Probabilidad y Estadística Fundamental Introducción a la probabilidad Reglas de conteo

Profesor: Nicolás López

Universidad Nacional de Colombia

Contenido

Reglas de conteo

Ejercicio de aplicación

Conclusiones

Contenido

Reglas de conteo

Ejercicio de aplicación

Conclusiones

Introducción

Aprender a contar es mucho más difícil de lo que parece.

- 1. Es una habilidad muy importante de adquirir para el posterior entendimiento de problemas en probabilidad y variables aleatorias.
- 2. El análisis combinatorio es otra de las herramientas matemáticas utilizadas para el estudio de los fenómenos aleatorios.

Regla fundamental del conteo

Para un experimento realizado en 2 etapas dónde la primera se puede realizar de m formas y la segunda de n formas, hay un total de mn formas de efectuar el experimento.

Regla fundamental del conteo

Ejemplo. En el área de ventas de una empresa hay un total de 10 vendedores JR (J) y de 3 vendedores SR (S). Si un JR y un SR son seleccionados como el dreamteam del área ¿cuántas posibles opciones de parejas de ganadores hay?

Regla fundamental del conteo

El **producto cartesiano** entre ambos conjuntos permite determinar un total de 10×3 parejas ordenadas para ganar el concurso.

Regla fundamental del conteo

El **diagrama de árbol** entre ambos conjuntos permite determinar un total de 10×3 parejas ordenadas para ganar el concurso.

Regla fundamental del conteo extendida

Para un experimento realizado en r etapas dónde la primera se puede realizar de n_1 formas, la segunda de n_2 formas, . . . , y la r- ésima de n_r formas hay un total de $n_1 \times n_2 \times ... \times n_r$ formas de efectuar el experimento.

Regla fundamental del conteo extendida

Ejemplo En el área de ventas hay un total de 10 vendedores JR (J), 3 vendedores SR (S), 2 manager (M) y un presidente. Si se desea crear un comité de 4 integrantes, con un miembro de cada uno de los cargos, ¿cuántos posibles comités hay?

Regla fundamental del conteo extendida

El diagrama de árbol parcial entre los 4 conjuntos permite determinar un total de $1 \times 2 \times 3 \times 10$ cuartetos ordenados para conformar el comité.

Permutaciones a partir de la regla fundamental del conteo

Para un experimento realizado en r etapas donde la primera se puede realizar de n formas, la segunda de n-1 formas,..., y la r- ésima de n-r formas hay un total de $n \times n-1...\times n-r$ formas de efectuar el experimento.

Permutaciones a partir de la regla fundamental del conteo

Ejemplo En el área hay un total de n=10 vendedores JR. Se desea determinar su rendimiento en el último año de trabajo y calificarlos en orden descendente en una lista ¿cuántas posibles listas existen?

Permutaciones a partir de la regla fundamental del conteo

El primer lugar puede ser ocupado por cualquiera de los 10 JR. El segundo lugar puede ser ocupado por los 9 JR restantes. El tercero por los 8 JR restantes.

El total de posibles ordenamientos en una lista de los 10 JR está dado por

$$10\times 9\times 8\times 7\times 6\times 5\times 4\times 3\times 2\times 1=3628800=10!$$

Permutaciones a partir de la regla fundamental del conteo

Ejemplo En el área hay 3 SR para los cuales también se desea determinar su rendimiento en el último año de trabajo y calificarlos en orden descendente en una lista.

- ▶ ¿De cuántas maneras es posible listar a los 3 SR?
- ▶ ¿De cuántas maneras es posible listar a los 10 JR y a los 3 SR?

Permutaciones a partir de la regla fundamental del conteo

Ejemplo En el área hay 3 SR para los cuales también se desea determinar su rendimiento en el último año de trabajo y calificarlos en orden descendente en una lista.

- ▶ ¿De cuántas maneras es posible listar a los 3 SR? = 3!
- ▶ ¿De cuántas maneras es posible listar a los 10 JR y a los 3 SR? = $10! \times 3!$

Permutaciones

Ejemplo En el área hay un total de n=10 JR. Se desea determinar su rendimiento en el último año de trabajo y calificarlos en orden descendente. Los r=3 mejores puestos serán ganadores de tiempo adicional de vacaciones: 5 días (primer puesto), 3 días (segundo puesto) y 1 día (tercer puesto). ¿De cuantas formas puedo listar a los 3 JR ganadores?

