- 12.1.2 Suppose that the purity of a chemical solution y is related to the amount of a catalyst x through a linear regression model with β₀ = 123.0, β₁ = -2.16, and with an error standard deviation σ = 4.1.
 - (a) What is the expected value of the purity when the catalyst level is 20?
 - (b) How much does the expected value of the purity change when the catalyst level increases by 10?
 - (c) What is the probability that the purity is less than 60.0 when the catalyst level is 25?
 - (d) What is the probability that the purity is between 30 and 40 when the catalyst level is 40?
 - (e) What is the probability that the purity of a solution with a catalyst level of 30 is smaller than the purity of a solution with a catalyst level of 27.5?
- 12.1.5 Consider the linear regression model

$$y = 675.30 - 5.87x$$

with $\sigma = 7.32$, which relates the viscosity y of a substance to the temperature x. If a sample of the substance is prepared at temperature 80, what is the probability that its viscosity is less than 220?

- 12.2.3 A data set has n = 30, $\sum_{i=1}^{30} x_i = -67.11$, $\sum_{i=1}^{30} y_i = 1322.7$, $\sum_{i=1}^{30} x_i^2 = 582.0$, $\sum_{i=1}^{30} y_i^2 = 60,600$, and $\sum_{i=1}^{30} x_i y_i = -3840$. Calculate $\hat{\beta}_0$, $\hat{\beta}_1$, and $\hat{\sigma}^2$. What is the fitted value when x = -2.0?
- - (a) Calculate a two-sided 95% confidence interval for the slope parameter β₁.
 - (b) Test the null hypothesis H₀: β₁ = 50.0 against a two-sided alternative hypothesis.
- 12.5.9 A linear regression model is fitted to the data

A	у.
17.1	45.9
18.4	48.2
19.8	50.3
20.3	50.9
21.6	52.8
22.1	55.5
23.5	57.9

with x as the input variable and y as the output variable. Find $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\sigma}^2$. Construct a 99% prediction interval for an observation of the output variable when the input variable is equal to 20.

12.6.4 A data set has n = 25, $\sum_{i=1}^{25} x_i = 1356.25$, $\sum_{i=1}^{25} y_i = -6225$, $\sum_{i=1}^{25} x_i^2 = 97.025$, $\sum_{i=1}^{25} y_i^2 = 10.414.600$, and $\sum_{i=1}^{25} x_i y_i = -738,100$. Compute the analysis of variance table and calculate the coefficient of determination \mathbb{R}^2 .