Chapter 4_part 2

Functions with a real variable

(Comparison - Continuity)

4.3. Comparison of functions

Let f, gtwo functions be defined in the neighborhood of a point a.

Definition 11. (Equivalence)

We say that f is equivalent to g in the neighborhood of a, we note $f \sim g$, if:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1.$$

Important examples. Equivalences in the neighborhood of a = 0:

$$e^x \sim x + 1$$
 , $\ln(x + 1) \sim x$, $\sin x \sim x$, $\cos x \sim 1 + \frac{x^2}{2}$, $\tan x \sim x$

Theorem 3.

- 1) If $f \sim g$ in the neighborhood of a, then: $\lim_{x \to a} f(x)$ existe $\iff \lim_{x \to a} g(x)$ existe. In this case the limits are equal.
- **2)** If $f_1 \sim g_1$ and $f_2 \sim g_2$ in the neighborhood of a, then: $f_1 \times f_2 \sim g_2 \times g_1$ and $\frac{f_1}{f_2} \sim \frac{g_2}{g_1}$.
- 3) If $\lim_{x\to b} \varphi(x) = a$ and $f\sim g$ in the neighborhood of a, then: $f\circ\varphi\sim g\circ\varphi$ in the neighborhood of b.

Remark. The sum of equivalent functions is not always equivalent.

For example: $x^2 + x \sim -x$ and $x \sim x$ in the vicinity of a = 0, on the other hand $x^2 \nsim 0$.

Definition 11. (Negligible)

We say that f is negligible in g the neighborhood of a, we note f = o(g), if:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0.$$

Important examples. In the neighborhood of a=0, we have: $e^x-1=o(x+1)$, $\ln x=o\left(\frac{1}{x}\right)$

In the neighborhood of $a = +\infty$, we have: $x = o(e^x)$, $\ln x = o(x)$

Exercise: Demonstrate the general case for $\alpha, \beta, \gamma \in \mathbb{R}$

- $|\ln x|^{\alpha} = o\left(\frac{1}{x^{\beta}}\right)$, au voisinage de a = 0.
- $(\ln x)^{\alpha} = o(x^{\beta})$, au voisinage de $a = +\infty$
- $x^{\beta} = o(e^{\gamma x})$, au voisinage de $a = +\infty$

Proposition 7. We have the following properties:

- **1)** If f = o(g) so f = o(h) what f = o(h).
- **2)** If $f_1 = o(g_1)$ and $f_2 = o(g_2)$, then : $f_1 \times f_2 = o(g_1g_2)$.
- 3) If $f_1 = o(g)$ and $f_2 = o(g)$, then : $f_1 + f_2 = o(g)$.
- **4)** If = o(g) then $: \frac{1}{g} = o(\frac{1}{f})$.

Noticed. The sum and division of negligible functions is not always negligible.

For example: $x^2 = o(x)$ and $-x^3 = o(-x + x^2)$ in the neighborhood of a = 0, on the other hand $x^2 - x^3 \neq o(x^2)$.

Definition 12. (Dominated – Landou notation)

• We say that f is dominated by g in the neighborhood of , we note $f = \mathbf{0}(g)$, if:

$$\exists d, K \in \mathbb{R}_+^* \colon |x - a| < d \Longrightarrow |f(x)| \le K|g(x)|.$$

• It is said that f is dominated by g in $+\infty$, if:

$$x > N \Longrightarrow |f(x)| \le C|g(x)|$$

Examples in computer science.

