diameter is $(z-z_1)(z-z_2)+(z-z_2)(z-z_1)=0$

(iv) If z_1 , and z_2 are the fixed complex numbers, then the locus of a point z satisfying arg $[(z-z_1)/(z-z_2)] = \pm \pi/2$ is a circle having z_1 and z_2 at the end points of a diameter.

Conic in Complex plane

(i) Let z_1 and z_2 be two fixed points, and k be a positive real number.

If $k > |z_1 - z_2|$, then $|z - z_1| + |z - z_2| = k$ represents an ellipse with foci at $A(z_1)$ and $B(z_2)$ and length of the major axis is k.

(ii) Let z_1 and z_2 be two fixed points and k be a positive real number.

If $k \neq |z_1 - z_2|$, then $|z - z_1| - |z - z_2| = k$ represents hyperbola with foci at $A(z_1)$ and $B(z_2)$.

Important Points to be Remembered

• $\sqrt{-a} \times \sqrt{-b} \neq \sqrt{ab}$

 $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ is possible only, if both a and b are non-negative.

So,
$$i^2 = \sqrt{-1} \times \sqrt{-1} \neq \sqrt{1}$$

- is neither positive, zero nor negative.
- Argument of 0 is not defined.
- Argument of purely imaginary number is $\pi/2$
- Argument of purely real number is $0 \text{ or } \pi$.
- If |z + 1/z| = a then the greatest value of $|z| = a + \sqrt{a^2 + 4/2}$ and the least value of $|z| = -a + \sqrt{a^2 + 4/2}$
- The value of $i^i = e^{-\pi 2}$
- The complex number do not possess the property of order, i.e., x + iy < (or) > c + id is not defined.
- The area of the triangle on the Argand plane formed by the complex numbers z, iz and z + iz is $1/2|z|^2$.
- (x) If ω_1 and ω_2 are the complex slope of two lines on the Argand plane, then the lines are
- (a) perpendicular, if $\omega_1 + \omega_2 = 0$.
- (b) parallel, if $\omega_1 = \omega_2$.