1196 LOGIC

5.152 equal_sboxes

DESCRIPTION	LINKS	LOGIC

Origin Geometry, derived from [338]

Constraint equal_sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym equal.

INTEGERS : collection(v-int)
POSITIVES : collection(v-int)

Arguments K : int

DIMS : sint

OBJECTS : collection(oid-int,sid-dvar,x-VARIABLES)
SBOXES : collection(sid-int,t-INTEGERS,1-POSITIVES)

Restrictions

```
|VARIABLES| \ge 1
|\mathtt{INTEGERS}| \geq 1
|\mathtt{POSITIVES}| \geq 1
required(VARIABLES, v)
|VARIABLES| = K
required(INTEGERS, v)
|INTEGERS| = K
required(POSITIVES, v)
|POSITIVES| = K
{\tt POSITIVES.v}>0
K > 0
\mathtt{DIMS} \geq 0
{\tt DIMS} < {\tt K}
increasing_seq(OBJECTS,[oid])
required(OBJECTS, [oid, sid, x])
{\tt OBJECTS.oid} \geq 1
OBJECTS.oid \leq |OBJECTS|
{\tt OBJECTS.sid} \geq 1
\texttt{OBJECTS.sid} \leq |\texttt{SBOXES}|
|\mathtt{SBOXES}| \geq 1
required(SBOXES,[sid,t,1])
{\tt SBOXES.sid} \geq 1
\mathtt{SBOXES.sid} \leq |\mathtt{SBOXES}|
do_not_overlap(SBOXES)
```

20070622 1197

Holds if, for each pair of objects (O_i, O_j) , $i \neq j$, O_i and O_j coincide exactly with respect to a set of dimensions depicted by DIMS. O_i and O_j are objects that take a shape among a set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box is described by a box in a K-dimensional space at a given offset (from the origin of the shape) with given sizes. More precisely, a shifted box is an entity defined by its shape id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted boxes sharing the same shape id. An object is an entity defined by its unique object identifier oid, shape id sid and origin x.

Two objects O_i and object O_j are equal with respect to a set of dimensions depicted by DIMS if and only if, for all shifted box s_i associated with O_i there exists a shifted box s_j such that, for all dimensions $d \in DIMS$, (1) the origins of s_i and s_j coincide and, (2) the ends of s_i and s_j also coincide.

```
2, \{0, 1\},
                                \mathtt{sid}-2
       \operatorname{oid} - 2 \quad \operatorname{sid} - 2
                                \operatorname{sid} - 2 \quad \mathbf{x} - \langle 4, 1 \rangle
                                                             1-\langle 1,2\rangle,
                                           \langle 2, 1 \rangle
                                                              1 - \langle 1, 1 \rangle
                                t - \langle 0, 0 \rangle
                                                              1 - \langle 1, 1 \rangle
```

Figure 5.342 shows the objects of the example. Since these objects coincide exactly the equal_sboxes constraint holds.

Typical

 $|\mathtt{OBJECTS}| > 1$

Symmetries

- Items of OBJECTS are permutable.
- Items of SBOXES are permutable.
- Items of OBJECTS.x, SBOXES.t and SBOXES.1 are permutable (same permutation used).

Arg. properties

Suffix-contractible wrt. OBJECTS.

Remark

One of the eight relations of the Region Connection Calculus [338]. The constraint equal_sboxes is a restriction of the original relation since it requires to have exactly the same partition between the different objects.

See also

common keyword: contains_sboxes, coveredby_sboxes, covers_sboxes. disjoint_sboxes, inside_sboxes. meet_sboxes(rcc8), non_overlap_sboxes (geometrical constraint, logic), overlap_sboxes (rcc8).

Keywords

constraint type: logic.

Example

Purpose

1198 LOGIC

Figure 5.342: (B) The three mutually coinciding objects O_1 , O_2 , O_3 of the **Example** slot respectively assigned shape S_2 ; (A) shapes S_1 , S_2 , S_3 and S_4 are respectively made up from 1, 3, 3 and 1 disjoint shifted box.

geometry: geometrical constraint, rcc8. **miscellaneous:** obscure.

Logic

```
\bullet \; \mathtt{origin}(\mathtt{O1},\mathtt{S1},\mathtt{D}) \stackrel{\mathrm{def}}{=} \mathtt{O1}.\mathtt{x}(\mathtt{D}) + \mathtt{S1.t}(\mathtt{D})
• end(01,S1,D) \stackrel{\text{def}}{=} 01.x(D) + S1.t(D) + S1.1(D)
• equal_sboxes(Dims, 01, S1, 02, S2) \stackrel{\text{def}}{=}
        orall D \in 	exttt{Dims}
                     \mathtt{origin}(\mathtt{O1},\mathtt{S1},\mathtt{D}) =
                     \mathtt{origin}(\mathtt{O2},\mathtt{S2},\mathtt{D})
                     end(01,S1,D) =
                     end(02, S2, D)
• equal_objects(Dims, O1, O2) \stackrel{\text{def}}{=}
        \forall \mathtt{S1} \in \mathtt{sboxes}([\mathtt{01.sid}])
          \exists \mathtt{S2} \in \mathtt{sboxes} ( [ \mathtt{02.sid} ] )
                                          Dims,
                                           01,
          equal_sboxes
                                           S1,
                                           02,
• all_equal(Dims,OIDS) \stackrel{\mathrm{def}}{=}
        \forall \mathtt{O1} \in \mathtt{objects}(\mathtt{OIDS})
         \forall \texttt{O2} \in \texttt{objects}(\texttt{OIDS})
               \texttt{O1.oid} = \Rightarrow
               {\tt O2.oid}-1
                                               Dims,
             equal_objects
• all_equal(DIMENSIONS, OIDS)
```