Error Detection on Knowledge Graphs with Triple Embedding

Yezi Liu*, Qinggang Zhang†, Mengnan Du‡, Xiao Huang†, Xia Hu§

*University of California Irvine, Email: yezil3@uci.edu
†Hong Kong Polytechnic University, Email: qinggangg.zhang, xiaohuang@comp.polyu.edu.hk
‡New Jersey Institute of Technology, Email: mengnan.du@njit.edu
§Rice University, Email: xia.hu@rice.edu

A Knowledge Graph

Errors are inevitably introduced when constructing Knowledge Graphs (KGs).

- Noise in the sources;
- Imperfection of the acquisition methods.

Background

- Embedding-based error detection: rely on entity types, hard to obtain.
- Rule-mining-based: depend on the quality and limit by quantity of the rules.
- Build classifiers on KG features (entity categories, path features, out-degrees): need ground truth.

Our solutions:

- KG self-contained information;
- Generalizable algorithm for errors.

Experiments

1. Effectiveness

 Metric
 Precision@K
 DBpedia
 NELL
 DBpedia
 NELL
 DBpedia

 Top@K
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1%
 2%
 3%
 4%
 5%
 1
 2%
 <

TABLE II: Error detection results of Precision@K and Recall@K based on two datasets with error ratio p = 5%.

2. Efficiency

TABLE III: The running time for one iteration (in seconds).

			`				
	TransE	ComplEx	DistMult	KGIST	KGTtm	Ours	
NELL	1	1	40	52	4	1	
DBpedia	20	21	96	122	33	38	

3. Ablation study

TABLE IV: Ablation Study on NELL with 5% ratio of errors.

	Precision@K				Recall@K					
Top@K	1%	2%	3%	4%	5%	1%	2%	3%	4%	5%
TripleNet_Local	0.674	0.571	0.497	0.446	0.406	0.135	0.228	0.291	0.357	0.406
TripleNet_Global	0.714	0.619	0.526	0.464	0.422	0.143	0.247	0.315	0.371	0.422
TripleNet_GAT	0.738	0.623	0.538	0.477	0.435	0.148	0.249	0.323	0.382	0.436

4. Future Work

Using error-aware KG representation learning methods for guiding KG reasoning, question answering, etc.

