Part III - Elliptic Curves Lectured by Tom Fisher

Artur Avameri

Contents

0	Introduction	2
1	Fermat's Method of Infinite Descent	2
2	Some remarks on algebraic curves 2.1 The degree of a morphism	3 6
3	Weierstrass equations	7
4	The Group Law	9
5	Isogenies	13
6	The invariant differential	17

0 Introduction

19 Jan 2024,

Lecture 1

The best books for the course include *The arithmetic of elliptic curves* by Silverman, Springer 1996, and *Lectures on elliptic curves* by Cassels, CUP 1991.

1 Fermat's Method of Infinite Descent

A right–angled triangle Δ has $a^2 + b^2 = c^2$ and area $(\Delta) = \frac{1}{2}ab$.

Definition 1.1. Δ is **rational** if $a, b, c \in \mathbb{Q}$. Δ is **primitive** if $a, b, c \in \mathbb{Z}$ are coprime.

Note that a primitive triangle has pairwise coprime side lengths because $a^2+b^2=c^2.$

Lemma 1.1. Every primitive triangle is of the form $(u^2 - v^2, 2uv, u^2 + v^2)$ for some integers u > v > 0.

Proof. WLOG let a,b,c be odd, even, odd. Then $\left(\frac{b}{2}\right)^2 = \frac{c+a}{2} \frac{c-a}{2}$, where we note that the RHS is a product of positive coprime integers. By unique factorization, $\frac{c+a}{2} = u^2, \frac{c-a}{2} = v^2$ for $u,v \in \mathbb{Z}$. This gives the desired result.

Definition 1.2. $D \in \mathbb{Q}_{>0}$ is a **congruent** number if there exists a rational triangle Δ with area $(\Delta) = D$.

Note that it suffices to consider $D \in \mathbb{Z}_{>0}$ squarefree.

Example 1.2. D = 5,6 are congruent.

Lemma 1.3. $D \in \mathbb{Q}_{>0}$ is congruent $\iff Dy^2 = x^3 - x$ for some $x, y \in \mathbb{Q}, y \neq 0$.

Proof. Lemma 1.1 shows that D congruent $\Longrightarrow Dw^2 = uv(u^2 - v^2)$ for some $u, v, w \in \mathbb{Q}, w \neq 0$. This implication also obviously goes the other way. To finish, divide through by w^4 and take $x = \frac{u}{v}, y = \frac{w}{v^2}$.

Fermat showed that 1 is not a congruent number.

Theorem 1.4. There is no solution to $w^2 = uv(u+v)(u-v)$ for $u,v,w \in \mathbb{Z}, w \neq 0$.

Proof. WLOG assume u, v are coprime and that u, w > 0. If v < 0, then replace (u, v, w) by (-v, u, w). If u, v are both odd, then replace (u, v, w) by $\left(\frac{u+v}{2}, \frac{u-v}{2}, \frac{w}{2}\right)$. Then u, v, u+v, u-v are pairwise coprime positive integers with their product a square, so by unique factorization in \mathbb{Z} , $u = a^2, v = b^2, u + v = c^2, u - v = d^2$ for $a, b, c, d \in \mathbb{Z}$.

Since $u \not\equiv v \pmod{2}$, both c and d are odd. Then $\left(\frac{c+d}{2}\right)^2 + \left(\frac{c-d}{2}\right)^2 = \frac{c^2+d^2}{2} = u = a^2$. This gives a primitive triangle with area $\frac{c^2-d^2}{8} = \frac{v}{4} = \left(\frac{b^2}{2}\right)$.

Let $w_1 = \frac{b}{2}$, then by Lemma 1.1, $w_1^2 = u_1 v_1 (u_1 + v_1) (u_1 - v_1)$ for some $u_1, v_1 \in \mathbb{Z}$. Hence we have a new solution to our original question, with $4w_1^2 = b^2 = v \mid w^2 \implies w_1 \leq \frac{w}{2}$, so we're done by infinite descent.

A variant for polynomials. In the above, K is a field with char $K \neq 2$. Let \overline{K} be the algebraic closure of K and consider for this whole section K with char $K \neq 2$.

Lemma 1.5. Let $u, v \in K[t]$ be coprime. If $\alpha u + \beta v$ is a square for 4 distinct $(\alpha : \beta) \in \mathbb{P}^1$, then $u, v \in K$.

Proof. WLOG let $K = \overline{K}$ by extending if necessary. Changing coordinates on \mathbb{P}^1 (i.e. multiplying by a 2×2 invertible matrix), we may assume that the points $(\alpha : \beta)$ are (1 : 0), (0 : 1), (1 : -1), $(1 : -\lambda)$ for $\lambda \in K \setminus \{0, 1\}$. Since our field is algebraically closed, let $\mu = \sqrt{\lambda}$. Then $u = a^2, v = b^2, u - v = (a + b)(a - b), u - \lambda v = (a + \mu b)(a - \mu b)$.

Unique factorization in K[t] implies that $a+b, a-b, a+\mu b, a-\mu b$ are squares (since the necessary terms are coprime up to units, i.e. constants). But $\max(\deg(a), \deg(b)) \leq \frac{1}{2} \max(\deg(u), \deg(v))$, so by Fermat's method of infinite descent, $u, v \in K$.

- **Definition 1.3.** (i) An **elliptic curve** E/K is the projective closure of the plane affine curve $y^2 = f(x)$ (this is called a Weierstrass equation) where $f \in K[x]$ is a monic cubic polynomial with distinct roots in \overline{K} .
- (ii) For L/K any field extension, $E(L) = \{(x,y) \in L^2 \mid y^2 = f(x)\} \cup \{0\}$ (the point at infinity in the projective closure), it turns out that E(L) is naturally an abelian group.

In this course, we study E(K) for K a finite field, local field, number field. Lemma 1.3 and Theorem 1.4 show that if $E: y^2 = x^3 - x$, then $E(\mathbb{Q}) = \{0, (0, 0), (\pm 1, 0)\}.$

Corollary 1.6. Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. WLOG $K = \overline{K}$. By a change of coordinates, we may assume $y^2 = x(x-1)(x-\lambda)$ for some $\lambda \in K \setminus \{0,1\}$. Suppose $(x,y) \in E(K(t))$. Write $x = \frac{u}{v}$ for $u,v \in K(t)$ coprime. Then $w^2 = uv(u-v)(u-\lambda v)$ for some $w \in K[t]$. Unique factorization in K[t] shows that $u,v,u-v,u-\lambda v$ are all squares, so by Lemma 1.5, $u,v \in K$, so $x,y \in K$.

2 Some remarks on algebraic curves

In this section, work over an algebraically closed field $K = \overline{K}$.

22 Jan 2024, Lecture 2 **Definition 2.1.** A plane curve $C = \{f(x,y) = 0\} \subset \mathbb{A}^2$ (for $f \in K[x,y]$ irreducible) is **rational** if it has a rational parametrization, i.e. $\exists \phi, \psi \in K(t)$ such that

- (i) The map $\mathbb{A}^1 \to \mathbb{A}^2$ by $t \mapsto (\phi(t), \psi(t))$ is injective on $\mathbb{A}^1 \setminus \{\text{finite set}\}.$
- (ii) $f(\phi(t), \psi(t)) = 0$ in K(t).
- **Example 2.1.** (a) Any nonsingular conic is rational. For example, for $x^2 + y^2 = 1$, take a line with slope t through (-1,0) (the anchor) and solve to get the rational parametrization $(x,y) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$.
- (b) Any singular plane cubic is rational, for example $y^2 = x^3$ giving $(x, y) = (t^2, t^3)$ with the anchor at the singularity (0, 0) and $y^2 = x^2(x+1)$ with the parametrization to be computed on Ex. Sheet 1 (anchor still at (0, 0)).
- (c) Corollary 1.6 shows that elliptic curves are not rational.

Remark. The genus $g(C) \in \mathbb{Z}_{\geq 0}$ is an invariant of a smooth projective curve C. If $K = \mathbb{C}$, then g(C) is the genus of the Riemann surface. A smooth plane curve $C \subset \mathbb{P}^2$ of degree d has genus $g(C) = \frac{(d-1)(d-2)}{2}$.

Proposition 2.2. (Here we still assume $K = \overline{K}$). Let C be a smooth projective curve.

- C is rational (see Definition 2.1) \iff g(C) = 0.
- C is an elliptic curve $\iff g(C) = 1$.

Proof. (i) Omitted.

(ii) (\Longrightarrow): Check C is a smooth plane curve in \mathbb{P}^2 (see Ex. Sheet 1) and use the above remark.

 (\Leftarrow) : We will see this later.

Order of vanishing. Let C be an algebraic curve with function field K(C) and let $P \in C$ be a smooth point. Write $\operatorname{ord}_P(f)$ for the order of vanishing of $f \in K(C)$ at P (which is negative if f has a pole at P).

Fact. ord_P: $K(C)^{\times} \to \mathbb{Z}$ is a discrete valuation, i.e. ord_P $(f_1f_2) = \operatorname{ord}_P(f_1) + \operatorname{ord}_P(f_2)$ and $\operatorname{ord}_P(f_1 + f_2) \ge \min(\operatorname{ord}_P(f_1), \operatorname{ord}_P(f_2))$.

Definition 2.2. We say $t \in K(C)^{\times}$ is a **uniformizer** at P if $\operatorname{ord}_{P}(t) = 1$.

Example 2.3. $C = \{g = 0\} \subset \mathbb{A}^2 \text{ for } g \in K[x,y].$ Then $K(C) = \operatorname{Frac}\left(\frac{K[x,y]}{(g)}\right)$. Write $g = g_0 + g_1(x,y) + g_2(x,y) + \dots$ for g_i homogeneous of degree i. Suppose P = (0,0) is a smooth point, e.g. $g_0 = 0$ and let $g_1(x,y) = \alpha x + \beta y$ with α, β not both zero $(\alpha x + \beta y = 0$ gives a tangent to the curve at P). Let $\gamma, \delta \in K$ and consider also the line $\gamma x + \delta y$ through P. Then it is a fact that $\gamma x + \delta y \in K(C)$ is a uniformizer at P if and only if $\alpha \delta - \beta \gamma \neq 0$.

Example 2.4. Consider $\{y^2 = x(x-1)(x-\lambda)\}\subset \mathbb{A}^2$ for $\lambda \neq 0, 1$ and consider its projective closure by taking $x = \frac{X}{Z}, y = \frac{Y}{Z}$ to get $\{Y^2Z = X(X-Z)(X-\lambda Z)\}\subset \mathbb{P}^2$. This has only one point at infinity, P = (0:1:0). Our aim is to compute $\operatorname{ord}_P(x)$ and $\operatorname{ord}_P(y)$.

For this, put $t = \frac{X}{Y}$, $w = \frac{Z}{Y}$, so $w \stackrel{(\dagger)}{=} t(t-w)(t-\lambda w)$. Now P is the point (t,w) = (0,0), which is a smooth point with $\operatorname{ord}_P(t) = \operatorname{ord}_P(t-w) = \operatorname{ord}_P(t-\lambda w) = 1$, so (\dagger) gives $\operatorname{ord}_P(w) = 3$. We now find

$$\operatorname{ord}_{P}(x) = \operatorname{ord}_{P}\left(\frac{X}{Z}\right) = \operatorname{ord}_{P}\left(\frac{t}{w}\right) = 1 - 3 = -2$$

$$\operatorname{ord}_{P}(y) = \operatorname{ord}_{P}\left(\frac{Y}{Z}\right) = \operatorname{ord}_{P}\left(\frac{1}{w}\right) = -3.$$

Riemann-Roch space. Let C be a smooth projective curve.

Definition 2.3. A divisor is a formal sum of points on C, say $D = \sum_{P \in C} n_P P$ where $n_P \in \mathbb{Z}$ and $n_P = 0$ for all but finitely many $P \in C$. We say deg $D = \sum_{P \in C} n_P$.

