Open system Interconnection (OSI)

DataLink Layer & Binary Exponential BackOff Algorithm

Munesh Singh

Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai, Tamil Nadu 600127

October 18, 2020

CSMA/CD

- We have discussed-
 - CSMA / CD stands for Carrier Sense Multiple Access / Collision Detection.
 - It allows the stations to sense the carrier and transmit data if the carrier is free.
- The following CSMA / CD flowchart shows the CSMA / CD procedure-

Binary Exponential BackOff Algorithm

Binary Exponential BackOff Algorithm

Back Off Time: In CSMA / CD protocol

- After the occurrence of collision, station waits for some random back off time and then retransmits.
- This waiting time for which the station waits before retransmitting the data is called as back off time.
- Back Off Algorithm is used for calculating the back off time.

Back Off Algorithm: After undergoing the collision

- Transmitting station chooses a random number in the range $[0, 2^n-1]$ if the packet is undergoing collision for the nth time.
- If station chooses a number k, then-Back off time = k x Time slot where value of one time slot = 1 RTT

Example

 Consider the following scenario where stations A and D start transmitting their data simultaneously-

- For simplicity,
 We consider the value of time slot = 1 unit.
- Thus, back off time = K units.

Scene-01:

- For 1st Data Packet Of Both Stations-
 - Both the stations start transmitting their 1st data packet simultaneously.
 - This leads to a collision.
 - Clearly, the collision on both the packets is occurring for the 1st time.
 - ullet So, collision number for the 1st data packet of both the stations = 1.
- At Station A: After detecting the collision-
 - Station A randomly chooses a number in the range $[0, 2^1-1] = [0,1]$.
 - If station A chooses the number K_A , then back off time = K_A units.
- At Station D: After detecting the collision
 - Station A randomly chooses a number in the range $[0, 2^1-1] = [0,1]$.
 - If station A chooses the number K_D , then back off time $= K_D$ units.

Following 4 cases are possible

K _A	Κ _D	Remarks
0	0	In this case, both the stations start retransmitting their data immediately. This case leads to a collision again.
0	1	 In this case, station A starts retransmitting its data immediately while station D waits for 1 unit of time. This case leads to A successfully retransmitting its data after the 1st collision.
1	0	In this case, station A waits for 1 unit of time while station D starts retransmitting its data immediately. This case leads to D successfully retransmitting its data after the 1 st collision.
1	1	In this case, both the stations wait for 1 unit of time and then starts retransmitting their data simultaneously. This case leads to a collision again.

- From here,
 - \bullet Probability of station A to successfully retransmit its data after the 1st collision = 1 / 4
 - \bullet Probability of station D to successfully retransmit its data after the 1st collision = 1 / 4
 - \bullet Probability of occurrence of collision again after the 1st collision = 2 / 4 = 1 / 2
- Now,
 - Consider case-02 occurs.
 - This causes station A to successfully retransmit its 1st packet after the 1st collision.

Scene-02

For 2nd Data Packet Of Station A And 1st Data Packet Of Station D

- Consider after some time,
- Station A starts transmitting its 2nd data packet and station D starts retransmitting its 1st data packet simultaneously. This leads to a collision.

At Station A-

- The 2nd data packet of station A undergoes collision for the 1st time.
- ullet So, collision number for the 2nd data packet of station A=1.
- Now, station A randomly chooses a number in the range [0, 21-1] = [0,1].
- If station A chooses the number KA, then back off time = KA units.

At Station D-

- The 1st data packet of station D undergoes collision for the 2nd time.
- So, collision number for the 1st data packet of station D = 2.
- Now, station D randomly chooses a number in the range [0, 22-1] = [0,3].
- If station D chooses the number KD, then back off time = KD units.

Following 8 cases are possible

K _A	K _D	Remarks
0	0	In this case, both the stations start retransmitting their data immediately. This case leads to a collision again.
0	1	In this case, station A starts retransmitting its data immediately while station D waits for 1 unit of time. This case leads to A successfully retransmitting its data after the 2 nd collision.
0	2	In this case, station A starts retransmitting its data immediately while station D waits for 2 unit of time. This case leads to A successfully retransmitting its data after the 2 nd collision.

0	3	 In this case, station A starts retransmitting its data immediately while station D waits for 3 unit of time. This case leads to A successfully retransmitting its data after the 2nd collision.
1	0	In this case, station A waits for 1 unit of time while station D starts retransmitting its data immediately. This case leads to D successfully retransmitting its data after the 2 nd collision.
1	1	In this case, both the stations wait for 1 unit of time and then starts retransmitting their data simultaneously. This case leads to a collision again.
1	2	In this case, station A waits for 1 unit of time while station D waits for 2 unit of time. This case leads to A successfully retransmitting its data after the 2 nd collision.
1	3	In this case, station A waits for 1 unit of time while station D waits for 3 unit of time. This case leads to A successfully retransmitting its data after the 2 nd collision.

