

Faculty of Engineering

School of Computing and I.T.

Department of Computer Science and Engineering
V SEM. B.Tech – CSE, CCE & IT

ODD Semester End Term Examination 2020-21
CS1501 Design and Analysis of Algorithms

Time: 01 Hour 15 mins.

MAX.MARKS: 20

Instructions to Candidates

- Answer all four questions in your own words in given order only.
- Missing data, if any, may be assumed suitably.

Q. No.	Question Script	Marks	CO Mapping
1a.	Solve the following recurrence relation $T(n) = \sqrt{2T(n/\sqrt{2})} + n\log n$	[2]	CO1
1b.	Apply Strassen's Matrix Multiplication to find product of following matrices: 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 0 0 1	[3]	CO2
2a.	Find the solution to maximize the profit on given data and return the X_i (solution) vector for following data; Number of items: $n = 8$, Total Capacity $M=17$. Profit $P = \{10, 15, 8, 7, 3, 15, 8, 27\}$ and weight $W = \{5, 4, 3, 7, 2, 3, 2, 6\}$.	[2]	CO3
2b.	Refer below graph, find the all pair shortest path using Floyd-Warshall Algorithm.	[3]	CO3
3	The aim of problem is to assign a unique query to every database engine such that the total cost of query processing is minimized. The constrained is defined as follows: $\sum_{i=1}^n x_{ij} = 1 \text{ or } \sum_{j=1}^n x_{ij} = 1 \text{ with } x_{ij} = \begin{cases} 1 \text{ if assigned} \\ 0 \text{ if unassigned} \end{cases} \forall_{i,j} = 1,2,\dots n$ $f = \sum_{j=1}^n \sum_{i=1}^n c_{ij} x_{ij}$ You need to minimize the objective function f where cij is the cost assigning i to j. $\frac{\text{Query1 Query2 Query3 Query4}}{\text{Engine1}} = \frac{1}{7} \frac{10}{42} = \frac{1}{47} \frac{10}{10} = \frac{1}{12} \frac{1}{$	[5]	CO4

4	Given the following Text and Pattern Text: abcxab@dababbcdabab@abcy Pattern: abab@abcy @ is a special character that can me match with any other letter. Find out the Prefix table and use KMP to find whether pattern is present in string or not. Show step by step working of KMP and list down all the index at which mismatch occur.	[5]	CO5	
---	--	-----	-----	--