Appunti di Farmacologia

Emiliano Bruni (info@ebruni.it)

Questo articolo riassume con delle carte mnemoniche gli argomenti di farmacologia spiegati nel IV anno del corso di laurea in medicina e chirurgia a Chieti. L'uso di questo articolo non sostituisce la lettura e lo studio di un libro e degli appunti di farmacologia. Per errori, omissioni o altre note, non esitate a contattarmi via e-mail.

Documento originale e aggiornato su https://github.com/EmilianoBruni/farmacologia_mnemonic_charts

Indice 2

Indice

I.	Farmacocinetica	4
1.	Emivita	4
II.	. Flash Cards	6
2.	Farmaci del SNC e del SNP	6
	2.1. Acetilcolina	7
	2.1.1. Agonisti colinergici	9
	2.1.2. Antagonisti colinergici	10
	2.2. Noradrenalina	
	2.2.1. Simpaticomimetici	
	2.2.2. Inibitori dei recettori adrenergici	
	2.3. Dopamina	
	2.4. Serotonina (5-idrossitriptamina)	
	2.5. Neurotrasmettitori purinici	
	2.6. Monossido d'azoto (NO)	
	2.7. L-glutammato	
	2.8. GABA (Acido γ-amminobutirrico)	
	2.9. GBH (Acido γ -idrossibutirrico)	
	2.10. Metatolillia	
	2.12. Farmaci sedativo/ansioliti e ipnotici	
	2.13. Farmacti antiepilettici	
	2.13. Parmacti antiephetiici	41
3 .	Farmaci del sistema cardiovascolare e renale	30
	3.1. Farmaci anti–ipertensivi	30
	3.2. Farmaci nell'angina e infarto cardiaco	31
	3.2.1. Nitrati organici	32
	3.2.2. Calcio antagonisti	33
	3.2.3. β -bloccanti	33
	3.3. Insufficienza cardiaca	34
	3.4. Aritmie Cardiache	36
	3.5. Diuretici	40
	3.5.1. Tubulo prossimale	
	3.5.2. Ansa di Henle (tratto discendente)	
	3.5.3. Ansa di Henle (tratto ascendente)	
	3.5.4. Tubulo contorto distale	
	3.5.5. Tubulo collettore	42

Indice 3

4.	Farmaci del sistema respiratorio 4.1. Asma	44
5 .	Farmaci dell'emostasi	48
6.	Farmaci epatici	49
	6.1 Citocromo P450	4 0

1 EMIVITA 4

Parte I. Farmacocinetica

1. Emivita

L'emivita di un farmaco è definita come il tempo necessario a ridurre il farmaco a ½ della quantità di farmaco presente nell'organismo allo steady-state.

Presupponendo che la quantità di farmaco nell'organismo abbia un andamento esponenziale decrescente con il tempo, si pu definire questo matematicamente come:

$$Q(t) = \alpha e^{-\beta t}$$

Per trovare i due parametri α e β consideriamo che a t=0 $Q(0)=Q_{\text{TOT}}=\alpha$ e quindi l'equazione sopra si pro scrivere come

$$Q(t) = Q_{\text{TOT}}e^{-\beta t}$$

e d'altra parte se consideriamo la velocità di eliminazione del farmaco al tempo t si ha che

$$-\frac{\mathrm{d} Q(t)}{\mathrm{d} t} = v_{\mathrm{elim}}(t) = -Q_{\mathrm{TOT}}(-\beta)e^{-\beta t}$$

Ma d'altra parte, per definizione

$$CL = \frac{v_{\text{ELIM}}^{\text{STEADY STATE}}}{c^{\text{STEADY STATE}}} = \frac{v_{\text{ELIM}}(0)}{c(0)}$$

e, a
$$t=0 \Rightarrow v_{\text{elim}}(0) = \text{CL} \cdot c(0) = -Q_{\text{TOT}}(-\beta)$$
 da cui $\beta = \frac{\text{CL} \cdot c(0)}{Q_{\text{TOT}}}$ ma

