Day 04 - Ciphers Using Modular Arithmetic Last time Theorem 1 (Quotient-Remainder Theorem), Given an integer A and a passitive integer B. Then there exist integers q, r (obtained through long division) such that $A - B \cdot q + r$ where $0 \le r < B$. Here, q is quotient and r is remainder. We say $r = A \mod B$. If a,b are two integers with the same remainder under modulo m, then we say a and b are congruent modulo m and write $a = b \mod m$. Et: -8 and 8 are congruent mod 16. $8 = 16 \times 0 + 8$ remainder 8 $-8 = 16 \times (-1) + 8$ $8 = -8 \mod 16$. Vernam cipher Randomize 2 short kays 0 and 0. Randomize 0 + b = 1 and 0 + b = 1. Randomize 0 + b = 1 and 0 + b = 1. 0 + b = 1 0

Definition 1 (Inverse in modular arithmetic). If $A \cdot C = 1 \mod B$ then C is the modular vacerse of A under mod B. Denote $C - A^{-1} \mod B$.

If A^{-1} exists then we say that A is invertible under modulo B.

Use the multiplication table to find the inverses under mod 26.

In the first of the table.

It has row a column of this entry form a pair of inverse. $A^{-1} = 1$ $A^{-1} =$

Definition: Let d, n be integers. We say "d divides n" or "n is divisible by d" if there exist an integer r such that $n = d \cdot r$. We write d|n to denote that d divides n. In this case, we also say that d is a divisor of n

Suppose we have two non-zero integers m, n. Then the commof m and n is a positive integer d such that d|m and d|n.

The greatest common divisor (GCD) of two positive integers m and n is a common divisor d such that for every other common divisor d' of m and n, d'|d. We write $d = \gcd(m, n)$.

If gcd(m, n) = 1 then m and n are said to be **relatively prime** or sprime

Theorem 2. a is invertible under modulo n if and only if gvd(a, m) = 1.

Ex: gcd (60,42)

Find prime factorization of 60 & 42

$$60 = 2^{2} \times 3^{1} \times 5^{1}$$

$$42 = 2^{1} \times 3^{1} \times 7^{1}$$

To get the gcd, collect all the common primes and roise them to the lowest power in the factorization

$$gcd = 2^{1} \times 3^{1} = 6$$

(a)
$$7x+5 = y \mod 26$$

 $7x = y-5 \mod 26$
 $15 \cdot 7x = 15(y-5) \mod 26$
 $x = 15(y-5) \mod 26$

(b)
$$8x + 5 = 10 \mod 26$$

 $8x = 5 \mod 26$
No soln

IK = 28 x 29

Affine cipher

a must have an inverse mod 26 0 ≤ b ≤ 25.

- For each plaintext number x and ciphertext number y, • Encryption function $y = E(x) = ax + b \mod \cancel{p}$ 26

ciphertext	V	F	L	М	Q
$y = ax + b \mod 26$	21	5	- 11	12	16
x	18	22	14	17	3
plaintext	S	W	0	R	D

9x18+15= 21 9x22+15=31=5

11 = ... = 21 - P1xB

a-1 (y-b) $41 \times (18 - 13) = 11 \times 5 = 3$

Modulo arithmetic on matrices

Definition. Let A,B be $m\times n$ matrices with integer entries. We say that A and B are congruent modulo m if

A and B are congruent modulo m if
$$a_{i,j} \equiv b_{i,j} \mod m$$

$$a_{i,j} \equiv b_{i,j} \mod m$$
 for all entries $a_{i,j}, b_{i,j}$. We write $A \equiv B \mod m$.

Example. In modulo 5, consider $A = \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$. $\begin{cases} 8 = -8 & \text{mod } 16 \\ 11 = 43 & \text{mod } 16 \\ 15 = -1 & \text{mod } 16 \end{cases}$ • $A + 2B \mod 5 = \begin{bmatrix} 2 & 4 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 3 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 4 & 2 \\ 3 & 0 \end{bmatrix} \mod 5$

$$\begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} + \begin{bmatrix} 2 & 4 \\ 6 & 4 \end{bmatrix} = \begin{bmatrix} 4 & 7 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 4 & \frac{15}{2} & -1 \\ 3 & 0 \end{bmatrix} \mod 5$$

$$\frac{AB \mod 5}{2 \cdot 1} \begin{bmatrix} 1 & 2 \\ 3 \cdot 2 \end{bmatrix} = \begin{bmatrix} 1 & 10 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mod 5.$$

• BA mod 5 =
$$\begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 5 \\ 10 & 11 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 Ansad 5

 $\label{eq:Definition. Let m be a given modulus and let A be an $n\times n$ matrix with integer entries. A is said to be invertible modulo m if there exists an $n\times n$ matrix B such that$

 $AB - I \mod m$ and $BA - I \mod m$.

We write " $A^{-1} = B \mod m$ " to denote B is the inverse of A modulo m.

Definition. The **determinant** of A modulo m is $\det(A)$ reduced mod m. **Example.** Find the determinant of $A = \begin{bmatrix} 3 & 4 \\ -9 & 8 \end{bmatrix}$ under mod 10.

Theorem 3. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is an integer entries then the determinant of A under modulo m is given by

 $\det(A) = ad - bc \mod m.$

A is invertible modulo m if and only if $\det(A)$ is relatively prime to m. In this case, the inverse is given by $A^{-1} = \det(A)^{-1} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \mod m$ Example. Find the inverse of $A = \begin{bmatrix} 1 & 4 \\ 8 & 11 \end{bmatrix}$ under mod 26.

det (A) = (11)(1) - (8)(4) = 5 mod 26.
Here,
$$ged(5,26) = 1$$
 then A is unvertible, $det(A)^{-1} = 5^{-1} = 21$ mod 26.

$$A^{-1} = 21 \begin{bmatrix} 11 & -4 \\ -8 & 1 \end{bmatrix} = \dots = \begin{bmatrix} 23 & 20 \\ |4 & 2| \end{bmatrix}$$
 mud 26.
Check that $A \cdot A^{-1} = I \mod 26$.
 $A^{-1} \cdot A = I \mod 26$.