TOPICS IN ALGEBRAIC LOGIC AND DUALITY THEORY Lecture 4

Rodrigo N. Almeida, Simon Lemal June 13, 2025

Plan for the Day

 Maksimova's characterisation of superintuitionistic logics with the interpolation property

Maksimova's characterisation

A superintuitionistic logic has the interpolation property iff it is one of

```
CPC,  \begin{array}{ll} \mathsf{LC}_2 = \mathsf{IPC} + \mathsf{bd}_2 + \mathsf{bw}_1 &= \mathsf{logic} \; \mathsf{of} \; \mathsf{the} \; 2\mathsf{-chain}, \\ \mathsf{LC} = \mathsf{IPC} + p \to q \vee q \to p = \mathsf{logic} \; \mathsf{of} \; \mathsf{chains}, \\ \mathsf{KC} = \mathsf{IPC} + \neg p \vee \neg \neg p &= \mathsf{logic} \; \mathsf{of} \; \mathsf{directed} \; \mathsf{frames}, \\ \mathsf{BD}_2 = \mathsf{IPC} + \mathsf{bd}_2 &= \mathsf{logic} \; \mathsf{of} \; \mathsf{frames} \; \mathsf{of} \; \mathsf{depth} \; \mathsf{at} \; \mathsf{most} \; 2, \\ \mathsf{BD}_2 \mathsf{W}_2 = \mathsf{BD}_2 + \mathsf{bw}_2 &= \mathsf{logic} \; \mathsf{of} \; \mathsf{the} \; 2\mathsf{-fork}, \\ \mathsf{IPC}. \end{array}
```

Understanding the statement

Logics of bounded depth

Definition

We define a sequence of formulas \mathbf{bd}_n inductively:

$$\begin{aligned} \mathsf{bd}_0 &= \bot, \\ \mathsf{bd}_{n+1} &= p_{n+1} \lor (p_{n+1} \to \mathsf{bd}_n), \end{aligned}$$

Logics of bounded depth

Definition

We define a sequence of formulas bd_n inductively:

$$\mathsf{bd}_0 = \bot,$$
 $\mathsf{bd}_{n+1} = p_{n+1} \lor (p_{n+1} \to \mathsf{bd}_n),$

Proposition

A frame validates bd_n iff it doesn't contain a chain of n+1 points, i.e. iff its depth is bounded by n.

Logics of bounded depth

Definition

We define a sequence of formulas bd_n inductively:

$$\mathsf{bd}_0 = \bot,$$

$$\mathsf{bd}_{n+1} = p_{n+1} \lor (p_{n+1} \to \mathsf{bd}_n),$$

Proposition

A frame validates \mathbf{bd}_n iff it doesn't contain a chain of n+1 points, i.e. iff its depth is bounded by n.

Proof.

Exercise.

Logics of bounded width

Definition

We define formulas bw_n as follows:

$$\mathsf{bw}_n = \bigvee_{i=0}^n \left(p_i \to \bigvee_{j \neq i} p_j \right).$$

Logics of bounded width

Definition

We define formulas bw_n as follows:

$$\mathsf{bw}_n = \bigvee_{i=0}^n \left(p_i \to \bigvee_{j \neq i} p_j \right).$$

Proposition

A frame validates bw_n iff none of its rooted subframes contain an antichain of n+1 points, i.e. iff its width is bounded by n.

Logics of bounded width

Definition

We define formulas bw_n as follows:

$$\mathsf{bw}_n = \bigvee_{i=0}^n \left(p_i \to \bigvee_{j \neq i} p_j \right).$$

Proposition

A frame validates bw_n iff none of its rooted subframes contain an antichain of n+1 points, i.e. iff its width is bounded by n.

Proof.

Exercise.

Preliminary tools

Theorem (Jankov)

Let F be a finite rooted frame (i.e. the dual of a finite SI algebra). Then there is a formula $\chi(F)$ such that for any frame G, we have $G \not\models \chi(F)$ iff F is a p-morphic image of a subframe of G.

