```
In [ ]: Name:Akash Varade
         Roll No: A-04
         import pandas as pd
In [3]:
         from matplotlib import pyplot as plt
         %matplotlib inline
         df = pd.read_csv("/home/kj-comp/Akash Varade/GCR/DB/iris(1).csv")
         df.head(10)
Out[3]:
            sepal_length sepal_width petal_length petal_width species
         0
                     5.1
                                  3.5
                                                             0.2
                                                1.4
                                                                   setosa
         1
                     4.9
                                  3.0
                                                1.4
                                                             0.2
                                                                   setosa
         2
                     4.7
                                  3.2
                                                1.3
                                                             0.2
                                                                   setosa
         3
                     4.6
                                  3.1
                                                1.5
                                                             0.2
                                                                   setosa
                                  3.6
                                                             0.2
         4
                     5.0
                                                1.4
                                                                   setosa
         5
                     5.4
                                  3.9
                                                1.7
                                                             0.4
                                                                   setosa
         6
                     4.6
                                  3.4
                                                1.4
                                                             0.3
                                                                   setosa
         7
                     5.0
                                  3.4
                                                1.5
                                                             0.2
                                                                   setosa
         8
                     4.4
                                  2.9
                                                1.4
                                                             0.2
                                                                   setosa
         9
                     4.9
                                  3.1
                                                1.5
                                                             0.1
                                                                   setosa
        X=df.iloc[:,0:4]
In [4]:
         y=df.iloc[:,-1]
         У
Out[4]: 0
                    setosa
         1
                    setosa
         2
                    setosa
         3
                    setosa
         4
                    setosa
         145
                virginica
         146
                 virginica
         147
                 virginica
         148
                 virginica
         149
                 virginica
         Name: species, Length: 150, dtype: object
In [5]: from sklearn.model_selection import train_test_split
         X_train, X_test, y_train, y_test = train_test_split(X,y,train_size=0.8,random_st
         X_test
```

Out[5]:		sepal_length	sepal_width	petal_length	petal_width
	14	5.8	4.0	1.2	0.2
	98	5.1	2.5	3.0	1.1
	75	6.6	3.0	4.4	1.4
	16	5.4	3.9	1.3	0.4
	131	7.9	3.8	6.4	2.0
	56	6.3	3.3	4.7	1.6
	141	6.9	3.1	5.1	2.3
	44	5.1	3.8	1.9	0.4
	29	4.7	3.2	1.6	0.2
	120	6.9	3.2	5.7	2.3
	94	5.6	2.7	4.2	1.3
	5	5.4	3.9	1.7	0.4
	102	7.1	3.0	5.9	2.1
	51	6.4	3.2	4.5	1.5
	78	6.0	2.9	4.5	1.5
	42	4.4	3.2	1.3	0.2
	92	5.8	2.6	4.0	1.2
	66	5.6	3.0	4.5	1.5
	31	5.4	3.4	1.5	0.4
	35	5.0	3.2	1.2	0.2
	90	5.5	2.6	4.4	1.2
	84	5.4	3.0	4.5	1.5
	77	6.7	3.0	5.0	1.7
	40	5.0	3.5	1.3	0.3
	125	7.2	3.2	6.0	1.8
	99	5.7	2.8	4.1	1.3
	33	5.5	4.2	1.4	0.2
	19	5.1	3.8	1.5	0.3
	73	6.1	2.8	4.7	1.2
	146	6.3	2.5	5.0	1.9

