

Analyse fonctionnelle

Équipe Smart

Table des matières

la	ble d	es matières	1
In	trodu	action	3
Ι	Ana	alyse fonctionnelle	4
1	Prés	sentation du contexte	5
	1.1	Acoustique	5
	1.2	Optique	5
	1.3	Radar	6
	1.4	Radiogoniométrie	6
	1.5	Synthèse	7
2	Δna	lyse fonctionnelle	8
_	2.1	Interview	8
	2.2	Tableau des spécifications	8
	2.3	Diagramme pieuvre	10
	2.4	SADT	11
II	État	t de l'art	13
3	Dad	io-goniométrie	14
3	3.1	Type de goniométrie	15
	3.2	Selection de la technologie	16
	0.2	beleetion de la technologie	10
Co	nclu	sion	17
Α	Org	anisation du travail	19
		Méthode de travail	19
	A.2	Outils utilisés	19
В	LaN	Montréal 3V2	21
ע	B.1	Évolution du Montréal	21
	B.2	Avantages du Montréal 3v2	22
	B.3	Caractéristiques	22
	B.4	Fonctionnement	22
	B.5	Schéma bloc	23
	B.6	Liste des composants	23

Table des figures	24
Bibliographie	25

Introduction

Ce document constitue le rapport de l'analyse fonctionnelle du projet Smart. L'équipe Smart est constituée de Rigaud Michaël, D'Acremont Antoine, Cotten Guillaume, Legay Kevin, Aya Kenaan, et Mohamed Shehade.

Le projet Smart a pour but de mettre en place un système de détection et de neutralisation de drones.

Compte tenu du temps imparti, nous avons choisi de nous concentrer sur la détection d'un drone. Pour réaliser cette détection, nous utiliserons un ensemble de goniomètre permettant de réaliser la localisation d'un drone. Ce projet étant nouveau, l'ensemble des recherches et la réalisation du système devront être mené dans le temps imparti.

Première partie Analyse fonctionnelle

Présentation du contexte

Dans le domaine de la détection de drones, après recherche littéraires et numérique, nous en avons conclu qu'il existait plusieurs types de détection : par acoustique, par méthodes optiques et par radiogoniométrie. Ces méthodes possèdent chacunes leurs avantages et leurs inconvéniants que nous allons spécifier ci-dessous.

1.1 Acoustique

Plusieurs entreprises proposent des outils de détection des drones. Ces derniers se présentent sous forme de boîtiers reliés à des micros, positionnés en hauteur : c'est par le son de leurs hélices que les drones sont repérés, dans un rayon d'une centaine de mètres. Une alerte est alors envoyée sur un ordinateur ou par un SMS. Avantage : le système ne s'occupe pas des ondes, et peut détecter les drones autopilotés (voir plus bas). Problème : le bruit de fond doit être inférieur à un certain seuil, ce qui le rend difficilement utilisable en milieu urbain. De plus, pour des raisons d'échos, la multiplication de récepteurs est nécessaire afin de pouvoir filtrer le signal. Enfin, il est nécessaire de disposer préalablement d'une base de données des signatures acoustiques des différents drones qui peuvent émettre sur un domaine de fréquences acoustiques larges.

Cependant, ce système présente des failles. En effet, il est assez simple pour un drone de parer ce système de détection. Par la simple émission d'une onde sonore couvrant sa propre signature acoustique, un drone passerait totalement inaperçu.

Certains systèmes utilisent aussi une analyse fréquentielle poussée du signal afin de détecter les moteurs en fonction de leurs fréquences de fonctionnement.

Au-delà de cet aspect, il présente un avantage et des plus importants, son coût. En effet, un tel système est très économique à produire. Actuellement diverses solutions actives comme passives sont déjà présentes sur le marché. Ces solutions sont orientées vers une utilisation domestique et non professionnelle pour les raisons évoquées précédemment. Leur prix se situe aux alentours de 100 dollars pour un modèle classique, mais la multiplication des solutions tant à réduire le prix d'un tel système.

