

ML for Diabetes Prevention

Vittorio Haardt & Luca Porcelli

O1 Project Goals

Effective diagnosis of diabetes can save lives

Make it Real

The goal was to produce a solution that could actually be useful for the diabetic diagnosis

A performing model
Achieved by an intensive and a careful ML procedure

An usable solution Achieved by a deployment phased aimed to usability

A really useful tool
Achieved by an App build for generic users

The best technology is the one that everyone can use, without even thinking about it.

- Clayton Christensen

Sub-Goals

Training

Deployment of the right ML strategy in order to reach the optimal solution

Deployment

Deployment of the best model in order to make it useful and usable

DataApp

Deployment of the application in order to make the solution real

02

Data

Data as the foundation of ML solutions

Data: 40,108 observation from a bigger dataset

51/49

Balanced class ideal for machine learining

5/17

5 integer variables

12/17

12 string variables

Pre-Processing

on BMI

BMI Pre-Processing

Outliers Removal

We removed them, as suggested by domain experts

- BMI < 15
- *BMI* > 50

Only from the training set, in order not to distort performance

Variable Transformation

On suggestions from domain experts.

- *BMI* ≤ 16
- \rightarrow INANITION
- $16 < BMI \le 17.50 \rightarrow UNDERWEIGHT$
- $17.5 < BMI \le 18.5 \rightarrow SLIGHTLY UNDERWEIGHT$
- $18.5 < BMI \le 25 \rightarrow NORMAL$
- 25 < BMI ≤ 30 \rightarrow OVERWEIGHT
- $30 < BMI \le 35 \rightarrow CLASS I OBESE$
- $35 < BMI \le 40 \rightarrow CLASS II OBESE$
- \rightarrow BMI > 40 \rightarrow CLASS III OBESE

Feature Selection

Assessed with Boruta

All Attribute are Important

Since no attribute was placed under shadow attributes, we used it all for the models

03

ML Approach

Best performance to perform the best

Parameter Optimization

(grid/random search)

Models and Performances

Models

Naïve Bayes

Decision Tree

Gradient Boosting

XGBoost

Staked Model

Evaluation

LogLoss

Accuracy

Best Model

Threshold

Future Development

Better Model Selection

Specific model selection for models can increase performance

Different Optimization

Random is not the best option to find the best performance

Explainability

Al where humans can understand or predictions made by the Al.

Hands On

Actual use of the developed solution

A Tour on Knime

Workflow used to show the training phase, and explain the techniques involved in the process

Deployment

Workflow built to an actual use of the solution developed in the training phase

DataApp

An effective and simple application for diagnosing diabetes, which could potentially save lives

To the DataApp

The End

Thanks for the Attention