$$V_{\text{DIST}} = \frac{Q_{\text{TOT}}}{c(0)}$$

e quindi

$$\beta = \frac{\text{CL} \cdot \mathcal{G}(\theta)}{V_{\text{DIST}} \cdot \mathcal{G}(\theta)} \Rightarrow \beta = \frac{\text{CL}}{V_{\text{DIST}}} \text{ e quindi}$$

$$Q(t) = Q_{\text{TOT}} e^{-\frac{\text{CL}}{V_{\text{DIST}}}t}$$

a
$$t = t_{1/2} \Rightarrow Q(t_{1/2}) = \frac{1}{2}Q_{\text{TOT}} = Q_{\text{TOT}}e^{-\frac{\text{CL}}{V_{\text{DIST}}}t_{1/2}}$$

1 EMIVITA 5

e passando ai logaritmi naturali

$$\ln \frac{1}{2} = -\frac{\mathrm{CL}}{V_{\mathrm{DIST}}} t_{1/2} \Rightarrow t_{1/2} = \ln \frac{1}{2} \cdot \left(-\frac{V_{\mathrm{DIST}}}{\mathrm{CL}}\right) = \frac{\ln 2 \cdot V_{\mathrm{DIST}}}{\mathrm{CL}}$$

e quindi

$$t_{1/2} \simeq 0.7 \cdot \frac{V_{\mathrm{DIST}}}{\mathrm{CL}}$$

Parte II. Flash Cards

2. Farmaci del SNC e del SNP

2.1. Acetilcolina

2.1.1. Agonisti colinergici

Nota: Mettere da qualche parte il tacrida che è un inibitore della colinesterasi che poi si ritrova come inibitori del citocromo P450.

 $^{^2 \}mathrm{Presente}$ nella fava del Calabar

²Unico degli organofosfati perchè altamente polare e può essere preparato come soluzione acquosa. Era utilizzato per il glaucoma, ora in disuso.

2.1.2. Antagonisti colinergici

³vedi inibitori dell'AchE

Antimuscarinici

GANGLIOPLEGICI

Una mutazione del gene che codifica la pseudocolinesterasi plasmatica rende alcuni pazienti più sensibili a metabolizzare la succinilcolina.

Il n. di dibucaina è un parametro per definire tali anomalie e dipende dal fatto che la dibucaina inibisce la pseudo Ach
E normale per l'80% mentre l'inibizione è solo del 20% in quella modificata.

2.2. Noradrenalina

Organo	Tipo	Recettore	Azione
M. radiale	simpatico	α_1	costrizione
M. circolare	parasimpatico	M_3	costrizione pupilla
M. ciliare	simpatico	β	rilasciamento
M. ciliare	parasimpatico	M_2	contrazione
Nodo SA	simpatico	$\beta_1\beta_2$	accellerazione
Nodo SA	parasimpatico	M_2	rallentamento
Forza contrazione	simpatico	$\beta_1\beta_2$	aumento
Forza contrazione	parasimpatico	M_2	diminuzione
vasi muscolari	simpatico	β	rilasciamento
muscolo gastrointestinale	simpatico	$\alpha_2\beta_2$	rilasciamento
muscolo gastrointestinale	parasimpatico	M_3	contrazione
sfinteri gastrointestinali	simpatico	α_1	contrazione
sfinteri gastrointestinali	parasimpatico	M_3	rilasciamento

2.2.1. Simpaticomimetici

Le catecolamine sono degradate da COMT a livello intestinale e epatico per cui l'assorbimento per os è praticamente nulla.

L'assenza di uno o di ambedue i gruppi $__{\rm OH}$ ne aumenta la disponibilità per os.

La metilazione sul primo carbonio a sx del gruppo ammino, comporta un'azione mista dei farmaci come nell'efedrina e l'anfetamina che hanno azione diretta e indiretta e quindi dipendono anche dalla presenza del neurotrasmettitore.

