Environmental Fluid Mechanics, M.Sc. Environmental Meteorology – 2022/23

Stratified flows: Equilibrium, instability and turbulence

Marco Toffolon (University of Trento)

References

Benoit Cushman-Roisin and Jean-Marie Beckers, **Introduction to geophysical fluid dynamics :** physical and numerical aspects, 2nd ed., Academic Press, 2011.

https://webapps.unitn.it/Biblioteca/it/Web/LibriElettroniciDettaglio/117963

- 11. Stratification
 - 11.1 Introduction
 - 11.2 Static Stability
- 14. Turbulence in Stratified Fluids
 - 14.1 Mixing in Stratified Fluids

Pijush K. Kundu, Ira M. Cohen, David R. Dowling, **Fluid mechanics**, 5th ed., Academic Press, Elsevier, 2012.

https://www-sciencedirect-com.ezp.biblio.unitn.it/book/9780123821003/fluid-mechanics

- 1. Introduction
 - 1.10. Stability of Stratified Fluid Media
- 11. Instability
 - 11.3. Kelvin-Helmholtz Instability
- 12. Turbulence
 - 12.11. Turbulence in a Stratified Medium

Scott A. Socolofsky, Mixing and Transport Processes in the Environment, Lecture notes – part 2.

- ch. 8 Concepts, Definitions, and Governing Equations
- ch. 11 Instability

DENSITY STRATIFICATION AND GRAVITATIONAL EQUILIBRIUM

Oscillations around stability: a simple model

second Newton's law

$$F = ma = \rho_0 \delta V \frac{d^2 \eta}{dt^2}$$

$$\frac{d^2\eta}{dt^2} - \frac{g}{\rho_0} \frac{d\rho}{dz} \eta = 0$$

$$\frac{d^2\eta}{dt^2} + N^2\eta = 0$$

$$N = \sqrt{-\frac{g}{\rho} \frac{d\rho}{dz}}$$
 (buoyancy frequency)

solution: oscillating motion around the equilibrium position

oscillation period
$$T = \frac{2\pi}{N}$$

$$\eta = \eta_0 \cos(Nt)$$

Oscillations around stability: analogy

$$\frac{d^2\eta}{dt^2} + N^2\eta = 0$$

$$\eta = \eta_0 \cos(Nt)$$

$$T = \frac{2\pi}{N}$$

$$N = \sqrt{-\frac{g}{\rho} \frac{d\rho}{dz}}$$

Vilho Väisälä (1889-1969)

Brunt-Väisälä buoyancy frequency N [s⁻¹] (physical interpretation: "spring oscillations")

INSTABILITY ACROSS DENSITY INTERFACES

Examples of the Kelvin-Helmholtz instability

http://www.efluids.com/efluids/gallery/gallery_pages/cloud_instability_2.jsp

 $http://www.efluids.com/efluids/gallery/gallery_pages/kelvin_helm_page.jsp$

http://www.physics.mun.ca/~danielb/research/aestus/aestus.html

Examples of the Kelvin-Helmholtz instability – in Trentino

Kelvin-Helmholtz instability: an enlightening experiment

Instability in stratified flows: the Kelvin-Helmholtz instability

Hp: two layers with different densities; immiscible fluids, inviscid motion.

No overall motion: interfacial waves

Relative motion between layers: disturbances grow or decay?

Heuristic explanation

instability: when the dissipated kinetic energy is larger than the work required by the buoyancy forces to move fluid particles

(without viscosity)

Mechanical work of the buoyancy forces

buoyancy force

$$\Delta B = -g\rho(y) + g\rho(y+\eta) = -g\rho(y) + g\left[\rho(y) + \frac{d\rho}{dy}\eta + O(\eta^2)\right] \cong g\frac{d\rho}{dy}\eta$$

work

water particle 1

$$\Delta B = -g\rho(y+\eta) + g\rho(y) \cong -g\frac{d\rho}{dy}\eta$$

water particle 2

$$W_{B2} = \int_{\delta y}^{0} -g \frac{d\rho}{dy} \eta d\eta = g \frac{d\rho}{dy} \frac{(\delta y)^{2}}{2}$$

$$W_{B1} = \int_0^{\delta y} g \frac{d\rho}{dy} \eta d\eta = g \frac{d\rho}{dy} \frac{(\delta y)^2}{2}$$

total work

$$W_B = W_{B1} + W_{B2} = g \frac{d\rho}{dv} (\delta y)^2 < 0$$

(energy is required to exchange the particles)

Variation of kinetic energy

before
$$E(t_a) = \frac{\rho_0 u^2}{2} + \frac{\rho_0 (u + \delta u)^2}{2}$$
(1) (2)

after
$$E(t_b) \cong 2\frac{\rho_0}{2} \left(\frac{u + (u + \delta u)}{2}\right)^2$$

hp. average velocity

variation of kinetic energy

$$\Delta E = E(t_b) - E(t_a) = -\frac{\rho_0}{4} (\delta u)^2$$

(after the exchange, the kinetic energy is smaller)

Threshold for instability

instability: when the dissipated kinetic energy is larger than the work required by the buoyancy forces to move fluid particles

$$-\Delta E > -W_B$$

$$\frac{\rho_0}{4}(\delta u)^2 > -g\frac{d\rho}{dy}(\delta y)^2$$

(without viscosity)

