WikipediA

List of OEIS sequences

This article provides a list of integer sequences in the On-Line Encyclopedia of Integer Sequences that have their own English Wikipedia entries.

OEIS link	Name	First elements	Short description
A000002	Kolakoski sequence	{1, 2, 2, 1, 1, 2, 1, 2, 2, 1,}	The <i>n</i> th term describes the length of the <i>n</i> th run
A000010	Euler's totient function $\varphi(n)$	{1, 1, 2, 2, 4, 2, 6, 4, 6, 4,}	$\varphi(n)$ is the number of positive integers not greater than n that are prime to n .
A000027	Natural numbers	{1, 2, 3, 4, 5, 6, 7, 8, 9, 10,}	The natural numbers (positive integers) $n \in \mathbb{N}$.
A000032	Lucas numbers $L(n)$	{2, 1, 3, 4, 7, 11, 18, 29, 47, 76,}	$L(n) = L(n-1) + L(n-2)$ for $n \ge 2$, with $L(0) = 2$ and $L(1) = 1$.
A000040	Prime numbers p_n	{2, 3, 5, 7, 11, 13, 17, 19, 23, 29,}	The prime numbers p_n , with $n \ge 1$.
A000041	Partition numbers P_n	{1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42,}	The partition numbers, number of additive breakdowns of n.
A000043	Mersenne prime exponents	{2, 3, 5, 7, 13, 17, 19, 31, 61, 89,}	Primes p such that $2^p - 1$ is prime.
A000045	Fibonacci numbers $F(n)$	{0, 1, 1, 2, 3, 5, 8, 13, 21, 34,}	$F(n) = F(n-1) + F(n-2)$ for $n \ge 2$, with $F(0) = 0$ and $F(1) = 1$.
A000058	Sylvester's sequence	{2, 3, 7, 43, 1807, 3263443, 10650056950807, 113423713055421844361000443,}	$a(n+1) = a(n) \cdot a(n-1) \cdot \cdots \cdot a(0) + 1 = a(n)^2 - a(n) + 1$ for $n \ge 1$, with $a(0) = 2$.
A000073	Tribonacci numbers	{0, 1, 1, 2, 4, 7, 13, 24, 44, 81,}	$T(n) = T(n-1) + T(n-2) + T(n-3)$ for $n \ge 3$, with $T(0) = 0$ and $T(1) = T(2) = 1$.
A000105	Polyominoes	{1, 1, 1, 2, 5, 12, 35, 108, 369,}	The number of free polyominoes with n cells.
A000108	Catalan numbers C_n	{1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862,}	$C_n = rac{1}{n+1}inom{2n}{n} = rac{(2n)!}{(n+1)! n!} = \prod_{k=2}^n rac{n+k}{k}, n \geq 0.$
A000110	Bell numbers B_n	{1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147,}	B_n is the number of partitions of a set with n elements.
