Thin Wire Modeling

Donald R. Wilton

Nathan Champagne

Thin Wire Assumptions

- Current has only an axial component
- Current is azimuthally invariant

$$\Rightarrow a \leq 0.01\lambda$$

- Kirchhoff's law applies at junctions: $I_1 = I_2 + I_3$
- Current vanishes at wire ends

$$I(\mathbf{r}) \equiv \int_{0}^{2\pi} \mathbf{J}(\mathbf{r} + a\hat{\mathbf{p}}) \cdot \hat{\ell} \, ad\phi \approx 2\pi a J_{\ell}(\mathbf{r}),$$

$$\mathbf{r} \text{ on wire axis}$$

A Wire Is Modeled as Collection of Straight, Thin Tubular Conductors

$$I\hat{\ell} = \sum_{n=1}^{N} I_n \Lambda_n(\mathbf{r}), \ \mathbf{r} \in \tilde{\mathcal{C}}$$
 (global)
$$= I_1^e \Lambda_1^e(\mathbf{r}) + I_2^e \Lambda_2^e(\mathbf{r}), \ \mathbf{r} \in \mathcal{C}^e$$
 (local)

Maintain current continuity at each segment junction

Wire axis parameterization:

$$\mathbf{r} = \xi_1 \mathbf{r}_1^e + \xi_2 \mathbf{r}_2^e,$$

$$\xi_1 + \xi_2 = 1$$

Discretization and Geometry Data Structure

Discretized wire structure

Data structure for element nodes

Global Node Number	Coordinates			
	Х	у	z	
1	1.0000	0.1500	0.1000	
2	0.5000	- 0.0500	0.0500	
3	0.0000	0.0000	0.0000	
4	-0.5000	-0.1500	0.0000	
5	-0.8000	-0.8000	0.0000	
6	0.0000	0.4000	0.0000	
7	0.0000	0.8000	0.0000	

Element Connectivity Data Structure

 In addition to the connection data, we associate a radius a^e with each segment

Element DoF Data

Local Element-to-Global DoF mapping

			'	
е	Local Indices, Element e 1 2			
	# DoF's	DoF Index	# DoF's	DoF Index
1	0	0	1	+1
2	1	-1	2	+2,+4
3	1	-2	1	+3
4	1	-3	0	0
5	1	-4	1	+5
6	1	-5	0	0

i th DoF of element e is positive,

 $\sigma_i^e = \begin{cases} 1 & \text{if sign } e \end{cases}$

-1 if sign of global DoF corresponding to i th DoF of element e is negative

KCL Easily Enforced Using PWL Bases

- N_J-1 independent currents at a junction of N_J line segments
- Select independent bases in N_J -1 arms of junction and overlap them onto remaining arm

EFIE (Pocklington) Formulation for Total Wire Current

Applying boundary condition

$$-\mathbf{E}^{s}\cdot\hat{\boldsymbol{\ell}}=\mathbf{E}^{i}\cdot\hat{\boldsymbol{\ell}}$$

on the wire surface leads to the EFIE with

moment equation $[Z_{mn}][I_n] = [V_m]$ where $[V_m] = [\langle \Lambda_m; \mathbf{E}^i \rangle]$,

$$[Z_{mn}] = j\omega\mu[\langle \Lambda_m; K, \Lambda_n \rangle] + \frac{1}{i\omega\varepsilon}[\langle \nabla \cdot \Lambda_m, K, \nabla \cdot \Lambda_n \rangle]$$

with element matrix

Obs. pt. integral is usually reduced to a one-point angular integration

$$\left[Z_{ij}^{ef}\right] = j\omega\mu\left[\langle\Lambda_{i}^{e};K,\Lambda_{j}^{f}\rangle\right] + \frac{1}{j\omega\varepsilon}\left[\langle\nabla\cdot\Lambda_{i}^{e},K,\nabla\cdot\Lambda_{j}^{f}\rangle\right]$$

and element excitation vector $[\langle \Lambda_i^e; \mathbf{E}^i \rangle]$.

