Econometría Aplicada Intermedia Semana 1

Edinson Tolentino
MSc Economics
email: edinsontolentinor@pacifico.com.pe

Twitter: @edutoleraymondi

7 de agosto de 2022

Contenido

Introduccion

Análisis Exploratorio

Modelo de Regresión Lineal Bivariado

Modelo de Regresión Multivariada Relación no lineal: Método Delta Test de Heterocedasticidad Hipotesis de Test usando HCVC

Introducción

- Deseamos responder una prenguta general: ¿Cuánto puedo recibir de ingresos dado mas años de educación?
- Para ello debemos tratar de responder las siguientes preguntas:
 - Donde conseguir la información: ENAHO
 Se presenta como trabajar bases de datos de ENAHO
 - ¿Relación de los ingresos y años de educacion ?: positiva o negativa
 Se analizará variables como años de educacion y los ingresos laborales

Análisis Exploratorio

La fuente de datos proviene de la ENAHO , se trabaja con los modulos 300 y 500. Ademas se toma en cuenta los siguientes puntos:

- Solo se toma en cuenta a los jefes de hogares
- ▶ PEA Ocupada
- ▶ Observaciones superiores al 5 % de distribución de los ingresos.
- No missing values en la variable años educación

La presente sección busca poder tener un análisis exploratorio de las variables como **r6** (ingresos laborales) y **reduca** años de educación en la base de datos del 2021 para responder nuestra pregunta.

- ▶ Son los ingresos laborales diferentes a nivel del percentil 5 y el precentil 75
- Son los años de educación de un trabajador diferentes a nivel del percentil 5 y el precentil 75

Análisis Exploratorio

La proporción de mujeres y honbres que perciben ingresos de 1,000 soles es diferentes

La distribución de los ingresos es heterogenea

Ecuación de la Recta

- Regresion Lineal supone que el promedio de la variable producto y sobre muchas observaciones tiene una relación directa con el **insumo** de variables x₁,····, x_p
- Recordando la informacion de la ecuación de una linea recta de la formación del colegio:

$$y = mx + c$$

Donde m es la pendiente de linea y c es el intercepto y

Regresión Lineal Simple

- ▶ **Regresion lineal simple** refiere el caso donde existe solo una variable de insumo y solo una variable de producto. Existe una tecnica facil de visualizar. Dado el conjunto de data, se puede plotear los valores de *y* y x, ademas se puede encontrar la **mejor linea de predicción**.
- Linea de regresion estimada:

$$\hat{y} = \hat{\alpha} + \hat{\beta}x$$

- Donde los estimadores son:
 - Pendiente

$$\hat{\beta} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

Intercepto

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$$

Regresión Lineal Simple: aplicación I

- Luego del análisis exploratorio, se procede a poder observar regresiones lineales bivariadas siguiendo la metodología de Mincer
- Los retornos a la educación, siguiendo la propuesta de Mincer
- ► Se proponde la siguiente ecuación:

$$r6 = \hat{\alpha} + \hat{\beta} reduca + \varepsilon$$

Donde: r6 denota los ingresos laborales, reduca los años de educación de la trabajador(a).

Cuadro: Ingresos - Dep. Var

	(1)				
reduca	145.45***				
	(1.98)				
Constant	106.24***				
Constant	(19.97)				
	(13.31)				
Observaciones	26737				
Adj. R ²	0.168				
Errores estandar en paren-					
tesis ()					
Fuente: INEI	- 2020.				

cion: Autor

Regresión Lineal Simple: medidas de ajustes

- Bondad de ajuste: una primera garantía sobre la calidad de la regresión proviene de verificar si nuestra línea de regresión, basada en los coeficientes estimados, se ajusta bien a los datos.
- Para chequear esto se usa el R², este debe estar entre 0 (no predicción) y 1 (perfecta predicción)
- Entonces:

$$R^2 = \frac{ESS}{TSS}$$

 ESS: sumatoria de las desviaciones al cuadrado de la predicción del promedio

$$ESS = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

► TSS: sumatoria de las desviaciones al cuadrado DE Y_i del promedio

$$TSS = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

Regresión Lineal Simple: significancia

Regresión Lineal Simple: significancia

▶ El estimador de OLS (MCO) , $\hat{\beta}_0$ y $\hat{\beta}_1$ son calculados de una muestra aletoria , ellos son asimismo variables altorias. Dado que tenemos diferentes muestras , tendremos diferentes $\hat{\beta}_0$ y $\hat{\beta}_1$ todo el tiempo.

