SPRAWOZDANIE Z LABORATORIUM LOGIKI UKŁADÓW CYFROWYCH						
Numer ćwiczenia	206	Temat ćwiczenia	Synteza automatu parametrycznego			
Numer grupy 5 Termin zajęć 15.12.2016; 7:30						
Skład grupy			Prowadzący	Ocena		
Sebastian Korniewicz, 226183		Mgr inż. Antoni Sterna				
Bartosz Rodziewicz, 226105			Mgi Iliz. Antoni Sterna			

1. Cel ćwiczenia

Praktyczne zapoznanie się z działaniem i własnościami automatu parametrycznego.

2. Przebieg ćwiczenia

Ćwiczenie polegało na syntezie strukturalnej automatu parametrycznego składającego się z automatu A_1 i A_2 .

Automat A₁:

 $\mathsf{G} = {}^{0}(\mathsf{q}_{0}{}^{1}(\mathsf{z}_{0}\mathsf{q}_{0},\mathsf{z}_{1}\mathsf{q}_{1}{}^{2}(\mathsf{z}_{0}\mathsf{q}_{2}{}^{3}(\mathsf{z}_{0}\mathsf{q}_{2},\mathsf{z}_{1}\mathsf{q}_{3}{}^{4}(\mathsf{z}_{0}\mathsf{q}_{0},\mathsf{z}_{1}\mathsf{q}_{2})^{4})^{3},\mathsf{z}_{1}\mathsf{q}_{0})^{2})^{1})^{0}$

Automat A₂:

 $\mathsf{G} \text{=}\ ^{0} (\mathsf{q}_{0}^{-1} (\mathsf{z}_{2} \mathsf{q}_{0}, \mathsf{z}_{3} \mathsf{q}_{1}^{-2} (\mathsf{z}_{2} \mathsf{q}_{0}, \mathsf{z}_{3} \mathsf{q}_{2}^{-3} (\mathsf{z}_{2} \mathsf{q}_{0}, \mathsf{z}_{3} \mathsf{q}_{2})^{3})^{2})^{1})^{0}$

$$A_{1}^{*} = {}^{0}(b_{0} {}^{1}(b_{0}, b_{1} {}^{2}(b_{2} {}^{3}(b_{2}, b_{3} {}^{4}(b_{0}, b_{2})^{4})^{3}, b_{0})^{2})^{1})^{0}$$

$$A_{2}^{*} = {}^{0}(b_{0} {}^{1}(b_{0}, b_{1} {}^{2}(b_{0}, b_{2} {}^{3}(b_{0}, b_{2})^{3})^{2})^{1})^{0}$$

$$A'^{*} = {}^{0}(b_{0} {}^{1}(b_{0}, b_{1} {}^{2}(b_{0}, b_{2} {}^{3}(b_{0}, b_{2}, b_{3} {}^{4}(b_{0}, b_{2})^{4})^{3})^{2})^{1})^{0}$$

Z tego powstaje nam taki o to automat parametryczny A':

 $\mathbf{G} = {}^{0}(\mathbf{b_{0}}^{1}(\mathbf{s_{0}b_{0}}, \mathbf{s_{1}b_{1}}^{2}(\mathbf{s_{0}b_{0}}, \mathbf{s_{1}b_{2}}^{3}(\mathbf{s_{0}b_{0}}, \mathbf{s_{1}b_{2}}, \mathbf{s_{2}b_{3}}^{4}(\mathbf{s_{0}b_{0}}, \mathbf{s_{1}b_{2}})^{4})^{3})^{2})^{1})^{0}$

Kodowanie stanów i wejść:

	Q_1	Q_0
b_0	0	0
b ₁	0	1
b ₂	1	0
b ₃	1	1

	S_1	S_0
S ₀	0	0
S ₁	0	1
S ₂	1	0

Poniższa tabela przedstawia stany b_0 - b_3 automatu A' i odpowiadające im poszczególne stany w automatach A_1 i A_2

Stan w A'	Stan w A ₁	Stan w A ₂	
b_0	q_0	$q_{\scriptscriptstyle 0}$	
b ₁	q ₁	q ₁	
b_2	q_2	q_2	
b ₃	q ₃	-	

Teraz wykonujemy zwyczajną syntezę automatu, biorąc za stany b_0 - b_3 , a za sygnały wejściowe s_0 - s_2 .

