

Chapter 3 The Derived Function

Section 3.1 The Derivative

(70) 1. On the coordinate plane below, draw the tangent to the curve at P and estimate the gradient of the curve at P.

(71) **2.** Find the gradient of $y = x^5$ at x = -1.

(49) **3.** [G1] Given $y = 4x^5 + 11x^2 - 8x + 13$. Find y'.

(X23) **4.** Consider the function $y = \frac{x^3}{4} - \frac{1}{3x^2}, x \neq 0$.

a. Complete the table of values for the function *y*. Give your answers correct to one decimal place.

х	-3	-2	-1	-0.5	-0.2	0.2	0.5	1	2	3
у	-6.8	-2.1	-0.6		-8.3	-8.3	-1.3			6.7

b. On a grid, draw the graph of $y = \frac{x^3}{4} - \frac{1}{3x^2}$ for $-3 \le x \le -0.2$ and $0.2 \le x \le 3$.

c. i. Draw a suitable tangent to find the gradient of the curve at x = -2. Round your answer to the nearest integer.

ii. Using part i, write down the equation of the tangent to the curve at x = -2. Give your answer in the form y = mx + c.

d. Use the graph obtained to solve the following equations.

i.
$$\frac{x^3}{4} - \frac{1}{3x^2} = 0$$

ii.
$$\frac{x^3}{4} - \frac{1}{3x^2} - 2 = 0$$

e. The equation $\frac{x^3}{4} - \frac{1}{3x^2} - 2 = 0$ can be written in the form $ax^n + bx^{n-3} - 4 = 0$. Find the values of a, b, and n.

(X24) **5.** A table of values for $y = \frac{4}{x^2}$ is given below. (The values for y are correct to 1 decimal place).

х	-4	-3	-2	-1	1	2	3	4
у	0.3	0.4	1.0	4.0	4.0	1.0	0.4	0.3

a. Using a scale of 1 cm to represent 1 unit on the *x*-axis and 1 cm to represent 1 unit on the *y*-axis, draw the graph of $y = \frac{4}{x^2}$.

b. Express
$$x^3 + 4x^2 - 8 = 0$$
 in the form $\frac{4}{x^2} = ax + b$.

- c. Using the values of a and b obtained in the previous part, draw the line y = ax + b on your graph.
- d. Using your graph, estimate the roots of $x^3 + 4x^2 8 = 0$.
- e. By drawing a suitable tangent to your curve, estimate the gradient of the curve at x = 2.

(X25) **6.** [G1] Consider the curve (*C*) with equation
$$y = x^3 + 4x^2 + 10$$
.

What is the value of b if (10, b) is a point on the tangent to (C) at x = -2?

[Hint: Find the equation of the tangent to (C) at x = -2 and substitute x = 10 in the equation to obtain the y-coordinate.]

⁽⁷³⁾ **7.** [T] Consider the graph of the function $y = 3x^2 - 2$ for $-1.5 \le x \le 1.5$ as shown below.

- a. Write down the equation of the line of symmetry of the graph.
- b. Draw the tangent to the curve at the point where x = -0.5. Find the gradient of this tangent.

c. The table below shows some values for $y = -x^3 + 3x + 1$.

х	-1.5	-1	-0.5	0	0.5	1	1.5
у	-0.12 5					3.0	

- i. Complete the table.
- ii. Draw the graph of $y = -x^3 + 3x + 1$ for $-1.5 \le x \le 1.5$.
- d. Show that the values of x where the two curves intersect are the solutions of the equation $-x^3 3x^2 + 3x + 3 = 0$.
- e. By drawing a suitable straight line, solve the equation $-x^3 + 5x + 1 = 0$ for $-1.5 \le x \le 1.5$.

(74) **8.** [T] Consider the function $y = \frac{x^3}{4} + \frac{1}{2x^2}, x \neq 0$.

a. Complete the table of values for the function *y*. Give your answer correct to one decimal place.

х	-3	-2	-1	-0.5	-0.2	0.3	0.5	1	2	3
у	-6.7	'		2.0	12.5	5.6		0.8	2.1	6.8

b. On the grid, draw the graph of $y = \frac{x^3}{4} + \frac{1}{2x^2}$ for $-3 \le x \le -0.2$ and $0.2 \le x \le 3$.

- c. i. By drawing a suitable tangent, find an estimate of the gradient of the curve at x = 2.
 - ii. Write down the equation of the tangent to the curve at x = 2. Give your answer in the form y = mx + c.
- d. Use the graph obtained to solve the following equations.

i.
$$\frac{x^3}{4} + \frac{1}{2x^2} = 0$$

ii.
$$\frac{x^3}{4} + \frac{1}{2x^2} - 4 = 0$$

e. The equation $\frac{x^3}{4} + \frac{1}{2x^2} - 4 = 0$ can be written in the form $ax^n - bx^{n-3} + 2 = 0$. Find the values of a, b, and n.

