7.3 Composition of Functions

Last time:

7.2 One-to-one, Onto, and Inverse Functions

7.3 Composition of Functions

Definition Let $f: X \rightarrow Y_1$ and $g: Y_2 \rightarrow Z$ such that $f(X) \subset Y_2$. Define $g \circ f: X \rightarrow Z$ such that, for any $x \in X$, $(g \circ f)(x) = g(f(x))$. The function $g \circ f$ is called the composition of f and g.

Theorem 7.3.1

Let
$$f: X \rightarrow Z$$
, $id_X: X \rightarrow X$, and $id_Z: Z \rightarrow Z$ such that, for any $x \in X$, $id_X(x) = x$ and, for any $z \in Z$, $id_Z(z) = z$ are the identity functions on X and Z respectively. Then $f \circ id_X = f$ and $id_Z \circ f = f$.

$$f: 2\mathbb{Z} \rightarrow (\mathbb{Z}-2\mathbb{Z})$$

$$id_{22}: 22L \rightarrow 22L, id_{22}(3):=3$$
 $id_{2-22}: 22-22L \rightarrow 22-22L, id_{2-22}(w)=w$

$$(id_{22} \circ f)(x) = id_{22} (f(x))$$

$$f(x) \in \mathbb{Z} - 2\mathbb{Z}$$

Let $f: A \rightarrow B$. Consider $id_A: A \rightarrow A$ such that IdA(x) = x for any $x \in A$. Suppose $id_A : A \rightarrow A$ such that $id_A'(a) = a$ for any aEA. ida and ida have the same chomain and codomain. $id_A(x) = x = id_A(x)$ for any $x \in A$ by definition. Let aEA. $(f \circ id_A)(a) = f(id_A(a)) = f(a)$ $= f(id_A^{\dagger}(a)) = (f \circ id_A^{\dagger})(a)$

Consider $id_B: B \rightarrow B$ such that, for any $b \in B$, $id_B(b):= b$. Let $g \in A$. Then $f(g) \in B$, y:=f(g).

 $(id_{B} \circ f)(3) = id_{B}(f(3)) = id_{B}(3)$ = y = f(3)

also $id_B \circ f : A \longrightarrow B$ and $f : A \longrightarrow B$

have the same domain and addomain.

So $id_{B} \circ f = f$ $A \qquad B$ $A \qquad B$

How to show two functions f: A→B and g: S→T are equal:

DA=S domains must be equal

@ B = T codomains must be equal

3) f(x) = g(x) for any $x \in A = S$.

Theorem 7.3.2

If $f: X \rightarrow Z$ is a bijection and

 $f^{-1}: Z \rightarrow X$ Its inverse, then

1 f-1 of = idx

(2) fof-1 = id &

(arctan otan)(x) = arctan (tan(x)) = $x \in (-\infty, \infty)$ (tan o arctan)(x) = tan (arctan(3)) = $3 \in (-\infty, \infty)$

Suppose $f: X \to Z$ is a bijection and $f': Z \to X$ is its inverse.

 $(\mathcal{A}^{X}: X \to X)$ $(0) t_{-1} \circ t : X \to X$

f-1(f(a)) ae ?! X

so for and idx have the same domain and codomain.

Recall the property: For any $x \in X$, f(x) = 3 if and only if $f^{-1}(z)=x$. let bEX. Consider f_(t(p)) =: A. Make a substitution, w== f(b). So A = f_((t(p)) = f_(m) only it +(y) = w. But w=f(b) so f(y) = f(b). Since fis one-to-one, i.e. $Ax^{11}x^{5}\in X$ ($f(x^{1})=f(x^{5})\longrightarrow x^{1}=x^{5}$)

y=b. Finally, recall that

$$y = f^{-1}(f(b))$$
 so $f^{-1}(f(b)) = b = id_X(b)$.

Theorem 7.3.3

If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both injective functions, then $g \circ f$ is injective.

Suppose f: X-yy and g: y-> 2 are both injective. By def. of injective:

 $Ax^{1/x^{2}} \in X \left(f(x^{1}) = f(x^{2}) \longrightarrow x^{1} = x^{2} \right)$

 $\forall y_1, y_2 \in \mathcal{Y} \left(g(y_1) = g(y_2) \longrightarrow y_1 = y_2\right).$

Recall gof: X -> Z.

Let a,, az e X.

Suppose
$$(g \circ f)(a_1) = (g \circ f)(a_2)$$
.
 $g(f(a_1)) = g(f(a_2))$
Let $f(a_1) = b_1$ and $f(a_2) = b_2$.
So $g(b_1) = g(b_2)$ and by injectivity $b_1 = b_2$.
Then $f(a_1) = b_1 = b_2 = f(a_2)$.
Therefore $a_1 = a_2$, since $f(a_1) = a_2$, since $f(a_2) = a_2$.