TABLES OF PROPERTIES OF GASES

WITH DISSOCIATION THEORY AND ITS APPLICATIONS

BY

E. W. GEYER, B.Sc., Ph.D.

SENIOR LECTURER IN THE THEORY AND PRACTICE OF HEAT ENGINES, UNIVERSITY OF GLASGOW

AND

E. A. BRUGES, B.Sc.

ASSISTANT LECTURER IN THE THEORY AND PRACTICE OF HEAT ENGINES, UNIVERSITY OF GLASGOW

CHECKID

With diagrams

LONGMANS, GREEN AND CO.
LONDON , NEW YORK, + TORONTO

LONGMANS, GREEN AND CO. LTD.

6 & 7 CLIFFORD STRFET, LONDON W.1 NICOL ROAD, BOMBAY 1 17 CHITTARANJAN AVENUE, CALCUTTA 13 36A MOUNT ROAD, MADRAS 2

55 FIFTH AVENUE, NEW YORK 3

LONGMANS, GREEN AND CO. INC. LONGMANS, GREEN AND CO.

215 VICTORIA STREET, TORONTO I

CODE NUMBER 86418

PREFACE

THE thermal properties of gases are used so extensively in engineering design that we feel justified in the publication of the present set of tables, which are based on the results of modern statistical thermodynamic analyses carried out by the various authorities to whom reference is made later. We agree with Heck (1)* when he states that it is preferable to use tables of the properties of gases against tempera-ture rather than equations which show the relationship between the properties and temperature. The tables have accordingly been arranged to run from 400° F. abs. to 5400° F. abs., or, in a few cases to higher temperatures, by 100° F. intervals. Differences in the thermal properties are also printed so that by linear interpolation it is possible to evaluate these properties for any intermediate temperature. practice this will be found considerably more convenient than the commonly adopted method of making use of equations for specific heats. In any case the latest specific heats cannot conveniently be expressed by any simple equation covering more than a limited range of temperature. In an article published by one of us in Engineering. (2) tables of thermal properties have already appeared but, as explained later, the properties presented in this volume have been built up from absolute zero temperature by regarding the gases as being in the hypothetical gaseous state throughout. This is of considerable assistance in dealing with problems on thermal equilibrium and enables the absolute entropy of a gas or mixture of gases to be calculated.

We trust that our explanation of the derivation of the tables and also of the modern approach to the theory of dissociation may prove of interest to engineers who have to deal with combustion problems. A valuable contribution on dissociation as affecting the engineer was A valuable contribution on dissociation as affecting the engineer was made by Goodenough. (3) but at that time the accepted specific heats were inaccurate and in addition the simple evaluation of equilibrium constants by the free energy method had not yet been developed. We feel that this method should be more widely known by engineers and have, therefore, devoted space to its description and application.

We have much pleasure in acknowledging our indebtyness to Professor James Small for his helpful encouragement and priticisms. Our thanks are due also to the authorities of the University of Glasgow for the enportunities extended to us of doing this result of the second of the convertence of the convertenc

for the opportunities extended to us of doing this we then facilities we were privileged to use in connection with E. W. GEYER.

E. A. BRUGES. -

^{*} References are to the bibliography, for which see p. 70.

CONTENTS

Preface							IANE
PRINCIPLES UPON WHICH THE	TABLI	ES AR	E BA	SED			
1. Introduction	-	-	-	-	-	-	7
2. Molal Magnitudes -	-	-	-	-	-	-	7
3. Entropy	-	-	-	-	~	-	9
4. Total Heat	-	-	-	-	~	-	18
5. Internal Energy -	-	-	-	-	-	~	20
6. Lower Heats of React	MOL	-	-	-	-	-	20
7. Maximum Work of I	Reacti -	ON .	AND -	Eou	LIBRI	um -	23
8. Free Energy	-	-	-	-	-	-	25
EXAMPLES ON USE OF TABLES	3 -	-	-	-	-	- 2	8-70
BIBLIOGRAPHY	-	-	-	-	-	~	70
SYMBOLS USED IN TABLES. 1	REFER	ENCE	s TO	Prop	ERTIE	s -	71
TABLES	-	_	-	-	-	72	-102

PRINCIPLES UPON WHICH THE TABLES ARE BASED

- 1. Introduction. The thermal properties of gases, which are presented in this volume, are based on the latest quantum specific heat values ealculated by various physicists who have also ehecked them by spectroscopic analysis. The tables are applicable to the solution of ordinary engineering thermodynamic problems, some of which are given as examples later. In addition, however, they enable an accurate analysis of technical combustion processes, including dissociation effects, to be made. When the mixture of the products of combustion, found in the exhaust pipe of an internal combustion engine or in the flues of a steam boiler, is analysed, it is found generally to consist of the four gases CO., H.O. O. and No. It has long been known, however, that a change in the physical condition of the mixture, such as an increase in temperature or decrease in pressure, tends to cause a splitting up of part of the CO2 to CO and O2 and of part of the H2O to H. and O. Other changes may also occur such as the formation of OH and NO. These effects are known as dissociation, a name coined by Sainte-Clair Deville, (4) who spent the greater part of his life in its study. Later work was carried out by Gibbs, (5) Horstmann, (6) Haber. (7) Nernst (6) and van't Hoff. (9) This early work was not generally regarded as of importance to engineers until such authorities as Clerk, (10) Tizard and Pve,(11) Goodenough (12) and Sehüle (13) had drawn attention to the effects of dissociation on technical combustion processes. For comparative purposes, modern values of specific heats, along with those suggested by various authorities two or three decades ago, for the technically important gases CO2, H2O, O2 and N2 have been plotted to a base of temperature in °F. abs. in figs. 1, 2 and 3. It will be observed that the differences between the modern quantum values and the older ones are considerable, so that the errors in ealeulations involving the old specific heats may be large, and justify the publication of new thermal data and their application to combustion problems including dissociation. Since the work is intended for the use of engineers the thermal data-are given in the form of tables in which the temperatures range from 400° F. abs. to 5400° F. abs. (in some cases to 9000° F. abs.) by 100° F. intervals.
- 2. Molal Magnitudes. It is convenient to express thermal magnitudes, of which internal energy and total heat are examples, in terms of the pound molecule or mol. The unit of mass is thus taken as m lb. where m is the molecular weight of a single gas or the apparent

Fig. 1. Molecular specific heats of CO2.

molecular weight of a mixture of gases. If the engineer desires to express any of these magnitudes per pound he has merely to divide them by the molecular weight when dealing with a single gas or by the apparent molecular weight when dealing with a mixture of gases. They are given at 100° F. temperature intervals and intermediate values are obtained by linear interpolation of the differences, which are also

Fig. 2. Molecular specific heats of H₂O.

Fig. 3. Molecular specific heats of diatomics.

tabulated. The magnitudes and symbols listed in the tables are entropy, S; internal energy, E; total heat, H; lower heats of reaction at constant volume, H_{τ} and constant pressure, H_{τ} ; equilibrium constant, K_{τ} and a function of free energy expressed by $-\frac{F}{T}$. (See p. 25.)

3. Entropy. The entropy values are absolute, that is, they are all reckoned from absolute zero temperature. This has been rendered possible by the Nernst heat theorem, (14) which states that the entropy of all crystalline solids at absolute zero temperature is zero and that at very low temperatures, say, within 10 to 20° C. abs., the entropy values are small and, as the temperature is lowered to zero, they approach zero asymptotically. Since it is possible to measure specific heats of these crystalline solids between 10 and 20° C. abs. and since the Nernst heat theorem shows that extrapolition to absolute zero temperature is permissible, the absolute entropy values are calculable. Fig. 4 represents the entropy change of 1 gm. mol of oxygen when heated at a pressure of one atmosphere from zero absolute temperature to $298\cdot1^{\circ}$ C. abs. $(25^{\circ}$ C.). As shown by Debye, (15) the specific heat of crystalline solids at temperatures below 15° C. abs. is given by $C_p = kT^2$ and hence the entropy is given by

$$S = \int_{0}^{T} \frac{C_{p} dT}{T} = \int_{0}^{T} kT^{2} dT = \frac{1}{3}kT^{3} \text{ or } \frac{1}{3}C_{p}.$$

It is thus possible to write down the entropy value when C_p is determined. For solid oxygen, $C_p = 0.963$ at $T = 11.75^{\circ}$ C. abs. as given by

Johnson and Walker,⁽¹⁶⁾ so that S=0.321 E.U. (Entropy Unit), and $k=5.95\times10^{-4}$. Between 0°C. abs. and 11.75°C. abs. the entropy values, as given by $\frac{1}{3}kT^3$, are as follows:

T	1	2	3	4
\mathcal{S}	$1 \cdot 98 \times 10^{-4}$	1.58×10^{-3}	$5 \cdot 35 \times 10^{-3}$	$1\cdot27\times10^{-2}$
T	. 5	6	7	8
\mathcal{S}	$2\cdot47\times10^{-2}$	$4\cdot28\times10^{-2}$	6.78×10^{-2}	1.012×10^{-1}
T	9	10	11.75	
\mathcal{S}	1.444×10^{-1}	1.98×10^{-1}	3.21×10^{-1}	

The experimentally determined values of C_p between 12.97° C. abs. and 23.66° C. abs. enable the entropy values to be found by graphical integration. Thus, since the increment of entropy, as the temperature is increased from T to $T + \Delta T$, is given by

$$S = \int_{T}^{T + \Delta T} \frac{C_{p} dT}{T},$$

it is only necessary to plot values of $\frac{C_p}{T}$ to a base of temperature and integrate the area below the curve thus found to give the corresponding entropy increments. The total increment of entropy between 11.75° C. abs. and 23.66° C. abs., found in this way, is 1.697 E.U., and hence the entropy increase from A to B is 0.321 + 1.697 = 2.018 E.U. At 23.66° C. abs., as shown by BC in fig. 4, the first transition in the solid state occurs, the heat involved being 22.42 cals./gm. mol. The accompanying entropy increase is $\frac{22.42}{23.66}$ = 0.948 E.U. At 43.76° C. abs. a second transition occurs (DE) and the increase in entropy between the two points C and D is again found graphically and amounts to 4.661 E.U. At this second transition point the heat of transition is 177.6 cals./gm. mol. giving $\frac{177.6}{43.76} = 4.058$ E.U. = $D\vec{E}_{i}$ as the entropy increase. 43.76° C. abs. and 54.39° C. abs., i.e. between E and F the C_p values give the increase in entropy as 2.397 E.U. Up to 54.39° C. abs. the oxygen has remained in the solid state and at 54.39° C. abs. melting occurs, as shown by the line FG, the latent heat of fusion being 106.3 cals./gm. mol. so that the entropy increase is $\frac{106.3}{54.39}$ =1.954 E.U. Between $54\cdot39^{\circ}$ C. abs. and $90\cdot13^{\circ}$ C. abs., i.e. between G and H the oxygen remains in the liquid state and from the given C_p values the

increase in the entropy is again found graphically and amounts to 6.462 E.U. Boiling occurs (HJ) at 90.13° C. abs., the latent heat being 1628.8 cals./gm. mol, so that the corresponding entropy increase is

 $\frac{1628\cdot8}{90\cdot13} = 18\cdot07 \text{ E.U.} \quad \text{The sum of the entropies taken over all the phases}$ up to the point J amounts to $40\cdot57$ E.U. In order to bring the oxygen to what is called the standard state, which is necessary if the entropy is to be compared with spectroscopic data, the physicists apply a correction amounting to $\frac{27T_c^3P}{32T^3P_c}, \text{ where } T_c \text{ and } P_o \text{ are the critical temperature}$

and critical pressure. This correction moves the state point from J to K but the scale of the diagram is such that the gap between the points does not show. The correction is deduced as follows. On the TS diagram (fig. 5) let J represent the state point of the actual gas at pressure p and temperature T, and K that of oxygen assumed to be reduced to the condition of a perfect gas having the characteristic equation PV = RT. If the pressure of both the actual and hypothetical gases is reduced, their state points approach one another until, in the limit when the pressure is zero, they actually coincide. This condition

is represented by the point C, which is at infinite distance from J and K, but we are concerned only with the difference JK. Since for all gases an elementary change in entropy is expressed by

$$dS = \frac{C_{p} dT}{T} - \left(\frac{dV}{dT}\right)_{P} dP,$$

and since, in the ease under consideration, dT=0, we have

$$dS = -\left(\frac{dV}{dT}\right)_{P} dP.$$

If, therefore, a gas is compressed isothermally from zero pressure to pressure P the change in entropy is

$$S = -\int_{0}^{P} \left(\frac{dV}{dT}\right)_{P} dP.$$

For the actual gas this is represented by the line CJ while for the perfect gas it is represented by the line CK.

Assuming that the actual gas obeys the modified Berthelot equation

of state, i.e.

$$PV = RT \left[1 + \frac{9PT_c}{128P_cT} \left(1 - 6\frac{T_c^2}{T^2} \right) \right],$$

where T_c and P_c are the critical values of temperature and pressure, we have

$$\left(\frac{dV}{dT}\right)_{P} = \frac{R}{P} \left[1 + \frac{27}{32} \frac{PT_{c}^{3}}{P_{c}T^{3}} \right].$$

Hence

$$S_{JC} = CJ = -\int_0^P \frac{R}{P} \left[1 + \frac{27}{32} \frac{PT_c^3}{P_c T^3} \right] dP. \quad(1)$$

For the ideal gas, PV = RT so that

$$\left(\frac{dV}{dT}\right)_{P} = \frac{R}{P}$$

and hence

$$S_{KC} = CK = -\int_0^P \frac{R}{P} dP. \qquad (2)$$

The value of the entropy change accompanying a change from the actual state to the ideal state is thus given by

$$JK = S_{JC} - S_{KC} = -\int_{0}^{P} \frac{27RT_{c}^{3}}{32T^{3}P_{c}} dP$$
$$= -\frac{27}{32} \frac{RT_{c}^{3}P}{T^{3}P_{c}}.$$

Hence

$$S^{\circ} = S + \frac{27RT_{c}^{3}P}{32T^{3}P_{c}}.$$

For oxygen $T_c=154\cdot28^\circ$ C. abs. and $P_c=49\cdot713$ atm. so that the correction is $\frac{27\times1\cdot9869\times154\cdot28^3\times1}{32\times90\cdot13^3\times49\cdot713}=0\cdot17$ E.U. The entropy at the point K is thus $40\cdot74$ E.U.

The extension of the entropy curve upwards in fig. 4 from the point K to the point L, where the temperature is $298\cdot1^{\circ}$ C. abs., is again found by graphical integration using the experimentally determined values of C_p for this region. The increase in entropy found in this way is $8\cdot28$ E.U., so that the entropy of the oxygen at a temperature of $298\cdot1^{\circ}$ C. abs. and at a pressure of 1 atmosphere is $49\cdot02$ E.U.

Figure 6 shows the state changes for nitrogen again under a pressure of 1 atmosphere. It will be observed that there is only one transition in the solid state.

The advantage of expressing all the entropies of the gases dealt with

in combustion processes in the manner entropies of a mixture of gases can now P chemical reaction occurs between the gas entropy between the products and the o This gives a considerably simplified culated. equilibria constants for reactions. of gases of known composition may be malfound at any pressure and The ab' temperature from the entropy values give the following example.

The products of combustion in the cleal cylinder have a total pressure of 400 lb./f

outlined above is that the dr be correctly stated and if ses the changes in absolute dIriginal mixture can be calfied method of determining solute entropy of a mixture n in the tables as shown by

> rance volume of an engine n.2 abs. and a temperature

of 4000° F. abs. The percentage volumetrie composition of the undissociated gas mixture is CO2, 5.37; H2O, 10.39; N2, 73.72 and Oz. 10.52. It is required to find the absolute entropy of this gas mixture per pound mol.

The volumetrie proportions are the same as the molal proportions. Figure 7 shows one pound mol of the mixture with the gases separated into proportional volumes as given by the analysis. The number of mols of the gases is as shown and if each gas is assumed to be at one atmosphere pressure and at a temperature of 4000° F. abs., the entropy of the mixture is given by ΣmS_T , where m is the number of mols and S_r the entropy of each The tables give, for one mol

F10. 7.

of CO., H2O, N2 and O2 at 4000° F. abs., the following values for ST: 75.496; 64.624; 61.159 and 65.192, so that

$$\begin{split} \varSigma m S_T = & [0.0537 \times 75.496 + 0.1039 \times 64.624 + 0.7372 \times 61.159 \\ & + 0.1052 \times 65.192] \end{split}$$

In the actual gas mixture, however, each gas, instead of occupying its own volume at the total pressure, occupies the full volume (i.e. the volume of one pound mol) at its partial pressure and hence, due to the irreversible expansion from the volumes shown in the diagram to the final volume, each gas increases its entropy by an amount which is determined as shown below. In the deduction use is made of the idea of semipermeable walls. A substance which is capable of allowing one gas to pass through it and yet blocks the passage of other gases is said to be semipermeable. It is found that glowing platinum sheet permits hydrogen to pass freely through it, but not other gases, while a porous membrane, soaked in water, permits any gas which is soluble in water, such as ammonia, to flow freely through it and excludes gases which are insoluble in water, such as hydrogen. Up till now semipermeable walls have not been discovered for all gases but the discussion which follows is based on the conception of such materials existing, and enables an expression for the entropy increase, due to the expansion of a gas in a gas mixture, to be determined. Use will also be made of the properties of semipermeable walls when discussing the maximum work of a reaction. (See p. 23.)

Consider two of the gases to be separated by semipermeable pistons as shown in fig. 8, i.e. the right hand piston is permeable to gas B while the left hand piston is permeable to gas A. The pressure between the two pistons in the position shown is $2p_a$ and if the left hand piston is held fast while the excess pressure is allowed to act on the right hand piston this will move to the right and external work will be available.

As the piston moves, gas B passes freely through its semipermeable wall so that it exerts no pressure on the piston. The gas A thus pushes this piston and performs work on it in the same way as would occur if the gas B were not present. With a slow enough motion of the piston the expansion may be made isothermal and reversible and the work performed is given by the area ABCD which is equal to

$$\frac{RTm_1}{J}\log_e\frac{V_1+V_2}{V_1},$$

and since this equals the heat supplied at T the entropy change is

$$\frac{Rm_1}{J}\log_e\frac{V_1+V_2}{V_1} = \frac{Rm_1}{J}\log_e\frac{p_a}{p_{p_1}}.$$

If now the left hand piston is released gas B performs work on it, the amount being the same as would occur if the gas A were absent. This is given by the area AEFD which is equal to

$$\frac{m_2RT}{J}\log_{\epsilon}\frac{V_1+V_2}{V_2} = \frac{m_2RT}{J}\log_{\epsilon}\frac{p_a}{p_{p_1}},$$

and the corresponding increase in entropy is

$$\frac{m_2R}{J}\log_e\frac{p_a}{p_a}$$
.

If the total gas volume $V_1 + V_2$ is equal to 1 mol we have

$$\frac{p_a}{p_{p_1}} = \frac{1}{m_1}; \; \frac{p_a}{p_{p_1}} = \frac{1}{m_2},$$

or, in general,

$$\frac{p_a}{p_p} = \frac{1}{m}$$
,

and hence the entropy increase due to the expansion of any single gas is

$$\frac{mR}{J}\log_{\epsilon}\frac{p_a}{p_p} = \frac{mR}{J}\log_{\epsilon}\frac{1}{m}.$$

Hence for the mixture of gases of the example the increase is

$$\begin{split} \mathcal{E}\frac{mR}{J}\log_{\epsilon}\frac{1}{m} \\ &= 1.987 \left[0.0537 \log_{\epsilon}\frac{1}{0.0537} + 0.1039 \log_{\epsilon}\frac{1}{0.1039} \right. \\ &+ 0.7372 \log_{\epsilon}\frac{1}{0.7372} + 0.1052 \log_{\epsilon}\frac{1}{0.1052} \right] \\ &= 1.987 \times 0.854 \\ &= 1.697 \text{ E.U.} \end{split}$$

The total entropy at one atmosphere pressure and 4000° F. abs. is thus 62.713 + 1.697 = 64.410 E.U. The entropy is required, however, at 400 lb./in.^2 abs. (27.21 atm.) and 4000° F. abs. On the PV and TS diagrams (fig. 9) the state point of the gas mixture at 1 atmosphere pressure would be represented by the point A. In changing its state to the point B, which is at the same temperature, any path may be chosen in order to calculate the entropy change. The simplest path to choose is the reversible isothermal at 4000° F. abs. passing through A and B. The heat rejected is

$$\frac{RT}{J} \log_e \frac{V_A}{V_B} = \frac{RT}{J} \log_e \frac{p_B}{p_A}$$
= 1.987 × 4000 log_e $\frac{27.21}{1}$ B.Th.U.
= 1.987 × 4000 × 3.304 B.Th.U.

This is equal to the area ABDC on the TS field so that the entropy decrease is $1.987 \times 3.304 = 6.565$ E.U. The required entropy value of the gas mixture at the given conditions is thus 64.410 - 6.565 = 57.845 E.U.

In determining the absolute entropy value of a gas or gaseous mixture the same procedure as outlined in the above example may be followed whatever the pressure, volume and temperature of the gas may be.

4. **Total Heat.** The total heat H of a gas is taken as the difference between the total heats of the gas at the temperature under consideration and the absolute zero temperature. If these total heats, which refer to the gas in the ideal or perfect gas state are denoted by H_T ° and H_0 ° the total heats tabulated are equal to H_T ° $-H_0$ °. For a perfect

gas at absolute zero temperature H_0° is the same as the internal energy E_0° at that temperature so that the tabulated values of total heats are equal to $H_T^{\circ} - E_0^{\circ}$. The prefix 0 in these symbols denotes that the gas is in the ideal gaseous state. We have therefore for gases

$$H = H_T^{\circ} - E_0^{\circ} = \int_0^T C_p^{\circ} dT$$

where $G_{\mathfrak{p}}^{\circ}$ is the specific heat at constant pressure of the hypothetical gas already discussed in the previous paragraph. $(H_{\mathfrak{T}}^{\circ} - E_{\mathfrak{p}}^{\circ})$ is thus equal to the area below the hypothetical gas curve shown on the TS

field in fig. 10 between 0° F. abs. and T° F. abs. A few skeleton values of $(H_T^{\circ} - E_0^{\circ})$, at various temperature levels, are given in the original work of the physicists and it is from these that the values shown in the tables of this volume are deduced. Over limited ranges of temperature it is permissible to write

$$C_{\mathfrak{p}} = A + BT + CT^2,$$

where A, B and C are constants. Solving for the constants over one of these limited temperature ranges enable intermediate values of $(H_T{}^\circ - E_0{}^\circ)$ to be calculated. By covering the complete temperature

range from 400° F. abs. to the upper limits of 5400° F. abs. or 9000° F. abs. with these zones entirely satisfactory agreement with the original values was maintained.

5. Internal Energy. The internal energy, $E = (E_T^{\circ} - E_0^{\circ})$, at any temperature T, is found from the total heat $(H_T^{\circ} - E_0^{\circ})$ by means of the relationship

$$(E_T^{\circ} - E_0^{\circ}) = (H_T^{\circ} - E_0^{\circ}) - \frac{R}{J}T$$

= $(H_T^{\circ} - E_0^{\circ}) - 1.9869T$.

6. Lower Heats of Reaction (H_p) . The engineer uses the word "lower" in referring to heats of reaction only when dealing with the eombustion of hydrogen or fuels containing hydrogen, because at room temperature hydrogen is the only constituent forming a vapour which condenses. Since the physicists, however, have reduced the gases to the hypothetical gaseous state for which no condensation can occur, even when very low temperatures are considered, the heats of reaction for all gases must be referred to as "lower" heats of reaction.

The lower heat of reaction plays an important part in dissociation ealeulations and it has to be observed that the heat of reaction of a fuel depends upon the temperature at which the reaction occurs. Thus, if earbon monoxide is burned at constant pressure the heat given to the surroundings, under isothermal reaction conditions, is the constant pressure heat of reaction at room temperature. If, however, the reaction were to occur at some higher temperature the heat given up, i.e. the heat of the reaction, will have a different value from that at room temperature. This is due to the change which occurs in the difference of the total heats between the products and reactants as the temperature of the surroundings is altered. The point is made clear by considering the combustion of carbon monoxide. In burning one mol of earbon monoxide at a temperature of 600° F. abs. the heat of reaction is found to be 121794 B.Th.U. as given in the tables on page 93. The reaction proceeds in accordance with the reaction equation,

$$CO + \frac{1}{2}O_2 = CO_2$$
.

