homework10.2 Origins

Description

Given a directed graph with no loops(edges that connect vertices with themselves), a vertex v is called origin if it is possible to reach every vertex from v. Please find the number of origins in the graph.

Input Format

The first line contains an integer $T(1 \le T \le 100)$, which indicates the number of test cases.

Each test case contains two lines:

The first line contains two integers $n,m(2 \le n \le 10^4,1 \le m \le 10^4)$ - the number of vertices and the number of directed edges.

The second line contains 2m integers $v_1, v_2, ..., v_{2m} (1 \le v_i \le n, 1 \le i \le 2m)$, meaning that there is an edge from v_i to v_{i+1} $(1 \le i \le 2m \text{ and } i \text{ mod } 2 = 1)$.

There is no loop in the graph, but there may be two edges connecting the same pair of vertices.

Output Format

For each test case, output the number of origins in a separate line.

Sample Input	Sample Output
8	1
2 1	2
2 1	0
23	3
212112	1
3 2	3
1331	5
3 5	3
1232213113	

Hint

SCC

複雜度若是O(nm)可以拿到部分分數