## 2025年度春夏学期 大阪大学 理学部数学科 幾何学基礎1演義 演習問題(基礎問題)

## 岩井雅崇 (大阪大学)

April 11, 2025, ver 1.00

## Contents

| 0  | ガイダンス           | 2          |
|----|-----------------|------------|
| 1  | 集合と集合の演算        | 4          |
| 2  | 集合の直積・写像・集合系の演算 | 6          |
| 3  | 全射・単射           | 8          |
| 4  | 濃度の大小           | 10         |
| 5  | 同値関係 (二項関係)・商集合 | 12         |
| 6  | 整列集合            | <b>1</b> 4 |
| 7  | 選択公理            | 16         |
| 8  | ツォルンの補題と整列可能定理  | 18         |
| 9  | ユークリッド空間の位相     | 20         |
| 10 | 距離空間の定義         | 22         |
| 11 | 距離空間の近傍系と連続写像   | 24         |

## 0 ガイダンス

# 2025 年度春夏学期 大阪大学 理学部数学科 幾何学基礎 1 演義

火曜 4 限 (15:10-16:40) 理学部 D403 教室

岩井雅崇 (いわいまさたか)

## 基本的事項

- この授業は対面授業です. 金曜 4 限 (15:10-16:40) に D403 教室にて演習の授業を行います.
- 講義の授業とセットで受講してください。 演義の授業のみ受講する場合は4月15日の授業後に申し出ること。
- 授業ホームページ (https://masataka123.github.io/2025\_summer\_set\_theory/) および CLE にて授業の問題等をアップロードしていきます。QR コードは下にあります。



## 成績に関して

次の1と2を満たしているものに単位を与えます.

- 1. 幾何学1の講義の単位が可以上である.
- 2. 最終授業終了時までに8点以上の演習点(後述)を獲得していること.

成績は講義の成績と演習点でつける予定です.

## 演習点に関して

- 1. (基礎問題) 配布した基礎問題を演義授業時に解き CLE に提出する. 演習点は1点.
- 2. (応用問題) 配布した応用問題集を解き、その解答を黒板を用いて発表する. その場合の演習点は「解いた問題の難易度」と「発表の仕方・解答の方法」などから定まり、演習点は 1~12 点.

#### 1. 基礎問題に関して

次の全てをおこなって初めて演習点1点が与えられます.

- 手順 1. 配布した基礎問題を演義授業時に解く. ノート・教科書を参考にして良いし, 何人かで協力して解いても良い. (何人かで議論しながら解いてもいいです.)
- 手順 2. 頃合い (16:00-16:30 くらい?) を見て解答を配布する. 演習時間に問題を解き終わらなかった者は、配布した解答を見て演習問題を解ききる.
- 手順 3. 基礎問題の用紙 (両面) を CLE の「基礎問題 (〇〇月〇〇日配布)」にアップロードする. ここで〇〇月〇〇日は問題を解いた日である. アップロードは次の演義時までに完了していること.

要するに基礎問題を「授業をきちんと理解しているかどうかのセルフチェック」として使って欲しいです。そして「演義時に基礎問題が解ける・解けない」に関してはそれほど重要ではないです。「授業の内容を理解するように取り組む」ことを基礎問題で評価してます。

基礎問題を理解できてれば、授業の内容を十分に理解できていると思います.(私が試験作るなら基礎問題ぐらいは試験に出すかも?) なお基礎問題は 11 回行います. そのため 3 回は欠席可能です.

## 2. 応用問題に関して

- 手順 1. 基礎問題の解答を岩井に見せる. 全問正解した者にのみ応用問題の解答のチャンスを与える.
- 手順 2. 応用問題で解答したい問題を選び板書に解答を書く. なお問題は基本的に先着順である.
- 手順3. その解答を黒板を用いて岩井に発表する.
- 手順 4. 正答後は解答の板書を撮り、CLE の「応用問題解答」にアップロードする.

#### 発表のルールは次のとおりです.

- 板書に関して、字は汚くてもいいので、最低限読めるようにしてください。また発表があまりにも悪い場合 (教科書丸写しなど) は減点します.
- 演義の時間中に発表が終わらない場合は問題の予約をすることができます。
- あまりにも多く問題を解いていた人は、他の人に(簡単そうな)問題を譲ってください.

#### 問題に関する注意点

- <u>基礎問題に関しては初めての試みなので変更する可能性があります</u>.「一律にレポート提出にする」とか「授業ごとに解説をする」などやり方が変わるかもしれません.¹
- TA さんが巡回しているので、気兼ねなく基礎問題に関して質問してください。
- 応用問題の中には極端に難しい問題もあるので全部解く必要はないです. 岩井や TA が解けない問題も多くあります. (私が学生だったら多分 4-5 割くらいしか解けないです.)
- 応用問題の難易度は一定ではないです. 問題番号の上に\*などの記号が書いてありますがこれは 次を意味します.
  - 1. 何もついてない問題は普通の問題です. ちょっと考えれば解けると思います.
  - 2. \* 問題は難しそうな問題です. \* の数ほど難しくなります. 基本的に解かせる気はなく自由 気ままに出しております.

難易度が高い問題を解いた場合や解答が素晴らしい場合は演習点を多くもらえます.

## まとめ

- 1. 単位が欲しい方は基礎問題を8回提出し、講義で可以上を取ってください.
- 2. ちょっと欲張りな人は応用問題を解いてください. なお基礎問題はホームページや CLE で見ることができます.
- 3. 意欲のある人は\*がついた難しい問題など色々解いてください. そのほうが私は楽しいです.

## 休講予定・その他

- 休講予定: 2025 年 4 月 22 日, 2025 年 6 月 24 日.
- 問題のミスがあれば私に言ってください. ミスはかなりあると思います.
- 休講情報や演習問題の修正をするので、こまめにホームページ、CLE を確認してください。
- オフィスアワーを月曜 16:00-17:00 に設けています. この時間に私の研究室に来ても構いません (ただし来る場合は前もって連絡してくれると助かります.)
- <u>いちょう祭での数学専攻の展示のアルバイトを募集いたします</u>. 時間は「5/1(木)13:30~16:30 準備. 5/3(土) 12:30~17:30 企画本番」です. 業務内容は数学専攻の展示の準備 (机運びなど) と企画本番中の手伝いです. 5/3 の後に打ち上げがあります. アルバイト代は 2 日間 8 時間で 8912 円です. 興味がある方は菊池先生にメール (kikuchi@math.sci.osaka-u.ac.jp) をしてくれると嬉しいです.

 $<sup>^1</sup>$ いつもは発表のみの方法で演義をしてましたが、それだと「授業に参加しているが理解していない人」を救えない気がしてきました.「授業に出て授業の内容を理解しようと努力している人」に申し訳なくなったので、今回このような試みをすることにしました.

## 1 集合と集合の演算

| 学籍番号:     | 名前    |
|-----------|-------|
| J 40 E J. | H 113 |

"集合"とは"ある特定の性質を備えたものの集まり"とする. 以下 X, A, B を集合とする.

- $1. \ a \in A \iff a \ \mathsf{lt} \ A \ \mathsf{O}$ 元である.  $a \not\in A \iff a \ \mathsf{lt} \ A \ \mathsf{O}$ 元ではない.
- 2.  $A \subset B \iff a \in A$  ならば  $a \in B$ .
- 3. 空集合  $\emptyset$  とは元を一つも含まない集合. いかなる集合 A についても  $\emptyset \subset A$ .
- 4. ベキ集合  $\mathfrak{P}(A) := \{Y \subset A | Y$  は集合  $\}.$
- 5. 和集合  $A \cup B := \{x | x \in A \text{ stat } x \in B\}$ .
- 6. 共通部分 (共通集合, 交差) $A \cap B := \{x | x \in A \text{ かつ } x \in B\}.$
- 7. 差集合  $A \setminus B := \{x | x \in A \text{ かつ } x \notin B\}$ .
- 8.  $A \subset X$  について、補集合  $A^c := \{x \in X | x \notin A\}$ .

ド・モルガン (De Morgan, 1806-1871) の法則.

$$X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B) \quad X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B).$$

補集合の言葉で言うなら  $(A \cup B)^c = A^c \cap B^c$ ,  $(A \cap B)^c = A^c \cup B^c$ .

問題 1. 「集合 A,B について  $A=(A\setminus B)\cup (A\cap B)$  である.」の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明.]

まず $A \subset (A \setminus B) \cup (A \cap B)$ を示す.  $x \in A$  とする.  $x \notin B$  ならば $x \in \Box$  である.  $x \in B$  ならば,  $x \in \Box$  である. よって,  $x \in A \setminus B$  または $x \in A \cap B$  が成り立つので,  $A \subset (A \setminus B) \cup (A \cap B)$  である.

次に  $(A \setminus B) \cup (A \cap B) \subset A$  を示す.  $x \in (A \setminus B) \cup (A \cap B)$  とする.  $x \in A \setminus B$  なる.  $x \in A \setminus B$  ならば,  $A \setminus B$  A なので  $x \in A$  である.  $x \in A \cap B$  ならば  $A \cap B$  なので  $x \in A$  である. よって  $(A \setminus B) \cup (A \cap B) \subset A$  である.

