Содержание

1		ыки и их свойства, операции над языками	2
	1.1	Введение	2
	1.2	Операции над языками	3
		1.2.1 Операции над словами	3
		1.2.2 Операции над языками как множествами	3
		1.2.3 Операции над языками как множествами, содержащи-	
		ми последовательности	4
2	Kor	нечные автоматы	4
_	2.1	Сведение НКА к ДКА	6
	$\frac{2.1}{2.2}$	Минимизация ДКА	7
	2.2	минимизация дка	1
3		улярные выражения и языки	9
	3.1	Регулярные выражения	9
	3.2	Регулярные языки	11
		3.2.1 Свойства замкнутости регулярных языков	11
		3.2.2 Проверка на нерегулярность	11
	3.3	Регулярные выражения на практике	11
4	Лен	ксический анализ	11
	4.1	Комментарии к практике	12
5	KC	-грамматики и языки	12
•	5.1	Грамматики как системы переписывания	12
	5.2	КС-грамматики	13
	5.2	Обобщение со строк на графы	14
	0.0	5.3.1 СҮК для графов	14
		5.3.2 Алгоритм (Y. Hellings) с рабочими множествами для	14
		графов	14
			14
		, 10	
	- 1	5.3.4 Пример: КС достижимость при анализе программ	14
	5.4	Восходящий разбор: LR	15
		5.4.1 LR(0)	15
		5.4.2 SLR	15
		5.4.3 (C)LR(1)	15
		5.4.4 LALR	15
6	Син	нтаксически управляемая трансляция	16
	6.1	Введение	16
	6.2	Атрибутные грамматики	17
		6.2.1 Типы атрибутов	17
	6.3	Более общая формулировка	18
		Магазинный пробразоратель	10

7	Kor	ипиляторные технологии	20
	7.1	Представление кода в виде дерева	20
	7.2	Синтаксический разбор	21
	7.3	Лексический анализ С-подобных языков	22
	7.4	Взаимодействие компонент фронтенда	23
	7.5	Clang как фронтенд	23
		7.5.1 Иерархия базовых действий:	23
		7.5.2 Парсинг в Clang	24
		7.5.3 Семантический анализ	26
8	Прі	иложение	26
	8.1	Необходимые определения из близких областей	26
		8.1.1 Графы	26
		Аннотация	

Это вводный абзац в начале документа.

1 Языки и их свойства, операции над языками

1.1 Введение

Назовём множество абстрактных объектов – символов – алфавитом Σ . Пусть алфавит конечный. Пустой и бесконечный алфавиты нам неинтересны.

Введём слово над алфавитом $\Sigma: w(A) = a_i, a_i \in \Sigma, \forall i = 0... |w(A)|$ – последовательность (строка) символов из алфавита $0 \le |w(\Sigma)| < +\infty$.

Чтобы оперировать словами длины 0, вводят специальный символ длины $0 - \varepsilon : |\varepsilon^n| = 0, n = 0.. + \infty$; Его называют пустым.

Обозначим множество таких последовательностей из символов алфавита Σ , включая слово длины 0, как Σ^* . Тогда некоторый язык $L(\Sigma)$ над алфавитом Σ можно задать как подмножество слов над алфавитом: $L(\Sigma) \subset (\Sigma^*)$. Таким образом, математически мы определили объекты, с которыми будем работать, это последовательности конечной длины и множества.

Теория формальных языков – математический способ конструктивного описания множеств последовательностей (слов) элементов некоторых множеств (алфавитов). Почему конструктивного? Потому что, в принципе, все слова языка можно просто перечислить, если:

- 1. любое слово конечной длины.
- 2. множество слов конечно.
- 3. нет ограничений на временную сложность алгоритмов, используемых в работе с таким языком.

Нарушения 1) и 2), соответственно, говорят о том, что мы будем перечислять слова бесконечно, 3) это практическая хотелка — нам нужны алгоритмы, которые работают, по крайней мере, за полином небольшой степени и по

времени, и по памяти, так как мы хотим работать с относительно мощными языками, и нам важна масштабируемость.

