

CFDS® – Chartered Financial Data Scientist

Introduction to Python

Prof. Dr. Natalie Packham

29 November and 13 December 2023

Table of Contents

- 4 Financial Time Series
 - 4.1 Financial Data
 - 4.2 Correlation analysis and linear regression

Financial Time Series

- Time series are ubiquitous in finance.
- pandas is the main library in Python to deal with time series.

Financial Data

Financial data

- For the time being we work with locally stored data files.
- These are in .csv -files (comma-separated values), where the data entries in each row are separated by commas.
- Some initialisation:

```
In [31]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         plt.style.use('seaborn')
         plt.rcParams['font.family'] = 'serif'
```

/var/folders/46/b127yp714m71zfmt9j7 lhwh0000gg/T/ipykernel 5169 8/2492143664.py:4: MatplotlibDeprecationWarning: The seaborn st yles shipped by Matplotlib are deprecated since 3.6, as they no longer correspond to the styles shipped by seaborn. However, th ey will remain available as 'seaborn-v0 8-<style>'. Alternative ly, directly use the seaborn API instead. plt.style.use('seaborn')

- pandas provides a numer of different functions and DataFrame methods for importing and exporting data.
- Here we use pd.read csv().
- The file that we load contains end-of-day data for different financial instruments retrieved from Thomson Reuters.

```
In [32]: # If using colab, then uncomment the line below and comment the line af
    #filename = 'https://raw.githubusercontent.com/packham/Python_CFDS/mair.
    filename = './data/tr_eikon_eod_data.csv' # path and filename
    f = open(filename, 'r') # this will give an error when using colab; jus
    f.readlines()[:5] # show first five lines

Out[32]: ['Date,AAPL.O,MSFT.O,INTC.O,AMZN.O,GS.N,SPY,.SPX,.VIX,EUR=,XAU
    =,GDX,GLD\n',
        '2010-01-01,,,,,,,1.4323,1096.35,,\n',
        '2010-01-04,30.57282657,30.95,20.88,133.9,173.08,113.33,1132.9
    9,20.04,1.4411,1120.0,47.71,109.8\n',
        '2010-01-05,30.625683660000004,30.96,20.87,134.69,176.14,113.6
    3,1136.52,19.35,1.4368,1118.65,48.17,109.7\n',
        '2010-01-06,30.138541290000003,30.77,20.8,132.25,174.26,113.7
    1,1137.14,19.16,1.4412,1138.5,49.34,111.51\n']
```

```
In [33]: data = pd.read csv(filename, # import csv-data into DataFrame
                          index col=0, # take first column as index
                          parse dates=True) # index values are datetime
In [34]:
        data.info() # information about the DataFrame object
         <class 'pandas.core.frame.DataFrame'>
         DatetimeIndex: 2216 entries, 2010-01-01 to 2018-06-29
         Data columns (total 12 columns):
          # Column Non-Null Count Dtype
          O AAPL.O 2138 non-null float64
            MSFT.O 2138 non-null float64
            INTC.O 2138 non-null float64
          3 AMZN.O 2138 non-null float64
           GS.N 2138 non-null float64
            SPY 2138 non-null float64
            .SPX 2138 non-null float64
           .VIX 2138 non-null float64
            EUR= 2216 non-null float64
          9 XAU= 2211 non-null float64
          10 GDX 2138 non-null float64
          11 GLD 2138 non-null float64
         dtypes: float64(12)
         memory usage: 225.1 KB
```

In [35]:

data.head()

Out[35]:

	AAPL.O	MSFT.O	INTC.O	AMZN.O	GS.N	SPY	.SPX	.VIX	EU
Date									
2010- 01-01	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	1.43
2010- 01- 04	30.572827	30.950	20.88	133.90	173.08	113.33	1132.99	20.04	1.44
2010- 01- 05	30.625684	30.960	20.87	134.69	176.14	113.63	1136.52	19.35	1.43
2010- 01- 06	30.138541	30.770	20.80	132.25	174.26	113.71	1137.14	19.16	1.44
2010- 01-07	30.082827	30.452	20.60	130.00	177.67	114.19	1141.69	19.06	1.43