The sum of the total heats $H_T - E_0$ of the reactants, i.e. of 1 mol. of CO and $\frac{1}{2}$ mol of O_2 at 600° F. abs. is $4173 + \frac{1}{2} \times 4168 = 6257$ B.Th.U. and of the products (i.e. of 1 mol of O_2), 4626 B.Th.U. The difference between the total heats of the reactants and products is thus 6257 – 4626 = 1631 B.Th.U. and this makes the heat of reaction larger than it would have been had there been no difference in these total heats. If now the reaction proceeds at 5000° F. abs. the difference in the total heats of the reactants and the products is $40449 + \frac{1}{2} \times 42123 - 64132$

= -2621 B.Th.U. The heat of reaction is thus 2621 B.Th.U. less than it would have been if there were no difference between the total heats of the reactants and products. The heat of reaction of CO at 5000° F. abs. is thus less than that at 600° F. abs. by the amount 1631 + 2621 =4252 B.Th.U. and this equals the difference in the H_p values of CO as given in the tables at 600° F. abs. and 5000° F. abs. Since the values of $(H_{\tau}^{\circ} - E_{0}^{\circ})$ are zero for all gases at 0° F. abs. there is no difference between the total heats of the reactants and products at this temperature and the heat of reaction, which is denoted by ΔE_0° , is the same as would be obtained at any other temperature provided the total heats of the reactants and the products were equal. Since, in almost all cases, there is a difference in the total heats and this difference is given by $\Delta(H_T^{\circ} - E_0^{\circ})$, the true heat of reaction at any temperature is $\Delta E_0^{\circ} + \Delta (H_T^{\circ} - E_0^{\circ})$. For CO, $\Delta E_0^{\circ} = 120163$ B.Th.U./lb. mol so that at 600° F. abs. $H_p = 120163 + 1631 = 121794$ B.Th.U./lb. mol as given in the tables. Similarly at 5000° F. abs. $H_p = 120163 - 2621$ =117542 B.Th.U./lb. mol, as also given in the tables.

It frequently happens that it is not possible to find, by direct means, the heat of reaction of a fuel. In this case it is necessary to apply Hess's law, which states that the heat liberated by a reaction is independent of the path pursued between the initial and final states. If, for example, earbon is burned directly to form carbon dioxide the heat liberated is the same as would be the case if the carbon were first burned to earbon monoxide followed by burning of the earbon monoxide to earbon dioxide.

We shall illustrate the application of the law by determining the heat of reaction of benzene vapour (C_6H_6) at a temperature of 600° F. abs. The heat of reaction of benzene liquid can be found by first considering the liquid to be separated out to solid earbon and gaseous hydrogen. The earbon is then burned to CO_2 and the hydrogen to H_2O so that by applying Hess's law to these reactions we find the heat liberated in burning liquid benzene to gaseous CO_2 and gaseous H_2O . If benzene vapour had been burned instead of the liquid the latent heat required for evaporation of the liquid would not have been demanded from the fuel so that the heat of reaction of the vapour must be greater than that of the liquid by this amount. Finally, if all these operations occur at the usual temperature at which the heats are quoted, namely 537° F. abs. (25° C.), the heat of reaction at 600° F. abs. must be calculated by taking into account the difference in total heats between the reactants and products at 537° F. abs. and 600° F. abs.

Pitzer (17) has supplied the necessary data to enable a calculation of the heat of reaction of benzene vapour to be carried out on the above lines.

When splitting up liquid benzene to solid earbon and gaseous hydrogen, as shown by the reaction equation,

$$C_6H_{6(11q)} = 6C_{(8)} + 3H_{2(g)},$$

the heat liberated at 537° F. abs. is 20,160 B.Th.U./lb. mol. (See Parks. (18)) To find the heat of reaction of C burned to CO_2 we require the total heat of solid earbon, of gaseous O_2 and of gaseous CO_2 at 537° F. abs. These are given as 251, 2069 and 2240 eals./gm. mol while the heat of reaction at absolute zero temperature is 93949 eals./gm. mol. We thus have the heat of reaction for the combustion of carbon to earbon dioxide $(C+O_2=CO_2)$ at 298·1° C. abs. (25° C.) as

$$\Delta H = 251 + 2069 + 93949 - 2240$$

= 94029 cals./gm. mol
= 169252 B.Th.U./lb. mol.

The table on p. 94 shows that the heat of reaction of $H_2 + \frac{1}{2}O_2 = H_2O$ at 537° F. abs. is 104009 B.Th.U./lb. mol.

From the reaction equation

$$C_6H_{6(10)} + 7_2^3O_2 = 6CO_2 + 3H_2O$$

we obtain the heat liberated at constant pressure

$$H_{p(537)} = 20160 + 6 \times 169252 + 3 \times 104009$$

= 1347699 B.Th.U./lb. mol.

Matthews $^{(10)}$ gives the latent heat of benzene as

$$L = 107.05 - 0.1581\theta$$
 cals./gm.

where θ is the temperature in °C., so that at 25°C.

$$L = 107.05 - 3.95$$

= 103.1 eals./gm.
= 8045.4 cals./gm. mol
= 14481 B.Th.U./lb. mol.

The value of H_p for benzene vapour is therefore (at 537° F. abs.)

and at 600° F. abs. with

$$C_6H_{6010} + 7\frac{1}{2}O_2 = 6CO_2 + 3H_2O$$

it becomes

$$\begin{split} H_{_{\mathcal{D}(600)}} = &1362180 + (H_{600} - H_{537})_{\text{C}_6\text{H}_6} + 7\frac{1}{2} (H_{600} - H_{537})_{\text{O}_7} \\ &- 6 (H_{600} - H_{537})_{\text{CO}_7} - 3 (H_{600} - H_{537})_{\text{H}_7\text{O}} \\ = &1362180 + 1312 + 3359 - 3391 - 1508 \\ = &1361952 \text{ B.Th.U./lb. mol.} \end{split}$$

The corresponding value at constant volume is

$$H_{v(600)} = 1361952 + \frac{1}{2}RT/J$$

= 1361952 + 596
= 1362548 B.Th.U./lb. mol,

since, under constant pressure conditions, there is an increase in volume amounting to \(\frac{1}{2} \) mol per mol of fuel burned.

In the next paragraph the maximum work of a reaction is discussed and, as shown by Nernst, this maximum work is equal to the heat of reaction ΔE_0° at absolute zero temperature.

7. Maximum Work of Reaction and Equilibrium Constant. In applying the second law of thermodynamics to determine the maximum available work obtainable from a heat engine the discussion shows that this maximum is a function of the temperature range within which the working substance operates and further that this work is independent of the working substance. In the treatment, however, as usually given, only physical changes in the working substance are considered and all operations are regarded as reversible. When the combustion processes occurring in an engine are considered it would appear, at first sight, to be impossible to regard these as reversible, and hence it would appear to be impossible to determine the value of the maximum work attainable from a reaction. A conceivable method, however, can be pietured of a reaction process occurring in which all operations are reversible and from which work is obtainable, so that by applying the same arguments to the process as is normally done to reversible physical changes it is found that the work obtained from the reaction has a maximum value. This method, which enables an expression for the maximum work of reaction to be established, was suggested by van't Hoff and is illustrated by the van't Hoff equilibrium

In fig. 11 the vessel A is a reaction chamber of very large capacity maintained at constant temperature T by the surroundings. The reactants, taken in this case to be CO and O_2 , are contained in the vessels B and C at the constant pressure p (in this preliminary discussion) and small quantities of these can be supplied, in the correct proportions for combustion, to the reaction chamber. Before entering the chamber, however, each gas is expanded isothermally in a motor to the partial pressure exerted by the gas in the reaction chamber. Work is thus rendered available, the amounts being, per mol of CO consumed,

$$pv \log_e \frac{p}{p_{\text{co}}}$$
 and $\frac{1}{2}pv \log_e \frac{p}{p_{\text{co}}}$,

where v is the volume of the pound mol, p_{CO} is the partial pressure of the CO and p_{O_2} the partial pressure of the O_2 . As shown in the diagram the CO and O_2 gases are enabled to enter the reaction chamber because semipermeable walls, suitable for each gas, are fitted between the motors and the reaction chamber. The CO_2 formed by the reaction in vessel A escapes, as soon as it is formed, through the semipermeable

wall shown, to the CO_2 receiver, while the heat of the reaction is absorbed by the surroundings so that the process is isothermal and reversible. The discharged CO_2 is compressed isothermally from its pressure p_{CO_2} to the original pressure p of the reactants. The expenditure of work required for this is

 $pv \log \frac{p}{p_{\text{co.}}}$.

The net gain in work is thus, in heart units,

$$\frac{pv}{J}\log_{e}\frac{p}{p_{\text{co}}} + \frac{1}{2}\frac{pv}{J}\log_{e}\frac{p}{p_{\text{o}}} - \frac{pv}{J}\log_{e}\frac{p}{p_{\text{co}}}$$

$$= \frac{RT}{J}\log_{e}\frac{p}{p_{\text{co}}} \times \frac{p^{\frac{1}{2}}}{p_{\text{o}}^{\frac{1}{2}}} \times \frac{p_{\text{co}}}{p}$$

$$= \frac{RT}{J}\log_{e}p^{\frac{1}{2}} \times \frac{p_{\text{co}}}{p_{\text{o}}^{\frac{1}{2}}} \times \frac{p_{\text{co}}}{p}$$

$$= \frac{RT}{J}\log_{e}p^{\frac{1}{2}} \times \frac{p_{\text{co}}}{p_{\text{o}}^{\frac{1}{2}}} \times \frac{p_{\text{co}}}{p}$$

$$= \frac{RT}{J}\log_{e}p^{\frac{1}{2}} \times \frac{p_{\text{co}}}{p_{\text{co}}} \times \frac{p_{\text{co}}}{p}$$
(1)

All operations in the above reaction process are reversible since it is only necessary to return CO₂ to the reaction chamber and let heat flow in from the surroundings to enable the CO₂ to be split up to CO and O₂ and these are then returned to their original vessels. The work done, as given by equation (1), is thus a maximum for the reaction

 $CO + \frac{1}{2}O_2 = CO_2$ occurring at the constant temperature T and constant pressure p. If now, at this same temperature T and pressure p, a new set of conditions should exist in the reaction chamber so that the partial pressures of the reactants and products become p'_{CO} , p'_{O_2} and p'_{CO_2} , the same arguments shown above lead to the expression

$$\frac{RT}{J}\log_{r} p^{\frac{1}{2}} \frac{p'_{\text{CO}_{1}}}{p'_{\text{CO}} \times p'_{\text{O}_{2}}}$$

for the maximum work of reaction. Here also all operations are reversible so that this must equal the expression given in equation (1) as otherwise it would be possible to generate a continuous supply of energy merely by allowing the reaction showing the greater work to drive the one showing the lesser when this acts in the reverse direction. Hence

$$\frac{p_{\text{CO}_{1}}}{p_{\text{CO}} \times p_{\text{O}_{1}}^{\frac{1}{2}}} = \frac{p'_{\text{CO}_{1}}}{p'_{\text{CO}} \times p'_{\text{O}_{1}}^{\frac{1}{2}}} = K_{p}. \tag{2}$$

is a constant known as the equilibrium constant. In any mixture of gases in which CO, O2 and CO2 are present alone or with other gases at the temperature T and total pressure p, the three gases CO, O2 and CO2 must, under equilibrium conditions, have partial pressures which satisfy the relationship given by equation (2), otherwise it would be possible for work to be done on or by any of these constituents and the mixture would not then be in equilibrium. If the reactants and products are not initially and finally all at the pressure p it becomes necessary to add or deduct the isothermal works of expansion or compression to or from equation (1) in order to find the maximum work of reaction. The value of K_2 is, however, unaffected by these changes. It is customary to take the pressure p, appearing in equation (1), as one atmosphere so that the maximum work of reaction becomes $\frac{RT}{I}$ log, K_p with the partial pressures expressed in atmospheres. It has to be observed that this maximum work does not include the work done on or by the gases due to a difference between the sum of the mols of the reactants and the products. The cylinders shown attached to the receivers in fig. 11 indicate that for the combustion of CO with O2 this

$$\frac{pv}{J} + \frac{\frac{1}{2}pv}{J} - \frac{pv}{J} = \frac{1}{2}\frac{pv}{J} \text{ or } \frac{1}{2}\frac{RT}{J}.$$

work amounts to

S. Free Energy. In the last paragraph it was shown that the maximum work of a reaction is given by $\frac{RT}{J}\log_r K_p$, where K_p is the equilibrium constant and is a function of the partial pressures of the

reactants and products of the reaction. In order to calculate the value of K_x the following method due to Willard Gibbs and developed by Lewis will now be considered.

If the total heat, absolute entropy and absolute temperature of a hypothetically ideal gas be denoted by H_T , S_T and T we can write down a function F_T in terms of these as

$$F_T = H_T - TS_T$$

Since H_T and TS_T are state functions it follows that this new function, known as the thermodynamic potential or free energy, is itself a state function. If now we denote this function for two states A and B of a substance by $(F_T)_A$ and $(F_T)_B$ we have, for an isothermal change.

$$(F_T)_A - (F_T)_B = \Delta F_T = \Delta H_T - \Delta T S_T = \Delta H_T - T \Delta S_T$$

where

$$\Delta H_T = (H_T)_A - (H_T)_B$$
 and $\Delta S_T = (S_T)_A - (S_T)_B$.

If the change is reversible $T\Delta S_T$ is the heat added and is denoted by Q say. We thus have

$$\Delta F_T = \Delta H_T - Q = \Delta E_T + \Delta P V - Q. \quad(1)$$

and if we regard the change as occurring at constant pressure as well as at constant temperature, $\Delta PV = P\Delta V$, which is the work done against the pressure P due to the change in volume ΔV . Rewriting equation (1) as

$$Q = \Delta E_T + (P\Delta V - \Delta F_T), \dots (2)$$

and comparing it with the energy law, i.e. heat supplied = change in internal energy + work done, we see that $-\Delta F_T$ represents the maximum work of the state change apart from that due to a change in volume. It is impossible for the maximum work obtainable to be any more or less than $-\Delta F_{\pi}$ and this applies to any reversible process in which the state changes from A to B. Thus, as quoted by Lewis and Randall, consider the action of aqueous sulphuric acid upon zinc under constant atmospherie pressure in a thermostat. Under normal conditions the reaction is highly irreversible and the only work performed is that due to the formation of hydrogen which has to expand against atmospheric pressure. If, however, the same substances are arranged as a galvanic cell in the thermostat with zinc as one electrode and a reversible hydrogen electrode as the other and if the two electrodes are connected externally to an electbic notor, so as to utilise the electrical energy now available, work w CC performed and this will be a maximum if the opposing E.M.F. difto e only by an infinitesimally small amount from that generated feell. Simultaneously with the production of electrical work zir enters into solution at the zine electrode and hydrogen is evolved at the hydrogen electrode. The work performed will be a maximum because, by subsequent reduction of the opposing E.M.r. below that of the cell, hydrogen is consumed and zinc precipitated so that the process is reversible. Hence the net work available under electrical conditions is given by

$$(A_A - A_B) - P\Delta V$$

where $(A_A - A_B)$ is the external electrical work performed. From equation (2) the maximum work is $-\Delta F_T$ so that

$$-\Delta F_T = (A_A - A_B) - P\Delta V.$$

Hence for any process occurring at constant temperature and pressure,

$$-\Delta F_T = (F_T)_A - (F_T)_B \dots (3)$$

is the maximum work which is available and applied usefully. For this reason F is called the free energy.

It has to be noted particularly that the work $-\Delta F$ of a reaction is not necessarily the same as the heat of the reaction. As shown by Nernst the two are equal at absolute zero temperature and will also be equal at any given temperature if the heat capacity, reckoned from absolute zero, of the reactants is the same as that of the products and if the sum of the entropies of the reactants is the same as that of the products. It has been shown that the maximum work of a reaction is given by the change in free energy, but no reference has been made as to how this change is computed. Since the thermal magnitudes are reckoned from absolute zero temperature, the change in free energy for a reaction must include the change in free energy at absolute zero temperature and this is equal to $-\Delta E_0$. Hence the maximum work is given by the expression

$$-\Delta E_0 - \Delta (F_T - E_0)$$

and, since this is the same as the work available in the van't Hoff equilibrium box, we have

$$\frac{RT}{J}\log_{\bullet}K_{p} = -\Delta E_{0} - \Delta (F_{T} - E_{0})$$

or

$$\frac{R}{J}\log_e K_v = -\Delta E_0/T - \Delta (F_T - E_0)/T.$$

The function $-\frac{(F_T-E_0)}{T}=-\frac{F}{T}$ is given in the tables as also ΔE_0 so

that the value of $\log_e K_p$ is calculable. As an example, we choose the combustion of carbon monoxide with oxygen to form carbon dioxide at a temperature of 600° F. abs. The sum of the free energy functions of the reactants CO and $\frac{1}{2}O_2$ is $-41\cdot149 - \frac{1}{2} \times 42\cdot871 = -62\cdot585$

B.Th.U./lb. mol \times ° F. while the free energy function of the CO₂ is -44.394 B.Th.U./lb. mol \times ° F. The change is thus

$$-62.585 + 44.394 = -18.191$$
 B.Th.U./lb. mol ×° F.

Also the heat of reaction $-\Delta E_0$ of CO at 0° F. abs. is given as 120163 B.Th.U./lb. mol so that

$$-\frac{\Delta E_0}{T}$$
 = 120163/600 = 200·272 B.Th.U./lb. mol. ×° F:

We thus have

$$\frac{R}{J}\log_e K_p = 200 \cdot 272 - 18 \cdot 191 = 182 \cdot 081,$$

and hence

$$\log_{10} K_p = 182.081/1.987 \times 2.303$$

= 39.80

and

$$K_p = 6.3096 \times 10^{39}$$

as given in the tables.

EXAMPLES ON THE USE OF THE TABLES

EXAMPLE 1

Flue gases leave a boiler at a temperature of 600° F. and have the fractional composition: \tilde{O}_2 , 0.098; N_2 , 0.799; CO_2 , 0.098 and H_2O , 0.005. This composition gives an apparent molecular weight of 29.91. It is required to find the heat given up by 1 lb. of these gases if cooled to a temperature of 80° F. at constant pressure. Assume that the H_2O remains in the gaseous state down to 80° F.

The total heat of the mixture has to be calculated at 600° F. (1060° F. abs.) by multiplying the number of mols of each constituent by its total heat at 1060° F. abs. and summing the results so obtained. This procedure has to be repeated at 80° F. (540° F. abs.). The difference between these quantities then gives the heat liberated.

Arranging the work in tabular form we have at $T=1060^{\circ}$ F. abs. :

	1			
Gas	Vol. or No. of mols (m)	H ₁₀	160	mH_{1000}
$egin{array}{c} O_2 \\ N_2 \\ CO_2 \\ H_2 O \end{array}$	0·098 0·799 · 0·098 0·005	754 741 931 863	16 78	739·8 5925·5 919·0 43·2
		1	$\Sigma m H_1$	$_{060} = 7627.5$

and at $T=540^{\circ}$ F. abs.:

Gas	m	$H_{\mathfrak{s}\mathfrak{s}\mathfrak{o}}$	mH_{540}
$egin{array}{c} O_2 \ N_2 \ CO_2 \ H_2O \end{array}$	0·098 0·799 0·098 0·005	3751 3753 4088 4318	367·6 2998·7 400·6 21·6
20			540 = 3788·5

The difference in total heat is thus

$$7627.5 - 3788.5 = 3839.0$$
 B.Th.U./lb. mol

and since the apparent molecular weight of the flue gases is 29.91 the heat given up per pound is

EXAMPLE 2

The products of combustion of a petrol engine, supplied with 20 per cent. excess air, have the following volumetric analysis: N_2 , 0.7466; O_2 , 0.0329; O_2 , 0.1084; O_2 , 0.1121. This gives an apparent molecular weight of 28.75 and gas constant O_2 =53.70. If the tempera-

ture of the charge at the beginning of compression is 100° F. and the compression ratio of the engine is 5, it is required to find the ideal thermal efficiency of the engine. The calorific value of the petrol used is 20,300 B.Th.U./lb. and its gravimetric composition is 85·3 per cent. carbon and 14·7 per cent. hydrogen.

In determining the ideal efficiency, it is permissible to assume that the working substance consists of the products of combustion throughout the complete cycle. The ideal cycle consists of isentropic compression (AB in fig. 12), constant volume burning (BC), isentropic expansion (CD) and constant volume cooling (DA).

In order to find the temperature at B, a value is first assumed and if correct, it will be found that the entropy at B is the same as at A. If this agreement is not obtained the process is repeated until the condition is satisfied.

Denoting the pressures at A and B by p_A and p_B , we have, for the entropy at A,

$$S_{A} = \sum m(S_{T})_{A} \div \sum m \frac{R}{J} \log_{e} \frac{1}{p_{p}} + \frac{R}{J} \log_{e} \frac{1}{p_{A}}, \dots (1)$$

where, for each constituent, m is the number of mols, $(S_T)_A$ is the entropy at a pressure of 1 atmosphere and p, the partial pressure (in atmospheres) when the pressure of the mixture is 1 atmosphere. pA is the total pressure (in atmospheres) of the gas mixture at A. The first term on the right of equation (1) represents the entropy of the gas mixture with each constituent at a pressure of 1 atmosphere (as given by the tables). The second term is the correction necessary to bring the mixture to a pressure of 1 atmosphere so that each constituent is subjected to a reduction in pressure from 1 atmosphere to its al pressure p_p . The third expression gives the necessary own parts. bring the mixture from 1 atmosphere pressure to p, the

pressure at A. way the entropy at B is given by the expression
In the same $\sum_{S_D}^{I_{x_B}} = \sum_{T} m(S_T)_B + \sum_{T} \frac{R}{J} \log_s \frac{1}{p_x} + \frac{R}{J} \log_s \frac{1}{p_B}$(2)

ens on the right of equations (1) and (2) are equal so The second term hen entropy between the state points A and B is given that the difference it

by the expression m.

$$S_{A} - S_{B} = to$$
but
$$\frac{p_{B}}{p_{A}} = r \frac{T_{B}}{T_{A}}$$
where r_{e} is the compression 0.0 .

This gives
$$S_{A} - S_{B} = \Sigma m(S_{T})_{A} - \Sigma m(S_{T})_{B} + \frac{R}{J} \log_{e} \frac{p_{B}}{p_{A}};$$

$$\frac{p_{B}}{p_{A}} = r \frac{T_{B}}{T_{A}}$$

$$\frac{N_{O}}{T_{A}} = r \frac{T_{B}}{T_{A}}$$

$$\frac{N_{O}}{T_{A}} = r \frac{T_{B}}{T_{A}}$$

$$\frac{N_{O}}{T_{B}} = r \frac{T_{B}}{T_{A}}$$

$$\frac{N_{O}}{T_{A}} = r \frac{T_{B}}{T_{A}}$$

$$\frac{N_{O}}{T_{A}} = r \frac{T_{B}}{T_{A}}$$

The first two terms on the right remain constant for all assumed values of T_B so that it is advisable to determine their sum independently and equate this to the last two terms. Arranging the work in tabular form, we have

Gas	Vol. or mols (m)	S 5 5 5 0	mS_{550}	
$\overline{N_2}$	0.7466	46.067	34.41	
O. I	0.0329	49-299	1.62	
O ₂ CO ₂	0.1084	51.452	5.58	
H ₂ Ö	0.1121	45.452 5.0		
<u>-</u>		ΣmS	$S_{560} = 46.70$	

The second term in equation (3) is
$$\frac{R}{J} \log_e \frac{r_e}{T_A}$$

= 1.986 × 2.303 log₁₀ 5/560
= -9.371 E.U.

The first two terms in equation (3) are thus equal to 46.70 - 9.37 = 37.33 E.U. and this must equal

$$\sum m(S_T)_B - \frac{R}{J}\log_e T_B.$$

For $\Sigma m(S_T)_B$ it is convenient again to arrange the work in tabular form with an assumed temperature of $T_B=1000^\circ$ F. abs.:

Gas	m	S ₁₀₀₀	mS ₁₀₀₀
N ₂ O ₂ CO ₂ H ₂ Ō	0·7466 0·0329 0·1084 0·1121	50·158 53·533 57·284 50·257	37·44 1·76 6·21 5·63
		$\Sigma_m S_1$	1000=51.04

and
$$\frac{R}{J} \log_e T_B = 1.986 \times 2.303 \log_{10} 1000$$

= 13.72.

Hence

$$\Sigma mS_{1000} - \frac{R}{J} \log_e T_B$$

= 51.04 - 13.72
= 37.32

as against 37.33 for the first two terms so that the assumed temperature for T_B of 1000° F. abs. may be accepted. The corresponding value of the internal energy E_2 at the point B is found by multiplying the number of mols of each constituent in the products by its internal

energy value as given in the tables at 1000° F. abs. and summing the products. It is convenient to carry out the calculation in tabular form as follows:

E_{1000}
31-5
67-9
28.7
87.2
3

In order to find the temperature T_2 at the end of the constant volume burning period, its value is first assumed and the internal energy E_2 of the products calculated. If this is found to equal $E_2 + Q$, i.e. the internal energy at the point B plus the heat added per lb. mol, then the assumed temperature is correct. If not, the process is repeated until the condition is satisfied. From the data supplied in the statement of the problem it can be shown that the weight of the products of combustion per lb. of petrol is 18.85 lb. so that the heat added is

 $Q=20,304\times28\cdot75/18\cdot85=30964$ B.Th.U./lb. mol. If now we assume T_3 to be 5200° F. abs. the value of E_3 is found as follows:

Gas	m	$E_{1:05}$	mE_{tre}
N,	0.7466	31560	23563
O_2	0.0329	33680	1108
CÔ,	0.1084	56796	6156
H ₂ O	0.1121	45907	5146

Since this is less than the required value of 36279 the assumed temperature of 5200° F. abs. for T_2 is too low. By further trial and error the required value of T_2 is found to be 5238° F. abs. and the corresponding value of E_2 is 36280 B.Th.U./lb. mol.

