Guida su Teoria ed Esercizi

🖺 Elementi di Analisi Matematica 2

1. Integrali

Primitive

✓ Definizione

Sia $f:(a,b)\to\mathbb{R}$.

f è dotata di primitive in (a,b) se $\exists F:(a,b) \to \mathbb{R}$ tale che

- 1. F è derivabile in (a, b)
- 2. $F'(x) = f(x) \quad \forall \, x \in (a,b)$

△ Nota

- Non tutte le funzioni hanno primitive (es. la funzione segno)
- Una funzione continua ha primitive. Una funzione non continua non implica il non avere primitive. La continuità è una condizione sufficiente, ma non necessaria.

Caratterizzazione delle primitive di una funzione in un intervallo

✓ Enunciato

Ipotesi

 $f:(a,b)\to\mathbb{R}$ dotata di primitive in (a,b)

F primitiva di f in (a,b)

Tesi

Tutte e sole le funzioni primitive di f in (a, b) sono le funzioni del tipo:

$$F(x)+c,\quad c\in\mathbb{R}$$

ภภ Dimostrazione

1. Dimostro che tutte le funzioni del tipo F(x)+c, con $c\in\mathbb{R}$ sono primitive di f in (a,b)

$$\exists D[F(x) + c] = F'(x) + 0 = f(x)$$

2. Dimostro che tutte le funzioni del tipo F(x) + c sono le sole primitive.

Se
$$G:(a,b) o\mathbb{R}$$
 è un'altra primitiva di f in (a,b) allora $\exists\,c\in\mathbb{R}$ tale che $G(x)=F(x)+c\quad \forall x\in(a,b)$

Consideriamo la funzione G(x) - F(x). Essa è derivabile in (a, b) e

$$D[G(x) - F(x)] = G'(x) - F'(x) = f(x) - f(x) = 0$$

Il 2° corollario di Lagrange dice: "se due funzioni hanno la stessa derivata in un intervallo, esse differiscono per una costante".

Quindi,
$$G(x)-F(x)= ext{costante} \quad o \quad G(x)=F(x)+c, \quad orall x\in (a,b)$$

Integrale Indefinito

✓ Definizione

Si chiama **Integrale indefinito** di f l'insieme formato dalle primitive di f in (a,b) se f è dotata di primitive, l'insieme vuoto se f non ha primitive in (a,b).

$$\int f(x)\,dx = egin{cases} \emptyset & ext{se }f ext{ non ha primitive in }(a,b) \
otin F(x)+c, & c\in\mathbb{R}
otin F ext{ è una primitiva di }f ext{ in }(a,b) \end{cases}$$

Integrali Indefiniti Notevoli

($c\in\mathbb{R}$)

•
$$\int 0 dx = c$$

•
$$\int 1 dx = x + c$$

•
$$\int x^{lpha}\,dx=rac{x^{lpha+1}}{lpha+1}+c,\quad lpha
eq0$$

$$\bullet \int \frac{1}{x} dx = \ln|x| + c$$

$$ullet \int lpha^x \, dx = rac{lpha^x}{\ln|x|}, \quad lpha \in \mathbb{R}, lpha > 0, lpha
eq 0$$

•
$$\int \sin x \, dx = -\cos x + c$$

•
$$\int \cos x \, dx = \sin x + c$$

•
$$\int \frac{1}{1+x^2} dx = \arctan x + c$$

•
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$$

Integrali di Funzioni Composte

$$ullet \int [f(x)]^lpha \cdot f'(x) \, dx = rac{[f(x)]^{lpha+1}}{lpha+1} + c$$

• gli altri sono uguali a quelli notevoli ma con x = f(x), tutto per f'(x).

Proprietà di Omogeneità

Ipotesi

 $f:(a,b) o\mathbb{R}$ dotata di primitive in (a,b) $k\in\mathbb{R}, k
eq 0$

Tesi

- 1. kf è dotata di primitive in (a,b)
- 2. $\int kf(x) dx = k \int f(x) dx$

99 Dimostrazione

1. Per ipotesi f è dotata di primitive in (a,b) e sia F una sua primitiva.

$$\exists D[k \cdot F(x)] = k \cdot F'(x) = k \cdot f(x) \quad \forall x \in (a,b)$$

2. Per provare la 2 si dimostrano le due inclusioni.

Si prova che $\int k \cdot f(x) \, dx \subseteq k \cdot \int f(x) \, dx$

$$G \in \int k \cdot f(x) \, dx$$

 $\exists G'(x) = k \cdot f(x)$

Dobbiamo provare che $G \in k \cdot \int f(x) \, dx$, quindi $G = k \cdot \operatorname{primitiva}$ di f

Se k
eq 0 possiamo dire che $G(x) = k \cdot \left[rac{G(x)}{k}
ight]$

Se proviamo che $\left[\frac{G(x)}{k}\right]$ è uguale a una primitiva di f in (a,b), allora abbiamo provato che $G(x) \in k \cdot \int f(x) \, dx$.

$$D\left\lceil rac{G(x)}{k}
ight
ceil = rac{1}{k}\cdot G'(x) = rac{1}{\cancel{k}}\cdot [\cancel{k}\cdot f(x)] = f(x)$$

In conclusione, $rac{G(x)}{k}$ è primitiva di f in (a,b), quindi $G\in k\cdot\int f(x)\,dx$

Proviamo adesso l'altra inclusione $k \cdot \int f(x) \, dx \subseteq \int k \cdot f(x) \, dx$

$$G \in k \int f(x) \, dx$$
, quindi $G(x) = k \cdot F(x)$

Devo provare che G è una primitiva di $k \cdot F(x)$

$$G'(x) = D[k \cdot F(x)] = k \cdot F'(x) = k \cdot f(x)$$

Abbiamo dimostrato che G è una primitiva di $k \cdot f$

Proprietà di Linearità

✓ Enunciato

Ipotesi

 $f,g:(a,b) o \mathbb{R}$ dotate di primitive in (a,b)

Tesi

- 1. f + g è dotata di primitive in (a, b)
- 2. $\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$

△ Osservazione

Al secondo membro avviene la somma tra due insiemi, che di norma non è definita. Si intende invece l'insieme formato dalle funzioni che sono la somma di una delle primitive di f e una delle primitive di g.

3.
$$\int [f(x) + g(x)] dx = F(x) + \int g(x) dx$$
, con F primitiva di f

△ Osservazione

Al secondo membro si intende che, quando si tratta di una somma con un integrale, è possibile omettere la costante.

Integrazione per decomposizione in somma

✓ Enunciato

Ipotesi

 $f,g:(a,b) o\mathbb{R}$ dotate di primitive $h,k\in\mathbb{R}$ non entrambi nulli ($h^2+k^2>0$)

Tesi

- 1. $h \cdot f + k \cdot g$ è dotate di primitive in (a, b)
- 2. $\int [h \cdot f(x) + k \cdot g(x)] dx = h \cdot \int f(x) dx + k \cdot \int g(x) dx$

Integrazione indefinita per parti

✓ Enunciato

Ipotesi

 $f,g:(a,b) o\mathbb{R}$ derivabili $f'\cdot g$ dotata di primitive in (a,b)

Tesi

- 1. $f \cdot g'$ è dotata di primitive in (a, b)
- 2. $\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) \int f'(x) \cdot g(x) dx$

99 Dimostrazione

f e g sono derivabili, quindi lo è anche $f\cdot g$. $D[f(x)\cdot g(x)]=f'(x)\cdot g(x)+f(x)\cdot g'(x),\quad \forall x\in (a,b)$

Spostando di membro si ottiene: $f'(x) \cdot g(x) = D[f(x) \cdot g(x)] - f(x) \cdot g'(x)$

Si integrano entrambi i membri e per la proprietà di linearità si ottiene:

$$\int f(x) \cdot g'(x) \, dx = f(x) \cdot g(x) - \int f'(x) \cdot g(x) \, dx$$

f(x) è detto fattore finito

g(x) è detto fattore differenziale

Integrali indefiniti ciclici

& Metodo risolutivo

Per risolvere un integrale del tipo:

$$\int f(x)\,dx = H(x) + lpha\cdot\int f(x)\,dx,\quad lpha
eq 1$$

È sufficiente portare al primo l'integrale e risolvere l'equazione isolandolo.

