

18-P- \$0.50

THE INFLUENCE OF SECTION SIZE ON THE MECHANICAL PROPERTIES AND FRACTURE TOUGHNESS OF 7075-T6 ALUMINUM, 6AI-6Y-2Sn TITANIUM, AND AISI 4340 STEEL

by

THOMAS S. DE SISTO

FRANK L. CARR

and

FRANK R. LARSON

WATERIALS TESTING LABORATORY

U. S. ARMY MATERIALS RESEARCH AGENCY

WATERTOWN, MASSACHUSETTS 02172

FEBRUARY 1964

The findings in this report are not to be construed as an official Department of the Army position.

DUC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this eport from Commanding Officer, Defers Documentation Center, Cameron Station, Alexandria, Virginia 22214

Copies available at Office of Technical Services, U. S. Department of Commerce, Mashington, D. C. 20230 Price 30 50

DISPOSITION INSTRUCTIONS

Bestroy; do sot retera

Fracture toughness - mechanical properties Fracture

THE INFLUENCE OF SECTION SIZE ON THE MECHANICAL PROPERTIES AND FRACTURE TOUGHNESS OF 7075-T6 ALUMINUM, 6A1-6V-2Sn TITANIUM, AND AISI 4340 STEEL

Technical Report AMRA TR 64-05

by

THOMAS S. DE SISTO

FRANK L. CARR

and

FRANK R. LARSON

February 1964

AMCMS Code 5011.11.838

Basic Research in Physical Sciences
D/A Project 1A010501B010

MATERIALS TESTING LABORATORY
U.S. ARMY MATERIALS RESEARCH AGENCY
WATERTOWN, MASSACHUSETTS 02172

U.S. ARMY MATERIALS RESEARCH AGENCY

THE INFLUENCE OF SECTION SIZE ON THE MECHANICAL PROPERTIES AND FRACTURE TOUGHNESS OF 7075-T6 ALUMINUM, 6A1-6V-2Sn TITANIUM, AND AISI 4340 STEEL

ABSTRACT

The influence of section size on mechanical properties, yield strength, tensile strength, elongation, reduction of area, notched tensile ratios, and fracture toughness was determined for 7075-T6 aluminum, 6A1-6V-2Sn titanium, and AISI 4340 steel. The tests were made on smooth tension specimens with diameters from 0.113 to 3.57 inches, and sharply notched specimens with diameters from 0.160 to 5.05 inches. The tensile fracture topography of the smooth and notched specimens is illustrated and discussed. The data show that yield and tensile strengths are not changed appreciably by increasing section size, but ductility and toughness properties are affected.

THOMAS S. DeSISTO
General Engineer

FRANK L. CARR

Research Materials Engineer

APPROVED:

FRANK R.

Supervisory Research Physical

Metallurgist

cting Director of Operations

CONTENTS

ABSTRACT	Page											
INTRODUCTION												
MATERIALS AND PROCEDURES												
Chemical Analysis and Heat Treatment	3											
Testing Procedures	3											
Fracture Topography Measurements	4											
TEST RESULTS												
Mechanical Properties	4											
Fracture Topography	9											
SUMMARY	14											
REFERENCES	15											

INTRODUCTION

Numerous investigations have been conducted at room temperature on smooth and notched round tension specimens. These investigations have been primarily concerned with the effect of section size on tensile properties 1-3 and notch toughness. 4-6 The recent interest in the fracture of metals and fracture mechanics in general has focused attention on the effect of section size on crack toughness of notched cylindrical specimens. 7,8 This interest has also resulted in several recent publications of fracture surface analysis on both a microscopic scale? and a macroscopic scale. 10, 11 While previous work9, 12 was primarily concerned with the fracture topography of 4340 steel, the purpose of the study covered by this report was to ascertain the fracture toughness of 7075-T6 aluminum, 6A1-6V-2Sn titanium, and 4340 steel over a broad range of sizes. Fracture topography measurements of 4340 steel as a function of section size augment prior investigations. 10, 12

MATERIALS AND PROCEDURES

Chemical Analysis and Heat Treatment

The materials used in this investigation together with their chemical analysis are shown in Table I. The 7075-T6 aluminum and the 6A1-4V-2Sn titanium were tested in the as-received condition while the 4340 steel was given the following heat treatment in the 5-1/4-inch section size.

