Géométrie et arithmétique

Partiel 2 – Novembre 2014

Calculette et documents non autorisés

Durée : 2 heures

EXERCICE 1

(Question de Cours) Montrer que pour tous $z, z' \in \mathbb{C}$, on a $\overline{z+z'} = \overline{z} + \overline{z'}$ et $\overline{zz'} = \overline{z}\overline{z'}$.

EXERCICE 2

Soient A et B deux points distincts de l'espace \mathbb{R}^3 muni du repère orthonormé $(O, \vec{\imath}, \vec{\jmath}, \vec{k})$.

- 1. Décrire l'ensemble des points M de l'espace vérifiant $\overrightarrow{AM} \wedge \overrightarrow{BM} = \overrightarrow{0}$.
- 2. Décrire l'ensemble des points M de l'espace vérifiant $\overrightarrow{AM}.\overrightarrow{AB} = 0$.
- 3. Décrire l'ensemble des points M de l'espace vérifiant $\overrightarrow{AM}.\overrightarrow{AM} = \overrightarrow{AB}.\overrightarrow{AB}$.
- **4.** Décrire l'ensemble des points M de l'espace vérifiant $\overrightarrow{AM} \wedge \overrightarrow{BM} = \overrightarrow{AB}$.

EXERCICE 3

Résoudre dans $\mathbb C$ l'équation

$$2z^2 + (1 - 2i)z - i = 0$$

EXERCICE 4

En utilisant les nombres complexes, calculer $\cos 6\theta$ en fonction de $\cos \theta$ et $\sin \theta$ puis de $\cos \theta$ uniquement.

EXERCICE 5

On considère l'équation (E) $1+z^3+z^6=0$ dans \mathbb{C} .

- 1. Montrer que z est solution si et seulement si \bar{z} est solution.
- 2. Résoudre dans \mathbb{C} l'équation : $1 + X + X^2 = 0$ (penser à la somme d'une suite géométrique).
- **3.** Donner toutes les solutions de (E) sous forme exponentielle.

EXERCICE 6

Donner l'équation cartésienne de l'ensemble des points dont l'affixe est solution de

$$\frac{|iz-(1+i)|}{|z-3i|}=2$$

Quelle type de figure obtient-on?