Devátá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK)

Zimní semestr 2024

Devátá přednáška

Program

- úvod do rezoluce v predikátové logice
- skolemizace
- grounding, Herbrandova věta

Materiály

Zápisky z přednášky, Sekce 8.1-8.3 z Kapitoly 8

Kapitola 8: Rezoluce v predikátové logice

8.1 Úvod

Rezoluce v predikátové logice

 $T \models \varphi ? \leadsto T \cup \{ \neg \varphi \} \leadsto \mathsf{CNF} \text{ formule } S \leadsto \mathsf{rezolu\check{c}ni'} \mathsf{zamitnuti'}$ $(\mathsf{pozor:} \ \varphi \mathsf{\ musi'} \ \mathsf{b\acute{y}t} \ \mathsf{\underline{sentence!}})$

- literál je atomická formule $R(t_1,\ldots,t_n)$ nebo její negace
- klauzule je konečná množina literálů, formule množina klauzulí
- otevřenou formuli snadno převedeme do CNF, i univerzální kvantifikátor na začátku: $(\forall x)(P(x) \lor \neg Q(x)) \sim \{P(x), \neg Q(x)\}$
- co s existenčními kvantifikátory? nové symboly pro 'svědky' $(\exists x)(P(x) \lor \neg Q(x)) \leadsto \{P(c), \neg Q(c)\}$ "skolemizace"
- není ekvivalentní, ale zachovává [ne]splnitelnost, to nám stačí
- rezoluční krok? literály nemusí být stejné, stačí unifikovatelné z klauzulí $\{P(x), \neg Q(x)\}$ a $\{Q(f(c))\}$ odvodíme $\{P(f(c))\}$
- unifikace je substituce $\{x/f(c)\}$

Příklady

1.
$$T = \{(\forall x)P(x), (\forall x)(P(x) \to Q(x))\}, \ \varphi = (\exists x)Q(x)$$

$$\neg \varphi = \neg(\exists x)Q(x) \sim (\forall x)\neg Q(x) \sim \neg Q(x)$$

 $T \cup \{\neg \varphi\}$ je ekvivalentní $S = \{\{P(x)\}, \{\neg P(x), Q(x)\}, \{\neg Q(x)\}\}$ rezoluční zamítnutí: představte si p místo P(x), q místo Q(x)

2.
$$T = \{(\forall x)(\exists y)R(x,y), R(x,y) \to Q(x)\}, \ \varphi = (\exists x)Q(x)$$
$$T \cup \{\neg \varphi\} \sim \{(\forall x)(\exists y)R(x,y), \neg R(x,y) \lor Q(x), \neg Q(x)\}$$

formuli $(\forall x)(\exists y)R(x,y)$ nahradíme R(x,f(x)), kde f je nový unární funkční symbol (reprezentuje výběr svědka):

$$S = \{\{R(x, f(x))\}, \{\neg R(x, y), Q(x)\}, \{\neg Q(x)\}\}\$$

není ekvivalentní, ale ekvisplnitelná (zde obě nesplnitelné), vidíme po substituci y/f(x), která unifikuje R(x, f(x)) a R(x, y)

Unifikace

$$S = \{\{R(x, f(x))\}, \{\neg R(x, y), Q(x)\}, \{\neg Q(x)\}\}\$$

- na úrovni výrokové logiky (ground level):
 - $\{\{r\}, \{\neg p, q\}, \{\neg q, p\}, \{\neg q\}\}$ není nesplnitelné! musíme využít, že R(x, f(x)) a R(x, y) mají 'podobnou strukturu' (jsou unifikovatelné)
- klauzule $\{\neg R(x,y), Q(x)\}$ platí i po provedení libovolné substituce: $\{\neg R(x/t), Q(x/t)\}$ je důsledek S pro lib. term t
- představme si 'přidání' všech takto získaných klauzulí do S: potom už je na ground level nesplnitelné (ale nekonečné)
- unifikační algoritmus nám dá správnou substituci y/f(x)
- zahrneme už do rezolučního pravidla, tedy rezolventou klauzulí $\{P(c)\}$ a $\{\neg P(x), Q(x)\}$ bude klauzule $\{Q(c)\}$.

