Topological Algebras

Ikhan Choi

January 19, 2025

Contents

Ι	Topological vector spaces	2
1	Locally convex spaces	3
	1.1 Category of locally convex spaces	3
	1.2 Vector-valued functions	4
	1.3 Direct limit	7
	1.4 Differentiable spaces	7
2	Fréchet spaces	8
3	Banach spaces	9
	3.1 Universal properties	9
	3.2 Banach spaces	10
	3.3 Approximation property	10
	3.4 Nuclear spaces	10
II	Topological algebras	11
4	Locally convex algebras	12
5	Fréchet algebras	13
6	Banach algebras	14

Part I Topological vector spaces

Locally convex spaces

1.1 Category of locally convex spaces

complete locally convex space

bornology, tensor products,

1.1 (Bilinear forms on topological vector spaces). We will distringuish embeddings and topological embeddings.

Topologies on the space of operators L(E, F).

1.2 (Topological tensor products). Let E and F be locally convex spaces. The *projective tensor product* of E and F is a locally convex space which is universal among the jointly continuous bilinear operators from $E \times F$ to a locally convex space.

We can also describe it with semi-norms. We have

$$B_{\rm int}(E,F) \cong (E \widehat{\otimes}_{\pi} F)^*.$$

$$(E \widehat{\otimes}_{\pi} F)_{\sigma}^{*} \cong L_{?}(E_{?}, F_{?}^{*})$$

Induced topology on $E \odot F$ from the space of separately continuous bilinear forms on $E_{\sigma}^* \times F_{\sigma}^*$ with the topology of uniform convergence on products of equicontinuous subsets of E^* and F^* .

 σ : on finite sets τ : on weakly compact sets β : on weakly bounded sets ε : on equi-continuous sets

A subset of E_{σ}^* is equicontinuous iff it is contained in the polar of a neighborhood of E. A subset is polar of finite sets iff

The topology of uniform convergence on \mathcal{G} = The topology generated by polars of \mathcal{G} .

 E_{ε} is the original topology

Note that we have

$$X \otimes Y \cong B_{\mathrm{jnt}}(X_{\sigma}^*, Y_{\sigma}^*) \subset B_{\mathrm{sep}}(X_{\sigma}^*, Y_{\sigma}^*).$$

The space $B_{\text{sep}}(X_{\sigma}^*, Y_{\sigma}^*)$ of separately continuous bilinear forms, which has a natural topology of uniform convergence on the products of equicontinuous sets in X_{σ}^* and Y_{σ}^* , and this topology is complete if and only if X and Y are complete. The induced topology on $X \otimes Y$ is called the *injective tensor product* topology. We have $C^k(\Omega, E) \cong C^k(\Omega) \hat{\otimes}_{\varepsilon} E$ if E is complete.

Note that the projective tensor product reflects the original topologies of locally convex spaces, while the injective tensor product only depends on the dual pair structure.

The dual of $X \hat{\otimes}_{\pi} Y \to X \hat{\otimes}_{\varepsilon} Y$ defines an injection $J(X,Y) \to B_{\text{jnt}}(X,Y)$. A bilinear form in J(X,Y) is called to be *integral*.

1.3. L(E) is a topological algebra

1.2 Vector-valued functions

1.4 (Vector-valued measurable functions). Let (X, μ) and (Y, ν) be localizable measure spaces. Let (E, E^*) be a dual pair.

Define vector valued Lebesgue spaces as the completion? Weakly measurable functions?

- (a) $L^1(X, E)$ and $L^1(X) \otimes E$: E is ... and \otimes is ...
- (b) $L^2(X, E)$ and $L^2(X) \otimes E$ if E is a Hilbert space and \otimes is the Hilbert space tensor product.
- (c) $L^{\infty}(X, E)$ and $L^{\infty}(X) \otimes E$ if E is ... and \otimes is ...
- (d) $\mu: L^1(X) \otimes E \to E \subset E^{**}$ is well-defined if E is ... and μ is ...
- (e) What is the relation between the product measurability and the Bochner measurability.
- (f) $L^p(X, L^q(Y)) = L^p(X) \otimes L^q(Y)$ if \otimes is ...
- (g) $L^p(X, L^p(Y)) = L^p(X \times Y)$?
 - weakly integrable: $L^1(X) \otimes E \to (E^*)^{\#}$.
 - Dunford integrable: $L^1(X) \otimes E \to E^{**}$.
 - Pettis integrable: $L^1(X) \otimes E \to E$.
 - Bochner integrable: $L^1(X) \otimes_{\pi} E \to E$.
 - For a Pettis integrable function, if we check it is strongly measurable using the Pettis measurability theorem and bound it with L^1 norm, then it becomes Bochner integrable.
 - If E is normed so that V^* is Fréchet, then weakly integrability implies the Dunford integrability.

Proof. \Box

- **1.5** (Vector-valued continuous functions). Let X be a locally compact Hausdorff space and (E, E^*) be a dual pair. Suppose
 - (i) the closed convex hull of a compact subset is compact in E_{σ} ,
 - (ii) E is closed in the strong bidual E_{β}^{**} .

An example is the case when E is a Banach space. The weak dual pair (E, E^*) satisfies the assumption by the Krein-Šmulian theorem and the completeness of E. The weak* dual pair (E^*, E) also satisfies the assumption by the fact that the closed convex hull of a bounded set is bounded, and the norm topology and $\beta(E^*, E_\beta)$ on E^* coincide by the Goldstine theorem. In particular, for $F \subset E^*$, the Banach space E is closed in the strong bidual for the dual pair (E, F) if and only if the closed unit ball $E_1 = F \cap E_1^*$ is weakly* dense in the closed ball E_1^* .

We want to construct a canonical element of $L(C_h(X, E_{\sigma}), L_{\sigma}(M(X)_{\sigma}, E_{\sigma}))$.

- (a) $C(X, E_{\sigma})$ and $C(X) \otimes E_{\sigma}$. (*X* compact Hausdorff)
- (b) $C_b(X, E_{\sigma}) \to L(M(\beta X)_{\sigma}, E_{\sigma}) \to L(M(X)_{\sigma}, E_{\sigma})$ if (E, E^*) satisfies the two properties.
- (c) $C_b(X, E_{\sigma}) \rightarrow L(L^1(X)_{\beta}, E_{\tau})$
- (d) the boundedly completeness?
- (e) $C_b(X, E_{\tau}) \rightarrow L(M(X)_{\sigma}, E_{\tau})$?

Proof. (a) Consider a common dense subset $C(X) \odot E$. For $f \in C(X, E_{\sigma})$ and for a fixed finite sequence ξ_{j}^{*} in E^{*} and $\varepsilon > 0$, taking $U_{x_{i}}$ at each $x_{i} \in X$ such that $\max_{j} |\langle f(x_{i}) - f(x), \xi_{j}^{*} \rangle| < \varepsilon$ for $x \in U_{x_{i}}$, then the partition of unity constructs a function $\sum_{k} f(x_{k}) \chi_{k} \in C(X) \odot E$ such that

$$\max_{j} \||\langle f - \sum_{k} f(x_k) \chi_k, \xi_j^* \rangle\| = \sup_{x \in X} \sum_{k} \chi_k(x) \max_{j} |\langle f(x) - f(x_k), \xi_j^* \rangle| < \sup_{x \in X} \sum_{k} \chi_k(x) \varepsilon = \varepsilon,$$

so the algebraic tensor is dense in $C(X, E_{\sigma})$.

$$[f]_{\mu_j,\xi_j^*} = \int \langle f(x), \xi_j^* \rangle d\mu_j(x).$$

$$ih\partial_t = H(h)$$

propagator $e^{-itH/h}$

(b) First we have $C_b(X, E_\sigma) \to L(E_\beta^*, C_b(X)_\beta)$: $f \mapsto (\xi^* \mapsto \langle f(\cdot), \xi^* \rangle)$ because for a net $\xi_i^* \in E^*$ such that $\xi_i^* \to 0$ in E_β^* the weak boundedness of $f(X) \subset E_\sigma$ implies

$$\|\langle f(\cdot), \xi_i^* \rangle\|_{C_b(X)_{\beta}} = \sup_{x \in X} |\langle f(x), \xi_i^* \rangle| \to 0, \qquad f \in C_b(X, E_{\sigma}).$$

On the other hand, for any compact subset $K \subset X$ we have $C_b(X, E_\sigma) \to L(E_\tau^*, C(K)_\beta)$ because for a net ξ_i^* such that $\xi_i^* \to 0$ in E_τ^* the compactness of the closed convex hull of the compact set f(K) in E_σ implies that

$$\|\langle f(\cdot), \xi_i^* \rangle\|_{C(K)_{\beta}} = \sup_{x \in K} |\langle f(x), \xi_i^* \rangle| \to 0.$$

