MOD500 Decision Analysis with Artificial Intelligence Support

Enrico Riccardi¹

Department of Energy Resources, University of Stavanger (UiS). 1

Oct 27, 2024

Recap

2 Language models

3 LLMs

Decision trees learning

It is a simple model for supervised classification

Each decision nodes performs a Boolean test (binary split version)

They are build out of DATA!

At each split, we perform the slip that reduce entropy the most.

REMINDER

We need to provide a label!

Decision tree outcome

Decision trees

Pseudo-code

- Compute the entropy of each feature (myopic approach)
- Pick the feature with the maximum entropy
- For each value of the selected feature, compute the entropy of the new population
- Compute the Information Gain by splitting the dataset
- Repeat for the number of desired splits

Decision trees in Python

```
HHHH
MOD500 tutorial: Decision tree minimal example
1111111
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier, plot_tree
iris = load_iris()
X = iris.data
y = iris.target
clf = DecisionTreeClassifier(max_leaf_nodes=10,
                              criterion='entropy')
clf.fit(X, y)
plot_tree(clf, proportion=True, filled=True)
plt.show()
```

Tutorial [4]

Generate (at least) 4 different probability distributions

Make a meaningful label, and then make a decision tree from the data generated

(Use the given template to sort out Python programming part if you need)

Recap

2 Language models

3 LLMs

Language models

A language model is a probability distribution over sequences of words [1].

Jurafsky and Martin: Speech and Language Processing, 2023

$$p(x_1,...,x_n) = \prod_{i=1}^n p(x_i|x< i)$$

P(Twinkle twinkle little star, how I wonder what you are.) = 0.99 P(Twinkle twinkle little moon, how I wonder what you are.) = 0.75 P(Twinkle twinkle little star, how I what you are.) = 0.3 P(Are you what I wonder I how star, little twinkle, twinkle.) = 0.02

Language models

A language model is a probability distribution over sequences of words [1].

Jurafsky and Martin: Speech and Language Processing, 2023

$$p(x_1,...,x_n) = \prod_{i=1}^n p(x_i|x< i)$$

P(Twinkle twinkle little star, how I wonder what you are.) = 0.99 P(Twinkle twinkle little moon, how I wonder what you are.) = 0.75 P(Twinkle twinkle little star, how I what you are.) = 0.3 P(Are you what I wonder I how star, little twinkle, twinkle.) = 0.02

Language models

A language model is a probability distribution over sequences of words [1].

Jurafsky and Martin: Speech and Language Processing, 2023

$$p(x_1,...,x_n) = \prod_{i=1}^n p(x_i|x< i)$$

P(Twinkle twinkle little star, how I wonder what you are.) = 0.99 P(Twinkle twinkle little moon, how I wonder what you are.) = 0.75 P(Twinkle twinkle little star, how I what you are.) = 0.3 P(Are you what I wonder I how star, little twinkle, twinkle.) = 0.02

Vector representations

Vector representation

- tokenization
- word2vec

100	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Vector representations

Vector representation

- tokenization
- word2vec

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	•••
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Vector representations

Vector representation

- tokenization
- word2vec

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Table of co-occurrences of the words in Wikipedia

- One dimension for each word > long
- Many values are 0 > sparse

Cherry picking

100	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Table of co-occurrences of the words in Wikipedia

- One dimension for each word > long
- Many values are 0 > sparse

Cherry picking

100	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Table of co-occurrences of the words in Wikipedia

- One dimension for each word > long
- ullet Many values are 0 -> sparse

Cherry picking

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Table of co-occurrences of the words in Wikipedia

- One dimension for each word > long
- ullet Many values are 0 -> sparse

Cherry picking

Vector similarity

Metric alert

How close are two words?

