CS 104: Artificial Intelligence Learning with Incomplete Data

Acknowledgement: Based on Prof. Collins (MIT) and Prof. Moore (CMU) lecture notes

An Experiment/Some Intuition

• I have one coin in my pocket,

Coin 0 has probability λ of heads

• I toss the coin 10 times, and see the following sequence:

HHTTHHHTHH

(7 heads out of 10)

• What would you guess λ to be?

An Experiment/Some Intuition

• I have three coins in my pocket,

Coin 0 has probability λ of heads; Coin 1 has probability p_1 of heads; Coin 2 has probability p_2 of heads

• For each trial I do the following:

First I toss Coin 0
If Coin 0 turns up **heads**, I toss **coin 1** three times
If Coin 0 turns up **tails**, I toss **coin 2** three times

I don't tell you whether Coin 0 came up heads or tails, or whether Coin 1 or 2 was tossed three times, but I do tell you how many heads/tails are seen at each trial

• You see the following sequence:

$$\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$$

What would you estimate as the values for λ , p_1 and p_2 ?

Maximum Likelihood Estimation

- We have data points $X_1, X_2, \dots X_n$ drawn from some (finite or countable) set \mathcal{X}
- We have a parameter vector Θ
- ullet We have a parameter space Ω
- We have a distribution $P(X\mid\Theta)$ for any $\Theta\in\Omega$, such that $\sum_{X\in\mathcal{X}}P(X\mid\Theta)=1 \text{ and } P(X\mid\Theta)\geq0 \text{ for all } X$
- We assume that our data points $X_1, X_2, ... X_n$ are drawn at random (independently, identically distributed) from a distribution $P(X \mid \Theta^*)$ for some $\Theta^* \in \Omega$

Log-Likelihood

- We have data points $X_1, X_2, \dots X_n$ drawn from some (finite or countable) set \mathcal{X}
- We have a parameter vector Θ , and a parameter space Ω
- We have a distribution $P(X \mid \Theta)$ for any $\Theta \in \Omega$
- The likelihood is

$$Likelihood(\Theta) = P(X_1, X_2, \dots X_n \mid \Theta) = \prod_{i=1}^n P(X_i \mid \Theta)$$

• The log-likelihood is

$$L(\Theta) = \log Likelihood(\Theta) = \sum_{i=1}^{n} \log P(X_i \mid \Theta)$$

Maximum Likelihood Estimation

• Given a sample $X_1, X_2, \dots X_n$, choose

$$\Theta_{ML} = \operatorname{argmax}_{\Theta \in \Omega} L(\Theta) = \operatorname{argmax}_{\Theta \in \Omega} \sum_{i} \log P(X_i \mid \Theta)$$

• For example, take the coin example: say $X_1 ... X_n$ has Count(H) heads, and (n - Count(H)) tails \Rightarrow

$$L(\Theta) = \log \left(\Theta^{Count(H)} \times (1 - \Theta)^{n - Count(H)} \right)$$
$$= Count(H) \log \Theta + (n - Count(H)) \log(1 - \Theta)$$

We now have

$$\Theta_{ML} = \frac{Count(H)}{n}$$

Models with Hidden Variables

- Now say we have two sets \mathcal{X} and \mathcal{Y} , and a joint distribution $P(X,Y\mid\Theta)$
- If we had **fully observed data**, (X_i, Y_i) pairs, then

$$L(\Theta) = \sum_{i} \log P(X_i, Y_i \mid \Theta)$$

• If we have partially observed data, X_i examples, then

$$L(\Theta) = \sum_{i} \log P(X_i \mid \Theta)$$
$$= \sum_{i} \log \sum_{Y \in \mathcal{Y}} P(X_i, Y \mid \Theta)$$

• The EM (Expectation Maximization) algorithm is a method for finding

$$\Theta_{ML} = \operatorname{argmax}_{\Theta} \sum_{i} \log \sum_{Y \in \mathcal{Y}} P(X_i, Y \mid \Theta)$$

