

# basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

# SENIOR CERTIFICATE EXAMINATIONS/ SENIORSERTIFIKAAT-EKSAMEN NATIONAL SENIOR CERTIFICATE EXAMINATIONS/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

#### MATHEMATICS P1/ WISKUNDE V1

#### MARKING GUIDELINES/NASIENRIGLYNE

2019

MARKS: 150 *PUNTE: 150* 

These marking guidelines consist of 15 pages. *Hierdie nasienriglyne bestaan uit 15 bladsye.* 

#### **NOTE:**

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent Accuracy applies in all aspects of the marking memorandum.

#### LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die memorandum van toepassing.

| 1.1.1 | $x^2 - 5x - 6 = 0$                                                                            |                                                    |     |
|-------|-----------------------------------------------------------------------------------------------|----------------------------------------------------|-----|
|       | (x-6)(x+1) = 0                                                                                | / C                                                |     |
|       | x = 6  or  x = -1                                                                             | ✓ factors ✓ both answers                           |     |
|       |                                                                                               | both answers                                       | (2) |
|       | OR/OF                                                                                         | OR/OF                                              | (-) |
|       | $x^{2} - 5x - 6 = 0$ $x = \frac{5 \pm \sqrt{(-5)^{2} - 4(1)(-6)}}{2(1)}$                      | ✓ correct subst into correct formula               |     |
|       | $x = \frac{5 \pm \sqrt{49}}{2}$                                                               |                                                    |     |
|       | x = 6  or  x = -1                                                                             | ✓ both answers                                     | (2) |
| 1.1.2 | $(3x-1)(x-4) = 16$ $3x^2 - 13x - 12 = 0$                                                      | ✓ standard form                                    |     |
|       | $x = \frac{13 \pm \sqrt{(-13)^2 - 4(3)(-12)}}{2(3)}$                                          | ✓ correct subst into correct formula               |     |
|       | $x = \frac{13 \pm \sqrt{313}}{6}$                                                             |                                                    |     |
|       | x = 5.12 or $x = -0.78$                                                                       |                                                    |     |
|       |                                                                                               | ✓ ✓ answers                                        |     |
|       | OR/OF                                                                                         | OR/OF                                              | (4) |
|       | $3x^2 - 13x - 12 = 0$                                                                         | ✓ standard form                                    |     |
|       | $x^2 - \frac{13}{3}x = 4$                                                                     |                                                    |     |
|       | $x^{2} - \frac{13}{3}x + \left(-\frac{13}{6}\right)^{2} = 4 + \left(-\frac{13}{6}\right)^{2}$ | ✓ adding $\left(-\frac{13}{6}\right)^2$ both sides |     |
|       | $\left(x - \frac{13}{6}\right)^2 = \frac{313}{36}$                                            |                                                    |     |
|       | $x = \frac{13 \pm \sqrt{313}}{6}$                                                             |                                                    |     |
|       | x = 5.12 or $x = -0.78$                                                                       | ✓ ✓ answers                                        | (4) |

| 1 1 2 |                                                                                                    |                                               |
|-------|----------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 1.1.3 | $x(4-x) \ge 0$                                                                                     | ✓ factorisation                               |
|       | $-x(x-4) \ge 0 \qquad \text{or} \qquad -x(x-4) \ge 0$                                              |                                               |
|       | $x(x-4) \le 0$                                                                                     |                                               |
|       |                                                                                                    |                                               |
|       | 0 4                                                                                                |                                               |
|       | $0 \le x \le 4$ or $x \in [0; 4]$                                                                  | $\checkmark \checkmark 0 \le x \le 4 \tag{3}$ |
| 1.1.4 | $\frac{5^{2x} - 1}{5^x + 1} = 4$                                                                   |                                               |
|       |                                                                                                    | ✓ factors in numerator                        |
|       | $\frac{(5^x + 1)(5^x - 1)}{5^x + 1} = 4$                                                           |                                               |
|       | $5^x - 1 = 4$ $5^x = 5$                                                                            | $\checkmark 5^x - 1 = 4$                      |
|       | x = 1                                                                                              | ✓ answer (3)                                  |
|       | OR/OF                                                                                              | OR/OF                                         |
|       | $\frac{5^{2x} - 1}{5^x + 1} = 4$                                                                   |                                               |
|       |                                                                                                    |                                               |
|       | $5^{2x} - 1 = 4.5^x + 4$                                                                           |                                               |
|       | $5^{2x} - 4.5^x - 5 = 0$                                                                           | ✓ standard form                               |
|       | $(5^x - 5)(5^x + 1) = 0$                                                                           | ✓ factors                                     |
|       | $5^x = 5  \text{or}  5^x \neq -1$                                                                  | ✓ answer                                      |
|       | x = 1                                                                                              | (3)                                           |
| 1.2   | $x = 2 - 3y \dots (1)$                                                                             | $\checkmark x = 2 - 3y$                       |
|       | $x^2 + 4xy - 5 = 0 		(2)$                                                                          |                                               |
|       | Substitute (1) in (2):<br>$(2-3y)^2 + 4y(2-3y) - 5 = 0$                                            |                                               |
|       | $ \begin{vmatrix} (2-3y) + 4y(2-3y) - 3 = 0 \\ 4 - 12y + 9y^2 + 8y - 12y^2 - 5 = 0 \end{vmatrix} $ | ✓ correct subst into correct formula          |
|       | $-3y^2 - 4y - 1 = 0$                                                                               | 101111414                                     |
|       | $-3y^{2}-4y-1=0$ $3y^{2}+4y+1=0$                                                                   | oith on atom doud for                         |
|       | (3y+1)(y+1) = 0                                                                                    | ✓ either standard form                        |
|       | $y = -\frac{1}{3}$ or $y = -1$                                                                     | ✓ y – values                                  |
|       | x = 3 or $x = 5$                                                                                   | $\checkmark x$ – values                       |
|       |                                                                                                    | (5)                                           |
|       | OR/OF                                                                                              | OR/OF                                         |
|       |                                                                                                    |                                               |

