Poznań 29 marca 2024

Politechnika Poznańska

Wydział Informatyki i Telekomunikacji

Algorytmy i Struktury Danych, Informatyka (semestr 2) **Sprawozdanie #2** — Złożone struktury danych

1. Wprowadzenie

Binarne Drzewo Poszukiwań (ang. Binary Search Tree, BST)

jest dynamiczną strukturą danych wykorzystywaną do przechowywania informacji w sposób posortowany.
BST zbudowane są z węzłów (ang. node), które przechowują informacje (klucz) oraz posiadają MAKSYMALNIE dwóch potomków lewego i prawego (stąd binary w nazwie).

Złożoność obliczeniowa operacji na BST wynosi w najgorszym (ogólnym) przypadku **O(n)**, gdzie n to wysokość drzewa. Istnieją jednak algorytmy gwarantujące zachowanie optymalnej wysokości, co skutkuje uzyskaniem złożoności **O(log₂n)**. Drzewa wykorzystujące ww. technikę optymalizacji nazywamy Drzewami **AVL** (zbalansowanymi wysokościowo).

2. Zależność czasu (t) wykonywania operacji od liczby węzłów (n) w drzewie BST oraz AVL

3. Zależność czasu równoważenia (t) od liczby węzłów (n) w losowym drzewie BST

Repozytorium:

https://github.com/xKond3i/put_aisd

Źródła:

- [1]:cs.put.poznan.pl/mszachniuk/site/teaching/algorytmy-i-struktury-danych
- [2]:www.ekursy.put.poznan.pl
- [3]:www.eduinf.waw.pl/inf/alg
- [4]:www.geeksforgeeks.org/binary-search-tree-data-structure
- [5]:www.programiz.com/dsa/avl-tree
- [6]:pl.wikipedia.org