Primary	Comments
This paper proposes a novel method for identifying a hidden Markov process:	How to identify other relevant quantities?
• Only 5 observations are needed in non-stationary cases, while only 4 are enough in station cases.	Which formulae can ilustrate equation (1)
• (W_t, X_t^*) jointly evolves.	Why CCP and SLOM can be recovered?
• After the Markov kernel is identified, other relevant quantities can be recovered:	
Markov Kernel = CCP*State Law of Motion	
• Application: dynamic optimization models with unobserved process.	See Arellano Bonhemme 2017 Review Paper, where more applications and examples are
• Strength:	discussed.
Allow time-varying unobservedEvolve depending on past values of observables.	
Model	Comments
• Observables: two components: action(decision) and state. • Eq. 2 and 3. • Eq. 7. $f_{X,Y,Z,S} = \int f_{X X^*,S} f_{X^*,Z,S} f_{Y X^*,Z} dx^*,$ $f_{W_{t+1},W_t,W_{t-1},W_{t-2}} = \int f_{W_{t+1} W_t,X_t^*} f_{W_t W_{t-1},X_t^*} f_{X_t^*,W_{t-1},W_{t-2}} dx_t^*$ $= \int f_{W_{t+1} W_t,X_t^*} f_{W_t,W_{t-1},X_t^*} f_{W_{t-2} X_t^*,W_{t-1}} dx_t^*$	
Assumptions	Comments
A1.1. First-order Markovian A1.2. Limited feedback A2. Invertibility. Three injective linear operators. A3. Uniqueness of decomposition. A4. Monotonicity and Normalization. Other assumptions: 1. X_t is scalar and continuous. 2. $V_t \equiv g_t(W_t)$. 3. How to connect Carrol's assumptions with those in this paper?	
Lemmas	Comments

- * Lemma 1: Representation of the observed density.
- * Lemma 2: Representation of the Markov Law of Motion.
- * Lemma 3: Identification of $f_{V_{t+1}|W_t,X_t^*}$.

Identification Strategy

Comments

- 1. Based on $Hu\ \mathcal{E}$ Schennach 2008 and Carrol 2010.
- 2. Unique spectral decomposition: A1 \rightarrow A4.
- 3. Two step Identification:
 - (a) By A1 \rightarrow A4, $f_{V_{t+1}|W_t,X_t^*}$ identified.
 - (b) By Lemma 2, the Markov kernel is identified.
 - (c) Identify the joint distribution of the initial condition: $f_{W_{t-1}}, X_t^*$.