If X, Y are Banach spaces, and D(x) is the unitary ball in X, an operator $T: X \longrightarrow Y$ is compact if T(D(x)) is precompact.

Theorem: let X, Y two Banach spaces, If T: X -> Y is linear, T is compact if and only if (Xn) E X a bounded sequence implies that there is a subsequence Xn:, such that TXn: converges in Y.

Proof: (-) Let's suppose that T is compact, and let (xn) be a bounded in X, with

let V be a closed ball in X of radius M, and center in zero. V is bounded in X, thus the $N = \overline{T(V)}$ is compact in Y.

As $TX_n \in N$, there exists a convergent subsequence TX_{ni} , that converges to $y \in N$.

(-) Let's suppose that if (Xn) is a bounded sequence in X, then, there exists a subsequence such that TXn; is convergent.

let U the unitary ball in X, and let Yn & T(U) a subsequence. As a subset in a metric space is precompact if and only if all sequence has a convergent subsequence.

As Yn is in the image of T, there is a subsequence such that Yn; is convergent and this implies that T(u) is precompact. Then T is complete.

Dual operators

$$A: X \longrightarrow Y$$
, $A^*: Y^* \longrightarrow X^*$
 $A^*: Y \longrightarrow X^*$
 $A^*: Y \longrightarrow X^*$

let's introduce a notation more suitable, for caracterizing the duality of operators.

let X be a normed space and x^* its dual. For $f \in X^*$, $x \in X$, let's write the action of f(x) as $\langle x, f \rangle$.

Applying this notation for the case of X and X^* , we can write a dual operator A^* of an operator A, of the following way:

For all
$$x \in X$$
 and $f \in Y^*$

$$\langle Ax, f \rangle = \langle x, A^*f \rangle$$

let's see that if $A \in L(X, Y)$ and $B \in L(Y, Z)$, then, $(BA)^* = A^*B^* : Z^* \longrightarrow X^*$

In the case of Hilbert spaces A & L(H1, H2) the dual operator is called adjoint A & L(H1, H2) is defined as

$$\langle A_{X}, q \rangle = \langle \times, A^*q \rangle$$
, $\chi \in \mathcal{H}_{1}$, $q \in \mathcal{H}_{2}$.

Example: let $K(t,T) \in L_2(\mathbb{T}^2)$, $\mathbb{T}=[0,1]$, let's define the operator K in $L_2([0,1])$ by

$$(K,X)(t) = \int_{0}^{t} K(t,\tau)X(\tau)d\tau.$$

show that the adjoint K*, is

$$(K^*q)(t) = \int_{K(t,T)}^{1} \overline{K(t,T)} \, q(\tau) \, d\tau$$

$$\langle Kx, q \rangle = \int_{K(t,T)}^{1} \left(\int_{K(t,T)}^{1} \overline{K(t,T)} \, q(t) \, dt \right) \, d\tau$$

$$= \int_{K(t)}^{1} \overline{K(t,T)} \, q(t) \, dt \, dt$$

=<×,y>

with

$$q' = \int_{K(t, \tau)}^{1} q(t) dt$$
=: $x *_{q}$

Theorem: If $A: X \longrightarrow Y$ compact, $A^*: Y^* \longrightarrow X^*$ is compact. Proof: We will show that, $A^*D(Y^*)=K\subseteq X^*$ is precompact Let $f \in A^*D(Y^*)$, then $f(x)=(A^*\Psi)(x)$ for each $x \in (X)$ and some $\Psi \in D(Y^*)$, this is

$$f(x) = (A^* \Psi)(x) = \Psi(A_x)$$

then

$$\|f\|_{X^*} = \sup_{\|X\| \ge 1} |f(x)| = \sup_{\|X\| \le 1} |\varphi(Ax)| = \sup_{Y \in T} |\varphi(Y)|$$

for T=AD(x), then T is precompact in Y, as A is compact. Consider the collection of continuous functions in T, $M=\{4\in D(Y^*)\}$ for any $4\in D(Y^*)$, we have that

| P(Y)| ≤ || A||, y ∈ T.

and

 $|\Psi(Y_1) - \Psi(Y_2)| \le ||Y_1 - Y_2|| < \varepsilon$, for $||Y_1 - Y_2|| < \varepsilon$.

by the Arzela's theorem, M is precompact.

Let $f_n|_{n=1}^\infty$ be a bounded sequence in $A^*D(Y^*)$ of the relations of norms, it follows that the sequence of functions $f_n|_{n=1}^\infty$ is also bounded.

Then there is a sequence θ'_n such that $\| \theta'_n - \theta''_n \|_{C(T)} \to 0$ if $n', n'' \to \infty$.

which means that $\|f_{n'} - f_{n''}\|_{X^*} \longrightarrow 0$, if $n', n'' \longrightarrow \infty$.

Then $A \in K(X, Y)$ implies that $A^* \in K(X^*, Y^*)$ i.e., A^* is compact.