

STAMFORD UNIVERSITY BANGLADESH

Name : Abdullah Al Monayem

ID : CSE 071 08128

Subject: Algorithms (CSI - 231)

Batch : 71 - A

Email : almonayem2019@gmail.com

Contact No.: 01747-534818

Date:

84

(a)

35 (DO) 7/8₂

Annay: 100, 78, 84, 55, 65, 45,

84

Arvay: 100, 78, 84, 55,65, 45, 34, 25, 1221

2nd: Swap

48 89 21 45

 $\begin{array}{c} 25 \\ \hline (12) \\ \hline \end{array}$

ATLTRAY 89,78, 45, 55, 65, 21, 34, 500 Swap 25, 12, 100

Subject :

Page-3

Date:

Tanha Enterprise

65

5th',

78 (29) (100) swap

Array: 55,34,45,25,12,21,

 $65, \frac{78}{100}$

6th)

(78

(84)

(100

217 45,34,21,25,12, 55, Aronay 1 65, 78, 84, 100 7th! 21 (84 100 nwa 34 25, 21, 12, 45, Aroray ; 55, 65,78,84,100 thin way,

#

34) (45) (55)

(78) (29) (100)

Annay! 25, 12, 21, 34, 45, 55, 65 78, 84, 100

Aronay: 121, 12, 25, 3.4, 45,55,65 78,89,100

Final Armay! 12, 21, 25, 34, 45, 55, 65 78,84,100 (12)

21

(25)

39

(45)

(55)

78

Enterprise

Date:

Am. the . Q. NO:1

(6)

Yes, we can find shortest path in a directed acyclic graph having negative-weighted cycle wing Bellman-Fond Algorithm.

	Finn.	(3)				
ventea	S	1	7 2		Z	
inital	O/NIL	00/NIL	∞/NIT	∞/NIL	00/NJL	
Int	2 nie	2/2	4/4	7/5	-2/+	
220	0	2/2.	4/4	7/5	-2/+	
3nd	ONB	2/2	4/4	715	-2/+	
9th	0	2/2	4/4	7/5	-2/+	

Amithe Q. NO: 1

Abten nont the given

TEAT I		
Edge	-MA	weight
yz	1 1 0 · · · ·	12
AM	10,7	15
YX		22
LA		24
LM		30
MY		40
AN		4 1
AZ		50
M N N Z L-Y		5263
		70

Steration: 1:

fteration:2;

9teration; 30

$$K = \left\{ (Y, Z), (A, M) \right\}$$

is Enterprise

Interation-4

 $K = \{(-Y, Z), (A, M), (XY)\}$

(AM) (1) (N) (X,YZ)

9+eration-5;

 $K = \{(Y, Z), (A, M), (X, Y), (L, A)\}$

LAM. (N) (21,4,Z)

9teration-6:

K=={(Y,Z,(A,M),(X,Y),(L,A),

LAMXYZ (N)

Heration: 7:

$$K = \{(Y, Z), (A, M), (X,Y), (L,A)\}$$

(ALMNXYZ

Minimum Spanning Tree M 32 N 22 (7) 12 (2)

Total Cost = 196

Merprise

Date:

Am. the. Q. No! 2

(a)

Edgen-Lint:

(V, V2)

(V2, N3)

(2, V5)

(N3, N4

(V4, N3)
(V4, V5)
(V5, V3	
(VO, V,	
(Vo, V2)
(Vo , Vs	$\left(\right)$

			Mal			
Ventex	~1	V2	V3	~q	145	10
Initia !	OLNIT	00/NIL	00/NIL	0/NIL	∞/NIL	a/NIL
Int	0/417	-1/1	2/1/2	-3/ N3	41×2 -5/14	∞/NIL
not Final	OLHIL	-/1	2/V2	-3/N3	-5/vg	2/417
2nd	Olur		21/2	-3/N3	-5/Ng	2/NIL
3nd	OLVIL			-3/N3	-5/ NA	co/NIL
4th	Olur	-VVI-	2/V2	-31 N3	- 5/ N4	00 WIT
5th	Olmr	-1/1	2/12	-3) Ng	-5/ N4	WINIT

anha Enterprise

Subject :

Pag-1816

Date

Am. the. Q. NO:2

(6)

Topological sont:

Tanha Enterprise

P. T. O

Subject:

Page-16 17

Date:

10

TO A William to Total (1)

Total Land of the state of the

(MBXDK) (m) Ket 100) 200 (MB)

Am. the . a. No! 2

(c)

Omega (s2) in used

to represent lower bound

ob algorithm

(i) i.e the best case of

an algorithm

(ii) The function $f(n) = \Omega(n)$

iff there exint ponitive

constants e and no

ciii) such that f(n) > cxg(n)

for all, n, n > n o

Example - Simple -

$$3n+2=\Omega(n)$$

$$50, f(n) \ge e * g(n)$$

$$3n+2 \geq 3n$$

for,
$$n=1$$
, $3.1+2 \ge 3.1$

Subject:

Page -19 20

Date:

Am. the . Q. NO! 2

(d)

	(M) P & S <	. Tre X 1/2 1 1 5	
Companinon	OFS	DFS	
Banic	Verten-baned	Edge-bane	
	algoni thm	algorith'	
Data Structure used to	Queue	Stack	
ntone the nodes	and the most incl	let the	
memory	gne fficient	Efficient	
rompuption	tor		

Tanha Enterprise

Tanha Enterprise

Subject:

Page - 28 21

Date:

Example -

3FS.

Gr

00:44:50 Remaining

Multiple Choice

Consider you have implemented Topological Sort on the following graph. What is the highest finishing time of the following vertices?

1 attachment -

O 18

O None of the above

00:43:57 Remaining

Short Answer

Write down the DFS traversal sequence of the following graph starting from node 1.

1 attachment -

Your Answer

1,3,5,7,6,2,4

00:43:27 Remaining

Short Answer

What is the main difference between Prim's and Dijkstra's algorithm?

Your Answer

we use prims to find minimum spanning tree where as we use Dijkstra to find sortest path between two nodes

00:43:16 Remaining

Multiple Choice

If you implement HeapSort on the following array, what will be the output array after 1st iteration?

< 2, 4, 7, 11, 10, 9, 25, 20, 31, 55, 60, 46 >

00:43:08 Remaining

Multiple Answer

Which of the following statements is not true for Breadth-First search?

	Discover one of the adjacent vertex at a time
~	Dijkstra's algorithm uses it
	Uses Queue
	Searching algorithm

00:41:51 Remaining

Short Answer

If you implement Prim's algorithm on the following graph, what will be the Total cost of the MST? [Here, the starting node is A]

1 attachment A

Your Answer

Total cost of Node A is 10

00:41:42 Remaining

Multiple Answer

Which of the following statements are true for Dijkstra's algorithm?

	Single-source shortest path algorithm
	Implemented on weighted directed graph
	Can handle negative cycle
~	Both a & b

00:41:11 Remaining

Short Answer

If the function $f(n) = \Omega(n)$, then what will be the value of n?

1 attachment -

$$3n + 12$$

Your Answer

n=3

Short Answer

What is the main disadvantage of the Generic MST algorithm?

Your Answer

It uses greedy approach

Screenshot saved

Tap to view your screenshot

SHARE EDIT DELETE

the Generic MST algorithm?

Your Answer

It uses greedy approach

00:40:45 Remaining

Short Answer

What is the main disadvantage of the Generic MST algorithm?

Your Answer

It uses greedy approach

00:40:31 Remaining

Short Answer

What will be the shortest path from home to office using Dijkstra's algorithm?

1 attachment -

Your Answer

14

00:40:31 Remaining

Fill in the Blank

Write down your ID here:

ID: CSE 071 08128

11 of 11

Submit

Fill in the Blank

Write down your ID here:

ID: CSE 071 08128

11 of 11

Submit

Multiple Choice

Consider you have implemented Topological Sort on the following graph. What is the highest finishing time of the following vertices?

1 attachment •

None of the above

Short Answer

Write down the DFS traversal sequence of the following graph starting from node 1.

1 attachment -

Your Answer

1,3,5,7,6,2,4

Short Answer

What is the main difference between Prim's and Dijkstra's algorithm?

Your Answer

we use prims to find minimum spanning tree where as we use Dijkstra to find sortest path between two nodes

Multiple Choice

If you implement HeapSort on the following array, what will be the output array after 1st iteration?

< 2, 4, 7, 11, 10, 9, 25, 20, 31, 55, 60, 46 >

< 2, 55, 46, 31, 10, 9, 25, 20, 11, 4, 7, 60 >

< 2, 55, 31, 46, 10, 9, 25, 11, 20, 4, 2, 60 >

< 7, 55, 46, 31, 10, 9, 25, 20, 11, 4, 2, 60 >

< 2, 4, 7, 9, 10, 11, 20, 25, 31, 46, 55, 60 >

Multiple Answer

Which of the following statements is not true for Breadth-First search?

	Discover one of the adjacent vertex at a time
~	Dijkstra's algorithm uses it
	Uses Queue
	Searching algorithm

Short Answer

If you implement Prim's algorithm on the following graph, what will be the Total cost of the MST? [Here, the starting node is A]

1 attachment -

Your Answer

Total cost of Node A is 10

Multiple Answer

Which of the following statements are true for Dijkstra's algorithm?

	Single-source shortest path algorithm
	Implemented on weighted directed graph
	Can handle negative cycle
~	Both a & b

Short Answer

If the function $f(n) = \Omega(n)$, then what will be the value of n?

1 attachment -

$$3n + 12$$

n=3

Short Answer

What is the main disadvantage of the Generic MST algorithm?

Your Answer

It uses greedy approach

Short Answer

What will be the shortest path from home to office using Dijkstra's algorithm?

1 attachment -

Your Answer

14

Fill in the Blank

Write down your ID here:

ID: | CSE 071 08128

11 of 11

Submit