 $\texttt{cnsb}\ A = (A \setminus B) \cup (A \cap B) \ \texttt{cbs}.$ 

- 語句群 -

かつ または  $\subset$   $\supset$   $\in$   $\notin$  A B  $A \setminus B$   $A \cap B$   $A \cup B$ 

[注意] 今回は演習のためにこのように丁寧に書いているが, 試験等で行う証明においてはもう少し 簡略して書いて良い. (上は丁寧に書きすぎてわかりづらい.)

| 問題 $2.A \cup B = (A \setminus B) \cup B$ の証明が完成するように空欄をうめよ.ただし空欄には後記の語句                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 群から適切な語句・記号を一つ選んで記入すること.                                                                                                                                 |
| $[証明.]$ $A \setminus B$ $A$ であるので, $(A \setminus B) \cup B \subset A \cup B$ が言える. よって逆の包含を示す.                                                           |
| $x \in A \cup B$ とする. $x$ $B$ ならば, $x \in A$ であるので, $x \in A \setminus B$ . よって $x \in (A \setminus B) \cup B$                                           |
| $x \in B$ ならば定義から $x \in (A \setminus B) \cup B$ .以上より $(A \setminus B) \cup B \supset A \cup B$ である.                                                    |
| これより $A \cup B = (A \setminus B) \cup B$ である.                                                                                                            |
| ─ 語句群 ———————————————————————————————————                                                                                                                |
| かつ または $\subset$ $\supset$ $\in$ $ otin A$ $\bigcirc$ |
| 問題 $3.$ $A=\{2,4,\{4,5\}\}$ とする. 次のうち正しい主張を全て選べ.                                                                                                         |
| (1). $\{4,5\} \in A$                                                                                                                                     |
| (2). $\{4,5\} \subset A$                                                                                                                                 |
| (3). $\{\{4,5\}\}\subset A$                                                                                                                              |
| $(4). \ \ 4 \in \{\{4,5\}\} \cap A$                                                                                                                      |
| $(5). \ 2 \in A$                                                                                                                                         |
| (6). $2 \in \{\{a\}   a \in A\}$                                                                                                                         |
| $(7). \{5\} \in A$                                                                                                                                       |
| (8). $\{4\} \subset A$                                                                                                                                   |
| $(9). \ \{4\} \in \{\{a\}   a \in A\}$                                                                                                                   |
| $(10). \ \{2\} \cup \{\{2,4\}\} \subset A$                                                                                                               |
|                                                                                                                                                          |
|                                                                                                                                                          |
| 解答:                                                                                                                                                      |
|                                                                                                                                                          |
| 問題 $4.A=\{1,\{1\},$ 岩井 $\}$ とする.ベキ集合 $\mathfrak{P}(A)$ の元を全て列挙せよ.ただし $1 eq $ 岩井 かつ                                                                       |
| $\{1\} \neq 岩井 を仮定して良い.^2$                                                                                                                               |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
|                                                                                                                                                          |
| 解答:                                                                                                                                                      |
|                                                                                                                                                          |
|                                                                                                                                                          |

 $<sup>^2</sup>$ 当初「 $1 \neq$  岩井 かつ  $\{1\} \neq$  岩井」を証明しようとしたが、証明できなかった.「1 も岩井は集合ではないから自明でしょ」と思われるが、自然数 1 は集合を用いて構成するので(応用問題の順序数の部分を参照のこと)、岩井が集合でないことは自明ではない.

## 2 集合の直積・写像・集合系の演算

A, B を集合,  $a, a' \in A, b, b' \in B$  とする.

- 1. 2 つのもの a,b から作られた対 (a,b) を順序対という.
- 2.  $(a,b) = (a',b') \stackrel{\text{def}}{\iff} a = a'$  かつ b = b'.
- 3. 集合の直積  $A \times B := \{(a,b) | a \in A, b \in B\}$ .

A,B を集合とする.  $f:A\to B$  が写像 (関数) とは、任意の  $a\in A$  について、f(a) という B の元を一つ対応させる規則のこととする.

- 1. A を f の始域 (定義域) といい, B を f の終域 (値域) という.
- 2.  $f, g: A \to B$  を写像とする.  $f = g \stackrel{\text{def}}{\Longleftrightarrow}$  任意の  $a \in A$  について f(a) = g(a).
- $3. \ A_1 \subset A$  を部分集合とする.  $A_1$  の f による像

$$f(A_1) := \{f(a_1) | a_1 \in A_1\} \subset B \text{ Lf3}.$$

 $4. B_1 \subset B$  を部分集合とする.  $B_1$  の f による逆像

$$f^{-1}(B_1) := \{a \in A | f(a) \in B_1\} \subset A$$
 とする.

5. 写像  $f:A\to B, g:B\to C$  について、合成  $g\circ f:A\to C$  を、任意の  $a\in A$  について  $(g\circ f)(a):=g(f(a))$  として定義する.

#### Xを空でない集合とする.

1. 空でない集合  $\Lambda$  からある集合族 (ある集合のからなる集合) への写像 A を集合系という. もっと厳密に言えば写像

$$\begin{array}{cccc} A: & \Lambda & \to & \mathfrak{P}(X) \\ & \lambda & \longmapsto & A_{\lambda} \end{array}$$

を X の部分集合系という. X について言及しない場合は、単に集合系という. 集合系を

$$(A_{\lambda}|\lambda\in\Lambda)$$
 または  $(A_{\lambda})_{\lambda\in\Lambda}$ 

とかき,  $\lambda$  を添字,  $\Lambda$  を添字集合という.

2. 集合系  $(A_{\lambda}|\lambda \in \Lambda)$  について、和集合を以下で定義する.

$$\bigcup_{\lambda \in \Lambda} A_{\lambda} := \{a | \ \text{ある} \ \lambda \ \text{があって} \ a \in A_{\lambda} \}.$$

3. 集合系  $(A_{\lambda}|\lambda\in\Lambda)$  について、共通部分を以下で定義する.

$$\bigcap_{\lambda \in \Lambda} A_{\lambda} := \{ a | 任意の \lambda \in \Lambda \ \text{について} \ a \in A_{\lambda} \}.$$

| 224 255      | ㅠㅁ  |
|--------------|-----|
| <b>→</b> === | 本一・ |
|              |     |

名前

問題 1. 写像  $f: \mathbb{R} \to \mathbb{R}$  を次で定める.

 $f: \mathbb{R} \to \mathbb{R}$   $x \longmapsto x^2$ 

 $(1)f((-2,1)) \cap f((-1,3))$  を求めよ. 解答

解答欄:

 $(2)f((-2,1)\cap(-1,3))$  を求めよ.

解答欄:

 $(3)f^{-1}((-2,4))$  を求めよ.

解答欄:

 $(4)f(f^{-1}((-1,4)))$ を求めよ.

解答欄:

 $(5)f^{-1}f((-1,4))$ を求めよ.

解答欄:

問題 2. X, Y を空でない集合とし,  $A \subset X, B \subset Y$  を空でない部分集合とする.

$$(X \times Y) \setminus (A \times B) = ((X \setminus A) \times Y) \cup (X \times (Y \setminus B))$$

の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明].  $(x,y) \in X \times Y$  について「 $(x,y) \in (X \times Y) \setminus (A \times B)$  であることは  $x \notin A$   $y \notin B$  であることと同値」であることに注意する.

まず  $(X \times Y) \setminus (A \times B) \subset ((X \setminus A) \times Y) \cup (X \times (Y \setminus B))$  を示す.

 $(x,y) \in (X \times Y) \setminus (A \times B)$  とする.このとき  $x \notin A$   $y \notin B$  である. $x \notin A$  のときは  $(x,y) \in (X \setminus A) \times Y, \ y \notin B$  のときは  $(x,y) \in X \times (Y \setminus B)$  が成り立つ.よって  $(x,y) \in (X \setminus A) \times Y \cup X \times (Y \setminus B)$  が言える.

次に  $(X \times Y) \setminus (A \times B) \supset ((X \setminus A) \times Y) \cup (X \times (Y \setminus B))$  を示す.

以上より  $(X \times Y) \setminus (A \times B) = ((X \setminus A) \times Y) \cup (X \times (Y \setminus B))$  である.

語句群 一

かつ または 任意の ある ⊂ ⊃ ∈ ∉

問題 3.~X を空でない集合とし X の部分集合系を  $(A_{\lambda}|\lambda\in\Lambda)$  とする.  $(\bigcap_{\lambda\in\Lambda}A_{\lambda})^c=\bigcup_{\lambda\in\Lambda}A_{\lambda}^c$  の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明.] まず  $(\bigcap_{\lambda \in \Lambda} A_{\lambda})^c \subset \bigcup_{\lambda \in \Lambda} A_{\lambda}^c$  を示す.  $y \in \bigcap_{\lambda \in \Lambda} A_{\lambda}$  とは、「  $\lambda \in \Lambda$  について  $y \in A_{\lambda}$ 」と同値である. よって  $x \in (\bigcap_{\lambda \in \Lambda} A_{\lambda})^c$  ならば、 $x \not\in \bigcap_{\lambda \in \Lambda} A_{\lambda}$  より、  $\lambda \in \Lambda$  があって  $x \not\in A_{\lambda}$  となる. よって  $x \in \bigcup_{\lambda \in \Lambda} A_{\lambda}^c$  である.

次に  $(\bigcap_{\lambda \in \Lambda} A_{\lambda})^{c} \supset \bigcup_{\lambda \in \Lambda} A_{\lambda}^{c}$  を示す.任意の  $\lambda$  について  $\bigcap_{\lambda \in \Lambda} A_{\lambda}$  「ある.よって  $(\bigcap_{\lambda \in \Lambda} A_{\lambda})^{c}$  」 $A_{\lambda}^{c}$  となる.よって  $\lambda$  に関して和集合をとれば  $(\bigcap_{\lambda \in \Lambda} A_{\lambda})^{c} \supset \bigcup_{\lambda \in \Lambda} A_{\lambda}^{c}$  となる.以上より  $(\bigcap_{\lambda \in \Lambda} A_{\lambda})^{c} = \bigcup_{\lambda \in \Lambda} A_{\lambda}^{c}$  である.

語句群 -

かつ または 任意の ある ⊂ ⊃ ∈ ∉

## 3 全射・単射

| 学籍番号: | 名前 |
|-------|----|
|-------|----|

A, B を集合,  $f: A \rightarrow B$  を写像とする.

- 1.  $f:A \to B$  が全射  $\stackrel{\mathrm{def}}{\Longleftrightarrow}$  任意の  $b \in B$  について、ある  $a \in A$  があって b = f(a).
- 2.  $f: A \to B$  が単射  $\iff a_1, a_2 \in A$  について,  $f(a_1) \neq f(a_2)$  ならば  $a_1 \neq a_2$ .  $\iff a_1, a_2 \in A$  について,  $f(a_1) = f(a_2)$  ならば  $a_1 = a_2$ .
- $3. 1_A: A \to A$  が恒等写像  $\stackrel{\text{def}}{\Longleftrightarrow}$  任意の  $a \in A$  について  $1_A(a) = a$  となる写像.
- 4. 部分集合  $X\subset A$  について,  $i:X\hookrightarrow A$  が包含写像  $\stackrel{\mathrm{def}}{\Longleftrightarrow}$  任意の  $x\in X$  について  $i(x)=x\in A$  となる写像.
- $5. \ f:A\to B$  が全単射 (1 対 1 の対応)  $\stackrel{\mathrm{def}}{\Longleftrightarrow} f$  が全射かつ単射.  $\Longleftrightarrow$  ある  $g:B\to A$  があって,  $g\circ f=1_A$  かつ  $f\circ g=1_B$  が成り立つ. この g を f の逆 写像といい  $f^{-1}:B\to A$  で表す. (逆像の記号と同じことに注意.)