Normalized at 1600 F for 4 hr followed by air cooling Austenitized at 1550 F for 4 hr followed by an oil quench Tempered at 1000 F for 4 hr followed by an oil quench Tempered at 1000 F for 4 hr followed by an oil quench

TABLE I. Materials and Chemical Compositions

	CHENICAL ANALYSIS (WEIGHT PERCENT)															
Material	Stock Diameter (inches)	Al	С	Cr	Cu	Fe	X	Мо	Man	Ni	Р	S	Sı	Sn	V	Zn
7075-T6°	6-1/4	-	-	0.20	1.66	0.20	2.25	•	0.12	•	-		0.18	-		5.61
6Å1-6V- 2Sn**	}		0.021	l	1	0.45	-	-		-		-	1	2.26	5.32	-
4340	5-1/4		0.451	l	1	-		0.24	0.73	1.90	0.005	0.010	1		 	

^{*}Ti - 0.01

Testing Procedures

Smooth and notched tension specimens of the sizes shown in Table II were tested. One specimen was tested for each size used. The smooth tension specimens were tested at 0.005 inch/inch/minute to 0.2

^{**}O - 0.172, H - 0.0156, N - 0.007

percent offset, thence at 0.02 inch/minute platen speed to fracture. The notched specimens were tested at a platen speed of 0.002 inch/minute. Specimens, 0.505 inch in diameter and smaller, were tested in a 120,000-pound hydraulic testing machine, while the larger specimens were tested in a 2,400,000-pound hydraulic testing machine. In lieu of an extensometer for direct measurement of specimen strain on the smooth specimens, 1.13-inch and larger, load platen displacement curves were obtained by use of a microformer deflectometer placed under the moving platen of the testing machine.

Fracture Topography Measurements

The fractured surfaces of the 4340 steel specimens were examined at 10X and 20X, and the various zones of fracture configurations were measured with a stereoscopic microscope and a precision measuring engine which served as a stage. The measurement of each zone 10 (fibrous, radial and shear lip) was determined in terms of the radius or the lineal length along the radius of the tensile fracture. Fracture zone measurements were made on diameters at 90-degree intervals on all specimens.

TEST RESULTS

Mechanical Properties

The smooth and notched tensile properties of 7075-T6 aluminum 6A1-6V-2Sn titanium and 4340 steel are listed in Tables III and IV and plotted in Figures 1 through 7. The yield and tensile strengths of the material tested did not show any significant changes with bar diameter.

TABLE III. Smooth Tensile Properties

Material	Diameter (inches)	Area (10ches)	Yield Strength at 0.2% (ksi)	Tensile Strength (ksi)	Elongution (%)	R .A. (%)
7075-T6 Aluminum	0.113 0.160 0.252 0.357 0.505 1.130	0.01 0.02 0.05 0.10 0.20 1.00	64.2 61.5 56.2 61.5 63.4 60.0	76.8 74.75 69.0 75.2 73.7 72.5	13.7 12.5 12.0 16.4 12.0	15.8 15.1 19.8 21.6 20.5 17.7
6A1-6V-2Sp Titanium	0.113 0.160 0.252 0.357 0.505 1.130 1.600 2.520	0.01 0.02 0.05 0.10 0.20 1.00 2.00 5.00	142.1 130.0 135.2 140.2 142.0 126.0 135.0	157.4 146.5 145.6 148.5 147.0 138.5 149.0	20.0 19.1 20.0 18.6 17.0 14.4 16.4	40.0 44.4 44.0 43.2 42.7 33.5 25.2 31.4
4340 Steel	0.113 0.160 0.252 0.357 0.505 1.600 2.520	0.01 0.02 0.05 0.10 0.20 1.00 5.00	128.6 128.4 132.9 128.0 129.8 130.0 124.0	154.2 155.3 156.9 152.8 151.0 147.0 153.5	18.6 15.0 16.0 17.9 16.0 8.1 12.5	55.2 48.4 52.0 52.1 52.8 47.2 47.0

