Oscilações Forçadas com Força Externa Periódica

Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais

http://www.mat.ufmg.br/~regi

21 de agosto de 2010

Vamos supor que uma força externa periódica $F_{ext}(t)$, com período T, é aplicada à massa. Então a equação para o movimento da massa é

$$mu'' + \gamma u' + ku = F_{ext}(t).$$

Supondo que a força externa seja seccionalmente contínua com a sua derivada também seccionalmente contínua, então como ela é periódica de período T, ela pode ser representada por sua série de Fourier.

$$F_{ext}(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{2n\pi t}{T} + \sum_{n=1}^{\infty} b_n \sin \frac{2n\pi t}{T}$$

em que os coeficientes são dados por

$$a_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos \frac{2n\pi t}{T} dt$$
, para $n = 0, 1, 2, ...$
 $b_n = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin \frac{2n\pi t}{T} dt$. para $n = 1, 2, ...$

1 Oscilações Forçadas sem Amortecimento

Neste caso a equação diferencial para o movimento da massa é

$$mu'' + ku = F_{ext}(t) \tag{1}$$

A solução geral é a soma da solução geral da equação homogênea correspondente com uma solução particular da equação não homogênea. A equação homogênea correspondente é

$$mu'' + ku = 0,$$

que é a equação do problema de oscilação livre não amortecida. A equação característica é

$$mr^2 + k = 0 \quad \Leftrightarrow \quad r = \pm \sqrt{\frac{k}{m}} i$$

Assim a solução geral da equação homogênea é

$$u(t) = c_1 \cos\left(\sqrt{\frac{k}{m}} t\right) + c_2 \sin\left(\sqrt{\frac{k}{m}} t\right)$$

Seja $\omega_0=\sqrt{\frac{k}{m}}$. Então a equação acima pode ser escrita em termos de ω_0 como

$$u(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t). \tag{2}$$

Assim a solução geral da equação não homogênea é da forma

$$u(t) = c_1 \cos(\omega_0 t) + c_2 \sin(\omega_0 t) + u_p(t).$$

Pelo método das coeficientes a determinar, devemos procurar uma solução particular da forma

$$u_p(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{2n\pi t}{T} + \sum_{n=1}^{\infty} B_n \sin \frac{2n\pi t}{T},$$

em que A_n e B_n são coeficientes a serem determinados substituindo-se $u_p(t)$ na equação diferencial (1). Temos que supor que $\omega_0 \neq \frac{2n\pi}{T}$, para n=1,2,3... (por que?)

Figura 1: Sistema massa-mola forçado sem amortecimento

Exemplo 1. Vamos considerar o problema de valor inicial

$$\begin{cases} u'' + \omega_0^2 u = f(t), \\ u(0) = 0, u'(0) = 0 \end{cases}$$

Figura 2: Parte não homogênea, f(t) da equação do problema de valor inicial do Exemplo 1

$$f(t) = \begin{cases} 1, & \text{se } 0 \le t < 1 \\ -1, & \text{se } 1 \le t < 2 \end{cases}$$
 e tal que $f(t+2) = f(t)$

A solução geral da equação diferencial é

$$u(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + u_p(t),$$

em que $u_p(t)$ é uma solução particular. Como f é ímpar, seccionalmente contínua com derivada seccionalmente contínua, ela pode ser representada por sua série de Fourier de senos:

$$f(t) = \sum_{n=1}^{\infty} b_n \operatorname{sen} n\pi t.$$

com

$$b_n = 2\int_0^1 f(t) \sin n\pi t \, dt = -\frac{2}{n\pi} \cos s \Big|_0^{n\pi} = \frac{2}{n\pi} (1 - (-1)^n)$$

Vamos procurar uma solução particular da forma

$$u_p(t) = \sum_{n=1}^{\infty} (A_n \cos n\pi t + B_n \sin n\pi t)$$

com coeficientes A_n , B_n a determinar. Vamos supor que a derivada da série seja igual a série das derivadas:

$$u_p'(t) = \sum_{n=1}^{\infty} (-n\pi A_n \operatorname{sen} n\pi t + n\pi B_n \cos n\pi t),$$

