Fast Partial-Differential Synthesis of the Matching Polynomial of C_{72-100}

James M. Salvador,* Adrian Hernandez, Adriana Beltran, Richard Duran, and Anthony Mactutis

Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968

Received February 11, 1998

The Thesis algorithm uses partial-differential edge operators and a grammatical structure to generate and avoid expanding the Matching Polynomial. To run the algorithm efficiently, the vertexes of fullerene graphs C_{60-100} were sorted into three-dimensional sectors.

INTRODUCTION

The Matching, 1 Reference, 2 or Acyclic 3 Polynomial is the counting polynomial of nonadjacent edges of a graph as a function of isolated vertexes. Its lowest order term is the number of perfect matchings or Kekulé structures of a given π -system. Hosoya's Z index is the number of terms in a Matching Polynomial. The Z index is elegantly calculated through graph "retrosynthesis" and easily correlates the hydrogen suppressed graph of acyclic alkanes to their boiling point. The difference in the "occupied" roots of the Matching and Characteristic Polynomials provides a method of comparing the stability of different size π -systems and is called a Topological Resonance Energy (TRE). Because of recent interest in calculating the TRE of fullerenes up to C₇₀,⁴⁻⁸ we report the development of the Thesis algorithm to quickly calculate the Matching Polynomial of larger fullerenes using partial-differential edge operators.

In matrix terms, for a graph G the Characteristic Polynomial, CP(G) or the determinant of its adjacency matrix with elements $a_{i,j}$, is a listing of all walks across the matrix without stepping twice on the same row or column. The Matching Polynomial, MP(G), is a listing of all determinant walks that contain only matching steps $a_{i,j}$ and $a_{j,i}$. MP(G) equals CP(G) for acyclic graphs. MP(G) is a subset of CP(G) for cyclic graphs because the latter includes walks that explicitly list the Hamiltonian paths of the graph.

Matching off-diagonal walks are permutations of the diagonal walk since the diagonal and off-diagonal positions of an adjacency matrix can correspond to the vertexes (v_i) and edges $(e_{i,j})$ of G, respectively, as shown in Figure 1. Rosenfeld and Gutman showed that these permutations are a product of partial-differential operators on the product of diagonal elements.⁹ We use partial-differential edge operators to develop Thesis as follows.

METHODS

MP(G) for the trivial graph of n vertexes is the product of the diagonal elements of the adjacency matrix, eq 1. An edge operator is a permutor of the diagonal walk to its

```
egin{bmatrix} v_1 & e_{1,2} & \dots & 0 \ e_{2,1} & v_2 & \dots & e_{2,n_{vertices}} \ \dots & \dots & \dots & \dots \ 0 & e_{n_{vertices}\,,2} & \dots & v_{n_{vertices}} \ \end{pmatrix}
```

Figure 1. An adjacency matrix.

```
MPC60 := Module[{}, I =
\{0,1,0,12,0,48,0,0,1,2,1,59,1,1,2,3,2,11,2,2,3,4,3,58,3,3,4,5,4,9,4,4,5,6,5,56,
5,5,6,7,6,8,6,6,7,19,7,55,7,7,8,9,8,17,8,8,9,10,9,9,10,11,10,15,10,10,11,13,
11,11,12,13,12,24,12,12,13,14,13,13,14,15,14,23,14,14,15,16,15,15,16,17,
16,21,16,16,17,18,17,17,18,19,18,20,18,18,19,31,19,19,20,21,20,29,20,20,
26,27,26,35,26,26,27,28,27,27,28,29,28,33,28,28,29,30,29,29,30,31,30,32,
30, 30, 31, 43, 31, 31, 32, 33, 32, 41, 32, 32, 33, 34, 33, 33, 34, 35, 34, 39, 34, 34, 35, 37,\\
35, 35, 36, 37, 36, 48, 36, 36, 37, 38, 37, 37, 38, 39, 38, 47, 38, 38, 39, 40, 39, 39, 40, 41,
40,45,40,40,41,42,41,41,42,43,42,44,42,42,43,55,43,43,44,45,44,53,44,44,
45,46,45,45,46,47,46,51,46,46,47,49,47,47,48,49,48,48,49,50,49,49,50.51.
55,55,56,57,56,56,57,58,57,57,58,59,58,58,59,59};
MP = Product[v[i], \{i,0,59\}];
Dol
 If[i[[2 i - 1]] == I[[2 i]],
  v[l[[2\ i]]] = x
  MP = MP - D[MP, v[l[[2 i-1]]], v[l[[2 i]]]]);
 Print[i, " ", TimeUsed[], " ", MemoryInUse[]],
Print[MP, " ", TimeUsed[], " ", MemoryInUse[]]]
```