• e.g., in the three coins example:

$$\mathcal{Y} = \{\text{H,T}\}$$

 $\mathcal{X} = \{\text{HHH,TTT,HTT,THH,HHT,TTH,HTH,THT}\}$
 $\Theta = \{\lambda,p_1,p_2\}$

and

$$P(X, Y \mid \Theta) = P(Y \mid \Theta)P(X \mid Y, \Theta)$$

where

$$P(Y \mid \Theta) = \begin{cases} \lambda & \text{If } Y = \mathbf{H} \\ 1 - \lambda & \text{If } Y = \mathbf{T} \end{cases}$$

and

$$P(X \mid Y, \Theta) = \begin{cases} p_1^h (1 - p_1)^t & \text{If } Y = H \\ p_2^h (1 - p_2)t & \text{If } Y = T \end{cases}$$

where h = number of heads in X, t = number of tails in X

$$P(X = \text{THT}, Y = \text{H} \mid \Theta) = \lambda p_1 (1 - p_1)^2$$

$$P(X = \text{THT}, Y = \text{H} \mid \Theta) = \lambda p_1 (1 - p_1)^2$$

$$P(X = THT, Y = T \mid \Theta) = (1 - \lambda)p_2(1 - p_2)^2$$

$$\begin{split} P(X = \mathtt{THT}, Y = \mathtt{H} \mid \Theta) &= \lambda p_1 (1 - p_1)^2 \\ P(X = \mathtt{THT}, Y = \mathtt{T} \mid \Theta) &= (1 - \lambda) p_2 (1 - p_2)^2 \\ \\ P(X = \mathtt{THT} \mid \Theta) &= P(X = \mathtt{THT}, Y = \mathtt{H} \mid \Theta) \\ &+ P(X = \mathtt{THT}, Y = \mathtt{T} \mid \Theta) \\ &= \lambda p_1 (1 - p_1)^2 + (1 - \lambda) p_2 (1 - p_2)^2 \end{split}$$

$$\begin{split} P(X = \mathtt{THT}, Y = \mathtt{H} \mid \Theta) &= \lambda p_1 (1 - p_1)^2 \\ P(X = \mathtt{THT}, Y = \mathtt{T} \mid \Theta) &= (1 - \lambda) p_2 (1 - p_2)^2 \\ P(X = \mathtt{THT} \mid \Theta) &= P(X = \mathtt{THT}, Y = \mathtt{H} \mid \Theta) \\ &\quad + P(X = \mathtt{THT}, Y = \mathtt{T} \mid \Theta) \\ &= \lambda p_1 (1 - p_1)^2 + (1 - \lambda) p_2 (1 - p_2)^2 \\ P(Y = \mathtt{H} \mid X = \mathtt{THT}, \Theta) &= \frac{P(X = \mathtt{THT}, Y = \mathtt{H} \mid \Theta)}{P(X = \mathtt{THT} \mid \Theta)} \\ &= \frac{\lambda p_1 (1 - p_1)^2}{\lambda p_1 (1 - p_1)^2 + (1 - \lambda) p_2 (1 - p_2)^2} \end{split}$$

• Fully observed data might look like:

$$(\langle HHH \rangle, H), (\langle TTT \rangle, T), (\langle HHH \rangle, H), (\langle TTT \rangle, T), (\langle HHH \rangle, H)$$

• In this case maximum likelihood estimates are:

$$\lambda = \frac{3}{5}$$

$$p_1 = \frac{9}{9}$$

$$p_2 = \frac{0}{6}$$

• Partially observed data might look like:

$$\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$$

• How do we find the maximum likelihood parameters?

