Team notebook

HCMUS-PenguinSpammers

February 3, 2022

Contents	5 Geometry	8 8	3 Misc	16
- A1 111	5.1 Closest Pair Problem	8	8.1 Dates	
1 Algorithms 1	5.2 Convex Diameter	8	8.2 Debugging Tricks	
1.1 Mo's Algorithm	5.3 Pick Theorem	9	8.3 Interval Container	16
1.2 Mo's Algorithms on Trees	5.4 Square	9	8.4 Optimization Tricks	16
1.3 Parallel Binary Search 1	5.5 Triangle		8.4.1 Bit hacks	16
	5.5 Inangle	10	8.4.2 Pragmas	16
2 Combinatorics 2	6 Graphs	10	8.5 Ternary Search	17
2.1 Factorial Approximate 2	•		·	
2.2 Factorial		1 }	Number Theory	17
2.3 Fast Fourier Transform 2	6.2 Dijkstra		9.1 Chinese Remainder Theorem	17
2.4 General purpose numbers	6.3 Directed MST	I .	9.2 Convolution	17
2.5 Lucas Theorem	6.4 Edge Coloring	11	9.3 Diophantine Equations	
2.6 Multinomial	6.5 Eulerian Path	12	9.4 Discrete Logarithm	
2.7 Others	6.6 Floyd - Warshall	12	9.5 Ext Euclidean	
2.8 Permutation To Int	6.7 Ford - Bellman	I .	9.6 Fast Eratosthenes	
2.9 Sigma Function	6.8 Gomory Hu	II	9.7 Highest Exponent Factorial	
210 0101101 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.9 Karp Min Mean Cycle		9.8 Miller - Rabin	
3 Data Structures 4			9.9 Mod Integer	
3.1 Binary Index Tree 4			9.10 Mod Inv	
3.2 Disjoint Set Uninon (DSU) 5	6.11 LCA		9.11 Mod Mul	
3.3 Fake Update	6.12 Math		9.12 Mod Pow	
3.4 Fenwick Tree 2D	6.13 Minimum Path Cover in DAG		9.13 Number Theoretic Transform	
3.5 Fenwick Tree	6.14 Planar Graph (Euler)	13		
	6.15 Push Relabel	14	9.14 Pollard Rho Factorize	
	6.16 SCC Kosaraju	14	9.15 Primes	
3.7 Range Minimum Query 6	6.17 Tarjan SCC	I .	9.16 Totient Sieve	
3.8 STL Treap 6	6.18 Topological Sort	I .	9.17 Totient	20
3.9 Segment Tree 6	0.10 Topological Bott		10.70	-
3.10 Sparse Table	7 Linear Algebra	15	0 Probability and Statistics	20
3.11 Trie			10.1 Continuous Distributions	
	7.1 Matrix Determinant	-	10.1.1 Uniform distribution	
4 Dynamic Programming Optimization 7	7.2 Matrix Inverse	l l	10.1.2 Exponential distribution	
4.1 Convex Hull Trick	7.3 PolyRoots	15	10.1.3 Normal distribution	
4.2 Divide and Conquer 8	7.4 Polynomial	16	10.2 Discrete Distributions	21

		10.2.1 Binomial distribution	21
		10.2.2 First success distribution	21
		10.2.3 Poisson distribution	21
	10.3	Probability Theory	21
11	Stri	ngs	21
	11.1	Hashing	21
	11.2	Incremental Aho Corasick	21
	11.3	$\operatorname{KMP} \dots \dots$	22
	11.4	Minimal String Rotation	22
	11.5	Suffix Array	23
	11.6	Suffix Automation	23
	11.7	Suffix Tree	24
	11.8	Z Algorithm	24

1 Algorithms

1.1 Mo's Algorithm

```
/*
   https://www.spoi.com/problems/FREQ2/
vector <int> MoQueries(int n, vector <query> Q){
   block size = sart(n):
   sort(Q.begin(), Q.end(), [](const query &A, const
        query &B){
       return (A.1/block_size != B.1/block_size)?
            (A.1/block_size < B.1/block_size) : (A.r <
           B.r);
   });
   vector <int> res;
   res.resize((int)Q.size());
   int L = 1, R = 0;
   for(query q: Q){
       while (L > q.1) add(--L);
      while (R < q.r) add(++R);
      while (L < q.1) del(L++);
      while (R > q.r) del(R--);
       res[q.pos] = calc(1, R-L+1):
   return res;
```

1.2 Mo's Algorithms on Trees

```
Given a tree with N nodes and Q queries. Each node has
    an integer weight.
Each query provides two numbers u and v. ask for how
    many different integers weight of nodes
there are on path from u to v.
Modify DFS:
For each node u. maintain the start and the end DFS
    time. Let's call them ST(u) and EN(u).
=> For each query, a node is considered if its
    occurrence count is one.
Query solving:
Let's query be (u, v). Assume that ST(u) \le ST(v).
    Denotes P as LCA(u, v).
Case 1: P = u
Our query would be in range [ST(u), ST(v)].
Case 2: P != u
Our query would be in range [EN(u), ST(v)] + [ST(p),
     ST(p)
void update(int &L, int &R, int qL, int qR){
   while (L > aL) add(--L):
   while (R < qR) add(++R);
   while (L < qL) del(L++);</pre>
   while (R > aR) del(R--):
vector <int> MoQueries(int n, vector <query> Q){
   block_size = sqrt((int)nodes.size());
   sort(Q.begin(), Q.end(), [](const query &A, const
        query &B){
       return (ST[A.1]/block_size !=
            ST[B.1]/block_size)? (ST[A.1]/block_size <</pre>
            ST[B.1]/block_size) : (ST[A.r] < ST[B.r]);</pre>
   });
    vector <int> res:
   res.resize((int)Q.size());
   LCA lca;
   lca.initialize(n);
```

```
int L = 1, R = 0;
for(query q: Q){
   int u = q.1, v = q.r;
   if(ST[u] > ST[v]) swap(u, v); // assume that
        S[u] \leq S[v]
   int parent = lca.get(u, v);
   if(parent == u){
       int qL = ST[u], qR = ST[v];
       update(L, R, qL, qR);
   }else{
       int qL = EN[u], qR = ST[v];
       update(L, R, qL, qR);
       if(cnt_val[a[parent]] == 0)
          res[a.pos] += 1:
   res[q.pos] += cur_ans;
return res;
```

1.3 Parallel Binary Search

```
int lo[N], mid[N], hi[N];
vector<int> vec[N];
void clear() //Reset
       memset(bit, 0, sizeof(bit));
void apply(int idx) //Apply ith update/query
       if(ql[idx] <= qr[idx])</pre>
              update(ql[idx], qa[idx]),
                    update(qr[idx]+1, -qa[idx]);
       else
               update(1, qa[idx]);
              update(qr[idx]+1, -qa[idx]);
              update(ql[idx], qa[idx]);
       }
}
bool check(int idx) //Check if the condition is
     satisfied
{
       int req=reqd[idx];
       for(auto &it:owns[idx])
```

```
{
               req-=pref(it);
               if(req<0)
                       break;
        if(req<=0)
               return 1;
        return 0;
void work()
        for(int i=1:i<=q:i++)</pre>
               vec[i].clear();
        for(int i=1:i<=n:i++)</pre>
               if(mid[i]>0)
                       vec[mid[i]].push back(i):
       clear():
       for(int i=1;i<=q;i++)</pre>
               apply(i);
               for(auto &it:vec[i]) //Add appropriate
                    check conditions
                       if(check(it))
                               hi[it]=i;
                       else
                               lo[it]=i+1;
               }
       }
void parallel_binary()
        for(int i=1:i<=n:i++)</pre>
               lo[i]=1, hi[i]=a+1:
       bool changed = 1;
       while(changed)
               changed=0:
               for(int i=1;i<=n;i++)</pre>
                       if(lo[i]<hi[i])</pre>
                               changed=1:
                               mid[i]=(lo[i] + hi[i])/2:
                       }
                       else
                               mid[i]=-1;
               work();
       }
}
```

2 Combinatorics

2.1 Factorial Approximate

Approximate Factorial:

$$n! = \sqrt{2.\pi \cdot n} \cdot \left(\frac{n}{e}\right)^n \tag{1}$$

2.2 Factorial

2.3 Fast Fourier Transform

```
/**
* Fast Fourier Transform.
 * Useful to compute convolutions.
 * C(f \operatorname{star} g)[n] = \operatorname{sum}_m(f[m] * g[n - m])
 * for all n.
 * test: icpc live archive, 6886 - Golf Bot
using namespace std;
#include <bits/stdc++.h>
#define D(x) cout << #x " = " << (x) << endl
#define endl '\n'
const int MN = 262144 << 1:</pre>
int d[MN + 10], d2[MN + 10];
const double PI = acos(-1.0):
struct cpx {
 double real, image;
  cpx(double _real, double _image) {
   real = _real;
    image = _image;
  cpx(){}
};
```

```
cpx operator + (const cpx &c1, const cpx &c2) {
 return cpx(c1.real + c2.real, c1.image + c2.image);
cpx operator - (const cpx &c1, const cpx &c2) {
 return cpx(c1.real - c2.real, c1.image - c2.image);
cpx operator * (const cpx &c1, const cpx &c2) {
 return cpx(c1.real*c2.real - c1.image*c2.image,
      c1.real*c2.image + c1.image*c2.real):
}
int rev(int id, int len) {
 int ret = 0:
 for (int i = 0: (1 << i) < len: i++) {
   ret <<= 1:
   if (id & (1 << i)) ret |= 1:</pre>
 return ret:
cpx A[1 << 20];
void FFT(cpx *a, int len, int DFT) {
 for (int i = 0; i < len; i++)</pre>
   A[rev(i, len)] = a[i]:
  for (int s = 1; (1 << s) <= len; s++) {
   int m = (1 << s):
   cpx wm = cpx(cos(DFT * 2 * PI / m), sin(DFT * 2 *
        PI / m)):
    for(int k = 0; k < len; k += m) {
     cpx w = cpx(1, 0);
     for(int j = 0; j < (m >> 1); j++) {
       cpx t = w * A[k + j + (m >> 1)];
       cpx u = A[k + i]:
       A[k + j] = u + t;
       A[k + j + (m >> 1)] = u - t:
 if (DFT == -1) for (int i = 0: i < len: i++)
      A[i].real /= len. A[i].image /= len:
 for (int i = 0: i < len: i++) a[i] = A[i]:
 return:
}
cpx in[1 << 20];
void solve(int n) {
 memset(d, 0, sizeof d);
```

3

```
for (int i = 0; i < n; ++i) {</pre>
   cin >> t;
   d[t] = true;
 int m;
 cin >> m;
 vector<int> q(m);
 for (int i = 0; i < m; ++i)</pre>
   cin >> q[i];
 for (int i = 0: i < MN: ++i) {</pre>
   if (d[i])
     in[i] = cpx(1, 0);
   else
     in[i] = cpx(0, 0);
 FFT(in, MN, 1):
 for (int i = 0: i < MN: ++i) {</pre>
   in[i] = in[i] * in[i];
 FFT(in, MN, -1);
 int ans = 0;
 for (int i = 0; i < q.size(); ++i) {</pre>
   if (in[q[i]].real > 0.5 || d[q[i]]) {
     ans++:
 cout << ans << endl;</pre>
int main() {
 ios_base::sync_with_stdio(false);cin.tie(NULL);
 int n:
 while (cin >> n)
   solve(n):
 return 0:
```

2.4 General purpose numbers

Bernoulli numbers

EGF of Bernoulli numbers is
$$B(t)=\frac{t}{e^t-1}$$
 (FFT-able). $B[0,\ldots]=[1,-\frac{1}{2},\frac{1}{6},0,-\frac{1}{30},0,\frac{1}{42},\ldots]$ Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(m)$$

$$\approx \int_{m}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$
$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

c(8,k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1

Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{j=1}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n,n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

Bell numbers

Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

Labeled unrooted trees

on
$$n$$
 vertices: n^{n-2}
on k existing trees of size n_i : $n_1 n_2 \cdots n_k n^{k-2}$
with degrees d_i : $(n-2)!/((d_1-1)!\cdots(d_n-1)!)$

Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2}C_n, \ C_{n+1} = \sum_{i=1}^{n} C_i C_{n-i}$$

$$C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$$

[noitemsep]sub-diagonal monotone paths in an $n \times n$ grid. strings with n pairs of parenthesis, correctly nested. binary trees with with n+1 leaves (0 or 2 children). ordered trees with n+1 vertices. ways a convex polygon with n+2 sides can be cut into triangles by connecting vertices with straight lines. permutations of [n] with no 3-term increasing subseq.