Figure 2. A Mathematica program to generate $MP(C_{60})$.

```
section 1
                    paragraph 2
                                         paragraph 3
                                                              paragraph 4
paragraph 1
                                                              sentence 20 =
sentence 17 =
                    sentence 18 =
                                         sentence 19 =
                                                              W4(1718)
w_1(l_1l_2)
                    W_2(|_3|_4)
                                         w_3(|_5|_6)
section 2
paragraph 5
                                         paragraph 6
sentence 21 =
                                         sentence 22 =
                                         w_6(|_{19}|_{20})
W5(117/18)
section 3
paragraph 7
sentence 23 =
```

Figure 3. $(((v_1v_2)(v_3v_4))((v_5v_6)(v_7v_8))).$

matching off-diagonal elements, eq 2. MP(G) for a nontrivial graph is the product of edge operators on the trivial graph monomial as shown in eq 3. Partial-differential operators ensure that no row or column is repeated in a walk since the

$\frac{\text{section 1}}{\text{paragraph 1}}$ $\text{sentence 17} = w_1(_1 _2) + w_8(_9 _{10})$	paragraph 2 sentence 18 = $w_2(l_3l_4)$	paragraph 3 sentence 19 = w ₃ (I ₅ I ₆)	paragraph 4 sentence 20 = w ₄ (I ₇ I ₈)
$\frac{\text{section } 2}{\text{paragraph 5}}$ $\text{sentence 21} = w_{S}(I_{17}I_{18})$		paragraph 6 sentence 22 = w ₆ (l ₁₉ l ₂₀)	
section 3 paragraph 7 sentence 23 = $w_7(_{21} _{22})$			
iouro 1 (/F (11-11-1/11-11-11///11-1	1-1(21-21-1))	

Figure 4. $((E_{1,2}(v_1v_2)(v_3v_4))((v_5v_6)(v_7v_8))).$

section 1 paragraph 1 sentence 17 = $w_1(I_1I_2)+w_6(I_9I_{10})$ sentence 24 = $w_9(I_1I_{10})$	paragraph 2 sentence 18 = $w_2(l_3l_4)$ sentences 25 = $w_{10}(l_{11}l_4)$	paragraph 3 sentence 19 = w ₃ (l ₅ l ₆)	paragraph 4 sentence 20 = w ₄ (I ₇ I ₈)
$\frac{\text{section 2}}{\text{paragraph 5}}$ $\text{sentence 21} = w_5(_{17} _{18}) + w_{11}(_{24} _{25})$		paragraph 6 sentence 22 = w _e (l ₁₉ l ₂₀)	
$\frac{\text{section 3}}{\text{paragraph 7}}$ $\text{sentence 23} = w_7(_{21} _{22})$			

Figure 5. $(E_{2,3}(E_{1,2}(v_1v_2)(v_3v_4))((v_5v_6)(v_7v_8))).$

	paragraph 2 sentence 18 = $w_2(_3 _4)+w_{12}(_{11} _{12})$ sentence 25 = $w_{10}(_{11} _4)$ sentence 26 = $w_{13}(_3 _{12})$ sentence 27 = $w_{14}(_{11} _{12})$	paragraph 3 sentence 19 = $w_3(\varsigma _6)+w_{20}(\iota_3 _{14})$ sentence 28 = $w_{15}(\iota_3 _{14})$ sentence 31 = $w_{21}(\varsigma _{14})$ sentence 32 = $w_{22}(\iota_3 _{14})$	paragraph 4 sentence 20 = $w_4(r _8)+w_{26}(r _5 _16)$ sentence 33 = $w_{23}(r_5 _6)$
$\frac{\text{section 2}}{\text{paragraph 5}}$ $\text{sentence 21} = w_5(I_17I_{18}) + w_{11}(I_24I_{25})$ $\text{sentence 29} = w_{16}(I_17I_{26}) + w_{17}(I_14I_{27})$		paragraph 6 sentence 22 = $w_6(_{19} _{20})+w_{24}(_{31} _{33})$ sentence 30 = $w_{18}(_{28} _{20})+w_{25}(_{32} _{33})$	
$\frac{\text{section 3}}{\text{paragraph 7}}$ $\text{sentence 23} = w_7(_{2_1} _{2_2}) + w_{19}(_{2_9} _{3_0})$			

Figure 6. $E_{4,5}(E_{2,3}(E_{1,2}(v_1v_2)E_{3,4}(v_3v_4))E_{6,7}(E_{5,6}(v_5v_6)E_{7,8}(v_7v_8))).$

last term of eq 4 cancels on a monomial with all terms to the first power.

$$MP(G_{trivial}) = \prod_{i=1}^{n_{vertices}} v_i \tag{1}$$

$$E_{j,k}^{-} = 1 - \frac{e_{j,k}e_{,k,j}\partial^2}{\partial v_j\partial v_k}$$
 (2)

$$MP(G) = \prod_{m=1}^{n_{edges}} E_{j,k(m)}^{-} \prod_{i=1}^{n_{vertices}} v_i$$
 (3)

$$E_{j,k}^{-}E_{j,l}^{-} = 1 - \frac{e_{j,k}e_{k,j}\partial^{2}}{\partial v_{j}\partial v_{k}} - \frac{e_{j,l}e_{l,j}\partial^{2}}{\partial v_{j}\partial v_{l}} + \frac{e_{j,k}e_{k,j}e_{j,l}e_{l,j}\partial^{4}}{(\partial v_{j})^{2}\partial v_{k}\partial v_{l}}$$
(4)

