

Chương 2: Các phương pháp giải mạch tuyến tính ở chế độ xác lập một chiều

- ➤ Khái niệm
- Mạch một chiều
- > Các phương pháp giải
- Phương pháp dòng nhánh
- Phương pháp dòng vòng
- Phương pháp điện thế nút

Khái niệm

- Mạch điện tuyến tính:
 - Tất cả các phần tử đều tuyến tính
 - → Hệ phương trình mô tả mạch là hệ phương trình tuyến tính
 - Tính chất cơ bản của mạch tuyến tính: tính xếp chồng

$$i(e_1, e_2) = i_1(e_1) + i_2(e_2)$$

 $u(e_1, e_2) = u_1(e_1) + u_2(e_2)$

- Chế độ xác lập
 - Là trạng thái cân bằng của mạch, xuất hiện sau một thời gian đủ lớn (t→∞) kể từ khi mạch được kích thích
 - Kích thích là nguồn một chiều: mạch một chiều
 - Kích thích là nguồn hình sin: chế độ xác lập hình sin

Chế độ xác lập ở mạch một chiều (1)

- Chế độ xác lập: các tín hiệu u, i đều là hằng số
- Công suất tiêu thụ trên tải: $P = U.I = (RI).I = RI^2$
- Công suất phát của nguồn:
 - + Nguồn áp:
 - Nếu E và dòng điện I (qua E) cùng chiều: $P_E = E.I$
 - Nếu E và dòng điện I (qua E) ngược chiều: $P_{E} = -E.I$
 - + Nguồn dòng: $P_J = (\varphi_{J vao} \varphi_{J ra}).I$
- Các phần tử L và C bị suy biến

$$u = L \frac{di}{dt} = 0$$
 Cuộn dây ngắn mạch, coi như dây dẫn

$$i = C \frac{du}{dt} = 0$$
 Tụ điện coi như bị hở mạch

→Giải mạch điện thuần trở

Chế độ xác lập ở mạch một chiều (2)

■ Ví dụ 1:

Cuộn dây \rightarrow dây dẫn: $U_{II} = 0$ $U_{I2} = 0$

→Giải mạch điện thuần trở

Tụ điện \rightarrow hở mạch: $I_3 = 0$

$$I_{1} = ?$$
 $I_{L2} = ?$ $I_{L1} = ?$ $U_{C} = ?$

Tổng công suất phát=?
Tổng công suất tiêu thụ=?

Chế độ xác lập ở mạch một chiều (2)

$$(R_1 + R_2)I_1 = -E$$
 $\Rightarrow I_1 = \frac{-E}{R_1 + R_2} = -0,025A$

$$I_{L1} = I_{L2} = I_1 = -0,025$$
A

$$U_{C3} = R_2 I_{R2} = -100.0,025 = -2,5V$$

$$E = 5V; R_1 = R_2 = 100\Omega$$

$$\sum_{phat} P = -EI_1 = -5.(-0,025) = 0.125 \,\mathrm{W}$$

$$\sum_{thu} P = R_1 I_1^2 + R_2 I_{L2}^2$$
= 100.0, 025² + 100.0, 025² = 0,125 W

$$\sum_{phat} P = \sum_{thu} P$$

Lưu ý chiều dòng điện

Chế độ xác lập ở mạch một chiều (4)

□ Ví dụ 2: Tính các điện áp?

$$E = 5V$$
; $R_1 = 80\Omega$; $R_2 = 20\Omega$

Theo Luật Ohm: $U_1 = R_1I$; $U_2 = R_2I$

Theo Kirchhoff 2: $U_1 + U_2 = E$

$$R_1I + R_2I = E \Leftrightarrow (R_1 + R_2)I = E$$

$$\Rightarrow I = \frac{E}{R_1 + R_2}$$

$$\Rightarrow U_1 = \frac{R_1}{R_1 + R_2} E$$

$$U_2 = \frac{R_2}{R_1 + R_2} E$$

Chế độ xác lập ở mạch một chiều (5)

☐ Ví dụ 3: Tính các dòng điện?

$$E = 150V; R_1 = 100\Omega; R_2 = 50\Omega$$

$$U = E = R_1 I_1 = R_2 I_2 \rightarrow I_1 = \frac{E}{R_1}; I_2 = \frac{E}{R_2}$$

$$R_2 \qquad \text{Theo Kirchhoff 1:} \qquad I = I_1 + I_2$$

$$\Rightarrow I = \frac{U}{R_1} + \frac{U}{R_2} = U\left(\frac{1}{R_1} + \frac{1}{R_2}\right) = \frac{U}{R_{12}} = \frac{E}{R_{12}}$$

$$\Leftrightarrow \frac{1}{R_{12}} = \frac{1}{R_1} + \frac{1}{R_2} \Rightarrow R_{12} = \frac{R_1 R_2}{R_1 + R_2} = 33,33 \,\Omega$$

$$\Rightarrow U = R_{12}I = \frac{R_1R_2}{R_1 + R_2}I$$
 $I = \frac{E}{R_{12}} = 4,5 \text{ A}$

