# Jordan Quiver, Part I

# Talk 10 on Hall Algebras and Quantum Groups

# 1. The Jordan Quiver and its Nilpotent Representations

**Definition 1.1.** The *Jordan quiver* is the quiver that consists of a single vertex and a single edge, which is necessarily a loop.

Throughout this talk the Jordan quiver is denoted by Q. See Figure 1 for a visualization. In the following we write  $\mathbb{k}$  to mean a field or  $\mathbb{F}_1$ .

A representation of the Jordan quiver over k is the same as a pair (V, f) consisting of a k-vector space V together with an endomorphism f of V. A homomorphism of representations  $\varphi: (V, f) \to (W, g)$  is then precisely a homomorphism of vector spaces  $\varphi: V \to W$  that makes the following square diagram commute:

$$V \xrightarrow{\varphi} W$$

$$f \downarrow \qquad \qquad \downarrow g$$

$$V \xrightarrow{\varphi} W$$

If  $(V, f) \cong (W, g)$  then in particular  $V \cong W$  as vector spaces. So to understand the isomorphism classes of Q-representations over  $\mathbbm{k}$  we may assume that V = W. The commutativity of the above square diagram, together with the requirement that  $\varphi$  is an isomorphism, means precisely that the endomorphisms f, g of V are similar. We hence find that that the isomorphism classes of Q-representations over  $\mathbbm{k}$  correspond one-to-one to conjugacy classes of endomorphisms of  $\mathbbm{k}$ -vector spaces.

Suppose that V is finite-dimensional. If  $\mathbb{R}$  is a field then these conjugacy classes are can be understood via the rational canonical form. In the case that  $\mathbb{R}$  is also algebraically closed, or that it is  $\mathbb{F}_1$ , or that we are interested only in nilpotent endomorphisms, one can use the usual Jordan normal form. (See Appendix A.1 for the Jordan normal form over  $\mathbb{F}_1$ .)



Figure 1: The Jordan quiver Q.



Figure 2: The representations  $N_{(4,3,3,2)}$  and  $N_{(2,3,2,4,3)}$  over  $\mathbb{F}_1$ .

A representation (V, f) of the Jordan quiver is nilpotent (see Appendix A.2) if and only if the endomorphism f is nilpotent. We will in the rest of this talk restrict our attention to finite-dimensional, nilpotent representations of the Jordan quiver. As introduced in the previous talks we denote by

$$rep^{nil}(Q, k)$$

the full subcategory of  $\mathbf{Rep}(Q, \mathbb{k})$  whose objects are the finite-dimensional, nilpotent representations of Q over  $\mathbb{k}$ . We denote the set of isomorphism classes of  $\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{k})$  by  $\mathrm{Iso}(Q, \mathbb{k})$ . (We will see in Corollary 1.4 that this is indeed a set.)

Every nilpotent endomorphism on a finite-dimensional k-vector space admits a Jordan normal form. We can therefore classify the isomorphism classes of  $\mathbf{rep}^{\mathrm{nil}}(Q, k)$ : For every dimension  $d \geq 0$  let

$$\mathbf{N}_d \coloneqq \left( \mathbb{k}^d, \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & \ddots & 1 \\ & & & 0 \end{bmatrix} \right)$$

if k is a field, and let

$$N_d := (\{0, 1, ..., d\}, [d \mapsto (d-1) \mapsto (d-2) \mapsto ... \mapsto 1 \mapsto 0 \mapsto 0])$$

if  $\mathbb{k} = \mathbb{F}_1$ . For every tupel  $(d_1, \dots d_n)$  of dimensions  $d_i \geq 0$  let

$$N_{(d_1,\ldots,d_n)} := N_{d_1} \oplus \cdots \oplus N_{d_n}$$
.

See Figure 2 for a visualization of  $N_{(d_1,...,d_n)}$ .

Proposition 1.2 (Jordan normal form for nilpotent endomorphisms).

- 1. Every finite-dimensional, nilpotent representation of Q over  $\mathbbm{k}$  is isomorphic to a representation of the form  $N_{(d_1,\ldots,d_n)}$  for some  $n\geq 0$  and  $d_1,\ldots,d_n\geq 1$ .
- 2. Two such representations  $N_{(d_1,\ldots,d_n)}$  and  $N_{(d'_1,\ldots,d'_m)}$  are isomorphic if and only if n=m and the tuples  $(d_1,\ldots,d_n)$  and  $(d'_1,\ldots,d'_m)$  are the same up to permutation.

We can reformulate the above proposition in terms of partitions:

**Definition 1.3.** For every  $n \ge 0$  let Par(n) be the set of partition of the number n, i.e.

$$Par(n) := \{(\lambda_1, \dots, \lambda_l) \mid \lambda_1 \ge \dots \ge \lambda_l \ge 1, \ \lambda_1 + \dots + \lambda_l = n\}.$$

The set of all partitions is denoted by

$$\operatorname{Par} := \coprod_{n > 0} \operatorname{Par}(n).$$

**Corollary 1.4.** The representations  $N_{\lambda}$  with  $\lambda \in Par$  form a set of representatives for  $Iso(Q, \mathbb{k})$ .

We find in particular that the category  $\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{k})$  is essentially small, i.e. that its set of isomorphism classes  $\mathrm{Iso}(Q, \mathbb{k})$  is indeed a set (and even a countable one).

# 2. The Hall Algebra of the Jordan Quiver over $\mathbb{F}_q$

We will now consider for  $\mathbb{R}$  the finite field  $\mathbb{F}_q$ . We want to consider in the following the Hall algebra of the category  $\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)$ . For this we need to understand its Euler form.

**Proposition 2.1.** The category  $\operatorname{rep}^{\operatorname{nil}}(Q, \mathbb{F}_q)$  is hereditary, i.e.

$$\operatorname{Ext}^n_{\mathbf{rep}^{\operatorname{nil}}(Q,\mathbb{F}_a)} = 0$$

for every  $n \ge 2$ .

**Lemma 2.2.** Let  $S := N_1$ .

- 1. The representation *S* is the unique simple object of  $\operatorname{rep}^{\operatorname{nil}}(Q, \mathbb{F}_q)$  (up to isomorphism).
- 2. The Groethendieck group  $K_0(\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{F}_q))$  is freely generated by the class [S]. Thus

$$K_0(\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)) \cong \mathbb{Z}$$

via the map  $[M] \mapsto \dim(M)$ .

3. In  $\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)$  we have both  $\mathrm{Hom}(S, S) = \mathbb{F}_q$  and  $\mathrm{Ext}^1(S, S) = \mathbb{F}_q$ .

*Proof.* We have seen the first two assertions in last week's talk. For the first assertion we note that  $\text{Hom}(S,S) = \mathbb{F}_q$  because S is one-dimensional. For the computation of  $\text{Ext}^1(S,S)$  see Appendix A.4.

**Corollary 2.3.** The Euler form of  $\operatorname{rep}^{\operatorname{nil}}(Q, \mathbb{F}_q)$  is trivial.

<sup>&</sup>lt;sup>1</sup>We want to point out that in this talk we do not allow a partition to contain zero as an entry. This is done purely for technical reasons.

We find from the above that  $\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{F})$  is a abelian, finitary, hereditary category with vanishing Euler form. We are thus well-prepared to consider the Hall algebra  $\mathbf{H}(Q, \mathbb{F}_q)$ .

- 1. The underlying vector space of  $\mathbf{H}(Q, \mathbb{F}_q)$  is free on the set of isomorphism classes, Iso $(Q, \mathbb{F}_q)$ . This basis is indexed by the set of partitions, Par.
- 2. The multiplication on  $\mathbf{H}(Q, \mathbb{F}_q)$  is given by

$$[M] \cdot [N] = \sum_{[R] \in Iso(Q, \mathbb{F}_q)} C_{M, N}^R[R]$$

where

 $C_{M,N}^R = \#\{\text{subrepresentations } L \text{ of } R \text{ with } L \cong N \text{ and } R/L \cong M\}$ .

The multiplicative neutral element of  $\mathbf{H}(Q, \mathbb{F}_q)$  is given by  $1_{\mathbf{H}(Q, \mathbb{F}_q)} = [0]$ .

3. The category  $\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)$  satisfies the finite suboject condition and its Euler form vanishes.<sup>2</sup> It follows that Green's coproduct makes the Hall algebra  $\mathbf{H}(Q, \mathbb{F}_q)$  into a bialgebra. Its comultiplication is given by

$$\Delta([M]) = \sum_{[M],[N] \in \text{Iso}(Q,\mathbb{F}_q)} \frac{1}{a_R} P_{M,N}^R[M] \otimes [N]$$

where  $a_R$  is the size of the automorphism group  $\operatorname{Aut}(R)$ , and  $P_{M,N}^R$  is the number of short exact sequences  $0 \to N \to R \to M \to 0$ . The counit  $\varepsilon \colon \mathbf{H}(Q, \mathbb{F}_q) \to \mathbb{C}$  is given by

$$\varepsilon([M]) = \begin{cases} 1 & \text{if } M = 0, \\ 0 & \text{otherwise.} \end{cases}$$

4. We have a grading on  $\mathbf{H}(Q, \mathbb{F}_q)$  over the Grothendieck group  $K(\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)) \cong \mathbb{Z}$ , given by

$$\deg([M]) = \dim(M).$$

This grading makes  $\mathbf{H}(Q, \mathbb{F}_q)$  into a graded bialgebra.

