INFORMATION MODELS FOR PREDICTION

Guilherme Amorim 107162 José Gameiro 108840 Tomás Victal 109018

INTRODUCTION

This project consists on the development of two main components:

- fcm: a program that measures the information content of text provided using a learned finite-context model
- generator: a text generator that creates text following depending on a model created;

OUR IMPLEMENTATION

File Reader

- Open File()
- Read Char()
- Read Buff()
- Read Word()

Finite Context Model

- new()
- train_char()
- compute_probability()
- calculate_information_content()
- sample_next_char()
- get_k()

Text Generator

- generate_text()
- generate_text_words()

Chart Generator

- new()
- compute_probibility()
- train_chart()
- draw_chart()

FINITE CONTEXT MODEL

GENERATOR

EXPERIMENTS

MULTIPLE SEQUENCES

SEQUENCE 1 – 2.0437

SEQUENCE 2 – 2.2099

SEQUENCE 3 – 3.9966

SEQUENCE 4 – 1.8793

SEQUENCE 5 – 1.3215

Page 04

EXPERIMENTS

CHANGING THE K AND ALPHA VALUES

Alpha = 0.01

$oxed{\mathbb{L}}\mathbf{K}$	Average Information Content
2	2.0528
4	2.0409
6	1,9257
8	1.7540
10	1.7267

k = 3

Alpha	Average Information Content
0.0001	2.0108
0.001	2.0143
0.01	2.0473
0.1	2.2908
1	3.4798
10	5.8183

SEQUENCE 1

CHARACTERS

Qualescerguantos e gerrando inadadeparendos toda pro tam, Que peça, Não Eôo porfeinhega,

No pelo aquecinas reito do sena frio de.

K = 2

WORDS

armas Nas brandamente, conduzidos adereça. arremessa, apelida resistirei Tomai consolar-te! Oceano; deixamos

K = 5

armas se no bélica elegantes,

Por que saíam,

Onde a pintura pôr a armas, porque a tua frio,

A prata um remédio cerca areno,

Para ajudasse

De áspero, sábio e forte Artabro, e aspereza;

CHARACTERS

armas em hospitais, nos Baco na Massília touro, esquecerão Abrantes, troque Umas, enseada 26 sagaz "Porém Canace, penhor Gueos causaram adornado,

WORDS

Page 05

EXPERIMENTS

TRAIN A MODEL WITH TEXT GENERATED

K = 4 | ALPHA = 0.1

A.I.C. = **2.7458**

ORIGINAL SEQUENCE 1

1ST SEQUENCE GENERATED

K = 4

ALPHA = 0.1

PRIOR = ACTG

CHARACTERS = 10000

A.I.C. = 2,6582

2ST SEQUENCE GENERATED

K = 4

ALPHA = 0.1

PRIOR = ACTG

CHARACTERS = 10000

A.I.C. = 2.5703

Page 06

CONCLUSIONS

The experiments made were important to get some conclusions about the programs developed:

- Increasing the **context size (k)**, makes predictions more certain.
- Higher values of the **smoothing parameter (alpha)** leads to greater entropy.
- Word-based models can produce more coherent text when applied to natural language sequences.
- Training a model on generated sequences results in an increase in predictability over multiple iterations.

