Álgebra Linear e Geometria Analítica B 2014/15

Departamento de Matemática

Slides da 2ª Semana de aulas

Matrizes

1.5 Transformações e matrizes elementares

Definição

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Chama-se **transformação elementar sobre as linhas de** A a uma transformação de um dos seguintes tipos:

- **I.** Troca de posição, na matriz A, da linha i com a linha j, com $i \neq j$;
- **II.** Multiplicação de uma linha de A por um $\alpha \in \mathbb{K} \setminus \{0\}$;
- III. Substituição da linha i de A pela sua soma com linha j de A multiplicada por $\beta \in \mathbb{K}$, com $i \neq j$.

Notação

Vai adoptar-se a seguinte notação para as transformações sobre linhas:

$$A = \left[\begin{array}{cccc} 1 & 0 & 2 \\ 3 & 2 & 0 \\ 0 & 1 & 2 \end{array} \right] \overrightarrow{\ell_1 \leftrightarrow \ell_2} \left[\begin{array}{cccc} 3 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 2 \end{array} \right] \overrightarrow{3\ell_3} \left[\begin{array}{cccc} 3 & 2 & 0 \\ 1 & 0 & 2 \\ 0 & 3 & 6 \end{array} \right] \overrightarrow{\ell_1 + (-3)\ell_2} \left[\begin{array}{cccc} 0 & 2 & -6 \\ 1 & 0 & 2 \\ 0 & 3 & 6 \end{array} \right].$$

Notação

significa que a matriz B se obteve de A efectuando a transformação elementar T (de tipo não especificado).

Definição

Diz-se que $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é equivalente por linhas a $B \in \mathcal{M}_{m \times n}(\mathbb{K})$ se B se pode obter a partir de A efectuando uma sequência finita com k, $k \in \mathbb{N}_0$, transformações elementares sobre linhas. Tal será denotado por

$$A \xrightarrow{(linhas)} B$$

É possivel "anular" uma transformação elementar?

Proposição

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Para qualquer transformação elementar sobre linhas T existe uma transformação elementar sobre linhas T' tal que

$$A \xrightarrow{T} B \xrightarrow{T'} A$$
.

Observação

$$A \xrightarrow{\ell_i \leftrightarrow \ell_j} B \xrightarrow{\ell_i \leftrightarrow \ell_j} A, \quad i \neq j;$$

$$A \xrightarrow{\alpha \ell_i} B \xrightarrow{\alpha^{-1}\ell_i} A, \quad \alpha \neq 0;$$

$$A \xrightarrow{\ell_i + \alpha \ell_j} B \xrightarrow{\ell_i + (-\alpha)\ell_j} A, \quad \alpha \neq 0, \quad i \neq j$$

Diz-se então que qualquer transformação elementar sobre linhas é "reversível".

1.5 Transformações e matrizes elementares

Definição

Chama-se matriz elementar de $\mathcal{M}_{n\times n}(\mathbb{K})$, sobre linhas, de tipo I, II ou III, a toda a matriz que se obtém de I_n por aplicação de uma única transformação elementar nas suas linhas, de tipo I, II, ou III, respectivamente.

Exemplo

São matrizes elementares de $\mathcal{M}_{4\times 4}(\mathbb{R})$, sobre linhas, as matrizes:

$$E_{II} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \ pois \ I_{4} \xrightarrow{\ell_{2} \leftrightarrow \ell_{3}} E_{I}; \\ E_{III} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & \pi & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \\ E_{II} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \ pois \ I_{4} \xrightarrow{\overline{\ell_{2}} \leftrightarrow \ell_{3}} E_{II}; \ \ pois \ I_{4} \xrightarrow{\overline{\ell_{3}} + \pi \ell_{2}} E_{III}.$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 0 & -3 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 7 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
Não é elementar

Qual a importância das matrizes elementares?

(São invertíveis)

Teorema

Seja
$$A \in \mathcal{M}_{m \times n}(\mathbb{K})$$
.

$$I_m \xrightarrow{T} E$$
,

sendo T uma transformação elementar sobre linhas, então

$$A \xrightarrow{T} EA$$
.

Nota: Qualquer transformação elementar sobre as linhas de uma matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ pode ser obtida premutiplicando A (multiplicando à esquerda) por uma matriz elementar que resulta de l_m efectuando nas suas linhas a mesma transformação elementar que se pretende nas linhas de A.

