Analyse Mathématique et principes de la méthode

1 Introduction

1.1 ModIA 4 : Différences finies

(P)
$$\begin{cases} -u''(x) + c(x)u(x) = f(x) & \text{sur } \Omega =]0, 1[\\ u(0) = u(1) = 0 \end{cases}$$
 (1)

Depuis une grille régulière homogène de pas h, on cherche une approximation de la solution u de (P) en les noeuds de maillage :

 $(x_i)_{i\in [0,N+1]}$, coordonnées des noeuds de maillage.

On cherche $u_h \in \mathbb{R}^{N+2}$, approximation de u en $(x_i)_{i \in [0,N+1]}$. Les conditions aux limites donnent : $u_0 = u_{N+1} = 0$

Il nous reste à trouver $(u_i)_{i \in \llbracket 1,N \rrbracket}$ avec $u_h = (u_i)_{i \in \llbracket 0,N+1 \rrbracket}$.

On approxime $u''(x_i) \forall i \in \llbracket 1, N \rrbracket$ par : $u''(x_i) \approx \frac{u(x_{i+1}) - 2u(x_i) + u(x_{i-1})}{h^2}$. (Hypothèse que $u \in \mathcal{C}^4(]0, 1[)$)

D'où la résolution de (P) revient à résolution :

$$(P_h) \qquad \begin{cases} -\frac{u_{i+1} - 2u_i + u_{i-1}}{h^2} + c(x_i)u_i = f(x_i) & \forall i \in [1, N] \\ u_0 = u_{N+1} = 0 \end{cases}$$
 (2)

Remarque : Etude de la consistence, stabilité (instationnaire) et convergence du schéma numérique.

Remarque: Limitations:

- u supposé "suffisamment régulière" pour que l'approximation de u'' soit correcte. (Est-on contraint apr une telle hypothèse pour la résolution numérique ?)
- Grille régulière : problème d'adéquation entre la grille spatiale et la frontière du domaine.

1.2 ModIA 5 : Formulation variationnelle et méthode des éléments finis

1.2.1 Construction d'un "nouveau" problème

Trouver $u \in V$ tel que :

$$(P_{FV}) \qquad \forall v \in V, \quad -\int_{\Omega} u''(x)v(x)dx + \int_{\Omega} c(x)u(x)v(x)dx = \int_{\Omega} f(x)v(x)dx$$
(3)

Questions:

- Dans quel espace choisir u et v pour que les intégrales soient bien définies ?
- Condition d'existence et unicité de la solution de ce problème
- Lien entre la solution de (P_{FV}) et celle de (P) ?

1.2.2 Résolution numérique de (P_{FV})

Recherche d'une solution à (P_{FV}) sur un sous-espace de dimension finie.

Questions:

- Comment construire ce sous-espace?
- Convergence de la méthode?

2 Espace $L^2(\Omega)$ et dérivée faible

2.1 Espace des fonctions tests

Définition - Espace des fonctions tests

On note $D(\Omega)$ l'espace des fonctions "tests", définiés sur Ω , \mathcal{C}^{∞} et à support compact K inclus dans Ω .

 $D(\Omega)$ est un espace vectoriel.

Remarque:

- i) Support d'une fonction $\varphi: \Omega \to \mathbb{R}: \operatorname{supp}(\varphi) = \overline{\{x \in \Omega, \varphi(x) \neq 0\}}$.
- ii) Soit $\varphi \in D(\Omega)$, alors toutes ses dérivées sont des fonctions tests.

Définition - Convergence dans $D(\Omega)$

Soient $\varphi \in D(\Omega)$ et $(\varphi_p) \in D(\Omega)^{\mathbb{N}}$.

On dit que (φ_p) converge vers φ dans $D(\Omega)$ si :

- i) $\exists K \subset \Omega$ compact tel que $\forall p \in \mathbb{N}, \operatorname{supp}(\varphi_p) \subset K$ et $\operatorname{supp}(\varphi) \subset K$.
- ii) $\forall \alpha \in \mathbb{N}^n$, $(D^{\alpha}\varphi_p)$ converge uniformément vers $D^{\alpha}\varphi$ sur K.

$$\Leftrightarrow \forall \alpha \in \mathbb{N}^n, \forall \varepsilon > 0, \exists p_0 \in \mathbb{N} \text{ tel que } \forall p \geq p_0, \\ \forall x \in \Omega, |D^{\alpha} \varphi_p(x) - D^{\alpha} \varphi(x)| < \varepsilon.$$

avec
$$D^{\alpha}\varphi = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1}...\partial x_n^{\alpha_n}}\varphi$$
.

Exemple: n=2

- $\alpha = (1,0), D^{\alpha} \varphi = \frac{\partial \varphi}{\partial x_1}$.
- $\alpha = (1,1), D^{\alpha} \varphi = \frac{\partial^2 \varphi}{\partial x_1 \partial x_2}$
- $\alpha = (0,2), D^{\alpha} \varphi = \frac{\partial^2 \varphi}{\partial x_2^2}.$

Espace $L^2(\Omega)$ 2.2

Définition

Soit Ω ouvert de \mathbb{R}^n muni de la mesure de Lebesgue.

On pose $\mathcal{L}^2(\Omega)$ l'ensemble des fonctions mesurables sur Ω :

$$\mathcal{L}^2(\Omega) = \{v : \Omega \to \mathbb{R} \text{ tel que } \int_{\Omega} |v(x)|^2 dx < +\infty \}.$$

On introduit la relation d'équivalence $\sim \text{sur } \mathcal{L}^2(\Omega)$, définie par :

$$\forall (f,g) \in (\mathcal{L}^2(\Omega))^2, f \sim g \Leftrightarrow f = g \text{ p.p. sur } \Omega$$

On définit $L^2(\Omega) := \mathcal{L}^2(\Omega) / \sim$.

$$\forall f \in L^2(\Omega), f = \{g \in \mathcal{L}^2(\Omega) \text{ tel que } g = f \text{ p.p. sur } \Omega\}$$

On identifie $f \in L^2(\Omega)$ avec son représentant f sur $\mathcal{L}^2(\Omega)$.

Remarque:

- $\int_{\Omega} |f(x)|^2 dx = 0$ avec $f \in \mathcal{L}^2(\Omega) \Leftrightarrow f = 0$ p.p. sur Ω . $\int_{\Omega} |f(x)|^2 dx = 0$ avec $f \in L^2(\Omega) \Leftrightarrow f = 0$ sur $L^2(\Omega)$.

Félix de Brandois

3

Théorème

 $L^2(\Omega)$ muni du produit scalaire $\langle\cdot,\cdot\rangle$ défini par :

$$\forall (f,g) \in (L^2(\Omega))^2, \langle f,g \rangle_{L^2(\Omega)} = \int_{\Omega} f(x)g(x)dx$$

est un espace de Hilbert.

On notera $||f||_{L^2(\Omega)} = \sqrt{\int_{\Omega} |f(x)|^2 dx}$ la norme associée.

