Ime i prezime:

Broj indeksa:

Datum: 16. januar 2017.

2. (2p) Da li su sledeći vektori(matrice) $V_1 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, $V_2 = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$ ortogonalni? Normirati ih.

$$V_{1}^{\dagger}V_{2} = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} = 0 \quad ortogonalni \quad su!$$

$$V_{1}^{\dagger}V_{1} = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 4, V_{1}^{norm} = \frac{1}{\sqrt{4}} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 \\ 0 \end{bmatrix}$$

$$V_{2}^{\dagger}V_{2} = \begin{bmatrix} 0 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \end{bmatrix} = 9, V_{2}^{norm} = \frac{1}{\sqrt{9}} \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$

3. (2p) Izračunati determinantu
$$B = \begin{pmatrix} 1 & 3 & -2 & 4 \\ 1 & 4 & 2 & 2 \\ 0 & 1 & 1 & 3 \\ 1 & 3 & -2 & 4 \end{pmatrix}$$
.
$$B = \begin{pmatrix} 1 & 3 & 2 & 4 \\ 1 & 4 & 2 & 2 \\ 0 & 1 & 1 & 3 \\ \hline 1 & 3 & -2 & 4 \end{pmatrix} = 0$$

$$B = \begin{pmatrix} 1 & 3 & 2 & 4 \\ 1 & 4 & 2 & 2 \\ 0 & 1 & 1 & 3 \\ \hline 1 & 3 & -2 & 4 \end{pmatrix} = 0$$

4. (1p) Proverite da li je sledća matrica $H = \begin{vmatrix} 2 & i \\ -i & 3 \end{vmatrix}$ ermitska?

$$H^{\dagger} = \begin{bmatrix} 2 & i \\ -i & 3 \end{bmatrix}^{*T} = \begin{bmatrix} 2 & -i \\ +i & 3 \end{bmatrix}^{T} = \begin{bmatrix} 2 & i \\ -i & 3 \end{bmatrix}$$

$$Jeste, jer je H^{\dagger} = H$$

5. (2p) Poređati sledeće vrste po porastu atomskog radijusa:

Vrste su izoelektronske, pa se relativna veličina jona može proceniti iz naelektrisanja jezgra:

$$AI^{3+} < Mq^{2+} < Na^{+} < F^{-} < O^{2-} < N^{3-}$$

6. (1p) Zaokružite elektronsku konfiguraciju molekula NO.

a)
$$1\sigma^2 2\sigma^2 3\sigma^2 4\sigma^2 5\sigma^2 1\pi^4 2\pi^1$$

b)
$$1\sigma^2 2\sigma^2 3\sigma^2 4\sigma^2 1\pi^4 5\sigma^2 2\pi^2$$

c)
$$1\sigma^2 2\sigma^2 3\sigma^2 4\sigma^2 5\sigma^2 1\pi^1$$

d)
$$1\sigma^2 2\sigma^2 3\sigma^2 4\sigma^2 5\sigma^2 1\pi^2$$

7. (2p) Uporediti relativne stabilnosti NO-, NO i NO+.

Iz prethodnog zadatka se vidi da NO ima jedan electron u π^* (2 π) orbital, redosled stabilnosti je NO+ > NO > NO-

9. a) (1p) Nacrtati Lewis-ovu strukturu BrF₅ jona.

b) (1p) Na osnovu VSEPR teorije odrediti molekulsku geometriju ovog jona.
 Kvadratna piramida

(11. (3p) +3 je najčešće oksidaciono stanje u seriji 4*f* elemenata. Obajsniti zašto Gd ima nižu treću energiju jonizacije od Eu? Na osnovu trenda u **I**₃, za koje atome očekujete da će graditi 2+ jone?

Materijali sa vežbi(vezbe_THV_4_i_5.pdf, str 5)

(13. (2p) Napisati elektronsku konfiguraciju atoma Cr, i **kratko** objasniti zašto ste se odlučili na taj izbor.

