Genome-wide association mapping

Brian Kissmer

USU Department of Biology

Nov. 14th, 2024

What is genome-wide association mapping?

Genome-wide association (GWA) mapping is a set of methods used to identify genetic variants associated with variation in particular traits or disease susceptibility.

Why is go

Why is genome-wide association mapping useful?

- 1. Provides insights into the genetic basis of complex traits and diseases
- 2. <u>Medical applications</u>: helps identify potential therapeutic targets.
- 3. <u>Evolutionary biology</u>: aids in understanding the genetic architecture of traits in diverse populations and species.

Basic principles of genome-wide association mapping

- > Observational study of a genome-wide set of genetic variants in different individuals.
- Tests for statistical association between genetic variants and traits.
- > Typically use single-nucleotide polymorphisms (SNPs) genetic variants.
- > Statistical association is NOT equivalent to causal effect.

Overview of steps for conducting GWA mapping

[Uffelmann et al., 2021]

Linear regression models for GWA mapping

Standard linear model for phenotype (y_i) as a function of genotype (g_i) for individual i:

$$y_i = \beta_0 + \beta_{SNP} g_i + \epsilon_i$$

USU Department of Biology

Linear regression models for GWA mapping

Standard linear model for phenotype (y_i) as a function of genotype (g_i)

$$y_{i} = \beta_{0} + \beta_{SNP} g_{i} + \epsilon_{i}$$

for individual i:

Models can include additional covariates (x), such as environmental effects, organism attributes (sex, age, etc.), or genetic background:

$$yi = \beta_0 + \beta_{SNP} g_i + \alpha_1 x_{1i} + \ldots + \alpha_k x_{ki} + \epsilon_i$$

Unit 3: Computational statistics, algorithms, and genomics

Putative causal variants prioritized based on patterns of association

Brian Kissmer

USU Department of Biology

GWA signals can be associated with changes in gene expression and molecular pathways d What are the target genes in the locus?

e What are the affected pathways?

Challenges for genome-wide association mapping

- Many traits are polygenic, i.e., influenced by many genes often with small and contingent effects.
- Population stratification and environmental influences can lead to false associations.
- > Very large sample sizes are often needed to increase the power to detect "true" (useful) associations.

GWA mapping methods to increase power

Common methods test one genetic variant (SNP) at a time, this leads to low power

$$y_i = \beta_0 + \beta_{SNP} g_i$$

Multi-locus models that test many genetic variants simultaneously can increase power and better account for redundant associations: $yi = \beta_0 + \beta_1 g_{1i} + \ldots + \beta_k g_{ki}$

How to fit a multilocus model

- > Traditional regression methods do not work when the number of parameters exceeds the number of observations, which is often the case for multi-locus GWA mapping analyses.
- > Two possible solutions:
 - Use penalized regression, e.g., LASSO (last week)
 - Use machine learning, e.g., Random Forest (more on this later)

See programming project 5

Week 12