• Partially observed data might look like:

$$\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle$$

• If current parameters are λ, p_1, p_2

$$P(Y = \mathbf{H} \mid X = \langle \mathbf{H}\mathbf{H}\mathbf{H} \rangle) = \frac{P(\langle \mathbf{H}\mathbf{H}\mathbf{H} \rangle, \mathbf{H})}{P(\langle \mathbf{H}\mathbf{H}\mathbf{H} \rangle, \mathbf{H}) + P(\langle \mathbf{H}\mathbf{H}\mathbf{H} \rangle, \mathbf{T})}$$
$$= \frac{\lambda p_1^3}{\lambda p_1^3 + (1 - \lambda)p_2^3}$$

$$P(Y = \mathbf{H} \mid X = \langle \mathbf{TTT} \rangle) = \frac{P(\langle \mathbf{TTT} \rangle, \mathbf{H})}{P(\langle \mathbf{TTT} \rangle, \mathbf{H}) + P(\langle \mathbf{TTT} \rangle, \mathbf{T})}$$
$$= \frac{\lambda (1 - p_1)^3}{\lambda (1 - p_1)^3 + (1 - \lambda)(1 - p_2)^3}$$

• If current parameters are λ, p_1, p_2

$$P(Y = \mathbf{H} \mid X = \langle \mathbf{H}\mathbf{H}\mathbf{H} \rangle) = \frac{\lambda p_1^3}{\lambda p_1^3 + (1 - \lambda)p_2^3}$$

$$P(Y = H \mid X = \langle TTT \rangle) = \frac{\lambda (1 - p_1)^3}{\lambda (1 - p_1)^3 + (1 - \lambda)(1 - p_2)^3}$$

• If $\lambda = 0.3, p_1 = 0.3, p_2 = 0.6$:

$$P(Y = H \mid X = \langle HHH \rangle) = 0.0508$$

$$P(Y = H \mid X = \langle TTT \rangle) = 0.6967$$

• After filling in hidden variables for each example, partially observed data might look like:

$$\begin{array}{ll} (\langle {\rm HHH} \rangle, {\color{blue} {\it H}}) & P(Y = {\rm H} \mid {\rm HHH}) = 0.0508 \\ (\langle {\rm HHH} \rangle, {\color{blue} {\it T}}) & P(Y = {\rm T} \mid {\rm HHH}) = 0.9492 \\ (\langle {\rm TTT} \rangle, {\color{blue} {\it H}}) & P(Y = {\rm H} \mid {\rm TTT}) = 0.6967 \\ (\langle {\rm TTT} \rangle, {\color{blue} {\it T}}) & P(Y = {\rm T} \mid {\rm TTT}) = 0.3033 \\ (\langle {\rm HHH} \rangle, {\color{blue} {\it H}}) & P(Y = {\rm H} \mid {\rm HHH}) = 0.0508 \\ (\langle {\rm HHH} \rangle, {\color{blue} {\it T}}) & P(Y = {\rm T} \mid {\rm HHH}) = 0.6967 \\ (\langle {\rm TTT} \rangle, {\color{blue} {\it H}}) & P(Y = {\rm T} \mid {\rm TTT}) = 0.3033 \\ (\langle {\rm HHH} \rangle, {\color{blue} {\it H}}) & P(Y = {\rm T} \mid {\rm TTT}) = 0.3033 \\ (\langle {\rm HHH} \rangle, {\color{blue} {\it H}}) & P(Y = {\rm H} \mid {\rm HHH}) = 0.0508 \\ (\langle {\rm HHH} \rangle, {\color{blue} {\it H}}) & P(Y = {\rm H} \mid {\rm HHH}) = 0.0508 \\ (\langle {\rm HHH} \rangle, {\color{blue} {\it T}}) & P(Y = {\rm T} \mid {\rm HHH}) = 0.9492 \\ \end{array}$$