Permutaciones a partir de la regla fundamental del conteo

El primer lugar puede ser ocupado por cualquiera de los JR. El segundo lugar puede ser ocupado por los 9 JR restantes. El tercero por los 8 JR restantes. De esta forma:

$$10 \times 9 \times 8 = 720$$

Así, hay 720 ordenamientos posibles de los 10 JR tomando 3 a la vez.

Permutaciones a partir de la regla fundamental del conteo

Utilizando propiedades de la multiplicación se tiene lo siguiente

$$10\times9\times8=\frac{10\times9\times8\times7\times6\times5\times4\times3\times2\times1}{7\times6\times5\times4\times3\times2\times1}=\frac{10!}{7!}=\frac{10!}{(10-3)!}$$

Hemos reescrito los 720 ordenamientos posibles de los 10 JR tomando 3 a la vez.

Permutaciones

En general, si se desea conocer el número de formas en que se pueden tomar n objetos distintos en un orden particular tomando una cantidad r a la vez es

$$P_{n,r} = \frac{n!}{(n-r)!}$$

Y se dice que $P_{n,r}$ es el total de **permutaciones** de *n* objetos tomando *r* a la vez.

Combinaciones a partir de permutaciones

Respecto al ejemplo anterior, suponga que el generoso presidente decidió dar a los 3 ganadores los mismos 5 días adicionales de vacaciones. Bajo este escenario, note que:

- Lo importante es estar entre los tres primeros JR, no la posición.
- ➤ Varias de las 720 permutaciones tienen los mismos JR como ganadores, difieren en que sus puntajes tuvieron un **orden** diferente.

Para las 720 permutaciones de los 10 JR tomando de 3 a la vez, existen diferentes ordenamientos de los mismos JR que resultan en los mismos ganadores.

Combinaciones a partir de permutaciones

Note además que:

► Cada trío de posible de ganadores puede encontrarse en total de $3 \times 2 \times 1 = 3!$ formas. Por ejemplo observe los siguientes dos tríos:

Combinaciones a partir de permutaciones

Es evidente que cada trío está contando un total de

$$3 \times 2 \times 1 = 3! = 6$$
 permutaciones

para el total de 720 permutaciones. Entonces ¿cuántos tríos posibles hay en total para el grupo de 10 JR?. En otras palabras ¿cuántas **combinaciones** de n=10 JR tomando r=3 a la vez puedo formar?

Combinaciones a partir de permutaciones

Se obtiene la siguiente relación

$$P_{10,3} = 3! C_{10,3}$$

Por lo cual

$$C_{10,3} = \frac{P_{10,3}}{3!} = \frac{10!}{3!(10-3)!} = 120$$

Es decir, en total hay 120 posibles tríos para un total de 10 JR. En otras palabras, en total hay 120 **combinaciones** de n = 10 JR tomando r = 3 a la vez.

Combinaciones

En general, si se desea conocer el número de formas en que se pueden tomar n objetos distintos sin un orden particular tomando una cantidad r a la vez es

$$C_{n,r} = \frac{n!}{r!(n-r)!}$$

Y se dice que $C_{n,r}$ es el total de **combinaciones** de n objetos tomando r a la vez.

Ejercicio de aplicación

Afianzar lo aprendido

Repita el ejercicio anterior, calculo de permutaciones y combinaciones, esta vez con n=5 y r=2. Además de calcular los valores, haga los diagramas de árbol **completos** (no parciales) correspondientes.

Conclusiones

- Los experimentos laplacianos son los más sencillos de analizar, pues se reduce a un problema de conteo. Sin embargo, contar puede ser más difícil de lo que parece.
- Los nuevos eventos encontrados a partir de relaciones entre conjuntos pueden medirse en términos de probabilidad. La regla de la adición resume las relaciones más importantes.
- Contar es más difícil de lo que parece.

