Tutorial 4 Questions

Nan Meng

University of Hong Kong u3003637@connect.hku.hk

February 29, 2016

Determine the resistance value of R₁, R₂, ..., R₅ in the circuits.
 (Assume the resistance of R₁ is R)

* Determine the resistance of R_1 and R_2 in the circuit.

• If $V_{AB} = 4V$, determine R_1, R_2, R_3 and R_4 .

• For the circuit in the figure, determine i_1 to i_5 .

*
$$R_1 = 80\Omega, R_2 = 10\Omega, R_3 = 20\Omega, R_4 = 90\Omega, R_5 = 100\Omega$$

* Battery:
$$V_1 = 12V, V_2 = 24V, V_3 = 36V$$

* Resistor:
$$I_1, I_2, ..., I_5 = ?$$
 $P_1, P_2, P_5 = ?$

- * You have connected the lamp, with $V_{cc}=12V$. The datasheet of the lamp states that it only turns on when $V_L>8V$. The lamp has an internal resistance of $1k\Omega$.
- * What is the range of R that would allow the circuit to function correctly with all input combinations.

Question 7a

- * A force sensitive resistor (FSR) is a resistor with its resistance changed according to the force applied to it.
- For simplicity sake, your partner has wired up the FSR using a simple potential divider circuit

Force (N)	Resistance $R_{fsr}(\Omega)$
0	1M
0.5	10k
1	6k
10	1k

Question 7a

- * Calculate the following quantities when $R_{ref} = 10k\Omega$:
 - Voltage across the FSR;
 - Voltage at V_{out};
 - Current owing through the FSR.

Question 7b

- * The output V_{out} is used to detect the presence of a ball. Due to its light weight, the ball produces only 0.5N when it is located on top of the sensor. The rest of the system requires that $V_{IL}=2V$ and $V_{IH}=10V$
 - \bullet V_{IL} : Max. voltage that the system regards as logical LOW
 - ullet V_{IH} : Min. voltage that the system regards as logical HIGH
- * Determine the range of value that R_{ref} may take for correct functioning of the circuit.
 - It should output a logical HIGH when a ball is presence and a logical LOW otherwise.

Question 7c

* Your partner suggests that it may be possible to use 2 FSRs connected to perform a logical OR operation: When the ball rolls over either one of the 2 FSRs, the output V out is HIGH, and is LOW otherwise.

- * What is the output voltage V_{out} ?
 - one of the FSRs is under pressure of 0.5N;
 - both FSRs are under a pressure of 0.5N each;
 - none of the FSRs is under pressure;
 - assume R_{ref} is $100k\Omega$

Question 7d

- * Recall that V_{IL} is 2V and V_{IH} is 10V, is the circuit functioning correctly as a 2-input OR?
- * If there are 3 FSRs connected in parallel, assumer R_{ref} remains at 100k, will the circuit behave as a 3-input OR?

Appendix(Question 8)

- * Find V_2 using single loop analysis
 - Without simplifying the circuit
 - Simplifying the circuit

$$V_{s1}=2V,\,V_{s2}=2V,\,V_{s3}=2V,\,R_{1}=1\Omega,\,R_{2}=2\Omega,\,R_{3}=4\Omega$$

Appendix(Question 9)

* Find R_{eq} and i_o in the circuit of the figure.

Appendix(Question 10)

Assume all resistors have the same resistance, R. Determine the voltage V_{AB} .

Appendix(Rules Governing Currents and Voltages)

Rule 1: Currents flow in loops

The same amount of current flows into the bulb (top path) and out of the bulb (bottom path)

Rule 2: Like the flow of water, the flow of electrical current (charged particles) is incompressible

Kirchoffs Current Law (KCL): the sum of the currents into a node is zero

Rule 3: Voltages accumulate in loops

Kirchoffs Voltage Law (KVL): the sum of the voltages around a closed loop is zero

Appendix(Analyzing Circuits)

- Assign node voltage variables to every node except ground (whose voltage is arbitrarily taken as zero)
- Assign component current variables to every component in the circuit
- Write one constructive relation for each component in terms of the component current variable and the component voltage
- Express KCL at each node except ground in terms of the component currents
- Solve the resulting equations
- Power = $IV = I^2R = V^2/R$

Appendix(Parallel/Series Combinations of Resistance)

• To simplify the circuit for analysis

Appendix(Voltage/Current Divider)

← Voltage Divider

Current Divider →

$$I = \frac{V}{R_1 + R_2}$$

$$V_1 = R_1 I = \frac{R_1}{R_1 + R_2} V$$

$$V_2 = R_2 I = \frac{R_2}{R_1 + R_2} V$$

$$V = (R_1 \parallel R_2)I$$

$$I_1 = \frac{V}{R_1} = \frac{R_1 \parallel R_2}{R_1}I = \frac{R_2}{R_1 + R_2}I$$

$$I_2 = \frac{R_1}{R_1 + R_2}I$$

The End