Partie I: La fonction Zéta de Riemann

Soit $n \ge 1$, on définit

$$f_n: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{1}{n^x} \end{array} \right.$$

On note ζ la fonction Zéta de Riemann, définie par $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$

- 1. Déterminer l'ensemble de définition de ζ .
- 2. (a) Montrer que $\sum_{n\geq 1} f_n$ converge uniformément sur tout segment de $]1,+\infty[$.
 - (b) Y-a-t-il convergence uniforme sur $]1, +\infty[$.
 - (c) Étudier la continuité de ζ sur $]1, +\infty[$
- 3. (a) Vérifier que les fonctions f_n sont décroissantes
 - (b) Déduire la monotonie de ζ
- 4. (a) Montrer que $\sum_{n\geqslant 1} f_n$ converge uniformément sur $[a,+\infty[$, pour tout a>1.
 - (b) Étudier la limite de ζ en $+\infty$
 - (c) En utilisant le théorème de la limite monotone, montrer que $\zeta(x) \xrightarrow[x \to 1^+]{} + \infty$
- 5. (a) Vérifier que les fonctions f_n sont convexes
 - (b) Déduire la convexité de ζ (Utiliser la définition de la convexité)
- 6. (a) Montrer que ζ est de classe \mathcal{C}^{∞} sur $]1, +\infty[$ et calculer ses dérivées k-ième
 - (b) Retrouver la monotonie et la convexité de ζ
 - (c) Tracer la courbe représentative de ζ

Partie II: Équivalents

7. En utilisant la comparaison série-intégrale, montrer que :

$$\forall n \ge 2, \quad \forall x > 1, \quad \frac{n^{1-x}}{x-1} \le \sum_{k=n}^{+\infty} \frac{1}{k^x} \le \frac{(n-1)^{1-x}}{x-1}$$

- 8. En déduire un équivalent de $\zeta(x)$ en 1
- 9. En utilisant la question 7, montrer que $\zeta(x) 1 \underset{+\infty}{\sim} 2^{-x}$.
- 10. Application:
 - (a) Donner la nature de la série $\sum_{p\geqslant 2} (\zeta(p)-1)$
 - (b) Montrer que la famille $\left(\frac{1}{n^p}\right)_{(n,p)\in\mathbb{N}_2^2}$ est sommable où $\mathbb{N}_2=\{k\in\mathbb{N},\ |\ k\geqslant 2\}$
 - (c) Déduire la valeur de $\sum_{p=2}^{+\infty} (\zeta(p) 1)$

Partie III: Développement asymptotique en 1

On considère la série de fonctions $\sum_{n\geqslant 1}v_n$, où v_n est définie sur $]0,+\infty[$ par $v_n(x)=\frac{1}{n^x}-\int_{-n}^{n+1}\frac{\mathrm{d}t}{t^x}.$

- 11. Justifier que, pour $n \ge 1$ et $x \in \mathbb{R}_+^*$, on a : $0 \le v_n(x) \le \frac{1}{n^x} \frac{1}{(n+1)^x}$.
- 12. Justifier que, pour $x \in \mathbb{R}_+^*$, la série $\sum_{n \ge 1} v_n(x)$ converge. On note alors $\gamma = \sum_{n=1}^{+\infty} v_n(1)$
- 13. Exprimer, pour x > 1, la somme $\sum_{n=1}^{+\infty} v_n(x)$ à l'aide de $\zeta(x)$ et 1 x.
- 14. Démontrer que la série $\sum_{n\geqslant 1}v_n$ converge uniformément sur $[1,+\infty[$ (on pourra utiliser le reste de la série).
- 15. En déduire que l'on a, pour x au voisinage de $1^+: \zeta(x) = \frac{1}{x-1} + \gamma + o(1)$.

Partie IV: Zéta alternée de Riemann

Pour $x \in \mathbb{R}$ et $n \ge 1$, on pose $h_n : x \mapsto \frac{(-1)^{n-1}}{n^x}$.

