- 1. Let (a_n) be a sequence which converges to a limit L. Then, by definition, there exists $N \in \mathbb{N}$ such that if $n \geq N$, $|a_n L| < \epsilon$. Since $b_n = \frac{1}{n}(a_1 + a_2 + \dots + a_n)$, if $n \geq N$, $b_n = \frac{1}{n}(a_1 + a_2 + \dots + a_{N-1}) + \frac{1}{n}(a_N + \dots + a_{n-1} + a_n)$. Then, $b_n \leq |b_n| = |\frac{1}{n}(a_1 + a_2 + \dots + a_{N-1}) + \frac{1}{n}(a_N + \dots + a_{n-1} + a_n)| \leq |\frac{1}{n}(a_1 + a_2 + \dots + a_{N-1})| + |\frac{1}{n}(a_N + \dots + a_{n-1} + a_n)|$. Then, since $|a_n L| < \epsilon$, the max value a_n can take is $L + \epsilon$ for all $n \geq N$. Thus, $|\frac{1}{n}(a_N + \dots + a_{n-1} + a_n)| < |\frac{(n-N)(L+\epsilon)}{n}| < L + \epsilon$. Thus, $b_n < |\frac{1}{n}(a_1 + a_2 + \dots + a_{N-1})| + L + \epsilon$ which is a finite number. Therefore, at some point b_n must converge.
- 2. Without loss of generality, assume a > b. Then since a > b, $(a^n + b^n)^{1/n} < (2a^n)^{1/n}$ and $(a^n)^{1/n} < (a^n + b^n)^{1/n}$. Then, $a < (a^n + b^n)^{1/n} < (2a^n)^{1/n} = 2^{1/n}a$ and as $n \to \infty$, $a < (a^n + b^n)^{1/n} < a$ and thus, by the squeeze theorem $(a^n + b^n)^{1/n} \to a$.
- 3. Let $\frac{1}{2} < \epsilon$. Claim: $|\sqrt{n+1} \sqrt{n} 0| < \epsilon$. Since, $\sqrt{n+1} \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$. Since $\sqrt{n+1} + \sqrt{n} > 2\sqrt{n}$, $\frac{1}{\sqrt{n+1} + \sqrt{n}} < \frac{1}{2\sqrt{n}}$. Since $n \ge 1$, and $\frac{1}{2\sqrt{n}} > \frac{1}{2\sqrt{n+1}}$, $\frac{1}{2\sqrt{n}} < \frac{1}{2} < \epsilon$. Thus, $|\sqrt{n+1} \sqrt{n} 0| < \epsilon$, thus $\lim_{n \to \infty} \sqrt{n+1} \sqrt{n} = 0$.
- 4. Assume $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$ Then, $|(x_n+y_n)-(x+y)| = |x_n-x+y_n-y| \le |x_n-x|+|y_n-y|$. Since $(x_n)\to x$ and $(y_n)\to y$, we can find N_1,N_2 such that $|x_n-x|<\frac{\epsilon}{2}, \forall n\ge N_1$. and $|y_n-y|<\frac{\epsilon}{2}, \forall n\ge N_2$. Thus, if we take $N=\max\{N_1,N_2\}$, we get that $|(x_n+y_n)-(x+y)|\le |x_n-x|+|y_n-y|=\epsilon$.
- 5. Let $\{a_n\}$ be a sequence of real numbers such that $|a_n| \leq 2$ and $|a_{n+2} a_{n+1}| \leq \frac{1}{8}|a_{n+1}^2 a_n^2| \forall n \geq 1$. Then, $\frac{1}{8}|a_{n+1}^2 a_n^2| = \frac{1}{8}|(a_{n+1} a_n)(a_{n+1} + a_n)| \leq \frac{1}{8^2}|a_n^2 a_{n-1}^2||a_{n+1} + a_n| \leq \cdots \leq \frac{1}{8^{n-2}}|a_2^2 a_1^2||a_{n+1} + a_n| \cdots |a_3 + a_2|$. Since $|a_n| \leq 2$, $\frac{1}{8^{n-2}}|a_2^2 a_1^2||a_{n+1} + a_n| \cdots |a_3 + a_2| \leq \frac{1}{8^{n-2}}|a_2^2 a_1^2||2 + 2| \cdots |2 + 2| = \frac{1}{8^{n-2}}|a_2^2 a_1^2|4^{n-2} = \frac{1}{2^{n-2}}|a_2^2 a_1^2|$. Since $\frac{1}{2^{n-2}} \to 0$ as $n \to \infty$, $\{a_n\}$ is Cauchy. Thus $\{a_n\}$ converges.
- 6. Using matlab:

```
Editor - C:\Users\lees19\Documents\GitHub\Num-AI-2\homework\number6.m
   number6.m × Geometric_series_Convergence.m × +
 1 -
        a = 0
 2 -
        epsilon = 10^-2
 3 -
        n = 1
 4
 5 -
      while 1
 6 -
            a = (1 + 1/n)^n;
 7 -
            n = n+1;
 8 -
            if (exp(1) - a) < epsilon
 9 -
                 break
10 -
            end
11 -
       end
12
        n
13 -
Command Window
  epsilon =
       0.0100
  n =
        1
      136
```

We find that this sequence does indeed converge to e:

Sunny Lee Homework 1 February 23, 2021

Command W	indow																♥
M =															^		
Colum	Columns 1 through 16																
2.0	0000	2.2500	2.3704	2.4414	2.4883	2.5216	2.5465	2.5658	2.5812	2.5937	2.6042	2.6130	2.6206	2.6272	2.6329	2.6379	
Colur	Columns 17 through 32																
2.0	5424	2.6464	2.6500	2.6533	2.6563	2.6590	2.6615	2.6637	2.6658	2.6678	2.6696	2.6713	2.6728	2.6743	2.6757	2.6770	
Colur	Columns 33 through 48																
2.0	6782	2.6794	2.6804	2.6815	2.6824	2.6834	2.6842	2.6851	2.6859	2.6866	2.6873	2.6880	2.6887	2.6893	2.6899	2.6905	
Colum	Columns 49 through 64																
2.0	5911	2.6916	2.6921	2.6926	2.6931	2.6935	2.6940	2.6944	2.6948	2.6952	2.6956	2.6960	2.6963	2.6967	2.6970	2.6973	
Colum	Columns 65 through 80																
2.0	5977	2.6980	2.6983	2.6986	2.6988	2.6991	2.6994	2.6996	2.6999	2.7001	2.7004	2.7006	2.7008	2.7011	2.7013	2.7015	
Columns 81 through 96																	
2.	7017	2.7019	2.7021	2.7023	2.7025	2.7026	2.7028	2.7030	2.7032	2.7033	2.7035	2.7037	2.7038	2.7040	2.7041	2.7043	
Columns 97 through 112																	
2.	7044	2.7045	2.7047	2.7048	2.7049	2.7051	2.7052	2.7053	2.7054	2.7056	2.7057	2.7058	2.7059	2.7060	2.7061	2.7062	
Colum	Columns 113 through 128																
2.	7064	2.7065	2.7066	2.7067	2.7068	2.7069	2.7069	2.7070	2.7071	2.7072	2.7073	2.7074	2.7075	2.7076	2.7077	2.7077	
Colur	Columns 129 through 135																
2.	7078	2.7079	2.7080	2.7081	2.7081	2.7082	2.7083										
n =																	
136																	
<i>f</i> x >>																	~

And one the last line, we find it took 136 iterations to be within $\epsilon = 10^{-2}$. Thus, our N = 136