1.- Dada la gramática:

$$\begin{array}{c|cccc} S \rightarrow & (&A&)\\ & | & \textbf{cab} & B&) & S\\ & | & (&B & \textbf{cola}\\ & | & \textbf{cab} & A & \textbf{cola}\\ A \rightarrow & \textbf{num} & | & \epsilon\\ B \rightarrow & \textbf{num} & | & \epsilon \end{array}$$

a) (2,5 pto.) Construye la colección canónica de conjuntos de elementos LR(1).

- **b)** (0,25 pto.) ¿Es una gramática LR(1)? Justifica tu respuesta. Si que es LR(1) porque en ningún estado aparecenconflictos.
- c) (1 pto.) Realiza de traza de análisis LR(1) para la cadena: "cab num) (num)".

d) (1,5 pto.) Construye la tabla de análisis LALR(1).

Se pueden fusionar los estados I_6 e I_9 con lo que se obtiene la tabla de análisis LALR(1) siguiente:

	()	cab	cola	num	\$	S	A	В
0	d2		d3				1		
1						Acept			
2		r6		r8	d6-9			4	5
3		r8		r6	d6-9			8	7
4		d10							
5				d11					
6-9		r5 / r7		r7 / r5					
7		d12							
8				d13					
10						r1			
11						r3			
12	d2		d3				14		
13						r4			
14						r2			

e) (0,25 pto.) ¿Es una gramática LALR(1)? Justifica tu respuesta.

No es una gramática LALR(1) porque en el estado 6-9 hay dos conflictos reducción/reducción con los símbolos ")" y "cola"

2.- (1 pto.)

a) Dado el fragmento del ETDS de una calculadora, donde "num" representa un número entero o real:

$$E \rightarrow E_1 + E_2$$
 { $E.valor = E_1.valor + E_2.valor$ } $E \rightarrow \mathbf{num}$ { $E.valor = num.valor$ }

¿Qué módulo del procesador del lenguaje proporciona valor al atributo num.valor?

El analizador léxico.

Indica si las siguientes afirmaciones son ciertas o falsas y justifica tu respuesta:

b) Puede existir una gramática SLR(1) que no sea LALR(1) pero no puede existir una gramática LL(1) que no sea LALR(1).

Es falsa ya que toda gramática SLR(1) es LALR(1) y hay gramáticas LL(1) que no son LALR(1)).

c) Sea una gramática independiente del contexto G. Si

$$S => * \beta A a \omega => \beta \alpha a \omega$$

es una derivación más a derechas para G, entonces en su autómata LR(1) existirá un estado s, al que se llegará tras desplazar " β α ", que contendrá el elemento LR(1) [A-> α . , a]

Es cierta.

Viendo la derivación a derechas $S=>*\beta$ A a $\omega=>\beta$ α a ω , y por la defición de elemento LR(1) válido para un prefijo viable, sabemos que el elemento $[A->\alpha]$, a] es válido para el prefijo viable " β α ". El estado "s" representa al estado que contiene a todos los elementos LR(1) válidos para el prefijo viable " β α ".

Esto mismo se puede justificar de la siguiente manera. El elemento LR(1) [$A > \alpha$., a] indica que en la cima de la pila está la cadena α , y que en la forma sentencial a derechas esta cadena α debe ir seguida del símbolo "a". Efectivamente, la forma sentencial a derechas tiene como pivote a la producción $A > \alpha$, y está va seguida del símbolo "a". Además, para poder aplicar el pivote se habrán ido desplazando símbolos hasta tener en la cima de la pila el prefijo viable " β α ". En ese momento estaremos en un estado "s" en el que se deberá aplicar la reducción $A > \alpha$.

3.- Dada la gramática independiente del contexto:

Se pide:

- a) (1 pto.) Un ETDS que compruebe que todos los operandos son compatibles con los operadores. Se considera que el operador suma y producto son compatibles con constantes enteras en base decimal, octal y hexadecimal, y que el operador resta sólo lo es con constantes en base decimal.
- **b)** (1 pto.) Un ETDS que compruebe que el número de operandos en el caso de la suma o el producto es dos o mayor que dos, y en el caso de la resta exactamente dos.
- c) (0,75 pto.) Escribir una especificación FLEX que reconozca los siguientes tokens:
 - Una constante entera o decimal (por ejemplo: 220, 2.31) que no puede empezar por un cero ni un punto.
 - Una constante entera en base octal. Siempre empezará por un cero e irá seguida de cualquier dígito octal. Ej. 021.
 - Una constante entera en base hexadecimal. Empezará por 0x e irá seguida de dígitos hexadecimales. Ej. 0x3a.
 - El resto de tokens de la gramática anterior.

La especificación debe eliminar blancos y tabuladores.

d) (0,75 pto.) Una especificación del apartado b).	BISON	para la	a anterior	gramática	que imple	emente el E	ΓDS