CS180: FINAL STUDY GUIDE CONNOR JENNISON

Book Sections: Ch1, 2.1, 2.2, 2.4, Ch 3, 4.1, 4.4, 4.5, 5.1, 5.2, 5.3, 5.4, 6.1, 6.2, 6.3, 6.4, 6.6, 6.8, 7.1, 7.2, 7.5, 7.6, 7.8, 7.9, 7.11, 8.1

Topics/Problems

- Chapter 1: Introduction
 - Stable Matching (pg. 1)
 - Interval Scheduling (pg. 12)
- Chapter 2: Algorithm Analysis
 - Computational Tractability (pg. 29)
 - Asymptotic Order (pg. 35)
 - Common Running Times (pg. 47)
- Chapter 3: Graphs
 - Basic Definitions (pg. 73)
 - Connectivity and Traversal (pg. 78)
 - o Implementing Traversal (Queues/Stacks) (pg. 87)
 - Testing Bipartiteness (pg. 94)
 - Connectivity in Directed Graphs (pg. 97)
 - Directed Acyclic Graphs/Topological Ordering (pg. 99)
- Chapter 4: Greedy Algorithms
 - Interval Scheduling: Greedy Algorithm (pg. 116)
 - Shortest Paths in a Graph (pg. 137)
 - Minimum Spanning Tree Problem (pg. 142)
- Chapter 5: Divide And Conquer
 - Mergesort Algorithm (pg. 210)
 - Further Recurrance Relations (pg. 214)
 - Counting Inversions (pg. 221)
 - Finding Closest Pair of Points (pg. 225)
- Chapter 6: Dynamic Programming
 - Weighted Interval Scheduling: Recursive Procedure (pg. 252)
 - Principles of Dynamic Programming (pg. 258)
 - o Segmented LEast Squares: Multi-way Choices (pg. 261)
 - Subset Sums/Knapsacks: Adding a Variable (pg. 266)
 - Sequence Alignment (pg. 278)

- Shortest Paths in a Graph (pg. 290)
- Chapter 7: Network Flow
 - Max-Flow Problem/Ford-Fulkerson Algorithm (pg. 338)
 - Maximum Flows and Minimum Cuts in a Network (pg. 346)
 - Bipartite Matching Problem (pg. 367)
 - Disjoint Paths in Directed and Undirected Graphs (pg. 373)
 - Survey Design (pg. 384)
 - Airline Scheuduling (pg. 387)
 - Project Selection (pg. 396)
- Chapter 8: NP and Computational Intractability
 - Polynomial-Time Reduction (pg. 459)

Chapter 1: Introduction

Stable Matching

While \exists an unmatched man...

- Pick a man that hasn't been matched yet (arbitrary), called *m*
- ullet Take the highest woman left in his priority list, called $oldsymbol{w}$ and attempt to temporarily match them
 - If the woman is unmatched, she automatically accepts
 - \circ If the woman is matched with another man m', compare in her priority list
 - If m is higher than m' on her list, she leaves m' who is now unmatched again, and matches with m.
 - Else, m' is higher than m on her list, she keeps m' and m remains unmatched
 - \circ In either case, remove $m{w}$ from the priority list of $m{m}$, since she has been considered either way

Interval Scheduling

- Sort the intervals by ending time from earliest to latest
- While we have intervals to look at still
 - Add the earliest ending interval to the schedule
 - Eliminate all overlapping intervals

Chapter 2: Algorithm Analysis

Computational Tractability

• An algorithm is efficient if it has a polynomial runtime

Asymptotic Order

- Order: a function T(n)=O(f(n)) if \exists constants n_0,c such that $\forall \ n\geq n_0$, we have $T(n)\leq cf(n)$
 - Can think of order as an **upper bound**.
- <u>Omega Notation:</u> a funtion $T(n)=\Omega(f(n))$ if \exists constants n_0,c such that $\forall n\geq n_0$, we have $T(n)\geq cf(n)$
 - Can think of Omega notation as a lower bound
- If a problem/algorithm is $O(n_1)$ and $\Omega(n_2)$ such that n_1 = n_2 , then we say the problem is $\Theta(n)$

Common Running Times

- O(log(n)),
- Linear: O(n)
- O(nlogn)
- Quadratic: $O(n^2)$
- Non-Polynomial

Chapter 3: Graphs

Basic Definitions/Applications

- **Graph** a graph is defined by a set of verticies (nodes) and edges (links). we write this formally by saying G = (V, E) with, for example, $V = \{a, b, c, d\}$, $E = \{(b, c), (a, b), (a, c)(a, d)\}$
 - graphs can be directed/undirected
 - graphs can be weighted/unweighted
 - graphs can be connected/disconnected
- If a graph has 2 or less edges with an odd number of edges attatched to it, it is called an **Eulerian Graph**

Connectivity/Traversal

- Breadth First Search
 - Investigate all points nearest our starting point before moving to the next point
 - Queue-based
 - \circ BFS Tree: A node at level i in the tree has a shortest path to the starting point of i
 - $\circ O(e+v)$
- Depth First Search
 - Investigate all points down a path when searching
 - o Stack-based
 - \circ O(e+v)

Graph Representation/Implementing Graphs

- Adjacency matrix
 - \circ [i,j] is 0 if there is no edge between i and j, 1 otherwise
 - if graph is undirected, then this matrix is symmetric
- Adjacency List
 - array of linked lists, each element of array represents node, linked list of all nodes it is connected to
 - better for directed graphs
- BFS
 - Use the queue ("first in first out")
- DFS
 - Use the stack ("last in last out")

Testing Bipartiteness

- Algorithm
 - \circ Run BFS and denote the ith layer of the tree as L_i
 - At an even layer, color all nodes red
 - At an odd layer, color all nodes blue
 - After BFS, check all edges to ensure each node has a different color.

