Elementaire statistiek

Bachelor in de informatica

Oefeningen: – Centrale limietstelling en Schatters

- 1. Het gemiddeld aantal geboortes per dag in een streek is 228, met een standaarddeviatie σ gelijk aan 20. Bepaal de kans dat er in 1 jaar tijd meer dan 82000 baby's geboren worden (1 jaar = 365 dagen).
- 2. Het gehalte van stikstofoxide (NOX) in de uitlaat van een bepaald automodel varieert met gemiddelde $1.4 \mathrm{g/mi}$ en standaarddeviatie $0.3 \mathrm{g/mi}$. Een firma heeft 125 auto's van dit model in haar wagenpark. Indien \bar{X} het gemiddelde NOX gehalte is voor deze auto's, hoe groot is dan het gehalte L zodat de kans dat \bar{X} groter is dan L slechts 0.01 is?
- 3. Zij $X \sim N(\mu, \sigma^2)$ en zij $Y \sim N(\mu, 4\sigma^2)$ met μ en σ^2 ongekend, en X en Y onafhankelijke stochastische veranderlijken. Definieer W = aX + bY. Welke waarden voor a en b leiden tot een onvertekende schatter voor μ ? Tussen alle mogelijke waarden voor a en b, welke verkies je? En waarom?
- 4. De echte gemiddelde opbrengst van twee chemische processen is in beide gevallen gelijk aan μ , doch de variantie bij proces 1 is σ^2 terwijl ze bij het tweede proces $4\sigma^2$ bedraagt. X_1, \ldots, X_m zijn m onafhankelijke opbrenstgegevens van proces 1; Y_1, \ldots, Y_n zijn n onafhankelijke observaties van het tweede proces.
 - (a) Toon aan dat voor elke waarde $a \in [0,1]$, $\hat{\mu} = a\bar{X}_m + (1-a)\bar{Y}_n$ een zuivere schatter voor μ is.
 - (b) Bij gegeven m en n, zoek die waarde van a die de variantie van $\hat{\mu}$ het kleinst mogelijk maakt.
- 5. Beschouw een stochastische variabele $X \sim B(n, p)$.
 - (a) Is $X \frac{X^2}{n}$ een zuivere schatter voor de variantie van X? Werk uit.
 - (b) Construeer uit het voorgaande een schatter die wel zuiver is voor Var(X).
- 6. Beschouw een steekproef $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$ met $n \geq 2$. Definieer $T = c \sum_{i=1}^n (X_i \bar{X}_n)^2$. Bereken E(T) en Var(T). Zoek c zodat T als schatter van σ^2 minimale MSE heeft.