Time left 1:29:54

Question 1

Not yet answered

Marked out of 1.00

We are given the following hypothesis: H_0 : p = 0.6; H_a : $p \neq 0.6$. The sample size is 5000. What will be the standard error (SE)?

- O a. 0.006928
- O b. 0.01
- O c. 0.4

Question 2

Not yet answered

Marked out of 1.00

For a given For a given \hat{p} = 162/195 where n =195 compute the standard error (SE)= 162/195 where n =195, compute the standard error (SE).

- O a. 0.02685
- O b. 0.000721
- Oc. 0.83077

Question 3

Not yet answered

Marked out of 1.00

Given the two ways table below, compute the chi-square statistics (X²):

	Col 1	Col 2	Total
Row1	200	300	500
Row2	30	50	80
Total	230	350	580

- O a. 1.1801
- O b. 20.1801
- O c. 308
- O d. 0.1801

Not yet answered

Marked out of 1.00

Which confidence level will yield the higher margin of error?

- a. 75% confidence level
- O b. 85% confidence level
- c. 95% confidence level.

Question 5

Not yet answered

Marked out of 1.00

Given the two ways table below, compute $E_{\text{row 2,col 1}}$

	Col 1	Col 2	Total
Row1	200	300	500
Row2	30	50	80
Total	230	350	580

- O a. 198.28
- O b. 301.72
- O c. 31.72
- O d. 48.28

Question 6

Not yet answered

Marked out of 1.00

For a given \hat{p} = 162/195 where n =195 and for a 95% confidence level (where z*=1.96) find the confidence interval.

- O a. (0.778, 0.83077)
- O b. (0.02685, 0.883)
- O c. (0.778, 0.883)

Not yet answered

Marked out of 1.00

Given the two ways table below, compute the degree of freedom:

	Col 1	Col 2	Total
Row1	200	300	500
Row2	30	50	80
Total	230	350	580

- a. 0
- O b. 1
- O c. 2
- O d. 0.801

Question 8

Not yet answered

Marked out of 1.00

Given the two ways table below, compute $E_{row\ 1,col\ 2}$

	Col 1	Col 2	Total
Row1	200	300	500
Row2	30	50	80
Total	230	350	580

- O a. 198.28
- O b. 301.72
- c. 31.72
- O d. 48.28

Not yet answered

Marked out of 1.00

The result of an analysis yields a X^2 of 11.47 with p-value of 0.003. The H_0 with a 5% significance level will be rejected.

Select one:

- True
- O False

Question 10

Not yet answered

Marked out of 1.00

Given the two ways table below, compute E_{row 2,col 2}

	Col 1	Col 2	Total
Row1	200	300	500
Row2	30	50	80
Total	230	350	580

- O a. 198.28
- O b. 301.72
- O c. 31.72
- O d. 48.28

Question 11

Not yet answered

Marked out of 1.00

Suppose we wanted the margin of error for the 95% confidence level (where $z^*=1.96$) to be 2% for a given \hat{p} of 0.60. How large should the sample size be approximately to achieve that margin of error?

- O a. 2305
- O b. 1330
- O c. 5305

Not yet answered

Marked out of 1.00

We are given the following hypothesis: H_0 : p = 0.6; H_a : $p \neq 0.6$. The sample size is 5000. For what sample proportion would the p-value be equal to 0.01 using Z = -2.58.

- \bigcirc a. $\hat{p} = 0.42$
- \bigcirc b. $\hat{p} = 0.58$
- \bigcirc c. $\hat{p} = 0.77$

Question 13

Not yet answered

Marked out of 1.00

The table below provide the observed counts (O) and the expected counts (E) of an experiment.

Calculate the degree of freedom:

observed counts (O)	Expected counts (E)
4	20
16	63
67	169
345	174

- O a. 15
- O b. 7
- O c. 3

Question 14

Not yet answered

Marked out of 1.00

We are given the following hypothesis: H_0 : p = 0.6; H_a : $p \ne 0.6$. The sample size is 5000. For what sample proportion would the p-value be equal to 0.01 using Z = 2.58.

- \bigcirc a. $\hat{p} = 0.62$
- \bigcirc b. $\hat{p} = 0.58$
- \bigcirc c. $\hat{p} = 0.42$

Question 15		
Not yet answered		
Marked out of 1.00		

What is not a correct step to carry out a confidence interval procedure?

- O a. identify
- O b. choose
- O c. check
- O d. calculate
- O e. conclude
- Of. brainstorm