Consider

$$L(E_{\beta}^*,C_b(X)_{\beta}) \to L(E_{\beta}^*,C_b(X)_{\sigma}) \to L(M(\beta X)_{\beta},E_{\beta}^{**}) \to L(M(X)_{\beta},E_{\beta}^{**})$$

and

$$L(E_{\tau}^*, C(K)_{\beta}) = L(E_{\sigma}^*, C(K)_{\sigma}) \to L(M(K)_{\beta}, E_{\beta}).$$

Note that

$$C_b(X, E_\sigma) \to L\left(\operatorname{colim}_K M(K)_\beta, E_\beta\right) \subset L(M(X)_\beta, E_\beta^{**}).$$

Since $\operatorname{colim}_K M(K)$ is strongly dense in $M(X)_{\beta}$, where K runs through all compact subsets of X, and since E is closed in E_{β}^{**} ,

(c) Fix
$$\xi \in C_b(X, E_\sigma)$$
.

- **1.6.** Let (E, E^*) and (F, F^*) be dual pairs. We prove $L(E_{\alpha}^*, F_{\alpha}) = L(E_{\alpha}^*, F_{\alpha})$ as sets, where α is any dual topology.
 - (a) If $T \in L(E_{\tau}^*, F_{\sigma})$, then $T^* \in L(F_{\sigma}^*, E_{\sigma})$, and in particular $T^* \in L(F_{\tau}^*, E_{\sigma})$.
 - (b) If $T \in L(E_{\sigma}^*, F_{\sigma})$, then $T^* \in L(F_{\tau}^*, E_{\tau})$, and in particular $T^* \in L(F_{\tau}^*, E_{\sigma})$.
 - (c) If $T \in L(E_{\sigma}^*, F_{\sigma})$, then $T^* \in L(F_{\beta}^*, E_{\beta})$.

Proof. (a) If $\xi_i^* \to 0$ in E_{σ}^* , then $T^*\xi_i^* \to 0$ in F_{σ} since

$$|\langle \eta^*, T^* \xi_i^* \rangle| = |\langle T \eta^*, \xi_i^* \rangle| \to 0, \qquad \eta^* \in F^*.$$

(b) If $\eta_i^* \to 0$ in F_τ^* , then $T^*\eta_i^* \to 0$ in E_τ since T preserves compact sets so that

$$\sup_{\xi^* \in C^*} |\langle T^* \eta_i^*, \xi^* \rangle| = \sup_{\xi^* \in C^*} |\langle \eta_i^*, T \xi^* \rangle| \to 0.$$

(c) If $\xi_i^* \to 0$ in E_β^* , then $T^*\xi_i^* \to 0$ in F_β since T preserves bounded sets so that

$$\sup_{\eta^* \in B^*} |\langle \eta^*, T^* \xi_i^* \rangle| = \sup_{\eta^* \in B^*} |\langle T \eta^*, \xi_i^* \rangle| \to 0.$$

- 1.7 (Vector-valued differentiable functions).
- 1.8 (Vector-valued distributions).
- **1.9** (Locally compact group actions). Let G be a locally compact group and let (E, E^*) be a dual pair. Let $\alpha: G \to L_{\sigma}(E_{\sigma})$ be a continuous bounded action.
 - (a) $\alpha: M(\beta G)_{\sigma} \to L_{\sigma}(E_{\sigma}).$
 - (b) $\alpha: L^1(G)_{\tau} \to L_{\sigma}(E_{\tau})$ if
 - (c) $\alpha^*: G \times E_\sigma^* \to E_\sigma^*$ preserves compactness if E_τ is barrelled, and E_σ^* has the Heine-Borel property.
 - (d) $\alpha: G \to L_{\sigma}(E_{\tau})$ if (a) and (b) are satisfied. (if E = A, then a point-weakly continuous action is point-norm continuous, and if E = M, then a point- σ -weakly continuous action is point- σ -strongly continuous)

Proof. (a) If $(x, x^*) \in E \times E^*$, then $(s \mapsto \langle \alpha_s(x), x^* \rangle) \in C_b(G)$ defines a continuous linear functional on $M(\beta G)$. Thus, span $G \subset M(\beta G)_{\sigma} \to L_{\sigma}(E_{\sigma})$ can be extended by the continuity.

