

MA 408

Measure Theory

Notes By: Aryaman Maithani

Lecture 1

06 January 2021 22:06

Idea behind measure

Simplified case: Subsets of R

Given E CIR, want to assign "length" or "content"

to E.

Ideally, want a map

 $\mu \colon \mathcal{C}(\mathbb{R}) \longrightarrow \mathbb{R}_{>0}$

s. f.

(1)
$$\mu(b) = 0$$

(2) For any $E \subset \mathbb{R}$ and $x \in E$, $\mu(E) = \mu(x + E)$.

$$(x + \varepsilon := \{x + y : y \in \varepsilon^2\})$$

(3) Given a countable collection {\int \int i \int

$$\mu\left(\bigcup_{i=1}^{\infty} \varepsilon_{i}\right) = \sum_{i=1}^{\infty} \mu(\varepsilon_{i}).$$

(So far, $\mu \equiv 0$ will satisfy above properties)

(4)
$$\mu$$
 ([0, 1]) = 1. ("Normalisation")

Any such μ would be a "candidate" for our content.

```
However, no such µ exists!
    Consider the following sets:
(1) Define \sim on R by \pi \sim y \in Q.
Clearly, \sim is an equive relation.
        Let E \subseteq [0,1] be a set containing exactly one
       element from each equivalence class in ...,

(6 xistence is given by Axiom of Choice. Note that)

distinct equiv. classes are disjoint. and a small argument that less you conclude EC[0,1].
    Q. What could \mu(E) be?
        Note that { Etr} rearcoil is a collection of pairwise disjoint sets.
     Subth. If \chi \in (E + r_1) \cap (E + r_2), then \chi = r_1 + \ell_1 = r_2 + \ell_2

(r_2 = r_1) for some e_1, e_2 \in E
                           \Rightarrow e_1 - e_2 = r_2 - r_1 \in \mathbb{Q}
                            => (1~ (2 =) (1= (2
         Moreover, [0, 1] \subset U (E+r) \subseteq [0, 2] = [0,1] \cup [1,2]
          An easy consequence of (1)-(3) is that E \subseteq F_{0}
          Prof. μ(F) = μ(E υ(κ(E)) = μ(E) + μ(F(E) ≥ μ(E). 0/
            \Rightarrow \mu([0,1]) \leq \mu\left(\bigcup_{i=1}^{\infty} (\varepsilon + r_i)\right) \leq \mu([0,1]) + \mu([1,2])
```

enumerate Qn[o1] as {ri,...) $1 \leq \sum_{i=1}^{\infty} \mu(\varepsilon + r_i) \leq 2$ [1,2] = [0,1]+11 < \$ \mu(E) < 2 If µ(E) = r >0 £ μ(ε) = ∞ ≤ 2 Possible way to salvage: Replace (3) to have "finite union"
Instead of "count adde". Turns out that that's still not enough.

(2) BANACH - TARSKI THEOREM (1924): (Using AC)

=>

->

For any open sets U, $V \subseteq \mathbb{R}^n$ where $n \ge 3$, there exists $k \in \mathbb{N}$ and set $U_1, ..., U_k$, $V_1, ..., V_k$ 5.4.

(1)
$$V_i \cap V_j = \phi, \quad V_i \cap V_j = \phi, \quad 1 \leq i \neq j \leq k.$$

(2)
$$V = \bigcup_{i=1}^{K} V_i, \quad V = \bigcup_{i=1}^{K} V_i.$$

(3) U; ~ V;, j.e., Ui is obtained from Vi by a sequence of rotations, reflections, and translations In other words, by is ometries.

Thus, the analogue of (2) implies $\mu(V_i) = \mu(V_i) \forall i$.

$$\Rightarrow \mu(v) = \mu(v)$$
. Absurd conducions.

As it terms out, the problem is <u>NOT</u> in the infinite union but rather the demand that μ is defined on all of B(R)!

Thus, we restrict our attention to a smaller collection of subsets of R. (Not to small!)

o - ALGEBRAS

Let X be an arbitary set.

Def". (1) An algebra ("field") is a non-empty collection $F \subseteq \mathcal{B}(x)$ satisfying:

OAEF = X/A EF

② A., ..., An ∈ F ⇒ ÛA; ∈ F for any n∈ N.

