Length-dependent thermal conductivity prediction of monolayer graphene using Molecular Dynamics

Shahid Ahmed (22M1626)

Motivation

Thermal Transport

Fig1: Electrons transferring heat in metals.

Fig2: Phonons transfer heat in semi-conductors and insulators.

The need for atomistic simulation techniques?

- Electronic devices are in the nanoscale regime.
- Phonon mean free path is of the same length scale as the size of the devices.
- The study of heat transport is no longer possible in the continuum scale.
- Experimental difficulties associated with such length scales.

Introduction

Key points:

- Phonons as classical particles.
- Newton's laws of motion are used to predict trajectories with an interatomic potential or force field.
- Steady state thermal non-equilibrium condition maintained by thermostats.
- Heat flux is measured and temperature gradient calculated.
- Fourier's law of heat conduction is applied to estimate the thermal conductivity

$$J^{\alpha} = -\sum_{\beta} \kappa^{\alpha\beta} \frac{\partial T}{\partial x^{\beta}}$$

Fig3: Schematic of a simulation setup for NEMD

A case study: Graphene

- Graphene's has high RT mobility and thermal conductivity.
- No dangling bonds.
- Used to transfer heat faster.

Fig4: Unit Cell of graphene

Fig5: 2 Honey Comb Lattice structure of graphene

Fig6: Adequate vacuum to avoid interactions between different layers

Structure Relaxation

Simulation parameters

Ensemble **NPT**

Atom_style atomic

Units metal

Pair_style tersoff

Pressure 0 bars

300 K Temperature

1 femtosecond Timestep

Run Time 1 nanosecond

Fig8: Convergence of pressure

Thermal conductivity calculation

Simulation parameters

Ensemble : NVE

Thermostats : Langevin

Hot reservoir : 320 K

Cold reservoir : 280 K

Timestep : 1 femtosecond

Equilibration : 1 nanosecond

Production : 3 nanoseconds

Fig9: Schematic of the simulation setup

Fig10: Temperature gradient developed in the graphene sheet

Thermal conductivity calculation

Convergence study

Length : 250 nanometres

Reservoir : 20 nanometres

Width : 2.5 nanometres

Fig11: Thermal conductivity convergence with width of sheet

Fig12: Thermal conductivity convergence with length of reservoirs

Comparison with literature

Fig13: Thermal conductivity vs length of the sample

Fig14: Thermal conductivity vs length of the sample (Literature)

Discussion

Strong Length Dependence:

Fig15: Length dependence thermal conductivity of Si slab

Deviations from the paper:

Fig16: Temperature gradient at different simulation times

References

- 1. Park, Minkyu, Sun-Chul Lee, and Yong-Sung Kim. "Length-dependent lattice thermal conductivity of graphene and its macroscopic limit." *Journal of Applied Physics* 114.5 (2013): 053506.
- 2. Zhang, Hang, et al. "Length dependent thermal conductivity measurements yield phonon mean free path spectra in nanostructures." *Scientific Reports* 5.1 (2015): 9121.
- 3. Gu, Xiaokun, Zheyong Fan, and Hua Bao. "Thermal conductivity prediction by atomistic simulation methods: Recent advances and detailed comparison." *Journal of Applied Physics* 130.21 (2021): 210902.
- 4. LAMMPS: Examples > Kappa > in.langevin

Thank You