In [6]: from sklearn.preprocessing import LabelEncoder
la_object = LabelEncoder()

```
y = la_object.fit_transform(y)
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
             In [7]: from sklearn.naive bayes import GaussianNB
       model = GaussianNB()
       model.fit(X_train, y_train)
Out[7]: GaussianNB()
In [8]: y_predicted = model.predict(X_test)
In [10]: y_predicted
Out[10]: array(['setosa', 'versicolor', 'versicolor', 'setosa', 'virginica',
             'versicolor', 'virginica', 'setosa', 'setosa', 'virginica',
             'versicolor', 'setosa', 'virginica', 'versicolor', 'versicolor',
             'setosa', 'versicolor', 'versicolor', 'setosa', 'setosa',
             'versicolor', 'versicolor', 'virginica', 'setosa', 'virginica',
             'versicolor', 'setosa', 'setosa', 'versicolor', 'virginica'],
            dtype='<U10')
In [11]: model.score(X_test,y_test)
Out[11]: 0.966666666666667
In [12]: from sklearn.metrics import confusion_matrix,classification_report
       cm = confusion_matrix(y_test, y_predicted)
In [13]:
Out[13]: array([[11, 0, 0],
            [ 0, 12, 1],
             [0, 0, 6]])
In [14]: # classification report for precision, recall f1-score and accuracy
       cl_report=classification_report(y_test,y_predicted)
In [15]: cl_report
Out[15]:
                  precision recall f1-score support\n\n
                                                        setosa
                                                                  1.
       00
            1.00
                              11∖n versicolor
                                               1.00
                                                       0.92
                                                               0.96
                     1.00
                                       0.92
       13\n virginica
                       0.86
                                1.00
                                                 6\n\n accuracy
       0.97
                30∖n macro avg
                                0.95
                                        0.97
                                                 0.96
                                                          30\nweighted
               0.97
                      0.97
                              0.97
                                      30\n'
       avg
In [16]: # precision recall f1-score support\n\n
       #Setosa 1.00 1.00 1.00 11\n
       #Versicolor 1.00 0.92 0.96 13\n
       #Virginica 0.86 1.00 0.92 6\n\n
       #accuracy 0.97 30\n
```

```
#macro avg 0.95 0.97 0.96 30\n
          #weighted avg 0.97 0.97 0.97 30\n
          cm_df = pd.DataFrame(cm,index = ['SETOSA','VERSICOLR','VIRGINICA'],
In [18]:
          columns = ['SETOSA', 'VERSICOLR', 'VIRGINICA'])
In [19]: #Plotting the confusion matrix
          import seaborn as sns
          plt.figure(figsize=(5,4))
          sns.heatmap(cm_df, annot=True)
          plt.title('Confusion Matrix')
          plt.ylabel('Actal Values')
          plt.xlabel('Predicted Values')
          plt.show()
                      Confusion Matrix
                                                  - 12
          SETOSA
                             0
                  11
                                        0
                                                  - 10
                                                   - 8
        Actal Values
                             12
                                        1
          VIRGINICA
                  0
                             0
               SETOSA
                         VERSICOLR
                                     VIRGINICA
                       Predicted Values
In [21]: def accuracy_cm(tp,fn,fp,tn):
           return (tp+tn)/(tp+fp+tn+fn)
          def precision_cm(tp,fn,fp,tn):
           return tp/(tp+fp)
          def recall_cm(tp,fn,fp,tn):
          return tp/(tp+fn)
          def f1_score(tp,fn,fp,tn):
           return (2/((1/recall_cm(tp,fn,fp,tn))+precision_cm(tp,fn,fp,tn)))
          def error_rate_cm(tp,fn,fp,tn):
           return 1-accuracy cm(tp,fn,fp,tn)
In [22]: #For Virginica
          tp = cm[2][2]
          fn = cm[2][0]+cm[2][1]
          fp = cm[0][2]+cm[1][2]
          tn = cm[0][0]+cm[0][1]+cm[1][0]+cm[1][1]
          print("For Virginica \n")
          print("Accuracy : ",accuracy_cm(tp,fn,fp,tn))
          print("Precision : ",precision_cm(tp,fn,fp,tn))
          print("Recall : ",recall_cm(tp,fn,fp,tn))
```

print("F1-Score : ",f1_score(tp,fn,fp,tn))

print("Error rate : ",error_rate_cm(tp,fn,fp,tn))

For Virginica

Accuracy: 0.966666666666667 Precision: 0.8571428571428571

Recall : 1.0

F1-Score : 1.0769230769230769 Error rate : 0.0333333333333333326

In []: