Licence (L3) Année 2016/2017

ALGÈBRE

Ensembles, relations, structures, monoïdes

A. CHAMBERT-LOIR

EXERCICE 1

Soit A et B des ensembles.

- Soit E l'ensemble des couples (S, f) où S est une partie de A et $f: S \to B$ une application injective. On munit E de la relation d'ordre pour laquelle $(S, f) \preceq (S', f')$ si $S \subset S'$ et $f'|_S = f$. Démontrer que l'ensemble ordonné E est inductif, donc possède un élément maximal.
- **2** En considérant un élément maximal de *E*, démontrer qu'il existe une injection de *A* dans *B* ou une injection de *B* dans *A*.
- 3 (Théorème de Cantor-Bernstein) On suppose qu'il existe des injections $f: A \to B$ et $g: B \to A$. On définit des ensembles (A_n) et (B_n) par récurrence sur n en posant $A_0 = A$, $B_0 = B$, et, pour $n \ge 0$, $A_{n+1} = g(B_n)$ et $B_{n+1} = f(A_n)$; on pose aussi $A_n^* = A_n A_{n+1}$ et $B_n^* = B_n B_{n+1}$; soit enfin $A_\infty = \bigcap_{n \in \mathbb{N}} A_n$ et $B_\infty = \bigcap_{n \in \mathbb{N}} B_n$. Démontrer que f et g induisent des bijections de A_n^* sur B_{n+1}^* et de B_n^* sur A_{n+1}^* respectivement; démontrer que f induit une bijection de A_∞ sur B_∞ . En déduire qu'il existe une bijection de A sur B.

EXERCICE 2

La théorie des ensembles définit, pour tout ensemble A, un ensemble $\operatorname{Card}(A)$ qui est équipotent à A et tel que $\operatorname{Card}(A) = \operatorname{Card}(B)$ si et seulement si A et B sont équipotents. On appelle $\operatorname{cardinal}$ un ensemble de la forme $\operatorname{Card}(A)$.

- 1 Soit α et β des cardinaux. On note $\alpha \leqslant \beta$ s'il existe une injection de α dans β . Démontrer que la relation \leqslant est un relation d'ordre total sur les cardinaux.
- 2 Démontrer que tout ensemble de cardinaux est majoré.
- 3 Démontrer que tout ensemble non vide de cardinaux possède un plus petit élément.

EXERCICE 3

- Soit A un ensemble et soit $f: A \to \mathfrak{P}(A)$ une application de A dans l'ensemble $\mathfrak{P}(A)$ des parties de A. Soit B l'ensemble des éléments $a \in A$ tels que $a \not\in f(a)$. Démontrer que B n'appartient pas à l'image de f.
- **2** En déduire que l'ensemble $\mathfrak{P}(A)$ n'est pas équipotent à A.

EXERCICE 4 (Théorème de Knaster-Tarski)

On appelle treillis complet un ensemble ordonné A tel que toute partie de A possède une borne inférieure et une borne inférieure.

- 1 Démontrer que l'ensemble [0,1] (muni de la relation d'ordre usuelle des nombre réels) est un treillis complet.
- 2 Démontrer que l'ensemble des parties d'un ensemble, muni de la relation d'inclusion, est un treillis complet.
- 3 Démontrer que l'ensemble des sous-groupes d'un groupe, muni de la relation d'inclusion, est un treillis complet.

- 4 Démontrer qu'un treillis complet possède un plus petit et un plus grand élément.
- Soit *A* un treillis complet, soit *a*, *b* des éléments de *A* tels que $a \le b$ et soit $B = [a, b] = \{x \in A; a \le x \le b\}$. Démontrer que *B* est un treillis complet.
- 6 Démontrer que dans la définition d'un treillis complet, il suffit de supposer que toute partie de *A* possède une borne inférieure (*resp.* une borne supérieure).
- Soit A un treillis complet et soit $f: A \to A$ une application monotone. Soit P l'ensemble des points-fixe de f, muni de la relation d'ordre induite par celle de A. Soit S l'ensemble des $a \in A$ tels que $a \leq f(a)$; démontrer que $f(S) \subset S$. Soit s la borne supérieure de S; démontrer que s est le plus grand point fixe de s.
- 8 (*suite*) Soit Q une partie de P, soit q sa borne supérieure de Q dans A et soit $a = \max(A)$. Démontrer que $f([q,a]) \subset [q,a]$. En déduire que f possède un plus petit point fixe appartenant [q,a] qui est la borne supérieure de Q dans P.
- **9** (*suite*) Démontrer que *P* est un treillis complet.

EXERCICE 5 (Théorème de Zermelo)

Le théorème de ZERMELO (1904) affirme que sur tout ensemble, il existe un bon ordre.

- 1 Déduire l'axiome du choix du théorème de Zermelo.
- 2 Déduire le théorème de Zorn du théorème de Zermelo. (Soit A un ensemble ordonné; choisir un ensemble I, par exemple $I = \mathcal{P}(A)$, tel qu'il n'existe pas de surjection de A sur I et le munir d'un bon ordre; définir alors par récurrence transfinie une suite strictement croissante maximale $(a_i)_{i \in I}$, où I est un segment initial de I; démontrer que I n'a pas de plus grand élément; en déduire que l'ensemble A n'est pas inductif.)
- Utiliser le théorème de Zorn pour démontrer le théorème de Zermelo. (Soit A un ensemble; considérer l'ensemble $\mathscr Z$ des couples (V, \leq_V) , où V est une partie de A et \leq_V un bon ordre sur V et définir une relation $(V, \leq_V) \leqslant (W, \leq_W)$ dans $\mathscr Z$ par « V est un segment initial de W, muni de l'ordre induit »; prouver que c'est une relation d'ordre pour laquelle $\mathscr Z$ est inductif; considérer un élément maximal (V, \leq_V) de $\mathscr Z$ et démontrer que V = A.)

EXERCICE 6 (Ordinaux de von Neumann)

On dit qu'un ensemble bien ordonné A est un *ordinal* si pour tout $a \in A$, on a l'égalité $a = \{ x \in A; x < a \}$.

- 1 Soit A un ordinal; soit a, b des éléments de A. Démontrer que l'on a $a \le b$ si et seulement si $a \subset b$.
- 2 Soit A un ordinal. Démontrer que $A^+ = A \cup \{A\}$, muni de la relation d'inclusion, est un ordinal.
- **3** Soit *A* et *B* deux ordinaux. Démontrer que l'on a $A \subset B$ ou $B \subset A$.
- 4 Démontrer que toute famille non vide d'ordinaux possède un plus petit élément. (« Pour la relation d'inclusion, les ordinaux sont bien ordonnés. »)
- 5 Démontrer que toute famille d'ordinaux possède une borne supérieure.
- 6 Démontrer que ∅ est un ordinal. Quels sont les ordinaux finis? Quel est le plus petit ordinal infini?
- 7 Soit *S* un ensemble bien ordonné. Démontrer qu'il existe une unique ordinal qui est isomorphe à *S*.

EXERCICE 7

Soit (A, \cdot) un monoïde.

- Démontrer que la loi de composition donnée par a * b = ba fait de A un monoïde; on l'appelle le monoïde opposé et on le note A^0 .
- 2 Si A est un groupe, démontrer que A^0 est un groupe et que l'application $a \mapsto a^{-1}$ est un isomorphisme du groupe A sur le groupe opposé A^0 .
- 3 Donner un exemple de monoïde qui n'est pas isomorphe au monoïde opposé.

EXERCICE 8

Soit *M* un monoïde.

Démontrer que le produit de deux éléments inversibles à droite (*resp.* à gauche) est inversible à droite (*resp.* à gauche) et donner une formule pour un tel inverse.

EXERCICE 9

Dans chacun des monoïdes suivants, identifier l'ensemble des éléments inversibles à droite (*resp.* à gauche).

- 1 Le monoïde des applications d'un ensemble *A* dans lui-même.
- **2** Le monoïde des applications linéaires d'un **R**-espace vectoriel *E* dans lui-même. Cas de la dimension finie?
- 3 Le monoïde des applications polynomiales de R dans R.
- 4 Le monoïde multiplicatif d'une K-algèbre associative de dimension finie, K étant un corps fixé ($K = \mathbf{R}$ ou \mathbf{C} , si l'on veut).

EXERCICE 10

Soit *M* un monoïde commutatif; on note + sa loi de composition et 0 son élément neutre.

- Soit \sim la relation dans $M \times M$ donnée par $(a,b) \sim (c,d)$ s'il existe $u \in M$ tel que a+d+u=b+c+u. Démontrer que c'est une relation d'équivalence.
- On note A l'ensemble quotient et [a,b] la classe d'un couple (a,b). Démontrer qu'il existe une unique loi de composition de A telle que [a,b]+[c,d]=[a+c,b+d] pour $a,b,c,d\in M$. Démontrer que A est un groupe abélien et que l'application $j\colon M\to A$ donnée par $a\mapsto [a,0]$ est un homomorphisme de monoïdes. Démontrer aussi que tout élément de A est la différence de deux éléments de j(M).
- Soit B un groupe et soit $f: M \to B$ un homomorphisme de monoïdes. Démontrer qu'il existe un unique homomorphisme de groupes $\varphi: A \to B$ tel que $\varphi \circ j = f$.