Propriété - Fonctions "tests" et $L^2(\Omega)$

- i) $D(\Omega) \subset L^2(\Omega)$.
- ii) Soit $(\varphi_p) \in D(\Omega)^{\mathbb{N}}$ qui converge (au sens de la convergence dans $D(\Omega)$) vers $\varphi \in D(\Omega)$. Alors (φ_p) converge vers $\varphi \in L^2(\Omega)$.
- iii) $D(\Omega)$ est dense dans $L^2(\Omega)$: $\forall f \in L^2(\Omega), \exists (f_p) \in D(\Omega)^{\mathbb{N}} \text{ tel que } \lim_{p \to \infty} ||f_p f||_{L^2(\Omega)} = 0.$
- iv) Soit $f \in L^2(\Omega)$ telle que $\forall \varphi \in D(\Omega), \int_{\Omega} f(x)\varphi(x)dx = 0$. Alors f = 0 sur $L^2(\Omega)$.

Remarque: On notera $\varphi_p \xrightarrow[p \to \infty]{D(\Omega)} \varphi \Rightarrow \varphi_p \xrightarrow[p \to \infty]{L^2(\Omega)} \varphi$.

2.3 Dérivée faible et divergence faible dans $L^2(\Omega)$

Définition - Dérivée faible

Soit $v \in L^2(\Omega)$.

On dit que v admet une dérivée faible dans $L^2(\Omega)$ si :

$$\forall i \in [\![1,n]\!], \exists w_i \in L^2(\Omega) \text{ tel que } \forall \varphi \in D(\Omega), \int_{\Omega} v(x) \frac{\partial \varphi}{\partial x_i} dx = -\int_{\Omega} w_i(x) \varphi(x) dx$$

 $\forall i \in [1, n], w_i$ ainsi défini est appelé la *i-ème dérivée partielle première faible* de v. On la notera $w_i := \frac{\partial v}{\partial x_i}$.

Remarque:

- i) $\forall v \in L^2(\Omega), \frac{\partial v}{\partial x_i}$ est un abus de langage renvoyant à la i-ème dérivée partielle faible.
- ii) Si $v \in L^2(\Omega)$ est dérivable et $\forall i \in [1, n], \frac{\partial v}{\partial x_i} \in L^2(\Omega)$, alors les dérivées partielles faibles et classiques coïncident.

Propriété

Soit $v \in L^2(\Omega)$.

v admet une dérivée faible dans $L^2(\Omega)$ si

$$\exists c>0 \text{ tel que } \forall \varphi \in D(\Omega), \forall i \in [\![1,n]\!], \left|\int_{\Omega} v(x) \frac{\partial \varphi}{\partial x_i} dx\right| \leq c \|\varphi\|_{L^2(\Omega)}$$

Définition - Divergence faible

Soit $\sigma: \Omega \to \mathbb{R}^n$ telle que $\forall i \in [1, n], \sigma_i \in L^2(\Omega)$.

On notera également $\sigma \in [L^2(\Omega)]^n$.

On dit que σ admet une divergence faible dans $L^2(\Omega)$ si :

$$\exists w \in L^2(\Omega) \text{ tel que } \forall \varphi \in D(\Omega), \int_{\Omega} \sigma(x) \cdot \nabla \varphi(x) dx = -\int_{\Omega} w(x) \varphi(x) dx$$

avec
$$\sigma \cdot \nabla \varphi = \sum_{i=1}^n \sigma_i \frac{\partial \varphi}{\partial x_i}$$
.

 $w\in L^2(\Omega)$ ainsi défini est appelé la divergence faible de σ . On la notera $w:=\mathrm{div}(\sigma)$. $(\mathrm{div}(v)=\sum_{i=1}^n\frac{\partial v}{\partial x_i})$

Propriété

Soit $\sigma \in [L^2(\Omega)]^n$.

 σ admet une divergence faible si

$$\exists c>0 \text{ tel que } \forall \varphi \in D(\Omega), \left|\int_{\Omega} \sigma(x) \cdot \nabla \varphi(x) dx\right| \leq c \|\varphi\|_{L^2(\Omega)}$$

3 Espaces de Sobolev

3.1 Espace $H^1(\Omega)$ et ses généralisations

Définition

Soit Ω ouvert de \mathbb{R}^n .

On appelle $H^1(\Omega)$ l'ensemble des éléments de $L^2(\Omega)$ qui admettent une dérivée faible dans $L^2(\Omega)$.

On notera : $H^1(\Omega) = \{v \in L^2(\Omega) \text{ tel que } \forall i \in [1, n], \frac{\partial v}{\partial x_i} \in L^2(\Omega)\}.$

Remarque : La notation $\frac{\partial v}{\partial x_i} \in L^2(\Omega)$ renvoie à l'existence d'une i-ème dérivée partielle faible de v.

Théorème

 $H^1(\Omega)$ muni du produit scalaire $\langle \cdot, \cdot \rangle$ défini par :

$$\forall (f,g) \in (H^1(\Omega))^2, \langle f,g \rangle_{H^1(\Omega)} = \int_{\Omega} f(x)g(x)dx + \sum_{i=1}^n \int_{\Omega} \frac{\partial f}{\partial x_i}(x)\frac{\partial g}{\partial x_i}(x)dx$$

est un espace de Hilbert.

Remarque: $\langle f, g \rangle_{H^1(\Omega)} = \langle f, g \rangle_{L^2(\Omega)} + \sum_{i=1}^n \langle \frac{\partial f}{\partial x_i}, \frac{\partial g}{\partial x_i} \rangle_{L^2(\Omega)}$.

Remarque: On note $\langle f, g \rangle_{1,\Omega} := \sum_{i=1}^n \langle \frac{\partial f}{\partial x_i}, \frac{\partial g}{\partial x_i} \rangle_{L^2(\Omega)}$.

Cependant, $\langle f,g\rangle_{1,\Omega}$ n'est pas un produit scalaire sans autres hypothèses : $\langle f, f \rangle_{1,\Omega} = 0 \Rightarrow f = 0.$

- $H^1(\Omega)$ muni de $\langle \cdot, \cdot \rangle_{H^1(\Omega)}$ est un espace préhilbertien. (admis)
- $H^1(\Omega)$ muni de $\|\cdot\|_{H^1(\Omega)}$ défini par $\forall f \in H^1(\Omega), \|f\|_{H^1(\Omega)} = \sqrt{\|f\|_{L^2(\Omega)}^2 + \sum_{i=1}^n \|\frac{\partial f}{\partial x_i}\|_{L^2(\Omega)}^2}$ est complet:

Soit $(u_p) \in H^1(\Omega)^{\mathbb{N}}$ une suite de Cauchy pour $\|\cdot\|_{H^1(\Omega)}$.

$$\forall \varepsilon > 0, \exists p_0 \in \mathbb{N} \text{ tel que } \forall (p,q) \in \mathbb{N}^2, p,q \geq p_0 \Rightarrow \|u_p - u_q\|_{H^1(\Omega)} < \varepsilon$$

Par définition de $\|\cdot\|_{H^1(\Omega)}$,

$$\forall \varepsilon > 0, \exists p_0 \in \mathbb{N} \text{ tel que } \forall (p,q) \in \mathbb{N}^2, p,q \geq p_0 \Rightarrow \|u_p - u_q\|_{L^2(\Omega)} < \varepsilon$$
 et $\|\frac{\partial u_p}{\partial x_i} - \frac{\partial u_q}{\partial x_i}\|_{L^2(\Omega)} < \varepsilon$ pour $i \in [1,n]$.