В нашем курсе 1) будет всегда выполняться: считаем, что любое слово языка – конечной длины. Но пусть 2) не выполняется, а 3) нас просят строго соблюсти. Тогда задача конструктивного, то есть 'сжатого' и точного описания множества слов обретает куда более глубокую практическую значимость.

Кроме перечисления, можно предложить еще 2 способа задания языка:

- Формальный распознаватель все слова языка можно распознать некоторой вычислительной машиной.
- Генератор все слова языка можно вывести посредством формальной процедуры переписывания строк по системе правил. Система математических объектов, позволяющих это сделать, называется формальной грамматикой.

С этими двумя способами теория формальных языков и работает. Мы начнём с первого, в последствии переключимся на второй, а затем синхронно двинемся дальше с обеими способами, усложняя и рассматриваемые методы, подходы и задачи.

1.2 Операции над языками

Начнём с базовых операций над элементами языков – словами.

1.2.1 Операции над словами

Опр. 1.1 Конкатенация – склеивание¹ строк. Если $u = a_1 \dots a_m$ и $v = b_1 \dots b_n$ — две строки, то их конкатенация — это строка $u \cdot v = uv = a_1 \dots a_m b_1 \dots b_n$. Знак \cdot , как правило, опускают.

Конкатенация строки сама с собой обозначается как возведение в степень: $w^n - n$ раз повторяемая w. $w^1 = w$, $w^0 = \varepsilon$, то есть конкатенация играет роль умножения с единицей ε , и превращает язык в свободную группу.

Опр. 1.2 Взятие префикса

Опр. 1.3 Взятие суффикса

Конечно, существует множество других интересных, широкоиспользуемых либо экзотических операций, вроде инверсии слова, но оставим их за рамками.

1.2.2 Операции над языками как множествами

Объединение, пересечение, вычитание, дополнение – как с обычными множествами ... Нам они понадобятся, в особенности, при проверке свойств принадлежности языка некоторому классу.

¹устоявшегося русского термина пока нет, увы

1.2.3 Операции над языками как множествами, содержащими последовательности

Опр. 1.4 Конкатенация языков $L_1(\Sigma_1), L_2(\Sigma_2) \subset (\Sigma_1 \cup \Sigma_2)^*$ – это операция склеивания всех возможных слов языков: $L_1 \cdot L_2 = \{uv | u \in L_1, v \in L_2\}.$

Можно взять не 2, а другое число языков k. Если язык конкатенируют сам с собой, то это обозначают L^k . Для k < 2 операцию определяют так: если k = 0, то это будет язык $\{\varepsilon\}$, что соответствует определению $x^0 = 1$ для чисел. Если k = 1, то это будет сам L. Как видим, конкатенация играет роль умножения².

Опр. 1.5 Итерация языка $L: L^* = \bigcup_{k=0}^{\infty} L^k$.

Заметим, что множество слов Σ^* – итерация языка Σ .

2 Конечные автоматы

Конечный автомат – математическая модель вычислителя с конечной памятью.

Опр. 2.1 Недетерминированный конечный автомат (HKA) – это кортеж $\langle Q, \Sigma, \Delta, q_0, F \rangle$:

- ullet $Q,|Q|<\infty$ множество состояний
- Σ алфавит
- $\Delta \subset Q \times \Sigma^* \times Q$ множество переходов³
- $q_0 \in Q$ стартовое состояние
- ullet $F\subset Q$ множество финальных состояний

Существует эквивалентное определение автомата, где вместо Δ задают функцию перехода $\delta: Q \times \Sigma^* \to 2^Q$; будем пользоваться «более графовым» определением через Δ , хотя функция перехода нам ещё понадобится.

Способ распознавания строки автоматом уже лежит в его определении: представим граф автомата. Вершины – это состояния, рёбра – переходы. Если мы находимся в стартовом состоянии, и нам подают на вход строку, то нам достаточно брать по символу/слову из Σ^* , смотреть, по каким рёбрам графа мы можем перейти (если ε – перейти можем спонтанно), совершать переход(ы), брать следующий символ/слово из Σ^* , смотреть, куда мы по нему можем перейти из текущего состояния, и так далее. Слово распозналось, если мы дошли до какого либо финишного состояния и обработали

 $^{^2}$ это и правда умножение в некотором полукольце с единицей ε (вопрос: а какая операция – сложение в этом полукольце?)

 $^{^3\}Delta$ задаёт множество двухместных отношений на Q, помеченных элементами Σ^* .

всё слово. То есть распознавание строки автоматом – суть проверка достижимости по рёбрам его графа из q_0 в одно из состояний в F.

Основным недостатком КА служит то, что мы в каждый момент времени знаем только текущее состояние и в какие мы можем из него перейти. У нас нет данных о том, что происходило ранее, и это накладывает ограничения на выразительность⁴. К примеру, нельзя составить КА, распознающий язык a^nb^n , $\forall n \in [0, +\infty)$, хотя для любого фиксированного множества n – можно (Рис. 1).

Рис. 1: KA, распознающий язык $a^n b^n, n \in [1, 3]$

О достижимости проще говорить в терминах пар $\langle q_x,v\rangle\in Q\times\Sigma^*$, где q_x – текущее состояние, а v – недоразобранная подстрока входной строки. Такая пара называется конфигурацией автомата⁵. Введём отношение достижимости на конфигурациях.

Опр. 2.2 Достижимость (\vdash) – наименьшее рефлексивное транзитивное отношение над $Q \times \Sigma^*$, такое что:

- 1. $\forall w \in \Sigma^* : (\langle q_1, w \rangle \to q_2) \in \Delta \Rightarrow \langle q_1, w \rangle \Rightarrow \langle q_2, \varepsilon \rangle$
- 2. $\forall u, v \in \Sigma^* : \langle q_1, u \rangle \vdash \langle q_2, \varepsilon \rangle, \langle q_2, v \rangle \vdash \langle q_3, \varepsilon \rangle \Rightarrow \langle q_1, uv \rangle \vdash \langle q_3, \varepsilon \rangle$
- 3. $\forall u \in \Sigma^* : \langle q_1, u \rangle \vdash \langle q_2, \varepsilon \rangle \Rightarrow \forall v \in \Sigma^* \langle q_1, uv \rangle \vdash \langle q_2, v \rangle$

Теперь несложно задать язык, распознаваемый КА.

Опр. 2.3 Пусть дан $M = \langle Q, \Sigma, \Delta, q_0, F \rangle$. Язык, распознаваемый автоматом $M - L(M) = \{ w \in \Sigma^* | \exists q \in F : \langle q_0, w \rangle \vdash \langle q, \varepsilon \rangle \}$.

Опр. 2.4 Язык L называется автоматным, если существует KA M : L = L(M). Множество таких языков L образует класс автоматных языков

На практике гораздо приятнее работать с детерминированным конечным автоматом (ДКА).

 $^{^4}$ тем не менее, конечные автоматы широко применяются в технике вокруг нас. Примеры: светофор, лифт, кодовый замок, система контроля воздуха в помещении, компьютерная мышь, аудиоплеер, веб-форма и т.д.

⁵по мере усложнения моделей вычислителей, мы будем добавлять новые параметры в конфигурацию – например, появится параметр, описывающий стек, и т.д.

Опр. 2.5 (Неформально) НКА $M = \langle Q, \Sigma, \Delta, q_0, F \rangle$ называется детерминированным KA, если

- Все переходы однобуквенные: $\forall (\langle q_1, w \rangle \to q_2) \in \Delta : |w| = 1$
- $\forall a \in \Sigma, q \in Q |\delta(q,a)| \leq 1$, где $\delta(q,a)$ множество состояний, достижимых из q по символу a. Задание: расписать $\delta(q,w)$ аккуратнее через конфигурации.

Иными словами, для любых фиксированных букв, для любого состояния, переход приводит только в одно результирующее состояние.

