Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа Р3117	Работа выполнена
Студент Васильченко Роман;	Отчет принят
Мориков Иван	К работе допущен
D	

Преподаватель Рудель А. Е.

Рабочий протокол и отчет по лабораторной работе №2

<u>Изучение скольжения тележки по</u> наклонной плоскости

1. Цель работы:

- 1. Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости
- 2. Определение величины ускорения свободного падения д

2. Задачи, решаемые при выполнении работы.

- 1) Понять является ли движение тележки равноускоренным.
- 2) Если движение тележки является равноускоренным, вычислить ускорение со всеми погрешностями.
- 3) Построить график, где в роле углового коэффициента выступает ускорение (Y=aZ).
- 4) Понять поведение ускорения при изменении угла наклона плоскости.
- 5) Сформулировать и записать в отчет вывод о достоверности результатов измерений

3. Объект исследования.

Тележка на направляющем рельсе.

4. Метод экспериментального исследования.

Лабораторный метод исследования, будут использоваться измерительные приборы.

5. Рабочие формулы и исходные данные.

$$v_x\left(t\right) = v_{0x} + a_x t$$

$$x(t) = x_0 + v_{0x}t + \frac{a_x t^2}{2}.$$

$$x_2 - x_1 = \frac{a}{2} \left(t_2^2 - t_1^2 \right).$$

$$m ec{a} = m ec{g} + ec{N} + ec{F}_{ ext{Tp}}$$

$$\begin{cases} 0y : 0 = N - mg\cos\alpha \\ 0x : ma = mg\sin\alpha - \mu mg\cos\alpha \end{cases}$$

$$0x: ma = mg\sin\alpha - \mu mg\cos\alpha$$

$a = g \sin \alpha - \mu g \cos \alpha$

$$a = g\left(\sin\alpha - \mu\right).$$

$$Y = x_2 - x_1$$
 $Z = \frac{t_2^2 - t_1^2}{2}$

$$a = \frac{\sum_{i=1}^{N} Z_i Y_i}{\sum_{i=1}^{N} Z_i^2}; \quad \sigma_a = \sqrt{\frac{\sum_{i=1}^{N} (Y_i - aZ_i)^2}{(N-1)\sum_{i=1}^{N} Z_i^2}},$$

$$\Delta_a = 2\sigma_a, \qquad \varepsilon_a = \frac{\Delta a}{a} \cdot 100\%.$$

$$\sin \alpha = \frac{(h_0 - h) - (h'_0 - h')}{x' - x}$$

$$\langle a \rangle = \frac{2(x_2 - x_1)}{\langle t_2 \rangle^2 - \langle t_1 \rangle^2}$$

$$\Delta a = \langle a \rangle \cdot \sqrt{\frac{(\Delta x_{\text{N}2})^2 + (\Delta x_{\text{N}1})^2}{(x_2 - x_1)^2} + 4 \cdot \frac{(\langle t_1 \rangle \Delta t_1)^2 + (\langle t_2 \rangle \Delta t_2)^2}{(\langle t_2 \rangle^2 - \langle t_1 \rangle^2)^2}}$$
(13)

$$B \equiv g = \frac{\sum_{i=1}^{N} a_i \sin \alpha_i - \frac{1}{N} \sum_{i=1}^{N} a_i \sum_{i=1}^{N} \sin \alpha_i}{\sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_i\right)^2};$$

$$A = \frac{1}{N} \left(\sum_{i=1}^{N} a_i - B \sum_{i=1}^{N} \sin \alpha_i \right).$$

$$\sigma_g = \sqrt{\frac{\sum\limits_{i=1}^{N} d_i^2}{D(N-2)}}.$$

$$d_i = a_i - (A + B\sin\alpha_i),$$

$$D = \sum_{i=1}^{N} \sin \alpha_i^2 - \frac{1}{N} \left(\sum_{i=1}^{N} \sin \alpha_i \right)^2.$$

$$\Delta g = 2\sigma_g, \qquad \varepsilon_g = \frac{\Delta g}{g} \cdot 100\%.$$

6. Измерительные приборы.

Таблица 1: Измерительные приборы

Наименование	Предел измерений	Цена деления	Класс точности	Δи
Линейка на рельсе	1,3 м	1 см / дел	-	5 мм
Линейка на угольнике	250 мм	1 мм / дел	-	0,5 мм
ПКЦ-3 в режиме секундомера	100 c	0,1 c	-	0,1 c

7. Схема установки (перечень схем, которые составляют Приложение 1).

