Chapitre 22

Limites et continuité.

Sommaire.

0	Introduction : deux préalables. 0.1 Retour sur la notion d'intervalle	
1	Limites d'une fonction.	2
	1.1 Définitions et premières propriétés	2
	1.2 Caractérisation séquentielle de la limite.	2
	1.3 Opérations sur les fonctions admettant une limite.	
	1.4 Limite à gauche, limite à droite	
	1.5 Théorèmes d'existence de limite	4
2	Continuité en un point.	4
	2.1 Définitions	4
	2.2 Prolongement par continuité	6
	2.3 Opérations sur les fonctions continues en un point	6
3	Propriétés des fonctions continues sur un intervalle.	6
	3.1 Continuité sur un intervalle, opérations	6
	3.2 Théorème des valeurs intermédiaires (and friends)	
	3.3 Théorème des bornes atteintes	
4	Exercices.	8

Les propositions marquées de \star sont au programme de colles.

0 Introduction : deux préalables.

0.1 Retour sur la notion d'intervalle.

Définition 1

On dit qu'une partie A de \mathbb{R} est **convexe** si pour tout $a, b \in A$ avec $a \leq b$, on a $[a, b] \subset A$.

Proposition 2: Caractérisation des intervalles.

Les intervalles de $\mathbb R$ sont exactement les parties convexes de $\mathbb R.$

Preuve:

• Soit I =]a, b] un intervalle de \mathbb{R} , où $a \in \mathbb{R} \cup \{-\infty\}$ et $b \in \mathbb{R}$. Soit $(a', b') \in I^2 \mid a' \leq b'$. Soit $x \in [a', b']$. Alors $a < a' \leq x \leq b' \leq b$ donc $x \in]a, b]$. Ainsi, I est convexe.

 \bullet Soit $C \in \mathcal{P}(\mathbb{R})$ un convexe de $\mathbb{R}.$ On traite le cas où C est borné.

— Si $C \neq 0$, alors $\exists s, i \in \mathbb{R} \mid \sup(C) = s$ et $\inf(C) = i$ on a donc $C \subset [g, d]$.

Soit $\varepsilon > 0$, $\exists bb \in C \mid d - \varepsilon < b \le d$ et $\exists a \in C \mid g \le a < g + \varepsilon$.

Par convexité de C, $[a,b] \subset C$ donc $[g+\varepsilon,d-\varepsilon] \subset C$ donc $[g,d] \in C \subset [g,d]$.

Donc C = [g, d] ou C = [g, d[ou C =]g, d[ou C =]g, d[: c'est un intervalle.

Since $C = \emptyset$, c'est un intervalle.

Exemple 3: Applications de la caractérisation.

Justifier que

- 1. \mathbb{R}^* n'est pas intervalle.
- 2. une intersection d'intervalles est un intervalle.

Solution:

1. On a $1 \in \mathbb{R}^*$ et $-1 \in \mathbb{R}^*$ mais $[-1,1] \not\subset \mathbb{R}^*$, donc \mathbb{R}^* n'est pas convexe, ce n'est pas un intervalle.

Dans tout le cours, les lettres I et J désigner ont des intervalles de $\mathbb R$ non-vides et non réduits à un point.

0.2 Propriété vraie au voisinage d'un point.

La notion suivante jouera pour les fonctions, le rôle que jouait pour les suites le «à partir d'un certain rang».

Définition 4

Soit $f: I \to \mathbb{R}$ une fonction. Soit $a \in \overline{\mathbb{R}}$ un élément ou une borne de I.

On di<u>t qu'un</u>e propriété portant sur f est vraie **au voisinage de** a si

- $a \in \mathbb{R}$ il existe $\eta > 0$ tel que la propriété est vraie sur $[a \eta, a + \eta] \cap I$,
- $a = +\infty$ il existe $A \in \mathbb{R}$ tel que la propriété est vraie sur $[A, +\infty[$.
- $a = -\infty$ il existe $A \in \mathbb{R}$ tel que la propriété est vraie sur $]-\infty, A]$.

Limites d'une fonction. 1

1.1 Définitions et premières propriétés.

Définition 5

Soit $f: I \to \mathbb{R}, a \in \overline{\mathbb{R}}$ un élément ou une borne de I et $L \in \overline{\mathbb{R}}$.

Les équivalences ci-dessous définissent l'assertion f admet L pour limite en a, ce qui sera notée

$$f(x) \xrightarrow[x \to a]{} L.$$

1. Cas a fini, L = l, fini :

$$f(x) \xrightarrow[x \to a]{} l \iff \forall \varepsilon > 0, \ \exists \eta > 0 \ \forall x \in I \cap [a - \eta, a + \eta] \quad |f(x) - l| \le \varepsilon.$$

2. etc...

Proposition 6: Unicité de la limite.

Soit $f: I \to \mathbb{R}$ et $a \in \overline{\mathbb{R}}$ un élément ou une borne de I. Si f admet une limite en a, celle-ci est unique. Plus précisément, pour $L, L' \in R$, si f admet L et L' pour limite en a, alors L = L'.

On pourra donc parler, lorsqu'elle existe, de la limite de la fonction en a, que l'on notera $\lim_{x\to a} f(x)$.

Preuve:

Supposons a, l, l' finis. Supposons que $f(x) \xrightarrow[x \to a]{} l$ et $f(x) \xrightarrow[x \to a]{} l'$.

Soit $\varepsilon > 0$ et $x \in I$. Alors $|l - l'| = |l - f(x) + f(x) - l'| \le |f(x) - l| + |f(x) - l'|$.

On a $\exists \eta > 0 \mid \forall x \in I \cap [a - \eta, a + \eta], |f(x) - l| \leq \frac{\varepsilon}{2}$ et $\exists \eta' > 0 \mid \forall x \in I \cap [a - \eta', a + \eta'], |f(x) - l'| \leq \frac{\varepsilon}{2}$.

Posons $\alpha = \min(\eta, \eta')$. Alors pour $x \in I \cap [a - \alpha, a + \alpha]$, on a :

$$|l-l'| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$
 donc $l-l' = 0$ donc $l = l'$.

