

Lab 1 & 2 CALCULUS FOR IT - 501031

Exercises 1

Exercise 1: Write a computer program to compute the functions in their domain

(a)
$$f(x) = \sqrt{x}$$

(b) $f(x) = \sqrt[3]{x}$
(c) $f(x) = x^{\frac{2}{3}}$
(d) $f(x) = \frac{x^3}{3} - \frac{x^2}{2} - 2x + \frac{1}{3}$
(e) $f(x) = \sqrt{x}$
(f) $f(x) = \frac{5x^2 + 8x - 3}{3x^2 + 2}$
(g) $f(x) = \sin(x)$
(h) $f(x) = \cos(x)$
(i) $f(x) = 3^x$
(j) $f(x) = 10^{-x}$
(k) $f(x) = e^x$
(l) $f(x) = \log_2(x)$
(m) $f(x) = \log_{10}(x)$

(c)
$$f(x) = x^{\frac{2}{3}}$$
 (g) $f(x) = \sin(x)$ (l) $f(x) = \log_2(x)$

(d)
$$f(x) = \frac{x^3}{3} - \frac{x^2}{2} - 2x + \frac{1}{3}$$
 (h) $f(x) = \cos(x)$ (m) $f(x) = \log_{10}(x)$

(e)
$$f(x) = \frac{2x^2 - 3}{7x + 4}$$
 (j) $f(x) = 10^{-x}$ (n) $f(x) = \ln(x)$

Note: It notes that the function name is defined by the type of function. For example, $f(x) = \sqrt{x}$ has the function name that will be defined as Exponential function a(x)

Exercise 2: Write a computer program to find the range of the functions below

(a)
$$f(x) = 2 + \frac{x^2}{x^2 + 4}$$
 with $x \in [-2, 2]$
(b) $f(x) = \sqrt{5x + 10}$ with $x \in [0, 5]$
(c) $f(x) = \frac{2}{x^2 - 16}$ with $x \in [5, 10]$
(d) $f(x) = x^4 + 3x^2 - 1$ with $x \in [-3, 3]$
(e) $f(x) = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$, with $x = 3, x = -3$
(f) $f(x) = \begin{cases} -x, & x < 0 \\ x^2, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$ and $x = \frac{1}{2}$

Exercise 3: Write a computer program to identify the arbitrary function that is categorized as

- (a) Even function.
- (b) Odd function.
- (c) Increasing function.
- (d) Decreasing function.

And then, perform to evaluate the below functions that is even, odd, or neither.

(a)
$$f(x) = x^{-5}$$

(d)
$$f(x) = x^3 + x$$

(g)
$$f(x) = x^4 + 3x^2 - 1$$

(b)
$$f(x) = x^2 + x$$

(e)
$$f(x) = |x^3|$$

(c)
$$f(x) = x^2 + 1$$

(f)
$$f(x) = 2x + 1$$

(h)
$$f(x) = 2 | x | +1$$

Finally, specify the intervals over which the function is increasing and the intervals where it is decreasing.

$$(i) f(x) = -x^3$$

$$(k) f(x) = -\frac{1}{x}$$

(m)
$$f(x) = \sqrt{|x|}$$

(j)
$$f(x) = -\frac{1}{x^2}$$

(1)
$$f(x) = \frac{1}{|x|}$$

(m)
$$f(x) = \sqrt{|x|}$$

(n) $f(x) = \sqrt{|-x|}$

Exercise 4: Write a computer program to find the root of $f(x) = x^2 + 2x - 1$.

Exercise 5: Write a computer program to show the following functions in the graph.

(a)
$$f(x) = \sqrt{|x|}$$

(e)
$$f(x) = ln(x)$$

(b)
$$f(x) = x^4 + 3x^2 - 1$$

(c)
$$f(x) = x^3 + x$$

(d)
$$f(x) = e^x$$

(f)
$$f(x) = \frac{2x^2 - 3}{7x + 4}$$

Exercise 6: Write a computer program to compute the composites of function $f_1(x)$ and $f_2(x)$. Meanwhile, $f_1 = x + 5$ and $f_2(x) = x^2 - 3$.

(a)
$$f_1(f_2(0))$$

(c)
$$f_1(f_1(-5))$$

(b)
$$f_2(f_1(0))$$

(d)
$$f_2(f_2(2))$$

Exercise 7: Write a computer program to show the below functions in a graph.

$$x = 4\sin(t)^5 + 5$$

$$y = 3\cos(t) - 1.7\cos(2t) - \cos(3t) + 1$$

Find the appropriate t values for these functions.

Exercise 8: Write a computer program to plot the functions on a graph.

$$f_1(x) = -x + 5$$

$$f_2(x) = \frac{x}{2} + 2$$

Find the appropriate x values for these functions, and mark the intersection point of f_1 and f_2 .

Exercise 9: Write a computer program to plot the functions: $f_1(x) = \sqrt{1 - (|x| - 1)^2}$, $f_2(x) = -3\sqrt{1 - \sqrt{\frac{|x|}{2}}}$. f_1 is drawn with magenta color, f_2 is drawn with red color, and $x \in [-2, 2]$.

Exercise 10: Write a computer program to show the original and shifted graphs together, labeling each graph with its equation in these following cases

(a)
$$f(x) = x^2 + k$$
, for $k = 2, 4, 6, 8, 10, 12$, and $x \in [-10, 10]$.

(g)
$$f(x) = \frac{1}{x^2}$$
, left 2, down 1.

(b)
$$f(x+k) = (x+k)^2$$
, for $k = 2, 4, 6, 8, 10, 12$, (h) $f(x) = 1 - x^3$, stretched horizontally and $x \in [-10, 10]$. by a factor of 2.

and
$$x \in [-10, 10]$$
. by a factor of 2.
(c) $f(x) = k\sqrt{x}$, for $k = \frac{1}{3}, 1, 3, 6$, and $x \in [1, 50]$. (i) $f(x) = \sqrt{x+1}$, compressed horizontally (d) $f(x) = x^3$, left 1, down 1. by a factor of 4.

(d)
$$f(x) = x^3$$
, left 1, down 1.

(e)
$$f(x) = x^{2/3}$$
, right 1, down 1.

(j) $f(x) = \sqrt{x+1}$, stretched vertically by a factor of 3.

(f)
$$f(x) = \frac{1}{2}(x+1) + 5$$
, down 5, right 1.

Exercise 11: Use a graph to decide whether f is one-to-one function

(a)
$$f(x) = x^3 - \frac{x}{2}$$

(b)
$$f(x) = x^2 + \frac{x}{2}$$