Theorem (Jankov)

Let F be a finite rooted frame (i.e. the dual of a finite SI algebra). Then there is a formula $\chi(F)$ such that for any frame G, we have $G \not\models \chi(F)$ iff F is a p-morphic image of a subframe of G.

Corollary

Let F be a finite rooted frame and L be a logic. We have $\chi(F) \notin L$ iff $F \models L$.

Theorem (Jankov)

Let F be a finite rooted frame (i.e. the dual of a finite SI algebra). Then there is a formula $\chi(F)$ such that for any frame G, we have $G \not\models \chi(F)$ iff F is a p-morphic image of a subframe of G.

Corollary

Let F be a finite rooted frame and L be a logic. We have $\chi(F) \notin L$ iff $F \models L$.

Proof.	
Exercise.	

Theorem (Jankov)

Let F be a finite rooted frame (i.e. the dual of a finite SI algebra). Then there is a formula $\chi(F)$ such that for any frame G, we have $G \not\models \chi(F)$ iff F is a p-morphic image of a subframe of G.

Corollary

Let F be a finite rooted frame and L be a logic. We have $\chi(F) \notin L$ iff $F \models L$.

Proof.

Exercise.

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(F) \mid F \not\models L\}.$$

Lattice of finite rooted frames

Definition

We turn the class of finite rooted frames into a poset by setting $F\leqslant G$ iff G is a p-morphic image of a generated subframe of F.

Lattice of finite rooted frames

Definition

We turn the class of finite rooted frames into a poset by setting $F \leqslant G$ iff G is a p-morphic image of a generated subframe of F.

Definition

A frame F covers a frame G iff $F\leqslant G$ and there is no frame H such that F< H< G.

Lattice of finite rooted frames

Definition

We turn the class of finite rooted frames into a poset by setting $F \leq G$ iff G is a p-morphic image of a generated subframe of F.

Definition

A frame F covers a frame G iff $F\leqslant G$ and there is no frame H such that F< H< G.

Proposition

Let F be a finite rooted frame. Then

$$Log(F) = \mathsf{IPC} + \{\chi(G) \mid G \ngeq F\}.$$

Poset of finite rooted frames

See board.

Maksimova's characterisation

 \Leftarrow : Exercise.

 $\Rightarrow:$ Assume that L is a superintuitionistic with interpolation.

←: Exercise.

 \Rightarrow : Assume that L is a superintuitionistic with interpolation. If $L=\mathsf{CPC},$ we are done.

 \Rightarrow : Assume that L is a superintuitionistic with interpolation. If $L=\mathsf{CPC}$, we are done. Otherwise, observe that CPC is the logic of the 1-frame, whose only cover is the 2-chain.

 \Rightarrow : Assume that L is a superintuitionistic with interpolation. If $L = \mathsf{CPC}$, we are done. Otherwise, observe that CPC is the logic of the 1-frame, whose only cover is the 2-chain.

Therefore CPC is axiomatised by the Jankov formula χ_{2c} of the 2-chain.

 \Rightarrow : Assume that L is a superintuitionistic with interpolation. If $L = \mathsf{CPC}$, we are done. Otherwise, observe that CPC is the logic of the 1-frame, whose only cover is the 2-chain.

Therefore CPC is axiomatised by the Jankov formula χ_{2c} of the 2-chain. As $L \subsetneq \text{CPC}$, we have $\chi_{2c} \notin L$, thus the 2-chain is an L-frame.

If L is the logic of the 2-chain, then $L = LC_2$, and we are done.

Otherwise, observe that the only covers of the 2-chain are the 3-chain and the 2-fork.

Otherwise, observe that the only covers of the 2-chain are the 3-chain and the 2-fork.

Therefore, LC $_2$ is axiomatized by the Jankov formulas χ_{3c} of the 3-chain and χ_{2f} of the 2-fork.

Otherwise, observe that the only covers of the 2-chain are the 3-chain and the 2-fork.

Therefore, LC_2 is axiomatized by the Jankov formulas χ_{3c} of the 3-chain and χ_{2f} of the 2-fork. As $L \subsetneq L_2$, we have $\chi_{3c} \notin L$ or $\chi_{2f} \notin L$, thus either the 3-chain or the 2-fork are L-frames.

Assume that $\chi_{3c} \in L$, i.e. the 3-chain is not an L-frame.

Assume that $\chi_{3c} \in L$, i.e. the 3-chain is not an L-frame. Then $L \supseteq \mathsf{BD}_2 = \mathsf{IPC} + \chi_{3c}.$

Assume that $\chi_{3c}\in L$, i.e. the 3-chain is not an L-frame. Then $L\supseteq \mathsf{BD}_2=\mathsf{IPC}+\chi_{3c}.$ What's more, the 2-fork is an L-frame, thus $L\subseteq \mathsf{BD}_2\mathsf{W}_2.$

Assume that $\chi_{3c}\in L$, i.e. the 3-chain is not an L-frame. Then $L\supseteq \mathsf{BD}_2=\mathsf{IPC}+\chi_{3c}$. What's more, the 2-fork is an L-frame, thus $L\subseteq \mathsf{BD}_2\mathsf{W}_2$. If $L=\mathsf{BD}_2\mathsf{W}_2$, we are done.

Assume that $\chi_{3c} \in L$, i.e. the 3-chain is not an L-frame. Then $L \supseteq \mathsf{BD}_2 = \mathsf{IPC} + \chi_{3c}$. What's more, the 2-fork is an L-frame, thus $L \subseteq \mathsf{BD}_2\mathsf{W}_2$. If $L = \mathsf{BD}_2\mathsf{W}_2$, we are done. Otherwise, notice that the only cover of the 2-fork which does not cover the 3-chain is the 3-fork.

Figure 3: 3-fork

Assume that $\chi_{3c} \in L$, i.e. the 3-chain is not an L-frame. Then $L \supseteq \mathsf{BD}_2 = \mathsf{IPC} + \chi_{3c}$. What's more, the 2-fork is an L-frame, thus $L \subseteq \mathsf{BD}_2\mathsf{W}_2$. If $L = \mathsf{BD}_2\mathsf{W}_2$, we are done. Otherwise, notice that the only cover of the 2-fork which does not cover the 3-chain is the 3-fork.

Figure 3: 3-fork

Therefore, BD_2 is axiomatised relative to BD_2 by the Jankov formula χ_{3f} of the 3-fork.

Assume that $\chi_{3c} \in L$, i.e. the 3-chain is not an L-frame. Then $L \supseteq \mathsf{BD}_2 = \mathsf{IPC} + \chi_{3c}$. What's more, the 2-fork is an L-frame, thus $L \subseteq \mathsf{BD}_2\mathsf{W}_2$. If $L = \mathsf{BD}_2\mathsf{W}_2$, we are done. Otherwise, notice that the only cover of the 2-fork which does not cover the 3-chain is the 3-fork.

Figure 3: 3-fork

Therefore, BD₂ is axiomatised relative to BD₂ by the Jankov formula χ_{3f} of the 3-fork. As BD₂ $\subseteq L \subsetneq$ BD₂W₂, we have $\chi_{3f} \notin L$, thus the 3-fork is an L-frame.

Assume that $\chi_{3c} \in L$, i.e. the 3-chain is not an L-frame. Then $L \supseteq \mathsf{BD}_2 = \mathsf{IPC} + \chi_{3c}$. What's more, the 2-fork is an L-frame, thus $L \subseteq \mathsf{BD}_2\mathsf{W}_2$. If $L = \mathsf{BD}_2\mathsf{W}_2$, we are done. Otherwise, notice that the only cover of the 2-fork which does not cover the 3-chain is the 3-fork.

