Reg. No.....

Department of Computer Science & Engineering Motilal Nehru National Institute of Technology, Allahabad *End Sem. Examination (EVEN-Semester) 2017-18*

Class: B. Tech. (VI) Sem. (Computer Sc. & Engg. AND I.T.) 2017-18 M.M.: 60 Subject: Scientific Computing (Code: CS-1602) M. Hrs: Three Hour

Note: 1. There are TWO parts of the Question Paper (A&B). Attempt any three(03) from Part(A) & Part(B) BOTH.So TOTAL SIX(06) questions are to be attempted.

2.Each Questions carry equal Marks: TEN(10).

3. Write ALL parts of a question together NOT here & there.

4. Write to the point. Make & State necessary assumptions, if any.

PART-(A):(Attempt any Three(03) Questions ONLY from PART-(A))

- Q.1 (a) State "Intermediate Value Theorem". How it is used to find an initial approximation to the root of f(x)=0?
 - (b) What is the Descartes' Rule of Signs? (c) Define Convergence of an Iterative Method.
 - (d) What are the criteria used to terminate an Iterative Procedure.(e) When does the Newton-(02X5 = 10)Raphson method fail?
- Q.No.2(a) Why Newton-Raphson method for non-linear equation is also called Chord Method?
 - (b) Derive the Newtons Method for finding (1 / N), where N>0. Hence, find 1/17, using the initial approximation as (i)0.05, & (ii) 0.15. Do the iterations Converge? (02+08=10)

Q.No.3: (a) Find the smallest positive root of the equation $X^3 - X - 10 = 0$, using the General Iteration Method.

The following values of the function $f(x) = \sin x + \cos x$, are given-

(b) The following va	alues of the function i	200	30°
X	10	1 2017	1.3660
f(x)	1.1585	1.2817	1.5000

Construct the quadratic Lagrange interpolating polynomial that fits the above data. Hence, find $f(\pi/12)$. (04+06=10)

Compare with the exact value. Q.No.4: (a) Use Lagranges's formula, to find the Quadratic Polynomial that takes the values:

X	0	1	3	
v	0	1	0	

(b) For the following data, Calculate the differences & obtain the Newtons forward and Backward difference Interpolation Polynomials. Are these Polynomials different? Justify.

Interpolate at x=0.25 & x=0.35.

Interpolate at X=0.23 & X=0.33.						
merpola	0.1	0.2	0.3	0.4	0.5	1
X	1.40	1.56	1.76	2.00	2.28	
f(x)	1.40	1.30			(03+07=10	J)

(03+07=10)

(Continued on Page No.2)

g is [3]

0 to

tion [3]

ring [3]

ps. 31

ode

[2]

PART-(B):(Attempt any Three(03) Questions ONLY from PART-(B))

 Q_1 No.5 (a) Find dy/dx at x=1 from the following table of values:

X	1	2	3	4
У	1	8	27	64

(b) The table below gives Velocity of a Particle for 8 Seconds at an Interval of 2 Seconds. Find the initial Acceleration using the entire Data. (05+05=10)

Time(Sec)	0	2	4	6	8
Velocity(m/Sec)	0	172	1304	4356	10288

Q.No.6 (a) Find approximate value of $\int_{0}^{1} \frac{dx}{1+x}$ 'using Trapezium rule & Sympson's 1/3

Rule with 2 & 4 Equal subintervals. Using the exact solution, find absolute errors.

(b) Compare the above TWO RESULTs? (Write just TWO Points)

(04X2 + 02 = 10)

QaNo.7 Use the Heun's method (second order Runge-Kutta method) to Solve the initial Value problem, $dy/dx = -2xy^2$, y(0) = 1, with h = 0.2 on the interval [0, 0.4]. Compare with the exact solution: $y(x) = 1/(1 + x^2)$. (Write just TWO Points)

(10)

Q.No. 8 Use the fourth order classical Runge-Kutta method to Solve the initial Value problem, $dy/dx = -2xy^2$, y(0) = 1, with h = 0.2 on the interval [0, 0.4]. Compare with the exact solution: $y(x) = 1/(1 + x^2)$. (Write just TWO Points) (10)

Q.No.9 Using Milne's Predictor-Corrector Method, find y(0.4) for the initial value Problem $y'=x^2 + y^2$, y(0)=1 with h=0.1 Calculate all the required initial values by Euler's Method. The result is to be accurate to two decimal places. (10)

*All the Best *