

实验指导书

课程名称:		电子上艺	<u> </u>	—焊接调证	ζ	
专业-班级:		学号	-		_ 姓名:	
实验日期:	年	月	_目			
			_	报告	分数:	
教师评语:			, ^			
			V,			
	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
				教师3	签字:	
					廿 日.	

温度报警器焊接调试指导书

一、焊接指导

1.1 来料检测

表 1 是温度报警器的器件清单。

表 1 温度报警器 BOM 清单

Item	Quantity	Reference	Part\	PCB Footprint
1	1	C1	22u 电解电容	cap196
2	6	C6,C7,C9,C10,C12,C13	100n\ 10%	0805
3	1	C5	0.1u\ 20%	capck05
4	1	C11	NA\ 不焊	0805
5	2	D1,D7	LED\ D1: 黄色或绿色 D7: 红 色	fg
6	1	D8	大功率自制 LED 黄色\ 先焊接 D7,调试完成后去掉 D7 焊接 D8。注意 D7、D8 只能焊接一个	2835
7	1	J1	J1\	header14
8	2	J2,J3	Jumper\	header2
9	3	Q1,Q2,Q3	2N2222A\	to39-1
10	1	R1	330\ 1%	0805
11	1	R3	8.2k\ 1%	0805
12	1	R5	68k\ 1%	0805
13	4	R6,R9,R30,R31	100k\ 0.1%	0805
14	1	R7	5.1k\ 1%	0805
15	5	R10,R11,R12,R13,R14	120\ 1%	0805
16	1	R15	220\1%	0805
17	4	R16,R17,R28,R29	1k\ 0.1%	0805
18	1	R18	510\ 1%	0805
19	3	R19,R32,R33	10k\ 1%	0805
20	1	R20	150K\ 1%	0805
21	2	R21,R23	2.4k\ 0.1%	0805
22	1	R25	100R\1%	0805
23	1	R34	47k\ 1%	0805
24	1	SW1	SW PUSHBUTTON-SPST-NC	sw2
25	1	USB	USB\	PowerUSB
26	3	U1,U2,U3	LM2904/NS\	soic8
27	1	U6	BUZZER\	fmq

按照元器件的分类(贴片、直插、电阻、电容)把器件整理好,按照下表进行来料抽检检测。

表 2 报警器来料检测清单

编号	元器件	检测 项目	检测内容	备注 (阻容实测值, 计算精度)	结论 (pass/ fail)
1	外观		元器件外观是否完整,未发现明显瑕疵		
2	种类		按照表 1 仔细核对元器件种类		
3	个数		按照表 1 仔细核对每种元器件数量		
4	100n\10%				
5	100k\0.1%	抽检			
6	1k\0.1%	1 个	测量阻容值是否在标称值的精度范围		
7	2.4k\ 0.1%				
8	0.1uF\ 20%				
	8.2k\ 1%	全检			
9	发光二极管(D1,D7)		二极管功能是否具备 (是否能发光)	·	

1.2 焊接

通过位号丝印,找出关键元器件,分清楚温度采样电路、比较器电路、方波发生器电路,LED电路和蜂鸣器电路的位置。

复杂的电路,可按照功能分布,先焊接,后调试。对于此温度报警器电路,可对应器件清单焊接电路,全部焊接完后,再进行调试。

焊接注意事项:

- 1、 从矮器件到高器件, 从贴片到插件。
- 2、 电解电容、二极管等有极性的元器件不能焊反。
- 3、三极管的脚位, c、b、e 和封装中的对应上。
- 4、芯片的1脚和封装对应焊接。
- 5、插针 J1, 短针插入板中, 长针露出接杜邦线。
- 6、 插座 USB, 长针插入小板后, 穿过大板, 在小板 top 面和大板 bottom 面双面焊接。
- 7、焊接 PTC 时,有三条连接线,只需要焊接一条红线和白线,白线焊在 GND 端,多余的一条 红线剪断。
- 8、焊接的过程中,焊完以后需要用万用表的通断档位检查:被焊的器件本体的脚和其连接的另外一端的器件管脚的焊盘,是否连通。
- 9、观察: 焊接管脚处和其他相近管脚是否有连锡。

插针 J1 和 USB 插座的信号排布:

Vin: 温度信号差分放大输出电压

Vcp: 36 摄氏度时对应的电压

Vm1: 比较器第一级运放输出

Vo1: 比较器输出, 高温判断信号

Vc1: 方波发生器反相输入端电压 Vc2: 方波发生器同相输入端电压 Vm2: 方波发生器第一级运放输出

Vsq1: 方波发生器输出 VCC+: 正电源输入 GND: 0 电位, 地

二、调试指导

2.1 预期功能

- 1、当温度高于 36 摄氏度时,以 800Hz 的频率驱动蜂鸣器发声,并亮红灯。
- 2、Micro USB 5V 供电

2.2 调试过程

调试前再次仔细检查 PCB 的焊接,注意直插元器件管脚要剪短剪齐。仔细阅读如下**步骤 2.2.1-2.2.7**,并按照步骤进行调试,遇问题可以参考 六、原理图附件 进行分析。

2.2.1 调试电源电路

- 1、使用跳线帽将 SW1 短路。
- 2、用万用表测量+5V 和 GND 的阻抗,如果阻抗接近零(不足 1Ω)说明电源和地短路,要重新检查 PCB,是否发生了短路。
- 3、设置直流稳压电源 DP832A,第一个通道输出+5V,电流限流设置为 0.5A。
- 4、使用长杜邦线连接外置电源+5V和GND,到 J1插针对应的管脚 VCC+和GND上;
- 5、打开电源,分别观察 D1 的现象,并记录下来。
- 6、关闭电源。

2.2.2 调试温度采样放大电路

- 1、连接电源的杜邦线,打开电源+5V,在常温下,测试 Vin 电压值,是否为 1.8V 左右?
- 2、用**手心握紧 PTC** 电阻的金属检测部分,观察 Vin 电压的变化,是否慢慢变化到 2V 以上?
- 3、如是, 电路 OK, 关闭电源。

2.2.3 比较器电路

- 1、连接电源的杜邦线,打开电源+5V,**在常温下**,使用示波器探头,测试 Vin 和 Vo1 的波形,并记录下来。
- 2、用**手心握紧** PTC 电阻的金属检测部分,观察 Vin 电压的变化,当 Vo1 变化后,测试 Vin 和 Vo1 的波形,并记录下来。

- 3、描述现象,并根据现象,判断温度报警器逻辑是否正确。
- 4、关闭电源。

2.2.4 调试方波发生器电路

1、连接电源的杜邦线,打开电源+5V,使用示波器测试下面信号: Vc1 和 Vm2 的波形, Vm2 和 Vsq1 波形,读取频率、幅值大小,并记录下来。(坐标纸画图,要求有时间刻度,幅值刻度,大小)。

分析波形是否正确,如果有异常,请查找原因并分析。

2、关闭电源。

2.2.5 LED 电路

- 1、连接电源的杜邦线,打开电源+5V,**在常温下**。观察报警灯 D7 或者 D8 的发光状态。描述所观察到的现象,并分析是否正确。
- 2、用**手心握紧 PT**C 电阻的金属检测部分,经过一段时间后,观察报警灯 D7 或者 D8 的发光状态。描述所观察到的现象,并分析是否正确。
- 3、关闭电源。

2.2.6 蜂鸣器电路

- 1、连接电源的杜邦线,打开电源+5V,**在常温下**。观察蜂鸣器的状态。描述所观察到的现象,并分析是否正确。
- 2、用**手心握紧 PT**C 电阻的金属检测部分,经过一段时间后,观察蜂鸣器状态。描述所观察到的现象,使用示波器测试 Vin 和 U6 的 1 脚电压波形(坐标纸画图,要求有时间刻度,幅值刻度,大小)。并分析是否正确,如有异常,请分析原因。
- 3、关闭电源。

2.2.7 USB 供电

使用 MicroUsb 接口供电,测试温度报警器功能是否正常。

三、功能指标测试

调试过程中将测试数据记录在表格 3 中,按要求对关键波形拍照备检。

表 3 温度报警器测试项目

编号	功能电路	测试项目	测量值(有 效值 RMS)	结论 pass or fail
1	电源电路	将 SW1 短路,测量并记录+5V、GND 之间的阻抗。(不上电)		
2 电源电路	在 常温 下,记录直流电源 DP832A 的输出电压和输出电流。			

3	温度采样放	在 常温 下,测量 Vin 电压值。	
4	大电路	手心握紧 PTC 电阻的金属检测部分,测量 Vin 电压值。	
5	5 比较器电路 6	在常温下 ,测试 Vin 和 Vol 的波形(截图,要求显示电压幅值大小)。	
6		手心握紧 PTC 电阻的金属检测部分,当 Vol 变化后,测试 Vin 和 Vol 的波形(截图,要求显示电压幅值大小)。	
7	->	记录方波 Vm2 频率,判断是否在 800Hz±15%?如否,请先按表 1 核对 PCB 上焊接的器件,根据表 2 测量值在空白处分析可能的原因。	
8	方波发生器 电路	记录 Vc1 和 Vm2 的波形(截图,要求显示频率和电压幅值大小)。	
9		记录 Vm2 和 Vsq1 波形(截图,要求显示频率和电压幅值大小)。	
10	LED 驱动电	在常温下, 记录报警灯 D7 和 D8 的发光状态。	
11	路	手心握紧 PTC 电阻的金属检测部分一段时间后,记录报警灯 D7 和 D8 的发光状态。	
12		在常温下, 记录蜂鸣器状态。	
13	■ 蜂鸣器驱动 ■ 电路	手心握紧 PTC 电阻的金属检测部分一段时间后,记录蜂鸣器 状态。	
14		手心握紧 PTC 电阻的金属检测部分一段时间后,测试 Vin 和蜂鸣器电压(U6的1脚)波形。(截图,要求显示频率和电压幅值大小)。	
15	USB 供电电 路	使用 MicroUsb 接口供电,测试温度报警器功能是否正常。	
16	机壳安装	机壳安装是否正确、紧固。	

四、装配

图 7 亚克力外壳图

图 8 安装螺钉、螺柱图

图 9 螺柱安装图

8个红色箭头: M3*6 的螺钉; 4个蓝色箭头: M3*6+13 的双通螺柱; 4个绿色箭头: M3*6+6 的单通螺柱。

五、整体照片

六、原理图附件

6.1 电源部分

电源电压: VCC+=5V

图 1 电源部分原理图

6.2 温度检测电路

J2和J3为PTC的两脚位

Vin: 温度信号差分放大输出电压

图 2 温度采样和放大调理电路原理图

Vcp: 36 摄氏度时电压 Vcp

Vol: Vin 和 Vcp, 比较后, 得到的高温判断信号。

图 3 高温判断电路原理图

6.3 方波发生器电路

Vc1: 反相输入端电压 Vc2: 同相输入端电压 Vsq1: 方波电压

图 4 方波发生器电路原理图

6.4 指示灯

Vol: 高温判断信号 D8 和 D7 只焊一个

图 5 LED 驱动电路原理图

6.5 蜂鸣器电路

Vsq1:方波电压 Vo1:高温判断信号

图 6 蜂鸣器驱动电路原理图