The positive edge operator shown in eq 5 generates $MP^+(G)$, the permanental equivalent of MP(G), or allows

Table 1. Matching Polynomials

C _n , axis	60y	70z
$MP^+(C_n)$ time	/s 7	23
Letters/Sente	nces 5497	7777
Words	68026	143319
$\overline{MP}^{+}(C_{n},1)$ tin	ne/s 0	0
Z index	1.417036634543488E+15	4.760609105256725E+17
$\overline{MP}^{+}(C_{n}, x)$	36	147
time o fo		

time/s		
Order	Coeffic	ients
x ^o	12500	52168
x^2	4202760	24949770
x ⁴	269272620	2175411410
x ⁶	6946574300	76188054720
_8	94541532165	1414031839415
x ¹⁰	783047312406	16060741380337
v12	4310718227685	121977585926655
v14	16742486291340	657705883833585
v ¹⁶	47883826976580	2.62862680607528E+15
v ¹⁸	104113567937140	8.04243921720919E+15
v ²⁰	176345540119296	1.93119181605115E+16
v ²²	237135867688980	3.71169893763219E+16
v ²⁴	256967614454320	5.80047715746414E+16
v ²⁶	227043126274260	7.46502399971658E+16
v ²⁸	165074851632300	7.99431035976412E+16
y ³⁰	99463457244844	7.18431674843235E+16
v ³²	49924889888850	5.45534213776560E+16
v ³⁴	20949286202160	3.51942821425224E+16
v ³⁶	7362904561730	1.93727575573052E+16
v ³⁸	2168137517940	9.12760379418898E+15
v ⁴⁰	534162544380	3.68887741125418E+15
v ⁴²	109742831260	1.28023674340454E+15
v ⁴⁴	18697786680	381580564799125
v ⁴⁶	2619980460	97578536447295
y ⁴⁸	298317860	21362502290720
x ⁵⁰	27130596	3989784929340
_v 52	1922040	632435470975
x ⁵⁴	102120	84479881155
x ⁵⁶	3825	9417493125
x ⁵⁸	. 90	864583005
₂ 60	1	64182939
v ⁶²		3753855
v ⁶⁴		166390
v ⁶⁶		5250
68		105
x ⁷⁰		1

graph-polynomial degradation since conjugate edge operators annihilate each other, eq 6. The coefficients of $MP^+(G)$ are identical to those of MP(G) except for the alternating sign of the latter.

$$E_{j,k}^{+} = 1 + \frac{e_{j,k}e_{k,j}\partial^2}{\partial v_i \partial v_k}$$
 (5)

$$E_{i,k}^+ E_{i,k}^- = 1 (6)$$

Though easily calculated in a symbolic language, an expanded multivariable $MP(C_n)$ of a fullerene is too large to represent as indicated by a huge Z index. For example, the Mathematica 3.0 program given in Figure 2 uses 64 MB of RAM to generate $MP(C_{60}, x)^{10}$ ($Z = 1.4 \times 10^{15}$) in 31 min on a 200 MHz PC even as it substitutes each variable v[i] with x after it applies all three partial differentials with respect to v[i]. The edge operator is simply MP = MP - D[MP, v[j], v[k]].

Table 2. Matching Polynomials

C _n , axis	72z	74x	76y	78y	80v
$MP^+(C_n)$ time/s	11	68	141	296	67
Letters/Senten	ces 6449	11965	13145	19729	14049
Words	85430	295299	269203	524504	251827
$MP^{+}(C_{n},1)$ time	/s 0	0	0	2	1
Z index	1.52379191124229E+18	4.87723412503989E+18	1.56111894462469E+19	4.99675838961259E+19	1.59939535739180E+20
$MP^{+}(C_{n}, x)$	88	358	392	1162	473
time/s					

