Einführung in Computational Engineering

Grundlagen der Modellierung und Simulation

10. Vorlesung: Zeitkontinuierliche Modellierung und Simulation

16. Dezember 2013

Prof. Dr. Jan Peters

produziert vom

Überblick der Vorlesungsinhalte

- 1. Einführung
- 2. Diskrete Modellierung und Simulation
- 3. Zeitkontinuierliche Modellierung und Simulation
- 4. Teilschritte einer Simulationsstudie
- 5. Interpretation und Validierung
- 6. Modulare und objektorientierte Modellierung und Simulation
- 7. Regression

Grundlagen der Modellierung und Simulation

4. TEILSCHRITTE EINER SIMULATIONSSTUDIE

Heutige Lernziele: Kernfragen

- Wie funktioniert eine Simulationstudie im Detail?
- Was bedeuten Modellbildung, Spezifikation, Implementierung, Validierung,
 Anwendung im Detail? Sind sie in der Lage, jeden Schritt selber zu tun?
- Wie kann man Simulationswerkzeuge klassifizieren?
- Welche "Levels" gibt es und was unterscheidet diese?
- Wie funktionieren MATLAB und SIMULINK?
- Wie kann man ODE45 nutzen?
- Wie funktioniert die blockorientiert Darstellung?

4.1 Problemspezifikation

Datenerhebung

4.1 Problemspezifikation

- Mögliche Zielsetzungen der Untersuchung
 - Realisierbarkeit

Wartezeiten und Durchsatz von Kunden

 Benötigte Zeiten und auftretende Kräfte bei Unterschiedlichen
 Schaukelstrategien

(Folien zur Schiffschaukel beruhen auf W. Wiechert, Uni Siegen)

4.2 Modellierung

Modellvereinfachung

4.2 Mathematische Modellierung: Annahmen

- Möglicher Grund der Untersuchungen
 - Benötigte Zeiten und auftretende Kräfte bei unterschiedlichen Schaukelstrategien
 - Man nehme an es gebe keinen Luftwiderstand

4.2 Modellierung: Veranschaulichung

Das Modell kann reale Bewegungen nur mit gewissen Einschränkungen wiedergeben

Drehbewegung in einer Ebene mit fester
 Drehachse

- Drehimpulssatz
 - "Zeitliche Änderung des Drehimpulses
 - = Summe der äußeren Drehmomente"

- Drehimpuls L bei fester Drehachse
 - $L = \text{"Trägheitsmoment} \times \text{Winkelgeschwindigkeit}$ "
 - $L(t) = I(t) \cdot \dot{\varphi}(t) \text{ mit } I(t) = m \cdot l^2(t)$
 - Damit lautet die zeitliche Änderung des Drehimpuls

$$\dot{L}(t) = \dot{I}(t) \cdot \dot{\varphi}(t) + I(t) \cdot \ddot{\varphi}(t)$$
$$= 2m \cdot l(t)\dot{l}(t)\dot{\varphi}(t) + ml^{2}(t)\ddot{\varphi}(t)$$

Bestimmung des Tangentialmomentes M_{tang}

$$\sin \varphi = \frac{F_{\text{tang}}}{F_g} \implies F_{\text{tang}} = mg \cdot \sin \varphi$$

mit
$$F_g = mg$$
 und damit folgt für $M_{\rm tang}$
$$M_{\rm tang} = l \cdot \left(-F_{\rm tang} \right) = -mgl \cdot \sin \varphi$$

- Modellierung des Reibungsmomentes M_{reib}
 - $M_{\rm reib} = -d \cdot \dot{\varphi}$ mit einer Konstanten d
- Einsetzen in den Drehimpulssatz ergibt

$$\dot{L}(t) = M_{\rm tang} + M_{\rm reib}$$

$$2m \cdot l \dot{l} \dot{\varphi} + m l^2 \ddot{\varphi} = -mg l \sin \varphi - d \dot{\varphi}$$

Umformung ergibt

$$2\frac{\dot{l}}{l}\dot{\varphi} + \ddot{\varphi} = -\frac{g}{l}\sin\varphi - \frac{d}{ml^2}\dot{\varphi}$$

Umformung ergab

$$2\frac{\dot{l}}{l}\dot{\varphi} + \ddot{\varphi} = -\frac{g}{l}\sin\varphi - \frac{d}{ml^2}\dot{\varphi}$$

Daraus folgt die Bewegungs-DGL

$$\ddot{\varphi} = -\left(2\frac{\dot{l}}{l} + \frac{d}{ml^2}\right)\dot{\varphi} - \frac{g}{l}\sin\varphi$$

