

Annotate Ridesharing Trip Time Series

Interpretable Time Series Autoregression

arXiv:2506.22895

Xinyu Chen, MIT
Vassilis Digalakis Jr, BU
Lijun Ding, UCSD
Dingyi Zhuang, MIT
Jinhua Zhao, MIT

Chicago ridesharing trip time series x_t , $t = 1, \dots, 336$

Weekly periodicity at $t_0 = 41$ $\cdot 10^4$ 2.0

Time (hour)

Auto-correlations.

ons.
$$(x_t - w_{168}x_{t-168})^2$$

 $\sum (x_t - w_{168}x_{t-168})^2$ $\min_{w_{168}}$ Auto-correlations. $\cdot 10^{4}$ 2.0 1.5 1.0 5 0.596 120 144 168 192 216 240 264 288 312 336 24 48

Time (hour)

 $\sum (x_t - w_{168}x_{t-168})^2$ $\min_{w_{168}}$ Auto-correlations. $\cdot 10^{4}$ 2.0 1.5 1.0 5 w_{168} 0.596 120 144 168 192 216 240 264 288 312 336 24

Time (hour)

Time Series Autoregression

 $\left(x_t - \sum_{k=1}^d w_k x_{t-k}\right)^2$

Time Series Autoregression

 $f \triangleq \sum_{t} \left(x_{t} - \sum_{k=1}^{d} w_{k} x_{t-k} \right)^{2}$

Time Series Autoregression

 $\min_{w_1, \dots, w_d} f \triangleq \sum_{t} \left(x_t - \sum_{k=1}^d w_k x_{t-k} \right)^2$

Chicago ridesharing trip time series x_t , $t = 1, \dots, 336$

Order d = 168

Order d = 168

Order d = 168

Which are the dominant coefficients in w_1, \dots, w_{168} ?

 $\min_{w_k, k \in \Omega} f \triangleq \sum_{t} \left(x_t - \sum_{k \in \Omega} w_k x_{t-k} \right)^2$

Select dominant coefficients \mathbf{w}_k , $k \in \Omega$

Select dominant coefficients via optimization

 $\min_{w_k, k \in \Omega} \sum_{t} \left(x_t - \sum_{k \in \Omega} w_k x_{t-k} \right)^2$

s.t. $|\Omega| \le \tau, \, \tau = 1, 2, 3, \dots$

