The title

Olivier Cailloux

12th October, 2017

1. Overview

Looking for possibilities (weak acceptance). Those propositions that are in the reflexive preferences in a large sense: there is no strong enough reason to reject those propositions, though their contrary may hold as well.

- All alternatives \mathcal{A} .
- Topic $T^* = \{ p_a, a \in \mathcal{A} \} \cup \{ p_{\neg a}, a \in \mathcal{A} \}$. Denoted simply a and $\neg a$. We define $\neg p$, with $p = p_a$, as equal to $p_{\neg a}$ and $\neg p$, with $p = p_{\neg a}$, as equal to p_a .
- All possible arguments: S^* , the set of all strings. It can be chosen differently, but must be non empty as it contains at least \emptyset , the empty argument.
- $s' \not\models_{\forall}^{p} s$: absence, all the time, of strong rejection attack; s' does not render s invalid; it is sure that s' has no impact on s, even assuming that s' would in turn resist all counter-arguments to it. This is an hypothesized relation, unobservable, used to define the deliberated preferences of i (it is clear we can't observe it, thus, as we can't observe the DP). With s supporting p, s' claims that $\neg p$ is a certainty, thus s' supports that p is not weakly accepted, thus s, if rebutted, can't be used even to say that p is a possibility. Thus we have only attacks between contradictory propositions. Suffices that the attack occurs at least once over the considered time frame and unstability factors (such as submitting i to other counter-arguments) to negate $s' \not\models_{\forall}^{p} s$. Here we do not condition on s' surviving: s' is declared incorrect, with no necessity of pursuing the debate and no hope of reinstatement. Example: s' has already been taken into account and countered in s; or s' does not talk about s at all; or is not understood by i. Note that when $s' \not\models_{\forall}^{p} s$, further attacks to s'

have no chance to change that fact (assuming some properties over the way i reason). The negation of this should read: s' may attack s in at least some cases. For example, $\neg(s' \not\triangleright_{\forall}^{p} s)$ (s' may attack s) in case i suspects that s' is invalid (because of some counter-argument s_2 to s' that i has in mind) but wants to leave the door open to reinstatement of s'.

- Define $\neg (s' \not\triangleright_{\forall}^p s)$ iff $s' \triangleright_{\exists}^p s$.
- Define $s \triangleright_{\exists}^{\neg p, \text{sure}} s'$ iff s may attack s', where s has a weak claim (p is possible) and s' has a strong claim ($\neg p$ is sure). Similarly, $s \not\models_{\forall}^{\neg p, \text{sure}} s'$ is a constant absence of attack.
- Require (as an axiom) that $s' \rhd_{\exists}^p s \lor s \rhd_{\exists}^{\neg p, \text{sure}} s'$. Equivalently: $\neg (s \not\succ_{\forall}^{\neg p, \text{sure}} s' \land s' \not\succ_{\forall}^p s); \neg (s' \rhd_{\forall}^p s \land s' \not\succ_{\forall}^p s); s' \rhd_{\forall}^p s \Rightarrow s' \rhd_{\exists}^p s$.

It seems that knowledge of the poss rels is insufficient to know the sure rel: assume $\neg(s' \rhd_{\exists}^p s)$ and $s \rhd_{\exists}^{\neg p} s'$. Thus, 1. s is sufficient for p possible, s' not sufficient for $\neg p$ sure; and 2. s may be sufficient for p sure, s' insuff for p. But is s sufficient for p sure? Thus, $s' \rhd_{\exists}^{p, \text{sure}} s$? Equivalently: $s \not \succ_{\exists}^p s'$? To know this we need to know whether $\neg p \in T_i$. Or can we use $\neg(s' \rhd_{\exists}^p s) \Rightarrow s' \not \succ_{\exists}^p s$?

Previously:

- $\neg (s' \rhd_{\forall}^p s) \Leftrightarrow s' \not \rhd_{\exists}^p s \Leftrightarrow s \rhd_{\exists}^{\neg p, \text{sure}} s' \Leftrightarrow \neg (s \not \rhd_{\forall}^{\neg p, \text{sure}} s').$
- Require (as an axiom) that $s' \rhd_{\exists}^p s \lor s' \not \triangleright_{\exists}^p s$. This yields $\neg (s' \rhd_{\forall}^p s \land s' \not \triangleright_{\forall}^p s)$.

Define $T_i \subseteq T^*$ as the set of propositions that are weakly accepted.