On note μ la fonction zeta alternée de Riemann, définie par $\mu(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x}$

- 16. Déterminer l'ensemble de définition de la fonction μ
- 17. (a) Montrer que $\sum_{n\geqslant 1} h_n$ converge normalement sur $[a,+\infty[$ pour tout a>1
 - (b) La série $\sum_{n\geqslant 1}h_n$ converge-t-elle normalement sur]1,a] pour tout a>1?
 - (c) Montrer que $\sum_{n\geqslant 1}h_n$ converge uniformément sur $[a,+\infty[$ pour tout a>0
 - (d) La série $\sum_{n\geqslant 1}h_n$ converge-t-elle uniformément sur]0,a] pour tout a>0?
- 18. Justifier la continuité de μ sur \mathbb{R}_+^*
- 19. Déterminer la limite μ en $+\infty$
- 20. Soit a est un réel strictement positif
 - (a) Justifier que h_n est de classe \mathcal{C}^{∞} et démontrer que, pour tout $k \in \mathbb{N}$, la série $\sum_{n \geqslant 1} h_n^{(k)}$ converge uniformément sur $[a, +\infty[$.
 - (b) En déduire que μ est une fonction de \mathcal{C}^{∞} sur $]0, +\infty[$.
- 21. Soit x > 1. Montrer que : $\mu(x) = (1 2^{1-x})\zeta(x)$.
- 22. (a) Écrire en fonction de $\ln 2$ et de $\mu'(1)$ le développement limité à l'ordre 1 et au voisinage de 1 de la fonction μ , puis déterminer le développement limité à l'ordre 2 et au voisinage de 1 de la fonction $x \mapsto 1 2^{1-x}$.
 - (b) En déduire deux réels a et b, qui s'écrivent éventuellement à l'aide de $\ln 2$ et $\mu'(1)$, tels que l'on ait, pour x au voisinage de $1^+: \zeta(x) = \frac{a}{x-1} + b + o(1)$.
- 23. Déduire des résultats précédents une expression, à l'aide de ln 2 et γ , de la somme $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} \ln n}{n}$.

Partie I: La fonction Zéta de Riemann

- 1. Soit $x \in \mathbb{R}$. La série de Riemann $\sum_{x \ge 1} \frac{1}{n^x}$ converge si, et seulement si, x > 1, donc $\mathcal{D}_{\zeta} =]1, +\infty[$
- 2. (a) Soit $[a,b] \subset]1,+\infty[$ et $x\in [a,b],$ on a : $|f_n(x)|=\frac{1}{n^x}\leqslant \frac{1}{n^a}$

Puisque a>1, alors la série de Riemann $\sum_{n\geqslant 1}\frac{1}{n^a}$ converge et, par suite, la série $\sum_{n\geqslant 1}f_n$ converge normalement

sur le segment [a,b], ainsi la convergence uniforme de la série $\sum_{n\geqslant 1}f_n$ sur [a,b]

- (b) Pour tout $n \geqslant 1$, on a $f_n(x) \xrightarrow[x \to 1^+]{} \frac{1}{n}$ et la série harmonique $\sum_{n \geqslant 1} \frac{1}{n}$ diverge, donc la série $\sum_{n \geqslant 1} f_n$ ne converge pas uniformément sur $]1, +\infty[$
- (c) Pour tout $n \ge 1$, la suite f_n est continue sur $]1, +\infty[$ et la série $\sum_{n \ge 1} f_n$ converge uniformément sur tout segment de $]1, +\infty[$
- 3. (a) Soit $n \ge 1$, la fonction f_n est dérivable sur \mathbb{R} et $f'_n(x) = \frac{-\ln n}{n^x} \le 0$
 - (b) Soit $x, y \in]1, +\infty[$ tels que x < y, alors pour tout $n \in \mathbb{N}^*$, on a $f_n(y) \leqslant f_n(x)$. Les deux séries $\sum_{n \geqslant 1} f_n(x)$ et

$$\sum_{n\geqslant 1} f_n(y) \text{ sont convergentes, alors } \sum_{n=1}^{+\infty} f_n(y) \leqslant \sum_{n=1}^{+\infty} f_n(x), \text{ soit } \zeta(y) \leqslant \zeta(x)$$

4. (a) Soit a > 1 et $x \in [a, +\infty[$, on a :

$$|f_n(x)| = \frac{1}{n^x} \leqslant \frac{1}{n^a}$$

Puisque a>1, alors la série de Riemann $\sum_{n\geqslant 1}\frac{1}{n^a}$ converge et, par suite, la série $\sum_{n\geqslant 1}f_n$ converge normalement sur $[a,+\infty[$, ainsi la convergence uniforme de la série $\sum_{n\geqslant 1}f_n$ sur $[a,+\infty[$

(b) La série $\sum f_n$ converge uniformément sur $[a, +\infty[$ et pour tout $n \ge 1$,

$$f_n(x) \xrightarrow[x \to +\infty]{} \ell_n = \begin{cases} 1 & \text{si } n = 1\\ 0 & \text{sinon} \end{cases}$$

Par le théorème d'interversion limite somme, ζ admet une limite finie en $+\infty$ et

$$\lim_{x \to +\infty} \zeta(x) = \sum_{n=1}^{+\infty} \ell_n = 1$$

(c) La fonction $s \mapsto \zeta(s)$ est une fonction décroissante, d'après le théorème de la limite monotone, elle admet une limite dans $\mathbb{R} \cup \{+\infty\}$. Supposons que cette limite L soit finie. Pour tout entier N et tout réel x > 1, on a

$$\sum_{x=1}^{N} \frac{1}{n^x} \leqslant \zeta(x) \leqslant L.$$

Pour N fixé, on fait tendre x vers 1, ce qui nous fourni l'inégalité $\sum_{n=1}^{N} \frac{1}{n} \leqslant L$. La série $\sum_{n\geqslant 1} \frac{1}{n}$ est à termes positifs donc la suite de ces sommes partielles est croissante. L'inégalité précédente montre que cette suite

est bornée donc elle converge, ce qui implique que la série $\sum_{n\geqslant 1}\frac{1}{n}$ est convergente, ce qui est faux. Ainsi $\lim_{x\to 1^+}\zeta(x)=+\infty$.

5. (a) Soit $n \ge 1$, la fonctions f_n est deux fois dérivable sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, \quad f_n''(x) = \frac{\ln^2(n)}{x^x} \leqslant 0$$

Ainsi f_n est convexe

(b) Soit $x, y \in]1, +\infty[$ et $\lambda \in [0, 1]$. Pour tout $n \in \mathbb{N}^*$, la fonction f_n est convexe sur $]1, +\infty[$: elle érifie alors l'inégalité de convexité, soit

$$f_n(\lambda x + (1 - \lambda)y) \leq \lambda f_n(x) + (1 - \lambda)f_n(y)$$

Les deux membres de cette inégalité sont les termes de deux séries convergentes, donc

$$\sum_{n=1}^{+\infty} f_n \left(\lambda x + (1-\lambda)y \right) \leqslant \lambda \sum_{n=1}^{+\infty} f_n \left(x \right) + (1-\lambda) \sum_{n=1}^{+\infty} f_n \left(y \right)$$

Soit

$$\zeta (\lambda x + (1 - \lambda)y) \leq \lambda \zeta (x) + (1 - \lambda)\zeta (y)$$

D'où la convexité de ζ

- 6. (a) Pour tout $n \ge 1$, la fonction f_n est de classe \mathcal{C}^{∞} sur $]1, +\infty[$
 - La série $\sum_{n\geq 1} f_n$ converge simplement sur $]1,+\infty[$ de somme ζ
 - Soit $p \geqslant 1$ et $[a,b] \subset]1,+\infty[$. Pour tout $x \in [a,b],$ on a $f_n^{(p)}(x) = \frac{(-1)^p \ln^p(n)}{n^x}$. En conséquence

$$\left| f_n^{(p)}(x) \right| = \frac{\ln^p(n)}{n^x} \leqslant \frac{\ln^p(n)}{n^a}$$

Pour $\alpha \in]1, a[$, on a $n^{\alpha} \cdot \frac{\ln^p(n)}{n^a} = \frac{\ln^p(n)}{n^{a-\alpha}} \xrightarrow[n \to +\infty]{} 0$, donc, par le critère de Riemann, la série $\sum_{n \ge 1} \frac{\ln^p(n)}{n^a}$

converge. On en déduit la convergence normale de la série $\sum_{n\geqslant 1}f_n^{(p)}$ sur [a,b], puis sa convergence uniforme sur [a,b].

