Математические заметки

Том 0 выпуск 0 июнь 1966

УДК 517.986.22

Метрически и топологически проективные идеалы банаховых алгебр

Н. Т. Немеш

В данной статье даются необходимые условия метрической и топологической проективности замкнутых идеалов банаховых алгебр. В случае коммутативных банаховых алгебр получен критерий метрической и топологической проективности идеалов, обладающих ограниченной аппроксимативной единицей. Основной результат работы: замкнутый идеал произвольной C^* -алгебры метрически или топологически проективен тогда и только тогда, когда он обладает самосопряженной правой единицей.

Библиография: 13 названий.

1. Введение

Понятия проективного, инъективного и плоского модуля играют фундаментальную роль в гомологической алгебре. Первые функционально-аналитические версии этих понятий появились 45 лет назад [1] и были успешно применены для исследования дифференцирований и расширений банаховых алгебр и изучения аменабельных алгебр. В последнее время с ростом интереса к теории операторных пространств [2], [3], [4], началось активное исследование новых типов гомологически тривиальных объектов — метрически и топологически проективных, инъективных и плоских модулей. В этой работе на примере идеалов банаховых алгебр мы покажем, что метрическая и топологическая проективность тесно связаны и являются значительно более сильными свойствами, чем относительная проективность.

Для формулировки точных определений нам понадобится небольшая подготовка. Через B_E мы будем обозначать замкнутый единичный шар пространства E. Пусть E и F — банаховы пространства. Ограниченный линейный оператор $T:E\to F$ будем называть топологически сюръективным если $B_F\subset cT(B_E)$ для некоторого

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 15–01–08392).

c > 0. По теореме Банаха об открытом отображении топологическая сюръективность оператора эквивалентна сюръективности. Если же $T(B_E) = B_F$, то оператор T будем называть строго коизометрическим.

Здесь и далее символ A будет обозначать не обязательно унитальную банахову алгебру со сжимающим билинейным оператором умножения. Мы будем рассматривать только левые банаховы модули со сжимающим билинейным оператором внешнего умножения, обозначаемого точкой " \cdot ". Наконец, непрерывные морфизмы левых A-модулей мы будем называть A-морфизмами.

Сформулируем три, пожалуй, самых важных для нас определения проективного банахова модуля. Пусть P, X и Y — банаховы модули, а $\phi: P \to Y$ и $\xi: X \to Y$ — A-морфизмы. Напомним, что A-морфизм $\psi: P \to X$ называется продолжением ϕ вдоль ξ если $\xi \psi = \phi$.

Определение 1. А-модуль P называется метрически проективным, если для любого строго коизометрического A-морфизма $\xi: X \to Y$ каждый A-морфизм $\phi: P \to Y$ обладает продолжением $\psi: P \to X$ вдоль ξ таким, что $\|\psi\| = \|\phi\|$.

ОПРЕДЕЛЕНИЕ 2. А-модуль P называется топологически проективным, если для любого топологически сюръективного A-морфизма $\xi: X \to Y$ и любого A-морфизма $\phi: P \to Y$ существует продолжение вдоль ξ .

Определение 3. А-модуль P называется относительно проективным, если для любого A-морфизма $\xi: X \to Y$, обладающего правым обратным оператором, и любого A-морфизма $\phi: P \to Y$ существует продолжение вдоль ξ .

Изначально эти определения были даны Хелемским [1], [5] и Гравеном [6].

На самом деле, все эти типы проективности можно изучать с общих позиций. В работе [5] Хелемским была построена теория оснащенных категорий, позволившая единообразно доказывать многие утверждения о проективных банаховых модулях. Мы дадим определения и кратко перечислим некоторые результаты об оснащенных категориях. Через **Set** мы будем обозначать категорию множеств. Тот факт что объекты X и Y категории \mathbf{C} изоморфны мы будем записывать как $X \cong Y$. Пусть \mathbf{C} и \mathbf{D} — две фиксированные категории. Пара ($\mathbf{C}, \square : \mathbf{C} \to \mathbf{D}$), где \square — верный (то есть не склеивающий морфизмы) ковариантный функтор, называется оснащенной категорией. Морфизм ξ в \mathbf{C} называется \square -допустимым эпиморфизмом если $\square(\xi)$ — ретракция в \mathbf{D} . Объект P в \mathbf{C} называется \square -проективным, если для каждого \square -допустимого эпиморфизма ξ в \mathbf{C} отображение $\mathrm{Hom}_{\mathbf{C}}(P,\xi)$ сюръективно. Объект F в \mathbf{C} называется \square -свободным с базой M в \mathbf{D} , если существует изоморфизм $\mathrm{Hom}_{\mathbf{D}}(M,\square(X)) \cong \mathrm{Hom}_{\mathbf{C}}(F,X)$ естественный по X. Оснащенная категория (\mathbf{C},\square) называется свободолюбивой, если каждый объект в \mathbf{D} является базой некоторого \square -свободного объекта из \mathbf{C} . Имеют место следующие утверждения [5]:

ПРЕДЛОЖЕНИЕ 1. Пусть (\mathbf{C},\Box) — оснащенная категория. Тогда

- (i) любой ретракт \Box -проективного объекта \Box -проективен;
- (ii) любой \Box -допустимый эпиморфизм в \Box -проективный объект есть ретракция;
- (iii) любой \Box -свободный объект \Box -проективен;

(iv) если (\mathbf{C}, \square) — свободолюбивая оснащенная категория, то любой объект \square проективен тогда и только тогда, когда он есть ретракт \square -свободного объекта;

Теперь мы продемонстрируем применение оснащенных категорий для изучения проективности банаховых модулей. Через **Ban** мы будем обозначать категорию банаховых пространств с ограниченными операторами в роли морфизмов. Если рассматривать в роли морфизмов только сжимающие операторы, то мы получим еще одну категорию обозначаемую \mathbf{Ban}_1 . Через $A - \mathbf{mod}$ мы обозначим категорию левых банаховых A-модулей с ограниченными A-морфизмами в роли морфизмов. Через $A - \mathbf{mod}_1$ мы обозначим подкатегорию $A - \mathbf{mod}$ с теми же объектами, но только лишь сжимающими морфизмами.

В дальнейшем, в предложениях мы будем использовать сразу несколько фраз, последовательно перечисляя их и заключая в скобки таким образом: $\langle \ldots / \ldots \rangle$. Например: число x называется \langle положительным \rangle неотрицательным \rangle если $\langle x > 0 \rangle$.

В работах Хелемского [5] и Штейнера [7] были построены три верных функтора:

$\square_{met}: A-\mathbf{mod}_1 \to \mathbf{Set},$	\Box_{ton} :	$A - \mathbf{mod} \to \mathbf{HNor}$.	$\square_{mal}:A$	$-\operatorname{\mathbf{mod}} o \operatorname{\mathbf{Ban}}$

Здесь **HNor** — это категория так называемых полунормированных пространств введенных Штейнером. Мы не будем подробно объяснять как действуют эти функторы. Нам достаточно их существования. Для оснащенных категорий $(A - \mathbf{mod}_1, \square_{met})$, $(A - \mathbf{mod}, \square_{top})$ и $(A - \mathbf{mod}, \square_{rel})$ было доказано, что

- (i) A-морфизм ξ \langle строго коизометричен / топологически сюръективен / имеет правый обратный оператор \rangle тогда и только тогда, когда он является $\langle \square_{met}$ -допустимым $/ \square_{top}$ -допустимым $/ \square_{rel}$ -допустимый \rangle эпиморфизмом;
- (ii) A-модуль P является \langle метрически / топологически / относительно \rangle проективным тогда и только тогда, когда он $\langle \square_{met}$ -проективен $/ \square_{top}$ -проективен \rangle .

Как следствие, из пункта (i) предложения 1 мы получаем:

ПРЕДЛОЖЕНИЕ 2. Всякий ретракт $\langle \text{ метрически } / \text{ топологически } / \text{ относительно } \rangle$ проективного модуля в $\langle A - \mathbf{mod}_1 / A - \mathbf{mod}_1 / A - \mathbf{mod}_2 \rangle$ снова $\langle \text{ метрически } / \text{ топологически } / \text{ относительно } \rangle$ проективен.

В [5] и [7] также было доказано, что оснащенная категория $\langle (A - \mathbf{mod}_1, \square_{met}) / (A - \mathbf{mod}, \square_{top}) / (A - \mathbf{mod}, \square_{rel}) \rangle$ свободолюбива, и что $\langle \square_{met}$ -свободные $/ \square_{top}$ -свободные $/ \square_{rel}$ -свободные \rangle модули изоморфны в $\langle A - \mathbf{mod}_1 / A - \mathbf{mod} / A - \mathbf{mod} \rangle$ модулям вида $\langle A_+ \otimes \ell_1(\Lambda) / A_+ \otimes \ell_1(\Lambda) / A_+ \otimes E \rangle$. Здесь A_+ обозначает стандартную унитизацию банаховой алгебры A, а символ \otimes обозначает проективное тензорное произведение банаховых пространств. Так как $A_+ \cong A_+ \otimes A_{-\mathbf{mod}_1}$ С $\cong A_+ \otimes \ell_1(\{1\})$, то из сказанного выше и пункта (iii) предложения 1 мы немедленно получаем еще один результат.

ПРЕДЛОЖЕНИЕ 3. A-модуль A_+ метрически, топологически и относительно проективен.

Заметим, что $\langle \Box_{met}$ -свободные $/ \Box_{top}$ -свободные \rangle модули совпадают с точностью до изоморфизма в $A-\mathbf{mod}$ и всякая ретракция в $A-\mathbf{mod}_1$ есть ретракция в

4 н.т. немеш

A-mod. Поэтому из предложения 2 мы видим, что любой метрически проективный A-модуль топологически проективен. Заметим, также, что всякий \Box_{top} -свободный модуль является \Box_{rel} -свободным. Следовательно, каждый топологически проективный A-модуль будет относительно проективным. Мы резюмируем эти результаты в следующем предложении.

