MATH 143

BERND STURMFELS

Davis Foote*

University of California, Berkeley

 $August\ 27^{th},\ 2015-December\ 10^{th},\ 2015$

Contents

1	Geometry, Algebra, and Algorithms	1
	1.1 Ideals	1
	1.2 Polynomials in One Variable	2
2	Grobner Bases	3
	2.1 Orderings on Monomials	3
	2.2 A Division Algorithm in R	5
	1 GEOMETRY, ALGEBRA, AND ALGORITHMS 1.1 Ideals	Lecture 1 September 1 st , 2015
1.	1 DEFINITION. A subset I of $R = K[x_1,, x_n]$ is an ideal if	
(1) $0 \in I$	
(2	$) f,g \in I \Rightarrow f+g \in I$	
(3	$) f \in I, h \in R \Rightarrow h \cdot f \in I$	
	*djfoote@berkeley.edu	

1.2 definition. The **ideal generated** by polynomials $f_1, \ldots, f_s \in R$ is

$$\langle f_1,\ldots,f_s\rangle:=\left\{\sum_{i=1}^s h_if_i:h_i\in R\right\}$$

1.3 PROPOSITION. If f_1, \ldots, f_s and g_1, \ldots, g_t generate the same ideal I, they have the same variety V(I).

1.4 LEMMA. Conversely, if $V \subseteq K^n$ is any variety, then $I(V) = \{ f \in R : f(a) = 0 \text{ for all } a \in V \}$

1.5 EXAMPLE. Let $V=\{(t,t^2,t^3)\in\mathbb{R}^3\}$, the "twisted cubic curve." Then $I(V)=\langle y-z^2,z-x^3\rangle$. So any polynomial which vanishes at V is a polynomial combination of $y-z^2$ and $z-x^3$.

1.6 LEMMA. If $f_1, \ldots, f_s \in R$, then $\langle f_1, \ldots, f_s \rangle \subseteq I(V(f_1, \ldots, f_s))$, but equality need not hold.

Proof. Suppose $f = \sum_{i=1}^{s} h_i f_i$. Since each f_i vanishes on $V(f_1, \ldots, f_s)$, so does f. This means $f \in I(V(f_1, \ldots, f_s))$.

1.2 Polynomials in One Variable

1.7 DEFINITION. Let $f = a_0 x^m + a_1 x^{m-1} + \ldots + a_m \in K[x]$ with $a_0 \neq 0$. The **leading term** of f is $LT(f) = a_0 x^m$.

1.8 FACT. $\deg(f) \leq \deg(g) \Leftrightarrow LT(f)$ divides LT(g)

1.9 PROPOSITION (Division Algorithm). Fix $g \in K[x] \setminus \{0\}$. Every $f \in K[x]$ can be written uniquely as $f = q \cdot g + r$, where $q, r \in K[x]$ and $(r = 0 \text{ or } \deg(r) < \deg(g))$.

TODO: Typeset this later ALGORITHM Input: g, f Output: q, r as in * q := o, r:= f while $r \neq 0$ and LT(g) divides LT(r) do $q := q + \frac{LT(r)}{LT(g)} r := r - \frac{LT(r)}{LT(g)} \cdot g$

1.10 COROLLARY. Every $f \in K[x] \setminus \{0\}$ has at most $\deg(f)$ many roots.

Proof. Induction on $m = \deg(f)$. True for m = 0, 1. For $m \ge 2$, if f has no roots in K, done. Otherwise, let $a \in K$ be a root, and write $f = q \cdot (x - a) + r$ where r is a constant. We have $f(a) = r = 0 \Rightarrow q$ divides r and $\deg(q) < m$, so it satisfies the conclusion.

1.11 COROLLARY. Every ideal in K[x] has the form $\langle f \rangle$ for some $f \in K[x]$. Here f is unique up to a multiplicative scalar.

1.12 PROPOSITION. Let $f, g \in K[x]$. Then

- (1) The greatest common divisor GCD(f,g) is unique
- (2) GCD(f,g) generates the ideal $\langle f,g \rangle$
- (3) There is an algorithm for finding GCD(f,g)

1.13 Example. Decide whether $x^2 - y$ lies in $\langle x^3 + x^2 - 4x + 4, x^2 - 4x + 4, x^3 - 2x^2 - x + 2 \rangle$.

First, compute the GCD of these three polynomials. It is x-2. So the above ideal is equal to $\langle x-2 \rangle$.

$$x^2 - 4 = (x+2)(x-2) \in \langle x-2 \rangle$$

To find which linear combination of the above polynomials equals $x^2 - 4$, use the extended Eauclidean algorithm.

2 Grobner Bases

Problems concerning ideals in $R = K[x_1, ..., x_n]$:

- Description: Does every ideal $I \subseteq R$ have a finite generating set?
- Membership: Given $I \subseteq R$ and $f \in R$, how to test whether $f \in I$
- Solving Equations: Describe $V(f_1, ..., f_s)$
- Implicitization: Compute the image in K^n of a polynomial parameterization $(x_i = g_i(f_1, ..., f_m))_{1 \le i \le n}$

2.1 Orderings on Monomials

We are concerned with $R = K[x_1, ..., x_n]$. What is the leading term of a polynomial in R?

- 2.1 REMARK. We can define a bijection between monomials $x^a = x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ in R to vectors a in $\mathbb{Z}_{>}^n$.
- **2.2** DEFINITION. A **monomial ordering** on R is a total ordering > on $\mathbb Z$ such that
- (1) If a > b and $c \in \mathbb{Z}_{\geq 0}^n$ than a + c > b + c.
- (2) > is a well-ordering, i.e. every non-empty subset has a least element.

2.3 LEMMA. A monomial ordering > is a well-ordering if and only if every strictly decreasing sequence $a(1) > a(2) > a(3) > \cdots$ in $\mathbb{Z}_{>0}^n$ eventually terminates.

Proof. (\Rightarrow) Suppose > is not a well-ordering. Pick $S \subset \mathbb{Z}_{\geq 0}^n$ with no least element. Pick $a(1) \in S$. We can find a(1) > a(2) in S, and a(2) > a(3), etc.

(\Leftarrow) If $a(1) > a(2) > a(3) > \cdots$ is an infinite sequence then $S = \{a(1), a(2), a(3), \ldots\}$ has no least element.

For each of the following orderings, we refer to *a* and *b* vectors of exponents as described in Remark 2.1.

2.4 DEFINITION (Lexicographic ordering). $a >_{\text{lex}} b$ if the leftmost nonzero entry in a - b is positive. Referred to as "lex."

2.5 DEFINITION (Graded lexicographic ordering). $a>_{\rm grlex} b$ if |a|>|b|. If |a|=|b|, ties are broken lexicographically. This ordering respects total degree. Referred to as "grlex."

2.6 DEFINITION (Graded reverse lexicographic ordering). $a>_{\text{grevlex}} b$ if |a|>|b|. If |a|=|b|, $a>_{\text{grevlex}} b$ if the rightmost nonzero entry in a-b is negative. Referred to as "grevlex."

2.7 EXAMPLE. Consider quadratic monomials in n=4 variables. Refer to the variables as a,b,c,d.

In grlex, $a^2 > ab > ac > ad > b^2 > bc > bd > c^2 > cd > d^2$.

In grevlex, $a^2 > ab > b^2 > ac > bc > c^2 > ad > bd > cd > d^2$.

