Projeto

7 segmentos

Rafael Corsi Ferrão corsiferrao@gmail.com

16 de novembro de 2015

1 O Problema

A placa Nexys4 possui no total oito mostradores (display) de sete segmentos (7s) com ânodo comum entre os mostradores mas com cátodos independentes, o que possibilita o acionamento individual dos mostradores mas não simultâneo. Os mostradores são alocados em dois bancos com quatro mostradores como ilustrado na Fig. 1.

Figura 1

Cada cátodos é acionados através de um transistores pnp (Fig. 2), fornecendo assim a corrente necessária para a iluminação dos mostradores. Para termos a sensação de que os oito displays estão acesos simultaneamente é necessário circular entre os displays e atualizar individualmente cada um a uma taxa superior a 60Hz.

Figura 2: Esquemático das conexões

1.1 Objetivo

Projetar uma lógica digital capaz de acionar "simultâneamente" os oito displays de sete segmentos da placa de desenvolvimento Nexys4, mostrando em cada display um valor diferente.

1.2 Portas

Utilizaremos nesse projeto as seguintes portas:

 \bullet clk : clock de 100Mhz

• btnCpuReset : reset em '0'

• seg(0..6): Cátodos

 $-\operatorname{seg}(0)$: CA, $\operatorname{seg}(1)$: CB, ..., $\operatorname{seg}(6)$: CG.

 \bullet **dp** : Ponto do digito

• an : Ânodos

- an(0): An0, an(1): AN1, ..., an(7): AN7

1.3 Código de partida

```
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
use IEEE.numeric_std.all;
entity SS_controller is
generic(
        fclk : natural := 100; -- frequencia do clk (Mhz)
        f7s : natural := 100 -- frequencia de atualização dos displays (Hz)
);
port(
                   : in STD_LOGIC;
        btnCpuReset : in STD_LOGIC;
        led : out STD_LOGIC_VECTOR (15 downto 0);
        seg : out STD LOGIC VECTOR (6 downto 0) ;
        an : out STD_LOGIC_VECTOR (7 downto 0);
        dp : out STD_LOGIC
);
end SS_controller;
ARCHITECTURE rtl OF SS_controller IS
        -- Constantes que definem o valor mostrado no display
        signal SS1_valor : integer range 0 to 9 := 2;
        signal SS2_valor : integer range 0 to 9 := 1;
        signal SS3_valor : integer range 0 to 9 := 0;
BEGIN
END rtl;
```

1.4 Dicas

Use o arquivo SevenSegmentos.xdc como constrains do projeto.

- antes de começar entenda o problema, leia o manual da placa que possui bastante informação
- pense quais partes são sequências e quais são concorrentes
- documente o código (comentários)
- \bullet abordagem down-top
- crie sinais, constantes e variáveis que facilitem o entendimento do projeto
- comece por um único display
- crie a tabela de acionamento

- a implementação otimizada utiliza um contador e um processo.
- crie uma lookup-table (lut) que converte os valores inteiros de [0..9] nos sinais de acionamento do display
- crie uma lógica capaz de acionar um display por vez verificando com isso a lut e o acionamento
- verifique quanto tempo cada display tem que ficar aceso para atingirmos os 60Hz?

1.5 Critérios de avaliação

Os seguintes critérios serão levados em conta na avaliação:

- 1. organização do código e comentários
- 2. funcionamento
- 3. utilização do git (github) para envio do projeto
- 4. prazo (ideal em 7 dias)
- 5. otimizações