Supervised Learning (Part I)

EN5422/EV4238 | Fall 2023 w01_supervised_1.pdf (Week 2 - 1/2)

Contents

1	SUF	PERVISED LEARNING INTRO	2	
	1.1 1.2	Survey & Quizzes		
2	EXA	AMPLE DATA		
3	LIN	LINEAR MODELS		
	3.1 3.2	SIMPLE LINEAR REGRESSIONOLS LINEAR MODELS IN PYTHON	3	
4	POI	LYNOMIAL INPUTS		
	4.1	ESTIMATION		
5	K-N	EAREST NEIGHBOR MODELS (K-NN)	12	
	5.1 5.2	Example & Note K-NN in action		
6	PRI	EDICTIVE MODEL COMPARISON (OR HOW TO CHOOSE THE BEST MODEL)	14	
	6.1 6.2	Predictive Model Evaluation Statistical Decision Theory		
	6.3	CHOOSE THE BEST PREDICTIVE MODEL	17	

1 Supervised Learning Intro

1.1 Survey & Quizzes

During the lecture, there will be a survey and quizzes. You can access the survey on <u>Slido.com</u> using the # code provided during the lecture.

1.2 Supervised Learning

- In *supervised* learning, each observation can be partitioned into two sets: the predictor variables and the outcome variable(s).
 - Predictor variables are sometimes called 1) independent, 2) feature, and 3) predictor variables.
 - Outcome variables are sometimes called 1) target, 2) labels, 3) response, 4) dependent, and 5) reference variables.
- Usually, the predictor variables are represented by *X* and the response variables represented by *Y*.
- The goal in supervised learning is to find the patterns and relationships between the predictors, *X*, and the response, *Y*.
 - \circ Usually, the goal is to predict the value of Y given X.
- Later in the course, we will explore the *unsupervised learning* topics of association analysis, density estimation, and clustering which do not have any outcomes (i.e., no Y's)

2 Example Data

consider some data $D = \{(X_i, Y_i)\}_{i=1}^n$ with $Y_i \in \mathbb{R}$, $X_i \in [0,1]$ and n = 100.

Your Turn #1

The goal is to predict new Y values if we are given the X's.

- If x = 0.4, predict Y.
- If x = 0, predict Y.
- If x = 0.62, predict Y.
- How should we build a model that will automatically predict Y for any given X?

3 Linear Models

• Linear models refer to a class of models where the output (predicted value) is a linear combination (weighted sum) of the input variables:

$$f(x;\beta) = \beta_0 + \sum_{j=1}^{p} \beta_j x_j$$

where $x = [x_1, ..., x_p]^T$ is a vector of features/variables/attributions and $\hat{Y}|x = f(x; \hat{\beta})$ is the precited response at X = x.

- The coefficients (or weights), $\hat{\beta}$ are often selected by minimizing the squared residuals of the *training data* (may also be described as *ordinary least squares; OLS*)
 - o But, there are other, and better, ways to estimate the parameters in linear regression that we will discuss later in the course. (e.g., Lasso, Ridge, Robust)

3.1 Simple Linear Regression

- single predictor variable $x \in \mathbb{R}$
- $f(x; \beta) = \beta_0 + \beta_1 x$
- Use training data: $D_{train} = \{(x_i, y_i)\}_{i=1}^n$
- OLS uses the weights/coefficients that minimize the residual sum of squares (RSS) loss function over the *training data*:

$$\hat{\beta} = \arg\min_{\beta} SEE(\beta)$$

where SSE is the sum of squared errors (also known as RSS):

$$SEE(\beta) = \sum_{i}^{n} (y_i - f(x_i; \beta))^2 = \sum_{i}^{n} (y_i - \beta_1 x_i)^2 = \sum_{i}^{n} \hat{\epsilon}_i^2$$

where, $\hat{\epsilon} = y_i - \hat{y}_i$ is the residual.

