The X_HT_EX reference guide

Will Robertson

Khaled Hosny

May 21, 2013

Introduction

This document serves to summarise additional features of X_HT_EX without being so much as a 'users' guide. Note that much of the functionality addressed here is provided in abstracted form in various L^AT_EX packages and ConT_EXt modules.

The descriptions here should be a fairly exhaustive list of the new primitives and features of X_HT_EX. Descriptions are still a little aenemic, however.

License

Copyright 2007–2011 Will Robertson. This work, XeTeX-reference.ltx, also known as 'xetexref', is distributed under the terms of the LaTeX Project Public License (http://www.latex-project.org/lppl.txt), version 1.3c or later (your choice), and maintained by Will Robertson.

This basically means you are free to re-distribute this file as you wish; you may also make changes to this file or use its contents for another purpose, in which case you should make it clear, by way of a name-change or some other means, that your changed version is a modified version of the original. Please read the license text for more detailed information.

Contents

I	X _H T _E X specifics		2	
1	The \	Afont command	3	
	1.1	Font options	4	
		Font features	4	
		1.2.1 Arbitrary OpenType, Graphite, or AAT features	4	
		1.2.2 Options for all fonts	5	
		1.2.3 OpenType script and language support	6	
		1.2.4 Multiple Master and Variable Axes AAT font support	6	
		1.2.5 Vertical typesetting	6	
II	Ne	w commands	6	
2	Font primitives			
	2.1	OpenType fonts	9	
	2.2	AAT and Graphite fonts	10	
		2.2.1 Features	10	
		2.2.2 Feature selectors	11	
		2.2.3 Variation axes	12	
	2.3	Maths fonts	12	
3	Character classes		14	
4	Encodings		16	
5	Line breaking			
6	6 Graphics			
7	Cross-compatibility with pdfTEX and/or LuaTEX			
8	Misc		20	

Part I

X_HT_EX specifics

1 The \font command

Traditionally, fonts were selected in TeX like this: $font=\langle fm\ name \rangle$ with various options possibly appended such as 'at 10pt' or 'scaled 1.2', with obvious meaning. This syntax still works, but it has been greatly extended in XHTeX.

The extended syntax looks schematically like this:

```
\font\1="\(font identifier\)\(font options\):\(\((font features\)\)"\(\(TFX font options\)\)
```

The $\langle font\ identifier \rangle$ is the only mandatory part of the above syntax. If it is given in square brackets, (e.g., [lmroman10-regular]), it is taken as a font file name. Without brackets, the name is looked up both as a file name and a system font name. When using a font name, the font is looked up through the operating system, using (except on Mac OS X) the fontconfig library. Running fc-list should show you the font names available. *E.g.*,

\font\1="Liberation Serif"

look for OS-installed font

Fonts have many internal names, and XeTeX matches them in the following order:

- Full Name;
- if the name has a hyphen, it is split into Family-Style pair then matched;
- PostScript Name;
- Family Name, if there is more than one match;
 - look for font with "regular" bit set in OS/2 table, if no match;
 - look for font with style "Regular", "Plain", "Normal" or "Roman", in that order.

When using a file name, the xdvipdfmx driver must be used (this is the default). The current directory and the texmf trees are searched for files matching the name, or the path may be embedded in the font declaration, as usual with kpathsea. *E.g.*,

```
\font\2="[lmroman10-regular]" find lmroman10-regular.otf in any tree \font\3="[/myfonts/fp9r8a]" look for fp9r8a only in /myfonts/
```

A file with either an .otf, .ttf or .pfb extension (in that order) will be found. The extension can also be specified explicitly. If the file is a font collection (e.g., .ttc or .dfont), the index of the font can be specified using a colon followed by zero-based font index inside the square brackets. *E.g.*,

\font\4="[myfont.ttc:1]" load the

1.1 Font options

(*Font options*) are only applicable when the font is selected through the operating system (*i.e.*, without square brackets). They may be any concatenation of the following:

- /B Use the bold version of the selected font.
- /I Use the italic version of the selected font.
- **/BI** Use the bold italic version of the selected font.
- /IB Same as /BI.
- /S=x Use the version of the selected font corresponding to the optical size x pt.
- **/AAT** Explicitly use the AAT renderer (Mac OS X only).
- **/OT** Explicitly use the OpenType renderer (new in 0.9999).
- **/GR** Explicitly use the Graphite renderer.¹
- /ICU Explicitly use the OpenType renderer (deprecated since 0.9999).

