pubs.acs.org/JPCC

Effects of Surface Blocking Layer of Sb₂S₃ on Nanocrystalline TiO₂ for CH₃NH₃Pbl₃ Perovskite Solar Cells

Seigo Ito,**,† Soichiro Tanaka,† Kyohei Manabe,‡ and Hitoshi Nishino‡

ABSTRACT: Sb₂S₃ layers were inserted at the interface between TiO₂ and CH₃NH₃PbI₃ perovskite to create CH₃NH₃PbI₃ solar cells using inorganic hole transporting material (CuSCN). The CH₃NH₃Pbl₃ layer was spin-coated by a one-drop method onto the nanocrystalline TiO2 layer. The photoenergy conversion efficiencies were improved with Sb₂S₃ layers (the best efficiency: 5.24%). During the light exposure test without encapsulation, the CH₃NH₃PbI₃ solar cells without Sb₂S₃ deteriorated to zero efficiency in 12 h and were completely changed from black to yellow because the perovskite CH₃NH₃PbI₃ was changed to hexagonal PbI₂. With Sb₂S₃, on the other hand, the CH₃NH₃PbI₃ solar cells became stable against light exposure without encapsulation, which did not change the crystal structure or the wavelength edges of absorption and IPCE. Therefore, it was believed that degradation can occur at the interface between TiO2 and CH₃NH₃PbI₃.

■ INTRODUCTION

Recently, solid-state printed solar cells using CH₃NH₃PbX₃ (X: halide) perovskite as a photoabsorber have been intensively investigated, by performing high photoenergy-conversion efficiencies of 9.7-15.7% using low-cost processes (spin coating). 1-6 However, their stability has been ambiguous. At first, the stability of CH3NH3PbX3 solar cells have been reported without encapsulation stored in the dark. 1,3 Under constant illumination at 100 mW cm⁻², the CH₃NH₃PbX₃ stability test was performed with encapsulation.^{2,4} Although the CH₃NH₃PbX₃ exhibited very promising long-term stability, sealing by organic materials cannot be seamless against water and oxygen. Therefore, it is important to evaluate the stability under light irradiation without encapsulation. In this work, we investigated the stability of the perovskite CH3NH3PbI3 under one sun irradiation (AM 1.5) without encapsulation.

In order to improve the stability of solar cells against light irradiation, the passivation of the TiO2 photocatalytic effect should be considered using the surface blocking layer. Moreover, in the reports of dye-sensitized solar cells (DSCs) and extremely thin absorber (ETA) solar cells, which have been composed of nanocrystalline TiO2 photoelectrodes like CH₃NH₃PbX₃ perovskite solar cells, the surface blocking layer can improve the photovoltaic characteristics by blocking the charge recombination between electrons in TiO2 and holes in hole-transporting materials (HTM).7-9 Hence, the surface blocking layer on TiO2 has two blocking functions: the blockings of the TiO2 photocatalytic effect and the charge recombination in TiO2 and HTM.

Usually, metal oxides are utilized for DSCs and ETA cells for such a surface blocking layer. In this report, however, Sb₂S₃ has been utilized as the surface blocking layer due to the facile

fabrication on the nanocrystalline TiO2 layer, the photostability, and the energy diagram to transport electrons from CH₃NH₃PbI₃ to TiO₂ (Figure 1), which can extend the

Figure 1. Energy diagram of materials for carbon-doublebond-free printed CH₃NH₃PbI₃ perovskite solar cells.

distance between electrons and holes. Although there is a small energy wall between the conduction bands (spike) from $CH_3NH_3PbI_3$ to Sb_2S_3 (0.2 eV), this spike is quite similar to the energy diagrams in Cu(In,Ga)(S,Se)₂ (CIGS) solar cells between CIGS and buffering sulfides and can enhance the photoenergy conversion efficiency. 10,11 Hence, it was expected that the insertion of the Sb_2S_3 layer between TiO_2 and CH₃NH₃PbI₃ might enhance the photovoltaic characteristics.

Special Issue: Michael Grätzel Festschrift

Received: January 15, 2014 Revised: April 29, 2014

Department of Electric Engineering and Computer Science, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan

[‡]Energy Technology Laboratories, Osaka Gas Co., Ltd., 6-19-9 Torishima, Konohana-Ku, Osaka 554-0051, Japan

In this report, three types of inorganic printed solar cells have been fabricated for the comparison of the photovoltaic effects, as shown in Figure 2. The first type of solar cell is $\langle \text{TiO}_2/$

Figure 2. Structures of inorganic printed solar cells: (a) $\langle FTO/TiO_2/Sb_2S_3/CuSCN/Au\rangle$; (b) $\langle FTO/TiO_2/CH_3NH_3PbI_3/CuSCN/Au\rangle$; and (c) $\langle FTO/TiO_2/Sb_2S_3/CH_3NH_3PbI_3/CuSCN/Au\rangle$.

Sb₂S₃/CuSCN/Au) (Figure 2a), which was published in our recent paper. 9,12 Using a BaTiO₃/MgO blocking layer on TiO₂ and Ti doping in the Sb₂S₃ layer, the conversion efficiency can be improved. However, such modifications have not been applied in this report for simplification. The second type of solar cell is $\langle TiO_2/CH_3NH_3PbI_3/CuSCN/Au \rangle$ (Figure 2b). This combination with inorganic hole-transporting material (HTM) was reported as CH₃NH₃PbI₃ pevovskite solar cells, which can be carbon double-bond-free inorganic printed solar cells.¹³ The third type of solar cell is $\langle TiO_2/Sb_2S_3/$ CH₃NH₃PbI₃/CuSCN/Au\ (Figure 2c), which is the new structure of this report. The insertion of the Sb₂S₃ layer at the interface of TiO₂/CH₃NH₃PbI₃ can improve not only the photoenergy conversion efficiency but also the stability against light exposure (AM 1.5, 100 mW cm⁻²) without encapsulation. In order to analyze the effect of the Sb_2S_3 layer in the interface between TiO₂ and CH₃NH₃PbI₃ for solar cells, measurements for UV/vis absorption spectroscopy, incident photon-to-current efficiency (IPCE), X-ray diffraction (XRD), and Fourier Transform-Infrared (FT-IR) spectroscopy were performed.

■ EXPERIMENTAL SECTION

 TiO_2 electrodes were fabricated on F-doped SnO_2 -coated glass plates [FTO; TEC-15 (t=2 mm), NSG-Pilkington]. The edge of the FTO layer was first etched using Zn powder and HCl to eliminate shunting of the solar cell at the edge. The etched FTO substrate was put into an ultrasonic bath containing

detergent, rinsed with water and ethanol, and then treated with a UV/O $_3$ cleaner for 15 min. Dense ${\rm TiO}_2$ layers were coated on the FTO by spray pyrolysis using a solution of titanium disopropoxide bis(acetylacetonate) (TAA; 0.6 mL) in ethanol (9 mL, Kanto Chemical Co., Inc., Japan) on a hot plate at 450 °C. The TAA was prepared by pouring acetylacetone (Wako Pure Chemical Industries, Ltd., Japan) into titanium isopropoxide (Kanto Chemical Co., Inc., Japan) with the ratio of 2:1 (mol/mol).

A nanocrystalline TiO₂ layer was fabricated by screen printing TiO₂ paste that was synthesized by a hydrothermal method under basic conditions and annealed at 550 °C. 14 The thickness of the nanocrystalline TiO_2 layer was ca. 2 μ m. Sb_2S_3 was deposited on the nanocrystalline-TiO2 electrodes by the chemical bath deposition (CBD) method from a solution of SbCl $_3$ and Na $_2$ S $_2$ O $_3$. The as-deposited orange films of amorphous Sb₂S₃ were annealed under N₂ at 320 °C for 30 min to give a dark-brown crystalline stibnite. The samples were removed from the oven immediately after annealing and were allowed to cool in air and then were dipped into a 0.5 M aqueous KSCN solution for 5 min. The excess solution wicked off and dried at 80 °C. The Sb₂S₃ layer thickness was 1-2 nm, observed by TEM.9 The effect of Sb₂S₃ thickness is very important to this report. The thickness of Sb₂S₃ can be controlled by varying the deposition time, which will be a further target of research.

