25. Kép, őskép, értékkészlet, inverz függvény

25.1. Kiegészítés az elmélethez

A továbbiakban tegyük fel, hogy $\emptyset \neq A, B$ tetszőleges nemüres halmazok.

Kép, értékkészlet

Def: Legyen $f:A\longrightarrow B$ függvény és $C\subseteq A$ adott halmaz. Ekkor a C halmaz f függvény által létesített $k\acute{e}pe$ az alábbi halmaz:

$$f[C] := \{ f(x) \mid x \in C \} \subseteq B.$$

Megjegyzések:

- 1. Egyezzünk meg abban, hogy $f[\emptyset] = \emptyset$.
- 2. Világos, hogy az f értékkészlete az értelmezési tartomány f által létesített képe, azaz

$$R_f = f[D_f].$$

Például:

1. Legyen $f(x) := x^2$ $(x \in \mathbb{R})$ és C := [-1, 2]. Határozzuk meg az f[C] képhalmazt.

Megoldás: A definícióból indulva:

$$f[[-1;2]] = \{f(x) \mid x \in [-1;2]\} = \{x^2 \mid -1 \le x \le 2\} = (\star) = [0;4],$$

ahol (\star) az alábbi levezetéseket helyettesíti (két halmaz egyenlőségéhez igazolnunk kell a kétirányú tartalmazást):

Ha
$$0 \le x \le 2 \implies 0 \le x^2 \le 4$$
;

Ha
$$-1 \le x \le 0 \iff 0 \le -x \le 1 \implies 0 \le x^2 \le 1$$
.

Összefoglalva tehát:

Ha
$$x \in [-1; 2] \implies x^2 \in [0; 4].$$

Ezzel igazoltuk, hogy

$$f[[-1;2]] \subseteq [0;4].$$

A fordított irányhoz be kell látnunk, hogy:

$$\forall y \in [0;4]: y \in f[[-1;2]] \iff \forall y \in [0;4] \exists x \in [-1;2]: x^2 = y.$$

Rögzítsünk tehát egy $y \in [0;4]$ értéket. Keresünk olyan $x \in [-1;2]$ számot, melyre:

$$x^2 = y \in [0; 4] \iff x = \pm \sqrt{y}$$

Világos, hogy

$$x = \sqrt{y} \in [0; 2] \subseteq [-1; 2]$$
 megfelel.

Beláttuk, hogy:

$$[0;4] \subseteq f[[-1;2]].$$

2. Legyen $f(x) := x^2 \ (x \in \mathbb{R})$. Határozzuk meg az R_f értékkészletet.

Megoldás: A definícióból indulva:

$$R_f = f[D_f] = \{f(x) \mid x \in D_f\} = \{x^2 \mid x \in \mathbb{R}\} \subseteq [0; +\infty),$$

hiszen

$$\forall x \in \mathbb{R} : y = x^2 \ge 0.$$

A fordított irányhoz be kell látnunk, hogy:

$$\forall y \in [0; +\infty): y \in R_f \iff \forall y \in [0; +\infty) \exists x \in \mathbb{R}: x^2 = y.$$

Rögzítsünk tehát egy $y \in [0; +\infty)$ értéket. Keresünk olyan $x \in \mathbb{R}$ valós számot, melyre:

$$x^2 = y \in [0; +\infty) \iff x = \pm \sqrt{y} \in \mathbb{R}.$$

Két megfelelő x értéket is találtunk, tehát:

$$[0; +\infty) \subseteq R_f$$
.

Összevetve a két tartalmazási relációt kapjuk, hogy:

$$R_f = [0; +\infty).$$

Őskép

Def: Legyen $f:A\longrightarrow B$ függvény és $D\subseteq B$ adott halmaz. Ekkor a D halmaz f függvény által létesített ősképe az alábbi halmaz:

$$f^{-1}[D] := \{ x \in D_f \mid f(x) \in D \} \subseteq A.$$

Megjegyzések:

- 1. Egyezzünk meg abban, hogy $f^{-1}[\emptyset] = \emptyset$.
- 2. Világos, hogy az fértelmezési tartománya az értékkészlet fáltal létesített ősképe, azaz

$$D_f = f^{-1}[R_f].$$

Például:

1. Legyen $f(x) := x^2 \ (x \in \mathbb{R})$ és D := [1; 2]. Határozzuk meg az $f^{-1}[D]$ ősképhalmazt.

Megoldás: A definícióból indulva:

$$f^{-1}[[1;2]] = \{x \in D_f \mid f(x) \in [1;2]\} = \{x \in \mathbb{R} \mid 1 \le x^2 \le 2\} = (\star) =$$
$$= [-\sqrt{2}; -1] \cup [1; \sqrt{2}],$$

ahol (\star) a fenti egyenlőtlenséglánc alábbi megoldását jelöli:

$$1 \le x^2 \le 2 \iff (x^2 - 1 \ge 0 \land x^2 - \sqrt{2} \le 0) \iff x \in [-\sqrt{2}; -1] \cup [1; \sqrt{2}].$$

2. Legyen $g(x) := \frac{1}{x} \ (x \in \mathbb{R} \setminus \{0\})$. Határozzuk meg az $g^{-1}[(-1;1]]$ ősképhalmazt.

Megoldás: A definícióból indulva:

$$g^{-1}[(-1;1]] = \{x \in D_f \mid g(x) \in (-1;1]\} = \left\{x \in \mathbb{R} \setminus \{0\} \mid -1 < \frac{1}{x} \le 1Big\} = (\star) = (-\infty;-1) \cup [1;+\infty),\right\}$$

ahol (\star) a fenti egyenlőtlenséglánc megoldását jelöli:

$$-1 < \frac{1}{x} \le 1 \quad (x \in (-\infty; 0) \cup (0; +\infty)) \iff$$

$$\iff ((x < 0 \Longrightarrow x < -1 \quad \land \quad x \le 1) \quad \lor \quad (x > 0 \Longrightarrow x > -1 \quad \land \quad x \ge 1)) \iff$$

$$\iff x < -1 \quad \lor \quad x \ge 1.$$

Invertálható függvények, inverz függvény

Def: Legyen $f: A \longrightarrow B$ függvény. Azt mondjuk, hogy f invertálható vagy injektív, ha:

$$\forall x, t \in D_f : x \neq t \implies f(x) \neq f(t).$$

Megjegyzések:

- 1. Szóban megfogalmazva tehát: egy f függvény pontosan akkor invertálható, ha a D_f értelmezési tartomány bármely két különböző pontjának a képe is különböző.
- 2. A feladatokban gyakran használjuk a fenti definícióval azonos megfogalmazást:

$$f$$
 injektív $\iff \forall x, t \in D_f : f(x) = f(t) \implies x = t.$

Például:

1. Legyen $f(x) := 2x - 7 \ (x \in \mathbb{R})$. Invertálható-e az f?

Megoldás: Legyenek $x \neq t \in \mathbb{R}$ tetszőlegesen rögzített értelmezési tartománybeli különböző pontok. Vizsgáljuk meg az alábbi eltérést:

$$f(x) - f(t) = (2x - 7) - (2t - 7) = 2 \cdot (x - t) \neq 0 \Longrightarrow f(x) \neq f(t),$$

tehát az f injektív.

2. Legyen $f(x) := \sqrt{9 - x^2}$ $(x \in [-3, 3])$. Invertálható-e az f?

Megoldás: Könnyű észrevenni, hogy például:

$$-1 \neq 1 \in [-3; 3] \land f(-1) = f(1) = \sqrt{8} \implies f$$
 nem injektív.

3. Módosítsuk az előző feladat értelmezési tartományát az alábbi módon:

$$f(x) := \sqrt{9 - x^2} \ (x \in [0; 3]).$$

Invertálható-e most az f?

Megoldás: Legyenek most $x, t \in [0; 3]$ és tegyük fel, hogy f(x) = f(t). Ekkor:

$$\sqrt{9-x^2} = \sqrt{9-t^2} \implies 9-x^2 = 9-t^2 \iff x^2-t^2 = 0 \iff (x-t)\cdot(x+t) = 0 \implies x = t,$$

ugyanis

Ha
$$x, t \in [0; 3] \implies x + t \in [0; 6] \land (x + t = 0 \iff x = t = 0).$$

Ezzel beláttuk, hogy az f invertálható.