|     | $y = \frac{2}{3} - \frac{x}{3} \dots (1)$                                                                 | $\checkmark y = \frac{2}{3} - \frac{x}{3}$                                                            |
|-----|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|     | $x^2 + 4xy - 5 = 0 		(2)$                                                                                 |                                                                                                       |
|     | Substitute (1) in (2):                                                                                    |                                                                                                       |
|     | $x^2 + 4x\left(\frac{2}{3} - \frac{x}{3}\right) - 5 = 0$                                                  | ✓ correct subst into correct formula                                                                  |
|     | $3x^2 + 8x - 4x^2 - 15 = 0$                                                                               |                                                                                                       |
|     | $-x^2 + 8x - 15 = 0$                                                                                      |                                                                                                       |
|     | $x^2 - 8x + 15 = 0$                                                                                       | ✓ either standard form                                                                                |
|     | (x-5)(x-3) = 0                                                                                            |                                                                                                       |
|     | x = 3 or $x = 5$                                                                                          | $\checkmark x$ – values                                                                               |
|     | $y = -\frac{1}{3}$ or $y = -1$                                                                            | $\checkmark y$ – values (5)                                                                           |
| 1.3 | $ab = 2\sqrt{10}$                                                                                         |                                                                                                       |
|     | $bc = 3\sqrt{2}$                                                                                          |                                                                                                       |
|     | _                                                                                                         | $\checkmark$ volume = $abc$                                                                           |
|     | $ac = 6\sqrt{5}$                                                                                          | $\checkmark \text{ of this } = abc$ $\checkmark \checkmark ab.bc.ac = 2\sqrt{10}.6\sqrt{5}.3\sqrt{2}$ |
|     | $ab.bc.ac = 2\sqrt{10}.6\sqrt{5}.3\sqrt{2}$                                                               |                                                                                                       |
|     | $(abc)^2 = 36\sqrt{100}$                                                                                  | $\checkmark (abc)^2 = 36\sqrt{100}$                                                                   |
|     | $abc = \sqrt{360} = 6\sqrt{10}$                                                                           | ✓ answer                                                                                              |
|     | OR/OF                                                                                                     | $\mathbf{OR}/\mathbf{OF} \tag{5}$                                                                     |
|     |                                                                                                           |                                                                                                       |
|     | $ac = 6\sqrt{5}  \therefore a = \frac{6\sqrt{5}}{c}$ $bc = 3\sqrt{2}  \therefore b = \frac{3\sqrt{2}}{c}$ | $\checkmark a = \frac{6\sqrt{5}}{c}$ $\checkmark b = \frac{3\sqrt{2}}{c}$                             |
|     | $ab = 2\sqrt{10}$                                                                                         | C                                                                                                     |
|     | $\left(\frac{6\sqrt{5}}{c}\right)\left(\frac{3\sqrt{2}}{c}\right) = 2\sqrt{10}$                           |                                                                                                       |
|     | $18\sqrt{10} = 2\sqrt{10}.c^2$                                                                            |                                                                                                       |
|     | $c^2 = 9$                                                                                                 | ( value of :                                                                                          |
|     | c=3                                                                                                       | ✓ value of $c$<br>✓ Volume = $abc$                                                                    |
|     | Volume = $abc = 2\sqrt{10}.3 = \sqrt{360} = 6\sqrt{10}$                                                   | $\checkmark \text{ answer} - abc$ $\checkmark \text{ answer} \qquad (5)$ $[22]$                       |

