

Heterogeneity, contact patterns and modeling options ${ m MMED2018}$

Goals

- Explain the importance of heterogeneity on patterns of disease spread
 - Focus on different types of human heterogeneity
- Discuss ways in which homogeneous models fail to match observed dynamics
- Use simple models to explore qualitative effects of heterogeneity on modeling conclusions
- Briefly introduce some methods that are used to incorporate heterogeneity in models

The resilience of infectious disease

1967: It's time to close the book on infectious diseases

Pathogen evolution Human heterogeneity

1 Homogeneous disease models

Expanding our models

- Homogeneous models assume everyone has the same:
 - disease characteristics (e.g. susceptibility, tendency to transmit)
 - mixing rate
 - probability of mixing with each person
- **Heterogeneous** models allow people to be different

The basic reproductive number

- \mathcal{R}_0 is the number of people who would be infected by an infectious individual in a fully susceptible population.
- $\mathcal{R}_0 = \beta/\gamma = \beta D = (cp)D$
 - c: Contact Rate
 - -p: Probability of transmission (infectivity)
 - D: Average duration of infection
- A disease can invade a population if and only if $\mathcal{R}_0 > 1$.

Equilibrium

- Equilibrium is worth knowing even if the disease doesn't reach equilibrium
- System will move around the equilibrium

Equilibrium analysis

- \mathcal{R}_{eff} is the number of people who would be infected by an infectious individual in a general population.
- $\mathcal{R}_{\text{eff}} = \mathcal{R}_0 \frac{S}{N} = pcD \frac{S}{N}$
- At equilibrium: $\mathcal{R}_{\text{eff}} = \mathcal{R}_0 \frac{S}{N} = 1$.
- Thus: $\frac{S}{N} = 1/R_0$.
- Proportion 'affected' is $V = 1 S/N = 1 1/R_0$.

Proportion affected

- Proportion 'affected' is $V = 1 S/N = 1 1/R_0$.
 - _
 - _

endemic equilibrium

- Threshold value
- Sharp response to changes in factors underlying transmission
- \bullet Works sometimes
- Sometimes predicts unrealistic sensitivity

Homogeneous assumptions

Homogeneous dynamics

- For many diseases, homogeneous models tend to predict:
 - Too high of an equilibrium, when matching growth rate
 - Too low of a growth rate, when matching equilibrium

2 The importance of heterogeneity

Beyond homogeneity

- Flavors of heterogeneity
 - among hosts
 - spatial
 - demographic (discreteness of indviduals)
 - temporal
 - others

Heterogeneity in TB

Tuberculosis Notifications in USA, 1980s

• **Progression**: Nutrition, stress

• Contact: Overcrowding, poor ventilation

• Cure: Access to medical care

Heterogeneity in other diseases

• STDs: Sexual mixing patterns, access to medical care

• Influenza: Crowding, nutrition

• Malaria: Attractiveness to biting insects, geographical location, immune status

• Every disease!

Large-scale heterogeneity

- For schistosomiasis, the worldwide average $\mathcal{R}_0 < 1$
- Disease persists because of specific populations with $\mathcal{R}_0 > 1$.
- This effect operates at many scales.

3 Effects of heterogeneity

Heterogeneity among hosts

- Differences among people are pervasive, large and often correlated
- We often consider transmission probability as the product of two components:
 - The "infector" has tendency to infect τ
 - The "recipient" has susceptibility σ
- Then $\mathcal{R}_0 = pcD = (\sigma \tau)cD$,
- Why do we assume this is multiplicative?

_

Equilibrium calculations

- Assume $p = \sigma \tau$ has a susceptibility component and a transmission component:
 - $\mathcal{R}_0 = \sigma \tau c D$
 - $\mathcal{R}_{\rm eff} = \sigma \tau c D S / N$
 - Equilibrium $S/N = 1 1/\mathcal{R}_0$

Equilibrium calculations with heterogeneity

- τD applies to infectious individuals $\to \tau_I D_I$
- σ applies to susceptible individuals $\rightarrow \sigma_S$
- c is complicated $\rightarrow c_S c_I/\bar{c}$
- $\mathcal{R}_0 = \sigma_S \tau_I c_x D_I$ measured during invasion
- $\mathcal{R}_{\text{eff}} = \sigma_S \tau_I c_x D_I S/N$ measured at equilibrium
- Equilibrium $S/N \neq 1 1/\mathcal{R}_0$

How does \mathcal{R} change?

- Imagine a disease spread by people who differ only in their effective mixing rates
- If the disease has just started spreading in the population, how do c_S and c_I compare to \bar{c} ?
 - $-c_S \approx \bar{c}; c_I > \bar{c}.$
- If the disease is very widespread in the population?
 - $-c_S < \bar{c}; c_I \rightarrow \bar{c}.$

Simpson's paradox

- What happens when a peanut farmer is elected to the US Senate?
- The average IQ goes up in both places!

The basic reproductive number

- When the disease invades:
 - The susceptible population \approx the general population
 - The infectious population is likely to have higher values of c, D and/or τ
- \bullet \mathcal{R}_0 is typically greater than you would expect from a homogeneous model

Equilibrium analysis

- As disease prevalence goes up:
 - Susceptible pool is the most resistant, or least exposed group
 - Infectious pool moves looks more like the general population.
- \rightarrow lower proportion affected for a given value of \mathcal{R}_0 .

endemic equilibrium

endemic equilibrium

Heterogeneity and disease

- Heterogeneity has a double-edged effect
 - Effects of disease are *lower* for a given value of \mathcal{R}_0 .
 - But \mathcal{R}_0 is higher for given mean values of factors underlying transmission

Heterogeneous endemic curves

• Heterogeneity makes the endemic curve flatter

• Disease levels are more resistant to change

How diseases reach equilibrium

- Diseases that invade have high values of \mathcal{R}_0
- \mathcal{R}_{eff} must be 1 at equilibrium
 - Potentially infectious contacts are wasted
 - * Many potential contacts are not susceptible (affected by disease)
 - * Those not affected less susceptible than average
 - Infectious pool less infectious

Spatial and network models

- Individual-level, or spatial, heterogeneity also usually increases wasted contacts
- Infectious people meet:
 - people with similar social backgrounds
 - people with similar behaviours
 - people who are nearby geographically or in the contact network
- More wasted contacts further flatten the endemic curve

4 Modeling approaches

Phenomenological

- Simply make β go down with prevalence, $\beta = B \times$:
 - $-e^{-\alpha P}$
 - $-(1-P)^{s}$
 - $-(1-P/s)^{\alpha s}$

Multi-group models

- $\bullet\,$ Divide the population into groups.
 - $-\,$ cities and villages
 - rich and poor
 - high and low sexual activity
 - age, gender
 - **–** ...
- Even if details are not correct, heterogeneity will emerge and move model in the right direction

Individual-based models

Individual

- Allow many possibilities:
 - vary individual characteristics
 - add a network of interactions
 - let the network change
- Individual-based approaches require stochastic models

Summary

- People are heterogeneous in many ways
 - $-\ldots$ and on many scales
- Simple models give us important qualitative insights
 - Diseases in heterogeneous populations are likely to be more robust to change than expected from homogeneous models
- More complicated models can help address relevant detail

© 2013-2018, ICI3D. May be reproduced and distributed, with this notice, for non-commercial purposes only. https://figshare.com/collections/International_Clinics_on_Infectious_Disease_Dynamics_and_Data/3788224.