Réduction des endomorphismes

 $Antoine\ MOTEAU \quad {\tt antoine.moteau@wanadoo.fr}$

Table des matières

1	Compléments, rappels d'algèbre linéaire, de calcul matriciel	2							
	1.1 Famille libre, famille génératrice	2							
	1.2 Equations linéaires	3							
	1.3 Somme directe de deux sous espaces vectoriels (en dimension finie)	4							
	1.4 Matrices carrées semblables (rappels)	4							
	1.5 Trace d'une matrice carrée, trace d'un endomorphisme	5							
2	Eléments propres d'un endomorphisme	6							
	2.1 Définitions	6							
	2.2 Exemples	6							
	2.3 Propriétés	7							
3	Eléments propres d'un endomorphisme, en dimension finie	8							
•	3.1 Recherche des valeurs propres	8							
	3.1.1 Polynôme caractéristique	8							
	3.1.2 Rappels sur les polynômes	9							
	3.1.3 Exemples de calculs de polynômes caractéristiques	9							
	3.2 Espaces propres	10							
	3.2.1 Dimension des espaces propres	10							
	3.2.2 Présentation des calculs. Exemple :	10							
4	Endomorphismes diagonalisables, en dimension finie	12							
	4.1 Définition	12							
	4.2 Condition Nécessaire et Suffisante de diagonalisation	12							
	4.3 Condition Suffisante de diagonalisation	13							
	4.4 Exemples	13							
5	Endomorphismes trigonalisables, en dimension finie								
	5.1 Définition	14							
	5.2 Condition Nécessaire et Suffisante de trigonalisation	14							
	5.3 Exemples	14							
6	Réduction des matrices carrées	15							
Ŭ	6.1 Eléments propres, polynôme caractéristique	15							
	6.2 Réduction diagonale ou trigonale	15							
	6.3 Matrices semblables	15							
	6.4 Exemples de diagonalisation	15							
	6.5 Exemples simples de trigonalisation (supérieure)	16							
	6.5.1 En dimension 2 : valeur propre double, d'espace propre associé de dimension 1	16							
	6.5.2 En dimension 3, lorsqu'il ne manque qu'un vecteur (deux cas possibles)	16							
	6.5.3 En dimension 3 : valeur propre triple, d'espace propre associé de dimension 1	18							
	6.5.4 En dimension 4	19							
	6.6 Exemples de matrices carrées réelles non trigonalisables dans \mathbb{R}	19							
7	Puissances n-ièmes d'une matrice carrée (exemples)	20							
	7.1 Matrice diagonalisable	20							
	7.2 Matrice trigonalisable	20							
	7.3 Utilisation d'un polynôme annulateur	20							
	7.4 Somme d'une matrice diagonale et d'une matrice nilpotente qui commutent	21							
8	Suites numériques satisfaisant à une relation de récurrence linéaire (d'ordre 2) à coeffi-								
_	cients constants et à second membre constant	22							
	8.1 Recherche d'une solution particulière	22							
	8.2 Exemples	23							
9	Equations différentielles linéaires (d'ordre 2) à coefficients constants	23							
	· / · · · · · / · · · · · · · · · · · ·	_							

`

Réduction des endomorphismes.

Le corps de référence est \mathbb{R} ou \mathbb{C} et on le note \mathbb{K} .

1 Compléments, rappels d'algèbre linéaire, de calcul matriciel

1.1 Famille libre, famille génératrice

Définition 1.1.1.

Soit E un \mathbb{K} espace vectoriel, qui n'est pas nécessairement de dimension finie.

- Une famille \mathcal{F} de vecteurs de E est libre si est seulement si toute sous-famille finie de \mathcal{F} est libre.
- Une famille \mathcal{F} de vecteurs de E est génératrice de E si est seulement si <u>tout</u> vecteur de E est combinaison linéaire d'une sous-famille <u>finie</u> de \mathcal{F} .
- Le sous-espace vectoriel engendré par une famille \mathcal{F} de vecteurs de E, noté $Vect(\mathcal{F})$, est l'ensemble des combinaisons linéaires <u>finies</u> d'éléments de \mathcal{F} .

Exemples 1.1.0.1.

- 1. Soit $E = \mathbb{K}[X]$ le \mathbb{K} espace vectoriel des polynômes à coefficients dans \mathbb{K} .
 - La famille infinie $\left(X^k\right)_{k\in\mathbb{N}}$ est libre et génératrice de E.
 - L'espace vectoriel engendré par la famille infinie $\left((X-1)X^k\right)_{k\in\mathbb{N}}$ est le sous-espace des polynômes qui s'annulent en 1. La famille $\left((X-1)X^k\right)_{k\in\mathbb{N}}$ ainsi que la famille $\left((X-1)^k\right)_{k\in\mathbb{N}^*}$ sont libres et génératrices de ce sous-espace.
- 2. Soit E le \mathbb{K} espace vectoriel des fonctions de classe \mathcal{C}^{∞} de \mathbb{R} vers \mathbb{R} . La famille infinie $\mathcal{F} = \left(f_k : x \longmapsto \cos(k \, x) \right)_{k \in \mathbb{N}}$ est libre mais non génératrice de E.
 - libre : Il suffit de démontrer, par récurrence sur n que, pour tout $n \in \mathbb{N}$, la sous-famille finie $\mathcal{F}_n = \left(f_k : x \longmapsto \cos(k\,x)\right)_{k=0\cdots n}$ est libre.
 - (a) La propriété est vraie pour n=1: un seul vecteur non nul.
 - (b) Supposons la propriété vraie pour $n\geqslant 1$ et montrons la pour n+1 :

Soit
$$a_1, a_2, \dots, a_n, a_{n+1}$$
 tels que $\sum_{k=0}^{n+1} a_k f_k = 0$ (application nulle).

On a alors, par dérivation deux fois, $\sum_{k=0}^{n+1} k^2 a_k f_k = 0$, et, comme $(n+1)^2 \sum_{k=0}^{n+1} a_k f_k = 0$,

on en déduit
$$\sum_{k=0}^{n} ((n+1)^2 - k^2) a_k f_k = 0$$
 d'où $a_1 = 0, a_2 = 0, \dots, a_n = 0$ d'après

l'hypothèse de récurrence. Ensuite, on aura $a_{n+1} f_{n+1} = 0$ (application nulle) d'où $a_{n+1} = 0$, ce qui conduit à conclure à la liberté de la famille \mathcal{F}_{n+1}

Le théorème de récurrence permet alors de conclure pour tout n.

• non génératrice de E : il suffit de prouver que E est différent du sous-espace vectoriel F engendré par \mathcal{F} .

Tout élément de F admet 2π comme période. Or il existe dans E des fonctions non périodiques (par exemple $x \longmapsto x$).

1.2 Equations linéaires

Théorème 1.2.1.

Soient E et F des \mathbb{K} espaces vectoriels, non nécessairement de dimension finie, et f une application linéaire de E vers F.

- 1. L'ensemble des solutions de l'équation linéaire homogène f(x)=0 est l'espace vectoriel $\ker f$.
- 2. L'ensemble des solutions de l'équation linéaire avec second membre f(x) = b est
 - $vide\ si\ b \notin Im\ f$ (système incompatible)
 - l'ensemble $x_0 + \ker f = \{x_0 + x \mid x \in \ker f\}$ si $b = f(x_0)$ (système compatible).
- 3. Superposition: Soient b_1 et b_2 des éléments de Im f. Si x_1 est une solution de $f(x) = b_1$ et x_2 est une solution de $f(x) = b_2$ alors $x_1 + x_2$ est une solution de $f(x) = b_1 + b_2$. Plus précisément, l'ensemble des solutions de l'équation $f(x) = b_1 + b_2$ est l'ensemble:

$$x_1 + x_2 + \ker f = \{x_1 + x_2 + x \mid x \in \ker f\}.$$

Exemples 1.2.0.2.

1. Solutions d'une équation différentielle linéaire du second ordre à coefficients constants.

Soit E le \mathbb{R} espace vectoriel des fonctions de classe C^2 sur \mathbb{R} et F le \mathbb{R} espace vectoriel des fonctions de \mathbb{R} vers \mathbb{R} . On cherche à résoudre, dans E, l'équation différentielle : $y'' + 2y' + y = x + e^x$.

L'application $\begin{pmatrix} f: E \longrightarrow F \\ y \longmapsto y'' + 2y' + y \end{pmatrix}$ est une application linéaire dont l'image est incluse dans le sous-espace vectoriel de F constitué des applications de F qui sont continues sur \mathbb{R} .

(a) Solutions de l'équation homogène (sans second membre) :

L'ensemble des solutions de l'équation différentielle f(y) = 0 (y'' + 2y' + y = 0) est :

$$\ker f = \{\lambda_1 \, y_1 + \lambda_2 \, y_2, \mid (\lambda_1, \lambda_2) \in \mathbb{R}^2\} \text{ avec } \begin{cases} y_1 : x \longmapsto e^{-x} \\ y_2 : x \longmapsto x \, e^{-x} \end{cases}$$

(b) Solutions de l'équation avec second membre $y''+2\,y'+y=x$ (f(y)=x): On constate que $x\in Im\, f$, avec x=f(x-2) et on en déduit l'ensemble des solutions :

$$(x-2) + \ker f = \{ (x-2) + \lambda_1 y_1 + \lambda_2 y_2, \mid (\lambda_1, \lambda_2) \in \mathbb{R}^2 \} \text{ avec } \begin{cases} y_1 : x \longmapsto e^{-x} \\ y_2 : x \longmapsto x e^{-x} \end{cases}$$

(c) Solutions de l'équation avec second membre $y'' + 2y' + y = e^x$ $(f(y) = e^x)$:

On constate que $e^x \in Im f$, avec $e^x = f\left(\frac{e^x}{4}\right)$ et on en déduit l'ensemble des solutions :

$$\frac{e^x}{4} + \ker f = \left\{ \frac{e^x}{4} + \lambda_1 y_1 + \lambda_2 y_2, \mid (\lambda_1, \lambda_2) \in \mathbb{R}^2 \right\} \text{ avec } \left\{ y_1 : x \longmapsto e^{-x} \\ y_2 : x \longmapsto x e^{-x} \right\}$$

(d) Solutions de l'équation complète $y''+2\,y'+y=x+e^x$ $(f(y)=x+e^x):$ par superposition, l'ensemble des solutions est :

$$(x-2) + \frac{e^x}{4} + \ker f = \left\{ (x-2) + \frac{e^x}{4} + \lambda_1 y_1 + \lambda_2 y_2, \mid (\lambda_1, \lambda_2) \in \mathbb{R}^2 \right\} \text{ avec } \begin{cases} y_1 : x \longmapsto e^{-x} \\ y_2 : x \longmapsto x e^{-x} \end{cases}$$

Remarque. L'équation $y'' + 2y' + y = \frac{x}{x-1}$ $\left(f(y) = \frac{x}{x-1}\right)$ n'a pas de solutions dans E:

la fonction $x \longmapsto \frac{x}{x-1}$, n'étant pas continue sur \mathbb{R} , n'appartient pas à Im f.

Par contre, il existe des solutions dans l'espace des fonctions \mathcal{C}^2 sur $]-\infty,0[$ et des solutions dans l'espace des fonctions \mathcal{C}^2 sur $]0,+\infty[$.

2. Soit $E = \mathbb{R}[X]$. L'application $\begin{pmatrix} f: E & \longrightarrow & \mathbb{R} \\ P & \longmapsto & P(1) \end{pmatrix}$ est une application linéaire surjective.

$$\text{(a) } \ker f = Vect\left(\left(\left(X-1\right)X^k\right)_{k\in\mathbb{N}}\right) = Vect\left(\left(\left(X-1\right)^k\right)_{k\in\mathbb{N}^*}\right)$$

(b) L'ensemble des solutions de l'équation f(P)=a est l'ensemble des polynômes de la forme $a+\sum_{k=0}^{n-1}\lambda_k\left(X-1\right)X^k,$ pour $n\in\mathbb{N}$ $(x\longmapsto a \text{ est solution particulière de }f(P)=a$).

1.3 Somme directe de deux sous espaces vectoriels (en dimension finie)

Définition 1.3.1.

Soit E un \mathbb{K} espace vectoriel de dimension finie.

La somme $F_1 + F_2$ de deux sous-espaces vectoriels F_1 et F_2 de E est dite directe lorsque $F_1 \cap F_2 = \{0\}$.

Lorsque la somme $F_1 + F_2$ est directe, on la notera $F_1 \oplus F_2$.

Théorème 1.3.1.

Soit E un \mathbb{K} espace vectoriel de dimension finie n et F_1 et F_2 deux sous-espaces vectoriels de E. La somme $F_1 + F_2$ est directe si et seulement si l'une des conditions suivantes est satisfaite :

- Tout élément y de $F_1 + F_2$ s'écrit de façon unique $y = y_1 + y_2$, avec $y_1 \in F_1$ et $y_2 \in F_2$.
- La réunion d'une base de F_1 et d'une base de F_2 est une base de $F_1 + F_2$.

Exemples 1.3.0.3.

- 1. Dans un espace vectoriel de dimension finie, deux sous-espaces vectoriels supplémentaires sont en somme directe.
- 2. Soit $E = \mathbb{R}^4$, muni de sa base canonique $\mathcal{B} = (\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}, \overrightarrow{e_4})$ et les sous-espaces vectoriels de E:

$$F = Vect(\overrightarrow{e_1} + \overrightarrow{e_2} + \overrightarrow{e_3} + \overrightarrow{e_4}, \overrightarrow{e_1} - \overrightarrow{e_2} + \overrightarrow{e_3} - \overrightarrow{e_4})$$

$$G = Vect(\overrightarrow{e_1} + 2\overrightarrow{e_2} + \overrightarrow{e_3} + \overrightarrow{e_4}, \overrightarrow{e_1} + \overrightarrow{e_2} + 2\overrightarrow{e_3} + \overrightarrow{e_4})$$

$$H = Vect(\overrightarrow{e_1} + \overrightarrow{e_2} + 3\overrightarrow{e_3} + \overrightarrow{e_4}, \overrightarrow{e_1} + \overrightarrow{e_2} + \overrightarrow{e_3} + 3\overrightarrow{e_4})$$

Montrer que F, G, H sont deux à deux en somme directe (et même supplémentaires dans E). Remarque. Ici, $E = F \oplus G = F \oplus H = G \oplus H$, G et H sont deux supplémentaires de F qui sont supplémentaires entre eux.

1.4 Matrices carrées semblables (rappels)

Définition 1.4.1.

 $A, B \in \mathcal{M}_n(\mathbb{K})$ sont semblables si elles représentent un même endomorphisme dans deux bases différentes (ide, s'il existe $P \in \mathcal{M}_n(\mathbb{K})$ telle que $B = P A P^{-1}$)

Remarque. Etant données deux matrices $A, B \in \mathcal{M}_n(\mathbb{K})$,

- Il n'est pas évident de montrer que A et B sont semblables ou non semblables.
- On peut utiliser les contraposées des théorèmes ci-dessous.

Exemple 1.4.0.1.

Etant donnée une matrice $A \in \mathcal{M}_n(\mathbb{K})$, Il suffit de construire une matrice inversible $P \in \mathcal{M}_n(\mathbb{K})$ et de poser $B = P A P^{-1}$ pour obtenir une matrice $B \in \mathcal{M}_n(\mathbb{K})$ semblable à A.

Théorème 1.4.1. Propriété des matrices semblables

- Deux matrices semblables ont le même déterminant.
- Deux matrices semblables ont le même rang.
- Deux matrices semblables ont la même trace (voir ci-dessous).

Preuve.

- 1. Déjà vu
- 2. C'est le rang de l'endomorphisme qu'elles représentent
- 3. Voir ci-après la démonstration dans la section relative à la trace . . .

Exemple 1.4.0.2. Les matrices suivantes ne sont pas semblables deux à deux :

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 2 & 2 \end{pmatrix} \quad ; \quad \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 1 & 0 & 2 \end{pmatrix} \quad ; \quad \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 2 \end{pmatrix}$$

Exemple 1.4.0.3. Les deux matrices ci-dessous, bien qu'elles aient le même déterminant, le même rang et la même trace, ne sont pas semblables :

$$\begin{pmatrix}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{pmatrix} ; \begin{pmatrix}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}$$

Exemple 1.4.0.4. Les deux matrices ci-dessous sont semblables, mais elles ne commutent pas :

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & 1 & 2 \end{pmatrix} \quad ; \quad B = \begin{pmatrix} 0 & 3 & 0 \\ 2 & 5 & -1 \\ 3 & 9 & -1 \end{pmatrix} \quad ; \quad \left(B = P \, A \, P^{-1} \text{ avec } P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 1 & 3 \end{pmatrix} \right)$$

1.5 Trace d'une matrice carrée, trace d'un endomorphisme

Définition 1.5.1.

La trace d'une matrice carrée $A \in \mathcal{M}_n(\mathbb{K})$ est la somme de ses coefficients diagonaux.

Théorème 1.5.1. trace d'un produit

Pour A et B appartenant à
$$\mathcal{M}_n(\mathbb{K})$$
, $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

Preuve. Utilisation directe de la définition du produit matriciel :

$$A = \left(a_{i,j}\right)_{i,j=1\cdots n}; B = \left(b_{i,j}\right)_{i,j=1\cdots n}; AB = \left(\sum_{k=1}^{n} a_{i,k} \, b_{k,j}\right)_{i,j=1\cdots n}; BA = \left(\sum_{k=1}^{n} b_{i,k} \, a_{k,j}\right)_{i,j=1\cdots n}.$$

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} \left(\sum_{k=1}^{n} a_{i,k} \, b_{k,i}\right) = \sum_{k=1}^{n} \sum_{i=1}^{n} a_{i,k} \, b_{k,i} = \sum_{\substack{k=1\\i'=k}}^{n} \sum_{\substack{i=1\\i'=k}}^{n} b_{k,i} \, a_{i,k} = \sum_{i'=1}^{n} \left(\sum_{k'=1}^{n} b_{i',k'} \, a_{k',i'}\right) = \operatorname{tr}(BA).$$

Remarque. On a $\operatorname{tr}(AB) = \operatorname{tr}(BA)$ bien qu'en général $AB \neq BA$.

Théorème 1.5.2. trace de deux matrices semblables

Deux matrices semblables ont la même trace.

Preuve.
$$\operatorname{tr}(PAP^{-1}) = \operatorname{tr}((PA)P^{-1}) = \operatorname{tr}(P^{-1}(PA)) = \operatorname{tr}((P^{-1}P)A) = \operatorname{tr}(A)$$
.

Définition 1.5.2. Trace d'un endomorphisme

La trace d'un endomorphisme, d'un K espace vectoriel de dimension n, est la trace de la matrice qui lui est associée (dans une base quelconque).

Définition cohérente d'après le théorème précédent (indépendance de la base).

Théorème 1.5.3. linéarité de la trace

1. L'application "trace", de $\mathcal{M}_n(\mathbb{K})$ vers \mathbb{K} est une application linéaire :

$$\forall A, B \in \mathcal{M}_n(\mathbb{K}), \forall \lambda \in \mathbb{K}, \quad \operatorname{tr}(A + \lambda B) = \operatorname{tr}(A) + \lambda \operatorname{tr}(B).$$

2. Soit E un K espace vectoriel de dimension finie. L'application "trace", de $\mathcal{L}(E)$ vers \mathbb{K} est une application linéaire :

$$\forall f, g \in \mathcal{L}(E), \forall \lambda \in \mathbb{K}, \quad \operatorname{tr}(f + \lambda g) = \operatorname{tr}(f) + \lambda \operatorname{tr}(g).$$

Preuve.

On le démontre, de façon quasi-immédiate, pour les matrices et on en déduit la propriété pour les endomorphismes.

2 Eléments propres d'un endomorphisme

E est un \mathbb{K} espace vectoriel et f est un endomorphisme de E.

2.1 Définitions

Définition 2.1.1.

Si il existe $\lambda \in \mathbb{K}$ et $\overrightarrow{v} \in E$, tels que $\overrightarrow{v} \neq \overrightarrow{0}$ et $f(\overrightarrow{v}) = \lambda \overrightarrow{v}$, on dit que

- λ est une valeur propre de l'endomorphisme f,
- \overrightarrow{v} est un vecteur propre de l'endomorphisme f, associè à λ .

Les vecteurs propres de f, associés à la valeur propre λ , sont les vecteurs <u>non nuls</u> de $\ker(f - \lambda i_d)$.

Définition 2.1.2.

L'espace propre de f, associé à la valeur propre λ , est le sous espace vectoriel $E_{\lambda} = \ker(f - \lambda i_d)$.

(bien que $\overrightarrow{0} \in E_{\lambda}$, $\overrightarrow{0}$ n'est pas un vecteur propre).

2.2 Exemples

Exemple 2.2.0.5. Soit l'application $f: \left\{ \begin{array}{ccc} \mathbb{R}[X] & \longrightarrow & \mathbb{R}[X] \\ P & \longmapsto & (2X-1)\,P - (X^2-1)\,P' \end{array} \right.$

- 1. Vérifier que f est un endomorphisme du \mathbb{R} ev $\mathbb{R}[X]$.
- 2. Déterminer les valeurs propres et les vecteurs propres de f.

 <u>Indication</u>: on peut chercher les solutions de l'équation différentielle $f(P) = \lambda P$ et déterminer les valeurs de λ pour lesquelles il y a des solutions polynomiales.

