Código BCD

Núm. Binario	Núm. Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Las cuentas que faltan no son usadas

Código BCD

Núm. Binario	Núm. Decimal
Nulli. Dillalio	Num. Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Las cuentas que
	faltan no son usadas

Obsérvese que se necesitan 4 bits

Código BCD

El código BCD mostrado en la tabla anterior es usado principalmente para mostrar datos en **display de siete segmentos**. También son usados para desplegar datos en código **ASCII**.

American Standard Code for Information Interchange

Código Estándar Estadounidense para el Intercambio de Información

Código BCD

Codificador de BCD a código de 7 segmentos

Decimal	Código BCD	Display de Ánodo Común	Display de Cátodo Común
	(4 bits)	abcdefg	abcdefg
0	0000	0 0 0 0 0 1	1 1 1 1 1 0
1	0001	1 0 0 1 1 1 1	0 1 1 0 0 0 0
2	0010	0 0 1 0 0 1 0	1 1 0 1 1 0 1
3	0011	0 0 0 0 1 1 0	1 1 1 1 0 0 1
4	0100	1 0 0 1 1 0 0	0 1 1 0 0 1 1
5	0101	0 1 0 0 1 0 0	1 0 1 1 0 1 1
6	0110	0 1 0 0 0 0 0	1 0 1 1 1 1
7	0111	0 0 0 1 1 1 1	1 1 1 0 0 0 0
8	1000	0 0 0 0 0 0	1 1 1 1 1 1
9	1001	0 0 0 0 1 0 0	1 1 1 1 0 1 1

Código BCD

Código ASCII: (La tabla muestra contenido parcial de código ASCII)

Binario	Dec	Hex	Representación	Binario	Dec	Hex	Representación	Binario	Dec	Hex	Representación
0010 1101	45	2D	-	0100 1101	77	4D	M	0110 1101	109	6D	m
0010 1110	46	2E	-	0100 1110	78	4E	N	0110 1110	110	6E	n
0010 1111	47	2F	1	0100 1111	79	4F	0	0110 1111	111	6F	0
0011 0000	48	30	0	0101 0000	80	50	Р	0111 0000	112	70	р
0011 0001	49	31	1	0101 0001	81	51	Q	0111 0001	113	71	q
0011 0010	50	32	2	0101 0010	82	52	R	0111 0010	114	72	r
0011 0011	51	33	3	0101 0011	83	53	S	0111 0011	115	73	S
0011 0100	52	34	4	0101 0100	84	54	Т	0111 0100	116	74	t
0011 0101	53	35	5	0101 0101	85	55	U	0111 0101	117	75	u
0011 0110	54	36	6	0101 0110	86	56	V	0111 0110	118	76	V
0011 0111	55	37	7	0101 0111	87	57	W	0111 0111	119	77	w
0011 1000	56	38	8	0101 1000	88	58	Х	0111 1000	120	78	х
0011 1001	57	39	9	0101 1001	89	59	Υ	0111 1001	121	79	у
0011 1010	58	3A	:	0101 1010	90	5A	Z	0111 1010	122	7A	z

Imagen de wikipedia

Código BCD

En la Tabla, obsérvese que cada digito tiene un código ASCII de 8 bits

Binario	Dec	Hex	Representación	Binario	Dec	Hex	Representación	Binario	Dec	Hex	Representación
0011 0000	48	30	0	0101 0000	80	50	Р	0111 0000	112	70	р
0011 0001	49	31	1	0101 0001	81	51	Q	0111 0001	113	71	q
0011 0010	50	32	2	0101 0010	82	52	R	0111 0010	114	72	r
0011 0011	51	33	3	0101 0011	83	53	S	0111 0011	115	73	S
0011 0100	52	34	4	0101 0100	84	54	Т	0111 0100	116	74	t
0011 0101	53	35	5	0101 0101	85	55	U	0111 0101	117	75	u
0011 0110	54	36	6	0101 0110	86	56	V	0111 0110	118	76	V
0011 0111	55	37	7	0101 0111	87	57	W	0111 0111	119	77	W
0011 1000	56	38	8	0101 1000	88	58	Х	0111 1000	120	78	х
0011 1001	57	39	9	0101 1001	89	59	Υ	0111 1001	121	79	у

