Devoir en temps libre °7 : Énergétique et équilibres acidobasiques

Exercice 1 : Stabilité d'équilibres sur un cercle

On étudie le mouvement d'un point matériel M de masse m contrait de se déplacer sans frottement sur un demi-cercle de rayon R tracé dans un plan vertical dans le champ de pesanteur \overrightarrow{g} et dont un diamètre repose sur le sol.

Il est de plus lié à un ressort de raideur k et de longueur à vide égale au rayon R du cercle. L'autre extrémité du ressort est fixée en un point du cercle noté A.

On repère la position du point matériel par l'angle α défini sur la figure.

Données:

- accélération de la pesanteur : $9.8 \,\mathrm{m}\cdot\mathrm{s}^{-2}$;
- rayon du cercle $R = 10 \,\mathrm{cm}$; masse du point matériel $m = 50 \,\mathrm{g}$.
- **1.** (a) Établir l'expression de l'énergie potentielle \mathscr{E}_{pot} du point matériel. On la mettra sous la forme :

$$\mathcal{E}_{pot} = mgf(\alpha) + kh(\alpha),$$

avec f et g des fonctions dont on précisera la dimension.

- (b) Tracer en les justifiant les allures des fonctions f et h sur l'intervalle $[0;\pi]$. En déduire graphiquement que si la masse m n'est pas trop importante, il existera une position d'équilibre stable dans l'intervalle $[0;\pi]$.
- (c) Discuter l'existence et la stabilité d'une ou plusieurs autres positions d'équilibre dans l'intervalle $[0;\pi]$.
- **2**. On observe une position d'équilibre stable pour $\alpha = \frac{3\pi}{4} \equiv \alpha_{eqs}$.
 - (a) Calculer la valeur de la raideur k pour $m = 50 \,\mathrm{g}$ et $R = 10 \,\mathrm{cm}$.
 - (**b**) Déterminer l'expression et calculer la valeur de la période des oscillations de faible amplitude autour de α_{eas} .
- 3. On étudie les oscillations d'amplitude quelconque. On utilise pour cela le code python accessible à l'adresse

≇ (code 05af−374581 sur capytale).

On prend les valeurs de m, R et k de la question précédente.

- (a) Résoudre numériquement l'équation différentielle d'évolution de θ quand on lâche la masse sans vitesse initiale de $\alpha = 3\pi/4 \pi/10$. Tracer les variations de θ en fonction du temps. Vérifier la valeur de la période des petites oscillations en utilisant l'option events de la fonction solve_ivp.
- (**b**) Déterminer de même la période pour un mouvement dont l'extrémité est en A et tracer de nouveau θ en fonction du temps. Illustrer ainsi l'anharmonicité des oscillations.
- (c) Déterminer de même la durée du mouvement pour aller de $\alpha=\pi/4$ à A quand elle est lâchée sans vitesse initiale. On utilisera l'option terminal de l'option events pour interrompre l'intégration au premier passage en A. Tracer de nouveau α en fonction du temps et déterminer avec y_events la vitesse lors du passage en A.
- (d) Superposer les trajectoires dans l'espace des phases correspondant aux 3 cas précédents.

- **4.** On admet que quand il existe un équilibre stable en α_{eqs} , il existe également un équilibre instable en $\alpha \equiv \alpha_{eqi} \simeq 33^{\circ}$.
 - (a) Le point matériel est initialement situé au point *B*. Quel sera son mouvement ultérieur s'il est initialement immobile?
 - (**b**) Quelle vitesse minimale v_{\min} doit-on lui communiquer quand il est en B pour qu'il puisse atteindre la position d'équilibre α_{eqs} ? Quelle sera alors sa vitesse en α_{eqs} s'il part de B avec une vitesse très légèrement supérieure à v_{\min} ? On donnera les expressions littérales et les valeurs numériques.

Exercice 2 : Régulation du pH sanguin

Le fonctionnement biologique humain nécessite que le pH du sang reste compris dans l'intervalle (7,36;7,44). Cette régulation est principalement assurée par le couple H_2CO_3/HCO_3^- .

Données : $K_a(H_2CO_3/HCO_3^-) = 4,30 \cdot 10^{-7}$; $K_a(HCO_3^-/CO_3^{2-}) = 5,60 \cdot 10^{-11}$; $K_a(HB/B^-) = 1,38 \cdot 10^{-4}$.

- 1. Déterminer les concentrations en H_2CO_3 et HCO_3^- quand le pH du sang vaut 7,4 si la somme de leur concentrations vaut $c = 2,8 \cdot 10^{-2}$ mol·L⁻¹. Dans toute la suite, le sang est initialement dans ces conditions.
- Lors d'un effort physique important, il se forme de l'acide lactique CH₃CHOHCOOH, noté HB, qui passe dans le sang.
 - (a) Calculer la constante d'équilibre de la réaction prépondérante entre l'acide lactique et les espèces contenues dans le sang. Conclure.
 - (b) Quelle est la valeur maximale de la concentration en acide lactique qui peut être apportée dans le sang sans que le pH ne sorte de l'intervalle permis?
 - (c) Pour un apport de $2.0 \cdot 10^{-3} \, \text{mol} \cdot \text{L}^{-1}$ d'acide lactique, quelle est la nouvelle valeur du pH du sang. Commenter.
- 3. La respiration permet de maintenir constante la concentration en H_2CO_3 en expirant du dioxyde de carbone dont H_2CO_3 est la forme dissoute.
 - (a) Quelle est dans ces conditions la nouvelle valeur du pH après l'apport de $2,0\cdot10^{-3}$ mol· L^{-1} d'acide lactique?
 - (**b**) En déduire la variation de la concentration totale en H₂CO₃ et HCO₃. Commenter.
 - (c) Quelle quantité de H_2CO_3 (en mol) un organisme humain aura-t-il dû expirer? On n'hésitera pas à utiliser tout paramètre de culture générale nécessaire.

