A polynomial algorithm for deterministic mean-payoff games

Bruno Scherrer*

March 15, 2022

Abstract

We describe a polynomial algorithm for solving deterministic mean payoff games. Our algorithm solves a mean payoff game with n vertices and integer edge-costs between -W and W in time ... This in particular implies that a parity game with n vertices and d priorities can be solved in time This answers positively the long-standing open problem whether these problems are in P.

Consider a mean payoff game played by two players, MAX and MIN, on a graph with n vertices $X = \{1, 2, ..., n\} = X_+ \sqcup X_-$ and directed edges E. For any vertex x, we write $f(x) = \{y; (x, y) \in E\}$ the set of vertices that can be reached from x by following one edge. An integer cost $-R \le r(x) \le R$ is associated to each node x. The vertices of X_+ (resp. X_-) belong to MAX (resp. MIN). The game starts in some vertex x_0 . The player who owns the current vertex chooses a next vertex by following an edge. So on and so forth, these choices generate an infinitely long trajectory $(x_0, x_1, ...)$. The goal of MAX is to maximize

$$\lim \inf_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} r(x_t),$$

while that of MIN is to minimize

$$\lim \sup_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T} r(x_t).$$

A practical way to work on mean payoff games is to consider their γ -discounted variant for some $0 \le \gamma < 1$, that only differs by the objective. In such a game, MAX tries to maximize the value

$$\sum_{t=0}^{\infty} \gamma^t r(x_t)$$

while MIN tries to minimize it. For any pair of positional strategies $\mu: X_+ \to X$ for MAX and $\nu: X_-$ for MIN (mappings such that for all $x, \mu(x) \in f(x)$ and $\nu(x) \in f(x)$), let us write $P_{\mu,\nu}$ for the transition matrix: for all $(i,j) \in \{1,2,\ldots,n\}^2$, $P_{\mu,\nu}(i,j)$ equals 1 if and only if (μ,ν) induce a transition $i \to j$ and 0 else. Let us introduce the following Bellman operators:

$$T_{\mu,\nu}v = g + \gamma P_{\mu,\nu}v,$$

$$T_{\mu}v = \min_{\nu} T_{\mu,\nu}v,$$

$$Tv = \max_{\mu} T_{\mu}v,$$

that are all γ -contraction with respect to the max norm. The discounted value $v_{\mu,\nu}$ when MAX and MIN respectively use μ and ν satisfies

$$v_{\mu,\nu} = \sum_{t=0}^{\infty} (\gamma P_{\mu,\nu})^t r = (I - \gamma P_{\mu,\nu})^{-1} r$$

^{*}INRIA, bruno.scherrer@inria.fr

and is the fixed point of $T_{\mu,\nu}$. The optimal value v_* is the fixed point of T, and any pair of positional strategies μ_*, ν_* that satisfy $T_{\mu_*,\nu_*}v_* = Tv_* = v_*$ are known to be optimal [?].

In Section ??, we shall describe and analyse an algorithm for computing optimal cycles in γ -discounted payoff. In Section ??, we shall describe a scaling approach that allows to reduce the complexity dependency of the first algorithm with respect to W from W to $\log W$. Finally, in Section ??, we will explain that this approach allows to solve the Mean Payoff game in polynomial time if one chooses γ sufficiently close to 1.

1 An algorithm to compute optimal cycles

We consider the following iterative algorithm:

- 1. (Initialization) Set k = 0 and take an arbitrary policy μ_0 for MAX.
- 2. (Evaluation) Compute the value v_k and an optimal counter-policy ν_k of MIN in the 1-player problem where MAX uses μ_k :

$$v_k = Tv_k = T_{\mu_k}v_k = T_{\mu_k,\nu_k}v_k$$

3. (Computation of the *n*-step advantage) Compute the advantage δ_n and a pair of *n*-horizon strategies $(\mu_k^{(n)}, \dots, \mu_k^{(1)})$ and $(\nu_k^{(n)}, \dots, \nu_k^{(1)})$ such that:

$$\delta_k = T^n v_k - v_k = T_{\mu_b^{(n)}, \nu_b^{(n)}} T_{\mu_b^{(n-1)}, \nu_b^{(n-1)}} \dots T_{\mu_b^{(1)}, \nu_b^{(1)}} v_k - v_k.$$

4. (Identification of converged nodes) Compute the set

$$Z_k = \{ x \in X ; \delta_k(x) = 0 \}.$$

If $Z_k \neq \emptyset$: 1) remove the nodes of the MIN-attractor A_k set of Z_k from the game (along with the transitions that go to A_k). If the game still has nodes, increment k by 1 and go to step 2 (otherwise stop).

5. (Computation of a stationary policy) Compute the values $w_k^{(n)},\dots,w_k^{(1)}$ in the 1-player problems for MIN where MAX uses the n-periodic strategies $\sigma_k^{(n)}=(\mu_k^{(n)},\dots,\mu_k^{(1)}), \sigma_k^{(n-1)}=(\mu_k^{(n-1)},\dots,\mu_k^{(1)},\mu_k^{(n)}),\dots,\sigma_k^{(1)}=(\mu_k^{(1)},\mu_k^{(n)},\dots,\mu_k^{(2)})$:

$$\begin{split} w_k^{(n)} &= T_{\mu_k^{(n)}} \dots T_{\mu_k^{(1)}} w_k^{(n)}, \\ w_k^{(n-1)} &= T_{\mu_k^{(n-1)}} \dots T_{\mu_k^{(1)}} T_{\mu_k^{(n)}} w_k^{(n-1)}, \\ &\vdots & \vdots \\ w_k^{(1)} &= T_{\mu_k^{(1)}} T_{\mu_k^{(n)}} \dots T_{\mu_k^{(2)}} w_k^{(1)}. \end{split}$$

Compute the pointwise maximum $w_k = \max_i w_k(i)$, and identify a policy μ_{k+1} that satisfies:

$$T_{\mu_k} w_k = T w_k$$

Increment k by 1 and go to step 2.

2 A scaling approach

3 Application to the Mean Payoff game

4 Conclusion

We have shown that the problem "Mean Payoff Game" is in P. To our knowledge, this problem was only previously known to be in $NP \cap co - NP$ [?].

It was shown in [?] that any parity game (a game that is central to μ -calculus model checking) on a graph with n vertices and d priorities can be reduced to a mean payoff game on the same graph with edge costs bounded in absolute value by $W = n^d$. As a consequence, Theorem ?? implies that:

Theorem 1. A parity game with n vertices and d priorities can be solved in time ...

Though "Parity Game" was long thought to be in $NP \cap co - NP$ and has recently be shown to be quasi-polynomial [?], it is in fact in P.