Def: Legyen $f: A \longrightarrow B$ egy invertálható függvény. Definíáljuk ekkor az *inverzét* f^{-1} -et az alábbiak szerint:

$$D_{f^{-1}} := R_f \land \forall y \in D_{f^{-1}} : f^{-1}(y) := x \iff f(x) = y.$$

Megjegyzések:

- 1. Könnyű meggondolni, hogy $R_{f^{-1}} = D_f$.
- 2. A feladatokban az inverz utasítás meghatározása az f(x) = y egyenlet megoldását jelenti az ismeretlen x-re nézve (x-et fejezzük ki az y segítségével). Az is világos, hogy ez az egyenlet pontosan azon y értékek esetén oldható meg D_f -en, ha $y \in R_f$.

Például:

1. Legyen $f(x) := 2x - 7 \ (x \in \mathbb{R})$. Adjuk meg az f^{-1} inverzfüggvényt.

Megoldás: Korábban már beláttuk, hogy f invertálható. Először is adjuk meg R_f —et:

$$R_f = \{ f(x) \mid x \in D_f \} = \{ 2x - 7 \mid x \in \mathbb{R} \} = (\star) = \mathbb{R},$$

ugyanis (\star) :

$$\forall x \in \mathbb{R} : f(x) = 2x - 7 \in \mathbb{R}, \text{ azaz } R_f \subseteq \mathbb{R}$$

és fordítva:

Ha
$$y \in \mathbb{R} \Longrightarrow \exists x \in \mathbb{R} : y = 2x - 7 \iff \exists x = \frac{y + 7}{2} \in \mathbb{R} : f(x) = y, \text{ azaz } \mathbb{R} \subseteq R_f.$$

Ezzel beláttuk, hogy:

$$D_{f^{-1}} = R_f = \mathbb{R} \wedge f^{-1}(y) = \frac{y+7}{2} \quad (y \in \mathbb{R} = D_{f^{-1}}).$$

2. Invertálható-e az alábbi függvény és ha igen,
akkor adjuk meg $f^{-1}-\mathrm{et}\colon$

$$f(x) := \frac{1 - \sqrt{x}}{1 + \sqrt{x}} \ (x \in [0; +\infty)).$$

Megoldás: Legyenek most $x, t \in [0; +\infty)$ és tegyük fel, hogy f(x) = f(t). Ekkor:

$$\frac{1 - \sqrt{x}}{1 + \sqrt{x}} = \frac{1 - \sqrt{t}}{1 + \sqrt{t}} \iff (1 - \sqrt{x}) \cdot (1 + \sqrt{t}) = (1 - \sqrt{t}) \cdot (1 + \sqrt{x}) \iff \sqrt{x} = \sqrt{t} \implies x = t$$

tehát f injektív. Mi lesz R_f ? Ehhez alakítsuk át f utasítását az alábbiak szerint:

Ha
$$x \in [0; +\infty)$$
, akkor: $f(x) = \frac{1 - \sqrt{x}}{1 + \sqrt{x}} = \frac{2 - 1 - \sqrt{x}}{1 + \sqrt{x}} = \frac{2}{1 + \sqrt{x}} - 1 > -1 \Longrightarrow$
$$\implies R_f \subseteq (-1; +\infty).$$

A fordított irányú tartalmazáshoz legyen $y \in (-1; +\infty)$ tetszőlegesen rögzített érték és keresünk olyan $x \ge 0$ számot, melyre:

$$f(x) = y \iff \frac{2}{1 + \sqrt{x}} - 1 = y \iff \frac{2}{1 + \sqrt{x}} = y + 1 \iff (y \neq -1) \iff$$

$$\iff \sqrt{x} = \frac{2}{y + 1} - 1.$$

A fenti utolsó egyenlet pontosan akkor oldható meg az eddigi y > -1 feltétel mellet, ha:

$$\frac{2}{y+1} - 1 \ge 0 \mid \cdot (y+1) > 0 \iff 2 \ge y+1 \iff y \le 1.$$

Összefoglalva tehát:

$$\forall y \in (-1;1] \exists x = \left(\frac{2}{y+1} - 1\right)^2 \in [0;+\infty) : f(x) = y \implies$$
$$\implies (-1;1] \subseteq R_f.$$

