

CLAIMS

What is claimed is:

- 1 1. An integrated circuit device comprising:
 - 2 a receive circuit to capture a plurality of samples of an input signal during a cycle of a first
 - 3 clock signal;
 - 4 a select circuit coupled to the receive circuit to select, according to a data rate select signal,
 - 5 one of the plurality of samples to be a first selected sample of the input signal and
 - 6 another of the plurality of samples to be a second selected sample of the input signal;
 - 7 and
- 8 a phase control circuit coupled to receive the first and second selected samples of the input
- 9 signal and being adapted to compare the first selected sample with the second
- 10 selected sample to determine whether the first clock signal leads or lags a transition
- 11 of the input signal.
- 12 2. The integrated circuit device of claim 1 wherein the select circuit selects a first pair of the
- 13 plurality of samples of the input signal to be the first and second selected samples if the
- 14 data rate select signal is in a first state, and the select circuit selects a second pair of the
- 15 plurality of samples of the input signal to be the first and second selected samples if the
- 16 data rate select signal is in a second state, the second pair of the samples including at least
- 17 one sample of the input signal that is not included in the first pair of the samples.
- 18 3. The integrated circuit device of claim 2 wherein the phase control circuit generates an
- 19 early/late indicator to indicate that the first clock signal leads the transition of the input
- 20 signal if the first selected sample has the same state as the second selected sample.

- 1 4. The integrated circuit device of claim 2 wherein the select circuit further selects a third
2 sample of the plurality of samples to be a third selected sample, the first and the third
3 selected samples being successive samples of a data state of the input signal and the second
4 selected sample being a data transition sample of the input signal.
- 1 5. The integrated circuit device of claim 4 wherein the phase control circuit includes an
2 early/late detection circuit to compare the first and third selected samples to determine
3 whether a transition has occurred in the input signal.
- 1 6. The integrated circuit device of claim 5 wherein the early/late detection circuit includes
2 circuitry to generate an output signal to indicate that the first clock signal leads the
3 transition of the input signal if the first and third selected samples indicate that a transition
4 has occurred in the input signal and if the second selected sample is determined to have the
5 same state as the first selected sample.
- 1 7. The integrated circuit device of claim 1 wherein the first clock signal comprises a plurality
2 of component clock signals each being offset in phase from one another.
- 1 8. The integrated circuit device of claim 1 wherein the first clock signal comprises M
2 component clock signals each having a respective phase angle such that transitions of the
3 component clock signals occur at evenly spaced intervals within a cycle of a first one of the
4 component clock signals.
- 1 9. The integrated circuit device of claim 8 wherein the receive circuit comprises M sampling
2 circuits each being responsive to a respective one of the component clock signals to sample

3 the input signal such that M samples of the input signal are captured during each cycle of
4 the first clock signal.

1 10. The integrated circuit device of claim 9 wherein the receive circuit further comprises M
2 shift registers, each shift register being coupled to a respective one of the M sampling
3 circuits to receive samples of the input signal therefrom, each shift register including N
4 storage locations to store a new set of N samples of the input signal every N cycles of the
5 first clock signal.

1 11. The integrated circuit device of claim 1 further comprising a storage circuit to store a data
2 rate select value indicative of a data rate of the input signal, the data rate select signal
3 having a state according to the data rate select value.

1 12. The integrated circuit device of claim 11 wherein the storage circuit includes an output to
2 output the data rate select signal to the select circuit.

1 13. The integrated circuit device of claim 11 further comprising circuitry to receive the data
2 rate select value from an external device and to store the data rate select value in the
3 storage circuit.

1 14. A clock data recovery (CDR) circuit comprising:
2 a plurality of sampling circuits to capture a plurality of samples of an input signal during a
3 cycle of a first clock signal;
4 a sample steering circuit coupled to receive the plurality of samples from the sampling
5 circuits and being adapted to select data state samples and data transition samples
6 from among the plurality of samples according to a data rate select signal; and

7 a phase control circuit coupled to receive the selected data state samples and data transition
8 samples and including circuitry to compare the selected data state and data transition
9 samples to determine whether the first clock signal leads or lags transitions in the
10 input signal.

1 15. The CDR circuit of claim 14 wherein the phase control circuit includes circuitry to generate
2 a phase control signal having a state according to whether the first clock signal leads or
3 lags transitions in the input signal.

1 16. The CDR circuit of claim 15 further comprising a phase mixer circuit to interpolate
2 between a selected pair of phase vectors to generate the first clock signal, the phase mixer
3 being coupled to receive the phase control signal from the phase control circuit and being
4 adapted to adjust the phase of the recovered clock signal according to the state of the phase
5 control signal.

1 17. The CDR circuit of claim 14 wherein the selected data state samples and data transition
2 samples are obtained from a first set of sampling circuits within the plurality of sampling
3 circuits when the data rate select signal is in a first state, and from a second set of sampling
4 circuits within the plurality of sampling circuits when the data rate select signal is in a
5 second state, the second set of sampling circuits including at least one sampling circuit that
6 is not included in the first set of sampling circuits.

1 18. A method of operation within an integrated circuit device, the method comprising:
2 capturing a plurality of samples of an input signal during a cycle of a first clock signal;
3 selecting a first data state sample and a first data transition sample from among the

4 plurality of samples according to a data rate select signal; and
5 comparing the first data state sample and the first data transition sample to determine
6 whether the first clock signal leads or lags a transition of the input signal.

