Reporting Meeting on JCM Projects and Feasibility Studies in JFY2015

JCM Model Project "Power generation by waste heat recovery in cement industry"

22 February 2016

Gen TAKAHASHI
Deputy General Manager
Global Business Development
JFE Engineering Corporation

- About JFE Engineering
- Project Summary
- Project Methodology
- Reference / Another JCM

Group Structure

JFE Holdings

(holding company)

Turnover: **39** billion\$

Employees: **57,500**

Fortune Global 500:

Ranked in 278

Japan Marine United

Net Sales (million \$)

3,600

Employees

6,000

JFE Engineering

Net Sales (million \$)

3,700

Employees

8,500

JFE Steel

Net Sales (million \$)

29,000

Employees

43,000

JFE Shoji Trade

Net Sales (million \$)

19,000

Employees

6,000

Business Field

Industrial Machinery & Others

Steel Structure

Energy Plant & Pipeline

- About JFE Engineering
- Project Summary
- Project Methodology
- Reference / Another JCM

JCM Model Project Summary

Counterpart	PT Semen Indonesia
Site	Tuban Plant East Jawa
Power Generation	28MW
GHG Emission Reduction	122,000t-CO2 /year

Surabaya 📴

Waste Heat Recovery Benefits

Cement Production
Waste Heat from
Exhaust Gas

JFE's WHR Technology Environmentally Friendly Power Generation

Benefits

CO₂ Emission Reduction

No Additional Fuel Required

Electricity Reserve for the Community

Savings on Production Costs

Reduced Consumption from Grid-Connected Power Plants

Electricity Generation Using Only Waste Heat

Available Electricity for the Communities

Apx. 20% substituted with Electricity by WHR

Cement Production - Baseline

After WHR System Installation

- About JFE Engineering
- Project Summary
- Project Methodology
- Reference / Another JCM

Eligibility Criteria

Criterion 1	The project utilizes waste heat from a cement production facility by waste heat recovery system (WHR) to generate electricity	
Criterion 2	WHR system consists of a Suspension Preheater boiler (SP boiler) and/or Air Quenching Cooler boiler (AQC boiler), turbine generator and cooling tower	
Criterion 3	WHR system utilizes only waste heat and does <u>not</u> utilize fossil fuels as a heat source to generate steam for power generation	
Criterion 4	WHR system has not been introduced to a corresponding cement kiln of the project prior to its implementation	
Criterion 5	Cement factory where the project is implemented is connected to a grid system and	
	the theoretical maximum electricity output of the WHR system, which is calculated	
	by multiplying maximum electricity output of the WHR system by the maximum hours	
	per year (24*365=8,760 hours), is not greater than the total amount of the	
	electricity imported to the cement factory from the grid system:	
	> During the previous year before the validation,	
	if the validation of the project is conducted	
	before the operation of the project, or	
	> During the previous year before the operation of	
	the project, if the validation of the project is	
	conducted after the operation of the project	
	4 4	

Calculation of Reference Emissions

		A	В	С	D	E(A*B*C*D)
_	ntity of Electricity eration	Generation Capacity (MW)	Operating day per year (days/y)	Time (hrs/day)	Operating Rate	Electricity (MWh)
	Dry Season	28	182.5	24	0.85	104,244
	Rainy Season	22	182.5	24	0.85	81,906
elec	The quantity of electricity 2.4 365 24 1 consumption					21,024
	The quantity of net electricity generation by the WHR system which replaced grid electricity import 165,12				165,126	

$$RE_y = EG_y * EF_{grid}$$

- = 165,126 MWh/y * 0.741 tCO₂ e/MWh
- = 122,358 tCO₂e/y

Reference Emissions

Reference

Reference is the situation where WHR system has not been introduced. Diffusion rate of WHR system is very low in Indonesian Cement Industry 1 plant installed / 25 plants total

Conservativeness

Electricity consumption of WHR system is calculated by the theoretically maximum load of auxiliary equipment => Rated capacity of installed equipment (EG_{CAP}) related to WHR system and max. hours/period

The quantity of gross electricity generation by waste heat

 $EG_{AUX,y}$:2.4MW(EG_{CAP})*24h/d*365days

1.9MW(Designed capacity)*24h/d*365days

Reference Emissions

 $RE_y = EG_y * EF_{grid}$

 RE_y : Reference emissions EG_y : The quantity of net electricity generation

EF_{grid}: CO₂ emission factor for an Indonesian regional grid system

Determination of EG_v

 $EG_y = EG_{GEN} - EG_{AUX}$

EG_{GEN}: The quantity of gross electricity generation by waste heat

EG_{AUX}: The quantity of electricity consumption by WHR system

Determination of EGAUX

 $EG_{AUX} = EG_{CAP} * 24 * 365$

EG_{CAP}: The total maximum rated capacity of equipments of WHR system

Emission Reduction / Monitoring

Emission Reductions = **Reference Emissions**

Replacement of Grid Electricity Generation

- Calculation of reference/project emissions
 Emissions to be calculated in the methodology are those replaced by power generation of WHR system
- Emission Reductions= Reference Emissions Project Emissions
- No additional fuelProject Emissions = 0

Monitoring

► EG_{GEN},y: Quantity of gross electricity generation

Watt meter log data are saved: every one minute in both electronic data in a server and on printed paper

Project Schedule

Power Generation will be envisaged in the beginning of 2017

	2013	2014	2015	2016	2017
Design					
Equipment					
Construction					
Commissioning					*

No.4 SP Boiler Area

No.4 AQC Damper

Steam Turbine

- About JFE Engineering
- Project Summary
- Project Methodology
- Reference / Another JCM Project

Waste to Energy Plant in Yangon - JCM Model Project -

First WTE Project with JCM

First WTE Project in Myanmar

Counterpart	Yangon City Development Committee		
Site	Mingalardon area, Yangon City MYANMAR		
Technology	Waste to Energy(WTE) Incinerator: 60ton/day Generator: 0.7MW		
GHG Emission Reduction	4,700t-CO ₂ /year		

Thank you for your kind attention.

JFE Engineering Corporation (Tokyo Head Office)

Marunouchi Trust Tower North 19F,

1-8-1 Marunouchi, Chiyoda-ku, Tokyo 100-0005, JAPAN

TEL: +81-3-62120822 FAX: +81-3-62120803

PT. JFE Engineering Indonesia

Sentral Senayan Ⅲ 13th Floor, Jl. Asia Afrika No.8, Gelora Bung Karno - Senayan, Jakarta Pusat 10270, INDONESIA

TEL: +62-21-29660785 FAX: +62-21-29660788