

Scene Graphs & Modeling Transformations

COS 426, Spring 2014
Princeton University

3D Object Representations

- Points
 - Range image
 - Point cloud

- Surfaces
 - Polygonal mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Application specific

3D Object Representations

What object representation is best for this?

3D Object Representations

- Desirable properties of an object representation
 - Easy to acquire
 - Accurate
 - Concise
 - Intuitive editing
 - Efficient editing
 - Efficient display
 - Efficient intersections
 - Guaranteed validity
 - Guaranteed smoothness
 - o etc.

(CS Building, Princeton University)

Overview

- Scene graphs
 - Geometry & attributes
 - Transformations
 - Bounding volumes
- Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
 - 3D transformations

Hierarchy (DAG) of nodes, where each may have:

- Modeling transformation
- Parents and/or children

Bounding volume

- Advantages
 - Allows definitions of objects in own coordinate systems

- Advantages
 - Allows definitions of objects in own coordinate systems
 - Allows use of object definition multiple times in a scene

Advantages

- Allows definitions of objects in own coordinate systems
- Allows use of object definition multiple times in a scene
- Allows hierarchical processing (e.g., intersections)

Advantages

- Allows definitions of objects in own coordinate systems
- Allows use of object definition multiple times in a scene
- Allows hierarchical processing (e.g., intersections)

Scene Graph Example

Overview

- Scene graphs
 - Geometry & attributes
 - Transformations
 - Bounding volumes
- Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
 - 3D transformations

World Coordinates

World Coordinates

Modeling Coordinates

Modeling Coordinates

Scale .3, .3

Modeling Coordinates

Scale .3, .3 Rotate -90

Modeling Coordinates

Scale .3, .3 Rotate -90 Translate 5, 3

Translation:

$$\circ$$
 $x' = x + tx$

$$\circ$$
 y' = y + ty

Scale:

$$\circ$$
 x' = x * sx

Shear:

$$\circ x' = x + hx*y$$

Transformations

∘
$$x' = x*\cos\Theta - y*\sin\Theta$$

$$\circ$$
 y' = x*sin Θ + y*cos Θ

Translation:

$$\circ$$
 $x' = x + tx$

$$\circ$$
 y' = y + ty

Scale:

$$\circ$$
 x' = x * sx

Shear:

$$\circ x' = x + hx*y$$

$$\circ y' = y + hy*x$$

∘
$$x' = x*\cos\Theta - y*\sin\Theta$$

$$\circ$$
 y' = x*sin Θ + y*cos Θ

Translation:

$$\circ$$
 $x' = x + tx$

$$\circ$$
 y' = y + ty

Scale:

$$\circ$$
 $x' = x * sx$

Shear:

$$\circ$$
 x' = x + hx*y

$$\circ$$
 y' = y + hy*x

$$x' = x*sx$$

 $y' = y*sy$

∘
$$x' = x*\cos\Theta - y*\sin\Theta$$

•
$$y' = x*\sin\Theta + y*\cos\Theta$$

Translation:

$$\circ$$
 $x' = x + tx$

$$\circ$$
 y' = y + ty

Scale:

$$\circ$$
 x' = x * sx

Shear:

$$\circ x' = x + hx*y$$

$$\circ$$
 y' = y + hy*x

$$x' = (x*sx)*cos\Theta - (y*sy)*sin\Theta$$

 $y' = (x*sx)*sin\Theta + (y*sy)*cos\Theta$

∘
$$x' = x*cos\Theta - y*sin\Theta$$

$$\circ$$
 y' = x*sin Θ + y*cos Θ

Translation:

$$\circ$$
 x' = x + tx

$$\circ$$
 y' = y + ty

Scale:

$$\circ$$
 x' = x * sx

Shear:

$$\circ$$
 x' = x + hx*y

$$\circ$$
 y' = y + hy*x

$$x' = ((x*sx)*cos\Theta - (y*sy)*sin\Theta) + tx$$

$$y' = ((x*sx)*sin\Theta + (y*sy)*cos\Theta) + ty$$

∘
$$x' = x*\cos\Theta - y*\sin\Theta$$

$$\circ$$
 y' = x*sin Θ + y*cos Θ

Translation:

$$\circ$$
 $x' = x + tx$

$$\circ$$
 y' = y + ty

Scale:

$$\circ$$
 x' = x * sx

Shear:

$$\circ x' = x + hx*y$$

$$\circ$$
 y' = y + hy*x

$$x' = ((x*sx)*cos\Theta - (y*sy)*sin\Theta) + tx$$

$$y' = ((x*sx)*sin\Theta + (y*sy)*cos\Theta) + ty$$

∘
$$x' = x*\cos\Theta - y*\sin\Theta$$

$$\circ$$
 y' = x*sin Θ + y*cos Θ

Overview

- Scene graphs
 - Geometry & attributes
 - Transformations
 - Bounding volumes
- Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
 - 3D transformations

Matrix Representation

Represent 2D transformation by a matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Multiply matrix by column vector
 apply transformation to point

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \qquad x' = ax + by$$
$$y' = cx + dy$$

Matrix Representation

Transformations combined by multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Matrices are a convenient and efficient way to represent a sequence of transformations

 What types of transformations can be represented with a 2x2 matrix?

2D Identity?

$$x' = x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Scale around (0,0)?

$$x' = sx * x$$
$$y' = sy * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} sx & 0 \\ 0 & sy \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 What types of transformations can be represented with a 2x2 matrix?

2D Rotate around (0,0)?

$$x' = \cos \Theta * x - \sin \Theta * y$$

$$y' = \sin \Theta * x + \cos \Theta * y$$

$$x' = \cos \Theta * x - \sin \Theta * y y' = \sin \Theta * x + \cos \Theta * y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + shx * y$$
$$y' = shy * x + y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & shx \\ shy & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 What types of transformations can be represented with a 2x2 matrix?

2D Mirror over Y axis?

$$x' = -x$$
$$y' = y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

$$x' = -x$$
$$y' = -y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$x' = x + tx$$
$$y' = y + ty$$

NO.

Only *linear* 2D transformations can be represented with a 2×2 matrix

Linear Transformations

- 2D linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

- Properties of linear transformations:
 - Satisfies: $T(s_1\mathbf{p}_1 + s_2\mathbf{p}_2) = s_1T(\mathbf{p}_1) + s_2T(\mathbf{p}_2)$
 - Origin maps to origin
 - Points at infinity stay at infinity
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

2D Translation

- 2D translation represented by a 3x3 matrix
 - Point represented with homogeneous coordinates

$$x' = x + tx$$
$$y' = y + ty$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous Coordinates

- Add a 3rd coordinate to every 2D point
 - (x, y, w) represents a point at location (x/w, y/w)
 - (x, y, 0) represents a point at infinity
 - (0, 0, 0) is not allowed

Convenient coordinate system to represent many useful transformations

Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & shx & 0 \\ shy & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotate

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & shx & 0 \\ shy & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Shear

Affine Transformations

- Affine transformations are combinations of ...
 - Linear transformations, and
 - Translations

$$\begin{bmatrix} x' \\ y' \\ w \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Points at infinity remain at infinity
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

Projective Transformations

- Projective transformations (homographies):
 - Affine transformations, and
 - Projective warps

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Point at infinity may map to finite point
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved (but "cross-ratios" are)
 - Closed under composition

Projective Transformations

 Will be useful to model (pinhole) cameras: can represent camera projection in same framework as modeling transformations

Cross-Ratio

Definition: for 4 collinear points A, B, C, D

$$(A, B; C, D) = \frac{\|AC\| \|BD\|}{\|AD\| \|BC\|}$$

Projective Invariant: (A,B;C,D) = (A',B';C',D')

Overview

- Scene graphs
 - Geometry & attributes
 - Transformations
 - Bounding volumes
- Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
 - 3D transformations

Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx \\ 0 & 1 & ty \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0 \\ 0 & sy & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\mathbf{p}' = \mathbf{T}(\mathsf{tx},\mathsf{ty}) \qquad \mathbf{R}(\Theta) \qquad \mathbf{S}(\mathsf{sx},\mathsf{sy}) \quad \mathbf{p}$$

- Matrices are a convenient and efficient way to represent a sequence of transformations
 - General purpose representation
 - Hardware matrix multiply
 - Efficiency with premultiplication
 - » Matrix multiplication is associative

$$p' = (T * (R * (S*p)))$$

 $p' = (T*R*S) * p$

- Be aware: order of transformations matters
 - » Matrix multiplication is **not** commutative

- Rotate by ⊕ around arbitrary point (a,b)
 - \circ M=T(a,b) * R(Θ) * T(-a,-b)

Overview

- Scene graphs
 - Geometry & attributes
 - Transformations
 - Bounding volumes
- Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
 - 3D transformations

3D Transformations

- Same idea as 2D transformations
 - Homogeneous coordinates: (x,y,z,w)
 - 4x4 transformation matrices

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Basic 3D Transformations

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Identity

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Scale

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & tx \\ 0 & 1 & 0 & ty \\ 0 & 0 & 1 & tz \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Translation

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & tx \\ 0 & 1 & 0 & ty \\ 0 & 0 & 1 & tz \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Mirror over X axis

Basic 3D Transformations

Rotate around Z axis:

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} \cos\Theta & -\sin\Theta & 0 & 0 \\ \sin\Theta & \cos\Theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Rotate around Y axis:

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} \cos\Theta & 0 & -\sin\Theta & 0 \\ 0 & 1 & 0 & 0 \\ \sin\Theta & 0 & \cos\Theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Rotate around X axis:

$$\begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\Theta & -\sin\Theta & 0 \\ 0 & \sin\Theta & \cos\Theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Transformations in Scene Graphs

Rose et al. '96

Transformations in Scene Graphs

Summary

- Scene graphs
 - Hierarchical
 - Modeling transformations
 - Bounding volumes
- Coordinate systems
 - World coordinates
 - Modeling coordinates
- 3D modeling transformations
 - Represent most transformations by 4x4 matrices
 - Composite with matrix multiplication (order matters)