EXHIBIT B - FILE WRAPPER DOCUMENT CORRESPONDING TO HEADING "APPLICANT ARGUMENTS/REMARKS MADE IN AN AMENDMENT"

10/623,119

July 17, 2003 Filed

AMENDMENTS TO THE SPECIFICATION

Please amend the first paragraph of the specification, page 1, lines 3-4, as follows:

This application claims the benefit of priority of copending U.S. Provisional Application Serial Number 60/200/791, filed April 28, 2000.

This application is a divisional of U.S. Patent Application Serial No. 09/844,685, entitled "MUSCARINIC AGONISTS," filed April 27, 2001, now U.S. Patent No. 6,627,645, issued September 30, 2003, by Andersson, et al., which in turn claims priority to U.S. Provisional Patent Application Serial No. 60/200,791, filed April 28, 2000, all of which are incorporated by reference herein in their entirety, including any drawings.

10/623,119

Filed

July 17, 2003

AMENDMENTS TO THE CLAIMS

Please amend the claims as follows:

1. (CURRENTLY AMENDED)

A compound of formula (I):

$$\begin{array}{c|c}
z_1 & W_1 \\
\vdots & W_3 \\
z_3 & Z_4
\end{array}$$
(I)

wherein:

 Z_1 is CR_1 or N, Z_2 is CR_2 or N, Z_3 is CR_3 or N, and Z_4 is CR_4 or N, where no more than two of Z_1 , Z_2 , Z_3 and Z_4 are N;

 W_1 is O_7 or NR_5 ; one of W_2 and W_3 is N or CR_6 , and the other of W_2 and W_3 is CG; W_1 is NG, W_2 is CR_5 or N, and W_3 is CR_6 or N; or W_1 and W_3 are N, and W_2 is NG;

G is of formula (II):

$$- \begin{cases} - Y - (CH_2)_p - Z - N \\ t \\ R_{10} \end{cases}$$
 (II)

Y is O, S, CHOH, -NHC(O)-, -C(O)NH-, -C(O)-, -OC(O)-, -(O)CO-, -NR₇-, -CH=N-, or absent;

p is 1, 2, 3, 4 or 5;

Z is CR₈R₉ or absent;

each t is 1, 2, or 3;

each R_1 , R_2 , R_3 , and R_4 , independently, is H, amino, hydroxyl, halo, or straight- or branched-chain C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} heteroalkyl, C_{1-6} haloalkyl, -CN, -CF₃, -OR₁₁, -COR₁₁, -NO₂, -SR₁₁, -NHC(O)R₁₁, -C(O)NR₁₂R₁₃, -NR₁₂R₁₃, -NR₁₁C(O)NR₁₂R₁₃, -SO₂NR₁₂R₁₃, -OC(O)R₁₁, -O(CH₂)_qNR₁₂R₁₃, or -(CH₂)_qNR₁₂R₁₃, where q is an integer from 2 to 6, or R_1 and R_2 together form -NH-N=N- or R_3 and R_4 together form -NH-N=N-;

each R_5 , R_6 , and R_7 , independently, is H, C_{1-6} alkyl; formyl; C_{3-6} cycloalkyl; C_{5-6} aryl, optionally substituted with halo or C_{1-6} alkyl; or C_{5-6} heteroaryl, optionally substituted with halo or C_{1-6} alkyl;

each R₈ and R₉, independently, is H or straight- or branched-chain C₁₋₈ alkyl;

 R_{10} is H, straight- or branched-chain C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{1-8} alkylidene, C_{1-8} alkoxy, C_{1-8} heteroalkyl, C_{1-8} aminoalkyl, C_{1-8} haloalkyl, C_{1-8} alkoxycarbonyl, C_{1-8} hydroxyalkoxy, C_{1-8} hydroxyalkyl, -SH, C_{1-8} alkylthio, -O-CH₂-C₅₋₆ aryl, -C(O)-C₅₋₆ aryl substituted with C_{1-3} alkyl or halo, C_{5-6} aryl, C_{5-6} cycloalkyl, C_{5-6} heteroaryl, C_{5-6} heteroaryl, C_{5-6} heterocycloalkyl, -NR₁₂R₁₃, -C(O)NR₁₂R₁₃, -NR₁₁C(O)NR₁₂R₁₃, -CR₁₁R₁₂R₁₃, -OC(O)R₁₁, - (O)(CH₂)_SNR₁₂R₁₃ or -(CH₂)_SNR₁₂R₁₃, s being an integer from 2 to 8;

