erccdashboard Package Vignette

Sarah A. Munro

May 12, 2014

This vignette describes the use of the erccdashboard R package to analyze External RNA Control Consortium (ERCC) spike-in control ratio mixtures in gene expression experiments. If you use this package for method validation of your gene expression experiments please cite our manuscript that describes this R package.

In this vignette we demonstrate analysis of two types of gene expression experiments from the SEQC project that used ERCC control ratio mixture spike-ins:

- Rat toxicogenomics methimazole-treated and control samples
- Human reference RNA samples from the MAQC I project, Universal Human Reference RNA (UHRR) and Human Brain Reference RNA (HBRR)

A subset of the large data set produced in the SEQC study are provided here as examples. The three sets of example data are:

- 1. Rat toxicogenomics RNA-Seq gene expression count data
- 2. UHRR/HBRR RNA-Seq gene expression count data
- 3. UHRR/HBRR Microarray gene expression fluorescent intensity data

1 Rat Toxicogenomics Example: MET (methimazole treatment) and CTL (control) Experiment

1.1 Load data and define input parameters

Load the package gene expression data.

> data(SEQC.Example)

The R workspace should now contain 5 objects Three of these objects are gene expression experiment expression measures:

- Lab10.array.UHRR.HBRR Fluorescent signal data from an Illumina beadarray microarray experiment with UHRR and HBRR
- COH.RatTox.ILM.MET.CTL.countTable RNA-Seq count data from a rat toxicogenomics experiment
- Lab5.ILM.UHRR.HBRR.countTable RNA-Seq count data from Lab 5 in the SEQC interlaboratory study with UHRR and HBRR

The other two objects are vectors of total reads for the 2 sequencing experiments

- COH.RatTox.ILM.MET.CTL.totalReads total sequenced reads factors for each column in the corresponding rat experiment count table
- Lab5.ILM.UHRR.HBRR.totalReads total sequenced reads factors for each column in the corresponding UHRR/HBRR count table

1.2 Quick analysis: runDashboard

To run the default analysis function runDashboard on the MET-CTL rat toxicogenomics RNA-Seq experiment, the following input arguments are required:

The first input argument, datType, indicates whether that data is integer count data from an RNA-Seq experiment ("count") or data from a microarray experiment ("array"). The isNorm argument indicates if the input expression measures are already normalized, the default value is FALSE. If you want to use normalized RNA-Seq or microarray data in the analysis, the isNorm argument must be set to TRUE. For array data this will modify the weights applied in limma DE testing. For RNA-Seq data, DE testing results must be available in the working directory in a file named "filenameRoot ERCC Pvals.csv"

The third argument, exTable, is the expression measure table.

Take a look at the RatTox experiment count table.

```
> head(COH.RatTox.ILM.MET.CTL.countTable)
         Feature MET_1 MET_2 MET_3 CTL_1 CTL_2 CTL_3
16499 ERCC-00002 16629 18798 26568 36600 45436 25163
16500 ERCC-00003
                  1347
                         1565
                               1983
                                      3048
                                            3447
                                                  2195
16501 ERCC-00004
                  4569
                         5570
                               6755
                                      1240
                                            1484
                                                    902
16502 ERCC-00009
                    811
                          869
                               1123
                                       909
                                            1073
                                                    537
                      0
                            0
                                  0
                                         0
                                               0
                                                      0
16503 ERCC-00012
16504 ERCC-00013
                      3
                            1
                                   2
                                               5
```

The first column of the expression measure table, Feature, contains unique names for all the transcripts that were quantified in this experiment. The remaining columns represent replicates of the pair of samples, in this expression measure table the control sample is labeled CTL and the treatment sample is labeled MET. An underscore is included to separate the sample names from the replicate numbers during analysis. This column name format Sample_Rep is required for the columns of any input expression measure table. Only one underscore (_) should be used in the column names.

