CIS 5800 Machine Perception Homework-1 University of Pennsylvania

Navjot Singh Chahal nschahal@seas.upenn.edu

October 1, 2025

1.1

Using the perspective projection equations:

$$x = f \times \frac{X}{Z}$$
 $y = f \times \frac{Y}{Z}$

Where:

- (X, Y, Z) = (300, 600, 1200) are the camera coordinates
- (x,y) = (55,110) are the image coordinates

Solving for focal length f:

From the x-coordinate equation:

$$f = x \times \frac{Z}{X} = 55 \times \frac{1200}{300} = 55 \times 4 = 220$$

From the y-coordinate equation:

$$f = y \times \frac{Z}{Y} = 110 \times \frac{1200}{600} = 110 \times 2 = 220$$

Both equations give the same result, confirming that f=220 pixels.

1.2

Yes, you can determine whether the tree will hit the projection center (camera) when it falls, even without knowing the tree's height.

- Tree bottom projects to $B = (0, y_1)$
- Tree top projects to $T = (0, y_2)$
- Focal length f = 1
- Both points have x-coordinate = 0, so the tree lies on the optical axis plane x=0.
- Y_{bottom} and Y_{top} are the actual heights of the tree's bottom and top in camera coordinates.
- Z_{tree} is the distance from the camera to the tree along the Z-axis.
- Tree height: $h = Y_{\text{top}} Y_{\text{bottom}}$
- Distance from tree base to camera: $d = \sqrt{Y_{\rm bottom}^2 + Z_{\rm tree}^2}$
- The tree will hit the camera if its height h is greater than or equal to the distance d.

From perspective projection (with f = 1 and x = 0 for both points):

Bottom:
$$y_1 = \frac{Y_{\text{bottom}}}{Z_{\text{tree}}} \implies Y_{\text{bottom}} = y_1 Z_{\text{tree}}$$
Top: $y_2 = \frac{Y_{\text{top}}}{Z_{\text{tree}}} \implies Y_{\text{top}} = y_2 Z_{\text{tree}}$

Tree height:

$$h = Y_{\text{top}} - Y_{\text{bottom}} = (y_2 - y_1)Z_{\text{tree}}$$

Distance from tree base to camera:

$$d = \sqrt{Y_{\text{bottom}}^2 + Z_{\text{tree}}^2} = Z_{\text{tree}} \sqrt{y_1^2 + 1}$$

Collision condition: The tree hits the camera if its height \geq distance to camera:

$$h \ge d \implies (y_2 - y_1)Z_{\text{tree}} \ge Z_{\text{tree}}\sqrt{y_1^2 + 1}$$

$$y_2 - y_1 \ge \sqrt{y_1^2 + 1}$$

Hence!

The tree will hit the camera if and only if:

$$y_2 - y_1 \ge \sqrt{y_1^2 + 1}$$

2.1

• If $Z \neq 0$: [X, Y, Z] represents an affine point.

$$(x,y) = \left(\frac{X}{Z}, \frac{Y}{Z}\right)$$

- If Z = 0: [X, Y, 0] represents a point at infinity in the direction (X, Y).
 - All nonzero scalar multiples are the same projective point.
 - -[0,0,0] is not a valid homogeneous coordinate.
- Points at infinity correspond to where parallel lines meet (vanishing points in computer vision).

2.2

For lines through pairs of points in \mathbb{P}^2 , we use the cross product formula: If $P_1 = [x_1, y_1, z_1]$ and $P_2 = [x_2, y_2, z_2]$, then the line $L = P_1 \times P_2 = [y_1 z_2 - z_1 y_2, z_1 x_2 - x_1 z_2, x_1 y_2 - y_1 x_2]$.

