Package 'fonfDNN'

June 24, 2025

Title Hybrid deep tensor network for function-on-function regression with mixed predictors
Version 1.0
Depends R (>= 3.5.0), fda, keras, tensorflow, fda.usc, plot3D
Imports goffda
LazyLoad yes
ByteCompile TRUE
Encoding UTF-8
Maintainer Ufuk Beyaztas <ufukbeyaztas@gmail.com></ufukbeyaztas@gmail.com>
Description Functions for implementing deep tensor network for function-on-function regression with mixed predictors.
License GPL-3
Contents
air_data
dgp_mixed
fonf_fit
fonf_fnc
fonf_param_grid
fonf_predict
fonf_tune
Index 15
air_data Air Quality Dataset from Lombardy, Italy (2023–2024)

Description

Type Package

A real-world dataset containing daily air pollution measurements from the Lombardy region in Italy, covering the years 2023 and 2024. This dataset includes functional trajectories of various pollutants recorded over time across 1481 monitoring stations, and serves as the empirical application for the proposed hybrid deep tensor network (HDTN) model for function-on-function regression with mixed predictors.

2 air_data

Usage

```
data(air_data)
```

Format

A list with the following components:

- y A matrix of dimension n x M representing the functional response curves (daily mean $PM_{2.5}$ concentrations), where n is the number of stations and M is the number of grid points.
- x A list of length 5, where each element is an n x M matrix corresponding to a functional predictor:
 - 1. Daily mean NO₂ concentration,
 - 2. Daily maximum 1-hour NO₂ concentration,
 - 3. Daily maximum 8-hour O₃ concentration,
 - 4. Daily maximum 1-hour O₃ concentration,
 - 5. Daily mean PM_{10} concentration.

xscl A matrix of dimension $n \times 3$ containing scalar predictors:

Details

This dataset is sourced from the ARPA Lombardy regional environmental monitoring agency and was accessed using the ARPALData package. It is used in the empirical section of the paper to demonstrate the effectiveness of the HDTN model in predicting fine particulate matter concentrations based on mixed-type predictors (functional and scalar).

Value

A list containing the functional response and covariate data required to fit the HDTN model, including:

y Functional response ($PM_{2.5}$ curves) x List of 5 functional covariate matrices xscl Matrix of scalar covariates

Note

The dataset has been preprocessed and standardized for modeling purposes. Time series lengths and grid structures are aligned for all stations.

References

Maranzano, M., and Algieri, C. (2024). ARPALData: An R package for retrieving and analyzing air quality and weather data from ARPA Lombardia (Italy). *Environmental and Ecological Statistics*, 31(2), 187-218.

Examples

```
## NOTE: This example involves ultra high-dimensional functional data.
## Running the model may require a PC with at least 64 GB of RAM.
# data(air_data)
# y <- air_data$y</pre>
```

dgp_mixed 3

```
# x <- air_data$x</pre>
# xscl <- air_data$xscl</pre>
# ntot <- dim(y)[1]
# ntrain <- 1000
# ntest <- ntot - ntrain</pre>
# train_ind <- sample(1:ntot, ntrain, replace = FALSE)</pre>
# Training sample
# y_train <- y[train_ind, ]</pre>
# y_test <- y[-train_ind, ]</pre>
# xscl_train <- xscl[train_ind, ]</pre>
# xscl_test <- xscl[-train_ind, ]</pre>
# Test sample
# x_train <- x_test <- vector("list", length = 5)</pre>
# for (j in 1:5) {
x_{\text{train}[[j]]} \leftarrow x[[j]][train_ind, ]
   x_test[[j]] <- x[[j]][-train_ind, ]</pre>
# }
# Train HDTN approach
# nfof_model <- fonf_fit(resp = y_train, func_cov = x_train, scalar_cov = xscl_train)</pre>
# Obtain predictions with conformal prediction intervals
# band <- fonf_predict(nfof_model,</pre>
                          func\_cov\_new = x\_test,
#
#
                          scalar_cov_new = xscl_test,
                                          = "conformal")
#
                          interval
```

dgp_mixed

Simulate Mixed Functional–Scalar Data for Function–on–Function Regression

Description

Generates synthetic datasets that mimic the structure analysed in *Beyaztas, Bakicierler Sezer, Inan* (2025): a functional response observed on a dense grid, multiple functional predictors, and multiple scalar predictors. Two regimes are available:

- "linear": response driven solely by linear integral effects.
- "nonlinear": adds strong, smooth nonlinear interactions (functional × functional, functional × scalar, scalar × scalar) scaled to dominate the linear part.