The default differential expression testing of RNA-Seq experiments in the erccdashboard is done with the QuasiSeq package, which requires the use of integer count data. The default normalization of the data is 75th percentile (also known as upper quartile) normalization. It is optional to provide a vector of per replicate normalization factors through the input argument repNormFactor, such as a vector of total reads for each replicate. The example total reads vectors we provide here were derived from the FASTQ files associated with each column in the RNA-Seq experiment count tables. Any repNormFactor vector will be used as a library size normalization factor for each column of exTable. This will be adjusted to be a per million reads factor.

For any experiment the sample spiked with ERCC Mix 1 is sample1Name and the sample spiked with ERCC Mix 2 is sample2Name. In this experiment sample1Name = MET and sample2Name = CTL. For

a more robust experimental design the reverse spike-in design could be created using additional replicates of the treatment and control samples. ERCC Mix 2 would be spiked into MET samples and ERCC Mix 1 would be spiked into CTL control replicates.

The dilution factor of the pure Ambion ERCC mixes prior to spiking into total RNA samples is erccdilution. The amount of diluted ERCC mix spiked into the total RNA sample is spikeVol (units are μ L). The mass of total RNA spiked with the diluted ERCC mix is totalRNAmass (units are μ g).

The final required input parameter, choseFDR, is the False Discovery Rate (FDR) for differential expression testing. A typical choice would be 0.05 (5% FDR), so this is the default choseFDR value. For the rat data sets a more liberal FDR was used, choseFDR = 0.1.

The function runDashboard.R is provided for convenient default erccdashboard analysis. Execution of the runDashboard function calls the default functions for erccdashboard analysis and reports parameters and progress to the R console. The functions called within runDashboard.R are also available to the user (details provided in Section 4).

All data and analysis results are stored in the list object exDat. For convenience the main diagnostic figures are saved to a pdf file and the exDat object is saved to an .RData object named using the filenameRoot provided by the user.

Use the following command to run the default runDashboard script:

```
> exDat <- runDashboard(datType = "count", isNorm = FALSE,
                         exTable = COH.RatTox.ILM.MET.CTL.countTable,
                         filenameRoot = "COH.ILM", sample1Name = "MET",
                         sample2Name = "CTL",erccmix = "RatioPair",
                         erccdilution = 1/100, spikeVol = 1,
                         totalRNAmass = 0.500, choseFDR = 0.1)
Initializing the exDat list structure...
choseFDR = 0.1
repNormFactor is NULL
Filename root is: COH.ILM.MET.CTL
Transcripts were removed with a mean count < 1 or more than 2
replicates with 0 counts.
Original data contained 16590 transcripts.
After filtering 11570 transcripts remain for analysis.
A total of 29 out of 92
ERCC controls were filtered from the data set
The excluded ERCCs are:
ERCC-00012 ERCC-00014 ERCC-00016 ERCC-00017 ERCC-00024
ERCC-00041 ERCC-00048 ERCC-00057 ERCC-00061 ERCC-00073
ERCC-00075 ERCC-00081 ERCC-00083 ERCC-00086 ERCC-00097
ERCC-00098 ERCC-00104 ERCC-00117 ERCC-00120 ERCC-00123
ERCC-00126 ERCC-00134 ERCC-00137 ERCC-00138 ERCC-00142
ERCC-00147 ERCC-00150 ERCC-00156 ERCC-00164
repNormFactor is NULL,
Using Default Upper Quartile Normalization Method - 75th percentile
normVec:
438 517 473 397 546 389
Check for sample mRNA fraction differences(r_m)...
Number of ERCC Controls Used in r_m estimate
```

```
Outlier ERCCs for GLM r_m Estimate:
None
GLM log(r_m) estimate:
-0.07014034
GLM log(r_m) estimate weighted s.e.:
0.1494555
Number of ERCCs in Mix 1 dyn range: 63
Number of ERCCs in Mix 2 dyn range: 63
These ERCCs were not included in the signal-abundance plot,
because not enough non-zero replicate measurements of these
controls were obtained for both samples:
ERCC-00058 ERCC-00067 ERCC-00077 ERCC-00168 ERCC-00028
ERCC-00033 ERCC-00040 ERCC-00109 ERCC-00154 ERCC-00158
Saving dynRangePlot to exDat
Starting differential expression tests
Show log.offset
6.082219 6.248043 6.159095 5.983936 6.302619 5.963579
Disp = 0.0625 , BCV = 0.25
Disp = 0.06244 , BCV = 0.2499
[1] "Analyzing Gene # 2"
[1] "Analyzing Gene # 10"
[1] "Analyzing Gene # 100"
[1] "Analyzing Gene # 500"
[1] "Analyzing Gene # 1000"
[1] "Analyzing Gene # 2500"
[1] "Analyzing Gene # 5000"
[1] "Analyzing Gene # 10000"
[1] "Analyzing Gene # 2"
[1] "Analyzing Gene # 10"
[1] "Analyzing Gene # 100"
[1] "Analyzing Gene # 500"
[1] "Analyzing Gene # 1000"
[1] "Analyzing Gene # 2500"
[1] "Analyzing Gene # 5000"
[1] "Analyzing Gene # 10000"
Note: 'test.mat' not provided. Comparing each model
from 'design.list' to first model in 'design.list', which must be the full model
[1] "Spline scaling factor: 0.936528810675116"
[1] "Spline scaling factor: 0.933696994849808"
[1] "Analyzing Gene # 2"
[1] "Analyzing Gene # 10"
```

```
[1] "Analyzing Gene # 2"
```

