

REQUERIMIENTOS FUNCIONALES Y NO FUNCIONALES

Desarrollo de un Sistema Automatizado para el Control de Parámetros en la Técnica de Electrospinning.

Tabla de contenidos

1. Requerimientos Funcionales

1

2. Requerimientos No funcionales

2

1. REQUERIMIENTOS FUNCIONALES

Universidad AUTÓNOMA de Occidente	Universidad Autónoma de Occidente		<u>Rev.:</u> <u>000</u>
Title:		Document:	Page:
FUNCTIONAL REQUIREMENTS		ERF-001	1 de 1

Historic review			
Rev.	Change description	Author	Date
001	Document construction		
002	Structural Change		
003	Simple Correction		
004	Structural Change		
005	Structural Change		
006			

Ref #	Functions	Category
1.	Control del VARIAC	
1.1	El sistema debe ser capaz de enviar comandos al VARIAC mediante el protocolo RS485 para ajustar la velocidad de un	
	motor trifásico AC que rota el colector de cobre.	
2.	Control del Inyector (Syringe Pump)	
2.1	El sistema debe comunicarse con el inyector jeringa utilizando el protocolo RS232 para ajustar el flujo del material polimérico con precisión.	
3.	Control de la Fuente de Alto Voltaje	
3.1	El sistema debe ajustar la perilla de la fuente de alto voltaje de forma automática mediante un motor paso a paso acoplado.	

3.2	El sistema debe medir la posición angular de la perilla	
	utilizando un potenciómetro lineal y un divisor de tensión	
	para asegurar un ajuste preciso del voltaje.	
4.	Supervisión y Monitoreo	
4.1	El sistema debe permitir el monitoreo en tiempo real de los	
	parámetros de operación (voltaje, velocidad del motor, flujo	
	del inyector) a través de una GUI en un PC.	
5.	Seguridad Operativa	
5.1	El sistema debe detener automáticamente la operación en	
	caso de sobrecargas eléctricas o fallos detectados en los	
	componentes.	
6	Interconexión de Componentes	
6.1	El sistema debe integrar módulos de comunicación RS485 y	
	RS232 para conectar todos los subsistemas al ESP32.	
7.	Validación de Parametros	
7.1	El sistema debe permitir la configuración y validación de los	
	parámetros iniciales antes de iniciar el proceso de	
	electrospinning.	

2. REQUERIMIENTOS NO FUNCIONALES

Universidad AUTÓNOMA de Occidente	Universidad Autón	oma de Occidente	Rev.: 000
Title:		Document:	Page:
NON-FUNCTIONAL REQUIREMENTS		ERF-001	Page: 1 of 1

Historic review			
Rev.	Change description	Author	Date
001	Document construction		
002	Structural Change		
003	Simple Correction		
004	Structural Change		
005	Structural Change		
006			

Ref #	Description	Category
1.	Software	
1.1	ESP-IDF	
1.2	Protocolo RS232	
1.3	Protocolo RS485	

1.4	GUI en Python (TKinter, PyQt5)	
2.	Hardware	
2.1	ESP32 DEVKIT V1	
2.2	Conversor RS232 a TTL	
2.3	Motor Paso a Paso Nema 17	
2.4	Driver A4988	
2.5	CNC Driver A4988	
2.7	Conversor RS485 a TTL	
2.8	Filamento PLA 1KG	
2.9	Placa PLC virgen	
2.10	Componentes electronicos varios	
2.11	MAX4069-MAX4072	
2.12		
2.13		
2.14		
2.15		
2.16		
2.17		
2.18		
2.19		
2.20		
2.21		