CPA: Densest subgraph

Maximilien Danisch

LIP6 – CNRS and Sobonne University

first_name.last_name@lip6.fr

Outline

- Motivations
- 2 k-core decomposition
 - Definition
 - Algorithm
 - Properties and applications

Outline

- Motivations
- 2 k-core decomposition
 - Definition
 - Algorithm
 - Properties and applications

3/12

Motivations

- Finding "interesting" subgraphs
- "Mining" the input graph

Definition: The densest subgraph is the maximum subgraph maximizing the ratio between the number of edges and the number of nodes.

Properties: The densest subgraph can be found in polynomial time. In general, in real-world graphs, it is much "denser" and much smaller than the original graph.

Outline

- Motivations
- 2 k-core decomposition
 - Definition
 - Algorithm
 - Properties and applications

Definition

Definition: The *k*-core of a graph is the maximum subgraph such that each node has degree *k* or more.

Definition: The core value of a node u is the maximum number c(u) such that the node u belongs to the c(u)-core.

Definition: The core value of a graph is the maximum number

c such that a c-core exists.

Definition: The *k*-core decomposition is the collection of nested *k*-cores for *k* from 1 to *c*.

- 1: $i \leftarrow n, c \leftarrow 0$
- 2: while $V(G) \neq \emptyset$ do
- 3: Let *v* be a node with minimum degree in *G*
- 4: $c \leftarrow \max(c, d_G(v))$
- 5: $V(G) \leftarrow V(G) \setminus \{v\}$
- 6: $E(G) \leftarrow E(G) \setminus \Delta(v)$
- 7: $\eta(\mathbf{v}) = i$
- 8: $i \leftarrow i 1$

- 1: $i \leftarrow n, c \leftarrow 0$
- 2: while $V(G) \neq \emptyset$ do
- 3: Let *v* be a node with minimum degree in *G*
- 4: $c \leftarrow \max(c, d_G(v))$
- 5: $V(G) \leftarrow V(G) \setminus \{v\}$
- 6: $E(G) \leftarrow E(G) \setminus \Delta(v)$
- 7: $\eta(\mathbf{v}) = i$
- 8: $i \leftarrow i 1$

- 1: $i \leftarrow n, c \leftarrow 0$
- 2: while $V(G) \neq \emptyset$ do
- 3: Let *v* be a node with minimum degree in *G*
- 4: $c \leftarrow \max(c, d_G(v))$
- 5: $V(G) \leftarrow V(G) \setminus \{v\}$
- 6: $E(G) \leftarrow E(G) \setminus \Delta(v)$
- 7: $\eta(\mathbf{v}) = i$
- 8: $i \leftarrow i 1$

- 1: $i \leftarrow n, c \leftarrow 0$
- 2: while $V(G) \neq \emptyset$ do
- 3: Let *v* be a node with minimum degree in *G*
- 4: $c \leftarrow \max(c, d_G(v))$
- 5: $V(G) \leftarrow V(G) \setminus \{v\}$
- 6: $E(G) \leftarrow E(G) \setminus \Delta(v)$
- 7: $\eta(\mathbf{v}) = i$
- 8: $i \leftarrow i 1$

- 1: $i \leftarrow n, c \leftarrow 0$
- 2: while $V(G) \neq \emptyset$ do
- 3: Let v be a node with minimum degree in G
- $c \leftarrow \max(c, d_G(v))$ 4:
- $V(G) \leftarrow V(G) \setminus \{v\}$ 5:
- $E(G) \leftarrow E(G) \setminus \Delta(v)$ 6:
- 7: $\eta(\mathbf{v}) = i$
- 8: $i \leftarrow i 1$

- 1: $i \leftarrow n, c \leftarrow 0$
- 2: while $V(G) \neq \emptyset$ do
- 3: Let *v* be a node with minimum degree in *G*
- 4: $c \leftarrow \max(c, d_G(v))$
- 5: $V(G) \leftarrow V(G) \setminus \{v\}$
- 6: $E(G) \leftarrow E(G) \setminus \Delta(v)$
- 7: $\eta(\mathbf{v}) = i$
- 8: $i \leftarrow i 1$

