Modul 84111

Schienenfahrzeugtechnik I

Prof. Dr. Raphael Pfaff Sommersemester 2015

Schienenfahrzeugtechnik I – Übung 6

Längsdynamik

Aufgabe 1 (Radsatzwellen). Sizzieren Sie die Verläufe der Momente M_x und M_z entlang der Radsatzwelle für folgende Fälle:

- 1. Aussengelagert:
 - a) Klotzbremse einseitig auf das Rad wirkend
 - b) Klotzbremse beidseitig auf das Rad wirkend
 - c) Eine Wellenbremsscheibe
 - d) Zwei Wellenbremsscheiben
 - e) Zwei Radbremsscheiben
- 2. Innengelagert:
 - a) Klotzbremse einseitig auf das Rad wirkend
 - b) Klotzbremse beidseitig auf das Rad wirkend
 - c) Eine Wellenbremsscheibe
 - d) Zwei Wellenbremsscheiben
 - e) Zwei Radbremsscheiben

Aufgabe 2 (Radsätze/Wärmeeintrag). Ein bereiftes Rad mit Laufkreisdurchmesser $d=920~\mathrm{mm}$ wird in einem Gefälle mit einer Klotzbremse dauergebremst, um die Geschwindigkeit konstant zu halten.

- Spezifische Wärmekapazität Stahl: $c=477\, {{
 m J}\over {
 m kg\, K}}$
- Geschwindigkeit: $v=70\,{\rm \frac{km}{h}}$
- Radsatzlast: $2Q=22,5\,\mathrm{t}$
- Streckenneigung: $i_k = \{2, 4\}\%$
- a) Bestimmen Sie den Leistungseintrag der Klotzbremse während der Beharrungsbremsung in den beiden angegeben Streckenneigung unter folgenden Annahmen:
 - Es findet kein Transfer von abzubremsenden Massen statt, d.h. jedes Rad bremst sich selbst
 - Die Verbundsohle nimmt 10 % des Leistungseintrags auf
- b) Bestimmen Sie die Temperaturentwicklung im Radreifen unter folgenden Annahmen:
 - · Keine Wärmeleitung in den Radsteg
 - Radreifendicke: $d=90\,\mathrm{mm}$
 - Radbreite: $b = 140 \,\mathrm{mm}$