Lecture 2

- What is a network made of?
- How is it shared?
- How do we evaluate a network?

Phone company

Digital Subscriber Line (DSL)

- Twisted pair copper
- 3 separate channels
 - o downstream data channel
 - o upstream data channel
 - o 2-way phone channel
- up to 25 Mbps downstream
- up to 2.5 Mbps upstream

Why phone lines?

• They are everywhere

Cable company

```
Home PC --> [ cable modem ] --> copper ---> O --> fiber --> [ Cable head end: CMTS --> Switch] --> ...
```

Cable

- Coaxial copper & fiber
- up to 42.8 Mbps downstream
- up to 30.7 Mbps upstream
- Shared network

University net

```
Workstation --> Ethernet cable ---> "local" switch --> aggregate switch" --> ...
```

How is it shared?

- How do we scale a network to many end-systems?
- Switched networks enable efficient scaling!
- Two approaches to sharing
 - Reservation
 - On-demand
- Switching on-demand exploits statistical multiplexing better than reservations
 - Sharing using the statistics of demand

- Good for bursty traffic (average << peak demand)
- Similar to insurance, with the same failure mode

Statistical multiplexing is a recurrent theme in computer science

- Phone network rather than dedicated lines
 - ancient history
- Packet switching rather than circuits
 - o today's lecture
- Cloud computing
 - shared vs. dedicated machines

Two approaches to sharing Packet Switching

- Packets treated on demand
- Admission control: per packet

Circuit Switching

- Resources reserved per active "connection"
- Admission control: **per connection**

A hybrid: virtual circuits

• Emulating "circuit" switching with packets... check textbook!

Circuit Switching

Reservation establishes a "circuit" within a switch

- 1. **src** sends a reservation request to **dst**
- 2. Switches "establish a circuit"
- 3. **src** starts sending data
- 4. **src** sends a teardown circuit message

Many kinds of "circuits"

- Time division multiplexing (TDM)
 - Divide time in time slots
 - Separate time slots per circuit
- Frequency division multiplexing (**FDM**)
 - Divide frequency spectrum in frequency bands
 - Separate frequency band per circuit

Timing in Circuit Switching

- 1. Circuit establishment
- 2. Data transfer
- 3. Circuit teardown

Inefficiencies in Circuit Switching

- Case 1: Multiple data transfers with standby periods in-between with no data transmission
 - Unused circuit
- Case 2: Really small data transfer
 - Circuit establishment and teardown takes more time than data

transfer, too much work for such a little transmission

• Circuit switching doesn't "route around trouble" if a switch fails

Evaluation of Circuit Switching

- Pros
 - Predictable performance
 - Simple/fast switching (once circuit established)
- Cons
 - Complexity of circuits setup/teardown
 - o Inefficient when traffic is bursty
 - Circuit setup adds delay
 - Switch fails -> its circuit(s) fails

Packet Switching

- Each packet contains destination (**dst**)
- Each packet treated independently
- With buffers to absorb transient overloads

Evaluation of Packet Switching

- Pros
 - Efficient use of network resources
 - Simpler to implement
 - Robust: can "route around trouble"
- Cons
 - Unpredictable performance
 - Requires buffer management and congestion control