Metodo di Sostituzione

1^a Formula

✓ Enunciato

Ipotesi

 $f:(a,b)\to\mathbb{R}$ dotata di primitive in (a,b)

 $\phi:(\alpha,\beta) o\mathbb{R}$ derivabile in (α,β)

 ϕ' continua in (α, β)

$$Im \, \phi \subseteq (a,b) \qquad [\iff \phi(x) \in (a,b) \, orall \, x \in (lpha,eta)]$$

Tesi

1^a Formula di integrazione per sostituzione:

$$\int f(\phi(x))\cdot\phi'(x)\,dx=\left(\int f(y)\,dy
ight)_{y=\phi(x)}$$

2^a Formula

✓ Enunciato

Ipotesi

 $f:(a,b)\to\mathbb{R}$ dotata di primitive in (a,b)

 $\phi:(\alpha,\beta)\to\mathbb{R}$ derivabile in (α,β)

 ϕ' continua in (α, β)

$$Im \phi = (a, b)$$

 ϕ invertibile in (α, β)

Tesi

 2^a Formula di integrazione per sostituzione:

$$\int f(x)\,dx = \left(\int f(\phi(t))\cdot\phi'(t)\,dt
ight)_{t=\phi^{-1}(x)}$$

#todo come risolvere esercizio

Integrali di Polinomi Trigonometrici

Prerequisiti di Trigonometria

- $\cos^2 x + \sin^2 x = 1$
- $\sin^2 \alpha = \frac{1 \cos(2\alpha)}{2}$ $\cos^2 \alpha = \frac{1 + \cos(2\alpha)}{2}$
- $\sin \alpha \cdot \cos \alpha = \frac{1}{2} \sin 2\alpha$

$$\int \cos^n x \, dx$$
 oppure $\int \sin^n x \, dx$

n pari

- 1. Si scompone $\int \sin^n x \, dx$ in $\int (\sin^2 x)^{\frac{n}{2}} \, dx$
- 2. Si trasforma $\sin^2 x$ in $\frac{1-\cos(2x)}{2}$ e si divide la frazione in $\frac{1}{2}-\frac{\cos 2x}{2}$
- 3. Si svolge il quadrato di binomio se $\frac{n}{2}=2$, il cubo di binomio se $\frac{n}{2}=3$, ecc
- 4. Si scompone utilizzando la proprietà di linearità degli integrali.
- 5. Si procede ricorsivamente utilizzando i vari metodi risolutivi.

n dispari

- 1. Si scompone $\int \sin^n x \, dx$ in $\int \sin^{n-1} x \cdot \sin x \, dx$
- 2. Si scompone $sin^{n-1}x$ in $(1-\cos^2x)^{\frac{n-1}{2}}$
- 3. Si svolge il quadrato di binomio se $\frac{n-1}{2}=2$, il cubo di binomio se $\frac{n-1}{2}=3$, ecc
- 4. Si moltiplica ogni membro della parentesi appena svolta per il $\sin x$ iniziale.
- 5. Si procede utilizzando l'integrazione composta $\int [f(x)]^n \cdot f'(x) = rac{f(x)^{n+1}}{n+1} + c$ e i vari metodi risolutivi.

$$\int cos^n x \cdot sin^m x \, dx$$

$$n = m$$

- 1. Si trasforma $\int \sin^n x \cdot \cos^n x \, dx$ in $\int (\sin x \cdot \cos x)^n \, dx$
- 2. Si trasforma $\sin x \cdot \cos x$ in $\frac{1}{2}\sin 2x$
- 3. Si svolge la potenza elevando entrambi i fattori e ottenendo $\int rac{1}{2^n} \sin^n 2x \, dx$

- 4. Si può portare fuori la costante $\frac{1}{2^n}$
- 5. Procedere ricorsivamente utilizzando i vari metodi risolutivi.

$n \neq m$ con n e m entrambi pari

- 1. Si prende $\int \sin^n x \cdot \cos^m x \, dx$ e si sceglie $\sin^n x$ oppure $\cos^n x$ di grado inferiore, scomponendolo in $(1-\cos^2 x)^{\frac{n}{2}}$
- 2. Si svolge il quadrato di binomio se $\frac{n}{2}=2$, il cubo di binomio se $\frac{n}{2}=3$, ecc
- 3. Si scompone utilizzando la proprietà di linearità degli integrali.
- 4. Si procede ricorsivamente utilizzando i vari metodi risolutivi.

$n \neq m$ con almeno n oppure m dispari

- 1. Si prende $\int \sin^n x \cdot \cos^m x \, dx$ e si sceglie $\sin^n x$ oppure $\cos^n x$ con il grado dispari. Se sono entrambi dispari è preferibile quello con il grado inferiore. supponiamo si sia scelto $\sin^n x$
- 2. Si scompone $\sin^n x$ in $\sin^{n-1} x \cdot \sin x$.
- 3. Si procede come nel caso di $\int \sin^n x \, dx$ con n dispari dallo step 2

Integrali di Fratti Semplici

Caso 1:
$$rac{1}{(ax+b)^n}$$
 $a,b\in\mathbb{R},\,a
eq 0,\,n\in\mathbb{N}$

 ${f \circlearrowleft}$ Metodo risolutivo (n=1)

$$rac{1}{(ax+b)^1}=rac{1}{a}\cdot\intrac{1}{(ax+b)}\cdot a\,dx=rac{1}{a}\cdot\ln|ax+b|+c,\quad c\in\mathbb{R}$$

 $oldsymbol{\delta}$ Metodo risolutivo (n>1)

$$rac{1}{(ax+b)^n}=rac{1}{a}\cdot\int (ax+b)^{-n}\cdot a\,dx=rac{1}{a}\cdotrac{(ax+b)^{-n+1}}{-n+1}+c,\quad c\in\mathbb{R}$$

Caso 2:
$$rac{1}{x^2+px+q}$$
 $p,q\in\mathbb{R}:\Delta=p^2-4q<0$

♦ Metodo risolutivo

Il denominatore può essere scritto nel seguente modo:

$$x^{2} + px + q = x^{2} + 2 \cdot \frac{px}{2} + \frac{p^{2}}{4} - \frac{p^{2}}{4} + q =$$

$$= \left(x + \frac{p}{2}\right)^{2} + \frac{4q - p^{2}}{4} = (4q - p^{2} = -\Delta)$$

$$= \frac{(2x + p)^{2}}{4} + \frac{-\Delta}{4} =$$

$$= \frac{-\Delta}{4} \cdot \left[\frac{(2x + p)^{2}}{-\Delta} + 1\right] =$$

$$= \frac{-\Delta}{4} \cdot \left[1 + \left(\frac{2x + p}{\sqrt{-\Delta}}\right)^{2}\right] \qquad (-\Delta > 0)$$

Quindi si può svolgere l'integrale facendo riferimento all'uguaglianza precedente e all'integrazione notevole dell'arctan:

$$\begin{split} \int \frac{1}{x^2 + px + q} \, dx &= \int \frac{1}{-\frac{\Delta}{4} \cdot \left[1 + \left(\frac{2x + p}{\sqrt{-\Delta}}\right)^2\right]} \, dx = & \left(D\left[\frac{2x + p}{\sqrt{-\Delta}}\right] = \frac{2}{\sqrt{-\Delta}}\right) \\ &= \frac{\cancel{A}}{-\Delta} \cdot \frac{\cancel{\sqrt{-\Delta}}}{\cancel{2}} \cdot \int \frac{1}{1 + \left(\frac{2x + p}{\sqrt{-\Delta}}\right)^2} \cdot D\left[\frac{2x + p}{\sqrt{-\Delta}}\right] \, dx = \\ &= \frac{2}{\sqrt{-\Delta}} \cdot \left(\int \frac{1}{1 + y^2} \, dy\right)_{y = \frac{2x + p}{\sqrt{-\Delta}}} = \\ &= \frac{2}{\sqrt{-\Delta}} \cdot \arctan \frac{2x + p}{\sqrt{-\Delta}} + c, \quad c \in \mathbb{R} \end{split}$$

