PROPOSITIELOGICA: AFLEIDINGEN

PROPOSITIELOGICA: AFLEIDINGEN

► Inhoud

Afleiding: lineair, boomvorm

Natuurlijke deductie

Afleidingsregels: eliminatieregels, introductieregels

(Hulp)aanname

Afleidbaar

Syntactisch consistent en inconsistent

Volledigheidsstelling

AFLEIDINGEN

Vorig hoofdstuk: semantiek uitgedrukt in termen van modellen

<u>Nu</u>: Hoe conclusies trekken uit aannames door middel van regels. Dit wordt afleiden genoemd. Leidt tot een constructief bewijs.

Voorbeeld regels: als $\varphi \wedge \psi$ dan φ

als φ en $\varphi \rightarrow \psi$ dan ψ

als φ en ψ dan $\varphi \wedge \psi$

Voorbeeld afleiding:

- 1. Jan vertelt een verhaal en Piet leest de krant
- 2. Als Jan een verhaal vertelt, dan lacht Marie
- 3. Als Piet de krant leest, dan kijkt Wilma televisie

```
Stap 1: Uit 1. leiden we af: 1a. Jan vertelt een verhaal
```

Stap 2: Uit 2. en 1a. leiden we af: 2a. Marie lacht

Stap 3: Uit 1. leiden we af: 1b. Piet leest de krant

Stap 4: Uit 3. en 1b. leiden we af: 2b. Wilma kijkt televisie

Stap 5: Uit 2a. en 2b leiden we af: Marie lacht en Wilma kijkt televisie

AFLEIDINGSREGELS

Afleidingsregels lineair voorgesteld:

 \triangleright voorbeeld: als $\varphi_1 \wedge \varphi_2 \wedge \varphi_3 \wedge ... \varphi_n$ dan $\wedge \varphi_i$

Compactere voorstelling: boomvorm

> voorbeeld:

$$\varphi_1 \dots \varphi_n$$
 aannames φ_i conclusie

AFLEIDINGEN

Boomvorm voor het voorbeeld

- Jan vertelt een verhaal en Piet leest de krant
- 2. Als Jan een verhaal vertelt, dan lacht Marie
- 3. Als Piet de krant leest, dan kijkt Wilma televisie

j: Jan vertelt verhaal

p: Piet leest de krant

m: Marie lacht

w: Wilma kijkt televisie

$$\begin{array}{c|c} j \wedge p & & j \wedge p \\ \hline j & j \rightarrow m & & p & p \rightarrow w \\ \hline m & & & w \end{array}$$

AFLEIDINGEN - VOORBEELDEN REGELS

Voorbeelden van afleidingsregels voor het systeem van natuurlijke deductie:

$$\frac{\varphi \wedge \psi}{\varphi} \wedge \mathsf{E}$$
 $\frac{\varphi \wedge \psi}{\psi} \wedge \mathsf{E}$

$$\frac{\varphi \wedge \psi}{\psi} \wedge \mathsf{E}$$

$$\frac{\varphi \qquad \psi}{\varphi \wedge \psi} \wedge \mathbf{I}$$

$$\begin{array}{ccc}
\varphi & \varphi \to \psi \\
& & & \rightarrow \mathsf{E}
\end{array}$$

Naam van de toegepaste regel wordt naast de streep genoteerd

AFLEIDINGEN

Als we met de gegeven afleidingsregels een formule ψ kunnen afleiden uit een formule φ (of formuleverzameling Σ),

dan schrijven we:

$$\varphi \vdash \psi$$
 of $\Sigma \vdash \psi$

$$\Sigma \vdash \psi$$

De formule φ (of formuleverzameling Σ) noemt men de aanname(s) in het bewijs

Vaak hebben we tijdens het afleiden hulpaannames nodig

Om te zien op grond van welke aannames een formule geldt schrijven we:

$$\psi$$
 uit Σ ψ uit $\varphi_1, ..., \varphi_n$

Notatie voor een hulpaanname: φ uit φ

of

AFLEIDINGEN - DEFINITIE

Definitie

Een formule φ heet **afleidbaar** uit een verzameling aannames Σ als er een afleiding van φ bestaat op basis van de gegeven afleidingsregels waarin aan het eind alleen nog aannames uit Σ van kracht zijn Notatie: $\Sigma \vdash \varphi$

– Als φ niet afleidbaar is noteren we dit $\Sigma \not\vdash \varphi$

NATUURLIJKE DEDUCTIE – AFLEIDINGSREGELS

Conjunctie

$$\frac{\varphi \wedge \psi}{\varphi}$$
 $\wedge \mathsf{E}$

$$\frac{\varphi \wedge \psi}{\psi} \wedge \mathsf{E}$$

$$\frac{\varphi}{\varphi \wedge \psi} \wedge I$$

$$\frac{\varphi \wedge \psi \text{ uit } \sum}{\varphi \text{ uit } \sum} \wedge E$$

$$\frac{\varphi \wedge \psi \text{ uit } \sum}{\psi \text{ uit } \sum} \wedge E$$

$$\frac{\varphi \text{ uit } \sum \psi \text{ uit } \Phi}{\varphi \wedge \psi \text{ uit } \sum \cup \Phi} \wedge I$$

► Afleiding: in boomvorm:

$$\frac{p \wedge (q \wedge r) \vdash (p \wedge q) \wedge r}{\varphi = p \wedge (q \wedge r)}$$

$$\frac{p \wedge (q \wedge r) \text{ uit } \varphi}{p \text{ uit } \varphi} \wedge E \qquad \frac{p \wedge (q \wedge r) \text{ uit } \varphi}{q \wedge r \text{ uit } \varphi} \wedge E \qquad \frac{p \wedge (q \wedge r) \text{ uit } \varphi}{q \wedge r \text{ uit } \varphi} \wedge E$$

$$\frac{p \wedge q \text{ uit } \varphi}{p \wedge q \text{ uit } \varphi} \wedge I \qquad \frac{p \wedge (q \wedge r) \text{ uit } \varphi}{q \wedge r \text{ uit } \varphi} \wedge E$$

NATUURLIJKE DEDUCTIE - AFLEIDINGSREGELS

Implicatie

→ Eliminatieregel

$$\frac{\varphi \to \psi \text{ uit } \sum \varphi \text{ uit } \Phi}{\psi \text{ uit } \sum \cup \Phi} \to E$$

→ Introductieregel

De hulpaanname φ kan door deze regel terug worden ingetrokken

Geef aan dat de hulpaanname φ ingetrokken wordt

$$\frac{\varphi \to \psi \text{ uit } \sum \varphi \text{ uit } \Phi}{\psi \text{ uit } \sum \cup \Phi} \to E \qquad \frac{\psi \text{ uit } \sum \varphi}{\varphi \to \psi \text{ uit } \sum} \to I, [-\varphi]$$

$$\frac{\psi \text{ uit } \sum, \varphi}{\varphi \to \psi \text{ uit } \sum} \to I, [-\varphi]$$

► Afleiding: in boomvorm:

$$p \to (q \to r) \vdash (p \land q) \to r$$

$$\varphi = p \to (q \to r)$$

$$\frac{p \land q \text{ uit } p \land q}{q \text{ uit } p \land q} \land E$$

$$\frac{p \land q \text{ uit } p \land q}{q \text{ uit } p \land q} \land E$$

$$\frac{p \text{ uit } p \land q}{q \text{ vit } p \land q} \land E$$

$$\frac{p \text{ uit } p \land q}{q \to r \text{ uit } \varphi, p \land q} \to E$$

$$\frac{r \text{ uit } p \land q, \varphi}{(p \land q) \to r \text{ uit } \varphi} \to I,[-1]$$

$$\frac{\varphi \to \psi \text{ uit } \sum \varphi \text{ uit } \Phi}{\psi \text{ uit } \sum \cup \Phi} \to E$$

$$\frac{\psi \text{ uit } \sum, \varphi}{\varphi \to \psi \text{ uit } \sum} \to I, [-\varphi]$$

► Afleiding: in boomvorm:

$$(p \lor q) \rightarrow r \vdash (p \rightarrow r) \land (q \rightarrow r)$$

$$\varphi = (p \lor q) \rightarrow r$$

$$\frac{\frac{p \text{ uit } p}{p \vee q \text{ uit } p} \vee I}{p \vee q \text{ uit } p} \vee I \xrightarrow{p \vee q \text{ uit } q} \to E \xrightarrow{\frac{q \text{ uit } q}{p \vee q \text{ uit } q}} \vee I \xrightarrow{p \vee q \text{ uit } q} (p \vee q) \to r \text{ uit } \varphi \to E$$

► Afleiding:
$$(\neg p \land \neg q) \Leftrightarrow \neg (p \lor q)$$

1e wet van de Morgan:

Eerst:
$$\vdash \neg (p \lor q) \rightarrow (\neg p \land \neg q)$$
 $(\varphi = \neg (p \lor q))$ dan $\vdash (\neg p \land \neg q) \rightarrow \neg (p \lor q)$ $(\varphi = \neg p \land \neg q)$

NATUURLIJKE DEDUCTIE - AFLEIDINGSREGELS

Disjunctie

∨ Introductieregels

$$\frac{\varphi \text{ uit } \Sigma}{\varphi \vee \psi \text{ uit } \Sigma} \vee I \qquad \frac{\psi \text{ uit } \Sigma}{\varphi \vee \psi \text{ uit } \Sigma} \vee I$$

∨ Eliminatieregel

$$\frac{\varphi \vee \psi \text{ uit } \sum \alpha \text{ uit } \Phi, \varphi \quad \alpha \text{ uit } \Psi, \psi}{\alpha \text{ uit } \sum \cup \Phi \cup \Psi} \vee \text{E}[-\varphi, -\psi]$$

De aanwezigheid van de disjunctie laat ons toe om de hulpaannames ϕ en ψ te schrappen

Geef aan dat de hulpaannames φ en ψ ingetrokken worden

AFLEIDINGEN - REGELS

Negatie

→ Eliminatieregels

$$\frac{\varphi \text{ uit } \Phi \neg \varphi \text{ uit } \Psi}{\psi \text{ uit } \Phi \cup \Psi} \neg E$$

$$\frac{\varphi \text{ uit } \Phi, \neg \psi \qquad \neg \varphi \text{ uit } \Psi, \neg \psi}{\psi \text{ uit } \Phi \cup \Psi} \neg E^*[-\neg \psi] \text{ Merk op: } \neg \psi \text{ is hulpaanname die ingetrokken wordt}$$

Uit een tegenspraak volgt eender wat

Bewijs uit het ongerijmde: iets bewijzen door het tegendeel te weerleggen

→ Introductieregel

$$\frac{\varphi \text{ uit } \sum, \psi \qquad \neg \varphi \text{ uit } \Phi, \psi}{\neg \psi \text{ uit } \sum \cup \Phi} \neg \text{I } [-\psi]$$

Ook hier: uit een tegenspraak volgt eender wat. Hier wordt ψ als hulpaanname gebruikt. Merk op dat de weerlegde aanname ψ ook terug wordt ingetrokken.

AFLEIDINGSREGELS - NOTATIE

- ► Al de afleidingsregels hebben een equivalente lineaire vorm, b.v.
- Om de leesbaarheid te verhogen worden de namen van de toegepaste regels vaak weggelaten (tenzij expliciet gevraagd – bijv. in de WPOs en op het examen).

