SPRING 2023

INFORMATION TECHNOLOGY RESEARCH

YI HAN

DEPARTMENT OF INFORMATION MANAGEMENT NATIONAL SUN YAT-SEN UNIVERSITY

Lecture slides are based on the supplemental materials of the textbook: https://algs4.cs.princeton.edu

Algorithms

2.1 ELEMENTARY SORTS

- rules of the game
- selection sort
- insertion sort
- shellsort
- shuffling

2.1 ELEMENTARY SORTS

- rules of the game
- selection sort
- insertion sort
- shellsort
- > shuffling

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Sorting problem

Ex. Student records in a university.

	Chen	3	А	991-878-4944	308 Blair
	Rohde	2	А	232-343-5555	343 Forbes
	Gazsi	4	В	766-093-9873	101 Brown
item	Furia	1	А	766-093-9873	101 Brown
	Kanaga	3	В	898-122-9643	22 Brown
	Andrews	3	А	664-480-0023	097 Little
key	Battle	4	С	874-088-1212	121 Whitman

Sort. Rearrange array of N items into ascending order.

Andrews	3	А	664-480-0023	097 Little
Battle	4	С	874-088-1212	121 Whitman
Chen	3	А	991-878-4944	308 Blair
Furia	1	А	766-093-9873	101 Brown
Gazsi	4	В	766-093-9873	101 Brown
Kanaga	3	В	898-122-9643	22 Brown
Rohde	2	А	232-343-5555	343 Forbes

Sorting applications

Library of Congress numbers

FedEx packages

playing cards

contacts

Sample sort client 1

- Goal. Sort any type of data.
- Ex 1. Sort random real numbers in ascending order.

seems artificial (stay tuned for an application)

```
public class Experiment
   public static void main(String[] args)
      int N = Integer.parseInt(args[0]);
      Double[] a = new Double[N];
      for (int i = 0; i < N; i++)
         a[i] = StdRandom.uniform();
      Insertion.sort(a);
      for (int i = 0; i < N; i++)
         StdOut.println(a[i]);
```

```
% java Experiment 10
0.08614716385210452
0.09054270895414829
0.10708746304898642
0.21166190071646818
0.363292849257276
0.460954145685913
0.5340026311350087
0.7216129793703496
0.9003500354411443
0.9293994908845686
```

Sample sort client 2

- Goal. Sort any type of data.
- Ex 2. Sort strings in alphabetical order.

```
public class StringSorter
   public static void main(String[] args)
      String[] a = StdIn.readAllStrings();
      Insertion.sort(a);
      for (int i = 0; i < a.length; i++)
         StdOut.println(a[i]);
       % more words3.txt
       bed bug dad yet zoo ... all bad yes
       % java StringSorter < words3.txt</pre>
       all bad bed bug dad ... yes yet zoo
        [suppressing newlines]
```

Sample sort client 3

- Goal. Sort any type of data.
- Ex 3. Sort the files in a given directory by filename.

```
import java.io.File;
public class FileSorter
   public static void main(String[] args)
      File directory = new File(args[0]);
      File[] files = directory.listFiles();
      Insertion.sort(files);
      for (int i = 0; i < files.length; i++)
         StdOut.println(files[i].getName());
```

% java FileSorter .
Insertion.class
InsertionX.class
InsertionX.java
Selection.class
Selection.java
Shell.class
Shell.java
ShellX.class
ShellX.java

Total order

Goal. Sort any type of data (for which sorting is well defined).

A total order is a binary relation ≤ that satisfies:

- Antisymmetry: if both $v \le w$ and $w \le v$, then v = w.
- Transitivity: if both $v \le w$ and $w \le x$, then $v \le x$.
- Totality: either $v \le w$ or $w \le v$ or both.

Ex.

- · Standard order for natural and real numbers.
- Chronological order for dates or times.
- Alphabetical order for strings.

No transitivity. Rock-paper-scissors. No totality. PU course prerequisites.

violates transitivity

Callbacks

Goal. Sort any type of data (for which sorting is well defined).

Q. How can sort() know how to compare data of type Double, String, and java.io.File without any information about the type of an item's key?

Callback = reference to executable code.

- Client passes array of objects to sort() function.
- The sort() function calls object's compareTo() method as needed.