The entropy of the gaseous mixture at C must be the same as at D so that the temperature at D has to be found, by trial and error, until this condition is satisfied. The calculation is similar to that carried out during compression so that the detailed method does not require to be repeated. It is found that the required temperature at D is 3500° F. abs. and the corresponding value of E_D is 22683 B.Th.U./lb. mol. At $T_A = 560^{\circ}$ F. abs. the value of E_A is 2887 B.Th.U./lb. mol.

The efficiency is given by the expression

$$\eta = \frac{(E_C - E_B) - (E_D - E_A)}{(E_C - E_B)} \\
= 1 - \frac{(E_D - E_A)}{Q} \\
= 1 - \frac{22683 - 2887}{30964} \\
= 0.361.$$

EXAMPLE 3

A nozzle is supplied with air at a pressure of 62.0 lb./in.2 abs. and temperature of 1600° F. abs. If the rate of air flow is 10 lb./sec. and

the pressure at outlet from the nozzle is 14.7 lb./in.² abs., find the throat and exit areas. Assume that expansion to the throat is isentropic and that the frictional loss, for the complete expansion between inlet to and outlet from the nozzle is 15 per cent. of the isentropic heat drop. Assume also that the composition of the air by volume is O_2 , 21 per cent. and N_2 , 79 per cent. so that the molecular weight is 28.84 and the gas constant is 53.53.

It is necessary to find the mean isentropic index of expansion γ between the nozzle inlet and throat. The critical pressure ratio (r_i) is given by

$$r_c = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma}{\gamma - 1}} \dots (1)$$

and if γ is taken provisionally as 1.4 we have $r_c = 0.53$ so that the throat pressure is nearly $0.53 \times 62.0 = 32.9$, say 33 lb./in.²

abs. and the corresponding temperature is $T_B = T_A r_e^{\gamma} = 1334.5^{\circ}$ F. abs. The mean value of γ between A and B in fig. 13 (where A represents the state point of the air at the nozzle inlet and B at the throat) can be found, when T_B is known, from the relationship

$$T_A/T_B = (p_A/p_B)^{\frac{\gamma-1}{\gamma}} \dots (2)$$

and the critical pressure ratio can then be found from equation (1). The entropy of 1 mol of air at A is given by the expression (see p. 30)

$$\sum m S_{1600} + \sum m \frac{R}{J} \log_e \frac{1}{m} + \frac{R}{J} \log_e \frac{1}{p_A}$$

where m is the fractional number of mols of the gases, oxygen and nitrogen. The corresponding expression for the entropy at B is

$$\sum m \, S_{1224\cdot 5} + \sum m \, \frac{R}{J} \log_e \frac{1}{m} + \frac{\vec{R}}{J} \log_e \frac{1}{\vec{p}_B}.$$

Since the entropies at A and B are equal, we have

$$\begin{split} & \mathcal{E}m \, S_{1609} + \mathcal{E}m \, \frac{R}{J} \log_{\epsilon} \frac{1}{m} + \frac{R}{J} \log_{\epsilon} \frac{1}{p_{A}} \\ & = & \mathcal{E}m \, S_{1334 \cdot 5} + \mathcal{E}m \, \frac{R}{J} \log_{\epsilon} \frac{1}{m} + \frac{R}{J} \log_{\epsilon} \frac{1}{p_{B}}, \end{split}$$

so that

$$\sum m S_{1000} - \sum m S_{1321.5} = \frac{R}{J} \log_e \frac{p_A}{p_B}$$

Since m for O_2 is 0.21 and for N_2 , 0.79, we have

$$\begin{aligned} 0.21 (S_{1000})_{0_s} &\div 0.79 (S_{1000})_{N_s} - 0.21 (S_{1000})_{0_s} - 0.79 (S_{1000})_{N_s} \\ &= \frac{R}{J} \log_e \frac{62.0}{p_R} \end{aligned}$$

from which p_B is calculable.

From the tables $(S_{1600})_{O_2} = 57.240$; $(S_{1600})_{N_2} = 53.617$; $(S_{1231.5})_{O_3} = 55.769$ and $(S_{1234.5})_{N_2} = 52.252$.

Hence

$$\frac{R}{J}\log_{*}\frac{62\cdot0}{p_{B}} = 0.21(57\cdot240 - 55\cdot769) + 0.79(53\cdot617 - 52\cdot252)$$

$$= 1.3874;$$

$$\log_{10}\frac{62\cdot0}{p_{B}} = \frac{1.3874}{1.987 \times 2.303} = 0.30336;$$

$$p_{B} = 30.833.$$

It has to be remembered that these values of $p_B=30.833$ lb./in.² abs. and $T_B=1334.5^\circ$ F. abs. are not the true values at the throat, but they are on the isentropic curve passing through A and so the mean index γ found from them must be nearly correct.

From equation (2) we now have

$$\frac{1600}{1334 \cdot 4} = \left(\frac{62 \cdot 0}{30 \cdot 833}\right)^{\frac{\gamma - 1}{\gamma}}$$

from which $\gamma = 1.351$.

The critical pressure ratio is thus

$$r_{e} = \left(\frac{2}{1.351}\right)^{\frac{1.251}{0.251}} = 0.537$$

so that the critical pressure is 0.537×62.0

$$=33.30 \text{ lb./in.}^2 \text{ abs.}$$

The corrected value of T_B is now given by

$$T_B$$
 is now given by $T_B = 1600 \left(\frac{33 \cdot 30}{62 \cdot 0} \right)^{\frac{0.351}{1.251}}$
= 1361.4° F. abs.

The specific volume at the throat is given by

$$v_B = RT/144p = 53.53 \times 1361.4/144 \times 33.30$$

= 15.20 ft.3 /lb.

In order to find the throat area, the throat velocity is required. This is found from the isentropic heat drop $(\Delta_s)_{AB}$ between A and B, i.e. between the temperatures 1600° F. abs. and 1361.4° F. abs.

Thus
$$(\Delta_t)_{AB}$$

= $0.21 (H_{1600} - H_{1361.4})_{O_t} + 0.79 (H_{1600} - H_{1361.4})_{N_t}$
= $0.21 (11842 - 9909) + 0.79 (11420 - 9622)$
= 1827 B.Th.U./lb. mol. = 63.35 B.Th.U./lb.

The velocity at the throat is given by

$$V_B = 223.8 \sqrt{63.35}$$

1781.2 ft./sec.

The throat area is now given by

or

$$A_B = 144 m v_B / V_B$$

= 144 × 10 × 15·20/1781·2
= 12·28 in.²

For the complete expansion through the nozzle it is necessary to find the isentropic heat drop from inlet to outlet. This is determined in the same way as before when finding the throat area, but in this case the lower pressure is known, so that the entropy equation is, with T_D equal to the temperature at the nozzle outlet,

$$0.21 \{ (S_{1600})_{O_{i}} - (S_{T_{D}})_{O_{i}} \} + 0.79 \{ (S_{1600})_{N_{i}} - (S_{T_{D}})_{N_{i}} \}$$

$$= \frac{R}{J} \log_{e} 62.0/14.7$$

$$0.21 (S_{1600})_{O_{i}} + 0.79 (S_{1600})_{N_{i}} - \frac{R}{J} \log_{e} 62.0/14.7$$

$$= 0.21 (S_{T_{D}})_{O_{i}} + 0.79 (S_{T_{D}})_{N_{i}}. \qquad (3)$$

The expression on the left of equation (3) is first determined, after which the temperature T_D is assumed and, if correct, it will be found that the equation is satisfied, otherwise the procedure is repeated until agreement is obtained.

Inserting the values $(S_{1600})_{0,}=57.240$ and $(S_{1600})_{N,}=53.617$, as given by the tables, on the left-hand side of equation (3) we have

$$0.21 \times 57.240 + 0.79 \times 53.617 - 1.986 \times 2.303 \log_{e} 62.0/14.7$$

= $12.021 + 42.357 - 2.859$
= 51.52 E.U.

If we assume $T_D=1100^\circ$ F. abs. the tables give $(S_{1100})_{0_t}=54\cdot260$ and $(S_{1100})_{N_t}=50\cdot842$ so that the right-hand side of equation (3) is then

$$0.21 \times 54.260 + 0.79 \times 50.842$$

= 51.56 E.U.

as against 51.52 E.U. for the left-hand side, so that the assumed value of $T_D=1100^\circ$ F. abs. may be accepted. The isentropic heat drop between 1600° F. abs. and 1100° F. abs. is now found from

$$(\mathcal{A}_s)_{AD} = 0.21 (H_{1600} - H_{1100})_{O_2} + 0.79 (H_{1600} - H_{1100})_{N_2}$$

= $0.21 (11842 - 7855) + 0.79 (11420 - 7704)$
= 3773 B.Th.U./lb. mol.

The net heat drop is 0.85 of $(\Delta_s)_{AD}$, so that we have

$$0.85 \times 3773 = 0.21 \, (H_{1600} - H_{T_C})_{0_2} + 0.79 \, (H_{1600} - H_{T_C})_{\Sigma_1} \, \ldots \ldots (4)$$

where T_C is the actual temperature at the nozzle outlet.

 T_C has to be guessed so as to satisfy equation (4). Trying $T_C = 1200^{\circ}$ F. abs. we have

$$0.85 \times 3773 = 0.21(11842 - 8631) + 0.79(11420 - 8430)$$

 $3207 = 3036$

so that agreement is not obtained.

The heat drop calculated on the right-hand side of the equation is too low and therefore the guessed temperature is too high. By further trial and error it is found that the correct value of T_C is 1177° F. abs., so that the specific volume of the air at the nozzle exit is

$$v_e = 53.53 \times 1177/144 \times 14.7$$

= 29.77 ft.3/lb.

and the exit velocity is

$$V_C = 223.8 \sqrt{111.2}$$

= 2360 ft./sec.

since the net heat drop per pound of air is

$$3207/28.84 = 111.2$$
 B.Th.U.

The exit area is thus given by

$$A_c = 144 \times 10 \times 29.77/2360$$

= 18.16 in.2

EXAMPLE 4

A closed vessel of 1 ft.3 internal capacity contains air at a temperature of 4000° F. abs. and pressure of 1 atmosphere. If the air is cooled at constant volume to a temperature of 520° F. abs. which is the temperature of the surroundings and the heat thus liberated is used as a source

for a perfect heat engine, find the maximum attainable work. Neglect dissociation effects and assume that the air contains 21 per cent. of oxygen and 79 per cent. of nitrogen by volume.

The initial state point of the air is represented by the point A (fig. 14) on the TS diagram and AB is a constant volume curve with B on the temperature level of 520° F. abs. At any temperature level T

the elementary maximum work is that given by the Carnot engine cycle when the heat source is at T and the temperature drop is δT , i.e. it is given by the elementary area shown shaded in the TS diagram. Hence for the complete cooling from A to B the maximum available work is given by the area ABC. This area is equal to DBAE-DBCE

$$= \{ \Sigma n \left(E_A - E_B \right) - \Sigma 520 n \left(S_A - S_B \right) \},$$

where E and S represent the internal energy and entropy values and n is the number of mols of O_2 and N_2 in the air.

The values of S_A and S_B are found as follows. At A the pressure of

The area
$$BCED = 520 (S_A - S_B)$$

= $520 (0.02159 - 0.01758)$
= 2.085 B.Th.U.

The change of internal energy $(E_A - E_B)$ between A and B is given by

$$n_{0_1}(E_A - E_B)_{0_2} + n_{N_2}(E_A - E_B)_{N_2}$$

= 0.0000719 (24887 - 2574) + 0.0002707 (23423 - 2581)
= 7.246 B.Th.U.

The available energy is thus

$$7.246 - 2.085$$

= 5.161 B.Th.U.

EXAMPLE 5

Calculation of maximum attainable temperature neglecting the formation of NO and assuming no dissociation of N_2 when CO is burned adiabatically at constant volume with the theoretical minimum air supply.

For this combustion, if carried to completion, the reaction equation is

$$CO + \frac{1}{2}O_2 + 1.881N_2 = CO_2 + 1.881N_2$$

assuming that the air consists of 21 per cent. of O_2 and 79 per cent. of N_2 by volume. Let the initial pressure, volume and temperature of the precombustion mixture be P_1 , V_1 and T_1 and the final corresponding values of the dissociated post-combustion mixture be P_2 , V_2 and T_2 with $V_2 = V_1$. Let the fractional volume of CO_2 dissociated be x mols per mol of CO_2 so that the amount of CO_2 remaining is (1-x) mols. The oxygen liberated by the dissociation is $\frac{1}{2}x$ mols while the CO liberated is x mols. We thus have for the initial and final mixtures:

Initially at P1, V1 and T1				Fine	lly at	P_2, V_2	and T_2			
CO O ₂ N ₂	-	-	•	- 1.	1 mol 1 mol 2 mol 881 mol	CO CO_2 O_2 N_2	-	:	-	$\begin{array}{ccc} - & x \text{ mol} \\ (1-x) \text{ mol} \\ - & \frac{1}{2}x \text{ mol} \\ - & 1.881 \text{ mol} \end{array}$
$Total = 3.381 \text{ mol}$ $= m_1$					1-		Tota	$I = (2 \cdot m_2)$	$881 + \frac{1}{2}x) \text{ mol}$	

Let the partial pressures of the gase's CO, CO₂, O₂ and N₂ in the products of combustion be denoted by p_{CO} , p_{CO} , p_{O} , and p_{N_1} . The ratio of these partial pressures of each gas to the total pressure P_2 of the mixture is the same as the ratio of the number of mols of

Since Kp_{CO} is a function of T_2 there are two unknowns involved, namely T_2 and x. Another equation must therefore be established before these can be determined. This is given by the thermal energy equation which is established as follows.

The initial mixture of CO, O_2 and N_2 is considered as being heated at constant volume from T_1 to T_2 without change in composition. The heat required for this is the change in internal energy between T_1 and T_2 , that is,

$$(E_{CO} + \frac{1}{2}E_{O_1} + 1.881E_{N_1})_{T_1} - (E_{CO} + \frac{1}{2}E_{O_1} + 1.881E_{N_2})_{T_1}$$

The CO is now allowed to burn at T_2 to CO_2 , liberating the heat of combustion H_{r_2} . The x mols of CO_2 are now dissociated for which the heat required is xH_{r_2} . If the complete process is adiabatic we have,

$$H_{r_1} - xH_{r_2} = (E_{CO} + \frac{1}{2}E_{O_2} + 1.881E_{N_2})_{T_2} - (E_{CO} + \frac{1}{2}E_{O_2} + 1.881E_{N_2})_{T_2} \dots (2)$$

An alternative way of regarding the process is as follows. The mol of CO is first burned completely to CO_2 at T_1 so that the heat liberated is H_{r_1} . The products now consist of 1 mol of CO_2 and 1.881 mol of N_2 . If these products are heated at constant volume to T_2 they absorb the heat

$$(E_{\text{CO}_1} + 1.881E_{\text{N}_2})_{T_2} - (E_{\text{CO}_2} + 1.881E_{\text{N}_2})_{T_1},$$

and finally, for the dissociation of x mols of CO_2 , the heat required is xH_{r} . For adiabatic conditions therefore

 $H_{r_1}-xH_{r_2}=(E_{CO_1}+1.881E_{N_1})_{T_1}-(E_{CO_2}+1.881E_{N_2})_{T_1}.$ (3) This can be reduced to equation (2) but it is simpler to use it as it stands in solving for x with assumed T_2 values.

The above equations are now applied to the following particular ease. One mol of CO along with the necessary air for theoretically correct combustion is contained in a closed space at a temperature of 600° F. abs. and pressure of l'atmosphere. It is required to find the maximum attainable temperature due to adiabatic combustion of the CO at constant volume.

From the energy equation (3) we have with $H_{v_1} = 121198$ B.Th.U./lb. mol and

$$(E_{\text{CO}}, +1.881E_{\text{N}})_{\text{500}} = (3434 + 1.881 \times 2979)$$

= 9037 B.Th.U./lb. mol.

Hence
$$121198 - xH_{r_1} = (E_{CO_1} + 1.881E_{N_1})_{T_1} - 9037$$
, or $xH_{r_2} = 130235 - (E_{CO_2} + 1.881E_{N_2})_{T_2}$(4)

By assuming values of T_2 the corresponding values of E_{CO_1} and E_{N_2} are found from the tables and x is then calculable from equation (4). Using these calculated values of x, the values of K_p are determined from equation (1) and plotted to a base of T_2 values. The true K_p values, as given by the tables, are also plotted to the same base. The point of intersection of the two curves gives the required upper temperature limit T_p .

The work is conveniently arranged in tabular form as follows:

T_{2}	= 4800	4900	5000
$E_{ m CO_2}$	= 51606	52900	54197
1.881E _{N2}	= 54229	55510	56793
$E_{\rm CO_2} + 1.881$	$E_{N_2} = 105835$	108410	110990
	130235	130235	130235
xH_{v_z}	= 24400	21825	19245
H_{v_2}	=113050	112813	112574
\boldsymbol{x}	= 0.2158	0.1935	0.1710

$$K_{p} = \frac{(1-x)}{x^{\frac{5}{2}}} \left(\frac{6.762 \times 600}{1 \times 4800} \right)^{\frac{1}{2}}$$
$$= \frac{0.7842}{0.2158^{\frac{3}{2}}} \left(\frac{4057 \cdot 2}{4800} \right)^{\frac{1}{2}}$$
$$= 7.191$$

$$K_p = \frac{0.8065}{0.1935^{\frac{5}{4}}} \left(\frac{6.762 \times 600}{1 \times 4900} \right)^{\frac{1}{2}}$$

= 8.624.

At 5000°
$$F$$
. abs.

$$K_{p} = \frac{0.8290}{0.1710^{\frac{3}{2}}} \left(\frac{6.762 \times 600}{1 \times 5000} \right)^{\frac{1}{2}}$$
$$= 10.565.$$

The curve AB (fig. 15) represents the true K_p values, while the eurve CD represents the curve given by the K_p values calculated above.

The curves intersect at $T_2=4908^{\circ}$ F. abs. which is therefore the maximum attainable temperature. The corresponding value of x, that

is the fractional amount of CO_2 dissociated, can now be found from the tabular calculation of equation (1) as follows:

T_{2}	= 4908
$E_{\mathbf{CO_2}}$	= 53004
$1.881E_{N_*}$	= 55613
$E_{\text{CO}_2} + 1.881 E_{\text{N}_2}$	=108617
	130235
xH_{r_s}	= 21618
H_{r_s}	112832
\boldsymbol{x}	0-1916

The percentage of CO2 dissociated is thus 19.16.

The curves in fig. 16 show how the maximum attainable temperatures vary with different initial temperatures and different initial pressures, while those in fig. 17 show the percentage dissociation of CO₂: The

points required to plot these curves were obtained in the same way as shown in the sample calculation above, where the initial temperature was 600° F. abs. and the initial pressure was 1 atmosphere.

EXAMPLE 6

Calculation of Maximum Temperature in Gas Engine Cycle

The following data were obtained from a test earried out on a Crossley four-stroke gas engine in the James Watt Engineering Laboratories, The University of Glasgow.

Speed, 218 r.p.m.

Explosions, 100.5 per. min.

Temperature of exhaust gases, 1423° F. abs.

Gas consumption, 3.316 ft.3/min. at s.T.P.

Barometer, 29.37" Hg. or 14.42 lb./in.2 abs.

Air eonsumption, 1.754 lb./min.

Stroke volume, 0.334 ft.3

Clearance volume, 0.092 ft.3

Pressure at beginning of suction stroke, 14.42 lb./in.2 abs.

Pressure at end of suction stroke, 12.98 lb./in.2 abs.

Also, assumed composition of air by volume: 79.1% N₂, 20.9% O₂,

and by weight: 76.8% N₂, 23.2% O₂.

Molecular weight of air, 28.84.

From the above it is seen that the volume of air used per minute is $1.754 \times 359/28.84 = 21.83$ ft.³ at s.r.p.

Volume of air used per cycle is

21.83/109 = 0.2003 ft.³ at s.T.P.

Volume of gas used per eyele is

3.316/100.5 = 0.0330 ft.³ at s.T.P.

Air-gas ratio = 0.2003/0.0330 = 6.070.

Volume of nitrogen in air supply per ft.3 of fuel gas is

 $0.791 \times 6.070 = 4.8014$ ft.3

Volume of oxygen in air supply per ft.³ of fuel gas is $0.209 \times 6.070 = 1.2686$ ft.³

For the determination of the ideal maximum gas temperature from the data found by experiment the following method has been adopted. The fuel gas analysis and air gas ratio enable the analysis of the post-combustion mixture to be obtained and this is assumed to be the same as that of the gases filling the clearance volume at the beginning of the suction stroke. Also the measured temperature of the gases leaving the engine is assumed to be the same as that of the gases filling the clearance volume at the beginning of suction so that the weight of these gases can be determined. The sum of the weights of the air, gas and residuals gives the total weight of the charge at the beginning of compression. The gas constant of the charge is found by calculation and hence the temperature at the beginning of compression can be determined.

The temperature T_2 at the end of isentropie compression is found by trial and error as follows. A tentative value of T_2 is first assumed and from this the absolute entropy of the charge is calculated. If this is found to be the same as the absolute entropy of the charge at the beginning of compression, i.e. at T_1 , the assumed value of T_2 is eorreet; otherwise a new value of T_2 is again assumed and the procedure is continued until the stated condition is satisfied.

In order to find T_3 , the temperature at the end of constant volume burning, the following method is adopted. From the calculated volumetric analysis of the charge the composition of the products with no dissociation is first determined and from this the composition of the products with dissociation is expressed in terms of x, y, u, and z, where

x=the number of mols of CO_2 dissociated to CO and O_2

y= the number of mols of H_2O dissociated to H_2 and O_2

u=the number of mols of H₂O dissociated to H₂ and OH.

z=the number of mols of NO formed from O_2 and N_2 .

The attainment of the final state of the constant volume burning period can be imagined as occurring in the following steps. The charge is first burned isothermally and completely, i.e. without dissociation, at T_2 , the temperature at the end of compression. The products thus formed are then heated to an assumed equilibrium temperature T_3 after which they are dissociated, at this temperature, to give the final equilibrium state. The heat liberated by the combustion of the charge at T_2 must, under adiabatic conditions, be equal to that required to heat the products from T_2 to T_3 together with that required to effect the dissociation. An equation connecting x, y, u and z can thus be established. Since, however, there are five unknowns, namely, T_3 , x, y, u and z, four other equations are required for a complete solution. These are supplied by the equilibrium constants $(K_p)_{w,g}$, $(K_p)_{\text{CO}_2}$, $(K_p)_{\text{OH}}$ and $(K_p)_{\text{NO}}$. If the five equations are satisfied the assumed value of T_3 is correct, otherwise further trial and error is required until the conditions are satisfied.

The analysis of the Glasgow Corporation gas used in the test was as follows:

Gas	v	m	mv	w fractional
CO ₂	0.033	41	1.452	0.1079
$C_n \tilde{H}_m$ (assumed $C_2 H_4$)	0.020	28	0.560	0.0416
	0.009	32	0.288	0.0214
O ₂ · · · · · · · · · · · · · · · · · · ·	0.152	28	4.256	0.3163
CH.	0.180	16	2.880	0.2140
H.	0.498	2	0.996	0.0740
$ ext{CH}_4 \\ ext{H}_2 \\ ext{N}_2$, 0.108	28	3.024	0.2248
Apparent	molecular ·	weight, Σm	v = 13.456	1.0000

From this analysis of the fuel gas and the air gas ratio of 6.070, found above, the composition of the post-combustion mixture can now be found. This composition is assumed to be the same as that of the products which fill the clearance volume at the beginning of the suction stroke.

In fuel gas	Vol.	Vol. of CO ₂ formed	Vol. of H ₂ O formed	Vol. of O ₂ required
$egin{array}{c} { m C}_2{ m H}_4 \\ { m CO} \\ { m CH}_4 \\ { m H}_2 \\ { m CO}_2 \\ { m O}_2 \\ { m N}_2 \\ \end{array}$	0·020 0·152 0·180 0·498 0·033 0·009 0·108	0·040 0·152 0·180 — 0·033 —	0·040 	0·060 0·076 0·360 0·249 — 0·009
		$\Sigma CO_2 = 0.405$	Σ H ₂ O = 0·898	$\Sigma O_2 = 0.736$

The excess volume of oxygen in the products is

$$1.2686 - 0.7360 = 0.5326$$
 ft.³

and the volume of nitrogen in the products is

$$4.8014 + 0.1080 = 4.9094$$
 ft.³

The apparent molecular weight of the products is found tabularly as follows:

Gas	e per ft.2 of gas	v fractional	m	mv
$\begin{array}{c} CO_2 \\ H_2 \ddot{O} \\ O_2 \\ N_2 \end{array}$	0·4050 0·8980 0·5326 4·9094	0·0600 0·1331 0·0790 0·7279	44 18 32 28	2·640 2·396 2·528 20·381
	6.745	1.0000	Σι	mv = 27.945

The apparent molecular weight $=\frac{\Sigma mv}{v}=\frac{27.945}{1}=27.95$ say. The universal gas constant =1546 (with R/J=1.9869). Hence the gas constant for the products is 1546/27.95=55.31 $\frac{\text{ft. lb.}}{\text{lb.}\times{}^{\circ}\text{F.}}$ and the weight of the residuals is given by

$$w_r = \frac{144 \times 14 \cdot 42 \times 0.092}{55 \cdot 31 \times 1423} = 0.002427$$
 lb.