Par le théorème de dérivation sous le signe somme, la fonction ζ est de classe \mathcal{C}^{∞} sur $]1, +\infty[$ et pour tout $x \in]1, +\infty[$ et $p \in \mathbb{N}$, on a :

$$\zeta^{(p)}(x) = \sum_{n=1}^{+\infty} \frac{(-1)^p \ln^p(n)}{n^x}$$

(b) ζ est de classe \mathcal{C}^{∞} sur $]1, +\infty[$ et pour tout $x \in]1, +\infty[$, on a :

$$\zeta'(x) = \sum_{n=1}^{+\infty} \frac{-\ln(n)}{n^x} < 0$$
 et $\zeta''(x) = \sum_{n=1}^{+\infty} \frac{\ln^2(n)}{n^x} > 0$

On en déduit la décroissance et la convexité de ζ

(c)

Partie II: équivalents

7. Soit $n \ge 2$ et x > 1, la fonction $t \mapsto \frac{1}{t^x}$ est décroissance sur $[1, +\infty[$, alors pour $t \in [k, k+1]$, on a :

$$\frac{1}{(k+1)^x} \leqslant \frac{1}{t^x} \leqslant \frac{1}{k^x} \implies \int_k^{k+1} \frac{1}{(k+1)^x} dt \leqslant \int_k^{k+1} \frac{1}{t^x} dt \leqslant \int_k^{k+1} \frac{1}{k^x} dt$$

$$\implies \frac{1}{(k+1)^x} \leqslant \int_k^{k+1} \frac{1}{t^x} dt \leqslant \frac{1}{k^x}$$

Ou encore

$$\int_{k}^{k+1} \frac{1}{t^x} \, \mathrm{d}t \leqslant \frac{1}{k^x} \leqslant \int_{k-1}^{k} \frac{1}{t^x} \, \mathrm{d}t$$

ceci implique

$$\frac{(k+1)^{1-x}}{1-x} - \frac{k^{1-x}}{1-x} \leqslant \frac{1}{k^x} \leqslant \frac{k^{1-x}}{1-x} - \frac{(k-1)^{1-x}}{1-x}$$

On somme ces inégalité de n à N et on tient compte des sommes téléscopiques, on obtient

$$\frac{(N+1)^{1-x}}{1-x} - \frac{n^{1-x}}{1-x} \le \sum_{k=n}^{N} \frac{1}{k^x} \le \frac{N^{1-x}}{1-x} - \frac{(n-1)^{1-x}}{1-x}$$

Puis on fait tendre N vers $+\infty$, on obtient l'inégalité

$$\frac{n^{1-x}}{x-1} \le \sum_{k=n}^{+\infty} \frac{1}{k^x} \le \frac{(n-1)^{1-x}}{x-1}$$

8. On applique les inégalités précédentes avec n=2, on obtient

$$\frac{2^{1-x}}{x-1} \le \sum_{k=2}^{+\infty} \frac{1}{k^x} \le \frac{1}{x-1}$$

Puis, on ajoute 1 à chaque terme figurant dans les inégalités, alors

$$1 + \frac{2^{1-x}}{x-1} \leqslant \zeta(x) \leqslant 1 + \frac{1}{x-1} \Longrightarrow x - 1 + 2^{1-x} \leqslant (x-1)\zeta(x) \leqslant x$$

