期末模拟练习题 10

一、填空题

1.
$$\lim_{\substack{x \to 0 \\ y \to 1}} \frac{2 - xy}{x^2 + y^2} = \underline{\hspace{1cm}}.$$

- 3. 函数 $u = x + y^2 + z^3$ 在点(1, 1, 1)处沿方向 $\overrightarrow{l} = \{1,1,-1\}$ 的方向导数为 ______.

4. 设
$$z = x^3 f(xy, x + y)$$
,则 $\frac{\partial z}{\partial x} =$ ______.

- 5. $z = x^2 + y^2$ 在_____处有极值.
- 6. L 为曲线 $x^2 = y$ 上从点 (0,0) 到点 (1,1) 的一段弧,则 $I = \int_L x ds =$ _______.
- 7. 已知向量场函数为 $\overrightarrow{A} = (y+z)\overrightarrow{i} + (z+x)\overrightarrow{j} + (x+y)\overrightarrow{k}$,则 \overrightarrow{rot} $\overrightarrow{A} = \underline{\qquad}$.
- 8. 某不可压缩流体的速度场函数为 $\vec{V} = \vec{i} + 2\vec{j} + 3\vec{k}$,则该流体流向球面

$$x^2 + y^2 + z^2 = a^2(a > 0)$$
外侧的流量为______.

9. 级数
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{2n}{(n+1)!} (x-2)^{2n}$$
 的收敛区间为 ______.

10. 函数
$$f(x) = e^{2x}$$
的 Maclaurin 级数为 $e^{2x} =$ _________.

二、求曲线
$$\begin{cases} x + y + z = 2 \\ x^2 + y^2 = 1 \end{cases}$$
 在点(1,0,1)处的切线和法平面方程.

$$\Xi$$
、求积分 $I = \int_{L} (x^2y + 3e^x)dx + (\frac{x^3}{3} - y^2)dy$, L 为曲线 $x = y^2$ 上从 $(0,0)$ 到 $(1,1)$ 的一段弧.

四、求积分
$$I=\iint_{\Sigma}zdS$$
,其中, Σ 为曲面 $z=\sqrt{x^2+y^2}$ 夹在平面 $z=1$ 与 $z=2$ 之间的一部分.

五、求曲面积分
$$I=\iint_{\Sigma}zdxdy+xdydz+ydzdx$$
,其中, Σ 为曲面 $z=x^2+y^2$ 被平面 $z=0$ 与平

面z=3截得部分的外侧.

六、求高为R,底面半径为R的密度均匀的正圆锥对其顶点处单位质点的引力.

七、求幂级数的和函数:
$$2019-x-2x^2-3x^3-\cdots-nx^n-\cdots$$
.

八、将 $f(x) = \pi^2 - x^2$ 在 $[-\pi, \pi]$ 上展开成 Fourier 级数,并求级数

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2} = 533 \times \sum_{n=1}^{\infty} \frac{1}{n^2} = 100 \times 1000$$