Cosine similarity

A popular metric to measure the similarity between sentences

cosinesimilarity =
$$S_C(A, B) = cos(\theta) = \frac{A \cdot B}{||A|| ||B||}$$

Cosine similarity

A popular metric to measure the similarity between sentences

cosinesimilarity =
$$S_C(A, B) = cos(\theta) = \frac{A \cdot B}{||A|| \ ||B||}$$

- A neural network designed to explicitly take into account the long-range dependencies between words
- Sequence-to-sequence models that transform an input vectors $(x_1, ..., x_n)$ to some output vectors $(y_1, ..., y_n)$ of the same length
- Transformers are made up of stacks of transformer blocks
- Attention allows to directly extract and use information from arbitrarily long contexts

- A neural network designed to explicitly take into account the long-range dependencies between words
- Sequence-to-sequence models that transform an input vectors $(x_1, ..., x_n)$ to some output vectors $(y_1, ..., y_n)$ of the same length
- Transformers are made up of stacks of transformer blocks
- Attention allows to directly extract and use information from arbitrarily long contexts

- A neural network designed to explicitly take into account the long-range dependencies between words
- Sequence-to-sequence models that transform an input vectors $(x_1, ..., x_n)$ to some output vectors $(y_1, ..., y_n)$ of the same length
- Transformers are made up of stacks of transformer blocks.
- Attention allows to directly extract and use information from arbitrarily long contexts

- A neural network designed to explicitly take into account the long-range dependencies between words
- Sequence-to-sequence models that transform an input vectors $(x_1, ..., x_n)$ to some output vectors $(y_1, ..., y_n)$ of the same length
- Transformers are made up of stacks of transformer blocks.
- Attention allows to directly extract and use information from arbitrarily long contexts

- A neural network designed to explicitly take into account the long-range dependencies between words
- Sequence-to-sequence models that transform an input vectors $(x_1, ..., x_n)$ to some output vectors $(y_1, ..., y_n)$ of the same length
- Transformers are made up of stacks of transformer blocks.
- Attention allows to directly extract and use information from arbitrarily long contexts

Encoder model

From an input sequence to a contextualised representation of each input element

Decoder model

Encoder model

From an input sequence to a contextualised representation of each input element

Decoder mode

Encoder model

From an input sequence to a contextualised representation of each input element

Decoder model

Encoder model

From an input sequence to a contextualised representation of each input element

Decoder model

Recap

2 Language models

3 LLMs

RAGs

Reducing hallucinations

Retrieval Augmented Generation

$$p(x_1, ..., x_n) = \prod_{i=1}^n p(x_i | x < i; [Q:])$$

where [Q:] is additional information

Combining different information sources with different (assumed) reliability

Reducing hallucinations

Retrieval Augmented Generation

$$p(x_1,...,x_n) = \prod_{i=1}^n p(x_i|x < i; [Q:])$$

where [Q:] is additional information

Combining different information sources with different (assumed) reliability

RAGs

Reducing hallucinations

Retrieval Augmented Generation

$$p(x_1,...,x_n) = \prod_{i=1}^n p(x_i|x < i; [Q:])$$

where [Q:] is additional information

Combining different information sources with different (assumed) reliability

Large Language Model (LLM)	Knowledge Retrieval System (KRS)	Integrator		
Base Prompt Architecture Retrieve Generate	Information between the semantic similarly measures Techniques document making document making algorithms	Fusion attention-based mechanisms conditions probability models applied by LLM attention-based appointment of the spreaches appointm		
Foundation BERT Models GPT-4	Knowledge Linking the KRS Base Wilkpoots or domain-specific distinctes	Fact-checking cose-develop entered information with the and Consistency costs of the costs of th		
Pre-trained Model, fine-tuned for specific enterprise needs	Real-time Eve data feeds Data enabling response Data Da	Explanation generated response, building four erd building four erd building four erd reforment reforement		

Learn more!

- Speech and Language Processing, Chapter 9 (Transformers) and 10 (Large Language Models), Dan Jurafsky and James H. Martin 17
- The Illustrated Transformer, Jay Alammar