WEEK 12 LONGEST COMMON SUBSEQUENCE MATRIX CHAIN MULTIPLICATION

2024-04-04

LONGEST COMMON SUBSEQUENCE

Common subsequence between 2 sequences

Matching in an ascending order. Some objects might be skipped.

NOT THE LONGEST COMMON SUBSTRING!!!

c a s t c h a r t

Longest common substring Either C, A, or T alone Longest common subsequence
All of CAT

WHEN DO WE USE L.C.S.?

- Find an update between two versions of documents
- Plagiarism check
- DNA sequence comparison

RECURSIVE BACKTRACKING

Bird

- Do we skip the last object of each sequence in a matching
 - Not skip at all
 - Skip for the first sequence
 - Skip for the second sequence
 - Skip both (included in the two cases above)

Friend

 Find the longest common subsequence for the remaining parts of both sequences.

SUBPROBLEMS

- Friends has to solve the smaller problems
 - Find the longest common subsequence for the remaining parts of both sequences.
- If the last object for each sequence has been removed, friends have to solve LCS of the sequences with I object shorter.

TABLE FILLING

- Value in the table at i, j is the length of the longest possible common subsequence for the first i, j objects from sequence 1 and 2 respectively.
- Refer to different cases:
 - Not skip at all (use the last object in both sequences in the matching)
 - Skip for the first sequence
 - Skip for the second sequence

		С	н	A	R	т
-	0	0	0	0	0	0
С	0					
Α	0					
S	0					
Т	0					

Find the longest common subsequence between CAST and CHART

Smallest inputs are when one of the sequences is empty.

		С	н	A	R	T
-	0	0	0	0	0	0
С	0					
Α	0					
S	0					
Т	0					

	-	С	н	A	R	T
-	0	0	0	0	0	0
С	0	I	I	I	I	I
Α	0					
S	0					
Т	0					

		С	н	A	R	т
-	0	0	0	0	0	0
С	0	I	ļ	I	I	I
Α	0	←				
S	0					
Т	0					

- Not skip at all (unavailable since $H \neq A$)
- Skip for the first sequence
 - Refer to C and CA
- Skip for the second sequence
 - Refer to CH and C

		С	н	A	R	т
-	0	0	0	0	0	0
С	0	I	Ι 🔻	. ↑	I	I
Α	0	i	←			
S	0					
Т	0					

- Not skip at all (A = A)
 - Refer to CH and C
 - Add one matching (A = A)
- Skip for the first sequence
 - Refer to CA and CH
- Skip for the second sequence
 - Refer to CHA and C

		С	н	Α	R	Т
-	0	0	0	0	0	0
С	0	I	I	I	I ↑	I
Α	0	I	I	2 ←		
S	0					
Т	0					

- Not skip at all $(R \neq A)$
- Skip for the first sequence
 - Refer to CHA and CA
- Skip for the second sequence
 - Refer to CHAR and C

MAIN EQUATION

 $opt_{i,j} = \max(opt_{i-1,j}, opt_{i,j-1}, opt_{i-1,j-1} + 1)$

	-	С	Н	A	R	Т
-	0	0	0	0	0	0
С	0	I	I	I,	1	I
Α	0	I	I	2←		
S	0					
Т	0					

Exists only when $s_1[i] = s_2[j]$

	-	С	н	A	R	T
-	0	0	0	0	0	0
С	0	I	I	I	I	I
Α	0	I	I	2	2	2
S	0					
Т	0					

		С	н	A	R	T
-	0	0	0	0	0	0
С	0	I	I	I	I	I
Α	0	I	1	2	2	2
S	0	I	I	2	2	2
Т	0					

	-	С	н	A	R	T
-	0	0	0	0	0	0
С	0	I	I	I	I	I
Α	0	I	I	2	2	2
S	0	I	I	2	2	2
Т	0	I	I	2	2	3

TRACE FOR THE OPTIMAL MATCHING

	-	С	н	A	R	т
-	0	0	0	0	0	0
С	0	+	- I 💌	ı	I	I
Α	0	1	ı	2 ←	-2	2
S	0	I	I	2	2	2
Т	0	I	I	2	2	3

- If the value in the cell is the same as the one on top or on the left, it borrows the previous optimal matching with no progress.
- Progress is made only when the reference is from the diagonal direction.
 That is where the object is chosen.

