

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/652,341	09/02/2003	Mathew Manu	Q72648	1613
23373 7590 04/27/2007 SUGHRUE MION, PLLC 2100 PENNSYLVANIA AVENUE, N.W. SUITE 800 WASHINGTON, DC 20037			EXAMINER	
			HERNANDEZ, JOSIAH J	
			ART UNIT	PAPER NUMBER
	,		2609	
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
SHORTENED STATUTORY	Y PERIOD OF RESPONSE	MAIL DATE	DELIVERY MODE	
3 MON	3 MONTHS 04/27/2007 PA		ER	

Please find below and/or attached an Office communication concerning this application or proceeding.

If NO period for reply is specified above, the maximum statutory period will apply and will expire 6 MONTHS from the mailing date of this communication.

	A P - 42 11-	A 1' 4' \				
	Application No.	Applicant(s)				
	10/652,341	MANU, MATHEW				
Office Action Summary	Examiner	Art Unit				
	Josiah Hernandez	2609				
The MAILING DATE of this communication app Period for Reply	ears on the cover sheet with the c	orrespondence address				
A SHORTENED STATUTORY PERIOD FOR REPLY WHICHEVER IS LONGER, FROM THE MAILING DA - Extensions of time may be available under the provisions of 37 CFR 1.13 after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory period w - Failure to reply within the set or extended period for reply will, by statute, Any reply received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b).	ATE OF THIS COMMUNICATION 36(a). In no event, however, may a reply be tim rill apply and will expire SIX (6) MONTHS from cause the application to become ABANDONEI	l. ely filed the mailing date of this communication. 0 (35 U.S.C. § 133).				
Status						
1) Responsive to communication(s) filed on 02 Se	eptember 2003.					
2a) This action is FINAL . 2b) ⊠ This						
 3) Since this application is in condition for allowant 	Since this application is in condition for allowance except for formal matters, prosecution as to the merits is					
closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213.						
Disposition of Claims						
4) ☐ Claim(s) 1-41 is/are pending in the application. 4a) Of the above claim(s) is/are withdraw 5) ☐ Claim(s) is/are allowed. 6) ☐ Claim(s) 1-4,6-12,14-38,40 and 41 is/are reject 7) ☐ Claim(s) 5,13 and 39 is/are objected to. 8) ☐ Claim(s) are subject to restriction and/or	ed.					
Application Papers						
9) ☐ The specification is objected to by the Examiner 10) ☑ The drawing(s) filed on <u>02 September 2003</u> is/a Applicant may not request that any objection to the of Replacement drawing sheet(s) including the correction 11) ☐ The oath or declaration is objected to by the Example 11.	re: a)⊠ accepted or b)⊡ object drawing(s) be held in abeyance. See on is required if the drawing(s) is obj	37 CFR 1.85(a). ected to. See 37 CFR 1.121(d).				
Priority under 35 U.S.C. § 119						
12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received.						
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date 02/06/2006, 06/09/2004.	4) Interview Summary (Paper No(s)/Mail Dai 5) Notice of Informal Pa	te				

DETAILED ACTION

Claim Rejections - 35 USC § 101

Claims 35-41 are rejected under 35 U.S.C. 101 because the claimed invention is directed to non-statutory subject matter.

With respect to claims 35-41, the "computer-readable recording medium," in accordance with Applicant's specification, may be a carrier waves (e.g., transmission over the Internet). This subject matter is not limited to that which falls within a statutory category of invention because it is not limited to a process, machine, manufacture, or a composition of matter. Instead, it includes a form of energy. Energy does not fall within a statutory category since it is clearly not a series of steps or acts to constitute a process, not a mechanical device or combination of mechanical devices to constitute a machine, not a tangible physical article or object which is some form of matter to be a product and constitute a manufacture, and not a composition of two or more substances to constitute a composition of matter.

Claim Rejections - 35 USC § 103

- 1. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

2. Claims 1, 2, 4, 6-10, 12, 14-16, 35-36, 38, 40, and 41 are rejected under 35 U.S.C. 103(a) as being unpatentable over Budnikov (US PGPub 2003/0215013) in view of Park et al. (US 5,732,386), and in further view of Levine (US 6,266,644).

