## EEE 109 HW on Amplifier and Frequency Response

- 1. The pnp transistor circuit shown in Fig. 1 below has the following paramters:  $R_E = 0.3$   $k\Omega$ ,  $R_C = 4$   $k\Omega$ ,  $R_1 = 14.4$   $k\Omega$ ,  $R_2 = 110$   $k\Omega$ ,  $R_L = 10$   $k\Omega$ . The Transistor paramters are  $\beta$  = 100,  $V_{EB}$  (on) = 0.7 V, and  $V_A = \infty$ .
  - 1) Determine the quiescent values  $I_{CQ}$  and  $V_{ECQ}$ ?
  - 2) Find the small signal paramters  $g_m$ ,  $r_{\pi}$ , and  $r_o$ ?
  - 3) Determine the small-signal voltage gain  $A_{\nu}$ ?



Fig. 1

2. Consider the circuit shown in Fig. 2. Transistors  $Q_1$  and  $Q_2$  are identical, both having  $I_{ES} = 10^{-14}\,A$  and  $\beta = 100$  where  $I_{ES}$  is the reverse-bias saturation current of the B-E junction. Calculate  $V_{BE}$  and  $I_{C2}$ . Assume that  $V_T = 26$  mV for both transistors.



Fig. 2

3. Given  $\beta$  = 100,  $V_{CC}$  = 12 V in Fig. 3 below, use  $V_{BE}$  = 0.7 V,  $R_C$  = 6 k $\Omega$ ,  $R_B$  = 50 k $\Omega$ , and  $V_{BB}$  = 1.2 V to calculate the voltage gain.



- 4. Given Q-point values:  $I_{CQ}$  = 1.6 mA,  $V_{CEQ}$  = 4.86 V,  $\beta$  = 100 and  $V_A$  = 70 V
  - 1) Find  $r_{\pi}$ ,  $g_{m}$ , and  $r_{o.}$
  - 2) Determine the total low-frequency response of the amplifier.



Fig. 4