Dynamic Programming

High-level Idea: Break a complex problem into smaller (easier) subproblems subject to:

Principle of optimality (optimal substructure) –
 a substructure of an optimal structure is itself optimal.
Example: A subpath of any shortest path is itself a shortest path.

2. Overlapping sub-problems: "many" smaller subproblems are actually the "same" problem.

Example: When computing the Fibonacci sequence using the rule: $F_n = F_{n-1} + F_{n-2}$, "many" recursive calls will be repeated.

Longest Common Subsequence

- * **Definition:** A *subsequence* of a string *s* is a subset of the characters of *s* with respect to their original order.
 - * **Example:** for *s* = "Fibonacci sequence"
 - * "Fun"
 - * "seen"
 - * "cse"
 - * ...
- * Given strings X[1..n] and Y[1..m]
- * Goal: Find the length of a **longest common subsequence** of *X* and *Y*.
 - * Largest string obtainable from X and Y by deleting chars
- * Example: "Gole" is an LCS of "Google" and "Go Blue".

Longest Common Subsequence

- * Idea: Let X and Y be two strings of length n and m, respectively.
- * LCS(X[1..n], Y[1..m]) = Length of LCS
- * If the last characters are equal: (X[n] = Y[m]):
- * LCS(X[1..n], Y[1..m]) = LCS(X[1..n-1], Y[1..m-1]) + 1

Longest Common Subsequence

- * Idea: Let X and Y be two strings of length n and m, respectively.
- * If the last characters are **not** equal: $(X[n] \neq Y[m])$:
- * LCS(X[1..n], Y[1..m]) = Maximum of

$$LCS(X[1..n-1], Y[1..m])$$

and

$$LCS(X[1..n], Y[1..m-1])$$

Recurrence for LCS

- * Let LCS(i, j) denote the length of a longest common subsequence of X[1..i] and Y[1..j].
- * Then:

$$LCS(i,j) = \begin{cases} 0 & i = 0 \text{ or } j = 0\\ 1 + LCS(i-1,j-1) & X[i] = Y[j]\\ \max \left\{ \frac{LCS(i-1,j)}{LCS(i,j-1)} \right\} & X[i] \neq Y[j] \end{cases}$$

Knapsack

- * Input: $(v_1, s_1), ..., (v_n, s_n), B$
 - * (v_i, s_i) : value-size pair of item i.
 - * B: size of bag
 - * B, s_1 , ..., s_n are positive integers
- * Output: $I \subseteq [n]$ s.t.
 - * $\sum_{i \in I} s_i \leq B$ and
 - * $\sum_{i \in I} v_i$ is maximized.
- * Let $T[i,j] := \max \max$ was value with back size j when we consider items 1, ..., i.
 - * $T[i,j] = \max(T[i-1,j], T[i-1,j-s_i] + v_i)$
 - * (Second expression considered only if $j \ge s_i$)
 - * Runtime: O(nB)

