Métodos Computacionales 2023 Trabajo Práctico 1: Regresión Lineal Múltiple

Valentino Pivotto Luciano Silva Davidov

2 Ejercicios

Primera parte. El objetivo de esta sección es deducir una fórmula para la solución óptima β^* siguiendo los pasos a continuación:

a) Mostrar que el espacio columna de la matriz X es un subespacio vectorial de \mathbb{R}^n :

$$Col(X) = \{b \text{ en } \mathbb{R}^n \text{ tales que } b = X\beta \text{ con } \beta \text{ variando en } \mathbb{R}^p \}$$

Subespacio - Definición

Un subespacio de \mathbb{R}^n es cualquier conjunto H en \mathbb{R}^n que cumpla con las siguientes 3 propiedades:

- El vector cero pertenece a ${\cal H}$
- Para cada ${\bf u}$ y ${\bf v}$ en H,la suma ${\bf u} {+} {\bf v}$ está en H
- Para cada ${\bf u}$ en H y cada escalar c, el vector $c{\bf u}$ está en H

Luego, aplicando esta definición con H = Col(X):

$$Col(X) = Gen\{\mathbf{x}_1, \ \mathbf{x}_2, \ \dots, \ \mathbf{x}_p\}$$

- El vector cero pertenece a Col(X) ya que

$$\mathbf{0} = 0 * \mathbf{x}_1 + 0 * \mathbf{x}_2 + \dots + 0 * \mathbf{x}_p$$

- Para cada ${\bf u}$ y ${\bf v}$ en Col(X), la suma ${\bf u} + {\bf v}$ está en Col(X) puesto que existen $i,\ j$ tal que:

$$\mathbf{u} = s_1 \cdot \mathbf{x}_1 + s_2 \cdot \mathbf{x}_2 + \dots + s_p \cdot \mathbf{x}_p$$

$$\mathbf{v} = t_1 \cdot \mathbf{x}_1 + t_2 \cdot \mathbf{x}_2 + \dots + t_p \cdot \mathbf{x}_p$$

$$\mathbf{u} + \mathbf{v} = (s_1 + t_1) \cdot \mathbf{x}_1 + (s_2 + t_2) \cdot \mathbf{x}_2 + \dots + (s_p + t_p) \cdot \mathbf{x}_p$$

Como es posible escribir al vector ${\bf u}$ como una combinación lineal de columnas de X (pesadas con factores s), y también es posible escirbir a ${\bf v}$ de forma análoga (es decir, pesado con factores t), la suma de ellos necesariamente pertenece también a Col(X).

- Para cada ${\bf u}$ en Col(X) y cada escalar c, el vector $c{\bf u}$ está en Col(X) pues:

$$c\mathbf{u} = c \cdot (s_1 \cdot \mathbf{x}_1 + s_2 \cdot \mathbf{x}_2 + \dots + s_p \cdot \mathbf{x}_p)$$

$$c\mathbf{u} = (c \cdot s_1) \cdot \mathbf{x}_1 + (c \cdot s_2) \cdot \mathbf{x}_2 + \dots + (c \cdot s_p) \cdot \mathbf{x}_p$$

b) Supongamos que cuando hablamos de vectores en \mathbb{R}^n nos referimos a vectores columna de $\mathbb{R}^{n\times 1}$. Mostrar en ese caso que el producto escalar entre dos vectores \mathbf{u} , \mathbf{v} en \mathbb{R}^n puede calcularse como:

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{v}^T \mathbf{u}$$

donde la operación en el lado derecho de la igualdad es el producto de matrices usual.

Aplicando la definición de producto matricial:

$$\sum_{i=1}^{n} \mathbf{u}_{i1} \cdot \mathbf{v}_{i1} = \sum_{i=1}^{n} \mathbf{v}_{1i}^{T} \cdot \mathbf{u}_{i1}$$

$$\sum_{i=1}^{n} \mathbf{u}_{i1} \cdot \mathbf{v}_{i1} - \sum_{i=1}^{n} \mathbf{v}_{1i}^{T} \cdot \mathbf{u}_{i1} = 0$$

$$\sum_{i=1}^{n} \mathbf{u}_{i1} \cdot \mathbf{v}_{i1} - \mathbf{v}_{1i}^{T} \cdot \mathbf{u}_{i1} = 0$$

$$\sum_{i=1}^{n} \mathbf{u}_{i1} (\mathbf{v}_{i1} - \mathbf{v}_{1i}^{T}) = 0$$

Tal igualdad implica dos casos disjuntos:

- $\sum_{i=1}^{n} \mathbf{u}_{i1} = 0 \ \forall \ 1 \le i \le n$ Este caso no va a suceder siempre $\sum_{i=1}^{n} \mathbf{v}_{i1} \mathbf{v}_{1i}^{T} = 0 \ \forall \ 1 \le i \le n$ Este caso sucederá siempre pues:

$$\sum_{i=1}^{n} \mathbf{v}_{i1} - \mathbf{v}_{1i}^{T} = 0$$
$$\sum_{i=1}^{n} \mathbf{v}_{i1} = \mathbf{v}_{1i}^{T}$$

Lo cual vale \forall vector \mathbf{v} en \mathbb{R}^n

c) Aplicando el teorema tomando como subespacio S el subespacio del ítem (a), el punto y de \mathbb{R}^n como el vector de la variable dependiente, y el vector b como $b = X\beta^*$, convertir esta ecuación de optimalidad

$$\parallel y - X\beta^* \parallel = \min_{\beta \in \mathbb{R}} \parallel y - X\beta \parallel$$

en la condición de ortogonalidad que corresponde a la equivalencia 2 del teorema.

