11. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse Abgabe: 23.01.2018, 23:59 Uhr

Zeit	Raum	Abgabe im Moodle; Mails mit Betreff: [SMD1718]
Di. 10-12	CP-03-150	philipp2.hoffmann@udo.edu und jan.soedingrekso@udo.edu
Di. 16-18	P1-02-110	felix.neubuerger@udo.edu und tobias.hoinka@udo.edu
Di. 16-18	CP-03-150	simone.mender@udo.edu und maximilian.meier@udo.edu

Aufgabe 32: Gamma-Astronomie

Bei dieser Aufgabe handelt es sich um eine Fortführung der Aufgabe 25 γ -Astronomie (Blatt 8). Jetzt soll festgestellt werden ob sich an der Position, auf die das Teleskop gerichtet war, wirklich eine γ -Quelle befindet. Hierzu wird die Nullhypothese verwendet. Zur Erinnerung die Likelihoodfunktion lautete

$$\ln L = -F = N_{\text{off}} \ln(b) + N_{\text{on}} \ln(s + \alpha b) - (1 + \alpha)b - s - \ln(N_{\text{off}}!) - \ln(N_{\text{on}}!)$$
 (1)

und folgende Werte für s und b machten diese Likelihood maximal:

$$\hat{s} = N_{\rm on} - \alpha N_{\rm off} \tag{2}$$

WS 2017/2018

5 P.

Prof. W. Rhode

$$\hat{b} = N_{\text{off}} \tag{3}$$

- a) Die Nullhypothese besagt, dass es gar keine γ -Quelle gibt, also $s_0 = 0$. Welcher Wert und welcher Fehler ergeben sich unter dieser Annahme für b_0 nach der Methode der maximalen Likelihood?
- **b)** Wie lautet das Verhältnis λ der beiden Likelihoods?
- c) Unter den gegebenen Hypothesen und mit großen $N_{\rm on}$, $N_{\rm off}$ ist $D=-2\ln\lambda$ χ^2 -verteilt mit einem Freiheitsgrad. Mit welcher Konfidenz lehnen Sie die Nullhypothese ab? Geben Sie Ihr Ergebnis in Einheiten von Sigma an.

Tipp: Betrachten Sie eine standardnormalverteilte Variable u. Welcher Verteilung folgt u^2 ? Vergleichen Sie mit D.

- d) Berechnen Sie die Signifikanz für die Messung eines Signals für folgende Zahlenbeispiele:
 - $N_{\rm on} = 120, N_{\rm off} = 160, \alpha = 0.6.$
 - $N_{\text{on}} = 150, N_{\text{off}} = 320, \alpha = 0,3.$

1

11. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse Abgabe: 23.01.2018, 23:59 Uhr

WS 2017/2018 Prof. W. Rhode

Aufgabe 33: χ^2 -Test

5 P.

In einem Experiment werden 7 verschiedene Energiedifferenzen mit den Werten ¹

$$31,6 \,\mathrm{meV}, \quad 32,2 \,\mathrm{meV}, \quad 31,2 \,\mathrm{meV}, \quad 31,9 \,\mathrm{meV}, \\ 31,3 \,\mathrm{meV}, \quad 30,8 \,\mathrm{meV}, \quad 31,3 \,\mathrm{meV}$$

mit jeweils einem Fehler von 0,5 meV gemessen.

- a) Hypothese A sagt einen Wert von $31,3\,\mathrm{meV}$ für diese Messgröße voraus. Machen Sie einen χ^2 -Test und entscheiden Sie, ob die These bei $5\,\%$ gewählter Signifikanz verworfen werden muss, oder nicht.
- b) Wie a), aber mit der Hypothese B, die den Wert 30,7 meV vorhersagt.

Aufgabe 34: Likelihood-Quotienten-Test

5 P.

In einer Honigfabrik wird je eine Portion Honig in ein Glas zu μ_0 Millilitern abgefüllt. Es wird angenommen, dass die Füllmengen produktionsbedingt einer Normalverteilung mit Mittelwert $\mu = \mu_0$ und einer unbekannten Varianz σ^2 folgen.

- a) Stellen Sie die Testbedingung für einen Likelihood-Quotienten-Test auf, in dem Sie die Nullhypothese von oben gegen die Gegenhypothese, dass die Füllmenge einer Normalverteilung folgt, die nicht den Mittelwert μ_0 hat, testen.
- b) Für jeweils welche Wahl der Parameter μ und σ^2 werden die Likelihood-Funktionen der einzelnen Hypothesen auf dem jeweiligen Parameterbereich maximal?
- c) Setzen Sie die in b) erhaltenen Parameter ein und reduzieren Sie die Testbedingung auf einen Ausdruck der einer t-Statistik folgt. Hinweis: Die Größe $T = \sqrt{N}(\bar{x} - \mu_0)/s$ folgt unter der Nullhypothese der t-Statistik, wobei s die Stichprobenvarianz ist.
- d) Es wird aufgrund der eingesetzten Maschinen eine Füllmenge von $\mu_0=200\,\mathrm{ml}$ erwartet. Aus einer Stichprobe mit 25 Messungen zur Qualitätskontrolle wird ein Mittelwert von $\bar{x}=205\,\mathrm{ml}$ bei einer geschätzten Standardabweichung von $s=10\,\mathrm{ml}$ gemessen. Wird die oben aufgestellte Nullhypothese bei einer Signifikanz von $5\,\%$ abgewiesen oder beibehalten?

¹Das Beispiel kommt aus der Festkörperphysik

11. Übungsblatt zur Vorlesung Statistische Methoden der Datenanalyse Abgabe: 23.01.2018, 23:59 Uhr

5 P.

WS 2017/2018

Prof. W. Rhode

Aufgabe 35: Teilchenidentifikation

In einem Experiment der Teilchenphysik wird ein Čerenkov-Zähler zur Teilchenidentifikation verwendet. Das Messergebnis des Zählers kann in Form von Likelihood-Ratios angegeben werden. Für eine bestimmte Teilchenspur ergibt sich jeweils

- a) $L_{\pi}: L_{K}: L_{p} = 0.13: 1.5: 0.5$
- **b)** $L_{\pi}: L_{K}: L_{p} = 2.0: 0.5: 0.05$
- c) $L_{\pi}: L_{K}: L_{p} = 0.07: 0.5: 1.3$

Es ist bekannt, dass unter den gegebenen experimentellen Bedingungen 80% der Teilchen Pionen, 10% Kaonen und 10% Protonen sind (*Prior* Information). Wie groß ist die Wahrscheinlichkeit, dass jeweils ein Pion, ein Kaon oder ein Proton beobachtet wurde?