問題  $1. f: X \to Y$  を空でない集合の間の写像とし,  $A \subset X$  を空でない部分集合とする. 「f が単射ならば  $A = f^{-1}(f(A))$  である」の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明.]  $x \in A$  について  $f(x) \in f(A)$  である.これより A  $f^{-1}(f(A))$  である. 逆の包含を示す.  $x \in f^{-1}(f(A))$  とする.  $f(x) \in f(A)$  であるので,ある  $a \in A$  があって f(x) f(a) である.よって f は単射なので,x  $a \in A$  である. 以上より f が単射ならば  $A = f^{-1}(f(A))$  である.

**任意の ある** ⊂ ⊃ ∈ ∉ = ≠

問題  $2. f: X \to Y$  を空でない集合の間の写像とし,  $B \subset Y$  を空でない部分集合とする. 「 f が全射ならば  $B = f(f^{-1}(B))$ 」の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

·語句群 —

任意の ある C ⊃ ∈ ∉ = ≠

問題 3. A,B,C は空でない集合とし,  $f:A\to B,g:B\to C$  を写像とする. 次のうち正しい主張を全て選べ.

- (1). *g* o *f* が単射ならば *f* は単射.
- (2).  $g \circ f$  が単射ならば g は単射.
- (3).  $g \circ f$  が全射ならば f は全射.
- (4).  $g \circ f$  が全射ならば g は全射.
- (5). f と g が単射ならば  $g \circ f$  は単射.
- (6).  $f \ge g$  が全射ならば  $g \circ f$  は全射.
- (7). f が単射で g が全射ならば,  $g \circ f$  は全射.
- (8). f が単射で g が全射ならば,  $g \circ f$  は単射.
- (9). f が全射で g が単射ならば,  $g \circ f$  は単射.
- (10). f が全射で g が単射ならば,  $g \circ f$  は全射.

学籍番号:

名前

#### A, B, C を集合とする、

- 1.  $A \, \mathsf{C} \, B$  の濃度が等しい.  $\overset{\mathrm{def}}{\Longleftrightarrow}$  ある全単射  $f : A \to B$  が存在する.
- 2.  $A \, \mathsf{C} \, B$  の濃度が等しいとき  $A \sim B \, \mathsf{C}$ 書く. 以下の  $3 \, \mathsf{条} \, \mathsf{件}$  (同値関係) が成り立つ.
  - (1).  $A \sim A$ .
  - (2).  $A \sim B$   $\alpha$ 5 $\beta$ 5 $\beta$ 5.
  - (3).  $A \sim B$  かつ  $B \sim C$  ならば,  $A \sim C$ .
- 3.  $F(A,B) := \{f : A \to B | f$  は写像  $\}$  とかく.  $B^A$  や Map(A,B) などの書き方もある.
- 4. № と濃度が等しい集合を可算集合という。有限集合と可算集合をまとめて高々可算集合という。
- 5. A は B より濃度が小さい.  $\stackrel{\text{def}}{\Longleftrightarrow} A \not\sim B$  かつ単射  $f: A \to B$  が存在する. このとき B は A より濃度が大きいという. 選択公理 (後述) を仮定すれば, A と B の濃度を比較できる.

#### 定理 1. A, B を集合とする.

- 1.  $F(A, \{0,1\}) \sim \mathfrak{P}(A)$ . ここで  $F(A, \{0,1\}) := \{f : A \to \{0,1\} | f$  は写像  $\}$  とする.
- 2.  $\mathbb{N} \sim \mathbb{Z} \sim \mathbb{O}$
- 3. ℚ  $\wedge$  ℝ. つまり ℝ は可算ではない (非加算).
- 4.  $(0,1) \sim \mathbb{R} \sim \mathbb{R} \times \mathbb{R}$ .
- 5. (カントール)  $\mathfrak{P}(A) \to A$  となる単射や,  $A \to \mathfrak{P}(A)$  となる全射はともに存在しない. 特に  $A \not\sim \mathfrak{P}(A)$
- 6. (カントール・ベルンシュタイン).  $f:A\to B$  なる単射と,  $g:B\to A$  なる単射が存在するとき, ある全単射  $h:A\to B$  が存在する. 特に  $A\sim B$ .

以下, 自然数の集合を  $\mathbb{N} := \{$  自然数の集合  $\} = \{0, 1, 2, ...\}$  とする.

問題 1. 偶数の集合  $2\mathbb{N}:=\{n|n\in\mathbb{N}\}$  とおく. 「 $\mathbb{N}$  と  $2\mathbb{N}$  の濃度が等しい」証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

|証明|「 $\mathbb{N}$  と  $2\mathbb{N}$  の濃度が等しい」の定義は| な写像  $f:\mathbb{N} \to 2\mathbb{N}$  が存在することである.

$$\begin{array}{cccc} f: & \mathbb{N} & \to & 2\mathbb{N} \\ & x & \longmapsto & 2x \end{array}$$

とおく. 任意の  $y\in 2\mathbb{N}$  について, y=2n となる  $n\in \mathbb{N}$  がある. よって y=f(n) となるので, f は である. 一方, 任意の  $a,b\in \mathbb{N}$  について, f(a)=f(b) ならば 2a=2b となり, a=b である. よって f は である. 以上より, f は なので,  $\mathbb{N}$  と  $2\mathbb{N}$  の濃度が等しい.

#### - 語句群

全射 単射 全単射

[注意] 同様にして、 奇数の集合、 整数全体の集合 ℤ は № の濃度が等しい.

| 問題 $2$ . 「有理数の集合 $\mathbb{Q}$ , $\mathbb{N} 	imes \mathbb{N}$ はともに $\mathbb{N}$ と濃度が等しい」証明が完成するように空欄をうめ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| よ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $[証明]\; e: \mathbb{N} \hookrightarrow \mathbb{N} 	imes \mathbb{N} 	imes n \mapsto (n,0)$ で定義すれば, $e$ は                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $f: \mathbb{N} 	imes \mathbb{N} \longrightarrow \mathbb{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $(x,y) \longmapsto 2^x(2y+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (x,y) + 7 - 2 (2y+1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| とおくと $f$ は である. 以上より から $\mathbb{N}$ から $\mathbb{N} \times \mathbb{N}$ への全単射が存在し $, \mathbb{N}$ と                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| N×Nの濃度は等しい.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 次に包含写像 $i:\mathbb{N} \hookrightarrow \mathbb{Q}$ を考えるとこれは $lacksymbol{	au}$ である.また                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $g: \;\; \mathbb{Q} \;\; 	o \;\; \mathbb{N} 	imes \mathbb{Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $rac{n}{m} \longmapsto (m,n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| とおく.ただし $\frac{n}{m}$ は既約分数で表し $m\in\mathbb{N}$ であることを約束する.すると $g$ は である.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 今 $\mathbb{N} \sim \mathbb{N} \times \mathbb{Z}$ であるので、 $h: \mathbb{N} \times \mathbb{Z} \to \mathbb{N}$ という が存在する.よって $h \circ g: \mathbb{Q} \to \mathbb{N}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| to so  to  t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ら ℚ への全単射が存在し, № ℚ である.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (語句群 ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 全射 単射 全単射 カントールの定理 ベルンシュタインの定理 (カントール・ベルンシュタ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ( インの定理) ~ ≤ ≥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 問題 $3$ . 「 $\mathbb{N} \times \mathbb{R} \sim \mathbb{R}$ 」の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 適切な語句・記号を一つ選んで記入すること。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| [証明]. $\mathbb{N} \times \mathbb{R} \sim \mathbb{R}$ の定義は $\mathbb{N} \times \mathbb{R}$ と $\mathbb{R}$ の間に が存在することである.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\mathbb{R}$ $(0,1)$ であるので、全単射 $h:\mathbb{R} 	o (0,1)$ が存在する. よって                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $f: \hspace{0.1cm} \mathbb{N} 	imes \mathbb{R} \hspace{0.1cm} 	o \hspace{0.1cm} \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $(n,x) \longmapsto n+h(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| cap = cap |
| また                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $g: \mathbb{R} \to \mathbb{N} 	imes \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $x \longmapsto (0,x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| とおけば g は となる                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| よって $f: \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ と $g: \mathbb{R} \to \mathbb{N} \times \mathbb{R}$ はともに なので, から, $\mathbb{N} \times \mathbb{R}$ と $\mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| の間に全単射が存在する.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 語句群 ————————————————————————————————————                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 全射 単射 全単射 カントールの定理 ベルンシュタインの定理 (カントール・ベルンシュタ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 【 インの定理) ~ ≤ ≥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## 5 同値関係 (二項関係)・商集合

#### X を集合とする、

- 1.  $\rho$  が集合 X 上の二項関係とは、任意の  $(a,b) \in X \times X$  について、満たすか満たさないかが 判定できる規則のこと.
- 2. 対 (a,b) が二項関係  $\rho$  を満たすとき  $a\rho b$  とかく.
- 3. X 上の二項関係  $\rho$  についてグラフ  $G(\rho) := \{(a,b) \in X \times X | a\rho b\}$  とする.
- $4. \sim$  を X 上の二項関係とする.  $\sim$  が次を満たすとき,  $\sim$  を同値関係という.
  - (1). (反射律) 任意の  $x \in X$  について  $x \sim x$ .
  - (2). (対称律)  $x \sim y$  ならば,  $y \sim x$ .
  - (3). (推移律)  $x \sim y$  かつ  $y \sim z$  ならば,  $x \sim z$ .
- 5.  $\sim$  を同値関係とする.  $x \in X$  について,  $C(x) := \{y \in X | x \sim y\}$  を x の同値類という.  $C(x) \cap C(y) \neq \emptyset \iff x \sim y \iff C(x) = C(y)$  である.
- 6.  $X/\sim:=\{C(x)|x\in X\}$  を商集合という.  $C\in X/\sim$  について C=C(x) となる  $x\in X$  が存在する. この x を X の代表という. (代表の取り方は一つとは限らない).
- 7. 自然な射影 (商写像) $\pi: X \to X/\sim$ を  $\pi(x):=C(x)$  で定める.  $\pi(x)=\pi(y)$  ⇔  $x\sim y$  である.

