人工智能三大核心支柱

我们可以把 AI 想象成一棵大树, 主要分为三个大分支:

一、机器学习(Machine Learning)——"让计算机学会自学" #### 1. 监督学习(老师带学生)

- **核心**: 给机器"标准答案"让它们学习规律
- **典型算法**:
 - 线性回归(预测房价)
 - 决策树(贷款审批)
 - SVM (图像分类)
- **常见应用**:
 - ```python

举个简单例子: 用 Python 预测房价

from sklearn.linear_model import LinearRegression model = LinearRegression()

model.fit(房屋面积数据,房价数据) # 学习阶段 model.predict([[120]]) # 预测 120 平米房价

2. 无监督学习(自己找规律)

- **核心**: 数据没有标签, 机器自主发现模式
- **典型算法**:
 - K-means 聚类(客户分群)
 - PCA 降维(数据压缩)
- **有趣案例**:
 - 电商通过用户购买行为自动划分客户群体
 - 新闻网站自动归类相似文章

3. 强化学习(试错学习)

- **核心**: 通过奖励机制学习, 像训练宠物
- **关键要素**:
 - Agent (智能体)
 - Environment (环境)
 - Reward (奖励)
- **经典案例**:
 - AlphaGo 自我对弈 3000 万局提升棋艺
 - 机器人学习走路(摔倒会扣分, 走稳加分)

二、知识表示与推理—— "给机器装百科全书" #### 1. 知识图谱(巨型关系网)

- **结构示例**:

姚明 → 妻子 → 叶莉

- → 职业 → 篮球运动员
- → 身高 → 2.29m

...

- **应用场景**:
 - 谷歌搜索"马斯克的儿子"会自动显示相关信息
 - 医疗诊断系统 (症状→疾病→药品的关联)

2. 专家系统(老医生的经验库)

- **工作原理**:

IF 发热 AND 咳嗽 THEN 可能为感冒 (置信度 80%)

- **实际应用**:
 - 银行信贷风险评估
 - 工业设备故障诊断

3. 逻辑推理(机器版福尔摩斯)

- **类型**:
 - 演绎推理(从一般到特殊)
 - 归纳推理(从特殊到一般)
- **例子**:

...

已知: 所有人都会死, 苏格拉底是人

推论: 苏格拉底会死

_ _ -

三、感知与交互—— "机器的五官和语言" #### 1. 计算机视觉(机器的眼睛)

- **技术栈**:

```mermaid

graph LR

A[图像采集] --> B[预处理]

- B --> C[特征提取]
- C --> D[识别分类]

...

- \*\*典型应用\*\*:
  - 人脸识别 (手机解锁)
  - 医学影像分析(CT 扫描肿瘤识别)

#### 2. 自然语言处理(NLP, 机器的语言能力)

- \*\*关键技术\*\*:
  - 词向量(把文字变成数学向量)

- Transformer 架构(ChatGPT 的核心)
- \*\*应用场景\*\*:
  - 智能客服 (理解"我要退款"和"退货怎么办"是同类问题)
  - 情感分析(分析微博评论情绪)

#### 3. 语音交互 (听说闭环)

- \*\*处理流程\*\*:

...

麦克风接收  $\rightarrow$  声纹识别  $\rightarrow$  语音转文本  $\rightarrow$  语义理解  $\rightarrow$  生成回复  $\rightarrow$  语音合成  $\sim$ 

- \*\*有趣事实\*\*:
  - 声纹识别可以精确到个人(就像声音指纹)
  - 最新的 TTS 技术已能模仿特定人声

- -