Statistik 2, Übung 10

HENRY HAUSTEIN

Aufgabe 1

Wir machen einen Unabhängigkeitstest basierend auf dem Spearmanschen Korrelationskoeffizienten:

 $H_0: R_{XY} \le 0$ $H_1: R_{XY} > 0$

Die Teststatistik ergibt sich zu

$$T = \frac{1}{2} \log \left(\frac{1 + \hat{R}}{1 - \hat{R}} \right) \sqrt{\frac{n - 3}{1.06}} = 2.2442$$

Der kritische Wert ist $z_{1-\alpha} = z_{0.99} = 2.32635$. Die Nullhypothese wird abgelehnt, \hat{R} ist größer als 0.

Aufgabe 2

Stellen wir zuerst einmal die Kontingenztafel mit relativen Häufigkeiten auf:

	positiv	${\bf unentschieden}$	negativ	Σ
weiblich	0.17	0.082	0.148	0.4
männlich	0.18	0.104	0.316	0.6
Σ	0.35	0.186	0.464	1

Wir testen

 H_0 : X (= Geschlecht) und Y (= Meinung) sind unabhängig

 H_1 : X und Y sind abhängig

Die Teststatistik ist

$$T = 500 \cdot \left(\frac{(0.17 - 0.35 \cdot 0.4)^2}{0.35 \cdot 0.4} + \frac{(0.082 - 0.186 \cdot 0.4)^2}{0.186 \cdot 0.4} + \frac{(0.148 - 0.464 \cdot 0.4)^2}{0.464 \cdot 0.4} + \frac{(0.18 - 0.35 \cdot 0.6)^2}{0.35 \cdot 0.6} + \frac{(0.104 - 0.186 \cdot 0.6)^2}{0.186 \cdot 0.6} + \frac{(0.316 - 0.464 \cdot 0.6)^2}{0.464 \cdot 0.6} \right)$$

Nehmen wir $\alpha = 0.05$ an, dann ist der kritische Wert $\chi^2_{(2-1)(3-1);1-\alpha} = 5.9914$, H_0 wird abgelehnt; weibliche und männliche Studenten haben eine also unterschiedliche Meinung.

Aufgabe 3

Wir machen einen Unabhängigkeitstest basierend auf dem Korrelationskoeffizinten nach Bravais-Pearson und testen

 $H_0: r = 0$

 $H_1: r \neq 0$

Die Teststatistik ergibt sich zu

$$T = \sqrt{n-2} \cdot \frac{r}{\sqrt{1-r^2}} = -4.2277$$

Der kritische Wert ist (bei $\alpha=0.05$) $t_{n-2;1-\frac{\alpha}{2}}=t_{18;0.975}=2.1009$, also wird die Nullhypothese abgelehnt. Der Zusammenhang zwischen Alter und Wegstrecke ist also signifikant.