Relational Algebra Join Operations

Conceptual modeling Questions:

In the world of cats. This world **is timeless**. This means the owners own the cats at present. There is no data (information) about the past (historical data) and no some future plans (reservations placed on future cats ©)

- 1. Each cat has only one owner and one owner has only one cat. How do you represent the relationship between a cat and its owner?
- 2. Each cat may have many owners, but each owner has only one cat. . How do you represent the relationship between a cat and its owner?
- 3. Each cat may have only one owner, but an owner may have many cats. How do you represent the relationship between a cat and its owner?
- 4. Owners may have many cats and cats may have many owners. How do you represent the relationship between a cat and its owner?

 Use the relations below to represent 2-4.

Cat

Cat Id	CName	Color	Age
C1			
C2			
C3			

Owner

<u>Ownerld</u>	OName
01	\mathbf{a}_3
O2	\mathbf{a}_2

In the world of people: some people own cats some don't own cats.

Cat

Cat Id	CName	Color	Age
C1			
C2			
C3			

People

<u>PersonId</u>	PName
P1	
P2	

Use the relations: Cat and People to execute the following operations:

Cat

<u>Cat Id</u>	CName	Color	Age	PersonId
C1	Charlie	red	5	P1
C2	Dog	black	5	P2
C3	SQL	white	16	P2

People

<u>PersonId</u>	PName
P1	Mila
P2	John
P3	Scarlett

People world: Some people may not have cats, some have more than one cat, and cats have only one owner.

Write **RA expressions** to:

- A. List all cats (CatID and CName) and their owners names
- B. List all people (names only) and their cats (CName only) including the people who do not own cats

Write SQL to do A and B

Syntax:

```
SELECT <colname,...> FROM <tablet1>, <table2> WHERE <comparison> SELECT <colname,...> FROM <tablet1> JOIN <table2> ON <comparison> SELECT <colname,...> FROM <tablet1> LEFT OUTER JOIN <table2> ON <comparison>
```

Relational Algebra Exercise

Given two relations (tables) R and S:

\mathbf{R}

<u>A</u>	В	C	D
a ₁	b ₁	C 2	d ₁
a 3	b ₁	C 1	d ₂
a ₂	b ₂	C4	d ₅

S

<u>E</u>	Α
e 1	a 3
e ₃	a ₂

Answer the following questions:

- 1. What is the result of a Selection σ over \mathbf{R} : $\sigma_{B} <> b_{2}(\mathbf{R}) = \mathbf{B} <> \mathbf{b}_{2}$ means that the value in column B is not equal to b_{2}
- 2. What is the result of a Selection over R: $\sigma_{B} <> b2$ and B <> b1 (R) =
- 3. What is the result of a Projection over **R**: $\pi_B(\mathbf{R}) =$
- 4. Is Union $\mathbf{R} \cup \mathbf{S}$ a valid operation? Explain why.
- 5. What is the **degree** (number of columns) of the result **R x S** (**x** Cartesian Product)?___ What is the **cardinality** of the result?____
- 6. Calculate **natural join** between R and S. What is the degree of the R ⊳⊲ S?
- 7. Calculate Left Outer Join between R and S.
- 8. What is the result of $\mathbf{R} \cap \mathbf{S}$?