



(Node 0 Can be Used to Verify a Closed Circuit)

State Variables: 
$$x = \begin{bmatrix} i_{L1} \\ v_{c1} \end{bmatrix}$$

```
 \begin{aligned} & \text{KVL}(V - A^T e = 0) \\ \begin{bmatrix} v_{v1} \\ v_{L1} \\ v_{S1} \\ v_{S2} \\ v_{C1} \\ v_{R1} \end{bmatrix} - \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = 0 \end{aligned}
```

V1: 
$$v_{v1} = 5$$
  
L1:  $v_{L1} = -10u \times \frac{di_{L1}}{dt}$   
S1:  $i_{S1} = -\frac{1}{R_{S1}} \times v_{S1}$   
S2:  $i_{S2} = -\frac{1}{R_{S2}} \times v_{S2}$   
C1:  $i_{c1} = -10u \times \frac{dv_{c1}}{dt}$   
R1:  $i_{R1} = -\frac{1}{100} \times v_{R1}$ 

## **Matrix Assembly**

On State:  $R_{S1} = 0.01 R_{S2} = 100 Meg$ . Off State:  $R_{S1} = 100 Meg R_{S2} = 0.01$ 

$$\begin{bmatrix} K_i & K_v & 0 \\ 0 & I & -A^T \\ A & 0 & 0 \end{bmatrix} \begin{bmatrix} I \\ V \\ e \end{bmatrix} = \begin{bmatrix} S \\ 0 \\ 0 \end{bmatrix}$$

| Γ0    | 0  | 0  | 0  | 0  | 0  | 1 | 0 | 0                   | 0                   | 0 | 0                | 0  | 0  | 0  |                                                       |   |
|-------|----|----|----|----|----|---|---|---------------------|---------------------|---|------------------|----|----|----|-------------------------------------------------------|---|
| 0     | 0  | 0  | 0  | 0  | 0  | 0 | 1 | 0                   | 0                   | 0 | 0                | 0  | 0  | 0  | r <i>i</i> a                                          |   |
| 0     | 0  | 1  | 0  | 0  | 0  | 0 | 0 | $-\frac{1}{R_{s1}}$ | 0                   | 0 | 0                | 0  | 0  | 0  | $egin{array}{c} i_{v1} \ i_{L1} \ i_{S1} \end{array}$ |   |
| 0     | 0  | 0  | 1  | 0  | 0  | 0 | 0 | 0                   | $-\frac{1}{R_{s2}}$ | 0 | 0                | 0  | 0  | 0  | $i_{S2}$                                              |   |
| 0     | 0  | 0  | 0  | 1  | 0  | 0 | 0 | 0                   | 0                   | 0 | 0                | 0  | 0  | 0  | $i_{C1} \ i_{R1}$                                     |   |
| 0     | 0  | 0  | 0  | 0  | 1  | 0 | 0 | 0                   | 0                   | 0 | $-\frac{1}{100}$ | 0  | 0  | 0  | $egin{array}{c} v_{v1} \ v_{L1} \end{array}$          | _ |
| 0     | 0  | 0  | 0  | 0  | 0  | 1 | 0 | 0                   | 0                   | 0 | 0                | -1 | 0  | 0  | $v_{S1}$                                              |   |
| 0     | 0  | 0  | 0  | 0  | 0  | 0 | 1 | 0                   | 0                   | 0 | 0                | 1  | -1 | 0  | $v_{S2}$                                              |   |
| 0     | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 1                   | 0                   | 0 | 0                | 0  | 1  | 0  | $\begin{vmatrix} v_{S2} \\ v_{C1} \end{vmatrix}$      |   |
| 0     | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0                   | 1                   | 0 | 0                | 0  | 1  | -1 | $ v_{R1} $                                            |   |
| 0     | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0                   | 0                   | 1 | 0                | 0  | 0  | 1  | $\begin{vmatrix} v_{R1} \\ v_1 \end{vmatrix}$         |   |
| 0     | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0                   | 0                   | 0 | 1                | 0  | 0  | 1  | $\begin{vmatrix} v_1 \\ v_2 \end{vmatrix}$            |   |
| 1     | -1 | 0  | 0  | 0  | 0  | 0 | 0 | 0                   | 0                   | 0 | 0                | 0  | 0  | 0  | $\begin{bmatrix} v_2 \\ v_3 \end{bmatrix}$            |   |
| 0     | 1  | -1 | -1 | 0  | 0  | 0 | 0 | 0                   | 0                   | 0 | 0                | 0  | 0  | 0  | L V 3 J                                               |   |
| $L_0$ | 0  | 0  | 1  | -1 | -1 | 0 | 0 | 0                   | 0                   | 0 | 0                | 0  | 0  | 0  |                                                       |   |

