ПРОГРАММА ДЛЯ РЕШЕНИЯ ЗАДАЧ МЕТОДОМ СИЛ

Программа *Ms* предназначена для решения статически неопределимых задач методом сил. Программу целесообразно использовать для поиска и исправления ошибок при построении единичных и грузовой эпюр изгибающих моментов, вычислении коэффициентов канонических уравнений и значений неизвестных, а также ординат окончательных эпюр внутренних усилий.

Для подготовки исходных данных необходимо расчленить основную систему на отдельные части, взаимодействующие между собой *в узлах*. Узлы выбираются в следующих сечениях:

- имеющих опорные связи или шарниры; местах приложения сосредоточенных сил или моментов; начала или конца участка, загруженного равномерно распределенной нагрузкой; местах изменения геометрической оси или жесткости стержня.

Часть системы, соединяющая два узла, называется конечным элементом. Конечный элемент (далее по тексту элемент) должен иметь прямолинейную ось и постоянное поперечное сечение по длине. Узлы и элементы системы нумеруют. Элементы с одинаковыми жесткостями на растяжение — сжатие (EA) и изгиб (EJ) объединяются в группы, имеющие один тип жесткости. Каждое единичное или грузовое состояние основной системы относится к отдельному загружению.

В результате получают пять чисел:

- количество узлов (Ku), элементов (Ke), типов жесткости (Kg), узлов с опорными связями (Ks), загружений (Kp).

Всю информацию можно разделить на следующие блоки:

- «характеристика задачи», «узлы», «элементы», «типы жесткости», «опорные связи», «загружения». Каждый блок информации начинается с текстовой строки — разделителя, в которой можно писать любой комментарий.

Характеристика задачи (пять чисел): Ku Ke Kg Ks Kp.

 $\mathit{Информация\ oб\ узлаx}\$ записывается построчно (одна строка — один узел) в последовательности: $\mathit{Nu\ Xu\ Yu}$,

где Nu – номер узла, Xu, Yu – координаты узла по горизонтали и вертикали.

 $\it Информация\ oб\$ элементах записывается построчно (одна строка – один элемент) в последовательности: $\it Ne\ Nn\ Nk\ Ng\ p$,

где Ne — номер элемента; Nn, Nk — номера узлов в начале и в конце элемента; Ng — номер типа жесткости элемента, p — признак присоединения элемента к узлу. За начальный принимается узел с меньшим номером. Признак присоединения элемента к узлу (целое число), равное: 0 (жесткое присоединение в начале и в конце); 1 (шарнирное в начале, жесткое в конце); 2 (жесткое в начале, шарнирное в конце); 3 (шарнирное в начале и в конце).

 $\it Kaждый \, mun \, жесткости \,$ описывается одной строкой, содержащей три числа: $\it Ng \, EA \, EJ$,

где Ng — номер типа жесткости, EA - жесткость на растяжение (сжатие), EJ жесткость на изгиб.

Узлы, имеющие опорные связи, описывают по строкам (одна строка – один узел): Nи pх pу pz,

где Nu — номер узла; px, py, pz — признак наличия соответственно горизонтальной, вертикальной или связи, препятствующей повороту. Если связь есть, то признак равен единице, в противном случае признак равен нулю.

Каждый вид нагрузки (сосредоточенной или распределенной, заданного смещения узлов) описывается одной строкой, содержащей четыре числа: Nu(Ne) t V Np,

где Nu(Ne) номер узла (элемента), к которому приложена нагрузка (заданное перемещение); t — тип нагрузки (заданного перемещения), V — величина, Np — номер загружения. Tun нагрузки t (целое число) означающее: 1 (горизонтальная сила), 2 (вертикальная сила), 3 (момент, приложенный к узлу), 4 (равномерно распределенная горизонтальная нагрузка), 5 (равномерно распределенная вертикальная нагрузка), 6 (заданное горизонтальное смещение узла), 7 (заданное вертикальное смещение узла), 8 (заданный поворот узла), 10 (момент, приложенный в начале элемента), 11 (момент, приложенный в конце элемента). Величина V считается положительной, если нагрузка (перемещение) направлена в ту же сторону, что и соответствующая ось $(1, 2, 4 \div 7)$ или против хода часовой стрелки (для типа 3, 8, 10, 11).