⁵Per cui può dare anche un aumento della pressione e per questo non si usa nelle emergenge da ipertensione

 $^{^5\}grave{\rm E}$ anche un inibitore della DOPA decarbossilasi per cui $\downarrow\!{\rm dopamina}.$

2.2.2. Inibitori dei recettori adrenergici

α -BLOCCANTI

 β -BLOCCANTI

⁶Attiva sia gli α che i β_2 . Se si immette un α -bloccante questo neutralizzerà l'effetto vasocostrittore dell'adrenalina lasciando la sola attivazione dei β_2 che quindi causerà una vasodilatazione da cui un azione inversa a quella usuale dell'adrenalina

2.3. Dopamina

Ricorda anche la dopamina è una catecolamina quindi anche i recettori dopaminergici sono recettori adrenergici

2.4. Serotonina (5-idrossitriptamina)

2.5. Neurotrasmettitori purinici

2.6. Monossido d'azoto (NO)

Per via inalatoria ↓shunt, ↓broncocostrizione, ↓ipertensione polmonare e quindi utile anche nella cura dell'asma.

Utile nel trattamento delle malattie neurovegetative e shock settico dove aumenta e nell'ateorscelosi e ipercolesterolemia dove diminuisce.

2.7. L-glutammato

Neurotrasmettitore ubiquitario eccitatorio del SNC

2.8. GABA (Acido γ -amminobutirrico)

Enzima GABA-transaminasi (o GABA amminotransferasi). Utile informazione relativamente al valproato (farmaco antiepilettico, vedi).

2.9. GBH (Acido γ -idrossibutirrico)

Proviene dalla sintesi del GABA. ↑rilascio GH, attiva le "vie della gratificazione", da euforia e disibinizione. Droga da strada.

2.10. Melatonina

2.11. Glicina

Nessun farmaco in uso agisce su questo recettore. Stricnina e tossina tetanica prevengono il rilascio di glicina

2.12. Farmaci sedativo/ansioliti e ipnotici

Per anatagonizzare i sovradosaggi delle benzodiazepine si usa il flumazenil

2.13. Farmacti antiepilettici

3. Farmaci del sistema cardiovascolare e renale

3.1. Farmaci anti-ipertensivi

 $^{^8 {}m Vedere}$ farmaci angina

⁸Vedere farmaci angina

3.2. Farmaci nell'angina e infarto cardiaco

 $^{^9{\}rm vedi}$ farmaci anti-ipertensivi

3.2.1. Nitrati organici

3.2.2. Calcio antagonisti

3.2.3. β -bloccanti

3.3. Insufficienza cardiaca

3.4. Aritmie Cardiache

Periodo refrattario tra fase 0 e ripristino del canale Na⁺ niattivati utile a consentire il propagarsi di un nuovo PdA.

¹⁰Ossia agiscono soprattutto sui canali in uso ossia aperti o refrattari. Questi sono maggiormente in questi stati nei tessuti aritmici e quindi si ha un maggiore effetto proprio su quei tessuti che stanno causando il problema rispetto a quelle che funzionano normalmente.

3.5. Diuretici

3.5.1. Tubulo prossimale

Nella parte terminale del tubulo gli ${\rm H^+}$ pompati fuori non trovano quasi più ${\rm HCO_3}^-$ da

convertire per cui ↓ pH dell'urina che fa attivare le base che ✓ NaCl.

3.5.2. Ansa di Henle (tratto discendente)

3.5.3. Ansa di Henle (tratto ascendente)

3.5.4. Tubulo contorto distale

Non c'è qui l'ingresso del K^+ quindi non c'è il riassorbimento del Mg^{2+} . C'è invece il riassorbimento del Ca^{2+} in quanto c'è un canale dedicato e regolato dall'ormone PTH.

3.5.5. Tubulo collettore

Il sodio viene riassorbito dal tubulo, il potassio vie escreto e la pompa sodio–potassio tenta di mantenere l'equilibrio. Più Na^+ viene assorbito e più K^+ viene escreto. Tutto questo regolato dall'aldosterone.

Ecco il motivo per cui i diuretici depauperano il corpo di potassio.

In questo stesso settore, l'ADH regola l'espressione di acquaporine di tipo 2 e \uparrow ADH causa \uparrow acq2 e quindi $\uparrow \circlearrowleft H_2O$

4. Farmaci del sistema respiratorio

4.1. Asma

tutto ciò causa iperresponsività bronchiale futura.

I GC vengono dati alle partorienti con figlio prematuro per velocizzare la funzione del surfactante polmonare che innalza la tensione degli alveoli e evita il collasso polmonare.

5 FARMACI DELL'EMOSTASI 48

5. Farmaci dell'emostasi

6 FARMACI EPATICI 49

6. Farmaci epatici

6.1. Citocromo P450

Indice analitico

α -metildopa, 29	doxazosina, 29
abciximab, 47	ecotiopato, 9
acetazolamide, 26, 39	ecotipato, 8
acido chinuretico, 22	edofonio, 9
acido etacrinico, 40	edrofonio, 8
adenosina, 37, 38	efedrina, 13
adrenalina, 12, 13, 16	elanapril, 35
amiodarone, 37, 38	enalapril, 29
argatroban, 47	eparina, 47
ATC, 24	eptifibatide, 47
atenololo, 18	eritromicina, 48
atropina, 9, 10	etosuccimide, 26, 28
bacoflen, 22	felbamato, 28
beclometasone, 45	felilefrina, 13
betanecolo, 8, 9	fenilefrina, 16
budesonide, 45	fenitoina, 26–28
buspirone, 24, 25	fenobarbitale, 24
captopril, 29, 35	fenossibenzamina, 17
carbamazepina, 26–28, 48	fentobarbital, 28
carvedilolo, 18, 35	fentolamina, 17
cilostazolo, 47	fisostigmina, 8, 9
ciprofloxacina, 48	flecaimide, 37
claritromicina, 48	fluconazolo, 48
clonidina, 11, 13, 16, 29	flunitrazepam, 24
clopidogrel, 47	formoterolo, 44
cloratiazide, 41	fosinopril, 29
cocaina, 16	furosemide, 29, 35, 40
corticosteroidi, 48	idralazina, 29
corticotropina, 26	idrocloratiazide, 41
cromolin, 46	idrocortisone, 45
1 1	ipratropio, 44
dantrolene, 11	Isosorbide mononitrato, 30
diazepam, 24, 26	lectorning 99
digitale, 35, 38	ketamina, 22
diidropiridine, 30 diltiazem, 30, 32	ketocomazolo, 48
dipiridamolo, 47	labetalolo, 17, 18, 29
<u> </u>	lamotrigina, 28
dobutamina, 13, 16, 35 dopamina, 12	lepirudina, 47
dopamma, 12	•

Indice analitico 51

lidocaina, 37	terbutalina, 44
lorazepam, 24	ticlopidina, 47
losartan, 35	timololo, 18
	tiopental, 24
mannitolo, 39	tiotropio, 10, 44
memantina, 22	tiramina, 16
metildopa, 16	tirofiban, 47
metodazone, 41	tossina botulina, 9
metoprololo, 18, 35	tossina botulinica, 11
montelukast, 46	trimetafano, 9, 11
neostigmina, 8, 9	1
nicotina, 8	urochinasi, 47
nifedipina, 29, 30, 32	valproato, 24, 26–28
Nitroglicerina, 30	varapamil, 32
nitroprussiato, 29	verapamil, 30, 37
noradrenalina, 12	vigabatrin, 28
noradrenama, 12	vigabatiiii, 20
omalizumab, 46	warfarin, 47, 48
oxibutina, 10	
oximetazolina, 16	zafilukast, 46
	zaleplon, 24
pentobarbitale, 24	zileuton, 46
pilocarpina, 8, 9	zolpidem, 24
pralidossima, 9	
pralidossina, 10	
prazosina, 17	
procainamide, 37	
propanololo, 18, 37	
propranololo, 29, 30	
rocuronio, 11	
saclofen, 22	
salbutamolo, 13, 16, 44	
salmeterolo, 44	
scopolamina, 9, 10	
sotalolo, 37, 38	
spironolattone, 29, 41, 42	
streptochinasi, 47	
succinilcolina, 11	
sulfonamide, 27	
Suitoitaminuo, 21	
tacrira, 48	
teobromina, 44	
teofillina, 44	