Mathematics 322 — Midterm 2 — 80 minutes

November 23rd, 2023

- The test consists of 12 pages and 2 questions worth a total of 30 marks.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)
- No work on this page will be marked.
- Fill in the information below before turning to the questions.

Student number								
Section								
Name								
Signature								

- 1. Let H be the group S_5 .
 - (a) 2 marks Show that every 5 Sylow subgroup of H is cyclic.

(b) $\boxed{2 \text{ marks}}$ Show that H has exactly 6 5-Sylow subgroups.

(c) 3 marks Let X denote the set of 5-Sylow subgroups of H, and let H act on X by conjugation. Show that this defines an injective homomorphism $\phi: H \to S_X \cong S_6$, and that $\phi(H) \cong H \cong S_5$.

(d) 2 marks Let $G = S_6$. If $1 \le i \le 6$, let $G_i = \{\sigma \in G : \sigma(i) = i\} \subset G$. Show that $G_i \cong S_5 \cong H$.

(e) 3 marks Prove or disprove: $\phi(H) \neq G_i$, for $\forall i$ with $1 \leq i \leq 6$.

- 2. In this question, let $G = S_9$.
 - (a) $\boxed{2 \text{ marks}}$ Show that the order of a 3-Sylow subgroup of G is 81.

(b) 2 marks Let $H \subset G$ denote the set of elements $\{(123)^a(456)^b(789)^c, 0 \le a, b, c \le 2\}$. Show that H is a subgroup of G of order 27.

(c) 2 marks Let $K \subset G$ denote the subgroup generated by $(147)(258)(369) \in G$. Let $HK = \{\sigma\tau : \sigma \in H, \tau \in K\}$. Show that HK has cardinality 81.

(d) $\boxed{4 \text{ marks}}$ Show that HK is a subgroup of G.

(e) 4 marks Recall that the exponent of a group X is the smallest positive integer n such that $x^n = 1, \forall x \in X$. Show that the exponent of X = HK is n = 9.

(f) $\boxed{4 \text{ marks}}$ Give an example of groups $G_1 \subset G_2 \subset G_3$ where G_1 is normal in G_2 and G_2 is normal in G_3 , but G_1 is not normal in G_3 .