Rozkład jasności źródeł fal grawitacyjnych - opis

11 kwietnia 2017

Spis treści

1	Losowanie zdarzeń		
	1.1	Losowanie położenia na niebie	1
	1.2	Losowanie masy	1
	1.3	Losowanie przesunięcia ku czerwieni	2
	1.4	Generowanie próbki	2
2	Metoda największej wiarygodności Przyjęte wartości stałych:		
	 Ω_i 	m = 0.27	
	• Ω	$\Lambda = 1 - \Omega_m = 0.73$	
	• <i>H</i>	$T_0 = 70.4 \frac{km}{s \cdot Mpc}$	

1 Losowanie zdarzeń

1.1 Losowanie położenia na niebie

Niech $U \in [0;1]$ będzie zmienna losową z jednostajnego ciągłego rozkładu. Losowane są 4 kąty:

- $cos\theta = 2U 1$
- $\quad \phi = 2\pi U$
- $cos\iota = 2U 1$
- $\bullet \ \psi = 2\pi U$

1.2 Losowanie masy

Źródłem mas jest plik z Synthetic Universe: Double Compact Objects \triangleright Local \triangleright Standard \triangleright ABHBH02.dat .

1.3 Losowanie przesunięcia ku czerwieni

Punktem wyjścia jest wzór [1, ,Wzór 24]

$$\frac{d^4N}{dtd\Theta dzd\mathcal{M}} = \frac{dV_c}{dz} \frac{\dot{n}(z)}{1+z} \mathcal{P}(\mathcal{M}) \mathcal{P}(\Theta)$$
 (1)

gdzie $\dot{n}(z)$ to merger rate density. Całkując po masach i parametrze kątowym Θ , pomijając zależność od czasu i korzystając z tego, że : $\frac{dV_c}{dz} = \frac{4\pi D_c(z)^2 D_H}{E(z)}$ [1, ,Wzór 21] dostaję rozkład w zależności od z

$$\frac{dN}{dz} = \begin{cases} \frac{4\pi D_c(z)^2 D_H}{E(z)} \frac{\dot{n}(z)}{1+z} & z \in [0; z_{max}] \\ 0 & z \notin [0; z_{max}] \end{cases}$$
(2)

Aby z powyższego otrzymać prawdopodobieństwo $\frac{dP}{dz}$, dla największej masy M wyznaczane jest z_{max} rozwiązujące równanie:

$$\frac{A(M(1+z))^{5/6}}{D_L(z)} - \frac{\text{SNR}_{min}}{4} = 0$$
 (3)

dla SNR $_{min}=8$. Dzielenie SNR $_{min}$ przez 4 w powyższym wynika z czynnika kątowego $\Theta\in[0;4]$. Po normalizacji przez całkę od 0 do z_{max} , otrzymywana jest gęstość prawdopodobieństwa $\frac{dP}{dz}$. Wyznaczane jest maksymalne prawdopodobieństwo $\frac{dP_{max}}{dz}$ używane do ograniczenia obszaru losowania z metodą Monte Carlo.

1.4 Generowanie próbki

Z wylosowanych przesunięć ku czerwieni obliczane są odległości jasnościowe D_L korzystając z [1, ,Wzór 19] i [1, ,Wzór 20]:

$$D_L(z) = (1+z)D_c(z) = (1+z)D_H \int_0^z \frac{dz'}{E(z')}$$
 (4)

$$E(z) = \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}, \ D_H = \frac{c}{H_0}$$
 (5)

Wylosowane zdarzenie jest zapisywane jeśli jego SNR \geq SNR $_{min}=8$

$$SNR = \frac{A\Theta(\theta, \psi, \iota, \psi) M_z^{5/6}}{D_L}$$
 (6)

2 Metoda największej wiarygodności

Porównywane są: model $\alpha=0$: $\dot{n}(z)=const$ i model $\alpha=1$: $\dot{n}(z)=1+z$. Z wcześniej wygenerowanej próbki 100 000 zdarzeń otrzymywana jest metodą interpolacji analityczna postać $\frac{dP}{d\mathrm{SNR}}\Big|_{\alpha=1}$ i $\frac{dP}{d\mathrm{SNR}}\Big|_{\alpha=0}$. Wiarygodność (likelihood) to $\mathcal{L}=\prod_{i=0}^n=\frac{dP}{d\mathrm{SNR}}(x_i)$ dla $n\in\{3,6,10,30,60,100\}$. Następnie obliczany jest Bayes factor $\mathcal{O}=\frac{\mathcal{L}(\alpha=1)}{\mathcal{L}(\alpha=0)}$ dla 10 000 próbek o wielkości n

Literatura

[1] Hubble without the Hubble: cosmology using advanced gravitational-wave detectors alone https://arxiv.org/abs/1108.5161v2