

Report No.: EED32L00168901 Page 1 of 98

TEST REPORT

Product : True Wireless Stereo Earphone

Trade mark : N/A

Model/Type reference : BTW-V2, SiFi, BTW-V1, BTW-105Q, BTW-106Q, BTW-107Q

Serial Number : N/A

Report Number : EED32L00168901

FCC ID : 2ADQABTW-V2

Date of Issue : Aug. 08, 2019

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

ShenZhen iFree Electronic Technology Co., Ltd. 7F, A9 Building, Tianrui Industiral Zone, No.35 Fuyuan 1st, Fuyong, Baoan, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Compiled by:

Alex Wu

Reviewed by:

Ware Xin

Kevin Yang

Date: Aug. 08, 2019 Check No:3096312708

Report Sea

2 Version

Version No.	Date	Description		
00	Aug. 08, 2019	Original		
-	- A			
(10)	52) (25)			

Page 3 of 98

3 Test Summary

rest Summary		75		
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	N/A	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS PASS PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013		
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013		
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013		
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

Model No:BTW-V2, SiFi, BTW-V1, BTW-105Q, BTW-106Q, BTW-107Q

Only the model BTW-V2, was tested, The add model and original model, electrical circuit design, layout, components used and internal wiring are identical, only model name is different.

For the left earphone and right earphone ,electrical circuit design ,PCB Layout is same ,only the cars is different.

Page 4 of 98

4 Content

1 COVER PAGE	
2 VERSION	2
3 TEST SUMMARY	
4 CONTENT	2
5 TEST REQUIREMENT	
5.1 Test setup	
6.1 CLIENT INFORMATION	
7 EQUIPMENT LIST	11
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	15
Appendix A): 20dB Occupied Bandwidth Appendix B): Carrier Frequency Separation Appendix C): Dwell Time Appendix D): Hopping Channel Number Appendix E): Conducted Peak Output Power Appendix F): Band-edge for RF Conducted Emissions Appendix G): RF Conducted Spurious Emissions Appendix H): Pseudorandom Frequency Hopping Sequence Appendix I): Antenna Requirement Appendix J): AC Power Line Conducted Emission Appendix K): Restricted bands around fundamental frequency (Radiated) Appendix L): Radiated Spurious Emissions	20 24 28 30 34 39 49 50 51
PHOTOGRAPHS OF TEST SETUP	90
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	92

Page 5 of 98

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

Page 6 of 98

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:	(0)	/	
Temperature:	24°C		
Humidity:	65% RH		
Atmospheric Pressure:	1010mbar	(3)	

5.3 Test Condition

Test Mode	Tv	RF Channel				
rest Mode	Тх	Low(L)	Middle(M)	High(H)		
GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 1	Channel 40	Channel79		
8DPSK(DH1,DH3, DH5)		2402MHz	2441MHz	2480MHz		
TX mode: The EUT transmitted the continuous modulation test signal at the specific channel(s).						

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of $\pi/4DQPSK$, 3-DH5 packet the power is the worst case of 8DPSK.

Page 7 of 98

6 General Information

6.1 Client Information

Applicant:	ShenZhen iFree Electronic Technology Co., Ltd.			
Address of Applicant: 7F, A9 Building, Tianrui Industiral Zone, No.35 Fuyuan 1st, Fuyo Shenzhen, China				
Manufacturer:	ShenZhen iFree Electronic Technology Co., Ltd.			
Address of Manufacturer: 7F, A9 Building, Tianrui Industiral Zone, No.35 Fuyuan 1st, Fuyong Shenzhen, China				
Factory:	ShenZhen iFree Electronic Technology Co., Ltd.			
Address of Factory:	7F, A9 Building, Tianrui Industiral Zone, No.35 Fuyuan 1st, Fuyong, Baoan, Shenzhen, China			

6.2 General Description of EUT

Product Name:	True Wireless Stereo Earphone			
Mode No:	BTW-V2, SiFi, BTW-V1, BTW-105Q, BTW-106Q, BTW-107Q			
Test Mode No:	BTW-V2			
Trade mark:	N/A			
EUT Supports Radios application:	BT 5.0 Single mode, 2402-2480MHz;			
Power Supply:	Battery 3.7V			
AC Adapter line:	N/A			
Sample Received Date:	Jun, 27, 2019			
Sample tested Date:	Jun, 27, 2019 to Jul. 29, 2019			

Report No. :EED32L00168901 Page 8 of 98

6.3 Product Specification subjective to this standard

Operation Frequency:		2402-248	80MHz					
Bluetooth	Version:	5.0						
Modulatio	n Technique:	Frequency Hopping Spread Spectrum(FHSS)						
Modulatio	n Type:	GFSK, π	GFSK, π/4DQPSK, 8DPSK					
Number of	f Channel:	79	(30))	(40)	\	(2)	
Hopping C	Channel Type:	Adaptive	Frequency Ho	pping systen	าร		160	
Hardware	Version:	N/A						
Software \	/ersion:	N/A						
Test Powe	er Grade:	N/A(man	ufacturer decla	are)	\	120	\	
Test Softw	vare of EUT:	N/A(man	ufacturer decla	are)		100)	
Antenna T	ype:	internal a	intenna					
Antenna G	Gain:	4.97dBi						
Test Volta	ge:	Battery 3	.7V		100		13	
Operation	Frequency ea	ch of channe	(62))	630		(6)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz	
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz	
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz	
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz	
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz	
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz	
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz	
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz	
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz	
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz	
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz	
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz	
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz	
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz	
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz	
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz	
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz	
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz	
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz	
20	2421MHz	40	2441MHz	60	2461MHz	(6.5)		

6.4 Description of Support Units

The EUT has been tested independently.

