1) Refer to the following circuit:

Which type of transistor is Q_1 (NPN or PNP), and in what amplifier configuration is it used (common-emitter, common-base, or commoncollector)?

Common emitter

Please answer the same questions for Q_2 .

PNP (41)

Common-milector (+0)

Determine V_{B1} , V_{E1} , I_{E1} , I_{C1} , V_{C1} , and V_{CE1} if base current may be assumed negligible due to high β . Check P_{diss1} and verify that the transistor is operating in the active region.

$$V_{B_1} = 30 \left[\frac{2.7}{2.7} + 27 \right] = 2.724 V (12)$$

$$V_{E_1} = V_{B_1} - 0.7 = 2.027 V (1)$$

$$I_{E_1} = \frac{V_{E_1}}{R_{E_1}} = \frac{2.027}{1.21} = 1.689 \text{ mA} (12)$$

$$high \cdot F \longrightarrow I_{C_1} \sim 1.689 \text{ mA} (13)$$

$$V_{C_1} = V_{C_2} - I_{C_1} R_{C_1} = 30 - 1.689 \cdot 10$$

$$V_{C_1} = 13.11 V (12)$$

VCE - VC1 - VE1 =11.08V yes active region Pdiss, = VCF, Ic. = 18.71 mW

Now determine V_{B2} , V_{E2} , I_{E2} , I_{C2} , V_{C2} , V_{CE2} , P_{diss2} , and verify active region under the same high- β assumption.

VB2 = VC1 = 13,11 V (+1) VF2 = 1 B2 + 0,7 = 13,81V (A) JEZ = VCC - VEZ = 30 - 13.81 RFZ 3.31 IE2 = 4,906 mA (+2) 00 Ic2 2 4.906 MA (₹) Vcz = 0 (ground) (+1)

VCEZ = VC2 - VEZ = 0 - 13.81 = -13.811 -13.81 > 0,2V; yes, active (11) Pliss 2 NCE2 Icz

2) A silicon PNP transistor is used in a common-emitter amplifier configuration. Collector current is known to be 2.4 mA and the transistor has an Early voltage of 220 V and beta 320. Calculate the parameters g_m , r_b , and r_o .

Determine the mid-frequency small-signal gains A_{V2} and A_{V2} and the overall gain of the amplifier in dB.

Rb = Vb||Ri||R2 = 3.81 || 56 || 68 = 2.194 kp ||

Av =
$$\frac{Vbe}{Vs} = \frac{Rb'}{Rb'+Rs} = \frac{2.194}{2.194 + 1} = 0.6869 ||

Av = $\frac{Vbe}{Vs} = \frac{Rb'}{Rb'+Rs} = \frac{2.194}{2.194 + 1} = 0.6869 ||

Av = $\frac{Vout}{Vbe} = \frac{Vout}{Vbe} = \frac{$$$$

$$C_{BC(1N)} = C_{BC}(1-Av_2) = 4.5(1-69.37) = 316.7 pF$$