Curso de Macroeconometria

Resolução da Lista 9

Rodney N Silva

22 de Dezembro de 2017

Resolução dos Exercícios

```
source('bcb.R')
library(forecast)
library(urca)
library(stargazer)
library(png)
library(xtable)
library(mFilter)
#1.
setwd( "C:/Users/rodney/Documents/Macroeconometria/Aula9")
pib <- ts(getSeries(22099, data.ini='31/03/1996',
data.fim='01/12/2016')$valor,start=c(1996,01), freq=4)
pib_sa <- ts(getSeries(22109, data.ini='31/03/1996',
data.fim='01/12/2016')$valor,start=c(1996,01), freq=4)
hp <- hpfilter(pib_sa, type='lambda', freq=1600)</pre>
dates <- seq(as.Date('1996-03-01'), as.Date('2016-12-01'),
by='3 month')
df <- data.frame(time=dates, pibe=pib, pibsa=pib_sa, pibp=hp$trend)
colnames(df) <- c('time', 'pib', 'pibsa', 'pot')</pre>
df2 <- data.frame(time=dates, hiato=hp$cycle)</pre>
setwd( "C:/Users/rodney/Documents/Series Temporais")
adf.t <- ur.df(pib_sa, type='trend')</pre>
lags <- 0
setwd( "C:/Users/rodney/Documents/Macroeconometria/Aula9")
adf.t <- ur.df(pib_sa, type='trend',lags=9)</pre>
tab <- cbind(t(adf.t@teststat),adf.t@cval)</pre>
xtable(tab,caption="Teste ADF (com drift e tendência)")
```

	statistic	1pct	5pct	10pct
tau3	-1.43	-4.04	-3.45	-3.15
phi2	1.21	6.50	4.88	4.16
phi3	1.52	8.73	6.49	5.47

Tabela 1: Teste ADF (com drift e tendência)

```
adf.d <- ur.df(pib_sa, type='drift',lags=9)
tab <- cbind(t(adf.d@teststat),adf.d@cval)
xtable(tab,caption="Teste ADF (com drift e sem tendência)")</pre>
```

	statistic	1pct	5pct	10pct
tau2	-1.22	-3.51	-2.89	-2.58
phi1	1.04	6.70	4.71	3.86

Tabela 2: Teste ADF (com drift e sem tendência)

```
adf.n <- ur.df(pib_sa, type='none',lags=9)
tab <- cbind(t(adf.n@teststat),adf.n@cval)
xtable(tab,caption="Teste ADF (sem drift e sem tendência)")</pre>
```

	statistic	1pct	5pct	10pct
tau1	0.42	-2.60	-1.95	-1.61

Tabela 3: Teste ADF (sem drift e sem tendência)

```
# 0 processo é não estacionário sem drift
#
#
#
#
#
#
#
#
#
#
#
#

# 2.

adf.t <- ur.df(hp$cycle, type='trend',lags=28)
tab <- cbind(t(adf.t@teststat),adf.t@cval)
xtable(tab,caption="Teste ADF (com drift e tendência)")</pre>
```

	statistic	1pct	5pct	10pct
tau3	-0.54	-4.04	-3.45	-3.15
phi2	1.17	6.50	4.88	4.16
phi3	1.71	8.73	6.49	5.47

Tabela 4: Teste ADF (com drift e tendência)

```
#
#
adf.d <- ur.df(hp$cycle, type='drift',lags=27)
tab <- cbind(t(adf.d@teststat),adf.d@cval)
xtable(tab,caption="Teste ADF (com drift e sem tendência)")</pre>
```

	statistic	1pct	5pct	10pct
tau2	-1.38	-3.51	-2.89	-2.58
phi1	0.96	6.70	4.71	3.86

Tabela 5: Teste ADF (com drift e sem tendência)

```
adf.n <- ur.df(hp$cycle, type='none',lags=27)
tab <- cbind(t(adf.n@teststat),adf.n@cval)
xtable(tab,caption="Teste ADF (sem drift e sem tendência)")</pre>
```

	statistic	1pct	5pct	10pct
tau1	-1.20	-2.60	-1.95	-1.61

Tabela 6: Teste ADF (sem drift e sem tendência)

```
# O hiato do PIB é não estacionário. Não se parece com ruído branco
#3.
# Marginal
pibm <- 0
pibm_sa <- 0
pib_pot <- 0</pre>
for (x in 1:84){
pibm[x] \leftarrow 100*(pib[x+1]-pib[x])/pib[x]
pibm_sa[x] <- 100*(pibm_sa[x+1]-pibm_sa[x])/pibm_sa[x]</pre>
}
pibm <- ts(pibm, start=c(1996, 01), freq=4)
pibm_sa <- ts(pibm_sa, start=c(1996,01), freq=4)
# Marginal acumulada de 4 trimestres
pibm4 <- aggregate.ts(pib,by= 4,FUN=sum)</pre>
pibm4_sa <- aggregate.ts(pib_sa,by= 4,FUN=sum)</pre>
for (x in 1:length(pibm4)){
pibm4[x] \leftarrow 100*(pibm4[x+1]-pibm4[x])/pibm4[x]
pibm4\_sa[x] <- 100*(pibm4\_sa[x+1]-pibm4\_sa[x])/pibm4\_sa[x] \}
pibm4 <- ts(pibm4, start=c(1996, 01), freq=1)
pibm4_sa <- ts(pibm4_sa, start=c(1996, 01), freq=1)
#4.
pib_pot[1] <- pib_sa[4]</pre>
for (x in 2:length(pibm4)){
pib_pot[x] \leftarrow (1+0.01*pibm4_sa[x])*pib_pot[x-1]
pib_pot <- ts(pib_pot, start=c(1997,01), freq=1)</pre>
plot(pib_pot,main='PIB Potencial',type='1',col='red')
```

PIB Potencial PIB Potencial PIB Potencial PIB Potencial

```
hp <- hpfilter(pib_pot[1:20], type='lambda', freq=1600)
hiato <- ts(hp$cycle,start=c(1997,01), freq=1)
plot(hiato,main='Hiato do PIB',type='l',col='red')</pre>
```

