Dissipative Phase Transition in a Driven Dicke Model

1 Model

We consider collective spin-S system which is coupled to a dissipative cavity mode and driven by an external field. The master equation for this system is

$$\dot{\rho} = -i[H, \rho] + \kappa (2a\rho a^{\dagger} - a^{\dagger}a\rho - \rho a^{\dagger}a) + \frac{\Gamma}{N} (2S_{-}\rho S_{+} - S_{+}S_{-}\rho - \rho S_{+}S_{-}), \tag{1}$$

where

$$H = \Omega S_x + \frac{g}{\sqrt{N}} (S_- a^\dagger + S_+ a). \tag{2}$$

Here $S_{\pm} = S_x \pm i S_y$ and $S_k = 1/2 \sum_i \sigma_k^i$ are the usual collective spin operators. When the damping rate κ of the cavity is very large, the cavity mode can be adiabatically eliminated, and we obtain a reduce model for a driven spin with a damping rate of

$$\Gamma \longrightarrow \tilde{\Gamma} = \Gamma + \frac{g^2}{\kappa}.$$
 (3)

It is know that for $N \to \infty$ this model has a phase transition at a critical driving strength $\Omega = \tilde{\Gamma}$, but for many decades physicists were wondering what actually happens for finite N and when the cavity cannot be adiabatically eliminated.

2 Example implementation with MATLAB

Figure 1: (a) Steady state and (b) time evolution with $\Omega/g=5$. The other parameters are N=20, photon cutoff $n_{\text{max}}=5, \, \kappa/g=2, \, \Gamma/g=0.5$