Figure 3: 3-fork

Therefore, BD₂ is axiomatised relative to BD₂ by the Jankov formula χ_{3f} of the 3-fork. As BD₂ $\subseteq L \subsetneq$ BD₂W₂, we have $\chi_{3f} \notin L$, thus the 3-fork is an L-frame. An amalgamation argument shows that every n-fork is an L-frame, thus $L = BD_2$.

Assume that both the 2-fork and the 3-chain are L-frames.

Assume that both the 2-fork and the 3-chain are L-frames. A non-trivial amalgamation trick shows that the 3-fork is an L-frame, thus all n-forks are L-frames.

Assume that both the 2-fork and the 3-chain are L-frames. A non-trivial amalgamation trick shows that the 3-fork is an L-frame, thus all n-forks are L-frames. An amalgamation argument show that every n-chain is an L-frame.

Assume that both the 2-fork and the 3-chain are L-frames. A non-trivial amalgamation trick shows that the 3-fork is an L-frame, thus all n-forks are L-frames. An amalgamation argument show that every n-chain is an L-frame. Another non-trivial amalgamation trick shows that every n-ary tree is an L-frame, thus every finite tree is an L-frame.

Assume that both the 2-fork and the 3-chain are L-frames. A non-trivial amalgamation trick shows that the 3-fork is an L-frame, thus all n-forks are L-frames. An amalgamation argument show that every n-chain is an L-frame. Another non-trivial amalgamation trick shows that every n-ary tree is an L-frame, thus every finite tree is an L-frame. As IPC is the logic of finite trees, we have L = IPC.

First assume that $\chi_{2f} \in L$, i.e. the 2-fork is not an L-frame.

First assume that $\chi_{2f}\in L$, i.e. the 2-fork is not an L-frame. Then $L\supseteq \mathrm{KC}=\mathrm{IPC}+\chi_{2f}.$

First assume that $\chi_{2f} \in L$, i.e. the 2-fork is not an L-frame. Then $L \supseteq \mathsf{KC} = \mathsf{IPC} + \chi_{2f}$. What's more, the 3-chain is an L-frame, and an amalgamation argument shows that every n-chain is an L-frame.

First assume that $\chi_{2f} \in L$, i.e. the 2-fork is not an L-frame. Then $L \supseteq \mathsf{KC} = \mathsf{IPC} + \chi_{2f}$. What's more, the 3-chain is an L-frame, and an amalgamation argument shows that every n-chain is an L-frame. Thus $L \subseteq \mathsf{LC}$.

If L = LC, we are done.

First assume that $\chi_{2f} \in L$, i.e. the 2-fork is not an L-frame. Then $L \supseteq \mathsf{KC} = \mathsf{IPC} + \chi_{2f}$. What's more, the 3-chain is an L-frame, and an amalgamation argument shows that every n-chain is an L-frame. Thus $L \subseteq \mathsf{LC}$.

If L= LC, we are done. Otherwise, observe that LC is axiomatised relative to KC by the Jankov formula χ_d of the diamond, i.e. LC = KC + χ_d .

First assume that $\chi_{2f} \in L$, i.e. the 2-fork is not an L-frame. Then $L \supseteq \mathsf{KC} = \mathsf{IPC} + \chi_{2f}$. What's more, the 3-chain is an L-frame, and an amalgamation argument shows that every n-chain is an L-frame. Thus $L \subseteq \mathsf{LC}$.

If $L=\mathsf{LC}$, we are done. Otherwise, observe that LC is axiomatised relative to KC by the Jankov formula χ_d of the diamond, i.e. $\mathsf{LC}=\mathsf{KC}+\chi_d$. As $\mathsf{KC}\subseteq L\subsetneq \mathsf{LC}$, we have $\chi_d\notin L$, so the diamond is an L-frame.