1.2 Font features

The \(\(\)font \(features\)\) is a comma or semi-colon separated list activating or deactivating various OpenType, Graphite, or AAT font features, which will vary by font. In contrast to font options, features work whether the font is selected by file name or through the operating system.

The $X_{\overline{1}}$ TEX documentation files aat-info.tex and opentype-info.tex provide perfont lists of supported features.

1.2.1 Arbitrary OpenType, Graphite, or AAT features

OpenType font features are chosen with standard $tags^2$. They may be either commaor semicolon-separated, and prefixed with a + to turn them on and a - to turn them off, optionally followed by = and a 0-based index for selecting alternates from multiple alternates features (ignored for - prefixed tags).

Example:

```
\font\liber="Linux Libertine O/I=5:+smcp" at 12pt \liber This is the OpenType font Linux Libertine in italic with small caps.
```

This is the OpenType font Linux Libertine in Italic with small caps.

Varying depending on the language and script in use (see section §1.2.3 on page 6), a small number of OpenType features, if they exist, will be activated by default.

 $^{^{1}} http://scripts.sil.org/cms/scripts/page.php?site_id=projects\&item_id=graphite_home$

²http://www.microsoft.com/typography/otspec/featuretags.htm

Example:

```
\font\antt="Antykwa Torunska" at 12pt \antt 0 \font\antt="Antykwa Torunska:+aalt=0" at 12pt \antt 0 \font\antt="Antykwa Torunska:+aalt=1" at 12pt \antt 0 \font\antt="Antykwa Torunska:+aalt=2" at 12pt \antt 0 \font\antt="Antykwa Torunska:+aalt=3" at 12pt \antt 0 \font\antt="Antykwa Torunska:+aalt=3" at 12pt \antt 0 \font\antt="Antykwa Torunska:+aalt=4" at 12pt \antt 0 \font\antt="Antykwa Torunska:+aalt=4" at 12pt \antt 0
```

AAT font features and Graphite font features are specified by strings within each font rather than standardised tags. Therefore, even equivalent features between different fonts can have different names.

Example:

```
\font\gra="Charis SIL/GR:Small Caps=True" at 12pt \gra This is the Graphite font Charis SIL with small caps.
```

This is the Graphite font Charis SIL with small caps.

1.2.2 Options for all fonts

Some font features may be applied for any font. These are

mapping=

Uses the specified font mapping for this font. This uses the TECKit engine to transform unicode characters in the last-minute processing stage of the source. For example, mapping=tex-text will enable the classical mappings from ugly ascii ``---'' to proper typographical glyphs "—", and so on.

color=RRGGBB[TT]

Triple pair of hex values to specify the colour in RGB space, with an optional value for the transparency.

letterspace=x

Adds x/S space between letters in words, where S is the font size.

embolden=x

Increase the envelope of each glyph by the set amount (this makes the letters look 'more bold'). x = 0 corresponds to no change; x = 1.5 is a good default value.

extend=x

Stretch each glyph horizontally by a factor of x (i.e., x = 1 corresponds to no change).

slant=x

Slant each glyph by the set amount. x = 0 corresponds to no change; x = 0

0.2 is a good default value. The slant is given by x = R/S where R is the displacement of the top edge of each glyph and S is the point size.

1.2.3 OpenType script and language support

OpenType font features (and font behaviour) can vary by script³ ('alphabet') and by language⁴. These are selected with four and three letter tags, respectively.

script=<script tag>

Selects the font script.

language=<lang tag>

Selects the font language.