Donc (u_p) est une suite de Cauchy dans $L^2(\Omega)$ muni de $\|\cdot\|_{L^2(\Omega)}$ et ainsi converge dans $L^2(\Omega)$. On note $u \in L^2(\Omega)$ sa limite.

De même, $\forall i \in [1, n], (\frac{\partial u_p}{\partial x_i})$ est une suite de Cauchy dans $L^2(\Omega)$ et converge dans $L^2(\Omega)$.

$$\forall i \in [1, n], \exists w_i \in L^2(\Omega) \text{ tel que } \xrightarrow[p \to +\infty]{L^2(\Omega)} w_i.$$

Soit $p \in \mathbb{N}$.

$$\forall i \in [1, n], \text{ par definition de } \frac{\partial u_p}{\partial x_i}, \\ \forall \varphi \in D(\Omega), \int_{\Omega} u_p(x) \frac{\partial \varphi}{\partial x_i} dx = -\int_{\Omega} \frac{\partial u_p}{\partial x_i}(x) \varphi(x) dx.$$

D'où,
$$\int_{\Omega} \frac{\partial u_p}{\partial x_i}(x) \varphi(x) dx = -\langle u_p, \frac{\partial \varphi}{\partial x_i} \rangle_{L^2(\Omega)} \xrightarrow[p \to +\infty]{} -\langle u, \frac{\partial \varphi}{\partial x_i} \rangle_{L^2(\Omega)}.$$

Or,
$$\langle u, \frac{\partial \varphi}{\partial x_i} \rangle_{L^2(\Omega)} = \int_{\Omega} u(x) \frac{\partial \varphi}{\partial x_i} dx$$
.

Or,
$$\langle u, \frac{\partial \varphi}{\partial x_i} \rangle_{L^2(\Omega)} = \int_{\Omega} u(x) \frac{\partial \varphi}{\partial x_i} dx$$
.
De plus, $\int_{\Omega} \frac{\partial u_p}{\partial x_i}(x) \varphi(x) dx = \langle \frac{\partial u_p}{\partial x_i}, \varphi \rangle_{L^2(\Omega)} \xrightarrow[p \to +\infty]{} \langle w_i, \varphi \rangle_{L^2(\Omega)}$.

D'où, $\int_{\Omega} w_i \varphi dx = -\int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx$. $\Leftrightarrow \int_{\Omega} u \frac{\partial \varphi}{\partial x_i} dx = -\int_{\Omega} w_i \varphi dx$, et ce pour tout $\varphi \in D(\Omega)$, $\forall i \in [1, n]$. $\Rightarrow u$ admet une dérivée faible dans $L^2(\Omega)$ et $\forall i \in [1, n], \frac{\partial u}{\partial x_i} = w_i$.

Donc $u \in H^1(\Omega)$.

On vérifie que $\lim_{p \to +\infty} ||u_p - u||_{H^1(\Omega)} = 0.$

Remarque:

- i) Si Ω est borné, alors $\mathcal{C}^1(\overline{\Omega}) \subset H^1(\Omega)$.
- ii) $H^1(\Omega) \subsetneq L^2(\Omega)$ (inclusion stricte). iii) $D(\Omega)$ est un sous-espace vectoriel de $H^1(\Omega)$. $D(\Omega)$ n'est pas dense dans $H^1(\Omega)$.

Espace $H_0^1(\Omega)$ 3.2

Définition - Espace $H_0^1(\Omega)$

 $H_0^1(\Omega)$ est la fermeture de $D(\Omega)$ dans $H^1(\Omega)$.

$$H^1_0(\Omega) = \overline{D(\Omega)}^{H^1(\Omega)} = \{ v \in H^1(\Omega) \text{ tel que } \exists (v_p) \in D(\Omega)^{\mathbb{N}} \text{ tel que } v_p \xrightarrow[p \to +\infty]{H^1(\Omega)} v \}$$

Propriété - Inégalité de Poincarré

Soit Ω un ouvert borné de \mathbb{R}^n .

$$\begin{split} &\exists C_{\Omega}>0 \text{ tel que } \forall v\in H^1_0(\Omega), \|v\|_{L^2(\Omega)}\leq C_{\Omega}|v|_{1,\Omega}.\\ &\text{avec } |v|_{1,\Omega}=\sqrt{\sum_{i=1}^n\|\frac{\partial v}{\partial x_i}\|_{L^2(\Omega)}^2}. \end{split}$$

admis (calcul intégral)

Si Ω est un ouvert borné, $H_0^1(\Omega) \subsetneq H^1(\Omega)$ (exemple : Remarque:

fonction constante non-nulle).

De plus, l'inégalité de Poincarré n'est pas valide pour $v \in H^1(\Omega) \setminus H^1_0(\Omega)$.

Corollaire : Soit Ω un ouvert borné de \mathbb{R}^n .

La semi-norme $|\cdot|_{1,\Omega}$ est une norme sur $H_0^1(\Omega)$ équivalente à la norme induite par $\|\cdot\|_{H^1(\Omega)}$.

Théorème

Soit Ω un ouvert borné de \mathbb{R}^n .

 $H^1_0(\Omega)$ muni du produit scalaire $\langle \cdot, \cdot \rangle_{1,\Omega}$ défini par :

$$\forall (f,g) \in (H_0^1(\Omega))^2, \langle f,g \rangle_{1,\Omega} = \sum_{i=1}^n \int_{\Omega} \frac{\partial f}{\partial x_i}(x) \frac{\partial g}{\partial x_i}(x) dx$$

est un espace de Hilbert.

Propriété

Soit Ω un ouvert borné de \mathbb{R}^n à frontière Lipschitzienne. (Ω est appelé "domaine")

Alors $D(\overline{\Omega})$ est dense dans $H^1(\Omega)$ pour la norme $\|\cdot\|_{H^1(\Omega)}$ avec $D(\overline{\Omega}) = \{\text{restriction des fonctions tests de } \mathbb{R}^n \text{ à } \Omega\}.$

▶ admis

Définition

Soit $m \in \mathbb{N}$.

On appelle $H^m(\Omega) = \{v \in L^2(\Omega) \text{ tel que } \forall \alpha \in \mathbb{N}^n, |\alpha| \leq m, D^{\alpha}v \in L^2(\Omega) \}.$ avec $D^{\alpha}v = \frac{\partial^{|\alpha|}v}{\partial x_1^{\alpha_1}...\partial x_n^{\alpha_n}}.$

Propriété

Soit $m \in \mathbb{N}$.

 $H^m(\Omega)$ muni du produit scalaire $\langle \cdot, \cdot \rangle$ défini par :

$$\forall (f,g) \in (H^m(\Omega))^2, \langle f,g \rangle = \sum_{|\alpha| \le m} \langle D^{\alpha}f, D^{\alpha}g \rangle_{L^2(\Omega)}$$

est un espace de Hilbert.

