4	/9	/201	7 V	erc	elli:
		201	., v	c_{i}	. – 111

Studente:
Esercizio 1 Descrivere il ruolo che il microprogramma assolve nelle architetture di processore, collocandolo nella organizzazione strutturata a livelli usata a lezione.
Esercizio 2 Descrivere cosa avviene nella fase del ciclo di CLOCK di Mic1 indicata nel libro di testo con il nome Δw.
Esercizio 3 Quali delle seguenti affermazioni sulla variabile di stato SP di IJVM sono corrette? \(\text{è un indirizzo di memoria-dati;} \) \(\text{SP \text{è un puntatore in memoria-istruzioni;}} \) \(\text{il suo valore \text{è la locazione del primo byte della successiva istruzione da} \) \(\text{prelevare;} \) \(\text{il suo valore \text{è la locazione dell'elemento in cima allo Stack;}} \) \(\text{SP \text{è una copia dell'elemento in cima allo Stack;}} \) \(\text{SP \text{è un puntatore in memoria-dati e indica dove sono localizzate le costanti di un programma.}} \)
Esercizio 4 Descrivere il formato e la funzionalità dell'istruzione IJVM IFLT .
Esercizio 5 Scrivere in assembly IJVM le istruzioni per svolgere il seguente calcolo aritmetico rispettando l'ordine di lettura e l'associatività delle operazioni: (i+j)*7+k, dove i, j e k sono variabili di programma.
Esercizio 6 Scrivere in linguaggio micro-assembly le micro-istruzioni che formano il percorso di esecuzione su Mic2 della istruzione IJVM iload.
Esercizio 7 Un hazard di tipo WAR (Write After Read) è: □ un tipo di conflitto che insorge nelle architetture pipeline quando si accede in lettura ad un registro del processore ma questo non contiene ancora il dato perché non è stata ancora completata la sua scrittura;
 un tipo di conflitto che insorge in architetture super-scalari quando si attua l'esecuzione fuori ordine delle istruzioni; un tipo di conflitto che insorge nelle architetture pipeline quando l'indirizzo di salto al quale far

continuare il flusso di esecuzione non è stato completamente calcolato e bisogna pertanto ritardare il

lancio delle successive istruzioni.

Esercizio 8

Considerato il ciclo in linguaggio C:

```
for (int i=0; i < length; i++)
a[i] = 0;
```

Dire se i riferimenti alla variabile i fatti dalla istruzione costituente il corpo del ciclo soddisfano:

- ☐ il principio di località temporale;
- ☐ il principio di località spaziale;
- nessuno dei due sopra citati;

Esercizio 9

Cosa contiene la ROM dell'unità di accodamento di MIC4?

- □ in ordine le sequenze di micro-operazioni che interpretano rispettivamente tutte le istruzioni IJVM.
- per ogni istruzione IJVM la descrizione della sua dimensione e l'indirizzo dove è il codice, espresso come sequenza di micro-operazioni, atto ad interpretarla;
- □ la traduzione in micro-operazioni delle istruzioni IJVM in attesa di esecuzione presenti nel byte-stream di dati provenienti dalla memoria istruzioni;
- ☐ le micro-operazioni pendenti, in attesa di essere lanciate e caricate in MIR1.

Esercizio 10

Descrivere la struttura di una memoria cache e il contenuto di un suo elemento.

Esercizio 11

Quale tipo di indirizzamento dell'operando usano le istruzioni IJVM:

BIPUSH 7

IFLT done