Développez une preuve de concept

Sommaire

- PARTIE 1 CHOIX DU DATASET
- PARTIE 2 CHOIX DU MODÈLE
- PARTIE 3 DESCRIPTION DU MODÈLE
- PARTIE 4 RÉSULTAT DE LA MODÉLISATION
- PARTIE 5 API ET DASHBOARD
- **CONCLUSION**

L'objet de l'étude

- Sélectionner un ancien projet et chercher à en améliorer les performances
- Recherche thématique :
 - Sélectionner une technique nouvelle
 - Monter en compétence
- Mettre en œuvre le nouvel algorithme afin de le comparer à un modèle plus classique
- Donner à voir les résultats grâce à un dashboard simple

PARTIE 1 – CHOIX DU DATASET

Quel projet ? Quel dataset ?

- Utilisation d'un ancien projet
- Tâche: Segmentation sémantique
- Dataset : CityScapes
- Modèle sélectionné à l'époque : Unet associé à Resnet

Quel projet ? Quel dataset ?

- Images: P8_Cityscapes_leftImg8bit_trainvaltest
- Masks: P8_Cityscapes_gtFine_trainvaltest

- Prédécoupage :
 - Entraînement : 2975 images / masks
 - Validation: 500 images / masks
 - Test: 1525 images / mocks

Segmentation: Fonctionnement classique

Architecture:

Encoder

Decoder

Extraire les features importantes

Basé sur des modèles connus sur la classification d'image (sans les couches de décision)

Backbone

Segmentation Input Image Map Encoder Decoder

Upsampling

Revenir aux dimensions initiales

Autant de canaux que de classes à détecter

Downsampling

Un choix guidé par la performance

- [1] Semantic Segmentation using Vision Transformers: A survey par Hans Thisanke, Chamli Deshan, Kavindu Chamith, Sachith Seneviratne, Rajith Vidanaarachchi, Damayanthi Herath (2023)
 - Étude comparative
 - Différents algorithmes de segmentation
 - Tous inspirés du *Vision-Transformer (ViT)* :
 - Inspiré du succès des modèles NLP à Transformers
 - Considérer une image comme une séquence de *patchs*, pour réduire la complexité
 - Détecter des relations très fines, et globales, grâce au mécanisme d'attention

