#### LAPORAN TUGAS KECIL

# Implementasi Convex Hull untuk Visualisasi Tes Linear Separability Dataset dengan Algoritma Divide and Conquer

Ditujukan untuk memenuhi salah satu tugas kecil mata kuliah IF2211 Strategi Algoritma pada Semester II Tahun Akademik 2021/2022

Disusun oleh:

Adiyansa Prasetya Wicaksana (K2) 13520044



# PROGRAM STUDI TEKNIK INFORMATIKA SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA INSTITUT TEKNOLOGI BANDUNG BANDUNG

2022

# **DAFTAR ISI**

| DAFTAR ISI                         | i   |
|------------------------------------|-----|
| BAB I PENJELASAN ALGORITMA PROGRAM | 1   |
| BAB II IMPLEMENTASI PROGRAM        | 4   |
| BAB III HASIL PERCOBAAN            | 12  |
| LAMPIRAN                           | ii  |
| REFERENSI                          | iii |

#### **BABI**

# PENJELASAN ALGORITMA PROGRAM

Divide and Conquer pada awalnya merupakan strategi militer yang dikenal dengan nama divide ut emperes. Namun, sekarang strategi tersebut menjadi strategi yang dipakai dalam ilmu komputer sebagai Divide and Conquer. Seperti namanya, Divide membagi persoalan menjadi beberapa upapersoalan yang memiliki kemiripan dengan persoalan semula yang berukuran lebih kecil. Lalu, Conquer menyelesaikan masing-masing upa-persoalan, akan diselesaikan secara langsung jika berukuran cukup kecil atau secara rekursif jika masih berukuran besar. Akhirnya, setelah upa-persoalan dibagi menjadi lebih kecil dan diselesaikan, nanti hasil upa-persoalan akan digabungkan menjadi satu hasil utama.



Gambar 1.1 Ilustrasi Divide and Conquer

(Sumber: <a href="https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/divide-and-conquer-algorithms">https://www.khanacademy.org/computing/computer-science/algorithms/merge-sort/a/divide-and-conquer-algorithms</a>)

Dalam implementasinya ke dalam algoritma, strategi *Divide and Conquer* pada umumnya diselesaikan menggunakan fungsi/prosedur yang dipanggil terus menerus secara rekursif, dan hasil akhirnya akan digabungkan di fungsi utamanya.

```
procedure DIVIDEandCONQUER(input P: problem, n: integer)
{ Menyelesaikan persoalan P dengan algoritma divide and conquer
    Masukan: masukan persoalan P berukuran n
    Luaran: solusi dari persoalan semula }

Deklarasi
    r: integer

Algoritma

if n \le n_0 then {ukuran persoalan P sudah cukup kecil }
    SOLVE persoalan P yang berukuran n ini
else

DIVIDE menjadi r upa-persoalan, P_1, P_2, ..., P_r, yang masing-masing berukuran n_1, n_2, ..., n_r
for masing-masing P_1, P_2, ..., P_r, do

DIVIDEandCONQUER(P_i, n_i)
endfor

COMBINE solusi dari P_1, P_2, ..., P_r menjadi solusi persoalan semula
endif
```

Gambar 1.2 Skema Umum Strategi Divide and Conquer

(Sumber: <a href="https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-Divide-and-Conquer-(2021)-Bagian1.pdf">https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-Divide-and-Conquer-(2021)-Bagian1.pdf</a>)

Convex merupakan himpunan titik pada bidang planar jika sembarang dua titik pada bidang tersebut (misal p dan q), seluruh segmen garis yang berakhir di p dan q berada pada himpunan tersebut. Convex Hull dari himpunan titik S adalah himpunan *convex* terkecil yang mengandung S. Penerapan strategi algoritma *Divide and Conquer* ini dilakukan dalam menyelesaikan permasalahan *Convex Hull*. Berikut adalah beberapa tahapan yang dilalui untuk menemukan solusi dari permasalahan ini, yaitu:

- Dari sekumpulan titik yang menjadi input, tentukan dua titik dengan nilai absis paling kecil dan paling maksimum. Jika nilai absis minimum atau maksimumnya sama, maka lihat dari nilai ordinatnya. Titik dengan absis minimum akan disebut sebagai P1 dan titik dengan absis maksimum akan disebut sebagai Pn.
- 2. Hubungkan titik P1 dan Pn menjadi sebuah garis. Lalu, pisahkan titik berdasarkan garis yang dihubungkan antara P1 dan Pn tersebut.