Exemple 2.2.0.6. E étant un \mathbb{R} ev de dimension finie n, par exemple \mathbb{R}^n ,

Pour F et G des sous espaces vectoriels non réduits à $\{\overrightarrow{0}\}$, supplémentaires dans E, soient

- s la symétrie par rapport à F et de direction G,
- p le projecteur sur F parallèlement à G,
- q le projecteur sur G parallèlement à F.
- 1. Quels sont, sans calculs, les éléments propres de s, p et q?
- 2. Rappeler aussi la caractérisation des symétries et projecteurs.
- 3. Rappeler aussi les relations entre $s,\,p$ et q .

Exemple 2.2.0.7. E étant un espace vectoriel euclidien orienté de dimension 3 (identifiable à \mathbb{R}^3), une rotation d'axe D (orienté par $\overrightarrow{w} \neq \overrightarrow{0}$) et d'angle $\theta \neq 0 \mod (\pi)$ admet 1 comme seule valeur propre, et D est le seul sous-espace propre (associé à 1).

Exemple 2.2.0.8. E étant un espace vectoriel euclidien orienté de dimension 2, (identifiable à \mathbb{R}^2), une rotation d'angle $\theta \neq 0 \mod (\pi)$ n'a pas d'éléments propres dans E.

Exemple 2.2.0.9. Soit
$$\ell: E = \mathcal{C}([0,1], \mathbb{R}) \longrightarrow E$$
, définie par $\ell(f) = F$ où
$$\begin{cases} F(x) = \frac{1}{x} \int_0^x f(t) dt & \text{si } x \neq 0 \\ F(0) = f(0) \end{cases}$$

 ℓ est un endomorphisme de E.

- L'ensemble des valeurs propres de ℓ est]0,1]
- Chaque valeur propre $\lambda \in]0,1]$ est associée à un espace propre de dimension 1

La recherche des éléments propres de ℓ conduit à résoudre, sur]0,1], des équations différentielles de type connu, dont on prolonge les solutions en 0.

2.3 Propriétés

Théorème 2.3.1.

Deux vecteurs propres, associés à des valeurs propres distinctes sont indépendants.

<u>Preuve</u>. Soient \overrightarrow{u} et \overrightarrow{v} , vecteurs propres de f, associés aux valeurs propres distinctes λ_1 et λ_2 .

Soient a et b des scalaires tels que $a\overrightarrow{u} + b\overrightarrow{v} = \overrightarrow{0}$. Montrons que a = b = 0:

1. on a:
$$f(a\overrightarrow{u} + b\overrightarrow{v}) = \overrightarrow{0}$$
, d'où $af(\overrightarrow{u}) + bf(\overrightarrow{v}) = \overrightarrow{0}$ c'est à dire : $a\lambda_1 \overrightarrow{u} + b\lambda_2 \overrightarrow{v} = \overrightarrow{0}$

2. comme
$$a\overrightarrow{u} + b\overrightarrow{v} = \overrightarrow{0}$$
, on a aussi $a\lambda_1\overrightarrow{u} + b\lambda_1\overrightarrow{v} = \overrightarrow{0}$.

Par différence, on obtient : $b(\lambda_1 - \lambda_2) \overrightarrow{v} = \overrightarrow{0}$ et, puisque $\lambda_1 \neq \lambda_2$ et $\overrightarrow{v} \neq \overrightarrow{0}$, on en déduit b = 0, puis a = 0, ce qui prouve la liberté de \overrightarrow{u} et \overrightarrow{v} .

Théorème 2.3.2.

Toute famille de vecteurs propres associés à des valeurs propres distinctes est libre.

Preuve.

Soit f un endomorphisme d'un \mathbb{K} espace vectoriel E et \mathcal{F} une famille de vecteurs propres de f, associés à des valeurs propres distinctes. La propriété étant vraie pour une famille réduite à un ou deux vecteurs, on supposera que \mathcal{F} contient plus de deux vecteurs et, pour montrer que \mathcal{F} est libre, il suffit de montrer que toute sous-famille finie de \mathcal{F} , constituée de $p \geq 2$ vecteurs, est libre.

1. Si
$$p = 1$$
 (ou $p = 2$), la propriété est vraie

2. Supposons la propriété vraie jusqu'à l'ordre $p-1\geqslant 1$. Prenons p vecteurs de $\mathcal{F}, \overrightarrow{u_1}, \cdots, \overrightarrow{u_p},$ chaque $\overrightarrow{u_i}$ étant associé à la valeur propre λ_i et montrons que cette famille est libre :

Soient
$$a_i, a_2, \dots, a_p$$
 des coefficients tels que $\sum_{k=1}^p a_k \overrightarrow{u_k} = \overrightarrow{0}$.

Alors
$$f\left(\sum_{k=1}^{p} a_k \overrightarrow{u_k}\right) = \overrightarrow{0}$$
 ou encore $\sum_{k=1}^{p} \lambda_k a_k \overrightarrow{u_k} = \overrightarrow{0}$ et on a donc :

$$\begin{cases} \sum_{k=1}^{p} \lambda_k \, a_k \, \overrightarrow{u_k} = \overrightarrow{0} \\ \sum_{k=1}^{p} \lambda_p \, a_k \, \overrightarrow{u_k} = \overrightarrow{0} \end{cases} \quad \text{(ide, } \lambda_p \, \sum_{k=1}^{p} a_k \, \overrightarrow{u_k} = \overrightarrow{0}) \end{cases} \quad \text{et, par différence, } \sum_{k=1}^{p-1} (\lambda_p - \lambda_k) \, a_k \, \overrightarrow{u_k} = \overrightarrow{0}.$$

La propriété de liberté étant vraie pour p-1 vecteurs extraits de \mathcal{F} , on en déduit que, pour $k=1\cdots p-1$, $(\lambda_p-\lambda_k)$ $a_k=0$ et, les λ_i étant distincts, $a_1=0,a_2=0,\cdots,a_{p-1}=0$.

On a alors $a_p \overrightarrow{u_p} = \overrightarrow{0}$. Comme $\overrightarrow{u_p}$ est un vecteur propre (donc non nul), on a aussi, $a_p = 0$. Ainsi, $a_1 = 0, a_2 = 0, \dots, a_{p-1} = 0, a_p = 0$, ce qui prouve la liberté de la famille des p vecteurs $\overrightarrow{u_1}, \overrightarrow{u_p}, \dots, \overrightarrow{u_p}$.

Le théorème de récurrence permet de conclure à la liberté de toute sous-famille finie extraite de \mathcal{F} .

Théorème 2.3.3.

Si \overrightarrow{u} est un vecteur propre de f, associé à la valeur propre λ , alors, pour $p \in \mathbb{N}$, \overrightarrow{u} est vecteur propre de f^p , associé à la valeur propre λ^p .

Si f est inversible, alors

- ses valeurs propres sont non nulles,
- $si \ \overrightarrow{u}$ est un vecteur propre de f, associé à la valeur propre λ , alors \overrightarrow{u} est vecteur propre de f^{-1} , associé à la valeur propre $\frac{1}{\lambda}$.

Preuve.

- 1. Simple : composition et récurrence élémentaire.
- 2. Si \overrightarrow{u} est un vecteur propre de f, associé à la valeur propre λ , on a
 - $\overrightarrow{u} \neq \overrightarrow{0}$ et $\lambda \overrightarrow{u} = f(\overrightarrow{u}) \neq \overrightarrow{0}$ (sinon f ne serait pas inversible);
 - $f(\overrightarrow{u}) = \lambda \overrightarrow{u}$ et, en composant par f^{-1} , $\overrightarrow{u} = \lambda f^{-1}(\overrightarrow{u})$ d'où $f^{-1}(\overrightarrow{u}) = \frac{1}{\lambda} \overrightarrow{u}$.

3 Eléments propres d'un endomorphisme, en dimension finie

E est un \mathbb{K} espace vectoriel de dimension finie n et de base canonique $\mathcal{C} = (\overrightarrow{e_1}, \overrightarrow{e_2}, \cdots, \overrightarrow{e_n})$. f est un endomorphisme de E (défini par sa matrice relativement à \mathcal{C}).

Objectif : Trouver une base de E dans laquelle la matrice de f soit aussi simple que possible.

- 1. S'il existe une base \mathcal{V} formée de vecteurs propres pour f,
 - La matrice de f, relativement à \mathcal{V} , est une matrice Δ , diagonale
 - P étant la matrice de passage de C à V, et M la matrice de f, relativement à C, on a $M = P \Delta P^{-1}$ Exemples: homothéties, projections, symétries...
- 2. S'il n'existe pas de base de vecteurs propres pour f, il y a peut-être une base dans laquelle la matrice de f, sans être aussi simple qu'une matrice diagonale, soit assez simple . . .

En prenant une base dans laquelle il y a un maximum de vecteurs propres pour f, on peut espérer obtenir des matrices comportant un maximum de zéros :

- matrice triangulaire (supérieure ou inférieure).
- matrice triangulaire par blocs

Par exemple, dans l'espace euclidien \mathbb{R}^3 , pour une rotation d'angle $\theta \neq 0 \mod (\pi)$, on trouvera une

base dans laquelle le matrice est de la forme : $\begin{pmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (forme réelle la plus simple).

3.1 Recherche des valeurs propres

D'après la définition, λ est valeur propre de f si et seulement si $f - \lambda Id$ est non inversible et on sait que $f - \lambda Id$ est non inversible si et seulement si $\det(f - \lambda Id) = 0$.

3.1.1 Polynôme caractéristique

Définition 3.1.1.

Le polynôme caractéristique de f est le polynôme P_f , de $\mathbb{K}[X]$, défini par $P_f(X) = \det(f - X Id)$.

Calcul pratique de $P_f(X)$:

Si M est la matrice associée à f dans une base (quelconque), $P_f(X) = \det(M - XI)$.

Théorème 3.1.1.

Les valeurs propres de f sont les zéros dans \mathbb{K} du polynôme caractéristique de f.

Une racine (multiple) de P_f dans \mathbb{K} , d'ordre de multiplicité p, est dite valeur propre (multiple) d'ordre p de f (si p = 1, elle est aussi qualifiée de valeur propre simple).

(Conséquence de la définition de P_f et le reste n'est que du vocabulaire).

Théorème 3.1.2.

$$P_f(X) = (-1)^n X^n + (-1)^{n-1} \operatorname{tr}(f) X^{n-1} + \dots + \operatorname{det}(f)$$

<u>Preuve</u>. Soit $M = (m_{i,j})_{i,j=1\cdots n}$ la matrice de f relativement à une base donnée.

- 1. En développant $\det(M-X\,I)$ systématiquement selon la dernière ligne, on obtient : $\det(M-X\,I) = (m_{n,n}-X)\,(m_{n-1,n-1}-X)\,\cdots\,(m_{1,1}-X) + Q_n(X)$ avec $\deg(Q_n) < n-1$. On en déduit le coefficient d'indice n et celui d'indice n-1 de $P_f(X)$.
- 2. $P_f(0) = \det(M 0I) = \det(f)$ est le terme constant de P_f .