Código BCD

Codificador de BCD a código de 7 segmentos

Decimal	Código	Display de Ánodo				ode	0	Display de Cátodo ASCII
	BCD		C	om	ún			Común
	(4 bits)	а	b c	d	е	f	g	a b c d e f g
0	0000	0	0 0	0	0	0	1	1 1 1 1 1 0 00110000
1	0001	1 (0 0	1	1	1	1	0 1 1 0 0 0 0 0 0011 0001
2	0010	0	0 1	0	0	1	0	1 1 0 1 1 0 1 00110010
3	0011	0	0 0	0	1	1	0	1 1 1 1 0 0 1 0011 0011
4	0100	1 (0 0	1	1	0	0	0 1 1 0 0 1 1 00110100
5	0101	0	1 0	0	1	0	0	1 0 1 1 0 1 1 00110101
6	0110	0	1 0	0	0	0	0	1 0 1 1 1 1 00110
7	0111	0 (0 0	1	1	1	1	1 1 1 0 0 0 0 0 0011 0111
8	1000	0 (0 0	0	0	0	0	1 1 1 1 1 1 00111000
9	1001	0 (0 0	0	1	0	0	1 1 1 1 0 1 1 00111001

Código BCD

Un número en **Binario Natural** es codificado en **BCD** como se describe a continuación

Supóngase un número de 8 bits.

Con un número binario de 8 bits es posible contar hasta 255 en decimal

El tema que nos ocupa en este momento es: dado un número en código binario, hallar equivalente en código BCD.

Código BCD

Por el momento con formato de 8 bits.

Ya que con 8 bits podemos contar hasta centenas, entonces necesitamos tres dígitos codificados en BCD.

Centenas	Decenas	Unidades
BCD	BCD	BCD

Código BCD

Por el momento con formato de 8 bits.

Ya que con 8 bits podemos contar hasta centenas, entonces necesitamos tres dígitos codificados en BCD.

Código BCD

Por el momento con formato de 8 bits.

Ya que con 8 bits podemos contar hasta centenas, entonces necesitamos tres dígitos codificados en BCD.

El algoritmo, aquí presentado, fue dado a conocer el 27 de octubre de 1997 en la nota de aplicación **XAPP029** de la compañía **Xilinx**, y puede ser consultada en internet.

Código BCD

Código BCD

Código BCD

Código BCD

Código BCD

Código BCD

Código BCD

Código BCD

Código BCD

Código BCD

Consiste en hacer desplazamiento en anillo del registro que contiene el número binario.

Obsérvese que en este desplazamiento simple, después de n=8 desplazamientos, se obtiene un registro con información idéntica al original.

Código BCD

Consiste en hacer desplazamiento en anillo del registro que contiene el número binario.

Obsérvese que en este desplazamiento simple, después de n=8 desplazamientos, se obtiene un registro con información idéntica al original.

Otro punto importante de observar, es que cada vez que un bit se desplaza hacia la izquierda, su peso se duplica.

Código BCD

La idea original es hacer los desplazamientos mostrados previamente, pero en lugar de quedar en un registro de tamaño idéntico, la información sea depositada en un registro de 12 bits, lo cual sería en realidad el formato BCD.

Centenas	Decenas	Unidades
BCD	BCD	BCD

Código BCD

La idea original es hacer los desplazamientos mostrados previamente, pero en lugar de quedar en un registro de tamaño idéntico, la información sea depositada en un registro de 12 bits, lo cual sería en realidad el formato BCD.

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso se dobla cada vez.

Como ejemplo véase este caso:

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

Al desplazarlo su valor se dobló, pero no hay conflicto, porque este valor aún cabe en el formato BCD.

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

No hay conflicto, porque este valor aún cabe en el formato BCD.

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

No hay conflicto, porque este valor aún cabe en el formato BCD.

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

0 1 0 1

Pero, ¿qué pasa en este caso? :

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

Si es desplazado su valor ya no cabe en el formato BCD. No existe en formato BCD.

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

Si es desplazado, su valor ya no cabe en el formato BCD. No existe en formato BCD.

Su representación en BCD debe ser:

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

Pero, ¿qué pasa en este caso? ¡¡¡¡¡

5

De esta forma vemos que el "5" debe ser convertido en "0"

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

Pero, ¿qué pasa en este caso?:

De esta forma vemos que el "5" debe ser convertido en "0".

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

Pero, ¿qué pasa en este caso? :

De esta forma vemos que el "5" debe ser convertido en "0".

En el mismo nibble. Naturalmente que el nibble superior se ve modificado.

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

Pero, ¿qué pasa en este caso? :

De esta forma vemos que el "5" debe ser convertido en "0".

En el mismo nibble. Naturalmente que el nibble superior se ve modificado.

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

Pero, ¿qué pasa en este caso? :

De esta forma vemos que el "5" debe ser convertido en "0".

2

En el mismo nibble. Naturalmente que el nibble superior se ve modificado.

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

Pero, ¿qué pasa en este caso? :

De esta forma vemos que el "5" debe ser convertido en "0".

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

Pero, ¿qué pasa en este caso? :

De esta forma vemos que el "5" debe ser convertido en "0".

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

Pero, ¿qué pasa en este caso? :

De esta forma vemos que el "5" debe ser convertido en "0".

Código BCD

El efecto principal es que al desplazar un bit hacia la izquierda, su peso de dobla cada vez.

Pero, ¿qué pasa en este caso? :

De esta forma vemos que el "5" debe ser convertido en "0".

Código BCD

Mediante un procedimiento similar es posible deducir que si el valor en el nibble es mayor o igual que 5, su valor en el mismo nibble se convierte en:

Si es 5 se convierte en 0

Si es 6 se convierte en 2

Si es 7 se convierte en 4

Si es 8 se convierte en 6

Si es 9 se convierte en 8

Si es 10 se convierte en 0

Si es 11 se convierte en 2

Código BCD

Mediante un procedimiento similar es posible deducir que si el valor en el nibble es mayor o igual que 5, su valor en el mismo nibble se convierte en:

Si es 5 se convierte en 0	0 0 0 1	0 0 0 0
Si es 6 se convierte en 2	0 0 0 1	0 0 1 0
Si es 7 se convierte en 4	0 0 0 1	0 1 0 0
Si es 8 se convierte en 6	0 0 0 1	0 1 1 0
Si es 9 se convierte en 8	0 0 0 1	1 0 0 0

Código BCD

Mediante un procedimiento similar es posible deducir que si el valor en el nibble es mayor o igual que 5, su valor en el mismo nibble se convierte en:

Código BCD

Mediante un procedimiento similar es posible deducir que si el valor en el nibble es mayor o igual que 5, su valor en el mismo nibble se convierte en:

Si es 5 se convierte en 0

Código BCD

Mediante un procedimiento similar es posible deducir que si el valor en el nibble es mayor o igual que 5, su valor en el mismo nibble se convierte en:

Si es 5 se convierte en 0

Código BCD

Mediante un procedimiento similar es posible deducir que si el valor en el nibble es mayor o igual que 5, su valor en el mismo nibble se convierte en:

Si es 5 se convierte en 0

Código BCD

Mediante un procedimiento similar es posible deducir que si el valor en el nibble es mayor o igual que 5, su valor en el mismo nibble se convierte en:

Si es 5 se convierte en 0

Sumado 0011 y desplazado

Código BCD

Mediante un procedimiento similar es posible deducir que si el valor en el nibble es mayor o igual que 5, su valor en el mismo nibble se convierte en:

Si es 5 se convierte en 0

Sumar 0011

Código BCD

Mediante un procedimiento similar es posible deducir que si el valor en el nibble es mayor o igual que 5, su valor en el mismo nibble se convierte en:

Si es 5 se convierte en 0

Código BCD

Mediante un procedimiento similar es posible deducir que si el valor en el nibble es mayor o igual que 5, su valor en el mismo nibble se convierte en:

Si es 5 se convierte en 0

Sumado 0011 y desplazado

Código BCD

Mediante un procedimiento similar es posible deducir que si el valor en el nibble es mayor o igual que 5, su valor en el mismo nibble se convierte en:

