

Линейная регрессия. Выбор модели.

ПМИ ФКН ВШЭ, 23 ноября 2019 г.

Денис Деркач, Алексей Артёмов

ФКН ВШЭ

Оглавление

Мотивация

Обобщённые линейные модели

Оптимизация в GLM

Оценка качества GLM

Мотивация

Линейная регрессия: основные модели

Мы можем записать основную (общую) линейную модель (General Linear Model):

$$Y = X\beta + \varepsilon$$

- Y вектор наблюдаемых зависимых переменных (откликов);
- > X матрица независимых переменных (дизайн эксперимента);
- > β матрица, включающая параметры, представляющие интерес для исследования;
- $> \varepsilon$ матрица случайных ошибок.

NB: случайные ошибки распределены нормально и не зависят друг от друга.

Применимость общих линейных моделей

Фактически:

$$y_i \sim N(\mu_i; \sigma)$$
 - случайная часть,

$$\mathbb{E}(y_i) = \mu_i = \beta_0 + \beta_1 x_{1,i} + \ldots + \beta_{p-1} x_{p-1,i}$$
 - фиксированная часть.

Построение обобщённой модели

Что будет, если мы не можем утверждать:

- > что случайные ошибки распределены нормально?
- > что случайные ошибки не коррелируют?

Пример: регрессия с бинарными откликами

- Местная клиника отправила своим клиентам предложение сделать прививку от гриппа для защиты от ожидаемаой эпидемии.
- > Через некоторое время у случайных 50 пациентов спросили сделали ли они прививку, при этом записывае информацию о возрасте и общем отношении к своему здоровью.
- Необходимо построить модель, которая предсказывает привит ли человек в зависимости от его возраста и отношения к здоровью.

Таким образом, мы говорим о модели, где $Y_i = \{0; 1\}$.

Регрессия с бинарными откликами: проблемы

Для каждого ответа у нас получается вероятностное распределение Бернулли с вероятностью успеха π_i :

$$\mathbb{P}(Y_i = y_i) = \pi_i^{y_i} (1 - \pi_i)^{(1} - y_i)$$
. То есть:

- > среднее $\mu_i = \mathbb{E}(Y_i) = \pi_i$;
- > дисперсия $\mathbb{V}ar(Y_i) = \sigma_i^2 = \pi_i(1 \pi_i)$

Таким образом дисперсия коррелирует со средним, обычные уравнения регрессии не применимы!

Аналогичные выражения мы получим для n испытаний.

Регрессия с бинарными откликами: проблемы

Ещё одна проблема. Очевидная форма регрессии,

$$y_i = x_i \beta,$$

в левой части должна быть ограничена (0;1), правая часть же может расти неограниченно.

Идея: преобразование Logit

> Введём преобразование:

$$logit(\pi) = log\left(\frac{\pi}{1-\pi}\right) \in (-\infty; \infty);$$

> обратная функция:

$$logit^{-1}(x) = \frac{e^x}{1 + e^x} \in (-1; 1);$$

> производная:

$$\frac{d}{d\pi} \operatorname{logit}(\pi) = \frac{1}{\pi(1-\pi)} \sim \frac{1}{\mathbb{V}ar(\pi)}.$$

Logit, Probit и log-log

Вообще, существуют три популярных преобразования бинарной регрессии:

- > Logit: $logit(\pi) = log(\frac{\pi}{1-\pi});$
- > Probit: $\operatorname{probit}(\pi) = \Phi^{-1}(\pi_i)$, Φ функция распределения (cdf) нормальной величины;
- > Log-log: $\eta_i = \log(-\log(1 \pi_i))$.

Каждая имеет свою интепретацию и применяется в специальных типах задач.

Logit, Probit и log-log

FIGURE 3.7: The Standardized Probit, Logit and C-Log-Log Links

Картинка отсюда. _{Денис Деркач}

Итоговая задача

Мы хотим максимизировать:

$$\mathcal{L}(\pi_i; Data) = \prod_{i=1}^{n} \pi_i^{Y_i} (1 - \pi_i)^{1 - Y_i}$$

При этом, используя logit получаем:

$$\pi_i = \frac{e^{\beta_0 + \beta_1 X_i}}{1 + e^{\beta_0 + \beta_1 X_i}}$$

Подставляя в первое уравнение, получим:

$$\mathcal{L}((\beta_0; \beta_1); Data) = \prod_{i=1}^{n} \left(\frac{(e^{\beta_0 + \beta_1 X_i})^{Y_i}}{1 + e^{\beta_0 + \beta_1 X_i}} \right)$$

К сожалению, прямое находение экстремумов у такой функции правдоподобия затруднено, потому приходится использовать Итеративные процедуры.

Обобщённые

линейные модели

Экспоненциальное семейство распределений

Определение

Семейство распределений $\{P_{\theta}: \theta \in \Theta\}$, $\Theta \subset \mathbb{R}^k$ называется (k-параметрическим) экспоненциальным семейством на \mathbb{R}^q , если существуют такие вещественнозначные функции:

- $\rightarrow \eta_1, \dots, \eta_k$ и B от θ ,
- T_1, T_2, \ldots, T_k и h от $x \in \mathbb{R}^q$,

такие, что плотность вероятности этого семейства записывается:

$$p_{\theta}(x) = h(x) \exp \left[\sum_{i=1}^{k} (\eta_i(\theta) T_i(x) - B(\theta)) \right]$$

Экспоненциальное семейство распределений

Линеаризуя, получим для скалярных x и θ :

$$p_{\theta,\phi}(x) = \exp\left(\frac{x\theta - b(\theta)}{a(\phi)} + c(y;\phi)\right),$$

где ϕ зависит от конкретного распределения.

Пример экспоненциального семейства

$$p_{\theta,\phi}(x) = \exp\left(\frac{x\theta - b(\theta)}{a(\phi)} + c(y;\phi)\right).$$

Нормальное распределение можно переписать в нужной форме:

$$p_{\theta,\phi}(x) = \exp\left[\frac{x\theta - \theta^2/2}{\phi} - \frac{1}{2}\left(\frac{x^2}{\phi} + \ln(2\pi\phi)\right)\right].$$

То есть,

$$a(\phi) = \phi; b(\theta) = \theta^2/2; c(y; \phi) = -\frac{1}{2} \left(\frac{x^2}{\phi} + \ln(2\pi\phi) \right).$$

Другие экспоненциальные семейства

Table 15.9 Functions $a(\cdot)$, $b(\cdot)$, and $c(\cdot)$ for Constructing the Exponential Families

Family	a(φ)	$b(\theta)$	$C(y, \phi)$
Gaussian	φ	$\theta^2/2$	$-\frac{1}{2}\left[y^2/\phi + \log_e(2\pi\phi)\right]$
Binomial	1/n	$\log_{\mathrm{e}}(1+\mathrm{e}^{\theta})$	$\log_{\mathbf{e}}\binom{n}{ny}$
Poisson	1	e^{θ}	-log _e y!
Gamma	ϕ	$-\log_{\mathrm{e}}(-\theta)$	$\phi^{-2}\log_{e}(y/\phi)-\log_{e}y-\log_{e}\Gamma(\phi^{-1})$
Inverse-Gaussian	ϕ	$-\sqrt{-2\theta}$	$-\frac{1}{2}\left[\log_{\mathrm{e}}(\pi\phi y^3) + 1/(\phi y)\right]$

NOTE: In this table, n is the number of binomial observations, and $\Gamma(\cdot)$ is the gamma function.

Из John Fox, Applied Regression Analysis and Generalized Linear Models

Свойства экспоненциальных семейств

$$p_{\theta,\phi}(x) = \exp\left(\frac{x\theta - b(\theta)}{a(\phi)} + c(y;\phi)\right).$$

- > θ часто называется каноническим параметром, причём $g_c(\theta)$ функция матожидания и не зависит от ϕ ;
- > ϕ называется дисперсионным параметром.

Заметим:

- $\Sigma(X) = b'(\theta) = \mu.$
- > $\mathbb{V}ar(X) = b''(\theta)a(\phi) = a(\phi)V(\mu)$, $V(\mu)$ дисперсионная функция.

Обобщённые линейные модели: компоненты

Для $f(y;\theta)$, принадлежащему экспоненциальному семейству распределений:

> стохастическая (random) компонента:

$$y_i \sim f(y; \theta)$$

фиксированный линейный предиктор (систематическая компонента):

$$\eta_i = \beta_0 + \beta_1 x_{1,i} + \ldots + \beta_{p-1} x_{p-1,i}$$

> функция связи

$$g\left(\mathbb{E}(y_i)\right) = \eta_i.$$

Функция связи (link function)

Функция связи $g(\mu)$ используется разная в зависимости от распределения $f(y;\theta)$. Обычно предполагают, что $g(\mu)$ монотонна и дифференциируема в области разрешённых μ . Количество распределений из экспоненциального семейства довольно мало, для каждого из них есть канонические функции

Определение

связи.

Канонической функцией связи для экспоненициального семейства, g, называют функцию, которая связывает среднее μ и канонический параметр θ .

Заметим, так как $\mu = b'(\theta)$, то каноническая $g(\mu) = (b')^{-1}(\mu)$.

Резюме

В общей линейной модели, соотношение между $\mathbb{E}(y_i)$ и параметрами линейно.

В обобощённой линейной модели, соотношение между функцией от $\mathbb{E}(y_i)$ и параметрами линейно.

GLM для нормального распределения

Выпишем три компоненты GLM:

- $y_i \sim \mathcal{N}(\mu; \sigma)$ случайная компонента.
- > $\eta_i = \sum x_{ij} \beta_j$ линейный предиктор.
- $ightarrow g(\mu_i) = \mu_i$ функция связи.

Тогда:

$$\mu_i = g(\mu_i) = \eta_i = \sum x_{ij} \beta_j.$$

Таким образом, общая линейная модель — частный случай обобщённой линейной модели.

Оптимизация в GLM

Метод наименьших квадратов

В общем случае GLM, у нас нет идентичных и одинаково распределённых остатков. Потому метод наименьших квадратов здесь также применять нельзя (вернее, его нужно модифицировать).

Из-за этого используют метод максимального правдоподобия.

Метод максимального правдоподобия

Вернёмся к примеру с бинарной регрессией:

$$\mathbb{E}[Y_i] = \pi_i = g^{-1}(\eta_i) = \frac{1}{1 + e^{-\eta_i}}$$

$$\mathcal{L}(\boldsymbol{\beta}; \mathbf{y}) = \prod_{i=1}^n \exp\left\{y_i \log\left(\frac{\pi_i}{1 - \pi_i}\right) + \log(1 - \pi_i)\right\}$$

$$\log \mathcal{L}(\boldsymbol{\beta}; \mathbf{y}) = \sum_{i=1}^n y_i \log\left(\frac{\pi_i}{1 - \pi_i}\right) + \sum_{i=1}^n \log(1 - \pi_i)$$

$$= \sum_{i=1}^n y_i \sum_{j=1}^p x_{ij} \beta_j - \sum_{i=1}^n \log\left(\exp\left\{\sum_{j=1}^p x_{ij} \beta_j\right\} + 1\right)$$

Наблюдения

- > Лог-правдоподобие строго вогнуто для канонической функции связи (в случае, если $\phi > 0$).
- Как следствие, ОМП сходится к единственному глобальному максимуму.
- > В случае неканонической функции связи, это не так.

Оценка параметров GLM

 $\hat{\beta}$

- > оценивается методом максимального правдоподобия;
- > существует и единственна,
- > находится численно,
- > состоятельна, асимптотически эффективна, асимптотически нормальна.

Способы оптимизации

- > метод Ньютона-Рафсона;
- » метод IRLS (итерационный взвешенный метод наименьших квадратов);
- > метод скоринга Фишера;
- > стохастические методы;
- > оценка максимального квази-правдободобия.

