PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-092229

(43) Date of publication of application: 06.04.1999

(51)Int.CI.

CO4B 35/581 CO4B 35/64

(21)Application number: 10-198335

(71)Applicant:

TOSHIBA CORP

(22)Date of filing:

14.07.1998

(72)Inventor:

HORIGUCHI AKIHIRO

KASORI MITSUO

UENO FUMIO SATO YOSHIKO **TSUGE AKIHIKO** ENDO HIROSHI HAYASHI MASARU SHINOZAKI KAZUO

(54) PRODUCTION OF HIGHLY HEAT-CONDUCTIVE ALUMINUM NITRIDE SINTERED PRODUCT

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a method for producing an aluminum nitride sintered product comprising dense aluminum nitride having high heat conductivity.

SOLUTION: This method for producing a highly heat-conductive aluminum nitride sintered product comprises sintering (a) a molded product or a sintered product (b) in a sintering vessel producing carbon gas or in a reducing atmosphere obtained by including a substance producing carbon gas on sintering in a sintering vessel (c) under an atmospheric pressure including a reduced pressure at 1,550-2,050° C for a time exceeding 24 hr. The molded product is obtained by mixing aluminum nitride powder having an impurity oxygen content of ≤7 wt. % and an average-particle diameter of 0.05-5 i m with a compound comprising (excluding fluorides) the oxides, nitrides, oxynitrides of rare earth elements in an amount of 0.01-15 wt.% converted into the weight of the rare earth elements. The sintered product has a rare earth element content of 0.01-15 wt.% and an oxygen content of 0.01-20 wt.%, and contains AIN as a main phase and further the phases of a (rare earth element)-Ai-O compound and/or a (rare earth element)-O compound.

LEGAL STATUS

[Date of request for examination]

14.07.1998

[Date of sending the examiner's decision of rejection]

05.01.2001

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-92229

(43)公開日 平成11年(1999)4月6日

(51) Int.Cl.⁶

 $\frac{\mathbf{r}}{\mathbf{r}} = \mathbf{r} - \mathbf{r}$

識別記号

FI

C 0 4 B 35/581

35/64

C 0 4 B 35/58

104B 104U

35/64

A

審査請求有 発明の数1 OL (全 18 頁)

(21)出願番号

特願平10-198335

(62)分割の表示

特願平6-234539の分割

(22)出願日

昭和62年(1987) 5月8日

(71)出願人 000003078

株式会社東芝

神奈川県川崎市幸区堀川町72番地

(72)発明者 堀口 昭宏

神奈川県川崎市幸区小向東芝町1 株式会

社東芝総合研究所内

(72) 発明者 加曽利 光男

神奈川県川崎市幸区小向東芝町1 株式会

社東芝総合研究所内

(72)発明者 上野 文雄

神奈川県川崎市幸区小向東芝町1 株式会

社東芝総合研究所内

(74)代理人 弁理士 外川 英明

最終頁に続く

(54) 【発明の名称】 高熱伝導性窒化アルミニウム焼結体の製造方法

(57)【要約】

【課題】本発明は、緻密で高熱伝導性を有する窒化アル ミニウムからなる窒化アルミニウム焼結体の製造方法を 提供する。

【解決手段】 a) 不純物酸素量が7重量%以下であ り、平均粒径が0.05~5μmである窒化アルミニウ ム粉末と、希土類元素の重量換算で0.01~15重量 %の希土類元素の酸化物、窒化物、酸窒化物からなる化 合物(弗化物を除く)とを混合したのち成形した成形 体、または希土類元素含有量が0.01~15重量% で、酸素含有量が0.01~20重量%であり、A1N を主相とし、(希土類元素)-A1-O化合物および/ または(希土類元素)-〇化合物相を含む焼結体を、 b)カーボンガスを生成する焼成容器または焼成時にカ ーボンガスを生成する物質を焼成容器内に含むことで得 られる還元雰囲気中で、

c)1550~2050℃で、24時間を越える時間、 減圧下を含む雰囲気圧下で焼成することを特徴とする。

【特許請求の範囲】

【請求項1】 a)不純物酸素量が7重量%以下であり、平均粒径が0.05~5μmである窒化アルミニウム粉末と、希土類元素の重量換算で0.01~15重量%の希土類元素の酸化物、窒化物、酸窒化物からなる化合物(弗化物を除く)とを混合したのち成形した成形体、または希土類元素含有量が0.01~15重量%で、酸素含有量が0.01~20重量%であり、A1Nを主相とし、(希土類元素)-A1-O化合物および/または(希土類元素)-O化合物相を含む焼結体を、b)カーボンガスを生成する焼成容器または焼成時にカーボンガスを生成する物質を焼成容器内に含むことで得られる還元雰囲気中で、

c) 1550~2050℃で、24時間を越える時間、 減圧下を含む雰囲気圧下で焼成することを特徴とした高 熱伝導性窒化アルミニウム焼結体の製造方法。

【請求項2】 焼成雰囲気が窒素および、水素,一酸化炭素,カーボンガス,カーボン固相から選ばれた少なくとも一種を含有することを特徴とする請求項1記載の高熱伝導性窒化アルミニウム焼結体の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、窒化アルミニウム 単相からなる窒化アルミニウム焼結体の製造方法に関す る。

[0002]

【従来の技術】窒化アルミニウム (AIN) は高温まで強度低下が少なく、化学的耐性にも優れているため、耐熱材料として用いられる一方、その高熱伝導性、高電気絶縁性を利用して半導体装置の放熱板材料、回路基板用絶縁体材料としても有望視されている。こうした窒化アルミニウムは常圧下で融点を持たず、2500℃以上の高温で分解するため、薄膜などの用途を除いては焼結体として用いられる。

【0003】かかる窒化アルミニウム焼結体は通常、窒 化アルミニウム粉末を成形、焼成して得られる。超微粉 (O. 3μm以下程度)のA1N粉末を用いた場合には 単独でもほぼ緻密な焼結体が得られるが、原料粉末表面 の酸化層中の酸素が焼結時にA1N格子中に固溶した り、A1-O-N化合物を生成し、その結果無添加焼結 体の熱伝導率はたかだか100W/m·K程度である。 また粒径0.5μm以上のA1N粉末を用いた場合は焼 結成形体が良好でないために、ホットプレス法による以 外には無添加では緻密な焼結体を得ることは困難であ る。そこで常圧で焼結体を得ようとする場合、焼結体の 緻密化およびAIN原料粉末の不純物酸素のAIN粒内 への固溶を防止するために、焼結助剤として希土類酸化 物、アルカリ土類金属酸化物等を添加することが一般的 に行われている(特開昭60-127267号公報、特 開昭61-10071号公報、特開昭60-71575

号公報)。これらの焼結助剤はA1N原料粉末の不純物酸素と反応し液相を生成し焼結体の緻密化を達成すると共に、この不純物酸素を粒界相として固定(酸素トラップ)し、高熱伝導率化を達成すると考えられている。 【0004】このように焼結助剤を添加することにより

