

Exploring the impact of spatial morphology of terraces on soil erosion from high spatial resolution digital elevation models

Yuzhou Chen

yuzhou.chen@stud.plus.ac.at

1. Background Introduction

- 1. Soil erosion
 - A Big problem!
- 2. Why Terrace?
 - reshape topography
 - larger farming area on gentle slope
 - soil and (water) conservation
- 3. Why Terrace in the Loess Plateau?
 - arid and semi-arid climate
 - concentrated summer rainfall as the main driver
 - porous soil (easily to be infiltrated by water)
 - vertical joints
- 4. So, How to evaluate the soil conservation ability of a terrace?
 - Soil Erosion Model (empirical model)
 - ★ RUSLE
 - a revised version
 - depend on the environmental condition
 - suitable for croplands or gently sloping topography trengtheni
 - proved to be useful in some area of our country

hi Kosc $\frac{\text{hi Kosc}}{\text{ges Mar}}$ A is the annual soil erosion per unit area $[t/(\text{hm}^2 \cdot \text{a})]$

f denotes the modification constant

R is the rainfall erosivity factor [MJ.mm/(hm 2 ·h·a)]

K is the soil erodibility factor [t·hm²·h/(hm²·MJ·mm)]

LS denotes the slope and slope length factor

C is the vegetation cover factor

Show more

+ Add to M

https://doi.org

Abstract

P is the factor of soil and water conservation measures

Being critic within a value range of [0,1]

itent 🗷

ons,

reater

≥ep-time ⊅igital Earth

2. Data & Methods

- 1. The study area: Yaojiawan watershed
 - Where?
 - 37°32′ N, 110°14′ E to 37°30′ N, 110°16′ E
 - How is the base DEM generated?
 - 1cm point cloud data from UAV
 - 0.1 m resolution DEM from interpolation
 - Why use the detailed DEM?
 - To better depict the spatial morphology of the terraces
 - Morphology factor (LS) matters
- 2. Methods
- 1) Destruction of terraced fields
- Why? Because the study aims to evaluate the soil erosion before and after terrace construction. LS factor will change.
- How? In terraces, choose contour lines running parallel to the edge line and the edge offset line from each terraced field surface. Then, these contour lines will be interpolated to generate a new DEM representing non-terrace fields.
- 2) RUSLE: for calculating soil erosion modulus

$$LS = (L/L_0)^m \times (65.41 \sin^2 \theta + 4.56 \sin \theta + 0.065)$$

$$R_{h-mon} = \alpha \cdot \sum_{n=1}^{k} (P_n)^{\beta}$$

$$K = \theta_{c-sand} \cdot \theta_{cl-si} \cdot \theta_{orc} \cdot \theta_{h-sand}$$

$$c = VFC = \frac{NDVI - NDVI_{min}}{NDVI_{max} - NDVI_{min}}$$

$$C = \begin{cases} 0.6508 - 0.3436 * lgc, & 0 < c < 78.3\% \\ 0, & c \ge 0 \end{cases}$$

$$\frac{land \ use \ Types \qquad Forest \qquad Grassland \qquad Dryland \qquad River \qquad Unused}{P} \qquad 1 \qquad 0.15 \qquad 0.35 \qquad 0 \qquad 1$$

Earth

3. Results

■ Soil erosion before and after terrace construction

Scenario	Average soil erosion modulus	Total eroded area	Total amount of soil erosion
terraced	8.30 t/(hm²·a)	32.86 hm²	272.74 t/a
non terraced	9.92 t/(hm²·a)	36.96 hm²	343.36 t/a

Soil erosion changes in sample areas

■ Disussion: further study on terrace's morphology

Name of morphological factor	Definition	
\overline{W}	Average width of the terraced fields in a terrace	
AR	Area of a terrace	
$ar{T}$	Average number of terrace steps passed by the ridge line	
\bar{h}	Average height of the sharp declines in a terrace	
Ī	Average slope of a terraced area	
$ar{P}$	Average slope of all side slopes in a terrace	
Н	Total elevation difference of a terrace	

Thanks for listening!!