#### Sequence alignment

#### Heuristic Methods for Sequence Database Searching

#### Outline

- The sequence database search task
- Motivation for heuristic alignment algorithms
- The BLAST algorithm
- Variants of the BLAST algorithm



3

#### **BLAST Results**

|                                                                                | Score  | E     |     |
|--------------------------------------------------------------------------------|--------|-------|-----|
| Sequences producing significant alignments:                                    | (Bits) | Value |     |
|                                                                                |        |       | C   |
| <u>qb AAN84548.1</u> beta globin chain variant [Homo sapiens]                  | 90.6   | 9e-18 |     |
| <pre>gb AAK29639.1 AF349114_1 beta globin chain variant [Homo sapiens</pre>    | 90.6   | 1e-17 | UG  |
| <pre>gb AAF00489.1 AF181989_1 hemoglobin beta subunit variant [Hom</pre>       | 90.6   | 1e-17 |     |
| gb AAA35952.1 beta-globin                                                      | 90.6   | 1e-17 | G   |
| gb AAX37051.1 hemoglobin beta [synthetic construct]                            | 90.6   | 1e-17 |     |
| gb AAR96398.1 hemoglobin beta [Homo sapiens]                                   | 90.1   | 1e-17 | UG  |
| gb AAL68978.1 AF083883 1 mutant beta-globin [Homo sapiens]                     | 90.1   | 1e-17 | G   |
| qb AAX29557.1 hemoglobin beta [synthetic construct]                            | 90.1   | 1e-17 |     |
| ref NP 000509.1 beta globin [Homo sapiens] >ref XP 508242.1                    | 90.1   | 1e-17 | U G |
| sp P02024 HBB GORGO Hemoglobin subunit beta (Hemoglobin beta cha               | 90.1   | 1e-17 |     |
| gb AAD19696.1 hemoglobin beta chain [Homo sapiens]                             | 90.1   | 2e-17 | UG  |
| emb CAA26204.1 beta-globin [Pan troglodytes]                                   | 89.7   | 2e-17 | _   |
| gb AAN16468.1 hemoglobin beta chain variant Hb.Sinai-Bel Air [H                | 89.7   | 2e-17 |     |
| gb ABG47031.1 hemoglobin [Homo sapiens]                                        | 89.7   | 2e-17 | G   |
| qb ABA19233.1 hemoglobin beta [Homo sapiens]                                   | 89.7   | 2e-17 | G   |
| emb CAA43421.1 beta-globin [Gorilla gorilla]                                   | 89.3   | 2e-17 | _   |
| gb AAY46275.1 beta globin chain [Homo sapiens]                                 | 89.3   | 2e-17 |     |
| gb AAK20080.1 mutant beta globin [Homo sapiens]                                | 89.3   | 2e-17 | G   |
| <pre>gb   AAN11321.1   hemoglobin beta chain variant Hb-I_Toulouse [Homo</pre> | 89.3   | 3e-17 | G   |
| gb AAG46184.1 mutant beta-globin [Homo sapiens] >gb AAG46185                   | 88.9   | 3e-17 | G   |
| gb ABX52138.1 hemoglobin, beta (predicted) [Papio anubis]                      | 88.4   | 5e-17 | _   |
| <pre>gb AAD30656.1 mutant beta-globin [Homo sapiens]</pre>                     | 88.0   | 6e-17 | G   |
| pdb   1HBA   B Chain B, High-Resolution X-Ray Study Of Deoxyhemog              | 86.7   | 1e-16 | S   |

## Heuristic Alignment Motivation

- O(mn) too slow for large databases with high query traffic
- **Heuristic algorithm**: an algorithm that isn't guaranteed to find the optimal solution, but that is efficient and finds good solutions in practice
- heuristic methods do fast approximation to dynamic programming
  - FASTA [Pearson & Lipman, 1988]
  - BLAST [Altschul et al., 1990;
    Altschul et al., Nucleic Acids Research 1997]

## Heuristic Alignment Motivation

- consider the task of searching SWISS-PROT against a query sequence:
  - say our query sequence is 362 amino-acids long
  - SWISS-PROT release 38 contained 29,085,265 amino acids
  - finding local alignments via dynamic programming would entail  $O(10^{10})$  matrix operations
- many servers handle thousands of such queries a day (NCBI > 100,000)

#### **BLAST Overview**

- Basic Local Alignment Search Tool
- BLAST heuristically finds high scoring local alignments
- typically used to search a query sequence against a database of sequences
- key tradeoff made: sensitivity vs. speed

sensitivity = 
$$\frac{\text{\# significant matches detected}}{\text{\# significant matches in DB}}$$

#### Overview of BLAST Algorithm

- given: query sequence q, word length w, word score threshold T, segment score threshold S
  - compile a list of "words" (of length w) that score at least T when compared to words from q
  - scan database for matches/hits to words in list
  - extend all matches/hits to seek high-scoring alignments
- return: alignments scoring at least S

# Determining Query Words

#### Given:

```
query sequence: QLNFSAGW word length w = 2 (default for protein usually w = 3) word score threshold T = 9
```

Step 1: determine all words of length w in query sequence (w-mers)

QL LN NF FS SA AG GW

## Determining Query Words

Step 2: determine all words that score at least *T* when compared to a word in the query sequence

| words from |                    |
|------------|--------------------|
| sequence   | query words w/ T=9 |
| QL         | QL=9               |
| LN         | LN=10              |
| NF         | NF=12, NY=9        |
| • • •      |                    |
| SA         | none               |
| •••        |                    |



## Scanning the database

- Search database for all occurrences of query words
- Approach:
  - index database sequences into table of words (pre-compute this)
  - index query words into table (at query time)



## **Extending Hits**



12

## Extending Hits in Original Blast

- extend hits in both directions (without allowing gaps)
- terminate extension in one direction when score falls certain distance below best score for shorter extensions



return segment pairs scoring at least S

#### How to choose w and T?

- Tradeoff between running time and sensitivity
- Sensitivity

$$sensitivity = \frac{\# \text{ significant matches found}}{\# \text{ of significant matches in DB}}$$

- T
  - small T: greater sensitivity, more hits to expand
  - large T: lower sensitivity, fewer hits to expand
- w
  - Larger w: lower sensitivity, fewer hits to expand

#### The Two-Hit Method

- extension step typically accounts for 90% of BLAST's execution time
- key idea: do extension only when there are two hits on the same diagonal within distance A of each other
- to maintain sensitivity, lower T parameter
  - more single hits found
  - but only small fraction have associated 2nd hit

#### The Two-Hit Method



## Gapped BLAST

- trigger gapped alignment if two-hit extension has a sufficiently high score
- find length-11 segment with highest score; use central pair in this segment as seed
- run DP process both forward & backward from seed
- prune cells when local alignment score falls a certain distance below best score yet

## Gapped BLAST



Figure from: Altschul et al. Nucleic Acids Research 25, 1997

# **BLAST Programs**

| Program | Query          | Database       |
|---------|----------------|----------------|
| BLASTP  | Protein        | Protein        |
| BLASTN  | DNA            | DNA            |
| BLASTX  | Translated DNA | Protein        |
| TBLASTN | Protein        | Translated DNA |
| TBLASTX | Translated DNA | Translated DNA |

## Summary

- It's heuristic: may miss some good matches
- It's fast: empirically, 10 to 50 times faster than Smith-Waterman
- large impact:
  - NCBI's BLAST server handles more than 100,000 queries a day
  - most used bioinformatics program in the world