2.5 Lucas Theorem

For non-negative integers m and n and a prime p, the following congruence relation holds: :

$$\binom{m}{n} \equiv \prod_{i=0}^{k} \binom{m_i}{n_i} \pmod{p},$$

where:

$$m = m_k p^k + m_{k-1} p^{k-1} + \dots + m_1 p + m_0,$$

and:

$$n = n_k p^k + n_{k-1} p^{k-1} + \dots + n_1 p + n_0$$

are the base p expansions of m and n respectively. This uses the convention that $\binom{m}{n} = 0$ if $m \le n$.

2.6 Multinomial

```
for (long long j = 0; j < v[i]; j++) {
    c = c * ++m / (j + 1);
}
return c;</pre>
```

2.7 Others

Cycles Let $g_S(n)$ be the number of *n*-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

Derangements Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1) + D(n-2)) = nD(n-1) + (-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

Burnside's lemma Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by q (q.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = Z_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

2.8 Permutation To Int

2.9 Sigma Function

The Sigma Function is defined as:

$$\sigma_x(n) = \sum_{d|n} d^x$$

when x = 0 is called the divisor function, that counts the number of positive divisors of n.

Now, we are interested in find

$$\sum_{d|n} \sigma_0(d)$$

If n is written as prime factorization:

$$n = \prod_{i=1}^{k} P_i^{e_k}$$

We can demonstrate that:

$$\sum_{d|n} \sigma_0(d) = \prod_{i=1}^k g(e_k + 1)$$

where g(x) is the sum of the first x positive numbers:

$$g(x) = (x * (x+1))/2$$

3 Data Structures

3.1 Binary Index Tree

3.2 Disjoint Set Uninon (DSU)

```
class DSU{
public:
    vector <int> parent;
   void initialize(int n){
       parent.resize(n+1, -1);
   int findSet(int u){
       while(parent[u] > 0)
           u = parent[u];
       return u;
   }
   void Union(int u, int v){
       int x = parent[u] + parent[v];
       if(parent[u] > parent[v]){
           parent[v] = x;
           parent[u] = v;
       }else{
           parent[u] = x;
           parent[v] = u;
};
```

3.3 Fake Update

```
vector <int> fake bit[MAXN]:
void fake_update(int x, int y, int limit_x){
   for(int i = x: i < limit x: i += i&(-i))
       fake bit[i].pb(v):
void fake_get(int x, int y){
   for(int i = x; i \ge 1; i = i&(-i))
       fake bit[i].pb(v):
}
vector <int> bit[MAXN];
void update(int x, int y, int limit_x, int val){
   for(int i = x; i < limit x; i += i&(-i)){
       for(int j = lower_bound(fake_bit[i].begin(),
            fake_bit[i].end(), y) -
            fake_bit[i].begin(); j <</pre>
            fake_bit[i].size(); j += j\&(-j))
           bit[i][j] = max(bit[i][j], val);
}
int get(int x, int y){
   int ans = 0;
   for(int i = x; i >= 1; i -= i&(-i)){
       for(int j = lower_bound(fake_bit[i].begin(),
            fake bit[i].end(), v) -
            fake_bit[i].begin(); j \ge 1; j = j&(-j))
           ans = max(ans, bit[i][j]);
   return ans:
int main(){
    io
   int n: cin >> n:
   vector <int> Sx, Sy;
   for(int i = 1; i <= n; i++){</pre>
       cin >> a[i].fi >> a[i].se;
       Sx.pb(a[i].fi);
       Sy.pb(a[i].se);
   unique_arr(Sx);
   unique_arr(Sy);
   // unique all value
   for(int i = 1; i <= n; i++){</pre>
       a[i].fi = lower_bound(Sx.begin(), Sx.end(),
            a[i].fi) - Sx.begin();
```

```
a[i].se = lower_bound(Sy.begin(), Sy.end(),
            a[i].se) - Sy.begin();
   // do fake BIT update and get operator
   for(int i = 1; i <= n; i++){
       fake_get(a[i].fi-1, a[i].se-1);
       fake_update(a[i].fi, a[i].se, (int)Sx.size());
   for(int i = 0: i < Sx.size(): i++){</pre>
       fake_bit[i].pb(INT_MIN); // avoid zero
       sort(fake_bit[i].begin(), fake_bit[i].end());
       fake_bit[i].resize(unique(fake_bit[i].begin(),
            fake_bit[i].end()) - fake_bit[i].begin());
       bit[i].resize((int)fake bit[i].size(), 0);
   // real update, get operator
   int res = 0:
   for(int i = 1: i <= n: i++){</pre>
       int maxCurLen = get(a[i].fi-1, a[i].se-1) + 1;
       res = max(res, maxCurLen);
       update(a[i].fi, a[i].se, (int)Sx.size(),
            maxCurLen):
}
```

3.4 Fenwick Tree 2D

```
#include "FenwickTree.cpp"
struct FT2 {
       vector<vi> ys; vector<FT> ft;
       FT2(int limx) : ys(limx) {}
       void fakeUpdate(int x, int v) {
              for (: x < sz(vs): x = x + 1)
                   ys[x].push_back(y);
       void init() {
              for (vi& v : ys) sort(all(v)),
                  ft.emplace_back(sz(v));
       int ind(int x, int y) {
              return (int)(lower_bound(all(ys[x]), y)
                  - vs[x].begin()); }
       void update(int x, int v, ll dif) {
              for (; x < sz(ys); x |= x + 1)
                    ft[x].update(ind(x, y), dif);
       11 query(int x, int y) {
```

```
11 sum = 0;
    for (; x; x &= x - 1)
        sum += ft[x-1].query(ind(x-1, y));
    return sum;
}
```

3.5 Fenwick Tree

```
template <typename T>
class FenwickTree{
 vector <T> fenw;
 int n:
public:
  void initialize(int _n){
   this \rightarrow n = n;
   fenw.resize(n+1);
  void update(int id, T val) {
   while (id <= n) {
     fenw[id] += val:
     id += id&(-id):
 T get(int id){
   T ans{}:
    while(id >= 1){}
     ans += fenw[id]:
     id -= id&(-id);
   return ans;
};
```

3.6 Hash Table

```
/*
 * Micro hash table, can be used as a set.
 * Very efficient vs std::set
 *
 */
const int MN = 1001;
struct ht {
 int _s[(MN + 10) >> 5];
 int len:
```

```
void set(int id) {
   len++;
   _s[id >> 5] |= (1LL << (id & 31));
}
bool is_set(int id) {
   return _s[id >> 5] & (1LL << (id & 31));
}
};</pre>
```

3.7 Range Minimum Query

```
return min(v[a], v[a + 1], \ldots, v[b - 1]) in
        constant time
template<class T>
struct RMQ {
      vector<vector<T>> imp:
      RMQ(const vector<T>& V) : jmp(1, V) {
              for (int pw = 1, k = 1; pw * 2 <= sz(V);
                  pw *= 2, ++k) {
                     imp.emplace back(sz(V) - pw * 2 +
                          1):
                     rep(j,0,sz(jmp[k]))
                            imp[k][j] = min(imp[k -
                                 1][j], jmp[k - 1][j +
                                 :([wa
      T query(int a, int b) {
              assert(a < b); // or return inf if a == b
              int dep = 31 - __builtin_clz(b - a);
              return min(jmp[dep][a], jmp[dep][b - (1
                  << dep)]);
      }
```

3.8 STL Treap

```
struct Node {
    Node *l = 0, *r = 0;
    int val, y, c = 1;
    Node(int val) : val(val), y(rand()) {}
    void recalc();
};
int cnt(Node* n) { return n ? n->c : 0; }
```

```
void Node::recalc() { c = cnt(1) + cnt(r) + 1; }
template<class F> void each(Node* n, F f) {
       if (n) { each(n->1, f); f(n->val); each(n->r,
            f): }
pair<Node*, Node*> split(Node* n, int k) {
       if (!n) return {}:
       if (cnt(n->1) >= k) { // "n->val >= k" for
            lower bound(k)
              auto pa = split(n->1, k);
              n->1 = pa.second:
              n->recalc():
              return {pa.first, n};
       } else {
              auto pa = split(n->r, k - cnt(n->1) -
                   1): // and just "k"
              n->r = pa.first:
              n->recalc():
              return {n, pa.second};
       }
}
Node* merge(Node* 1, Node* r) {
       if (!1) return r;
       if (!r) return 1;
       if (1->y > r->y) {
              1->r = merge(1->r, r);
              1->recalc();
              return 1;
       } else {
              r->1 = merge(1, r->1);
              r->recalc();
              return r:
Node* ins(Node* t, Node* n, int pos) {
       auto pa = split(t, pos);
       return merge(merge(pa.first, n), pa.second);
// Example application: move the range [1, r) to index k
void move(Node*& t. int l. int r. int k) {
       Node *a. *b. *c:
       tie(a,b) = split(t, 1); tie(b,c) = split(b, r -
       if (k <= 1) t = merge(ins(a, b, k), c);</pre>
       else t = merge(a, ins(c, b, k - r));
```

3.9 Segment Tree

```
#include <bits/stdc++.h>
using namespace std:
const int N = 1e5 + 10:
int node[4*N]:
void modifv(int seg. int 1. int r. int p. int val){
   if(1 == r){
       node[seg] += val:
       return;
   int mid = (1 + r)/2;
   if(p \le mid){
       modify(2*seg + 1, 1, mid, p, val);
       modify(2*seg + 2, mid + 1, r, p, val);
   node[seg] = node[2*seg + 1] + node[2*seg + 2];
int sum(int seg, int 1, int r, int a, int b){
   if(1 > b \mid | r < a) return 0;
   if(1 >= a && r <= b) return node[seg];</pre>
   int mid = (1 + r)/2:
   return sum(2*seg + 1, 1, mid, a, b) + sum(2*seg +
        2. mid + 1. r. a. b):
```

3.10 Sparse Table

```
template <typename T, typename func = function<T(const
    T, const T)>>
struct SparseTable {
    func calc;
    int n;
    vector<vector<T>> ans;

    SparseTable() {}

    SparseTable(const vector<T>& a, const func& f) :
        n(a.size()), calc(f) {
        int last = trunc(log2(n)) + 1;
        ans.resize(n);
        for (int i = 0; i < n; i++){
            ans[i].resize(last);
        }
}</pre>
```

3.11 Trie

```
const int MN = 26; // size of alphabet
const int MS = 100010; // Number of states.
struct trie{
 struct node{
   int c;
   int a[MN];
 node tree[MS]:
 int nodes:
 void clear(){
   tree[nodes].c = 0:
   memset(tree[nodes].a, -1, sizeof tree[nodes].a):
   nodes++:
 void init(){
   nodes = 0:
   clear();
 int add(const string &s, bool query = 0){
   int cur_node = 0;
   for(int i = 0; i < s.size(); ++i){</pre>
     int id = gid(s[i]);
     if(tree[cur_node].a[id] == -1){
      if(query) return 0;
      tree[cur_node].a[id] = nodes;
```

```
clear();
}
cur_node = tree[cur_node].a[id];
}
if(!query) tree[cur_node].c++;
return tree[cur_node].c;
}
};
```

4 Dynamic Programming Optimization

4.1 Convex Hull Trick

```
#define long long long
#define pll pair <long, long>
#define all(c) c.begin(), c.end()
#define fastio ios_base::sync_with_stdio(false);
    cin.tie(0)
struct line{
   long a, b;
   line() {};
   line(long a, long b) : a(a), b(b) {};
    bool operator < (const line &A) const {</pre>
               return pll(a,b) < pll(A.a,A.b);</pre>
};
bool bad(line A, line B, line C){
   return (C.b - B.b) * (A.a - B.a) <= (B.b - A.b) *
        (B.a - C.a):
void addLine(vector<line> &memo. line cur){
    int k = memo.size();
    while (k \ge 2 \&\& bad(memo[k - 2], memo[k - 1],
        cur)){
       memo.pop_back();
    memo.push_back(cur);
long Fn(line A, long x){
   return A.a * x + A.b;
long query(vector<line> &memo, long x){
    int lo = 0, hi = memo.size() - 1;
```

```
while (lo != hi){
       int mi = (lo + hi) / 2;
       if (Fn(memo[mi], x) > Fn(memo[mi + 1], x)){
          lo = mi + 1:
       else hi = mi;
   return Fn(memo[lo], x);
const int N = 1e6 + 1:
long dp[N];
int main()
   fastio:
   int n. c: cin >> n >> c:
   vector<line> memo:
   for (int i = 1: i \le n: i++){
       long val: cin >> val:
       addLine(memo, {-2 * val, val * val + dp[i -
       dp[i] = query(memo, val) + val * val + c;
   cout << dp[n] << '\n';
   return 0;
```

4.2 Divide and Conquer

5 Geometry

5.1 Closest Pair Problem

```
struct point {
 double x, y;
 int id;
 point() {}
 point (double a, double b) : x(a), y(b) {}
double dist(const point &o, const point &p) {
 double a = p.x - o.x, b = p.y - o.y;
 return sqrt(a * a + b * b);
double cp(vector<point> &p. vector<point> &x.
    vector<point> &v) {
 if (p.size() < 4) {</pre>
   double best = 1e100:
   for (int i = 0; i < p.size(); ++i)</pre>
    for (int j = i + 1; j < p.size(); ++j)</pre>
       best = min(best, dist(p[i], p[j]));
   return best:
 }
 int ls = (p.size() + 1) >> 1;
 double 1 = (p[ls - 1].x + p[ls].x) * 0.5:
 vector<point> xl(ls), xr(p.size() - ls);
 unordered_set<int> left;
 for (int i = 0; i < ls; ++i) {</pre>
   x1[i] = x[i];
   left.insert(x[i].id);
 for (int i = ls; i < p.size(); ++i) {</pre>
   xr[i - ls] = x[i];
```

```
vector<point> v1, vr;
 vector<point> pl, pr;
 vl.reserve(ls); vr.reserve(p.size() - ls);
 pl.reserve(ls); pr.reserve(p.size() - ls);
 for (int i = 0; i < p.size(); ++i) {</pre>
   if (left.count(y[i].id))
     vl.push_back(v[i]);
   else
     yr.push_back(y[i]);
   if (left.count(p[i].id))
     pl.push_back(p[i]);
    else
     pr.push_back(p[i]);
 double dl = cp(pl, xl, vl):
 double dr = cp(pr, xr, vr);
 double d = min(dl. dr):
 vector<point> yp; yp.reserve(p.size());
 for (int i = 0; i < p.size(); ++i) {</pre>
   if (fabs(y[i].x - 1) < d)
     vp.push_back(v[i]);
 for (int i = 0; i < vp.size(); ++i) {</pre>
   for (int j = i + 1; j < vp.size() && j < i + 7;
     d = min(d, dist(vp[i], vp[j]));
 }
 return d;
double closest_pair(vector<point> &p) {
 vector<point> x(p.begin(), p.end());
 sort(x.begin(), x.end(), [](const point &a, const
      point &b) {
   return a.x < b.x:
 vector<point> y(p.begin(), p.end());
 sort(y.begin(), y.end(), [](const point &a, const
      point &b) {
   return a.y < b.y;</pre>
 return cp(p, x, y);
```

5.2 Convex Diameter

```
struct point{
  int x, y;
```

```
};
struct vec{
   int x, y;
};
vec operator - (const point &A, const point &B){
   return vec{A.x - B.x, A.v - B.v};
int cross(vec A. vec B){
   return A.x*B.v - A.v*B.x:
int cross(point A, point B, point C){
   int val = A.x*(B.v - C.v) + B.x*(C.v - A.v) +
        C.x*(A.v - B.v):
   if(val == 0)
       return 0: // coline
   if(val < 0)
       return 1: // clockwise
   return -1; //counter clockwise
}
vector <point> findConvexHull(vector <point> points){
   vector <point> convex;
    sort(points.begin(), points.end(), [](const point
        &A, const point &B){
       return (A.x == B.x)? (A.y < B.y): (A.x < B.x);
   }):
   vector <point> Up, Down;
   point A = points[0], B = points.back();
    Up.push_back(A);
   Down.push_back(A);
    for(int i = 0: i < points.size(): i++){</pre>
       if(i == points.size()-1 || cross(A, points[i],
            B) > 0){}
           while(Up.size() > 2 &&
                cross(Up[Up.size()-2], Up[Up.size()-1],
                points[i]) <= 0)
              Up.pop back():
           Up.push back(points[i]):
       if(i == points.size()-1 || cross(A, points[i],
            B) < 0){}
           while(Down.size() > 2 &&
                cross(Down[Down.size()-2],
                Down[Down.size()-1], points[i]) >= 0)
              Down.pop_back();
           Down.push_back(points[i]);
   }
```

```
for(int i = 0; i < Up.size(); i++)</pre>
        convex.push_back(Up[i]);
   for(int i = Down.size()-2; i > 0; i--)
        convex.push_back(Down[i]);
   return convex;
}
int dist(point A, point B){
   return (A.x - B.x)*(A.x - B.x) + (A.y - B.y)*(A.y -
        B.v):
}
double findConvexDiameter(vector <point> convexHull){
   int n = convexHull.size():
   int is = 0, is = 0:
   for(int i = 1: i < n: i++){
       if(convexHull[i].v > convexHull[is].v)
       if(convexHull[js].y > convexHull[i].y)
           is = i:
   int maxd = dist(convexHull[is], convexHull[js]);
   int i, maxi, j, maxj;
   i = maxi = is;
   j = maxj = js;
   dof
       int ni = (i+1)%n, nj = (j+1)%n;
       if(cross(convexHull[ni] - convexHull[i],
            convexHull[nj] - convexHull[j]) <= 0){</pre>
       }else{
           i = ni:
       int d = dist(convexHull[i]. convexHull[i]):
       if(d > maxd){
           maxd = d:
           maxi = i:
           maxj = j;
   }while(i != is || j != js);
   return sqrt(maxd);
```

5.3 Pick Theorem

```
struct point{
    l1 x, y;
};
```

```
//Pick: S = I + B/2 - 1
ld polygonArea(vector <point> &points){
   int n = (int)points.size();
   1d area = 0.0;
   int j = n-1;
   for(int i = 0; i < n; i++){</pre>
       area += (points[j].x + points[i].x) *
            (points[j].v - points[i].v);
       j = i:
   }
    return abs(area/2.0):
11 boundary(vector <point> points){
   int n = (int)points.size():
   11 num bound = 0:
   for(int i = 0: i < n: i++){</pre>
       ll dx = (points[i].x - points[(i+1)\%n].x);
       11 dy = (points[i].y - points[(i+1)%n].y);
       num_bound += abs(\_gcd(dx, dy)) - 1;
   }
   return num_bound;
```

5.4 Square

```
typedef long double ld:
const ld eps = 1e-12:
int cmp(ld x, ld y = 0, ld tol = eps) {
   return ( x \le v + tol) ? (x + tol \le v) ? -1 : 0 : 1:
struct point{
 ld x, y;
 point(ld a, ld b) : x(a), y(b) {}
 point() {}
}:
struct square{
 ld x1, x2, y1, y2,
    a, b, c;
 point edges[4];
  square(ld _a, ld _b, ld _c) {
   a = _a, b = _b, c = _c;
   x1 = a - c * 0.5;
   x2 = a + c * 0.5;
   v1 = b - c * 0.5;
```

```
v2 = b + c * 0.5;
    edges[0] = point(x1, v1);
   edges[1] = point(x2, v1);
   edges[2] = point(x2, y2);
   edges[3] = point(x1, y2);
};
ld min_dist(point &a, point &b) {
 1d x = a.x - b.x.
    v = a.v - b.v:
 return sqrt(x * x + y * y);
bool point_in_box(square s1, point p) {
 if (cmp(s1.x1, p.x) != 1 && cmp(s1.x2, p.x) != -1 &&
     cmp(s1.v1. p.v) != 1 && cmp(s1.v2. p.v) != -1)
   return true:
 return false:
7
bool inside(square &s1, square &s2) {
 for (int i = 0; i < 4; ++i)
   if (point_in_box(s2, s1.edges[i]))
     return true:
 return false;
bool inside_vert(square &s1, square &s2) {
 if ((cmp(s1.v1, s2.v1) != -1 && cmp(s1.v1, s2.v2) !=
     (cmp(s1.y2, s2.y1) != -1 \&\& cmp(s1.y2, s2.y2) !=
   return true:
 return false:
bool inside_hori(square &s1, square &s2) {
 if ((cmp(s1.x1, s2.x1) != -1 \&\& cmp(s1.x1, s2.x2) !=
     (cmp(s1.x2. s2.x1) != -1 \&\& cmp(s1.x2. s2.x2) !=
          1))
   return true:
 return false:
ld min_dist(square &s1, square &s2) {
 if (inside(s1, s2) || inside(s2, s1))
   return 0;
 ld ans = 1e100;
  for (int i = 0; i < 4; ++i)
```

