Analysis of Algorithms

\mathcal{P} , \mathcal{NP} , and \mathcal{NP} -Completeness

If more than one question appears correct, choose the more specific answer, unless otherwise instructed.

Concept: The classes P and NP	
1. A problem can be in \mathcal{P} and not in \mathcal{NP} .	
(A) False(B) True	(C) Not known
2. A problem can be in \mathcal{NP} and not in \mathcal{P} .	
(A) True(B) False	(C) Not known
3. All problems are in \mathcal{P} .	
(A) False(B) True	(C) Not known
4. All problems are in \mathcal{NP} .	
(A) True(B) Not known	(C) False
5. \mathcal{NP} stands for:	
(A) Non-intractable Program.(B) Non-Polynomial.	(C) Non-deterministic Polynomial.(D) Non-exponential Program.
6. T or F : A constant time algorithm is in \mathcal{P} .	
7. T or F : A linear time algorithm is in \mathcal{P} .	
8. T or F: A constant time algorithm is in \mathcal{NP} .	
9. T or F: A linear time algorithm is in \mathcal{NP} .	
10. Someone shows you a correct algorithm for problem A conclude:	whose solution can be verified in polynomial time. You can
(A) nothing about whether problem A is in \mathcal{NP} or not (B) problem A is in \mathcal{NP}	(C) problem A is not in \mathcal{NP}
11. Someone proves that for a correct algorithm for problem can conclude:	A, solutions must be verified in at least exponential time. You
(A) nothing about whether problem A is in \mathcal{NP} or not (B) problem A is in \mathcal{NP}	c. (C) problem A is not in \mathcal{NP}
12. Someone shows you a correct polynomial time algorithm	n for problem A . You can conclude:
(A) problem A is not in \mathcal{P}	(C) problem A is in \mathcal{P}

(B) nothing about whether problem A is in \mathcal{P} or not.

13.	Someone shows you a correct exponentiatime. You can conclude:	al time algorithm for pro	bblem A whose solution can be verified in polynomia	
	(A) problem A is not in \mathcal{P} (B) problem A is in \mathcal{P}	(C)	nothing about whether problem A is in $\mathcal P$ or not.	
14.	14. Someone shows you a correct polynomial time algorithm for problem A . You can conclude:			
	(A) nothing about whether problem A is (B) problem A is not in \mathcal{NP}	is in \mathcal{NP} or not. (C)	problem A is in \mathcal{NP}	
15. Which one of the following is not a valid way to prove a problem			is in \mathcal{NP} :	
	(A) show that a solution can be found in on a deterministic computer.	n polynomial time (C)	show that a solution can be verified in polynomia time on a non-deterministic computer.	
	(B) show that a solution can be found in on a non-deterministic computer.	n polynomial time (D)	show that a solution can be verified in polynomia time on a deterministic computer.	
Cor	ncept: \mathcal{NP} -completeness			
16.	To show that a problem A is \mathcal{NP} -complete	ete, one task is to:		
	(A) show A is in \mathcal{NP} .	` ′	show A is not in \mathcal{P} .	
	(B) show A is in \mathcal{P} .	(D)	show A is not in \mathcal{NP} .	
17.	Suppose B is an $\mathcal{NP}\text{-}\mathrm{complete}$ problem.	To show that a problem	A is $\mathcal{NP}\text{complete},$ one task could be:	
	(A) show a polynomial time/space red A .	uction from B to (C)	show a exponential time/space reduction from B to A .	
	(B) show a polynomial time/space reduced B .	uction from A to (D)	show an exponential time/space reduction from A to B .	
18.	Another way of stating "a reduction from	n A to B " is:		
	(A) convert an algorithm for A to an algorithm	gorithm for B (C)	solve A -type problems with an algorithm for B	
	(B) convert an algorithm for B to an algorithm	gorithm for A (D)	solve B -type problems with an algorithm for A	
Cor	ncept: If $\mathcal{P} = \mathcal{N}\mathcal{P}$?			
19.	If $\mathcal{P} = \mathcal{NP}$, then all problems in \mathcal{P} are in	n \mathcal{NP} .		
	(A) Not known(B) False	(C)	True	
20.	If $\mathcal{P} = \mathcal{NP}$, then all problems in \mathcal{NP} are	e in \mathcal{P} .		
	(A) Not known(B) False	(C)	True	
21.	If $\mathcal{P} := \mathcal{NP}$, then there exist problems in	\mathcal{P} that are not in \mathcal{NP} .		
	(A) True	(C)	Not known	
	(B) False			
22.	If $\mathcal{P} := \mathcal{NP}$, then there exist problems in	$n \mathcal{NP}$ that are not in \mathcal{P} .		
	(A) True	(C)	False	
	(B) Not known			

Concept: Proving $P = \mathcal{NP}$.

- 23. Factoring is in \mathcal{NP} . Currently, the best known algorithm on a conventional computer takes exponential time. If factoring is proved to take at least exponential time, what is the effect on the question $\mathcal{P} = \mathcal{NP}$?
 - (A) the question is still unanswered

(C) $\mathcal{P} := \mathcal{N}\mathcal{P}$

- (B) $\mathcal{P} = \mathcal{N}\mathcal{P}$
- 24. Factoring is in \mathcal{NP} . Currently, the best known algorithm on a conventional computer takes exponential time. If factoring is shown to take take polynomial time, what is the effect on the question $\mathcal{P} = \mathcal{NP}$?
 - (A) $\mathcal{P} := \mathcal{N}\mathcal{P}$

(C) the question is still unanswered

- (B) $\mathcal{P} = \mathcal{N}\mathcal{P}$
- 25. Factoring is in \mathcal{NP} and the best known algorithm takes exponential time. In the past, a linear time algorithm was discovered for quantum computers. What is the effect on the question $\mathcal{P} = \mathcal{NP}$?
 - (A) $\mathcal{P} := \mathcal{NP}$, but just for quantum computers

(D) $\mathcal{P} := \mathcal{NP}$ for all types of computers.

(B) $\mathcal{P} = \mathcal{N}\mathcal{P}$? is still unanswered.

- (E) $\mathcal{P} = \mathcal{N}\mathcal{P}$ for all types of computers.
- (C) $\mathcal{P} = \mathcal{NP}$, but just for quantum computers
- 26. Subset Sum is \mathcal{NP} -complete. Currently, the best known algorithm on a conventional computer takes exponential time. If Subset Sum is proved to take at least exponential time, what is the effect on the question $\mathcal{P} = \mathcal{NP}$?
 - (A) the question is still unanswered

(C) $\mathcal{P} := \mathcal{N}\mathcal{P}$

- (B) $\mathcal{P} = \mathcal{N}\mathcal{P}$
- 27. Subset Sum is \mathcal{NP} -complete. Currently, the best known algorithm on a conventional computer takes exponential time. If solving Subset Sum can be shown to take polynomial time, what is the effect on the question $\mathcal{P} = \mathcal{NP}$?

(A) $\mathcal{P} = \mathcal{N}\mathcal{P}$

(C) the question is still unanswered

- (B) $\mathcal{P} := \mathcal{N}\mathcal{P}$
- 28. In the past, it was shown how to solve Hamiltonian Path (an \mathcal{NP} -complete problem) in linear time, using a DNA-based computer. However, the algorithm takes a factorial number of DNA strands, which need to be created each time. This means:

(A) $\mathcal{P} := \mathcal{N}\mathcal{P}$ for all types of computers.

(D) $\mathcal{P} := \mathcal{NP}$, but just for DNA-based computers

- (B) $\mathcal{P} = \mathcal{NP}$, but just for DNA-based computers
- (E) $\mathcal{P} = \mathcal{N}\mathcal{P}$ for all types of computers.

- (C) $\mathcal{P} = \mathcal{NP}$? is still unanswered.
- 29. T or \mathbf{F} : $\mathcal{P} = \mathcal{NP}$ is just another way of saying, for problems in \mathcal{NP} , finding a solution is no harder than verifying a solution.