Proposition 7: Quand la limite est finie.

Soit $f: I \to \mathbb{R}$ et $a \in \overline{R}$ un élément ou une borne de I.

- Si f admet une limite finie en a, alors elle est bornée au voisinage de a.
- Si de surcroît, f est définie en a (qui est forcément fini, dans ce cas) alors $\lim_{x\to a} f(x) = f(a)$.

Preuve:

- On pose $\varepsilon = 1$. $|f(x) l| \le \varepsilon$ est vraie au voisinage de a, donc $l 1 \le f(x) \le l + 1$.
- Supposons f définie en $a \in I$ et $f(x) \xrightarrow[x \to a]{} l$.

Alors $\forall \varepsilon > 0$, $\exists \eta > 0 \mid |f(a) - l| \le \varepsilon \operatorname{car} a \in I \cap [a - \eta, a + \eta]$. Donc f(a) = l.

Caractérisation séquentielle de la limite.

Théorème 8: Caractérisation séquentielle de la limite. *

Soit f une fonction définie sur un intervalle I, a un élément ou une borne de I et L un élément de \mathbb{R} . Il y a équivalence entre :

- 1. $f(x) \xrightarrow[x \to a]{} L$.
- 2. $\forall (u_n) \in I^{\mathbb{N}}, \ u_n \to a \Longrightarrow f(u_n) \to L.$

Preuve:

On suppose a et l finis.

 $\Longrightarrow \text{Supposons que } f(x) \xrightarrow[x \to a]{} l.$

Soit $(u_n) \in I^{\mathbb{N}} \mid u_n \to a$. Soit $\varepsilon > 0 : \exists \eta > 0 \mid \forall x \in I \cap [a - \eta, a + \eta], |f(x) - l| \le \varepsilon$.

On a $u_n \to a$ donc $\exists n_0 \in \mathbb{N} \mid \forall n \ge n_0, \ u_n \in [a - \eta, a + \eta].$

De plus, $\forall n \in \mathbb{N}, \ u_n \in I \ \text{donc} \ \forall n \geq n_0, \ u_n \in I \cap [a-\eta,a+\eta], \ \text{donc} \ |f(u_n)-l| \leq \varepsilon \ \text{alors} \ f(u_n) \to l.$

 \sqsubseteq Supposons que $\forall (u_n) \in I^{\mathbb{N}}, \ u_n \to a \Longrightarrow f(u_n) \to l.$

 $\overline{\text{Par l'absurde}}$, on suppose que $\exists \varepsilon > 0 \mid \forall \eta > 0, \ \exists x \in I \cap [a - \eta, a + \eta], \ |f(x) - l| > \varepsilon$.

Soit $n \in \mathbb{N}^*$. On pose $\eta = \frac{1}{n} > 0$ donc $\exists x_n \in I \cap [a - \frac{1}{n}, a + \frac{1}{n}], |f(x_n) - l| > \varepsilon$. Ceci construit la suite (x_n) . On a donc $\forall n \in \mathbb{N}^*, a - \frac{1}{n} \le x_n \le a + \frac{1}{n}$. Alors $x_n \to a$ par théorème des gendarmes.

Donc $f(x_n) \to l$ par supposition, or $\forall n \in \mathbb{N}^*$, $|f(x_n) - l| > \varepsilon$, c'est absurde.

Méthode

Pour prouver que $f: I \to \mathbb{R}$ n'admet pas de limite en a, il suffit d'exhiber deux suites (u_n) et (v_n) d'éléments de I telles que :

 $\begin{cases} u_n \to a \\ v_n \to a \end{cases}$ $(f(u_n))$ et $(f(v_n))$ ne convergent pas vers la même limite.

Exemple 9: ★

Montrer que cos et sin n'ont pas de limite en $+\infty$.

Solution:

Soit $n \in \mathbb{N}$. On a $2\pi n \to +\infty$ et $2\pi n + \frac{\pi}{2} \to +\infty$.

Or $\forall n \in \mathbb{N}$, $\sin(u_n) = 0 \to 0$ et $\sin(v_n) = 1 \to 1$ donc pas de limite.

Opérations sur les fonctions admettant une limite.

Proposition 10

Soient $f: I \to \mathbb{R}$, $g: I \to \mathbb{R}$ et soit $a \in \overline{\mathbb{R}}$ un élément ou une borne de I.

Supposons que f et g admettent en a des limites finies, respectivement l et l'.

- 1. La fonction f + g admet l + l' pour limite en a.
- 2. La fonction fg admet ll' pour limite en a.
- 3. Si $l \neq 0$, alors f ne s'annule pas au voisinage de a et 1/f admet pour limite 1/l en a.

Preuve:

1. Soit
$$(u_n) \in I^{\mathbb{N}} \mid u_n \to a \text{ donc } f(u_n) \to l \text{ et } g(u_n) \to l'$$
.

1. Soit
$$(u_n) \in I^{\mathbb{N}} \mid u_n \to a \text{ donc } f(u_n) \to l \text{ et } g(u_n) \to l'$$
.
Ainsi, $f(u_n) + g(u_n) \to l + l'$, donc $(f+g)(u_n) \to l + l' \text{ donc } (f+g)(x) \xrightarrow[x \to a]{} l + l'$.

3. Supposons
$$l' > 0$$
. La propriété $g(x) \in [l' - \frac{l'}{2}, l' + \frac{l'}{2}]$ est vraie au voisinage de a .

Alors
$$f(u_n) \to l$$
 et $g(u_n) \to l'$ donnent $\frac{f(u_n)}{f(g_n)} \to \frac{l}{l'}$.

Exemple 11: Cas d'une limite infinie : débrouillez-vous.

La limite
$$\lim_{x\to 0_+} \frac{1}{x \ln(x)}$$
 existe-t-elle ? Que vaut-elle ?

Solution:

On a
$$x \ln(x) \xrightarrow[x \to 0_+]{} 0_-$$
 par croissances comparées, donc $\frac{1}{x \ln(x)} \xrightarrow[x \to 0_+]{} -\infty$.

