MAT 1348 - Winter 2024

Exercises 7 – Solutions

Professor: Antoine Poirier

Questions are taken from Discrete Mathematics 8th edition, by Kenneth H. Rosen.

QUESTION 1 (2.3 # 1). Explain why f is not a function from \mathbb{R} to \mathbb{R} if

- (a) f(x) = 1/x
- (b) $f(x) = \sqrt{x}$
- (c) $f(x) = \pm \sqrt{(x^2 + 1)}$

Solution:

- (a) f(0) is undefined.
- (b) f(x) is undefined for x < 0.
- (c) f assigns two values to each element of the domain.

QUESTION 2 (2.3 # 4, # 7). Determine the domain and codomain of the following functions

- (a) The function which, for each non-negative integer, assigns its last digit.
- (b) The function which assigns to each finite sequence of 0's and 1's the number of 1's in it.
- (c) The function which assigns to a pair of positive integer the greatest of the two integers.

Solution:

- (a) The domain is \mathbb{Z}^+ . The codomain is $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.
- (b) The domain is the set of all finite sequences of 0's and 1's. The codomain is $\mathbb{N} \cup \{0\}$.
- (c) The domain is $\mathbb{Z}^+ \times \mathbb{Z}^+$. The codomain is \mathbb{Z}^+ .

QUESTION 3 (2.3 # 10, # 11). Determine if the following functions from $\{a,b,c,d\}$ to $\{a,b,c,d\}$ are injective and surjective

- (a) f(a) = b, f(b) = a, f(c) = c, f(d) = d
- (b) f(a) = b, f(b) = b, f(c) = d, f(d) = c
- (c) f(a) = d, f(b) = b, f(c) = c, f(d) = d

Solution:

- (a) Injective and surjective.
- (b) Not injective (f(a) = f(b)), not surjective $(f(x) \neq a \text{ for all } x)$.
- (c) Not injective (f(a) = f(d)), not surjective $(f(x) \neq a \text{ for all } x)$.

QUESTION 4 (2.3 # 12, # 13). Determine if the following functions from \mathbb{Z} to \mathbb{Z} are injective and surjective.

- (a) f(n) = n 1
- (b) $f(n) = n^2 + 1$
- (c) $f(n) = n^3$
- (d) $f(n) = \lceil n/2 \rceil$. (Here, $\lceil x \rceil$ is the ceiling function, which outputs the smallest integer n satisfying $n \ge x$).

Solution:

- (a) f is injective: if f(x) = f(y), then x 1 = y 1 and so x = y. f is surjective: for all $y \in \mathbb{Z}$ (codomain), we have f(y + 1) = y.
- (b) f is not injective: f(3) = f(-3), but $3 \neq -3$. f is not surjective: there is no $n \in \mathbb{Z}$ for which f(n) = -1, since $f(n) = n^2 + 1 \ge 0 + 1 = 1$ for all n.
- (c) f is injective: if f(x) = f(y), then $x^3 = y^3$ and so x = y. f is not surjective: there is no integer n for which f(n) = 2. The only n satisfying this equation is $2^{1/3}$, which is not in the domain of the function.
- (d) f is not injective: f(3) = f(4) = 2, but $3 \neq 4$. f is surjective: for all $y \in \mathbb{Z}$ (codomain), there exists $x \in \mathbb{Z}$ such that f(x) = y. Such an x would be 2y: $f(x) = \lceil 2y/2 \rceil = \lceil y \rceil = y$.

QUESTION 5 (2.3 # 14). Determine if the following functions from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Z} are surjective.

- (a) f(m,n) = 2m n
- (b) $f(m,n) = m^2 n^2$
- (c) f(m,n) = m + n + 1
- (d) f(m,n) = |m| |n|
- (e) $f(m,n) = m^2 4$

Solution:

- (a) f is surjective: for all $y \in \mathbb{Z}$, we have f(0, -y) = y.
- (b) f is not surjective: $f(m,n) \neq 2$ for all $(m,n) \in \mathbb{Z} \times \mathbb{Z}$. Since $f(m,n) = m^2 n^2 = (m-n)(m+n)$, in order for (m-n)(m+n) = 2, which is even, m-n or m+n must be even. However, if of them is even, then so is the other. This implies (m-n)(m+n) is a multiple of 4, and so cannot be equal to 2.
- (c) f is surjective: for all $y \in \mathbb{Z}$, we have f(0, y 1) = y.
- (d) f is surjective: for all $y \in \mathbb{Z}^+$, we have f(y,0) = |y| = y. For all $y \in \mathbb{Z}^-$, we have f(0,y) = -|y| = -y = y. Finally, we have f(0,0) = 0.
- (e) f is not surjective, since $f(m,n) = m^2 4 \ge -4$. Therefore, there are no pairs (m,n) for which f(m,n) = -5.

QUESTION 6 (2.3 # 15). Determine if the following functions from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Z} are surjective.

- (a) f(m,n) = m + n
- (b) $f(m,n) = m^2 + n^2$
- (c) f(m,n) = m
- (d) f(m,n) = |n|
- (e) f(m,n) = m n

Solution:

- (a) f is surjective: for all $y \in \mathbb{Z}$, we have f(y,0) = y.
- (b) f is not surjective since $f(m,n) \ge 0$. Therefore, there is no pair (m,n) for which f(m,n) = -1, for instance.
- (c) f is surjective: for all $y \in \mathbb{Z}$, we have f(y,0) = y.
- (d) f is not surjective since $f(m,n) \ge 0$. Therefore, there is no pair (m,n) for which f(m,n) = -1, for instance.
- (e) f is surjective: for all $y \in \mathbb{Z}$, we have f(y,0) = y.