5. The graded bialgebra  $\mathbf{H}(Q, \mathbb{F}_q)$  is connected (i.e. its degree zero part is the ground field). It is therefore already a graded Hopf algebra.

We will in the rest of this talk be mostly concerned with the upcoming Hall algebra  $\mathbf{H}(Q, \mathbb{F}_1)$ , and continue the study of  $\mathbf{H}(Q, \mathbb{F}_q)$  in next week's talk. But we will here compute at least some of the structure constants of  $\mathbf{H}(Q, \mathbb{F}_q)$ . For this we follow [Scho9, Example 2.2].

**Example 2.4.** For any three partition  $\lambda, \mu, \kappa \in \text{Par}$  we abbreviate the structure constant

$$C_{N_{\lambda},N_{\mu}}^{N_{\kappa}}$$

as  $C_{\lambda,\mu}^{\kappa}$ .

 $<sup>^2</sup>$ We say that a category  ${\mathcal A}$  satisfies the *finite suboject condition* if every object of  ${\mathcal A}$  admits only finitely many subobjects.

1. Let  $\lambda = (1^n)$  and  $\mu = (1^m)$ . We consider the partition  $\kappa := (1^{n+m})$ . The action of the edge of the Jordan quiver Q on the representations  $N_{\lambda}$ ,  $N_{\mu}$  and  $N_{\kappa}$  is trivial. We thus find that every *m*-dimensional linear subspace *L* of  $N_{\kappa}$  satisfies the conditions  $L \cong N_{\mu}$  and  $N_{\kappa}/L \cong N_{\lambda}$ . The structure constant  $C_{\lambda,u}^{\kappa}$  is therefore given by

$$\begin{split} C_{\lambda,\mu}^{\kappa} &= \text{number of } m\text{-dimensional linear subspaces of } \mathbf{N}_{\kappa} \\ &= \text{number of } m\text{-dimensional linear subspaces of } \mathbb{F}_q^{n+m} \\ &= \#\mathrm{Gr}(m,n+m,\mathbb{F}_q) \\ &= \begin{bmatrix} n+m \\ m \end{bmatrix}_q. \end{split}$$

(See Appendix A.6 for the last equality.)

We see in particular that  $C_{\lambda,\mu}^{\kappa}$  depends is a polynomial way on q. We have for example

$$C_{(1^n),(1)}^{(1^{n+1})} = \#\operatorname{Gr}(1, n+1, \mathbb{F}_q) = \#\mathbb{P}^n(\mathbb{F}_q) = \frac{q^{n+1}-1}{q-1} = [n+1]_q = 1 + q + \dots + q^n,$$

and also

$$\begin{split} C_{(1^n),(1,1)}^{(1^{n+2})} &= \begin{bmatrix} n+2 \\ 2 \end{bmatrix}_q = \frac{[n+2]_q[n+1]_q}{[2]_q} \\ &= \frac{(1+q+\dots+q^n)(1+q+\dots+q^{n+1})}{1+q} \\ &= \begin{cases} (1+q+\dots+q^n)(1+q^2+\dots+q^n) & \text{if } n \text{ is even,} \\ (1+q^2+\dots+q^{n-1})(1+q+\dots+q^{n+1}) & \text{if } n \text{ is odd.} \end{cases} \end{split}$$

2. Let now  $\lambda = (n)$  and  $\mu = (m)$ . We consider the partition  $\kappa = (n + m)$ . The representation  $N_{\kappa}$ has the standard basis  $e_1, \dots, e_{n+m}$ , and the subrepresentations of  $N_K$  are given by  $\langle e_1, \dots, e_i \rangle$ for i = 0, ..., n+m. The subrepresentations  $L := \langle e_1, ..., e_m \rangle$  is the unique one that is isomorphic to  $N_{\mu}$ , and its quotient  $N_{\kappa}/L$  is isomorphic to  $N_{\lambda}$ . Thus

$$C_{(n),(m)}^{(n+m)} = 1$$

3. Let us compute the coefficients  $C^{(2,1)}_{(1),(2)}$  and  $C^{(2,1)}_{(2),(1)}$ . We use for  $N_{(2,1)}$  the basis  $e_1,e_2,e_3$  with  $\alpha e_1=e_2$  and  $\alpha e_2=\alpha e_3=0$  where  $\alpha$  denotes the loop of Q. See Figure 3.

The coefficient  $C^{(2,1)}_{(1),(2)}$  is the number of subrepresentations L of  $N_{(2,1)}$  with  $L\cong N_2$  and  $N_{(2,1)}/L\cong N_1$ . The condition  $L\cong N_2$  means that L is cyclically generated by a vector Rtor  $v = ae_1 + be_2 + ce_3$  with  $a \neq 0$ . We may assume that a = 1. Then

$$\langle v \rangle_{\mathbb{F}_q Q} = \langle v, \alpha v \rangle_{\mathbb{F}_q} = \langle e_1 + b e_2 + c e_3, e_2 \rangle_{\mathbb{F}_q} = \langle e_1 + c e_3, e_2 \rangle \,.$$

For any such subrepresentation L the quotient  $N_{(2,1)}/L$  is one-dimensional and thus isomorphic to  $N_1$ . We get for every coefficient  $c \in \mathbb{F}_q$  a different subrepresentation of  $N_{(2,1)}$ . Hence

$$C_{(1),(2)}^{(2,1)} = \#\mathbb{F}_q = q.$$



Figure 3: The representations  $N_{(2,1)}$  over  $\mathbb{F}_q$ .

The coefficient  $C_{(1),(2)}^{(2,1)}$  is the number of subrepresentations L of  $N_{(2,1)}$  with  $L \cong N_1$  and  $N_{(2,1)}/L \cong N_2$ . The condition  $L \cong N_1$  means that L is cyclically generated by a nonzero vector  $v = be_2 + ce_3$  with  $a \neq 0$ .

If  $b \neq 0$  then we may assume that b=1, so that  $v=e_2+ce_3$ . Then  $N_{(2,1)}/L$  has the basis vectors  $[e_1]$ ,  $[e_3]$  with  $\alpha[e_1]=-c[e_3]$  and  $\alpha[e_3]=0$ . Thus  $N_{(2,1)}/L\cong N_2$  if  $c\neq 0$  and  $N_{(2,1)}/L\cong N_{(1,1)}$  if c=0. In the case  $b\neq 0$  we thus have q-1 choices for L. If b=0 then  $c\neq 0$  and we may assume that c=1. Then  $v=e_3$  and thus  $N_{(2,1)}/L\cong N_2$ .

We find altogether that there are q choices for L, i.e

$$C_{(2),(1)}^{(2,1)} = q$$
.

4. One finds in the same way as above that more generally

$$C_{(n),(1)}^{(n,1)} = q = C_{(1),(n)}^{(n,1)}$$

for every  $n \ge 2$ .

We observe that in the above examples the coefficient  $C^{\kappa}\lambda$ ,  $\mu$  are always polynomials in q with integer coefficients. We will see in next week's talk that this is true for any coefficient  $C^{\kappa}_{\lambda,\mu}$ . This will allow us to define the *generaic Hall algebra* of the Jordan quiver.

We also have  $C_{\lambda,\mu}^{\kappa} = C_{\mu,\lambda}^{\kappa}$  in each example. We will see in next week's talk that the Hall algebra  $\mathbf{H}(Q, \mathbb{F}_q)$  is indeed commutative, which means precisely that  $C_{\lambda,\mu}^{\kappa} = C_{\mu,\lambda}^{\kappa}$  for any three partitions  $\lambda, \mu, \kappa \in \text{Par}$ .

# 3. The Hall Algebra of the Jordan Quiver over $\mathbb{F}_1$

We will now consider the case that  $\mathbb{k}$  is  $\mathbb{F}_1$ . We have seen in last week's talk how to construct the Hall algebra of Q over  $\mathbb{F}_1$ :

**Recall 3.1.** The Hall algebra  $\mathbf{H}(Q, \mathbb{F}_1)$  is a graded, cocommutative Hopf algebra (over the ground field  $\mathbb{C}$ ). Its structure is given as follows:

- The underlying vector space of  $\mathbf{H}(Q, \mathbb{F}_1)$  is the free  $\mathbb{C}$ -vector space on the set  $\mathrm{Iso}(Q, \mathbb{F}_1)$ . The set  $\mathrm{Iso}(Q, \mathbb{F}_1)$  is indexed by the set of partitions Par.
- The grading of  $\mathbf{H}(Q, \mathbb{F}_1)$  is given by  $\deg([M]) = \dim(M)$ .

