Stochastic Gradient Descent. Finite-sum problems

Seminar

Optimization for ML. Faculty of Computer Science. HSE University

₹ C Ø

Finite-sum problem

We consider classic finite-sample average minimization:

$$\min_{x \in \mathbb{R}^p} f(x) = \min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n f_i(x)$$

The gradient descent acts like follows:

$$x_{k+1} = x_k - \frac{\alpha_k}{n} \sum_{i=1}^n \nabla f_i(x)$$
 (GD)

- Iteration cost is linear in *n*.
- Convergence with constant α or line search.

 $f \to \min_{x,y}$

Lecture recap

⊕ ∩ **ø**

Finite-sum problem

We consider classic finite-sample average minimization:

$$\min_{x \in \mathbb{R}^p} f(x) = \min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n f_i(x)$$

The gradient descent acts like follows:

• Iteration cost is linear in
$$n$$
.

 $x_{k+1} = x_k - \frac{\alpha_k}{n} \sum_{i=1}^{n} \nabla f_i(x)$

• Convergence with constant α or line search.

Let's switch from the full gradient calculation to its unbiased estimator, when we randomly choose
$$i_k$$
 index of point at each iteration uniformly:

 $x_{k+1}=x_k-\alpha_k\nabla f_{i_k}(x_k)$ With $p(i_k=i)=\frac{1}{n}$, the stochastic gradient is an unbiased estimate of the gradient, given by:

$$\mathbb{E}[\nabla f_{i_k}(x)] = \sum_{i=1}^n p(i_k = i) \nabla f_i(x) = \sum_{i=1}^n \frac{1}{n} \nabla f_i(x) = \frac{1}{n} \sum_{i=1}^n \nabla f_i(x) = \nabla f(x)$$

This indicates that the expected value of the stochastic gradient is equal to the actual gradient of f(x).

(GD)

(SGD)

Results for Gradient Descent

Stochastic iterations are n times faster, but how many iterations are needed?

If ∇f is Lipschitz continuous then we have:

Assumption	Deterministic Gradient Descent	Stochastic Gradient Descent
PL	$O(\log(1/arepsilon))$	$O(1/\varepsilon)$
Convex	O(1/arepsilon)	$O(1/\varepsilon^2)$
Non-Convex	O(1/arepsilon)	$O(1/\varepsilon^2)$

- Stochastic has low iteration cost but slow convergence rate.
 - Sublinear rate even in strongly-convex case.
 - Bounds are unimprovable under standard assumptions.
 - Oracle returns an unbiased gradient approximation with bounded variance.
- Momentum and Quasi-Newton-like methods do not improve rates in stochastic case. Can only improve constant factors (bottleneck is variance, not condition number).

େ ପ 🕈

Computational experiments

Visualization of SGD.

Let's look at computational experiments for SGD .

