- Consider the given dataset to implement your allocated machine learning (ML) model.
- Now for the dataset, modify few values randomly in the dataset and then compute the given 5 validation measures for the allocated ML model.
- Then reconstruct the dataset and then compute the above same 5 validation measures for the Reconstructed dataset.
- Compute the Confusion Matrix.
- Now fill the following table with your implementation results with 80+20, 70+30 split ratios for training and testing.

Validation	Original		Modified		Reconstructed	
Measures	80+20	70+30	80+20	70+30	80+20	70+30
Accuracy						
Precision						
Recall						
F1-Score						
AUC						

- In the Report that you are uploading you need to have the following
 - o Notebook code
 - o Comments has to be provided in proper manner
 - Justification of the following with meaningful reasons.
 - Which dataset (Original, Modified, Reconstructed) is giving better results?
 - o Include the above table with the results

S. No.	Model to implement		
1	Logistic Regression		
2	K-Means Clustering		
3	Multi-layer perceptron		
4	ID3 Decision Tree		
5	K-Nearest Neighbours		
6	Naive Bayes Classifier		
7	Non-linear Support Vector Machines		