A korábbi észrevételünket, miszerint $R_f \subseteq (-1; +\infty)$ tovább vizsgáljuk és belátjuk, hogy $R_f \subset (-1; 1]$ is igaz! Ehhez elég belátni, hogy:

$$\forall x \in [0; +\infty) \ \frac{2}{1+\sqrt{x}} - 1 \le 1 \iff \forall x \in [0; +\infty) : \ 0 \le \sqrt{x},$$

ami nyilvánvalóan igaz. Tehát

$$R_f = (-1; 1].$$

Ezek után megadható az inverz függvény:

$$D_{f^{-1}} = R_f = (-1; 1] \land f^{-1}(y) = \left(\frac{2}{y+1} - 1\right)^2 \quad (y \in (-1; 1]).$$

Megjegyzés: Az értékkészlet megállapítása nem mindig egyszerű, vagy nem feltétlenül "olvasható" le az értékeket definiáló formulából. Az itteni levezetésben csak "később" derült ki, hogy 1 az értékek egy felső korlátja. Természetesen ez előbb is észrevehető, hiszen $x \geq 0$ esetén

$$\frac{2}{1+\sqrt{x}} - 1 \le \frac{2}{1+\sqrt{0}} - 1 = 1,$$

de talán az f(x) = y egyenlet megoldhatóságát vizsgálva természetesebb módon kaptuk meg az $y \le 1$ feltételt.

25.1.1. Ellenőrző kérdések az elmélethez

- 1. Definiálja egy C halmaz f függvény által létesített $k\acute{e}p\acute{e}t$.
- 2. Definiálja egy D halmaz f függvény által létesített ősképét.
- 3. Halmaz függvény által létesített képét használva definiálja egy f függvény értékkészletét.
- 4. Mikor mondjuk, hogy egy függvény invertálható?
- 5. Definiálja egy invertálható függvény inverzét.
- 6. Adott az $f(x) := 3x 1 \quad (x \in \mathbb{R})$ függvény. Határozza meg az f[[-3; 4)] képhalmazt.
- 7. Adott az $f(x) := |x| \quad (x \in \mathbb{R})$ függvény. Határozza meg az f[(-2; 1]] képhalmazt.
- 8. Adott az $f(x):=3x-1 \quad (x\in\mathbb{R})$ függvény. Határozza meg az $f^{-1}[[-1;5)]$ ősképhalmazt.
- 9. Adott az $f(x) := |x| \quad (x \in \mathbb{R})$ függvény. Határozza meg az $f^{-1}[(1;7]]$ ősképhalmazt.
- 10. Adott az $f(x) := \ln x \ (x \in (0; +\infty))$ függvény. Határozza meg az $f^{-1}[(-1; 1)]$ ősképhalmazt.
- 11. Adott az $f(x) := x^2 + x 3 \quad (x \in \mathbb{R})$ függvény. Határozza meg az f[C] és $f^{-1}[C]$ halmazokat, ha $C := \{-1\}$.
- 12. Adott az $f(x) := 1 4x \quad (x \in \mathbb{R})$ függvény. Invertálható-e az f és ha igen, akkor adjuk meg az f^{-1} inverzfüggvényt.
- 13. Adott az $f(x):=1-2x-x^2 \quad (x\in (-\infty;-1))$ függvény. Invertálható-e az f és ha igen, akkor adjuk meg az f^{-1} inverzfüggvényt.
- 14. Adott az $f(x) := |x-1| + (x^2 4x + 4) \quad (x \in \mathbb{R})$ függvény. Invertálható-e az f és ha igen, akkor adjuk meg az f^{-1} inverzfüggvényt.
- 15. Adott az $f(x) := 2^x 1 \quad (x \in \mathbb{R})$ függvény. Invertálható-e az f és ha igen, akkor adjuk meg az f^{-1} inverzfüggvényt.

