№ 1 (1.1) Для любых $a, b, c \in K$ выполнены равенства

 $\forall a, b, c \in K$:

- a) a0 = 0a = 0
- $a0 = a(0+0) = a0 + a0 \Rightarrow a0 = 0$

$$0a=0$$
 — аналогично.

b) a(-b) = (-a)b = -ab

$$\bullet 0 = a0 = a(b-b) = ab + a(-b) \Rightarrow -ab = a(-b)$$

c) (a - b)c = ac - bc и a(b - c) = ab - ac

$$(a-b)c + bc = (a-b+b)c = ac \Rightarrow (a-b)c = ac - bc$$

$$a(b-c) + ac = a(b-c+c) = ab \Rightarrow a(b-c) = ab - ac$$

№ 2(1.2)

а) В кольце не может быть двух различных единиц.

$$ightharpoonup 1_1 = 1_1 \cdot 1_2 = 1_2$$
 т. к. 1_1 — единица

b) Пусть кольцо с единицей содержит не меньше двух элементов. Тогда $1 \neq 0$.

$$\blacktriangleright \forall a \in K \ a \underbrace{=}_{\text{CB-BO } 1} a \cdot e \underbrace{=}_{\text{CB-BO } 0} 0$$

с) Может ли элемент ассоциативного кольца иметь более одного обратного элемента?

$$lacktriangle$$
 Пусть $a_1 \neq a_2$ — обратные к a элементы. Тогда $a_1aa_2 = \begin{cases} a_1 \cdot 1 = a_1 \\ 1 \cdot a_2 = a_2 \end{cases}$

Получается, они равны.

№ **3(1.3, 2.4)** Уметь отвечать на вопросы: является ли данное кольцо К коммутативным? ассоциативным?кольцом с единицей? область целостности? поле? евклидово кольцо? Какие в К есть обратимые элементы? неразложимые? простые?

№ 4 (2.1(в)) Обратимый элемент кольца не может быть делителем нуля.

▶ Пусть $a \in K$ обратим, $\exists a^{-1} \in K : aa^{-1} = 1$. Если a — делитель нуля, то $\exists 0 \neq b \in K : ab = 0$. Тогда $a^{-1}ab = \begin{cases} a^{-1} \cdot 0 = 0 \\ 1 \cdot b = b \neq 0 \end{cases}$. Противоречие. \blacktriangleleft

 \mathbb{N} 5(2.1(д)) Если K — область целостности, то возможно сокращение: если ac = bc и $c \neq 0$, то a = b.

$$ightharpoonup$$
 $ac=bc\Leftrightarrow (a-b)c=0\Rightarrow$ т. к. нет делителей нуля и $c\neq 0$, д. б. $a-b=0$, т. е. $a=b$.

№ 6(2.1(г)) В конечном коммутативном кольце если ненулевой элемент не является делителем нуля, то он обратим.

 \blacktriangleright Кольцо конечно \Rightarrow его элементы можно занумеровать: a_1,\ldots,a_n . Элементы $a\cdot a_1,\ldots,a\cdot a_n$ должны быть все разные (иначе $\forall i\neq j, a\neq 0$ $a\cdot a_i=a\cdot a_j\Rightarrow\underbrace{a}_{\neq 0}\underbrace{(a_i-a_j)}_{\neq 0,\ \text{т. к. }i\neq j}=0$ — есть делители нуля).

Тогда $\exists i: a \cdot a_i = 1$, т. к. $1 \in K$ (т. е. $a \cdot a_1, \ldots, a \cdot a_n - n$ разных элементов кольца, а в кольце всего n элементов; значит, какое-то a_i должно быть 1).

№ 7 Конечная область целостности — поле.

▶ В области целостности нет делителей нуля, а если в конечном коммутативном кольце элемент — не делитель нуля, то он обратим (№6). Т. е. все элементы обратимы.

$$TODO: \geq 2$$
 эл-тов.

№ 8 Множество K^* обратимых элементов кольца K является группой по умножению. Она называется **мульти- пликативной группой**, или **группой обратимых элементов** кольца K.

