归纳与递归

离散数学 逻辑和证明

南京大学计算机科学与技术系

内容提要

- 数学归纳法
- 强数学归纳法
- 运用良序公理来证明
- 递归定义
- 结构归纳法

数学归纳法

- 证明目标
 - $\forall n P(n)$ //n的论域为正整数集合
- 证明框架
 - 基础步骤: P(1)为真
 - 归纳步骤:对任意正整数 $k, P(k) \Rightarrow P(k+1)$.

//即,证明 $\forall k (P(k) \rightarrow P(k+1))$

• 因此,对任意正整数n, P(n) 成立. // 即: $\forall n P(n)$

数学归纳法 (有效性)

- 良序公理
 - 正整数集合的非空子集都有一个最小元素
- 数学归纳法的有效性(归谬法)
 - 假设 $\forall n P(n)$ 不成立,则 $\exists n (\neg P(n))$ 成立.
 - \diamondsuit S={ $n \in \mathbb{Z}^+ \mid \neg P(n)$ }, S是非空子集.
 - 根据良序公理, S有最小元素, 记为m.
 - P(m)不成立, $m \neq 1$, 但是 $(m-1) \notin S$, 即P(m-1)成立.
 - 根据归纳步骤,P(m)成立,矛盾.
 - 因此, $\forall n P(n)$ 成立.

数学归纳法(举例)

- H_k=1+1/2+...+1/k (k为正整数)
- 证明: H₂ⁿ ≥1+n/2 (n为正整数)
 - 基础步骤: P(1)为真, H₂=1+1/2
 - 归纳步骤:对任意正整数k, $P(k) \Rightarrow P(k+1)$. $H_2^{k+1} = H_2^k + 1/(2^k+1) + ... + 1/2^{k+1}$

$$\geq (1+k/2)+2^k(1/2^{k+1})=1+(1+k)/2$$

• 因此,对任意正整数n, P(n)成立.

数学归纳法(举例)

- 猜测前n个奇数的求和公式,并证明之。
 - 1=1
 - 1+3=4
 - 1+3+5=9
 - 1+3+5+7=16
 - • •
 - 1+3+...+(2n-1)=n² (n为正整数)
 - 运用数学归纳法证明(练习)

运用数学归纳法时犯的错误

- 平面上任何一组相互间不平行的直线必相交于一点.
 - 基础步骤: P(2)为真
 - 归纳步骤:对任意正整数k, $P(k) \Rightarrow P(k+1)$.
 - 前k条交于 p_1 .
 - 后k条交于 p_2 .
 - $p_1=p_2$

强数学归纳法

- 证明目标
 - $\forall n P(n)$ //n的论域为正整数集合
- 证明框架
 - 基础步骤: P(1)为真
 - 归纳步骤:对任意正整数k, P(1), ..., $P(k) \Rightarrow P(k+1)$.

//即,证明
$$\forall k (P(1) \land ... \land P(k) \rightarrow P(k+1))$$

• 因此,对任意正整数n, P(n) 成立. // 即: $\forall n P(n)$

强数学归纳法(一般形式)

- 设P(n)是与整数n有关的陈述, a和b是两个给定的整数,且 $a \le b$.
- 如果能够证明下列陈述
 - P(a), P(a+1), ..., P(b).
 - 对任意 $k \geq b$, $P(a) \wedge ... \wedge P(k) \rightarrow P(k+1)$
- 则下列陈述成立
 - 对任意 $n \ge a, P(n)$.

 $\{n \in \mathbb{Z} \mid n \geq a\}$ 是良序的

强数学归纳法(举例)

- 任意整数n(n ≥2)可分解为(若干个)素数的乘积
 - n = 2.
 - 考察 k+1.
- 用4分和5分就可以组成12分及以上的每种邮资.
 - P(12), P(13), P(14), P(15).
 - 对任意 $k \ge 15$, $P(12) \land ... \land P(k) \rightarrow P(k+1)$

数学归纳法(举例)

- 对每个正整数n ≥ 4, n! > 2ⁿ
 - 基础步骤: P(4)为真, 24 > 16
 - 归纳步骤:对任意正整数k ≥4, P(k) ⇒P(k+1).
 (k+1)!=(k+1) k! > (k+1) 2^k > 2^{k+1}
 - 因此,对任意正整数 $n \ge 4$, P(n) 成立.

运用良序公理来证明(举例)

- 设a是整数, d是正整数, 则存在唯一的整数q和r满足
 - $0 \le r < d$
 - a = dq + r
- 证明
 - \diamondsuit S={a-dq | 0≤a-dq , q∈Z}, S非空.
 - 非负整数集合具有良序性
 - S有最小元,记为 $r_0 = a dq_0$.
 - 可证 $0 \le r_0 < d$

运用良序公理来证明(举例)

在循环赛胜果图中,若存在长度为m(m≥3)的回路,则必定存在长度为3的回路。

备注: $a_i \rightarrow a_j$ 表示 a_i 赢了 a_j

证明

- 设最短回路的长度为k (k≥3) //良序公理的保证
- $a_1 \rightarrow a_2 \rightarrow a_3 \rightarrow \dots \rightarrow a_k \rightarrow a_1$

递归定义(N上的函数)

- 递归地定义自然数集合N上的函数。
 - 基础步骤: 指定这个函数在0处的值;
 - 递归步骤:给出从较小处的值来求出当前的值之规则。
- 举例, 阶乘函数F(n)=!n的递归定义
 - F(0)=1
 - $F(n)=n\cdot F(n-1)$ for n>0

Fibonacci 序列

- $f_0 = 0$,
- $f_1 = 1$,
- $f_n = f_{n-1} + f_{n-2}$, 对任意 $n \ge 2$.
- 其前几个数
 - 0, 1, 1, 2, 3, 5, 8, ...
- 证明: 对对任意 $n \ge 0$, $f_n = \frac{\alpha^n \beta^n}{\alpha \beta}$

其中,
$$\alpha = \frac{1+\sqrt{5}}{2}, \beta = \frac{1-\sqrt{5}}{2}.$$

归纳证明: Fibonacci 序列

- 验证: 当n=0,1时, 陈述正确。
- 对于k+1, $f_{k+1} = f_k + f_{k-1}$ $= \frac{\alpha^k \beta^k}{\alpha \beta} + \frac{\alpha^{k-1} \beta^{k-1}}{\alpha \beta}$ $= \frac{\left(\alpha^k + \alpha^{k-1}\right) \left(\beta^k + \beta^{k-1}\right)}{\alpha \beta}$ $= \frac{\alpha^{k+1} \beta^{k+1}}{\alpha \beta}.$

注意:
$$\alpha^2 = \alpha + 1$$
,且 $\alpha^{n+1} = \alpha^n + \alpha^{n-1}$ 对任意 $n \ge 1$.

递归定义(集合)

- 递归地定义集合。
 - 基础步骤: 指定一些初始元素;
 - 递归步骤:给出从集合中的元素来构造新元素之规则;
 - 排斥规则(只包含上述步骤生成的那些元素)默认成立
- 举例,正整数集合的子集S
 - *x*∈S
 - 若 $x \in S$ 且 $y \in S$,则 $x+y \in S$ 。

递归定义(举例)

- 字母表Σ上的字符串集合Σ*。
 - 基础步骤: λ∈Σ* (λ表示空串);
- 字符串的长度(Σ^* 上的函数l)。
 - 基础步骤: l(λ)=0;
 - 递归步骤: $l(\omega x) = l(\omega) + 1$, 若 $\omega \in \Sigma^*$ 且 $x \in \Sigma$

递归定义(举例)

- Σ*上的字符串连接运算。
 - 基础步骤: 若ω∈ Σ*, 则 ω·λ=ω;
 - 递归步骤: 若 $\omega_1 \in \Sigma^*$ 且 $\omega_2 \in \Sigma^*$ 以及 $x \in \Sigma$,则 $\omega_1 \cdot (\omega_2 x)$ = $(\omega_1 \cdot \omega_2) x$ 。
 - // ω₁ · ω₂通常也写成ω₁ ω₂

递归定义(举例)

- 复合命题的合式公式。
 - 基础步骤: T, F, s都是合式公式, 其中s是命题变元;
 - 递归步骤: 若E和F是合式公式,则(¬E)、(E∧F)、(E∨F)、(E∨F)和(E↔F)都是合式公式。

结构归纳法

- 关于递归定义的集合的命题,进行结构归纳证明。
 - 基础步骤: 证明对于初始元素来说, 命题成立;
 - 递归步骤:针对生产新元素的规则,若相关元素满足命题,则新元素也满足命题
- 结构归纳法的有效性源于自然数上的数学归纳法
 - 第0步(基础步骤),...

结构归纳法(举例)

- l(xy) = l(x) + l(y), x和y属于 Σ^* 。
- 证明
 - 设P(y)表示:每当x属于 Σ^* ,就有l(xy) = l(x) + l(y)。
 - 基础步骤:每当x属于 Σ^* ,就有 $l(x\lambda) = l(x) + l(\lambda)$ 。
 - 递归步骤: 假设P(y)为真,a属于 Σ , 要证P(ya)为真。
 - 即:每当x属于 Σ^* ,就有l(xya) = l(x) + l(ya)
 - P(y)为真,l(xy) = l(x) + l(y)
 - l(xya) = l(xy) + 1 = l(x) + l(y) + 1 = l(x) + l(ya)

广义结构归纳法(举例)

- N×N是良序的(字典序)
- 递归定义a_{m.n}
 - $a_{0,0} = 0$
 - $a_{m,n} = a_{m-1,n} + 1 \quad (n=0, m>0)$
 - $a_{m,n} = a_{m,n-1} + n \quad (n>0)$
- 归纳证明 $a_{m,n} = m + n(n+1)/2$

0	1	3
1	2	4
2	3	5

作业

- 教材[4.1, 4.2, 4.3]
 - P209-214: 18, 20, 63, 69 (附加题)
 - P220-223: 7, 12, 30, 36
 - P232-236: 24, 32, 52, <u>54</u>(附加题)

