Circular statistics in cognitive psychology: A short introduction

Jolien Cremers

Section of Biostatistics, University of Copenhagen Statistics Denmark jcre@sund.ku.dk

February 8th, 2020

What is circular data?

A variable θ defined on $[0,2\pi)$ radians or [0,360) degrees:

Three different types of circular data

- ▶ Directions in 2D space / Compass data
- ► Time of day / clock times
- Circular measurement scales

Directions in 2D space / compass data

Spatial cognition:

- Brunyé, T. T., Burte, H., Houck, L. A., & Taylor, H. A. (2015). The map in our head is not oriented north: Evidence from a real-world environment.
- Postma, A., Zuidhoek, S., Noordzij, M. L., & Kappers, A. M. (2008). Keep an eye on your hands: on the role of visual mechanisms in processing of haptic space.

Eye movements:

Mulder, K., Klugkist, I., van Renswoude, D., & Visser, I. (2020). Mixtures of peaked power Batschelet distributions for circular data with application to saccade directions.

Time of day / clock times

Phase difference:

Puglisi, G., Leonetti, A., Landau, A., Fornia, L., Cerri, G., & Borroni, P. (2017). The role of attention in human motor resonance.

Time of day:

- Rocchi, M. B., & Perlini, C. (2002). Is the time of suicide a random choice? A new statistical perspective.
- Brunsdon, C., & Corcoran, J. (2006). Using circular statistics to analyse time patterns in crime incidence.

Circadian rhythms:

Peeters, F., Berkhof, J., Delespaul, P., Rottenberg, J., & Nicolson, N. A. (2006). Diurnal mood variation in major depressive disorder.

Circular measurement scales

Rose of Leary:

Leary, T. (1958). Interpersonal diagnosis of personality.

Interpersonal circumplex:

► Gurtman, M. B. (2009). Exploring personality with the interpersonal circumplex.

Why do we need different analysis methods?

Circular summary statistics

Circular mean direction

$$\bar{\theta} = \begin{cases} \tan^{-1}\left(\frac{\sum_{i=1}^n \sin\theta_i}{\sum_{i=1}^n \cos\theta_i}\right) & \sum_{i=1}^n \sin\theta_i > 0, \sum_{i=1}^n \cos\theta_i > 0 \\ \tan^{-1}\left(\frac{\sum_{i=1}^n \sin\theta_i}{\sum_{i=1}^n \cos\theta_i}\right) + \pi & \sum_{i=1}^n \cos\theta_i < 0 \\ \tan^{-1}\left(\frac{\sum_{i=1}^n \sin\theta_i}{\sum_{i=1}^n \cos\theta_i}\right) + 2\pi & \sum_{i=1}^n \sin\theta_i < 0, \sum_{i=1}^n \cos\theta_i > 0 \end{cases}$$

Mean resultant length

$$R = \sqrt{\left(\sum_{i=1}^{n} \cos \theta_{i}\right)^{2} + \left(\sum_{i=1}^{n} \sin \theta_{i}\right)^{2}}$$
$$\bar{R} = R/n$$

- 1 = All datapoints have the same value
- $0 \neq$ uniform, e.g. bimodality at exactly opposite parts of the circle $(0^{\circ}, 180^{\circ})$ also leads to a zero value.

Other summary statistics

- ightharpoonup circular variance, $V=1-\bar{R}$
- circular standard deviation $v = -2 \log(1 V)^{0.5}$
- circular median direction
- circular modal direction

see Fisher (1995) for an overview.

Circular distributions

Three classes:

- Intrinsic distributions (e.g. von Mises)
- Wrapped distributions $(\theta \sim N(\mu, \sigma) \mod 2\pi)$
- Projected distributions $(0 (\sin \theta, \cos \theta)^t \mathbf{v})$

$$(\theta = (\sin heta, \cos heta)^t = \mathbf{y} \sim \mathit{N}_2(oldsymbol{\mu}, oldsymbol{\Sigma})/||oldsymbol{y}||)$$

Intrinsic distributions

Directly defined on the circle, e.g.:

von Mises distribution

$$f(\theta) = [2\pi I_0(\kappa)]^{-1} \exp[\kappa \cos(\theta - \mu)]$$

mean direction $=\mu$

concentration parameter = κ

mean resultant length = $A_1(\kappa) = I_1(\kappa)/I_0(\kappa)$, see Fisher (1995)

Wrapped distributions

Projected distributions

Projected distributions

Instead of inference on the circular outcome, θ , directly we perform inference on underlying bivariate data, Y $\sim N(\mu, I)$.

- Advantage: flexible approach, make use of already existing models for bivariate linear data.
- ▶ Disadvantage: Y and r are latent, need special inference methods (EM algorithm (Presnell, Morrison, & Littell, 1998) or data augmented MCMC sampling (Nunez-Antonio & Gutierrez-Pena, 2005)).
- Disadvantage: interpretation on two components instead of on circle.