▶ Пусть K — кольцо, $a, b \in K^*$. Тогда $\exists a^{-1}, b^{-1} \in K^*$. Проверим групповые свойства.

- 1. $a(bc) = (ab)c accoциативность в <math>K^*$ следует из свойств кольца K.
- 2. $\exists 1 \in K^*$ (т. к. $K^* \neq \emptyset$, $\exists a \in K^*$, по свойству обратимости $\exists a^{-1} \in K^* : aa^{-1} = 1$ единица в K будет являться единицей в K^*)
- 3. $(b^{-1}a^{-1})(ab) = (ab)(b^{-1}a^{-1}) = 1 \Rightarrow (ab)^{-1} = b^{-1}a^{-1} \in K^*$ обратимость.

Значит, K^* — группа по умножению.

- № 9(1.5-1.7) Базовые знания про комплексные числа: сложение, умножение, модуль, аргумент, извлечение корней n-ой степени.
 - ▶ Компл'ексное число z это выражение вида z = a + bi, где a и b числа из \mathbb{R} , а i мнимая единица. По определению $i^2 = -1$. Число a называют вещественной частью комплексного числа z (пишется $a = \text{Re}\,(z)$), а число b мнимой частью z (пишется $b = \text{Im}\,(z)$). Комплексные числа можно складывать и умножать, «раскрывая скобки и приводя подобные». Множество комплексных чисел обозначают буквой \mathbb{C} .

Каждому комплексному числу z=a+bi сопоставим точку (a,b) и вектор (a,b). Длина этого вектора называется модулем числа z и обозначается |z|. Пусть $z\neq 0$. Угол (в радианах), отсчитанный против часовой стрелки от вектора (1,0) до вектора (a,b), называется аргументом числа z и обозначается ${\rm Arg}\,(z)$. Аргумент определен с точностью до прибавления числа вида $2\pi n$, где $n\in\mathbb{Z}$.

Тригонометрическая форма записи. Для любого ненулевого комплексного числа z имеет место равенство $z=r(\cos\varphi+i\sin\varphi),$ где r=|z|, $\varphi={\rm Arg}\,(z).$

Для комплексного числа $z=r(\cos\varphi+i\sin\varphi)$ и натурального числа $n\in\mathbb{N}$ выполнена формула Муавра $z^n=r^n(\cos n\varphi+i\sin n\varphi).$

Для комплексного числа z=a+bi, где $a,b\in\mathbb{R}$ число $\overline{z}=a-bi$ называется комплексно-сопряжённым к z. Выполнены следующие равенства:

$$|z|^2 = z\overline{z}, \, \overline{z+w} = \overline{z} + \overline{w}, \, \overline{zw} = \overline{zw}.$$

№ 10(2.2)

- а) Следующие условия эквивалентны:
 - (1) $x \sim y$;
 - (2) $x \mid y$ и $y \mid x$;
 - (3) множество делителей x и множество делителей y равны.
- $lack \bullet$ (1) \Rightarrow (2) : $\exists r \in K^* : x = ry \Rightarrow y | x$ по определению. Т. к. $r \in K^*, \exists r^{-1} \in K^* : r^{-1}x = y \Rightarrow x | y$ по определению.
 - $(2) \Rightarrow (3): d|x \Rightarrow \exists r \in K^*: dr = x \Rightarrow \text{ T. K. } y|x,y|dr. \text{ TODO}$
 - (3) \Rightarrow (2) : Множества делителей x и y совпадают, $x|x \Rightarrow x$ будет во множестве делителей y, т. е. x|y. Симметрично, y|x.
 - (2) \Rightarrow (1) : $\begin{cases} x|y\Rightarrow y=kx\\ y|x\Rightarrow x=ty \end{cases}$ Тогда $y=kty\Rightarrow kt=1$ Значит, k и t обратимы. Значит, $x=ty,t\in K^*\Rightarrow x\sim y$ по определению.
- b) Отношение ~ является отношением эквивалентности.
- ▶ 1. $x \sim x$, т. к. $\exists 1 \in K^* : x = 1x$
 - 2. $x \sim y \Rightarrow \exists r \in K^* : x = ry \Rightarrow y = r^{-1}x \Rightarrow y \sim x$

