Chương 6. Các bài toán về đường đi

Phần 1. Bài tập

Bài 6.1. Tìm đường đi ngắn nhất từ đỉnh 1 đến những đỉnh khác của hai đồ thị sau:

Bài 6.2. Tìm đường đi ngắn nhất từ a đến z của các đồ thị sau:

Bài 6.3. Xét đồ thị G xác định bởi ma trận khoảng cách

$$D = \begin{pmatrix} 0 & 2 & 7 & \infty & \infty & \infty & \infty \\ \infty & 0 & 3 & 9 & 10 & 12 & \infty \\ \infty & \infty & 0 & 15 & 5 & 16 & \infty \\ 7 & \infty & \infty & 0 & \infty & 1 & 10 \\ \infty & \infty & \infty & 6 & 0 & \infty & 10 \\ \infty & 12 & \infty & \infty & \infty & 0 & 7 \\ \infty & \infty & 18 & \infty & \infty & \infty & 0 \end{pmatrix}$$

Tìm đường đi ngắn nhất từ đỉnh 1 đến đỉnh 7 biết rằng

- a) Không có điều kiện gì thêm.
- c) Qua đỉnh 4.

b) Không qua đỉnh 5.

d) Qua cung (5, 4).

Bài 6.4. Tìm một ví dụ chứng tỏ rằng thuật toán Dijsktra không thể áp dụng cho đồ thị có trọng lượng âm.

Bài 6.5. Trong các trường hợp sau đây, xét đồ thị G xác định bởi ma trận khoảng cách D. Tìm đường đi ngắn nhất từ đỉnh 1 đến những đỉnh khác và vẽ cây đường đi hoặc chỉ ra rằng đồ thị có một mạch âm.

a)
$$D = \begin{pmatrix} 0 & 6 & \infty & \infty & 2 & 1 & \infty \\ \infty & 0 & 5 & \infty & \infty & \infty & \infty \\ \infty & \infty & 0 & 2 & \infty & \infty & \infty \\ \infty & \infty & \infty & 0 & 2 & \infty & \infty & \infty \\ \infty & \infty & \infty & 0 & \infty & -3 & -1 \\ 4 & 1 & 4 & \infty & 0 & \infty & 6 \\ \infty & \infty & \infty & \infty & 2 & 0 & 8 \\ 7 & \infty & 7 & \infty & \infty & \infty & 0 \end{pmatrix}$$
 b) $D = \begin{pmatrix} 0 & 8 & \infty & \infty & \infty & 4 \\ \infty & 0 & -4 & \infty & 2 & \infty \\ 8 & \infty & 0 & \infty & \infty & 2 \\ \infty & 5 & 3 & 0 & \infty & \infty \\ 7 & \infty & \infty & -9 & 0 & \infty \\ \infty & -2 & \infty & \infty & 4 & 0 \end{pmatrix}$.

Bài 6.6. Tìm đường đi ngắn nhất giữa tất cả các cặp đỉnh hay chỉ ra rằng có một mạch âm trong đồ thị G xác định bởi ma trận khoảng cách D:

a)
$$D = \begin{pmatrix} 0 & 8 & \infty & \infty & 2 \\ \infty & 0 & 4 & \infty & \infty \\ \infty & \infty & 0 & \infty & 4 \\ 6 & 3 & -2 & 0 & \infty \\ 7 & 5 & \infty & -1 & 0 \end{pmatrix}$$
 b) $D = \begin{pmatrix} 0 & 2 & \infty & \infty & 5 \\ \infty & 0 & -9 & \infty & \infty \\ \infty & \infty & 0 & 3 & 3 \\ 3 & \infty & \infty & 0 & \infty \\ \infty & 4 & \infty & -4 & 0 \end{pmatrix}$

Bài 6.7. Xét xem G có là đồ thị Euler hay không. Nếu không, G có thể vẽ được bằng mấy nét?

Bài 6.8. Xác định chu trình Euler nếu có của các đồ thị cho bởi ma trận kề sau đây:

Bài 6.9. Cho 10 con domino (1; 2), (1; 3), (1; 4), (1; 5), (2; 3), (2; 4), (2; 5), (3; 4), (3; 5), (4; 5). Có thể nào sắp xếp các con domino này trên 1 vòng tròn theo luật domino không?

Bài 6.10. Có thể nào thực hiện tất cả các nước đi của một con mã trên một bàn cờ vua và trở về ô xuất phát không?

Bài 6.11. Xét xem đồ thị nào là Hamilton

Bài 6.12. Cho $G=(X_1,X_2)$ là đồ thị lưỡng phân. Chứng minh rằng nếu G là đồ thị Hamilton thì $|X_1|=|X_2|$.

Bài 6.13. Có thể nào di chuyển con mã trên một bàn cờ 4×4 đi qua tất cả các ô của bàn cờ và trở về ô xuất phát không?

Bài 6.14. Trong một cuộc tranh giải, có n đấu thủ tham gia thi đấu theo thể thức đấu vòng tròn một lượt và không có trận hòa. Giả sử mỗi đấu thủ đã thi đấu với n-1 đấu thủ khác. Chứng minh rằng ta có thể liệt kê các đấu thủ thành một dãy sao cho mỗi đấu thủ thắng người kế tiếp trong danh sách đó.

Phần 2. Thực hành

Bài 6.1. Cho ma trận khoảng cách của đồ thị G và hai đỉnh i, j của G. Hãy viết chương trình tính khoảng cách ngắn từ i tới j bằng thuật toán Dijkstra và Ford-Bellman.

Bài 6.2. Cho ma trận kề của đồ thị vô hướng G. Hãy viết chương trình xác định G có phải là đồ thị Euler, hay có đường đi Euler. Nếu có, hãy liệt kê chu trình hay đường đi Euler.

Bài 6.3. Cho ma trận kề của đồ thị vô hướng G. Hãy viết chương trình xác định G có phải là đồ thị Hamilton, hay có đường đi Hamilton. Nếu có, hãy liệt kê chu trình hay đường đi Hamilton.