Choix guidé par la performance

• *CityScapes* parmi les *datasets* utilisés pour comparer

					Datasets	
Model	Variant	Backbone	#Params (M)	ADE20K	Cityscapes	PASCAL-Context
	SETR-Naïve $(16,160k)^{\rho}$	ViT-L [‡] [2]	305.67	48.06 / 48.80	-	-
SETR 5	SETR-PUP(16,160k)	ViT-L [‡]	318.31	48.58 / 50.09	-	-
	SETR-MLA(16,160k)	ViT-L‡	310.57	48.64 / 50.28	-	-
	SETR-PUP(16,40k)	ViT-L‡	318.31	-	78.39 / 81.57	-
	SETR-PUP(16,80k)	ViT-L [‡]	318.31	_	79.34 / 82.15	-
	SETR-Naïve(16,80k)	ViT-L [‡]	305.67	_	-	52.89 / 53.61
	SETR-PUP(16,80k)	ViT-L‡	318.31	_	_	54.40 / 55.27
	SETR-MLA(16,80k)	ViT-L‡	310.57	_	_	54.87 / 55.83
Swin ^k [4]		Swin-T	60	46.1	-	-
		Swin-S	81	49.3	-	-
		Swin-B [‡]	121	51.6	-	-
		Swin-L [‡]	234	53.5	-	-
	Seg-B	DeiT-B [†] 81	86	48.05	80.5	53.9
	Seg-B/Mask	DeiT-B [†]	86	50.08	80.6	55.0
Segmenter § 11	Seg-L	ViT-L [‡]	307	52.25	80.7	56.5
	Seg-L/Mask	ViT-L [‡]	307	53.63	81.3	59.0
	,	MiT-B0 [†]	3.4	37.4 / 38.0	76.2 / 78.1	-
		MiT-B1 [†]	13.1	42.2 / 43.1	78.5 / 80.0	-
0 P (700)		MiT-B2 [†]	24.2	46.5 / 47.5	81.0 / 82.2	-
SegFormer 69		MiT-B3 [†]	44.0	49.4 / 50.0	81.7 / 83.3	-
		MiT-B4 [†]	60.8	50.3 / 51.1	82.3 / 83.9	-
		MiT-B5 [†]	81.4	51.0 / 51.8	82.4 / 84.0	-
		PVT-Tiny [‡]	17.0	35.7	-	-
		PVT-Small [‡]	28.2	39.8	-	-
	PVT v1 [71]	PVT-Medium [‡]	48.0	41.6	_	-
		PVT-Large [‡]	65.1	42.1	-	-
		PVT-Large [‡] *	65.1	44.8	-	-
PVT ^ℵ		PVT v2-B0‡	7.6	37.2	-	-
		PVT v2-B1 [‡]	17.8	42.5	-	-
	PVT v2 72	PVT v2-B2 [‡]	29.1	45.2	-	-
		PVT v2-B3 [‡]	49.0	47.3	-	-
		PVT v2-B4 [‡]	66.3	47.9	-	-
		PVT v2-B5 [‡]	85.7	48.7	-	-
Twins [73]		Twins-PCPVT-S [†]	54.6	46.2 / 47.5	-	-
	Twins-PCPVT	Twins-PCPVT-B [†]	74.3	47.1 / 48.4	-	-
		Twins-PCPVT-L [†]	91.5	48.6 / 49.8	-	-
		Twins-SVT-S [†]	54.4	46.2 / 47.1	-	-
	Twins-SVT	Twins-SVT-B [†]	88.5	47.7 / 48.9	-	-
		Twins-SVT-L [†]	133	$48.8 \ / \ 50.2$	-	-
DPT § 74	DPT-Hybrid	ViT-Hybrid [‡]	123	49.02	-	60.46
DF1 * [74]	DPT-Large	ViT-L [‡]	343	47.63	-	-
HRFormer [75]	$OCRNet(7,150k)^{\rho}$	HRFormer-S	13.5	44.0 / 45.1	-	-
	OCRNet(7,150k)	HRFormer-B	50.3	46.3 / 47.6	-	-
	OCRNet(7,80k)	HRFormer-S	13.5	-	80.0 / 81.0	-
	OCRNet(7,80k)	HRFormer-B	50.3	-	81.4 / 82.0	-
	OCRNet(15,80k)	HRFormer-B	50.3	-	81.9 / 82.6	57.6 / 58.5
	OCRNet(7,60k)	HRFormer-B	50.3	-	-	56.3 / 57.1
	OCRNet(7,60k)	HRFormer-S	13.5	-	-	53.8 / 54.6
		Swin-T	-	47.7 / 49.6	-	-
		Swin-L [‡]	216	56.1 / 57.3	-	-
Mask2Former [78]		Swin-L-FaPN [‡]	-	$56.4 \ / \ 57.7$		-
		Swin-L‡	216	-	83.3 / 84.3	-
-		Swin-B [‡]	-	-	83.3 / 84.5	-

Un choix pragmatique

- Disponible sur la plateforme HuggingFace
- Dispose d'une version « compatible » avec le framework TensorFlow
- Classé 2nd en termes de performances

Autres ressources

• [2] SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers

par Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M.

