# 1 Insiemi

# 1.1 Definizione e proprietà

Un insieme è una collezione di elementi, tutti dello stesso tipo. Un insieme può avere come elementi degli oggetti semplici oppure degli insiemi stessi, chiamati sottoinsiemi.

### Caratteristiche degli insiemi:

- non si considera l'ordine in cui gli elementi vengono rappresentati
- non si considera la molteplicità degli elementi
- cardinalità: il numero degli elementi di un insieme, si indica con || ||
- si rappresentano con {}

# Insiemi uguali

Dati due insiemi A, B essi si dicono **uguali** se **hanno esattamente gli stessi elementi** (indipendentemente dall'ordine).

$$A = B$$

### Insiemi equipotenti

Dati due insiemi A, B essi si dicono equipotenti se hanno esattamente lo stesso numero di elementi, ovvero hanno cardinalità uguale.

$$||A|| = ||B||$$

## Insiemi disgiunti

Dati due insiemi A, B essi si dicono disgiunti se non hanno nessun elemento in comune.

$$A \cap B = \emptyset$$

### Insieme vuoto

Un insieme particolarmente importante è l'**insieme vuoto**, indicato con ∅. L'insieme vuoto è l'insieme che non ha nessun elemento ed **è sempre contenuto** in ogni insieme.

### Esempio:

$$A = \{ 1, 2, 3 \}$$
  $||A|| = 3$   
 $B = \{ 3, 2, 1 \}$   $||B|| = 3$   
 $C = \{ 1, 1, 2, 3 \}$   $||C|| = 4$ 

$$A = B = C$$

sono tutti lo stesso insieme.

### Mentre invece:

$$A = \{ 1, 2, 3 \}$$
  $||A|| = 3$   
 $B = \{ \{1\}, \{2\}, \{3\} \}$   $||B|| = 3$   
 $C = \{ \{1, 2, 3\} \}$   $||C|| = 1$ 

$$A \neq B \neq C$$

sono tutti insiemi diversi, in particolare  $m{A}$  è un insieme di numeri, e  $m{B}$  ,  $m{C}$  sono insiemi di sottoinsiemi di numeri.

# 1.2 Operatori insiemistici

Gli operatori insiemistici sono operatori logico-matematici che ci permettono di:

- esprimere relazioni tra insiemi e suoi elementi
- effettuare operazioni sugli insiemi

# 1.2.1 Operatori di relazione

Gli operatori di relazione esprimono l'appartenenza di un elemento ad un insieme oppure l'inclusione di un insieme in un altro insieme.

### Relazione di appartenenza

Esprime l'appartenenza o meno di un elemento rispetto ad un insieme.

 $e \in I \Rightarrow$  se l'elemento e appartiene all'insieme I.

 $e \notin I \Rightarrow \text{ se l'elemento } e \text{ non appartiene all'insieme } I.$ 

#### Relazione di inclusione

Esprime l'inclusione o meno di un insieme(sottoinsieme) rispetto ad un insieme.

 $A \subset I \Rightarrow$  se l'insieme A è incluso strettamente nell'insieme I.

 $A \subseteq I \Rightarrow$  se l'insieme A è incluso nell'insieme I.

La differenza sta che l'inclusione stretta non prevede che A = I.

#### Relazione di contenimento

Esprime il contenimento o meno di un insieme rispetto ad un altro insieme(sottoinsieme).

 $I \supset A \Rightarrow$  se l'insieme I contiene strettamente l'insieme A.

 $I \supseteq A \Rightarrow$  se l'insieme I non contiene l'insieme A.

La differenza sta che il contenimento stretto non prevede che I = A.

Per gli operatori di relazione introduciamo i seguenti termini:

- corretto/scorretto = indica il valore sintattico
- vero/falso = indica il valore **semantico**

### Esempio:

 $1 \in \mathbb{N}$ : corretto e vero

 $-1 \in \mathbb{N}$ : corretto e vero

 $1 \subseteq \mathbb{N}$ : scorretto

 $-1 \supseteq \mathbb{N} : scorretto$ 

 $\mathbb{N} \subset \mathbb{R}$ : corretto e vero

 $\mathbb{Z} \supset \mathbb{N}$ : corretto e vero

 $\mathbb{Z} \supset \mathbb{R}$ : corretto e falso

 $\mathbb{Z} \subseteq \mathbb{R}$ : scorretto

# 1.2.2 Operatori logici

Gli operatori logico-matematici sono operatori binari che si riferiscono solamente agli insiemi e quindi possono essere usati solamente tra essi.

### Unione

Dati due insiemi  $oldsymbol{A}$  ,  $oldsymbol{B}$ 

l'insieme  $A \cup B$  è l'insieme formato da tutti gli elementi di A oppure tutti di B oppure comuni a entrambi.

$$A \cup B \Rightarrow \{x: x \in A \text{ or } x \in B\}$$



Proprietà:

$$\bullet$$
  $A \cup B = B \cup A$ 

#### Intersezione

Dati due insiemi A , B

l'insieme  $A \cap B$  è l'insieme formato da tutti gli elementi sia di A sia di B.

$$A \cap B \Rightarrow \{x: x \in A \text{ and } x \in B\}$$

Proprietà:

- $\bullet \quad A \cap B = B \cap A$
- $A \cap B = \emptyset$  se  $A \in B$  sono disgiunti



# Differenza

Dati due insiemi A, B

l'insieme  $A \setminus B$  è l'insieme formato da

tutti gli elementi di A che non appartengono anche a B.

$$A \setminus B \Rightarrow \{x: x \in A \text{ and } x \notin B\}$$



Proprietà:

• 
$$A \setminus B \neq B \setminus A$$

### Differenza simmetrica

Dati due insiemi A, B

l'insieme  $A \triangle B$  è l'insieme formato da

tutti gli elementi che appartengono ad A e non a B oppure tutti gli elementi che appartengono a B e non ad A.

$$A \triangle B \Rightarrow \{A \backslash B \cup B \backslash A\}$$



Proprietà:

$$\bullet \quad A \triangle B \neq B \triangle A$$

#### Prodotto cartesiano

Dati due insiemi A , B

l'insieme  $A \times B$  è l'insieme formato da

tutte le possibili coppie ordinate < a , b >con  $a \in A$  ,  $b \in B$ .

$$A \times B \Rightarrow \{ \langle a, b \rangle : a \in A, b \in B \}$$

Proprietà:

- $\bullet$   $A \times B \neq B \times A$
- $\bullet \quad ||A \times B|| = ||A|| \times ||B||$

# 1.3 Tipologie di insiemi

Gli insiemi si dividono in due grandi categorie:

- insiemi finiti
- insiemi infiniti

Inoltre, gli insiemi possono essere scritti in due modi:

- scrittura estensionale, ovvero tramite elencazione di tutti i suoi elementi
- scrittura intensionale, ovvero tramite descrizione di una o più proprietà che gli elementi rispettano

### Esempio:

```
Estensionale : A = \{4, 6, 8\}
Intensionale : A = \{x \in \mathbb{N} : x = 2y \land y \in \mathbb{N} \land 1 < y < 5\}
```

entrambi i metodi di scrittura descrivono lo stesso insieme  $\it A$  dei numeri pari compresi tra  $\it 2$  e  $\it 10$ .

Gli insiemi possono anche essere categorizzati come:

- discreti: un insieme, in cui scelti due numeri, non sempre è possibile trovare un terzo numero compreso tra i due numeri
- densi: un insieme, in cui scelti due numeri è sempre possibile trovare un terzo numero compreso tra i due numeri
- continui: un insieme, in cui presi due numeri è sempre presente un terzo numero (ovvero è denso e non ha "buchi" o "spazi vuoti")

### Esempio:

Insieme  $\mathbb{N}$  = insieme dei numeri **naturali** (interi non negativi)

insieme infinito, discreto  $\|\mathbb{N}\| = \aleph_0$ 

$$\mathbb{N} = \{0, 1, 2, 3, 4, \dots\}$$

Insieme  $\mathbb{Z}$  = insieme dei numeri **interi** (interi con segno)

insieme infinito, discreto  $\|\mathbb{Z}\| = \aleph_0$ 

$$\mathbb{Z} = \{-2, -1, 0, 1, 2, \dots\}$$

Insieme Q = insieme dei numeri razionali (esprimibili tramite funzioni)

insieme infinito, denso  $\|\mathbb{Q}\| = \aleph_0$ 

$$\mathbb{Q} = \{-\frac{1}{2}, -\frac{1}{4}, 0, \frac{1}{4}, \frac{1}{2}, \dots\}$$