25.2. Feladatok

25.2.1. Órai feladatok

Kép, őskép, értékkészlet

- 1. Adjuk meg az alábbi f függvények és a megadott B, C halmazok esetében az $f^{-1}[B]$ ősképhalmazt, illetve az f[C] képhalmazt :
 - (a) f(x) := 2x + 1 $(x \in \mathbb{R}); B := [1; 2); C := (1; 2];$
 - (b) $f(x) := 2 \sqrt{x}$ $(x \in [0; +\infty)); B := [-1; 1]; C := [2; 9];$
 - (c) f(x) := |1 |x 2|| $(x \in [-1, 4]); B := [1/4, 1/2); C := [-1, 2];$
 - (d) $f(x) := (\sqrt{2})^{2x+1}$ $(x \in \mathbb{R}); B := [\sqrt{2}; 2); C := [-1; 1);$
 - (e) $f(x) := \frac{2-x}{1-x}$ $(1 \neq x \in \mathbb{R}); B := [1/2; +\infty); C := [0; 1) \cup (1; +\infty);$
 - (f) $f(x) := [\sin x]$ $(x \in \mathbb{R}); B := [-1, 0]; C := [-1, 0].$
- 2. Állapítsuk meg az f függvény értékkészletét, ha
 - (a) f(x) := 3x + 1 $(x \in [-2; 1])$;
 - (b) f(x) := 1 2x $(-1 \le x < 3)$.
 - (c) f(x) := |x 2| $(x \in [-1, 4])$.
- 3. Állapítsuk meg az f függvény értékkészletét, ha
 - (a) $f(x) := x^2 6x + 5$ $(x \in \mathbb{R})$;
 - (b) $f(x) := x^2 6x + 5$ $(-1 \le x \le 6)$.
 - (c) $f(x) := 1 x^2$ $(-2 \le x \le 3)$.
- 4. Adott az $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f(x) = \frac{x^2 4x + 3}{x^2 2x + 3}$ $(x \in \mathbb{R})$ függvény. Határozza meg az f értékkészletét, az R_f halmazt.
- 5. Adott az $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f(x) = \frac{x^2 + ax + 1}{x^2 x + 1}$ $(x \in \mathbb{R})$ függvény, ahol $a \in \mathbb{R}$ valós paraméter. Határozza meg az a értékeit úgy, hogy az $R_f \subset [-3; 2]$ feltétel teljesüljön.

25.2. Feladatok 261

6. Adott az alábbi függvény és az $m \in \mathbb{R}$ valós paraméter:

$$f(x) := \operatorname{Sign}(x) := \begin{cases} 1 - x & \text{ha } xin(-\infty; -1); \\ 1 - x^2 & \text{ha } x \in [-1; 1]; \\ 1 + x & \text{ha } x \in (1; +\infty). \end{cases}$$

A paraméter értékeitől függően adjuk meg az $f^{-1}[(m; +\infty)]$ ősképhalmazt.

Invertálható függvények, inverz függvény

7. Adott az alábbi függvény:

$$f(x) := \text{Sign}(x) := \begin{cases} \frac{x+1}{x-1}, \text{ha } x \in (1; +\infty); \\ 1, \text{ha } x \in (-\infty; 1]. \end{cases}$$

Határozza meg a $g(x) := f(x+1) - f(x-1) \quad (x \in \mathbb{R})$ függvényt, majd a g[[-1;3]] képhalmazt és a $g^{-1}[[-1;2]]$ ősképhalmazt. Invertálható-e a g függvény? Igazolja, hogy a $g|_{(0:+\infty)}$ függvény invertálható és adja meg az inverzét!

- 8. Vizsgáljuk meg, hogy az alábbi függvények invertálhatóak—e és ha igen, akkor adjuk meg az f^{-1} inverz függvényt (megadva a $D_{f^{-1}}$; $R_{f^{-1}}$ halmazokat és az $f^{-1}(x)$ értéket, ha $x \in D_{f^{-1}}$):
 - (a) f(x) := 2x 1 $(x \in \mathbb{R})$;
 - (b) $f(x) := x^2 2x + 2$ $(x \in (-\infty; 1]);$
 - (c) $f(x) := 1 \sqrt{2 x}$ $x \in (-\infty; 2];$

(d)
$$f(x) := \frac{3x+2}{x-1}$$
 $(x \in (1; +\infty));$

(e)
$$f(x) := \frac{1}{1+x^3}$$
 $(x \in \mathbb{R} \setminus \{-1\});$

(f)
$$f(x) := |x - 1| + (x + 2)^2$$
 $(x \in \mathbb{R});$

(g)
$$f(x) := \frac{2x}{1+x^2}$$
 $(x \in \mathbb{R});$

(h)
$$f(x) := \frac{e^x - e^{-x}}{2}$$
 $(x \in \mathbb{R});$

(i)
$$f(x) := x \cdot |x| + 2x$$
 $(x \in \mathbb{R})$.

