TITULACIÓN	INGENIERÍA DEL	FECHA	01/12/2020	
	SOFTWARE Y MAT. COMPUTACIONAL			U -таd
CURSO	2^{0}	HORA	15:00	DE TECNOLOGÍA Y ARTE DIGITAL
GRUPO	A	DURACIÓN	1 HORA 45 MIN.	
ALUMNO				

NORMAS DEL EXAMEN

- El objetivo del examen es evaluar vuestros conocimentos, por lo tanto debéis explicar convenientemente vuestras soluciones, no seáis escuetos ni dejéis nada a la interpretación.
- No se permiten calculadoras científicas programables ni ordenadores/tablets. En este sentido, no se permiten calculadoras que tengan alguno de los modos vector (VCT), matrix (MAT), equation (EQN) o similares. Las calculadoras que no cumplan este requisito serán retiradas al principio del examen.
- Las hojas con las normas y el enunciado deben ser entregadas junto con la solución del examen.
- Es obligatorio escribir el nombre del alumno en la cabecera de todas las hojas a entregar (incluyendo las hojas con las normas y el enunciado.
- Las hojas "en sucio" no son evaluables y por lo tanto no deben entregarse.
- La mala presentación (tachones, letra ilegible, faltas ortográficas, etc.) puntúa negativamente.
- No se calificarán aquellos problemas cuya solución no esté completamente desarrollada y explicada de acuerdo a la materia vista en clase y a lo solicitado en el enunciado.
- Los teléfonos móviles deben estar en silencio o apagados y guardados en mochilas o abrigos. La posesión de un teléfono móvil durante el examen es motivo de expulsión del examen. La misma indicación aplica a los relojes tipo smart watch.
- Se recomienda leer detenidamente cada enunciado antes de contestarlo.
- Es obligatorio proporcionar un resultado numérico siempre que sea posible, siendo preferible una fracción a un valor decimal aproximado. Igualmente, es recomendable simplificar al máximo las expresiones que aparezcan en el problema (polinomios, etc.).
- \bullet Solo recibirán la puntuación máxima aquellos problemas cuya solución sea correcta. En el resto de los casos, se valorará el desarrollo hasta un máximo del 50 % de la puntuación de ese problema.
- No se permiten libros ni apuntes.
- No se podrá abandonar el examen hasta pasada la primera media hora.
- Solo se contestarán preguntas relacionadas con los enunciados, no sobre el método de resolución o cuestiones de presentación.
- Ante cualquier duda durante el examen, se recomienda aplicar el sentido común y proporcionar la respuesta más completa posible.

TITULACIÓN	INGENIERÍA DEL SOFTWARE Y MAT. COMPUTACIONAL	FECHA	01/12/2020	U -таd
CURSO	2^{0}	HORA	15:00	CEMTRO UNIVER, MARIO DE TECNOLOGÍA Y ARTE DIGITAL
GRUPO	A	DURACIÓN	1 HORA 45 MIN.	
ALUMNO				

PROBLEMA 1 (2.5 PUNTOS)

Resolver en el cuerpo de los números complejos la ecuación (z-1-i)(z+1+i)(z-1+i)(z+1-i) = 4+i proporcionando las soluciones en forma binómica o exponencial y representar dichas soluciones en el plano complejo.

PROBLEMA 2 (2.5 PUNTOS)

Dada la integral impropia $\int_1^\infty \frac{1}{x^2 \sqrt{Ln(x)}} dx$, calcular su valor si es convergente o justificar su divergencia en caso contrario.

PROBLEMA 3 (2.5 PUNTOS)

Dada la sucesión funcional $\{f_n\}$, donde su término general es $f_n=\frac{1+n\,x}{\sqrt{1+n^2\,x^2}}$, determinar la función límite puntual f(x) en todo \mathbb{R} . ¿Es uniforme la convergencia de la sucesión a f(x) en todo \mathbb{R} ?

PROBLEMA 4 (2.5 PUNTOS)

Sea una serie de potencias $\sum_{n=0}^{\infty} a_n x^n$ de la que se conoce que su radio de convergencia es $R \in \mathbb{R}$. Si m es un número natural fijo, ¿cuál sería el radio de convergencia de las siguientes series?

a)
$$\sum_{n=0}^{\infty} (a_n)^m x^n$$
 (0.75 puntos)

b)
$$\sum_{n=0}^{\infty} m a_n x^n$$
 (0.75 puntos)

c)
$$\sum_{n=0}^{\infty} a_n (x-m)^n (0.5 \text{ puntos})$$

d)
$$\sum_{n=0}^{\infty} a_n x^{2n}$$
 (0.5 puntos)