Classical Mechanics

Calculus of variations

$$S = \int_{x_1}^{x_2} dx \, f[y(x), y'(x), x], \ y(x_1) = y_1, \ y(x_2) = y_2$$

find the $y_0(x)$ to minimize S.

Set $y(x) = y_0 + \epsilon \eta(x)$, $\epsilon \to 0$, to make dS = 0, we can get the E-L equation.

$$\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$$

E-L equation for unconstrained motion

We have the action $S = \int dt L$ and L = T - V.

Generalized force: $\frac{\partial L}{\partial q_i} = F_i$

Generalized momentum: $\frac{\partial L}{\partial \dot{q}_i} = P_i$

E-L equation: $\frac{d}{dt}P_i = F_i$

E-L equation for constrained motion directly

L = T - U where U contains only non-constraint forces, is stationary at true path with respect to all path that satisfy the constrain.

Oct. 11: three examples

Noether's Theorem

Consider a system of particles with pair-like interactions, the Lagrangian is

$$L = \frac{1}{2} \sum_{i} m_{i} \dot{x}_{i}^{2} + \sum_{i > j} V(x_{i} - x_{j})$$

Let $x_i' = x_i + a$, where $a \to 0$ is a constant, then we can rewrite L with x_i' and $\dot{x}_i' = \dot{x}_i$.

$$L' = \frac{1}{2} \sum_{i} m_{i} (\dot{x}_{i}')^{2} + \sum_{i>j} V(x_{i}' - x_{j}')$$

So, L' has the same form as L. The Lagrangian is "form invariant" (covariant) under the transformation.

Conservation of Angular Momentum

The angular momentum $\overrightarrow{A} = \overrightarrow{r} \times \overrightarrow{r}$ is conserved, the plane of \overrightarrow{r} and \overrightarrow{r} must be the same plane.

For ϕ , we will get the conservation of angular momentum. For r, replace $\dot{\phi}$ with A, we will get

$$\mu \ddot{r} = -\frac{d}{dr} U_{eff}(r)$$

$$\mu \dot{r} \cdot \ddot{r} = -\frac{d}{dr} U_{eff}(r) \cdot \dot{r}$$

$$\mu \frac{d}{dt} \left(\frac{\dot{r}^2}{2}\right) = -\frac{d}{dt} U_{eff}(r)$$

$$\mu \frac{\dot{r}^2}{2} + U_{eff}(r) = E = const$$

$$\frac{dr}{dt} = \sqrt{\frac{2}{\mu} (E - U_{eff})}$$

Hamiltonian Dynamics

We define the Hamiltonian: $H = \sum_{i} p_{i} \dot{q}_{i} - L$, then we have

$$\frac{\partial H}{\partial p_i} = \dot{q}_i \; ; \; \frac{\partial H}{\partial q_i} = -\dot{p}_i$$

Liouville's Theorem

Consider a region in phase space and follow its evolution over time. In general, the shape of the region will change, but the volume remains the same.

Liouville's Equation

With
$$\frac{d\rho}{dt} = 0$$
, we have

$$\frac{\partial \rho}{\partial t} + \{\rho, H\} = 0$$

Poincare Recurance Theorem

Poisson Bracket

$$\{f,g\} = \sum_{i} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial q_i} \right)$$

properties:

- $\{f,g\} = -\{g,f\}$
- $\{af + bg, h\} = a\{f, h\} + b\{g, h\}$
- $\{fg,h\} = f\{g,h\} + \{f,h\}g$
- Jacobi Identity $\{f, \{g, h\}\} + \{h, \{f, g\}\} + \{g, \{h, f\}\} = 0$

•
$$\frac{df}{dt} = \{f, H\} + \frac{\partial f}{\partial t}$$

•
$$\{q_i, q_j\} = \{p_i, p_j\} = 0$$
 and $\{q_i, p_j\} = \delta_{ij}$

Canonical Transformation

$$\frac{\partial H}{\partial p_i} = \dot{q}_i; \frac{\partial H}{\partial q_i} = -\dot{p}_i$$

$$q_i \to Q_i(q, p, t)$$

$$p_i \to P_i(q, p, t)$$

$$H(p, q, t) \to K(P, Q, t)$$

If the transformation preserve

$$\frac{\partial K}{\partial P_i} = \dot{Q}_i$$
; $\frac{\partial K}{\partial O_i} = -\dot{P}_i$

we call it canonical transformation.

Restricted Canonical Transformation

$$H(p,q) = K(P,Q)$$

 $\{Q_i, Q_j\} = \{P_i, P_j\} = 0 \text{ and } \{Q_i, P_i\} = \delta_{ij}$

Theorem: The Poisson Bracket is invariant under canonical transform.

Action-Angle variables

<u>Canonical transform</u>: $(p, q) \rightarrow (I, \theta)$ [respectively]

So that to make H = H(I), then we have

$$\dot{\theta} = \frac{\partial H}{\partial I}$$
 and I are constants

This choice is always possible for any 1-D system, I is called the "action variable", θ is "angle variable".

Claim: The correct choice of I is $I = \frac{1}{2\pi} \oint pdq$.

Then we have

•
$$H = H(I) = E$$

•
$$\dot{\theta} = \frac{\partial H}{\partial I} = \frac{dE}{dI} = \omega$$

•
$$t = \frac{d}{dE} \int_{q(0)}^{q(t)} p dq$$

•
$$\theta = \omega t = \frac{d}{dI} \int_{q(0)}^{q(t)} p dq$$

Adiabatic Invariants

consider only 1 d.o.f.

$$H = \frac{p^2}{2m} + V(q)$$

Assume motion is bounded, so motion is periodic.

Let the potential depend on some parameter λ , so that $V = V(q, \lambda)$. We wish to explore what happens if λ changes slowly ("adiabatically") with time. For example, we may change the length of a pendulum.

Since *H* is time-dependent, energy is no longer conserved.

$$\frac{dE}{dt} = \left(\frac{\partial H}{\partial t}\right)_{p,q} = \left(\frac{\partial H}{\partial \lambda}\right)_{p,q} \cdot \frac{d\lambda}{dt}$$

There are specific combinations of E and λ which remain constant as λ is slowly changed. These combinations are called "adiabatic invarants".

Claim: The adiabatic invariant for this system is

$$I = \frac{1}{2\pi} \oint p dq$$

where p is now $p = \sqrt{2m(E(t) - V(q, \lambda(t)))}$.

With the adiabatic assumption, the orbit in the phase sapce below can be closed.

e.g.

$$H = \frac{p^2}{2m} + \frac{1}{2}k(t)q^2, k \ varying \ slowly$$

We have $I = \frac{E}{\omega} = E\sqrt{\frac{m}{k}}$, with the adiabatic invariant claim, we can get

$$\frac{E(t_1)}{\sqrt{k(t_1)}} = \frac{E(t_2)}{\sqrt{k(t_2)}}$$