Proposition 12: Conservation des inégalités larges par passage à la limite.

Soient f et g deux fonctions définies sur I, $a \in \mathbb{R}$ élément ou borne de I et $(l, l') \in \mathbb{R}^2$.

Si
$$\begin{cases} \forall x \in I, \ f(x) \le g(x) \\ f(x) \xrightarrow[x \to a]{} l \text{ et } g(x) \xrightarrow[x \to a]{} l' \end{cases} \text{ alors } l \le l'.$$

Soit
$$(u_n) \in I^{\mathbb{N}} \mid u_n \to a$$
. On a $f(u_n) \to l$ et $g(u_n) \to l'$ or $\forall n \in \mathbb{N}, \ f(u_n) \le g(u_n)$ donc $l \le l'$.

Proposition 13: Composition des limites : deux fonctions.

Soit $f: I \to J$ et $g: J \to \mathbb{R}$, où I et J sont des intervalles de \mathbb{R} .

Soient $a \in \overline{J}$ et $b \in \overline{I}$ et $c \in \overline{\mathbb{R}}$.

Si
$$\begin{cases} f(x) \xrightarrow[x \to a]{} b \\ g(y) \xrightarrow[y \to b]{} c \end{cases}$$
 alors $g \circ f(x) \xrightarrow[x \to a]{} c$.

Preuve:

Supposons que
$$f(x) \xrightarrow[x \to a]{} b$$
 et $g(y) \xrightarrow[y \to b]{} c$. Soit $(u_n) \in I^{\mathbb{N}} \mid u_n \to a$.

Alors $f(u_n) \to b$ donc $g(f(u_n)) \to c$. On a $g \circ f(u_n) \to c$ pour toute suite $u_n \to a$.

Par caractérisation, $g \circ f(x) \xrightarrow[x \to a]{} c$.

Limite à gauche, limite à droite.

Définition 14

Soit $f: I \to \mathbb{R}$ et a un élément ou une borne finie de I. On dit que f admet en a une

- limite à gauche si $a \neq \inf(I)$ et si $f_{|I|-\infty,a|\cap I}$ admet une limite en a.
- limite à droite si $a \neq \sup(I)$ et si $f_{|]a,+\infty[\cap I}$ admet une limite en a.

Lorsqu'elles existent, ces limites sont notées respectivement

$$\lim_{\substack{x \to a \\ x < a}} f(x) \text{ et } \lim_{\substack{x \to a \\ x > a}} f(x) \quad (ou \lim_{x \to a_{-}} f(x) \text{ et } \lim_{x \to a_{+}} f(x)).$$

Supposons que f n'est pas définie en a. Si f admet une limite à gauche et à droite en a et que ces limites sont égales à $L \in \mathbb{R}$, on appelle ce nombre limite en a et on écrit

$$f(x) \xrightarrow[x \neq a]{x \to a} L.$$

Exemple 15: quand les limites à gauche et à droite coïncident.

Démontrer que

$$\frac{\sin x}{x} \xrightarrow[x \neq 0]{x \to 0} 1$$

Solution:

Soit
$$x > 0$$
. $\frac{\sin x}{x} = \frac{\sin x - \sin 0}{x - 0} \xrightarrow[x \to 0]{} \sin'(0) = \cos(0) = 1$.

Proposition 16

Soit I un intervalle ouvert, $f:I\to\mathbb{R},\,a\in I,\,l\in\mathbb{R}$ et f définie en a. Alors:

$$f(x) \xrightarrow[x \to a]{} l \iff \begin{cases} f(x) \xrightarrow[x \to a_{-}]{} l \\ f(x) \xrightarrow[x \to a_{+}]{} l \\ f(a) = l \end{cases}$$

Théorèmes d'existence de limite. 1.5

Théorème 17: des gendarmes, pour les fonctions.

Soient f, g, h définies sur $I, a \in \overline{I}$ et $l \in \mathbb{R}$.

Si
$$\begin{cases} \forall x \in I, \ f(x) \leq g(x) \leq h(x), \\ f(x) \xrightarrow[x \to a]{} l \text{ et } h(x) \xrightarrow[x \to a]{} l \end{cases}$$
 alors $g(x) \xrightarrow[x \to a]{} l.$

Preuve:

On applique le théorème des gendarmes (suites) sur $f(u_n)$, $g(u_n)$, $h(u_n)$ avec la caractérisation séquentielle.

Exemple 18

Montrer que la fonction $f: \begin{cases} \mathbb{R}^* & \to & \mathbb{R} \\ x & \mapsto & x \sin\left(\frac{1}{x}\right) \end{cases}$ admet une limite en 0, que l'on précisera.

Solution:

Soit x > 0. On a $-1 \le \sin\left(\frac{1}{x}\right) \le 1$ et $-x \le x \sin\left(\frac{1}{x}\right) \le x$. Par encadrement, $f(x) \xrightarrow[x \to 0_+]{} 0$ donc f admet 0 comme limite à droite en a.

Par parité, $f(x) \xrightarrow[x\to 0]{} 0$ donc $f(x) \xrightarrow[x\to 0]{} 0$.

$$x \sin\left(\frac{1}{x}\right) = \frac{\sin\left(\frac{1}{x}\right)}{\frac{1}{x}} = \frac{\sin(y)}{y} \xrightarrow{y \to 0} 1.$$

En effet, en posant $y = \frac{1}{x} \to 0$ on retrouve le sinus cardinal.

Proposition 19: de minoration, de majoration.

Soient f et g définies sur I et $a \in \overline{I}$.

- Si $\forall x \in I$, $f(x) \leq g(x)$ et $f(x) \xrightarrow[x \to a]{} +\infty$, alors $g(x) \xrightarrow[x \to a]{} +\infty$. Si $\forall x \in I$, $f(x) \leq g(x)$ et $g(x) \xrightarrow[x \to a]{} -\infty$, alors $f(x) \xrightarrow[x \to a]{} -\infty$

Théorème 20: de la limite monotone, pour les fonctions.

