Computer Architecture (计算机体系结构)

Lecture 17 – Representations of Combinatorial Logic Circuits

2020-10-12

Lecturer: Yuanqing Cheng

Finite State Machine Example: 3 ones...

FSM to detect the occurrence of 3 consecutive 1's in the input.

Assume state transitions are controlled by the clock: on each clock cycle the machine checks the inputs and moves to a new state and produces a new output...

Hardware Implementation of FSM

... Therefore a register is needed to hold the a representation of which state the machine is in. Use a unique bit pattern for each state.

Combinational logic circuit is used to implement a function maps from *present state and input* to *next state and output*.

Hardware for FSM: Combinational Logic

This lecture we will discuss the detailed implementation, but for now can look at its functional specification, truth table form.

Truth table...

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

General Model for Synchronous Systems

- Collection of CL blocks separated by registers.
- Registers may be back-to-back and CL blocks may be back-toback.
- Feedback is optional.
- Clock signal(s) connects only to clock input of registers.

Review

- State elements are used to:
 - Build memories
 - Control the flow of information between other state elements and combinational logic
- D-flip-flops used to build registers
- Clocks tell us when D-flip-flops change
 - Setup and Hold times important
- We pipeline long-delay CL for faster clock
- Finite State Machines extremely useful
 - Represent states and transitions

Combinational Logic

- FSMs had states and transitions
- How to we get from one state to the next?
- Answer: Combinational Logic

Truth Tables

TT Example #1: 1 iff one (not both) a,b=1

a	b	У
0	0	0
0	1	1
1	0	1
1	1	0

TT Example #2: 2-bit adder

A	В	C
a_1a_0	b_1b_0	$c_2c_1c_0$
00	00	000
00	01	001
00	10	010
00	11	011
01	00	001
01	01	010
01	10	011
01	11	100
10	00	010
10	01	011
10	10	100
10	11	101
11	00	011
11	01	100
11	10	101
11	11	110

How Many Rows?

TT Example #3: 32-bit unsigned adder

A	В	C
000 0	000 0	000 00
000 0	000 1	000 01
•	•	• How
•	•	. Many Rows?
•	•	• Rows !
111 1	111 1	111 10

TT Example #4: 3-input majority circuit

a	b	c	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Logic Gates (1/2)

	a _	ab	c
	<u> </u>	00	0
AND	D -1	01	0
		10	0
		11	1
	an	ab	c
	b -1	00	0
OR		01	1
		10	1
		11	1
NOT	a - 10- b	a	b
		0	1
		1	0

And vs. Orreview - Dan's mnemonic

AND Gate

Symbol

A AN C

Definition

A	B	C
0	0	0
0	1	0
1	0	0
1	1	1

Logic Gates (2/2)

	$a \rightarrow r$	ab	c
	·))	00	0
XOR	D IV	01	1
		10	1
		11	0
	a - M	ab	c
	h p-c	00	1
NAND	D —	01	1
		10	1
		11	0
	$a \rightarrow \sum$	ab	c
	F_) >>- C	00	1
NOR		01	0
		10	0
		11	0

2-input gates extend to n-inputs

- N-input XOR is the only one which isn't so obvious
- It's simple: XOR is a 1 iff the # of 1s at its input is odd ⇒

a	b	c	y
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Truth Table ⇒ **Gates** (e.g., majority circ.)

a	b	c	y	
0	0	0	0	-
0	0	1	0	
0	1	0	0	a Th
0	1	1	1	
1	0	0	0	y ()
1	0	1	1	
1	1	0	1	
1	1	1	1	

Truth Table ⇒ Gates (e.g., FSM circ.)

PS	Input	NS	Output
00	0	00	0
00	1	01	0
01	0	00	0
01	1	10	0
10	0	00	0
10	1	00	1

or equivalently...

Boolean Algebra

- George Boole, 19th Century mathematician
- Developed a mathematical system (algebra) involving logic
 - later known as "Boolean Algebra"
- Primitive functions: AND, OR and NOT
- The power of BA is there's a one-to-one correspondence between circuits made up of AND, OR and NOT gates and equations in BA
 - + means OR,• means AND, x means NOT

Boolean Algebra (e.g., for majority fun.)

$$y = a \cdot b + a \cdot c + b \cdot c$$

 $y = ab + ac + bc$

Boolean Algebra (e.g., for FSM)

				\mathcal{V}_{4}
PS	Input	NS	Output	DC A TRUT
00	0	00	0	TNPUT OUTPUT
00	1	01	0	INPUT -
01	0	00	0	
01	1	10	0	or equivalently
10	0	00	0	PS ₁
10	1	00	1	PSO OUTPUT
				INPUT - OUTTOI
				40101

$$y = PS_1 \cdot PS_0 \cdot INPUT$$

BA: Circuit & Algebraic Simplification

original circuit

equation derived from original circuit

algebraic simplification

BA also great for circuit <u>verification</u>
Circ X = Circ Y?
use BA to prove!

