

ASSEMBLY DEVICE FOR SUBSTRATE

Patent Number: JP2001356353

Publication date: 2001-12-26

Inventor(s): HACHIMAN SATOSHI;; IMAIZUMI KIYOSHI;; SAITO MASAYUKI;; KAWASUMI YUKIHIRO;; SANKAI HARUO;; HIRAI AKIRA

Applicant(s): HITACHI INDUSTRIES CO LTD

Requested Patent: JP2001356353

Application Number: JP20010125778 19990330

Priority Number (s):

IPC Classification: G02F1/1339

EC Classification:

Equivalents:

Abstract

PROBLEM TO BE SOLVED: To provide an assembly device for substrates which bonds substrates to each other in a vacuum with high accuracy.

SOLUTION: This assembly device includes a moving mechanism for horizontally moving a table between the inside and outside of a vacuum chamber and has a means for drawing an adhesive to closed patterns on the other substrate held on the table positioned outside the vacuum chamber and a means for dropping liquid crystals into the closed patterns of the adhesive on the other substrate. The device has a means for holding the one substrate by suction attraction force to a pressurizing plate and a means for holding the same by electrostatic attraction force. The device has a means for accepting the one substrate falling from the pressurizing plate in a position to the extent of being slightly apart from the pressurizing plate when the suction attraction force does not act on the substrate any more in the process of progressing the pressure reduction in the vacuum chamber and a means for moving this accepting means to the pressurizing plate side. The device is provided with a means for holding the one substrate to the pressurizing plate by acting the electrostatic attraction force thereon when there is the one substrate in this accepting means.

Data supplied from the esp@cenet database - I2

【特許請求の範囲】

【請求項1】 真空チャンバ内の上方に位置する加圧板の下面に貼り合わせる一方の基板を保持し、貼り合わせる他方の基板を真空チャンバ内の下方に位置するテーブル上に保持して両基板を対向させ、いずれかの基板に設けた接着剤により真空中で両基板の間隔を狭めて基板同士を貼り合わせる基板の組立装置において、テーブルを真空チャンバの内外間にて水平に移動させる移動機構を具備すると共に、真空チャンバの外に位置したテーブル上に保持された他方の基板に接着剤を閉鎖したパターンに描画する手段と、この他方の基板上の接着剤の閉鎖したパターン内に液晶を滴下する手段と、を備え、

前記加圧板に、一方の基板を吸引吸着力で保持させる手段と、静電吸着力で保持させる手段と、を設け、真空チャンバ内の減圧を進める過程で吸引吸着力が働くとなり加圧板から落下する一方の基板を、加圧板から僅かに離れた程度の位置に受け止める受止め手段と、該受止め手段を加圧板側に移動させる手段と、を備え、前記受止め手段に一方の基板がある時に、静電吸着力を作用させて加圧板に一方の基板を保持させる手段と、を設けたことを特徴とする基板の組立装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、真空チャンバ内で貼り合せる基板同士をそれぞれ保持して対向させ真空中で間隔を狭めて貼り合わせる基板の組立装置に関する。

【0002】

【従来の技術】液晶表示パネルの製造には、透明電極や薄膜トランジスタアレイを付けた2枚のガラス基板を数μm程度の極めて接近した間隔をもって接着剤（以下、シール剤ともいう）で貼り合わせ（以後、貼り合せ後の基板をセルと呼ぶ）、それによって形成される空間に液晶を封止する工程がある。

【0003】この液晶の封止には、注入口を設けないようにシール剤をクローズしたパターンに描画した一方の基板上に液晶を滴下しておいて他方の基板を一方の基板上に配置し真空中で上下の基板を接近させて貼り合せる特開昭62-165622号公報で提案された方法や、一方の基板上に注入口を設けるようにシール剤をパターン描画して真空中で基板の貼り合わせ後にシール剤の注入口から注入する特開平10-26763号公報で提案された方法などがある。

【0004】

【発明が解決しようとする課題】上記従来技術では、シール剤のパターン描画の前後に係わらず、いずれも両基板は真空中で貼り合せている。真空中では、大気状態時のように、基板を大気との圧力差で吸引吸着することができない。

【0005】上側に位置する基板（以下、上基板と呼

ぶ。）の端部を機械的に保持すると基板の中央部がたわみ、そのたわみは最近の基板大型化、薄板化傾向が強まるにつれて大きくなっている。

【0006】上下各基板の周縁端部に設けた位置合わせマークを利用して位置決めを行うため、たわみが大きい程両基板の端部同士の間隔は拡がり位置合わせができない。

【0007】更に、上基板のたわみで上基板の中央部が周縁部よりも先に下側の基板（以下、下基板と呼ぶ。）に接触するので、基板間隔を一定にする為に基板間に散布されているスペーサーが動き、基板上に形成されている配向膜などを傷つけてしまう。

【0008】実際には貼り合せる上下の基板は同サイズなので、保持代がほとんど取れない状態にある。

【0009】それゆえ本発明の目的は、基板サイズが大型化、薄板化しても真空中で高精度に同程度の基板同士を貼り合せることが可能な基板の組立装置を提供することにある。

【0010】

【課題を解決するための手段】上記目的を達成するため、本発明は、真空チャンバ内の上方に位置する加圧板の下面に貼り合わせる一方の基板を保持し、貼り合わせる他方の基板を真空チャンバ内の下方に位置するテーブル上に保持して両基板を対向させ、いずれかの基板に設けた接着剤により真空中で両基板の間隔を狭めて基板同士を貼り合わせる基板の組立装置において、テーブルを真空チャンバの内外間にて水平に移動させる移動機構を具備すると共に、真空チャンバの外に位置したテーブル上に保持された他方の基板に接着剤を閉鎖したパターンに描画する手段と、この他方の基板上の接着剤の閉鎖したパターン内に液晶を滴下する手段と、を備え、前記加圧板に、一方の基板を吸引吸着力で保持させる手段と、静電吸着力で保持させる手段と、を設け、真空チャンバ内の減圧を進める過程で吸引吸着力が働くとなり加圧板から落下する一方の基板を、加圧板から僅かに離れた程度の位置に受け止める受止め手段と、該受止め手段を加圧板側に移動させる手段と、を備え、前記受止め手段に一方の基板がある時に、静電吸着力を作用させて加圧板に一方の基板を保持させる手段と、を設けた。

【0011】

【発明の実施の形態】以下、本発明の一実施形態を図に基づいて説明する。

【0012】図1乃至図3において、本発明の基板組立装置は、液晶滴下部S1と基板貼合部S2から構成され、この両部分は架台2上に隣接して配置される。架台2の上方には基板貼合部S2を支持するフレーム3がある。また、架台2の上面には、XYθステージT1が備えられている。Xステージ4aは、駆動モータ5により、図面上で左右のX軸方向に、即ち、液晶滴下部S1と基板貼合部S2間を往来できるようになっている。Y

ステージ4bはXステージ4a上にあり、駆動モータ6によりXステージと直交するY軸方向に往来できるようになっている。θステージ4cはYステージ4b上にあり、回転ペアリング7を介して駆動モータ8によりYステージ4bに対して水平に回転可能になっていて、θステージ4c上に基板を搭載するテーブル9が固定される。また、Yステージ4bにプレート13で下チャンバ10が固定されている。θステージ4cは、下チャンバ10に対し回転ペアリング11と真空シール12を介して軸Aを回転中心として回転自由に取付けられ、θステージ4cが回転しても下チャンバ10はつられて回転しない構造としている。

【0013】液晶滴下部S1は、テーブル9に保持された下基板1aに所望量の液晶剤を滴下するためのフレーム3から突出したブラケット14で支持されたディスペンサ17とこれを上下移動させるためのZ軸ステージ15とそれを駆動するモータ16で構成される。下基板1aをテーブル9上に保持搭載したXYθステージT1は、液晶剤を滴下するディスペンサ17のノズル18に対し、XおよびY方向に移動する。これにより、下基板1a上の任意の箇所に所望量の液晶剤が滴下される。

