CS 4320, Question 1

Katherine Tang (kat
86) , Kevin Gregor (krg43) , Ruixin Ng (rn279) October 2016

1. Assume $X \to Y$ and $X \to Y$

 $(X)^+ = \{X, Y\}$

 $X \in (X)^+$ by Armstrong's axiom of reflexivity (i.e. since $X \subseteq X, X \to X$)

 $Y \in (Y)^+$ by the first functional dependency.

 $(Y)^+ = \{X, Y\}$

 $Y \in (Y)^+$ by Armstrong's axiom of reflexivity (i.e. since $Y \subseteq Y, Y \to Y$)

 $X \in (Y)^+$ by the second functional dependency.

Therefore, $(Y)^+ = \{X, Y\} = (X)^+$

For the other direction, assume $(Y)^+ = (X)^+$

 $\forall x \in (X)^+, x \in (Y)^+$

Since the closure of $(Y)^+$ is the set of all attributes k such that $(Y \to k) \in F_y^+, Y \to x, \forall x \in (X)^+$.

Hence, $Y \to X$.

 $\forall y \in (Y)^+, y \in (X)^+$

Since the closure of $(X)^+$ is the set of all attributes k such that $(X \to k) \in F_x^+, X \to y, \forall y \in (Y)^+$.

Hence, $X \to Y$.

(b) Assume $X \to Y$ and consider a relation R with attributes A.

Then $X \to XY$ by Armstrong's axiom of reflexivity (i.e. since $X \subseteq XY, X \to XY$)

Since a superkey refers to any $S \subseteq A$ such that $S \to A$, X is a superkey of XY, which is logically equivalent to the statement that X is a superkey of $\pi_{XY}(R)$ since $\pi_{XY}(R)$ is a relation with the attributes XY.

For the other direction, assume X is a superkey of $\pi_{XY}(R)$, which refers to a new relation with the attributes XY. This means that X is a superkey of XY.

Since a superkey refers to any $S \subseteq A$ such that $S \to A$, $X \to XY$. This can be broken into $X \to X$ and $X \to Y$. Hence, $X \to Y$ is proven.

(c) Assume $Z \to Y$ holds on R.

To prove $R = \pi_X(R) \bowtie \pi_Y(R)$, we have to prove:

(i) $R \subseteq \pi_X(R) \bowtie \pi_Y(R)$

```
 \begin{split} &\text{(ii) } \pi_X(R) \bowtie \pi_Y(R) \subseteq R \\ &\text{To prove (i),} \\ &\forall t \in R, t[X] \in \pi_X(R) \\ &t[Y] \in \pi_Y(R) \\ &t = t[X] \cup t[Y] \end{split}
```

Since $Z \neq \emptyset$, 2 projections of an attribute of t will appear in $\pi_X(R)$ and $\pi_Y(R)$, and hence they will be matched in the join. Therefore, $t \in \pi_X(R) \bowtie \pi_Y(R)$.

To prove (ii), $\forall t \in \pi_X(R) \bowtie \pi_Y(R), \exists t1, t2 \in R \text{ such that } t[Z] = t1[Z] \text{ and } t[Z] = t2[Z].$ $Z \to Y \text{ holds on R implies that if } t1[Z] = t2[Z] \Rightarrow t1[Y] = t2[Y].$ Since t1[Z] = t2[Z] and t1 and t2 are matched in a join to form t, this implies that t[Y] = t1[Y]. $\Rightarrow t = t1$

Since $\forall t \in \pi_X(R) \bowtie \pi_Y(R) \exists t 1 \in R \text{ such that } t = t1, \pi_X(R) \bowtie \pi_Y(R) \subseteq R.$

Hence, $R = \pi_X(R) \bowtie \pi_Y(R)$.