日期 科目 班级 姓名 学号

2022 年 11 月 8 日 泛函分析 强基数学 002 吴天阳 2204210460

第八次作业

题目 1. (2.3.1) 设 X 为 B 空间, X_0 是 X 的闭子空间. 映射 $\varphi: X \to X/X_0$ 定义为 $\varphi: x \mapsto [x]$, $(\forall x \in X)$,其中 [X] 表示 x 的商类. 证明 φ 是开映射.

证明. 由开映射定理可知,只需证 X/X_0 是完备的. 令 $\{[x_n]\}\subset X/X_0$ 是 Cauchy 列,则存在子列 $\{[x_{n_k}]\}$ 使得 $||[x_{n_{k+1}}]-[x_{n_k}]||=||[x_{n_{k+1}}-x_{n_k}]||\leqslant 1/2^k$,由商空间范数定义可知, $\forall \varepsilon>0$, $\exists y_k\in X_0$ 使得 $||x_{n_{k+1}}-x_{n_k}+y_k||<||[x_{n_{k+1}}-x_{n_k}]||+\varepsilon\leqslant 1/2^k+\varepsilon$,则 $||x_{n_{k+1}}-x_{n_k}+y_k||<1/2^k$,于是 $\sum_{k=1}^{\infty}||x_{n_{k+1}}-x_{n_k}+y_k||<\sum_{k=1}^{\infty}\frac{1}{2^k}=1$ 绝对收敛,由于 X 是完备的,则 $\sum_{k=1}^{\infty}x_{n_{k+1}}-x_{n_k}+y_k$

收敛,令部分和 $\{x_{n_{k+1}}+\sum_{i=1}^n y_i\}$ 收敛到 $x+y,\ x\in X,y\in X_0$,由 φ 的连续性可得 $\lim_{n\to\infty}[x_n]=$

$$\lim_{n \to \infty} \left[x_{n_k} + \sum_{i=1}^{k-1} y_i \right] = [x+y] = [x] \in X/X_0, \text{ 所以 } X/X_0 \text{ 是商空间.}$$

题目 2. (2.3.2) 设 X, Y 是 B 空间,又设方程 Ux = y 对 $\forall y \in Y$ 有解 $x \in X$,其中 $U \in L(X, Y)$,并且 $\exists m > 0$,使得 $||Ux|| \geqslant m||x||$,($\forall x \in X$),求证:U 有连续逆 U^{-1} ,并且 $||U^{-1}|| \leqslant 1/m$.

证明. 由条件可知 U 是满射,假设 $\exists x_1, x_2 \in X$ 使得 $Ux_1 = Ux_2$,则 $U(x_1 - x_2) = \theta \Rightarrow x_1 = x_2$,于是 U 是单射,故 U 是双射.

由逆算子定理可知 $U^{-1}\in L(Y,X)$,由于 $||Ux||\geqslant m||x||$,令 $x=U^{-1}y$ 得 $||y||\geqslant m||U^{-1}y||$,则 $||U^{-1}y||\leqslant ||y||/m$,($\forall y\in Y$),则 $||U^{-1}||\leqslant 1/m$.

题目 3. (2.3.3) 设 H 为 Hilbert 空间, $A \in L(H)$,且 $\exists m > 0$,使得 $|(Ax, x)| \geqslant m||x||^2$,($\forall x \in H$). 求证: $\exists A^{-1} \in L(H)$.

证明. 由逆算子定理知, 只需证 A 为双射. 假设 $\exists y_1, y_2 \in X$ 使得 $Ay_1 = Ay_2$ 则

$$m||y_1 - y_2||^2 \le |(A(y_1 - y_2), y_1 - y_2)| = |(\theta, (y_1 - y_2))| = 0 \Rightarrow y_1 = y_2$$

故 A 是单射.

下证 R(A) = Y,只需证 R(A) 是闭的且 $R(A)^{\perp} = \{\theta\}$. 设 $\{Ax_n\} \subset H$ 收敛于 $y \in H$,由于 $m||x||^2 \leq |(Ax,x)| \leq ||Ax|| \cdot ||x|| \Rightarrow m||x|| \leq ||Ax||$

于是 $||x_{n+p} - x_n|| \le ||Ax_{n+p} - Ax_n|| \to 0$, $(n \to \infty, \forall p > 0)$ 则 $\{x_n\}$ 为 Cauchy 列,由于 H 完备,令其收敛于 x,由 A 的连续性可得 $Ax = y \in R(A)$,所以 A 是闭的.令 $x_0 \in R(A)^{\perp}$ 则 $||x_0||^2 \le ||(Ax_0, x_0)||/m = 0 \Rightarrow x_0 = \theta$ 则 $\mathbb{R}(A)^{\perp} = \{\theta\}$,于是 $\overline{R(A)} = R(A) = Y$. 所以 A 是满射.

综上, A 是双射.

题目 4. (2.3.4) 设 $X, Y \in B^*$ 空间, $D \in X$ 的线性子空间,且 $A: D \to Y$ 是线性映射. 求证:

- (1). 若 A 连续且 D 是闭的,则 A 是闭算子.
- (2). 若 A 连续且是闭算子,则 Y 完备蕴含 D 是闭的.
- (3). 若 A 是单射的闭算子,则 A^{-1} 也是闭算子.
- (4). 若 X 完备,A 是单射的闭算子,R(A) 在 Y 中稠密,且 A^{-1} 连续,那么 R(A) = Y.

证明. (1). $\forall \{x_n\} \subset D$ 满足 $x_n \to x$, $Ax_n \to y$, 由于 D 是闭的可得 $x \in D$, 由 A 连续性可得 $Ax_n \to Ax = y$, 所以 A 是闭算子.

(2). 反设 D 是开的,则 $\exists x_0 \in X \setminus D$, $\{x_n\} \subset D$ 使得 $x_n \to x_0$,由于

$$||Ax_{n+p} - Ax_n|| \le ||A|| \cdot ||x_{n+p} - x_n|| \to 0, (n \to \infty, \forall p > 0)$$

则 $\{Ax_n\}$ 是 Y 中的 Cauchy 列,令 $\lim_{n\to\infty}Ax_n=y$,由于 A 为闭算子,则 $x\in D$,这与 $x\in X\setminus D$ 矛盾. 故 D 是闭的.

- (3). 由于 A 是单射,则 A^{-1} 有意义, $\forall \{y_n\} \subset R(A)$ 满足 $y_n \to y$, $A^{-1}y_n \to x$,由 A 是闭算子,则 $A^{-1}y_n \to A^{-1}y$, $y_n \to Ax$ 可得到 $A^{-1}y \in D$ 且 $A(A^{-1}y) = y = Ax$,于是 $y \in R(A)$ 且 $A^{-1}y \in X$.
- (4). 由 (3) 可知, A^{-1} 是闭算子,由 (2) 可知 X 完备且 A^{-1} 连续,则 R(A) 是闭的,又由于 R(A) 在 Y 中稠密,则 $R(A) = \overline{R(A)} = Y$.

题目 5. (2.3.5) 用等价范数定理证明: $(C[0,1], ||\cdot||_1)$ 不是 B 空间.

证明. 若 $(C[0,1], ||\cdot||_1)$ 是 B 空间,由等价模定理可知 $||\cdot||_1$ 与 $||\cdot||_\infty$ 等价. 令 $x_n=t^{1/n},\ x=1$ 于是

$$||x_n - x||_1 = \int_0^1 |x^{1/n} - 1| \, \mathrm{d}x = \frac{1}{n+1} \to 0, \ (n \to \infty)$$

$$||x_n - x||_{\infty} = \max_{0 \le t \le 1} 1 - t^{1/n} \geqslant 1 - \left(\frac{1}{n^n}\right)^{1/n} = \frac{n-1}{n} \to 1, \ (n \to \infty)$$

于是 $\{x_n\}$ 在 $||\cdot||_1$ 范数下收敛,但在 $||\cdot||_\infty$ 范数下不收敛,则它们不等价,矛盾. 故 $(C[0,1],||\cdot||_1)$ 不是 B 空间.

题目 6. (2.3.6) (Gelfand 引理) 设 X 为 B 空间, $p: X \to \mathbb{R}$ 满足

- (1) $p(x) \geqslant 0$, $(\forall x \in X)$;
- (2) $p(\lambda x) = \lambda p(x), \ (\forall \lambda > 0, \forall x \in X);$
- (3) $p(x_1 + x_2) \leq p(x_1) + p(x_2), \ (\forall x_1, x_2 \in X);$
- (4) $\stackrel{\text{def}}{=} x_n \to x \text{ fd}, \quad \lim_{n \to \infty} p(x_n) \geqslant p(x).$

求证: $\exists M > 0$,使得 $p(x) \leq M||x||$, $\forall x \in X$.

证明. 定义 X 上的范数 $||x||_G = ||x|| + \sup_{|\alpha|=1} p(\alpha x)$, 下面证明 $||\cdot||$ 是 X 上的范数:

正定性: 任取 $x_0 \in X$, 则 $\frac{x_0}{n} \to \theta$, 由假设知 $0 \leqslant p(\theta) \leqslant \underline{\lim}_{n \to \infty} \frac{p(x_0)}{n} = 0$, 于是 $p(\theta) = 0$. 故 $||x||_G = 0 \iff x = \theta$, $||x||_G \geqslant 0$.

齐次性:不妨令 $\mathbb{K} = \mathbb{C}$, $\forall \beta \in \mathbb{K}$, 令 $\beta = |\beta|e^{i\theta}$, 由于

$$\sup_{|\alpha|=1} p(\alpha\beta x) = |\beta| \sup_{|\alpha|=1} p(\alpha e^{i\theta} x) = |\beta| \sup_{|\alpha|=1} p(\alpha x)$$

则 $||\beta x||_G = |\beta| \cdot ||x|| + \sup_{|\alpha|=1} p(\alpha \beta x) = |\beta| \cdot (||x|| + \sup_{|\alpha|=1} p(\alpha x)) = |\beta| \cdot ||x||_G.$

三角不等式:由于 $||\cdot||$ 与 p(x) 分别都满足三角不等式,结合线性性知 $||\cdot||_G$ 满足三角不等式. 下证 $(X,||\cdot||_G)$ 是 B 空间. 令 $\{x_n\}$ 是 X 中的 Cauchy 列,则

$$||x_n - x_m||_G = ||x_n - x_m|| + \sup_{|\alpha|=1} p(\alpha(x_n - x_m)) \to 0, \ (n, m \to \infty)$$

则 $x_n - x_m \to 0$, $(n, m \to \infty)$, 由于 X 是完备的,则 $x_n \to x \in X$,又由于 $p(x) \ge 0$,则 $\sup_{|\alpha|=1} p(\alpha(x_n-x_m)) \to 0$, $(n, m \to \infty)$ 于是 $\forall |\alpha|=1$ 有 $p(\alpha(x_n-x_m)) \to 0$,由于 $x_m \to x$,则由 假设条件 (4) 可知

$$p(\alpha(x_n - x)) \leqslant \underline{\lim}_{m \to \infty} p(\alpha(x_n - x_m)) \to 0, \ (n \to \infty, \forall |\alpha| = 1)$$

于是 $\sup p(\alpha(x_n - x)) \to 0, (n \to \infty).$

综上, $||x_n - x||_G \to 0$, 则 $(X, ||\cdot||_G)$ 是 B 空间.

由于 $||\cdot||_G \geqslant ||\cdot||$, 由等价模定理可知, $||\cdot||_G \leqslant ||\cdot||$, 于是 $\exists M > 0$ 使得

$$p(x)\leqslant \sup_{|\alpha|=1}p(\alpha x)\leqslant ||x||_G\leqslant M\cdot ||x||$$

题目 7. (2.3.7) 设 X 和 Y 是 B 空间, $A_n \in L(X,Y)$, $(n=1,2,\cdots)$,且 $\forall x \in X$, $\{A_nx\}$ 在 Y 中收敛. 求证: $\exists A \in L(X,Y)$ 使得

$$A_n x \to A x$$
, $(\forall x \in X)$, $\exists A : ||A|| \leq \underline{\lim}_{n \to \infty} ||A_n||$.