• Soit I =]a, b[un intervalle ouvert de \mathbb{R} et $f: I \to \mathbb{R}$. Si f est croissante sur I, alors elle admet en tout point de a, b une limite à gauche et une limite à droite. De plus,

$$\forall c \in]a, b[, \lim_{x \to c_{-}} f(x) \le f(c) \le \lim_{x \to c_{+}} f(x).$$

Il existe aussi une limite à droite en a et une limite à gauche en b.

• Soit f une fonction croissante, définie sur $[A, +\infty[$ avec $A \in \mathbb{R}$. Si elle est majorée, elle admet une limite finie en $+\infty$. Sinon elle tend vers $+\infty$ en $+\infty$.

Preuve:

On pose $A = \{f(x) \mid x \in]a, c[\}$. On a $A \subset \mathbb{R}$ et $A \neq \emptyset$.

Alors $\forall x \in A, \ f(c) \geq x \ \text{car} \ f \ \text{est croissante, donc} \ s := \sup(A) \ \text{existe.}$

Soit $\varepsilon > 0$, $\exists x_0 \in]a, c[$, $s - \varepsilon \le f(x_0) \le s + \varepsilon$. Par croissance de $f : \forall x \in [x_0, c[$, $f(x_0) \le f(x)$.

Or $f(x_0) \ge s - \varepsilon$ et $f(x) \le s$ donc $\forall x \in [x_0, c[, |f(x) - s| \le \varepsilon \text{ au voisinage de } c$ à gauche.

On a bien l'existence de $\lim_{x\to c} f(x)$: c'est s, et $s \leq f(c)$ car f(c) majore A.

Continuité en un point. $\mathbf{2}$

Définitions. 2.1

Définition 21

Soit $f: I \to \mathbb{R}$ et $a \in I$. On dit que f est **continue en** a si

$$f(x) \xrightarrow[x \to a]{} f(a).$$

Définition 22

Soit $f: I \to \mathbb{R}$ et $a \in I$. On dit que f est continue à gauche en a si f admet f(a) pour limite à gauche en a. On dit que f est **continue à droite en** a si f admet f(a) pour limite à droite en a.

Exemple 23

La fonction $f: x \mapsto |x|$ est-elle continue à gauche en 2 ? continue à droite en 2 ?

Solution:

On a $\forall x \in [1, 2[, f(x) = 1 \text{ donc } f(x) \xrightarrow[x \to 2^{-}]{} 1$, or f(2) = 2, donc f n'est pas continue à gauche en 2.

On a $\forall x \in [2,3[, f(x) = 2 \text{ donc } f(x) \xrightarrow[x \to 2_+]{} 2 \text{ et } f(2) = 2, \text{ donc } f \text{ est continue à droite en } 2.$

Proposition 24

Soit une fonction $f: I \to \mathbb{R}$ et $a \in I$.

Elle est continue en a si et seulement si elle est continue à gauche et à droite en a.

Exemple 25

Établir la continuité en 0 de la fonction $f: x \mapsto \begin{cases} 0 & \text{si } x \leq 0 \\ \exp(-1/x) & \text{si } x > 0. \end{cases}$

Solution:

On a $\forall x \leq 0$, f(x) = f(0) = 0 donc f est continue à gauche en 0.

On a $\forall x > 0$, $f(x) = e^{-\frac{1}{x}} \xrightarrow[x \to 0_+]{} 0$ et f(0) = 0 donc f est continue à droite en 0.

Donc f est continue en 0.

Proposition 26: Caractérisation séquentielle de la continuité en un point.

Soit une fonction $f:I\to\mathbb{R}$ et $a\in I.$ Il y a équivalence entre :

- 1. f est continue en a.
- 2. Pour toute suite $u \in I^{\mathbb{N}}$ tendant vers a, $(f(u_n))$ tend vers f(a).

Rappel

Soit $f: I \to I$ stable par f et (u_n) définie par $u_0 \in I$, $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

Si (u_n) converge vers une limite l, que $l \in I$ et que f est continue en l, alors f(l) = l.

Exemple 27: CCINP 43

Soit $x_0 \in \mathbb{R}$. On définit la suite (u_n) par $u_0 = x_0$ et $\forall n \in \mathbb{N}, u_{n+1} = \arctan(u_n)$.

Montrer que (u_n) converge et déterminer sa limite.

Solution:

Monotonie.

- Si $u_0 = u_1$, alors (u_n) est constante égale à u_0 .
- Si $u_0 < u_1$, alors (u_n) est croissance par récurrence triviale.
- Si $u_0 > u_1$, alors (u_n) est décroissante par récurrence triviale.

On veut connaître les variations en fonction de x_0 , on pose donc $g: x \mapsto \arctan(x) - x$.

On a alors $\forall x \in \mathbb{R}$, $g'(x) = -\frac{x^2}{1+x^2} < 0$. Alors $\forall x \in]-\infty, 0[, g(x) > 0 \text{ et } \forall x \in]0, +\infty[, g(x) < 0.$

- Si $x_0 = 0$, (u_n) est constante égale à 0.
- Si $x_0 < 0$, (u_n) est strictement croissante.
- Si $x_0 > 0$, (u_n) est strictement décroissante.

Convergence.

On a \mathbb{R}_+ et \mathbb{R}_- stables par arctan et 0 son seul point fixe sur \mathbb{R} .

- Si $x_0 = 0$, on a la convergence vers 0 car la suite est constante.
- Si $x_0 > 0$, on a (u_n) décroissante et minorée par 0, donc elle converge vers 0 comme seul point fixe de arctan.
- Si $x_0 < 0$, on a (u_n) croissante et majorée par 0, donc elle converge vers 0 comme seul point fixe de arctan

Exemple 28: (*) Une équation fonctionnelle classique.

Trouver toutes les fonctions f continues sur $\mathbb R$ telles que

$$\forall (x,y) \in \mathbb{R}^2, \ f(x+y) = f(x) + f(y).$$

Solution:

Analyse. Soit $f: \mathbb{R} \to \mathbb{R}$ continue sur \mathbb{R} telle que $\forall (x, y) \in \mathbb{R}^2$, f(x + y) = f(x) + f(y).