Regresión Lineal Simple: significancia

- ▶ El estimador de OLS (MCO) , $\hat{\beta}_0$ y $\hat{\beta}_1$ son calculados de una muestra aletoria , ellos son asimismo variables altorias. Dado que tenemos diferentes muestras , tendremos diferentes $\hat{\beta}_0$ y $\hat{\beta}_1$ todo el tiempo.
- \blacktriangleright Necesidad de realizar una inferencia , dado que no conocemos el verdadero valor de $~\beta_0$ y β_1

Regresión Lineal Simple: significancia

- ▶ El estimador de OLS (MCO) , $\hat{\beta}_0$ y $\hat{\beta}_1$ son calculados de una muestra aletoria , ellos son asimismo variables altorias. Dado que tenemos diferentes muestras , tendremos diferentes $\hat{\beta}_0$ y $\hat{\beta}_1$ todo el tiempo.
- \blacktriangleright Necesidad de realizar una inferencia , dado que no conocemos el verdadero valor de $~\beta_0$ y β_1
- Se utiliza la prueba t (dado que no se conoce la población)

$$t = \frac{\hat{\beta} - \beta}{SE(\hat{\beta})}$$

Regresión Lineal Simple: significancia

- ▶ El estimador de OLS (MCO) , $\hat{\beta}_0$ y $\hat{\beta}_1$ son calculados de una muestra aletoria , ellos son asimismo variables altorias. Dado que tenemos diferentes muestras , tendremos diferentes $\hat{\beta}_0$ y $\hat{\beta}_1$ todo el tiempo.
- \blacktriangleright Necesidad de realizar una inferencia , dado que no conocemos el verdadero valor de $~\beta_0$ y β_1
- Se utiliza la prueba t (dado que no se conoce la población)

$$t = \frac{\hat{\beta} - \beta}{\mathsf{SE}(\hat{\beta})}$$

ightharpoonup El error estandar o desviación estandar del estimador : $SE(\hat{eta})$

Regresión Lineal Simple: significancia

- ▶ El estimador de OLS (MCO) , $\hat{\beta}_0$ y $\hat{\beta}_1$ son calculados de una muestra aletoria , ellos son asimismo variables altorias. Dado que tenemos diferentes muestras , tendremos diferentes $\hat{\beta}_0$ y $\hat{\beta}_1$ todo el tiempo.
- \blacktriangleright Necesidad de realizar una inferencia , dado que no conocemos el verdadero valor de $~\beta_0$ y β_1
- Se utiliza la prueba t (dado que no se conoce la población)

$$t = \frac{\hat{\beta} - \beta}{\mathsf{SE}(\hat{\beta})}$$

- ▶ El error estandar o desviación estandar del estimador : $SE(\hat{\beta})$
- Para evaluar la significancia (se usara STATA a través de una prueba bilateral t-test) con la siguientes hipotesis nula:

$$H_o: \beta = 0$$

Regresión Lineal Simple: significancia

- ▶ El estimador de OLS (MCO) , $\hat{\beta}_0$ y $\hat{\beta}_1$ son calculados de una muestra aletoria , ellos son asimismo variables altorias. Dado que tenemos diferentes muestras , tendremos diferentes $\hat{\beta}_0$ y $\hat{\beta}_1$ todo el tiempo.
- \blacktriangleright Necesidad de realizar una inferencia , dado que no conocemos el verdadero valor de $~\beta_0$ y β_1
- Se utiliza la prueba t (dado que no se conoce la población)

$$t = \frac{\hat{\beta} - \beta}{\mathsf{SE}(\hat{\beta})}$$

- **E**l error estandar o desviación estandar del estimador : $SE(\hat{\beta})$
- Para evaluar la significancia (se usara STATA a través de una prueba bilateral t-test) con la siguientes hipotesis nula:

$$H_o: \beta = 0$$

▶ 99 %, 95 %, 90 % niveles de confianza

Regresión Lineal Simple: significancia

- ▶ El estimador de OLS (MCO) , $\hat{\beta}_0$ y $\hat{\beta}_1$ son calculados de una muestra aletoria , ellos son asimismo variables altorias. Dado que tenemos diferentes muestras , tendremos diferentes $\hat{\beta}_0$ y $\hat{\beta}_1$ todo el tiempo.
- \blacktriangleright Necesidad de realizar una inferencia , dado que no conocemos el verdadero valor de $~\beta_0$ y β_1
- ▶ Se utiliza la prueba t (dado que no se conoce la población)

$$t = \frac{\hat{\beta} - \beta}{SE(\hat{\beta})}$$

- ▶ El error estandar o desviación estandar del estimador : $SE(\hat{\beta})$
- Para evaluar la significancia (se usara STATA a través de una prueba bilateral t-test) con la siguientes hipotesis nula:

$$H_o: \beta = 0$$

- ▶ 99 %, 95 %, 90 % niveles de confianza
- ▶ **P-value** en los documentos ***, **, *, donde 0.01,0.05, 0.1

