

I/O Management, System Protection and Security

Kakoli Bora

Department of Computer Science

System Security - System and Network Threats

Kakoli Bora

Department of Computer Science

Slides Credits for all PPTs of this course

- The slides/diagrams in this course are an adaptation, combination, and enhancement of material from the following resources and persons:
- Slides of Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin, Greg Gagne - 9th edition 2013 and some slides from 10th edition 2018

System and Network Threats

PES UNIVERSITY

- Some systems "open" (i.e more services are enabled and more functions are allowed) rather than secure by default
 - Reduce attack surface
 - But harder to use, more knowledge needed to administer
- Network threats harder to detect, prevent
 - Protection systems weaker
 - More difficult to have a shared secret on which to base access
 - No physical limits once system attached to internet
 - Or on network with system attached to internet
 - Even determining location of connecting system difficult
 - ▶ IP address is only knowledge

System and Network Threats (Cont.)

PES UNIVERSITY ONLINE

- ☐ Worms use spawn mechanism; standalone program
- Internet worm
 - Exploited UNIX networking features (remote access) and bugs in finger and sendmail programs
 - Exploited trust-relationship mechanism used by rsh to access friendly systems without use of password
 - Grappling hook (aka bootstrap or vector) program uploaded main worm program
 - ▶ 99 lines of C code
 - Hooked system then uploaded main code, tried to attack connected systems
 - Also tried to break into other users accounts on local system via password guessing
 - ☐ If target system already infected, abort, except for every 7th time

The Morris Internet Worm

Sobig.F Worm

PES UNIVERSITY

- Disguised as a photo uploaded to newsgroups via account created with stolen credit card
- Targeted Windows systems
- ☐ Had own SMTP engine to mail itself as attachment to everyone in infect system's address book
- Disguised with innocuous subject lines, looking like it came from someone known
- ☐ Attachment was executable program that created **WINPPR23.EXE** in default Windows system directory and modified the Windows Registry

```
[HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
  "TrayX" = %windir%\winppr32.exe /sinc
[HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run]
  "TrayX" = %windir%\winppr32.exe /sinc
```

System and Network Threats (Cont.)

PES UNIVERSITY ONLINE

Port scanning

- Automated attempt to connect to a range of ports on one or a range of IP addresses
- Detection of answering service protocol
- Detection of OS and version running on system
- nmap scans all ports in a given IP range for a response
- nessus has a database of protocols and bugs (and exploits) to apply against a system
- Frequently launched from zombie systems
 - ▶ To decrease trace-ability

System and Network Threats (Cont.)

Denial of Service

- Overload the targeted computer preventing it from doing any useful work
- □ Distributed denial-of-service (DDOS) come from multiple sites at once
- Consider the start of the IP-connection handshake (SYN)
 - ▶ How many started-connections can the OS handle?
- Consider traffic to a web site
 - How can you tell the difference between being a target and being really popular?
- □ Accidental CS students writing bad fork() code
- □ Purposeful extortion, punishment

THANK YOU

Kakoli Bora

Department of Computer Science Engineering

k_bora@pes.edu