Можно ввести ДКА-автоматный язык L_{NFA} по аналогии с тем, как вводили $L(M)=L_{DFA}$. Очевидно, что $L_{DFA}\subseteq L_{NFA}$, так как ДКА – это частный случай НКА.

Если мы покажем, что произвольный НКА сводится к ДКА, то $L_{DFA} = L_{NFA}.$

2.1 Сведение НКА к ДКА

Л. 2.1 («Построение подмножеств», Рабин и Скотт [1959]). Пусть $B = (\Sigma, Q, q_0, \Delta, F)$ — произвольный. Тогда \exists DFA $A = (\Sigma, 2^Q, Q_0, \Delta', F')$, состояния которого — помножества Q, который распознаёт тот же язык, что и B. Его переход в каждом состоянии-подмножестве $s \subseteq Q$ по каждому символу $a \in \Sigma$ ведет во множество состояний, достижимых по а из некоторого состояния s.

Произведём серию упрощений НКА.

- **Утв. 2.1** В опредлении НКА можно считать все переходы однобуквенными. Для этого нужно перестроить множества Δ и Q.
- **Утв. 2.2** В опредлении НКА можно считать |F|=1.
- **Утв. 2.3** (Эпсилон-замыкание) От переходов по ε можно избавиться, применив некоторые преобразования (см. Рис. 2).

Эти утверждения доказываются технически, не будем этим заниматься сейчас (рекомендуется попробовать доказать дома или посмотреть в классических книгах и курсах).

ТОВО: доказательство Л2.1, алгоритм на базе метода «построение подмножеств»

Утв. 2.4 (о корректности $\mathcal{A}2.1$). \mathcal{A} ля любой строки $w \in \Sigma^*$, состояниеподмножество, достигаемое DFA по прочтении строки w, содержит элемент q тогда u только тогда, когда хотя бы одно из вычислений NFA на w заканчивается s состоянии q.

Рис. 2: Основные преобразования при построении ерs-замыкания: последовательность переходов $\varepsilon \dots \varepsilon a$ заменить на переход a (a), состояние, из которого существует переход $\varepsilon \dots \varepsilon$ в финальное состояние – обозначить как финальное (б)

Доказывается индукцией по длине строки w.

Далее из утверждения о правильности выводится, что построенный DFA распознаёт строку $w \in \Sigma^*$ тогда и только тогда, когда распознаёт исходный NFA. Построение переводит NFA с п состояниями в DFA с 2^n состояниямиподмножествами. На практике, многие из них обычно бывают недостижимы. Поэтому хороший алгоритм должен строить только подмножества, достижимые из уже построенных, начиная с q_0 .

2.2 Минимизация ДКА

Говорят, что состояния u,v различаются словом s, если одно из них по s переводит автомат в финальное состояние, а другое нет.

Если состояния не различаются никакой строкой, они называются неразличимыми. На Puc.2 изображен ДКА, в котором есть такие: действително, окажемся мы в финальном состоянии или нет, зависит только от количества нулей в строке, следовательно, B и C – неразличимы.

Л. 2.2 Отношение неразличимости суть отношение эквивалентности.

Рефлексивность очевидна, симметричность следует из определения (попробуйте заменить и и v местами).

Транзитивность: u и v неразличимы, v и w неразличимы, следовательно, u и w неразличимы, тоже очевидно.

По индукции по длине строки доказывается, что модификация автомата как на Рис. 3, если состояния A и B не различимы, не меняет распознаваемый им язык.

Повторяя процедуру модификации для всех классов эквивалентности, оставляя какую-то одну вершину для каждого класса, получим некий автомат с возможно меньшим числом состояний. Можно доказать, что это число состояний – минимально.

Л. 2.3 Пусть у ДКА M все состояния различимы и любое достижимо из стартового. Тогда M – минимальный автомат для L(M)

Рис. 3: ДКА, в котором есть неразличимые состояния (найдите их)

Рис. 4: Вспомогательный рисунок

Т. 2.1 Для любого ДКА существует и единственный с точностью до изоморфизма ДКА с минимальным числом состояний.