LOOP INVARIANT

• Value in the table at i, j is the length of the longest possible common subsequence for the first i, j objects from sequence 1 and 2 respectively.

	-	С	н	A	R	Т
-	0	0	0	0	0	0
С	0	I	Ι	ſ	I	1
Α	0	-1	-1	2	2	2
S	0					
Т	0					

Length of LCS for CA and CHAR

STRONG INDUCTION PROOF (SKETCH)

Basic step

• We have the optimal matching for the smallest input (when at least one sequence is empty).

Inductive step

- Assume that we have the solution for the optimal matching for every smaller subsequences in the table.
- We have to show that the one-unit-longer input gets the optimal matching as well.

INDUCTIVE STEP

- Assume that we have the solution for the optimal matching for every smaller subsequences in the table.
- There are only 3 cases that the new value will be added to the table.
- In each case, there is a new object added to at least one of the sequences.
 - Both sequences have new object only when these new objects are the same
 - First sequence has new object
 - Second sequence has new object
- Choose the max among all three cases, there is no other way to get better length.

TIME COMPLEXITY

- For two sequences with length m and n, the algorithm has to fill the table with size (m+1)(n+1).
- Task in each step is at most 3, so it is constant.
- Time complexity = O(mn)

MATRIX CHAIN MULTIPLICATION

- Minimize cost of the multiplication, not to get the solution for real.
- Actually, it is working on the size of the matrix, not the multiplication process.

$$\begin{bmatrix} 1 & 3 \\ 2 & -4 \end{bmatrix} \times \begin{bmatrix} 2 & 5 & 7 \\ 4 & 0 & -2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix} \times \begin{bmatrix} 3 & 7 & -2 & 9 \end{bmatrix}$$

RECALL: COST OF MATRIX MULTIPLICATION

- Multiply $A_{m \times n} \times B_{n \times r}$
- There are $m \times r$ elements in the product
- Each of them is the sum of n scalar product pairs.
- Cost of multiplication = $0(m \times n \times r)$

$$\begin{bmatrix} 2 & 5 & 7 \\ 4 & 0 & -2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix}$$

ASSOCIATIVE PROPERTY OF MATRIX MULTIPLICATION

$$(A \times B) \times C = A \times (B \times C)$$

$$A \times B \times C \times D = A \times (B \times C \times D) = (A \times B) \times (C \times D) = (A \times B \times C) \times D$$

$$\begin{bmatrix} 1 & 3 \\ 2 & -4 \end{bmatrix} \times \begin{bmatrix} 2 & 5 & 7 \\ 4 & 0 & -2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix}$$

$$\dim = 2 \times 3$$

$$cost = 2 \times 2 \times 3 = 12$$

$$\dim = 3 \times 1$$

$$cost = 12 + (2 \times 3 \times 1) = 18$$

$$\begin{bmatrix} 1 & 3 \\ 2 & -4 \end{bmatrix} \times \begin{bmatrix} 2 & 5 & 7 \\ 4 & 0 & -2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix}$$

$$\dim = 2 \times 1$$

$$cost = 2 \times 3 \times 1 = 6$$

$$\dim = 3 \times 1$$

$$cost = 6 + (2 \times 2 \times 1) = 10$$

DIFFERENT WAYS TO GET CHAIN MULTIPLICATION

Redundancies of shorter chain multiplications

SUBPROBLEMS

- Once we found the optimal multiplication for first k matrices that is a part of the chain multiplication, we keep it.
- Don't forget that there must be the latter part of the chain that we must take into account in order to get the entire chain.
- Table storing the cost must have all the optimal cost for any chain partition.
- Row i and column j stores the optimal cost for the chain multiplication started at matrix i and ends up with matrix j.

OPTIMAL COST FOR SUBPROBLEMS

OPTIMAL COST TABLE

	A	В	С	D
Α				
В				
С				
D				

Row i and column j stores the optimal cost for the chain multiplication started at matrix i and ends up with matrix j.