Gambar 1.3 Ilustrasi ConvexHull (1)

3. Seperti yang terlihat pada Gambar 1.3, pisahkan berdasarkan arah titik ke garis, jika titik berada di bagian atas atau kiri garis maka himpunan titik tersebut dimasukkan ke dalam S1, dan jika

titik berada di bagian bawah atau kanan garis maka himpunan titik tersebut dimasukkan ke dalam S1. Langkah untuk menentukan posisi titik terhadap garis bisa dilakukan dari nilai determinan tiga titik tersebut.

$$\begin{vmatrix} x1 & y1 & 1 \\ x2 & y2 & 1 \\ x3 & v3 & 1 \end{vmatrix} = x_1y_2 + x_3y_1 + x_2y_3 - x_3y_2 - x_2y_1 - x_1y_3$$

Dimana (x1, y1) adalah titik P1, (x2, y2) adalah titik Pn, dan (x3, y3) adalah titik yang ingin diuji terhadap garis yang dihubungkan oleh P1 dengan Pn.

- 4. Untuk setiap S1 dan S2 akan dilakukan:
  - a. Jika himpunan dari S1 atau S2 kosong, maka P1 dan Pn merupakan salah satu sisi dari Convex Hull (basis rekursi).
  - b. Tetapi, jika himpunan tidak kosong maka, cari titik dengan jarak terjauh dari P1 dan Pn tersebut. Untuk beberapa titik dengan dengan jarak yang sama dan sama-sama merupakan yang terjauh, maka ditentukan dengan sudut terbesar yang terbentuk dari P1, Pn dan titik terjauh tersebut. Titik terjauh ini disebut sebagai pMax.



- c. Dari Gambar 1.4, pisahkan titik yang berada di luar segitiga yang dibentuk dari P1, Pn, dan pMax. Titik yang berada di luar bagian kiri dari segitiga menjadi S1 berikutnya dan titik yang berada di luar bagian kanan segitiga menjadi S2 berikutnya. Untuk menentukan arah dari titik tersebut bisa dilakukan pengecekan terhadap P1 dan pMax serta terhadap pMax dan Pn.
- d. Untuk setiap S1 dan S2 yang terbuat, lakukan kembali langkah 4 dengan P1 menjadi P1 lagi untuk S1 dan pMax menjadi Pn untuk S1. Lalu, pMax menjadi P1 untuk S2 dan Pn menjadi Pn lagi untuk S2.
- 5. Hasil dari setiap rekursi tersebut akan terus dilakukan hingga himpunan S1 dan S2 nya kosong, lalu titik-titik yang menjadi Convex Hull akan dikembalikan dari rekursi tersebut.

#### **BAB II**

#### **IMPLEMENTASI PROGRAM**

#### 1. main.py

File main.py berfungsi menampilkan Command Line Interface. Input yang akan diterima dari program adalah jenis data yang akan digunakan, antara menggunakan file eksternal atau datasets yang disediakan dari program. Lalu, input berikutnya untuk memasukkan datasets yang akan dipakai.

```
from convexHull import *
from utils import *
from random import randint
colorList = ['b', 'r', 'g', 'c', 'm', 'y', 'k']
if __name__ = "__main__":
     print("1. external file")
    print("2. provided datasets")
dataType = input("Choose data type (1-2): ")
dataType = checkInput(dataType, [1, 2])
     if (dataType = 1):
        df, X, Y = inputDataSets()
          df.dropna(inplace=True)
         df['Target'] = df.iloc[:, -1]
         data, X, Y = providedDataSets()
          df = pd.DataFrame(data.data, columns=data.feature_names)
              df['Target'] = pd.DataFrame(data.target)
         # only works if datasets is categorized (have a target) linearSepDataSet(df, X, Y)
         plt.clf()
         color = randint(0, len(colorList)-1)
color = colorList[color]
         print(color)
         print("\nCant use categorized convex")
          print("Will take all point to create convex hull")
showConvexFromTable(df, X, Y, color)
```

Gambar 2.1 main.py

#### 2. utils.py

*File* utils.py berfungsi sebagai fungsi-fungsi pembantu yang akan digunakan di dalam main.py. Fungsi-fungsi yang terdapat di dalam *file* ini:

#### • showConvexFromTable

Fungsi ini berfungsi untuk melakukan convex hull terhadap datasets yang tidak terkategori (tidak memiliki target).

#### linearSepDataSet

Fungsi ini berfungsi untuk melakukan convex hull untuk datasets yang terkategorisasi sehingga bisa dilakukan visualisasi tes *linear separability datasets*.

#### loadDatasets

Fungsi ini berfungsi untuk melakukan *load* terhadap beberapa *datasets* dari sklearn untuk dapat dipilih oleh *user*.

#### checkInput

Fungsi ini berfungsi untuk melakukan pengecekan input. Pengecekan ini dilakukan agar input user selalu valid.