(a) Points: [-2, 5, 3] and [1, 3, 4]

First component: $5 \times 4 - 3 \times 3 = 20 - 9 = 11$ Second component: $3 \times 1 - (-2) \times 4 = 3 + 8 = 11$

Third component: $(-2) \times 3 - 5 \times 1 = -6 - 5 = -11$

Line equation: 11x + 11y - 11z = 0x + y - z = 0

(b) Points: [a, 0, b] and [0, c, b]

First component: $0 \times b - b \times c = -bc$ Second component: $b \times 0 - a \times b = -ab$ Third component: $a \times c - 0 \times 0 = ac$

Line equation: -bcx - aby + acz = 0Or: bcx + aby - acz = 0

(c) Points: [a, 0, 0] and [0, 0, a]

First component: $0 \times a - 0 \times 0 = 0$ Second component: $0 \times 0 - a \times a = -a^2$ Third component: $a \times 0 - 0 \times 0 = 0$

Line equation: $-a^2y = 0$ Or: y = 0

2.3

(a)
$$3x - y + 2w = 0$$
 and $x + 5y - w = 0$

Line vectors,

$$\mathbf{l}_1 = [3, -1, 2]^T$$

 $\mathbf{l}_2 = [1, 5, -1]^T$

Next, we compute their cross product to find the intersection point p:

$$\mathbf{p} = \mathbf{l}_{1} \times \mathbf{l}_{2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -1 & 2 \\ 1 & 5 & -1 \end{vmatrix}$$

$$= \mathbf{i}((-1)(-1) - (2)(5)) - \mathbf{j}((3)(-1) - (2)(1)) + \mathbf{k}((3)(5) - (-1)(1))$$

$$= \mathbf{i}(1 - 10) - \mathbf{j}(-3 - 2) + \mathbf{k}(15 + 1)$$

$$= [-9, 5, 16]^{T}$$

The point of intersection is [-9, 5, 16].

(b)
$$2x - 6w = 0$$
 and $5x - 2y = 0$

$$2x + 0y - 6w = 0 \implies \mathbf{l}_1 = [2, 0, -6]^T$$
, which can be simplified to $[1, 0, -3]^T$.
 $5x - 2y + 0w = 0 \implies \mathbf{l}_2 = [5, -2, 0]^T$.

Now, we compute the cross product using the simplified vector for l_1 :

$$\mathbf{p} = \mathbf{l}_{1} \times \mathbf{l}_{2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & -3 \\ 5 & -2 & 0 \end{vmatrix}$$

$$= \mathbf{i}((0)(0) - (-3)(-2)) - \mathbf{j}((1)(0) - (-3)(5)) + \mathbf{k}((1)(-2) - (0)(5))$$

$$= \mathbf{i}(0 - 6) - \mathbf{j}(0 + 15) + \mathbf{k}(-2 - 0)$$

$$= [-6, -15, -2]^{T}$$

We can simplify this point by multiplying by -1. The point of intersection is [6, 15, 2].

(c)
$$7x + y - w = 0$$
 and $w = 0$

$$\mathbf{l}_1 = [7, 1, -1]^T$$

 $\mathbf{l}_2 = [0, 0, 1]^T$

The line w = 0 is the **line at infinity**. The intersection of any finite line with the line at infinity gives the "direction" of that line, represented as a point at infinity. Let's compute the cross product:

$$\mathbf{p} = \mathbf{l}_{1} \times \mathbf{l}_{2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 7 & 1 & -1 \\ 0 & 0 & 1 \end{vmatrix}$$

$$= \mathbf{i}((1)(1) - (-1)(0)) - \mathbf{j}((7)(1) - (-1)(0)) + \mathbf{k}((7)(0) - (1)(0))$$

$$= \mathbf{i}(1 - 0) - \mathbf{j}(7 - 0) + \mathbf{k}(0 - 0)$$

$$= [1, -7, 0]^{T}$$

The point of intersection is [1, -7, 0], which is a point at infinity as expected.

