

EECS 489Computer Networks

IPv6, NAT, Tunneling, and VPN

Agenda

- NAT
- Tunneling
- VPN

The IP Address Space

- Address space crunch: Classfull
 - 128 "Class A" blocks of 2²⁴ addresses Too big
 - 16K "Class B" blocks of 16K addresses
 - 2M "Class C" blocks of 256 addresses Too small
 - Wasteful allocation
 - Classless addresses is a solution
 - Now can have networks at arbitrary power of 2 boundary

The IP Address Space - context

- How many IP addresses are there?
 - $2^{32} = 4Billon$
- Compare that with
 - How many people in the world?
 - 8.1 Billion people
 - How many smart phones?
 - ~ 6.8 Billion
 - How many connected computers?
 - ~22 billion (2018)
 - Internet of Things projected to connect 22 billion devices by 2025
 - You get my point right!

IPv6

- Motivated (prematurely) by address exhaustion
 - Addresses four times as big (128-bit)
 - How big is that?
 - 340 trillion, trillion addresses
- Focused on simplifying IP
 - Got rid of all fields that were not absolutely necessary
- Result is an elegant, if unambitious, protocol

IPv4 to IPv6

- Interoperability with IPv4 is necessary for gradual deployment
- Combination of mechanisms:
 - Dual stack operation: IPv6 nodes support both address types
 - Tunnel IP v6 packets through IP v4 clouds
 - IPv4-IPv6 translation at edge of network
 - NAT must not only translate addresses but also translate between IPv4 and IPv6 protocols
 - IPv6 addresses based on IPv4 no benefit!
- Now... More on NATs and tunnels

Network Address Translators (NATs)

- NATs originally invented as a quick and dirty hack to create more addresses
- Took on a life of their own
 - May have substantially delayed IPv6 deployment by reducing the address pressure
 - You probably encounter them every day

NAT

- Not enough IP addresses for every host in organization
- Security
 - Don't want every machine in organization known to outside world
 - Want to control or monitor traffic in / out of organization

Reducing IP Addresses

- Most machines within organization are used by individuals
 - For most applications, they act as clients
- Small number of machines act as servers for entire organization
 - E.g., mail server, web, ...
 - All traffic to outside passes through firewall

(Most) machines within organization do not need public IP addresses!

Network Address Translation

Within Organization

- Assign every host an unregistered IP address
 - IP addresses 10/8 & 192.168/16 unassigned
- Route within organization by IP protocol, can do subnetting, ...

Firewall/NAT

- Does not let any packets from internal nodes escape
- Outside world does not need to know about internal addresses

NAT: Opening Client Connection

- Client 192.168.100.5 wants to connect to server 141.211.243.251:80
 - OS assigns ephemeral port (1000)
- Connection request intercepted by firewall
 - Maps client to port of firewall (5000)
 - Creates NAT table entry

Internal Address	Internal Port	NAT Port
192.168.100.5	1000	5000

NAT: Client Request

Firewall acts as proxy for client

Intercepts message from client and marks itself as sender

NAT: Server Response

- Firewall acts as proxy for client
 - Acts as destination for server messages
 - Relabels destination to local addresses

Internal Address	Internal Port	NAT Port
192.168.100.5	1000	5000

NAT: Enabling Servers

Internal Address	Internal Port	NAT Port
192.168.100.3	80	80

Port Mapping

- Manually configure NAT table to include entry for well-known port
- External users give address 145.12.131.7:80
- Requests forwarded to server

NAT – Pros and Cons

Advantages:

- Hides IP addresses used in internal network
 - Easy to change ISP: only NAT box needs to have IP address
 - Fewer registered IP addresses required
- Basic protection against remote attack
 - Does not expose internal structure to outside world
 - Can control what packets come in and out of system
 - Can reliably determine whether packet from inside or outside
 Disadvantages

Disadvantages

- Contrary to the "open addressing" scheme envisioned for IP Addressing
- Hard to support peer-to-peer applications.
 Peer-peer apps, multi-player games have problems who is the server?

Tunneling

Motivation

- There are many cases where not all routers have the same features or consistent state
- An experimental IP feature is only selectively deployed how do we use this feature e-e?
- A few are using a protocol other than IPv4 how can they communicate?
 - E.g., incremental deployment of IPv6
- I am traveling with a UMich laptop how can I can I keep my UMich IP address?
 E.g., must have UMich address to use services

Tunneling

- Force a packet to go to a specific point in the network.
 - Path taken is different from the regular routing
- Achieved by adding an extra IP header to the packet with a new destination address.
 - Similar to putting a letter in another envelope
 - preferable to using IP source routing option
- Used increasingly to deal with special routing requirements or new features.
 - Mobile IP,
 - Multicast, IPv6, research, ...

IP-in-IP Tunneling

- Described in RFC 1993.
- IP source and destination address identify tunnel endpoints.
- Protocol id = 4.
 - IP
- Several fields are copies of the inner-IP header.
 - TOS, some flags, ..
- Inner header is not modified, except for decrementing TTL.

Tunneling Example

Tunneling Applications

- Virtual private networks.
 - Connect subnets of a corporation using IP tunnels
 - Often combined with IP Sec
- Support for new or unusual protocols.
 - Routers that support the protocols use tunnels to "bypass" routers that do not support it
 - E.g. multicast, IPv6
- Force packets to follow non-standard routes.
 - Routing is based on outer-header
 - E.g. mobile IP

Virtual Private Networks through Tunneling

- Concept
 - Appears as if two hosts connected directly
- Usage in VPN
 - Create tunnel between client & firewall
 - Remote client appears to have direct connection to internal network

VPN Example

Zorello, Ligia & Troia, Sebastian & Giannotti, Serena & Alvizu, Rodolfo & Bregni, Stefano & Maier, Guido. (2020).

On the Network Slicing for Enterprise Services with Hybrid SDN. 10.1109/LATINCOM50620.2020.9282318.