Definition 1 (Weak acceptance). *Define a situation* $(\mathcal{A}, S^*, \{ \triangleright_{\exists}^p \})$. *A proposition* $p \in T^*$ *is weakly accepted,* $p \in T_i$, *iff* $\exists s \in S^* \mid \forall s' \in S^* : s' \not\models_{\forall}^p s$.

It follows that $\neg p \notin T_i$ iff $\forall s : \exists s' \mid s' \rhd_{\exists}^{\neg p} s$.

Definition 2 (Strong rejection). *Define a situation* $(\mathcal{A}, S^*, \{ \triangleright_{\exists}^p \})$. *A proposition* $\neg p \in T^*$ *is strongly rejected iff* $\forall s \in S^*, \exists s' \in S^* \mid s \not\models_{\forall}^{p,sure} s'$.

Thus, strong rejection mandates s' such that $s' \rhd_{\forall}^{\neg p} s$.

If $\neg p$ is strongly rejected, then it is not weakly accepted $(\neg p \notin T_i)$ as $s' \rhd_{\forall}^{\neg p} s \Rightarrow s' \rhd_{\exists}^{\neg p} s$.

Definition 3 (Clear-cut). A situation is clear-cut iff $\neg p \notin T_i \Rightarrow \neg p$ is strongly rejected.

First, we want that if situation is CC, 1) exists a valid model, 2) any valid model has the right T_i . A model is valid if: a) can correctly get reinstatement; b) i is justifiably unstable; c) finite arguments; d) model is convincing.

Second, we want that given a situation, if there exists a valid model, then the situation is CC.

Third, perhaps we get as a bonus that there exists a valid model \Leftrightarrow the situation is CC3. CC1: $\neg p$ not in wa $\Leftrightarrow \neg p$ s rej. CC2: $\neg p$ s rej $\Rightarrow p$ w acc. CC3: $\neg p$ s rej $\Rightarrow p$ is sure.

2. Models

 \triangleright_{η} a (possibly infinite!) DAG over (s,p) pairs, + defined over arguments in \triangleright_{η} : $(s_1,p)+(s_3,p)=(s',p)$ for some $(s',p)\in \triangleright_{\eta}$. Define $D'\subseteq S_{\gamma}$ as a subset of arguments (those supporting propositions). Define $S_{\gamma}\subseteq S^*$ as the set of arguments used in \triangleright_{η} . Assume it can be represented by \ge , a weak order defined on the basis of \triangleright_{η} , defining at most k equivalence classes, so that our recursive definitions make sense. (TODO make this correct and precise.)

3. Conditions

Definition 4 (Reinstatement). Given a model $\mu = (\triangleright_{\eta}, D')$ and a decision situation $(\mathcal{A}, S^*, \triangleright_{\exists})$, given $s_1 \in D'$, $s_2 \triangleright_{\eta} s_1, s_2 \triangleright_{\exists} s_1, s_3 \triangleright_{\exists} s_2, \triangleright_{\eta}^{-1}(s_3) = \emptyset$: $\triangleright_{\eta}(s_1) \subseteq \triangleright_{\eta}(s_1 + s_3) \wedge \triangleright_{\eta}^{-1}(s_1 + s_3) \subseteq \triangleright_{\eta}^{-1}(s_1) \setminus \triangleright_{\eta}(s_3)$.

Definition 5 (Observable validity). *Given as above, the model is observably valid* iff $\forall s_2 \triangleright_{\eta} s : \neg(s_2 \succ_{\exists} s) \lor \exists s_3 \triangleright_{\eta} s_2 \mid s_3 \succ_{\exists} s_2$.

Definition 6 (Justifiable unstability). *Given as above...*

A. Todo

Road map.

- P1: p_a is w-a or $p_{\neg a}$ is w-a
- Define p_a is strongly accepted; $p_{\neg a}$ is strongly rejected, so that they are equivalent
- P2: p_a is w-a or $p_{\neg a}$ is strongly accepted.

Other todos.

- If *i* does not consider *s* as supporting *p*, it also works: if *p* is not weakly acceptable by default, then any *s'* is considered by *i* as a better argument than *s* in favor of certain $\neg p$, and so on. In fact, whether $\varnothing \rhd_{\exists}^p \varnothing$ determines whether *p* is weakly supported by default.
- I should define $s'(\square \triangleright_{\exists}^p)s$ as an observable: "Assuming s' would survive, do you consider s' as leading to certainty of $\neg p$, even when considering s?". It distinguishes our knowledge and the truth: $s'(\square \triangleright_{\exists}^p)s \Rightarrow s' \triangleright_{\exists}^p s$, thus, implies $\neg(s' \not \triangleright_{\forall}^p s)$. But out of $\neg(s'(\square \triangleright_{\exists}^p)s)$, nothing.
- Partition (objectively) S^* (or $S^* \times T^*$) into arguments in favor of p, sure, $\neg p$, sure, and similarly for possible. Use only one rel \triangleright_{\exists} , defined on contradictory arguments only, instead of $\triangleright_{\exists}^{p,\text{sure}}$ and others. Define $s' \triangleright_{\exists}^{p} s$ equals no when $\neg(s' \rightsquigarrow \neg p, \text{sure})$, equals \triangleright_{\exists} for adequate arguments, and equals yes when $\neg(s \rightsquigarrow p, \text{possible})$ and $s' \rightsquigarrow \neg p, \text{sure}$, with probably some complications needed for the argument \emptyset (and related default attitude towards p).

Questions: Q1. Relationship with $s \triangleright_{\exists}^{p} s$?

We want to exclude: s supports p perhaps, attacked by s2 (supporting $\neg p$ sure), but then s2 is attacked by s. Exclude $s' \triangleright_{\exists}^p s$ and $s \triangleright_{\exists}^{\neg p, \text{sure}} s'$. Require to assume that this situation implies another argument s_3 "attacking" s', thus, such that $s_3 + s$ is no more attacked by s_2 .

B. To think

Propositions weakly self-supported $T \subseteq T^*$: weakly accepted if no arg is given. Examples: m = "eat miam"; $\neg b =$ "beurk is to exclude"; or, in a problem where there's no particularly good aliments, both a = "eat this" and $\neg a$.

When given (s, p), i may say: s does not survive; or: assuming s survives, then s supports p, or, assuming s survives, then s does not support p anyway.

When given s' against s, i may say: s' does not survive, or: assuming s' survives, then s' supports $\neg p$, ...

Given $(s_2, p), (s_1, \neg p) \in D$, define $\neg (s_2 \succ_{\exists \neg p}^{\text{neg}} s_1)$ iff for some $(s, p) \in D$, where $s_1 \succ_{\exists}^p s$: $s_1 \succ_{\exists}^p s + s_2$. Equivalently: $s_2 \succ_{\exists \neg p}^{\text{neg}} s_1$ iff for all s, where $s_1 \succ_{\exists}^p s$: $\neg (s_1 \succ_{\exists}^p s + s_2)$. (This does not seem right: if given s_3 attacking s_2 , and not given s_4 which would convincingly rebut s_3 , then temporarily it may hold again that $s_1 \succ_{\exists}^p s + s_2$ (in the sense that $s_1 + s_3 \succ_{\exists}^p s + s_2$).)

 $s_2 \succ_{\exists \neg p} s_1$ can perhaps be queried directly by asking (in the context of some $s_1 \rhd_{\exists}^p s_1$): "assume s_2 survives, then does s_2 counter s_1 ?" (In the sense that s_2 is sufficiently convincing that p holds perhaps, to cancel the argument s_1 according to which $\neg p$ surely holds.)

C. Certainties

Looking for certainties. Those propositions that are in the reflexive preferences in a demanding sense: there is a strong enough reason to prefer it than its contrary.

- $s' \succ_{\exists} s$: weak attack; s' renders s invalid (can't be used to say that t holds for sure) (assuming s' survives)
- Propositions strongly self-supported: strongly accepted if no arg is given. Examples: m = "eat miam"; $\neg b =$ "beurk is to exclude". We might have neither c nor $\neg c$ in that set.

Definition 7 (Sure acceptance). *Define a situation* $(\mathcal{A}, S^*, \{ \triangleright_{\exists}^p \})$. *A proposition* $p \in T^*$ *is accepted as sure iff* $\exists s' \in S^* \mid \forall s \in S^* : s \not\models_{\forall}^{p,sure} s'$.

Assume we use rather: if p is not sure, then $\neg p$ is weakly accepted (by def). Then we have never problems of inconsistency! But we could be in a situation where p is not accepted as sure but nobody can tell why because it is fundamentally unstable (sometimes p being accepted, sometimes not).

D. Example

s2 argues in favor of p against s1: s "le monde n'est pas fiable". s1 "le monde est fiable, bhl l'a dit". s2 "bhl est un clown, il s'est planté sur l'Irak". s3 "il avait raison sur l'Irak : l'Irak a des ADM". s4 "l'Irak n'a pas d'ADM, Bush l'a reconnu". Does s4 attack s3? "bhl est un clown, il s'est planté sur l'irak" + "l'irak n'a pas d'ADM, Bush l'a reconnu" VS "il avait raison sur l'Irak : l'Irak a des ADM"!

Measure problem?