The gas constant for the gaseous fuel is

$$R_{\sigma} = 1546/13.46 = 114.9 \frac{\text{ft. lb.}}{\text{lb.} \times {}^{\circ}\text{F}}.$$

so that the density of the gaseous fuel is

$$\rho_{\sigma} = 144 \times 14.696/114.9 \times 492 = 0.0374 \text{ lb./ft.}^3 \text{ at s.t.p.}$$

The weight of gas supplied per working cycle is

$$w_{\sigma} = v_{\sigma} \rho_{\sigma}$$

or

$$w_{\sigma} = \frac{V_{\sigma}\rho_{\sigma}}{n}$$

where V_{σ} is the volume of gas used per minute and n is the number of explosions per minute.

This gives

$$w_g = 3.316 \times 0.0374/100.5 = 0.001234$$
 lb.

The weight of air used per cycle is

$$w_a = \frac{W_a}{N/2} = 1.754/109 = 0.016092 \text{ lb.}$$

where W_a is the weight of air supplied per minute and N is the speed in revolutions per minute.

The total weight of the charge is thus

$$W = w_r + w_a + w_g$$

= 0.002427 + 0.016092 + 0.001234
= 0.019753 lb.

The gas constant for the charge is given by

$$\begin{split} R = & \frac{w_r R_r + w_g R_g + w_a R_a}{W} \\ = & \frac{0.002427 \times 53 \cdot 31 + 0.001234 \times 114 \cdot 9 + 0.016092 \times 53 \cdot 58}{0.019753} \\ = & 57.62 \frac{\text{ft. lb.}}{\text{lb.} \times {}^{\circ} \text{ F.}} \,. \end{split}$$

The temperature at the beginning of compression is given by

$$\begin{split} T_1 = & \frac{144 \times 12 \cdot 98 \times 0 \cdot 426}{0 \cdot 019753 \times 57 \cdot 62} \\ = & 699 \cdot 5 \text{ or say} \\ & 700^{\circ} \text{ F. abs.} \end{split}$$

The volume of the residuals at 14.42 lb./in.² abs. and 1423° F. abs. is 0.092 ft.³ so that the volume under s.t.p. conditions is

$$v_r' = \frac{0.092 \times 492 \times 14.42}{14.696 \times 1423}$$

= 0.0312 ft.³

The s.r.r. volume of fuel gas used per cycle is 0.0330 ft.³ (page 45) so that the volume of residuals per ft.³ of fuel gas is

$$0.0312/0.0330 = 0.9454$$
 ft.³

The composition of the residuals is given on page 47 so that the volume of CO_2 , H_2O , O_2 and N_2 in the residuals per ft.³ of fuel gas is found by multiplying each of the respective fractional volumes by 0.9454. This gives

 $\begin{array}{ccc} \text{CO}_2 & 0.0600 \times 0.9454 = 0.0567 \\ \text{H}_2\text{O} & 0.1331 \times 0.9454 = 0.1258 \\ \text{O}_2 & 0.0790 \times 0.9454 = 0.0747 \\ \text{N}_2 & 0.7279 \times 0.9454 = 0.6882 \end{array}$

Adding these to the total air and constituents of fuel gas the composition of the charge is as shown below:

•	C_2H_4	СО	CH4	H_2	CO ₂	H ₂ O	0,	N ₂
Residuals Air Fuel gas	0.0200	 0·1520	0.1800	0.4980	0·0567 0·0330	0·1258 —	0·0747 1·2686 0·0090	0.6882 4.8014 0.1080
Total	0.0200	0-1520	0.1800	0.4980	0.0897	0.1258	1.3523	5.5976
No. of mols per mol of charge	0.00250	0.01896	0.02246	0.06213	0.01119	0.01560	0.16871	0.69836

Pressure and Temperature of Charge at end of Compression

The composition of the charge given above enables the absolute entropy (S_1) to be determined at the beginning of compression and this must equal the absolute entropy (S_2) of the charge at the end of isentropic compression. Following the procedure indicated in example 2 we have (see equation 3. p. 30)

$$S_1 - S_2 = 0 = \sum m(S_T)_1 + \frac{R}{J} \log_e \frac{r_e}{T_1} - \sum m(S_T)_2 + \frac{R}{J} \log_e T_2 \dots (1)$$

where r_e is the compression ratio. The first two terms on the right-hand side of the equation have a constant value and are therefore determined before proceeding with the subsequent trial and error calculation. Arranging the work in tabular form gives (with $T_1 = 700^{\circ}$ F. abs.)

The second term in equation (1) is

$$\frac{R}{J}\log_{\theta}\frac{r_{c}}{T_{1}} = -1.9869 \times 2.303 \log \frac{700}{4.631}$$
$$= -9.97088$$

From previous trial and error methods it is found that with $T_2=1235^{\circ}$ F. abs. equation (1) is satisfied. This is confirmed as follows. The value of the last term in equation (1) is now given by

$$\frac{R}{J}\log_e T_2 = 1.9869 \times 2.30258 \log 1235$$
$$= 14.1444.$$

The value of $m(S_T)_2$ is conveniently found tabularly as follows:

	-	•
	$m(S_T)_2$	
(for C_2H_4)	$0.00250 \times 65.697 =$	0.16424
(for CO)	$0.01896 \times 53.240 =$	1.00943
(for CH ₄)	$0.02246 \times 53.267 =$	1.19638
(for H ₂)	$0.06213 \times 37.039 =$	$2 \cdot 30123$
(for CO ₂)	$0.01119 \times 59.687 =$	0.66790
(for H ₂ O)	$0.01569 \times 52.098 =$	0.81742
(for O ₂)	$0.16871 \times 55.156 =$	9.30537
(for N ₂)	$0.69836 \times 51.680 = 3$	36.09124
		51-55321

These ealculated values, when inserted in equation (1), give

$$S_1 - S_2 = 47.38630 - 9.97088 - 51.5532 + 14.1444$$

= 0.00661 E.U.

which is near enough zero to justify the assumed value of 1235° F. abs. for T_2 . The corresponding pressure is found from

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2}$$

or

$$p_2 = \frac{p_1 V_1 T_2}{V_2 T_1'}$$

$$= \frac{12 \cdot 98 \times 4 \cdot 631 \times 1235}{1 \times 700}$$
= 106 \cdot 1 lb./in.2 abs.
or 7 \cdot 220 atmospheres.

The composition of the charge is given on page 48, but the composition of the products formed with complete combustion is required. This is conveniently found from the following table.

	Mols produced		Mols of O2	N,
Combustion of—	CO ₂	H ₂ O	required	-11
0.00250 mols of C ₂ H ₄ 0.01896 mols of CO 0.02246 mols of CH ₄ 0.06213 mols of H ₂	0·00500 0·01896 0·02246	0·00500 0·04492 0·06213	0.00750 0.00948 0.04492 0.03107	
Total	0·04642	0.11205	0.09297	
CO_2 present in charge H_2O present in charge O_2 present in charge N_2 present in charge	0.01119	0.01569	0.16871	0.69836
Total in products	0.05761	0.12774	0.07574	0.69836

The eomposition of the products with complete combustion is thus

$$\begin{array}{ccc}
CO_2 & 0.05761 \\
H_2O & 0.12774 \\
O_2 & 0.07574 \\
N_2 & 0.69836
\end{array}$$
per mol of charge.

 $\begin{array}{ccc}
O_2 & 0.0595945
\end{array}$

Constant Volume Burning

Proceeding now along the lines indicated on p. 45 the heat of combustion of one mol of the charge at $T_2=1235^{\circ}$ F. abs. and at constant volume, is first required. This is given by

$$\begin{split} H_{\rm r} &= \varSigma m H_{\rm r} \\ &= 0.00250 \times 569916 + 0.01896 \times 120714 + 0.02246 \times 343952 \\ &\quad + 0.06213 \times 104359 \\ &= 17922 \cdot 4 \text{ B.Th.U./lb. mol.} \end{split}$$

The products, the analysis of which is given on p. 50, are now heated at constant volume from $T_2 = 1235^{\circ}$ F. abs. to the unknown final temperature T_2 which has at first to be assumed tentatively. The heat required for this is

$$\begin{split} &\mathcal{E}m\left(E_{\mathrm{T_{3}}}-E_{1235}\right) \\ =& [0.05761E_{\mathrm{CO_{3}}}+0.12774E_{\mathrm{H_{2}O}}+0.07574E_{\mathrm{O_{2}}}+0.69836E_{\mathrm{N_{2}}}]_{T_{3}} \\ &-0.05761\times8941-0.12774\times7733-0.07574\times6453-0.69836\times6234 \\ =& [0.05761E_{\mathrm{CO_{3}}}+0.12774E_{\mathrm{H_{2}O}}+0.07574E_{\mathrm{O_{2}}}+0.69836E_{\mathrm{N_{2}}}]_{T_{3}}-6345. \end{split}$$

If the products are now dissociated the heat required is

$$[xH_{r_{\text{CO}}} + yH_{r_{\text{H}_2}} + uH_{r_{\text{OH}}} + zH_{r_{\text{NO}}}]_{T_2}$$

We thus have

$$17922 = [0.05761E_{\text{CO}_i} + 0.12774E_{\text{H}_2\text{O}} + 0.07574E_{\text{O}_i} + 0.69836E_{\text{N}_i}]_{T_i} - 6345 + [xH_{\text{veo}} + yH_{\text{vH}_i} + uH_{\text{voh}} + zH_{\text{vno}}]_{T_i}.$$

This gives

$$\begin{split} & [xH_{v_{\text{CO}}} + yH_{v_{\text{H}_2}} + uH_{v_{\text{OH}}} + zH_{v_{\text{NO}}}]_{T_3} \\ = & 24267 - [0.05761E_{\text{CO}_2} + 0.12774E_{\text{H}_2\text{O}} + 0.07574E_{\text{O}_2} + 0.69836E_{\text{N}_2}]_{T_3} \ (1) \end{split}$$

From several trials it has been found that equation (1) along with the equilibrium constants is satisfied when $T_3=3872^\circ$ F. abs. (T_3 is found by the method explained on p. 45.) This is confirmed as follows.

At
$$T_3 = 3872^\circ$$
 F.*abs. equation (1) becomes
$$24267 - [115236x + 104378y + 121041u + 38827z]$$

$$= 24267 - [0.05761 \times 39747 + 0.12774 \times 31376 + 0.07574 \times 23974 + 0.69836 \times 22567]$$

$$= 24267 - 23889$$

$$= 393,$$

which gives

$$z = 0.010122 - 2.967934x - 2.688284y - 3.117444u. \dots (2)$$

As explained on p. 45, r denotes the number of mols of CO₂ dissociated in accordance with the reaction equation

$$xCO + \frac{1}{2}xO_2 = xCO_2.$$

Hence the numbers of mols of CO and O_2 formed, due to this reaction, are x and $\frac{1}{2}x$ respectively while the number of mols of CO_2 is reduced

by x, giving (0.05761 - x) mols. Similarly, due to the dissociation of y mols of H_2O in accordance with the reaction equation

$$yH_2 + \frac{1}{2}yO_2 = yH_2O_2$$

we have y mols of H_2 and $\frac{1}{2}y$ mols of O_2 formed, leaving (0.12774 - y) mols of H_2O . Due to the dissociation of u mols of H_2O in accordance with the reaction equation

$$\frac{1}{2}uH_2 + uOH = uH_2O$$
,

we have $\frac{1}{2}u$ mols of H_2 and u mols of OH formed, leaving (0.12774 - y - u) mols of H_2 O. Finally, due to the formation of z mols of NO in accordance with the reaction equation

$$zNO = \frac{1}{2}zN_2 + \frac{1}{2}zO_2$$

we have z mols of NO formed while the N_2 and O_2 are each reduced by $\frac{1}{2}z$ mols.

The composition of the post-combustion dissociated mixture at p_0 , V_3 and T_3 is thus as follows:

No. of mols

No. of mols

$$x$$
 CO
 CO

The number of mols in the precon the dissociated state are expressed. The partial pressures of the gases in

by the following relationships:

$$\frac{p_{\text{CO}_2}}{P_3} = \frac{0.05761 - x}{m_3},$$
but $P_2 V_2 = m_2 R T_2$
and $P_3 V_3 = m_3 R T_3,$
so that
$$\frac{P_2}{P_3} = \frac{m_2 T_2}{m_3 T_3},$$
or
$$\frac{P_3}{m_2} = \frac{P_2 T_3}{m_2 T_2}.$$

Hence,

$$p_{\text{CO}_2} = (0.05761 - x) \frac{P_2 T_3}{m_2 T_2}$$

Similarly,

$$\begin{split} p_{\text{CO}} = & \frac{P_2 T_3 x}{m_2 T_2} \,, \\ p_{\text{II,O}} = & \frac{(0 \cdot 12774 - u - y) P_2 T_3}{m_2 T_2} \,, \\ p_{\text{H,}} = & \frac{(y + 0 \cdot 5u) P_2 T_3}{m_2 T_2} \,, \\ p_{\text{OH}} = & \frac{P_2 T_3 u}{m_2 T_2} \,, \\ p_{\text{O}_1} = & \frac{(0 \cdot 07574 + 0 \cdot 5x + 0 \cdot 5y - 0 \cdot 5z) P_2 T_3}{m_2 T_2} \,, \\ p_{\text{NO}} = & \frac{P_2 T_3 z}{m_2 T_2} \,, \\ p_{\text{N}_2} = & \frac{(0 \cdot 69836 - 0 \cdot 5z) P_2 T_3}{m_2 T_2} \,. \end{split}$$

The equilibrium constants are given by the following expressions:

The equilibrium
$$K_{p_{\text{CO}}} = \frac{p_{\text{CO}}}{p_{\text{CO}} \cdot p_{\text{O}}^{\frac{1}{2}}}$$

$$= \frac{(0.05761 - x)}{x(0.07574 + 0.5x + 0.5y - 0.5z)^{\frac{1}{2}}} \left(\frac{m_2 T_2}{P_2 T_3}\right)^{\frac{1}{2}},$$
but $m_2 = 1$; $T_2 = 1235^{\circ}$ F. abs.; $P_2 = 7.220$ atm., giving
$$K_{p_{\text{CO}}} = \frac{13.079(0.05761 - x)}{x(0.07574 + 0.5x + 0.5y - 0.5z)^{\frac{1}{2}} T_3^{\frac{1}{2}}} \qquad ...(3)$$

$$K_{p_{\text{W.g.}}} = \frac{p_{\text{CO}} \cdot p_{\text{H}_10}}{p_{\text{H}_1} \cdot p_{\text{CO}_2}}$$

$$= \frac{x(0.12774 - u - y)}{(0.05761 - x)(y + 0.5u)} \qquad ...(4)$$

$$K_{p_{\text{OH}}} = \frac{p_{\text{H}_20}}{p_{\text{OH}} \cdot p_{\text{H}_2}^{\frac{1}{2}}}}$$

$$= \frac{13.079(0.12774 - u - y)}{u(y + 0.5u)^{\frac{1}{2}} T_3^{\frac{1}{2}}} \qquad ...(5)$$

$$K_{p_{\text{NO}}} = \frac{p_{\text{NO}}}{p_{\text{N}_2}^{\frac{1}{2}} p_{\text{O}_1}^{\frac{1}{2}}}}$$

$$= \frac{z}{(0.69836 - 0.5z)^{\frac{1}{2}} (0.07574 + 0.5x + 0.5y - 0.5z)^{\frac{1}{2}}} \cdot ...(6)$$

Equations (2), (3). (4), (5) and (6) form the conditions of equilibrium and the method of solution is as follows. A probable value of T_3 is first guessed and, with y=0, u is determined from equation (5). Substituting these values for u and y in equation (4) the value of x is determined.

Equation (2) can then be solved to give the value of z. Equation (3) must now be satisfied by the values of x, y and z as obtained above. If equation (3) is not satisfied another value for y must be assumed and the process repeated until equation (3) is satisfied. If these assumed values are correct equation (6) must also be satisfied. If not, the whole process is repeated with a new value for T_3 until all equations are satisfied simultaneously.

Solving the equations in the above manner gave $T_3=3872^{\circ}$ F. abs. with u=0.001450 and y=.-0.0006434 as shown by equation (5). Thus with $K_{POH}=2036$ at $T_3=3872^{\circ}$ F. abs. we have, for the right-hand side of equation (5),

$$\frac{13.079 (0.12774 - 0.001450 + 0.0006434)}{0.002565 (0.000737 - 0.0006545)^{\frac{1}{2}} \times 62.225}$$

= 2037,

so that the equation is satisfied.

Substituting these values in equation (4) gives

$$x=0.00019594$$
; $(K_{p_{\text{w.g.}}})_{T_a=3874}=5.3088$.

Equation (2) now gives

$$z = 0.006750$$
.

If the assumed values of T_3 and u are correct, it will be found that the derived values of x, y and z satisfy equations (3) and (6).

Thus the right-hand side of equation (3) is 229.5 as agreement and the right-hand side of equation (6) is 0.03015 as against 0.02961 given in the tables for K_{ex} .

Hence the maximum attainable t, — emperature is 3872° F. abs.

Chemical Reaction

$$CO + \frac{1}{2}O_2 + 1.881N_2 \rightarrow CO_2 + 1.881N_2$$

This gives, as the working substance, 1 mol of $CO_2+1.881$ mols of N_2 and it will be assumed that this mixture completely fills the cylinder at the beginning of compression, the pressure being one atmosphere and the temperature 600° F. abs.

Compression

$$P_1 = 1$$
; $V_1 = 5$; $T_1 = 600^{\circ}$ F. abs.

The total entropy for a mixture of gases at any pressure P and temperature T is given by

$$S = \Sigma(mS_T) + \Sigma m \frac{R}{J} \log_e \frac{\Sigma m}{m} - \Sigma m \frac{R}{J} \log_e P.$$

Hence at the beginning of compression the entropy, as shown in the following table, is 143.405.

The pressure and temperature at the end of compression are found to be 8.4301 atmospheres and 1012° F. abs. respectively, the entropy being 143.405 E.U.

Constant Volume Heating

The heat available for heating the CO_2 and N_2 will be taken as the heat of reaction at constant volume of one mol of CO at 1012° F. abs. which according to the tables is 120990 B.Th.U. Using this value for the heat available the maximum temperature attainable in the cylinder may be determined and the amount of dissociation. Denoting the number of mols of CO_2 dissociated by x, the value of K_{rco_2} at any temperature T_3 is given by

$$K_{PCO_2} = \frac{(1-x)}{x(0.5x)^{\frac{1}{2}}} \left(\frac{m_2 T_2}{P_2 T_3}\right)^{\frac{1}{2}},$$

where the suffix 2 refers to conditions at the end of compression. See figure 18.

 $m_2=2.881$; $T_2=1012^{\circ}$ F. abs. and $P_2=8.4301$ atmospheres, so that

$$K_{r_{\text{CO}_i}} = \frac{18.597(1-x)}{x(0.5x)^{\frac{1}{2}}} \cdot \frac{1}{T_z^{\frac{1}{2}}} \cdot \dots (1)$$

The second equation required for the determination of T_3 and x is supplied by the energy relationship

$$H_{v_2} = [E_{CO_2} + 1.881E_{N_2}]_{T_2}^{T_2} + (x H_{v_2})_{CO}$$
(2)

where the suffix 3 refers to the point on the diagram at the end of constant volume combustion. T_2 is known so that equation (2) becomes

$$120990 = [E_{CO_2} + 1.881E_{N_2}]_{T_1} - 6832 - 9518 + (xH_{T_2})_{CO}$$

or

$$xH_{r_3} = 137340 - [E_{CO_2} + 1.881E_{N_2}]_{r_2}$$
.(3)

By choosing a series of values for T_3 a corresponding set of values of x is found from equation (3) and the correct value of T_3 is obtained when the corresponding value of x satisfies equation (1). This is found to be the case when $T_3 = 5252^{\circ} F$. abs., giving for equation (3)

$$111977x = 137340 - 57473 - 60034$$

from which

$$x = 0.1771$$
.

Substituting x=0.1771 in the right-hand side of equation (1) gives

$$K_{p_{\text{CO}_2}} = 4.0070,$$

which is very close to the tabulated value at 5252° F. abs.

So far the calculation has given the compression line and the temperature attained at the end of constant volume heating, but the shape of the eurve representing combustion has still to be determined. If the heating of the CO_2 and N_2 proceeds to completion through a series of equilibrium state points equation (1) must give the relation between x and T at any temperature T. With the composition of the gases fixed at each temperature the entropy may be calculated for the corresponding gaseous mixture and the state points plotted on a temperature-entropy diagram.

The following table gives the values of x for a series of temperatures from 3000° F. abs., below which x is insignificant, to 5252° F. abs., the maximum temperature reached, together with the total entropy at the same temperatures.

To F. abs.	\boldsymbol{x}	` <i>S</i>
3000	0.000808	167.015 (taking $x=0$)
3500	0.0052	171.003
4000	0.0205	174·814
4500	0.0582	178·801
5000	0.1286	183.154
5252	0.1771	185.467

The details of the ealeulation are shown below for $T_3 = 5252^{\circ}$ F. abs.

Gas	m	S_T	mS_{T}	$\frac{\Sigma m}{m}$	$lo_{\mathcal{F}_{10}} \frac{\mathcal{E}m}{m}$	$4.575m \log_{10} \frac{\Sigma m}{m}$
CO CO: N:	0·17710 0·82290 0·08855 1·88100	65-233 79-530 67-728 63-546	11-553 65-445 5-997 119-530	16·7680 3·6096 33·5350 1·5787	1·22449 0·55732 1·52350 0·19830	0 992 2·098 0 618 1·706
	n = 2.96955;	$\Sigma(mS_T)$	=202.525;	Σ	1-573m log ₁₀	$\left(\frac{\Sigma m}{m}\right) = 5.414$

$$P_3 = \frac{8.4301 \times 2.96955 \times 5252}{2.881 \times 1012}$$

= 45.095 atmospheres.

S at 5252° F. abs. = $202.525 \pm 5.414 - 2.96955 \times 4.575 \log_{10} 45.095$ = 185.467 E.U.

The state points between 1012° F. abs. and 3000° F. abs. are the same as those obtained when no dissociation occurs and may be obtained from the table given on page 59. The temperature T_4 at the end of isentropic expansion is given by the point of intersection of the constant volume curve through 1 and the perpendicular through the point 3.

Constant Volume Curve 1-4

The location of points on this curve is similar to that outlined above for the curve 2-3. The equilibrium constant at any temperature T is given by the expression

$$K_{p_{\text{CO}_2}} = \frac{(1-x)}{x(0.5x)^{\frac{1}{2}}} \left(\frac{m_1 T_1}{P_1 T}\right)^{\frac{1}{2}} \dots (4)$$

where the suffix 1 refers to the point at the beginning of compression with $m_1=2.881$, $T_1=600^{\circ}$ F. abs. and $P_1=1$ atmosphere.

Substituting these values in equation (4) gives

$$K_{\nu_{\text{CO}_z}} = \frac{41.576(1-x)}{x(0.5x)^{\frac{1}{2}}T^{\frac{1}{2}}}.....(5)$$

For any value of T, $K_{r_{CO_*}}$ is fixed so that x can be determined. The total entropy of the mixture is then calculable. The following table gives the values of x for a series of temperatures from 2500° F. abs. where x is taken as zero to 4125° F. abs. where it will be found that the vertical from the point 3 cuts the constant volume curve.

To F. abs.	x	s.
2500	0	171.851
3000	0.00138	176-285
3500	0.00886	180.344
4000	0.03478	184-477
4125	0.04606	185-571

The calculation for S at 4125° F. abs. is given below and it will

be seen that the value obtained is not appreciably different from 185:467 E.U.

S at 4125° F. abs. = 192.405 + 4.336 - 11.170 = 185.571 E.U.

The state points between 600° F. abs. and 2500° F. abs. inclusive may be obtained from the table on page 60 for the undissociated gas mixture. The cycle, taking into account the dissociation of CO₂ and

=6.930 atmos.

neglecting the formation of NO, can now be drawn on the temperature-entropy diagram. To show the effect dissociation has on the cycle it is convenient at this stage to plot the cycle, when dissociation is neglected, on the same diagram as that in which dissociation is taken into account.

Ideal Cycle without Dissociation

Compression. The compression curve is the same as that in the eycle in which dissociation is taken into account.