 R_{10} ' is H, straight- or branched-chain C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkynyl, C_{1-8} alkylidene, C_{1-8} alkoxy, C_{1-8} heteroalkyl, C_{1-8} aminoalkyl, C_{1-8} haloalkyl, C_{1-8} alkoxycarbonyl, C_{1-8} hydroxyalkoxy, C_{1-8} hydroxyalkyl, or C_{1-8} alkylthio;

each R_{11} , independently, is H, straight- or branched-chain C_{1-8} alkyl, C_{2-8} alkenyl, C_{2-8} alkenyl, C_{2-8} heteroalkyl, C_{2-8} aminoalkyl, C_{2-8} haloalkyl, C_{1-8} alkoxycarbonyl, C_{2-8} hydroxyalkyl, $-C(O)-C_{5-6}$ aryl substituted with C_{1-3} alkyl or halo, C_{5-6} aryl, C_{5-6} heteroaryl, C_{5-6} cycloalkyl, C_{5-6} heterocycloalkyl, $-C(O)NR_{12}R_{13}$, $-CR_5R_{12}R_{13}$, $-(CH_2)_tNR_{12}R_{13}$, t is an integer from 2 to 8; and

each R_{12} and R_{13} , independently, is H, C_{1-6} alkyl; C_{3-6} cycloalkyl; C_{5-6} aryl, optionally substituted with halo or C_{1-6} alkyl; or C_{5-6} heteroaryl, optionally substituted with halo or C_{1-6} alkyl; or R_{12} and R_{13} together form a cyclic structure;

or a pharmaceutically acceptable salt, ester or prodrug thereof.

- 2. (ORIGINAL) The compound of claim 1, wherein each t is 2 and R_{10} is straight- or branched-chain $C_{2.8}$ alkyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkynyl, $C_{1.8}$ alkylidene, $C_{1.8}$ alkoxy, or $C_{1.8}$ heteroalkyl.
 - 3. (ORIGINAL) The compound of claim 2, wherein R_{10} is n-butyl.
 - 4. (CANCELED)
- 5. (CURRENTLY AMENDED) The compound of claim 4, wherein each R_1 , R_2 , R_3 , and R_4 , independently, is H, <u>hydroxyl</u>, halo, <u>C₁₋₆heteroalkyl</u>, <u>CF₃</u>, -NO₂, or straight- or branched-chain C₁₋₆ alkyl, or R_1 and R_2 together form -NH-N=N- or R_3 and R_4 together form -NH-N=N-.
- 6. (ORIGINAL) The compound of claim 2, wherein Y is absent or O, p is 0, 1, 2 or 3, and R₈ and R₉ are H.
- 7. (ORIGINAL) The compound of claim 6, wherein Z is absent, Y is absent and p is 3.

8. (ORIGINAL) The compound of claim 7, wherein R_{10} is n-butyl.

9. (ORIGINAL) The compound of claim 2, wherein the compound is of the

formula

wherein W₁ is O₇ or NR₅, W₂ is CR₅ or N, and W₂ is CR₅ or N.

10. (ORIGINAL) The compound of claim 9, wherein Z is absent, Y is absent and p is 3.

11. (ORIGINAL) The compound of claim 10, wherein R_{10} is n-butyl.

12. (ORIGINAL) The compound of claim 9, wherein R_5 is H or C_{1-6} alkyl.

