TDS3651 Visual Information Processing

LECTURE 2

Manipulating Pixels

Faculty of Computing and Informatics

Multimedia University

prepared by Lai-Kuan, Wong
modified by Yuen Peng, Loh

Lecture Outline

- Image Formation
- Point (Pixel)-based Processing
- Image Histograms
- Neighborhood Processing

Images and how they are represented

Image formation

The digital camera

- A digital camera replaces film with a sensor array
 - Each cell in the array is a light-sensitive diode that converts photons to electrons

Digital images

- Computers work with discrete pieces of information
- How do we digitize a continuous-value image?

Generating a Digital Image

Sampling

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from *A* to *B* in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Image Sampling & Quantization

a b

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Image Sampling & Quantization

- Sample the 2D space on a regular grid
- Quantize each sample (round to nearest integer)
- Image thus represented as a matrix of integer values

How does the image sensor capture colours?

Bayer filter https://en.wikipedia.org/wiki/Bayer_filter

Capturing Digital Images (The Bayer Filter) – Computerphile https://www.youtube.com/watch?v=LWxu4rkZBLw

- An image contains discrete number of pixels
 - A simple example
 - Pixel value:
 - "grayscale" (or "intensity"): [0,255]

- An image contains discrete number of pixels
 - A simple example
 - Pixel value:
 - "grayscale" (or "intensity"): [0,255]
 - "color"
 - RGB: [R, G, B]
 - Lab : [L, a, b]
 - HSV: [H, S, V]

Digital colour images

- An image as a function of f from \mathbb{R}^2 to \mathbb{R}^M
 - f(x, y) gives the **intensity** at position (x, y)
 - Defined over a rectangle, with a finite range:

$$f: [a,b] \times [c,d] \rightarrow [0,255]$$
domain support range

- An image as a function of f from \mathbb{R}^2 to \mathbb{R}^M
 - Color image (R^3)

$$f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

RGB-D image?

Q: RGB-D image?

A. Duration

B. Depth

C. Direction

know

D. Don't

How are images represented?

- Images represented as a 3-D array (or 'matrix')
 - Python: 'ndarray' container in numpy. Image values are 'uint8' type
 - Example: a $N \times M$ RGB image stored in array 'im'
 - im[0,0,0] top-left pixel value in R channel
 - im[0,0] pixel values at location (0,0) for all 3 channels

row	colu	ımn									R					
row	0.92	0.93	0.94	0.97	0.62	0.37	0.85	0.97	0.93	0.92	0.99	N				
- 1	0.95	0.89	0.82	0.89	0.56	0.31	0.75	0.92	0.81	0.95	0.91			_		
	0.89	0.72	0.51	0.55	0.51	0.42	0.57	0.41	0.49	0.91	0.92	0.92	0.99	ı G		
	0.96	0.95	0.88	0.94	0.56	0.46	0.91	0.87	0.90	0.97	0.95	0.95	0.91	ı		В
	0.71	0.81	0.81	0.87	0.57	0.37	0.80	0.88	0.89	0.79	0.85	0.91	0.92	<u> </u>		В
	0.49	0.62	0.60	0.58	0.50	0.60	0.58	0.50	0.61	0.45	0.33	0.97	0.95	0.92	0.99	
	0.86	0.84	0.74	0.58	0.51	0.39	0.73	0.92	0.91	0.49	0.74	0.79	0.85	0.95	0.91	
	0.96	0.67	0.54	0.85	0.48	0.37	0.88	0.90	0.94	0.82	0.93	0.45	0.33	0.91	0.92	
	0.69	0.49	0.56	0.66	0.43	0.42	0.77	0.73	0.71	0.90	0.99	0.49	0.74	0.97	0.95	
J.	0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.43	0.93	0.79	0.85	
V	0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.90	0.99	0.45	0.33	
			0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	0.49	0.74	
			0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	0.82	0.93	
			0.51	0.54	0.05	0.43	0.41	0.76	0.70	0.77	0.03	0.55	0.55	0.90	0.99	
					0.79	0.73	0.90	0.67	0.33	0.61	0.69	0.79	0.73	0.93	0.97	
					0.91	0.94	0.89	0.49	0.41	0.78	0.78	0.77	0.89	0.99	0.93	I

Number of Bits

- *k*-bit image
 - The number of gray levels typically is an integer power of 2

$$L = 2^k$$

 Number of bits required to store a digitized image

$$B = M \cdot N \cdot k$$

Resolution

- Resolution
 - How much details you can see in the image
 - Depends on sampling and gray levels
 - The higher the resolution of the image
 - The better the approximation of the digitized image from the original
 - The larger the size of the image

Subsampling

FIGURE 2.19 A 1024×1024 , 8-bit image subsampled down to size 32×32 pixels. The number of allowable gray levels was kept at 256.

