1) Calories consumed: predict weight gained using calories consumed

Here

Independent variable is calories consumed (X)

Dependent variable is weight gain (Y)

Solution:

For S. L. R :
$$Y = \beta_0 + \beta_1 X$$

Codes to build a Linear regression model:

import pandas as pd import numpy as np import matplotlib.pyplot as plt

cc=pd.read_csv("E:\Data\Assignments\i made\SLR\calories_consumed.csv")

To find the correlation between the variables:

cc.Calories_Consumed.corr(cc.Weight_gained_grams)

Correlation: 0.9469910088554458

The 0.94 indiactes that the variables inside the data are strongly correlated.

Building a Linear regression model: (using ordinary least square technique)

import statsmodels.formula.api as smf
model = smf.ols("Calories_Consumed~Weight_gained_grams",data=cc).fit()
model

 $\beta_0 = 1577.200702$ $\beta_1 = 2.134423$

To get the model summary:

model.summary()

OLS Regression Results

Dep. Variable:	Calories_Co	nsumed	R-squ	uared:		0.897	
Model:	OLS		Adj.	Adj. R-squared:		0.88	3
Method:	Least Squares		F-sta	atistic:		104.3	
Date:				(F-statist	ic):	2.86e-0	7
Time:				Likelihood:		-96.17	3
No. Observations:		14	AIC:			196.	3
Df Residuals:		12	BIC:			197.	5
Df Model:		1					
Covariance Type:	nor	robust					
	coef	std	err	t	P> t	[0.025	0.975]
Intercept	1577.2007	100	.541	15.687	0.000	1358.141	1796.260
Weight_gained_grams	2.1344	0	. 209	10.211	0.000	1.679	2.590
Omnibus:	========	0.254	Durb	======= in-Watson:		2.30	= B
Prob(Omnibus):	0.881		Jarqu	Jarque-Bera (JB):		0.425	
Skew:				Prob(JB):		0.808	
Kurtosis:		2.169		. ,		719	

To Predict values of Calories_Consumed using the model

pred = model.predict(cc.iloc[:,0])
pred

- 0 1807.718381
- 1 2004.085294
- 2 3498.181364
- 3 2004.085294
- 4 2217.527589
- 5 1811.987227
- 6 1850.406841
- 7 1709.534925
- 8 2857.854477
- 9 3925.065955
- 10 1790.642998
- 11 1897.364146
- 12 2324.248737
- 13 3071.296772

2) Delivery time: Predict delivery time using sorting time

Independent variable is Sorting_Time (X)
Dependent variable is Delivery Time (Y)

Solution:

For S. L. R :
$$Y = \beta_0 + \beta_1 X$$

Codes to build a Linear regression model:

import pandas as pd import numpy as np import matplotlib.pyplot as plt

dt=pd.read_csv("E:\Data\Assignments\i made\SLR\Delivery_Time.csv")

To find the correlation between the variables:

dt. Sorting_Time.corr(dt. Delivery_Time)

Correlation: 0.82599726

The 0.826 indicates that the variables inside the data are moderately correlated. Since the r value here is lesser than 0.85 we need improve the correlation, so that we use R² (R squared value - coefficient of determination)

Building a Linear regression model: (using ordinary least square technique)

import statsmodels.formula.api as smf
model = smf.ols("Sorting_Time" Delivery_Time",data=dt).fit()
model

 $\beta_0 = -0.7567$ $\beta_1 = 0.4137$

To get the model summary:

model.summary()

		-				
Dep. Variable:	Sorting_Time		R-squared	l:	0.682	
Model:	OLS		Adj. R-sq	uared:	0.666	
Method:	Least Squares		F-statist	ic:	40.80	
Date:	Sun, 29 Mar 2020		Prob (F-s	tatistic):	3.98e-06	
Time:	18:30:20		Log-Likelihood:		-36.839	
No. Observations:	:	21	AIC:			77.68
Df Residuals:		19	BIC:			79.77
Df Model:		1				
Covariance Type:		nonrobust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.7567	1.134	-0.667	0.513	-3.130	1.617
Delivery_Time	0.4137	0.065	6.387	0.000	0.278	0.549
Omnibus:		1.409	 Durbin-Wa	tson:		1.346
Prob(Omnibus):		0.494	Jarque-Bera (JB):		0.371	
Skew:		0.255	Prob(JB):	, ,		0.831
Kurtosis:		3.405	Cond. No.			62.1

To Predict values of Delivery _Time using the model

pred = model.predict(dt.iloc[:,0])
pred

- 0 7.931943
- 1 4.828866
- 2 7.414763
- 3 9.173174
- 4 11.241892
- 5 5.594291
- 6 7.104456
- 7 3.173891
- 8 6.649338
- 9 7.001020
- 10 7.447863
- 11 3.691071
- 12 6.144570
- 13 4.001378
- 14 4.220662
- 15 5.399832
- 16 4.932302
- 17 6.736224
- 18 2.553276
- 19 6.620376
- 20 8.138815