First assume that $\chi_{2f} \in L$, i.e. the 2-fork is not an L-frame. Then $L \supseteq \mathsf{KC} = \mathsf{IPC} + \chi_{2f}$. What's more, the 3-chain is an L-frame, and an amalgamation argument shows that every n-chain is an L-frame. Thus $L \subseteq \mathsf{LC}$.

If $L=\mathsf{LC}$, we are done. Otherwise, observe that LC is axiomatised relative to KC by the Jankov formula χ_d of the diamond, i.e. $\mathsf{LC}=\mathsf{KC}+\chi_d$. As $\mathsf{KC}\subseteq L\subsetneq \mathsf{LC}$, we have $\chi_d\notin L$, so the diamond is an L-frame.

The 3-chain and diamond are L-frames, we proceed as in the case of the 3-chain and the 2-fork, showing that every tree with a point on top is an L-frame.

First assume that $\chi_{2f} \in L$, i.e. the 2-fork is not an L-frame. Then $L \supseteq \mathsf{KC} = \mathsf{IPC} + \chi_{2f}$. What's more, the 3-chain is an L-frame, and an amalgamation argument shows that every n-chain is an L-frame. Thus $L \subseteq \mathsf{LC}$.

If $L=\mathsf{LC}$, we are done. Otherwise, observe that LC is axiomatised relative to KC by the Jankov formula χ_d of the diamond, i.e. $\mathsf{LC}=\mathsf{KC}+\chi_d$. As $\mathsf{KC}\subseteq L\subsetneq \mathsf{LC}$, we have $\chi_d\notin L$, so the diamond is an L-frame.

The 3-chain and diamond are L-frames, we proceed as in the case of the 3-chain and the 2-fork, showing that every tree with a point on top is an L-frame. This way we obtain every directed finite poset, so L must be KC.

Appendix

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(F) \mid F \not\models L\}.$$

Proof.

Let
$$L' = \mathsf{IPC} + \{\chi(P) \mid P \not\models L\}.$$

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(F)\mid F\not\models L\}.$$

Proof.

Let $L' = \mathsf{IPC} + \{\chi(P) \mid P \not\models L\}$. We claim that L = L'.

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(F) \mid F \not\models L\}.$$

Proof.

Let $L' = \mathsf{IPC} + \{\chi(P) \mid P \not\models L\}$. We claim that L = L'.

⊇: Exercise.

 \subseteq : Suppose $\phi \notin L'$. Let A be a subdirectly irreducible finitely generated model of L' which refutes ϕ and let X be its dual.

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(F) \mid F \not\models L\}.$$

Proof.

Let $L' = \mathsf{IPC} + \{\chi(P) \mid P \not\models L\}$. We claim that L = L'.

⊇: Exercise.

 \subseteq : Suppose $\phi \notin L'$. Let A be a subdirectly irreducible finitely generated model of L' which refutes ϕ and let X be its dual.

Suppose that X is finite.

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(F) \mid F \not\models L\}.$$

Proof.

Let $L' = \mathsf{IPC} + \{\chi(P) \mid P \not\models L\}$. We claim that L = L'.

⊇: Exercise.

 \subseteq : Suppose $\phi \notin L'$. Let A be a subdirectly irreducible finitely generated model of L' which refutes ϕ and let X be its dual.

Suppose that X is finite. If $X \models L$, then $\phi \notin L$.

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(F) \mid F \not\models L\}.$$

Proof.

Let $L' = \mathsf{IPC} + \{\chi(P) \mid P \not\models L\}$. We claim that L = L'.

⊇: Exercise.

 \subseteq : Suppose $\phi \notin L'$. Let A be a subdirectly irreducible finitely generated model of L' which refutes ϕ and let X be its dual.

Suppose that X is finite. If $X \models L$, then $\phi \notin L$. If $X \not\models L$, the $\chi(X) \in L'$, so $X \models \chi(X)$, which is absurd.