ПРЕДЛОЖЕНИЕ 4. Каждый метрически проективный модуль является топологически проективным и каждый топологически проективный модуль является относительно проективным.

Обратные утверждения, вообще говоря, неверны.

Легко проверить, что для любого A-модуля X линейный оператор

$$\pi_X^+: A_+ \widehat{\otimes} \ell_1(B_X): a \widehat{\otimes} \delta_x \mapsto a \cdot x$$

является $\langle \Box_{met}$ -допустимым $/ \Box_{top}$ -допустимым \rangle эпиморфизмом. Здесь, через δ_x мы обозначаем функцию из $\ell_1(B_X)$ равную 1 в точке x и 0 в остальных точках. Теперь из пунктов (ii) и (iv) предложения 1 мы получаем:

ПРЕДЛОЖЕНИЕ 5. Модуль $P \ \langle \ метрически \ / \ топологически \ \rangle \ проективен тогда <math>u \ moлько \ morдa, \ когдa \ \pi_P^+ - pempakuus \ e \ \langle \ A - \mathbf{mod}_1 \ / \ A - \mathbf{mod} \ \rangle.$

Нам понадобится еще один критерий проективности. С небольшими модификациями его доказательство повторяет рассуждения предложения 7.1.14 из [10].

ПРЕДЛОЖЕНИЕ 6. Пусть P-существенный A-модуль, то есть линейная оболочка $A\cdot P$ плотна в P. Тогда P \langle метрически / топологически \rangle проективен тогда u только тогда, когда отображение $\pi_P: A \widehat{\otimes} \ell_1(B_P): a \widehat{\otimes} \delta_x \mapsto a \cdot x$ есть ретракция в $\langle A - \mathbf{mod}_1 / A - \mathbf{mod} \rangle$.

2. Проективность идеалов банаховых алгебр

Далее все рассматриваемые идеалы банаховых алгебр предполагаются замкнутыми. Наше исследование мы начнем с простого наблюдения.

ПРЕДЛОЖЕНИЕ 7. Пусть I — левый идеал банаховой алгебры A и I = Ap для некоторого \langle идемпотента $p \in I$ нормы 1 / идемпотента $p \in I$ \rangle . Тогда I \langle метрически / топологически \rangle проективен как A-модуль;

Доказательство. Очевидно, что I есть ретракт A_+ в $\langle A-\mathbf{mod}_1 \ / \ A-\mathbf{mod} \ \rangle$ посредством A-морфизма $\pi:A_+\to I:x\mapsto xp$ Теперь результат следует из предложений 2 и 3.

Чтобы получить главный результат этого параграфа нам нужны две подготовительные леммы.

ЛЕММА 1. Пусть $I - \partial$ вусторонний идеал банаховой алгебры A, существенный как левый I-модуль и пусть задан A-морфизм $\phi: I \to A$. Тогда $\operatorname{Im}(\phi) \subset I$.

Доказательство. Так как I — правый идеал, то $\phi(ab) = a\phi(b) \in I$ для всех $a, b \in I$. Поэтому $\phi(I \cdot I) \subset I$. Так как I — существенный левый I-модуль, то $I = \operatorname{cl}_A(\operatorname{span}(I \cdot I))$ и $\operatorname{Im}(\phi) \subset \operatorname{cl}_A(\operatorname{span}\phi(I \cdot I)) = \operatorname{cl}_A(\operatorname{span}I) = I$.

 Π ЕММА 2. Π усть I — левый идеал банаховой алгебры A. Допустим, выполнено одно из следующих условий:

- (*) I имеет левую \langle сжимающую / ограниченную \rangle аппроксимативную единицу, u для любого морфизма $\phi: I \to A$ левых A-модулей найдется морфизм $\psi: I \to I$ правых I-модулей со свойством $\phi(x)y = x\psi(y)$ для всех $x,y \in I$.
- (**) I имеет правую \langle сжимающую / ограниченную \rangle аппроксимативную единицу, и существует \langle C = 1 / $C \geqslant 1$ \rangle такое, что для любого морфизма $\phi: I \to A$ левых A-модулей найдется морфизм $\psi: I \to I$ правых I-модулей со свойствами $\|\psi\| \leqslant C \|\phi\|$ и $\phi(x)y = x\psi(y)$ для всех $x, y \in I$.