1.2 Optique

Une caméra normale a besoin de lumière pour produire une image, une caméra thermique (ou infrarouge) peut capter de très faibles différences de température et les convertir en une excellente image thermique sur laquelle les plus petits détails sont visibles. Contrairement à d'autres technologies, comme l'amplification de lumière qui nécessite une petite quantité de lumière pour produire une image, l'imagerie thermique permet de voir dans l'obscurité totale. Elle ne nécessite aucune source de lumière.

Depuis qu'il est possible de produire une image lisible dans l'obscurité totale, la technologie de l'imagerie thermique permet de voir et de cibler les forces ennemies dans la nuit la plus noire. Les caméras thermiques voient à travers la brume, la pluie et la neige. Elles voient aussi à travers la fumée, ce qui était particulièrement intéressant pour l'armée.[3]

En mode passif, des caméras thermiques d'observation savent repérer un drone de 50 cm d'envergure à une distance d'environ 1 km, de jour comme de nuit . Lorsqu'un drone entre dans son champ de vision, des algorithmes identifient son image. La forme, la couleur et la géométrie de l'objet permettent de distinguer le drone d'éventuels oiseaux et lancer une alerte, à condition qu'il n'y ait pas d'obstacle entre la caméra et lui.

En mode actif, on peut éclairer une scène à 360° avec un laser. Les photons, les particules de lumière, se réfléchissent sur l'appareil, le signal est récupéré et analysé. D'une portée similaire à celle de la caméra, le laser a l'avantage de décamoufler (observation à travers brouillard, pluie ou filet de camouflage), de livrer la distance précise de l'objet, et de le reconstituer en imagerie 3D.Une fois le drone suffisamment proche, une caméra classique avec un opérateur humain peuvent prendre le relai pour vérifier visuellement la nature de l'intrus et éventuellement passer à la phase de neutralisation.

1.3 Radar

Le radar (de l'anglais RAdio Detection And Ranging) est un système qui utilise les ondes électromagnétiques pour détecter la présence d'objets. Le radar émet des ondes, elles rebondissent sur les objets rencontrés et il est possible de mesurer leur distance, la direction, l'altitude ainsi que la vitesse en analysant le signal renvoyé. Les modèles Doppler peuvent ainsi détecter les objets en mouvement : avion, hélicoptère et certains modèles de drones, même « légers ». C'est le cas du radar Squire de Thales Air Systems.

FIGURE 1.1 – Le radar portable Squire de Thales Air Systems

Il existe néanmoins certains drones construits en carbone pouvant être perméables à certaines ondes radars et ainsi indétectable par cette technologie. Cependant le "radar passif", radar exploitant les variations d'ondes électromagnétiques en milieu urbain, telles que les ondes de la TNT, pourrait être exploité en milieu urbain.

1.4 Radiogoniométrie

Parmis les méthodes pour détecter un drone on peut citer la radiogoniométrie. Le principe de la radiogoniométrie est de mesurer la direction d'arrivée d'une onde électro-

magnétique polarisée incidente sur un réseau de capteur, par rapport à une direction de référence. Les radio-goniomètres sont donc des détecteurs passifs.

La radiogoniométrie possède de nombreuses applications. Cependant, en interception, la radiogoniométrie permet de localiser un émetteur inconnu soit en employant plusieur récepteurs en des positions différentes, soit par calcul en fonction de la cinématique preopre du récepteur.

On distingue deux types de goniomètres : les goniomètres à une dimension qui n'estiment que le gisement ou l'azimut, et les goniomètres à deux dimensions qui estiment le gisement ou azimut ainsi que l'élévation.

Dans le cas d'une détection de drones, le radio-goniomètre réalise une écoute de l'environnement avec un balayage de fréquences. Lorsque le drone émettra avec la personne qui le guide on pourra ainsi le localiser précisément.