Figura 3: Solução do problema de valor inicial do Exemplo 1 para $\omega_0=\pi/2$.

$$u_p''(t) = -\sum_{n=1}^{\infty} (n^2 \pi^2 A_n \cos n\pi t + n^2 \pi^2 B_n \sin n\pi t).$$

Substituindo-se $u_p(t)$ e $u_p''(t)$ na equação diferencial obtemos

$$-\sum_{n=1}^{\infty} n^2 \pi^2 (A_n \cos n\pi t + B_n \sin n\pi t)$$

$$+\omega_0^2 \sum_{n=1}^{\infty} (A_n \cos n\pi t + B_n \sin n\pi t) = \sum_{n=1}^{\infty} b_n \sin n\pi t,$$

que podemos reescrever como

$$\sum_{n=1}^{\infty} \left[B_n(\omega_0^2 - n^2 \pi^2) - b_n \right] \operatorname{sen} n \pi t + \sum_{n=1}^{\infty} (\omega_0^2 - n^2 \pi^2) A_n \cos n \pi t = 0.$$

De onde obtemos

$$A_n = 0$$
, $B_n = \frac{b_n}{\omega_0^2 - n^2 \pi^2}$, para $n = 1, 2, ...$

Assim uma solução particular da equação diferencial é

$$u_p(t) = \sum_{n=1}^{\infty} \frac{b_n}{\omega_0^2 - n^2 \pi^2} \operatorname{sen} n \pi t = \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n(\omega_0^2 - n^2 \pi^2)} \operatorname{sen} n \pi t$$

A solução geral da equação diferencial é então

$$u(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n(\omega_0^2 - n^2 \pi^2)} \sin n\pi t$$

Substituindo-se t=0 e u=0, obtemos $c_1=0$. Substituindo-se t=0 em

$$u'(t) = \omega_0 c_2 \cos \omega_0 t + 2 \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{\omega_0^2 - n^2 \pi^2} \cos n \pi t$$

obtemos

$$c_2 = \frac{2}{\omega_0} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{\omega_0^2 - n^2 \pi^2}$$

Logo a solução do PVI é

$$u(t) = \left(\frac{2}{\omega_0} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{\omega_0^2 - n^2 \pi^2}\right) \operatorname{sen} \omega_0 t + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n(\omega_0^2 - n^2 \pi^2)} \operatorname{sen} n \pi t$$

$$= \left(\frac{4}{\omega_0} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2 \pi^2 - \omega_0^2}\right) \operatorname{sen} \omega_0 t$$

$$+ \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2n+1)(\omega_0^2 - (2n+1)^2 \pi^2)} \operatorname{sen}(2n+1) \pi t$$

Para encontrar $u_p(t)$ fizemos a suposição de que as derivadas da série eram a série das derivadas. Seja

$$u_p(t) = \sum_{n=1}^{\infty} u_n(t).$$

Então

$$u_p'(t) = \sum_{n=1}^{\infty} u_n'(t),$$

$$u_p''(t) = \sum_{n=1}^{\infty} u_n''(t)$$

pois,

$$|u'_n(t)| \le \frac{4}{\pi} \frac{1}{\omega_0^2 - n^2 \pi^2},$$

$$|u_n''(t)| \le \frac{4}{\pi} \frac{n}{\omega_0^2 - n^2 \pi^2}.$$

2 Oscilações Forçadas com Amortecimento

Neste caso a equação diferencial para o movimento da massa é

$$mu'' + \gamma u' + ku = F_0(t) \tag{3}$$

A solução geral é a soma da solução geral da equação homogênea correspondente com uma solução particular da equação não homogênea. A equação homogênea correspondente é

$$mu'' + \gamma u' + ku = 0,$$

que é a equação do problema de oscilação livre amortecida. A equação característica é $mr^2 + \gamma r + k = 0$ e $\Delta = \gamma^2 - 4km$

Aqui temos três casos a considerar:

(a) Se $\Delta = \gamma^2 - 4km > 0$ ou $\gamma > 2\sqrt{km}$, neste caso

$$u(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$

em que

$$r_{1,2} = \frac{-\gamma \pm \sqrt{\Delta}}{2m} = \frac{-\gamma \pm \sqrt{\gamma^2 - 4km}}{2m} < 0$$

Este caso é chamado **superamortecimento**.

