

NOMBRE: Cerda García Gustavo **Materia**: Inteligencia Artificial

Ejercicio de Laboratorio 9. Métodos de Validación

Hold Out 70/30 Estratificado

Código:

```
• • •
import numpy as np
import pandas as pd #Libreria para manejo de datos
from sklearn.model_selection import train_test_split #Libreria para dividir un dataset en
df = pd.read_csv('iris.csv', header=None)
X = df[df.columns[:-1]] # Todas las columnas menos la ultima
Y = df[df.columns[-1]] # La ultima columna
X_train, X_test, y_train, y_test = hold_out_estratificado(X, Y)
print("HOLD OUT 70-30 IRIS")
print("Datos de entrenamiento")
print(X_train)
print("Numero de datos de entrenamiento: ", len(X_train))
print("Datos de prueba")
print(X_test)
print(y_test)
print("Numero de datos de prueba: ", len(X_test))
print()
```


NOMBRE: Cerda García Gustavo **Materia**: Inteligencia Artificial

Salida:

HOLD OUT 70-30 IRIS	44 Iris-setosa
Datos de entrenamiento	70 Iris-versicolor
0 1 2 3	132 Iris-virginica
144 6.7 3.3 5.7 2.5	77 Iris-versicolor
	5 Iris-setosa
74 6.4 2.9 4.3 1.3	128 Iris-virginica
148 6.2 3.4 5.4 2.3	25 Iris-setosa
47 4.6 3.2 1.4 0.2	65 Iris-versicolor
64 5.6 2.9 3.6 1.3	97 Iris-versicolor
	130 Iris-virginica
63 6.1 2.9 4.7 1.4	95 Iris-versicolor
	7 Iris-setosa
107 7.3 2.9 6.3 1.8	36 Iris-setosa
81 5.5 2.4 3.7 1.0	114 Iris-virginica
113 5.7 2.5 5.0 2.0	127 Iris-virginica
142 5.8 2.7 5.1 1.9	83 Iris-versicolor
•	111 Iris-virginica
[105 rows x 4 columns]	99 Iris-versicolor
	115 Iris-virginica
144 Iris-virginica	90 Iris-versicolor
74 Iris-versicolor	56 Iris-versicolor
● 148 Iris-virginica	82 Iris-versicolor
47 Iris-setosa	17 Iris-setosa
64 Iris-versicolor	80 Iris-versicolor
01 111B V01B100101	18 Iris-setosa
63 Iris-versicolor	124 Iris-virginica
	105 Iris-virginica
107 Iris-virginica	16 Iris-setosa
81 Iris-versicolor	140 Iris-virginica
113 Iris-virginica	116 Iris-virginica
142 Iris-virginica	68 Iris-versicolor
Name: 4, Length: 105, dtype: object	48 Iris-setosa
Numero de datos de entrenamiento: 105	Name: 4, dtype: object
Numero de datos de entrenamiento: 103	Numero de datos de prueba: 45

NOMBRE: Cerda García Gustavo **Materia**: Inteligencia Artificial

Wine

Código:

```
• • •
import numpy as np
import pandas as pd #Libreria para manejo de dato:
from sklearn.model_selection import train_test_split #Libreria para dividir un dataset en
df = pd.read_csv('wine.csv', header=None)
X = df[df.columns[1:]] # Todas las columnas menos la primera
Y = df[df.columns[0]] # La primera columna
print("X\n", X)
print("Y\n", Y)
     # Dividir en 70% entrenamiento y 30% prueba
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y)
return X_train, X_test, y_train, y_test
X_train, X_test, y_train, y_test = hold_out_estratificado(X, Y)
print("HOLD OUT 70-30 WINE")
print("Datos de entrenamiento")
print(X_train)
print("Numero de datos de entrenamiento: ", len(X_train))
print()
print("Datos de prueba")
print()
```


NOMBRE: Cerda García Gustavo **Materia**: Inteligencia Artificial

Salida:

NOMBRE: Cerda García Gustavo **Materia**: Inteligencia Artificial

10-Fold-Cross-Validation Estratificado Iris

Código:

```
import numpy as np
import numpy as np
import pandas as pd #Libreria para manejo de datos
from sklearn.model_selection import StratifiedKFold #Libreria para dividir un dataset en 10
            da:
_train: Dataframe con los datos de entrenamiento
_train: Dataframe con los datos de prueba
_train: Dataframe con las etiquetas de entrenamiento
rtest: Dataframe con las etiquetas de prueba
              X_train, X_test = X.lloc[train_index], X.lloc[test_index] y_train, y_test = y.lloc[train_index], y.lloc[test_index]
        return resultados
from sklearn.tree import DecisionTreeClassifier
print("Resultados de 10-Fold Cross Validation IRIS")
print(resultados)
```

Salida:

NOMBRE: Cerda García Gustavo **Materia**: Inteligencia Artificial

WineW

Código:

```
import numpy as np
import pandas as pd #Libreria para manejo de datos
from sklearn.model_selection import StratifiedKFold #Libreria para dividir un dataset en 10
df = pd.read_csv('wine.csv', header=None)
    skf = StratifiedKFold(n_splits=10)
    resultados = []
        y_train, y_test = y.iloc[train_index], y.iloc[test_index]
        score = modelo.score(X_test, y_test)
X = df[df.columns[1:]] # Todas las columnas menos la primera
Y = df[df.columns[0]] # La primera columna
from sklearn.tree import DecisionTreeClassifier
resultados = fold_cross_validation(X,Y,modelo)
print("Resultados de 10-Fold Cross Validation WINE")
print(resultados)
```


NOMBRE: Cerda García Gustavo **Materia**: Inteligencia Artificial

Salida: