苏州大学 <u>物理化学下(一)</u>课程期末试卷 A 共 6 页

		序号
考试形式_闭_卷 2	2016年6月(2013级应	化、化学专业)
院系: 材料与化学化工学部	年级:	专业:
姓名:		
<u></u>	_ 1	
一、选择题 (共10题 20分)	
1. 2 分		
德拜-休克尔理论及其导出的	的关系式是考虑了诸多因素的,	但下列因素中哪点是它不曾包括的?
		()
(A) 每一个离子都是溶剂(
(B) 强电解质在稀溶液中岩 (C) 溶液与理想行为的偏差	E至胜呙 É主要是由离子间静电引力所致	
(C) 俗被与连怎行为的偏差 (D) 每一个离子都被电荷符		
(D) 母 「四 1 即放电侧小	1 740次的两 1 //1 区团	
2. 2分		
	迅池以 1.8 V 的输出电压放电,	然后用 2.2 V 的电压充
电使电池恢复原状,整个过程的	的功、热及体系的吉布斯自由能到	变化为:
	()
(A) $W < 0$, $Q < 0$, Δ	G < 0	
(B) $W > 0$, $Q < 0$, Δ	G = 0	
(C) $W > 0$, $Q > 0$, Δ	G < 0	
(D) $W < 0$, $Q > 0$, Δ	G = 0	
3. 2 分		
298 K 时,反应为 Zn(s)+Fe	²⁺ (aq)=Zn ²⁺ (aq)+Fe(s) 的电池的	的 E [⊕] 为 0.323 V,则其平
衡常数 <i>K</i>[⊕]为:		()
		()
(A) 2.89×10^5	(B) 2.35×10^2	
(C) 5.53×10^4	(D) 8.46×10^{10}	
4. 2 分		
298 K 时, 在下列电池 Pt	$H_2(p^{\ominus}) \mid H^+(a=1) \parallel CuSO_4(0.01)$	$\operatorname{mol} \cdot \operatorname{kg}^{-1} \mid \operatorname{Cu}(s)$

(B) 升高

(D) 无法判断

()

右边溶液中加入 0.01 mol 的 KOH 溶液时,则电池的电动势将:

(A) 降低

(C) 不变

5. 2分

二级反应的速率常数的单位是:

- (A) s^{-1}
- (B) $dm^6 \cdot mol^{-2} \cdot s^{-1}$
- (C) $dm^3 \cdot mol^{-1} \cdot s^{-1}$
- (D) $mol^{-1} \cdot s^{-1}$

6. 2分

如果臭氧 (O₃) 分解反应 2O₃→ 3O₂的反应机理是:

- $O_3 \rightarrow O + O_2$ (1)
 - (1) (2)
- $O + O_3 \rightarrow 2O_2$
- 请你指出这个反应对 O3而言可能是:
 - (A) 0 级反应
 - (B) 1 级反应
 - (C) 2 级反应
 - (D) 1.5 级反应

7. 2分

均相反应 $A + B \xrightarrow{k_1} C + D$, $A + B \xrightarrow{k_2} E + F$ 在反应过程中具有 $\Delta[C]/\Delta[E] = k_1/k_2$ 的关系, $\Delta[C]$, $\Delta[E]$ 为反应前后的浓差, k_1 , k_2 是反应(1),(2)的速率常数。下述哪个是其充要条件?

()

()

(

)

- (A) (1), (2) 反应总级数相等
- (B) 反应前 C, E 浓度为零
- (C) (1), (2) 的反应物同是 A, B
- (D) (1), (2) 都符合质量作用定律

8. 2分

两个活化能不相同的反应,如 $E_2 > E_1$,且都在相同的升温度区间内升温,则:

(A)
$$\frac{\mathrm{d} \ln k_2}{\mathrm{d} T} < \frac{\mathrm{d} \ln k_1}{\mathrm{d} T}$$

(B)
$$\frac{\mathrm{d} \ln k_2}{\mathrm{d} T} > \frac{\mathrm{d} \ln k_1}{\mathrm{d} T}$$

(C)
$$\frac{\mathrm{d}k_2}{\mathrm{d}T} < \frac{\mathrm{d}k_1}{\mathrm{d}T}$$

(D)
$$\frac{\mathrm{d}k_2}{\mathrm{d}T} > \frac{\mathrm{d}k_1}{\mathrm{d}T}$$

9. 2分

对大多数纯液体其表面张力随温度的变化率是:

(A) $(\partial \gamma/\partial T)_p > 0$

(B) $(\partial \gamma/\partial T)_p < 0$

(C) $(\partial \gamma/\partial T)_p = 0$

(D) 无一定变化规律

10.	2 分 BET 公式的最主要用途之一在于:
	填空题 (共 6 题 12 分) 2 分
	将反应 $Ag_2SO_4(s) = 2 Ag^+ + SO_4^{2-}$ 设计成电池,其书面表示式为:。
12.	2 分 某反应物的转化率分别达到 50%,75%,87.5% 所需时间分别为 $t_{\frac{1}{2}}$, $2t_{\frac{1}{2}}$, $3t_{\frac{1}{2}}$,
则反	反应对此物质的级数为。
	2 分 两个反应有相同的反应级数和活化能,两反应在任何温度下的速率常数比为 409,则两 z的活化熵差为
14.	2 分
变质	反应 $[Co(NH_3)_5Br]^{2+}+NO_2^-\rightarrow [Co(NH_3)_5NO_2]^{2+}+Br^-$,随离子强度的增加反应速率,若要改反应速率 25%,离子强度应为。
	2 分 25℃时,水的表面张力为 0.071 97 N•m ⁻¹ ,将一半径为 0.03cm 的毛细管插入水中, 0.03 cm 则水面上 N。
	2 分 一般说来,化学吸附的吸附量随温度增高而,而物理吸附的吸附量随温 曾高而。

三、计算题 (共5题 54分)

17.12 分

可逆电池: Ag | AgCl(s) | KCl(aq) | Hg₂Cl₂(s) | Hg(l) 在 298 K 时的电动势 E=0.0455 V, $(\partial E/\partial T)_p=3.38\times 10^4$ V · K⁻¹,**写出该电池的反应**,当电池中有 1mol 电子的电量通过时,求出 $\Delta_r H_m$, $\Delta_r S_m$ 及可逆放电时的热效应 Q_R 。

18.10分

在 298 K 时,有一含有 Zn^{2+} 和 Cd^{2+} 活度均为 0.1 的溶液(pH=7),用电解沉积的方法把它们分离,试问:

- (1) 哪种离子首先在阴极析出?用光亮 Pt 作阴极, H_2 在 Pt 上的超电势为 $0.6\,V$ 。
- (2) 第二种金属开始析出时, 前一种金属剩下的浓度为多少?

已知: ϕ^{\ominus} (Zn²⁺/Zn) = -0.763 V, ϕ^{\ominus} (Cd²⁺/Cd) =-0.403 V

19.10 分

反应 $CD_3+CH_4\to CD_3H+CH_3$, $A=1.00\times 10^8~cm^3\bullet mol^{-1}\bullet s^{-1}$,用过渡态理论计算 300 K时,该双分子元反应的活化熵,并根据所得结果提出你的解释。

20.12 分

已知 40°C时,半径为 1×10^{-3} m 小水滴的附加压力为 1.39×10^{7} Pa,试计算该小水滴的饱和蒸气压增加的百分率。(40°C水的摩尔体积 1.84×10^{-5} m³ • mol⁻¹)

21.10 分

两个等体积的 $0.200~\text{mol} \cdot dm^{-3}~\text{NaCl}$ 水溶液被一半透膜隔开,将摩尔质量为 $55.0~\text{kg} \cdot \text{mol}^{-1}$ 的大分子化合物 Na_6P 置于膜的左边,其浓度为 $0.050~\text{kg} \cdot dm^{-3}$,试求膜平衡时两边 Na^+ 和 Cl^- 的浓度。

四、问答题 (共2题14分)

22.8 分

实验表明:氧化亚氮 (N_2O) 均相分解的主反应的化学计量式为:

$$N_2O \longrightarrow N_2 + \frac{1}{2}O_2$$
, 速率方程为:

-d[N₂O]/d $t = k_1[N_2O]^2/(1+k_2[N_2O]),$ 式中:

 $k_1 = 10^{19.69} \exp(-342.3 \times 10^3 / RT), \quad k_2 = 10^{8.69} \exp(-118.8 \times 10^3 / RT)$

- (A) 问这反应的活化能是多少?
- (B) 求极限情况下的活化能

23.6 分 (7470)

7470

何谓感胶离子序?何谓舒尔茨-哈代规则?