QUESTION 7 (2.3 # 23). Determine if the following functions from \mathbb{R} to \mathbb{R} are bijective.

- (a) f(x) = 2x + 1
- (b) $f(x) = x^2 + 1$
- (c) $f(x) = x^3$
- (d) $f(x) = (x^2 + 1)/(x^2 + 2)$

Solution:

- (a) f is injective: if f(x) = f(y), then 2x + 1 = 2y + 1, which simplifies to x = y. f is surjective: for all $y \in \mathbb{R}$ (codomain), we have f((y-1)/2) = y. f is therefore bijective.
- (b) f is not injective: f(2) = f(-2) = 5, but $2 \neq -2$. f is not surjective: we have $f(x) \geq 0 + 1 \geq 1$, so there is no x for which f(x) = 0, for instance. f is not bijective.
- (c) f is injective: if f(x) = f(y), then $x^3 = y^3$, which simplifies to x = y. f is surjective: for all $y \in \mathbb{R}$ (codomain), there exists $x \in \mathbb{R}$ such that f(x) = y. This x is $y^{1/3}$. f is therefore bijective.
- (d) f is not injective: f(2) = f(-2) = 5/6, but $2 \neq -2$. f is not surjective since $f(x) \geq 0$. There is therefore no $x \in \mathbb{R}$ for which f(x) = -1, for instance. f is not bijective.

QUESTION 8 (2.3 # 33). Let $g: A \rightarrow B$ and $f: B \rightarrow C$.

- (a) Show that if f and g are injective, then $f \circ g$ is also injective.
- (b) Show that if f and g are surjective, then $f \circ g$ is also surjective.

Solution:

- (a) Suppose f and g are injective. We show that $f \circ g$ is also injective. Suppose then f(g(x)) = f(g(y)). Since f is injective, it implies g(x) = g(y). Since g is injective, it implies x = y. Therefore, $f \circ g$ is injective.
- (b) Suppose f and g are surjective. We show that $f \circ g$ is also surjective. Let $z \in C$. Then, since f is surjective, there exists $y \in B$ such that f(y) = z. Since g is surjective, there exists $x \in A$ such that g(x) = y. When combining the two previous equations, we conclude there is an $x \in A$ such that f(g(x)) = f(y) = z. Therefore $f \circ g$ is surjective.

QUESTION 9 (2.3 #34). Let $g: A \to B$ and $f: B \to C$. Show that

- (a) If $f \circ g$ is surjective, then f is surjective.
- (b) If $f \circ g$ is injective, then g is injective.

Solution:

- (a) (Indirect proof) Suppose f is not surjective. Then, there exists $c \in C$ for which $f(y) \neq c$ for all $y \in B$. Therefore, for every $x \in A$, we have g(x)/inB, hence $f(g(x)) \neq c$ for all $x \in A$. This indicates $f \circ g$ is not surjective.
- (b) (Indirect proof) Suppose g is not injective. Then, there exists $x, y \in A$ such that g(x) = g(y), but $x \neq y$. We apply f to g(x) and g(y) to obtain f(g(x)) = f(g(y)), but $x \neq y$. This shows $f \circ g$ is not injective.

QUESTION 10 (2.3 # 35). Find functions f and g such that $f \circ g$ is bijective, but g is not surjective, and f is not injective.

Solution: Let $g: A \to B$ and $f: B \to C$, with $A = \{1,2\}, B = \{p,q,r\}, C = \{a,b\}$. Define g(1) = p and g(2) = q, f(p) = f(r) = a, f(q) = b. Then, g is no surjective since $g(x) \neq r$ for all $x \in A$. f is not injective, since f(p) = f(r). However, f(g(1)) = a and f(g(2)) = b, so $f \circ g$ is injective and surjective.

QUESTION 11 (2.3 # 36). If f and $f \circ g$ are injective, is g necessarily also injective?

Solution: Yes. (Indirect proof) Suppose g is not injective. Then, there exists $x, y \in A$ such that g(x) = g(y), but $x \neq y$. Apply f to g(x) and g(y) to obtain f(g(x)) = f(g(y)), but $x \neq y$. This shows that $f \circ g$ is not injective, hence "f and $f \circ g$ are injective" is false.

QUESTION 12 (2.3 # 37). If f and $f \circ g$ are surjective, is g necessarily also surjective?

Solution: No. Let $g: A \to B$ and $f: B \to C$, with $A = \{1,2\}, B = \{p,q,r\}, C = \{a,b\}$. Define g(1) = p and g(2) = q, f(p) = f(r) = a, f(q) = b. Therefore, g is not surjective since $g(x) \neq r$ for all $x \in A$. f is surjective. However, f(g(1)) = a and f(g(2)) = b, so $f \circ g$ is surjective.

QUESTION 13 (2.3 # 38). Find $f \circ g$ and $g \circ f$, where $f(x) = x^2 + 1$ and g(x) = x + 2. Here, f and g are functions from \mathbb{R} to \mathbb{R} .

Solution:
$$(f \circ g)(x) = f(g(x)) = f(x+2) = (x+2)^2 + 1$$
, and $(g \circ f)(x) = g(f(x)) = g(x^2+1) = x^2 + 1 + 2 = x^2 + 3$.

QUESTION 14 (2.3 # 71). Find the inverse of $f(x) = x^3 + 1$

Solution: The inverse is $f^{-1}(x) = (x-1)^{1/3}$.