In analyzing an **algorithm**, we can find that the time (counted as he number of steps) necessary in order to of solve a problem issue of size n East given by

$$T(n) = 4 n^2 - 2 n + 2.$$

In ignorant the constants (this Who East based because they depend of material particular on which THE program executes) and the terms Who grow the more slowly, we could say

"
$$T(n)$$
 grows as n^2 " Or " $T(n)$ East of the order of n^2 "

And We we would write : $T(n) = O(n^2)$.

is a list of categories of functions that are used in algorithm analyzes . They are listed in order of growth from slowest to fastest.

rating	complexity
0(1)	constant
$O(\log n)$	logarithmic
$O((\log n)^c)$	poly logarithmic
O(n)	linear
$O(n \log n)$	"quasi-linear"
$O(n^2)$	quadratic
$O(n^c)$	polynomial
$O(c^n)$	exponential
O(n!)	factorial

4.4. Continuity.

Definition 13. Let be an interval I of \mathbb{R} , a point $a \in I$ and a function $f: I \to \mathbb{R}$.

• We say that *f* is **continuous** in *a* if :

$$\lim_{x \to a} f(x) = f(a)$$

In other words:

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D : |x - a| < \delta \implies |f(x) - f(a)| < \varepsilon$$

- We say that f is continuous on I if f is continuous at every point of I.
- We note by $\mathcal{C}(I,\mathbb{R})$ all the functions defined and continued on I In \mathbb{R} .

Example. The function f defined on \mathbb{R} by

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) &, & x \neq 0 \\ 0 &, & x = 0 \end{cases}$$

Is continuous at the point a=0. In fact, we have: $|f(x)-f(a)|=\left|x\sin\left(\frac{1}{x}\right)\right|\leq |x|$.

So you just have to choose $\delta = \varepsilon$.

Remarks.

- 1) We can replace the limit in the definition with the following: $\lim_{h\to 0} f(a+h) = f(a)$
- 2) The sum, product and quotient of continuous functions is a continuous function.
- 3) A function that is not continuous is called "discontinuous".

Example.

- The usual functions are continuous over the definition domain: x^n , $\ln x$, e^x , $\cos x$, $\sin x$, $\tan x$
- The integer part function E(x) is not continuous at integer points $a \in \mathbb{Z}$. It is continuous at every point $a \in \mathbb{R} \setminus \mathbb{Z}$.

Proposition 8. If f is continuous in $a \in I$ and if $f(a) \neq 0$, then: $\exists \delta > 0, \forall x \in [a - \delta, a + \delta[t, q, f(x) \neq 0]]$

Proposition 9. Let two intervals I, J of \mathbb{R} , a point $a \in I$ and two functions $f: I \to J$, $g: J \to \mathbb{R}$.

If f is continuous in a and g is continuous in f(a), then $g \circ f$ is continuous in a.

Definition 14. Let be an interval I of \mathbb{R} , a point $a \in I$ and a function $f: I \to \mathbb{R}$.

• We say that f is **continuous to the right** in a if $\lim_{\substack{x \to a \\ x \to a}} f(x) = f(a)$

In other words:
$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D : 0 < x - a < \delta \implies |f(x) - f(a)| < \varepsilon$$

• We say that f is **continuous to the** left a if $\lim_{\substack{x \to a}} f(x) = f(a)$

In other words:
$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in D : \delta < x - a < 0 \implies |f(x) - f(a)| < \varepsilon$$

Proposition 10. f is continuous in $a \in I \Leftrightarrow f$ continuous to the right and to the left in a.

Example. The function f defined on \mathbb{R} by

$$f(x) = \begin{cases} x - 1 & , & x \ge 0 \\ x + 1 & , & x < 0 \end{cases}$$

is continuous to the right at a=0, but is not continuous to the left so it is not continuous at "0".

In fact, we have:

$$\lim_{\substack{x \\ x \to 0}} f(x) = -1 = f(0) \qquad , \qquad \lim_{\substack{x \\ x \to 0}} f(x) = 1 \neq f(0)$$

Example. The integer part function E(x) is not right continuous at all integer $a \in \mathbb{Z}$ points , but it is not left continuous at these points.

Definition 15. Let the interval I of \mathbb{R} , $a \in I$ and $f: I \setminus \{a\} \to \mathbb{R}$. If f admits a finite limit ℓ in a, we call **extension by continuity** of f in athe function \tilde{f} defined by:

$$\tilde{f}(x) = \begin{cases} f(x) & \text{si} \quad x \neq a \\ \ell & \text{si} \quad x = a \end{cases}$$

In this case, the function \tilde{f} is continuous in I.