- f(0+0) = f(0) + f(0) donc f(0) = 0.
- f(x-x) = f(x) + f(-x) = 0 donc f(x) = f(-x): la fonction est paire.
- $\forall n \in \mathbb{N}, \ f(n) = f(n-1) + f(1) = \dots = nf(1).$
- Soit $r = \frac{p}{q} \in \mathbb{Q}$. f(qr) = qf(r) donc f(r) = rf(1).
- Soit $x \in \mathbb{R} : \exists (r_n) \in \mathbb{Q}^{\mathbb{N}} \mid r_n \to x \text{ et } \forall n \in \mathbb{N}, \ f(r_n) = r_n(f_1) \to xf(1).$

Donc f(x) = xf(1) donc f est linéaire : $x \mapsto ax$ avec $a \in \mathbb{R}$.

Synthèse. Soit $a \in \mathbb{R}$ et $f: x \mapsto ax$. Soient $x, y \in \mathbb{R}: f(x+y) = a(x+y) = ax + ay = f(x) + f(y)$.

De plus, f est continue sur \mathbb{R} , c'est une fonction linéaire. Les fonction linéaires sont donc les seules fonctions qui conviennent.

2.2 Prolongement par continuité.

Définition 29

Soit I un intervalle et $a \in I$. Soit $f: I \setminus \{a\} \to \mathbb{R}$. Si f admet une limite finie en a, on pose

$$f(a) := \lim_{x \to a} f(x).$$

La fonction f est alors définie sur I et elle est automatiquement continue en a. On dit que l'on a réalisé au point a un **prolongement de** f **par continuité.**

Exemple 30

Prolongement par continuité en 0 de la fonction sinus cardinal $f: x \mapsto \frac{\sin x}{x}$.

2.3 Opérations sur les fonctions continues en un point.

Proposition 31: Combinaisons linéaires, produit, inverse de fonctions continues.

Soient $f: I \to \mathbb{R}$, $g: I \to \mathbb{R}$ et $a \in I$. Supposons que f et g sont continues en a. Alors,

- pour tous $\lambda, \mu \in \mathbb{R}$, la fonction $\lambda f + \mu g$ est continue en a.
- La fonction fg est continue en a.
- Si $f(a) \neq 0$, alors, la fonction (1/f) est définie et continue au voisinage de a.

Proposition 32: Composition de fonctions continues.

Soit $f:I\to J$ et $g:J\to\mathbb{R}$ où I et J sont des intervalles de \mathbb{R} . Soit $a\in I$. Si f est continue en a et g est continue en f(a), alors $g\circ f$ est continue en a.

3 Propriétés des fonctions continues sur un intervalle.

3.1 Continuité sur un intervalle, opérations.

Définition 33

Une fonction $f: I \to \mathbb{R}$ est dite **continue sur** I si elle est continue en tout point de I.

L'ensemble des fonctions continues sur I pourra être noté $\mathcal{C}(I,\mathbb{R})$ ou $\mathcal{C}(I)$.

Proposition 34

 $\mathcal{C}(I,\mathbb{R})$ est stable par combinaisons linéaires et par produit.

Le quotient de deux fonctions continues sur I est continu sur I si la fonction au dénominateur ne s'annule pas sur I.

Proposition 35

 $\overline{\text{Soit } f: I \to J \text{ et } g: J \to \mathbb{R}.}$

Si f est continue sur I et g continue sur J, alors $g \circ f$ est continue sur I.

Exemple 36

Démontrer la continuité sur $\mathbb R$ de la fonction f définie sur $\mathbb R$ par

$$f(0) = 1$$
 et $\forall x \in \mathbb{R}^*, f(x) = \frac{\arctan(x)}{x}$.

3.2 Théorème des valeurs intermédiaires (and friends).

Théorème 37: des valeurs intermédiaires.

Soient deux réels $a \leq b$ et $f: [a, b] \to \mathbb{R}$ continue. Alors, pour tout réel y entre f(a) et f(b),

$$\exists c \in [a, b] \quad y = f(c).$$

Corrolaire 38

Si une fonction continue sur un intervalle y change de signe, alors elle s'annule sur cet intervalle.

Si une fonction continue sur un intervalle ne s'y annule pas, alors f > 0 ou f < 0 sur I.

Exemple 39

Montrer qu'une fonction polynomiale de degré impair s'annule au moins une fois sur \mathbb{R} .

Solution:

Soit $P \in \mathbb{R}[X]$ de degré impair et $\widetilde{P}: x \mapsto P(x)$. On a $\widetilde{P}(x) \xrightarrow[x \to +\infty]{} +\infty$ et $\widetilde{P}(x) \xrightarrow[x \to -\infty]{} -\infty$.

Donc \widetilde{P} change de signe et est continue. Par TVI, elle s'annule.

Exemple 40: ★

Soit $f:[a,b]\to [a,b]$ continue sur [a,b]. Montrer l'existence d'un point fixe pour f.

Solution:

Soit $g: x \mapsto f(x) - x$, continue comme somme.

On a $f(b) \in [a, b]$ donc $g(b) \le 0$ et $f(a) \in [a, b]$ donc $g(a) \ge 0$.

Ainsi, g change de signe et est continue. Par TVI, $\exists x_0 \in [a,b] \mid f(x_0) - x_0 = 0...$

Corrolaire 41: *

L'image d'un intervalle par une fonction continue est un intervalle.

Preuve:

Soit f continue sur un intervalle I. Soient $a, b \in I$: $a \leq b$. Soit $y \in [a, b]$.

On a $\exists \alpha \in I \mid \alpha = f(\alpha)$ et $\exists \beta \in I \mid b = f(\beta)$ et f continue sur $[\min(\alpha, \beta), \max(\alpha, \beta)]$.

En effet, $[\min(\alpha, \beta), \max(\alpha, \beta)] \subset I$ par convexité de I.

Par TVI, $\exists \gamma \in [\min(\alpha, \beta), \max(\alpha, \beta)] \mid y = f(\gamma) \text{ donc } y \in f(I).$

Corrolaire 42: TVI strictement monotone.