Regresión Lineal Simple: aplicación II

Stata implementa el modelo de regresión se implementa mediante los comandos reg cuya sintaxis es:

Syntax

reg depvar [indepvars] [if] [in] [weight], [options]

eststo: reg r6 reduca

Source	SS	df	MS	Number of obs	=	26,737
				F(1, 26735)	=	5399.91
Model	1.3054e+10	1	1.3054e+10	Prob > F	=	0.0000
Residual	6.4632e+10	26,735	2417521.97	R-squared	=	0.1680
				Adj R-squared	=	0.1680
Total	7.7687e+10	26,736	2905702.05	Root MSE	=	1554.8

r6	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
reduca _cons		1.979339 19.97219			141.5703 67.0924	149.3295 145.3855

Regresión Lineal Simple: formas funcionales

La regresión anterior puede ser estimada de forma diferente:

$$r6 = \hat{\alpha} + \hat{\beta}reduca + \varepsilon$$

$$r6 = \hat{\alpha} + \hat{\beta}ln(reduca) + \varepsilon$$

$$ln(r6) = \hat{\alpha} + \hat{\beta}reduca + \varepsilon$$

$$ln(r6) = \hat{\alpha} + \hat{\beta}ln(reduca) + \varepsilon$$

▶ Donde las interpretaciones alrededor de la pendiente cambian $\hat{\beta}$:

	Dependent	Independent	Interpretation
Model	Variable	Variable	of eta
Level-level	у	Х	$dy = \beta dx$
Level-log	у	log(x)	$dy = (\beta/100)\% dx$
Log-level	log(y)	Χ	$%dy = (100\beta)dx$
Log-log	log(y)	log(x)	$%dy = \beta %dx$

Regresión Lineal Simple: aplicacion III

Modelo	Interpretación de coeficientes
Semielasticidad	un cambio porcenctual en <i>y</i>
	dado el incremento de una unidad de x (100. eta)
Elasticidad	un cambio porcenctual en <i>y</i>
	dado el incremento porcentual de una unidad de x (β)

Cuadro: Ingresos - Dep. Var

	(r6)	In(r6)	(r6)	In(r6)
reduca	145.45***	0.10***		
	(1.98)	(0.00)		
Inreduca			858.18***	0.59***
			(15.68)	(0.01)
Constant	106.24***	5.90***	-337.30***	5.61***
	(19.97)	(0.01)	(34.14)	(0.02)
Observaciones	26737	26737	25238	25238
Adj. R ²	0.168	0.242	0.106	0.164

Errores estandar en parentesis ()

Fuente: INEI - 2020. Elaboracion: Autor

Regresión Lineal Simple: aplicacion IV

Nerrier - epanecininos, dandinacir - 54.504

Definitivamente los errores del modelo bivariado no son normales

Regresión Lineal Simple: conclusiones

- ► Analizar la inclusión de mas de una variable independiente (Xs)
- Revisión de la presencia de heterocedasticidad a través de pruebas robustas
 - Deteccion de pruebas de errores i.i.d
 - Ajuste del modelo a través de los errores robustos de White (comando robust)
- Siempre poder comprender la inclusión de contexto de literatura y marco teorico en las estimaciones

Regresión lineal Multivariada

Regresión lineal Multivariada

La ecuación general de los salarios puede ser formulada como sigue:

$$ln\left(w_{i}\right)=\alpha+\gamma_{1}\textit{Educ}_{i}+\gamma_{2}\textit{Exp}_{i}+\gamma_{3}\textit{Exp}_{i}^{2}+\pi\textit{Male}_{i}+\textit{X}_{i}'\beta+\mu_{i} \tag{1}$$

Regresión lineal Multivariada

La ecuación general de los salarios puede ser formulada como sigue:

$$ln(w_i) = \alpha + \gamma_1 E duc_i + \gamma_2 E x p_i + \gamma_3 E x p_i^2 + \pi Male_i + X_i' \beta + \mu_i$$
 (1)

- ▶ Donde: $\mu_i \sim N(0, \sigma^2)$
- ▶ $ln(w_i)$: logaritmo de ingresos laborales
- Educi: años de educación
- ► Exp_i: experiencia laboral en años
- $ightharpoonup Male_i$: variable dummy ==1, si la persona es hombre