【0004】このように焼結助剤を添加することにより確かに焼結体は緻密化、高熱伝導率化するが、他方で、結果的に残留する粒界相(主相であるA1Nに対し副相)の存在、完全にトラップしきれなかった酸素等の存在等により、窒化アルミニウム焼結体のそれは高々190W/m・K程度と、A1Nの理論熱伝導率320W/m・Kに対しかなり低いものであった。そのため、窒化アルミニウム焼結体の熱伝導率の向上を目的として種々の試みがなされているが、未だ十分満足するべきものは得られていない。

[0005]

【発明が解決しようとする課題】現在半導体搭載用の回路基板、放熱基板等ではより高い熱伝導率を有する材料が望まれている。しかしながら酸素その他の不純物特に、助剤添加の結果として粒界に生成する粒界相の存在により、窒化アルミニウム焼結体の高熱伝導率化には限界があった。本発明は、以上の点を考慮してなされたもので、熱伝導性に優れた窒化アルミニウム焼結体の製造方法を提供することを目的とする。

[0006]

【課題を解決するための手段】本発明等は上記目的を達成すべく窒化アルミニウム粉末に添加する焼結助剤や焼結条件、焼結体組成、焼結体微細構造等と熱伝導率の関係について実験・検討を進めた結果、以下に示す新規事項を発見し、本発明を完成するに至った。

【0007】すなわち、焼結助剤としてイットリウム化合物をA1N粉末に添加し、窒素を含む還元性雰囲気中で長時間焼成したところ、粒界相(Y-A1-O系化合物相等)の存在量が、従来の窒化アルミニウム焼結体に比べて減少するということがわかった。そして十分長時間焼結すると実質的に副相がなくA1N単相からなり、多結晶体としては非常に高い熱伝導率を有する窒化アルミニウム焼結体が得られるという事実をみいだした。この高熱伝導率化は他の希土類元素でも同様に認められた。

【0008】この事実に基づいて高熱伝導率化を達成する最適条件を種々検討した結果が本発明であり、

- a) 不純物酸素量が7重量%以下であり、平均粒径が 0.05~5μmである窒化アルミニウム粉末と、希土
- 1. 05~5μmである室化/ルミーリム初末と、布工 類元素の重量換算で0.01~15重量%の希土類元素 の酸化物、窒化物、酸窒化物からなる化合物とを混合し たのち成形した成形体を、
- b)カーボンガスを生成する焼成容器または焼成時にカーボンガスを生成する物質を焼成容器内に含むことで得られる還元雰囲気中で、
- c) 1550~2050°Cで、24時間を超える時

間、減圧下を含む雰囲気下で焼成して熱伝導率220W/m・Kを超えるようにした高熱伝導性窒化アルミニウム焼結体の製造方法である。

[0009]

【発明の実施の形態】この様な方法で得られた窒化アル ミニウム焼結体は多結晶体としては非常に高い220W /Kを越える熱伝導率を有し、この焼結体をX線回析お よび電子顕微鏡を用いて構成相を観察してもA1N結晶 粒のみ認められ、他の相は観察されない。また成分分析 を行ったところA1、Nが主成分で、希土類元素O.O 1~8000ppm、不純物酸素2000ppm未満を 含有し、その他の不純物イオン元素は1000ppm以 下という新規な窒化アルミニウム焼結体であった。熱伝 導率向上の観点から希土類元素は0.01~1000p pm、不純物酸素は1000ppm以下が好ましい。実 用上の観点からは希土類元素10~3000ppmが好 ましい。この希土類元素は結晶粒界では観察されないこ とから、A1N結晶粒に固溶しているものと考えられ る。酸素元素も同様である。なお本発明焼結体において は不純物酸素量が極力少ないことが望ましく、また原料 粉に起因する不純物陽イオンも熱伝導率低下の原因とな るため極力少ないことが望まれる。

【0010】本発明のA1N焼結体の密度は3.120~3.285g/cm³ が好ましい。低いと緻密化が十分ではなく、高いと不純物成分が多いことになる。好ましくは3.259~3.264/cm³ である。【0011】

【実施例】本発明の高熱伝導性窒化アルミニウム焼結体の製造方法の実施例の骨子について述べる。本発明の製造方法は、窒化アルミニウム原料粉末の純度および平均粒経、焼結助剤、焼結容器、焼成時間および焼成雰囲気を主体とするものである。

【0012】主成分である窒化アルミニウム原料粉末としては、焼結性、熱伝導性を考慮して酸素を7重量%以下、実用上は0.01~7重量%含有し、平均粒経が0.05~5μmのものを使用する。

【〇〇13】添加物としては希土類元素化合物(Y, S c, Ce, Dyが好ましく、特にイットリウム化合物が好ましい)を用いる。希土類元素の化合物としては、酸化物、窒化物、酸窒化物、もしくは焼成によりこれらの化合物となる物資が最適である。焼成によって例えば上記希土類元素酸化物となる物資としては、これらの元素の炭酸塩、硝酸塩、シュウ酸塩、水酸化物などをあげることができる。

【0014】希土類元素化合物の添加は、希土類元素の重量換算で0.01~15重量%の範囲で添加する。この添加量が0.01重量%未満であると、添加物の効果が十分に発揮されず、焼結体が緻密化されなかったり、A1N結晶中に酸素が固溶し高熱伝導な焼結体が得られない。また、添加量が過度に多いと、粒界相が焼結体中

に残ったり、熱処理により除去される粒界相の体積が大きいため、焼結体中に空孔が残ったり、収縮率が非常に大きくなり、形状がくずれる等の不利な点が生ずる。好ましくは、0.1~15重量%であり、より好ましくは0.5~10重量%である。

【0015】本発明方法においてはこの様なA1N粉と 希土類元素化合物の混合された成形体を後述の条件で焼結しても良いし、また、従来の方法(例えば特開昭61-17160号公報)で、希土類元素含有量が0.01~15重量%で、酸素含有量が0.01~20重量%であり、A1Nを主相とし(希土類元素)-A1-O化合物相および/または(希土類元素)-O化合物相から成る焼結体を製造し、上記成形体の代りに用いてもよい。【0016】焼成雰囲気中に関しては還元雰囲気、特に窒素ガスを含む還元性雰囲気中で行なう。還元性雰囲気はCO,H2 ガスおよびC(ガスそして固相)などを一種または二種以上存在させることによって作ることができる。

【0017】焼成容器に関しては、窒化アルミニウム、 アルミナ、Mo製等でも可能である(特開昭61-14 6769号等)。しかし、これらの容器を用いたもので は、焼結体中に、(希土類元素)-A1-O化合物相な どが存在したままの状態となり、高熱伝導性は得られな い。本発明では、焼成中にカーボンガス雰囲気をつくり 出す容器を用いることが好ましい。この様な焼成容器と しては容器全体がカーボン成形体で試料を設置する箇所 にAIN板、BN板、W板等を敷いたもの、窒化アルミ ニウム製の容器で上部蓋がカーボン製の物等を用いるこ とができる。本発明でいうカーボンガス雰囲気とは、1 550~2050℃の焼結温度範囲で蒸気圧が1×10 -6~5×10-2Pa程度生成するガスをさす。このカー ボンガスが、焼成中のAINを還元するという作用が得 られ、さらに具体的には(希土類元素)-A1-〇三元 系化合物等の粒界相を焼結体中より除去する作用が働 き、窒化アルミニウム焼結体はA1N単相となり、高熱 伝導性の焼結体に変化していく。

