

Karazuas Multiplikation – Laufzeit

Für $a, b \in \mathbb{N}$ gilt:

$$ggT(a, b) \cdot kgV(a, b) = a \cdot b$$

Beweis. Falls a=0 oder b=0, ist die Aussage klar. Seien also a,b>0. Es sei $d:= \operatorname{ggT}(a,b), m:= \operatorname{kgV}(a,b)$. Da $b\mid (a\cdot b)$, gibt es $n\in\mathbb{N}$ mit $d\cdot n=a\cdot b$. Da $d\mid a$ und $d\mid b$, gibt es u,v, sodass $d\cdot u=a,d\cdot v=b$.

$$\implies d \cdot u \cdot b = d \cdot n = d \cdot v \cdot a$$

$$\iff u \cdot b = n = v \cdot a$$

Damit ist n Vielfaches von a und b, also $n \ge \text{kgV}(a,b) =: m$. Da m Vielfaches von a und b ist, gibt es $r,s \in \mathbb{N}$ mit $m=a\cdot r=b\cdot s$. Nach dem Lemma von Bézout gibt es $x,y\in \mathbb{Z}$ mit $d=a\cdot x+b\cdot y$.

$$m \cdot d = m \cdot a \cdot a + m \cdot b \cdot y$$

$$= b \cdot s \cdot a \cdot x + a \cdot r \cdot b \cdot y$$

$$= a \cdot b \cdot (s \cdot x + r \cdot y)$$

$$= d \cdot n \cdot (s \cdot x + r \cdot y)$$

$$m = n \cdot (s \cdot x + r \cdot y)$$

das heißt, m ist ein Vielfaches von n und daher $m \geq n$.

4 Approximative Darstellung reeller Zahlen

4.1 Normalisierte b-adische Darstellung reeller Zahlen

Satz 4.1. Es sei $b \in \mathbb{N}_{\geq 2}$. Für alle $x \in \mathbb{R} \setminus \{0\}$ existieren eindeutige Zahlen $\mathcal{E} \in \mathbb{Z}$, $\sigma \in \{\pm 1\}$ und $z_i \in \{0, 1, \ldots, b-1\}$ für $i \in \mathbb{N}$, sodass gilt:

$$x = \sigma \cdot \left(\sum_{i=0}^{\infty} z_i \cdot b^{-i}\right)$$

wobei $\{i \in \mathbb{N} : z_i \neq (b-1)\}$ unendlich groß ist und $z_0 \neq 0$.

Diese Darstellung heißt dann (normalisierte) b-adische Darstellung von x.

Beispiel.

$$\pi = (+1) \cdot (3 \cdot 10^{0} + 1 \cdot 10^{-1} + 4 \cdot 10^{-2} + 1 \cdot 10^{-3} + \dots) \cdot 10^{0}$$

$$-\frac{2}{5} = (-1) \cdot (4 \cdot 10^{0} + 0 \cdot 10^{-1} + 0 \cdot 10^{-2} + \dots) \cdot 10^{-1}$$

$$\frac{1}{3} = (+1) \cdot \left(\sum_{i=0}^{\infty} 3 \cdot 10^{-i}\right) \cdot 10^{-1} = 0.\overline{3}$$

$$= (+1) \cdot \left(\sum_{i=0}^{\infty} 2^{-2i}\right) \cdot 2^{-2} = (0.\overline{01})_{2}$$

4.2 Normalisierte b-adische Darstellung: Existenz

Für $x \in \mathbb{R} \setminus \{0\}$ sei $\sigma := \frac{x}{|x|}$ und $\mathcal{E} = \lfloor \log_b |x| \rfloor$. Setze $a_0 := |x| \cdot b^{-\mathcal{E}}$ also $1 \leq a_0 < b$ und definiere rekursiv für $i \in \mathbb{N}$:

$$z_i := |a_i| \text{ und } a_{i+1} := b \cdot (a_i - z_i)$$

Dann gilt auch $0 \le a_i < b$ und $z_i \in \{0, \dots, b-1\}$ für alle $i \in \mathbb{N}$ und $z_0 \ne 0$.

Satz 4.2. Für alle $n \in \mathbb{N}$ gilt:

$$a_0 = \sum_{i=0}^{n} z_i b^{-i} + a_{n+1} \cdot b^{-(n+1)}$$

Beweis durch Induktion. Induktionsanfang (n = 0):

$$z_0 \cdot b^0 + a_1 \cdot b^{-1} = z_0 \cdot b^0 + b(a_0 - z_0) \cdot b^{-1} = a_0$$

Induktions schluss $(n \to n+1)$:

$$a_0 = \sum_{i=0}^{n} z_i \cdot b^{-i} + a_{n+1} \cdot b^{-(n+1)}$$

$$= \sum_{i=0}^{n+1} z_i \cdot b^{-i} + \underbrace{(a_{n+1} - z_{n+1}) \cdot b^{-(n+1)}}_{=a_{n+2} \cdot b^{-(n+2)}}$$

Daraus folgt

$$x = \sigma \cdot b^{\mathcal{E}} \cdot a_0 = \sigma \cdot b^{\mathcal{E}} \cdot \lim_{n \to \infty} \left(\sum_{i=0}^n z_i \cdot b^{-i} \right)$$
$$= \sigma \cdot b^{\mathcal{E}} \cdot \sum_{i=0}^\infty z_i \cdot b^{-i}$$

Wäre $|\{i \in \mathbb{N} \mid z_i \neq b-1\}| < \infty$, so gäbe es $n_0 \in \mathbb{N}$ mit $z_i = b-1$ für alle $i > n_0$.