(2) A σ -algebra (" σ -field") is a non-empty collection $F \in \mathbb{P}(X)$ satisfying:

OAEF => X/A EF

② A., ..., ∈ f ⇒ ÜA; ∈ f

Note that complements and unions give us intersections. Also, ϕ , $x \in \mathcal{F}$. EXAMPLES

 $0 f = P(x) \leftarrow both$

② (Countable - cocountable σ -culgebra) $F = \{ E \in X : E \text{ or } E' \text{ is countable} \}$

Clearly closed under complement.

Let $A_1, \dots \in \mathcal{F}$.

If all A_i are countable, then UA_i is.

Suppose A_i not countable. Then, A_i is.

But $A_i \subset UA_i \Rightarrow (UA_i)^c \subset A_i^c$ $\Rightarrow (UA_i)^c \text{ is countable . } I$

3 Given any $F \subseteq P(X)$, we can talk about σ -algebra generated by F denoted M(F) defined by

 $M(F) = \bigcap B$ $f \subseteq B$ $B \text{ is a } \sigma\text{-alg}$

Note that the intersection is non-empty because of P(x). Easy to see that in tersection of σ -algebraic is again a σ -alg.

by construction, $\mathcal{M}(\mathcal{F})$ is the smallest σ -algebra containing \mathcal{F} .

BOREL O- ALGEBRA.

Det? Let (X, T) be a topological space.

The σ -algebra generated by T is called the Borel σ -algebra on X, denoted B(X).

(Abuse of notation that we don't mention J.)

In other words, it is generated by the open sets

Borel σ -algebra on R: Smallest σ -alg on R containing all the open sets.

Consequences:

- 1) All open sets are in BCR).
- @ All closed sets are in BCR).
- 3 All For, Go sets are in B(R).

Prof. Let B = B(R).

Then, B is also generated by any of the following:

- (i) { (a, b) : a < b } or { [a, b] : a < b }
- (ii) { [a, b) : a < by or { (a, b]: a < b}
- (ii) { (a, o) : a ∈ R} or { (-o, a) : a ∈ R}
- (iv) { [a, a): a & R] or { (-a, a]: a & R]

Prod Easy. D

Borel - algebra on R?:

Suppose {Xi} are metric spaces.

Let X = TT X; with the product metric.

If fi is the netvic on Xi, Hen
f on TX; is defined as

Def. Suppose (Xi, Mi) are σ -algebrae. One can define a σ -algebra on X := TTXi as follows:

Consider he projection maps $T_i: X \longrightarrow X_i$. Let

f = { $\pi_i^{-1}(E) : E \in Mi, i=1,...,n$ }

= {E x X2 x ... x X : E E M, }

U { X, x E x ... x X : E E M 2}

U ... U { X, x ... x X ... x E : F E M n}.

 $\mathcal{M} := \mathcal{M}(\mathcal{F}) \subseteq \mathcal{P}(x)$ is the product σ -algebra induced by $\mathcal{M}(x)$:

We often write the above as $M = \prod_{i=1}^{n} M_i$.

Caution. The above The is NOT the set-theoretic cartesian product.

Now, we get two (possibly different) \(\sigma\)-algebrae on \(\mathbb{R}^n\).

O Borel \(\sigma\)-alg. on \((\mathbb{R}^n\), \(T\)\)

O Rochet of Borel \(\sigma\)-alg. of \(\mathbb{B}(\mathbb{R})\).

Prop. $B(R^n) = \prod_{i=1}^n B(R)$. That is, both the σ -alg above are same.

Roof. We will prove this by a sequence of observations.

```
D Suppose \{(X_i, M_i)\}_{i=1}^n are \sigma-algebraich and f_i \subseteq M_i are such that M_i = M(f_i). (i=1,...,n)
          Then, if X = \widehat{T}X_i and M = \widehat{T}M_i, then
            \mathcal{M} is generated by \{T_i^{-1}(E): E \in \mathcal{F}_i, i=1,...,n\}.
     @ M is generated by {E, x... x En : Ei & Ji3.
           Assuming (1) and (2) for now, we now note the following.
       Clearly, one has \widetilde{T} B(R) \subseteq B(R^n).
 Krooling D, TT B(R) is gen. by sets of the form U, x... x Un, each U. E.R. ofen
        Each such set is open in the metric space IRn.

Thus, it is in B(IRn)
       We Show $B(IRM) ⊆ TIB(IR).
(x) Suffices to show that every set of the form

U, x ... x Un where U: CR are open
        are in the product TTB(B).
    Why? Every open set in R<sup>n</sup> is a countable union of sets of afforementioned form. In turn, the open sets generate B(R^n).
        Proving (4) is easy because
           U_1 \times \cdots \times U_n = \pi_1^{-1}(U_1) \cap \pi_2^{-1}(U_2) \cap \cdots \cap \pi_n^{-1}(U_n).
```

