METODY NUMERYCZNE – LABORATORIUM

Zadanie 2 – Metoda eliminacji Gaussa

Opis rozwiązania

Przekształcamy macierz rozszerzoną w macierz trójkątną górną. Przed wykonaniem następnych działań matematycznych sprawdzamy, czy element a_{ii} nie jest elementem zerowym, jeżeli jest następuje zamiana elementów kolejnych wierszy. Redukujemy do zera elementy pierwszej kolumny, leżące pod wartością a₁₁, poprzez dodawanie do kolejnych elementów wiersza i-tego odpowiednio przemnożonych wartości wiersza pierwszego. Następnie redukujemy do zera elementy drugiej kolumny leżące pod wartością a₂₂. Czynności powtarzamy, aż do uzyskania macierzy trójkątnej górnej. Następnie sprawdzamy czy układ nie jest sprzeczny lub nieoznaczony, jeśli nie kontynuujemy. Dzięki tej macierzy możemy wyliczyć niewiadome x_n za pomocą wzorów rekurencyjnych.

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ 0 & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n,n} \end{bmatrix}$$
Macierz trójkatna górna.

Wyniki

dla $\varepsilon = 0.000000001$

Przykład	Układ równań	Ilość niewiadomych	Rozwiązanie
a)	$3x_1 + 3x_2 + x_3 = 12$		$x_1 = 1$
	$2x_1 + 5x_2 + 7x_3 = 33$	3	$x_2 = 2$
	$x_1 + 2x_2 + x_3 = 8$		$x_3 = 3$
b)	$3x_1 + 3x_2 + x_3 = 1$		
	$2x_1 + 5x_2 + 7x_3 = 20$	3	Układ nieoznaczony
	$-4x_1 - 10x_2 - 14x_3 = -40$		
c)	$3x_1 + 3x_2 + x_3 = 1$		
	$2x_1 + 5x_2 + 7x_3 = 20$	3	Układ sprzeczny
	$-4x_1 - 10x_2 - 14x_3 = -20$		
d)	$0.5x_1 - 0.0625x_2 + 0.1875x_3 + 0.0625x_4 = 1.5$		$x_1 = 2$
	$-0.0625x_1 + 0.5x_2 = -1.625$	4	$x_2 = -3$
	$0.1875x_1 + 0.375x_3 + 0.125x_4 = 1$		$x_3 = 1.5$
	$0.0625x_1 + 0.125x_3 + 0.25x_4 = 0.4375$		$x_4 = 0,5$
e)	$3x_1 + 3x_2 + x_3 - x_4 = 0$		
	$5x_1 - x_2 + x_3 + 2x_4 = -4$	4	Układ sprzeczny
	$x_1 - x_2 + x_3 + 2x_4 = 4$		
	$7x_1 + 8x_2 + x_3 - 7x_4 = 6$		
f)	$3x_1 - x_2 + 2x_3 - x_4 = -13$		$x_1 = 1$
	$3x_1 - x_2 + x_3 + x_4 = 1$	4	$x_2 = 3$
	$x_1 + 2x_2 - x_3 + 2x_4 = 21$		$x_3 = -4$
	$-x_1 + x_2 - 2x_3 - 3x_4 = -5$		$x_4 = 5$
g)	$x_3 = 3$		$x_1 = 7$
	$x_1 = 7$	3	$x_2 = 5$
	$x_2 = 5$		$x_3 = 3$
h)	$10x_1 - 5x_2 + x_3 = 3$		$x_1 = 1$
	$4x_1 - 7x_2 + 2x_3 = -4$	3	$x_2 = 2$
	$5x_1 + x_2 + 4x_3 = 19$		$x_3 = 3$
i)	$6x_1 - 4x_2 + 2x_3 = 4$		
	$-5x_1 + 5x_2 + 2x_3 = 11$	3	Układ nieoznaczony
	$0.9x_1 + 0.9x_2 + 3.6x_3 = 13.5$		
j)	$x_1 + 0.2x_2 + 0.3x_3 = 1.5$		$x_1 = 1$
	$0.1x_1 + x_2 - 0.3x_3 = 0.8$	3	$x_2 = 1$
	$-0.1x_1 - 0.2x_2 + x_3 = 0.7$		$x_3 = 1$

Wnioski

- Metoda eliminacji Gaussa jest metodą efektywną,
 Możemy rozwiązać układy z wieloma niewiadomymi,
 Metoda eliminacji Gaussa zapewnia proste i mało złożone obliczenia.