| 2.1.1 | 59                                                                           | ✓ answer (1)                                                   |
|-------|------------------------------------------------------------------------------|----------------------------------------------------------------|
| 2.1.2 | 15 29 41 51                                                                  | (1)                                                            |
|       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                       |                                                                |
|       | -2 $-2$                                                                      |                                                                |
|       | 2a = -2 $a = -1$                                                             | ✓ second difference of $-2$ ✓ $a$                              |
|       | 3(-1) + b = 14                                                               | <b>V</b> <i>u</i>                                              |
|       | b = 17 $(-1) + (17) + c = 15$                                                | ✓ b                                                            |
|       | c = -1                                                                       | ✓ c                                                            |
|       | $T_n = -n^2 + 17n - 1$                                                       | (4)                                                            |
| 2.1.3 | $T_{27} = -(27)^2 + 17(27) - 1$                                              | ✓ substitution<br>✓ answer                                     |
| 2.2.1 | =-271 $-18$ 1                                                                | (2)                                                            |
|       | $r = \frac{-18}{36} = -\frac{1}{2}$                                          | ✓ answer (1)                                                   |
| 2.2.2 | $T_n = 36\left(-\frac{1}{2}\right)^{n-1}$                                    | $\checkmark T_n = 36\left(-\frac{1}{2}\right)^{n-1}$           |
|       | $\frac{9}{4096} = 36 \left(-\frac{1}{2}\right)^{n-1}$                        |                                                                |
|       | $\frac{1}{16384} = \left(-\frac{1}{2}\right)^{n-1}$                          | $\checkmark \frac{1}{16384} = \left(-\frac{1}{2}\right)^{n-1}$ |
|       | $\left( -\frac{1}{2} \right)^{14} = \left( -\frac{1}{2} \right)^{n-1}$       |                                                                |
|       | $ \begin{array}{l} 14 = n - 1 \\ n = 15 \end{array} $                        | ✓ answer                                                       |
|       | OR/OF                                                                        | (3)<br>OR/ <i>OF</i>                                           |
|       | $36; -18; 9; \frac{-9}{2}; \frac{9}{4}; \frac{-9}{8}; \dots; \frac{9}{4096}$ |                                                                |
|       | If you look only at the denominator: 2;4;8;;4096                             |                                                                |
|       | $2^{k} = 4096$ $2^{k} = 2^{12}$                                              | $\checkmark 2^k = 4096$                                        |
|       | $2^{k} = 2^{12}$ $k = 12$                                                    | ✓ k = 12                                                       |
|       | $\therefore n = 15 \text{ terms}$                                            | ✓ answer (3)                                                   |
|       | I                                                                            | (3)                                                            |

| SC/SS/NSC/NSS - | Marking Guide | lines/Nasienriglyne |
|-----------------|---------------|---------------------|
|-----------------|---------------|---------------------|

| 2.2.3 | $S_{\infty} = \frac{a}{1 - r}$ $= \frac{36}{1 - \left(-\frac{1}{2}\right)}$ $= 24$                                                                                                                                                                                                        | ✓ correct subst into correct formula with – 1 < r < 1  ✓ answer if – 1 < r < 1                                           |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 2.2.4 | $S_{250 \text{ even}} = \frac{-18\left(\left(\frac{1}{4}\right)^{250} - 1\right)}{\frac{1}{4} - 1}$ $= -24$ $\left(\left(\frac{1}{4}\right)^{250}\right)$                                                                                                                                 | (2) $\checkmark r = \frac{1}{4} \text{ and } n = 250$ $\checkmark S_{250 \text{ even}} = -24$                            |
|       | $S_{250 \text{ odd}} = \frac{36\left(\frac{1}{4}\right)^{250} - 1}{\frac{1}{4} - 1}$ $= 48$ $\frac{S_{odd}}{S_{even}} = \frac{48}{-24}$                                                                                                                                                   | $\checkmark S_{250 \text{ odd}} = 48$                                                                                    |
|       | $= -2$ $\mathbf{OR}/\mathbf{OF}$                                                                                                                                                                                                                                                          | ✓ answer OR/OF                                                                                                           |
|       | $ \frac{T_1 + T_3 + T_5 + T_7 + \dots + T_{499}}{T_2 + T_4 + T_6 + T_8 + \dots + T_{500}} $ $ = \frac{a + ar^2 + ar^4 + \dots + ar^{498}}{ar + ar^3 + ar^5 + \dots + ar^{499}} $ $ = \frac{a + ar^2 + ar^4 + \dots + ar^{498}}{r(a + ar^2 + ar^4 + \dots + ar^{498})} $ $ = \frac{1}{r} $ | ✓ $a + ar^{2} + ar^{4} + + ar^{498}$<br>✓ $ar + ar^{3} + ar^{5} + + ar^{499}$<br>✓ $r(a + ar^{2} + ar^{4} + + ar^{498})$ |
|       | =-2                                                                                                                                                                                                                                                                                       | ✓ answer (4)                                                                                                             |
|       |                                                                                                                                                                                                                                                                                           | [17]                                                                                                                     |