A000111	Euler zigzag numbers E_n	{1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936,}	E_n is the number of linear extensions of the "zig-zag" poset.
A000124	Lazy caterer's sequence	{1, 2, 4, 7, 11, 16, 22, 29, 37, 46,}	The maximal number of pieces formed when slicing a pancake with n cuts.
A000129	Pell numbers P_n	{0, 1, 2, 5, 12, 29, 70, 169, 408, 985,}	$a(n) = 2a(n-1) + a(n-2)$ for $n \ge 2$, with $a(0) = 0$, $a(1) = 1$.
A000142	Factorials n!	{1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880,}	$n! := 1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots \cdot n$ for $n \ge 1$, with $0! = 1$ (empty product).
A000166	Derangements	{1, 0, 1, 2, 9, 44, 265, 1854, 14833, 133496, 1334961, 14684570, 176214841,}	Number of permutations of n elements with no fixed points.
A000203	Divisor function $\sigma(n)$	{1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28,}	$\sigma(n) := \sigma_1(n)$ is the sum of divisors of a positive integer n .
A000215	Fermat numbers F_n	{3, 5, 17, 257, 65537, 4294967297, 18446744073709551617, 340282366920938463463374607431768211457,}	$F_n = 2^{2^n} + 1$ for $n \ge 0$.
A000217	Triangular numbers $t(n)$	{0, 1, 3, 6, 10, 15, 21, 28, 36, 45,}	$t(n) = C(n+1, 2) = \frac{n(n+1)}{2} = 1 + 2 + \dots + n \text{ for } n \ge 1,$ with $t(0) = 0$ (empty sum).
A000238	Polytrees	{1, 1, 3, 8, 27, 91, 350, 1376, 5743, 24635, 108968,}	Number of oriented trees with n nodes.
A000290	Square numbers n^2	{0, 1, 4, 9, 16, 25, 36, 49, 64, 81,}	$n^2 = n \times n$
A000292	Tetrahedral numbers $T(n)$	{0, 1, 4, 10, 20, 35, 56, 84, 120, 165,}	T(n) is the sum of the first n triangular numbers, with $T(0) = 0$ (empty sum).
A000330	Square pyramidal numbers	{0, 1, 5, 14, 30, 55, 91, 140, 204, 285,}	$\frac{n(n+1)(2n+1)}{6}$: The number of stacked spheres in a pyramid with a square base.
A000396	Perfect numbers	{6, 28, 496, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128,}	n is equal to the sum $s(n) = \sigma(n) - n$ of the proper divisors of n .

