VISUALIZE THE DATASET WITH PYTHON CODE: First we see the dataset of 14 columns using python

Next step is describe the dataset using python

Next step is to learn the shape of object types of our data.

```
1 dataset.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 303 entries, 0 to 302
Data columns (total 14 columns):
              Non-Null Count Dtype
    Column
              303 non-null
                             int64
 0
    age
             303 non-null
 1
    sex
                             int64
 2
              303 non-null
                             int64
    ср
    trestbps 303 non-null
 3
                             int64
4
    chol
              303 non-null
                             int64
 5
    fbs
             303 non-null
                             int64
    restecg 303 non-null
                             int64
 6
 7
    thalach 303 non-null
                             int64
 8
             303 non-null
                             int64
    exang
    oldpeak
             303 non-null
                             float64
9
    slope
             303 non-null
                             int64
10
              303 non-null
                             int64
11
    ca
12
    thal
              303 non-null
                             int64
 13 target
             303 non-null
                             int64
dtypes: float64(1), int64(13)
memory usage: 33.3 KB
```

```
[ ] 1 print(dataset.corr()["target"].abs().sort_values(ascending=False))
    target
              1.000000
            0.436757
    exang
             0.433798
    ср
    oldpeak 0.430696
    thalach
            0.421741
             0.391724
    ca
    slope 0.345877
    thal
            0.344029
    sex
            0.280937
    age 0.225439
    trestbps 0.144931
    restecg 0.137230
    chol
             0.085239
    fbs
             0.028046
    Name: target, dtype: float64
```

```
1 rcParams['figure.figsize'] = 20, 14
 2 plt.matshow(dataset.corr())
 3 plt.yticks(np.arange(dataset.shape[1]), dataset.columns)
 4 plt.xticks(np.arange(dataset.shape[1]), dataset.columns)
 5 plt.colorbar()
<matplotlib.colorbar.Colorbar at 0x7f41b489f190>
         age
               sex
                      cp trestbps chol
                                        fbs restecg thalach exang oldpeak slope
                                                                              ca
                                                                                    thal target
                                                                                                          0.8
    age
    ф
                                                                                                          0.6
 trestbps
    chol
                                                                                                          0.4
```



```
1 print("Percentage of patience without heart problems: "+str(round(target_temp[0]*100/303,2)))
2 print("Percentage of patience with heart problems: "+str(round(target_temp[1]*100/303,2)))
3
4 #Alternatively,
5 #print("Percentage of patience with heart problems: "+str(y.where(y==1).count()*100/303))
6 #print("Percentage of patience with heart problems: "+str(y.where(y==0).count()*100/303))
7
8 # #Or,
9 # countNoDisease = len(df[df.target == 0])
10 # countHaveDisease = len(df[df.target == 1])
Percentage of patience without heart problems: 45.54
Percentage of patience with heart problems: 54.46
```

```
1 dataset["sex"].unique()
2
array([1, 0])
```

```
[ ] 1 dataset["cp"].unique()
array([3, 2, 1, 0])
```



```
1 dataset["fbs"].describe()
        303.000000
count
          0.148515
mean
          0.356198
std
min
          0.000000
25%
          0.000000
50%
          0.000000
75%
          0.000000
          1.000000
max
Name: fbs, dtype: float64
 1 dataset["fbs"].unique()
array([1, 0])
```