UFABC

Bioquímica: Estrutura, Propriedades e Funções de Biomoléculas Bacharelado em Ciência & Tecnologia

Funções Orgânicas Revisão

1 H											2 He						
3	4	Bulk elements Trace elements							5	6	7	8	9	10			
Li	Be								B	C	N	O	F	Ne			
11	12								13	14	15	16	17	18			
Na	Mg								Al	Si	P	S	Cl	Ar			
19	20	21	22	23	24	25	26	27	28	²⁹	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	_	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T 1	Pb	Bi	Po	At	Rn
87 Fr	88 Ra	Lanthanides Actinides															

Macroelementos (alaranjado): componentes estruturais das células e dos tecidos. Necessários na dieta em quantidades diárias medidas em gramas. Microelementos (amarelo): necessidades diárias bem menores.

Ligações Covalentes

Fórmula Molecular	Fórmula Eletrônica	Fórmula Estrutural
$ m H_2$	$H \cdot + xH \rightarrow H \cdot xH$	н—н
\bigcirc_2	∴+: ○→ ○ ; ;	o = 0
N_2	$N + N \rightarrow N N$	и≡и
$_{ m H_2O}$	HΦÖ⊷H	н-о-н
CO ₂	o <mark> ≅</mark> c <mark>≋</mark> o	0=C=O

Ligações Covalentes em Compostos Orgânicos

Nome	Etano	Eteno	Etino		
Fórmula molecular	C ₂ H ₆	C ₂ H ₄	C ₂ H ₂		
Fórmula de estrutura	H ₃ C – CH ₃	$H_2C = CH_2$	HC≡CH		
Modelo molecular			○		

AMINOÁCIDOS Alanina Arginina Asparagina Ácido aspártico Cisteina Ácido glutâmico Glutamina Glicina Histidina Isoleucina Leucina Lisina Metionina Fenilalanina Prolina

Treonina Triptofano Tirosina

Serina

Adrenalina

Valina

Citocromo c

Grupos Funcionais das biomoléculas

Anhydride (two carboxylic acids)

Phosphoanhydride

Grupos Funcionais aromáticos das biomoléculas

Histidina

Acetil-coenzima A

Vitamina c

Identificar os grupos funcionais desses dois compostos orgânicos

Adrenalina

Isomeria

Fenômeno caracterizado pela ocorrência de duas ou mais substâncias diferentes que apresentam a mesma fórmula molecular, mas diferentes fórmulas estruturais.

Tipos de Isômeros Isomeria Plana

Isomeria de função: Isômeros que pertencem a funções diferentes.

• Isomeria de cadeia: Pertencem à mesma função, mas possuem cadeias

diferentes.

 Isomeria de posição: Pertencem à mesma função, possuem o mesmo tipo de cadeia, apresentam diferença na posição de um grupo funcional, de uma

ramificação ou de uma insaturação.

H

$$H_2C = C - C - CH_3$$
 H_2

hidrocarboneto

cadeia aberta, normal...

dupla entre C_1 e C_2

1-buteno

e

 $H_3C - C = C - CH_3$
 H

hidrocarboneto

cadeia aberta, normal...

dupla ente C_2 e C_3

2-buteno

• Isomeria de compensação (metameria): apresentam mesma função e tipo de cadeia, porém possuem diferença na posição de um heteroátomo.

• Isomeria dinâmica (tautomeria): os isômeros coexistem em equilíbrio dinâmico em solução.

A Estrutura Tridimensional

Isomeria Óptica ou Estereoisomeria

Isômeros com propriedade de promover a rotação da *luz* plano polarizada.

Isômeros geométricos ou isômeros cis-trans:

Carbono quiral: carbono que possui quatro grupos diferentes ligados a si (carbono assimétrico).

Epímeros: diferem em apenas um C*

Moléculas biológicas são específicas

Isômeros dos aminoácidos na proteínas: L

L-Histidina

L-Leucina

Glicose: D (unidade monomérica do amido)

Biomoléculas

Bibliografia básica

LEHNINGER, A.L.; NELSON, D.L.; COX, M.M. Princípios de bioquímica. 4 ed. São Paulo:Sarvier, 2006. 1202 p.

VOET, D.; VOET, J.G. Bioquímica. 3 ed. Porto Alegre: Artmed, 2006, 1596 p.

BERG, J. M.; TYMOCZKO, J.L; STRYER, L. Bioquímica, 5 ed., Rio de Janeiro: Guanabara Koogan, 2004.