As to claims 1 and 9, Budnikov discloses a digital encoding method (see abstract and paragraph [0002]) comprising: determining a type of window according to a characteristic of an input audio signal (once the input signal enters the system the adaptive grouping psychoacoustic model determines the type of window) (see abstract, paragraph [0023] lines 1-10); generating a modified discrete cosine transform spectrum from the input audio signal (see paragraph [0025] lines 7-10); and performing a psychoacoustic model analysis by using the generated transform signals (see paragraphs [0023] lines 1-5; [0025] lines 4-10). Budnikov does not specifically disclose generating a complex modified discrete cosine transform (CMDCT) or a Fast Fourier Transform (FFT) spectrum form the input audio signal according to the determined window type. Park teaches the use of the real and imaginary parts of the transform in the form of cosine and sine which translates into MDCT and MDST (see abstract). The CMDCT is made up of the MDCT and the MDST. Park teaches an audio encoding method (see column 1 lines 25-29), which chooses a window type (see column 1 lines

Application/Control Number: 10/652,341

Art Unit: 2609

33-35, 43-46; column 2 lines 15-18) and generates a MDCT spectrum from the input audio according to the window type (see column 1 lines 35-41; column 2 lines 10-20). Levine teaches an audio encoding method (see abstract) which chooses a window type (by classifying a signal as either transient or steady state) (see column 2 lines 15-18, 45-52; column 5 lines 20-25) and generating FFT spectrum from the input signal according to the window type (if the a transient model is used in the system then the FFT will use short frames (see column 2 lines 18-20; column 3 lines 50-53; column 4 lines 15-22).

It would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the encoding system disclosed by Budnikov with the use of CMDCT (which is a combination of MDCT and MDST) and FFT as taught by Park and Levine respectively. Using a CMDCT can reduce the complexity of encoding a two-channel or multi-channel digital audio signal (see Park column 1 lines 20-24) by providing a relatively simple construction while maintaining high voice quality (see Park column 1 lines 47-50). Using an FFT along with a CMDCT allows for the system to efficiently handle certain types of signals like transient signals by assigning long window frames to the CMDCT and shorter frames to the FFT upon receiving a transient signal (see Levine column 4 lines 15-21).

As to claims 2, and 10, Budnikov discloses dividing the input audio signal into a plurality of subbands by filtering the input audio signal (the dividing of a

signal into subbands is done by a filter analyzer) (see figure 5 #12), and the step for determining the window type is preformed for the input audio signal divided into subbands (see figure 5 #'s 54 and 24).

As to claims 4 and 12, Budnikov does not specifically disclose choosing long windows for CMDCT or short windows for FFT. Levine teaches an audio encoding method (see abstract) which chooses a window type (by classifying a signal as either transient or steady state) (see column 2 lines 15-18, 45-52; column 5 lines 20-25) and generating FFT spectrum from the input signal according to the window type (if the a transient model is used in the system then the FFT will use short frames and long frames for the cosine transform (see column 2 lines 18-20; column 3 lines 50-53; column 4 lines 15-22). Using an FFT along with a CMDCT allows for the system to efficiently handle certain types of signals like transient signals by assigning long window frames to the CMDCT and shorter frames to the FFT upon receiving a transient signal (see Levine column 4 lines 15-21).

As to claims 6 and 14, Budnikov discloses if the input audio signal is a transient signal, the type of the window is determined as a short window, and if the input audio signal is not a transient signal, the type of the window is determined as a long window (Budnikov states that MPEG encoders use short

sections at the presences of a transient signal and a longer section in the absence of transient signals) (see paragraph [0007]).

As to claims 7 and 15, Budnikov discloses performing quantization and encoding based on the result of the psychoacoustic model analysis performed (see figure 5 #'s 54, 16, and 18).

As to claims 8 and 16, Budnikov discloses the psychoacoustic model is a model used by one in a group comprising a motion picture expert's group (MPEG)-1 layer 3, and MPEG-2 advanced audio coding (AAC), an MPEG-4, and a windows media audio (WMA) (see paragraph [0025]).