In [36]: data.tail()

Out[36]:

	AAPL.O	MSFT.O	INTC.O	AMZN.O	GS.N	SPY	.SPX	.VIX	EUR:
Date									
2018- 06- 25	182.17	98.39	50.71	1663.15	221.54	271.00	2717.07	17.33	1.170:
2018- 06- 26	184.43	99.08	49.67	1691.09	221.58	271.60	2723.06	15.92	1.164
2018- 06- 27	184.16	97.54	48.76	1660.51	220.18	269.35	2699.63	17.91	1.155:
2018- 06- 28	185.50	98.63	49.25	1701.45	223.42	270.89	2716.31	16.85	1.156
2018- 06- 29	185.11	98.61	49.71	1699.80	220.57	271.28	2718.37	16.09	1.168
06- 27 2018- 06- 28 2018- 06-	185.50	98.63	49.25	1701.45	223.42	270.89	2716.31	16.85	1.156

```
In [37]: data.plot(figsize=(10, 10), subplots=True);
```


- The identifiers used by Thomson Reuters are so-called RIC's.
- The financial instruments in the data set are:

```
In [39]: for ric, name in zip(data.columns, instruments):
            print('{:8s} | {}'.format(ric, name))
                  | Apple Stock
         AAPL.O
         MSFT.O | Microsoft Stock
         INTC.O | Intel Stock
         AMZN.O | Amazon Stock
                 | Goldman Sachs Stock
         GS.N
         SPY
                 | SPDR S&P 500 ETF Trust
         .SPX | S&P 500 Index
               | VIX Volatility Index
         .VIX
         EUR=
                    EUR/USD Exchange Rate
         XAU=
                 | Gold Price
         GDX
                 | VanEck Vectors Gold Miners ETF
                    SPDR Gold Trust
         GLD
```

Summary statistics

In [40]:

data.describe().round(2)

Out[40]:

	AAPL.O	MSFT.O	INTC.O	AMZN.O	GS.N	SPY	.SPX	.VIX	
count	2138.00	2138.00	2138.00	2138.00	2138.00	2138.00	2138.00	2138.00	2
mean	93.46	44.56	29.36	480.46	170.22	180.32	1802.71	17.03	
std	40.55	19.53	8.17	372.31	42.48	48.19	483.34	5.88	
min	27.44	23.01	17.66	108.61	87.70	102.20	1022.58	9.14	
25%	60.29	28.57	22.51	213.60	146.61	133.99	1338.57	13.07	
50%	90.55	39.66	27.33	322.06	164.43	186.32	1863.08	15.58	
75%	117.24	54.37	34.71	698.85	192.13	210.99	2108.94	19.07	
max	193.98	102.49	57.08	1750.08	273.38	286.58	2872.87	48.00	

Summary statistics

• The aggregate() -function allows to customise the statistics viewed:

Out[41]:		AAPL.O	MSFT.O	INTC.O	AMZN.O	GS.N	SPY	.SPX	.VIX	EUF
	min	27.44	23.01	17.66	108.61	87.70	102.20	1022.58	9.14	1.(
	mean	93.46	44.56	29.36	480.46	170.22	180.32	1802.71	17.03	1.2
	std	40.55	19.53	8.17	372.31	42.48	48.19	483.34	5.88	Ο.
	median	90.55	39.66	27.33	322.06	164.43	186.32	1863.08	15.58	1.1
	max	193.98	102.49	57.08	1750.08	273.38	286.58	2872.87	48.00	1.4

- When working with financial data we typically (=always you must have good reasons to deviate from this) work with performance data, i.e., **returns**.
- Reasoning:
 - Historical data are mainly used to make forecasts one or several time periods forward.
 - The daily average stock price over the last eight years is meaningless to make a forecast for tomorrow's stock price.
 - However, the daily returns are possible scenarios for the next time period(s).
- The function pct change () calculates discrete returns:

$$r_t^{ ext{d}} = rac{S_t - S_{t-1}}{S_{t-1}},$$

where S_t denotes the stock price at time t.

In [42]: data.pct_change().round(3).head()

Out[42]:

	AAPL.O	MSFT.O	INTC.O	AMZN.O	GS.N	SPY	.SPX	.VIX	EUR=
Date									
2010- 01-01	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2010- 01- 04	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	0.006
2010- 01- 05	0.002	0.000	-0.000	0.006	0.018	0.003	0.003	-0.034	-0.003
2010- 01- 06	-0.016	-0.006	-0.003	-0.018	-0.011	0.001	0.001	-0.010	0.003
2010- 01-07	-0.002	-0.010	-0.010	-0.017	0.020	0.004	0.004	-0.005	-0.007

```
In [43]: data.pct_change().mean().plot(kind='bar', figsize=(10, 6));
```


- In finance, log-returns, also called continuous returns, are often preferred over discrete returns: $r_t^c = \ln\left(\frac{S_t}{S_{t-1}}\right)$.
- The main reason is that log-return are additive over time.
- For example, the log-return from t-1 to t+1 is the sum of the single-period log-returns:

$$r_{t-1,t+1}^{ ext{c}} = \lnigg(rac{S_{t+1}}{S_t}igg) + \lnigg(rac{S_t}{S_{t-1}}igg) = \lnigg(rac{S_{t+1}}{S_t}\cdotrac{S_t}{S_{t-1}}igg) = \lnigg(rac{S_{t+1}}{S_{t-1}}igg).$$

• Note: If the sampling (time) interval is small (e.g. one day or one week), then the difference between discrete returns and log-returns is negligible.

In [44]: rets = np.log(data / data.shift(1)) # calculates log-returns in a vect In [45]: rets.head().round(3) AAPL.O MSFT.O INTC.O GS.N **AMZN.O** SPY .SPX .VIX **EUR=** Out[45]: **Date** 2010-NaN NaN NaN NaN NaN NaN NaN NaN NaN 01-01 2010-01-NaN NaN NaN NaN NaN 0.006 NaN NaN NaN 04 2010-01-0.002 0.000 -0.000 0.006 0.018 0.003 0.003 -0.035 -0.003 05 2010-01--0.016 -0.006 -0.003 -0.018 -0.011 0.001 0.001 -0.010 0.003 06 2010--0.002 -0.010 -0.010 -0.017 0.019 0.004 0.004 -0.005 -0.00701-07

```
In [46]: rets.cumsum().apply(np.exp).plot(figsize=(10, 6)); # recover price pat
```


Correlation analysis and linear regression

- To further illustrate how to work with financial time series we consider the S&P 500 stock index and the VIX volatility index.
- Empirical stylised fact: As the S&P 500 rises, the VIX falls, and vice versa.
- Note: This is about **correlation** not **causation**.

```
In [47]: # EOD data from Thomson Reuters Eikon Data API

# If using colab, then uncomment the line below and comment the line at 
#raw = pd.read_csv('https://raw.githubusercontent.com/packham/Python_CF
raw = pd.read_csv('./data/tr_eikon_eod_data.csv', index_col=0, parse_data = raw[['.SPX', '.VIX']].dropna()
data.tail()
```

Out[47]:		.SPX	.VIX
	Date		
	2018-06-25	2717.07	17.33
	2018-06-26	2723.06	15.92
	2018-06-27	2699.63	17.91
	2018-06-28	2716.31	16.85
	2018-06-29	2718.37	16.09

```
In [48]: data.plot(subplots=True, figsize=(10, 6));
```