Soit $f:[a,b]\to\mathbb{R}$ continue et strictement monotone sur [a,b]. Pour tout réel y entre f(a) et f(b),

$$\exists ! c \in [a, b] \quad y = f(c).$$

Preuve:

Existence. TVI.

Unicité. On sait que toute fonction strictement monotone est injective.

Théorème 43: Théorème de la bijection continue.

Soit $f: I \to \mathbb{R}$ une fonction continue et strictement monotone sur I.

- Elle réalise une bijection de I dans f(I), qui est un intervalle.
- De plus, sa réciproque $f^{-1}: J \to I$ est strictement monotone, de même monotonie que f, et elle est continue sur J.

Preuve:

On a J = f(I) est un intervalle comme image d'un intervalle par une fonction continue.

- J = f(I) donc $\forall y \in J, \exists x \in I \mid y = f(I)$: surjective.
- \bullet f est injective sur I car elle y est strictement monotone.
- f est donc bijective de I vers J. Il existe donc $f^{-1}: J \to I$.
- Supposons f strictement croissante. Soient $y, y' \in J \mid y < y'$. Supposons $f^{-1}(y) \ge f^{-1}(y')$.

On applique f croissante : $y \ge y'$: absurde donc $f^{-1}(y) < f^{-1}(y')$: même monotonie.

Proposition 44

Soit une fonction définie sur un intervalle et à valeurs réelles.

Si elle est continue sur l'intervalle et injective, alors elle est strictement monotone.

3.3 Théorème des bornes atteintes.

Théorème 45: ★★

Soit $f:[a,b]\to\mathbb{R}$ continue sur [a,b]. Alors f est bornée et atteint ses bornes sur [a,b]:

$$\exists c \in [a, b] \mid f(c) = \min_{[a, b]} f.$$

$$\exists d \in [a, b] \mid f(d) = \max_{[a, b]} f.$$

Preuve:

Notons A = f([a, b]) non vide. On pose $S = \sup(A)$ si A est majoré, $+\infty$ sinon.

Alors $\exists (\alpha_n) \in A^{\mathbb{N}} \mid \alpha_n \to S \text{ et } \forall n \in \mathbb{N}, \ \alpha_n \in A.$

Ainsi, $\forall n \in \mathbb{N}, \exists x_n \in [a, b] \mid \alpha_n = f(x_n)$. On a donc une suite (x_n) d'éléments de [a, b].

C'est une suite bornée. D'après Bolzano-Weierstrass, elle admet une suite extraite convergente :

$$\exists \varphi \in \mathbb{N}^{\mathbb{N}} \mid \exists l \in \mathbb{R}, \ x_{\varphi(n)} \to l \in [a,b] \ (\text{car} \ \forall n \in \mathbb{N}, \ x_{\varphi(n)} \in [a,b]).$$

Ainsi, f est continue en $l \in [a, b]$ et $f(x_{\varphi(n)}) \to f(l)$ et $f(x_n) \to S$.

Par unicité de la limite, S = f(l) donc S est fini et atteinte en l. C'est le maximium de f sur [a, b].

Corrolaire 46: Image d'un segment. 🖈

L'image d'un segment par une fonction continue est un segment.

Preuve:

Soit [a, b] avec $a, b \in \mathbb{R}$ et $a \leq b$. Soit f continue sur [a, b].

D'après le TBA, f est bornée sur [a,b] et y atteint ses bornes, on pose $m = \min_{[a,b]} f$ et $M = \max_{[a,b]} f$.

Alors $m, M \in f([a,b]) \subset [m,M]$. Ainsi, par TVI, $[m,M] \subset f([a,b])$ donc [m,M] = f([a,b]).

4 Exercices.

Limites.

Exercice 1: $\Diamond \Diamond \Diamond$

Calculer (en montrant qu'elles existent) : $\lim_{x \to 0+} x \left\lfloor \frac{1}{x} \right\rfloor$, $\lim_{x \to +\infty} x \left\lfloor \frac{1}{x} \right\rfloor$.

Solution:

Soit $x \in \mathbb{R}_+^*$. On a $\left\lfloor \frac{1}{x} \right\rfloor \leq \frac{1}{x} < \left\lfloor \frac{1}{x} \right\rfloor + 1$ et $\frac{1}{x} - 1 < \left\lfloor \frac{1}{x} \right\rfloor \leq \frac{1}{x}$ donc $1 - x < x \left\lfloor \frac{1}{x} \right\rfloor \leq 1$. Ainsi, $x \left\lfloor \frac{1}{x} \right\rfloor \xrightarrow[x \to 0_+]{} 1$ par théorème des gendarmes.

Soit x > 1. On a $\lfloor \frac{1}{x} \rfloor = 0$ car $\frac{1}{x} < 1$ donc $x \lfloor \frac{1}{x} \rfloor = 0$ pour x > 1 donc $f(x) \xrightarrow[x \to +\infty]{} 0$.

Exercice 2: ♦♦♦

Soient $f:[0,1] \to [0,1]$ et $g:[0,1] \to [0,1]$. On suppose que fg admet 1 pour limite en 0. Montrer que f et g admettent 1 pour limite en 0.

Solution:

Soit $x \in [0, 1]$. On a $0 \le f(x)g(x) \le f(x) \le 1$.

Or $f(x)g(x) \xrightarrow[x\to 0]{} 1$ donc par théorème des gendarmes, $f(x) \xrightarrow[x\to 0]{} 1$. On en déduit que $g(x) \xrightarrow[x\to 0]{} 1$.

Exercice 3: ♦♦◊

Montrer que la fonction $f: x \mapsto \frac{x^x}{|x|^{\lfloor x \rfloor}}$ n'a pas de limite en $+\infty$.

Solution:

Soit $n \in \mathbb{N}$. On a $f(n) = \frac{n^n}{n^n} = 1 \to 1$ et $f(n + \frac{1}{2}) = \frac{(n + \frac{1}{2})^{n + \frac{1}{2}}}{n^n} = \left(1 + \frac{1}{2n}\right)^n \left(n + \frac{1}{2}\right)^{\frac{1}{2}} \to +\infty$.

