BECMAR MATEMATKA

Тема 1. Алгебра матриц

Глоссарий

1. Матрица.

Матрицей (числовой) размера m X n называется прямоугольная таблица m X n чисел, состоящая из m и n столбцов.

2. Элементы матриц.

Числа, составляющие матрицу, называются элементами матрицы.

3. Квадратная матрица.

Матрица, у которой число строк равно числу столбцов, т.е. m=n, называется квадратной матрицей порядка k, k=m=n. При этом числа a_{11} , a_{22} ,..., a_{nn} - элементы главной диагонали.

4. Нулевая матрица.

Матрица, все элементы которой равны 0, называется нулевой матрицей.

5. Единичная матрица.

Квадратная матрица, у которой все элементы главной диагонали равны 1, а все остальные элементы равны 0, называется единичной матрицей.

б. Треугольная матрица.

Квадратная матрица A_n называется треугольной, если все элементы, расположенные по одну сторону от главной диагонали, равны 0.

 $\mathbb{7}$. Трапециевидная матрица.

Матрица произвольной размерности называется трапециевидной или ступенчатой,

если она имеет вид:

$$\mathsf{A} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1r} & \cdots & a_{1n} \\ 0 & a_{21} & \cdots & a_{2r} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & a_{rr} & \cdots & a_{rn} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}, \mathsf{гдe} \, \mathsf{a}_{11}, \mathsf{a}_{12}, \ldots \, \mathsf{a}_{\mathsf{rn}} \, \mathsf{he} \, \mathsf{pавны} \, \mathsf{0}.$$

8. Сложение матриц.

Суммой двух матриц одинакового размера $A_{nxm} = (a_{ij})$ и $B_{nxm} = (b_{ij})$ называется матрица $C_{nxm} = (c_{ij})$ такая, что $c_{ij} = a_{ij} + b_{ij}$, где i = 1,..., m, j = 1,..., n.

- 9. Свойства сложения матриц:
 - \circ **A**_{nXm} + **B**_{nXm} + **A**_{nXm} свойство коммутативности или перестановочности сложения матриц.
 - \circ ($A_{nXm} + B_{nXm}$) + $C_{nXm} = A_{nXm} + (B_{nXm} + C_{nXm})$ свойство ассоциативности сложения матриц.
 - **A**_{nxm} + **O**_{nxm} = **A**_{nxm} свойство сложения с нейтральным элементом, а именно с нулевой матрицей того же порядка.
 - \circ **A**_{nxm} + (**A**_{nxm}) = **O**_{nxm} свойство сложения с противоположным элементом.
- 10. Умножение матрицы на число.

Произведением матрицы $A_{nxm} = (a_{ij})$ на число α называется матрица $B_{nxm} = (b_{ij})$ такая, что $b_{ij} = \alpha \bullet a_{ij}$, где i = 1,...,m, j = 1,...,n.

- 11. Свойства умножения матрицы на число:
 - **1** $A_{nXm} = A_{nXm}$ свойство умножения матрицы на число 1.
 - $\alpha \bullet (\beta * A_{nXm}) = (\alpha \bullet \beta) \bullet A_{nXm}$ свойство ассоциативности относительно умножения чисел.
 - $\alpha \bullet (A_{nxm} + B_{nxm}) = \alpha \bullet A_{nxm} + \alpha \bullet B_{nxm}$ свойство дистрибутивности умножения на число относительно сложения чисел.
 - \circ ($\alpha + \beta$) $A_{nXm} = \alpha$ $A_{nXm} + \beta$ $A_{nXm} -$ свойство дистрибутивности умножения на матрицу относительно сложения чисел.
- 12. Противоположная матрица.

Матрица -1•А называется противоположной матрице А.

13. Произведение матриц.

Произведением матрицы $A_{nxm} = (a_{ij})$ где i = 1,...,m, j = 1,...,n на матрицу $B_{nxk} = (b_{ij})$ где i = 1,...,n, j = 1,...,k называется матрица $C_{mxk} = (c_{ij})$, такая что $c_{i,j} = \sum_{s=1}^{n} a_{i,s} \bullet b_{s,j}$, i = 1,...,m, j = 1,...,k.

14. Свойства произведения матриц:

- \circ (A B) C = A (B C) − свойство ассоциативности умножения матриц.
- \circ $\alpha \bullet (A \bullet B) = (\alpha \bullet A) \bullet B = A \bullet (\alpha \bullet B)$ свойство выноса числового множителя за знак произведения матриц.
- \circ (A+ B) C = A C + B C свойство дистрибутивности умножения справа относительно сложения матриц.
- $C \cdot (A + B) = C \cdot A + C \cdot B$ свойство дистрибутивности умножения слева относительно умножения матриц.

15. Возведение матрицы в степень.

Целой положительной степенью A^m , где m>1 квадратной матрицы A, называется произведение m матриц, равных A, т.е.:

$$A^{m} = \underbrace{A \bullet A \dots \bullet A}_{m}$$

16. Транспонирование матриц.

Переход от матрицы A к матрице A^T , в которой строки и столбцы поменялись местами с сохранением порядка, называется транспонированием матрицы A. Например, если

$$A_{m\times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{i1} & a_{j1} & \cdots & a_{in} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \text{ To } A_{m\times n}^T = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \cdots & \cdots & \cdots & \cdots \\ a_{1j} & a_{2j} & \cdots & a_{mj} \\ \cdots & \cdots & \cdots & \cdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{pmatrix}$$

17. Свойства операции транспонирования:

- \circ (A^{T})^T = A матрица, дважды транспонированная, равна исходной матрице.
- $(\alpha A)^T = \alpha \bullet (A^T)$ числовой множитель можно выносить за знак транспонирования.
- \circ (A+ B)^T = A^T + B^T транспонирование суммы матриц есть сумма транспонированных матриц.
- $(A \bullet B)^T = B^T \bullet A^T$ транспонирование произведения матриц есть произведение транспонированных матриц, взятых в обратном порядке.