[1] "Analyzing Gene # 10"

Note: 'test.mat' not provided. Comparing each model

from 'design.list' to first model in 'design.list', which must be the full model

[1] "Spline scaling factor: 0.933696994849808"

[1] "Finished DE testing"

[1] "Spline scaling factor: 0.933696994849808"

Finished examining dispersions

Threshold P-value 0.007412652

Generating ROC curve and AUC statistics...

Area Under the Curve (AUC) Results:

	Ratio	AUC	Detected	Spiked
1	4:1	1.000	16	23
2	1:1.5	0.950	16	23
3	1:2	0.971	16	23

Estimating ERCC LODR

.....

	Ratio	LODR	Estimate	90%	CI	Lower	Bound	90%	CI	Upper	Bound
1	4:1		26				19				33
3	1:1.5		Inf				<na></na>				<na></na>
4	1:2		280				140				410

LODR estimates are available to code ratio-abundance plot

```
Saving main dashboard plots to pdf file...
Saving exDat list to .RData file...
Analysis completed.
```

1.3 Results of dashboard analysis

The summary function will give a top level view of the exDat list structure. The str function will give more detail. It is a good idea to set the max.level argument in the str function, because by the end of the analysis the exDat structure is quite large.

> summary(exDat)

	Length	Class	Mode
sampleInfo	11	-none-	list
plotInfo	9	-none-	list
erccInfo	4	-none-	list
Transcripts	7	${\tt data.frame}$	list
designMat	3	${\tt data.frame}$	list
sampleNames	2	-none-	character
idCols	6	${\tt data.frame}$	list
normERCCDat	7	data.frame	list
normFactor	6	-none-	numeric

mnLibeFactor	1	-none-	numeric
spikeFraction	1	-none-	numeric
idColsAdj	6	data.frame	list
Results	13	-none-	list
Figures	12	-none-	list

The figures from the analysis are stored in exDat\$Figures. The four main diagnostic figures that are saved to pdf are the dynRangePlot, rocPlot, lodrERCCPlot, and maPlot.

> exDat\$Figures\$dynRangePlot

For this particular experiment the relationship between abundance and signal for the ERCC controls show that the measurement results span a 2^{15} dynamic range. These ERCC mixtures were designed to span a 2^{20} dynamic range, but there was insufficient evidence to reliably quantify ERCC transcripts at low abundances.

> exDat\$Figures\$rocPlot

The receiver operator characteristic (ROC) curve and the Area Under the Curve (AUC) statistic provide evidence of the diagnostic power for detecting differential expression in this rat toxicogenomics experiment. As expected with increased fold change, diagnostic power increases. The AUC summary statistic for different experiments can be used to compare diagnostic performance.

