

Chapter 7. Network Security

- Network Attacks
- Cryptographic Technologies
- Message Integrity and Authentication
- Key Distribution
- Securing Wireless LANs
- Transport Layer Security
- IP Security
- Firewalls

Network Attacks

Passive Attacks

- Eavesdropping on transmissions
 - Release of message contents
- Traffic analysis
 - By monitoring frequency and length of msgs between pair of hosts
 - Nature of communication may be guessed
- Difficult to detect, but can be prevented

Active Attacks

- Masquerade
 - Pretending to be a different entity
- Replay
 - Intercept and capture, then retransmit
- Modification of message contents
- Denial of service
- Hard to prevent, but can be detected

Security Requirements

- Availability, for Interruption
 - Ensure resource is available
- Confidentiality, for Interception
 - Only sender, intended receiver can understand the msgs
- Integrity, for Modification
 - Ensure msgs not altered (e.g. in transit) without detection
- Authenticity, for Fabrication
 - Sender, receiver confirm identity of each other and origin of data

Model for Network Security

- Encryption: the message cannot be understood
- MAC (Message Authentication Code): the message cannot be altered
- Sign: the source cannot be forged/fabricated

Cryptographic Technologies

- Symmetric key crypto: sender, receiver keys identical
- Public-key crypto: encryption key public, decryption key secret

Symmetric Key Cryptography

Bob and Alice share the same (symmetric) key: K_{A-B}

Ingredients

- Plain text
- Encryption algorithm
- Secret key
- Cipher text
- Decryption algorithm

- Strong encryption algorithm
 - Even if known, a number of "cipher texts, plain texts" pairs available
 - Should not be able to decrypt or work out key
- Sender and receiver must obtain secret key securely – Key distribution
 - Once key is known, all communication using this key is readable

Attacking Encryption

Cryptoanalysis

- Rely on nature of algorithm plus knowledge of general characteristics of plain / cipher text
- Attempt to deduce plain text or key

Brute force

 Try every possible key until plain text is achieved

Traditional Encryption Techniques

- Substitution methods
 - Letters of the alphabet are replaced with other letters / numbers / symbols
 - Caesar Cipher
 - Mono-alphabetic Cipher
 - Vigenere Cipher
- Transposition (Permutation) methods
 - Rearrange (shuffle) the input without altering the actual letters used
 - Rail Fence Cipher
 - Row-Column Cipher

Caesar Cipher (1)

Cyclic shift of the 26 letters of the alphabet by 3

```
abcdefghijklmnopqrstuvwxyz
defghijklmnopqrstuvwxyzabc
```

Plain text

attack from east at dawn

Cipher text

dwwdfn iurp hdvw dw gdzg

Caesar Cipher (2)

In mathematical terms

- $C = \text{encrypt}(P) = P+3 \pmod{26}$
- $P = decrypt(C) = C-3 \pmod{26}$

Generalizd

- $C = \text{encrypt}(P) = P + k \pmod{26}$
- $P = decrypt(C) = C-k \pmod{26}$, where 0 < k < 26

How to Attack?

- There is only one key
- Easy to break, only 26 different keys, use Brute force

Mono-alphabetic Cipher (1)

- Map the N letters of the alphabet with one of N! permutations
- The key is one of the N! options

```
abcdefghijklmnopqrstuvwxyz
xfgikumoyacesvbhdjlpnqztwr
```

Plain text

attack from east at dawn

Cipher text

xppxgc ujbs kxlp xp ixzv

Mono-alphabetic Cipher (2)

- For N = 26 letters of the English alphabet
 - There are $N! = 26! \approx 2^{88}$ possible keys
- How to Attack?
 - Appearance frequency of letters (in long enough texts) in the language is well determined
 - Fixed substitution
 - Using the appearance frequencies of letters, words, and pairs-of-letters can easily get the key

Vigenere Cipher (1)

- Collection of Mono-Alphabetic Ciphers consists of the 26 options for Caesar Cipher (k = 0, 1, 2, ..., 25)
- Each of the 26 Caesar Ciphers is denoted by a letter, which is the ciphertext letter that replaces the letter 'a'
- A keyword is used (in cycle) to select which of the Caesar Ciphers to use
 - Denoted by the current letter in the keyword

