Arquitetura de Computadores

PROF. ISAAC

Mecanismos de Interrupção e Exceção

Interrupções externa

- > Acontecem quando o controlador recebe um sinal requisitando a execução de uma sub-rotina específica;
- > O controlador troca a execução do código principal pelo da interrupção e depois retorna ao código principal

Praticamente todos os computadores oferecem um mecanismo por meio do qual outros módulos (E/S, memória) podem interromper o processamento normal do computador.

A tabela abaixo lista as classes mais comuns de interrupção:

Programa	Gerada por alguma condição que ocorre como resultado da execução de uma instrução, como o <i>overflow</i> aritmético, divisão por zero, tentativa de executar uma instrução de máquina ilegal ou referência fora do espaço de memória permitido para o usuário.
Timer	Gerada por um timer dentro do processo. Isso permite que o sistema operacional realize certas funções regularmente.
E/S	Gerada por um controlador de E/S para sinalizar o término normal de uma operação ou para sinalizar uma série de condições de erro.
Falha de hardware	Gerada por uma falha como falta de energia ou erro de paridade de memória.

As interrupções são um mecanismo essencial nos sistemas computacionais modernos, permitindo que os processadores respondam a eventos externos ou internos de forma eficiente.

Uma interrupção é um sinal enviado para o processador que indica a ocorrência de um evento que requer atenção imediata. Quando o processador recebe uma interrupção, ele suspende temporariamente a execução do programa atual e passa a executar uma rotina de tratamento de interrupção (Interrupt Service Routine - ISR) associada ao evento específico.

As interrupções podem ser categorizadas como:

Interrupções de hardware (externas): Essas são geradas por dispositivos de hardware externos ao processador, como periféricos (teclado, mouse, disco rígido) ou controladores de interrupção. Geralmente, são usadas para sinalizar a conclusão de uma operação de E/S ou para solicitar atenção do processador em resposta a eventos externos.

Interrupções de software (internas): Essas são geradas internamente pelo próprio processador, geralmente como resultado de uma instrução de software específica (por exemplo, uma chamada de sistema) ou devido a condições excepcionais (como uma divisão por zero, acesso ilegal à memória ou estouro de pilha). As interrupções de software são usadas para implementar funcionalidades do sistema operacional, como chamadas de sistema e gerenciamento de exceções.

Interrupções básicas

Formas de Gerenciamento de Variáveis num Sistema Microcontrolado (Por varredura e por interrupção)

- Por varredura: é realizado dentro do programa principal;
- Por interrupção: quando um sinal elétrico conectado a um pino do microcontrolador dispara a execução de uma instrução de chamada a sub-rotina de atendimento a uma fonte de interrupção que deve ser armazenada num endereço prédefinido pelo fabricante;

Funcionamento da Interrupção no programa

- > Temos 4 tipos de interrupções:
 - Interrupção externa;
 - Temporizador (timer);
 - Contador;
 - Serial.

Interrupções do 8051

- > 2 temporizadores/contadores: TF0 e TF1;
- > 2 interrupções externas: INT0 e INT1;
- > 1 comunicação serial: SI

Configuração das interrupções

É necessário usar registradores especiais:

- > IE: Interrupt Enable Register;
- > IP: Interrupt Priority Register;
- > TCON: Timer/Counter Control Registrer;
- > TMOD: Timer/Counter Modes Register;
- > TLx e THx: registradores de timers;

Registrador: IE (Interrupt Enable)

O registrador IE (Interrupt Enable) permite um controle completo e individual sobre a habilitação e a desabilitação das interrupções.

Existe um bit de habilitação geral, denominado **EA**, sendo que as interrupções só podem acontecer se esse bit estiver em 1.

bit	7	6	5	4	3	2	1	0
	IE.7	IE.6	IE.5	IE.4	IE.3	IE.2	IE.1	IE.0
(IE) =	EA		ET2	ES	ET1	EX1	ET0	EX0

Registrador: IE (Interrupt Enable)

Descrição dos bits do registrador IE, responsável pela habilitação e desabilitação das interrupções.

Registrador: IE (Interrupt Enable)

bit	7	6	5	4	3	2	1	0
	_	IE.6		_	_			
(IE) =	EA		ET2	ES	ET1	EX1	ET0	EX0

Símbolo	Posição	Função
EA	IE.7	Desabilitador geral de todas as interrupções
		0: nenhuma interrupção é vetorizada
		1: cada fonte de interrupção é individualmente habilitada ou desabilitada por setar ou limpar seu correspondente <i>bit</i> habilitador
-	IE.6	Reservada
ET2	IE.5	Habilita/desabilita a fonte de interrupção de overflow ou captura do timer/contador 2
ES	IE.4	Habilita/desabilita a fonte de interrupção da interface do canal de comunicação serial
ET1	IE.3	Habilita/desabilita a fonte de interrupção de overflow do timer/contador 1
EX1	IE.2	Habilita/desabilita a fonte de interrupção externa 1
ET0	IE.1	Habilita/desabilita a fonte de interrupção de overflow do timer/contador 0
EX0	IE.0	Habilita/desabilita a fonte de interrupção externa 0

Registrador: IP (Interrupt Priority)

A prioridade das interrupções é definida pelo registrador IP (Interrupt Priority). Estão disponíveis dois níveis de prioridade: o alto e o baixo.

Descrição dos bits do registrador IP, responsável por especificar a prioridade de cada interrupção.

Registrador: IP (Interrupt Priority)

bit	7	6	5	4	3	2	1	0
	IP.7	IP.6	IP.5	IP.4	IP.3	IP.2	IP.1	IP.0
IP=	-	-	PT2	PS	PT1	PX1	PT0	PX0

Bit de prioridade = 1 ⇒ atribui alta prioridade;

Bit de prioridade = $0 \Rightarrow$ atribui baixa prioridade;

Posição	Função
IP.7	Reservada
IP.6	Reservada
IP.5	Bit de prioridade da fonte de interrupção do timer/contador 2
IP.4	Bit de prioridade da fonte de interrupção do canal de comunicação serial
IP.3	Bit de prioridade da fonte de interrupção do timer/contador 1
IP.2	Bit de prioridade da fonte de interrupção externa 1
IP.1	Bit de prioridade da fonte de interrupção do timer/contador 0
IP.0	Bit de prioridade da fonte de interrupção externa 0
	IP.7 IP.6 IP.5 IP.4 IP.3 IP.2 IP.1

Registrador: TCON (Timer Controller)

Registrador TCON, onde se especifica se as interrupções externas trabalharão por nível ou por flanco.

Registrador: TCON (Timer Controller)

Os quatro *bits* menos significativos do registrador de controle dos *timers*/contadores chamado de TCON gerenciam o funcionamento das interrupções externas.

bits	7	6	5	4	3	2	1	0
	TCON.7	TCON.6	TCON.5	TCON.4	TCON.3	TCON.2	TCON.1	TCON.0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

São 2 entradas de interrupção externas:

- ➤ interrupção 0 (P3.2/ INT0)
- ➤ interrupção 1 (P3.3/ INT1)

Flag IT0 do TCON

bits	7	6	5	4	3	2	1	0
	TCON.7	TCON.6	TCON.5	TCON.4	TCON.3	TCON.2	TCON.1	TCON.0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

ITO (**TCON.0**): especifica se o sinal elétrico vindo da interface externa ativa a interrupção por nível lógico zero ou por borda de descida, respectivamente.

Flag IE0 do TCON

bits	7	6	5	4	3	2	1	0
	TCON.7	TCON.6	TCON.5	TCON.4	TCON.3	TCON.2	TCON.1	TCON.0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

Caso a interrupção externa 0 for programada para gerar interrupções quando o seu nível lógico for igual a zero, esse *bit* não é resetado quando a sub-rotina de atendimento a essa fonte de interrupção é atendida e deve ser resetado na rotina de atendimento a essa fonte de interrupção.

Diagrama das interrupções

Endereço de desvio das interrupções

Fonte de interrupção	Nome da fonte de interrupção	Endereço vetor
RESET	Reset	0000h
IE0	Fonte de interrupção externa 0	0003h
TF0	Fonte de interrupção do timer/contador 0	000Bh
IE1	Fonte de interrupção externa 1	0013h
TF1	Fonte de interrupção do timer/contador 1	001Bh
RI + TI	Fonte de interrupção do canal de comunicação serial	0023h
TF2 + EXF2	Fonte de interrupção do timer/contador 2 + externa 2	002Bh

Passos para configurar e escrever rotina de interrupções

Em adicional, para as interrupções externas, os pinos INT0 e INT1 (P3.2 e P3.3) devem ficar inicialmente em 1 lógico (as interfaces devem ser projetadas para inicialmente operarem em 1 lógico e quando tiver alguma ocorrência, ela deve ir para 0 lógico), e dependendo se a fonte de interrupção é ativada por nível ou borda de descida, os *bits* IT0 e IT1 no registrador TCON podem precisar ser setados para 1 lógico (IT0 e IT1=0 \Rightarrow ativado por nível e IT0 e IT1=1 \Rightarrow ativado por transição).

Exemplo de Interrupção Externa

Registrador: TCON (Timer Controller)

Os quatro *bits* menos significativos do registrador de controle dos *timers*/contadores chamado de TCON gerenciam o funcionamento das interrupções externas.

bits	7	6	5	4	3	2	1	0
	TCON.7	TCON.6	TCON.5	TCON.4	TCON.3	TCON.2	TCON.1	TCON.0
TCON	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

São 2 entradas de interrupção externas:

- ➤ interrupção 0 (P3.2/ INT0)
- ➤ interrupção 1 (P3.3/ INT1)

Pinagem do 8051

Pino	Descrição
P3.2 (#INTO)	Usado como entrada para o pedido de interrupção 0.
P3.3 (#INT1)	Usado como entrada para o pedido de interrupção 1.
P3.4 (T0)	Entrada de contagem para CTO, quando operando no modo contador.
P3.5 (T1)	Entrada de contagem para CT1, quando operando no modo contador.

Crie um programa com interrupção externa INTO (pino P3.2) que realize o complemento do pino P1.0 cada vez que a interrupção for acionada.

Solução:

org 0000h **LJMP START** ;Pula incondicionalmente para START org 0003h INT_EXT0: **CPL P1.0** ;complementa P1.0 ;Retorna da interrupção RETI org 0080h **START:** SETB EA ;Habilita as interrupções ;Habilita a interrupção 0 SETB EXO **SETB ITO** ;Trabalhando com borda de descida SJMP\$;Laço de repetição

Solução:

```
org 0000h
     LJMP START
                             ;Pula incondicionalmente para START
org 0003h
INT_0:
     CPL P1.0
                             ;complementa P1.0
     RETI
                             ;Retorna da interrupção
org 0080h
START:
     SETB EA
                             ;Habilita as interrupções
     SETB EXO
                             ;Habilita a interrupção 0
     SETB IT0
                             ;Trabalhando com borda de descida
     SJMP $
                             ;Laço de repetição
```

Pedido	Interrupção	Endereço	
IE0	Externa 0	0003H	
TF0	Temporizador 0	000BH	
IE1	Externa 1	0013H	
TF1	Temporizador 1	001BH	
TI ou RI	Serial	0023H	

Solução:

org 0000h

LJMP START ;Pula incondicionalmente para START

org 0003h

INT_0:

CPL P1.0

;complementa P1.0

RETI ;Retorna da interrupção

org 0080h

START:

SETB EA ;Habilita as interrupções

SETB EX0 ;Habilita a interrupção 0

SETB ITO ;Trabalhando com borda de descida

SJMP\$;Laço de repetição

;Pula incondicionalmente para START

Solução:

org 0000h

LJMP START

org 0003h

INT 0:

CPL P1.0

RETI

org 0080h

START:

SETB EA

SETB EX0

Habilita as interrupções

;Habilita a interrupção 0

;Trabalhando com borda de descida

;Retorna da interrupção

;Laço de repetição

complementa P1.0

SETB IT0

SJMP \$

Solução:

org 0000h **LJMP START** ;Pula incondicionalmente para START org 0003h INT_EXT0: **CPL P1.0** ;complementa P1.0 ;Retorna da interrupção RETI org 0080h **START:** SETB EA ;Habilita as interrupções ;Habilita a interrupção 0 SETB EXO **SETB ITO** ;Trabalhando com borda de descida SJMP\$;Laço de repetição

Exemplo de Interrupção Externa

Para o esquema apresentado na figura e considerando a chave SW0 e SW1, INT0 (pino P3.2) que realize o complemento do pino P1.0, INT1 (pino P3.3) que realize o complemento do pino P1.7.

Solução:

```
org 0000h
     L.IMP START
                                ;Pula incondicionalmente para START
org 0003h
INT EXT0:
     CPL P1.0
                                ;complementa P1.0
     CLR IE0
     RETI
                                ;Retorna da interrupção
org 0013h
INT EXT1:
     CPL P1.7
                                ;complementa P1.7
     CLR IE1
     RETI
                                ;Retorna da interrupção
org 0080h
START:
     SETB EA
                                ;Habilita as interrupções
     SETB EXO
                                ;Habilita a interrupção 0
     SETB EX1
                                ;Habilita a interrupção 1
     SJMP$
                                ;Laço de repetição
```

LJMP START

CPL P1.0

CLR IE0

CPL P1.7

CLR IE1

SETB EA

SETB EX0

SETB EX1

SJMP\$

RETI

RETI

Solução:

org 0000h

org 0003h

org 0013h INT_EXT1:

org 0080h START:

INT EXT0:

Pedido	Interrupção	Endereço	
IE0	Externa 0	0003H	
TF0	Temporizador 0	000BH	
IE1	Externa 1	0013H	
TF1	Temporizador 1	001BH	
TI ou RI	Serial	0023H	

Solução:

org 0000h

LJMP START ;Pula incondicionalmente para START

;complementa P1.0

;complementa P1.7

;Retorna da interrupção

;Retorna da interrupção

org 0003h

INT_EXT0:

CPL P1.0

CLR IE0

RETI

org 0013h

INT EXT1:

CPL P1.7

CLR IE1

RETI

org 0080h

START:

SETB EA ;Habilita as interrupções

SETB EX0 ;Habilita a interrupção 0

SETB EX1 ;Habilita a interrupção 1

SJMP\$;Laço de repetição

LJMP START

CPL P1.0

CLR IE0

CPL P1.7

CLR IE1

SETB EA

SETB EX0

SETB EX1

SJMP\$

RETI

RETI

Solução:

org 0000h

org 0003h INT_EXT0:

org 0013h INT EXT1:

org 0080h START:

Pedido	Interrupção	Endereço	
IE0	Externa 0	0003H	
TF0	Temporizador 0	000BH	
IE1	Externa 1	0013H	
TF1	Temporizador 1	001BH	
TI ou RI	Serial	0023H	

Solução:

org 0000h

LJMP START

;Pula incondicionalmente para START

org 0003h

INT_EXT0:

CPL P1.0

;complementa P1.0

CLR IE0

RETI

:Retorna da interrupção

org 0013h

INT_EXT1:

CPL P1.7 ;complementa P1.7

CLR IE1

RETI ;Retorna da interrupção

org 0080h

START:

SETB EA ;Habilita as interrupções

SETB EX0 ;Habilita a interrupção 0

SETB EX1 ;Habilita a interrupção 1

SJMP\$;Laço de repetição

org 0000h LJMP START org 0003h

INT_EXT0:

Solução:

CPL P1.0 ;complementa P1.0

CLR IE0 ;Zera a Flag da interrupção ;Retorna da interrupção

RETI

org 0013h

INT EXT1:

CPL P1.7 complementa P1.7 **CLR IE1** ¿Zera a Flag da interrupção RETI ;Retorna da interrupção

org 0080h

START:

SETB EA ;Habilita as interrupções SETB EX0 ;Habilita a interrupção 0

SETB EX1 ;Habilita a interrupção 1

SJMP \$;Laço de repetição

Solução:

```
org 0000h
     L.IMP START
                                ;Pula incondicionalmente para START
org 0003h
INT EXT0:
     CPL P1.0
                                ;complementa P1.0
     CLR IE0
     RETI
                                ;Retorna da interrupção
org 0013h
INT EXT1:
     CPL P1.7
                                ;complementa P1.7
     CLR IE1
     RETI
                                ;Retorna da interrupção
org 0080h
START:
     SETB EA
                                ;Habilita as interrupções
     SETB EX0
                                ;Habilita a interrupção 0
     SETB EX1
                                ;Habilita a interrupção 1
     SJMP$
                                ;Laço de repetição
```

Exemplo de Interrupção Externa

Para o esquema apresentado na figura e considerando a chave SW0 e SW1, INT0 (pino P3.2) que realize o complemento do pino P1.0, INT1 (pino P3.3) que realize o complemento do pino P1.7.

Faça com que os LEDs no P1.0 e P1.7 só sejam acionados quando o botão é pressionado e solto.

Para resolver esse problema, temos que utilizar por borda

Solução:

```
org 0000h
     L.IMP START
                                 ;Pula incondicionalmente para START
org 0003h
INT EXT0:
     CPL P1.0
                                 ;complementa P1.0
     RETI
                                 ;Retorna da interrupção
org 0013h
INT EXT1:
     CPL P1.7
                                 ;complementa P1.7
     RETI
                                 ;Retorna da interrupção
org 0080h
START:
     SETB EA
                                 ;Habilita as interrupções
     SETB EX0
                                 ;Habilita a interrupção 0
     SETB EX1
                                 ;Habilita a interrupção 1
     SETB ITO
                                 ;Trabalhando com borda de descida
     SETB IT1
                                 ;Trabalhando com borda de descida
     SJMP$
                                 ;Laço de repetição
```

Bibliografia

ZELENOVSKY, R.; MENDONÇA, A. Microcontroladores Programação e Projeto com a Família 8051. MZ Editora, RJ, 2005.

Gimenez, Salvador P. Microcontroladores 8051 - Teoria e Prática, Editora Érica, 2010.