COMP3121 21T2 Assignment 1 Q5

Written by Zheng Luo (z5206267)

Part A

Answer: f(n) = O(g(n))

Let $f(n) = log_2(n)$ and $g(n) = \sqrt[10]{n}$.

Since L'Hôpital's rule states if f(x), $g(x) \to \infty$ and they are differentiable, then:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)} = \lim_{n \to \infty} \frac{10}{\sqrt[10]{n}} = 0$$
 (1)

f(n) = O(g(n)) has be proven when there exist positive constants c and n_0 such that $0 \le f(n) \le c \times g(n)$ for all $n \ge n_0$, and g(n) eventually dominates the f(n) proven by L'Hôpital's rule.

Part B

Answer: f(n) = O(g(n))

Let $f(n) = n^n$ and $g(n) = 2(n \log_2(n^2))$, and similarly f(n) = O(g(n)) can be proven when there exist positive constants c and n_0 such that $0 \le f(n) \le c \times g(n)$ for all $n \ge n_0$. Let

$$h(n) = \frac{f(n)}{g(n)} \tag{2}$$

L'Hôpital's rule states if f(x), $g(x) \to \infty$ and they are differentiable, then:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)} = L \tag{3}$$

Also, Epsilon-Delta Definition of Limit states that: if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that, for all $x \in D$, if $0 < |x - c| < \delta$, then

$$|f(x) - L| < \varepsilon \tag{4}$$

Both f(n) and g(n) are differentiable, and the fraction of f'(n) and g'(n) tends towards 0 when $n \to \infty$, hence,

$$L \to 0$$
 (5)

$$\varepsilon > 0$$
 (6)

The combination of equations (1),(2),(3),(4), and (5) will result:

$$\left| \frac{f(n)}{g(n)} \right| < \varepsilon$$
$$f(n) \le \varepsilon \times g(n)$$

Since $\varepsilon > 0$ and $c = \varepsilon$, hence $f(n) \le c \times g(n)$, and eventually f(n) = O(g(n)).

Part C

Answer:Neither

Let $f(n) = n(1 + \sin \pi n)$, g(n) = n. Because the existence of sine function, the result can be obtained by considering both even and odd inputs.

When the input is an even number 2k:

$$f(2k) = (2k)^{(1)} + \sin 2\pi k = 2k = n = g(n)$$

When the input is an odd number 2k + 1:

$$f(2k+1) = (2k+1)^{(1)} + \sin \pi = n^2 = g(n)^2$$

However when the input is an odd number 2k-1:

$$f(2k-1) = (2k-1)(1+0-1) = 1$$

The inconsistency between different inputs are resulting the functions are neither of the two.