Lista 5 - MS211 2° sem. de 2021

Paulo J. S. Silva

Entrega: 03 de novembro de 2021

Resolva os exercícios abaixo. Você deve entregar todos os exercícios feitos mas apenas um deles será corrigido.

Obs: Os exercícios devem ser feitos manualmente ou usando o computador/calculadora somente para fazer contas simples, sem a execução automática de laços por exemplo, a menos que o enunciado explicite que o computador deve ser usado de forma programada.

- 1. Qual polinômio p de grau no máximo 2 satisfaz as condições: p(2) = -1, p(3) = 1 e p'(3) = 0. Proponha uma representação para p, na qual a resolução do problema de interpolação possa resolvida de forma análoga com o que é feito com polinômios de Lagrange.
- 2. Encontre o ponto de intersecção das duas funções tabeladas, utilizando interpolação quadrática.

x	0.000	0.600	1.200	1.800	2.400	3.000
f(x)	1.300	1.383	1.223	0.919	0.626	0.435
1		0.000	1 400	1 000	0.400	0.000
x	0.400	0.900	1.400	1.900	2.400	2.900
g(x)	0.615	0.810	1.079	1.425	1.786	1.993

Obs: Você terá que escolher os pontos para fazer a interpolação, há pontos demais. Tente justificar a sua escolha da melhor forma possível.

- 3. Com que grau de precisão podemos aproximar $\sqrt{115}$ usando interpolação quadrática sobre os pontos 100, 121 e 144?
- 4. Em quantos pontos é necessário tabelar a função cosseno para que a sua aproximação por interpolação linear tenha sempre erro inferior a 10^{-4} ?
- 5. Considere f, uma função contínua definida no intervalo [-1,1].
 - (a) Construa o polinômio p que interpola f nos pontos -2/3 e 2/3. Obs: Como você não sabe qual é a função terá que fazer isso de forma "teórica".

- (b) Utilizando o polinômio interpolador p, aproxime a integral de $\int_{-1}^1 f(x)dx$, integrando p. A resposta desse item é uma fórmula.
- (c) Se $f(x) = \ln(x+2)$, calcule uma aproximação para $\int_{-1}^{1} f(x) dx$ usando a estratégia da questão anterior e compare com o valor exato da integral. Qual foi o erro da sua aproximação?