Caso 3:
$$rac{ax+b}{(x^2+px+q)^n}$$
 $a,b\in\mathbb{R},$ $p,q\in\mathbb{R}:\Delta=p^2-4q<0,\,n\in\mathbb{N}$

: E Caso Particolare

$$\int \frac{1}{(1+x^2)^2} dx = \int \frac{1+x^2-x^2}{(1+x^2)^2} dx =$$

$$= \int \frac{1+x^2}{(1+x^2)^2} dx + \int \frac{-x^2}{(1+x^2)^2} dx =$$

$$= \arctan x + \frac{1}{2} \int \frac{-2x^2}{(1+x^2)^2} dx =$$

$$= \arctan x + \frac{1}{2} \int x \cdot \frac{-2x}{(1+x^2)^2} dx =$$

$$= \arctan x + \frac{1}{2} \int x \cdot D \left[\frac{1}{1+x^2} \right] dx =$$

$$= \arctan x + \frac{1}{2} \left[\frac{x}{1+x^2} - \int \frac{1}{1+x^2} dx \right] =$$

$$= \frac{1}{2} \arctan x + \frac{1}{2} \frac{x}{1+x^2} + c, \quad c \in \mathbb{R}$$

₼ Metodo risolutivo

Se il numeratore è derivata del denominatore è sufficiente utilizzare l'integrazione fondamentale del \ln .

Se il numeratore non è derivata del denominatore, bisogna fare in modo che lo diventi.

- 1. Si moltiplica il numeratore per 2 se a è dispari. Ricordarsi di aggiungere $\frac{1}{2}$ fuori dalla frazione per compensare il fattore appena aggiunto.
- 2. Fai sì di avere tra parentesi la derivata del denominatore, raccogliendo sulla base di a. Ignora il fattore b, metti p al suo posto e compensa fuori dalle parentesi il valore aggiunto, annullandolo. Formalmente: $\frac{a}{2}(2x+p)-\frac{a}{2}p+b$.
- 3. Si divide la frazione in due e si procede in i vari metodi.

$$\int \frac{5x+8}{(x^2+9x+1)^2} dx =$$

$$= \frac{1}{2} \cdot \int \frac{10x+16}{(x^2+9x+1)^2} dx =$$

$$= \frac{1}{2} \cdot \int \frac{5(2x+9)-45+16}{(x^2+9x+1)^2} dx =$$

$$= \frac{5}{2} \cdot \int \frac{2x+9}{(x^2+9x+1)^2} dx - 29 \int \frac{1}{(x^2+9x+1)^2} dx =$$

$$= \frac{5}{2} \cdot \frac{(x^2+9+1)^{-1}}{-1} - \cdots$$

$$(1)$$

Integrali di Equazioni Razionali Fratte

$$\int \frac{N(x)}{D(x)} \, dx$$

$$\mathsf{grado}\ [N(x)] \geq \mathsf{grado}\ [D(x)]$$

& Metodo risolutivo

È sufficiente effettuare la divisione tra polinomi finché non si ottiene al numeratore un polinomio di grado inferiore al denominatore.

$$\int rac{N(x)}{D(x)} \, dx = \int Q(x) \, dx + \int rac{R(x)}{D(x)} \, dx$$

Si può quindi procedere con gli altri metodi risolutivi

$\operatorname{\mathsf{grado}}\left[N(x)\right]<\operatorname{\mathsf{grado}}\left[D(x)\right]$

Scomposizione di Polinomi

Ogni polinomio di grado n ha n radici in \mathbb{C} . Si consideri P(x) polinomio:

1. Sia $lpha\in\mathbb{R}$ una radice reale con molteplicità n di P(x). Allora P(x) può essere diviso per

$$(x-\alpha)^n$$

2. Sia $\alpha=a\pm ib$ una radice complessa con molteplicità n di P(x). Allora P(x) si può dividere per

$$\{[x-(a+ib)]\cdot[x-(a-ib)]\}^n=[(x-a)^2+b^2]^n$$

Si tratta della potenza di un polinomio di secondo grado con $\Delta < 0$ ed equazione del tipo:

$$(x^2+px+q)^n$$

Quindi, ogni polinomio si può fattorizzare nel prodotto di potenze di polinomi di 1° grado (punto 1) e potenze di polinomi di 2° grado con $\Delta < 0$ (punto 2).

(i) Fattorizzazione di Frazione

Si può dimostrare che una frazione del tipo $\frac{N(x)}{D(x)}$ è la somma dei fratti semplici del tipo:

$$rac{A}{(x-lpha)^n}, \quad rac{Bx+C}{(x^2+px+q)^m}$$

Ad esempio:

$$egin{aligned} rac{\cdots}{(x+1)^2\cdot(x-3)\cdot(x^2+x+1)^3} &= \ &= rac{A}{x+1} + rac{B}{(x+1)^2} + rac{C}{x-3} + rac{Dx+E}{x^2+x+1} + rac{Fx+G}{(x^2+x+1)^2} + rac{Hx+J}{(x^2+x+1)^3} \end{aligned}$$

& Metodo risolutivo

Per risolvere gli integrali di razionali fratti con numeratore inferiore a denominatore è necessario:

- 1. Scomporre in fratti semplici la frazione. Trovare A, B, \ldots tramite sistema.
- 2. Utilizzare la proprietà della linearità degli integrali per separare ogni frazione.
- 3. Utilizzare gli altri metodi d'integrazione.

Trucchetti

$$D[an x]=rac{1}{cos^2x}=rac{sin^2x+cos^2x}{cos^2x}=rac{sin^2x}{cos^2x}+1= an^2x+1$$

Topologia in \mathbb{R}^2

Rettangolo

✓ Definizione

Si definisce rettangolo di \mathbb{R}^2 limitato il seguente insieme: $(a,b) \times (c,d)$.

⊘ Calcolo Area

La formula per il calcolo dell'area del rettangolo è la seguente: ${
m area} = (b-a) \cdot (d-c)$

Plurirettangolo

✓ Definizione

Si definisce plurirettangolo l'unione di un numero finito di rettangoli a due a due privi di punti interni comuni.

⊘ Calcolo Area

Sia
$$P = igcup_{i=1}^r R_i ext{ con } R_i ext{ rettangolo limitato e } R_i \cap R_j
eq \emptyset \quad i
eq j$$

$$\operatorname{area} P = \sum_{i=1}^r \operatorname{area} R_i$$

\mathscr{P} e $\overline{\mathscr{P}}$

✓ Enunciato

Dato un insieme $X \subseteq \mathbb{R}^2$ dotato di punti interni e limitato, si definiscono due insiemi numerici $\underline{\mathscr{P}}$ e $\overline{\mathscr{P}}$.

$${\displaystyle \underbrace{\mathscr{P}}_{} = \{P: \qquad P\subseteq X \ {
m plurirettangolo}\}}_{} = \{P: \qquad P\supseteq X \ {
m plurirettangolo}\}$$

Essi sono entrambi non vuoti.

