NAME:

Exercise 1 Find the absolute extrema (maxima and minima) for the function $f(x) = 2x^3 - 3x^2 - 12x + 5$ on the interval [0,4], and determine where those values occur.

Exercise 2 For the function $f(x) = 2x^{3} + 9x^{2} + 12x + 36$

- i. Identify the critical points.
- ii. Find the intervals on which the function is increasing or decreasing.
- iii. Identify all local extrema.
- iv. Identify the inflection points.
- v. Find the interval on which the function is concave up or concave down.

NAME:

Exercise 3 Verify that the hypotheses of the mean-value theorem are satisfied for $f(x) = x^3$ on the interval [-3,5], and find all values of c that satisfies the conclusion of the theorem.

Exercise 4 A landscape architect wishes to enclose a rectangular garden of area $1000m^2$ on one side by a brick wall costing $80 \ \ m^{-1}$ and on the other side by a metal fence costing $20 \ \ m^{-1}$. Which dimensions minimize the total cost?

Exercise 5 Find the limits. Show your work.

i.
$$\lim_{x\to 0} \frac{e^x - 1}{x^2 + 3x}$$

ii.
$$\lim_{x\to 0^+} (x+\cos(x))^{\frac{1}{x}}$$

iii.
$$\lim_{x\to 0} x \csc(x)$$