【0018】この容器の内容積は、その内容積と窒化アルミニウム成形体との体積の比(内容積/成形体の体積)が 1.1×10^{0} $\sim1\times10^{7}$ が良い。これ以上大きな容積を用いた場合、試料近傍におけるカーボン蒸気圧が低く、カーボンによる粒界相除去効果が小さくなる。この容積比は 5×10^{0} $\sim1\times10^{5}$ が好ましい。

【0019】焼結時間については、従来種々の助剤を用い1~3時間の短時間で行なわれているが、この程度の時間では上記焼成容器中で焼成したとしても、窒化アルミニウム焼結体の緻密化、そして原料粉末表面の酸素を粒界相に固定することは可能であるが、A1N粒間の陵および三重点に粒界相が存在し、A1N単相の焼結体は得られない。また前述の如くのカーボンガス雰囲気が得

られない場合は、長時間の焼成によっても粒界相の除去の効果は現われない。A1N単相にするためには焼結温度および助剤添加量にもよるが、24時間を越える時間が必要である。

【0020】焼成温度については、1550~2050 ℃程度であるが1700~2050℃が好ましい。低温で焼成すると、原料粉末の粒経、酸素量にもよるが緻密な焼結体が得にくく、またカーボンガスの発生が少なくなり、粒界相を残したままとなる。また2050℃より高温で焼成すると、A1N自体の蒸気圧が高くなり、緻密化が困難になると共に、アルミニウムとカーボンとの反応によりアルミニウムの炭化物(A14 C3)を生ずる可能性があり、また(希土類元素)-〇化合物が還元窒化され窒化物と推定される相が生じる。焼成温度はより好ましくは1800~200℃である。さらには1800~1950℃が好ましい。

【0021】酸化性雰囲気で焼成するとカーボンの粒界 純化効果が作用しないばかりでなく、酸素の固溶、異相 生成により高熱伝導性は得られない。なお焼結は真空 (わずかな還元雰囲気を含む)、減圧、加圧および常圧 を含む雰囲気下で行なう。

【0022】次いで本発明の窒化アルミニウム焼結体の 製造方法の一例を以下に述べる。まず、A1N粉末に焼 結添加物として希土類元素化合物を所定料添加したのち ボールミル等を用いて混合する。焼結には常圧焼結法を 使用する。この場合、混合粉末にバインダーを加え、混 練、造粒、整粒を行なったのち成形する。成形として は、金型プレス、静水圧プレス或いはシート成形などが 適用できる。続いて、成形体を非酸化性雰囲気中、例え ば窒素ガス気流中で加熱してバインダーを除去したのち 常圧焼結する。この時用いる焼成容器は、焼成中カーボ ンガス雰囲気をつくり出す、例えばカーボン製容器で、 容器内容積と成形体体積の比が1.1×100 ~1× 107 のものを用いる。焼結温度は1550~205 ○℃に、焼結時間は24時間を越える時間に設定する。 この様な方法により本発明焼結体を得ることができる。 【0023】次に本発明の窒化アルミニウム焼結体の熱 伝導性の向上効果および(希土類元素)-A1-O系化 合物相等の粒界の除去による窒化アルミニウム焼結体の 純化作用について説明する。厳密なメカニズムは現在の ところ完全に解明されているわけではないが、本発明者 らの研究によれば高熱伝導率化の要因として次のように 推定される。

【0024】まず、希土類元素添加によるA1N原料粉末の不純物酸素のトラップ効果である。すなわち、希土類元素化合物を焼結助剤として添加することにより、不純物酸素を(希土類元素)-A1-O化合物等の形でA1N粒界の稜および三重点に固定するため、A1N格子中への酸素の固溶が防止され、A1Nの酸窒化物(A1ON)、そしてA1Nのポリタイプ(27R型)の生成

を防止する。発明者らの研究結果によれば、A10Nそして27R型が生成した焼結体は、いずれも熱伝導率が低いことがわかっている。この様な低熱伝導率化の原因を抑制することが高熱伝導率化の一因として挙げられる。

【0025】希土類元素としてYを選んだ場合は原料粉末の不純物酸素が、 $3Y_2$ $O_3 \cdot 5Al_2$ O_3 、 Y_2 O_3 · Al_2 O_3 、 $2Y_2$ O_3 · Al_2 O_3 、 Y_2 O_3 · Y_2 Y_2 Y_2 Y_2 Y_3 などの化合物としてトラップされる。この状態は焼結初期で起こり、熱伝導率が最高190W/m·K程度に達する。

【0026】これ以降の焼結過程で、焼結体表面の(希土類元素)-0化合物および/または(希土類元素)-A1-0化合物(例えば、 $2Y_2$ O_3 · A1 $_2$ O_3)は、雰囲気中に存在する窒素ガスそしてカーボンガスおよび/またはCOガスなどの還元作用を有する物資により、還元窒化され(希土類元素)-N化合物(例えばYN)およびまたはA1Nに変化する。

【0027】焼結体表面での還元窒化反応により、焼結体内での(希土類元素)-O化合物および/または(希土類元素)-A1-O化合物での濃度勾配が生じ、これが駆動力となってA1N以外の副相は、粒界を経由して、焼結体表面に移動する。そして最終的に焼結体は他の相を実質的に含有しない。A1N単相となり、熱伝導率は大巾に上昇する。これは熱伝導率が小さく熱抵抗として働いていた粒界相が除去されるためである。また長時間の焼成により焼結体の粒子が成長する。A1N粒子が成長すると熱抵抗となる粒界の数が結果的に少なくなることを意味し、フォノンの散乱が小さな焼結体になる。

【0028】以上のような理由により高熱伝導性(220W/m・Kを越える値)窒化アルミニウム焼結体を得ることができる。また本発明の条件を適当な範囲にすることにより、近紫外光における透光性を有するA1N焼結体を得ることができる。

【0029】すなわち、窒化アルミニウム原料粉末として、六方晶系のc軸の結晶格子定数が、498.00pmから498.20pmである窒化アルミニウム粉末を用い、焼結助剤としてイットリウム化合物を添加して、気体状態の炭素が1×10-6Pa以上5×10-4Pa以下存在する窒素ガス中で70Torr以上760Torr以下の窒素圧の雰囲気中で1850℃~1950℃で24時間を越える時間焼成したところ、得られた多結晶体は、粒界の異相の量が従来の窒化アルミニウム多結晶体に比べて少ないばかりでなく、結晶粒自体が物理的、化学的に高純度であり、緻密であるために、少なくとも300nm以上の近紫外域から850nmの可視域にいたる光に対し透過性の高い窒化アルミニウム多結晶体が得られるという事実をみいだした。

【0030】この事実に基づいてA1N焼結体の近紫外

線に対する透光性を達成するのに必要な条件を種々検討したところ、六方晶窒化アルミニウムの結晶粒から成る多結晶体であり、多結晶体の結晶格子定数が六方晶系の c軸方向について497.98 pm以上498.20 pm以下であり、結晶粒界に存在する異相の量が2重量%以下であり気孔率が1%以下で多結晶体の密度が3.255gcm⁻³以上3.275gcm⁻³以下でかつ酸素量が0.2重量%以下周期律表上のVIIa,VIIIに属する遷移金属元素(Mn,Tc,Re,Fe,Co,Ni,Ru,Rh,Pd,Os,Ir,Pt)が0.1重量%以下であることを特徴とする窒化アルミニウム焼結体が透光性であることを見出した。

【0031】このA1N焼結体は以下の様にして製造できる。

- a) 六方晶窒化アルミニウムの結晶格子定数が六方晶系の c 軸方向について498.00pm498.20pm 以下である窒化アルミニウム粉末を主成分とし、これに 希土類元素化合物から成る添加物を、各々の元素の重量 換算で0.01~15重量%添加した成形体を
- b) 気体状態の炭素の分圧が 1×10⁻⁶ Pa以上5×10⁻⁴ Pa以下存在し、窒素ガスの圧力が70Torr以上760Torr以下の雰囲気中で、
- c) 1850℃~1950℃24時間を越える時間~7 20時間焼成することによって得られる。

【0032】この様な方法により得られた窒化アルミニウム多結晶体は、高い透光性を有し、とりわけ近紫外部においても透光性を示す。この窒化アルミニウム多結晶体の透光性は該多結晶体(厚さ0.2mm)についての光の全透過率の波長依存性は図8に示す通りである。下記ランベルトの式により見掛けの吸収係数を求めると、330nmの波長の光に対して70cm⁻¹以下であり50nmの波長の光に対しては50cm⁻¹以下である。

 $I = I_0 e^{-a1}$

I。: 入射光の強度I: 透過光の強度I: 多結晶体の厚さ

a : 見掛けの吸収係数

この窒化アルミニウム多結晶体は、近紫外から赤外にわたる光に対して、従来公知の窒化アルミニウム焼結体に比べると著しく高い透光性を有する。とりわけ300nm~400nmの近紫外光に対し、透光性を示すという特徴と持つ。従来可視部から赤外部にわたり透光性を有する窒化アルミニウムについては公知であるが、本発明においては近紫外光に対しても透光性を示す窒化アルミニウム多結晶体となる。このように近紫外部を含む光のエネルギー領域で高い透光性を持つ窒化アルミニウム焼結体が得られる理由は

1. 原料粉中の窒化アルミニウム結晶粒内に固溶している酸素および陽イオン不純物の極めて少ない原料粉を用い

2. 焼結時に窒化アルミニウム結晶粒内に酸素および陽 イオン不純物が固溶せず、さらには固溶した陽イオン不 純物を多結晶体外に除去してしまう様な焼結法を発明し たために得られた多結晶体の結晶粒の物理的化学的純 度、すなわち不純物量,格子欠陥量が極めて少なく従っ て多結晶体の格子定数が六万晶系窒化アルミニウムのc 軸方向について497.95pmから498.20pm という、完全な窒化アルミニウムの格子定数498.1 6 p m に非常に近い緻密な多結晶体が得られたために、 多結晶体の結晶粒内での光の吸収および散乱とりわけ紫 外部に存在する結晶粒内の固溶酸素やその結果生じる格 子欠陥による吸収が極めて少ないために近紫外光から赤 外光の領域で高い透光性を示す多結晶体が得られたと考 えられる。さらに、粒界に存在する異相が実質的に少な く気孔率が小さいことが透光性の向上に寄与している。 【0033】上述のごとき高い透光性を持つ窒化アルミ ニウム多結晶体は前に述べたごとき種々の条件を満たし て焼成された場合にのみ得らえ、かつとりわけ近紫外光 に対する透過性を満足するためには前述のごとき諸条 件、とりわけ格子定数が六万晶 c 軸について 497.9 5pm以上498.20pm以下であることが最も重要 でありかつ全酸素量が少なくとも0.7重量%でかつ気 孔率が少なくとも1%以下である多結晶体において始め て達成される。

【0034】以下本発明の具体的な実施例を説明する。 実施例1

不純物としての酸素を1.0重量%含有し、平均粒経が 0.6μmのA1N粉末に、添加物として平均粒経0. 9μ mの Y_2 O_3 をイットリウム元素の重量換算で 4重量%添加し、ボールミルを用いて混合を行ない原料 を調整した。ついで、この原料に有機系バインダーを4 重量%添加して造粒したのち500kg/ cm² の 圧力でプレス成形して38×38×10mmの圧粉体と した。この圧粉体を窒素ガス雰囲気中で700℃まで加 熱してバインダーを除去した。更に、BN粉末を塗布し たA1N板を底板としてカーボン製容器(焼成用容器 A)に脱脂体を収容した。このとき容器Aの形状および 大きさは、 $12cm\phi \times 6$. 4cmで内容積が720cm³ 程度である。すなわちこの容器Aの内容積とA1 N成形体の体積の比が約5×101 程度となってい る。この容器を用い窒素ガス雰囲気中(1気圧)190 0℃、96時間の条件で常圧焼結した。得られたA1N 焼結体の密度および粒経を測定した。また焼結体から、 直径10mm、厚さ3.3mmの円板を研削し、これを 試験片としてレーザーフラッシュ法により熱伝導率を測 定した(真空理工製TC-3000使用)。測定した温 度は25℃である。

【0035】さらに、この焼結体の分析を行なった。イットリウムはICP発光分光法(セイコー電子工業製SPS-1200A使用)により、陽イオン不純物の分析

は化学分析により行い、不純物酸素に関しては速中性子放射化分析により行なった(東芝製NAT-200-I C使用)。上記焼結条件および得られた焼結の特性を表 1に示した。

[0036]

【表1】

			報		捉	棌	华				孫括	故	*	坳
	受	**	助利益的量	金を見な器	客機比	株 村 石 成	阳垒异体	対は記録	田文田	本名が	18 18 18 18 18 18 18 18 18 18 18 18 18 1	施度	拉径	熱伝導理
	祖	散茶量	Y重量		•									
	(10)	(* 1 K)	(41%)			3	(記程)	S	æ	(php)	(a (a)	(1/cm2)	(E)	(I/n · I)
火海例1	9	-	7	V	5×10 ¹	1910	36	2	(I. 0)	22	2		15	\$12
2 "	3.5	-:	~	~	5×10 ⁻¹	1910	\$, E		150			15	250
*	20.00	1.0	2	<	101×5	1910	36	ž	(1.0)	29	202		=	213
" 4	. 6 . 6	1:0	**	¥	5×10	9861	***	٠ جو	≃ ::	1 \$0	800	3, 263	12	215
1 0	9. 6		~	*	SXID	1850	95	عر م	(1, 9)	110	009		13	211
, 6	6. 6		₹	*	5×101	1910	95	~		180	800	3, 262	19	872
2	3	# ::	4	*	\$×10	1940	191	.		100	002		30	210
, 00	0.6	0	ব	*	2×10	0061	***	* ~		25	100		25	219
6	9 %	10,	₹	≪	1×11	1940	161	2	(J. 1)	160	900	3. 263	‡1	252
2	9 %	1.0	ਚ	«	1×10	1850	761	*25	G. E.	250	900	3, 284	2.6	257
=	9 0	0 -	4	*	01×\$	1960	*	z	G. :3	180	00\$	3. 262	22	235
. 13	9 6	1.0	4	≪	5×10 ¹	1850	*	N + (550 H2		091	909	3. 262	=	248
										1		1		

