

ELECTROMAGNETICS

08-08-22

ELECTROMAGNETICS

SYLLABUS:

- (1). VECTOR CALCULAS AND CO-ORDINATE SYSTEM (4m 2m)
- 2. ELECTROSTATICS
- 3.MAGNETOSTATICS
- 4. TIME VARYING FIELDS

MATE: 4M-6M

ESE: 8%-10%

STATE SEKVICE: (30-48)

MAXWELL'S EQUATIONS

$$\nabla x = -\frac{\partial x}{\partial t}$$

- Only the concept of voltage, current can't explain different aspects of Electrical Engineering. (transformer action, motor action, capacitance, inductance, LLT....ect).
- EM Theory will give flexible solutions and explanations to the different aspects of Engineering.
- EM Theory Explains the Interplay or Inter Dependence or Co-existing mechanism between both electric and magnetic fields which is explained with the help of Four Maxwell's Equations and script is written Interms of Mathematics (Vector Calculas).

Topic: 1 VECTOR CALCULAS AND CO-ORDINATE SYSTEM

FIELD: Field is the physical quantity which takes different values at different locations.

MAGNETIC FIE WO.

Examples of Vector Fields

Examples of Scalar Fields

- (1) Temperature
- Air Distribution Around the 2. Electrostatic Potential (Voltage)

- Fan
 - Gravitational Field
 - 4. Electric Field
 - (5) Magnetic Field

ATTRIBUTES OF FIELDS

<u>Ex</u>:

- (I) Magnitude
- (2) Nature
- (3) Uniqueness

VECTOR CALCULAS

The Vector Calculas Operators

Measures Fields Quantitatively

Captures their physical Nature

and defines them mathematically

Unique.

Differential Operator (∇)

$$\nabla = \frac{\partial}{\partial x} x^{2} + \frac{\partial}{\partial y} y^{2} + \frac{\partial}{\partial z} z^{2}$$

THE DIVERGENCE OF VECTOR FIELD

Let
$$\overline{F} = F_x \hat{x} + F_y \hat{y} + F_z \hat{z}$$
 be A

Vector Field

$$\nabla \cdot \vec{F} = \left[\frac{\partial}{\partial x} \vec{n} + \frac{\partial}{\partial y} \vec{y} + \frac{\partial}{\partial z} \vec{z} \right] \cdot \left[F_{x} \vec{n} + F_{y} \vec{y} + F_{z} \vec{z} \right]$$

Olp: SCALAR FIELD.

$$\nabla$$
. () = + ve
Source Field

$$\nabla$$
. () = - ve
Sink Field

$$\nabla \cdot (\mathbf{y}) = 0$$

$$\longrightarrow \text{Divergenceless}$$

$$\longrightarrow \text{Solenoidal}$$

<u>Ex</u>: 2

CIRCULATING FIELDS
MAY ALSO HAVE
DIVERGENCE.

THE CURL OF VECTOR

Let
$$\overline{F} = F_x \hat{x} + F_y \hat{y} + F_z \hat{z}$$
 be

A Vector Field

$$\nabla x = \left[\frac{\partial}{\partial x} \hat{\eta} + \frac{\partial}{\partial y} \hat{y} + \frac{\partial}{\partial z} \hat{z} \right] \times \left(F_{\lambda} \hat{\eta} + F_{\lambda} \hat{\eta} + F_{z} \hat{z} \right)$$

Op: VECTOR FIELD.

$$\nabla \times (\mathbf{r}) = 0$$
 \rightarrow Curl Free

 \rightarrow Conservative

 \rightarrow Irmrational

$$\nabla x() = \left[\frac{NET ROTATION}{SMALL AREA} \right]$$

Ex: 2. Wash Basin

Ex: 1. Water Flow In River

STRAIGHT FORWARD
NATURED FIELDS MAY
ALSO HAVE CURL.

CHECK WHETHER THE VECTOR FIELD?
$$E = y z^{2} + \gamma z y + \gamma y z^{2}$$

$$TS SOWEMOIDAL$$

$$\nabla \cdot \vec{E} = \frac{\partial}{\partial x} (\vec{y} \vec{z}) + \frac{\partial}{\partial y} (\vec{x} \vec{z}) + \frac{\partial}{\partial z} (\vec{x} \vec{y})$$

$$= 0 + 0 + 0$$

OR COMSERVATIVE?