5.5 Triangle

Let a, b, c be length of the three sides of a triangle.

$$p = (a + b + c) * 0.5$$

The inradius is defined by:

$$iR = \sqrt{\frac{(p-a)(p-b)(p-c)}{p}}$$

The radius of its circumcircle is given by the formula:

$$cR = \frac{abc}{\sqrt{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}}$$

6 Graphs

6.1 Bridges

```
struct Graph {
   vector<vector<Edge>> g;
   vector<int> vi, low, d, pi, is_b; // vi = visited
   int bridges_computed;
```

```
int ticks, edges;
Graph(int n, int m) {
   g.assign(n, vector<Edge>());
   id_b.assign(m, 0);
   vi.resize(n);
   low.resize(n);
   d.resize(n);
   pi.resize(n):
   edges = 0:
   bridges computed = 0:
void addEge(int u, int v) {
   g[u].push_back(Edge(v, edges));
   g[v].push back(Edge(u, edges)):
   edges++:
void dfs(int u) {
   vi[u] = true:
   d[u] = low[u] = ticks++;
   for (int i = 0; i < g[u].size(); i++) {</pre>
       int v = g[u][i].to;
       if (v == pi[u]) continue;
       if (!vi[v]) {
          pi[v] = u;
          dfs(v):
          if(d[u] < low[v]) is_b[g[u][i].id] =</pre>
          low[u] = min(low[u], low[v]);
       } else {
          low[u] = min(low[u], low[v]);
   }
// multiple edges from a to b are not allowerd.
// (they could be detected as a bridge).
// if we need to handle this, just count how many
    edges there are from a to b.
void compBridges() {
   fill(pi.begin(), pi.end(), -1);
   fill(vi.begin(), vi.end(), false);
   fill(d.begin(), d.end(), 0);
   fill(low.begin(), low.end(), 0):
   ticks = 0;
   for (int i = 0; i < g.size(); i++)</pre>
      if (!vi[i]) dfs(i);
   bridges_computed = 1;
map<int, vector<Edge>> bridgesTree() {
```

6.2 Dijkstra

```
struct edge {
   int to;
   long long w;
    edge() {}
    edge(int a, long long b) : to(a), w(b) {}
    bool operator<(const edge &e) const {</pre>
       return w > e.w;
};
typedef <vector<vector<edge>> graph;
const long long inf = 1000000LL * 1000000LL:
pair<vector<int>, vector<long long>> dijkstra(graph& g.
    int start) {
   int n = g.size();
   vector<long long> d(n, inf);
   vector<int> p(n, -1);
   d[start] = 0:
   priority_queue<edge> q;
   q.push(edge(start, 0));
    while (!a.emptv()) {
       int node = q.top().to;
       long long dist = q.top().w;
       q.pop():
       if (dist > d[node]) continue;
       for (int i = 0; i < g[node].size(); i++) {</pre>
           int to = g[node][i].to;
           long long w_extra = g[node][i].w;
           if (dist + w_extra < d[to]) {</pre>
              p[to] = node;
               d[to] = dist + w_extra;
               q.push(edge(to, d[to]));
```

```
}
  return {p, d};
}
```

6.3 Directed MST

```
struct Edge { int a, b; ll w; };
struct Node { /// lazy skew heap node
       Edge kev:
       Node *1. *r:
       ll delta:
       void prop() {
               kev.w += delta:
               if (1) 1->delta += delta;
               if (r) r->delta += delta:
              delta = 0:
       Edge top() { prop(); return key; }
};
Node *merge(Node *a, Node *b) {
       if (!a | | !b) return a ?: b:
       a->prop(), b->prop();
       if (a->key.w > b->key.w) swap(a, b);
       swap(a\rightarrow 1, (a\rightarrow r = merge(b, a\rightarrow r)));
       return a:
}
void pop(Node*& a) { a->prop(); a = merge(a->1, a->r); }
pair<11. vi> dmst(int n. int r. vector<Edge>& g) {
       RollbackUF uf(n):
       vector<Node*> heap(n):
       for (Edge e : g) heap[e.b] = merge(heap[e.b],
            new Node{e}):
       ll res = 0:
       vi seen(n, -1), path(n), par(n);
       seen[r] = r:
       vector<Edge> Q(n), in(n, \{-1,-1\}), comp;
       deque<tuple<int, int, vector<Edge>>> cycs;
       rep(s.0.n) {
               int u = s, qi = 0, w;
              while (seen[u] < 0) {
                      if (!heap[u]) return {-1,{}};
                      Edge e = heap[u]->top();
                      heap[u]->delta -= e.w,
                           pop(heap[u]);
                      Q[qi] = e, path[qi++] = u,
                           seen[u] = s;
                      res += e.w. u = uf.find(e.a):
                      if (seen[u] == s) { /// found
                           cycle, contract
```

```
Node* cvc = 0;
                      int end = qi, time =
                          uf.time();
                      do cyc = merge(cyc, heap[w
                          = path[--qi]]);
                      while (uf.join(u, w));
                      u = uf.find(u), heap[u] =
                          cvc, seen[u] = -1;
                      cycs.push_front({u, time,
                           {&Q[qi], &Q[end]}});
              }
       rep(i,0,qi) in[uf.find(Q[i].b)] = Q[i];
}
for (auto& [u.t.comp] : cvcs) { // restore sol
     (optional)
       uf.rollback(t):
       Edge inEdge = in[u]:
       for (auto& e : comp) in[uf.find(e.b)] =
       in[uf.find(inEdge.b)] = inEdge;
rep(i,0,n) par[i] = in[i].a;
return {res, par};
```

6.4 Edge Coloring

```
vi edgeColoring(int N. vector<pii> eds) {
       vi cc(N + 1), ret(sz(eds)), fan(N), free(N),
           loc:
       for (pii e : eds) ++cc[e.first], ++cc[e.second];
       int u. v. ncols = *max element(all(cc)) + 1:
       vector<vi> adj(N, vi(ncols, -1));
       for (pii e : eds) {
              tie(u, v) = e:
              fan[0] = v:
              loc.assign(ncols, 0):
              int at = u, end = u, d, c = free[u], ind
                   = 0. i = 0:
              while (d = free[v], !loc[d] && (v =
                   adi[u][d]) != -1)
                     loc[d] = ++ind, cc[ind] = d,
                          fan[ind] = v;
              cc[loc[d]] = c;
              for (int cd = d; at != -1; cd ^= c ^ d,
                   at = adj[at][cd])
                     swap(adj[at][cd], adj[end =
                          at][cd ^ c ^ d]);
              while (adj[fan[i]][d] != -1) {
```

```
int left = fan[i], right =
                          fan[++i], e = cc[i];
                     adi[u][e] = left;
                     adj[left][e] = u;
                     adi[right][e] = -1;
                     free[right] = e;
              adi[u][d] = fan[i];
              adi[fan[i]][d] = u:
              for (int y : {fan[0], u, end})
                     for (int& z = free[y] = 0;
                          adi[v][z] != -1: z++):
       rep(i,0,sz(eds))
              for (tie(u, v) = eds[i]; adj[u][ret[i]]
                   != v:) ++ret[i]:
       return ret:
}
```

6.5 Eulerian Path

```
struct DirectedEulerPath
       int n;
       vector<vector<int> > g;
       vector<int> path;
       void init(int _n){
              n = _n;
              g = vector<vector<int> > (n + 1.
                   vector<int> ());
              path.clear():
       void add_edge(int u, int v){
              g[u].push back(v):
       void dfs(int u)
              while(g[u].size())
                     int v = g[u].back();
                     g[u].pop_back();
                     dfs(v);
              path.push_back(u);
      }
       bool getPath(){
              int ctEdges = 0;
```

```
vector<int> outDeg, inDeg;
              outDeg = inDeg = vector<int> (n + 1, 0);
              for(int i = 1; i <= n; i++)
                      ctEdges += g[i].size();
                      outDeg[i] += g[i].size();
                      for(auto &u:g[i])
                             inDeg[u]++;
              int ctMiddle = 0. src = 1:
              for(int i = 1: i <= n: i++)</pre>
                      if(abs(inDeg[i] - outDeg[i]) > 1)
                             return 0;
                      if(inDeg[i] == outDeg[i])
                             ctMiddle++:
                      if(outDeg[i] > inDeg[i])
                             src = i:
              if(ctMiddle != n && ctMiddle + 2 != n)
                      return 0:
              dfs(src):
              reverse(path.begin(), path.end());
              return (path.size() == ctEdges + 1);
       }
};
```

6.6 Floyd - Warshall

6.7 Ford - Bellman

```
const 11 inf = LLONG_MAX;
```

```
struct Ed { int a, b, w, s() { return a < b ? a : -a;
struct Node { ll dist = inf; int prev = -1; };
void bellmanFord(vector<Node>& nodes, vector<Ed>& eds,
    int s) {
       nodes[s].dist = 0;
       sort(all(eds), [](Ed a, Ed b) { return a.s() <</pre>
            b.s(): }):
       int \lim = sz(nodes) / 2 + 2: // /3+100 with
            shuffled vertices
       rep(i.0.lim) for (Ed ed : eds) {
              Node cur = nodes[ed.a], &dest =
                   nodes[ed.b]:
              if (abs(cur.dist) == inf) continue;
              11 d = cur.dist + ed.w:
              if (d < dest.dist) {</pre>
                      dest.prev = ed.a:
                      dest.dist = (i < lim-1 ? d :</pre>
                           -inf):
              }
       }
       rep(i,0,lim) for (Ed e : eds) {
              if (nodes[e.a].dist == -inf)
                      nodes[e.b].dist = -inf;
       }
```

6.8 Gomory Hu

```
#include "PushRelabel.cpp"
typedef array<11, 3> Edge;
vector<Edge> gomoryHu(int N, vector<Edge> ed) {
       vector<Edge> tree;
       vi par(N);
       rep(i,1,N) {
              PushRelabel D(N): // Dinic also works
              for (Edge t : ed) D.addEdge(t[0], t[1],
                   t[2], t[2]):
              tree.push_back({i, par[i], D.calc(i,
                   par[i])}):
              rep(j,i+1,N)
                     if (par[i] == par[i] &&
                          D.leftOfMinCut(j)) par[j] =
                          i:
       return tree;
```

6.9 Karp Min Mean Cycle

```
* Finds the min mean cycle, if you need the max mean
 * just add all the edges with negative cost and print
 * ans * -1
 * test: uva, 11090 - Going in Cycle!!
const int MN = 1000:
struct edge{
 int v:
 long long w:
 edge(){} edge(int v, int w) : v(v), w(w) {}
long long d[MN][MN];
// This is a copy of g because increments the size
// pass as reference if this does not matter.
int karp(vector<vector<edge> > g) {
 int n = g.size();
 g.resize(n + 1); // this is important
  for (int i = 0; i < n; ++i)</pre>
   if (!g[i].empty())
     g[n].push_back(edge(i,0));
  ++n:
  for(int i = 0:i<n:++i)</pre>
   fill(d[i],d[i]+(n+1),INT MAX):
  d[n - 1][0] = 0:
  for (int k = 1: k \le n: ++k) for (int u = 0: u \le n:
      ++u) {
   if (d[u][k - 1] == INT MAX) continue;
   for (int i = g[u].size() - 1; i >= 0; --i)
     d[g[u][i].v][k] = min(d[g[u][i].v][k], d[u][k -
          1] + g[u][i].w):
  bool flag = true;
  for (int i = 0; i < n && flag; ++i)</pre>
   if (d[i][n] != INT_MAX)
     flag = false;
  if (flag) {
   return true; // return true if there is no a cycle.
```

```
double ans = 1e15;

for (int u = 0; u + 1 < n; ++u) {
   if (d[u][n] == INT_MAX) continue;
   double W = -1e15;

   for (int k = 0; k < n; ++k)
      if (d[u][k] != INT_MAX)
      W = max(W, (double)(d[u][n] - d[u][k]) / (n - k));

   ans = min(ans, W);
}

// printf("%.21f\n", ans);
cout << fixed << setprecision(2) << ans << endl;
return false;</pre>
```

6.10 Konig's Theorem

In any bipartite graph, the number of edges in a maximum matching equals the number of vertices in a minimum vertex cover

6.11 LCA

```
#include "../Data Structures/RMQ.h"
struct LCA {
      int T = 0;
      vi time, path, ret;
      RMO<int> rma:
      LCA(vector<vi>& C) : time(sz(C)).
           rmq((dfs(C,0,-1), ret)) {}
      void dfs(vector<vi>& C, int v, int par) {
              time[v] = T++;
              for (int y : C[v]) if (y != par) {
                     path.push_back(v),
                          ret.push_back(time[v]);
                     dfs(C, y, v);
      }
      int lca(int a, int b) {
              if (a == b) return a;
```

6.12 Math

Number of Spanning Trees

Create an $N \times N$ matrix mat, and for each edge $a \to b \in G$, do mat[a][b]--, mat[b][b]++ (and mat[b][a]--, mat[a][a]++ if G is undirected). Remove the ith row and column and take the determinant; this yields the number of directed spanning trees rooted at i (if G is undirected, remove any row/column).

Erdős-Gallai theorem

A simple graph with node degrees $d_1 \ge \cdots \ge d_n$ exists iff $d_1 + \cdots + d_n$ is even and for every $k = 1 \dots n$,

$$\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min(d_i, k).$$

6.13 Minimum Path Cover in DAG

Given a directed acyclic graph G=(V,E), we are to find the minimum number of vertex-disjoint paths to cover each vertex in V.

We can construct a bipartite graph $G' = (Vout \cup Vin, E')$ from G, where :

```
Vout = \{v \in V : v \text{ has positive out} - degree\} Vin = \{v \in V : v \text{ has positive } in - degree\} E' = \{(u, v) \in Vout \times Vin : (u, v) \in E\}
```

Then it can be shown, via König's theorem, that G'has a matching of size m if and only if there exists n-m vertex-disjoint paths that cover each vertex in G, where n is the number of vertices in G and m is the maximum cardinality bipartite mathching in G'.

Therefore, the problem can be solved by finding the maximum cardinality matching in G' instead.

NOTE: If the paths are note necessarily disjoints, find the transitive closure and solve the problem for disjoint paths.

6.14 Planar Graph (Euler)

Euler's formula states that if a finite, connected, planar graph is drawn in the plane without any edge intersections, and v is the number of vertices, e is the number of edges and f is the number of faces (regions bounded by edges, including the outer, infinitely large region), then:

$$f + v = e + 2$$

It can be extended to non connected planar graphs with \boldsymbol{c} connected components:

$$f + v = e + c + 1$$

6.15 Push Relabel

```
struct PushRelabel {
       struct Edge {
              int dest, back;
              11 f, c;
       vector<vector<Edge>> g;
       vector<ll> ec:
       vector<Edge*> cur;
       vector<vi> hs: vi H:
       PushRelabel(int n) : g(n), ec(n), cur(n),
           hs(2*n), H(n) {}
       void addEdge(int s, int t, ll cap, ll rcap=0) {
              if (s == t) return:
              g[s].push_back({t, sz(g[t]), 0, cap});
              g[t].push_back({s, sz(g[s])-1, 0, rcap});
      }
       void addFlow(Edge& e, ll f) {
              Edge &back = g[e.dest][e.back];
              if (!ec[e.dest] && f)
                   hs[H[e.dest]].push_back(e.dest);
              e.f += f; e.c -= f; ec[e.dest] += f;
              back.f -= f; back.c += f; ec[back.dest]
                   -= f;
      }
```

```
11 calc(int s, int t) {
       int v = sz(g); H[s] = v; ec[t] = 1;
       vi co(2*v); co[0] = v-1;
       rep(i,0,v) cur[i] = g[i].data();
       for (Edge& e : g[s]) addFlow(e, e.c);
       for (int hi = 0;;) {
               while (hs[hi].empty()) if (!hi--)
                   return -ec[s]:
              int u = hs[hi].back();
                   hs[hi].pop back():
               while (ec[u] > 0) // discharge u
                      if (cur[u] == g[u].data()
                           + sz(g[u])) {
                             H[u] = 1e9:
                             for (Edge& e :
                                  g[\bar{u}]) if (e.c
                                  && H[u] >
                                  H[e.dest]+1)
                                    H[u] =
                                          H[e.dest]+1.
                                          cur[u]
                                          = &e:
                             if (++co[H[u]],
                                  !--co[hi] &&
                                  hi < v)
                                     rep(i,0,v)
                                         if (hi
                                          < H[i]
                                          && H[i]
                                          < v)
                                            --co[H[i]]
                                                 H[i]
                                                 1:
                             hi = H[u]:
                      } else if (cur[u]->c &&
                           H[u] ==
                           H[cur[u]->dest]+1)
                             addFlow(*cur[u].
                                  min(ec[u].
                                  cur[u]->c)):
                      else ++cur[u]:
bool leftOfMinCut(int a) { return H[a] >=
     sz(g); }
```

};

6.16 SCC Kosaraju

```
// SCC = Strongly Connected Components
struct SCC {
   vector<vector<int>> g, gr;
   vector<bool> used:
   vector<int> order, component;
   int total_components;
   SCC(vector<vector<int>>& adi) {
       g = adj;
       int n = g.size():
       gr.resize(n):
       for (int i = 0: i < n: i++)
          for (auto to : g[i])
              gr[to].push_back(i);
       used.assign(n, false);
       for (int i = 0; i < n; i++)</pre>
       if (!used[i])
           GenTime(i):
       used.assign(n, false);
       component.assign(n, -1);
       total_components = 0;
       for (int i = n - 1; i \ge 0; i--) {
          int v = order[i];
          if (!used[v]) {
              vector<int> cur_component;
              Dfs(cur component, v):
              for (auto node : cur_component)
                  component[node] = total components:
       }
   void GenTime(int node) {
       used[node] = true:
       for (auto to : g[node])
          if (!used[to])
              GenTime(to):
       order.push_back(node);
   void Dfs(vector<int>& cur, int node) {
       used[node] = true;
       cur.push_back(node);
       if (!used[to])
          Dfs(cur, to);
   }
```

```
vector<vector<int>> CondensedGraph() {
    vector<vector<int>> ans(total_components);
    for (int i = 0; i < int(g.size()); i++) {
        for (int to : g[i]) {
            int u = component[i], v = component[to];
            if (u != v)
            ans[u].push_back(v);
        }
    }
    return ans;
}</pre>
```

6.17 Tarjan SCC

```
const int N = 20002:
struct tarian scc {
   int scc[MN]. low[MN]. d[MN]. stacked[MN]:
   int ticks, current scc:
   deque<int> s: // used as stack
   tarjan_scc() {}
   void init() {
       memset(scc, -1, sizeof(scc));
       memset(d, -1, sizeof(d)):
       memset(stacked, 0, sizeof(stacked));
       s.clear():
       ticks = current scc = 0:
   void compute(vector<vector<int>> &g, int u) {
       d[u] = low[u] = ticks++;
       s.push_back(u);
       stacked[u] = true;
       for (int i = 0; i < g[u].size(); i++) {</pre>
           int v = g[u][i];
           if (d[v] == -1) compute(g, v);
           if (stacked[v]) low[u] = min(low[u], low[v]);
       if (d[u] == low[u]) {
           int v;
           do {
              v = s.back(); s.pop_back();
              stacked[v] = false:
              scc[v] = current scc:
          } while (u != v):
           current scc++:
};
```

6.18 Topological Sort

```
vi topoSort(const vector<vi>w gr) {
    vi indeg(sz(gr)), ret;
    for (auto& li : gr) for (int x : li) indeg[x]++;
    queue<int> q; // use priority_queue for lexic.
        largest ans.
    rep(i,0,sz(gr)) if (indeg[i] == 0) q.push(i);
    while (!q.empty()) {
        int i = q.front(); // top() for priority
            queue
        ret.push_back(i);
        q.pop();
        for (int x : gr[i])
            if (--indeg[x] == 0) q.push(x);
    }
    return ret;
}
```

7 Linear Algebra

7.1 Matrix Determinant

```
double det(vector<vector<double>>& a) {
       int n = sz(a); double res = 1;
       rep(i,0,n) {
              int b = i:
              rep(j,i+1,n) if (fabs(a[j][i]) >
                   fabs(a[b][i])) b = j;
              if (i != b) swap(a[i], a[b]), res *= -1;
              res *= a[i][i];
              if (res == 0) return 0;
              rep(j,i+1,n) {
                     double v = a[i][i] / a[i][i];
                     if (v != 0) rep(k,i+1,n) a[i][k]
                          -= v * a[i][k];
              }
      }
       return res;
```

7.2 Matrix Inverse

```
int matInv(vector<vector<double>>& A) {
    int n = sz(A); vi col(n);
    vector<vector<double>> tmp(n,
        vector<double>(n));
```

```
rep(i,0,n) tmp[i][i] = 1, col[i] = i;
rep(i,0,n) {
       int r = i, c = i;
       rep(j,i,n) rep(k,i,n)
              if (fabs(A[i][k]) > fabs(A[r][c]))
                     r = j, c = k;
       if (fabs(A[r][c]) < 1e-12) return i;</pre>
       A[i].swap(A[r]); tmp[i].swap(tmp[r]);
       rep(j,0,n)
              swap(A[j][i], A[j][c]),
                   swap(tmp[j][i], tmp[j][c]);
       swap(col[i], col[c]);
       double v = A[i][i];
       rep(j,i+1,n) {
              double f = A[j][i] / v;
              A[i][i] = 0:
              rep(k,i+1,n) A[j][k] -= f*A[i][k];
              rep(k,0,n) tmp[j][k] -=
                   f*tmp[i][k];
       }
       rep(j,i+1,n) A[i][j] /= v;
       rep(j,0,n) tmp[i][j] /= v;
       A[i][i] = 1;
/// forget A at this point, just eliminate tmp
    backward
for (int i = n-1; i > 0; --i) rep(j,0,i) {
       double v = A[i][i];
       rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] =
    tmp[i][j];
return n:
```