В случае использования канонической функции связи первые три эквивалентны, иначе сказывается разница в том, какой гессиан используется в методе (см. обсуждение здесь).

IRLS B GLM

Алгоритм:

- 1. инициализировать значения $\hat{\mu}_i$ и $\hat{\beta}_j$ (для бинарной регрессии необходимо брать значения около 0 или 1 в зависимости от Y_i);
- 2. оценить значение $Z_i = g(\hat{\mu}_i) + g'(\hat{\mu})(Y_i \hat{\mu}_i)$;
- 3. использовать веса $W^{-1}=g^2(\hat{\mu})V(\hat{\mu}_i)$ и применить обычную регрессию Z по X, получить $\hat{\beta}_j$;
- 4. получить новую оценку $\hat{\mu} = g^{-1}(\sum X_{ij}\beta_j)$;
- 5. повторить шаги 2-4 до сходимости.

Доверительные интервалы \widehat{eta}

Ассимтотически, мы можем использовать:

$$\hat{\beta} \sim \mathcal{N}(\beta, i^{-1}),$$

где $i(\beta) = \phi^{-1} X^T W X$, то есть мы можем использовать последний шаг IRLS для оценки матрицы ковариаций:

$$\widehat{\operatorname{cov}}(\hat{\beta}) = \phi(X^T \hat{W} X)^{-1}.$$

Для некоторых семейств ϕ необходимо оценивать отдельно.

O ценка ϕ

К сожалению, оценка ϕ с помощью ОМП затруднена. Потому мы используем метод моментов, который даёт нам оценку:

$$\hat{\phi} = \frac{1}{n-p} \sum_{i=1}^{n} \frac{(Y_i - \hat{\mu}_i)^2}{V(\hat{\mu}_i)},$$

где n - количество точек, p - количество параметров.

Тест Вальда для коэффициентов GLM

нулевая гипотеза: $H_0\colon \beta_j=0;$ альтернатива: $H_1\colon \beta_j<
eq>0;$ статистика: $T=\frac{\hat{\beta}_j}{\sqrt{\left(I^{-1}(\hat{\beta})\right)_{jj}}};$ $T\sim N(0,1)$ при $H_0.$

Тест Вальда и отношение правдопоподобий

- Критерии Вальда и отношения правдоподобия не эквивалентны.
- > При больших n разница между критериями невелика, но в случае, когда их показания расходятся.
- > Вспомним, что мы в реальности получаем ОМП.

Сравнение Вальдовских интервалов и интервалов из функции правдоподобия

Слева направо увеличение количества примеров в выборке. В правой картинке теста Вальда не искючает 0, а тест отношения франциональной исключает.

Оценка качества GLM

Disclaimer: общий тест χ^2

- > Часто используется в статпакетах.
- > Это тест отношения правдоподобия полученной модели по сравнению с моделью только с постоянным коэффициентом β_0 .
- Как и все прочие выводы на основании модельных статистик, тест отношения правдоподобия обоснован в предположении, что модель существует.
- > Единственное, что можно сказать при значимом общем χ^2 тесте, что, если модель верна, некоторые из ее коэффициентов ненулевые (насколько это полезно, решайте сами).
- \rightarrow Простое правило: не используйте тест χ^2 для оценки качества.

> Или хотя бы не используйте χ^2 в сравнениях.

Коэффициент детерминации

Очень хочется использовать коэффициент детерминации, который мы использовали для простых линейных моделей. В GLM существуют два подхода:

- ightarrow через квадрат коэффициента корреляций между Y_i и \hat{Y}_i .
- > напрямую, по определению.

К сожалению, коэффициент детерминации плохо определяет качество для ненормальных данных (например, R^2 для $Y_i=0$ и $\hat{Y}_i=0.9$ или $\hat{Y}_i=0.99$ почти не отличаются, а $\mathbb{P}(Y_i-0)$ отличаются в 10 раз).

