Bap. 1 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.10; h = 2.40.$

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	14.48	5.16	8.95	8.63	14.83	8.52	7.51	20.83	0.56	6.58	2.35	11.43	8.52	5.08	15.07	12.18	18.40
X	5	2	4	5	3	6	3	2	4	3	4	5	3	6	5	6	8
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	3.57	11.71	5.96	13.63	16.74	23.72	2.94	0.72	14.49	7.28	10.79	15.40	6.04	11.06	9.57	16.30	3.14
X	5	1	7	5	2	3	3	4	2	3	4	5	4	5	4	7	4
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	9.89	3.78	10.78	2.02	11.58	22.73	7.97	9.33	19.05	21.40	2.39	12.27	1.40	13.16	8.09	15.35	
X	6	3	5	5	2	5	6	5	6	3	7	6	3	6	5	3	

Bap. 2 (83832020)

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.01$: h = 3.10.

Ia	олица	1 ($x_1 - 0.0$	n, n-	0.10.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	4.37	19.31	14.13	4.02	5.48	13.91	16.58	21.35	1.02	7.70	14.75	3.98	3.44	2.82	10.26	5.15	13.22
X	1	1	5	0	3	5	6	0	4	3	5	6	0	0	4	0	1
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	12.69	8.65	9.29	13.78	2.57	3.64	0.38	13.51	8.14	10.38	0.17	20.55	14.21	5.92	4.27	7.38	6.06
X	3	4	4	3	4	0	3	3	6	1	4	5	2	5	6	3	6
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	8.07	10.60	1.71	17.02	1.05	7.65	14.31	11.95	6.61	9.16	13.11	9.58	12.27	4.82	0.03	10.77	
X	3	2	6	1	6	2	0	3	5	0	1	1	1	1	4	5	

Bap. 3 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.02$; h = 2.60.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	18.00	6.55	7.43	10.31	1.88	5.52	12.23	1.30	16.46	10.75	4.77	17.73	9.50	0.86	3.81	11.78	1.89
X	5	4	1	5	3	3	1	4	4	0	4	5	1	4	6	1	2
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	2.95	1.43	3.64	11.55	6.44	20.99	12.28	19.92	3.60	5.57	5.31	18.08	0.21	6.55	6.15	9.25	8.24
X	2	0	4	6	5	0	5	6	1	2	0	3	5	5	1	6	2
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	14.94	0.43	6.12	6.98	9.37	17.23	12.83	10.25	14.41	22.18	12.93	2.18	15.77	11.40	14.76	6.69	
X	5	4	6	2	1	1	4	4	2	4	5	4	4	5	5	0	

Bap. 4 (83832020)

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.20$: h = 2.50.

Ia	олица	1 ($x_1 = 0.2$	20, n =	2.50.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	7.82	12.96	12.71	7.57	13.74	17.53	10.19	2.10	5.59	6.46	6.60	10.14	7.36	5.67	10.66	5.64	6.90
X	3	4	2	2	2	4	0	1	1	1	1	1	1	3	3	1	3
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	5.86	0.92	1.36	8.72	1.17	2.84	13.95	11.13	6.70	14.67	8.70	1.63	7.54	0.43	10.25	9.00	7.06
X	3	1	2	2	2	3	2	4	1	1	1	2	2	2	1	2	2
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	0.31	7.12	16.98	1.83	1.93	11.81	3.07	7.10	0.91	1.36	4.58	0.81	3.68	21.04	2.23	4.94	
X	1	1	3	1	1	3	3	1	2	1	4	2	4	1	3	3	

Bap. 5 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.01; h = 0.94.$

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	9.59	11.11	11.39	11.57	9.54	8.95	11.37	10.28	10.76	10.53	9.65	10.14	10.64	9.28	10.00	9.42	10.71
X	5	6	2	2	5	4	4	3	4	5	1	7	5	1	7	7	2
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	10.08	11.58	11.20	9.55	10.76	9.55	11.46	10.44	10.76	10.52	11.19	9.36	8.94	12.34	10.73	10.27	8.56
X	1	0	5	7	6	2	7	4	4	5	2	4	4	5	4	1	7
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	9.73	11.78	11.20	10.02	10.71	11.14	11.91	9.38	9.84	12.05	11.94	10.38	12.06	10.78	9.48	10.26	
X	3	2	7	6	1	6	3	7	0	2	1	2	4	1	0	5	

Bap. 6 (83832020)

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.10$: h = 1.20.

La	олица	1 ($\iota_1 - 0.$	$\iota \iota \iota \iota$, $\iota \iota \iota$ —	1.20.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	14.72	10.67	9.75	12.20	14.81	12.34	13.32	13.74	13.51	9.96	16.49	12.35	11.92	12.95	12.58	15.11	12.43
X	2	2	1	2	1	3	2	2	2	2	1	0	2	2	2	1	0
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	11.99	12.36	15.16	14.78	11.02	10.98	11.11	11.80	12.90	12.60	12.45	10.56	11.83	12.93	13.75	11.36	12.02
X	1	1	1	2	2	2	3	1	2	1	1	1	1	0	1	1	3
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	11.44	13.34	12.82	12.12	13.73	12.03	9.77	11.75	15.51	13.01	13.01	14.64	12.14	12.91	11.06	15.28	
X	0	1	1	2	2	1	2	1	1	1	2	2	1	1	0	3	

Bap. 7 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	14.20	6.71	3.69	9.60	5.51	5.64	8.91	9.24	4.12	12.17	10.30	3.71	5.55	12.58	7.30	10.57	19.10
X	5	9	7	2	9	2	9	3	2	6	6	3	3	9	8	6	9
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	13.40	6.01	14.84	8.39	10.31	10.89	13.97	8.58	7.10	11.41	5.68	10.45	12.24	9.51	6.74	4.37	12.26
X	5	8	3	0	8	9	9	0	7	8	0	5	0	5	0	3	0
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	9.87	14.01	12.06	5.38	10.35	8.99	8.55	12.78	11.33	12.67	8.10	6.03	5.91	7.39	6.06	14.49	
X	0	8	1	9	4	9	9	0	7	9	0	6	4	0	0	3	

Bap. 8 (83832020)

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.05$: h = 1.70.

Ia	олица	1 ($x_1 - 0.0$	n, n-1	1.10.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	8.89	10.33	8.22	12.15	6.60	7.65	8.64	4.05	6.68	2.27	10.63	5.70	8.92	4.59	10.82	11.09	2.14
X	3	2	1	2	0	2	3	1	1	2	3	3	3	3	2	0	3
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	6.63	8.02	6.99	8.28	7.01	4.09	8.52	5.48	9.92	7.35	9.92	10.16	10.49	9.10	7.29	5.29	5.06
X	1	1	2	2	3	2	1	1	4	2	2	2	1	1	1	1	3
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	8.32	7.64	10.25	9.02	8.92	4.98	8.33	6.61	9.19	11.52	9.74	6.55	5.67	6.01	4.57	2.29	
X	2	2	3	4	4	3	3	4	3	2	2	3	2	3	1	2	

Bap. 9 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.02$; h = 2.70.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	8.78	12.56	11.31	10.04	10.19	16.30	12.25	17.77	11.43	9.58	2.84	3.19	7.68	14.46	16.78	4.09	11.98
X	1	0	5	0	2	1	1	5	3	1	2	1	3	3	3	0	0
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	7.14	15.46	2.34	7.63	1.11	8.03	2.54	21.25	9.24	15.07	11.07	5.77	10.87	0.18	5.94	5.61	4.19
X	0	0	4	5	5	2	2	0	3	3	4	1	2	0	1	2	0
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	14.34	6.95	3.30	20.44	8.09	1.12	2.73	14.64	5.88	22.48	11.54	5.87	9.68	23.20	17.77	6.62]
X	3	5	1	3	3	0	4	1	1	2	0	3	5	2	3	5	

Bap. 10 (83832020)

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.02$: h = 1.90.

