Theorem (2.2.18c). Let A, B, and C be sets. $(A - B) - C \subseteq (A - C)$.

Proof. Let x be an element in (A-B)-C. Note that $A-B\equiv A\cap \overline{B}$ and $(A\cap \overline{B})-C\equiv (A\cap \overline{B})\cap \overline{C}$. By the associative laws and the commutative laws for the intersection of sets we have, $x\in (A\cap \overline{C})\cap \overline{B}$. By definition that is $[(x\in A)\wedge (x\in \overline{C})]\wedge (x\notin B)$. Or rather, $x\in (A-C)\wedge (x\notin B)$. By logical identity $x\in (A-C)$. Since $x\in [(A-B)-C]\implies x\in (A-C)$, $(A-B)-C\subseteq (A-C)$.