【0037】また、この焼結体のX線回析(理学電機製ロータフレックスRU-200、ゴニオメータCN2173D5、線源Cu50kV、100mA使用)行なった結果を図1に、焼結体破面の結晶構造の概略を図2に示した。

【0038】実施例2~4

焼結添加物の添加量を種々に変えて上記実施例1と同様にしてA1N焼結体を製造し、それぞれについて、同様に評価を行なった。

【0039】実施例5~6

焼結温度を種々に変えて上記実施例1と同様にしてA1 N焼結体を製造した。それぞれについて同様の評価を行 なった。

【0040】実施例7~8

焼結時間を変えて上記実施例1と同様にしてAIN焼結体を製造し、それぞれについて同様の評価を行なった。 【0041】実施例9

上記実施例 1 と同様に脱脂までの工程を行なった。そして内側の寸法が $700\phi \times 380$ mmの焼結容器で、窒素ガス減圧雰囲気中(0.1 気圧)、1.9.0.0 ℃において 1.9.2 時間焼結し、同様の評価を行なった。

【0042】実施例10

成形体の寸法が $15\phi \times 6$ mmで、内側の寸法が700 $\phi \times 380$ mmの焼結容器Aの使用、さらに焼結温度を変えた点を除き、上記実施例9と同様にしてA1N焼結体を製造し、同様の評価を行なった。

【0043】実施例11

BN板を底板としてひいたカーボン製容器(焼成容器 B)を用いたことを除いて、上記実施例1と同様にして、A1N焼結体を製造し、同様の評価を行なった。

【0044】実施例13~89

その他種々の条件を変えたものについて特性を調べた結果を表2~表8に示す。ただし、内側の全体がカーボン製の容器(焼成容器C)を実施例45.83では用いた。

【0045】 【表2】

\neg	24								~										~~~	
#1	東市金田		(#/n - R)		152	952	154	156	145	150	210	116	245	111	260	255	241	258	253	343
	中均位据		(BB)		77	**	21	Ξ	=======================================	2	21	23	12	12	99	92	2	=	=	2
- 1	開展		(1/tm3)		3. 270	1. 272	1 268	3. 271	5, 269	3, 171	1. 171	3. 177	3, 175	3, 165	3, 167	3, 173	3. 179	3, 166	3. 161	3, 187
扇	終	如作者	(p b a)		200	-) Des	200	007	018	007	200	200	809	006	997	999	009	909	100	980
	TET	合有量	(010)		160	151	150	==	181	184	109	\$0\$	151	=	151	320	536	160	320	650
	姑成养朋友		R		N ₂ (1.0)	(")	(2)	(")	(")	(")	(*)	(*)	(")	(*)	- 3 3	(*)	(<u>*</u>)	(*)	* * *	(*)
#	總結時間		(##E)		*	*	•	*	ŧ	*	Ł	\$	•	•		8	\$	*	\$	2
esk.	加品简原		3		1900	4	*	3	3	3	1850	0002	1050	1881	1061					
松	和關床	•		•	5×10 ¹	*	ŧ	*		*	ŧ	2	•	2	2	*	:	2	2	2
	罗思斯海豚				4	*	*	3	2	4	ż	*	4	4	ŧ	*	•	•	•	•
報	抵加物	出來解析	(% %)		20	-	01	15	m	.	S	L/A	9.	0.1	 		-i	, .	1.0	3.0
		比		-	<u>></u>	\$	*	3	*	*	k	4	ŧ	4	*	*	*	•	8	\$
	翼	事業者	(x1%)		1.7	•	3	3	,	4	*	`	•	7	•	•	+	•	٤	k
	S	拉路	(ma)		1.9	•		ŧ	8	₹.	k	ą	ŧ	44,	k	ę	ŧ	٦	*	*
					米插例13	7	* 15	* 15	11 *	=	11 "	22 4	" 11	* 22	. 23	12 "	* 25	92 *	13 "	88
									•					_						

【表3】

[0046]

1.9 (*1.8) (*				*		松	₩.	廿			然格	#	母 会	
(12) (4(X)		些	*	教旨物	SEE SE	数据 无	独取智度	器	依以存留负	SINIE	米金	新度	军为位任	無任事事
[510] (713)			西米斯	光緒時期		•				合物機	台有量			
######################################		(as)	(x X)	(X1X)			3	8	(気 形)	(000)	(a)	(t/cm))	(30)	(#/a · K)
	考	1. 9	1.1	٠ ۲	<	5×101	1960	98	16, :Co=19:1 Polte (1. 1)		200	3. 270	==	255
	£				ą	2	2,	3	"" =15:5 " (")		800	1, 165	=	263
		*	•	*	*	1	,	\$:H9 =99,] ~ [200	1. 170	==	253
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	*	"	•		3	3	\$	2	. =99.5 ~		609		=	211
	23	à	Ł.		4	*	3	5		170	107		=	253
1	-		¥	٠ ۲	*	*	\$	5			909		=	252
X X X X X X X X X X X X X X X X X X X	*	ł	Ł	**	*	4	\$	192			390	1. 265	2	\$65
1	* 36	*		∽ .	*	*	•	317	(*)		206	2 265	55	113
1	*	*	*			ł		192	~		804	1 161	97	238
1 X 10 10 10 10 10 10 10	*	*	*	<u>\$1</u>	*	*	*	314	•		909	1. 168	*	133
1 X 10	5.	*	\	 	è	,01×1	•	192	*	91	306		•0	272
1 1 X 10	2	*	*	···	•	1×10		*	(*)	150	200	2, 269	=	27.0
1. IX10	= .	•	\	<u>د</u> د	ŧ	1×10.	•	\$	~	150	919	1 111	=======================================	240
	63	1	3	F.		1. 1×10,	•	•	*	181	200	2, 270	***	741
	2	,	•	د ه	ф	\$×101	•	\$	(*)	99	9	3, 270	=======================================	219

【0047】 【表4】

1				泰	100 100 100 100 100 100 100 100 100 100	聚	*	#			報	新	*	#
(4) (4) (4) (4) (4) (4) (4) (4)		区	森	林拉勒	を変異なる	林智比	を砂路の	200		#INT	新	路底	医自由率	無田等年
(6.8) (TTK) (TTK				北京教育	-	•				を作品	合有量			
(1) 116 (1.8 (1.8 (1.8 (1.8 (1.8 (1.8 (1.8 (1.8		(EB)	(wt X)	(4 K)			3	2	Ŧ	(D 0 d)	(00d)	(8/cm ₃)	(ap)	(M/m·K)
(1.9) 176 (1.8 年8 ¥ 5 B 5×10 ¹ 1900 95 N ₂ (1.9) 176						_								
(5 1.9 1.7 元 5 C 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元 元	三定選択		∞ ⇔	حد بح	m	\$ × 101	0061	38	X, (L.)		200	592 %	22	250
(4)	, (5	-i	1.1	rs F	ပ	*	3	*	*)		200	3, 370	ET?	512
(6.1) [10 (4.1)	5	*	*	un E	≺	1×10	1000		€H: +		009	3, 278	21	213
(4) 110 110 110 1100 1100 1100 1100 1100	<u>.</u>	*	à	·	,	*	1	*	N, (0.1		99	3. 271	12	240
(平均	*		•	un k	3	2×10	1800	4	1, 1) (1, 1)		009	3. 269	==	376
49 3. 4 7 8. 81 A 1×18 1300 384 N. (1.0) \$.01					(中位)				•					
49 3.0 0.34 7 0.01 A 1×10 1900 384 N.					数据									
49 3.0 0 34 7 0.01 A 1×10 1900 384 N.	₹₹				9. 92									
49 3.0 0.34 7 0.01 A 1×10 1900 384 N.					68									
49 3.0 0.34 ~ 0.01 A 1×10 1900 384 N. (1.0) 6.01					22-4									
49 3.4 0.34 × 0.01 A 1×10 1900 384 N. (1.0) 4.01					を付	•								
		*		A 0, 0.1	∢	1×10	1900	786	N ₂ (1. 0)	e. 01	8	3, 261	22	255