					1	t	t⊦	-1				
S	stan(t)	stan(t+1)	S ₁	S ₀	Q_1	Q_0	Q_1	Q_0	J ₁	K ₁	J_0	K ₀
s0	b0	b0	0	0	0	0	0	0	0	-	0	-
s1	b0	b1	0	1	0	0	0	1	0	-	1	-
s0	b1	b0	0	0	0	1	0	0	0	-	-	1
s1	b1	b2	0	1	0	1	1	0	1	-	-	1
s0	b2	b0	0	0	1	0	0	0	-	1	0	-
s1	b2	b2	0	1	1	0	1	0	-	0	0	-
s2	b2	b3	1	0	1	0	1	1	-	0	1	-
s0	b3	b0	0	0	1	1	0	0	-	1	-	1
s1	b3	b2	0	1	1	1	1	0	-	0	-	1

Przepisujemy powyższą tabelę na 4 tabelki Karnaugh:

		J1		
S1S0\Q1Q0	00	01	11	10
00	0	0	-	-
01	0	1	-	-
11	-	• • • • •	-	-
10	-	-	-	-

		K1		
S1S0\Q1Q0	00	01	11	10
00			1	1
01	-	ı	0	0
11	-	-	-	-
10	-	-	-	0

		J0		
S1S0\Q1Q0	00	01	11	10
00	0	-	-	0
01	1		-	0
11	-		-	-
10	-	-	-	1

		КО		
S1S0\Q1Q0	00	01	11	10
00	-	1	1	1
01	-	1	1	-
11	-	-	-	-
10	• , -	-	-	

Z tego dostajemy następujące równania:

$$J_{1} = S_{0}Q_{0} = \overline{\overline{S_{0}} + \overline{Q_{0}}}$$

$$K_{1} = \overline{S_{1}}\overline{S_{0}} = \overline{S_{1} + S_{0}}$$

$$J_{0} = S_{0}\overline{Q_{1}} + S_{1}Q_{1} = \overline{\left(\overline{S_{0}}\overline{Q_{1}}\right)(\overline{S_{1}}\overline{Q_{1}}\right)}$$

$$K_{0} = 1$$

W kolejnym kroku przechodzimy do syntezy sygnałów S₁ i S₀:

Wejście p ustanawiamy przyciskiem decydującym który automat jest aktywny i tak p=0 to A_1 , a p=1 to A_2 .

Oba automaty posiadają dwuelementowy alfabet wejściowy: $A_1 - z_1$ i z_2 , $A_2 - z_3$ i z_4 .

Mimo 4 różnych wejść możemy zakodować je na jednym kanale, ponieważ oba automaty nigdy nie będą jednocześnie wykorzystywane. Tak więc:

Sygnał Z	Automat A ₁ , p=0	Automat A ₂ , p=1
0	z_1	Z ₃
1	Z ₂	Z_4

Synteza sygnałów S₁ i S₀:

р	Z	Q_1	Q_0	S ₁	S ₀
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	0	1
0	0	1	1	0	0
0	1	0	0	0	1
0	1	0	1	0	0
0	1	1	0	1	0
0	1	1	1	0	1
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	0	0
1	0	1	1	1	ı
1	1	0	0	0	1
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	-	-

Z tej tabeli od razu widzimy, że

$$S_1 = \overline{P}ZQ_1\overline{Q_0} = \overline{\overline{P}ZQ_1\overline{Q_0}}$$

W celu ustalenia S₀ zapisujemy tabelkę Karnaugh

$PZ\backslash Q_1Q_0$	00	01	11	10
00	0	1	0	1
01	1	0	1	0
11	1	1	1	1
10	0	0	-	0

I z tego dostajemy:

$$S_0 = PZ + ZQ_1Q_0 + \bar{P}Z\overline{Q_1}\overline{Q_0} + \bar{P}\,\bar{Z}\,\overline{Q_1}Q_0 + \bar{P}\,\bar{Z}Q_1\overline{Q_0}$$

I to równanie po długich przekształcenia daje nam:

$$S_0 = \overline{\overline{P} + \overline{Z} + \overline{(ZQ_1Q_0)}} \, \overline{(\overline{P}Z\overline{Q_1} \, \overline{Q_0})} \, \overline{(\overline{P}\, \overline{Z} \, \overline{Q_1}Q_0)} \, \overline{(\overline{P}\, \overline{Z} \, \overline{Q_1}Q_0)} \, \overline{(\overline{P}\, \overline{Z}Q_1\overline{Q_0})}$$

Teraz pozostała nam już tylko do wykonania synteza wyjścia Y.

Tak samo, jak z wejściem oba automaty miały dwuelementowy alfabet wyjściowy, więc możemy całość zakodować na jednym sygnale Y:

Q_1	Q_0	Р	Υ
0	0	0	0
0	1	0	1
1	0	0	0
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	1
1	1	1	-

$P \setminus Q_1Q_0$	00	01	10	11
0	0	1	1	0
1	0	1	-	1

Z tabelki Karnaugh dostajemy równanie:

$$Y = Q_0 + PQ_1\overline{Q_0} = \overline{\overline{Q_0}\ \overline{(PQ_1\overline{Q_0})}}$$

W tym momencie posiadamy już wszystkie potrzebne informacje i schemat układu wygląda tak:

3. Wnioski

Układ, dla którego wykonana została synteza, został podłączony na zajęciach i działał.