> exDat\$Figures\$lodrERCCPlot

Ratio	LODR Estimate	90% CI Lower Bound	90% CI Upper Bound
4:1	26	19	33
1:1.5	Inf	NA	NA
1:2	280	140	410

By modeling the relationship between average signal and p-values we can obtain Limit of Detection of Ratios (LODR) estimates for each differential fold change (or Ratio,indicated by color) and a threshold p-value, p.thresh, indicated by the dotted black line. LODR values can be compared between experiments to evaluate the ability to detect differences between samples as a function of transcript abundance.

> exDat\$Figures\$maPlot

An MA plot (Ratio of Signals vs Average Signals) shows the ratio measurements of transcripts in the pair of samples as a function of abundance. The ERCC control ratios measurements are coded to indicate which controls are above a given LODR (solid circles) or below the LODR (open circles). This plot also shows the v ariability in ratio measurements as a function of dynamic range and the bias in control ratio measurements (r_m) , which is influenced by the mRNA fraction difference between the pair of samples.

2 SEQC Reference RNA (UHRR and HBRR) Examples

All UHRR and HBRR experiments for the SEQC interlaboratory and interplatform analysis were performed with aliquots from single large samples of UHRR and HBRR. The count data and microarray data provided here are from experiments using the same original UHRR and HBRR samples.

2.1 RNA-Seq UHRR vs. HBRR experiment analysis

 filenameRoot="Lab5", sample1Name = "UHRR",
sample2Name = "HBRR", erccmix = "RatioPair",
erccdilution = 1, spikeVol = 50,
totalRNAmass = 2.5*10^(3), choseFDR = 0.01)

Initializing the exDat list structure...

choseFDR = 0.01

repNormFactor is NULL

Filename root is: Lab5.UHRR.HBRR

Transcripts were removed with a mean count < 1 or more than 2 replicates with 0 counts.

Original data contained 43919 transcripts.

After filtering 39844 transcripts remain for analysis.

A total of 2 out of 92

ERCC controls were filtered from the data set

The excluded ERCCs are:

ERCC-00057 ERCC-00083

repNormFactor is NULL,

Using Default Upper Quartile Normalization Method - 75th percentile

normVec:

4048 7635 5739.25 12885 7033 6176 7059 7141.25 Check for sample mRNA fraction differences(r_m)...

Number of ERCC Controls Used in r_m estimate 90

Outlier ERCCs for GLM r_m Estimate: ERCC-00012 ERCC-00137 ERCC-00085 ERCC-00054 ERCC-00019

GLM log(r_m) estimate:
0.2836417

GLM $log(r_m)$ estimate weighted s.e.: 0.03764492

Number of ERCCs in Mix 1 dyn range: 90

Number of ERCCs in Mix 2 dyn range: 90 These ERCCs were not included in the signal-abundance plot, because not enough non-zero replicate measurements of these controls were obtained for both samples:

ERCC-00016 ERCC-00017 ERCC-00048 ERCC-00061 ERCC-00075 ERCC-00104 ERCC-00117 ERCC-00142 ERCC-00156 ERCC-00097 ERCC-00123 ERCC-00138

