Topics to discuss

Accounting Method

Example 2: Incrementing

binary Number

Example 2: Incrementing a binary number

Considered the problem of implementing a k-bit binary counter that counts upward from 0.

Pseudo code:

INCREMENT (A)

```
1) i=0
2) while i < A. length and A[i] ==1
3) A[i] = 0
4) i = i+1
5) If i < A. length
A[i] = 1
```

Amortized cost:

2 for setting a bit to 1. 0 for setting a bit to 0.

Counter	A[3]	A[2]	A[i]	A[0]	Amortized cost	Actual Cost	credit
0	0	0	0	D	O	O	Q
1	0	0	٥	l	2	1	1
2	0	0	l	σ	2	2	1+0 = 1
3	0	0	ι	1	2		1+1=2
4	O	1	0	O	(2	3	2-1=1
5	0	l	0	1	2_	1	1+1=2
6	0	1	ı	0	2	2	2 +0 =2
7	0	1	1		2	1	2+1=3
8	1	0	0	0	2/	4	3-2=1

Analysis for increment oberation, We Know, (Asymptofic Analysis) = 0(nk) \(\pi \) (n²) Total Amortized cost = $\sum_{i=1}^{n} C_i$ (for n increment) And, = (0+2+2+2+2+2+2+2) [for 8 increment] = 2 × 8 (for 8 increment) $= 2 \times n \quad (for n increment)$ = 0(n)

Follow Now

Start Practicing

i._am._arfin

Arfin Parween