3.
$$x \sim y, y \sim z \Rightarrow \begin{cases} \exists r_1 \in K^* : x = r_1 y \\ \exists r_2 \in K^* : y = r_2 z \end{cases} \Rightarrow x = \underbrace{r_1 r_2}_{\in K^*, \text{ т. к. } (r_1 r_2)^{-1} = r_2^{-1} r_1^{-1}} z \Rightarrow x \sim z$$

- $\mathfrak{N}_{\underline{a}}$ 11 (2.5) Если $a,b,k\in\mathbb{Z},\,u
 ot\in\mathbb{Q}$, то $z=a+bu\in\mathbb{Z}[u]$ делится на k тогда и только тогда, когда a и b делятся на k.
- № 12(2.9 \Leftarrow) K евклидово кольцо. Верно ли, что для $a \neq 0, b \in K^*$ выполнено равенство N(ab) = N(a)?
- $\blacktriangleright b \in K^* \Rightarrow N(a) \le N(ab) \le N(abb^{-1}) = N(a)$
- **№** 13 (3.2) Для $u = i, \omega$ и простого целого числа $p \leq 40$ выясните, существует ли $z \in D$ с N(z) = p. Сформулируйте гипотезу о том, какие простые целые числа являются простыми в D.
 - ▶ Выпишем все варианты a, b с нормой ≤ 40 .

a	b	$\mathbb{Z}[i], N = a^2 + b^2$	$\mathbb{Z}[\omega], N = a^2 - ab + b^2$	
1	1	2	1	
1	2	5	3	
1	3	10	7	

a	b	$\mathbb{Z}[i], N = a^2 + b^2$	$\mathbb{Z}[\omega], N = a^2 - ab + b^2$
1	4	17	13
1	5	26	21
1	6	37	31
2	3	13	7
2	4	20	12
2	5	29	19
2	6	40	28
3	3	18	9
3	4	25	13
3	5	34	19
4	4	32	16

Выпишем все простые числа ≤ 40 и вычеркнем те, которые являются нормой. Берём оставшиеся.

Гипотеза: у $\mathbb{Z}[i]$ 4k+3, у $\mathbb{Z}[\omega]$ 3k+2.

№ 14 (3.9)

- ▶ а) $0 \subset K, K \subset K$ идеалы. Они называются **тривиальными**.
 - {0}:
 - 1. Тривиальная группа по сложению:
 - Ассоциативность наследуется
 - 0 нейтральный элемент, т. к. $0+a=a+0=0 \forall a \in \{0\}$
 - $-0^{-1}=0=-0$
 - 2. Замкнутость относительно умножения: $\forall a \in K0a = 0 \in \{0\}$
 - *K*:
 - 1. Тривиальная группа по сложению:
 - Ассоциативность наследуется
 - 0 нейтральный элемент, т. к. $0+a=a+0=0 \forall a \in K$
 - $-a^{-1} = -a \in K$
 - 2. Замкнутость относительно умножения: $\forall a \in K \forall b \in I = K \ ab \in I = K -$ по свойству кольца
 - b) $(a) = \{ax \mid x \in K\}$ главный идеал или идеал, порождённый одним элементом
 - 1. Подгруппа по сложению:
 - $ax_1 + ax_2 = a(x_1 + x_2) \in (a)$ замкнутость относительно сложения
 - Ассоциативность наследуется
 - 0 нейтральный элемент: ax + 0 = 0 + ax = ax
 - $ax + a(-x) = a(x x) = a \cdot 0 = 0$
 - 2. Замкнутость относительно умножения: $\forall b \in K \forall ax \in (a) \ b \cdot ax = bx \cdot a \in (a)$
 - c) $(a_1, \ldots, a_n) = \{a_1x_1 + \ldots + a_nx_n \mid x_1, \ldots, x_n \in K\}$ конечно-порождённый идеал, то есть идеал, порождённый конечным количеством элементов.
 - 1. Подгруппа по сложению:
 - $(a_1x_1+\cdots+a_nx_n)+(a_1y_1+\cdots+a_ny_n)=a_1(x_1+y_1)+\cdots+a_n(x_n+y_n)\in I$ замкнутость относительно сложения
 - Ассоциативность наследуется

