

Master in Computer Vision Barcelona

Project Module 4 Coordination

Week 2: Tasks Description

Video Surveillance for Road Traffic Monitoring J. Ruiz-Hidalgo / X. Giró

j.ruiz@upc.edu/xavier.giro@upc.edu

Project Schedule

Goals Week 2

Background estimation

- Model the background pixels of a video sequence using a simple statistical model to classify the background / foreground
 - Single Gaussian per pixel
 - Adaptive / Non-adaptive
- The statistical model will be used to preliminary classify foreground

 Comparison with more complex models (Stauffer and Grimson)

Tasks

Mandatory

- Task 1: Gaussian distribution
- Task 2 & 3: Evaluate results
- Task 4: Recursive Gaussian modeling
- Task 5: Evaluate and compare to non-recursive

Optional

- Task 6: Compare with S&G
- Task 7: Color sequences

Sequences

ID	FRAME RANGE	TYPE
Highway	1050 - 1350	Baseline
Fall	1460 - 1560	Dynamic background
Traffic	950 - 1050	Camera jitter

Reminder: metrics

The groundtruth images contain 5 labels namely

o 0 : Static

50 : Hard shadow

85 : Outside region of interest

• 170 : Unknown motion (usually around moving objects, due to semi-transparency and motion blur)

o 255 : Motion

We will use:

o Background: 0, 50

o Foreground: 255

Unknown (not evaluated): 85, 170

Task 1: Gaussian modelling

- 1 Gaussian function to model each background pixel
 - First 50% of the test sequence to model background
 - Mean and variance of pixels

Second 50% to segment the foreground

```
for all pixels i do

if |I_i - \mu_i| \ge \alpha \cdot (\sigma_i + 2) then

pixel \to Foreground

else

pixel \to Background

end if

end for
```

 $\triangleright +2$ to prevent low values of σ_i

Task 2: Evaluation

Evaluate Task 1

True Positive, True Negative, False Positive, False Negative, Precision, Recall, F1-score vs alpha

Task 3: Evaluation

- Evaluate Task 1
 - Precision vs Recall curve
 - Area Under the Curve (AUC)

Task 4: Adaptive modelling

Adaptive modelling

- First 50% frames for training
- Second 50% left background adapts

$$\begin{aligned} & \textbf{if pixel } i \in \text{Background then} \\ & \mu_i = \rho \cdot I_i + (1 - \rho) \cdot \mu_i \\ & \sigma_i^2 = \rho \cdot (I_i - \mu_i)^2 + (1 - \rho) \cdot \sigma_i^2 \\ & \textbf{end if} \end{aligned}$$

• Best value of α , p to maximize F1-score

- o Two methods:
 - Obtain best α non-recursive and then obtain p for the recursive cases
 - Optimize them together

Task 5: Comparison

- Compare both the adaptive and non-adaptive version and evaluate them for all 3 sequences proposed
 - F1-score / AUC

Task 6: Optional

- Compare with Stauffer and Grimson
 - Implementation
 - Matlab → Computer Vision Toolbox (preferred) or provided (StGm.
 zip)
 - Python → OpenCV
 - Select the best number of Gaussians (3 to 6)
 - Evaluate precision vs recall to comment which method (single Gaussian programmed by you or S&G) performs better
 - Evaluate the sequences than benefit more of the multiple Gaussians and try to explain why

Task 7: Optional

- Update your implementation to support color sequences
 - Decide color space? RGB vs YUV?
 - Number of Gaussians needed?

Deliverables

- Google drive with slides per tasks
- Code used for the week assignment

- 6th January
 - Upload link to GitHub
 - Fill the intra-group evaluation

Scoring Rubric

Grade is assigned based on the satisfactory accomplishment of...

Grade	Common meaning	Succesfully completed tasks
9-10	Excellent	All mandatory and two optional tasks
7-9	Very good	All mandatory and one optional tasks
5-7	Average	All mandatory tasks
3-5	Difficulties	All mandatory tasks but one
0-3	Fail	All mandatory tasks but two or more