Тогда следующие условия эквивалентны:

- 1. $I \ \langle \ метрически \ / \ топологически \ \rangle \ проективен как <math>A$ -модуль;
- $2. \ I \ обладает \ \langle \ правой \ единицей \ нормы \ 1 \ / \ правой \ единицей \
 angle.$

Доказательство. (i) \Longrightarrow (ii) Если выполнено (*) или (**), то I обладает односторонней аппроксимативной единицей. Следовательно, I — существенный левый I-модуль и тем более существенный A-модуль. По предложению 6, существует правый обратный A-морфизм $\sigma:I\to A\mathbin{\widehat{\otimes}}\ell_1(B_I)$ к π_I в $\langle A-\mathbf{mod}_1 \ / \ A-\mathbf{mod}_2 \rangle$. Для каждого $d\in B_I$ рассмотрим A-морфизм $p_d:A\mathbin{\widehat{\otimes}}\ell_1(B_I)\to A:a\mathbin{\widehat{\otimes}}\delta_x\mapsto \delta_x(d)a$ и $\sigma_d=p_d\sigma$. Тогда $\sigma(x)=\sum_{d\in B_I}\sigma_d(x)\mathbin{\widehat{\otimes}}\delta_d$ для всех $x\in I$. Напомним, что $A\mathbin{\widehat{\otimes}}\ell_1(B_I)$ изометрически изоморфно ℓ_1 -сумме копий алгебры A в количестве равном мощности B_I , то есть $A\mathbin{\widehat{\otimes}}\ell_1(B_I)\cong\bigoplus_{\mathbf{Ban}_1}\{A:d\in B_I\}$ Из этого отождествления мы получаем $\|\sigma(x)\|=\sum_{d\in B_I}\|\sigma_d(x)\|$ для всех $x\in I$. Так как σ — правый обратный морфизм к π_I то $x=\pi_I(\sigma(x))=\sum_{d\in B_I}\sigma_d(x)d$ для всех $x\in I$.

Предположим, выполнено условие (*). Тогда для каждого $d \in B_I$ существует морфизм правых I-модулей $\tau_d: I \to I$ такой, что $\sigma_d(x)d = x\tau_d(d)$ для всех $x \in I$. Пусть $(e_{\nu})_{\nu \in N}$ — левая \langle сжимающая / ограниченная \rangle аппроксимативная единица в I ограниченная по норме константой D. Поскольку $\tau_d(d) \in I$ для всех $d \in B_I$, то для любого конечного множества $S \subset B_I$ выполнено

$$\sum_{d \in S} \|\tau_{d}(d)\| = \sum_{d \in S} \lim_{\nu} \|e_{\nu}\tau_{d}(d)\| = \lim_{\nu} \sum_{d \in S} \|e_{\nu}\tau_{d}(d)\| = \lim_{\nu} \sum_{d \in S} \|\sigma_{d}(e_{\nu})d\|$$

$$\leq \liminf_{\nu} \sum_{d \in S} \|\sigma_{d}(e_{\nu})\| \|d\| \leq \liminf_{\nu} \sum_{d \in S} \|\sigma_{d}(e_{\nu})\| \leq \liminf_{\nu} \sum_{d \in B_{I}} \|\sigma_{d}(e_{\nu})\|$$

$$= \liminf_{\nu} \|\sigma(e_{\nu})\| \leq \|\sigma\| \liminf_{\nu} \|e_{\nu}\| \leq D\|\sigma\|.$$

Теперь предположим что, выполнено условие (**). Из предположения, для каждого $d \in B_I$ существует морфизм правых I-модулей $\tau_d: I \to I$ такой, что $\sigma_d(x)d = x\tau_d(d)$ для всех $x \in I$ и $\|\tau_d\| \leqslant C\|\sigma_d\|$. Пусть $(e_{\nu})_{\nu \in N}$ — правая \langle сжимающая \rangle ограниченная \rangle аппроксимативная единица в I ограниченная по норме некоторой константой D. Для всех $x \in I$ выполнено

$$\|\sigma_d(x)\| = \|\sigma_d(\lim_{\nu} x e_{\nu})\| = \lim_{\nu} \|x \sigma_d(e_{\nu})\| \le \|x\| \liminf_{\nu} \|\sigma_d(e_{\nu})\|,$$

поэтому $\|\sigma_d\| \leq \liminf_{\nu} \|\sigma_d(e_{\nu})\|$. Тогда для всех конечных множеств $S \subset B_I$ выполнено

$$\sum_{d \in S} \|\tau_d(d)\| \leqslant \sum_{d \in S} \|\tau_d\| \|d\| \leqslant C \sum_{d \in S} \|\sigma_d\| \leqslant C \sum_{d \in S} \liminf_{\nu} \|\sigma_d(e_{\nu})\|$$

6 Н. Т. НЕМЕШ

$$\leqslant C \liminf_{\nu} \sum_{d \in S} \|\sigma_d(e_{\nu})\| \leqslant C \liminf_{\nu} \sum_{d \in B_I} \|\sigma_d(e_{\nu})\| = C \liminf_{\nu} \|\sigma(e_{\nu})\|
\leqslant C \|\sigma\| \liminf_{\nu} \|e_{\nu}\| \leqslant CD \|\sigma\|.$$

Для обоих предположений (*) и (**) мы доказали, что число $\sum_{d \in S} \| \tau_d(d) \|$ ограничено \langle единицей / некоторой константой \rangle для любого конечного множества $S \subset B_I$. Следовательно, существует $p = \sum_{d \in B_I} \tau_d(d) \in I$ со свойством $\langle \| p \| \leqslant 1 \ / \ \| p \| < \infty \rangle$. Более того, для всех $x \in I$ выполнено $x = \sum_{d \in B_I} \sigma_d(x)d = \sum_{d \in B_I} x\tau_d(d) = xp$, то есть p — правая единица в I.

 $(ii) \implies (i)$ Пусть $p \in I$ — правая единица для I,тогда I = Ap. Теперь из предложения 7 мы получаем, что идеал I \langle метрически / топологически \rangle проективен как A-модуль.

ТЕОРЕМА 1. Пусть I-uдеал коммутативной банаховой алгебры A и I имеет \langle сжимающую / ограниченную \rangle аппроксимативную единицу. Тогда I \langle метрически / топологически \rangle проективен как A-модуль тогда и только тогда, когда I имеет \langle единицу нормы 1 / единицу \rangle .

Доказательство. Поскольку A коммутативна, то для любого A-морфизма $\phi: I \to A$ и любых $x,y \in I$ выполнено $\phi(x)y = x\phi(y)$. Так как I имеет ограниченную аппроксимативную единицу и I коммутативен, то мы можем применить лемму 1, чтобы заключить $\phi(y) \in I$. Теперь выполнено условие (*) леммы 2, и мы получаем желаемую равносильность.

В относительной теории нет аналогичного критерия проективности идеалов. Наиболее общий результат такого типа дает лишь необходимое условие: если идеал Iкоммутативной банаховой алгебры A относительно проективен как A-модуль, то Iимеет паракомпактный спектр [[8], теорема IV.3.6].

Отметим, что существование ограниченной аппроксимативной единицы не является необходимым условием для топологической проективности идеала коммутативной банаховой алгебры. Действительно, рассмотрим банахову алгебру $A_0(\mathbb{D})$ — идеал алгебры на диске состоящий из функций исчезающих в нуле. Комбинируя предложения 4.3.5 и 4.3.13 параграф (iii) из [9] мы заключаем, что $A_0(\mathbb{D})$ не имеет ограниченных аппроксимативных единиц. С другой стороны, из [[10], пример IV.2.2] мы знаем, что $A_0(\mathbb{D})$ \cong $A_0(\mathbb{D})_+$, поэтому согласно предложению 3, $A_0(\mathbb{D})$ — топологически проективный $A_0(\mathbb{D})$ -модуль.

3. Проективность идеалов C^* -алгебр

Чтобы получить описание метрически и топологически проективных левых идеалов C^* -алгебр нам понадобится следующая лемма.

ЛЕММА 3. Пусть I — левый идеал унитальной C^* -алгебры A. Пусть $a \in I$ — самосопряженный элемент, и пусть E — действительное подпространство исчезающих в нуле действительнозначных функций из $C(\operatorname{sp}_A(a))$. Тогда существует изометрический гомоморфизм $\operatorname{RCont}_a^0: E \to I$ корректно определенный равенством $\operatorname{RCont}_a^0(f) = a$, где $f: \operatorname{sp}_A(a) \to \mathbb{C}: t \mapsto t$.

Доказательство. Через $\mathbb{R}_0[t]$ мы обозначим действительное линейное подпространство в E, состоящее из многочленов исчезающих в нуле. Так как I — левый идеал

в A и многочлен $p \in \mathbb{R}_0[t]$ не имеет свободного члена, то $p(a) \in I$. Следовательно, корректно определен \mathbb{R} -линейный гомоморфизм алгебр $\mathrm{RPol}_a^0:\mathbb{R}_0[t] \to I: p \mapsto p(a)$. Из непрерывного функционального исчисления для любого многочлена p выполнено $\|p(a)\| = \|p|_{\mathrm{sp}_A(a)}\|_{\infty}$, поэтому $\|\mathrm{RPol}_a^0(p)\| = \|p|_{\mathrm{sp}_A(a)}\|_{\infty}$. Значит, RPol_a^0 изометричен. Так как $\mathbb{R}_0[t]$ плотно в E и I полно, то RPol_a^0 имеет изометрическое продолжение $\mathrm{RCont}_a^0: E \to I$, которое является \mathbb{R} -линейным гомоморфизмом.

Следующее доказательство основано на идеях Блечера и Каниа. В [[11], лемма 2.1] они доказали, что любой алгебраически конечно порожденный левый идеал C^* -алгебры является главным.

ТЕОРЕМА 2. Пусть I — левый идеал C^* -алгебры A. Тогда следующие условия эквивалентны:

- (i) I = Ap для некоторого самосопряженного идемпотента $p \in I$;
- $(ii)\ I$ метрически проективный A-модуль;
- (iii) I топологически проективный A-модуль.

Доказательство. $(i) \implies (ii)$ Так как p — самосопряженный идемпотент, то ||p|| = 1, поэтому из пункта (i) предложения 7 следует, что идеал I метрически проективен как A-модуль.

