Obliczenia Naukowe Lista nr 3

Eryk Krupa 244993

1 Zadanie 1, 2 i 3

Poniższe rozważania dotyczą trzech algorytmów wyznaczania przybliżonej wartości pierwiastka funkcji:

- metoda bisekcji,
- metoda stycznych,
- metoda siecznych.

1.1 Metoda Bisekcji

1.1.1 Opis

Algorytm na wejściu przyjmuje dwie wartości: początek (a) i koniec (b) przedziału, w którym szukane będzie miejsce zerowe. By działał poprawnie, muszą być spełnione dwa warunki. Wartości funkcji na końcach przedziałów muszą mieć różne znaki, tj. f(a)f(b) < 0 oraz funkcja w tym przedziale musi być ciągła.

Rysunek 1: Metoda bisekcji

1.1.2 Przebieg

Początkowo obliczana jest długość przedziału length = b - a. Następnie dzielona jest przez dwa i dodawana do wartości a: middle = a + length. Jeśli

przedział jest mniejszy od początkowo przyjętej dokładności, algorytm zwraca punkt middle oraz wartość funkcji f(middle) w punkcie. W przeciwnym wypadku, przedział dzielony jest na dwa mniejsze przedziały [a, middle] oraz [middle, b]. Następnie algorytm podstawia pod a i b odpowiednio początek i koniec przedziału, w którym wyniki funkcji na jego końcach mają różne znaki.

1.2 Metoda stycznych

1.2.1 Opis

Metoda stycznych znana jest również pod nazwą metody Newtona. By algorytm działał poprawnie, pierwiastek musi być jednokrotny tj. $f'(r) \neq 0$. Ponadto, musi zostać obrany punkt startowy x_0 .

Rysunek 2: Metoda stycznych

1.2.2 Przebieg

Każdy kolejny punkt x_{n+1} obliczany jest na podstawie wzoru

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Następnie obliczana jest wartość funkcji $f(x_{n+1})$. Obliczenia są kończone, kiedy znalezione wartość $f(x_{n+1})$ jest na tyle bliska zeru, że $|f(x_{n+1})|$ jest mniejsze od pewnej ustalonej dokładności, bądź też odległość pomiędzy kolejnymi wartościami x_{n+1} i x_n jest dostatecznie mała.

1.3 Metoda siecznych

1.3.1 Opis

By algorytm działał poprawnie, pierwiastek musi być jednokrotny tj. $f'(r) \neq 0$. Ponadto, muszą zostać podane dwa przybliżenia początkowe x_0 i x_1 .

Rysunek 3: Metoda siecznych

1.3.2 Przebieg

W przypadku metody siecznych również korzystamy z pochodnej funkcji, jednak w odróżnieniu od metody stycznych, jest ona aproksymowana za pomocą wzoru:

$$f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}.$$

Dopiero tak obliczoną pochodną podstawiamy do wzoru z metody stycznych, otrzymując

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}.$$

Tu właśnie widać, dlaczego metoda siecznych wymaga dwóch przybliżeń początkowych. W każdej iteracji x_{n+1} wymaga x_n i x_{n-1} .

1.4 Porównanie metod

Największą wadą metody bisekcji jest to, że należy sprecyzować dla niej przedział, na którym spodziewamy się znaleźć miejsce zerowe. W pozostałych metodach nie ma takiego wymagania. Co prawda, należy wskazać przybliżenia początkowe (lub przybliżenia, w metodzie siecznych), ale tylko po to, by przyśpieszyć działania algorytmu przez zmniejszenie liczby iteracji. Jeśli podane przybliżenie początkowe jest odległe od rzeczywistej wartości, algorytm i tak znajdzie prawidłowe rozwiązanie, jednak zajmie mu to więcej iteracji. W przypadku metody Newtona można zauważyć inny problem- jeśli pochodna rozpatrywanej funkcji w punkcie podanym jako przybliżenie początkowe jest bliska zeru, nie można w prawidłowy sposów wyznaczyć miejsca zerowego.

