1.BasicExps 基础功能性实验

本文件夹中的所有实验均为本讲中基础性的功能实验,用户可快速上手熟悉一些简单的功能性实验。

序号	实验名称	简介	文件地址	版本
1	基础功能性实验	本文件夹中的所有实验均为本讲中基础性的功能实验,用户可快速上手熟悉一些简单的功能性实验。	1-VisionCtrlDemos\Readme.pdf	免费版
2	轻量级无人机模型 视觉穿环实验	基于质点模型的穿环实验例程。	1-VisionCtrlDemos\e1_CrossRingNoPX4\Readme.pdf	免费版
3	基础功能性实验	本文件夹中的所有实验均为本讲中基础性的功能实验,用户可快速上手熟悉一些简单的功能性实验。	1- VisionCtrlDemos\e2_CameraKeyDemoOnWindows\Readme.pdf	免费版
4	无人机跟踪小球实 验	通过平台接口进行图像的获取,然后通过运行"ShootBall3.py"程序。在前方生成一个红色球体,让飞机飞到靠左后方一段距离,并开启视觉跟踪,飞到小球面前停止。	1-VisionCtrlDemos\e3_ShootBall\Readme.pdf	免费版
5	无人机穿环实验	通过平台接口进行图像的获取,然后通过运行"CrossRing3.py"程序,飞机起飞后并开启视觉跟踪,按照照顺序穿过三个环,最后自动降落。	1-VisionCtrlDemos\e4_CrossRing\Readme.pdf	免费版
6	基础功能性实验	本文件夹中的所有实验均为本讲中基	1-VisionCtrlDemos\e5_ScreenCapAPI\Readme.pdf	免费版

		础性的功能实验,用户可快速上手熟悉		
		一些简单的功能性实验。		
7	无人机跟随圆形案	该例程通过生成一块圆形案板并用按	1-VisionCtrlDemos\e6_Circle-follow\Readme.pdf	免费版
	板移动实验	键控制圆形案板移动方向。通过使用平		
		台接口进行图像的获取,并通过视觉处		
		理控制无人机跟随圆形案板移动。		
8	双目视觉人脸识别	通过平台 Config.json 配置文件配置好	1-VisionCtrlDemos\e7_ManDetect\Readme.pdf	免费版
	实验	双目视觉灰度相机传感器,然后通过平		
		台接口进行图像的获取,并在飞机起飞		
		后开启人脸识别算法,双目框选出人		
		脸。		

所有文件列表

序号	实验名称	简介	文件地址	版本
1	基础功能性实	本文件夹中的所有实验均为本讲	Readme.pdf	免费版
	验	中基础性的功能实验,用户可快速		
		上手熟悉一些简单的功能性实验。		
2	基础功能性实	本文件夹中的所有实验均为本讲	1-VisionCtrlDemos\Readme.pdf	免费版
	验	中基础性的功能实验,用户可快速		
		上手熟悉一些简单的功能性实验。		
3	轻量级无人机	基于质点模型的穿环实验例程。	1-VisionCtrlDemos\e1_CrossRingNoPX4\Readme.pdf	免费版
	模型视觉穿环			
	实验			
4	基础功能性实	本文件夹中的所有实验均为本讲	1-VisionCtrlDemos\e2_CameraKeyDemoOnWindows\Readme.pdf	免费版
	验	中基础性的功能实验,用户可快速		
		上手熟悉一些简单的功能性实验。		
5	无人机跟踪小	通过平台接口进行图像的获取,然	1-VisionCtrlDemos\e3_ShootBall\Readme.pdf	免费版
	球实验	后通过运行"ShootBall3.py"程序。		
		在前方生成一个红色球体,让飞机		
		飞到靠左后方一段距离, 并开启视		
		觉跟踪,飞到小球面前停止。		
6	无人机穿环实	通过平台接口进行图像的获取,然	1-VisionCtrlDemos\e4_CrossRing\Readme.pdf	免费版
	验	后通过运行"CrossRing3.py"程序,		
		飞机起飞后并开启视觉跟踪, 按照		
		照顺序穿过三个环,最后自动降		

		落。		
7	基础功能性实	本文件夹中的所有实验均为本讲	1-VisionCtrlDemos\e5_ScreenCapAPI\Readme.pdf	免费版
	验	中基础性的功能实验,用户可快速		
		上手熟悉一些简单的功能性实验。		
8	无人机跟随圆	该例程通过生成一块圆形案板并	1-VisionCtrlDemos\e6_Circle-follow\Readme.pdf	免费版
	形案板移动实	用按键控制圆形案板移动方向。通		
	验	过使用平台接口进行图像的获取,		
		并通过视觉处理控制无人机跟随		
		圆形案板移动。		
9	双目视觉人脸	通过平台 Config.json 配置文件配	1-VisionCtrlDemos\e7_ManDetect\Readme.pdf	免费版
	识别实验	置好双目视觉灰度相机传感器,然		
		后通过平台接口进行图像的获取,		
		并在飞机起飞后开启人脸识别算		
		法,双目框选出人脸。		
10	轻量级无人机	基于质点模型的穿环实验例程。	1-VisionCtrlDemos\e1_CrossRingNoPX4\Readme.pdf	免费版
	模型视觉穿环			
	实验			
11	基础功能性实	本文件夹中的所有实验均为本讲	1-VisionCtrlDemos\e2_CameraKeyDemoOnWindows\Readme.pdf	免费版
	验	中基础性的功能实验,用户可快速		
		上手熟悉一些简单的功能性实验。		
12	共享内存方式	通过平台接口上(↑)下(↓)键控制	<u>1-</u>	免费版
	吊舱视觉控制	俯仰角(pitch);左(←)右(→)键控制	VisionCtrlDemos\e2_CameraKeyDemoOnWindows\BaseVersion\Readme.pdf	
	键盘仿真实验	偏航角(yaw);右 Ctrl 建 + 左(←)右		
		(→) 控制横滚角(roll);焦距操作		
		alt+上, alt+下进行吊舱视觉的控		
		制。		

