Les arbres de Markov cachés

Hugo Gangloff

hugo_gangloff@telecom-sudparis.eu

Méthodes Statistiques pour la Segmentation d'Images
Octobre 2020

Plan

- 1 Introduction
- 2 Le modèle d'arbre de Markov de caché
- 3 Inférence dans les arbres de Markov cachés
- 4 Estimation des paramètres dans les arbres de Markov cachés
- 5 Arbres de Markov couples et triplets
- 6 Conclusion

Introduction : les modèles probabilistes graphiques orientés

- lacksquare Soit $\mathcal{G}=(\mathcal{S},\mathcal{E})$ un graphe orienté
 - S est l'ensemble des *sommets* (ou *sites* ou *nœuds*)
 - lacktriangle est l'ensemble des *arêtes orientées*

- lacksquare Soit $\mathcal{G}=(\mathcal{S},\mathcal{E})$ un graphe orienté
 - S est l'ensemble des sommets (ou sites ou nœuds)
 - ullet est l'ensemble des arêtes orientées
- $\forall s \in \mathcal{S}$, s^- est le *père* de s, s'il existe, dans \mathcal{E} , une arête orientée de s^- vers s.

Dans ce cas également, s est le fils de s^- .

- lacksquare Soit $\mathcal{G}=(\mathcal{S},\mathcal{E})$ un graphe orienté
 - S est l'ensemble des *sommets* (ou *sites* ou *nœuds*)
 - $lacksymbol{\epsilon}$ est l'ensemble des arêtes orientées
- $\forall s \in \mathcal{S}$, s^- est le *père* de s, s'il existe, dans \mathcal{E} , une arête orientée de s^- vers s.
 - Dans ce cas également, s est le fils de s^- .
- On note $\mathcal{P}(s)$ l'ensemble des pères de $s, \forall s \in \mathcal{S}$.

- lacksquare Soit $\mathcal{G}=(\mathcal{S},\mathcal{E})$ un graphe orienté
 - lacksquare S est l'ensemble des sommets (ou sites ou nœuds)
 - lacktriangle est l'ensemble des arêtes orientées
- $\forall s \in \mathcal{S}$, s^- est le *père* de s, s'il existe, dans \mathcal{E} , une arête orientée de s^- vers s.
 - Dans ce cas également, s est le fils de s^- .
- On note $\mathcal{P}(s)$ l'ensemble des pères de $s, \forall s \in \mathcal{S}$.
- On appelle *racine* un sommet sans aucun père et S_R est l'ensemble des racines de S.

- lacksquare Soit $\mathcal{G}=(\mathcal{S},\mathcal{E})$ un graphe orienté
 - S est l'ensemble des *sommets* (ou *sites* ou *nœuds*)
 - lacktriangle est l'ensemble des arêtes orientées
- ∀s ∈ S, s⁻ est le père de s, s'il existe, dans E, une arête orientée de s⁻ vers s.
 Dans ce cas également, s est le fils de s⁻.
- On note $\mathcal{P}(s)$ l'ensemble des pères de $s, \forall s \in \mathcal{S}$.
- On appelle *racine* un sommet sans aucun père et S_R est l'ensemble des racines de S.
- lacksquare On note $ar{\mathcal{S}}$ l'ensemble des sommets qui ont au moins un père.

$$S = \{a, c, d, e, g, h\}$$

 $\bar{S} = \{d, e, g, h\}$
 a et c sont des racines
 a est le père de d
 d est le fils de a
 $P(d) = \{a, e, g\}$
 $\{d, g, h\}$ est un cycle orienté

Exemple

lacksquare On associe une variable aléatoire X_s à chaque $s \in \mathcal{S}$.

- lacksquare On associe une variable aléatoire X_s à chaque $s\in\mathcal{S}$.
- Un modèle probabiliste graphique orienté est défini à partir de lois conditionnelles locales $p(X_s|\mathbf{X}_{\mathcal{P}(s)}), \forall s \in \bar{\mathcal{S}}$ et $p(X_r), \forall r \in \mathcal{S}_{\mathcal{R}}$.

- lacksquare On associe une variable aléatoire X_s à chaque $s\in\mathcal{S}$.
- Un modèle probabiliste graphique orienté est défini à partir de lois conditionnelles locales $p(X_s|\mathbf{X}_{\mathcal{P}(s)}), \forall s \in \bar{\mathcal{S}}$ et $p(X_r), \forall r \in \mathcal{S}_{\mathcal{R}}$.
- En appliquant la définition du conditionnement, la distribution de probabilité du vecteur aléatoire $X = \{X_s\}_{s \in \mathcal{S}}$ sur \mathcal{G} s'écrit:

$$p(\mathbf{X}) = \prod_{r \in \mathcal{S}_{\mathcal{R}}} p(X_r) \prod_{s \in \bar{\mathcal{S}}} p(X_s | \mathbf{X}_{\mathcal{P}(s)})$$

$$p(X_a, X_b, X_c, X_d, X_e, X_f, X_h, X_g) = p(X_a)p(X_c) \times p(X_e|X_c)p(X_d|X_a, X_e, X_g) \times p(X_h|X_d)p(X_g|X_h)$$

Exemple

Un graphe orienté

$$p(X_a, X_b, X_c, X_d, X_e, X_f, X_h, X_g) = p(X_a)p(X_c) \times p(X_e|X_c)p(X_d|X_a, X_e, X_g) \times p(X_h|X_d)p(X_g|X_h)$$

Exemple

ightarrow On va restreindre ce cadre très général où l'inférence est complexe, pour arriver aux arbres de Markov et leurs propriétés très utiles!

■ Interdiction des cycles orientés...

■ Interdiction des cycles orientés...

On obtient les **graphes orientés acycliques** (ou réseaux bayésiens)

- Interdiction des cycles orientés...
- et interdiction des semi cycles orientés...

- Interdiction des cycles orientés...
- et interdiction des semi cycles orientés...

On obtient les arbres orientés

- Interdiction des cycles orientés...
- et interdiction des semi cycles orientés...
- et limitation à un seul nœud racine...

- Interdiction des cycles orientés...
- et interdiction des semi cycles orientés...
- et limitation à un seul nœud racine...

On obtient les arborescences

- Interdiction des cycles orientés...
- et interdiction des semi cycles orientés...
- et limitation à un seul nœud racine...
- et organisation en résolutions (ou générations) :
 - chaque nœud a 2 ou 4 fils (sauf sur la dernière résolution)

- Interdiction des cycles orientés...
- et interdiction des semi cycles orientés...
- et limitation à un seul nœud racine...
- et organisation en résolutions (ou générations) :
 - chaque nœud a 2 ou 4 fils (sauf sur la dernière résolution)

diarbre de Markov

quadarbre de Markov

On obtient les arbres de Markov

- Interdiction des cycles orientés...
- et interdiction des semi cycles orientés...
- et limitation à un seul nœud racine...
- et organisation en résolutions (ou générations) :
 - chaque nœud a 2 ou 4 fils (sauf sur la dernière résolution)

On obtient les arbres de Markov

 Cas particulier : chaque nœud a 1 fils (sauf sur la dernière résolution)

- Interdiction des cycles orientés...
- et interdiction des semi cycles orientés...
- et limitation à un seul nœud racine...
- et organisation en résolutions (ou générations) :
 - chaque nœud a 2 ou 4 fils (sauf sur la dernière résolution)

Le modèle d'arbre de Markov de caché

On observe une image à valeurs réelles et nous souhaitons la segmenter en K classes $\{\omega_k\}_{k\in\{1,...,K\}}$ $(\Omega \triangleq \{\omega_k\}_{k\in\{1,...,K\}})$.

■ En chacun des sites s de \mathcal{G} on associe un couple de variables aléatoires (X_s, Y_s) .

On observe une image à valeurs réelles et nous souhaitons la segmenter en K classes $\{\omega_k\}_{k\in\{1,...,K\}}$ $(\Omega \triangleq \{\omega_k\}_{k\in\{1,...,K\}})$.

- En chacun des sites s de \mathcal{G} on associe un couple de variables aléatoires (X_s, Y_s) .
- Le vecteur aléatoire $\boldsymbol{X}=(X_s)_{s\in\mathcal{S}}$ à valeurs dans $\Omega^{|\mathcal{S}|}$ est composé des variables cachées.

On observe une image à valeurs réelles et nous souhaitons la segmenter en K classes $\{\omega_k\}_{k\in\{1,\ldots,K\}}$ $(\Omega \triangleq \{\omega_k\}_{k\in\{1,\ldots,K\}})$.

- En chacun des sites s de \mathcal{G} on associe un couple de variables aléatoires (X_s, Y_s) .
- Le vecteur aléatoire $\boldsymbol{X}=(X_s)_{s\in\mathcal{S}}$ à valeurs dans $\Omega^{|\mathcal{S}|}$ est composé des variables cachées.
- Le vecteur aléatoire $Y = (Y_s)_{s \in \mathcal{S}}$ à valeurs dans $\mathbb{R}^{|\mathcal{S}|}$ est composé des variables observées.

Nous voulons calculer la loi *a posteriori* p(X|Y) des variables cachées sachant les variables observées.

Grâce au théorème de Bayes on a :

$$\rho(X|Y) = \frac{\rho(X,Y)}{\rho(Y)},$$

$$= \frac{\rho(X)\rho(Y|X)}{\rho(Y)},$$

Dans notre cas où l'observation est constante :

$$p(X|Y) \propto p(X)p(Y|X).$$

■ Nous voulons calculer la loi *a posteriori* p(X|Y) des variables cachées sachant les variables observées.

Grâce au théorème de Bayes on a :

$$p(X|Y) = \frac{p(X,Y)}{p(Y)},$$

$$= \frac{p(X)p(Y|X)}{p(Y)},$$

Dans notre cas où l'observation est constante :

$$p(X|Y) \propto p(X)p(Y|X).$$

- Ainsi la loi *a posteriori* peut être calculée si l'on a :
 - p(X), la loi *a priori*.
 - p(Y|X), la vraisemblance conditionnelle.
 - ou, de manière équivalente, la loi jointe p(X, Y).

S'il nous n'avons pas les paramètres des distributions mises en jeu, il nous faut les estimer : c'est l'étape d'estimation des paramètres.

- S'il nous n'avons pas les paramètres des distributions mises en jeu, il nous faut les estimer : c'est l'étape d'estimation des paramètres.
- Lorsque la loi *a posteriori* est calculée, il reste à estimer les états cachés selon un critère donné : c'est l'étape d'inférence.

Le modèle d'arbre de Markov caché I

On associe, $\forall s \in \mathcal{S}$, un couple (X_s, Y_s) à chaque sommet du graphe d'arbre de Markov établi précédemment :

On obtient la représentation graphique d'un arbre de Markov caché (quadarbre à 3 résolutions à bruit indépendant ici).

Le modèle d'arbre de Markov caché I

On associe, $\forall s \in \mathcal{S}$, un couple (X_s, Y_s) à chaque sommet du graphe d'arbre de Markov établi précédemment :

On obtient la représentation graphique d'un arbre de Markov caché (quadarbre à 3 résolutions à bruit indépendant ici).

Le modèle d'arbre de Markov caché II

Loi a priori : loi d'un arbre de Markov

$$p(X) =$$

Le modèle d'arbre de Markov caché II

Loi a priori : loi d'un arbre de Markov

$$p(\boldsymbol{X}) = \underbrace{p(\boldsymbol{X}_r) \prod_{n \in \{2, ..., N\}} p(\boldsymbol{X}_{\mathcal{S}^n} | \boldsymbol{X}_{\mathcal{S}^{n-1}})}_{\text{H1: chaîne de Markov en résolutions}},$$

Loi a priori : loi d'un arbre de Markov

$$p(\boldsymbol{X}) = p(X_r) \prod_{n \in \{2,...,N\}} p(\boldsymbol{X}_{\mathcal{S}^n} | \boldsymbol{X}_{\mathcal{S}^{n-1}}),$$

$$H1: \text{ chaîne de Markov en résolutions}$$

$$= p(X_r) \prod_{n \in \{1,...,N\}} \prod_{s \in \mathcal{S}^n} p(X_s | \boldsymbol{X}_{\mathcal{S}^{n-1}})$$

H2 : variables d'une résolution indépendantes conditionnellement à la résolution précédente

Loi a priori : loi d'un arbre de Markov

$$\begin{split} p(\boldsymbol{X}) &= \underbrace{p(X_r) \prod_{n \in \{2, \dots, N\}} p(\boldsymbol{X}_{\mathcal{S}^n} | \boldsymbol{X}_{\mathcal{S}^{n-1}}),}_{\text{H1: chaîne de Markov en résolutions}}, \\ &= p(X_r) \prod_{n \in \{1, \dots, N\}} \prod_{s \in \mathcal{S}^n} p(X_s | \boldsymbol{X}_{\mathcal{S}^{n-1}}) \end{split}$$

H2 : variables d'une résolution indépendantes conditionnellement à la résolution précédente

$$= p(X_r) \qquad \underbrace{\prod_{s \in \overline{\mathcal{S}}} p(X_s | X_{s^-})}_{\text{H3} : p(X_s | X_{s^{n-1}}) = p(X_s | X_{s^-})},$$

Vraisemblance conditionnelle

Les hypothèses classiques d'un bruit indépendant sont :

$$p(Y|X = x) =$$

Vraisemblance conditionnelle

Les hypothèses classiques d'un bruit indépendant sont :

$$p(\mathbf{Y}|\mathbf{X} = \mathbf{x}) = \underbrace{\prod_{s \in S} p(Y_s|\mathbf{X} = \mathbf{x})}_{\text{H1}},$$

■ H1 : les $(Y_s)_{s \in \mathcal{S}}$ sont indépendantes conditionnellement à X = x

Vraisemblance conditionnelle

Les hypothèses classiques d'un bruit indépendant sont :

$$p(\mathbf{Y}|\mathbf{X} = \mathbf{x}) = \underbrace{\prod_{s \in \mathcal{S}} p(Y_s|\mathbf{X} = \mathbf{x})}_{\text{H1}},$$
$$= \underbrace{\prod_{s \in \mathcal{S}} p(Y_s|X_s = x_s)}_{\text{H2}}.$$

- H1 : les $(Y_s)_{s \in \mathcal{S}}$ sont indépendantes conditionnellement à X = x
- H2 : la loi de chaque Y_s conditionnellement à X = x se réduit à un conditionnement par rapport à $X_s = x_s$.

La distribution d'un arbre de Markov caché s'écrit donc:

$$p(\boldsymbol{X},\boldsymbol{Y}) = \underbrace{p(X_r) \prod_{s \in \bar{\mathcal{S}}} p(X_s | X_{s^-})}_{\text{loi d'un arbre de Markov}} \underbrace{\prod_{s \in \mathcal{S}} p(Y_s | X_s)}_{\text{bruit indépendant}}$$

$$\xrightarrow{\rightarrow} \text{vraisemblance cond.}$$

Nous supposerons dans la suite que :

- Des observations sont seulement associées à la dernière résolution S^N .
- Les fonctions de vraisemblance sont des gaussiennes dont les paramètres dépendent des états cachés sous-jacents.

Nous supposerons dans la suite que :

- Des observations sont seulement associées à la dernière résolution S^N .
- Les fonctions de vraisemblance sont des gaussiennes dont les paramètres dépendent des états cachés sous-jacents.

La distribution s'écrit dans ce cas:

$$p(\boldsymbol{X},\boldsymbol{Y}) = p(X_r) \prod_{s \in \bar{\mathcal{S}}} p(X_s | X_{s^-}) \prod_{s^N \in \mathcal{S}^N} p(Y_s^N | X_s^N).$$

Une chaîne de Markov est un cas particulier : chaque sommet s, $\forall s \in \mathcal{S} \setminus \mathcal{S}^N$, a un seul fils.

Une chaîne de Markov est un cas particulier : chaque sommet s, $\forall s \in \mathcal{S} \setminus \mathcal{S}^N$, a un seul fils.

La distribution s'écrit:

$$p(\boldsymbol{X},\boldsymbol{Y}) = p(X_r)p(Y_r|X_r)\prod_{s\in\bar{\mathcal{S}}}p(X_s|X_{s^-})p(Y_s|X_s).$$

On oublie le processus Y pour le moment

Exemple 1

Dans le cas de 2 classes ω_1 et ω_2 , avec:

$$\begin{split} p(X_r = \omega_1) &= p(X_r = \omega_2) = 0.5 \text{ et} \\ \begin{cases} p(X_s = \omega_1 | X_{s^-} = \omega_1) = p(X_s = \omega_2 | X_{s^-} = \omega_2) = 0.5, \\ p(X_s = \omega_1 | X_{s^-} = \omega_2) = p(X_s = \omega_2 | X_{s^-} = \omega_1) = 0.5. \end{cases} \end{split}$$

ightarrow La réalisation du père n'a pas d'incidence sur la réalisation du fils

On oublie le processus Y pour le moment

Exemple 2

Dans le cas de 2 classes ω_1 et ω_2 , avec:

$$\begin{split} p(X_r = \omega_1) &= p(X_r = \omega_2) = 0.5 \text{ et} \\ \begin{cases} p(X_s = \omega_1 | X_{s^-} = \omega_1) &= p(X_s = \omega_2 | X_{s^-} = \omega_2) = 0.95, \\ p(X_s = \omega_1 | X_{s^-} = \omega_2) &= p(X_s = \omega_2 | X_{s^-} = \omega_1) = 0.05. \end{cases} \end{split}$$

