Jason D. Chadwick

jchadwick@uchicago.edu | jason-chadwick.com

Education

Ph.D. Candidate, Computer Science, University of Chicago

2022-present

Studying quantum computer systems and architecture, advised by Fred Chong.

I am primarily interested in low-level software optimizations that narrow the gap between existing hardware and the future goal of large-scale fault-tolerant quantum computation. I have worked on research in the areas of error correction syndrome extraction, control pulse engineering, device calibration, circuit compilation, and high-radix computation.

B.S. Physics, Carnegie Mellon University Minor in Computer Science GPA 3.95

2018-2022

Professional Experience

Quantum Computing Intern, Intel Corporation

Summer 2024

Discovered new pulse schedules for two-qubit operations in silicon spin qubits, yielding up to 54% reduction in errors and spurring the development of novel chip designs to take advantage of these gains. Incorporated this work into existing Python hardware interface and C++ compiler stack. Created compilation and simulation software for hardware-informed exploration of the QEC code design space, providing guidance for Intel's quantum roadmap. Currently preparing a first-author manuscript for publication.

Undergraduate Researcher, University of Chicago

Spring 2021 - Summer 2022

Optimized short-duration control pulses for high-radix quantum logic gates, motivating a new compiler design that takes advantage of mixed-radix operations. Research was presented at QCE 2022 and was a key part of papers at ASPLOS 2023 and ISCA 2023.

Undergraduate Intern, Princeton Plasma Physics Laboratory

Summer 2020

As part of the Department of Energy SULI program, designed a neural network to predict fusion plasma cross-sectional density and pressure using only data available in real time during plasma operation, for use in real-time feedback control systems. Work published in *Nuclear Fusion*.

Programming

Languages: Python, Julia, C/C++

Python libraries: Stim/sinter, giskit, Cirq, QuTiP

Software: HPC/slurm

Awards and Honors

University Honors, Carnegie Mellon University	2022
College Honors, Mellon College of Science, Carnegie Mellon University	2022
Dean's List, High Honors, Mellon College of Science, Carnegie Mellon University	2018-2022
Crerar Fellowship, University of Chicago	2022
QTEM Best Paper 3rd place, IEEE QCE 2023	2023
QSYS Best Paper 1st place, IEEE QCE 2024	2024

Service

Teaching Assistant, CMSC 22200 Computer Architecture Rewrote autograder and taught lab sessions.

Winter 2025

Workshop organizer, QCE 2024

September 2024

Organized second edition of "Novel Applications of Optimal Control and Calibration for Quantum Technology" at QCE 2024, featuring invited talks and guided discussions.

Workshop organizer, QCE 2023

September 2023

Organized a day-long workshop "Advances in Numerical Quantum Optimal Control and Characterization Methods" at QCE 2023, featuring invited talks and guided discussions.

Physics Steering Committee, CMU Physics Department

2019-2021

Collaborated with physics department leadership to guide programs and policy.

Publications

† indid	[†] indicates equal contribution		
Year	Title and Authors	Publisher	Category
2025	Verity: a resilient kernel for magic state distillation C. $Kang^{\dagger}$, J. D. $Chadwick^{\dagger}$, S. F. Lin, and F. T. Chong	In preparation	
2025	Short two-qubit pulse sequences for exchange-only spin qubits in 2D J. D. Chadwick, G. G. Guerreschi, F. Luthi, M. T. Mądzik, F. A. Mohiyaddin, P. Prabhu, A. T. Schmitz, A. Litteken, S. Premaratne, and N. Bishop arxiv.org/abs/2412.14918	Under review	
2025	SWIPER: Minimizing Fault-Tolerant Quantum Program Latency via Speculative Window Decoding J. Viszai [†] , J. D. Chadwick [†] , S. Joshi, G. S. Ravi, Y. Li, and F. T. Chong arxiv.org/abs/2412.05115	Under review	
2024	Averting multi-qubit burst errors in surface code magic state factories J. D. Chadwick, C. Kang, J. Viszlai, S. F. Lin, and F. T. Chong arxiv.org/abs/2405.00146 QSYS Best Paper 1st place (out of 46)	2024 IEEE International Conference on Quantum Computing and Engineering (QCE)	Refereed conference paper
2023	Efficient control pulses for continuous quantum gate families through coordinated re-optimization J. D. Chadwick and F. T. Chong doi.org/10.1109/QCE57702.2023.00145 QTEM Best Paper 3rd place (out of 18)	2023 IEEE International Conference on Quantum Computing and Engineering (QCE)	Refereed conference paper
2023	Dancing the Quantum Waltz: Compiling Three-Qubit Gates on Four Level Architectures A. Litteken, L. M. Seifert, J. D. Chadwick, N. Nottingham, J. M. Baker, and F. T. Chong doi.org/10.1145/3579371.3589106	50th International Symposium on Computer Architecture (ISCA)	Refereed conference paper
2023	Qompress: Efficient Compilation for Ququarts Exploiting Partial and Mixed Radix Operations for Communication Reduction A. Litteken, L. M. Seifert, J. D. Chadwick, N. Nottingham, J. M. Baker, and F. T. Chong doi.org/10.1145/3575693.3575726	28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS)	Refereed conference paper

2022	Time-Efficient Qudit Gates through Incremental Pulse Reseeding L. M. Seifert [†] , J. D. Chadwick [†] , A. Litteken, F. T. Chong, and J. M. Baker doi.org/10.1109/QCE53715.2022.00051	2022 IEEE International Conference on Quantum Computing and Engineering (QCE)	Refereed conference paper
2021	Prediction of electron density and pressure profile shapes on NSTX-U using neural networks <i>M. D. Boyer and J. D. Chadwick</i> doi.org/10.1088/1741-4326/abe08b	Nuclear Fusion 61 046024	Journal article

Talks

Year 2025	Title Short two-qubit pulse sequences for exchange-only spin qubits in 2D	Venue APS March Meeting 2025	Category Conference talk
2024	Averting multi-qubit burst errors in surface code magic state factories	2024 IEEE International Conference on Quantum Computing and Engineering (QCE)	Conference paper talk
2024	Dynamic mitigation of time-varying noise in surface code magic state factories	APS March Meeting 2024	Conference talk
2023	Efficient control pulses for continuous quantum gate families through coordinated re-optimization	2023 IEEE International Conference on Quantum Computing and Engineering (QCE)	Conference paper talk

Patents

Year	Title	Description
2023	SYSTEMS AND METHODS FOR OPTIMIZED PULSES FOR CONTINUOUS QUANTUM GATE FAMILIES THROUGH PARAMETER SPACE INTERPOLATION	Methods related to those described in "Efficient control pulses for continuous quantum gate families through coordinated reoptimization", <i>QCE 2023</i> .