Fall 2022

Entiol Liko: Lab 5

enliko@student.ethz.ch

1 Naive Implementation

This implementation can be seen as the fast batch implementation but with batch size equal to 1. The implemented logic is the same in both cases.

1.1 Distance Gaussian

I calculated the squared distance between the pixel and all the other pixels by extending the dim of x by 1 with size equal to the total number of pixels. Thanks to this new matrix I can just substract the two matrixes x_{-} and X and then squaring, at the end I just sum over the dimension 1. I can use this new matrix to calculate the gaussian distance.

1.2 Update Point

I can calculate the shift for this specific pixel using the formula, where in the numerator I use matmult to calculate the multiplication between the distance and X and in the denominator I just sum over the distance vector.

2 Fast Implementation

The fast implementation is very similar the native implementation. Here we use batches of size 256 insead of a single pixel. The only important change here is the fact that we use the function cdist to calculate the distance between the batch and the matrix X and the fact that we are more careful when with the dimensions in the function update $point_batch$.

The results are the following:

Fast Implementation: 4.71 sec Slow Implementation: 14.66 sec Image Result:

