

TAREA #2B: DEEP LEARNING

Prof. NIBALDO RODRÍGUEZ A.

OBJETIVO

Implementar y evaluar el rendimiento de un modelo Aprendizaje Profundo (DL) usando algoritmo Descenso Gradiente Estocástico para clasificar diez tipos de severidad de fallos de un motor eléctrico.

DATA: Train

- Formato: train_x.csv: (D,N), donde:
 - □ D-filas : número de atributos.
 - □ N-columnas : números de muestras.
- Formato: train_y.csv: (C,N)
 - □ C=10-filas : etiqueta binaria para cada clase.
 - □ N-columnas: números de muestras.

DATA: Test

- Formato: test_x.csv : (D,N)
 - □ D-filas : número de atributos
 - □ N-columnas : números de muestras
- Formato: test_y.csv: (C,N)
 - □ C=10-filas : etiqueta binaria para cada clases
 - □ N-columnas: números de muestras.

FASE 1: Pre-Tuning

■ train.py:

Inicialización de pesos con valores aleatorios

$$r = \sqrt{\frac{6}{n_i + n_{i-1}}}$$

$$w^{(i)} = rand (n_i, n_{i-1}) \times 2 \times r - r$$

n_i: Nodos capa siguiente

n_{i-1}: Nodo capa previa

FASE 1: Pre-Tuning

- train.py:
 - □Archivos de Salida:
 - ■costo_softmax.csv.:
 - □N-filas por 1-columna
 - ■Pesos del Deep Learning.
 - □w_dl.npz

Ŋ.

FASE 1: Pre-Tuning

■ test.py

- Archivos de Salida:
 - ■metrica_dl.csv.
 - □F-scores para cada una de las 10 clases.
 - □F-score promedio.

Test.py: Métrica:

F - score
$$(j) = 2 \times \frac{\text{Pr } ecison }{\text{Pr } ecision } (j) \times \text{Re } call (j)$$

Precision
$$(i) = \frac{CM_{i,i}}{\sum_{j=1}^{n_L} CM_{i,j}}, i = 1,..., n_L = 10$$

Re call
$$(j) = \frac{CM_{j,j}}{\sum_{i=1}^{n_L} CM_{i,j}}, j = 1,..., n_L = 10$$

$$avgFscore = \frac{1}{10} \sum_{i=1}^{10} Fscore (i)$$

CM(i,j) : Matriz de confusión

Configuración: AE-Apilados

■cnf_sae.csv:

- Línea 1: Tamaño del Bloque (batch) :64
- Línea 1: Máximo Iteraciones : 60
- Línea 2: Tasa de aprendizaje : 0.1
- Línea 3: Nodos Oculto AE1 : 200
- Línea 4: Nodos Oculto AE2 : 150
- Línea 5: Nodos Oculto AE3 : 100
- ...

Configuración: Softmax

■ cnf_softmax.csv

■ Línea 1: Máximo Iteraciones : 2000

Línea 2: Tasa aprendizaje (mu) : 0.1

ENTREGA

- Martes 26/Octubre/2021
 - ☐ Hora: 09:00 am
 - □ Lugar : Aula Virtual del curso
- Lenguaje Programación:
 - □ Python version: 3.7.6 window (anaconda)
 - numpy
 - panda

OBSERVACIÓN:

Si un Grupo no Cumple con los requerimientos funcionales y no-funcionales, entonces la nota máxima será igual a 3,0 (tres coma cero).