A short example analysis using the R-package bpnreg

Brunyé, T. T., Burte, H., Houck, L. A., & Taylor, H. A. (2015). The map in our head is not oriented north: Evidence from a real-world environment. PLoS One, 10(9), e0135803.

Fit a circular regression model

Estimated circular means for males and females with average age, experience and Santa Barbara Sense of Direction (SBSOD) score:

Estimated mean resultant length for males and females with average age, experience and Santa Barbara Sense of Direction (SBSOD) score:

```
## mean mode sd LB UB
## (Intercept) 0.55 0.56 0.06 0.43 0.65
## sexfemale 0.38 0.38 0.06 0.26 0.50
```

##			mean	mode	sd	LB HPD	UB HPD
##	age ax		166.00	187.14	815.97	-788.58	1026.88
##	experience	ax	-198.54	-148.36	225.27	-590.93	45.05
##	sbsod ax		-140.80	-114.51	61.76	-250.45	-51.63
##	age ac		13.76	85.00	60.89	-76.79	100.48
##	experience	ac	39.38	84.91	71.39	-82.12	102.05
##	sbsod ac		-44.74	-47.95	22.42	-74.67	-15.71
##	age bc		1.36	8.65	13.75	-23.30	24.56
##	experience	bc	-5.90	-16.54	21.30	-37.20	34.70
##	sbsod bc		23.70	22.74	11.11	9.02	43.29
##	age AS		10.58	-5.24	5148.08	-179.94	143.21
##	experience	AS	-11.55	8.68	1453.90	-341.68	372.51
##	sbsod AS		18.99	12.49	605.77	4.19	27.17
##	age SAM		-35.50	-5.21	1599.56	-206.92	162.68
##	experience	\mathtt{SAM}	0.33	8.87	2131.26	-398.87	477.85
##	sbsod SAM		13.85	11.81	32.38	5.03	21.35
##	age SSDO		-6.58	-53.40	51.71	-66.49	65.19
##	experience	SSDO	21.29	67.12	66.73	-84.29	87.65
##	${\tt sbsod} \ {\tt SSDO}$		-69.12	-72.24	24.94	-92.14	-54.15

Interpretation of coefficients, see Cremers, Mulder, & Klugkist (2018).

Location

Linear analysis:

Group 1 mean: 7.623Group 2 mean: 7.601Group 3 mean: 8.026

Circular analysis:

Group 1 mean: 7.625Group 2 mean: 7.613

Group 3 mean: 7.632

Accuracy

Linear analysis:

- Scores converted to 0-180 degree scale, deviance from correct time
- linear regression
- heterogenous regression models

Circular analysis:

- Models that allow for simultaneous modelling of mean and variance (heterogenous)
- Projected normal regression (available in R-package 'bpnreg')
- Heterogenous von Mises models

Linear analysis:

- Careful with scale and results
- Analysis methods easily available

Circular analysis:

- Often quite similar to linear analysis
- Scale is correct
- Analysis methods not always readily available

Software

- R-packages:
 - circular: general purpose package
 - bpnreg: Bayesian circular regression and mixed-effects models based on projected normal distribution
 - circglmbayes: Bayesian circular regression based on von Mises distribution
 - CircSpaceTime: Bayesian spatial and spatio-temporal models.
- Other:
 - CircStat: general purpose MATLAB toolbox

Suggested literature

Introductory

- ▶ Batschelet (1981). Circular statistics in biology.
- Fisher (1995). Statistical analysis of circular data.
- ▶ Pewsey, Neuhäuser & Ruxton (2013). Circular statistics in R.
- Ley & Verdebout (Eds.). (2018). Applied directional statistics: Modern methods and case studies.
- Cremers & Klugkist (2018). One direction? A tutorial for circular data analysis using R with examples in cognitive psychology.
- Advanced (requires mathematical background)
 - Pewsey & García-Portugués (2020). Recent advances in directional statistics.
 - Mardia & Jupp (2000) Directional statistics.
 - ▶ Ley & Verdebout (2017). Modern directional statistics.

References

Cremers, J., Mulder, K., & Klugkist, I. (2018). Circular interpretation of regression coefficients. *British Journal of Mathematical and Statistical Psychology*, 71(1), 75–95. doi:10.1111/bmsp.12108

Fisher, N. I. (1995). *Statistical analysis of circular data*. Cambridge: Cambridge University Press.

Nunez-Antonio, G., & Gutierrez-Pena, E. (2005). A Bayesian analysis of directional data using the projected normal distribution. *Journal of Applied Statistics*, *32*(10), 995–1001. doi:10.1080/02664760500164886

Presnell, B., Morrison, S. P., & Littell, R. C. (1998). Projected multivariate linear models for directional data. *Journal of the American Statistical Association*, *93*(443), 1068–1077. doi:10.1080/01621459.1998.10473768