(\wedge I): Als φ uit Φ en ψ uit Ψ , dan $\varphi \wedge \psi$ uit $\Phi \cup \Psi$.

$$\frac{\psi \text{ uit } \sum, \varphi}{\varphi \to \psi \text{ uit } \sum} \to I, [-\varphi]$$

Afleiding: lineaire vorm

$$\vdash p \rightarrow (q \rightarrow p)$$

1. *p* uit p

2. *q* uit q

3. $q \rightarrow p$ uit p

 \rightarrow I(-2) \rightarrow I(-1) 4. $p \rightarrow (q \rightarrow p)$ uit Ø

aanname

aanname

► Afleiding: lineaire vorm $\neg \neg p \leftrightarrow p$

Eerst:
$$\vdash \neg \neg p \rightarrow p$$

1.
$$\neg\neg p$$
 uit $\neg\neg p$ aanname

2.
$$\neg p$$
 uit $\neg p$ aanname

3. *p* uit
$$\neg p \neg E^*(-2)$$

4.
$$\neg \neg p \rightarrow p$$
 uit $\varnothing \longrightarrow I(-1)$

Tweedes:
$$\vdash p \rightarrow \neg \neg p$$

2.
$$\neg p$$
 uit $\neg p$ aanname

3.
$$\neg \neg p$$
 uit p $\neg I(-2)$

4.
$$p \rightarrow \neg \neg p$$
 uit $\varnothing \longrightarrow I(-1)$

STELLING - DEFINITIE

Definitie

Als φ afleidbaar is zonder aannames, dan heet φ een stelling (Σ is leeg).

Notatie: $\vdash \varphi$

– Als φ geen stelling is noteren we $\not\vdash \varphi$

AFLEIDINGEN EN STELLINGEN

Natuurlijke deducties leiden tot stellingen indien men alle aannames kan intrekken met de regel $\,\to\, I$

(zonder bewijs)

SYNTACTISCH CONSISTENT - DEF

Definitie

Een verzameling formules Γ heet **syntactisch consistent** wanneer er geen formule φ is waarvoor zowel $\Gamma \vdash \varphi$ als $\Gamma \vdash \neg \varphi$

- Een verzameling formules die niet syntactisch consistent is heet syntactisch inconsistent
- Voorbeelden:
 - $\{\neg p, p \rightarrow q, q\}$ is syntactisch consistent
 - Γ = {p, p → q, ¬q } is syntactisch inconsistent,
 nl. Γ ⊢ ¬q en Γ ⊢ q

SYNTACTISCH CONSISTENT - BEWERING

Bewering:

Een formuleverzameling Γ is syntactisch consistent \Leftrightarrow er bestaat een formule φ zodat $\Gamma \not\vdash \varphi$

Bewijs

 \Rightarrow <u>TB</u>: Γ is consistent dan bestaat er een formule φ zodat $\Gamma \not\vdash \varphi$ Als Γ consistent is, dan is er geen formule φ waarvoor $\Gamma \vdash \varphi$ en $\Gamma \vdash \neg \varphi$. (Def.) Voor een willekeurige formule ξ geldt dan: ofwel $\Gamma \not\vdash \xi$ ofwel $\Gamma \not\vdash \neg \xi$. Als $\Gamma \not\vdash \xi$ dan is de ξ gezochte formule, zoniet is $\neg \xi$ de gezochte formule. We hebben dus bewezen dat er een formule φ bestaat zodat $\Gamma \not\vdash \varphi$

SYNTACTISCH CONSISTENT - BEWERING

Bewering:

Een formuleverzameling Γ is consistent \Leftrightarrow er bestaat een formule φ zodat $\Gamma \not\vdash \varphi$

Bewijs (deel 2)

 \leftarrow <u>TB</u>: Als er een formule φ zodat Γ \leftarrow φ dan is Γ consistent

Bewijs via contrapositie, m.a.w. we bewijzen:

 $p \rightarrow q$ is logisch equivalent met $\neg q \rightarrow \neg p$

Als Γ inconsistent is dan bestaat er geen formule φ zodat $\Gamma \not\vdash \varphi$

Bewijs: stel Γ inconsistent, dan bestaat er een formule ξ zodat $\Gamma \vdash \xi$ en $\Gamma \vdash \neg \xi$.

