REVISION HISTORY

REVISION	DESCRIPTION	Date
Preliminary Rev. 0.1	Original.	May 3 ,2001
Rev. 1.0	Revised - The timeing waveforms add CE2 control pin	Jun.4,2001
Rev. 1.1	Revised - Package outline dimension - Waveform.	Jan 15,2002
Rev. 1.2	Revised - Improve I _{DR} from 20μA to 10μA (LL-version , max.) - 28-pin PDIP package outline dimension	May 14,2002
Rev. 1.3	 Add Extended temperature: -20 ~85 Revised Operating: 45/30 mA (typ.)→40/30 mA (typ.) Revised CMOS Standby: 2→0.3mA (typ.) normal Revised DC characteristics: a. lcc(-35): 45→40mA (typ.), 60→50 mA (max) b. lcc(-70): 45→40mA (max.) c. lcc1(Tcycle=1us)= 10mA(max.) d. lcc2(Tcycle=500ns)=20mA(max.) Revised "Order information": add Extended parts 	Jul 30,2002
Rev. 1.4	Add order information for lead free product	May 15,2003

1

UT6264C

8K X 8 BIT LOW POWER CMOS SRAM

FEATURES

Access time: 35/70ns (max.) Low power consumption: Operating: 40/30 mA (typ.)

CMOS Standby: 0.3mA (typ.) normal

2 μA (typ.) L-version 1 μA (typ.) LL-version

■ Single 4.5V~5.5V power supply

Operating temperature : Commercial: 0 ~70 Extended: -20 ~85

■ All inputs and outputs TTL compatible

Fully static operation Three state outputs

Data retention voltage: 2V (min.) ■ Package : 28-pin 600 mil PDIP 28-pin 330 mil SOP

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The UT6264C is a 65,536-bit low power CMOS static random access memory organized as 8,192 words by 8 bits. It is fabricated using high performance, high reliability CMOS technology.

Easy memory expansion is provided by using two chip enable input.($\overline{\text{CE}}$,CE2) ,and supports low data retention voltage for battery back-up operation with low data retention current.

The UT6264C operates from a single 4.5V~5.5V power supply and all inputs and outputs are fully TTL compatible.

PIN CONFIGURATION

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0 - A12	Address Inputs
I/O1 - I/O8	Data Inputs/Outputs
CE,CE2	Chip Enable Inputs
WE	Write Enable Input
ŌĒ	Output Enable Input
V _{CC}	Power Supply
V_{SS}	Ground
NC	No connection

UTRON TECHNOLOGY INC. P80028

2

1F, No. 11, R&D Rd. II, Science-Based Industrial Park, Hsinchu, Taiwan, R. O. C.

ABSOLUTE MAXIMUM RATINGS*

PARAMETER	SYMBOL	RATING	UNIT	
Terminal Voltage with Res	spect to V _{SS}	VTERM	-0.5 to 7.0	V
Operating Temperature	Commercial	TA	0 to 70	
	Extended		-20 to 85	
Storage Temperature	Storage Temperature		-65 to 150	
Power Dissipation		PD	1	W
DC Output Current		lout	50	mA
Soldering Temperature (u	Tsolder	260		

^{*}Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to the absolute maximum rating conditions for extended period may affect device reliability.

TRUTH TABLE

MODE	CE	CE2	OE	WE	I/O OPERATION	SUPPLY CURRENT
Standby	Н	Х	Х	Х	High - Z	ISB, ISB1
Standby	Х	L	Х	Х	High - Z	ISB, ISB1
Output Disable	L	Н	Н	Н	High - Z	lcc,lcc1,lcc2
Read	L	Н	L	Н	Dout	lcc,lcc1,lcc2
Write	L	Н	Х	L	Din	lcc,lcc1,lcc2

note: H = VIH, L=VIL, X = Don't care.

