

《组网与运维》

线上实验报告

班级:

姓名:

学号:

日期:

IP地址实验

一、实验目的

- 1. 掌握分类的 IP 编址方法。
- 2. 掌握可划分子网的 IP 编址方法。
- 3. 掌握 CIDR 的 IP 地址编址方法和路由聚合功能。

二、实验步骤

1. 给出实验中用到的拓扑图

2. 给出实验中使用的 IP 配置表

设备	接口	IP 地址	掩码	默认网关
Server	Fa0	192. 168. 2. 1	255. 255. 255. 0	192. 168. 2. 254
Router0	Fa0/0	192. 168. 1. 254	255. 255. 255. 0	NULL
D + 1	Fa0/0	192. 168. 2. 254	255. 255. 255. 0	NULL
Routerl	Se0/0/0	192. 168. 4. 2	255. 255. 255. 0	NULL

- 3. 任务一: 练习主机和路由器的 IP 地址配置。
 - ◆ 步骤1:选择适当的 IP 地址、掩码和网关。为 PCO、Router0 的 SeO/0/0 接口选择合理的 IP 地址、子网掩码和默认网关(仅限于 PC),使得 PCO 能访问 Server。所选配置为

- PCO: IP 地址为 192. 168. 1. 1, 子网掩码 255. 255. 255. 0, 默认 网关 192. 168. 1. 254;
- Router0的 Se0/0/0: 192.168.4.1,子网掩码 255.255.255.0。
- ◆ 步骤 2: 为主机分配所选的信息。为 PC0 分配在步骤 1 中选择的网 关与 IP 地址和子网掩码。

◆ 步骤 3: 为 Router0 的 Se0/0/0 接口分配所选的信息。选择 Router0 的 Seria10/0/0,并分配在步骤 1 中选择的 IP 地址和子网掩码。

◆ 步骤 4: 测试连通性。单击 Add Simple PDU 按钮,然后分别单击 PCO 和 Server。并切换一次模拟模式和实时模式,以便初始化各设备的 ARP 表。再切换到模拟模式,点击 Capture/Forward 按钮,传

送数据包,通过网络直至其到达 Server 并往返。如果连通失败,则说明 IP 地址配置错误。

- 4. 任务二: 练习划分子网。
 - ◆ 步骤 1: 为 Router1 接口选择适当的 IP 地址和子网掩码。假设拥有一个 B 类地址 173. 16. 0. 0,请使用子网划分方案将该地址划分为两个子网,分别分配给 Net1 和 Net2,要求子网的 IP 地址空间最大。并分别为 Router1 的 Fa0/1 和 Eth0/1/0 接口选择合适的 IP 地址和子网掩码。以下为所使用的配置:
 - Net1 子网地址为 173. 16. 0. 0,子网掩码为 255. 255. 128. 0,因此,Router1 的 Fa0/1 配置为 173. 16. 127. 254/255. 255. 128. 0。
 - Net2 子网地址为 173. 16. 128. 0,子网掩码为 255. 255. 128. 0, 因此,Router1 的 Eth0/1/0 配置为 173. 16. 255. 254/255. 255. 128. 0。
 - ◆ 步骤 2: 为路由器分配所选的信息。选择 Router1 的 Fa0/1,并分配在步骤 1 中选择的 IP 地址和子网掩码。以同样的方式将步骤 1 中选择的 IP 地址和子网掩码分配到 Eth0/1/0。

- 5. 任务三: 练习 CIDR 地址规划。
 - ◆ 步骤 1:为 Router1 接口选择适当的 IP 地址和掩码。为 Router1 的 Fa0/1 和 Eth0/1/0 接口选择满足各网络主机数量要求的 IP 地址和 子网掩码,并且要求 IP 地址浪费最少;其中,Net1 要求最多支持 170 台主机,Net2 要求最多支持 300 台主机。以下为所选配置:
 - Net1 采用 10. 0. 2. 0/24 地址块(拥有 256 个地址),因此,Router1 的 Fa0/1 配置为 10. 0. 2. 254/24。
 - Net2采用10.0.1.0/23地址块(拥有512个地址),因此,Router1 的 Eth0/1/0 配置为 10.0.1.254/23。
 - ◆ 步骤 2: 为路由器分配所选的信息。选择 Router1 的 Fa0/1,并分配在步骤 1 中选择的 IP 地址和子网掩码。以同样的方式将步骤 1 中选择的 IP 地址和子网掩码分配到 Eth0/1/0。

