Wendepunkte

Betrachtet man die Graphen einer Funktion f und dessen Ableitung f', so fällt auf, dass sich dort ein Linksrechts-Wendepunkt befindet, wo das Maximum der Ableitung zu sehen ist. An der Stelle, an der ein Rechts-links-Wendepunkt existiert, befindet sich das Minimum. Daher muss man nach den Extremwerten der ersten Ableitung suchen, wenn man die Wendepunkte der Originalfunktion sucht. An den Extremwerten ist die Steigung, also der Funktionswert der zweiten Ableitung, 0.

Das notwendige Kriterium für Wendepunkte

Die Stelle x_w ist ein Wendepunkt der Funktion f, wenn f an der Stelle x_w zweimal differenzierbar ist und $f''(x_w) = 0$ gilt.

Das hinreichende Kriteritum für Wendepunkte (I)

Die Funktion f sei in einer Umgebung von x_w dreimal differenzierbar.

Gilt $f''(x_w) = 0$ und $f'''(x_w) \neq 0$, so liegt an der Stelle x_w ein Wendepunkt von f.

Genauer:

- 1. $f'''(x_w) < 0 \Longrightarrow \text{Links-rechts-Wendepunkt}$
- 2. $f'''(x_w) > 0 \Longrightarrow$ Rechts-links-Wendepunkt

Das hinreichende Kriteritum für Wendepunkte (II)

Das erste hinreichende Kriterium versagt seinen Dienst, wenn $f''(x_w) = 0$ und auch $f'''(x_w) = 0$ gilt.

Die Funktion f sei in einer Umgebung von x_w zweimal differenzierbar und es sei $f''(x_w) = 0$.

Wenn dann die zweite Ableitung f'' an der Stelle x_w einen Vorzeichenwechsel hat, so liegt dort eine Wendestelle von f.

1

Genauer:

- 1. Vorzeichenwechsel von +nach −⇒Links-rechts-Wendepunkt
- 2. Vorzeichenwechsel von − nach +⇒Rechts-links-Wendepunkt

Beispiel: S. 182 Nr. 5 a)

1. Ableitungen bestimmen

$$f(x) = \frac{1}{8}x^3 - \frac{3}{8}x^2$$

$$f'(x) = \frac{3}{8}x^2 - \frac{3}{4}x$$

$$f''(x) = \frac{3}{4}x - \frac{3}{4}$$

2. Notwendige Bedingung

$$f''(x) = 0$$

$$0 = \frac{3}{4}x - \frac{3}{4}$$

$$x = 1$$

3. Hinreichende Bedingung

$$f'''(x) = \frac{3}{4} \Longrightarrow$$
Rechts-links-Wendepunkt