Innhold

1	Introduksjon	3
2	Kvantemekanikk	5
	2.1 Bølgefunksjonen ψ	. 5
	2.2 Schrödingerligningen	
	2.3 Spinn	
	2.4 Måleproblemet	
3	Matriser	13
	3.1 Basisvektorer	. 13
	3.2 Multiplikasjon av vektorer	. 14
	3.3 Bra-ket notasjon	
	3.3.1 Indreprodukt i bra-ket notasjon	. 15
	3.3.2 Matrise-vektor-produkt i bra-ket notasjon	
4	Kvantedatamaskiner	17
	4.1 Qbits	. 17
	4.2 Dekoherens	
5	Kvantekryptografi	19

2 INNHOLD

Introduksjon

Mot slutten av 1800-tallet var fysikere kommet så langt at det kunne se ut til at man snart hadde oversikt over alle de fundamentale lovmessighetene som styrte naturen. Det har blitt sagt at Lord Kelvin—datidens kanskje mest toneangivende fysiker—uttalte at "There is nothing new to be discovered in physics now. All that remains is more and more precise measurement." Sitatet passer godt inn i den vanlige historiefortellingen om hvordan fysikken utviklet seg, men antakelig sa Lord Kelvin aldri dette. Derimot holdt han en forelesning i Royal Society der han pekte på at to "skyer på horisonten" som sto i veien for forståelsen av de underliggende lovmessighetene [1]. Den ene skyen var Michelson og Morely sitt forsøk på å måle lysets hastighet gjennom eteren. Forklaringen på deres måleresultat kom gjennom Einstein sin relativitetsteori—et av de to store gjennombruddene tidlig på 1900-tallet som skulle prege fysikkens utvikling videre. Den andre skyen var den såkalte ultrafiolette katastrofen i forbindelse med svart legeme-stråling. Dette problemet fikk sin løsning gjennom kvantemekanikken—det andre av de to store gjennombruddene tidlig på 1900-tallet som skulle prege fysikkens utvikling videre. Denne teksten vil gi en kort innføring i noen aspekter ved kvantemekanikken og se på hvordan dette kan benyttes til å utvide begrepet for hva en datamaskin er og hvordan den kan gjøre beregninger.

Kvantemekanikk

Tidlig i fysikkundervisningen lærer vi at ved å se på summen av krefter på som virker på et objekt kan vi finne ut hvordan det vil bevege seg, $\sum \vec{F} = m\vec{a}$. Hvis vi prøver å bruke denne ligningen til å forutse hvordan et elektron beveger seg vil vi ofte¹ få feil resultat. Det viser seg at bevegelsen til elektroner—og andre tilstrekkelig små partikler og systemer av partikler—må beskrives på en helt annen måte. Det er det kvantemekanikken dreier seg om. Denne teksten vil ikke forsøke å gi en fullstendig innføring i kvantemekanikk, men bare diskutere litt generelle aspekter ved kvantemekanikken og gi en litt grundigere diskusjon av de elementene som er nødvendig for å forstå hvordan kvantedatamaskiner virker.

2.1 Bølgefunksjonen ψ

En kvantemekanisk beskrivelse av verden viser seg å være svært annerledes enn det vi er vant med. Det viser seg at hvis du vil forsøke å forutsi hvilket resultat en måling—for eksempel av posisjonen eller farten til et elektron—vil gi må du nøye deg med å forutsi hvordan sannsynligheten for ulike måleresultater du kan få er. Dette dreier seg ikke om den vanlige måleusikkerheten som skyldes at måleinstrumentet ikke er perfekt, men det er en underliggende fysisk realitet. La oss for konkrethet se på posisjonen til et elektron. I klassisk fysikk som vi kjenner den fra før ville vi benevnt posisjonen med en vektor

$$\vec{r} = (x,y,z)$$

som beskriver posisjonen til elektronet med tre koordinater som i prinsippet kan bestemmes eksakt. Hvis vi kjenner alle kreftene som virker kan vi beregne

¹Det finnes tilfeller der Newtons lover gir en god beskrivelse av bevegelsen til elektroner, men i det generelle tilfellet er det ikke slik.

hvordan posisjonen varierer med tiden,

$$x = x(t)$$
, $y = y(t)$, $z = z(t)$,

slik at vi vet nøyaktig hvor elektronet er også på et vilkårlig tidspunkt i fremtiden.

En kvantemekanisk beskrivelse av elektronet innebærer en såkalt bølgefunksjon som forteller oss om sannsynligheten for å finne elektronet på et bestemt sted. I det videre vil jeg begrense meg til å beskrive endimensjonal bevegelse for å forenkle notasjonen, men konseptet kan enkelt utvides til tre dimensjoner. Til å beskrive elektronets posisjon bruker vi funksjonen $\psi(x)$, men denne må tolkes på en helt annen måte enn vektoren \vec{r} ovenfor. For det første vil $\psi(x)$ normalt ha en verdi som er ulik null i mer enn ett punkt, noe som betyr at elektronet ikke har en fast definert posisjon, men kan tenkes å være flere steder. Merk at dette faktisk ikke er et uttrykk for at det finnes informasjon om hvor elektronet egentlig er som vi mangler, men at posisjonen til elektronet ikke er fast definert². Figur 2.1 viser to mulige funksjoner $\psi(x)$ som beskriver posisjonen til et elektron som befinner seg ved eller nær x=1 m. Den stiplete blå linjen er kun ulik null i et relativt lite område nær x=1 m. Dette betyr at vi har en ganske stor visshet om hvor elektronet som beskrives av denne ψ -funskjonen er. Den heltrukne røde linjen er mer fordelt utover og innebærer derfor at det er et større område der det er sannsynlig at vi vil finne elektronet.

Figur 2.1:

Hva skjer så når vi prøver å måle hvor elektronet er? Da vil vi—uansett hvor konsentrert eller utspredt bølgefunksjonen som beskriver det er—finne

²Denne bemerkningen fortjener egentlig en lang diskusjon, men dette er ikke stedet for denne diskusjonen. Det er skrevet mye om dette andre steder.

elektronet lokalisert i ett punkt³. Dette innebærer at når vi måler hvor elektronet er endrer vi samtidig bølgefunksjonen som beskriver elektronet til å bli mye mer konsentrert rundt ett punkt, men dette punktet trenger ikke nødvendigvis å være der den tidligere hadde maksimum. Det vil imidlertid alltid være et sted der $\psi(x)$ før målingen var ulik null. Hvis vi kjenner bølgefunksjonen før vi måler kan vi bruke den til å beregne sannsynligheten for å finne elektronet i ulike områder. Det gjør vi ved å integrere over kvadratet av absoluttverdien av $\psi(x)$. For eksemel er sannsynligheten for å finne elektronet et sted mellom x=0.75 m og x=0.76 m

$$P(0.75 \text{ m} < x < 0.76 \text{ m}) = \int_{0.75 \text{ m}}^{0.76 \text{ m}} |\psi(x)|^2 dx$$
 (2.1)

Noen bemerkninger om funksjonen $\psi(x)$

1. For at integralet i ligning (2.1) skal gi en meningsfull sannsynlighet må funksjonen $\psi(x)$ oppfylle et normaliseringskrav, nemlig

$$1 = \int_{-\infty}^{\infty} |\psi(x)|^2 \mathrm{d}x.$$

Dette betyr for det første at sannsynligheten for å finne elektronet et eller annet sted er 1. For det andre, siden $|\psi(x)|^2 \geq 0$ overalt vil vi da være sikret å finne sannsynlighet $P \leq 1$ dersom vi integrerer over et kortere intervall.

- 2. Når vi integrerer over kvadratet av absoluttverdien til funksjonen ($|\psi|^2$) og ikke bare over kvadratet av funksjonen (ψ^2) er det fordi det viser seg at vi generelt må tillate $\psi(x)$ å ha komplekse verdier. I enkelte sammenhenger er dette av stor betydning, men i denne teksten får vi ikke behov for å studere dette videre.
- 3. Vi har så langt diskutert bølgefunksjonen som en helt vanlig funksjon som tar inn ett tall (posisjonen) og gir ut ett tall (som riktignok kan være komplekst) som kan relateres til sannynligheten for å finne elektronet akkurat der. Generelt vil vi trenge litt mer kompliserte konstruksjoner. En første enkel utvidelse av dette er å ta med de to andre romlige koordinatene samt å ta med en tidsavhengighet som beskriver at bølgefunksjonen endrer seg når tiden går⁴:

$$\Psi(x,y,z,t)$$
.

 $^{^3{\}rm Selvf}$ ølgelig med en presisjon som er begrenset av måle
instrumentet vi bruker.

⁴En vanlig konvensjon er å bruke stor Ψ for å betegne en bølgefunksjon som avhenger av både rom- og tidskoordinater, mens man bruker liten ψ dersom bølgefunksjonen kun avhenger av de romlige koordinatene, men ikke endrer seg når tiden går.

Videre er det i en del sammenhenger—blant annet en vi skal se på snart og få mye bruk for i resten av denne teksten—ofte nyttig å la bølgefunksjonen gi ut en vektor i stedet for bare et tall:

$$\Psi(x,y,z,t) = \left[\begin{array}{c} \phi_1(x,y,z,t) \\ \phi_2(x,y,z,t) \end{array} \right],$$

der $\phi_1(x,y,z,t)$ og $\phi_2(x,y,z,t)$ er vanlige funksjoner som gir ut (muligens komplekse) tall.

2.2 Schrödingerligningen

Gitt en bølgefunksjon $\Psi(x,y,z,t)$ og en funksjon V(x,y,z) som beskriver den potensielle energien som funksjon av posisjonen kan vi finne tidsutviklingen til bølgefunksjonen ved å løse en partiell differensialligning som er kjent som Schrödingerligningen (her skrevet opp med bare én romlig koordinat):

$$i\hbar \frac{\partial}{\partial t} \Psi(x,t) = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right] \Psi(x,t)$$

Her er m massen til partikkelen som beskrives, i vårt tilfelle elektronmassen, og $\hbar = \frac{h}{2\pi} = 1,055 \times 10^{-34}$ Js er den reduserte Planck-konstanten. Schrödingerligningen spiller omtrent samme rolle i kvantemekanikken som Newtons andre lov $(\Sigma \vec{F} = m\vec{a})$ spiller i klassisk mekanikk: Den tillater oss å beregne hva som vil skje i fremtiden med kunnskap om hvordan tilstanden er nå. Det er imidlertid noen vesentlige forskjeller. For det første er det bare presisjonen i målingene som begrenser presisjonen i forutsigelsen i klassisk mekanikk. I kvantemekanikk kan vi—som allerede diskutert—kun beregne sannsynligheten for ulike måleresultater, ikke forutsi med sikkerhet hva vi vil måle. Så selv om vi skulle kjenne bølgefunksjonen slik den er nå uten usikkerhet, og dermed kunne forutsi hvordan den vil være i fremtiden uten usikkerhet vil vi fremdeles ikke vite hvilket måleresultat vi ender opp med. For det andre kan Newtons andre lov brukes "baklengs": Hvis vi måler hva posisjon og fart er nå kan vi bruke det til å regne ut hva posisjon og fart var på et tidligere tidspunkt. Siden en måling påvirker bølgefunksjonen kan vi ikke bruke Schrödingerligningen til å finne ut hvordan bølgefunksjonen var på et tidspunkt før vi målte f.eks. posisjonen til elektronet.

I en generell innføring til kvantemekanikk legges det som regel stor vekt på å løse Schrödingerligningen for ulike potensialer V(x). Dette er ikke nødvendig for diskusjonen videre i denne teksten, så det problemet vil ikke bli diskutert videre her.

2.3. SPINN 9

2.3 Spinn

En del subatomære partikler, inkludert elektronet som vi fokuserer mest på her, har en egenskap som heter spinn. Ordet spinn antyder at det er noe som snurrer rundt, men det er ikke tilfellet. Det er snakk om en iboende egenskap i partikkelen. Likevel kan rotasjonen til en snurrebass være en brukbare analogi for enkelte aspekter ved spinnet. Spinn er en vektor som altså har både en størrelse og en retning. I snurrebassanalogien svarer størrelsen til hvor fort den roterer, mens retningen svarer til retningen rotasjonsaksen peker. Positiv retning defineres slik at snurrebassen roterer mot klokken når vi ser den fra den positive siden. Det viser seg at spinnet til subatomære partikler alltid er på formen $\frac{a}{2}\hbar$ der verdien av a avhenger av hvilken partikkel det dreier seg om. Partikler der a er et partall slik at spinnet er et heltall multiplisert med \hbar kalles bosoner. Partikler der a er et oddetall kalles fermioner. Elektronet har a=1 slik at spinnet til elektronet har størrelse $\frac{1}{2}\hbar$. Ofte skriver vi dette bare som spinn $\frac{1}{2}$, og jeg vil bruke denne konvensjonen i det videre.