DC ELECTRICAL CHARACTERISTICS ($V_{CC} = 4.5V \sim 5.5V$, $T_A = 0$ to 70 /-20 to 85 (E))

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Input High Voltage	V _{IH} *1			2.2	-	Vcc+0.5	V
Input Low Voltage	V _{IL} *2			- 0.5	-	0.8	V
Input Leakage Current	ILI	Vss Vin Vcc		- 1	-	1	μΑ
Output Leakage Current	lLO	Vss VI/O Vcc; \overline{CE} =VIH;or CE or \overline{OE} = VIH ;or \overline{WE} = VIL	E2=V _{IL;}	- 1	-	1	μA
Output High Voltage	Vон	I _{OH} = -1mA		2.4	-	-	V
Output Low Voltage	Vol	I _{OL} = 4mA		ı	-	0.4	V
	Icc	CE = V _{IL} ,	- 35	-	40	50	mA
	ICC	I _{I/O} = 0mA ,Cycle=Min.	- 70	-	30	40	mA
Operating Power Supply Current	lcc1	32 , 1/3 ,	Tcycle =1µs	-	-	10	mA
	lcc2	other pins at 0.2V or V _{CC} -0.2V	Tcycle =500ns	1	1	20	mA
	I _{SB}	CE =V _{IH} or CE2= V _{IL}	normal	-	1	10	mA
Standby Dower	I _{SB1}	CE V _{CC} -0.2V or CE2 0.2V			0.3	5	mA
Standby Power Supply Current	I _{SB}	CE =V _{IH} or CE2= V _{IL}	-L/-LL	-	-	3	mA
	I _{SB1}	CE V _{CC} -0.2V or CE2 0.2V	-L	-	2	100	μA
			-LL	-	1	50	μA

Notes:

- 1. Overshoot: Vcc+2.0v for pulse width less than 10ns.
- 2. Undershoot: Vss-2.0v for pulse width less than 10ns.
- 3. Overshoot and Undershoot are sampled, not 100% tested.

UTRON TECHNOLOGY INC. P80028

1F, No. 11, R&D Rd. II, Science-Based Industrial Park, Hsinchu, Taiwan, R. O. C.

UT6264C

8K X 8 BIT LOW POWER CMOS SRAM

CAPACITANCE (T_A=25 , f=1.0MHz)

PARAMETER	SYMBOL	MIN.	MAX	UNIT
Input Capacitance	Cin	-	8	pF
Input/Output Capacitance	C _{I/O}	-	10	pF

Note: These parameters are guaranteed by device characterization, but not production tested.

AC TEST CONDITIONS

Input Pulse Levels	0V to 3.0V
Input Rise and Fall Times	5ns
Input and Output Timing Reference Levels	1.5V
Output Load	$C_L = 100pF, I_{OH}/I_{OL} = -1mA/4mA$

AC ELECTRICAL CHARACTERISTICS ($V_{CC} = 4.5V \sim 5.5V$, $T_A = 0$ to 70 /-20 to 85 (E))

(1) READ CYCLE

PARAMETER	SYMBOL	UT626	UT6264C-35		UT6264C-70	
PARAMETER	STWIDOL	MIN.	MAX.	MIN.	MAX.	UNIT
Read Cycle Time	t _{RC}	35	-	70	-	ns
Address Access Time	taa	-	35	-	70	ns
Chip Enable Access Time	t _{ACE}	-	35	-	70	ns
Output Enable Access Time	toe	-	25	-	35	ns
Chip Enable to Output in Low-Z	t _{CLZ*}	10	-	10	-	ns
Output Enable to Output in Low-Z	t _{OLZ*}	5	-	5	-	ns
Chip Disable to Output in High-Z	tcHZ*	-	25	-	35	ns
Output Disable to Output in High-Z	tonz*	-	25	-	35	ns
Output Hold from Address Change	tон	5	-	5	-	ns

(2) WRITE CYCLE

PARAMETER	SYMBOL	UT626	UT6264C-35		UT6264C-70		
PARAMETER	STWIBOL	MIN.	MIN. MAX.		MAX.	UNIT	
Write Cycle Time	twc	35	-	70	-	ns	
Address Valid to End of Write	t _{AW}	30	-	60	-	ns	
Chip Enable to End of Write	t _{CW}	30	-	60	-	ns	
Address Set-up Time	tas	0	-	0	-	ns	
Write Pulse Width	twp	25	-	50	-	ns	
Write Recovery Time	twR	0	-	0	-	ns	
Data to Write Time Overlap	t _{DW}	20	-	30	-	ns	
Data Hold from End of Write-Time	t _{DH}	0	-	0	-	ns	
Output Active from End of Write	tow*	5	-	5	-	ns	
Write to Output in High-Z	t _{WHZ*}	-	15	-	25	ns	

^{*}These parameters are guaranteed by device characterization, but not production tested.

UTRON TECHNOLOGY INC. P80028

4

1F, No. 11, R&D Rd. II, Science-Based Industrial Park, Hsinchu, Taiwan, R. O. C.

