TI BYTE Simulation Exercise

Week 5: Buffers

• Question 1:

710. In the circuit shown below, the input is driven with a waveform VIN=1.u(t). At a time of 2ns, the voltage at VOUT is roughly equal to:

> QUCS Circuit:

- V_{in} is the input given with waveform $V_{in} = 1.u(t)$
- V_{out} is used to label the output node and find the voltage at that node.
- Both the capacitors are uncharged and have zero initial voltage in them.

> QUCS Result:

Therefore, from the simulation, we get our answer as:

$$V_{out}$$
 | at t = 2 ns = 0.816 V \approx 0.81 V

Answer: (e)

> Conclusion:

- Initially, since the capacitors are uncharged, they provide minimal impedances. So, at $t = 0^+$,

$$V_{out} = \frac{C_1}{C_1 + C_2} \times V_{in} = \frac{1 pF}{1 pF + 1 pF} \times 1 V = 0.5 V$$

- At t = ∞, the capacitors are charged and behave as o.c., therefore,

$$V_{out} = V_{in} = 1 V$$

- The R_{eq} of the circuit between V_{out} and V_{in} is = 1 k Ω
- The C_{eq} of the circuit between V_{out} and V_{in} is = 1 pF + 1 pF = 2 pF
- Time constant of the circuit = $R_{eq} \times C_{eq} = 1 k\Omega \times 2 pF = 2 ns$
- Therefore, using the F.I.F. formula, we get the charging curve of V_{out} across the capacitor C2,

$$V_{out} = V_f + (V_i - V_f)e^{-t/\tau}$$

where, $V_i = V_{out}(t = 0^+)$ and $V_f = V_{out}(t = \infty)$.

$$V_{out} = 1 + (0.5 - 1)e^{-t/2}$$
 ns

- Thus, at t = 2 ns, $V_{out} = 1 - 0.5 \times e^{-2 ns/2}$ ns = $1 - 0.5 \times e^{-1}$ = 0.816 V

- Thus, our answer is verified with the simulated result.

• Question 2:

706. A1 and A2 are ideal buffers with gain of 2 and 5 respectively. Magnitude of Vout with respect to Vin at a frequency of 100 rad/s is:

> **QUCS Circuit:**

- V_{in} is a sinusoidal input given with an amplitude of 1V and frequency of 100 rad/s = 15.915 Hz
- V_{out} is used to label the output node and find the voltage at that node.
- Both the capacitors are uncharged and have zero initial voltage in them.
- The Buffer Amplifiers are implemented using Voltage Controlled Voltage Sources (VCVS), since they are ideal buffers with infinite input resistance and zero output resistance.

> **QUCS Result:**

Therefore, from the simulation, we get our answer as:

$$A_v = -1.0001e-05 - j1.0102e-07 = -100 dB$$

Answer: (h)

> Conclusion:

- The Transfer function can be given by.

$$H(s) = \frac{V_{out}}{V_{in}} = \frac{A_1 A_2}{(1 + sR_1 C_1)(1 + sR_2 C_2)}$$

- Thus H(s) has two poles and no zeroes.
- The total DC gain between V_{in} and V_{out} $(A_{V_0}) = A_1 \times A_2$ = $2 \times 5 = 10$

$$A_{V_0} = 20 \text{ dB}$$

- Now, due to the presence of the buffers, the two RC circuits R1C1 and R2C2 are electrically isolated. Thus, the effect due to the poles are also independent of each other.
- Therefore, the pole due to R1C1 is,

$$\omega_1 = -\frac{1}{10 \Omega \times 0.1 F} = -1 \text{ rad/s}$$

and, the pole due to R2C2 is,

$$\omega_2 = -\frac{1}{100 \Omega \times 1 F} = -0.01 \, \text{rad/s}$$

- Since both the pole lie on the -ve s-axis of the s-j ω plane, the system is stable.
- For a single pole at any frequency, the roll-off rate is -20dB/ decade.
- Now, at $\omega = 100 \, rad/s$, Gain due to the individual poles,

$$A_{V_1} = -20 \times log \left(\frac{\omega}{|\omega_1|} \right) = -20 \times log \left(\frac{100}{1} \right) = -40 dB$$

$$A_{V_2} = -20 \times log \left(\frac{\omega}{|\omega_2|} \right) = -20 \times log \left(\frac{100}{0.01} \right) = -80 dB$$

- Thus, total gain at $\omega = 100 \ rad/s$,

$$A_V = A_{V_0} + A_{V_1} + A_{V_2} = 20 dB - 40 dB - 80 dB = -100 dB$$

- From the simulation, we got the same result, thus our answer is correct and verified.