Page 9 of 98

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None

6.8 Other Information Requested by the Customer

None

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DC newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dedicted Courieus coniccion toet	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Page 11 of 98

7 Equipment List

RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020		
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020		
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020		
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020		
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020		
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020		
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020		
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020		
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020		
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020		
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019		

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 12 of 98

	3101 3	Semi/full-anecho		Cal data	Cal Dua data
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-22-2020
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	08-08-2018	08-07-2019
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-25-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line High-pass filter	Fulai(3M) Sinoscite	SF106 FL3CX03WG 18NM12-	5217/6A 	01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	0398-002 SPA-F- 63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Page 13 of 98

3M full-anechoic Chamber							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd- yyyy)	Cal. Due date (mm-dd-yyyy)		
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-17-2020		
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-25-2020		
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-25-2020		
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-25-2020		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021		
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021		
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021		
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021		
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021		
Communication Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020		
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021		
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021		
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	5-20-2020		
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020		
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-06-2020		
Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019		
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020		
Signal Generator	KEYSIGHT	E8257D	MY53401106	03-01-2019	02-28-2020		
Fully Anechoic Chamber	TDK	FAC-3	\	01-17-2018	01-15-2021		
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020		
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020		
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020		
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2019	01-08-2020		
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020		
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020		
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020		
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020		

Page 14 of 98

Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Temperature/ Humidity Indicator	Defu	TH128	1	06-14-2019	06-12-2020
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
LISN	R&S	ENV216	100098	05-08-2019	05-06-2020
LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020
Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020
Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020
ISN	TESEQ	ISN T800	30297	01-06-2019	01-15-2020
Barometer	changchun	DYM3	1188	06-20-2019	06-18-2020

Report No. :EED32L00168901 Page 15 of 98

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

est Nesults List.			1		
Test requirement	Test method	Test item	Test item Verdict		
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth PAS		SS Appendix A	
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)	
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)	
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)	
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)	
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)	
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)	
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)	
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)	
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS		
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)	
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)	

Page 16 of 98

Appendix A): 20dB Occupied Bandwidth

Test Result

Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Hz] Verdict	
GFSK	LCH	0.9608	0.87214	PASS	
GFSK	мсн	0.9593	0.86428	PASS	
GFSK	HCH	0.9598	0.86391	PASS	
π /4DQPSK	LCH	0.6973	0.81930	PASS	
π /4DQPSK	MCH	1.329	1.1890	PASS	
π /4DQPSK	HCH	1.336	1.1898	PASS	
8DPSK	LCH	0.6822	0.78024	PASS	
8DPSK	MCH	1.308	1.1832	PASS	
8DPSK	НСН	1.309	1.1842	PASS	

Page 17 of 98

Test Graph

Page 18 of 98

Page 19 of 98

Report No. :EED32L00168901 Page 20 of 98

Appendix B): Carrier Frequency Separation Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	1.006	PASS
GFSK	MCH	0.976	PASS
GFSK	HCH	0.974	PASS
π/4DQPSK	LCH	1.112	PASS
π/4DQPSK	MCH	0.820	PASS
π/4DQPSK	HCH	0.838	PASS
8DPSK	LCH	1.000	PASS
8DPSK	MCH	1.000	PASS
8DPSK	HCH	1.000	PASS

Page 21 of 98

Test Graph

Page 22 of 98

Page 23 of 98

Report No. :EED32L00168901 Page 24 of 98

Appendix C): Dwell Time

Result Table

Mode	Packet	Chann	Burst Width	Total	Dwell	Duty Cycle	Verdi
20	7	el	[ms/hop/ch]	Hops[hop*ch]	Time[s]	[%]	ct
GFSK	DH1	LCH	0.3838	320	0.123	0.31	PAS
OI OIL	Dill	LOIT	0.0000	320	0.120	0.51	S
							PAS
GFSK	DH1	MCH	0.3838	320	0.123	0.31	S
(6)	6)		(37)	(38)		(65)	PAS
GFSK	DH1	HCH	0.3838	320	0.123	0.31	S
							PAS
GFSK	DH3	LCH	1.64034	160	0.262	0.66	S
9			(6)) (6	(67)	(6	PAS
GFSK	DH3	MCH	1.64033	160	0.262	0.66	s
							PAS
GFSK	DH3	HCH	1.64034	160	0.262	0.66	S
(6)	7		(0.)	(0)		(82)	PAS
GFSK	DH5	LCH	2.8704	106.7	0.306	0.77	S
							PAS
GFSK	DH5	MCH	2.8704	106.7	0.306	0.77	S
	- 3	9	0	7	(0)	16	PAS
GFSK	DH5	HCH	2.8704	106.7	0.306	0.76	S

Page 25 of 98

Test Graph

Page 26 of 98

Page 27 of 98

Page 28 of 98

Appendix D): Hopping Channel Number

Result Table

Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Page 29 of 98

Test Graph

Report No. :EED32L00168901 Page 30 of 98

Appendix E): Conducted Peak Output Power Result Table

Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	1.580	PASS
GFSK	MCH	1.693	PASS
GFSK	HCH	1.684	PASS
π/4DQPSK	LCH	1.568	PASS
π/4DQPSK	MCH	4.053	PASS
π/4DQPSK	HCH	3.724	PASS
8DPSK	LCH	1.491	PASS
8DPSK	MCH	4.753	PASS
8DPSK	HCH	4.661	PASS

Page 31 of 98

Test Graph

Page 32 of 98

Page 33 of 98

Report No. :EED32L00168901 Page 34 of 98

Appendix F): Band-edge for RF Conducted Emissions

Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequenc y Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
OFOK	1.011	0400	1.371	Off	-59.402	-18.63	PASS
GFSK	LCH	2402	1.344	On	-59.762	-18.66	PASS
OFOL	11011	HCH 2480	1.442	Off	-58.192	-18.56	PASS
GFSK	нсн		1.702	On	-59.138	-18.3	PASS
/4B0B0K		H 2402	1.463	Off	-60.141	-18.54	PASS
π/4DQPSK	LCH		1.272	On	-59.909	-18.73	PASS
(4D 0 D 0) (0.400	1.429	Off	-47.531	-18.57	PASS
π/4DQPSK	HCH	2480	1.614	On	-54.429	-18.39	PASS
			1.416	Off	-59.674	-18.58	PASS
8DPSK	LCH	LCH 2402	1.501	On	-59.500	-18.5	PASS
an nav			1.390	Off	-51.569	-18.61	PASS
8DPSK	HCH	2480	1.701	On	-54.558	-18.3	PASS

Page 35 of 98

Page 36 of 98

Page 37 of 98

Page 38 of 98

Page 39 of 98

Appendix G): RF Conducted Spurious Emissions Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	1.386	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	1.551	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	HCH	1.488	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	1.436	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	MCH	1.445	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	НСН	1.314	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	1.413	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	1.607	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	1.367	<limit< td=""><td>PASS</td></limit<>	PASS

Page 40 of 98

Test Graph

Page 41 of 98

Page 42 of 98

Page 43 of 98

Page 44 of 98

Page 45 of 98

Page 46 of 98

Page 47 of 98

Page 48 of 98

Page 49 of 98

Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- · Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No. :EED32L00168901 Page 50 of 98

Appendix I): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the antenna is 4.97dBi