Callbacks: roadmap

client

```
public class StringSorter
{
   public static void main(String[] args)
   {
      String[] a = StdIn.readAllStrings();
      Insertion.sort(a);
      for (int i = 0; i < a.length; i++)
            StdOut.println(a[i]);
   }
}</pre>
```

data-type implementation

```
public class String
implements Comparable<String>
{
    ...
    public int compareTo(String b)
    {
        ...
        return -1;
        ...
        return +1;
        ...
        return 0;
    }
}
```

Comparable interface (built in to Java)

```
public interface Comparable<Item>
{
    public int compareTo(Item that);
}
```

key point: no dependence on String data type

sort implementation

```
public static void sort(Comparable[] a)
{
   int N = a.length;
   for (int i = 0; i < N; i++)
        for (int j = i; j > 0; j--)
            if (a[j].compareTo(a[j-1]) < 0)
            exch(a, j, j-1);
        else break;
}</pre>
```

Comparable API

Implement compareTo() so that v.compareTo(w)

- Defines a total order.
- Returns a negative integer, zero, or positive integer if v is less than, equal to, or greater than w, respectively.
- Throws an exception if incompatible types (or either is null).

Built-in comparable types. Integer, Double, String, Date, File, ... User-defined comparable types. Implement the Comparable interface.

Implementing the Comparable interface

Date data type. Simplified version of java.util.Date.

```
public class Date implements Comparable<Date>
{
   private final int month, day, year;
   public Date(int m, int d, int y)
                                                        only compare dates
                                                          to other dates
      month = m;
      day = d;
      year = y;
   public int compareTo(Date that)
      if (this.year < that.year ) return -1;
      if (this.year > that.year ) return +1;
      if (this.month < that.month) return -1;
      if (this.month > that.month) return +1;
      if (this.day < that.day ) return -1;
      if (this.day > that.day ) return +1;
      return 0;
```

2.1 ELEMENTARY SORTS

- rules of the game
- selection sort
 - insertion sort
- shellsort
- > shuffling

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

initial

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

i

remaining entries

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

remaining entries

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

remaining entries

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

in final order

remaining entries

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

in final order

remaining entries

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

in final order

remaining entries

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

in final order

- In iteration i, find index min of smallest remaining entry.
- Swap a[i] and a[min].

sorted

Selection sort

Algorithm. ↑ scans from left to right.

Invariants.

- Entries the left of ↑ (including ↑) fixed and in ascending order.
- No entry to right of ↑ is smaller than any entry to the left of ↑.

Two useful sorting abstractions

Helper functions. Refer to data through compares and exchanges.

Less. Is item v less than w?

```
private static boolean less(Comparable v, Comparable w)
{ return v.compareTo(w) < 0; }</pre>
```

Exchange. Swap item in array a[] at index i with the one at index j.

```
private static void exch(Comparable[] a, int i, int j)
{
   Comparable swap = a[i];
   a[i] = a[j];
   a[j] = swap;
}
```

Selection sort: Java implementation

```
public class Selection
   public static void sort(Comparable[] a)
      int N = a.length;
      for (int i = 0; i < N; i++)
         int min = i;
         What to write here? 3 mins.
         Can use the following methods
         -less(Comparable v, Comparable w)
         - exch(Comparable[] a, int i, int j)
   }
   private static boolean less(Comparable v, Comparable w)
   { /* as before */ }
   private static void exch(Comparable[] a, int i, int j)
   { /* as before */ }
```

Selection sort inner loop

To maintain algorithm invariants:

Move the pointer to the right.

```
i++;
```

• Identify index of minimum entry on right.

```
int min = i;
for (int j = i+1; j < N; j++)
  if (less(a[j], a[min]))
  min = j;</pre>
```

Exchange into position.

```
exch(a, i, min);
```


Selection sort: Java implementation

```
public class Selection
  public static void sort(Comparable[] a)
   {
     int N = a.length;
      for (int i = 0; i < N; i++)
        int min = i;
         for (int j = i+1; j < N; j++)
            if (less(a[j], a[min]))
              min = j;
         exch(a, i, min);
   }
  private static boolean less(Comparable v, Comparable w)
   { /* as before */ }
  private static void exch(Comparable[] a, int i, int j)
  { /* as before */ }
```

Selection sort: animations

20 random items

http://www.sorting-algorithms.com/selection-sort

Selection sort: animations

20 partially-sorted items

http://www.sorting-algorithms.com/selection-sort

QUESTION (INPUT=N)

- How many compares?
- How many exchanges?

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Selection sort: mathematical analysis

Proposition. Selection sort uses $(N-1)+(N-2)+...+1+0 \sim N^2/2$ compares and N exchanges.

Trace of selection sort (array contents just after each exchange)

Running time insensitive to input. Quadratic time, even if input is sorted. Data movement is minimal. Linear number of exchanges.

2.1 ELEMENTARY SORTS

- rules of the game
- selection sort
- insertion sort
- shellsort
- > shuffling

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

not yet seen

in ascending order

not yet seen

• In iteration i, swap a[i] with each larger entry to its left.

sorted

Insertion sort

Algorithm. ↑ scans from left to right.