• New Estimates:

$$(\langle \mathtt{H}\mathtt{H}\mathtt{H}\rangle, \textcolor{red}{H}) \qquad P(Y = \mathtt{H} \mid \mathtt{H}\mathtt{H}\mathtt{H}) = 0.0508$$

$$(\langle \mathtt{H}\mathtt{H}\mathtt{H}\rangle, \textcolor{red}{T}) \qquad P(Y = \mathtt{T} \mid \mathtt{H}\mathtt{H}\mathtt{H}) = 0.9492$$

$$(\langle \mathtt{T}\mathtt{T}\mathtt{T}\rangle, \textcolor{red}{H}) \qquad P(Y = \mathtt{H} \mid \mathtt{T}\mathtt{T}\mathtt{T}) = 0.6967$$

$$(\langle \mathtt{T}\mathtt{T}\mathtt{T}\rangle, \textcolor{red}{T}) \qquad P(Y = \mathtt{T} \mid \mathtt{T}\mathtt{T}\mathtt{T}) = 0.3033$$

$$\lambda = \frac{3 \times 0.0508 + 2 \times 0.6967}{5} = 0.3092$$

$$p_1 = \frac{3 \times 3 \times 0.0508 + 0 \times 2 \times 0.6967}{3 \times 3 \times 0.0508 + 3 \times 2 \times 0.6967} = 0.0987$$

$$p_2 = \frac{3 \times 3 \times 0.9492 + 0 \times 2 \times 0.3033}{3 \times 3 \times 0.9492 + 3 \times 2 \times 0.3033} = 0.8244$$

The Three Coins Example: Summary

- Begin with parameters $\lambda = 0.3, p_1 = 0.3, p_2 = 0.6$
- Fill in hidden variables, using

$$P(Y = \mathbf{H} \mid X = \langle \mathbf{H}\mathbf{H}\mathbf{H} \rangle) = 0.0508$$

$$P(Y = H \mid X = \langle TTT \rangle) = 0.6967$$

• Re-estimate parameters to be $\lambda=0.3092, p_1=0.0987, p_2=0.8244$

Iteration	λ	p_1	p_2	\widetilde{p}_1	\widetilde{p}_2	\widetilde{p}_3	$ ilde{p}_4$
0	0.3000	0.3000	0.6000	0.0508	0.6967	0.0508	0.6967
1	0.3738	0.0680	0.7578	0.0004	0.9714	0.0004	0.9714
2	0.4859	0.0004	0.9722	0.0000	1.0000	0.0000	1.0000
3	0.5000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000

The coin example for $\mathbf{Y} = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTTT \rangle\}$. The solution that EM reaches is intuitively correct: the coin-tosser has two coins, one which always shows up heads, the other which always shows tails, and is picking between them with equal probability ($\lambda = 0.5$). The posterior probabilities \tilde{p}_i show that we are certain that coin 1 (tail-biased) generated Y_2 and Y_4 , whereas coin 2 generated Y_1 and Y_3 .

Iteration	λ	p_1	p_2	$ ilde{p}_1$	\widetilde{p}_2	\widetilde{p}_3	\widetilde{p}_4	$ ilde{p}_5$
0	0.3000	0.3000	0.6000	0.0508	0.6967	0.0508	0.6967	0.0508
1	0.3092	0.0987	0.8244	0.0008	0.9837	0.0008	0.9837	0.0008
2	0.3940	0.0012	0.9893	0.0000	1.0000	0.0000	1.0000	0.0000
3	0.4000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000

The coin example for $\{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle\}$. λ is now 0.4, indicating that the coin-tosser has probability 0.4 of selecting the tail-biased coin.

Iteration	λ	p_1	p_2	\tilde{p}_1	\widetilde{p}_2	\widetilde{p}_3	$ ilde{p}_4$
0	0.3000	0.3000	0.6000	0.1579	0.6967	0.0508	0.6967
1	0.4005	0.0974	0.6300	0.0375	0.9065	0.0025	0.9065
2	0.4632	0.0148	0.7635	0.0014	0.9842	0.0000	0.9842
3	0.4924	0.0005	0.8205	0.0000	0.9941	0.0000	0.9941
4	0.4970	0.0000	0.8284	0.0000	0.9949	0.0000	0.9949

The coin example for $\mathbf{Y} = \{\langle HHT \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}$. EM selects a tails-only coin, and a coin which is heavily heads-biased $(p_2 = 0.8284)$. It's certain that Y_1 and Y_3 were generated by coin 2, as they contain heads. Y_2 and Y_4 could have been generated by either coin, but coin 1 is far more likely.