Seulement, la radiogoniométrie a des failles. En effet, il existe sur le marché des drones auto-pilotés qui n'émettent pas car ils chargent avant le début de leur vol leurs trajectoires. Ainsi il n'y a pas de communication avec un quelconque utilisateur, et donc il n'y a aucun signal émis. Il est donc impossible de les localiser à l'aide de cette technique. Mais cette technique possède aussi ses avantages. C'est une technique passive et donc indécelable. C'est d'ailleurs pour cela que c'est une technique très utilisée dans la guerre électronique.

1.5 Synthèse

Ainsi, la meilleure solution serait de réaliser un détecteur à base de ces trois modes de détection. C'est d'ailleurs pourquoi les produits les plus performants existant sur le marché utilisent un mélange de ces trois technologies. On peut notamment citer le cas du système drone-detector [7].

Néanmoins nous avons choisi pour ce projet de nous concentrer, dans un premier temps, sur une détection uniquement à base de radiogoniométrie.

Analyse fonctionnelle

2.1 Interview

Après notre interview avec notre encadrant Ali Mansour, nous avons réalisé un tableau des spécifications suivantes :

Synthèse exigences première interview				
	détecter un drone			
Demande principale	utiliser la radiogoniométrie comme technologie détection			
Demande secondaire	travailler sur un domaine de fréquence à définir			
Demande secondaire	une interface homme/machine pourra être réalisée			
	Le budget est de 300€			
Spécifaciations techniques	Aucun matériel n'est préalablement disponible pour la réalisation du démonstrateur			

2.2 Tableau des spécifications

En prennant en compte les recommandations de notre encadrant, et les recherches qu nous avons réalisées, nous avons établie les contraintes et les spécifications suivantes :

		Tableau des Exigences	du SMART		
	Client		Con	cepteur/Réalisateur	
Numéro	Désignation	Critère	Niveau	Niveau de flexibilité	Classe
FS1	Détecter des drones à porté de reception par les antennes dans un domaine de fréquence prédéfini	Puissance du signal, fréquence	WIFI 2.4 GHz (2400 - 2483,5 MHz)	Tolérance faible	0
FS2 a.	Retourner la position du drone à l'utilisateur en temps réel	Clareté, temps de réponse	Mise à jour des données dans un tableau d'information	Tolérance faible	1
FS2 b.	Avoir une précision de l'ordre du mètre	Précision	Entre 0 et 2 mètres	Tolérance faible	0
FS3	Suivre les déplacements du drone en temps réel	Fiabilité	Projection de la position sur une représentation de la zone géographique	Tolérance moyenne	2
FS4	Alerter l'utilisateur en cas de nouvelle détection par un message dans la console du PC	Temps de réponse	Entre 0 et 2s	Tolérance moyenne	2
FS4b.	Alerter l'utilisateuren cas de nouvelle détection par un message via application Android	Temps de réponse	Entre 0 et 2s	Tolérance élevée	3
FS5	Analyser et retourner la vitesse de délacement du drone	Clareté, temps de réponse	Mise à jour des données dans un tableau d'information	Tolérance moyenne	2
FS6	Retourner la trajectoire du drône à l'utilisateur	Fiabilité, temps de réponse	Projection de la trajectoire sur la carte permettant de visualiser la position u drone	Tolérance moyenne	2
C1	Utiliser la radiogoniométrie pour réaliser la localisation	Critère client	Radiogoniométrie multi- antenne	Tolérance faible	0
C2	le système doit posséder au minimum deux goniomètres pour la réception	Critère client	Antennes disposées en treilli pour optimiser la localisation	Tolérance faible	0
C3	Etre alimenté uniquement par le réseau électrique	Simplification des sources d'alimentation	230V	Tolérance faible	0
C4	Etre paramétrable par l'utilisateur	Souplesse d'utilisation	Configuer l'IHM selon ses envies	Tolérance moyenne	1
C5	Respecter les normes environne mentales	Juridique	Normes minimales environnementales	Tolérance faible	0
C6	Respecter un budget restreint	Budget proposé	300 €	Tolérance faible	0
C7	Résister aux contraintes météorologiques	Réalité du terrain	Etre résistant à l'eau et au vent de faible puissance	Tolérance moyenne	0
C8	Tenir un délai de réalisation	Planning	7 mois comprenant l'analyse et la réalisation du projet	Tolérance faible	0