Ia	олица	1 ($x_1 - 0.0$	02, n-	1.30.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	10.65	5.01	9.96	4.70	8.05	3.04	10.04	6.46	8.29	8.35	8.14	5.79	2.76	5.28	5.48	10.26	7.96
X	5	3	6	3	5	7	2	7	8	3	6	7	0	7	1	6	3
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	13.13	4.75	3.36	4.93	2.78	9.98	11.59	6.77	7.10	6.37	6.23	3.17	8.36	11.04	13.22	10.51	8.58
X	1	0	2	4	6	6	6	6	8	0	7	6	6	7	6	5	5
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	4.77	9.12	4.91	11.85	5.13	7.04	11.02	10.28	5.02	5.35	6.57	1.96	6.72	6.59	5.44	6.06	
X	6	8	8	7	7	8	2	1	1	3	7	5	4	5	1	2	

Bap. 11 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	1.08	3.71	3.58	8.07	3.98	12.42	0.43	13.39	4.21	8.77	3.55	17.79	3.57	10.62	0.20	0.16	12.81
X	4	3	2	5	1	3	3	3	2	4	4	3	3	4	2	3	4
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	11.04	9.16	14.28	1.20	3.42	10.08	16.24	11.39	15.08	11.25	3.90	6.67	12.86	11.36	7.93	4.30	4.67
X	3	4	0	2	2	3	3	2	1	3	1	4	3	3	5	4	1
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	12.64	0.30	0.22	14.61	9.90	12.03	5.42	8.60	9.04	2.91	10.18	10.86	6.72	14.12	7.73	1.82	
X	2	2	5	3	2	1	3	5	2	4	2	1	1	2	4	0	

Bap. 12 (83832020)

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.20$: h = 1.40.

Ia	олица	1 ($x_1 - 0.2$	20, n -	1.40.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	9.60	6.02	3.23	8.41	3.63	8.25	6.25	7.48	7.61	5.64	4.40	4.09	7.04	8.93	6.02	8.49	7.08
X	1	3	0	3	1	2	1	2	1	2	2	3	1	2	1	3	2
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	7.58	8.20	7.47	7.47	6.60	7.14	5.18	3.54	5.28	5.77	4.90	4.67	5.70	6.88	4.53	7.26	8.18
X	1	1	1	2	3	2	1	3	1	1	1	3	1	0	1	1	3
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	5.22	11.85	8.58	2.82	2.43	3.65	6.67	8.08	6.76	4.47	4.04	8.61	9.39	8.38	4.79	9.56	
X	1	3	2	1	2	1	2	2	1	0	2	1	2	1	1	2	

Bap. 13 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.10; h = 0.88.$

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	10.74	8.97	8.92	10.05	10.22	8.26	11.01	7.10	9.34	10.15	8.96	9.52	8.69	8.71	11.63	11.12	11.09
X	5	2	2	4	4	3	5	2	2	4	1	1	0	2	3	1	5
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	9.69	10.93	10.78	10.38	8.71	9.73	10.50	9.07	10.18	9.27	8.28	8.96	9.29	9.42	10.50	9.04	7.94
X	0	5	4	2	2	0	2	0	3	0	0	4	5	1	4	2	5
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	9.40	9.55	9.92	9.83	8.96	8.54	8.64	9.87	9.00	10.39	11.22	10.05	9.28	9.89	8.83	9.36	
X	5	3	1	3	1	0	3	3	2	5	5	2	2	5	2	4	

Bap. 14 (83832020)

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.10$: h = 2.50.

Ia	олица	1 ($x_1 - 0$.	10, n-	4.00.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	23.74	16.68	12.46	13.55	5.57	19.59	4.82	8.19	20.10	23.39	20.99	9.69	1.63	4.79	17.47	28.91	12.09
X	2	1	2	2	1	1	0	0	2	1	1	0	0	1	2	0	0
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	14.36	9.68	22.79	22.29	25.24	11.39	12.52	2.74	14.86	13.04	7.28	13.95	9.64	4.13	7.05	13.26	9.97
X	2	0	0	0	0	1	2	0	2	0	1	1	1	2	1	2	1
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	25.11	6.82	2.68	1.83	6.49	12.73	0.27	10.93	9.36	3.86	13.75	1.61	16.23	9.89	9.37	8.74	
X	1	2	2	1	1	1	0	2	2	0	1	1	0	2	1	0	

Bap. 15 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.05; h = 2.70.$

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	24.64	15.30	20.44	6.97	17.50	24.21	13.82	12.93	9.01	9.78	0.90	12.61	2.86	11.88	0.07	3.79	3.08
X	3	1	2	2	4	0	4	1	0	1	1	2	4	1	2	3	0
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	19.98	16.80	0.39	22.39	15.65	6.41	6.23	19.75	5.84	20.00	13.51	17.97	17.80	10.52	11.46	4.94	6.22
X	0	0	3	0	3	0	4	2	3	3	0	0	1	0	0	4	4
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	16.59	18.49	6.72	14.50	18.16	3.13	25.48	17.29	10.15	13.50	5.48	15.24	23.87	5.84	0.38	17.24	
X	3	4	3	1	3	2	2	1	0	2	2	0	3	1	2	0	

Bap. 16 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.02$: h = 1.90.