Девианса (Аномальность)

Это приводит к идее осуществлять оценку качества через правдоподобие.

Определение

Девиансом обобщённой линейной модели является:

$$D(\mu, Y) = -2\log \mathcal{L}(\mu, Y) + -2\log \mathcal{L}(Y, Y)$$

где μ - оценка Y.

Девианса строится для оптимизации методом скоринга Фишера.

Анализ девианса: шкала

Для получения шкалы рассматривают два граничных случая:

- > Насыщенная модель каждое уникальное наблюдение (сочетание значений предикторов) описывается одним из n параметров.
- Предложенная модель модель, подобранная в данном анализе.
- Нулевая модель все наблюдения описываются одним параметром (средним).

Степени свободы:

```
df_{\text{saturated}} = 0; df_{\text{model}} = n - p_{\text{model}}; df_{\text{null}} = n - 1;
```

Девианса (deviance)

Девианса - мера различия правдоподобий двух моделей:

> Остаточная девианса

$$D_{\text{residual}} = 2(\log \mathcal{L}_{\text{saturated}} - \log \mathcal{L}_{\text{model}})$$

> Нулевая аномальность

$$D_{\text{null}} = 2 \log \mathcal{L}_{\text{saturated}} - \log \mathcal{L}_{\text{null}}$$

Сравнение нулевой и остаточной аномальности позволяет судить о статистической значимости модели в целом (при помощи теста отношения правдоподобий).

Анализ аномальности

> Для тестирования значимости модели целиком:

$$LRT = 2 \log \left(\frac{\log \mathcal{L}_{\text{model}}}{\log \mathcal{L}_{\text{null}}} \right) = D_{\text{null}} - D_{\text{residual}}$$
$$df = df_{\text{null}} - df_{\text{model}} = p_{\text{model}} - 1$$

> Для тестирования значимости предикторов:

$$LRT = 2 \log \left(\frac{\log \mathcal{L}_{\text{model}}}{\log \mathcal{L}_{\text{reduced}}} \right) = D_{\text{full}} - D_{\text{residual}}$$
$$df = df_{\text{full}} - df_{\text{model}} = p_{\text{model}} - p_{\text{reduced}}$$

В дальнейшем происходит сравнение с χ^2 с $d\!f$ степенями свободы. NB: применение похоже на R^2

Эффективная остаточная девианса

По анологии с \mathbb{R}^2 можно эффективно учесть количество степеней свободы:

$$D = 1 - \frac{D/(n-p)}{D_{null}/(n-1)} \sim \chi_{n-p}^2$$

Очень приближённо, мы можем сравнить две девиансы с помощью теста Вальда:

$$W = \frac{D(R) - D(F)}{\hat{\phi}} \sim \chi_{dfR - dfF}^2$$

В принципе, в анализе мы можем использовать X^2 Пирсона.

Анализ остатков

Для проверки качества регрессий используют также анализ остатков.

> остатки Пирсона (для логрегрессии):

$$r_i = \frac{y_i - \pi_i}{\sqrt{\hat{\pi}_i (1 - \hat{\pi}_i)}}$$

> остатки девианса (для логрегрессии):

$$d_i = s_i \sqrt{-2(y_i \log \hat{\pi}_i + (1 - y_i) \log(1 - \hat{\pi}_i))}$$

Они составляют общую девиансу $D=\sum d^2$ и Пирсоновский $X^2=\sum r^2$, которые распределены по χ^2 (если их стандартизовать).

ROC

В специализированном случае бинарной регрессии, мы можем использовать совпадение ROC кривых, построенных по предсказаниям логрегрессии. В таком случае нам необходимо прводить тесты на равенство AUC (см. семинар).

Резюме

- > Обобщённые линейные модели добавляют возможность рассматривать данные, в которых зависмые переменные являются ненормальными.
- Важным частным случаем является обобщённая модель для бинарных откликов с канонической функцией связи logit логистическая регрессия.
- Критерии качества определяются похожим способом с обычной линейной регрессией.
- Лучшим критерием качества всё ещё является визуальный анализ.