

Đề thi CUỐI KỲ lớp CHÍNH QUY

Môn thi: ĐIỆN TỬ THÔNG TIN

Ngày thi: 27/12/2016 (Thời gian: 110 phút)

	Điểm	Cán bộ coi thi	Çán bộ duyệt đề	Cán bộ tổng hợp đề
Câu 1:			Minh Cross	
Câu 2:		Dull 1	TS. Huỳnh Phú Minh Cường	- (1) ha
Câu 3:		~ 4/4		
Câu 4:		-	Winh Quốc Hàng	Nguyên Tan Phat

- Sinh viên được phép sử dụng tài liệu là 1 tờ A4 viết tay
- Sinh viên <u>làm bài trực tiếp trên đề thi và nộp lại</u>.

Cho hệ thống thu phát RF dùng điều chế/giải điều chế DSB (Double Sideband). Giả sử phần thu RF của hệ thống thu phát gồm các khối sau:

- Một bộ khuếch đại nhiễu thấp, có hệ số nhiễu NF1 = 2 dB, độ lợi công suất G1 = 15 dB.
- Một bộ đổi tần có hệ số nhiễu NF2 = 5 dB, độ lợi công suất G2 = 0 dB.
- Một bộ khuếch đại trung tần có NF3 = 8 dB, độ lợi công suất G3 = 30 dB.

Cho nhiệt độ tại máy thu là $T = 290^{\circ}$ K. Giả sử tín hiệu tiếng nói có băng thông 4 KHz cần truyền dẫn dùng hệ thống thu phát RF ở trên.

Tính độ lợi công suất tổng cộng và hệ số nhiều tổng cộng của toàn phần thu RF.

Quantity (a) An thưng thu RF. Nữ biể nay

Diù Lili cũng suất tổng (a) = G_{1} (b) G_{2} (a) = G_{3} (b) G_{4} (c) G_{2} = G_{3} (c) G_{3} = G_{4} (c) G_{4} = G_{4} = G_{4} (c) G_{4} = G_{4}

Nicsource): cong soul to nhist & nyé vuò phin thuRE
Ni(some) = KTB = 290° 4103 1,38 10-23
$= 1,6 \cdot 10^{29} \text{ W}$
[~ -167, 96 dB]
ACM CA
định mức công suất nhỏ nhất tại ngỡ vào của phần thu RF nếu tỉ số tín hiệu trên nhiễu yêu cầu tạ a phần thu RF ít nhất là 12 dB.
Tu có F = SNR; Và SNR; p² số hó hiệu tuôn nhiữ trư ngữ vào. SNR, hì số hó hiệu trưo nhữy trư ngữ na
BOTH SMIT-CNSPLB = 115,85
Si/N; (sauce)
SNRo 212
=) Si/N = F. SRIR. > F +2 15,85 = 28,847
\Rightarrow Si \geq Ni 28,847 \approx 4,62.10 ⁻¹⁶ W.
=> [cong surat his hising who what - [4,62 10 16 W]

d.	Nếu thực tế mức công suất tín hiệu tại ngõ vào của phần thu RF nhỏ hơn kết quả được tính ở câu c), trình bày các giải pháp có thể (tại máy phát, máy thu, kênh truyền) để đảm bảo tỉ số tín hiệu trên nhiễu yêu cầu tại ngõ ra của phần thu RF ít nhất là 12 dB.
	Car philing phap the tamba's - Si dung car much which the cong soul 3 ngo vuo the tang mu come suit on his him to no sou like the him there there there
	car priving prop au vam bas - Si dung các mạch which đại cũng sưa 3 ngẽ vàc đi tàng mu cũng sur ray họ họi tài ngẽ vào lin cao sau lihi mà hó hiệ tuyto tài ngó vào mức suy hao sẽ số sẽ bũ trữ và lường lihui ch đưi Bữ khuích tài có thể 3 máy thư và trước các lhấ nhân 2 máy phád R = để - Táng đã lới của các lhấi hà trong lihải the phád R = để
	Uhurih đại hơ him thi đi que các trong loach nay rung lam khurih đài Ta nhữn thong F và Si h li thuôn nin khi nhi tu ở các trong)
	- Đạt các bố (khuếch đu) 8 trận đường đi cuốn hó hvấi tr máy phát đườ máy thu
	- SNR; = Si níu Si stí de etam bás his hiệu trun mhini Ni 28 ngổ sa 12dB mas Fith ang dia
Cá	Dang các bố LNA từ giảm công suất nhữ Ni=kTB nữn tư có thể giảm bằng thông hoặc giam nhữt dữ iu 2 (2d):
Ch điệ	no mạch dao động cao tần như <u>Hình 1</u> . Giả sử $L1 = 100 \mu\text{H}$, $C1 = C2 = 500 \text{pF}$. Bỏ qua sụt áp rơi trên trở R2. Giả sử các giá trị cực đại và cực tiểu của điện dung Cv và điện áp V (là điện áp phân cực cho ricap) được cho ở <u>Bảng 1</u> .
	+Vcc
	$ \begin{array}{c cccc} & C_{\nu} (pF) & V (Volt) \\ \hline & 50 & V_{min} = 2 \end{array} $
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	+V