simplified circuit

Laws of Boolean Algebra

$$x \cdot \overline{x} = 0 \qquad x + \overline{x} = 1 \qquad \text{complementarity} \\ x \cdot 0 = 0 \qquad x + 1 = 1 \qquad \text{laws of 0's and 1'} \\ x \cdot 1 = x \qquad x + 0 = x \qquad \text{identities} \\ x \cdot x = x \qquad x + x = x \qquad \text{idempotent law} \\ x \cdot y = y \cdot x \qquad x + y = y + x \qquad \text{commutativity} \\ (xy)z = x(yz) \qquad (x + y) + z = x + (y + z) \qquad \text{associativity} \\ x(y + z) = xy + xz \qquad x + yz = (x + y)(x + z) \qquad \text{distribution} \\ xy + x = x \qquad (x + y)x = x \qquad \text{uniting theorem} \\ \overline{x}y + x = x + y \qquad (\overline{x} + y)x = xy \qquad \text{uniting theorem} \\ \overline{x}y + x = x + y \qquad (\overline{x} + y)x = xy \qquad \text{uniting theorem} \\ \overline{x}y + x = x + y \qquad (\overline{x} + y)x = xy \qquad \text{uniting theorem} \\ \overline{x}y + x = x + y \qquad (\overline{x} + y)x = xy \qquad \text{uniting theorem} \\ \overline{x}y + x = x + y \qquad (\overline{x} + y)x = xy \qquad \text{uniting theorem} \\ \overline{x}y + x = x + y \qquad (\overline{x} + y)x = xy \qquad \text{uniting theorem} \\ \overline{x}y + x = x + y \qquad (\overline{x} + y)x = xy \qquad \text{uniting theorem} \\ \overline{x}y + x = x + y \qquad (\overline{x} + y)x = xy \qquad \text{uniting theorem} \\ \overline{x}y + x = x + y \qquad (\overline{x} + y)x = xy \qquad \text{uniting theorem} \\ \overline{x}y + x = x + y \qquad (\overline{x} + y)x = xy \qquad \text{uniting theorem} \\ \overline{x}y + y = \overline{x} + \overline{y} \qquad \overline{x} + y = \overline{x} + \overline{y} \qquad DeMorgan's Law$$

complementarity laws of 0's and 1's identities idempotent law commutativity associativity distribution uniting theorem uniting theorem v.2

Boolean Algebraic Simplification Example

$$y = ab + a + c$$

 $= a(b+1) + c$ distribution, identity
 $= a(1) + c$ law of 1's
 $= a + c$ identity

Canonical forms (1/2)

Sum-of-products (ORs of ANDs)

Canonical forms (2/2)

$$egin{array}{ll} y &= \overline{a} \overline{b} \overline{c} + \overline{a} \overline{b} \overline{c} + a \overline{b} \overline{c} \\ &= \overline{a} \overline{b} (\overline{c} + c) + a \overline{c} (\overline{b} + b) & distribution \\ &= \overline{a} \overline{b} (1) + a \overline{c} (1) & complementarity \\ &= \overline{a} \overline{b} + a \overline{c} & identity \end{array}$$

Peer Instruction

- A. $(a+b) \cdot (\overline{a}+b) = b$
- B. N-input gates can be thought of cascaded 2-input gates. I.e., (a \triangle bc \triangle d \triangle e) = a \triangle (bc \triangle (d \triangle e)) where \triangle is one of AND, OR, XOR, NAND
- C. You can use NOR(s) with clever wiring to simulate AND, OR, & NOT

ABC

FFF

2: **FFT**

3: **FTF**

4: **F**TT

5: **TFF**

6: **TFT**

7: TTF

B: TTT

Peer Instruction Answer (B)

B. N-input gates can be thought of cascaded 2-input gates. I.e., (a \triangle bc \triangle d \triangle e) = a \triangle (bc \triangle (d \triangle e)) where \triangle is one of AND, OR, XOR, NAND...FALSE

Let's confirm!

```
CORRECT 3-input

XYZ | AND | OR | XOR | NAND

000 | 0 | 0 | 0 | 1

001 | 0 | 1 | 1 | 1

010 | 0 | 1 | 1 | 1

100 | 0 | 1 | 1 | 1

101 | 0 | 1 | 1 | 1

110 | 0 | 1 | 0 | 1

111 | 1 | 1 | 1 | 0
```

```
CORRECT 2-input
YZ|AND|OR|XOR|NAND
00| 0 |0 | 0 | 1
01| 0 |1 | 1 | 1
10| 0 |1 | 1 | 1
11| 1 |1 | 0 | 0
```

"And In conclusion..."

- Pipeline big-delay CL for faster clock
- Finite State Machines extremely useful
 - You'll see them again in 150, 152 & 164
- Use this table and techniques we learned to transform from 1 to another