Types d'exigence		
Fonction de service	FS	
Contrainte	С	

Classe	
Non négociable	0
Peu négociable	1
Négociable	2
Non nécessaire	3

2.3 Diagramme pieuvre

Diagramme Pieuvre

FIGURE 2.1 – Diagramme pieuvre

2.4 SADT

FIGURE 2.2 – SADT A-0

FIGURE 2.3 – SADT A0

Comme on peut le voir sur le SADT A0, nous avons découpé notre objectif en trois parties.

Dans un premier temps il faut capter les signaux. Pour cela il faut réaliser un balayage sur le radiogoniomètre pour détecter les bons signaux.

Ensuite, il faut analyser les signaux reçus pour s'assurer que nous sommes bien en présence d'un drone.

Enfin, il faut récupérer les données des radiogoniometres pour déterminer la position du drone.

Deuxième partie État de l'art

Radio-goniométrie

Dans cette partie, nous allons nous attacher à étudier les différents types de goniométrie existant afin de retenir la solution la plus pertinente pour notre système. Cette étude redéfinira dans un premier temps le cadre de l'étude, puis suivra une explication de chaque technologie existante afin de conclure sur le choix que nous aurons retenu.

Généralement, un système de radiogoniométrie est composé de :

- Un réseau de N capteurs avec ou sans processus de mise en forme des signaux d'antennes.
- Un commutateur d'antenne
- Un récepteur à plusieurs voies
- Une unité de traitement du signal

De plus, la composition du système d'acquisition et les techniques de traitement du signal dépendent :

- Des caractéristiques de l'onde à étudier
- Du type d'acquisition de l'information

Dans notre application, le système devra détecter une onde émise dans la gamme de fréquence UHF (2,4 GHz). Bien qu'existant dans le domaine de réalisation des radiogoniomètres, il n'est pas commun qu'un radiogoniomètre travail sur cette gamme de fréquence.

Les caractéristiques principales qui interviennent principalement dans le choix d'un radiogoniomètre sont :

- La précision de mesure angulaire (précision de la position obtenue)
- La sensibilité (portée maximale du système)
- La vitesse de mesure
- Le comportement en présence de plusieurs ondes dans la bande d'analyse
- La susceptibilité du système

La spécificité de notre système est la cible à localisé. En effet, la source peut ne pas émettre en continue et sur de très courtes période (inférieure à 1 seconde). Il nous faut donc un radiogoniomètre capable de réalisé la mesure en une fraction de seconde. La gestion de conservation de la donnée mesurée en attendant une valeur ultérieure sera gérée par l'ordinateur.

3.1 Type de goniométrie

Goniométrie d'amplitude

La mesure se fait par repérage d'un maximum d'amplitude, d'un minimum d'amplitude, ou par comparaison de d'amplitude en sortie de deux diagrammes se recouvrant partiellement. La recherche du minimum d'amplitude à partir d'une antenne à cadre tournante est l'approche la plus ancienne. Un dipôle électrique est utilisé pour lever l'ambiguïté de 180 en formant un diagramme en cardioïde par sommation.

