Vector Data

Why Vector Data?

- Recall: features vs fields
 - features: discrete entities with specific locations
 - fields: continuous functions of (x, y)
- "Vector" is GIS-speak for feature representations
 - dimensionality: point, line, area
 - topology: preserve/ignore connectivity
 - simple vs. composite

Simple Features

Point Feature

Line Feature

Area Feature

- Dimensionality
 - 0: point
 - 1: line
 - 2: area

- Composition
 - line: sequence of points
 - implicitly connected
 - area: sequence of lines
 - boundary
 - implicit or explicit closure

Georelational Data Model

Points

ID	Tower Name	Height	Format
1	WKRP	101.0	Рор
2	WYOU	55.5	Oldies
3	TPT	486.0	Public TV
4	WQXR	99.5	Classical
5	BBC	212.1	News

Lines

ID	Name
1	Tuckaseegee River
2	Pigeon Branch
3	Poplar Run
4	Shope Fork
5	Mel's Brook
6	Merdesansrame Creek
7	Longue Arm
8	Arroyo Grande

Polygons

ID	Building Name	Floors	Roof Type
1	Hodson Hall	6.0	flat, sealed tar
2	Borlaug Hall	5.5	pitched 9/12, tile
3	Guilford Technology Bldg.	4.0	flat, gasket
4	Shop Annex	2.5	flat, sealed tar
5	Animal Sciences Bldg.	1.0	pitched 12/12, tile
6	Administration Bldg.	14.0	pitched 6/12, meta
7	Climate Sciences Center	6.0	flat, sealed tar
8	Grantham Tower	1.0	pitched 9/12, tile
9	Biological Sciences Bldg.	9.0	pitched 12/12, tile

- Separation of geometry and attributes
 - related by feature ID
- May or may not represent topology (connectivity)
 - explicit topology: coverage (obsolete, but still used)
 - no topology: shapefile

Non-Topological Vector Data

- Lists of simple features
 - no explicit connectivity
 - features that share geometry, duplicate the geometry
- Advantages
 - easier to draw/display
 - don't have to look up arcs
 - simpler file formats
 - easier to extract subsets of features
- Disadvantages
 - can't tell if duplicate geometry is shared geometry
 - editing features with shared geometry can introduce inconsistencies
 - e.g. boundary between counties

Shapefile

- foo.shp
 - geometry
 - feature ID: coordinate list
- foo.shx
 - geometry index
 - feature ID: offset in bytes
 - from beginning of foo.shp
- foo.dbf
 - attributes
 - feature ID: attributes...

- foo.prj
 - coordinate system
 - geographic
 - projected
- foo.xml
 - metadata
- foo.{anything else}:
 - (probably ESRI-specific)

Databases

- Layers = database tables
 - geometry stored directly in the database

GeoPackage

- file containing SQLite database
 - ".gpkg" filename extension
- open standard: anyone can implement it

Geodatabase

- folder containing database tables as files
 - ".gdb" folder name extension
- ESRI proprietary
 - file format / database schema not documented
 - QGIS can read (sometimes) but not write

Vector Data Operations

- Buffering
- Overlay
- Editing

Proximity

- Buffering
 - feature of interest + distance D
 - \downarrow

buffer

- \downarrow
- region w/in D ↔ region beyond D
- w/in distance D?

w/in buffer?

- Ubiquitous in GIS
 - exclusion zone
 - impact area
 - uncertainty
 - etc...

Buffering

- Variable-D buffers
 - e.g. stream gradient

- Concentric buffers
 - e.g. distance from well

Buffering with Dissolve

- Dissolve = remove overlap
 - Useful if same process governs creation of all the buffers
 - turns "each area" into "all areas"
 - e.g. "drug-free school zone"
 - "No drugs here"
 more important than
 "no drugs near school X"

Overlay

Combine feature layers

- New_Layer = Layer_1 {op} Layer_2
 - new geometry based on intersection of old geometries
 - old attributes distributed over new geometry
- Example: polygon AND polygon

Overlay: Point-in-Polygon

Points receive attributes of containing polygon

- ... not the reverse: why?
 - hint: what if >1 point in a polygon…

Overlay: Line-in-Polygon

- Old line → 2 new lines
 - 1 per polygon
- New lines receive attributes of containing polygon

Overlay: Polygon-on-Polygon

 Polygons broken up as needed so attributes distribute correctly

Overlay Operations

- Intersection
- Union
- Symmetrical Difference
- Difference
- Identity
- Update

Intersection (AND)

only areas common to both input layers
 INPUT

• output = input AND intersect

Union (OR)

All areas from both input layers

- output = input₁ OR input₂
 - OR: inclusive "or"
 - 1 or 2 or both

Symmetrical Difference (XOR)

Only areas unique to 1 input layer

- output = input₁ XOR input₂
 - XOR: exclusive "or"
 - 1 or 2 but not both

Difference

• Like symmetrical difference, but only keeps input layer

• output = (input XOR erase) AND input

Identity

• Like intersect, but keeps all of 1st input layer

• output = (input AND identity) OR input

Update

• Like difference, but keeps update layer

• output = ((input XOR update) AND input) OR update

Vector Editing Operations

- Apply combinations of ...
 - overlay operators
 - attribute queries
- ... to create new feature layers
- Dissolve
- Clip
- Merge
- Select
- Eliminate

Dissolve

 Combine adjacent polygons based on shared attribute value

- i.e. remove unnecessary boundaries
 - simplifies analysis
 - smaller dataset

Clip

"Cut out" input layer
 using feature(s) from clip layer

• Think "stencil" ...

Merge

Combine vector datasets

Select

• Extract selected features into new layer

Eliminate

- Get rid of "spurious" polygons...
 - e.g. digitization errors
- ...by merging into neighbors
 - largest
 - longest common boundary

─ BORDERS TO BE ELIMINATED
 □ SLIVER POLYGONS

Graphics Credits

- Introduction to Geographic Information Systems, 5/e
- ArcMap Help
- GIS Fundamentals, 6/e