7.3 PolyRoots

```
#include "Polynomial.cpp"

vector<double> polyRoots(Poly p, double xmin, double
    xmax) {
        if (sz(p.a) == 2) { return {-p.a[0]/p.a[1]}; }
        vector<double> ret;
        Poly der = p;
        der.diff();
        auto dr = polyRoots(der, xmin, xmax);
        dr.push_back(xmin-1);
        dr.push_back(xmax+1);
```

7.4 Polynomial

```
struct Poly {
       vector<double> a;
       double operator()(double x) const {
              double val = 0:
              for (int i = sz(a): i--:) (val *= x) +=
                   a[i];
              return val:
       void diff() {
              rep(i,1,sz(a)) a[i-1] = i*a[i];
              a.pop_back();
       void divroot(double x0) {
              double b = a.back(), c; a.back() = 0;
              for(int i=sz(a)-1; i--;) c = a[i], a[i]
                   = a[i+1]*x0+b, b=c;
              a.pop_back();
      }
};
```

8 Misc

8.1 Dates

```
//
// Time - Leap years
//
```

```
// A[i] has the accumulated number of days from months
    previous to i
const int A[13] = { 0, 0, 31, 59, 90, 120, 151, 181,
     212, 243, 273, 304, 334 };
// same as A, but for a leap year
const int B[13] = \{ 0, 0, 31, 60, 91, 121, 152, 182, \dots \}
     213, 244, 274, 305, 335 };
// returns number of leap years up to, and including, y
int leap_years(int y) { return y / 4 - y / 100 + y /
    400: }
bool is_leap(int y) { return y % 400 == 0 || (y % 4 ==
    0 && v % 100 != 0); }
// number of days in blocks of years
const int p400 = 400*365 + leap_years(400);
const int p100 = 100*365 + leap vears(100):
const int p4 = 4*365 + 1:
const int p1 = 365:
int date to days(int d. int m. int v)
 return (y - 1) * 365 + leap_years(y - 1) +
      (is_{pap}(y) ? B[m] : A[m]) + d;
void days_to_date(int days, int &d, int &m, int &y)
 bool top100; // are we in the top 100 years of a 400
      block?
 bool top4; // are we in the top 4 years of a 100
 bool top1; // are we in the top year of a 4 block?
 top100 = top4 = top1 = false;
 y += ((days-1) / p400) * 400;
 d = (davs-1) \% p400 + 1:
 if (d > p100*3) top100 = true, d = 3*p100, v += 300;
 else y += ((d-1) / p100) * 100, d = (d-1) % p100 + 1;
 if (d > p4*24) top4 = true, d -= 24*p4, y += 24*4;
 else v += ((d-1) / p4) * 4, d = (d-1) % p4 + 1;
 if (d > p1*3) top1 = true, d = p1*3, v += 3;
 else y += (d-1) / p1, d = (d-1) % p1 + 1;
 const int *ac = top1 && (!top4 || top100) ? B : A;
 for (m = 1; m < 12; ++m) if (d \le ac[m + 1]) break;
 d = ac[m];
```

8.2 Debugging Tricks

- signal(SIGSEGV, [] (int) { _Exit(0); }); converts segfaults into Wrong Answers. Similarly one can catch SIGABRT (assertion failures) and SIGFPE (zero divisions). _GLIBCXX_DEBUG failures generate SIGABRT (or SIGSEGV on gcc 5.4.0 apparently).
- feenableexcept (29); kills the program on NaNs (1), 0-divs (4), infinities (8) and denormals (16).

8.3 Interval Container

```
set<pii>::iterator addInterval(set<pii>& is, int L, int
       if (L == R) return is.end();
       auto it = is.lower_bound({L, R}), before = it;
       while (it != is.end() && it->first <= R) {</pre>
               R = max(R, it->second):
               before = it = is.erase(it):
       if (it != is.begin() && (--it)->second >= L) {
               L = min(\bar{L}, it \rightarrow first);
               R = max(R, it->second):
               is.erase(it):
       return is.insert(before, {L,R}):
}
void removeInterval(set<pii>& is, int L, int R) {
       if (L == R) return;
       auto it = addInterval(is, L, R);
       auto r2 = it->second;
       if (it->first == L) is.erase(it);
       else (int&)it->second = L;
       if (R != r2) is.emplace(R, r2);
```

8.4 Optimization Tricks

__builtin_ia32_ldmxcsr(40896); disables denormals (which make floats 20x slower near their minimum value).

8.4.1 Bit hacks

• x & -x is the least bit in x.

- for (int x = m; x;) { --x &= m; ... } loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; (((r^x) >> 2)/c) | r is the next number after x with the same number of bits set.
- rep(b,0,K) rep(i,0,(1 << K))
 if (i & 1 << b) D[i] += D[i^(1 << b)]; computes all sums of subsets.

8.4.2 Pragmas

- #pragma GCC optimize ("Ofast") will make GCC autovectorize loops and optimizes floating points better.
- #pragma GCC target ("avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

8.5 Ternary Search

```
template < class F >
int ternSearch(int a, int b, F f) {
    assert(a <= b);
    while (b - a >= 5) {
        int mid = (a + b) / 2;
        if (f(mid) < f(mid+1)) a = mid; // (A)
        else b = mid+1;
    }
    rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
    return a;
}</pre>
```

9 Number Theory

9.1 Chinese Remainder Theorem

```
long long z = 0;
long long n = 1;
for (int i = 0; i < x.size(); ++i)
    n *= x[i];

for (int i = 0; i < a.size(); ++i) {
    long long tmp = (a[i] * (n / x[i])) % n;
    tmp = (tmp * mod_inv(n / x[i], x[i])) % n;
    z = (z + tmp) % n;
}

return (z + n) % n;</pre>
```

9.2 Convolution

```
typedef long long int LL:
typedef pair<LL, LL> PLL;
inline bool is_pow2(LL x) {
 return (x \& (x-1)) == 0;
inline int ceil_log2(LL x) {
 int ans = 0;
 --x;
 while (x != 0) {
   x >>= 1:
   ans++;
 return ans:
/* Returns the convolution of the two given vectors in
    time proportional to n*log(n).
* The number of roots of unity to use nroots unity
     must be set so that the product of the first
* nroots unity primes of the vector nth roots unity is
     greater than the maximum value of the
* convolution. Never use sizes of vectors bigger than
     2^24, if you need to change the values of
* the nth roots of unity to appropriate primes for
     those sizes.
vector<LL> convolve(const vector<LL> &a, const
    vector<LL> &b, int nroots_unity = 2) {
 int N = 1 << ceil_log2(a.size() + b.size());</pre>
 vector<LL> ans(N,0), fA(N), fB(N), fC(N);
 LL modulo = 1:
 for (int times = 0; times < nroots_unity; times++) {</pre>
   fill(fA.begin(), fA.end(), 0);
```

```
fill(fB.begin(), fB.end(), 0);
 for (int i = 0; i < a.size(); i++) fA[i] = a[i];</pre>
 for (int i = 0; i < b.size(); i++) fB[i] = b[i];</pre>
 LL prime = nth_roots_unity[times].first;
 LL inv_modulo = mod_inv(modulo % prime, prime);
 LL normalize = mod_inv(N, prime);
 ntfft(fA, 1, nth_roots_unity[times]);
 ntfft(fB, 1, nth_roots_unity[times]);
 for (int i = 0: i < N: i++) fC[i] = (fA[i] * fB[i])
      % prime:
 ntfft(fC, -1, nth roots unitv[times]):
 for (int i = 0: i < N: i++) {
   LL curr = (fC[i] * normalize) % prime:
   LL k = (curr - (ans[i] % prime) + prime) % prime;
   k = (k * inv modulo) % prime;
   ans[i] += modulo * k:
 modulo *= prime:
return ans:
```

9.3 Diophantine Equations

```
long long gcd(long long a, long long b, long long &x,
    long long &v) {
 if (a == 0) {
   x = 0:
   y = 1;
   return b:
 long long x1, y1;
 long long d = gcd(b \% a, a, x1, y1);
 x = y1 - (b / a) * x1;
 y = x1;
 return d:
bool find_any_solution(long long a, long long b, long
    long c, long long &x0,
   long long &yO, long long &g) {
 g = gcd(abs(a), abs(b), x0, y0);
 if (c % g) {
   return false;
 x0 *= c / g;
 v0 *= c / g;
 if (a < 0) x0 = -x0;
 if (b < 0) y0 = -y0;
 return true:
```

```
}
void shift_solution(long long &x, long long &y, long
     long a, long long b,
   long long cnt) {
 x += cnt * b;
 y -= cnt * a:
long long find_all_solutions(long long a, long long b,
     long long c.
   long long minx, long long maxx, long long miny,
   long long maxv) {
 long long x, y, g;
  if (!find_any_solution(a, b, c, x, y, g)) return 0;
  b /= g:
 long long sign_a = a > 0 ? +1 : -1;
 long long sign_b = b > 0 ? +1 : -1;
  shift_solution(x, y, a, b, (minx - x) / b);
  if (x < minx) shift_solution(x, y, a, b, sign_b);</pre>
 if (x > maxx) return 0;
 long long lx1 = x;
  shift_solution(x, y, a, b, (maxx - x) / b);
 if (x > maxx) shift_solution(x, y, a, b, -sign_b);
 long long rx1 = x;
  shift_solution(x, y, a, b, -(miny - y) / a);
 if (y < miny) shift_solution(x, y, a, b, -sign_a);</pre>
  if (y > maxy) return 0;
 long long 1x2 = x;
  shift solution(x, v, a, b, -(maxv - v) / a):
 if (y > maxy) shift_solution(x, y, a, b, sign_a);
 long long rx2 = x:
  if (1x2 > rx2) swap(1x2, rx2):
 long long lx = max(lx1, lx2);
 long long rx = min(rx1, rx2):
 if (1x > rx) return 0:
 return (rx - lx) / abs(b) + 1;
```

9.4 Discrete Logarithm

```
// Computes x which a \hat{x} = b \mod n.
```

```
long long d_log(long long a, long long b, long long n) {
 long long m = ceil(sqrt(n));
 long long aj = 1;
 map<long long, long long> M;
 for (int i = 0; i < m; ++i) {
   if (!M.count(aj))
     M[ai] = i;
   aj = (aj * a) % n;
 long long coef = mod_pow(a, n - 2, n);
 coef = mod_pow(coef, m, n);
 // coef = a^{-} (-m)
 long long gamma = b;
 for (int i = 0: i < m: ++i) {
   if (M.count(gamma)) {
    return i * m + M[gamma]:
   } else {
     gamma = (gamma * coef) % n;
 }
 return -1;
```

9.5 Ext Euclidean

```
void ext_euclid(long long a, long long b, long long &x,
    long long &y, long long &g) {
    x = 0, y = 1, g = b;
    long long m, n, q, r;
    for (long long u = 1, v = 0; a != 0; g = a, a = r) {
        q = g / a, r = g % a;
        m = x - u * q, n = y - v * q;
        x = u, y = v, u = m, v = n;
    }
}
```

