TD 25. Séries numériques.

Exercices de base

Exercice 1. Déterminer la nature de la série de terme général u_n :

1°)
$$u_{n} = \sqrt{\frac{n+1}{n}}$$
6°) $u_{n} = e^{-\sqrt{\ln n}}$
10°) $u_{n} = \frac{\sqrt{n+1}}{n^{2} \ln^{3} n}$
2°) $u_{n} = \operatorname{ch}\left(\frac{1}{n^{2}}\right)$
7°) $u_{n} = e - \left(1 + \frac{1}{n}\right)^{n}$
11°) $u_{n} = \ln\left(\frac{n^{2} + n + 1}{n^{2} + n - 1}\right)$
3°) $u_{n} = \frac{1}{\ln n}$
8°) $u_{n} = \frac{\ln n}{2^{n}}$
4°) $u_{n} = ne^{-n}$
5°) $u_{n} = \frac{1}{n\sqrt{n} - 1}$
9°) $u_{n} = \frac{\sin(n)}{\sqrt{n}(1+n)^{2}}$
12°) $u_{n} = \int_{0}^{\frac{1}{n}} \frac{\sin t}{1 + \sqrt{t}} dt$
(majorer u_{n})

Exercice 2. Montrer que la série de terme général u_n converge, et calculer la somme de la série :

a)
$$u_n = \frac{1}{(3n+1)(3n+4)}$$
 b) $u_n = \ln\left(1 - \frac{1}{n^2}\right)$ c) $u_n = \frac{n^2 + n - 1}{n!}$

Exercices (un peu) plus avancés

Exercice 3. a) Soit $\alpha \in \mathbb{R}^+$. Montrer que $\sum_{n \geq 0} \frac{\alpha^n}{1 + \alpha^{2n}}$ converge si et seulement si $\alpha \neq 1$.

b) Soit $\beta \in \mathbb{R}$. Montrer que $\sum_{n \geq 1} \frac{\ln n}{n^{\beta}}$ converge si et seulement si $\beta > 1$.

Exercice 4. Nous avons vu en cours que la série de terme général $\frac{(-1)^n}{n}$ est convergente. À l'aide d'un DL, montrer que la série de terme général $u_n = \frac{(-1)^n}{n + (-1)^n \sin(n)}$ est convergente.

Exercice 5. Déterminer une condition nécessaire et suffisante sur les réels a et b pour que la série de terme général $u_n = \sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2}$ converge. Calculer alors sa somme.

Exercices théoriques

Exercice 6. Soit $\sum u_n$ une série convergente, à termes positifs. Montrer que $\sum u_n^2$ est convergente.

Exercice 7. Soient $(u_n), (v_n), (w_n)$ des suites réelles telles que : $\forall n \in \mathbb{N}, u_n \leq v_n \leq w_n$. On suppose que $\sum u_n$ et $\sum w_n$ convergent. Montrer que $\sum v_n$ converge.

Exercice 8. Soit $(u_n)_{n\in\mathbb{N}}$ une suite positive. Montrer que les séries de terme général u_n , $\frac{u_n}{1+u_n}$ et $\ln(1+u_n)$ sont de même nature.

Exercice 9. a) Montrer que pour tous réels positifs a et b, $\sqrt{ab} \leq \frac{a+b}{2}$.

b) Soit $(u_n)_n$ une suite positive telle que la série $\sum u_n$ converge. Montrer que $\sum \sqrt{u_n u_{2n}}$ converge.