Insieme I = insieme dei numeri irrazionali (non esprimibili tramite funzioni)

$$\mathbb{I} = \{ \sqrt{2}, \sqrt[3]{5}, \pi, e, \dots \}$$

Insieme  $\mathbb{R}$  = insieme dei numeri **reali** 

insieme infinito, continuo  $\|\mathbb{R}\| = 2^{\aleph_0}$ 

$$\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$$

Insieme  $\mathbb{C}$  = insieme dei numeri **complessi** 

Ordine di grandezza degli insiemi numerici:  $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$ 



# 1.4 Insiemi di insiemi e funzione caratteristica

### Insieme potenza / insieme delle parti di un insieme

Dato un insieme A, si indica il suo insieme potenza  $\mathcal{P}(A)$  come l'insieme di tutti i sottoinsiemi di A, compreso A stesso e l'insieme vuoto. Gli elementi di  $\mathcal{P}(A)$  sono insiemi.

### Proprietà:

$$\bullet \quad || \mathcal{P}(A) || = 2^{||A||}$$

### Esempio:

$$A = \{ 1, 2, 3 \}$$
 $||A|| = 3$ 

$$P(A) = \{ \varnothing, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\} \}$$
 $||P(A)|| = 2^{||A||} = 8$ 

# Insieme universo e insieme complementare

Dato un insieme A, si indica il suo insieme universo come l'insieme U che può contenere A come suo sottoinsieme.

Dato un insieme A, si indica il suo insieme complementare come l'insieme  $A^C$  che contiene tutti gli elementi dell'insieme universo U che non appartengono ad A.

$$A^C = \{x : x \in U \land x \notin A\}$$

### Proprietà:

- $\bullet$   $A \subseteq U$
- $\bullet \ A^C = U \setminus A$
- $U^C = \emptyset$
- $\bullet \ \varnothing^C = U$

### Esempio:

$$A = \{3, 6, 9\}$$
 $U = \mathbb{N}$ 
 $A^{C} = \{x \in U : x \neq 3 \land x \neq 6 \land x \neq 9\}$ 

### Partizione di un insieme

Dato un insieme A, si indica una sua partizione PAR(A) come un insieme di sottoinsiemi che rispettano queste caratteristiche:

- i sottoinsiemi non sono vuoti
- i sottoinsiemi sono disgiunti a coppie
- l'unione di tutti i sottoinsiemi è l'insieme A stesso

I singoli sottoinsiemi della partizione si chiamano classi della partizione.

### Proprietà:

- ullet una partizione di A è un insieme di sottoinsiemi dell'insieme delle parti $\mathcal{P}(A)$
- ullet l'insieme A stesso può essere una partizione di A

### Esempio:

$$A = \mathbb{N}$$

$$PAR(A) = \{P, D\}$$

P = insieme dei numeri pari (classe della partizione)

**D** = insieme dei numeri dispari (classe della partizione)

$$m{P}$$
  $eq$   $arnothing$  ,  $m{D}$   $eq$   $otin$ 

$$P \cap D = \emptyset$$

$$P \cup D = \mathbb{N}$$

### **Funzione caratteristica**

Dato un insieme A, e un elemento x, si definisce la sua funzione caratteristica come

$$f(x) = egin{cases} 1 & se \ x \in A \ 0 & altrimenti \end{cases}$$

# 1.5 Altri tipi di insiemi

Gli insiemi che abbiamo trattato fino ad ora sono gli insiemi propriamente detti, ma esistono anche i seguenti tipi di insiemi.

#### Multiinsieme

In un multiinsieme:

- non si considera l'ordine in cui gli elementi vengono rappresentati
- si considera la molteplicità degli elementi
- si rappresentano con ()

### Esempio:

$$A = (1, 2, 3)$$
  $||A|| = 3$   
 $B = (3, 2, 1)$   $||B|| = 3$   
 $C = (1, 1, 2, 3)$   $||C|| = 4$ 

$$A = B$$
  $A \neq C$ 

### Sequenza ordinata / n-upla

In una sequenza ordinata:

- si considera l'ordine in cui gli elementi vengono rappresentati
- si considera la molteplicità degli elementi
- si rappresentano con <>

# Esempio:

$$A = \langle 1, 2, 3 \rangle$$
  $||A|| = 3$ 

$$B = \langle 3, 2, 1 \rangle$$
  $||B|| = 3$ 

$$C = \langle 1, 1, 2, 3 \rangle$$
  $||C|| = 4$ 

$$A \neq B \neq C$$