证明. $\forall x \in X$,令 $Ax = \lim_{n \to \infty} A_n x$,由于 A_n 为线性泛函,则 A 也具有线性性,由于 $\forall x \in X$ 有 $A_n x$ 收敛, $\sup_{n \geqslant 1} ||A_n x|| < \infty$,由共鸣定理知, $\exists M > 0$ 使得 $||A_n|| \leqslant M$. 于是

$$||Ax|| = \lim_{n \to \infty} ||A_nx|| = \underline{\lim}_{n \to \infty} ||A_nx|| \leqslant \underline{\lim}_{n \to \infty} ||A_n|| \cdot ||x|| \leqslant M||x||$$

题目 8. (2.3.8) 设 1 ,并且 <math>1/p + 1/q = 1,若序列 $\{\alpha_k\}$ 使得对 $\forall x \in \{\xi_k\} \in l^p$ 保证 $\sum_{k=1}^{\infty} \alpha_k \xi_k$ 收敛,求证: $\{\alpha_k\} \in l^q$. 又若 $f: x \mapsto \sum_{k=1}^{\infty} \alpha_k \xi_k$,求证:f 作为 l^p 上的线性泛函,有 $||f|| = ||\alpha||_q$.

3

证明. 令 $f_n(x) = \sum_{1 \leq k \leq n} \alpha_k \xi_k$, $(\forall x = \{\xi_k\} \in l^p)$, 则 $f_n(x)$ 连续, $f_n \in (l^p)^*$,由于 $\{f_n x\}$ 收敛到 $\sum_{k \geq 1} \alpha_k \xi_k =: fx$,由题目 2.3.7 可知, $f \in (l^p)^*$,令

$$x_0^n = \{\xi_k^n\}, \quad \xi_k^n = \begin{cases} |\alpha_k| \mathrm{e}^{-\mathrm{i}\theta_k}, & k \leqslant n, \ (\theta_k = \arg \alpha_k) \\ 0, & k > n. \end{cases}$$

由于 x_0^n 只有有限项不为 0,则 $x_0^n \in l^p$,并且 $1/p + 1/q = 1 \Rightarrow (q-1)p = q$,可得

$$\begin{split} f(x_0^n) &= \sum_{1 \leqslant k \leqslant n} |\alpha_k|^{q-1} \mathrm{e}^{-\mathrm{i}\theta_k} |\alpha_k| \mathrm{e}^{\mathrm{i}\theta_k} = \sum_{1 \leqslant k \leqslant n} |\alpha_k|^q \\ &\leqslant |f(x_0^n)| \leqslant ||f|| \cdot ||x_0^n||_p = ||f|| \left(\sum_{1 \leqslant k \leqslant n} |\alpha_k|^{(q-1)p}\right)^{\frac{1}{p}} = ||f|| \left(\sum_{1 \leqslant k \leqslant n} |\alpha_k|^q\right)^{\frac{1}{p}} \end{split}$$

则
$$\left(\sum_{1\leqslant k\leqslant n}|\alpha_k|^q\right)^{1-\frac{1}{p}}=\left(\sum_{1\leqslant k\leqslant n}|\alpha_k|^q\right)^{\frac{1}{q}}\leqslant ||f||.$$
 令 $n\to\infty$,可得 $\alpha\in l^q$ 且 $||\alpha||_q\leqslant ||f||.$ 由 Holder 不等式可得 $|f(x)|=|(\alpha,x)|\leqslant ||\alpha||_q||x||_p$,于是 $||f||\leqslant ||\alpha||_q.$ 综上, $||f||=||\alpha||_q.$

题目 9. (2.3.9) 若序列 $\{\alpha_k\}$ 使得 $\forall x = \{\xi_k\} \in l^1$,保证 $\sum_{k \geq 1} \alpha_k \xi_k$ 收敛,求证: $\{\alpha_k\} \in l^\infty$.若 $f: x \mapsto \sum_{k \geq 1} \alpha_k \xi_k$ 作为 l^1 上的线性泛函,求证: $||f|| = ||\alpha||_\infty$.