→ On favorise les réalisations des fils de même classe que les réalisations des pères

On oublie le processus Y pour le moment

Exemple 3

Dans le cas de 2 classes ω_1 et ω_2 , avec:

$$p(X_r = \omega_1) = p(X_r = \omega_2) = 0.5 \text{ et}$$

$$\begin{cases} p(X_s = \omega_1 | X_{s^-} = \omega_1) = p(X_s = \omega_2 | X_{s^-} = \omega_2) = 0.05, \\ p(X_s = \omega_1 | X_{s^-} = \omega_2) = p(X_s = \omega_2 | X_{s^-} = \omega_1) = 0.95. \end{cases}$$

ightarrow On favorise les réalisations des fils de classe différente que les réalisations des pères

Remarques:

- On remarque l'effet de "bloc" caractéristique des arbres de Markov, particulièrement pour les quadarbres.
- Les diarbres ont également été appliqués aux images avec d'autres "effets" caractéristiques.
- Les transitions ne sont pas nécessairement stationnaires, elles peuvent varier selon la résolution. C'est exploré dans le modèle d'arbres de Markov évolutifs.

Inférence dans les arbres de Markov cachés

Les quantités β

Soit \mathbf{s}^+ l'ensemble des fils de s. On calcule les quantités β , $\forall x_s \in \Omega, \, \forall s \in \mathcal{S}$ */

$$\begin{cases} \beta(x_s) = p(y_s|x_s), \text{ si } s \in \mathcal{S}^N, \\ \beta(x_s) = \prod_{t \in \mathbf{s}^+} \left(\sum_{x_t} \beta(x_t) p(x_t|x_s) \right) \text{ sinon.} \end{cases}$$

Il s'agit d'une passe montante (upward).

Les quantités β

Exemple de calcul dans un diarbre:

Loi de X a posteriori

À partir des quantités β on calcule facilement les transitions a posteriori:

 $\forall (x_s, x_{s^-}) \in \Omega^2, \forall s \in \bar{\mathcal{S}}:$

$$p(x_{s}|x_{s-},y) = \frac{\beta(x_{s})p(x_{s}|x_{s-})}{\sum_{x_{s}}\beta(x_{s})p(x_{s}|x_{s-})},$$

 $\forall x_r \in \Omega$:

$$p(x_r|\mathbf{y}) = \frac{\beta(x_r)p(x_r)}{\sum_{x_r}\beta(x_r)p(x_r)}.$$

 \rightarrow La loi de **X** a posteriori est celle d'un arbre de Markov

Critère du MPM:

$$orall s \in \mathcal{S}, \hat{x}_s^{MPM} = \operatorname{argmax}_{x_s} p(x_s|oldsymbol{y}).$$

Critère du MPM:

$$\forall s \in \mathcal{S}, \hat{x}_s^{MPM} = \operatorname{argmax}_{x_s} p(x_s | y).$$

On peut calculer les transitions a posteriori en chacun des sites grâce aux quantités β : passe montante (upward).

Critère du MPM:

$$orall s \in \mathcal{S}, \hat{x}_s^{MPM} = \operatorname{argmax}_{x_s} p(x_s|oldsymbol{y}).$$

On peut calculer les transitions a posteriori en chacun des sites grâce aux quantités β : passe montante (upward). Puis on effectue une passe descendante (downward):

 $\forall x_r \in \Omega$:

$$p(x_r|\mathbf{y}) = \frac{\beta(x_r)p(x_r)}{\sum_{x_r}\beta(x_r)p(x_r)}.$$

 $\forall x_s \in \Omega, \forall s \in \bar{S}$:

$$p(x_s|\mathbf{y}) = \sum_{x_{s^-}} p(x_{s^-}|\mathbf{y})p(x_s|x_{s^-},\mathbf{y}).$$

Critère du MPM:

$$\forall s \in \mathcal{S}, \hat{x}_s^{MPM} = \operatorname{argmax}_{x_s} p(x_s | y).$$

On peut calculer les transitions a posteriori en chacun des sites grâce aux quantités β : passe montante (upward). Puis on effectue une passe descendante (downward):

 $\forall x_r \in \Omega$:

$$p(x_r|\mathbf{y}) = \frac{\beta(x_r)p(x_r)}{\sum_{x_r}\beta(x_r)p(x_r)}.$$

 $\forall x_s \in \Omega, \forall s \in \bar{S}$:

$$p(x_s|y) = \sum_{x_{s^-}} p(x_{s^-}|y)p(x_s|x_{s^-},y).$$

N.B.: Cet algorithme est aussi appelé upward/downward.