 $d v_{c1}$  $-10u \times -$ 

State Variables:  $x = \begin{bmatrix} i_{L1} \\ v_{c1} \end{bmatrix}$ 

Now how can we get  $\frac{dx}{dt} = Ax + Bu$  from the following equations?

$$x = \begin{bmatrix} i_{L1} \\ v_{c1} \end{bmatrix}$$
 ,  $u = 5$ 

| ſ | 0 | 0  | 0  | 0  | 0  | 0  | 1 | 0 | 0           | 0              | 0 | 0   | 0  | 0  | 0 7 |                                                       |   |                                  |
|---|---|----|----|----|----|----|---|---|-------------|----------------|---|-----|----|----|-----|-------------------------------------------------------|---|----------------------------------|
|   | 0 | 0  | 0  | 0  | 0  | 0  | 0 | 1 | 0           | 0              | 0 | 0   | 0  | 0  | 0   |                                                       |   | 5 , ]                            |
|   | 0 | 0  |    | 0  |    |    |   | • | 1           | 0              | 0 | 0   |    |    | 0   | $\lceil \iota_{v1} \rceil$                            |   | $-10u \times \frac{di_{L1}}{dt}$ |
|   | 0 | 0  | 1  | 0  | 0  | 0  | 0 | 0 | $-{R_{s1}}$ | 0              | 0 | 0   | 0  | 0  | 0   | $i_{L1}$                                              |   | $-10a \wedge \frac{dt}{dt}$      |
|   |   |    |    |    |    |    |   |   | 1181        | 1              |   |     |    |    |     | $i_{S1}$                                              |   | 0                                |
|   | 0 | 0  | 0  | 1  | 0  | 0  | 0 | 0 | 0           | $-\frac{1}{D}$ | 0 | 0   | 0  | 0  | 0   | $i_{S2}$                                              |   | 0                                |
|   | • | 0  | 0  | 0  |    | 0  |   | • | 0           | $R_{s2}$       | 0 | 0   | 0  | 0  | 0   | $ i_{C1} $                                            |   | $d v_{c1}$                       |
|   | 0 | 0  | 0  | 0  | 1  | 0  | 0 | 0 | 0           | 0              | 0 | 0   | 0  | 0  | 0   | $ i_{R1} $                                            |   | $-10u \times \frac{dt}{dt}$      |
|   | 0 | 0  | 0  | 0  | 0  | 1  | 0 | 0 | 0           | 0              | 0 | _ 1 | 0  | 0  | 0   | $ v_{v1} $                                            |   | 0                                |
|   |   |    |    |    |    |    |   |   |             |                |   | 100 |    |    |     | $  v_{L1}  $                                          | = | 0                                |
|   | 0 | 0  | 0  | 0  | 0  | 0  | 1 | 0 | 0           | 0              | 0 | 0   | -1 | 0  | 0   | $  v_{S1}  $                                          |   | 0                                |
|   | 0 | 0  | 0  | 0  | 0  | 0  | 0 | 1 | 0           | 0              | 0 | 0   | 1  | -1 | 0   | $\begin{vmatrix} v_{S1} \\ v_{S2} \end{vmatrix}$      |   | 0                                |
|   | 0 | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 1           | 0              | 0 | 0   | 0  | 1  | 0   | $\begin{vmatrix} v_{32} \\ v_{C1} \end{vmatrix}$      |   | 0                                |
|   | 0 | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0           | 1              | 0 | 0   | 0  | 1  | -1  |                                                       |   | 0                                |
|   | 0 | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0           | 0              | 1 | 0   | 0  | 0  | 1   | $\left egin{array}{c} v_{R1} \ v_1 \end{array} ight $ |   | 0                                |
|   | 0 | 0  | 0  | 0  | 0  | 0  | 0 | 0 | 0           | 0              | 0 | 1   | 0  | 0  | 1   | _                                                     |   | 0                                |
|   | 1 | -1 | 0  | 0  | 0  | 0  | 0 | 0 | 0           | 0              | 0 | 0   | 0  | 0  | 0   | $ v_2 $                                               |   | 0                                |
|   | 0 | 1  | -1 | -1 | 0  | 0  | 0 | 0 | 0           | 0              | 0 | 0   | 0  | 0  | 0   | $\lfloor v_3 \rfloor$                                 |   |                                  |
|   | 0 | 0  | 0  | 1  | _1 | _1 | 0 | 0 | 0           | 0              | 0 | 0   | 0  | 0  | 0   |                                                       |   |                                  |

Maybe we can try selection matrix

$$\equiv K_{\mathcal{X}} \begin{bmatrix} I \\ V \\ e \end{bmatrix} = K_{\mathcal{X}} \begin{bmatrix} K_i & K_v & 0 \\ 0 & I & -A^T \\ A & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} S \\ 0 \\ 0 \end{bmatrix}$$

Then we can decompose  $\begin{bmatrix} S \\ 0 \\ 0 \end{bmatrix}$  as  $\begin{bmatrix} S \\ 0 \\ 0 \end{bmatrix} = S_D \frac{dx}{dt} + S_u u$ 

We want 
$$\frac{dx}{dt} = Ax + Bu$$
, we have  $\begin{bmatrix} S \\ 0 \\ 0 \end{bmatrix} = S_D \frac{dx}{dt} + S_u u$ ,  $x = K_x \begin{bmatrix} K_i & K_v & 0 \\ 0 & I & -A^T \\ A & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} S \\ 0 \\ 0 \end{bmatrix}$ 

Then, 
$$x = K_x \begin{bmatrix} K_i & K_v & 0 \\ 0 & I & -A^T \\ A & 0 & 0 \end{bmatrix}^{-1} \begin{pmatrix} S_D \frac{dx}{dt} + S_u u \end{pmatrix} = K_x \begin{bmatrix} K_i & K_v & 0 \\ 0 & I & -A^T \\ A & 0 & 0 \end{bmatrix}^{-1} S_D \frac{dx}{dt} + K_x \begin{bmatrix} K_i & K_v & 0 \\ 0 & I & -A^T \\ A & 0 & 0 \end{bmatrix}^{-1} S_u u$$

$$K_{x} \begin{bmatrix} K_{i} & K_{v} & 0 \\ 0 & I & -A^{T} \\ A & 0 & 0 \end{bmatrix}^{-1} S_{D} \frac{dx}{dt} = x - K_{x} \begin{bmatrix} K_{i} & K_{v} & 0 \\ 0 & I & -A^{T} \\ A & 0 & 0 \end{bmatrix}^{-1} S_{u}u$$

$$\frac{dx}{dt} = \left(K_x \begin{bmatrix} K_i & K_v & 0 \\ 0 & I & -A^T \\ A & 0 & 0 \end{bmatrix}^{-1} S_D \right)^{-1} x - \left(K_x \begin{bmatrix} K_i & K_v & 0 \\ 0 & I & -A^T \\ A & 0 & 0 \end{bmatrix}^{-1} S_D \right)^{-1} K_x \begin{bmatrix} K_i & K_v & 0 \\ 0 & I & -A^T \\ A & 0 & 0 \end{bmatrix}^{-1} S_u u$$

$$y \equiv K_y \begin{bmatrix} V \\ I \\ e \end{bmatrix} = K_y \begin{bmatrix} K_i & K_v & 0 \\ 0 & I & -A^T \\ A & 0 & 0 \end{bmatrix}^{-1} \left( S_D \frac{dx}{dt} + S_u u \right) = \left( K_y L^{-1} S_D A_{system} \right) \cdot x + \left( K_y L^{-1} \left( S_D B_{system} + S_u \right) \right) \cdot u$$



We can build the following data structures in order to assemble SPICE Tableau matrix:

- 1. Branch List
- 2. Node List
- 3. Switch State Sequence

We also need the following Data Structures to assemble the system matrix ABCD

- 1. A List of Which Branch Contains Variables
- 2. A List of Interested Observation Variables from Branches and Nodes
- © Yiming Yang, 2024.