#### providedDataSets

Fungsi ini berfungsi untuk menerima input dari *user* jika *user* memilih untuk tidak menggunakan file eksternal.

#### • inputDataSets

Fungsi ini berfungsi untuk menerima input dari *user* jika *user* memilih untuk menggunkan file eksternal sebagai *datasets*.

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn import data:
from convexHull import *
from pathlib import Path
colorList = ['tab:blue', 'tab:orange', 'tab:green', 'tab:red', 'b', 'r', 'g', 'c', 'm', 'y', 'k']
       plt.figure(num="Convex Hull", figsize=(10, 6))
plt.title(df.columns[column1] +
       " vs " + df.columns[column2])
plt.xlabel(df.columns[column1])
plt.ylabel(df.columns[column2])
       hull = convexHull(bucket)
       plt.scatter(bucket[:, 0], bucket[:, 1], color=colors)
       for i in range(len(hull)):
    plt.plot(hull[i][0], hull[i][1], colors)
def linearSepDataSet(df, column1, column2):
       plt.figure(num="Convex Hull", figsize=(10, 6))
colors = colorList
plt.title(df.columns[column1] +
      plt.xlabel(df.columns[column2])
plt.ylabel(df.columns[column2])
target = df.Target.unique()
       for i in range(len(target)):
   bucket = df[df['Target'] == target[i]]
   bucket = bucket.iloo[:, [column1, column2]].values
              myHull = convexHull(bucket)
             # plot convex point
for j in range(len(myHull)):
    plt.plot(myHull[j][0], myHull[j][1], colors[i])
       plt.legend()
plt.show()
def loadDatasets():
      """
iris = datasets.load_iris()
wine = datasets.load_wine()
breastCancer = datasets.load_breast_cancer()
linerrud = datasets.load_linnerud()
diabetes = datasets.load_diabetes()
datasetsArray = [iris, wine, breastCancer, linerrud, diabetes]
dsName = ["iris", "wine", "breastCancer", "linerrud", "diabetes"]
       return dsName, datasetsArrav
```

```
while (not var.isnumeric()):

var = input(f"Wrong input, choose a number 1-{len(arr)}: ")
# check if the inpunt is correct
while (var < 1 or var > len(arr)):
    var = int(input(f*Wrong input, number in range 1-{len(arr)}: "))
print("List of database: ")
for i in range(len(dsName)):
    print(f"{i*1}. {dsName[i]}")
 dsUsed = checkInput(dsUsed, dsArray)
column = dsArray[dsUsed-1].feature_names
print("List of column: ")
for i in range(len(column)):
    print(f"{i+1}. {column[i]}")
X = input(f^*Choose a column for X value (1-{len(column)}): ") X = checkInput(X, column)
  X -= 1
Y = input(f"Choose a column for Y value (1-{len(column)}): ")
Y = checkInput(Y, column)
Y -= 1
# get file path and redirect it to test folder
filePath = input("Input file name: ")
filePath = str(Path(_file_).resolve().parent) + "/../test/" + filePath
except:
print("File not found")
inputDataSets()
column = df.columns
print("List of column: ")
for i in range(len(column)-1):
    print(f"{i*1}. {column[i]}")
X = input(f^*Choose a column for X value (1-{len(column)}): ") X = checkInput(X, column)
 X -= 1
Y = input(f*Choose a column for Y value (1-{len(column)}): ")
Y = checkInput(Y, column)
Y -= 1
```

#### 3. convexHull.py

File convexHull.py merupakan *library* untuk membentuk Convex Hull dari *datasets* yang digunakan. Implementasi *library* ini menggunakan algoritma *Divide and Conquer*. Beberapa fungsi yang digunakan dalam *file* ini:

#### • findAngle

Fungsi ini memiliki tiga parameter yaitu a,b, dan c. Tiap parameter tersebut merupakan *numpy array* yang berperan sebagai titik x dan y. Fungsi ini berfungsi untuk menentukan sudut dari tiga titik a, b, dan c yang dimasukkan sebagai parameter. Fungsi ini digunakan untuk menentukan titik terjauh pada splittedConvex jika terdapat beberapa titik dengan jarak yang sama.

#### • determinantBetweenPoint

Fungsi ini memiliki tiga parameter yaitu p1, p2, dan p3. Yang ketiganya juga merupakan *numpy array* yang juga berperan sebagai titik x dan y. Fungsi ini berfungsi untuk memberikan nilai determinan yang menjadi penentuan arah dari titik p3 terhadap garis yang dibentuk oleh p1 dan p2. Jika nilai determinan positif maka p3 berada di kiri (atas) dari garis p1 dan p2, untuk nilai determinan negative maka p3 berada di kanan (bawah) dari garis p1 dan p2. Jika nilai determinan nol, maka titik tersebut tepat berada di garis yang dibentuk oleh p1 dan p2. Fungsi ini digunakan di fungsi splittedConvex dan juga convexHull untuk memisahkan himpunan S1 dan S2.

#### • pointDistanceMax

Fungsi ini memiliki tiga parameter yaitu S, P1, dan Pn. S merupakan himpunan titik (*array of numpy array*) dan P1 dan Pn yang merupakan titik (*numpy array*). Fungsi ini digunakan untuk menentukan titik terjauh dari himpunan S terhadap garis yang dibentuk oleh titik P1 dan Pn.

#### splittedConvex

Fungsi ini memiliki empat parameter yaitu S, P1, Pn, dan pivot. S merupakan himpunan titik (*array of numpy array*) dan P1 dan Pn yang merupakan titik (*numpy array*), dan pivot merupakan integer (1 dan -1) untuk menentukan arah dari convex hull. Fungsi ini berfungsi sebagai fungsi rekursi pada langkah 4 dari Bab 2. Fungsi ini mengimplementasikan algoritma *Divide and Conquer*.

#### convexHull

Fungsi ini memiliki satu parameter yaitu listOfPoint yang merupakan impunan titik (*array of numpy array*). Fungsi ini berfungsi sebagai implementasi dari langkah awal dari Bab 2. Fungsi ini akan mengembalikan *array of numpy array* yang merupakan sisi dari Convex Hull.