9.6 Fast Eratosthenes

```
const int LIM = 1e6;
bitset<LIM> isPrime;
vi eratosthenes() {
    const int S = (int)round(sqrt(LIM)), R = LIM /
    2;
    vi pr = {2}, sieve(S+1);
        pr.reserve(int(LIM/log(LIM)*1.1));
    vector<pii> cp;
```

9.7 Highest Exponent Factorial

```
int highest_exponent(int p, const int &n){
  int ans = 0;
  int t = p;
  while(t <= n){
    ans += n/t;
    t*=p;
  }
  return ans;
}</pre>
```

9.8 Miller - Rabin

```
last = next;
   next = mod_mul(last, last, n);
   if (next == 1) {
     return last != n - 1;
 return next != 1;
// Checks if a number is prime with prob 1 - 1 / (2 ^
// D(miller rabin(999999999999997LL) == 1):
// D(miller_rabin(999999999971LL) == 1);
// D(miller rabin(7907) == 1):
bool miller rabin(long long n, int it = rounds) {
 if (n <= 1) return false:
 if (n == 2) return true:
 if (n % 2 == 0) return false;
 for (int i = 0; i < it; ++i) {</pre>
   long long a = rand() \% (n - 1) + 1;
   if (witness(a, n)) {
     return false:
 return true;
```

9.9 Mod Integer

```
template<class T, T mod>
struct mint_t {
   T val;
   mint_t() : val(0) {}
   mint_t(T v) : val(v % mod) {}

mint_t operator + (const mint_t& o) const {
    return (val + o.val) % mod;
   }
   mint_t operator - (const mint_t& o) const {
    return (val - o.val) % mod;
   }
   mint_t operator * (const mint_t& o) const {
    return (val * o.val) % mod;
   }
   mint_t operator * (const mint_t& o) const {
    return (val * o.val) % mod;
   }
};

typedef mint_t<long long, 998244353> mint;
```

9.10 Mod Inv

```
long long mod_inv(long long n, long long m) {
 long long x, v, gcd:
 ext_euclid(n, m, x, y, gcd);
 if (gcd != 1)
   return 0:
 return (x + m) % m:
```

9.11 Mod Mul

```
// Computes (a * b) % mod
long long mod_mul(long long a, long long b, long long
    mod) {
 long long x = 0, y = a \% mod;
 while (b > 0) {
   if (b & 1)
    x = (x + y) \% mod;
   y = (y * 2) \% mod;
   b /= 2:
 return x % mod;
```

9.12 Mod Pow

```
// Computes ( a ^ exp ) % mod.
long long mod_pow(long long a, long long exp, long long
    mod) {
 long long ans = 1;
 while (exp > 0) {
   if (exp & 1)
    ans = mod_mul(ans, a, mod);
   a = mod mul(a, a, mod):
   exp >>= 1;
 return ans;
```

Number Theoretic Transform

```
typedef long long int LL;
typedef pair<LL, LL> PLL;
```

```
/* The following vector of pairs contains pairs (prime,
    generator)
 * where the prime has an Nth root of unity for N being
     a power of two.
 * The generator is a number g s.t g^(p-1)=1 (mod p)
 * but is different from 1 for all smaller powers */
vector<PLL> nth_roots_unity {
 {1224736769.330732430}.{1711276033.927759239}.{167772161.167489322}.
  {469762049,343261969},{754974721,643797295},{1107296257,8838650es})long pollard_rho(long long n) {
PLL ext_euclid(LL a, LL b) {
 if (b == 0)
   return make_pair(1,0);
 pair<LL,LL> rc = ext_euclid(b, a % b);
 return make pair(rc.second, rc.first - (a / b) *
      rc.second):
//returns -1 if there is no unique modular inverse
LL mod inv(LL x. LL modulo) {
 PLL p = ext_euclid(x, modulo);
 if ( (p.first * x + p.second * modulo) != 1 )
   return -1;
 return (p.first+modulo) % modulo;
//Number theory fft. The size of a must be a power of 2
void ntfft(vector<LL> &a, int dir, const PLL
    &root_unity) {
 int n = a.size();
 LL prime = root_unity.first;
 LL basew = mod_pow(root_unity.second, (prime-1) / n,
      prime):
 if (dir < 0) basew = mod inv(basew. prime);</pre>
 for (int m = n: m >= 2: m >>= 1) {
   int mh = m >> 1:
   I.I. w = 1:
   for (int i = 0: i < mh: i++) {</pre>
     for (int j = i; j < n; j += m) {</pre>
      int k = i + mh:
       LL x = (a[j] - a[k] + prime) % prime;
       a[i] = (a[i] + a[k]) % prime:
       a[k] = (w * x) \% prime:
     w = (w * basew) % prime;
   basew = (basew * basew) % prime;
 int i = 0;
 for (int j = 1; j < n - 1; j++) {
   for (int k = n >> 1; k > (i ^= k); k >>= 1);
```

```
if (j < i) swap(a[i], a[j]);</pre>
```

9.14 Pollard Rho Factorize

```
long long x, y, i = 1, k = 2, d;
 x = y = rand() \% n;
 while (1) {
   ++i:
   x = mod_mul(x, x, n);
   if (x \ge n) x = n;
   if (x == y) return 1;
   d = \_gcd(abs(x - y), n);
   if (d != 1) return d;
   if (i == k) {
     y = x;
     k *= 2;
 return 1:
// Returns a list with the prime divisors of n
vector<long long> factorize(long long n) {
 vector<long long> ans:
 if (n == 1)
   return ans;
 if (miller_rabin(n)) {
   ans.push_back(n);
 } else {
   long long d = 1;
   while (d == 1)
    d = pollard_rho(n);
   vector<long long> dd = factorize(d);
   ans = factorize(n / d);
   for (int i = 0; i < dd.size(); ++i)</pre>
     ans.push_back(dd[i]);
 return ans;
```

9.15 Primes

```
namespace primes {
```

```
const int MP = 100001;
bool sieve[MP];
long long primes[MP];
int num_p;
void fill_sieve() {
  num_p = 0;
  sieve[0] = sieve[1] = true;
  for (long long i = 2; i < MP; ++i) {</pre>
   if (!sieve[i]) {
     primes[num_p++] = i;
     for (long long i = i * i; i < MP; i += i)
       sieve[i] = true:
// Finds prime numbers between a and b. using basic
     primes up to sart(b)
// a must be greater than 1.
vector<long long> seg_sieve(long long a, long long b)
  long long ant = a;
  a = max(a, 3LL);
  vector<bool> pmap(b - a + 1);
  long long sqrt_b = sqrt(b);
  for (int i = 0; i < num_p; ++i) {</pre>
   long long p = primes[i];
   if (p > sqrt_b) break;
   long long j = (a + p - 1) / p;
    for (long long v = (j == 1)? p + p : j * p; v <=
        b; v += p) {
     pmap[v - a] = true:
  vector<long long> ans:
  if (ant == 2) ans.push back(2):
  int start = a % 2 ? 0 : 1;
  for (int i = start, I = b - a + 1; i < I; i += 2)
    if (pmap[i] == false)
     ans.push_back(a + i);
  return ans:
vector<pair<int, int>> factor(int n) {
  vector<pair<int. int>> ans:
  if (n == 0) return ans:
  for (int i = 0; primes[i] * primes[i] <= n; ++i) {</pre>
    if ((n % primes[i]) == 0) {
     int expo = 0;
     while ((n % primes[i]) == 0) {
       expo++;
       n /= primes[i];
```

```
ans.emplace_back(primes[i], expo);
}

if (n > 1) {
    ans.emplace_back(n, 1);
}
    return ans;
}
```

9.16 Totient Sieve

```
for (int i = 1; i < MN; i++)
  phi[i] = i;

for (int i = 1; i < MN; i++)
  if (!sieve[i]) // is prime
  for (int j = i; j < MN; j += i)
    phi[j] -= phi[j] / i;</pre>
```

9.17 Totient

```
long long totient(long long n) {
   if (n == 1) return 0;
   long long ans = n;
   for (int i = 0; primes[i] * primes[i] <= n; ++i) {
      if ((n % primes[i]) == 0) {
       while ((n % primes[i]) == 0) n /= primes[i];
      ans -= ans / primes[i];
   }
   }
   if (n > 1) {
      ans -= ans / n;
   }
   return ans;
}
```

10 Probability and Statistics

10.1 Continuous Distributions

10.1.1 Uniform distribution

If the probability density function is constant between a and b and 0 elsewhere it is U(a,b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$
$$\mu = \frac{a+b}{2}, \sigma^2 = \frac{(b-a)^2}{12}$$

10.1.2 Exponential distribution

The time between events in a Poisson process is $\text{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

10.1.3 Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If
$$X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$$
 and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then $aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$

10.2 Discrete Distributions

10.2.1 Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is $Bin(n,p), n=1,2,\ldots,0\leq p\leq 1.$

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \, \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

10.2.2 First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each wich yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

10.2.3 Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $\text{Po}(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$u = \lambda, \sigma^2 = \lambda$$

10.3 Probability Theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = E(X) = \sum_x x p_X(x)$ and variance $\sigma^2 = V(X) = E(X^2) - (E(X))^2 = \sum_x (x - E(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$E(aX + bY) = aE(X) + bE(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

11 Strings

11.1 Hashing

```
struct H {
          typedef uint64_t ull;
        ull x; H(ull x=0) : x(x) {}
#define OP(O,A,B) H operator O(H o) { ull r = x; asm \
```

```
(A "addg % rdx, %0 \ adcg $0, %0" : "+a"(r) :
            B): return r: }
       OP(+, "d"(o.x)) OP(*, "mul %1\n", "r"(o.x) :
       H operator-(H o) { return *this + ~o.x; }
       ull get() const { return x + !~x; }
       bool operator==(H o) const { return get() ==
            o.get(); }
       bool operator<(H o) const { return get() <</pre>
            o.get(): }
};
static const H C = (11)1e11+3: // (order ~ 3e9: random
    also ok)
struct HashInterval {
       vector<H> ha, pw;
       HashInterval(string& str) : ha(sz(str)+1).
            pw(ha) {
              pw[0] = 1;
              rep(i,0,sz(str))
                      ha[i+1] = ha[i] * C + str[i].
                      pw[i+1] = pw[i] * C;
       H hashInterval(int a, int b) { // hash [a, b)
              return ha[b] - ha[a] * pw[b - a];
       }
};
vector<H> getHashes(string& str, int length) {
       if (sz(str) < length) return {};</pre>
       H h = 0, pw = 1;
       rep(i,0,length)
              h = h * C + str[i], pw = pw * C;
       vector<H> ret = {h};
       rep(i,length,sz(str)) {
              ret.push back(h = h * C + str[i] - pw *
                   str[i-length]):
       return ret:
H hashString(string& s){H h{}: for(char c:s)
    h=h*C+c:return h:}
```

11.2 Incremental Aho Corasick

```
class IncrementalAhoCorasic {
  static const int Alphabets = 26;
  static const int AlphabetBase = 'a';
  struct Node {
   Node *fail;
```

```
Node *next[Alphabets];
   int sum:
   Node() : fail(NULL), next{}, sum(0) { }
 struct String {
   string str;
   int sign;
 }:
public:
 //totalLen = sum of (len + 1)
 void init(int totalLen) {
   nodes.resize(totalLen):
   nNodes = 0:
   strings.clear():
   roots.clear():
   sizes.clear():
   que.resize(totalLen):
 void insert(const string &str, int sign) {
   strings.push_back(String{ str, sign });
   roots.push_back(nodes.data() + nNodes);
   sizes.push_back(1);
   nNodes += (int)str.size() + 1;
   auto check = [&]() { return sizes.size() > 1 &&
        sizes.end()[-1] == sizes.end()[-2]; };
   if(!check())
     makePMA(strings.end() - 1, strings.end(),
          roots.back(), que);
   while(check()) {
     int m = sizes.back();
     roots.pop_back();
     sizes.pop_back();
     sizes.back() += m:
     if(!check())
       makePMA(strings.end() - m * 2. strings.end().
           roots.back(), que);
   }
 int match(const string &str) const {
   int res = 0:
   for(const Node *t : roots)
     res += matchPMA(t. str):
   return res;
 static void makePMA(vector<String>::const_iterator
      begin, vector<String>::const_iterator end, Node
      *nodes, vector<Node*> &que) {
```

```
int nNodes = 0;
 Node *root = new(&nodes[nNodes ++]) Node();
 for(auto it = begin; it != end; ++ it) {
   Node *t = root:
   for(char c : it->str) {
     Node *&n = t->next[c - AlphabetBase];
     if(n == nullptr)
       n = new(&nodes[nNodes ++]) Node();
   t->sum += it->sign:
 int at = 0:
 for(Node *&n : root->next) {
   if(n != nullptr) {
     n->fail = root:
     que[qt ++] = n;
   } else {
     n = root:
 for(int qh = 0; qh != qt; ++ qh) {
   Node *t = que[qh];
   int a = 0;
   for(Node *n : t->next) {
    if(n != nullptr) {
       que[qt ++] = n;
       Node *r = t - fail;
       while(r->next[a] == nullptr)
        r = r->fail;
       n->fail = r->next[a];
       n->sum += r->next[a]->sum;
static int matchPMA(const Node *t, const string &str)
    {
 int res = 0;
 for(char c : str) {
   int a = c - AlphabetBase:
   while(t->next[a] == nullptr)
    t = t->fail:
   t = t->next[a]:
   res += t->sum:
 return res;
vector<Node> nodes;
```

```
int nNodes;
 vector<String> strings;
 vector<Node*> roots;
 vector<int> sizes;
 vector<Node*> que;
int main() {
 int m:
 while(~scanf("%d", &m)) {
   IncrementalAhoCorasic iac:
   iac.init(600000):
   rep(i, m) {
     int ty;
     char s[300001]:
     scanf("%d%s", &ty, s);
     if(tv == 1) {
      iac.insert(s, +1):
     } else if(tv == 2) {
      iac.insert(s, -1):
     } else if(tv == 3) {
       int ans = iac.match(s);
       printf("%d\n", ans);
      fflush(stdout);
     } else {
       abort();
 return 0;
```

11.3 KMP

11.4 Minimal String Rotation

```
// Lexicographically minimal string rotation
int lmsr() {
 string s:
 cin >> s:
 int n = s.size():
 s += s:
 vector<int> f(s.size(), -1);
 int k = 0;
 for (int j = 1; j < 2 * n; ++j) {
   int i = f[j - k - 1];
   while (i != -1 && s[j] != s[k + i + 1]) {
    if (s[i] < s[k + i + 1])
      k = j - i - 1;
     i = f[i];
   if (i == -1 \&\& s[j] != s[k + i + 1]) {
     if (s[i] < s[k + i + 1]) {
      k = j;
     f[j - k] = -1;
   } else {
     f[j - k] = i + 1;
 return k:
```

11.5 Suffix Array

```
const int MAXN = 200005;

const int MAX_DIGIT = 256;
void countingSort(vector<int>& SA, vector<int>& RA, int
    k = 0) {
    int n = SA.size();
    vector<int> cnt(max(MAX_DIGIT, n), 0);
    for (int i = 0; i < n; i++)
        if (i + k < n)
            cnt[RA[i + k]]++;
    else
        cnt[0]++;
    for (int i = 1; i < cnt.size(); i++)
        cnt[i] += cnt[i - 1];
    vector<int> tempSA(n);
```

```
for (int i = n - 1; i \ge 0; i--)
       if (SA[i] + k < n)
           tempSA[--cnt[RA[SA[i] + k]]] = SA[i];
           tempSA[--cnt[0]] = SA[i];
   SA = tempSA;
}
vector <int> constructSA(string s) {
   int n = s.length():
   vector <int> SA(n):
   vector <int> RA(n):
   vector <int> tempRA(n):
   for (int i = 0; i < n; i++) {
       RA[i] = s[i]:
       SA[i] = i:
   for (int step = 1; step < n; step <<= 1) {</pre>
       countingSort(SA, RA, step):
       countingSort(SA, RA, 0);
       int c = 0:
       tempRA[SA[0]] = c;
       for (int i = 1; i < n; i++) {</pre>
           if (RA[SA[i]] == RA[SA[i - 1]] && RA[SA[i] +
               step] == RA[SA[i - 1] + step])
                  tempRA[SA[i]] = tempRA[SA[i - 1]];
               tempRA[SA[i]] = tempRA[SA[i - 1]] + 1;
       RA = tempRA;
       if (RA[SA[n-1]] == n-1) break;
   return SA;
}
vector<int> computeLCP(const string& s. const
     vector<int>& SA) {
   int n = SA.size():
   vector<int> LCP(n), PLCP(n), c(n, 0);
   for (int i = 0; i < n; i++)</pre>
       c[SA[i]] = i;
   int k = 0:
   for (int j, i = 0; i < n-1; i++) {
       if(c[i] - 1 < 0)
           continue:
       i = SA[c[i] - 1]:
       k = max(k - 1, 0);
       while (i+k < n && j+k < n && s[i + k] == s[j +
            kl)
           k++;
       PLCP[i] = k;
   for (int i = 0; i < n; i++)</pre>
```

```
LCP[i] = PLCP[SA[i]];
return LCP;
}
```

11.6 Suffix Automation

```
* Suffix automaton:
 * This implementation was extended to maintain
     (online) the
 * number of different substrings. This is equivalent
     to compute
 * the number of paths from the initial state to all
     the other
 * states.
 * The overall complexity is O(n)
 * can be tested here:
     https://www.urionlinejudge.com.br/judge/en/problems/view/1530
struct state {
 int len, link;
 long long num_paths;
 map<int, int> next;
const int MN = 200011:
state sa[MN << 1];
int sz. last:
long long tot_paths;
void sa init() {
 sz = 1:
 last = 0;
 sa[0].len = 0:
 sa[0].link = -1:
 sa[0].next.clear():
 sa[0].num paths = 1:
 tot_paths = 0;
void sa_extend(int c) {
 int cur = sz++;
 sa[cur].len = sa[last].len + 1;
 sa[cur].next.clear();
 sa[cur].num_paths = 0;
 for (p = last; p != -1 && !sa[p].next.count(c); p =
      sa[p].link) {
   sa[p].next[c] = cur;
```

```
sa[cur].num_paths += sa[p].num_paths;
  tot_paths += sa[p].num_paths;
if (p == -1) {
 sa[cur].link = 0;
} else {
 int q = sa[p].next[c];
 if (sa[p].len + 1 == sa[q].len) {
   sa[cur].link = q:
 } else {
   int clone = sz++:
   sa[clone].len = sa[p].len + 1:
   sa[clone].next = sa[q].next;
   sa[clone].num paths = 0:
   sa[clone].link = sa[q].link;
   for (; p!= -1 && sa[p].next[c] == q; p =
        sa[p].link) {
     sa[p].next[c] = clone;
     sa[q].num_paths -= sa[p].num_paths;
     sa[clone].num_paths += sa[p].num_paths;
   sa[q].link = sa[cur].link = clone;
last = cur;
```

11.7 Suffix Tree

```
struct SuffixTree {
       enum { N = 200010, ALPHA = 26 }; // N ~
           2*maxlen+10
      int toi(char c) { return c - 'a'; }
       string a; // v = cur node, q = cur position
       int t[N][ALPHA].1[N].r[N].p[N].s[N].v=0.g=0.m=2:
       void ukkadd(int i, int c) { suff:
              if (r[v]<=a) {</pre>
                     if (t[v][c]==-1) { t[v][c]=m;
                          1[m]=i:
                             p[m++]=v; v=s[v]; q=r[v];
                                 goto suff; }
                      v=t[v][c]; q=1[v];
              if (q==-1 || c==toi(a[q])) q++; else {
                     l[m+1]=i; p[m+1]=m; l[m]=l[v];
                          r[m]=q;
                     p[m]=p[v]; t[m][c]=m+1;
                          t[m][toi(a[q])]=v;
```

```
1[v]=q; p[v]=m;
                    t[p[m]][toi(a[l[m]])]=m;
               v=s[p[m]]; q=l[m];
               while (q<r[m]) {</pre>
                   v=t[v][toi(a[q])];
                    q+=r[v]-l[v]; }
               if (q==r[m]) s[m]=v; else
                    s[m]=m+2;
               q=r[v]-(q-r[m]); m+=2; goto suff;
}
SuffixTree(string a) : a(a) {
       fill(r,r+N,sz(a));
       memset(s, 0, sizeof s);
       memset(t, -1, sizeof t):
       fill(t[1],t[1]+ALPHA.0):
       s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1]
            = p[0] = p[1] = 0;
       rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
}
// example: find longest common substring (uses
     ALPHA = 28
pii best;
int lcs(int node, int i1, int i2, int olen) {
       if (l[node] <= i1 && i1 < r[node])</pre>
            return 1;
       if (1[node] <= i2 && i2 < r[node])</pre>
            return 2;
```

```
int mask = 0, len = node ? olen +
                   (r[node] - 1[node]) : 0;
              rep(c,0,ALPHA) if (t[node][c] != -1)
                      mask |= lcs(t[node][c], i1, i2,
                          len);
              if (mask == 3)
                      best = max(best, {len, r[node] -
                          len});
              return mask;
       static pii LCS(string s, string t) {
              SuffixTree st(s + (char)('z' + 1) + t +
                   (char)('z' + 2)):
              st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
              return st.best;
       }
};
```

11.8 Z Algorithm

```
vector<int> compute_z(const string &s){
  int n = s.size();
  vector<int> z(n,0);
  int l,r;
  r = l = 0;
  for(int i = 1; i < n; ++i){
    if(i > r) {
        l = r = i;
        while(r < n and s[r - l] == s[r])r++;
    }
}</pre>
```

```
z[i] = r - 1;r--;
   }else{
     int k = i-1;
     if(z[k] < r - i +1) z[i] = z[k];
     else {
       1 = i;
       while (r < n \text{ and } s[r - 1] == s[r])r++;
       z[i] = r - 1;r--;
 return z;
}
int main(){
  //string line:cin>>line:
 string line = "alfalfa";
 vector<int> z = compute z(line):
 for(int i = 0; i < z.size(); ++i ){</pre>
   if(i)cout<<" ";</pre>
   cout<<z[i];
  cout << endl;
 // must print "0 0 0 4 0 0 1"
 return 0;
}
```