2.4

Given lines:

$$\ell_1 : w = 0 \implies [0, 0, 1]$$

 $\ell_2 : x + 2y + w = 0 \implies [1, 2, 1]$

Intersection point of given two lines:

$$\ell_1 \cap \ell_2 = [0, 0, 1] \times [1, 2, 1] = [-2, 1, 0]$$

This is a point at infinity: [-2, 1, 0].

Now, checking if this point lies on each ℓ_3 :

- (a) $\ell_3: x + 2y + 6w = 0 \implies [1, 2, 6]$ Dot product: $[-2, 1, 0] \cdot [1, 2, 6] = -2 + 2 + 0 = 0$ **Yes**, [-2, 1, 0] lies on ℓ_3 .
- (b) $\ell_3: -3x 6y + 6w = 0 \implies [-3, -6, 6]$ Dot product: $[-2, 1, 0] \cdot [-3, -6, 6] = 6 - 6 + 0 = 0$ **Yes**, [-2, 1, 0] lies on ℓ_3 .
- (c) $\ell_3: 7x + y w = 0 \implies [7, 1, -1]$ Dot product: $[-2, 1, 0] \cdot [7, 1, -1] = -14 + 1 + 0 = -13 \neq 0$ **No**, [-2, 1, 0] does not lie on ℓ_3 .

2.5

Let T be a 3×3 projective transformation matrix. The action of T on the standard basis vectors gives its columns:

$$T \times [1, 0, 0]^T = \text{first column of } T = [1, -1, 1]^T$$

$$T \times [0, 1, 0]^T = \text{second column of } T = [1, -2, 2]^T$$

$$T \times [0, 0, 1]^T = \text{third column of } T = [-1, 2, -1]^T$$

Thus, the projective transformation T is:

$$T = \begin{pmatrix} 1 & 1 & -1 \\ -1 & -2 & 2 \\ 1 & 2 & -1 \end{pmatrix}$$

More generally, the parametric family of projective transformations is:

$$T(\lambda_1, \lambda_2, \lambda_3) = \begin{pmatrix} \lambda_1 & \lambda_2 & -\lambda_3 \\ -\lambda_1 & -2\lambda_2 & 2\lambda_3 \\ \lambda_1 & 2\lambda_2 & -\lambda_3 \end{pmatrix}$$

where $\lambda_1, \lambda_2, \lambda_3$ are any nonzero real numbers such that $\det(T) \neq 0$.

Valid solutions:

- $\lambda_1 = 1$, $\lambda_2 = 1$, $\lambda_3 = 1$ (shown above)
- $\lambda_1 = 2$, $\lambda_2 = 1$, $\lambda_3 = 1$
- $\lambda_1 = 1, \ \lambda_2 = -1, \ \lambda_3 = 3$

2.6

1. Horizontal lines remain horizontal

In homogeneous coordinates, all horizontal lines (e.g., y = c) intersect at the same point at infinity, which has coordinates $\mathbf{p}_h = [1, 0, 0]^T$. If horizontal lines are mapped to horizontal lines, this point must be mapped to itself (or a scaled version of itself).

Let
$$H = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix}$$
.

The mapping is $H\mathbf{p}_h \propto \mathbf{p}_h$:

$$H\begin{pmatrix}1\\0\\0\end{pmatrix} = \begin{pmatrix}h_{11}\\h_{21}\\h_{31}\end{pmatrix} \propto \begin{pmatrix}1\\0\\0\end{pmatrix}$$

This implies $h_{21} = 0$ and $h_{31} = 0$.

2. Vertical lines map to lines through (0,3)

All vertical lines (x = c) intersect at the point at infinity $\mathbf{p}_v = [0, 1, 0]^T$. The transformation maps this point to a new location. Since all the resulting lines pass through the point (0,3), the image of \mathbf{p}_v must be the point (0,3). The homogeneous coordinates for (0,3) are $[0,3,1]^T$.