#### X を集合とする、

- $1. \le$  を X 上の二項関係とする.  $\le$  が次を満たすとき,  $\le$  を順序関係といい  $(X, \le)$  を半順序集合という.
  - (1). (反射律) 任意の  $x \in X$  について x < x.
  - (2). (推移律)  $x \le y$  かつ  $y \le z$  ならば,  $x \le z$ .
  - (3). (反対称律)  $x \leq y$  かつ  $y \leq x$  ならば, x = y.
- 2. 半順序集合 (X, <) が全順序集合  $\stackrel{\text{def}}{\Longleftrightarrow}$  任意の  $x, y \in X$  について, x < y または y < x.
- 3. 半順序集合の間の写像  $f:(X,\leq_X)\to (Y,\leq_Y)$  が順序を保つ.  $\stackrel{\mathrm{def}}{\Longleftrightarrow}$   $x\leq_X x'$  ならば  $f(x)\leq_Y f(x')$ .
- 4. 半順序集合の間の写像  $f:(X, \leq_X) \to (Y, \leq_Y)$  が順序同型写像  $\stackrel{\text{def}}{\Longleftrightarrow} f$  全単射かつ  $f, f^{-1}$  がともに順序を保つ. このとき  $(X, \leq_X)$  と  $(Y, \leq_Y)$  は順序同型という.
- 5. 半順序集合  $(X, \leq)$  と空でない部分集合  $A \subset X$  について次を定義する.
  - (1). x が A の最小元.  $\stackrel{\text{def}}{\Longleftrightarrow} x \in A$  かつ任意の  $a \in A$  について  $x \leq a$ . このとき  $x = \min A$  とかく.
  - (2). y が A の最大元.  $\stackrel{\text{def}}{\Longleftrightarrow} y \in A$  かつ任意の  $a \in A$  について  $a \leq y$ . このとき  $y = \max A$  とかく.
  - (3). u が A の (一つの) 下界.  $\stackrel{\text{def}}{\Longleftrightarrow}$  任意の  $a \in A$  について  $u \leq a$ .
  - (4). u が A の下限.  $\stackrel{\text{def}}{\Longleftrightarrow} A$  の下界集合の最大元.  $u = \inf A$  とかく.
  - (5). v が A の (一つの) 上界.  $\stackrel{\text{def}}{\Longleftrightarrow}$  任意の  $a \in A$  について  $a \le v$ .
  - (6). v が A の上限.  $\stackrel{\text{def}}{\Longleftrightarrow} A$  の上界集合の最小元.  $v = \sup A$  とかく.

| 学籍番号:              |  |
|--------------------|--|
| ラ##米 <i>二</i> ・    |  |
| — * - T — <i>—</i> |  |

問題 1. 次の二項関係 ~ のうち同値関係であるものを全て選べ.

- (1). 整数の集合  $\mathbb{Z}$  において,  $a,b \in \mathbb{Z}$  の二項関係  $a \sim b$  を  $\lceil a-b \rceil$  は 5 で割り切れる」とする.
- (2). 整数の集合  $\mathbb{Z}$  において,  $a,b \in \mathbb{Z}$  の二項関係  $a \sim b$  を  $\lceil a-b \mid b \mid 2 \mid b \mid 5$  で割り切れる」とする.
- (3). 整数の集合  $\mathbb{Z}$  において,  $a,b \in \mathbb{Z}$  の二項関係  $a \sim b$  を  $\lceil a-b \mid 1 \rceil$  または 5 で割り切れる」とする.
- (4). 実数の集合  $\mathbb{R}$  において,  $a,b \in \mathbb{R}$  の二項関係  $a \sim b$  を「 $a-b \in \mathbb{Q}$ 」とする.

名前

- (5). 実数の集合 $\mathbb{R}$  において,  $a,b \in \mathbb{R}$  の二項関係 $a \sim b$ を「 $a b \in \mathbb{R} \setminus \mathbb{Q}$ 」とする.
- (6). 実数の集合 $\mathbb{R}$  において,  $a,b \in \mathbb{R}$  の二項関係 $a \sim b$ を「 $a \in [0,1]$  かつ $b \in [0,1]$ 」とする.
- (7). 実数の集合 $\mathbb{R}$  において,  $a,b \in \mathbb{R}$  の二項関係 $a \sim b$ を「 $a \in [0,1]$  または $b \in [0,1]$ 」とする.
- (8).  $\mathbb{R}^2\setminus\{0\}$  において,  $m{a},m{b}\in\mathbb{R}^2\setminus\{0\}$  の二項関係  $m{a}\simm{b}$  を「0 でない実数  $\lambda$  が存在して  $m{a}=\lambdam{b}$  となる」とする.

| 解答: |  |
|-----|--|
|-----|--|

問題 2. 実数の集合  $\mathbb R$  に通常の順序  $\leq$  を入れて,  $(\mathbb R, \leq)$  を半順序集合とみる. 次の値を求めよ. ただし存在しない場合は"なし"と答えよ.

問題 3. 「X を集合、 $\sim$  を X の同値関係、 $\pi: X \to X/\sim$  を自然な射影とする. さらに集合 Y と写像  $f: X \to Y$  で、以下の ( $\sharp$ ) が成り立つと仮定する.

$$x \sim y$$
 ならば  $f(x) = f(y)$  がなりたつ (#)

このときある写像  $\widetilde{f}: X/\sim \to Y$  で  $\widetilde{f}\circ\pi=f$  となるものがただ一つ存在する.」

以上の主張の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明].まず  $\widetilde{f}:X/\sim \to Y$  が存在することを示す. $a\in X/\sim$  とする.このとき  $\pi$  は ので  $\pi(x)=a$  となる  $x\in$  が存在する.そこで  $\widetilde{f}(a):=f(x)$  として定める.

 $\widetilde{f}$  がx の取り方によらないことを示す。 つまり  $a=\pi(x)=\pi(y)$  なる  $x,y\in X$  について, f(x)=f(y) を示せば良い. ここで  $\pi(x)=\pi(y)$  ならば x y である.よって仮定  $(\sharp)$  から f(x)=f(y) となる.また f の定め方から  $\widetilde{f}\circ\pi=f$  は明らかである.よって存在性が言えた.

次に唯一性を示す.つまり「 $\widetilde{f},\widetilde{g}:X/\sim \to Y$  で  $\widetilde{f}\circ\pi=f=\widetilde{g}\circ\pi$  ならば  $\widetilde{f}=\widetilde{g}$ 」であることを示す.上のような  $\widetilde{f},\widetilde{g}:X/\sim \to Y$  をとる.示すことは,「任意の  $a\in$  について  $\widetilde{f}(a)=\widetilde{g}(a)$ 」である. $a\in$  とする. $\pi$  は全射なので  $\pi(x)=a$  となる  $x\in X$  が存在する.よって

$$\widetilde{f}(a) = \widetilde{f}(\pi(x)) =$$
  $=$   $\widetilde{g}(\pi(x)) = \widetilde{g}(a)$  となり言えた.

語句群

全射 単射 全単射  $\sim$   $\leq$   $\geq$  X Y  $X/\sim$  f(x)  $\widetilde{f}(x)$   $\widetilde{g}(x)$  f(a)

## 6 整列集合

学籍番号: 名前

 $(X, \leq)$  を半順序集合とする.

- 1.  $(X, \leq)$  が整列集合  $\stackrel{\text{def}}{\Longleftrightarrow}$  空でない部分集合  $A \subset X$  について最小元  $\min A$  が存在する. 整列集合は全順序集合である.
- 2.  $a < b \iff a \le b$  かつ  $a \ne b$ .
- $3. (X, \leq)$  が整列集合とする.  $a \in X$  について a の切片  $X(a) := \{x \in X | x < a\}$  とする.

#### 定理 2. $(X, \leq)$ を整列集合とする.

- 1.  $\varphi:(X,\leq)\to (X,\leq)$  が順序を保つ単射ならば、任意の  $x\in X$  について  $x\leq \varphi(x)$ .
- 2.  $(X, \leq_X)$ ,  $(Y, \leq_Y)$  を整列集合とするとき, 次のいずれかただ一つのみが成り立つ.
  - (1). XとYが順序同型
  - (2). X と Y のある切片  $Y\langle b \rangle$  が順序同型.
  - (3). X のある切片  $X\langle a\rangle$  と Y が順序同型.
- 3. (超限帰納法 $)(X, \leq)$  を整列集合とし,  $a \in A$  についてある命題 P(a) が与えられているとする. 以下の二つを仮定する.
  - (1).  $P(\min X)$  が真.
  - (2). 任意の  $x \in X$  について、「全ての  $y \in X\langle x \rangle$  について P(y) が真ならば、P(x) も真である」がなりたつ.

このとき任意の  $a \in X$  について P(a) は真である.(なお  $X = \mathbb{N}$  のときの超限帰納法は数学的帰納法である.)

問題  $1. \mathbb{N} := \{$  自然数の集合  $\} = \{0,1,2,\ldots\}$  とし,  $(X,\leq_X) := (\mathbb{N},\leq)$  とする. ここで  $\leq$  は通常の順序である. 次に  $Y = \{1,2\} \times \mathbb{N}$  とし,

$$(x,n) < (y,m) \Longleftrightarrow \lceil x < y \rfloor$$
または $\lceil x = y$ かつ  $n < m \rfloor$ 

とする. そして  $(x,n) \leq_Y (y,m)$  を 「(x,n) < (y,m) または (x,n) = (y,m)」として定義する. すると  $(Y,\leq_Y)$  は半順序集合になる.

実は  $(X, \leq_X)$ ,  $(Y, \leq_Y)$  はともに整列集合になる. よって上の定理から, 次のいずれかただ一つのみが成り立つ.

主張 (1). XとYが順序同型

主張 (2). X と Y のある切片  $Y\langle b \rangle$  が順序同型.

主張 (3). X のある切片  $X\langle a\rangle$  と Y が順序同型.

上の X,Y については主張 (1), (2), (3) のどれが成り立つか答えよ. また (2) を選んだ場合は 「X と  $Y\langle b\rangle$  が順序同型」となる b を求め, (3) を選んだ場合は 「 $X\langle a\rangle$  と Y が順序同型」となる a を求めよ. なお (1) を選んだ場合, 該当する欄は空白にしておいて良い.

解答: 主張 が正しい. さらに a または b は である.

|      | 問題 $2$ . 集合と二項関係の組 $(X,\leq)$ について, 次の条件 $(\mathrm{a}){\sim}(\mathrm{d})$ を考える.                                                 |
|------|---------------------------------------------------------------------------------------------------------------------------------|
| - 条  |                                                                                                                                 |
| `    | ). 整列集合である.                                                                                                                     |
|      | ). 全順序集合であるが整列集合ではない.                                                                                                           |
| `    | ). 半順序集合であるが, 全順序集合ではない.                                                                                                        |
| (d   | ). 半順序集合ではない.                                                                                                                   |
| L)   | ストの集合と二項関係の組 $(X,\leq)$ は上の $(\mathrm{a})\sim(\mathrm{d})$ のうちどれを満たすか答えよ.                                                       |
| (1). | $(\mathbb{R},\leq)$ . $\leq$ は通常の順序とする.                                                                                         |
| (2). | $(\mathbb{Q},\leq)$ . $\leq$ は通常の順序とする.                                                                                         |
| (3). | $(\mathbb{N},\leq)$ . $\leq$ は通常の順序とする.                                                                                         |
| (4). | $(\mathbb{R} \times \mathbb{R}, \leq)$ . ただし二項関係 $(x,y) \leq (a,b)$ を $x \leq a$ かつ $y \leq b$ とする.                             |
| (5). | $(\mathfrak{P}(\mathbb{N}),\leq)$ . ただし二項関係 $A\leq B$ を $A\subset B$ とする. $(\mathfrak{P}(\mathbb{N})$ は $\mathbb{N}$ のベキ集合である.) |
| (6). | $(\mathbb{N}\setminus\{0,1\},\leq_{\mathbb{N}})$ . ただし $a\leq_{\mathbb{N}}b$ を「 $b=na$ となる $0$ でない自然数 $n$ が存在する $(a$ は $b$ を割り  |
|      | 切る)」とする.                                                                                                                        |
| (7). | $(\mathbb{Z}\setminus\{0,1,-1\},\leq_{\mathbb{Z}})$ . ただし $a\leq_{\mathbb{Z}}b$ を「 $b=na$ となる $0$ でない整数 $n$ が存在する」とする.          |
| (1). | 解答.                                                                                                                             |
| (2). | 解答.                                                                                                                             |
| (3). | 解答.                                                                                                                             |
| (4). | 解答.                                                                                                                             |
| (5). | 解答.                                                                                                                             |
| (6). | 解答.                                                                                                                             |
|      | 解答.                                                                                                                             |

問題 3. 「整列集合 X はいかなる切片  $X\langle a\rangle$  とも順序同形にならない」の主張の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明.]  $(X, \leq)$  が  $(X\langle a \rangle, \leq)$  と順序同型であると仮定する.  $f: X \to X\langle a \rangle$  を順序同型とする. すると包含写像  $i: X\langle a \rangle \to X$  は順序を保つので、 $i\circ f: X \to X$  は になる. よって a  $i\circ f(a)$  となる. しかし  $i\circ f(a)\in X\langle a \rangle$  より  $i\circ f(a)$  a となり矛盾である.

- 語句群 ---

順序を保つ全射 順序を保つ単射 順序同型  $\leq$   $\geq$  < > =  $\neq$   $\in$   $\notin$ 

学籍番号: 名前

 $\Lambda$  を空でない集合,  $(A_{\lambda}|\lambda \in \Lambda)$  を  $\Lambda$  を添字集合とする集合系とする.

1. 集合系の直積  $\prod_{\lambda \in \Lambda} A_{\lambda}$  を次で定める.

$$\prod_{\lambda \in \Lambda} A_{\lambda} := \{f : \Lambda \to \bigcup_{\lambda \in \Lambda} A_{\lambda} | f(\lambda) \in A_{\lambda} \}$$

また各 $A_{\lambda}$ を直積因子という.

- 3. 任意の  $\lambda \in \Lambda$  について,  $\prod_{\lambda \in \Lambda} A_{\lambda}$  から  $A_{\lambda}$  の (第  $\lambda$ ) 射影を以下で定義する.

$$\begin{array}{ccc} p_{\lambda}: & \prod_{\lambda \in \Lambda} A_{\lambda} & \to & A_{\lambda} \\ f & \longmapsto & f(\lambda) \end{array}$$

定義 3 (選択公理).  $\Lambda$  を空でない集合,  $(A_{\lambda}|\lambda \in \Lambda)$  を  $\Lambda$  を添字集合とする集合系とする.

- 1. (選択公理) 「任意の  $\lambda \in \Lambda$  について  $A_{\lambda} \neq \emptyset$  ならば,  $\prod_{\lambda \in \Lambda} A_{\lambda} \neq \emptyset$  である」という<u>公理</u> を選択公理という.
- 2. 上において  $f\in\prod_{\lambda\in\Lambda}A_\lambda$  を選択関数という. これは任意の  $\lambda\in\Lambda$  について, $A_\lambda$  の元  $f(\lambda)\in A_\lambda$  を一つ選択していることに由来する.
- 3.~~X を空でない集合とする.  $\prod_{B\in\mathfrak{P}(X)\setminus\{\varnothing\}}B$  の元 f を X 上の選択関数という. これは任意の空でない X の部分集合  $B\subset X$  について, B の元  $f(B)\in B$  を一つ選択していることに由来する.

問題 1. 選択公理を仮定する. 「任意の空でない集合の間の全射  $f:X\to Y$  について、ある写像  $g:Y\to X$  が存在して  $f\circ g=id_Y$  である.」この主張の証明が完成するように空欄をうめよ. ただし 空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明.]  $f:X\to Y$  を空でない集合の間の全射とする.  $y\in Y$  について  $A_y:=f^{-1}(y)$  とおく. すると任意の  $y\in Y$  について  $A_y\neq\varnothing$  なので、 から  $\prod_{y\in Y}A_y\neq\varnothing$  となる.

そこで  $g \in \prod_{y \in Y} A_y$  とする. g は Y から への写像である.  $\bigcup_{y \in Y} A_y \subset X$  に注意すれば,

$$\begin{array}{cccc} g: & Y & \to & X \\ & y & \longmapsto & g(y) \end{array}$$

·語句群·

選択関数 選択公理 直積因子  $\prod_{y \in Y} A_y \quad \bigcup_{y \in Y} A_y \quad \bigcap_{y \in Y} A_y \quad \Lambda \quad \varnothing$ 

問題 2. 「 $\Lambda$  を空でない集合,  $(A_{\lambda}|\lambda\in\Lambda)$  を  $\Lambda$  を添字集合とする集合系,  $p_{\mu}:\prod_{\lambda\in\Lambda}A_{\lambda}\to A_{\mu}$  は第  $\mu$  射影とする. さらに集合 Y と写像の族  $g_{\lambda}:Y\to A_{\lambda}$  が存在すると仮定する.

このとき写像  $g:Y\to\prod_{\lambda\in\Lambda}A_\lambda$  で任意の  $\mu\in\Lambda$  について  $g_\mu=p_\mu\circ g$  となるものがただ一つ存在する.」

以上の主張の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明.] まず  $g:Y\to\prod_{\lambda\in\Lambda}A_\lambda$  を以下のように構成する.  $y\in Y$  について  $\Lambda$  から  $\bigcup_{\lambda\in\Lambda}A_\lambda$  への写像 g(y) を

$$g(y)(\lambda) := g_{\lambda}(y) \quad (\lambda \in \Lambda)$$

として定める. すると任意の  $\lambda$  について  $g(y)(\lambda) \in$  であるので,  $g(y) \in$  となる. この g が「任意の  $\mu \in \Lambda$  について  $g_{\mu} = p_{\mu} \circ g$  である」ことを示す.  $\mu \in \Lambda$  をとると  $p_{\mu}$  の定義から,

任意の 
$$y \in Y$$
 について  $p_{\mu} \circ g(y) =$   $= g_{\mu}(y)$ 

である. よって  $g_{\mu} = p_{\mu} \circ g$  である.

次に唯一性を示す.  $g,h:Y\to\prod_{\lambda\in\Lambda}A_\lambda$  とする.

任意の 
$$\mu \in \Lambda$$
 について  $g_{\mu} = p_{\mu} \circ g = p_{\mu} \circ h$  となるならば  $g = h$ 

を示せば良い. 上のような g,h をとる. ここで

g = h は「任意の  $y \in Y$  について g(y) = h(y)」と同値である.

さらに $y \in Y$  について,  $g(y), h(y) \in$  なので,

g(y) = h(y) は「任意の  $\lambda \in \Lambda$  について  $g(y)(\lambda) = h(y)(\lambda)$ 」と同値である.

以上より任意の  $y\in Y$  と  $\lambda\in\Lambda$  について,  $g(y)(\lambda)=h(y)(\lambda)$  を示せば良い. ここで  $g(y)(\lambda)\in$  である.

igraphi g,h の仮定から,「任意の  $\mu\in\Lambda$  について  $g_\mu=p_\mu\circ g=p_\mu\circ h$ 」である.よって任意の  $y\in Y$  と  $\lambda\in\Lambda$  について,

$$g(y)(\lambda) = p_{\lambda}(g(y)) = \boxed{}$$
  $= p_{\lambda}(h(y)) = h(y)(\lambda)$ 

であるので g = h である.

- 語句群 -----

[注意] 今回は演習のためにこのように書いているが, 証明としては非常に良くない. 試験等で行う 証明においてはもう少し簡略してわかりやすく書いたほうが良いと思う. (少なくともいくつかの議論 は省略して良い.)