The CH₃NH₃PbI₃ layer was deposited by spin coating under ambient conditions. The CH₃NH₃PbI₃ solution was prepared from a mixture of PbI₂ (1.1453 g, Kishida Chemical Co. Ltd., Japan) and CH₃NH₃I (0.395 g) in γ -butyrolactone (2 mL) (Kishida Chemical Co. Ltd., Japan). The CH₃NH₃I was synthesized by mixing HI (Tokyo Chemical Industry Co., Ltd., Japan) and CH₃NH₂ (Tokyo Chemical Industry Co., Ltd., Japan) according to ref 15. 40 μ L of CH₃NH₃PbI₃ solution was dropped on the porous TiO₂ layer and spin coated at 2000 rpm for 30 s. The acceleration was 667 rpm/s. During the spin coating, hot air from a hair drier was applied to the substrate. After the deposition of CH₃NH₃PbI₃, the substrate was annealed at 100 °C for 15 min under a N₂ flow. CuSCN (Kishida Chemical Co. Ltd., Japan) layers and Au back contacts were deposited using the doctor blade process and vacuum evaporation, respectively. 9¹¹²

Scanning electron microscopy (SEM; JSM-6510, JEOL) was employed to evaluate the morphology of the films. The crystal structure was characterized using X-ray diffraction (XRD; Miniflex II, Rigaku) with Cu K α radiation. UV/vis absorption spectra were measured using a UV/vis spectrometer (Lambda 750, PerkinElmer). FT-IR spectra were measured using a FT-IR spectrometer with a diamond ATR (Frontier Optica, PerkinElmer). The size of the samples used for photocurrent-voltage (I-V) measurements was 25 mm² (5 × 5 mm). An AM 1.5 solar simulator equipped with a 500 W Xe lamp (YSS-80A, Yamashita Denso) was employed for photovoltaic measurements. The power of the solar simulator light was calibrated to 100 mW cm⁻² using a reference Si photodiode (Bunkou Keiki). I-V curves were obtained by applying an external bias to the cell and measurement of the generated photocurrent with a DC voltage current source (6240, ADCMT).

■ RESULTS AND DISCUSSIONS

Figure 3 shows current—voltage curves of CH₃NH₃PbI₃-printed solar cells under light irradiation (AM 1.5, 100 mW cm⁻²). The

Figure 3. Photocurrent density—voltage curves of printed solar cells: (a) $\langle FTO/TiO_2/Sb_2S_3/CuSCN/Au \rangle$; (b) $\langle FTO/TiO_2/CH_3NH_3PbI_3/CuSCN/Au \rangle$; and (c) $\langle FTO/TiO_2/Sb_2S_3/CH_3NH_3PbI_3/CuSCN/Au \rangle$.

photovoltaic characteristics were summarized in Table 1. Although we have published 4.1% and 5.7% conversion

Table 1. Photovoltaic Effects of Printed Solar Cells Using Nanocrystalline TiO₂ Electrodes^a

	Jsc (mA cm ⁻²)	Voc (V)	FF	η (%)
(a) FTO/TiO ₂ /Sb ₂ S ₃ / CuSCN/Au	10.16	0.51	0.49	2.56
(b) FTO/TiO ₂ /CH ₃ NH ₃ PbI ₃ / CuSCN/Au	15.15	0.64	0.50	4.82
(c) FTO/TiO ₂ /Sb ₂ S ₃ / CH ₃ NH ₃ PbI ₃ /CuSCN/Au	17.04	0.56	0.53	5.03

"Each result has an average of three cells. Structures of the cells on the nanocrystalline ${\rm TiO_2}$ electrodes are contained in Figure 3.