Proof of 1

Want to show that $\tilde{J} = \tilde{J} \pi_i^{-1}(E) : E \in J_i$, Is is $\tilde{J} = \tilde{J} \pi_i^{-1}(E) : E \in J_i$, It is $\tilde{J} = \tilde{J} \pi_i^{-1}(E) : E \in J_i$, It is $\tilde{J} = \tilde{J} \pi_i^{-1}(E) : E \in J_i$, It is $\tilde{J} = \tilde{J} \pi_i^{-1}(E) : E \in J_i$, It is $\tilde{J} = \tilde{J} \pi_i^{-1}(E) : E \in J_i$, It is $\tilde{J} = \tilde{J} \pi_i^{-1}(E) : E \in J_i$, It is $\tilde{J} = \tilde{J} \pi_i^{-1}(E) : E \in J_i$, It is $\tilde{J} = \tilde{J} \pi_i^{-1}(E) : E \in J_i$, It is $\tilde{J} = \tilde{J} \pi_i^{-1}(E) : \tilde{J} = \tilde{J} \pi_i^{-1}($

It now suffices to show that every a generator of \mathcal{M} is in $\mathcal{M}(\vec{\mathcal{F}})$.

Note $M = \langle \mathcal{T}_i^{-1}(E) : E \in \mathcal{A}_i, |\underline{c}_i \in \mathbb{A}_i \rangle$ $\widetilde{\mathcal{M}} := \langle \mathcal{T}_i^{-1}(E) : E \in \mathcal{J}_i, |\underline{c}_i \in \mathbb{A}_i \rangle = \mathcal{M}_i = \mathcal{A}_i$

Let $\tilde{\mathcal{M}}_{i} := \begin{cases} E \in \mathcal{M}_{i} : \pi_{i}'(E) \in \tilde{\mathcal{M}} \end{cases} \subseteq P(X_{i}).$ We shall show that $\tilde{\mathcal{M}}_{i} := \mathcal{M}_{i}.$ We know, by def that $f_{i} \subseteq \tilde{\mathcal{M}}_{i}.$ $\left(E \in \mathcal{F}_{i} \stackrel{\mathcal{M}_{i}}{\Rightarrow} \pi_{i}^{-1}(E) \in \tilde{\mathcal{M}} \cap \mathcal{M}_{i}\right)$ $\in e\mathcal{M}_{i}.$

Moreover, $M(I_i) = M_i$. Thus, it suffices to show that M_i is M_{00} , $\widetilde{M}_i \subseteq M_i$. $\alpha = -alg$.

To that end, let $A \in \mathcal{M}_i$. Then, $\mathcal{T}_i^{-1}(A) \in \tilde{\mathcal{M}}_i$. Then, $\mathcal{T}_i^{-1}(A) \in \tilde{\mathcal{M}}_i$. But $\mathcal{T}_i^{-1}(A') = \mathcal{T}_i^{-1}(A) \in \mathcal{M}_i$. $\Rightarrow \mathcal{T}_i^{-1}(A') \in \mathcal{M}_i$

Similarly, noting that $T_i^{-1}\begin{pmatrix} 0\\ 0\\ j=1 \end{pmatrix} = 0$ $T_i^{-1}(A_i)$ yields the result.

Proof of 3.

Now, put $\tilde{\mathcal{F}} := \{ \mathcal{E}_i \times \cdots \times \mathcal{E}_n : \mathcal{E}_i \in \mathcal{F}_i \} \text{ and } \tilde{\mathcal{M}} := \mathcal{M}(\tilde{\mathcal{F}}).$

Since $E_1 \times \cdots \times E_n = \bigcap_{i \ge 1} \Pi_i^{-1}(E_i)$, we see that $\widetilde{F} \subseteq M$. Thu, $\widetilde{M} \subseteq M$.

