Programação de Computadores III

Aula 7

Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br

Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2011.1/tcc-03.063

Roteiro da Aula de Hoje

- Introdução ao FORTRAN (Parte I)
 - Organização de programas
 - Tipos de dados
 - Variáveis

TCC-03.063 Programação de Computadores III (2011.1)

Introdução ao FORTRAN

- Cinco aspectos precisam ser considerados antes de escrever o primeiro programa em FORTRAN
 - Como um programa é organizado
 - Quais são os tipos de dados disponíveis
 - Como declarar variáveis
 - Como fazer a entrada e saída de dados
 - Como atribuir valores às variáveis

TCC-03.063 Programação de Computadores III (2011.1)

3

Organização de Programas

- O programa deve ser escrito utilizando um editor de código, como o Force (http://force.lepsch.com)
- O FORTRAN faz exigências quanto o uso das colunas no código fonte
 - As colunas 1 a 6 são reservadas para controle
 - As colunas 7 a 72 são utilizadas para o programa em si
 - As colunas 73 em diante são ignoradas
- Você DEVE documentar o código fonte

TCC-03.063 Programação de Computadores III (2011.1)

Documentação do Código Fonte

- Sintaxe
 - Iniciar a coluna 1 da linha de comentário com C ou *, com isso o restante da linha será ignorada
- Boas práticas
 - Utilize linguagem natural (português)
 - Descreva a finalidade do programa nas primeiras linhas do código fonte
 - Descreva o que cada "pedaço" de código faz

TCC-03.063 Programação de Computadores III (2011.1)

5

Exemplo Simples de Programa FORTRAN A palavra PROGRAM indica o Comentário início do código fonte do programa C Este programa imprime a expressão C "Hello World" na saída padrão Nome do program p1hello ← programa print *, 'Hello World!' O comando PRINT escreve na saída padrão (tela do computador) A palavra END indica o fim 6 colunas do código fonte do programa TCC-03.063 Programação de Computadores III (2011.1)

Tipos de Dados

- Toda variável declarada deve ter um tipo de dado
- Lembre-se
 - O tipo define quais são os valores possíveis
 - Diz ao compilador quanto de memória deve ser reservado para a variável
 - Os tipos dividem-se em
 - o Numéricos: inteiro, real e real com dupla precisão
 - o Não numéricos: caractere e lógico

TCC-03.063 Programação de Computadores III (2011.1)

7

Tipos de Dados no FORTRAN (32bits)

- Tipo inteiro: integer
 - Valores numéricos inteiros de -2³¹ a 2³¹
 - Exemplos: 6, 123, -45
- Tipo real com precisão simples: real
 - Valores numéricos reais com precisão de até sete casas decimais
 - Magnitude de 10⁻³⁸ a 10³⁸
 - O ponto (".") separa a parte inteira da parte fracionária
 - Exemplo: $0.6023E24 = 0.6023 \times 10^{24}$

TCC-03.063 Programação de Computadores III (2011.1)

Tipos de Dados no FORTRAN (32bits)

- Tipo real com precisão dupla: double precision
 - Valores numéricos reais com precisão de até quinze casas decimais
 - Magnitude de 10⁻³⁰⁸ a 10³⁰⁸
 - Exemplos: 0.54336D-94 = 0. 54336 x 10⁻⁹⁴
- Tipo lógico: logical
 - Permite representar valores lógicos, ou seja, verdadeiro (.true.) ou falso (.false.)
 - Note que é preciso utilizar um ponto antes e outro depois dos valores

TCC-03.063 Programação de Computadores III (2011.1)

9

Tipos de Dados no FORTRAN

- Tipo caractere: character
 - Variáveis deste tipo permitem a representação de texto demarcado por aspas simples (')
 - o Exemplo: 'Isso é um texto'
 - Para utilizar o caractere ' no meio do texto, coloque duas aspas simples consecutivas
 - o Exemplo: 'Quero usar "aspas" aqui'

TCC-03.063 Programação de Computadores III (2011.1)

Declaração de Variáveis

 FORTRAN aceita declaração implícita e explícita de variáveis

Declaração Implícita

program p2implic print *, 'Informe A: ' read *, a x = 2 + a print *, 'Total: ', x

end

Declaração Explícita

```
program p3explic

real a, x

print *, 'Informe A: '
read *, a

x = 2 + a
print *, 'Total: ', x
end
```

TCC-03.063 Programação de Computadores III (2011.1)

11

Declaração Implícita

- Declaração implícita se baseia na primeira letra do identificador (nome) da variável
 - Variáveis que começam com a-h ou o-z são reais
 - Variáveis que começam com i-n são inteiras
- Contudo, isso pode levar a erros!
- É recomendado utilizar declaração explícita

TCC-03.063 Programação de Computadores III (2011.1)

Declaração Explícita

- A declaração explícita define qual é o tipo de cada variável que será utilizada no programa
- A declaração deve vir antes de todos os demais comandos
- Regras para identificadores (nomes) de variáveis
 - Ter somente letras de A a Z, números de 0 a 9, e _
 - Começar com uma letra
 - Maiúsculas e minúsculas são equivalentes
- Use o comando especial implicit none no início do programa para forçar o uso de declaração explícita

TCC-03.063 Programação de Computadores III (2011.1)

13

Exemplo de uso do "implicit none"

Veja o arquivo p4forced.f

TCC-03.063 Programação de Computadores III (2011.1)

Declaração Explícita

 Mais de uma variável pode ser declarada numa mesma lista

TCC-03.063 Programação de Computadores III (2011.1)

15

Entrada e Saída de Dados

- Entrada
 - Leitura de valores informados pelo usuário ou vindos de arquivo
 - Comando read
- Saída
 - Impressão na tela ou em arquivo
 - Comandos write e print
- Por simplicidade, utilizaremos apenas read e print

TCC-03.063 Programação de Computadores III (2011.1)

Sintaxe dos Comandos "read" e "print"

- Ambos os comandos esperam o formato do dado e a lista de parâmetros
 - read (unidade, formato) lista_de_parâmetros
 - print (unidade, formato) lista_de_parâmetros
- Por enquanto utilizaremos formato livre
 - read *, altura, base
 - print *, 'A altura é ', altura, ' e a base é ', base

O asterisco seguido de vírgula indica formato livre

TCC-03.063 Programação de Computadores III (2011.1)

41

Exemplos de Declaração, Entrada e Saída

Veja o arquivo p5misc.f

TCC-03.063 Programação de Computadores III (2011.1)

Atribuição de Valores

- No FORTRAN, o símbolo de igual (=) representa a atribuição de valores a variáveis
 - Exemplo: x = 5 + b (a variável x recebe o valor de 5 + b)
- Na escrita de algoritmos, o símbolo ← representa atribuição e o símbolo = é o operador lógico de comparação de igualdade
 - Não confunda os símbolos = da escrita de um algoritmo com o = em FORTRAN!

TCC-03.063 Programação de Computadores III (2011.1)

19

Exemplo de Atribuição de Valores

Veja o arquivo p6atribu.f

TCC-03.063 Programação de Computadores III (2011.1)