## 8 ツォルンの補題と整列可能定理

| 学籍番号:                                                                   | 名前                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(X,\leq)$ を半                                                           | <b>半順序集合とする</b>                                                                                                                                                                                                                                                                                                                                                                                                           |
| らかた<br>2. (X, ≤<br>る v e                                                | 集合 $S\subset X$ が全順序部分集合 $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ 任意の $x,y\in S$ について $x\leq y$ か $y\leq x$ のどちが成り立つこと. (対場納的 $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ 任意の全順序部分集合 $S\subset X$ について, 上界を持つこと.(つまりあき $X$ があって任意の $S\in S$ について $S\leq v$ となること.) $X$ が極大元 $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ $a\leq x$ かつ $a\neq x$ なる $x\in X$ が存在しない $\Longleftrightarrow$ $a\leq x$ ならば $a=x$ . |
| 定理 4. 以                                                                 | 下の命題は (ZF 公理系 (ツェルメロ・フレンケル公理系)) において同値な命題である.                                                                                                                                                                                                                                                                                                                                                                             |
| (2). (ツォ                                                                | $(\Omega \oplus A)$ 任意の $\lambda \in \Lambda$ について $A_\lambda \neq \varnothing$ ならば, $\prod_{\lambda \in \Lambda} A_\lambda \neq \varnothing$ である. ルンの補題) 帰納的な半順序集合は少なくとも一つの極大元を持つ. 「可能定理」任意の集合 $X$ について, ある順序 $\leq$ があって $(X,\leq)$ は整列集合になる.                                                                                                                                                                           |
| つまり選択                                                                   | 公理を認めれば, ツォルンの補題や整列可能定理は成り立つ.                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                         | 公理と同値な命題は数多くある. $\mathtt{https://alg-d.com/math/ac/list.html}$ を参照. $\mathtt{3}$ 択公理を仮定すると, 集合 $X,Y$ について, $(1),$ $(2),$ $(3)$ のいずれかただ一つのみが成り                                                                                                                                                                                                                                                                             |
| (-                                                                      | $1)X\sim Y$ $\hspace{0.2cm}(2)\hspace{0.1cm}X$ は $Y$ より濃度が小さい. $\hspace{0.2cm}(3)\hspace{0.1cm}Y$ は $X$ より濃度が小さい.                                                                                                                                                                                                                                                                                                         |
| この主張の証明を一つ選んで記                                                          | 月が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号<br>記入すること.                                                                                                                                                                                                                                                                                                                                                                       |
| り濃度が小さい<br>(3) がともに成<br>$X \rightarrow Y$ が存在<br>得ない.<br>次に $(1)$ , $($ | "上の $(1), (2), (3)$ のうち二つ以上が成り立つことはあり得ないことを示す. $X$ は $Y$ よいの定義は「 $X \not\sim Y$ 」かつ「単射 $X \to Y$ が存在する」である. よって $(1)$ と $(2), (1)$ と $(3)$ かともに成り立てば、 から、全単射 E する. よって $(1)$ が成り立ち矛盾する. つまり $(2)$ と $(3)$ がともに成り立つことはあり $(2)$ と $(3)$ がともに成り立つことはあり $(3)$ のどれかが成り立つことを示す. から $(3)$ から $(3)$ から $(3)$ から $(3)$ から $(3)$ から $(3)$ なを引集合となる. よって                                                                             |
| (a)X と Y が順                                                             | 頂序同型 $egin{array}{ll} (\mathrm{b}) \ X \ c \ Y \ o$ ある切片 $Y\langle b  angle $ が順序同型. $egin{array}{ll} (\mathrm{c}) \ X \ o$ ある切片 $X\langle a  angle \ c \ Y \ $ が順序同型.                                                                                                                                                                                                                                                    |

のどちらかが成り立つ. 以上より言えた.

が成り立つ. (b) の場合は包含写像  $Y\langle b\rangle \hookrightarrow Y$  を

のどちらかが成り立つ.(c)

のいずれか一つが成り立つ. (a) の場合は

の場合は

- 語句群 -

用いて、単射  $X \hookrightarrow Y$  を構成できる. この場合は

選択公理 ツォルンの補題 整列可能定理 カントールの定理 ベルンシュタインの定理 (カントール・ベルンシュタインの定理) 超限帰納法 (1) (2) (3)

 $<sup>^3</sup>$ 選択公理を認めた ZF 公理系を ZFC 公理系という. この辺りは私は全くの素人なので、 alg-d さんの Youtubehttps: //www.youtube.com/@alg-dx に譲る.

問題 2.  $(X, \leq_X) = (\mathbb{N}, \leq)$  とする. ここで  $\leq$  は通常の順序である. 次に  $Y = \mathbb{N} \cup \{-1\}$  とし,

$$x < y \iff \lceil y = -1 \rfloor$$
または $\lceil x, y \in \mathbb{N}$  かつ  $x < y \rfloor$ 

とする.  $^4$  そして  $x \leq_Y y$  を「x < y または x = y」として定義する. すると  $(X, \leq_X), (Y, \leq_Y)$  はとも に整列集合になる. この  $(X, \leq_X)$ ,  $(Y, \leq_Y)$  に関する以下の主張のうち正しいものを全て選べ.

- $(1)X \sim Y$
- (2) *X* は *Y* より濃度が小さい.
- (3) Y は X より濃度が小さい.

- (4)X と Y が順序同型 (5) X と Y のある切片  $Y\langle b \rangle$  が順序同型. (6) X のある切片  $X\langle a \rangle$  と Y が順序同型.

## 解答:

問題 3.~K を体とし, V を K 上の (空でない) ベクトル空間とする. (無限でもいい) 部分集合  $B \subset V$ において以下を定義する.5

- (A). B が線形独立  $\stackrel{\mathrm{def}}{\Longleftrightarrow}$  任意の  $a_1,\ldots,a_n\in K$  と任意の  $v_1,\ldots,v_n\in B$  について  $a_1v_1+\cdots+a_nv_n=$  $0 \in V$  ならば  $a_1 = \cdots = a_n = 0$  である.
- (B). B が V を生成する.  $\stackrel{\mathrm{def}}{\Longleftrightarrow}$  任意の  $v\in V$  について, ある  $a_1,\ldots,a_n\in K$  と  $v_1,\ldots,v_n\in B$  があっ  $\tau$ ,  $v = a_1v_1 + \cdots + a_nv_n$  となる.

上の(A)と(B)を満たすときBはVの基底という.

選択公理を仮定すると、ベクトル空間 V の基底は必ず存在する.この主張の証明が完成するように 空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

 $[ 証明]. \; \mathcal{W} := \{B \subset V | B \; が線形独立 \} \; とし, \, B_1 \leq B_2 \; という順序を <math>B_1 \subset B_2 \; として定義する. \; V$ は空ではないので W は空ではない.

W が帰納的な半順序集合であることを示す. つまり「任意の 部分集合  $S \subset W$  について を持つこと」を示す. S をそのような部分集合とし  $B_{\infty} := \cup_{B \in \mathcal{S}} B$  とおく.

まず  $B_{\infty} \in \mathcal{W}$  を示す. 定義から任意の  $a_1, \ldots, a_n \in K$  と  $v_1, \ldots, v_n \in B_{\infty}$  について

$$a_1v_1 + \dots + a_nv_n = 0 \in V \text{ as if } a_1 = \dots = a_n = 0 \quad (\sharp)$$

を示せば良い. 今  $v_i \in B_\infty = \cup_{B \in \mathcal{S}} B$  より,  $v_i \in B_i$  となる  $B_i \in \mathcal{S}$  が存在する.  $B_1, B_2 \in \mathcal{S}$  で  $\mathcal{S}$  は 集合より,  $B_1 \leq B_2$  または  $B_2 \leq B_1$  が存在する. 以上より  $B_1 \subset B_2$  または  $B_2 \subset B_1$  であ る.これを有限回繰り返して,ある  $1\leq N\leq n$  があって, $\cup_{i=1}^n B_i\subset B_N$  となる. $v_i\in B_N$  かつ  $B_N\in\mathcal{W}$ より、W の定義から(±)が言える.

次に $B_{\infty}$ がSの ig|であることを示す.つまり任意の  $B \in \mathcal{S}$  について $, B \leq B_{\infty}$  を示せば 良い. これは  $B_{\infty} := \cup_{B \in \mathcal{S}} B$  より明らかである.

以上より から $,(\mathcal{W},\leq)$ は 元 M を持つ.

M が基底であることを示す. もし基底でないならば, M が V を生成しない.((B) を満たさない). つ まりある  $v \in V$  があって,  $v = a_1v_1 + \cdots + a_nv_n$  となるような,  $a_1, \ldots, a_n \in K$  や  $v_1, \ldots, v_n \in M$  は存 在しない. よって  $M^*:=M\cup\{v\}$  とおくと  $M\subset M^*$  かつ  $M\neq M^*$  である. これは M の 性に矛盾する. よって M は V の基底となる.

#### - 語句群 -

選択公理 ツォルンの補題 整列可能定理 超限帰納法 帰納的 半順序 全順序 整列 最小 極小 極大 上界 下界 上限 下限

 $<sup>^4</sup>$ 「 $x,y \in \mathbb{N}$  かつ x < y」における"<"は  $\mathbb{N}$  の順序とする.

<sup>5</sup>以下の用語はこの授業でのみの用語である.

## 9 ユークリッド空間の位相

学籍番号: 名前

 $\mathbb{R}$  を実数の集合,  $\mathbb{R}^n$  を  $\mathbb{R}$  の n 個の直積とする.

1.  $x = (x_1, ..., x_n), y = (y_1, ..., y_n) \in \mathbb{R}$  について、ユークリッド距離  $d^{(n)}$  を以下で定める.

$$d^{(n)}(x,y) := \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

- 2.  $a \in \mathbb{R}^n$ ,  $\varepsilon > 0$  について,  $B_n(a, \varepsilon) := \{x \in \mathbb{R}^n \ d^{(n)}(a, x) < \varepsilon\}$  を a を中心とし  $\varepsilon$  を半径とする開球体とする.
- $3. M \subset \mathbb{R}^n$  を部分集合,  $a \in \mathbb{R}^n$  とする.
  - (1). a が M の内点  $\stackrel{\text{def}}{\Longleftrightarrow}$  ある  $\varepsilon > 0$  があって,  $B_n(a, \varepsilon) \subset M$ .
  - (2). M の内部  $M^i:=\{x\in\mathbb{R}^n|x$  は M の内点  $\}(M^\circ$  とも書く)
  - (3). a が M の触点  $\stackrel{\text{def}}{\Longleftrightarrow}$  任意の  $\varepsilon > 0$  について,  $B_n(a,\varepsilon) \cap M \neq \emptyset$ .
  - (4). M の閉包  $\overline{M} := \{x \in \mathbb{R}^n | x \text{ if } M \text{ one } b \}$  ( $M^a$  とも書く)
  - (5). a が M の境界  $\stackrel{\text{def}}{\Longleftrightarrow}$  任意の  $\varepsilon > 0$  について,  $B_n(a,\varepsilon) \cap M \neq \emptyset$  かつ  $B_n(a,\varepsilon) \cap M^c \neq \emptyset$ .
  - (6). M の境界  $M^f:=\{x\in\mathbb{R}^n|x$  は M の境界  $\}(\partial M$  とも書く)
- $4. M \subset \mathbb{R}^n$  が開集合  $\stackrel{\text{def}}{\Longleftrightarrow} M^i = M.$
- 5.  $M \subset \mathbb{R}^n$  が閉集合  $\stackrel{\text{def}}{\Longleftrightarrow} \overline{M} = M$ .

