Algoritmos e Estruturas de Dados 1 (AED1) Recursão, problema do máximo, crescimento de funções

"Talvez o mais importante princípio do bom projetista de algoritmos seja se recusar a estar satisfeito" - Aho, Hopcroft e Ullman, the design and analysis of computer algorithms, 1974.

Problema do máximo

Definição:

- Dado um vetor v de inteiros com tamanho n,
 - o devolva o valor do maior elemento deste vetor.

Ideia de uma abordagem recursiva:

- Tome um elemento arbitrário do vetor.
- Encontre recursivamente o máximo do subproblema
 - o que contém os demais elementos.
- Compare o elemento tomado com o máximo do subproblema
 - o e devolva o maior deles.
- Observe que se o subproblema tem apenas um elemento,
 - o então ele pode ser resolvido diretamente.

Algoritmo recursivo que reduz o vetor pelo fim.

```
int maximoRend(int v[], int n) {
   int x; // auxiliar que guarda o máximo do subproblema
   if (n == 1)
        return v[0];
   x = maximoRend(v, n - 1);
   if (x > v[n - 1])
        return x;
   return v[n - 1];
}
```

Algoritmo recursivo que reduz o vetor pelo início.

```
int maximoRbegin(int v[], int inicio, int n) {
   int x; // auxiliar que guarda o máximo do subproblema
   if (inicio == n - 1)
        return v[inicio];
   x = maximoRbegin(v, inicio + 1, n);
   if (x > v[inicio])
        return x;
   return v[inicio];
}
```

```
int maximo(int v[], int n)
{
    return maximoRbegin(v, 0, n);
}
```

Eficiência de tempo:

- Qual a ordem do número de operações dos algoritmos recursivos?
 - o Da ordem de n, i.e., O(n), pois cada chamada da função
 - realiza um número constante de operações locais
 - e desencadeia no máximo uma chamada recursiva
 - na qual o tamanho do subvetor é reduzido em uma unidade.
- Quiz1: Resolver a recorrência T(n) = 1 + T(n-1) com T(1) = 1.

Eficiência de espaço:

- Qual a quantidade de memória auxiliar utilizada?
 - Nesse caso é igual à eficiência de tempo, i.e., O(n).
- Isso acontece porque cada nova chamada recursiva
 - o utiliza algumas variáveis auxiliares locais,
- que são colocadas na pilha de execução e só começam a ser liberadas
 - o depois que a última chamada é resolvida.

Ideia de uma abordagem iterativa:

- Percorra o vetor da esquerda para a direita,
 - o mantendo numa variável auxiliar
 - o maior valor do subvetor já percorrido.

Algoritmo iterativo.

```
int maximoI(int v[], int n) {
   int max, i;
   max = v[0];
   for (i = 1; i < n; i++)
        if (max < v[i])
        max = v[i];
   return max;
}</pre>
```

Invariante e corretude:

- Qual o invariante principal do algoritmo iterativo?
 - No início de cada iteração temos que
 - max armazena o maior valor do subvetor v[0 .. i 1].
- Observe que, ao final do laço, quando i = n,
 - o invariante garante que max é o maior elemento do vetor.

Quiz2: se houver mais de uma repetição do maior elemento,

- o algoritmo devolve o mais à esquerda.
- Aponte duas maneiras de fazê-lo devolver o mais à direita.

Eficiência de tempo:

- Qual o número de iterações em função de n?
 - É igual a n, pois o laço começa com i = 1 e vai até i = n 1.
- Como o número de operações realizadas em cada iteração é constante,
 - o número total de operações é proporcional a n, i.e., O(n).

Eficiência de espaço:

- Qual a quantidade de memória auxiliar usada?
 - o O(1), pois a função possui um pequeno número de variáveis simples.

Quiz3: qual a eficiência de pior caso do seguinte algoritmo recursivo?

```
int maximoR(int v[], int n)
{
   int x;
   if (n == 1)
       return v[0];
   if (maximoR(v, n - 1) > v[n - 1])
       return maximoR(v, n - 1);
   return v[n - 1];
}
```

- No pior caso ele leva tempo O(2^n), pois cada chamada da função
 - o pode dar origem a duas chamadas recursivas.

- Isso torna esse algoritmo muito ineficiente, embora
 - o ele esteja correto e, conceitualmente, seja muito parecido
 - com o primeiro algoritmo recursivo que estudamos.
- Para além da intuição da figura anterior,
 - o esse resultado deriva da resolução da seguinte recorrência
 - T(n) = 2 T(n-1) + 1 com T(1) = 1

Expandindo:

- T(n) = 2T(n-1) + 1
- T(n-1) = 2T(n-2) + 1
- T(n-2) = 2T(n-3) + 1
- T(n-3) = 2T(n-4) + 1
- ...

Substituindo:

- T(n) = 2T(n-1) + 1
- T(n) = 2(2T(n-2) + 1) + 1 = 4T(n-2) + 3
- T(n) = 4(2T(n-3) + 1) + 3 = 8T(n-3) + 7
- T(n) = 8(2T(n-4) + 1) + 7 = 16T(n-4) + 15
- ...

Arrumando:

- $T(n) = 2^1 T(n-1) + 2^1 1$
- $T(n) = 2^2 T(n-2) + 2^2 1$
- $T(n) = 2^3 T(n-3) + 2^3 1$
- $T(n) = 2^4 T(n-4) + 2^4 1$
- ...

Generalizando:

• T(n) = 2ⁱ T(n-i) + 2ⁱ - 1

No final:

- $n-i=1 \Rightarrow i=n-1$
- $T(n) = 2^{n}(n-1) T(n (n-1)) + 2^{n}(n-1) 1$
- $T(n) = 2^{n-1} T(1) + 2^{n-1} 1$
- $T(n) = 2^{(n-1)} + 2^{(n-1)} 1$
- $T(n) = 2^n 1 = O(2^n)$

Crescimento de funções

n	10^3	10^6	10^9
log_2 n	10	20	30
n^1/ ₂	32	10^3	3*10^4
n	10^3	10^6	10^9
n log_2 n	10^4	2*10^7	3*10^10
n^2	10^6	10^12	10^18
n^3	10^9	10^18	10^27
2^n	10^300	10^300000	10^(3*10^8)

Interpretação temporal considerando um computador de 1GHz

n	10^3	10^6	10^9
log_2 n	<< 1s	<< 1s	<< 1s
n^1/ ₂	<< 1s	<< 1s	<< 1s
n	<< 1s	<< 1s	1s
n log_2 n	<< 1s	<1s	30s
n^2	<< 1s	16 min	31 anos
n^3	1s	31 anos	31709791 milênios
2^n	esquece		

lg n e n^1/2

lg n e n^1/2

lg n, n^1/2 e n

n e n lg n

n, n lg n e n^2

n, n lg n e n^2

n, n^2 e n^3

lg n, n^1/2, n, n lg n, n^2...

lg n, n^1/2, n, n lg n, n^2...