Materijali sa vežbi(vezbe_THV_4_i_5.pdf, str 7-8)

14. (4p) Napisati SD za atom Li. Razviti determinantu.

$$\begin{split} SD\big(Li\big) &= \frac{1}{\sqrt{3}} \begin{pmatrix} 1s_{\uparrow}(1) & 1s_{\downarrow}(1) & 2s_{\uparrow}(1) \\ 1s_{\uparrow}(2) & 1s_{\downarrow}(2) & 2s_{\uparrow}(2) \\ 1s_{\uparrow}(3) & 1s_{\downarrow}(3) & 2s_{\uparrow}(3) \end{pmatrix} = \\ & \frac{1}{\sqrt{3}} \begin{pmatrix} 1s_{\uparrow}(1) \begin{pmatrix} 1s_{\downarrow}(2) & 2s_{\uparrow}(2) \\ 1s_{\downarrow}(3) & 2s_{\uparrow}(3) \end{pmatrix} - 1s_{\uparrow}(2) \begin{pmatrix} 1s_{\downarrow}(1) & 2s_{\uparrow}(1) \\ 1s_{\downarrow}(3) & 2s_{\uparrow}(3) \end{pmatrix} + 1s_{\uparrow}(3) \begin{pmatrix} 1s_{\downarrow}(1) & 2s_{\uparrow}(1) \\ 1s_{\downarrow}(2) & 2s_{\uparrow}(2) \end{pmatrix} = \\ & \frac{1}{\sqrt{3}} \begin{pmatrix} 1s_{\uparrow}(1)1s_{\downarrow}(2)2s_{\uparrow}(3) - 1s_{\uparrow}(1)1s_{\downarrow}(3)2s_{\uparrow}(2) - 1s_{\uparrow}(2)1s_{\downarrow}(1)2s_{\uparrow}(3) + \\ +1s_{\uparrow}(2)1s_{\downarrow}(3)2s_{\uparrow}(1) + 1s_{\uparrow}(3)1s_{\downarrow}(1)2s_{\uparrow}(2) - 1s_{\uparrow}(3)1s_{\downarrow}(2)2s_{\uparrow}(1) \end{pmatrix} \end{split}$$

(15.) (11p) Koji od sledećih atoma, jona i molekula ima multideterinantno (degenerisano) osnvno stanje:

a) C, b) N, c) Cr, d) Fe³⁺, e) O₂⁻, f) O₂⁺, g)Cp⁻, h)Cp⁻, i)Cp⁺, j)[MnCl₆]³⁻, k)[Co(CN)₆]³⁻

16. (3p) a) Odredti da li su sledeći ligandi π-donori, π-akceptori ili samo σ-donori: $CH_3C\equiv N,\ NH_3,\ NO_2^-,\ NO_2^-,\ Py,\ Cl^-$

 π -donori: NO₂-, Cl-

π-akceptori: CH₃C≡N, NO₂-, Py

samo σ-donori: NH₃

b) (1.5p) Ko izaziva jače cepanje ligandnog polja: H₂O ili OH⁻. **Kratko** objasniti.

OH- Izaziva slabije cepanje jer je jači π-donor

c) (1.5p) Da li je veza Fe-C verovatnija od veze Fe-N u jonu $[Fe(CN)_6]^{4-}$? Zašto? Fe-C veza je verovatnija, jer je HOMO dominantno na C(jedno od prethodnih pitanja)

17. (4*1.5=6) Odrediti grupe simetrije kojima pripadaju sledeci molekuli i napisati ispod njih:

Pronaći osu najvišeg reda, C_n . Da li molekul ima n C_2 koje su normalne na C_n ? (ako je glavna osa C_2 , treba da ima 2 C_2 koje su normalne, ako je glavna osa C_3 , treba da ima 3 C_2 , ...)

18 . Na slici ispod su date osnovna(Stanje I) i neke ekscitovane konfirutacije etena(Stanja II-VII).

a) (7p) Napisati oznaku ukupnog elektronskog stanja ispod svake konfiguracije.

 b) (9p) Razmotrite prelaze iz osnovnog u stanja II, III, IV, V, VI i VII. Za svaki recite da li spinski i orbitalno dozvoljen ili zabranjen.

Kratak i pojednostavljen uvod, pošto nemate materijale iz ove oblasti:

Matrični element
$$\int \Psi^*_{\frac{osnovno}{stanje(o.s.)}} \cdot \hat{\mu} \cdot \Psi_{\frac{ekscitovano}{stanje(o.s.)}} dv$$
 mora biti različit od nule da bi prelaz bio dozvoljen.

