A few slides on full-stack QML

November 21, 2024

Quantum Machine Learning challenges

We aim to involve quantum process units into Machine Learning pipelines.

Classical and quantum components have to be executable on CPUs, GPUs and QPUs to fullfill the whole potential of an hybrid quantum-classical cluster.

2

Qibo as a modular playground

To do so, Qibo stands as an intriguing playgrond thanks to its modularity.

Once a favourite ML framework is chosen, a quantum circuit can be built with Qibo and included into the pipeline.

The circuit can then be executed onto the desired Qibo backend (quantum or classical).

3

A practical example of an hybrid quantum-classical pipeline with Qibo

We want to learn the Parton Distribution Function of the up quark in the proton with a superconducting qubit.

In doing so, we want to mitigate the noise of the quantum device using a learning-based error mitigation technique.

The method requires:

- 1. efficient classical simulation tools;
- 2. easy access to the quantum hardware;
- 3. ability to easily make quantum and classical outputs interact:
- access to GPUs clusters if the process is part of a ML pipeline (optionally).

High level API: Qibo

- </> define prototypes and models:
- </> simulate training and noise.

Calibration: Qibocal

- calibrate qubits;
- generate platform configuration;

Execution: Qibolab

- allocate calibrated platform;
- compile and transpile circuits;
- are execute and return results.

Parameter	Value - A		
$N_{ m data}$	50		
$N_{ m shots}$	500		
MSE	$\sim 10^{-3}$		
Electronics	Xilinx ZCU216		
Training time	\sim 2h		

Real-time quantum error mitigation

We define a Real-Time Quantum Error Mitigation (RTQEM) procedure.

- 1. consider a Variational Quantum Algorithm trained with gradient descent;
- 2. learn the noise map ℓ every time is needed over the procedure;
- 3. use ℓ to clean up both predictions and gradients.

This procedure requires real-time interaction between quantum and classical devices: the former returns the output of the quantum system, the latter mitigate the noise.

RTQEM in action

We perform a gradient descent on two different quantum devices (and noises!)

Parameter	$N_{ m train}$	$N_{ m params}$	$N_{ m shots}$	Epochs	Optimizer	Learning rate
Value	15	16	500	100	Adam	0.1

- qw5q from QuantWare and controlled using Qblox instruments;
- iqm5q from IQM and controlled using Zurich Instruments.

Train.	Epochs	Pred.	Config.	MSE
qw5q	100	qw5q	RTQEM	0.0013
iqm5q	100	qw5q	RTQEM	0.0037
qw5q	100	sim	RTQEM	0.0016

All the hardware results are obtained deploying the $heta_{
m best}$ on qw5q.

7