TABLE IV. Notched Tensile Properties

Material	Gross Digmeter (inches)	NTS (kmi)	MS Vis	NTS 0.2% YS	K _{Ic}	(Neuber)
7075-T6 Aluminum	0.160 0.225 0.357 0.505 0.714 1.600 2.250 3.570 5.050	92.0 101.25 89.5 89.8 88.0 70.0 55.0 42.5 58.3	1.25 1.37 1.21 1.21 1.19 0.95 0.745 0.57 0.79	1.51 1.66 1.47 1.47 1.44 1.15 C.90 0.69	15.2 19.6 22.2 26.4 30.8 36.8 34.2 33.3 54.2	10.7 12.4 13.5 18.3 21.5 31.6 37.0 48.8 55.4
6A1-6V-2SN Titamium	0.160 0.225 0.357 0.505 0.714 1.600 2.250 3.570	225.8 220.0 210.0 190.0 179.0 150.0 123.5 101.7	1.53 1.50 1.43 1.29 1.22 1.02 0.84 0.69	1.64 1.60 1.53 1.38 1.30 1.09 0.90	37.4 42.5 52.0 55.8 62.6 79.0 77.0	10.7 12.4 15.5 19.3 21.5 31.6 37.0 48.8
4340 Steel	0.160 0.225 0.357 0.505 0.714 1.600 2.250 3.570 5.050	229.5 242.5 227.0 209.8 218.0 198.5 206.0 179.5 176.0	1.50 1.58 1.48 1.37 1.42 1.30 1.35 1.17	1.78 1.88 1.76 1.63 1.69 1.54 1.60 1.39	38.0 46.7 56.3 61.6 76.3 104.5 128.0 141.0 163.5	10.7 12.4 15.5 18.3 21.5 31.6 37.0 48.8 55.4

The ductility, however, as plotted in Figure 1, generally decreased with increasing bar diameter, and the reduction of area values for specimens larger than 6.505 inch decreased more abruptly than the elongation values.

19-066-626/AMC-63
Figure 1. REDUCTION OF AREA AND ELONGATION VERSUS SECTION SIZE

19-066-623/AMC-63
Figure 2. NOTCH STRENGTH VERSUS SECTION SIZE

The notch strength of the 4340 steel plotted in Figure 2 decreases with increased bar diameter, reflecting size effects and increasing stress concentration, together with decreasing stress gradient. The decrease in n ich strength of the 4340 steel tempered at 1000 F does not agree with recently published data by Klier et all1 which showed no change in notch strength with increasing section size from 0.3 to 1.5 inches. The probable cause of this difference is the test section length of the Klier specimens, which were not changed proportionately with increased section size (1.00 inch for the 0.3-inch-diameter specimens and 1.5 inches for the 1.5-inch-diameter specimens). The notch strength of the 7075-T6 aluminum generally remained constant with increased bar diameter up to 0.505 inch. Beyond this size, the notch strength decreased markedly to a low value of 42 ksi at the 3.57-inch size. The notch strength of the 5.05-inch specimen, however, was approximately 16 ksi higher than the 3.57-inch specimen. This increase in notch strength could not be resolved by a hardness survey. The notch strength of the 6A1-6V-2Sn titanium alloy decreased from 226 ksi for the 0.160-inch specimen to 102 ksi for the 3.57-inch specimen. The notch/ yield strength ratios plotted in Figure 3 generally follow the same trend as the notch strength plotted in Figure 2. Notch/yield strength ratios below 1.0 were obtained with 7075-T6 aluminum and 6A1-6V-2Sn titanium specimens larger than 1.60-inch diameter.