| 3.1.1 | p+6-(2p+3) = p-2-(p+6)                                                                                   | ✓ equating i.t.o <i>p</i>               |
|-------|----------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 3.1.1 | $\begin{vmatrix} p + 6 - (2p + 3) - p - 2 - (p + 6) \\ -p + 3 = -8 \end{vmatrix}$                        | ✓ simplifying                           |
|       | 1                                                                                                        | (2)                                     |
| 3.1.2 | $p = 11$ $T_n = 25 + (n-1)(-8) = 33 - 8n$                                                                | $\checkmark$ subst into $T_n$ formula   |
|       | 33-8n < -55                                                                                              |                                         |
|       | $ \begin{array}{l} -8n < -88 \\ n > 11 \end{array} $                                                     | ✓ n > 11                                |
|       |                                                                                                          | $\checkmark n > 11$ $\checkmark n = 12$ |
|       | ∴ Term 12 will be the first term smaller than −55<br>∴ Term 12 sal die eerste term kleiner as − 55 wees. | (3)                                     |
| 3.2   | $S_6 = \frac{n}{2}[a+l] = \frac{6}{2}[(x-3)+(x-18)]$                                                     |                                         |
|       | =6x-63                                                                                                   | $\checkmark 6x - 63$                    |
|       | $S_9 = \frac{n}{2}[a+l] = \frac{9}{2}[(x-3)+(x-27)]$                                                     |                                         |
|       | =9x-135                                                                                                  | ✓ 9x - 135                              |
|       | 6x - 63 = 9x - 135                                                                                       |                                         |
|       | 3x = 72                                                                                                  | <b>√</b> 24                             |
|       | x = 24                                                                                                   |                                         |
|       | $\therefore S_{15} = \frac{n}{2}[a+l] = \frac{15}{2}[(x-3)+(x-45)]$                                      | $\checkmark \frac{15}{2}[(x-3)+(x-45)]$ |
|       | $= \frac{15}{2}[2x - 48]$                                                                                |                                         |
|       | $= \frac{15}{2}[2(24) - 48] = 0 = \text{RHS}$                                                            | ✓ substitution of $x$ (5)               |
|       | OR/OF                                                                                                    | OR/OF                                   |
|       | $\int_{0}^{9} (x-3k) = 0$                                                                                |                                         |
|       | $\sum_{k=7}^{9} \left( x - 3k \right) = 0$                                                               | ✓ expansion                             |
|       | (x-21)+(x-24)+(x-27)=0                                                                                   | $\checkmark 3x - 72 = 0$                |
|       | 3x - 72 = 0 $3x = 72$                                                                                    |                                         |
|       | $ \begin{array}{c} 3x - 72 \\ x = 24 \end{array} $                                                       | <b>✓</b> 24                             |
|       | $\sum_{k=1}^{15} (24-3k)$                                                                                |                                         |
|       | $= 21 + 18 + 15 + \dots + -21.$                                                                          | $\checkmark$ substitution of $x$        |
|       | $S_n = \frac{n}{2} [a+l]$                                                                                |                                         |
|       | $=\frac{15}{2}[21-21]$                                                                                   | ✓ sum of 15 terms (5)                   |
|       | = 0 = RHS                                                                                                |                                         |
|       | OR/OF                                                                                                    | OR/OF                                   |

| (x-3)+(x-6)+(x-9)+(x-12)+(x-15)+(x-18) $=(x-3)+(x-6)+(x-9)+(x-12)+(x-15)+(x-18)$ | ✓ expansion                      |
|----------------------------------------------------------------------------------|----------------------------------|
| $+(x-21)+(x-24)+(x-27)$ $\therefore 3x-72=0$                                     | $\checkmark 3x - 72 = 0$         |
| 3x = 72 $x = 24$                                                                 | <b>√</b> 24                      |
| $\sum_{15}^{15} (24-3k)$                                                         |                                  |
| k=1 = 21+18+15++-21.                                                             | $\checkmark$ substitution of $x$ |
| $S_n = \frac{n}{2} [a+l]$                                                        |                                  |
| $=\frac{15}{2}[21-21]$                                                           | $\checkmark$ sum of 15 terms (5) |
| =0=RHS                                                                           | [10]                             |

| 4.1 | <i>y</i> > 0                                                                                              | ✓answer                                     | (1) |
|-----|-----------------------------------------------------------------------------------------------------------|---------------------------------------------|-----|
|     | OR/OF                                                                                                     | OR/OF                                       | (1) |
|     | $y \in (0; \infty)$                                                                                       | ✓answer                                     |     |
|     | $y \in (0, \infty)$                                                                                       |                                             | (1) |
| 4.2 | $g: y = \left(\frac{1}{2}\right)^x$                                                                       |                                             |     |
|     | $g^{-1}: x = \left(\frac{1}{2}\right)^y$                                                                  | $\checkmark x = \left(\frac{1}{2}\right)^y$ |     |
|     | $y = \log_{\frac{1}{2}} x$ or $y = -\log_2 x$ or $y = \log_2 \frac{1}{x}$                                 | ✓ equation                                  | (2) |
| 4.3 | Yes. The vertical line test cuts $g^{-1}$ once<br>Ja. Die vertikale lyn toets sny $g^{-1}$ slegs eenkeer. | ✓ yes<br>✓ valid reason                     | (2) |
|     | OR/OF                                                                                                     | OR/OF                                       |     |
|     | Yes. For every x-value there is a unique y-value                                                          | ✓ yes                                       |     |
|     | Ja. Vir elke x-waarde is daar 'n unieke y-waarde                                                          | ✓ valid reason                              |     |
|     |                                                                                                           |                                             | (2) |
|     | OR/OF                                                                                                     | OR/OF                                       |     |
|     | Yes. g is a one-to-one function / Ja. g is 'n een-tot-een funksie                                         | ✓ yes                                       |     |
|     |                                                                                                           | ✓ valid reason                              | (2) |
|     | OR/OF                                                                                                     | OR/OF                                       | (2) |
|     | Yes. The horizontal line cuts g only once                                                                 | ✓ yes                                       |     |
|     | Ja. Die horisontale lyn sny g slegs een keer                                                              | ✓ valid reason                              |     |
|     | ou. Die not isomate tyn ony g stego een neer                                                              | , and reason                                | (2) |

| 4.4.1 | $y = -\log_2 x$ $2 = -\log_2 a$ $(1)^2  1$                                   | ✓ correct subst into correct formula (a; 2)         |
|-------|------------------------------------------------------------------------------|-----------------------------------------------------|
|       | $a = 2^{-2} = \frac{1}{4}$ or $a = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$ | ✓answer (2)                                         |
| 4.4.2 | $M'(2;\frac{1}{4})$ or $M'(2;a)$                                             | ✓ answer (1)                                        |
| 4.5   | $M''\left(-1;\frac{9}{4}\right)$                                             | $\checkmark -1$ $\checkmark \checkmark \frac{9}{4}$ |
|       |                                                                              | (3)                                                 |
|       |                                                                              | [11]                                                |