在 PT Activity 窗口中单击 Check Results (检查结果) 按钮检查答案,如果检查结果为 "Congratulations on completing this activity!"则说明配置正确。

◆ 步骤 3:在路由器上进行路由聚合。在拓扑工作区中单击 Route0 路由器,并进入其 Config 面板;单击 Static 按钮,打开静态路由配置区,按表 3-5 所示信息为 Router0 添加一条静态路由。说明:Net1地址块为 10. 0. 2. 0/24, Net2 的地址块为 10. 0. 1. 0/23,可以聚合

为 10. 0. 0. 0/22。该静态路由同时指明 Net1 和 Net2 的下一跳为 192. 168. 4. 2。

表 3-5 静态路由

Network	Mask	Next Hop
10.0.0.0	255.255.252.0	192.168.4.2

₹ Router0						×
Physical Config	CLI					
GLOBAL Settings	Α.		Static Ro	out <mark>es</mark>		
Algorithm Settings		Network				
ROUTING		Mask				
Static		.0.077.70				
RIP		Next Hop				
SWITCHING					Add	
VLAN Database						
INTERFACE						
FastEthernet0/0		Network Address				
FastEthernet0/1		10.0.0.0/22 via 192	.168.4.2			
Serial0/0/0						

◆ 步骤 4:测试连通性。单击 Add Simple PDU 按钮,然后分别单击 PCO和 PC1。并切换一次模拟模式和实时模式,以便初始化各设备的 ARP表。再切换到模拟模式,单击 Capture/Forward 按钮,传送数据包,通过网络直至其到达 PCO 并往返。

Vis.	Time(sec)	Last Devic	At Device	Type	Info
	0.000		PC0	ICMP	
	0.001	PC0	Router0	ICMP	
	0.002	Router0	Router1	ICMP	
	0.003	Router1	Switch2	ICMP	
	0.004	Switch2	PC1	ICMP	
	0.005	PC1	Switch2	ICMP	y = 3
	0.006	Switch2	Router1	ICMP	
	0.007	Router1	Router0	ICMP	
(9)	0.008	Router0	PC0	ICMP	

删除场景,单击 Add Simple PDU 按钮,然后分别单击 PCO 和 PC2。切换一次模拟模式和实时模式,以便初始化各设备的 ARP 表。再切换到模拟模式,单击 Capture/Forward 按钮,传送数据包,通过网络直至其到达 PCO 并往返。

Fire	Last Status	Source	Destination	Type	Color
	Successful	PC0	PC2	ICMP	

上述步骤说明路由聚合成功。在此任务结束时,完成率应为100%。

三、思考与总结

- 1. 与分类的 IP 编址方式相比, CIDR 编址方案具有什么优点?
 - 1) CIDR 的地址分配更高效,因为 CIDR 采用可变长掩码,能根据网络的实际大小量身定制主机地址空间。
 - 2) CIDR 具有路由聚合功能,能减少路由器的路由表项。
- 2. 在任务一中,分配给 PC0 的 IP 地址一定要使用 192. 168. 1. 0 网段吗? 为什么?

- 是,因为与 PCO 对应的 Router0 的 Fa0/0 接口使用了 192. 168. 1. 254, 二者的 IP 地址需保持在同一网段即 192. 168. 1. 0,否则无法通过网关 转发数据分组。
- 3. 在任务二中,选择不同前缀长度的依据是什么? 根据主机数量,Net1 需要 170 个主机,至少需要 8 位后缀,因此前缀 长度应为 24。
- 4. 任务二中,如果 Router0 不进行路由聚合,则需要配置哪些静态路由信息,才能确保 PC0 能访问 PC1 和 PC2? 需要两个静态路由,一个为 10. 0. 2. 0/24,另一个为 10. 0. 1. 0/23。
- 路由器的不同接口能否使用相同的网络号?
 不可以。路由器的不同接口必须使用不同的网络号。