time/s					
Order			Coefficients		
x ⁰	77400	85119	124439	156492	270153
x^2	37159200	48987655	72619922	98800572	154287610
\hat{x}^4	3345162432	4848711174	7412804855	10828448538	16929185015
l x° l	122558197024	190727707272	304216122936	472462895226	759118423260
[,8]	2393469043524	3967349630137	6638334607776	10914789369489	18226025554255
X 10	28704598608024	50517449105277	88961463590540	154590472784429	269901774808282
1 1/2 1	230726853211188	430627522112217	799856605022370	1.46823749361833E+15	2.69001312432190E+15
x 14	1.31898643509007E+15	2.61035469851254E+15	5.12225664595390E+15	9.93360222158052E+15	1.91446844802899E+16
Y 70	5.59699938864125E+15	1.17504201292631E+16	2.43915637670210E+16	4.99989809654693E+16	1.01539980138955E+17
x ¹⁸ x ²⁰	1.82054495202396E+16	4.05752309655063E+16	8.92040273492884E+16	1.93415315887395E+17	4.14469553608037E+17
x ²⁰	4.65353337781300E+16	1.10208471787750E+17	2.56903055033695E+17	5.89701006528408E+17	1.33497041515992E+18
x ²²	9.53335342177769E+16	2.40174529397287E+17	5.94308732175795E+17	1.44560744016319E+18	3.46105893588590E+18
x ²⁴ x ²⁶	1.59022409077892E+17	4.26699556232873E+17	1.12217782055981E+18	2.89559777335120E+18	7.33997315468986E+18
x ²⁶	2.18777389029217E+17	6.26092843822986E+17	1.75223264349507E+18	4.80189419050786E+18	1.29021415505063E+19
x ²⁸	2.50867862188707E+17	7.66838416655156E+17	2.28704925036547E+18	6.66489204511052E+18	1.90046627743091E+19
x ³⁰	2.41841995535982E+17	7.90915835864830E+17	2.51756612528356E+18	7.81266999633002E+18	2.36727475701722E+19
x ³²	1.97390379486861E+17	6.91922917615568E+17	2.35457445507588E+18	7.79281910386050E+18	2.51268698222238E+19
X34	1.37186081385089E+17	5.16483035441874E+17	1.88241461447674E+18	6.65564432794572E+18	2.28716588195066E+19
x ³⁶	8.15562824476536E+16	3.30521919926091E+17	1.29286051251143E+18	4.89242772379036E+18	1.79486023740923E+19
x 38	4.16182217459096E+16	1.82022053785676E+17	7.65872706801153E+17	3.10828112740624E+18	1.21965205251733E+19
1 .~40	1.82758931121746E+16	8.65080134048396E+16	3.92534022065706E+17	1.71248417438422E+18	7.20194976876803E+18
V42	6.91711944853812E+15	3.55503610480707E+16	1.74461384797952E+17	8.20251581169898E+17	3.70576975589466E+18
1 x ⁴⁴	2.25788287473569E+15	1.26462258771376E+16	6.73380655755124E+16	3.42183136543101E+17	1.66500700747724E+18
x ⁴⁶	635430812245836	3.89497654463288E+15	2.25868113853741E+16	1.24456872952675E+17	6.54123061107341E+17
x ⁴⁸ x ⁵⁰	153971990229848	1.03795974550506E+15	6.58299169898385E+15	3.94788845138592E+16	2.24858643016567E+17
X ⁵⁰	32043716476716	238927993751013	1.66545778990140E+15	1.09169335400248E+16	6.76341876476514E+16
x ⁵² x ⁵⁴	5705866140966	47376763450332	365043553466658	2.62829224777568E+15	1.77874245071628E+16
X 54	864652893884	8059708499592	69111636139668	549713259720419	4.08404773674106E+15
x ⁵⁶	110690579973	1169765435812	11253888461463	99560855449381	816690124439395
x ⁵⁸	11852752392	143756363544	1567057426890	15545196957717	141751784201960
x 60	1047459326	14808816255	185159638887	2080030465219	21256630567074
1 x ⁰² 1	74997996	1261482041	18375347268	236640822375	2737145542380
x ⁶⁴	4238379	87223566	1510756122	22653950949	300233075775
X ⁶⁶	181836	4768338	100993272	1799779445	27759330840
x ⁶⁸	5562	198209	5346486	116448918	2133467090
1 2'0 1	108	5883	215536	5975658	133740732
x ⁷² x ⁷⁴ x ⁷⁶ x ⁷⁸	1	111	6213	233844	6658770
X'4		1	114	6552	253160
X'0			1	117	6900
X'°				1	120
x ⁸⁰				 	1

We developed Thesis to avoid full expansion of MP(G) and to make its calculation portable to other applications. We illustrate how Thesis works by calculating MP(G) for an eight-vertex chain, G_8 . The general concept is to first associate the vertex variables v_{I-8} into binary groups. Then apply edge operators only to those groups to which they pertain without expanding the polynomial, eq 7.

$$MP(G_8) =$$

$$E_{4,5}(E_{2,3}(E_{1,2}(v_1v_2)E_{3,4}(v_3v_4))E_{6,7}(E_{5,6}(v_5v_6)E_{7,8}(v_7v_8)))$$
(7)

To program these parenthetic associations we call the product of two letters a word, the summation of words a sentence, a collection of sentences with the same pair of letters and their derivatives a paragraph, and a collection of paragraphs representing the same power of two vertex variables a section. For the trivial graph of our eight-vertex example the vertex variables v_{I-8} are letters and sentences one through eight because the sentences of one section are the letters of the next. We reserve letters and sentences 9-16as the partial derivative of each vertex variable. The product of all vertex variables is sentence 23 in Figure 3.