• The solutions are:

$$\hat{\beta}_{0} = \bar{y} - \beta \bar{x}$$

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

• Definitions:

$$MSE(\beta) = \frac{1}{n}SSE(\beta)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i; \beta))^2$$

$$RMSE = \sqrt{MSE} = \sqrt{SSE} / \sqrt{n}$$

3.2 OLS Linear Models in Python

3.2.1 Estimation with statsmodels

In Python, the library statsmodels fits an OLS linear model

```
import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf
x = x.flatten()
y = y.flatten()
# Create a DataFrame
data train = pd.DataFrame({'x': x, 'y': y})
# Fit the OLS model
model = smf.ols('y ~ x', data=data train).fit()
# Print the summary
print(model.summary())
# Coefficients in DataFrame format
print (model.params)
# Other model properties
print("R-squared:", model.rsquared)
print("Adjusted R-squared:", model.rsquared adj)
print("Standard error:", model.mse resid ** 0.5)
print("F-statistic:", model.fvalue)
print("p-value of F-statistic:", model.f pvalue)
print("AIC:", model.aic)
print("BIC:", model.bic)
print("Degrees of freedom of residuals:", model.df resid)
print("Number of observations:", model.nobs)
```

OLS Regression Results

Don Variable:		. D			0.204
Dep. Variable:			ared:		0.394
Model:	OL:	_	Adj. R-squared:		0.388
Method:	Least Square		tistic:		63.68
Date:	Sun, 20 Aug 2023		(F-statistic	:):	2.80e-12
Time:	08:20:29	9 Log–L	ikelihood:		-252.22
No. Observations:	100	<pre>AIC:</pre>			508.4
Df Residuals:	98	B BIC:			513.6
Df Model:		1			
Covariance Type:	nonrobus	t			
coe	f std err	t	P> t	[0.025	0.975]
Intercept 6.8279	9 0.652	10.470	0.000	5.534	8.122
x -8.6249	9 1.081	-7.980	0.000	-10.770	-6.480
Omnibus:	0.19	 4 Durbi	 .n_Watson:		 1.783
Prob(Omnibus):	0.90	B Jarqu	e-Bera (JB):		0.051
Skew:	-0.05	4 Prob(JB):		0.975
Kurtosis:	3.02	3 Cond.	No.		4.63

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Intercept 6.827862 x -8.624911

dtype: float64

R-squared: 0.3938577650885271

Adjusted R-squared: 0.3876726402424917 Standard error: 3.044531794318476 F-statistic: 63.678223947408824

p-value of F-statistic: 2.8006122101855e-12

AIC: 508.4368613513172 BIC: 513.6472017232934

Degrees of freedom of residuals: 98.0

Number of observations: 100.0

- statsmodels has an ols function, which includes the intercept by default.
 - Some examples of using formulas as well as getting the underlying X (model/design matrix) can be found here.

3.2.2 Prediction with statsmodels

```
import numpy as np
import pandas as pd

# Add a constant term (for intercept) to x data
X = sm.add_constant(x)

# Fit the OLS model
model = sm.OLS(y, X)
result = model.fit()

# Create a prediction dataset
xseq = np.linspace(0, 1, 200) # sequence of 200 equally spaced values
between 0 and 1
xeval = sm.add_constant(xseq)

# Predict using the fitted model
yhat1 = result.predict(xeval)
```


3.2.3 Questions

- Your Turn #2

 1. How did we do? If X_{new} is close to 0, or close to 0.4, or close to 0.62?

 2. How to make it better?

4 Polynomial inputs

- In the *simple* linear regression model, we had 2 parameters that we needed to estimate, β_0 and β_1 . Thus, the model complexity is minimal.
 - o The only thin simpler is an intercept only model.
- But the data appears to have a more *complex* structure than linear.
- A parametric approach to add complexity is to incorporate polynomial terms in the model.
 - A quadratic model is $f(x; \beta) = \beta_0 + \beta_1 x + \beta_2 x^2$

4.1 Estimation

• OLS uses the weights/coefficients that minimize the SSE loss function over the training data:

$$\hat{\beta} = \arg\min_{\beta} SEE(\beta) \ \text{Note: } \beta \text{ in this problem is a } \textit{vector}$$

$$= \arg\min_{\beta} \sum_{i=1}^{n} (y_i - f(x_i; \beta))^2$$

$$= \arg\min_{\beta} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x - \beta_2 x^2)^2$$