Exemplo

Consideremos a matriz

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 & 4 \\ 2 & 0 & 1 & 1 \end{array} \right]$$

Se efectuarmos a transformação elementar nas linhas de A

$$\left[\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 2 & 0 & 1 & 1 \end{array}\right] \quad \stackrel{\longrightarrow}{\ell_2 - 2\ell_1} \quad \left[\begin{array}{ccccc} 1 & 2 & 3 & 4 \\ 0 & -4 & -5 & -7 \end{array}\right].$$

Se fizermos a mesma transformação elementar nas linhas de l_2 , temos

$$\left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right] \begin{array}{c} \longrightarrow \\ \ell_2 - 2\ell_1 \end{array} \left[\begin{array}{cc} 1 & 0 \\ -2 & 1 \end{array}\right] = E.$$

Vejamos que EA dá o mesmo resultado:

$$\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -4 & -5 & -7 \end{bmatrix}.$$

Exercício

Considere a matriz

$$A = \left[\begin{array}{rrrr} 7 & -2 & 0 & 1 \\ 2 & 5 & -2 & 7 \\ 1 & -2 & 0 & 9 \end{array} \right].$$

Que matriz se deve multiplicar à esquerda de A para:

obter a matriz

$$B_1 = \left[\begin{array}{rrrr} 1 & -2 & 0 & 9 \\ 2 & 5 & -2 & 7 \\ 7 & -2 & 0 & 1 \end{array} \right];$$

obter a matriz

$$B_2 = \left[\begin{array}{rrrr} 7 & -2 & 0 & 1 \\ 2/7 & 5/7 & -2/7 & 1 \\ 1 & -2 & 0 & 9 \end{array} \right].$$

Observação

Cá para nós... "As matrizes elementares são vingativas"

Toda a <u>matriz elementar</u> $E \in \mathcal{M}_{n \times n}(\mathbb{K})$ é <u>invertível</u> e tem-se, quaisquer que sejam $i, j \in \{1, ..., n\}$:

I. Se
$$i \neq j$$
 e $I_n \xrightarrow[\ell_i \leftrightarrow \ell_j]{} E$ então $I_n \xrightarrow[\ell_i \leftrightarrow \ell_j]{} E^{-1}$ $(E^{-1} = E)$.

II. Se
$$\alpha \in \mathbb{K} \setminus \{0\}$$
 e $I_n \xrightarrow{\alpha \ell_i} E$ então $I_n \xrightarrow{\frac{1}{\alpha} \ell_i} E^{-1}$.

III. Se
$$i \neq j$$
, $\beta \in \mathbb{K}$ e $I_n \xrightarrow[\ell_i + \beta \ell_j]{} E$ então $I_n \xrightarrow[\ell_i + (-\beta)\ell_j]{} E^{-1}$.

As matrizes elementares são invertíveis

Exchipio

Considere as matrizes

$$E_1 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right], \quad E_2 = \left[\begin{array}{ccc} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \ \ e \ \ E_3 = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{array} \right].$$

Como são <u>elementares</u>, então são <u>invertíveis</u>. Quais as suas inversas?

- ② E_2 é uma matriz elementar de tipo II e $E_2^{-1} = \begin{bmatrix} \frac{1}{5} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- § E_3 é uma matriz elementar de tipo /// e $E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & 0 & 1 \end{bmatrix}$.

Exercício

Justifique que a matriz

$$A = \left[\begin{array}{ccc} 0 & 1 & 3 \\ 5 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

é invertível, sabendo que

$$A=E_2E_3E_1,$$

onde E_1 , E_2 , E_3 são as matrizes do exemplo anterior. Qual a inversa?

1.6 Formas de escada e característica de uma matriz

Definição

Chama-se pivô de uma linha não nula de uma matriz ao elemento não nulo mais à esquerda dessa linha. Considera-se que uma linha nula não tem pivô. Chamam-se pivôs de uma matriz não nula aos pivôs de todas as suas linhas não nulas.