D is **effective** (written $D \ge 0$) if $n_P \ge 0 \ \forall P \in C$. If $f \in K(C)^{\times}$, then $\operatorname{div}(f) = \sum_{P \in C} \operatorname{ord}_P(f)P$. The Riemann–Roch space of $D \in \operatorname{Div}(C)$ is

$$\mathcal{L}(D) = \{ f \in K(C)^{\times} \mid \text{div}(f) + D \ge 0 \} \cup \{ 0 \},\$$

i.e. the K-vector space of rational functions on C with "poles no worse than specified by D".

We quote Riemann–Roch for surfaces of genus 1: We have

$$\dim \mathcal{L}(D) = \begin{cases} \deg D & \text{if deg } D > 0 \\ 0 \text{ or } 1 & \text{if deg } D = 0 \\ 0 & \text{if deg } D < 0. \end{cases}$$

Example 2.5. We revisit Example 2.4. We have $\mathcal{L}(2P) = \langle 1, x \rangle$ and $\mathcal{L}(3P) = \langle 1, x, y \rangle$.

24 Jan 2024, Lecture 3

We still have char $K \neq 2$ and $\overline{K} = K$.

Proposition 2.6. Let $C \subset \mathbb{P}^2$ be a smooth plane cubic and let $P \in C$ be a point of inflection. Then we may change coordinates such that $C: Y^2Z = X(X-z)(X-\lambda Z)$ and P = (0:1:0) (for some $\lambda \neq 0,1$).

Proof. First change coordinates such that P=(0:1:0). Then change coordinates such that the tangent line becomes $T_pC=\{Z=0\}$. Say $C=\{F(X,Y,Z)=0\}\subset \mathbb{P}^2$. A point on the tangent line is of the form (t:1:0) and since $P\in C$ is a point of inflection, we get $F(t,1,0)=\mathrm{const}\cdot t^3$, i.e. F has no terms X^2Y,XY^2 or Y^3 .

Hence $F = \langle Y^2Z, XYZ, YZ^2, X^3, X^2Z, XZ^2, Z^3 \rangle$. Notably, Y^2Z has a nonzero coefficient, otherwise $P \in C$ would be singular, a contradition to C being smooth. The coefficient of X^3 is nonzero as well, otherwise $Z \mid F$. We are free to rescale X, Y, Z, F, so WLOG C is defined by

$$Y^{2}Z + a_{1}XYZ + a_{3}YZ^{2} = X^{3} + a_{2}X^{2}Z + a_{4}XZ^{2} + a_{6}Z^{3}.$$

Substituting $Y \mapsto Y - \frac{1}{2}a_1X - \frac{1}{2}a_3Z$, we may assume $a_1 = a_3 = 0$. This gives

$$C: Y^2 Z = Z^3 f\left(\frac{X}{Z}\right)$$

for a monic cubic polynomial f. Since C is smooth, f has distinct roots, WLOG $0, 1, \lambda$, so $C: Y^2Z = X(X - Z)(X - \lambda Z)$.

The form $Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3$ is the Weierstrass form. The form $Y^2Z = X(X - Z)(X - \lambda Z)$ is the Legendre form.

Remark. It can be shown that the points of inflection of a plane curve $C = \{F(X_1, X_2, X_3) = 0\} \subset \mathbb{P}^2$ are given by solving the Hessian:

$$\begin{cases} H = \left(\frac{\partial^2 F}{\partial X_i \partial X_j}\right) = 0\\ F(X_1, X_2, X_3) = 0. \end{cases}$$

2.1 The degree of a morphism

Let $\phi: C_1 \to C_2$ be a nonconstant morphism of smooth projective curves. Then $\phi^*: K(C_2) \to K(C_1)$ by $f \mapsto f \circ \phi$, giving an injective map $\phi^*K(C_2)$ to $K(C_1)$.

Definition 2.4. The **degree** of ϕ is deg $\phi = [K(C_1) : \phi^*K(C_2)].$

We say ϕ is **separable** if $K(C_1)/\phi^*K(C_2)$ is a separable field extension.

Suppose $P \in C_1, Q \in C_2$ and $\phi : P \mapsto Q$. Let $t \in K(C_2)$ be a uniformizer at Q.

Definition 2.5. $e_{\phi}(P) = \operatorname{ord}_{P}(\phi^{*}t)$, which is always ≥ 1 and independent of t.

Theorem 2.7. Let $\phi: C_1 \to C_2$ be a nonconstant morphism of smooth projective curves. Then

$$\sum_{P \in \phi^{-1}(Q)} e_{\phi}(P) = \deg \phi \ \forall Q \in C_2.$$

Moreover, if ϕ is separable, then $e_{\phi}(P) = 1$ for all but infitely many $P \in C_1$.

We don't prove this.

In particular, this shows that:

- ϕ is surjective (very important here that we're in \overline{K}).
- $|\phi^{-1}(Q)| \le \deg \phi$.
- If ϕ is separable, then equality holds in (ii) for all but finitely many points $Q \in C_2$.

Important remark. Let C be an algebraic curve. A rational map is given by

$$C \to \mathbb{P}^n$$

 $\phi \mapsto (f_0, f_1, \dots, f_n)$

where $f_0, \ldots, f_n \in K(C)$ are not all zero. Then we have a fact: If C is smooth, then ϕ is a morphism. This saves us a lot of time (we can go from a rational map to a morphism immediately).

3 Weierstrass equations

We now drop the assumption that $\overline{K} = K$, but we will still assume that K is perfect.

Definition 3.1. An elliptic curve E/K is a smooth projective curve of genus 1 defined over K with a specified K-rational point $O = 0_E$.

Example 3.1. $\{X^3 + pY^3 + p^2Z^3 = 0\} \subset \mathbb{P}^2$ is not an elliptic curve over \mathbb{Q} , since it has no \mathbb{Q} -rational point.

Theorem 3.2. Every elliptic curve E is isomorphic over K to a curve in Weierstrass form via an isomorphism taking 0_E to (0:1:0).