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(F) \mid F \not\models L\}.$$

Proof.

Let $L' = \mathsf{IPC} + \{\chi(P) \mid P \not\models L\}$. We claim that L = L'.

⊇: Exercise.

 \subseteq : Suppose $\phi \notin L'$. Let A be a subdirectly irreducible finitely generated model of L' which refutes ϕ and let X be its dual.

Suppose that X is finite. If $X \models L$, then $\phi \notin L$. If $X \not\models L$, the $\chi(X) \in L'$, so $X \models \chi(X)$, which is absurd.

If X is infinite, m-generated, it has infinite depth^a.

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(F) \mid F \not\models L\}.$$

Proof.

Let $L' = \mathsf{IPC} + \{\chi(P) \mid P \not\models L\}$. We claim that L = L'.

⊇: Exercise.

 \subseteq : Suppose $\phi \notin L'$. Let A be a subdirectly irreducible finitely generated model of L' which refutes ϕ and let X be its dual.

Suppose that X is finite. If $X \models L$, then $\phi \notin L$. If $X \not\models L$, the $\chi(X) \in L'$, so $X \models \chi(X)$, which is absurd.

If X is infinite, m-generated, it has infinite depth^a. Let k be the largest depth of an m-generated L model.

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(F) \mid F \not\models L\}.$$

Proof.

Let $L' = \mathsf{IPC} + \{\chi(P) \mid P \not\models L\}$. We claim that L = L'.

⊇: Exercise.

 \subseteq : Suppose $\phi \notin L'$. Let A be a subdirectly irreducible finitely generated model of L' which refutes ϕ and let X be its dual.

Suppose that X is finite. If $X \models L$, then $\phi \notin L$. If $X \not\models L$, the $\chi(X) \in L'$, so $X \models \chi(X)$, which is absurd.

If X is infinite, m-generated, it has infinite depth^a. Let k be the largest depth of an m-generated L model. Take some $x \in X$ at depth k+1 and let Y be the subframe generated by x.

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(F) \mid F \not\models L\}.$$

Proof.

Let $L' = \mathsf{IPC} + \{\chi(P) \mid P \not\models L\}$. We claim that L = L'.

⊇: Exercise.

 \subseteq : Suppose $\phi \notin L'$. Let A be a subdirectly irreducible finitely generated model of L' which refutes ϕ and let X be its dual.

Suppose that X is finite. If $X \models L$, then $\phi \notin L$. If $X \not\models L$, the $\chi(X) \in L'$, so $X \models \chi(X)$, which is absurd.

If X is infinite, m-generated, it has infinite depth a . Let k be the largest depth of an m-generated L model. Take some $x \in X$ at depth k+1 and let Y be the subframe generated by x. Then $Y \not\models L$, so $\chi(Y) \in L'$.

Theorem

A locally finite logic L can be axiomatised by the Jankov formulas

$$\{\chi(F) \mid F \not\models L\}.$$

Proof.

Let $L' = \mathsf{IPC} + \{\chi(P) \mid P \not\models L\}$. We claim that L = L'.

⊇: Exercise.

 \subseteq : Suppose $\phi \notin L'$. Let A be a subdirectly irreducible finitely generated model of L' which refutes ϕ and let X be its dual.

Suppose that X is finite. If $X \models L$, then $\phi \notin L$. If $X \not\models L$, the $\chi(X) \in L'$, so $X \models \chi(X)$, which is absurd.

If X is infinite, m-generated, it has infinite depth^a. Let k be the largest depth of an m-generated L model. Take some $x \in X$ at depth k+1 and let Y be the subframe generated by x. Then $Y \not\models L$, so $\chi(Y) \in L'$. As Y is an L'-frame, we have $Y \models \chi(Y)$, which is a contradiction. \square

^aThe curious student should refer to Nick's thesis, sections 3.1 & 3.2

