دورهٔ آموزشی «علم داده» Data Science Course

جلسهٔ چهارم: توزیعهای پیوسته

مدرس: محمد فزونی عضو هیات علمی دانشگاه گنبدکاووس پائیز ۱۳۹۹

Continuous Distributions

- Sample space is infinite
- ♦ We cannot record the frequency of each distinct value

PDF stands for "Probability Density Function"

Graph of Continuous Distributions

Discrete vs Continuous

The probability for any individual value equal to 0

$$P(X) = 0$$

$$P(x > X) = P(x \ge X)$$

$$P(x < 6 min) = P(x \le 6 min)$$

$$P(x=6)=0$$

Cumulative Distribution Function (CDF)

Probability of Intervals

CDF vs PDF

CDF vs PDF

$$\int_{-\infty}^{y} p(y)dy = F(y)$$

$$p(y) = F(y) \frac{d}{dy}$$

E(y)

$$P(y) = 0 \rightarrow We$$
 can't apply the summation formula

$$E(y) = \int_{-\infty}^{\infty} y p(y) dy$$

Expected Value and Variance

$$P(y) = 0 \rightarrow We$$
 can't apply the summation formula

$$E(y) = \int_{-\infty}^{\infty} y p(y) dy$$

Same variance formula
$$Var(y) = E(y^2) - E(y)^2$$

Standardizing

A special kind of transformation

$$\mu(X) = 0 \qquad \text{Var}(X) = 1$$

Standardizing

$$y = f(x)$$

$$y = f(x - \mu)$$

$$y = f(x)$$

$$y = f(x - \mu)$$

Standardizing

$$y = f(x - \mu)$$

$$y = f\left(\frac{x - \mu}{\sigma}\right)$$

$$y = f(x - \mu)$$

$$y = f\left(\frac{A - \mu}{G}\right)$$

Student's T Distribution

Small sample size approximation of a Normal Distribution

Certain characteristics + Sufficient data = Normal distribution

Certain characteristics + Suffic data = Student's T distribution

Applications of chi-squared

Few events in real life

Statistical analysis

- Hypothesis testing
- Computing confidence intervals

Goodness of fit

Chi-Squared Distribution

Transformation

Y ~ Exp(
$$\lambda$$
)
X = In(Y) => X ~ N(μ , σ^2)

- One of the most common transformations
- One of the most common transformations

Logistic Distribution

Tennis Example

Expectation

Reality

We cannot assume a linear relationship

SUBJECT OF THE NEXT VIDEO

Conditionals in Python

دربارهٔ من

Mohammad Fozouni (Ph.D.)
Dep. of Math & Statistics
Gonbad Kavous University

- fozouni@hotmail.com
- https://m-fozouni.ir
- http://profs.gonbad.ac.ir/fozouni/en
- https://www.aparat.com/elmedade

#data_science_fozouni