Misurabilità e calcolo area

⊘ Enunciato

Ipotesi

Siano A e B due insiemi così definiti:

$$egin{aligned} A &= \{ \operatorname{area} P : & P \in \underline{\mathscr{P}} \} \ B &= \{ \operatorname{area} P : & P \in \overline{\mathscr{P}} \} \ \sup A &= \inf B \end{aligned}$$

Tesi

X è misurabile secondo Peano-Jordan e la sua area è così definita:

$$\operatorname{area} X \stackrel{\mathsf{def}}{=} \sup A = \inf B$$

ภภ Dimostrazione

#todo

Integrale Definito

Decomposizione

✓ Definizione

Dato un intervallo [a, b] limitato, si chiama **decomposizione** di [a, b] un insieme

$$\mathscr{D} = \{x_0, x_1, \ldots, x_n\} \quad ext{con} \quad x_i \in \mathbb{R}, \quad a = x_0 < x_1 < \cdots < x_n = b$$

I punti x_1, x_2, \ldots, x_n si chiamano **capisaldi** della decomposizione.

Ampiezza di decomposizione

✓ Definizione

$$|\mathscr{D}| \stackrel{\mathsf{def}}{=} \min\{(x_i - x_{i-1}, \quad i = 1, \dots, n)\}$$

Somma Inferiore e Superiore

✓ Definizione

Sia $f:[a,b]\to\mathbb{R}$ continua in \mathbb{R} .

Si consideri una sua decomposizione $\mathscr{D} = \{x_0, x_1, \dots, x_n\}.$

Siano $y_i, z_i \in [x_{i-1}, x_i]$

$$f(y_i) = \min_{x \in [x_{i-1},x_i]} f(x)$$

$$f(y_i) = \min_{x \in [x_{i-1}, x_i]} f(x) \ f(z_i) = \max_{x \in [x_{i-1}, x_i]} f(x)$$

Si definiscono rispettivamente somma inferiore e somma superiore di f relative a \mathcal{D} i seguenti numeri:

$$s(\mathscr{D},f) = \sum_{i=1}^n (x_i,x_{i-1}) \cdot f(y_i)$$

$$S(\mathscr{D},f) = \sum_{i=1}^n (x_i,x_{i-1}) \cdot f(z_i)$$

\mathscr{S} e $\overline{\mathscr{S}}$

✓ Definizione

Si definiscono due insiemi numerici \mathscr{L} e $\overline{\mathscr{S}}$.

$$\mathscr{S} = \{s(\mathscr{D}, f), \qquad \mathscr{D} \text{ decomposizione di } [a, b]\}$$

$$\begin{split} & \underline{\mathscr{S}} = \{s(\mathscr{D}, f), \qquad \mathscr{D} \text{ decomposizione di } [a, b]\} \\ & \overline{\mathscr{S}} = \{S(\mathscr{D}, f), \qquad \mathscr{D} \text{ decomposizione di } [a, b]\} \end{split}$$

\mathscr{S} e $\overline{\mathscr{S}}$ sono contigui

✓ Enunciato

Gli insiemi \mathscr{S} e $\overline{\mathscr{S}}$ sono contigui.

99 Dimostrazione

#todo

✓ Definizione

Data una funzione $f:[a,b]\to\mathbb{R}$ continua in \mathbb{R} , si chiama **integrale definito** tra a e b di f il seguente numero:

$$\int_a^b f(x) \, dx \stackrel{\mathsf{def}}{=} egin{cases} \sup \mathscr{S} = \inf \overline{\mathscr{S}} & \mathrm{se} \ a < b \ 0 & \mathrm{se} \ a = b \ - \int_b^a f(x) & \mathrm{se} \ a > b \end{cases}$$

Proprietà

Proprietà Distributiva

✓ Enunciato

Ipotesi

 $f,g:(a,b) o\mathbb{R}$ continue $lpha,eta\in[a,b]$

 $h,k\in\mathbb{R}$

Tesi

$$\int_{lpha}^{eta} [h \cdot f(x) + k \cdot g(x)] \, dx = h \cdot \int_{lpha}^{eta} f(x) \, dx + k \cdot \int_{lpha}^{eta} g(x) \, dx$$

Proprietà Additiva

✓ Enunciato

Ipotesi

 $f:(a,b) o\mathbb{R}$ continua $lpha,eta,\gamma\in[a,b]$

Tesi

$$\int_{lpha}^{eta} f(x) \, dx = \int_{lpha}^{\gamma} f(x) \, dx + \int_{\gamma}^{eta} f(x) \, dx$$

Teorema della Media

✓ Enunciato

Ipotesi

 $f:(a,b) o\mathbb{R}$ continua

Tesi

1.
$$m(b-a) \leq \int_{lpha}^{eta} f(x) \, dx \leq M(b-a)$$
 con $m = \min_{[a,b]} f$ e $M = \max_{[a,b]} f$

2.
$$\exists\,c\in[a,b]:\quad rac{1}{b-1}\cdot\int_lpha^\beta f(x)\,dx=f(c)$$

99 Dimostrazione

#todo

Proprietà di Monotonia

✓ Enunciato

Ipotesi

$$f,g:(a,b) o\mathbb{R}$$
 continue $f(x)\leq g(x)\quad orall a,x\in [a,b]$

Tesi

$$\int_a^b f(x)\,dx \leq \int_a^b g(x)\,dx$$

In particolare, se $f(x)\geq 0 \quad orall \, x\in [a,b]$, allora $\int_a^b f(x)\geq 0$. Inoltre, $\int_a^b f(x)\, dx=0 \iff f(x)=0$

Funzione Integrale

✓ Definizione

Data una funzione $f:(a,b) o\mathbb{R}$ continua e un punto $x_0\in(a,b)$. Si consideri $F:(a,b) o\mathbb{R}$ definita da $F(x)=\int_{x_0}^x f(t)\,dt\quad \forall\,x\in(a,b)$ $F(x_0)=\int_{x_0}^x f(t)\,dt=0$

F si chiama **funzione integrale** di punto iniziale x_0 .

Teorema Fondamentale del Calcolo Integrale

✓ Enunciato

Ipotesi

 $f:(a,b) o\mathbb{R}$ continua

$$egin{aligned} x_0 \in (a,b) \ F(x) = \int_{x_0}^x f(t) \, dt \quad orall \, x \in (a,b) \end{aligned}$$

Tesi

1. F(x) è derivabile in (a, b)

2.
$$F'(x) = f(x) \quad \forall x \in (a,b)$$

Si può enunciare come

99 Ogni funzione continua in un intervallo è dotata di primitive.

99 Dimostrazione

#todo

Formula Fondamentale per il Calcolo degli Integrali Definiti

✓ Enunciato

Ipotesi

 $f:[a,b] o\mathbb{R}$ continua G primitiva di f in [a,b]

Tesi

$$\int_a^b f(t)\,dt = G(b)-G(a)=[G(t)]_a^b$$

Dimostrazione

#todo

Risoluzione esercizi

Valore assoluto

♦ Metodo risolutivo

$$\int_a^b f(x,|g(x)|)\,dx$$

Si studia il segno di g(x) se tra a e b la funzione ha sempre lo stesso segno, allora la risoluzione è immediata e si procede sostituendo |g(x)| con $\pm g(x)$ a seconda del segno di g.

Mettiamo caso che la funzione sia positiva in $\left[a,c\right]$ e negativa in $\left[c,b\right]$.

L'integrale si scompone come segue: $\int_a^c f(x,+g(x))\,dx + \int_c^b f(x,-g(x))\,dx.$

Si procede in maniera simile anche a segni invertiti o nel caso in cui ci siano più punti in cui la funzione cambia segno.

2. Equazioni Differenziali

1° ordine

✓ Definizione

Sia $A\subseteq\mathbb{R}^2, A
eq\emptyset$ e sia $F:A o\mathbb{R}.$

Si chiama **equazione differenziale** del 1° ordine (scritta in forma normale)

$$y' = F(x, y)$$

il problema della ricerca delle funzioni

$$y(x):(lpha,eta) o \mathbb{R}$$

tali che:

- y(x) è derivabile in (α, β)
- $ullet (x,y(x))\in A \qquad orall \in (lpha,eta)$
- y'(x) = F(x, y(x)) $\forall x \in (\alpha, \beta)$

y(x) si chiama soluzione dell'equazione di $y^\prime = F(x,y)$

L'insieme formato da tutte e sole le soluzioni di y'=F(x,y) si chiama **integrale generale** dell'equazione data.

