Probability Theory Exercises

Alexander Ritz

March 10, 2021

1. Exercise

- (i) Construct the smallest and largest possible σ -algebra in a given set Ω .
- (ii) Construct all possible σ -algebras in a set of magnitude 4: $\Omega_4 := \{a, b, c, d\}$.
- (iii) **Sketch** what a σ -algebra in the set $\Omega_5 := [0, 5] (\Omega_5 \subset \mathbb{R})$ would conceptually look like.
- (iv) Compare the σ -algebras constructed or sketched in (ii) und (iii). What do you notice?

2. Exercise

Let \mathscr{A} und \mathscr{B} be two σ -algebras in Ω with $\mathscr{A} \subset \mathscr{B}$.

- (i) Show that \mathscr{A} -measurability of $f:\Omega\to\mathbb{R}$ implies \mathscr{B} -measurability.
- (ii) Show that an indicator function $\mathbb{1}_M : \Omega \to \mathbb{R}$ is \mathscr{A} -measurable exactly when $M \in \mathscr{A}$.
- (iii) Let $f, g: \Omega \to \mathbb{R}$ be \mathscr{A} -measurable functions. Show that the sets

$$\{f < g\}, \{f \le g\}, \{f = g\} \text{ and } \{f \ne g\}$$

are elements of \mathscr{A} .

Hint: The \mathscr{A} -measurability of a function f is equivalent to:

$$\forall \alpha \in \mathbb{R} : \{ f \leq \alpha \} \in \mathscr{A} \iff \forall \alpha \in \mathbb{R} : \{ f \geq \alpha \} \in \mathscr{A} \iff \forall \alpha \in \mathbb{R} : \{ f > \alpha \} \in \mathscr{A} \iff \forall \alpha \in \mathbb{R} : \{ f < \alpha \} \in \mathscr{A}$$

3. Exercise

Given $f, g: \Omega \to \mathbb{R}$ \mathscr{A} -measurable functions. Show:

- (i) $\alpha + \beta \cdot g$ is \mathscr{A} -measurable $(\alpha, \beta \in \mathbb{R})$.
- (ii) f + g is \mathscr{A} -measurable.
- (iii) f^2 is \mathscr{A} -measurable.
- (iv) $f \cdot g$ is \mathscr{A} -measurable.

¹With the usual notation utilised in the field of statisites: $\{f < g\} = \{\omega \in \Omega \mid f(\omega) < g(\omega)\}$

4. Exercise

Let $X: \Omega \to [0, +\infty]$ be a random variable with *Exponential* distribution, implying:

$$F_X(z) = P(\lbrace X \le z \rbrace) = \int_0^z \lambda \cdot \exp(-\lambda \cdot t) \, \mathrm{d}t = 1 - \exp(-\lambda \cdot z)$$

- (i) Show that X possesses a density.
- (ii) Derive the distribution function of the random variable $Y := 1 \exp(-c \cdot X)$. What special case is constructed by setting c equal to λ ?
- (iii) Calculate, insofar either exists, expected value and variance of X.
- (iv) Show that, for all $s, t \ge 0$

$$P(X \le s + t \mid X > s) = P(X \le t)$$

Interpret the statement.

5. Exercise

Describe the "elements" (or rather components) of a random variable and its associated probability space. Evaluate and explicitly describe the necessity of the often assumed measurability property.

Hint: The concept of "events" und "results" should be considered as well.