## MAT 202 Larson – Section 9.2 Series & Convergence

<u>Series</u>: The sum of the terms of a sequence is called a series. Note: A sequence is a list of numbers where order is important, whereas a series is a single number obtained by computing a sum.

**Infinite Series:** Let  $\{a_n\}$  be an infinite sequence. The sum

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

is an *infinite series* (or simply *series*). The numbers  $a_1, a_2, a_3, ..., a_n, ...$  are the terms of the series. For some series, it is convenient to begin the index at n = 0 (or some other integer). Sometimes, for convenience, it is common to represent an infinite series as  $\sum a_n$ . In such cases, the starting value for the index must be taken from the context of the statement.

Sequence of Partial Sums: The sequence  $S_1, S_2, S_3, ..., S_n$  is a sequence of partial sums.

If this sequence of partial sums converges, then the series is said to converge and has the sum indicated in the following definition.

#### **Definitions of Convergent and Divergent Series:** For the infinite

series  $\sum_{n=1}^{\infty} a_n$ , the  $n^{\text{th}}$  partial sum is  $S_n = a_1 + a_2 + a_3 + \cdots + a_n$ . If the

sequence of partial sums  $\{S_n\}$  converges to S, then the series  $\sum_{n=1}^{\infty} a_n$ 

converges. The limit S is called the sum of the series.  $_{\infty}$ 

$$S = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

If  $\{S_n\}$  diverges, then the series *diverges*.

#### **Telescoping Sequence:** A series of the form

$$S_n = \sum_{n=1}^{\infty} b_n = (b_1 - b_2) + (b_2 - b_3) + (b_3 - b_4) + \dots + (b_{n-1} - b_n) + (b_n - b_{n+1})$$

is a *telescoping series*. Notice that all the terms  $b_2$ ,  $b_3$ ,  $b_4$ ,..., $b_n$  cancel out leaving

$$S_n = b_1 - b_{n+1}$$

It follows that a telescoping series will converge if and only if  $b_n$  approaches a finite number as  $n \to \infty$ . Also, if the series converges, then its sum is

$$S = b_1 - \lim_{n \to \infty} b_{n+1}$$

Ex: Find the sum of the series  $\sum_{n=1}^{\infty} \frac{2}{4n^2 - 1}$ .

Geometric Series: A series of the form

$$S_n = \sum_{n=0}^{\infty} ar^n = a + ar + ar^2 + \dots + ar^n + \dots, \ a \neq 0$$

is a *geometric series*, with ratio  $r, r \neq 0$ .

Convergence of a Geometric Series: A geometric series with ratio r diverges when  $|r| \ge 1$ . If 0 < |r| < 1, then the series converges to the sum

$$S_n = \sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}, \ 0 < |r| < 1.$$

**Properties of Limits of Sequences:** Let  $\sum a_n$  and  $\sum b_n$  be convergent series, and let A, B, and c be real numbers. If  $\sum a_n = A$  and  $\sum b_n = B$ , then the following series converge to the indicated sums.

$$1. \sum_{n=1}^{\infty} ca_n = cA$$

$$\sum_{n=1}^{\infty} \left( a_n + b_n \right) = A + B$$

3. 
$$\sum_{n=1}^{\infty} (a_n - b_n) = A - B$$

$$\sum_{n=1}^{\infty} \frac{2}{4n^2 - 1} = \frac{2}{3} + \frac{2}{15} + \frac{2}{35} + \dots$$
Ex: Find the sum of the series

Ex: Find the sum of the series

The direction of the series 
$$\frac{2}{(2n+1)(2n-1)} = \frac{A}{2n+1} + \frac{B}{2n-1}$$

$$\frac{2}{(2n+1)(2n-1)} = \frac{A}{2n+1} + \frac{B}{2n-1}$$

$$\frac{2}{2n+1} = A(2n-1) + B(2n+1)$$

$$\frac{2}{2n+1} = A + 2Bn + B$$

Ex: Find the sum of the series  $\sum_{n=0}^{\infty} \left( \frac{1}{2^n} - \frac{1}{3^n} \right)$ .

