Методы оптимизации

Заблоцкий Данил

6 апреля 2024 г.

Оглавление

1	Лин	нейное программирование	4
	1.1	Постановка задачи, теорема эквивалентности	4
		1.1.1 Примеры моделей ЛП	5
		1.1.2 Теорема эквивалентности задач ЛП	6
	1.2	Базисные решения КЗЛП	8

Введение

Лекция 1: Начало

от 9 фев 8:45

Определение 0.1 (Методы оптимизации). *Методы оптимизации* – раздел прикладной математики, предметом изучения которого является теория и методы оптимизационных задач.

Определение 0.2 (Оптимизационная задача). *Оптимизационная задача* – задача выбора из множества возможных вариантов наилучших в некотором смысле.

Примечание.

$$\begin{cases} f(x) \to \min(\max) \\ x \in D \end{cases},$$

где

D – множество допустимых решений,

 $x \in D$ — допустимое решение,

f(x) — целевая функция (критерий оптимизации)

Задачи математического программирования (МП) и их классификация

Примечание. Немного истории:

1939г. Л.В. Конторович 1947г. Д. Данциг

С 50-х годов – бурное развитие

1975г. Нобелевская премия по экономике Конторовичу и Купмаксу

Примечание (Задача математического программирования).

- 1. $f(x) \to \max(\min)$.
- 2. $g(x)\#0, i = \overline{1,m}, \# \in \{ \leq, \geq, = \}.$
- 3. $x_j \in R, \ j = \overline{1, n}.$

$$x = (x_1, \ldots, x_n)$$

Определение 0.3 (Оптимальное решение, глобальный экстремум). $x^* \in D$ называется *оптимальным решением* задачи 1–3, если $\forall x \in D$

$$f(x^*) \geqslant f(x)$$

для задачи на max и $\forall x \in D$

$$f(x^*) \leqslant f(x)$$

для задачи на min.

 x^* является глобальным экстремумом.

Определение 0.4 (Разделимая, неразделимая задача). Задача 1–3, которая обладает оптимальным решением, называется *разделимой*, и *неразделимой* в противном случае.

 $D=R^n$ – задача безусловной оптимизации, в противном случае – задача условной оптимизации.

Примечание (Классификация).

- 1. Если f, g_i являются линейными, то задача является задачей линейного программирования (ЛП).
- 2. Если хотя бы одна из функций f, g_i нелинейная, то задача *нелинейного программирования*.

 f, g_i – выпуклые, то *выпуклого программирования*.

Глава 1

Линейное программирование

1.1 Постановка задачи, теорема эквивалентности

Определение 1.1 (Общая задача ЛП (ЗЛП)).
$$f(x) = c_0 + \sum_{j=1}^n c_j x_j \longrightarrow \max(\min),$$

$$\sum_{j=1}^n a_{ij} x_j \# b_i, \quad i = \overline{1,n}, \ \# \in \{\leqslant, \geqslant, =\}$$

$$x_j \geqslant 0, \quad j \in \mathfrak{I} \subseteq \{1,\dots,n\}$$

$$A_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}, \ b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}, \ x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} - \text{ переменные }$$
 задачи

Примечание (Матричная задача).

$$f(x) = (c, x) \longrightarrow \max(\min)$$

$$Ax \# b$$

$$x_i \ge 0, \quad j \in \Im \subseteq \{1, \dots, n\}$$

Примечание (Каноническая ЗЛП (КЗЛП)).

$$f(x) = (c, x) \longrightarrow \max$$

$$Ax = b$$

$$x \geqslant \vec{0}, \quad \vec{0} = (0, \dots, 0)$$

Примечание (Симметричная ЗЛП).

$$f(x)=(c,x)\longrightarrow\max$$
 $f(x)=(c,x)\longrightarrow\min$ $Ax\leqslant b$ или $Ax\geqslant b$ $x\geqslant \vec{0},\quad \vec{0}=(0,\ldots,0)$ $x\geqslant \vec{0}$

Замечание. Без ограничения общности далее положим $c_0=0$, так как добавление константы не влияет на процесс нахождения оптимального решения.

1.1.1 Примеры моделей ЛП

Пример. Задача о составлении оптимального плана производства.

$$m$$
 ресурсов, $i=\overline{1,m}$ n видов продукции, $j=\overline{1,n}$

Известно:

 b_i – запас i-го ресурса, $i=\overline{1,m}$ количество ресурса i, требуемое для производства a_{ij} – прибыль от продукции вида j – прибыль от продажи 1 единицы j-го продукта

Необходимо составить план производства, максимализирующий суммарную прибыль.