(75) **9.** [T] a. i. Consider the function $y = 2^x$ and fill in the blanks to complete the table below.

х	0	1	2	3	4
у		2	4		16

ii. Consider the function $y = 5 - x^2$ and fill in the blanks to complete the table below.

х	0	1	2	3	4
у	5		1		-11

b. On the grid below, draw the graphs of $y = 2^x$ and $y = 5 - x^2$ for $0 \le x \le 4$.

c. Use the graphs to solve the equations.

i.
$$2^x = 10$$

ii.
$$2^x = 7 - x^2$$
, for $0 \le x \le 4$.

d. i. On the grid, draw the line from the point (3, 0) that has a gradient of -2.

ii. Complete the statement below.

This straight line is a _____ to the graph of $y = 5 - x^2$ at the point (1, 4).

⁽⁷⁶⁾ **10.** [T] Consider the diagram below that shows the graph of y = f(x) for $-1 \le x \le 3$.

- a. Find f(0.8).
- b. Solve f(x) = 2.2.
- c. The equation f(x) = k has only one solution for $-1 \le x \le 3$. Find the range of values of k in this case.
- d. By drawing a suitable straight line, solve the equation f(x) = 2x 1.
- e. Draw a tangent to the graph of y = f(x) at the point where x = 2 and estimate the gradient.

⁽⁷⁷⁾ **11.** [T] Consider the graph of the function $f(x) = 6 - 3x^2$ given below for $-1.5 \le x \le 1.5$.

- a. Use the graph to solve the equation f(x) = 3.
- b. i. Draw the tangent to the graph y = f(x) at the point (1, 3).
 - ii. Using the tangent line, estimate the gradient of y = f(x) when x = 1.
- c. Consider the function $g(x) = 3^x$.
 - i. Complete the table for $g(x) = 3^x$.

		0 \ /			
х	-1.5	-1	0	1	1.5
у	0.2	$\frac{1}{3}$			5.2

- ii. On the same grid, draw the graph of y = g(x) for $-1.5 \le x \le 1.5$.
- d. Use the graph obtained to solve the following.
 - i. f(x) = g(x)
 - ii. f(x) > g(x)
- e. What value does g(x) approach as x decreases?

(78) 12. [T] Consider the table below that shows some values for $y = 2x^3 - 3x^2$.

х	-1	-0.6	-0.5	0	0.5	1	1.5	2
у		-1.5		0		-1	0	

a. Complete the given table.

b. Draw the graph of $y = 2x^3 - 3x^2$ for $-1 \le x \le 2$ on the grid below.

c. Find the number of solutions to the equation $2x^3 - 3x^2 = -1$.

d. i. The equation $2x^3 - 3x^2 - x = -1$ can be solved by drawing a straight line on the grid. Find the equation of this line.

ii. Use the graph obtained to solve the equation $2x^3 - 3x^2 - x = -1$.

e. The tangent to the graph of $y = 2x^3 - 3x^2$ has a negative gradient when x = k. Give the range of k as an inequality.

(79) **13.** [T] Consider the function $f(x) = x^3 - 4x^2 + 3$.

a. Complete the table of input-output values for y = f(x).

х	-1.5	-1	-0.5	0	0.5	1	1.5
у	-9.4		1.9		2.1		-2.6

b. On the grid below, draw the graph of y = f(x) for $-1.5 \le x \le 1.5$.

- c. Use the graph to solve the equation f(x) = 0 for $-1.5 \le x \le 1.5$.
- d. By drawing a suitable tangent, estimate the gradient of the graph of y = f(x) when x = 1.
- e. By drawing a suitable straight line on the grid, solve the equation $x^3 4x^2 + x + 6 = 0$ for $-1.5 \le x \le 1.5$.
- (80) **14.** [T] A table of values for $y = -\frac{2}{x^2}$ is given below. (The values for y are correct

to 1 decimal place).

to 1 dec	miai piace).									
х	-4	-3	-2	-1	-0.6	0.6	1	2	3	4
y	-0.1	-0.2	-0.5	-2	-5.6	-5.6	-2	-0.5	-0.2	-0.1

- a. Draw the graph of $y = -\frac{2}{x^2}$.
- b. Draw the line y = -2x 4 on your graph.
- c. Using your graph, solve $-\frac{2}{x^2} = -2x 4$.
- d. By drawing a suitable tangent to your curve, estimate the gradient of the curve at x = 1.