Every dataset also includes Ornstein-Uhlenbeck (OU) process noise to emulate realistic autocorrelated measurement error.

Usage

4 dgp_mixed

Arguments

n	Number of subjects/curves.
j	Grid length M ; all functional objects are evaluated on seq(0, 1, length.out = j).
model	Character string choosing the data-generating mechanism; partial matching is supported.
n_func	Number P of functional predictors to simulate.
n_scl	Number d_z of scalar predictors.
seed	Optional integer for reproducibility (set.seed(seed)).

Details

Let $X_i^{(p)}(s)$ denote functional predictor $p=1,\ldots,P$ and $\mathbf{Z}_i \in \mathbb{R}^{d_z}$ the scalar predictor vector for subject $i \in \{1,\ldots,n\}$. The latent *signal* generating the functional response on grid points t_1,\ldots,t_M is

$$\eta_i(t) = \underbrace{\sum_{p=1}^P \int_0^1 X_i^{(p)}(s) \, \beta_p(s,t) \, ds}_{\text{linear functional effects}} + \underbrace{\mathbf{Z}_i^\top \gamma(t)}_{\text{scalar effects}} + \mathcal{N}L_i(t),$$

where P=3 "strong" functional predictors drive the linear component, β_p are pre-specified wavy B-spline surfaces (see code), and $\gamma(t)$ are smooth one-dimensional bases. If model == "linear" we set $\mathcal{N}L_i(t)\equiv 0$; otherwise $\mathcal{N}L_i(t)$ equals the *sum* of five carefully designed nonlinear terms (quadratic functional interactions, sinusoidal transforms, scalar–functional products, etc.) rescaled so that

$$SD\{NL\} \approx 2 SD\{\text{linear signal}\}.$$

The *observed* response is

$$Y_i(t_m) = \eta_i(t_m) + \varepsilon_i(t_m), \quad \varepsilon_i \sim OU(0, \alpha = 3, \sigma = 0.7),$$

i.e. an Ornstein–Uhlenbeck process discretised on the same grid. Noise is scaled so that its empirical standard deviation equals 10% of the signal standard deviation.

Value

A named list:

У	$n \times j$ matrix of noisy responses $Y_i(t_m)$.
yt	$n \times j$ matrix of true signals $\eta_i(t_m)$.
х	list of length P; each element is an $n \times j$ matrix of functional predictors $X_i^{(p)}(s_m).$
x.scl	$n \times d_z$ numeric matrix of scalar predictors \mathbf{Z}_i .
meta	List containing grids sx, sy, true beta surfaces (beta), and the model flag.

Note

Requires the suggested package **goffda** for OU noise generation.

fonf_fit 5

Author(s)

Ufuk Beyaztas, Gizel Bakicierler Sezer, Deniz Inan

References

Kokoszka, P. and Reimherr, M.~(2017). *Introduction to Functional Data Analysis*. Chapman and Hall/CRC.

See Also

```
fonf_fit, r_ou
```

Examples

```
## Not run:
# ------
# Simulate a nonlinear training set and inspect its structure
# -------
# n <- 100  # sample size
# simdata <- dgp_mixed(n, 101, model = "nonlinear")

# y <- simdata$y  # noisy response curves
# yt <- simdata$yt  # true (noise-free) curves
# x <- simdata$x  # list of functional predictors
# xscl <- simdata$x.scl  # scalar predictors
## End(Not run)</pre>
```

fonf_fit

Fit a Hybrid Deep Tensor Network for Function-on-Function Regression with Mixed Predictors

Description

Trains the hybrid deep tensor network (HDTN) of *Beyaztas, Bakicierler Sezer, Inan* (2025) to predict a *functional response* from multiple functional and scalar covariates. The model combines a first-layer tensor-product B-spline representation (capturing linear functional effects) with fully-connected dense layers (capturing higher-order nonlinear interactions) and supplies finite-sample, distribution-free prediction bands via conformal inference.

Usage

```
fonf_fit(resp,
         func_cov,
                            = NULL,
         scalar_cov
         nbasis_y
                             = NULL,
                              = NULL.
         nbasis_x
         hidden_layers = 2,
neurons_per_layer = c(32, 32),
         activations_in_layers = c("relu", "linear"),
                              = 100,
         epochs
         batch_size
                              = 32,
                              = 0.1,
         val_split
```

6 fonf_fit

learning_rate	= 1e-3,
patience_param	= 15,
dropout_rate	= 0.1,
12_lambda	= 1e-4,
cal_prop	= 0.2,
alpha	= 0.2,
verbose	= 1)

Arguments

resp $n \times M$ numeric matrix; row i stores the functional response $Y_i(t_m)$ evaluated

on a common grid $t_1, \ldots, t_M \subset \mathcal{I}_y$.

func_cov List of length P. Element p is an $n \times G_p$ matrix that holds the functional pre-

dictor $X_i^{(p)}(s_{pj})$ on its own grid $s_{p1}, \ldots, s_{pG_p} \subset \mathcal{I}_{x_p}$.

scalar_cov Optional $n \times d_z$ numeric matrix of scalar covariates $\mathbf{Z}_i \in \mathbb{R}^{d_z}$.

nbasis_y Number of B-spline basis functions for the response domain (K_y) ; chosen auto-

matically when NULL.

nbasis_x Integer vector of length P; element p gives the number of input-domain basis

functions $K_x^{(p)}$. Automatically selected when NULL.

 $hidden_{layers}$ Number R of fully-connected hidden layers.

neurons_per_layer

Vector of length hidden_layers giving the width (D_r) of each dense layer.

activations_in_layers

Character vector of length hidden_layers with Keras activation names ("relu",

"tanh", etc.).

epochs Maximum training epochs.

batch_size Mini-batch size for stochastic optimisation.

val_split Proportion of the training rows (not subjects) held out for on-line validation

during training.

learning_rate Initial learning rate for the Adam optimiser (with cosine decay scheduler).

patience_param Early-stopping patience; training stops when validation loss fails to improve for

this many epochs.

dropout_rate Dropout probability applied after every dense hidden layer.

12_lambda ℓ_2 (ridge) penalty applied to dense-layer weights.

cal_prop Proportion of subjects set aside for the conformal *calibration* set.

alpha Mis-coverage level for conformal prediction bands (e.g. 0.2 yields 80% bands).

verbose Passed to keras; larger values give more console output.

Details

Let $Y_i(t) \in L^2(\mathcal{I}_y)$ be the response curve for subject $i, X_i^{(p)}(s) \in L^2(\mathcal{I}_{x_p}), p \in \{1, \dots, P\}$, the functional predictors, and $\mathbf{Z}_i \in \mathbb{R}^{d_z}$ scalar predictors. The HDTN targets the nonlinear FoFR model

$$Y_i(t) = g \left\{ \beta_0(t) + \sum_{p=1}^P \langle X_i^{(p)}, \beta_p(\cdot, t) \rangle_{L^2} + \mathbf{Z}_i^\top \theta(t) \right\} + \varepsilon_i(t), \quad t \in \mathcal{I}_y,$$

with identity link g(u) = u in the present implementation.

fonf_fit 7

Tensor-product layer. Each bivariate coefficient surface is expanded

$$\beta_p(s,t) = \sum_{k=1}^{K_x^{(p)}} \sum_{\ell=1}^{K_y} w_{k\ell}^{(p)} \, \phi_k^{(p)}(s) \psi_\ell(t),$$

yielding first-layer weights $w_{k\ell}^{(p)}$ to be learned. Subject-specific functional features are $\tilde{\varphi}_{ik}^{(p)} = \langle X_i^{(p)}, \phi_k^{(p)} \rangle_{L^2}$ and $u_{i\ell}^{(p)} = \sum_k \tilde{\varphi}_{ik}^{(p)} w_{k\ell}^{(p)}$.