As to claim 35, Budnikov discloses a computer-readable recording medium for recording a computer program code for enabling a computer to provide a service of encoding input audio signals, the service comprising steps of (see paragraph [0032]): a digital encoding method (see abstract and paragraph [0002]) comprising: determining a type of window according to a characteristic of an input audio signal (once the input signal enters the system the adaptive grouping psychoacoustic model determines the type of window) (see abstract, paragraph [0023] lines 1-10): generating a modified discrete cosine transform spectrum from the input audio signal (see paragraph [0025] lines 7-10); and performing a psychoacoustic model analysis by using the generated transform

signals (see paragraphs [0023] lines 1-5; [0025] lines 4-10). Budnikov does not specifically disclose generating a complex modified discrete cosine transform (CMDCT) or a Fast Fourier transform (FFT) spectrum form the input audio signal according to the determined window type. Park teaches the use of the real and imaginary parts of the transform in the form of cosine and sine which translates into MDCT and MDST (see abstract). Park teaches an audio encoding method (see column 1 lines 25-29), which chooses a window type (see column 1 lines 33-35, 43-46; column 2 lines 15-18) and generates a CMDCT spectrum from the input audio according to the window type (see column 1 35-41; column 2 lines 10-20). Levine teaches an audio encoding method (see abstract) which chooses a window type (by classifying a signal as either transient or steady state) (see column 2 lines 15-18, 45-52; column 5 lines 20-25) and generating FFT spectrum from the input signal according to the window type (if the a transient model is used in the system then the FFT will use short frames (see column 2 lines 18-20; column 3 lines 50-53; column 4 lines 15-22). It would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the encoding system disclosed by Budnikov with the use of CMDCT and FFT as taught by Park and Levine respectively. Using a CMDCT can reduce the complexity of encoding a two-channel or multi-channel digital audio signal (see Park column 1 lines 20-24) by providing a relatively simple construction while maintaining high voice quality (see Park column 1 lines 47-50). Using an FFT along with a CMDCT allows for the system to efficiently handle certain types of

signals like transient signals by assigning long window frames to the CMDCT and shorter frames to the FFT upon receiving a transient signal (see Levine column 4 lines 15-21).

As to claim 36, Budnikov discloses a computer-readable recording medium (see paragraph [0032]) of which performs dividing the input audio signal into a plurality of subbands by filtering the input audio signal (the dividing of a signal into subbands is done by a filter analyzer) (see figure 5 #12), and the step for determining the window type is preformed for the input audio signal divided into subbands (see figure 5 #'s 54 and 24).

As to claim 38, Budnikov discloses a computer-readable recording medium (see paragraph [0032]) of which Budnikov does not specifically disclose choosing long windows for CMDCT or short windows for FFT. Levine teaches an audio encoding method (see abstract) which chooses a window type (by classifying a signal as either transient or steady state) (see column 2 lines 15-18, 45-52; column 5 lines 20-25) and generating FFT spectrum from the input signal according to the window type (if the a transient model is used in the system then the FFT will use short frames and long frames for the cosine transform (see column 2 lines 18-20; column 3 lines 50-53; column 4 lines 15-22). Using an FFT along with a CMDCT allows for the system to efficiently handle certain types of

signals like transient signals by assigning long window frames to the CMDCT and shorter frames to the FFT upon receiving a transient signal (see column 4 lines 15-21).

As to claim 40, Budnikov discloses a computer-readable recording medium (see paragraph [0032]) of which if the input audio signal is a transient signal, the type of the window is determined as a short window, and if the input audio signal is not a transient signal, the type of the window is determined as a long window (Budnikov states that MPEG encoders use short sections at the presences of a transient signal and a longer section in the absence of transient signals) (see paragraph [0025]).

As to claim 41, Budnikov discloses a computer-readable recording medium (see paragraph [0032]) of which performs quantization and encoding based on the result of the psychoacoustic model analysis performed (see figure 5 #'s 54, 16, and 18).

3. Claims 3, 11, and 37 are rejected under 35 U.S.C. 103(a) as being unpatentable over Budnikov (US PGPub 2003/0215013) in view of Park et al. (US 5,732,386) in further view of Levine (US 6,266,644), as applied to claims 1, 2, 4, 6-10, 12, 14-16, 35-36, 38, 40, and 41, and in further view of Chen et al. (US PGPub 2003/0115042).

