

Stockholmsmässan, Stockholm, Sweden

Themes

- Tons of Reinforcement Learning
- Quite a bit of Theory and Analysis
- Steps toward addressing important issues:
 - Modeling uncertainty in our predictions
 - Security and adversarial attacks
 - Understanding the dynamics of our models
 - Logic and reasoning in our models

ICML Statistics

Source: https://peltarion.com/article/icml-2018-an-ai-party-in-our-own-backyard

Tutorial: A Tour of RL and Controls

Reinfercement Learning is the study of how to use past data to enhance the future manipulation of a dynamical system

Tutorial: A Tour of RL and Controls

Reinforcement

Learning discrete
Control theory is the study of dynamical systems with inputs

Markov Decision Process (MDP)

 x_t is the *state*, and it takes values in [d] u_t is called the *input*, and takes values in [p].

Tutorial: A Tour of RL and Controls

Extraordinary Claims Require Extraordinary Evidence*

* only if your prior is correct

blog.openai.com/openai-baselines-dqn/

"Reinforcement learning results are tricky to reproduce: performance is very noisy, algorithms have many moving parts which allow for subtle bugs, and many papers don't report all the required tricks."

"RL algorithms are challenging to implement correctly; good results typically only come after fixing many seemingly-trivial bugs."

There has to be a better way!

Best Paper: Delayed Impact of Fair ML

Best Paper: Obfuscated Gradients Give a False Sense of Security

- Examines adversarial defense proposals from ICLR 2018
 - Finds that 7 out of 9 rely on obfuscated gradients
 - 6 of these 7 fully fall to the newly proposed attacks

Defense	Dataset	Distance	Accuracy	
Buckman et al. (2018)	CIFAR	$0.031 \ (\ell_{\infty})$	0%*	
Ma et al. (2018)	CIFAR	$0.031 \ (\ell_{\infty})$	5%	
Guo et al. (2018)	ImageNet	$0.005 (\ell_2)$	0%*	
Dhillon et al. (2018)	CIFAR	$0.031 \ (\ell_{\infty})$	0%	
Xie et al. (2018)	ImageNet	$0.031 \ (\ell_{\infty})$	0%*	
Song et al. (2018)	CIFAR	$0.031 \ (\ell_{\infty})$	9%*	
Samangouei et al.	MNIST	$0.005 (\ell_2)$	55%**	
(2018)				
Madry et al. (2018)	CIFAR	$0.031 \ (\ell_{\infty})$	47%	
Na et al. (2018)	CIFAR	$0.015 \ (\ell_{\infty})$	15%	

(Athalye et al., 2018)

Best Paper: Obfuscated Gradients Give a False Sense of Security

- Gradient obfuscation types
 - Shattered gradients: Some part of network is non-differentiable
 - Solution: Replace that part with differentiable approximation
 - Stochastic gradients: Random transformations
 - Solution: Differentiate through the random transformation
 - Vanishing or exploding gradients
 - Solution: Reparameterization

Measuring abstract reasoning in neural networks

Measuring abstract reasoning in neural networks

Figure 3. WReN model A CNN processes each context panel and an individual answer choice panel independently to produce 9 vector embeddings. This set of embeddings is then passed to an RN, whose output is a single sigmoid unit encoding the "score" for the associated answer choice panel. 8 such passes are made through this network (here we only depict 2 for clarity), one for each answer choice, and the scores are put through a softmax function to determine the model's predicted answer.

Model	Test (%)		
WReN	62.6		
Wild-ResNet	48.0		
ResNet-50	42.0		
LSTM	35.8		
CNN + MLP	33.0		
Blind ResNet	22.4		

Conditional Neural Processes

(Garnelo et al., 2018)

Essentially No Barriers in Neural Network Energy Landscape

 Claims that neural net minima form a connected manifold (or a single connected component)

Implicit Acceleration by Overparameterization

Finds that overparameterized linear networks converge faster

Hyperbolic embeddings (ICML 2018)

- Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry
 - (Nickel & Kiela, 2018)
- Hyperbolic Entailment Cones for Learning Hierarchical Embeddings
 - (Ganea et al., 2018)
- Representation Tradeoffs for Hyperbolic Embeddings
 - (Sa et al., 2018)

Hyperbolic Embeddings (NIPS 2017)

Poincaré Embeddings for Learning Hierarchical Representations - Maximilian Nickel, Douwe Kiela (NIPS 2017)

$$d(u, v) = \operatorname{arcosh} \left(1 + 2 \frac{\|u - v\|^2}{(1 - \|u\|^2)(1 - \|v\|^2)} \right).$$

(a) Geodesics of the Poincaré disk

(b) Embedding of a tree in \mathcal{B}^2

(c) Growth of Poincaré distance

(Nickel & Kiela, 2017)

Hyperbolic Embeddings (NIPS 2017)

			Dimensionality					
			5	10	20	50	100	200
WORDNET Reconstruction	Euclidean	Rank MAP	3542.3 0.024	2286.9 0.059	1685.9 0.087	1281.7 0.140	1187.3 0.162	1157.3 0.168
	Translational	Rank MAP	205.9 0.517	179.4 0.503	95.3 0.563	92.8 0.566	92.7 0.562	91.0 0.565
	Poincaré	Rank MAP	4.9 0.823	4.02 0.851	3.84 0.855	3.98 0.86	3.9 0.857	3.83 0.87
WORDNET Link Pred.	Euclidean	Rank MAP	3311.1 0.024	2199.5 0.059	952.3 0.176	351.4 0.286	190.7 0.428	81.5 0.490
	Translational	Rank MAP	65.7 0.545	56.6 0.554	52.1 0.554	47.2 0.56	43.2 0.562	40.4 0.559
	Poincaré	Rank MAP	5.7 0.825	4.3 0.852	4.9 0.861	4.6 0.863	4.6 0.856	4.6 0.855

Hyperbolic Embeddings (ICML 2018)

(Nickel & Kiela, 2018)

(Ganea et al., 2018)

References

- Sanjeev Arora, Nadav Cohen, Elad Hazan. On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization
- Anish Athalye, Nicholas Carlini, David Wagner. Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples. ICML, 2018.
- David G.T. Barrett, Felix Hill, Adam Santoro, Ari S. Morcos, Timothy Lillicrap. Measuring abstract reasoning in neural networks. ICML, 2018.
- Felix Draxler, Kambis Veschgini, Manfred Salmhofer, Fred A. Hamprecht. Essentially No Barriers in Neural Network Energy Landscape. ICML, 2018.
- Octavian-Eugen Ganea, Gary Bécigneul, Thomas Hofmann. Hyperbolic Entailment Cones for Learning Hierarchical Embeddings. ICML, 2018.
- Marta Garnelo, Dan Rosenbaum, Chris J. Maddison, Tiago Ramalho, David Saxton, Murray Shanahan, Yee Whye Teh, Danilo J. Rezende, S. M. Ali Eslami. Conditional Neural Processes. ICML, 2018.
- Lydia Liu, Sarah Dean, Esther Rolf, Max Simchowitz, Moritz Hardt. Delayed Impact of Fair Machine Learning. ICML, 2018.
- Maximilian Nickel, Douwe Kiela. Poincaré Embeddings for Learning Hierarchical Representations. NIPS, 2017.
- Maximilian Nickel, Douwe Kiela. Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry. ICML, 2018.
- Benjamin Recht. A Tour of Reinforcement Learning: The View from Continuous Control. ICML 2018 Tutorial. https://people.eecs.berkeley.edu/~brecht/l2c-icml2018/.
- Christopher De Sa, Albert Gu, Christopher Ré, Frederic Sala. Representation Tradeoffs for Hyperbolic Embeddings. ICML, 2018.

ICML 2019 is in California!

ICML 2019:

Long Beach, California - June 10 - 15th

Acknowledgements

Thanks to Gerald, the NSF program manager, Jaeyoung, ICSI, and the NSF for funding and supporting my travel to ICML.

Thank you!