Saving dynRangePlot to exDat

Starting differential expression tests

```
Show log.offset
8.305978 8.940498 8.655084 9.463819 8.858369 8.728426 8.862059 8.873643
Disp = 0.00099 , BCV = 0.0314
Disp = 0.00104 , BCV = 0.0322
[1] "Analyzing Gene # 2"
[1] "Analyzing Gene # 10"
[1] "Analyzing Gene # 100"
[1] "Analyzing Gene # 500"
[1] "Analyzing Gene # 1000"
[1] "Analyzing Gene # 2500"
[1] "Analyzing Gene # 5000"
[1] "Analyzing Gene # 10000"
[1] "Analyzing Gene # 15000"
[1] "Analyzing Gene # 20000"
[1] "Analyzing Gene # 25000"
[1] "Analyzing Gene # 30000"
[1] "Analyzing Gene # 35000"
[1] "Analyzing Gene # 40000"
[1] "Analyzing Gene # 2"
[1] "Analyzing Gene # 10"
[1] "Analyzing Gene # 100"
[1] "Analyzing Gene # 500"
[1] "Analyzing Gene # 1000"
[1] "Analyzing Gene # 2500"
[1] "Analyzing Gene # 5000"
[1] "Analyzing Gene # 10000"
[1] "Analyzing Gene # 15000"
[1] "Analyzing Gene # 20000"
[1] "Analyzing Gene # 25000"
[1] "Analyzing Gene # 30000"
[1] "Analyzing Gene # 35000"
[1] "Analyzing Gene # 40000"
Note: 'test.mat' not provided. Comparing each model
from 'design.list' to first model in 'design.list', which must be the full model
[1] "Spline scaling factor: 1.09854245480117"
[1] "Spline scaling factor: 1.09834239703167"
[1] "Analyzing Gene # 2"
[1] "Analyzing Gene # 10"
[1] "Analyzing Gene # 2"
[1] "Analyzing Gene # 10"
Note: 'test.mat' not provided. Comparing each model
from 'design.list' to first model in 'design.list', which must be the full model
[1] "Spline scaling factor: 1.09834239703167"
[1] "Finished DE testing"
[1] "Spline scaling factor: 1.09834239703167"
```

Finished examining dispersions

Threshold P-value

0.152249

Threshold P-value is high for the chosen FDR of 0.01 The sample comparison indicates a large amount of differential expression in the measured transcript populations

Generating ROC curve and AUC statistics...

Area Under the Curve (AUC) Results:

	Ratio	AUC	Detected	Spiked
1	4:1	0.966	22	23
2	1:1.5	0.830	22	23
3	1:2	0.888	23	23

Estimating ERCC LODR

	Ratio	LODR	Estimate	90%	CI	Lower	Bound	90%	CI	Upper	Bound
1	4:1		20				6.9				26
3	1:1.5		160				70				190
4	1:2		38				23				42

LODR estimates are available to code ratio-abundance plot

Saving main dashboard plots to pdf file... Saving exDat list to .RData file... Analysis completed.

> exDat\$Figures\$dynRangePlot

Compared with the rat toxicogenomics experiment the UHRR/HBRR experiment from Lab 5 captures the full dynamic range of 2^{20} in the ERCC mixture design. This difference can be attributed to an much greater sequencing depth in the UHRR/HBRR experiments at each laboratory (full fluidic capacity of an instrument) compared to the MET-CTL rat toxicogenomics experiment. This difference is apparent in the total reads vectors for the two different experiments:

- > COH.RatTox.ILM.MET.CTL.totalReads
- [1] 41423502 46016148 44320280 38400362 47511484 33910098
- > Lab5.ILM.UHRR.HBRR.totalReads
- [1] 138786892 256006510 199468322 431933806 247985592
- [6] 219383270 251265814 257508210

> exDat\$Figures\$rocPlot

Given the sequencing depth of the Lab 5 UHRR/HBRR experiment it is unsurprising that the ROC curve results show that almost all of the spiked ERCC transcripts were detected and tested for differential expression. Again we see that the diagnostic power decreases as the differential ratio decreases. At first glance, one may attempt to compare these ROC curve and AUC results to the rat toxicogenomics results, but this is ill-advised because the experiments are different. Not only is the sequencing depth different for the two experiments, but the UHRR/HBRR sample transcripts also have high levels of differential expression, whereas the rat MET/CTL samples have much lower levels of differential expression. This difference in differential expression is shown in the spread and density of the points representing the endogenous transcripts in the MA plots for each experiment.

> exDat\$Figures\$lodrERCCPlot

Ratio	LODR Estimate	90% CI Lower Bound	90% CI Upper Bound
4:1	20	6.9	26
1:1.5	160	70	190
1:2	38	23	42

Much lower LODR estimates are found in the Lab 5 UHRR/HBRR experiment compared to the rat experiment. One can also see that the p-values in this analysis are much smaller than those in the rat experiment due to the large amount of differentially expressed transcripts in the UHRR/HBRR comparison.