efficiencies using Sb₂S₃/CuSCN layers, the photovoltaic effect in Table 1a $\langle {\rm TiO_2/Sb_2S_3/CuSCN/Au} \rangle$ is not significant (just 2.6% conversion efficiency) because of the absence of the BaTiO₃/MgO blocking layer on TiO₂⁹ and because of Ti doping in the Sb₂S₃ layer. The solar cells of (b) $\langle {\rm TiO_2/CH_3NH_3PbI_3/CuSCN/Au} \rangle$ performed high open circuit photovoltage ($V_{\rm oc}$). On the other hand, (c) $\langle {\rm TiO_2/Sb_2S_3/CH_3NH_3PbI_3/CuSCN/Au} \rangle$ solar cells performed high short-circuit photocurrent density (Jsc) and fill factors (FF), resulting in the highest conversion efficiency in the series of Table 1 due to the Sb₂S₃ effect. The photovoltaic characteristics of the best-efficiency cell were $V_{\rm OC}$: 0.57 V, $J_{\rm SC}$: 17.23 mA cm⁻², and ff: 0.52; η : 5.12%.

The light durability of inorganic printed solar cells using the $CH_3NH_3PbI_3$ layer has been examined without encapsulation (Figure 4). The examined solar cells were (a) $\langle FTO/TiO_2/CH_3NH_3PbI_3/CuSCN/Au\rangle$ and (b) $\langle FTO/TiO_2/Sb_2S_3/CH_3NH_3PbI_3/CuSCN/Au\rangle$. Without Sb_2S_3 , the stability of the solar cell was very poor. The photoenergy conversion efficiency deteriorated drastically within 5 h and became very close to zero within 12 h. With Sb_2S_3 , on the other hand, the conversion efficiency was maintained 65% of the initial conversion efficiency without encapsulation after the 12 h light irradiation. Therefore, the effect of the Sb_2S_3 layer in the $TiO_2/CH_3NH_3PbI_3$ interface significantly affects the photoenergy conversion efficiency (Figure 3) and the light stability (Figure 4).

Figure 5 shows the light absorption spectra of Sb_2S_3 and/or $CH_3NH_3PbI_3$ on the nanocrystalline- TiO_2 electrode in this study. The fresh layers of Sb_2S_3 and $CH_3NH_3PbI_3$ have absorption edges at 740 and 800 nm, respectively. However, after 12 h irradiation, the band edge of $CH_3NH_3PbI_3$ was

Figure 4. Variation of photoenergy conversion efficiencies of solar cells during light exposure (AM1.5, 100 mW cm $^{-2}$) without encapsulation in air for 12 h: (a) $\langle FTO/TiO_2/CH_3NH_3PbI_3/CuSCN/Au\rangle$ and (b) $\langle FTO/TiO_2/Sb_2S_3/CH_3NH_3PbI_3/CuSCN/Au\rangle$. The inset pictures are the photographs of cells after the light exposure.

Figure 5. Reflectance absorption spectra of printed materials for solar cells on nanocrystalline- TiO_2 electrodes. The light exposure was with AM1.5 (100 mW cm⁻²) for 12 h.

shifted to 530 nm, which was similar to PbI_2 . The absorption spectrum of PbI_2 shows a shoulder from 520 to 620 nm, maybe due to the large grain on the PbI_2 layer. The spectrum of $Sb_2S_3/CH_3NH_3PbI_3$ was very close to only $CH_3NH_3PbI_3$ and did not change the absorption edge after the 12 h light exposure.

Although more light has been absorbed by the cells without Sb_2S_3 than by those with Sb_2S_3 (Figure 5), the short circuit current density without Sb_2S_3 was lower than that with Sb_2S_3 (Figure 3). Therefore, it can be speculated that the internal absorbed photon-to-current conversion efficiency (APCE) with Sb_2S_3 might be higher than that without Sb_2S_3 .

Figure 6 shows IPCE spectra of printed solar cells. The IPCE edge of (a) a Sb_2S_3 absorber solar cell was 740 nm. Using $CH_3NH_3PbI_3$, the IPCE edge was 800 nm. The absorption wavelength edges of Sb_2S_3 and $CH_3NH_3PbI_3$ layers (Figure 5) corresponded to the IPCE spectra edges of Sb_2S_3 and $CH_3NH_3PbI_3$ solar cells, respectively. The insertion of the Sb_2S_3 layer at the interface between TiO_2 and $CH_3NH_3PbI_3$ enhanced the IPCE value of $CH_3NH_3PbI_3$ from 50-60% to 70-80%. Moreover, the IPCE edge of the $CH_3NH_3PbI_3$ solar cell with Sb_2S_3 light exposure for 12 h was kept at 800 nm, as with the fresh solar cell. If the $CH_3NH_3PbI_3$ layer lost the photovoltaic function in the $\langle TiO_2/Sb_2S_3/CH_3NH_3PbI_3/CuSCN/Au\rangle$ cell and the resulting photovoltaic performance