Alvarez, Ping Luo (2021)

Article ayant introduit l'algorithme

• Description de sa structure

Autres ressources

- [3] MedAI #32: Simple & Efficient Design for Semantic Segmentation with Transformers https://www.youtube.com/watch?v=Yf9fNn1fWy8&t=380s par Enze Xie
- [4] Semantic segmentation with SegFormer and Hugging Face Transformers https://keras.io/examples/vision/segformer par Sayak Paul (2023)
- [5] Semantic segmentation for Attribution methods tutorial https://colab.research.google.com/drive/1AHg7KO1fCOX5nZLGZfxkZ2-DLPPdSfbX#scrollTo=0c7d9d33-2de5-4f03-a793-a76dd2b1e238 par Antonin Poché (2023)

PARTIE 3 - DESCRIPTION DU MODÈLE

Architecture classique Encoder / Decoder

Hierarchical Transformer Encoder

Overlapped Patch Merging

Patch $N \times N \times 3$

Vecteur $1 \times 1 \times C_i$

Amélioration :

Hierarchical Transformer Encoder

Efficient Self-Attention

avec $N = H_i \times W_i$

Réduction : $O(N^2/R)$

- Méthode :
 - convolution avec $Kernel = Stride = \sqrt{R}$
 - couche linéaire

Hierarchical Transformer Encoder

Mix-FFN

- Solution initiale : positional encoding pour apprendre de la position des patchs
- Problème : performance diminue à cause des changements de résolution
- Solution:

Lightweight All-MLP Decoder

- Des *features maps* de grande qualité :
 - Différentes échelles
 - Informations locales ET globales

- Un *decoder* très simple :
 - Sans les nombreuses couches convolutives habituelles
 - Basé sur des blocs MLP

PARTIE 4 – RÉSULTAT DE LA MODÉLISATION

Métrique d'évaluation

• Mean IoU score (indice de Jaccard) :

$$IoU = \frac{TP}{(TP + FP + FN)}$$

Training time

Quel SegFormer? Quelle Baseline?

- Modèle sélectionné sur le projet précédent : *Unet-Resnet*
- Plusieurs versions disponibles pour chacun :
 - SegFormer: 5 variantes B1 à B5
 - Resnet: 5 variantes Resnet18 à Resnet152
- Choix du *B1* pour le *SegFormer* (contraintes du matériel)
- Sélectionner des modèles de tailles équivalentes :

SegFormer B1

Total params: 13679816 (52.18 MB) Trainable params: 13679304 (52.18 MB) Non-trainable params: 512 (2.00 KB)

Unet-Resnet18

Preprocessing

- Utilisation d'un Générateur de données
- Limiter taille images :
 - *Unet-Resnet* : 256 × 512
 - *Segformer* : 384 × 384
- Augmentation de données
- Preprocess :
 - Unet-Resnet : Zero-centering et RGB → BGR
 - SegFormer : Normalization
- Simplification des catégories : 32 → 8
- Mise en batchs
- *Shuffle* (si besoin)

```
define augmentations for training
list_of_transforms = [
   A.OneOf(
           A.FancyPCA(p=1, alpha=1),
           A.HueSaturationValue(p=1, hue_shift_limit=20, sat_shift_limit=30, val_shift_limit=20)
           A.ColorJitter(p=1, brightness=0.2, contrast=0.2, saturation=0.2),
       p=0.5
   A.RandomShadow(
       p=0.5,
       shadow_roi=
           0, 0.4,
       shadow dimension=5
   A.CoarseDropout(
       p=0.5,
       min holes=2,
       max_holes=8,
       min_height=0.05,
       max_height=0.1,
       min width=0.025,
```

Baseline

SegFormer

ground truth

 Au prix d'un temps d'entraînement bien plus conséquent

model	backbone	val_iou	training_time
Unet	Resnet18	0.65	3 h
SegFormer	MIT-B1	0.71	15 h

Et par classe?

IoU, per Class and per Model

• Une prédominance sur toutes les catégories

Très marquée sur les humains

model	backbone	val_iou	training_time
Unet	Resnet18	0.65	3 h
SegFormer	MIT-B1	0.71	15 h

PARTIE 5 – API ET DASHBOARD

Architecture

B Déploiement continu

Accessibilité - WCAG Streamlit

- 1.1.1 Contenu non textuel

 captions, labels
- 1.4.1 Utilisation de la couleur graphique avec patterns

Contrast Checker WebAIM 1.4.3 Contraste

1.4.4 Redimensionnement de texte ok

• 2.4.2 Titre de page st.set_page_config(page_title="SegFormer CityScapes")

