ME361 – Manufacturing Science Technology

Measurements and Metrology

Dr. Mohit Law

mlaw@iitk.ac.in

Measurements and metrology

Metrology is concerned with the establishment, reproduction, conservation and transfer of units of measurements and their standards

- Measurements and equipment for measurements
- Standards
- Limits, fits and gauges
- Testing and calibration
- Machine tool metrology
- Measuring machines (CMMs, etc.)
- Statistical quality control
- Regression analysis and response models
- Design of experiments

Since we cannot know all that there is to be known about anything, we ought to know a little about everything - Blaise Pascal

Accuracy and precision

Accurate Precise Precise Not Accurate Not Accurate Not Precise Not Precise

Distribution of measured data

Mean

$$\mu = \frac{\sum_{i=1}^{n} y_i}{n}$$

Variance

Probability density function

$$f(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\sigma^2\pi}} e^{-\frac{(y-\mu)^2}{2\sigma^2}}$$

Regression analysis – method of least squares

Regression analysis is a statistical process for estimating the relationships among independent and dependent (response) variables. i.e. fit a model to measured data.

Suggested relationship between independent and dependent variables

$$y = b_0 + b_1 x + \epsilon$$

 $\epsilon \rightarrow$ experimental error with $\mu=0$ and variance, σ^2

Predicted response with fitted values, \hat{b}_0 and \hat{b}_1

$$\hat{y} = \hat{b}_0 + \hat{b}_1 x$$

Least square method to minimize the sum of squared deviations of the responses from their vertical projections onto the fitted line

$$SS(\hat{b}_0, \hat{b}_1) = \sum_{n} (y_i - \hat{y}_i)^2 = \sum_{n} (y_i - \hat{b}_0 - \hat{b}_1 x_i)^2$$

Regression analysis – method of least squares

Least square method to minimize the sum of squared deviations of the responses from their vertical projections onto the fitted line

$$SS(\hat{b}_0, \hat{b}_1) = \sum_{n} (y_i - \hat{y}_i)^2 = \sum_{n} (y_i - \hat{b}_0 - \hat{b}_1 x_i)^2$$

To find fitted values, \hat{b}_0 and \hat{b}_1 , diff w.r.t \hat{b}_0 and \hat{b}_1

$$\sum_{n} \hat{b}_{0} + \hat{b}_{1} \sum_{n} x_{i} = \sum_{n} \hat{y}_{i}$$
 (a)
$$\hat{b}_{0} \sum_{n} x_{i} + \hat{b}_{1} \sum_{n} x_{i}^{2} = \sum_{n} x_{i} y_{i}$$
 (b)

Solve (a) and (b) simultaneously to obtain the least-squares fit

$$\hat{y} = \hat{b}_0 + \hat{b}_1 x$$

Response models from design of experiments

- Any statistical process control measure for metrology and quality improvement assumes response is known
- What is a response model?
- Can we design experiments to observe effects of changing parameters and variables on the response?
- Do parameters interact with each other to influence overall response? Can experiments be designed to study these interactions?
- Can experiments be designed to reveal statistical and random errors?

Design of experiments

Design of experiments (DOE)

Full two – level factorial design

- Considers two levels of each variable
- Levels are commonly referred to as low (-) and high (+)
- When there are k factors, there exist 2^k combinations of high and low levels, i.e. total number of tests will be 2^k
- Low level is coded as -1 and high level as +1

Consider 2 factors (variables, X_1 and X_2) with 2 levels k=2; Total tests = $2^k=4$

		Coded va	ariables	Actual variables			
	Main effects		Interaction effects	Main effects		Interaction effects	
Test	x_1	x_2	x_1x_2	X_1 X_2		X_1X_2	
1	-1	-1	+1	-1	-1	+1	
2	+1	-1	-1	+1	-1	-1	
3	-1	+1	-1	-1	+1	-1	
4	+1	+1	+1	+1	+1	+1	

DOE - 2^3 factorial design

Problem statement:

Desired to determine the effects of spindle speed, $X_1 \rightarrow x_1$ (RPM), feed rate, $X_2 \rightarrow x_2$ (mm/rev) and corner radius, $X_3 \rightarrow x_3$ (mm) on the surface finish of a turned surface. Each has two levels, high (+1) and low (-1).

Visualize the design as a cube

- \rightarrow each corner represents a test, and its response y_i
- → Each of the three dimensions represents one of the three coded variables that are centered about zero
- \rightarrow each plane represents a 2^2 experiment

DOE - 2^3 factorial design – main effects

How to evaluate the individual and joint influences of speed, feed and corner radius on the surface finish?

You may ask:

How is the surface finish influenced by a change in any one of the three variables while the other two are held constant?

Consider this question for the speed (x_1) .