Page 51 of 98 Report No.: EED32L00168901

Appendix J): A	AC Power Line Conducted Emission
Test Procedure:	Test frequency range :150KHz-30MHz
	1)The mains terminal disturbance voltage test was conducted in a shielded room.
) (2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
(2)	3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
	4) The test was performed with a vertical ground reference plane. The rear of the

- The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Limit:

Fraguency range (MHz)	Limit (dBμV)					
Frequency range (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

NOTE: The lower limit is applicable at the transition frequency

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Product : True Wireless Stereo Earphone Model/Type reference BTW-V2

: 21℃ Humidity 54% **Temperature**

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	37.29	9.91	47.20	66.00	-18.80	peak	
2		0.2536	25.06	9.96	35.02	51.64	-16.62	AVG	
3	*	0.2850	39.01	9.99	49.00	60.67	-11.67	peak	
4		0.4696	32.82	9.89	42.71	56.52	-13.81	peak	
5		0.5056	15.73	9.90	25.63	46.00	-20.37	AVG	
6		1.1041	15.09	9.80	24.89	46.00	-21.11	AVG	
7		1.4686	31.32	9.77	41.09	56.00	-14.91	peak	
8		1.6801	12.76	9.75	22.51	46.00	-23.49	AVG	
9		5.6761	16.66	9.73	26.39	50.00	-23.61	AVG	
10		5.8831	32.04	9.73	41.77	60.00	-18.23	peak	
11		11.4001	10.95	9.89	20.84	50.00	-29.16	AVG	
12	1 1	25.5436	24.45	9.94	34.39	60.00	-25.61	peak	

Page 53 of 98

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.2850	44.96	9.99	54.95	60.67	-5.72	peak		
2		0.2850	30.65	9.99	40.64	50.67	-10.03	AVG		
3		0.4876	38.42	9.89	48.31	56.21	-7.90	peak		
4		0.4966	25.97	9.89	35.86	46.06	-10.20	AVG		
5		0.6631	34.57	9.90	44.47	56.00	-11.53	peak		
6		0.6631	20.30	9.90	30.20	46.00	-15.80	AVG		
7		0.8791	31.42	9.82	41.24	56.00	-14.76	peak		
8		0.9151	17.38	9.82	27.20	46.00	-18.80	AVG		
9		6.1216	27.70	9.74	37.44	60.00	-22.56	peak		
10		6.1216	10.98	9.74	20.72	50.00	-29.28	AVG		
11		15.1801	29.17	9.98	39.15	60.00	-20.85	peak		
12		15.9856	10.72	9.97	20.69	50.00	-29.31	AVG		

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. :EED32L00168901 Page 54 of 98

Appendix K): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak				
	Above 10H-	Peak	1MHz	3MHz	Peak				
	Above 1GHz	Peak	1MHz	10Hz	Average				
Test Procedure:	Below 1GHz test proce	dure as below:							
	a. The EUT was placed at a 3 meter semi-an determine the position. The EUT was set 3 means mounted on the c. The antenna height in determine the maximal polarizations of the anstenna was tuned table was turned from the test-receiver system and width with Maximal for the place a marker at the frequency to show containing the position.	echoic camber. The on of the highest rance of the highest rance of the first varied from one num value of the first varied from are set to remission, the EUT ed to heights from the first of the first varied to heights from the first varied to heights from the first varied to heights from the first varied was set to Permum Hold Mode. The end of the restrict varied was set to the first varied	ne table wandiation. The interfer Teight anter The interfer The interf	ence-receinna tower. our meters h. Both hor neasurement aged to its 4 meters to find the in Function a	of the second se				
	bands. Save the spe for lowest and highes Above 1GHz test proce g. Different between ab to fully Anechoic Cha	ctrum analyzer plo st channel dure as below: love is the test site amber and change	t. Repeat i , change fi form table	for each po rom Semi- e 0.8 meter	ower and modula Anechoic Cham to 1.5				
	meter(Above 18GHz the distance is 1 meter and table is 1.5 meter). h. b. Test the EUT in the lowest channel, the Highest channel								
	i. The radiation measu Transmitting mode, a j. Repeat above proced	rements are perfor and found the X ax	rmed in X, is position	Y, Z axis p ing which i	t is worse case.				
Limit:	Frequency	Limit (dBµV/	m @3m)	Rer	mark				
	30MHz-88MHz	40.0		Quasi-pe	eak Value				
		42.5		Ougai n					
	88MHz-216MHz	43.5)	Quasi-pe	eak Value				
	88MHz-216MHz 216MHz-960MHz	46.0		•	eak Value eak Value				
)	Quasi-pe					
	216MHz-960MHz	46.0		Quasi-pe	eak Value				

Page 55 of 98

Test plot as follows:

Mode:	GFSK Transmitting	Channel:	2402
Remark:			

Test Graph

Susp	pected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-42.44	50.21	53.39	74.00	20.61	Pass	Horizontal	Peak
2	2402.1464	32.26	13.31	-42.43	88.94	92.08	74.00	-18.08	Pass	Horizontal	Peak

Page 56 of 98

Mode: GFSK Transmitting Channel:	
	2402
	2.02

Test Graph

Susp	pected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-42.44	50.36	53.54	74.00	20.46	Pass	Vertical	Peak
2	2401.9086	32.26	13.31	-42.43	83.64	86.78	74.00	-12.78	Pass	Vertical	Peak

Page 57 of 98

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

Susp	pected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-42.44	38.40	41.58	54.00	12.42	Pass	Horizontal	Peak
2	2402.1464	32.26	13.31	-42.43	75.70	78.84	54.00	-24.84	Pass	Horizontal	Peak

Page 58 of 98

Mode:	GFSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

Suspected List Ant Cable Pream Freq. Reading Level Limit Margin NO gain Factor loss Result Polarity Remark [dBµV/m] [dBµV/m] [MHz] [dBµV] [dB] [dB] [dB] [dB] **Pass** Peak 2390.0000 32.25 13.37 -42.44 38.49 41.67 54.00 12.33 Vertical 1 **Pass** Peak 2 2402.0275 32.26 13.31 -42.43 71.55 74.69 54.00 -20.69 Vertical

Page 59 of 98

Mode:	GFSK Transmitting	Channel:	2480
Remark:			

Test Graph

Susp	Suspected List												
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2479.8185	32.37	13.39	-42.39	85.96	89.33	74.00	-15.33	Pass	Horizontal	Peak		
2	2483.5000	32.38	13.38	-42.40	49.24	52.60	74.00	21.40	Pass	Horizontal	Peak		

Page 60 of 98

Mode:	GFSK Transmitting	Channel:	2480
Remark:			

Test Graph

Susp	Suspected List												
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	2479.8185	32.37	13.39	-42.39	81.45	84.82	74.00	-10.82	Pass	Vertical	Peak		
2	2483.5000	32.38	13.38	-42.40	49.97	53.33	74.00	20.67	Pass	Vertical	Peak		

Page 61 of 98

Mada			
Mode:	GFSK Transmitting	Channel:	2480

Test Graph

Susp	pected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2480.0814	32.37	13.39	-42.40	75.50	78.86	54.00	-24.86	Pass	Horizontal	Peak
2	2483.5000	32.38	13.38	-42.40	36.81	40.17	54.00	13.83	Pass	Horizontal	Peak

Page 62 of 98

Test Graph

Susp	pected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2480.0375	32.37	13.39	-42.39	71.70	75.07	54.00	-21.07	Pass	Vertical	Peak
2	2483.5000	32.38	13.38	-42.40	36.78	40.14	54.00	13.86	Pass	Vertical	Peak

Page 63 of 98

Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:			

Suspected List Ant Cable Pream Freq. Reading Level Limit Margin NO Factor loss gain Result **Polarity** Remark [dBµV/m] [MHz] [dBµV] [dBµV/m] [dB] [dB] [dB] [dB] **Pass** Peak 1 2390.0000 32.25 13.37 -42.44 49.39 52.57 74.00 21.43 Horizontal 2 2401.9086 32.26 13.31 97.98 -23.98 Pass Peak -42.43 94.84 74.00 Horizontal

Page 64 of 98

itting Channel: 2402
inting Charmer 2402
0

Susp	pected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-42.44	49.64	52.82	74.00	21.18	Pass	Vertical	Peak
2	2401.9086	32.26	13.31	-42.43	90.27	93.41	74.00	-19.41	Pass	Vertical	Peak

Page 65 of 98

16.34	X - 6 10 1	/ A(S)	((()
Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

Susp	pected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-42.44	38.45	41.63	54.00	12.37	Pass	Horizontal	Peak
2	2402.1464	32.26	13.31	-42.43	78.29	81.43	54.00	-27.43	Pass	Horizontal	Peak

Page 66 of 98

200	1 20	/ 23	
Mode:	π/4DQPSK Transmitting	Channel:	2402
Remark:	AV		

Susp	pected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-42.44	38.64	41.82	54.00	12.18	Pass	Vertical	Peak
2	2402.1464	32.26	13.31	-42.43	77.00	80.14	54.00	-26.14	Pass	Vertical	Peak

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Page 67 of 98

Mode:	π/4DQPSK Transmitting	Channel:	2480	
Remark:				

Test Graph

Susp	pected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.8623	32.37	13.39	-42.39	89.65	93.02	74.00	-19.02	Pass	Horizontal	Peak
2	2483.5000	32.38	13.38	-42.40	49.52	52.88	74.00	21.12	Pass	Horizontal	Peak

Page	68	of	QQ.
raue	υo	OΙ	90

Mode:	π/4DQPSK Transmitting	Channel:	2480	
Remark:				

Test Graph

Susp	pected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.8185	32.37	13.39	-42.39	85.34	88.71	74.00	-14.71	Pass	Vertical	Peak
2	2483.5000	32.38	13.38	-42.40	49.09	52.45	74.00	21.55	Pass	Vertical	Peak

Page 69 of 98

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

Susp	pected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2480.0375	32.37	13.39	-42.39	78.15	81.52	54.00	-27.52	Pass	Horizontal	Peak
2	2483.5000	32.38	13.38	-42.40	36.80	40.16	54.00	13.84	Pass	Horizontal	Peak
	211		2485			0.15		500			

Page 70 of 98

Mode:	π/4DQPSK Transmitting	Channel:	2480
Remark:	AV		(0)

Test Graph

Susp	Suspected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2480.0814	32.37	13.39	-42.40	74.88	78.24	54.00	-24.24	Pass	Vertical	Peak
2	2483.5000	32.38	13.38	-42.40	36.80	40.16	54.00	13.84	Pass	Vertical	Peak
								A. C.			

Page 71 of 98

Mode:	8DPSK Transmitting	Channel:	2402		
Remark:					

Test Graph

Suspected List											
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-42.44	49.90	53.08	74.00	20.92	Pass	Horizontal	Peak
2	2401.9086	32.26	13.31	-42.43	92.55	95.69	74.00	-21.69	Pass	Horizontal	Peak

Page 72 of 98

Mode:	8DPSK Transmitting	Channel:	2402
Remark:			

Test Graph

Susp	pected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-42.44	49.96	53.14	74.00	20.86	Pass	Vertical	Peak
2	2402.0275	32.26	13.31	-42.43	85.29	88.43	74.00	-14.43	Pass	Vertical	Peak
2150						0-15C		100			

Page 73 of 98

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

Susp	Suspected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-42.44	38.40	41.58	54.00	12.42	Pass	Horizontal	Peak
2	2402.1464	32.26	13.31	-42.43	76.54	79.68	54.00	-25.68	Pass	Horizontal	Peak

Page 74 of 98

Mode:	8DPSK Transmitting	Channel:	2402
Remark:	AV		

Test Graph

Susp	Suspected List											
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390.0000	32.25	13.37	-42.44	38.64	41.82	54.00	12.18	Pass	Vertical	Peak	
2	2402.1464	32.26	13.31	-42.43	70.81	73.95	54.00	-19.95	Pass	Vertical	Peak	

Page 75 of 98

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	0		

Test Graph

Susp	Suspected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2480.0375	32.37	13.39	-42.39	87.94	91.31	74.00	-17.31	Pass	Horizontal	Peak
2	2483.5000	32.38	13.38	-42.40	50.00	53.36	74.00	20.64	Pass	Horizontal	Peak

Page 76 of 98

Mode:	8DPSK Transmitting	Channel:	2480
Remark:			

Test Graph

Susp	pected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.9499	32.37	13.39	-42.39	83.30	86.67	74.00	-12.67	Pass	Vertical	Peak
2	2483.5000	32.38	13.38	-42.40	49.40	52.76	74.00	21.24	Pass	Vertical	Peak

Page 77 of 98

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

		100			P						
Sus	Suspected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2480.0375	32.37	13.39	-42.39	74.20	77.57	54.00	-23.57	Pass	Horizontal	Peak
2	2483.5000	32.38	13.38	-42.40	36.83	40.19	54.00	13.81	Pass	Horizontal	Peak

Page 78 of 98

Mode:	8DPSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

Susp	Suspected List										
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2480.0375	32.37	13.39	-42.39	70.99	74.36	54.00	-20.36	Pass	Vertical	Peak
2	2483.5000	32.38	13.38	-42.40	36.77	40.13	54.00	13.87	Pass	Vertical	Peak

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, the 3-DH5 of data type is the worse case of 8DPSK modulation type in charge + transmitter mode.
- 2) As shown in this section, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Page 79 of 98

Appendix L): Radiated Spurious Emissions

Receiver	Setup:
----------	--------

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 10Uz	Peak	1MHz	3MHz	Peak
Above 1GHz	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

L	i	r	Υ	ı	i	t	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	- /	30-	300
0.490MHz-1.705MHz	24000/F(kHz)	- \	97) <u>-</u>	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total

peak emission level radiated by the device.

