Eine Woche, ein Beispiel 12.17 calculation of NMD

Goal: compute normal Morse data (NMD)

εf>0] € X € ff < 0]

E.g.
$$X = CIP'$$
 $f: CIP' - - \rightarrow C \xrightarrow{Rez} IR$ $I_X = [*]$ $S = [\infty]$

F	NMD(F,S)	Fx	RT(W.F)
i* @ 603	Q	Q	O
i. @ _‰ ; <u>@</u> c.p [.] [1]	0	Q[1]	Q[1]
$R_{1*}Q_{c}[1]$	Q	Q \therefore \Q[1]	Q[1]
j: <u>Q</u> c [1] P(\$)	Q	0	Q[1]
P(\(\phi \)	Q'	Q	Q[1]

E.g.
$$X = \{z_{k}^{2} = z_{k}^{3}\}$$
 $f: X \hookrightarrow \mathbb{C}^{2} \xrightarrow{z_{k}} \mathbb{C} \xrightarrow{Re z_{k}} \mathbb{R}$ $k = \{a, b\}$ $S = \{a, b\}$ $S = \{a, b\}$

F	NMD(F,S)	F _x	RT(W.F)
i* Q _z	Q Q Q Q' Q' Q'	Q Q[1] Q(1] Q(1) 0 Q	0 Q[1] Q[1] Q[1] Q[1]

$$E.g. \quad X = \mathbb{C} \cup_{k,j} \mathbb{C} = \{(z_1, z_2) \in \mathbb{C}^2 \mid z_1 z_2 = 0\}$$

$$f: X \longrightarrow \mathbb{C}^2 \xrightarrow{z_1 + z_2} \mathbb{C} \xrightarrow{Rez} \mathbb{R} \qquad \{x = \{a,b\} \} \qquad S = \{0\}$$

F	NMD(F,S)	T _x	RT(W.F')
i∗ <u>Q</u> z	Q	Q	0
©x[1]	Q	Q[1]	Q`[1]
Rj+ Qu[1]	Q`	Q & Q [1]	Q [*] [1]
j: Qu[1]	Q ¹	o	Q[1]
π' Q[-1]	Q	Q & Q^[1]	Q[1]
IC(Qu[1])	0	Q²[1]	Q`[1]

E.g.	$X = X_3$	f: X -	$\mathbb{C}^3 \xrightarrow{\mathbf{z}_3} \mathbb{C} \xrightarrow{\mathbf{Re} \ \mathbf{z}} \mathbb{I}$	R	[6] =2
------	-----------	--------	--	---	--------

F	NMD(F,S)	F _x	RT(Lx.F)
i* <u>Q</u> z	Q	Q	o
<u>@</u> χ[2]=π'[Q[-2]	Q	Q[2]	Q[1] &Q[2]
Rj+Qu[2]	Q@Q[-1]	Q[2] \(\Phi \Q[-1] \)	Q[1] &Q[2]
j: <u>O</u> u[2]	Q & Q [1]	o	Q[1] &Q[2]
IC(Qu[2])	Q	Q [2]	Q[1] OQ[2]

Setting M: analytic mfld $X \subset M$ analytic variety of $dim_{\mathbb{C}}X = m$ $S: \phi \subset fo\} \subset X$ where o is the only singularity $x_0 \in X - fo\}$ $F \in Perv_{\mathbb{C}}(X)$ $L: = F|_{X-Fo} [-m]$ local system on $X - fo\}$ with rank rSpecial case: F = IC(L[m])

Task: Compute the following quantities.

Here we use notations in https://arxiv.org/abs/2105.13069v2. 6-8 comes from my supervisor's notation, if needed I should find some references for the definition.

③ NMD(
$$\mathcal{F}, X - \{0\}$$
) $\cong \mathcal{F}_{X_0} \cong \mathcal{Q}^r[m]$
④ $m(X - \{0\}) = (-1)^{\dim_{\mathcal{C}}(X - \{0\})} \chi(N/MD(\mathcal{F}, X - \{0\}))$
 $= (-1)^m \cdot (-1)^m \cdot r$

$$CC(\mathcal{F}) = m(X - \{0\}) \left[\frac{1}{T_{X} - \{0\}} M \right] + m(\{0\}) \left[\frac{1}{T_{\{0\}} M} M \right]$$

$$= r \left[T_{X}^{*} M \right] + m(\{0\}) \left[T_{\{0\}}^{*} M \right]$$

$$= r \underbrace{\Delta_{X}} + m(\{0\}) \underbrace{\Delta_{\{0\}}}$$

$$recall \left[T_{X}^{*} M \right] = \left[T_{X - \{0\}}^{*} M \right]$$

$$A_{\overline{S}} := \left[T_{S}^{*} M \right]$$

For
$$X \subset \mathbb{C}^2$$
 cuspidal cubic, $Sing(X) = p_0 3$,

$$E_{U_X}(p) = \begin{cases} 0 & p \notin X \\ 1 & p \in X - \{p_0\} \\ 2 & p = p_0 \end{cases}$$

In general. from my memory it look's like.

$$E_{U_X}(p) = \begin{cases} 0 & p \notin X \\ 1 & p \in X \text{sm} \\ \ge 1 & p \in X - X \text{sm} \end{cases}$$

$$\frac{1}{2} deg (\Lambda_{X}) := \# (\Lambda_{X} \cdot \Lambda_{M}) \\
= (-1)^{m} \chi(\chi, Eu_{X}) \\
= (-1)^{m} (\chi(\chi - \delta_{0}) \cdot Eu_{\chi}(\chi_{0}) + \chi(\delta_{0}) \cdot Eu_{\chi}(0)) \\
= (-1)^{m} (\chi(\chi - \delta_{0}) + Eu_{\chi}(0)) \\
= (-1)^{m} (\chi(\chi - \delta_{0}) + Eu_{\chi}(0)) \\
= \chi(\delta_{0}) := \# (\Lambda_{\delta_{0}} \cdot \Lambda_{M}) \\
= \chi(\delta_{0}) \cdot Eu_{\delta_{0}} \\
= \chi(\delta_{0}) \cdot Eu_{\delta_{0$$

C

{y2 = x3}