## 315 THEORY OF MACHINES - DESIGN OF ELEMENTS

Fall 2023

## HW No. 7, Total 40 points

Assigned: 11/2 Due: one week, 11/9, On-line, pdf in **one single file**.

20 point each. In this practice, select the smallest possible bearings whose rating  $C(C_1)$  is the closest to the calculated one. Use proper table in the eBook, Chapter 6. Note that in a real engineering work, bearing sizes must meet certain structural requirements.

- 1. A helical-gear shaft transmits a power of H = 52KW at n = 1300 rpm. The coupling is the input element. The gears have teeth  $N_p = 20$ ,  $N_G = 51$ , their normal module is  $m_n = 5$ mm, the pressure angle is n = 20 degree, and the helical angle is  $n = 17^{\circ}$ . The pinion and its shaft assembly are shown below. The gear torque is balanced by the coupling torque. Two bearings should be used and their L10 life is 11,000 hours. Application factor Ap=1.
  - a) Are the force/moment directions all correct? If not, make the changes. Mark the helical direction of the tooth of the mating gear.
  - b) Calculate the magnitudes of the radial reaction forces, **A** and **B**, at bearings A and B.
  - Estimate the shaft diameter at the coupling,  $d_{min}$ , with the torque on the shaft. The allowable stress is  $d_{11} = 200$  MPa. Increase the calculated  $d_{min}$  by 5% to consider the keyway effect. Use a preferred number ending with 0 or 5 for the final result.
  - d) Select a pair of SKF single-row deep-groove ball bearings and use the same bearings for both supports. Make sure the bearing bore diameter is at least 5 mm larger than *d* min. Show your work. List the bearing catalog number, 6xxx, the shaft diameter, *d*, the outside diameter, *D*, and the bearing width. (Assume that the bearing under the larger radial load takes the axial (thrust) load as well)





| Parameter                 | Units  | Pinion   | Gear    |                                                    |
|---------------------------|--------|----------|---------|----------------------------------------------------|
| Torque, T                 | NM     | 381.970  | 974.024 | $T = \frac{60  \text{H}}{2 \pi \text{n}} = 381.97$ |
| Normal Module, mn         | mm     | 5.000    |         |                                                    |
| Pressure Angle, phi       | degree | 20.000   |         |                                                    |
| Helix Angle, psi          | degree | 17.000   |         |                                                    |
| RPM, n                    | rpm    | 1300.000 | 509.804 | Ng = Np GR                                         |
| Number of Teeth, N        | no.    | 20.000   | 51.000  |                                                    |
| Gear Ratio                |        | 0.392    |         | 6R = NP/Ng                                         |
| Pitch Diameter, d         | mm     | 104.569  | 266.651 | d=NM&                                              |
| Root Diameter, dr         | mm     | 92.069   | 254.151 | 9L=9-5p                                            |
| Outer Diameter, do        | mm     | 114.569  | 276.651 | do = d+2a                                          |
| Addendum, a               | mm     | 5.000    |         | a= ma                                              |
| Dedendum, b               | mm     | 6.250    |         | b = 1.25mn                                         |
| Transverse Module         | mm     | 5.228    |         | $me = mn / cos \psi$                               |
| Transverse Pressure Angle | degree | 20.837   |         | $tan \phi_{\mathcal{E}} = tan \phi_{n}/co\phi$     |
| Tangential Force, Wt      | N      | 7305.595 |         | $W^{\xi} = \frac{T}{d/2}$                          |
| Raidal Force, Wr          | N      | 2780.514 |         | W' = WS'INYn                                       |
| Axial Force, Wa           | N      | 2233.544 |         | $W = W a > \phi_n > in \psi$                       |
| Resultant Force, W        | N      | 8129.680 |         | $W=\frac{1}{4}$ ( $\cos \phi_n \cos \phi$ )        |

MZ 45mm; b=bomm

$$2M_{A,z}=0=W^{t}\alpha-(\alpha +b)B_{z}$$

WORST CASE:

BEARING A TAKES WA BECAUSE PLA > PLB Ax=-2237.544 N

| FuR B<br>Pa=' | h (bo) $n \cdot 10^{-b} = 858 MC$ REAPTURE A: $7.233 \text{ kV}$ NORM ( $\Delta_z$ / $\Delta_y$ ) = $4.6$ $P(XPr+YPa) ; C = 4.6$ |                                   |         | INTERPOLATION FORMULA:  SLOPE: $\frac{y_z - y_1}{x_z - k_1}$ $y = SLOPE(x - x_1) + y_1$ 207 KN  01/m |                            |  |  |
|---------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------|------------------------------------------------------------------------------------------------------|----------------------------|--|--|
| P=A           | P(XPITYPA)  Ap  m  Pa                                                                                                            | 1.000<br>3.000<br>2.233           | and the | hours                                                                                                | 11000.000                  |  |  |
|               | Pr<br>pa/pr                                                                                                                      | 4.202<br>0.531                    | kN      | rotation speed<br>L10                                                                                | 1300.000 rpm<br>858.000 MC |  |  |
|               | X<br>Y                                                                                                                           | 1.000<br>0.000                    |         |                                                                                                      |                            |  |  |
|               | P<br>C                                                                                                                           | 4.202<br>39.929                   |         |                                                                                                      |                            |  |  |
| Bearing 6404  | CO<br>C<br>Pa/CO                                                                                                                 | 23.600<br>43.6<br>0.095           |         |                                                                                                      |                            |  |  |
|               | lower point pa/c0<br>upper point pa/c0<br>lower point e                                                                          | 0.070<br>0.130<br>0.270           | 20      |                                                                                                      |                            |  |  |
|               | upper point e<br>slope<br>e (interpolated)                                                                                       | 0.310<br>0.667<br>0.286           |         | USTN6 4-9,=                                                                                          | m(x-x,)                    |  |  |
|               | lower point y<br>upper point y<br>slope<br>Y (interpolated)                                                                      | 1.600<br>1.400<br>-5.000<br>1.518 |         |                                                                                                      |                            |  |  |

|              | Ap                | 1.000  |    |         |             |           |     |
|--------------|-------------------|--------|----|---------|-------------|-----------|-----|
|              | m                 | 3.000  |    |         |             |           |     |
|              | Pa                | 2.233  | kN | ho      | ırs         | 11000.000 |     |
|              | Pr                | 4.202  | kN | rot     | ation speed | 1300.000  | rpm |
|              | pa/pr             | 0.531  |    | L10     | )           | 858.000   | MC  |
|              | X                 | 0.560  |    |         |             |           |     |
|              | Υ                 | 1.518  |    |         |             |           |     |
|              | P                 | 5.743  | kN |         |             |           |     |
|              | С                 | 54.569 | kN |         |             |           |     |
| Bearing 6407 | CO                | 31     | kN |         |             |           |     |
|              | С                 | 55.3   | kN |         |             |           |     |
|              | Pa/C0             | 0.072  |    | _       |             |           |     |
|              | lower point pa/c0 | 0.070  |    |         |             |           |     |
|              | upper point pa/c0 | 0.130  |    |         |             |           |     |
|              | lower point e     | 0.270  |    |         |             |           |     |
|              | upper point e     | 0.310  |    | . Tails | U-4. :      | m(x-x,    | )   |
|              | slope             | 0.667  | C  | ISTNG   | 9 31        |           |     |
|              | e (interpolated)  | 0.271  |    | _       |             |           |     |
|              | lower point y     | 1.600  |    | 1       | 14 64 - 1   | n(xr×i)   | )   |
|              | upper point y     | 1.400  | U  | stnp    | 9-3, - 1    | יין ניין  | ,   |
|              | slope             | -5.000 |    |         |             |           |     |
|              | Y (interpolated)  | 1.593  |    |         |             |           |     |

|              | Ар              |        | 1.000    |          |            |            |                              |
|--------------|-----------------|--------|----------|----------|------------|------------|------------------------------|
|              | m               |        | 3.000    |          |            |            |                              |
|              | Pa              |        | 2.233    | kN       | hour       | 's         | 11000.000                    |
|              | Pr              |        | 4.202    | kN       | rota       | tion speed | 1300.000 rpm                 |
|              | pa/pr           |        | 0.531    |          | L10        |            | 858.000 MC                   |
|              | х               |        | 0.560    |          |            |            |                              |
|              | Υ               |        | 1.593    |          |            |            |                              |
|              | Р               |        | 5.911    | kN       |            |            |                              |
|              | С               |        | 56.166   | kN       |            |            |                              |
| Bearing 6408 | C0              |        | 36.5     | kN       | b          |            |                              |
|              | С               |        | 63.7     | kN       |            |            |                              |
|              | Pa/C0           |        | 0.061    |          |            |            |                              |
|              | lower point pa  | /c0    | 0.040    | 20       |            |            | •                            |
|              | upper point pa  |        | 0.070    | . 1      | SINP       | 4-9,=1     | n(*-*,)                      |
|              | lower point e   |        | 0.240    |          |            |            |                              |
|              | upper point e   |        | 0.270    |          |            |            |                              |
|              | slope           |        | 1.000    |          |            |            |                              |
|              | e (interpolated | ١      | 0.261    |          |            |            |                              |
|              | T               | ,      |          |          | . •        | 14 C       | m(x-x.)                      |
|              | lower point y   |        | 1.800    |          | USING      | 9-9, =     | m(x-x,)                      |
|              | upper point y   |        | 1.600    |          |            |            |                              |
|              | slope           |        | -6.667   | 1        |            |            |                              |
|              | Y (interpolated | )      | 1.659    |          |            |            | - (1)                        |
| Ap           | 1.000           |        |          |          |            | (HOSS!     | E 6408.<br>40 mm<br>: 110 mm |
| m            | 3.000           |        |          |          |            | \ d=       | 40mm                         |
| Pa           | 2.233 kN        | hours  | •        | 110      | 00.000     | n=         | : 16 mm                      |
| Pr           | 4.202 kN        | rotati | on speed | 13       | 00.000 rpr | II .       | .27                          |
| pa/pr        | 0.531           | L10    |          | 8        | 58.000 MC  |            |                              |
| x            | 0.560           |        |          |          |            |            |                              |
| Υ            | 1.659           |        |          |          |            |            |                              |
| P            | 6.057 kN        | 7      | 7 66     | <b>~</b> | KAI/       | 67.761     | ſ                            |
| С            | 57.558 kN       | 2      | 1,33     | 0        |            | 0 ( / * )  | -                            |

- **2.** For the same problem above, continue to
- 1) Select a pair of Timken ISO 355 bearings and use the same bearings for both supports in a face-to-face mounting. Also make sure the bearing bore diameter is at least 5 mm larger than  $d_{min}$ . Show your work. List the bearing catalog number, 3xxxx, the shaft diameter, d, and the bearing outside diameter, D, and T. Make sure the axial loading direction is correctly determined.
- 2) Repeat above but select a pair of Timken ISO 355 bearings for the use in a back-to-back mounting.

You may use the calculated C value from the last step of Problem No. 1 for the first trial selection.

|               | hours          | 11000    |               | hours          | 11000     |
|---------------|----------------|----------|---------------|----------------|-----------|
|               | rotation speed | 1300 rpm |               | rotation speed | 1300 rpm  |
|               | L10            | 858 MC   |               | L10            | 858 MC    |
|               | Fra            | 4.202 N  |               | Fra            | 4.202 kN  |
|               | Frb            | 3.887 N  |               | Frb            | 3.887 kN  |
|               | Wae            | -2.233 N |               | Wae            | -2.233 kN |
| Bearing 30208 | m              | 1/2      | Bearing 30208 | m              | 1/2       |
| c: 60.1 kN    | lambda         | 0.500    | c: 60.1 kN    | lambda         | 0.500     |
|               | X              | 0.560    |               | x              | 0.560     |
|               | Ya             | 1.600    |               | Ya             | 1.600     |
|               | Yb             | 1.600    |               | Yb             | 1.600     |
|               | Pa             | 4.202 N  |               | Pa             | 7.869 kN  |
|               | Pb             | 7.851 N  |               | Pb             | 3.887 kN  |
|               | Ca             | 31.879 N |               | Ca             | 59.702 kN |
|               | Cb             | 59.559 N |               | Cb             | 29.489 kN |

BENTING BUSINE:

d= 40 mm

D= 80 mm

W= 19.75 mm