- $(ii) \implies (iii)$ Импликация следует из предложения 4.
- $(iii) \implies (i)$ Пусть $(e_{\nu})_{\nu \in N}$ правая сжимающая аппроксимативная единица идеала I (существующая согласно, например [[10], теорема 4.7.79]). Так как идеал I имеет правую аппроксимативную единицу, то он является существенным левым I-модулем, и тем более существенным левым A-модулем. По предложению 6 морфизм π_I имеет правый обратный A-морфизм $\sigma:I\to A\mathbin{\widehat{\otimes}}\ell_1(B_I)$. Для каждого $d\in B_I$ рассмотрим A-морфизмы $p_d:A\mathbin{\widehat{\otimes}}\ell_1(B_I)\to A:a\mathbin{\widehat{\otimes}}\delta_x\mapsto \delta_x(d)a$ и $\sigma_d=p_d\sigma$. Тогда $\sigma(x)=\sum_{d\in B_I}\sigma_d(x)\mathbin{\widehat{\otimes}}\delta_d$ для всех $x\in I$. Из отождествления $A\mathbin{\widehat{\otimes}}\ell_1(B_I)\cong\bigoplus_{\mathbf{Ban}_1}\{A:d\in B_I\}$, для всех $x\in I$ мы имеем $\|\sigma(x)\|=\sum_{d\in B_I}\|\sigma_d(x)\|$. Так как σ суть правый обратный морфизм к π_I , то $x=\pi_I(\sigma(x))=\sum_{d\in B_I}\sigma_d(x)d$ для всех $x\in I$.

Для всех $x \in I$ мы имеем

$$\|\sigma_d(x)\| = \|\sigma_d(\lim_{\nu} x e_{\nu})\| = \lim_{\nu} \|x \sigma_d(e_{\nu})\| \leqslant \|x\| \liminf_{\nu} \|\sigma_d(e_{\nu})\|,$$

поэтому $\|\sigma_d\| \leq \liminf_{\nu} \|\sigma_d(e_{\nu})\|$. Тогда для любого конечного множества $S \subset B_I$ выполнено

$$\sum_{d \in S} \|\sigma_d\| \leqslant \sum_{d \in S} \liminf_{\nu} \|\sigma_d(e_{\nu})\| \leqslant \liminf_{\nu} \sum_{d \in S} \|\sigma_d(e_{\nu})\| \leqslant \liminf_{\nu} \sum_{d \in B_I} \|\sigma_d(e_{\nu})\|$$

$$= \liminf_{\nu} \|\sigma(e_{\nu})\| \leqslant \|\sigma\| \liminf_{\nu} \|e_{\nu}\| \leqslant \|\sigma\|.$$

Так как конечное множество $S\subset B_I$ произвольно, то сумма $\sum_{d\in B_I}\|\sigma_d\|$ конечна. Как следствие, сумма $\sum_{d\in B_I}\|\sigma_d\|^2$ тоже конечна.

Теперь будем рассматривать алгебру A как идеал в своей унитизации $A_{\#}$ как C^* -алгебры. Тогда I также идеал в $A_{\#}$. Зафиксируем натуральное число $m \in \mathbb{N}$ и действительное число $\epsilon > 0$. Тогда существует конечное множество $S \subset B_I$ такое, что $\sum_{d \in B_I \setminus S} \|\sigma_d\| < \epsilon$. Обозначим мощность этого множества через N. Рассмотрим

положительный элемент $b = \sum_{d \in B_I} \|\sigma_d\|^2 d^*d \in I$. Из леммы 3 мы знаем, что $b^{1/m} \in I$, поэтому $b^{1/m} = \sum_{d \in B_I} \sigma_d(b^{1/m})d$. Из непрерывного функционального исчисления следует, что $\|b^{1/m}\| = \sup_{t \in \operatorname{sp}_{A_\#}(b)} t^{1/m} \leqslant \|b\|^{1/m}$, тогда $\limsup_{m \to \infty} \|b^{1/m}\| \leqslant 1$. Следовательно, $\|b^{1/m}\| \leqslant 2$ для достаточно больших m. Положим $\varsigma_d := \sigma_d(b^{1/m})$, $u := \sum_{d \in B_I \setminus S} \varsigma_d d$ и $v := \sum_{d \in B_I \setminus S} \varsigma_d d$. Тогда

$$b^{2/m} = (b^{1/m})^* b^{1/m} = u^* u + u^* v + v^* u + v^* v.$$

Ясно, что $\zeta_d^* \zeta_d \leqslant \|\zeta_d\|^2 e_{A_\#} \leqslant \|\sigma_d\|^2 \|b^{1/m}\|^2 e_{A_\#} \leqslant 4 \|\sigma_d\|^2 e_{A_\#}$. Для любых $x,y \in A$ всегда выполнено $x^*x + y^*y - (x^*y + y^*x) = (x-y)^*(x-y) \geqslant 0$, и поэтому

$$d^* \varsigma_d^* \varsigma_c c + c^* \varsigma_c^* \varsigma_d d \leqslant d^* \varsigma_d^* \varsigma_d d + c^* \varsigma_c^* \varsigma_c c \leqslant 4 \|\sigma_d\|^2 d^* d + 4 \|\sigma_c\|^2 c^* c$$