 Transform both data series into logreturns:

```
In [49]:
         rets = np.log(data / data.shift(1))
          rets.head()
                           .SPX
                                      .VIX
Out[49]:
                 Date
          2010-01-04
                           NaN
                                      NaN
          2010-01-05
                       0.003111
                                 -0.035038
          2010-01-06
                      0.000545
                                 -0.009868
          2010-01-07
                       0.003993
                                 -0.005233
          2010-01-08 0.002878
                                 -0.050024
```

```
In [50]: rets.dropna(inplace=True) # drop NaN (not-a-number) entries
```

```
In [51]: rets.plot(subplots=True, figsize=(10, 6));
```


OLS regression

- Linear regression captures the linear relationship between two variables.
- For two variables x, y, we postulate a linear relationship:

$$y = \alpha + \beta x + \varepsilon, \quad \alpha, \beta \in \mathbb{R}.$$

- Here, α is the **intercept**, β is the **slope (coefficient)** and ε is the **error term**.
- Given data sample of joint observations $(x_1, y_1), \dots, (x_n, y_n)$, we set

$$y_i = \hat{lpha} + \hat{eta} x_i + \hat{arepsilon}_i,$$

where $\hat{\alpha}$ and $\hat{\beta}$ are estimates of α, β and $\hat{\varepsilon}_1, \dots, \hat{\varepsilon}_n$ are the so-called **residuals**.

• The **ordinary least squares (OLS)** estimator $\hat{\alpha}$, $\hat{\beta}$ corresponds to those values of α , β that minimise the sum of squared residuals:

$$\min_{lpha,eta}\sum_{i=1}^narepsilon_i^2=\sum_{i=1}^n(y_i-lpha-eta x_i)^2.$$

OLS regressions

Simplest form of OLS regression:

```
In [54]: reg = np.polyfit(rets['.SPX'], rets['.VIX'], deg=1) # fit a linear equ
reg.view() # the fitted paramters

Out[54]: array([-6.65160028e+00, 2.62132142e-03])

2.62e-03 is scientific notation: 2.62e - 03 = 2.62 · 10<sup>-3</sup>.

In [55]: ax = rets.plot(kind='scatter', x='.SPX', y='.VIX', figsize=(8, 5))
ax.plot(rets['.SPX'], np.polyval(reg, rets['.SPX']), 'r', lw=2);
```


OLS regression

• To do a more refined OLS regression with a proper analysis, use the package statsmodels.

```
In [56]: import statsmodels.api as sm
         Y=rets['.VIX']
         X=rets['.SPX']
         X = sm.add constant(X)
In [57]: model = sm.OLS(Y,X)
         results = model.fit()
In [58]: results.params
Out[58]: const 0.002621
          .SPX -6.651600
          dtype: float64
In [59]:
         results.predict()[0:10]
         array([-0.01807052, -0.0010063, -0.0239404, -0.01651898, -0.0]
Out[59]:
          0898726,
                  0.06531557, -0.05252965, -0.01349928, 0.07500527, -0.0
          80006151)
```

OLS regression

```
In [60]: print(results.summary())
```

```
OLS Regression Results
Dep. Variable:
                             .VIX R-squared:
0.647
Model:
                                   Adj. R-squared:
                              OLS
0.647
                     Least Squares F-statistic:
Method:
3914.
Date:
                  Sun, 26 Nov 2023 Prob (F-statistic):
0.00
Time:
                          15:04:17 Log-Likelihood:
3550.1
No. Observations:
                             2137
                                   AIC:
-7096.
Df Residuals:
                             2135
                                   BIC:
-7085.
Df Model:
Covariance Type:
                        nonrobust
______
               coef std err t P>|t|
                                                     [0.
0.975
      0.0026 0.001 2.633
                                           0.009
                                                      0.
const
```

001 0.005 -6.6516 0.106 -62.559 0.000 .SPX -6. 860 -6.443518.582 Durbin-Watson: Omnibus: 2.094 Prob(Omnibus): 0.000 Jarque-Bera (JB): 6789.425 0.766 Prob(JB): Skew: 0.00 Kurtosis: 11.597 Cond. No. 107.

