Final Presentation - The Gould-en Rule Stats 101C Lecture 3

Andy Shen, Ethan Allavarpu

Fall 2020

Introduction

Introduction

- With the rise in popularity of YouTube, many people are now making a living off creating YouTube videos
- The more views gained by the video, the more likely it is for that channel to profit
- We are interested in predicting the growth rate in video views between the second and sixth hour that a YouTube video is published

Methodology

Subsection 1

Preprocessing

Feature Transformation

• Combined binary variables into a single factor with four levels

Feature Expansion

• TimeDay: What time in the day was a video published? (made continuous)

• Small upward cluster toward 1200 (lower clusters earlier in the day)

Outliers

- Examined a univariate plot to look for stray points and removed them systematically
 - ▶ Based off personal judgment and inference on the effect of the stray points
- We also remove highly correlated variables as indicated by a heat map
 - ► To avoid overfitting based on having too many predictors

Predictor Selection

- We use LASSO to select significant predictors
 - ▶ LASSO pushes the coefficients of non-significant predictors to zero
 - Keeps the most significant ones
- Fit a LASSO model and select our optimal value of λ as the one that resulted in the lowest cross-validation MSE (10^{-2})
- Extract the predictors with nonzero coefficients in the LASSO model as our predictors for the candidate model

Subsection 2

Statistical Model

Overview

- Most of our models were fit using bagging or random forest
 - ightharpoonup Only adjusted certain parameters at a time (number of trees and m)
- Preliminary least-squares model
 - ► Kaggle score of ~1.65

Candidate Model: Random Forest

- Use subset to choose m for random forest
 - ► Find optimal *m* with 5-fold cross-validation: select *m* corresponding to the lowest *median* RMSE of the 5 folds
 - * Median is more preferable than mean due to the mean's sensitivity to extreme points
- \bullet Once optimal m is selected, fit random forest model to 80% of the preprocessed training data
 - Extra model and validation RMSE ensures consistent performance

Candidate Model: Bagging

• Considered a bagging approach (m = p) as a secondary model to random forest

RMSEs

RMSE

Best m for Random Forest

Method

Results

Results

Kaggle scores:

- 1.39753 (1.41019)
- **1.40285 (1.41321)**

Model (B) (Model 15e) only differs from (A) (Model 15d) in that m=p as opposed to m equaling the value with the lowest median RMSE. Here p is the number of predictors.

Conclusion

Conclusion

- We believed our model performed well due to the fact that it works as an ensemble method
 - ► Combines multiple individual models to get more accurate responses
- By using cross-validation for our selection of m, we limit the potential effect of a random seed showing us an inaccurately good or bad RMSE
- TimeDay custom variable is important (11th out of 120+) creating our own variables helped
- All 4 factor variables in the top 12

Variable Importance

Important Predictors for Random Forest Model