1.2.4 Multiple Master and Variable Axes AAT font support

weight=x

Selects the normalised font weight, *x*.

width=x

Selects the normalised font width, x.

optical size=x

Selects the optical size, *x* pt. Note the difference between the /S font option, which selects discrete fonts.

1.2.5 Vertical typesetting

vertical

Enables glyph rotation in the output so vertical typesetting can be performed.

Part II

New commands

2 Font primitives

\XeTeXtracingfonts

If nonzero, reports where fonts are found in the log file.

³http://www.microsoft.com/typography/otspec/scripttags.htm

 $^{^4}$ http://www.microsoft.com/typography/otspec/languagetags.htm

```
\XeTeXfonttype \langle font \rangle
Expands to a number corresponding to which renderer is used for a \langle font \rangle:

for TEX (a legacy TFM-based font);

for AAT;

for OpenType;

for Graphite.

Example:

\text{Newcommand\whattype[1]{%}}
```

\newcommand\whattype[1]{% \texttt{\fontname#1} is rendered by \ifcase\XeTeXfonttype#1\TeX\or AAT\or OpenType\or Graphite\fi.\par} \font\1="cmr10" \font\2="Charis SIL" \font\3="Charis SIL/OT" \whattype\1 \whattype\2 \whattype\3

 $\ \$ \whattype\1 \whattype\2 \whattype\3

cmr10 is rendered by TEX.
"Charis SIL" is rendered by Graphite.

"Charis SIL/OT" is rendered by OpenType.

\XeTeXfirstfontchar \(\font \)

Expands to the code of the first character in $\langle font \rangle$.

 $\XeTeXlastfontchar \langle font \rangle$

Expands to the code of the last character in $\langle font \rangle$.

```
Example:
```

```
\label{lem:charis} $$\operatorname{SIL}^1$$ The first character in Charis SIL is: "\char\XeTeXfirstfontchar\1" and the last character is: "\char\XeTeXlastfontchar\1".
```

The first character in Charis SIL is: " " and the last character is: "".

\XeTeXglyph \(\langle glyph \ slot \rangle \)

Inserts the glyph in $\langle glyph \ slot \rangle$ of the current font. Font specific, so will give different output for different fonts and possibly even different versions of the same font.

\XeTeXcountglyphs \(\langle font \rangle \)

The count of the number of glyphs in the specified $\langle font \rangle$.

 $\XeTeXglyphname \langle font \rangle \langle glyph slot \rangle$

Expands to the name of the glyph in $\langle glyph \, slot \rangle$ of $\langle font \rangle$. Font specific, so will give different output for different fonts and possibly even different versions of the same font.

\XeTeXglyphindex "\(\langle glyph name \rangle "\(\langle space \rangle or \relax \)

Expands to the glyph slot corresponding to the (possibly font specific) $\langle glyph \ name \rangle$ in the currently selected font. Only works for TrueType fonts (or TrueType-based Open-Type fonts) at present. Use fontforge or similar to discover glyph names.

\XeTeXcharglyph \(char code \)

Expands to the default glyph number of character $\langle char \ code \rangle$ in the current font, or 0 if the character is not available in the font.

```
Example:
\font\1="Charis SIL"\1
The glyph slot in Charis SIL for the Yen symbol is:
   \the\XeTeXglyphindex"yen" . % the font-specific glyph name
Or: \the\XeTeXcharglyph"00A5. % the unicode character slot

This glyph may be typeset with the font-specific glyph slot:
\XeTeXglyph150,
or the unicode character slot:
\char"00A5.

The glyph slot in Charis SIL for the Yen symbol is: 150. Or: 150.
This glyph may be typeset with the font-specific glyph slot: \(\forall \), or the unicode character slot:
```

 $\XeTeXglyphbounds \langle edge \rangle \langle glyph slot \rangle$

Expands to a dimension corresponding to one of the bounds of a glyph, where $\langle edge \rangle$ is an integer from 1 to 4 indicating the left/top/right/bottom edge respectively, and $\langle glyph\ slot \rangle$ is an integer glyph index in the current font (only valid for non TFM-based fonts).