Интуитивно, для выполнения минимизации нужно выделить:

- Недостижимые состояния их нужно выкинуть 6
- Неразличимые состояния их можно объединить в одно для каждого класса эквивалентности

Существует, как минимум, 3 способа выделить и схлопнуть неразличимые состояния:

- Наивный алгоритм основан на построении классов эквивалентности и объединении эквивалентных состояний [2], и рассматривается на семинаре. Он работает за $O(n^2)$.
- Алгоритм Хопкрофта, позволяющий решить задачу за O(nlog(n)) [3].

 $^{^6}$ если этого еще не сделали на этапе построения ДКА, то можно обойти его граф из стартового состояния, например, в глубину, и собрать список достижимых состояний, а остальные удалить, модифицируя при этом остальные элементы автомата

Также существует алгоритм Бржозовского, который строит минимальный ДКА и из НКА [4]

3 Регулярные выражения и языки

3.1 Регулярные выражения

Опр. 3.1 (Клини [1951]). Регулярные выражения над алфавитом Σ определяются так:

- ε регулярное выражение.
- Всякий символ a, где $a \in \Sigma$ регулярное выражение.
- Если α, β регулярные выражения, то тогда $(\alpha|\beta), (\alpha\beta)$ и $(\alpha)^*$ тоже регулярные выражения.

Всякое регулярное выражение α определяет язык над алфавитом Σ , обозначаемый через $L(\alpha)$.

Всякий символ из Σ обозначает одноэлементное множество, состоящее из односимвольной строки: $L(a) = \{a\}$

Оператор выбора задает объединение множеств: $L(\alpha|\beta) = L(\alpha) \cup L(\beta)$. Конкатенация задает конкатенацию языков: $L(\alpha\beta) = L(\alpha)L(\beta)$.

Символ ε определяет пустое множество.

Оператор итерации задает итерацию: $L(\alpha^*) = L(\alpha)^*$.

Приоритеты операций: сперва итерация, затем конкатенация, затем выбор.

Синтаксис регулярных выражений на практике часто расширяется, к примеру:

- повторение один и более раз $(\alpha+)$, $(\alpha+)=\alpha\alpha^*$
- необязательная конструкция ([lpha], что означает «lpha или ничего»), [lpha] = lpha|arepsilon = lpha|arepsilon*
- **Л. 3.1** («построение Томпсона»). Для всякого регулярного выражения α , существует NFA C_{α} с одним начальным и одним принимающим состояниями, распознающий язык, задаваемый α .

Доказательство производится индукцией по структуре регулярного выражения, структурные единицы представлены на Рис. 4:

Так как, по определенению, класс регулярок замкнут относительно этих операций, то и композицию этих операций даёт и регулярку, и НКА, её распознающую. Тем не менее, так ли регулярны регулярные выражения в современных ЯП?...

Рис. 5: Базовые автоматы построения Томпсона

3.2 Регулярные языки

Любое регулярное выражение $reg(\Sigma)$ над алфавитом Σ задает регулярный язык L_{reg} .

Утв. 3.1 Любой регулярный язык задаётся грамматикой (Σ, N, S, P) , где правила из P имеют вид $A \to a, A \to \gamma, A \to \varepsilon$, где γ - либо aB (правая регулярная грамматика), либо Ba (левая регулярная грамматика), $a \in \Sigma$, $A, B, S \in N$.

3.2.1 Свойства замкнутости регулярных языков

Операции, сохраняющие регулярность: ...объединение, пересечение, дополнение, разность, обращение, итерация, конкатенация, гомоморфизм, обратный гомоморфизм.

3.2.2 Проверка на нерегулярность

Лемма о накачке (разрастании)

3.3 Регулярные выражения на практике

Регулярные выражения, входящие в современные языки программирования (в частности, PCRE в Perl), имеют больше возможностей, чем то, что мы рассмотрели: в них есть нумерованные обратные ссылки и т.д. Это позволяет задавать ими не только регулярные языки, но и более сложные, в частности, контекстно-свободные [5].

```
Пример (из [5]): /^(a(?1)?b)$/ задаёт язык a^n b^n, n \in [1...\infty)
```

Это регулярное выражение очень простое: (?1) ссылается на первую подмаску — (a(?1)?b). Можно заменить (?1) подмасками, формируя таким образом рекурсивную зависимость:

```
/^(a(?1)?b)$/
/^(a(a(?1)?b)?b)$/
/^(a(a(a(?1)?b)?b)?b)$/
/^(a(a(a(a(?1)?b)?b)?b)?b)$/
```

. . .

Очевидно, это выражение способно описать любую строку с одинаковым количеством а и b, а конечный автомат, распознающий язык всех таких строк, построить нельзя.

4 Лексический анализ

Следующее приложение регулярных языков, о котором мы будем говорить – лексический анализ – выделение во входном тексте характерных подстрок, «значащих» что-то для дальнейших действий.

Опр. 4.1 Лексема – последовательность символов, удовлетворяющая некоторому заданному требованию.

Основная проблема выделения лексем — их может быть много и разных. Давайте работать не с лексемами, а с их «классами», на которые они делятся по смыслу нашей задачи. 7

Опр. 4.2 Токен – последовательность символов, «осмысленно» описывающая класс некоторой лексемы.

Пример: $int \to TYPE$ (int – лексема, ТҮРЕ – токен). Для задания токенов, как правило, используют регулярные выражения.

Опр. 4.3 Лексер, лексический анализатор, сканер – транслятор, преобразующий входную строку в последовательность токенов.

Схема перехода от регулярки к ДКА: $regexp \to NFA \to NFA_{simplified} \to DFA \to DFA_{min}$ была разобрана в разделах 1-3.

4.1 Комментарии к практике

- Примеры работы с генератором лексических анализаторов **flex** были приведены на семинаре.
- В контесте 2 есть задачи, подразумевающие генерацию лексера по спецификации. И еще есть задача, которая демонстрирует, что в частных случаях («найти все вхождения слов в некоторый текст», «найти слово наименьшей длины, содержащее все подслова данного», и т.д.) можно, но не нужно писать регулярки, а лучше строить автомат по известной заранее структуре⁸.
- Существует ряд подходов к оптимизации представления регулярок, например, префиксное сжатие: https://habr.com/ru/post/117177/ и пр. Понятно, что в случае компиляции регулярки в минимальный ДКА для дальнейшего использования, этот подход никакого выигрыша в производительности не даст, так как ДКА будет одним и тем же с точностью до изоморфизма. Тем не менее, такой подход может повлиять на производительность промежуточных преобразований автоматов, так как НКА, полученный с оптимизацией, может отличаться от такового без оптимизации.

5 КС-грамматики и языки

5.1 Грамматики как системы переписывания

Опр. 5.1 Формальная грамматика – кортеж $G = (\Sigma, N, R, S)$:

 $^{^{7}}$ Здесь считаем такую классификацию однозначной.

⁸Например, суффиксный бор в случае с алгоритмом Ахо-Корасик (1975)

- ullet Σ терминальный алфавит алфавит определяемого языка.
- \bullet N нетерминальный алфавит 9 алфавит промежуточных символов.
- Конечное множество правил R вида $\alpha \to \beta, \alpha \in \{\Sigma \cup N\}^*, \beta \in \{\Sigma \cup N\}^* \cup \{\varepsilon\}$ каждое из которых описывает возможную структуру строк β со свойством α .
- \bullet Начальный символ $S \in N$.

