Data Continuity Matters: Improving Sequence Modeling with Lipschitz Regularizer

Selected as Spotlight

Eric Qu 123

¹Microsoft Research Asia

Xufang Luo¹

Dongsheng Li¹

³Duke Kunshan University

Motivation

Sequence Models Works Well On Specific Tasks

Iransformers

Gene Text

(State Space Models) Audio Time-series

Sequence models have preferences in Data Continuity Transformers \Leftrightarrow Discrete Data State Space Models \Leftrightarrow Continuous Data

Sequence Models + Unpreferred Data Continuity Deteriorated Performance

Solution A Regularizer That Alters Input Data Continuity! Apply The Regularizer to The Input Embedding

Lipschitz Regularizer

²UC Berkeley

Lipschitz Constant

$$L_f = \max_{i,j \in \{0,1,\dots,n\}} \frac{|x_i - x_j|}{|i - j|} = \max_{k \in \{0,1,\dots,n-1\}} |x_{k+1} - x_k|$$

Max → Mean \Downarrow L1 → L2 norm

Lipschitz Regularizer

$$\mathcal{L}_{\text{Lip}} = \frac{1}{n} \sum_{i=0}^{n-1} (x_{i+1} - x_i)^2$$

Experiments

State Space Models prefer Continuous Input

$$\mathcal{L}(y, \hat{y}, \hat{l}) = \mathcal{L}_{\text{S4}}(y, \hat{y}) + \lambda \mathcal{L}_{\text{Lip}}(\hat{l})$$

ListOps Text Retrieval Image Image-c Path Path-c PathX PathX-c 59.53 86.51 91.07 88.54 84.27 **94.02** 89.11 **96.03** 92.41 S4 + Emb58.94 87.12 90.28 87.25 85.13 92.37 90.32 93.87 92.81 **S4 + Emb + Lip 61.37 89.74 93.83 89.19 88.43** 93.52 **91.39** 95.72 **94.36**

Transformers prefer Discrete Input

$$\mathcal{L}(y, \hat{y}, \hat{l}) = \mathcal{L}_{ ext{Transformer}}(y, \hat{y}) - \lambda \mathcal{L}_{ ext{Lip}}(\hat{l})$$

Method	Is Transformer	Transformer + Lip	Informer	Informer + Lip
Metric	MSE MAE	MSE MAE	MSE MAE	MSE MAE
24 48 168 336 720	0.18902 0.37046 0.39773 0.55569 0.41523 0.56902	0.16716 0.34974 0.30811 0.48183 0.41324 0.56402	0.15845 0.31907 0.18314 0.34619 0.22164 0.38720	0.08882 0.23674 0.12615 0.28333 0.10579 0.25552 0.11810 0.26959 0.13131 0.28731
24 48 168 336 720	0.15016 0.30996 0.25197 0.41087 0.22258 0.38170	0.13229 0.29278 0.21046 0.37453 0.20867 0.37298	0.15483 0.31445 0.23193 0.38947 0.26321 0.41659	0.08626 0.22559 0.13684 0.28936 0.30071 0.43671 0.24875 0.40827 0.23646 0.39648
24 48 96 288 672	0.08974 0.25869 0.05341 0.17696 0.22354 0.40455	0.02872 0.12820 0.05182 0.15017 0.13780 0.29825	0.06944 0.20255 0.19414 0.37236 0.40140 0.55355	0.01815 0.09147 0.05848 0.19686 0.13336 0.30091 0.30266 0.46864 0.27543 0.45377
24 48 168 336 720	0.00422 0.04106 0.00537 0.05975 0.00524 0.05772	0.00292 0.03026 0.00319 0.04464 0.00417 0.03673	0.17822 0.31846 0.26585 0.39764 0.29713 0.41571	0.11256 0.23844 0.19134 0.32408 0.25138 0.37400 0.24748 0.37725 0.26479 0.39214
Count	2	49	4	46

Change of L_f during training

MSE with different λ

Frequency Domain

In the Frequency Domain

$$\sum_{i=0}^{n-1} (x_{i+1} - x_i)^2 \approx 4\pi^2 C \mathbb{E}_{p(\xi)}[\xi^2]$$

LipReg

⇔ Expectation Over the Frequency

Spectral Bias: Low-frequency Part is Learned First Use LipReg to Penalize the Low-frequency Part of NN

$$\mathcal{L}(y, \hat{y}) = \mathcal{L}_{\text{MSE}}(y, \hat{y}) - \lambda e^{-\epsilon t} \mathcal{L}_{\text{Lip}}(\hat{y})$$

Top: without LipReg; Bottom: with LipReg

Link to Paper