Rappels sur les polynômes

- Un polynôme à coefficients dans \mathbb{K} , de degré n > 0, possède au plus n zéros dans \mathbb{K} . (zéros simples ou multiples, comptés avec leur ordre de multiplicité).
- $\bullet \ \alpha$ est zéro d'ordre k de P si et seulement si

$$P(\alpha) = 0$$
, $P'(\alpha) = 0$..., $P^{(k-1)}(\alpha) = 0$, $P^{(k)}(\alpha) \neq 0$

Conséquence de la formule de Taylor à l'ordre n, en α , pour un polynôme de degré n:

$$P(X) = P(\alpha) + (X - \alpha)P'(\alpha) + \frac{(x - \alpha)^2}{2!}P''(\alpha) + \dots + \frac{(x - \alpha)^n}{n!}P^{(n)}(\alpha) + 0$$

• Un polynôme à coefficients dans \mathbb{K} , de degré n>0, qui possède n zéros dans \mathbb{K} , est dit scindé dans \mathbb{K} c'est à dire de la forme :

$$\prod_{i=1}^{p} (X - \lambda_i)^{\alpha_i} \quad , \quad \text{avec } (\lambda_1, \lambda_2, \dots, \lambda_p) \in \mathbb{K}^p \quad , \text{ et } \quad \sum_{i=1}^{p} \alpha_i = n$$

- Les polynômes de $\mathbb{C}[X]$ sont scindés dans \mathbb{C} .
- Les polynômes irréductibles de $\mathbb{R}[X]$ sont de degré 1 ou 2 . Donc, tout polynôme de $\mathbb{R}[X]$, de degré > 2, peut être "cassé" dans $\mathbb{R}[X]$!
- Tout polynôme de $\mathbb{R}[X]$ de degré impair possède au moins un zéro réel.

Exemples : Décomposer en produit de facteurs irréductibles dans $\mathbb{R}[X]$:

$$X^4 + X^2 + 1$$
 ; $X^4 - X^2 + 1$; $X^6 + 1$; $2X^3 - 3X^2 + 4X + 3$

Exemples de calculs de polynômes caractéristiques

Exemple 3.1.3.1. Cas élémentaires : endomorphisme défini par une matrice A triangulaire ou diagonale

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$
 • Sans aucun calculs, les valeurs propres sont : 1, 2, -1
• Sans aucun calculs, le polynôme caractéristique est
$$(-1)^3 (X-1)(X-2)(X+1)$$

$$(-1)^3 (X-1)(X-2)(X+1)$$

Exemple 3.1.3.2. Soit f l'endomorphisme de \mathbb{K}^3 de matrice A, relativement à la base canonique.

Calculer $P_f(X)$ et en déduire les valeurs propres de f, lorsque $\mathbb{K} = \mathbb{R}$, puis lorsque $\mathbb{K} = \mathbb{C}$. On prendra successivement

$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \quad ; \quad A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \quad ; \quad A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -2 & 1 \\ 1 & 0 & -2 \end{pmatrix}$$

et on vérifiera systématiquement que la somme des valeurs propres complexes (prises avec leur ordre de multiplicité) est égale à la trace de A.

En Maple (notation anglo-saxonne), le polynôme caractéristique est défini comme

$$\det(XI_n - A) \qquad (= (-1)^n P_f(X))$$

- > with(linalg):
- > A := matrix([[1,2,1],[2,1,1],[1,1,2]]);
- > P := charpoly(A,X);
- > factor(P);

3.2 Espaces propres

L'espace propre E_{λ} , associé à la valeur propre λ , est le noyau de $f - \lambda id$ (ide, $E_{\lambda} = \ker(f - \lambda id)$).

3.2.1 Dimension des espaces propres

Théorème 3.2.1.

Si λ est une valeur propre de f, d'ordre p, alors $1 \leq \dim(E_{\lambda}) \leq p$

Preuve. Soit λ une valeur propre de f, d'ordre $p \ge 1$.

- 1. Si λ est valeur propre, c'est qu'il existe un vecteur propre (non nul!) associé à λ et dim $(E_{\lambda}) \geq 1$
- 2. $\dim(E_{\lambda}) \leq n$ et si p = n, on a $\dim(E_{\lambda}) \leq p$
- 3. Pour p < n, raisonnons par l'absurde, en supposant que $\dim(E_{\lambda}) = q > p$: Soit $\mathcal{E} = (\overrightarrow{u_1}, \overrightarrow{u_2}, \cdots, \overrightarrow{u_q})$ une base de E_{λ} , que l'on peut compléter par n-q vecteurs pour former une base \mathcal{B} de E.

Dans la base \mathcal{B} , la matrice M de f est de la forme $M = \begin{pmatrix} \lambda I_q & U \\ & & \\ & & \end{pmatrix}$.

$$P_f(X) = \det\left(M - XI_n\right) = \begin{vmatrix} (\lambda - X)I_q & U \\ (0) & V - XI_{n-q} \end{vmatrix} = (\lambda - X)^q \det\left(V - XI_{n-q}\right)$$

Ainsi λ serait d'ordre de multiplicité au moins q > p, ce qui est contradictoire.

3.2.2 Présentation des calculs. Exemple :

Soit f l'endomorphisme de \mathbb{R}^3 , dont la matrice, relativement à la base canonique de \mathbb{R}^3 , est :

- 1. Le polynôme caractéristique de f est : $P = -X^3 + 5X^2 8X + 4$,
- 2. Les valeurs propres sont les zéros de P: 1 (simple) et 2 (double)
- 3. Les espaces propres s'obtiennent en résolvant (méthode du pivot de Gauss) les systèmes :

$$AV = 1 \times V : \begin{cases} -7x - 12y + 7z = x \\ -4x - 3y + 3z = y \\ -17x - 22y + 15z = z \end{cases} \qquad E_1 \text{ est de dimension 1,} \qquad \text{de base : } \overrightarrow{v_1} = \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$$

$$AV = 2 \times V : \begin{cases} -7x - 12y + 7z = 2x \\ -4x - 3y + 3z = 2y \\ -17x - 22y + 15z = 2z \end{cases} \qquad E_2 \text{ n'est que de dimension 1,} \qquad \text{de base : } \overrightarrow{v_2} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$$

$$AV = 2 \times V : \begin{cases} -7x - 12y + 7z = 2x \\ -4x - 3y + 3z = 2y \\ -17x - 22y + 15z = 2z \end{cases}$$
 E_2 n'est que de dimension 1, de base : $\overrightarrow{v_2} = \begin{pmatrix} 1 \\ 1 \\ 3 \end{pmatrix}$

[2, 2, {[1, 1, 3]}], [1, 1, {[2, 1, 4]}]

4. On résume les résultats dans un tableau :

v_p	1	2	2	$\Sigma = 5 = \operatorname{tr}(A)$
	2	1	//	• Toutes les valeurs propres sont présentes et <u>répétées</u> autant de fois que leur ordre de multiplicité.
$\overrightarrow{v_p}$	1	1	//	• On ne donne <u>que</u> des vecteurs <u>indépendants</u> entre eux.
	4	3	//	• La partie grisée (barrée) indique qu'il n'existe pas de vecteur propre indépendant des précédents.
			//	• La vérification de trace évite bien des erreurs!

Exemple 3.2.2.1. Soit f, endomorphisme de \mathbb{R}^3 , de matrice A, relativement à la base canonique.

Calculer $P_f(X)$ et en déduire les valeurs propres (réelles) de f, puis les espaces propres associés en donnant une base de chacun d'entre eux, lorsque, successivement,

$$A = \frac{1}{4} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \quad \text{(piège !)} \quad ; \quad A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -2 & 1 \\ 1 & 0 & -2 \end{pmatrix} \quad ; \quad A = \begin{pmatrix} -16 & -26 & 15 \\ 1 & 5 & -1 \\ -22 & -29 & 20 \end{pmatrix}$$

on vérifiera systématiquement que la somme des valeurs propres <u>complexes</u>, prises avec leur ordre de multiplicité, est égale à la trace de A. Par exemple, la trace de la première matrice est 1.

En Maple : (où les résultats sont systématiquement dans \mathbb{C} si besoin) :

L'endomorphisme f de \mathbb{R}^3 étant représenté, relativement à la base canonique, par la matrice :

$$A := \begin{pmatrix} 5 & 4 & -2 \\ 3 & 6 & -2 \\ 9 & 12 & -4 \end{pmatrix}$$

$$P := \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 3 & 2 & 3/2 \end{pmatrix}$$

P est une matrice 3×3 , inversible : on a donc trouvé une base de vecteurs propres. P est la matrice de passage de la base canonique à une base de vecteurs propres pour f. La matrice de f, relativement à cette base de vecteurs propres, est la matrice diagonale :

> Delta := diag(seq(u[1]\$u[2], u = vovps)); # Attention : ordre en relation avec P
----->

$$\Delta := \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad \text{respecter la correspondance entre } P \text{ et } \Delta$$

les matrices A et Δ étant liées par la relation : $A = P \Delta P^{-1}$

> evalm(Delta - inverse(P) &* A &* P); # vérification (inutile en principe) mais ...

ATTENTION

- Maple ne donne pas ses résultats dans le même ordre de description à chaque exécution!
- Les résultats de eigenval et de eigenvects ne sont pas forcément dans le même ordre! Ainsi, définir (ci-dessus) Δ par l'instruction :
 - > Delta := diag(valps); # Ceci est une erreur de conception ! aurait donné ... un résultat FAUX (souvent FAUX!)

■ 12 **▶**

4 Endomorphismes diagonalisables, en dimension finie

4.1 Définition

Définition 4.1.1.

Un endomophisme f, d'un \mathbb{K} espace vectoriel E de dimension finie, est diagonalisable dans \mathbb{K} si il existe une base de E formée de vecteurs propres pour f.

Diagonaliser l'endomorphisme f, défini par sa matrice A, relativement à la base canonique C, c'est chercher une matrice diagonale Δ et une matrice inversible P telles que $A = P \Delta P^{-1}$

- Δ est la matrice associée à f dans une base de vecteurs propres \mathcal{V} ;
- P est la matrice de passage de la base \mathcal{C} à la base \mathcal{V} .

Remarque.

Si $f \in \mathcal{L}(E)$ est diagonalisable dans \mathbb{K} , la matrice de f, relativement à une base de vecteurs propres de f, est une matrice diagonale.