Test Segment Geometry Details

We choose the test segment observation point as a point a test segment radius a^{obs} away from the test segment axis and perpendicular to the plane defined by the source wire axis ê' (â in the local coordinate shown), and the vector r - r'. Hence,

$$\mathbf{r}^{\text{obs}} = \mathbf{r} \pm \mathbf{\rho}_{\perp}, \quad \mathbf{\rho}_{\perp} = a^{\text{obs}} \hat{\mathbf{\rho}}_{\perp}$$
where
$$\hat{\mathbf{\rho}}_{\perp} = \frac{(\mathbf{r} - \mathbf{r}') \times \hat{\ell}'}{\left| (\mathbf{r} - \mathbf{r}') \times \hat{\ell}' \right|}$$

Element Matrix Derivation Details

Note for $\hat{\rho} \approx \hat{\rho}_{\perp}$ a unit vector perpendicular to both the source wire axis and the component of $\mathbf{r} - \mathbf{r}'$ transverse to the source wire axis,

$$\begin{split} Z_{ij}^{ef} &= j\omega\mu \int_{\mathcal{C}^{e}}^{2\pi} \left(\int_{0}^{2\pi} \int_{0}^{\Lambda_{i}^{e}} (\mathbf{r}) \cdot \Lambda_{j}^{f} (\mathbf{r}') \right) G(\mathbf{r} + a^{e}\hat{\mathbf{\rho}}, \mathbf{r}' + a^{f}\hat{\mathbf{\rho}}') a^{f} d\phi' d\ell' \right) a^{e} d\phi d\ell \\ &+ \frac{1}{j\omega\varepsilon} \int_{\mathcal{C}^{e}}^{2\pi} \int_{0}^{2\pi} \left(\int_{\mathcal{C}^{f}}^{2\pi} \int_{0}^{2\pi} \frac{\nabla \cdot \Lambda_{i}^{e} (\mathbf{r}) \nabla \cdot \Lambda_{j}^{f} (\mathbf{r}')}{(2\pi a^{e})(2\pi a^{f})} G(\mathbf{r} + a^{e}\hat{\mathbf{\rho}}, \mathbf{r}' + a^{f}\hat{\mathbf{\rho}}') a^{f} d\phi' d\ell' \right) a^{e} d\phi d\ell \\ &\approx j\omega\mu \int_{\mathcal{C}^{e}} \int_{\mathcal{C}^{f}} \left(\frac{1}{2\pi} \int_{0}^{2\pi} G(\mathbf{r} + a^{e}\hat{\mathbf{\rho}}_{\perp}, \mathbf{r}' + a^{f}\hat{\mathbf{\rho}}') d\phi' \right) \Lambda_{i}^{e} (\mathbf{r}) \cdot \Lambda_{j}^{f} (\mathbf{r}') d\ell' d\ell \\ &+ \frac{1}{j\omega\varepsilon} \int_{\mathcal{C}^{e}} \int_{\mathcal{C}^{f}} \left(\frac{1}{2\pi} \int_{0}^{2\pi} G(\mathbf{r} + a^{e}\hat{\mathbf{\rho}}_{\perp}, \mathbf{r}' + a^{f}\hat{\mathbf{\rho}}') d\phi' \right) \nabla \cdot \Lambda_{i}^{e} (\mathbf{r}) \nabla \cdot \Lambda_{j}^{f} (\mathbf{r}') d\ell' d\ell \\ &= j\omega\mu < \Lambda_{i}^{e}; K, \Lambda_{j}^{f} > + \frac{1}{j\omega\varepsilon} < \nabla \cdot \Lambda_{i}^{e}, K, \nabla \cdot \Lambda_{j}^{f} > \end{split}$$

Kernel for Thin Wire Integral Equation

Kernel is the potential at \mathbf{r} produced by a ring source of radius a centered along the wire axis.

$$K(\mathbf{r},\mathbf{r}') = \frac{1}{2\pi \alpha} \int_{-\pi}^{\pi} \frac{e^{-jkR}}{4\pi R} \alpha d\phi' = \frac{1}{\pi} \int_{0}^{\pi} \frac{e^{-jkR}}{4\pi R} d\phi',$$

Geometry is simply described if a local coordinate system is introduced with tube along the *z* - axis.

Geometry Relating Source and Observation Wire Segments

Top view $\hat{\rho}_{\perp} \qquad \hat{\rho}_{\perp} \qquad$

- r is the vector to the observation segment axis
- r' is the vector to the source segment axis

Define in local source segment coords.:

$$z - z' = \hat{\ell} \cdot (\mathbf{r} - \mathbf{r}')$$

$$\rho^2 = (a^{\text{obs}})^2 + |\hat{\ell} \times (\mathbf{r} - \mathbf{r}')|^2$$

$$R^2 = (z - z')^2 + \rho^2 + a^2 - 2\rho a \cos \phi'$$
Law of cosines
$$= |\mathbf{r} - \mathbf{r}'|^2 + (a^{\text{obs}})^2 + a^2 - 2\rho a \cos \phi'$$

 Note offset observation point is not necessarily on wire surface unless wires are parallel, but yields correct self terms!

