Module Code: MATH319501

Module Title: Commutative rings and algebraic

©UNIVERSITY OF LEEDS

geometry

School of Mathematics

Semester Two

Calculator instructions:

• You are not allowed to use a calculator in this exam.

Dictionary instructions:

• You are not allowed to use your own dictionary in this exam. A basic English dictionary is available to use. Raise your hand and ask an invigilator if you need it.

Exam information:

- There are 5 pages to this examination.
- There will be **2 hours 30 minutes** to complete this examination.
- This examination is worth 100% of the module mark.
- Answer **all** questions.
- The numbers in brackets indicate the marks available for each question.
- You must show and explain all your solutions.
- You must write all of your answers in the answer booklet provided. If you require an additional answer booklet, raise your hand so an invigilator can provide one.
- You must clearly state your name and Student ID Number in the relevant boxes on your answer booklet. Other boxes may be left blank.

Module Code: MATH319501

Notation: All rings in this paper are commutative with a multiplicative identity 1. We use R for a ring, $I \subseteq R$ for an ideal and K for a field throughout the exam paper.

•	points in total) Write in the booklet your answers to the blank parts of the ences below. You do not need to write the full sentence.
(a)	(1 pt) A ring is called if every element other than zero has a multiplicative inverse.
(b)	(2 pts) Let R , S be rings. A <i>ring homomorphism</i> is a map $\varphi : R \to S$ such that for all $r_1, r_2 \in R$, we have the following:
	(i)
	(ii)
	(ii)
(c)	Let φ as above in part (b). Then,
	(i) (1 pt) The kernel of φ , Ker φ , is the set
<i>(</i> 1)	(ii) (1 pt) The image of φ , Im φ , is the set
(d)	Let I be a proper ideal in R .
	(i) $(1 \text{ pt}) I$ is if and only if R/I is an integral domain.
(-)	(ii) (1 pt) I is if and only if R/I is a field.
(e)	(3 pts) Let $S^{-1}R$ be a localization of R . There are bijections
	{ideals in $J \subseteq S^{-1}R$ } \leftrightarrow {ideals $I \subseteq R$ such that}
	and
	$\{ \text{prime ideals in } Q \subseteq S^{-1}R \} \leftrightarrow \{ \text{prime ideals } P \subseteq R \text{ such that } ___ \}$
(f)	(i) (2 pts) The nilradical of R , $nil(R)$, is
	(ii) (2 pts) The Jacobson radical, $J(R)$, is
(g)	Let M , N be R -modules and $\psi:M o N$ be an R -module homomorphism.
	(i) (2 pts) The set $Hom_R(M, N)$ is an R -module, via the action
	for all $r \in R$, $\psi \in Hom_R(M, N)$ and $m \in M$.
	(ii) (2 pts) The cokernel of ψ , $Coker\ \psi$, is the set (iii) (2 pts) For $\psi:M\to N$, we can state the first isomorphism theorem as follows
	M/ ≅
(h)	(3 pts) We say $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ is a short exact sequence of <i>R</i> -modules if and only if
(i)	(2 pts) If K is algebraically closed, then every maximal ideal of $K[x_1, \dots, x_n]$ is of the form

2. (25 points in total)

- (a) (6 pts) Let $\sqrt{I} = \{r \in R : r^n \in I \text{ for some positive integer n}\}$. Show that \sqrt{I} is an ideal and contains I.
- (b) (6 pts) Consider the polynomial ring R[x, y]. List and order all monomials with degree less than or equal to 3 with respect to **lex** (lexicographic) and **deglex** (degree lexicographic) orders. What is the leading monomial of the polynomial $p(x, y) = x^4 + x^2y^2 + x^3y + xy^4$ with respect to **lex** and **deglex** orders?
- (c) (6 pts) Write a free resolution of the field K as a K[x, y]-module with maps explicitly written and state the exactness at every degree.
- (d) (7 pts) Let $0 \to L \xrightarrow{f} M \xrightarrow{g} N \to 0$ be a short exact sequence of *R*-modules. Show that for any *R*-module *A*, the following

$$0 \to Hom_R(N, A) \xrightarrow{g^*} Hom_R(M, A) \xrightarrow{f^*} Hom_R(L, A)$$

is exact.

- 3. (25 points in total)
 - (a) (5 pts) Let K be a field. Prove that there is an isomorphism

$$K[x, y]/I \cong K[x]/\langle x^2 \rangle$$

where I is the ideal $\langle x^2, y \rangle$.

- (b) (i) (6 pts) Let R = K[x, y, z, w], $I = \langle xy, xz, xw \rangle$ and $J = \langle xy, xz, zw \rangle$. Give minimal primary decompositions of I and J. Explain your solution. (Note that you may assume $J = \langle xy, xz, zw \rangle$ is a radical ideal.)
 - (ii) (6 pts) Consider $I = \langle x^2, xy \rangle$ in K[x, y]. Take the decompositions

$$\langle x \rangle \cap \langle x^2, xy, y^2 \rangle = \langle x \rangle \cap \langle x^2, y \rangle$$

Are they both minimal and primary decompositions for I? Explain. Can you find another one without the component $\langle x \rangle$? Explain.

- (c) (i) (2 pts) Define the vanishing locus $\mathbb{V}(S)$ for a subset S of $K[x_1, \dots, x_n]$.
 - (ii) (6 pts) Consider $I = \langle (x^2 y^2)(y^2 z^2) \rangle$ and $J = \langle xy, zy \rangle$ in K[x, y, z]. Describe $\mathbb{V}(I)$ and $\mathbb{V}(J)$ in detail, decompose $\mathbb{V}(I)$ into irreducible components and explain; especially explain what it means geometrically.

4. (25 points in total)

- (a) (7 pts in total: each part from (i) to (v) 1 pt, and (vi) 2 pts)
 - (i) State the Hilbert Basis Theorem.
 - (ii) Give an example of a non-Noetherian ring.
 - (iii) Give an example of a Noetherian module over a Noetherian ring.
 - (iv) Give an example of a non-Noetherian module over a Noetherian ring.
 - (v) If R is Noetherian, is the quotient ring R/I (where I is an ideal as usual) Noetherian? Explain.
 - (vi) Is the ring $\mathbb{Z}[i]$ of Gaussian integers a Noetherian \mathbb{Z} -module? Is $\mathbb{Z}[i]$ a Noetherian ring? Explain.
- (b) Let I be an ideal of $K[x_1, \dots, x_n]$ and X be a subset of \mathbb{A}^n_K .
 - (i) (4 pts) Define $\mathbb{I}(X)$ and explain under what condition(s) we have an equality $X = \mathbb{V}(\mathbb{I}(X))$.
 - (ii) (2 pts) When do we have the equality $\sqrt{I} = \mathbb{I}(\mathbb{V}(I))$?
- (c) (6 pts) Show that if every non-empty set of submodules of a module M has a maximal element, then M is Noetherian.
- (d) (6 pts) Show that I is primary if and only if $R/I \neq 0$ and every zero-divisor in R/I is nilpotent.

Page 5 of 5