Example. For $f(x) = x \sin\left(\frac{1}{x}\right)$ which is defined on \mathbb{R}^* , we have $\lim_{x\to 0} f(x) = 1$.

Therefore f is extendable by continuity in "0", and its extension is given by:

$$\tilde{f}(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) &, & x \neq 0 \\ 0 &, & x = 0 \end{cases}$$

The function \tilde{f} is continuous in a=0 because $\lim_{x\to 0} \tilde{f}(x) = \tilde{f}(0)$.

Proposition 11. Let $f: I \to \mathbb{R}$ a function and $a \in I$. So f is continuous in a iff for every sequence $(x_n)_{n \in \mathbb{N}}$ converges to , we have $(f(x_n))_{n \in \mathbb{N}}$ converged to f(a). ie .

$$\lim_{x \to a} f(x) = f(a) \iff \forall (x_n)_{n \in \mathbb{N}} \subset D \text{ tel que } \lim_{n \to +\infty} x_n = a \text{ on a } \lim_{n \to +\infty} f(x_n) = f(a)$$

Noticed. To show that a function is not continuous at , it suffices to find a sequence $(x_n)_{n\in\mathbb{N}}$ which converges to a but $\lim_{n\to+\infty} f(x_n) \neq f(a)$.

Example. Let the function f be defined \mathbb{R} by:

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & , & x \neq 0 \\ 0 & , & x = 0 \end{cases}$$

The function f is not continuous in a=0. Indeed, we have for the sequence of general terms $x_n=\frac{2}{(2n+1)\pi}$ which tend towards 0:

$$\lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} \sin\left((2n+1)\frac{\pi}{2}\right) = 1 \neq 0 = f(0)$$

Intermediate Value Theorems (IVT):

Theorem 4. Consider f a function defined and continuous on an interval [a, b]. Then, For every g between g and g and g and g between g and g

Corollary 1. If f is a continuous and strictly monotonic function on [a, b], then for all real k numbers between f(a) and f(b), the equation f(x) = k has a unique solution in [a, b].

Corollary 2. If f is continuous on [a, b] and $f(a) \cdot f(b) < 0$, then it exists $c \in [a, b]$ such that f(c) = 0. If moreover f is strictly monotonic on [a, b] the number "c" is unique.

Corollary 3. If f is a continuous function on an interval I, then f(I) is an interval.

Theorem 5. If f is a continuous function on an interval [a, b] then:

$$f([a, b]) = [m, M]$$
 , such that $m = \min f$, $M = \max f$.

Example. The function $f(x) = x^3 - 2x + 2$ is defined and continues on \mathbb{R} , therefore on the interval [-2,1]. On the other hand, we have: f(-2).f(1) = -2 < 0. Then the equation f(x) = 0 admits at least one solution on [-2,1]. To calculate an approximate value of this solution we apply the dichotomy method, we find that c = -1.76929.

Corollary 4. If f is a continuous function on an interval I = [a, b] we have:

- If f is increasing, then ([a, b]) = [f(a), f(b)].
- If f is decreasing, then ([a, b]) = [f(b), f(a)].

Approximation of continuous functions.

The Stone-Weierstrass theorem makes it possible to uniformly approximate continuous functions over a segment by simpler functions (polynomials, staircase functions, piecewise affine functions).

Theorem 7. (Stone-Weierstrass)

Let be $f:[a,b] \to \mathbb{R}$ a continuous function and let $\varepsilon > 0$. Then there exists a polynomial P such that:

$$\forall x \in [a, b]: |f(x) - P(x)| \le \varepsilon$$

In other words, any continuous function is uniform limit of polynomials.