```
import numpy as np
      def findAngle(a, b, c):
             find the angle between three point (return in degrees)
             cosine\_angle = np.dot(ba, bc) \ / \ (np.linalg.norm(ba) \ * \ np.linalg.norm(bc)) \\ angle = np.arccos(cosine\_angle)
             return np.degrees(angle)
      def determinantBetweenPoint(p1, p2, p3):
             find the determinant between three point if > 0 then it is left/upper from p1 and p2 if = 0 then it is in p1 and p2 if < 0 then it is right/below from p1 and p2 ^{\rm mn}
             x1 = p1[0]
y1 = p1[1]
x2 = p2[0]
y2 = p2[1]
x3 = p3[0]
y3 = p3[1]
      def pointDistanceMax(S, P1, Pn):
             find the furthest point from \, a line (P1, pn) to a point from array S if the distance is the same then maximize the angle
              point ax 0 = []
for i in S:
    d = np.abs(np.cross(Pn-P1, i-P1)/np.linalg.norm(Pn-P1))
    if (d > maxD):
                           h = 0xem
                          pointMaxD = i
                          # maxinize the angle if distance is the same
dAngle = findAngle(P1, i, Pn)
maxDAngle = findAngle(P1, pointMaxD, Pn)
                          if (dAngle > maxDAngle):
    maxD = d
    pointMaxD = i
             return pointMaxD
```

```
convexPoint.append(
[np.array([P1[0], Pn[0]]), np.array([P1[1], Pn[1]])])
                  # edge coss for only one point in S
elif (len(S) = 1):
    pMax = S[0]
    convexPoint.append(
        [np.array([P1[0], pMax[0]]), np.array([P1[1], pMax[1]])])
    convexPoint.append(
        [np.array([P1[0], Pn[0]]), np.array([P1[1], Pn[1]])])
                                      # check if point outside of the left triangle of P1, pointMaxD, and Pn
if (pointMaxD[0] > i[0]):
    dir *= determinantBetweenPoint(pointMaxD, P1, i)
                                      # check if point outside of the right triangle of P1, pointMaxD, and Pn
elif (pointMaxD[0] < i[0]):
dir *= determinantBetweenPoint(Pn, pointMaxD, i)
                                               if (dir < 0):
    $2.append(i)</pre>
                             splittedConvex(S1, P1, pointMaxD, pivot)
splittedConvex(S2, pointMaxD, Pn, pivot)
                   global convexPoint
convexPoint = []
                   # sort array by the absis
ListOffoint = listOffoint[listOffoint[:, 1].argsort(kind='mergesort')]
ListOffoint = ListOffoint[listOffoint[:, 8].argsort(kind='mergesort')]
                  # split point by the line of P1 and Pn
for i in listOfFoint[1::1]:
    dir = determinantBetweenPoint(Pn, P1, i)
    if (dir < 0):
        S1.append(i)
    elif (dir > 0):
        S2.append(i)
                   splittedConvex(S1, P1, Pn, 1)
splittedConvex(S2, P1, Pn, -1)
return convexPoint
```

Gambar 2.3 convexHull.py

#### **BAB III**

#### **HASIL PERCOBAAN**

#### 1. Input/Output

