Lecture 6

期望与方差-I

Probability and Statistics Beihang University

6.1 随机变量的期望

离散随机变量及其函数的期望

离散随机变量可取至多可数个不同的实数, 因此它以写成有 限或可数求和

$$X(\omega) = \sum_{i} x_{i} I_{A_{i}}(\omega)$$
 (6.1)

这里 $\bigcup_i A_i$ 是慨率空间的划分 . 例如若 x_i 是互不相同的,可以将 概率空间划分为 $A_i = \{\omega : X(\omega) = x_i\}$ 的并集 . $I_A(\omega)$ 是集合 A 上的指示函数,

$$I_{A}\left(\omega
ight)=\left\{egin{array}{ll} 1, & \omega\in A \ 0, & \omega\in A^{c} \end{array}
ight..$$

如果 X 仅取有限个值, 那么我们称 X 是**简单随机变量**.

定义 6.1.1 假设 X 是 (Equation 6.1) 中的离散随机变量. 定义如

2

下"加权平均值"

$$\sum_{i} x_{i} \cdot P(A_{i}) = x_{1}P(A_{1}) + x_{2}P(A_{2}) + x_{3}P(A_{3}) + \cdots$$

如果这个求和是绝对收敛的, 那么我们把这个求和称为 X 的期望, 并且记作

$$E(X) = \sum_{i} x_{i} \cdot P(A_{i}) = \sum_{i} x_{i} \cdot P(X = x_{i})$$

注意 E(X) 的定义仅仅依赖于 X 的分布, 因此如果 X, Y 具有相同分布, 那么 E(X) = E(Y) .

定理 6.1.1 假设 g(x) 是实数空间上某函数, X 是 (*Equation* 6.1) 中的离散随机变量. 那么 Y = g(X) 的期望是 (如果该求和绝对

收敛)

$$E(Y) = \sum_{i} g(x_i) \cdot P(X = x_i)$$

■ 事实上

$$Y(\omega) = \sum_{i} g(x_i) \cdot I_{A_i}(\omega),$$

而 $\bigcup_i A_i = \bigcup_i \{X = x_i\}$ 形成慨率空间的划分,因此由定义可知 Y 的期望是

$$\sum_{i} g(x_{i}) \cdot P(A_{i}) = \sum_{i} g(x_{i}) \cdot P(X = x_{i}).$$

h,

4

离散随机变量在概率空间的积分可以通过下图来理解

$$P(\omega : X(\omega) = x_i) = P(\delta_{i,1}) + P(\delta_{i,2}) + P(\delta_{i,3})$$

Figure 6.1: 简单随机变量积分示意图

连续型随机变量及其函数的期望

我们已经知道如何求简单随机变量的积分. 为了求连续型随机变量的积分, 我们将用简单随机变量来近似连续型随机变量, 进而用简单随机变量的积分来近似连续型随机变量的积分.

给定随机变量 X, 将其取值空间 \mathbb{R} 分割为互不相交的小区间 $B_i = [x_i, x_{i+1}), \bigcup_i B_i = \mathbb{R}$. 小区间的度量为

$$|B_i| = \Delta x_i = x_{i+1} - x_i.$$

如果划分充分细小, 我们可以认为随机变量 X 在 B_i 上近似地取常数值 $x_i \in B_i$. 例如, 如果 $X \ge 0$, 可取 $B_i = \left[\frac{i}{2^n}, \frac{i+1}{2^n}\right)$, 令

$$X_{n}\left(\omega\right) = \left\{ \begin{array}{l} \frac{i}{2^{n}}, & X\left(\omega\right) \in \left[\frac{i}{2^{n}}, \frac{i+1}{2^{n}}\right), 0 \leqslant i \leqslant n2^{n} - 1 \\ n, & X\left(\omega\right) \geqslant n \end{array} \right.$$

那么 X_n 是一列收敛 $(n \to \infty)$ 到 X 的简单随机变量.

注意, 如果 $\bigcup_i B_i$ 是 \mathbb{R} 的一个划分, 令 $\Omega_i = \{\omega : X(\omega) \in B_i\}$, 那么 $\bigcup_i \Omega_i$ 是 Ω 的一个划分.