Maximum A Posteriori (MAP)

Critère du MAP:

$$\hat{\pmb{x}}^{MAP} = \operatorname{argmax}_{\pmb{x}} p(\pmb{x}|\pmb{y}).$$

Maximum A Posteriori (MAP)

Critère du MAP:

$$\hat{\boldsymbol{x}}^{MAP} = \operatorname{argmax}_{\boldsymbol{x}} p(\boldsymbol{x}|\boldsymbol{y}).$$

Une passe montante, $\forall x_{s^-} \in \Omega, \forall s \in \bar{S}$:

$$\begin{cases} \begin{bmatrix} \nu_s(x_{s^-}) = \max_{x_s} p(y_s|x_s) p(x_s|x_{s^-}), \\ x_s^*(x_{s^-}) = \operatorname{argmax}_{x_s} p(y_s|x_s) p(x_s|x_{s^-}), \\ \nu_s(x_{s^-}) = \max_{x_s} p(x_s|x_{s^-}) \prod_{t \in \mathbf{s}^+} \nu_t(x_s), \\ x_s^*(x_{s^-}) = \operatorname{argmax}_{x_s} p(x_s|x_{s^-}) \prod_{t \in \mathbf{s}^+} \nu_t(x_s), \end{cases} \text{ sinon.}$$

Maximum A Posteriori (MAP)

Critère du MAP:

$$\hat{\boldsymbol{x}}^{MAP} = \operatorname{argmax}_{\boldsymbol{x}} p(\boldsymbol{x}|\boldsymbol{y}).$$

Une passe montante, $\forall x_{s^-} \in \Omega, \forall s \in \bar{S}$:

$$\begin{cases} \begin{bmatrix} \nu_s(x_{s^-}) = \max_{x_s} p(y_s|x_s) p(x_s|x_{s^-}), & \text{si } s \in \mathcal{S}^N, \\ x_s^*(x_{s^-}) = \operatorname{argmax}_{x_s} p(y_s|x_s) p(x_s|x_{s^-}), & \\ \nu_s(x_{s^-}) = \max_{x_s} p(x_s|x_{s^-}) \prod_{t \in \mathbf{s}^+} \nu_t(x_s), & \text{sinon.} \\ x_s^*(x_{s^-}) = \operatorname{argmax}_{x_s} p(x_s|x_{s^-}) \prod_{t \in \mathbf{s}^+} \nu_t(x_s), & \\ \end{cases}$$

Une passe descendante:

$$\begin{cases} \hat{x}_r^{MAP} = \operatorname{argmax}_{x_r} p(x_r) \prod_{s \in \mathbf{r}^+} \nu_s(x_r), r \text{ racine de l'arbre,} \\ \hat{x}_s^{MAP} = x_s^* (\hat{x}_{s^-}^{MAP}), \forall s \in \bar{\mathcal{S}}. \end{cases}$$

Liens avec les chaînes de Markov cachées :

Nous venons de voir deux algorithmes d'inférence sous leur forme spécifique aux arbres de Markov cachés. Nous pouvons remarquer que:

Liens avec les chaînes de Markov cachées :

- Nous venons de voir deux algorithmes d'inférence sous leur forme spécifique aux arbres de Markov cachés. Nous pouvons remarquer que:
 - L'algorithme de calcul du MAP est une généralisation de l'algorithme de Viterbi pour le calcul du MAP dans les chaîne de Markov cachées.

Liens avec les chaînes de Markov cachées :

- Nous venons de voir deux algorithmes d'inférence sous leur forme spécifique aux arbres de Markov cachés. Nous pouvons remarquer que:
 - L'algorithme de calcul du MAP est une généralisation de l'algorithme de Viterbi pour le calcul du MAP dans les chaîne de Markov cachées.
 - L'algorithme upward/downward de calcul du MPM est une généralisation de l'algorithme forward/backward pour le calcul du MPM dans les chaînes de Markov cachées.

Liens avec les chaînes de Markov cachées :

- Nous venons de voir deux algorithmes d'inférence sous leur forme spécifique aux arbres de Markov cachés. Nous pouvons remarquer que:
 - L'algorithme de calcul du MAP est une généralisation de l'algorithme de Viterbi pour le calcul du MAP dans les chaîne de Markov cachées.
 - L'algorithme upward/downward de calcul du MPM est une généralisation de l'algorithme forward/backward pour le calcul du MPM dans les chaînes de Markov cachées.
- Pour les arbres comme pour les chaînes : l'inférence donne lieu à des procédures déterministes et non itératives.

Remarques II

Liens avec notre introduction:

De plus, les algorithmes présentés peuvent être réinterprétés dans le cadre très large des algorithmes à propagation de messages que l'on retrouve dans la théorie générale des modèles graphiques probabilistes.

Remarques II

Liens avec notre introduction:

- De plus, les algorithmes présentés peuvent être réinterprétés dans le cadre très large des algorithmes à propagation de messages que l'on retrouve dans la théorie générale des modèles graphiques probabilistes.
- Le chapitre 20 du livre Machine Learning, a probabilistic perspective de Kevin Murphy (MIT Press, 2012) est une bonne introduction sur le sujet.

Segmentation supervisée

Ex. 1 : arbre simulé et bruit gaussien indépendant "faible"

Segmentation supervisée

Ex. 2 : arbre simulé et bruit gaussien indépendant "fort"

Estimation des paramètres dans les arbres de Markov cachés

La loi jointe d'un arbre de Markov s'écrit:

$$p(\mathbf{x},\mathbf{y}) = p(x_r) \prod_{s \in \bar{S}} p(x_s | x_{s^-}) \prod_{s^N \in S^N} p(y_s^N | x_s^N).$$

La loi jointe d'un arbre de Markov s'écrit:

$$p(\boldsymbol{x},\boldsymbol{y}) = p(x_r) \prod_{s \in \bar{\mathcal{S}}} p(x_s|x_{s^-}) \prod_{s^N \in \mathcal{S}^N} p(y_s^N|x_s^N).$$

Dans EM nous souhaitons maximiser:

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) = \mathbb{E}_{\boldsymbol{x} \sim p(\boldsymbol{X}|\boldsymbol{Y} = \boldsymbol{y},\boldsymbol{\theta}^{(t)})}[\log p(\boldsymbol{x},\boldsymbol{y};\boldsymbol{\theta})].$$