```
1. external file
2. provided datasets
Choose data type (1-2): 2
List of database:
1. iris
2. wine
3. breastCancer
4. linerrud
5. diabetes
Choose a database (1-5): 1
List of column:
1. sepal length (cm)
sepal width (cm)
petal length (cm)
4. petal width (cm)
Choose a column for X value (1-4): 1
Choose a column for Y value (1-4): 2
```

Gambar 3.1 Commnad Line Interface Provided Datasests

```
1. external file
2. provided datasets
Choose data type (1-2): 1
Input file name: heart.csv
List of column:
1. age
2. sex
3. cp
4. trestbps
5. chol
6. fbs
7. restecg
8. thalach
9. exang
10. oldpeak
11. slope
12. ca
13. thal
Choose a column for X value (1-14): 4
Choose a column for Y value (1-14): 5
```

Gambar 3.1 Commnad Line Interface File Eksternal

# 2. Percobaan Dataset Sklearn

|                                                               | ma Dataset :        |                   | Pe                                                   | asangan Atribu     | <i>t</i> : |  |
|---------------------------------------------------------------|---------------------|-------------------|------------------------------------------------------|--------------------|------------|--|
| Iris                                                          |                     |                   | sepal-length, sepal-width                            |                    |            |  |
|                                                               |                     |                   | petal-length, petal-width sepal-length, petal-length |                    |            |  |
|                                                               |                     |                   | sepal-width, petal-width                             |                    |            |  |
|                                                               |                     | Inpi              |                                                      | ii-widiii, petai-v | /Idui      |  |
|                                                               |                     | Inpi              | ıı                                                   |                    |            |  |
| 0                                                             | sepal length (cm)   |                   | petal length (cm)                                    |                    | \          |  |
| 0<br>1                                                        | 5.1<br>4.9          |                   | 1.4<br>1.4                                           | 0.2<br>0.2         |            |  |
| 2                                                             | 4.7                 |                   | 1.3                                                  | 0.2                |            |  |
| 3<br>4                                                        | 4.6<br>5.0          |                   | 1.5<br>1.4                                           | 0.2<br>0.2         |            |  |
|                                                               |                     |                   |                                                      |                    |            |  |
| 145<br>146                                                    |                     |                   | 5.2<br>5.0                                           | 2.3<br>1.9         |            |  |
| 147                                                           | 6.5                 | 3.0               | 5.2                                                  | 2.0                |            |  |
| 148<br>149                                                    |                     |                   | 5.4<br>5.1                                           | 2.3<br>1.8         |            |  |
| 143                                                           | Target              | 2.0               | 371                                                  | 1.0                |            |  |
| 0                                                             | 0                   |                   |                                                      |                    |            |  |
| 1<br>2                                                        | 0<br>0              |                   |                                                      |                    |            |  |
| 3                                                             | 0                   |                   |                                                      |                    |            |  |
| 4                                                             | 0                   |                   |                                                      |                    |            |  |
| <br>145                                                       | 2                   |                   |                                                      |                    |            |  |
| 146                                                           | 2                   |                   |                                                      |                    |            |  |
| 147<br>148                                                    |                     |                   |                                                      |                    |            |  |
| 149                                                           |                     |                   |                                                      |                    |            |  |
| [15                                                           | 0 rows x 5 columns] |                   |                                                      |                    |            |  |
|                                                               |                     |                   |                                                      |                    |            |  |
|                                                               |                     | Outp              | ut                                                   |                    |            |  |
|                                                               |                     |                   |                                                      |                    |            |  |
|                                                               |                     |                   |                                                      |                    |            |  |
| 45.                                                           |                     | sepal length (cm) | vs sepal width (cm)                                  |                    |            |  |
| 4.5 -                                                         |                     | sepal length (cm) | vs sepal width (cm)                                  |                    |            |  |
| 4.5                                                           |                     | sepal length (cm) | vs sepal width (cm)                                  |                    | 1          |  |
| 4.5 -                                                         |                     | sepal length (cm) | vs sepal width (cm)                                  |                    | 1          |  |
|                                                               |                     | sepal length (cm) | vs sepal width (cm)                                  |                    | 1          |  |
|                                                               |                     | sepal length (cm) | vs sepal width (cm)                                  |                    | 1          |  |
| 4.0 -                                                         |                     | sepal length (cm) | vs sepal width (cm)                                  |                    | 1          |  |
| 4.0 -                                                         |                     | sepal length (cm) | vs sepal width (cm)                                  |                    | 1          |  |
| 4.0 -                                                         |                     | sepal length (cm) | vs sepal width (cm)                                  |                    | 1          |  |
| 4.0 -                                                         |                     | sepal length (cm) | vs sepal width (cm)                                  |                    | 1          |  |
| 4.0 -<br>3.5 -                                                |                     | sepal length (cm) | vs sepal width (cm)                                  |                    | 1          |  |
| sepal width (cm) 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. |                     | sepal length (cm) | vs sepal width (cm)                                  |                    | 1          |  |
| 4.0 -                                                         |                     | sepal length (cm) | vs sepal width (cm)                                  |                    | 1          |  |
| sepal width (cm) 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. |                     | sepal length (cm) | vs sepal width (cm)                                  |                    | 1          |  |
| 4.0 -<br>3.5 -<br>3.0 -<br>2.5 -                              |                     | sepal length (cm) | vs sepal width (cm)                                  |                    | 1          |  |
| sepal width (cm) 8. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. | 4.5 5.0             | sepal length (cm) |                                                      |                    | 1          |  |



|                   | Nama Dat     |              |              |                    |                                | ıngan Atril   |              |  |
|-------------------|--------------|--------------|--------------|--------------------|--------------------------------|---------------|--------------|--|
| Wine              |              |              |              |                    | alcalinity_of_ash, ash         |               |              |  |
|                   |              |              |              |                    | malic_acid, alcohol            |               |              |  |
|                   |              |              |              |                    | magnesium, alcohol             |               |              |  |
|                   |              |              |              |                    | color_intensity, total_phenols |               |              |  |
|                   |              |              |              | Input              | 20101_III(                     | insity, total |              |  |
|                   |              |              |              | ւոբա               |                                |               |              |  |
|                   | alcohol ma   | lic_acid     | ash alcal    | inity_of_ash       | magnesium                      | total phen    | ols \        |  |
| 0                 | 14.23        | 1.71         |              | 15.6               | 127.0                          |               | .80          |  |
| 1                 | 13.20        | 1.78         |              | 11.2               | 100.0                          |               | .65          |  |
| 2                 | 13.16        | 2.36         |              | 18.6               | 101.0                          |               | .80          |  |
| 3                 | 14.37        | 1.95         |              | 16.8               | 113.0                          |               | .85          |  |
| 4                 | 13.24        | 2.59         | 2.87         | 21.0               | 118.0                          | 2             | .80          |  |
| <br>173           | 13.71        | 5.65         | 2.45         | 20.5               | 95.0                           | 1             | .68          |  |
| 174               | 13.40        | 3.91         |              | 23.0               | 102.0                          |               | .80          |  |
| 175               | 13.27        | 4.28         |              | 20.0               | 120.0                          |               | .59          |  |
| 176               | 13.17        | 2.59         | 2.37         | 20.0               | 120.0                          | 1             | .65          |  |
| 177               | 14.13        | 4.10         | 2.74         | 24.5               | 96.0                           | 2             | .05          |  |
|                   | flavanoids   | nonflava     | noid_phenols | proanthocya        | nins color                     | _intensity    | hue \        |  |
| 0                 | 3.06         | 110111 24141 | 0.28         |                    | 2.29                           | 5.64          | 1.04         |  |
| 1                 | 2.76         |              | 0.26         |                    | 1.28                           |               | 1.05         |  |
| 2                 | 3.24         |              | 0.30         |                    | 2.81                           |               | 1.03         |  |
| 3                 | 3.49         |              | 0.24         |                    | 2.18                           |               | 0.86         |  |
| 4                 | 2.69         |              | 0.39         |                    | 1.82                           | 4.32          | 1.04         |  |
| 472               |              |              |              |                    |                                | 7.70          |              |  |
| 173               | 0.61         |              | 0.52         |                    | 1.06                           |               | 0.64         |  |
| 174<br>175        | 0.75<br>0.69 |              | 0.43<br>0.43 |                    | 1.41<br>1.35                   |               | 0.70<br>0.59 |  |
| 175<br>176        | 0.68         |              | 0.43         |                    | 1.46                           | 9.30          | 0.60         |  |
| 177               | 0.76         |              | 0.56         |                    | 1.35                           | 9.20          |              |  |
|                   |              |              |              |                    |                                |               |              |  |
|                   |              |              | (            | Output             |                                |               |              |  |
|                   |              |              |              | •                  |                                |               |              |  |
|                   |              |              | ash          | vs alcalinity_of_a | ish                            |               |              |  |
|                   | 30.0 - 0     |              |              | ,                  |                                |               |              |  |
|                   | • 1<br>• 2   |              |              |                    |                                |               | <b>→</b>     |  |
|                   | 27.5 -       |              |              |                    |                                |               | /            |  |
|                   |              |              |              |                    |                                | /             | <b>′</b>     |  |
|                   | 25.0 -       |              |              | /.• /              |                                |               | 1            |  |
| _                 |              |              |              |                    | •                              |               | /            |  |
| alcalinity of ash | 22.5 -       |              |              |                    |                                | //            |              |  |
| Jo /              |              |              | / .          |                    |                                | • / /         |              |  |