Có thể tính I_1 , I_2 theo I

$$I_1 = \frac{R_2}{R_1 + R_2} I = 1,5A$$
 $I_2 = \frac{R_1}{R_1 + R_2} I = 3A$

Chế độ xác lập ở mạch một chiều (6)

U Ví dụ 4: Tính các dòng điện? $J = 3A; R_1 = 100Ω; R_2 = 50Ω$

$$J = 3A; R_1 = 100\Omega; R_2 = 50\Omega$$

$$I_1 = \frac{R_2}{R_1 + R_2} J$$
 $I_2 = \frac{R_1}{R_1 + R_2} J$
= 1A = 2A

Công suất tiêu thụ:

$$\sum_{thu} P = R_1 I_1^2 + R_2 I_2^2 = 300 \text{W}$$

Công suất phát:

$$\sum_{phat} P = (\varphi_a - \varphi_b)J = U_{ab}J$$
$$= (R_2 I_2)J = 300W$$

Chế độ xác lập ở mạch một chiều (7)

□ Ví dụ 5: Tính các dòng điện?

$$E_1 = 150V;$$

$$R_1 = R_2 = 100\Omega$$

$$R_3 = 50\Omega$$

$$I_{1} = \frac{E}{R_{1} = 150\text{V}}; \qquad I_{1} = \frac{E}{R_{1} + \frac{R_{2}R_{3}}{R_{2} + R_{3}}} = 1,125\text{A}$$

$$I_{2} = \frac{R_{3}}{R_{2} + R_{3}} I_{1} = 0,375\text{A}$$

$$I_{3} = \frac{R_{2}}{R_{2} + R_{3}} I_{1} = 0,75\text{A}$$

Chế độ xác lập ở mạch một chiều (8)

□ Ví dụ 6: Tính các dòng điện?

Theo Kirchhoff 1:

$$I_1 = I_2 + I_3$$
 (1)

Theo Kirchhoff 2:

$$\begin{cases} R_1 I_1 + R_3 I_3 = E_1 \\ R_2 I_2 - R_3 I_3 = -E_2 \end{cases}$$
 (2)

$$\begin{cases} I_1 - I_2 - I_3 = 0 \\ R_1 I_1 + R_3 I_3 = E_1 \\ R_2 I_2 - R_3 I_3 = -E_2 \end{cases}$$

$$\to I_1, I_2, I_3$$

10

Phương pháp dòng nhánh (1)

- Ån số: là các dòng điện trên nhánh (N)
 Số lượng ẩn số=số nhánh không kể nguồn dòng
- Lập hệ phương trình dòng nhánh,gồm:

Số phương trình Kirchhoff 1: K1=d-1 với d là số nút của mạch

Số phương trình Kirchhoff 2: K2=N-d+1

Phương pháp dòng nhánh

Ví dụ 7: Tính dòng điện các nhánh

Cho:
$$E_1 = 24V; J_2 = 0.1A; E_4 = 50V$$

 $R_1 = 100\Omega; R_3 = 50\Omega; R_4 = 10\Omega$

$$\begin{cases} -I_1J_2 + I_3 - I_4 = 0 \\ R_1I_1 + R_3I_3 = E_1 \\ -R_3I_3 - R_4I_4 = -E_4 \end{cases} \longleftrightarrow \begin{cases} -I_1 + I_3 - I_4 = J_2 \\ R_1I_1 + R_3I_3 = E_1 \\ R_3I_3 + R_4I_4 = E_4 \end{cases}$$

$$\Rightarrow \begin{cases} I_1 = -0.1708A \\ I_3 = 0.8215A \\ I_4 = 0.8923A \end{cases}$$

$$\sum P_{thu} = R_1 I_1^2 + R_3 I_3^2 + R_4 I_4^2 = 44,62W$$

$$\sum P_{phat} = P_{E1} + P_{E4} + P_{J2} = 44,62W$$

$$P_{E1} = E_1 I_1$$

$$P_{E4} = E_4 I_4$$

$$P_{_{J2}} = U_{ac}J_2 = R_3I_3J_2$$

Có thể có sai số do làm tròn

Phương pháp dòng nhánh

- Ån số: là các dòng điện trên nhánh (N)
 Số lượng ẩn số=số nhánh không kể nguồn dòng
- Lập hệ phương trình dòng nhánh,gồm:

Số phương trình Kirchhoff 1: K1=d-1, với d là số nút của mạch Số phương trình Kirchhoff 2: K2=N-d+1

Nhược điểm:
 Số ẩn nhiều → phức tạp nếu mạch có nhiều nhánh

Phương pháp dòng vòng (mesh analysis)

- Ån số: là các dòng điện phụ (dòng vòng)
 Số lượng ẩn =số phương trình Kirchhoff 2
- Giả sử trong mỗi vòng (để viết phương trình K2) có một dòng điện vòng chảy qua
- Với nguồn dòng: chọn một vòng kín nào đó để khép dòng điện (tránh chọn vòng có nguồn dòng khác)
- Biểu diễn các dòng nhánh theo các dòng vòng
- Viết hệ phương trinh Kirchhoff 2 cho dòng các nhánh, sau đó đưa về hệ phương trình dòng vòng

Phương pháp dòng vòng (1)

VD8: Tính dòng điện các nhánh

$$I_1 = I_a$$
 $R_1 = 100\Omega; R_3 = 50\Omega; R_4 = 10\Omega$
 $I_3 = I_a - I_b$ $E_1 = 24V; E_4 = 50V$
 $I_4 = -I_b$

$$\begin{cases} R_1 I_1 + R_3 I_3 = E_1 \\ -R_3 I_3 - R_4 I_4 = -E_4 \end{cases} \qquad \begin{cases} R_1 I_a + R_3 (I_a - I_b) = E_1 \\ -R_3 (I_a - I_b) + R_4 I_b = -E_4 \end{cases}$$

$$\rightarrow \begin{cases} (R_1 + R_3)I_a - R_3I_b = E_1 \\ -R_3I_a + (R_3 + R_4)I_b = -E_4 \end{cases} \leftrightarrow \begin{cases} 150I_a - 50I_b = 24 \\ -50I_a + 60I_b = -50 \end{cases}$$

- Giả sử trong mỗi vòng (để viết phương trình K2) có một dòng điện vòng chảy qua
- Biểu diễn các dòng nhánh theo các dòng vòng
- Viết hệ phương trinh Kirchhoff 2 cho dòng các nhánh, sau đó đưa về hệ phương trình dòng vòng

■ Giải hệ phương trình dòng vòng → dòng điện trên các nhánh.

$$\leftrightarrow \begin{cases} 150I_a - 50I_b = 24 \\ -150I_a + 180I_b = -150 \end{cases} \rightarrow \begin{cases} I_a = -0,1631 \text{ A} \\ I_b = -0,9692 \text{ A} \end{cases} \rightarrow \begin{cases} I_1 = -0,1631 \text{ A} \\ I_3 = 0,8062 \text{ A} \\ I_4 = 0,9692 \text{ A} \end{cases}$$

2/17/2021 10:28:06 PM

Phương pháp dòng vòng (2)

VD9: Tính dòng điện các nhánh

$$I_1 = I_a$$

$$I_4 = -I_b$$

$$I_3 = I_a + J_2 - I_b$$

$$R_1 = 100\Omega; R_3 = 50\Omega; R_4 = 10\Omega$$

$$E_1 = 24V; J_2 = 0, 1A; E_4 = 50V$$

Với nguồn dòng: chọn một vòng kín nào đó để khép dòng điện (tránh chọn vòng có nguồn dòng khác)

$$\Rightarrow \begin{cases}
I_a = -0.1708A \\
I_b = -0.8923A
\end{cases}$$

$$\iff \begin{cases}
I_1 = -0.1708A \\
I_3 = 0.8215A \\
I_4 = 0.8923A
\end{cases}$$

$$\sum P_{thu} = R_1 I_1^2 + R_3 I_3^2 + R_4 I_4^2 = 44,62W$$

$$\sum P_{phat} = P_{E1} + P_{E4} + P_{J2} = 44,62$$
W

Có thể có sai số do làm tròn

$$P_{E1} = E_{1}I_{1}$$
 $P_{E4} = E_{4}I_{4}$
 $P_{J} = J_{2}U_{df} = J_{2}R_{3}I_{3}$

So sánh: dòng nhánh vs. dòng vòng

Số phương trình Kirchhoff 1: K1=d-1, với d là số nút của mạch Số phương trình Kirchhoff 2: K2=N-d+1, N là số nhánh

- Phương pháp dòng nhánh: cần giải K1+K2 phương trình độc lập
- Phương pháp dòng vòng: cần giải K2 phương trình độc lập

2/17/2021 10:28:06 PM

So sánh: dòng nhánh vs. dòng vòng

$$R_1 = 100\Omega; R_3 = 50\Omega; R_4 = 10\Omega$$

 $E_1 = 24V; J_2 = 0.1A; E_4 = 50V$

Dòng nhánh

$$\begin{cases}
-I_1 + I_3 - I_4 - J_2 = 0 \\
R_1 I_1 + R_3 I_3 = E_1 \\
-R_3 I_3 - R_4 I_4 = -E_4
\end{cases}$$

Dòng vòng

$$\begin{cases} (R_1 + R_3)I_a - R_3I_b = E_1 - R_3J_2 \\ -R_3I_a + (R_3 + R_4)I_b = -E_4 + R_3J_2 \end{cases}$$

Bài tập (dòng vòng)

Lập hệ phương trình dòng vòng của mạch (khi cho các nguồn một chiều)

Phương pháp điện thế nút/thế đỉnh (nodal analysis)

- Chọn các ẩn là điện thế tại các nút (đỉnh) độc lập:
 K1=d-1
- Biểu diễn các dòng nhánh theo điện thế các nút ẩn
- Thế các biểu diễn của các dòng nhánh vào hệ phương trình K1
- Giải hệ phương trình điện thế nút → các dòng điện biểu diễn theo các điện thế nút đã tính được
 - Phương pháp điện thế nút: Cần giải K1 phương trình độc lập

Phương pháp điện thế nút

VD 10:Tính dòng điện các nhánh

$$R_{1} = 100\Omega; R_{3} = 50\Omega; R_{4} = 10\Omega$$

$$E_{1} = 24V; J_{2} = 0, 1A; E_{4} = 50V$$

$$U_{ca} = R_{1}I_{1} - E_{1} \Rightarrow I_{1} = \frac{E_{1} + U_{ca}}{R_{1}} = \frac{E_{1} - \varphi_{a}}{R_{1}}$$

$$U_{ac} = R_{3}I_{3} \Rightarrow I_{3} = \frac{U_{ac}}{R_{3}} = \frac{\varphi_{a}}{R_{3}}$$

$$U_{ca} = R_{4}I_{4} - E_{4} \Rightarrow I_{4} = \frac{E_{4} + U_{ca}}{R_{4}} = \frac{E_{4} - \varphi_{a}}{R_{4}}$$

Thay biểu diễn của cắc dòng nhánh vào phương trình Kirhhoff 1:

$$-I_1 + I_3 - I_4 - J_2 = 0$$

$$-\frac{E_{1}-\varphi_{a}}{R_{1}} + \frac{\varphi_{a}}{R_{3}} - \frac{E_{4}-\varphi_{a}}{R_{4}} - J_{2} = 0$$

$$\Leftrightarrow \left(\frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{4}}\right) \varphi_{a} = \frac{E_{1}}{R_{1}} + \frac{E_{4}}{R_{4}} + J_{2}$$

$$\Rightarrow \varphi_{a} = \frac{\left(\frac{E_{1}}{R_{1}} + \frac{E_{4}}{R_{4}} + J_{2}\right)}{\left(\frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{4}}\right)} = \frac{5,34}{0,13} = 41,08V$$

- Chọn các ấn là điện thế tại các nút (đỉnh) độc lập: K1=d-1
- Biểu diễn dòng nhánh theo điện thế các nút ấn
- Thế các biểu diễn của các dòng nhánh vào hệ phương trình K1
- Giải hệ phương trình điện thế nút→ các dòng điện biểu diễn theo các điện thế nút đã tính được

$$\varphi_a = \frac{\left(\frac{E_1}{R_1} + \frac{E_4}{R_4} + J_2\right)}{\left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_4}\right)} = \frac{5,34}{0,13} = 41,08$$

$$\Rightarrow I_1 = -0.1708A; I_3 = 0.8215A; I_4 = 0.8923A$$

So sánh các phương pháp

Số phương trình Kirchhoff 1: K1=d-1, với d là số nút của mạch Số phương trình Kirchhoff 2: K2=N-d+1, N là số nhánh

- Phương pháp dòng nhánh: cần giải K1+K2 phương trình độc lập
- Phương pháp dòng vòng: cần giải K2 phương trình độc lập
- Phương pháp điện thế nút: cần giải K1 phương trình độc lập

Bài tập

Lập hệ phương trình dòng vòng của mạch (khi cho các nguồn một chiều)

Bài tập

Lập hệ phương trình thế nút của mạch (khi cho các nguồn một chiều)