Dense layers. The concatenated feature vector $\mathbf{h}_i^{(0)} = \left(u_{i\cdot}^{(1)\top}, \dots, u_{i\cdot}^{(P)\top}, \mathbf{Z}_i^{\top}\right)^{\top}$ is propagated through R fully-connected layers $\mathbf{h}_i^{(r)} = \sigma_r (W^{(r)} \mathbf{h}_i^{(r-1)} + b^{(r)})$ with dropout and ridge penalty $\lambda \|W^{(r)}\|_F^2/2$. The final linear layer outputs $\hat{\eta}_i(t_m)$, giving $\hat{Y}_i(t_m) = \hat{\eta}_i(t_m)$ for identity link.

Loss and optimisation. Training minimises mean integrated squared error plus the ridge penalty, $\mathcal{L} = \frac{1}{nM} \sum_{i=1}^n \sum_{m=1}^M \left\{ Y_i(t_m) - \hat{Y}_i(t_m) \right\}^2 + \frac{\lambda}{2} \sum_{r=1}^R \|W^{(r)}\|_F^2, \text{ via Adam with cosine-decay learning rate.}$

Conformal prediction. A calibration subset C (size cal_prop * n subjects) yields residuals $e_{jm} = |Y_j(t_m) - \hat{Y}_j(t_m)|$. The empirical $1 - \alpha$ quantile $q_{1-\alpha}$ of length(C)*M pooled residuals provides a constant-width $(1 - \alpha)$ band $\left[\hat{Y}_i(t_m) - q_{1-\alpha}, \ \hat{Y}_i(t_m) + q_{1-\alpha}\right]$ for every new subject i and grid point t_m . Finite-sample marginal coverage is guaranteed (Lei, G'Sell, et al., 2018).

Value

An object of class "fonf_dl" to be consumed by fonf_predict:

model Trained Keras model.

center, scale Vectors used to standardise the design matrix.

py Number of response grid points (M).

nbasis_y, nbasis_x

Basis dimensions actually used.

q_hat Half-width $q_{1-\alpha}$ of the conformal prediction band.

alpha User-supplied mis-coverage level.

history keras_training_history object returned by fit().

Note

Requires TensorFlow/Keras (tested with TensorFlow >= 2.16).

Author(s)

Ufuk Beyaztas, Gizel Bakicierler Sezer, Deniz Inan

References

Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. and Wasserman, L. (2018). *Distribution-Free Predictive Inference for Regression. Journal of the American Statistical Association*, 113(523), 1094-1111.

See Also

fonf_predict, keras_model_sequential

fonf_fnc

Examples

```
## Not run:
# 1. Simulate training data
# n <- 100
# simdata <- dgp_mixed(n, 101, model = "nonlinear")</pre>
     <- simdata$y
# yt <- simdata$yt</pre>
                       # (true curves, if needed)
     <- simdata$x
                       # list of functional predictors
# x
                      # scalar predictors
# xscl <- simdata$x.scl</pre>
# ------
# 2. Fit the hybrid deep tensor network
# ------
# nfof_model <- fonf_fit(resp</pre>
                           = y,
                  func\_cov = x,
                   scalar_cov = xscl)
## End(Not run)
```

fonf_fnc

Extract and Visualise Estimated Coefficient Surfaces

Description

Given a fitted fonf_fit model, this helper recovers the bivariate coefficient surfaces $\widehat{\beta}_p(t,s)$ that link functional predictor $X^{(p)}(s)$ to the functional response Y(t), evaluates them on user-supplied grids, and—optionally—renders compact, printer-friendly 3-D perspective plots via **plot3D**.