Переменные: x_j единицы продукции вида j производства, $j = \overline{1, n}$,

$$\sum_{j=1}^{n} c_j x_j \longrightarrow \max,$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i, \ i = \overline{1, m},$$

$$x_j \ge 0, \quad j = \overline{1, n}.$$

Пример. О максимальном потоке в сети.

$$G=(V,E)$$
 — ориентированный взвешенный граф $c:E\to R$ — веса дуг — пропускная способность

$$s$$
 — источник t — сток

Пусть x_{ij} – поток по дуге $(i,j) \in E$

$$f = \sum_{j:(s,j)\in E} x_{sj} \longrightarrow \max,$$

$$\sum_{j:(j,i)\in E} x_{ji} = \sum_{k:(i,k)\in E} x_i k, \quad i \in V \setminus \{s,t\},$$

$$0 \le x_{ij} \le c_{ij}, \quad (i,j) \in E.$$

Лекция 2: Продолжение

от 16 фев 8:45

Пример. Задача Канторовича

Производятся различные виды шпона с помощью станков разной производительности в единицу времени.

Как распределить задание между станками, чтобы получить шпон в нужном ассоритменте в наибольшем количестве?

$$n$$
 видов шпона $j=1\dots n$ m станков $i=1\dots m$

 a_{ij} ед. шпона j-го вида, производимое i-м станков в ед. времени

 t_i лимит времени работы i-го станка

 b_i количество ед. шпона j-го вида в комплекте

Максимизировать число комплектов.

Пусть z – число комплектов, x_{ij} – количество единиц шпона j-го вида, производимого на i-м станке (x_{ij} – время i-го станка на пространство j-го продукта).

$$z \to \max,$$

$$\sum_{i=1}^{m} x_{ij} \ge b_j z, \ j = 1 \dots n$$

$$\sum_{j=1}^{n} \frac{x_{ij}}{a_{ij}} \le t_i, \ i = 1 \dots m$$

$$x_{ij} \ge 0, \ z \ge 0, \ i = 1 \dots m, \ j = 1 \dots n, \quad z \in \mathbb{Z}.$$

1.1.2 Теорема эквивалентности задач ЛП

Определение 1.2 (Эквивалентные задачи МП). Две задачи МП

$$\left\{ \begin{array}{l} f(x) \to opt \\ x \in D \end{array} \right., \quad \left\{ \begin{array}{l} \overline{f}(\overline{x}) \to \overline{opt} \\ \overline{x} \in \overline{D} \end{array} \right., \quad \left. \begin{array}{l} D \xrightarrow{\phi} \overline{D} \\ \overline{D} \xrightarrow{\overline{\phi}} D \end{array} \right.$$

называются эквивалентными, если любому допустимому решению каждой из них по некоторому правилу соответствует допустимое решение другой задачи, причем оптимальному решению соответствует оптимальное.

Теорема 1.3 (Первая теорема эквивалентности). Для любой задачи ЛП \exists эквивалентная ей каноническая ЗЛП.

Примечание (Идея доказательства). n = 2, m = 3

$$f = c_1 x_1 + c_2 x_2 \to \min$$

$$\overline{f} = -c_1 x_1 - c_2 x_2 \to \max$$

$$a_{11} x_1 + a_{12} x_2 = b_1$$

$$a_{21} x_1 + a_{22} x_2 \le b_2$$

$$a_{31} x_1 + a_{32} x_2 \ge b_3$$

$$x_1 \le 0$$

$$x_2 \in \mathbb{R}$$

$$a_{11} x_1 + a_{12} x_2 = b_1$$

$$a_{21} x_1 + a_{22} x_2 + x_3 = b_2$$

$$a_{31} x_1 + a_{32} x_2 - x_4 = b_3$$

$$x_1 \ge 0, x_3 \ge 0, x_4 \ge 0$$

$$x_2 = x_2' - x_2'', x_2' \ge 0, x_2'' \ge 0$$

K3JIII $\overline{f} = -c_1 x_1 - c_2 x_2' + c_2 x_2'' \to \max$

$$\begin{aligned} a_{11}x_1 + a_{12}x_2' - a_{12}x_2'' &= b_1 \\ a_{21}x_1 + a_{22}x_2' - a_{22}x_2'' + x_3 &= b_2 \\ a_{31}x_1 + a_{32}x_2' - a_{32}x_2'' - x_4 &= b_3 \\ x_1 \geqslant 0, \ x_2', x_2'', x_3, x_4 \geqslant 0 \end{aligned}$$

Неоднозначность-разность: $\forall x \in D \ f(x) = -f(\overline{x}), \ \overline{x} \in \overline{D}$

$$\overline{x} = \phi(x)$$
.