Remark. Proposition 2.6 treated the special case where E is a smooth plane cubic and 0_E is a point of inflection.

Fact. If $D \in \text{Div}(E)$ is defined over K, then $\mathcal{L}(D)$ has a basis in K(E) (not just in $\overline{K}(E)$). Here D is defined over K if it is fixed by $\text{Gal}(\overline{K}/K)$ (this is unimportant for us and we just write it down to be rigorous).

Proof. $\mathcal{L}(2 \cdot 0_E) \subset \mathcal{L}(3 \cdot 0_E)$. Pick bases 1, x and 1, x, y. Note $\operatorname{ord}_{0_E}(x) = -2$ and $\operatorname{ord}_{0_E}(y) = -3$ (else x, y don't give a basis). The 7 elements $1, x, y, x^2, xy, x^3, y^2$ lie in the 6-dimensional vector space $\mathcal{L}(60_E)$ (as they have at most a sixth order pole), so they must satisfy a linear dependence relation.

Leaving out x^3 or y^2 leaves us with 6 elements, all with different order poles, giving a basis for $\mathcal{L}(60_E)$. Hence the coefficients of x^3 and y^2 are nonzero, so by rescaling x, y (if necessary) we get

$$E': y^2 + a_1xy + a_2y = x^3 + a_2x^2 + a_4x + a_6$$

for some $a_i \in K$. Let E' be the curve defined by this equation (or rather its projective closure). There is a morphism $\phi: E \to E' \subset \mathbb{P}^2$ by $P \mapsto (x(P): y(P): 1) = \left(\frac{x}{y}(P): 1: \frac{1}{y}(P)\right)$. (Since E is smooth, we know that this rational map is a morphism). Hence $0_E \mapsto (0:1:0)$.

We have $E \xrightarrow{x} \mathbb{P}^1$ by $x \mapsto (x:1)$ (and similarly for y), so

$$[K(E):K(x)] = \deg(E \xrightarrow{x} \mathbb{P}^1) = \operatorname{ord}_{0_E}\left(\frac{1}{x}\right) = 2$$
$$[K(E):K(y)] = \deg(E \xrightarrow{y} \mathbb{P}^1) = \operatorname{ord}_{0_E}\left(\frac{1}{y}\right) = 3.$$

This gives an inclusion of fields $K(x) \leq K(E)$ of degree 2, $K(y) \leq K(E)$ of degree 3, while $K(x), K(y) \leq K(x,y) \leq K(E)$, so tower law gives $[K(E): K(x,y)] = 1 \implies K(E) = K(x,y) = \phi^*K(E') \implies \deg \phi = 1$. (draw a picture!). This gives us an inverse that is a rational map, which we want to show is a morphism. For this, we just need to show that E' is smooth.

If E' were singular, then E and E' are rational, a contradiction. So E' is smooth and hence ϕ^{-1} is a morphism, so ϕ is an isomorphism.

Proposition 3.3. Let E, E' be elliptic curves over K in Weierstrass form. Then $E \cong E'$ over $K \iff$ the equations are related by a change of variables

$$x = u^2x' + r$$
$$y = u^3y' + u^2sx' + t$$

for $r, s, t, u \in K$ with $u \neq 0$.

Proof. $\mathcal{L}(2 \cdot 0_E) = \langle 1, x \rangle = \langle 1, x' \rangle \implies x = \lambda x' + r \text{ for some } \lambda, r \in K, \lambda \neq 0.$ Similarly $\mathcal{L}(3 \cdot 0_E) = \langle 1, x, y \rangle = \langle 1, x', y' \rangle \implies y = \mu y' + \sigma x' + t \text{ for some } \mu, \sigma, t \in K, \mu \neq 0.$

Looking at the coefficients of x^3 and y^2 tells us that $\lambda^3 = \mu^2$, so $\lambda = u^2$, $\mu = u^3$ for some $u \in K^{\times}$. Put $s = \frac{\sigma}{u^2}$ to conclude.

A Weierstrass equation defines an elliptic curve \iff it defines a smooth curve $\iff \Delta(a_1, \ldots, a_6) \neq 0$, where $\Delta \in \mathbb{Z}[a_1, \ldots, a_6]$ is a certain polynomial.

If char $K \neq 2, 3$, we may reduce to the case $E: y^2 = x^3 + ax + b$. In this case, the discriminant is $\Delta = -16(4a^3 + 27b^2)$.

Corollary 3.4. Assume char $K \neq 2, 3$. Elliptic curves

$$E: y^2 = x^3 + ax + b$$

 $E': y^2 = x^3 + a'x + b'$

are isomorphic over $K \iff \begin{cases} a' = u^4 a \\ b' = u^6 b \end{cases}$ for some $u \in K^{\times}$.

Proof. E, E' are related by a substitution as in Proposition 3.3 with r = s = t = 0.

Definition 3.2. The *j*-invariant is $j(E) = \frac{1728(4a^3)}{4a^3+27b^2}$.

Corollary 3.5. $E \cong E' \implies j(E) \cong j(E')$ and the converse holds if $K = \overline{K}$.

Proof.
$$E \cong E' \iff \begin{cases} a' = u^4 a \\ b' = u^6 b \end{cases}$$
 for some $u \in K^{\times} \implies (a^3 : b^2) = ((a')^3 : (b')^2) \iff j(E) = j(E')$. The middle step is reversible if $K = \overline{K}$.

4 The Group Law

Let $E \subset \mathbb{P}^2$ be a smooth plane cubic with $0_E \in E(K)$ (not immediately assumed to be in Weierstrass form). E meets any line in 3 points, counted with multiplicity.

For $P, Q \in E$, let S be the 3^{rd} point of intersction of PQ with E and then let R be the 3^{rd} intersection of $0_E S$ with E. We define $P \oplus Q = R$. (Later we drop the circle and just write +). If P = Q, instead take the tangent line at P, i.e. $T_P E$, etc. This is the "chord and tangent process".

Theorem 4.1. (E, \oplus) is an abelian group.

Remark. Here E means $E(\overline{K})$ since we haven't specified a field yet.

Proof. (i) \oplus is commutative trivially.

(ii) 0_E is the identity, since the line through $0_E P$ meets S for the $3^{\rm rd}$ time at S and then SP meets E for the $3^{\rm rd}$ time at 0_E (drawing a picture makes this obvious).

- (iii) Inverses: Let S be the $3^{\rm rd}$ intersection of T_{0_E} with E and Q the $3^{\rm rd}$ intersection of PS with E. Then $P \oplus Q = 0_E$.
- (iv) Associativity is much harder. We have some setup:

Definition 4.1. $D_1, D_2 \in \text{Div}(E)$ are **linearly equivalent** if $\exists f \in K(E)^{\times}$ such that $\text{div}(f) = D_1 - D_2$. Write $D_1 \sim D_2$ and $[D] = \{D' \mid D' \sim D\}$.

Definition 4.2. The **Picard group** is $Pic(E) = Div(E) / \sim$. Also define $Pic^0(E) = Div^0(E) / \sim$ where $Div^0(E) = \{D \in Div(E) \mid deg(D) = 0\}$.

We define $\psi: E \to \operatorname{Pic}^0(E)$ by $P \mapsto [(P) - (0_E)]$.

Proposition 4.2. (i) $\psi(P \oplus Q) = \psi(P) + \psi(Q)$.

- (ii) ψ is a bijection.
- *Proof.* (i) WLOG let the lines PQ and 0_ES be given by l=0 and m=0. Then

$$\operatorname{div}\left(\frac{l}{m}\right) = (P) + (S) + (Q) - (0_E) - (S) - (R),$$

hence $(P) + (Q) \sim (P \oplus Q) + (0_E)$, so $(P \oplus Q) - (0_E) \sim (P) - (0_E) + (Q) - (0_E)$, so $\psi(P \oplus Q) = \psi(P) + \psi(Q)$.

(ii) Injectivity: Suppose $\psi(P) = \psi(Q)$ for $P \neq Q$. Then $\exists f \in \overline{K}(E)^{\times}$ such that $\operatorname{div}(f) = (P) - (0_E) - (Q) + (0_E) = (P) - (Q) \implies E \xrightarrow{f} \mathbb{P}^1$ has degree 1 (for example since evaluation at 0 on the affine line gives that P has one root and Q has one pole), so $E \cong \mathbb{P}^1$, a contradiction.

Surjectivity: Let $[D] \in \operatorname{Pic}^0(E)$. Then $D + (0_E)$ has degree 1, so by Riemann–Roch, $\dim \mathcal{L}(D+(0_E)) = 1$, so $\exists 0 \neq f \in \overline{K}(E)$ such that $\operatorname{div}(f) + D+(0_E) \geq 0$, but $\operatorname{div}(f) + D+(0_E)$ has degree 1, so $\operatorname{div}(f) + D+(0_E) = (P)$ for some $P \in E \implies (P) - (0_E) \sim D \implies \psi(P) = [D]$.

We conclude that ψ identifies (E, \oplus) with $(\text{Pic}^0(E), +)$, so \oplus is associative.

29 Jan 2024,

Lecture 5

Formulae for E in Weierstrass form. Let $E: y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$. Choose two points $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ on it. Let the line through P_1 and P_2 be given by $y = \lambda x + \nu$ and let it meet E again at P' = (x', y'). We want to find $P_1 \oplus P_2 = P_3 = (x_3, y_3) = \ominus P'$ for $\ominus P$ the reflection of P across the x-axis. We easily compute $\ominus P_1 = (x_1, -(a_1x + a_3) - y_1)$.

Substituting $y = \lambda x + \nu$ into our equation for E and looking at the coefficient of x^2 gives $\lambda^2 + a_1\lambda - a_2 = x_1 + x_2 + x' = x_1 + x_2 + x_3$, so $x_3 = \lambda^2 + a_1\lambda - a_2 - x_1 - x_2$. For y_3 we find

$$y_3 = -(a_1x' + a_3) - y' = -(a_1x_3 + a_3) - (\lambda x_3 + \nu) = -(\lambda + a_1)x_3 - a_3 - \nu.$$

It remains to find formulas for λ and ν .

- Case 1. $x_1 = x_2$, but $P_1 \neq P_2$. Then $P_1 \oplus P_2 = 0_E$.
- Case 2. $x_1 \neq x_2$. Then $\lambda = \frac{y_2 y_1}{x_2 x_1}$ and $\nu = y_1 \lambda x_1 = \frac{x_2 y_1 x_1 y_2}{x_2 x_1}$.
- Case 3. $P_1 = P_2$. In this case, compute the equation for the tangent line to get λ, ν as rational expressions in x_1, x_2, y_1, y_2 .

Corollary 4.3. E(K) is an abelian group.

Proof. E(K) is a subgroup of (E, \oplus) .

- It has identity 0_E by definition.
- We have closure and inverses through the formulae above.
- Associativity and commutativity is inherited.

Theorem 4.4. Elliptic curves are group varieties, i.e.

$$[-1]: E \to E, P \mapsto \ominus P$$
$$\oplus: E \to E, (P, Q) \mapsto P \oplus Q$$

are morphisms of algebraic varieties.

Proof. By the above formulae, $[-1]: E \to E$ is a rational map, i.e. a morphism by our important remark.

For \oplus , note by the above formulae that $\oplus: E \to E$ is a rational map regular on

$$U = \{ (P, Q) \in E \times E \mid 0_E \notin \{P, Q, P \oplus Q, P \ominus Q\} \}.$$

For $P \in E$, let $\tau_P : E \to E$ be the "translation by P" map, given by $X \mapsto P \oplus X$. τ_P is a rational map, hence a morphism. Now for $A, B \in E$, we factor \oplus as

$$E\times E\stackrel{\tau_{\ominus A}\times \tau_{\ominus B}}{\rightarrow}E\times E\stackrel{\oplus}{\rightarrow}E\stackrel{\tau_{A\oplus B}}{\rightarrow}E.$$

This shows \oplus is regular on $(\tau_A \times \tau_B)(U)$, so \oplus is regular on $E \times E$.

Statement of results. The following isomorphisms in (i), (ii), (iv) respect the relevant topologies.

- (i) $K = \mathbb{C}$. Then $E(\mathbb{C}) \cong \mathbb{C}/\Lambda \cong \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$ for Λ a lattice.
- (ii) $K = \mathbb{R}$. Then

$$E(\mathbb{R}) = \begin{cases} \mathbb{Z}/2\mathbb{Z} \times \mathbb{R}/\mathbb{Z} & \text{if } \Delta > 0 \\ \mathbb{R}/\mathbb{Z} & \text{if } \Delta < 0. \end{cases}$$

- (iii) $K = \mathbb{F}_q$. Then $||E(\mathbb{F}_q)| (q+1)| \le 2\sqrt{q}$. This is Hasse's Theorem.
- (iv) For a local field $[K:\mathbb{Q}_p]<\infty$ with ring of integers \mathcal{O}_K , E(K) has a subgroup of finite index isomorphic to $(\mathcal{O}_K,+)$.
- (v) For a number field $[K:Q] < \infty$, E(K) is a finitely generated abelian group (this is the Mordell–Weil Theorem). Basic group theory says that if A is a finitely generated abelian group, then $A \cong (\text{finite subgroup}) \times \mathbb{Z}^r$. Here r is called the rank of A. The proof of Mordell–Weil gives an upper bound for rank E(K), but there is no known algorithm to compute the rank in all cases.

Brief remarks on the case $K = \mathbb{C}$. Let $\Lambda = \{a\omega_1 + b\omega_2 \mid a, b \in \mathbb{Z}\}$ where ω_1, ω_2 are a basis for \mathbb{C} as an \mathbb{R} -vector space. Then meromorphic functions on the Riemann surface \mathbb{C}/Λ correspond bijectively with Λ -invariant meromorphic functions in \mathbb{C} . The function field of \mathbb{C}/Λ is generated by $\wp(z)$ and $\wp'(z)$, where

$$\wp(z) = \frac{1}{z^2} + \sum_{\lambda \in \Lambda \setminus \{0\}} \left(\frac{1}{(z - \lambda)^2} - \frac{1}{\lambda^2} \right)$$
$$\wp'(z) = -2 \sum_{\lambda \in \Lambda} \frac{1}{(z - \lambda)^3}.$$

These satisfy $\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$ for some constants $g_2, g_3 \in \mathbb{C}$ depending on Λ . One shows $\mathbb{C}/\Lambda \cong E(\mathbb{C})$, where $E: y^2 = 4x^3 - g_2x - g_3$ which is an isomorphism on both groups (via $z \mapsto (\wp(z), \wp'(z))$) and on Riemann surfaces. We have the following result:

Theorem 4.5 (Uniformization theorem). Every elliptic curve over \mathbb{C} arises in this way.

Definition 4.3. For
$$n \in \mathbb{Z}$$
, let $[n]: E \to E$ be given by $P \mapsto \underbrace{P \oplus P \oplus \ldots \oplus P}_{n \text{ copies}}$

if n > 0 and $[-n] = [-1] \circ [n]$.

Definition 4.4. The n-torsion subgroup of E is

$$E[n] = \ker(E \xrightarrow{[n]} E).$$

If $K = \mathbb{C}$, then $E(\mathbb{C}) \cong \mathbb{C}/\Lambda$, so $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$ and $\deg[n] = n^2$. Call these results (1) and (2). We will show that (2) holds over any field K and (1) holds if char $K \nmid n$.

31 Jan 2024, Lecture 6

Lemma 4.6. Assume char $K \neq 2$ and $E : y^2 = f(x) = (x - e_1)(x - e_2)(x - e_3)$ (with $e_i \in \overline{K}$). Then $E[2] = \{0, (e_1, 0), (e_2, 0), (e_3, 0)\} \cong (\mathbb{Z}/2\mathbb{Z})^{\times}$.

Proof. Let
$$P=(x,y)\in E$$
. Then $2[P]=0\iff P=-P\iff (x,y)=(x,-y)\iff y=0$.

5 Isogenies

Let E_1, E_2 be elliptic curves

Definition 5.1. (i) An **isogeny** $\phi: E_1 \to E_2$ is a nonconstant morphism with $\phi(0_{E_1}) = 0_{E_2}$.

(ii) We say E_1 and E_2 are **isogenous** if there is an isogeny between them.

In (i), nonconstant is equivalent to surjective on \overline{K} -points. See Theorem 2.7.

Definition 5.2. Hom $(E_1, E_2) = \{\text{isogenies } E_1 \to E_2\} \cup \{0\} \text{ (the constant map at } 0_E)$. This is an abelian group under $(\phi + \psi)(P) = \phi(P) + \psi(P)$.

If $E_1 \xrightarrow{\phi} E_2 \xrightarrow{\psi} E_3$ are isogenies, then $\psi \circ \phi$ is an isogeny. By tower law, $\deg(\psi \circ \phi) = \deg(\psi)\deg(\phi)$.

Proposition 5.1. If $0 \neq n \in \mathbb{Z}$, then $[n]: E \to E$ is an isogeny.

Proof. [n] is a morphism by Theorem 4.4. We need to show $[n] \neq [0]$. Assume char $K \neq 2$.

- Case n=2. Lemma 4.6 implies that $E[2] \neq E$, so $[2] \neq 0$.
- Case n odd. Lemma 4.6 implies that $\exists 0 \neq T \in E[2]$. Then $nT = T \neq 0$, so $[n] \neq [0]$.

Now use $[mn] = [m] \circ [n]$ to conclude.

If char K=2, then we can replace Lemma 4.6 with an explicit lemma about 3–torsion points.

Corollary 5.2. $\text{Hom}(E_1, E_2)$ is a torsion–free \mathbb{Z} –module.