> exDat\$Figures\$maPlot

Variability in the ratio measurements in this experiment is much lower than in the rat experiment. This is due to the spike-in design of the two experiments. In the rat experiment the 3 replicates for each condition represent biological replicates and every replicate was spiked separately with Ambion mix. In the UHRR/HBRR experiment a large batch of each type of reference RNA was spiked once and sample aliquots were then distributed for measurement. The bias in control ratios in this experiment is much greater than what was observed in the rat experiment. This bias is likely due to the known mRNA fraction difference between the UHRR and HBRR RNA samples.

2.2 Microarray UHRR vs. HBRR experiment analysis

Unnormalized fluorescent signals are expected for erccdashboard analysis of microarray data, the data will be log2 transformed for DE testing with the limma package. The repNormFactor variable should be NULL for microarray analysis, and repNormFactor is set to NULL if it is missing in the list of arguments for the runDashboard function. Each array replicate is normalized by the 75th quantile fluorescence intensity value of that array.

```
> exDat <- runDashboard(datType="array", isNorm = F,
                        exTable=Lab10.array.UHRR.HBRR,
                        filenameRoot = "Lab10.array",
                        sample1Name = "UHRR", sample2Name="HBRR",
                        erccmix = "RatioPair", erccdilution = 1,
                        spikeVol = 50, totalRNAmass = 2.5*10^(3), choseFDR=0.01)
Initializing the exDat list structure...
choseFDR = 0.01
repNormFactor is NULL
Filename root is: Lab10.array.UHRR.HBRR
Using 75th percentile (upper quartile) intensity to normalize each array
normVec:
694.35 758.9 705 570.55 640.25 641.3
Check for sample mRNA fraction differences(r_m)...
datType is array, using 1:1 ERCC controls for r_m estimate
Number of ERCC Controls Used in r_m estimate
15
Outlier ERCCs for GLM r_m Estimate:
ERCC-00035 ERCC-00042
GLM log(r_m) estimate:
0.2070304
GLM log(r_m) estimate weighted s.e.:
0.09446045
Number of ERCCs in Mix 1 dyn range:
Number of ERCCs in Mix 2 dyn range: 59
datType is array, no linear model fit for ERCC specific effects
rangeResidPlot is empty
Saving dynRangePlot to exDat
Finished DE testing
Generating ROC curve and AUC statistics...
```

Area Under the Curve (AUC) Results:

	Ratio	AUC	Detected	Spiked
1	4:1	0.933	14	23
2	1:1.5	0.929	14	23
3	1:2	0.917	16	23

Estimating ERCC LODR

.....

	${\tt Ratio}$	LODR	${\tt Estimate}$	90%	CI	Lower	Bound	90%	CI	Upper	${\tt Bound}$
1	4:1		<150				<150				<150
3	1:1.5		200				<160				210
4	1:2		150				<130				160

LODR estimates are available to code ratio-abundance plot

Saving main dashboard plots to pdf file... Saving exDat list to .RData file... Analysis completed.

> exDat\$Figures\$dynRangePlot

The dynamic range of the microarray experiment on reference RNA samples was 2^{10} . This figure shows the signal compression for high abundance transcripts.

> exDat\$Figures\$rocPlot

Comparison of these microarray ROC curves and AUC statistics to the results in the RNA-Seq UHRR/HBRR experiment from Lab 5 show similar diagnostic power for the two platforms. Fewer controls were detected above background in the microarray experiment, and this should be considered when comparing the diagnostic performance of the two platforms. More stringent filtering of RNA-Seq data would likely lead to improved diagnostic performance.

> exDat\$Figures\$lodrERCCPlot

Ratio	LODR Estimate	90% CI Lower Bound	90% CI Upper Bound
4:1	<150	<150	<150
1:1.5	200	<160	210
1:2	150	<130	160

LODR estimates for microarray data are derived from the intersection with the threshold p-value at the lowest signal. The same FDR was chosed for the RNA-Seq and microarray measurements of the UHRR/HBRR samples, it is interesting to note that different threshold p-values were derived for each type of experiment using the same FDR = 0.01, p.thresh = 0.1518 for RNA-Seq at Lab 5 and p.thresh = 0.0430 for the microarray experiment.

> exDat\$Figures\$maPlot

The variability and bias in the control ratio measurements in the microarray data measurement of UHRR/HBRR are similar to the observations in the RNA-Seq UHRR/HBRR experiment.

3 Comparison of Performance Between Experiments

The performance metrics provided here derived from measurements of ERCC ratios in gene expression experiments (AUC, LODR, r_m , and the standard deviations of the ERCC ratio measurements) can be used to assess performance between experiments within the same laboratory, or between different laboratories or technology platforms.

4 Analysis Details: Advanced Use of Functions in runDashboard

The analysis functions contained in the convenience wrapper function runDashboard can also be used directly by the user. Comments are provided above each analysis step included in runDashboard to describe the purpose and ordering constraints. View the runDashboard script to see comments describing the analysis functions and the ordering constraints:

```
> runDashboard
function (datType = NULL, isNorm = F, exTable = NULL, repNormFactor = NULL,
    filenameRoot = NULL, sample1Name = NULL, sample2Name = NULL,
    erccmix = "RatioPair", erccdilution = 1, spikeVol = 1, totalRNAmass = 1,
    choseFDR = 0.05, ratioLim = c(-4, 4), signalLim = c(-14, 4)
        14), userMixFile = NULL)
{
    exDat <- initDat(datType = datType, isNorm = isNorm, exTable = exTable,
        repNormFactor = repNormFactor, filenameRoot = filenameRoot,
        sample1Name = sample1Name, sample2Name = sample2Name,
        erccmix = erccmix, erccdilution = erccdilution, spikeVol = spikeVol,
        totalRNAmass = totalRNAmass, choseFDR = choseFDR, ratioLim = ratioLim,
        signalLim = signalLim, userMixFile = userMixFile)
    exDat <- est_r_m(exDat)</pre>
    exDat <- dynRangePlot(exDat)</pre>
    if (erccmix == "RatioPair") {
        exDat <- withinMixRatios(exDat)</pre>
    }
    exDat <- geneExprTest(exDat)</pre>
    exDat <- erccROC(exDat)</pre>
    exDat = estLODR(exDat, kind = "ERCC", prob = 0.9)
    exDat <- annotLODR(exDat)</pre>
    saveERCCPlots(exDat)
    cat("\nSaving exDat list to .RData file...")
    nam <- paste(exDat$sampleInfo$filenameRoot, "exDat", sep = ".")</pre>
    assign(nam, exDat)
    to.save <- ls()
    save(list = to.save[grepl(pattern = nam, x = to.save)], file = paste0(exDat$sampleInfo$filenameRod
        ".RData"))
    cat("\nAnalysis completed.")
    return(exDat)
}
<environment: namespace:erccdashboard>
```

4.1 Flexibility in Differential Expression Testing

The geneExprTest function wraps the QuasiSeq differential expression testing package for datType = "count" or uses the limma package for differential expression testing if datType = "array". The function uses the DE testing p-value results and choseFDR parameter to select a threshold p-value for LODR estimation. In the case of count data if QuasiSeq DE testing has already been done and a correctly formatted quasiseq results csv file is provided with the necessary DE test results, then geneExprTest will have reduced runtime. The function will look for a csv file with the name "filenameRoot.quasiSeq.res.csv" and columns with names "Feature", "pvals", and "qvals" must be in the file.

To use results from another DE testing tool (instead of QuasiSeq) a csv file with the name "filenameRoot ERCC pvals.csv" and correct column headers should be in the working directory. For RNA-Seq ("count") data, this ERCC pvals file is required to complete analysis without QuasiSeq DE testing or if the input data (exTable) is already normalized (isNorm = TRUE). If isNorm is TRUE, then the software asks for user input about length normalization. Type Y at the command line in the R console if the data is length normalized (e.g. FPKM or RPKM data) otherwise type N.