- From here,
 - Probability of station A to successfully retransmit its data after the 2nd collision = 5 / 8
 - ullet Probability of station D to successfully retransmit its data after the 2nd collision = 1 / 8
 - \bullet Probability of occurrence of collision again after the 2nd collision = 2 / 8 = 1 / 4
- Now,
 - Consider case-03 occurs.
 - This causes station A to successfully retransmit its 2nd packet after the 2nd collision.

Scene-03

- For 3rd Data Packet Of Station A And 1st Data Packet Of Station D
 - Consider after some time,
 - Station A starts transmitting its 3rd data packet and station D starts retransmitting its 1st data packet simultaneously.
 - This leads to a collision.

At Station A-

- The 3rd data packet of station A undergoes collision for the 1st time.
- So, collision number for the 3rd data packet of station A = 1.
- Now, station A randomly chooses a number in the range $[0, 2^1-1] = [0,1]$.
- If station A chooses the number K_A , then back off time = K_A unit.

At Station D-

- The 1st data packet of station D undergoes collision for the 3rd time.
- So, collision number for the 1st data packet of station D = 3.
- Now, station D randomly chooses a number in the range $[0, 2^3-1] =$ [0,7].
- If station D chooses the number K_D , then back off time = K_D unit.

Following 16 cases are possible-

K _A	K _D	Remarks
0	0	In this case, both the stations start retransmitting their data immediately. This case leads to a collision again.
0	1	In this case, station A starts retransmitting its data immediately while station D waits for 1 unit of time. This case leads to A successfully retransmitting its data after the 3 rd collision.
0	2	 In this case, station A starts retransmitting its data immediately while station D waits for 2 unit of time. This case leads to A successfully retransmitting its data after the 3rd collision.

0	3	 In this case, station A starts retransmitting its data immediately while station D waits for 3 unit of time. This case leads to A successfully retransmitting its data after the 3rd collision.
0	4	In this case, station A starts retransmitting its data immediately while station D waits for 4 unit of time. This case leads to A successfully retransmitting its data after the 3 rd collision.
0	5	 In this case, station A starts retransmitting its data immediately while station D waits for 5 unit of time. This case leads to A successfully retransmitting its data after the 3rd collision.
0	6	 In this case, station A starts retransmitting its data immediately while station D waits for 6 unit of time. This case leads to A successfully retransmitting its data after the 3rd collision.

0	7	 In this case, station A starts retransmitting its data immediately while station D waits for 7 unit of time. This case leads to A successfully retransmitting its data after the 3rd collision.
1	0	 In this case, station A waits for 1 unit of time while station D starts retransmitting its data immediately. This case leads to D successfully retransmitting its data after the 3rd collision.
1	1	In this case, both the stations wait for 1 unit of time and then starts retransmitting their data simultaneously. This case leads to a collision again.
1	2	In this case, station A waits for 1 unit of time while station D waits for 2 unit of time. This case leads to A successfully retransmitting its data after the 3 rd collision.

1	3	 In this case, station A waits for 1 unit of time while station D waits for 3 unit of time. This case leads to A successfully retransmitting its data after the 3rd collision.
1	4	 In this case, station A waits for 1 unit of time while station D waits for 4 unit of time. This case leads to A successfully retransmitting its data after the 3rd collision.
1	5	 In this case, station A waits for 1 unit of time while station D waits for 5 unit of time. This case leads to A successfully retransmitting its data after the 3rd collision.
1	6	In this case, station A waits for 1 unit of time while station D waits for 6 unit of time. This case leads to A successfully retransmitting its data after the 3 rd collision.

1	3	 In this case, station A waits for 1 unit of time while station D waits for 3 unit of time. This case leads to A successfully retransmitting its data after the 3rd collision.
1	4	 In this case, station A waits for 1 unit of time while station D waits for 4 unit of time. This case leads to A successfully retransmitting its data after the 3rd collision.
1	5	 In this case, station A waits for 1 unit of time while station D waits for 5 unit of time. This case leads to A successfully retransmitting its data after the 3rd collision.
1	6	In this case, station A waits for 1 unit of time while station D waits for 6 unit of time. This case leads to A successfully retransmitting its data after the 3 rd collision.

1	7	 In this case, station A waits for 1 unit of time while station D waits for 7 unit of time. This case leads to A successfully retransmitting its data after the 3rd collision.
---	---	---

- From here,
 - \bullet Probability of station A to successfully retransmit its data after the 3rd collision =13 / 16
 - ullet Probability of station D to successfully retransmit its data after the 3rd collision =1/16
 - ullet Probability of occurrence of collision again after the 3rd collision = 1 / 16
- In the similar manner, the procedure continues.

Important Notes:

- Note-1: With each successive collision-
 - Back off time increases exponentially.
 - Collision probability decreases exponentially.
- Note-02:Back Off Algorithm is also known as Binary Exponential Back Off Algorithm because-
 - It works for only two stations.
 - The back off time increases exponentially. Collision probability decreases exponentially.
- Note-03:
 - One disadvantage of Back Off Algorithm is that it shows capture effect.
 - It means if a particular station wins the collision one time, then its probability of winning the successive collisions increases exponentially.

Thank You