The left and right measurements are the glyph sidebearings, measured 'inwards' from the origin and advance respectively, so for a glyph that fits completely within its 'cell' they will both be positive; for a glyph that 'overhangs' to the left or right, they will be negative. The actual width of the glyph's bounding box, therefore, is the character width (advance) minus both these sidebearings.

The top and bottom measurements are measured from the baseline, like TeX 's height and depth; the height of the bounding box is the sum of these two dimensions.

```
Example:
 \def\shadebbox#1{%
 \leavevmode\rlap{%
            \dimen0=\fontcharwd\font`#1%
            \edef\gid{\the\XeTeXcharglyph\#1}%
            \advance\dimen0 by -\XeTeXglyphbounds1 \gid
            \advance\dimen0 by -\XeTeXglyphbounds3 \gid
            \kern\XeTeXglyphbounds1 \gid
            \special{color push rgb 1 1 0.66667}%
            \vrule width \dimen0
                                                   height \XeTeXglyphbounds2 \gid
                                                   depth \XeTeXglyphbounds4 \gid
            \special{color pop}%
            \kern\XeTeXglyphbounds3 \gid}%
            #1}
 \noindent
 \int \int x dx dx dx = \pi dx dx = \pi dx dx = \pi dx dx = \pi 
 \shadebbox{A} \shadebbox{W} \shadebbox{a} \shadebbox{f}
 \shadebbox{;} \shadebbox{*} \shadebbox{=}
A W a f; * =
```

\XeTeXuseglyphmetrics

Counter to specify if the height and depth of characters are taken into account while typesetting (\geq 1). Otherwise (< 1), a single height and depth for the entire alphabet is used. Gives better output but is slower. Activated (\geq 1) by default.

```
Example:
\XeTeXuseglyphmetrics=0 \fbox{a}\fbox{A}\fbox{j}\fbox{J} vs.
\XeTeXuseglyphmetrics=1 \fbox{a}\fbox{A}\fbox{j}\fbox{J}

a A j J vs. a A j J
```

2.1 OpenType fonts

\XeTeXOTcountscripts $\langle font \rangle$ Expands to the number of scripts in the $\langle font \rangle$. $\XeTeXOTscripttag \langle font \rangle \langle integer, n \rangle$

Expands to the n-th script tag of $\langle font \rangle$.

\XeTeXOTcountlanguages \(\frac{font}{\} \\ \script \tag \\ \)

Expands to the number of languages in the script of $\langle font \rangle$.

 $\XeTeXOTlanguagetag \langle font \rangle \langle script tag \rangle \langle integer, n \rangle$

Expands to the *n*-th language tag in the script of $\langle font \rangle$.

Expands to the number of features in the language of a script of (*font*).

 $\XeTeXOTfeaturetag \langle font \rangle \langle script tag \rangle \langle language tag \rangle \langle integer, n \rangle$

Expands to the n-th feature tag in the language of a script of $\langle font \rangle$.

2.2 AAT and Graphite fonts

2.2.1 Features

\XeTeXcountfeatures \(\font \)

Expands to the number of features in the $\langle font \rangle$.

\XeTeXfeaturecode \(\frac{font} \) \(\text{integer, n} \)

Expands to the feature code for the n-th feature in the $\langle font \rangle$.

\XeTeXfeaturename \(\frac{font} \) \(\frac{feature code} \)

Expands to the name corresponding to the $\langle feature \ code \rangle$ in the $\langle font \rangle$.

\XeTeXisexclusivefeature \(\font \) \(\feature \code \)

Expands to a number greater than zero if the feature of a font is exclusive (can only take a single selector).

\XeTeXfindfeaturebyname \(\font \) \(\feature name \)

This command provides a method to query whether a feature name corresponds to a feature contained in the font. It represents an integer corresponding to the feature number used to access the feature numerically. If the feature does not exist, the integer is -1. Also see \XeTeXfindselectorbyname.

