Automotive Sensors

Wheel Speed Sensor and Inertial Measurement Unit (IMU)

Automotive Intelligence Lab.

Contents

- Wheel Speed Sensor
- **IMU**
- **ESC**
- Noise Filtering

Wheel Speed Sensor

Wheel Speed Sensor

- Wheel speed sensor is used to count the number of times the motor has rotated.
- Wheel speed sensor can be used to calculate the distance that the robot has driven or turned.
- Signals and measurements
 - Signals: pulses generated during rotational motion.
 - ► Measurements: amount of rotation, wheel speed, angle, or other relevant parameters.

Process of Wheel Speed Sensor

Principle

Detecting the rotation of a wheel to measure the vehicle's speed.

Process

- 1. Generating pulses with each rotation.
- 2. Using the number of pulses generated to track the wheel's rotation.

V: speed of the vehicle [m/s]

r: radius of the wheel [m]

ω: wheel speed [rad/s]

N: the number of pulses generated per unit time

T: measurement period [s]

Z: pulses per revolution

How to Count Speed Using Pulses?

- Pulse counting method: speed measurement using pulses over a fixed period.
 - ▶ Measuring the speed by dividing the number of pulses occurring within a fixed time interval by the time, obtaining the average speed over that interval.
- Pulse timing method: speed measurement using time intervals between pulses.
 - Measuring the time between consecutive pulses and determining speed.

Hybrid method

➤ Selecting between **pulse counting** and **pulse timing**, the wheel encoder adapts dynamically based on the current speed, utilizing pulse counting for high speeds and pulse timing for low speeds.

Pulse Counting Method

- Speed measurement using pulses over a fixed time period (M Method).
 - Pros: simple and allows for accurate speed estimation.
 - Cons: accuracy may decrease at low speeds.

Pulse Timing Method

- Speed measurement using time intervals between pulses (T Method).
 - ▶ Pros: allows accurate distance or rotation calculation, and stable operation at low speeds.
 - ► Cons: difficult to achieve accurate speed measurement until the set pulse count is reached.

Hybrid Method

- Pulse counting is used and the errors that occur at the end are reduced using the pulse timing.
 - Pros: accurate speed measurement across a wide range of speeds.
 - **Cons:** requires a more complex algorithm and additional implementation.

 ω_m : angular velocity m_1 : M method number of pulses T_c : m method counting period δ_T : t method inter - pulse period T_d : total downtime $T_C + \delta T$ T_c : T_c :

Encoder pulse T_{c} T_{d}

Inertial Measurement Unit (IMU)

Inertial Measurement Unit (IMU)

- Electronic device that measures an object's <u>acceleration</u>, <u>angular rate</u>, and sometimes <u>orientation</u>.
- Using a combination of
 - Accelerometers, Gyroscopes, (optional) Magnetometers.
- Types of IMU
 - Mechanical
 - ► Electronics (MEMS)
 - Optical

Mechanical - Gimbaled

Electronics - MEMS

Optical - Ring laser gyroscope

Components of IMU

Accelerometers

► The output includes the linear acceleration of the sensor and the gravitational acceleration of the Earth.

Gyroscopes

▶ The output includes the angular rate of the sensor and the rotation speed of the Earth.

(Optional) Magnetometers

► The input captures the Earth's magnetic field, and the output includes orientation information relative to the Earth's magnetic poles.

No Force Applied

MEMS Gyroscope and Magnetometer

Principle of MEMS IMU

MEMS accelerometer

lt measures acceleration by measuring change in capacitance.

$$C_1 = \frac{\epsilon A}{d + \Delta d}$$
 $C_2 = \frac{\epsilon A}{d - \Delta d}$ $\Delta C = C_1 - C_2$

$$V_{out} = K\Delta C$$
 $acceleration = \frac{V_{out}}{K'}$

K': sensitivity coefficient

 ϵ : permittivity

d: initial distance between the plates

MEMS gyroscope

- It measures rotational rate by using the Coriolis effect.
 - Vibrating mass in rotating system experiences a force perpendicular to the direction of rotation and its velocity.
 - This force changes sensor capacitance, which is converted into a voltage signal that reflect angular rate.

MEMS magnetometer

▶ It measures the earth magnetic field by using Hall Effect or Magneto Resistive Effect.

ARS & AHRS

IMU outputs, such as angular rate and acceleration, can be used to obtain object's attitude information.

ARS

- ► ARS stands for <u>Attitude Reference System</u>.
- ▶ It measures gravity with acceleration to calculate absolute roll and pitch.
- It estimates change of yaw by accumulating angular rate.

AHRS

- ► AHRS stands for <u>Attitude and Heading Reference System</u>.
- lt utilizes not only ARS but also magnetometer to measure the magnetic north.
- ▶ Using this magnetic north, It determine absolute yaw, not only absolute roll and pitch.

Inertial Navigation System (INS)

- Use a high-precision gyroscopes and accelerometers to determine absolute position, velocity, and altitude based on initial position and velocity as well as acceleration and angular rate.
- Equipped with precise navigation algorithms, it can function without GPS signals.
 - ▶ However, to compensate for drift error, it is often combined with external signals such as GPS.

Real World IMU Measurement

Electronic Stability Control (ESC)

Vehicle Motion

Vehicle coordinate system

- Fixed to the vehicle
- Origin at the vehicle's center of gravity
- X-axis in the longitudinal direction
- Y-axis in the lateral direction
- Z-axis in the vertical direction

■ The vehicle motion has six independent degrees of freedom:

- 1. Longitudinal motion in the x-direction
- 2. Lateral motion in the y-direction
- 3. Vertical motion in the z-direction
- 4. Rolling motion around the x-axis
- 5. Pitching motion around the y-axis
- 6. Yawing motion around the z-axis

- 1. Acceleration and braking
- 2. Steering
- 3. Uneven road surface
- 4. Steering, road unevenness
- 5. Road unevenness, acceleration and braking
- 6. Steering

Cause by

Electronic Stability Control

When is ESC Activated?

- When it detects a probable loss of steering control.
 - ► Loss of steering: driver's steering ≠ vehicle direction.

Understeer

▶ Vehicle turns less than driver's steering angle.

Oversteer

▶ Vehicle turns more than driver's steering angle.

Process of ESC

Process

- 1. Compare the target angular velocity and vehicle angular velocity.
- 2. If the difference is large, control specific wheels or adjust engine output.

Target angular velocity

- ▶ Direction of driver's intention.
- \blacktriangleright Determined with steering angle (δ) and wheel speed (v)

- $\omega = target angular velocity$
- V = vehicle speed
- δ = steering angle
- L = wheel base

Vehicle angular velocity

Measured yaw rate of the vehicle.

Sensors for ESC

Wheel Encoder

Measure the wheel speed.

IMU

Measure vehicle acceleration and angular velocity.

ESC process with sensors

- ▶ 1. Measure the **IMU** angular velocity (ω_{imu}) and determine target angular velocity (ω_{target}) with wheel encoder and steering angle.
- ▶ 2. Detect the difference IMU angular velocity (ω_{imu}) and target angular velocity (ω_{target}) and control the wheels.

Noise Filtering

Noise

Anything that differs even slightly from the "real signal".

What makes noise?

- ► Temperature changes
- ► Humidity
- Mechanical vibration
- ► Light interference
- ► Manufacturing irregularities
- ► Aging of components
- ...

Filtering (Static Filtering)

Technology to replace with relatively accurate sensor values.

Types of filtering

- ▶ Average filtering
- Moving average filtering
- Exponential moving average filtering

Average Filter

Divides the sum of all data by the number of data.

- Recursive expression
 - Calculate a new mean using the previously calculated mean.

$$\bar{x}_k = \boxed{ (= \frac{k-1}{k} \times \frac{x_1 + x_2 + \dots + x_{k-1}}{k-1} + \frac{x_k}{k}) }$$

■ Ex1) When measuring a battery voltage of 7 volts every 1 second, the average voltage up to 11 seconds?

$$\bar{V}_{11} = \frac{V_1 + V_2 + \dots + V_{10} + V_{11}}{11} =$$

Average Filter

Average Filter

■ Slow reactivity to changes in physical volume to be measured (low bandwidth).

Moving Average Filter

Mean calculated with the specified number of recent measurements (sliding window) only

throw away the oldest data when new data comes in

$$\bar{x}_k = \frac{x_{k-n+1} + x_{k-n+2} + \dots + x_k}{n}$$
 $x = data, n = number of recent measurement$

$$\bar{x}_k = \frac{x_{k-n} + x_{k-n+1} + \dots + x_{k-1}}{n} + \frac{x_k - x_{k-n}}{n} =$$

- Recursive expression exists but, x_{k-n} requires n data to be held.
 - ▶ Inefficiency memory usage
- Roles of sliding window
 - ▶ As the size of the sliding window increases, it becomes smoother, but there is a delay in the result.

Exponential Moving Average Filter

Exponential Moving Average Filter

Moving average filter that weighs exponentially lower with older measurements.

$$\bar{x}_{k-1} = \alpha \bar{x}_{k-2} + (1 - \alpha) x_{k-1}$$

$$\bar{x}_k = \alpha(\alpha \bar{x}_{k-2} + (1-\alpha)x_{k-1}) + (1-\alpha)x_k$$

$$\bar{x}_k = \alpha^2 \bar{x}_{k-2} + \alpha (1 - \alpha) x_{k-1} + (1 - \alpha) x_k$$

$$\bar{x}_k = \alpha^k x_0 + \alpha^{k-1} (1 - \alpha) x_1 + \dots + \alpha^{k-n} (1 - \alpha) x_n + \dots + (1 - \alpha) x_k$$

$$\alpha^{k-1}(1-\alpha) < \dots < \alpha^{k-n}(1-\alpha) < \dots < (1-\alpha)$$

1st Order Low pass filter

1st order Low pass filter has the same effect as exponential moving average filter.

$$v_{in}(t) - Ri(t) = v_{out}(t)$$

$$Q_c = Cv_{out}(t)$$

$$i(t) = \frac{dQ_c}{dt} = C \frac{dv_{out}(t)}{dt}$$

$$v_{in}(t) - v_{out}(t) = RC \frac{(dv_{out})}{dt}$$

$$x_k - y_k = RC \frac{y_k - y_{k-1}}{\Delta T}$$

$$y_k = \left(\frac{RC}{RC + \Delta T}\right) y_{k-1} + \left(\frac{\Delta T}{RC + \Delta T}\right) x_k$$
$$y_k = \alpha y_{k-1} + (1 - \alpha) x_k, \qquad (\alpha = \frac{RC}{RC + \Delta T})$$

Exponential Moving Average Filter

THANK YOU FOR YOUR ATTENTION