The mapping is $H\mathbf{p}_v \propto [0, 3, 1]^T$:

$$H\begin{pmatrix}0\\1\\0\end{pmatrix} = \begin{pmatrix}h_{12}\\h_{22}\\h_{32}\end{pmatrix} \propto \begin{pmatrix}0\\3\\1\end{pmatrix}$$

This implies $h_{12} = 0$ and the ratio $h_{22} : h_{32} = 3 : 1$. So, $h_{22} = 3k$, $h_{32} = k$ for some scalar k.

3. The point (0,0) is a fixed point

The point (0,0) is $[0,0,1]^T$ in homogeneous coordinates. A fixed point is mapped to itself.

The mapping is $H[0, 0, 1]^T \propto [0, 0, 1]^T$:

$$H\begin{pmatrix}0\\0\\1\end{pmatrix} = \begin{pmatrix}h_{13}\\h_{23}\\h_{33}\end{pmatrix} \propto \begin{pmatrix}0\\0\\1\end{pmatrix}$$

This implies $h_{13} = 0$, $h_{23} = 0$. Let $h_{33} = m$.

So far, our matrix looks like:

$$H = \begin{pmatrix} h_{11} & 0 & 0 \\ 0 & 3k & 0 \\ 0 & k & m \end{pmatrix}$$

4. The point (1,1) is a fixed point

The point (1,1) is $[1, 1, 1]^T$ in homogeneous coordinates. This point is also fixed.

The mapping is $H[1, 1, 1]^T \propto [1, 1, 1]^T$:

$$H\begin{pmatrix}1\\1\\1\end{pmatrix} = \begin{pmatrix}h_{11}\\3k\\k+m\end{pmatrix} \propto \begin{pmatrix}1\\1\\1\end{pmatrix}$$

For the output vector to be proportional to $[1, 1, 1]^T$, its components must be equal:

$$h_{11} = 3k$$
$$3k = k + m \implies m = 2k$$

Substituting back, the matrix is:

$$H = \begin{pmatrix} 3k & 0 & 0 \\ 0 & 3k & 0 \\ 0 & k & 2k \end{pmatrix} = k \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

Since a homography is defined up to scale, we can set k = 1:

$$H = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

2.7

Let H be a general 3×3 homography matrix and p a generic point on the line at infinity:

$$H = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{pmatrix}, \qquad p = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

Transforming p by H:

$$p' = Hp = \begin{pmatrix} h_{11}x + h_{12}y \\ h_{21}x + h_{22}y \\ h_{31}x + h_{32}y \end{pmatrix}$$

For p' to also lie on the line at infinity, its third component must be zero for all x, y:

$$h_{31}x + h_{32}y = 0 \quad \forall x, y$$

This is only possible if $h_{31} = 0$ and $h_{32} = 0$.

Thus, the matrix for an affine transformation has the form:

$$H_{\text{affine}} = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ 0 & 0 & h_{33} \end{pmatrix}$$

This structure ensures that finite points remain finite and points at infinity remain at infinity.

3.1

Given points E(-1, -1) and F(0, 2):

Slope:

$$m = \frac{2 - (-1)}{0 - (-1)} = \frac{3}{1} = 3$$

Line equation:

$$y = 3x + 2 \implies 3x - y + 2 = 0$$

Coefficients: [a, b, c] = [3, -1, 2]

Given points G(2,2) and H(3,-1):

Slope:

$$m = \frac{-1-2}{3-2} = \frac{-3}{1} = -3$$

Line equation:

$$y = -3x + 8 \implies 3x + y - 8 = 0$$

Coefficients: [a, b, c] = [3, 1, -8]

3.2

From 3.1 we have:

EF:
$$3x - y + 2 = 0$$

GH:
$$3x + y - 8 = 0$$

Intersection of $EF \cap GH$:

Solving:

$$\begin{cases} 3x - y + 2 = 0 \\ 3x + y - 8 = 0 \end{cases}$$

Add the equations:

$$(3x - y + 2) + (3x + y - 8) = 0 \implies 6x - 6 = 0 \implies x = 1$$

Substitute x = 1 into 3x - y + 2 = 0:

$$3(1) - y + 2 = 0 \implies 5 - y = 0 \implies y = 5$$

So the intersection is (1, 5).