- $0 = a_1 \cdot 0 + \dots + a_1 \cdot 0$ нейтральный элемент: ax + 0 = 0 + ax = ax
- $(a_1x_1 + \cdots + a_nx_n) + (a_1(-x_1) + \cdots + a_n(-x_n)) = 0$
- 2. Замкнутость относительно умножения: $\forall y \in K \ y \cdot (a_1x_1 + \dots + a_nx_n) = a_1(x_1y) + \dots + a_n(x_ny) \in I$

№ 15(3.11)

- ▶ а) Докажите, что $(a) \subset (b)$ тогда и только тогда, когда $b \mid a$. b) Докажите, что $a \sim b$ тогда и только тогда, когда (a) = (b).
- № 16(3.12) Пусть $I, J \subset K$ идеалы. Сумма $I + J = \{x + y \mid x \in I, y \in J\}$ и пересечение $I \cap J$ идеалов являются идеалами.

▶ a) 1. •
$$(x_1 + y_1) + (x_2 + y_2) = \underbrace{(x_1 + x_2)}_{\in I} + \underbrace{(y_1 + y_2)}_{\in J} \in I + J$$

- Ассоциативность следуе
- 0 нейтральный.
- $(x+y) + \underbrace{(-x-y)}_{\in I+I} = (x-x) + (y-y) = 0$ обратный
- 2. $\forall a \in K \hookrightarrow a(x+y) = \underbrace{ax}_{\in I} + \underbrace{ay}_{\in I} \in I+J$

b) 1. •
$$x, y \in I \cap J \Rightarrow \begin{cases} x, y \in I \\ x, y \in J \end{cases} \Rightarrow \begin{cases} x + y \in I \\ x + y \in J \end{cases} \Rightarrow x + y \in I + J$$

- Ассоциативность след
- 0 нейтральный
- $x \in I \cap J \Rightarrow \begin{cases} x \in I \\ x \in J \end{cases} \Rightarrow \begin{cases} x^{-1} \in I \\ x^{-1} \in J \end{cases} \Rightarrow x^{-1} \in I + J \text{обратный}$

$$2. \ \forall a \in K \ \forall x \in I \cap J \hookrightarrow \begin{cases} x \in I \\ x \in J \end{cases} \Rightarrow \begin{cases} ax \in I \\ ax \in J \end{cases} \Rightarrow ax \in I \cap J$$

- \mathbb{N} 17(3.15) Пусть $K \neq 0$. Докажите, что K является полем тогда и только тогда, когда K не содержит нетривиальных идеалов.
 - ▶ \Rightarrow : Пусть К поле, $I \subset K$ идеал.
 - $-x = 0 \Rightarrow (x) = \{0\}$ тривиальный идеал.
 - $-\forall x\in I, x\neq 0,\ x$ обратим по свойству поля, значит, $I\supset (x)=(1)=K.$
 - \Leftarrow : Пусть K коммутативное кольцо без нетривиальных идеалов. Пусть $x \in K, x \neq 0$, произвольный элемент. Тогда $(x) \neq \{0\}$. Значит, поскольку у нас нет нетривиальных идеалов, (x) = K.

В частности, $1 \in (x) = K \Rightarrow \exists x^{-1}$, т. е. элемент х обратим.

В силу произвольности х, любой ненулевой элемент обратим \Rightarrow K — поле (в K \geq 2 элементов, т. к. $0 \in K$, и мы брали $0 \neq x \in K$).