Exemple 4.1.0.2. Soit l'endomorphisme f de \mathbb{K}^3 , de matrice, relativement à la base canonique de \mathbb{K}^3 , :

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{cases} \text{Avec } \mathbb{K} = \mathbb{R}, \ f \text{ n'est pas diagonalisable dans } \mathbb{R}. \\ \text{Avec } \mathbb{K} = \mathbb{C}, \ f \text{ n'est pas diagonalisable dans } \mathbb{C}. \end{cases}$$

Exemple 4.1.0.3. Soit l'endomorphisme f de \mathbb{K}^3 , de matrice, relativement à la base canonique de \mathbb{K}^3 , :

$$A = \begin{pmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{pmatrix} \qquad \begin{cases} \text{Avec } \mathbb{K} = \mathbb{R}, \ f \text{ n'est pas diagonalisable dans } \mathbb{R}. \\ \text{Avec } \mathbb{K} = \mathbb{C}, \ f \text{ } \underline{\textbf{est diagonalisable}} \text{ dans } \mathbb{C}. \end{cases}$$

4.2 Condition Nécessaire et Suffisante de diagonalisation

Théorème 4.2.1.

Un endomophisme f, d'un $\mathbb K$ espace vectoriel de dimension finie, est diagonalisable dans $\mathbb K$ si et seulement si

- ullet son polynôme caractéristique est scindé dans $\mathbb K$ et
- La dimension de chaque sous-espace propre est égale à l'ordre de multiplicité de la valeur propre associée.

Lorsque f est diagonalisable, on obtient une base de diagonalisation par réunion de bases de chacun des sous-espaces propres.

Preuve.

- 1. Si f est diagonalisable, à partir de sa matrice dans une base de vecteurs propres, cette matrice étant diagonale, on a le résultat.
- 2. Réciproquement, En mettant "bout à bout" les bases des sous-espaces propres, on obtient une famille libre dont le cardinal est égal à la dimension de l'espace. Cette famille est donc une base de vecteurs propres pour f.

Remarque. Pour prouver que f est diagonalisable, il faut souvent aller jusqu'au bout des calculs :

- Recherche des valeurs propres,
- Pour chaque espace propre associé à une valeur propre multiple, il faut chercher la dimension en calculant une base de ce sous espace.

On sait qu'un sous-espace associé à une valeur propre simple, est de dimension 1, mais cela ne dispense pas d'en chercher une base : l'objectif est de trouver une base de vecteurs propres de f.

Condition Suffisante de diagonalisation

Théorème 4.3.1.

Pour qu'un endomorphisme f, d'un \mathbb{K} espace vectoriel de dimension finie n, soit diagonalisable dans \mathbb{K} , il suffit que son polynôme caractéristique admette n racines simples dans K.

Preuve. Simple cas particulier du théorème précédent.

Exemples 4.4

Exemple 4.4.0.4. Cas élémentaires. Endomorphisme f, de matrice triangulaire relativement à C:

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix}$$

- $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & -1 \end{pmatrix}$ Sans aucun calculs : f est diagonalisable ensuite, on doit calculer une base de vecteurs propres ...

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

 $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ • Sans aucun calculs : f est <u>non diagonalisable</u> : Si f était diagonalisable, dans <u>une base de vecteurs propres sa matrice serait I_3 . Alors f serait l'application identité, ce qui est faux.</u> serait I_3 . Alors f serait l'application identité, ce qui est faux.

Endomorphisme f de \mathbb{R}^3 (ou \mathbb{C}^3), de matrice relativement à \mathcal{C} : Exemple 4.4.0.5.

$$A = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ 2 & 1 & -2 \end{pmatrix}$$

- Attention ... il y a un PIEGE!
- \bullet on verra plus tard que ..., sans aucun calculs : f est diagonalisable
- pour l'instant, après calculs ..., -1 (double) et 1 (simple). Donc il faut étudier les espaces propres Après calculs : f est diagonalisable
- ensuite, on doit calculer une base de vecteurs propres ...

$$A = \begin{pmatrix} -1 & -4 & 2 \\ -3 & -2 & 2 \\ -9 & -12 & 8 \end{pmatrix}$$

- une des valeurs propres est double, il faut regarder de plus près . . .
- après calculs $\dots : f$ est diagonalisable
- ensuite, on doit calculer une base de vecteurs propres ...

Exemples détaillés: Endomorphisme f de \mathbb{R}^3 , de matrice relativement à \mathcal{C} : Exemple 4.4.0.6.

$$A = \begin{pmatrix} 5 & 4 & -2 \\ 3 & 6 & -2 \\ 9 & 12 & -4 \end{pmatrix}$$

> A := matrix([[5,4,-2],[3,6,-2],[9,12,-4]]);
> eigenvects(A);
--> [2, 2, {[1, 0, 3/2], [0, 1, 2]}], [3, 1, {[1, 1, 3]}]

On résume les résultats dans un tableau :

$$A = \begin{pmatrix} 1 & 4 & -2 \\ 3 & 2 & 2 \\ 9 & 12 & 4 \end{pmatrix}$$

On résume les résultats dans un tableau :

5 Endomorphismes trigonalisables, en dimension finie

5.1 **Définition**

Définition 5.1.1.

Un endomorphisme f, d'un \mathbb{K} espace vectoriel E de dimension finie n, est trigonalisable dans \mathbb{K} si il existe une base de E dans laquelle la matrice associée à f est triangulaire (supérieure ou inférieure).

Trigonaliser l'endomorphisme f, défini par sa matrice A, relativement à la base canonique C, c'est chercher une matrice triangulaire T et une matrice inversible P telles que $A = P \, T \, P^{-1}$.

- T est la matrice associée à f dans une base de trigonalisation \mathcal{W} ,
- P est la matrice de passage de la base C à la base W.

Remarque. Si T est la matrice triangulaire associée à f dans une base de trigonalisation de f, alors $P_f(X) = \det(T - X I) = \prod_{i=1}^n \left(X - t_{i,i}\right) \text{ où les } t_{i,i} \text{ sont les coefficients diagonaux de } T.$ Ainsi, si f est trigonalisable dans \mathbb{K} , son polynôme caractéristique est scindé dans \mathbb{K} .

Exemple 5.1.0.7. Soit l'endomorphisme f de \mathbb{K}^3 , de matrice, relativement à la base canonique de \mathbb{K}^3 , :

$$A = \frac{1}{3} \begin{pmatrix} 2 & 1 & 2 \\ 1 & 2 & -2 \\ -2 & 2 & 1 \end{pmatrix}$$
 (Il s'agit d'une matrice orthogonale, directe)
• Avec $\mathbb{K} = \mathbb{R}$, f n'est pas trigonalisable dans \mathbb{R} : la seule valeur propre réelle est 1, simple.
• Avec $\mathbb{K} = \mathbb{C}$, f est diagonalisable dans \mathbb{C} : une valeur propre réelle et deux valeurs propres reconstructions.

- deur propre réelle et deux valeurs propres non réelles conjugées.

Exemple 5.1.0.8. Soit l'endomorphisme f de \mathbb{K}^3 , de matrice, relativement à la base canonique de \mathbb{K}^3 , :

$$A = \begin{pmatrix} 14 & 15 & -9 \\ -7 & -12 & 7 \\ 4 & -4 & 2 \end{pmatrix}$$
• f n'est pas diagonalisable dans \mathbb{R} :
• 2 est valeur propre simple
• 1 est valeur propre double, d'espace propre de dimension 1
• f est trigonalisable dans \mathbb{R} :

$$A = PTP^{-1}$$
 avec $P = \begin{pmatrix} 1 & 3 & 1 \\ 1 & 7 & 0 \\ 3 & 16 & 0 \end{pmatrix}$ et $T = \begin{pmatrix} 2 & 0 & 28 \\ 0 & 1 & -5 \\ 0 & 0 & 1 \end{pmatrix}$ (calculs non immédiats).

Condition Nécessaire et Suffisante de trigonalisation

Théorème 5.2.1.

Un endomorphisme f, d'un K espace vectoriel de dimension finie, est trigonalisable dans K si et seulement si son polynôme caractéristique est scindé dans \mathbb{K} .

Preuve. Admis (Hors programme PT).

Conséquence:

Dans un C espace vectoriel de dimension fini, tous les endomorphismes sont (au moins) trigonalisables dans \mathbb{C} .

En effet, tous les polynômes de C[X] sont scindés dans \mathbb{C} .

5.3 Exemples

Voir les exemples de trigonalisation de matrices carrées, ci-dessous ...

6 Réduction des matrices carrées

Une matrice carrée $n \times n$, à coefficients dans \mathbb{K} , peut être interprétée comme la matrice d'un endomorphisme f de \mathbb{K}^n , relativement à la base canonique de \mathbb{K}^n , et identifiée à cet endomorphisme.

6.1 Eléments propres, polynôme caractéristique

En identifiant les vecteurs de \mathbb{K}^n avec la matrice colonne de leurs composantes dans la base canonique, on obtient aisément, pour une matrice carrée $n \times n$, A, les notions de

- valeurs propres, vecteurs propres, sous espaces propres de A: ce sont ceux de f;
- polynôme caractéristique de $A: P_A(X) = \det(A X I_n) = P_f(X)$.

On a donc les mêmes énoncés que pour les endomorphismes d'un $\mathbb K$ espace vectoriel de dimension finie.

6.2 Réduction diagonale ou trigonale

Définition 6.2.1.

Etant donnée une matrice carrée d'ordre n, A, à coefficients dans \mathbb{K} , on appelle

 \bullet réduction à la forme diagonale dans \mathbb{K} , de A, la construction de matrices :

$$\begin{cases} P \in \mathcal{M}_n(\mathbb{K}) & \text{inversible} \\ \Delta \in \mathcal{M}_n(\mathbb{K}) & \text{diagonale} \end{cases} \text{ telles que } A = P \, \Delta \, P^{-1} \qquad \text{(si elles existent)};$$

 \bullet réduction à la forme trigonale dans $\mathbb{K},$ de A, la construction de matrices :

$$\begin{cases} P \in \mathcal{M}_n(\mathbb{K}) & \text{inversible} \\ T \in \mathcal{M}_n(\mathbb{K}) & \text{triangulaire} \end{cases} \text{ telles que } A = P T P^{-1} \qquad \text{(si elles existent)}$$

(on pourra orienter les calculs de façon à avoir soit T triangulaire supérieure, soit T triangulaire inférieure).

Remarque. Les matrice carrées étant interprétées comme matrices d'endomorphismes, les calculs sont tout à fait identiques à ce que l'on a fait précédemment dans le cadre des endomorphismes d'un $\mathbb K$ espace vectoriel de dimension finie.

6.3 Matrices semblables

• Deux matrices A et B de $\mathcal{M}_n(\mathbb{K})$ sont dites semblables si il existe $P \in \mathcal{M}_n(\mathbb{K})$, inversible, telle que

$$A = PBP^{-1}$$

- Deux matrices semblables représentent le même endomorphisme dans des bases différentes.
- Deux matrices semblables ont
 - le même rang (la réciproque est fausse)
 - le même déterminant (la réciproque est fausse)
 - la même trace (la réciproque est fausse)
- Une matrice carrée est diagonalisable dans \mathbb{K} si et seulement si elle est semblable, dans $\mathcal{M}_n(\mathbb{K})$, à une matrice diagonale.
- Une matrice carrée est trigonalisable dans \mathbb{K} si et seulement si elle est semblable, dans $\mathcal{M}_n(\mathbb{K})$, à une matrice trigonale.
- Toute matrice carrée, à coefficients dans \mathbb{C} , est semblable, dans \mathbb{C} , à une matrice triangulaire.
- ...

6.4 Exemples de diagonalisation

Voir les exemples donnés précédemment pour les endomorphismes en dimension finie . . .

6.5Exemples simples de trigonalisation (supérieure)

En dimension 2 : valeur propre double, d'espace propre associé de dimension 1 6.5.1

Exemple 6.5.1.1. Soit la matrice :

$$A = \begin{pmatrix} 3 & 1 \\ & \\ -1 & 1 \end{pmatrix}$$

- 2 est valeur propre double,
- $A = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$ $E_2 = Vect\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}\right)$ n'est que de dimension 1.

Résumé:

On complète par le vecteur $\overrightarrow{v_2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ pour obtenir une famille libre $(\overrightarrow{v_1}, \overrightarrow{v_2})$.

> T := evalm(inverse(P) &* A &* P);

$$A = P T P^{-1}$$
 , $P := \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$, $T := P^{-1} A P = \dots = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$

Application: Calcul de A^n , pour $n \in \mathbb{N}$.

• $T = 2I_3 + B$ avec $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Comme $I_3 \times B = B \times I_3$, on peut appliquer la formule du binome de Newton, et puisque $B^2 = (0)$, cette formule nous donne : $T^n = 2^n I_3 + n 2^{n-1} B + (0)$, d'où

$$T^n = \begin{pmatrix} 2^n & n \, 2^{n-1} \\ 0 & 2^n \end{pmatrix}$$

• $A^2 = PTP^{-1}PTP^{-1} = PT^2P^{-1}$ et par une récurrence élémentaire, on a $A^n = PT^nP^{-1}$, d'où

$$A^{n} = \begin{pmatrix} (2+n) \, 2^{n-1} & n \, 2^{n-1} \\ -n \, 2^{n-1} & (2-n) \, 2^{n-1} \end{pmatrix}$$

En dimension 3, lorsqu'il ne manque qu'un vecteur (deux cas possibles)

Exemple 6.5.2.1. Valeur propre simple et valeur propre double, d'espace propre associé de dimension 1 :

$$A = \begin{pmatrix} -1 & -1 & 1 \\ 6 & 4 & -2 \\ -2 & -1 & 2 \end{pmatrix}$$
 > A := matrix([[-1,-1,1], [6,4,-2],[-2,-1,2]]); > eigenvals(A); > eigenvects(A); --> [2, 2, {[1, -2, 1]}], [1, 1, {[1, -2, 0]}]

Résumé:

icebanic .	(4)	
	$\left(\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Eléments	On complète par le vecteur $\overrightarrow{v_3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	
propres :	$\left \begin{array}{c c c c c c c c c c c c c c c c c c c $,
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$).
Dominicament	$\left(\begin{array}{c c c c c} v_p & 1 & 2 & 2 \end{array} \right)$	/

Remplacement: 1 > P := matrix([[1,1,1], [-2,-2,0],[0,1,0]); 0 > T := evalm(inverse(P) &* A &* P); base de trigonalisation

$$A = PTP^{-1} \quad , \quad P := \begin{pmatrix} 1 & 1 & 1 \\ -2 & -2 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad , \quad T := P^{-1}AP = \dots = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & -2 \\ 0 & 0 & 2 \end{pmatrix}$$

Comme précédement, pour $n \in \mathbb{N}$, $A^n = P T^n P^{-1}$, mais le calcul de T^n n'est pas immédiat

En fait, on peut faire un meilleur choix pour le vecteur de complément :

17

On cherche $\overrightarrow{v_3}$ tel que T soit triangulaire par bloc :

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} , \begin{cases} \text{Pour } \lambda = 2 \text{, on prend } \overrightarrow{v_3} \text{ tel que :} \\ f(\overrightarrow{v_3}) = 0 \overrightarrow{v_1} + \overrightarrow{v_2} + \lambda \overrightarrow{v_3} \\ \text{(prendre une solution de } AV_3 = V_2 + \lambda V_3) \end{cases}, P = \begin{pmatrix} 1 & 1 & 0 \\ -2 & -2 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$>$$
 solve($\{-x-y+z=1+2*x,6*x+4*y-2*z=-2+2*y,-2*x-y+2*z=1+2*z\}, \{x,y,z\}$);

Alors, d'après le calcul de produits par blocs, en reprenant les mêmes calculs que dans l'exercice précédent,

$$T^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2^{n} & n \, 2^{n-1} \\ 0 & 0 & 2^{n} \end{pmatrix} \text{ et } A^{n} = P \, T^{n} \, P^{-1} = \dots = \begin{bmatrix} 1 - n2^{n} & -n2^{n-1} & -1 + 2^{n} \\ -2 + 2^{1+n}n + 2^{1+n} & 2^{n} \, (1+n) & 2 - 2^{1+n} \\ -n2^{n} & -n2^{n-1} & 2^{n} \end{bmatrix}$$

Exemple 6.5.2.2. Valeur propre triple, d'espace propre associé de dimension 2 :

$$A = \begin{pmatrix} 2 & 1/2 & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \hspace{1cm} \begin{array}{l} > A := \mathtt{matrix}(\ [[2,1/2,0], \ [-2,0,0],[0,0,1]); \\ > \mathtt{eigenvals}(A); \\ > \mathtt{eigenvects}(A); \\ --> \ [1, \ 3, \ \{[0, \ 0, \ 1], \ [1, \ -2, \ 0]\}] \end{array}$$

Résumé:

// // Eléments 0 propres: pour obtenir une famille libre $(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3})$. Remplacement : base de trigona-1 > P := matrix([[0,1,1], [0,-2,0],[1,0,0]); > T := evalm(inverse(P) &* A &* P); lisation

$$A = PTP^{-1} \quad , \quad P := \begin{pmatrix} 0 & 1 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad , \quad T := P^{-1}AP = \dots = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

<u>Un meilleur choix</u> du vecteur de complément, pour la valeur propre λ (ici $\lambda=1$), peut s'obtenir en prenant le vecteur $\overrightarrow{v_3}$ tel que : $f(\overrightarrow{v_3}) = 0$ $\overrightarrow{v_1} + 1$ $\overrightarrow{v_2} + \lambda$ $\overrightarrow{v_3}$ (prendre une solution de $AV_3 = V_2 + \lambda V_3$), ce qui dispense du calcul de la màtrice T.

Ici, on a eu la chance d'obtenir directement un bon choix, en prenant le premier vecteur des vecteurs de la base canonique qui soit indépendant de $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$.

On obtient, selon les même principes que précédemment, à l'aide d'un calcul par blocs, pour $n \in \mathbb{N}$,

$$T^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix} \text{ et } A^{n} = P T^{n} P^{-1} = \dots = \begin{bmatrix} 1+n & 1/2 n & 0 \\ -2n & 1-n & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Ici, on pouvait même calculer A^n directement : en posant $B = A - I_3$, on a $B^3 = (0)$ et comme A et I_3 commutent, on peut appliquer la formule du binôme de Newton :

$$A^n = (I_3 + B)^n = I_3 + nB + \frac{n(n-1)}{2}B^2 + (0) = \cdots$$

Remarque. Pour obtenir une représentation trigonale supérieure, on a ordonné les vecteurs de façon à compléter "à droite". Pour obtenir une représentation trigonale inférieure, il faudrait ordonner les vecteurs de façon à compléter "à gauche" ...

18

En dimension 3 : valeur propre triple, d'espace propre associé de dimension 1

Exemple 6.5.3.1.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix}$$
 > A := matrix([[0,1,0], [0,0,1],[1,-3,3]]); > eigenvals(A); > eigenvects(A); --> [1, 3, {[1, 1, 1]}]

Résumé:

Eléments propres:

v_p	1	1	1	$\Sigma = 3 = \operatorname{tr}(A)$
$\overrightarrow{v_p}$	1 1 1	// // //	// // //	Il faut che obtenir à

Il faut chercher deux vecteurs de complément, pour obtenir à une base de trigonalisation ...

Recherche de vecteurs de complément : $(\lambda \text{ est la valeur propre, ici 1})$

• On cherche $\overrightarrow{v_2}$ tel que $f(\overrightarrow{v_2}) = \overrightarrow{v_1} + \lambda \overrightarrow{v_2}$ (solution de $AV_2 = V_1 + \lambda V_3$) : $\overrightarrow{v_2} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$

> solve($\{-y=1+x,z=1+y,x-3*y+3*z=1+z\},\{x,y,z\}$);

• Ensuite, on peut prendre $\overrightarrow{v_3}$ tel que $(\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3})$ soit libre, par exemple $\overrightarrow{v_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. (mais il faudra calculer T par la relation $T = P^{-1} A P$)

<u>Mieux!</u>: on peut prendre $\overrightarrow{v_3}$ tel que $f(\overrightarrow{v_3}) = \overrightarrow{v_2} + \lambda \overrightarrow{v_3}$ (et on aura pas à calculer T).

Ici, on trouve
$$\overrightarrow{v_3} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

> solve($\{-v=-1+x,z=0+v,x-3*v+3*z=1+z\},\{x,v,z\}$):

Résultat:

Remplacement: base de trigonalisation $\begin{vmatrix} v_p & 1 & 1 & 1 \\ & 1 & -1 & 1 \\ & & 1 & 0 & 0 \\ & & 1 & 1 & 0 \end{vmatrix} > T := matrix([[1,1,0], [0,1,1], [0,0,1]); \\ > P := matrix([[1,-1,1], [1,0,0], [1,1,0]); \\ > P := matrix([[1,-1,1], [1,0], [1,0], [1,0]); \\ > P := matrix([[1,-1,1], [1,0], [1,0], [1,0]); \\ > P := matrix([[1,-1,1], [1,0], [1,0], [1,0]); \\ > P := matrix([[1,-1,1], [1,0], [1,0]); \\ > P := matrix([[1,-1,1], [1,0], [1,0],$

$$A = PTP^{-1} \text{ , avec } T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } P := \begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

On a effectué ici un meilleur choix, pour avoir une matrice T simple.