TIMING WAVEFORMS

READ CYCLE 1 (Address Controlled) (1,2)

READ CYCLE 2 ($\overline{\text{CE}}$ and CE2 and $\overline{\text{OE}}$ Controlled) (1,3,4,5)

Notes:

- 1. WE is high for read cycle.
- 2. Device is continuously selected \overline{OE} =low, \overline{CE} =low, CE2=high.
- 3.Address must be valid prior to or coincident with $\overline{\text{CE}}$ =low, CE2=high; otherwise t_{AA} is the limiting parameter.
- $4.t_{\text{CLZ}},\,t_{\text{OLZ}},\,t_{\text{CHZ}}$ and t_{OHZ} are specified with CL=5pF. Transition is measured ± 500mV from steady state.
- 5.At any given temperature and voltage condition, t_{CHZ} is less than t_{CLZ} , t_{OHZ} is less than t_{OLZ} .

P80028 UTRON TECHNOLOGY INC.

5

WRITE CYCLE 1 (WE Controlled) (1,2,3,5,6)

WRITE CYCLE 2 ($\overline{\text{CE}}$ and CE2 Controlled) (1,2,5,6)

Notes:

Rev. 1.4

- 1. WE, CE must be high or CE2 must be low during all address transitions.
- 2.A write occurs during the overlap of a low \overline{CE} , high CE2, low \overline{WE} .
- 3. During a WE controlled write cycle with OE low, twp must be greater than twHz+tpw to allow the drivers to turn off and data to be placed on
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5. If the CE low transition and CE2 high transition occurs simultaneously with or after WE low transition, the outputs remain in a high impedance state.
- $6.t_{OW}$ and t_{WHZ} are specified with C_L = 5pF. Transition is measured ± 500mV from steady state.

DATA RETENTION CHARACTERISTICS $(T_A = 0 \text{ to } 70 \text{ } /-20 \text{ to } 85 \text{ } (E))$

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Vcc for Data Retention	V _{DR}	CE Vcc-0.2V or CE2 ≤ 0.2V		2.0	-	5.5	V
Data Retention Current		Vcc=2V	-L	-	1	50	μΑ
	IDR	CE Vcc-0.2V or CE2 ≤ 0.2V	-LL	-	0.5	10	μА
Chip Disable to Data Retention Time	tcdr	See Data RetentionWaveforms (below)		0	-	-	ns
Recovery Time	t _R			t _{RC*}	-	-	ns

t_{RC*} = Read Cycle Time

DATA RETENTION WAVEFORM

Low Vcc Data Retention Waveform (1) (CE controlled)

Low Vcc Data Retention Waveform (2) (CE2 controlled)

UTRON TECHNOLOGY INC. P80028

7

1F, No. 11, R&D Rd. II, Science-Based Industrial Park, Hsinchu, Taiwan, R. O. C.

P80028

PACKAGE OUTLINE DIMENSION

28 pin (600mil) PDIP Package Outline Dimension

UNIT	INCH(BASE)	MM(REF)
A1	0.010 (MIN)	0.254 (MIN)
A2	0.150 ± 0.01	3.810 ± 0.254
В	0.018 ± 0.005	0.457 ± 0.127
С	0.010 ± 0.004	0.254 ± 0.102
D	1.460 ± 0.005	37.084 ± 0.127
Е	0.600 ± 0.010	15.240 ± 0.254
е	0.100 (TYP)	2.540 (TYP)
eB	0.640± 0.03	16.256 ± 0.762
L	0.130 ± 0.010	3.302 ± 0.254
	0° 15°	0° 15°

28 pin 330 mil SOP Package Outline Dimension

SYMBOL	INCH(BASE)	MM(REF)
Α	0.112(max)	2.845(max)
A1	0.004(MIN)	0.102(MIN)
A2	0.098±0.005	2.489±0.127
b	0.016(TYP)	0.406(TYP)
С	0.010(TYP)	0.254(TYP)
D	0.713±0.005	18.110±0.127
E	0.331±0.005	8.407±0.127
E1	0.465±0.012	11.811±0.305
е	0.050(TYP)	1.270(TYP)
L	0.0404±0.008	1.0255±0.203
L1	0.067±0.008	1.702±0.203
S	0.047(MAX)	1.194(MAX)
у	0.003(MAX)	0.076(MAX)
θ	0°~10°	0°~10°