(b) Se $\Delta = \gamma^2 - 4km = 0$ ou $\gamma = 2\sqrt{km}$, neste caso

$$u(t) = c_1 e^{-\frac{\gamma t}{2m}} + c_2 t e^{-\frac{\gamma t}{2m}}$$

Este caso é chamado amortecimento crítico.

(c) Se $\Delta = \gamma^2 - 4km < 0$ ou $0 < \gamma < 2\sqrt{km}$, neste caso

$$u(t) = e^{-\frac{\gamma t}{2m}} (c_1 \cos \mu t + c_2 \sin \mu t) \tag{4}$$

em que

$$\mu = \frac{\sqrt{4km - \gamma^2}}{2m} = \sqrt{\omega_0^2 - \frac{\gamma^2}{4m^2}} < \omega_0$$

Aqui, μ é chamado **quase frequência** e $T = \frac{2\pi}{\mu}$ é chamado **quase período**. Este caso é chamado **subamortecimento**.

Observe que nos três casos a solução tende a zero quando t tende a $+\infty$.

Seja $u(t) = c_1 u_1(t) + c_2 u_2(t)$ a solução geral da equação homogênea correspondente. Então a solução geral da equação não homogênea (3) é

$$u(t) = c_1 u_1(t) + c_2 u_2(t) + u_p(t)$$

em que $u_p(t)$ é uma solução particular. Pelo método dos coeficientes a determinar

$$u_p(t) = A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{2n\pi t}{T} + \sum_{n=1}^{\infty} B_n \sin \frac{2n\pi t}{T},$$

em que A_n e B_n são coeficientes a serem determinados substituindo-se $u_p(t)$ na equação diferencial (3).

A solução geral da equação homogênea correspondente, $c_1u_1(t) + c_2u_2(t)$, é a solução do problema de oscilação livre amortecida e já mostramos que tende a zero quando t tende a $+\infty$, por isso é chamada **solução transiente**, enquanto a solução particular, $u_p(t)$, permanece e por isso é chamada **solução estacionária**.

Figura 4: Sistema massa-mola forçado com amortecimento

Exemplo 2. Vamos considerar o problema de valor inicial

$$\begin{cases} u'' + 3u' + 2u = f(t), \\ u(0) = 0, u'(0) = 0 \end{cases}$$

Figura 5: Solução estacionária do problema de valor inicial do Exemplo 2.

$$f(t) = \begin{cases} 1, & \text{se } 0 \le t < 1 \\ -1, & \text{se } 1 \le t < 2 \end{cases} \quad \text{e tal que} \quad f(t+2) = f(t)$$

A solução geral da equação diferencial é

$$u(t) = c_1 e^{-t} + c_2 e^{-2t} + u_p(t),$$

em que $u_p(t)$ é uma solução particular. Como f é ímpar, seccionalmente contínua com derivada seccionalmente contínua, ela pode ser representada por sua série de Fourier de senos:

$$f(t) = \sum_{n=1}^{\infty} b_n \operatorname{sen} n\pi t$$

com

$$b_n = 2 \int_0^1 f(t) \sin n\pi t \, dt = -\frac{2}{n\pi} \cos s \Big|_0^{n\pi} = \frac{2}{n\pi} (1 - (-1)^n)$$

Vamos procurar uma solução particular da forma

$$u_p(t) = \sum_{n=1}^{\infty} (A_n \cos n\pi t + B_n \sin n\pi t)$$

com coeficientes A_n , B_n a determinar. Vamos supor que a derivada da série seja igual a série das derivadas:

$$u_p'(t) = \sum_{n=1}^{\infty} (-n\pi A_n \operatorname{sen} n\pi t + n\pi B_n \cos n\pi t),$$

$$u_p''(t) = -\sum_{n=1}^{\infty} (n^2 \pi^2 A_n \cos n\pi t + n^2 \pi^2 . B_n \sin n\pi t)$$

Substituindo-se $u_p(t)$, $u_p'(t)$ e $u_p''(t)$ na equação diferencial obtemos

$$-\sum_{n=1}^{\infty} n^2 \pi^2 (A_n \cos n\pi t + B_n \sin n\pi t)$$

$$+3\sum_{n=1}^{\infty} (-n\pi A_n \sin n\pi t + n\pi B_n \cos n\pi t)$$

$$+2\sum_{n=1}^{\infty} (A_n \cos n\pi t + B_n \sin n\pi t) = \sum_{n=1}^{\infty} b_n \sin n\pi t,$$

que podemos reescrever como

$$\sum_{n=1}^{\infty} \left[(2 - n^2 \pi^2) B_n - 3n\pi A_n - b_n \right] \operatorname{sen} n\pi t + \sum_{n=1}^{\infty} \left[(2 - n^2 \pi^2) A_n + 3n\pi B_n \right] \cos n\pi t = 0.$$

De onde obtemos o sistema

$$\begin{cases} (2 - n^2 \pi^2) A_n + 3n\pi B_n = 0 \\ -3n\pi A_n + (2 - n^2 \pi^2) B_n = b_n \end{cases}$$

que tem solução

$$A_n = -\frac{3n\pi b_n}{\Delta_n}$$
, $B_n = \frac{(2 - n^2\pi^2)b_n}{\Delta_n}$, para $n = 1, 2, ...$

em que $\Delta_n = 9n^2\pi^2 + (2-n^2\pi^2)^2$. Assim uma solução particular da equação diferencial é

$$u_{p}(t) = -\sum_{n=1}^{\infty} \frac{3n\pi b_{n}}{\Delta_{n}} \cos n\pi t + \sum_{n=1}^{\infty} \frac{(2-n^{2}\pi^{2})b_{n}}{\Delta_{n}} \sin n\pi t$$

$$= 6\sum_{n=1}^{\infty} \frac{(-1)^{n}-1}{\Delta_{n}} \cos n\pi t + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{(2-n^{2}\pi^{2})(1-(-1)^{n})}{n\Delta_{n}} \sin n\pi t$$

$$= -12\sum_{n=0}^{\infty} \frac{1}{\Delta_{2n+1}} \cos(2n+1)\pi t + \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{2-(2n+1)^{2}\pi^{2}}{(2n+1)\Delta_{2n+1}} \sin(2n+1)\pi t$$

que é a solução estacionária. Para encontrar $u_p(t)$ fizemos a suposição de que as derivadas da série eram a série das derivadas. Seja

$$u_p(t) = \sum_{n=1}^{\infty} u_n(t).$$

Então

$$u_p'(t) = \sum_{n=1}^{\infty} u_n'(t),$$

$$u_p''(t) = \sum_{n=1}^{\infty} u_n''(t)$$

pois,

$$|u'_n(t)| \le 12 \frac{n}{\Delta_n} + \frac{4}{\pi} \frac{(2 - n^2 \pi^2)}{\Delta_n},$$

 $|u''_n(t)| \le 12 \frac{n^2}{\Delta_n} + \frac{4}{\pi} \frac{n(2 - n^2 \pi^2)}{\Delta_n}.$

Exercícios

Figura 6: Termo não homogêneo da equação do problema de valor inicial do Exercício 1.

1. Considere

$$f(t) = \begin{cases} t, & \text{se } 0 \le t < 1 \\ 2 - t, & \text{se } 1 \le t < 2 \end{cases} \quad \text{e tal que} \quad f(t + 2) = f(t)$$

(a) Resolva o problema de valor inicial

$$\begin{cases} u'' + \omega_0^2 u = f(t), \\ u(0) = 0, u'(0) = 0 \end{cases}$$

(b) Encontre a solução estacionária do problema de valor inicial

$$\begin{cases} u'' + 3u' + 2u = f(t), \\ u(0) = 0, u'(0) = 0 \end{cases}$$

Respostas dos Exercícios

1. (a) A solução geral da equação diferencial é

$$u(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + u_p(t),$$

em que $u_p(t)$ é uma solução particular. Como f é par, seccionalmente contínua com derivada seccionalmente contínua, ela pode ser representada por sua série de Fourier de cossenos:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi t$$

com

$$a_0 = 2a_0(f_{0,1}^{(1)}) = 1,$$

 $a_n = 2a_n(f_{0,1}^{(1)}) = \frac{2}{n^2\pi^2}(\cos n\pi - 1) = \frac{2}{n^2\pi^2}((-1)^n - 1),$

$$f(t) = \frac{1}{2} - \frac{2}{\pi^2} \sum_{n=0}^{\infty} \frac{(-1)^n - 1}{n^2} \cos n\pi t$$

Vamos procurar uma solução particular da forma

$$u_p(t) = A_0 + \sum_{n=1}^{\infty} (A_n \cos n\pi t + B_n \sin n\pi t)$$

com coeficientes A_n , B_n a determinar. Vamos supor que a derivada da série seja igual a série das derivadas:

$$u_p'(t) = \sum_{n=1}^{\infty} (-n\pi A_n \operatorname{sen} n\pi t + n\pi B_n \cos n\pi t).$$

$$u_p''(t) = -\sum_{n=1}^{\infty} (n^2 \pi^2 A_n \cos n\pi t + n^2 \pi^2 B_n \sin n\pi t)$$

Substituindo-se $u_p(t)$ e $u_p''(t)$ na equação diferencial obtemos

$$-\sum_{n=1}^{\infty}n^2\pi^2(A_n\cos n\pi t + B_n\sin n\pi t)$$

$$+\omega_0^2(A_0 + \sum_{n=1}^{\infty} (A_n \cos n\pi t + B_n \sin n\pi t)) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi t$$

$$\sum_{n=1}^{\infty} B_n(\omega_0^2 - n^2\pi^2) \sin n\pi t + \omega_0^2 A_0 - \frac{a_0}{2} + \sum_{n=1}^{\infty} [A_n(\omega_0^2 - n^2\pi^2) - a_n] \cos n\pi t = 0$$

De onde obtemos

$$A_0 = \frac{a_0}{2\omega_0^2}, \quad A_n = \frac{a_n}{\omega_0^2 - n^2\pi^2}, \quad B_n = 0, \quad \text{para } n = 1, 2, \dots$$

Assim uma solução particular da equação diferencial é

$$u_p(t) = \frac{a_0}{2\omega_0^2} + \sum_{n=1}^{\infty} \frac{a_n}{\omega_0^2 - n^2 \pi^2} \cos n\pi t$$
$$= \frac{1}{2\omega_0^2} + \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n^2(\omega_0^2 - n^2 \pi^2)} \cos n\pi t$$

A solução geral é então

$$u(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + \frac{1}{2\omega_0^2} + \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n^2 (\omega_0^2 - n^2 \pi^2)} \cos n\pi t$$

Substituindo-se t = 0 e u = 0, obtemos

$$c_1 = \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{\omega_0^2 - n^2 \pi^2} - \frac{1}{2\omega_0^2}.$$

Substituindo-se t = 0 em

$$u'(t) = -\omega_0 c_1 \sin \omega_0 t + \omega_0 c_2 \cos \omega_0 t + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{n(\omega_0^2 - n^2 \pi^2)} \sin n\pi t$$

obtemos $c_2 = 0$. Logo a solução do PVI é

$$u(t) = \left(\frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{1 - (-1)^n}{\omega_0^2 - n^2 \pi^2} - \frac{1}{2\omega_0^2}\right) \cos \omega_0 t + \frac{1}{2\omega_0^2} + \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n^2(\omega_0^2 - n^2 \pi^2)} \cos n \pi t$$

$$= \left(\frac{4}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{\omega_0^2 - (2n+1)^2 \pi^2} - \frac{1}{2\omega_0^2}\right) \cos \omega_0 t$$

$$+ \frac{1}{2\omega_0^2} + \frac{4}{\pi^2} \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2((2n+1)^2 \pi^2 - \omega_0^2)} \cos(2n+1) \pi t$$