Coefficients of Lines
$$EG$$
 and FH : $E(-1,-1),\ G(2,2)$: Slope $m=\frac{2-(-1)}{2-(-1)}=1$

Equation: y = x or x - y = 0 (coefficients [1, -1, 0])

$$F(0,2), H(3,-1)$$
: Slope $m=\frac{-1-2}{3-0}=-1$

F(0,2), H(3,-1): Slope $m = \frac{-1-2}{3-0} = -1$ Equation: y = -x + 2 or x + y - 2 = 0 (coefficients [1, 1, -2])

Intersection $EG \cap FH$:

Solving:

$$\begin{cases} x - y = 0 \\ x + y - 2 = 0 \end{cases}$$

From x - y = 0, x = y. Substitute into x + y - 2 = 0:

$$x + x - 2 = 0 \implies 2x = 2 \implies x = 1, y = 1$$

So the intersection is (1, 1).

3.3

Euclidean coordinates of the points in homogeneous form:

$$a = [0, 0, 1]^T \to e = [-1, -1, 1]^T$$

$$b = [0, 2, 1]^T \to f = [0, 2, 1]^T$$

$$c = [2, 2, 1]^T \to g = [2, 2, 1]^T$$

$$d = [2, 0, 1]^T \to h = [3, -1, 1]^T$$

The transformation for each point is $x' \sim Mx$, which means $x' = k \cdot Mx$ for some scalar k.

Linear Dependency in \mathbb{P}^2

Since we are in \mathbb{P}^2 , any four points are linearly dependent. Let's express point d as a combination of a, b, and c:

$$d = c_1 a + c_2 b + c_3 c$$

$$\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = c_1 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + c_2 \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} + c_3 \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

Solving this system gives $c_1 = 1$, $c_2 = -1$, $c_3 = 1$. So, d = a - b + c.

Solving for Scaling Factors

This relationship must be preserved for the destination points, up to individual scaling factors k_i :

$$k_4 h = k_1 e - k_2 f + k_3 g$$

$$k_4 \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix} = k_1 \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} - k_2 \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} + k_3 \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

Since the overall transformation has a scale ambiguity, we can fix one scalar, for instance, $k_4 = 1$. This gives a system of three linear equations:

$$3 = -k_1 + 2k_3$$

$$-1 = -k_1 - 2k_2 + 2k_3$$

$$1 = k_1 - k_2 + k_3$$

Solving this system yields:

$$k_1 = 1, \quad k_2 = 2, \quad k_3 = 2$$

Constructing the Matrix M

Now we have three definitive mappings:

$$Ma = k_1 e = [-1, -1, 1]^T$$

 $Mb = k_2 f = [0, 4, 2]^T$
 $Mc = k_3 g = [4, 4, 2]^T$

We can write this as a single matrix equation: $M[a \ b \ c] = [k_1 e \ k_2 f \ k_3 g]$. Let

$$P_{\rm src} = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 2 & 2 \\ 1 & 1 & 1 \end{pmatrix}, \qquad P_{\rm dst} = \begin{pmatrix} -1 & 0 & 4 \\ -1 & 4 & 4 \\ 1 & 2 & 2 \end{pmatrix}$$

Then $M = P_{\text{dst}} \cdot (P_{\text{src}})^{-1}$.

The inverse of $P_{\rm src}$ is

$$(P_{\rm src})^{-1} = \begin{pmatrix} 0 & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Multiplying the matrices gives:

$$M = P_{\text{dst}} \cdot (P_{\text{src}})^{-1} = \begin{pmatrix} -1 & 0 & 4 \\ -1 & 4 & 4 \\ 1 & 2 & 2 \end{pmatrix} \begin{pmatrix} 0 & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ 1 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 4 & 1 & -2 \\ 0 & 5 & -2 \\ 0 & 1 & 2 \end{pmatrix}$$

or, up to scale,

$$M \sim \begin{pmatrix} 4 & 1 & -2 \\ 0 & 5 & -2 \\ 0 & 1 & 2 \end{pmatrix}$$

3.4

The transformation matrix is

$$M = \begin{pmatrix} 4 & 1 & -2 \\ 0 & 5 & -2 \\ 0 & 1 & 2 \end{pmatrix}$$

The coordinates of point D are (2,0), which in homogeneous form is

$$d = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$$

The coordinates of point H are (3, -1), which in homogeneous form is

$$h = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$

We multiply the matrix M by the vector d:

$$Md = \begin{pmatrix} 4 & 1 & -2 \\ 0 & 5 & -2 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \times 2 + 1 \times 0 + (-2) \times 1 \\ 0 \times 2 + 5 \times 0 + (-2) \times 1 \\ 0 \times 2 + 1 \times 0 + 2 \times 1 \end{pmatrix} = \begin{pmatrix} 8 - 2 \\ -2 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ -2 \\ 2 \end{pmatrix}$$

Check for proportionality:

$$\begin{pmatrix} 6 \\ -2 \\ 2 \end{pmatrix} = 2 \times \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}$$

So Md is a nonzero scalar multiple of the target vector h.

Hence! The transformation M correctly maps d to h up to scale.

4.1

Vanishing Points and Vanishing Line

Horizontal lines converge at the vanishing point $V_x = (-b, 0)$ and vertical lines at $V_y = (0, h)$. The line connecting these points is the vanishing line (horizon) for the facade.

In homogeneous coordinates:

$$v_x = [-b, 0, 1]^T, v_y = [0, h, 1]^T$$

The vanishing line is given by the cross product:

$$l_v = v_x \times v_y = [-h, b, -bh]^T$$

(up to scale for simplicity, $[h, -b, bh]^T$).

Transformation Constraints

We seek a homography H that maps the vanishing line l_v to the line at infinity $l_{\infty} = [0, 0, 1]^T$.

Thus, the last row of H must be proportional to (h, -b, bh).

Fixed Points

The origin (0,0) is fixed:

$$H\begin{pmatrix}0\\0\\1\end{pmatrix}\propto\begin{pmatrix}0\\0\\1\end{pmatrix}$$

This requires $h_{13} = h_{23} = 0$.

The point (1,1) is also fixed:

$$H\begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} h_{11} + h_{12}\\h_{21} + h_{22}\\h - b + bh \end{pmatrix} \propto \begin{pmatrix} 1\\1\\1 \end{pmatrix}$$

So $h_{11} + h_{12} = h_{21} + h_{22} = h - b + bh$.

Vanishing Points Mapping

 V_x maps to $[1, 0, 0]^T$:

$$H\begin{pmatrix} -b\\0\\1 \end{pmatrix} = \begin{pmatrix} -bh_{11}\\-bh_{21}\\0 \end{pmatrix} \propto \begin{pmatrix} 1\\0\\0 \end{pmatrix}$$

 $\implies h_{21} = 0$ $V_y \text{ maps to } [0, 1, 0]^T:$

$$H\begin{pmatrix}0\\h\\1\end{pmatrix} = \begin{pmatrix}hh_{12}\\hh_{22}\\0\end{pmatrix} \propto \begin{pmatrix}0\\1\\0\end{pmatrix}$$

$$\implies h_{12} = 0$$

Final Matrix

With $h_{12} = h_{21} = h_{13} = h_{23} = 0$, and $h_{11} = h_{22} = h - b + bh$, the homography is:

$$H = \begin{pmatrix} h - b + bh & 0 & 0 \\ 0 & h - b + bh & 0 \\ h & -b & bh \end{pmatrix}$$

(up to scale for simplicity, $[h, -b, bh]^T$).

4.2

Horizon = line through the two vanishing points.