UTRON TECHNOLOGY INC. P80028

9

1F, No. 11, R&D Rd. II, Science-Based Industrial Park, Hsinchu, Taiwan, R. O. C. TEL: 886-3-5777882 FAX: 886-3-5777919

ORDERING INFORMATION

Commerical temperature

PART NO.	ACCESS TIME (ns)	STANDBY CURRENT (μA) (TYP.)	PACKAGE
UT6264CPC-35	35	0.3mA	28 PIN PDIP
UT6264CPC-35L	35	2µA	28 PIN PDIP
UT6264CPC-35LL	35	1µA	28 PIN PDIP
UT6264CPC-70	70	0.3mA	28 PIN PDIP
UT6264CPC-70L	70	2µA	28 PIN PDIP
UT6264CPC-70LL	70	1µA	28 PIN PDIP
UT6264CSC-35	35	0.3mA	28 PIN SOP
UT6264CSC-35L	35	2µA	28 PIN SOP
UT6264CSC-35LL	35	1µA	28 PIN SOP
UT6264CSC-70	70	0.3mA	28 PIN SOP
UT6264CSC-70L	70	2µA	28 PIN SOP
UT6264CSC-70LL	70	1µA	28 PIN SOP

Extended temperature

PART NO.	ACCESS TIME (ns)	STANDBY CURRENT (µA) (TYP.)	PACKAGE
UT6264CPC-35E	35	0.3mA	28 PIN PDIP
UT6264CPC-35LE	35	2 _µ A	28 PIN PDIP
UT6264CPC-35LLE	35	1µA	28 PIN PDIP
UT6264CPC-70E	70	0.3mA	28 PIN PDIP
UT6264CPC-70LE	70	2 _µ A	28 PIN PDIP
UT6264CPC-70LLE	70	1µA	28 PIN PDIP
UT6264CSC-35E	35	0.3mA	28 PIN SOP
UT6264CSC-35LE	35	2 _µ A	28 PIN SOP
UT6264CSC-35LLE	35	1µA	28 PIN SOP
UT6264CSC-70E	70	0.3mA	28 PIN SOP
UT6264CSC-70LE	70	2µA	28 PIN SOP
UT6264CSC-70LLE	70	1µA	28 PIN SOP

ORDERING INFORMATION (for lead free product)

Commerical temperature

PART NO.	ACCESS TIME (ns)	STANDBY CURRENT (μA) (TYP.)	PACKAGE
UT6264CPCL-35	35	0.3mA	28 PIN PDIP
UT6264CPCL-35L	35	2µA	28 PIN PDIP
UT6264CPCL-35LL	35	1µA	28 PIN PDIP
UT6264CPCL-70	70	0.3mA	28 PIN PDIP
UT6264CPCL-70L	70	2µA	28 PIN PDIP
UT6264CPCL-70LL	70	1µA	28 PIN PDIP
UT6264CSCL-35	35	0.3mA	28 PIN SOP
UT6264CSCL-35L	35	2µA	28 PIN SOP
UT6264CSCL-35LL	35	1µA	28 PIN SOP
UT6264CSCL-70	70	0.3mA	28 PIN SOP
UT6264CSCL-70L	70	2µA	28 PIN SOP
UT6264CSCL-70LL	70	1µA	28 PIN SOP

Extended temperature

PART NO.	ACCESS TIME (ns)	STANDBY CURRENT (µA) (TYP.)	PACKAGE
UT6264CPCL-35E	35	0.3mA	28 PIN PDIP
UT6264CPCL-35LE	35	2µA	28 PIN PDIP
UT6264CPCL-35LLE	35	1µA	28 PIN PDIP
UT6264CPCL-70E	70	0.3mA	28 PIN PDIP
UT6264CPCL-70LE	70	2µA	28 PIN PDIP
UT6264CPCL-70LLE	70	1µA	28 PIN PDIP
UT6264CSCL-35E	35	0.3mA	28 PIN SOP
UT6264CSCL-35LE	35	2µA	28 PIN SOP
UT6264CSCL-35LLE	35	1µA	28 PIN SOP
UT6264CSCL-70E	70	0.3mA	28 PIN SOP
UT6264CSCL-70LE	70	2µA	28 PIN SOP
UT6264CSCL-70LLE	70	1µA	28 PIN SOP

UTRON TECHNOLOGY INC. P80028

11

1F, No. 11, R&D Rd. II, Science-Based Industrial Park, Hsinchu, Taiwan, R. O. C.

THIS PAGE IS LEFT BLANK INTENTIONALLY.