25.2.2. További feladatok

Kép, őskép, értékkészlet

1. Adjuk meg az alábbi f függvények és a megadott B,C halmazok esetében az $f^{-1}[B]$ ősképhalmazt, illetve az f[C] képhalmazt :

- (a) f(x) := 4 3x $(x \in \mathbb{R}); B := [-1, 2); C := (-1, 2];$
- (b) $f(x) := 1 + \sqrt{1-x}$ $(x \in (-\infty; 1]); B := [1/2; 3]; C := [0; 1/2];$
- (c) $f(x) := |1 x^2|$ $(x \in \mathbb{R}); B := [-1; 1/2]; C := [-2; 3];$
- (d) $f(x) := 3^{1/2-2x}$ $(x \in \mathbb{R}); B := (1/27; 3]; C := [-1/4; 1/4);$
- (e) $f(x) := \frac{x}{1+x}$ $(-1 \neq x \in \mathbb{R}); B := [0; +\infty); C := (-\infty; -1) \cup (-1; 1];$
- (f) $f(x) := [\cos x]$ $(x \in \mathbb{R}); B := [0; 1]; C := [0; \pi].$
- 2. Állapítsuk meg az f függvény értékkészletét, ha
 - (a) $f(x) := -x^2 x 1$ $(x \in \mathbb{R})$;
 - (b) $f(x) := (x-1) \cdot (3-x)$ $(1 \le x \le 4)$.
 - (c) $f(x) := x^2 10x + 27$ $(x \in [0, 6])$.
- 3. Állapítsuk meg az f függvény értékkészletét, ha
 - (a) $f(x) := 2x \sqrt{2}$ $(x \in [-\sqrt{2}; \sqrt{2}])$;
 - (b) $f(x) := 1 + 3 \cdot \sqrt{|x 2|}$ $(x \in \mathbb{R})$.
 - (c) $f(x) := \sqrt{4x^2 1}$ $\left(\frac{1}{2} \le x < 1\right)$;
 - (d) $f(x) := \lg(2x+1) \quad \left(-\frac{1}{4} \le x < \frac{9}{2}\right);$
 - (e) $f(x) := \frac{2x}{1+x^2}$ $(x \in \mathbb{R})$;
 - (f) $f(x) := 4^x 2^x + 1$ $(x \in \mathbb{R})$;
 - (g) $f(x) := (\sin x + \cos x)^2 \quad (x \in \mathbb{R});$
 - (h) $f(x) := [\sin x] + [\cos x]$ $(x \in [0; 2\pi])$.
- 4. Milyen $k \in \mathbb{R}$ esetén lesz az

$$f(x) := \sqrt{x^2 + 4x + k}$$
 $(|x| \le 3)$

függvény értékkészlete a [0,5] zárt intervallum?

- 5. Adott az $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f(x) = \frac{x^2 2x 3}{x^2 + x + 1}$ $(x \in \mathbb{R})$ függvény. Határozza meg az f értékkészletét, az R_f halmazt.
- 6. Adott az $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f(x) = \frac{3x^2 + ax 1}{x^2 + 1}$ $(x \in \mathbb{R})$ függvény, ahol $a \in \mathbb{R}$ valós paraméter. Határozza meg az a értékeit úgy, hogy az $R_f = [-3; 5]$ feltétel teljesüljön.

25.2. Feladatok 263

7. Adott az alábbi függvény:

$$f(x) := \begin{cases} x^2, & \text{ha } x \in (-\infty; 0); \\ \sin x, & \text{ha } x \in [0; 2\pi]; \\ 2\pi - x & \text{ha } x \in (2\pi; +\infty). \end{cases}$$

Határozzuk meg az alábbi kép és ősképhalmazokat:

$$f^{-1}\Big[[-1;1]\Big]; \ f\Big[[-1;\pi]\Big]; \ f^{-1}\Big[[0;+\infty)\Big]; \ f^{-1}\Big[(-\infty;-1]\Big];$$
$$f\Big[[\pi;3\pi]\Big]; \ f^{-1}\Big[\{-1;1\}\Big]; \ f^{-1}\Big[\{-1/2\}\Big].$$