- № 18(4.1) Верно ли, что при гомоморфизме колец $\varphi: K \to L$ а) образ; b) прообраз идеала является идеалом? a)
 - ▶ Неверно. Контрпример: $\varphi: \mathbb{Z} \to \mathbb{Q}, \varphi(x) = x$ поэлементное вложение.

$$I=\mathbb{Z}$$
 в \mathbb{Z} — тривиальный идеал. Но $\varphi(I)=\mathbb{Z}$ — не идеал в \mathbb{Q} , ибо, например, $\underbrace{\frac{1}{2}}_{\in\mathbb{Q}}\cdot\underbrace{1}_{\in\mathbb{Z}}=\frac{1}{2}
otin I.$

b)

▶ Верно. Пусть J — идеал в L. $\varphi^{-1}(J) = \{a \in K : \varphi(a) \in J\}$.

$$\forall a,b \in \varphi^{-1}(J): \begin{cases} \varphi(a+b) = \varphi(a) + \varphi(b) \Rightarrow a+b \in \varphi^{-1}(J) \\ \varphi(a^{-1}) = (\varphi(a))^{-1} \in J \end{cases}$$

$$\forall x \in K \forall a \in \varphi^{-1}(J) \ \varphi(ax) = \varphi(a)\varphi(x) \in J.$$

Значит, $\varphi^{-1}(J)$ — действительно идеал.

№ 19(4.2)

- а) Всегда ли факторкольцо коммутативного кольца является коммутативным кольцом?
- (a+I)(b+I) = ab + aI + bI + II = ab + I = ba + I = ba + bI + aI + II = (b+I)(a+I)TODO??
- b) Имеется канонический гомоморфизм $\varphi: K \to K/I$, который переводит $a \mapsto a + I$.
- ▶ Проверим свойства гомоморфизма:
 - $\varphi(a) + \varphi(b) = a + I + b + I = (a + b) + I = \varphi(a + b)$
 - $\varphi(a)\varphi(b) = (a+I)(b+I) = ab+aI+bI+II = ab+I = \varphi(ab)$
 - $\varphi(1) = 1 + I = 1_{K/I}$
- № 20(4.5) Пусть K область целостности. Идеал (x) является простым тогда и только тогда, когда x прост.
 - lacktriangledown (x) простой \rightleftharpoons если $ab\in(x),$ то $egin{bmatrix} a\in(x) \\ b\in(x) \end{bmatrix}$
 - x— простой \rightleftharpoons если $ab \ensuremath{\,\dot{:}\,} x,$ то $\begin{bmatrix} a \ensuremath{\,\dot{:}\,} x \\ b \ensuremath{\,\dot{:}\,} x \end{bmatrix}$

Ho $ab \in (x) \Leftrightarrow ab : x$ (ибо $(x) = \{ax \mid a \in K\}$ по определению, и $ab \in K$).

- № **21(4.6)** Пусть K область целостности. Нетривиальный идеал I является максимальным тогда и только тогда, когда K/I поле.
 - ▶ Знаем (№17): K/I поле \Leftrightarrow в K/I нет нетривиальных идеалов.

Пусть K/I — поле, пусть $\exists I:I\subset J\subset K$ — нетривиальный идеал. Подействуем на него каноническим гомоморфизмом $\varphi:K\to K/I$.

Лемма. Пусть $f: K \to L$ — гомоморфизм колец, $I \subset K, J \subset L$ — идеалы. Тогда а) f(I) — идеал в f(K), b) $f^{-1}(J)$ — идеал в K.

- lacktriangled а) Пусть $x\in f(I), y\in f(K)$. Тогда найдутся такие x' и y', где $x'\in I, x=f(x'), y'\in K, y=f(y')$. Имеем: $xy=f(x')f(y')=f(x'y')\in F(I)$, так как $x'y'\in I$.
 - b) Пусть теперь $x \in f^{-1}(J), y \in K$. Тогда $f(xy) = f(x)f(y) \in J$, следовательно, $xy \in f^{-1}(J)$.

Из Леммы следует, что в K/I существует нетривиальный идеал \Leftrightarrow , когда существует идеал в K, содержащий I.

