SIGNALS & SYSTEMS

MR. ANKUR JYOTI SARMAH

ASSISTANT PROF., DEPT. OF ELECTRONICS & TELECOM. ENGG.

ASSAM ENGINEERING COLLEGE

Representation of continuous time signal as an integral of impulse

Let us divide x(t) as narrow pulses of width Δt as shown in fig Now the signal x(t) can be expressed as,

$$x(t) = \underset{\Delta \tau \to 0}{Lt} \widetilde{x}(t)$$
 Eqn 1

$$x(-2\Delta\tau) = \widetilde{x}(t) ; \text{ for } -2\Delta\tau < t < -\Delta\tau$$

$$x(-\Delta\tau) = \widetilde{x}(t) ; \text{ for } -\Delta\tau < t < 0$$

$$x(0) = \widetilde{x}(t) ; \text{ for } 0 < t < \Delta\tau$$

$$x(\Delta\tau) = \widetilde{x}(t) ; \text{ for } \Delta\tau < t < 2\Delta\tau$$

$$x(2\Delta\tau) = \widetilde{x}(t) ; \text{ for } 2\Delta\tau < t < 3\Delta\tau$$

$$\vdots$$

$$\therefore x(t) = \underset{\Delta \tau \to 0}{\text{Lt}} \widetilde{x}(t)$$

$$= \underset{\Delta \tau \to 0}{\text{Lt}} \left[\dots x(-2\Delta \tau) + x(-\Delta \tau) + x(0) + x(\Delta \tau) + x(2\Delta \tau) + \dots \right]$$

Consider the pulse signal of width $\Delta \tau$ and height $1/\Delta \tau$ as shown in fig be expressed as,

$$P_{\Delta}(t) = \frac{1}{\Delta \tau}$$
; $0 \le t \le \Delta \tau$
= 0; otherwise

Now, $\underline{\underline{P}_{\Delta}(t)} \times \underline{\Delta \tau} = A$ pulse of unit amplitude.

.. On multiplying $P_{\Delta}(t) \times \Delta \tau$ with the signal $\widetilde{x}(t)$, the signal x(0) is selected.

$$\therefore x(0) = \widetilde{x}(t) P_{\Delta}(t) \Delta \tau$$

This pulse signal can

If we multiply $\tilde{x}(t)$ with shifted pulse signals shown in fig pulse of the signal $\tilde{x}(t)$ as shown below.

$$x(-2\Delta\tau) = \widetilde{x}(t) P_{\Delta}(t + 2\Delta\tau) \Delta\tau$$

$$x(-\Delta\tau) = \widetilde{x}(t) P_{\Delta}(t + \Delta\tau) \Delta\tau$$

$$x(0) = \widetilde{x}(t) P_{\Delta}(t) \Delta\tau$$

$$x(\Delta\tau) = \widetilde{x}(t) P_{\Delta}(t - \Delta\tau) \Delta\tau$$

$$x(2\Delta\tau) = \widetilde{x}(t) P_{\Delta}(t - 2\Delta\tau) \Delta\tau$$

$$\vdots$$

, then each product will select one

In the above equation $\tilde{x}(t)$ can be replaced by respective selected pulses itself as shown below,

$$\vdots$$

$$x(-2\Delta\tau) = \widetilde{x}(-2\Delta\tau) \ P_{\Delta}(t+2\Delta\tau) \ \Delta\tau$$

$$x(-\Delta\tau) = \widetilde{x}(-\Delta\tau) \ P_{\Delta}(t+\Delta\tau) \ \Delta\tau$$

$$x(0) = \widetilde{x}(0) \ P_{\Delta}(t) \ \Delta\tau$$

$$x(\Delta\tau) = \widetilde{x}(\Delta\tau) \ P_{\Delta}(t-\Delta\tau) \ \Delta\tau$$

$$x(2\Delta\tau) = \widetilde{x}(2\Delta\tau) \ P_{\Delta}(t-2\Delta\tau) \ \Delta\tau$$

$$\vdots$$

On substituting the above equations in equation 2 we get,

$$\widetilde{x}(t) = \underset{\Delta \tau \to 0}{\text{Lt}} \left[\underset{n = -\infty}{\dots} \widetilde{x}(-2\Delta\tau) \ P_{\Delta}(t + 2\Delta\tau) \ \Delta\tau + \widetilde{x}(-\Delta\tau) \ P_{\Delta}(t + \Delta\tau) \ \Delta\tau + \widetilde{x}(0) \ P_{\Delta}(t) \ \Delta\tau \right]$$

$$= \underset{\Delta \tau \to 0}{\text{Lt}} \left[\underset{n = -\infty}{\dots} \widetilde{x}(n\Delta\tau) \ P_{\Delta}(t - n\Delta\tau) \ \Delta\tau + \widetilde{x}(2\Delta\tau) \ P_{\Delta}(t - 2\Delta\tau) \ \Delta\tau + \ldots \right]$$

On applying limit $\Delta \tau \to 0$ the signal $\chi(n\Delta \tau)$ becomes continuous, the signal $P_{\Delta}(t - n\Delta \tau)$ becomes an impulse and so the summation becomes integration.

Hence the above equation can be expressed as,

$$x(t) = \int_{-\infty}^{+\infty} x(\tau) \underbrace{\delta(t - \tau)} d\tau$$

$$x(t) \longrightarrow x(t) \longrightarrow x(t)$$