La loi jointe d'un arbre de Markov s'écrit:

$$p(\boldsymbol{x},\boldsymbol{y}) = p(x_r) \prod_{s \in \bar{\mathcal{S}}} p(x_s | x_{s^-}) \prod_{s^N \in \mathcal{S}^N} p(y_s^N | x_s^N).$$

Dans EM nous souhaitons maximiser:

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) = \mathbb{E}_{\boldsymbol{x} \sim p(\boldsymbol{X}|\boldsymbol{Y} = \boldsymbol{y}, \boldsymbol{\theta}^{(t)})}[\log p(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta})].$$

Posons
$$\begin{cases} \pi_{\omega_i} = p(x_r = \omega_i), \forall \omega_i \in \Omega, \\ a_{\omega_i,\omega_j} = p(x_s = \omega_j | x_{s^-} = \omega_i), \forall (\omega_i,\omega_j) \in \Omega^2. \end{cases}$$

Dans le cas du bruit gaussien indépendant, dont les densités f sont paramétrées par les états cachés :

$$\boldsymbol{\theta} = \{\{\pi_{\omega_i}\}, \{a_{\omega_i,\omega_j}\}, \{\mu_{\omega_i}\}, \{\sigma_{\omega_i}\}\}.$$

$$\boldsymbol{\theta} = \{\{\pi_{\omega_i}\}, \{a_{\omega_i,\omega_j}\}, \{\mu_{\omega_i}\}, \{\sigma_{\omega_i}\}\}.$$

On pose de plus:

$$\zeta_s^{(t)}(\omega_i) = p(x_s = \omega_i | \mathbf{y}; \boldsymbol{\theta}^{(t)}),
\xi_s^{(t)}(\omega_i, \omega_j) = p(x_s = \omega_i, x_{s^-} = \omega_j | \mathbf{y}; \boldsymbol{\theta}^{(t)}),
= p(x_s = \omega_i | x_{s^-} = \omega_j, \mathbf{y}; \boldsymbol{\theta}^{(t)}) p(x_{s^-} = \omega_j | \mathbf{y}; \boldsymbol{\theta}^{(t)}).$$

$$\boldsymbol{\theta} = \{\{\pi_{\omega_i}\}, \{a_{\omega_i,\omega_j}\}, \{\mu_{\omega_i}\}, \{\sigma_{\omega_i}\}\}.$$

On pose de plus:

$$\zeta_s^{(t)}(\omega_i) = p(x_s = \omega_i | \mathbf{y}; \boldsymbol{\theta}^{(t)}),
\xi_s^{(t)}(\omega_i, \omega_j) = p(x_s = \omega_i, x_{s^-} = \omega_j | \mathbf{y}; \boldsymbol{\theta}^{(t)}),
= p(x_s = \omega_i | x_{s^-} = \omega_j, \mathbf{y}; \boldsymbol{\theta}^{(t)}) p(x_{s^-} = \omega_j | \mathbf{y}; \boldsymbol{\theta}^{(t)}).$$

 \rightarrow Ces quantités sont calculables analytiquement à chaque itération EM à partir des quantités β vues précédemment.

$$\boldsymbol{\theta} = \left\{ \{\pi_{\omega_i}\}, \{\mathbf{a}_{\omega_i,\omega_i}\}, \{\mu_{\omega_i}\}, \{\sigma_{\omega_i}\} \right\}.$$

On pose de plus:

$$\zeta_s^{(t)}(\omega_i) = p(x_s = \omega_i | \mathbf{y}; \boldsymbol{\theta}^{(t)}),
\xi_s^{(t)}(\omega_i, \omega_j) = p(x_s = \omega_i, x_{s^-} = \omega_j | \mathbf{y}; \boldsymbol{\theta}^{(t)}),
= p(x_s = \omega_i | x_{s^-} = \omega_i, \mathbf{y}; \boldsymbol{\theta}^{(t)}) p(x_{s^-} = \omega_i | \mathbf{y}; \boldsymbol{\theta}^{(t)}).$$

 \rightarrow Ces quantités sont calculables analytiquement à chaque itération EM à partir des quantités β vues précédemment.

Ainsi:

$$Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{(t)}) = \sum_{\omega_i} \zeta_r^{(t)}(\omega_i) \log \pi_{\omega_i} + \sum_{s \in \bar{\mathcal{S}}} \sum_{\omega_i, \omega_j} \xi_s^{(t)}(\omega_i, \omega_j) \log a_{\omega_j, \omega_i} + \sum_{s \in \bar{\mathcal{S}}N} \sum_{\omega_i} \zeta_s^{(t)}(\omega_i) \log f_{\mu_{\omega_i}, \sigma_{\omega_i}}(y_s).$$

La maximisation par rapport à chacun des paramètres (avec les contraintes $\sum_{\omega_i} \pi_{\omega_i} = 1$ et $\sum_{\omega_i} a_{\omega_i,\omega_i} = 1$) donne :

$$\pi_{\omega_{i}}^{(t+1)} = \zeta_{r}^{(t)}(\omega_{i}),$$

$$a_{\omega_{j},\omega_{i}}^{(t+1)} = \frac{\sum_{s \in \mathcal{S}} \xi_{s}^{(t)}(\omega_{i}, \omega_{j})}{\sum_{s \in \mathcal{S}} \zeta_{s}^{(t)}(\omega_{j})},$$

$$\mu_{\omega_{i}}^{(t+1)} = \frac{\sum_{s \in \mathcal{S}} \zeta_{s}^{(t)}(\omega_{i})y_{s}}{\sum_{s \in \mathcal{S}} \zeta_{s}^{(t)}(\omega_{i})},$$

$$\sigma_{\omega_{i}}^{(t+1)} = \left(\frac{\sum_{s \in \mathcal{S}} \zeta_{s}^{(t)}(\omega_{i})(y_{s} - \mu_{\omega_{i}}^{(t+1)})^{2}}{\sum_{s \in \mathcal{S}} \zeta_{s}^{(t)}(\omega_{i})}\right)^{\frac{1}{2}}.$$

→ Ce sont les formules de mise à jour de l'algorithme EM appliqué aux arbres de Markov.