Tube Segment Geometry

•
$$\rho^2 = (a^{\text{obs}})^2 + |\hat{\ell} \times (\mathbf{r} - \mathbf{r}')|^2$$

Tube Segment Geometry, cont'd

$$R = \sqrt{(z-z')^{2} + \rho^{2} + a^{2} - 2\rho a \cos \phi'}$$

$$= \sqrt{(z-z')^{2} + (\rho + a)^{2} - 4\rho a \sin^{2} \alpha}$$

$$= R_{\text{max}} \sqrt{1 - \beta^{2} \sin^{2} \alpha}, \qquad \left(\alpha = \frac{\pi - \phi'}{2}\right)$$

where

$$R_{\text{max}} = \sqrt{(z-z')^2 + (\rho+a)^2}, \ \beta^2 = \frac{4\rho a}{R_{\text{max}}^2}$$

hence the kernel becomes

$$K(z,z') = \frac{2}{\pi R_{\text{max}}} \int_{0}^{\pi/2} \frac{e^{-jkR_{\text{max}}\sqrt{1-\beta^{2}\sin^{2}\alpha}}}{4\pi\sqrt{1-\beta^{2}\sin^{2}\alpha}} d\alpha$$

$$\cos \phi' = \cos(\pi - 2\alpha)$$

$$= -\cos 2\alpha$$

$$= 2\sin^2 \alpha - 1$$

Scalar potential of a ring source

Tube SegmentGeometry, cont'd

$$R_{\text{max}} = \sqrt{(z-z')^2 + (\rho+a)^2}$$

$$\beta^{2} = \frac{4\rho a}{R_{\text{max}}^{2}}$$
Geometric Mean of ρ and a

$$\beta = \frac{2\sqrt{\rho a}}{R_{\text{max}}}$$

$$\frac{-\rho \to a, z' \to z}{\sqrt{\rho a}} \to 1$$

Ellipse with focus at wire center,

a = distance from focus to nearest pt. on ellipse.

 ρ = distance from focus to furthest pt. on ellipse

 $\rho + a = \text{major axis of ellipse}$

 $2\sqrt{\rho a}$ = minor axis of ellipse

Transform Kernel to Cancel Singularity

Let
$$u = F(\alpha, \beta) = \int_0^{\alpha} \frac{d\alpha}{\sqrt{1 - \beta^2 \sin^2 \alpha}}$$
, incomplete elliptic integral of the first kind

$$\Rightarrow du = \frac{\partial}{\partial \alpha} F(\alpha, \beta) d\alpha = \frac{d\alpha}{\sqrt{1 - \beta^2 \sin^2 \alpha}}$$

Thus the kernel becomes

$$K(z,z') = \frac{2}{4\pi^2 R_{\text{max}}} \int_{0}^{K(\beta)} e^{-jkR_{\text{max}}\sqrt{1-\beta^2 \sin^2 u}} du$$
$$= \frac{2}{4\pi^2 R_{\text{max}}} \int_{0}^{K(\beta)} e^{-jkR_{\text{max}} dn u} du,$$

$$F(\frac{\pi}{2}, \beta) = K(\beta)$$
 (complete elliptic integral of the first kind)

Kernel Evaluation

Hence

$$K(z,z') = \frac{2}{4\pi^2 R_{\text{max}}} \int_0^{K(\beta)} e^{-jkR_{\text{max}} dn u} du \quad \left[\text{Let } u = K(\beta)\eta \right]$$

$$\approx \frac{2K(\beta)}{4\pi^2 R_{\text{max}}} \sum_{k'} w_{k'} e^{-jkR_{\text{max}} dn \left(\eta^{(k')} K(\beta)\right)}$$

- $w_k, \eta^{(k)}$ are Gauss-Legendre weights and samples
- Integrand above is almost constant for thin wires, and

$$K(\beta) \xrightarrow[z \to z', \rho \to a, \beta \to 1]{} P(z - z') \ln |z - z'| + Q(z - z'),$$

$$\beta \xrightarrow[R \to \infty]{} 0, \qquad \frac{1}{R_{\text{max}}} \xrightarrow[R \to \infty]{} \frac{1}{R}$$

Self-Term Integration Along Wire Axis

Ma-Rokhlin-Wandzura (MRW) quadrature

integrates
$$P_n(z) \ln |z| + Q_n(z)$$
 exactly

J. Ma, V. Rokhlin, and S. Wandzura, *SIAM J. Numer. Anal.* 33, 1996, pp. 971–996.

• Gauss-Legendre (GL) quadrature after substituting

$$du = \frac{dz'}{R} \Rightarrow u = -\sinh^{-1}\frac{z - z'}{R},$$
 to smooth the integrand

 Non-self segment contributions are often simply modeled as line sources

Tables of Sample Points and Weights for MRW Quadrature

Table 4 Sample points and weighting coefficients for K-point quadratures of form $\int_0^1 f(\xi_1) \, d\xi_1 \approx \sum_{k=1}^K w_k f(\xi_1^{(k)})$ where $f(\xi_1)$ has a logarithmic singularity at $\xi_1 = 0$.