- Man transformiert die DGL zu DGL 1.Ordnung
 - Einführung einer Winkelgeschwindigkeit ω

$$\dot{\varphi} = \omega$$

$$\dot{\omega} = -\left(2\frac{\dot{l}}{l} + \frac{d}{ml^2}\right)\omega - \frac{g}{l}\sin\varphi$$

4.2.1 Modell: Zustandsvariablen

- Zustandsvariablen
 - Sind zeitabhängige Größen
 - Legen die aktuelle Konfiguration eines Systems exakt fest
 - Legen den zukünftigen Verlauf genau fest
 - Sind nicht redundant
- Beispiel Schiffsschaukel
 - φ und ω sind Zustandsvariablen
 - φ alleine reicht nicht aus
 - φ , ω und $\dot{\omega}$ sind redundant

4.2.1 Modell: Zustandsvariablen

Grundprinzip:

Die Festlegung der Zustandsvariablen ist der Ausgangspunkt jeder Modellbildung

4.2.2 Modell: Systemstruktur (Wiederholung 3.2)

4.2.2 Modell: Systemstruktur

Während der Simulation veränderbar

(Steuervariable)

charakterisiert das System (Zustandsvariable)

beobachtbare / messbare / berechenbare aussagekräftige Größen für das Problem

4.2.2 Modell: Systemstruktur

Zustandsvariablen

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \varphi \\ \omega \\ l \end{pmatrix}$$

Steuervariablen

$$u = (u_1) = (\dot{l})$$

Systemparameter

$$p = \begin{pmatrix} m \\ d \\ g \end{pmatrix}$$

Zustands-DGLn

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = -\left(2\frac{u_1}{x_3} + \frac{p_2}{p_1 x_3}\right) x_2 - \frac{p_3}{x_3} \sin x_1$$

$$\dot{x}_3 = u_1$$

4.2.2 Modell: Systemstruktur

Zustandsvariablen

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \varphi \\ \omega \\ l \end{pmatrix}$$

Steuervariablen

$$u = (u_1) = (\dot{l})$$

Bemerkung: Wenn l(t) als
 Steuervariable vorgegeben ist, dann ist
 l(t) festgelegt.

Hier wird $\dot{l}(t)$ vorgegeben, das zusammen mit einem Anfangswert l(0) dann l(t) festlegt, vgl. die letzte DGL.

l(t) wird somit zur Zustandsvariablen.

4.3 Implementierung

Visualisierung

4.3 Implementierung

- Auswahl oder Entwicklung eines Berechnungsverfahrens (für das jeweilige Modell)
- Programmierung von Modell und Berechnungsverfahren
- Visualisierung von Berechnungsergebnissen
- Laufzeitoptimierung

4.3.1 Implementierung: Motivation

Zustandsvariablen sind Funktionen der Zeit

$$\varphi = \varphi(t)$$

$$\omega = \omega(t)$$

 Näherung für die zeitliche Ableitung durch den Differenzenquotienten

$$\dot{\varphi}(t) \approx \frac{\varphi(t + \Delta t) - \varphi(t)}{\Delta t}$$

$$\dot{\omega}(t) \approx \frac{\omega(t + \Delta t) - \omega(t)}{\Delta t}$$

4.3.1 Implementierung: Motivation

 Die Verwendung des Differenzenquotienten anstelle der Ableitung bedeutet anschaulich die Verwendung der Sekante anstelle der Tangente von φ in t

4.3.2 Implementierung: Euler-Verfahren

• Gleichung (ohne Längenveränderung, d.h. für $\dot{l}(t) = 0$)

$$\frac{\varphi(t + \Delta t) - \varphi(t)}{\Delta t} \approx \dot{\varphi}(t) = \omega(t)$$

$$\frac{\omega(t + \Delta t) - \omega(t)}{\Delta t} \approx \dot{\omega}(t) = -\frac{d}{ml^2}\omega(t) - \frac{g}{l}\sin\varphi(t)$$

• Gesucht ist die numerische Näherungslösung bei $t + \Delta t$ mit gegebenem $\varphi(t), \omega(t)$ und t

4.3.2 Implementierung: Euler-Verfahren

Numerische Lösung mit dem Euler

$$\varphi(t + \Delta t) \approx \varphi(t) + \Delta t \cdot \dot{\varphi}(t)$$

 $\omega(t + \Delta t) \approx \omega(t) + \Delta t \cdot \dot{\omega}(t)$

Damit folgt

$$\varphi(t + \Delta t) \approx \varphi(t) + \Delta t \cdot [\omega(t)]$$

$$\omega(t + \Delta t) \approx \omega(t) + \Delta t \cdot \left[-\frac{d}{ml^2} \omega(t) - \frac{g}{l} \sin \varphi(t) \right]$$

4.3.3 Implementierung: Algorithmus

$$m := 100$$
; $l := 2.5$; $d := 100$; $g := 9.81$;

 $\Delta t \coloneqq 0.01$; $t_{\text{max}} \coloneqq 10$;

$$t \coloneqq 0$$
; $\varphi \coloneqq 1$; $\omega \coloneqq 0$;

Modellparameter

Simulationsparameter

Startwerte

while $t < t_{\text{max}}$ begin

 t, φ, ω ausgeben;

$$\varphi_{\text{neu}} \coloneqq \varphi + \Delta t \cdot \omega;$$

$$\omega_{\text{ne}u} \coloneqq \omega + \Delta \cdot \left(-\frac{d}{ml^2} \cdot \omega - \frac{g}{l} \sin \varphi \right);$$

$$t \coloneqq t + \Delta t$$
; $\varphi = \varphi_{\text{neu}}$; $\omega \coloneqq \omega_{\text{neu}}$;

end;

Zeitschleife

Euler-Schritt

Euler-Schritt

4.3.4 Auswertung und Interpretation

- Die Durchführung der Simulation liefert eine sehr große Menge an Daten
 - Beim Beispiel der Schiffsschaukel eine große Tabelle mit den Einträgen von t, φ und ω
- Wie geht man mit den Ergebnissen um?
- Visualisierung und Animation

4.3.4 Visualisierungsmöglichkeiten

4.4 Begriffe

■ Bahn (Pfad, path) = kontinuierliche, räumliche Punktfolge

- Trajektorie (trajectory) = Bahn mit "zeitlichen Beschränkungen"
 - Z.B. außer Position auch Geschwindigkeit (und Beschleunigung)
 an jedem Punkt der Bahn gegeben

4.4 Begriffe: Beispiel

Beispiel der Schiffsschaukel

- Graph der Bahn enthält keine Zeitinformationen
- Beispiel: Allgemein Zustands-DGL $\dot{x}(t) = f(x(t))$, mit $x(0) = x_0 \in \mathbb{R}^n$
- Gesucht: Trajektorie des Zustands x(t), $0 \le t \le t_f$

4.5 Klassifikation zeitkontinuierlicher Simulationswerkzeuge

- Eine vereinfachte Möglichkeit der Implementierung bieten Simulatoren
 - Klassifikation z.B. nach "Komfort" für den Anwender

 Bei der Implementierung der Simulation unterscheidet man zwischen vier Level

4.5 Klassifikation zeitkontinuierlicher Simulationswerkzeuge

Level 3

Multidisziplinäre Modellgenerierung (Modelica, VHDL-A)

Level 2

Graphische Modellierung (SIMULINK, WorkingModel, Aspen, STELLA,...)
Spezialsimulatoren (ADAMS, SIMPACK, KSIM,...)

Level 1

Simulationssprachen (ACSL, VHDL, Dare-P, Desire,...)
Simulationsframeworks (SIMULINK, C++-Klassenbibliothek)

Level 0

Direkte Programmierung (FORTRAN, C, Pascal, MATLAB,...)

4.5.1 Beispiel: Schiffsschaukel

 Man betrachte wieder das Beispiel der Schiffsschaukel

$$\dot{\varphi} = \omega$$

$$\dot{\omega} = -\frac{d}{ml^2} \cdot \omega - \frac{g}{l} \sin \varphi$$

4.5.1 Level 0: Programmierung mit MATLAB


```
d = 100.0;
                                    % Reibungskonstante
m = 100.0;
                                    % Schaukelmasse inkl. Mensch
l = 2.5;
                                    % Abstand Schwerpunkt zu Drehachse
g = 10.0;
                                    % Erdbeschleunigung
deltat = 0.1;
                                    % Schrittweite
tEnd = 20.0;
                                    % Endzeit
t = 0.0;
                                    % Startzeit
                                    % Startwinkel
phi = 1.0;
                                    % Startwinkel
omega = 0.0;
while t \le tEnd
          disp(sprintf('%8.4f %8.4f %8.4f', t, phi, omega));
                                                                           % Ausgabe der Werte
          dphi dt = omega;
                                                                           % Berechnung der rechten ODE-Seite
          domega_dt = -d/(m * l^2) * omega - g/l * sin(phi);
          t = t + deltat:
                                                                           % Neue Zeiten und Werte
          phi = phi + deltat * dphi_dt;
          omega = omega + deltat * domega_dt;
end;
```


4.5.2 Integrationsverfahren in MATLAB

- ode1 Euler
- ode2 Heun
- ode3 Bogacki-Shampine
- ode4 RK4

:

ode45 basierend auf einem expliziten RK (4,5)

:

4.5.2 Level 1: Differentialgleichungslöser in MATLAB

function dxdt = Schaukel(t, x);

```
d = 100.0;

m = 100.0;

l = 2.5;

g = 10.0;
```

Modellparameter

```
phi = x(1);
omega = x(2);
```

Variablen

```
dphi_dt = omega;

domega_dt = -d/(m * l^2) * omega - g/l * sin(phi);
```

Rechte Seite

dxdt = [dphi_dt; domega_dt];

Ergebnis

4.5.2 Level 1: Differentialgleichungslöser in MATLAB

Aufruf eines Differentialgleichungslösers (Integrators)

```
phi0 = 1.0; omega = 0.0; Simulations parameter tEnd = 20.0;
```

[T, X] = ode45(@Schaukel, [0, tEnd], [phi0; omega0]); Integrationsaufruf

- Das DGL-System mit Anfangswert
 - $\dot{x}(t) = f(x(t), u(t)), \quad x(0) = x_0 \in \mathbb{R}^n$

- Äquivalente Form
 - $x(t) = x_0 + \int_0^t f(x(s), u(s)) ds$

Zustandsgrößen:

Eingaben und Parameter:

• Wirkfaktoren: $x \xrightarrow{-a} -ax$

Funktionsblock: Ausgabe ist Funktion der Eingaben

$$y = \sum_{i=1}^{n} x_i$$

$$y = \prod x_i$$

$$y = c \cdot x$$

Funktionen

Schaltfunktionen

if
$$c < 0$$
 then $x = a$
if $c \ge 0$ then $x = b$

Integration

$$x_i \xrightarrow{\int dt} \int dt \qquad \qquad \frac{dy}{dt} = \sum x_i$$

Differentiation

$$x \longrightarrow \frac{d}{dt} \longrightarrow y \qquad y = \frac{dx}{dt}$$

Der allgemeine Funktionsblock sieht wie folgt aus

Eine wichtige Funktion und die Matlab / Simulink Darstellung

 Weitere wichtige Funktionen und die Matlab / Simulink Darstellung

Eine weitere wichtige Funktion und die Matlab / Simulink
 Darstellung

4.5.3 Level 2: Blockorientierte Simulation mit SIMULINK

Man betrachte erneut das Beispiel der Schiffsschaukel

$$\dot{\varphi} = \omega$$

$$\dot{\omega} = -\frac{d}{ml^2} \cdot \omega - \frac{g}{l} \sin \varphi$$

4.5.3 Level 2: Blockorientierte Simulation mit SIMULINK

4.6 Validierung

Daten- und Parameterabgleich

Konsistenzprüfung

4.6 Validierung

- Modellierungsfehler
 - Vereinfachende Modellannahmen (z.B. starrer statt elastischer K\u00f6rper)
 - Ungenauigkeiten in Modellparametern

- Approximationsfehler des iterativen Berechnungsverfahrens
 - Z.B. beim Euler-Verfahren proportional zur Schrittweite

4.6 Validierung

- Rundungsfehler
 - Ausführung des Berechnungsverfahrens auf Computern mit endlicher Zahlendarstellung
- Programmier- und Implementierungsfehler
- Notwendigkeit der Validierung!
 - Die Visualisierung und Animation spielt bei der Validierung eine wichtige Rolle, z.B. bei der Plausibilitätsüberprüfung der visualisierten Lösung von Testsimulationsläufen bei bekanntem Verhalten des realen Systems.

4.7 Anwendung

Vorhersage und Optimierung

4.7 Anwendung

 Nach den Schritten der Modellbildung, Implementierung und Validierung nehmen die eigentlichen Simulationsläufe in der Anwendung nur relativ wenig (Entwickler-) Zeit in Anspruch

Heutige Lernziele: Kernfragen

- Wie funktioniert eine Simulationstudie im Detail?
- Was bedeuten Modellbildung, Spezifikation, Implementierung, Validierung,
 Anwendung im Detail? Sind sie in der Lage, jeden Schritt selber zu tun?
- Wie kann man Simulationswerkzeuge klassifizieren?
- Welche "Levels" gibt es und was unterscheidet diese?
- Wie funktionieren MATLAB und SIMULINK?
- Wie kann man ODE45 nutzen?
- Wie funktioniert die blockorientiert Darstellung?
- Selbsttest: Können Sie diese Fragen beantworten? Wenn nicht, schnell nochmal das Video anschauen!