Algorithme 1: Expectation Maximization. Dans le cas des arbres de Markov cachés à bruit gaussien indépendant : $oldsymbol{ heta}$ $\{\{\pi_{\omega_i}\},\{a_{\omega_i,\omega_i}\},\{\mu_{\omega_i}\},\{\sigma_{\omega_i}\}\}.$

Données: θ^0 , un ensemble de paramètres initiaux,

 $m{y}$, les observations. **Résultat :** $\hat{m{ heta}}$, les paramètres estimés.

 $t \leftarrow 1$

Algorithme 1: Expectation Maximization. Dans le cas des arbres de Markov cachés à bruit gaussien indépendant : $oldsymbol{ heta}$ $\{\{\pi_{\omega_i}\}, \{a_{\omega_i,\omega_i}\}, \{\mu_{\omega_i}\}, \{\sigma_{\omega_i}\}\}.$

Données: θ^0 , un ensemble de paramètres initiaux,

 $m{y}$, les observations. **Résultat** : $\hat{m{ heta}}$, les paramètres estimés.

 $t \leftarrow 1$

tant que la convergence n'est pas atteinte faire

/* Étape E */ Calcul de $Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{t-1}) = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{X}|\mathbf{Y} = \mathbf{y}:\boldsymbol{\theta}^{t-1})}[\log p(\mathbf{x}, \mathbf{y}; \boldsymbol{\theta})].$

Algorithme 1: Expectation Maximization. Dans le cas des arbres de Markov cachés à bruit gaussien indépendant : $oldsymbol{ heta}$ $\{\{\pi_{\omega_i}\}, \{a_{\omega_i,\omega_i}\}, \{\mu_{\omega_i}\}, \{\sigma_{\omega_i}\}\}.$

Données: θ^0 , un ensemble de paramètres initiaux,

 $m{y}$, les observations. **Résultat** : $\hat{m{ heta}}$, les paramètres estimés.

 $t \leftarrow 1$

```
/* Étape E */
Calcul de Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{t-1}) = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{X}|\mathbf{Y} = \mathbf{y}:\boldsymbol{\theta}^{t-1})}[\log p(\mathbf{x}, \mathbf{y}; \boldsymbol{\theta})].
/* Étape M */
Calcul exact des \zeta_s^{(t)}(\omega_i) et \xi_s^{(t)}(\omega_i,\omega_i) avec les quantités \beta
```

Algorithme 1: Expectation Maximization. Dans le cas des arbres de Markov cachés à bruit gaussien indépendant : $oldsymbol{ heta}$ $\{\{\pi_{\omega_i}\}, \{a_{\omega_i,\omega_i}\}, \{\mu_{\omega_i}\}, \{\sigma_{\omega_i}\}\}.$

Données: θ^0 , un ensemble de paramètres initiaux,

 $m{y}$, les observations. **Résultat** : $\hat{m{ heta}}$, les paramètres estimés.

 $t \leftarrow 1$

```
/* Étape E */
Calcul de Q(\boldsymbol{\theta}|\boldsymbol{\theta}^{t-1}) = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{X}|\mathbf{Y} = \mathbf{y}:\boldsymbol{\theta}^{t-1})}[\log p(\mathbf{x}, \mathbf{y}; \boldsymbol{\theta})].
/* Étape M */
Calcul exact des \zeta_s^{(t)}(\omega_i) et \xi_s^{(t)}(\omega_i,\omega_i) avec les quantités \beta
Mise à jour des paramètres \pi_{\omega_i}^{(t)}, a_{\omega_i,\omega_i}^{(t)}, \mu_{\omega_i}^{(t)}, \sigma_{\omega_i}^{(t)}
 t \leftarrow t + 1
```

Algorithme 2: Stochastic Expectation Maximization. Dans le cas des arbres de Markov cachés à bruit gausssien indépendant : $oldsymbol{ heta}$ $\{\{\pi_{\omega_i}\},\{a_{\omega_i,\omega_i}\},\{\mu_{\omega_i}\},\{\sigma_{\omega_i}\}\}.$

Données: θ^0 , un ensemble de paramètres initiaux,

 $m{y}$, les observations. **Résultat :** $\hat{m{ heta}}$, les paramètres estimés.

 $t \leftarrow 1$

Algorithme 2: Stochastic Expectation Maximization. Dans le cas des arbres de Markov cachés à bruit gausssien indépendant : $oldsymbol{ heta}$ $\{\{\pi_{\omega_i}\},\{a_{\omega_i,\omega_i}\},\{\mu_{\omega_i}\},\{\sigma_{\omega_i}\}\}.$

Données: θ^0 , un ensemble de paramètres initiaux,

 $m{y}$, les observations. **Résultat** : $\hat{m{ heta}}$, les paramètres estimés.

 $t \leftarrow 1$

tant que la convergence n'est pas atteinte faire

/* Étape E stochastique */

Calcul exact des $p(X|Y = y; \theta^{t-1})$ avec les quantités β .

Algorithme 2: Stochastic Expectation Maximization. Dans le cas des arbres de Markov cachés à bruit gausssien indépendant : $oldsymbol{ heta}$ $\{\{\pi_{\omega_i}\},\{a_{\omega_i,\omega_i}\},\{\mu_{\omega_i}\},\{\sigma_{\omega_i}\}\}.$

Données: θ^0 , un ensemble de paramètres initiaux,

 $m{y}$, les observations. **Résultat :** $\hat{m{ heta}}$, les paramètres estimés.