Sample Points, $\xi_1^{(k)}$	Weights, w_k	
K=1:		
0.367879441171442	1.0000000000000000	
K=2:		
$0.882968651376531 \times 10^{-1}$	0.298499893705525	
0.675186490909887	0.701500106294475	
K=3:		
$0.288116625309523 \times 10^{-1}$	0.103330707964930	
0.304063729612140	0.454636525970100	
0.811669225344079	0.442032766064970	
K=5:		
$0.565222820508010 \times 10^{-2}$	$0.210469457918546 \times 10^{-1}$	
$0.734303717426523 \times 10^{-1}$	0.130705540744447	
0.284957404462558	0.289702301671314	
0.619482264084778	0.350220370120399	
0.915758083004698	0.208324841671986	

^{*}Ma, Rokhlin, Wandzura SIAM J. Numer. Anal. 33, 1996

Thin Wire Kernel Evaluation

- Wilton, D.R. and N.J. Champagne, "Evaluation and integration of the thin wire kernel," *IEEE Trans. Antennas and Propagat.*, 54, 4, pp. 1200 1206, April 2006.
- Champagne, N. J., D. R. Wilton, J. D. Rockway, "The Analysis of Thin Wires Using Higher Order Elements and Basis Functions," IEEE Trans. Antennas and Propagat., 54, 12, pp. 3815 – 3821, Dec. 2006.

Modeling Voltage Sources

- Current maintains a positive voltage V_{g} if references are as shown at DoF p_{\bullet}
- ullet Change sign of V_g if its reference is opposite the current reference

$$[Z_{mn}][I_n] = \begin{bmatrix} 0 \\ \vdots \\ V_g \end{bmatrix} = \begin{bmatrix} \delta_{mp} V_g \end{bmatrix}$$

$$\vdots \\ \delta_{mp} = \begin{cases} 1, & m = p \\ 0, & m \neq n \end{cases}$$

Experience with Voltage Source Models and Input Impedance Evaluation

- Input conductance converges as number of subdomains increases; susceptance does not due to knife-edge capacitance
- Reasonable susceptance can often be obtained using finite subdomains, but better results are obtained with distributed source or other improved feed models

Modeling Lumped Loads

III-Conditioning at Junctions: Junction Basis Pairs \(\subset \) Surface Bases

Junction and surface bases have same dipole moments \implies nearly equal vector potentials

Junction and surface bases have same charge density \implies equal scalar potentials

Junction Basis Definition

$$\mathbf{\Lambda}_{n}^{J}(\mathbf{r}) = \begin{cases} K_{nl} \left[1 - \frac{\left(h_{nl}^{J+}\right)^{2}}{\left(\mathbf{\rho}^{+} \cdot \hat{\mathbf{h}}_{nl}^{J+}\right)^{2}} \right] \mathbf{\Lambda}_{nl}^{B}(\mathbf{r}), & \mathbf{r} \text{ on } S_{nl}^{J+} \\ \mathbf{\Lambda}_{n}^{W}(\mathbf{r}), & \mathbf{r} \text{ on } S_{n}^{J-} \\ 0, & \text{otherwise} \end{cases}$$

$$K_{nl} = \frac{\alpha_{nl}}{\ell_{nl} \sum_{l=1}^{NJn} \alpha_{nl}} = \frac{\alpha_{nl}}{\ell_{nl} \alpha_n^t}$$

$$abla_{S} \cdot \mathbf{\Lambda}_{n}^{J}(\mathbf{r}) = egin{cases} rac{2K_{nl}}{h_{nl}^{J+}}, & \mathbf{r} \ \mathsf{on} \ S_{nl}^{J+} \ -rac{1}{h_{n}^{J-}}, & \mathbf{r} \ \mathsf{on} \ S_{nl}^{J-} \ 0, & \mathsf{otherwise} \end{cases}$$