(b) A solução geral da equação diferencial é

$$u(t) = c_1 e^{-t} + c_2 e^{-2t} + u_p(t),$$

em que $u_p(t)$ é uma solução particular. Como f é par, seccionalmente contínua com derivada seccionalmente contínua, ela pode ser representada por sua série de Fourier de cossenos:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi t$$

com

$$a_0 = 2a_0(f_{0,1}^{(1)}) = 1,$$

 $a_n = 2a_n(f_{0,1}^{(1)}) = \frac{2}{n^2\pi^2}(\cos n\pi - 1) = \frac{2}{n^2\pi^2}((-1)^n - 1),$

$$f(t) = \frac{1}{2} + \frac{2}{\pi^2} \sum_{n=0}^{\infty} \frac{(-1)^n - 1}{n^2} \cos n\pi t$$

Vamos procurar uma solução particular da forma

$$u_p(t) = A_0 + \sum_{n=1}^{\infty} (A_n \cos n\pi t + B_n \sin n\pi t)$$

com coeficientes A_n , B_n a determinar. Vamos supor que a derivada da série seja igual a série das derivadas:

$$u_p'(t) = \sum_{n=1}^{\infty} (-n\pi A_n \operatorname{sen} n\pi t + n\pi B_n \cos n\pi t),$$

$$u_p''(t) = -\sum_{n=1}^{\infty} (n^2 \pi^2 A_n \cos n\pi t + n^2 \pi^2 . B_n \sin n\pi t)$$

Substituindo-se $u_p(t)$, $u_p'(t)$ e $u_p''(t)$ na equação diferencial obtemos

$$-\sum_{n=1}^{\infty} n^2 \pi^2 (A_n \cos n\pi t + B_n \sin n\pi t)$$

$$+3\sum_{n=1}^{\infty} (-n\pi A_n \sin n\pi t + n\pi B_n \cos n\pi t)$$

$$+2(A_0 + \sum_{n=1}^{\infty} (A_n \cos n\pi t + B_n \sin n\pi t)) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi t$$

que podemos reescrever como

$$\sum_{n=1}^{\infty} [(2 - n^2 \pi^2) B_n - 3n\pi A_n] \sin n\pi t$$

$$+ 2A_0 - \frac{a_0}{2} + \sum_{n=1}^{\infty} [(2 - n^2 \pi^2) A_n + 3n\pi B_n - a_n] \cos n\pi t = 0.$$

De onde obtemos $A_0 = \frac{a_0}{4}$ e o sistema de equações

$$\begin{cases} (2 - n^2 \pi^2) A_n + 3n\pi B_n &= a_n \\ -3n\pi A_n + (2 - n^2 \pi^2) B_n &= 0 \end{cases}$$

que tem solução

$$A_n = \frac{(2 - n^2 \pi^2) a_n}{\Delta_n}, \quad B_n = \frac{3n \pi a_n}{\Delta_n}, \quad \text{para } n = 1, 2, \dots$$

em que $\Delta_n=9n^2\pi^2+(2-n^2\pi^2)^2$. Assim uma solução particular da equação diferencial é

$$\begin{array}{ll} u_p(t) & = & \frac{a_0}{4} + \sum_{n=1}^{\infty} \frac{(2 - n^2 \pi^2) a_n}{\Delta_n} \cos n\pi t + \sum_{n=1}^{\infty} \frac{3n\pi a_n}{\Delta_n} \sin n\pi t \\ \\ & = & \frac{1}{4} + \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{(2 - n^2 \pi^2)((-1)^n - 1)}{n^2 \Delta_n} \cos n\pi t + \frac{6}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n - 1}{n\Delta_n} \sin n\pi t \\ \\ & = & \frac{1}{4} + \frac{4}{\pi^2} \sum_{n=0}^{\infty} \frac{(2n+1)^2 \pi^2 - 2}{(2n+1)^2 \Delta_{2n+1}} \cos(2n+1)\pi t - \frac{12}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2n+1)\Delta_{2n+1}} \sin(2n+1)\pi t \end{array}$$

que é a solução estacionária.

