Cancer Research Made Faster

Who am I?

Aaron Lisman Lead software engineer on the cBioPortal Nikolaus Schultz Bioinformatics Lab Center for Molecular Oncology at Memorial Sloan Kettering Hospital

What is cBioPortal?

A data analysis and visualization application for exploring genomic and clinical data aggr from research studies and the clinic.

Origin of cBioPortal

- Originated in 2012 at MSK
- Open source
- Grant-supported
- Multi-institutional
- Used all over the world by tens of thousands of researchers and clinicians

History

1 year and 218 pull requests ago ...

What is cBioPortal?

Bioinformatics for dummies

- Bioinformatics is data science applied to biological systems
- Draw conclusions that can inform treatment decisions and spark medical research based on patterns found in data.

Cancer, a data-oriented disease

- A set of diseases
- Driven by a wide variety of genetic mutations
- Interfere with the body's ability to control tissue growth, i.e. tumors

Decoding the mystery of cancer

- Relatively new ability to cheaply sequence DNA and detect a tumor's mutations
- Sequencing is almost standard-of-care now
- Lets us to peer into the root cause of cancer
- Suggests biological pathways that are involved and worthy of inquiry
- Target therapies at specific mutations

Test Hypotheses

Study view: Cohort exploration

Group comparison

Results View: Gene-centric queries

Patient View: Genomic and clinical timeline

Samples	Gene	Protein Change	Annotation ▼
0 0 0 0	IDH1	R132C	
0 0 0 0	TP53	R248Q	
0	ERC1	L283Ffs*20	0
6	HSP90AB1	K72E	0
6	SPRTN	F404Lfs*3	0
0	OR10V1	R273W	0
0 0 0 0	TEAD3	P51L	0

Hundreds of private instances worldwide

More performance = More insight

What is the scale of the data?

- Internal MSK Internal Portal has 14ok patients
- Genie consortium: 220k

What is the scale of the data?

- The human genome has ~22,000 genes
- RNA expression data has a read per gene per sample
- = 4 billion rows per assay
- Goal: We want to support 1 million patients with multiple samples

Molasses

What are we are actually doing?

OLAP!

Problem and strategy

- We were doing much too much work in our service layer
- Bringing giant data sets into memory just to filter and count them in Java
- Exchanging performance for "developer ergonomics."

6 month refactor

- Rebuilt 20 endpoints that filter patients and samples
- Built denormalized schema in Clickhouse according to the needs of these endpoints
- Reimplemented filtering logic in SQL

Success!

200k samples

Performance Improvements

~1ox faster!

A	В	С	D
Endpoint	Clickhouse	Legacy	% Improvement
clinical-data-cou	393	5131	92.34%
filtered-samples	1181	13278	91.11%
molecular-profile	441	14368	96.93%
clinical-data-bin-	3320	20158	83.53%
clinical-data-cou	663	29278	97.74%
clinical-data-den	1373	16161	91.50%
structuralvariant-	2564	16586	84.54%
mutated-genes	2424	20998	88.46%
cna-genes	2294	17036	86.53%
sample-lists-cou	459	12243	96.25%
clinical-data-cou	571	5684	89.95%
clinical-event-typ	287	15865	98.19%
clinical-data-bin-	1754	20718	91.53%
clinical-data-bin-	3495	27127	87.12%
filtered-samples	1350	22057	93.88%
molecular-profile	1341	22274	93.98%
clinical-data-cou	2272	17056	86.68%
clinical-data-cou	1660	31153	94.67%
clinical-data-den	1333	23698	94.38%
structuralvariant-	4003	24207	83.46%
cna-genes	4047	23849	83.03%
mutated-genes	2473	27219	90.91%
clinical-data-bin-	1187	20562	94.23%
sample-lists-cou	1340	21159	93.67%
clinical-data-bin-	4804	39306	87.78%

ETL/Schema

- Wanted to get right to business proving the optimization concept
- Copied the MySQL schema whole into Clickhouse using Sling
- Derive denormalized views based on the underlying tables
- Materialized view issues when based on complex joins

Nests of nests

- Mantra was, do not return voluminous data to the web server.
- Forces you to get creative and complicated with subqueries.

Logic in database

Much business logic now in form of complicated, deeply nested SQL

```
Otherwise - The table can be filtered on both patient id(s) and sample id(s)

-->

<sql id="applyStudyViewFilter">

<choose>

<when test="${filter_type} == 'PATIENT_ID_ONLY'">

<include refid="applyStudyViewFilterUsingPatientId"/>

</when>

<oherwise>

sample_unique_id IN ( <include refid="sampleUniqueIdsFromStudyViewFilter"/>)

</oherwise>

</choose>

</sql>
```

- MyBatis helps with modularity
- Still hard to reason about and debug
- Unit testing very difficult

Finish the job

Now that we've proven the optimization works:

- Can the rest of the app's less OLAP-oriented functionality perform sufficiently using existing legacy SQL running against Clickhouse's MySQL interface?
- Can we use one database, or do we need both?

All-Clickhouse?

- Single database is attractive
- Do we denormalize everything in the the ETL process?
- How do we maintain the data integrity checks provided by a conventional relational schema?

Remaining technical issues

- Complicated custom binning logic for histograms
- Still using legacy approach
- Can this be accomplished in database?
- User defined functions?

Lots more Work!

Lots of Success

Thank you Clickhouse!