

Chapitre 4

UML : Modélisation Fonctionnelle

RAPPEL

Cycle de vie d'un logiciel ou système:

Sommaire

1. Introduction à UML

- 2. Spécification des besoins par les cas d'utilisation
- 3. Spécifications détaillées des cas d'utilisation
- 4. Diagrammes de Séquences Systèmes

Installer PlantUML

https://plantuml.com/

Plugin pour VS Code

Qu'est-ce qu'un modèle?

Objet conçu et construit (artefact):

Représenter un sujet d'études

Ex.: circuits électriques

S'appliquant à plusieurs cas de ce sujet

Ex.: mesures (tension, intensité,...) sur des circuits

Incarnant un point de vue sur ces cas

Ex. : $U = RI \rightarrow$ abstraction de la longueur des fils, etc.

Un même sujet d'études peut avoir plusieurs modèles

→ Chaque modèle donne un point de vue différent sur le sujet

Représentativité

Généricité

Abstraction

UML (Unified Modeling Language)

Langage visuel

Décrit les résultats de l'analyse et de la conception OO

Les modèles

Fonctionnels (opérations - services)

Structurels / Statiques (Architecture - implémentation - environnement)

Dynamiques (comportement - fonctionnement)

Les vues présentent les modèles du système

Chaque participant au développement voit le système différemment Différents diagrammes forment un modèle donné

Diagrammes

Structuraux

Diagramme de classes (paquetages)

Diagramme d'objets

Diagramme de composants

Diagramme de déploiement

Comportementaux

Diagramme des cas d'utilisation

Diagramme de **séquence**

Diagramme de collaboration

Diagramme états-transitions

Diagramme d'activités

Remarques importantes

Pas de recette figée

UML n'est pas une garantie de bonne modélisation

Pas tous obligatoires

Chaque diagramme apporte une vision et une information complémentaire

Processus itératif

Chaque diagramme peut être utilisé à divers endroits et affiné progressivement

Spécification des besoins - Démarche

Le modèle des cas d'utilisation

Formalisme permettant de décrire les services offerts par un système

Un cas d'utilisation (use case) est un service fourni par le système.

Il est décrit comme action-réaction entre le système et les acteurs impliqués dans ce service.

Le modèle des cas d'utilisation

Concepts de base du modèle

Acteur

Cas d'utilisation

Relations

Système et frontière

Scénarios

Contraintes et exceptions

Description du modèle

Documentation

Diagramme des cas d'utilisation

Acteurs

Rôle joué par un utilisateur ou un système externe qui interagit directement avec le système.

Acteurs principaux

Utilisent les fonctions principales du système.

Souvent ils sont les déclencheurs des services.

Acteurs secondaires

Effectuent des tâches secondaires nécessaires au bon fonctionnement du système.

Cas d'utilisation

Un cas d'utilisation est une opération conséquente ou un service tangible offert par le système pour un ou plusieurs acteurs.

Un cas d'utilisation ne décrit pas comment le service est réalisé par le système. Il s'arrête à décrire les interactions entre les objets :

L'énumération des cas d'utilisation est un processus itératif :

Cas d'utilisation important

Description détaillée

Découpage - extension - regroupement

Relations

Lient les différents concepts du modèle des cas d'utilisation :

Relations entre cas d'utilisation

Relations entre acteurs

Relation entre acteurs et cas d'utilisation

La relation d'association

Un acteur est associé à un cas d'utilisation : interaction

La relation de spécialisation-généralisation

Hiérarchie de cas d'utilisation ou d'acteurs

La relation de dépendance

Inclusion: un cas d'utilisation contient un autre cas d'utilisation (obligatoire)

Extension: un cas d'utilisation peut étendre un autre cas d'utilisation (facultatif)

Cas d'utilisation - Démarche

Relations entre cas d'utilisations (1)

Les relations permettent de lier différents concepts des cas d'utilisation

Relations entre cas d'utilisation

Relations entre acteurs

Relation entre acteurs et cas d'utilisation

Association simple entre acteur et cas d'utilisation l'acteur interagit avec le cas d'utilisation et vice-versa

Association avec relation de navigabilité interaction dans un seul sens

Relations entre cas d'utilisations (2)

Généralisation

Inclusion (obligatoire)

Extension (optionnelle)

Description détaillée

Aucun format "formel" n'est fixé par UML pour ce genre de description Une structure de description possible :

NOM DU CAS D'UTILISATION	
Objectifs – description -	
Acteur principal	
Acteurs secondaires	
Déclencheur - trigger -	
Préconditions	
Post conditions	
Scénario nominal (suite d'interactions)	
Scénarios alternatifs	
Exigences, contraintes	

Exemple de description détaillée

NOM DU CAS D'UTILISATION	CALL CABIN (UC2)
Objectif	Faire venir l'ascenseur à l'étage de l'utilisateur
Acteur principal	Utilisateur de l'ascenseur
Acteurs secondaires	-
Déclencheur (trigger)	L'utilisateur appuie sur le bouton [^] ou [v]
Précondition	 L'ascenseur est en service, fonctionnel (panne, alarme)
Post-conditions	 L'ascenseur est au niveau de l'utilisateur
	 La porte de l'ascenseur est ouverte
Scénario nominal	 L'utilisateur signale son souhait de monter (bouton ^) ou descendre (bouton v)
	2. Le contrôleur détermine si l'ascenseur doit monter descendre ou passer à l'étape 4.
	3. L'ascenseur se déplace au niveau de l'utilisateur
	4. La porte de l'ascenseur s'ouvre
Scénarios alternatifs	2b. Si l'ascenseur est presque plein (charge >80% max) la
	demande est mémorisées et les étapes 2-4 mises en attente.
Exigences, contraintes	L'ascenseur doit arriver dans un délai maximum de 30 secondes

http://www.jot.fm/issues/issue 2007 09/article4.pdf

Scénarios

Un scénario est l'instanciation d'un cas d'utilisation Séquence particulière d'actions, et d'interactions entre acteurs et système.

On définit un scénario nominal par cas d'utilisation.

On définit un ou plusieurs scénarios alternatifs par cas d'utilisation.

Exercice – en groupe

Faire (ou affiner) le diagramme des cas d'utilisation de votre P2

Sommaire

- 1. Introduction à UML
- 2. Spécification des besoins par les cas d'utilisation
- 3. Spécifications détaillées des cas d'utilisation
- 4. Diagrammes de Séquences Systèmes

Diagrammes de séquence système

Représentation formelle des **interactions Acteurs – Système** Tient compte de l'ordre chronologique

→ Visualise un scénario du diagramme de Use Cases

Le système (informatique) est vu comme une boîte noire Son fonctionnement ne sera détaillé qu'en phase de conception.

Les acteurs produisent des messages pour le système Le système renvoie des réponses associées Ils sont représentés graphiquement sur des diagrammes de séquence

Diagrammes de séquence Système

Cadres d'interaction

Conditions: alt

Boucles: loop

Groupes

Etc.

Exercice

Modéliser min. 2 scénarios avec des diagrammes de séquences identifiables pour votre P2.