13 - 16. (CANCELED)

17. (CURRENTLY AMENDED) The compound of claim 1, wherein the compound is:

2-(3 (4-n-butylpiperidine-1-yl)-propyl)-benzothiazole;

2-(3-(4-n-butylpiperidine-1-yl)-propyl)-benzooxazole;

4,5-difluoro 2 (3 (4-n-butylpiperidine-1-yl) propyl)-1H-benzoimidazole;

6-fluoro-5-nitro-2-(3 (4 n-butylpiperidine-1-yl) propyl) 1H-benzoimidazole;

5-tert-butyl-2-(3-(4-n-butylpiperidine-1-yl) propyl)-1H-benzoimidazole;

5-chloro-6 methyl-2-(3-(4-n-butylpiperidine-1-yl)-propyl)-1H-benzoimidazole;

4,6 difluoro 2 (3-(4-n-butylpiperidine-1-yl) propyl) 1H-benzoimidazole;

2-(3-(4-n-butylpiperidine)-1-yl-propyl)-1H-imidazo[4,5-e]pyridine;

8 (3 (4-n-butylpiperidine) 1-yl-propyl) 9H purine;

7 (3 (4 n butylpiperidine) 1 yl propyl) 3,8 dihydro imidazo[4',5':3,4]benzo[1,2

d[1,2,3]triazole;

2-(3-(4 n-butylpiperidine) 1-yl propyl) 3a,4,5,6,7,7a-hexahydro-1H-benzoimidazole;

1-(3 (4 n-butylpiperidine) 1-yl-propyl) 1H-indole;

1-(3-(4-n-butylpiperidine)-1-yl-propyl)-1H-benzoimidazole;

: 10/623,119

Filed

July 17, 2003

```
3-methyl-1-(3-(4-n-butylpiperidine)-1-yl-propyl)-1H-indole;
```

5-bromo 1-(3-(4-n-butylpiperidine) 1-yl-propyl) 1H-indole;

3-formyl-1-(3-(4-n-butylpiperidine) 1-yl-propyl)-1H-indole;

7-bromo-1-(3-(4-n-butylpiperidine)-1-yl-propyl)-1H-indole;

1-(3-(4-n butylpiperidine)-1-yl-propyl)-1H-indazole;

3-(3-(4-n-butylpiperidine)-1-yl-propyl)-benzo[d]isoxazole;

3 (3 (4 n butylpiperidine) 1 yl-propyl) 1H-indole;

4-nitro-2-(3-(4 n-butylpiperidine)-1-yl-propyl)-1H-benzoimidazole;

5-nitro-2 (3-(4 n-butylpiperidine)-1-yl-propyl)-1H-benzoimidazole;

4-hydroxy-2-(3-(4-n-butylpiperidine)-1-yl-propyl)-1H-benzoimidazole;

2-(3-(4-n-butylpiperidine) 1-yl-propyl) 1H-benzoimidazole;

4-methyl-2-(3-(4-n-butylpiperidine)-1-yl-propyl)-1H-benzoimidazole;

3-(2-(4 n-butylpiperidine) 1-yl-ethyl)-1H-indole;

3-(3-(4-n-butylpiperidine)-1-yl-propyl)-1H-indazole;

3-(2-(4-n-butylpiperidine)-ethoxy)-7-methyl-benzo[d]isoxazole;

-1 (3 (4 Methylpiperidine) 1 yl-propyl) 1H-indazole;

1-(3-(4-Pentylpiperidine) 1-yl-propyl) 1H-indazole;

1 (3 (4 Propylpiperidine) 1-yl-propyl) 1H;

1-(3-(4-(3-Methyl-butyl) piperidine)-1-yl-propyl)-1H-indazole

1-(3-(4-Pentylidene piperidine) 1-yl propyl) 1H-indazole;

1-(3-(4-Propylidene-piperidine) 1-yl-propyl) 1H-indazole

1-Benzo[b]thiophen-2-yl 4 (4-butylpiperidin-1-yl)-butan-1-one

4 (4 Butylpiperidin 1 yl) 1 (3 methyl-benzofuran 2 yl) butan 1 one;

4 (4 Butylpiperidin-1 yl) 1 (5 fluoro 3 methyl-benzo[b]thiophen-2 yl) butan-1-one;