• The multiplication of  $\mathbf{H}(Q, \mathbb{F}_1)$  is given by

$$[M] \cdot [N] := \sum_{[R] \in \operatorname{Iso}(Q, \mathbb{F}_1)} C_{M, N}^R[R]$$

where the structure coefficients  $C_{M,N}^R$  are given by

$$C_{MN}^R = \#\{\text{subrepresentations } L \text{ of } R \mid L \cong N, R/L \cong M\}.$$

The multiplicative neutral element of  $\mathbf{H}(Q, \mathbb{F}_1)$  is given by  $1_{\mathbf{H}(Q, \mathbb{F}_1)} = [0]$ .

• The comultiplication of  $\mathbf{H}(Q, \mathbb{F}_1)$  is given by

$$\Delta([M]) = \sum_{\substack{[R], [L] \in \text{Iso}(Q, \mathbb{F}_1) \\ M \cong R \oplus L}} [R] \otimes [L].$$

We see in particular that an isomorphism class [M] is primitive in  $\mathbf{H}(Q, \mathbb{F}_1)$  if and only if the representation M is indecomposable. We have seen that more generally the Lie algebra of primitive elements of  $\mathbf{H}(Q, \mathbb{F}_1)$  has a basis consisting of all such [M].

**Example 3.2.** We can again compute some structure constants:

1. Let again  $\lambda = (1^n)$  and  $\mu = (1^m)$ , and consider  $\kappa = (1^{n+m})$ . We find as before that

$$C_{\lambda,\mu}^{\kappa}$$
 = number of *m*-dimensional subspaces of  $N_{n+m} = \binom{n+m}{m}$ .

This is the same result as before by taking the limit  $q \to 1$ .

2. Let again  $\lambda = (n)$  and  $\mu = (m)$  and consider  $\kappa = (n + m)$ . We find as before that

$$C_{\lambda,\mu}^{\kappa}=1$$
.

3. Let us compute the product  $[N_i] \cdot [N_i]$ .

We observe that if  $[R] \in \text{Iso}(Q, \mathbb{F}_1)$  and L is a subrepresentation of R that is isomorphic to  $\mathbb{N}_j$  then the quotient R/L results from R by contracting one of the Jordan chains of R by j elements. If  $R/L \cong \mathbb{N}_i$  then this means that R consists of a single Jordan chain of length i+j, or of two Jordan chains of length i and j respectively. Thus

$$[N_i] \cdot [N_i] = a[N_{(i,i)}] + b[N_{i+i}].$$

We have seen above that  $b = C_{(i),(j)}^{(i+j)} = 1$ . The coffient a is the number of entries of (i, j) that are of length j. Thus

$$a = \begin{cases} 1 & \text{if } i \neq j, \\ 2 & \text{if } i = j. \end{cases}$$

Thus

$$[\mathbf{N}_i]\cdot[\mathbf{N}_j] = \begin{cases} [\mathbf{N}_{(i,j)}] + [\mathbf{N}_{i+j}] & \text{if } i\neq j, \\ 2[\mathbf{N}_{(i,j)}] + [\mathbf{N}_{i+j}] & \text{if } i=j. \end{cases}$$

We see in particular that  $[N_i]$  and  $[N_i]$  commute.

4. We find in the same way that for all  $i_1, ..., i_r \ge 1$  and  $j \ge 1$ ,

$$[\mathbf{N}_{(i_1,\dots,i_r)}] \cdot [\mathbf{N}_j] = a[\mathbf{N}_{(i_1,\dots,i_r,j)}] + \sum_{\lambda} b_{\lambda}[\mathbf{N}_{\lambda}],$$

where  $\lambda$  runs through all distinct tupels of the form  $\lambda = (i_1, ..., i_k + j, ..., i_r)$  with  $1 \le k \le r$ . The coefficient a is given by

$$a = \text{how often } j \text{ occurs in } (i_1, \dots, i_r, j)$$

and the coefficient of  $b_{\lambda}$  for  $\lambda = (i_1, \dots, i_k + j, \dots, i_r)$  are given by

$$b_{\lambda} = \text{how often } i_k + j \text{ occurs in } \lambda$$
.

We have for example

$$\begin{split} [N_{(5,3,3,2,1)}] \cdot [N_2] &= 2[N_{(5,3,3,2,1,\overline{2})}] \\ &+ [N_{(\overline{7},3,3,2,1)}] + 2[N_{(5,\overline{5},3,2,1)}] + [N_{(5,3,3,\overline{4},1)}] + 3[N_{(5,3,3,2,\overline{3})}], \end{split}$$

where the entry of interested is overlined.

It follows from the above formula by induction that  $\mathbf{H}(Q, \mathbb{F}_1)$  is generated as an algebra by the  $N_i$  with  $i \ge 1.3$ 

**Corollary 3.3.** The Hall algebra  $\mathbf{H}(Q, \mathbb{F}_1)$  is commutative.

**Remark 3.4.** We have seen last week that the Hall algebra  $\mathbf{H}(Q, \mathbb{F}_1)$  is the universal enveloping algebra of its Lie algebra of primitive elements, which in turn is spanned (as a vector space) by the  $N_i$ . We have thus already seen last week that  $\mathbf{H}(Q, \mathbb{F}_1)$  is generated by the  $N_i$  as an algebra.

We have hence shown that  $\mathbf{H}(Q, \mathbb{F}_1)$  is a commutative, cocommutative, graded Hopf algebra We will in the following show that it is actually the ring of symmetric functions.

# 4. The Ring of Symmetric Functions

## 4.1. Definition

For every  $k \ge 0$  we denote by

$$\Lambda^{(k)} := \mathbb{C}[x_1, \dots, x_k]^{S_k}$$

the algebra of symmetric polynomials in k variables. We have for every number of variables  $k \ge 0$  a homomorphism of graded algebras

$$\Lambda^{(k+1)} \to \Lambda^{(k)}, \quad f^{(k+1)} \mapsto f^{(k+1)}(x_1, \dots, x_k, 0).$$

<sup>&</sup>lt;sup>3</sup>We have seen in last week's talk that  $\mathbf{H}(Q, \mathbb{F}_1)$  is the universal enveloping algebra of its Lie algebra of primitive elements by the Milnor–Moore theorem. We have also seen that this Lie algebra is spanned, as a vector space, by the isomorphism classes  $N_i$  with  $i \ge 1$ , as these are the indecomposable objects in  $\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{F}_1)$ . It therefore also follows from last week's talk that  $\mathbf{H}(Q, \mathbb{F}_1)$  is generated by the  $N_i$  with  $i \ge 0$ .

**Definition 4.1.** The ring of symmetric functions  $\Lambda$  is the limit

$$\Lambda := \lim_{k \ge 0} \left( \Lambda^{(k+1)} \to \Lambda^{(k)} \right)$$

in the category of graded algebras. The elements of  $\Lambda$  are *symmetric functions*.

**Warning 4.2.** A symmetric function is – contrary to its name – not a function.

Let us make the above definition more explicit: For every  $n \ge 0$  we have

$$\begin{split} & \Lambda_n = \lim_{k \geq 0} \left( \Lambda_n^{(k+1)} \to \Lambda_n^{(k)} \right) \\ & = \left\{ \left( f^{(k)} \right)_{k \geq 0} \, \middle| \, \begin{array}{l} f^{(k)} \in \Lambda_n^{(k)} \text{ for every } k \geq 0 \text{ such that} \\ f^{(k+1)}(x_1, \dots, x_k, 0) = f^{(k)} \text{ for every } k \geq 0 \end{array} \right\}, \end{split}$$

and we have overall

$$\Lambda = \bigoplus_{n \ge 0} \Lambda_n$$

as vector spaces. The multiplication on  $\Lambda$  is given by

$$(f^{(k)})_{k\geq 0} \cdot (g^{(k)})_{k\geq 0} = (f^{(k)} \cdot g^{(k)})_{k\geq 0}$$

for all  $(f^{(k)})_{k\geq 0}\in \Lambda_n$  and  $(g^{(k)})_{k\geq 0}\in \Lambda_m$ . A homogeneous symmetric function f, say of degree n, is thus the same as a "consistent choice" of homogeneous symmetric polynomials  $f^{(k)}\in \Lambda^{(k)}$  of degree n for every  $k\geq 0$ . We have for every number of variables  $k \ge 0$  a homomorphism of graded algebras

$$\Lambda \to \Lambda^{(k)}, \quad f \mapsto f(x_1, \dots, x_k)$$

that is given in each degree by projection onto the k-th component. For any two symmetric functions f, g we have by construction of  $\Lambda$  that

$$f = g \iff f(x_1, \dots, x_k) = g(x_1, \dots, x_k)$$
 for every  $k \ge 0$ .

**Example 4.3.** We have for every number of variables  $k \ge 0$  and every degree  $n \ge 0$  the elementary symmetric polynomial

$$e_n^{(k)}(x_1, \dots, x_k) := \sum_{1 \le i_1 < \dots < i_n \le k} x_{i_1} \cdots x_{i_n} \in \Lambda_n^{(k)}$$

with  $e_n^{(k)} = 0$  whenever n > k. These polynomials satisfy the conditions

$$e_n^{(k+1)}(x_1,\ldots,x_k,0) = e_n^{(k)}(x_1,\ldots,x_k)$$

for all  $k \ge 0$ . These elementary symmetric polynomials  $e_n^{(k)}$  with  $k \ge 0$  therefore assemble into a single homogeneous symmetric function

$$e_n \in \Lambda_n$$
.

