在解题之前,我们需要知道IP地址的类型:

地址类型	特征	网络范围	默认掩码
A类地址	第1个8位中的第一位始终为0	0-127	255.0.0.0
B类地址	第1个8位中的第1、2位始终为10	128-191	255.255.0.0
C类地址	第1个8位中的1、2、3位始终为110	192-223	255.255.255.0

已知: 172.16.30.10/20,请计算出这个IP地址的主机数,子网数,子网位,主机位,子网号,主机号,网络地址,广播地址,主机地址范围各是多少?

IP/掩码位: 172.168.2.0/25(题目要求是C类)

因为题目要求是C类,所以这个IP认定为无类IP,以题目为准。

可用地址(主机数): 126

子网掩码最后一节不为0: 可用地址=256-子网掩码第四位-2(首尾2个IP地址不可用)

例: 255.255.255.128: 可用地址=256-128-2=12子网掩码最后一节为0: 可用地址=[(256-子网

掩码第三位)*256]-2

子网掩码取反: 00000000.00000000.0000000.01111111(0.0.0.127)

IP地址: 172.168.2.0(10101100.10101000.00000010.00000000)

网络位: (子网掩码的1的个数)25位 主机位: (子网掩码的0的个数)7位

子网数: 2^25-2=33554430

主机数: 2^7-2=126

C类默认掩码(24位): 255.255.255.0

(111111111111111111111111111100000000) /25(25位)的新掩码: 255.255.255.128

默认掩码: 11111111.11111111.11111111.00000000 题目掩码: 11111111.11111111111111111111.10000000

所以:

这个颜色代表网络位,这个颜色代表主机位

主机位全为0就是网络地址, 主机位全为1就是广播地址

在两者之间的就是主机地址范围(但网络范围不包括网络地址和广播地址)

起始IP是主机地址范围第一个,结束IP是主机地址范围的最后一个

例如:

172.168.2.0~172.168.2.127中

网络地址: 172.168.2.0 广播地址: 172.168.2.127

网络范围: 172.168.2.1~172.168.2.126起始

IP: 172.168.2.1

结束IP: 172.168.2.126

所以该题最终答案为				
子网1	子网2			
网络地址: 172.168.2.0	网络地址: 172.168.2.128			
广播地址: 172.168.2.127	广播地址: 172.168.2.255			
网络范围: 172.168.2.1~172.168.2.126	网络范围: 172.168.2.129~172.168.2.254			
网络号: 172.168.2	网络号: 172.168.2			

某公司申请到一个IP206.110.4.0/18的地址,请将此IP划分为16个子网。

1、使用的子网掩码是多少?

2、每个子网可容纳主机数是多少?

掩码位就变成了**22**(B:111111111111111111111100.00000000, D:255.255.252.0), 最终的掩码就是**255.255.252.0**

其次要算出每个子网的可容纳的主机数前,先要算出总的可容纳主机数(不是有效的主机数,所以每个主机数算出来不用减2),总的主机数为2的(32-18)次方,其中32代表总的掩码位,18代表申请到的IP地址的掩码位,所以是2的14次方,为16384,然后除以16就是每个子网可容纳的主机数: 1024

要在网络192.168.1.0/24中,划分出2个30台主机的网络,请计算应该使用子网掩码为多少?

所以计算机应该使用的子网掩码是**255.255.255.128**

给定一个C类网络192.168.1.0/24,要在其中划分出3个60台的主机的网络和2个30台主机的网络,请将划分的IP地址段列出来,和采用的子网掩码分别是多少?

先划分3个60台主机的网络,原掩码位24(255.255.255.0),2^N≥3,N=2,找主机位借2位,掩码位改为25(<u>255.255.255.192</u>),主机位还剩6位,所以每个子网的有效IP就是2^{±机位数}-2,即2⁶-2=62,子网划分即:

	网络地址	子网内有效IP	广播地址
子网1	192.168.1.0	192.168.1.1~192.168.1.62	192.168.1.63
子网2	192.168.1.64	192.168.1.65~192.168.1.126	192.168.1.127
子网3	192.168.1.128	192.168.1.129~192.168.1.190	192.168.1.191
子网4	192.168.1.192	192.168.1.193~192.168.1.254	192.168.1.255

然后基于**3个60台主机网络的子网掩码**去划分2个30台主机的网络,即原子网掩码25(<u>25</u>5.255.255.192), $2^{N} \ge 2$,N=1,找主机位借1位,掩码位改成26(255.255.255.224),主机位还剩5位,所以每个子网的有效IP就是 $2^{\pm n/0 \pm N}$ -2,即 2^{5} -2=,子网划分即:

	网络地址	子网内有效IP	广播地址
子网5	192.168.1.192	192.168.1.193~192.168.1.222	192.168.1.223
子网6	192.168.1.224	192.168.1.225~192.168.1.254	192.168.1.255

所以这个题最终的答案就是:

3个60台主机的子网的掩码为255.255.255.192, 他们的IP分别是子网1...、子网2...、子网3... 2个30台主机的子网的掩码为255.255.255.254, 他们的IP分别是子网5...、子网6..