| linit             | 20.0 -       |              |              |                    |                                | _ /           |              |  |
| alcal             | 17.5         | /            |              |                    |                                |               |              |  |
| ,,,               | 17.5 -       | <b>^•</b> •  | • 🛉          |                    |                                |               |              |  |
|                   | 15.0         | / •          | • • /        |                    |                                | <b>4</b>      |              |  |
|                   | 15.0 -       |              | •            |                    | •                              |               |              |  |
|                   | 12.5 -       | / _          |              |                    | •/                             |               |              |  |
|                   | 12.3         |              |              |                    | -                              |               |              |  |
|                   |              |              |              |                    |                                |               |              |  |
|                   | 10.0 Ⅎ       |              |              |                    |                                |               |              |  |
|                   | 10.0 -       | .50 1.7      | 5 2.00       | 2.25 2.            | 50 2.75                        | 3.00          | 3.25         |  |







# 3. Percobaan Dataset File Eksternal

| <b>Nam</b><br>h                 | Pasangan Atribut: trestbps, chol trestbps, age                    |                                                               |                       |                                           |                                 |  |
|---------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------|-----------------------|-------------------------------------------|---------------------------------|--|
|                                 |                                                                   |                                                               |                       | ag                                        | e, chol                         |  |
|                                 |                                                                   | I-am                                                          | 4                     | thala                                     | ich, chol                       |  |
| ·                               | age sex cp tres                                                   | Inpos<br>stbps chol fbs                                       |                       | nalach exang                              | oldpeak \                       |  |
| 0<br>1<br>2<br>3<br>4           | age sex cp tres<br>63 1 3<br>37 1 2<br>41 0 1<br>56 1 1<br>57 0 0 | 145 233 1<br>130 250 0<br>130 204 0<br>120 236 0<br>120 354 0 | 0<br>1<br>0<br>1<br>1 | 150 0<br>187 0<br>172 0<br>178 0<br>163 1 | 2.3<br>3.5<br>1.4<br>0.8<br>0.6 |  |
|                                 | 57 0 0<br>45 1 3<br>68 1 0<br>57 1 0<br>57 0 1                    | 140 241 0<br>110 264 0<br>144 193 1<br>130 131 0<br>130 236 0 | 1<br>1<br>1<br>1<br>1 | 123 1<br>132 0<br>141 0<br>115 1<br>174 0 | 0.2<br>1.2<br>3.4<br>1.2        |  |
|                                 |                                                                   | target<br>1<br>1<br>1<br>1                                    |                       |                                           |                                 |  |
| 298<br>299<br>300<br>301<br>302 | 1 0 3<br>1 0 3<br>1 2 3<br>1 1 3<br>1 1 2                         | <br>0<br>0<br>0<br>0                                          |                       |                                           |                                 |  |
| [303 1                          | rows x 14 columns]                                                | ]                                                             |                       |                                           |                                 |  |
|                                 |                                                                   | Outp                                                          | out                   |                                           |                                 |  |
| _                               |                                                                   | trestb                                                        | os vs chol            |                                           |                                 |  |
| 500 -                           |                                                                   |                                                               |                       |                                           | • 1<br>• 0                      |  |
|                                 | /                                                                 | •                                                             |                       |                                           |                                 |  |
| 400 -<br>6<br>8<br>300 -        |                                                                   |                                                               |                       |                                           |                                 |  |
| chol                            |                                                                   |                                                               |                       |                                           | •                               |  |



| Nama Dataset :          | Pasangan Atribut :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| banknote.csv            | kurtosis, variance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                         | variance, skewness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                         | entropy, kurtosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                         | skewness, entropy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Inp                     | put                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| variance skewness       | kurtosis entropy target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 0 3.62160 8.66610       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1 4.54590 8.16740       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                         | 1.9242 0.10645 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 3 3.45660 9.52280       | -4.0112 -3.59440 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 4 0.32924 -4.45520      | 4.5718 -0.98880 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1367 0.40614 1.34920    | -1.4501 -0.55949 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 1368 -1.38870 -4.87730  | 6.4774 0.34179 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 1369 -3.75030 -13.45860 | 17.5932 -2.77710 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 1370 -3.56370 -8.38270  | 12.3930 -1.28230 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                         | 2.6842 1.19520 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| 13/1 2:34130 0:03004    | 210042 1113320 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| [1372 rows x 5 columns] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Out                     | put                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| varianc                 | e vs kurtosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| pro-                    | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 15 -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| / maco                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 10 -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                         | 18.0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| kurtosisis              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| ₹ 5 -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 1000000                 | action of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 0-                      | The state of the s |  |  |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| -5 -                    | The state of the s |  |  |