1-Benzofuran 2 yl 4 (4-butylpiperidin 1-yl) butan 1-one;

1-(3-Brome-benzo[b]thiophen-2-yl) 4 (4-butylpiperidin-1-yl) butan-1-one

1-(3-Benzo[b]thiophen-2-yl-propyl) 4-butylpiperidine;

1-(3-Benzofuran-2-yl-propyl) 4-butylpiperidine;

4-Butyl-1-[3 (3 methyl-benzofuran-2 yl) propyl] piperidine;

4-Butyl-1-[3 (5-fluoro-3-methyl-benzo[b]thiophen-2-yl)-propyl]-piperidine;

2-(3-Iodo-propyl)-benzo[b]thiophene;

: 10/623,119

Filed

July 17, 2003

1 (3-Benzo[b]thiophen-2-yl-propyl) 4 methylpiperidine

1-(3-Benzo[b]thiophen-2-yl-propyl) 4-benzylpiperidine;

1-(3-Benzo[b]thiophen 2-yl-propyl)-4-(2-methoxy-phenyl)-piperidine;

2-(3-Bromopropyl)-2H-benzotriazole;

2-[3-(4-Butylpiperidin-1-yl)-propyl]-2H-benzotriazole;

1-(3-Bromopropyl)-1H-benzotriazole;

1-[3-(4-Butylpiperidin-1-yl) propyl]-1H-benzotriazole;

1-[3-(4-Butylpiperidin-1-yl)-propyl]-1H-indole-3-carbaldehyde;

{1-[3-(4-Butylpiperidin-1-yl) propyl]-1H-indol-3-yl}-methanol;

1-[3 (4-Butylpiperidin-1-yl) propyl]-2 phenyl-1H-benzoimidazole;

1-[3 (4-Butylpiperidin-1-yl) propyl] 3-chloro-1H-indazole;

1-[3-(4-Butylpiperidin 1-yl)-propyl]-6-nitro-1*H*-indazole;

Benzo[d]isoxazol-3-ol;

3-(2-Chloroethoxy)-benzo[d]isoxazole;

3-[2-(4-Butylpiperidin-1-yl)-ethoxy]-benzo[d]isoxazol;

3 (1H-Indol-3 yl) propan 1 ol;

3-[3-(4-Butyl-piperidin-1-yl)-propyl]-1H-indole-hydrochloride;

4-(4-Butylpiperidine-1-yl) butyric acid methyl ester;

2 [3 (4-Butylpiperidin-1-yl) propyl]-1 methyl-1H-benzimidazole;

1H Indazole 3 carboxylic acid (2 (4-butylpiperidin) 1-yl-ethyl) amide;

1-[3 (4-Butylpiperidin-1-yl) propyl]-5-nitro-1H-indazole;

2-[3 (4-butylpiperidin 1-yl) propyl]-5-nitro 2H-indazole;

1-[3 (4-Butyl piperidin-1-yl) propyl] 2 methyl-1H-indole;

1-{1-{3 (4 Butyl-piperidin-1-yl) propyl} 1H indol 3-yl} ethanone;

{1-[3-(4-Butyl-piperidin-1-yl) propyl]-1H-indol-3-yl}-acetonitrile;

1-[3 (4-Butyl-piperidin-1-yl) propyl]-1H-indole-3-carbonitrile;

1-[3-(4-Butyl-piperidin-1-yl)-propyl]-5,6-dimethyl-1H-benzoimidazole;

1-[3 (4-Butyl-piperidin 1-yl)-propyl]-5(6) dimethyl-1H benzoimidazole;

1-[3 (4-Butyl-piperidin-1-yl) propyl] 5-methoxy-1H-benzoimidazole;

{1-[3-(4-Butyl-piperidin-1-yl)-propyl]-1H-benzoimidazol-2-yl}-methanol;

1-[3-(4-Butyl-piperidin-1-yl) propyl] 2 trifuoromethyl-1H-benzoimidazole;

Appl. No. Filed

: 10/623,119 : July 17, 2003

(2-Trimethylstannanyl-phonyl) carbamic acid tert-butyl ester;

