6. Hierarchical modeling and prior information

- State-level time series of death penalty opinions
- Population model in toxicology

Death penalty time series

Category	Sample Size	Percentage	Proportion Supporting Death Penalty
Men	26953	(46%)	
Women	31300	(54%)	
Black	6516	(11%) -	
Non-black	51737	(89%)	•
18–29	12460	(21%)	
30-44	18619	(32%)	-
45-64	17526	(30%)	-
65+	9648	(17%)	
Less than High School	ol 18211	(31%)	
High School	25010	(43%)	-
Some College	5415	(9%)	
College grad	7170	(12%)	
Grad School	2447	(4%)	
		0.45	0.55
		0.45	0.55 0.65 0.75

National demographic breakdown

Trends by state

State intercepts and slopes

Unmodeled variation in state intercepts and slopes

Slopes vs. Intercepts by State (within region): State-specific random effects

Trends by race and sex

Support among different education levels

Close-up on two states (compared to U.S. avg)

An example from toxicology

- Central story: 4-compartment model of toxicokinetics of perchloroethylene
- Bayesian inference combines prior information and data
- Unresolved questions
- How the model all fits together

Toxicokinetics of perchloroethylene

- Goal:
 - How much PERC is metabolized at low doses
 - Population distribution
- Experimental data: Expose 6 healthy volunteers to PERC for four hours, then measure concentrations in blood and air for 2 weeks
- 4-compartment model, metabolism in liver
- Our analysis:
 - Simple data-fitting did not work
 - Use Bayes to combine data and prior info within model

4-compartment model

Some data

Connections to general Bayesian principles

- ► Sometimes the model comes first, based on substantive considerations (toxicology, economics, ...)
- ► Sometimes the model is chosen based on the data collection (traditional statistics of surveys and experiments)
- ▶ Other times the data come first (other statistics examples)
- Usually it's a mix
 - Discuss an example of prediction
 - Discuss an example of causal inference

Simple statistical ideas did not work

- ► Fitting 4-compartment model directly to data
- Assisted model fit
- ▶ 1 or 2-compartment model
- Simulation from prior distribution

Simple statistical ideas that did not work: Fitting 4-compartment model directly to data

- Nonlinear least squares
- Fitting to each person separately:
 - ▶ Unstable: approx 30 data points, 15 param
 - "8 kg liver"
- Pooling data and estimating parameters for "the standard man"
 - Not useful for our goal of population inference

Simple statistical ideas that did not work: Assisted model fit

- ► Set some parameters to fixed values (from the pharmacology literature)
- Estimate the other parameters
- Results:
 - Couldn't fit the data well
 - Difficult to get fixed values for PERC-specific parameters such as equilibrium concentration ratios

Simple statistical ideas that did not work: 1 or 2-compartment model

- Simpler model can be estimated easily and robustly
- Does not fit the data well
 - Most of the PERC leaves in a few hours, but some stays in the body after a week or more
- ▶ Not realistic for low-dose extrapolation

Simple statistical ideas that did not work: Simulation from prior distribution

- ► Get prior information on parameters from pharmacology literature
- ▶ Try to fit data within these prior constraints
- Does not fit the data well
- Difficult to get good prior information for PERC-specific parameters such as equilibrium concentration ratios

Bayesian inference

- 4-compartment model
- ▶ 15 parameters for each person
- Prior information
 - ▶ Strong for some parameters (e.g., volume of liver)
 - ▶ Weak for others (e.g., Michaelis-Menten coef)
 - Model includes uncertainty and variation
- ▶ Posterior simulation: random walk through parameter space
- Inference for parameters and predictions
- Model checking

Hierarchical prior distributions

- Prior distribution for a rate parameter in the metabolism, θ_j for person j
 - $\triangleright \log \theta_i \sim N(\mu, \tau^2)$
 - $\mu \sim N(\log 16, (\log 10)^2)$
 - $\quad \tau \approx \log 2$
- ► Large uncertainty, small variation
- \blacktriangleright Can learn about μ using data from several people
- Can't do this without a hierarchical model
- Transformations and prior correlations (why transformations are particularly important for Bayesians)