On en déduit facilement le calcul de A^n pour $n \in \mathbb{N}$:

 $T = I_3 + B$ avec $I_3 \times B = B \times I_3$ et $B^3 = (0)$, donc, comme T et I_3 commutent, la formule du binôme nous donne : $T^n = I_3 + nB + \frac{n(n-1)}{2}B^2 + (0)$, d'où :

$$T^{n} = \begin{bmatrix} 1 & n & n\left(n-1\right)/2 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{bmatrix} \text{ d'où } A^{n} = P T^{n} P^{-1} = \begin{bmatrix} 1+n\left(n-3\right)/2 & 2n-n^{2} & n\left(n-1\right)/2 \\ n\left(n-1\right)/2 & 1-n^{2} & n\left(n+1\right)/2 \\ 1+n\left(n+1\right)/2 & -2n-n^{2} & 1+n\left(n+3\right)/2 \end{bmatrix}$$

Ici, on pouvait même calculer A^n directement: en posant $B = A - I_3$, on a $B^3 = (0)$ et comme A et I_3 commutent, on peut appliquer la formule du binôme de Newton :

$$A^{n} = (I_{3} + B)^{n} = I_{3} + n B + \frac{n(n-1)}{2} B^{2} + (0) = \cdots$$

En dimension 4

Méthodes identiques ..., et plus il manque de vecteurs, plus c'est compliqué ...

Exemple 6.5.4.1.

$$A = \begin{pmatrix} 3 & -1 & 2 & 1 \\ 1 & 1 & 1 & 2 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & -4 & -1 \end{pmatrix}$$

- $A = \begin{pmatrix} 3 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \\ 0 & 0 & 3 & 1 \end{pmatrix}$ 1 est valeur propre double, d'espace propre associé de dimension 1
 2 est valeur propre double, d'espace propre associé de dimension 1

```
> A := matrix([[3,-1,2,1], [1,1,1,2], [0,0,3,1], [0,0,-4,-1]]);
```

- > eigenvals(A);
- $\rightarrow eigenvects(A);$ # ---> [1, 2, {[3,6,1,-2]}], [2, 2, {[1,1,0,0]}]
- > T := jordan(A, 'P');
- > print(P);

$$A = PTP^{-1} \text{ avec } T = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix} \text{ et } P = \begin{pmatrix} 6 & 11 & 6 & -12 \\ 12 & 18 & 6 & -18 \\ 2 & 1 & 0 & 0 \\ -4 & 0 & 0 & 0 \end{pmatrix}$$

Pour
$$n \in \mathbb{N}$$
, $T^n = \begin{pmatrix} 1 & n & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2^n & n \, 2^{n-1} \\ 0 & 0 & 0 & 2^n \end{pmatrix}$ (calculs par blocs) et $A^n = P \, T^n \, P^{-1} = \dots$

Exemple 6.5.4.2.

$$A = \begin{pmatrix} 3 & 1 & 0 & 0 \\ -4 & -1 & 0 & 0 \\ 7 & 1 & 2 & 1 \\ -17 & 1 & -1 & 0 \end{pmatrix}$$
 1 est valeur propre quadruple, d'espace propre associé de dimension 1

- > A := matrix([[3,1,0,0], [-4,-1,0,0],[7,1,2,1], [-17,1,-1,0]]);
- > eigenvals(A);
- > eigenvects(A); # ---> [1, 4, {[0, 0, -1, 1]}]
 > T := jordan(A, 'P');
- > print(P);

$$A = PTP^{-1} \text{ avec } T = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ et } P = \begin{pmatrix} 0 & 0 & 2 & 1 \\ 0 & 0 & -4 & 0 \\ -28 & 0 & 7 & 0 \\ 28 & -28 & -17 & 0 \end{pmatrix}$$

$$T = I_4 + B \text{ avec } I_4 \times B = B \times I_4 \text{ et } B^4 = (0), \text{ donc, pour } n \in \mathbb{N}, T^n = I_4 + nB + \binom{n}{2}B^2 + \binom{n}{3}B^3 + (0) = \dots$$
 et $A^n = PT^nP^{-1} = \dots$

Exemples de matrices carrées réelles non trigonalisables dans \mathbb{R} 6.6

Les matrices

$$\begin{pmatrix} 3 & 1 \\ -1 & 3 \end{pmatrix} \qquad ; \qquad \begin{pmatrix} 1 & -1 & 3 \\ 3 & 0 & -2 \\ 1 & 1 & 3 \end{pmatrix}$$

ne sont pas trigonalisables dans \mathbb{R} (mais elles sont au moins trigonalisables dans \mathbb{C}).

7 Puissances n-ièmes d'une matrice carrée (exemples)

7.1 Matrice diagonalisable

Si la matrice A se diagonalise sous la forme $A = P \Delta P^{-1}$,

• pour $n \in \mathbb{N}$, $A^n = P \Delta^n P^{-1}$

et le calcul de Δ^n est ... on ne peut plus simple!

• si A est inversible : pour $n \in \mathbb{Z}$, $A^n = P \Delta^n P^{-1}$

<u>Preuve</u>. Soit H telle que $A = P H P^{-1}$.

- On a $A^2 = P H P^{-1} P H P^{-1} = P H^2 P^{-1}$. Par une récurrence élémentaire, pour $n \in \mathbb{N}$, $A^n = P H^n P^{-1}$.
- A est inversible si et seulement H est inversible et $A^{-1} = P H^{-1} P^{-1}$. De même, pour $n \in \mathbb{N}$, $(A^{-1})^n = P (H^{-1})^n P^{-1}$, soit $A^{-n} = P H^{-n} P^{-1}$.

Exemple 7.1.0.3.

$$A = \begin{pmatrix} 5 & 4 & -2 \\ 3 & 6 & -2 \\ 9 & 12 & -4 \end{pmatrix}$$
 > A := matrix([[5,4,-2],[3,6,-2],[9,12,-4]]);
> eigenvects(A);
--> [2, 2, {[1, 0, 3/2], [0, 1, 2]}], [3, 1, {[1, 1, 3]}]

On résume les résultats dans un tableau :

A est inversible, donc, pour $n \in \mathbb{Z}$,

$$\Delta^{n} = \begin{pmatrix} 3^{n} & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 2^{n} \end{pmatrix} \text{ et } A^{n} = P \Delta^{n} P^{-1} = \dots = \begin{bmatrix} 33^{n} - 22^{n} & 43^{n} - 42^{n} & -23^{n} + 22^{n} \\ 33^{n} - 32^{n} & 43^{n} - 32^{n} & -23^{n} + 22^{n} \\ 93^{n} - 92^{n} & 123^{n} - 122^{n} & -63^{n} + 72^{n} \end{bmatrix}$$

7.2 Matrice trigonalisable

Si la matrice A se trigonalise sous la forme $A = P T P^{-1}$,

• pour $n \in \mathbb{N}$, $A^n = P T^n P^{-1}$

le calcul de T^n peut être simple, à condition de faire de bons choix . . .

• si A est inversible : pour $n \in \mathbb{Z}$, $A^n = P T^n P^{-1}$

Preuve. idem ci-dessus.

Exemple 7.2.0.4.

voir les exemples déjà traités (trigonalisation supérieure et applications), avec en particulier le choix pertinent des vecteurs complémentaires pour préparer un calcul simple de \mathbb{T}^n .

7.3 Utilisation d'un polynôme annulateur

Théorème 7.3.1. (de Caley-Hamilton) Hors programme PT

Pour un endomorphisme f, d'un \mathbb{K} espace vectoriel de dimension finie, pour une matrice carrée A à coefficients dans \mathbb{K} , de polynôme caractéristique P,

- P(f) = 0 (application nulle),
- P(A) = (0) (matrice nulle).

Preuve. Non démontré en PT.

Exemple 7.3.0.5.

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 1 & 2 \\ 1 & -1 & 2 \end{pmatrix}$$

$$\Rightarrow A := matrix([[1,2,1],[3,1,2],[1,-1,2]]);$$

$$\Rightarrow P := charpoly(A,X)$$

$$---> P := X^3-4*X^2+8$$

$$\Rightarrow evalm(subs(X=A, P));$$

$$--->$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Application au calcul de A^n :

Soit H(X) un polynôme annulateur de A (ide, tel que H(A) = (0)), par exemple le polynôme caractéristique de A.

En divisant X^n par H(X), on obtient

$$X^n = H(X) \times Q_n(X) + R_n(X)$$
 avec $\deg(R_n(X) < \deg(H(X))$

On en déduit que

$$A^{n} = H(A) \times Q_{n}(A) + R_{n}(A)$$
, soit $A^{n} = (0) \times Q_{n}(A) + R_{n}(A) = R_{n}(A)$

Exemple 7.3.0.6.

$$A = \begin{pmatrix} -27 & -21 & 4 \\ 36 & 28 & -5 \\ -23 & -17 & 5 \end{pmatrix}$$

$$> A := matrix([[-27, -21, 4], [36, 28, -5], [-23, -17, 5]]);$$

$$> H := charpoly(A, X)$$

$$---> H := X^3-6*X^2+12*X-8$$

$$> R10 := rem(X^10, H, X);$$

$$---> R10 := 11520*X^2-40960*X+36864$$

$$> A10 := evalm(subs(X=A, R10));$$

$$> evalm(A^10);$$

$$--->$$

$$A10 = \begin{bmatrix} -228096 & -165120 & 32000 \\ 264960 & 191744 & -37120 \\ -279040 & -202240 & 39424 \end{bmatrix} \text{ et le calcul direct donne } A^{10} = \begin{bmatrix} -228096 & -165120 & 32000 \\ 264960 & 191744 & -37120 \\ -279040 & -202240 & 39424 \end{bmatrix}$$

7.4 Somme d'une matrice diagonale et d'une matrice nilpotente qui commutent

Soit une matrice A s'écrivant sous la forme $A = \Delta + B$ avec :

$$\begin{cases} \Delta & \text{diagonale} \\ B & \text{nilpotente d'ordre} \ p \in \mathbb{N}^* \end{cases} \quad \text{(ide: } (B^p = (0) \text{ et } B^{p-1} \neq (0))$$

Si Δ et B commutent ($\Delta B = B \Delta$), on peut utiliser la formule du binôme de Newton :

$$A^{n} = \sum_{k=0}^{n} \binom{n}{k} \Delta^{n-k} B^{k} \quad \text{ou} \quad A^{n} = \sum_{k=0}^{n} \binom{n}{k} \Delta^{k} B^{n-k}$$

Dans ces conditions, puisque $B^p = (0)$, avec la première forme,

Pour
$$n > p$$
, $A^n = \sum_{k=0}^p \binom{n}{k} \Delta^{n-k} B^k + (0)$

Ce cas se produit en particulier lorsque A, carrée d'ordre n, admet une seule valeur propre λ , d'ordre n:

$$A = \lambda I + (A - \lambda I)$$
 et on pose $\Delta = \lambda I$, $B = (A - \lambda I)$

 Δ est diagonale, B est nilpotente, d'ordre au plus n, et B commute avec Δ .

Exemple 7.4.0.7. La matrice $A = \begin{pmatrix} -27 & -21 & 4 \\ 36 & 28 & -5 \\ -23 & -17 & 5 \end{pmatrix}$ possède la valeur propre triple $\lambda = 2$.