Invariants.

- Entries to the left of ↑ (including ↑) are in ascending order.
- Entries to the right of † have not yet been seen.

Insertion sort: Java implementation

```
public class Insertion
   public static void sort(Comparable[] a)
      int N = a.length;
      What to write here? 4 mins.
      Can use the following methods
      - less(Comparable v, Comparable w)
      - exch(Comparable[] a, int i, int j)
   }
   private static boolean less(Comparable v, Comparable w)
   { /* as before */ }
   private static void exch(Comparable[] a, int i, int j)
   { /* as before */ }
```

Insertion sort inner loop

To maintain algorithm invariants:

Move the pointer to the right.

Moving from right to left, exchange
 a[i] with each larger entry to its left.

```
for (int j = i; j > 0; j--)
  if (less(a[j], a[j-1]))
      exch(a, j, j-1);
  else break;
```


Insertion sort: Java implementation

```
public class Insertion
   public static void sort(Comparable[] a)
      int N = a.length;
      for (int i = 0; i < N; i++)
         for (int j = i; j > 0; j--)
            if (less(a[j], a[j-1]))
               exch(a, j, j-1);
            else break;
   }
   private static boolean less(Comparable v, Comparable w)
   { /* as before */ }
   private static void exch(Comparable[] a, int i, int j)
   { /* as before */ }
```

Insertion sort: animation

40 random items

algorithm position
in order
not yet seen

http://www.sorting-algorithms.com/insertion-sort

Insertion sort: animation

40 reverse-sorted items

http://www.sorting-algorithms.com/insertion-sort

Insertion sort: animation

40 partially-sorted items

http://www.sorting-algorithms.com/insertion-sort

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

QUESTION (INPUT=N)

- Expect each entry move halfway back (on average)
- How many compares?
- How many exchanges?

Insertion sort: mathematical analysis

Proposition. To sort a randomly-ordered array with distinct keys, insertion sort uses $\sim \frac{1}{4} N^2$ compares and $\sim \frac{1}{4} N^2$ exchanges on average.

Pf. Expect each entry to move halfway back.

```
a[]
                    3 4 5 6 7 8 9 10
i
                       E X A M P
                                                  entries in gray
                                                   do not move
                                                  entry in red
                                                    is a[j]
 6
                       S
                          S
                                                  entries in black
                                    X
                                                moved one position
                                                 right for insertion
10
                       M O P
                  L M O P
                                 RSTX
```

Trace of insertion sort (array contents just after each insertion)

Insertion sort: trace

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

INSERTION SORT: BEST CASE?

- # of compares?
- # of exchanges?

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

INSERTION SORT: WORST CASE?

- # of compares? (approximately)
- # of exchanges? (approximately)

Insertion sort: analysis

Best case. If the array is in ascending order, insertion sort makes N-1 compares and 0 exchanges.

AEELMOPRSTX

Worst case. If the array is in descending order (and no duplicates), insertion sort makes $\sim \frac{1}{2} N^2$ compares and $\sim \frac{1}{2} N^2$ exchanges.

XTSRPOMLFEA

Insertion sort: partially-sorted arrays

Def. An inversion is a pair of keys that are out of order.

Def. An array is partially sorted if the number of inversions is $\leq c N$.

- Ex 1. A sorted array has 0 inversions.
- Ex 2. A subarray of size 10 appended to a sorted subarray of size N.

Proposition. For partially-sorted arrays, insertion sort runs in linear time. Pf. Number of exchanges equals the number of inversions.

number of compares = exchanges +
$$(N - 1)$$

Insertion sort: practical improvements

Half exchanges. Shift items over (instead of exchanging).

- Eliminates unnecessary data movement.
- No longer uses only less() and exch() to access data.

Binary insertion sort. Use binary search to find insertion point.

• Number of compares $\sim N \lg N$.

In-class Assignment

Write code in the sort(int[] a) function in InclassSort.java to sort the input array in the way shown in the expected output.

Input => output

- $1,3,6 \Rightarrow 6,1,3$
- $1,2,3,4,5,6 \Rightarrow 6,1,5,2,4,3$
- $7,6,3,5,1,2,9 \Rightarrow 9,1,7,2,6,3,5$
- $100,1,10,8,6,2,5,10,1 \Rightarrow 100,1,10,1,10,2,8,5,6$

DO NOT EDIT other functions NOR add global variables.

In-class Assignment

Deliverables

- Register your team with the TA.
- Include both your names at the top of the .java file as a comment.
- Write comment for each key operation.
- Cite referenced websites and others that helped you in the comments.
- Upload your .java file to the course website by the end of the class.
 - Only one of you in your team should upload the .java file.
 - The other person needs to make sure that the upload is successful.