I det videre bryter analogien med en snurrebass fullstendig sammen. I stedet for å måle hvilken retning spinnet til et elektron peker er det enklere å måle projeksjonen av spinnet inn på en vilkårlig akse. Hvis vi gjør dette med en snurrebass vil vi finne en verdi av projeksjonen s slik at -S < s < +S, der S er størrelsen til spinnet. s = +S og s = -S svarer til at aksen vi måler langs er enten parallell eller antiparallell med rotasjonsaksen. s=0 svarer til at aksen vi måler langs står normalt på rotasjonsaksen. Når vi gjør denne målingen på et elektron finner vi alltid $+\frac{1}{2}$ eller $-\frac{1}{2}$ uansett hvilken akse vi måler langs. Sett nå at vi preparerer et elektron med spinnet sitt rettet langs den positive x-aksen. Hvis vi nå velger å måle projeksjonen av spinnet på xaksen vil vi med sikkerhet ende opp med resultatet $+\frac{1}{2}$. Hvis vi derimot velger å måle projeksjonen av spinnet langs positiv z-akse (som står normalt på xaksen) vil vi ende opp med å måle enten $+\frac{1}{2}$ eller $-\frac{1}{2}$ med 50% sannsynlighet for hver av verdiene. Hvis vi etter å ha målt projeksjonen langs z-aksen igjen måler projeksjonen langs x-aksen vil vi ikke lenger med sikkerhet måle $+\frac{1}{2}$. Derimot vil vi nå bare ha 50% sannsynlighet for at målingen viser $+\frac{1}{2}$, mens det også er 50% sannsynlighet for å få verdien $-\frac{1}{2}$.

Som en avslutning av denne første diskusjonen av spinntet tar jeg med at hvis vi igjen preparerer elektronet med spinn opplinjert med x-aksen og deretter måler projeksjonen av spinnet på en akse som danner en vinkel θ med x-aksen da blir sannsynlighetene for de to mulige resultatene av målingen

$$P\left(+\frac{1}{2}\right) = \cos^2 \theta, \quad P\left(-\frac{1}{2}\right) = 1 - \cos^2 \theta = \sin^2 \theta.$$

2.4 Måleproblemet

Både i diskusjonen av posisjonen til elektronet i avsnitt 2.1 og retningen til elektronspinnet i avsnitt 2.3 var det en underliggende observasjon som ikke ble tydelig formulert:

Når vi utfører en måling på et kvantemekanisk system kan vi ikke unngå å samtidig påvirke systemet.

Dette er helt sentralt, og viser en tydelig forskjell på klassisk mekanikk og kvantemekanikk. I klassisk mekanikk ser vi på objekter som er store nok til at vi kan måle størrelser som for eksempel posisjon eller fart uten relevant påvirkning av størrelsen vi ønsker å måle. Vi kan for eksempel måle posisjonen til en ball ved å se på den mens vi har en linjal like ved for å definere måleskalaen. For at vi skal kunne se ballen må det skinne lys på den som reflektres inn i øynene våret. Lyset består av små partikler som kalles fotoner som treffer overflaten til ballen før de sendes videre til, blant annet, øynene våre. Når fotonene treffer ballen gir de den en liten dytt, så i prinsippet kan de endre posisjonen til ballen i prosessen. I praksis er imidlertid bevegelsesmengden til fotonene så liten at de ikke gir noen relevant kraftvirkning på ballen. Derfor kan vi jobbe som om måleprosessen ikke i det hele tatt påvirker det vi ønsker å måle. Dette er ikke tilfellet når vi kommer til kvantemekanikk.

Vi fortsetter å bruke elektronet som eksempel. Massen til et elektron er $m_e=9.1\times 10^{-31}$ kg. Bevegelsesmengden til et foton avhenger av bølgelengden. Om vi ser på et foton omtrent midt i det synlige spekteret ($\lambda=550$ nm) har det bevegelsesmengden $p=\frac{h}{\lambda}=1,2\times 10^{-27}$ kg m/s. Hvis vi bruker dette fotonet til å måle hvor elektronet er vil vi altså samtidig gi elektronet en så kraftig dytt at det etterpå vil ha stor fart bort fra det stedet det var. Slik er det med alle målinger i kvantemekanikken—måleprosessen påvirker systemet vi måler på. Og enda verre, jo mer nøyaktig vi prøver å måle, jo mer vil vi ende opp med å påvirke systemet. Generelt kan vi si at hvis vi ikke kan gjøre målingen på en slik måte at påvirkningen på systemet er neglisjerbar så må vi behandle systemet som kvantemekanisk. Hvis vi derimot kan måle på det uten at målingen gir noen relevant påvirkning på systemet kan vi behandle det med vanlig klassisk mekanikk.