This is the *n*-th elementary symmetric function.

We find similarly that the power symmetric polynomials

$$p_n^{(k)}(x_1,\ldots,x_k) := x_1^n + \cdots + x_k^n$$

and the completely homogenous symmetric polynomials

$$h_n^{(k)}(x_1,\dots,x_k):=\sum_{1\leq i_1\leq \dots\leq i_n\leq k} x_{i_1}\cdots x_{i_n}=\sum \text{monomials of homogeneous degree } n$$

result in homogeneous symmetric functions

$$p_n, h_n \in \Lambda$$
.

These are the power symmetric functions and completely homogeneous symmetric functions.

### Warning 4.4.

- 1. The ring of symmetric functions  $\Lambda$  is *not* the limit of the rings of symmetric polynomials  $\Lambda^{(k)}$  in the category of (commutative) rings.
- 2. The ring of symmetric functions  $\Lambda$  is *not* isomorphic to the rings of symmetric polynomials

$$\mathbb{C}[x_1, x_2, x_3, \dots]^{S_{\mathbb{N}}}$$
 or  $\mathbb{C}[x_1, x_2, x_3, \dots]^{S_{\infty}}$ 

where  $S_{\infty} = \operatorname{colim}_{n>0}(S_n \hookrightarrow S_{n+1})$ .

(See Appendix A.7 for more details.)

#### 4.2. The Fundamental Theorem on Symmetric Functions

The fundamental theorem of symmetric polynomials asserts that for every number of variables  $k \ge 0$  the elementary symmetric polynomials

$$e_1^{(k)}, \dots, e_k^{(k)}$$

form an algebraically independent generating set for the algebra of symmetric polynomials  $\Lambda^{(k)}$ . It follows from this that both

$$h_1^{(k)}, \dots, h_k^{(k)}$$
 and  $p_1^{(k)}, \dots, p_k^{(k)}$ 

also form algebraically independent algebra generating set for  $\Lambda^{(k)}$ .

For every partition  $\lambda \in \text{Par}$  with  $\lambda = (\lambda_1, \dots, \lambda_l)$  we can consider the symmetric polynomials

$$e_{\lambda}^{(k)} := e_{\lambda_1}^{(k)} \cdots e_{\lambda_l}^{(k)} \,, \qquad h_{\lambda}^{(k)} := h_{\lambda_1}^{(k)} \cdots h_{\lambda_l}^{(k)} \,, \qquad p_{\lambda}^{(k)} := p_{\lambda_1}^{(k)} \cdots p_{\lambda_l}^{(k)} \,.$$

<sup>&</sup>lt;sup>4</sup>For the elementary symmetric polynomials  $e_i^{(k)}$  and homogeneous symmetric polynomials  $h_i^{(k)}$  these statements do not only hold over the ground field  $\mathbb{C}$ , but over every commutative ring. For the power symmetric polynomials  $p_i^{(k)}$  we need to work over a field in which the numbers  $1, \ldots, k$  are invertible.

We have just formulated that the symmetric polynomials

$$e_{\lambda}^{(k)}$$
 for  $\lambda \in \text{Par with length } \ell(\lambda) \leq k$ 

form a vector space basis for  $\Lambda^{(k)}$ , and similarly for  $h_{\lambda}^{(k)}$  and  $p_{\lambda}^{(k)}$ . We can generalize these families of symmetric polynomials to symmetric functions:

**Example 4.5.** For every  $\lambda \in \text{Par}$  with  $\lambda = (\lambda_1, ..., \lambda_l)$  we consider the symmetric functions

$$e_{\lambda} := e_{\lambda_1} \cdots e_{\lambda_l}, \quad h_{\lambda} := h_{\lambda_1} \cdots h_{\lambda_l}, \quad p_{\lambda} := p_{\lambda_1} \cdots p_{\lambda_l}.$$

and note that

$$\begin{split} e_{\lambda}(x_1, \dots, x_k) &= e_{\lambda}^{(k)}(x_1, \dots, x_k) \,, \\ h_{\lambda}(x_1, \dots, x_k) &= h_{\lambda}^{(k)}(x_1, \dots, x_k) \,, \\ p_{\lambda}(x_1, \dots, x_k) &= p_{\lambda}^{(k)}(x_1, \dots, x_k) \,. \end{split}$$

Another important family of symmetric polynomials are the *monomial symmetric polynomials*: For every number of variables  $k \geq 0$  and partition  $\lambda \in \text{Par}$  with  $\lambda = (\lambda_1, ..., \lambda_l)$  of length  $l = \ell(\lambda) \leq k$  the corresponding monomial symmetric polynomial is given by

$$m_{\lambda}^{(k)}(x_1,\ldots,x_k) = \sum_{l} \text{distinct permutations of } x_1^{\lambda_1}\cdots x_l^{\lambda_l}.$$

These homogeneous polynomials also form a basis of  $\Lambda^{(k)}$ . They too can be generalized to symmetric functions.

**Example 4.6.** For  $k \ge 0$  any any partition  $\lambda \in \text{Par of length } \ell(\lambda) > k$  we set

$$m_{\lambda}^{(k)} := 0$$
.

Then

$$m_{\lambda}^{(k+1)}(x_1,\ldots,x_k,0)=m_{\lambda}^{(k)}$$

for every  $k \ge 0$ , and each  $m_{\lambda}^{(k)}$  is homogeneous of degree  $|\lambda|$ . We therefore get a well-defined homogeneous symmetric function

$$m_{\lambda} \in \Lambda_{|\lambda|}$$
,

which we call the *monomial symmetric function* associated to  $\lambda$ .

We now want to generalize the fundamental theorem on symmetric polynomials to symmetric functions. The key observation behind this is the following:

**Proposition 4.7.** The map  $\Lambda_n^{(k+1)} \to \Lambda_n^{(k)}$  is an isomorphism whenever  $k \ge n$ .

*Proof.* A vector space basis of  $\Lambda_n^{(k)}$  is given by the symmetric polynomials  $e_{\lambda}^{(k)}$  where the partition  $\lambda$  is of length  $\ell(\lambda) \leq k$  and  $\lambda = (\lambda_1, \dots, \lambda_l)$  satisfies

$$\lambda_1 + 2\lambda_2 + \cdots + l\lambda_l = n$$
.

A vector space basis of  $\Lambda_n^{(k)}$  is given by the symmetric polynomials  $e_{\mu}^{(k+1)}$  where the partition  $\mu$  is of length  $\ell(\mu) \leq k+1$  and  $\mu=(\mu_1,\ldots,\mu_l)$  satisfies

$$\mu_1 + 2\mu_2 + \dots + l\mu_l = n.$$

We find by degree reasons that the case  $\ell(\mu) = k+1$  cannot occur. The linear map  $\Lambda_n^{(k+1)} \to \Lambda_n^{(k)}$  does therefore restrict to a bijection between the above bases.

**Corollary 4.8.** The map 
$$\Lambda_n \to \Lambda_n^{(k)}$$
 is an isomorphism whenever  $k \ge n$ .

**Corollary 4.9.** The following families of symmetric functions form vector space bases of  $\Lambda$ :

- 1. The elementary symmetric polynomials  $e_{\lambda}$  with  $\lambda \in Par$ .
- 2. The complete homogeneous symmetric polynomials  $h_{\lambda}$  with  $\lambda \in Par$ .
- 3. The power symmetric polynomials  $p_{\lambda}$  with  $\lambda \in Par$ .
- 4. The monomial symmetric polynomials  $m_{\lambda}$  with  $\lambda \in Par$ .

**Corollary 4.10.** The elementary symmetric functions  $e_n$  with  $n \ge 1$  form an algebraically independent algebra generating set for  $\Lambda$ , and similarly for the  $h_n$  and the  $p_n$ .

**Corollary 4.11.** We have  $\Lambda \cong \mathbb{C}[X_1, X_2, X_3, ...]$  as graded algebras, where each variable  $X_n$  is homogeneous of degree n.

#### Remark 4.12.

1. It follows from Corollary 4.8 for any two symmetric functions  $f, g \in \Lambda$  that

$$f = g \iff f(x_1, \dots, x_k) = g(x_1, \dots, x_k)$$
 for some  $k \ge \deg(f)$ ,  $\deg(g)$ .