4.1.1 Estimation

• Model

$$f(x_i; \beta) = \mathbf{x}^{\mathsf{T}} \beta$$

$$\begin{bmatrix} 1 \end{bmatrix} \qquad \begin{bmatrix} \beta_0 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix} \qquad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

Your Turn #3

Solve for $\hat{\beta}$ using matrix notation.

$$Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \quad X = \begin{bmatrix} 1 & X_1 & X_1^2 \\ 1 & X_2 & X_2^2 \\ \vdots & \vdots & \vdots \\ 1 & X_n & X_n^2 \end{bmatrix} \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix}$$

Sol)

Loss function:

$$\begin{split} RSS(\beta) &= (Y - X\beta)^{\mathsf{T}} (Y - X\beta) \\ &= Y^{\mathsf{T}} Y - \beta^{\mathsf{T}} X^{\mathsf{T}} Y - Y^{\mathsf{T}} X\beta + \beta^{\mathsf{T}} X^{\mathsf{T}} X\beta \\ &= Y^{\mathsf{T}} Y - 2\beta^{\mathsf{T}} X^{\mathsf{T}} Y + \beta^{\mathsf{T}} X^{\mathsf{T}} X\beta \end{split} \qquad \text{Note: see below how } \frac{\partial \beta^{\mathsf{T}} X^{\mathsf{T}} X\beta}{\partial \beta} \text{ can be calculated.}$$

$$\frac{\partial RSS(\beta)}{\partial \beta} = -2X^{\mathsf{T}}Y + 2X^{\mathsf{T}}X\beta = 0$$

$$\hat{\beta} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}Y$$
 >> This is the least square solution.

Given the expression $f(\beta) = \beta^{\mathsf{T}} X^{\mathsf{T}} X \beta$, where β is a column vector of dimension $p \times 1$ and X is a matrix of dimension $p \times 1$, you want to differentiate f with respect to β .

To differentiate this, we'll use the following properties of matrix derivatives:

1.
$$\frac{\partial}{\partial x}(X^{\mathsf{T}}AX) = (A + A^{\mathsf{T}})X$$
 where A is a symmetric matrix

2.
$$\frac{\partial}{\partial x}(X^{\mathsf{T}}A) = A$$
 where A is a matrix.

Let's differentiate the expression step by step:

Given:

$$f(\beta) = \beta^{\mathsf{T}} X^{\mathsf{T}} X \beta$$

Let
$$A = X^{\mathsf{T}}X$$
. Then, $f(\beta) = \beta^{\mathsf{T}}A\beta$.

Using the first property:

$$\frac{\partial f}{\partial \mathbf{x}} = (A + A^{\mathsf{T}})\beta$$

Since $A = X^{\mathsf{T}}X$ is symmetric (i.e., $A = A^{\mathsf{T}}$), the derivative simplifies to:

$$\frac{\partial f}{\partial \beta} = 2A\beta$$

Substituting back for A:

$$\frac{\partial f}{\partial \beta} = 2X^{\mathsf{T}} X \beta$$

So, the gradient of $f(\beta)$ with respect to β is $2X^{T}X\beta$.

4.1.2 Python implementation

In Python, the OLS function in statsmodels.api is a convenient way to get polynomial terms.

```
import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
# Assuming sim x and sim y are already defined elsewhere, and you've already
set up data train as before
#-- Model Settings
n = 100
sd = 2
x = sim x(n)
y = sim y(x, sd)
x = x.flatten()
y = y.flatten()
data train = pd.DataFrame({'x': x, 'y': y})
# Create the polynomial features for the model
data train['x2'] = data train['x']**2
X = sm.add constant(data train[['x', 'x2']])
# Fit the quadratic regression model
model2 = sm.OLS(data train['y'], X)
result2 = model2.fit()
# Create a prediction dataset
xseq = np.linspace(0, 1, 200) # sequence of 200 equally spaced values
between 0 and 1
xeval2 = pd.DataFrame({'x': xseq, 'x2': xseq**2})
xeval2 = sm.add constant(xeval2)
yhat2 = result2.predict(xeval2)
```


Your Turn #4

- How did we do? If X_{new} is close to 0, or close to 0.4, or close to 0.62?
 But does the quadratic model fit better *overall*?
- 3. What is the *complexity* of the quadratic model? (The effective degrees of freedom is essentially the number of parameters you're estimating.)