To apply edge operators we follow two simple rules. The first is that we add words corresponding to the partial derivative of existing words to existing sentences if both letters in a section are in the same paragraph. Figure 4 illustrates applying $E_{1,2}$.

The second rule is to create new sentences corresponding to the partial derivative of existing sentences if both letters

Table 3. Matching Polynomials

C _n , axis	82y	84z	86z	88y	90z
$MP^{+}(C_{n})$	187	177	90	182	73
time/s					
Letters/Senten	nces 22001	22937	19713	27025	14365
Words	572968	461144	369670	510283	359071
$MP^+(C_n,1)$ time	e/s 1	0	0	0	0
Z index	5.11928718764056E+20	1.63856268904723E+21	5.24468210787329E+21	1.67872807888161E+22	5.37323821892860E+22
$MP^{+}(C_{n}, x)$	1358	1017	517	655	830
tima/e					

time/s					
Order			Coefficients		
x ⁰	320678	379824	490858	688905	917357
X^2	210425094	284664296	397470352	581610216	802577425
1 x*	24719893280	35894363486	52774304177	79570986926	115893854312
1 v°	1173402008208	1804293964056	2785793083095	4355866266252	6666679806262
x8	29712524748568	48164593645498	78037042251960	127062169844979	203903751995185
1 210	463448764669230	790639953232716	1.34413806102803E+15	2.28504416081282E+15	3.84169239203539E+15
1 4/2	4.86373029527818E+15	8.72780073849130E+15	1.55729862035761E+16	2.76914326099719E+16	4.87676903569649E+16
x 14	3.64559939565595E+16	6.88155699555264E+16	1.28929546125292E+17	2.40123014120335E+17	4.43069887420676E+17
1 10	2.03737774867215E+17	4.04702551475871E+17	7.96618191509479E+17	1.55563942273589E+18	3.00869360045485E+18
1 2,0	8.76845770543761E+17	1.83392481782712E+18	3.79515735534971E+18	7.77807263579532E+18	1.57762141832013E+19
x ²⁰	2.98009884415206E+18	6.56726345676912E+18	1.42981367300995E+19	3.07807997257116E+19	6.55147257414098E+19
x ²²	8.15957254803518E+18	1.89608693707620E+19	4.34647369383287E+19	9.83693203379671E+19	2.19857044161147E+20
x 24	1.82918480908978E+19	4.48602002019312E+19	1.08364013081853E+20	2.58045605331435E+20	6.06060508782894E+20
x ²⁶	3.40227353430684E+19	8.81442556489712E+19	2.24569112643115E+20	5.63156235941557E+20	1.39100100749122E+21
x ²⁸	5.30869929389258E+19	1.45437481845893E+20	3.91183045112590E+20	1.03400878090614E+21	2.68822867314760E+21
V30	7.01316157441734E+19	2.03396987380561E+20	5.78153600929652E+20	1.61240987976462E+21	4.41622872643574E+21
x ³²	7.90501891143040E+19	2.42994161750870E+20	7.30756707871511E+20	2.15251240494216E+21	6.21692576062387E+21
1 ,34	7.65200222345155E+19	2.49629473394701E+20	7.95197004806551E+20	2.47671332145536E+21	7.55112982066070E+21
x 36	6.39577211045978E+19	2.21747601185694E+20	7.49219512117075E+20	2.47039137997493E+21	7.95970234368375E+21
, ,,30	4.63683829028445E+19	1.71123290710403E+20	6.14117825180271E+20	2.14653095134113E+21	7.31800531171013E+21
x ⁴⁰	2.92667765791499E+19	1.15166518726371E+20	4.39684560417568E+20	1.63147448330493E+21	5.89299569062308E+21
V42	1.61303991208751E+19	6.78078750982010E+19	2.75876347226549E+20	1.08840579398274E+21	4.17133289046894E+21
x ⁴⁴	7.78089199358390E+18	3.50151176201921E+19	1.52101276287691E+20	6.39141877487515E+20	2.60313329344390E+21
X 46	3.29035331597129E+18	1.58879973003045E+19	7.38415823931041E+19	3.31116513537734E+20	1.43565220830645E+21
1 ,48	1.22102414742388E+18	6.34276887905031E+18	3.16139436455166E+19	1.51596584427240E+20	7.01064499801874E+20
X 50	3.97775791447798E+17	2.22939634041631E+18	1.19477670568923E+19	6.14109199149597E+19	3.03552155185174E+20
1 ,52	1.13727112935867E+17	6.89981516429734E+17	3.98755772544341E+18	2.20267030511790E+19	1.16647956588782E+20
X X ⁵⁴	2.85087478249248E+16	1.87932496409059E+17	1.17510242341165E+18	6.99642307971085E+18	3.97999653381438E+19
100	6.25499399060569E+15	4.49948363695267E+16	3.05541770811986E+17	1.96728254236543E+18	1.20567435461425E+19
1 ,,50	1.19807405290313E+15	9.45108082362743E+15	6.99985583315508E+16	4.89231564857801E+17	3.24097610567293E+18
1 200	199613017530388	1.73682473394837E+15	1.40999347832669E+16	1.07433794547125E+17	7.72213075257761E+17
1 202	28791516388176	278200981687320	2.48991334737386E+15	2.07856573294394E+16	1.62804870131447E+17
X X ⁶⁴	3572666166791	38650064176962	383973726246580	3.53224757981357E+15	3.02986074543787E+16
X 66	378300437241	4627612461276	51448668624636	525119833781136	4.96152726323661E+15
X 68	33820515738	473579561586	5950836847628	67942315851528	711951401910385
	2517176370	40982161284	589225290720	7600232587048	89050481340507
x ⁷²	153027609	2956732589	49405928097	728860281702	9644087121125
	7398819	174477354	3458455529	59271938640	896628926415
X ⁷⁶	273511	8198883	198266925	4029186666	70780315005
1 0/0	7257	294924	9062121	224582676	4676317115
x 80	123	7623	317426	9991773	253620600
162	1	126	7998	341044	10991160
X 84		1	129	8382	365805
1 200			1	132	8775
x 88			1	1	135
x ⁹⁰					1

in a section are not in the same paragraph. These new sentences are the partial derivatives of letters in the next section as shown by applying $E_{1,2}$ and $E_{2,3}$ in Figure 5.

We apply the second rule from section to section until both letters in a section are in the same paragraph and rule one applies. For example, $E_{4,5}$ applies up to section 3. We illustrate this and the other operators required to complete the eight-vertex chain polynomial in Figure 6. The words show the trail of operations.

To calculate $MP^+(G, x)$ we substitute the same variable for letters one through eight, substitute one into partial derivative letters 9–16, and evaluate Thesis up to the only

sentence of the last section, sentence 23. To calculate MP-(G, x) we substitute complex i into letters 9-16.

A measure of the efficiency of Thesis is the multiplications and additions it performs. For Thesis they both equal the number of words. To minimize this number we must apply the edge operators within the smallest parenthetic association. Since this is similar to numbering vertexes by spatial proximity, we sorted the n vertexes of the graph of fullerenes C_{60-100} into n/2 sectors around the x, y or z axis using the three-dimensional coordinates from Mitsuho Yoshida's Fullerene Gallery. The axis was chosen for maximum total interconnectivity between sectors.

Table 4. Matching Polynomials

\overline{C}	92y	94x	96z	98z	100z
$MP^+(C_n)$	1186	1307	1938	794	568
time/s					
Letters/Sentend	ces 35769	42353	44353	37973	38281
Words	1122018	1456529	1575102	1276492	1042116
$\overline{MP}^{+}(C_{n},1)$ time.	/s 1	2	5	2	2
Z index	1.71985828794839E+23	5.50494020206795E+23	1.76202706697029E+24	5.63989823822308E+24	1.80522986774562E+25
$MP^+(C_n, x)$	1596	2461	2407	1903	1690
timo la					