It has been suggested that cylindrical, sharply notched specimens can be used to determine plane section fracture toughness, KIC, properties of materials. This technique is suitable if the material being evaluated is brittle. In the case where materials

19-066-627/AMC-63
Figure 3. NOTCH-YIELD STRENGTH
RATIO VERSUS SECTION SIZE

Figure 4. CRACK TOUGHNESS (Kic) VERSUS SECTION SIZE

may be moderately tough, it is necessary to test fairly large specimens. This is illustrated for the crack toughness data of 4340 steel shown in Figure 4, where even at the 5.05-inch specimen diameter the notch yield strength ratio was 1.37, considerably higher than the 1.10 required for valid K_{IC} determinations. On the other hand, the lower toughness 7075-T6 aluminum and 6A1-6V-2Sn titanium meet the requirements at the 1.60-inch section size and K_{IC} values of 36.8 ksi $\sqrt{\text{in.}}$ and 79 ksi $\sqrt{\text{in.}}$ are obtained for the aluminum and titanium alloys. Reference to Figure 3 shows that notch yield strength ratios 1.09 and 1.15 were obtained for the aluminum and titanium at the 1.60-inch section size. Wundt-type summary plots of the notch strength of 7076-T6 aluminum, 6A1-6V-2Sn titanium, and 4340 steel as a function of section size are shown in Figures 5, 6, and 7 with K_{IC} as the parameter. Yield and tensile data are also included in the plots.

Figure 5. NOTCH STRENGTH VERSUS SECTION SIZE OF 7075-T6 AT WITH KIC AS THE PARAMETER

19-066-628/AMC-63
Figure 6. NOTCH STREMGTH VERSUS SECTION SIZE OF Ti-6A1-6V-2Sn WITH K_{IC} AS THE PARAMETER

19-066-622/AMC-63 Figure 7. NOTCH STRENGTH VERSUS SECTION SIZE OF AISI 4340 WITH $\rm K_{\rm LC}$ AS THE PARAMETER

Fracture Topography

Fracture of the smooth specimens of 4340 steel initiated at an inclusion or void and propagated toward the periphery. This process resulted in three zones of configurations which progressed from the origin in the following sequence:

- 1. Fibrous zone, composed of circumferential ridges indicative of slow crack growth;
- 2. Rad: a! zone, comprised of radial markings which appear to be shear elements indicative of accelerated crack propagation; and
- 3. Shear lip zone, containing a smooth shear element near the termination of the fracture.

Measurements of these zones on the fractured specimens indicated that the size of each zone increased with increasing section size, but the rate of increase for each respective zone differed. The various zone sizes are tabulated in Table V and illustrated as a function of section size in Figure 8. It is noted that both the fibrous zone and the shear lip zone increased with increasing bar diameter. It is also noted that the fibrous zone is approximately one-half the shear lip width. It is worth while mentioning, however, that the increase in fibrous zone is actually a decrease in percent fibrous fracture of the fracture surface. The increase in shear lip size from 0.013 inch for the 0.113-inch specimen to 0.123 inch for the 2.52-inch specimen does not agree with recently published data which showed no change in shear lip size of specimens of 4340 steel from 0.357-inch diameter to 3.57-inch diameter.

TABLE V. Lineal Zone Size (inches)

		Smooth		Notched			
Material	Specimen Diameter	Fibrous	Radial	Shear Lip	Shank Diameter	Fibrous	Radial
7075-T6	3.570	-	~	0.242			
Aluminum	2.520	-	- 1	0.154			
1	1,600	} -	-	-			
i	1.130	-	•	0.098			
	0.505			0.123			
1	0.357	-	-	0.065		}	
[0.252	-	-	0.028		!	
ļ	0.160	-	-	0.014			
[0.113		•	0.044			
6A1-6V-2Sn	2.520	-	-	0.177			
Titanium	1.600	-	-	0.136		!	
Ì	1.130	ł -	-	0.099			
	0.505	-	-	0.045			
1	0.357	-	-	0.032			
1	0.252	-	l - i	0.024			
	0.160			0.016			
į	0.113	-	•	0.018			i
4340	3.570	-	-	•	5.050	0.023	1.761
Steel	2,520	0.056	0.727	0.123	3.570	0.020	1.231
j	1.600	0.059	0.445	0.081	2.250	0.040	0.750
ļ	1.130		- 1	-	1.600	C.022	0.542
}	0.505	0.C15	0.131	0.031	0.714	0.029	0.22
	0.357	0.0.2	0.086	0.029	0.505	0.034	0.13
]	0.252	0.015	0.050	0.023	0.357	0.022	0.10
	0.160	0.015	0.021	0.017	0.225	0.015	0.06
	0.113	0.005	0.019	0.013	0.160	0.022	0.03