8. Határozzuk meg az m valós paraméter értékeit úgy, hogy az

$$f(x) := (m+1)x^2 + 2mx + 1 \ (x \in \mathbb{R})$$

függvény esetén az alábbi feltétel teljesüljön:

$$f^{-1}\Big[(-\infty;0)\Big] = \mathbb{R}$$

Invertálható függvények, inverz függvény

- 9. Vizsgáljuk meg, hogy az alábbi függvények invertálhatóak—e és ha igen, akkor adjuk meg az f^{-1} inverz függvényt (megadva a $D_{f^{-1}}$; $R_{f^{-1}}$ halmazokat és az $f^{-1}(x)$ értéket, ha $x \in D_{f^{-1}}$):
 - (a) f(x) := 2 5x $(x \in \mathbb{R});$
 - (b) $f(x) := 1 2x x^2$ $(x \in [-1; +\infty));$
 - (c) $f(x) := x^3 x \quad (x \in \mathbb{R});$
 - (d) $f(x) := \frac{x}{1+|x|}$ $(x \in \mathbb{R});$
 - (e) $f(x) := \sqrt{x-2} 1$ $(x \in [2; +\infty));$
 - (f) $f(x) := \sqrt{x^2 + 2x + 5}$ $(x \in \mathbb{R});$
 - (g) $f(x) := \sqrt{x^2 + 2x + 5}$ $(x \in (-1; +\infty));$
 - (h) $f(x) := \sqrt{x+1} \sqrt{x} \quad (x \in [0; +\infty));$
 - (i) $f(x) := \frac{1}{1 + \sqrt[3]{x}}$ $(x \in \mathbb{R} \setminus \{-1\});$
 - (j) $f(x) := x \cdot \sin x$ $(x \in (-\pi; \pi/2]);$
 - (k) $f(x) := \frac{x^2 + 3x}{x^2 2x}$ $(x \in \mathbb{R} \setminus \{0, 2\});$
 - (1) $f(x) := \frac{e^x + e^{-x}}{2}$ $(x \in (0; +\infty));$

(m)
$$f(x) := x \cdot |x| - 2x - 8$$
 $(x \in \mathbb{R})$.

- 10. Adott az $f(x) := ax + b \ (x \in \mathbb{R})$ függvény, ahol a és b tetszőleges valós paraméterek. Határozzuk meg az a, b értékeit úgy, hogy f invertálható legyen és teljesüljön, hogy $f = f^{-1}$.
- 11. Bizonyítsuk be, hogy az olyan a, b valós paraméterek esetén, amelyekre $ab \neq -4$ az alábbi függvény invertálható és megegyezik az inverzével, azaz $f = f^{-1}$:

$$f(x) := \frac{2x+a}{bx-2} \ (2/b \neq x \in \mathbb{R}).$$

Egyéb típusok

- 12. Adott az $f: \mathbb{R} \longrightarrow \mathbb{R}$ $f(x) = x^2 + (5m-2)x + m$ $(x \in \mathbb{R})$ függvény, ahol $m \in \mathbb{R}$ valós paraméter. Határozza meg az m értékét, ha tudjuk, hogy az f(x) = 0 egyenlet egyik megoldása a másiknak pont a reciproka. A kapott m paraméterrel tekintsük a fenti f, továbbá a g(x) = |x| $(x \in \mathbb{R})$ függvényeket. Határozzuk meg az $f \circ g$ és a $g \circ f$ függvényeket, majd az ezek által létesített $(f \circ g)^{-1}[[-1;1]]$ ősképhalmazt, illetve a $(g \circ f)[[-1;1]]$ képhalmazt. Milyen $A \subset \mathbb{R}$ halmazok esetén lesz a $(g \circ f)^{-1}[A]$ ősképhalmaz elemszáma k, ahol $k \in \{0;1;2;3;4\}$?
- 13. Bizonyítsuk be, hogy a

$$\sum_{k=1}^{70} \frac{k}{x-k} \ge \frac{5}{4}$$

egyenlőtlenségnek eleget tevő valós x számok halmaza olyan diszjunk intervallumok egyesítése, amelyeknek az összhossza 1988.