- Four contrasts of test results that indicate how surface finish changes when speed is changed from low to high, keeping feed and corner radius fixed.
 - y_1 and y_2
 - y_3 and y_4
 - y_5 and y_6
 - y_7 and y_8

DOE - 2^3 factorial design – main effects

Speed x_1 is varied while feed and corner radius are held constant.

Geometrical representation

Following pairs may be compared to see the effect of the speed

- y_1 and y_2 ; y_3 and y_4
- $-y_5$ and y_6 ; y_7 and y_8

Average effect of the speed, E_1 , i.e. main effect:

$$E_1 = \left(\frac{1}{4}\right) \left[(y_2 - y_1) + (y_4 - y_3) + (y_6 - y_5) + (y_8 - y_7) \right]$$

DOE - 2^3 factorial design – main effects

Feed, x_2 is varied while speed and corner radius are held constant.

Following pairs may be compared to see the effect of the feed

- y_1 and y_3 ; y_2 and y_4
- y_5 and y_7 ; y_6 and y_8

Average effect of the feed, E_2 , i.e. main effect:

$$E_2 = \left(\frac{1}{4}\right) \left[(y_3 - y_1) + (y_4 - y_2) + (y_7 - y_5) + (y_8 - y_6) \right]$$

Corner radius, x_3 is varied while speed and feed are held constant.

$$E_3 = \left(\frac{1}{4}\right) \left[(y_5 - y_1) + (y_6 - y_2) + (y_7 - y_3) + (y_8 - y_4) \right]$$

DOE - 2^3 factorial design – interaction effects

You may ask:

How much different the speed (X_1) effect is when the feed (X_2) is at its low value as opposed to the feed (X_2) being at its high value?

Or, equivalently:

How much different the feed (X_2) effect is when the speed (X_1) is at its low value as opposed to the speed (X_1) being at its high value?

Consider the first case above:

• When X_2 is low (X_2^-) , two situations exist:

$$X_2^-$$
, X_3^- and X_2^- , X_3^+ and

• When X_2 is high (X_2^+) , two situations exist:

$$X_2^+, X_3^-$$
 and X_2^+, X_3^+

This is the difference in the effect of X_1 between the average of the first $(X_2 = X_2^-)$ and the second pairs above $(X_2 = X_2^+)$

DOE - 2^3 factorial design – interaction effects

<u>Interaction between speed and feed:</u>

Is difference in the effect of X_1 between the average of the first $(X_2 = X_2^-)$ and the second pairs above $(X_2 = X_2^+)$

$$E_{12} = \frac{y_1 + y_4 + y_5 + y_8}{4} - \frac{y_2 + y_3 + y_6 + y_7}{4}$$

DOE - 2^3 factorial design – interaction effects

Interaction between speed and feed:

$$E_{12} = \frac{y_1 + y_4 + y_5 + y_8}{4} - \frac{y_2 + y_3 + y_6 + y_7}{4}$$

Similarly, the other two-way, and three-way interactions are

$$E_{13} = \frac{y_1 + y_3 + y_6 + y_8}{4} - \frac{y_2 + y_4 + y_5 + y_7}{4}$$

Interaction between feed and corner radius:

$$E_{23} = \frac{y_1 + y_4 + y_7 + y_8}{4} - \frac{y_3 + y_4 + y_5 + y_6}{4}$$

Interaction between speed, feed, and corner radius:

$$E_{123} = \frac{y_2 + y_3 + y_5 + y_8}{4} - \frac{y_1 + y_4 + y_6 + y_7}{4}$$

${\sf DOE}$ - 2^3 factorial design – general method

	Coded variables							
	Main effects				Response			
Test	x_1	x_2	x_3	x_1x_2	x_1x_3	x_2x_3	$x_1x_2x_3$	у
1	-1	-1	-1	+1	+1	+1	-1	y_1
2	+1	-1	-1	-1	-1	+1	+1	y_2
3	-1	+1	-1	-1	+1	-1	+1	y_3
4	+1	+1	-1	+1	-1	-1	-1	y_4
5	-1	-1	+1	+1	-1	-1	+1	y_5
6	+1	-1	+1	-1	+1	-1	-1	y_6
7	-1	+1	+1	-1	-1	+1	-1	<i>y</i> ₇
8	+1	+1	+1	+1	+1	+1	+1	y_8

Use the calculation matrix, and add all elements in each column for the relevant effect, example:

$$E_1 = \frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{4}$$

DOE - 2^3 factorial design – response model

Model has the response of the form of:

$$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3 + b_{123} x_1 x_2 x_3 + \epsilon$$