$$\nabla \cdot \vec{E} = \frac{\partial}{\partial x} (yz) + \frac{\partial}{\partial y} (xz) + \frac{\partial}{\partial z} (xy)$$

$$= 0 + 0 + 0$$

$$yz = xz xy$$

$$\nabla \times \vec{E} = \hat{\pi} \left[\pi - \pi \right] - \hat{y} \left[y - y \right] + \hat{z} \left[\pi - z \right]$$

$$\nabla \times \vec{E} = \hat{n} \hat{n} - \hat{n} + \hat{n} = 0$$

$$\nabla \times \vec{E} = \hat{n} \hat{n} - \hat{n} + \hat{n} = 0$$

$$Comservative.$$

ESE

$$F = 3n^2 y z \hat{\eta} + n^3 z \hat{y} + (n^3 y - n z) \hat{z}$$
 IS

ROTATIONAL
$$\frac{1}{3}$$
 $\nabla \times \vec{F} \neq 0$ Soln:
DIVERGENCE WESS $\nabla \cdot \vec{F} = 0$ $\nabla \times \vec{F} = \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

$$= \hat{x} \left[x^3 - x^3 \right] - \hat{y} \left[3x^2 y - 3x^2 y \right] + \hat{z} \left[3x^2 z - 3x^2 z \right] \nabla x = 0\hat{x} - 0\hat{y} + 0\hat{z}$$

$$\nabla x \overline{F} = C$$

F =
$$(K_1)(y + K_2)(x^3)(x^3 + (3x^2 - K_2)x^3)(x^4 + (3x^2 - y^2))(x^3 + (3x^2 - K_2)x^3)(x^4 + (3x^2 - y^2))(x^3 + (3x^2 - K_2)x^3)(x^4 + (3x^2 - y^2))(x^3 + (3x^2 - K_2)x^3)(x^4 + (3x^2 - y^2))(x^4 + (3$$

$$\overline{\nabla \cdot F} = \frac{\partial}{\partial x} \left(K_1 x y + K_2 z^3 \right) + \frac{\partial}{\partial y} \left(3 x^3 - K_2 z \right) + \frac{\partial}{\partial z} \left(3 x z^3 - y \right)$$

$$\nabla \cdot \vec{F} = k_1(4) + 6(4)(-2) = k_1 - 12 = 6 - 12 = -6$$

$$\nabla x \vec{F} = \begin{vmatrix} \hat{\eta} \\ \frac{\partial}{\partial x} \\ (k_1 x y + k_2 z^3) (3\eta^2 - k_2 z^3) (3\eta z^2 - y) \end{vmatrix} = 0 = 0\hat{\eta} + 0\hat{y} + 0\hat{z}$$

$$\frac{\partial}{\partial x} \left(3 x^{2} - \kappa_{2} z \right) - \frac{\partial}{\partial y} \left(\kappa_{1} xy + \kappa_{2} z^{3} \right) = 0$$

$$6x - k_1 x = 0$$

$$(6 - k_1) x = 0$$

$$\Rightarrow k_1 = 6$$

$$F = \pi^2 y \ \pi' + y z^2 \ y' + f(\pi, y, z) \ \hat{z} \ \text{WHAT SHOULD}$$

$$BE THE FUNCTION $f(\pi, y, z)$, SO THAT THE VECTOR
$$F \text{ IS } Sobe Noidab.$$$$

Soln:

$$\nabla \cdot \vec{F} = \frac{\partial}{\partial x} x^{2}y + \frac{\partial}{\partial y} y^{2} + \frac{\partial}{\partial z} f(x, y, z) = 0$$

$$2xy + z^{2} + \frac{\partial}{\partial z} f(x, y, z) = 0$$

$$\partial f(x, y, z) = (-2xy - z^{2}) \partial z$$

 $f(x_{1}y, \neq) = \left(-2xy - \neq 2\right) d \neq = -2xy \neq -\frac{2}{3}$

ACE

VECTOR IS SOLENO (DAL.

Soln:
$$\nabla \cdot \overline{A} = 0$$

$$1 + 1 + c = 0$$

$$C = -2$$

$$F_1$$
 $V_1F_1 \neq 0$
 $V_2F_1 = 0$

Magnitude of vector field is changing along the direction of orientation

Magnitude is changing along and direction

$$\overline{F}_{2} \xrightarrow{4} \xrightarrow{4} \xrightarrow{4} \xrightarrow{4} \xrightarrow{3} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1} \xrightarrow{1}$$

Magnitude of vector field is changing to the direction of orientation

Magnitude is changing along and direction

EBUATIOMS: MAX WE WW'S

3
$$\nabla \cdot \overline{D} = \nabla \cdot \epsilon \overline{E} = \int_{C}^{C} \int_{C}^{C} dx$$

- SOURCES (CHANGES, CURRENTS)

- Any arbitrary vector field can be uniquely defined by it's both curl and divergence.
- The description of vector field in 3D-space is possible by defining both it's curl and divergence.