Regresión lineal Multivariada

La ecuación general de los salarios puede ser formulada como sigue:

$$ln(w_i) = \alpha + \gamma_1 E duc_i + \gamma_2 E x p_i + \gamma_3 E x p_i^2 + \pi Male_i + X_i' \beta + \mu_i$$
 (1)

- ▶ Donde: $\mu_i \sim N(0, \sigma^2)$
- ► In (w_i): logaritmo de ingresos laborales
- Educi: años de educación
- ► Exp_i: experiencia laboral en años
- $ightharpoonup Male_i$: variable dummy ==1, si la persona es hombre
- Analizaremos los efectos marginales de la variable Exp (por ejemplo, experiencia de la fuerza laboral) sobre los ingresos laborales.

Modelo de Regresión Multivariada

☐ Relación no lineal: Método Delta

Regresión lineal Multivariada: Método Delta

▶ El efecto marginal para Exp esta dado por:

$$\frac{\partial \textit{ln}(w)}{\partial \textit{exp}} = \hat{\gamma}_2 + 2\hat{\gamma}_3 \textit{Exp}$$

▶ El efecto marginal para Exp esta dado por:

$$\frac{\partial In(w)}{\partial exp} = \hat{\gamma}_2 + 2\hat{\gamma}_3 Exp$$

 En orden de encontrar el punto de inflexión, la derivada de la ecuación mostrada lineas arriba debe ser igualada a cero, la cual resolvera el estado estacionario

▶ El efecto marginal para Exp esta dado por:

$$\frac{\partial In(w)}{\partial exp} = \hat{\gamma}_2 + 2\hat{\gamma}_3 Exp$$

 En orden de encontrar el punto de inflexión, la derivada de la ecuación mostrada lineas arriba debe ser igualada a cero, la cual resolvera el estado estacionario

$$Exp_{estacionario} = rac{\hat{\gamma}_2}{2\hat{\gamma}_3}$$

▶ El efecto marginal para Exp esta dado por:

$$\frac{\partial In(w)}{\partial exp} = \hat{\gamma}_2 + 2\hat{\gamma}_3 Exp$$

 En orden de encontrar el punto de inflexión, la derivada de la ecuación mostrada lineas arriba debe ser igualada a cero, la cual resolvera el estado estacionario

$$\textit{Exp}_{\textit{estacionario}} = \frac{\hat{\gamma}_2}{2\hat{\gamma}_3}$$

$$\hat{\triangle} = -rac{\hat{\gamma}_2}{2\hat{\gamma}_3}$$

Regresión lineal Multivariada: Método Delta

▶ El efecto marginal para Exp esta dado por:

$$\frac{\partial In(w)}{\partial exp} = \hat{\gamma}_2 + 2\hat{\gamma}_3 Exp$$

 En orden de encontrar el punto de inflexión, la derivada de la ecuación mostrada lineas arriba debe ser igualada a cero, la cual resolvera el estado estacionario

$$\textit{Exp}_{\textit{estacionario}} = \frac{\hat{\gamma}_2}{2\hat{\gamma}_3}$$

$$\hat{\triangle} = -\frac{\hat{\gamma}_2}{2\hat{\gamma}_3}$$

 Nota: esta última expresión es una función no lineal de los dos estimadores de OLS

Regresión lineal Multivariada: Método Delta

- Método utilizado para poder analizar parámetros no-lineales, donde se cálcula varianzas no lineal.
- Supuesto, nosotros deseamos testear la proporción que el punto de cambio en el logaritmo de salario y experiencia es 20 años
- Esto es formalmente expresado a través de la hipótesis:

$$H_o: \triangle = 20 \text{ vs } H_a: \triangle \neq 20$$

La varianza muestral para el estimado es derivado usando el método delta y esta dado por:

$$Var\left(\hat{\triangle}\right) = \left(\frac{\partial \hat{\triangle}}{\partial \hat{\gamma}_{2}}\right)^{2} Var\left(\hat{\gamma}_{2}\right) + \left(\frac{\partial \hat{\triangle}}{\partial \hat{\gamma}_{3}}\right)^{2} Var\left(\hat{\gamma}_{3}\right) \cdots$$

$$= \cdots + 2 \left(\frac{\partial \hat{\triangle}}{\partial \hat{\gamma}_{2}}\right) \left(\frac{\partial \hat{\triangle}}{\partial \hat{\gamma}_{3}}\right) Cov\left(\hat{\gamma}_{2}, \hat{\gamma}_{3}\right)$$

