Corso di Laurea Magistrale in Data Science Applicata

Development of a Scalable Multi-Agent System for Financial Sentiment Analysis Using RabbitMQ

Olusegun Emmanuel Ajibola

RELATORE: Prof. DE GASPERIS GIOVANNI

TABLE OF CONTENTS

Development of a Scalable Multi-Agent System for Financial Sentiment Analysis Using RabbitMQ

- Overview of Research
- Objective
- Applications
- Methodology
- Results
- Demo
- Limitations & Future Works
- Conclusion

Building a Scalable Multi-Agent System (MAS) for Sentiment Analysis Using RabbitMQ

Tools

- 1) Compare and evaluate the performance of state-of-the-art methodologies on financial news data.
- 2) Develop a scalable MAS architecture tailored for financial applications.
- 3) Implement the execution of distributed ledger transactions as response agents in the MAS architecture.
- 4) Assess the potential benefits and limitations of implementing such systems in the financial industry.

APPLICATIONS

- > Financial investment and trading
- social media monitoring
- > chatbot enhancement

customer feedback management e.t.c

Architecture

Data Preprocessing

Financial PhraseBank from P. Malo et al. (2014) "Good Debt or Bad Debt: Detecting Semantic Orientations in Economic Texts".

S/No	News	Sentiment
1	The international electronic industry company Elcoteq has laid off tens of employees from its Tallinn facility; contrary to earlier layoffs the company contracted the ranks of its office workers, the daily Postimees reported.	negative
2	According to Gran , the company has no plans to move all production to Russia , although that is where the company is growing .	neutral
3	With the new production plant the company would increase its capacity to meet the expected increase in demand and would improve the use of raw materials and therefore increase the production profitability .	positive

TABLE 4.1: Sample news in the dataset.

Data Preprocessing

Sentiment Distribution on Financial Dataset

Data Preprocessing: Data Augmentation

Sentiment Distribution on Financial Dataset

Text Preprocessing: Feature Representations & Embeddings

Word Count and Encodings

S/No	Label	Encoding
1	positive	2
2	neutral	1
3	negative	0

TABLE 4.3: Label Encoding

Tokenized Word ^a	Embedding (count)
according	1
although	1
company	2
gran	1
growing	1
move	1
plans	1
production	1
russia	1

^a Original text: According to Gran , the company has no plans to move all production to Russia , although that is where the company is growing .

TABLE 4.5: NB Model Embeddings using Count Vectorizer (word count)

Text Preprocessing: Feature Representations & Embeddings

GloVe

Probability and Ratio	k = solid	k = gas	k = water	k = fashion
	1.9×10^{-4}			
P(k steam)	2.2×10^{-5}	7.8×10^{-4}	2.2×10^{-3}	1.8×10^{-5}
P(k ice)/P(k steam)	8.9	$8.5 imes 10^{-2}$	1.36	0.96

TABLE 3.2: Co-occurrence probabilities for target words ice and steam with selected context words from a 6 billion token corpus. [45]

$$J = \sum_{i=1}^{V} \sum_{j=1}^{V} f(X_{ij}) \left(w_i^{\top} \widetilde{w}_j + b_i + \widetilde{b}_j - \log(X_{ij}) \right)^2.$$

Text Preprocessing: Feature Representations & Embeddings

> BERT and **DistilBERT**

FIGURE 3.4: Diagram of BERT BASE and DistilBERT model architecture [35].

Text Preprocessing: Feature Representations & Embeddings

BERT and DistilBERT

FIGURE 3.8: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel [57].

$$PE_{(p,2i)} = \sin\left(\frac{p}{10000^{2i/d}}\right),\tag{1}$$

$$PE_{(p,2i+1)} = \cos\left(\frac{p}{10000^{2i/d}}\right),$$
 (2)

$$Q = XW^Q, K = XW^K, V = XW^V \tag{3}$$

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$
 (4)

$$MultiHead(Q, K, V) = Concat(head_1, ..., head_h)W^O$$
(5)

FIGURE 3.7: Model Architecture of a Transformer [57].