证明. 令 $f_n = \sum_{1 \leqslant k \leqslant n} \alpha_k \xi_k$, $(\forall x \in \{\xi_k\} \in l^1)$ 则 $f_n \in (l^1)^*$,由题目 2.3.7 可知, $f_n \to f = \sum_{k \geqslant 1} \alpha_k \xi_k$ 且 $f \in (l^1)^*$,令 $e_k = \{\underbrace{0,0,\cdots,0,1}_{k \uparrow},0,\cdots\}$,则 $|\alpha_k| = |f(e_k)| \leqslant ||f|| \cdot ||e_k||_1 = ||f||$,则 $|\alpha_k|$ 有界,故 $\alpha \in l^\infty$ 且 $||\alpha||_\infty \leqslant ||f||$.

又由于 $\forall n \geqslant 1$, $||f_n(x)|| \leqslant \sum_{1 \leqslant k \leqslant n} |\alpha_k \cdot |x_k| \leqslant \sup_{k \geqslant 1} |\alpha_k| \sum_{1 \leqslant k \leqslant n} |x_k| \leqslant ||\alpha||_{\infty} ||x||_{1}$, 则 $|f(x)| = \lim_{n \to \infty} |f_n(x)| \leqslant ||\alpha||_{\infty} ||x||_{1}$, 于是 $||f|| \leqslant ||\alpha||_{\infty}$.

题目 10. (2.3.10) 用 Gelfand 引理(习题 2.3.6)证明共鸣定理.

证明. 令
$$p(x) = \sup_{A \in W} ||Ax||$$
,则 $p(x) \geqslant 0$, $\forall \lambda > 0$,有 $p(\lambda x) = \sup_{A \in W} ||A\lambda x|| = \lambda \sup_{A \in W} ||Ax|| = \lambda p(x)$.
$$p(x_1 + x_2) = \sup_{A \in W} ||A(x_1 + x_2)|| = \sup_{A \in W} ||Ax_1 + Ax_2|| \leqslant \sup_{A \in W} ||Ax_1|| + ||Ax_2|| = p(x_1) + p(x_2)$$
 当 $x_n \to x$ 时,由于 $\sup_{A \in W} ||Ax_n|| \geqslant ||Ax_n||$,则 $\lim_{n \to \infty} \sup_{A \in W} ||Ax_n|| \geqslant \lim_{n \to \infty} ||Ax_n||$,于是
$$\lim_{n \to \infty} p(x) = \lim_{n \to \infty} \sup_{A \in W} ||Ax_n|| \geqslant \sup_{A \in W} \lim_{n \to \infty} ||Ax_n|| = \sup_{A \in W} ||Ax|| = p(x)$$

综上 p(x) 满足 Gelfand 引理四个条件,于是 $\exists M>0$,使得 $||Ax||\leqslant p(x)\leqslant M||x||,\ \forall x\in X$,于是 $||A||\leqslant M,\ (\forall A\in W)$.

题目 11. (2.3.11) 设 X, Y 是 B 空间, $A \in L(X, Y)$ 是满射. 求证:若在 Y 中 $y_n \to y_0$,则 $\exists C > 0$ 与 $x_n \to x_0$,使得 $Ax_n = y_n$,且 $||x_n|| \le C||y_n||$.

证明. **分析**: 由于 A 不一定为单射,但是商空间 X/N(A) 中等价映射是单射,因为如果 Ax = Ay,则有 $x,y \in [x]$,因此商空间的等价算子是双射. 从而得到 ||x|| 大小可被 ||Ax|| 控制. 再将 y_n 做平移为 $y_n - y_0$ 收敛到 θ ,利用开映射定理得到 $||x_n||$ 可被 $||y_n||$, $||y_0||$ 控制,由于 $y_n \to y_0$ 所以 $||y_0||$ 大小可被 $||y_n||$ 控制,于是 $||x_n||$ 可被 $||y_n||$ 控制.

下面进行证明: 令 $N(A) = \{x \in X : A(x) = \theta\}$,由于 A 有界,则 N(A) 是 X 的闭子空间,于 是商空间 X/N(A) 关于范数 $||[x]|| = \inf_{y \in [x]} ||y||$ 构成 B 空间.令 $T: X/N(A) \to Y$ 为 T[x] = Ax,由于 $\forall x,y \in [x]$ 有 $x-y \in N(A)$,于是 $A(x-y) = 0 \Rightarrow Ax = Ay \Rightarrow T[x] = T[y]$,所以 T 是一个映射.下面证明 T 是双射:

单射: $\forall [x], [y] \in X/N(A)$ 且 T[x] = T[y], 则 $Ax = Ay \Rightarrow A(x-y) = \theta \Rightarrow [x-y] = [\theta] \Rightarrow [x] = [y]$. 满射: 由于 A 是满射,则 $\forall y \in Y$, $\exists x \in X$ 使得 Ax = y,则 T[x] = y.

综上 T 是双射,且 $||T[x]|| = ||Ax|| \leqslant ||A|| \cdot ||x||$,则 T 有界,由逆算子定理可知 T^{-1} 有界.则 $\forall y \in Y$, $\exists [x] \in X/N(A)$,使得 $T[x] = y \Rightarrow ||[x]|| = ||T^{-1}y|| \leqslant ||T^{-1}|| \cdot ||y||$,由于 $||[x_n]|| = \inf_{z \in [x]} ||z||$,则 $\exists x_0 \in [x]$ 使得 $||x_0|| \leqslant 2||[x]|| \leqslant 2||T^{-1}|| \cdot ||y||$ 且 $Ax_0 = y$.

若 $y_n = \theta$ 时, 取 $x_n = \theta$, 所以不妨令下述 $y_n \neq \theta$

令 $z_n = y_n - y_0$,则 $z_n \to \theta$,由开映射定理 $\exists c > 0$,使得 $B_Y(\theta,c) \subset AB_X(\theta,1)$,则 $B_Y(\theta,2||z_n||) \subset AB_X(\theta,\frac{2||z_n||}{c})$,则 $\exists x_n' \in X$ 且 $||x_n'|| < \frac{2||z_n||}{c}$ 使得 $z_n = Ax_n'$,取 $x_0 \in X$ 使得 $Ax_0 = y_0$ 且 $||x_0|| \leq 2||T^{-1}|| \cdot ||y_0||$,令 $x_n = x_n' + x_0$,则 $Ax_n = Ax_n' + Ax_0 = y_n - y_0 + y_0 = y_n$,且

$$||x_n|| = ||x_n' + x_0|| \leqslant \frac{2||y_n - y_0||}{c} + 2||T^{-1}|| \cdot ||y_0|| \leqslant \frac{2}{c}||y_n|| + 2(||T^{-1}|| + 1/c)||y_0||$$

由于 $y_n \to y_0$, 则 $\exists N \in \mathbb{N}$ 使得 $\forall n \geqslant N$ 有

$$||y_0|| - ||y_n|| \le ||y_0 - y_n|| \le \frac{1}{2} ||y_0|| \Rightarrow ||y_0|| \le 2||y_n||$$

$$||x_n|| \le \left[\frac{2}{c} + 2M(||T^{-1}|| + 1/c)\right] ||y_n||$$

题目 12. (2.3.12) 设 X, Y 是 B 空间,T 是闭线性算子, $D(T) \in X$, $R(T) \in Y$, $N(T) := \{x \in X : Tx = \theta\}$.

- (1) 求证: N(T) 是 X 的闭线性子空间.
- (2) 求证: $N(T) = \{\theta\}$, R(T) 在 Y 中闭的充要条件为 $\exists \alpha > 0$, 使得

$$||x|| \le ||\alpha||Tx||, \ (\forall x \in D(T)).$$

(3) 令 $d(x, N(T)) := \inf_{z \in N(T)} ||z - x||$. 求证: R(T) 在 Y 中闭的充要条件为 $\exists \alpha > 0$ 使得 $d(x, N(T)) \leqslant \alpha ||Tx||, \ (\forall x \in D(T)).$

证明. (1). $\forall \{x_n\} \subset N(T)$ 收敛于 x, 则 $Tx_n = \theta$, 于是 $Tx_n \to y = \theta$, 由于 T 是闭的,则 $x \in D(T)$ 且 $Tx = y = \theta$,则 $x \in N(T)$. 故 N(T) 是闭线性子空间.

(2). 必要性:由于 $N(T) = \{\theta\}$,则 T 为单射.由题目 2.3.4(3)可知 T^{-1} 是闭算子,由于 $D(T^{-1}) = R(T)$ 是闭的,由闭算子定理得 T^{-1} 有界, $\forall x \in D(T)$, $\exists y \in R(T)$ 使得 $x = T^{-1}y$,则

$$||x|| = ||T^{-1}y|| \le ||T^{-1}|| \cdot ||y|| = ||T^{-1}|| \cdot ||Tx||, \ (\forall x \in D(T)).$$

充分性: 若 $Tx_1 = Tx_2$, $(x_1, x_2 \in X)$ 则 $||x_1 - x_2|| \le \alpha ||Tx_1 - Tx_2|| = 0 \Rightarrow x_1 = x_2$, 则 T 是单射, 则 $N(T) = \{\theta\}$. 令 $\{Tx_n\}$ 为 R(T) 中的收敛列, 则 $||x_n - x_m|| \le \alpha ||Tx_n - Tx_m|| \to 0$, $(n, m \to \infty)$, 则 $\{x_n\}$ 为 X 中的 Cauchy 列,由于 X 是完备的,则 $x_n \to x \in X$,则 $Tx_n \to Tx \in R(T)$,故 R(T) 是闭的.

(3). 令 $A: X/N(T) \to Y$, A[x] = Tx,则 d(x, N(T)) = ||[x]||,且 A 为单射,因为 $A[x] = A[y] \Rightarrow Tx = Ty \Rightarrow T(x-y) = \theta \Rightarrow [x-y] = [\theta] \Rightarrow [x] = [y]$,由 (2) 可知,只需证 A 是闭算子。设 $[x_n] \to [x]$, $A[x_n] \to y$,由于 $||[x]|| = \inf_{z \in [x]} ||z||$ 则 $\exists x_n \in X$ 使得 $||x_n - x|| \leqslant 2||[x_n - x]|| \to 0$ 且 $Tx_n = A[x_n] \to y$,由于 T 是闭算子,则 $x \in D(T)$,y = Tx,故 A 是闭算子.

题目 13. (2.3.13) 设 a(x,y) 是 Hilbert 空间 H 上的一个共轭双线性泛函,满足:

- (1) $\exists M > 0$, 使得 $|a(x,y)| \leq M||x|| \cdot ||y||$, $(\forall x, y \in H)$;
- (2) $\exists \delta > 0$,使得 $|a(x,y)| \ge \delta ||x||^2$, $(\forall x \in H)$.

求证: $\forall f \in H^*$, $\exists ! y_f \in H$, 使得 $a(x, y_f) = f(x)$, $(\forall x \in H)$, 而且 y_f 连续地依赖于 f.

证明. 由 Riesz 表示定理可知, $\exists ! z_f \in H$ 使得 $f(x) = (x, z_f)$,($\forall x \in H$),由 Lax-Milgram 定理知 $\exists A \in L(x)$ 且 $A^{-1} \in L(X)$ 使得 a(x,y) = (x,Ay),令 $y_f = A^{-1}z_f$,则

$$f(x) = (x, z_f) = (x, Ay_f) = a(x, y_f)$$

且 y_f 连续地依赖于 f.