EXERCICE 11

Soit M un mono \ddot{i} de (non nécessairement commutatif).

- Soit A un groupe et soit $j: M \to A$ un morphisme de monoïdes tel que j(M) engendre A. Démontrer que $Card(A) \leq sup(Card(N), Card(M))$.
- 2 Démontrer qu'il existe un ensemble Φ dont les éléments sont des couples (j, A), où A est un groupe et $j: M \to A$ un morphisme de monoïdes tel que j(M) engendre A, qui vérifie la propriété suivante : Pour tout couple (f, B), où B est un groupe et $f: M \to B$ est un morphisme de monoïdes, il existe un couple $(j, A) \in \Phi$ et un morphisme $φ: A \to B$ tel que $φ \circ j = f$.
- 3 Démontrer qu'il existe un groupe A et un homomorphisme de monoïdes $j: M \to A$ vérifiant la propriété universelle : Pour tout groupe B et tout morphisme de monoïdes $f: M \to B$, il existe un unique morphisme de groupes $\varphi: A \to B$ tel que $\varphi \circ j = f$.

EXERCICE 12

Soit A un groupe commutatif et soit a un élément de A d'ordre fini n. Pour tout entier m, démontrer que a^m est d'ordre fini et calculer son ordre.

EXERCICE 13

Soit *A* un groupe.

- 1 On suppose que A/Z(A) est monogène; démontrer que A est commutatif.
- 2 On suppose dans la suite que A est fini. Soit n son cardinal et c le nombre de classes de conjugaisons de A. Soit p la probabilité que deux éléments de A commutent (cardinal de l'ensemble des couples (a,b) tels que ab = ba, divisé par n^2). Démontrer que p = c/n.
- 3 On suppose que A n'est pas commutatif; démontrer que $p \le 5/8$.

EXERCICE 14

Soit A un groupe. On appelle sous-groupe maximal de A un sous-groupe B tel que $B \neq A$ et tel que pour tout sous-groupe C tel que $B \subset C \subset A$, on ait C = B ou C = A.

- 1 Soit \mathcal{B} un ensemble non vide de sous-groupes de A qui est totalement ordonné pour l'inclusion (c'està-dire que si B et B' appartiennent à \mathcal{B} , alors $B \subset B'$ ou $B' \subset B$). Démontrer que la réunion des éléments de \mathcal{B} est un sous-groupe de A.
- **2** On suppose que *A* possède une partie génératrice finie. Démontrer que tout sous-groupe de *A* distinct de *A* est contenu dans un sous-groupe maximal. (*Utiliser le théorème de Zorn.*)
- 3 Reprendre la question précédente en remplaçant « sous-groupe maximal » par « sous-groupe distingué maximal », *resp.* « sous-groupe caractéristique maximal ».
- 4 Démontrer que le groupe additif ${\bf Q}$ ne possède pas de sous-groupe maximal.

EXERCICE 15 (Frattini–Neumann)

Soit G un groupe. On dit qu'un élément $g \in G$ est non-générateur si pour toute partie S de G qui n'est pas génératrice, $S \cup \{g\}$ n'est pas génératrice. On note $\Phi(G)$ l'ensemble des éléments non-générateurs de G (sous-groupe de Frattini).

- 1 Démontrer que $\Phi(G)$ est un sous-groupe caractéristique de G.
- 2 Soit *g* un élément de *G*. Démontrer qu'il existe un sous-groupe *A* de *G* qui est maximal parmi l'ensemble des sous-groupes de *G* qui ne contiennent pas *g*. (*Utiliser le théorème de Zorn*.)
- **3** Démontrer que $\Phi(G)$ est l'intersection de l'ensemble des sous-groupes maximaux de G. (1)

EXERCICE 16

- Soit A un groupe et soit B une partie de A. Soit $M_A(B)$ l'ensemble des $a \in A$ tels que $\mathrm{Int}(a)(B) \subset B$. Démontrer que $M_A(B)$ est un sous-monoïde de A.
- 2 On pose $A = GL(2, \mathbf{Q})$ et on prend pour B le sous-groupe des matrices de la forme $\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$, avec $a \in \mathbf{Z}$. Soit a la matrice $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$. Démontrer que a appartient à $M_A(B)$ mais pas a^{-1} . En déduire que $M_A(B)$ n'est pas un sous-groupe de A.

^{1.} Ce résultat est dû à G. Frattini (1885) lorsque G est fini, et à B. H. NEUMANN (1937) en général.