Lecture 10: Feature Importance estimation

Outline

- 1. Feature importance estimation
- 2. Shap values

Feature importance estimation

$$) = 2 + 0.9 = 2.9$$

$$)=-1-0.9=-1.9$$

Feature importance estimation

- 1. Permutation importance
- 2. Partial Dependence Plots (PDP)
- 3. Tree specific:
 - a. Gain
 - b. Frequency (Split Count)
 - c. Cover (weighted Split Count)
- 4. Shap

Permutation importance

Height at age 20 (cm)	Height at age 10 (cm)	 Socks owned at age 10
182	155	 20
175	147	 10
•••		
156	142	 8
153	130	 24

Permutation importance

Height at age 20 (cm)	Height at age 10 (cm)	 Socks owned at age 10
182	155	 20
175	147	 10
	(A	
156	142	 8
153	130	 24

Train model

Observe changes caused by feature random permutations

Partial Dependence Plots

PDP for feature "Goal Scored"

Number of unique grid points: 6

Importance estimation problems

Shap values

Consider i-th feature. Shap value will be

$$\phi_i(p) = \sum_{S \subseteq N/\{i\}} rac{|S|!(n-|S|-1)!}{n!} (p(S \cup \{i\}) - p(S))$$

where $p(S \cup \{i\})$ is model prediction on feature subset S with *i-th* feature added.

Shap values

Consider i-th feature. Shap value will be

$$\phi_i(p) = \sum_{S \subseteq N/\{i\}} rac{|S|!(n-|S|-1)!}{n!} (p(S \cup \{i\}) - p(S))$$

where $p(S \cup \{i\})$ is model prediction on feature subset S with *i-th* feature added.

SHAP values are the only consistent and locally accurate individualized feature attributions

Outro

The rest is in notebook form