REMARKS.

- 1) The argument above generalises for a seponable metric spaces.
- and A is Countable

 (Xi, Mi)_{i∈A}, A then again, $X = \prod Xi$, $M = \prod Mi$ generated by $\{ \prod_{i=1}^{n} (E) : E \in Mi, i \in A \}$ is also generated by Sets of the form $\left(\prod_{i \in A} Ei \right), \quad Ei \in \mathcal{F}_{i}.$

MEASURE

Def. Suppose (X, M) is a measure space, i.e., M is a σ -algebra on X. A measure on X is a map $\mu \colon M \longrightarrow [0, \infty]$ satisfying

(i)
$$\mu(\beta) = 0$$
,
(ii) if $\{Ei\}_{i=1}^{\infty}$ are pairwise disjoint, then
$$\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i).$$

$$\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right) = \sum_{i=1}^{\infty} \mu(E_{i}).$$

EXAMPLES.

(1)
$$X = \{x_1, x_2, ...\}$$
 is countable. Suppose $p: z_0$ are reals s.t. $z_0 = 1$. Let $M = P(X)$ and define $\mu: M \rightarrow [0,1]$ as $\mu(f) = \sum_{i=1}^{n} P_i$.

 $i: x_i \in F$

(2)
$$(X, M)$$
 be s.t. M is the countable-co-countable ϵ -alg.

s.t. X itself is un countable

Define
$$\mu(\epsilon) := \begin{cases} 0 & \text{if } \epsilon \text{ is countable} \end{cases}$$

$$\mu(\epsilon) := \begin{cases} 1 & \text{if } \epsilon \text{ is un countable} \end{cases}$$

Prop. Suppose
$$(X, M, \mu)$$
 is a measure space.

Then,

$$0 \quad E \subseteq F \Rightarrow \mu(E) \leq \mu(F)$$

$$0 \quad \mu(\overset{\circ}{U}E:) \leq \overset{\circ}{\Sigma} \mu(Ei) \qquad (\mu \text{ is "sub-additive"})$$

$$3 \quad \text{If } i = 1 \quad (i.e., Ei \subset E_2 \subset \cdots), \text{ then}$$

3 If
$$\xi_i$$
 (i.e., $\xi_i \subset \xi_2 \subset \cdots$), then
$$\mu\left(\bigcup_{i=1}^{\infty} \xi_i\right) = \lim_{i \to \infty} \mu\left(\xi_i\right).$$

Rog.
$$08$$
 @ are trivial

(3) Define $f_i = E_i \setminus E_{i-1}$ for $i \ge 2$.

 $F_i = F_i$

Then,
$$\bigcup_{i=1}^{n} F_{i} = \bigcup_{i=1}^{n} F_{i}$$
. Also, $F_{i} \in \mathcal{M}$ for each i .

 $(n = \omega \ \omega \ v \in \mathcal{M})$

Thus, $\mu(\bigcup_{i=1}^{n}) = \mu(\bigcup_{i=1}^{n}) = \bigcup_{i=1}^{n} \mu(\widehat{f}_{i})$
 $= \lim_{n \to \infty} \sum_{i=1}^{n} \mu(F_{i})$
 $= \lim_{n \to \infty} \sum_{i=1}^{n} \mu(F_{i})$
 $= \lim_{n \to \infty} \sum_{i=1}^{n} \mu(F_{i}) = \sum_{i=1}^{n} F_{i}$

Def? DA null set in a measure space (X, M, μ) is a set $E \cdot f \cdot E \cdot F \cdot f$ some $F \in \mathcal{N}$ with $\mu(F) = 0$.

② Given a measure space (X, M, μ), the completion of M, denoted M is the collection of all sets of the form FUN where FEM and N is a null set.

Prof. () If (X, M, μ) is a measure space, then \overline{M} is a σ -alg. 2 Moreover, there exists a unique measure

$$\overline{\mu}: \overline{M} \longrightarrow [0, \infty] \quad \text{s.t.}$$

$$\overline{\mu} \Big|_{M} = \mu.$$

(That is, there is a unique extension of μ to a measure $\bar{\mu}$ on $\bar{\mathcal{M}}$.)