Heat Reception at Constant Volume

Before ealeulating the enfropies for a series of temperatures the maximum temperature which can be reached should be calculated. The heat available for increasing the internal energy of the $\rm CO_2$ and $\rm N_2$ will be the lower heat of reaction at constant volume, $\rm H_{r_i}$, which, as previously determined, is 120990 B.Th.U./lb. mol. This heat goes to increase the internal energy of the $\rm CO_2$ and $\rm N_2$ while satisfying the following thermal relation.

$$120990 = [E_{CO_2} + 1.881E_{N_2}]_{T_2}^{T_2'}. \qquad (6)$$

 $T_2 = 1012^{\circ}$ F. abs. and equation (6) becomes

$$120990 = [E_{CO_1} + 1.881E_{N_2}]_{T_1} - 6832 - 9518$$

or

$$137340 = [E_{CO_i} + 1.881E_{N_i}]_{T_i}....(7)$$

Equation (7) is approximately solved with $T_3'=6015^{\circ}$ F. abs. which gives the right-hand side as 67441+69919=137360 as against 137340 for the left-hand side.

Using the general expression for the entropy the following table may be drawn up for the curve of constant volume heating, the pressures in atmospheres being given along with the entropy at temperatures from 2000°F. abs. to 6015° F. abs.

To F. abs.	P (atmos.)	S
2000	16.660	157-485
2500	20.825	162-638
3000	24.990	167-015
3500	$29 \cdot 155$	170-813
4000	33.321	174-170
4500	37-486	177-153
5000	41.651	179-855
5500	45.816	182.323
6015	50.106	184-655

The calculation for the entropy and pressure is given below for 6015° F, abs.

$$P_{3} = \frac{6015}{1012} \times 8.4301 = 50.106$$
 atmospheres.

S at 6015° F. abs.

 $=203\cdot366+3\cdot695-2\cdot881\times4\cdot575\log_{10}50\cdot106$

=184.655 E.U.

As before the temperature at the end of expansion is found by dropping a vertical from 3' to cut the constant volume curve through 1. This curve lies to the right of the curve 2-3', the horizontal intercepts being equal between the curves. This intercept is

$$m_1 \frac{R}{J} \log_e 5 = 2.881 \times 4.575 \log_{10} 5 = 9.213.$$

If this amount is added to the table of entropies on p. 59, the following values are obtained for temperatures from 2000° F. abs. to 4190° F. abs. at which temperature level the vertical from 3′ meets the curve.

T	S		
2000	166-698		
2500	171.851		
3000	176-228		
3500	180.026		
4000	183-383		
4190	184.566.		

The following table gives the details of the calculation with $T=4190^{\circ}$ F. abs.

$$P_{4'} = \frac{4190}{600} = 6.9835 \text{ atmos.}$$

$$CO_{2} \qquad 1 \qquad 76.178 \qquad 76.178$$

$$N_{2} \qquad \frac{1.881}{2.881} \qquad 61.562 \qquad \frac{115.798}{2.981}$$

$$\Sigma m = 2.881 \qquad \Sigma(mS_{T}) = \frac{191.976}{2.976}$$

$$\Sigma \left(4.575m \log_{10} \frac{\Sigma m}{m}\right) = 3.695 \text{ as before.}$$

Hence,

S at 4190° F. abs.

$$= 191 \cdot 976 + 3 \cdot 695 - 2 \cdot 881 \times 4 \cdot 575 \log_{10} 6.9835$$

=191.976 + 3.695 - 11.125

=184.546 (as against 184.655).

Ideal Thermal Efficiency

(a) Cycle with Dissociation

The heat supplied is the area under the curve 2-3, i.e. H_r at 1012° F. abs. or 120990 B.Th.U. The heat rejected is the area under the curve 4-1, i.e. 84268 B.Th.U.

Hence the efficiency is

$$\eta = \frac{\text{Heat supplied - Heat rejected}}{\text{Heat supplied}}$$
$$= \frac{120990 - 84268}{120990}$$
$$= 0.3035 \text{ or } 30.35\%.$$

(b) Cycle without Dissociation

In this case the efficiency is given by

$$\eta = \frac{(E_3 - E_2) - (E_4 - E_1)}{(E_3 - E_2)}$$

but $E_3 - E_2 = H_{r_1} = 120990$ and $E_4 - E_1$ is the difference in internal energy of the products between the temperatures 4190° F. abs. and 600° F. abs., i.e.

$$E_4 - E_1 = \sum m E_{4190} - \sum m E_{600}$$
= (43784 + 46461) - (3434 + 5603)
= 81208.

Hence the value of the efficiency is given by

$$\eta = \frac{120990 - 81208}{120990} \\
= 0.3288 \text{ or } 32.88\%.$$

The error in neglecting dissociation is thus about 8.3 per cent.

Example 9. Ideal attainable Efficiency of the Constant Volume Cycle using the Products from the Combustion of Benzene as the Working Substance

Only the main results need be indicated here as the method of solution is similar to that of example 8. It is assumed that the working substance throughout the cycle consists of the products formed by the combustion of one mol of benzene with the theoretically correct air. The temperature and pressure at the beginning of compression are taken as 600° F. abs. and 1 atmosphere. The ideal cycle consists of (fig. 19):

- (a) Isontropic compression with a compression ratio of 5;
- (b) Heat reception at constant volume;
- (c) Isentropic expansion;
 - (d) Heat rejection at constant volume.

The reaction equation is expressed as

$$C_6H_6' + 7.5O_2 + 28.214N_2 \rightarrow 6CO_2 + 3H_2O + 28.214N_2$$

(a) Compression

The absolute entropy at the beginning of compression is found tabularly as follows:

The pressure P_2 at the end of compression is found from the relationship

=1817.048 E.U.

 $P_2V_2/T_2 = P_1V_1/T_1$

giving

$$P_2 = 1 \times 5 \times T_2/600$$

= $T_2/120$.

By trial and error it is found that $T_2=1057^\circ$ F. abs. satisfies the condition of equal absolute entropies at the points 1 and 2. Thus, tabulating, we have

$$P_2 = 1057/120$$

= 8.8083 atm.

and

$$\sum m \ 4.575 \log_{10} P_2/P_1$$

= 37.214 × 4.575 × 0.94489
160.871 E.U.

Hence

$$S_{1057} = 1925.700 + 52.283 - 160.871$$

= 1817.112 E.U.

as against 1817-048 E.U. at the beginning of compression.

(b) Heating at constant volume

The énergy equation is given by

 $H_{r_2} = [6E_{\text{CO}_2} + 3E_{\text{H}_2\text{O}} + 28 \cdot 214E_{\text{N}_2}]_{T_2}^{T_2} + [xH_{v_{\text{CO}}} + yH_{v_{\text{H}_1}} + uH_{v_{\text{OH}}} + zH_{v_{\text{NO}}}]_{T_2},$ where H_{r_2} is the heat of reaction of benzene at T_2 , i.e. 1362140 B.Th.U./lb. mol and since the internal energies of 6 mols of CO_2 ,

of 3 mols of H_2O and 28.214 mols of N_2 are respectively 43464, 19548 and 149365 at $T_2=1057^\circ$ F. abs., the energy equation becomes

$$\begin{aligned} 1362140 = & [6E_{\text{CO}_2} + 3E_{\text{H}_2\text{O}} + 28 \cdot 214E_{\text{N}_2}]_{T_2} - 43464 - 19548 - 149365 \\ & + [xH_{\text{rCO}} + yH_{\text{rH}_2} + uH_{\text{rOH}} + zH_{\text{rNO}}]_T \end{aligned}$$

or

$$\begin{split} [xH_{\tau_{\text{CO}}} + yH_{\tau_{\text{H}_1}} + uH_{\tau_{\text{OH}}} + zH_{\tau_{\text{NO}}}]_{T_2} \\ &= 1574517 - [6E_{\text{CO}_2} + 3E_{\text{H}_2\text{O}} + 28 \cdot 214E_{\chi_1}]_{T_2}, \end{split}$$

The equilibrium equations are

$$\begin{split} K_{x_{\text{CO}_3}} &= \frac{6 - x}{x \left(0 \cdot 5x + 0 \cdot 5y - 0 \cdot 5z\right)^{\frac{1}{2}}} \left(\frac{m_2 T_2}{P_2 T_3}\right)^{\frac{1}{2}}, \\ K_{x_{\text{w.g.}}} &= \frac{(3 - u - y)x}{(6 - x) \left(y + 0 \cdot 5u\right)}, \\ K_{x_{\text{OH}}} &= \frac{3 - u - y}{u \left(y + 0 \cdot 5u\right)^{\frac{1}{2}}} \left(\frac{m_2 T_2}{P_2 T_3}\right)^{\frac{1}{2}}, \\ K_{x_{\text{NO}}} &= \frac{z}{(28 \cdot 214 - 0 \cdot 5z)^{\frac{1}{2}} \left(0 \cdot 5x + 0 \cdot 5y - 0 \cdot 5z\right)^{\frac{1}{2}}}, \end{split}$$

and with $T_2=1057^{\circ}$ F. abs., $P_2=8.8083$ atmospheres and $m_2=37.214$ mols, these equations become

$$\begin{split} K_{_{P\text{CO}_2}} &= \frac{66 \cdot 827 \, (6 - x)}{x \, (0 \cdot 5x + 0 \cdot 5y - 0 \cdot 5z)^{\frac{1}{2}}} \cdot \frac{1}{T_3^{\frac{1}{2}}} \cdot \dots \text{I} \\ K_{_{P\text{w.g.}}} &= \frac{(3 - u - y)x}{(6 - x) \, (y + 0 \cdot 5u)} \cdot \dots \text{II} \\ K_{_{P\text{OH}}} &= \frac{66 \cdot 827 \, (3 - u - y)}{u \, (y + 0 \cdot 5u)^{\frac{1}{2}}} \cdot \frac{1}{T_3^{\frac{1}{2}}} \cdot \dots \text{III} \\ K_{_{P\text{NO}}} &= \frac{z}{(28 \cdot 214 - 0 \cdot 5z)^{\frac{1}{2}} \, (0 \cdot 5x + 0 \cdot 5y - 0 \cdot 5z)^{\frac{1}{2}}} \cdot \dots \text{IV} \end{split}$$

By trial and error it is found that the above equations are all satisfied at $T_2=5215^{\circ}$ F. abs. Thus at this temperature the values of $6E_{\rm CO}$, $3E_{\rm H,O}$ and $28\cdot214E_{\rm N}$, are 341946, 138231 and 893340, so that the right-hand side of the energy equation given on p. 62 is equal to

The corresponding values of $H_{\rm vCO}$, $H_{\rm vH_2}$, $H_{\rm vOH}$ and $H_{\rm vNO}$ are 112065, 103386, 119673 and 38647. The energy equation thus becomes

112065x + 103386y + 119673u + 38647z = 201000,

so that

$$z = 5.200915 - 2.899704x - 2.675133y - 3.096563u$$
.

The equilibrium constants at $T_3 = 5215^{\circ}$ F. abs. are

$$K_{r_{\rm CO_2}}\!=\!4\cdot2806\;;\;\;K_{r_{\rm W,g}}\!=\!7\cdot4166\;;\;\;K_{r_{\rm OH}}\!=\!31\cdot146\;;\;\;K_{r_{\rm NO}}\!=\!0\cdot10818,$$
 so that

4.2806 =

$$66.827 (6-x)$$

 $\frac{66 \cdot 827 \ (6-x)}{x (0 \cdot 5x + 0 \cdot 5y - 2 \cdot 600457 + 1 \cdot 449852x + 1 \cdot 337567y + 1 \cdot 548282u)^{\frac{1}{2}} \times 72 \cdot 215}$ giving

$$4.6257 = \frac{(6-x)}{x(1.949852x+1.837567y+1.548282u-2.600457)^{\frac{1}{2}}}.....I(a)$$

$$7.4166 = \frac{(3-u-y)x}{(6-x)((y+0.5u)}.$$
 II (a)

$$31 \cdot 146 = \frac{66 \cdot 827 (3 - u - y)}{u (y + 0.5u)^{\frac{1}{2}} 72 \cdot 215}$$

giving

$$33.657 = \frac{3 - u - y}{u(y + 0.5u)^{\frac{1}{2}}},$$

$$0.10818 = \frac{z}{(28.214 - 0.5z)^{\frac{1}{2}} (0.5x + 0.5y - 0.5z)^{\frac{1}{2}}}.$$
III (a)
IV (a)

With a finally assumed value of u=0.2437 equation III (a) gives y = -0.00823

so that

$$7.4166 = \frac{2.76453x}{(6-x)\,0.11362}$$

from which x=1.40165.

The right-hand side of equation I (a) then equals 4.6641 as against 4.6257 on the left-hand side. Accepting these values therefore for x, y and u and inserting them in the energy equation gives

$$z = 5.20092 - 4.06437 + 0.02202 - 0.75463$$

= 0.40394.

The right-hand side of equation IV (a) then becomes

$$\frac{0.40394}{5.2926 \times 0.70339} = 0.10851$$

as against 0.10818 on the left-hand side so that the assumed values may be accepted.

The table below, which is drawn up for the purpose of calculating the entropy of the products at the end of the constant volume burning period, i.e. at the point 3, also shows the composition of the dissociated products at that point.

$$P_{\mathfrak{d}} = \frac{8 \cdot 8083 \times 38 \cdot 03257 \times 5215}{37 \cdot 214 \times 1057}$$

=44.414 atmospheres.

$$S_{5215} = 2504.545 + 71.582 - 38.03257 \times 4.575 \log_{10} 44.414$$

= 2289.460 E.U.

The state point at the end of constant volume burning can thus be located on the TS field but, in order to represent the constant volume combustion curve, it is necessary to determine the entropies of the equilibrium mixtures at various temperature levels. At any temperature T the equilibrium constants are expressed by the relationships:

$$\begin{split} K_{r_{\text{CO}_4}} &= \frac{66 \cdot 827 \, (6 - x)}{x \, (0 \cdot 5x + 0 \cdot 5y - 0 \cdot 5z)^{\frac{1}{2}}} \cdot \frac{1}{T^{\frac{1}{2}}} \, . \qquad \qquad \text{I} \\ K_{r_{\text{W,R}}} &= \frac{(3 - u - y) \, x}{(6 - x) \, (y + 0 \cdot 5u)} \, . \qquad \qquad \qquad \text{II} \\ K_{r_{\text{OH}}} &= \frac{66 \cdot 827 \, (3 - u - y)}{u \, (y + 0 \cdot 5u)^{\frac{1}{2}}} \cdot \frac{1}{T^{\frac{1}{2}}} \, . \qquad \qquad \text{III} \\ K_{r_{\text{NO}}} &= \frac{z}{(28 \cdot 214 - 0 \cdot 5z)^{\frac{1}{2}} \, (0 \cdot 5x + 0 \cdot 5y - 0 \cdot 5z)^{\frac{1}{2}}} \, . \qquad \qquad \text{IV} \end{split}$$

At 4500° F. abs. these become

$$26.303 = \frac{66.827 (6-x)}{x (0.5x + 0.5y - 0.5z)^{\frac{1}{2}} \times 67.082},$$

so that

$$26.403 = \frac{6-x}{x(0.5x+0.5y-0.5z)}.$$
 (a)

$$6.422 = \frac{(3-u-y)x}{(6-x)(y+0.5u)}.$$
 II (a)

$$211\cdot 4 = \frac{66\cdot 827 (3 - u - y)}{u (y + 0\cdot 5u)^{\frac{1}{2}} \times 67\cdot 082},$$

so that

$$212 \cdot 21 = \frac{3 - u - y}{u (y + 0 \cdot 5u)^{\frac{1}{2}}}.$$
 III (a)

$$0.059759 = \frac{z}{(28.214 - 0.5z)^{\frac{1}{2}} (0.5x + 0.5y - 0.5z)^{\frac{1}{2}}} \dots IV (a)$$

By trial and error it is found that u=0.0685 and equation III (a) then gives y=0.00625. Equation II (a) then gives x=0.48992 and equation I (a) gives z=0.13327. Inserting these values in the right-hand side of equation IV (a) gives 0.05897 as against 0.05976 on the left-hand side. The composition of the products of combustion at 4500° F. abs. is as shown in the following table which has been drawn up for the purpose of calculating the entropy of the mixture at this condition.

Gas	m	S_T	mS_{T}	$\frac{\Sigma m}{m}$	$\log_{10} \frac{\Sigma m}{m}$	$4.575m \log_{10} \frac{\Sigma_m}{m}$
CO2	5.51008	77-230	425.543	6.8050	0.83283	20.994
CO	0.48992	63.866	31-289	76.536	1.88386	4.222
H ₂ O	2.92525	66-127	103-438	12.818	1.10782	14.826
H_2	0.04050	46.891	1.899	925.84	2.96654	0.550
OH	0.06850	59.803	4.097	547.39	2.73830	0.858
O_2	0.18146	66.278	12.027	206-64	2.31522	1.922
NO	0.13327	$67 \cdot 248$	8-962	281.36	2-44926	1.493
N_2	$28 \cdot 14737$	$62 \cdot 186$	1750-372	1.3321	0.12454	10.038
	$\Sigma m \approx \overline{37.49635}$;	$\mathcal{L}(mS_T)$	=2427.627;	$\mathcal{E}\left(4.5\right)$	10771 10gin	$\left(\frac{m}{n}\right) = \overline{60.903}$

The pressure at this state point is given by the expression

$$\begin{split} P_{4500} = & \frac{4500 \times 37 \cdot 49635 \; P_2}{m_2 T_2} \\ = & \frac{4500 \times 37 \cdot 49635 \times 8 \cdot 8083}{37 \cdot 214 \times 1057} \\ = & 37 \cdot 784 \; \text{atmospheres.} \end{split}$$

The entropy at this point is therefore

$$S_{4500} = 2427 \cdot 627 + 60 \cdot 903 - 37 \cdot 49635 \times 4 \cdot 575 \times 1 \cdot 57732$$

= 2217 \cdot 947 \quad \text{E.U.}

Repeating the calculation in the same way with $T=4000^{\circ}$ F. abs. gives P=33.422 atmospheres and S=2171.604 E.U.

In order that the constant volume eurve may be drawn on the TS field it is necessary to calculate the entropies for a series of temperatures ranging from 1057° F. abs. (the temperature at the end of compression) to 3500° F. abs. Up to this temperature it may be assumed that the degree of dissociation is negligible. At 1500° F. abs. the entropy is found tabularly as follows:

$$P_{1500} = \frac{8.8083 \times 1500}{1057}$$

= 12.5 atmosphe

= 12.5 atmospheres.

 $S_{1600} = 2032.941 + 52.283 - 186.753$ = 1898.471 E.U. The entropies at a series of progressively increasing temperatures are calculated in the same way and tabulated below.

T = 1500	2000	2500	3000	3500
S = 1898.47	1970-86	2030-68	2081.68	2126-11

Dealing now with the constant cooling curve 4-1, the entropy at the temperature level T is given by the expression

$$\Sigma mS_T - \Sigma m \ 4.575 \log_{10} \frac{P_{1000}}{P_{500}} + \Sigma m \ 4.575 \log_{10} \frac{\Sigma m}{m}$$
,

and with $T = 1000^{\circ}$ F. abs.

$$\Sigma mS_T = 6.000 \times 57.284 + 3.000 \times 50.257 + 28.214 \times 50.158$$

= 1909.633 E.U.

also, from S_{600} as given on p. 62

$$\Sigma m \ 4.575 \log_{10} \frac{\Sigma m}{m} = 52.283 \text{ E.U.}$$

The value of P_{1000} is 1000/600=1.6667 atmospheres, so that

$$\sum m \ 4.575 \log_{10} 1.6667/1$$

= $37.214 \times 4.575 \times 0.22186$
= 37.771 E.U.

We therefore have

$$S_{1000} = 1909.633 + 52.283 - 37.771$$

= 1924.145 E.U.

The table below gives the values of the entropies at various temperature levels up to 3000° F. abs., obtained by adding

$$\Sigma m \frac{R}{J} \log_e 5 = 37.214 \times 4.575 \times 0.69897 = 119.002 \text{ E.U.}$$

to the corresponding entropy values in the table above for the curve

2 - 3.		
2 - 0.	T'F. abs.	S
	600	1817-048
•	1000	1924-145
	1500	2017-473
	2000	2089-864
	2500	2149-683
	3000	2200-683

At temperatures above 3000° F. abs. the dissociation effects may no longer be neglected so that the method already explained for determining the true composition of the dissociated products has again to be adopted. The equilibrium constants are as follows:

$$K_{PGO_3} = \frac{6-x}{x(0.5x+0.5y-0.5z)^{\frac{1}{2}}} \left(\frac{m_1 T_1}{P_1 T_2}\right)^{\frac{1}{2}} \dots I(b)$$

$$K_{p_{\text{w.g.}}} = \frac{(3 - u - y)x}{(6 - x)(y + 0.5u)}$$
......II (b)

$$K_{p_{\text{OH}}} = \frac{3 - u - y}{u(y + 0.5u)^{\frac{1}{2}}} \left(\frac{m_1 T_1}{P_1 T_4}\right)^{\frac{1}{2}} \dots III(b)$$

$$K_{p_{\text{NO}}} = \frac{z}{(28\cdot214 - 0.5z)^{\frac{1}{2}} (0.5x + 0.5y - 0.5z)^{\frac{1}{2}}} \cdot \dots \text{IV}(b)$$

Substituting for m_1 , T_1 and P_1 gives

$$K_{r_{\text{CO}_2}} = \frac{149 \cdot 43 (6 - x)}{x (0 \cdot 5x + 0 \cdot 5y - 0 \cdot 5z)^{\frac{1}{2}}} \cdot \frac{1}{T_4^{\frac{1}{2}}} \cdot \dots I (c)$$

$$K_{p_{\text{OH}}} = \frac{149 \cdot 43(3 - u - y)}{u(y + 0 \cdot 5u)^{\frac{1}{2}} \times T_A^{\frac{1}{2}}}$$
.....III (c)

$$K_{p_{NO}} = \frac{z}{(28\cdot214 - 0\cdot5z)^{\frac{1}{2}} (0\cdot5x + 0\cdot5y - 0\cdot5z)^{\frac{1}{2}}} \cdot \dots IV$$
 (c)

At $T_4 = 3500^{\circ}$ F. abs. the above equations become

$$1180.3 = \frac{149.43(6-x)}{x(0.5x+0.5y-0.5z)^{\frac{1}{2}} \times 59.161}$$

which gives

$$467 \cdot 29 = \frac{6 - x}{x (0.5x + 0.5y - 0.5z)^{\frac{1}{2}}} \dots I (d)$$

$$4.549 = \frac{(3-u-y)x}{(6-x)(y+0.5u)}.$$
 II (d)

$$11390 = \frac{149.43(3-u-y)}{u(y+0.5u)^{\frac{1}{2}} \times 59.161},$$

which gives

$$4509 = \frac{3 - u - y}{u(u + 0.5u)^{\frac{1}{2}}}.$$
 III (d)

$$0.017282 = \frac{z}{(28.214 - 0.5z)^{\frac{1}{2}} (0.5x + 0.5y - 0.5z)^{\frac{1}{2}}} \dots IV(d)$$

Solving these four equations in the way already explained gives the following values:

$$x = 0.072560$$

$$y = 0.004350$$

$$z = 0.015789$$

$$u = 0.007390$$

from which $P_{3500} = 5.8400$ atmospheres.

$$S_{3500} = 2248.355 \text{ E.U.}$$

It will be found that at $T_4 = 3930^{\circ}$ F abs. the entropy of the products

is the same as that at the beginning of expansion and at this temperature the following values are obtained:

x = 0.241830 y = 0.008400 z = 0.052969 y = 0.029100

from which $P_{3930} = 6.5746$ atmospheres, $S_{3930} = 2288.765$ E.U.

Thermal Efficiency

The heat supplied under the conditions stated above, i.e. when dissociation is taken into account, is given by the area under the curve 2-3, while the heat rejected is given by the area under the curve 4-1.

Area under curve 2-3 is H_r .

=1362140 B.Th.U.

Area under curve 4-1

=907918 B.Th.U.

Frg. 19.

Hence the ideal efficiency is

$$\frac{1362140 - 967915}{1362140}$$
$$= 0.3335 \text{ or } 33.35\%.$$

It is not possible in this case to determine accurately the ideal efficiency of this cycle when no dissociation occurs as the maximum temperature is then above 5400° F. ab., which is the upper limit of temperature for which properties of H₂O are available.

