Analysis 1 Inoffizielle Mitschrift

Zusammenfassung zu Grenzwerten

Suprema und Infima, Beschränktheit

Definition 1. Eine Menge $M \subset \mathbb{R}^n$ heißt beschränkt, falls es ein $r \in \mathbb{R}^+$ gibt mit $B_r(0) \supset M$. Im Fall n = 1 heißt das nichts anderes als |x| < r für alle $x \in \mathbb{R}$.

Definition 2 (Supremum und Kriterium). Sei $\emptyset \neq M \subset \mathbb{R}$ nach oben beschränkt. Dann definieren wir sup M als die kleinste obere Schranke von M. Wir haben folgende Äquivalenzen

- (i) $s = \sup M$
- (ii) $\forall \varepsilon > 0 : \exists m \in M : s \varepsilon \leq m$
- (iii) $\forall \varepsilon > 0 : \exists m \in M : s \varepsilon < m$

Das Ganze funktioniert für inf M analog.

Satz 1. Der Körper \mathbb{R} ist supremums-vollständig, das heißt, dass jede nicht-leere nach oben beschränkte Menge ein Supremum in \mathbb{R} hat.

Bemerkung. \mathbb{Q} ist nicht supremums-vollständig, denn die Menge $\{x \in \mathbb{Q} : x^2 < 2\} \subset \mathbb{Q}$ hat kein Supremum in \mathbb{Q} .

Folgen

Definition 3 (Folge und Konvergenz). Eine Abbildung $a: \mathbb{N} \to \mathbb{C}, \ n \mapsto a(n) =: a_n$ heißt Folge. Eine Folge heißt komplexwertige konvergent mit Grenzwert $a \in \mathbb{C}$ genau dann, wenn

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N(\varepsilon) : |a_n - a| < \varepsilon$$

Wir schreiben abkürzend $(a_n)_{n\in\mathbb{N}}$ oder auch nur (a_n) . Falls (a_n) gegen $a\in\mathbb{C}$ konvergiert, so schreiben wir

$$\lim_{n \to \infty} a_n \equiv \lim a_n \coloneqq a$$

Analysis 1 Inoffizielle Mitschrift

Definition 4 (Cauchy-Folge). Eine Folge (a_n) in \mathbb{C} heißt Cauchy-Folge genau dann, wenn

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m \ge N : |a_n - a_m| < \varepsilon$$

Bemerkung. Jede konvergente Folge ist eine Cauchy-Folge. Die Umkehrung gilt im Allgemeinen nicht, etwa ist die Folge

$$a_{n+1} \coloneqq \frac{1}{2} \cdot \left(a_n + \frac{2}{a_n} \right), \ n > 1 \quad a_0 \coloneqq 2$$

hat ausschließlich rationale Folgeglieder und ist konvergent, aber konvergiert nicht in \mathbb{Q} .

Lemma 1. Eine monoton fallende/wachsende nach unten/oben beschränkte Folge (a_n) ist konvergent.