Theorem 8. Let be $f: [a, b] \to \mathbb{R}$ a continuous function and $\varepsilon > 0$. Then there exists a staircase function $h: [a, b] \to \mathbb{R}$ such as: $\forall x \in [a, b]: |f(x) - h(x)| \le \varepsilon$

Theorem 9. Let be $f: [a, b] \to \mathbb{R}$ a continuous function and $\varepsilon > 0$. Then there exists an affine function $g: [a, b] \to \mathbb{R}$ such as: $\forall x \in [a, b]: |f(x) - g(x)| \le \varepsilon$

Theorem of reciprocal functions:

Theorem 6. Let f a function defined on an interval I. Si f be **continuous** and **strictly monotonic** on I, then:

- 1) The function f is bijective from I in the interval J = f(I). So it admits an inverse function defined on I = f(I).
- 2) reciprocal f^{-1} function is continuous and strictly monotonic on J and it has the same sense of monotonicity as .

Noticed. In practice, if f is not monotonic on I we divide the interval I in to subintervals on which the function f is strictly monotonic.

Example. The restriction on \mathbb{R}^+ the function $x \to x^n$ is continuous and strictly increasing on \mathbb{R}^+ , the image of zero is zero and the limit $+\infty$ is $+\infty$.

So the inverse function is defined by $\mathbb{R}^+ \to \mathbb{R}^+$: $y \to \sqrt[n]{y}$

$$\begin{cases} y \in \mathbb{R}^+ \\ x = \sqrt[n]{y} \\ \end{cases} \Leftrightarrow \begin{cases} x \in \mathbb{R}^+ \\ y = x^n \end{cases}$$

Example. The function $f o x^2 + 3$ is a bijection of $]-\infty,0]$ on $[3,+\infty[$ and has a reciprocal application that we seek to determine by solving, for y in $[3,+\infty[$, the equation $x^2 + 3 = y$, or again $x^2 = y - 3$. Since $y \ge 3$, this equation has two solutions, only one of which belongs to the interval $]-\infty,0]$ it is $x = -\sqrt{y-3}$. So the reciprocal of f is f^{-1} defined by $f^{-1}(y) = -\sqrt{y-3}$.

Table of usual reciprocal functions.

Function $f(x)$	Departure and arrival	Function reciprocal	Departure and arrival	Notes
$f(x) = x^n$	$[0,+\infty[\to [0,+\infty[$	$f^{-1}(x) = \sqrt[n]{x}$	$[0, +\infty[\to [0, +\infty[$	$n \in \mathbb{N}^*$
$f(x) = e^x$	$\mathbb{R} \to [0, +\infty[$	$f^{-1}(x) = \ln x$	$]0, +\infty[\rightarrow \mathbb{R}$	
$f(x)=a^x$	$\mathbb{R} \to [0, +\infty[$	$f^{-1}(x) = \log x$	$]0, +\infty[\rightarrow \mathbb{R}$	$a \in \mathbb{R}^+$
$f(x) = x^{\alpha}$	$]0,+\infty[\to]0, +\infty[$	$f^{-1}(x) = x^{\frac{1}{\alpha}}$	$]0, +\infty[\rightarrow]0, +\infty[$	$a \in \mathbb{R}^*$
$f(x) = \sin x$	$\left[-\frac{\pi}{2}, +\frac{\pi}{2}\right] \to [-1, 1]$	$f^{-1}(x) = \arcsin(x)$	$[-1, 1] \rightarrow \left[-\frac{\pi}{2}, +\frac{\pi}{2}\right]$	
$f(x) = \cos x$	$[0,\pi] \to [-1, 1]$	$f^{-1}(x) = \arccos(x)$	$[-1, 1] \rightarrow [0, \pi]$	
$f(x) = \tan x$	$\left[-\frac{\pi}{2}, +\frac{\pi}{2}\right] \to \mathbb{R}$	$f^{-1}(x) = \operatorname{arct} g(x)$	$\mathbb{R} \to \left[-\frac{\pi}{2}, +\frac{\pi}{2} \right]$	