Radiated Spurious Emissions test Data:

Product : True Wireless Stereo Earphone Model/Type reference : BTW-V2

Temperature: 22 Humidity: 55%

Radiated Emission below 1GHz

Worse case n	node:	GFSK(1-DI	H5)	Test char	nnel:2402	Lowest	Remark: P	eak	57)
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
30.0000	10.50	0.63	-32.12	45.88	24.89	40.00	15.11	Pass	Н
75.2065	8.01	1.01	-32.06	45.00	21.96	40.00	18.04	Pass	Н
146.4116	7.42	1.43	-32.00	47.91	24.76	43.50	18.74	Pass	Н
208.8859	11.13	1.71	-31.94	46.68	27.58	43.50	15.92	Pass	Н
649.9890	19.40	3.10	-32.07	42.76	33.19	46.00	12.81	Pass	Н
997.9628	22.69	3.79	-30.69	37.73	33.52	54.00	20.48	Pass	Н
31.9402	10.58	0.64	-32.12	44.80	23.90	40.00	16.10	Pass	V
46.2006	13.20	0.76	-32.11	38.65	20.50	40.00	19.50	Pass	V
75.4976	7.96	1.01	-32.06	44.63	21.54	40.00	18.46	Pass	V
123.5174	8.67	1.31	-32.05	47.85	25.78	43.50	17.72	Pass	V
347.9008	14.25	2.22	-31.85	45.70	30.32	46.00	15.68	Pass	V
649.9890	19.40	3.10	-32.07	42.71	33.14	46.00	12.86	Pass	V

Worse case	mode:	GFSK(1-DI	H5)	Test char	nnel:2441	Middle	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
31.5522	10.56	0.64	-32.12	46.11	25.19	40.00	14.81	Pass	Н
54.8345	12.43	0.84	-32.09	40.89	22.07	40.00	17.93	Pass	Н
146.7027	7.43	1.43	-32.00	47.52	24.38	43.50	19.12	Pass	Н
208.8859	11.13	1.71	-31.94	46.32	27.22	43.50	16.28	Pass	Н
649.9890	19.40	3.10	-32.07	42.56	32.99	46.00	13.01	Pass	Н
999.0299	22.69	3.80	-30.68	36.68	32.49	54.00	21.51	Pass	Н
32.1342	10.59	0.64	-32.12	44.87	23.98	40.00	16.02	Pass	V
72.9753	8.43	0.99	-32.06	44.04	21.40	40.00	18.60	Pass	V
118.5699	9.44	1.29	-32.07	47.44	26.10	43.50	17.40	Pass	V
365.0715	14.63	2.28	-31.85	45.49	30.55	46.00	15.45	Pass	V
649.9890	19.40	3.10	-32.07	43.08	33.51	46.00	12.49	Pass	V
893.3863	22.02	3.59	-31.61	38.57	32.57	46.00	13.43	Pass	V

Page 80 of 98

Page 81 of 98

Worse case	mode:	GFSK(1-D	H5)	Test chan	nel:2480	Highest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
31.6492	10.57	0.64	-32.13	46.00	25.08	40.00	14.92	Pass	/ H
75.4005	7.97	1.01	-32.05	45.36	22.29	40.00	17.71	Pass	H)
145.2475	7.38	1.42	-32.00	46.67	23.47	43.50	20.03	Pass	H
208.8859	11.13	1.71	-31.94	46.17	27.07	43.50	16.43	Pass	Н
649.9890	19.40	3.10	-32.07	43.17	33.60	46.00	12.40	Pass	Н
988.1648	22.63	3.77	-30.80	36.62	32.22	54.00	21.78	Pass	Н
31.8432	10.57	0.64	-32.12	44.40	23.49	40.00	16.51	Pass	V
76.3706	7.79	1.02	-32.06	45.31	22.06	40.00	17.94	Pass	V
118.9579	9.38	1.29	-32.07	47.80	26.40	43.50	17.10	Pass	V
378.0708	14.92	2.31	-31.88	45.45	30.80	46.00	15.20	Pass	V
649.9890	19.40	3.10	-32.07	42.70	33.13	46.00	12.87	Pass	V
932.3842	22.29	3.66	-31.33	35.96	30.58	46.00	15.42	Pass	V

Worse case	mode:	π/4DQPSk	((2-DH5)	Test char	nnel:2402	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
30.6791	10.53	0.63	-32.12	45.94	24.98	40.00	15.02	Pass	Н
75.1095	8.03	1.01	-32.06	45.57	22.55	40.00	17.45	Pass	Н
145.4415	7.39	1.42	-32.00	47.47	24.28	43.50	19.22	Pass	€ H
208.8859	11.13	1.71	-31.94	46.41	27.31	43.50	16.19	Pass	Н
649.9890	19.40	3.10	-32.07	43.30	33.73	46.00	12.27	Pass	Н
2441	10.58	0.64	-32.12	44.73	23.83	40.00	16.17	Pass	V
73.6544	8.31	0.99	-32.06	45.22	22.46	40.00	17.54	Pass	V
119.1519	9.34	1.29	-32.06	47.68	26.25	43.50	17.25	Pass	V
376.6157	14.89	2.31	-31.89	50.39	35.70	46.00	10.30	Pass	V
649.9890	19.40	3.10	-32.07	43.50	33.93	46.00	12.07	Pass	V
995.6346	22.67	3.79	-30.72	35.79	31.53	54.00	22.47	Pass	V

Page 82 of 98

Worse case	mode:	π/4DQPSk	((2-DH5)	Test char	nnel:2441	Middle	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
31.7462	10.57	0.64	-32.12	46.25	25.34	40.00	14.66	Pass	H
55.3195	12.35	0.84	-32.07	40.91	22.03	40.00	17.97	Pass	H
146.7997	7.44	1.43	-32.00	46.74	23.61	43.50	19.89	Pass	H
208.8859	11.13	1.71	-31.94	46.03	26.93	43.50	16.57	Pass	Н
649.9890	19.40	3.10	-32.07	42.88	33.31	46.00	12.69	Pass	Н
987.8738	22.63	3.77	-30.80	36.97	32.57	54.00	21.43	Pass	Н
31.9402	10.58	0.64	-32.12	44.58	23.68	40.00	16.32	Pass	V
119.2489	9.33	1.30	-32.08	47.91	26.46	43.50	17.04	Pass	V
335.6776	13.98	2.18	-31.79	44.97	29.34	46.00	16.66	Pass	V
376.6157	14.89	2.31	-31.89	46.14	31.45	46.00	14.55	Pass	V
649.9890	19.40	3.10	-32.07	42.96	33.39	46.00	12.61	Pass	V

Worse case	mode:	π/4DQPSk	((2-DH5)	Test char	nel:2480	Highest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
30.8731	10.53	0.63	-32.11	45.80	24.85	40.00	15.15	Pass	Н
76.9527	7.68	1.02	-32.06	45.97	22.61	40.00	17.39	Pass	Н
146.3146	7.42	1.43	-32.00	47.38	24.23	43.50	19.27	Pass	H
208.8859	11.13	1.71	-31.94	46.20	27.10	43.50	16.40	Pass	S H
649.9890	19.40	3.10	-32.07	42.24	32.67	46.00	13.33	Pass	Н
987.8738	22.63	3.77	-30.80	36.55	32.15	54.00	21.85	Pass	Н
31.9402	10.58	0.64	-32.12	44.80	23.90	40.00	16.10	Pass	V
123.2263	8.72	1.31	-32.06	48.19	26.16	43.50	17.34	Pass	V
335.2895	13.98	2.18	-31.80	45.91	30.27	46.00	15.73	Pass	V
377.0037	14.89	2.31	-31.88	46.36	31.68	46.00	14.32	Pass	V
649.9890	19.40	3.10	-32.07	43.39	33.82	46.00	12.18	Pass	V
884.6555	21.92	3.56	-31.64	36.03	29.87	46.00	16.13	Pass	V

Page 83 of 98

Worse case	mode:	8DPSK(3-[DH5)	Test chan	nel:2402	Lowest	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
30.6791	10.53	0.63	-32.12	45.57	24.61	40.00	15.39	Pass	/ H
75.0125	8.05	1.01	-32.06	44.87	21.87	40.00	18.13	Pass	(H)
145.8296	7.40	1.42	-31.99	47.32	24.15	43.50	19.35	Pass	H
208.8859	11.13	1.71	-31.94	46.18	27.08	43.50	16.42	Pass	Н
649.9890	19.40	3.10	-32.07	42.32	32.75	46.00	13.25	Pass	Н
987.8738	22.63	3.77	-30.80	36.47	32.07	54.00	21.93	Pass	Н
32.0372	10.58	0.64	-32.12	44.88	23.98	40.00	16.02	Pass	V
73.3633	8.36	0.99	-32.06	44.84	22.13	40.00	17.87	Pass	V
118.4728	9.46	1.29	-32.07	47.48	26.16	43.50	17.34	Pass	V
335.9686	13.99	2.18	-31.80	45.59	29.96	46.00	16.04	Pass	V
376.9067	14.89	2.31	-31.88	46.60	31.92	46.00	14.08	Pass	V
649.9890	19.40	3.10	-32.07	41.78	32.21	46.00	13.79	Pass	V

Worse case	mode:	8DPSK(3-[DH5)	Test chan	nel:2441	Middle	Remark: Po	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
30.0000	10.50	0.63	-32.12	46.84	25.85	40.00	14.15	Pass	Н
76.8557	7.70	1.02	-32.07	45.39	22.04	40.00	17.96	Pass	Н
146.6057	7.43	1.43	-32.00	47.41	24.27	43.50	19.23	Pass	€ H
32.2312	10.59	0.64	-32.12	44.61	23.72	40.00	16.28	Pass	V
124.8755	8.47	1.31	-32.04	48.56	26.30	43.50	17.20	Pass	V
336.0656	13.99	2.18	-31.79	45.14	29.52	46.00	16.48	Pass	V
380.1080	14.96	2.32	-31.89	45.18	30.57	46.00	15.43	Pass	V
649.9890	19.40	3.10	-32.07	43.03	33.46	46.00	12.54	Pass	V
892.9983	22.02	3.59	-31.62	36.85	30.84	46.00	15.16	Pass	V

Page 84 of 98

Worse case	mode:	8DPSK(3-I	DH5)	Test chan	nel:2480	Highest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
30.0000	10.50	0.63	-32.12	46.78	25.79	40.00	14.21	Pass	/ H
131.7632	7.61	1.34	-32.01	46.50	23.44	43.50	20.06	Pass	(H)
146.2176	7.42	1.43	-32.01	47.43	24.27	43.50	19.23	Pass	H
208.8859	11.13	1.71	-31.94	46.32	27.22	43.50	16.28	Pass	Н
649.9890	19.40	3.10	-32.07	42.51	32.94	46.00	13.06	Pass	Н
906.4826	22.14	3.60	-31.52	36.83	31.05	46.00	14.95	Pass	Н
72.1992	8.58	0.98	-32.06	45.24	22.74	40.00	17.26	Pass	V
124.0024	8.60	1.31	-32.05	48.30	26.16	43.50	17.34	Pass	V
347.9008	14.25	2.22	-31.85	45.42	30.04	46.00	15.96	Pass	V
376.8097	14.89	2.31	-31.88	45.67	30.99	46.00	15.01	Pass	V
649.9890	19.40	3.10	-32.07	42.72	33.15	46.00	12.85	Pass	V
884.6555	21.92	3.56	-31.64	36.12	29.96	46.00	16.04	Pass	V