A000578	Cube numbers n^3	{0, 1, 8, 27, 64, 125, 216, 343, 512, 729,}	$n^3 = n \times n \times n$
A000584	Fifth powers	{0, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 100000,}	n^5
A000668	Mersenne primes	{3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951, 618970019642690137449562111,}	$2^p - 1$ is prime, where p is a prime.
A000793	Landau's function	{1, 1, 2, 3, 4, 6, 6, 12, 15, 20,}	The largest order of permutation of n elements.
A000796	Decimal expansion of π	{3, 1, 4, 1, 5, 9, 2, 6, 5, 3,}	Ratio of a circle's circumference to its diameter.
A000930	Narayana's cows	{1, 1, 1, 2, 3, 4, 6, 9, 13, 19,}	The number of cows each year if each cow has one cow a year beginning its fourth year.
A000931	Padovan sequence	{1, 1, 1, 2, 2, 3, 4, 5, 7, 9,}	$P(n) = P(n-2) + P(n-3)$ for $n \ge 3$, with $P(0) = P(1) = P(2) = 1$.
A000945	Euclid–Mullin sequence	{2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139,}	$a(1) = 2$; $a(n + 1)$ is smallest prime factor of $a(1) a(2) \cdots a(n) + 1$.
A000959	Lucky numbers	{1, 3, 7, 9, 13, 15, 21, 25, 31, 33,}	A natural number in a set that is filtered by a sieve.
A001006	Motzkin numbers	{1, 1, 2, 4, 9, 21, 51, 127, 323, 835,}	The number of ways of drawing any number of nonintersecting chords joining n (labeled) points on a circle.
A001045	Jacobsthal numbers	{0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341,}	$a(n) = a(n-1) + 2a(n-2)$ for $n \ge 2$, with $a(0) = 0$, $a(1) = 1$.
A001065	Sum of proper divisors $s(n)$	{0, 1, 1, 3, 1, 6, 1, 7, 4, 8,}	$s(n) = \sigma(n) - n$ is the sum of the proper divisors of the positive integer n .
A001113	Decimal expansion of <i>e</i>	{2, 7, 1, 8, 2, 8, 1, 8, 2, 8,}	Euler's number in base 10.
A001190	Wedderburn– Etherington numbers	{0, 1, 1, 1, 2, 3, 6, 11, 23, 46,}	The number of binary rooted trees (every node has out- degree 0 or 2) with n endpoints (and $2n-1$ nodes in all).
A001220	Wieferich primes	{1093, 3511}	Primes p satisfying $2^{p-1} \equiv 1 \pmod{p^2}$.
A001263	Narayana numbers	{1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 20, 10, 1,}	$rac{1}{k}inom{n-1}{k-1}inom{n}{k-1}$ read by rows.
A001316	Gould's sequence	{1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8,}	Number of odd entries in row n of Pascal's triangle.
A001358	Semiprimes	{4, 6, 9, 10, 14, 15, 21, 22, 25, 26,}	Products of two primes, not necessarily distinct.
A001462	Golomb sequence	{1, 2, 2, 3, 3, 4, 4, 4, 5, 5,}	a(n) is the number of times n occurs, starting with $a(1) = 1$.
A001608	Perrin numbers P_n	{3, 0, 2, 3, 2, 5, 5, 7, 10, 12,}	$P(n) = P(n-2) + P(n-3)$ for $n \ge 3$, with $P(0) = 3$, $P(1) = 0$, $P(2) = 2$.
A001620	Euler– Mascheroni constant y	{5, 7, 7, 2, 1, 5, 6, 6, 4, 9,}	$\gamma = \lim_{n \to \infty} \left(\sum_{k=1}^n \frac{1}{k} - \ln(n) \right) = \lim_{b \to \infty} \int_1^b \left(\frac{1}{\lfloor x \rfloor} - \frac{1}{x} \right) dx.$
A001622	Decimal expansion of the golden ratio <i>φ</i>	{1, 6, 1, 8, 0, 3, 3, 9, 8, 8,}	$\varphi = \frac{1+\sqrt{5}}{2} = 1.6180339887 \text{ in base 10.}$
A002064	Cullen numbers C_n	{1, 3, 9, 25, 65, 161, 385, 897, 2049, 4609, 10241, 22529, 49153, 106497,}	$C_n = n \cdot 2^n + 1$, with $n \ge 0$.
A002110	Primorials p_n #	{1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870,}	p_n #, the product of the first n primes.
A002113	Palindromic numbers	{0, 1, 2, 3, 4, 5, 6, 7, 8, 9,}	A number that remains the same when its digits are reversed.
A002182	Highly composite numbers	{1, 2, 4, 6, 12, 24, 36, 48, 60, 120,}	A positive integer with more divisors than any smaller positive integer.
A002193	Decimal expansion of √2	{1, 4, 1, 4, 2, 1, 3, 5, 6, 2,}	Square root of 2.
A002201	Superior highly composite	{2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720,}	A positive integer n for which there is an $e>0$ such that

	numbers		$\frac{d(n)}{n^e} \ge \frac{d(k)}{k^e} \text{ for all } k > 1.$
A002378	Pronic numbers	{0, 2, 6, 12, 20, 30, 42, 56, 72, 90,}	$2t(n) = n (n + 1)$, with $n \ge 0$.
A002559	Markov numbers	{1, 2, 5, 13, 29, 34, 89, 169, 194,}	Positive integer solutions of $x^2 + y^2 + z^2 = 3xyz$.
A002808	Composite numbers	{4, 6, 8, 9, 10, 12, 14, 15, 16, 18,}	The numbers n of the form xy for $x > 1$ and $y > 1$.
A002858	Ulam number	{1, 2, 3, 4, 6, 8, 11, 13, 16, 18,}	a(1) = 1; $a(2) = 2$; for $n > 2$, $a(n)$ is least number $> a(n-1)$ which is a unique sum of two distinct earlier terms; semiperfect.
A002863	Prime knots	{0, 0, 1, 1, 2, 3, 7, 21, 49, 165, 552, 2176, 9988,}	The number of prime knots with n crossings.
A002997	Carmichael numbers	{561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341,}	Composite numbers n such that $a^{n-1} \equiv 1 \pmod{n}$ if a is prime to n .
A003154	Star numbers	{1, 13, 37, 73, 121, 181, 253, 337, 433, 541, 661, 793, 937,}	The <i>n</i> th star number is $S_n = 6n(n-1) + 1$.
A003261	Woodall numbers	{1, 7, 23, 63, 159, 383, 895, 2047, 4607,}	$n \cdot 2^n - 1$, with $n \ge 1$.
A003459	Permutable primes	{2, 3, 5, 7, 11, 13, 17, 31, 37, 71,}	The numbers for which every permutation of digits is a prime.
A003601	Arithmetic numbers	{1, 3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27,}	An integer for which the average of its positive divisors is also an integer.
			A number n is colossally abundant iff there is an $\epsilon > 0$ such that for all $k > 1$,
A004490	Colossally abundant numbers	{2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720,}	$rac{\sigma(n)}{n^{1+arepsilon}} \geq rac{\sigma(k)}{k^{1+arepsilon}},$
			where $\boldsymbol{\sigma}$ denotes the sum-of-divisors function.
A005044	Alcuin's sequence	{0, 0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14,}	Number of triangles with integer sides and perimeter n .
A005100	Deficient numbers	{1, 2, 3, 4, 5, 7, 8, 9, 10, 11,}	Positive integers n such that $\sigma(n) < 2n$.
A005101	Abundant numbers	{12, 18, 20, 24, 30, 36, 40, 42, 48, 54,}	Positive integers n such that $\sigma(n) > 2n$.
A005114	Untouchable numbers	{2, 5, 52, 88, 96, 120, 124, 146, 162, 188,}	Cannot be expressed as the sum of all the proper divisors of any positive integer.
A005150	Look-and-say sequence	{1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, 31131211131221, 13211311123113112211,}	A = 'frequency' followed by 'digit'-indication.
A005153	Practical numbers	{1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40}	All smaller positive integers can be represented as sums of distinct factors of the number.
A005165	Alternating factorial	{1, 1, 5, 19, 101, 619, 4421, 35899, 326981, 3301819, 36614981, 442386619, 5784634181, 81393657019,}	n! - (n-1)! + (n-2)! 1!.
A005224	Aronson's sequence	{1, 4, 11, 16, 24, 29, 33, 35, 39, 45,}	"t" is the first, fourth, eleventh, letter in this sentence, not counting spaces or commas.
A005235	Fortunate numbers	{3, 5, 7, 13, 23, 17, 19, 23, 37, 61,}	The smallest integer $m > 1$ such that $p_n\# + m$ is a prime number, where the primorial $p_n\#$ is the product of the first n prime numbers.
A005349	Harshad numbers in base 10	{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12,}	A Harshad number in base 10 is an integer that is divisible by the sum of its digits (when written in base 10).
A005384	Sophie Germain primes	{2, 3, 5, 11, 23, 29, 41, 53, 83, 89,}	A prime number p such that $2p + 1$ is also prime.
A005835	Semiperfect numbers	{6, 12, 18, 20, 24, 28, 30, 36, 40, 42,}	A natural number n that is equal to the sum of all or some of its proper divisors.
A006003	Magic constants	{15, 34, 65, 111, 175, 260,}	Sum of numbers in any row, column, or diagonal of a magic square of order n = 3, 4, 5, 6, 7, 8,
A006037	Weird numbers	{70, 836, 4030, 5830, 7192, 7912, 9272, 10430, 10570, 10792,}	A natural number that is abundant but not semiperfect.