| 5.1.1 | x = -2                                    | ✓ answer                                                                                                                                   |
|-------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|       | y = 3                                     | ✓ answer                                                                                                                                   |
|       |                                           | (2)                                                                                                                                        |
| 5.1.2 | $\left(0;\frac{7}{2}\right)$              |                                                                                                                                            |
|       | $\left(0,\frac{1}{2}\right)$              | ✓ answer                                                                                                                                   |
|       |                                           | (1)                                                                                                                                        |
| 5.1.3 | $\frac{1}{x+2} + 3 = 0$                   |                                                                                                                                            |
|       | x+2                                       | $\checkmark y = 0$                                                                                                                         |
|       | 1+3(x+2)=0                                |                                                                                                                                            |
|       | 3x = -7                                   |                                                                                                                                            |
|       |                                           |                                                                                                                                            |
|       | $x = -\frac{7}{3}$                        | ✓ answer                                                                                                                                   |
|       |                                           | (2)                                                                                                                                        |
|       | x-intercept $\left(-\frac{7}{3};0\right)$ | (2)                                                                                                                                        |
|       | (3,0)                                     |                                                                                                                                            |
| 5.1.4 |                                           |                                                                                                                                            |
|       | -2,3   -2                                 | ✓ asymptotes at $y = 3$ and $x = -2$ ✓ intercepts at $y = 3.5$ and $x = -2.3$ ✓ shape (reasonable representation in correct quadrants) (3) |

| SC/SS/NSC/NSS – Marking | Guidelines/Nasienriglyne |
|-------------------------|--------------------------|
|-------------------------|--------------------------|

|          |                                                         | 1 .                                    |
|----------|---------------------------------------------------------|----------------------------------------|
| 5.2.1    | -2x+4=0                                                 | $\checkmark y = 0$                     |
|          | 2x = 4                                                  |                                        |
|          | x = 2                                                   | $\checkmark x = 2$                     |
|          | $\therefore$ S(2; 0)                                    |                                        |
|          |                                                         | (2)                                    |
| 5.2.2    | Equation of k:                                          |                                        |
|          | $y = a(x+1)^2 + 18$                                     | $\checkmark y = a(x+1)^2 + 18$         |
|          | $0 = a(2+1)^2 + 18$ or $0 = a(-4+1)^2 + 18$             | $\checkmark$ substitute (2; 0) or      |
|          |                                                         | (-4;0)                                 |
|          | 9a = -18                                                |                                        |
|          | a = -2                                                  | ✓ a                                    |
|          | $y = -2(x+1)^2 + 18$                                    | (3)                                    |
| 5.2.3    | $-2x^2-4x+16=-2x+4$                                     | ✓ equating                             |
|          | $-2x^2-2x+12=0$                                         |                                        |
|          | $x^2 + x - 6 = 0$                                       | ✓ standard form                        |
|          | (x+3)(x-2)=0                                            | ✓ factors                              |
|          | x = -3  or  x = 2                                       |                                        |
|          |                                                         | $\checkmark$ choosing $x = -3$         |
|          | y = -2(-3) + 4 = 10                                     | ✓ answer                               |
|          | T(-3; 10)                                               | (5)                                    |
| 5.2.4    | x < -3  or  x > 2                                       | ✓✓ answer                              |
|          |                                                         | (2)                                    |
|          | OR/OF                                                   | OR/OF                                  |
|          | $(-\infty;-3)\cup(2;\infty)$                            | ✓✓ answer                              |
|          |                                                         | (2)                                    |
| 5.2.5(a) | x < -1                                                  | ✓✓ answer                              |
|          |                                                         | (2)                                    |
|          | OR/OF                                                   | OR/OF                                  |
|          | $(-\infty;-1)$                                          | ✓✓ answer                              |
|          |                                                         | (2)                                    |
| 5.2.5(b) | Δv                                                      |                                        |
|          |                                                         | ✓ shape of cubic with                  |
|          |                                                         | local min tp moving to                 |
|          |                                                         | local max tp                           |
|          |                                                         |                                        |
|          | ↑                                                       | $\checkmark$ turning points at $x = 2$ |
|          |                                                         | and $x = -4$                           |
|          |                                                         | ( maint a Cin Classic                  |
|          |                                                         | ✓ point of inflection at $x = -1$      |
|          | $\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$ |                                        |
|          |                                                         | (3)                                    |
|          | 1                                                       | [25]                                   |
|          | · ·                                                     | [23]                                   |
|          |                                                         |                                        |
| -        |                                                         |                                        |

