Homework 4

Information Theory for Complex Systems Februari - 2023

There are 9 possible probabilities, which through symmetries can be reduced down 3.

Since energy is only determined by interactions in pairs we can conclude that finding a maximum of ΔS_2 should be enough to determine p_1, p_2 and p_3 .

Attempt a Lagrange optimization

$$L(p_1, p_2, p_3, \beta, \mu) = \Delta S_2 + \beta (u - J(4p_2 - p_1)) + \mu (1 - p_1 - 4p_2 - 4p_3)$$
(1)

where we know everything except for an expression for the block entropy difference. To construct an expression for ΔS_2 we need to know the probabilities of the spin states themselves

$$P(A) =?, P(B) =?, P(C) =?.$$
 (2)

Now we can calculate the block entropy difference

$$\Delta S_{2} = \sum_{z_{n-1}} p(z_{n-1}) \sum_{z_{n}} p(z_{n}|z_{n-1}) \log \frac{1}{p(z_{n}|z_{n-1})} =$$

$$= P(A) \left(P(AA) \log \frac{1}{P(AA)} + P(AB) \log \frac{1}{P(AB)} + P(AC) \log \frac{1}{P(AC)} \right) +$$

$$+ P(B) \left(P(BA) \log \frac{1}{P(BA)} + P(BB) \log \frac{1}{P(BB)} + P(BC) \log \frac{1}{P(BC)} \right) +$$

$$+ P(C) \left(P(CA) \log \frac{1}{P(CA)} + P(CB) \log \frac{1}{P(CB)} + P(CC) \log \frac{1}{P(CC)} \right) =$$

$$= -P(A) \left(p_{1} \log p_{1} + p_{2} \log p_{2} + p_{2} \log p_{2} \right)$$

$$-P(B) \left(p_{2} \log p_{2} + p_{3} \log p_{3} + p_{3} \log p_{3} \right)$$

$$-P(C) \left(p_{2} \log p_{2} + p_{3} \log p_{3} + p_{3} \log p_{3} \right) =$$

$$= -(ap_{1} \log p_{1} + [2a + P(B) + P(C)]p_{2} \log p_{2} + [2P(B) + 2P(C)]p_{3} \log p_{3}$$

$$(3)$$

In this expression the only probabilities missing are P(B) and P(C). Since B and C appear in equal amounts of pairs with the same probabilities, the amounts of B and C must also be the same in the limit towards infinity. Therefore they split the proportion remaining after the A's,

$$P(B) = P(C) = \frac{1 - a}{2}. (4)$$

Now we can simplify the block entropy further.

$$\Delta S_2 = -(ap_1 \log p_1 + [a+1]p_2 \log p_2 + 2[1-a]p_3 \log p_3)$$
 (5)

U is the expectation value of the internal energy.

$$S[P] = \sum_{i} p_i \log \frac{1}{p_i} \tag{6}$$

$$\sum_{i} p_i h(i) = U \tag{7}$$

$$\sum_{i} p_{i} f_{k}(i) = n_{k}, (k = 1, \dots, M)$$

$$\sum_{i} p_{i} = 1$$
(9)

$$\sum_{i} p_i = 1 \tag{9}$$