Or
$$x - 1 + 2^{1-x} \xrightarrow[x \to 1^+]{} 1$$
, alors $(x - 1) \zeta(x) \xrightarrow[x \to 1^+]{} 1$, soit $\zeta(x) \sim \frac{1}{x - 1}$

9. On applique les inégalités précédentes avec n=3, on obtient

$$\frac{3^{1-x}}{x-1} \leqslant \sum_{k=3}^{+\infty} \frac{1}{k^x} \leqslant \frac{2^{1-x}}{x-1}$$

Puis, on multiplie chaque terme figurant dans les inégalités par 2^x , alors

$$3\frac{\left(\frac{2}{3}\right)^x}{1-x} \leqslant 2^x \sum_{k=2}^{+\infty} \frac{1}{k^x} \leqslant \frac{2}{x-1}$$

Or
$$3\frac{\left(\frac{2}{3}\right)^x}{1-x} \xrightarrow[x \to +\infty]{} 0$$
 et $\frac{2}{x-1} \xrightarrow[x \to +\infty]{} 0$, alors $2^x \sum_{k=3}^{+\infty} \frac{1}{k^x} \xrightarrow[x \to +\infty]{} 0$, soit $\zeta(x) - 1 - 2^{-x} = \circ (2^{-x})$. Ainsi $\zeta(x) - 1 \sim 2^{-x}$

- 10. (a) Le terme général de cette série $\zeta(p) 1 \sim \frac{1}{2^p}$, par la comparaison avec la série géométrique de raison $\frac{1}{2}$, la série $\sum_{p\geqslant 2} (\zeta(p)-1)$ converge.
 - (b) Il s'agit d'une suite double de réels positifs
 - Soit $n \ge 2$, la série $\sum_{p \ge 2} \frac{1}{n^p}$ converge car il s'agit d'une série géométrique de raison $\frac{1}{n} \in]0,1[$ de somme

$$S_n = \sum_{p=2}^{+\infty} \frac{1}{n^p} = \frac{\frac{1}{n^2}}{1 - \frac{1}{n}} = \frac{1}{n(n-1)}$$

— La série $\sum_{n\geq 2} S_n$ converge car $S_n \sim \frac{1}{n^2}$, et

$$\sum_{n=2}^{+\infty} S_n = \sum_{n=2}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1$$

Donc la famille $\left(\frac{1}{n^p}\right)_{(n,p)\in\mathbb{N}_2^2}$ est sommable.

(c) D'après la question précédente la famille $\left(\frac{1}{n^p}\right)_{(n,p)\in\mathbb{N}_2^2}$ est sommable, on fait appel au théorème de Fubini ou d'interversion $\sum\sum$

$$\sum_{p=2}^{+\infty} (\zeta(p) - 1) = \sum_{p=2}^{+\infty} \sum_{n=2}^{+\infty} \frac{1}{n^p} = \sum_{n=2}^{+\infty} \sum_{p=2}^{+\infty} \frac{1}{n^p}$$
$$= \sum_{n=2}^{+\infty} \frac{1}{n(n-1)} = 1$$

Partie III: Développement asymptotique en 1

11. Pour $n \ge 1$ et $x \in \mathbb{R}_+^*$, l'application $t \mapsto \frac{1}{t^x}$ est décroissante sur [n, n+1] (qui est un intervalle de longueur 1), donc

$$\frac{1}{(n+1)^x} \le \int_{-n}^{n+1} \frac{\mathrm{d}t}{t^x} \le \frac{1}{n^x}$$

On en déduit que : $0 \le v_n(x) \le \frac{1}{n^x} - \frac{1}{(n+1)^x}$.

