HAR

(Human Activity Recognition)

(C01 - C09)

Dataset Description

- Number of attributes:
 - 3 (X, Y, Z) Accelerometer
 - 3 (X, Y, Z) Gyroscope
- Missing attribute values:
 - None

- Sampling Rate:
 - 100 Hz

Sample_Train.csv

_	Acc_X	Acc_Y	Acc_Z	Gyro_X	Gyro_Y	Gyro_Z
	0.58507	0.958694	-0.91408	0.508786	0.003394	0.024296
	0.554663	1.122004	-0.84205	0.543408	0.002409	0.034015
	0.527227	1.208196	-0.75273	0.531366	-0.00668	0.071343
_					•••	

3000 Rows ++

Sample_Test.csv

	Acc_X	Acc_Y	Acc_Z	Gyro_X	Gyro_Y	Gyro_Z
	0.58507	0.958694	-0.91408	0.508786	0.003394	0.024296
	0.554663	1.122004	-0.84205	0.543408	0.002409	0.034015
	0.527227	1.208196	-0.75273	0.531366	-0.00668	0.071343
500 Rows						
					•••	

EDA

C09

Pipeline #1 Lightgbm+caret experiment

Add Features

Mean

Variance

Lagged+Downsample

Multiple predictions per cell

Lagged Features

submission.csv

0.93018

0.92402

Confusion Matrix

C01 C02 C03 C04 C05 C06 C07 C08 C09

Targets

Feature Importance

Pipeline#2 LightGBM / Catboost

Add Features

Fourier Transform

Kurtosis/Skew

Stratified 5-Fold

Confusion Matrix

Feature Importance(gain/split)

Results: inference time 1+0.8 second

Subr	nission and Description	Private Score 🛈	Public Score (1)	Selected
\odot	submission_lgbm_5fold.csv Complete · 400256-ຣແพ້ໝ໌ເ · 5h ago	0.97125	0.99178	
\odot	submission_catboost_5fold.csv Complete · 400256-ຣuพັฒน์ · 5h ago · Before	0.98562	0.98767	

Same confusion matrix?

⊘	submissionCleanedData.csv Complete · 402829-ss1ss · 11h ago · amogus	0.86447	0.88706
\odot	submissionFixed.csv Complete · 402829-ssnss · 17h ago · fixed rolling window	0.93634	0.94866
⊘	submission.csv Complete · 402829-ss1ss · 18h ago · Light gbm + 10 lag + mean	0.93018	0.92402

Future plans

Data oversampling

 Training on extra datasets Q Search

Human Activity Recognition with Smartphones

Recordings of 30 study participants performing activities of daily living

Data Card Code (401) Discussion (13) Suggestions (0)

About Dataset

The Human Activity Recognition database was built from the recordings of 30 study participants performing activities of daily living (ADL) while carrying a waist-mounted smartphone with embedded inertial sensors. The objective is to classify activities into one of the six activities performed.

Description of experiment

The experiments have been carried out with a group of 30 volunteers within an age bracket of 19-48 years. Each person performed six activities (WALKING, WALKING_UPSTAIRS, WALKING_DOWNSTAIRS, SITTING, STANDING, LAYING) wearing a smartphone (Samsung Galaxy S II) on the waist. Using its embedded accelerometer and gyroscope, we captured 3-axial linear acceleration and 3-axial angular velocity at a constant rate of 50Hz. The experiments have been video-recorded to label the data manually. The obtained dataset has been randomly partitioned into two sets, where 70% of the volunteers was selected for generating the training data and 30% the test data.

The sensor signals (accelerometer and gyroscope) were pre-processed by applying noise filters and then sampled in fixed-width sliding windows of 2.56 sec and 50% overlap (128 readings/window). The sensor acceleration signal, which has gravitational and body motion components, was separated using a Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to have only low frequency components, therefore a filter with 0.3 Hz cutoff frequency was used. From each window, a vector of features was obtained by calculating variables from the time and frequency domain.

Attribute information

For each record in the dataset the following is provided:

Usability 0

7.06

License

CC0: Public Domain

Expected update frequency

Not specified

Tags

Arts and Entertainment

Earth and Nature

Future plans

- More visualization (Sankey-diagram)
- More Feature engineering(entropy, PSD, energy, jerk, Freq. binning)
- Optuna implementation
- Experiment with filters
- Experiment with ViTs

Q & A