Очевидно, что оптимальность также сохраняется при таких преобразованиях.

Теорема 1.4 (Вторая теорема эквивалентности). Для любой задачи ЛП \exists эквивалентная ей симметричная задача ЛП.

Примечание (Идея).

$$\alpha = \beta \Leftrightarrow \left\{ \begin{array}{ll} \alpha \leqslant \beta & \quad (c, x) \to \max \\ \alpha \geqslant \beta & \quad Ax \leqslant b \\ x \geqslant 0 & \quad x \geqslant 0 \end{array} \right. | \begin{array}{l} (c, x) \to \min \\ Ax \geqslant b \\ x \geqslant 0 & \quad x \geqslant 0 \end{array}$$

Замечание. Смысл теоремы 1.4 в том, чтобы свести решение ЗЛП к КЗЛП.

Примечание (Геометрическая интерпретация). n=2

$$f = c_1 x_1 + c_2 x_2 \to \max$$
, $a_{i1} x_1 + a_{i2} x_2 \leqslant b_i$, $i = 1 \dots m$ Линии уровня целевой функции

$$c_1x_1+c_2x_2=const, \quad \perp \triangledown f=(c_1,c_2).$$
 $\exists !x^*$ – оптимальное решение \land ЗЛП разрешима $f\to +\infty$ на D (неогр. сверху на D) \Diamond ЗЛП неразрешима $D=\varnothing$ нет дополнительных решений

ГЛАВА 1. ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ

7

1.2 Базисные решения КЗЛП

Примечание.

- 1. $f = (c, x) \rightarrow \max$.
- 2. Ax = b.
- 3. $x \geqslant \overline{0}$.

$$A_{m imes n} = (A^1,A^2,\dots,A^n), \quad A^j = \left(egin{array}{c} a_{1j} \\ a_{2j} \\ dots \\ a_{mj} \end{array}
ight) - j$$
-ый столбец матрицы $A.$

Определение 1.5 (Базисное решение системы 2). Пусть \overline{x} — решение системы 2. Вектор \overline{x} называется базисным решением системы 2, если система векторных столбцов матрицы A, соответствующая ненулевым компонентам вектора \overline{x} , линейно независима.

Замечание. В случае однородной системы (b=0), решение x=0 является базисным.

Определение 1.6 (Базисное решение КЗЛП). Неотрицательное базисное решение системы 2 называется *базисным* (*опорным*) решением K3ЛП.

Пример. $3x_1 - 4x_2 + x_3 \to \max$

$$\begin{cases} 2x_1 & +2x_2 & +3x_3 & -x_4 & +x_5 & = 1\\ 2x_1 & +4x_2 & & +x_4 & +2x_5 & = 2 \end{cases}$$
$$A = \begin{pmatrix} 2 & 2 & 3 & -1 & 1\\ 2 & 4 & 0 & 1 & 2 \end{pmatrix}$$

 $x^1=(0,0,1,2,0)$ — базисное решение системы, так как $\begin{vmatrix} 3 & -1 \\ 0 & 1 \end{vmatrix} \neq 0$ соответствует базису $\{A^3,A^4\}$.

$$x^1$$
 БР КЗЛП $x^2=\left(1,0,-\frac{1}{3},0,0\right)$ БР СЛАУ, но не КЗЛП $x^3=\left(0,0,0,0,1\right)$ БР КЗЛП

Определение 1.7 (Вырожденное базисное решение). x — базисное решение КЗЛП называется *вырожеденным*, если число ненулевых компонент вектора x меньше ранга матрицы A.

Замечание. x^3 – вырожденное. Недостаток: соответствует разным наборам базисных столбцов матрицы.

$$x^3$$
 cootbetctbyer $\{A_1, A_5\}, \{A_3, A_5\}, \{A_4, A_5\}.$

Лекция 3: Продложение

от 1 мар 8:45