Introduction: Navigation, Estimation and Control for an Autonomous Rover

AR Track, Week 1

Track Overview

- Hardware and integration focused:
 - Requires assembly, soldering, working with a physical robot
- Material covered:
 - Path planning (Dijkstra's)
 - Controls
 - Estimation (Extended Kalman Filter)
 - A lot of coordinate transformations
- Final goal:
 - Build a basic robot that can, given a map of its environment, navigate to a position while avoiding obstacles
- Coding in Python

Motivation

Autonomous ground robots are widely used in many different applications:

Self Driving Cars

In home cleaning

Warehouse Systems

Warming our hearts

Hardware

Motor Battery (4 AA Batteries)

DC Motor Driver

Raspberry Pi 3

9dof IMU

Raspberry Pi Camera Module

Rover Chassis

5V Raspberry Pi USB Battery (Not shown)

Full minimum specs can be found here: http://www.adafruit.com/wishlists/402816

Additional Requirements

- HDMI-compatible screen, keyboard and mouse
- Access to a Wi-Fi network
- Access to a printer
- Access to a screwdriver and soldering iron

Preview of Projects

Week by Week Summary

Week 1

Implement Dijkstra's in Python

Week 2

Assemble the robot, get the system up and running

Week 3

Calibrate the sensors and the robot

Week 4

 Develop a controller to allow the robot to move to a given pose and follow an AprilTag marker

Week 5

 Implement an Extended Kalman Filter to fuse the AprilTag measurements with the IMU values

Week 6

Integration, create final video