Gestion de Portefeuille

TP-4: Impact de la matrice de covariance dans le modèle MV

Patrick Hénaff

Février-Mars 2021

```
library(xts)
library(hornpa)
library(lubridate)
library(xtable)
library(quantmod)
library(PerformanceAnalytics)
library(TTR)
library(lubridate)
library(roll)
library(Hmisc)
library(nFactors)
library(kableExtra)
library(broom)
get.src.folder <- function() {</pre>
  path.expand("../GP/src")
get.data.folder <- function() {</pre>
  path.expand("../GP/data")
source(file.path(get.src.folder(), 'utils.R'))
source(file.path(get.src.folder(), 'FileUtils.R'))
```

Données

On utilise la base de données "MultiAsset" du paquet FRAPO:

```
library(FRAPO)
data(MultiAsset)
R <- returnseries(MultiAsset, percentage=F, trim=T)</pre>
```

Quelques statistiques descriptives sont résumées ci-dessous:

Table 1: Summary Statistics

	mean	std dev	skewness	kurtosis
GSPC	0.0007196	0.0483492	-0.8809988	1.7602430
RUA	0.0011323	0.0503202	-0.8975063	1.8397675
GDAXI	0.0046327	0.0597951	-0.9841812	1.9749395
FTSE	0.0018748	0.0437702	-0.6912771	0.4962667
N225	-0.0030518	0.0623081	-1.0447685	2.8567460
EEM	0.0085561	0.0807882	-0.7309404	1.2765558
DJCBTI	0.0037850	0.0167642	0.7542986	2.7505223
GREXP	0.0037178	0.0101831	0.1244254	-0.4231236
BG05.L	0.0013854	0.0151824	0.2047405	1.1789559
GLD	0.0158004	0.0547407	-0.4762910	0.7606515

Etude de la matrice de covariance

On se propose d'étudier la matrice de covariance à l'aide de la formule de Stevens pour la matrice d'information $\mathcal{I} = \Sigma^{-1}$.

• Pour chaque actif, estimer le modèle

$$R_{i,t} = \beta_0 + \beta_i^T R_t^{(-i)} + \epsilon_{i,t}$$

avec $R_t^{(-i)}$ vecteur de rendement de tous les actifs sauf l'actif $i, \, \epsilon_{i,t} \sim \mathcal{N}(0, s_i^2)$

- Trier les modèles par R_i^2 décroissant. En déduire les actifs qui sont susceptibles de recevoir un poids important dans le portefeuille optimal MV.
- Calculer les poids optimaux du modèle MV, et comparer avec les résultats des régressions.

Lien avec l'ACP

- Effectuer une ACP de la matrice de covariance des rendements.
- Identifier un vecteur propre qui est un facteur d'arbitrage caractérisé
- Faire le lien entre cette observation et les poids optimaux du modèle MV.