Classifiers: kNN

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Majority vote within the k nearest neighbors

K= 1: blue K= 3: green

- An arbitrary instance is represented by $(a_1(x), a_2(x), a_3(x), ..., a_n(x))$
 - a_i(x) denotes features
- Euclidean distance between two instances
 - $d(x_i, x_j)$ =sqrt (sum for r=1 to n $(a_r(x_i) a_r(x_j))^2$)
- L_p distance
 - p=2: Euclidean distance
 - p=1: Manhattan distance
 - $p = \infty$: Max distance
 - p= 0: Count non-zero distance
- In case of continuous-valued target function
 - Mean value of k nearest training examples

Other Distance Metrics

• Cosine Distance Metric $\ \rho(\vec{x}_1,\vec{x}_2) = \cos(\angle(\vec{x}_1,\vec{x}_2)) = \frac{\vec{x}_1 \cdot \vec{x}_2}{\|\vec{x}_1\|_2 \ \|\vec{x}_2\|_2}$

• Edit Distance
$$x_1 = AAATCCCGTAA$$

$$x_2 = AATCGCGTAA$$

Minimum number of insertions, deletions and mutations needed

$$\rho(x_1, x_2) = 2$$

- Choosing k is important
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

How to determine k

- Determined experimentally (think cross-validation!)
 - Start with k=1 and use a test set to validate the error rate of the classifier
 - Repeat with k=k+2
 - Choose the value of k for which the error rate is minimum
 - Note: k typically an odd number to avoid ties in binary classification

Pros and Cons

- Pros
 - Highly effective and simple method
 - Trains very fast ("Lazy" learner)
- Cons
 - Curse of dimensionality
 - In higher dimensions, all data points lie on the surface of the unit hypersphere!
 - Closeness in raw measurement space may not be good for the task
 - Storage: all training examples are saved in memory
 - A decision tree or linear classifier is much smaller
 - Slow at query time
 - Can be overcome and presorting and indexing training samples

Improvements

- Distance-Weighted Nearest Neighbors
 - •Assign weights to the neighbors based on their 'distance' from the query point (E.g., weight 'may' be inverse square of the distances)
 - Can also learn this -> "Metric Learning"
- •Scaling (normalization) attributes for fair computation of distances

Improvements

- Finding "close" examples in a large training set quickly
 - E.g. Efficient memory indexing using kd-trees
 - In 1-dimension, can reduce complexity from O(n) to O(log n) – assuming data is sorted
 - Other methods
 - Locality-Sensitive Hashing, Clustering-based methods

Improvements

- Not storing all examples
 - We can label each cell instead and discard the training data

Classification: Evaluation metrics

Accuracy:
$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}[y_i == \hat{y}_i]$$

		Actual Label	
		Positive	Negative
Predicted Label	Positive	True Positive (TP)	False Positive (FP)
	Negative	False Negative (FN)	True Negative (TN)

Accuracy	(TP + TN) / (TP + TN + FP + FN)	The percentage of predictions that are correct
Precision	TP / (TP + FP)	The percentage of positive predictions that are correct
Sensitivity (Recall)	TP / (TP + FN) The percentage of positive cases that w predicted as positive	
Specificity	TN / (TN + FP)	The percentage of negative cases that were predicted as negative

Classification metric: ROC and AUC

• AUC (Area Under The Curve) ROC (Receiver Operating Characteristics) curve.

TPR /Recall / Sensitivity =
$$\frac{TP}{TP + FN}$$
 Specificity = $\frac{TN}{TN + FP}$

 AUC provides an aggregate measure of performance across all possible classification thresholds. One way of interpreting AUC is as the probability that the model ranks a random positive example more highly than a random negative example. Useful for class imbalanced data.

Readings

- Chapters 8, 9, EA Introduction to ML 2nd Edn
- Chapter 14 (Sec 14. 4) + Chapter 2 (Sec 2. 5), Bishop, PRML