| 6.1.1 | $A = P(1-i)^n$                                                                                                                              |                                                       |     |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----|
|       | $79866,96 = 180000(1-0,15)^n$                                                                                                               | ✓ substitution                                        |     |
|       | $(1-0.15)^n = \frac{79866.96}{180000}$                                                                                                      | Substitution                                          |     |
|       |                                                                                                                                             |                                                       |     |
|       | $\log\left(\frac{79866,96}{}\right)$                                                                                                        | ✓ use of logs                                         |     |
|       | $n = \frac{\log\left(\frac{79866,96}{180000}\right)}{\log(1-0,15)}$                                                                         | -                                                     |     |
|       | log(1 - 0.15)<br>n = 4.999 years                                                                                                            |                                                       |     |
|       | $n \approx 5$ years                                                                                                                         | ✓ answer                                              | (2) |
| 6.1.2 | $A = D(1+i)^n$                                                                                                                              |                                                       | (3) |
| 0.1.2 | $A = P(1+i)^n$                                                                                                                              | $\checkmark$ values of $i$ and $n$                    |     |
|       | $=49\ 000\left(1+\frac{0.1}{4}\right)^{20}$                                                                                                 | ✓ substitution                                        |     |
|       | = R80 292,21                                                                                                                                |                                                       |     |
|       | The money will be enough to buy the car.                                                                                                    | ✓ conclusion (consistent with answer)                 |     |
|       | Die geld sal genoeg wees om die motor te koop.                                                                                              |                                                       | (3) |
| 6.2.1 | $P = \frac{x\left[1 - \left(1 + i\right)^{-n}\right]}{x}$                                                                                   |                                                       |     |
|       | l .                                                                                                                                         | 0,1025                                                |     |
|       | $7853,15$ $1-\left(1+\frac{0,1025}{12}\right)^{-1}$                                                                                         | $\checkmark n = 234 \checkmark i = \frac{0,1025}{12}$ |     |
|       | $P = \frac{7853,15 \left[ 1 - \left( 1 + \frac{0,1025}{12} \right)^{-234} \right]}{0,1025}$                                                 | ✓ substitution in present value formula               |     |
|       | $\frac{0.1023}{12}$                                                                                                                         | value formata                                         |     |
|       | P = R793749,25                                                                                                                              | ✓ answer                                              | (4) |
|       | OR/OF                                                                                                                                       | OR/OF                                                 | (4) |
|       | Balance Outstanding / <i>Uitstaande balans</i>                                                                                              |                                                       |     |
|       | $7952.15 \left[ \left( 1 + 0.1025 \right)^6 \right]$                                                                                        | $\checkmark n = 6 \text{ in both}$                    |     |
|       | $\begin{bmatrix} 0.000001 & 0.1025 \end{bmatrix}^6$                                                                                         | $\sqrt{i} = \frac{0,1025}{12}$                        |     |
|       | $= 800\ 000 \left(1 + \frac{0,1025}{12}\right)^6 - \frac{7853,15 \left[\left(1 + \frac{0,1025}{12}\right)^6 - 1\right]}{\frac{0,1025}{12}}$ | $\checkmark A - F$                                    |     |
|       | 12<br>= 841 885,56 - 48 136,62                                                                                                              |                                                       |     |
|       | = 841883,30-48130,02 $= R793748,94$                                                                                                         | ✓ R793 748,94                                         |     |
|       |                                                                                                                                             |                                                       | (4) |
|       |                                                                                                                                             |                                                       |     |

[15]

SC/SS/NSC/NSS – Marking Guidelines/Nasienriglyne

6.2.2 
$$A = P(1+i)^{n}$$

$$= 793749,25 \left(1 + \frac{0,1025}{12}\right)^{3}$$

$$= R814 263,3052$$
New instalment/*Nuwe paaiement*:
$$P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$$

$$814263,3052 = \frac{0,1025}{12}$$

$$x = R8 089,20$$

| 7.1 | $f(x) = x^2 + 2$                                             |                                                |     |
|-----|--------------------------------------------------------------|------------------------------------------------|-----|
|     | $f(x+h) = (x+h)^2 + 2$                                       |                                                |     |
|     | $= x^2 + 2xh + h^2 + 2$                                      |                                                |     |
|     | $f(x+h) - f(x) = x^2 + 2xh + h^2 + 2 - (x^2 + 2)$            | $\checkmark x^2 + 2xh + h^2 + 2$               |     |
|     | $=2xh+h^2$                                                   |                                                |     |
|     | $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$             |                                                |     |
|     | $=\lim_{h\to 0}\frac{2xh+h^2}{h}$                            | $\checkmark \lim_{h\to 0} \frac{2xh + h^2}{h}$ |     |
|     | $=\lim_{h\to 0}\frac{h(2x+h)}{h}$                            | $\checkmark \lim_{h\to 0} \frac{h(2x+h)}{h}$   |     |
|     | $=\lim_{h\to 0}(2x+h)$                                       |                                                |     |
|     | =2x                                                          | ✓ answer                                       | (4) |
|     | OR/OF                                                        | OR/OF                                          | (7) |
|     | $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$             |                                                |     |
|     | $= \lim_{h \to 0} \frac{x^2 + 2xh + h^2 + 2 - (x^2 + 2)}{h}$ | $\checkmark x^2 + 2xh + h^2 + 2$               |     |
|     | $=\lim_{h\to 0}\frac{2xh+h^2}{h}$                            | $\checkmark \lim_{h\to 0} \frac{2xh + h^2}{h}$ |     |
|     | $=\lim_{h\to 0}\frac{h(2x+h)}{h}$                            | $\checkmark \lim_{h\to 0} \frac{h(2x+h)}{h}$   |     |
|     | $=\lim_{h\to 0}(2x+h)$                                       |                                                | ,   |
|     | =2x                                                          | ✓ answer                                       | (4) |