$2\degree$ ordine

✓ Definizione

Sia $A\subseteq\mathbb{R}^3, A
eq\emptyset$ e sia $F:A o\mathbb{R}.$

Si chiama **equazione differenziale** del 2° ordine (scritta in forma normale)

$$y' = F(x, y, y')$$

il problema della ricerca delle funzioni

$$y(x):(lpha,eta) o\mathbb{R}$$

tali che:

- y(x) è derivabile 2 volte in (α, β)
- $ullet (x,y(x),y'(x))\in A \qquad orall \in (lpha,eta)$
- $ullet y''(x) = F(x,y(x),y'(x)) \qquad orall x \in (lpha,eta)$

Problema di Cauchy

1° ordine

✓ Enunciato

Sia $(x_0, y_0) \in A$.

Si chiama **problema di Cauchy** associato a un'equazione differenziale di primo ordine di punto iniziale (x_0,y_0)

$$egin{cases} y' = F(x,y) \ y(x_0) = y_0 \end{cases}$$

il problema della ricerca delle soluzioni dell'equazione che verificano la condizione

$$y(x_0) = y_0$$

 $y(x_0) = y_0$ si dice condizione iniziale.

2° ordine

✓ Enunciato

Sia $(x_0, y_0, y_0) \in A$.

Si chiama **problema di Cauchy** associato a un'equazione differenziale di primo ordine di punto iniziale (x_0,y_0,y_0')

$$egin{cases} y'=F(x,y,y')\ y(x_0)=y_0\ y'(x_0)=y'_0 \end{cases}$$

il problema della ricerca delle soluzioni dell'equazione che verificano le condizioni

$$y(x_0)=y_0 \quad ext{e} \quad y'(x_0)=y_0'$$

 $y(x_0)=y_0$ e $y'(x_0)=y_0'$ si dicono **condizioni iniziali**.

Si può dimostrare che, lavorando con funzioni continue, il problema di Cauchy ammette una e una sola soluzione.

Metodi risolutivi per alcune classi di equazioni differenziali

Esistono tante altre classi. Le funzioni possono essere in contemporanea di più classi, o di nessuna

1° ordine

A variabili separabili

$$y' = F(x,y) = X(x) \cdot Y(y) \quad x \in (a,b) \quad y \in (c,d)$$

con $X:(a,b)
ightarrow \mathbb{R}$ continua, $Y:(c,d)
ightarrow \mathbb{R}$ continua.

(i) Soluzioni

Una soluzione dell'equazione è una funzione

$$y(x):(lpha,eta) o\mathbb{R}$$

tale che:

- y(x) è derivabile in (α, β)
- $ullet (lpha,eta)\subseteq (a,b) \quad \wedge \quad y(x)\in (c,d) \quad orall x\in (lpha,eta)$
- $y'(x) = X(x) \cdot Y(y) \quad \forall x \in (\alpha, \beta)$

Soluzioni di 1^a categoria (di tipo costante)

$$H = \{h \in (c,d) : Y(h) = 0\}$$

Se $H \neq 0$, preso $\overline{h} \in H$, la funzione $y(x) = \overline{h}$ è soluzione in (a,b). Infatti:

$$egin{aligned} \exists y'(x) = 0 \quad orall x \in (a,b) \ X(x) \cdot Y(y) = X(y(x)) \cdot (Y(\overline{h})) = 0 \quad orall x \in (a,b) \ 0 = y'(x) = X(x) \cdot Y(y(x)) \quad orall x \in (a,b) \end{aligned}$$

Soluzioni di 2^a categoria

Sono le soluzioni definite in $(\alpha, \beta) \subseteq (a, b)$ tale che:

#todo

Soluzioni di 3^a categoria

Sono le soluzioni definite in $(\alpha, \beta) \subseteq (a, b)$ tale che:

$$\exists x_1,x_2 \in (\alpha,\beta): Y(y(x_1)) = 0 \land Y(y(x_2)) \neq 0$$

Lineare

$$y'+a(x)\cdot y=f(x)\quad a,g:I o\mathbb{R}\ \mathrm{con}\ I\subseteq\mathbb{R}$$

a(x): coefficiente f(x): termine noto

Equazione omogenea

Se $f(x) = 0 \quad \forall x \in I$ l'equazione si dice **omogenea**.

$$y' + a(x)y = 0$$
 $a:I o R$ $I\subseteq R$ $a: ext{continua in }I$

√ Soluzioni

$$y(x) = c \cdot e^{-A(x)}$$
 $c \in \mathbb{R}$

② Dimostrazione >

Risolvo l'equazione

$$y' + a(x)y = 0 \implies y' = -a(x)y$$

Ci ritroviamo un'equazione a variabili separabili

$$X(x) = -a(x) \qquad (a,b) = I$$

$$Y(y)=y \qquad (c,d)=\mathbb{R}$$

1^a categoria

$$H = \{ y \in \mathbb{R} : y(h) = 0 \} = \{ 0 \}$$

 2^a categoria

$$\exists \ y' = -a(x)y(x) \qquad y(x)
eq 0$$

$$rac{y'}{y(x)} = -a(x)$$

$$D[\ln|y(x|) = D[-A(x)] + k$$

Le soluzioni saranno quindi

$$y(x) = c \cdot e^{-A(x)} \qquad c \in \mathbb{R}$$

Equazione completa

Se non è omogenea, l'equazione si dice completa.

$$y^{\prime}+a(x)y=f(x)$$

$$a,f:I o R\quad I\subseteq R\qquad \quad a,f: {
m continue\ in\ } I$$

√ Soluzioni

$$y(x) = \overline{y} + c \cdot e^{-A(x)} \qquad c \in \mathbb{R}$$

con $A(x) \in \int a(x) \, dx$

con
$$\overline{y} = c(x) \cdot e^{-A(x)}$$
 prendendo $c(x) \in \int f(x) \cdot e^{A(x)} \, dx$

 \overline{y} è una soluzione dell'equazione differenziale calcolata mediante il metodo della variazione delle costanti.

$2\degree$ ordine

Lineare

$$y'' + a(x) \cdot y' + b(x) \cdot y = f(x) \quad a,b,f:I o \mathbb{R} ext{ con } I \subseteq \mathbb{R}$$

a(x), b(x): coefficiente

f(x): termine noto

Wronksiano w(x)

Due soluzioni y_1 e y_2 si dicono indipendenti se

$$w(x) = egin{bmatrix} y_1 & & y_2 \ y_1' & & y_2' \end{bmatrix}
eq 0$$

Equazione omogenea

$$y'' + a(x) \cdot y' + b(x) \cdot y = 0 \tag{EO}$$

√ Soluzioni

$$k_1 \cdot y_1 + k_2 \cdot y_2$$

con y_1 e y_2 funzioni indipendenti soluzioni dell'equazione (EO).

Coefficienti costanti

sarà l'unico caso trattato

Si trovano le soluzioni dell'equazione di secondo grado rispetto a λ . **Equazione caratteristica**:

$$\lambda^2 + a \cdot \lambda + b = 0 \tag{EQ2}$$

Le funzioni indipendenti soluzione dell'equazione omogenea sono:

Se le soluzioni di (EQ2) sono reali e distinte:

$$y_1 = e^{\lambda_1 \cdot x} \qquad y_2 = e^{\lambda_2 \cdot x}$$

• Se le soluzioni di (EQ2) sono reali e coincidenti:

$$y_1 = e^{\lambda \cdot x} \qquad y_2 = x \cdot e^{\lambda \cdot x}$$

Se le soluzioni di (EQ2) sono complesse coniugate:

$$y_1 = e^{eta \cdot x} \cdot \sin{(\gamma \cdot x)} \qquad y_2 = e^{eta \cdot x} \cdot \cos{(\gamma \cdot x)}$$

dove $\lambda = \beta \pm i \cdot \gamma$

Equazione completa

$$y'' + a(x) \cdot y' + b(x) \cdot y = f(x) \tag{EC}$$

✓ Soluzioni

$$\overline{y} + k_1 \cdot y_1 + k_2 \cdot y_2$$

con y_1 e y_2 funzioni indipendenti soluzioni dell'equazione (EO) e \overline{y} soluzione dell'equazione (EC).

*Trattiamo soltanto il caso a coefficienti costanti e con $f(x) = e^{hx} \cdot p(x)$, con p(x) polinomio di grado m a coefficienti complessi.

& Metodo risolutivo

Si calcolano y_1 e y_2 considerando l'equazione omogenea associata a quella completa.

Bisogna trovare $\overline{y} = e^{hx} \cdot x^s \cdot q(x)$, dove:

- q(x) è un polinomio di grado m.
 - se m=0 allora q(x)=C
 - se m=1 allora q(x)=Ax+B
 - se m=2 allora $q(x)=Ax^2+Bx+C$
- ullet s coincide con la molteplicità di h nelle soluzioni dell'equazione caratteristica
 - se $h
 eq \lambda_1$ e $h
 eq \lambda_2$, allora s=0
 - se $h=\lambda_1$ o $h=\lambda_2$ ($\Delta\neq 0$), allora s=1
 - se $h=\lambda_1=\lambda_2$ ($\Delta=0$), allora s=2

Si sostituisce \overline{y} nell'equazione originale, calcolando le relative \overline{y}' e \overline{y}'' .

Se f(x) è una somma, si può scomporre in diverse funzioni, calcolando ogni \overline{y} separatamente sommando alla fine le \overline{y} trovate.

b Metodo risolutivo per h complesso

Potrebbe capitare che f(x) non sia direttamente nella forma $p(x) \cdot e^x$, ma che ad esempio contenga $\cos x$ o $\sin x$.

Bisogna ricondurli nella forma e^{ix} .

Si ricorda:

$$e^{ix} = \cos x + i\sin x \tag{EXP}$$

Nel caso in cui f(x) contenga, ad esempio, $\cos x$, si riconduce utilizzando la formula (EXP), ignorando l'assenza del $\sin x$ (lo stesso vale al contrario).

Si risolve normalmente l'equazione completa, tenendo conto alla fine di ignorare:

- la parte immaginaria di \overline{y} nel caso in cui si fosse ignorato $\sin x$ (la parte immaginaria di (EXP)).
- la parte reale di \overline{y} nel caso in cui si fosse ignorato $\cos x$ (la parte reale di (EXP)).

3. Funzioni di due variabili

Topologia in \mathbb{R}^2

Intorno circolare

✓ Definizione

È detto intorno circolare di P_0 di raggio r il seguente insieme:

$$I_r(P_0) = \{P \in \mathbb{R}^2 : d(P,P_0) < r\}$$

dove d indica la distanza euclidea.

Punti di un insieme

Punto interno

✓ Definizione

Dato un punto P_0 , esso si dice **interno** ad A se $P_0 \in A$ ed esiste r > 0 tale che $I_r(P_0) \subseteq A$

L'insieme dei punti interni di un insieme è detto interno.

Punto di frontiera

✓ Definizione

Dato un punto P_0 , esso si dice **di frontiera** per A se in ogni suo intorno circolare ci sono elementi di A ed elementi di $\mathbb{R}^2 \setminus A$

L'insieme dei punti di frontiera di un insieme è detto frontiera.

Punto di accumulazione

✓ Definizione

Dato un punto P_0 , esso si dice **di accumulazione** per A se in ogni suo intorno ci sono elementi di A distinti da P_0 .

L'insieme dei punti di accumulazione di un insieme è detto derivato.

Insieme aperto

✓ Definizione

Un insieme è detto **aperto** se coincide con il suo interno, o se è vuoto.

È detto **chiuso** se il suo complementare è aperto.

Un insieme può non essere né aperto né chiuso.

Insieme limitato

✓ Definizione

Un insieme è detto **limitato** se esistono $P_0 \in \mathbb{R}^2$ e r > 0 tali che $A \subseteq I_r(P_0)$.

Funzione restrizione

??

Limite

Funzione regolare

√ Teorema

Una funzione f è detta regolare al tendere di (x,y) a (x_0,y_0) se è convergente o divergente (se ha limite).

Condizione sufficiente e necessaria

√ Teorema

Siano $f:A\to\mathbb{R}$ e $(x_0,y_0)\in DA$. Se $\exists\lim_{(x,y)\to(x_0,y_0)}f(x,y)=l\in\overline{\mathbb{R}}$ allora esisterà anche il limite di ogni restrizione di f (che ovviamente contiene (x_0,y_0)).

Quindi, se esistono due restrizioni con limite diverso, non esiste il limite della funzione.

Calcolo limite

Se troviamo due restrizioni con limiti diversi possiamo dire con certezza che il limite non esiste. Se troviamo una restrizione con limite α , se il limite esiste possiamo affermare che dev'essere uguale ad α .

Equazioni rette passanti per punto

È una condizione sufficiente per poter dire che il limite di una funzione in un punto non esiste. Equivale a controllare tutte le rette passanti per il punto per cui si è interessati a calcolare il limite, per verificare che abbiano lo stesso limite.

& Procedimento

Si prende la seguente restrizione:

$$E_m=\{(x,y)\in\mathbb{R}^2:x
eq0,y=mx\}$$

Si calcola quindi $f_{\mid E_m}(x,y)=f(x,mx)$ e poi si fa il limite.

Se il risultato dipende da m, possiamo affermare che il limite non esiste.

In caso contrario, se il limite non dipende da m, ed è quindi una costante α , possiamo dire che il limite, se esiste, è α .

Si può fare un ulteriore controllo prendendo l'unica retta rimanente con il seguente insieme:

$$E_0 = \{(x,y) \in \mathbb{R}^2 : x = 0, y
eq 0\}$$

△ Nota

Per dimostrare che il limite di una funzione esiste è necessario utilizzare il teorema dei carabinieri.

Teorema di carabinieri

Utilizzato per dimostrare che, nel caso di forma indeterminata, il limite esiste ed è 0.

Note: Procedimento

Si cerca di dimostrare che il limite è 0. Bisogna prendere due funzioni g e h tali che $g \le f \le h$. Se g e h hanno lo stesso limite, allora anche f avrà lo stesso limite.

Come g si prende sempre 0. Si prende in considerazione la funzione |f|.

$$0 \le |f(x,y)| \le h(x,y)$$

Bisogna trovare h. In generale si cerca di utilizzare le seguenti disuguaglianze per poter scomporre f e trovare una funzione h che sia maggiore di |f| ma con il limite che non porti a una forma indeterminata.

- $\bullet \ \frac{y^2}{x^2 + y^2} \le 1$
- $|x| \leq \sqrt{x^2 + y^2}$
- $|xy| \leq \frac{1}{2} \cdot (x^2 + y^2)$

Derivate

Derivate parziali prime

Rispetto a x

Si calcola considerando y come costante. Si indica con $f_x(x_0,y_0)$ oppure $\frac{\partial f}{\partial x}(x_0,y_0)$

Rispetto a y

Si calcola considerando x come costante. Si indica con $f_y(x_0,y_0)$ oppure $\frac{\partial f}{\partial y}(x_0,y_0)$

Gradiente

✓ Definizione

Data una funzione f, se essa è dotata di entrambe le derivate parziali prime in (x_0, y_0) , si chiama **gradiente** il vettore $\nabla f(x_0, y_0) = (f_x(x_0, y_0), f_y(x_0, y_0))$ di f nel punto (x_0, y_0) .