РИС. 2. Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 2	2		
Х, М	х',м	h0, м	h'0, м
0.22	1.00	0.206	0.206

Таблица 3	Задание №1		Y	Z	Рассчети	ы при N =	5		
	Измеренные величины		Расчита	анные величины	Y = aZ				
20			+1 -			$\frac{t_{\{2\}}^2-t_{\{1\}}^2}{2}$, c^2		0.12716	
№	х1, м	х2, м	t1, c	t2, c	х2 - х1, м	2	a =	0.12716	
1	0.15	0.40	1.2	2.3	0.25	1.925	Øa =	0.00186	
2	0.15	0.50	1.2	2.6	0.35	2.660	∆a =	0.00373	
3	0.15	0.70	1.2	3.2	0.55	4.400	εa =	2.93248	
4	0.15	0.90	1.2	3.7	0.75	6.125			
5	0.15	1.10	1.2	4.0	0.95	7.280			

Таблица 4	Задание 3	№ 2			
ΝПЛ	h, м	h', м	№	t1, c	t2, c
			1	1.3	4.1
			2	1.3	4.1
	0.216	0.207	3	1.3	4.1
			4	1.2	4.0
1			5	1.2	4.0
			1	0.9	2.9
			2	0.9	3.0
	0.226	0.208	3	0.9	2.9
			4	0.9	3.0
2			5	1.0	3.0
			1	0.8	2.5
			2	0.7	2.4
	0.236	0.209	3	0.7	2.4
			4	0.7	2.5
3			5	0.7	2.4
			1	0.7	2.2
			2	0.7	2.2
	0.244	0.209	3	0.6	2.1
			4	0.6	2.1
4			5	0.6	2.1
			1	0.6	2.0
			2	0.6	2.0
	0.252	0.210	3	0.6	1.9
			4	0.6	1.9
5			5	0.6	1.9
NПЛ - количество пластин					

h - высота о координате x = 0,22 м h' - высота на координате x' = 1,00 м

h , м	h', м	№	(t1), c	(t2), c	sin(a)	(a)	∆a
0.216	0.207	1	1.26	4.06	0.012	0.105	0.001
0.226	0.208	2	0.92	2.96	0.023	0.197	0.002
0.236	0.209	3	0.72	2.44	0.035	0.287	0.004
0.244	0.209	4	0.64	2.14	0.045	0.374	0.005
0.252	0.210	5	0.60	1.94	0.054	0.458	0.007

Таблица 5				
Nпл	sin()	$\langle t1 \rangle \pm \Delta t1$, c	$\langle t2 \rangle \pm \Delta t2$, c	$\langle a \rangle \pm \Delta a$, M/c^2
1	0.012	1.26 ± 0.01	4.06 ± 0.01	0.105 ± 0.001
2	0.023	0.92 ± 0.01	2.96 ± 0.01	0.197 ± 0.002
3	0.035	0.72 ± 0.01	2.44 ± 0.01	0.287 ± 0.004
4	0.045	0.64 ± 0.01	2.14 ± 0.01	0.374 ± 0.005
5	0.054	0.60 ± 0.01	1.94 ± 0.01	0.458 ± 0.007

ИПЛ - количество пластин

B = g =	9.6717
A =	-0.04565
D =	0.00114
Og =	0.89738
∆g =	0.66154
Eg =	6.84%

9. Окончательные результаты.

- 1) Графики зависимостей: Y=Y(Z) (Задание 1);
- 2) $a = a(\sin a)$ (Задание 2)

3)
$$g = 9.67 \pm 0.66 \text{ M/}c^2$$

3)
$$g_{\text{откл}} = 0.14 \text{ м}/c^2$$

10. Выводы и анализ результатов работы.

На основе первого задания мы можем утверждать, что движение тележки было равноускоренным основываясь на маленьких отклонениях от функции Y(Z) = aZ. Во втором задании экспериментальным путем было выведено значение ускорение свободного падения 9.67, которое отличается от значения в Санкт-Петербурге на 0.14 M/c^2 из-за погрешности измерительных приборов и личных погрешностей. При увеличении угла наклона ускорение тележки увеличивается прямо пропорционально.

11. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Мы тупые, но третью лабораторную работу мы обещаем сделать нормально «честно»