19-066-933/AMC-63
Figure 8. LINEAL ZONE SIZE VERSUS SECTION
SIZE OF AIST 4340

Crack initiation in the notched bar of 4340 steel occurred at the notch and progressed circumferentially toward the interior of the specimen. Although the fibrous and radial zones of the notch specimens are in opposite locations to those of the smooth specimens, the sequence in both cases is identical with respect to the direction of crack propagation. These characteristics are illustrated in Figure 9A. The fibrous zone of the notch specimen generally remained constant with increasing section size, increasing stress concentration factor, and decreasing stress gradient, which reflects the maximum slow crack growth possible for this material condition. The texture of the radial zone of the fracture surface of both notched and smooth specimens is rougher at the area of final separation reflecting an increased rate of crack propagation. ¹⁴ Evidence of this is shown in Figure 10, a composite photograph of the fractured surfaces of the largest smooth and notched specimens used in this investigation.

The internal final area of separation of the notched specimens as evidenced by this investigation does not agree with the description advanced by Klier and Weiss. 11 The assumption advanced by these authors suggested the area of rough texture to be a second nucleus and that propagation is in a direction opposite to that inferred by the interpretation of this study. Since any concept of crack propagation must at present be based on vestigial evidence, individual interpretations may be somewhat controversial.

Discrimination of the fibrous and radial zones, previously described for the steel specimens, was difficult for the fractured titanium specimens, therefore only the shear lip measurements are included in Table V. The shear lip increased in size with increasing specimen diameter. The fracture topography of the notched specimens of this alloy can be described as the three stages illustrated in Figure 9b. The initial stage extended completely around the circumference of the fractured surface on both the 0.160-inch and 0.357-inch diameter specimens. Thus for the smaller specimens the initial stage appeared as a ring, but on the larger specimen, this stage was crescent or horseshoe-shaped. The second stage was more rapid in propagation and started as an arc at a location approximately 180 degrees from the origin and advanced through the specimen, converging toward the origin until the final area of separation was reached. This process resulted in the second stage having the general shape of a fan. The direction of propagation can be ascertained by following the increasing roughness of the markings in this second stage.

The fracture topography of the 7075-T6 aluminum alloy was similar to that described for the titanium alloy. Measurements determined that the shear lip also increased in size with increasing specimen diameter. The first stage of fracture of the notched specimens of this alloy also appeared as a ring and extended completely around the circumference of the fractured surface at specimen diameters less than 1.60 inch. For larger sizes this stage receded circumferentially and acquired the shape of a horseshoe, but never attained the crescent shape observed on the fractured specimens of 6Al-6V-2Sn titanium.

Figure 9A. FRACTURE SURFACE MARKINGS IN NOTCH ROUND SPECIMENS OF AISI \$340 STEEL

19-066-883/AMC-63

Figure 98. VARIOUS FRACTURE STAGES OF NOTCHED SPECIMENS OF 7075-T6 ALUMINUM AND 6A1-6Y-2Sn TITANIUM

7075-T6 Aluminum

6A1-6V-2Sn Titanium

19-066-891/AMC-63

4340 STEEL

Figure 10. TENSILE FRACTURE TOPOGRAPHY OF LARGEST SMOOTH AND NOTCHED SPECIMENS TESTED

SUMMARY

Mechanical properties of 7075-T6 aluminum, 6A1-6V-2Sn titanium and 4340 steel have been determined on smooth specimens from 0.113 inch to 3.57 inches in diameter and on notched specimens from 0.160 inch to 5.05 inches in diameter. Crack toughness values and some fracture topography measurements were also obtained.