Local Junction Basis Definition

$$\begin{pmatrix}
\Lambda_{i}^{e,J}(\mathbf{r}) = K_{i}^{e} \hat{\mathbf{p}}_{i} \\
h_{i} - \frac{h_{i}^{2}}{\rho_{i}^{2} \cos^{2} \phi} \begin{pmatrix} \rho_{i} \\ h_{i} \end{pmatrix}, \quad \nabla \cdot \Lambda_{i}^{e,J}(\mathbf{r}) = \frac{2K_{i}^{e}}{h_{i}}
\end{pmatrix}$$

$$K_{i}^{e} = \frac{\alpha_{i}^{e}}{\ell_{i} \sum_{e \text{ attached}} \alpha_{i}^{e}}$$

$$K_i^e = rac{lpha_i^e}{\ell_i \sum\limits_{\substack{e ext{ attached} \ ext{to junction}}} lpha_i^e}$$

Since
$$\hat{\mathbf{p}}_i \cdot \hat{\mathbf{h}}_i = \cos \phi$$
, and $\rho_i \Big|_{\xi_i = 0} = \frac{h_i}{\cos \phi}$, . . . ,

flux density out of edge i is

$$\left. \Lambda_{i}^{e,J}(\mathbf{r}) \cdot \hat{\mathbf{h}}_{i} \right|_{\xi_{i}=0} = K_{i}^{e} \cos \phi \left[\frac{h_{i}}{h_{i} \cos \phi} - \frac{h_{i} \cos \phi}{h_{i} \cos^{2} \phi} \right] = 0 \qquad i+1 \qquad S^{e} \quad \frac{\alpha_{i}^{e}}{h_{i}} \quad \rho_{i}$$

Net flux out of vertex i:

$$K_{i}^{e}\ell_{i}\frac{\rho_{i}\hat{\mathbf{p}}_{i}}{h_{i}}\cdot\hat{\mathbf{h}}_{i}\bigg|_{\xi_{i}=0} = K_{i}^{e}\ell_{i}\cos\phi\frac{h_{i}}{h_{i}\cos\phi} = K_{i}^{e}\ell_{i} = \frac{\alpha_{i}^{e}}{\sum_{\substack{e \text{ attached to junction}}}\alpha_{i}^{e}}$$
Net flux of Λ_{i}^{e} out of edge i !

Summary of Junction Basis Properties

- Contains a surface basis term Λ_n plus a *divergenceless* term proportional to $\frac{\hat{\mathbf{p}}}{\rho \cos^2 \alpha}$ in attached triangle.
- Has a constant divergence arising from the Λ_n term.
- The normal component of basis vanishes at all edges; hence basis is divergence-conforming.
- Normalized such that 1) each triangle carries current proportional to its angular extent and 2) net current flux into wire is unity.
- Any angular variation of current at base of junction is modeled by the ordinary surface bases there.

Handling Singular Integrals for Junctions

 Vipiana, F. and D.R. Wilton, "Optimized Numerical Evaluation of Singular and Near-Singular Potential Integrals Involving Junction Basis Functions," *IEEE Trans. Antennas and Propagat.*, Vol. 59, 1, Jan. 2011, pp. 162 – 171.

Distribution of Degrees of Freedom Near a Junction

Matrix Equation

The matrix equation that results from using junctions is given by

$$\begin{bmatrix} \begin{bmatrix} Z^{PP} \end{bmatrix} \begin{bmatrix} Z^{PW} \end{bmatrix} \begin{bmatrix} Z^{PJ} \end{bmatrix} \begin{bmatrix} I^{P} \end{bmatrix} \begin{bmatrix} I^{P} \end{bmatrix} \begin{bmatrix} I^{W} \end{bmatrix} = \begin{bmatrix} V^{W} \end{bmatrix}, \\ \begin{bmatrix} Z^{JP} \end{bmatrix} \begin{bmatrix} Z^{JW} \end{bmatrix} \begin{bmatrix} Z^{JJ} \end{bmatrix} \begin{bmatrix} I^{J} \end{bmatrix} \begin{bmatrix} I^{J} \end{bmatrix} = \begin{bmatrix} V^{J} \end{bmatrix}, \\ \begin{bmatrix} V^{J} \end{bmatrix} \end{bmatrix}$$

where P = patch, W = wire, and J = junction.

• The general interaction submatrix may be written $\left[Z^{\alpha\beta}\right], \alpha, \beta$ =P,W,J.

Topside Calibration Model

Topside Calibration Model Results

Frequency (MHz)

Coupling to Wires in a Cavity

Duffy et al., 1994

Current at Load Opposite Source

The End