$MP^*(C_n, x)$	1596	2461	2407	1903	1690
time/s					
Order			Coefficients		4000040
x_2^0	1227892	1717113	2484405	3449999	4860048
x^2	1128529824	1629491064	2361300848	3366974673	4923127152
x ⁴	170081741686	253639287154	378315347620	558695871968	837774868148
x_{g}^{6}	10220043039970	15801570660777	24397056014732	37397269080004	57806823762648
x ⁸	326677451854290	525114082464828	841814374079479	1.34132449044513E+15	2.14501534830138E+15
x ¹⁰	6.43450771472702E+15	1.07734686901909E+16	1.79682726626372E+16	2.97936219378285E+16	4.94152151461148E+16
x ¹²	8.54258216496516E+16	1.49185646799072E+17	2.59226949307615E+17	4.47702860963233E+17	7.71511484873870E+17
x 14	8.12060293108491E+17	1.48075416393348E+18	2.68354198007144E+18	4.83111385202231E+18	8.66148153544896E+18
x 16	5.77264441142331E+18	1.10003932561742E+19	2.08109133591915E+19	3.90805806564196E+19	7.29710142895563E+19
x 18	3.17048152485141E+19	6.31881923709455E+19	1.24885762143870E+20	2.44791438970175E+20	4.76435524429732E+20
x ²⁰	1.37991399605296E+20	2.87843712322073E+20	5.94755693644695E+20	1.21761206770366E+21	2.47208103835503E+21
x ²²	4.85655299065704E+20	1.06104978367757E+21	2.29362456955075E+21	4.90740578654168E+21	1.04004696548025E+22
x ²⁴	1.40501571622822E+21	3.21737916499875E+21	7.28102240096875E+21	1.62913745877554E+22	3.60657839937090E+22
x ²⁶	3.38682325255968E+21	8.13478300460710E+21	1.92861023801451E+22	4.51575503936113E+22	1.04494115608472E+23
28	6.87978507893075E+21	1.73457536177522E+22	4.31137746779445E+22	1.05710760484147E+23	2.55856313735979E+23
V30	1.18896994876670E+22	3.14922919968494E+22	8.21264166012606E+22	2.11015749714758E+23	5.34574907135504E+23
v ³²	1.76237683692149E+22	4.90816268804828E+22	1.34401331667806E+23	3.62154382265639E+23	9.60990501137653E+23
U34	2.25611390769231E+22	6.61248472935867E+22	1.90295222731655E+23	5.38178117256176E+23	1.49697642696824E+24
J36	2.50915052305948E+22	7.74710001969281E+22	2.34519569002197E+23	6.96720031276588E+23	2.03311927324229E+24
J38	2.43665920181069E+22	7.93366241855152E+22	2.52881758404502E+23	7.89909080469775E+23	2.42031841857407E+24
V ⁴⁰	2.07511827998723E+22	7.13316820199714E+22	2.39656898168971E+23	7.87877550960850E+23	2.53715148750139E+24
V ⁴²	1.55548202026271E+22	5.65197993459977E+22	2.00386436748495E+23	6.94077715369203E+23	2.35135920404032E+24
v ⁴⁴	1.02943979779493E+22	3.95926186766457E+22	1.48313274354461E+23	5.41863064043606E+23	1.93324827716773E+24
V46	6.03056961347605E+21	2.45857358563025E+22	9.74386783423532E+22	3.75967985959024E+23	1.41428582960083E+24
γ ⁴⁸	3.13349495139676E+21	1.35630895831984E+22	5.69542136532706E+22	2.32403184150999E+23	9.22909654502461E+23
1,50	1.44644007174719E+21	6.65878915832877E+21	2.96740961217629E+22	1.28241825465468E+23	5.38352549352242E+23
x ⁵²	5.93830719006832E+20	2.91313025858076E+21	1.38013133399015E+22	6.32713581953383E+22	2.81193901987346E+23
x ⁵⁴	2.16975488816662E+20	1.13667345384530E+21	5.73607209081543E+21	2.79448521756669E+22	1.31693173656190E+23
,,56	7.05736866264567E+19	3.95751676499548E+20	2.13180880354649E+21	1.10580539906937E+22	5.53568386512271E+22
x 58	2.04293387026751E+19	1.22951707510270E+20	7.08657885859432E+20	3.92230371455485E+21	2.08982627622981E+22
x ⁶⁰	5.25927564949173E+18	3.40714318966786E+19	2.10677046503333E+20	1.24717839171592E+21	7.08773271435867E+21
x ⁶²	1.20255903901998E+18	8.41400206949402E+18	5.59810336437890E+19	3.55393813741785E+20	2.15940202262696E+21
x 64	2.43774061505819E+17	1.84909099661523E+18	1.32818431864072E+19	9.06930850602106E+19	5.90739466109798E+20
, 700 l	4.36988004462340E+16	3.60905337957877E+17	2.80931641260828E+18	2.07021864302448E+19	1.44986610644174E+20
x 68	6.90421377332259E+15	6.23960777221982E+16	5.28631429200341E+17	4.22003737108403E+18	3.18840209352821E+19
//	957371180909612	9.52282543471302E+15	8.82508098921638E+16	7.66501979189399E+17	6.27141495365482E+18
X ⁷²	115886941689630	1.27742518182741E+15	1.30248038810988E+16	1.23699596922613E+17	1.10078322464784E+18
1 1/4 1	12162592853488	149793959786451	1.69195341140560E+15	1.76732329327589E+16	1.71911236871639E+17
x ⁷⁶	1097255803434	15249528727410	192381342354918	2.22535284735764E+15	2.37997324239688E+16
x ⁷⁸	84152799804	1336108909218	19014126689476	245570910359103	2.90746834723139E+15
x ⁸⁰	5407816304	99634462353	1619267922318	23583137883942	311646966525189
V ₀ 2	285586572	6232261377	117495492336	1953597760854	29103114196610
x ⁸⁴	12063684	320696592	7158867326	138033083136	2346827700075 161573407020
x x ⁸⁶	391736	13212828	359177028	8197517852	9358796955
x x ⁸⁸	9177	418864	14442156	401264859	9358796955 447207918
x ⁹⁰	138	9588	447216	15755313	447207918 17156028
92	. 1	141	10008	476819	17156028 507700
X X ⁹⁴		1	144	10437	10875
X ⁹⁶			1	147	10875
1 20 1				1	150
x ¹⁰⁰					<u> </u>

RESULTS AND DISCUSSION

Tables 1-4 list the coefficients of $MP^+(C_{60-100}, x)$ generated by Thesis, one example per size, on a SGI Indigo2 with R4000-150 MHz processor and 96 MB RAM. Retention of the 15-digit precision of the double data type is shown for the known coefficients of $MP^+(C_{60-70})^{6,10}$ in Table 1. Because this C program uses dynamic memory allocation, the times shown to generate MP(G) are 10 times greater than

if predefined arrays are used. In all cases it takes more time to generate $MP^+(C_n, x)$ than $MP(C_n)$. Both a PC and SGI executable along with over 1000 sector sorted fullerene files can be downloaded.12

The letters and sentences are the number of variables and parentheses, respectively, used to represent $MP(C_n)$ without expansion. For Thesis both are equal as given in Tables 1-4. That the growth of this number and the number of words does not correlate with the number of vertexes, whereas the growth in the coefficients of $MP^+(C_n, x)$ does, indicates that the numbering of the vertexes is not optimum.

Because of the evolution of computer power and increased use of RAM versus much slower virtual memory among other factors, ¹³ there is no direct method of comparing Thesis to other recently developed algorithms for generating MP- (C_n, x) . ^{8,14} Our best estimate is that Thesis with dynamic memory allocation generates $MP^+(C_{70}, x)$ about as fast as the current record of 14 min for $MP(C_{70}, x)$ on a 486-66 MHz PC, ⁸ i.e., 2 min 14 s for $MP(C_{70})$ and 26 min 42 s for $MP^+(C_{70}, x)$ on our 486-33 MHz PC (16 MB RAM + virtual memory). Nevertheless edge operators simplify the synthetic concept and the algebra of calculating MP(G) to give the never before published $MP^+(C_n, x)$ of fullerenes above C₇₀.

Since the 15-digit precision of the coefficients given in Tables 1–4 is insufficient to calculate the roots of $MP(C_n, x)$ approaching ± 3 , directly using $MP(C_n)$ to calculate the roots of $MP(C_n, x)$ is our next focus. It will also be interesting to analyze $MP(C_n, x)$ along family lines. 15,16

ACKNOWLEDGMENT

We thank the National Science Foundation (CHE-9404968), the Robert A. Welch Foundation (A.H.-1305), the National Institutes of Health (SO6GM08120020), and the University of Texas at El Paso (Teaching Effectiveness, University Research Institute) for financial support. We also gratefully acknowledge the correspondence of Dr. Rosenfeld and Dr. Gutman.

REFERENCES AND NOTES

- Hosoya, H. Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons. *Bull. Chem. Soc. Jpn.* 1971, 44, 2332–2339.
- (2) Aihara, J. A New Definition of Dewar-Type Resonance Energies. J. Am. Chem. Soc. 1976, 98, 2750–2758.
- (3) Gutman, I.; Milun, M.; Trinajstic, N. Graph Theory and Molecular Orbitals, Part 19: Nonparametric Resonance Energies of Arbitrary Conjugated Systems. J. Am. Chem. Soc. 1977, 99, 1692–1704.
- (4) Manoharan, M.; Balakrishnarajan, M. M.; Venuvanalingam, P.; Balasubramanian, K. Topological Resonance Energy Predictions of the Stability of Fullerene Clusters. *Chem. Phys. Lett.* 1994, 222, 95– 100
- (5) Aihara, J.; Hosoya, H. Spherical Aromaticity of Buckminsterfullerene. Bull. Chem. Soc. Jpn. 1988, 61, 2657–2659.
- (6) Babić, D.; Ori, O. Matching Polynomial and Topological Resonance Energy of C₇₀. Chem. Phys. Lett. 1995, 234, 240–244.
- (7) Aihara, J.; Babić, D.; Gutman, I. Matching Spectra of Fullerenes MATCH 1996, 33, 7–16.
- (8) Babić, D.; Brinkmann, G.; Dress, A. Topological Resonance Energy of Fullerenes J. Chem. Inf. Comput. Sci. 1997, 37, 920–923.
- Rosenfeld, V. R.; Gutman, I. A Novel Approach to Graph Polynomials. MATCH 1989, 24, 191–199.
- (10) Hosoya, H. Matching and Symmetry of Graphs. Comput. Math. Appls. 1986, 12B, 271–290.
- (11) http://cochem2.tutkie.tut.ac.jp: 8000.
- (12) http://salvador.chemistry.utep.edu.
- (13) Herndon, W. C.; Radhakrishnan, T. P.; Zivkovic, T. P. Characteristic and Matching Polynomials of Chemical Graphs. *Chem. Phys. Lett.* **1988**, *152*, 233–237.
- (14) Balakrishnaraja, M. M.; Venuvanalingam, P. General Method for the Computation of Matching Polynomials of Graphs. J. Chem. Inf. Comput. Sci. 1994, 34, 1122–1126.
- (15) Balasubramanian, K. Exhaustive Generation and Analytical Expressions of Matching Polynomials of Fullerenes C₂₀₋₅₀. J. Chem. Inf. Comput. Sci. 1994, 34, 421–427.
- (16) Balasubramanian, K. Matching Polynomial of Fullerene Clusters. Chem. Phys Lett. 1993, 201, 306–314.

CI9800155