Ruseline og propositione gugg, ypakettus 1)
3 am. 8: boccurs noporgrob. (1) $(x)y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = 0$ $L(d) = a_0(x) \frac{d^n}{dx^n} + a_1(x) \frac{d^{n-1}}{dx^{n-1}} + \dots + a_n(x) \frac{d}{dx} + a_n(x)$ L(d) - guggepenegie albertier oneparop.(1): L(d) y = 0. — 10 f.y (c repensemente Choiseiba pensemente une zugg, yp-2. 1°. $L(y_1)=0$, $L(y_2)=0 => L(y_1+y_2)=0$. 2°. $\forall c = const \ L(y) = 0 => L(cy) = 0$.

T. e. pleueseur NODY evonero energenbaso
u gunomeato ra reccea, 1:0. oner objezynos
vecte. up-60. 1°, 2° => L (\(\frac{z}{k=1}\) \(\chi_{k=1}\) \(\ch Ecle ys,..., ym - peereners, TO VC1, ..., Cm. C1 Y1 tout Cmym - pleuereul. Oup. P-une yst, -, ynd reag. meneriko zab. Wa (a,b), cen = = G, m, Cn; Vxe(a,b) C, 4, let +01, M Ong. D-cen ys,..., yn kag ener kezab. Ceren uz yereberd Czytt...+ Cnynt 20 Ha(a,6) Celegyer Cz=0,..., Cn=0. C1914--+ Cnynx=0.

Примеры. 1, x, 2x+5-veen, zerb. 1, x, x², ..., xⁿ-veen, rezab. ex, ex, ..., e - deen, rezab. Oup. Dyreganeveralbreal cucrena plenemen (QCP) yp-2 nopagnan 70 pobres n electe - negel.
peuerleur. Onpegenentent Bporeeroro: $W(x) = \begin{vmatrix} y_1 = - & y_n \\ y_1 = - & y_n \end{vmatrix}$ $\left| \mathcal{J}_{n-1}^{(n-1)} - \mathcal{J}_{n}^{(n-1)} \right|$ Tegs, Dar y_1 -- y_n -pemerenne g,y_p . (1) $W(x) = 0 \iff cucrena \{y_1, -y_n\}$ when, y_n . Ueur W(x) 70 (rue 6 ogtoré Torke),

Mpuliep. Coetabeits guggeryp-es gryngener ceretera pleu. ecu infection ero Y1= 1, 42= ex Pemercie. 1) Forgrener, 270 grue y2(x), y2(x), men. negal. $W(x) = \begin{vmatrix} 1 & e^{x} \\ 0 & -e^{x} \end{vmatrix} = -e^{-x} \neq 0.$ 2) Obuse peuvenue g.yp-x; y= C1.1+C2. ex Uckelbrede C1 4 C2. y'=-C2ex => C2=-y'ex y= G-y'ex. ex = C1-y1; · y + y' = C1; uekerreen G gupgepenegypobling y'+y"=0. Orber: y"+y'=0. 15 roport cnocot.

 $0 = \begin{vmatrix} y_1 & y_2 & y \\ y_1' & y_2' & y' \\ y_1'' & y_2'' & y'' \end{vmatrix} = 0 - e^{x} y'' = 1 \cdot e^{x} \begin{vmatrix} -1 & y' \\ 1 & y'' \end{vmatrix} = e^{x} \left(-y'' - y' \right)$ $|y_1'' & y_2'' & y'' \end{vmatrix} = 0 - e^{x} y'' = 0$ $|y_1'' & y_2'' & y'' \end{vmatrix} = 0$ $|y_1'' & y_2'' & y'' \end{vmatrix} = 0$

nouvereur nopressa 1014 3) (1): L(d)y = 0, L(d) eun guzge oneparop. My cro y_r - racther pennennee: $L(y_r) = 0$. Cgedalie zamery: L(y) = L(yz) · Z + yz · P(Z') = 0 (Sez g - Ba). Moderne g.yp-e, re cogephicaeque Z: P(z')=0. Z'= le => nouvernceure nopregue ua 1. Il enceot - no q-re dingbeneur-Desporpageuro (cu. zanatue 6).