- № 22(4.7) Пусть K область целостности. Нетривиальный идеал I является простым тогда и только тогда, когда K/I область целостности.
 - \Rightarrow : Пусть I простой, но K/I не область целостности. Тогда $\exists a,b \in K : (a+I)(b+I) = ab+I = 0 + I = 0_{K/I}$. Но тогда должно быть $ab \in I$, т. е. идеал не простой. Противоречие.
 - \Leftarrow : Пусть I непростой. Тогда $\exists a,b:a,b\in I$, но $ab\notin I$. Рассмотрим $0\neq (a+I)(b+I)=ab+I\underbrace{=}_{ab\in I}I=0_{K/I}$.
- № 23(5.1, 5.2) Пусть K область целостности. Рассмотрим множество пар $\tilde{K} = \{a, b\}$ элементов кольца K, где $b \neq 0$. На этом множестве введем отношение следующим образом: $\{a, b\} \sim \{c, d\}$, если ad = bc.
 - а) Докажите, что $\{a,b\} \sim \{ac,bc\}$. b) Докажите, что это отношение эквивалентности.

Элемент множества классов эквивалентности $F = \operatorname{Quot}(K)$ будем записывать как $\frac{a}{b}$ или ab^{-1} . Введем операции сложения и умножения на $F = \operatorname{Quot}(K)$:

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd},$$
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}.$$

Докажите, что

- с) сложение и умножение корректно определено; d) F является коммутативным кольцом; e) F является полем; f) существует инъекция $K \to F$.
- ightharpoonup а) $a \cdot bc = b \cdot ac$ из коммутативности.
 - b) $\{a, b\} \sim \{a, b\}$, т. к. ab = ab

•
$$\{a, b\} \sim \{a, b\}, T. \text{ K. } ab = ab$$

• $\{a, b\} \sim \{c, d\} \Leftrightarrow ad = bc \Leftrightarrow cb = da \Leftrightarrow \{c, d\} \sim \{a, b\}$
• $\{a, b\} \sim \{c, d\} \sim \{e, f\} \Rightarrow \begin{cases} ad = bc \\ cf = de \end{cases} \Rightarrow \begin{cases} adf = bcf \\ bcf = bde \end{cases} \Rightarrow adf = bde \Rightarrow af = be \Rightarrow \{a, b\} \sim \{e, f\}$

c) TODO TODO

№ 24(6.1) Признак неприводимости Эйзенштейна

Пусть f(x) — многочлен с целыми коэффициентами и существует такое простое число p, что:

1. старший коэффициент f(x) не делится на p; 2. все остальные коэффициенты f(x) делятся на p; 3. свободный член f(x) не делится на p^2 .

Тогда многочлен f(x) неприводим над полем рациональных чисел.

▶ Пусть не так, и он приводим над Q. Тогда он приводим и над Z (домножим на общий знаменатель). Тогда он раскладывается в произведение двух многочленов ненулевой степени: $f_n x^n + \cdots + f_1 x + f_0 = f(x) = g(x)h(x) =$ $(g_k x^k + \dots + g_1 x + g_0)(h_m x^m + \dots + h_1 x + h_0), 0 < \deg g, \deg h < n.$ Возьмём всё по модулю p (если мы утверждаем, что у нас равенство выполняется в Z, то оно должно выполняться и для любого натурального модуля). Тогда $f(x) = f_n x^n$. f(x) состоит из одного монома, а произведение двух многочленов будет одним мономом \Leftrightarrow оба этих т. к. другие члены делятся на p

многочлена тоже мономы. Отсюда $\overline{f}(x) = \overline{g}(x)\overline{h}(x) = (g_k x^k)(h_m x^m)$. Рассмотрим свободный член. Если k, m > 0, то $a_0 = g_0$ $h_0 : p^2$ (свободные члены g(x) и h(x) делятся на p, т. к. они зануляются, когда мы берём по модулю

- p). Противоречие.
- № **25**(6.2?????) Многочлен $x^n p$ (p простое число) неприводим над \mathbb{Q} .
 - ▶ По критерию Эйзенштейна: $1 : /p, -p : p, -p : /p^2$, где р простое.
- № 26(6.3) Характеристика поля простое число.
 - \blacktriangleright Если k непростое, $k=m\cdot n$, то $m\cdot n=0$, т. е. есть делители нуля противоречие с тем, что у нас поле.
- № 27(6.4(Lecture all.pdf №6.2(3)) Пусть $F \subset G$ поля. Верно ли, что char(F) = char(G)?
 - Так как $\varphi(1)=1$, имеем $\varphi(\underbrace{1+\cdots+1}_m)=\underbrace{1+\cdots+1}_m$. Т. к. $\ker\varphi=\{0\}$, то $\underbrace{1+\cdots+1}_m=0$ в K и F одновременно. Следовательно, $\operatorname{char} F=\operatorname{char} K$.
- № 28(6.5) Любое конечное поле имеет положительную характеристику.
- lacktriangledown Пусть F конечно, а char F=0. Тогда $\underbrace{1+\dots+1}_k$ для любого k будет давать элемент поля, не совпадающий с предыдущими (иначе char была бы конечна).

Получается, что F бесконечно. Противоречие.

№ **29**(№6.7) Нетривиальный гомоморфизм полей $\varphi : F \to L$ является инъекцией.

 $\varphi: F \to L$ – инъекция $\Leftrightarrow \operatorname{Ker} \varphi = \{0\}.$

▶ • ⇒: φ – инъекция $\rightleftharpoons \forall a, b \in F, a \neq b, \ \varphi(a) \neq \varphi(b)$.

 $\operatorname{Ker} \varphi = \{ a \in F : \varphi(a) = 0_L \}.$

Имеем $\varphi(0) = 0$ по свойству гомоморфизма, тогда по инъективности $\forall a \neq 0 \varphi(a) \neq \varphi(0) = 0$, т. е. Ker $\varphi = \{0\}$.

• \Leftarrow : Ker $\varphi = \{0\} \Rightarrow$

 $\operatorname{Ker} \varphi$ — идеал в F

 $\blacktriangleright \forall a \in F \forall x \in \operatorname{Ker} \varphi \ \varphi(ax) = \varphi(a)\varphi(x) = \varphi(a) \cdot 0 = 0 \ Thenax \in \operatorname{Ker} \varphi$

В поле F идеал $I = \begin{cases} \{0\} \\ F \end{cases}$, т. е. $\operatorname{Ker} \varphi = \begin{cases} \{0\} \\ F - - - \operatorname{ho}$ в этом случае гомоморфизм тривиален, но у нас нетривиальный

- № $30(\mathbb{N} \cdot 6.8)$ K образует линейное пространство над F.
 - ▶ Проверка свойств. Свойства линейного пространства следуют из аксиом поля. ТООО: скопировать из вики свойства.
- № 31(Lecture all.pdf ytb. 6.2(2))
- $\tilde{m} := 1 + \dots + 1$

$$\tilde{n} := \underbrace{1 + \dots + 1}_{n \text{ imtyr}}$$

Для $m \neq n$ имеем $\tilde{m} \neq \tilde{n}$ (иначе $\tilde{m} - \tilde{n} = 0$, и char $F \neq 0$.

Противоположный к элементу \tilde{m} обозначим $-\tilde{m}$.

Получили $\mathbb{Z} \subset F$. Значит, поле частных $\mathbb{Q} = \operatorname{Quot}(\mathbb{Z}) \subset F$. TODO: почему так?