Vigenere Cipher (2)

Ciphers Table

```
a b c d e f g h i j k l m n o p q r s t u v w x y z
a a b c d e f g h i j k l m n o p q r s t u v w x y z
b b c d e f g h i j k l m n o p q r s t u v w x y z a
c c d e f g h i j k l m n o p q r s t u v w x y z a b
d d e f g h i j k l m n o p q r s t u v w x y z a b c
.......
```

Key bad Plain text

attack from east at dawn

Cipher text

btwbcn grrn edtt du ddxn

Vigenere Cipher (3)

- There are multiple ciphertext letters to which each plaintext letter can be mapped
 - Number of possible ciphertext letters a plaintext letter can map equals numbers of different letters in key
- How to Attack?
- Attack
 - Figure out the length of the key
 - Break each of the suspected Mono-Alphabetic Ciphers independently

Rail Fence Cipher

- Plaintext is written down as a sequence of diagonals
- Ciphertext is then read of row by row

```
Plain text

atcfoesadw
takrmattan

Cipher text
```

atcfoesadwtakrmattan

- Key is number of rows used
- How to Attack?
- Attack is easy, just play the rows

Row-Column Cipher

- Plaintext is written in a rectangle, row by row
 - Length of each row equal the key length
- Ciphertext is read from the rectangle, column by column
 - Column order corresponds to letter order of the key

Key	Plaintext	Ciphertext
noise	3 4 2 5 1	cmantrsoakettfadaotw
34251	attac	
	kfrom	
	easta	
	tdown	

- Key can be determined by placing the ciphertext in a rectangle and playing with the rows and the columns
- If with plaintext, break pure transposition ciphers is very easy

- Block cipher
 - Process plain text in fixed block sizes
 - Produce block of cipher text of equal size
- Commonly used Algorithms
 - Data encryption standard (DES)
 - Triple DES (TDES)
 - Advanced Encryption Standard (AES)

Feistel Ciphers

- A scheme / template for specifying the algorithm of a block cipher
- Allows encryption and decryption with the same hardware circuit / piece of software
- Input block M_i broken into halfblocks L_i and R_i
- For next round
 - $L_{i+1} = R_i$
 - $R_{i+1} = f(R_i, K_i) \oplus L_i$

Data Encryption Standard

- 1973, NBS (National Bureau of Standards) came out with an RFP for a commercial encryption standard
- IBM proposed its strong Lucifer algorithm (developed by Feistel and others)
- NSA (National Security Agency) requested to weaken the strength of Lucifer (by shortening the key)
- NSA also made changes to IBM's Lucifer algorithm
- 1976, Data Encryption Standard (DES) accepted
- 1999, Triple DES (3-DES) defined by NIST (National Institute of Standards and Technology)

DES Structure

- Block size 64 bits
- Key size 56 bits (in a 64-bit buffer)
- Fixed initial permutation on input block (64 bits)
- 16 round keys (48 bits) derived from key (56 bits)
- Key scheduling scheme for 16 round keys
- 16 iterations each consisting of scrambling the round-block (64 bits) with the round-key (48 bits)
- Fixed inverse initial permutation on output block

Per Round DES

Attack DES

Exhaustive Search Attack

- Search space of $O(2^{56}) = O(10^{17})$ keys
- No "backdoor" exists

DES now worthless

- In the 1970's, Diffie and Hellman suggested a \$20M machine that will crack DES in about one day
- In the 1990's, Wiener suggested a \$1M machine that will crack DES in 3.5 hours
- In 1990's, DES challenges were broken in matter of days using distributed clusters of computers
- Presumably, most national security agencies have the hardware and software to crack DES in hours

Triple DES

- 1985, ANSI X9.17
- 1999, Incorporated into DES standard
- Uses 3 keys and 3 executions of DES algorithm
- 2 Mode defined
 - EEE mode
 - EDE mode
- Problem
 - Slow, block size (64 bit) too small

