

Muscle MR spectroscopy in neuromuscular disease

Hermien Kan, PhD C.J. Gorter Center for High Field MRI

Background neuromuscular disease

- Clinical symptoms: muscle weakness, stiffness or hypotonia, contractures
- Many different forms: episodic, slowly progressive, fast progressive
- Differential involvement pattern
- Individually rare, common as a group
- Hardly any approved drugs
- Many clinical trials in development

Skeletal muscle damage

- Healthy muscle
- Muscle damage
- Edema/inflammation

Disease cascade

There is more to muscle than meets the eye

- 1. Is metabolism different?
- 2. Is normal appearing muscle tissue really normal?
- 3. And what happens during exercise?

Lower abundant metabolite MRS

- Creatine, intra and extra myocellular lipids, carnitine, acetylcarnitine, carnosine
- Challenging in fat replaced muscle
- Conflicting results on decreases in TMA and creatine age effect?
- Carnosine to asses intracellular pH

Lott et al Neuromusc Disord 2014
Hsieh et al J Comput Assist Tomogr. 2009
Hsieh et al J Pediatr 2007
Tarnopolsky, Neurology 2004
Reyngoudt et al, NMR in Biomed 2017

³¹P in skeletal muscle energy metabolism

Membrane transporters and pumps for sodium, potassium, glutamate, calcium, etc

Metabolites

PCr – phosphocreatine – energy storage

Pi – inorganic phosphate - pH

PME – phosphomonoesters - glycolysis

PDE – phosphodiesters

ATP – adenosine triphosphate – mg²⁺

ADP – adenosine diphosphate

pH - tissue pH

BUT: Sensitivity much lower compared to proton

³¹P MRS in NMD

- Applied often, unspecific findings of disturbed metabolism:
 - pH increase: BMD, DMD, myopathies, GSDIII, not in myotonic dystrophy
 - PCr decrease: BMD, DMD, myotonic dystrophy, inflammatory myopathies
 - Pi increase: DMD, BMD, dysferlinopathy, not in FSHD
 - PDE increase: BMD, DMD, dysferlinopathy
 - PME increase: GSDIII

Relatively recent work:

- Banerjee et al, Magn Res Med 2010: DMD
- Tosetti et al, Muscle & Nerve 2011: DMD
- Wary et al, NMR in Biomed 2015: DMD
- Hogrel et al, Neurology 2016: DMD
- Reyngoudt et al, NMR in Biomed 2017: DMD
- Hooijmans et al, NMR in Biomed 2016: DMD
- Wokke et al, NMR in Biomed 2014: BMD

- Torriani et al, Skelet Radiology 2011: BMD
- Kan et al, NMR in Biomed 2010: FSHD
- Janssen et al, PLosOne 2014: FSHD
- Wary et al, Neuromusc Disord 2010: GSD III
- Azzabou et al, poster 50: dysferlinopathy

Alkaline Pi signal in DMD

- 31P MRS in the forearms of DMD boys
- Presence of an alkaline Pi signal: extracellular Pi?
- Increased alkaline Pi signal in non-ambulant boys

Combination of ¹H MRS and ³¹P MRS

¹H NMR of carnosine combined with ³¹P NMRS to better characterize skeletal muscle pH dysregulation in Duchenne muscular dystrophy

¹H NMRS-based pH determination showed:

- A majority of dystrophic muscles displaying an alkaline pH in agreement with the ³¹P NMRS pH → dystrophic myocytes (C)
- In some cases, dystrophic muscles with a neutral intracellular pH indicating that the alkaline ³⁴P NMRS pH can arise from an expanded interstitial volume fraction, possibly related to fibrosis (B)
- As expected, an alkaline intracellular pH is never associated with a neutral ³¹P NMRS pH
- Excellent agreement with ³¹P NMRS pH in control subjects (A)

CONCLUSION:

Because ¹H NMRS-derived pH based on carnosine probes the functional impact of lack of dystrophin on DMD myocyte homeostasis, it might be a potential biomarker of successful therapeutic expression of dystrophin that would be able to normalize sarcolemma permeability

Reyngoudt et al, NMR in Biomed 2017

Slide courtesy of Harmen Reyngoudt, IoM Paris

Changes in normal appearing muscle tissue

- Surface coil: sensitivity depends on the shape of the coil and drops further from the coil
- Mixture of tissue types and inter-individual variability
- Group muscles based on their fat percentage

Kan et al, NMR in Biomed, 2010

FSHD

- Increases in tissue pH only in fat replaced muscles¹
- PCr decreases more in fat replaced muscles²

¹Kan et al, NMR in Biomed, 2010 ²Janssen et al, PLOS One, 2014

Often changes stronger in fat replaced muscles

- BMD and DMD: Higher PDE^{1,2},
 especially in muscles which are
 replaced by fat
- Dysferlinopathy:
 - Higher PDE/ATP and Pi/PCr
 - Splitting of Pi
 - Higher alkaline Pi peak in more fat replaced muscle

¹Tosetti et al, Muscle and Nerve 2011 ²Wokke et al, NMR in Biomed, 2014 Hooijmans et al, NMR in Biomed 2017

Phosphorous changes are slower than fat

- No changes in PCr or PDE over 1 year
- PDE does not change over 2 years in fat replaced muscle

Hooijmans et al, PLosOne 2017

Dynamic measurements

- Many studies in last century in different NMDs
- Usually no reduction in PCr recovery rate
- Differences in acidification or other characteristics
- Important where to assess the muscle

Kemp et al, Journal of Neur Sci 1993 Lodi et al, Brain 1999 Lodi et al, neuromuscular disord 1997 Tosetti et al, Muscle & Nerve 2011

GSD III

- Slower PCr recovery: partly due to impaired perfusion
- Higher PME

Wary et al, Neuromuscular disorders 2010

Summary

- Energy metabolism is different in several NMDs
- MRS can give information beyond structure
 - Possible marker for muscle tissue changes?
 - Changes are slower compared to fat
- Measurements during exercise relatively scarce

Acknowledgements

Radiology

Melissa Hooijmans

Jedrek Burakiewicz

Celine Baligand

Monique Reijnierse

Andrew Webb

Maarten Versluis

Neurology

Beatrijs Wokke

Erik Niks

Janneke van den Bergen

Zaida Koeks

Jan Verschuuren

IoM Paris

Harmen Reyngoudt