Example:

\font\1="Charis SIL/GR" at 10pt

\def\featname{Uppercase Eng alternates}

The feature '\featname' has index

\the\XeTeXfindfeaturebyname\1 "\featname"\relax

The feature 'Uppercase Eng alternates' has index 1164863347

2.2.2 Feature selectors

\XeTeXcountselectors \(\font \) \(\feature \)

Expands to the number of selectors in a $\langle feature \rangle$ of a $\langle font \rangle$.

 $\XeTeXselectorcode \langle font \rangle \langle feature code \rangle \langle integer, n \rangle$

Expands to the selector code for the *n*-th selector in a $\langle feature \rangle$ of a $\langle font \rangle$.

\XeTeXselectorname \(\frac{font}{\} \) \(\frac{feature code}{\} \) \(\selector code \)

Expands to the name corresponding to the *(selector code)* of a feature of a *(font)*.

\XeTeXisdefaultselector \(\frac{font} \) \(\frac{feature code} \) \(\selector code \)

Expands to a number greater than zero if the selector of a feature of a font is on by default.

\XeTeXfindselectorbyname \(\frac{font}{\} \) \(\frac{feature name}{\} \) \(\selector name \)

This command provides a method to query whether a feature selector name corresponds to a selector of a specific feature contained in the font. It represents an integer corresponding to the selector number used to access the feature selector numerically. If the feature selector does not exist, the integer is -1.

The indices given by this command and by \XeTeXfindfeaturebyname can be used in Graphite fonts to select font features directly (see example below). Alternatively, they can be used as a means of checking whether a feature/selector exists before attempting to use it.

```
Example:

\font\1="Charis SIL/GR" at 10pt
\def\featname{Uppercase Eng alternates}
\newcount\featcount
\featcount=\XeTeXfindfeaturebyname\1 "\featname"\relax

\def\selecname{Large eng on baseline}
\newcount\seleccount
\seleccount=\XeTeXfindselectorbyname\1 \featcount "\selecname"\relax

The feature selector '\selecname' has index \the\seleccount

\font\2="Charis SIL/GR:\featname=\selecname" at 10pt
\font\3="Charis SIL/GR:\the\featcount=\the\seleccount" at 10pt

Activating the feature: \1 D \2 D \3 D

The feature selector 'Large eng on baseline' has index 1

Activating the feature: \1 D D
```

2.2.3 Variation axes

\XeTeXcountvariations \(\font \)

Expands to the number of variation axes in the $\langle font \rangle$.

 $\XeTeXvariation \langle font \rangle \langle integer, n \rangle$

Expands to the variation code for the n-th feature in the $\langle font \rangle$.

\XeTeXvariationname \(\frac{font} \) \(\text{variation code} \)

Expands to the name corresponding to the *(feature code)* in the *(font)*.

\XeTeXvariationmin \(\frac{font}{\} \) \(\variation \) code\(\)

Expands to the minimum value of the variation corresponding to the $\langle variation \ code \rangle$ in the $\langle font \rangle$.

\XeTeXvariationmax \(\frac{font}{\} \) \(\variation \) \(\colon \)

Expands to the maximum value of the variation corresponding to the $\langle variation \ code \rangle$ in the $\langle font \rangle$.

\XeTeXvariationdefault \(\font \) \(\variation code \)

Expands to the default value of the variation corresponding to the $\langle variation \ code \rangle$ in the $\langle font \rangle$.

\XeTeXfindvariationbyname \langle font \rangle \cong variation name \rangle

An integer corresponding to the internal index corresponding to the *(variation name)*. This index cannot be used directly but may be used to error-check that a specified variation name exists before attempting to use it.

2.3 Maths fonts

The primitives described following are extensions of TEX 's 8-bit primitives.

In the following commands, $\langle fam. \rangle$ is a number (0–255) representing font to use in maths. $\langle math\ type \rangle$ is the 0–7 number corresponding to the type of math symbol; see a TeX reference for details.