Application/Control Number: 10/652,341

Art Unit: 2609

As to claims 3 and 11, Budnikov does not disclose specifically using a poly-phase filter bank. Chen teaches the use of a polyphase/MDCT filter bank in MP3 encoding (see paragraph [0044]). It would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the encoding system disclosed by Budnikov with the use of a polyphase filter bank. Doing so would have allowed for stereo or multi-channel signals to be analyzed more efficiently.

Page 10

As to claim 37, Budnikov discloses a computer-readable recording medium (see paragraph [0032]). Budnikov does not disclose specifically using a poly-phase filter bank. Chen teaches the use of a polyphase/MDCT filter bank in MP3 encoding (see paragraph [0044]). It would have been obvious to one having ordinary skill in the art at the time the invention was made to have further modified the encoding system disclosed by Budnikov, Levine, and Park with the use of a polyphase filter bank. Doing so would have allowed for stereo or multichannel signals to be analyzed more efficiently.

4. Claims 17-22, 24-31, 33, and 34 are rejected under 35 U.S.C. 103(a) as being unpatentable over Budnikov (US PGPub 2003/0215013) in view of Park et al. (US 5,732,386).

As to claims 17 and 26, Budnikov discloses a digital encoding method (see abstract and paragraph [0002]) comprising: generating a modified discrete cosine transform spectrum from the input audio signal (see paragraph [0025] lines 7-10); and performing a psychoacoustic model analysis by using the generated transform signals (see paragraphs [0023] lines 1-5; [0025] lines 4-10). Budnikov does not specifically disclose generating a complex modified discrete cosine transform (CMDCT). Park teaches the use of the real and imaginary parts of the transform in the form of cosine and sine which translates into MDCT and MDST (see abstract). Park teaches an audio encoding method (see column 1 lines 25-29), which chooses a window type (see column 1 lines 33-35, 43-46; column 2 lines 15-18) and generates a MDCT spectrum from the input audio according to the window type (see column 1 lines 35-41; column 2 lines 10-20). It would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the encoding system disclosed by Budnikov with the use of CMDCT (which is a combination of MDCT and MDST) as taught by Park. Using a CMDCT can reduce the complexity of encoding a two-channel or multi-channel digital audio signal (see column 1 lines 20-24) by providing a relatively simple construction while maintaining high voice quality (see column 1 lines 47-50).

As to claim 18, 27, Budnikov discloses the method of claim, 17, wherein the step further comprise: generating a long MDCT spectrum and a short MDCT

by applying a long window and a short window to an input audio signal (once the input signal enters the system the adaptive grouping psychoacoustic model determines the type of window) (see figure 5 # 24, abstract, paragraph [0023] lines 1-10). Budnikov does not specifically disclose generating a complex modified discrete cosine transform (CMDCT). Park teaches the use of MDCT and MDST (see abstract) (of which is the real and imaginary parts of the transform in the form of cosine and sine which translates into MDCT and MDST thus together make up the CMDCT). Park teaches an audio encoding method (see column 1 lines 25-29), which chooses a window type (see column 1 lines 33-35, 43-46; column 2 lines 15-18) and generates a CMDCT spectrum from the input audio according to the window type (see column 1 35-41; column 2 lines 10-20). It would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the encoding system disclosed by Budnikov with the use of CMDCT as taught by Park. Using a CMDCT can reduce the complexity of encoding a two-channel or multi-channel digital audio signal (see column 1 lines 20-24) by providing a relatively simple construction while maintaining high voice quality (see column 1 lines 47-50).

As to claims 19 and 28, Budnikov discloses performing a psychoacoustic model analyses by using the long MDCT spectrum and shourt MDCT spectrum generated (Budnikov does this by applying psychoacoustic perceptual entropy thresholds to the short or long window sizes (see paragraph [0025], figure 5 #'s

54, 26, and 58). Budnikov does not specifically disclose generating a complex modified discrete cosine transform (CMDCT). Park teaches the use of the real and imaginary parts of the transform in the form of cosine and sine which translates into MDCT and MDST (see abstract). Park teaches an audio encoding method (see column 1 lines 25-29), which chooses a window type (see column 1 lines 33-35, 43-46; column 2 lines 15-18) and generates a CMDCT spectrum from the input audio according to the window type (see column 1 35-41; column 2 lines 10-20). Using a CMDCT can reduce the complexity of encoding a two-channel or multi-channel digital audio signal (see column 1 lines 20-24) by providing a relatively simple construction while maintaining high voice quality (see column 1 lines 47-50).