Det finnes noen spesialtilfeller der vi tilsynelatende unslipper dette måleproblemet, selv når vi jobber med et system som må behandles kvantemekanisk. Et viktig eksempel, og det eneste jeg vil se på her, er gjentatte målinger av elektronspinnet. I avsnitt 2.3 diskuterte jeg hvordan projeksjonen av spinnet på en akse antar tilfeldige verdier. Men hvis vi repeterer gjentatte målinger langs den samme aksen får vi hele tiden samme resultat. Med andre

11

ord, hvis spinnet er opplinjert med x-aksen og vi fortsetter å måle projeksjonen av spinnet inn på x-aksen vil ikke målingen endre spinnet. Hvis vi derimot velger å måle spinnet langs en annen akse, for eksempel z-aksen, vil målingen påvirke spinnet som diskutert ovenfor.

Matriser

Parallelt med at Erwin Schrödinger kom frem til ligningen som jeg nevnte såvidt i forrige kapittel, kom Werner Heisenberg frem til en helt annen matematisk formalisme for å utføre kvantemekaniske beregninger - basert på matriser og vektorer, altså det vi kjenner som lineær algebra. Dette var en gren av matematikken som var ukjent for de fleste fysikere på begynnelsen av 1900-tallet og derfor fikk Heisenberg sin matrisemekanikk i første omgang en litt kjøligere mottakelse enn Schrödinger sin bølgemekanikk. Det viste seg imidlertid at begge formuleringene av kvantemekanikken var like riktig, og at hvilken formulering som var få foretrekke var avhengig av hvilket problem man studerte. Når vi i det videre stort sett skal studere spinnet til elektronet er det Heisenberg sin matrisemekanikk som passer best. Dette kapittelet vil gi en kort repetisjon av lineær algebra og vise hvordan dette brukes til å regne med elektron-spinn.

3.1 Basisvektorer

I et todimensjonalt koordinatsystem trenger vi nøyaktig to tall til å angi en posisjon, vanligvis omtalt som x-koordinaten og y-koordinaten. Punktet med x-koordinat X og y-koordinat Y angis da på vektorform som

$$\begin{bmatrix} X \\ Y \end{bmatrix}$$
 eller $[X Y]$.

Den første formen kaller vi en kolonne-vektor og den andre en rekkevektor. Det er først når vi skal se på multiplikasjon av vektorer med hverandre eller med matriser at forskjellen på disse to representasjonene blir relevant. Akkurat nå kan vi se på de som to likeverdige måte å spesifisere det samme punktet i koordinatsystemet. En litt annen måte å skrive ned den samme

informasjonen på er

$$\left[\begin{array}{c} X \\ Y \end{array}\right] = X \cdot \left[\begin{array}{c} 1 \\ 0 \end{array}\right] + Y \cdot \left[\begin{array}{c} 0 \\ 1 \end{array}\right]$$

Her er $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ en vektor med lengde 1 som peker langs x-aksen, mens $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ er en vektor med lengde 1 som peker langs y-aksen. Denne måten å skrive ned koordinatene på sier enda mer eksplisitt enn den forrige at vi skal gå X skritt langs x-aksen og så Y skritt parallelt med y-aksen. Vektorene $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ og $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ er enhetsvektorer, og siden alle vektorer i det todimensjonale rommet kan skrives som en lineærkombinasjon av disse to vektorene utgjør de en basis for det todimensjonale rommet.

Valget av basisvektorer er ikke unikt. For det første kan vi skalere vektorene som utgjør basisen med hver sin vilkårlige konstant (ulik 0), og de vil fremdeles være en basis. F.eks. er $\begin{bmatrix} -2 \\ 0 \end{bmatrix}$ og $\begin{bmatrix} 0 \\ 3 \end{bmatrix}$ også en basis. Det er heller ikke nødvendig at basisvektorene våre skal være parallelle med x- og y-aksen. For eksempel vil $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ og $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ også utgjøre en basis. Generelt vil to vilkårlige vektorer med lengde ulik 0 og som ikke er parallelle med hverandre utgjøre en basis for det todimensjonale rommet.