3-DES: EEE Mode

- DES Encrypt-Encrypt with 3 keys K₁, K₂, and K₃
- Properties
 - Three keys (168 bits)
 - Strength about O(2¹¹⁰) against attack
 - Not compatible with regular DES

3-DES: EDE Mode

- DES Encrypt-Decrypt-Encrypt with 2 keys K₁ and K₂
- Properties:
 - Two keys (112 bits)
 - Strength about O(2¹¹⁰) against attack
 - Compatible with regular DES when K₁= K₂
 - Can Encrypt-Decrypt-Encrypt with keys K₁, K₂, and K₃, more resilient against attacks

Advanced Encryption Standard

- 1997, NIST published RFP for Advanced Encryption Algorithm
 - Symmetric block cipher
 - Security strength equal to or better than 3-DES with improved efficiency
 - Variable strength by key size (from 128 to 256 bits)
 - Efficient implementation on various SW & HW platforms
- About 20 algorithms were proposed
 - Open review process for about 3 years
 - Rijndael was selected in November 2001
- 2001, AES issued as federal information processing standard (FIPS 197)

AES Parameters

- B: Block size in 32-bit words, 4 means 128 bits
- K: Key size in 32-bit words, 4 / 6 / 8 (i.e. 128 / 192 / 256 bits)
- r: Number of rounds -6 + max(B, K)
 - AES-128 10 rounds
 - AES-192 12 rounds
 - AES-256 14 rounds

AES Description

State Array

- A rectangular array of 4 rows by B (=4) columns
- Each of the array entries holds an octet (8 bits)
- Initial value of state array is the plaintext block entered column by column
- State is transformed during r rounds
- Final value of state is the ciphertext block read column by column

key-expansion scheme

- Key is organized as a sequence of key-sets
- Initial key-set consists of K columns of 4 octets (32 bits) each
- Key-expansion generates (r+1)×B 4-octet columns

Per Round AES (1)

- 4×B octet input
- Placement of input in the state array
- 4×K octet key
- Key expansion
- XOR input with K₀
- r rounds of state array transformation and XOR with K_i

Per Round AES (2)

- 4 primitive operations inside each round
 - S-box that substitutes octet for octet, S-box substitution is implemented as a table lookup
 - Rearrangement of octets that consists of rotating rows by some number of cells
 - A Mix-Column operation that replaces a 4-octet column with another 4-octet column, uses table lookup
 - Bit-wise XOR with current K_i

Row Rotations

- 4×B cells of 8 bits each
 - Row 0 of the state array is not rotated
 - Row 1 of the state array is rotated left 1 column
 - Row 2 of the state array is rotated left 2 columns
 - Row 3 of the state array is rotated left 3 columns

Mix-Column Operation

- On each 4-octet column
 - A new 4-octet column is computed

AES Description

- Simple structure
 - For both encryption and decryption, cipher begins with Add Round Key stage
 - Followed by r-1 rounds, each includes all 4 operations
 - Followed by last round of 3 operations
- Add Round Key plus 3 operations of scrambling bits
- Decryption uses expanded key in reverse order
 - Not identical to encryption algorithm

AES Structure

128 bit key r = 10

Public Key Cryptography

- Radically different approach
 - Based on mathematical algorithms
- Asymmetric keys
 - Use two separate keys
 - Sender, receiver do not share symmetric secret key
- Each end system has
 - A public encryption key known to all
 - A private decryption key only the owner knows

Bob and Alice both have their own key sets

Public Key Ingredients

- Plain text
- Encryption algorithm
- Public and private key
- Cipher text
- Decryption algorithm

Public-Key Model

- Entity A has two keys
 - PRV_A Private Key of A, kept secretly only at A
 - PUB_A Public Key of A, made public to all
- There are two functions
 - Encrypt uses one of the two keys
 - Decrypt uses the other key
- Such that
 - Decrypt(Encrypt(M, PUB_A), PRV_A) = M
 - Decrypt(Encrypt(M, PRV_A), PUB_A) = M