Degree	MSE	# of params		
1	8.3	2		
2	5.5	3		

As kids always reason, "if a little is good, than a lot much be better"> So why not try more complex models by increasing the polynomial degree.

• Polynomial of degree *d*

$$f_{poly}(x; \beta, d) = \beta_0 + \sum_{j=1}^{d} \beta_j x^j$$

Degree	MSE	# of params
1	7.5	2
2	4.5	3
3	3.7	4
5	3.3	6
10	3.2	11
20	3.0	21

And its always good to observe the plot.

- For degree=20, the behavior at the end points are a bit erratic.
- Using a higher degree would further reduce the MSE, but the fitted curve would be more "complex" and may not be a s good for new data.

5 k-nearest neighbor models (k-NN)

- The k-NN method is a non-parametric *local* method, meaning that to make a prediction $\hat{y}|x$, it only uses the training data in the vicinity of x.
 - o contrast with OLS linear regression, which uses all x's to get prediction.
- The model is simple to describe:

$$f_{knn}(x; k) = \frac{1}{k} \sum_{i: x_i \in N_k(x)} y_i$$
$$= \text{Avg} (y_i \mid x_i \in N_k(x))$$

- o $N_k(x)$ are the set of k nearest neighbors to x
- \circ only the *k* closest *y*'s are used to generate a prediction
- o it is a *simple mean* of the *k* nearest observations

Your Turn #5

What is the estimate $f_{knn}(x; k = n)$?

5.1 Example & Note

5.1.1 Example

Let's zoom in on the region around x=0.4

x	у	k	D	$\hat{f}_{\mathrm{knn}}(x;k)$
0.397	6.710	1	0.003	6.710
0.415	5.763	2	0.015	6.237
0.418	3.819	3	0.018	5.431
0.379	4.705	4	0.021	5.249
0.378	5.628	5	0.022	5.325
0.369	2.333	6	0.031	4.826
0.349	4.994	7	0.051	4.850

5.1.2 Note about k-NN

- A suitable *distance* measure (e.g., Euclidean) must be chosen.
 - o And predictors are often *scaled* (same standard deviation or range) so one variable doesn't dominate the distance calculation.

- Because the distance to neighbors grows exponentially with increased dimensionality/features, the *curse of dimensionality* is often referenced with respect to k-NN.
 - This means that in high dimensions most *neighbors* are not very close and the method becomes less *local*.
- One computational drawback of *k*-NN methods is that all the training data must be stored in order to make predictions.
 - o For large training data, may need to sample (or use prototypes)
- The complexity of a *k*-NN model increases as k decreases.
- The least complex model, which is a constant, occurs when k = n.
- The most complex model is when k = 1.
- The effective degrees of freedom or *edf* for k-NN model is n/k.
 - this is a measure of the model complexity. It is approximately the number of parameters that are estimated in the model (to allow comparison with parametric models)

5.2 k-NN in action

In Python, the function KNeighborsRegressor from sklearn.neighbors library will fit a k-NN regression model. Here is a k = 20 nearest neighbor model.

5.2.1 k-NN in action

k	MSE	edf
100	7.5	1
50	4.5	2
10	3.7	10
5	3.3	20
2	3.2	50

6 Predictive Model Comparison (or how to choose the best model)

6.1 Predictive Model Evaluation

Our goal is prediction, so we should evaluate the models on their *predictive performance*.