Сформированные исходные данные должны храниться в *текстовом* файле с расширением *dat* в том же каталоге, что и программа *Ms*. Имя файла не должно содержать больше восьми символов; например: *Primer*, *Variant2*, *Cxema_5*. Для создания файла и ввода в него данных можно воспользоваться любым редактором текста.

Для создания и редактирования файла с помощью программы Ms в ответ на запрос нужно ввести имя файла, которого нет в каталоге, и после сообщения:

Нет файла Имя. dat Подготовить файл? (Y/N)

ответить утвердительно (нажать клавишу Y). Затем в ответ на запрос программы следует ввести числа, характеризующие задачу: количество узлов (Ku), элементов (Ke), типов жесткости (Kg), узлов с опорными связями (Ks), загружений (Kp). В этом случае в текущем каталоге будет создан файл с предложенным именем, в котором разместится uaблон dn bboda ucxodhux dahhux в виде:

^{***} Параметры задачи $\mathit{Ku}\;\mathit{Ke}\;\mathit{Kg}\;\mathit{Ks}\;\mathit{Kp}\;$ ***

```
3 2 1 2 1
*** Узлы Xu Yu ***

1
2
3
*** Элементы Nn Nk Ng p ***
1
2
*** Жесткости Ng EA EJ ***
1
*** Связи Nu px py pz ***
```

*** Загружения *Nu (Ne) t V Np* ***

При вводе исходной информации необходимо соблюдать следующие требования: число от числа отделяется одним или несколькими пробелами; наличие в поле ввода целочисленной информации символов <.>, <,>, <-> недопустимо; целая часть числа отделяется от дробной точкой; данных в строке должно быть столько, сколько предусмотрено программой; наличие в файле пустых строк, а также строк, начинающихся с нецифровых символов (кроме специально оговоренных разделителей) не допускается; после последнего числа в строке через пробел (или несколько пробелов) можно писать любой комментарий.

Пример 1. Произведем расчет статически неопределимой рамы методом сил.

Вычертим основную систему (рис. 1, a) в координатных осях xOyи пронумеруем узлы и элементы (рис. 1, δ). Для удобства изображения сместим вниз стержень DE (учтем это при определении координат узлов). Примем, что первый и третий элементы относятся к первому типу жесткости (EJ), а второй и четвертый элементы - ко второму типу (жесткость 2EJ). В первом загружении приложим единичную силу X_1 , во втором X_2 , в третьем заданную нагрузку. В результате получаем пять чисел:

количество узлов Ku=6, элементов Ke=4, типов жесткости Kg=2, узлов с опорными связями Ks=2, разновременных загружений Kp=3.

Подготовим исходные данные для расчета.

Определим координаты узлов системы и заполним соответствующие строки.

При заполнении строк, описывающих элементы, учтем, что все элементы присоединены к узлам жестко (признак 0).

Рис. 1

При определении коэффициентов канонических уравнений (перемещений) используется только жесткость на изгиб EJ, следовательно, жесткость на растяжение (сжатие) EA можно задать любым положительным числом (например, принять равной единице).

Первый и шестой узел закреплены от смещения по горизонтали, по вертикали и от поворота (после номера узла ставим 1 1 1).

В первом загружении (рис. 1, θ) к четвертому и пятому узлу приложены соответственно вертикальная (тип 2) положительная (в направлении оси y) и отрицательная (противоположно оси y) единичная силы.

Во втором загружении (рис. 1, ε) к четвертому и пятому узлу приложены соответственно горизонтальная (тип 1) отрицательная (противоположно оси x) и положительная (в направлении оси x) единичная силы.

