AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1.-42. Canceled
- 43. (Currently Amended) A method of adhering or sealing at least one surface said method comprising
 - (1) applying to at least one surface, a compound of formula (I)

$$R^7 \longrightarrow R^6 \longrightarrow R^1$$
 $R^3 \longrightarrow R^5 \longrightarrow Y^1$ [I]

where R^1 is selected from a heteroatom or a substituted heteroatom which has electron withdrawing properties and R^6 is a bond or -C(O)-, -C(O)O-, -OC(O)-, C(S) or -S(O)₂-; R^2 and R^3 are independently selected from $(CR^8'R^8)_n$, or a group CR^9R^{10} , -($CR^8'R^8CR^9R^{10}$)- or - $(CR^9R^{10}CR^8'R^8)$ - where n is 0, 1 or 2, R^8 ' and R^8 are independently selected from hydrogen or alkyl, and either one of R^9 or R^{10} is hydrogen and the other is an electron withdrawing group, or R^9 and R^{10} together form an electron withdrawing group,

R⁴ and R⁵ are independently selected from C, CH or CR¹¹ where R¹¹ is an electron withdrawing group, and

R⁷ is selected from hydrogen, an optionally substituted hydrocarbyl group, a perhaloalkyl group or a functional group;

the dotted lines indicate the presence or absence of a bond, and X^1 is a group CX^2X^3 where the dotted line bond to which it is attached is absent and a group CX^2 where the dotted line bond to which it is attached is present, Y^1 is a group CY^2Y^3 where the dotted line bond to which it is attached is absent and a group CY^2 where the dotted line bond to which it is attached is present, and X^2 , X^3 , Y^2 and Y^3 are independently selected from hydrogen and fluorine; provided that

- i) at least one of (a) R¹ and R⁶ or (b) R² and R³ or (c) R⁴ and R⁵ includes an electron withdrawing group;
- ii) where R^2 and R^3 are both CH_2 , R^4 and R^5 are both CH, and R^1 is N, R^6 may not be selected from C(O) or -OC(O)-;

and optionally a polymerisation initiator, and

- (2) allowing the compounds of formula (I) to polymerize in contact with said at least one surface to seal said surface and optionally a further surface such that the said at least one surface and said optional further surface are adhered or sealed together.
- 44. (Previously Presented) A method according to claim 43 wherein the compound of formula (I) is a compound of formula (IA)

$$R^7 \longrightarrow R^6 \longrightarrow R^1$$
 $R^3 \longrightarrow R^5 \longrightarrow R^3$
 (IA)

where R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , X^2 , X^3 , Y^2 and Y^3 are as defined in claim 43.

- 45. (Previously Presented) A method according to claim 43 wherein the compound of formula (I) is polymerised under the influence of radiation or an electron beam or by reaction with a chemical initiator.
- 46. A method according to claim 45 wherein the compound of formula (I) is polymerisable under the influence of ultra violet or thermal radiation.
- 47. (Previously Presented) A method according to claim 46 which comprises a polymerisation initiator which is a photoinitiator.
- 48. (Previously Presented) A method according to claim 43 wherein in the compound of formula (I), R² and R³ are groups (CR⁸'R⁸)_n and R⁴ and R⁵ are CH groups.
- 49. (Previously Presented) A method according to claim 43 where R^1 is selected from nitrogen, $N^+R^{12}(Z^{m-})_{1/m}$, $S(O)_pR^{13}$, B, or $P(O)_qR^{14}$ where R^{12} , R^{13} and R^{14} are independently selected from hydrogen or hydrocarbyl, Z is an anion of valency m, p is 0, 1 or 2, and q is 0, 1, 2 or 3.
- 50. (Previously Presented) A method according to claim 49 where R^1 is a $N^+R^{12}(Z^{m-})_{1/m}$ group.
 - 51. (Previously Presented) A method according to claim 49 where Z is halogen.
 - 52. (Previously Presented) A method according to claim 49 where R¹² is alkyl.
- 53. (Previously Presented) A method according to claim 43 where R⁶ is a group -C(O)O-or -OC(O)-.
- 54. (Previously Presented) A method according to claim 43 wherein R^1 is nitrogen, R^6 is -C(O)-, -C(S)- or -S(O)₂-.
- 55. (Previously Presented) A method according to claim 43 where the compound of formula (I) is a compound of structure (II)

where R^7 is as defined in claim 43 and $-R^{19}$ - is C(S) or $S(O)_2$.

- 56. (Previously Presented) A method according to claim 43 where R² and R³ include an electron withdrawing group.
- 57. (Previously Presented) A method according to claim 56 where at least one of R^2 or R^3 include electron withdrawing groups R^9 and R^{10} .
- 58. (Previously Presented) A method according to claim 57 wherein R⁹ and R¹⁰ together form an oxo group.
- 59. (Previously Presented) A method according to claim 43 wherein R⁷ comprises a hydrocarbyl group optionally substituted by a functional group.
- 60. (Previously Presented) A method according to claim 43 wherein R⁷ includes an unsaturated moiety.
- 61. (Previously Presented) A method according to claim 60 wherein the unsaturated moiety is an aryl or alkenyl group, or a carbonyl substituent.
- 62. (Previously Presented) A method according to claim 59 wherein R⁷ is an optionally substituted alkyl, alkenyl, alkynyl or aryl group.
- 63. (Previously Presented) A method according to claim 62 wherein R⁷ is substituted by halogen, carboxy or salts thereof or acyloxy.