FIGURE 3.1 – diagramme en cardioide d'une antenne à cadre

La formation de faisceaux est une technique plus récente issue des traitements radar. Elle utilise un ensemble de capteurs spatialement répartis. Les sorties d'antennes sont pondérées en phase puis sommées. Cette pondération est fonction du déphasage progressif d'une antenne à une autre, qui dépend de la direction d'arrivée et de la distance entre capteurs. Les pondérations permettent ainsi de remettre en phase les signaux et d'obtenir un diagramme avec un maximum dans la direction d'arrivée. Cette technologie est la plus ancienne. L'antenne utilisée était une antenne cadre et la gamme de fréquence étudiée était la HF et la VHF.

Goniométrie Watson-Watt

Un radiogoniomètre Watson-Watt est un radiogoniomètre automatique. L'onde électromagnétique du système à localisé est reçue par deux antennes perpendiculaires dont le rapport des amplitudes est très proche de tan (l'une en sin et l'autre en cos). La goniométrie par interférométrie est considérée comme une technique plus performante comparée à celles citées précédemment. A la différence des deux techniques précédentes, le traitement n'est pas entièrement analogique. Des calculs numériques, plus ou moins complexes, sont nécessaires suivant la topologie de l'antenne utilisée. Elle n'a donc pu être mise en œuvre qu'à partir de l'arrivée des microprocesseurs.

Goniométrie par interférométrie

La goniométrie par interférométrie est considérée comme une technique plus performante comparée à celles citées précédemment. A la différence des deux techniques précédentes, le traitement n'est pas entièrement analogique. Des calculs numériques, plus ou moins complexes, sont nécessaires suivant la topologie de l'antenne utilisée. Elle n'a donc pu être mise en œuvre qu'à partir de l'arrivée des microprocesseurs. L'interférométrie utilise la mesure de la différence de phase de signaux délivrés par deux antennes proches illuminées par la même onde électromagnétique.

Goniométrie par effet Doppler

Une antenne tournant autour d'un axe est placé dans le champ d'émission d'un émetteur de porteuse pure. A cause du mouvement de l'antenne, le signal reçu subit un effet Doppler qui se traduit par une modulation FM du signal reçu. La fréquence instantanée du signal augmente quand l'antenne se rapproche de la direction d'arrivée du signal et décroît lorsqu'elle s'en éloigne. En effectuant une démodulation FM, on peut détecter la direction de provenance des ondes en comparant la phase du signal obtenu et celle de la rotation angulaire de l'antenne. Afin d'éviter de devoir faire tourner mécaniquement l'antenne, on peut en disposer plusieurs en cercle et les commuter successivement.

3.2 Selection de la technologie

Après étude des différentes technologies existantes, nous nous baserons sur une étude comparative menée par le site F1LVT.

	Très grande distance (Point haut)	Grande dist. (En voiture de loin)	Moyenne dist. (En voiture sur zone)	Courte dist. (A pied)	Démod.	Possibilité radiogonio 406 MHz
Directive grand gain + Att + RX	Très bien adapté	Bien adapté	Peut convenir	Mal adapté		Pas du tout adapté
Directive faible gain + Att + RX						
Homing intégré (L-Per, GHO)					AM	
Homing (tte bande, 4Q)					AM	
Doppler + RX			Très bien adapté	Mal adapté	FM	Bien adapté
TDOA + RX					FM	
Ant race. + Att + RX (ABC)						

FIGURE 3.2 – Radiogoniométrie VHF-UHF pour les bandes aviation et les bandes RA

Ce tableau compare plusieurs technologies ainsi que leurs caractéristiques. Dans le cadre d'un système devant opéré en extérieur sur zone (environ de zone industriel ou de central électrique) nous retenons le goniomètre Doppler.

Conclusion

Bien que sommaire, cette première analyse comprenant de la recherche bibliographique, de la veille technologique et de l'analyse fonctionnelle, nous permet de nous recentrer sur l'essentiel. Le domaine de la localisation de drone étant en plein essor, il est primordial de se concentrer sur un type de détection et d'avancer pas à pas.

Nous allons donc, dès à présent, nous attacher à la compréhension de la radiogoniométrie ainsi qu'à poursuivre la veille technologique afin de retenir les bonnes solutions de détection.

Annexe

Organisation du travail

A.1 Méthode de travail

Nous avons cherché au mieux à répartir notre travail. Pour cela nous avons défini 3 grands axes de travail à l'issue de cette étude fonctionnelle.

- Dans un premier temps nous allons réaliser l'état de l'art.
- Dans un deuxième temps nous étudierons la phase de réalisation.
- Enfin nous testerons notre projet dans des conditions réelles.

Tout au long de ce projet nous avons choisi de réaliser notre travail en divisant notre équipe en 3 groupes de travail distincts formés respectivement de D'Acremont - Cotten, Legay - Rigaud, et Kenaan - Shehade. Notamment lors de l'état de l'art, ces groupes vont réaliser des recherches par binômes pour ensuite redistribuer les informations grâce aux outils mis à notre disposition (nous avons détaillé ces outils plus loin).

De plus, nous avons décidé lors de la phase de conception de diviser ce travail en plusieurs sous ensembles que nous définirons plus tard et qui seront chacun d'eux testés indépendemment, à l'image de tests unitaires en programmation.

A.2 Outils utilisés

Lors de notre projet nous avons choisi d'utiliser plusieurs outils de travail en collaboration.

- Nous utilisons Office 365. Nous avons créé un groupe de travail où nous partageons des fichiers et envoyons des mails de manière centralisée.
- Nous utilisons également L^AT_EX pour la rédaction de nos rapports.
- Nous pensons finalement utiliser Git et GitHub lors de notre phase de conception.
 Nous avons pour cela crée un projet sur GitHub.
- Après plusieurs difficultés, nous avons réussi à utiliser Framaboard du groupe Framasoft pour gérer notre projet.

Framaboard

FIGURE A.1 – Impression d'écran de notre Framaboard

Il est possible d'avoir accès en lecture à notre page Framaboard en cliquant ici

GitHub

FIGURE A.2 – Impression d'écran de notre GitHub

Il est possible d'avoir accès à notre page GitHub en cliquant ici

Le Montréal 3V2

Nous allons ici présenter la solution sur laquelle nous nous appuyons pour réaliser notre propre radiogoniomètre à effet Doppler, le Montréal 3V2. Pour réaliser cette documentation nous nous sommes appuyé sur la documentation trouvé sur le site f1lvt [2]

B.1 Évolution du Montréal

FIGURE B.1 – Evolution du Montréal

B.2 Avantages du Montréal 3v2

FIGURE B.2 – Photographie prise du Montréal 3v2

Le Montréal 3v2 sert principalement à l'FNRASEC ¹ et aux chasseurs d'onde amateurs. Ce radiogoniomètre est utilisé pour la détection de balise de détresse de 406MHz.

Un des intérêts majeurs du Montréal 3-V2, c'est sa capacité de localiser des signaux très courts, son prix de revient est très raisonnable, son traitement très rapide et la mise en mémoire automatique du dernier relevé. On peu aussi noter qu'il est simple d'utilisation grâce a son affichage à 36LED disposé en cercle et qui indique la direction. De plus une LED centrale est indique le fonctionnement; verte la direction affichée est bonne, rouge le signal est insuffisant, la direction reste alors figée dans la dernière bonne direction reçue.

B.3 Caractéristiques

Le Montréal 3v2 est un radiogoniomètre à effet Doppler, il possède donc toutes les caractéristiques associé a ce type de radiogoniomètre.

Fréquences	distance	moyenne portée
		FONITE 1 OCH

gamme 50MHz-1.3GHz

démodulation FM

LED 36LED écran LCD en 2 lignes

Filtre capa très faible largeur de bande (0.5Hz)

Coût estimé à 50€

B.4 Fonctionnement

Affichage

La partie centrale contient les circuits d'amplification et de commutation. Les 4 brins verticaux (les brins actifs) se fixent par BNC.

Les antennes sont alimentées de façon séquentielle pour imiter une antenne en rotation. Une fois que les antennes ont capté les ondes provenant du drone, il faut faire une démodulation et enlever tous les bruits.

Un système à LED permet de visualiser la composante continue qui passe dans les antennes. A partir du boîtier Doppler et de son menu de test, on peut ainsi vérifier individuellement chaque antenne. Ceci permet soit de faire fonctionner le système Doppler avec une antenne sur 4 , soit avec 3 antennes sur 4.

Trois microcontrôleurs Pics sont utilisés un 16F628A pour l'affichage, un 16F877A pour le circuit principal et un 12F675 comme diviseur de fréquence.

^{1.} Fédération Nationale des Radioamateurs au service de la Sécurité Civile, agrée de sécurité civile

Ce Doppler est la version la plus récente et la plus performante de la série. Il commute les antennes et il affiche la direction mesurée sur la boussole à 36 LED.

B.5 Schéma bloc

Radiogoniométrie Doppler / Montréal 3V2 – AG FNRASEC Bordeaux 2008 – F1LVT@yahoo.fr

FIGURE B.3 – Schéma bloc du Montréal 3v2

B.6 Liste des composants

Voici la liste des composants pour la construction du Montréal 3v2 :

IC30	LM386N-4	Ampli BF
IC50	MAX267BCNG	Filtre
IC51	PIC 12F675-I/P	PIC
IC52	74HC4051N	Filtre
IC53	MAX492CPA	Ampli Op
IC70	PIC 18F4520-I/P	PIC
VR20	7805 TO-220	Régulateur
X70	20 MHz HC49	Quartz
D50	1N5819	Diode Schottky
LCD20	LCD 2X16,	Afficheur 2 lignes de 16 car.
IC1	PIC16F628A-I/P	PIC
LED1 - LED36	ø3mm, Rouge et/ou Vert	
LED37	3 ou 5mm Bicolore Rouge/Verte	
FB1 - FB8	Ferrites ²	
IC100	= MAX232ACPE	en option
Q100	= 2N2222 TO-92	

Table des figures

1.1	Le radar portable Squire de Thales Air Systems	6
2.1	Diagramme pieuvre	10
2.2	SADT A-0	11
2.3	SADT A0	11
3.1	diagramme en cardioide d'une antenne à cadre	15
3.2	Radiogoniométrie VHF-UHF pour les bandes aviation et les bandes RA	16
A.1	Impression d'écran de notre Framaboard	20
A.2	Impression d'écran de notre GitHub	20
B.1	Evolution du Montréal	21
B.2	Photographie prise du Montréal 3v2	22
B.3	Schéma bloc du Montréal 3v2	23

Bibliographie

- [1] Juliette Demey. Comment détecter les drones. *JDD*, 1 mars 2015. http://www.lejdd.fr/Societe/Faits-divers/Comment-detecter-les-drones-720496.
- [2] F1LVT. F1lvt : comment créer un radio-goniomètre doppler le montréal 3v2. http://f1lvt.com/.
- [3] Société Flir. L'imagerie thermique : Une technologie prête à conquérir le reste du monde. http://www.flir.fr/cs/display/?id=51839.
- [4] Peter Hausmann. UAV Sound Source Localization, 2014.
- [5] Jason Koebler. Tiny device will detect domestic drones. *US.news*, May 1 2013. http://www.usnews.com/news/articles/2013/05/01/tiny-device-will-detect-domestic-drones.
- [6] Philippe Martin. *Recepteur gonio(ou indicateur de champ) vhf.* http://phmartin.pagesperso-orange.fr/f6eti/realisations/9901rxvhf/index.htm.
- [7] Société Orelia. Drone detector. http://www.drone-detector.com/fr/.
- [8] H. Lissek P. Marmaroli, X. Falourd. A UAV motor denoising technique to improve localization of surrounding noisy aircrafts: proof of concept for anti-collision systems, 2012.