	Part – A $(2 \times 8 = 16 \text{ Marks})$ Answer any TWO questions					
Q. No.	Qviestions	Marks	BL	СО	PO	PI Code
1	 i. Simplify using set identities \$\bar{A} \cup \bar{B} \cup (A \cap B \cap \bar{C})\$. ii. Draw Hasse diagram for the partial ordering R defined as \$aRb\$ if and only if "a divides b" on the set \$A = \{2,4,5,10,12,20,25\}\$. 	8 (4+4)	2	1	1	1.2.1
2	If R be a relation defined on the natural number set such that aRb if and only if $a^2 + b$ is even. Show that R is an equivalence relation.	8	3	1	2	2.8.1
3	If $f, g, h: \mathbb{R} \to \mathbb{R}$, defined by $f(x) = 3x + 1$, $g(x) = x^2$ and $h(x) = \frac{1}{x}$, then verify that $f \circ (g \circ h) = (f \circ g) \circ h$.	8	3	1	2	2.8.1

	Part – B (1 x 14 = 14 Marks) Answer any one question					
4 a)	Find the transitive closure of the relation $R = \{(1,2), (2,1), (2,3), (3,4), (4,5), (5,5)\} \text{ on the set } A = \{1,2,3,4,5\} \text{ using Warshall's algorithm.}$	14	4	1	2	2.8.1
5 a)	i. Prove that the necessary and sufficient condition for a function $f: A \to B$ to be invertible is that f is one-one and onto. ii. Show the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f = \{(x,y) ax + by = c, \ b \neq 0\}$ is invertible and then find the inverse.	14 (7+7)	4	1	2	2.8.1

	Part – B (1 x 14 = 14 Marks) Answer any one question					
4	Find the transitive closure of the relation $R = \{(a, e), (b, d), (c, c), (d, b), (e, a)\} \text{ on the set}$ $A = \{a, b, c, d, e\} \text{ using Warshall's algorithm.}$	14	4	1	2	2.8.
5	i. If $f: A \to B$ and $g: B \to C$ are invertible functions, then prove that $g \circ f: A \to C$ is also invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$. ii. Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 2x + 3$ is invertible and then find the inverse.	14 (7+7)	4	1	2	2.8.

Q.	Questions	Marks	BL	СО	PO	PI Code
1	(i) If A , B and C are sets, then prove that $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$ using set identities.	8 (4+4)	2	1	1	1.2.1
	(ii) Let D be a set of all positive divisor of 30. A relation is defined on D as "a R b iff a divides b", for a, b in D. Draw the Hasse diagram of R.					
2	Verify $f \circ (g \circ h) = (f \circ g) \circ h$, when $f, g, h: Z \to Z$ defined by $f(n) = n^2$, $g(n) = n + 1$ and $h(n) = n - 1$.	8	3	1	2	2.8.1
3	Given $R_1 = \{(1,1), (1,3), (2,1), (3,2)\}$ and $R_2 = \{(1,2), (1,3), (2,1), (2,3), (3,2)\}$ be relations on a set $A = \{1,2,3\}$, find (i) $M_{R_1 \cup R_2}$ (ii) $M_{R_1 \cap R_2}$ (iii) $M_{R_1 \cap R_2}$	8	3	1	2	2.8.1

14

2.8.1

4

Find the transitive closure of the relation

 $R = \{(a,d),(b,a),(b,c),(c,a),(c,d),(d,c),(e,b),(e,d)\}$