Hierarchical prior distributions

Parameter	Population prior		
Ventilation/perfusion ratio (VPR)	1.6(×÷ 1.3) ×÷ 1.3		
Blood flow, well-	.47(×÷ 1.17)	Partition coeff,	12(×÷ 1.5)
perfused tissues (Fwp)	×÷ 1.17	blood/air (Pba)	×÷ 1.3
Blood flow, poorly perfused tissues (Fpp)	.20(×÷ 1.22)	Partition coeff,	4.8(×÷ 1.5)
	×÷ 1.22	well-perfused (Pwp)	×÷ 1.3
Blood flow,	.07(×÷ 1.27)	Partition coeff, poorly perfused (Ppp)	1.6(×÷ 1.5)
fat (Ff)	×÷ 1.27		×÷ 1.3
Blood flow,	.25(×÷ 1.15)	Partition coeff,	125(×÷ 1.5)
liver (FI)	×÷ 1.15	fat (Pf)	×÷ 1.3
Volume, well-	.27(×÷ 1.36)	Partition coeff,	4.8(×÷ 1.5)
perfused tissues (Vwp)	, ×÷ 1.36	liver (PI)	×÷ 1.3
Volume, poorly perfused tissues (Vpp)	.55(×÷ 1.17) ×÷ 1.17	Max metabolic rate in liver (VMI)	.042(×÷ 10) ×÷ 2
Volume,	.033(×÷ 1.1)	K_m in liver (KMI)	16(×÷ 10)
liver (VI)	×÷ 1.1		×÷ 1.5

What we did

- ► Set up a hierarchical prior distribution with uncertainty and population variation for a 4-compartment model
- ► Fit the model to data (much computation)
- Checked inferences about parameters to see that they made sense
- Re-ran model under hypothetical low-dose, high-dose exposures

Fitting and using the model

- Computationally intensive: Each step requires evaluation of the numerical differential equation solver
- Check inferences: Do they make sense?
- Re-run the model several times to simulate what would happen under different conditions

Inference for 6 individuals

Inference for the population

Prediction of data from a new study

Sensitivity to priors

Putting it all together

- (a) Physiological pharmacokinetic model
- (b) Hierarchical population model
- (c) Prior information
- (d) Experimental data
- (e) Bayesian inference
- (f) Computation
- (g) Model checking
 - ▶ We need all of these!

(a) Physiological pharmacokinetic model

- Without a physiological model, there is no good way to get prior information on the parameters
- ▶ We need physiological parameters (not just curve-fitting of the data) to efficiently combine information across different people

(b) Hierarchical population model

- Without a population model, there generally are not enough data to estimate the parameters separately for each individual
- And there is too much variation among bodies (even among healthy young male volunteers) to pool all the data together and estimate common parameters

(c) Prior information(d) Experimental data

- ► We need prior information. Otherwise, our estimates don't make sense (the 8 kg liver)
- We need experimental data to learn about perchloroethylene in particular

(e) Bayesian inference

- Find parameters that are consistent with both prior information and data (if such agreement is possible)
- Automatically includes uncertainty and variability, so inferences can be plugged in directly to risk assessment and decision analysis

(f) Computation

- Our models are big and nonlinear. Least squares, maximum likelihood, etc., are not enough
- ▶ We want to include more data from more patients

(g) Model checking

- Check inferences about parameters
 - ► Do they make sense?
 - Are they consistent with prior distributions
- Check fit to data
- Check predictions on new data

Using Bayesian ideas to improve existing analyses

- Regularization (for example, avoiding estimates on the boundary of parameter space)
- Accounting for uncertainty (especially for decisions)
- Checking model fit
- Using models to combine different sources of information (partial pooling)
- Better dialogue with subject-matter experts (more windows into the model and data)