для всех $c, d \in B_I$. Просуммируем эти неравенства по $c \in S$ и $d \in S$, тогда

$$\sum_{c \in S} \sum_{d \in S} c^* \varsigma_c^* \varsigma_d d = \frac{1}{2} \left(\sum_{c \in S} \sum_{d \in S} d^* \varsigma_d^* \varsigma_c c + \sum_{c \in S} \sum_{d \in S} c^* \varsigma_c^* \varsigma_d d \right)$$

$$\leqslant \frac{1}{2} \left(4N \sum_{d \in S} \|\sigma_d\|^2 d^* d + 4N \sum_{c \in S} \|\sigma_c\|^2 c^* c \right)$$

$$= 4N \sum_{d \in S} \|\sigma_d\|^2 d^* d.$$

Следовательно,

$$u^*u = \left(\sum_{c \in S} \varsigma_c c\right)^* \left(\sum_{d \in S} \varsigma_d d\right) = \sum_{c \in S} \sum_{d \in S} c^* \varsigma_c^* \varsigma_d d \leqslant N \sum_{d \in S} 4 \|\sigma_d\|^2 d^* d \leqslant 4Nb.$$

Заметим, что

$$||u|| \leqslant \sum_{d \in S} ||\varsigma_d|| ||d|| \leqslant \sum_{d \in S} 2||\sigma_d|| \leqslant 2||\sigma||, \qquad ||v|| \leqslant \sum_{d \in B_I \setminus S} ||\varsigma_d|| ||d|| \leqslant \sum_{d \in B_I \setminus S} 2||\sigma_d|| \leqslant 2\epsilon;$$

поэтому $||u^*v + v^*u|| \le 8||\sigma||\epsilon$ и $||v^*v|| \le 4\epsilon^2$. Так как $u^*v + v^*u$ и v^*v — самосопряженные элементы, то $u^*v + v^*u \le 8||\sigma||\epsilon e_{A_\#}$ и $v^*v \le 4\epsilon^2 e_{A_\#}$ Таким образом, для любого $\epsilon > 0$ и достаточно большого m выполнено

$$b^{2/m} = u^*u + u^*v + v^*u + v^*v \le 4Nb + \epsilon(8\|\sigma\| + 4\epsilon)e_{A_{\mu}}.$$

Другими словами, $g_m(b) \geqslant 0$ для непрерывной функции $g_m: \mathbb{R}_+ \to \mathbb{R}: t \mapsto 4Nt + \epsilon(8\|\sigma\| + 4\epsilon) - t^{2/m}$. Теперь выберем $\epsilon > 0$ так, чтобы $M:=\epsilon(8\|\sigma\| + 4\epsilon) < 1$. По теореме об отображении спектра [[12], теорема 6.4.2] мы получаем $g_m(\operatorname{sp}_{A_\#}(b)) = \operatorname{sp}_{A_\#}(g_m(b)) \subset \mathbb{R}_+$. Легко проверить, что g_m имеет только одну точку экстремума $t_{0,m} = (2Nm)^{\frac{m}{2-m}}$, где она достигает минимума. Так как $\lim_{m\to\infty} g_m(t_{0,m}) = M-1 < 0$, $g_m(0) = M > 0$ и $\lim_{t\to\infty} g_m(t) = +\infty$, то для достаточно больших m функция g_m имеет ровно два корня: $t_{1,m} \in (0,t_{0,m})$ и $t_{2,m} \in (t_{0,m},+\infty)$. Следовательно, решением неравенства $g_m(t) \geqslant 0$ будет $t \in [0,t_{1,m}] \cup [t_{2,m},+\infty)$. Значит, $\operatorname{sp}_{A_\#}(b) \subset [0,t_{1,m}] \cup [t_{2,m},+\infty)$ для всех достаточно больших m. Так как $\lim_{m\to\infty} t_{0,m} = 0$, то

так же $\lim_{m\to\infty} t_{1,m}=0$. Заметим, что $g_m(1)=4N+M-1>0$ для достаточно больших m, и поэтому $t_{2,m}\leqslant 1$. Следовательно, $\operatorname{sp}_{A_\#}(b)\subset\{0\}\cup[1,+\infty)$.