⁽⁸¹⁾ **15.** [T]

х	-4	-3	-2	-1	0	1	2	3
f(x)	-21	0	6	3	-3	-6	0	21

- a. Draw the curve y = f(x) for $-4 \le x \le 3$ and $-21 \le y \le 21$.
- b. Using your graph, find the roots of f(x).
- c. On the same grid, draw h(x) = -x 2 for $-4 \le x \le 3$.
- d. Write down the values of
 - i. h(1)
 - ii. f h(1)
 - iii. $h^{-1}(1.5)$
 - iv. the positive solution of f(x) = h(x)
- e. By drawing a suitable tangent, estimate the gradient of the curve at x = -2.

⁽⁸²⁾ **16.** [T]

х	-4	-3	-2	-1	0	1	2	3	4
f(x)	6	-11.25	-15	-9.75	0	9.75	15	11.25	-6

- a. Using a scale of 1.6 cm to represent 1 unit on the *x*-axis and 0.65 cm to represent 2 units on the *y*-axis, draw axes for $-4 \le x \le 4$ and $-16 \le y \le 16$. Draw the curve y = f(x).
- b. Use your graph to find the roots of f(x).
- c. On the same grid, draw h(x) = 5x 1 for $-4 \le x \le 4$.
- d. Write down the value of
 - i. *h* (0.6)
 - ii. fh(0.6)
 - iii. $h^{-1}(2)$
 - iv. the positive solution of f(x) = h(x).
- e. By drawing a suitable tangent, estimate the gradient of the curve at x = 3.

(83) 17. [T] A table of values for $y = -\frac{5}{x^3}$ is given below.

(The values for v are correct to 1 decimal place.)

(110 , 00	values 101 y discourse to 101 y										
х	-4	-3	-2	-1	-0.8		0.8	1	2	3	4	
у	0.1	0.2	0.6	5	9.8		-9.8	-5	-0.6	-0.2	-0.1	

- a. Using a scale of 1.3 cm to represent 1 unit on the *x*-axis and 0.65 cm to represent 1 unit on the *y*-axis, draw the graph of $y = -\frac{5}{x^3}$.
- b. Draw the line y = -0.75x + 1.5 on your graph.
- c. Use your graph to solve $-\frac{5}{x^3} = -0.75x + 1.5$.
- d. By drawing a suitable tangent to your curve, estimate the gradient of the curve at x = -2.

Section 3.2 Stationary Points

- (84) 18. Consider the function given by $y = -3x^2 + 12x + 8$.
 - a. Find y'.
 - b. Study the sign of y' and construct the table of variation for y.
 - c. Deduce the local extreme point(s) of the curve representing the given function and determine the nature of the point(s).
- (85) 19. Find all local stationary points of the curve given by $y = x^3 3x^2$ and identify each as a local maximum, a local minimum, or a saddle point.
- (86) **20.** [G1] Consider the function given by $y = -2x^3 + 12x + 20$. Find the local extreme values of this function and the values of x where they occur.
- (X26) **21.** Find the coordinates of the stationary points of the curve (C) whose equation is $y = x^4 6x^2 + 2$.
- (X27) **22.** [G1] Determine the nature of the stationary points of the curve (C) whose equation is $y = x^4 6x^2 + 2$.
- (87) **23.** [T] Given the curve (C) with equation $y = x^3 27x + 4$.
 - a. Find the coordinates of each of the stationary points and determine their nature.
 - b. The point *M*, on the curve (*C*), has *x*-coordinate 1. Find the equation of the tangent to (*C*) at *M*.

Section 3.3 Rates of Change

- (88) **24.** A particle moves along the *x*-axis so that at *t* seconds, its displacement from the origin *O* is *x* meters, where $x = -2t^3 4t^2 5t$.
 - a. When is the particle at *O*?
 - b. What is the acceleration of the particle at any time *t*?
 - c. What is the acceleration of the particle at t = 4 sec?
- (89) 25. Refer to the distance-time graph in the diagram below to answer the question.

Find the average speed during each of the following time intervals.

a. [0, 2]

b. [4, 8]

c. [0, 10]

(90) **26.** Consider the speed-time graph in the diagram below. It describes the journey of an object during a time interval of length 10 seconds.

- a. Find the distance traveled during the time intervals [0, 2] and [0, 10].
- b. When is the object at rest?
- c. What is the furthest point reached during the trip?
- (91) 27. [G1] A particle is moving along the x-axis so that at any time t seconds, its position from the origin O is given in meters by $x(t) = 0.5t^2 + 4t 2$. What is the average speed of this particle between t = 2 seconds and t = 8 seconds?
- (92) **28.** [G1] A particle is moving along the *x*-axis so that at any time *t* seconds, its position from the origin *O* is given in meters by $x(t) = t^2 + 4t 6$. What is the average acceleration of this particle between t = 2 seconds and t = 8 seconds?
- ⁽⁹³⁾ **29.** [G1] A particle is moving along the *x*-axis so that at any time *t* seconds, its position from the origin *O* is given in meters by $x(t) = 0.5t^2 + 4t 2$. What is the speed of this particle at t = 2 seconds?

(94) 30. [G1] Consider the speed-time (v-t) graph in the figure below. The graph describes a particle moving along the x-axis.

What is the average acceleration of this particle during the time interval [2 min, 4 min]?

(95) 31. [G1] Consider the speed-time (v-t) graph in the figure below. The graph describes a particle moving along the x-axis.

What is the distance traveled by this particle during the time interval [2 min, 4 min]?

(X28) 32. A particle moves in a straight line so that its displacement s, in meters, from the fixed point O after t seconds is given by $s = t^3 - 2t^2 + 9t + 3$, where $t \ge 0$.

What whole number must be used to fill in the blank?

The distance the particle travels during the third second is _____ meters.

(X29) 33. A particle moves in a straight line so that its displacement s, in meters, from the fixed point O after t seconds is given by $s = t^3 - 2t^2 + 9t + 3$.

What whole number must be used to fill in the blank?

The time when the acceleration is 38 m/s^2 is $t = \underline{\hspace{1cm}}$ seconds.

- (X30) **34.** a) A particle moves in a straight line so that its displacement s, in meters, from the fixed point O after t seconds is given by $s = t^3 + 24t 8$. Is there a time when the particle is at rest?
 - b) A particle moves in a straight line so that its displacement s, in meters, from the fixed point O after t seconds is given by $s = t^3 24t^2 8$.

Is there a time when the particle is at rest?

(X31) 35. [G1] The distance-time graph below shows the journey of a train.

- a) Find the average speed of the train, in km/hr, between 08:00 and 08:30.
- b) Find the average speed of the train, in km/hr, for the whole journey.
- (X32) **36.** [G1] A train started from rest at 07:00. The train accelerated for 10 minutes to reach a speed of *v* km/hr. The train maintained this speed for 30 minutes then decelerated for 10 minutes to reach a speed of 0 km/hr. The distance travelled during the entire 50 minute period is 90 km. The speed-time graph below displays the trip graphically.

- a) Find the value of v.
- b) Compute the average acceleration of the train, in meters per second squared, during the first 10 minutes.

- ⁽⁹⁶⁾ 37. [T] The displacement, s meters, of a car from a fixed point at time t seconds is given by $s = t^3 6t^2 + 24t + 7$.
 - a. Calculate the value of s when t = 3.
 - b. Find the distance traveled in the 3rd second.
 - c. Calculate the value of t when the acceleration is 12 m/s².
 - d. Is there any time t when the particle is at rest? Justify.
- (97) 38. [T] a. The distance-time graph below shows the journey of a cyclist.

- i. Find the speed of the cyclist between 09:00 and 09:30.
- ii. Find the average speed of the cyclist for the whole journey.
- b. The speed-time graph below shows the first 30 minutes of another cyclist's journey.

The distance travelled is 7 km. The maximum speed of the cyclist is V km/h.

- i. Find the value of *V*.
- ii. Compute the acceleration, in m/s², of the cyclist during the first 9 minutes.

(98) **39.** [T] Consider the graph of function $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$ given below.

- a. Solve the equation $5\cos x = 1$ for $0^{\circ} \le x \le 360^{\circ}$. Give your answer correct to 1 decimal place.
- b. On the same grid, sketch the graph of $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$.

SAT

(S223) **40.** [G2]

$$5(x+3)(x+4) = 20$$

The given equation has roots $x = \alpha$ and $x = \beta$. Find the value of $\alpha\beta$.

(S224) **41.** [G2]

$$16x^2 - 8x - 47 = 0$$

The given equation has roots $\frac{1}{4} + \sqrt{b} \frac{1}{4} + \sqrt{b}$ and $\frac{1}{4} - \sqrt{b}$, $\frac{1}{4} - \sqrt{b}$, where

b > 0. Find the value of b.

(S225) **42.** [G2]

$$y = 3x - 1$$

$$(x+y)^2=9$$

The given system of equations has a solution (a, b), where a is positive. Find the value of a.

(S226) **43.** [G2]

$$y = 2x^2 + 8x + 20$$
$$y = 2 - 4x$$

In the xy-plane, the graphs of the two equations in the system given above, intersect at exactly one point (x, y). What is the value of x?

(S232) **44.** [G2] P(x) = (x+a)(x+5)(x+4)(x+2)

Given that x = 2 is a zero of the polynomial P, find the product of all of its zeros.

(S234) **45.** [G2]

$$5x^2 - 10(2a - b)x + 3b = 0$$

The sum of the roots of the given equation is 4 and their product is -6. Find the value of a?

