Yuanhao Xiong

yhxiong@cs.ucla.edu | 424-407-6112 | https://xyh97.github.io

EDUCATION

University of California, Los Angeles

Ph.D. student in Computer Science

Zhejiang University

B.Eng. in Information Engineering GPA: 3.95/4, Ranking 1 out of 176

Los Angeles, USA Sep. 2019 - Present

Hangzhou, China

Aug. 2015 - Jun. 2019

RESEARCH INTERESTS

My research interests lie in developing machine learning algorithms in various related fields including adversarial learning, learning to learn, and optimization.

RESEARCH EXPERIENCE

University of California, Los Angeles

Research Assistant, Advisor: Prof. Cho-Jui Hsieh

Los Angeles, CA, U.S.

Jul. 2019 - Present

Learning to Learn for Adversarial Training

- Leveraged a learning-to-learn (L2L) framework to train an optimizer with recurrent neural networks (RNN), providing update directions and steps adaptively for the inner problem.
- Improved robust accuracy of PGD-based adversarial training and TRADES throught co-training optimizer's parameters and model's weights.

Learning to Learn by Zeroth-Order Oracle

- Extended the learning to learn (L2L) framework from first-order to zeroth-order (ZO) optimization.
- Proposed a novel RNN optimizer architecture which learns both parameter update rule and Gaussian sampling rule for ZO optimization.

City Brain Research Group at Tianrang Inc.

Hangzhou, China

Research Intern, Advisor: Prof. Zhenhui Li

Oct. 2018 - May. 2019

Learning Traffic Signal Control from Demonstrations

- Proposed DemoLight to leverage demonstrations collected from classic transportation methods for traffic signal time allocation to accelerate reinforcement learning.

Learning Phase Competition for Traffic Signal Control

- Designed a novel network structure for Q-network based on phase competition in traffic signal control.
- Achieved superior generalizability for different road structures and traffic conditions.

AI Labs at Didichuxing Inc.

Beijing, China

Research Intern, Advisor: Prof. Yan Liu

Jul. 2018 - Oct. 2018

Improved Adaptive Optimization Algorithm

- Demonstrated that extreme learning rates in adaptive methods could lead to poor performance.
- Provided new variants of Adam, employing dynamic bounds on learning rates to achieve a gradual transition from Adam to SGD and gave a theoretical proof of convergence.

Communication Lab at Zhejiang University

Research Assistant, Advisor: Prof. Guanding Yu

Hangzhou, China Nov. 2017 - Feb. 2018

Deep Learning for Linear Sum Assignment Problems

- Employed Hungarian method to obtain the datasets of optimal solution for the four-people assignment problem and divided them into training, validation and testing datasets to build a deep learning model.
- Transformed the optimization problem into a classification problem, used MLP and CNN to solve it, and achieved over 90% accuracy in four-people problem.

PUBLICATIONS

(* indicates equal contribution.)

- [1] Yangjun Ruan, **Yuanhao Xiong**, Sashank Reddi, Sanjiv Kumar, and Cho-Jui Hsieh. Learning to learn by zeroth-order oracle. In *Proceedings of the 8th International Conference on Learning Representations* (*ICLR*), 2020.
- [2] Chacha Chen, Hua Wei, Nan Xu, Guanjie Zheng, Ming Yang, **Yuanhao Xiong**, Kai Xu, and Zhenhui Li. Toward a thousand lights: Decentralized deep reinforcement learning for large-scale traffic signal control. In *Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI)*, 2020.
- [3] **Yuanhao Xiong**, Guanjie Zheng, Kai Xu, and Zhenhui Li. Learning traffic signal control from demonstrations. In *Proceedings of the 28th ACM International Conference on Information and Knowledge Management (CIKM*), 2019.
- [4] Guanjie Zheng, **Yuanhao Xiong**, Xinshi Zang, Jie Feng, Hua Wei, Huichu Zhang, Yong Li, Kai Xu, and Zhenhui Li. Learning phase competition for traffic signal control. In *Proceedings of the 28th ACM International Conference on Information and Knowledge Management*, (CIKM), 2019.
- [5] **Yuanhao Xiong***, Liangchen Luo*, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic bound of learning rate. In *Proceedings of the 7th International Conference on Learning Representations* (*ICLR*), 2019.
- [6] Mengyuan Lee, **Yuanhao Xiong**, Guanding Yu, and Geoffrey Ye Li. Deep neural networks for linear sum assignment problems. *IEEE Wireless Communications Letters*, 7(6):962–965, 2018.

SKILLS

Programming Language: Python, C++, Java

Deep Learning Framework: PyTorch, Tensorflow, Keras

AWARDS & HONORS

Outstanding Graduate of Zhejiang Province	Jun. 2019
Outstanding Graduate of Zhejiang University	Jun. 2019
• National Scholarship (Top 1%)	2017 - 2018
• First-Class Scholarship for Outstanding Merits	2015 - 2018
Meritorious Winner in Mathematical Contest in Modeling	Apr. 2017