Usage

```
fonf_fnc(model,
        y_grid
                = NULL,
= NULL,
        x_grid
        agg_fun
                   = mean,
                    = TRUE,
        plot
                  = 101,
        grid_len
        view_theta = 40,
        view_phi
                  = 2,
        surface_col = "royalblue",
        border_col = "black",
        shade_fac = 0.5,
        title_mgp = c(2.8, 0.8, 0),
         ...)
```

Arguments

```
model Object of class "fonf_dl" returned by fonf_fit.   y\_grid \qquad \qquad \text{Numeric vector of evaluation points } t_1, \ldots, t_M \text{ in the interval } [0,1]. \text{ Defaults to } \\  seq(0, 1, length.out = grid_len).
```

fonf_fnc 9

x_grid List of length P; element p is the grid s_{k1}, \ldots, s_{kL_k} for predictor p. Defaults to a length-grid_len equi-spaced grid for every predictor. Function used to collapse the first-layer tensor weights into a single set of Bagg_fun spline coefficients. With the default mean: $\widehat{\beta}_p(t,s) = \frac{1}{D_1} \sum_{d=1}^{D_1} w_d^{(p)} B_y(t) B_x^{(p)}(s).$ Logical; if TRUE (default) one 3-D plot is produced for each predictor. plot grid_len Length of the default equi-spaced grids when y_grid or an element of x_grid is NULL. view_theta, view_phi Viewing angles (in degrees) passed to persp3D. surface_col, border_col, shade_fac Graphical parameters for the surfaces. Margin settings for titles (argument passed to par (mgp = ...) inside each plot). title_mgp Currently ignored, reserved for future extensions.

Details

Let $B_y(t)$ be the vector of K_y B-spline basis functions for t and let $B_x^{(p)}(s)$ be the vector of $K_x^{(p)}$ basis functions for s in predictor p. The first layer of the network stores a weight matrix $W^{(1)}$ whose rows correspond to the spline products $B_y(t)$ $B_x^{(p)}(s)$. For each predictor p we:

- 1. Extract the contiguous block of $K_y K_x^{(p)}$ weights.
- 2. Fold it into a $K_y \times K_x^{(p)}$ matrix C_k .
- 3. Evaluate $\widehat{\beta}_p(t,s) = B_y(t)^{\top} C_k B_x^{(p)}(s)$ on the requested grids.

If plot = TRUE every surface is drawn with persp3D; otherwise the numeric matrices are returned silently.

Value

Invisibly returns a list with components:

beta_hat List of length P; element p is a length(y_grid) by length(x_grid[[p]]) matrix containing $\widehat{\beta}_p(t,s)$.

y_grid Evaluation grid for t.

x_grid Evaluation grids for s.

List of closure functions; calling plots[[p]]() re-draws the p-th surface.

Note

Requires the suggested packages fda, keras, and plot3D. An error is thrown if any are missing.

Author(s)

Ufuk Beyaztas, Gizel Bakicierler Sezer, Deniz Inan

See Also

```
fonf_fit, persp3D, eval.basis
```

10 fonf_param_grid

Examples

fonf_param_grid

Create a Parameter Grid Without Factors

Description

Generates a data frame from all combinations of input vectors, ensuring that character variables are not converted to factors. This is a convenient wrapper around expand.grid(..., stringsAsFactors = FALSE).

Usage

```
fonf_param_grid(...)
```

Arguments

One or more vectors, factors, or lists to be combined into a data frame of parameter combinations.

Details

This function simplifies the creation of parameter grids for tuning models. Unlike the base R expand.grid, it ensures that character vectors remain as characters, which is often desirable when building machine learning or neural network models where hyperparameter names or tags are string-based.

Value

A data frame containing one row for each combination of the supplied vectors.

Note

This function is mainly used to build cross-product grids of model parameters when performing grid search for tuning.

Author(s)

Ufuk Beyaztas, Gizel Bakicierler Sezer, Deniz Inan

fonf_predict 11

fonf_predict	Predict With a Trained Hybrid Deep Tensor Network

Description

Generates point predictions and, optionally, distribution-free conformal prediction bands for a fonf_fit model given new functional and scalar covariates.

Usage

Arguments

Details

Let f_{hat} denote the trained network and let (x_i, z_i) be the design-matrix rows for a new subject, built with the same tensor-product bases used in training. fonf_predict:

- 1. Builds the design matrix with design_matrix_build.
- 2. Standardises it with the training means and scales stored in the fitted object.
- 3. Computes the predictions, then reshapes the vector into an $n_{\text{new}} \times M$ matrix, where M = object\$py.