BIBLIOGRAPHY

- (1) Heck. R. C. H., 'The New Specific Heats', Mechanical Engineering, vol. 62 (1940), p. 9 and vol. 63 (1941), p. 126.
- (2) Geyer, E. W., 'The New Specific Heats and Energy Charts for Green', Engineering, vol. 159 (1945), p. 381 and p. 423.
- (3) Goodenough, G. A. and Felbeck, G. T., 'An Investigation of the Maximum Temperatures and Pressures attainable in the Combustion of Gascons and Liquid Fuels'. University of Illinois, Bulletin No. 139, Engineering Experiment Station (March, 1924).
- (4) Sainte-Claire Deville, 'Leçons sur la Dissociation', Leçons de Climie (1864-65), Hachette et Gie (Paris, 1866).
- (5) Gibbs, J. W., The Scientific Papers of J. W. Gibbs (New York, 1996).
- (6) Horstmann, Ber. deut. chem. Ges., I, 137 (1899); Ann. Chem. Pharm., 170, 192 (1873).
- (7) Haber, Thermodynamil: der technischen Gazreaktionen, Oldenbeurg (München, 1905). English translation by Lamb; Longmans, Green and Co. (1998).
- (8) Nernet, Die theoretischen und experimentallen Grundlagen des neuen Würmesatzes, Halle (1918).
- (9) Van't Hoff, Z. physik. Chem. 1, 481 (1857).
- (10) Clerk, D., The Gas, Petrol and Oil Engine, Longmans, Green and Co. (London, 1909).
- (11) Tizard, H. T. and Pye, D. R., 'The Character of Various Fuels for Internal Combustion Engines', Automobile Engineer, Feb. 1921, p. 55; March 1921, p. 98; April 1921, p. 131.
- (12) Sec (3).
- (13) Schule, W., Technische Thermodynamik, Springer (Berlin, 1923).
- (14) See (7).
- (15) Debye, Annalen der Physik (1912).
- (16) Johnston, H. L. and Walker, M. K., 'Heat Capacity, Entropy and Fore Energy of Gaseou- Oxygen from Near Zero Ab-clute to 5000° K', J.A.C.S., vol. 55 (1933), p. 172.
- (17) Pitzer, K., 'Chemical Equilibria, Free Energies and Heat Contents for Gaseous Hydrocarbons', Chemical Reviews, vol. 27 (1940), p. 39.
- (18) Parks, G. S., 'Some Free Energy Data for Typical Hydrocarbons containing Six or More Carbon Atoms', Clemical Reviews, vol. 27 (1940), p. 75.
- (19) Matthews, J. H., 'The accurate Measurement of Heats of Vaporization of Liquida', J.A.C.S., vol. 48 (1926), p. 562.

TABLES

SYMBOLS USED IN TABLES

- E Internal Energy, B.Th.U./lb. mol.
- $-\frac{F}{T}$ Function of Free Energy, B.Th.U./lb. mol ° F.
- H Total Heat, B.Th.U./lb. mol.
- Hr Lower Heat of Reaction at Constant Volume, B.Th.U./lb. mol.
- H_p Lower Heat of Reaction at Constant Pressure, B.Th.U./lb. mol.
- K, Equilibrium Constant.
- S Entropy, B.Th.U./lb. mol ° F.
- AL, Heat of Reaction at Absolute Zero Temperature.
- $\frac{R}{J}$ =1.9869 B.Th.U./lb. mol ° F.

REFERENCE TO PROPERTIES

The properties incorporated in the tables are based on the following authorities. A useful summary of work in this field is given by Lewis, B. and von Elbe, G., J.A.C.S., vol. 57 (1935), p. 612.

- CO and N₂. Johnston, H. L. and Davis, C. O., J.A.C.S., vol. 56 (1934), p. 271.
- NO. Johnston, H. L. and Chapman, A. T., J.A.C.S., vol. 55 (1933), p. 153.
- O2. Johnston, H. L. and Walker, M. K., J.A.C.S., vol. 55 (1933), p. 172.
- O₂ (High Temperatures). Johnston, H. L. and Walker, M. K., J.A.C.S., vol. 57 (1935), p. 682.
- CO₂. Kassel, L. S., J.A.C.S., vol. 56 (1934), p. 1835.
- H₄O. Gordon, A. R., J. Ch. Physics, vol. 2 (1934), p. 65 and p. 614.
- H₂O (Corrections). Wilson, E. B., J. Ch. P., vol. 4 (1936), p. 526.
- H₂O (Corrections). Stephenson, C. C. and McMahon, H. O., J. Ch. P., vol. 7 (1939), p. 614.
- H₂. Davis, C. O. and Johnston, H. L., J.A.C.S., vol. 56 (1934), p. 1045.
- OH. Dwyer, R. J. and Oldenbourg, O., J. Ch. P., vol. 12 (1944), p. 351.
- CH₄, C₂H₂, C₆H₆, and C₈H₁₈. Pitzer, K. Chemical Reviews, vol. 27 (1940), p. 39 et seq.

OXYGEN

		OATO	13321		
T° F.	S	E	Н	$-\frac{F}{T}$	To F. Abs.
100					100
200			 ·		200
300			-		300
400	46.996 1.527	1985 489	2780 687	40.045 1.545	400
500	48.523 1.293	2474 502	3467 711	41.590 1.281	500
-600	49.816 1.097	2976 515	4168 713	42.871 1.070	600
700	50.913 0.965	3491 525	4881 724	43.941 0.930	700
800	51.878 0.866	4016 537	5605 736	44.871 0.827	800
900	52.744 0.789	4553 551	6341 750	45-698 0-744	900
1000	53.533 0.727	5104 ₅₆₅	7091 764	46.442 0.677	1000
1100	54·260 0·675	5669 ₅₇₈	7855 ₇₇₆	47.119 0.623	1100
1200	54·935 0·630	6247 ₅₈₉	8631 788	47.742 0.578	1200
1300	55·565 0·592	6836 600	9419 799	48.320 0.539	1300
1400	FC 157	7436 ₆₀₉	10218 807	48.859 0.505	1400
1500	56·714 0·526	8045 618	11025 817	49.364 0.475	1500
1600	57·240 0·499	8663 625	11842 824	49.839 0.450	1600
1700	· 57·739 0·475	9288 632	12666 830	50.289 0.427	1700
1800	58·214 _{0·453}	9920 639	13496 838	50.7.16 0.407	1800
1900	1 -0 00F	10559 645	14334 344	51.123 0.388	1900
2000	0.435	11204 650	15178 848	51.511 0.370	2000
2100	0.419	11854 653	16026 852	51·881 _{0·358}	2100
2200	59·513 0·397 59·910 0·380	12507 657	16878 856	52.239 0.340	2200
2300	40.000	13164 662	17734 860	52.579 0.331	2300
2400	0.501	13826 665	18594 864	52.910 0.316	2400
2500 2500	60.657 0.352 61.009 0.341	14401	19458 868	53.226 0.307	2500
2600		15160 673	20326 872	53.533 0.295	2600
	0 020	15022	21198 876	53.828 0.286	2760
2700 2800	61·679 0·319 61·998 0·308	16511 ₆₈₀	22074 879	54.114 0.277	2800
	62.306 0.299	17101	22953 883	54.391 0.268	2900
2900	1 00 00 0	15055	23836 885	54.659 0.262	3000
3000	0201	18562 690	24721 889	54.921 0.254	3100
3100	63.178 0.275	19252 693	25610 892	55.175 0.247	3200
3200	63.453 0.267	19945 697	26502 895	55.422 0.240	3300
3300	63.720 0.260	20642 700	27397 899	55.662 0.233	3400
3400	63.980 0.254	21342 703	28296 902	55-895 0.228	3500
-3500 3600	64.234 0.249	22045 707	29198 905	56.123 0.224	3600
3700	64.483 0.242	22752 710	30103 909	56.347 0.217	3700
3800	64.725 0.236		31012 910	56-564 0.212	3800
3900	64.961 0.231			56.776 0.207	3900
3900 4000	65.192 0.227		1 22225	56.983 0.203	4000
4100	65.419 0.221	110		57.186 0.200	4200
4200	65.640 0.221		34670 922	57.386 0.194	4300
4300	65.857 0.213		35592 924	57.580 0.100	4400
4400	66.070 0.208		36516 ₉₂₆	57.770 0.187	4500
4500	66.278 0.204	28501 731		57 557 0.183	
¥000	0.204	1	`		

THERMAL PROPERTIES OF GASES

OXYGEN (continued)

****	{	1	1		*
T° F. Abs.	S	E	H	$-\frac{F}{T}$	T°F.
23137.				T	Abs.
4600	66-482 0-201	29232 735	38372 933	58-140 0-181	4600
4700	66-683 0-197	29967 738	39305 937	58-321 0-174	4700
4800	66-880 0-194	30705 740	40242 939	58-495 0-174	4800
4900	67-074 0-190	31445 743	41181 942	58-669 0-170	4900
5000	67-264 0-187	32188 745	42123 943	58-839 0-168	5000
5100	67-451 0-183	32933 747	43066 946	59.007 0.164	5100
5200	67-634 0-181	33680 749	44012 948	59-171 0-161	5200
5300	67-815 0-178	34429 750	44960 948	59-332 0-161	5300
5400	67-993 0-175	35179 753	45908 952	59-493 0-156	5400
5590	68.168 0.172	35932 756	46860 955	59-649 0-152	5500
5600	68.340 0.170	36688 760	47815 958	59-801 0-151	5600
5700	68.510 0.167	37488 762	48773 961	59.952 0.149	5700
5800	68-677 0-165	38210 765	49734 964	60-101 0-147	5800
5900	68.842 0.162	38975 769	50698 967	60.248 0.145	5900
6000	69-004 0-160	39744 771	51665 970	60.393 0.142	6000
6100	69-164 0-158	40515 773	52635 972	60.535 0.141	6100
6200	69-322 0-156	41288 777	53607 975	60.676 0.138	6200
6300	69.478 0.154	42065 777	54582 976	60.814 0.137	6300
6100	69-632 0-151	42848 778	55558 977	60.951 0.136	6400 .
6500	69.783 0.149	43620 779	56535 978	61-087 0-133	6500
6600	69-932 0-147	44399 782	57513 980	61-220 0-130	6600
6700	70-079 0-145	45181 782	58493 981	61.350 0.129	6700
6800	70-224 0-144	45963 784	59474 983	61-479 0-128	6800
6900	70-368 0-141	46747 786	60457 984	61-607 0-126	6900
7000	70.509 0.140	47533 786	61441 985	61-733 0-125	7000
7100	70-619 0-138	48319 788	62426 987	61.858 0.122	7100
7200	70.787 0.137	49107 791	63413 989		7200
7300	70-924 0-125	49898 791	64402 990	62·102 0·121	7300
7400	71-059 0.122	50689 793	65392 992.	62.223 0.118	7400
7500	71-192 0-132	51482 796	66384 991	00.041	7500
7600	71.324 0.130	52278 797	67378 996	62·158 0·116	7600
7700	71-454 0-128	53075 799	68374 998	62·574 0·115	7700
7800	71.582 0.127	53874 800	60379	62-689 0-114	7800
7900	71.709 0.126	51674 802	70371 1000	62-689 0-114 62-803 0-112	7900
8000	71.835 0.124	55176 802	75771	62-915 0-111	8000
8100	71.959 0.192	56278 801	79270	63-026 0-109	8100
\$200	72.082 0.101	57082 805	73375 1003	63-135 0-108	8200
8390	12:203 6.100	57887 806	74378 1005	63-243 0-107	8300
8400	(2.323 0.110	58693 806	75383 1005	63-350 0-106	8400
8500	12.112 0.119	59499 508	763SS 1006	63-456 0-105	8500
8 <i>00</i> 0	72.560 n.116	60307 809	77394 1005	63.561 0.104	8600
\$700	(2'0'(0 n.11=	G1116 S10	78402 1005	63-665 0-103	8700
8400	12.791 0.114	61926 810	79411 1009	63-765 0-101	8800
89001	(2-140) 0-113	62736 811	80420 1000	63-869 0-101	8900
tana .	73 015	63547	81429	63-970	9000
Manager of the Association of th	f hard-unitedrykapismophysis-terpanismysishes ja	* *****		•	/

NITROGEN (continued)

		-	` '	, 	
T° F. Abs.	s	E	11	$-\frac{F}{T}$	T° F.
4600	62 378 0 189	27471 679	36611 877	54-419 0 173	4600
4700	62-567 0-185	28150 680	37488 879	54·592 0·166	4700
4800	62.752 0.182	28830 681	38367 880	54.758 0.162	4800
4909	62 934 0 178	29511 682	39247 881	54.924 0.162	4900
5000	63 112 0 175	30193 683	40128 881	55-086 0-160	500 0
5100	63 287 0 171	30876 684	41009 883	55.246 0.157	5100
5200	63 458 0 169	31560 685	41892 884	55-403 0-153	5200
5300	63-627 0-165	32245 686	42776 885	55-556 0-152	5309
5400	63.792 0.163	32931 687	43661 885	55·708 0·148	5400
5500	63-955 0-160	33618 688	44546 887	55-856 0-146	5500
5600	61.115 0.157	34306 689	45433 888	56.002 0.114	5600
5700	61.272 0.154	34995 690	46321 888	56-146 0-140	5700
5800	61.426 0.152	35685 690	47209 889	56-286 0-139	5800
5900	64.578 0.150	3637.5 ₆₉₂	48098 890	56.425 0.138	5900
6000	61.728 0.147	37067 692	48988 891	56.563 0.135	6000
6100	61.875 0.145	37759 693	49879 892	56-698 0-133	6100
6200	65.020 0.143	38152 695	50771 893	56 831 0.131	6200
6300	65-163 0-141	39147 695	51664 894	56.962 0.130	6300
6100	65.304 0.130	39842 696	52558 895	57.092 0.129	6400
6500	05.443 0.137	40538 697	53453 896	57.221 0.126	6500
CC00	65.580 0.13g	41235 697	54349 896	57.347 0.121	6600
6700	65.715 0.133	41932 698	55245 896	57-471 0-121	6700
6800	65.848 0.130	42630 698	56141 897	57.592 0.121	6800
6000	65.978 0.190	43328 700	57038 898	57.713 0.119	6900
7000	66.107 0.127	41028 700	57936 899	57.832 0.117	7000
7100	66.234 0.126	44728 700	58835 899	57.949 0.116	7100
7200	66.360 0.124	45428 702	59734 ₉₀₀	58-065 0-115	7200
7300	66.484 0.193	46130 702	60634 901	58.180 0.114	7300
7400	66-607 0-122	46832 $_{703}$	61535 902	58-294 0-111	7400
7500	66.729 0.196	47535 704	62437 902	58.405 0.110	7500
7600	66.819 0.118	48239 701	63339 903	58.515 0.110	7600
7700	06.907 0.117	48943 704	64242 903	58.625 0.100	7700
7800	07:084 0.115	49647 701	65145 ₉₉₃	58.734 0.107	7800
7900	67-199 0-114	50351 704	66048 903	1 00.041 0.100	7900
5000	07313 0.110	01055 704	66951 903	99.94, 0.103	8000
8100 8200	67-425 0-110	51759 705	67851 903	59 050 p. 100	8100
	67-535 0-108	52161 705	68757 903	59·152 0·100	8200
8300 8100	67.643 0.107	53169 705	69660 904	39.232 0.100	8300
8500	67.750 0.106	53874 705	70564 904	39.352 n.nga	8100
5600	67-856 0-105	51579 706	71468 904	59.451 0.098	8500
8700	67-961 0-105	55285 706	72372 905	09.519 0.097	8600
8800	68-066 0-104	55991 707	73277 906	59.646 0.096	8700
S900	69-170 0-102	56698 708	71183 906	59.742 0.093	8800
0000	68-272 0-101 68-373	57406 708 58114	75089 907	59.835 0.093	8900
		02111	75996	59-928	9000

CARBON DIOXIDE

T° F.	S	E	Н	$-\frac{\Gamma}{T}$	T° F. Abs.
100					100
i.			1		200
200	į				300
300	48-620 1.853	2100 626	2895 924	41.383 1.633	400
400	1.000	000	2700	43.016 1.378	500
500	50.473 1.631	2424 093	1000	44.394 1.211	600
600	52·104 1·465 53·569 1.227	1102 101	849	45.605 1.080	700
700	1.991	4000	0588	46.685 0.983	800
800	54.906 1.233	E025 041	7070	47.668 0.907	900
900	56·139 1·145	cros oo l	1000	48.575 0.846	1000
1000	57.284 1.068	7020	0004	49.421 0.784	1100
1100	58.352 1.004	DEAR 909	1101	50.205 0.742	1200
1200	59.356 0.946	0550	1101	50.947 0.701	1300
1300	60.302 0.896	9579 1009	3200	51.648 0.666	1400
1400	61.198 0.850	10588 1033	14001	52·314 0·635	1500
1500	62.048 0.810	11621 1055	14601 1254	52:049	1600
1600	62.858 0.773	12676 1074	15855 1273	52·949 0·607 53·556 0·582	1700
1700	63.631 0.739	13750 1093	17128 1291	1 0 - 0 - 0 - 0	1800
1800	64.370 0.708	14843 1110	18419 1309	7.00	1900
1900	65.078 0.678	15953 ₁₁₂₅	19728 1324	1 == 000	2000
2000	· 65·756 0·652	17078 1138	21052 1336	0.011	2100
2100	66.408 0.627	18216 1149	22388 1348	55.747 0.499	2200
2200	67.035 0.604	19365 1160	23736 1359	56.246 0.482	2300
2300	67.639 0.582	20525 1170	25095 1368	56.728 0.467	2400
2400	68-221 0-563	21695 1181	26463 1380	57.195 0.452	2500
2500	68.784 0.545	22876 1189	27843 1388	57.647 0.440	2600
2600	69.329 0.527	24065 1197	29231 1396		2700
2700	69-856 0-510	25262 1205	30627 1403		2800
2800	70.366 0.495	26467 1213	32030 1412	58.926 0.404	2000
2900	70-861 0-481	27680 1219	33442 1418	59.330 0.391	3000
3000	71.342.0.467	28899 1224	34860 1422	59.721 0.384	3100
3100	71.809 0.454	30123 1230	36282 1429	00.480	3200
3200	72.263 0.441	31353 1235	37711 1434	60.478 0.364	3300
3300	72.704 0.430	32588 1242	39145 1440		3400
3400	73.134 0.419	33830 1246	40585 1445		3500
3500	73.553 0.408	35076 1248	42030 1447	61.544 0.341	3600
3600	73.961 0.397	36324 1254	43477 1452	61.885 0.330	3700
3700	74.358 0.389	37578 1260	44929 1459	62.215 0.325	3800
3800	74.747 0.379	38838 1263	46388 1469	62.540 0.317	3900
3900	75.126 0.370	40101 1266	47850 146	62.857 0.310	400
4000	75.496 0.362	41367 1270	49315 146	8 63.167 0.304	410
4100	75.858 0.355	42637 1274	1 50783 ₁₄₇	3 63.471 0.301	420
4200	76.213 0.346	1	$_{5}$ 52256 $_{147}$	5 63.772 0.292	430
4300	76.559 0.339	45187 1278	52731	6 64.064 0.286	440
4400	76.898 0.332	46465 128	EE907	64.350 0.282	450
4500	77.230 0.325	47746 128	F0007	1 64:632 o app	100

THERMAL PROPERTIES OF GASES.

CARBON DIOXIDE (continued)

T° F. Abs.	S	E	Н	$-rac{F}{T}$	T° F. Abs.
4600 4700 4800 4800 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000 6100 6200 6300	77-555 0-319 77-874 0-313 78-187 0-307 78-194 0-300 78-794 0-297 79-091 0-291 79-382 0-285 79-667 0-280 79-947 0-275 80-222 0-271 80-493 0-266 80-759 0-262 81-021 0-258 81-279 0-254 81-533 0-250 81-783 0-246 82-029 0-243 82-272	49029 1286 50315 1291 51606 1294 52900 1297 54197 1299 55496 1300 56796 1301 58097 1303 59400 1303 60703 1304 62007 1306 63313 1308 64621 1310 65931 1313 67244 1314 68558 1316 69874 1319	58169 1484 59653 1490 61143 1493 62636 1496 64132 1497 65629 1499 67128 1500 68628 1501 70129 1501 71630 1503 73133 1505 74638 1507 76145 1509 77654 1511 79165 1513 80678 1515 82193 1517	64·909 0·274 65·183 0·265 65·448 0·263 65·711 0·257 65·968 0·255 66·223 0·250 66·473 0·245 66·718 0·244 66·962 0·238 67·200 0·233 67·433 0·232 67·665 0·226 68·117 0·222 68·339 0·217 68·556 0·216 68·772 0·213	4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5700 5800 5900 6000 6100

WATER VAPOUR

		WATER V			
T° F.	S	E	H	$-\frac{F}{T}$	T° F.
100					100
200		1			200
300				•	300
400	42.799 1.779	2405 602	3200 ₇₉₈	34.800 1.778	400
500		3007 608	3998 800	36-578 1-459	500
600	$44.578 \ 1.456 \ 46.034 \ 1.251$	3615 615	4798 813	38.037 1.233	600
700	47.285 1.097	4000	5611 ₈₂₃	39-270 1-070	700
800	48.382 0.981	2024	6434 834	40.340 0.947	800
900	49.363 0.894	5480	7968	41-287 0-853	900
1000		0120	8117 ec=	42.140 0.776	1000
1100	0 024.	011	0000	42.916 0.712	1100
		T400	0000	43-628 0-660	1200
1200	51.847 0.717	0100	10750	44.288 0.615	1300
1300	52.564 0.676	110	11600	44.903 0.578	1400
1400	53.240 0.641	191	10001	45.481 0.543	1500
1500	53.881 0.610	10000	10545	46.024 0.515	1600
1600	54.491 0.583	11110	14510	1 /0 500	1700
1700	55.074 0.561	11143 782	77400	47 000	1800
1800	55.635 0.539	11925 799	16407	47:497	1900
1900	56.174 0.521	12724 816	16487 1015	47.044	2000
2000	56-695 0.503	13540 835	17502 1033	40,979	2100
2100	57.198 0.488	14375 850	18535 1050		2200
2200	57.686 0.473	15225 866	19585 1063		2300
2300	58.159 0.460	16091 880	20648 1079	1 0.990	2400
2400	58.619 0.446	16971 896	21727 1094	49.566 0.371	2500
2500	59.065 0.434	17867 908	22821 1107	49.937 0.360	2600
2600	59.499 0.423	18775 ₉₂₃		E0.644	2700
2700	59.922 0.412	19698 934	25050 113	50.644 0.339	2800
2800	60.334 0.403	20632 951		50.983 0.330	2900
2900	60.737 0.392	21583 960			3000
3000	61.129 0.384	22543 972		51.632 0.313	3100
3100	61-513 0-376	23515 984		51.945 0.306	3200
3200	61.889 0.368	24499 994		52.251 0.298	3300
3300	62.257 0.359	25493 1007			3400
3400	62.616 0.352	26500 1016	33241 121		3500
3500	62.968 0.345	27516 1026	34455 122	1 -0 100	3600
3600	63.313 0.337	28542 1033	35680 123	2 53.402 0.272	3700
3700	63.650 0.331	29575 1044	136912_{124}	2 53.674 0.267	3800
3800	63.981 0.325	30619 1051	38154 124	9 53.941 0.262	3900
3900	64.306 0.318	31670 105	39403	6 54.203 0.256	4000
4000	64.624 0.312	32727 106	1 40659	3 54.459 0.252	4100
4100	64.936 0.306	33792 107	41022	54.711 0.249	4200
4200	65.242 0.300	34862 107	/2191	54.960 0.241	1
4300	65.542 0.294	35940 108	44467	55.201 0.237	4300
4400	65.836 0.291	37023 109	45749	55.438 0.235	4400
3700	66.127 0.284	38113 100	7 47038 129	55.673	4500

THERMAL PROPERTIES OF GASES WATER VAPOUR (continued)

T° F. Abs.	S	E	Н	$-\frac{F}{T}$	T° F. Abs.
4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000	66-411 0-280 66-691 0-275 66-966 0-271 67-237 0-266 67-503 0-262 67-765 0-258 68-023 0-253 68-276 0-249 68-525	39210 1103 40313 1110 41423 1114 42537 1119 43656 1124 44780 1127 45907 1131 47038 1136 48174	48333 1302 49635 1308 50943 1313 52256 1317 53573 1322 54895 1326 56221 1330 57551 1334 58885	55.903 0.228 56.131 0.221 56.352 0.220 56.572 0.216 56.788 0.214 57.002 0.210 57.212 0.206 57.418 0.204 57.622	4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

CARBON MONOXIDE

	Ü	ARBON MC	DNUXIDE		
T° F. Abs.	s .	E	Н	$-\frac{F}{T}$	T° F. Abs.
100					100
200			1		200
300	- \		-		300
400	45.290 1.544	1985 497	2780 -695	38.340 1.544	400
500	1.044	2482 499	3475 698	39.884 1.265	500
600	40 100	2981 501	4173 699	41.149 1.073	600
700	1010	3482 504	4872 703	42.222 0.927	700
800	0.000	2000	5575 706	43.149 0.819	800
900	0.030	4493 517	6281 716	43.968 0.736	900
1000	0.100	5010 507	6007	44.704 0.667	1000
1		5537	720	45.371 0.611	1100
1100	52·392 0·639 53·031 0·596	6074	0.450	45.982 0.566	1200
1200	#n con	040	140	40 540	1300
1300	F4 100	7176	0050	47·073 0·492	1400
1400	54.186 0.526	7741	100		1500
1500	54.712 0.499	0215		48·028 0·436	1600
1600	55.211 0.473	8315 582	11494 781 12275 780	48.464	1700
1700	55.684 0.451	8897 591	10004	48.464 0.414	1800
1800	56.135 0.431	9488 599	13064 798	48·878 0·392 49·270 0·275	1900
1900	56.566 0.412	10087 605	13862 804	1000	2000
2000	56.978 0.396	10692 612	14666 810	49.645 0.359	2100
2100	57.374 0.379	11304 618	15476 817	50.004 0.344	2200
2200	57.753 0.366	11922 624	16293 823	50.348 0.329	2300
2300	58.119 0.352	12546 629	17116 827	50.677 0.318	2400
2400	58.471 0.340	13175 635	17943 834	50.995 0.305	2500
2500	- 58·811 _{0·328}	13810 638	18777 837	51.300 0.296	1
2600	59.139 0.317	14448 642	19614 841	51.596 0.284	2600
2700	59.456 0.307	15090 645	20455 843	51.880 0.276	2700
2800	59.763 0.297	15735 649	21298 848	52.156 0.268	2800
2900	60.060 0.288	16384 653	22146 852	52.424 0.258	2900
3000	60.348 0.280	17037 656	22998 854	52.682 0.252	3000
3100	60.628 0.273	17693 658	23852 857	52.934 0.245	3100
_ 3200	60.901 0.264	18351 660	24709 859	53.179 0.238	3200
3300	61.165 0.257	19011 662	25568 860	53.417 0.233	3300
3400	$61.422 \begin{array}{c} 0.257 \\ 0.250 \end{array}$	19673 665	26428 864	53·650 _{0·223}	3400
3500	$61.672 \begin{array}{c} 0.230 \\ 0.244 \end{array}$	20338 668	27292 867	53.873 0.222	3500
3600	61.916 0.238	21006 669	28159 867	54.095 0.214	3600
3700	62.154 0.231	21675 671	29026 870	54.309 0.209	3700
	69.285	22346 673	29896 872	54.518 0.205	3800
3800	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	99010	30768 873	54.723 0.200	3900
3900	0.221	00000	31641 874	54.923 0.195	4000
4000	62.833 0.216	0.000	32515 876	55:118	4100
4100	63.049 0.210	05046	33391 878	55.310	4200
4200	63.259 0.207	019	34269 878	55.497	4300
4300	63.466 0.202	1 080	35147	55,679	4400
4400	63.668 0.198	26405 682 27087 cs4	36028	55.859	4500
4500	63.866 0.194	27087 684	36028 882	' ' ' ' ' '	

CARBON MONOXIDE (continued)

	CARB	ON MONO	AIDE (conti		
T° F.	S	E	Н	$-\frac{F}{T}$	T° F. Abs.
		27771 684	36910 883	56-036 0-173	4600
4600	64.060 0.189	00155	04500	56.209 0.167	4700
4700	64-249 0-186	000	000	56.376 0.167	4800
4800	61.435 0.183	20097	200	56-543 0-164	4900
4900	64 618 0-179	2051.1	40.440	56-707 0-161	5000
5000	61.797 0.176	91909	4100	56.868 0.158	5100
5100	64.973 0.172	91001	40000	57·026 0·154	5200
5200	65.145 0.169	90501	40111	57-180 0-153	5300
5300	65.314 0.166	000	44000	57.333 0.149	5400
54(0)	65.480 0.163	00000	14000	57.482 0.146	5500
5500	65-643 0-160	33962 691	45.00	022	5600
5600	65-803 0-158	31653 692	10051	0.140	5700
5700	65.961 0.155	35345 693	42500	55.015	5800
5800	66-116 0-153	36038 693	10151	0.141	5900
5900	66.269 0.150	36731 694	10046	0.100	6000
0000	66-419 0-148	37425 695	-0040	50.001	6100
6100	66-567 0-146	38120 696	51125	FO 405	6200
6200	66.713 0.143	38816 698	51135 896	50 507	6300
6300	66.856 0.141	39514 698	52031 897	0.190	6400
6400	66-997 0-139	40212 699	52928 898	0.130	6500
6500	67.136 0.137	40911 699	53826 898	0.120	6600
6600	67-273 0-135	41610 700	54724 899	0120	6700
6700	67-408 0-133	42310 701	55623 899	0.150	6800
6800	67.541 0.132	43011 701	56522 899	70.050	6900
6900	67-673 0-130	43712 702	57421 900	70.450	7000
7000	67-803 0-128	44414 702	58321 901	59.473 0.119	7100
7100	67.931 0.126	45116 702	59222 901	59·592 0·115	7200 -
7200	68.057 0.124	45818 702	60123 901	59.707 0.115	7300
7300	68·181 0·123	46520 702	61024 901	59.822 0.114	7400
7400	68-304 0-121	47222 702	61925 901	59.936 0.112	7500
7500	68.425 0.119	47924 703	62826 902	60.048 0.112	7600
7600	68-544 0-118	48627 704	63728 902	60-160 0-110	7700
7700	68.662 0.117	49331 704	64630 903	60.270 0.109	7800
7800	68.779 0.115	50035 704	65533 903	60.379 0.108	7900
7900	08 894 0.114	50739 706	66436 904	60.487 0.105	8000
8000	69.008 0.112	51445 706	67340 905	60-592 0-104	8100
8100	69-120 0-111	52151 707	68245 906	60-696 0-104	8200
8200	69.231 0.110	52858 709	69151 907	60.800 0.102	8300
8390	09-311 0-109	53567 709	70058 908	60-902 0-101	8100
8100	69.450 0.108	154276 710	70966 909	61-003 0-101	8500
8500	69-558 0-106	54986 71	71875 905	61-104 0-100	8600
8600	69.661 0 105	55697 71	72784 910	61.204 0.097	8700
8700	69.769 0.104	56408 71	73694 910	61.301 0.096	8800
8500	69.873 0.103	57119 71	2 74604 910	61-397 0-094	-8900
8000	69-976 0-101	57831 71	3 75514 916	0 61.491 0.094	9000
2000		58544	76424	61.585	1 2000

HYDROGEN

		HYDRO	אופרא		
T° F. Abs.	S	E	Н	$-rac{F}{T}$	T° F. Abs.
100					100
200		· .			200
300		Ì			300
400	. 29.249 1.504	1916 479	2711 677	22.473 1.505	400
500	00 750	9905 479	3388 691	23.978 1.233	500
600	1-200	0007	$4079 \begin{array}{l} 694 \end{array}$	25.211 1.050	600
700	00.070	2202	4773 697	26.261 0.908	700
800	0.020	2001	$5470 \begin{array}{l} 697 \\ 699 \end{array}$	27.169 0.804	800
900	0.022	4001	6169 700	27.973 0.722	900
1000		4000	6869 ₇₀₁	28.695 0.655	1000
	35·564 0·668	5004	101	29.350 0.598	1100
1100	36.232 0.610	5000	2000	29.948 0.553	1200
1200	36.842 0.564	0004	700	30.501 0.511	1300
1300	37-406 0-523	6000	101	31.012 0.478	1400
1400	37.929 0.489	7410	10000		1500
1500	38.418 0.458	200 013	11104	0.440	1600
1600	38.876 0.434	7925 516	110	0.422	1700
1700	39.310 0.411	8441 521	10000	00.550	1800
1800	39.721 0.392	8962 526		32·756 0·377 33·133 0·358	1900
1900	40.113 0.375	9488 532	13263 731	33.491 0.342	2000
2000	40.488 0.359	10020 538	13994 736	33.833 0.326	2100
2100	40.847 0.344	10558 542	14730 741	34.159	2200
2200	41.191 0.331	11100 547	1,5471 746	34·159 0·312	2300
2300	41.522 0.319	11647 550	16217 748	34.471 0.301	2400
2400	41.841 0.309	12197 556	16965 755	34.772 0.290	2500
2500	42.150 0.299	12753 564	17720 763	35.062 0.278	2600
2600	42.449 0.290	13317 570	18483 769		2700
. 2700	42.739 0.282	13887 577	19252 778	05.005	2800
2800	43.021 0.274	14464 582	20030 778	00 100	2900
2900	43.295 0.267	15046 587	20808 786	36.120 0.244	3000
3000	43.562 0.259	15633 592	21594 790		3100
3100	43.821 0.253	16225 598	22384 797	36.600 0.230	3200
3200	44.074 0.247	16823 603	23181 802	36·830 _{0·223}	3300
3300	44.321 0.240	17426 607	23983 805	37.053 0.218	3400
3400	44.561 0.235	18033 612	24788 811	'37·271 _{0·210}	3500
3500	44.796 0.230	18645 618	25599 817	37.481 0.208	360
3600	45.026 0.225	19263 622	26416 820	37.689 0.201	370
3700	45.251 0.220	19885 627	27236 826	37.890 0.197	380
3800	45.471 0.216	20512 631	28062 830	38.087 0.192	1
3900		21143 635	28892 83	38.279 0.188	-
4000			29726 83	6 38.467 0.182	1
4100		22416 642	30562 84	38.649 0.182	
4200		23058 646	31403 84	5 38.831 0.175	1
4300		23704 648	32248 84	7 39.006 0.172	
4400		24353 653		$39.178 \cdot 0.169$) [
4500		25006 656	1 22047	39.347 0.166	3 250

THERMAL PROPERTIES OF GASES HYDROGEN (continued)

		TYDROGE	<u> </u>	$-rac{F}{T}$	T' F.
T° F.	S	E	H		Abs.
1000	47.079 0.185	25662 660	34802 85S	39-513 0-165	4600
4 6 00	47·264 0·185	$26322 \begin{array}{c} 663 \\ 663 \end{array}$	35660 862	39·678 _{0·158}	4700
4700	17.145	26985 666	36522 865	$39.836 \cdot 0.158$	4800
4800	47-445 0-179	000	37387 867	39.994 0.154	4900
4900	47·624 0·175	000	38254 870	40.148 0.152	5000
5000	47.799 0.172	00003	39124 873	40.300 0.150	5100
5100	47.971 0.170	00005	00007	40.450 0.145	5200
5200	48.141 0.166		40000	40.595 0.146	5300
5300	48-307 0-164	01001	41550	40.741 0.141	5400
5400	48.471 0.161	0300	10000	40.882 0.140	5500
5500	48.632 0.159	20000	10=10	41.022 0.137	5600
5600	48.791 0.156	20000	44000	41.159 0.135	5700
5700	48.947 0.153	33068 688	15000	41.291 0.134	5800
5800	49.100 0.152	33756 691	(0150	41.428 0.132	5900
5900	49.252 0.151	34447 694	45000	41.560 0.132	6000
6000	49-403 0-148	35141 695	45050	41.689 0.129	6100
0100	49.551 0.147	35836 G97	47956 896	11.817	6200
6200	49.698 0.143	36533 701	48852 899	41.817 0.127	1
6300	49.841 0.141	37234 702	49751 901	41.944 0.125	6400
6400	49.982 0.140	37936 703	50652 902		1
6500	50.122 0.138	38639 705	51554 904	42.192 0.122	6600
6600	50.260 0.137	39344 708	52458 906	42.314 0.120	6700
.67 00	50.397 0.136	40052 709	53364 908	42.434 0.119	6800
6800	50.533 0.134	40761 711	54272 910	42.553 0.117	
6900	50.667 0.131	41472 714	55182 912	42.670 0.115	5000
7000	50.798 0.129	42186 718	5 56094 914	42.785 0.113	7100
7100	50.927 0.12	7 42901 71	7 57008 916		2000
7200	51.054 0.12	43618 719	5 ⁷⁹²⁴ 917		, ====
7300	51.180 0.12	5 44337 71°	$9 \mid 58841 \mid 918$	43.119 0.110)
7400	51.305 0.12	3 45056 72	1 50750 -	43.229 0.10	3 7400
. 7500	51.428 0.12	1 45777 72	1 00070	43.337 0.10	7 7500
7600		46500 70	4 61600 923		6 7600
7700		47224 79	62523 92		
7800		47949 79	03447	5 43·655 0·10	4 7800
7900		48675 75	8 64372 92	6 43.759 0.10	3 7900
8000		15 49103 7	65298 92	e 43.862 0.10	2 8000
8100		50132 7	30 GG22G 92	0 43.961 0.10	8100
\$200		50862 7	32 67155 ₉₃	44.065 0.10	00 8200
5300		51594 7	32 68085 ₉₃	44.165 0.09	8300
840		52326 7	34 69016 93	3 44·263 0·01	8400
850		53060 7	37 69949 93	35 44.360 0.0	06 8500
860		08 53797 7	#00D4	36 44.456 0.0	8600
870		54534	F1000	41.551 0.0	94 8700
850		55273	PAPER	30 44.645 0.0	94 8800
890		ו סטו	73697	10 44.739 0.0	93 8900
5().(56755	71637	44.832	9000
		<u> </u>	1		

HYDROXYL (OH)

HYDROXYL (OH)								
T° F.	S	E	Н	$-\frac{\Gamma}{T}$	To F. Abs.			
100					100			
200		1		4	200			
300			1		300			
400	l			,	400			
500			Į		500			
1	44.711 1.007	3060 506	4252 704	37.625 1.103	600			
600 700	1-097	2500	4956 704	38-728 0-938	700			
1	10 411	4671	5660 702	39-606 0-834	600			
800	47.500	154.	0000	40.500 0.744	900			
900	40.014	#000	700	41.244 0.675	1000			
1000	0.010	200	700	41.919 0.612	1100			
1100	48.990 0.613	010	100	42.531 0.572	1200			
1200	49.603 0.574	6102 511.	9196 710	10.00	1300			
1300	50.177 0.527	6613 511	9906	40.000	1400			
1400	50.704 0.485	7124 515	9906 713	44 330	1500			
1500	51·189 0·461	7639 516	10619 715	44·566 0·430	1600			
1600	51.650 _{0.439}	8155 525	11334 724	1	1700			
1700	52.089 0.419	8680 535	12058 733	1 0'300	1800			
1800	52.508 0.402	9215 544	12791 743	45.402 0.385	1900			
1900	52.910 0.382	9759 547	13534 746	45.787 0.365	2000			
2000	53-292 0-366	10306 552	14280 750	46.152 0.349	2100			
2100	53.658 0.352	10858 556	15030 755	46.501 0.334	2200.			
2200	54.010 0.339	11414 562	15785 761	40.835 0.320	2300			
2300	54.349 0.323	11976 567	16546 765	47-155 0-301	2100			
2400	54.672 0.313	12543 573	17311 772	47.459 0.293	2500			
2500	54.985 0.305	13116 576	18083 775	47.752 0.285	2600			
2600	0.000	13092 583	18858 782	48.037 0.275	1			
2700	77.700	14275 591	19640 789	48.312 0.264	2700			
2800	FF 070	14866 597	20429 796	48.576 0.259	2800			
2900	70.174	15463 602	21225 801	48-835 0-240	2900			
_	1	16065 611	22026 809	49.084 0.239	3000			
3000	0.200	16676 614	22835 813	49.323 0.232	3100			
3100	56.689 0.256 56.945 0.251	17290 619	23648 818	49.555 0.227	3200			
3200	57.196 0.248	17000	24466 820	49.782 0.225	3300			
3300	57.444 0.239	10021	25286 824	50.007 0.216	3400			
3400	57.934 0.239	10150	26110 829	50-223 0-209	3500			
3500	57·083 0·232	10400	26939 830	50.432 0.208	3600			
3600	57.915 0.230	002	27769 831	50.640 0.203	3700			
3700	58.145 0.225	1 0.,,,	28603	50.843 0 100	3800			
3800	58.370 0.218	21000	20441 000	51.039 0.189	3900			
3900	58-588 0-211	1 030	30283	51-228 6 200	4000			
4000	58.799 0.208	22335 648	31129 071	51.414 6 100	4100			
4100	59.007 0.204	22983 652	21080	51.596 6.200	4200			
4200	59.211 0.202	23635 658	32837	51.776 0 150	4300			
4300	59.413 0.198	, 24293 663	5 l	51.952 - 151	4400			
4400	59.611 0.192	24956 668	3	59.123	4500			
4500	59.803 0.189	25619 66	5 34560 86	1 100				

HYDROXYL (continued)

	Ŀ	IADKOYAT	(Whithtea)		
T° F.	S	E	Н	$-\frac{\Gamma}{T}$	T° F. Abs.
		26284 671	35424 869	52.291 0.167	4600
4600	59.992 0.188	00055	0000	52.458 0.164	4700
4700	60-180 0-185	05000	27100	52.622 0.161	4800
4800	60-365 0-182	010	00040	52.783 0.157	4900
4900	60.547 0.177	28304 676 28980 678	010	52.940 0.154	5000
5000	60-724 0-173	00050	20701	53.094 0.151	5100
5100	60.897 0.169	29658 678	10000	53.245 0.149	5200
5200	61.066 0.167	30336 678	41545	53.394 0.146	5300
5300	61.233 0.163	31014 678	40 400	50 510	5400
5400	61.396 0.162	31692 679	811	50.00= 0.140	5500
5500	61-558 0-158	32371 680	44170	0.142	5600
56 00	61.716 0.156	33051 683	44178 881	50.00	5700
5700	61.872 0.154	33734 684	45059 883	0.130	5800
5800	62.026 0.152	34418 687	45942 886	0.130	5900
5900	62-178 0-149	35105 692	46828 890	0.199	6000
6000	62.327 0.148	35797 694	47718 893	F4 500	6100
6100	62.475 0.146	36491 697	48611 896	0.100	6200
6200	62-621 0-142	37188 701	49507 899	54.636 0.126	6300
6300	62.763 0.141	37889 704	50406 003	54.762 0.125	6400
6400	62.904 0.140	38593 707	51309 906	54.887 0.124	6500
6500	64.014 0.139	39300 709	52215 908	55.011 0.123	6600
6600	63.183 0.138	40009 715	53123 913	55.134 0.122	1
6700	63-321 0-137	40724 716	54036 915	55.256 0.121	6700
6800	63.458 0.136	41440 719	54951 918	55.377 0.120	6800
6900	63.594 0.134	101-0	55869 922	55.497 0.118	6900
7000	63.728 0.132	10000	56791 925	55.615 0.116	7000
7100	63.860 0.129	1.43600	57716 ₉₂₈		7100
7200	63.989 0.128	44000	58614 929	55.844 0.112	7200
7300	64-117 0-127	45069 731	59573 ₉₃₀	55.956 0.111	7300
7400	64.244 0.128	45800 732	1 60503	56.067 0.109	7400
7500	64.369 0.12	46532 733	61434 932	56.176 0.108	7500
7600	64-493 0-12	1 477985	conce	56.084	7600
7700	64-615 0-12	47999 73	1 62208	1 50.201	7700
7800		48734 73	64232 933	s 56·497 0·105	7800
7900	61.855 0.11	e 49409 73	65166 ₉₃	56.602 0.104	7900
8000	64.973 0.11	7 50205 73	6 66100 93	1 #C.50C	8000
8100		5 50911 73		56.200	8100
8200		3 51678 73	8 67971 93	50,011	1 6000
8300		2 52416 73	s 68907 93	7 57.012 0.100	8300
8100		53154 73	9 69814 93	S 57-112 0.099	8400
8500		53893 74	0 70782 93	57.211 0.099	8500
\$600		54633 74		57.309 0.090	8600
8706		55374 74		in 57.405 0.09	8700
881		56115 7	73600 94	11 57·500 0·09	8800
890		05 56858 7	74511 9	1 55.504	8900
200		57601	75483	57-697	0000
		1	i		!

NITRIC OXIDE (NO)

•	•	NIIIVIC OA	1111 (110)		
T° F.	S	E	Н	$-\frac{F}{T}$	T° F.
100					100
200		l	1		200
300	,				300
400					400
500					500
600	51.142 1.110	3213 ₅₁₆	4405 714	43.801 1.138	600
700	52.252 0.954	3729 ₅₂₀	5119 ₇₁₉	44.939 0.969	700
800	53.206 0.856	4249 527	5838 726	45.908 0.861	800
900	1 64000	1000	6564 734	46.769 0.768	900
1000	54005	7011	7298 741	47.537 0.700	1000
1100	0.110	5050	8039 747	48.237 0.636	1100
1200	1 11.000	C400	8786 759	48.873 0.578	1200
	56·195 0·598	coce	9545 770	49.451 0.555	1300
1300	56·793 0·581	011	10315 785	50.006 0.511	1400
1400	57·374 0·543 57·917 0·516	0100	11100 799	50.517 0.479	1500
1500		000	11899 809	50.996 0.450	1600
1600	58.433 0.488	0000	12708 817	51.446 0.432	1700
1700	58.921 0.471	0040	10.00	51.878 0.406	1800
1800	59.392 0.441	10770	1 1015	52.284 0.389	1900
1900	59.833 0.422	11100	7=100	52.673 0.369	2000
2000	60.255 0.397	11007	000	53.042 0.358	2100
2100	60.652 0.393	10450	10000	53.400 0.339	2200
, 2200	61.045 0.381	10100		53.739 0.327	2300
2300	61.426 0.366	1 000	10747	54.086	2400
2400	61.792 0.348	1 004	70400	54.380	2500
2500	62.140 0.333	14433 655	20254	54.684 - 227	2600
2600	62.473 0.324	15088 656	01100	54.979	2700
2700	62.797 0.308	15744 657	2100	55.263	2800
2800	63·105 0.299	16401 658	00001	55:537	2900
2000	63.404 0.288	17059 658	20070	55:804 - 270	3000
3000	63.692 0.282	17717 661	04505	56.063 - 270	3100
3100	63.974 0.273	18378 662	25398	56:315 - 245	3200
3200	64.247 0.264	19040 664	000	56.560	3300
3300	64.511 0.250	19704 669	97128	1 56.797 - 201	3400
3400	64.770 0.256	20373 671	010	FT.099	3500
3500	05·026 0·249	21044 675	0/5	57.255	3600
3600	65.275 3.241	21719 679	01	57.476 - 214	3700
3700	65.516 0.230	3 22398 680) 00000	57.690 - 211	3800
3800	65.752 0.23	23078 68	3 -1-10	57.901	3900
3900	65-983 0.22	$3 \mid 23761 \mid 68$	5 1 00		4000
4000	66.206 0.21	9 ²⁴⁴⁴⁶ 68		58.306	4100
4100	66.425 0.21	$3 \mid \frac{25134}{68}$	9	58,501 0	4200
4200	66-638 0-20	7 25823 68	9	58.602	430
4300	66.845 0.20	4 26512 69	0 35056 88	58.880 0 10	440
4400	67.049 0.19	9 27202 69	0 35944 88	59:0630	450
4500	1	27892 69	36833 88	39 0.18	<u> </u>

NITRIC OXIDE (continued)

7° F. ↓	s	E	Н	$-\frac{F}{T}$	T'F. Abs.
Aba.			2-00	59-244 0-176	4600
4600 ;	A 0-131	692	37722 890	59-420 0-173	4700
4700	67-634 0-188	-1-11 692	38612 891	59·593 0·179	4800
4800	67-822 0-183	29966 692	39503 891	59.763 0.167	4900
4900	68-005 0-181	30658 693	40394 892	50.030	5000
5000	68-186 0-177	31351 696	41286- 894	59.930 0.163	5100
5100	65-363 0-174	32047 697	42180 896	60-093 0-160	5200
5200	68-537 0-171	32744 699	43076 898	60.253 0.158	5300
5300	68-708 0-169	33443 702	43974 900 :	60-411 0-156	5400
5100	68-877 0-164	34145 702	44874 901	60.567 0.153	5500
5500	69-041 0-163	34847 702	45775 901	60.720 0.151	5600
5600	69-204 0-161	35549 702	46676 901	60-871 0-148	
5700	69-365 0-157	36251 702	47577 901	61.019 0.145	5700
5800	69-522 0-153	36953 702	48478 901	61.164 0.143	5800
5900	en ess	37655 702	49379 901	61.307 0.141	5900
6000	00 007	38357 702	50280 ₉₀₁	61-448 0-139	6000
6100	CO 000	39059 703	51181 901	61.587 0.137	6100
6200	70·123 0·147	39762 703	52082 901	61.724 0.136	6200
6300		40465 703	52983 ₉₀₁	61.860 0.136	6300
6400	70·270 0·146 - 70·416 0·141	41168 704	53884 903	61.996 0.131	6400
	₹ なる。ただり	41872 706	54787 905	62-127 0-127	6500
6500		1	55692 906	62-254 0-125	6600
6600	70-691 0-135	10000	56598 907	62.379 0.124	6700
6700	70.829 0.133	10001	57505 90S	62.503 0.123	6800
0800	70-962 0-132	44000	500	62.626 0.122	6900
6900	71.094 0.130	45414		62.748 0.120	7000
7000	71.224 0.130	112	20000	62-868 0-118	7100
7100	71.354 0.127	110	C1145	62-986 0-117	7200
7200	71-481 0-124	110	62058 914	63.103 0.115	7300
7300	71.605 0.124	47554 715	C0070	63.218 0.114	7400
7400	71-729 0-122	48269 717	20000		7500
7500	71-851 0-122	48986 718	01001	63·332 0·113 63·445 0·111	7600
7600	71.973 0.119	49704 719	000	63.556 0.110	7700
7700	72-092 0-118	50423 720	0.0017	63-666	7800
7800	72-210 0-116	51143 720	66641 919	63-666 0-108	7900
2500	72-326 0-115	51863 722	67560 920	63.774 0.107	8000
8000	72-441 0-114	52585 722	68489 921	63-881 0-106	1
8100	72.555 0.113	53307 723	69401 022	63-987 0-105	8200
8200	72.668 0.111	54030 724	70323 922	64.092 0.103	8300
8300	72-779 0-110	54754 724	71245 923	64-195 0-102	i
8400	72.889 0.109	55478 725	72168 924	61-297 0-101	850
8500	72-998 0-108	56203 728	73992 926	64-398 0-100	000
8600	73-106 0-106	56931 728	74018 927	64-498 0-099	\$60
\$700	73-212 0-103	57659 730	74945 p29	64-597 0-098	870
8\$00	73:317 n-103	58389 ₇₃₅	75874 933	64-695 0-097	880
8900	73-422 0-10	59124 730	76597 93	64.792 0.096	890
9000		59860	77742	64-858	900