Donc f n'a pas de limite en $+\infty$.

Continuité (locale).

Exercice 4: ♦♦◊

Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ croissante, et telle que $x \mapsto \frac{f(x)}{x}$ est décroissante.

Montrer que f est continue sur \mathbb{R}_+^* .

Solution:

Soit $a \in \mathbb{R}_+^*$ et x < a. On a $x \frac{f(a)}{a} \le f(x) \le f(a)$ donc $f(x) \xrightarrow[x \to a_-]{} f(a)$ par gendarmes.

Soit x > a. Alors $f(a) \le f(x) \le x \frac{f(a)}{a}$ donc $f(x) \xrightarrow[x \to a_+]{} f(a)$ par gendarmes.

Donc f est continue sur \mathbb{R}_+^* .

Exercice 5: $\Diamond \Diamond \Diamond$

Soit $f: \mathbb{R} \to \mathbb{R}$, à la fois 1-périodique et $\sqrt{2}$ -périodique, et continue en 0.

- 1. Soit $n \in \mathbb{N}$. Montrer que $(\sqrt{2} 1)^n$ est une période de f.
- 2. Montrer que f est constante.

Solution:

1. Soient $a, b \in \mathbb{Z}^2$. On a $f(x+a) = f(x+b\sqrt{2}) = f(x)$ donc $f(a+b\sqrt{2}) = f(0)$.

Par le binôme de Newton, on trouve que $(\sqrt{2}-1)^n$ s'écrit comme $a+b\sqrt{2}$ et est donc période de f.

[2.] On a $u_n := (\sqrt{2} - 1)^n \to 0$ et $u_n = a_n + b_n \sqrt{2}$. Soit $x \in \mathbb{R}$.

On pose $p_n = \lfloor \frac{x}{u_n} \rfloor$. Alors $p_n u_n \le x < (p_n + 1)u_n$ et $(p_n u_n) \to x$ car $0 \le x - p_n u_n < u_n$.

Or, $p_n u_n = a'_n + b'_n \sqrt{2}$ et $f(p_n u_n) = f(0)$ donc f(x) = f(0) car f est continue en 0.

Exercice 6: $\Diamond \Diamond \Diamond$

Montrer que la fonction $\mathbb{1}_{\mathbb{Q}}$ n'est continue en aucun point de \mathbb{R} .

Solution:

Supposons par l'absurde que $[1_{\mathbb{Q}}]$ soit continue sur \mathbb{R} .

Soit $x \in \mathbb{Q}$. Posons (x_n) telle que $\forall n \in \mathbb{N}, \ x_n = \frac{\lfloor 10^n x \rfloor}{10^n}$. On a $x_n \to x$.

On pose $a_n = x - \frac{1}{\pi n} \to x$ et $b_n = x + \frac{1}{\pi n} \to x$. De plus, $\forall n \in \mathbb{N}, \ a_n \le x \le b_n, \ \mathbb{1}_{\mathbb{Q}}(a_n) = \mathbb{1}_{\mathbb{Q}}(b_n) = 0$ donc $x \notin \mathbb{Q}$: absurde.

Soit $x \in \mathbb{R} \setminus \mathbb{Q}$. On a $\mathbb{1}_{\mathbb{Q}}(x_n) = 1$ or $x_n \to x$ et $\mathbb{1}_{\mathbb{Q}}$ continue en x donc $\mathbb{1}_{\mathbb{Q}}(x) = 1$, absurde.

Donc $\mathbb{1}_{\mathbb{Q}}$ n'est pas continue sur \mathbb{R} .

Exercice 7: $\Diamond \Diamond \Diamond$

Montrer que la fonction $f: x \mapsto \ln(x) \ln(1-x)$ est prolongeable par continuité sur les bords de son intervalle de définition.

Solution:

Soit $x \in]0,1[$. On a $f(x)=(x-1)\ln(1-x)\frac{\ln(x)}{x-1}$ or $(x-1)\ln(1-x)\to 0$ par CC et $\ln(x)/x-1\to 1$ en 1. Donc $f(x) \xrightarrow[x \to 1]{} 0$. De même, $f(x) \xrightarrow[x \to 0]{} 0$.

Donc f est prolongeable par continuité en 0 et en 1, et f(0) = f(1) = 0.

Exercice 8: ♦♦♦

Trouver les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues en 0 telles que

$$\forall x \in \mathbb{R}, \ f(2x) - f(x) = x.$$

Solution:

Analyse. Soit $f: \mathbb{R} \to \mathbb{R}$ continue en 0 telle que $\forall x \in \mathbb{R}, \ f(2x) - f(x) = x$.

Par récurrence triviale, $\forall n \in \mathbb{N}, \ f(x) - f(\frac{x}{2^n}) = x \sum_{k=1}^n \left(\frac{1}{2}\right)^k$.

Or f est continue en 0 donc $f(x) - f(\frac{x}{2^n}) \to f(x) - f(0)$ et $x \sum_{k=1}^n (\frac{1}{2})^k \to x$.

Donc par unicité de la limite, f(x) - f(0) = x donc f est solution si $\exists a \in \mathbb{R} \mid \forall x \in \mathbb{R}, \ f(x) = a + x$.

Synthèse. Soit $a \in \mathbb{R}$. Soit $f: x \mapsto a + x$. Soit $x \in \mathbb{R}$. On a f(2x) - f(x) = a + 2x - a - x = x et f(0) = a.

Continuité (globale).

Exercice 9: $\Diamond \Diamond \Diamond$

Soit $f: \mathbb{R} \to \mathbb{R}_+$ continue telle que $\lim_{x \to +\infty} \frac{f(x)}{x} < 1$. Montrer que f possède un point fixe.

Solution:

Soit $g: x \mapsto \frac{f(x)}{x}$. Elle est continue puisque f l'est. On a $g \xrightarrow[x \to +\infty]{} l < 1$.

— Si f(0) = 0, alors f admet un point fixe qui est 0;

— Si f(0) > 0, alors $g(x) \xrightarrow[x \to 0_{-}]{} -\infty$ et $g(x) \xrightarrow[x \to 0_{+}]{} +\infty$ donc par TVI il existe un point fixe.

 $-\operatorname{Si} f(0) < 0$, même raisonnement.

Exercice 10: $\Diamond \Diamond \Diamond$

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction décroissante et continue.

Prouver que f possède un unique point fixe.

Solution:

Soit $g: x \mapsto f(x) - x$.

Unicité. On a g strictement décroissante, donc injective : elle ne peut s'annuler qu'une unique fois.

Existence. Supposons par l'absurde que g ne s'annule pas.

On a que g est continue, donc elle est soit strict. positive, soit strict. négative.

Si g positive : $\forall x \in \mathbb{R}, \ f(x) > x$, donc $f(x) \xrightarrow[x \to +\infty]{} +\infty$, absurde car f décroissante.

Si g négative : $\forall x \in \mathbb{R}, \ f(x) < x, \ \text{donc} \ f(x) \xrightarrow[x \to -\infty]{} -\infty$, absurde car f décroissante.

Exercice 11: $\Diamond \Diamond \Diamond$

Soit f une fonction continue sur \mathbb{R} et admettant des limites finies M et m en $+\infty$ et $-\infty$.

Montrer que f est bornée.

Solution:

On pose $\varepsilon = 1$, $\exists A < 0$, $\forall x \le A$, $|f(x) - m| \le 1$ et $\exists B > 0$, $\forall x \ge B$, $|f(x) - M| \le 1$.

Donc $\forall x \leq A, \ m-1 \leq f(x) \leq m+1 \ \text{et} \ \forall x \geq B, \ M-1 \leq f(x) \leq M+1.$

Donc f est bornée sur $]-\infty,A]$ et sur $[B,+\infty[$.

De plus, f est continue sur [A, B] donc d'après le TBA, elle y est aussi bornée.

Ainsi, f est bornée sur \mathbb{R} tout entier.

Exercice 12: $\Diamond \Diamond \Diamond$

Soient f et g deux fonctions de \mathbb{R} dans \mathbb{R} . Montrer que si f est continue et que g est bornée, alors $g \circ f$ et $f \circ g$ sont bornées.

Solution:

 $g \circ f$. On a $f(\mathbb{R}) \subset \mathbb{R}$ donc $g(f(\mathbb{R})) \subset g(\mathbb{R})$.

Or g est bornée par $M \in \mathbb{R}$ donc $g(f(\mathbb{R})) \subset [-M, M]$ donc $g \circ f$ est bornée.

 $f \circ g$. On a $\exists M \in \mathbb{R} \mid g(\mathbb{R}) \subset [-M, M]$, et f continue sur $[-M, M] \subset \mathbb{R}$.

 $\overline{\text{D'après}}$ le TBA, f est bornée sur [-M, M] donc $f(g(\mathbb{R}))$ est borné, donc $f \circ g$ est bornée.

Exercice 13: $\Diamond \Diamond \Diamond$

Soit f une fonction continue sur \mathbb{R} telle que $\forall x \in \mathbb{R}^*$, $|f(x)| \leq |x|$.

- 1. Prouver que 0 est un point fixe de f et que c'est le seul.
- 2. Prouver que pour tout segment [a, b] inclus dans \mathbb{R}_+^* , il existe $k \in [0, 1[$ tel que $\forall x \in [a, b], |f(x)| \le k|x|$.

Solution:

1. Soit $x \in \mathbb{R}^*$. On a |f(x)| < |x| donc -|x| < f(x) < |x| et f continue sur \mathbb{R} .

Ainsi, d'après le théorème des gendarmes, $f(x) \xrightarrow[x \to 0]{} 0$, donc f(0) = 0 par continuité de f en 0.

Supposons qu'il en existe un autre, $l \in \mathbb{R}^*$. Alors f(l) = l et |f(l)| < |l|, donc |l| < |l|, absurde.

2. Soit $[a, b] \subset \mathbb{R}_+^*$ un segment.

Supposons par l'absurde que $\forall k \in [0,1[, \exists x \in [a,b], |f(x)| > k|x|, \text{ donc } k|x| < |f(x)| \le |x|.$

Donc -k|x| < -|f(x)| < k|x| donc 0 < -|f(x)| < 0 en prenant k = 0 donc f(x) = 0.

De plus, en faisant tendre k vers 1, on a $|x| \le |f(x)| \le |x|$ donc f(x) = |x| = 0, absurde car $x \in \mathbb{R}^*$.

Exercice 14: ♦♦♦

Soit $f:[0,1]\to\mathbb{R}$ continue, telle que f(0)=f(1). Montrer que pour tout $p\in\mathbb{N}^*$, l'équation

$$f\left(x + \frac{1}{p}\right) = f(x)$$

admet au moins une solution.

Solution:

Soit $p \in \mathbb{N}^*$. On pose $g: x \mapsto f\left(x + \frac{1}{p}\right)$. Soit $x \in [0, 1]$, on a:

$$\sum_{k=0}^{p-1} g\left(\frac{k}{p}\right) = \sum_{k=0}^{p-1} f\left(\frac{k+1}{p}\right) - f\left(\frac{1}{p}\right) = f(1) - f(0) = 0$$

Si l'un des $g\left(\frac{k}{p}\right)$ est nul, on a une solution.

Sinon, on les suppose tous non nuls, et puiqu'on a une somme nulle: $\exists i, j \in [0, p-1] \mid g\left(\frac{i}{p}\right) \geq 0$ et $g\left(\frac{j}{p}\right) \leq 0$.

Puisque g est continue sur [0,1], elle l'est sur $\left[\frac{i}{p},\frac{j}{p}\right]$ (en supposant $i\leq j$), donc on y applique le TVI.

On a alors $\exists c \in \left[\frac{i}{p}, \frac{j}{p}\right] \mid g(c) = 0$. On a donc une solution.

Dans tous les cas, on a une solution pour $f\left(x+\frac{1}{p}\right)=f(x)$ pour tout $p\in\mathbb{N}^*$.