[2-(4-Chloro-butyryl) phonyl] carbamic acid tert butyl ester;

{2 [4-(4-Butyl-piperidine-1-yl) butyryl]-phenyl}-carbamic acid tert-butyl ester;

3 [3-(4-Butyl-piperidine-1-yl)-propyl]-1H-indazole, HCl;

3-[3-(4-Butyl-piperidine-1-yl)-propyl]-5-nitro-1H-indazole;

3 [3 (4 Butyl piperidine 1-yl) propyl]-5,7 dinitro-1H-indazole;

4 (4 Butyl piperidin 1 yl) 1 (2 metylsulfanyl phenyl) butan 1 one;

or 3-[3-(4-Butyl-piperidin-1-yl)-propyl]-benzo[d]isothiazole.;

3 [3 (4 Butyl-piperidin-1-yl) propyl]-5 methoxy-1H-indazole;

3-[3 (4-Butyl-piperidin-1-yl)-propyl] 4-methoxy-1H-indazole

3-[3-(4-Butyl-piperidin-1-yl)-propyl]-6-methoxy-1H-indazole;

3-[3-(4-Butyl-piperidin-1-yl) propyl]-1H-indazole 4-ol-(53MF51);

3 [3 (4-Butyl-piperidin-1-yl) propyl] 1H indazole 6 ol (53MF52); or

3 [3 (4 Butyl-piperidin 1 yl) propyl] 1H indazole 5 ol.

18. (CURRENTLY AMENDED) A pharmaceutical composition comprising an effective amount of a compound of claim 1 formula (I):

wherein:

Z₁ is CR₁ or N, Z₂ is CR₂ or N, Z₃ is CR₃ or N, and Z₄ is CR₄ or N, where no more than two of Z₁, Z₂, Z₃ and Z₄ are N;

W₁ is O, S, or NR₅, one of W₂ and W₃ is N or CR₆, and the other of W₂ and W₃ is CG; W₁ is NG, W₂ is CR₅ or N, and W₃ is CR₆ or N; or W₁ and W₂ are N, and W₂ is NG;

G is of formula (II):

Y is O, S, CHOH, NHC(O); C(O)NH, C(O), OC(O), OC(

p is 1, 2, 3, 4 or 5;

10/623,119

Filed July 17, 2003

Z is CR₈R₉ or absent;

each t is 1, 2, or 3;

each R1, R2, R3, and R4, independently, is H, amino, hydroxyl, halo, or straight or branched chain C1-6-alkyl, C2-6-alkenyl, C2-6-alkynyl, C1-6 heteroalkyl, C1-6 haloalkyl, CN, CF3, OR_{11} , COR_{11} , NO_{2} , SR_{11} , $NHC(O)R_{11}$, $C(O)NR_{12}R_{13}$, $NR_{12}R_{13}$, $NR_{14}C(O)NR_{12}R_{13}$, R_{15} SO₂NR₁₂R₁₃, OC(O)R₁₁, O(CH₂)₀NR₁₂R₁₃, or (CH₂)₀NR₁₂R₁₃, where q is an integer from 2 to 6, or R₁ and R₂ together form NH N=N or R₂ and R₄ together form NH N=N;

each R₅, R₆, and R₇, independently, is H, C_{1.6}-alkyl; formyl; C_{3.6}-cycloalkyl; C_{5.6}-aryl, optionally substituted with halo or C1-6 alkyl; or C5-6 heteroaryl, optionally substituted with halo or-C1-6 alkyl;

each R₂ and R₂, independently, is H or straight-or branched chain C₁₋₈ alkyl;