- 1 19. The method of claim 18 wherein selecting the first data state sample and the first data
2 transition sample comprises selecting a first pair of the plurality of samples to be the first
3 data state sample and the first data transition sample if the data rate select signal is in a first
4 state, and selecting a second pair of the plurality of samples to be the first data state sample
5 and the first data transition sample if the data rate select signal is in a second state, the
6 second pair of the plurality of samples including at least one sample that is not included in
7 the first pair of the plurality of samples.
- 1 20. The method of claim 18 further comprising adjusting a phase of the first clock signal based
2 in part on the comparison of the first data state sample and the first data transition sample.
- 1 21. The method of claim 18 wherein comparing the first data state sample and the first data
2 transition sample to determine whether the first clock signal leads or lags the transition in
3 the input signal comprises determining whether the first data state sample has the same
4 value as the data transition sample.
- 1 22. The method of claim 18 wherein comparing the first data state sample and the first data
2 transition sample to determine whether the first clock signal leads or lags the transition in
3 the input signal comprises comparing the first data state sample to a second data state
4 sample to determine whether a transition occurred in the input signal in the interval
5 between the first data state sample and the second data state sample.

- 1 23. The method of claim 18 wherein capturing a plurality of samples of the input signal during
2 a cycle of a first clock signal comprises sampling the input signal in response to a plurality
3 of sampling clock signals that each transition at least once per cycle of the first clock signal
4 and that are each phase offset from one another.
- 1 24. The method of claim 23 wherein the first clock signal is one of the sampling clock signals.
- 1 25. The method of claim 18 further comprising generating the data rate select value according
2 to a data rate select value stored in a configuration storage circuit within the integrated
3 circuit device.
- 1 26. The method of claim 25 further comprising receiving the data rate select value via an
2 external interface of the integrated circuit device and storing the data rate select value in
3 the configuration storage circuit.
- 1 27. A method of controlling an integrated circuit device, the method comprising:
2 outputting a data rate select value to the integrated circuit device; and
3 outputting a command to the integrated circuit device to store the data rate select value in a
4 configuration storage circuit within the integrated circuit device, the configuration
5 storage circuit being coupled to a clock data recovery (CDR) circuit within the
6 integrated circuit device to control the selection of samples of an input signal used for
7 recovering a clock signal from the input signal.
- 1 28. The method of claim 27 wherein outputting the data rate select value comprises outputting
2 a configuration instruction to the integrated circuit device, the data rate select value

3 constituting operand data of the configuration instruction.

1 29. The method of claim 27 wherein outputting the data rate select value comprises outputting
2 a configuration instruction to the integrated circuit device, the data rate select value
3 constituting an operation code of the configuration instruction.

1 30. The method of claim 27 wherein outputting a data rate select value to the integrated circuit
2 device comprises outputting a value indicative of a number of data values included within
3 the input signal per cycle of the clock signal.

1 31. An integrated circuit device comprising:
2 an output driver to output a signal onto a data path;
3 a serializing circuit to receive a first parallel set of bits and coupled to output the set of bits
4 in sequence to the output driver in response to a first clock signal; and
5 a select circuit coupled to the serializing circuit and having an input to receive an outbound
6 data value, the select circuit being adapted to select, according to a data rate select
7 signal, data bits within the outbound data value to form the first parallel set of bits
8 received within the serializing circuit.

1 32. The integrated circuit device of claim 31 wherein, when the data rate select signal indicates
2 a first data rate, the select circuit is adapted to select a first portion of the outbound data
3 value to form the first parallel set of bits and to select a second portion of the outbound data
4 value to form a second parallel set of bits to be received within the serializing circuit after
5 the first parallel set of bits.

1 33. The integrated circuit device of claim 32 wherein each bit of the first portion of the

2 outbound data value is used to source at least a pair of bits in the first parallel set of bits.

1 34. The integrated circuit device of claim 32 wherein, when the data rate select signal indicates
2 a second data rate, the select circuit is adapted to select the entire outbound data value to
3 form received the first parallel set of bits.

1 35. The integrated circuit device of claim 33 wherein the first data rate is a single data rate and
2 the second data rate is a double data rate.

1 36. A method of operation within an integrated circuit device, the method comprising:
2 outputting a first parallel set of bits in sequence in response to a transmit clock signal to
3 form an output signal; and
4 selecting the first parallel set of bits from among a plurality of data bits within an outbound
5 data value in a sequence according to a data rate select signal to achieve a selected
6 data rate within the output signal.

1 37. The method of claim 36 wherein selecting the first parallel set of bits from among the
2 plurality of data bits within an outbound data value in a sequence according to a data rate
3 select signal comprises selecting all the data bits within the outbound data value to form the
4 first parallel set of bits when the data rate select signal is in a first state, and selecting a
5 portion of the data bits within the outbound data value to form the first parallel set of bits
6 when the data rate select signal is in a second state.

1 38. The method of claim 37 wherein selecting the portion of the data bits within the outbound
2 data value to form the first parallel set of bits comprises sourcing each pair of bits within
3 the first parallel set of bits with a respective bit of the portion of the data bits within the

4 outbound data value.

1 39. A method of controlling an integrated circuit device, the method comprising:
2 outputting a data rate select value to the integrated circuit device; and
3 outputting a command to the integrated circuit device to store the data rate select value in a
4 configuration storage circuit within the integrated circuit device, the configuration
5 storage circuit being coupled to a transmit circuit within the integrated circuit device
6 to select either a first output order or a second output order of data bits within
7 respective outbound data values, the first output order corresponding to a first output
8 data rate and the second output order corresponding to a second output data rate.

1 40. The method of claim 39 wherein outputting the data rate select value comprises outputting
2 a configuration instruction to the integrated circuit device, the data rate select value
3 constituting operand data of the configuration instruction.

1 41. The method of claim 39 wherein outputting the data rate select value comprises outputting
2 a configuration instruction to the integrated circuit device, the data rate select value
3 constituting an operation code of the configuration instruction.