$$P_{123}(x) = \frac{(x - x_3)P_{12}(x) + (x_1 - x)P_{23}(x)}{x_1 - x_3}$$

Call the **column** in our table m (from 0 to n) and the **location** in the column i (from 0 to n-m)

$$P_{123}$$
: $m = 2$, $i = 1$

$$P_{i(i+1)\dots(i+m)} = \frac{(x - x_{i+m})P_{i(i+1)\dots(i+m-1)} + (x_i - x)P_{(i+1)(i+2)\dots(i+m)}}{x_i - x_{i+m}}$$

$$P_{1234}(x) = \frac{(x - x_4)P_{123}(x) + (x_1 - x)P_{234}(x)}{x_1 - x_4}$$

Call the **column** in our table m (from 0 to n) and the **location** in the column i (from 0 to n-m)

$$P_{1234}$$
: $m = 3$, $i = 1$

$$P_{i(i+1)\dots(i+m)} = \frac{(x - x_{i+m})P_{i(i+1)\dots(i+m-1)} + (x_i - x)P_{(i+1)(i+2)\dots(i+m)}}{x_i - x_{i+m}}$$

$$x_0$$
 $y_0 = P_0(x)$ $P_{01}(x)$ $P_{012}(x)$ $P_{0123}(x)$ $P_{01234}(x)$ P_{0

$$P_{i(i+1)\dots(i+m)} = \frac{(x - x_{i+m})P_{i(i+1)\dots(i+m-1)} + (x_i - x)P_{(i+1)(i+2)\dots(i+m)}}{x_i - x_{i+m}}$$

Keep track of the differences between parents and daughters

$$C_{m,i} = P_{i...(i+m)} - P_{i...(i+m-1)} \qquad \qquad D_{m,i} = P_{i...(i+m)} - P_{(i+1)....(i+m)}$$

At each level m, the C's and D's are the corrections that make the interpolation one order higher.

$$P_{i(i+1)\dots(i+m)} = \frac{(x-x_{i+m})P_{i(i+1)\dots(i+m-1)} + (x_i-x)P_{(i+1)(i+2)\dots(i+m)}}{x_i-x_{i+m}}$$

$$C_{m,i} = P_{i...(i+m)} - P_{i...(i+m-1)} \qquad \qquad D_{m,i} = P_{i...(i+m)} - P_{(i+1)....(i+m)}$$

Using the above equations we can derive a **recursive** form for the C's and D's

$$C_{m+1,i} = \frac{(x_i - x)(C_{m,i+1} - D_{m,i})}{x_i - x_{i+m+1}} \qquad D_{m+1,i} = \frac{(x_{i+m+1} - x)(C_{m,i+1} - D_{m,i})}{x_i - x_{i+m+1}}$$

The C's and D's do not depend on the actual value of P(x)

$$x_0$$
 $C_{0,0}$, $D_{0,0} = y_0$

$$x_1$$
 $C_{0,1}, D_{0,1}=y_1$

$$X_2$$
 $C_{0,2}$, $D_{0,2}=y_2$

$$X_3$$
 $C_{0,3}$, $D_{0,3}=y_3$

$$x_4$$
 $C_{0,4}$, $D_{0,4}=y_4$

Solution: $y = y_1$

$$x_0$$
 $C_{0,0}$, $D_{0,0}=y_0$ $C_{1,0}$, $D_{1,0}$ $C_{1,0}$, $D_{1,0}$ $C_{1,0}$, $C_{1,1}$, $C_$

Solution: $y = y_1 + C_{1,1}$

Solution:
$$y = y_1 + C_{1,1} + C_{2,1}$$

Solution:
$$y = y_1 + C_{1,1} + C_{2,1} + D_{3,0}$$

Solution:
$$y = y_1 + C_{1,1} + C_{2,1} + D_{3,0} + C_{4,0}$$

The final answer $P_{0,...n}(x)$ is equal to the sum of any y_i plus a set of C's and/or D's that form a path through the tree to the top of the pyramid.

The **C's** and/or **D**'s that are used to go to the next higher order can be used to **track the error** that is made by truncating the series.