【0014】液晶滴下後の下基板1aを搭載保持したXYθステージT1は基板貼合部S2の下部に駆動モータ5によって移動する。

【0015】基板貼合部S2では、上チャンバ21とその内部の静電吸着板28がそれぞれ独立して上下動できる構造になっている。即ち、上チャンバ21は、リニアブッシュと真空シールを内蔵したハウジング30を有しており、シャフト29をガイドとしてフレーム2に固定されたシリンドラ22により上下のZ軸方向に移動する。

【0016】XYθステージT1が基板貼合部S2に移動していく上チャンバ21が下降すると、下チャンバ10の周りに配置してあるOリング44に上チャンバ21のフランジが接触し一体となり、この時真空チャンバとして機能する状態になる。

【0017】Oリング44のつぶれ量は、上チャンバ21の下降停止位置を調整し、真空チャンバ内を真空に保つことができ、かつ、最大の弾性が得られる程度に設定する。

【0018】ハウジング30は、上チャンバ21が下チャンバ10と真空チャンバを形成して変形しても、シャフト29に対し真空漏れを起こさないで上下動可能な真空シールを内蔵しているので、真空チャンバの変形がシャフト29に与える力を吸収することができ、シャフト29に固定され静電吸着板28を保持した加圧板27の変形がほぼ防止でき、後述するように静電吸着板28に保持された上基板1bとテーブル9に保持された下基板1aとの平行を保って貼り合せが可能となる。

【0019】23は真空バルブ、24は配管ホースで図示していない真空源に接続され、これらは真空チャンバ

を減圧し真空にする時に使用される。また、25はガスバージバルブ、26はガスチューブで、N2やクリーンドライエアー等の圧力源に接続され、これらは真空チャンバを大気圧に戻す時に使用される。

【0020】上基板1bは静電吸着板28の下面に密着保持されるが、大気下において上基板1bは吸引吸着で静電吸着板28に保持されるようになっている。即ち、41は吸引吸着用継手、42は吸引チューブであり、図示していない真空源に接続され、静電吸着板28面には、それにつながる複数の吸引孔が設けられている。

【0021】尚、周りが大気の場合、静電吸着を併用してもよいし、静電吸着力が大きい場合は、吸引吸着を不要としてもよい。

【0022】静電吸着板28はシャフト29で支持された加圧板27に取付けられており、シャフト29はハウジング31、32に固定されている。ハウジング31はフレーム2に対してリニアガイド34で取付けられ、静電吸着板28は上下動可能な構造になっている。その上下駆動はフレーム2とつながるフレーム35上のブラケット38に固定されたモータ40により行う。駆動の伝達はボールねじ36とナットハウジング37で実行される。ナットハウジング37は荷重計33を介してハウジング32とつながり、その下部の静電吸着板28と一緒に動作する。

【0023】従って、モータ40によってシャフト29が下降し、上基板1bを保持した静電吸着板28が下降し上基板1bがテーブル9上の下基板1aと密着して、加圧力を与えることのできる構造となっている。この場合、荷重計33は加圧力センサとして働き、逐次、フィードバックされた信号を基にモータ40を制御することで、上下基板1a、1bに所望の加圧力を与えることが可能となっている。

【0024】下基板1aは重力方向の搭載なので、図2に示すようにテーブル9に設けた位置決め部材81に押付ローラ82による水平方向での押付けによる位置決めの固定で十分であるが、貼り合わず直前の微小位置決めの際、上基板1bが下基板1a上のシール剤や液晶剤と接触した影響で下基板1aがずれたり持上がる可能性があることや真空チャンバ内が減圧され真空になる過程で下基板1aとテーブル9との間に入り込んでいる空気が逃げて下基板1aが踊りずれる可能性があるので、テーブル9に対しても静電吸着の機能を持たせても良い。そして、テーブル9に上下Z軸方向に移動できるピンを設け接地しておくと、基板貼り合わせ後のセルの帯電防止とテーブル9からのセル取り外しを容易に行なうことができる。

【0025】図2に示す60は、静電吸着板28が吸引吸着をしていて真空チャンバが減圧され吸引吸着力が消えて上基板1bが落下するときに静電吸着板28の僅か下の位置で受け止める受止爪で、上基板1bの2個の対

【図1】