Richardson number

$$Ri = -\left(\frac{g}{\rho_0} \frac{d\rho}{dy} \left(\frac{du}{dy}\right)^{-2} < \frac{1}{4}\right)^{-2}$$

$$N^2 = -\frac{g}{\rho_0} \frac{d\rho}{dy}$$

square of Brunt-Väisälä frequency [T⁻²]

Analogies with instability in turbulence

"Classical" turbulence: Reynolds experiment

stabilizing factor: viscosity

Stratified flows

stabilizing factor: density difference

$$Ri = \frac{-\frac{g}{\rho} \frac{d\rho}{dz}}{\left(\frac{du}{dz}\right)^2}$$

Relevant dimensionless number

Richardson number:

$$Ri = N^{2} \left(\frac{du}{dz}\right)^{-2} = \frac{-\frac{g}{\rho} \frac{d\rho}{dz}}{\left(\frac{du}{dz}\right)^{2}}$$

$$Ri_b = \frac{g'H}{U^2} = \frac{1}{F_d^2}$$

$$g' = \frac{\rho'}{\rho_0} g$$

$$Ri_f = \frac{g\langle \tilde{\rho} \tilde{w} \rangle}{\bar{\rho} u_*^2 \frac{du}{dz}}$$

(turbulence) ratio between energy removal rate due to buoyancy forces and production due to shear

densimetric Froude number

$$F_d = \frac{U}{\sqrt{g'H}} = \frac{1}{\sqrt{Ri_b}}$$

Reynolds number

$$Re = \frac{UL}{v}$$

Prandtl number

$$Pr = \frac{v}{\kappa}$$

TURBULENT MIXING SUPPRESSION IN STRATIFIED FLOWS

Turbulence reduction due to stratification

Simple empirical laws

Effect of stratification (depending on Richardson number)

$$D_{z,strat}^T = D_{z,0}^T (1 + a Ri)^b$$

Ri = -	$g d\rho$	du	-2
πι — -	$\overline{\rho} \overline{dz}$	$\langle \overline{dz} \rangle$	

$$Ri_b = -\frac{g\Delta\rho\ H}{\bar\rho\ \Delta U^2} \qquad \text{(bulk)}$$

Autore	a	b
(1) Munk and Anderson (1948)	10/3	-3/2
(2) Officer (1976)	1	-2
(3) Schiller amd Sayre (1975)	10/3	-5/4

Some references:

Munk, WH, ER Anderson (1948), Notes on a theory of the thermocline, *J. Marine Res.*, 7:276–95. Large, WG, JC McWilliams, SC Doney (1994), Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, *Reviews of Geophysics*, 32:363–403.

Otherwise:

- specific single point second order **turbulence models** (k- ε , Mellor-Yamada, etc.)
- LES (Large Eddy Simulation)
- DNS (Direct Numerical Simulation) eddy-resolving methods

Examples of empirical laws

Pacanowski and Philander (JPO1981)

$$u_z = v_0 (1 + \alpha Ri)^{-n} + v_{bg}$$
 viscosity
$$D_z = v_z (1 + \alpha Ri)^{-1} + D_{bg}$$
 diffusivity background viscosity/diffusivity

Large and Gent (JPO1999)

$$\begin{aligned} \nu_Z &= \nu_S + \nu_W + \nu_d & \text{viscosity, diffusivity} \\ \text{(for velocity, temperature, salinity, etc.)} \end{aligned}$$

$$\begin{aligned} \text{resolved} & \text{unresolved} \\ \text{vertical} & \text{internal} & \text{double} \\ \text{wave} & \text{diffusion} \end{aligned} \qquad \begin{aligned} \nu_{w,u} &= 10^{-4} \ m^2 s^{-1} \\ \nu_{w,T} &= 10^{-5} \ m^2 s^{-1} \end{aligned}$$

$$\begin{aligned} \nu_{w,T} &= 10^{-5} \ m^2 s^{-1} \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} \nu_{w,T} &= 10^{-5} \ m^2 s^{-1} \end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} \nu_{w,T} &= 10^{-5} \ m^2 s^{-1} \end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

Estimating the parameters

Elements for the dynamic reconstruction of the reduced vertical eddy diffusivity:

- reference viscosity/diffusivity (possibly vertical profile)
- background viscosity/diffusivity (unresolved processes)
- gradient Richardson number:
- dient Richardson number: buoyancy frequency (depends on temperature profile) $Ri = \frac{N^2}{S^2}$
 - shear frequency (depends on flow field)

$$Ri = \frac{N^2}{S^2}$$

$$N^2 = -\frac{g}{\rho} \frac{\partial \rho}{\partial z} = \beta g \frac{\partial T}{\partial z}$$

$$S^2 = \left(\frac{\partial U}{\partial z}\right)^2 + \left(\frac{\partial V}{\partial z}\right)^2$$

 β thermal expansibility of water

Estimates for models that do not resolve hydrodynamics

$$\rho = \rho_o [1 - \beta (T - T_o)]$$

$$S^2 = \frac{S_{lw}^2 + S_{iw}^2 + S_{bg}^2}{1 + \frac{S_{bg}^2}{1 +$$

wind stress (τ_w) contribution ~ law of the wall

$$S_{lw} = \frac{\partial U_0}{\partial z} \sim \frac{u_*}{\kappa z} = \frac{\sqrt{\tau_w/\rho}}{\kappa z}$$

internal wave contribution $\gamma = 0.7$ (Mellor et al., 1989)

An example of an estimate of Ri for a wind-driven flow in a lake