Pseudo Code for Neville's Algorithm

1. Find the x_i value that is closest to the value x.

Do this by calculating the **absolute distance** between the point x and all x_i

Initialize the smallest distance to the distance between x and x_0

Loop from I = 1 to n (the number of x_i values - 1)

calculate the **absolute distance** between x and x_i

Compare the distance with the smallest distance found so far.

If distance is smaller than the smallest distance found so far then This is your new smallest distance

Save index I as the index for the point with the smallest distance end if

End do loop

Pseudo Code for Neville's Algorithm

- **2.** Initialize the value for y as the y_i -value of the nearest point found in step 1.
- 3. Initialize the values for the C's and D's (C and D are vectors of size n+1). They are initialized to be the values y_i (also a vector of size n+1)

Loop from I = 0 to n

$$C_i = y_i$$

$$D_i = y_i$$

End Looping over the n+1 values

Alternatively: Use whole array initialization

$$C = Y$$

$$D = Y$$

Pseudo Code for Neville's Algorithm

4. Calculate the C's and D's for each column

Loop from m = 1 to n over the columns in the table

Loop over the n-m+1 rows in each column (i = 0, n-m)

Calculate the new C's and D's

End Looping over the rows

After the values for the C's and D's are calculated, we need to decide which correction, C or D, we want to add to our accumulating value of y, i.e., which path to take through the tree-forking up or down. We want to do this such that we take the most 'straight' line route through the table.

Add the correction C or D to the value of y

End Looping over all columns

The Runge Function:
$$f(x) = \frac{1}{1 + 25x^2}$$

11 Points

The Runge function is a smooth function.

The Runge Function:
$$f(x) = \frac{1}{1 + 25x^2}$$

11 Points

The interpolating polynominal oscillates toward the end of the interpolation interval.

The Runge Function:
$$f(x) = \frac{1}{1 + 25x^2}$$

21 Points

With increasing number of points the problem is not resolved.

Reason: The magnitude of **higher order derivatives** of the Runge function get even larger.

The Runge Function:
$$f(x) = \frac{1}{1 + 25x^2}$$

Solution: Use lower order polynominals (less support points)

The Runge Function:
$$f(x) = \frac{1}{1 + 25x^2}$$

Solution: Use lower order polynominals (less support points)

The Runge Function:
$$f(x) = \frac{1}{1 + 25x^2}$$

Solution: Use lower order polynominals (less support points)

Problem: Derivatives are NOT continuous at the merging points from one polynominal to the next!

An Alternative Approach

Construct an approximation for f(x), namely g(x), by imposing the following conditions:

- 1. g'(x) is a smoothly varying function between two support points and is continuous at the support points
- 2. g''(x) is continuous at the support points

This results a cubic (third order) polynominal in each interval while enforcing the above conditions.

---> Cubic Spline

Cubic Splines

Verify that number of imposed conditions equals the number of available coefficients:

There are n+1 support points (knots) \rightarrow n subintervals.

On each subinterval we shell have a different cubic polynominal. Since each cubic polynominal has four coefficients

→ total of 4n coefficients available.

Within each interval cubic polynominal must go through two points $\rightarrow 2n$ conditions.

The 1st and 2nd derivative must be continuous at n-1 interior points $\rightarrow 2(n-1)$ conditions

The missing two conditions need to be provided as boundary conditions for the 1^{st} or 2^{nd} derivatives at the end points.

Types of Cubic Splines

Examples of Boundary conditions:

1. "Natural" Spline:
$$g_0''(x_0) = 0$$
 $g_n''(x_n) = 0$

No curvature at the endpoints

→ equivalent to assuming that the end cubics approach linearity at their extremities.

2. "Clamped" Spline:
$$g_0'(x_0) = f'(x_0)$$
 $g_n'(x_n) = f'(x_n)$

Specify the 1st derivative of the interpolating function

3. Assume that
$$g_0''(x_0) = g_1''(x_1)$$
 $g_n''(x_n) = g_{n-1}''(x_{n-1})$

Equivalent to assuming that the end cubics approach parabolas at their extremeties.