一般随机变量在概率空间的积分可以通过下图来理解

Area \approx base · height $\approx P(\omega : X(\omega) \in B_i) \cdot x_i$

Figure 6.2: 随机变量积分示意图

因此我们只需要对简单随机变量 X_n 计算积分, 而 X_n 的积分 (参见Figure 6.2):

$$E(X_n) = \sum_{i} P(X_n = x_i) \cdot x_i = \sum_{i} P(X \in B_i) \cdot x_i$$

如果 X 的密度函数为 f(x), 那么

$$E(X_n) = \sum_{i} P(X \in B_i) \cdot x_i$$

$$= \sum_{i} \int_{-\infty}^{\infty} I_{B_i}(x) f(x) dx \cdot x_i$$

$$= \int_{-\infty}^{\infty} \left(\sum_{i} x_i I_{B_i}(x) \right) f(x) dx$$

$$= \int_{-\infty}^{\infty} \left(\sum_{i} x_i I_{B_i}(x) \right) f(x) dx$$

8

当 $n \to \infty$, 划分 $\bigcup_i B_i$ 变得越来越细,

$$\sum_{i} x_{i} I_{B_{i}}(x) \to x$$

并且

$$E(X_n) \to \int_{-\infty}^{\infty} x f(x) dx$$

因而我们有

定义 6.1.2 假设随机变量 X 的密度函数为 f(x), 如果存在 (绝对收敛) 积分

$$\int_{-\infty}^{\infty} x f(x) \, dx$$

那么把它称为X的期望,并记作

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx$$

9

定理 6.1.2 假设 g(x) 是实数空间上某函数, X 是以 f(x) 为密度函数的连续型随机变量. 那么 Y = g(X) 的期望是 (如果该积分绝对收敛)

$$E(Y) = \int_{-\infty}^{\infty} g(x)f(x) dx$$

■ 如同前面, 将 g(x) 取值空间 \mathbb{R} 分割为互不相交的小区间 $B_i = [y_i, y_{i+1}), \bigcup_i B_i = \mathbb{R}$. 小区间的度量为

$$|B_i| = \Delta y_i = y_{i+1} - y_i.$$

令 $C_i = g^{-1}(B_i)$. 于是 Y 可以由 $\bigcup_i C_i$ 上的简单随机变量 Y_n 近似 (参见Figure 6.3) 而 E(Y) 可以用 $E(Y_n)$ 来近似

$$E(Y_n) = \sum_{i} P(Y_n = y_i) \cdot y_i$$

$$= \sum_{i} P(Y \in B_{i}) \cdot y_{i}$$

$$= \sum_{i} P(X \in g^{-1}(B_{i})) \cdot y_{i}$$

$$= \sum_{i} \int_{-\infty}^{\infty} I_{C_{i}}(x) f(x) dx \cdot y_{i}$$

$$= \int_{-\infty}^{\infty} \left(\sum_{i} y_{i} I_{C_{i}}(x)\right) f(x) dx$$

根据 Y_n 的定义,

$$\sum_{i} y_{i} I_{C_{i}}\left(x\right) \to g\left(x\right)$$

因而上面的求和收敛到

$$E(Y_n) \to \int_{-\infty}^{\infty} g(x) f(x) dx$$

对多个随机变量, 同样的结论成立, 例如已知随机向量 $\mathbf{Z} = (X, Y)$ 有分布密度 $f_{\mathbf{Z}}(\mathbf{z}) = f(x, y)$, $g(\mathbf{z}) = g(x, y)$ 是定义在 \mathbb{R}^2 上的函数, 那么随机变量 $g(\mathbf{z})$ 的期望 (若存在) 为

$$\begin{split} E\left(\mathbf{Z}\right) &= \left\{ \begin{array}{l} \int g\left(\mathbf{z}\right) f_{\mathbf{Z}}\left(\mathbf{z}\right) d\mathbf{z}, & 连续型 \\ \sum_{\mathbf{Z}} g\left(\mathbf{z}\right) f_{\mathbf{Z}}\left(\mathbf{z}\right), & \mathbf{S}散型 \end{array} \right. \\ &= \left\{ \begin{array}{l} \int \int \int g\left(x,y\right) f\left(x,y\right) dx dy, & 连续型 \\ \sum_{x} \sum_{y} g\left(x,y\right) f\left(x,y\right), & \mathbf{S}散型 \end{array} \right. \end{split}$$

随机变量的函数在概率空间的积分可以通过下图来理解

Area \approx base · height $\approx P(\omega : X(\omega) \in g^{-1}(B_i)) \cdot y_i$

Figure 6.3: 随机变量函数的积分示意图

例题 6.1.1 已知 X 的密度为

$$f(x) = \begin{cases} \frac{3}{8}x^2, & 0 < x < 2\\ 0, & \text{其他} \end{cases}$$

试求 $\frac{1}{x^2}$ 的期望.