A est trigonalisable, non diagonalisable et on peut calculer A^n sans trigonaliser A:

Soit
$$B = A - 2I_3 = \begin{pmatrix} -29 & -21 & 4 \\ 36 & 26 & -5 \\ -23 & -17 & 3 \end{pmatrix}$$
. $B^3 = (0)$ et $A^n = 2^n I_3 + n 2^{n-1} B + \frac{n(n-1)}{2} 2^{n-2} B^2 + (0)$.

$$A^{n} = \begin{pmatrix} 2^{n} - 29 n 2^{n-1} - 7 n (n-1) 2^{n-3} & -21 n 2^{n-1} - 5 n (n-1) 2^{n-3} & n 2^{1+n} + n (n-1) 2^{n-3} \\ 18 n 2^{n} + 7 n (n-1) 2^{n-3} & 2^{n} + 13 n 2^{n} + 5 n (n-1) 2^{n-3} & -5 n 2^{n-1} - n (n-1) 2^{n-3} \\ -23 n 2^{n-1} - 7 n (n-1) 2^{n-2} & -17 n 2^{n-1} - 5 n (n-1) 2^{n-2} & 2^{n} + 3 n 2^{n-1} + n (n-1) 2^{n-2} \end{pmatrix}$$

Calcul obtenu à l'aide de Maple (qui refuse de donner directement une expression générale pour A^n):

```
> restart: with(linalg):
> A := matrix( [[-27,-21,4],[36,28,-5],[-23,-17,5]] );
> eigenvals(A);
---> 2, 2, 2
> Id := diag(1,1,1):
> B := evalm( A - 2*Id );
> An := simplify(evalm( 2^n * Id + n * 2^(n-1) * B + n*(n-1)/2 * 2^(n-2) * B^2));
```

8 Suites numériques satisfaisant à une relation de récurrence linéaire (d'ordre 2) à coefficients constants et à second membre constant

Etant donnée une suite numérique $(u_n)_{n\in\mathbb{N}}$, définie par une relation de récurrence linéaire à coefficients constants :

$$\begin{cases} u_0 = \alpha \; ; \; u_1 = \beta & \text{(conditions initiales)} \\ a \, u_{n+2} + b \, u_{n+1} + c \, u_n = d & \text{pour } n \geqslant 0 & \text{(relation de récurrence)} & \text{(on suppose } a \neq 0 \text{ et } c \neq 0), \end{cases}$$

la relation de récurrence s'écrit sous forme matricielle : $\begin{pmatrix} u_{n+2} \\ u_{n+1} \end{pmatrix} = \begin{pmatrix} \frac{-b}{a} & \frac{-c}{a} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix} + \begin{pmatrix} \frac{d}{a} \\ 0 \end{pmatrix}.$

En posant
$$U_n = \begin{pmatrix} u_{n+1} \\ u_n \end{pmatrix}$$
, on aura :
$$\begin{cases} U_0 = \begin{pmatrix} \beta \\ \alpha \end{pmatrix} \\ U_{n+1} = AU_n + B \quad \text{avec } A = \begin{pmatrix} \frac{-b}{a} & \frac{-c}{a} \\ 1 & 0 \end{pmatrix} \; ; \; B = \begin{pmatrix} \frac{d}{a} \\ 0 \end{pmatrix} \quad \text{pour } n \geqslant 0 \end{cases}$$

Si on connaît une suite $(v_n)_{n\in\mathbb{N}}$ solution particulière du problème, $a\,v_{n+2}+b\,v_{n+1}+c\,v_n=d$ pour $n\geqslant 0$,

en posant
$$V_n = \begin{pmatrix} v_{n+1} \\ v_n \end{pmatrix}$$
 et $W_n = U_n - V_n$, la suite vectorielle $(W_n)_{n \in \mathbb{N}}$ vérifiera
$$\begin{cases} W_0 = U_0 - V_0 \\ W_{n+1} = A \, W_n \quad \text{pour } n \geqslant 0 \end{cases}$$

On aura alors $W_n = A^n W_0$ d'où $U_n = A^n \left(U_0 - V_0 \right) + V_n$

L'expression de U_n (donc de u_n) en fonction de n sera établie par le calcul de A^n en fonction de n.

8.1 Recherche d'une solution particulière

Le second membre étant une constante, on recherche des solutions particulières $(v_n)_{n\in\mathbb{N}}$ dont le terme général est un polynôme de la variable n, de degré le plus faible possible.

- 1. Si $a+b+c\neq 0$ (1 n'est pas valeur propre de A), la suite $\left(v_n\right)_{n\in\mathbb{N}}$, constante, définie par $v_n=\frac{d}{a+b+c}$ convient.
- 2. Si a + b + c = 0 (1 est valeur propre de A),
 - (a) Si $2a + b \neq 0$ (1 valeur propre simple de A), la suite $(v_n)_{n \in \mathbb{N}}$, définie par $v_n = \frac{dn}{2a + b}$ convient.
 - (b) Si 2a + b = 0 (1 valeur propre double de A), la suite $(v_n)_{n \in \mathbb{N}}$, définie par $v_n = \frac{d n^2}{4a + b}$ convient.

8.2 Exemples

Exemple 8.2.0.8. Matrice diagonalisable dans \mathbb{R} , n'admettant pas 1 comme valeur propre

Etude de la suite définie par les relations :
$$\begin{cases} u_0=1 \ ; \ u_1=2 \\ u_{n+2}-5 \, u_{n+1}+6 \, u_n=3 \end{cases} \quad \text{pour } n\geqslant 0$$

Exemple 8.2.0.9. Matrice trigonalisable dans \mathbb{R} , de valeur propre double 1

Etude de la suite définie par les relations :
$$\begin{cases} u_0=1\;;\;u_1=2\\ u_{n+2}-2\,u_{n+1}+u_n=3 \quad \text{ pour } n\geqslant 0 \end{cases}$$

Exemple 8.2.0.10. Matrice diagonalisable dans \mathbb{R} , admettant 1 comme valeur propre simple

Etude de la suite définie par les relations :
$$\begin{cases} u_0=1 \ ; \ u_1=2 \\ u_{n+2}-3 \ u_{n+1}+2 \ u_n=3 \end{cases} \quad \text{pour } n\geqslant 0$$

Exemple 8.2.0.11. Matrice trigonalisable dans \mathbb{R} , n'admettant pas 1 comme valeur propre

Etude de la suite définie par les relations :
$$\begin{cases} u_0 = 1 ; u_1 = 2 \\ u_{n+2} - 4 u_{n+1} + 4 u_n = 3 \end{cases} \text{ pour } n \ge 0$$

Exemple 8.2.0.12. Matrice diagonalisable uniquement dans $\mathbb C$

Etude de la suite définie par les relations :
$$\begin{cases} u_0 = 1 \; ; \; u_1 = 2 \\ u_{n+2} + u_{n+1} + u_n = 3 \quad \text{ pour } n \geqslant 0 \end{cases}$$

Exemple 8.2.0.13. Matrice trigonalisable uniquement dans C

Etude de la suite définie par les relations :
$$\begin{cases} u_0=1 \ ; \ u_1=2 \\ u_{n+2}-2 \, i \, u_{n+1}-u_n=3 \end{cases} \quad \text{pour } n\geqslant 0$$

9 Equations différentielles linéaires (d'ordre 2) à coefficients constants

On a une présentation matricielle du même genre que celle vue précédemment pour les suites. Etant donnée une équation différentielle d'ordre 2, linéaire à coefficients constants :

$$\begin{cases} y(0) = \alpha \; ; \; y'(1) = \beta \\ a \, y''(x) + b \, y'(x) + c \, y(x) = f(x) \end{cases} \quad \text{(conditions initiales)}$$

l'équation différentille s'écrit sous forme matricielle :
$$\begin{pmatrix} y''(x) \\ y'(x) \end{pmatrix} = \begin{pmatrix} \frac{-b}{a} & \frac{-c}{a} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} y'(x) \\ y(x) \end{pmatrix} + \begin{pmatrix} \frac{f(x)}{a} \\ 0 \end{pmatrix}.$$

En posant
$$Y(x) = \begin{pmatrix} y'(x) \\ y(x) \end{pmatrix}$$
, on aura :
$$\begin{cases} Y(0) = \begin{pmatrix} \beta \\ \alpha \end{pmatrix} \\ Y'(0) = AY(x) + B(x) \quad \text{avec } A = \begin{pmatrix} \frac{-b}{a} & \frac{-c}{a} \\ 1 & 0 \end{pmatrix} \; ; \; B = \begin{pmatrix} \frac{f(x)}{a} \\ 0 \end{pmatrix}$$

Réduc. end. ■ Page 23 ▶

4 24 ▶

On cherche alors à faire un changement de fonctions inconnues qui nous ramène à un système différentiel linéaire à coefficients constants dont la matrice soit simple (si possible diagonale et à défaut trigonale, dans \mathbb{R} ou dans \mathbb{C}).

Pour cela on est amené à déterminer les éléments propres de A et on constate que son polynôme caractéristique est $ar^2 + br + c$, ce qui conduit à résoudre "l'équation caractéristique" :

$$a r^2 + b r + c = 0$$

qui peut avoir deux racines simples distinctes (éventuellement complexes) ou une racine double.

1. Cas où A est diagonalisable, dans \mathbb{R} (ou dans \mathbb{C})

On est dans le cas où le polynôme caractéristique posséde deux racines distinctes simples r_1 et r_2 .

On a $A = P \Delta P^{-1}$ avec Δ diagonale, d'où

$$Y' = P \Delta P^{-1} Y + B(x)$$
 pius $\underbrace{P^{-1} Y'}_{U'} = \Delta \underbrace{P^{-1} Y}_{U} + \underbrace{P^{-1} B(x)}_{W(x)}$.

Ainsi on a le système différentiel réduit :

$$U'(x) = \Delta U(x) + W(x)$$
 avec $U(x) = \begin{pmatrix} u(x) \\ v(x) \end{pmatrix}$ et $Y(x) = P U(x)$.

Avec r_1 et r_2 comme valeurs propres de A, on en déduit que $\begin{cases} u(x) = \lambda_1 e^{r_1 x} + h_1(x) \\ v(x) = \lambda_2 e^{r_2 x} + h_2(x) \end{cases}$

et ensuite, y(x) étant une combinaison linéaire de u(x) et v(x), on obtient :

$$y(x) = \mu_1 e^{r_1 x} + \mu_2 e^{r_2 x} + h(x)$$
 avec $(\mu_1, \mu_2) \in \mathbb{R}^2$ (ou \mathbb{C}^2).

2. Cas où A n'est que trigonalisable dans \mathbb{R} (ou dans \mathbb{C})

Démarche analogue, mais avec une racine double r pour le polynôme caractéristique et une réduction trigonale, qui conduit à une solution générale de la forme :

$$y(x) = \mu_1 e^{r x} + \mu_2 x e^{r x} + h(x)$$
 avec $(\mu_1, \mu_2) \in \mathbb{R}^2$ (ou \mathbb{C}^2).

$$<$$
 \mathcal{FIN} $>$