I denne teksten vil vi i hovedsak benytte oss av ulike ordnete, ortonormale basiser. Ordnete betyr at vi holder orden på hva som er den første og hva som er den andre basisvektoren. Hvorfor dette er viktig for oss kommer vi tilbake til senere. Ortonormale betyr for det første at basisvektorene står ortogonalt—altså vinkelrett—på hverandre, og for det andre at de er normalisert—altså har lengde 1.

3.2 Multiplikasjon av vektorer

3.3 Bra-ket notasjon

I de fleste tekster om lineæralgebra symboliseres en vektorstørrelse enten med en pil over symbolet, \vec{r} , eller med fet skrift \mathbf{r} . Om man har behov for å skille mellom kolonnevektorer og rekkevektorer er det kolonnevektoren som betegnes som nevnt, mens rekkevektoren betegnes som henholdsvis \vec{r}^T eller \mathbf{r}^T der T står for transponert. I denne teksten vil jeg i stedet bruke en annen notasjon som ble innført av den britiske fysikeren Paul Dirac. Dette er den

notasjonen som er mest vanlig å bruke innen kvantemekanikk, men det brukes sjelden i andre sammenhenger (selv om den gjerne kunne vært brukt ellers også). En kolonnevektor betegnes med symbolet $|r\rangle$ og omtales som en ket, mens en rekkevektor betegnes med symbolet $\langle r|$ og omtales som en bra.

3.3.1 Indreprodukt i bra-ket notasjon

For å regne ut indreproduktet mellom to vektorer må vi multiplisere en bravektor sammen med en ket-vektor slik at vi får en *bracket*. F.eks. gitt $\langle a|$ og $|b\rangle$ betegnes indreproduktet mellom dem med $\langle a|b\rangle$, og dette er en skalar som alltid når vi tar indreprodukt av to vektorer. Merk at det bare er notasjonen som er ny her—indreproduktet regnes ut på den vanlige måten. Hvis f.eks.

$$\langle a| = [-2 \ 4] \text{ og } |b\rangle = \begin{bmatrix} 3\\1 \end{bmatrix},$$

da er

$$\langle a|b\rangle = [-2\ 4] \begin{bmatrix} 3\\1 \end{bmatrix} = (-2) \cdot 3 + 4 \cdot 1 = -2.$$

3.3.2 Matrise-vektor-produkt i bra-ket notasjon

Gitt matrisen $M=\begin{bmatrix}0&2\\3&1\end{bmatrix}$, bra-vektoren $\langle a|=[-2\ 4]$ og ket-vektoren $|b\rangle=\begin{bmatrix}3\\1\end{bmatrix}$. Vi kan da regne ut

$$\langle a|M = \begin{bmatrix} -2 & 4 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} 12 & 0 \end{bmatrix},$$

$$M|b\rangle = \begin{bmatrix} 0 & 2 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 10 \end{bmatrix},$$

$$\langle a|M|b\rangle = (\langle a|M)|b\rangle = \langle a|(M|b\rangle) = 36.$$

 $|b\rangle M$ og $M\langle a|$ er derimot ikke definert.

Kvantedatamaskiner

4.1 Qbits

Den grunnleggende informasjonsenheten i vanlige datamaskiner er en bit. En bit har enten verdien 0 eller 1 og kan representeres av et hvilket som helst fysisk objekt som har to mulige tilstander. Et enkelt eksempel er en lyspære: Vi kan tilskrive tilstanden 'lyset på' verdien 1 og 'lyset av' verdien 0. Et eksempel med litt mer teknologisk relevans er en kondensator. Vi kan måle spenningen mellom platene i en kondensator. Hvis spenningen er tilnærmet lik 0 (i praksis under en viss grenseverdi) svarer dette til at bit'en vår har verdi 0. Hvis spenningen er over grenseverdien har bit'en verdien 1. Vi kan endre verdien fra 0 til 1 ved å tilføre kondensatoren ladning, og endre verdien fra 1 til 0 ved å lade ut kondensatoren.

