第 2 次作业题

- 1. 若数列 $\{a_n\}$ 满足 $a_1 = 1$ 且 $\forall n \ge 1$, 均有 $a_{n+1} = 2 \frac{1}{1+a_n}$, 求 $\lim_{n \to \infty} a_n$.
- **2.** $\forall n \ge 1$, 令 $a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ln n$. 求证: 数列 $\{a_n\}$ 收敛. 我们将该极限记作 γ , 称为 Euler 常数.
- 3. 若 $\forall n \geqslant 1$, 均有 $0 < a_n < 1$ 且 $(1 a_n)a_{n+1} > \frac{1}{4}$. 求证: $\lim_{n \to \infty} a_n = \frac{1}{2}$.
- 4. 求极限 $\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{3n}\right)$.
- 5. 计算 $\lim_{n\to\infty} \frac{1+\frac{1}{\sqrt{2}}+\dots+\frac{1}{\sqrt{n}}}{\sqrt{n}}.$
- 7. 若 $\{a_n\}$ 递增而 $\{b_n\}$ 递减且 $\lim_{n\to\infty}(b_n-a_n)=0$. 求证: 数列 $\{a_n\}$, $\{b_n\}$ 均收敛且其极限相等.
- 8. 利用 Cauchy 收敛原理证明下列数列 $\{a_n\}$ 的极限存在:

(1)
$$a_n = \sum_{k=1}^{n} \frac{\cos k!}{k(k+1)};$$
 (2) $a_n = \prod_{k=1}^{n} \left(1 + \frac{1}{k^2}\right).$

- 9. $\forall n \ge 1$, 设 $v_n = (1 + \frac{\sin 1}{2}) + \dots + (\frac{1}{n} + \frac{\sin n}{2^n})$. 求证: 数列 $\{v_n\}$ 发散.
- 10. 若数列 $\{a_n\}$ 单调且 $\lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=A$, 求证: $\lim_{n\to\infty}a_n=A$.