Pošto se Ψ može napisati kao proizvod spinskog i orbitalnog dela, i kako operator električnog dipolnog momenta ne deluje na spin, imamo

$$\int \left(\psi_{\text{orbitalno}}^* \cdot \psi_{\text{spinsko}}^* \right) \cdot \hat{\mu} \cdot \left(\psi_{\text{orbitalno}} \cdot \psi_{\text{spinsko}} \right) dV \qquad ds \\ \text{e.s.} \qquad \left(\psi_{\text{orbitalno}}^* \cdot \psi_{\text{spinsko}} \right) dV \qquad ds \\ \text{prostorne spinske} \\ \text{koordinate koordinate} \qquad = \int \psi_{\text{orbitalno}}^* \cdot \hat{\mu} \cdot \psi_{\text{orbitalno}} dV \qquad \int \psi_{\text{spinsko}}^* \cdot \psi_{\text{spinsko}} ds \\ \text{e.s.} \qquad \left(\psi_{\text{orbitalno}} \right) \left(\psi_{\text{orbitalno}} \right) \left(\psi_{\text{spinsko}} \right) \left(\psi_{\text{spinsko}} \cdot \psi_{\text{spinsko}} \right) ds \\ \text{e.s.} \qquad \left(\psi_{\text{orbitalno}} \right) \left(\psi_{\text{orbitalno}} \right) \left(\psi_{\text{spinsko}} \right) \left(\psi_{\text{spinsko}} \cdot \psi_{\text{spinsko}} \right) ds \\ \text{e.s.} \qquad \left(\psi_{\text{orbitalno}} \right) \left(\psi_{\text{orbitalno}} \right) \left(\psi_{\text{orbitalno}} \right) \left(\psi_{\text{spinsko}} \cdot \psi_{\text{spinsko}} \right) ds \\ \text{e.s.} \qquad \left(\psi_{\text{orbitalno}} \right) \left(\psi_{\text{orbitalno}} \right) \left(\psi_{\text{orbitalno}} \right) \left(\psi_{\text{orbitalno}} \right) \left(\psi_{\text{spinsko}} \right) \left(\psi_{\text{$$

Električni dipolni momenti je vektor, pa se može predstaviti preko svoje tri komponente: $\vec{\mu} = \vec{\mu}_x + \vec{\mu}_y + \vec{\mu}_z$ (koje se simetrijski ponašaju kao x (B_{1u}), y (B_{2u}) i z (B_{3u}) koordinate).

Usled toga što ne postoje materijali za ovaj zadatak, rešenje je dato sa svim sitnim detaljima, **ne** morate toliko toga da pišete na ispitu!

$$I \rightarrow II \left({}^{1}A_{g} \rightarrow {}^{1}B_{3u} \right) \qquad A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{3u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{B_{3u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{1g}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{1g}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{1u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{1u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{1u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{1u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{2u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{2u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{2u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{2u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{2u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{2u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{2u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2} \\ B_{1u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{2u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2}, \mu_{2} \\ B_{2u}, B_{2u}, B_{3u} \end{bmatrix}}_{A_{g} \cdot B_{2u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2}, \mu_{2} \\ B_{2u}, B_{2u}, B_{2u}, B_{2u} \end{bmatrix}}_{A_{g} \cdot B_{2u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2}, \mu_{2} \\ B_{2u}, B_{2u}, B_{2u}, B_{2u}, B_{2u} \end{bmatrix}}_{A_{g} \cdot B_{2u}} \stackrel{e.s.}{\Rightarrow} \\ A_{g} \cdot \underbrace{ \begin{bmatrix} \mu_{1}, \mu_{2}, \mu_{2},$$

19 . (2p) $[Fe(ox)_3]^{3-}$ pripada D_3 grupi simetrije, i poseduje identicnost, C_3 i C_2 osu simetrije. Da li je ovaj molekul hiralan? **Kratko** bjasniti.

Jeste, ne poseduje ni jednu S_n osu.

24. (5p) Na osnovu Tanabe-Šugano-vog dijagrama odrediti koji je osnovni term slobodnog metalnog jona, kao i u oktaedarskom okruženju za $[CoF_6]^{4-}$. Nabrojati dozvoljene i zabranjene prelaze.

Tanabe-Šuganov dijagramkoji je dat sadrži sva stanja(da biste što više naučili iz ovog rešenja), onaj iz zadatka je sadržao samo neka.

Osnovno stanje atoma: ⁴F

[CoF₆]⁴⁻⇒slabo polje, Osnovno stanje kompleksa: ⁴T_{1g}

Dozvoljeni prelazi: ${}^4T_{1g} \rightarrow {}^4T_{2g}$, ${}^4T_{1g}$, ${}^4A_{2g}$

Zabranjeni prelazi: svi ostali

25. (5p) Na osnovu Tanabe-Sugano-vog dijagrama(iz prethodnog zadatka) odrediti koji je osnovni term slobodnog metalnog jona, kao i u oktaedarskom okruženju za $[Co(CN)_6]^{4-}$. Nabrojati dozvoljene i zabranjene prelaze..