The yield and tensile strengths of the materials tested did not show any significant changes with bar diameter. The notch strength and notch/yield strength ratios of all materials decreased with increasing bar diameter. Notch/yield strength ratios below 1.0 were obtained with specimens of 7075-T6 aluminum and 6A1-6V-2Sn titanium larger than 1.60 inch in diameter. The crack toughness K_{IC} of 4340 steel could not be determined as there was considerable plastic yielding even at the 5.05-inch size. However, K_{IC} values of 36.8 ksi $\sqrt{\text{in.}}$ and 79 ksi $\sqrt{\text{in.}}$ were obtained for the 7075-T6 aluminum and 6A1-6V-2Sn titanium alloys at the 1.60-inch specimen diameter.

Fracture of the smooth specimens initiated in the interior of the specimens and propagated toward the periphery, while fracture of the notched specimens initiated at the base of the notch and propagated toward the interior of the specimen.

Fracture zone measurements of the smooth specimens showed that the shear lip size increased with specimen diameter for all materials tested. The fibrous zone of the smooth 4340 steel specimens also increased with specimen diameter.

The fibrous zone of the notched 4340 steel specimen did not change appreciably with increasing specimen diameter, reflecting the maximum slow crack growth for this material condition.

REFERENCES

- 1. LYSE, I., and KEYSER, C. C. Effects of Size and Shape of Test Specimens Upon the Observed Physical Properties of Structural Steel. Proceedings, Am. Soc. Testing Mats., v. 34, Part II, 1934.
- 2. MIKLOWITZ, J. Influence of the Dimensional Factors on Mode of Yielding and Fracture in Medium-Carbon Steel II, The Size of the Round Tensile Bar. Journal of Applied Mechanics, v. 17, 1960.
- 3. GOLDING, W. Tensile Properties of Large Bars of High-Strength Steel. Project TED NAM AE 4138, Naval Air Material Center, Philadelphia 12, Pa., 18 February 1960.
- 4. WEISS, W., SESSLER, J., PACKMAN, P., and SACHS, G. The Effects of Several Geometrical Variables on the Notch Tensile Strength of 4340 Steel. Syracuse University Research Institute, September 1960.
- 5. BRISBANE, A. W. Notch and Size Effect on SAE 4340 Steel Alloy at Three Strength Levels. WADC Technical Note 55-712, 1955.
- 6. SACHS, G., MUNDI, B.B., and KLIER, E.P. Design Properties of High-Strength Steels in the Presence of Stress Concentrations.

 Part I Dependence of Tension and Notch Tension Properties on a Number of Factors. WADC Tech. Report 56-395, Part I, August 1956.
- 7. Screening Tests for High-Strength Alloys Using Sharply Notched Cylindrical Specimens. Fourth Report by the ASTM Special Committee on Fracture Testing of High-Strength Materials, Materials Research and Standard, March 1962.
- 8. WUNDT, B.M. A Unified Interpretation of Room-Temperature Strength of Notched Specimens as Influenced by their Size. ASME Paper, Number 59-MET-9.
- 9. Electron Microscopic Fractography. DMIC Memorandum 161, December 21, 1962.
- LARSON, F. R., and CARR, F. L. Tensile Fracture Surface Configurations of a Heat-Treated Steel as Affected by Temperature. Watertown Arsenal Laboratories, WAL TR 320. 1/5, July 1961; also ASM Transactions Quarterly, v. 55, September 1962.
- 11. KLIER, E. P., and WEISS, V. The Effect of Section Size on the Notch Strength and Fracture Development in Selected Structural Materials. Proceedings, Am. Soc. Testing Mats. v. 61, 1961.
- 12. CARR, F. L., and LARSON, F.R. Fracture Surface Configurations of AISI 4340 Steel as Affected by Temperature and Geometry.

 Watertown Arsenal Laboratories, WAL TR 320. 1/10, January 1963; also Proceedings, Am. Soc. Testing Mats., v. 62, 1962.

