0.4 Übung 3, 22.11.2004

0.4.1 Aufgabe 1

a) Sei $f: S_n \to \mathbb{Z}_m$ ein (Gruppen-) Homomorphismus

z.Z.:
$$\forall \pi \in \S_n : f(\pi) + f(\pi) = [0]_{\sim}$$

Beweis: Sei $\tau \in S_n$ eine Transposition. Dann gild $\tau \circ \tau = id$

Also:
$$[0]_{\sim} = f(id) = f(\tau \circ \tau) = f(\tau) + f(\tau)$$

Sei: $\pi \in S_n$ bel.

Dann existieren Transposition $\tau_1,...,\tau_k\in S_n$ mit $\pi=\tau_1\circ...circ\tau_k$

Also:
$$f(\pi) + f(\pi) + f(\tau_1) + f(\tau_2) + \dots + f(\tau_k) + f(\pi_1) + f(\pi_2) + \dots$$

 $f(\tau_1) + f(\tau_1) + f(\tau_2) + f(\tau_2) + \dots = [0]_{\sim}$

b) Sei f surjektiv. Dann ex. $\pi \in S_n$ mit $f(\pi) = [1]_{\sim}$. Nach a) $[0]_{\sim} = f(\pi) + f(\pi) = [1]_{\sim} + [1]_{\sim} = [2]_{\sim}$.

Also teilt m 2. Somit ist m=2.

0.4.2 Aufgabe 2

a)

Sei
$$n \in \mathbb{N}$$
. 3 teilt $n \Leftrightarrow [n]_{\sim} = [0]_{\sim} \quad \text{in} \mathbb{Z}_3$
 $\Leftrightarrow [\sum_{i=0}^n a_i \cdot 10^i]_{\sim} = [0]_{\sim} \quad \text{in} \mathbb{Z}_3$
 $\Leftrightarrow \sum_{i=0}^n [a_i \cdot 10^i]_{\sim} = [0]_{\sim} \quad \text{in} \mathbb{Z}_3$
 $\Leftrightarrow \sum_{i=0}^n [a_i]_{\sim} \cdot [10^i]_{\sim} = [0]_{\sim} \quad \text{in} \mathbb{Z}_3$
 $\Leftrightarrow \sum_{i=0}^n [a_i]_{\sim} \cdot [1]_{\sim}^i = [0]_{\sim} \quad \text{in} \mathbb{Z}_3$
 $\Leftrightarrow \sum_{i=0}^n a_i = [0]_{\sim} \quad \text{in} \mathbb{Z}_3$
 $\Leftrightarrow 3 \text{ teilt } \sum_{i=0}^n a_i$

b) Analog ($[10]_{\sim} = [-1]_{\sim}$ in \mathbb{Z}_{11})

0.4.3 Aufgabe 3

a) (Hier fehlen noch ein paar Angaben für die Menge der Einsen in den Klammern) Die Charakteristik eines Körpers $\mathbb K$ ist 0, wenn für alle $n \in \mathbb N$ gilt: $\underbrace{1+\ldots+1}_{n\text{-mal}} \neq 0$, 0,1 neutr.

El.

 $(\mathbb{R}, +, \cdot)$ ist ein Körper mit Char 0, also kann 0 nicht die Char von \mathbb{K} sein.

Sei also $m \in \mathbb{N}$, die Char von \mathbb{K} par Wir nehmen: m ist keine Primzahl Wir wissen:

- (i) (m-mal)1 + ... + 1 = 0
- (ii) m ist die kleinste nat. Zahl mit dieser Eigenschaft
- (iii) $\exists k, l \in \mathbb{N} : k > 1, l > 1 \text{ und } m = k \cdot l. \ (k < m, l < m)$

Aus (i) ergibt sich
$$(1 + ... + 1) + (1 + ... + 1) + ... + (1 + ... + 1) = 0$$
 $(l \cdot k$ -mal 1) $\Leftrightarrow (1 + ... + 1) \cdot (1 + ... + 1) = 0$ $(l \cdot 1 \cdot k \cdot 1)$

Wir haben $x=1+\ldots+1\neq 0$ (l-mal) und $y=1+\ldots+1\neq 0$ (k-mal) gefunden mit $x\cdot y=0$. Dies ist ein Widerspruch zur Nullteilerfreiheit von $\mathbb{K}.\Rightarrow$ m muß Primzahl sein.

b) (Hier fehlen noch ein paar Angaben für die Menge der Einsen in den Klammern) Sei p eine Primzahl und p die Char von K. Wir def.:

$$f: \mathbb{F}_p \rightarrow \mathbb{K}, k \mapsto \left\{ \begin{array}{ll} \overline{0} & , k = 0 \\ 1 + \ldots + 1 & , k \in \{1, \ldots, p-1\} \end{array} \right.$$

Sei $k,k'\in\mathbb{F}_p, k+k'=r$ und $k\cdot k'=r'$ mit $r,r'\in\{0,...,p-1\}$

$$f(k) + f(k') = (\overline{1} + \ldots + \overline{1}) + (\overline{1} + \ldots + \overline{1}) = (\overline{1} + \ldots + \overline{1}) + (\overline{1} + \ldots + \overline{1}) = (\overline{1} + \ldots + \overline{1}) = f(r) = f(k + k')$$

Analog $f(k) \cdot f(k') = f(k \cdot k')$

0.4.4 Aufgabe 4

a)

(1)
$$\frac{z_1 - z_2 - 2}{z_1 + z_2 + 3i} = \frac{3}{5}\sqrt{2}; \frac{1}{2}(\frac{z_2}{z_3} + \frac{\overline{z_3}}{z_3}) = \frac{1}{7} + i \cdot 0$$

(2)
$$\overline{z_1 + z_3 \cdot (z_3 - z_2)} = (i3 - 3\sqrt{3}) + i(12 + 9\sqrt{3})$$

b)

(1)
$$z + \overline{z} = z \cdot \overline{z} \Leftrightarrow za = a^2 + b^2 \Leftrightarrow (a-1)^1 + b^2 = 1$$

Kreislinie eines Kreises um (1,0) mit Radius 1.

(2)
$$Re(iz) = -b, 0 < Re(iz) < 1$$

 ${\bf Zeichnung...}$

(3)
$$|z - z_i| < 3 \Leftrightarrow a^2 + (b - 2)^2 < 9$$
; $3 < |z| \Leftrightarrow 9 < a^2 + b^2$

Der Teil des Kreises um (0,2) mit Radius 3, der nicht im Inneren des Kreises um (0,0) mit Radius 3 liegt.