TP, 398. 4 1), Sap. 28. placita oбregee percepece deer gregg, yp-å (*) $x^2y' + xy' - 4y = 0$ $y_1 = x^2 - racrreve pencenne.$ a) YSequence, TO G1 = X2 - Ziplee. ys'=2x, y1"=2. x2.2+x.2x-4,x2=0 (Bepned). 5) Peececel yp-e. 30 neveres preperent y=X2,Z (sh (*) $Y'=2XZ+X^2Z';$ $y'' = 2z + 2xz' + 2xz' + 2xz' + x^2z'' = 2z + 4xz' + x^2z''$ x2(2z+4x21+x2z")+x(2xz+x2z")-4x2z=0 5x3Z+X'=0. 52'+x2"=0.; u=2'; 54 + x4 = 0. xall = -5W $\frac{du}{u} = -5\frac{dx}{v}$ Culul = - 5 ln |x| + ln G $U = \frac{(1)}{X^5} \Rightarrow Z = C_1 X^{-5}$ $Z = -C_1 \cdot \frac{X}{4} + C_2 = \frac{C_1}{X^4} + C_2$ Orber: y= (1/x2+C2X2 $y = x^2 \cdot Z = \frac{G}{v^2} + C_2 \cdot x^2$

TP, W4 1) (NG. 284). $(1-x^2)y''-2xy'+2y=0.$ Dano: 44(x)=x - reictrese percence varion otresse peuverene gugg. yp-2 Perceplere. 1) $(1-x^2)\cdot 0 - 2x\cdot 1 + 2x = 0$ (kepno). 2) Barrerea neperterence. y'' = Z + XZ'; y'' = Z' + Z + XZ'' = 2Z + XZ'' $(1-x^2)(2z'+xz'')-2x(z+xz')+2xz=0.$ $\frac{2z' + xz'' - 2x^2z' - x^3z'' - 2xz - 2x^2z + 2xz = 0}{2}$ $Z''(x-x^3)+Z'(2-4x^2)=0.$ 2'= U. $u'(x-x^3)=u(4x^2-2).$ $\frac{du}{u} = \frac{2(2x^2-1)}{X(1-x^2)} dx$ $|u| = -2 \int \frac{x^2 - 1 + x^2}{(x^2 - 1) \cdot x} dx = -2 \int \int \frac{dx}{x} + \int \frac{x dx}{x^2 - 1}$ ln (u) = -2[ln (x) + \frac{1}{2}ln (x^2 1)] = -2ln(x) - ln (x^2 1) + lu & $Z = \frac{C_1}{X} + \frac{C_2}{2} \ln \left| \frac{X-1}{X+1} \right| + C_2; \quad y = X \cdot Z.$ Orberiy(x) = C1 + X. C1 ln | X-1 | + C2 X.

Ognopoguere very yp-2 e noesoarenbeeve kospos-value. $a_0y^{(n)} + a_1y^{(n-1)} + \dots + a_{n-1}y^{l} + a_ny = 0, \quad a_1 \in \mathbb{R}$ Napartepuerur yp-e; $a_0y^{(n)} + a_1y^{(n-1)} + \dots + a_{n-1}y^{l} + a_ny = 0.$

1 Kapren xap.yp-2	Cootbractuse peneture
JER, respartisue	Cerlox
JOER, Kpathecru	eclox(Co+CgX+-+CK-1XK-1)
il=d±ig respersibili	ex [cospx (A+sm bx.B]
J=X±ip	exx [cospx (Ao+ Axx++ Ax-1xx)
Rpathoetur	+ 8m px (Bot Box + mt Brox Ks)

Sapertue WS. Depropositie de le certe en constant e pabrerer pp. Kap, yp-e; hod" + _ + ans d + an-a=> Kapsun ds, ..., An. NI. To garreble Ropiera Lapaktephictler. yp. 2 NODY e MC coetableto Ly h ranneato eso odigee percepere. 5) d1 = d2 = 1a) $d_1 = 3$, $d_2 = -2$. Y1 = ex; Y2=xer. $y_1 = e^{3x}, y_2 = e$ y=C1+C2X)ex y=Ge3x+Cze-2x $(d-1)^2 = 0$. (d-3)(d+2)=0. $4^{2}-1+6=0.$ y''-y'-6y=0.d2-2d+1=0. y'' - 2y' + y = 0. 6) d_{1,2} = 3 ± 20. 2). 11 = 12 = 13 = 2. y==e2x, y==xe2x 112 = e3x cos2x 42 = e3x sin 2x $y_3 = x^2 e^{2x}$ y = e3x (C1Cos2x+C2 sm2x) y=e2x(G+Gx+Gx2) (d-3-2i)(d-3+2i)=0. $(4-2)^3 = 0$ d3-612+121-8=0 $(1-3)^2+4=0.$ y''' - 6y'' + 12y' - 8y = 0 $d^2 - 6d + 13 = 0$. y"-6y'+13y=0. g) d1=9, d2=d3=4, borreceut y', y"
u ucresoret C1, C2. y = C1 + e (C2 + C3X). $d(d-4)^{2}=0; d(4^{2}-8d+16)=0$ $d^{3}-8d^{2}+16d=0$

y''' - 8y'' + 16y' = 0.

B).
$$y^{(4)} + 4y'' = 0$$
.
 $y^{(4)} + 4y'' = 0$.

9)
$$y^{(6)} + 3y^{(4)} + 3y^{(4)} + y = 0$$
.
 $16 + 3\lambda^{4} + 3\lambda^{2} + 1 = 0$.
 $(1^{2} + 1)^{3} = 0$.
 $1 = +i$, $k = 3$
 $1 = -i$, $k = 3$.
 $1 = -i$, $k = 3$.
 $1 = -i$, $1 = 3$.

$$5) y''' + 2y'' + y' = 0.$$

$$d^{3} + 2d^{2} + d = 0$$

$$d(d+1)^{2} = 0.$$

$$d_{1} = 0, d_{2,3} = -1.$$

$$y = C_{1} + e^{-X}(C_{2} + C_{3}X).$$

7)
$$y'' + 4y' + 5y = 0$$
.
 $d^2 + 4y + 5 = 0$.
 $(d+2)^2 + 1 = 0$.
 $(d+2)^2 = -1$
 $d = -2 \pm i$
 $y = e^{-2x} (\cos x \cdot G + \sin x \cdot G)$

e)
$$y''' - 3y' = 0$$
.
 $3^3 - 3y = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.
 $3(3^2 - 3) = 0$.

Haute obigee Chock Korgo peerence NOSIG(N) J 10, 332 W10.334. $y^{(5)} - 6y^{(4)} + 9y^{(3)} = 0$ $d^{5} - 6y^{4} + 9y^{3} = 0$ y (4) - 8 y "+16 y =0 19-812+16=0 $1^{3}(1^{2}-6d+9)=0$ $d^2=t$ t2-8++16=0 $d^{5}(1-3)^{2}=0$ $(t-4)^2=0$; $(d^2-4)=0$; d1=0, K=3 $(1-2)^2(1+2)^2=0.$ d2=3, K=2 y= G+C2X+C3X2+ $d_{3,2}=2$; $d_{3,4}=-2$. $+ e^{3}(C_4X+C_5)$ $y = e^{2x}(C_1 + C_2x) + e^{-2x}(C_3 + C_4x)$ w 10.335. $y^{(6)} - 2y^{(5)} + 3y^{(4)} - 4y^{(3)} + 3y^{4} - 2y^{4} + y = 0.$ $d^{6}-2d^{5}+3d^{9}-4d^{3}+3d^{2}-2d+1=0.$ 1=1: 1-2+3-4+3-2+1=0=> d=1-roperco. $(d^{6}-2d^{5}+d^{4})+(2d^{4}-4d^{3}+2d^{2})+(d^{2}-2d+1)=0.$ $A^{4}(A^{2}-2A+1)+2A^{2}(A^{2}-2A+1)+(A^{2}-2A+1)=0.$ $(d-1)^2(d^4+2d^2+1)=0$ d'=t; t+2t+1=0, (t+1)=0 d=1, K=2.t=+1; K=2=> d=-1.

Orber; y = ex(C1x+C2) + Cosx(C3x+C4) + sinx(C5x+C6).

d=i, K=2 d=-i, K=2. 3) Peanuto zagary Rouse; y'' + y = 2y = 0, y(0) = 1, y'(0) = -2, $x^{2} - 2x + 1 = 0.$ $y = e^{x}(C_{1} + C_{2}x); y' = e^{x}(C_{1} + C_{2}x + C_{2}).$ $x = 2 \cdot 1 = e^{2}(C_{1} + C_{2}C_{2}) = x \cdot C_{1} = 1$ $-2 = e^{2}(C_{1} + C_{2}C_{2}); -2 = 1 + C_{2}; C_{2} = -3.7$ $0 = e^{x}(1 - 3x);$

(4) Penness Kpaebeyno zagary: Dona!

(a) y'' + y = 0, $y'(0) = y'(\pi) = 0$. $y = A \cos(x + y)$. $y' = -A \sin(x + y)$. $y'(0) = -A \sin(x + y)$. $y'(\pi) = (-1)^{K+1} \sin \pi = 0 \quad \forall A$.