Public Key Requirements

- The algorithms of encryption and decryption functions should be known
- Given the public key and the algorithms, it should be hard to find the private key
- Given a ciphertext using the public key, it should be hard to get the plaintext
- Given pairs of (plaintext, ciphertext) with the public key, it should be hard to find the private key

RSA Algorithm

 1977, Rivest, Shamir, Adleman algorithm (Turing Award 2002)

RSA Algorithm

欧几里德,辗转相除法,前**330**年 欧拉定理,**1736**年

- 1977, Rivest, Shamir, Adleman algorithm (Turing Award 2002)
- Pick 2 large primes : p and q
 - About 500/1024 bits each

• Compute : $N = p \times q$

• Compute : $\Phi = (p-1)\times(q-1)$

欧拉函数,计算小于N并与N互素 的整数个数

> 满足条件的e有多 个,可随机选一个

- Pick e relatively prime to Φ , i.e. $GCD(e, \Phi) = 1$
- Calculate d inverse of e modulo Φ , i.e. d×e mod $\Phi = 1$
- The key set is ready
 - Public Key: (e, N), and Private Key: (d, N)

d称为e的模反元素

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
3 ⁱ mod 5	3	4	2	1	3	4	2	1	3	4	2	1	3	4	2	1	3	4	2	1	3	4
3 ⁱ mod 7	3	2	6	4	5	1	3	2	6	4	5	1	3	2	6	4	5	1	3	2	6	4
3 ⁱ mod 35	3	9	27	11	33	29	17	16	13	4	12	1	3	9	27	11	33	29	17	16	13	4
i	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44
21 mand E	2	-	_		_		_															
3 ⁱ mod 5	2	1	3	4	2	1	3	4	2	1	3	4	2	1	3	4	2	1	3	4	2	1
3 ⁱ mod 5	5	1	3	2	6	1		1	3	2	3 6	4	_	1	3	2	2	1	3 5	1	_	2

欧拉数: $\Phi(N)=1$ 到N范围内和N互质的整数的个数(包括1)

例:对于素数5,7, Φ (5×7)=(5-1)×(7-1)=24

欧拉定理:任意数a的i次方除以N的余数的周期

例:因为模反函数满足: $d \times e \mod \Phi = 1$

故对任意数a,a的d*e次方除以N的余数等于a除以N的余数

Euler's Theorem

• $(M^e \mod N)^d \mod N = M^{ed} \mod N = M(\mod N)$

Encryption

- Use public-key (e, N) to encrypt message block M<N
- $C = M^e \pmod{N}$
- Send only C

Decryption

- Use private-key (d, N) to decrypt cipher C<N
- $M = C^{d} (\text{mod } N)$

RSA Example

$$GCD(5, 96) = 1$$

存在模反元素x, 使得5x mod 96=1, 此处令x=77

RSA Considerations

- Primes p and q should be of about the same length
 - About half the length of N
- Primes p and q should be unrelated
- Public exponent e can be small
 - No need to add much burden on encryption
- Private exponent d must be large
 - Disallow searching on small values (brute force)
- Strength of RSA depends on the fact that

构造大素数非常容易素数分解则非常困难

- Large N with large prime factors, factoring is a hard problem
- N's length can be enlarged to make it stronger

More about RSA

- The other way around
 - $(M^d \mod N)^e \mod N = M^{de} \mod N = M(\mod N)$

Signature

- A use private-key (d, N) to sign message block M<N
- Send M and S

Verification

- B (and others) use public-key (e, N) to check signature
 S on message M
- $S^e = M \pmod{N}$
- This authenticate A, since only A has the private key

Summary

- Symmetric Key Cryptography
- Traditional
 - Substitution methods
 - Caesar Cipher
 - Mono-alphabetic Cipher
 - Vigenere Cipher
 - Transposition (Permutation) methods
 - Rail Fence Cipher
 - Row-Column Cipher
- Modern: Block cipher
 - Data encryption standard (DES)
 - Triple DES (TDES)
 - Advanced Encryption Standard (AES)
- Asymmetric Key Cryptography: RSA

Homework

■ 第8章: R5, R6, P3, P7, P8