A 5×16 ¹ 1900 96 N ₂ C. E) (50 50 3.772 7.10 7.10 7.10 7.10 7.10 7.10 7.10 7.10					寒		野	**	#			盆和		*	斑
位 函 版本版 元 末 政 (で) (G) (G) (文(E) (ppm) (酉	政	然后也	#4.384		统成属度	200	宪	#18xg	25	的政	平 年 日 長	東京海田
(50) (v13)		•	拉路	政分表	用無限形以						山村東	_			
1, 9			(48)	(41%)	(#1X)			3	8	SE ED	(ppm)		(1/03)	(ga)	(A/a - I)
1.9 1.9 (c. 5 A 5×16 ¹ 1900 96 N ₉ (1.0) 156 600 3. "" 5 " 5 " " (") 156 500 3. "" 7:0r=1:1.5 " " " (") 156 500 3.							•								
" " " " " " " " " " " " " " " " " " "	***	化施例 50	1.2	-	te 5	4	SX 16	1960	*	N, C. D		103	3. 272	~	212
" " T:Ce=1:1.5 " " " " " " " " " " " " " " " " " " "		3	*		~	2	•	*	*	(")		205	2 27	=======================================	215
" " Y:Dr=1:1,5 " " " " " " " " " " " " " " " " " " "		25 "	ì	2	1:Ce-1:1. \$	*		ł	•	(*)		205	3. 270	12	250
		53	ŧ	2	Y:Dr=1:1, 5	*	b	3	•	(")		₹00	3. 27.1		152

【0048】 【表5】

【0049】 【表6】

	•				ベ		偿	æ	#				*	10 10	!	₽	₩
		蓝	这	田光	思述統台灣	AL ARE	构造 化	恭成如政	恭成時間	松	京学园纹	\$18X	KR W	報	配限	西南南西	華田華田
		数 珠	製料量	≻	YER							合有量		合有量			
		(11)	(*t%)	-	(K1a)			3			(SE EE)	9	-	(100)	(t/cu))	(0.0)	(N/a - K)
1	;		,	;		,		-								_;	
元を記入	7.5	. N	<u>:</u>	>-		<	.01×5	1860		×.	=	2		909	1, 251	=	?
2	33	`	ŧ	•	٠-	*	•	*	*	' `	2		_	_	- 1 250	=	=======================================
*	26	•		*	91	*	•	b			*	300	2	200	3. 255	<u> </u>	PE 2
4	25	es es	9.4	*	4 05	•	•	*	•	*	*	_		240	2, 153	32	221
*	87	•		*	£ 1	•	*	*	*	2	*	300		910	3, 210	21	250
1	53	•	•	4		•	•	à.	•	*	*)	250		200	1. 256	91	151
*	60	ŧ	à.	*	6	ŧ	ŧ	Ł	•	Ł	٤	1000	_	910	3. 256	35	345
4	=	2° 5	1.1	3	٠,	*	*	Ą	3	k	3	360		910	3, 252	=	=======================================
ŧ	£ 5	1	3 .	•	10	ŧ	•	*	192		3	240		800	3, 251	25	253
ş	~~ \$	*	•	•	<u></u>	•	*	*	38		*	230		200	3, 252	2	267
£	Ξ	#2 ##	4	*	_	ŧ	•	*	161	Ł	2	1 28		400	3. 255	88	267
•	13	ŧ	``	•	_	ŧ	*	*	384	2	Ž	23		400	3, 256	23	275
2	4	150 240		*	s.	•	:	2	*	EQ.	(0. 1)			965	3. 248	22	342
		ŧ	•	ŧ	10			*	ŧ	*	를 다			909	3, 152	91	248
	::	ŧ	Ł	ę	<u>ح</u> د	ŧ	ŧ	*	ŧ	•				909	1. 152	91	200
	5	ŧ	•	*	s,	ŧ		1700	•	4			_	92	1. 158	10	222

[0050]

【表7】

(μm) (wt96) (μm) (wt96) (wt96) (wt96) (wt96) (wt96) (wt96) (wt96) (wt96) (wt96) (wt96) (wt96) (wt96) (wt96) (wt9	1014		汉哲祭件						~	短船 杯待性	Į.	
和後 酸素量 元素 (wt96) (wt96		焼成用	容積比	焼成 焼成		焼成雰囲気		希土類元素酸素	数米	密政	平均粒程	平均粒程 熱伝導性
3.0 0.4 Υ 3.0 0.4 Υ " " " " " 2.6 1.1 " " " " " " " " " " " " " " " " " " "	無無	路路		温度	節組			合有量	合有量			
3.0 0.4 """"" 2.6 1.1 """"" """"" """"" """" """" """ """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ """ "" """ """ """ """ """ """ """ """ """ """ """ ""	(wt%)			(°C)	(超级)	(気圧)	((mdd)	(mdd)	(ppm) (g/cm3)	(m m)	(W/m·K)
71 " " " " " " " " " " " " " " " " " " "	5	4	5×101	1800	96	N2	(1.0)	1100	009	3.135	12	240
72 " " " " 75 75 " " " " 77 77 " " " " " 17 77 79 " " " " " 18 79 " " " " 18 89 1 " " " " 18 89 1 " " " " 18 89 1 " " " " 18 89 1 " " " " 18 89 1 " " " " 18 89 1 " " " " " 18 89 1 " " " " " 18 89 1 " " " " " 18 89 1 " " " " " 18 89 1 " " " " " 18 89 1 " " " " " 18 89 1 " " " " " 18 89 1 " " " " " 18 89 1 " " " " " 18 89 1 " " " " " 18 89 1 " " " " " 18 89 1 " " " " " 18 89 1 " " " " " " 18 89 1 " " " " " " " 18 89 1 " " " " " " " " " " " " " " " " " "	=	*	"	1900	*	*	(<u>*</u>)	908	400	3.153	17	. 243
73 " " 1.1 75 " . " 1.1 76 " , " " 1.1 77 " . " " 1.1 78 " . " " 1.1 80 " . " . " 1.1 81 " . " . " 1.1 82 " . " . " . " 1.1	=	=	2	2000	*	"	(*)	1300	200	3.158	23	242
74 2.6 1.1 75 " " " 77 " " " " 78 " " " " 79 " " " " " 80 " " " " "	*	=	=	2050	2		(%)		400	3.156	26	247
75 " " " " 77 78 " " " " 79 " " " 80 " " " 81 " " 82 " " " 82 " " " " " " " " " " " "	*	=	=	1800	*	N2: Co=99:1	voltt(")	300	900	3.250	14	246
76 ", ", ", 78 ", ", ", ", ", ", ", ", ", ", ", ", ",	<u>"</u>	=	=	*	*	<i>"</i> =95:5	(")"	440	006	3.248	<u> </u>	231
77 " " " " 79 " " " 80 " " " 81 " " 82 " " " " 82 " " " " " " " " " " "	*	=	=	=	*	N2: H2=99:1	(")"	290	909	3.251	14	245
78 " " 80 " " 81 " " 82 " " " " " " " " " " " " " " " "	*	3	=	=	*	" =95:5	(")"	320	200	3.250	4	241
79 " 80 " " 831 " " " " " " " " " " " " " " " " " " "	*	•	1 × 10 7	*	192	N2	(*)	220	400	3.252	14	253
81 " " " 82 " "	*	*	1 × 10 4	*	=	,	くこ)	210	200	3.251	15	253
81 " " "	:	=	2×10°	*	2	"	く こ	290	8	3.252	4	232
82 " "	*	 :	1×10 g	=	_		<u>(</u>)	340	906	3.251	<u>+</u>	233
	*	00	5×10 1	=			ミ	300	900	3.249	14	243
" 83 " " "	*	Ö	=	•		"	Ŝ	230	909	3.248	14	246
" 84 " " "	*	4		8	192	,,	(0.1	430	800	3,210	6 5	221
" 85 " " "	*	"	2×10°	800	96	N2	(1.0)	230	200	3,248	13	246
•	<u> </u>	(平均的任										
	<u>o</u>	0.02 mm	•		_			•				
	R	としまり毎							•			
	(A)	7		-							-	_

【0051】 【表8】

						海林风华				-			烧結体特性	1)1	
	_					XX TIX X IL	t			T	A . X . X	X4 XX	SET PO	日本の公	正古的祭命后道在
	15			#4 C#	田台等	大器公	 本の はな	の方	一点段时间外		市上位元光度光	政光	His	H 1767 +	14.11.20
	*	那种	₹	/H 12	_	HIMM				-	A THE	专作事			
	3	Z-4-25-45	#		数据		温度陈問	延旋	-		加加	THO			
	47.12		£ 3 .		1		3	/ ne ma/	(4x (H)		(maga))(waa)	(g/cm3)(um)		(W/E-K)
	(E 3)	(×t%)		(×1%)			3	(MIH)		7 Ł.,	١	3	200	Γ	956
	L		[8	•	5 X 10	1800	96	27	0	220	3	3,23	2	200
実配約 86	ρ:χ: 	-:	。 う	7	ς	2		;		7 : \	250	COX	3 258	15	238
	:	:	Ċ	1	*	=	*	\$	*		3	3			
18 "	>	:	2		:	:		:		(")	270	9	3.254		241
,, oo	"	"	ů Ž	2	>	2	•	2	<u> </u>		2				970
0	:				:	•	*	2	*	<u> </u>	320	200	3.256	14	243
98 ×	>	*	>	>	•										

【0052】実施例90

六方晶系のc軸方向の格子定数が498.07pmで、不純物としての酸素を1.7重量%含有し、平均粒経が 1.9μ mの $A1N粉末に、添加物として平均粒経<math>0.9\mu$ mの Y_2 O_3 を重量換算で7重量%添加し、ボールミルを用いて混合を行ない原料を調整した。ついで、この原料に有機系バインダーを4重量%添加して造粒したのち1000kg/cm² の圧力でプレス成形して38×10mmの圧粉体とした。この圧粉体を窒素

ガス雰囲気中で700℃まで加熱してバインダーを除去した。さらに、BN粉末を塗布したA1Nを底板としてひいたカーボン製容器(焼成用容器A)に脱脂体を収容した。このとき容器Aの形状および大きさは、12cm φ×6.4cmで内容積が720cm³程度である。すなわちこの容器Aの内容積とA1N成形体の体積の比が5×10¹程度となっている。この容器を用い窒素ガス雰囲気中(700Torr)1870℃、100時間の条件で常圧焼成した。得られたA1N多結晶体の密度および粒経を測定した。また該多結晶体から、直径10mm、厚さ3.0mmの円板を研削し、これを試験片としてレーザーフラッシュ法により熱伝導率を測定した(真空理工製TC-3000使用)。測定温度は25℃である。

【0053】また窒化アルミニウム原料粉末および窒化 アルミニウム多結晶体の格子定数は、粉末もしくは粉砕 した多結晶体粉末に10~20重量%のSi粉末(NB SSRM640標準試料)を混合し理学電機製ロータフ レックスRu-200, ゴニオメータCN2173D5 を用い線源Cu Kai 50kV 150mAにより測 定した100°<2000

っ

で

した100°

く20

く100°

の

範囲にある六方晶窒 化アルミニウムの6本の回析ピークを用い100°<2 θ<126°の範囲のSiの2つの回析ピークの値によ</p> り確度補正を行なった後最小自乗法により求めた。測定 時の室温は25℃±1℃であった。求めた格子定数の値 には±0.05pmの誤差が含まれていることが判って いる。また多結晶体中の酸素量は速中性子放射化分析に より行なった(東芝製NAT-200-IC使用)。さ らにこの多結晶体の元素分析はICP発光分光法(セイ コー電子工業製SPS-1200A使用)および湿式化 学分析法により行なった。多結晶体の気孔率, 粒径は研 磨した多結晶体のSEM写真から求めた(日本電子製J SM-T20使用)。また光の透過率の測定は該多結晶 体から切り出て光学研磨した厚さO.1~O.5mmの 多結晶体(外径20mm ϕ ~12mm ϕ)を用いてCary17自記分光光度計に積分球を設置して測定した (図8)。

【0054】多結晶体の密度は見掛け密度として、空気中での重さと純水中での重さから浮力を求めて測定した。該多結晶体の製造条件を表9に、該多結晶体の特性を表10に示す。

[0055]

【表9】

统成界面外压力/Torr	700 700 500 500
狭压	22222
焼成時間から	28889
統以道政。	1870 1870 1870 1870 1870
统成钩器	4440
YF3遊台灣 輝量名	0000-
### #28	r r 2 2 2 2
浴台谷	7203 7203 7203 7203
対象を開発しませる。	2.3 1.0 1.0
おり枯子皮数の木材のより	498.05 498.50 498.09 498.09
AIN原料铅の B軸/pm	311.13 311.14 311.19 311.15
4 4	戦物 指称::: 室室 1000 1000 1000 1000 1000 1000 100

[0	0	5	6	}
ľ	表	1	0	1	

•	イットリウム 含有量ppm	設殊你社會 ppm	RETA gcm-3	张 %	46 Fro	# Ed	330mでの値 cm-1	500பார் மிர் cm-1	を応導物 メ/ド・大	Vile, Villa族不构物 平均粒徑 元素量 ppm μm	年均配益 F B
英施例90	0 150	400	3.261	0.05	311.12	498.06	12	9.5	255	240	15
2年9月	180	200	3.259	0.7	311,13	497.78	ZOOME	02	195	200	22
2	250	700	3.262	 8	311.90	498.26	不透明	92	170	2000	23
හ ප	28000	10000	3.341	Ξ	311.12	497.97	不透明	80	180	ļ :	9
4	18000	13000	3.347	Ξ	311.12	497.85	不透明	001	195	i	1 5
		(上記我9中の見かけの吸収係数の厚さ0.	りの見かけ	ナの吸収	係数の厚い	±0. 2mm	直径20mm	の試料の光	の全透過率	2mm 直径20mmの試料の光の全透過率から求めた値である)	(Q

【0057】その他条件を種々変えたものも併せて表9および表10に示す。参考例1~4

実施例90と同様な方法により得たA1 N脱脂体を焼結用容器A、およびA1 N製容器Dにセットし、1800~1950℃、2~200 h r、 N_2 中で常圧焼結し、焼結体を得た。これらの多結晶体の製造条件を表りに、特性を表10に示す。さらに、参考例1の多結晶体の透過率の測定結果を図9に示した。格子定数の値も六方晶系のc軸について497. 85 p m 以下と小さくその結果として透光性も悪く熱伝導率も195 W/m·K以下の低い値である。

【0058】このように高い透光性を有するA1N焼結

体を得るためには窒化アルミニウム原料粉の格子定数が 六方晶系のc軸について498.00pm以上<math>498.20pm以下でありかつカーボン還元雰囲気中で Y_2 O_3 助剤を添加して長時間(24時間を越える時間) 焼結することが必要であることがわかる。

【0059】比較例1~3

【0060】 【表11】

			裘		ね	₩.	#				新部	.	*	#1
	西	森	思本語台書	集成图3器	容数比	統結道政	级结時間	田林野野	×	Y合量	第早套	盟	内部	無伝導車
	なり	明 新 新	が開発			Ę	-	í		1000	7	(2,003)		
	(EB)	(KIA)	(K.)			3	(OLIAA)	B	1	Odá.		1		(L'ER) (EG) (A'ER B'
比較例1	40 63	9	4	<	5×10 ¹	0061	-	F		28000	19000		49	1 68
" 2	9.6	7.0	4	М	2×10	1900				29000	11000	3, 319	•	165
ري د	9.0	1.0	4	ပ	01×5	1900		- c-		20080	1000		40	170
7 "	0.0	₽	4	Ω	11×5	1900	*	, es	2 2	18960	13000	3.33	16	168
,		0 7	4	ഥ	5×10	1850	*	*		20400	16000		11	160
£	9,0	1.0	T	٤.	5×101	1950	*	7-S		19000	14000	3, 340	15	151
2		0 7	ı	ı	!	9961		- S-4		ı	1000		s	8
									1					

【0061】さらに、比較例1の焼結体を用い、X線回析を行なった結果を図3に、焼結体の破面の結晶構造の概略を図4に示した。これらの結果および同様の評価の結果より、副相としてイットリウムを含む化合物が観察され、A1N単相でないことがわかり、その結果として熱伝導率も170W/m・K以下の低い値である。

【0062】このように焼結時間が<u>24</u>時間<u>以下</u>と短い場合、カーボン製容器を用いることによる粒界相の除去が十分でないことがわかり、高熱伝導率を有するA1N

焼結体を得るためには長時間(<u>24</u>時間<u>を越える時間</u>) の焼結が必要であることがわかる。

【0063】比較例4~6

実施例1と同様な方法により得たAIN脱脂体を、比較 例4では内側の全体がA1N製の容器(焼成容器D)、 比較例5では内側の全体がアルミナ製の容器(焼成容器 E) 、比較例6では内側の全体がタングステン製の容器 (焼成容器F)を用い、1900℃、96hr、N₂ 気流中で常圧焼結し、焼結体を得た。これらの焼結体の 特性を表1に示す。更に、比較例4の焼結体を用い、X 線回析を行なった結果を図5に、焼結体の破面の結晶構 造の概略図6にそれぞれ示した。これらの結果および、 評価の結果より、副相としてイットリウムを含む化合物 が観察され、A1N単相でないことがわかった。その結 果熱伝導率も168W/m·K以下の比較的に低い値で ある。この様に少なくとも内部の一部が、カーボンより なる焼成容器を用いない場合も高熱伝導率を有するAl N焼結体が得られず、カーボン雰囲気の有効さがわか る。

【0064】比較例7

実施例1で用いたA1N粉末を、500kg/cm²の圧力でプレス成形して、30×30×10mmの圧粉体とし、この圧粉体をカーボン型中に入れ窒素ガス雰囲気中、温度1900℃、400kg/cm²の圧力下で1時間ホットプレス焼結し焼結体を得た。この焼結体の特性を表1に示した。さらにX線回析を行なった結果を図7に示した。この結果より副相としてAI-O-N系化合物が観察され、A1N単相でないことがわかった。結果として熱伝導率も80W/m・Kという低い値であった。

【0065】この様に希土類元素化合物無添加では、A

1 N原料粉末表面の不純物酸素とA1N反応し、熱伝導率をさまたげるA1-O-N化合物が生成してしまうことから、希土類元素化合物の添加の有効さがわかる。

[0066]

【発明の効果】以上述べた如く、本発明の窒化アルミニウム焼結体は実質的にA1N単相からなるもので、高純度かつ、高熱伝導率を示すなど、優れた性質を有するものであり、その工業的価値は極めて大きいものである。

【図面の簡単な説明】

- 【図1】 本発明の実施例を説明するための図
- 【図2】 本発明で得られるA1N焼結体の結晶構造の 概略を示す図。
- 【図3】 比較例1~3のX線回析を行った結果を示す 図。
- 【図4】 比較例のA1N焼結体の結晶構造の概略を示す図。
- 【図5】 比較例4~6のX線回析を行った結果を示す図。
- 【図6】 比較例のA 1 N焼結体の結晶構造の概略を示す図。
- 【図7】 比較例7のX線回析を行った結果を示す図。
- 【図8】 本発明における光の全透過率の波長依存性を示す図。
- 【図9】 参考例における光の全透過率の波長依存性を示す図。

【符号の説明】

- 1…A1Nの回析ピーク
- 2…Y-A1-〇化合物の回析ピーク
- 3…A1-O-N化合物ピーク
- 4…AIN粒
- 5…Y-A1-O化合物(粒界相)

フロントページの続き

(72)発明者 佐藤 佳子

神奈川県川崎市幸区小向東芝町1 株式会

社東芝総合研究所内

(72)発明者 柘植 章彦

神奈川県川崎市幸区小向東芝町1 株式会

社東芝総合研究所内

(72)発明者 遠藤 博

神奈川県川崎市幸区小向東芝町1 株式会

社東芝総合研究所内

(72) 発明者 林 勝

神奈川県川崎市幸区小向東芝町1 株式会

社東芝総合研究所内

(72)発明者 篠崎 和雄

神奈川県川崎市幸区小向東芝町1 株式会

社東芝総合研究所内