 \blacksquare $\frac{1}{X^2}$ 的期望为

$$E\left(\frac{1}{X^2}\right) = \int_{-\infty}^{\infty} \frac{1}{x^2} f(x) \, dx = \int_{0}^{2} \frac{1}{x^2} \cdot \frac{3}{8} x^2 dx = \frac{3}{4}$$

条件期望

在条件概率一节我们看到给定 $X=x,f_Y(\cdot|x)$ 是一个概率密度, g(x) 是实数空间上某函数, 因此可以考虑随机变量 g(Y) 在

给定X = x时的期望,称之为条件期望,写作

$$E(g(Y)|X=x) = \begin{cases} \int_{-\infty}^{\infty} g(y) f_Y(y|x) dy, & 连续型\\ \sum_{y} g(y) f_Y(y|x), & 离散型 \end{cases}$$

此时它是一个 x 的函数, 对上式同乘以 $f_X(x)$ 并积分 (求和) 便得到

$$E(g(Y)) = \begin{cases} \int_{-\infty}^{\infty} E(g(Y)|X=x) f_X(x) dx, & 连续型\\ -\sum_{x} E(g(Y)|X=x) f_X(x), & 离散型 \end{cases}$$
(6.2)

这是条件期望的性质,常常用于期望的计算.

6.2 期望与方差及其性质

假设 X 为随机变量, g 是 X 的值域空间上某函数, 我们已经知道如何求 Y = g(X) 的期望. 下面我们考虑几个 g(x) 的情形. (1) $n \ge 1$ 为正整数, $g(x) = x^n$, n 阶矩 $E(X^n)$, 1 阶矩正是期望

期望及其性质

我们已经知道, 随机变量 X 的期望就是 X 在概率空间上的积分, 它具有如下性质:

定理 6.2.1 假设 X, Y 为随机变量, 以下成立

- $(1) E(I_A) = P(A), A \subset \mathbb{R};$
- (2) $E(\alpha) = \alpha, \alpha \in \mathbb{R}$.
- (3) 如果 EX, EY 存在,那么 $E(\alpha X + \beta Y)$ 存在, $E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y)$, $\alpha, \beta \in \mathbb{R}$.

$$(4) X(\omega) \leqslant Y(\omega), \forall \omega.$$
 那么 $E(X) \leqslant E(Y)$. $(5) |E(X)| \leqslant E|X|$.

注记 6.2.1 如果除去一个概率为 0 的集合外, $X \leq Y$ 成立, 那么结论 (4) 仍然成立.

- 证明简单随机变量情形. (1)(2) 为期望的特殊情形, 可直接由 定义得出.
 - (3) 假设

$$X = \sum_{i} x_{i} I_{A_{i}}, Y = \sum_{j} y_{j} I_{B_{j}}$$

首先注意 $\cup A_i$, $\cup B_i$ 都是全空间的划分, 因此

$$E(X) = \sum_{i} x_{i} P(A_{i}) = \sum_{i,j} x_{i} P(A_{i} \cap B_{j}),$$

$$E(Y) = \sum_{j} y_{j} P(B_{j}) = \sum_{i,j} y_{j} P(A_{i} \cap B_{j}).$$

另外 $\alpha X + \beta Y = \sum_{i,j} (\alpha x_i + \beta y_j) I_{A_i \cap B_j}$, 因此

$$E(\alpha X + \beta Y) = \sum_{i,j} (\alpha x_i + \beta y_j) P(A_i \cap B_j)$$

$$= \alpha \sum_{i,j} x_i P(A_i \cap B_j) + \beta \sum_{i,j} y_j P(A_i \cap B_j)$$

$$= \alpha \sum_i x_i P(A_i) + \beta \sum_j y_j P(B_j)$$

$$= \alpha E(X) + \beta E(Y)$$

(4) 假设 X, Y 可如同 (3) 表示出来. 由假设当 $A_i \cap B_j$ 不空时, 总有 $x_i \leq y_j$. 因此 $E(X) \leq E(Y)$.

(5) 由于 $-|X| \leqslant X \leqslant |X|, \forall \omega$. 运用 (1) 便有

$$-E(|X|) \leqslant E(X) \leqslant E(|X|)$$

通过将随机变量分解为简单随机变量的和, 期望的可加性质常常用于计算较复杂随机变量的期望.

例题 6.2.1 对目标进行射击, 直到击中目标 n 次为止, 如果每次射击命中率为 p(0 , 求所需射击次数的期望.

