Introduction au LATEX

M. Bailly-Bechet

Université Claude Bernard Lyon 1 Laboratoire de Biométrie et Biologie Évolutive

14 mai 2025

Introduction

TEX est un logiciel d'édition développé par Donald Knuth, puis modifié par Leslie Lamport (LATEX), permettant de produire des documents de qualité digne de la publication professionnelle.

LATEX vs MASIMAC

- ► LATEX est un logiciel libre.
- ► Le formatage est semi-automatisé, permettant de se concentrer sur le contenu.
- Qualité typographique professionnelle.

Les fichiers LATEX

- .tex : Fichier source avec les commandes.
- .dvi : Résultat de la compilation standard.
- .pdf : Destiné à la publication après conversion.

Document minimal

```
\documentclass{article}
\begin{document}
Tout ce que je veux afficher dans mon document
\end{document}
```

Mathématiques

Modes mathématiques

- ► En ligne : \$...\$ ou ...
- Centré :

ou \$\$...\$\$

Exemple

Soit x une variable réelle solution de l'équation :

$$ax^2 + bx + c = 0$$

Le discriminant vaut $\Delta = b^2 - 4ac$. S'il est strictement positif, il y a deux racines réelles distinctes :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}, \quad x_2 = \frac{-b + \sqrt{\Delta}}{2a}$$

Exercices avancés

1. Navier-Stokes:

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} = -\frac{1}{\rho} \nabla p + \nu \nabla^2 \vec{v} + \vec{f}$$

2. Lotka-Volterra:

$$\frac{dx}{dt} = x(\alpha - \beta y), \quad \frac{dy}{dt} = -y(\gamma - \delta x)$$

3. Intégrale gaussienne :

$$\delta \int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy = \frac{\pi}{4}$$

Bibliographie

```
Exemple de fichier .bib :

@BOOK{HofbSigm98,
title = {Evolutionary Games and Population Dynamics},
publisher = {Cambridge University Press},
year = {1998},
author = {Joseph Hofbauer, Karl Sigmund}
}
```

Conclusion

Pour aller plus loin: http://www.jalix.org/ressources/miscellaneous/tex/_faq-latex2/html/