Práctico 4 Matemática Discreta I – Año 2021/1 **FAMAF**

- (1) a) Calcular el resto de la división de 1599 por 39, sin tener que hacer la división.
 - b) Lo mismo con el resto de 914 al dividirlo por 31.
- (2) Sea $n \in \mathbb{N}$. Probar que todo número de la forma $4^n 1$ es divisible por 3.
- (3) Hallar el resto en la división de *x* por 5 y por 7 para:

a)
$$x = 1^8 + 2^8 + 3^8 + 4^8 + 5^8 + 6^8 + 7^8 + 8^8$$

b)
$$x = 3 \cdot 11 \cdot 17 \cdot 71 \cdot 101$$
.

- (4) Sea $n \in \mathbb{Z}$. Probar que el resto de dividir n^2 por 4 es igual a 0 si n es par, y 1 si n es impar.
- (5) Sean a, b, c números enteros, ninguno divisible por 3. Probar que $a^2 + b^2 + c^2 \equiv 0 \pmod{3}$.
- (6) a) Probar las reglas de divisibilidad por 2, 3, 4, 5, 8, 9 y 11.
 - b) Decir por cuáles de los números del 2 al 11 son divisibles los siguientes números:

- (7) Hallar la cifra de las unidades y la de las decenas del número 7¹⁵.
- (8) Hallar todos los $x \in \mathbb{Z}$ que satisfacen:

a)
$$x^2 \equiv 1 \ (4)$$

a)
$$x^2 \equiv 1$$
 (4) b) $x^2 \equiv x$ (12) c) $x^2 \equiv 2$ (3)

c)
$$x^2 = 2$$
 (3)

d)
$$x^2 \equiv 1$$
 (5)

e)
$$x^4 \equiv 1$$
 (16) f) $x^2 \equiv 9$ (19)

f)
$$x^2 \equiv 9 (19)$$

(9) Sean $a, b \in \mathbb{Z}$. Si $m, d \in \mathbb{N}$ cumplen que $d \mid a, d \mid b$ y $d \mid m$, probar que la ecuación $ax \equiv b(m)$ tiene solución si y sólo si la ecuación

$$\frac{a}{d} \times \equiv \frac{b}{d} \left(\frac{m}{d} \right)$$

1

tiene solución.

(10) Resolver las siguientes ecuaciones:

a)
$$2x \equiv -21$$
 (8)

b)
$$2x \equiv -12$$
 (7) c) $3x \equiv 5$ (4).

c)
$$3x = 5$$
 (4)

- (11) Resolver la ecuación $221x \equiv 85$ (340). Hallar todas las soluciones x tales que $0 \le x < 340$.
- (12) a) Encontrar todas las soluciones de la ecuación $36x \equiv 8$ (20), usando el método visto en la clase teórica.
 - b) Dar todas las soluciones x de la ecuación anterior tales que -8 < x < 30.
- (13) a) Encontrar todas las soluciones de la ecuación $21 x \equiv 6$ (30), usando el método visto en la clase teórica.
 - b) Dar todas las soluciones x de la ecuación anterior tales que 0 < x < 35.
- (14) Sea $t \in \mathbb{Z}$, decimos que t es inversible módulo m si existe $h \in \mathbb{Z}$ tal que $th \equiv 1 (m)$.
 - a) ¿Es 5 inversible módulo 17?
 - b) Probar que t es inversible módulo m si y sólo si (t, m) = 1.
 - c) Determinar los inversibles módulo m, para m = 11, 12, 16.
- (15) Encontrar el resto en la división de a por b en los siguientes casos:
 - a) $a = 11^{13} \cdot 13^{8}$, b = 12. b) $a = 4^{1000}$, b = 7.
 - c) $a = 123^{456}$, b = 31.
- d) $a = 7^{83}$, b = 10.
- (16) Hallar el resto en la división de a por b en los siguientes casos:
- a) $a = 2^{21}$, b = 13. b) $a = 7^{241}$, b = 17. c) $a = 424^{97}$, b = 11. d) $a = 8^{25}$, b = 127.
- (17) Probar que si (a, 1001) = 1 entonces 1001 divide a $a^{720} 1$.
- (18) Sea p primo impar.
 - a) Probar que las únicas raíces cuadradas de 1 módulo p_i son 1 y -1 módulo p. Es decir, probar que si $x^2 \equiv 1 \pmod{p}$, entonces $x \equiv \pm 1 \pmod{p}$.
 - b) Sea $p = d \cdot 2^s + 1$, donde d es impar. Dado a entero tal que 0 < a < p, probar que
 - (i) $a^d \equiv 1 \pmod{p}$, **o**
 - (ii) $a^{2^{r} \cdot d} \equiv -1 \pmod{p}$, para algún r tal que $0 \le r < s$.
- ξ **Ejercicios de repaso.** Los ejercicios marcados con (\star) son de mayor dificultad.
- (19) Dada la ecuación de congruencia $14x \equiv 10$ (26), hallar todas las soluciones en el intervalo [-20, 10]. Hacerlo con el método usado en la teórica.

- (20) Dada la ecuación de congruencia $21 x \equiv 15 (39)$, hallar todas las soluciones en el intervalo [-10, 30]. Hacerlo con el método usado en la teórica.
- (21) *a)* Probar que no existen enteros no nulos tales que $x^2 + y^2 = 3z^2$.
 - b) Probar que no existen números racionales no nulos a, b, r tales que $3(a^2 + b^2) = 7r^2$.
- (22) (*) Probar que todo número impar *a* satisface:

$$a^4 \equiv 1(16), \quad a^8 \equiv 1(32), \quad a^{16} \equiv 1(64).$$

¿Se puede asegurar que $a^{2^n} \equiv 1(2^{n+2})$?

- (23) (*) ¿Para qué valores de n es $10^n 1$ divisible por 11?
- (24) (*) Probar que para ningún $n \in \mathbb{N}$ se puede partir el conjunto

$${n, n+1, \ldots, n+5}$$

en dos partes disjuntas no vacías tales que los productos de los elementos que las integran sean iguales.

(25) (\star) El número 2^{29} tiene nueve cifras y todas distintas. ¿Cuál dígito falta? (No está permitido el uso de calculadora).