	I		I and the second
A006842	Farey sequence numerators	{0, 1, 0, 1, 1, 0, 1, 1, 2, 1,}	
A006843	Farey sequence denominators	{1, 1, 1, 2, 1, 1, 3, 2, 3, 1,}	
A006862	Euclid numbers	{2, 3, 7, 31, 211, 2311, 30031, 510511, 9699691, 223092871,}	p_n # + 1, i.e. 1 + product of first n consecutive primes.
A006886	Kaprekar numbers	{1, 9, 45, 55, 99, 297, 703, 999, 2223, 2728,}	$X^2 = Ab^n + B$, where $0 < B < b^n$ and $X = A + B$.
A007304	Sphenic numbers	{30, 42, 66, 70, 78, 102, 105, 110, 114, 130,}	Products of 3 distinct primes.
A007318	Pascal's triangle	{1, 1, 1, 1, 2, 1, 1, 3, 3, 1,}	Pascal's triangle read by rows.
A007540	Wilson primes	{5, 13, 563}	Primes p satisfying $(p-1)! \equiv -1 \pmod{p^2}$.
A007588	Stella octangula numbers	{0, 1, 14, 51, 124, 245, 426, 679, 1016, 1449, 1990, 2651, 3444, 4381,}	Stella octangula numbers: $n (2n^2 - 1)$, with $n \ge 0$.
A007770	Happy numbers	{1, 7, 10, 13, 19, 23, 28, 31, 32, 44,}	The numbers whose trajectory under iteration of sum of squares of digits map includes 1.
A007947	Radical of an integer	{1, 2, 3, 2, 5, 6, 7, 2, 3, 10,}	The radical of a positive integer n is the product of the distinct prime numbers dividing n .
A010060	Prouhet-Thue- Morse constant	{0, 1, 1, 0, 1, 0, 0, 1, 1, 0,}	$ au = \sum_{i=0}^{\infty} rac{t_i}{2^{i+1}}.$
A014080	Factorions	{1, 2, 145, 40585,}	A natural number that equals the sum of the factorials of its decimal digits.
A014577	Regular paperfolding sequence	{1, 1, 0, 1, 1, 0, 0, 1, 1, 1,}	At each stage an alternating sequence of 1s and 0s is inserted between the terms of the previous sequence.
A016105	Blum integers	{21, 33, 57, 69, 77, 93, 129, 133, 141, 161, 177,}	Numbers of the form p * q where p and q are distinct primes congruent to 3 (mod 4).
A016114	Circular primes	{2, 3, 5, 7, 11, 13, 17, 37, 79, 113,}	The numbers which remain prime under cyclic shifts of digits.
A018226	Magic numbers	{2, 8, 20, 28, 50, 82, 126,}	A number of nucleons (either protons or neutrons) such that they are arranged into complete shells within the atomic nucleus.
A019279	Superperfect numbers	{2, 4, 16, 64, 4096, 65536, 262144, 1073741824, 1152921504606846976, 309485009821345068724781056,}	Positive integers n for which $\sigma^2(n) = \sigma(\sigma(n)) = 2n$.
A027641	Bernoulli numbers B_n	{1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 5, 0, -691, 0, 7, 0, -3617, 0, 43867, 0,}	
A031214	First elements in all OEIS sequences	{1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,}	One of sequences referring to the OEIS itself.
A033307	Decimal expansion of Champernowne constant	{1, 2, 3, 4, 5, 6, 7, 8, 9, 1,}	Formed by concatenating the positive integers.
A034897	Hyperperfect numbers	{6, 21, 28, 301, 325, 496, 697,}	k -hyperperfect numbers, i.e. n for which the equality $n = 1 + k (\sigma(n) - n - 1)$ holds.
A035513	Wythoff array	{1, 2, 4, 3, 7, 6, 5, 11, 10, 9,}	A matrix of integers derived from the Fibonacci sequence.
A036262	Gilbreath's conjecture	{2, 1, 3, 1, 2, 5, 1, 0, 2, 7,}	Triangle of numbers arising from Gilbreath's conjecture.
A037274	Home prime	{1, 2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773,}	For $n \ge 2$, $a(n)$ is the prime that is finally reached when you start with n , concatenate its prime factors (A037276) and repeat until a prime is reached; $a(n) = -1$ if no prime is ever reached.
A046075	Undulating numbers	{101, 121, 131, 141, 151, 161, 171, 181, 191, 202,}	A number that has the digit form $ababab$.
A046758	Equidigital numbers	{1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53,	A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1.

A046760	Extravagant numbers	{4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38,}	A number that has fewer digits than the number of digits in its prime factorization (including exponents).
A050278	Pandigital numbers	{1023456789, 1023456798, 1023456879, 1023456897, 1023456978, 1023456987, 1023457689, 1023457869, 1023457896,}	Numbers containing the digits 0–9 such that each digit appears exactly once.
A052486	Achilles numbers	{72, 108, 200, 288, 392, 432, 500, 648, 675, 800,}	Positive integers which are powerful but imperfect.
A054037	Primary pseudoperfect numbers	{2, 6, 42, 1806, 47058, 2214502422, 52495396602,}	Satisfies a certain Egyptian fraction.
A059756	Erdős–Woods numbers	{16, 22, 34, 36, 46, 56, 64, 66, 70, 76, 78, 86, 88,}	The length of an interval of consecutive integers with property that every element has a factor in common with one of the endpoints.
A060006	Decimal expansion of Pisot– Vijayaraghavan number	{1, 3, 2, 4, 7, 1, 7, 9, 5, 7,}	Real root of $x^3 - x - 1$.
A076336	Sierpinski numbers	{78557, 271129, 271577, 322523, 327739, 482719, 575041, 603713, 903983, 934909,}	Odd k for which $\{k \cdot 2^n + 1 : n \in \mathbb{N} \}$ consists only of composite numbers.
A076337	Riesel numbers	{509203, 762701, 777149, 790841, 992077,}	Odd k for which $\{k \cdot 2^n - 1 : n \in \mathbb{N} \}$ consists only of composite numbers.
A086747	Baum–Sweet sequence	{1, 1, 0, 1, 1, 0, 0, 1, 0, 1,}	a(n) = 1 if the binary representation of n contains no block of consecutive zeros of odd length; otherwise $a(n) = 0$.
A088054	Factorial primes	{2, 3, 5, 7, 23, 719, 5039, 39916801,}	A prime number that is one less or one more than a factorial (all factorials > 1 are even).
A088164	Wolstenholme primes	{16843, 2124679}	Primes p satisfying $\binom{2p-1}{p-1} \equiv 1 \pmod{p^4}$.
A090822	Gijswijt's sequence	{1, 1, 2, 1, 1, 2, 2, 2, 3, 1,}	The n th term counts the maximal number of repeated blocks at the end of the subsequence from 1 to n - 1
A093112	Carol numbers	{-1, 7, 47, 223, 959, 3967, 16127, 65023, 261119, 1046527,}	$a(n) = (2^n - 1)^2 - 2.$
A094683	Juggler sequence	{0, 1, 1, 5, 2, 11, 2, 18, 2, 27,}	If $n \equiv 0 \pmod{2}$ then $\lfloor \sqrt{n} \rfloor$ else $\lfloor n^{3/2} \rfloor$.
A097942	Highly totient numbers	{1, 2, 4, 8, 12, 24, 48, 72, 144, 240,}	Each number k on this list has more solutions to the equation $\varphi(x) = k$ than any preceding k .
A100264	Decimal expansion of Chaitin's constant	{0, 0, 7, 8, 7, 4, 9, 9, 6, 9,}	Chaitin constant (Chaitin omega number) or halting probability.
A104272	Ramanujan primes	{2, 11, 17, 29, 41, 47, 59, 67,}	The n^{th} Ramanujan prime is the least integer R_n for which $\pi(x) - \pi(x/2) \ge n$, for all $x \ge R_n$.
A122045	Euler numbers	{1, 0, -1, 0, 5, 0, -61, 0, 1385, 0,}	$rac{1}{\cosh t} = rac{2}{e^t + e^{-t}} = \sum_{n=0}^{\infty} rac{E_n}{n!} \cdot t^n.$
A138591	Polite numbers	{3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17,}	A positive integer that can be written as the sum of two or more consecutive positive integers.
A182369	867- 5309/Jenny	{8, 6, 7, 5, 3, 0, 9,}	Decimal expansion of (7^(e - 1/e) - 9)*Pi^2, also known as Jenny's constant.
A194472	Erdős–Nicolas numbers	{24, 2016, 8190, 42336, 45864, 392448, 714240, 1571328,}	A number n such that there exists another number m and $\sum_{d n,\ d\leq m} d=n.$

References

OEIS core sequences (http://oeis.org/wiki/Index_to_OEIS:_Section_Cor#core)

External links

• Index to OEIS (http://oeis.org/wiki/Index_to_OEIS)

Retrieved from "https://en.wikipedia.org/w/index.php?title=List_of_OEIS_sequences&oldid=917659691"

This page was last edited on 24 September 2019, at 21:11 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.