2. We can regard  $\Lambda$  as a colimit of  $\Lambda^{(k)} \to \Lambda^{(k+1)}$  for  $k \ge 0$ , see Appendix A.8.

# 4.3. Hopf Algebra Structure

We can endow the algebra of symmetric functions  $\Lambda$  with the structure of a graded Hopf algebra. We have now for any two number of variables  $k, l \ge 0$  a homomorphism of graded algebras

$$\begin{split} \Delta_{kl} \colon \Lambda^{(k+l)} &= \mathbb{C}[x_1, \dots, x_{k+l}]^{S_{k+l}} \\ &\subseteq \mathbb{C}[x_1, \dots, x_{k+l}]^{S_k \times S_l} \\ &\cong (\mathbb{C}[x_1, \dots, x_k] \otimes \mathbb{C}[x_{k+1}, \dots, x_{k+l}])^{S_k \times S_l} \\ &\cong (\mathbb{C}[x_1, \dots, x_k] \otimes \mathbb{C}[x_1, \dots, x_l])^{S_k \times S_l} \\ &= \mathbb{C}[x_1, \dots, x_k]^{S_k} \otimes \mathbb{C}[x_1, \dots, x_l]^{S_l} \qquad \text{(Appendix A.9)} \\ &= \Lambda^{(k)} \otimes \Lambda^{(l)}. \end{split}$$

We would like to have a homomorphism of graded algebras  $\Delta: \Lambda \to \Lambda \otimes \Lambda$  such that for all degrees  $k, l \geq 0$  the square diagram

$$\Lambda \xrightarrow{---} \Lambda \otimes \Lambda$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Lambda^{(k+l)} \xrightarrow{\Delta_{kl}} \Lambda^{(k)} \otimes \Lambda^{(l)}$$

commutes. The composition  $\Lambda \to \Lambda^{(k)} \otimes \Lambda^{(l)}$  is given on the algebra generators  $p_n$  of  $\Lambda$  by

$$p_n \mapsto p_n^{(k)} \otimes 1 + 1 \otimes p_n^{(l)}$$
.

Such an algebra homomorphism  $\Delta$  is thus given by

$$\Delta(p_n) = p_n \otimes 1 + 1 \otimes p_n.$$

This homomorphism exists because  $\Lambda$  is the free commutative algebra on the generators  $p_n$ . The homomorphism  $\Delta$  makes the algebra  $\Lambda$  into a cocommutative, graded bialgebra. The counit is given on algebra generators by

$$\varepsilon(p_n) = 0$$

for every  $n \ge 0$ . Since  $\Lambda$  is graded and connected it follows that it is already a graded Hopf algebra. Its antipode is given on algebra generators by

$$S(p_n) = -p_n$$

for every  $n \ge 0$ .

We see altogether that  $\Lambda$  is a commutative, cocommutative, graded Hopf algebra.

# 5. The Isomorphism $H(Q, \mathbb{F}_1) \cong \Lambda$

Both  $\mathbf{H}(Q, \mathbb{F}_1)$  and  $\Lambda$  are commutative, cocommutate, graded Hopf algebras. They are isomorphic as graded Hopf Algebras:

The ring of symmetric functions  $\Lambda$  has is, as a commutative algebra, freely generated by the power symmetric functions  $p_1, p_2, ...$  There hence exists a unique, surjective algebra homomorphism  $\Phi : \Lambda \to \mathbf{H}(Q, \mathbb{F}_1)$  with

$$\Phi(p_i) = [N_i]$$

for every  $i \ge 1$ . We note that  $\Phi$  is a homomorphism of graded algebras because both  $p_i$  and  $[N_i]$  are of degree i. We also have for every degree  $n \ge 0$  that

$$\dim \Lambda_n = \#\{(\lambda_1, \dots, \lambda_k) \in \operatorname{Par} \mid \lambda_1 + 2\lambda_2 + \dots + k\lambda_k = n\} = \dim \mathbf{H}(Q, \mathbb{F}_1)_n$$

with these dimensions being finite. It thus follows from the surjectivity of  $\Phi$  that it is already an isomorphism of graded algebras.

The algebra isomorphism  $\Phi$  is already an isomorphism of Hopf algebras: It sufficies to check that  $\Phi$  is compatible with the comultiplication of the algebra generators  $p_i$ . This holds since  $p_i$  is primitive in  $\Lambda$  and  $[N_i]$  is primitive in  $\mathbf{H}(Q, \mathbb{F}_1)$ .

We have shown altogether that  $\Phi$  is an isomorphism of graded Hopf algebras.

# A. Appendices

# A.1. Theorem of Krull-Remak-Schmidt and Jordan Normal Form

Let *V* be an  $\mathbb{F}_1$ -vector space and let  $f: V \to V$  be an endomorphism.

**Recall A.1.** 1. A *subspace* of *V* is a subset of *V* that contains the base point 0.

- 2. If  $(U_i)_{i \in I}$  is a collection of subspaces of V then  $V = \bigoplus_{i \in I} U_i$  if and only if every nonzero evement of V is contained in precisely one  $U_i$ , i.e. if and only if the  $U_i$  give a disjoint decomposition of the set  $V \setminus \{0\}$ .
- 3. If *U* is a subspace of *V* and  $V = \bigoplus_{i \in I} W_i$  is a direct sum decomposition then  $U = \bigoplus_{i \in I} (U \cap W_i)$ .

**Definition A.2.** A subspace U of V is f-invariant if  $f(U) \subseteq U$ . An f-invariant subspace U of V is indecomposable if it is nonzero and there exist no two nonzero f-invariant subspaces  $W_1$ ,  $W_2$  of U with  $U = W_1 \oplus W_2$ .

**Remark A.3.** If U is an indecomposable subspace of V and  $U = \bigoplus_{i \in I} W_i$  is any decomposition into f-invariant subspaces  $W_i$  then it follows that  $U = W_j$  for some  $j \in I$  while  $W_i = 0$  for every  $i \neq j$ . Indeed, some  $W_j$  must be nonzero because V is nonzero. Then  $V = W_j \oplus \bigoplus_{i \in I, i \neq j} W_i$  and thus  $\bigoplus_{i \in I, i \neq j} W_i = 0$ , and therefore  $W_i = 0$  for every  $i \in I$ .

**Proposition A.4** (Krull–Remak–Schmidt). There exists a unique direct sum decomposition of *V* into indecomposable *f*-invariant subspaces.

*Proof.* In the following we mean by a *decomposition* a direct sum decomposition into f-invariant subspaces in which each direct summand is nonzero. We say that a decomposition  $V = \bigoplus_{i \in I} U_i$  is *finer* than a decomposition  $V = \bigoplus_{j \in J} W_j$  if each  $U_i$  is contained in some  $W_j$ . This gives a partial order on the set of decompositions of V.

We note that a decomposition  $V = \bigoplus_{i \in I} U_i$  consists of indecomposables if and only if it is maximal fine. Indeed, if some  $U_j$  is decomposable then there exists a decomposition  $U_j = U'_j \oplus U''_j$ . Then

$$V = \bigoplus_{i \in I} U_i = \bigoplus_{\substack{i \in I \\ i \neq j}} U_i \oplus U_j = \bigoplus_{\substack{i \in I \\ i \neq j}} U_i \oplus U_j' \oplus U_j'$$

with the last term being a strictly finer that the original decomposition  $V = \bigoplus_{i \in I} U_i$ . Suppose on the other hand that each  $U_i$  is indecomposable and that  $V = \bigoplus_{j \in J} W_j$  is a decomposition that is finer than  $V = \bigoplus_{i \in I} U_i$ . Then  $U_i = \bigoplus_{j \in J} (U_i \cap V_j)$  for every  $j \in J$ . It follows that  $U_i = U_i \cap V_j$  for some  $j \in J$  and thus  $U_i \subseteq V_j$ . We also know that  $V_j$  is contained in some  $U_k$ . Then  $U_i$  is contained in  $U_k$  whence it follows that i = k and thus  $U_i = V_j$ . This shows that each  $U_i$  equals some  $V_j$ , from which it follows that both decompositions must coincide.

We hence need to show that there exists a unique decomposition which is maximal fine. It sufficies to show that any collection of decompositions has a common refinement. Taking a common refinement of all decompositions then gives the desired one.

Let  $V = \bigoplus_{j \in J_i} U_j^i$  with  $i \in I$  be a collection of decompositions. For every nonzero vector  $v \in V$  there exists for every  $i \in I$  a unique index  $j(i, v) \in J_i$  with  $v \in U_{j(i,v)}^i$ . We consider

$$W_{\nu} := \bigcap_{i \in I} U^{i}_{j(i,\nu)} .$$

Each  $W_v$  is an intersection of f-invariant subspaces and therefore again an f-invariant subspace. Each nonzero vector v of V is contained in some  $W_{v'}$ , namely for v' = v.

Suppose that for two nonzero vectors  $v, u \in V$  the subspaces  $W_v$  and  $W_u$  intersect nonzero. Let w be a nonzero vector contained in both  $W_v$  and  $W_u$ . Then for every index  $i \in I$  the vector w is contained in  $U^i_{j(i,v)}$ , whence j(i,v)=j(i,w). It follows that  $W_v=W_w$ , and we find in the same way that  $W_u=W_w$ . Thus  $W_v=W_w$ .

This shows that the f-invariant subspaces  $W_v$  give a disjoint decomposition of  $V \setminus \{0\}$ , and hence a decomposition of V. (Once we remove those subspaces which occur multiple times.) This decomposition of V is by construction finer than each decomposition  $V = \bigoplus_{i \in I_i} U_i^i$ .