定理 5. (1). (三角不等式)  $d^{(n)}(x,z) \le d^{(n)}(x,y) + d^{(n)}(y,z)$ .

- (2). (コーシーシュワルツの不等式)  $(\sum_{i=1}^n x_i y_i)^2 \le (\sum_{i=1}^n x_i^2) \cdot (\sum_{i=1}^n y_i^2)$ .
- (3).  $M^i \subset M \subset \overline{M}$ .
- (4). M が開集合ならば  $M^c=\mathbb{R}^n\setminus M$  は閉集合. M が閉集合ならば  $M^c=\mathbb{R}^n\setminus M$  は開集合.
- (5).  $\mathcal{O}(\mathbb{R}^n):=\{U|U\$ は $\mathbb{R}^n$  の開集合  $\}$  とおく. (これは $\mathbb{R}^n$  の開集合系と呼ばれる.) このとき以下の 3 条件が成り立つ.
  - (a)  $\mathbb{R}^n \in \mathcal{O}$  かつ  $\emptyset \in \mathcal{O}$ .
  - (b)  $O_1, \ldots, O_n \in \mathcal{O}$   $\mathsf{abs}(O_1 \cap \cdots \cap O_n \in \mathcal{O})$ .
  - (c)  $\{O_{\lambda}\}_{\lambda \in \Lambda}$  を  $\emptyset$  の元からなる集合系 (無限個でもいい) とすると  $\bigcup_{\lambda \in \Lambda} O_{\lambda} \in \emptyset$ .

上の  $\mathcal{O}(\mathbb{R}^n)$  の性質は一般の距離空間でも成り立つ. 後期の授業では上の  $\mathcal{O}(\mathbb{R}^n)$  の性質を逆手にとって、一般の集合 X について位相空間  $(X,\mathcal{O})$  を定義する.

問題 1. ℝ の部分集合

$$M = \{-1\} \cup (2,3] \cup \left\{1 - \frac{1}{n} \mid n \in \mathbb{N} \setminus \{0\}\right\}$$

について以下を求めよ. ただし ℝ にはユークリッド距離を入れる.

(1)M の内部  $M^i$  (=  $M^\circ$ ) 解答欄:

(2)M の閉包  $\overline{M}(=M^a)$  解答欄:

(3)M の境界  $M^f (= \partial M)$  解答欄:

| 問題 $2. \mathbb{R}^2$ の部分集合 $\mathbb{Q}^2$ について, 以下を求めよ. ただし $\mathbb{R}^2$ にはユークリッド距離を入 | 、れる. |
|-----------------------------------------------------------------------------------------|------|
|-----------------------------------------------------------------------------------------|------|

| $(1)\mathbb{Q}^2$ の内部    | 解答欄: |
|--------------------------|------|
| $(2)$ $\mathbb{Q}^2$ の閉包 | 解答欄: |
| $(3)\mathbb{Q}^2$ の境界    | 解答欄: |

問題 3. 「部分集合  $M \subset \mathbb{R}^n$  が閉集合ならば  $M^c = \mathbb{R}^n \setminus M$  は開集合である.」この主張の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.



ある  $\varepsilon > 0$  があって  $B_n(y, \varepsilon) \subset M^c$  が成り立つ

ため  $x \in (M^c)^i$  となる. よって  $M^c$  が開集合である.

- 語句群 -

ある 任意の  $\subset$   $\supset$   $\in$   $\not\in$  =  $\not=$   $M^c = \overline{M^c}$   $M^c \supset \overline{M^c}$   $M^c = (M^c)^i$   $(M^c)^i \subset M^c$   $(M^c)^i \supset M^c$ 

問題 4. 「部分集合  $M\subset \mathbb{R}^n$  が開集合ならば  $M^c=\mathbb{R}^n\setminus M$  は閉集合である.」この主張の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明.] 
$$M$$
 が開集合であると仮定する。 $M^c$  が閉集合を示す。つまり を示せば良い。 は常に成り立つので逆の包含を示す。 これは  $\overline{M^c} \cap M = \varnothing$  を示すことと同値である。 $x \in \overline{M^c} \cap M$  となる  $x$  が存在したと仮定する。 $M$  は開集合なので,  $\varepsilon > 0$  があって,  $B_n(a,\varepsilon)$   $M$  となる。一方  $x \in \overline{M^c}$  より, $B_n(a,\varepsilon) \cap M^c$   $\varnothing$  である。以上より

 $B_n(a,\varepsilon)\cap M^c\subset M\cap M^c=\varnothing$ 

となり矛盾. よって  $M^c$  は閉集合である.

- 語句群 一

ある 任意の  $\subset$   $\supset$   $\in$   $\not\in$  =  $\not=$   $M^c = \overline{M^c}$   $M^c \supset \overline{M^c}$   $M^c = (M^c)^i$   $(M^c)^i \subset M^c$   $(M^c)^i \supset M^c$ 

[補足] 問題 3,4 の主張は後の距離空間でも成り立つ.

## 10 距離空間の定義

学籍番号: 名前

空でない集合 X と実数値関数  $d: X \times X \to \mathbb{R}$  に関して、次の条件を満たすとき (X,d) は距離空間であるという.

- 1. 任意の  $x, y \in X$  について  $d(x, y) \ge 0$ . d(x, y) = 0 であることと x = y は同値.
- 2. 任意の  $x, y \in X$  について d(x, y) = d(y, x).
- 3. (三角不等式) 任意の  $x, y, z \in X$  について  $d(x, z) \le d(x, y) + d(y, z)$ .

#### (X,d) を距離空間とする.

- 1.  $a \in X$ ,  $\varepsilon > 0$  について,  $N(a, \varepsilon) := \{x \in \mathbb{R}^n \ d(a, x) < \varepsilon\}$  を a の  $\varepsilon$  近傍という.
- 2.  $M \subset X$  を部分集合,  $a \in X$  とする.
  - (1). a が M の内点  $\stackrel{\text{def}}{\Longleftrightarrow}$  ある  $\varepsilon > 0$  があって,  $N(a, \varepsilon) \subset M$ .
  - (2). M の内部  $M^i:=\{x\in\mathbb{R}^n|x$  は M の内点  $\}(M^\circ$  とも書く).
  - (3). a が M の触点  $\stackrel{\text{def}}{\Longleftrightarrow}$  任意の  $\varepsilon > 0$  について,  $N(a, \varepsilon) \cap M \neq \emptyset$ .
  - (4). M の閉包  $\overline{M} := \{x \in \mathbb{R}^n | x \text{ if } M \text{ on eminiformal of } M \text{ on eminiformal$
  - (5). a が M の境界  $\stackrel{\mathrm{def}}{\Longleftrightarrow}$  任意の  $\varepsilon > 0$  について,  $N(a,\varepsilon) \cap M \neq \emptyset$  かつ  $N(a,\varepsilon) \cap M^c \neq \emptyset$ .
  - (6). M の境界  $M^f := \{x \in \mathbb{R}^n | x \text{ th } M \text{ on 境界 } \}(\partial M \text{ beats}).$
- 3.  $M \subset X$  が開集合  $\stackrel{\text{def}}{\Longrightarrow} M^i = M$ .
- 4.  $M \subset X$  が閉集合  $\stackrel{\text{def}}{\Longleftrightarrow} \overline{M} = M$ .

定理 6. (X,d) を距離空間とし,  $A \subset X$  を空でない部分集合とする.

$$d(x, A) := \inf\{d(x, a) | a \in A\}$$

とおくとき次が成り立つ

- (1).  $|d(x, A) d(y, A)| \le d(x, y)$ .
- (2).  $a \in \overline{A}(A$ の触点 $) \iff d(x,A) = 0$ .
- (3).  $a \in A^i(A \mathcal{O}$ 内点)  $\iff d(x, A^c) > 0$ .

問題 1. 「(X,d) を距離空間とする. 部分集合  $A,B\subset X$  について  $(A\cap B)^i=A^i\cap B^i$  が成り立つ」この主張の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明.]  $A\cap B\subset A$  ならば  $(A\cap B)^i\subset A^i$  である。よって  $(A\cap B)^i\subset A^i\cap B^i$  である。 逆向きの包含を示す。 $x\in A^i\cap B^i$  とする。 $x\in A^i$  より,  $c_1$  があって  $N(x,\varepsilon_1)\subset A$  となる。同様に  $x\in B^i$  より,  $c_2$  があって  $N(x,\varepsilon_2)\subset B$  となる。よって  $c_3$  とおくと  $N(x,\varepsilon_3)\subset A\cap B$  となるので, $x\in (A\cap B)^i$  となる。よって  $(A\cap B)^i=A^i\cap B^i$  である。

- 語句群

ある 任意の  $\max\{\varepsilon_1, \varepsilon_2\}$   $\min\{\varepsilon_1, \varepsilon_2\}$   $\frac{\varepsilon_1 + \varepsilon_2}{2}$ 

問題 2.  $C[0,1]:=\{f:[0,1]\to\mathbb{R}\,|\,f$  は実数値連続関数  $\}$  とおく.  $f_n\in C[0,1]$  となる関数列  $\{f_n\}_{n=1}^\infty$  と  $f\in C[0,1]$  について以下の定義  $(a)\sim (e)$  を考える.