Iteration	λ	p_1	p_2	\widetilde{p}_1	\widetilde{p}_2	\widetilde{p}_3	$ ilde{p}_4$
0	0.3000	0.7000	0.7000	0.3000	0.3000	0.3000	0.3000
1	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
2	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
3	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
4	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
5	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000
6	0.3000	0.5000	0.5000	0.3000	0.3000	0.3000	0.3000

The coin example for $\mathbf{Y} = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}$, with p_1 and p_2 initialised to the same value. EM is stuck at a saddle point

Iteration	λ	p_1	p_2	\widetilde{p}_1	\widetilde{p}_2	\widetilde{p}_3	$ ilde{p}_4$
0	0.3000	0.7001	0.7000	0.3001	0.2998	0.3001	0.2998
1	0.2999	0.5003	0.4999	0.3004	0.2995	0.3004	0.2995
2	0.2999	0.5008	0.4997	0.3013	0.2986	0.3013	0.2986
3	0.2999	0.5023	0.4990	0.3040	0.2959	0.3040	0.2959
4	0.3000	0.5068	0.4971	0.3122	0.2879	0.3122	0.2879
5	0.3000	0.5202	0.4913	0.3373	0.2645	0.3373	0.2645
6	0.3009	0.5605	0.4740	0.4157	0.2007	0.4157	0.2007
7	0.3082	0.6744	0.4223	0.6447	0.0739	0.6447	0.0739
8	0.3593	0.8972	0.2773	0.9500	0.0016	0.9500	0.0016
9	0.4758	0.9983	0.0477	0.9999	0.0000	0.9999	0.0000
10	0.4999	1.0000	0.0001	1.0000	0.0000	1.0000	0.0000
11	0.5000	1.0000	0.0000	1.0000	0.0000	1.0000	0.0000

The coin example for $\mathbf{Y} = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}$. If we initialise p_1 and p_2 to be a small amount away from the saddle point $p_1 = p_2$, the algorithm diverges from the saddle point and eventually reaches the global maximum.

Iteration	λ	p_1	p_2	\tilde{p}_1	\widetilde{p}_2	\widetilde{p}_3	$ ilde{p}_4$
0	0.3000	0.6999	0.7000	0.2999	0.3002	0.2999	0.3002
1	0.3001	0.4998	0.5001	0.2996	0.3005	0.2996	0.3005
2	0.3001	0.4993	0.5003	0.2987	0.3014	0.2987	0.3014
3	0.3001	0.4978	0.5010	0.2960	0.3041	0.2960	0.3041
4	0.3001	0.4933	0.5029	0.2880	0.3123	0.2880	0.3123
5	0.3002	0.4798	0.5087	0.2646	0.3374	0.2646	0.3374
6	0.3010	0.4396	0.5260	0.2008	0.4158	0.2008	0.4158
7	0.3083	0.3257	0.5777	0.0739	0.6448	0.0739	0.6448
8	0.3594	0.1029	0.7228	0.0016	0.9500	0.0016	0.9500
9	0.4758	0.0017	0.9523	0.0000	0.9999	0.0000	0.9999
10	0.4999	0.0000	0.9999	0.0000	1.0000	0.0000	1.0000
11	0.5000	0.0000	1.0000	0.0000	1.0000	0.0000	1.0000

The coin example for $\mathbf{Y} = \{\langle HHH \rangle, \langle TTT \rangle, \langle HHH \rangle, \langle TTT \rangle\}$. If we initialise p_1 and p_2 to be a small amount away from the saddle point $p_1 = p_2$, the algorithm diverges from the saddle point and eventually reaches the global maximum.

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