Maar dan is met de \neg E regel is elke formule afleidbaar uit Γ , en dus kan er geen formule φ bestaat zodat $\Gamma \not\vdash \varphi$

SYNTACTISCH CONSISTENT – BEWERING 2

Bewering:

 $\Gamma \not\vdash \varphi \Leftrightarrow \Gamma \cup \{\neg \varphi\}$ is syntactisch consistent

 $\frac{\varphi \text{ uit } \Phi, \neg \psi \qquad \neg \varphi \text{ uit } \Psi, \neg \psi}{\psi \text{ uit } \Phi \cup \Psi} \neg E * [-\neg \psi]$

Bewijs (Beide richtingen telkens via contrapositie)

- \Rightarrow TB: $\Gamma \not\models \varphi$ dan $\Gamma \cup \{\neg \varphi\}$ consistent, of nog: $\Gamma \cup \{\neg \varphi\}$ inconsistent dan $\Gamma \not\models \varphi$ Stel dus $\Gamma \cup \{\neg \varphi\}$ is inconsistent.

 Dan is er een formule ξ waarvoor geldt $\Gamma \cup \{\neg \varphi\} \not\models \xi$ en $\Gamma \cup \{\neg \varphi\} \not\models \neg \xi$.

 De $\neg E^*$ regel geeft dan: $\Gamma \not\models \varphi$ (elke formule is afleidbaar).
- \Leftarrow <u>TB</u>: $\Gamma \cup \{\neg \varphi\}$ is consistent dan $\Gamma \not\vdash \varphi$, of nog: $\Gamma \models \varphi$ dan $\Gamma \cup \{\neg \varphi\}$ is inconsistent Stel $\Gamma \models \varphi$, dan ook $\Gamma \cup \{\neg \varphi\} \models \varphi$. Omdat ook $\Gamma \cup \{\neg \varphi\} \models \neg \varphi$, is $\Gamma \cup \{\neg \varphi\}$ inconsistent

INTERMEZZO: AXIOMATISCH AFLEIDEN

Axiomatisch afleiden

- ► In natuurlijke deductie spelen de afleidingsregels de belangrijkste rol
- ► In axiomatisch afleiden spelen axioma's de hoofdrol
- ► Een axioma is een formule die op elk moment in een bewijs kan gebruikt worden

Een axiomatisch systeem bestaat dan ook uit een verzameling axioma's en afleidingsregels.

AXIOMATISCH AFLEIDEN - VOORBEELD

Voorbeeld

Axioma's (S)

$$\phi \to (\psi \to \phi)
(\phi \to (\psi \to \chi)) \to ((\phi \to \psi) \to (\phi \to \chi))
(\neg \phi \to \neg \psi) \to (\psi \to \phi)$$

Afleidingsregel (Modus Ponens): Uit φ en $(\varphi \to \psi)$ mogen we ook ψ afleiden $\Sigma \vdash_S \psi$: ψ afleidbaar uit Σ met behulp van S en de afleidingsregel

als φ een axioma is, dan $\vdash_{S} \varphi$

Dit axiomatisch systeem is equivalent met natuurlijke deductie op voorwaarde dat enkel de connectieven \rightarrow en \neg gebruikt worden (functioneel volledig)!

(geen bewijs)

DEELSYSTEMEN

We kunnen regels laten vallen, dan krijgen we andere logica's Bijvoorbeeld als we de

$$\frac{\varphi \text{ uit } \Phi, \neg \psi \qquad \neg \varphi \text{ uit } \Psi, \neg \psi}{\psi \text{ uit } \Phi \cup \Psi} \neg E^*[-\neg \psi]$$

regel weglaten, dan zijn $\neg\neg p \rightarrow p$ (dubbele negatie) en $\neg p \lor p$ (uitgesloten derde) geen stellingen meer.

De resulterende logica wordt de intuïtionistische logica genoemd

VOLLEDIGHEIDSSTELLING

Verband tussen syntactische afleidbaarheid en semantische geldigheid

Volledigheidsstelling

Voor de propositielogica geldt

Als Σ een formuleverzameling *is*, en φ een formule, dan geldt:

 $\Sigma \vdash \varphi \operatorname{desda} \Sigma \models \varphi$

- Nog twee belangrijke begrippen:
 - Correctheid: afleidbare gevolgtrekkingen zijn semantisch geldig
 - Volledigheid: semantisch geldige gevolgtrekkingen zijn afleidbaar.

