Lecture 03

Heteroskedasticity

- When errors are not independently and identically distributed (iid).
- In other words, $u_i \sim (0, \sigma_i)$ (errors have different variances).

How might heteroskedasticity arise?

- 1. Learning:
 - An adaptive behavior might lead to a decrease in variance over time, as more information is acquired.
- 2. Scale variables:
 - o income, wealth, sales etc.
 - \circ For instance, in a simple model of consumption (c_i) as a (linear) function of income (y_i):
 - lacktriangle That is: $c_i = eta_1 + eta_2 \cdot y_i + u_i$;
 - The variance of consumption across the lower levels of income are expected to be smaller than the variance for the higher levels.
- 3. Better data collection techniques:
 - An example: the data for US. macroeconomic variable collected before and after the WWII:
 - The employment of better collection techniques reduced the variance of the data.
- 4. Outliers:
 - o The estimation of parameters can be stated as a minimization problem: $min_{_{\! g}} \sum \hat{u}_i^2$;
 - Thus, the estimation can be heavily influenced by outliers;
 - An alternative might be the use of mean absolute deviation (MAD) estimators: $\sum |\hat{u}_i|$.
- 5. Model incorrectly specified:
 - Suppose that an important variable is left out of the model:
 - In what should be $y_i = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + u_i$, the x_{3i} term is left out, being understood as part of the error;
 - lacksquare The model would be specified as $y_i=eta_1+eta_2x_{2i}+u_i'$:
 - For instance, if x_{3i} is a scale variable, it will pass on that behavior to the errors.
- 6. Incorrect data transformations:
 - \circ Applying log or squaring erroneously, for example.
- 7. Incorrect functional form:
 - Trying to fit a blatant non-linear relationship through a linear model;
 - For example, when trying to fit a quadratic relationship with a linear equation,the errors will tend to increase over time.

Suppose we have heteroskedasticity, what if we do OLS anyway?

• If the data points, although having different variances, are centered around the right value, OLS is still unbiased and consistent.

- Unbiasedness: for a given N (sample size), the distribution of the estimated parameter $(\hat{\beta})$ is centered on the true value (β) ;
- \circ Consistency: as N approaches infinity, the estimated parameter converges to the true value:
 - $lacksquare \mathrm{plim} \hat{eta} = eta$ (for more on probability limit, see <code>this</code>);
 - Example: $E(\hat{\beta}) = \beta + \frac{1}{N}$:
 - Biased for small values of N;
 - lacksquare Consistent as $N o \infty$.
- Unbiasedness implies consistency, but the other way around is not necessarily true.
- $\hat{\beta}_{OLS}$ is not efficient, *i. e.*, $\mathrm{Var}(\hat{\beta})$ is biased and inefficient:

$$\circ \ \operatorname{Var}(\hat{eta}_{OLS}) = rac{\sigma^2}{\sum (x_i - ar{x})^2}$$
 ;

- \circ However, when there is heteroskedasticity, $\mathrm{Var}(\hat{eta}) = rac{\sigma_i^2 \sum x_i^2}{ig(\sum x_i^2ig)^2}$;
- Then, using OLS will produce a wrong value.
- Since $\mathrm{Var}(\hat{eta})$ is biased, then the statistic $t=rac{\hat{eta}-eta^{H_0}}{\sqrt{\mathrm{Var}(\hat{eta})}}$ is wrong.

Testing for heteroskedasticity

- Only suggestive, but helpful:
 - Graph \hat{e}_i^2 against the variable suspected of causing the problem;
 - o If there is no heteroskedasticity, the graph will be fairly constant;
 - Otherwise, the graph will be somehow sloped.
- 1. La Grange Multiplier Tests for Heteroskedasticity (LM tests):
 - Fairly robust: performs pretty well in the presence of specification errors.
 - For $y_i = \beta_1 + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + u_i$, assuming $Var(u_i) = \sigma_i^2$ (there is heteroskedasticity);
 - \circ With N observations:
 - How many parameters do we need to estimate? k;
 - How many σ_i^2 's are there to estimate? N;
 - Total number of estimations: N + k \Rightarrow <u>unfeasible</u> with only N observations.
 - $\circ~$ Thus, suppose that the variances can be modeled as $\sigma_i^2=lpha x_i^2$ (lpha is a parameter):
 - lacktriangle There is only one more parameter to estimate, that is, the number of estimations is then k+1;
 - This model captures well heteroskedasticity stemmed from scale variables;
 - Alternative models for the variance:
 - 1. Breusch-Pagan: $\sigma_i^2 = lpha_1 + lpha_2 z_{2i} + \ldots + lpha_p z_{pi}$;
 - 2. Glejser: $\sigma_i = \alpha_1 + \alpha_2 z_{2i} + \ldots + \alpha_p z_{pi}$;
 - 3. Park: $\ln(\sigma_i^2) = lpha_1 + lpha_2 z_{2i} + \ldots + lpha_p z_{pi}$.
 - lacktriangle The z variables can be the x's (or some of them) or not;
 - There will be a k number of β 's and p different α 's to estimate: the total amount of estimations will be k+p < N .
 - How many restrictions are needed to get the constant variance?

- $lacksquare For <math>H_0: lpha_2=lpha_3=\ldots=lpha_p=0 \quad \Rightarrow \quad (p-1)$ restrictions;
- Perform a χ^2 test with p-1 restrictions.
- o Breusch-Pagan model: $\sigma_i^2 = lpha_1 + lpha_2 z_{2i} + \ldots + lpha_p z_{pi}$:
 - $\sigma_i^2 = f(z)$;
 - Suitable for when the variances increase (or decrease) linearly;
 - σ_i^2 is estimated by \hat{u}_i^2 .
- \circ Glejser model : $\sigma_i = lpha_1 + lpha_2 z_{2i} + \ldots + lpha_p z_{pi}$:
 - $\sigma_i^2 = f(z^2)$;
 - Appropriate for when the variances increase (or decrease) at a seemingly quadratic pace;
 - σ_i is estimated by $|\hat{u}_i|$.
- \circ Park model: $\ln(\sigma_i^2) = lpha_1 + lpha_2 z_{2i} + \ldots + lpha_p z_{pi}$:
 - $lacksquare \sigma_i^2 = \exp\{lpha_1 + lpha_2 z_{2i} + \ldots lpha_p z_{pi}\}$;
 - Fit for when the variances increase (or decrease) in a approximately exponential manner;
 - $lacksquare \ln(\sigma_i^2)$ is estimated by $\ln(\hat{u}_i^2)$.
- Steps for LM Test (Case 1 Breusch-Pagan model):
 - 1. Regress y on x_1, \ldots, x_k , get $\hat{\beta}_{OLS}$;
 - 2. Compute $\hat{u}_i = y \hat{eta}_1 \hat{eta}_2 x_{2i} \ldots \hat{eta}_k x_{ki}$;
 - 3. Square \hat{u}_i , get \hat{u}_i^2 ;
 - 4. Regress \hat{u}_i^2 on z_{1i},\ldots,z_{pi} ;
 - 5. Compute the statistic $LM = N \cdot R^2$, (where R^2 is the <u>coefficient of determination</u> for the auxiliary regression);
 - 6. ${
 m LM} \sim \chi^2(p-1)$: (perform a χ^2 test with p-1 degrees of freedom);
 - 7. Accept or reject $H_0: \alpha_2 = \alpha_3 = \ldots = \alpha_p$ (variance is constant).