==========

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS regression: Interpretation of output and forecasting

- The column coef lists the coefficients of the regression: the coefficient in the row labelled const corresponds to $\hat{\alpha}$ (= 0.0026) and the coefficient in the row denotes $\hat{\beta}$ (= -6.6515).
- The estimated model in the example is thus:

$$.VIX = 0.0026 - 6.6516.SPX.$$

• The best forecast of the VIX return when observing an S&P return of 2% is therefore $0.0026-6.6516\cdot0.02=-0.130432=-13.0432\%$.

OLS regression: Validation (R^2)

- To **validate** the model, i.e., to determine, if the model in itself and the explanatory variable(s) make sense, we look R^2 and various p-values (or confidence intervals or t-statistics).
- R^2 measures the fraction of variance in the dependent variable Y that is captured by the regression line; $1 R^2$ is the fraction of Y-variance that remaines in the residuals ε_i^2 , $i = 1, \ldots, n$.
- In the output above R^2 is given as 0.647. In other words, 64.7% of the variance in VIX returns are "explained" by SPX returns.
- A high R^2 (and this one is high) is necessary for making forecasts.

OLS regression: Validation (confidence interval)

- An important hypothesis to test in any regression model is whether the explanatory variable(s) have an effect on the independent variable.
- This can be translated into testing whether $\beta \neq 0$. ($\beta = 0$ is the same as saying that the X variable can be removed from the model.)
- Formally, we test the null hypothesis $H_0: \beta = 0$ against the alternative hypothesis $H_1: \beta \neq 0$.
- There are several statistics to come to the same conclusion: confidence intervals, *t*-statistics and *p*-values.
- The **confidence interval** is an interval around the estimate $\hat{\beta}$ that we are confident contains the true parameter β . A typial **confidence level** is 95%.
- If the 95% confidence interval does **not** contain 0, then we say β is **statistically significant** at the 5% (=1-95%) level, and we conclude that $\beta \neq 0$.

OLS regression: Validation (t-statistic)

- The t-statistic corresponds to the **number of standard deviations** that the estimated coefficient $\hat{\beta}$ is away from 0 (the mean under H_0).
- For a normal distribution, we have the following rules of thumb:
 - 66% of observations lie within one standard deviation of the mean
 - 95% of observations lie within two standard deviations of the mean
 - 99.7% of observations lie within three standard deviations of the mean

- If the sample size is large enough, then the t-statistic is approximately normally distributed, and if it is large (in absolute terms), then this is an indication against $\beta = 0$.
- In the example above, the t-statistics is -62.559, i.e., $\hat{\beta}$ is approx. 63 standard deviations away from zero, which is practically impossible.

OLS regression: Validation (p-value)

- The p-value expresses the probability of observing a coefficient estimate as extreme (away from zero) as $\hat{\beta}$ under H_0 , i.e., when $\beta = 0$.
- In other words, it measures the probability of observing a t-statistic as extreme as the one observed if $\beta = 0$.
- If the p-value (column P > |t|) is smaller than the desired level of significance (typically 5%), then the H_0 can be rejected and we conclude that $\beta \neq 0$.
- In the example above, the p-value is given as 0.000, i.e., it is so small, that we can conclude the estimated coefficient $\hat{\beta}$ is so extreme (= away from zero) that is virtually impossible to obtain such an estimated if $\beta = 0$.
- Finally, the F-test tests the hypotheses $H_0: R^2 = 0$ versus $H_1: R^2 \neq 0$. In a multiple regression with k independent variables, this is equivalent to $H_0: \beta_1 = \cdots = \beta_k = 0$.
- In the example above, the *p*-value of the *F*-test is 0, so we conclude that the model overall has explanatory power.