We want to understand how the decomposition from the Krull–Remak–Schmidt theorem looks like. We note that if  $v \in V$  is any nonzero vector then there exists at most one preimage of v under f, since f is injective outside of its kernel. Thus we can consider for every nonzero vector  $v \in V$  the well-defined two-sided sequence

..., 
$$f^{-2}(v)$$
,  $f^{-1}(v)$ ,  $v$ ,  $f(v)$ ,  $f^{2}(v)$ , ...

Here the left part of the sequence consists of as many iterated preimages as exist. The set of all these elements is the *orbit* of v under f. It is denoted by [v].

We note that for any nonzero veector u in [v] we have [u] = [v]. If two orbits [v] and [w] intersect in a nonzero vector u then it follows that [v] = [u] = [v]. Two distinct orbit do therefore intersect at most in 0. It follows that the orbits give induce a disjoint decomposition of  $V \setminus \{0\}$ . The vector space V does therefore decompose into the direct sum of the subspaces  $[v] \cup \{0\}$ . (Once we remove those subspaces which occur multiple times.) Each subspace  $[v] \cup \{0\}$  is f-invariant. Any two nonzero f-invariant subspaces of  $[v] \cup \{0\}$  intersect nonzero whence the subspaces  $[v] \cup \{0\}$  are indecomposable.

This shows that the decomposition of V from the Krull–Remak–Schmidt theorem is given by the orbits with respect to f (together with  $\{0\}$ ).

There exist five kinds of orbits.

Type A. The orbit ends in zero and is finite: It is thus of the form

$$v \to f(v) \to \cdots \to f^n(v) = 0$$

for a unique vector v, that has no preimage under f.

Type B. The orbit ends in zero and is infinitie: It is thus of the form

$$\cdots \to f^{-2}(v) \to f^{-1}(v) \to v \to f(v) \to f^2(v) \to \cdots \to f^n(v) = 0 \; .$$

Type C. The orbit never reaches zero and has only finitely many preimages. It is thus of the form

$$v \to f(v) \to f^2(v) \to \cdots \to f^n(v) \to \cdots$$

for a unique vector v, that has no preimage under f.

Type D. The orbit goes infinite in both directions and is non-circular. It is thus of the form

$$\cdots \to f^{-1}(v) \to v \to f(v) \to f^2(v) \to \cdots \to f^n(v) \to \cdots$$

|        | injective | surjective | bijective | nilpotent | finite-dimensional |
|--------|-----------|------------|-----------|-----------|--------------------|
| Type A |           |            |           | 0         | 0                  |
| Type B |           |            | •         | 0         |                    |
| Type C | •         |            |           |           |                    |
| Type D | •         | •          | •         |           |                    |
| Type E | •         | •          | •         |           | 0                  |

Table 1: Possible orbits. Complete characterization via orbits for •. Only locally for •.

Type E. The orbit is circular. It is thus of the form

$$v \to f(v) \to f^2(v) \to \cdots \to f^n(v) \to v \to f(v) \to \cdots$$

Depending on the properties of the vector space V and endomorphism f not all kinds of orbits can occur.

- The endomorphism *f* is injective if and only if no orbits of Type A and Type B occur.
- The endomorphism f is surjective if and only if no orbits of Type A and Type C occur.
- The endomorphism *f* is bijective if and only if only orbits of Type D and Type E occur.
- The endomorphism f is locally nilpotent if and only if only orbits of Type A and Type B appear.<sup>5</sup>
- The endomorphism *f* is nilpotent if and only if only orbits of Type A occur, and the lengths of the occuring orbits is bounded.
- If *V* is finite-dimensional then only orbits of Type A and Type E occur.
- More generally, V is locally finite-dimensional with respect to f if and only if only orbits of Type A and Type E occur.<sup>6</sup>

See Table 1 for an overview.

## A.2. Nilpotent Representations

A representation  $V=((V_i)_{i\in\Gamma_0},(f_\alpha)_{\alpha\in\Gamma_1})$  of a quiver  $\Gamma=(\Gamma_0,\Gamma_1)$  is *nilpotent* if there exists some  $N\geq 0$  such that for every path  $\alpha_n,\ldots,\alpha_1$  in  $\Gamma$  of length  $n\geq N$  we have  $f_{\alpha_n}\circ\cdots\circ f_{\alpha_1}=0$ . (See [Szc11, Definition 4.4].)

If  $\Gamma$  is finite and has no oriented cycles then every representation of  $\Gamma$  is nilpotent.

## A.3. Proof of Proposition 2.1

**Definition A.5.** Let  $\mathscr{A}$  be an abelian category. A subcategory  $\mathscr{B}$  is *closed under extensions* if for every short exact sequence  $0 \to A \to B \to C \to 0$  in  $\mathscr{A}$  the middle term B is contained in  $\mathscr{B}$  provided that both outer terms A, C are contained in  $\mathscr{B}$ .

<sup>&</sup>lt;sup>5</sup>An endomorphism f is locally nilpotent if there exists for every vector v some power  $n \ge 0$  such that  $f^n(v) = 0$ . <sup>6</sup>We say that V is locally finite-dimensional if every nonzero vector of V is contained in a finite-dimensional f-invariant subspace.

**Definition A.6.** Let  $\mathscr{A}$  be an abelian category. A subcategory  $\mathscr{B}$  of  $\mathscr{A}$  is a *Serre subcategory* if it is abelian, exact, full and closed under extensions.

**Example A.7.** The category  $\operatorname{rep}^{\operatorname{nil}}(Q, \mathbb{F}_q)$  is a Serre subcategory of  $\operatorname{Rep}(Q, \mathbb{F}_q) \cong \mathbb{F}_q[x]$ -Mod. Indeed, it is a full, abelian, exact subcategory of  $\operatorname{Rep}(Q, \mathbb{F}_q)$ . If in a short exact sequence

$$0 \to A \xrightarrow{\varphi} B \xrightarrow{\psi} C \to 0$$

of *Q*-representations both *A*, *B* are finite-dimensional then the same holds for *B*. If both *A*, *C* are nilpotent then same holds for *B*: There exists some powers  $n, m \ge 0$  with  $\alpha^n A = 0$  and  $\alpha^m C = 0$ . It follows that  $\alpha^m B \subseteq \ker(\psi) = \operatorname{im}(\varphi)$  and thus  $\alpha^{n+m} B = 0$ .

If  $\mathcal{A}$  is an abelian category and  $\mathcal{B}$  is an abelian, exact subcategory then we have for every  $n \ge 0$  and every two objects A, B of  $\mathcal{B}$  an induced map

$$\operatorname{Ext}_{\mathscr{B}}^n(A,B) \to \operatorname{Ext}_{\mathscr{A}}^n(A,B)$$
.

**Proposition A.8.** Let  $\mathscr{A}$  be an abelian category and let  $\mathscr{B}$  be an abelian, exact subcategory of  $\mathscr{A}$ .

- 1. Suppose that  $\mathscr{B}$  is a full subcategory of  $\mathscr{A}$ . Then the induced map  $\operatorname{Ext}^1_{\mathscr{B}}(A,B) \to \operatorname{Ext}^1_{\mathscr{A}}(A,B)$  is injective for any two objects A, B of  $\mathscr{B}$ . If  $\mathscr{B}$  is a Serre subcategory of  $\mathscr{A}$  then the induced map  $\operatorname{Ext}^1_{\mathscr{B}}(A,B) \to \operatorname{Ext}^1_{\mathscr{A}}(A,B)$  is bijective.
- 2. Suppose that  $\mathcal{B}$  is a Serre subcategory of  $\mathcal{A}$ . Suppose furthermore that for some  $n \geq 1$  the induced map  $\operatorname{Ext}^n_{\mathcal{B}}(A,B) \to \operatorname{Ext}^n_{\mathcal{A}}(A,B)$  is bijective for any two objects A,B of  $\mathcal{B}$ . Then the induced map  $\operatorname{Ext}^{n+1}_{\mathcal{B}}(A,B) \to \operatorname{Ext}^{n+1}_{\mathcal{A}}(A,B)$  is injective for any two objects A,B of  $\mathcal{B}$ .

Proof.

1. Two short exact sequences in  $\mathcal{B}$ ,

$$0 \to B \to X \to A \to 0$$
 and  $0 \to B \to X' \to A \to 0$ ,

are equivalent in  $\mathcal{A}$  if there exists an isomorphism  $\varphi: X \to X'$  that makes the diagram

$$0 \longrightarrow B \longrightarrow X \longrightarrow A \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow \varphi \qquad \parallel$$

$$0 \longrightarrow B \longrightarrow X' \longrightarrow A \longrightarrow 0$$

commute. We find that  $\varphi$  is already an isomorphism in  $\mathscr{B}$  because  $\mathscr{B}$  is full in  $\mathscr{A}$ . Thus both sequences are already equivalent in  $\mathscr{B}$ . This shows the injectivity of  $\operatorname{Ext}^1_{\mathscr{B}}(A,B) \to \operatorname{Ext}^1_{\mathscr{A}}(A,B)$ .