Figure 6. Incident photon-to-current efficiency (IPCE) spectra of printed solar cells: (a) $\langle FTO/TiO_2/Sb_2S_3/CuSCN/Au \rangle$, (b) $\langle FTO/TiO_2/CH_3NH_3PbI_3/CuSCN/Au \rangle$, (c) $\langle FTO/TiO_2/Sb_2S_3/CH_3NH_3PbI_3/CuSCN/Au \rangle$ (fresh cell), and (d) $\langle FTO/TiO_2/Sb_2S_3/CH_3NH_3PbI_3/CuSCN/Au \rangle$ [after light exposure of AM1.5 (100 mW cm⁻²) for 12 h].

had been retained by the remaining Sb_2S_3 layer, the IPCE spectrum of (c) $\langle TiO_2/Sb_2S_3/CH_3NH_3PbI_3/CuSCN/Au \rangle$ should shift to the spectrum of (a) $\langle TiO_2/Sb_2S_3/CuSCN/Au \rangle$. Therefore, the Sb_2S_3 layer on the TiO_2 surface retained the photovoltaic effect of $CH_3NH_3PbI_3$.

Figure 7 shows the XRD patterns of photoactive materials $(Sb_2S_3 \text{ and/or } CH_3NH_3PbI_3)$ on nanocrystalline TiO_2 electro-

Figure 7. XRD patterns of inorganic printed photoabsorbers for solar cells on nanocrystalline-TiO₂ electrodes: (a) $\langle \text{TiO}_2/\text{Sb}_2\text{S}_3 \rangle$, (b) $\langle \text{TiO}_2/\text{CH}_3\text{NH}_3\text{PbI}_3 \rangle$ (fresh), (c) $\langle \text{TiO}_2/\text{CH}_3\text{NH}_3\text{PbI}_3 \rangle$ (after light exposure for 12 h), (d) $\langle \text{TiO}_2/\text{Sb}_2\text{S}_3/\text{CH}_3\text{NH}_3\text{PbI}_3 \rangle$ (fresh), and (e) $\langle \text{TiO}_2/\text{Sb}_2\text{S}_3/\text{CH}_3\text{NH}_3\text{PbI}_3 \rangle$ (after light exposure for 12 h). The symbols in Figure 6 are CH₃NH₃PbI₃ (O), PbI₂ (●), anatase TiO₂ (□), and Sb₂S₃ (■). The light was AM1.5 (100 mW cm⁻²).

des. XRD patterns of Sb₂S₃ and CH₃NH₃PbI₃ were observed in (a and b), respectively. In the (d) stacked layers of Sb₂S₃ and CH₃NH₃PbI₃, each crystal was observed in the XRD pattern and they were not mixed with or dispersed into each other. Although a peak of PbI₂ (at 12.6°) was observed in the (b) CH₃NH₃PbI₃ layer, it disappeared in the (d) Sb₂S₃/CH₃NH₃PbI₃ layer. It was speculated that the Sb₂S₃ layer enhanced the crystallinity of the CH₃NH₃PbI₃ perovskite structure and eliminated the PbI₂ hexagonal structure. In the CH₃NH₃PbI₃ cell exposed to light for 12 h without (c) Sb₂S₃, the crystal structure was changed from perovskite to hexagonal.¹³ On the other hand, with the Sb₂S₃ addition at

the interface between (e) TiO_2 and $CH_3NH_3PbI_3$, the $CH_3NH_3PbI_3$ crystal structure was retained as perovskite after the 12 h light exposure. A small peak of PbI_2 emerged again after the light exposure in the (e) $Sb_2S_3/CH_3NH_3PbI_3$ layer, which may be due to the segregation of PbI_2 by the removal of CH_3NH_2 and HI from the $CH_3NH_3PbI_3$ layer surface.