Before version 0.9999.0 the following primitives had \XeTeX prefix instead of \U, the old names are deprecated and will be removed in the future.

Defines a maths glyph accessible via an input character. Note that the input takes *three* arguments unlike TFX 's \mathcode.

Pure extension of \mathcode that uses a 'bit-packed' single number argument. Can also be used to extract the bit-packed mathcode number of the $\langle char \ slot \rangle$ if no assignment is given.

\Umathchar \langle math type \rangle \langle fam. \rangle \langle glyph slot \rangle

Typesets the math character in the $\langle glyph slot \rangle$ in the family specified.

\Umathcharnum \(\lambda type/fam./glyph slot\rangle

Pure extension of \mathchar that uses a 'bit-packed' single number argument. Can also be used to extract the bit-packed mathcode number of the $\langle char \ slot \rangle$ if no assignment is given.

Defines a maths glyph accessible via a control sequence.

 $\Umathcharnumdef \control sequence \ [=] \type/fam./glyph slot \$

Defines a control sequence for accessing a maths glyph using the 'bit-packed' number output by, e.g., \Umathcodenum. This would be used to replace legacy code such as \mathchardef\foo=\mathcode\\.

Defines a delimiter glyph accessible via an input character.

Pure extension of \delcode that uses a 'bit-packed' single number argument. Can also be used to extract the bit-packed delcode number of the $\langle char \ slot \rangle$ if no assignment is given.

 $\Udelimiter \langle math \ type \rangle \langle fam. \rangle \langle glyph \ slot \rangle$

Typesets the delimiter in the $\langle glyph slot \rangle$ in the family specified of either $\langle math type \rangle$ 4 (opening) or 5 (closing).

\Umathaccent [keyword] \(\langle math type \rangle \langle fam. \rangle \(glyph slot \rangle \)

Typesets the math accent character in the $\langle glyph slot \rangle$ in the family specified. Starting from version 0.9998, \Umathaccent accepts optional keyword:

fixed Don't stretch the accent, the default is to stretch it: \widehat{M} vs \widehat{M} .

bottom Place the accent below its base. Can be followed by the fixed keyword.

\Uradical \(fam. \) \(glyph slot \)

Typesets the radical in the (*glyph slot*) in the family specified.

3 Character classes

The idea behind character classes is to define a boundary where tokens can be added to the input stream without explicit markup. It was originally intended to add glue around punctuation to effect correct Japanese typesetting. This feature can also be used to adjust space around punctuation for European traditions. The general nature of this feature, however, lends it to several other useful applications including automatic font switching when small amounts of another language (in another script) is present in the text.

\XeTeXinterchartokenstate

Counter. If positive, enables the character classes functionality.

\newXeTeXintercharclass \(\control \) sequence \(\)

Allocates a new interchar class and assigns it to the *(control sequence)* argument.

\XeTeXcharclass \(\char \slot \) [=] \(\char \

Assigns a class corresponding to (*interchar class*) (range 0–255) to a (*char slot*). Most characters are class 0 by default. Class 1 is for CJK ideographs, classes 2 and 3 are CJK punctuation. The boundary of a text string is considered class 255, wherever there is a boundary between a 'run' of characters and something else — glue, kern, math, box, etc. Special case class 256 is ignored; useful for diacritics so I'm told.

\XeTeXinterchartoks $\langle interchar\ class\ 1 \rangle\ \langle interchar\ class\ 2 \rangle\ [=]\ \{\langle token\ list \rangle\}$ Defines tokens to be inserted between $\langle interchar\ class\ 1 \rangle\ and\ \langle interchar\ class\ 2 \rangle\ (in\ that\ order).$

```
Example:
\XeTeXinterchartokenstate = 1
\newXeTeXintercharclass \mycharclassa
\newXeTeXintercharclass \mycharclassA
\newXeTeXintercharclass \mycharclassB
\XeTeXcharclass '\a \mycharclassa
\XeTeXcharclass `\A \mycharclassA
\XeTeXcharclass '\B \mycharclassB
% between "a" and "A":
\XeTeXinterchartoks \mycharclassa \mycharclassA = {[\itshape}
\XeTeXinterchartoks \mycharclassA \mycharclassa = {\upshape]}
% between " " and "B":
\XeTeXinterchartoks 255 \mycharclassB = {\bgroup\color{blue}}
\XeTeXinterchartoks \mycharclassB 255 = {\egroup}
% between "B" and "B":
\XeTeXinterchartoks \mycharclassB \mycharclassB = {.}
aAa A a B aBa BB
a[A]a A a B aBa B.B
```