R₁₀ is straight or branched chain C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₈ alkylidene, C₁₋₈ g-alkoxy, C_{1,8}-heteroalkyl, C_{1,8}-aminoalkyl, C_{1,8}-haloalkyl, C_{1,8}-alkoxycarbonyl, C_{1,8} hydroxyalkoxy, C₁₋₈ hydroxyalkyl, SH, C₁₋₈ alkylthio, O CH₂ C₅₋₆ aryl, C(O) C₅₋₆ aryl substituted with C1.3 alkyl or halo, C5.6 aryl, C5.6 eycloalkyl, C5.6 heteroaryl, C5.6 heterocycloalkyl, NR₁₂R₁₃, C(O)NR₁₂R₁₃, NR₁₁C(O)NR₁₂R₁₃, CR₁₁R₁₂R₁₃, OC(O)R₁₁, (O)(CH₂)₈NR₁₂R₁₃ or (CH₂)₈NR₁₂R₁₃, s being an integer from 2 to 8;

R₁₀' is H, straight- or branched chain C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₈ alkylidene, C12 alkoxy, C12 heteroalkyl, C13 aminoalkyl, C13 haloalkyl, C13 alkoxycarbonyl, C13 hydroxyalkoxy, C_{1.8} hydroxyalkyl, or C_{1.8} alkylthio;

each R₁₁, independently, is H, straight or branched chain C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C2 & heteroalkyl, C2 & aminoalkyl, C2 & haloalkyl, C1 & alkoxycarbonyl, C2 & hydroxyalkyl, -C(O) C_{5.6} aryl substituted with C_{1.2} alkyl or halo, C_{5.6} aryl, C_{5.6} heteroaryl, C_{5.6} cycloalkyl, C_{5.6} heteroeyeloalkyl, C(O)NR12R12, CR5R12R12, (CH2)NR12R12, t is an integer from 2 to 8; and

each R12 and R13, independently, is H, C16 alkyl; C26 oycloalkyl; C56 aryl, optionally substituted with halo or C_{1.6} alkyl; or C_{5.6} heteroaryl, optionally substituted with halo or C_{1.6} alkyl; or R₁₂ and R₁₃ together form a cyclic structure;

or a pharmaceutically acceptable salt, ester or prodrug thereof.

19 –34. (CANCELED)

: 10/623,119

Filed

July 17, 2003

35. (CURRENTLY AMENDED) A method of increasing an activity of a cholinergic receptor comprising contacting the cholinergic receptor or a system containing the cholinergic receptor with an effective amount of at least one compound of claim 1. formula (I):

$$Z_2$$
 Z_3
 Z_4
 W_3
 W_2

wherein:

Z₁ is CR₁ or N, Z₂ is CR₂ or N, and Z₄ is CR₄ or N, where no more than two of Z₁, Z₂, Z₃ and Z₄ are N;

W₁ is O, S, or NR₅, one of W₂ and W₃ is N or CR₆, and the other of W₂ and W₃ is CG; W₁ is NG, W₂ is CR₅ or N, and W₃ is CR₆ or N; or W₁ and W₂ are N, and W₂ is NG.

G is of formula (II):

Y is O, S, CHOH, NHC(O) , C(O)NH , C(O) , OC(O) , (O)CO , NR₂ , CH=N , or absent;

p is 1, 2, 3, 4 or 5;

Z is CR₈R₉ or absent;

each t is 1, 2, or 3;

each R_1 , R_2 , R_3 , and R_4 , independently, is H, amino, hydroxyl, halo, or straight or branched chain C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{1-6} heteroalkyl, C_{1-6} haloalkyl, C_{N} , CF_3 , OR_{11} , COR_{11} , NO_2 , SR_{11} , $NHC(O)R_{11}$, $C(O)NR_{12}R_{13}$, $NR_{12}R_{13}$, where q is an integer from 2 to 6, or R_1 and R_2 together form NH N-N or R_3 and R_4 together form NH N-N:

each R_5 , R_6 , and R_7 , independently, is H, $C_{1.6}$ -alkyl; formyl; $C_{3.6}$ -cycloalkyl; $C_{5.6}$ -aryl, optionally substituted with halo or $C_{1.6}$ -alkyl; or $C_{5.6}$ -heteroaryl, optionally substituted with halo or $C_{1.6}$ -alkyl;

each R₈ and R₉, independently, is H or straight- or branched chain C₁₋₈ alkyl;

R₁₀ is straight or branched chain C₁₋₈ alkyl, C₂₋₈ alkenyl, C₂₋₈ alkynyl, C₁₋₈ alkylidene, C₁₋₈ alkoxy, C₁₋₈ heteroalkyl, C₁₋₈ aminoalkyl, C₁₋₈ haloalkyl, C₁₋₈ alkoxycarbonyl, C₁₋₈

hydroxyalkoxy, $C_{1.8}$ hydroxyalkyl, SH, $C_{1.8}$ alkylthio, O CH₂ $C_{5.6}$ aryl, C(O) $C_{5.6}$ aryl substituted with $C_{1.3}$ alkyl or halo, $C_{5.6}$ aryl, $C_{5.6}$ eyeloalkyl, $C_{5.6}$ heteroaryl, $C_{5.6}$

 R_{10} is H, straight- or branchod chain $C_{1.8}$ alkyl, $C_{2.8}$ alkenyl, $C_{2.8}$ alkynyl, $C_{1.8}$ alkylidene, $C_{1.8}$ heteroalkyl, $C_{1.8}$ aminoalkyl, $C_{1.8}$ haloalkyl, $C_{1.8}$ alkoxycarbonyl, $C_{1.8}$ hydroxyalkoxy, $C_{1.8}$ hydroxyalkyl, or $C_{1.8}$ alkylthio;

each R₁₁, independently, is H, straight or branched chain C_{1.8} alkyl, C_{2.8} alkenyl, C_{2.8} alkenyl, C_{2.8} haloalkyl, C_{1.8} alkoxycarbonyl, C_{2.8} hydroxyalkyl, C_{0.6} aryl substituted with C_{1.3} alkyl or halo, C_{5.6} aryl, C_{5.6} heteroaryl, C_{5.6} eycloalkyl, C_{5.6} heterocycloalkyl, C(O)NR₁₂R₁₃, CR₅R₁₂R₁₃, (CH₂),NR₁₂R₁₃, t is an integer from 2 to 8; and

each R_{12} and R_{13} , independently, is H, $C_{1.6}$ alkyl; $C_{3.6}$ eyeloalkyl; $C_{5.6}$ aryl, optionally substituted with halo or $C_{1.6}$ alkyl; or $C_{5.6}$ heteroaryl, optionally substituted with halo or $C_{1.6}$ alkyl; or R_{12} and R_{13} together form a cyclic structure;

or a pharmaceutically acceptable salt, ester or prodrug thereof.

- 36. (ORIGINAL) The method of claim 35 wherein the cholinergic receptor is a muscarinic receptor.
- 37. (ORIGINAL) The method of claim 36 wherein the muscarinic receptor is of the m1 muscarinic receptor subtype.
- 38. (ORIGINAL) The method of claim 36 wherein the muscarinic receptor is of the m4 muscarinic receptor subtype.
- 39. (ORIGINAL) The method of claim 36 wherein the muscarinic receptor is in the central nervous system.
- 40. (ORIGINAL) The method of claim 36 wherein the muscarinic receptor is in the peripheral nervous system.
- 41. (ORIGINAL) The method of claim 36 wherein the muscarinic receptor is in the gastrointestinal system, heart, endocrine glands, or lungs.
- 42. (ORIGINAL) The method of claim 36 wherein the muscarinic receptor is truncated, mutated, or modified.
- 43. (ORIGINAL) The method of claim 35 wherein the activity is a signaling activity of a cholinergic receptor.