- № 32 (Lecture all.pdf утв. 6.5(2))
 - \blacktriangleright Обозначим смежный класс многочлена $g(x) \in F$ как $\overline{g}(x) \in K$. Тогда имеем: $\overline{x} \in K$ корень многочлена f(x), т. $K. f(\overline{x}) = \overline{f}(\overline{x}) = 0.$
- 33 Пусть f(x) неприводимый многочлен степени n, и K = F[x]/(f(x)). Чему равна степень [K:F] этого расширения?
- \blacktriangleright Обозначим смежный класс многочлена $g(x) \in F$ как $\overline{g}(x) \in K$. Рассмотрим $\overline{1}, \overline{x}, \dots, \overline{x}^{n-1}$. Пусть они ЛЗ, т. е. $\exists \lambda_0, \lambda_1, \dots, \lambda_{n-1} \in F : \lambda_0 \cdot \overline{1} + \lambda_1 \cdot \overline{x} + \dots + \lambda_{n-1} \cdot \overline{x}^{n-1} = 0$. Тогда $g(x) = \lambda_0 + \lambda_1 x + \dots + \lambda_{n-1} x^{n-1} \in (f(x))$, а по неприводимости f(x) имеем g(x)=0, т. е. $\lambda_0=\lambda_1=\cdots=\lambda_{n-1}=0$, и данная ЛК тривиальна. Поэтому $\overline{1}, \overline{x}, \dots, \overline{x}^{n-1}$ ЛНЗ.

 \forall многочлена $h(x) \in F[x]$ $\overline{h}(x)$ — образ при факторизации по идеалу (f(x)) — совпадает с $\overline{r}(x)$, где r(x) остаток от деления h(x) на f(x). Поэтому $\overline{1}, \overline{x}, \dots, \overline{x}^{n-1}$ образуют базис K как линейного пространства над F, т. e. [K : F] = n.

- № 36(9.1) Для производной выполнены формулы (f+g)' = f' + g' и (fg)' = f'g + fg'.
 - ightharpoonup Для $f(x) = a_n x^n + \dots + a_1 x + a_0$ и $b(x) = b_n x^n + \dots + b_1 x + b_0$:

 $(f+g)' = n(a_n + b_n)x^n + \dots + (a_2 + b_2)x + (a_1 + b_1) = (na_nx^n + a_2x + a_1) + (nb_nx^n + \dots + b_2x + b_1) = f' + g'$

Рассмотрим $f(x) - f(y) = \sum_{k=1} na_k(x^k - y^k) = (x - y) \sum_{k=1} na_k(x^{k-1} + x^{k-2}y + \dots + y^{k-1}) = (x - y)\Phi(x, y)$, где $\Phi(x, y) = \sum_{k=1} na_k(x^{k-1} + x^{k-2}y + \dots + y^{k-1})$. Заметим, что $\Phi(x, x) = f'(x)$.

Тогда имеем для $\varphi = fg$: $\varphi(x) - phi(y) = f(x)g(x) - f(y)g(y) = f(x)(g(x) - g(y)) + g(y)(f(x) - f(y)) = (x - g(x)) + g(y)(f(x)) + g(y)(f(x)) = f(x)g(x) + g(x)(f(x)) + g(y)(f(x)) + g(x)(f(x)) + g(x)$ $y)[f(x)G(x,y)+g(y)\Phi(x,y)].$ Отсюда $\varphi'=f(x)G(x,x)+g(x)\Phi(x,x)=f(x)g'(x)+g(x)f'(x).$

- № 37 (9.2) Многочлен f не имеет кратных корней тогда и только тогда, когда (f, f') = 1.
- 38(9.6) Докажите, что можно построить
 - а) все точки с рациональными координатами; b) ξ_n , где n=3,4,6; c) ξ_5 .

Если мы построили точки z, w, то можно ли построить точки d) $\overline{z}, -z$? e) z + w, z - w? f) $z \cdot w, \frac{z}{w}$ (при $w \neq 0$)? g) \sqrt{z} ?

39 (9.12a) Докажите невозможность **удвоения куба**, то есть построение куба объёма 2, имея куб объёма 1 с

помощью циркуля и линейки.

40 (10.2)

- 41 (10.4)
- 42 (10.5) Nº
- № 43 (11.1) а) Конечное поле характеристики p состоит из p^n элементов. b) Поле F является полем разложения многочлена $x^{p^n} - x$. c) Существует единственное поле из p^n элементов.

ightharpoonup 44 (11.2) Найдите все неприводимые многочлены (со стар. коэффициент 1) степени 2, 3 над полем а) F_2 , b) F_3 .

№ 45 (11.3) Постройте поле из а) 4; b) 8; c) 9 элементов.