Suppose now that  $\mathcal{B}$  is a Serre subcategory of  $\mathcal{A}$ . Let A, B be two objects in  $\mathcal{B}$ . Every element  $\xi$  of  $\operatorname{Ext}^1_{\mathscr{A}}(A,B)$  is represented by a short exact sequence  $0 \to B \to X \to A \to 0$  in  $\mathscr{A}$ . The middle term X is already contained in  $\mathscr{B}$  because  $\mathscr{B}$  is closed under extensions. Thus  $\xi$  lies in  $\operatorname{Ext}^1_{\mathscr{B}}(A,B)$ .

2. We refer to [Oor63, Proposition 3.3].

**Corollary A.9.** Let  $\mathscr{A}$  be an abelian category and let  $\mathscr{B}$  be a Serre subcategory of  $\mathscr{A}$ . If  $\mathscr{A}$  is hereditary then so is  $\mathscr{B}$ .

*Proof.* Let A, B be two objects of  $\mathcal{B}$ . We show by induction on  $n \ge 1$  that the induced map  $\operatorname{Ext}^n_{\mathcal{B}}(A,B) \to \operatorname{Ext}^n_{\mathcal{A}}(A,B)$  is bijective. The assertion follows from this.

We know from Proposition A.8 that the induced map  $\operatorname{Ext}^1_{\mathscr{B}}(A,B) \to \operatorname{Ext}^1_{\mathscr{A}}(A,B)$  is bijective. If for some  $n \geq 1$  the induced map  $\operatorname{Ext}^n_{\mathscr{B}}(A,B) \to \operatorname{Ext}^n_{\mathscr{A}}(A,B)$  is bijective then it follows from Proposition A.8 that the induced map  $\operatorname{Ext}^{n+1}_{\mathscr{B}}(A,B) \to \operatorname{Ext}^{n+1}_{\mathscr{A}}(A,B)$  is injective. It is also surjective because  $\mathscr{A}$  is hereditary.

*Proof of Proposition 2.1.* We have seen in Example A.7 that  $\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)$  is a Serre subcategory of  $\mathbf{Rep}(Q, \mathbb{F}_q) \cong \mathbb{F}_q[x]$ -Mod. The module category  $\mathbb{F}_q[x]$ -Mod is hereditary because it has enough projectives and submodules of projective  $\mathbb{F}_q[x]$ -modules are again projective, since  $\mathbb{F}[x]$  is a principal ideal domain. It thus follows from Corollary A.9 that  $\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)$  is again hereditary.

# **A.4.** Computing $Ext^1(S, S)$

In  $\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)$  we can compute  $\mathrm{Ext}^1(S, S)$  for  $S = \mathrm{N}_1$  in two ways:

### A.4.1. Via Homological Algebra

Let  $\mathbb{k} := \mathbb{F}_q$ . We find with Proposition A.8 that

$$\operatorname{Ext}^1(S,S) = \operatorname{Ext}^1_{\mathbf{rep}^{\operatorname{nil}}(O,\Bbbk)}(S,S) \cong \operatorname{Ext}^1_{\mathbf{Rep}(Q,\Bbbk)}(S,S) \cong \operatorname{Ext}^1_{\Bbbk[x]-\mathbf{Mod}}(\Bbbk,\Bbbk).$$

We can use for k (in the first argument) the projective resolution

$$\cdots \to 0 \to \mathbb{k}[x] \xrightarrow{x} \mathbb{k}[x] \to \mathbb{k} \to 0$$
.

Applying the functor  $\text{Hom}_{\mathbb{k}[x]}(-,\mathbb{k})$  gives the chain complex

$$0 \to \operatorname{Hom}_{\Bbbk[x]}(\Bbbk[x], \Bbbk) \xrightarrow{x} \operatorname{Hom}_{\Bbbk[x]}(\Bbbk[x], \Bbbk) \to 0 \to \cdots,$$

which is isomorphic to the chain complex

$$0 \to \mathbb{k} \xrightarrow{0} \mathbb{k} \to 0 \to \cdots$$

We find in particular that

$$\operatorname{Hom}_{\Bbbk[x]}(\Bbbk, \Bbbk) \cong \Bbbk\,, \quad \operatorname{Ext}^1_{\Bbbk[x]}(\Bbbk, \Bbbk) \cong \Bbbk\,.$$

#### A.4.2. Via Counting

We can also count the Yoneda classes of short exact sequences: We have  $N_1 = (k, [0])$ , and a short exact sequence

$$0 \to (\mathbb{k}, [0]) \to ? \to (\mathbb{k}, [0]) \to 0$$

can have as its middle term (up to isomorphism) either

$$N_{(1,1)} = \begin{pmatrix} \mathbb{k}^2, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{pmatrix}$$
 or  $N_2 = \begin{pmatrix} \mathbb{k}^2, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \end{pmatrix}$ .

In the first case we get a short exact sequence

$$0 \to (\mathbb{k}, \begin{bmatrix} 0 \end{bmatrix}) \to \left(\mathbb{k}^2, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}\right) \to (\mathbb{k}, \begin{bmatrix} 0 \end{bmatrix}) \to 0.$$

This short exact sequence splits on the level of k-vector spaces, and any such split is alreday a homomorphism of representations. We hence find that this sequence describes the unique element of  $\operatorname{Ext}^1(S,S)$  that is given by the split exact sequences.

We consider now the short exact sequences of the form

$$0 \to (\mathbb{k}, [0]) \xrightarrow{\varphi} \left( \mathbb{k}^2, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right) \xrightarrow{\psi} (\mathbb{k}, [0]) \to 0.$$
 (1)

The homomorphism  $\varphi$  must be of the form

$$\varphi = \begin{bmatrix} a \\ 0 \end{bmatrix}$$

for some  $a \neq 0$  since the image of  $\varphi$  must be contained in the kernel of  $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ . It follows from the exactness of the sequence that the homomorphism  $\psi$  is of the form

$$\psi = \begin{bmatrix} 0 & b \end{bmatrix}$$

for some  $b \neq 0$ .

Two such sequences  $\xi_{a,b}$  and  $\xi_{a',b'}$  for  $a,a',b,b'\neq 0$  are Yoneda equivalent if and only if there exists an invertible matrix

$$\begin{bmatrix} w & x \\ y & z \end{bmatrix} \in GL(2, \mathbb{k})$$

such that

$$\begin{bmatrix} w & x \\ y & z \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} w & x \\ y & z \end{bmatrix}$$
 (2)

and the following diagram commutes:

The condition (2) means that w = z and y = 0, i.e. that the matrix is of the form

$$\begin{bmatrix} w & x \\ 0 & w \end{bmatrix},$$

The commutativity of the diagram (3) means that

$$w = \frac{a'}{a}$$
 and  $w = \frac{b}{b'}$ .

We hence find that the extensions  $\xi_{a,b}$  and  $\xi_{a',b'}$  are Yoneda equivalent if and only if a'/a = b/b'. It follows that the Yoneda equivalence classes of short exact sequences of the form (1) have as a set of representatives the sequences

$$0 \to (\mathbb{k}, \begin{bmatrix} 0 \end{bmatrix}) \xrightarrow{\begin{bmatrix} 1 & 0 \end{bmatrix}} \left( \mathbb{k}^2, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right) \xrightarrow{\begin{bmatrix} 0 & b \end{bmatrix}} (\mathbb{k}, \begin{bmatrix} 0 \end{bmatrix}) \to 0$$

with  $b \neq 0$ .

We find that overall we have  $\#\mathbb{F}_q = q$  many Yoneda equivalence classes of short exact sequences. Thus

$$#Ext^{1}(S, S) = q,$$

from which it follows that  $\operatorname{Ext}^1(S,S) \cong \mathbb{F}_q$ .

# A.5. Proof of Corollary 2.3

Let  $K := K_0(\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{F}_q))$ . We can regard the Euler form of  $\mathbf{rep}^{\mathrm{nil}}(Q, \mathbb{F}_q)$  as a bilinear form

$$\langle -, - \rangle : K \times K \to \mathbb{Q}^{\times}$$
.

Since *S* is a generator of *K* is sufficies to show that  $\langle S, S \rangle = 1$ . This holds true because

$$\langle S, S \rangle = \left( \# \operatorname{Hom}(S, S) \right) \cdot \left( \# \operatorname{Ext}^{1}(S, S) \right)^{-1} = q \cdot q^{-1} = 1.$$

This proves the assertion.

# **A.6. Counting** $Gr(d, n, \mathbb{F}_a)$

**Recall A.10.** For  $k \in \mathbb{N}$  the *quantum integer*  $[k]_q$  is given by

$$[k]_q = 1 + q + q^2 + \dots + q^{k-1} = \frac{q^k - 1}{q - 1}.$$

We have  $[0]_q = 0$  and  $[1]_q = 1$ . The *quantum factorial* is given by

$$[k]_{a}! = [k]_{a}[k-1]_{a} \cdots [1]_{a}$$
.

For  $k, l \in \mathbb{N}$  the *quantum binomial* is given by

$$\begin{bmatrix} k \\ l \end{bmatrix}_q = \frac{[k]_q \cdots [k-l+1]_q}{[l]_q!} .$$

If l > k then this is zero, and if  $l \le k$  then the quantum binomial can also be expressed as

$${k \brack l}_q = \frac{[k]_q!}{[l]_q! [k-l]_q!}.$$

The quantum binomial satsfies the recursive relation

$$\begin{bmatrix} k \\ l \end{bmatrix}_{a} = q^{l} \begin{bmatrix} k-1 \\ l \end{bmatrix}_{a} + \begin{bmatrix} k-1 \\ l-1 \end{bmatrix}_{a}$$

for all  $k, l \in \mathbb{N}$ . It hence follows by induction that the quantum binomial  $\begin{bmatrix} k \\ l \end{bmatrix}_q$  is a polynomial in q with natural coefficients, i.e.

$$\begin{bmatrix} k \\ l \end{bmatrix}_q \in \mathbb{N}[q] \, .$$

By taking the limit  $q \to 1$  (i.e. by setting q equal to 1) the quantum integer [k] becomes the usual integer k, the quantum factorial  $[k]_q!$  becomes the usual factorial k! and the quantum binomial coefficient  $[l]_q^k$  becomes the usual binomial  $(l]_q^k$ .

**Lemma A.11.** For all dimensions  $n, d \ge 0$  we have

$$\#\mathrm{Gr}(d, n, \mathbb{F}_q) = \begin{bmatrix} n \\ d \end{bmatrix}_q$$
.

*Proof.* If d > n then both numbers are zero, so suppose that  $d \le n$ . Let

$$F_d(n) := (q^n - 1) \cdots (q^n - q^{d-1}) = (q - 1)^d q^{d(d-1)/2} [n]_q \cdots [n - d + 1]_q$$

This is the number of linear independent tupels  $(v_1, \dots, v_d)$  of vectors in  $\mathbb{F}_q^n$ . We find that

$$\#\mathrm{Gr}(d,n,\mathbb{F}_q) = \frac{F_d(n)}{\#\mathrm{GL}(d,\mathbb{F}_q)}\,.$$

We have  $\#GL(d, \mathbb{F}_q) = F_d(d)$  and thus

$$\#\mathrm{Gr}(d,n,\mathbb{F}_q) = \frac{F_d(n)}{F_d(d)} = \frac{[n]_q \cdots [n-d+1]_q}{[d]_q \cdots [1]_q} = \frac{[n]_q \cdots [n-d+1]_q}{[d]_q!} = \begin{bmatrix} n \\ d \end{bmatrix}_q,$$

as claimed.  $\Box$ 

## A.7. More on Symmetric Functions

For the first claim consider the symmetric polyonmials

$$f^{(k)}(x_1,\ldots,x_k) := x_1 + x_1x_2 + \cdots + x_1 \cdots x_k$$
.

The polynomials satisfy the compatibility condition

$$f^{(k+1)}(x_1,...,x_k,0) = f^{(k)}(x_1,...,x_k)$$

for every  $k \ge 0$ . But there exists no symmetric function  $f \in \Lambda$  with  $f(x_1, ..., x_k) = f^{(k)}(x_1, ..., x_k)$  for every  $k \ge 0$  since otherwise

$$k = \deg(f^{(k)}) \le \deg(f)$$

for every  $k \geq 0$ , which is not possible. This shows that  $\Lambda$  together with the homomorphisms  $\Lambda \to \Lambda^{(k)}$  is not the limit of the homomorphisms  $\Lambda^{(k+1)} \to \Lambda^{(k)}$  for  $k \geq 0$  in the category of rings.

Suppose that more generally  $(f^{(k)})_{k\geq 0}$  is any sequence of symmetric polynomials  $f^{(k)}\in \Lambda^{(k)}$  that are compatible in the sense that  $f(x_1,\ldots,x_k)=f^{(k)}(x_1,\ldots,x_k)$  for every  $k\geq 0$ . Then the  $f^{(k)}$  define a symmetric function  $f\in \Lambda$  with  $f^{(k)}(x_1,\ldots,x_k)=f(x_1,\ldots,x_k)$  for every  $k\geq 0$  if and only if the degrees  $\deg(f^{(k)})$  are bounded, i.e. if and only if there exists some  $N\geq 0$  with  $\deg(f^{(k)})\leq N$  for every  $k\geq 0$ .

Indeed, if such a symmetric function f exists then  $\deg(f^{(k)}) \leq \deg(f)$  for every  $k \geq 0$ . If on the other hand such a bound N exists then we consider for every n = 0, ..., N the sequence  $(f_n^{(k)})_{k \geq 0}$  of degree n parts. That the symmetric polynomials  $f^{(k)}$  are compatible means that for every degree n = 0, ..., N the homogeneous symmetric polynomials  $f_n^{(k)}$  are compatible. Thus there exists for every degree n = 0, ..., N a homogeneous symmetric function  $f_n \in \Lambda_n$  with

$$f_n(x_1,...,x_k) = f_n^{(k)}(x_1,...,x_k)$$

for every  $k \ge 0$ . It then follows for the symmetric function

$$f := f_0 + f_1 + \dots + f_N$$

in each degree m = 0, ..., N that

$$f(x_1, \dots, x_k)_m = f_0(x_1, \dots, x_k)_n + \dots + f_n(x_1, \dots, x_k)_m = f_m(x_1, \dots, x_k) = f_m^{(k)}(x_1, \dots, x_k)_m$$

for every  $k \ge 0$  since each  $f_l(x_1, ..., x_k)$  is homogeneous of degree m. This shows that

$$f(x_1,...,x_k) = f^{(k)}(x_1,...,x_k)$$

for every  $k \ge 0$ .

To see the second claim we note that both  $\mathbb{C}[x_1,x_2,\dots]^{S_{\mathbb{N}}}$  and  $\mathbb{C}[x_1,\dots,x_n]^{S_{\infty}}$  are just  $\mathbb{C}$ . Indeed, if a symmetric polynomial  $f\in\mathbb{C}[x_1,x_2,\dots]$  were to contain a nontrivial monomial then it must also contain all permutations of this monomial. But there are infinitely many such permutations, while f contains only finitely many polynomials.

#### A.8. Regarding $\Lambda$ as a Colimit

We have for every number of variables  $k \geq 0$  an injective homomorphism of graded algebras  $\Lambda^{(k)} \to \Lambda^{(k+1)}$  that is given on algebra generators by  $e_n^{(k)} \to e_n^{(k+1)}$  for every  $n=0,\ldots,k$ . This is a right sided inverse for the homomorphism  $\Lambda^{(k+1)} \to \Lambda^{(k)}$ . In this way a symmetric polynomial in k variables can be extended to a symmetric polynomial in k+1 variables.

We similarly have for every number of variables  $k \geq 0$  a homomorphism of graded algebras  $\Lambda^{(k)} \to \Lambda$  that is given on algebra generators by  $e_n^{(k)} \to e_n$  for every  $n = 0, \dots, k$ . We now find that  $\Lambda$  together with the homomorphisms  $\Lambda^{(k)} \to \Lambda$  is a colimit of the homomorphism.

We now find that  $\Lambda$  together with the homomorphisms  $\Lambda^{(k)} \to \Lambda$  is a colimit of the homomorphisms  $\Lambda^{(k)} \to \Lambda^{(k+1)}$  for  $k \ge 0$ . In this way we can regard  $\Lambda$  as a sort of increasing union of the algebras of symmetric polynomials.

#### A.9. Invariants of a Tensor Product

**Lemma A.12.** Let *G*, *H* be two groups. Let *V* be a representation of *G* and let *W* be a representation of *H*. Then

$$(V \otimes W)^{G \times H} = V^G \otimes W^H$$
.

*Proof.* The inclusion  $V^G \otimes W^H \subseteq (V \otimes W)^{G \times H}$  can be checked on simple tensors. Let on the other hand  $x \in (V \otimes W)^{G \times H}$ . We may choose a basis  $(v_i)_{i \in I}$  of V and write  $x = \sum_{i \in I} v_i \otimes w_i$  for some unique vectors  $w_i \in W$ . For every element  $h \in H$  we then have

$$\sum_{i\in I} v_i \otimes w_i = x = (1, h)x = \sum_{i\in I} v_i \otimes (hw_i).$$

It follows from the uniqueness of the  $w_i$  that  $hw_i = w_i$  for every  $h \in H$  and every  $i \in I$ , and thus  $w_i \in W^H$  for every  $i \in I$ . This shows that  $x \in V \otimes W^H$ . We find in the same way that  $x \in V^G \otimes W^H$ , and thus  $x \in (V \otimes W^H) \cap (V^G \otimes W) = V^G \otimes W^H$ .

## References

- [Oor63] Frans Oort. "Yoneda Extensions in Abelian Categories". In: *Mathematische Annalen* 153.3 (February 11, 1963), pp. 227–235. DOI: BF01360318.
- [Scho9] Olivier Schiffmann. *Lectures on Hall Algebras*. October 23, 2009. arXiv: 0611617v2 [math.RT].
- [Szc11] Matthew Szczesny. Representations of Quivers over  $\mathbb{F}_1$  and Hall Algebras. July 25, 2011. arXiv: 1006.0912v3 [math.QA].