Exemplo

Os pivôs da matriz
$$\begin{bmatrix} 0 & 0 & 0 & 7 \\ 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & -4 \end{bmatrix}$$
 são
$$\begin{bmatrix} 0 & 0 & 0 & 7 \\ 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & -4 \end{bmatrix}$$

Definição

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Diz-se que A está em forma de escada (abreviadamente, denotado por f.e.) se:

- sempre que existir uma linha nula na matriz, as outras linhas abaixo dela serão nulas;
- em duas linhas quaisquer, não nulas, o pivot da linha inferior ocorre mais à direita do que o pivot da linha superior.

Exercício

Quais das matrizes em baixo estão em forma de escada?

$$\begin{bmatrix} 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix} ; \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ; \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

$$\begin{bmatrix} 0 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix} ; \begin{bmatrix} 0 & 2 & 3 & 4 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 6 \end{bmatrix} ; \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Toda a matriz $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ é equivalente por linhas a uma matriz em forma de escada. Abreviadamente

$$A \xrightarrow{(linhas)} A'$$
 (f.e.).

Redução de uma matriz à forma de escada

Exemplo

Considere-se a matriz
$$A = \begin{bmatrix} 0 & 0 & 0 & -2 & 6 \\ 1 & 0 & 2 & 1 & 0 \\ 2 & 0 & 4 & 0 & 6 \end{bmatrix} \in \mathcal{M}_{3\times 5}(\mathbb{R}).$$

Então,
$$A = \begin{bmatrix} 0 & 0 & 0 & -2 & 6 \\ 1 & 0 & 2 & 1 & 0 \\ 2 & 0 & 4 & 0 & 6 \end{bmatrix} \xrightarrow{\ell_1 \leftrightarrow \ell_3} \begin{bmatrix} 2 & 0 & 4 & 0 & 6 \\ 1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & -2 & 6 \end{bmatrix} \rightarrow$$

$$\frac{1}{\ell_2 + (-\frac{1}{2})\ell_1} \begin{bmatrix} 2 & 0 & 4 & 0 & 6 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & -2 & 6 \end{bmatrix} \xrightarrow{\ell_3 + (2)\ell_2} \begin{bmatrix} 2 & 0 & 4 & 0 & 6 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = A'$$

A' está em forma de escada e é equivalente por linhas a A.

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Quaisquer matrizes equivalentes por linhas a A e em forma de escada têm o mesmo número de linhas não nulas.

Definição

Seja $A \in \mathcal{M}_{m \times n}(\mathbb{K})$. Ao número de linhas não nulas de qualquer matriz em forma de escada equivalente por linhas a A chamamos característica de A e denotamos por r(A).

Exemplos

Calculemos a característica da matriz
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 1 & 3 & 0 \end{bmatrix}$$
 .

$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 1 & 3 & 0 \end{bmatrix} \overrightarrow{\ell_3 + (-1)\ell_1} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 2 & 1 \end{bmatrix} \overrightarrow{\ell_3 + (-1)\ell_2} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix} (f.e.)$$

Assim. r(A) = 2.

Seja
$$A \in \mathcal{M}_{m \times n}(\mathbb{K})$$
. Tem-se $\mathrm{r}(A) \leq m$ e $\mathrm{r}(A) \leq n$, isto é, $\mathrm{r}(A) \leq \min\{m,n\}$.

Observação

Se
$$A \in \mathcal{M}_{5\times 3}(\mathbb{K})$$
 então é da forma $A = \left|\begin{array}{ccc} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{array}\right|$. Após reduzir a

matriz à f.e. a matriz obtida só poderão ser de um dos seguintes tipos:

Assim, $r(A) \leq 3$.

Definição

Dizemos que uma matriz está em forma de escada reduzida (abreviadamente, denotado por f.e.r.) se está em forma de escada e os pivôs, se existirem, são iguais a 1 e todos os restantes elementos das colunas dos pivôs são nulos.

Estão em forma de escada reduzida?

$$\left[\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right] \quad ; \qquad \left[\begin{array}{ccc} 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 \end{array}\right].$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ; \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} ; \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Qualquer matriz A é equivalente por linhas a uma única matriz em forma de escada reduzida. Abreviadamente.

$$A \xrightarrow{(linhas)} A''$$
 (f.e.r.), com A'' única.