In the above example the input text is typeset as a[\itshape A\upshape]a A a \bgroup\color{blue}B\egroup aBa B.B

4 Encodings

\XeTeXinputnormalization \(Integer \)

Specify whether X $_{\overline{1}}$ T $_{\overline{2}}$ X is to perform normalisation on the input text and, if so, what type of normalisation to use. See http://unicode.org/reports/tr15/ for a description of Unicode normalisation. The $\langle Integer \rangle$ value can be:

- **0** (default) do not perform normalisation.
- 1 normalise to NFC form, using precomposed characters where possible instead base characters with combining marks.
- 2 normalise to NFD form, using base characters with combining marks instead of precomposed characters.

\XeTeXinputencoding \(Charset name \)

Defines the input encoding of the following text.

\XeTeXdefaultencoding \(Charset name \)

Defines the input encoding of subsequent files to be read.

5 Line breaking

\XeTeXdashbreakstate \(Integer \)

Specify whether line breaks after en- and em-dashes are allowed. Off, 0, by default.

\XeTeXlinebreaklocale \(\lambda Locale ID\rangle)

Defines how to break lines for multilingual text.

\XeTeXlinebreakskip \(Glue\)

Inter-character linebreak stretch

\XeTeXlinebreakpenalty \(Integer \)

Inter-character linebreak penalty

\XeTeXupwardsmode \(Integer \)

If greater than zero, successive lines of text (and rules, boxes, etc.) will be stacked upwards instead of downwards.

6 Graphics

Thanks to Heiko Oberdiek, Paul Isambert, and William Adams for their help with the documentation in this section.

```
\XeTeXpicfile \langle filename \rangle [ scaled \langle int \rangle | xscaled \langle int \rangle | yscaled \langle int \rangle | width \langle dimen \rangle | height \langle dimen \rangle | rotated \langle decimal \rangle ]
Insert an image. See below for explanation of optional arguments.
```

Insert (pages of) a PDF. See below for explanation of optional arguments.

In the graphic/PDF commands above, $\langle filename \rangle$ is the usual file name argument of \input, \openin, etc. It must not terminated by \relax if options are given. $\langle int \rangle$ and $\langle dimen \rangle$ are the usual integer or dimen specifications of regular TeX.

The rotation is specified in degrees (*i.e.*, an input of '360' is full circle) and the rotation is counterclockwise. The syntax of $\langle decimal \rangle$ require some explanation:

```
\langle decimal \rangle \rightarrow \langle optional \ signs \rangle \langle unsigned \ decimal \rangle
\langle unsigned \ decimal \rangle \rightarrow \langle normal \ decimal \rangle \mid \langle coerced \ dimen \rangle \mid \langle internal \ dimen \rangle
\langle normal \ decimal \rangle \rightarrow \langle normal \ integer \rangle \mid \langle decimal \ constant \rangle
```

A *⟨coerced dimen⟩* or *⟨internal dimen⟩* is interpreted as number with unit 'pt'. For example, for a rotation specified with a dimension \testdim,

- \testdim=45pt results in a rotation of 45°,
- \testdim=1in is 72.27°, and
- \testdim=100sp is $(100/65536)^{\circ}$.

In all cases the resulting decimal number for rotation x must be within the limits -16384 < x < 16384.

The \XeTeXpdffile command takes one more optional argument for specifying to which 'box' the PDF should be cropped before inserting it (the second optional argument listed in thes syntax of \XeTeXpdffile above). The PDF standard defines a number of (rectangular) bounding boxes that may be specified for various purposes. These are described in the PDF Standard⁵ and summarised below.

media the box defining the physical page size.