Theorem 5.3. Let $\phi: E_1 \to E_2$ be an isogeny. Then

$$\phi(P+Q) = \phi(P) + \phi(Q) \ \forall P, Q \in E.$$

Sketch proof. ϕ induces a map $\phi_* : \mathrm{Div}^0(E_1) \to \mathrm{Div}^0(E_2)$ by $\sum_{P \in E_1} n_P P \mapsto \sum_{P \in E_1} n_P \phi(P)$. Recall $\phi^* : K(E_2) \hookrightarrow K(E_1)$.

Fact. If $f \in K(E_1)$, then $\operatorname{div}(N_{K(E_1)/K(E_2)}f) = \phi^*(\operatorname{div} f)$. So ϕ_* sends principal divisors to principal divisors. Since $\phi(0_{E_1}) = 0_{E_2}$, the following diagram commutes:

$$E_{1} \xrightarrow{\phi} E_{2}$$

$$\downarrow f \qquad \qquad \downarrow g$$

$$\operatorname{Pic}^{0}(E_{1}) \xrightarrow{\phi_{*}} \operatorname{Pic}^{0}(E_{2})$$

(with $f(P) = [(P) - (0_{E_1})], g(Q) = [(Q) - (0_{E_2})]$). Since ϕ_* is a group homomorphism, ϕ is a group homomorphism.

Lemma 5.4. Let $\phi: E_1 \to E_2$ be an isogeny. Then there exists a morphism ξ making the following diagram commute:

$$E_{1} \xrightarrow{\phi} E_{2}$$

$$\downarrow^{x_{2}} \qquad \downarrow^{x_{1}}$$

$$\mathbb{P}^{1} \xrightarrow{\xi} \mathbb{P}^{1}$$

with x_i the x-coordinate in a Weierstrass equation for E_i . Moreover, if $\xi(t) = \frac{r(t)}{s(t)}$ with $r, s \in K[t]$ coprime, then $\deg(\phi) = \deg(\xi) = \max(\deg(r), \deg(s))$.

Proof. For $i=1,2,\ K(E_i)/K(x_i)$ is a degree 2 Galois extension with Galois group generated by $[-1]^*$. By Theorem 5.3, $\phi \circ [-1] = [-1] \circ \phi$, so if $f \in K(x_2)$, then $[-1]^*(\phi^*f) = \phi^*([-1]^*f) = \phi^*f$ and hence $\phi^*f \in K(x_1)$. Hence we find

In particular, $\phi^*x_2 = \xi(x_1)$ for some $\xi \in K(t)$. By tower law, $2\deg(\phi) = 2\deg(\xi) \implies \deg(\phi) = \deg(\xi)$. Now $K(x_2) \hookrightarrow K(x_1)$ by $x_2 \mapsto \xi(x_1) = \frac{r(x_1)}{s(x_1)}$ for $r, s \in K[t]$ coprime. Then minimal polynomial of x_1 over $K(x_2)$ is $F(t) = r(t) - s(t)x_2 \in K(x_2)[t]$. This is true as $F(x_1) = 0$, F is irreducible on $K[x_2, t]$ (since r, s are coprime) and by Gauss' Lemma, F is irreducible on $K(x_2)[t]$. Hence $\deg(\phi) = \deg(\xi) = [K(x_1) : K(x_2)] = \deg(F) = \max(\deg(r), \deg(s))$. \square

Lemma 5.5. deg[2] = 4.

Proof. Assume char $K \neq 2, 3$, so $E: y^2 = x^3 + ax + b = f(x)$. If P = (x, y), then $x(2P) = \left(\frac{3x^2 + a}{2y}\right)^2 - 2x = \frac{(3x^2 + a)^2 - 2xf(x)}{4f(x)}$. The numerator and denominator are coprime, since otherwise $\exists \theta \in \overline{K}$ with $f(\theta) = f'(\theta) = 0$, meaning f has a multiple root, contradiction. We are now done by Lemma 5.4, since $\deg[2] = \max(3, 4) = 4$.

Definition 5.3. Let A be an abelian group. Then a map $q:A\to\mathbb{Z}$ is a quadratic form if

- (i) $q(nx) = n^2 q(x) \ \forall n \in \mathbb{Z}, q \in A.$
- (ii) $(x,y) \mapsto q(x+y) q(x) q(y)$ is \mathbb{Z} -bilinear.

Lemma 5.6. $q:A\to\mathbb{Z}$ is a quadratic form if and only if it satisfies the parallelogram law $q(x+y)+q(x-y)=2q(x)+2q(y)\ \forall x,y\in A.$

Proof. (\Longrightarrow). Let $\langle x,y\rangle=q(x+y)-q(x)-q(y)$. Then $\langle x,x\rangle=q(2x)-2q(x)=2q(x)$ by (i) with n=2. By (ii), $\langle x+y,x+y\rangle+\langle x-y,x-y\rangle=2\langle x,x\rangle+2\langle y,y\rangle$, which implies q(x+y)+q(x-y)=2q(x)+2q(y).

$$(\longleftarrow)$$
. This is on Ex. Sheet 2.

02 Jan 2024, Lecture 7

Theorem 5.7. deg: $\operatorname{Hom}(E_1, E_2) \to \mathbb{Z}$ is a quadratic form (with $\operatorname{deg}(0) = 0$).

Proof. Assume char $K \neq 2, 3$ and write $E_2 = y^2 = x^3 + ax + b$. Let $P, Q \in E_2$ with P, Q, P + Q, P - Q all nonzero and let x_1, x_2, x_3, x_4 be the x-coordinates of these points.

Lemma 5.8. There exist polynomials $W_0, W_1, W_2 \in \mathbb{Z}[a, b][x_1, x_2]$ of degree ≤ 2 in x_1 and of degree ≤ 2 in x_2 such that

$$(1:x_3+x_4:x_3x_4)=(W_0:W_1:W_2)$$

Proof. Method 1: Direct calculation (results on the formula sheet) gives the result (e.g. $W_0 = (x_1 - x_2)^2$).