- We need to use hold-out data (i.e., data not used to fit the model) to evaluate how well our models do in prediction.
- Call these data test data $D_{\text{test}} = \{(X_j, Y_j)\}_{j=1}^J$
 - Note: assume that the test data comes from the same distribution as the training data
 - $\circ \quad \text{Or } P_{\text{test}}(X,Y) = P_{\text{train}}(X,Y)$
 - o **both** Y and X from same distribution
- Late in the course we will cover ways to do this when we only have training data (e.g., cross-validation)
- but for today, we have an unlimited amount of *test data* at our disposal (since we know how the data were generated)

6.2 Statistical Decision Theory

- In a prediction context, we want a *point estimate* for the value of an unobserved random variable (r.v.) $Y \in \mathbb{R}$ given an input feature $X \in \mathbb{R}$.
- Let f(X) be the prediction of Y given X.
- Define a *loss function* L(Y, f(X)) that indicates how bad it is if we estimate the value Y by f(X).
 - o e.g., *Y* is the number of rainfall events at GIST and *X* is the day of week from August to October.
 - o If we guess f(X) = 2, but there are really Y = 1, how bad would that be?
- A common loss function is *squared error*:

$$L(Y, f(X)) = (Y - f(X))^{2}$$

• The best model is the one that minimizes the *expected loss* or Risk or Expected Prediction Error (EPE)

$$Risk = EPE = E[loss]$$

• For *squared error*, the *risk* for using the model *f* is:

$$R(f) = E_{XY}[L(Y, f(X))] = E_{XY}[(Y - f(X))^{2}]$$

where the expectation is taken with respect (w.r.t.) to the *test values* of X and Y.

- Note under squared error loss, the risk is also known as the mean squared error (MSE)
- To simplify a bit, let's examine the risk of model f at a given fixed input X = x. This removes the uncertainty in X, so we only have uncertainty coming from Y.

$$R_x(f) = E[L(Y, f(x))|X = x]$$

= $E[(Y - f(x))^2|X = x]$ for squared error loss

where the expectation is taken with respect to Y|X = x.

• The best prediction $f^*(x)$, given X = x, is the value that minimizes the risk:

$$f^*(x) = \arg\min_{c} R_x(c)$$

= $\arg\min_{c} E[(Y - c)^2 | X = x]$

Your Turn #6

What is the optimal prediction at X = x under the squared error loss?

• i.e., find $f^*(x)$.

6.2.1 Squared Error Loss Functions

- Conclusion: If quality of prediction is measured by squared error, then the best predictor is the (conditional) expected value $f^*(x) = E[Y|X = x]$.
 - And the minimum Risk/MSE is $R_x(f^*) = V[Y|X = x]$.
- **Summary**: Under *squared error loss* the Risk (at input *x*) is

$$R_x(f) = \mathrm{E}_Y \big[L\big(Y, f(X)\big) \big| X = x \big]$$

= $\mathrm{E}_Y \big[\big(Y - f(x)\big)^2 \big| X = x \big]$ using squared error loss
= $Var[Y|X = x] + \big(\mathrm{E}_Y [Y|X = x] - f(x) \big)^2$
= Irreducible Variance + model squared error

Note: $Var[Y|X = x] = E_Y[Y^2|X = x] - (E_Y[Y|X = x])^2$

6.2.2 k-NN and Polynomial Regression

• The *k*-NN model estimates the conditional expectation by using the data in a *local region* around *x*:

$$\hat{f}_{knn}(x;k) = Ave(y_i|x_i \in N_k(x))$$

This assumes that the true f(x) can be well approximated by a *locally constant* function.

• Polynomial (linear) regression, on the other hand, assumes that the true f(x) is well approximated by a *globally polynomial* function.

$$\hat{f}_{poly}(x;d) = \beta_0 + \sum_{j=1}^{d} \beta_j x^j$$

6.2.3 Empirical Risk

• The actual Risk/EPE is based on the expected error from *test data* (out-of-sample), or data that was no used to estimate \hat{f} .

$$R(f) = \mathbb{E}_{XY}[L(Y, f(X))]$$

$$= E_{XY}[(Y - f(X))^{2}] \quad \text{for squared error loss}$$

where X, Y are from Pr(X, Y) (i.e., test data).

• But is it a bad idea to choose the best model according to empirical risk or training error?

$$\begin{split} \widehat{R}_n(f) &= \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) \\ &= \frac{1}{n} \sum_{i=1}^n (y_i - f(x_i))^2 \quad for \ squared \ error \ loss \end{split}$$

6.3 Choose the best predictive model