UNCLASSIFIED 1. Fracture toughaces - mechanical properties 2. Fracture I. DeSisto, Thomas S. II. Carr, Frank I. III. Larson, Frank R. IV. ANCMS Code 6011.11.838 V. D/A Project 1A0105018010	UNCLASSIFIED 1. Fracture toughness - mechanical properties 2. Fracture I. DeSisto, Thomas S. II. Carr, Frank L. III. Larson, Frank E. IV. AMCMS Code 5011.11.538
ACCESSION NO. MATERIALS RESEARCH AGENCY, WATERTOWN, U. S. Army Materials Research Agency, Watertown, Massachusetts of 172. THE INFLUENCE OF SECTION SIZE ON THE MECHANICAL PROPERTIES AND FRACTURE TOUGHNESS OF 7075-76 ALUMINUM, 6A1-6V 2Sm TITANIUM, AND AISI 4240 STREL. Thomas S. DeStato, Frank L. Carr and Frank R. Larson Technical Report AMEN TR 64-05, February 1964, 15 pp. 111ms - tables, AMCNS Code 8011, 11.838, D/A Project IA0105018010, Unclassified Report. The influence of section size on mechanical properties, yield strength, elongation, reduction of area, sottled tensile strength, elongation, reduction of area, sottled tensile fracture topogrammed for 7075-76 aluminum, 6A1-6V-2Sm titushum, and AISI 4340 steel. The tests wire made on both smooth tension and sharply motthed specimens. The tensile fracture topogramphy is illustrated and discussed. The data show that yield and tensile strengths are not changed appreciably by increasing section size, but ductility and toughsess properties are affected. NO DISTRIBUTION LIMITATIONS	OTS Price 80.50 ACCESSION NO. J. S. Army Materials Research Agency, Watertown, Massachusetts 02172 THE INPLUENCE OF SECTION SIZE ON THE MECHANICAL PROPERTIES AND PRACTURE TOUGHEESS OF 7075-T6 ALUNINUM, 6A16-V-2Sm ITTAKIUM AND AISI 4346 STEEL. Thomas S. DeSisto, Frank L. Carr and Frank R. Larson Technical Roport AMEN TH 64-06, February 1964, 15 pp-110s - tables, AMCHS Code 5011.11.838, D/A Project The influence of mection size on mechanical properties, yield strength, tennile strength, elongation, reduction of area, motthed tennile strength, elongation fracture toughness was determined for 7075-T6 aluminum, 6A1-6V-2Sm titamium, entertopography is illumitated and discussed. The tennile strengths are not changed appreciably by increasing section size, but ductility and toughness properties are affected. NO DISTRIBUTION LIMITATIONS
UNCLASSIFIED 1. Fracture toughages - mechanical properties 2. Fracture I. DeSisto, Thomas S. II. Carr, Frank L. III. Larson, Frank R. IV. AMCHS Code 1V. AMCHS Code 6011.11.838	UNCLASSIFIED 1. Fracture toughness - mechanical properties 2. Fracture 1. DeSisto, Thomas S. 11. Carr, Prask L. 111. Larson, Prask R. 17. AMCHS Code 5611. 11. 538 V. D/A Project 1As166513010
AD. ACCESSION NO. ACCESSION NO. Massachusetts MacCession MacCure Ade Selicul Mathemas Massachusetts Mathemas Mat	Accession No. Accession No. Accession No. Massachusetts of 2172 THE INPLUENCE OF SECTION SIZE ON THE MECHANICAL PROPERTIES AND FRACTURE TOUGHNESS OF 7075-T6 ALUMINUM, GAI-6V-2Sa ITTANIUM, AND AISI 4840 STEEL - Thomas S. DeSisto, Frank L. Carr and Frank R. Larson Technical Report AMRA TR 64-05, Febraary 1964, 15 pp- illus - tables, AMCMS Code 8011.11.838, D/A Project An influence of sections size on mechanical properties, yield attempt, tensile strength, elongation, reduction of area, sottled tensile strength, elongation, reduction of area, sottled tensile ratios, and fracture toughness was determined for 7075-T6 aluminum, 6A1-6V-2Ss titusium, and AISI 4340 steel. The tests were made on both smooth tension and sharply socched specimens. The tensile frac- the details are tensile are not changed appreciably by increasing section size, but ductility and toughness properties are affected.