3) Emp_data: Build a prediction model for Churn_out_rate

Independent variable is Salary_hike (X)
Dependent variable is Churn_out_rate (Y)

Solution:

For S. L. R :
$$Y = \beta_0 + \beta_1 X$$

Codes to build a Linear regression model:

import pandas as pd import numpy as np import matplotlib.pyplot as plt

ed=pd.read_csv("E:\Data\Assignments\i made\SLR\emp_data.csv")

To find the correlation between the variables:

ed.Salary_hike.corr(ed.Churn_out_rate)

Correlation: -0.91172161

To find the value of β_0 and β_1 :

import statsmodels.formula.api as smf
model = smf.ols("Churn_out_rate~Salary_hike",data=ed).fit()
model

 $\beta_0 = 244.364911$ $\beta_1 = -0.101543$

To get the model summary:

model.summary()

OLS Regression Results								
Dep. Variable: Model: Method: Date: Time: No. Observation: Df Residuals: Df Model: Covariance Type	Sun s:	Churn_out_rate OLS Least Squares 1, 29 Mar 2020 18:39:38 10 8 1 nonrobust	Adj. F-sta Prob Log-L	ared: R-squared: tistic: (F-statistic): ikelihood:		0.831 0.810 39.40 0.000239 -28.046 60.09 60.70		
=======================================	coef	std err	t	P> t	[0.025	0.975]		
Intercept 2				0.000 0.000	181.291 -0.139	307.439 -0.064		
Omnibus: Prob(Omnibus): Skew: Kurtosis:		2.201 0.333 0.851 2.304	Jarqu Prob(,		0.562 1.408 0.495 3.27e+04		

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
 [2] The condition number is large, 3.27e+04. This might indicate that there are strong multicollinearity or other numerical problems.

To Predict values of Delivery _Time using the model

```
pred = model.predict(ed.iloc[:,0])
pred
```

- 0 83.927531
- 1 81.896678
- 2 80.881252
- 3 77.834973
- 4 75.804120
- 5 72.757840
- 6 71.133158
- 7 68.696134
- 8 61.588149
- 9 54.480164

4) Salary_hike: Build a prediction model for Salary_hike

5)

Independent variable is YearsExperiance (X)
Dependent variable is Salary (Y)

Solution:

For S. L. R :
$$Y = \beta_0 + \beta_1 X$$

Codes to build a Linear regression model:

import pandas as pd import numpy as np import matplotlib.pyplot as plt

sd=pd.read_csv("E:\Data\Assignments\i made\SLR\Salary_Data.csv")

To find the correlation between the variables:

sd. YearsExperiance corr(ed.Salary)

Correlation: 0.978241

The 0.978 indicates that the variables inside the data are strongly correlated. Since the r value here is lesser than 0.85 we need improve the correlation, so that we use R² (R squared value - coefficient of determination)

Building a Linear regression model: (using ordinary least square technique)

To find the value of β_0 and β_1 :

import statsmodels.formula.api as smf
model = smf.ols("YearsExperiance ~Salary ",data=sd).fit()
model

 $\beta_0 = 25792.200199$ $\beta_1 = 9449.962321$

To get the model summary:

model.summary()

OLS Regression Results

Dep. Variable:	Salary		R-squared:		0.957		
Model:		OLS		Adj. R-squared:		0.955	
Method:	Lea	Least Squares		F-statistic:		622.5	
Date:	Sun, 2	Sun, 29 Mar 2020		Prob (F-statistic):		1.14e-20	
Time:		20:23:48		Log-Likelihood:		-301.44	
No. Observations	:	30	AIC:			606.9	
Df Residuals:		28	BIC:			609.7	
Df Model:		1					
Covariance Type:		nonrobust					
==========					=======		
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	2.579e+04	2273.053	11.347	0.000	2.11e+04	3.04e+04	
YearsExperience	9449.9623	378.755	24.950	0.000	8674.119	1.02e+04	
Omnibus:	2.140		Durbin-Watson:		1.648		
Prob(Omnibus):		0.343				1.569	
Skew:		0.363	· /			0.456	
Kurtosis:		2.147	Cond. No.			13.2	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

To Predict values of Delivery _Time using the model

```
pred = model.predict(sd.iloc[:,0])
pred
```

- 0 36187.158752
- 1 38077.151217
- 2 39967.143681
- 3 44692.124842
- 4 46582.117306
- 5 53197.090931
- 6 54142.087163
- 7 56032.079627
- 8 56032.079627
- 9 60757.060788

- 10 62647.053252
- 11 63592.049484
- 12 63592.049484
- 13 64537.045717
- 14 68317.030645
- 15 72097.015574
- 16 73987.008038
- 17 75877.000502
- 18 81546.977895
- 19 82491.974127
- 20 90051.943985
- 21 92886.932681
- 22 100446.902538
- 23 103281.891235
- 24 108006.872395
- 25 110841.861092
- 26 115566.842252
- 27 116511.838485
- 28 123126.812110
- 29 125016.804574