

Stommel's Box Model of the Thermohaline Circulation

Mathilde Simoni

Mathematical Modeling, May 2023

Outline

- Background
 - The Thermohaline Circulation
 - Vulnerabilities
- The Main Physical Processes
- The model
 - o Set up
 - Equations
- Equilibrium states
 - fixed points
 - Stability analysis
- Simulations
- Stommel's Model and Climate Change

The Thermohaline Circulation

- Surface flow
 Deep flow
- Bottom flow
- Deep Water Formation

- Wind-driven upwelling
- Mixing-driven upwelling
- Salinity > 36 ‰
- Salinity < 34 ‰</p>

Labrador Sea

Greenland Sea

W Weddell Sea
R Ross Sea

Vulnerabilities

The thermohaline circulation is a very vulnerable system

01. Climate and temperatures

Decrease of temperatures in the Northern hemisphere, increase in the Tropics

02. Deep sea organisms

The deep water formation in the Labrador sea provides 3/4 of the oxygen in the deep Atlantic ocean

03. Sea level

Increase of sea level by up to 1 meter in the North Atlantic

Has it happened in the past? Yes

Can it happen now?

Is it already happening?

Maybe

Main Physical Processes

Water density is influenced by 2 main processes

- heating / cooling affect temperature
- evaporation / precipitation affect salinity level

The Model: Set Up

The Model: Basic Equations

Laws for conservation of temperature and salinity:

$$T = T_1 = -T_2$$
$$S = S_1 = -S_2$$

Transfer of heat and salt and flow rate:

$$\begin{cases} \frac{dT}{dt} = c(\mathbf{T} - T) - |2q|T\\ \frac{dS}{dt} = d(\mathbf{S} - S) - |2q|S \end{cases}$$

Non-dimensionalization:

$$\tau = ct$$

$$\delta = \frac{d}{c}$$

$$y = \frac{T}{\tau}$$

$$x =$$

$$au = ct$$
 $\delta = \frac{d}{c}$ $y = \frac{T}{T}$ $x = \frac{S}{S}$ $f = \frac{2q}{c}$

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}\tau} = 1 - y - |f|y\\ \frac{\mathrm{d}x}{\mathrm{d}\tau} = \delta(1 - x) - |f|x \end{cases}$$

The Model: Flow Rate

Flow rate depends upon density difference between the 2 reservoirs:

$$kq = \rho_1 - \rho_2$$

Equation of state:

$$\rho = \rho_0 (1 - \alpha T + \beta S)$$

$$\rho = \rho_0 (1 + \alpha T (-y + Rx))$$

$$\rho_1 = \rho_0 (1 + \alpha T (-y + Rx))$$

$$\rho_2 = \rho_0 (1 - \alpha T (-y + Rx))$$

$$\rho_3 = \rho_0 (1 - \alpha T (-y + Rx))$$

$$\rho_4 = \rho_0 (1 - \alpha T (-y + Rx))$$

$$\rho_5 = \rho_0 (1 - \alpha T (-y + Rx))$$

Get an equation for the flux:

$$\lambda = \left(\frac{c}{4\rho_0\alpha T}\right)k \implies \lambda f = -y + Rx \implies \left\{ \frac{\frac{\mathrm{d}y}{\mathrm{d}\tau} = 1 - y - \frac{y}{\lambda}|-y + Rx|}{\frac{\mathrm{d}x}{\mathrm{d}\tau} = \delta(1 - x) - \frac{x}{\lambda}|-y + Rx|} \right\}$$

The Model: Fixed Points

$$\frac{\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}\tau} = 1 - y - \frac{y}{\lambda}|-y + Rx| \\ \frac{\mathrm{d}x}{\mathrm{d}\tau} = \delta(1-x) - \frac{x}{\lambda}|-y + Rx| \end{cases}}{\Rightarrow} y = \frac{1}{1+|f|} \Longrightarrow x = \frac{\lambda f = -y + Rx}{\lambda f = -\frac{1}{1+|f|} + \frac{R}{1+\frac{|f|}{\delta}}}$$

Stability analysis:

- find flow rate f at equilibrium => each flow rate defines a fixed point
- deduce values for x and y (salinity and temperature) for each fixed point
- linearize the 2D system around each fixed point
- find trace and determinant
- deduce stability (stable, undstable) and type (node, saddle, spiral) of each fixed point

Simulation System 1

Fixed Point	f	X	y	Trace	Determinant	Stability & Type
1	-1.07	0.14	0.48	-4.37	2.75	stable node
2	-0.31	0.35	0.76	-2.10	-2.15	saddle node (unstable)
3	0.22	0.43	0.82	-1.83	4.16	stable spiral

 $R = 2, \lambda = 1/5, \text{ and } \delta = 1/6$

Simulation System 2

Fixed Point	f	X	y	Trace	Determinant	Stability & Type
1	1.79	0.36	0.36	-7.37	12.79	stable node

R = 2, λ = 1/5, and δ = 1

Stommel's Model and Climate Change

Bifurcation diagram for delta

c = temperature transfer coefficient d = salinity transfer coefficient

$$\delta = \frac{d}{c}$$

Stommel's Model and Climate Change

Conclusion

- Stommel models a flow rate based on density difference between 2 reservoirs
- density is affected by temperature or salinity
- the model can lead to 2 stable states with a circulation either thermally controlled or salinity driven
- the model shows that a big amount of freshwater in the cold zone (melt of Greenland ice sheet) can slow down or reverse the circulation: it is simulated by a change of parameters in the model
- this would have damaging effects on climate, biodiversity, and humans
- this fact been confirmed by numerous advanced models today