Derivate parziali seconde

Pure

si ottengono derivando due volte sulla stessa incognita

$$f_{xx}(x_0,y_0) = rac{\partial^2 f}{\partial x^2}(x_0,y_0) \stackrel{\mathsf{def}}{=} rac{\partial}{\partial x} f_x(x_0,y_0)$$

$$f_{yy}(x_0,y_0) = rac{\partial^2 f}{\partial y^2}(x_0,y_0) \stackrel{\mathsf{def}}{=} rac{\partial}{\partial y} f_y(x_0,y_0)$$

Miste

$$f_{xy}(x_0,y_0) = rac{\partial^2 f}{\partial x \partial y}(x_0,y_0) \stackrel{\mathsf{def}}{=} rac{\partial}{\partial y} f_x(x_0,y_0)$$

$$f_{yx}(x_0,y_0) = rac{\partial^2 f}{\partial y \partial x}(x_0,y_0) \stackrel{\mathsf{def}}{=} rac{\partial}{\partial x} f_y(x_0,y_0)$$

✓ Teorema

Data una funzione $f:A\to\mathbb{R}$ dotata di derivate seconde miste. Sia $(x_0,y_0)\in A$. Se le funzioni f_{xy} e f_{yx} sono continue nel punto (x_0,y_0) , allora $f_{xy}(x_0,y_0)=f_{yx}(x_0,y_0)$.

Differenziabilità

La continuità è una condizione necessaria per la differenziabilità (come avviene nella funzioni di una variabile per la derivabilità).

Una condizione necessaria alla differenziabilità è la presenza di tutte le derivate direzionali. Non vale però il contrario.

Lo stesso accade per la continuità. Un punto continuo non è detto che sia differenziabile, ma vale il contrario.

Una condizione sufficiente per la differenziabilità è la presenza di entrambe le derivate parziali, di cui almeno una delle due continua.

Se f è differenziabile in un punto (x_0, y_0) , allora è continua in quel punto e dotata di derivate parziali prime.

√ Teorema

Se f è dotata di derivate parziali prime continue in un punto (x_0, y_0) , allora è differenziabile in quel punto.

Derivate Direzionali

Le derivate non esistono soltanto rispetto alle due assi x e y.

Possono essere calcolate in direzione rispetto a un versore v.

Le derivate parziali prime sono infatti le derivate calcolate rispetto ai versori (1,0) e (0,1) rispetto a x e y rispettivamente.

La differenziabilità è una condizione sufficiente per la presenza della derivata rispetto a un qualsiasi versore.

$$D_v f(x_0, y_0) = \nabla f(x_0, y_0) \cdot v$$

Per calcolarlo si tratta quindi di un prodotto scalare tra $abla f(x_0,y_0)=(f_x(x_0,y_0),f_y(x_0,y_0))$ e $v=(v_1,v_2)$

$$(f_x(x_0,y_0),f_y(x_0,y_0))\cdot (v_1,v_2)=f_x(x_0,y_0)\cdot v_1+f_y(x_0,y_0)\cdot v_2$$

Ottenere versore da retta

Se si ha una retta e si vuole ottenere il versore parallelo è necessario scrivere l'equazione della retta nella forma y = mx + q. Il versore sarà quindi parallelo a (1, m). (1 coincide con il coefficiente della y, che nell'equazione in forma normale è sempre 1)

Per definizione, la lunghezza del versore dev'essere uguale a 1. Si calcola quindi la distanza euclidea tra (0,0) e (1,m): $\sqrt{1^2+m^2}=k$

Si dividono entrambe le componenti del vettore (1,m) per k per ottenere il versore: $(\frac{1}{k},\frac{m}{k})$

Se si vuole ottenere il versore perpendicolare a una retta, è necessario utilizzare il metodo precedente e calcolare il vettore parallelo. Si invertono le componenti e si inverte il segno di una delle due.

Ad esempio, si ottiene $(\frac{1}{k}, \frac{m}{k})$ come vettore parallelo. I vettori perpendicolari saranno $(-\frac{m}{k}, \frac{1}{k})$ e $(\frac{m}{k}, -\frac{1}{k})$

Estremi relativi e assoluti

✓ Definizione

Diremo che un punto (x_0,y_0) è un punto di massimo relativo di f se

$$\exists \delta > 0: f(x,y) \leq f(x_0,y_0) \quad orall (x,y) \in A \cap I_\delta(x_0,y_0)$$

Teorema di Fermat

√ Teorema

Se $(x_0,y_0)\in \overset{\circ}{A}$ un punto interno di A ed è un punto di estremo relativo di f e se f è dotata di derivata lungo la direzione del versore v nel punto (x_0,y_0) allora

$$D_{\underline{v}}f(x_0,y_0)=0$$

Inoltre, se in quel punto f è dotata di entrambe le derivate parziali prime, allora varrà:

$$abla f(x_0,y_0)=0$$

Tali punti si dicono stazionari.

I punti stazionari possono essere:

- punti di estremo relativo
- punti di sella

Hessiano

$$H(x,y) = egin{array}{ccc} f_{xx}(x_0,y_0) & f_{xy}(x_0,y_0) \ f_{xy}(x_0,y_0) & f_{yy}(x_0,y_0) \ \end{array}$$

Classificazione Punti Stazionari

Si possono classificare i punti stazioni in estremi relativi o punti di sella effettuando uno studio dell'hessiano.

$$H(x_0,y_0)>0$$

- Se $f_{xx}(x_0, y_0) > 0$
 - Il punto è un punto di minimo relativo
- Se $f_{xx}(x_0,y_0)<0$
 - Il punto è un punto di massimo relativo.
- non può mai accadere che f_{xx} sia uguale a 0 se l'hessiano è positivo.

$$H(x_0, y_0) < 0$$

• Il punto è un punto di sella

$$H(x_0,y_0)=0$$

non trattato nel corso

Ricerca dei Punti Stazionari

Si risolve il seguente sistema:

$$\begin{cases} f_x(x,y) = 0 \\ f_y(x,y) = 0 \end{cases}$$

Non riusciamo quindi a trovare i punti in cui una delle due (o entrambe) derivate non esiste.

Ricerca del massimo e minimo assoluto

Per il teorema di Weierstrass, se una funzione continua è chiusa e limitata allora ammette massimo e minimo assoluti.

Si calcolano i seguenti insiemi:

- A_1 : insieme dei punti interni ad A stazionari.
- A_2 : insieme dei punti interni ad A in cui:
 - manca una delle due derivate prime
 - mancano entrambe le derivate prime
- A_3 : insieme dei punti di frontiera di A.

Quindi:

- $\bullet \ \max_f = \max(A_1 \cup A_2 \cup A_3)$
- $\bullet \ \operatorname{min}_f = \operatorname{min}(A_1 \cup A_2 \cup A_3)$

 A_1

si procede con il sistema.

 A_2

se la funzione è derivabile è 0.

 A_3

- 1. Si prende in considerazione la frontiera di *A*.
 - spesso il dominio della funzione viene ristretto a un insieme di vertici (3 o 4).
- 2. Si calcolano le restrizioni rispetto ai segmenti di A.
 - es. Se la restrizione è una retta parallela all'asse delle x (con equazione y=a), calcolo f(x,a).
 - es. Se la restrizione è una retta obliqua, si trova l'equazione della retta passante per i due punti $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}$ e si trova la legge che associa x a y.
- 3. Si calcola la derivata prima e si pone uguale a 0.
- 4. Si calcola il valore della funzione nei punti trovati.

4. Serie

Serie Fondamentali

Serie Telescopica

$$\sum_{n=1}^{\infty}(x_n-x_{n+1})$$

$$s_n=x_1-x_{n+1}$$

$$ext{carattere:} egin{array}{ll} x_1-l & ext{se } \lim x_n=l \in \mathbb{R} \ \pm \infty & ext{se } \lim x_n=\pm \infty \
ext{} & ext{se }
ext{} \lim x_n \end{array}$$

Serie Geometrica di ragione x

$$\sum_{n=1}^{\infty} x^{n-1}$$

$$s_n=rac{1-x^n}{1-x}$$

carattere:
$$\begin{cases} +\infty & \text{se } x > 1 \\ \frac{1}{1-x} & \text{se } -1 < x < 1 \\ \not\exists & \text{se } x \le 1 \end{cases}$$

Serie armonica

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

carattere: $+\infty$

Serie armonica generalizzata

$$\sum rac{1}{n^x} \quad x \in \mathbb{R}$$

carattere:
$$\begin{cases} \text{converge} & x > 1 \\ \text{diverge} & x \leq 1 \end{cases}$$

Serie esponenziale

$$\sum rac{x^{n-1}}{(n-1)!} \quad x \in \mathbb{R}$$

carattere: converge a $e^x \quad \forall \, x \in \mathbb{R}$

Serie logaritmica

$$\sum rac{x^n}{n} \quad x \in \mathbb{R}$$

$$\text{carattere:} \begin{cases} \text{converge} & -1 \leq x < 1 \\ \text{diverge} & x > 1 \\ \text{non regolare} & x < -1 \end{cases}$$

Teoremi generali

$$\sum_{n=1}^{\infty} a_n$$

Teo 1. Condizione necessaria per la convergenza

Se la serie converge, allora $\lim a_n = 0$.

Serie Resto

$$\sum_{n=p+1}^{\infty}a_n=\sum_{n=1}^{\infty}a_n-(a_1+\cdots+a_p)$$

≡ Esempio

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \sum_{n=2}^{\infty} \frac{1}{2^{n-1}}$$

$$= \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} - \frac{1}{2^{1-1}}$$

$$= \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} - 1 =$$

Teo 2. Regolarità delle serie a termini non negativi

Ogni serie a termini non negativi è regolare.

Teo 3. Criterio del confronto

è uquale al teorema del confronto dei limiti

Date due serie $\sum\limits_{n=1}^{\infty}a_n$ e $\sum\limits_{n=1}^{\infty}b_n$ con $a_n\leq b_n$ $orall n\in\mathbb{N}$, allora

• se
$$\sum\limits_{n=1}^{\infty}a_n$$
 diverge, allora $\sum\limits_{n=1}^{\infty}b_n$ diverge

• se
$$\sum\limits_{n=1}^{\infty}b_n$$
 converge, allora $\sum\limits_{n=1}^{\infty}a_n$ converge

Teo 4. Criterio del confronto asintotico

si riconduce al criterio del confronto

due serie
$$\sum\limits_{n=1}^{\infty}a_n$$
 e $\sum\limits_{n=1}^{\infty}b_n$.

• se
$$\lim rac{a_n}{b_n} = l > 0$$

• se
$$\lim \frac{a_n}{b_n} = 0$$
 e $\sum_{n=1}^{\infty} a_n$ diverge positivamente

•
$$\sum\limits_{n=1}^{\infty}b_n$$
 diverge positivamente

• se
$$\lim \frac{a_n}{b_n} = 0$$
 e $\sum_{n=1}^{\infty} b_n$ converge

•
$$\sum_{n=1}^{\infty} a_n$$
 converge

Teo 5. Criterio del rapporto

Data una serie a termini positivi, se $\exists \lim \frac{a_{n+1}}{a_n} = l$, allora

- se l > 1 (oppure $+\infty$) la serie diverge positivamente
- se l < 1 la serie converge.
- se l=1 non si può dedurre nulla.

Teo 6. Criterio della radice

Sia $\sum_{n=1}^\infty a_n$ una serie a termini non negativi, se $\exists \lim \sqrt[n]{a_n} = l$, allora

- se l>1 (oppure $+\infty$) la serie **DIVERGE POSITIVAMENTE**
- se l < 1 la serie **CONVERGE**
- se l = 1 non si può dedurre nulla.

Esempio

$$\sum_{n=1}^{\infty} \left(\frac{n+1}{3n+4}\right)^n$$

$$\sqrt[n]{a_n} = \frac{n+1}{3n+4}$$

$$\lim \frac{n+1}{3n+4} = \lim \frac{n\left(1+\frac{1}{n}\right)}{n\left(3+\frac{4}{n}\right)} = \frac{1}{3} < 1$$

quindi la serie converge

Teo 7. Criterio di Raabe

Sia $\sum_{n=1}^{\infty} a_n$ una serie a termini positivi, se

$$\exists \lim n \left(rac{a_n}{a_{n+1}}-1
ight)=l$$

allora si ha:

- se l>1 (oppure $+\infty$) la serie **CONVERGE**
- se l < 1 la serie **DIVERGE POSITIVAMENTE**
- se l=1 il criterio non si applica, ma ci si riconduce alla serie armonica $(\sum_{n=1}^{\infty} \frac{1}{n})$ che **DIVERGE**

Nicordare il seguente limite notevole

$$\lim_{t\to 0}\frac{(1+t)^{\alpha}-1}{t}=\alpha \qquad (7.1)$$

≔ Esempio con "serie armonica generalizzata di esponente x"

$$\sum_{n=1}^{\infty}rac{1}{n^x}\quad x\in\mathbb{R}$$

$$\lim n \left(\frac{\frac{1}{n^x}}{\frac{1}{(n+1)^x}} - 1 \right)$$
 $\lim n \left(\frac{(n+1)^x}{n^x} - 1 \right)$
 $\lim n \left(\left(\frac{n+1}{n} \right)^x - 1 \right)$
 $\lim n \left(\frac{1}{n^x} - 1 \right)$
 $\lim n \left(\frac{1}{n^x} - 1 \right)$

$$\lim (n+1)^x - n$$

$$\lim \left(\frac{\left(\left(1+\frac{1}{n}\right)^x-1\right)}{\frac{1}{n}}\right)=x \qquad \left(\text{moltiplico e divido per }\frac{1}{n},\left(7.1\right)\right)$$

la serie converge $\iff x > 1$

Teo 6. Criterio dell'ordine infinitesimo

caso particolare del criterio del confronto asintotico

Sia $\sum_{n=1}^{\infty} a_n$ una serie a termini positivi, se:

$$\lim n^x \cdot a_n = l > 0$$

allora si ha:

- se x > 1 la serie **CONVERGE**
- se $x \le 1$ la serie **DIVERGE POSITIVAMENTE**

#todo trovare x

Teo 7. Serie assolutamente convergente

Diremo che $\sum_{n=1}^{\infty}a_n$ è assolutamente convergente se $\sum_{n=1}^{\infty}|a_n|$ è convergente

•
$$\sum_{n=1}^{\infty} a_n$$
 $\sum_{n=1}^{\infty} a_n$ converge assolutamente

≡ Esempio

$$\sum_{n=1}^{\infty}rac{\cosrac{2x\log(x+2)}{\sqrt{x^2+4}}}{n^3}$$

applico il valore assoluto e verifico il carattere della funzione ottenuta

$$\left| rac{\cos\left(rac{2x\log(x+2)}{\sqrt{x^2+4}}
ight)}{n^3}
ight| \leq rac{1}{n^3} \quad \mathop{\Longrightarrow}\limits_{ ext{confronto asintotico}} \quad \sum_{n=1}^{\infty} rac{\cosrac{2x\log(x+2)}{\sqrt{x^2+4}}}{n^3} ext{ converge}$$

Teo 8. Serie a segni alterni

$$\sum_{n=1}^{\infty} (-1)^{n+1}a_n$$

"criterio di Liebniz":

se a_n è decrescente ed il $\lim a_n = 0$, la serie **CONVERGE**

- inoltre $|s-s_n| \leq a_{n+1} \quad orall \, n \in \mathbb{N}$
- "criterio di non regolarità" se a_n è cresente ed ha almeno un termine positivo, oppure decrescente ed $\lim a_n \neq 0$, la serie è **INDETERMINATA**

se la successione a_n è monotona, la serie a segni alterni non può divergere

& Crescente/Decrescente

- se $a_n > a_{n+1}$ è decrescente
- se $a_n < a_{n+1}$ è crescente

≡ Esempio

$$\sum_{n=1}^{\infty}rac{(-1)^n}{n}$$
 $a_n=rac{1}{n}$ $a_n= ext{crescente}$ $\lim a_n=0$

la serie converge