LECTURE 8: CLUSTERING AGGREGATION

1) Clustering Aggregation

- a) Terminology:
 - i) Clustering: group of clusters output by clustering algorithm
 - ii) Cluster: group of points
- b) Goals:
 - i) Compare clusterings
 - ii) Combine information from multiple clusterings to create a new clustering

2) Comparing Clusterings

- a) Need to compare clustering by looking at assignment of points in clusters
 - i) Many points assigned to same cluster in both clustering C and P, then they should have a small distance
 - ii) Identifying which cluster in P and C are not easy

- b)
- i) Clusterings are the same, but assignments/labels not consistent
- ii) Asking "is x in red cluster" in left clustering = "is x in yellow cluster" in right clustering
 - However, won't know conversion unless we know set of conventions

3) Disagreement Distance

a) Given 2 clusterings P and C

$$D(P,C) = \sum_{x,y} \mathbb{I}_{P,C}(x,y)$$

i) Where

$$\mathbb{I}_{P,C}(x,y) = \left\{ \begin{array}{c} 1\\ 0 \end{array} \right.$$

if P & C disagree on which clusters x & y belong to

	Р	С
x ₁	1	1
\mathbf{x}_{2}	1	2
$\mathbf{x}_{_{3}}$	2	1
X ₄	3	3
X ₅	3	4

b) Ex:

i) Disagreement distance for P and C

X ₂	x ₁	1
x ₃	x ₁	1
x ₄	X ₁	0
x ₅	X ₁	0
X ₃	x ₂	0
x ₄	X ₂	0
x ₅	X ₂	0
x ₄	x ₃	0
x ₅	x ₃	0
x ₄	x ₅	1

c)

- 1. D(C, P) = 0 iff C = P
- 2. D(C, P) = D(P, C)
- 3. Triangle Inequality:

$$\mathbb{I}_{C_1,C_3}(x,y) \le \mathbb{I}_{C_1,C_2}(x,y) + \mathbb{I}_{C_2,C_3}(x,y)$$

i) $I_{C,P}$ can only be 0 or 1 and the above is violated iff

$$I_{x,y}(C_1,C_3) = 1$$
, $I_{x,y}(C_1,C_2) = 0$, $I_{x,y}(C_2,C_3) = 0$

4) Aggregate Clustering

a) Goal: From set of clusterings C_1 , ..., C_m generate a clustering C^* that minimizes

$$\sum_{i=1}^{m} D(C^*, C_i)$$

Problem equivalent to clustering categorical data

b) Benefits:

- Identify best number of clusters i)
 - 1) Optimization function not make assumptions on number of clusters
- Handle/detect outliers ii)
- iii) Improve robustness of clustering algorithms -> combining clusters can produce better results
- Privacy preserving clustering: aggregate clustering without sharing iv) data
- c) NP-Hard problem
 - Often solve with approximations i)
 - Rule: only worlds if it produces clustering ii)

	City	Profession	Nationality
x ₁	NY	Doctor	US
X ₂	NY	Teacher	French
X ₃	Boston	Lawyer	Canada
X ₄	Boston	Doctor	US
X ₅	LA	Lawyer	Canda
X ₆	LA	Actor	French

d)

- i) Majority saying

 - x₁ & x₂ together
 x₂ & x₃ together
 x₁ & x₃ separate