Figure 8 shows FT-IR spectra of the $CH_3NH_3PbI_3$ layer on TiO_2 : (a) in the fresh layer, (b) after 12 h of light exposure

Figure 8. FT-IR spectra of (a) fresh $\langle TiO_2/CH_3NH_3PbI_3\rangle$, (b) $\langle TiO_2/CH_3NH_3PbI_3\rangle$ after light exposure for 12 h, and (c) $\langle TiO_2/Sb_2S_3/CH_3NH_3PbI_3\rangle$ after light exposure for 12 h. The light was AM1.5 (100 mW cm⁻²).

without Sb₂S₃, and (c) after 12 h of light exposure with Sb₂S₃. The apparent peaks by methylamine were observed as a line (a). Due to the thick layer of CH₃NH₃PbI₃, the background of TiO₂ (below 1000 nm⁻¹) was depressed, which was observed as lines (b and c). After the light exposure test without Sb₂S₃ as line (b), the layer became yellow and the FT-IR peaks of methylamine disappeared. Hence, the CH₃NH₃PbI₃ changed to PbI₂. On the other hand, with Sb₂S₃, the FT-IR peaks of methylamine remained as line (c). The large increase from 1000 to 3000 nm^{-1} may be attributed to $\mathrm{H}_2\mathrm{O}$ adsorbed into the CH₃NH₃PbI₃ layer during the 12 h light exposure, which was not observed in the (a) fresh CH₃NH₃PbI₃ layer without H₂O adsorption or in the (b) PbI₂ layer due to the absence of CH₃NH₃⁺. Therefore, although the top surface of CH₃NH₂ was removed from the CH₃NH₃PbI₃ layer, the Sb₂S₃ layer retained the CH₃NH₃PbI₃ perovskite crystal structure.

Figure 9 shows the reaction scheme used to consider the degradation effect of the CH₃NH₃PbI₃ layer against the light exposure without encapsulation. Without Sb₂S₃, the CH₃NH₃PbI₃ layer can change to PbI₂ with losing CH₃NH₂ and HI (eq 1) by overnight light exposure (Figure 9a).

$$CH_3NH_3PbI_3 \leftrightharpoons PbI_2 + CH_3NH_2 \uparrow + HI \uparrow$$
 (1)

On the other hand, with Sb_2S_3 , the $CH_3NH_3PbI_3$ layer can be stabilized and made durable against light exposure (Figure 9b). Therefore, the decomposition of $CH_3NH_3PbI_3$ occurs at the interface between TiO_2 and $CH_3NH_3PbI_3$. TiO_2 has a strong ability to extract electrons from organic materials as photocatalysts and from iodide (I^-) as electrodes in dye-sensitized solar cells. Hence, the driving force of the decomposition may be due to the effect of electron extraction by TiO_2 from an iodide anion. The possible reaction at the TiO_2 surface may be as eqs 2-4:

$$2I^- \leftrightharpoons I_2 + 2e^-$$

[at the interface between
$$TiO_2$$
 and $CH_3NH_3PbI_3$] (2)

$$3CH_3NH_3^+ = 3CH_3NH_2 \uparrow + 3H^+$$
 (3)

Figure 9. Degradation scheme of $CH_3NH_3PbI_3$ perovskite solar cells during light exposure test: (a) $\langle TiO_2/CH_3NH_3PbI_3 \rangle$ and (b) $\langle TiO_2/Sb_2S_3/CH_3NH_3PbI_3 \rangle$.