- 12. Pour $x \in \mathbb{R}_+^*$, la suite $\left(\frac{1}{n^x}\right)_{n\geqslant 1}$ converge (vers 0); comme $\sum_{k=1}^n \left(\frac{1}{k^x} \frac{1}{(k+1)^x}\right) = 1 \frac{1}{(n+1)^x}$, la série $\sum_{n\geqslant 1} \left(\frac{1}{n^x} \frac{1}{(n+1)^x}\right)$ converge. De l'encadrement de la question préc'edente, on déduit la convergence de la série $\sum_{n\geqslant 1} v_n(x)$.
- 13. Pour x > 1, on a :

$$\sum_{k=1}^{n} v_k(x) = \sum_{k=1}^{n} \frac{1}{k^x} - \int_{1}^{n+1} \frac{1}{t^x} dt \xrightarrow[n \to +\infty]{} \zeta(x) - \frac{1}{x-1}$$

Donc

$$\sum_{n=1}^{+\infty} v_n(x) = \zeta(x) - \frac{1}{x-1}$$

14. La série $\sum_{n\geqslant 1}v_n$ converge simplement sur $[1,+\infty[$. On note $R_n(x)=\sum_{k=n+1}^{+\infty}v_k(x)$ le reste d'ordre n de la série. On a :

$$0 \leqslant R_n(x) \leqslant \sum_{k=n+1}^{+\infty} \left(\frac{1}{k^x} - \frac{1}{(k+1)^x} \right) = \frac{1}{(n+1)^x} - \lim_{k \to +\infty} \frac{1}{k^x} = \frac{1}{(n+1)^x}$$

Ainsi, on déduit que $\sup_{x \in [1,+\infty[} |R_n(x)| \le \frac{1}{(n+1)^1} \xrightarrow[n \to +\infty]{} 0$. Donc la série $\sum_{n \geqslant 1} v_n$ converge uniformément sur $[1,+\infty[$.

15. Pour $x \in]1, +\infty[$, $v_n(x) = \frac{1}{n^x} - \frac{1}{1-x} \left(\frac{1}{n^{x-1}} - \frac{1}{(n+1)^{x-1}} \right); v_n(1) = \frac{1}{n} - \ln(n+1) + \ln n.$ v_n est continue, sauf peut-être en 1.

En 1 : en posant h=x-1, $\frac{1}{n^x}=\frac{1}{n}+o(1)$ par continuité de l'exponentielle $x\mapsto n^{-x}$ en 1 et

$$\frac{1}{1-x} \left(\frac{1}{n^{x-1}} - \frac{1}{(n+1)^{x-1}} \right) = \frac{1}{h} \left(e^{-h \ln n} - e^{-h \ln(n+1)} \right)$$

$$= \frac{1}{h} \left((1-h \ln n + o(h)) - (1-h \ln(n+1) + o(h)) \right)$$

$$= \ln(n+1) - \ln n + o(1)$$

Donc $v_n(x) = \frac{1}{n} + \ln(n+1) - \ln n + o(1)$ et, par suite, v_n est continue en 1.

On en déduit que la série $\sum_{n\geqslant 1}v_n$ est une série de fonctions continues sur $[1,+\infty[$. La convergence uniforme sur $[1,+\infty[$ entraı̂ne donc la continuité de sa somme sur $[1,+\infty[$.

On en déduit que $\zeta(x) - \frac{1}{x-1} = \sum_{n=1}^{+\infty} v_n(x) = \left(\sum_{n=1}^{+\infty} v_n(1)\right) + o(1) = \gamma + o(1)$ au voisinage de 1⁺. D'où $\zeta(x) = \frac{1}{x-1} + \gamma + o(1)$ au voisinage de 1⁺.

Partie IV: Zéta alternée de Riemann

- 16. Soit $x \in \mathbb{R}$; si x > 0, alors la suite $\left(\frac{1}{n^x}\right)_{n \geqslant 1}$ tend vers 0 en décroissant; donc la série alternée $\sum_{n \geqslant 1} \frac{(-1)^{n-1}}{n^x}$ converge; si $x \leqslant 0$, la suite $\left(\frac{(-1)^{n-1}}{n^x}\right)_{n \geqslant 1}$ ne converge pas vers 0, donc la série $\sum_{n \geqslant 1} \frac{(-1)^{n-1}}{n^x}$ diverge (grossièrement).
- 17. (a) Soit a > 1 et $x \ge a$, alors pour tout $n \ge 1$, $\left| \frac{(-1)^{n-1}}{n^x} \right| \le \frac{1}{n^a}$. Comme la série $\sum_{n \ge 1} \frac{1}{n^2}$ est indépendante de x et convergente, la série $\sum_{n \ge 1} h_n$ converge normalement sur $[a, +\infty[$.