 Esta expresión provee una aproximación asintótica de la varianza muestral para el punto en estimación

Test de Heterocedasticidad

Test de Heterocedasticidad

- La prueba de White Koenker es util para poder detectar la presencia de heterocedasticidad
 - 1. El test parte de estimar los residuos de MCO (OLS) de la regresión original
 - 2. Luego de obtener el residuo podemos elevar al cuadrado (definido como: $\hat{\epsilon}_i$)
 - 3. Se realiza un regresión auxiliar que se especifica con los rergesores de la ecuación original:

$$\hat{\varepsilon}_i = \phi + \delta_1 E duc_i + \delta_2 Exp + \delta_3 Exp_i^2 + \delta_4 Male_i + \kappa' X_i + \xi_i$$
 (2)

lacktriangle Por ultimo, se calcula , $n imes R^2 \sim \chi^2_{k-1}$

Test de Heterocedasticidad

- La prueba de White Koenker es util para poder detectar la presencia de heterocedasticidad
 - 1. El test parte de estimar los residuos de MCO (OLS) de la regresión original
 - 2. Luego de obtener el residuo podemos elevar al cuadrado (definido como: $\hat{\epsilon}_i$)
 - Se realiza un regresión auxiliar que se especifica con los rergesores de la ecuación original:

$$\hat{\varepsilon}_i = \phi + \delta_1 E duc_i + \delta_2 E x p + \delta_3 E x p_i^2 + \delta_4 M a le_i + \kappa' X_i + \xi_i$$
 (2)

- ▶ Por ultimo, se calcula , $n \times R^2 \sim \chi^2_{k-1}$
- Esta última expresión es el Multiplicador de lagrange (LM) para heterocedasticidad

Test de Heterocedasticidad

- La prueba de White Koenker es util para poder detectar la presencia de heterocedasticidad
 - 1. El test parte de estimar los residuos de MCO (OLS) de la regresión original
 - 2. Luego de obtener el residuo podemos elevar al cuadrado (definido como: $\hat{\epsilon}_i$)
 - Se realiza un regresión auxiliar que se especifica con los rergesores de la ecuación original:

$$\hat{\varepsilon}_{i} = \phi + \delta_{1} E du c_{i} + \delta_{2} E x p + \delta_{3} E x p_{i}^{2} + \delta_{4} M a l e_{i} + \kappa' X_{i} + \xi_{i}$$
 (2)

- ▶ Por ultimo, se calcula , $n \times R^2 \sim \chi^2_{k-1}$
- Esta última expresión es el Multiplicador de lagrange (LM) para heterocedasticidad
- Nota: El test de LM asume que los errores del logaritmo de salarios son i.i.d y no distribuido normalmente

Test para Heterocedasticidad

La expresión convencional para la matrix de varianza y covarianza de OLS esta dado por:

$$var\left(\hat{\beta}\right) = \sigma^2 \left(X'X\right)^{-1} \tag{3}$$

Test para Heterocedasticidad

La expresión convencional para la matrix de varianza y covarianza de OLS esta dado por:

$$var\left(\hat{\beta}\right) = \sigma^2 \left(X'X\right)^{-1} \tag{3}$$

Sin embargo, ante la presencia de heterocedasticidad, se tiene:

$$var\left(\hat{\beta}\right) = \left(X'X\right)^{-1}X'E\left(uu'\right)\left(X'X\right)^{-1} \tag{4}$$

Test para Heterocedasticidad

La expresión convencional para la matrix de varianza y covarianza de OLS esta dado por:

$$var\left(\hat{\beta}\right) = \sigma^2 \left(X'X\right)^{-1} \tag{3}$$

▶ Sin embargo, ante la presencia de heterocedasticidad, se tiene:

$$var\left(\hat{\beta}\right) = \left(X'X\right)^{-1} X' E\left(uu'\right) \left(X'X\right)^{-1} \tag{4}$$

▶ Donde, $E(uu') = \Omega$, y Ω es una matriz diagonal de orden $n \times n$

Test para Heterocedasticidad

La expresión convencional para la matrix de varianza y covarianza de OLS esta dado por:

$$var\left(\hat{\beta}\right) = \sigma^2 \left(X'X\right)^{-1} \tag{3}$$

▶ Sin embargo, ante la presencia de heterocedasticidad, se tiene:

$$var\left(\hat{\beta}\right) = \left(X'X\right)^{-1} X' E\left(uu'\right) \left(X'X\right)^{-1} \tag{4}$$

- ▶ Donde, $E(uu') = \Omega$, y Ω es una matriz diagonal de orden $n \times n$
- La expresión puede ser re-expresada como:

$$var\left(\hat{\beta}\right) = \left(X'X\right)^{-1} X'\Omega \left(X'X\right)^{-1} \tag{5}$$

▶ En el caso de 5 x 5 (por ejemplo, donde solo existe 5 observaciones) , la matriz Ω puede ser expresada como:

Test para Heterocedasticidad

 \blacktriangleright En el caso de 5 x 5 (por ejemplo, donde solo existe 5 observaciones) , la matriz Ω puede ser expresada como:

$$\Omega = \begin{bmatrix} \sigma_1^2 & 0 & 0 & 0 & 0 \\ 0 & \sigma_2^2 & 0 & 0 & 0 \\ 0 & 0 & \sigma_3^2 & 0 & 0 \\ 0 & 0 & 0 & \sigma_4^2 & 0 \\ 0 & 0 & 0 & 0 & \sigma_5^2 \end{bmatrix}$$

Test para Heterocedasticidad

 \blacktriangleright En el caso de 5 x 5 (por ejemplo, donde solo existe 5 observaciones) , la matriz Ω puede ser expresada como:

$$\Omega = \begin{bmatrix} \sigma_1^2 & 0 & 0 & 0 & 0 \\ 0 & \sigma_2^2 & 0 & 0 & 0 \\ 0 & 0 & \sigma_3^2 & 0 & 0 \\ 0 & 0 & 0 & \sigma_4^2 & 0 \\ 0 & 0 & 0 & 0 & \sigma_5^2 \end{bmatrix}$$

lacktriangle el termino σ^2 determinado en la diagonal son desconocidos

Test para Heterocedasticidad

ightharpoonup En el caso de 5 x 5 (por ejemplo, donde solo existe 5 observaciones) , la matriz Ω puede ser expresada como:

$$\Omega = \begin{bmatrix} \sigma_1^2 & 0 & 0 & 0 & 0 \\ 0 & \sigma_2^2 & 0 & 0 & 0 \\ 0 & 0 & \sigma_3^2 & 0 & 0 \\ 0 & 0 & 0 & \sigma_4^2 & 0 \\ 0 & 0 & 0 & 0 & \sigma_5^2 \end{bmatrix}$$

- ightharpoonup el termino σ^2 determinado en la diagonal son desconocidos
- Por tanto, como se puede estimar los elementos en la diagonal principal en la matriz Ω?

▶ Eicker-White-Huber (EWH) sugieren reemplazar los elementos de la diagonal por los residuos al cuadrado de la regresión de OLS.

- Eicker-White-Huber (EWH) sugieren reemplazar los elementos de la diagonal por los residuos al cuadrado de la regresión de OLS.
- Los residuos al cuadrado (pro ejemplo, sq_{residuali}) actual como proxy empiricas para la varianza del error, el cual es asumida que tiene variación a través de las n observaciones dado la heterocedasticidad.

- ► Eicker-White-Huber (EWH) sugieren reemplazar los elementos de la diagonal por los residuos al cuadrado de la regresión de OLS.
- Los residuos al cuadrado (pro ejemplo, sq_{residuali}) actual como proxy empiricas para la varianza del error, el cual es asumida que tiene variación a través de las n observaciones dado la heterocedasticidad.
- La matriz Ω podria ser escrita empiricamente como:

$$\hat{\Omega} = \begin{bmatrix} sq_{residual_1} & 0 & 0 & 0 & 0 \\ 0 & sq_{residual_2} & 0 & 0 & 0 \\ 0 & 0 & sq_{residual_3} & 0 & 0 \\ 0 & 0 & 0 & sq_{residual_4} & 0 \\ 0 & 0 & 0 & 0 & sq_{residual_5} \end{bmatrix}$$

La expresión de la formula puede ser re-escrita como:

Test para Heterocedasticidad

La expresión de la formula puede ser re-escrita como:

$$var\left(\hat{\beta}\right) = \left(X'X\right)^{-1} X' \hat{\Omega} \left(X'X\right)^{-1} \tag{6}$$

Test para Heterocedasticidad

La expresión de la formula puede ser re-escrita como:

$$var\left(\hat{\beta}\right) = \left(X'X\right)^{-1} X' \hat{\Omega} \left(X'X\right)^{-1} \tag{6}$$

 Esta expresión puede ahora ser estimada usando los residuos al cuadrado de la forma original de la regresión propuesta.

Test para Heterocedasticidad

La expresión de la formula puede ser re-escrita como:

$$var\left(\hat{\beta}\right) = \left(X'X\right)^{-1} X' \hat{\Omega} \left(X'X\right)^{-1} \tag{6}$$

- Esta expresión puede ahora ser estimada usando los residuos al cuadrado de la forma original de la regresión propuesta.
- Por tanto, nosotros conocemos tener una matriz estimable de matriz de varianzas-covarianzas.

 Esta matriz de varianza-covarianza proporciona un estimador consistente de la matriz independientemente de la estructura de heterocedasticidad.

- Esta matriz de varianza-covarianza proporciona un estimador consistente de la matriz independientemente de la estructura de heterocedasticidad.
- ► A veces se la denomina la matriz de varianza-covarianza consistente con heterocedasdicidad (HCVC, heteroscedasdicity-consistent variance-covariance, siglas en ingles).

- Esta matriz de varianza-covarianza proporciona un estimador consistente de la matriz independientemente de la estructura de heterocedasticidad.
- A veces se la denomina la matriz de varianza-covarianza consistente con heterocedasdicidad (HCVC, heteroscedasdicity-consistent variance-covariance, siglas en ingles).
- Por tanto, La corrección solo ajusta la matriz de varianza-covarianza

- Esta matriz de varianza-covarianza proporciona un estimador consistente de la matriz independientemente de la estructura de heterocedasticidad.
- A veces se la denomina la matriz de varianza-covarianza consistente con heterocedasdicidad (HCVC, heteroscedasdicity-consistent variance-covariance, siglas en ingles).
- Por tanto, La corrección solo ajusta la matriz de varianza-covarianza
- Esta matriz de varianza-covarianza consistente de heterocedasticidad solo es válida asintóticamente · · · por lo que su uso en muestras pequeñas es cuestionable.

- Esta matriz de varianza-covarianza proporciona un estimador consistente de la matriz independientemente de la estructura de heterocedasticidad.
- A veces se la denomina la matriz de varianza-covarianza consistente con heterocedasdicidad (HCVC, heteroscedasdicity-consistent variance-covariance, siglas en ingles).
- Por tanto, La corrección solo ajusta la matriz de varianza-covarianza
- Esta matriz de varianza-covarianza consistente de heterocedasticidad solo es válida asintóticamente · · · por lo que su uso en muestras pequeñas es cuestionable.
- ► La HCVC se conoce como un estimador robusto de la matriz de varianza-covarianza de MCO.

Hipotesis de Test usando HCVC

▶ En presencia de heterocedasticidad, la matrix de varianca-covarianza robusta puede ser usado para testear cualquier hipotesis que considere un solo parametro, recordando la prueba: t-test.

- ▶ En presencia de heterocedasticidad, la matrix de varianca-covarianza robusta puede ser usado para testear cualquier hipotesis que considere un solo parametro, recordando la prueba: t-test.
- ▶ El t-test puede ser un t-test asintotico en este caso.

- ► En presencia de heterocedasticidad, la matrix de varianca-covarianza robusta puede ser usado para testear cualquier hipotesis que considere un solo parametro, recordando la prueba: t-test.
- El t-test puede ser un t-test asintotico en este caso.
- ▶ Por tanto, Que pasa con las pruebas conjuntas cuando se utiliza el HCVC

- ► En presencia de heterocedasticidad, la matrix de varianca-covarianza robusta puede ser usado para testear cualquier hipotesis que considere un solo parametro, recordando la prueba: t-test.
- El t-test puede ser un t-test asintotico en este caso.
- ▶ Por tanto, Que pasa con las pruebas conjuntas cuando se utiliza el HCVC
- El uso de la prueba F para probar proposiciones que incorporan restricciones conjuntas no es válido en presencia de heterocedasticidad.

- ► En presencia de heterocedasticidad, la matrix de varianca-covarianza robusta puede ser usado para testear cualquier hipotesis que considere un solo parametro, recordando la prueba: t-test.
- ► El t-test puede ser un t-test asintotico en este caso.
- ▶ Por tanto, Que pasa con las pruebas conjuntas cuando se utiliza el HCVC
- El uso de la prueba F para probar proposiciones que incorporan restricciones conjuntas no es válido en presencia de heterocedasticidad.
- En consecuencia, una prueba alternativa es proporcionada en el test de Wald, que se puede calcular utilizando la matriz de covarianza de varianza robusta.

Hipotesis de Test usando HCVC

▶ Por ejemplo, se desea testear la significancia conjunta de dos efectos estimados, el cual esta descrito con los sub-indices **m** y **s**.

