# When is Neural Network preffered

- 1. Unstructured Data
- 2. Difficult to Feature Engineer
- 3. High Accuracy Required
- 4. Large Amount of Data Required



- 1. Unstructured Data: Deep learning models can learn to recognize complex patterns and structures in data, such as images, speech, and natural language, which can be difficult for traditional machine learning models to capture.
- 2. Feature engineering is difficult: Deep learning models can automatically learn features from raw data, eliminating the need for manual feature engineering, which can be time-consuming and errorprone.
- 3. High accuracy is required: Deep learning models have shown to achieve state-of-the-art performance on various tasks, such as image and speech recognition, natural language processing, and recommendation systems.
- 4. Large amounts of data are available: Deep learning models require a large amount of data to be trained effectively, and they tend to perform better as the size of the training dataset increases.

# Deep Learning Example - Alexa

Voice Input to Alexa by User Conversion of Voice to Text

Identifying the Category of Input

Response

+ Acknowledge



Training Data:

Voice Clip 1 : "Hello"

Voice Clip 2 : "Hello" Voice Clip 3 : "Hello"

Voice Clip 4 : "Hello"

Voice Clip 5 : "Thank you"

Voice Clip 6 : "Thank You"

Voice Clip 7: "Thank You"

Training Data

| Category            |
|---------------------|
| Reminder            |
| Call Action         |
| Location            |
| Yotube Music Action |
| Location            |
| Internet Search     |
| Alarm               |
|                     |







Tensorflow, Keras - Building ANN

Opency - Image Processing

**NLTK - Text Processing** 

- 1. pip install --upgrade pip
- 2. pip install --upgrade tensorflow --user
- 3. pip install keras --user
- 4. pip install opency-python --user
- 5. pip install nltk -- user





# Max Heartrate = b + Age\*w1

## Initialize Random Weights and Bias

| b  | 150 |
|----|-----|
| w1 | 1.5 |
|    |     |

### Forward Propogation

| Age | max Heartrate | Predicted | Error  | Squared Error |
|-----|---------------|-----------|--------|---------------|
| 50  | 184           | 225       | -41.00 | 1681.00       |
| 40  | 215           | 210       | 5.00   | 25.00         |
| 26  | 187           | 189       | -2.00  | 4.00          |
| 28  | 197           | 192       | 5.00   | 25.00         |
| 41  | 194           | 211.5     | -17.50 | 306.25        |
| 25  | 177           | 187.5     | -10.50 | 110.25        |
| 46  | 162           | 219       | -57.00 | 3249.00       |

| SUM | 5400.50 |
|-----|---------|
| MSE | 771.50  |

#### **Back Propogation**

#### learning Rate 0.0001

| Ag | ge | max Heartrate | Predicted | Error  | Error*Age |
|----|----|---------------|-----------|--------|-----------|
| 5  | 0  | 184           | 225       | -41.00 | -2050.00  |
| 4  | 0  | 215           | 210       | 5.00   | 200.00    |
| 2  | 6  | 187           | 189       | -2.00  | -52.00    |
| 2  | 8  | 197           | 192       | 5.00   | 140.00    |
| 4  | 1  | 194           | 211.5     | -17.50 | -717.50   |
| 2  | 5  | 177           | 187.5     | -10.50 | -262.50   |
| 4  | 6  | 162           | 219       | -57.00 | -2622.00  |

| SUM | -118.00           | -5364.00           |
|-----|-------------------|--------------------|
|     | Gradient for Bias | Gradient for Slope |

| b_old  | 150 |
|--------|-----|
| w1_old | 1.5 |

# Forward Propogation with New weights 0.9636

| Age | max Heartrate | Predicted | Error  | Squared Error |
|-----|---------------|-----------|--------|---------------|
| 50  | 184           | 198.17    | -14.17 | 200.74        |
| 40  | 215           | 210.00    | 5.00   | 25.00         |
| 26  | 187           | 189.00    | -2.00  | 4.00          |
| 28  | 197           | 192.00    | 5.00   | 25.00         |
| 41  | 194           | 211.50    | -17.50 | 306.25        |
| 25  | 177           | 187.50    | -10.50 | 110.25        |
| 46  | 162           | 219.00    | -57.00 | 3249.00       |

| SUM | 3920.24 |
|-----|---------|
| MSE | 560.03  |

| MSE Before | MSE After |
|------------|-----------|
| 771.50     | 560.03    |



$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Bias\_new = Bias\_old - learning\_rate\*Gradient of Bias

Weights\_new = Weights\_old -learning\_rate\*Gradient of Weights