Họ và tên sinh viên: Ny mych Minh Moung MSSV:

MSSV: 41301342 Nhóm:

3/8

•••••	Magh Zacó tab	nay la much	du o ding (thi	ių liei.	Clupp: C	ak B, B : :
2	1 7 t 7	1+7 ₁₂ =0 6	- JwL - <u>΄</u> ωζ _ν	<u>)</u> w(.	<u>)</u> =0	C,.B.:t
		duo das, luiu	Capp Cay <	<u>ال</u>	=> (₁₎ (₂ ld	ong tanglu
) W = 1	·····	1	
	•••••••••••••••••••••••••••••••••••••••		VLL&	<i>f</i>	ETV LCV	
*****	(=	fmox CVmi	n 2π√100	ин . 2 0ps	3,5	6 MHZ
		fmin I comox	211 VI 00 NA	50P F	· · ·	NH5)
b. Vē l mạc	lại mạch điện ở h điều chế FM i	minn i de unic ni	ện điều chế FM (Fr	equency n	nodulation), cho : = (.) biết độ di tân
M:	·1	2FC, 4044			#	
Ĭ		TALL	IỆU SƯ	3	C->0 +	
<i>}</i>			21 Hewor-es		C2 = 2	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
-			=		#	
ン``````	Ac di tan	wa much the	chi EM sau	time	on Uh (ran	a (uch a) da
t	an sa dua	ding lin nhai	chi EM nay và tan số da	o d mg	nhs nhut	No mach V
	Of:	= fmax = fmir	7 - 1,31 MI	12)		
••••••		,	•		-	•••
			•••••••••••••••••••••••••••••••••••••••			•••••

Cho biết phương pháp tăng độ di tần nhưng vẫn dưa vào bô điều chế FM ở trên. Philing pháp từ tung đổ di trư đó là phường pháp Hanstrung much VCO chi do phip tim chi trong lihuang barg Philing pháp Amstrony t)...co..4.l Câu 3 (3d): Cho máy phát cao tần (RF Transmitter) hoạt động ở vùng tần số ngõ ra 5.2 GHz có sơ đồ như Hình 2a G = 10 dBG = 20 dB11P3 = 48 dBm IIP3 = 24 dBm IIP3 = --- d8m RF Mixe Power Amplifier dBm Input Output -18 RF Transmitter Hình 2a: Sơ đồ máy phát <u>Hình 2b</u>: Phố ngõ ra cho phép đo Two-Tone Máy phát trên được đo đạc trong 2 phép đo được mô tả như sau:

- Phép đo 1: Tín hiệu ngõ vào là 1 tín hiệu sin có tần số 1.1 GHz (one-tone) và công suất tín hiệu -10 dBm. Tín hiệu ngõ ra đo ở tần số 5.2 GHz có mức công suất 14 dBm
- Phép đo 2: Tín hiệu ngõ vào là 2 tín hiệu sin có tần số f1 và f2 (two-tone) và có cùng mức công suất -10 dBm. Tín hiệu ngõ ra quan sát được trên máy đo xuất hiện thêm hai thành phần phụ

Họ và tên sinh viên: 5/8

(Intermodulation - IMD) ở tần số	5.16 GHz và 5.22	GHz, mỗi thành	phần này có	công suất -	18 dBm
như <u>Hình 2b</u> .		,	F,	701.B 044.	10 CDM

a.	Xác định tần số tín hiệu dao động nội flo tạo bởi PLL, độ lợi công suất toàn máy phát cao tần và độ lợi
	công suất mạch trộn tần RF Mixer.

I construction of the cons
Vi tun so 8 ng o vao mach vi tun la 1 1 4 Hz trung lan tun so 8 ng o na eto 3 tun so 5,2 GHz -> fro = 5,2-1,1-4,16Hz Theo is pring to 1: Taco cong suat his him vao = -10 dBm = 0,1 mW
8 nga na do 3 tan sã 5,2 GHz => f = 5,2-1,1 = 4,16Hz
This is this to 1:
la co cong suat his dia vac = -10 dBm = 0,1 mW
14dBm = 25,12mW
=) F = Sout = (10:21 = (1)
=> G = Sout ~ 251,2 (d. 12 toan may)
= 24dB
IV at that
G=G, G, G, (W)

hou G = G, + G, + G, (dB)
\Rightarrow $(r_1 - 24 - 20 - 10 = -6 dB)$
Xác định tần số fl và f2 của hai tín hiệu tại ngỗ vào máy phát cao tần trong phép đo two-tone, điểm chặn phi tuyến bậc 3 (IIP3) của toàn máy phát cao tần và IIP3 của mạch khuếch đại công suất Power

$$= \frac{11 \cdot 110}{5160 + 12} = \frac{12}{5100 + 12} = \frac{1$$

$$-(f_2 + f_{10}) + INO_{5,22} GH_2 - f_2 - f_4 = 2f_2 - f_4$$

$$= 1.09 \text{ GHz}$$

$$= 1.1 \text{ GHz}$$

Nguyin Minh Noung Họ và tên sinh viên:

MSSV: 41301342 Nhóm:

Câu 4: (2 d)

Họ và tên sinh viên:

MSSV: 41301342 Nhóm:

7/8