I kvantedatamaskiner er den grunnleggende enheten en qbit. En qbit er et kvantemekanisk system som har nøyaktig to ulike utfall av en gitt måling. Et typisk eksempel er elektron-spinnet som ble diskutert i avsnitt 2.3. Hvis vi måler spinnet langs en gitt akse, f.eks. x-aksen, vil vi alltid få enten $+\frac{1}{2}$ eller $-\frac{1}{2}$. I likhet med den klassiske datamaskinen kan vi tilskrive det ene måleresultatet verdien 1 og det andre måleresultatet 0. Hvis vi leser av verdien til en qbit har den—akkurat som en bit—altså enten verdien 1 eller verdien 0.

Det som virkelig skiller en *qbit* fra en *bit* er hva som skjer med den når vi ikke sjekker hvilke verdi den har. En bit er et klassisk system, og den har den verdien den har inntil vi gjør noe for å endre verdien (eller noe går galt). En qbit derimot er et kvantemekanisk system og må altså beskrives av en bølgefunksjon som diskutert i avsnitt 2.1. Dette innebærer at vi *kan* sette qbiten til å ha en bestemt verdi som vi kan lese ut igjen senere. For eksempel hvis vi preparerer elektronet vårt slik at det har spinnet rettet i

x-retning, vil vi finne nettopp at spinnet er rettet i x-retning når vi senere måler det. Men vi kan også sette qbiten til å være i en superposisjon av de to tilstandene. Som diskutert i avsnitt 2.3 kan vi preparere elektronet til å ha spinnet sitt i positiv z-retning. Hvis da senere måler verdien av spinnet i x-retning har vi 50% sannsynlighet for å få verdien $+\frac{1}{2}$ og 50% sannsynlighet for å få verdien $-\frac{1}{2}$. Det er akkurat som om qbiten har både verdien 0 og 1 helt frem til den blir målt, og først da ender opp med den ene eller den andre muligheten. Det er heller ikke nødvendig å la superposisjonen være slik at det er nøyaktig 50% sannsynlighet for hvert av utfallene. Generelt kan vi ende opp med en vilkårlig fordeling av sannsynligheten på de to ulike utfallene. Det er muligheten for superposisjon mellom de to ulike utfallene som utnyttes i kvantedatamaskiner og som gjør at de kan utføre enkelte beregninger langt raskere enn klassiske datamaskiner.

4.2 Dekoherens

Så langt har vi diskutert kvantemekaniske systemer som om de er helt stabile. Ta eksempelet med elektronet som vi preparerer med spinnet i positiv x-retning. Vi har da sagt at hvis vi måler verdien av spinnet i x-retning på et senere tidspunkt (uten å ha gjort noen andre målinger på det i mellomtiden) vil vi nødvendigvis finne at elektronet fremdeles ar spinnet i positiv x-retning.

Kvantekryptografi

Klassisk kryptografi har en fundamental utfordring: hvordan distribuere krypteringsnøkkelen. Hvis man har en krypteringsnøkkel som er like lang som meldingen er det prinsipielt umulig å bryte koden, men sikkerheten avhenger fremdeles av at man vet at ingen har klart å få tak i nøkkelen. Vet hjelp av kvantemekanisk sammenfiltring kan vi distribuere en nøkkel over et åpent nettverk og forsikre oss om at kun den rette mottakeren har fått nøkkelen. For å se hvordan dette kan gjøres tar vi utgangspunkt i BB84-protokollen som ble funnet opp av Charles Bennett og Gilles Brassard [2].

Alice ønsker å sende en kodet melding til Bob, men frykter at Eva kan forsøke å fange opp meldingen og dekryptere den. For å hindre Eva i å kunne dekryptere meldingen bruker Alice og Bob sammenfiltrede elektroner til å utveksle kodenøkkelen. Alice preparerer det nødvendige antallet par av av sammenfiltrede elektroner og sender ett fra hvert par til Bob og beholder det andre selv. Både Alice og Bob måler spinnet til alle elektronene ved å på hvert elektron bruke én av de to ordnete, ortonormale basisene

$$V = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} \quad \text{ok} \quad H = \left\{ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix} \right\}.$$

Bibliografi

- [1] Right. Hon. Lord Kelvin G.C.V.O. D.C.L. LL.D. F.R.S. M.R.I. I. nineteenth century clouds over the dynamical theory of heat and light. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 2(7):1–40, 1901.
- [2] C.H. Bennett and G Brassard. Quantum cryptography: Public key distribution and coin tossing. *Proceedings of IEEE International Conference on Computers, Systems and Signal Processing*, 175, 1984.