(b)

For a bounded set $B^* \in L^{\infty}(G)$,

 $f \mapsto \langle \alpha_f(x), x^* \rangle$ is a linear functional on $L^1(G)$ with norm....?

Let
$$f_n \to 0$$
 in $L^1(G)_{\tau}$.

$$|\langle \alpha_{f_n}(x), x^* \rangle|$$

(c) Suppose s_i and x_i^* are nets in compact subsets of G and E_{σ}^* . We may assume $s_i \to e$ in G and $x_i^* \to 0$ in E_{σ}^* . We will show that we can take a subnet such that for each $x \in E$ we have

$$|\langle x, \alpha_{s_i}^*(x_i^*) \rangle| = |\langle \alpha_{s_i}(x), x_i^* \rangle| \le |\langle \alpha_{s_i}(x) - x, x_i^* \rangle|$$

converges.

For some neighborhood U of zero in E_{τ} , $\sup_{x \in U, x^* \in C^*, s \in K} |\langle \alpha_s(x), x^* \rangle| \le 1$? $\alpha_K(U)$ is bounded in E_{τ} ?

(d) We claim that $E_0 = E$, where

$$E_0 := \{ x \in E : \lim_{s \to e} \alpha_s(x) = x \text{ in } E_\tau \}.$$

We first see that E_0 is closed in E_{τ} . Let $x_i \in E_0$ be a net such that $x_i \to x$ in E_{τ} . Fix $\varepsilon > 0$ and weakly compact convex set $C^* \subset E_{\sigma}^*$. Since the set $\alpha_K^*(C^*)$ is relatively compact in E_{σ}^* by the part (c), the convergence $x_i \to x$ in the Mackey topology implies that the limit $s \to e$ gives

$$\sup_{x^* \in C^*} |\langle \alpha_s(x) - x, x^* \rangle| \leq \sup_{x^* \in C^*} |\langle x - x_i, \alpha_s^*(x^*) \rangle| + \sup_{x^* \in C^*} |\langle \alpha_s(x_i) - x_i, x^* \rangle| + \sup_{x^* \in C^*} |\langle x_i - x, x^* \rangle|$$

$$\to \varepsilon + 0 + \varepsilon,$$

hence we have the claim $x \in E_0$ by letting $\varepsilon \to 0$.

Now it suffices to show E_0 is dense in E_σ by the Hahn-Banach separation and the fact that the Mackey topology is a dual topology. Since we have a continuous linear map $\alpha: M(\beta G)_\sigma \to L(E_\sigma)_\sigma$ by the part (a), if we take a net $e_i \in C_c(G)$ such that $e_i \to \delta_0$ weakly* in $M(\beta G)_\sigma$, then for any $x \in E$, the net $\alpha_{e_i}(x)$ belongs to E_0 by the uniform continuity of each e_i and the part (b), and it has the convergence $\alpha_{e_i}(x) \to x$ in E_σ , so we are done.

1.10. Let *G* be a compact Lie group for which the Chevalley complexification can be made.

1.3 Direct limit

distribution theory LF,LB spaces

1.4 Differentiable spaces

Fréchet spaces

Banach spaces

3.1 Universal properties

Notation

L(X,Y) the set of bounded linear operators from X to Y

B(X,Y) the set of bounded bilinear forms on $X \times Y$

F(X,Y) the set of continuous finite-rank linear operators from X to Y

 B_X closed unit ball of a normed space X

 S_X unit sphere of a normed space X

 $X \otimes Y$ algebraic tensor product of X and Y

 X^* continuous dual space

 $X^{\#}$ algebraic dual space

3.1 (Algebraic tensor product of vector spaces). Let X and Y be vector spaces. The *algebraic tensor product* is a vector space $X \otimes Y$ with a bilinear map $S : X \times Y \to X \otimes Y$ such that the following universal property: for any vector space $S : X \otimes Y \to X$ and any bilinear map $S : X \times Y \to X$, there exists a unique linear map $S : X \otimes Y \to X$ such that the diagram

$$\begin{array}{ccc} X\times Y & \xrightarrow{\otimes} & X\otimes Y \\ & & \downarrow & \tilde{\sigma} \\ & & \downarrow & \tilde{\sigma} \\ & & Z \end{array}$$

is commutative.

