Philips Semiconductors Product specification

74HC04; 74HCT04 Hex inverter

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; SOT762-1 14 terminals; body 2.5 x 3 x 0.85 mm

 $\bigoplus \bigoplus$

03-01-27

2003 Jul 23 18

MO-241

SOT762-1

Hex inverter 74HC04; 74HCT04

FEATURES

- Complies with JEDEC standard no. 8-1A
- ESD protection: HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V.
- Specified from -40 to +85 °C and -40 to +125 °C.

DESCRIPTION

The 74HC/HCT04 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT04 provide six inverting buffers.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f \le 6.0 \, \text{ns}$.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL		UNIT
			HC04	НСТ04	UNII
t _{PHL} /t _{PLH}	propagation delay nA to nY	C _L = 15 pF; V _{CC} = 5 V	7	8	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	21	24	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where:

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

V_{CC} = supply voltage in Volts;

N = total load switching outputs;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

2. For 74HC04: the condition is $V_I = GND$ to V_{CC} .

For 74HCT04: the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$.

FUNCTION TABLE

See note 1.

INPUT	ОИТРИТ
nA	nY
L	Н
Н	L

Note

- 1. H = HIGH voltage level;
 - L = LOW voltage level.

2003 Jul 23 2