Teorema

Sea y un vector cualquiera de \mathbb{R}^n y S un subespacio de \mathbb{R}^n . El vector de S que minimiza la distancia del subespacio S al vector y es aquel b de S tal que y-bes ortogonal a todo vector s de S. Es decir, las siguientes dos condiciones son equivalentes:

- 1. || y-b || = $\min_{s \in S}$ || y-s || 2. $(y-b) \cdot s = 0$ para todo s en S

Aplicando este teorema con S = Col(X), el cual demostramos es un subespacio de \mathbb{R}^n , y con $b = X\beta^*$

$$\parallel y - X\beta^* \parallel = \min_{s \ en \ Col(X)} \parallel y - s \parallel$$

$$\parallel y - X\beta^* \parallel = \min_{s \ en \ \{b \ \text{en } \mathbb{R}^n \ \text{tales que } b = X\beta \ \text{con } \beta \text{ variando en } \mathbb{R}^p\}} \parallel y - s \parallel$$

Como X es siempre la misma matriz, entonces lo único que va a variar es β , y sabemos que β varía en \mathbb{R}^p . También sabemos que $b=X\beta$, entonces hacemos los reemplazos:

$$\parallel y - X\beta^* \parallel = \min_{\beta \ en \ \mathbb{R}^p} \parallel y - X\beta \parallel$$

Luego, por teorema, esta condición es equivalente a la de ortogonalidad, es decir:

$$(y - X\beta^*) \cdot X\beta = 0$$
 para todo β en \mathbb{R}^p

d) A la ecuación obtenida en el ítem (c), aplicarle la identidad del producto escalar vista en el item (b), para llegar a la ecuación:

$$X^T(y - X\beta^*) \cdot \beta = \mathbf{0}$$

Partiendo de la ecuación obtenida en el ítem (c):

$$(y - X\beta^*) \cdot X\beta = 0$$
 para todo β en \mathbb{R}^p

Recordando la propiedad del producto escalar demostrada en (b): $\mathbf{u} \cdot \mathbf{v} = \mathbf{v}^T \mathbf{u}$ donde \mathbf{u} , \mathbf{v} son vectores en \mathbb{R}^n , es posible emplearla tomando los siguientes parámetros:

$$\mathbf{u} = (y - X\beta^*)$$
 pues $\in \mathbb{R}^n$ ya que $y \in \mathbb{R}^n$ y $X \in \mathbb{R}^{n \times p}$, $\beta^* \in \mathbb{R}^p$ por lo que $X\beta^* \in \mathbb{R}^n$

 $\mathbf{v}=X\beta$ pues
 $\in \mathbb{R}^n$ dado que $X\in \mathbb{R}^{n\times p}$ y $\beta\in \mathbb{R}^p$ Así:

$$(X\beta)^T(y - X\beta^*) = 0$$

Distribución de la transposición

$$\beta^T X^T (y - X\beta^*) = 0$$

Ahora es posible volver a emplear la propiedad de (b) pero en sentido inverso ($\mathbf{v}^T\mathbf{u} = \mathbf{u} \cdot \mathbf{v}$), con estos parámetros y en \mathbb{R}^p en lugar de \mathbb{R}^n :

$$\mathbf{v}^T = \beta^T$$
 pues $\in \mathbb{R}^p$ ya que $\beta \in \mathbb{R}^p$

$$\mathbf{u} = X^T(y - X\beta^*)$$
 pues $\in \mathbb{R}^p$ dado que $X^T \in \mathbb{R}^{p \times n}$ y $(y - X\beta^*) \in \mathbb{R}^n$

De esta manera:

$$X^T(y - X\beta^*) \cdot \beta = 0$$

e) Se sabe que el único vector que es ortogonal a todo vector \mathbf{v} de \mathbb{R}^n es el vector nulo. Es decir, si \mathbf{u} es un vector fijo tal que $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$ para todo \mathbf{v} en \mathbb{R}^n , entonces $\mathbf{u} = \mathbf{0}$. Usando esto y la ecuación obtenida en el ítem (d), llegar a la fórmula:

$$X^T X \beta^* = X^T y$$

Partiendo de la ecuación obtenida en el ítem (d):

$$X^T(y - X\beta^*) \cdot \beta = 0$$

Distribución de X^T

$$(X^T y - X^T X \beta^*) \cdot \beta = 0$$

Esta igualdad se satisface si y solo si se cumple al menos uno de estos casos:

Caso 1:
$$(X^Ty - X^TX\beta^*) = 0$$

Caso 2: $\beta = 0$

De la definición de Col(X) provista en el inciso (a) se obtiene que β varía en \mathbb{R}^p , es por esto

que β no puede ser \mathbf{u} en la propiedad del enunciado. Si β no es \mathbf{u} , entonces $\beta \neq \mathbf{0}$, por lo que solo el caso 1 puede ser válido.

Luego, como el caso 1 es el válido:

$$X^T y - X^T X \beta^* = 0$$
$$X^T y = X^T X \beta^*$$

f) Finalmente, suponiendo que las columnas de X son linealmente independientes, se tiene que la matriz X^TX es invertible. Despejar β^* de la ecuación del ítem (e) para llegar a la fórmula de la solución óptima al problema de regresión.

$$X^T X \beta^* = X^T y$$

Multiplicación a izquierda por $(X^TX)^{-1}$ en ambos lados de la igualdad

$$(X^T X)^{-1} X^T X \beta^* = (X^T X)^{-1} X^T y$$

$$I \beta^* = (X^T X)^{-1} X^T y$$

$$\beta^* = (X^T X)^{-1} X^T y$$