STAT 215A Fall 2017 Week 6

Rebecca Barter 09/29/2017

Independent component analysis (ICA)

Multidimensional scaling

Making better figures

Loess

Locally weighted scatterplot smoothing

Parameters to choose:

- The span/bandwidth: size of the neighborhood
- The **degree** of the local polynomial (in our example, the degree was 1)
- The weights for the weighted least squares

Goal: separate the underlying speech signals each corresponding to an individual at a cocktail party

Image source: http://tarynwilliford.com/wp-content/uploads/2010/12/RetroCocktailParty.jpg

Goal of PCA:

 Compress the data so that each dimension contains as much information as possible

Goal of ICA:

 Identify the independent parts that make up the data

Goal of PCA:

- Compress the data so that each dimension contains as much information as possible
- Maximize variability (second moment)

- Identify the independent parts that make up the data
- Maximize kurtosis (fourth moment)

Goal of PCA:

- compress the data so that each dimension contains as much information as possible
- maximize variability (second moment)
- Each component is orthogonal

- identify the independent parts that make up the data
- maximize kurtosis (fourth moment)
- Each component is statistically independent, but not necessarily orthogonal

Goal of PCA:

- compress the data so that each dimension contains as much information as possible
- maximize variability (second moment)
- Each component is orthogonal

 PCA removes correlations, but not higher order dependence

- identify the independent parts that make up the data
- maximize kurtosis (fourth moment)
- Each component is statistically independent, but not necessarily orthogonal
- ICA removes correlations and higher order dependence

Goal of PCA:

- compress the data so that each dimension contains as much information as possible
- maximize variability (second moment)
- Each component is orthogonal

- PCA removes correlations, but not higher order dependence
- The **first few components** are the most important

- identify the independent parts that make up the data
- maximize kurtosis (fourth moment)
- Each component is statistically independent, but not necessarily orthogonal
- ICA removes correlations and higher order dependence
- All components are equally important

Goal of PCA:

- compress the data so that each dimension contains as much information as possible
- maximize variability (second moment)
- Each component is orthogonal

- PCA removes correlations, but not higher order dependence
- The **first few components** are the most important

- identify the independent parts that make up the data
- maximize kurtosis (fourth moment)
- Each component is statistically independent, but not necessarily orthogonal
- ICA removes correlations and higher order dependence
- All components are equally important

Multi Dimensional Scaling

Suppose you knew the distances between all major US cities

Could you figure out the coordinate locations of each city?

Given a distance matrix, MDS tries to recover low-dimensional coordinates such that the distances are preserved...

Multidimensional scaling (see mds.R)

X	Boston	NYC	DC	Miami	Chicago	Seattle	San.Francisco	Los.Angles	Denver
Boston	0	206	429	1504	963	2976	3095	2979	1949
NYC	206	0	223	1308	802	2815	2934	2786	1771
DC	429	223	0	1075	671	2684	2799	2631	1616
Miami	1504	1308	1075	0	1329	2373	3053	2687	2037
Chicago	963	802	671	1329	0	2013	2142	2054	996
Seattle	2976	2815	2684	2373	2013	0	808	1131	1307
San Francisco	3095	2934	2799	3053	2142	808	0	379	1235
Los Angles	2979	2786	2631	2687	2054	1131	379	0	1059
Denver	1949	1771	1616	2037	996	1307	1235	1059	0

Multidimensional scaling (see mds.R)

Denver

San.Francisco

Los.Angles

Chicago

Boston NYC DC

Seattle

Miami

MDS moves objects around in the space defined (e.g. R²) and check how well the distances between the objects can be reproduced by the new configuration.

It wants to minimize a goodness-of-fit measure called stress

$$stress = \sqrt{\frac{\sum (d_{ij} - \hat{d}_{ij})^{2}}{\sum d_{ij}^{2}}}$$

Goal: to visualize (in low dimensions) the similarity between individual data points in a high dimensional dataset.

Input: a dissimilarity matrix

Output: a coordinate matrix whose configuration minimizes a loss function called strain (stress?)

Steps of a Classical MDS algorithm:

Classical MDS uses the fact that the coordinate matrix can be derived by eigenvalue decomposition from B=XX'. And the matrix B can be computed from proximity matrix D by using double centering. [2]

- 1. Set up the squared proximity matrix $D^{(2)} = [d_{ij}^2]$
- 2. Apply double centering: $B=-\frac{1}{2}JD^{(2)}J$ using the centering matrix $J=I-\frac{1}{n}11'$, where n is the number of objects.
- 3. Determine the m largest eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m$ and corresponding eigenvectors e_1, e_2, \ldots, e_m of B (where m is the number of dimensions desired for the output).
- 4. Now, $X=E_m\Lambda_m^{1/2}$, where E_m is the matrix of m eigenvectors and Λ_m is the diagonal matrix of m eigenvalues of B.

Classical MDS assumes Euclidean distances. So this is not applicable for direct dissimilarity ratings.

Steps of a Classical MDS algorithm:

Classical MDS uses the fact that the coordinate matrix can be derived by eigenvalue decomposition from B=XX'. And the matrix B can be computed from proximity matrix D by using double centering. [2]

- 1. Set up the squared proximity matrix $D^{(2)} = [d_{ij}^2]$
- 2. Apply double centering: $B=-rac{1}{2}JD^{(2)}J$ using the centering matrix
- Double multiplication $\longrightarrow J = I \frac{1}{n}11'$, where n is the number of objects.
 - 3. Determine the m largest eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m$ and corresponding eigenvectors e_1, e_2, \ldots, e_m of B (where m is the number of dimensions desired for the output).
 - 4. Now, $X=E_m\Lambda_m^{1/2}$, where E_m is the matrix of m eigenvectors and Λ_m is the diagonal matrix of m eigenvalues of B.

Classical MDS assumes Euclidean distances. So this is not applicable for direct dissimilarity ratings.

by this matrix simply subtracts the mean from each row and column