 $t \leftarrow 1$

tant que la convergence n'est pas atteinte faire

/* Étape E stochastique */

Calcul exact des $p(X|Y = y; \theta^{t-1})$ avec les quantités β .

Tirage des échantillons a posteriori: $\mathbf{x}^t \sim p(\mathbf{X}|\mathbf{Y} = \mathbf{y}; \boldsymbol{\theta}^{t-1})$.

Algorithme 2: Stochastic Expectation Maximization. Dans le cas des arbres de Markov cachés à bruit gausssien indépendant : $\boldsymbol{\theta} = \big\{\{\pi_{\omega_i}\}, \{a_{\omega_i,\omega_j}\}, \{\mu_{\omega_i}\}, \{\sigma_{\omega_i}\}\big\}.$

Données : θ^0 , un ensemble de paramètres initiaux,

 $m{y}$, les observations. **Résultat** : $\hat{m{ heta}}$, les paramètres estimés.

 $t \leftarrow 1$

tant que la convergence n'est pas atteinte faire

/* Étape E stochastique */

Calcul exact des $p(X|Y = y; \theta^{t-1})$ avec les quantités β .

Tirage des échantillons a posteriori: $\mathbf{x}^t \sim p(\mathbf{X}|\mathbf{Y} = \mathbf{y}; \boldsymbol{\theta}^{t-1})$.

/* Étape M */

Estimateurs Maximum de Vraisemblance pour $\boldsymbol{\theta}^t$ avec $(\boldsymbol{x}^t, \boldsymbol{y})$.

 $t \leftarrow t + 1$

fin

Segmentations non-supervisées

Ex. 1 : arbre simulé et bruit gaussien indépendant "faible"

Segmentations non-supervisées

Ex. 2 : arbre simulé et bruit gaussien indépendant "fort"

Modèles couples :

Le couple (X, Y) forme un arbre de Markov caché :

$$p(\boldsymbol{X},\boldsymbol{Y})=p(X_r,Y_r)\prod_{s\in\bar{\mathcal{S}}}p(Y_s,X_s|X_{s^-},Y_{s^-}).$$

Modèles couples :

Le couple (X, Y) forme un arbre de Markov caché :

$$p(\boldsymbol{X},\boldsymbol{Y}) = p(X_r,Y_r) \prod_{s \in \bar{\mathcal{S}}} p(Y_s,X_s|X_{s^-},Y_{s^-}).$$

- X n'est plus nécessairement un arbre de Markov.
- **X** sachant Y = y reste un arbre de Markov (utile pour l'inférence).
- → **Généralisation** du modèle d'arbre de Markov caché classique

Modèles triplets :

Le triplet $(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{V})$ forme un arbre de Markov caché :

$$p(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{V}) = p(X_r, Y_r, V_r) \prod_{s \in \bar{\mathcal{S}}} p(Y_s, X_s, V_s | X_{s^-}, Y_{s^-}, V_{s^-}).$$

Modèles triplets :

Le triplet $(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{V})$ forme un arbre de Markov caché :

$$p(\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{V}) = p(X_r, Y_r, V_r) \prod_{s \in \bar{\mathcal{S}}} p(Y_s, X_s, V_s | X_{s^-}, Y_{s^-}, V_{s^-}).$$

- V est un vecteur aléatoire auxiliaire formant un nouveau processus caché (X, V) lors de l'inférence bayésienne.
- (X, Y) n'est plus nécessairement un arbre de Markov.
- \blacksquare (X, V) sachant Y = y reste un arbre de Markov.
- On retrouve finalement les états cachés originaux par :

$$p(X|Y) = \sum_{V} p(X, V|Y).$$

→ **Généralisation** du modèle d'arbre de Markov caché classique et du modèle d'arbre de Markov couple

Le modèle d'arbre de Markov caché se distingue sur plusieurs points :

■ il généralise les chaînes de Markov pour le traitement de données multidimensionnelles.

Le modèle d'arbre de Markov caché se distingue sur plusieurs points :

- il généralise les chaînes de Markov pour le traitement de données multidimensionnelles.
- il conserve des propriétés d'inférence exacte, notamment grâce à l'absence de cycles.

Le modèle d'arbre de Markov caché se distingue sur plusieurs points :

- il généralise les chaînes de Markov pour le traitement de données multidimensionnelles.
- il conserve des propriétés d'inférence exacte, notamment grâce à l'absence de cycles.
- ce sont des structures de données qui donnent lieu à des calculs rapides et parallélisables.

Le modèle d'arbre de Markov caché se distingue sur plusieurs points :

- il généralise les chaînes de Markov pour le traitement de données multidimensionnelles.
- il conserve des propriétés d'inférence exacte, notamment grâce à l'absence de cycles.
- ce sont des structures de données qui donnent lieu à des calculs rapides et parallélisables.
- c'est un modèle encore relativement **peu exploré** dans la littérature scientifique.

Références I

Articles d'introduction directement liés au cours :

- Discrete Markov Image Modeling and Inference on the Quadtree, Jean-Marc Laferté et al., IEEE Transactions on Image Processing, 2000.
- Segmentation non-supervisée d'images par arbres de Markov cachés, Emmanuel Monfrini et al., GRETSI, 1999.
- Estimation de mélanges généralisés dans les arbres de Markov cachés, application à la segmentation des images de cartons d'orgue de barbarie, Emmanuel Monfrini et al., Traitement du signal, 2005.
- Arbres de Markov couple, Wojciech Pieczynski, CR Académie des Sciences, 2002.
- Arbres de Markov couple et segmentation non supervisée d'images : cas de la mono-résolution, Emmanuel Monfrini et al., GRETSI, 2011.
- Arbres de Markov triplets pour la segmentation d'images, Jean-Baptiste Courbot et al., GRETSI 2017.