Грамматика при этом является системой переписывания строк, и системой порождения слов языка, где каждое слово порождается за конечное число шагов. Шаг порождения $w'\alpha w'' \to w'\beta w''$ состоит в замене α на подцепочку β в соответствии с правилом порождения $\alpha \to \beta$. Иначе говоря, если имеется некоторая цепочка и некоторая ее подцепочка является левой частью какого-то правила грамматики, то мы имеем право заменить эту левую часть правила на правую. Конечная последовательность шагов порождений называется порождением. Нуль или более порождений будет обозначать знаком \to *. Обозначение $\alpha \to$ * β говорит о том, что цепочка β получена из цепочки α конечным числом подстановок на основе правил порождения. В этом обозначении может быть так, что подстановка не была применена ни разу, в этом случае цепочка alpha = beta.

Язык, задаваемый (порождаемый) грамматикой G – это множество слов, составленных из терминальных символов и порожденных из начального символа грамматики $L = \{w | S \rightarrow^* w\}$.

Понятие регулярной грамматики уже вводилось в разделе 3. Ниже вводится понятие контекстно-свободной грамматики. Эти 2 класса грамматик являются наиболее исследованными типами грамматик иерархии Хомского (типами 3 и 2 соответственно), о которой мы будем говорить позже.

5.2 КС-грамматики

Опр. 5.2 Контекстно-свободная грамматика – кортеж $G = (\Sigma, N, R, S)$:

- Σ терминальный алфавит.
- N нетерминальный алфавит.
- Конечное множество правил R вида $N_i \to \alpha, N_i \in N, \alpha \in \{\Sigma \cup N\}^* \cup \{\varepsilon\}$
- \bullet Начальный символ $S \in N$.

То есть, исходя из общего определения 10 формальной грамматики (5.1), KC грамматика – такая грамматика, в которой каждое правило порождения

 $^{^9{\}rm B}$ лингвистике нетерминалы называются синтаксическими категориями

 $^{^{10}}$ и значения

позволяет явно установить свойство подстроки как промежуточный символ, либо вывести подстроку с заданным свойством только из промежуточного символа, вне зависимости от того, что стоит слева или справа в строке в процессе переписывания. Далее будем называть промежуточные символы нетерминальными, и, чтобы не было путаницы, потребуем $\Sigma \cap N = \emptyset$.

Опр. 5.3 Грамматика называется однозначной, если для любого порождённого по ней слова последовательность порождения – единственна.

$$formula$$
 (1)

- 5.3 Обобщение со строк на графы
- 5.3.1 СҮК для графов
- 5.3.2 Алгоритм (Y. Hellings) с рабочими множествами для графов
- 5.3.3 Другие алгоритмы
- 5.3.4 Пример: КС достижимость при анализе программ

Пусть L(G) – язык сконкатенированных меток графа $G=(V,E,L),\,V,E,L$ – вершины, рёбра, метки. Если G явдяется представлением программы p: $G=(V,E,L)=G(p),\,E\subseteq V\times L\times V,$

 $L(G)=\{w(p)\},\ w(p)=w(v_0l_0v_1,v_1l_1v_2,...),\ v_i,l_j,v_k\in E,$ то можно рассмотреть следующие задачи:

- 1. Поиск паттерна. Найти все пути в G, содержащие слова из L': $L'(G) \subseteq L(G): \{P_G^{patterns}\} = \{P_G|w(P_G) \in L'(G)\}.$
- 2. Проверка на анти-паттерн: пусто ли пересечение языка графа с «языком анти-паттернов» L''(G): $\{P_G \cap L''(G)\}$? $\equiv \emptyset$.
- 3. Классическая задача достижимости найти все пары вершин (состояний программы, точек останова и т.д.), таких, что между ними существует нужный путь?
- 4. Подзадача классической задачи достижимости существует ли нужный путь из точки A в B в программе?

Возможна и постановка последовательной проверки на КС-достижимость: сначала выделяется множество путей по (1), а далее проверяется (2). Такие паттерны (2) для (1) назовём «ограничивающими».

5.4 Восходящий разбор: LR

$5.4.1 \quad LR(0)$

5.4.2 SLR

Автомат – такой же, как в LR(0). Таблица отличается только тем, что reduce выполняется только там, где это имеет смысл.

5.4.3 (C)LR(1)

Канонический LR.