- Only the upper half is needed
- The main diagonal is the cost of the chain having only one matrix. Then cost = 0.
- One line above the main diagonal contains the cost for the chain having 2 matrices.

REFERENCE TABLE

	А	В	С	D
Α				
В				
С				
D				

 Store the ending position of the first component that has been chosen to the calculation of the optimal cost.

$$\begin{bmatrix} 1 & 3 \\ 2 & -4 \end{bmatrix} \times \begin{bmatrix} 2 & 5 & 7 \\ 4 & 0 & -2 \end{bmatrix} \times \begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix} \times \begin{bmatrix} 3 & 7 & -2 & 9 \end{bmatrix}$$

$$A_{2\times2} \times B_{2\times3} \times C_{3\times1} \times D_{1\times4}$$

	A	В	С	D
Α	0			
В		0		
С			0	
D				0

	Α	В	С	D
Α	0			
В		ı		
С			2	
D				3

$$A_{2\times2} \times B_{2\times3} \times C_{3\times1} \times D_{1\times4}$$

$$A_{2\times2} \times B_{2\times3} \times C_{3\times1} \times D_{1\times4}$$

	A	В	С	D
Α	0	12		
В		0		
С			0	
D				0

- Optimal cost for $B_{2\times 3} \times C_{3\times 1}$
- There is only one way to do it.
- Cost = $2 \times 3 \times 1 = 6$

	A	В	С	D
Α	0	0		
В		ı	I	
С			2	
D				3

$$A_{2\times2}\times B_{2\times3}\times C_{3\times1}\times D_{1\times4}$$

	A	В	С	D
Α	0	12		
В		0	6	
С			0	12
D				0

	A	В	С	D
Α	0	0		
В		ı	I	
С			2	2
D				3

$$A_{2\times2}\times B_{2\times3}\times C_{3\times1}\times D_{1\times4}$$

	A	В	С	D
Α	0	12		
В		0	6	
С			0	12
D				0

- $(A \times B)_{2\times 3} \times C_{3\times 1}$
 - Additional cost = $2 \times 3 \times 1 = 6$
 - Total cost = $Cost_{A\times B} + Cost_C + Cost_{(A\times B)\times C}$ = 12 + 0 + 6 = 18
- $A_{2\times 2} \times (B \times C)_{2\times 1}$
 - Additional cost =
 - Total cost =

$$A_{2\times2} \times B_{2\times3} \times C_{3\times1} \times D_{1\times4}$$

	A	В	С	D
Α	0	12	10	
В		0	6	
С			0	12
D				0

	A	В	С	D
Α	0	0	0 4	
В		ı	I	
С			2	2
D				3

The end of the first partition is the matrix index 0

$$A_{2\times2} \times B_{2\times3} \times C_{3\times1} \times D_{1\times4}$$

	A	В	С	D
Α	0	12	10	
В		0	6	
С			0	12
D				0

$$A_{2\times2} \times B_{2\times3} \times C_{3\times1} \times D_{1\times4}$$

	A	В	С	D
Α	0	12	10	
В		0	6	14
С			0	12
D				0

$$A_{2\times2} \times B_{2\times3} \times C_{3\times1} \times D_{1\times4}$$

	A	В	С	D
Α	0	12	10	
В		0	6	14
С			0	12
D				0

$$A_{2\times2} \times B_{2\times3} \times C_{3\times1} \times D_{1\times4}$$

	A	В	С	D
Α	0	12	10	18
В		0	6	14
С			0	12
D				0

	A	В	С	D
Α	0	0	0	2
В		ı	I	2
С			2	2
D				3

TRACE FOR THE MULTIPLICATION PATH

TIME COMPLEXITY

- There are $\frac{n(n+1)}{2}$ cells in the table to fill
- In each cell, there are at most n cases to compare
- Time complexity = $O(n^3)$

ASSIGNMENT 5

- Generate 2 similar sequences with at least 6 elements each.
 Solve for the longest common subsequence algorithm
 - Fill the optimal matching table
 - Trace for the LCS.