As to claims 20, and 29, Budnikov discloses dividing the input audio signal into a plurality of subbands by filtering the input audio signal (the dividing of a signal into subbands is done by a filter analyzer) (see figure 5 #12), and the step for determining the window type is preformed for the input audio signal divided into subbands (see figure 5 #'s 54 and 24).

As to claims 21 and 30, Budnikov discloses determining a type of a window, according to a characteristic of the input audio signal (Budnikov teaches that for MPEG encoders if the input signal is a transient signal than the window

[0007]).

size becomes shorter and longer if no transient signals exists) (see paragraph

As to claims 22 and 31, Budnikov discloses determining a type of a window, according to a characteristic of the input audio signal (Budnikov teaches that for MPEG encoders if the input signal is a transient signal than the window size becomes shorter and longer if no transient signals exists) (see paragraph [0025]).

As to claims 24 and 33, Budnikov discloses determining a window type is the long window, quantization and encoding of a long MDCT spectrum are performed based on a result of the psychoacoustic model analysis performed in the step, and if the window type determined is the short window, quantization and encoding of a short MDCT spectrum are performed based on the result of the psychoacoustic model analysis performed (Budnkov teaches using psychoacoustic models for choosing a window size for the MDCT signal and then quantizing and encoding) (see figure 5 #'s 54, 22, 24, 26, 58, 16, and 18; paragraphs [0025] lines 1-10, [0030]).

As to claims 25 and 34, Budnikov discloses the psychoacoustic model is a model used by one in a group comprising a motion picture expert's group

(MPEG)-1 layer 3, and MPEG-2 advanced audio coding (AAC), an MPEG-4, and a windows media audio (WMA) (see paragraph [0025]).

5. Claims 23 and 32 are rejected under 35 U.S.C. 103(a) as being unpatentable over Budnikov (US PGPub 2003/0215013) in view of Park et al. (US 5,732,386) as applied to claims 17-22, 24-31, 33, and 34, and in further view of Chen et al. (US PGPub 2003/0115042).

As to claims 23, and 32, Budnikov does not disclose specifically using a poly-phase filter bank. Chen teaches the use of a polyphase/MDCT filter bank in MP3 encoding (see paragraph [0044]). It would have been obvious to one having ordinary skill in the art at the time the invention was made to have modified the encoding system disclosed by Budnikov with the use of a polyphase filter bank. Doing so would have allowed for stereo or multi-channel signals to be analyzed more efficiently.

Allowable Subject Matter

6. Claims 5, 13, and 39 are objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.

7. The following is a statement of reasons for the indication of allowable subject matter:

As to claim 5, 13, and 39, the prior art of record, either alone or in combination, does not teaches or fairly suggests the limitation of determining a window type to be a short window, a short CMDCT spectrum is generated by applying a short window and a long FFT spectrum is generated by applying a long window and the psychoacoustic model analysis is performed based on the generated short CMDCT spectrum and long FFT spectrum.

Conclusion

Any inquiry concerning this communication should be directed to Josiah Hernandez whose telephone number is 571-270-1646. The examiner can normally be reached from 7:30 pm to 5:00 pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Xiao Wu can be reached on (571) 272-7761. The fax

Application/Control Number: 10/652,341

Art Unit: 2609

phone number for the organization where this application or proceeding is

assigned is 703-872-9306.

Information regarding the status of an application may be obtained from

the Patent Application Information Retrieval (PAIR) system. Status information

for published applications may be obtained from either Private PAIR or Public

PAIR. Status information for unpublished applications is available through

Private PAIR only. For more information about the PAIR system, see http://pair-

direct.uspto.gov. Should you have questions on access to the Private PAIR

system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-

free).

JH

SUPERVISORY PATENT EXAMINER

Page 17