Ex: Given the repeating decimal  $0.\overline{45}$ .

- a) Write the repeating decimal as a geometric series, and
- b) Write its sum as the ratio of two integers.

# Limit of the $n^{th}$ Term of a Convergent Series:

If 
$$\sum_{n=1}^{\infty} a_n$$
 converges, then  $\lim_{n \to \infty} a_n = 0$ .

### nth Term Test for Divergence:

If 
$$\lim_{n\to\infty} a_n \neq 0$$
, then  $\sum_{n=1}^{\infty} a_n$  diverges.

Geometric Series:
$$\sum_{n=0}^{\infty} a^{n} = \frac{a}{1-r} \sum_{n=0}^{\infty} \left(\frac{1}{2^{n}} - \frac{1}{3^{n}}\right) = \sqrt{\frac{1}{2^{n}}} + \sqrt{\frac{1}{2^{n}}}$$
Ex: Find the sum of the series 
$$\sum_{n=0}^{\infty} \frac{1}{3^{n}} - \sum_{n=0}^{\infty} \frac{1}{3^{n}} + \sqrt{\frac{1}{3^{n}}}$$

$$= \sum_{n=0}^{\infty} \frac{1}{3^{n}} - \sum_{n=0}^{\infty} \frac{1}{3^{n}} - \sum_{n=0}^{\infty} \frac{1}{3^{n}}$$

$$= \frac{1}{1-\frac{1}{3}} - \frac{1}{1-\frac{1}{3}}$$

$$= \frac{1}{1-\frac{1}{3}} - \frac{1}{1-\frac{1}{3}}$$

$$= \frac{1}{1-\frac{1}{3}}$$

$$= \frac{1}{1-\frac{1}{3}}$$

Ex: Given the repeating decimal  $0.\overline{45}$  = 0.45454545...

- a) Write the repeating decimal as a geometric series, and
- b) Write its sum as the ratio of two integers.

a) 
$$\frac{45}{100} + \frac{45}{10000} + \frac{45}{1000000} + \cdots$$

$$\frac{45}{(100)^{1}} + \frac{45}{(100)^{2}} + \frac{45}{(100)^{3}} + \cdots$$

$$45 \cdot \left(\frac{1}{100}\right)^{1} + 45 \cdot \left(\frac{1}{100}\right)^{2} + 45\left(\frac{1}{100}\right)^{3} + \cdots$$

$$\sum_{N=1}^{20} 45 \cdot \left(\frac{1}{100}\right)^{N} \qquad \text{Form: } \sum_{N=0}^{20} ar^{N}$$

$$\sum_{N=0}^{20} 45 \cdot \left(\frac{1}{100}\right)^{N+1} \qquad \text{Casuatric Series}$$

$$\sum_{N=0}^{20} 45 \cdot \left(\frac{1}{100}\right)^{N} = \sum_{N=0}^{20} 0.45 \cdot \left(\frac{1}{100}\right)^{N}$$

$$= \frac{20}{1-r} = \frac{0.45}{1-\frac{1}{100}}$$

$$= \frac{45}{100} = \frac{45}{99}$$

Ex: Determine the convergence or divergence of the following series:

a) 
$$\sum_{n=0}^{\infty} (0.36)^n$$

$$b) \sum_{n=0}^{\infty} \frac{2n+1}{3n+2}$$

Ex: Determine the convergence or divergence of the following series:

$$\sum_{n=0}^{\infty} \left(0.36\right)^n$$



$$\sum_{n=0}^{\infty} \frac{2n+1}{3n+2} = \sum_{n=1}^{\infty} \frac{2(n-1)+1}{3(n-1)+2}$$

$$= \sum_{n=1}^{\infty} \frac{2n-1}{3n-1}$$

$$\lim_{n\to\infty} \frac{2n-1}{3n-1} = \frac{2}{3} \neq 0$$

$$\lim_{n\to\infty} \frac{2n-1}{3n-1} = \frac{2}{3} \neq 0$$