330 Homework

9/5/2014

4.8.1 Clock cycle time in non-pipelined processor is *1250ps*Clock cycle time in pipelined processor *350ps*

4.8.2 Total latency for **LW** instruction is

Pipelined: 350ps x 5 = 1750 Non-pipelined: 1250ps

4.8.3 We would split **ID** instruction to have *175ps* latency.

New clock cycle time becomes 300ps

2 Hazards in code are *register \$2* is used before a value to it is assigned.

sub \$2, \$1, \$3 nop nop and \$12, \$2, \$5 or \$13, \$6, \$2 add \$14, \$2, \$2 sw \$15, 100(\$2)

3 Path forwarding is used for the following instructions.

add \$3, \$4, \$6 sub \$5, \$3, \$2 lw \$7, 100(\$5) add \$8, \$7, \$2

4 Path forwarding is used for the following instructions.

lw \$4, 100(\$2) sub \$6, \$4, \$3 add \$2, \$3, \$5

- 5. Compare the performance for single-cycle, multi-cycle, and pipeline control using the SPECint2000 instruction mix
 - 25% loads
 - 10% stores
 - 11% branches
 - 2% jumps
 - 52% ALU

The number of clock cycles for each instruction class:

Loads: 5

	-	Stores: 4
	_	Branches: 3
	-	Jumps: 3
	-	ALU: 4
Start with performance of single-cycle machine:		
	-	200 ps for memory access
	-	100 ps for ALU operation
	-	50 ps for register file read or write
(a)	Wha	at is the clock cycle time for single-cycle datapath?
(b)	Wha	at is the average CPI for the multiple cycle design?
(c)	Wha	at is the average CPI for the pipeline design?
Jum	(Load p CPI	ds, stores, and ALU take 1 clock cycle. Branches take 1 clock cycles when predicted correctly and 2 when not. = 2)
	Note	that the long cycle time of memory is a performance bottleneck for pipelined and multicycle design.
(d)	Find	the average instruction time for single-cycle, multicycle and pipelined designs.