Vanishing points:

$$V_x = (-b, 0, 1), \qquad V_y = (0, h, 1)$$

Line through them (in homogeneous form) is

$$\ell = V_x \times V_y$$

Compute the cross product:

$$\ell = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -b & 0 & 1 \\ 0 & h & 1 \end{vmatrix} = [-h, b, -bh]$$

(up to scale, this is equivalent to [h, -b, bh]).

$$\ell = hx - by + bh = 0$$

5.1 Bonus: Affine Transforms (15pts)

Conic Sections and the Line at Infinity

In projective geometry, conic sections are distinguished by their intersection with the line at infinity ℓ_{∞} :

- Ellipse (including circles): Does not intersect ℓ_{∞} at real points
- Parabola: Intersects ℓ_{∞} at exactly one real point (tangent)
- Hyperbola: Intersects ℓ_{∞} at exactly two distinct real points

Key Property of Affine Transformations

From Problem 2.7, we established that affine transformations have the form:

$$H = \begin{pmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ 0 & 0 & h_{33} \end{pmatrix}$$

The crucial property is that **affine transformations preserve the line** at **infinity**.

Proof: Points at infinity [x, y, 0] transform as:

$$H\begin{pmatrix} x \\ y \\ 0 \end{pmatrix} = \begin{pmatrix} h_{11}x + h_{12}y \\ h_{21}x + h_{22}y \\ 0 \end{pmatrix}$$

The third coordinate remains 0, so points at infinity map to points at infinity.

Navjot Singh Chahal

$Circle \rightarrow Ellipse is Possible$

Claim: Any circle can be transformed into any ellipse via an affine transformation.

Proof:

- 1. A circle has equation $x^2 + y^2 = r^2$ (centered at origin for simplicity)
- 2. Consider the affine transformation:

$$H = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

where a, b > 0 and $a \neq b$.

- 3. Under this transformation, a point (x, y) maps to (ax, by)
- 4. The circle $x^2 + y^2 = r^2$ becomes:

$$\left(\frac{x'}{a}\right)^2 + \left(\frac{y'}{b}\right)^2 = r^2$$

$$\frac{x'^2}{a^2r^2} + \frac{y'^2}{b^2r^2} = 1$$

- 5. This is an ellipse with semi-axes ar and br.
- 6. **Key insight:** Both circle and ellipse have no real intersections with ℓ_{∞} , so the transformation preserves this topological property.

Ellipse \rightarrow Hyperbola/Parabola is Impossible

Claim: No affine transformation can map an ellipse to a hyperbola or parabola.

Proof by Topological Invariant:

Intersection Analysis

• Ellipse: The general ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in homogeneous coordinates becomes:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = z^2$$

At the line at infinity (z=0), we get $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$, which has no real solutions.

• Hyperbola: The hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ becomes:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = z^2$$

At
$$z = 0$$
: $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0 \Rightarrow y = \pm \frac{b}{a}x$

This gives two distinct real intersection points: [a:b:0] and [a:-b:0].

• Parabola: The parabola $y=x^2$ becomes $yz=x^2$ in homogeneous form. At z=0: $0=x^2\Rightarrow x=0$, giving one real intersection point [0:1:0].

Invariance Under Affine Transformations

Since affine transformations preserve the line at infinity, they preserve the number of real intersections between any conic and ℓ_{∞} .

Intersection Count Invariant:

- Ellipse: 0 real intersections with ℓ_{∞}
- Parabola: 1 real intersection with ℓ_{∞}
- Hyperbola: 2 real intersections with ℓ_{∞}

Conclusion

Since the number of real intersections with the line at infinity is preserved under affine transformations:

- Ellipse \rightarrow Parabola: Impossible (0 intersections $\not\rightarrow$ 1 intersection)
- Ellipse \rightarrow Hyperbola: Impossible (0 intersections $\not\rightarrow$ 2 intersections)

Also euclidean classification by Discriminant,

A conic section $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ has discriminant $\Delta = B^2 - 4AC$.