2.8 DEFINITION. Fix a monomial order > and let $f = \sum_a c_a x^a \in R$.

- The **multidegree** of f is $\max\{a \in \mathbb{Z}_{>0}^n : c_a \neq 0\}$.
- The leading coefficient is $L(f) = C_{\text{multideg}(f)} \in K^* = K \setminus \{0\}.$
- The **leading monomial** is $LM(f) = x^{\text{multideg}(f)}$
- The **leading term** is $LT(f) = L(f) \cdot LM(f)$

2.9 EXERCISE. Which order (lex, grlex, grevlex) was used in writing

(a)
$$7x^2y^4z - 2xy^6 + x^2y$$

(b)
$$xy^3z + xy^2z^2 + x^2z^3$$

(c)
$$x^4y^5z + 2x^3y^2z - 4xy^2z^4$$

2.2 A Division Algorithm in R

<u>Goal</u>: Divide f by $\{f_1, \ldots, f_s\}$, i.e. write $f = a_1 f_1 + \cdots + a_s f_s + r$. The sum of all $a_i f_i$ is called the quotient, and r is called the remainder. We also want r to be small.

2.10 example.
$$f = x^2y + xy^2 + y^2$$
, $f_1 = xy - 1$, $f_2 = y^2 - 1$. $f = (x + y)f_1 + 1 \cdot f_2 + (x + y + 1)$.

None of the terms in r is divisible by $LM(f_1)$ or by $LM(f_2)$. However, the remainder is generally not unique: $f = xf_1 + (x+1)f_2 + (2x+1)$.

Hence
$$\langle f_1, f_2 \rangle \ni r - r' = y - x$$
. What is $V(f_1, f_2)$? $\{(1, 1), (-1, -1)\}$.

2.11 THEOREM (Division Algorithm). Fix a monomial ordering > on $\mathbb{Z}_{\geq 0}^n$ and let $F = (f_1, \ldots, f_s)$ be an <u>ordered</u> tuple of polynomials in R. Then every other polynomial $f \in R$ can be written as $f = a_1 f_1 + \cdots + a_s f_s + r$ where $a_1, r \in R$ and

- the remainder r is a K-linear combination of monomials, none of which is divisible by any of the leading terms of f_1, \ldots, f_s . (Intuitively, the remainder is small.)
- $multideg(f) \ge multideg(a_if_i)$ for all a_i with $a_i \ne 0$

Proof. We present an algorithm to compute such a decomposition.

```
Input: f_1, \ldots, f_s, f
Output: a_1, \ldots, a_s, r such that the above hold.
(a_1, a_2, \ldots, a_2) := (0, 0, \ldots, 0)
p := f
while p \neq 0 do:
i := 1
divisionOccurred := false
while i \le s and (divisionOccurred=false) do:
if LT(f_i) divides LT(p) then:
a_i := a_i + \frac{LT(p)}{LT(f_i)}
p := p - (\underbrace{\frac{LT(p)}{LT(f_i)}}) \cdot f_i
divisionOccurred=true
else:
i := i + 1
if divisionOccurred=false then:
r := r + LT(p)
p := p - LT(p)
```

TODO: typeset this later

The invariant on the outer while loop is $f = a_1 f_1 + ... + a_s f_s + p + r$. Intuitively, p is the part of f which hasn't been decomposed yet. Therefore when

the loop is exited and p is 0, we have the desired decomposition.

The algorithm is guaranteed to terminate because LT(p) is guaranteed to decrease in each iteration.

2.12 FACT. The ordering of $F = (f_1, \ldots, f_s)$ matters.

2.13 Example. Let $f_1 = xy + 1$, $f_2 = y^2 - 1$. Dividing $f = xy^2 - x$ by $F = (f_1, f_2)$ gives the result $f = y \cdot f_1 + 0 \cdot f_2 + (-x - y)$. On the other hand, dividing f by $F = (f_2, f_1)$ gives the result $f = x \cdot f_2 + 0 \cdot f_1 + 0$.

2.14 PROBLEM. How can we solve the ideal membership problem using such a division algorithm? If the remainder is 0, then we know the input f is in the ideal generated by $F=(f_1,\ldots,f_s)$. However, as seen in the above example, we can run the algorithm and get a result with nonzero remainder even when f is in the ideal.

2.15 EXAMPLE. For fixed F, the map $f \mapsto r$ is K-linear.