

作业4

Log Creative

2024年5月16日

目 录

1 第1题 1

2 第2题

图1 角度

1 第1题

使用 $(\vec{R}\cdot\vec{V})^n$ 的模型是 Phong Model,使用 $(\vec{N}\cdot\vec{H})^n$ 是 Blinn-Phong Model。Phong Model 对于 反光度(shiness)较低的材质上,当 \vec{R} 和 \vec{V} 的夹角大于 90° 时,会导致高光直接变为 0,也就是发生 如图 2 所示的截断现象。

而 Blinn-Phong 模型使用的是 \vec{L} 和 \vec{V} 的角分线 \vec{H} 与 \vec{N} 的角度 β 来计算高光。现在 \vec{H} 与 \vec{N} 之间的夹角都不会超过 90 度(除非光源在表面以下),较好地解决了这个问题,如图 3 所示。

图 2 Phong 模型可能导致的截断现象

图 3 Blinn-Phong 模型

2 第2题

证明 (a) 当所有向量共面时,由于 \vec{H} 是 \vec{L} 和 \vec{V} 的角分线,则

$$\theta + \beta = \theta - \beta + \alpha \tag{1}$$

故

$$\alpha = 2\beta \tag{2}$$

(b) 一般情况下,只能保证 \vec{L} 、 \vec{H} 、 \vec{V} 以及 \vec{L} 、 \vec{N} 、 \vec{R} 分别共面。那么 θ 、 β 、 α 就不一定共面,式 (1) 就不一定成立,则其导出式 (2) 就不一定成立。