- $\Delta < 0$: Ellipse (including circles when A = C and B = 0)
- $\Delta = 0$: Parabola

• $\Delta > 0$: Hyperbola

Under an affine transformation $H = \begin{pmatrix} a & b & p \\ c & d & q \\ 0 & 0 & 1 \end{pmatrix}$, the discriminant trans-

forms as:

$$\Delta' = \Delta \cdot (\det(A))^2$$

where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is the linear part.

Since $\det(A) \neq 0$ for invertible transformations, the sign of Δ is preserved:

- $\Delta < 0 \Rightarrow \Delta' < 0$ (ellipse stays ellipse)
- $\Delta = 0 \Rightarrow \Delta' = 0$ (parabola stays parabola)
- $\Delta > 0 \Rightarrow \Delta' > 0$ (hyperbola stays hyperbola)

Conclusion: Affine transformations preserve the topological type of conic sections. Therefore:

- \checkmark Circle \rightarrow Ellipse: **Possible** (both have $\Delta < 0$)
- × Ellipse → Hyperbola: Impossible $(\Delta < 0 \not\to \Delta > 0)$
- × Ellipse → Parabola: Impossible ($\Delta < 0 \not\rightarrow \Delta = 0$)

5.2 Bonus: Vanishing Point Computation (10pts)

Given Setup

We have a 2×2 homography matrix acting on points in \mathbb{P}^1 (the projective line):

$$H_{2\times 2} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}$$

Points on the projective line are represented in homogeneous coordinates as $[a, b]^T$, where:

- When $b \neq 0$: the point corresponds to the affine coordinate $\frac{a}{b}$
- When b = 0: the point $[a, 0]^T$ represents the point at infinity

Vanishing Point

The **vanishing point** is where parallel lines in the world appear to meet in the image. In the context of a 1D projective transformation, the vanishing point is the image of the point at infinity from the world line.

The point at infinity in \mathbb{P}^1 is represented as $[1,0]^T$.

Computing the Vanishing Point

1. Apply the homography to the point at infinity:

$$y_{\text{vanishing}} = H_{2\times 2} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} h_{11}\\h_{21} \end{pmatrix}$$

2. Convert to affine coordinates (if possible):

Case 1: If $h_{21} \neq 0$, the vanishing point in affine coordinates is:

$$v = \frac{h_{11}}{h_{21}}$$

Case 2: If $h_{21} = 0$ and $h_{11} \neq 0$, the vanishing point is at infinity in the image, represented as $[1,0]^T$.

Case 3: If $h_{21} = h_{11} = 0$, this would mean the first column of H is zero, making H singular (non-invertible), which is not a valid homography.

Geometric Interpretation

The homography matrix can be written as:

$$H_{2\times 2} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}$$

The transformation maps:

- World point $[x, 1]^T$ (affine coordinate x) to image point $[h_{11}x + h_{12}, h_{21}x + h_{22}]^T$
- World point at infinity $[1,0]^T$ to image point $[h_{11},h_{21}]^T$ (the vanishing point)

General Matrix Form

If we write the homography as:

$$H_{2\times 2} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Then the vanishing point is:

Vanishing point =
$$\begin{cases} \frac{a}{c} & \text{if } c \neq 0\\ \text{point at infinity} & \text{if } c = 0, a \neq 0\\ \text{undefined (singular)} & \text{if } c = a = 0 \end{cases}$$

Final Answer

For a 2×2 homography matrix $H_{2\times 2} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix}$, the vanishing point is: $\boxed{ \text{Vanishing Point} = \frac{h_{11}}{h_{21}} \quad (\text{provided } h_{21} \neq 0) }$

Vanishing Point =
$$\frac{h_{11}}{h_{21}}$$
 (provided $h_{21} \neq 0$)

This represents the affine coordinate where the point at infinity from the world line appears in the image line.