⁵Adobe Systems Incorporated, 2008: http://www.adobe.com/devnet/acrobat/pdfs/PDF32000_2008.pdf

crop the box of the page contents for display/printing purposes.

bleed the box containing the page contents plus whatever extra space

required for printing purposes.

trim the box of the finished page after trimming the printed 'bleed box'.
 art the box containing the 'meaningful content' of the page. This could be the crop box with boilerplate text/logos trimmed off.

When not specified in the PDF to be inserted, the crop box defaults to the media box, and the bleed, trim, and art boxes default to the crop box.

\XeTeXpdfpagecount \(\filename \)

Expands to the number of pages in a PDF file.

7 Cross-compatibility with pdfT_FX and/or LuaT_FX

\pdfpageheight \langle dimension \rangle

The height of the PDF page.

\pdfpagewidth \(dimension \)

The width of the PDF page.

\pdfsavepos

Saves the current location of the page in the typesetting stream.

\pdflastxpos

Retrieves the horizontal position saved by \pdfsavepos.

\pdflastypos

Retrieves the vertical position saved by \pdfsavepos.

```
\ifincsname...(\else...)\fi
```

TEX conditional to branch true if the expansion occurs within \csname . . . \endc-sname.

Example:

\def\x{\ifincsname y\else hello\fi}
\def\y{goodbye}

\x/\csname\x\endcsname

(X) (CSHallic (X (CHGCSHalli

hello/goodbye

```
\ifprimitive \( \control \) sequence \\ \... \( \\ \) \fi
```

TEX conditional to test if a control sequence is a primitive and that it has not been redefined.

```
\primitive \( \control \) sequence \\
```

If the control sequence is a primitive that's been redefined, this command causes it to expand with its original (i.e., primitive) definition.

\shellescape

Read-only status indicating the level of 'shell escape' allowed. That is, whether commands are allowed to be executed through \write18{...}. Expands to zero for off; one for on (allowed); two is 'restricted' (default in TeX Live 2009 and greater) in which a subset of commands only are allowed.

Example:

```
Shell escape \infty is \ensuremath{\mbox{\mbox{\mbox{$^{\circ}$}}} is not \fi enabled.
```

Shell escape is enabled.

```
\strcmp \larg one \rangle \larg two \rangle
```

Compares the full expansion of the two token list arguments. Expands to zero if they are the same, less than one if the first argument sorts lower (lexicographically) than the second argument, and greater than one if vice versa.

```
Example:
'a' is less than 'z': \strcmp{a}{z}

\def\z{a}
The tokens expand before being compared: \strcmp{a}{\z}

\def\a{z}
Therefore, |\a| is greater than |\z|: \strcmp{\a}{\z}

\edef\b{\string b}
Also note that catcodes are ignored: \strcmp{b}{\b}

'a' is less than 'z': -1
The tokens expand before being compared: 0
Therefore, \a is greater than \z: 1
Also note that catcodes are ignored: 0
```

\suppressfontnotfounderror \(\lambda integer \rangle \)

When set to zero (default) if a font is loaded that cannot be located by X_HT_EX, an error message results and typesetting is halted. When set to one, this error message is suppressed and the font control sequence being defined is set to \nullfont.

Example: \suppressfontnotfounderror=1 \font\x="ImpossibleFont" at 10pt \ifx\x\nullfont \font\x="Georgia" at 10pt \fi \x This would be 'ImpossibleFont', if it existed.

8 Misc.

\XeTeXversion

Expands to a number corresponding to the XHTEX version.

\XeTeXrevision

Expands to a string corresponding to the X_HT_EX revision number.

Example:

The $\xext{xersion}$ used to typeset this document is: $\xext{the}\xext{XeTeXversion}\xext{XeTeXversion}$

The $X_{\overline{1}}T_{\overline{1}}X$ version used to typeset this document is: 0.9999