Université de Technologie de Belfort-Montbéliard

Cours d'IN41

Chapitre 6 - Filtrage analogique

Semestre de printemps 2016

Table des matières

1	Filtres idéaux		
	1.1	Filtre passe bas	2
	1.2	Filtre passe haut	2
	1.3	Filtre passe bande	2
	1.4	Filtre coupe bande	2
2	Filtr	res réels	2
	2.1	Filtre passe bas	3
	2.2	Filtre passe haut	4
	2.3	Filtre passe-bande	4
	2.4	Filtre coupe bande	4
	2.5	Filtre de Butterworth	1

1 Filtres idéaux

1.1 Filtre passe bas

Laisse passer uniquement les fréquences $f < f_c$, avec f_c la fréquence de coupure.

$$\mathsf{Gain} : \begin{cases} 1 & \forall f < f_c \\ 0 & \mathsf{sinon} \end{cases}$$

Graphique 1

1.2 Filtre passe haut

Laisse passer uniquement les fréquences $f>=f_p$ avec f_p la fréquence passante.

$$\mathsf{Gain}: \begin{cases} 1 & \forall f >= f_c \\ 0 & \mathsf{sinon} \end{cases}$$

2

Graphique 2

1.3 Filtre passe bande

Laisse passer les fréquences $f \in [f_p, f_c[$.

Graphique 3

1.4 Filtre coupe bande

Coupe une plage de fréquence $f \in [f_c, f_p[$.

Graphique 4

2 Filtres réels

Un filtre est défini par sa réponse impulsionnelle.

$$s(t) = e(t) \otimes h(t) \text{ avec } \begin{cases} \operatorname{TF}\{h(t)\} = H(f) \\ \operatorname{TL}\{h(t)\} = H(p) \end{cases}$$
 $s(t) = \int_{-\infty}^{\infty} e(\nu)h(t-\nu)\mathrm{d}\nu$

Graphique 5

$$S(f) = H(f)E(f)$$

Si l'entrée est un signal causal ($x(t) = 0 \forall t < 0$) alors $s(t) = \int_0^t e(\nu)h(t-\nu)\mathrm{d}\nu$ (car la réponse impulsionnelle est causale) \implies la fonction de transfert est obligatoirement complexe.

$$H(f) = ||H(f)||e^{i\times \arg(H(f))}$$

$$S(f) = E(f)H(f) = E(f)||H(f)||e^{i\times \arg(H(f))}$$

Cas d'un filtre passe-bas idéal :

$$H(f) = \text{RECT}(f)$$

$$h(t) = \int_{-\infty}^{+\infty} H(f)e^{i2\pi ft} df$$

$$= \int_{-f_c}^{f_c} e^{i2\pi ft} df = \left[\frac{e^{i2\pi ft}}{i2\pi t}\right]_{-f_c}^{f_c}$$

$$= \frac{e^{i2\pi f_c t} - e^{-i2\pi f_c t}}{i2\pi t} = \frac{\sin(2\pi f_c t)}{2\pi f_c t} 2f_c = 2f_c \text{sinc}(2\pi f_c t)$$

h(t) obtenue n'est pas causale \implies on obtient un filtre. Le passe bas idéal n'est pas réalisable.

Les filtres réels présentent des imperfections en fonction de leurs applications

- → transition progressive entre la bande passante et la bande coupée
- → irrégularité du gain dans la bande passante (ondulation)
- → irrégularité du gain dans la bande coupée (ondulation)
- → irrégularité du temps de propagation

2.1 Filtre passe bas

Bande passante : $\omega_p = \omega_p - 0$

Bande de transition : $\omega_a - \omega_p$

Bande coupée : $+\infty - \omega_a$

Sélectivité : $s = \frac{\omega_p}{\omega_a}$

2.2 Filtre passe haut

Bande passante : $+\infty - \omega_p$ Bande de transition : $\omega_p - \omega_a$

Bande coupée : $\omega_a = \omega_a - 0$

Sélectivité : $s = \frac{\omega_a}{\omega_n}$

Filtre passe-bande

Bande passante : $\omega_{2p} - \omega_{1p}$

Bandes de transition : $\omega_{2a} - \omega_{2p}$ et $\omega_{1p} - \omega_{1a}$

Bandes atténuées : $+\infty - \omega_{2a}$ et $\omega_{1a} - 0$

Pulsation centrale : $\omega_0 = \sqrt{\omega_{2p} - \omega_{1p}}$

Sélectivité : $s = \frac{\omega_{2p} - \omega_{1p}}{\omega_{2a} = \omega_{1a}}$

Filtre coupe bande

Bandes passante : $+\infty - \omega_{2p}$ et $\omega_{1p} - 0$

Bandes de transition : $\omega_{2p} - \omega_{2a}$ et $\omega_{1a} - \omega_{1p}$

Bande coupée : $\omega_{2a} - \omega_{1a}$

Sélectivité : $s = \frac{\omega_{2a} - \omega_{1a}}{\omega_{2p} = \omega_{1p}}$

2.5 Filtre de Butterworth

Défini par la fonction de transfert

$$H(f)^2 = \frac{1}{1+(\frac{f}{f_c})^{2n}} \text{ avec } \begin{cases} n &: \text{ordre du filtre} \\ f_c &: \text{fr\'equence de coupure} \end{cases}$$

Propriétés:

- Réponse plate dans la bande passante et dans la bande coupée $\forall n \in \mathbb{N}^* ||H(f_c)||^2 = 1/2 \implies G(f_c) = 20\log(||H(f_c)||) = 3dB$
- Atténuation asymptotique de -20ndB / décade
- L'ordre du filtre et de la fonction de transfert est déterminé à patir du gabarit

Table de Butterworth:

n	Polynôme $P_n(p)$
1	p+1
2	$p^2 + \sqrt{2}p + 1$
3	$(p+1)(p^2+p+1)$
4	$(p^2 + 0.765p + 1)(p^2 + 1.84p + 1)$