- 44. (ORIGINAL) The method of claim 35 wherein the activity is associated with muscarinic receptor activation.
- 45. (ORIGINAL) The method of claim 35 wherein the compound is a cholinergic agonist.
- 46. (ORIGINAL) The method of claim 35 wherein the compound is selective for the m1, or m4 muscarinic receptor subtype, or both the m1 and m4 muscarinic receptor subtypes.
- 47. (ORIGINAL) A method of activating a cholinergic receptor comprising contacting the cholinergic receptor or a system containing the cholinergic receptor with an effective amount of at least one compound of claim 1.
 - 48 55. (CANCELED)
- 56. (CURRENTLY AMENDED) A method of treating a disease condition associated with caused by a cholinergic receptor comprising administering to a subject in need of such treatment an effective amount of at least one compound of claim 1.
- 57. (ORIGINAL) The method of claim 56 wherein the disease condition is selected from the group consisting of cognitive impairment, forgetfulness, confusion, memory loss, attentional deficits, deficits in visual perception, depression, pain, sleep disorders, psychosis, hallucinations, aggressiveness, paranoia, and increased intraocular pressure, neurodegenerative disease, Alzheimer's disease, Parkinson's disease, Huntington's chorea, Friederich's ataxia, Gilles de la Tourette's Syndrome, Down Syndrome, Pick disease, dementia, clinical depression, age-related cognitive decline, attention-deficit disorder, sudden infant death syndrome, and glaucoma.
 - 58. (CANCELED)
- 59. (CURRENTLY AMENDED) The method of claim 56 wherein the disease condition is associated with caused by a cholinergic receptor dysfunction.
- 60. (CURRENTLY AMENDED) The method of claim 56 wherein the disease condition is associated with caused by decreased activity of a cholinergic receptor.
- 61. (CURRENTLY AMENDED) The method of claim 56 wherein the disease condition is associated with caused by loss of cholinergic receptors.
 - 62 67. (CANCELED)

- 68. (ORIGINAL) A method of treating a disease condition associated with reduced levels of acetylcholine comprising administering to a subject in need of such treatment an effective amount of at least one compound of claim 1.
- 69. (CURRENTLY AMENDED) A method of treating <u>a condition selected</u> from the group consisting of Alzheimer's Disease <u>cognitive impairment</u>, glaucoma, pain, and <u>schizophrenia</u>, comprising administering to a subject in need of such treatment an effective amount of at least one compound of claim 1.

70 – 73. (CANCELED)

74. (ORIGINAL) A method for identifying a genetic polymorphism predisposing a subject to being responsive to amount of at least one compound of claim 1, comprising:

administering to a subject an therapeutically effective amount of the compound;

measuring the response of said subject to said compound, thereby identifying a responsive subject having an ameliorated disease condition associated with a cholinergic receptor; and

identifying a genetic polymorphism in the responsive subject, wherein the genetic polymorphism predisposes a subject to being responsive to the compound.

- 75. (ORIGINAL) The method of claim 74 wherein the ameliorated disease condition is associated with the m1 or m4 muscarinic receptor subtype.
- 76. (ORIGINAL) A method for identifying a subject suitable for treatment with at least one compound of claim 1, comprising detecting the presence of a polymorphism in a subject wherein the polymorphism predisposes the subject to being responsive to said compound, and wherein the presence of the polymorphism indicates that the subject is suitable for treatment with said compound of claim 1.

Appl. No. Filed

:

10/623,119 July 17, 2003

REMARKS

By present amendments, Applicants have incorporated into the specification a paragraph

indicating that the present application is a divisional of a pending U.S. application, to which the

present application claims priority. In addition, In this divisional application, Applicants are

pursuing subject matter drawn to benzisoxazole and benzisothiazole compounds. Applicants

have canceled the subject matter drawn to other unelected groups. Cancellation of the claims or

the subject matter makes no admission as to the patentability thereof, and therefore, should not be

so construed. Applicants reserve the right to pursue the canceled subject matter in this or any

other continuation, divisional, or continuation-in-part application.

Applicants believe that the claims as presented herein are patentable and a notice to that

effect is respectfully requested. No fee is believed due in connection with this preliminary

amendment. However, if this is incorrect, the Director is hereby authorized to charge any

necessary fees to Deposit Account No. 11-1410.

Respectfully submitted,

KNOBBE, MARTENS, OLSON & BEAR, LLP

Dated: Sept. 24, 2003

By:

sy:

Sam K. Tahmassebi Registration No. 45,151

Attorney of Record

Customer No. 20,995

(619) 235-8550

S:\DOCS\SKT\SKT-3999.DOC 071703