Ia	олица	1 ($x_1 - 0.0$	$j_2, n -$	1.50.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	5.96	6.75	13.25	4.06	9.24	2.81	0.85	7.82	4.28	10.53	15.70	1.68	1.03	9.11	9.75	5.31	4.80
X	0	7	8	5	0	6	8	4	6	1	5	2	3	8	6	5	6
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	9.37	6.91	5.48	9.65	11.49	4.49	4.10	6.32	12.25	9.57	3.19	9.38	1.84	4.60	6.53	0.51	0.68
X	3	1	7	8	0	2	4	0	2	7	2	5	8	5	5	1	6
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50]
Y	3.86	8.64	5.51	7.33	7.38	3.91	9.00	4.23	4.98	1.32	5.21	10.12	8.42	0.73	8.93	6.05]
X	2	1	6	1	7	4	2	0	7	5	0	5	3	7	5	2	

Bap. 17 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1	$\alpha_1 = 0.02; h = 1.90.$
-----------	------------------------------

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	4.76	12.33	8.71	4.39	2.86	1.99	3.96	6.39	6.41	2.83	7.58	5.63	4.96	7.62	8.04	5.22	6.24
X	3	4	3	4	4	1	1	3	2	1	3	4	4	3	2	4	4
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	15.54	7.29	8.32	1.63	6.62	6.67	6.69	4.75	6.89	4.73	0.68	5.97	3.47	12.23	10.32	5.52	6.42
X	3	4	5	3	3	2	4	4	3	2	2	4	2	5	2	4	3
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	6.66	11.04	5.11	10.58	3.04	2.73	7.87	9.46	6.18	4.07	9.32	8.31	9.90	8.61	5.59	4.30	
X	3	3	4	3	3	4	3	2	0	4	5	3	0	1	4	2	

Bap. 18 (83832020)

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.10$: h = 2.80.

La	олица	1 ($x_1 - 0$.	10, n -	2.00.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	18.13	35.07	11.95	12.34	15.09	25.97	6.23	6.98	9.33	1.72	3.30	20.49	6.83	3.13	22.18	5.01	15.22
X	5	5	4	3	6	2	2	4	0	0	2	1	5	0	5	6	4
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	22.14	6.78	12.35	2.10	9.48	12.63	8.68	28.42	39.03	17.77	19.11	12.83	17.75	4.25	15.10	0.14	18.32
X	0	3	5	3	3	2	1	0	5	2	0	6	3	4	2	2	1
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	13.17	12.72	16.93	23.14	23.04	20.18	3.57	7.98	21.42	10.50	5.87	19.63	17.04	17.21	28.83	9.45	
X	0	4	1	6	4	0	5	4	3	5	2	5	4	3	1	3	

Bap. 19 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.02; h = 2.10.$

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	9.93	10.61	13.04	15.09	9.64	8.92	10.23	12.13	14.08	4.04	7.33	8.77	3.34	8.58	9.47	0.71	4.71
X	3	0	8	3	7	7	1	5	5	7	6	2	5	2	3	1	5
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	13.01	12.12	6.53	7.22	12.13	9.15	3.57	2.57	9.67	8.45	10.11	14.75	13.94	10.12	7.93	7.78	1.59
X	8	2	0	0	8	6	5	2	7	4	3	0	1	8	8	6	4
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	8.90	14.50	11.09	11.81	8.70	9.43	8.39	13.07	5.87	12.07	4.81	11.39	17.77	15.71	13.66	15.05	
X	0	6	3	0	5	2	1	8	2	7	2	1	0	6	0	0	

Bap. 20 (83832020)

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.10$: h = 2.70.