Subsampling Problem?

- Q: What are some problems that may occur if your images are sampled (or subsampled) to a lower resolution?
 - A. Blurred
 - B. Pixelated
 - C. Lose color
 - D. Distorted

Checkerboard Effect

а	Ь	С
d	e	f

- (a) 1024×1024
- (b) 512×512
- (c) 256×256
- (d) 128×128
- (e) 64×64
- (f) 32×32

 If the resolution is decreased too much, the checkerboard effect can occur.

False Contouring

- (a) Gray level = 16
- (b) Gray level = 8
- (c) Gray level = 4
- (d) Gray level = 2

- If gray levels are insufficient, smooth areas will be affected
- False contouring occurs at smooth areas which has fine grayscale values

Question

 You have a 8-bit RGB image of resolution 1024x768 pixels. What is the size of the image file? (Give your answer in Mb)

```
Answer: ?
A. (1024x768)/(1024X1024)
= 0.75 MB
B. (1024x768x3)/(1024X1024)
= 2.25 MB
C. (1024x768x8)/(1024X1024)
= 6.00 Mb
D. (1024x768x3x8)/(1024X1024)
= 18.00 Mb
```

```
1Byte = 8bits
1kB = 1024B
1MB = 1024kB
```

Pixel (Point)-based Processing

Pixel (or Point)-based Processing

With the transformation function T, do that for all pixels in the image!

Arithmetic Operations

What other operations?

 Whole family of possible functions that you can apply...

- Question: What can nonlinear functions do?
- E.g. irregular increase / decrease of pixel intensities (allows enhancement)

Linear Stretching

- Enhance the dynamic range by linear stretching the original gray levels to a new target range
- Example
 - Original range [100, 150]
 - Target range: [0, 255]
 - What's the general transformation function?

A
$$S = \frac{(r - r_2)}{(r_1 - r_2)} * (S_2 - S_1) + S_1$$
 C $S = \frac{(r - r_2)}{(r_1 - r_2)} * (S_1 - S_2) + S_1$

B $S = \frac{(r - r_1)}{(r_2 - r_1)} * (S_2 - S_1) + S_1$ D $S = \frac{(r - r_1)}{(r_2 - r_1)} * (S_1 - S_2) + S_1$

B
$$S = \frac{(r - r_1)}{(r_2 - r_1)} * (S_2 - S_1) + S_1$$
 D $S = \frac{(r - r_1)}{(r_2 - r_1)} * (S_1 - S_2) + S_1$

Linear Stretching

Piecewise Linear Stretching

 Can have as many segments we want...

 Thresholding: Map to only two possible values, producing a binary image

Application: Contrast Stretching

- Problem: Low contrast image, result of poor illumination, lack of dynamic range
- Solution: Linear contrast stretching using the given transformation function (bottom left)
- Result after thresholding (bottom right)

We can use more than an image...

- Image addition Pixel-wise addition of values from two images
 - Use to create double-exposures or composite images

$$g(x,y) = f_1(x,y) + f_2(x,y)$$

— Or do a weighted blend:

$$g(x,y) = \alpha_1 f_1(x,y) + \alpha_2 f_2(x,y)$$

We can use more than an image...

- Image subtraction Pixel-wise subtraction of one image from another image
 - Use to find changes between two images

$$g(x,y) = f_1(x,y) - f_2(x,y)$$

Absolute difference works better (Why?)

Histograms

Image Histogram

- Histogram: Diagram that shows distribution of data
- Histogram of a digital image with gray levels in the range [0, L-1] is a discrete function with k bins

$$h(r_k) = n_k$$

where

- $-r_k$: the k-th gray level
- n_k : the number of pixels in the image having gray level r_k
- $-h(r_k)$: histogram of a digital image with gray levels r_k

Normalized Histogram

• Divide each bin count n_k of the histogram by the total number of pixels in the image, n

$$p(r_k) = n_k/n$$
 for $k = 0, 1, \dots, L-1$

- $p(r_k)$: probability of occurrence of gray level r_k
- The sum of all components of a normalized histogram is equal to 1

Image Histogram

What can the histogram of an image tell us?

Histogram & Image Contrast

Dark Image

 Components of histogram are concentrated on the low side of the gray scale

Bright Image

 Components of histogram are concentrated on the high side of the gray scale

Histogram & Image Contrast

Low-contrast Image

 Histogram is narrow and centered towards the middle of the gray scale

High-contrast Image

 Histogram overs a broad range of the gray scale and the distribution of pixels is not too far from uniform, with very few vertical lines being much higher than others

Histogram & Image Contrast

Different images, same histogram!

 Visualize the histogram for the following two images of size 64x64.

Do you think they have the same histogram? Why?

Different images, same histogram!

The following images have the same histogram:

- Histogram reflects the pixel intensity distribution, not the spatial distribution!
- Can we reconstruct an image from a histogram?

Image histogram!

What is the pattern of the histogram for the images

Problem with Contrast

 How can we solve this problem of low/poor contrast in image?

You can attempt to find a point-based transformation function that can perform some kind of linear stretching...

Problem with Contrast

Linear stretching

Is it good enough?

Histogram Equalization

- Histogram EQUALization
 - Aim: To "equalize" the histogram, to "flatten",
 "distribute as uniform as possible" in an automatic way

 Idea: Adjust probability density function of the original histogram so that the probabilities spread equally

Discrete Implementation

- Transforms an image with an arbitrary histogram to an image that has a somewhat flat histogram
- 1. Find the cumulative distribution (CD) of gray level l,

$$\tilde{g}(l) = \sum_{k=0}^{l} p_F(k), l = 0, 1, \dots, K-1$$

2. Convert the CD values to the max possible range of values [0, L-1] by quantization

$$g(l) = \left[\left(\sum_{k=0}^{l} p_F(k) \right) * (L-1) \right]$$

Map the old pixel values to the new transformed values.

Correcting the Pouting Child

Original image with low contrast

Original girl image with low contrast

Enhanced image

Enhancement image with histogram equalization

0	76	0.19	0.19
1	100	0.25	0.44
2	84	0.21	0.65
3	64	0.16	0.81
4	32	0.08	0.89
5	24	0.06	0.95
6	12	0.03	0.98
7	8	0.02	1.00

0	76	0.19	0.19	[1.33] = 1
1	100	0.25	0.44	[3.08] = 3
2	84	0.21	0.65	[4.55] = 5
3	64	0.16	0.81	[5.67] = 6
4	32	0.08	0.89	[6.03] = 6
5	24	0.06	0.95	[6.65] = 7
6	12	0.03	0.98	[6.86] = 7
7	8	0.02	1.00	[7] = 7

0	76	0.19	0.19	[1.33] = 1	0	0
1	100	0.25	0.44	[3.08] = 3	0.19	1
2	84	0.21	0.65	[4.55] = 5	0	2
3	64	0.16	0.81	[5.67] = 6	0.25	3
4	32	0.08	0.89	[6.03] = 6	0	4
5	24	0.06	0.95	[6.65] = 7	0.21	5
6	12	0.03	0.98	[6.86] = 7	0.16+0.08=0.24	6
7	8	0.02	1.00	[7] = 7	0.06+0.03+0.02=0.11	7

0	76	0.19	0.19	[1.33] = 1	0	0
1	100	0.25	0.44	[3.08] = 3	0.19	1
2	84	0.21	0.65	[4.55] = 5	0	2
3	64	0.16	0.81	[5.67] = 6	0.25	3
4	32	0.08	0.89	[6.03] = 6	0	4
5	24	0.06	0.95	[6.65] = 7	0.21	5
6	12	0.03	0.98	[6.86] = 7	0.16+0.08=0.24	6
7	8	0.02	1.00	[7] = 7	0.06+0.03+0.02=0.11	7

Correcting the Pouting Child

Original image with low contrast

Original girl image with low contrast

Enhanced image

Enhancement image with histogram equalization

Summary

- Image Formation
 - Pixels
 - Sampling and Quantization
- Pixel (point)-based Processing
- Image Histograms
 - Histogram Equalization

Recommended Reading

• [Gonzalez&Woods] Chapter 2 & 3