2 Zadanie 4

2.1 Wyniki

Pierwiastek równania $sin(x)-(\frac{1}{2}x)^2=0$ obliczony za pomocą trzech powyższych metod:

Metoda	x_0	$\sin(x_0) - (\frac{1}{2}x_0)^2 = 0$	iteracje
bisekcji	1.9337539672851562	-2.7027680138402843e-7	16
stycznych	1.933749984135789	4.995107540040067e-6	13
siecznych	1.9337539405015145	-2.3487103129049558e-7	5

2.2 Opis

Można zauważyć, że każda z metod znajduje niemal identyczne miejsce zerowe. Różnica widoczna jest natomiast w ilości iteracji. Widać, że metoda bisekcji jest najwolniejsza, a metoda siecznych- najszybsza. Były to wyniki oczekiwane, zgodne z wydajnością tych algorytmów. Należy jednak pamiętać, że w przypadku innej funkcji mogłoby być inaczej- teoretycznie najwolniejszy algorytm bisekcji mógłbym zakończyć pracę w ilości iteracji mniejszej od pozostałych algorytmów.

3 Zadanie 5

Znajdźmy wartości zmiennej x, dla której funkcje $f_1(x)=3x$ oraz $f_2(x)=e^x$ przecinają się.

3.1 Rozwiązanie

Oczywiście, najprostrzym rozwiązaniem jest policzenie miejsc zerowych różnicy tych funkcji $f_3(x) = f_2(x) - f_1(x) = e^x - 3x$, oznaczonej na wykresie kolorem zielonym. $f_1(x)$ oznaczone jest kolorem czerwonym, natomiast $f_2(x)$ - niebieskim.

Rysunek 4: Wykres

3.2 Wyniki

Używając metody bisekcji na odpowiednich przedziałach, np. na [0, 1] i [1, 2], możemy za jej pomocą odnaleść oba miejsca zerowe.

Przedziały	x_0	$f(x_0)$	iteracje
[0, 1]	0.619140625	9.066320343276146e-5	9
[1,2]	1.5120849609375	7.618578602741621e-5	13

Funkcje przecinają się w dwóch miejscach. W przypadku metody bisekcji, może okazać się to problematyczne, chyba, że jesteśmy w stanie w przybliżeniu określić w jakich przedziałach znajdują się miejsca zerowe. W naszym przypadku, dzięki zastosowanemu wykresowi było to proste, jednak gdybyśmy nie znali przybliżonych pozycji miejsc zerowych, musielibyśmy trochę poeksperymentować, aby trafić na przedział, na którego końcach znajdują się wartości o różnych znakach. Gdybyśmy dla przykładu wzieli przedział [0, 2], nie moglibyśmy jednoznacznie określić nawet, czy pomiędzy nimi znajdują się miejsca zerowe, czy nie, gdyż wartości na końcach tego przedziału mają taki sam znak.

4 Zadanie 6

Znajdźmy miejsca zerowe funkcji $f_1(x) = e^{(1-x)} - 1$ oraz $f_2(x) = xe^{-x}$ za pomocą trzech wyżej wymienionych metod, przyjmując precyzję $\delta = 10^{-5}$ oraz $\epsilon = 10^{-5}$.

4.1 Wyniki

4.1.1 Funkcja $e^{(1-x)} - 1$

Metody	Przedział lub	Miejsce zerowe	Wartość funkcji
	punkt(y) początkowy/e		
bisekcji	[0, 2]	1.0	0.0
stycznych	1.0	1.0	0.0
siecznych	0, 2	0.99999961170	3.8829645854e-7

4.1.2 Funkcja xe^{-x}

Metody	Przedział lub	Miejsce zerowe	Wartość funkcji
	punkt(y) początkowy/e		
bisekcji	[-1, 1]	0.0	0.0
stycznych	0.0	0.0	0.0
siecznych	-0.1, 0.1	-9.5487043590e-6	-9.5487955371e-6

4.2 Analiza

W tabelach przedstawiono idealne sytuacje, dla których łatwo można obliczyć miejsca zerowe. Dla przykładu, w przypadku metody bisekcji można znaleźć miejsce zerowe w jednej iteracji, jeśli znajduje się ono dokładnie na środku przedziału. W przypadku metody Newtona, najlepsza sytuacja to taka, w której miejscem zerowym okazuje się punkt początkowy.

W przypadku funkcji $e^{(1-x)}-1$ z metodą Newtona dla $x_0 \in (1,\infty]$ można zauważyć, że im bardziej oddalamy się od miejsca zerowego, tym większej ilości iteracji potrzebujemy, aby poprawnie je wyznaczyć.

Z kolei funkcja xe^{-x} dla $x_0 > 1$ przyjmuje wartości bardzo bliskie zeru, dlatego każda metoda Newtona znajduje miejsce zerowe wszędzie, w pierwszej iteracji. W przypadku wybrania wartości początkowej równej 1.0, pochodna z tej funkcji, tj. $-e^{-x}(x-1)$ wynosi zero, dlatego też algorytm Newtona przerwie wykonania z odpowiednim błędem.