Conformal bands: If interval == "conformal" the returned bands are $\hat{Y}_i(t_m) \pm q_{1-\alpha}$, where $q_{1-\alpha}$ is the $(1-\alpha)$ -quantile of the absolute residuals on the calibration set chosen during training. Split-conformal theory (Lei *et al.*, 2018) guarantees marginal coverage $1-\alpha$ at each grid point, without distributional assumptions beyond independent rows.

Value

```
interval = "none" A numeric matrix with nrow = n_{new} and ncol = py containing point predictions.
```

interval = "conformal" A list with components mean, lower, and upper, each a matrix whose columns are named "t1", "t2", ..., "tM".

12 fonf_tune

Note

The feature grids supplied here must match those used at training time, and the length of the prediction vector must be divisible by object\$py; otherwise an error is raised.

Author(s)

Ufuk Beyaztas, Gizel Bakicierler Sezer, Deniz Inan

References

Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. & Wasserman, L. (2018). Distribution-Free Predictive Inference for Regression. *Journal of the American Statistical Association*, 113(523), 1094–1111.

See Also

```
fonf_fit, dgp_mixed
```

Examples

fonf_tune

Simple Grid-Search Hyper-parameter Tuner for fonf_fit

Description

Evaluates every row of a user-supplied hyper-parameter grid via *K*-fold cross-validation (fonf_cv), reports the cross-validated mean-squared error (CV-MSE), and then refits the best combination on the *full* data set. The implementation is deliberately lightweight—single-core, base R only—so it runs on any system where **fonf** installs.

Usage

fonf_tune 13

Arguments

grid	A data frame created by fonf_param_grid describing the hyper-parameter combinations to be tested. Each column corresponds to an argument of fonf_fit.
resp	Numeric matrix of size $n \times p_y$; functional response curves sampled on a common grid.
func_cov	List of length P ; element p is an $n \times G_p$ matrix containing the p -th functional predictor.
scalar_cov	Optional $n \times q$ numeric matrix of scalar predictors. Omit or set to NULL if none.
nfolds	Number of folds used by fonf_cv (default 5).

Details

How it works: For each row g = 1, ..., G of grid:

- 1. The row is coerced to a named list of arguments compatible with fonf_fit (vectors such as neurons_per_layer are replicated to the correct length).
- 2. fonf_cv performs K-fold CV and stores the average test MSE in cv_vec[g].

After all rows are processed the index of the minimum CV-MSE is selected, the corresponding parameter list is re-sanitised by sanitize_basis(), and a final model is fitted on the whole data via fonf_fit with verbose = TRUE.

Value

results Data frame combining the original grid and a new column CV_MSE (lower is better).

best_params Named list containing the best-performing hyper-parameters in a format ready for fonf_fit.

best_model Object of class "fonf_dl" fitted on the full data with best_params.

Note

- This function is single-threaded. For large grids consider a parallel wrapper (e.g. **future.apply**).
- Internal helpers flatten1() and sanitize_basis() are not exported but are documented in the source code.

Author(s)

Ufuk Beyaztas, Gizel Bakicierler Sezer, Deniz Inan

Examples

fonf_tune

```
# 2. Construct a small hyper-parameter grid
# -----
# grid <- fonf_param_grid(</pre>
# hidden_layers = c(1, 2),
# neurons_per_layer = list(32, c(64, 32)),
# activations_in_layers = list("relu", c("relu", "linear")),
# learning_rate = c(1e-3, 5e-4),
# epochs = 25
# epochs
#)
# -----
# 3. Tune and refit
# -----
# tune_out <- fonf_tune(grid,</pre>
                  resp = y,
func_cov = x,
#
#
                  scalar_cov = xscl,
#
                  nfolds = 5)
# tune_out$results
                     # CV table
# best_mod <- tune_out$best_model</pre>
## End(Not run)
```

Index

```
air_data, 1

dgp_mixed, 3, 12

eval.basis, 9

fonf_fit, 5, 5, 8, 9, 11-13
fonf_fnc, 8
fonf_param_grid, 10
fonf_predict, 7, 11
fonf_tune, 12

keras_model_sequential, 7
persp3D, 9

r_ou, 5
```