ES710 – Controle de Sistemas Mecânicos

03 – Função de transferência

Eric Fujiwara

Unicamp – FEM – DSI

Índice

Índice:

- 1) Transformada de Laplace;
- 2) Função de transferência;
- Questionário;
- Referências;
- Exercícios.

1.1. Transformada de Laplace:

• Uma vez identificado o **modelo** da planta ou processo, a próxima etapa é avaliar a **saída** y(t) do sistema em resposta o sinal de **entrada** u(t).

1.1. Transformada de Laplace:

- Dada a entrada u(t), queremos determinar a resposta do sistema y(t), ou seja, resolver a EDO;
- Uma forma calcular a resposta é através da transformada de Laplace:

$$Y(s) = \mathcal{L}[y(t)](s) = \int_0^\infty y(t)e^{-st}dt$$
 (1)

• Onde $s = \sigma + j\omega$ é a variável de Laplace.

1.2. Transformada de Laplace inversa:

$$y(t) = \mathcal{L}^{-1}[Y(s)](t) = \frac{1}{2\pi j} \int_{\gamma - j\infty}^{\gamma - j\infty} Y(s) e^{st} ds$$
 (2)

A solução de (2) é obtida pelo teorema dos resíduos:

$$y(t) = 2\pi j \sum_{n} z_{n} \tag{3}$$

$$z_n = \frac{1}{2\pi i} \lim_{s \to s_n} (s - s_n) Y(s) e^{-st}$$
 (4)

• s_n é o polo referente ao n-ésimo resíduo.

- 1.3. Transformada de Laplace de funções básicas:
 - Para condições iniciais nulas $\dot{y}(0) = y(0) = 0$ e $t \ge 0$;
 - Sistema de ordem zero:

$$f(t) = a_0 y(t)$$

$$F(s) = a_0 Y(s) \tag{5}$$

Sistema de primeira ordem:

$$f(t) = a_1 \dot{y}(t) + a_0 y(t)$$

$$F(s) = (a_1 s + a_0) Y(s)$$
 (6)

Sistema de segunda ordem:

$$f(t) = a_2 \ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t)$$

$$F(s) = (a_2 s^2 + a_1 s + a_0)Y(s)$$
 (7)

- 1.3. Transformada de Laplace de funções básicas:
 - Impulso unitário:

$$f(t) = 0,$$
 $t \neq 0$
 $f(t) = 1,$ $t = 0$

$$F(s) = 1 \tag{8}$$

Degrau unitário:

$$f(t) = 0,$$
 $t < 0$
 $f(t) = 1,$ $t > 0$

$$F(s) = \frac{1}{s} \tag{9}$$

- 1.3. Transformada de Laplace de funções básicas:
 - Rampa unitária:

$$f(t) = 0,$$
 $t < 0$
 $f(t) = t,$ $t \ge 0$

$$F(s) = \frac{1}{s^2} \tag{10}$$

Função senoidal:

$$f(t) = \sin \omega t$$

$$f(t) = \cos \omega t$$

$$f(t) = e^{\omega t}$$

$$F(s) = \frac{\omega}{s^2 + \omega^2} \tag{11}$$

$$F(s) = \frac{s}{s^2 + \omega^2} \tag{12}$$

$$F(s) = \frac{1}{s - \omega} \tag{13}$$

1.4. Propriedades da transformada de Laplace:

1	$\mathscr{L}[Af(t)] = AF(s)$	(Linearidade)
2	$\mathscr{L}[f_1(t) \pm f_2(t)] = F_1(s) \pm F_2(s)$	(Linearidade)
3	$\mathcal{L}_{\pm}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0\pm)$	(Derivada)
4	$\mathcal{L}_{\pm}\left[\frac{d^2}{dt^2}f(t)\right] = s^2F(s) - sf(0\pm) - \dot{f}(0\pm)$	(Derivada)
8	$\mathscr{L}\left[\int_0^t f(t)dt\right] = \frac{F(s)}{s}$	(Integral)
9	$\int_0^\infty f(t) dt = \lim_{s \to 0} F(s) \qquad \text{if } \int_0^\infty f(t) dt \text{ exists}$	(Teorema do valor final)
10	$\mathscr{L}\big[e^{-\alpha t}f(t)\big]=F(s+a)$	(Shift em s)

1.4. Propriedades da transformada de Laplace:

12	$\mathscr{L}[tf(t)] = -\frac{dF(s)}{ds}$	(Derivada)
15	$\mathscr{L}\left[\frac{1}{t}f(t)\right] = \int_{s}^{\infty} F(s) ds \qquad \text{if } \lim_{t \to 0} \frac{1}{t} f(t) \text{ exists}$	(Integral)
16	$\mathscr{L}\left[f\left(\frac{1}{a}\right)\right] = aF(as)$	(Scaling)
17	$\mathscr{L}\left[\int_0^t f_1(t-\tau)f_2(\tau)d\tau\right] = F_1(s)F_2(s)$	(Convolução)
18	$\mathscr{L}[f(t)g(t)] = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} F(p)G(s-p) dp$	(Convolução)

- 1.4. Propriedades da transformada de Laplace:
 - Convolução:
 - Seja a integral de convolução,

$$f(t) * g(t) = \int_0^t f(t - \tau)g(\tau)d\tau$$

A transformada de Laplace é

$$\mathcal{L}[f(t) * g(t)] = F(s)G(s)$$
(14)

Portanto,

$$\mathcal{L}[f(t)g(t)] \neq F(s)G(s)$$

1.4. Propriedades da transformada de Laplace:

- Teorema do valor final:
 - Se $\lim_{t \to \infty} f(t)$ existe (a função possui valor estacionário), então

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s) \tag{15}$$

- Vale somente se todos os polos de F(s) estiverem no semi-plano esquerdo no plano s;
- Teorema do valor inicial:
 - Se $\lim_{s\to\infty} sF(s)$ existe, então

$$f(0^+) = \lim_{s \to \infty} sF(s) \tag{16}$$

2.1. Função de transferência:

Seja um sistema da forma:

$$a_2\ddot{y}(t) + a_1\dot{y}(t) + a_0y(t) = b_2\ddot{u}(t) + b_1\dot{u}(t) + b_0u(t)$$

Calculando a transformada de Laplace,

$$(a_2s^2 + a_1s + a_0)Y(s) = (b_2s^2 + b_1s + b_0)U(s)$$

Rearranjando:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_2 s^2 + b_1 s + b_0}{a_2 s^2 + a_1 s + a_0}$$

- 2.1. Função de transferência:
 - A função de transferência do sistema G(s) que relaciona a saída Y(s) à entrada U(s) é dada por

$$G(s) = \frac{Y(s)}{U(s)} \tag{17}$$

• Note que, conhecendo o modelo G(s) e a entrada U(s), é possível obter a saída do sistema:

$$Y(s) = G(s)U(s)$$
$$y(t) = \mathcal{L}^{-1}[G(s)U(s)]$$

- 2.2. Características da função de transferência:
 - 1) A TF representa o modelo matemático do sistema que relaciona a saída à uma entrada;
 - 2) A **TF é uma propriedade do sistema** e não depende do sinal de entrada;
 - 3) A TF não precisa ter significado físico (embora geralmente seja igual ao modelo físico);
 - 4) Uma vez conhecida a TF, é possível simular a resposta do sistema a qualquer sinal de entrada;
 - 5) A TF pode ser determinada experimentalmente, conhecendo a entrada u(t) e medindo a saída y(t).

2.3. Polos e zeros:

Uma TF da forma:

$$G(s) = \frac{N(s)}{D(s)} = \frac{b_1 s^m + b_2 s^{m-1} + \dots + b_{m+1}}{s^n + a_1 s^{n-1} + \dots + a_n}$$
(18)

• Pode ser fatorada em um produto de **zeros** z_i e **polos** p_i ;

$$G(s) = \frac{N(s)}{D(s)} = \frac{(s - z_1)(s - z_2) \cdots (s - z_m)}{(s - p_1)(s - p_2) \cdots (s - p_n)}$$
(19)

- Portanto, $G(s = z_i) = 0$ e $G(s = p_i) = \infty$;
- A análise dos polos e zeros fornece informações importantes sobre o comportamento dinâmico do sistema.

Questionário

Questionário:

- 1) Revise a transformada de Laplace: escolha algumas funções y(t) e calcule as transformadas de Laplace direta e inversa;
- 2) Revise as propriedades básicas da transformada de Laplace (MA311 e MA044);
- 3) O que é uma função de transferência? Para que serve?
- 4) Por que é mais conveniente definir a TF no domínio de Laplace ao invés de fazer isso no tempo?
- 5) A TF de um circuito RLC é função da impedância do circuito e da frequência de linha. Verdadeiro ou falso?

Referências

Referências:

- G. F. Franklin *et al.*, Feedback Control of Dynamic Systems, Prentice Hall, 2002.
- K. Ogata, Modern Control Engineering, Prentice Hall, 2002.

- **Ex. 3.1)** Calcule a função de transferência $G(s) = V_o(s)/V_i(s)$ do filtro passa-baixas ativo. Em seguida, assumindo $R_1 = 10 \Omega$, $R_2 = 10 \Omega$ e C = 1 mF, obtenha a resposta do filtro para sinais senoidais $v = \sin(2\pi ft)$ com diferentes frequências f.
 - Ganho:

$$K = \frac{R_2}{R_1}$$

• Frequência de corte:

$$f_c = \frac{1}{2\pi R_2 C}$$

- **Ex. 3.1)**
 - Considerando o terra virtual na entrada inversora do AMPOP,

$$\frac{V_o}{V_i} = -\frac{Z_2}{Z_1}$$

• Onde,

$$Z_1 = R_1$$

$$\frac{1}{Z_2} = \frac{1}{R_2} + sC \Rightarrow Z_2 = \frac{R_2}{1 + sR_2C}$$

Função de transferência:

$$G(s) = \frac{V_o(s)}{V_i(s)} = -\frac{R_2}{R_1} \left(\frac{1}{1 + sR_2C}\right)$$