Method 2: Let $y=\lambda x+\nu$ be the line through P and Q. Substituting, we get $x^3+ax+b-(\lambda x+\nu)^2=(x-x_1)(x-x_2)(x-x_3)=x^3-s_1x^2+s_2x-s_3$ where s_i is the i^{th} symmetric polynomial in x_1,x_2,x_3 . Comparing coefficients gives $\lambda^2=s_1,-2\lambda\nu=s_2-a,\nu^2=s_3+b$. Eliminating λ and ν gives

$$F(x_1, x_2, x_3) = (s_2 - a)^2 - 4s_1(s_3 + b) = 0,$$

where F has degree at most 2 in each x_i . Hence x_3 is a root of the quadratic $W(t) = F(x_1, x_2, t)$. Repeating this for the line through P and -Q shows that

 x_4 is the other root of W(t). Therefore

$$W(t) = W_0(t - x_3)(t - x_4) = W_0t^2 - W_1t + W_2$$

$$\implies (1: x_3 + x_4: x_3x_4) = (W_0: W_1: W_2).$$

We now show that if $\phi, \psi \in \text{Hom}(E_1, E_2)$, then $\deg(\phi + \psi) + \deg(\phi - \psi) \leq 2\deg(\phi) + 2\deg(\psi)$. We may assume that $\phi, \psi, \phi + \psi, \phi - \psi$ are not the zero maps (otherwise we're done trivially, or use $\deg[-1] = 1$, $\deg[2] = 4$). Now

$$\phi: (x,y) \mapsto (\xi_1(x), \ldots)$$

$$\psi: (x,y) \mapsto (\xi_2(x), \ldots)$$

$$\phi + \psi: (x,y) \mapsto (\xi_3(x), \ldots)$$

$$\phi - \psi: (x,y) \mapsto (\xi_4(x), \ldots).$$

Lemma 5.8 implies $(1: \xi_3 + \xi_4: \xi_3 \xi_4) = ((\xi_1 - \xi_2)^2: \ldots)$. Say $\xi_i = \frac{r_i}{s_i}$ for $r_i, s_i \in K[t]$ coprime. This gives

$$(s_3s_4:r_3s_4+r_4s_3:r_3r_4)\stackrel{(\star)}{=}((r_1s_2-r_2s_1)^2:\ldots)$$

where every term is quadratic in r_3, r_4, s_3 and s_4 . Hence (as the terms on the LHS of (\star) are coprime)

$$\begin{split} \deg(\phi + \psi) + \deg(\phi - \psi) &= \max(\deg(r_3), \deg(s_3)) + \max(\deg(r_4), \deg(s_4)) \\ &= \max(\deg(s_3s_4), \deg(r_3s_4 + r_4s_3), \deg(r_3r_4)) \\ &\leq 2\max(\deg(r_1), \deg(s_1)) + 2\max(\deg(r_2), \deg(s_2)) \\ &= 2\deg(\phi) + 2\deg(\psi). \end{split}$$

Now replace ϕ and ψ by $\phi + \psi$ and $\phi - \psi$ and use deg[2] = 4 to get

$$4\deg(\phi) + 4\deg(\psi) = \deg(2\phi) + \deg(2\psi) \le 2\deg(\phi + \psi) + 2\deg(\phi - \psi).$$

This gives the parallelogram law, so deg is a quadratic form. \Box

Corollary 5.9. $deg(n\phi) = n^2 deg(\phi)$. In particular, $deg[n] = n^2$.

Example 5.10. Let E/K be an elliptic curve. Suppose char $K \neq 2$ and $0 \neq T \in E(K)[2]$. WLOG let $E: y^2 = x(x^2 + ax + b)$ for $a, b \in K, b(a^2 - 4b) \neq 0$ (by moving a root to zero) and WLOG T = (0,0).

If
$$P = (x, y)$$
 and $P' = P + T = (x', y')$, then

$$x' = \left(\frac{y}{x}\right)^2 - a - x = \frac{x^2 + ax + b}{x} - a - x = \frac{b}{x}$$
$$y' = -\left(\frac{y}{x}\right)x' = -\frac{by}{x^2}.$$

We let $\xi = x + x' + a = \left(\frac{y}{x}\right)^2$, $\eta = y + y' = \frac{y}{x}\left(x - \frac{b}{x}\right)$. Then

$$\eta^2 = \left(\frac{y}{x}\right)^2 \left(\left(x + \frac{b}{x}\right)^2 - 4b\right) = \xi((\xi - a)^2 - 4b) = \xi(\xi^2 - 2a\xi + a^2 - 4b).$$

Let $E': y^2 = x(x^2 + a'x + b')$ with $a' = -2a, b' = a^2 - 4b$. There is an isogeny $\phi: E \to E'$ given by $(x, y) \mapsto \left(\left(\frac{y}{x}\right)^2: \frac{y(x^2 - b)}{x^2}: 1\right)$.

Sanity check/finding where 0_E maps to: x is a double pole, y is a triple pole, so $\left(\frac{y}{x}\right)^2$ is a double pole and $\frac{y(x^2-b)}{x^2}$ is a triple pole (and the last coordinate 1 has degree 0). Multiplying through by a cube of a uniformizer, the degrees go from (-2, -3, 0) to (1, 0, 3), so $0_E \mapsto (0:1:0)$.

To compute $\deg(\phi)$, $\left(\frac{y}{x}\right)^2 = \frac{x^2 + ax + b}{x}$ with the numerator and denominator coprime as $b \neq 0$, so by Lemma 5.4, $\deg(\phi) = 2$. We say ϕ is a **2-isogeny**.

6 The invariant differential

For C some algebraic curve over $K = \overline{K}$.

Definition 6.1. The space of differentials Ω_C (sometimes called one–forms) is the K(C)-vector space generated by $\mathrm{d} f$ for all $f \in K(C)$ subject to the relations

- (i) d(f+g) = df + dg.
- (ii) d(fg) = fdg + gdf.
- (iii) $da = 0 \ \forall a \in K$.

Fact. Ω_C is a 1-dimensional K(C)-vector space.