Connectivity in Directed Graphs

- **strongly connected component** two points a and b are strongly connected if \exists a path from a to b as well as a path from b to a
 - The set of strongly connected components is a disjoint set

Any strongly connected component must be a cycle

Directed Acyclic Graphs/Topological Sort

- Terms
 - o directed acyclic graph a directed graph with no cycles
 - <u>in-degrees</u> the number of directed edges coming in to that vertex, $deg^-(v)$
 - \circ out-degrees the number of directed edges leaving a vertex. Denoted $deg^+(v)$
 - \circ **source** a vertex v such that $deg^-(v) = 0$
- Kahn's Algorithm (only on a DAG): O(e+n)
 - Choose a source
 - Output the source
 - Update in-degrees of all of the vertecies connected to the source
 - If any of these become a source, add them to the source list
 - Move back to step 1 and perform this recursively.
- Topological Sort Properties
 - Not necessarily unique, can be more than one solution

Chapter 4: Greedy Algorithms

• **Greedy Paradigm** - Take a problem. Look at one or two items in the problem and make a decision very quickly without really haven't seen the entire problem. Once make decision you stick to it.

Greedy Interval Scheduling

- Problem from before greedily chooses interval to select. Greedy algorithm stays ahead of all other algorithms (for proof)
- Multiple processors: put the next ending task on the lowest available processor.

Shortest Paths in a Graph

- **Dijstra's Shortest Path Algorithm** (http://www.geeksforgeeks.org/greedy-algorithms-set-6-dijkstras-shortest-path-algorithm/)
 - \circ Runtime using adjacency matrix: $O(n^2)$, good for dense graphs
 - Runtime using heap: O(elogn), good for sparse graphs

Minimum Spanning Tree Problem

- **spanning tree (ST):** a graph with the following properties
 - o it is a tree
 - \circ it has the minimum number of edges (n-1 assuming graph has n verticies)
 - it spans/touches every vertex
- minimum spanning tree (MST): a spanning tree such that it has minimum weight

Minimum Spanning Tree Therom

- Take a graph, and split it into two partitions that has the following properties
 - The two partitions are disjoint
 - Each of the two partitions is non-empty
 - All points in the graph are in either of two partitions
- o Consider all edges between partition 1 and partition 2, and denote the minimum weighted edge e_{min} .
- \circ Then \exists a Minimum Spanning Tree that includes e_{min} .

• Prim's MST Algorithm

```
• Given a graph G, n verticies, e edges. Assume MST exists
 2
   • Create two partitions
 3
        - L: contains an arbitary vertex
        - R: contains all other verticies
 4
 5
    • While there are still verticies in R
 6
        - Find the minimum edge between L and R, denoted as e[min]
        - Move e[min] into list for MST
 7
        - Take vertex connected to e in partition R, and move it to
    partition L
9
10
   Same runtime as Dijkstra's
```

Kruskal's MST Algorithm

```
Given a graph G, n verticies, e edges, Assume MST exists
2
    • Sort all the edges by weight in non-decreasing order
    • While there are less than (n-1) edges in the MST
 3
        - Consider the minimum edge that has not been considered
 4
        - If including this edge in the MST creates a cycle
5
            * Discard and move on
 6
7
        - Else including this edge in MST doesn't create cycle
            * Add to MST and move to next edge
8
9
10
   O(elogv) assuming given sorted edges)
```

- Union-Find/Kruskal
 - Every vertex is in it's own set at the start. We have two operations
 - **union**: take two verticies, and take the union of them
 - **find**: take two verticies, and see if they are in the same group
 - Makes checking for cycles, adding them to groups more efficient
 - Implemented as a Balanced BST

K-Clustering

- Start with each vertex in its own roup
- Perform Kruskal until we have the desired **k** clusters.

Chapter 5: Divide and Conquer

Mergesort Algorithm

- Merging: keep a pointer and compare values at pointer until merged
 - Arays must be sorted
 - Time complexity: O(n+m)
- Recurrance relation for mergesort

$$T(n)=2T(rac{n}{2})+cn$$
 $dots$ $T(n)=2^iT(rac{n}{2^i})+icn$

$$T(n)=2^iT(rac{n}{2^i})+icn$$

 \circ Solving $rac{n}{2^i}=1$ gives that i=log(n), so we get O(nlogn)

Further Recurrance Relations

Assume we have the recurrance $T(n) \leq qT(\frac{n}{2}) + c$

- If q > 2, this problem is bounded by $O(n^{\log_2(q)})$
- If q = 1, this problem is bounded by O(n)

Counting Inversions

- Do the mergesort algorithm, splitting into left half **A** and right half **B** with caveat.
 - If when we merge, the element in **B** is first, increment **count** by the number of elements yet to be considered in A.

• By doing this, we count inversions by counting every time numbers switch.

Finding Closest Pair of Points

- We do this by using mergesort in the following way
 - Recursively find the closest pair among the "left half" of points and the "right half" of points, then use informatino to get rest of solution.