- (b) On a $||h_n||_{\infty}^{]1,a]} = \frac{1}{n}$ et la série harmonique $\sum_{n\geqslant 1} \frac{1}{n}$ est divergente, donc $\sum_{n\geqslant 1} h_n$ ne converge pas normalement sur [1,a].
- (c) Soit a>0 et $x\geqslant a.$ La série $\sum_{n\geqslant 1}h_n(x)$ est alternée vérifiant le CSSA, alors

$$|R_n(x)| \le |h_{n+1}(x)| \le \frac{1}{(n+1)^a}$$

Donc $||R_n||_{\infty} \leqslant \frac{1}{(n+1)^a} \xrightarrow[n \to +\infty]{} 0$. On en déduit qu'elle converge uniformément sur $[a, +\infty[$.

- (d) Pour $n \in \mathbb{N}^*$, on a $\|h_n\|_{\infty}^{]0,a]} = 1 \not\to 0$, d'après la condition nécessaire ,la série $\sum_{n\geqslant 1} h_n$ ne converge pas uniformément sur]0,a]
- 18. $\sum_{n\geq 1} h_n$ est une série de fonctions continues sur $]0,+\infty[$
 - Soit $[a,b] \subset]0, +\infty[$, alors pour tout $x \in [a,b]$, la série $\sum_{n\geqslant 1} \frac{(-1)^{n-1}}{n^x}$ est alternée vérifiant le CSSA, alors

$$|R_n(x)| \le \left| \frac{(-1)^n}{(n+1)^x} \right| \le \frac{1}{(n+1)^a}$$

Donc $||R_n||_{\infty} \leqslant \frac{1}{(n+1)^a} \xrightarrow[n \to +\infty]{} 0$. Ou encore $\sum_{n \geqslant 1} h_n$ CU sur tout segment de \mathbb{R}_+^* .

Donc la fonction $\mu = \sum_{n=1}^{+\infty} h_n$ est continue sur \mathbb{R}_+^*

19. Comme, pour tout $n \ge 2$, $\frac{(-1)^{n-1}}{n^x} \xrightarrow[x \to +\infty]{} 0$ et que, pour n=1, $\frac{(-1)^{n-1}}{n^x}=1$, le théorème de passage à la limite terme à terme permet d'affirmer que

$$\lim_{x \to +\infty} \mu(x) = \sum_{n=1}^{+\infty} \lim_{x \to +\infty} \frac{(-1)^{n-1}}{n^x} = 1$$

- 20. (a) Pour tout $n \ge 1$, la fonction h_n est de classe \mathcal{C}^{∞} sur $]0, +\infty[$
 - Soit $p \ge 0$. Le résultat est déjà démontré pour p = 0, alors on suppose désormais que $p \ge 1$. Pour tout $x \in [a, +\infty[$, on a $h_n^{(p)}(x) = \frac{(-1)^{p+n-1} \ln^p(n)}{n^x}$.

Pour x et p fixés, on considère la fonction φ définie sur $[1, +\infty[$ par $\varphi(t) = \frac{\ln^p(t)}{t^x}$. φ est de \mathcal{C}^{∞} sur $[1, +\infty[$ et

$$\varphi'(t) = \frac{p - x \ln(t)}{t^{x+1}} \ln^{p-1}(t)$$

Donc φ' est négative sur l'intervalle $\left[e^{\frac{p}{x}}, +\infty\right[$ et positive sur $\left[1, e^{\frac{p}{x}}\right]$. Donc φ est décroissante sur $\left[e^{\frac{p}{x}}, +\infty\right[$ et croissante sur $\left[1, e^{\frac{p}{x}}\right]$.