13	共享内存方式	通过平台接口上(↑)下(↓)键控制	<u>1-</u>	免费版
	吊舱视觉控制	俯仰角(pitch);左(←)右(→)键控制	VisionCtrlDemos\e2_CameraKeyDemoOnWindows\BaseVersion\Readme.pdf	
	键盘仿真实验	偏航角(yaw);右 Ctrl 建 + 左(←)右		
		(→) 控制横滚角(roll);焦距操作		
		alt+上, alt+下进行吊舱视觉的控		
		制。		
14	无人机跟踪小	通过平台接口进行图像的获取,然	1-VisionCtrlDemos\e3_ShootBall\Readme.pdf	免费版
	球实验	后通过运行"ShootBall3.py"程序。		
		在前方生成一个红色球体,让飞机		
		飞到靠左后方一段距离,并开启视		
		觉跟踪,飞到小球面前停止。		
15	无人机穿环实	通过平台接口进行图像的获取,然	1-VisionCtrlDemos\e4_CrossRing\Readme.pdf	免费版
	验	后通过运行"CrossRing3.py"程序,		
		飞机起飞后并开启视觉跟踪,按照		
		照顺序穿过三个环,最后自动降		
		落。		
16	三无人机分布	通过三个 python 运行文件,使得	1-VisionCtrlDemos\e4_CrossRing\ThreeUAVDemo\Readme.pdf	免费版
	式控制实验	三架飞机分布进行穿环。		
17	双无人机分布	通过两个 python 运行文件,使得	1-VisionCtrlDemos\e4_CrossRing\TwoUAVDemo\Readme.pdf	免费版
	式控制实验	两架飞机分布进行穿环。		
18	基础功能性实	本文件夹中的所有实验均为本讲	1-VisionCtrlDemos\e5_ScreenCapAPI\Readme.pdf	免费版
	验	中基础性的功能实验,用户可快速		
		上手熟悉一些简单的功能性实验。		
19	屏幕截图接	双击 ShootBall3SITL.bat ,后会打	1-VisionCtrlDemos\e5_ScreenCapAPI\1-ShootBall\Readme.pdf	免费版
	口、撞击小球	开一个 CopterSim 飞机的仿真闭		
	实验	环,同时打开两个 RflySim3D 窗		

		口,通过平台接口进行图像的获		
		取,一个用于显示前置摄像头,一		
		个 用 于 全 局 观 察 。 运 行		
		"ShootBall3.py", 开始视觉处理, 然		
		后控制无人机撞向小球。		
20	无人机穿环实	通过平台接口进行图像的获取,然	1-VisionCtrlDemos\e5_ScreenCapAPI\2-CrossRing\Readme.pdf	免费版
	验	后通过运行"CrossRing3.py"程序,		
		飞机起飞后并开启视觉跟踪,按照		
		照顺序穿过三个环,最后自动降		
		落。		
21	屏幕截图接	双击 ShootBall3SITL.bat ,后会打	1-VisionCtrlDemos\e5_ScreenCapAPI\1-ShootBall\Readme.pdf	免费版
	口、撞击小球	开一个 CopterSim 飞机的仿真闭		
	实验	环,同时打开两个 RflySim3D 窗		
		口,通过平台接口进行图像的获		
		取,一个用于显示前置摄像头,一		
		个用于全局观察。运行		
		"ShootBall3.py", 开始视觉处理, 然		
22	无人机穿环实	通过平台接口进行图像的获取,然	1-VisionCtrlDemos\e5_ScreenCapAPI\2-CrossRing\Readme.pdf	免费版
	验	后通过运行"CrossRing3.py"程序,		
		飞机起飞后并开启视觉跟踪, 按照		
		照顺序穿过三个环,最后自动降		
		落。		
23	无人机跟随圆	该例程通过生成一块圆形案板并	1-VisionCtrlDemos\e6_Circle-follow\Readme.pdf	免费版
	形案板移动实	用按键控制圆形案板移动方向。通		
	验	过使用平台接口进行图像的获取,		

			并通过视觉处理控制无人机跟随		
			圆形案板移动。		
24	4	双目视觉人脸	通过平台 Config.json 配置文件配	1-VisionCtrlDemos\e7_ManDetect\Readme.pdf	免费版
		识别实验	置好双目视觉灰度相机传感器,然		
			后通过平台接口进行图像的获取,		
			并在飞机起飞后开启人脸识别算		
			法,双目框选出人脸。		

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。