Rezoluční pravidlo

- zahrnuje aplikaci unifikace
- Ize vybrat více literálů najednou, ale musí být unifikovatelné:

```
např. z \{R(x, f(x)), R(g(y), z)\}, \{\neg R(g(c), u), P(u)\}
odvodíme rezolventu \{P(f(g(c)))\} za použití unifikace \{x/g(c), y/c, z/f(g(c)), u/f(g(c))\}
```

 budeme vyžadovat disjunktní množiny proměnných v klauzulích; lze přejmenovat, proměnné mají lokální význam:

$$\models (\forall x)(\psi \land \chi) \leftrightarrow (\forall x)\psi \land (\forall x)\chi$$

8.2 Skolemizace

Ekvisplnitelná otevřená teorie

- teorie T v jazyce L a T' v (ne nutně stejném) jazyce L' jsou ekvisplnitelné, pokud platí: T má model ⇔ T' má model
- zajímá nás jen [ne]splnitelnost (dokazujeme sporem)
- pro převod do CNF a rezoluci potřebujeme otevřené formule

Cíl: Ke každé teorii T sestrojíme ekvisplnitelnou, otevřenou T'.

- 1. převod do prenexní normální formy (vytkneme kvantifikátory)
- 2. nahradíme generálními uzávěry (potřebujeme sentence!)
- nahradíme sentence Skolemovými variantami (odstranění ∃)
- 4. odstraníme zbývající ∀, máme otevřené formule

Prenexní normální forma

Formule φ je v prenexní normální formě (PNF), je-li následujícího tvaru, kde $Q_i \in \{\forall, \exists\}$ a formule φ' je otevřená:

$$(Q_1x_1)\dots(Q_nx_n)\varphi'$$

- $(Q_1x_1)\dots(Q_nx_n)$ je kvantifikátorový prefix, φ' otevřené jádro
- univerzální formule: v PNF a všechny kvantifikátory jsou ∀

Tvrzení: Ke každé formuli φ existuje ekvivalentní formule v PNF.

Důkaz: nahrazujeme podformule ekvivalentními s cílem posunout kvantifikátory blíž kořeni $Tree(\varphi)$, dle pravidel z násl. Lemmatu. \Box

Důsledek: Existuje i ekvivalentní PNF sentence (generální uzávěr).

Pravidla vytýkání kvantifikátorů

Lemma: Označme \overline{Q} opačný kvantifikátor ke Q. Jsou-li φ a ψ formule, kde \mathbf{x} není volná v ψ , potom:

$$\neg (Qx)\varphi \sim (\overline{Q}x)\neg \varphi
(Qx)\varphi \wedge \psi \sim (Qx)(\varphi \wedge \psi)
(Qx)\varphi \vee \psi \sim (Qx)(\varphi \vee \psi)
(Qx)\varphi \rightarrow \psi \sim (\overline{Q}x)(\varphi \rightarrow \psi)
\psi \rightarrow (Qx)\varphi \sim (Qx)(\psi \rightarrow \varphi)$$

Důkaz: snadno ověříme sémanticky, nebo tablo metodou (potom ale nejsou-li sentence, musíme nahradit generálními uzávěry)

Pozorování: Nahradíme-li ve φ podformuli ψ ekvivalentní ψ' , je i výsledná formule φ' ekvivalentní φ . (Připomeňme: $\varphi \sim \varphi'$ právě když mají stejné modely, tj. $\models \varphi \leftrightarrow \varphi'$)

Převod do PNF: příklad

$$(\forall z)P(x,z) \wedge P(y,z) \rightarrow \neg(\exists x)P(x,y)$$

$$\sim (\forall u)P(x,u) \wedge P(y,z) \rightarrow (\forall x)\neg P(x,y)$$

$$\sim (\forall u)(P(x,u) \wedge P(y,z)) \rightarrow (\forall v)\neg P(v,y)$$

$$\sim (\exists u)(P(x,u) \wedge P(y,z) \rightarrow (\forall v)\neg P(v,y))$$

$$\sim (\exists u)(\forall v)(P(x,u) \wedge P(y,z) \rightarrow \neg P(v,y))$$

- v prvním kroku přejmenujeme z na u, nesmí být volná v
 P(y, z)
- podobně ve druhém kroku x na v
- která pravidla používáme? sledujte postup na stromu formule
- chceme-li sentenci:

$$(\forall x)(\forall y)(\forall z)(\exists u)(\forall v)(P(x,u) \land P(y,z) \rightarrow \neg P(v,y))$$

Poznámky

1. proč se při vytýkání z antecedentu mění kvantifikátor?

$$(Qx)\varphi \to \psi \sim \neg (Qx)\varphi \lor \psi$$
$$\sim (\overline{Q}x)(\neg \varphi) \lor \psi$$
$$\sim (\overline{Q}x)(\neg \varphi \lor \psi) \sim (\overline{Q}x)(\varphi \to \psi)$$

2. proč nesmí být x volná v ψ ? neplatilo by, např:

$$(\exists x) P(x) \land Q(x) \not\sim (\exists x) (P(x) \land Q(x))$$
 musíme přejmenovat vázanou proměnnou x na novou:
$$(\exists x) P(x) \land Q(x) \sim (\exists y) P(y) \land Q(x) \sim (\exists y) (P(y) \land Q(x))$$

 PNF není jednoznačná, lze vytýkat v různém pořadí; lepší je nejprve vytknout ty, ze kterých se nakonec stanou existenční:

$$(\exists y)(\forall x)\varphi(x,y)$$
 je lepší než $(\forall x)(\exists y)\varphi(x,y)$ (protože " y nezávisí na x ")

Skolemova varianta

Je-li PNF sentence univerzální, tvaru $(\forall x_1) \dots (\forall x_n) \psi(x_1, \dots, x_n)$, nahradíme otevřeným jádrem ψ . Jinak musíme provést skolemizaci:

Buď φ L-sentence v PNF, všechny vázané proměnné různé. Nechť

- existenční kvantifikátory jsou $(\exists y_1), \ldots, (\exists y_n)$ (v tom pořadí)
- pro každé i jsou $(\forall x_1), \ldots, (\forall x_{n_i})$ právě všechny univerzální kvantifikátory předcházející $(\exists y_i)$ v prefixu φ

Buď L' rozšíření L o nové funkční symboly f_1, \ldots, f_n , kde f_i je n_i -ární. Skolemova varianta φ je L'-sentence φ_S vzniklá odstraněním $(\exists y_i)$ a substitucí termu $f_i(x_1, \ldots, x_{n_i})$ za y_i , postupně pro $i = 1, \ldots, n$.

$$\varphi = (\exists y_1)(\forall x_1)(\forall x_2)(\exists y_2)(\forall x_3) \ R(y_1, x_1, x_2, y_2, x_3)$$
$$\varphi_S = (\forall x_1)(\forall x_2)(\forall x_3) \ R(f_1, x_1, x_2, f_2(x_1, x_2), x_3)$$

- musí být sentence! pro $(\exists y)E(x,y)$ ne E(x,c) ale E(x,f(x))
- nové symboly! (jedinou rolí je reprezentovat 'svědky' ve φ)

Je to konzervativní extenze

Lemma: Buď φ *L*-sentence $(\forall x_1) \dots (\forall x_n)(\exists y)\psi$, f nový funkční symbol, a φ' sentence $(\forall x_1) \dots (\forall x_n)\psi(y/f(x_1,\dots,x_n))$. Potom:

- (i) L-redukt každého modelu φ' je modelem φ , a
- (ii) každý model φ lze expandovat na model φ' .

Důkaz: (i) Buď \mathcal{A}' model φ' , \mathcal{A} jeho L-redukt, $e: \mathsf{Var} \to \mathcal{A}$. $\mathcal{A} \models \varphi[e]$ platí neboť $\mathcal{A} \models \psi[e(y/a)]$ pro $a = (f(x_1, \ldots, x_n))^{\mathcal{A}'}[e]$.

- (ii) Protože $\mathcal{A} \models \varphi$, existuje funkce $f^A : A^n \to A$, že pro každé ohodnocení e platí $\mathcal{A} \models \psi[e(y/a)]$ pro $a = f^A(e(x_1), \dots, e(x_n))$. To znamená, že expanze o funkci f^A splňuje φ' .
 - říká, že $\{\varphi'\}$ je konzervativní extenze $\{\varphi\}$, opakovaná aplikace dává Skolemovu větu (výsledek skolemizace je otevřená konzervativní extenze, speciálně je ekvisplnitelná)
 - expanze v (ii) není jednoznačná (na rozdíl od extenze o definici nového funkčního symbolu)

Skolemova věta (shrnutí postupu)

Věta: Každá teorie má otevřenou konzervativní extenzi.

Důkaz Mějme L-teorii T. Axiomy nahradíme generálními uzávěry a převedeme do PNF, máme ekvivalentní L-teorii T'. V ní každý axiom nahradíme jeho Skolemovou variantou.

Tím získáme teorii T'' v rozšířeném jazyce L'. Lemma říká:

- L-redukt každého modelu T'' je model T'
- každý model T' lze expandovat do L' na model T"

Neboli T'' je konzervativní extenzí T', tedy i T. Je axiomatizovaná univerzálními sentencemi, odstraníme kvantifikátorové prefixy (vezmeme jádra) a máme ekvivalentní otevřenou teorii T'''.

Důsledek: Ke každé teorii můžeme pomocí skolemizace najít ekvisplnitelnou otevřenou teorii. (A tu už snadno převedeme do CNF.)

8.3 Grounding

Grounding

- **z**ákladní (ground) instance otevřené φ ve volných proměnných x_1, \ldots, x_n je $\varphi(x_1/t_1, \ldots, x_n/t_n)$, kde vš. t_i jsou konstantní
 - Herbrandova věta říká, že je-li otevřená teorie nesplnitelná, lze to doložit "na konkrétních prvcích": existuje konečně mnoho základních instancí axiomů, jejichž konjunkce je nesplnitelná
- např. pro $T = \{P(x,y) \lor R(x,y), \neg P(c,y), \neg R(x,f(x))\}$ substituujeme konstantní termy $\{x/c, y/f(c)\}$: $(P(c,f(c)) \lor R(c,f(c))) \land \neg P(c,f(c)) \land \neg R(c,f(c))$
- základní atomické sentence chápeme jako prvovýroky:

$$(p_1 \vee p_2) \wedge \neg p_1 \wedge \neg p_2$$

- to už snadno zamítneme výrokovou rezolucí
- p_1 znamená "platí P(c, f(c))", p_2 znamená "platí R(c, f(c))"

Přímá redukce do výrokové logiky

Herbrandova věta + korektnost a úplnost výrokové rezoluce dává následující, neefektivní postup (S' je moc velká, i nekonečná):

- 1. $S \rightsquigarrow S' = \text{množina všech základních instancí klauzulí z } S$
- 2. atomické sentence v S' chápeme jako prvovýroky
- 3. S nesplnitelná $\Leftrightarrow S'$ zamítnutelná 'na úrovni výrokové logiky'

Např. pro
$$S = \{\{P(x,y), R(x,y)\}, \{\neg P(c,y)\}, \{\neg R(x,f(x))\}\}\}$$

 $S' = \{\{P(c,c), R(c,c)\}, \{P(c,f(c)), R(c,f(c))\}, \{P(f(c),c), R(f(c),c)\}, \dots, \{\neg P(c,c)\}, \{\neg P(c,f(c))\}, \{\neg P(c,f(f(c)))\}, \{\neg R(f(c),f(f(c)))\}, \{\neg R(f(c),f(f(c)))\}, \{\neg R(f(f(c)),f(f(c)))\}, \dots\}$

 S^\prime je nesplnitelná obsahuje konečnou nesplnitelnou podmnožinu:

$$\{\{P(c,f(c)),R(c,f(c))\},\{\neg P(c,f(c))\},\{\neg R(c,f(c))\}\} \vdash_{R} \Box$$

Efektivnější je hledat vhodné základní instance unifikací [za chvíli]

Herbrandův model

Mějme jazyk $L=\langle \mathcal{R},\mathcal{F} \rangle$ s alespoň jedním konstantním symbolem. L-struktura $\mathcal{A}=\langle A,\mathcal{R}^{\mathcal{A}},\mathcal{F}^{\mathcal{A}} \rangle$ je Herbrandův model, jestliže:

- A je množina všech konst. L-termů (Herbrandovo univerzum)
- pro každý n-ární $f \in \mathcal{F}$ a (konstantní) " t_1 ", ..., " t_n " $\in A$: $f^{\mathcal{A}}("t_1", \ldots, "t_n") = "f(t_1, \ldots, t_n)"$
- speciálně, pro konstantní symbol $c \in \mathcal{F}$ je $c^{\mathcal{A}} = ``c"$
- na relační symboly neklademe podmínky

Např. $L = \langle P, f, c \rangle$ (P unární rel., f binární funkční, c konstantní) Herbrandův model je každá struktura $\mathcal{A} = \langle A, P^{\mathcal{A}}, f^{\mathcal{A}}, c^{\mathcal{A}} \rangle$, kde

- $A = \{ (c, c), (f(c, c)), (f(c, c)), (f(c, c), c), (f(c$
- $c^{\mathcal{A}} = "c"$
- $f^{\mathcal{A}}("c", "c") = "f(c, c)", f^{\mathcal{A}}("c", "f(c, c)") = "f(c, f(c, c))",$ $f^{\mathcal{A}}("f(c, c)", "c") = "f(f(c, c), c)", \text{ atd.}$
- $P^{\mathcal{A}} \subseteq A$ může být libovolná

Herbrandova věta

Věta (Herbrandova): Je-li *T* otevřená, v jazyce bez rovnosti a s alespoň jedním konstantním symbolem, potom:

- buď má T Herbrandův model, nebo
- existuje konečně mnoho základních instancí axiomů T, jejichž konjunkce je nesplnitelná.

Důkaz: $T_{\rm ground} = {\rm mno}$ žina všech základních instancí axiomů T Zkonstruujeme "systematické tablo" τ z $T_{\rm ground}$ s ${\rm F}\bot$ v kořeni, ale z jazyka L, bez rozšíření o pomocné konstantní symboly na L_C . (Nepotřebujeme je, protože v $T_{\rm ground}$ nejsou kvantifikátory.)

Pokud má τ bezespornou větev, je "kanonický model" (opět bez pomocných symbolů) Herbrandovým modelem T.

Jinak je au důkaz sporu, $T_{\rm ground}$ (a tedy i T) je nesplnitelná. Tablo au je konečné, používá jen konečně mnoho $\alpha_{\rm ground} \in T_{\rm ground}$, jejich konjunkce už je nesplnitelná.

17

Poznámky

- konstatní symbol potřebujeme, aby existovaly vůbec nějaké konstantní termy (ale není-li v L žádný, můžeme ho přidat)
- Herbrandův model je podobný kanonickému, ale nepřidáváme pomocné symboly, a neříkáme nic o relacích
- je-li jazyk s rovností, najdeme Herbrandův model pro T*
 (přidané axiomy rovnosti) a faktorizujeme podle =^A

Důsledky Herbrandovy věty

Důsledek: Je-li T otevřená v jazyce s konstantním symbolem, potom T má model, právě když má model teorie $T_{\rm ground}$.

Důkaz: \rightarrow V modelu T platí i všechny základní instance axiomů. Je tedy i modelem $T_{\rm ground}$.

 \leftarrow Pokud T nemá model, podle Herbrandovy věty je nějaká konečná podmnožina teorie $T_{\rm ground}$ nesplnitelná.

Důsledek: Mějme otevřenou $\varphi(x_1,\ldots,x_n)$ v L s konst. symbolem. Potom existuje $m\in\mathbb{N}$ a konstantní L-termy t_{ij} $(i\in[m],j\in[n])$, že sentence $(\exists x_1)\ldots(\exists x_n)\varphi(x_1,\ldots,x_n)$ je pravdivá, právě když je následující formule (výroková) tautologie:

$$\varphi(x_1/t_{11},\ldots,x_n/t_{1n})\vee\cdots\vee\varphi(x_1/t_{m1},\ldots,x_n/t_{mn})$$

Důkaz: Je pravdivá, právě když $(\forall x_1) \dots (\forall x_n) \neg \varphi$ neboli $\neg \varphi$ je nesplnitelná. Stačí aplikovat Herbrandovu větu na $T = \{ \neg \varphi \}$.