

-	Where N is the dimension
	for x. Let xe{[0111], [1011
	los x / et xe/[011-1], [1011-1].
-	for C. [111.0]}
-	11 0Tx + b - N-1+650
-	then $0^{T}x + b = N-1+b<0$ b<-N+1—(2)
-	
-	when taking other choices for x it
-	will yield b<-N+m, m>1 which
	is implied by (2) [(2) is the Upper bound
	is implied by (2) [(2) is the upper bound]
	/-d)
No dos	combine (1) and (2)
	-NLb <-N+1
- Theorem	
Mary 1	[we can construct other solutions
	when selecting o other than all-one veite
	y borner than all-one
erio e	
- Control	

	XOR:
	XOR depends on the parity of the
	input
	There is no way
	to split x and 0
	using a hyperplane of
	=> a perceptron can't solve the XOR
	problem
	~ A c
	We need multi-stages = 8
-	
	stage!
	perceptron A perceptron B
	stage2
	perceptronc
	perceptron A: 0=[1] b=-1 (OR gate)
	perceptron B: O=[11] b=-3 (AND gate)
	using sign activationalie output = -1 or 1
	perceptron C: 0=[-1+1] b=# +1
	0=[-1+1] b=+1 2
- 1	