В третьем загружении (рис. 1, ∂) к пятому узлу приложена вертикальная (тип 2) отрицательная сила F; ко второму элементу равномерно распределенная вертикальная (тип 5) отрицательная нагрузка q.

Файл с исходными данными для расчета:

```
*** Параметры задачи Ku Ke Kg Ks Kp ***
64223
*** Узлы Хи Үи ***
100
203
3 2.2 3
4 2.2 1.5
5 2.2 0
6 1.1 0
*** Элементы Nn Nk Ng p ***
11210
22320
3 3 4 1 0
45620
*** Жесткости Ng EA EJ ***
111
2 1 2
*** Связи Nu px py pz ***
1111
6 1 1 1
*** Загружения Nu (Ne) t V Np ***
4211
5 2 -1 1
41-12
5 1 1 2
5 2 -120 3
2 5 - 30 3
```

По подготовленным исходным данным программа Ms вычертит на экране монитора схемы нумерации узлов (рис. 2, a), элементов (рис. 2, δ) и расчетную схему по каждому загружению.

Проверка единичных и грузовой эпюр изгибающих моментов производится поэлементно в последовательности: ордината в начале элемента, ордината в конце элемента (рис. 2, в). Неправильные (в том числе и по знаку) ординаты игнорируются. После ввода правильных (с точностью до 1 %) ординат строится эпюра для проверенного элемента и производится переход к следующему элементу.

Проверка единичных и грузовых коэффициентов канонических уравнений производится по строкам (рис. 2, ε).

Проверка окончательных эпюр внутренних усилий производится аналогично.

Пример 2. Подготовим исходные данные для расчета неразрезной балки (рис. 3, a).

Вычертим основную систему (рис. 3, a) в координатных осях xOyи пронумеруем узлы и элементы (рис. 3, δ). В результате получим:

количество узлов Ku=7, элементов Ke=6, типов жесткости Kg=2, узлов с опорными связями Ks=4, загружений Kp=3.

Определим координаты узлов системы и заполним строки, описывающие узлы.

Примем, что второй, третий и четвертый элементы относятся к первому типу жесткости (EJ), а первый, пятый и шестой элементы - ко второму типу (жесткость 2EJ). Жесткость EA примем равной единице. Третий и шестой элементы присоединены к узлам жестко (признак 0), второй и пятый шарнирно присоединены к узлу в начале (признак 1), первый и четвертый элементы шарнирно присоединены к узлу в конце (признак 2).

В первом узле вертикальная и горизонтальная связи (признаки 1 1 0), во втором, пятом и седьмом узлах только вертикальные связи (признаки 0 1 0).

В первом загружении (рис. 3, в) в конце первого элемента (тип нагрузки 11) приложен положительный (направлен против часовой стрелки) единичный момент; в начале второго элемента (тип нагрузки 10) приложен отрицательный (направлен по часовой стрелке) единичный момент.

Информация о втором (рис. 3, ε) и третьем загружении (рис. 3, δ) составляется аналогично.

```
Файл с исходными данными для расчета:
*** Параметры задачи Ku \ Ke \ Kg \ Ks \ Kp ***
76243
*** Узлы Хи Үи ***
100
260
390
4 12 0
5 15 0
6 18 0
7 21 0
*** Элементы Nn Nk Ng pc ***
11222
22311
3 3 4 1 0
4 4 5 1 2
5 5 6 2 1
66720
*** Жесткости Ng EA EJ ***
1 1 1
```

2 1 2

```
*** Связи Nu px py pz ***

1 1 1 0

2 0 1 0

5 0 1 0

7 0 1 0

*** Загружения Nu (Ne) t V Np ***

1 11 1 1

2 10 -1 1

4 11 1 2

5 10 -1 2

1 5 -40 3

3 2 -80 3

4 2 -80 3

6 2 -80 3
```


Рис. 3