La	олица	1 ($x_1 - 0.$	10, n-	4.10.												
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	6.69	3.93	6.13	11.03	24.12	16.62	4.44	10.26	2.21	5.20	2.68	6.42	1.45	8.34	22.63	7.84	9.87
X	1	3	1	0	1	2	3	2	4	0	4	1	4	1	3	3	0
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	11.99	2.81	4.90	2.44	16.76	8.48	2.76	6.95	10.24	19.61	5.81	7.25	8.81	8.93	3.58	3.08	10.04
X	0	0	1	3	1	2	3	3	2	3	2	4	1	4	4	0	3
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	0.14	3.49	7.54	14.73	12.49	21.97	3.35	5.30	16.62	4.49	10.45	16.45	6.58	6.64	11.58	4.30	
X	2	1	4	2	0	3	2	4	3	4	3	2	1	4	0	0	

Bap. 21 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.01; h = 2.70.$

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	4.10	6.31	14.39	15.25	20.19	8.99	8.60	9.13	13.72	14.34	12.26	18.39	13.73	15.69	10.93	9.76	18.98
X	2	3	3	1	3	3	2	2	1	1	2	2	3	3	1	1	4
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	5.15	24.80	10.66	13.40	15.00	16.23	12.24	10.58	21.55	11.66	15.24	15.42	11.15	5.71	16.75	5.86	23.01
X	2	1	1	1	2	2	2	3	2	2	3	2	3	1	3	2	2
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	13.20	2.59	21.06	3.84	14.77	30.23	3.30	3.70	23.37	13.68	15.04	4.19	8.83	9.91	4.31	16.19	
X	3	3	3	2	3	3	3	4	2	3	3	1	4	3	3	2	

Bap. 22 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблина 1 $\alpha_1 = 0.01$: h = 2.70.

таолица 1 $\alpha_1 = 0.01, h = 2.70.$																	
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	13.16	12.17	7.70	8.55	13.36	12.98	3.35	2.26	4.17	10.78	21.52	0.83	5.32	17.85	10.86	6.63	0.87
X	1	3	8	2	6	4	4	4	3	1	8	6	8	0	0	5	5
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	10.37	19.14	1.43	10.62	6.64	22.53	6.19	7.17	8.86	6.60	0.94	13.86	3.94	19.46	0.15	8.64	2.91
X	5	1	0	7	7	9	5	9	0	6	4	2	7	7	2	6	4
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	15.79	9.43	4.10	4.22	18.95	3.73	9.93	2.89	1.38	13.99	0.87	11.42	9.16	15.05	10.35	23.03	
X	2	0	4	1	7	8	7	9	1	7	3	7	1	3	6	9	

Bap. 23 (83832020)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1	$\alpha_1 = 0.10; h = 3.00.$
-----------	------------------------------

No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	5.96	9.55	10.54	6.43	17.52	9.86	5.11	3.45	14.99	2.70	11.05	17.49	3.79	12.30	4.91	9.76	6.50
X	4	3	3	4	6	0	2	5	4	7	3	4	3	5	2	2	3
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	22.16	2.20	14.53	4.77	18.85	13.68	6.07	0.05	1.51	6.97	6.55	0.55	14.37	11.23	12.52	13.92	18.33
X	2	3	4	3	6	5	3	2	4	2	3	2	3	4	4	3	1
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	2.35	8.86	2.15	24.09	17.61	6.96	5.68	5.82	8.65	6.36	14.05	12.20	8.01	1.86	13.28	8.46	
X	6	3	3	3	4	4	5	3	6	3	4	6	3	4	3	5	

Bap. 24 (83832020)

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- **2.** Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- **4.** Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- **5.** Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров $\beta_1, \beta_2, \beta_3$ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

Таблица 1 $\alpha_1 = 0.01$; h = 2.80.

Ia	1400111144 1 $\alpha_1 = 0.01, n = 2.00.$																
No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Y	8.14	9.78	9.71	16.49	10.15	14.15	2.72	14.32	12.12	0.67	15.67	15.94	4.64	11.89	23.61	17.09	3.15
X	4	2	3	4	2	4	3	4	5	5	4	5	2	3	5	3	3
No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
Y	15.68	13.29	10.01	8.18	10.76	2.88	1.75	14.76	0.84	11.69	15.10	8.36	3.46	0.64	12.99	3.66	7.00
X	5	5	5	5	3	4	5	4	4	7	4	3	6	6	4	6	7
No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
Y	12.97	11.61	4.80	11.44	4.73	11.86	7.34	7.43	27.37	7.44	9.41	18.49	3.22	2.55	6.53	16.50	
X	6	5	4	5	5	3	6	4	4	4	6	5	5	5	4	3	