THERMAL PROPERTIES OF GASES EQUILIBRIUM CONSTANTS

	$K_p =$	$\frac{p_{\text{CO}_1}}{p_{\text{CO}} \cdot p_{\text{O}_2}^{-\frac{1}{2}}}$	$K_{p} = \frac{p_{\text{II}_{2}\text{O}}}{p_{\text{II}_{1}} \cdot p_{\text{O}_{2}}^{\frac{1}{2}}} \ $		$K_{p} = \frac{p}{p}$	$p_{\mathrm{H}_2} \cdot p_{\mathrm{CO}_1}$	-	
	CO +	$\frac{1}{2}O_2 = CO_2$	H ₂ +½O ₂ =H ₂ O		CO, +11,	$CO_2 + H_2 = CO - H_2O$		
T° F. Abs.	$\operatorname{Log_{10}} K_p$	$K_{\mathfrak{p}}$	Log ₁₀ K _p	· K _p	Log10 Kp	K_p	To F.	
600	30-80	6·3096 × 10 ⁵⁰	35;840	6-918 × 1025	-4.231	5-875 ~ 10-4	600	
.700	33.46	2·8840 × 10 ³³	30-141	1.384 × 1030	-3.318	4.808 - 10-4	700	
800	28.70	5·0110 × 10 ²⁸	25.972	9·370 × 10 ²⁵	-2.638	2·801 × 10-3	800	
900	25.00	1 × 10 ²⁵	22.882	7·621 × 10 ²²	-2.115	7·674 × 10~3	900	
1000	22.04	1·0965 × 10 ²²	20.333	2·153 × 10 ²⁰	-1.703	1·082 × 10~*	1000	
1100	19.61	4·0738 × 10 ¹³	18-242	1.746 × 1018	-1.370	4·266 × 10-2	1100	
1200	17.59	3·8905 × 1017	16.497	3·141 × 10 ¹⁸	-1.096	8·017 × 10-2	1200	
1300	15.89	7·7625 × 10 ¹⁸	15.017	1·040 × 10 ¹⁸	-0.8673	0.1357	1300	
1400	14.42	2·6303 × 10 ¹⁴	13.747	5·585 × 1013	-0.6745	0.2116	1460	
1500	13.15	1.4125 × 1019	12-643	4-395 × 1012	-0.5099	0.3091	1500	
1600	12.04	1.0965 × 1012	11-676	4.742 × 1011	-0.3683	0.4283	1600	
1700	11.07	1·1740 × 10 ¹¹	10-821	0.622 × 1010	-0.2459	0.5677	1700	
1800	10.20	1.5849 × 1010	10.061	1·151 × 1010	-0.1384	0.7271	1800	
1900	9.423	2·6485 × 10°	9.379	2·393 × 10°	-0.0435	0.9047	1900	
2000	8.724	5·2966 × 10 ⁴	8.765	5·821 × 10 ⁸	0.0407	1.098	2000	
2100	8.093	1.2388 × 10%	8.208	1.614 × 108	0.1154	1-304	2100	
2200	7.519	3·3037 × 10 ⁷	7-701	5·023 × 10 ⁷	0.1825	1.522	2200	
2300	6.996	9·9083 × 10¢	7-238	1.730 × 107	0.2426	1.748	2300	
2400	6.517	3·2885 × 10°	6.814	6·516 × 10°	0.2971	1-082	2400	
2500	6.077	1·1940 × 10°	6.422	2.642 × 10°	0.3460	2.218	2500	
2600	5.670	4.6774 × 105	6.061	1-151 ×10*	0.3908	2.459	2000	
2700	5.295	1·9724 × 10 ⁶	5 ⋅726	5-321 103	0.4313	2.700	2700	
2800	4.046	8·8308 × 104	5.415	2.600 × 10°	0.4689	2.944	2800	
2900	4.622	4·1879 × 104	5-125	1·333 × 10 ^t	0.5027	3-182	2900	
3000	4.320	2·0893 × 104	4.854	7·145 × 104	0.5336	3-417	3000	

THERMAL PROPERTIES OF GASES EQUILIBRIUM CONSTANTS (continued)

	$K_p =$	$K_{p} = \frac{p_{CO_{1}}}{p_{CO} \cdot p_{O_{2}}^{\frac{1}{2}}}$		$\frac{p_{\rm H_2O}}{p_{\rm H_2} \cdot p_{\rm O_1}^{-\frac{1}{2}}}$	$K_p = \frac{p_1}{p_1}$	H ₂ O · P _{CO}	
	CO +	1O2 = CO2	H ₂ +	10,=H,0	CO2+H2=	CO+H ₂ O	
T' F.		K_p			Log ₁₀ K _p	K_{p}	T° F. Abs.
3100	4-037	1-0889 > 104	4.600	3-981 × 101	0.5624	3.651	3100
3200	3-773	5-9293 × 10°	1-363	2·307 × 10°	0.5893	3.884	3200
3300	3-525	3·3497 × 10°	4-139	1·377 × 10 ⁴	0-6140	4-112	3300
3400	3-201	1-9543 × 10°	3.929	8492	0.6372	4.337	3400
3500	3.072	1-1803 × 10 ³	3.730	5370	0.6579	4.549	3500
3600	2.865	732-82	3.543	3491	0.6776	4.760	3600
3700	2.668	465-59	3.365	2317	0.6962	4-968	3700
3890	2-483	304-09	3-197	1574	0.7132	5-167	3800
3900	2-307	202-77	3.037	1089	0.7296	5-365	3900
4000	2.141	138 ·3 6	2.885	767-4	0.7447	5.553	4000
4100	1.982	95-940	2.741	550-8	0.7593	5.745	4100
4200	1.832	67-920	2.604	401-8	0.7722	5-918	4200
4300	1-688	48-753	2.473	297-2	0.7847	€-091	4300
4400	1.551	35-563	2.345	221-3	0.7963	6-256	4400
4590	1-420	26-303	2.228	169-0	0.8077	6 ⋅422	4500
4600	1-295	19-724	2-113	129-7	0.8179	6.575	4600
4700	1-176	14-997	2-004	100-9	0.8273	6-719	4700
4800	1.062	11-535	1-898	79-07	0.8365	6.863	4800
4900	0.9521	- S-9557	1-797	62-66	0-8452	7.002	4900
5000	0.8467	7-0259	1-701	50-23	0-8538	7-142	5000
5100	0.7459	5-5705	1-60S	40-55	0.8616	7.271	5100
6200	0.6151	4·4576	1.518	32.96	0.8691	7-398	5200
5300	0.5561	3-5983	1.432	27-04	0.8763	7-521	5300
5400	0-4667	2-9289	1.349	22-34	0.8824	7-628	5400

EQUILIBRIUM CONSTANTS FOR THE REACTION ${}_{2}^{1}H_{2}+OH_{\rightleftharpoons}H_{2}O$; $\Delta E_{0}=-120420$ B.Th.U./lb. mol

$$K_p = \frac{p_{\rm H_2O}}{p_{\rm OH} \cdot p_{\rm H_2}^{-\frac{1}{2}}}.$$

		2 011	1112		
T° F. Abs.	$\operatorname{Log_{10}} K_{p}$	K_{p}	T° F. Abs.	$\operatorname{Log}_{\mathfrak{10}} K_{\mathfrak{p}}$	K_{p}
600	41.204	1.560 × 1041	3100	5.0638	1·152 × 10 ⁵
700	34.851	7·096 × 10 ²⁴	3200	4.7895	$6 \cdot 159 \times 10^4$
800	30.080	1.202 × 1030	3300	4.5314	3·400 × 104
900	26.361	2·296 × 10 ²⁶	3400	4.2877	1.940 > 104
1000	23.381	2.404×10^{23}	3500	4.0566	1·139 × 104
1100	20.939	8.690×10^{20}	3600	3.8407	6.930 × 10 ³
1200	18.901	7.962×10^{18}	3700	3.6361	4326
1300	17.173	1.489×10^{17}	3800	3.4413	2763
	15-691	4.909 × 1015	3900	3-2571	1808
1400	14.406	2·547 × 10 ¹⁴	4000	3.0826	1210
1500	13.379	2·393 × 1012	4100	2.9108	814.3
1600	12.284	1.923×10^{12}	4200	2.7585	573.5
1700	11.399	2·506 × 10 ¹¹	4300	2.6070	404.6
1800	10.606	4·037 × 10 ¹⁰	4400	2.4623	289.9
1900	9.8920	7·798 × 10°	4500	2.3250	211.4
2000	1	1.760 × 10°	4600	2.1930	156.0
2100	9.2454	4.543 × 10°	4700	2.0669	116.7
2200	8.6573	1-317 × 10 ⁸	4800	1.9451	88-12
2300	8.1196	4.242 × 10°	4900	1.8289	67.44
2400	7.6276	1.494 × 10°	5000	1.7176	52.19
2500	7.1742	5.695 × 10°	5100	1.6109	40.82
2600	6.7555	2·327 × 10°	5200	1.5082	32.23
2700	6.3668	1.014 × 10°	5300	1.4094	25.67
2800	6.0066	4.682 × 10 ⁵	5400	1.3140	20.61
2900	5.6704	2.272 × 10 ⁵			1 _
3000	5.3563	2.272 × 10			

LOWER HEATS OF REACTION CO + $\frac{1}{2}{\rm O}_2$ = CO₂ ; $\Delta E_0 = -120163$ B.Th.U./lb. mol

T° F.	H_v	$H_{\mathfrak{p}}$	T° F. Abs.	H_v	$H_{\mathfrak{p}}$
7° F. Abs. 400 500 600 700 800 900 1000 1100 1200 41300 1500 1600 1700 1800 1900 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200	H_v 121041 105 121146 52 121198 8 121206 37 121169 71 121098 95 121003 106 120897 133 120764 142 120622 153 120469 163 120306 172 120134 180 119054 186 119054 186 119057 198 119577 198 119577 198 119579 201 119178 204 118974 208 118766 210 118550 213 118343 217 118126 218 117908 222 117086 223 117463 224 117239 226 117013 227 116786 228	121438 205 121643 151 121704 107 121901 63 121961 28 121992 5 121097 7 121990 34 121956 42 121914 54 121860 64 121796 73 121723 80 121643 87 121643 87 121644 98 121646 98 121366 102 121464 105 121159 108 121051 111 120940 114 120826 117 120709 119 120590 123 120467 123 120344 125 120219 127 120002 127		116329 230 116099 231 115868 232 115636 232 115404 233 115171 234 114937 234 114703 234 114469 235 114234 235 113999 236 113763 236 113527 237 113290 237 113053 237 112816 238 112340 239 112101 239 111623 237 111623 237 111390 235 111623 237 111390 235 110450 235 110450 235 110450 235 110450 235 110216 234 109982 233 100749 235	116442 135 116307 ₁₃₄ 116173 ₁₃₄ 116039 134

LOWER HEATS OF REACTION ${\rm H_2+{}^1_2O_2\!=\!H_2O}\;;\;\Delta E_0\!=\!-102899\;B.{\rm Th.U./lb.\;mol}$

T°F.	H_v	$H_{\mathbf{p}}$	T° F.	$H_{\mathfrak{r}}$	H_p
100 200 300 400 500 600 700 800 1000 1100 1200 1300 1400 1500 1600 1700 1890 2000 2100 2200 2300 2400 2500 2600 2700 2800 2900	H _v 103304 121 103425 135 103560 139 103693 136 103835 135 103970 134 104104 111 104215 108 104323 103 104426 93 104519 84 104603 75 104678 64 104742 55 104797 47 104844 38 104882 28 104910 19 104929 9 104938 1 104929 9 104938 1 104939 7 104932 10 104939 7 104932 10 104922 14 104908 17 104891 31 104860 32	H _p 103702 220 103922 234 104156 238 104394 236 104630 235 104865 233 105098 210 105308 207 105515 203 105718 192 105910 183 106093 175 106268 163 106431 154 106585 147 106732 137 106869 127 105996 119 107115 108 107223 100 107323 93 107416 89 107505 85 107590 83 107673 67 107740 67 107809 62	Aba. 3100 3200 3300 3400 3500 3500 3500 3500 4000 4100 4200 4300 4400 4500 4700 4800 4700 5000 5100 5200 5300 5400 5500 5700 5800 5000 5000 5000 5000 50	104791 41 104759 44 104706 52 104654 54 104609 56 104544 58 104486 62 104424 64 104360 65 104227 68 104227 68 104017 73 103944 75 103869 76 103793 78 103715 78 103637 79 103558 80 103478 80 103398 89 103318 81 103237	107871 58 107929 56 107985 47 108032 45 108077 44 108121 41 108162 37 108199 36 108235 34 108269 32 108301 31 108332 28 108360 28 108369 27 108415 24 108439 23 108402 22 108484 21 108505 20 108525 20 108545 20 108555 16 108601

LOWER HEATS OF REACTION ${}_2^1{\rm H}_2 + {\rm OH} {\rightarrow} {\rm H}_2{\rm O}$; $\Delta E_0 = -120420$ B.Th.U./lb. mol

LOWER HEATS OF REACTION ${}_{2}^{1}N_{2} + {}_{2}^{1}O_{2} \rightleftharpoons NO$; $\Delta E_{0} = 38520$ B.Th.U./lb. mol

	$\frac{1}{2}N_2 + \frac{1}{2}O_2 \rightleftharpoons NO$; $\Delta E_0 = 38520 \text{ B.1 h.0./ib. mor}$						
T° F.	$H_v = H_p$	T° F.	$H_{v} = H_{p}$	T° F. Abs.	$H_{\mathbf{v}} = H_{\mathbf{p}}$		
#* F. Abs. 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500	$H_v = H_p$ 38756 3 38759 5 38764 7 38771 9 38780 0 38780 2 38778 4 38774 2 38772 5 38777 7 38784 9 38793 10 38803 11 38814 12 38826 13 38839 14 38853 12 38865 11 38876 9 38885 5 38890 3	Abs. 3100 3200 3300 3400 3500 3600 3700 3800 3900 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600	38880 6 38874 6 38868 7 38861 7 38847 7 38847 7 38840 7 38833 8 38825 9 38816 9 38807 9 38798 10 38788 11 38777 11 38766 15 38736 16 38720 17 38736 16 38720 17 38666 18 38668 18 38660 19 38631 19 38612 20 38572 22		$H_v = H_p$ 38440 31 38409 31 38378 31 38347 32 38315 32 38283 32 38251 32 38187 32 38185 32 38185 32 38193 32 38090 32 38058 32 38096 32 37094 32 37062 32 37094 32 37988 31 37807 31 37836 31 37805 31 37805 31 37774 30 37714 30 37714 30 37714 30 37765 29 37626 29		
2700 2800 2900 3000	38893 ₂ 38895 ₃ 38892 ₆ 38886 ₆	5700 5800 5900 6000	38550 24 38526 27 38499 29 38470 30	8800 8900 9000	37597 ₂₄ 37573 ₂₃ 37550		

 $\begin{array}{c} \text{METHANE (CH_4)} \\ \text{CH}_4 + 2\text{O}_2 = \text{CO}_2 + 2\text{H}_2\text{O} \; ; \; \Delta E_0 = -345981 \; \text{B.Th.U./lb. mol} \end{array}$

T° F. Abs.	S	E	Н	$H_p = H_v$
400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2300 2400	42·153 1·618 43·771 1·578 45·349 1·477 46·826 1·347 48·173 1·247 49·420 1·194 50·614 1·155 51·769 1·118 52·887 1·086 53·973 1·055 55·028 1·030 56·058 1·007 57·065 0·987 58·052 0·968 59·020 0·943 59·963 0·929 60·802 0·915 61·807 0·903 62·710 0·891 63·601 0·879 64·480 0·868	2405 512 2917 691 3608 762 4370 811 5181 861 6042 927 6969 1004 7973 1077 9050 1148 10198 1215 11413 1284 12697 1350 14047 1417 15464 1480 16944 1546 18490 1612 20102 1678 21780 1742 23522 1805 25327 1868 27195 1927	3200 710 3910 890 4800 960 5760 1010 6770 1060 7830 1126 8956 1203 10159 1275 11434 1347 12781 1414 14195 1482 15677 1549 17226 1616 18842 1678 20520 1745 22265 1811 24076 1876 25952 1941 27893 2004 29897 2066 31963 2126	345446 350 345096 201 344895 190 344705 189 344516 182 344334 158 344176 114 344062 92 343970 50 343920 22 343898 7 343905 37 343942 65 344007 87 344094 118 344212 145 344357 170 344527 197 344724 231 344955 260 345215 286
2500	65-348	29122	34089 -	345501

ETHYLENE (C_2H_4) $C_2H_4 + 3O_2 = 2CO_2 + 2H_2O \; ; \; \Delta E_0 = -569936 \; \text{B.Th.U./lb. mol}$

C_2	$1_4 + 30_2 = 200_2$	$+2H_2O$; $\Delta E_0 = -$	- 5008800 D.III.O	./10. 11101
T° F.	S	E	Н	$H_{v} = H_{v}$
400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500	49·236 2·610 51·846 2·410 54·256 2·210 56·466 2·010 58·476 1·840 60·316 1·720 62·036 1·620 63·656 1·530 65·186 1·460 66·646 1·395 68·041 1·345 69·386 1·300 70·686 1·265 71·951 1·230 73·181 1·205 74·386 1·180 75·566 1·155 76·721 1·135 77·856 1·115 78·971 1·095 80·066 1·080 81·146	2084 1070 3154 1219 4373 1331 5704 1402 7106 1459 8565 1530 10095 1595 11690 1655 13345 1721 15066 1781 16847 1849 18696 1914 20610 1987 22597 2053 24650 2128 26778 2198 28976 2262 31238 2334 33572 2400 35972 2469 38441 2547 40988	2879 1268 4147 1418 5565 1529 7094 1601 8095 1658 10353 1729 12082 1794 13876 1853 15729 1920 17649 1980 19629 2047 21676 2113 23789 2186 25975 2251 28226 2327 30553 2397 32950 2460 35410 2533 37943 2599 40542 2667 43209 2746 45955	568965 61 569026 131 569157 144 569301 123 569424 106 569530 109 569639 113 569752 118 569870 130 570000 135 570135 148 570283 164 570447 186 570633 199 570832 229 571061 251 571312 266 571578 293 571871 323 572194 353 572547 390 572937

 $\begin{array}{c} {\rm BENZENE} \ \ (C_6 H_6) \\ C_8 H_6 + 7.5 O_2 = 6 CO_2 + 3 H_2 O \ ; \ \Delta E_0 = -1362548 \ B. Th. U./lb. \ mol \end{array}$

T° F.	S*	E*	H*	H_v	H_{p}
400 500 600 700 800 900 1000 1100	0 3-831 3-831 3-788 7-619 3-735 11-354 3-675 15-029 3-611 18-640 3-543 22-183 3-474 25-657 3-403	0 1525 1525 1885 3410 2228 5638 2557 8195 2870 11065 3168 14233 3448 17681 3715	0 1724 1724 2083 3807 2427 6234 2756 8990 3068 12058 3367 15425 3646 19071 3914 22985 4164	1363312 428 1362884 336 1362548 259 1362289 196 1362093 90 1362003 28 1362031 191 1362222 248	1362915 527 1362388 436 1361952 358 1361594 295 1361299 190 1361109 71 1361038 91 1361129 149 1361278 200
1300 1400 1500	20·060 3·332 32·302 3·258 35·650 3·185 38·835	21396 3965 25361 4200 29561 4418 33979	27149 4399 31548 4617 36165	1362470 399 1362869 504 1363373 596 1363969	1361278 300 1361578 404 1361982 497 1362479

^{*}Reckoned from 400° F. abs.

OCTANE (C₈H₁₈) $C_8H_{18} + 12.50_2 = 8CO_2 + 9H_2O \; ; \; \Delta E_0 = -2207422 \; \text{B.Th.U./lb. mol}$

	_	·			, ,			
T° F. Abs.	s	E		Н	H_{p}		H_{τ}	
400 500 600 1 700 1 800 1 900 1 1000 1200 1300	99·644 7·933 07·577 8·404 15·981 8·576 124·557 8·300 132·857 7·973 140·830 7·826 148·656 7·418 156·074 7·341 163·415 7·034 170·449 6·774 177·223 6·602 183·825 6·355 190·180 6·123 196·303 5·917 202·220 5·633 207·853 5·366 213·217 5·166 218·382 5·12 223·511 4·99 228·503 4·90 233·410 4·83 238·242	58644 88 67229 89 76166 99 85456 9 95096 9 104989 10 115134 10 125330 10 135566 10 145928 10 156729 11 179037	3	.88 4622 310 5574	2199116 2198142 2197720 2197675 2198749 2198775 2199723 2200845 2202087 2203454 2204959 43 2204959 43 2206500 2208070 2209495 2210753 2211926 221334 221480	1542 1576 1425 1256 1177 1177 1414 1467 1505	2209886 2211824 221388- 221608 221832 222258 222258 2222466 2222653 2222653 222866 223086	1641 1819 1938 1 2060 2 2237 3 2263 6 2122 8 1954 12 1868 10 2113 13 2159 10 2291 10 2418

TABLE OF $\frac{RT}{J}$ WHERE $\frac{R}{J} = 1.9869$

T° F. Abs.	$\frac{RT}{J}$	T° F. Abs.	$\frac{RT}{J}$	T° F. Abs.	$\frac{RT}{J}$
100	199	3100	6159	6100	12120
200	397	3200	6358	6200	12319
300	596	3300	6557	6300	12517
400	795	3400	6755	6400	12716
500	993	3500	6954	6500	12915
600	1192	3600	7153	6600	13114
700	1390	3700	7351	6700	13312
800	1589	3800	7550	6800	13511
იიი	1788	3900	7749	6900	13710
1000	1987	4000	7948	7000	13908
1100	2186	4100	8146	7100	14107
1200	2384	4200	8345	7200	14306
1300	2583	4300	8514	7300	14504
1400	2782	4400	8742	7400	14703
1500	2980	4500	8941	7500	14902
1600	3179	4G00	9140	7600	15100
1700	3378	4700	9338	7700	15299
1800	3576	4800	9537	7800	15498
1900	3775	4900	9736	7900	15697
2000	3074	5000	9935	8000	15895
2100	4172	5100	10133	8100	16094
2200	4371	5200	10332	8200	16293
2300	4570	5300	10531	8300	16491
2400	4768	5400	10729	8400	16690
2500	4967	5500	10928	8500	16889
2600	5166	5600	11127	8600	17087
2700	5365	5700	11325	8700	1 7 286
2800	5563	5800	11524	8800	17485
2900 -	5762	0003	11723	8900	17683
3000	5961	6000	11921	0000	17882

TABLE OF $\frac{R}{J} \log_e x = 1.9869 \times 2.30258 \times \log_{10} x = 4.575 \log_{10} x$

x	4.575 log16 x	x,	$4.575 \log_{10} x$
1.25	0.4434	8.50	4.2521
1.50	0.8056	8.75	4.3007
1.75	1-1119	9.00	4.3656
2.00	1.3772	9.25	4.4201
2.25	1.6112	9-50	4.4731
2.50	1.8206	9.75	4.5247
2.75	2.0000	10.00	4.5750
3.00	2.1828	10.25	4.6240
3.25	2.3419	10.50	4.6719
3.50	2-4891	10.75	4.7187
3.75	2.6262	11.00	4.7644
4.00	2.7544	11.25	4.8090
4.25	2.8749	11.50	4-8527
4.50	2.9884	11.75	4.8954
4.75	3.0059	12.00	4.9372
5.00	3-1978	12.25	4.0782
5.25	3-2947	12.50	5.0184
5.50	3.3871	12.75	5.0577
5.75	3.4755	13-00	5-0963
6 ∙00	3.5600	13.25	5.1341
6.25	3.6412	13.50	5.1713
6.50	3.7191	13.75	5-2077
6.75	3.7940	14.00	5.2435
7.00 *	3-8663	15.00	5.3806
7-25	3.9361	16.00	5.5088
7.50	4.0034	17.00	5.6293
7 .7 5	4.0685	18-00	5.7429
8.00	4-1316	19-00	5-8503
8.25	4-1928	20.00	5.9522