■ (解法 I) 用 X_i 表示击中目标总数为 i 次时所需要的射击次数. 那么 $X_i - X_{i-1}$ 表示第 i-1 次击中目标后再次击中目标所用的射击次数. 容易看出 $Y_i = X_i - X_{i-1}, i \ge 1, (X_0 = 0)$ 相互独立且与 Y_1 有同样的分布:

$$P(Y_1 = k) = p(1-p)^{k-1}, k = 1, 2, ...$$

因此

$$EY_1 = \sum_{k \geqslant 1} kP(Y_1 = k) = p \sum_{k \geqslant 1} k(1 - p)^{k-1}$$

$$= p \left(\sum_{k \geqslant 0} x^k \right)' \Big|_{x=1-p} = p \left(\frac{1}{1-x} \right)' \Big|_{x=1-p}$$
$$= p \cdot \frac{1}{p^2} = \frac{1}{p}$$

从而

$$EX_n = E\left(\sum_{i=1}^n Y_i\right) = \sum_{i=1}^n EY_i = \frac{n}{p}$$

(解法 II) 用 X_n 表示击中目标总数为 n 次时所需要的射击次数. 令 $W_1 = 1$ 表示第一次射击击中目标, $W_1 = 0$ 表示第一次射击没有击中目标. 由 (*Equation* 6.2)

$$EX_n = E(X_n|W_1 = 1) P(W_1 = 1) + E(X_n|W_1 = 0) P(W_1 = 0)$$

首先注意各次射击是独立的. 如果第一次击中目标, 那么还需要再击中目标 n-1 次才能实现击中目标总次数为 n 次. 如果

第一次没有击中目标, 那么第一次射击对总射击次数 n 次没有贡献, 从第二次射击开始还需要再击中目标 n 次. 因此上面的方程变为:

$$EX_n = p(1 + EX_{n-1}) + (1 - p)(1 + EX_n)$$

边界条件为 $EX_0 = 0$, 解之得到 $EX_n = EX_{n-1} + 1/p$, 从而 $EX_n = n/p$.

(解法 III) 用 X_n 表示击中目标总数为 n 次时所需要的射击次数. 令 $Z_1 = 1$ 表示第 n-1 次击中目标后, 下一次射击击中目标, $Z_1 = 0$ 表示第 n-1 次击中目标后, 下一次射击没有击中目标. 注意由独立性可知 $EZ_1 = EX_1$. 类似上一解法我们有

$$EX_n = p(EX_{n-1} + 1) + (1 - p)(EX_{n-1} + 1 + EZ_1)$$

边界条件为 $EX_0 = 0$, 先求得 $EZ_1 = EX_1 = 1/p$, $EX_n = EX_{n-1} + 1/p$, 解得 $EX_n = n/p$.

定理 6.2.2 假设 X 为非负随机变量, 那么

$$E(X) = \int_0^\infty P(X \geqslant t) dt$$

■ 仅证明非负简单随机变量情形. 令 X 可取值为 $0 \le x_1 < x_2 < ... < x_n$, 那么

$$E(X) = \sum_{x_i} x_i \cdot P(X = x_i)$$

$$= \sum_{x_i} \int_0^{x_i} dt \cdot P(X = x_i)$$

$$= \int_0^\infty \sum_{x_i \in I} P(X = x_i) dt \quad (交換积分与求和次序)$$

$$=\int_{0}^{\infty}P\left(X\geqslant t\right) dt$$

由于 X 为简单随机变量, 这里的无穷区间积分 $\int_0^\infty (\cdot)$ 实际上是有限区间积分.

注记 6.2.2 事实上仅有至多可数个 t 使得 $P(X > t) \neq P(X \ge t)$, 因而该定理可进一步写作: X 为**非负**随机变量, 那么

$$E(X) = \int_0^\infty P(X \geqslant t) dt = \int_0^\infty P(X > t) dt.$$

如果 X 的分布函数为 F, 那么

$$E(X) = \int_0^\infty (1 - F(t)) dt.$$

另外如果 X 取值为 $\{0,1,2,...\}$, 那么结论进一步简化为

$$E(X) = \sum_{n=1}^{\infty} P(X \geqslant n).$$

运用该结论我们再来看之前的例题

例题 6.2.2 对目标进行射击, 直到击中目标为止, 如果每次射击命中率为 p(0 , 求所需射击次数的期望.

■ 用 X 表示需射击次数. 注意 $\{X \ge n\}$ 等价于前 n-1 次没有击中目标, 其概率为

$$P(X \geqslant n) = (1-p)^{n-1}$$

因此

$$E(X) = \sum_{n=1}^{\infty} P(X \ge n) = \sum_{n=1}^{\infty} (1-p)^{n-1} = \frac{1}{p}.$$

li

定理 6.2.3 假设 $X_1, X_2, ... X_n$ 为独立随机变量, $E|X_i| < \infty, \forall i, 那$

么乘积 $X_1X_2\cdots X_n$ 的期望存在, 并且

$$E(X_1X_2\cdots X_n)=E(X_1)E(X_2)\cdots E(X_n)$$

■ 证明 n=2 时简单随机变量的情形. 假设

$$X = \sum_{i} x_{i} I_{A_{i}}, Y = \sum_{j} y_{j} I_{B_{j}}$$

那么由独立性

$$E\left(XY\right) = \sum_{i,j} x_{i} y_{j} P\left(A_{i} \cap B_{j}\right) = \sum_{i,j} x_{i} y_{j} P\left(A_{i}\right) P\left(B_{j}\right) = E\left(X\right) E\left(Y\right)$$

几个不等式

 $\prime\prime$ (Jensen 不等式) ϕ 为凸函数, E[X], $E[\phi(X)]$ 存在, 那么

$$\phi\left(E\left[X\right]\right)\leqslant E\left[\phi\left(X\right)\right]$$

// (Holder 不等式) X, Y 为随机变量, $p > 1, q > 1, \frac{1}{p} + \frac{1}{q} = 1$. 那么

$$E(|XY|) \le (E(|X|^p))^{1/p} (E(|Y|^q))^{1/q}$$

p=q=2 时称为 Schwarz 不等式. 特别地, 如果 $E(|X|^p)<\infty$, $E(|Y|^q)<\infty$ 那么 $E(|XY|)<\infty$. 此时, Holder 不等式等号成立当且仅当存在 $(a,b)\neq (0,0)$, 使得 $P(a|X|^p+b|Y|^q=0)=1$, 即 $a|X|^p+b|Y|^q$ 几乎处处为 0.

// (Minkowski 不等式) X, Y 为随机变量, $p \ge 1$. 那么

$$(E(|X+Y|^p))^{1/p} \le (E(|X|^p))^{1/p} + (E(|Y|^p))^{1/p}$$

// (Lyapounov 不等式) $0 < \alpha \le \beta$. 那么

$$(E(|X|^{\alpha}))^{1/\alpha} \leqslant (E(|X|^{\beta}))^{1/\beta}$$

// (Markov 不等式) 0 < α, 那么

$$P(|X| \geqslant \alpha) \leqslant \frac{1}{\alpha} E(|X|)$$

// (Chebyshev 不等式) $0 < \alpha, E(X^2) < \infty$. 令 m = E(X), 那么

$$P(|X-m| \geqslant \alpha) \leqslant \frac{1}{\alpha^2} E(|X-m|^2)$$

这里多数不等式都与函数积分不等式平行,不再重复证明. Schwarz 不等式及其等号成立条件将会在协方差一节给出证 明. Chebyshev 不等式与 Markov 不等式的证明相同, 这里仅证明 Markov 不等式. 事实上, 令 $A = \{|X| \ge \alpha\}$, 那么

$$|X(\omega)| = |X(\omega)| \cdot 1_A(\omega) + |X(\omega)| \cdot 1_{A^c}(\omega), \forall \omega$$

于是

$$egin{aligned} E\left(|X|
ight) &= E\left(|X|\cdot 1_A
ight) + E\left(|X|\cdot 1_{A^c}
ight) \ &\geqslant E\left(|X|\cdot 1_A
ight) \ &\geqslant E\left(lpha\cdot 1_A
ight) = lpha P\left(|X|\geqslantlpha
ight) \end{aligned}$$

因此 Markov 不等式成立.

作为 Markov 不等式的简单运用, 我们有

定理 6.2.4 假设 X 为非负随机变量, E(X) = 0 当且仅当 P(X=0) = 1.

■ (必要性) 令 $A_n = \{X \ge \frac{1}{n}\}$, 那么由 Markov 不等式 $\forall n$,

$$P\left(X\geqslant\frac{1}{n}\right)\leqslant nE\left(X\right)=0$$

即 $P(A_n)=0, \forall n$. 注意到 $\cup_n\left[\frac{1}{n},\infty\right)=(0,\infty), \cup_n A_n=\{X>0\}.$ 由概率的下半连续性就得到

$$P(X>0) = \lim_{n} P(A_n) = 0$$

从而 P(X=0)=1.

(充分性) 证明简单非负随机变量情形. 设 $X = \sum_i x_i I_{A_i}, x_i \ge 0$. 注意 P(X = 0) = 1 等价于, 对任意 i, 都有 $x_i = 0$ 或者 $P(A_i) = 0$. 因此 E(X) = 0.