Note: Maxwell's Equations are Defining curl and Divergence for both electric and magnetic fields and establishes relation with their respective sources (charges and currents)

THE GRADIENT OF SCALAR FIELD

Let f(x, y, z) be a scalar field

$$f(x, y, z) \rightarrow f$$

$$\nabla f = \left(\frac{\partial}{\partial x}\hat{x} + \frac{\partial}{\partial y}\hat{y} + \frac{\partial}{\partial z}\hat{z}\right)f$$

$$\nabla f = \frac{\partial f}{\partial x}\hat{x} + \frac{\partial f}{\partial y}\hat{y} + \frac{\partial f}{\partial z}\hat{z}$$

Olp: VECTOR FIELD

MAGNITUDE:

$$|\nabla f| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 + \left(\frac{\partial f}{\partial z}\right)^2}$$

• Maximum rate of change of scalar field in 3D – space

DIRECTION:

$$\widehat{\nabla f} = \frac{\nabla f}{|\nabla f|} = \widehat{n}$$

• Normal to the level surfaces or equivalue surfaces

ISOTHERMS:

$$\nabla T = \frac{dT}{d\ell} \hat{n} / m_{AX}$$

- Q The scalar field in certain region is described as 2xy²z
 - (a) Find it's gradient
 - (b) Find direction of unit normal acting on level surface at (1,1,-1)

(a)
$$\nabla f = \frac{\partial f}{\partial x} \hat{x}^1 + \frac{\partial f}{\partial y} \hat{y}^1 + \frac{\partial f}{\partial z} \hat{z}^2$$

$$\nabla f = 2y^2 \hat{z} \hat{x}^1 + 4 \text{ my } \hat{z} \hat{y}^1 + 2 \text{ my } \hat{z}^2$$

$$\mathring{\eta} = \mathring{\nabla f} = \frac{\nabla f}{|\nabla f|} / \underset{(1,1,-1)}{\text{AT}} = \frac{-2\mathring{\eta} - 4\mathring{y} + 2\mathring{z}}{\sqrt{4 + 1b + 4}}$$

$$\hat{n} = \frac{-2\hat{n} - 4\hat{y} + 2\hat{z}}{\sqrt{34}}$$

$$\hat{n} = \left[-\frac{\hat{n} - \lambda\hat{y} + \hat{z}}{16} \right]$$

THE LAPLACIAN OPERATOR (∇^2)

$$\nabla \cdot \nabla = \left(\frac{\partial}{\partial x}\hat{x}\frac{\partial}{\partial y}\hat{y} + \frac{\partial}{\partial z}\hat{z}\right) \cdot \left(\frac{\partial}{\partial x}\hat{x}\frac{\partial}{\partial y}\hat{y} + \frac{\partial}{\partial z}\hat{z}\right)$$

$$\nabla^{2} = \frac{\partial^{2}}{\partial n} v + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}}$$

$$\underline{\text{NOTE:}} \nabla^2(\) = 0$$

USEFULL: ◆. Poisson's Equation

Find the value of K for harmonic function

"sinhxcosKyePZ"

$$\nabla^{\lambda} f = 0$$

$$\frac{\partial^2}{\partial x^2} f + \frac{\partial^2}{\partial y^2} f + \frac{\partial^2}{\partial z^2} f = 0$$

$$\frac{\partial^{2}}{\partial n^{2}}f + \frac{\partial^{2}}{\partial y^{2}}f + \frac{\partial^{2}}{\partial z^{2}}f = 0$$

$$\frac{\partial^{2}}{\partial n^{2}}\frac{\sinh w}{\sin w} \cos ky e^{PZ} + \frac{\partial^{2}}{\partial y^{2}}\frac{\sinh w}{\sin w} \cos ky e^{PZ} + \frac{\partial^{2}}{\partial z^{2}}\frac{\sinh w}{\partial z^{2}$$

Sinha Cosky e + Sinha (-ka Cosky) e + Sinha Cosky (pae =) = 0

Sinha cosky
$$e^{PZ} \left[1 - \kappa^2 + P^2 \right] = 0$$

$$\implies 1 - k^2 + p^2 = 0 \implies k^2 = 1 + p^2$$

$$K = \pm \sqrt{1+p^2}$$

VECTOR IDENTITIES

NULL IDENTITIES

INTE GRALS

Basic (2): Dot Product

$$\overline{F_1} \cdot \overline{F_2} = F_1 (F_2 (\omega) \alpha)$$

$$= F_2 (F_1 (\omega) \alpha).$$

LINE INTEGRAL: FINAL POINT INITIAL POINT

Ex:

- * Chosed Contour (C) EMCLOSES OPEN SURFACES
 (So, Si, Sa, Sa, S4 ----) OF IMPINITE SHAPES.
- * Chosen hime TMTEGRAL MEED NOT BE ZERO ALWAYS.
- * APPLICATION: EVALUATION OF WORK DONE!

ACE