- 64. (Previously Presented) A method according to claim 59 where R⁷ is a perhaloalkyl group which comprises from 1 to 3 carbon atoms.
- 65. (Previously Presented) A method according to claim 64 where R⁷ is a perhalomethyl group.
- 66. (Previously Presented) A method according to claim 59 where R⁷ is a dialkenyl substituted amide.
- 67. (Currently Amended) A method according to claim 66 wherein the amide is of sub formula (III)

$$-R^{19}-N$$
 $R^{12}-R^{15}$
 $R^{13}-R^{14}$
(III)

where R^{19} C(s) or $S(O)_2C(S)$ or $S(O)_2$, R^{12} and R^{13} are selected from groups defined above for R^2 and R^3 in relation to formula (I) and R^{14} and R^{15} are selected from groups defined above as R^3 and R^4 in relation to formula (I).

- 68. (Previously Presented) A method according to claim 67 where R¹² and R¹³ are -CH₂-or -CH₂CH₂- groups and R¹⁴ and R¹⁵ are -CH- groups.
- 69. (Previously Presented) A method according to claim 43 wherein the compound of formula (I) is a compound of formula (IV)

$$R^{16}$$
 CH_2 $C(H)$ X^1 [IV] CH_2 $C(H)$ Y^1 $(Z^{m-})_{1/m}$

where Z is an anion of valency m, the hydrogen atoms in bracket are absent when the dotted lines represent the presence of a bond, and R¹⁶ and R¹⁷ are independently selected from hydrogen and hydrocarbyl optionally substituted with hydroxy.

- 70. (Previously Presented) A method according to claim 69 wherein R¹⁶ and R¹⁷ are selected from alkyl, hydroxyalkyl and alkenyl.
- 71. (Previously Presented) A method according to claim 70 wherein R¹⁶ and R¹⁷ are prop-2-enyl or hydroxyalkyl.
- 72. (Previously Presented) A method according to claim 71 wherein hydroxyalkyl is a group of formula $-C((CH_2)_dOH)_a(H)_b$ where a is an integer of from 1 to 3 and b is O or an integer of 1 or 2 provided that a+b is 3, and d is an integer of from 1 to 6.
- 73. (Previously Presented) An article which includes at least two surfaces which are adhered together by means of a compound of formula (I) as defined in claim 43 which has been polymerised.
- 74. (Previously Presented) An article according to claim 73 wherein the surfaces comprise glass or metal surfaces or a mixture of these.
- 75. (Previously Presented) An article according to claim 73 wherein the polymerised compound of formula (I) provides an electrically conducting layer.
- 76. (Previously Presented) A biomedical adhesive which comprises a biocompatible compound of formula (I) as defined in claim 43.
- 77. (Previously Presented) A sealant which comprises a compound of formula (I) as defined in claim 43.
- 78. (Previously Presented) A sealant which comprises a biocompatible compound of formula (I) as defined in claim 43.

- 79. (New) A method according to claim 48 wherein R⁸ and R^{8'} are both alkyl groups.
- 80. (New) A method of adhering or sealing at least one surface said method comprising
- (1) applying to at least one surface, a compound of formula (I)

$$R^7 \longrightarrow R^6 \longrightarrow R^1$$
 $R^3 \longrightarrow R^5 \longrightarrow Y^1$ [I]

where R^1 is selected from $N^+R^{12}(Z^{m-})_{1/m}$, $S(O)_pR^{13}$, B, or $P(O)_qR^{14}$ where R^{12} , R^{13} and R^{14} are independently selected from hydrogen or hydrocarbyl, Z is an anion of valency m, p is 0, 1 or 2, and q is 0, 1, 2 or 3 and R^6 is a bond or -C(O)-, -C(O)O-, -OC(O)-, C(S) or $-S(O)_2$ -;

or

 R^1 is selected from nitrogen, and R^6 is a bond or -C(O)O- or -C(S)- or $-S(O)_2$ -;

 R^2 and R^3 are independently selected from $(CR^8R^8)_n$, or a group CR^9R^{10} , - $(CR^8R^8CR^9R^{10})$ - or - $(CR^9R^{10}CR^8R^8)$ - where n is 0, 1 or 2, R^8 and R^8 are independently selected from hydrogen or alkyl, and either one of R^9 or R^{10} is hydrogen and the other is an electron withdrawing group, or R^9 and R^{10} together form an electron withdrawing group,

 R^4 and R^5 are independently selected from C, CH or CR^{11} where R^{11} is an electron withdrawing group, and

R⁷ is selected from hydrogen, an optionally substituted hydrocarbyl group, a perhaloalkyl group or a functional group;

the dotted lines indicate the presence or absence of a bond, and X^1 is a group CX^2X^3 where the dotted line bond to which it is attached is absent and a group CX^2 where the dotted line bond to

which it is attached is present, Y^1 is a group CY^2Y^3 where the dotted line bond to which it is attached is absent and a group CY^2 where the dotted line bond to which it is attached is present, and X^2 , X^3 , Y^2 and Y^3 are independently selected from hydrogen and fluorine; provided that

- i) at least one of (a) R¹ and R⁶ or (b) R² and R³ or (c) R⁴ and R⁵ includes an electron withdrawing group;
- ii) where R^2 and R^3 are both CH_2 , R^4 and R^5 are both CH, and R^1 is N, R^6 may not be selected from C(O) or -OC(O)-;

and optionally a polymerisation initiator, and

(2) allowing the compounds of formula (I) to polymerize in contact with said at least one surface to seal said surface and optionally a further surface such that the said at least one surface and said optional further surface are adhered or sealed together.