Osnovno stanje atoma: ⁴F

 $[\text{Co}(\text{CN})_6]^{4-}$ \Rightarrow jako polje, Osnovno stanje kompleksa: 2E_g

 $Dozvoljeni \ prelazi: \ ^2E_g \rightarrow \ ^2T_{2g}, \ ^2T_{1g}, \ ^2T_{2g}, \ ^2A_{1g}, \ ^2T_{1g}, \ ^2T_{2g}, \ ^2E_g, \ ^2T_{1g}, \ ^2T_{2g}, \ ^2A_{2g}, \ ^2E_g, \ ^2T_{1g}, \ ^2T_{2g}, \$

Zabranjeni prelazi: svi ostali

1. (18p)Napisati sve termove za d³ konfiguraciju. Naći osnovni term.

Izvođenje: Materijali sa vežbi(vezbe_THV_4_i_5.pdf, str 20-22)

Kraći način: Kako d⁷ i d³ imaju iste termove, samo prepišete stanja atoma sa Tanabe-Šuganovog dijagrama koji se nalazi na prethodnoj strani.

2. (10p+10p) Koje simetrijske reprezentacije obrazuju 4 liganda koja grade σ -vezu sa metalom u kvadratno planarnom okruženju? Sa kojim orbitalama sa metala će oni intereagovati? Dati isti odgovor i za π -interakciju koju formiraju prikazane 4 p-orbitale liganda.

(Pomoć: σ i π interakcije posmatrajte odvojeno. Karakter vaše reprezentacije dobijate tako što posmatrate koliko orbitala ostaje na mestu nakon primene operacija simetrije)

σ-interakcija

 π -interakcija

D_{4h}	Ε	2 <i>C</i> ₄	C_2	2 <i>C</i> ′ ₂	2 C'' 2	i	$2S_4\sigma_h$	$2\sigma_{v}$	$2\sigma_{d}$
A_{1g}	1	1	1	1	1	1	1 1	1	1 $x^2 + y^2, z^2$
A_{2g}	1	1	1	-1	– 1	1	1 1	-1	-1 R _z
B_{1g}	1	-1	1	1	– 1	1	-1 1	1	$-1 x^2 - y^2$
B_{2g}	1	-1	1	-1	1	1	-1 1	– 1	1 <i>xy</i>
E_g	2	0	-2	0	0	2	0 –2	0	$0 (R_x, R_y) (xz, yz)$
A_{1u}	1	1	1	1	1	-1	-1 -1	-1	–1
A_{2u}	1	1	1	-1	– 1	-1	-1 -1	1	1 Z
B_{1u}	1	– 1	1	1	– 1	-1	1 –1	-1	1
B_{2u}	1	– 1	1	-1	1	-1	1 –1	1	–1
Eu	2	0	-2	0	0	-2	0 2	0	0 (x , y)
Γσ	4	0	0	2	0	0	0 4	2	0 $A_{1g}+B_{1g}+E_u$
Γπ	4	0	0	-2	0	0	0 -4	2	$0 A_{2u}+B_{2u}+E_g$

Svaka orbitala liganda se može preklapati sa orbitalama metala koje imaju istu simetriju.

 $\Gamma\sigma$ (A_{1g} orbitala liganda se preklapa sa s i d_{z^2} orbitalama metala, B_{1g} sa $d_{x^2-y^2}$ a E_u sa p_x i p_y)

 $\Gamma\pi$ (A_{2u} se preklapa sa p_z orbitalom metala + B_{2u} je nevezivna a E_g sa d_{xz} i d_{yz})

3. (5p) G_1 =(1, -1, i, -i) predstavlja grupu, uz množenje kao način za kombinovanje elemenata. Šta su inverzni elementi svakog od članova grupe? Šta je jedinični element?

Materijali sa vežbi(vezbe_THV_6_7_i_8.pdf, str 19-20)

4. (6p)Ispod je dat jedan od svojstvenih vektora benzena (tj. jedna od MO). Nacrtati je. Naći odgovarajuću svojstvenu vrednost(savet: koristite hamiltonijan napisan preko α i β).

$$\begin{bmatrix} \alpha & \beta & 0 & 0 & 0 & \beta \\ \beta & \alpha & \beta & 0 & 0 & 0 \\ 0 & \beta & \alpha & \beta & 0 & 0 \\ 0 & 0 & \beta & \alpha & \beta & 0 \\ 0 & 0 & 0 & \beta & \alpha & \beta \\ \beta & 0 & 0 & 0 & \beta & \alpha \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ -1 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ \alpha + \beta \\ 0 \\ -\alpha - \beta \\ -\alpha - \beta \end{bmatrix} = \alpha + \beta \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ -1 \\ -1 \end{bmatrix}$$