On en déduit que la suite $\left(\frac{\ln^p(n)}{n^x}\right)_{n\geqslant 1}$ est décroissante à partir du rang $N_a=\mathrm{E}\left(e^{\frac{p}{a}}\right)+1$; donc la

série alternée $\sum_{n\geqslant N_a}h_n^{(p)}(x)$ converge et, pour $n\geqslant N_a,$ son reste d'ordre n, $\rho_n(x),$ vérifie :

$$|\rho_n(x)| \le \left| (-1)^{n+p} \frac{\ln^p (n+1)}{(n+1)^x} \right| \le \frac{\ln^p (n+1)}{(n+1)^a}.$$

Donc $\sup_{x\geqslant a} |\rho_n(x)| \leqslant \frac{\ln(n+1)}{(n+1)^a} \xrightarrow[n\to +\infty]{} 0$. Donc la série $\sum_{n\geqslant 1} h_n^{(p)}$ CU sur $[a,+\infty[$.

- (b) Pour tout $n \ge 1$, la fonction h_n est de C^{∞} sur $]0, +\infty[$;
 - Pour tout $p \in \mathbb{N}$, la série $\sum_{n \ge 1} h_n^{(p)}$ converge uniformément sur tout segment inclus dans $]0, +\infty[$.

D'après le théorème de dérivation terme à terme, μ est de \mathcal{C}^{∞} sur $]0, +\infty[$ et

$$\forall x > 0, \, \mu^{(p)}(x) = \sum_{n=1}^{+\infty} (-1)^{n+p-1} \frac{\ln^p(n)}{n^x}$$

21. Pour x > 1, on a :

$$\mu(x) - \zeta(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} - 1}{n^x} = \sum_{k=1}^{+\infty} \frac{-2}{(2k)^x}$$
$$= -2^{1-x} \sum_{k=1}^{+\infty} \frac{1}{k^x} = -2^{1-x} \zeta(x)$$

On en déduit l'égalité : $\mu(x) = (1 - 2^{1-x})\zeta(x)$.

22. (a) On pose h = x - 1. Comme μ est dérivable en 1, au voisinage de 1, on a :

$$\mu(x) = \mu(1) + h\mu'(1) + o(h)$$

= $\ln 2 + (x - 1)\mu'(1) + o(x - 1)$

On a aussi:

$$1 - 2^{1-x} = 1 - e^{-h \ln 2}$$

$$= h \ln 2 - \frac{\ln^2 2}{2} h^2 + o(h^2)$$

$$= (x - 1) \ln 2 - \frac{\ln^2 2}{2} (x - 1)^2 + o((x - 1)^2)$$

(b)

$$\begin{split} \zeta(x) &= \frac{\mu(x)}{1 - 2^{1 - x}} = \frac{\ln 2 + h\mu'(1) + o(h)}{h \ln 2 - \frac{\ln^2 2}{2} h^2 + o(h^2)} \\ &= \frac{1}{h \ln 2} \frac{\ln 2 + h\mu'(1) + o(h)}{1 - \frac{\ln 2}{2} h + o(h)} \\ &= \frac{1}{h \ln 2} \left(\ln 2 + h\mu'(1) + o(h) \right) \left(1 + \frac{\ln 2}{2} h + o(h) \right) \\ &= \frac{1}{h \ln 2} \left(\ln 2 + h \left(\mu'(1) + \frac{\ln^2 2}{2} \right) + o(h) \right) \\ &= \frac{1}{h} + \left(\frac{\mu'(1)}{\ln 2} + \frac{\ln 2}{2} \right) + o(1) \end{split}$$

23. Par unicité du développement limité en 1⁺ (éventuellement en multipliant par (x-1)), on déduit de la question 15.) les égalités a=1 et $\frac{\mu'(1)}{\ln 2}+\frac{\ln 2}{2}=b=\gamma$. D'où $\mu'(1)=\ln 2\left(\gamma-\frac{\ln 2}{2}\right)$.

D'après 20b.),
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n-1} \ln n}{n} = -\mu'(1) = \ln 2 \left(\frac{\ln 2}{2} - \gamma \right).$$

Assemblage