Рассмотрим непрерывную функцию $h: \mathbb{R}_+ \to \mathbb{R}: \stackrel{\pi}{t} \mapsto \min(1,t)$. Тогда по лемме 3 мы получаем идемпотент $p=h(b)=\mathrm{RCont}_b^0(h)\in I$, такой, что его норма $\|p\|=\sup_{t\in \mathrm{sp}_{A_\#}(b)}|h(t)|\leqslant 1$. Следовательно, p- самосопряженный идемпотент. Так как h(t)t=th(t)=t для всех $t\in \mathrm{sp}_{A_\#}(b)$, то bp=pb=b. Последнее равенство влечет

$$0 = (e_{A_{\#}} - p)b(e_{A_{\#}} - p) = \sum_{d \in B_I} (\|\sigma_d\|d(e_{A_{\#}} - p))^*\|\sigma_d\|d(e_{A_{\#}} - p).$$

Так как правая часть этого равенства неотрицательна, то d=dp для всех $d\in B_I$, для которых $\sigma_d\neq 0$. Наконец, для всех $x\in I$ мы получаем $xp=\sum_{d\in B_I}\sigma_d(x)dp=\sum_{d\in B_I}\sigma_d(x)d=x$, то есть I=Ap для некоторого самосопряженного идемпотента $p\in I$.

Следует отметить, что в относительной теории нет аналогичного описания относительной проективности левых идеалов C^* -алгебр. Хотя известно, что для случая сепарабельных C^* -алгебр (то есть для C^* -алгебр сепарабельных как банахово пространство) все левые идеалы относительно проективны. В [[13], параграф 6] можно найти хороший обзор последних результатов на эту тему.

Следствие 1. Пусть I- двусторонний идеал C^* -алгебры A. Тогда следующие условия эквивалентны:

- (і) І унитален;
- (іі) І метрически проективен как А-модуль;
- (iii) I топологически проективен как A-модуль.

Доказательство. Идеал I имеет двустороннюю сжимающую аппроксимативную единицу [[10], теорема 4.7.79]. Следовательно, I имеет правую единицу тогда и только тогда, когда он унитален. Теперь все эквивалентности следуют из теоремы 2.

Следствие 2. Пусть $L - x a y c d o p \phi o s o n o k a n b h o k o k m a k m h o e n p o c m p a h c m b i - u d e a n s <math>C_0(L)$. Тог d a c n e d y o u u e y c n o в u в и в в и в а n e h m h b :

- (і) гельфандовский спектр идеала І компактен:
- (ii) I метрически проективный $C_0(L)$ -модуль;
- (iii) I топологически проективный $C_0(L)$ -модуль.

Доказательство. Обозначим спектр идеала через $\operatorname{Spec}(I)$. По теореме Гельфанда-Наймарка $I \cong C_0(\operatorname{Spec}(I))$; следовательно, идеал I полупрост как банахова алгебра. Отсюда, в силу теоремы Шилова об идемпотентах, идеал I унитален тогда и только тогда, когда $\operatorname{Spec}(I)$ компактен. Осталось применить следствие 1.

Отметим, что класс *относительно* проективных идеалов в $C_0(L)$ намного шире. Известно, что идеал I в алгебре $C_0(L)$ относительно проективен тогда и только тогда, когда его спектр паракомпактен [[8], глава IV,§§2–3].

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

[1] А. Я. Хелемский, "О гомологической размерности нормированных модулей над банаховыми алгебрами", *Математический сборник*, **81 3** (1970), 430–444.

10

- [2] G. Wittstock, "Injectivity of the module tensor product of semi-Ruan modules", Journal of Operator Theory, 65 1 (2011), 87.
- [3] E. G. Effros, N. Ozawa, Z. J. Ruan, "On injectivity and nuclearity for operator spaces", *Duke Mathematical Journal*, **110 3** (2001), 489–521.
- [4] B. Forrest, "Projective operator spaces, almost periodicity and completely complemented ideals in the Fourier algebra", Rocky Mountain J. Math., 41 1 (2011), 155–176.
- [5] А. Я. Хелемский, "Метрическая свобода и проективность для классических и квантовых нормированных модулей", *Матем. сб.*, **204 7** (2013), 450–469.
- [6] A. W. M. Graven, "Injective and projective Banach modules", *Indagationes Mathematicae (Proceedings)*, **82 1** (1979), 253–272.
- [7] С. М. Штейнер, "Топологическая свобода для классических и квантовых нормированных модулей", $Becmnuk \ Camapckoro \ rocydapcmeenhoro \ ynueepcumema, 9/1(110), 49–57.$
- [8] А. Я. Хелемский, Гомология в банаховых и топологических алгебрах, изд-во МГУ, 1986.
- [9] H. G. Dales, Banach algebras and automatic continuity, Clarendon Press, 2000.
- [10] А. Я. Хелемский, Банаховы и полинормированные алгебры: общая теория, представления, гомологии, Наука, 1989.
- [11] D. P. Blecher, T. Kania, "Finite generation in C^* -algebras and Hilbert C^* -modules", Studia Mathematica, **224 2** (2014), 143–151.
- [12] А. Я. Хелемский, \mathcal{I} екции по функциональному анализу, МЦНМО, 2015.
- [13] D. Cushing, Z. A. Lykova, "Projectivity of Banach and C*-algebras of continuous fields", The Quarterly Journal of Mathematics, 64 2 (2013), 341–371.

H. Т. Немеш Московский государственный университет им. М. В. Ломоносова E-mail: nemeshnorbert@yandex.ru

Поступило ??.??.???? Исправленный вариант ??.??.????