

Ciencia de Redes (Humanas y Sociales) #1C

Carlos Sarraute

Instituto de Cálculo, Abril-Junio 2019

Los 7 puentes de Königsberg

Se pueden cruzar los 7 puentes, sin caminar dos veces por el mismo puente?

Leonard Euler

Se pueden cruzar los 7 puentes, sin caminar dos veces por el mismo puente?

Se pueden cruzar los 7 puentes, sin caminar dos veces por el mismo puente?

1735: Teorema de Euler:

- a) Si un grafo tiene más de dos nodos de grado impar, no hay ruta.
- b) Si un grafo es conexo y no tiene nodos de grados impares, tiene al menos una ruta.

PODER DE LA REPRESENTACIÓN MATEMÁTICA

Redes y grafos

COMPONENTES DE UN SISTEMA COMPLEJO

- componentes: nodos, vertices
- interacciones: vínculos, enlaces, aristas
- sistema: red, grafo
 (N,L)

N

REDES O GRAFOS?

red se refiere en general al sistema real

- WWW,
- red social
- red metabolica

Lenguaje: (Red, nodos, vínculos)

grafo: representación matemática de una red

- Grafo de la web,
- Grafo social (por ejemplo de Facebook)

Lenguaje: (Grafo, vertices, aristas)

En la mayoría de los casos se utilizan los dos términos de manera intercambiable.

UN LENGUAJE COMÚN

ELEGIR LA REPRESENTACIÓN COMO GRAFO

La elección de la representación como grafo adecuada determina nuestra capacidad para utilizar la teoría de red con éxito.

En algunos casos hay una representación única e inequívoca. En otros casos, la representación no es de ninguna manera única.

Ejemplo: como pasar de registros de llamados a un grafo?

REDES DIRIGIDAS VS. NO DIRIGIDAS

No dirigido

Enlaces: no dirigidos (simetricos)

Grafo:

Enlaces no dirigidos:

Vínculo de coautor Red de actors Interacciones entre proteinas

Dirigido

Links: directed (arcs).

Digrafo = directed graph:

Enlaces dirigidos:

URLs en la web Llamados telefónicos Reacciones metabolicas

Reference Networks

NETWORK	NODES	LINKS	DIRECTED UNDIRECTED	N	L
Internet	Routers	Internet connections	Undirected	192,244	609,066
WWW	Webpages	Links	Directed	325,729	1,497,134
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594
Mobile Phone Calls	Subscribers	Calls	Directed	36,595	91,826
Email	Email addresses	Emails	Directed	57,194	103,731
Science Collaboration	Scientists	Co-authorship	Undirected	23,133	93,439
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908
Citation Network	Paper	Citations	Directed	449,673	4,689,479
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2.930

http://networksciencebook.com/translations/en/resources/data.html

Grado, grado promedio, distribución de grafos

Grado del nodo: cantidad de enlaces que conectan con el nodo

$$k_A = 1$$
 $k_B = 4$

En los *grafos dirigidos* se puede definir un in-degree y out-degree. El grado (total) es la suma de in- y out-degree.

$$k_C^{in} = 2 \quad k_C^{out} = 1 \quad k_C = 3$$

Source: nodo con $k^{in}=0$; Sink: nodo con $k^{out}=0$.

No dirigido

$$\langle k \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} k_i \qquad \sum_{i=1}^{N} k_i = ?$$

N = cantidad de nodos en el grafo

L = cantidad de enlaces / vínculos

$$\langle k \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} k_i \qquad \langle k \rangle \equiv \frac{2L}{N}$$

No dirigido

$$\langle k \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} k_i \qquad \langle k \rangle \equiv \frac{2L}{N}$$

$$\langle k^{in} \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} k_i^{in}, \langle k^{out} \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} k_i^{out}, \langle k^{in} \rangle = \langle k^{out} \rangle$$

No dirigido

$$\langle k \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} k_i \qquad \langle k \rangle \equiv \frac{2L}{N}$$

$$\langle k^{in} \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} k_i^{in}, \langle k^{out} \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} k_i^{out}, \langle k^{in} \rangle = \langle k^{out} \rangle$$

$$\langle k \rangle \equiv \frac{L}{N}$$

Grado promedio

NETWORK	NODES	LINKS	DIRECTED UNDIRECTED	N	L	(k)
Internet	Routers	Internet connections	Undirected	192,244	609,066	6.33
WWW	Webpages	Links	Directed	325,729	1,497,134	4.60
Power Grid	Power plants, transformers	Cables	Undirected	4,941	6,594	2.67
Mobile Phone Calls	Subscribers	Calls	Directed	36,595	91,826	2.51
Email	Email addresses	Emails	Directed	57,194	103,731	1.81
Science Collaboration	Scientists	Co-authorship	Undirected	23,133	93,439	8.08
Actor Network	Actors	Co-acting	Undirected	702,388	29,397,908	83.71
Citation Network	Paper	Citations	Directed	449,673	4,689,479	10.43
E. Coli Metabolism	Metabolites	Chemical reactions	Directed	1,039	5,802	5.58
Protein Interactions	Proteins	Binding interactions	Undirected	2,018	2,930	2.90

DISTRIBUCIÓN DE GRADOS

Distribución de grados

P(k): probabilidad de que un nodo al azar tenga grado k

 $N_k = \#$ nodos con grado k

$$P(k) = N_k / N \rightarrow plot$$

DISTRIBUCIÓN DE GRADOS

Red de interacción de proteinas de la levadura

TOPOLOGÍA DE INTERNET

On power-law relationships of the Internet topology Michalis Faloutsos, Petros Faloutsos, Christos Faloutsos https://doi.org/10.1145/316194.316229

Próximas clases

- 1. Introducción.
- 2. Teoría de Grafos: Redes y grafos.
- 3. Redes aleatorias y modelos de redes.
- 4. La propiedad "libre de escala".
- 5. Comunidades. Modularidad.
- 6. Difusión en redes.
- 7. Inferencias en grafos sociales.
- 8. Redes socio económicas.
- 9. Movilidad geográfica y redes sociales.