- **Ex. 3.1)**
 - Substituindo os valores

$$G(s) = -\frac{1}{1 + 0.01s}$$

$$K = 1$$

$$f_c = \frac{100}{2\pi} = 15.9 \text{ Hz}$$

$$\omega_c = 100 \text{ rad/s}$$

A resposta do sistema é dada por

$$V_o(t) = \mathcal{L}^{-1}[G(s)V_i(s)]$$

Onde

$$V_i(s) = \mathcal{L}[\sin(2\pi f t)](s)$$

- **Ex. 3.1)**
 - Implementação no MATLAB: arquivo .m

```
clear all %Limpa variaveis no workspace
close all %Fecha todas as janelas
clc
           %Limpa prompt
%Definicao dos parametros do filtro
R1 = 10;
R2 = 10;
C = 1e-3;
wc = 1/(R2*C) %Frequencia de corte (rad/s)
fc = wc/(2*pi) %Frequencia de corte (Hz)
%Funcao de transferencia
s = tf('s'); %Define variavel de TF
Gs = -R2/R1*(1/(1+s*R2*C))
                         TF
```

Ex. 3.1)

```
%Tensao de entrada
dt = 1e-4; %Incremento de tempo (s)
t = [0:dt:1]'; %Vetor de tempo (0 a 1 s)
f = 1; %Frequencia de entrada (Hz)
Vi = sin(2*pi*f*t); %Tensao de entrada (V)
%Simulação
Vf = lsim(Gs, Vi, t); %Simula tensao de saida (V)
%Plota Vi e Vf em função de t
figure
hold on
plot(t, Vi, '-b')
plot(t, Vf, '-r')
hold off
```

- **Ex. 3.1)**
 - $f < f_c$: transmissão
 - Obs: a tensão de saída foi invertida para fins de visualização.

Ex. 3.1)

• $f > f_c$: corte \rightarrow Filtro passa-baixas permite passagem de sinais com frequências abaixo da frequência de corte.

■ Ex. 3.2) Calcule a função de transferência $G(s) = Y_r(s)/U(s)$ do acelerômetro mecânico.

Utilizando m = 0.1 kg, c = 0.1 N.s/m e k = 0.2 N/m, obtenha a resposta do sistema a um impulso de 10 cm/s².

- **Ex. 3.2)**
 - Modelo matemático:

$$m\ddot{y_r}(t) + c\dot{y_r}(t) + ky_r(t) = u(t)$$

Transformada de Laplace:

$$Y_r(s)(ms^2 + cs + k) = U(s)$$

Função de transferência:

$$G(s) = \frac{Y_r(s)}{U(s)} = \frac{1}{(ms^2 + cs + k)}$$

- **Ex. 3.2)**
 - Função impulso:

$$U(s) = 0.01$$

Resposta ao impulso:

$$Y_r(s) = G(s)U(s) = \frac{0.01}{0.1s^2 + 0.1s + 0.2}$$

Ex. 3.2)

```
%Parametros do sistema
m = 0.1;
c = 5;
k = 50;

%Funcao de transferencia
N = [1]; %Numerador
D = [m c k]; %Denominador
Gs = tf(N,D) %Funcao de transferencia

%Simulacao
yr = lsim(Gs,u,t);
```

Ex. 3.2)

- Resposta ao impulso: $u(0.1) = 0.01 \text{ m/s}^2 \text{ e}$ $u(0.6) = 0.005 \text{ m/s}^2$;
- A entrada de aceleração é convertida em deslocamento linear pelo acelerômetro.

Ex. 3.3) Obtenha a função de transferência do motor de corrente contínua: $G(s) = \omega(s)/V(s)$

- **Ex. 3.2)**
 - Circuito elétrico:

$$v(t) = Ri(t) + L\frac{d}{dt}i(t) + e_a(t)$$

 $V(s) = [sL + R]I(s) + E_a(s)$

Sistema mecânico:

$$T(t) = B\omega(t) + J\dot{\omega}(t)$$

 $T(s) = [sJ + B]\omega(s)$

Lei de Faraday de indução:

$$e_a(t) = k\omega(t)$$

$$E_a(s) = k\omega(s)$$

Lei de força de Lorentz:

$$T(t) = ki(t)$$

$$T(s) = kI(s)$$

- **Ex. 3.2)**
 - Substituindo:

$$V(s) = (sL + R)\frac{T(s)}{k} + k\omega(s)$$

$$V(s) = \frac{(sL + R)(sJ + B)}{k}\omega(s) + k\omega(s)$$

Função de transferência:

$$G(s) = \frac{\omega(s)}{V(s)} = \frac{k}{(sL+R)(sJ+B)+k^2}$$

• Aplicando uma tensão de armadura v(t), o motor gira com velocidade $\omega(t)$.