Si de plus Ω est un ouvert borné de \mathbb{R}^n à frontière Lipschitzienne, alors $D(\overline{\Omega})$ est dense dans $H^m(\Omega)$ pour la norme $\|\cdot\|_{H^m(\Omega)}$.

▶ admis

3.3 Trace sur Γ de fonctions de $H^1(\Omega)$

Remarque: Soit $u \in \mathcal{C}^0(\overline{\Omega})$.

On peut définir la restriction de u sur le bord Γ de Ω par prolongement par continuité.

On va chercher à étendre ce résultat aux fonctions de $H^1(\Omega)$.

Théorème - Théorème de la Trace

Soit Ω un ouvert borné de \mathbb{R}^n à frontière Lipschitzienne.

Alors il existe une application linéaire continue de $H^1(\Omega)$ dans $L^2(\Gamma)$, notée γ_0 , telle que :

$$\forall v \in D(\overline{\Omega}), \gamma_0(v) = v_{|\Gamma}$$

Elle vérifie de plus :

- i) $\operatorname{Ker}(\gamma_0) = H_0^1(\Omega)$.
- ii) $\operatorname{Im}(\gamma_0)$ est dense dans $L^2(\Gamma)$.
- ▶ admis

Propriété - Formule de Green

Soit Ω un ouvert borné de \mathbb{R}^n à frontière Lipschitzienne. $\forall (u, v) \in H^2(\Omega) \times H^1(\Omega)$, on a :

$$\int_{\Omega} \nabla u \cdot v dx = -\int_{\Omega} \nabla u \cdot \nabla v dx + \int_{\Gamma} \gamma_0(v) \gamma_1(u) d\gamma$$

avec $\gamma_1(u) = \sum_{i=1}^n \gamma_0(\frac{\partial u}{\partial x_i})\nu_i$ et $\nu = (\nu_1, \dots, \nu_n)$ le vecteur normal unitaire extérieur à Ω .

De plus, $\forall (u, v) \in (H^1(\Omega))^2, \forall i \in [1, n]$:

$$\int_{\Omega} \frac{\partial u}{\partial x_i} v dx = -\int_{\Omega} u \frac{\partial v}{\partial x_i} dx + \int_{\Omega} \gamma_1(u) \gamma_0(v) \nu_i d\gamma$$

► cf TD1

4 Théorème de Lax-Milgram et application

4.1 Théorème de Lax-Milgram

Théorème - Théorème de Lax-Milgram

Soit V un espace de Hilbert sur \mathbb{R} , $a:V\times V\to\mathbb{R}$ une application bilinéaire continue et coercive, $l:V\to\mathbb{R}$ une forme linéaire continue.

Alors, $\exists ! u \in V \text{ tel que}$:

$$\forall v \in V, a(u, v) = l(v)$$

▶ admis (Analyse Hilbertienne)

Remarque:

• a bilinéaire continue : $\exists M > 0, \forall (u, v) \in V^2, |a(u, v)| \leq M ||u||_V ||v||_V$.

• $a \text{ coercive}: \exists \alpha > 0, \forall v \in V, a(v, v) \ge \alpha ||v||_V^2.$

• l linéaire continue : $\exists C > 0, \forall v \in V, |l(v)| \leq C||v||_V$.

Propriété

Sous les hypothèses du théorème de Lax-Milgram, la solution $u \in V$ du problème de Lax-Milgram dépend continûment de $l \in V'$.

 \blacktriangleright Soient $l_1,l_2,$ deux formes linéaires continues. On note $u_1\in V$ et $u_2\in V$ les solutions associées du problème de Lax-Milgram.

$$\forall v \in V, \begin{cases} a(u_1, v) = l_1(v) \\ a(u_2, v) = l_2(v) \end{cases}$$

Par coercivité de $a, \exists \alpha > 0, \forall v \in V, a(v, v) \ge \alpha ||v||_V^2$

$$\begin{split} \|u_1 - u_2\|_V^2 & \leq \frac{1}{\alpha} a(u_1 - u_2, u_1 - u_2) \\ & = \frac{1}{\alpha} (a(u_1, u_1 - u_2) - a(u_2, u_1 - u_2)) \qquad \text{(bilinéarité de a)} \\ & = \frac{1}{\alpha} (l_1(u_1 - u_2) - l_2(u_1 - u_2)) \qquad \text{(coercivité de a)} \\ & \leq \frac{1}{\alpha} ((l_1 - l_2)(u_1 - u_2)) \qquad \text{(linéarité de l_1 et l_2)} \end{split}$$

D'où: $||u_1 - u_2||_V \le \frac{1}{\alpha} |||l_1 - l_2||| \times ||u_1 - u_2||_V \xrightarrow[l_1 \to l_2]{} 0.$

Remarque: $|||l||| = \sup_{v \in V \setminus \{0\}} \frac{|l(v)|}{||v||_V} = \sup_{||v||_V = 1} |l(v)|.$

Propriété

Sous les hypothèses du théorème de Lax-Milgram, en supposant a symétrique, les deux problèmes suivants sont équivalents :

i) Trouver $u \in V$ tel que $\forall v \in V, a(u, v) = l(v)$.

ii) $\min_{v \in V} \frac{1}{2} a(v, v) - l(v)$.

 $\begin{array}{cccc} \blacktriangleright & \text{On pose}: & J: & V & \longrightarrow & \mathbb{R} \\ & & v & \longmapsto & \frac{1}{2}a(v,v) - l(v) \\ \text{Soient } (u,v) \in V^2 \text{ et } \lambda \in \mathbb{R}. \end{array}$

$$J(u + \lambda v) = \frac{1}{2}a(u + \lambda v, u + \lambda v) - l(u + \lambda v)$$

$$= \frac{1}{2}a(u, u) + \lambda a(u, v) + \frac{\lambda^2}{2}a(v, v) - l(u) - \lambda l(v)$$

$$= J(u) + \lambda (a(u, v) - l(v)) + \frac{\lambda^2}{2}a(v, v)$$

$$\begin{array}{l} \underline{\mathrm{i}) \Rightarrow \mathrm{ii})} \\ \overline{\mathrm{Soit} \ w \in V \backslash \{u\}}. \\ w = u + w - u = u + \lambda v \text{ avec } \lambda = \|w - u\|_V > 0 \text{ et } v = \frac{w - u}{\|w - u\|_V}. \end{array}$$

D'où:

$$\begin{split} J(w) &= J(u + \lambda v) \\ &= J(u) + \lambda (a(u,v) - l(v)) + \frac{\lambda^2}{2} a(v,v) \quad \text{(cf. calcul précédent)} \\ &= J(u) + \frac{\lambda^2}{2} a(v,v) \quad \text{(car } a(u,v) = l(v) \text{ par hypothèse)} \\ &\geq J(u) \quad \text{(car } a(v,v) > 0 \text{ par coercivité de } a) \end{split}$$

Donc u est un minimum de J.

$$ii) \Rightarrow i)$$

 $\overline{\text{Soit } u}$ un minimum de J sur V.

 $\forall \lambda \in \mathbb{R}, \forall v \in V, u + \lambda v \in V.$

Donc $J(u + \lambda v) \ge J(u) \Leftrightarrow J(u + \lambda v) - J(u) \ge 0$.

Or,
$$J(u + \lambda v) - J(u) = \frac{\lambda^2}{2}a(v, v) + \lambda(a(u, v) - l(v)).$$

Donc $\forall v \in V, \frac{\lambda^2}{2}a(v, v) + \lambda(a(u, v) - l(v)) \ge 0.$

- Soit $\lambda > 0$: Alors $a(u, v) - l(v) + \frac{\lambda}{2}a(v, v) \ge 0$. A la limite, quand $\lambda \to 0$, $a(u, v) - l(v) \ge 0$.
- Soit $\lambda < 0$: Alors $a(u,v) - l(v) + \frac{\lambda}{2}a(v,v) \leq 0$. A la limite, quand $\lambda \to 0$, $a(u,v) - l(v) \leq 0$.

Bilan : $\forall v \in V, a(u, v) = l(v)$.

4.2 Application aux équations aux dérivées partielles

Problème:

(P)
$$\begin{cases} -\Delta u + c(x)u = f(x) & \text{sur } \Omega \text{ domaine de } \mathbb{R}^n \\ u = 0 & \text{sur } \Gamma \text{ frontière de } \Omega \end{cases}$$
 (4)

avec $f \in L^2(\Omega), c \in L^{\infty}(\Omega)$ tel que $c(x) \ge 0$ presque partout sur Ω .

Objectif:

- 1. Formulation variationnelle : Se ramener à un problème de Lax-Milgram.
- 2. Existence et unicité de la solution de la formulation variationnelle.
- 3. Lien avec le problème original (P).

Idée:

 $u \in L^2(\Omega)$ et $\Delta u \in L^2(\Omega) \Rightarrow$ existence d'une dérivée faible de u jusqu'à l'ordre 2. $\Rightarrow u \in H^2(\Omega)$.

Soit $u \in H^2(\Omega)$ solution de (P).

Remarque : D'après Lax-Milgram, $\exists ! u \in V$ tel que $\forall v \in V, a(u, v) = l(v)$.

De plus, Ω est un ouvert borné de \mathbb{R}^n à frontière Lipschitzienne : $\forall (u,v) \in (H^2(\Omega))^2$, $\int_{\Omega} \Delta u v dx = -\int_{\Omega} \nabla u \cdot \nabla v dx + \int_{\Gamma} \gamma_0(v) \gamma_1(u) d\gamma$.

 \Rightarrow Choisir $v \in H^2(\Omega)$ pour appliquer cette formule et n'avoir que des dérivées faibles d'ordre 1.

$$\forall v \in H^1(\Omega), -\int_{\Omega} \Delta u v dx + \int_{\Omega} c(x) u v dx = \int_{\Omega} f(x) v dx.$$

 $c \in L^{\infty}(\Omega) \text{ et } u \in L^2(\Omega) \Rightarrow cu \in L^2(\Omega).$

De plus, Ω est un domaine, donc par la formule de Green : $\int_{\Omega} \Delta u v dx = -\int_{\Omega} \nabla u \cdot \nabla v dx + \int_{\Gamma} \gamma_0(v) \gamma_1(u) d\gamma.$

Il vient : $\int_{\Omega} \nabla u \cdot \nabla v dx - \int_{\Gamma} \gamma_0(v) \gamma_1(u) d\gamma + \int_{\Omega} c(x) uv dx = \int_{\Omega} f(x) v dx$.

Remarque : Il n'y a pas de dérivées faibles d'ordre 2 de u dans l'équation, seulement des dérivées faibles d'ordre 1.

On cherche $u \in H^2(\Omega)$ tel que :

$$\forall v \in H^1(\Omega), \int_{\Omega} \nabla u \cdot \nabla v dx - \int_{\Gamma} \gamma_0(v) \gamma_1(u) d\gamma + \int_{\Omega} c(x) uv dx = \int_{\Omega} f(x) v dx$$

Remarque: Conditions aux limites : u = 0 sur Γ .

- Pour u ∈ H¹(Ω), ceci est équivalent à γ₀(u) = 0.
 u ∈ Ker(γ₀) = H₀¹(Ω).

Les conditions aux limites conduisent à chercher $u \in H^1(\Omega)$ tel que $\gamma_0(u) = 0 \Leftrightarrow$ $u \in H_0^1(\Omega)$.

On cherche alors
$$u \in H_0^1(\Omega)$$
 tel que : $\forall v \in H_0^1(\Omega), \int_{\Omega} \nabla u \cdot \nabla v dx + \int_{\Omega} c(x) u v dx = \int_{\Omega} f(x) v dx.$ (car $\int_{\Gamma} \gamma_0(v) \gamma_1(u) d\gamma = 0$)

On obtient alors le problème suivant :

Trouver $u \in H_0^1(\Omega)$ tel que :

$$(P_{FV}): \qquad \forall v \in H_0^1(\Omega), a(u, v) = l(v) \tag{5}$$

$$(P_{FV}): \qquad \forall v \in H^1_0(\Omega), a(u,v) = l(v)$$
 avec $a: H^1_0(\Omega) \times H^1_0(\Omega) \longrightarrow \mathbb{R}$
$$(u,v) \longmapsto \int_{\Omega} \nabla u \cdot \nabla v dx + \int_{\Omega} c(x) u v dx$$
 et $l: H^1_0(\Omega) \longrightarrow \mathbb{R}$
$$v \longmapsto \int_{\Omega} f(x) v dx$$

4.3Existence et unicité de la solution de (P_{FV})

On a : $H_0^1(\Omega)$ muni de $\langle \cdot, \cdot \rangle_{1,\Omega}$ est un espace de Hilbert (Ω ouvert borné de \mathbb{R}^n).

Etude de l:

- *l* est linéaire.
- l est continue : $\forall v \in H_0^1(\Omega)$, $|l(v)|=|\int_{\Omega}f(x)v(x)dx|=\left|\langle f,v\rangle_{L^{2}(\Omega)}\right|\leq \|f\|_{L^{2}(\Omega)}\|v\|_{L^{2}(\Omega)}$ (inégalité de Cauchy-Schwarz). Or Ω est un ouvert borné.

Par inégalité de Poincarré : $\exists C_{\Omega} > 0, \forall v \in H_0^1(\Omega), ||v||_{L^2(\Omega)} \leq C_{\Omega} |v|_{1,\Omega}$.

D'où : $|l(v)| \le ||f||_{L^2(\Omega)} ||v||_{L^2(\Omega)} \le ||f||_{L^2(\Omega)} C_{\Omega} |v|_{1,\Omega}$.

Etude de a:

- a est bilinéaire (par linéarité de l'intégrale).
- a est continue : $\forall (u, v) \in (H_0^1(\Omega))^2$, $|a(u,v)| \leq |\int_{\Omega} \nabla u \cdot \nabla v dx| + |\int_{\Omega} c(x)uv dx| \leq \langle u,v \rangle_{1,\Omega} + \langle cu,v \rangle_{L^{2}(\Omega)}.$

Par inégalité de Cauchy-Schwarz : $|a(u,v)| \leq |u|_{1,\Omega} |v|_{1,\Omega} + ||cu||_{L^2(\Omega)} ||v||_{L^2(\Omega)}.$

Or,
$$||cu||_{L^{2}(\Omega)} = \sqrt{\int_{\Omega} |cu|^{2} dx} \le \sqrt{\int_{\Omega} ||c||_{L^{\infty}(\Omega)}^{2} |u|^{2} dx} \le ||c||_{L^{\infty}(\Omega)} ||u||_{L^{2}(\Omega)}$$
.

$$\begin{split} \text{Donc } \forall (u,v) \in (H^1_0(\Omega))^2, |a(u,v)| &\leq |u|_{1,\Omega} \, |v|_{1,\Omega} + \|c\|_{L^{\infty}(\Omega)} \|u\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)} \\ &\leq |u|_{1,\Omega} \, |v|_{1,\Omega} + C_{\Omega} \|c\|_{L^{\infty}(\Omega)} \, |u|_{1,\Omega} \, |v|_{1,\Omega} \\ &\leq (1 + C_{\Omega} \|c\|_{L^{\infty}(\Omega)}) \, |u|_{1,\Omega} \, |v|_{1,\Omega} \end{split}$$

• a est coercive: $\forall v \in H_0^1(\Omega), a(v, v) = \int_{\Omega} |\nabla v|^2 dx + \int_{\Omega} c(x) |v|^2 dx = |v|_{1,\Omega}^2 + \int_{\Omega} c(x) |v|^2 dx.$

Or,
$$c(x) \geq 0$$
 presque partout sur Ω donc $\int_{\Omega} c(x) |v|^2 dx \geq 0$.
Donc $\forall v \in H_0^1(\Omega), a(v,v) \geq |v|_{1,\Omega}^2 \geq \alpha \|v\|_{H^1(\Omega)}^2$.

On peut donc appliquer le théorème de Lax-Milgram à (P_{FV}) : $\exists ! u \in H_0^1(\Omega)$ tel que $\forall v \in H_0^1(\Omega), a(u,v) = l(v)$.

4.4 Lien avec le problème original (P)

Soit $u \in H^2(\Omega) \cap H^1_0(\Omega)$ solution de (P_{FV}) . On a : $\forall v \in H^1_0(\Omega), \int_{\Omega} \nabla u \cdot \nabla v dx + \int_{\Omega} c(x) u v dx = \int_{\Omega} f(x) v dx$.

Or $u \in H^2(\Omega)$ et $\forall v \in H^1_0(\Omega), v \in H^1(\Omega)$ (par la formule de Green). Donc $\int_{\Omega} \Delta u v dx = -\int_{\Omega} \nabla u \cdot \nabla v dx + \int_{\Gamma} \gamma_0(v) \gamma_1(u) d\gamma = -\int_{\Omega} \nabla u \cdot \nabla v dx$.

D'où :
$$\forall v \in H_0^1(\Omega), -\int_{\Omega} \Delta u v dx + \int_{\Omega} c(x) u v dx = \int_{\Omega} f(x) v dx.$$

Or, $D(\Omega) \subset H_0^1(\Omega)$ d'où : $\forall v \in D(\Omega), \int_{\Omega} (-\Delta u + c(x)u - f(x))vdx = 0$. avec $-\Delta u + c(x)u - f(x) \in L^2(\Omega)$. Donc $-\Delta u + c(x)u - f(x) = 0$ presque partout sur Ω . $\Rightarrow -\Delta u + c(x)u = f(x)$ dans $L^2(\Omega)$.

Donc u est solution de (P).

5 Résolution numérique : la méthode des éléments finis

5.1 Principe de la méthode de Galerkin

On rappelle le problème (P_{FV}) :

Trouver $u \in H_0^1(\Omega)$ tel que :

$$(P_{FV}): \qquad \forall v \in H_0^1(\Omega), a(u, v) = l(v)$$
(6)

avec $a:V\times V\to\mathbb{R}$ bilinéaire continue et coercive et $l:V\to\mathbb{R}$ linéaire continue.

Idée:

On va se ramener à chercher une "solution" dans un sous-espace vectoriel de V de dimension finie.

Soit V_h un sous-espace vectoriel de V de dimension finie.

On cherche $u_h \in V_h$ tel que :

$$(P_h): \qquad \forall v_h \in V_h, a(u_h, v_h) = l(v_h) \tag{7}$$

Soit u_h une telle solution (si elle existe). Alors $\forall v_h \in V_h, a(u_h, v_h) = l(v_h)$. Par définition de $u \in V$: $\forall v_h \in V_h, a(u, v_h) = l(v_h)$. Donc $a(u - u_h, v_h) = 0, \forall v_h \in V_h$.

On suppose de plus que a est symétrique.

Alors a est un produit scalaire sur V.

On montre que V muni de a est un espace de Hilbert.

Ainsi, V_h s.e.v de V est un espace de Hilbert.

On a : $\forall v_h \in V_h, a(u - u_h, v_h) = 0 \Rightarrow u - u_h \in V_h^{\perp}$: u_h est la projection orthogonale de u sur V_h pour le produit scalaire a.

Propriété - Lemme de Céa

Soit V un espace de Hilbert.

Soient $a: V \times V \to \mathbb{R}$ bilinéaire continue et coercive et $l: V \to \mathbb{R}$ linéaire continue de sorte que $\exists ! u \in V$ tel que $\forall v \in V, a(u, v) = l(v)$. Soit V_h un s.e.v de V de dimension finie.

Alors $\exists ! u_h \in V_h$ tel que $\forall v_h \in V_h, a(u_h, v_h) = l(v_h)$.

De plus, $||u - u_h||_V \leq \frac{M}{\alpha} \inf_{v_h \in V_h} ||u - v_h||_V$ avec α constante de coercivité de aet M constante de continuité de a.

Remarque: $\exists M \geq 0$ tel que $\forall (u, v) \in V^2, |a(u, v)| \leq M ||u||_V ||v||_V$ $\exists \alpha > 0$ tel que $\forall v \in V, a(v, v) \geq \alpha ||v||_V^2.$

•

• V_h muni de $\langle \cdot, \cdot \rangle_V$ est un espace préhilbertien. De plus, V_h est de dimension finie donc complet pour $\| \cdot \|_V$. Donc V_h est un espace de Hilbert.

De plus, $a: V_h \times V_h \to \mathbb{R}$ est bilinéaire continue et coercive. et $l: V_h \to \mathbb{R}$ est linéaire continue.

D'après le théorème de Lax-Milgram, $\exists ! u_h \in V_h$ tel que $\forall v_h \in V_h, a(u_h, v_h) = l(v_h)$.

• $||u-u_h||_V \leq \frac{1}{\alpha}a(u-u_h,u-u_h)$ par coercivité de a.

Soit $v_h \in V_h$.

$$||u - u_h||_V^2 \le \frac{1}{\alpha} a(u - u_h, u - v_h + v_h - u_h)$$

$$\le \frac{1}{\alpha} (a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h))$$

$$\le \frac{1}{\alpha} a(u - u_h, u - v_h) \quad (\text{car } v_h - u_h \in V_h \Rightarrow a(u - u_h, v_h - u_h) = 0)$$

$$\le \frac{M}{\alpha} ||u - u_h||_V ||u - v_h||_V \quad (\text{par continuit\'e de } a)$$

Donc $||u-u_h||_V \leq \frac{M}{\alpha} \inf_{v_h \in V_h} ||u-v_h||_V$.

Question : Comment obtenir $u_h \in V_h$?

On note $N_h = \dim V_h$. Soit $(w_i)_{i \in \llbracket 1, N_h \rrbracket} \in V_h^{N_h}$ une base de V_h . On cherche $u_h = \sum_{i=1}^{N_h} \lambda_i w_i$ avec $(\lambda_i)_{i \in \llbracket 1, N_h \rrbracket} \in \mathbb{R}^{N_h}$.

Par définition de u_h : $\forall v_h \in V_h, a(u_h, v_h) = l(v_h)$. En particulier:

 $\forall j \in [1, N_h], a(u_h, w_j) = l(w_j) \Leftrightarrow \sum_{i=1}^{N_h} \lambda_i a(w_i, w_j) = l(w_j) \Leftrightarrow Ax = b.$ avec $A = (a(w_i, w_j))_{(i,j) \in [1, N_h]^2} \in \mathcal{M}_{N_h}(\mathbb{R}),$ $x = (\lambda_i)_{i \in [1, N_h]} \in \mathbb{R}^{N_h}$ et $b = (l(w_j))_{j \in [1, N_h]} \in \mathbb{R}^{N_h}.$

On est amené à résoudre un système linéaire.

De plus, A est symétrique et définie positive (car a est symétrique et coercive) :

$$\forall x \in \mathbb{R}^{N_h} \setminus \{0\}, x^T A x = \sum_{i=1}^{N_h} \sum_{j=1}^{N_h} x_i a(w_i, w_j) x_j$$

$$= a \left(\sum_{i=1}^{N_h} x_i w_i, \sum_{j=1}^{N_h} x_j w_j \right) \quad \text{(bilinéarité de } a)$$

$$\geq \alpha \left\| \sum_{i=1}^{N_h} x_i w_i \right\|_{V}^{2} \quad \text{(coercivité de } a)$$

$$> 0 \quad \text{(car } x \neq 0)$$

Donc ce système admet une unique solution.

5.2 Exemple en dimension 2

5.2.1 Principe

On cherche à recouvrir Ω par des structures géométriquement simples (triangles, quadrilatères, ...), notées $(T_p)_{p \in \llbracket 1, N_T \rrbracket}$.

Dans la suite, on notera $\mathcal{T}_h = (T_p)_{p \in \llbracket 1, N_T \rrbracket}$ l'ensemble des (T_p) , avec $h = \sup_{p \in \llbracket 1, N_T \rrbracket} \operatorname{diam}(T_p)$.

 \spadesuit diam (T_p) est le diamètre de T_p , à savoir la plus grande distance entre deux points de T_p .

Définition - Triangulation admissible

Une triangulation \mathcal{T}_h de Ω est dite admissible si :

- i) L'intersection de deux éléments de \mathcal{T}_h est soit vide, soit réduite à un point, soit réduite à un côté tout entier.
- ii) Les "coins" de Γ sont des sommets d'éléments de \mathcal{T}_h .
- iii) On note $\Omega_h = \bigcup_{p=1}^{N_T} T_p$ et Γ_h la frontière de Ω_h . Les sommets de Γ_h sont également sur Γ .
- iv) $\lambda(T_p) \neq 0$ avec $\lambda(T_p)$ la mesure de Lebesgue.

Exemple:

i) Non-admissible:

ii) .

iii) .

On suppose par la suite, par la convergence de la méthode, que $\exists c>0 \text{ tel que } \forall h>0, \sup_{T\in\mathcal{T}_h} \tfrac{\mathrm{diam}(T)}{\mathcal{C}^{(T)}} \leq c \text{ avec } \mathcal{C}^{(T)} \text{ le rayon du cercle inscrit dans } T.$

5.2.2 Exemple

Soit $\Omega =]0, 1[\times]0, 1[.$

On considère le problème suivant : $\begin{cases} -\Delta u + u = f & \text{sur } \Omega \\ u = 0 & \text{sur } \Gamma \end{cases}$

On rappelle le problème
$$(P_{FV})$$
:
Trouver $u \in H_0^1(\Omega)$ tel que $\forall v \in H_0^1(\Omega), a(u, v) = l(v)$
avec $a: H_0^1(\Omega) \times H_0^1(\Omega) \longrightarrow \mathbb{R}$
 $(u, v) \longmapsto \int_{\Omega} \nabla u \cdot \nabla v dx + \int_{\Omega} u v dx$

et
$$l: H_0^1(\Omega) \longrightarrow \mathbb{R}$$

$$v \longmapsto \int_{\Omega} fv dx$$

 (P_{FV}) admet une solution unique (Théorème de Lax-Milgram).

On suppose avoir N_T triangles et $\mathcal{T}_h = (T_p)_{p \in [\![1,N_T]\!]}$ une triangulation admissible de Ω .

On note $(q_i)_{i \in [1,N_T]}$ les sommets des triangles T_p .

On note $P^1 = \mathbb{R}_1[X_1, X_2]$ l'espace des polynômes de degré au plus 1 par rapport à X_1 et X_2 . On a donc $P^1 = \text{Vect}\{1, X_1, X_2\}$.

On pose
$$\tilde{V}_h = \{v \in \mathcal{C}^0(\overline{\Omega}), v_{|T_p} \in P^1, \forall p \in \llbracket 1, N_T \rrbracket \}.$$

 $V_h = \{v_h \in \tilde{V}_h, v_{h|\Gamma} = 0\}.$

Propriété

- i) Les fonctions de \tilde{V}_h sont entièremement définies par leurs valeurs en leurs sommets q_i .
- ii) dim $\tilde{V}_h = N_S$. De plus, une base de \tilde{V}_h est donnée par $(\varphi_i)_{i \in \llbracket 1, N_S \rrbracket}$ avec $\varphi_i(q_j) = \delta_{ij}$. En particulier, $\forall v_h \in \tilde{V}_h, v_h = \sum_{i=1}^{N_S} v_h(q_i)\varphi_i$.
- iii) $\tilde{V}_h \subset H^1(\Omega)$.
- iv) dim $V_h = N_1$ avec N_1 le nombre de sommets q_i n'appartenant pas à Γ .
- v) $V_h \subset H_0^1(\Omega)$.

Remarque: shema

► Texte Manquant

Pour résoudre le problème (P_{FV}) , il nous faut résoudre le système linéaire Ax = b avec $\forall (i,j) \in [1, N_S]^2$, $A_{ij} = a(\varphi_i, \varphi_j)$ et $b_i = l(\varphi_i)$. $u_h = \sum_{i=1}^{N_S} x_i \varphi_i$.

Construction de A et b:

On a :
$$a(\varphi_i, \varphi_j) = \int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j dx + \int_{\Omega} \varphi_i \varphi_j dx$$
.
et $b_i = l(\varphi_i) = \int_{\Omega} f \varphi_i dx$.

 $A_{ij} = \sum_{p=1}^{N_T} \left[\int_{T_p} \nabla \varphi_i \cdot \nabla \varphi_j dx + \int_{T_p} \varphi_i \varphi_j dx \right]$: on se ramène sur des intégrales sur les triangles du maillage \mathcal{T}_h .

- $\underline{1^{er} \operatorname{cas}} : \lambda(\operatorname{supp}(\varphi_i) \cap \operatorname{supp}(\varphi_j)) = 0$ $\Rightarrow \int_{\Omega} \varphi_i \varphi_j dx = 0 \text{ et } \int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j dx = 0 \Rightarrow A_{ij} = 0.$
- $\underline{2^{eme} \text{ cas}}$: $\lambda(\operatorname{supp}(\varphi_i) \cap \operatorname{supp}(\varphi_j)) \neq 0$ Calcul de $\int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j dx + \int_{\Omega} \varphi_i \varphi_j dx$: stratégie de l'élément de référence.

$$T_p = [q_i, q_j, q_l], \{ii, jj, ll\} = \{1, 2, 3\}^2.$$

Sur T_p , on s'intéresse à $\varphi_i, \varphi_j, \varphi_l$ uniquement.

⇒ Changeons de variables pour se ramener à un domaine d'intégration "simple".

avec Φ affine de sorte que $\Phi_{T_p}(A^{(k)}) = A_p^{(kk)} \quad k \in [1, 3], kk \in [ii, jj, ll]$

Définition - Coordonnées barycentriques relatives à un triangle

Soit $T = [A^{(1)}, A^{(2)}, A^{(3)}]$ un triangle.

 $\forall M = (x_1, x_2) \in \mathbb{R}^2, \ \exists ! (\lambda_i(M))_{i \in [1,3]} \in \mathbb{R}^3 \text{ tel que } : M = \sum_{i=1}^3 \lambda_i(M) A^{(i)} \text{ et } \sum_{i=1}^3 \lambda_i(M) = 1.$

$$M = \sum_{i=1}^{3} \lambda_i(M) A^{(i)}$$
 et $\sum_{i=1}^{3} \lambda_i(M) = 1$.

Les $\lambda_i(M)$ sont appellées les coordonnées barycentriques de M relatives à T.

De plus, on a:

- i) $\forall (i,j) \in [1,3]^2, \lambda_i(A^{(j)}) = \delta_{ii}$.
- ii) $\forall M \in (A^{(i)}, A^{(j)})$ avec $(i, j) \in [1, 3]^2, i \neq j \Rightarrow \lambda_k(M) > 0$.
- iii) $\forall M \in T, \forall i \in [1, 3], 0 \le \lambda_i(M) \le 1.$

Expression de $\Phi_{T_n}(M)$:

$$\Phi_{T_p}(M) = A_p^{(ii)} + x_1 \overline{A_p^{(ii)} A_p^{(jj)}} + x_2 \overline{A_p^{(ii)} A_p^{(ll)}}
= A_p^{(ii)} + x_1 (A_p^{(jj)} - A_p^{(ii)}) + x_2 (A_p^{(ll)} - A_p^{(ii)})
= (1 - x_1 - x_2) A_p^{(ii)} + x_1 A_p^{(jj)} + x_2 A_p^{(ll)}$$

On pose $\lambda_i(M) = 1 - x_1 - x_2, \lambda_i(M) = x_1, \lambda_i(M) = x_2.$ On a $\sum_{i=1}^{3} \lambda_i(M) = 1$.

Donc $(\lambda_i)_{i \in [1,3]}$ sont les coordonnées barycentriques de $\Phi_{T_p}(M)$ relatives à T_p .

Pour le triangle de référence T_u :

$$\forall M \in T_u, \forall k \in \{ii, jj, ll\}, \lambda_k^{(T_p)}(\Phi_{T_p}(M)) = \lambda_k^{(T_u)}(M).$$

Sur
$$T_p$$
, $\lambda_{ii}^{(T_p)}(A_p^{(kk)}) = \delta_{ii,kk} = \varphi_i(A_p^{(kk)}) = \varphi_i(q_k)$.
et $\lambda_{ii}^{(T_p)}(M) = \varphi_i(M)$.

Avec q_i, q_j des sommets de T_p , on a :

$$\int_{T_p} \varphi_i \varphi_j dx = \int_{T_p} \lambda_{ii}^{(T_p)} \lambda_{jj}^{(T_p)} dx = \int_{T_u} (\lambda_{ii}^{(T_p)} \circ \Phi_{T_p}) (\lambda_{jj}^{(T_p)} \circ \Phi_{T_p}) |J_{\Phi_{T_p}}| dx = \int_{T_u} \lambda_{ii}^{(T_u)} \lambda_{jj}^{(T_u)} |J_{\Phi_{T_p}}| dx.$$

avec
$$|J_{\Phi_{T_p}}| = \|\overrightarrow{A_p^{(ii)}A_p^{(jj)}} \cap \overrightarrow{A_p^{(ii)}A_p^{(ll)}}\| = 2 \times aire(T_p).$$

$$\int_{T_p} \varphi_i \varphi_j dx = 2 \times aire(T_p) \int_0^1 \int_0^{1-x_2} \lambda_{ii}^{(T_u)} \lambda_{jj}^{(T_u)} dx_1 dx_2 = 2 \times aire(T_p) \int_0^1 x_2 \left(\int_0^{1-x_2} x_1 dx_1 \right) dx_2.$$

$$\Rightarrow \int_{T_p} \varphi_i \varphi_j dx = \frac{aire(T_p)}{12}.$$

Algorithm 1: Assemblage de la matrice A et du vecteur b

- 1 For: $p = 1, N_T \#$ Boucle sur les triangles $T_p = [q_i, q_j, q_l] = [A_p^{(ii)}, A_p^{(jj)}, A_p^{(ll)}]$
- Calcul de $M_{T_p} \in \mathcal{M}_2(\mathbb{R})$
- $\mathbf{3} \qquad \left[M_{T_p} \right]_{ii,ii} = \int_{T_p} \nabla \varphi_i \cdot \nabla \varphi_i dx + \int_{T_p} \varphi_i \varphi_i dx$
- Mise à jour de A
- $A([q_i, q_j, q_l], [q_i, q_j, q_l]) = A([q_i, q_j, q_l], [q_i, q_j, q_l]) + M_{T_p}$
- Calcul de $T_0 \in \mathbb{R}^3$
- $7 T_{0,ii} = \int_{T_p} f q_i dx$
- \bullet Mise à jour de b
- 9 $b([q_i, q_j, q_l]) = b([q_i, q_j, q_l]) + T_0$
- 10 End For