Übungsblatt Nr. 5 (Abgabetermin 16.11.2024)

Aufgabe 1:

(a) Drei Mengen A, B, C

Die möglichen Regionen im Venn-Diagramm mit drei Mengen lassen sich wie folgt notieren:

- 1. Nur in $A: A \setminus (B \cup C)$
- 2. Nur in $B: B \setminus (A \cup C)$
- 3. Nur in $C: C \setminus (A \cup B)$
- 4. In $A \cap B$, aber nicht in $C: (A \cap B) \setminus C$
- 5. In $A \cap C$, aber nicht in $B: (A \cap C) \setminus B$
- 6. In $B \cap C$, aber nicht in $A: (B \cap C) \setminus A$
- 7. In $A \cap B \cap C$: $A \cap B \cap C$
- 8. Außerhalb aller Mengen: $\overline{A \cup B \cup C}$

(b) Vier Mengen A, B, C, D

Die fehlenden Regionen im Venn-Diagramm mit vier Mengen lauten:

- 1. Nur in A und D: $(A \cap D) \setminus (B \cup C)$
- 2. Nur in B und D: $(B \cap D) \setminus (A \cup C)$
- 3. Nur in C und D: $(C \cap D) \setminus (A \cup B)$
- 4. In allen vier Mengen: $A \cap B \cap C \cap D$

Aufgabe 2:

(a)
$$A \cup B = A \cap B$$

Behauptung: Falsch.

Gegenbeispiel: Sei $A = \{1\}, B = \{2\}$. Dann ist:

$$A \cup B = \{1, 2\}, \quad A \cap B = \emptyset.$$

Also gilt $A \cup B \neq A \cap B$.

Tutor: Jörg Bader

(b)
$$A \cap (B \cup C) = (A \cap B) \cup C$$

Behauptung: Falsch.

Gegenbeispiel: Sei $A = \{1\}, B = \{2\}, C = \{3\}$. Dann:

$$A \cap (B \cup C) = \emptyset$$
, $(A \cap B) \cup C = \{3\}$.

Daher $A \cap (B \cup C) \neq (A \cap B) \cup C$.

(c)
$$A \cup B = A \cap B \iff A = B$$

Behauptung: Wahr.

Beweis: $A \cup B = A \cap B$ bedeutet:

$$x \in A \cup B \Leftrightarrow x \in A \cap B$$
.

Das impliziert $x \in A \Leftrightarrow x \in B$, also A = B.

(d)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Behauptung: Wahr.

Beweis: Zeige Äquivalenz der beiden Seiten:

Links:
$$x \in A \cup (B \cap C) \Leftrightarrow x \in A \vee (x \in B \wedge x \in C)$$
,
Rechts: $x \in (A \cup B) \cap (A \cup C) \Leftrightarrow (x \in A \vee x \in B) \wedge (x \in A \vee x \in C)$.

Beide Aussagen sind identisch.

(e)
$$(A \cup B) \cap (B \cup C) \cap (C \cup A) = (A \cap B) \cup (B \cap C) \cup (C \cap A)$$

Behauptung: Wahr.

Beweis: Durch Anwendung des Distributivgesetzes zeigt sich, dass beide Seiten äquivalent sind.

(f)
$$P(A) \cap P(B) = P(A \cap B) \iff A \subseteq B \lor B \subseteq A \lor A \cap B = \emptyset$$

Behauptung: Wahr.

Beweis: Die Potenzmengen $P(A) \cap P(B)$ und $P(A \cap B)$ stimmen nur überein, wenn eine der genannten Bedingungen erfüllt ist.

Aufgabe 3:

Zeige, dass die Aussagen äquivalent sind:

- 1. $M \subseteq N$,
- 2. $M \cup N = N$,
- 3. $M \cap N = M$.

Beweis:

• $M \subseteq N \Rightarrow M \cup N = N$: Elemente von M sind in N, also ergänzt M nichts.

- $M \cup N = N \Rightarrow M \cap N = M$: Elemente von M sind in N, daher ist $M \cap N = M$.
- $M \cap N = M \Rightarrow M \subseteq N$: Jedes Element von M liegt in N, also $M \subseteq N$.