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2 \tag{6}$$

Text Preprocessing: Feature Representations & Embeddings

DistilBERT

S/No	Tokens	Embeddings	S/No	Tokens	Embeddings
0	CLS	101	13	production	2537
1	According	2429	14	to	2000
2	to	2000	15	Russia	3607
3	Gran	12604	16	,	1010
4	,	1010	17	although	2348
5	the	1996	18	that	2008
6	company	2194	19	is	2003
7	has	2038	20	where	2073
8	no	2053	21	the	1996
9	plans	3488	22	company	2194
10	to	2000	23	is	2003
11	move	2693	24	growing	3652
12	all	2035	25		1012
			26	SEP	102

TABLE 4.2: Token Embeddings using DistilBERT

Models: Logistic Regression (LR)

> The model is defined as:

$$\Pr(y = i | X) = \frac{e^{w_i^T X + b_i}}{\sum_{j=1}^k e^{w_j^T X + b_j}}.$$

The cross-entropy loss function is employed in the training process of the multinomial logistic regression:

Loss =
$$-\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{k} y_{ij} \log(\Pr(y=j|X_i)).$$

Models: Naive Bayes

> The model is defined as:

Naive Bayes estimates the probability Pr(y|X) of a sentiment y given the features X using the Bayes' Theorem:

$$\Pr(y|X) = \frac{\Pr(X|y)\Pr(y)}{\Pr(X)},$$

We use the naive independence assumption that all features x_i are conditionally independent given y. Hence,

$$\Pr(X|y) = \prod_{i=1}^{n} \Pr(x_i|y).$$

Models: LSTM

FIGURE 3.6: An LSTM Architecture [63].

Models: LSTM

Forget gate.

$$f_t = \sigma(W_f X_t + U_f h_{t-1} + b_f),$$

> Input gate & candidate state.

$$i_t = \sigma(W_i X_t + U_i h_{t-1} + b_i)$$

 $\tilde{C}_t = \tanh(W_c X_t + U_c h_{t-1} + b_c).$

> Internal cell state

$$C_t = f_t C_{t-1} + i_t \tilde{C}_t,$$

Output gate & hidden state

$$o_t = \sigma(W_o X_t + U_o h_{t-1} + b_o),$$

$$h_t = o_t \tanh(C_t).$$

Model Training

S/No	Model	Embeddings	Time to Train ^a	Key Parameters
1	LSTM ₁	GloVe	1hr 54m	input layer = 100, hidden layer = 128, output = 3
2	LR	DistilBERT	4.63m ^b + 13.4 s	l_1 ratio = 0.5
3	NB	Count Vectorizer	2.22s	$\alpha = 0.6$
4	LSTM ₂	DistilBERT	2.59m ^b + 1hr 20m	input layer = 768, hidden layer = 128, output = 3

^a This does not account for the time used to train for hyperparameters.

TABLE 4.4: Model Training

b Time to train embeddings on the data using DistilBERT.

RabbitMQ

FIGURE 3.2: Message flow from producers to consumers [61].

RabbitMQ Messaging Flow

ResultModel Performance

Model Performance

Model Performance

Model Performance

RESULTMAS Embedded

RESULT

MAS Performance

Scalable

Low Communication Latency (fraction of seconds)

Message Handling

DEMO

Demonstration of a MAS using RabbitMQ

- The company's stock is making gains in the market despite drastic government policies.
- The stock price tanked after the recent publication of awful earnings for the third quarter.

Demonstration of a MAS using RabbitMQ

LIMITATION & FUTURE WORK

Lack of benchmark financial dataset.

- Absence of GPU for robust training.
- Proprietary financial data.

CONCLUSION

- Design of a MAS
- Models that understand the complexity of financial text
- > IOTA ensures transparency, secure and decentralized execution of actions.

Thank you for your attention!