Correction de l'exercice 1

Calculons tout d'abord:

$$pK_{a1} \equiv pK_a(H_2CO_3/HCO_3^-) = 6.37$$
 $pK_{a2} \equiv pK_a(HCO_3^-/CO_3^{2-}) = 10.25$ $pK_{aB} \equiv pK_a(HB/B^-) = 3.62$.

1. Le pH est proche de $pK_a(H_2CO_3/HCO_3^-)$, la concentration en CO_3^{2-} sera donc négligeable. On a alors :

$$\begin{split} \frac{[H_2CO_{3(aq)}]}{[HCO_3^-]} &= 10^{pH-pK_a}1 = 11 \\ et: [H_2CO_{3(aq)}] + [HCO_3^-] &= c \to [HCO_3^-] = \frac{c}{1 + [H_2CO_3]/[HCO_3^-]} = 2,56 \cdot 10^{-2} \, \text{mol} \cdot \text{L}^{-1} \\ et, \ de \ \text{même}: \ [H_2CO_{3(aq)}] &= 2,4 \cdot 10^{-3} \, \text{mol} \cdot \text{L}^{-1}. \end{split}$$

2. (a) L'acide HB réagit avec la meilleure base présente, HCO₃ selon :

HB + HCO₃
$$\Longrightarrow$$
 B⁻ + H₂CO₃ $K = \frac{K_a(\text{HB/B}^-)}{K_a(\text{H}_2\text{CO}_3/\text{HCO}_3^-)} = 3.2 \cdot 10^2$.

La constante est assez élevée, la réaction sera totale.

(b) Cette réaction va diminuer le pH en augmentant la proportion de H₂CO₃ dans le couple H₂CO₃/HCO₃[−]. Comme la concentration en H₃O⁺ ne varie que de 10^{−7.36} − 2·10^{−7.4} = 2,3·10^{−7} mol·L^{−1}, négligeable devant [H₂CO₃] et [HCO₃[−]], on peut négliger l'effet de la réaction avec l'eau du couple H₂CO₃/HCO₃[−] et appliquer :

$$pH = pK_a(H_2CO_3/HCO_3^-) + log \frac{[HCO_3^-]}{[H_2CO_3]}.$$

Le sang deviendra trop acide pour pH = 7,36, et on aura alors :

$$[HCO_3^-] = \frac{c}{1 + [H_2CO_3]/[HCO_3^-]} = 2,54 \cdot 10^{-2} \text{ mol} \cdot \text{L}^{-1}.$$

En comparant à la valeur précédente, on constate qu'on n'a consommé que $2\cdot 10^{-4}\, \text{mol} \cdot L^{-1}$: on ne peut donc pas apporter plus de $2\cdot 10^{-4}\, \text{mol} \cdot L^{-1}$ d'acide lactique.

(c) On apporte cette fois 10 fois trop d'acide. On dresse le tableau d'avancement : On peut dresser le tableau

		$+$ $HCO_3^ =$		2 3
d'avancement en supposant que la réaction est totale.		$2,56 \cdot 10^{-2}$ $2,36 \cdot 10^{-2}$		
	U	2,30.10	2.10	4,4.10

En négligeant de nouveau l'effet sur ces concentrations des réactions avec l'eau, on a :

$$pH = pK_{a2} + log \frac{2,36 \cdot 10^{-2}}{4.4 \cdot 10^{-3}} = 7,09.$$

C'est bien légitime puisque de nouveau la variation de $[H_3O^+]$ est de l'ordre de $1\cdot 10^{-7}$ mol·L⁻¹, négligeable devant les concentrations de $H_2CO_{3(a0)}$ et HCO_3^- .

3. (a) Au lieu d'avoir [H₂CO₃] = 4,4⋅10⁻³ mol⋅L⁻¹, elle reste constante à 2,36⋅10⁻² mol⋅L⁻¹. On a en revanche comme précédemment [HCO₃] = 2,4⋅10⁻³ mol⋅L⁻¹ et de nouveau :

pH = p
$$K_{a_1}$$
 + log $\frac{2,36 \cdot 10^{-2}}{2,4 \cdot 10^{-3}}$ = 7,36,

à la limite acide du domaine acceptable.

(**b**) On calcule alors:

$$[H_2CO_3] + [HCO_3^-] = 2.36 \cdot 10^{-2} + 2.4 \cdot 10^{-3} = 2.60 \cdot 10^{-2} \text{ mol} \cdot \text{L}^{-1}$$

En comparant à la concentration initiale $c = 2.8 \cdot 10^{-2} \,\text{mol} \cdot \text{L}^{-1}$, on constate une diminution de $\Delta c = 2.00 \cdot 10^{-3} \,\text{mol} \cdot \text{L}^{-1}$.

(c) Pour un volume sanguin de V = 5L, on obtient donc une quantité n = ΔcV = 1,00 · 10⁻² mol. Le volume molaire d'un gaz parfait étant de 25 L à θ = 25°C, cette quantité de H₂CO_{3(aq)} correspond à un volume de 0,25 L de CO_{2(n)} expiré.