# EXERCICES RÉVISION BAC BLANC

8 Décembre 2018



/!\ Matériel autorisé : Calculatrice graphique

#### Exercice 1 (dérivées)

Pour chaque fonction suivante, donner sa dérivée sur son domaine de définition que l'on donnera:

a. 
$$f(x) = 3x^2 + 2x + 5$$

b. 
$$g(x) = (4x+7)(7x+10)$$

c. 
$$h(x) = \frac{3x-4}{2x+1}$$

d. 
$$i(x) = e^{7x-4}$$

e. 
$$j(x) = (5x^2 + 2)e^{3x-5}$$

## Exercice 2 (triangles complexes, 3pts)

On munit le plan du repère orthonormée  $(O, \vec{u}, \vec{v})$ .

1. On considère l'équation :

$$(E): \quad z^2 - 6z + c = 0$$

où c est un réel strictement supérieur à 9.

- a. Justifier que (E) admet deux solutions complexes non réelles.
- b. Justifier que les solutions de (E) sont  $z_A = 3 + i\sqrt{c-9}$  et  $z_B = 3 i\sqrt{c-9}$
- 2. On note A et B les points d'affiches respectives  $z_A$  et  $z_B$ . Justifier que le triangle OAB est isocèle en O.
- 3. Démontrer qu'il existe une valeur du réel c pour laquelle le triangle OAB est rectangle et déterminer cette valeur.

Indication: Déterminer OA, OB, BA tel que  $BA^2 = OA^2 + OB^2$ 

#### Exercice 3 (Un problème de cétacés, 5pts)

Le directeur d'une réserve marine a recensé 3000 cétacés dans cette réserve au 1<sup>er</sup> juin 2017. Il est inquiet car il sait que le classement de la zone en « réserve marine » ne sera pas reconduit si le nombre de cétacés de cette réserve devient inférieur à 2000.

Une étude lui permet d'élaborer un modèle selon lequel, chaque année :

- entre le 1<sup>er</sup> juin et le 31 octobre, 80 cétacés arrivent dans la réserve marine;
- entre le 1<sup>er</sup> novembre et le 31 mai, la réserve subit une baisse de 5 % de son effectif par rapport à celui du 31 octobre qui précède.

On modélise l'évolution du nombre de cétacés par une suite  $(u_n)$ . Selon ce modèle, pour tout entier naturel n,  $u_n$  désigne le nombre de cétacés au 1<sup>er</sup> juin de l'année 2017 + n. On a donc  $u_0 = 3000$ .

- a) Justifier que  $u_1 = 2926$ .
- b) Justifier que, pour tout entier naturel n,  $u_{n+1} = 0.95u_n + 76$ .
- c) À l'aide d'un tableur, on a calculé les 8 premiers termes de la suite  $(u_n)$ . Le directeur a configuré le format des cellules pour que ne soient affichés que des nombres arrondis à l'unité.

|   | A     | В    | С    | D    | Е    | F    | G    | Н    | I    |
|---|-------|------|------|------|------|------|------|------|------|
| 1 | n     | 0    | 1    | 2    | 3    | 4    | 5    | 6    | 7    |
| 2 | $u_n$ | 3000 | 2926 | 2856 | 2789 | 2725 | 2665 | 2608 | 2553 |

Quelle formule peut-on entrer dans la cellule C2 afin d'obtenir, par recopie vers la droite, les termes de la suite  $(u_n)$ ?

- d) (i) Démontrer que, pour tout entier naturel  $n, u_n \ge 1520$ .
  - (ii) Démontrer que la suite  $(u_n)$  est décroissante.
  - (iii) Justifier que la suite  $(u_n)$  est convergente. On ne cherchera pas ici la valeur de la limite.
- e) On désigne par  $(v_n)$  la suite définie par, pour tout entier naturel  $n, v_n = u_n 1520$ .
  - (i) Démontrer que la suite  $(v_n)$  est une suite géométrique de raison 0,95 dont on précisera le premier terme.
  - (ii) En déduire que, pour tout entier naturel n,  $u_n = 1480 \times 0,95^n + 1520$ .
  - (iii) Déterminer la limite de la suite  $(u_n)$ .
- f) Recopier et compléter l'algorithme suivant pour déterminer l'année à partir de laquelle le nombre de cétacés présents dans la réserve marine sera inférieur à 2000.

$$n \leftarrow 0$$
 $u \leftarrow 3000$ 
Tant que ...
 $n \leftarrow \dots$ 
 $u \leftarrow \dots$ 
Fin de Tant que

La notation «  $\leftarrow$  » correspond à une affectation de valeur, ainsi «  $n \leftarrow 0$  » signifie « Affecter à n la valeur 0 ».

g) La réserve marine fermera-t-elle un jour? Si oui, déterminer l'année de la fermeture.

#### Exercice 4 (Intersection de courbes, 5pts)

Le plan est rapporté à un repère orthogonal  $(O, \vec{i}, \vec{j})$ .

Soit a un nombre réel strictement positif.

On note  $\Delta_a$  la droite d'équation y = ax et  $\Gamma$  la courbe représentative de la fonction exponentielle dans le repère orthogonal  $(O, \vec{i}, \vec{j})$ .

Le but de cet exercice est de déterminer le nombre de points d'intersection de  $\Gamma$  et  $\Delta_a$  suivant les valeurs de a.

Pour cela. on considère la fonction  $f_a$  définie pour tout nombre réel x par

$$f_a(x) = e^x - ax.$$

On admet pour tout réel a que la fonction  $f_a$  est dérivable sur l'ensemble  $\mathbb{R}$  des nombres réels.

### a) Étude du cas particulier a=2

La fonction  $f_2$  est donc définie pour tout x réel par  $f_2(x) = e^x - 2x$ .

- (i) Étudier les variations de la fonction  $f_2$  sur  $\mathbb{R}$  et dresser son tableau de variations sur  $\mathbb{R}$  (on ne demande pas de déterminer les limites aux bornes de l'ensemble de définition.
- (ii) En déduire que  $\Gamma$  et  $\Delta_2$  n'ont pas de point d'intersection.

## b) Étude du cas général où a est un réel strictement positif

- (i) Déterminer les limites de la fonction  $f_a$  en  $+\infty$  et en  $-\infty$ .
- (ii) Étudier les variations de la fonction  $f_a$  sur  $\mathbb{R}$ . Montrer alors que le minimum sur  $\mathbb{R}$  de la fonction  $f_a$  est  $a a \ln a$ .
- (iii) Étudier le signe de  $a a \ln a$  suivant les valeurs du nombre réel strictement positif a.
- (iv) Déterminer selon les valeurs du réel a le nombre de points communs à  $\Gamma$  et  $\Delta_a$ .