Page 85 of 98

Transmitter Emission above 1GHz

Worse case m	node:	GFSK(1-DI	H5)	Test chai	nnel:2402	Lowest	Remark: P	eak	
Frequency (MHz)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1797.0797	30.36	3.31	-42.70	57.39	48.36	74.00	25.64	Pass	Н
4333.8889	34.27	4.47	-40.86	51.86	49.74	74.00	24.26	Pass	Н
4804.0000	34.50	4.55	-40.66	44.70	43.09	74.00	30.91	Pass	Н
7206.0000	36.31	5.81	-41.02	45.41	46.51	74.00	27.49	Pass	Н
9608.0000	37.64	6.63	-40.76	45.00	48.51	74.00	25.49	Pass	Н
12010.0000	39.31	7.60	-41.21	43.79	49.49	74.00	24.51	Pass	Н
1132.8133	28.03	2.65	-42.78	59.63	47.53	74.00	26.47	Pass	V
2588.7589	32.54	4.10	-42.34	55.25	49.55	74.00	24.45	Pass	V
4804.0000	34.50	4.55	-40.66	46.11	44.50	74.00	29.50	Pass	V
7206.0000	36.31	5.81	-41.02	44.28	45.38	74.00	28.62	Pass	V
9608.0000	37.64	6.63	-40.76	45.04	48.55	74.00	25.45	Pass	V
12010.0000	39.31	7.60	-41.21	44.80	50.50	74.00	23.50	Pass	V

Worse case r	node:	GFSK(1-DI	H5)	Test chai	nnel:2441	Middle	Remark: P	eak	
Frequency (MHz)	Antenn a Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1998.0998	31.69	3.47	-42.62	58.37	50.91	74.00	23.09	Pass	Н
4341.6894	34.28	4.49	-40.87	50.22	48.12	74.00	25.88	Pass	Н
4882.0000	34.50	4.81	-40.60	45.09	43.80	74.00	30.20	Pass	Н
7323.0000	36.42	5.85	-40.91	44.38	45.74	74.00	28.26	Pass	Н
9764.0000	37.71	6.71	-40.62	44.77	48.57	74.00	25.43	Pass	Н
12205.0000	39.42	7.67	-41.16	45.64	51.57	74.00	22.43	Pass	Н
2598.1598	32.56	4.10	-42.34	55.78	50.10	74.00	23.90	Pass	V
4882.0000	34.50	4.81	-40.60	44.66	43.37	74.00	30.63	Pass	V
5303.7536	34.80	4.84	-40.58	50.52	49.58	74.00	24.42	Pass	V
7323.0000	36.42	5.85	-40.91	46.30	47.66	74.00	26.34	Pass	V
9764.0000	37.71	6.71	-40.62	44.57	48.37	74.00	25.63	Pass	V
12205.0000	39.42	7.67	-41.16	44.10	50.03	74.00	23.97	Pass	V

Page 86 of 98

Worse case m	ode:	GFSK(1-	DH5)	Test chan	nel:2480	Highest	Remark: P	eak	
Frequency (MHz)	Antenn a Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1123.4123	28.02	2.62	-42.76	56.35	44.23	74.00	29.77	Pass	Н
4338.4392	34.27	4.48	-40.86	51.95	49.84	74.00	24.16	Pass	WH.
4960.0000	34.50	4.82	-40.53	46.01	44.80	74.00	29.20	Pass	Н
7440.0000	36.54	5.85	-40.82	45.00	46.57	74.00	27.43	Pass	Н
9920.0000	37.77	6.79	-40.48	44.71	48.79	74.00	25.21	Pass	Н
12400.0000	39.54	7.86	-41.12	46.79	53.07	74.00	20.93	Pass	Н
1596.6597	29.04	3.07	-42.90	59.14	48.35	74.00	25.65	Pass	V
2591.9592	32.55	4.10	-42.34	56.42	50.73	74.00	23.27	Pass	V
4960.0000	34.50	4.82	-40.53	45.71	44.50	74.00	29.50	Pass	V
7440.0000	36.54	5.85	-40.82	45.24	46.81	74.00	27.19	Pass	V
9920.0000	37.77	6.79	-40.48	43.80	47.88	74.00	26.12	Pass	V
12400.0000	39.54	7.86	-41.12	45.30	51.58	74.00	22.42	Pass	V

Worse case mo	ode:	π/4DQP DH5)	SK(2-	Test char	nnel:2402	Lowest	Remark: P	Remark: Peak		
Frequency (MHz)	Antenn a Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis	
1794.4794	30.34	3.31	-42.70	57.72	48.67	74.00	25.33	Pass	Н	
2970.9971	33.15	4.46	-42.13	50.77	46.25	74.00	27.75	Pass	Н	
4804.0000	34.50	4.55	-40.66	46.02	44.41	74.00	29.59	Pass	Н	
7206.0000	36.31	5.81	-41.02	45.99	47.09	74.00	26.91	Pass	Н	
9608.0000	37.64	6.63	-40.76	44.80	48.31	74.00	25.69	Pass	Н	
12010.0000	39.31	7.60	-41.21	44.38	50.08	74.00	23.92	Pass	H	
1596.4596	29.04	3.07	-42.90	59.33	48.54	74.00	25.46	Pass	V	
2590.9591	32.55	4.10	-42.35	55.12	49.42	74.00	24.58	Pass	V	
4804.0000	34.50	4.55	-40.66	47.93	46.32	74.00	27.68	Pass	V	
7206.0000	36.31	5.81	-41.02	48.91	50.01	74.00	23.99	Pass	V	
9608.0000	37.64	6.63	-40.76	46.37	49.88	74.00	24.12	Pass	V	
12010.0000	39.31	7.60	-41.21	44.34	50.04	74.00	23.96	Pass	V	

Page 87 of 98

Worse case r	node:	π/4DQPSk	((2-DH5)	Test char	nnel:2441	Middle	Remark: Po	eak	
Frequency (MHz)	Antenn a Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1596.2596	29.04	3.07	-42.90	55.27	44.48	74.00	29.52	Pass	H
4340.3894	34.28	4.49	-40.87	51.91	49.81	74.00	24.19	Pass	
4882.0000	34.50	4.81	-40.60	44.91	43.62	74.00	30.38	Pass	Н
7323.0000	36.42	5.85	-40.91	45.94	47.30	74.00	26.70	Pass	Н
9764.0000	37.71	6.71	-40.62	44.83	48.63	74.00	25.37	Pass	Н
12205.0000	39.42	7.67	-41.16	45.03	50.96	74.00	23.04	Pass	Н
1598.6599	29.05	3.07	-42.90	59.15	48.37	74.00	25.63	Pass	V
2599.1599	32.56	4.10	-42.34	55.31	49.63	74.00	24.37	Pass	V
4882.0000	34.50	4.81	-40.60	45.22	43.93	74.00	30.07	Pass	V
7323.0000	36.42	5.85	-40.91	45.80	47.16	74.00	26.84	Pass	V
9764.0000	37.71	6.71	-40.62	43.88	47.68	74.00	26.32	Pass	V
12205.0000	39.42	7.67	-41.16	45.09	51.02	74.00	22.98	Pass	V

Worse case m	ode:	π/4DQPS DH5)	SK(2-	Test char	nnel:2480	Highest	Remark: P	eak	
Frequency (MHz)	Antenn a Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1794.6795	30.34	3.31	-42.70	57.20	48.15	74.00	25.85	Pass	Н
3007.1505	33.20	4.92	-42.12	51.29	47.29	74.00	26.71	Pass	Н
4960.0000	34.50	4.82	-40.53	45.48	44.27	74.00	29.73	Pass	Н
7440.0000	36.54	5.85	-40.82	44.70	46.27	74.00	27.73	Pass	Н
9920.0000	37.77	6.79	-40.48	44.16	48.24	74.00	25.76	Pass	Н
12400.0000	39.54	7.86	-41.12	45.48	51.76	74.00	22.24	Pass	H
2193.1193	31.97	3.65	-42.52	56.40	49.50	74.00	24.50	Pass	V
2590.5591	32.54	4.10	-42.34	54.91	49.21	74.00	24.79	Pass	V
4960.0000	34.50	4.82	-40.53	46.56	45.35	74.00	28.65	Pass	V
7440.0000	36.54	5.85	-40.82	45.24	46.81	74.00	27.19	Pass	V
9920.0000	37.77	6.79	-40.48	44.11	48.19	74.00	25.81	Pass	V
12400.0000	39.54	7.86	-41.12	45.85	52.13	74.00	21.87	Pass	V

Page 88 of 98

Worse case m	node:	8DPSK(3-I	DH5)	Test chan	nel:2402	Lowest	Remark: P	eak	
Frequency (MHz)	Anten na Factor (dB/m	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1799.6800	30.38	3.32	-42.71	58.26	49.25	74.00	24.75	Pass	Н
3282.7689	33.31	4.54	-41.95	50.51	46.41	74.00	27.59	Pass	Н
4804.0000	34.50	4.55	-40.66	44.86	43.25	74.00	30.75	Pass	Н
7206.0000	36.31	5.81	-41.02	44.68	45.78	74.00	28.22	Pass	Н
9608.0000	37.64	6.63	-40.76	45.62	49.13	74.00	24.87	Pass	Н
12010.0000	39.31	7.60	-41.21	45.73	51.43	74.00	22.57	Pass	Н
1075.8076	27.98	2.54	-42.70	60.64	48.46	74.00	25.54	Pass	V
4804.0000	34.50	4.55	-40.66	45.55	43.94	74.00	30.06	Pass	V
5301.1534	34.80	4.84	-40.58	51.43	50.49	74.00	23.51	Pass	V
7206.0000	36.31	5.81	-41.02	45.92	47.02	74.00	26.98	Pass	V
9608.0000	37.64	6.63	-40.76	44.46	47.97	74.00	26.03	Pass	V
12010.0000	39.31	7.60	-41.21	43.62	49.32	74.00	24.68	Pass	V

Worse case r	node:	8DPSK(3-E	DH5)	Test chani	nel:2441	Middle	Remark: P	eak	
Frequency (MHz)	Antenn a Factor (dB/m)	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1791.6792	30.33	3.31	-42.72	58.68	49.60	74.00	24.40	Pass	Н
2951.1951	33.12	4.40	-42.14	50.89	46.27	74.00	27.73	Pass	Н
4882.0000	34.50	4.81	-40.60	45.19	43.90	74.00	30.10	Pass	Н
7323.0000	36.42	5.85	-40.91	44.57	45.93	74.00	28.07	Pass	Н
9764.0000	37.71	6.71	-40.62	44.81	48.61	74.00	25.39	Pass	Н
12205.0000	39.42	7.67	-41.16	44.79	50.72	74.00	23.28	Pass	H
1890.2890	30.98	3.41	-42.67	56.47	48.19	74.00	25.81	Pass	V
3376.3751	33.35	4.54	-41.89	52.89	48.89	74.00	25.11	Pass	V
4882.0000	34.50	4.81	-40.60	44.91	43.62	74.00	30.38	Pass	V
7323.0000	36.42	5.85	-40.91	45.54	46.90	74.00	27.10	Pass	V
9764.0000	37.71	6.71	-40.62	44.82	48.62	74.00	25.38	Pass	V
12205.0000	39.42	7.67	-41.16	44.85	50.78	74.00	23.22	Pass	V

Page 89 of 98

Worse case m	ode:	8DPSK(3-E	DH5)	Test chan	nel:2480	Highest	Remark: P	eak	
Frequency (MHz)	Anten na Factor (dB/m	Cable Loss (dB)	Preamp Gain (dB)	Read Level (dBµV)	Level (dBµV/m)	Limit Line (dBµV/m)	Over Limit (dB)	Result	Antenna Polaxis
1799.2799	30.38	3.32	-42.72	57.07	48.05	74.00	25.95	Pass	Н
1994.8995	31.67	3.46	-42.61	56.18	48.70	74.00	25.30	Pass	Н
4960.0000	34.50	4.82	-40.53	44.77	43.56	74.00	30.44	Pass	Н
7440.0000	36.54	5.85	-40.82	44.39	45.96	74.00	28.04	Pass	Н
9920.0000	37.77	6.79	-40.48	44.17	48.25	74.00	25.75	Pass	Н
12400.0000	39.54	7.86	-41.12	45.70	51.98	74.00	22.02	Pass	Н
1084.2084	27.98	2.54	-42.70	60.25	48.07	74.00	25.93	Pass	V
1594.6595	29.02	3.07	-42.89	61.00	50.20	74.00	23.80	Pass	V
4960.0000	34.50	4.82	-40.53	46.35	45.14	74.00	28.86	Pass	V
7440.0000	36.54	5.85	-40.82	44.38	45.95	74.00	28.05	Pass	V
9920.0000	37.77	6.79	-40.48	44.03	48.11	74.00	25.89	Pass	V
12400.0000	39.54	7.86	-41.12	44.84	51.12	74.00	22.88	Pass	V

Note:

- 1) Through Pre-scan transmitter mode with all kind of modulation and all kind of data type, find the 1-DH5 of data type is the worse case of GFSK modulation type, the 2-DH5 of data type is the worse case of $\pi/4DQPSK$ modulation type, he 3-DH5 of data type is the worse case of 8DPSKmodulation type in transmitter mode.
- 2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. H owever, the peak field strength of any emission shall not exceed the maximum permitted average limits specifie d above by more than 20 dB under any condition of modulation. So, only the peak values are measured.
- 3) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

4) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