4.2 Options for LODR Estimation

The default behavior of runDashboard is to use the estLODR function to obtain an LODR estimate using empirical data from the ERCCs and a model-based simulation using the endogenous genes in the sample. The type of LODR estimation is selected using the argument kind in the estLODR function. The other parameter that may be adjusted is the probability for the LODR estimate, in the default analysis prob = 0.9 is selected.

4.3 Options for Printing Plots to File

The function savePlots will save selected figures to a pdf file. The default is the 4 manuscript figures to a single page (plotsPerPg = "manuscript"). If plotsPerPg = "single" then each plot is placed on an individual page in one pdf file. If plotlist is not defined (plotlist = NULL) then all plots in exDat\$Figures are printed to the file.

To print 4 plots from manuscript to a single page pdf file use plotsPerPg = "manuscript" in the saveERCCPlots function or to create a multiplepage pdf of all plots produced use plotsPerPg = "single".

4.4 Analysis of Alternative Spike-in Designs

By default the package is configured to analyze the ERCC ratio mixtures produced by Ambion (ERCC ExFold RNA Spike-In Mixes, Catalog Number 4456739). This pair of control ratio mixtures were designed to have 1:1, 4:1, 1:1.5, and 1:2 ratios of 92 distinct RNA transcripts (23 different RNA control sequences are in each of these four ratio subpools). Alternative ERCC RNA control ratio mixture designs can be produced using the NIST DNA Plasmid Library for External Spike-in Controls (NIST Standard Reference Material 2374, https://www-s.nist.gov/srmors/certificates/2374.pdf). For example, a pair of RNA control mixtures could be created with a ternary ratio design, three subpools of RNA controls with either no change (1:1) or 2-fold increased (2:1) and 2-fold decreased (1:2) relative abundances between the pair of mixtures (Mix 1/Mix 2). To use alternative spike-in mixture designs with the dashboard a csv file must be provided to the package with the argument userMixFile for the initDat function.

If all samples from both conditions were only spiked with a single ERCC mixture (e.g. Ambion Catalog Number 4456740, ERCC RNA Spike-In Mix) a limited subset of the package functions can be used (initDat, est_r_m, and dynRangePlot. For initDat use ERCCMixes="Single" and est_r_m and dynRangePlot functions can then be used to examine the mRNA fraction differences for the pair of samples and evaluate the dynamic range of the experiment.

5 Notes on R version and session information

The results shown in this R vignette are the same as the results shown in our manuscript and were obtained in R version 3.0.2 with the following session information.

```
> sessionInfo()
R version 3.1.0 (2014-04-10)
Platform: x86_64-apple-darwin10.8.0 (64-bit)

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] splines grid stats graphics grDevices
[6] utils datasets methods base
other attached packages:
```

- [1] erccdashboard_0.9.8 gridExtra_0.9.1
- [3] ggplot2_0.9.3.1

loaded via a namespace (and not attached):

[1]	bitops_1.0-6	caTools_1.17
[3]	colorspace_1.2-4	digest_0.6.4
[5]	edgeR_3.6.1	gdata_2.13.3
[7]	gplots_2.13.0	gtable_0.1.2
[9]	gtools_3.4.0	KernSmooth_2.23-12
[11]	labeling_0.2	lattice_0.20-29
[13]	limma_3.20.1	locfit_1.5-9.1
[15]	MASS_7.3-33	Matrix_1.1-3
[17]	mgcv_1.7-29	munsell_0.4.2
[19]	nlme_3.1-117	plyr_1.8.1
[21]	proto_0.3-10	QuasiSeq_1.0-4
[23]	qvalue_1.38.0	Rcpp_0.11.1
[25]	reshape2_1.4	ROCR_1.0-5
[27]	scales_0.2.4	stringr_0.6.2
[29]	tcltk_3.1.0	tools_3.1.0