1 A Review of Rings

We do a quick, informal review of things that we should know already.

Definition 1. A Ring R is (put simply) a set with two binary operations.

Definition 2. An **ideal** is a subset of a ring which is closed under addition and has the absorption property of multiplication, namely

$$RI \subseteq I$$

Definition 3. A quotient ring by an ideal I denoted R/I is the ring whose elements are the cosets x + I, often denoted by \overline{x} . It is a frequent exercise to check that this notation is non-ambiguous.

Proposition 1.1. There is a 1-1 correspondence between ideals in R/I and ideals in R containing I.

Proof. (Exercise) Hint: think about the projection map.

A number particular types of ideals will be of use to us over the course of this class, namely:

- 1. Principle: Generated by a single element
- 2. Maximal: Nontrivial ideal which isn't in any others
- 3. Prime Ideal: An ideal P such that $x \notin P$ and $y \notin P$ then $xy \notin P$. Moreover if $xy \in P$, then $x \in P$ or $y \in P$. E.g. take any ideal in \mathbb{Z} generated by a prime number.

Notice that the structure of quotient rings by ideals classifies nicely:

Theorem 1.2 (Quotient Ring Classification).

- 1. R/M is a field $\longleftrightarrow M$ is maximal
- 2. R/P is an Integral domain $\longleftrightarrow P$ is prime.

Proof. (Exercise)

Note. Every maximal ideal is prime.

Proposition 1.3. Every ring has a maximal ideal.

Proof. (Exercise) \Box

Corollary 1.4. Every ideal is contained in some maximal ideal

Corollary 1.5. Every non-unit is contained in a maximal ideal

Definition 4. A local ring is a ring which has a single maximal ideal

Proposition 1.6. Suppose $m \subseteq R$ such that every $\alpha \in m^c$ is a unit. Then R is local with maximal ideal m.

Example 1. Let $C^0(\mathbb{R}) = \{\text{continuous functions } j : \mathbb{R} \to \mathbb{R} \}$, and take the ring identified by the collection of germs $[f]_0$ which are centered at 0.

Notice that the collection of functions vanishing at 0 is a maximal ideal.

Proof. Define the evaluation map at zero $\frac{\operatorname{ev}_0:C^0(R)_0\to\mathbb{R}}{\operatorname{ev}_0(f)\mapsto f(0)}$. Notice that for any continuous function $f\neq 0$ at 0., the $\frac{1}{f}$ is also continuous at 0, and $f*\frac{1}{f}=1$.

1.1 Exercises

- 1. Prove (??)
- 2. Prove (??)
- 3. Let K be a field show that (f(x)) = (g(x)) iff f and g differ by a constant for $f(x), g(x) \in K[x]$,
- 4. Prove that if R is an integral domain, then R[x] is too.
- 5. Define $\mathbb{C}[[x]] = \{\sum_{n=0}^{\infty} a_n x^n \mid a_n \in \mathbb{C}\}$. This is the ring of formal power series. Show that $\mathbb{C}[[x]]$ is a local ring.