Redução de uma matriz à forma de escada reduzida

Exemplo

Considere a matriz
$$A = \begin{bmatrix} 0 & 1 & 2 & 1 & -1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} (f.e.).$$

Então.

$$A = \begin{bmatrix} 0 & 1 & 2 & 1 & -1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\frac{1}{3}\ell_3} \begin{bmatrix} 0 & 1 & 2 & 1 & -1 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow$$

$$\overrightarrow{\ell_1 + 1\ell_3} \begin{bmatrix}
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\overrightarrow{\ell_1 + (-2)\ell_2} \begin{bmatrix}
0 & 1 & 0 & 3 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$
(f.e.r.)

Departamento de Matemática (FCT/UNL) Álgebra Linear e Geometria Analítica-B

Observação

Uma matriz pode dar origem a <u>diversas</u> suas formas de escada, mas só dá origem a <u>uma</u> matriz em forma de escada reduzida.

Proposição

Duas matrizes $A, B \in \mathcal{M}_{m \times n}(\mathbb{K})$ são equivalentes por linhas <u>se e só</u> se têm a mesma forma de escada reduzida.

Exercício

Diga se as matrizes

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & -4 & -5 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 0 \end{bmatrix}$$

são equivalentes por linhas

1.7 Caracterizações das matrizes invertíveis

A partir da definição é muitas vezes complicado saber se uma matriz é invertível.

Existe uma forma fácil de ver se uma matriz é invertível?

Exercício

Considere a matriz

$$A = \left[\begin{array}{ccc} 2 & 2 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{array} \right].$$

- Qual a característica da matriz A?
- 2 Indique a f.e.r. de A.
- Oracterize a matriz l₃ à custa de A e de matrizes elementares.
- Justifique que A é invertível.
- Indique A^{-1} .
- **1** Escreva A como o produto de matrizes elementares.

1.7 Caracterizações das matrizes invertíveis

Existe uma forma fácil de ver se uma matriz é invertível?

Teorema

Seja $A \in \mathcal{M}_{n \times n}(\mathbb{K})$. As afirmações seguintes são equivalentes:

- A é invertível.
- ② r(A) = n.
- I_n é a forma de escada reduzida de A.
- A pode escrever-se como produto de matrizes elementares.

Exemplo

Considere a matriz quadrada $A = \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix} \in \mathcal{M}_{2\times 2}(\mathbb{K}).$

Vejamos se A é invertível.

Recorrendo ao teorema anterior,

$$\left[\begin{array}{cc} 1 & -1 \\ -2 & 2 \end{array}\right] \xrightarrow{\ell 2 + 2\ell_1} \left[\begin{array}{cc} 1 & -1 \\ 0 & 0 \end{array}\right].$$

Assim, r(A) = 1 que sendo menor que 2 =ordem de $A \Rightarrow A$ não é invertível.

Caso A seja invertivel como obter A^{-1} ?

Se $A \in \mathcal{M}_{n \times n}(\mathbb{K})$ é uma matriz invertível podemos calcular A^{-1} do seguinte modo:

- Partindo de A efectuamos transformações elementares sobre linhas de modo a obter In;
- ② Partindo da identidade I_n efectuarmos a mesma sequência de transformações elementares sobre linhas. A matriz obtida no final é A^{-1} .

$$[A \mid I_n] \xrightarrow{(linhas)} [I_n \mid A^{-1}].$$

Conclusão: Como saber se A é invertível (esquematicamente):

 $A_{f.e.r}$ = Matriz em f.e.r. obtida de A= I_n

Exemplo

Consideremos a matriz quadrada

$$A = \left[\begin{array}{ccc} 2 & 2 & 0 \\ 0 & 1 & 0 \\ -1 & -1 & 1 \end{array} \right].$$

Determinemos, caso exista, a sua inversa:

$$\begin{bmatrix} 2 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ -1 & -1 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}\ell_1} \begin{bmatrix} 1 & 1 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ -1 & -1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\overrightarrow{\ell_3 + \ell_1} \left[\begin{array}{ccc|c} 1 & 1 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & \frac{1}{2} & 0 & 1 \end{array} \right] \overrightarrow{\ell_1 + (-1)\ell_2} \left[\begin{array}{ccc|c} 1 & 0 & 0 & \frac{1}{2} & -1 & 0 \\ 0 & 1 & 0 & 0 & \frac{1}{2} & 0 & 1 \end{array} \right].$$

 I_3 A^{-1}