|                         | 0 2 4 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                         | oriance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |



|            | Nama Dataset : indiansdiabetes.csv | Pasangan Atribut:  plasma glucose concentration, diastolic blood |
|------------|------------------------------------|------------------------------------------------------------------|
|            |                                    | Input                                                            |
|            |                                    | •                                                                |
|            | number of times pregnant           | plasma glucose concentration \                                   |
| 9          | 6                                  | 148                                                              |
| 1          | 1                                  | 85                                                               |
| 2          | 8<br>1                             | 183<br>89                                                        |
| 4          | 9                                  | 137                                                              |
|            |                                    | •••                                                              |
| 763        | 10                                 | 101                                                              |
| 764        | 2                                  | 122                                                              |
| 765        | 5                                  | 121                                                              |
| 766<br>767 | 1 1                                | 126<br>93                                                        |
| /6/        | 1                                  | 23                                                               |
|            | diastolic blood pressure           | triceps skinfold thickness \                                     |
| 9          | 72                                 | 35                                                               |
| 1          | 66                                 | 29                                                               |
| 2          | 64                                 | 0                                                                |
| 3<br>4     | 66                                 | 23<br>35                                                         |
|            | 49                                 |                                                                  |
| 763        | 76                                 | 48                                                               |
| 764        | 79                                 | 27                                                               |
| 765        | 72                                 | 23                                                               |
| 766        | 60                                 | 0                                                                |
| 767        | 70                                 | 31                                                               |
|            | 2-Hour serum insulin hody          | mass index diabetes pedigree function age \                      |
| Ð          | 9                                  | 33.6 0.627 50                                                    |
| 1          | 0                                  | 26.6 0.351 31                                                    |
| 2          | 0                                  | 23.3 0.672 32                                                    |
| 3          | 94                                 | 28.1 0.167 21                                                    |
| 4          | 168                                | 43.1 2.288 33                                                    |
| 763        | 180                                | 32.9 0.171 63                                                    |
| 764        | 9                                  | 36.8 0.340 27                                                    |
| 765        | 112                                | 26.2 0.245 30                                                    |
| 766        | 0                                  | 30.1 0.349 47                                                    |
| 767        | 0                                  | 30.4 0.315 23                                                    |
|            | tanget                             |                                                                  |
| 9          | target<br>1                        |                                                                  |
| 1          | 0                                  |                                                                  |
| 2          | 1                                  |                                                                  |
| 3          | 0                                  |                                                                  |
| 4          | 1                                  |                                                                  |
|            |                                    |                                                                  |
| 763<br>764 | 9<br>9                             |                                                                  |
| 765        | 9                                  |                                                                  |
| 766        | 1                                  |                                                                  |
| 767        | Ø                                  |                                                                  |
|            |                                    |                                                                  |
| [768       | rows x 9 columns]                  |                                                                  |
|            |                                    |                                                                  |



# **LAMPIRAN**

# 1. Repository Github:

https://github.com/apwic/convex-hull-visualizer

# 2. Checklist:

| Poin                                               | Ya       | Tidak |
|----------------------------------------------------|----------|-------|
| 1. Pustaka <i>myConvexHull</i> berhasil dibuat dan | ✓        |       |
| tidak ada kesalahan                                |          |       |
| 2. Convex hull yang dihasilkan sudah benar         | ✓        |       |
| 3. Pustaka <i>myConvexHull</i> dapat digunakan     | ✓        |       |
| untuk menampilkan convex hull setiap               |          |       |
| label dengan warna yang berbeda.                   |          |       |
| 4. <b>Bonus:</b> program dapat menerima input      | <b>√</b> |       |
| dan menuliskan output untuk dataset                |          |       |
| lainnya.                                           |          |       |

Laporan Tugas Kecil IF2211 – 13520142 Lampiran Halaman iii dari iii + 21

#### **REFERENSI**

Informatika.stei.itb.ac.id/~rinaldi.munir. (2022). Algoritma Divide and Conquer Bagian 1. Diakses pada 26 Februari 2022, dari

 $\underline{https://informatika.stei.itb.ac.id/\sim rinaldi.munir/Stmik/2020-2021/Algoritma-Divide-and-Conquer-(2021)-Bagian1.pdf}$ 

Informatika.stei.itb.ac.id/~rinaldi.munir. (2022). Algoritma Divide and Conquer Bagian 4. Diakses pada 26 Februari 2022, dari

 $\frac{https://informatika.stei.itb.ac.id/\sim rinaldi.munir/Stmik/2021-2022/Algoritma-Divide-and-Conquer-(2022)-Bagian4.pdf}{}$