- ► Por ejemplo, se desea testear la significancia conjunta de dos efectos estimados, el cual esta descrito con los sub-indices **m** y **s**.
- La hipotesis nula esta dada por:

$$H_o: \gamma_m = \gamma_s = 0$$
 vs $H_a: H_o$ es falso

Hipotesis de Test usando HCVC

- ► Por ejemplo, se desea testear la significancia conjunta de dos efectos estimados, el cual esta descrito con los sub-indices **m** y **s**.
- La hipotesis nula esta dada por:

$$H_o: \gamma_m = \gamma_s = 0$$
 vs $H_a: H_o$ es falso

> Se define entonces, un vector fila de dimensión 1 x 2 a través de sus estimadores $\begin{bmatrix} \hat{\gamma}_m & \hat{\gamma}_s \end{bmatrix}$

- ▶ Por ejemplo, se desea testear la significancia conjunta de dos efectos estimados, el cual esta descrito con los sub-indices m y s.
- La hipotesis nula esta dada por:

$$H_o: \gamma_m = \gamma_s = 0$$
 vs $H_a: H_o$ es falso

- Se define entonces, un vector fila de dimensión 1 x 2 a través de sus estimadores $[\hat{\gamma}_m \quad \hat{\gamma}_s]$
- ▶ La matrix de HCVC es una sub-matriz definida como:

$$\hat{V}_{robust} = \begin{bmatrix} Var(\hat{\gamma}_m) & Cov(\hat{\gamma}_m, \hat{\gamma}_s) \\ Cov(\hat{\gamma}_m, \hat{\gamma}_s) & Var(\hat{\gamma}_s) \end{bmatrix}$$

Hipotesis de Test usando HCVC

▶ La forma de la matriz de test de Wald esta formulada como:

$$\textit{Wald} = \begin{bmatrix} (\hat{\gamma}_\textit{m} - \gamma_\textit{m}) & (\hat{\gamma}_\textit{s} - \gamma_\textit{s}) \end{bmatrix} \hat{V}_{\textit{robust}}^{-1} \begin{bmatrix} (\hat{\gamma}_\textit{m} - \gamma_\textit{m}) & (\hat{\gamma}_\textit{s} - \gamma_\textit{s}) \end{bmatrix}'$$

Hipotesis de Test usando HCVC

▶ La forma de la matriz de test de Wald esta formulada como:

$$\textit{Wald} = \begin{bmatrix} (\hat{\gamma}_{\textit{m}} - \gamma_{\textit{m}}) & (\hat{\gamma}_{\textit{s}} - \gamma_{\textit{s}}) \end{bmatrix} \hat{V}_{\textit{robust}}^{-1} \begin{bmatrix} (\hat{\gamma}_{\textit{m}} - \gamma_{\textit{m}}) & (\hat{\gamma}_{\textit{s}} - \gamma_{\textit{s}}) \end{bmatrix}'$$

▶ Bajo la hipotesisi nula planteada, $H_o: \gamma_m = \gamma_s = 0$, entonces

$$\mathit{Wald} = \begin{bmatrix} \hat{\gamma}_{\mathit{m}} & \hat{\gamma}_{\mathit{s}} \end{bmatrix} \hat{V}_{\mathit{robust}}^{-1} \begin{bmatrix} \hat{\gamma}_{\mathit{m}} & \hat{\gamma}_{\mathit{s}} \end{bmatrix}' \sim \chi_2^2$$

Hipotesis de Test usando HCVC

▶ La forma de la matriz de test de Wald esta formulada como:

$$\textit{Wald} = \begin{bmatrix} (\hat{\gamma}_\textit{m} - \gamma_\textit{m}) & (\hat{\gamma}_\textit{s} - \gamma_\textit{s}) \end{bmatrix} \hat{V}_{\textit{robust}}^{-1} \begin{bmatrix} (\hat{\gamma}_\textit{m} - \gamma_\textit{m}) & (\hat{\gamma}_\textit{s} - \gamma_\textit{s}) \end{bmatrix}'$$

lacktriangle Bajo la hipotesisi nula planteada, $H_o: \gamma_m = \gamma_s = 0$, entonces

Wald =
$$\begin{bmatrix} \hat{\gamma}_m & \hat{\gamma}_s \end{bmatrix} \hat{V}_{robust}^{-1} \begin{bmatrix} \hat{\gamma}_m & \hat{\gamma}_s \end{bmatrix}' \sim \chi_2^2$$

 Este test estadistico esta distribuido bajo una chi-cuadrado con dos grados de libertad.

Parte Practica

Los archivos de la parte practica lo puede descargar del siguiente QR