- (a) The tensor product $X \otimes Y$ always exists.
- (b) We have linear maps $L(X,Z) \otimes L(Y,W) \to L(X \otimes Y,Z \otimes W)$ and $B(L(X,Z),L(Y,Z)) \to L(X \otimes Y,Z)$.
- (c) Every element $t \in X \otimes Y$ is represented as $t = \sum_{i=1}^{n} x_i \otimes y_i$ such that $\{x_i\}$ is linearly independent. In this case, if t = 0 then $y_i = 0$ for all i.

Proof. (a) Let T be the set of formal linear combinations of $X \times Y$, that is, an element of T has the form $\sum_{i=1}^{n} a_i \cdot (x_i, y_i)$ for $x_i \in X$, $y_i \in Y$, and scalars a_i . Define $T_0 \subset T$ to be a linear space spanned by the elements of the following four types:

$$(x+x',y)-(x,y)-(x',y), (x,y+y')-(x,y)-(x,y'),$$

 $(ax,y)-a(x,y), (x,ay)-a(x,y).$

Then, the quotient space T/T_0 satisfies the universal property with the bilinear map $X \times Y \to T/T_0$: $(x, y) \mapsto (x, y) + T_0$.

3.2 (Algebraic tensor product of involutive algebras).

3.2 Banach spaces

- 3.3 (Subcross norms).
- **3.4** (Injective tensor products). Let *X* and *Y* be Banach spaces. Define the *injective norm* ε on $X \otimes Y$ such that

$$\varepsilon \left(\sum_{i=1}^{n} x_i \otimes y_i \right) := \sup_{\substack{x^* \in B_{X^*} \\ y^* \in B_{Y^*}}} \left| \sum_{i=1}^{n} \langle x_i, x^* \rangle \langle y_i, y^* \rangle \right|.$$

We denote by $X \otimes_{\varepsilon} Y$ the algebraic tensor product with the injective norm, and by $X \hat{\otimes}_{\varepsilon} Y$ its completion.

- (a) $X \otimes_{\varepsilon} Y$ is naturally isometrically isomorphic to $F((X^*, w^*), (Y, w))$.
- (b) $X^* \otimes_{\varepsilon} Y$ is naturally isometrically isomorphic to F(X, Y).
- **3.5** (Projective tensor products). Let *X* and *Y* be Banach spaces. Define the *projective norm* π on $X \otimes Y$ such that

$$\pi(t) := \inf \left\{ \sum_{i=1}^{n} ||x_i|| ||y_i|| : t = \sum_{i=1}^{n} x_i \otimes y_i \right\}.$$

We denote by $X \otimes_{\pi} Y$ the algebraic tensor product with the projective norm, and by $X \widehat{\otimes}_{\pi} Y$ its completion.

- (a) There are natural isometric isomorphisms $(X \otimes_{\pi} Y)^* \cong B(X,Y) \cong L(X,Y^*)$.
- (b)
- **3.6** (Hilbert space tensor product). Let $\varphi: H \otimes K \to L(H^*, K)$. Then, $\lambda(\xi) = \|\varphi(\xi)\|$, $\gamma(\xi) = \operatorname{tr}(|\varphi(\xi)|)$, so $H \hat{\otimes}_{\lambda} K \cong K(H^*, K)$ and $H \hat{\otimes}_{\gamma} K \cong L^1(H^*, K)$.
- 3.7 (Nuclear operators).

$$X^* \otimes_{\pi} Y \to X^* \otimes_{\varepsilon} Y \xrightarrow{\sim} F(X,Y) \xrightarrow{1} K(X,Y)$$

defines

$$J: X^* \widehat{\otimes}_{\pi} Y \to K(X, Y).$$

Define $N(X, Y) := \operatorname{im} J$.

3.8 (Grothendieck theorem). Let Y^* be an RNP space. Then, there is an isometric isomorphism $(X \hat{\otimes}_{\varepsilon} Y)^* \cong N(X, Y^*)$.

3.3 Approximation property

- **3.9** (Approximation property of locally convex spaces).
- 3.10 (Approximation property of Banach spaces).
- **3.11** (Approximation property of dual Banach spaces).
- **3.12** (Mazur's goose). (a) If *X* has a Schauder basis, then it has the approximation property.

3.4 Nuclear spaces

Part II Topological algebras

Locally convex algebras

Fréchet algebras

For a Fréchet algebra A,

Banach algebras