- 定義

- (a). 任意の $\varepsilon > 0$  と任意のN について, ある $x \in [0,1]$  があって, N < n ならば $|f_n(x) f(x)| < \varepsilon$ .
- (b). 任意の  $x \in [0,1]$  と任意の  $\varepsilon > 0$  について、ある N があって、N < n ならば  $|f_n(x) f(x)| < \varepsilon$ .
- (c). ある N があって、任意の  $\varepsilon > 0$  と任意の  $x \in [0,1]$  について、N < n ならば  $|f_n(x) f(x)| < \varepsilon$ .
- (d). 任意の  $x\in[0,1]$  について、ある N があって、任意の  $\varepsilon>0$  について、N< n ならば  $|f_n(x)-f(x)|<\varepsilon$ .
- (e). 任意の  $\varepsilon>0$  について、ある N があって、任意の  $x\in[0,1]$  について、N< n ならば  $|f_n(x)-f(x)|<\varepsilon$ .
- (1). 「関数列  $\{f_n\}_{n=1}^{\infty}$  が  $f \in C[0,1]$  に各点収束する」の定義を表すものを  $(a)\sim(e)$  の中から選べ.
- (2). 「関数列  $\{f_n\}_{n=1}^{\infty}$  が  $f \in C[0,1]$  に一様収束する」の定義を表すものを  $(a)\sim(e)$  の中から選べ.

解答欄: (1). (2).

問題 3. 「 $C[0,1] := \{f | f \text{ } \text{t} \text{ } [0,1] \text{ 上の実数値連続関数 } \}$  とし  $f,g \in C[0,1]$  について

$$d_{\infty}(f,g) := \sup_{x \in [0,1]} \{ |f(x) - g(x)| \}$$

と定める.このとき  $(C[0,1],d_\infty)$  が距離空間である.」この主張の証明が完成するように空欄をうめよ. ただし空欄には後記の語句群から適切な語句・記号を一つ選んで記入すること.

[証明.] [0,1] 上の連続関数は 値をもつので、d(f,g) は well-defined である.(つまり d(f,g) が存在しないことはない.)  $(C[0,1],d_\infty)$  が距離空間の定義 1-3 を満たすことを示す.

$$|f(x) - g(x)| \underbrace{\sup_{x \in [0,1]} \{|f(x) - g(x)|\}}_{} = d(f,g) = 0$$

となり, f(x) - g(x) = 0 である. よって.f = g となる.

(2) d(f,g)=d(g,f) を示す. 任意の  $x\in[0,1]$  について  $|f(x)-g(x)|=|g(x)-f(x)|\leq d(g,f)$  である. よって左辺を x に関して  $\sup$  を取れば

$$d(f,g) = \sup_{x \in [0,1]} \{ |f(x) - g(x)| \} \le d(g,f)$$

である. 同様にして  $d(g, f) \leq d(f, g)$  が言える.

(3). 三角不等式 d(f,h) d(f,g)+d(g,h) を示す. 任意の  $x\in[0,1]$  について

$$|f(x)-h(x)| \leq |f(x)-g(x)| + |g(x)-h(x)| \leq \sup_{x \in [0,1]} \{|f(x)-g(x)|\} + \sup_{x \in [0,1]} \{|g(x)-h(x)|\} = d(f,g) + d(g,h)$$

- 語句群

最大 最小  $\leq$  =  $\geq$ 

## 11 距離空間の近傍系と連続写像

学籍番号: 名前

 $(X, d_X), (Y, d_Y)$  を距離空間とする.

- $1. \ a \in X$  とする.  $U \subset X$  が a の近傍  $\stackrel{\text{def}}{\Longleftrightarrow} a \in U^i(a$  が U の内点).
- 2. a の近傍系  $\mathfrak{N}(a) := \{U|U \ \mathsf{tt} \ a$  の近傍  $\}.$
- 3. 写像  $f: X \to Y$  が  $a \in X$  で連続  $\stackrel{\text{def}}{\Longleftrightarrow}$  任意の  $\varepsilon > 0$  について, ある  $\delta > 0$  が存在して,

$$d_X(x,a) < \delta$$
 ならば  $d_Y(f(x),f(a)) < \varepsilon$ .

 $\iff$  任意の f(a) の近傍  $V \subset Y$  について、ある a の近傍  $U \subset X$  が存在して、 $f(U) \subset V$ .

開集合と同様, 近傍系についても 4 つほど満たすべきものがあり, 近傍系もまた一般の位相空間 (後期の授業の内容) で定義できる. 6

定理 7.  $(X, d_X), (Y, d_Y)$  を距離空間,  $f: X \to Y$  を写像とするとき以下は同値.

- (1).  $f: X \rightarrow Y$  は任意の  $a \in X$  で連続.(各点で連続)
- (2). 任意の Y の開集合  $O \subset Y$  について,  $f^{-1}(O)$  は X の開集合.
- (3). 任意の Y の閉集合  $F \subset Y$  について,  $f^{-1}(F)$  は X の閉集合.
- (4). X の部分集合  $A \subset X$  について,  $f(\overline{A}) \subset \overline{f(A)}$  が成り立つ.

上の (1) から (4) のどれかが成り立つとき,  $f: X \to Y$  は連続という.

開集合と同様, 連続についても一般の位相空間 (後期の授業の内容) で定義できる. これは上の条件の (2) を用いる.

問題 1. 「A を距離空間 (X,d) の部分集合とし、 $f:X\to\mathbb{R}$  を  $f(x)=d(x,A):=\inf_{y\in A}d(x,y)$  で 定めると f は連続である」この主張の証明が完成するように空欄をうめよ.ただし空欄には後記の語 句群から適切な語句・記号を一つ選んで記入すること.また  $\mathbb{R}$  にはユークリッド距離を入れる.

[証明.] 教科書の定理から,  $x, y \in X$  について.

$$|f(x) - f(y)| = |d(x, A) - d(y, A)| \le d(x, y)$$

であることに注意する.

f が  $a\in X$  で連続を示す.  $a\in X$  とする.  $\varepsilon>0$  について,  $\delta=$  とると,  $d(x,a)<\delta$  ならば

$$|f(x) - f(a)| \le d(x, a) < \varepsilon$$

となる. よって f が a で連続でありいえた.

- 語句群 -

ある 任意の  $\delta$  N  $\varepsilon$   $2\varepsilon$  x 2x f(x) f(a)

<sup>6</sup>ただ近傍系は開集合よりも重要度が低い気がする. 私は位相の演習を2回ほどやったが、近傍系の定義は忘れていた.

問題 2. d を  $\mathbb{R}^2$  のユークリッド距離とする.部分集合  $Y\subset\mathbb{R}^2$  と  $x\in\mathbb{R}^2$  について  $d(x,Y):=\inf_{y\in Y}d(x,y)$  と定め,  $X,Y\subset\mathbb{R}^2$  という部分集合について,  $d(X,Y)=\inf_{x\in X}d(x,Y)$  として定める.

$$A = \{(x,0)|x \in \mathbb{R}\} \quad B = \{(x,\frac{1}{x})|x \in \mathbb{R} \setminus \{0\}\}$$

について以下の値を求めよ. (ただし  $(0,1),(\sqrt{2},1) \in \mathbb{R}^2$  である.)

(1) d((0,1),A) 解答欄:

(2) d(A,B) 解答欄:

(3)  $d((\sqrt{2},1),\mathbb{Q}^2)$  解答欄:

(4)  $d(\mathbb{R}^2 \setminus \mathbb{Q}^2, \mathbb{Q}^2)$  解答欄:

問題3.次の距離と空間を定義する.

- 1.  $\mathbb{R}^n$  について d をユークリッド距離とする.
- $2. x, y \in \mathbb{R}^n$  に対して,

$$d_1(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

とおく.  $d_1$  はマンハッタン距離と呼ばれる.

3.  $\mathbb{R}^n$  について  $d_\delta$  を

$$d_{\delta}(x,y) = \begin{cases} 0 & x = y \text{ のとき} \\ 1 & x \neq y \text{ のとき} \end{cases}$$
 (1)

とおく.  $d_\delta$  は離散距離と呼ばれる.

4.  $C[0,1]:=\{f|\ f$  は [0,1] 上の実数値連続関数  $\}$  とし  $f,g\in C[0,1]$  について

$$d_{\infty}(f,g) := \sup_{x \in [0,1]} \{ |f(x) - g(x)| \}$$

と定める.  $(C[0,1],d_{\infty})$  は距離空間となる.

以下の写像が"連続"か"連続でない"かを判定せよ.

(1)  $F: (\mathbb{R}^2, d) \to (\mathbb{R}^2, d_1); (x, y) \mapsto (x, y)$  **解答欄**:

(2)  $F:(\mathbb{R}^2,d_1)\to(\mathbb{R}^2,d);(x,y)\mapsto(x,y)$  解答欄:

(3)  $F: (\mathbb{R}^2, d) \to (\mathbb{R}^2, d_{\delta}); (x, y) \mapsto (x, y)$  解答欄:

(3)  $F:(\mathbb{K}^2,a) \to (\mathbb{K}^2,a_\delta);(x,y) \mapsto (x,y)$  胜台憓:

(4)  $F: (\mathbb{R}^2, d_{\delta}) \to (\mathbb{R}^2, d); (x, y) \mapsto (x, y)$  解答欄:
(5)  $F: (C[0, 1], d_{\infty}) \to (\mathbb{R}, d); f \mapsto f(\frac{1}{2})$  解答欄:

(6)  $F: (C[0,1], d_{\infty}) \to (\mathbb{R}, d_{\delta}); f \mapsto f(\frac{1}{2})$  解答欄:

(7)  $F: (C[0,1], d_{\infty}) \to (\mathbb{R}, d); f \mapsto \int_{[0,1]} f dx$  **解答欄**:

(8)  $F: (C[0,1], d_{\infty}) \to (\mathbb{R}, d); f \mapsto \int_{[0,1]} f^2 dx$  解答欄:

ここで  $F:(\mathbb{R}^2,d) \to (\mathbb{R}^2,d_1); (x,y) \mapsto (x,y)$  とは次の略記である.

$$\begin{array}{cccc} F: & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & (x,y) & \longmapsto & (x,y) \end{array}$$

また  $F:(\mathbb{R}^2,d)\to(\mathbb{R}^2,d_1)$  が連続とは、「F が距離空間 ( $\mathbb{R}^2,d$ ) から距離空間 ( $\mathbb{R}^2,d_1$ ) への連続」であることを意味する.(特に任意の  $(x,y)\in(\mathbb{R}^2,d)$  で F が連続であることを要請する.)