| 7.2.1 | $y = 4x^3 + 2x^{-1}$                                                                                       | $\checkmark +2x^{-1}$                                                                                       |
|-------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|       | $y = 4x^{3} + 2x^{-1}$ $\frac{dy}{dx} = 12x^{2} - 2x^{-2}$                                                 | $\begin{array}{c} \checkmark \ 12x^2 \\ \checkmark \ -2x^{-2} \end{array} \tag{3}$                          |
| 7.2.2 | $y = 4\sqrt[3]{x} + (3x^3)^2$ $= 4x^{\frac{1}{3}} + 9x^6$                                                  | $\checkmark 4x^{\frac{1}{3}} \checkmark 9x^{6}$ $\checkmark \frac{4}{3}x^{-\frac{2}{3}} \checkmark 54x^{5}$ |
|       | $\frac{dy}{dx} = \frac{4}{3}x^{-\frac{2}{3}} + 54x^5$                                                      | $\checkmark \frac{4}{3} x^{-\frac{2}{3}} \checkmark 54 x^5 \tag{4}$                                         |
| 7.3   | Point of contact: (1;5)<br>m = 2<br>$y - y_1 = m(x - x_1)$ or $y = 2x + c$<br>y - 5 = 2(x - 1) $5 = 2 + c$ | ✓ $m = 2$<br>✓ substitution of (1; 5)                                                                       |
|       | y = 2x + 3 $c = 3$ $y = 2x + 3$                                                                            | ✓ answer (3) [14]                                                                                           |

| 8.1 | $h(x) = -2(x + \frac{3}{2})(x - 1)(x + 3)$                             | $\sqrt{-2(x+\frac{3}{2})(x-1)(x+3)}$      |
|-----|------------------------------------------------------------------------|-------------------------------------------|
|     | $h(x) = -(2x+3)(x^2+2x-3)$                                             | ✓ correct simplification                  |
|     | $h(x) = -2x^3 - 7x^2 + 9$                                              | (3)                                       |
|     | ORIGE                                                                  | OR/OF                                     |
|     | <b>OR</b> / <b>OF</b> $h(x) = -(2x+3)(x-1)(x+3)$                       | $\checkmark \checkmark -(2x+3)(x-1)(x+3)$ |
|     | $h(x) = -(2x+3)(x^2+2x-3)$                                             | ✓ correct simplification (3)              |
|     | $h(x) = -2x^3 - 7x^2 + 9$                                              |                                           |
| 8.2 | $h'(x) = -6x^2 - 14x$                                                  |                                           |
|     | $-6x^2 - 14x = 0$                                                      | ✓ first derivative $\checkmark = 0$       |
|     | -2x(3x+7)=0                                                            |                                           |
|     | $x = 0 \text{ or } x = -\frac{7}{3}$                                   | ✓ both answers                            |
|     | ٦                                                                      | (3)                                       |
| 8.3 | $x < -\frac{7}{3}$ or $x > 0$                                          | ✓✓ answer                                 |
|     | 3<br><b>OR/</b> <i>OF</i>                                              | OR/ <i>OF</i> (2)                         |
|     | $x \in \left(-\infty; -\frac{7}{3}\right) \cup \left(0; \infty\right)$ | ✓✓ answer                                 |
|     | ( 3)                                                                   | (2)                                       |

| 8.4 | y = 4x + 7                                    | $\checkmark y = 4x + 7$                        |
|-----|-----------------------------------------------|------------------------------------------------|
|     | $y = 4x + 7$ $-6x^2 - 14x = 4$                | $\checkmark y = 4x + 7$ $\checkmark h'(x) = 4$ |
|     | $0 = 6x^2 + 14x + 4$                          |                                                |
|     | $0 = 3x^2 + 7x + 2$                           | ✓ standard form                                |
|     | 0 = (3x+1)(x+2)                               |                                                |
|     | $x = -\frac{1}{3}$ or $x = -2$                | ✓ both answers                                 |
|     | $\begin{bmatrix} x-3 & 0 & x-2 \end{bmatrix}$ | (4)                                            |
|     |                                               | [12]                                           |

| 9.1 | Volume of Sphere                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $=\frac{4}{3}\pi(8)^3$ or $=\frac{2048\pi}{3}$ or $=2144,66$                                                                                                                                                                                                                                                                                                                                                                                                             | ✓ answer (1)                                                                                                                                                                                                                                                                                   |
| 9.2 | $r^2 + x^2 = 8^2 	 (Pythagoras)$ $r^2 = 64 - x^2$                                                                                                                                                                                                                                                                                                                                                                                                                        | ✓ substitution or reason Pythagoras (1)                                                                                                                                                                                                                                                        |
| 9.3 | $V_{cone} = \frac{1}{3}\pi r^{2}h$ $= \frac{1}{3}\pi \left(64 - x^{2}\right)\left(8 + x\right)$ $= \frac{\pi}{3}\left(512 + 64x - 8x^{2} - x^{3}\right)$ $\frac{dV}{dx} = \frac{64\pi}{3} - \frac{16\pi}{3}x - \frac{3\pi}{3}x^{2}$ $0 = 64 - 16x - 3x^{2}$ $0 = (8 - 3x)(x + 8)$ $x = \frac{8}{3} \qquad x \neq -8$ $\frac{V_{cone}}{V_{sphere}} = \frac{\frac{1}{3}\pi \left(\frac{512}{9}\right)\left(\frac{32}{3}\right)}{\frac{2048\pi}{3}}$ $= \frac{8}{27} = 0.3$ | $\sqrt{h} = 8 + x$ $\sqrt{\frac{1}{3}\pi \left(64 - x^2\right)\left(8 + x\right)}$ \(\sim \text{expansion}\) $\sqrt{\frac{dV}{dx}} = \frac{64\pi}{3} - \frac{16\pi}{3}x - \frac{3\pi}{3}x^2$ $\sqrt{x} = \frac{8}{3}$ \(\sim \text{volume of the cone}\) $\sqrt{\frac{8}{27}} \text{ or } 0.3$ |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (7)<br>[9]                                                                                                                                                                                                                                                                                     |

| 10.1   |                                                                                                                             |                                                                                                                                                 |
|--------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.1   | 2                                                                                                                           |                                                                                                                                                 |
|        | $\frac{2}{11}$ R                                                                                                            |                                                                                                                                                 |
|        | $\frac{3}{12}$ R $\frac{11}{12}$ R                                                                                          |                                                                                                                                                 |
|        | 12 /                                                                                                                        |                                                                                                                                                 |
|        | $\frac{2}{11}$ B                                                                                                            |                                                                                                                                                 |
|        |                                                                                                                             |                                                                                                                                                 |
|        | $\frac{2}{12} \qquad B \frac{3}{11} \qquad R$                                                                               |                                                                                                                                                 |
|        | $\frac{2}{12} \qquad B \stackrel{3}{11} \qquad R$                                                                           |                                                                                                                                                 |
|        |                                                                                                                             |                                                                                                                                                 |
|        | 1 B                                                                                                                         |                                                                                                                                                 |
|        | $\frac{1}{11}$ B                                                                                                            |                                                                                                                                                 |
|        | 11                                                                                                                          |                                                                                                                                                 |
|        | P(One Red and One Blue)                                                                                                     | (3)(2)                                                                                                                                          |
|        | = P(Red, Blue) + P(Blue, Red)                                                                                               | $\checkmark \left(\frac{3}{12}\right) \times \left(\frac{2}{11}\right)$ $\checkmark \left(\frac{2}{12}\right) \times \left(\frac{3}{11}\right)$ |
|        | (3)(2)(2)(3)                                                                                                                | $\begin{pmatrix} 12 \end{pmatrix} \begin{pmatrix} 11 \end{pmatrix}$                                                                             |
|        | $= \left(\frac{3}{12}\right) \times \left(\frac{2}{11}\right) + \left(\frac{2}{12}\right) \times \left(\frac{3}{11}\right)$ | $\left  \checkmark \left  \frac{2}{12} \right  \times \left  \frac{3}{11} \right  \right $                                                      |
|        |                                                                                                                             | (12) (11)                                                                                                                                       |
|        | $=\frac{1}{11}$                                                                                                             | ✓ addition of products<br>✓ answer                                                                                                              |
|        | 11                                                                                                                          | (4)                                                                                                                                             |
| 10.2.1 | $a = 0.48 \times 250$                                                                                                       | (1)                                                                                                                                             |
| 10.2.1 |                                                                                                                             | $\checkmark_{\text{answer}}$ (1)                                                                                                                |
|        | a = 120                                                                                                                     |                                                                                                                                                 |
| 10.2.2 | b = 150                                                                                                                     | ✓ b                                                                                                                                             |
|        | $P(S) \times P(F)$                                                                                                          | ( D(C) D(F)                                                                                                                                     |
|        | $=\frac{200}{250}\times\frac{150}{250}$                                                                                     | $\checkmark P(S) \times P(F)$                                                                                                                   |
|        |                                                                                                                             | $\sqrt{\frac{200}{250}}$ and $\frac{150}{250}$                                                                                                  |
|        | = 0.48                                                                                                                      | 250 250                                                                                                                                         |
|        | = P(S  and  F)                                                                                                              | ✓ conclusion                                                                                                                                    |
|        | These events are independent /                                                                                              | (with realistic probabilities)                                                                                                                  |
|        | Hierdie gebeurtenisse is onafhanklik                                                                                        | (4)                                                                                                                                             |
|        |                                                                                                                             | [9]                                                                                                                                             |

#### QUESTION/VRAAG 11

| Q0201101#/1221011 |                                                        |                                        |
|-------------------|--------------------------------------------------------|----------------------------------------|
| 11.1              | 10 × 9                                                 | ✓✓ 10 × 9                              |
|                   | = 90                                                   | (2)                                    |
| 11.2.1            | 10!                                                    | ✓ 10!                                  |
|                   | =3 628 800                                             | (1)                                    |
| 11.2.2            | $2! \times 2! \times 2! \times 2! \times 2! \times 4!$ | $\checkmark$ 2! × 2! × 2! × 2! × 2!    |
|                   | = 768                                                  | <b>√</b> 4!                            |
|                   |                                                        | $\checkmark$ 2! × 2! × 2! × 2! × 2!×4! |
|                   |                                                        | or 768                                 |
|                   |                                                        | (3)                                    |
|                   |                                                        | [6]                                    |

TOTAL/TOTAAL: 150