- 1: $i \leftarrow n, c \leftarrow 0$
- 2: while $V(G) \neq \emptyset$ do
- 3: Let *v* be a node with minimum degree in *G*
- 4: $c \leftarrow \max(c, d_G(v))$
- 5: $V(G) \leftarrow V(G) \setminus \{v\}$
- 6: $E(G) \leftarrow E(G) \setminus \Delta(v)$
- 7: $\eta(\mathbf{v}) = i$
- 8: $i \leftarrow i 1$

- 1: $i \leftarrow n, c \leftarrow 0$
- 2: while $V(G) \neq \emptyset$ do
- 3: Let *v* be a node with minimum degree in *G*
- 4: $c \leftarrow \max(c, d_G(v))$
- 5: $V(G) \leftarrow V(G) \setminus \{v\}$
- 6: $E(G) \leftarrow E(G) \setminus \Delta(v)$
- 7: $\eta(\mathbf{v}) = i$
- 8: $i \leftarrow i 1$

- 1: $i \leftarrow n, c \leftarrow 0$
- 2: while $V(G) \neq \emptyset$ do
- 3: Let *v* be a node with minimum degree in *G*
- 4: $c \leftarrow \max(c, d_G(v))$
- 5: $V(G) \leftarrow V(G) \setminus \{v\}$
- 6: $E(G) \leftarrow E(G) \setminus \Delta(v)$
- 7: $\eta(\mathbf{v}) = i$
- 8: $i \leftarrow i 1$

- 1: $i \leftarrow n, c \leftarrow 0$
- 2: while $V(G) \neq \emptyset$ do
- 3: Let *v* be a node with minimum degree in *G*
- 4: $c \leftarrow \max(c, d_G(v))$
- 5: $V(G) \leftarrow V(G) \setminus \{v\}$
- 6: $E(G) \leftarrow E(G) \setminus \Delta(v)$
- 7: $\eta(\mathbf{v}) = i$
- 8: $i \leftarrow i 1$

Algorithm Core decomposition

- 1: $i \leftarrow n, c \leftarrow 0$
- 2: while $V(G) \neq \emptyset$ do
- 3: Let *v* be a node with minimum degree in *G*
- 4: $c \leftarrow \max(c, d_G(v))$
- 5: $V(G) \leftarrow V(G) \setminus \{v\}$
- 6: $E(G) \leftarrow E(G) \setminus \Delta(v)$
- 7: $\eta(\mathbf{v}) = i$
- 8: $i \leftarrow i 1$

Exercise: Which datastructures should be used? And what is the complexity of the Algorithm?

Definition

Relation to densest subgraph

Exercise: Try to guess some relation between the densest subgraph and the k-core ordering

Relation to densest subgraph

Exercise: Try to guess some relation between the densest subgraph and the k-core ordering

Theorem (not proven here): A densest prefix is a 2-approximation of the densest subgraph.

Relation to densest subgraph

Exercise: Try to guess some relation between the densest subgraph and the k-core ordering

Theorem (not proven here): A densest prefix is a 2-approximation of the densest subgraph.

Exercise: Given an ordering of the nodes, give an efficient algorithm to compute a densest prefix.

Making faster algorithms: induced DAG

DAG stands for Directed Acyclic Graph:

Exercise: What is the maximum out-degree of such a DAG?

Exercise: What is the running time of our triangle-listing algorithm (c.f. course 2) if the core ordering is used? Note that, in general, in real-world graphs $c \ll n$.

Finding best spreaders

Identification of influential spreaders in complex networks - Kitsak et al. 2010

Finding anomalous nodes

CoreScope: Graph Mining Using k-Core Analysis - Shin et al. 2016

Algorithm
Properties and applications

For more on k-core check the tutorial at:

http://fragkiskos.me/papers/Tutorial_Slides_ ICDM_2016.pdf