emotion

theories of emotion

- james-lange theory (1880s)
 - o emotion is an <u>after the fact label</u> we give to autonomic arousal and associated behavior
 - o subjective "feelings" are an interpretation we make of our body's reaction to stimuli
- cannon-bar theory (1930s)
 - o emotion <u>simultaneous</u> to situation perceived
- schachter-singer theory (1980s)
 - o interaction between <u>cognitive appraisal</u> and autonomic/limbic activity
 - o combines both theories above, plus top down

judgements of emotional stimuli

- inject subjects with amphetamine and expose to emotional stimuli → exaggerated emotional response
 - o report stimuli are *extremely* sad, funny, scary, etc
- facial feedback
 - subjects with pen in teeth (face muscles in smile-like configuration) report things are funnier
 - o facial muscles in smile-like configuration affected quality of emotion
 - o subjects directed to alter particular muscle groups in particular ways → emotion reported corresponded to universal qualities of associated facial expression
 - produced corresponding body responses (change in heart rate, skin temp, etc)
- learned helplessness
 - shock delivered to rats without option of stopping shock become depressed and develop ulcers from stress
 - o remove rat's prefrontal cortex → no ulcers developed, not depressed, not interpret situation as helpless
 - cognitive appraisal affects autonomic response

emotional expression

- universals but there are also culture specific display rules
 - o for when and to whom you may show what kinds/extents of emotion
- neonatal imitation: we are pre-wired to practice manipulating the muscles of emotional expressions
 - based on behavior of others

limbic system

amygdala

- multiple nuclei with various functions and patterns of connection with other brain areas
- cortico-medial amygdala (first area studied)
 - \circ direct stimulation \rightarrow rage (fear/anger)
 - o most prima emotion, critical to survival
 - virus that causes rabies affects this area (probably)
- lateral amygdala
 - startle reflex

- conditioned fear
 - after establishing baseline startle reflex, trained rat on association between light and shock → rats learn negative association by anticipating shock when light turns on

• conditioning reduced startle reflex

- o output to central gray area of midbrain
 - part of tegmentum for motor control, esp of neck muscles
 - clenching these muscles helps protect fragile cervical neurons near surface
- o output to hypothalamus, influences ANS response
 - increase blood pressure, heart rate...
- o input from pain fibers and visual and auditory activity
 - trigger startle reflex
 - also to detect and learn emotional associations in conjunction with central and baso-lateral nuclei
 - conditioned fear
 - unlearned startle reflex becomes associated with other stimuli/contexts
 - o either enhance or reduce startle reflex response
- o PTSD
 - includes conditioned enhancement of startle reflex
 - in central and basolateral amygdala, proportions of calming GABA vs stimulating CCK have shifted
- urbach-wiethe disease
 - o calcification of amygdala
 - o impairs function of feeling/expressing and observing emotion
 - patients show flattening of affect (less emotional expression) and problems with interpreting emotions in others
 - interpreting eyes alone have better performances likely be eyes are represented in many brain areas

insula

• underside of the rostral temporal lobe

anterior insula

- emotional expression in social contexts
- right hemisphere dominant for function
- connections between amygdala and orbito-frontal cortex
- volitional facial paresis (damage to right motor cortex)
 - cannot produce full smile on command, but does spontaneously smile in a funny social situation
- emotional facial paresis (damage to left anterior insula)
 - o can produce full smile on command, but does not spontaneously smile in a funny social situation

prefrontal cortex

- orbito-frontal cortex relevant to social emotional behavior
- phineas gage→ obliterated orbito-frontal cortex
 - o changed personality, loss of inhibition/control by social appropriateness
- theory of mind: ability to attribute mental states (knowledge, feelings) to self and other
 - o reciprocal connections implicated in autism poor ToM skills
 - possibly involve premature synaptogenesis within orbito-frontal before connections with amygdala develop
- cost benefit evaluation
 - anterior cingulate, orbito-frontal cortex, amygdala circuit
 - implicated in gambling, risk assessment, self control
 - gambling task

vono economo "spindle" cells

- long fibers with few branches
- found only in large-brained animals (humans, elephants, whales)

- communicate between distant brain areas with little intervening influence
- connect anterior insula (social emotion) to anterior cingulate (social risk, cost/benefit analysis)

neurotransmitter activity in emotion

- serotonin (5HT) in amygdala
 - o serotonin reuptake creates metabolic by-product 5-HIAA → disposed of into bloodstream
 - o low levels of 5-HIAA in bloodstream symptomatic of impulsivity, depression
 - antidepressants like prozac block 5HT reuptake, freeing available 5HT to restimulate postsynaptic cell
- GABA in amygdala
 - o opens Cl- gates to inhibit postsynaptic cell
 - in amygdala this helps suppress startle reflex, reduces anxiety
 - o antianxiety drugs like valium are GABA agonists
 - enables GABA to bind more easily and for longer to receptor site, increasing its effectiveness
- CCK in amygdala
 - stimulates postsynaptic cell opening Na+ gates
 - o involved in learned enhancement of startle reflex
 - o in hypothalamus suppresses hunger when blood sugar rises
 - diet pills are CCK agonists, mimic CCK effects
 - side effects: increase anxiety
 - CCK antagonists (treating ulcers) can block receptor sites without opening gates →
 calming effects but promote overeating