 ϵ represents random noise or experimental error & has expected value of 0

Coefficients:

$$\hat{b}_0 = I = 1/8(y_1 + y_2 + y_3 + y_4 + y_5 + y_6 + y_7 + y_8)$$
 $\hat{b}_1 = E_1/2$

$$\hat{b}_{\cdot} = E_{\cdot}/2$$

$$\hat{b}_{.} = \hat{b}_{1}, \hat{b}_{2}, \hat{b}_{3}, \hat{b}_{12}, ...$$

 $\hat{b}_{13}, \hat{b}_{23}, \hat{b}_{123}$

From the calculation matrix, sum the relevant column

$$E_1 = \frac{-y_1 + y_2 - y_3 + y_4 - y_5 + y_6 - y_7 + y_8}{4}$$

$$E_2 = \frac{-y_1 - y_2 + y_3 + y_4 - y_5 - y_6 + y_7 + y_8}{4}$$

$$E_{123} = \frac{-y_1 + y_2 + y_3 - y_4 + y_5 - y_6 - y_7 + y_8}{4}$$

				Coded	l variables			
	Main effects				Response			
Test	x_1	x_2	x_3	$x_{1}x_{2}$	$x_1 x_3$	$x_{2}x_{3}$	$x_1 x_2 x_3$	У
1	-1	-1	-1	+1	+1	+1	-1	y_1
2	+1	-1	-1	-1	-1	+1	+1	y_2
3	-1	+1	-1	-1	+1	-1	+1	y_3
4	+1	+1	-1	+1	-1	-1	-1	y_4
5	-1	-1	+1	+1	-1	-1	+1	y_5
6	+1	-1	+1	-1	+1	-1	-1	y_6
7	-1	+1	+1	-1	-1	+1	-1	<i>y</i> ₇
8	+1	+1	+1	+1	+1	+1	+1	y ₈

DOE - 2^3 factorial design – response model

Estimate the response as:

$$\hat{y} = \hat{b}_0 + \hat{b}_1 x_1 + \hat{b}_2 x_2 + \hat{b}_3 x_3 + \hat{b}_{12} x_1 x_2 + \hat{b}_{13} x_1 x_3 + \hat{b}_{23} x_2 x_3 + \hat{b}_{123} x_1 x_2 x_3$$

Transform coded space response to the un-coded space, i.e. actual variables

$$x = \frac{2X - X^{+} - X^{-}}{X^{+} - X^{-}}$$
 \longrightarrow $x_{1} = \frac{2X_{1} - X_{1}^{+} - X_{1}^{-}}{X_{1}^{+} - X_{1}^{-}};$ $x_{2} = \frac{2X_{2} - X_{2}^{+} - X_{2}^{-}}{X_{2}^{+} - X_{2}^{-}}$...

 $X^+ \to \text{high level of variable, and } X^- \to \text{ low level of variable}$

Estimate of the response in terms of actual variables:

$$\hat{y} = \hat{b}_0 + \hat{b}_1 X_1 + \hat{b}_2 X_2 + \hat{b}_3 X_3 + \hat{b}_{12} X_1 X_2 + \hat{b}_{13} X_1 X_3 + \hat{b}_{23} X_2 X_3 + \hat{b}_{123} X_1 X_2 X_3$$

DOE - 2^3 factorial design – response model

Recalling problem statement:

Desired to determine the effects of spindle speed, $X_1 \rightarrow x_1$ (RPM), feed rate, $X_2 \rightarrow x_2$ (mm/rev) and corner radius, $X_3 \rightarrow x_3$ (mm) on the surface finish of a turned surface. Each has two levels, high (+1) and low (-1).

Recall from turning, how surface quality was thought to be a f (feed, nose radius)

Estimate of the response in terms of actual variables:

$$\hat{y} = \hat{b}_0 + \hat{b}_1 X_1 + \hat{b}_2 X_2 + \hat{b}_3 X_3 + \hat{b}_{12} X_1 X_2 + \hat{b}_{13} X_1 X_3 + \hat{b}_{23} X_2 X_3 + \hat{b}_{123} X_1 X_2 X_3$$

$$\hat{y} \approx \hat{b}_0 + \hat{b}_2 X_2 + \hat{b}_3 X_3 + \hat{b}_{23} X_2 X_3$$

Consider a 2^{10} factorial design

A 10 variable experiment with two levels for each variable would need 2^{10} = 1024 tests

This test, will have the following variable effects:

1	Mean response
10	Main effects
45	Two-factors interaction effects
120	Three-factor interaction effects
210	Four-factor interaction effects
252	Five-factor interaction effects
210	Six-factor interaction effects
120	Seven-factor interaction effects
45	Eight-factor interaction effects
10	Nine-factor interaction effects
1	Ten-factor interaction effect
1024	Mean + 1023 variable effects

Generally, higher-order variable interactions are negligible and can be ignored

$$2^k \to 2^{k-n}$$

