

Note: 
$$m_{\omega}(t) = \left(\frac{1}{\sqrt{1-2t^2}}\right)^n = (1-2t)^{-\frac{n}{2}} = \left(\frac{1}{\sqrt{1-2t}}\right)^2$$

The Gamma Distribution.

Deft. A random variable Y is said to have the gamma distribution  $\omega$  parameters  $k > 0$ 

of its mgf is of the form

 $m_{\gamma}(t) = \left(\frac{1}{1-tt}\right)$ 

We write  $m_{\gamma}(t) = \left(\frac{1}{1-tt}\right)$ 

Scale parameter

Note:  $m_{\gamma}(t) = k \cdot t$ 

Var[Y]=  $m_{\gamma}(t) = k \cdot t$ 

Var[Y]=  $m_{\gamma}(t) = k \cdot t$ 
 $m_{\gamma}(t) = m_{\gamma}(t) = m_{\gamma}(t)$ 

8: Say that  $m_{\gamma}(t) = m_{\gamma}(t) = m_{\gamma}(t)$ 

9: Say that  $m_{\gamma}(t) = m_{\gamma}(t) = m_{\gamma}(t)$ 

O:  $m_{\gamma}(t) = m_{\gamma}(t) = m_{\gamma}(t)$ 

O:  $m_{\gamma}(t) = m_{\gamma}(t)$