$$I^{-} + I_{2} + 3H^{+} + 2e^{-} \leftrightharpoons 3HI \uparrow \tag{4}$$

The CH₃NH₃PbI₃ perovskite crystal is composed of CH₃NH₃⁺, Pb²⁺, and I[−] ions. At first, TiO₂ can extract electrons from I[−], resulting in I2, which deconstructs the perovskite crystal. Equation 3 is in equilibrium. Assisted with water, the pK_a of the equation $(CH_3NH_3^+ + H_2O \implies CH_3NH_2 + H_3O^+)$ is 10.80, ¹⁶ which suggests that the equilibrium is basically shifted to the left side but that the elimination of CH_3NH_2 and H^+ (or H_3O^+) can shift the equilibrium to the right side. Without the perovskite structure, the equilibrium (eq 3) may shift to the right side easily. The electron extracted by TiO₂ can return from the TiO2 surface, and eq 4 can occur while emitting HI and CH₃NH₂. Losing H⁺ by eq 4, the equilibrium of eq 3 can shift to the right side with the emission of CH3NH2 because of the low boiling point of CH₃NH₂ (17 °C). In contrast, the Sb₂S₃ layer (Figure 9b) can deactivate the reaction of I⁻/I₂ (eq 2) at the surface of TiO2, the electrons can shift from the conduction band of CH3NH3PbI3, and the CH3NH3PbI3 layer can be stabilized and made durable against light exposure. Although the reaction of the decomposition scheme is somewhat of a speculation, it can be deduced that the presented reaction scheme is the most probable one due to the results shown above. In order to provide concrete evidence, we are managing further research at present.

The improvement in PCE should be attributed directly to improvement in $V_{\rm OC}$ by the buffering sulfides. ¹¹ However, this same improvement is not observed in the devices reported in this article; specifically, the device without Sb₂S₃ has a greater $V_{\rm oc}$ (0.64 V) than the device with Sb₂S₃ (0.56 V). Instead, here, the improvement in overall device performance seems to be a result of increased short circuit current density and fill factor rather than $V_{\rm OC}$. Therefore, it was thought that the improvement of the photovoltaic effect and the stability of the Sb₂S₃ layer were due not only to the buffering effect but also to the passivation effect of the TiO₂ photocatalysis. Without Sb₂S₃, the holes generated in the TiO2 conduction band by UV irradiation can extract electrons from an I- anion in the Pb perovskite layer, resulting in Pb perovskite crystal decomposition. With the Sb₂S₃ layer, on the other hand, the charge extraction from the I⁻ anion to the TiO₂ conduction band can be prohibited, resulting in the enhancement of the charge recombination and

a decrease in the $V_{\rm OC}$. However, this prohibition of the ${\rm TiO_2}$ photocatalysis may enhance the stability of the perovskite layer.

In conclusion, CH₃NH₃PbI₃ perovskite solar cells using an inorganic hole transporting material (CuSCN) with/without Sb₂S₃ by chemical bath deposition at the interface between TiO₂ and CH₃NH₃PbI₃ were fabricated. The Sb₂S₃ layer was improved for higher photovoltaic effects. Light exposure tests of CH₃NH₃PbI₃ perovskite solar cells have been performed without encapsulation. During the light exposure test without Sb₂S₃, the black CH₃NH₃PbI₃ layers were completely changed to yellow, because the perovskite CH3NH3PbI3 was changed to hexagonal PbI₂. With Sb₂S₃, on the other hand, the CH3NH3PbI3 perovskite solar cells did not change structures (measured by XRD), and the wavelength edges of absorption and IPCE spectra also did not change. Therefore, it was understood that Sb₂S₃ elongates the lifetime of the CH3NH3PbI3 perovskite structure during light exposure and that the degradation origin of the CH₃NH₃PbI₃ perovskite layer is the interface between TiO2 and CH3NH3PbI3. The degradation is related to the unfixed positioning of the CH₃NH₃⁺ cation in the CH₃NH₃PbI₃ perovskite crystal. ¹⁷⁻¹⁹ However, the degradation effect by water is still not clear. Bromide doping enhanced the stability of the CH₃NH₃PbX₃ solar cells against moisture.3 At the same time, water should affect the lithium salt doped in the HTM layer for the CH₃NH₃PbX₃ solar cells. The photovoltaic performance after 12 h has not been checked. After using a very stable device, the light stability after over 1000 h shall be checked in the further research. Further investigation is necessary to understand the inside of the degradation mechanism.

AUTHOR INFORMATION

Corresponding Author

*E-mail: itou@eng.u-hyogo.ac.jp. Tel/Fax: +81-79-267-4858.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Part of this research was supported by the Advanced Low Carbon Technology Research and Development Program (ALCA, JST, Japan).

REFERENCES

- (1) Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; et al. Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. *Sci. Rep.* 2012, *2*, 591.
- (2) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. *Science* **2012**, 338, 643–647.
- (3) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical Management for Colorful, Efficient, and Stable Inorganic—Organic Hybrid Nanostructured Solar Cells. *Nano Lett.* **2013**, *13*, 1764—1769.
- (4) Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells. *Nature* **2013**, 499, 316–319.
- (5) Liu, D.; Kelly, T. L. Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. *Nat. Photonics* **2014**, *8*, 133–138.
- (6) Wang, J. T.-W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander-Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith,

- H. J.; et al. Low-Temperature Processed Electron Collection Layers of Graphene/ ${\rm TiO_2}$ Nanocomposites in Thin Film Perovskite Solar Cells. *Nano Lett.* **2014**, *14*, 724–730.
- (7) Perera, S.; Senadeera, R.; Tennakone, K.; Ito, S.; Kitamura, T.; Wada, Y.; Yanagida, S. The Effect of MgO on the Enhancement of the Efficiency in Solid-State Dye Sensitized Photocells Fabricated with SnO_2 and CuI. *Bull. Chem. Soc. Jpn.* **2003**, *76*, 659–662.
- (8) Ito, S.; Makari, Y.; Kitamura, T.; Wada, Y.; Yanagida, S. Fabrication and Characterization of Mesoporous SnO₂/ZnOcomposite Electrodes for Efficient Dye Solar Cells. *J. Mater. Chem.* **2004**, *14*, 385–390.
- (9) Tsujimoto, K.; Nguyen, D.-C.; Ito, S.; Nishino, H.; Matsuyoshi, H.; Konno, A.; Kumara, G. R. A.; Tennakone, K. TiO₂ Surface Treatment Effects by Mg²⁺, Ba²⁺, and Al³⁺ on Sb₂S₃ Extremely Thin Absorber Solar Cells. *J. Phys. Chem. C* **2012**, *116*, 13465–13471.
- (10) Eisgruber, I. L.; Granata, J. E.; Sites, J. R.; Hou, J.; Kessler, J. Blue-Photon Modification of Nonstandard Diode Barrier in CuInSe₂ Solar Cells. Sol. Energy Mater. Sol. Cells 1998, 53, 367–377.
- (11) Gloeckler, M.; Sites, J. R. Efficiency Limitations for Wide-Band-Gap Chalcopyrite Solar Cells. *Thin Solid Films* **2005**, 480–481, 241–245
- (12) Ito, S.; Tsujimoto, K.; Nguyen, D.-C.; Manabe, K.; Nishino, H. Doping Effects in Sb_2S_3 Absorber for Full-Inorganic Printed Solar Cells with 5.7% Conversion Efficiency. *Int. J. Hydrogen Energy* **2013**, 38, 16749–16754.
- (13) Ito, S.; Tanaka, S.; Vahlman, H.; Nishino, H.; Manabe, K.; Lund, P. Structural Control and Aging Effects of Nanocrystalline TiO₂/CH₃NH₃PbI₃ with CuSCN Hole Conductor as Inorganic Printed Solar Cell. *ChemPhysChem* **2014**, *15*, 1194–1200.
- (14) Ito, S.; Zakeeruddin, S. M.; Comte, P.; Liska, P.; Kuang, D.; Grätzel, M. *Nat. Photonics* **2008**, *2*, 693–696.
- (15) Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. **2012**, 134, 17396–17399.
- (16) Ouellette, R. J. Organic Chemistry: A Brief Introduction, 2nd ed.; Prentice Hall: Upper Saddle River, NJ.
- (17) Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications. *J. Phys. Chem. C* **2013**, *117*, 13902–13913.
- (18) Wasylishen, R. E.; Knop, O.; Macdonald, J. B. Cation Rotation in Methyl Ammonium Lead Halides. *Solid State Commun.* **1985**, *56*, 581–582
- (19) Poglitsch, A.; Weber, D. Dynamic Disorder in Methylammoniumtrihalogenoplumbates (II) Observed by Millimeterwave Spectroscopy. *J. Chem. Phys.* **1987**, *87*, 6373–6378.