MSE
$$\hat{g}$$
 at $x = 1$ = $\frac{1}{1 + 0} (\hat{g}_1 - \hat{g}_1 - \hat{g}_2)^2$ = $(0 - \frac{1}{2})^2 + (1 - \frac{1}{2})^2$ = $\frac{1}{2} = 0.5$

... MSE of \hat{f} > MSE of \hat{g}

So, the MSE of \hat{g} is smaller than that of \hat{f} .

For \hat{g} at $x = 1$:

Bias² = $E\left[\left(E\left[\hat{g}(X=1) \mid (X=1)\right]\right) - f\left((X=1) \mid (X=1)\right)\right]^2$

= $E\left[\left(\frac{1}{2} - (1)\right)^2\right] = \frac{1}{4} \Rightarrow B_1 ab = \frac{1}{2}$

Variance = $E\left[\left(\hat{g}(X=1) \mid (X=1)\right) - E\left[\hat{g}(X=1) \mid (X=1)\right]\right]^2$

= $E\left[\left(\hat{g}(X=1) \mid (X=1)\right]^2 + \left(\frac{1}{2}\right)^2 - \frac{2}{2} \cdot \frac{1}{2} \cdot \left(\hat{g}(X=1) \mid (X=1)\right)\right]$

= $E\left[\left(\hat{g}(X=1) \mid (X=1)\right]^2 + \frac{1}{4} - E\left[\left(\hat{g}(X=1) \mid (X=1)\right)\right]$

= $\frac{1}{4} - \frac{1}{2} + \frac{1}{2} \cdot (0.2 \times \frac{1}{2} + (1.2 \times \frac{1}{2}) \times \frac{1}{2}) = \frac{1}{4}$

Bias > Variance > Bias is a bigger contributor than variance.