5.4.4 LALR

Наиболее часто реализуемый на практике подход.

https://github.com/meyerd/flex-bison-example

Пусть есть грамматика, не разбираемая из-за конфликтов сдвиг-свертка или свертка-свертка по алгоритму SLR.

В этом случае грамматика преобразуется следующим образом:

- ullet ищется нетерминал, на котором возникла вызвавшая конфликт свертка. Обозначим его A.
- вводятся новые нетерминалы A_1, A_2, \dots, A_n , по одному на каждое появление A в правых частях правил.
- ullet везде в правых частях правил A заменяется на соответствующее A_k .
- набор правил с A в левой части повторяется n раз по разу для каждого A_k .
- правила с A в левой части удаляются, тем самым полностью удаляя A из грамматики. Для преобразованной грамматики (она порождает такой же язык, что и исходная) повторяется попытка построения SLR(1) таблицы разбора.

Действие основано на том, что Follow(A) есть объединение всех $Follow(A_k)$. В каждом конкретном состоянии новая грамматика имеет уже не A, а одно из A_k , то есть множество Follow для данного состояния имеет меньше элементов, чем для A в исходной грамматике.

Это приводит к тому, что для LALR(1) совершается меньше попыток поставить «приведение» в клеточку таблицы разбора, что уменьшает риск возникновения конфликтов с приведениями, иногда вовсе избавляет от них и делает грамматику, не разбираемую по SLR(1), разбираемой после преобразования.

Множество Follow (A_k) называется lookahead set для A и k-той встречи в правилах, отсюда название алгоритма.

6 Синтаксически управляемая трансляция

6.1 Введение

Сначала мы работали с задачей разпознавания – да / нет. Потом нам понадобилось строить дерево разбора. Теперь нам и этого станет мало.

Заметим, что дерево разбора – это тоже цепочка в некотором языке (любое дерево кодируется как $root[child_1[...], clild_2[...], ...]$).

Опр. 6.1 Трансляция - преобразование некоторой входной строчки в выходную. $\tau: L_i \Rightarrow L_o, L_i \in \Sigma_i^*, L_o \in \Sigma_o^*$

Примеры:

- Вычисление арифметического выражения
- Преобразование арифметического выражения
- Любое преобразование кода в компиляторе
- Восстановление дерева по коду Прюфера

То есть, фактически, синтаксический анализ – это трансляция 11.

Зачем же урезать модели трансляции, если у нас есть ЯП общего назначения (Тьюринг-полный)? В теории, чтобы можно было гарантировать некоторые свойства транслятора.

Опр. 6.2 (Hectporoe) Синтаксически управляемая трансляция (англ. Syntax-directed translation, SDT, CYT) — преобразование текста в последовательность команд через добавление таких команд в правила грамматики

А почему бы не разобрать слово, а потом обойти полученное дерево разбора, и посчитать? Действительно, зачастую в алгоритмах преобразования различных графоструктурированных данных (например, в оптимизационных проходах компилятора) именно так и поступают. Однако, существует минимум 2 мотивации так не делать:

- Экономия памяти как минимум, мы можем не хранить дерево разбора памяти. Проблема больше историческая.
- Актуальная проблема: есть логика выражений, в которой мы что-то делаем с атрибутами; если мы запишем дерево, а потом сделаем visitor по дереву, нам снова придется описать всю логику работы внутри обходчика еще раз – получается дублирование функциональности

А СУТ позволяет логику и синтаксис описать в одном месте.

 $^{^{11}{\}rm B}$ задачах обобщения на графы это не всегда так – нас могут интересовать пересечения, пустота, etc

6.2 Атрибутные грамматики

Расширим понятие грамматики атрибутами и семантическими действиями.

- Пусть каждый символ в $X \in \Sigma \cup N$ в грамматике может иметь атрибуты, которые содержат данные 12. Это может быть key: value словарь, структура или union, не принципиально. Пусть, для определённости, для X с атрибутом t обращение к атрибуту может выглядеть как X.t, а ко всему атрибутам X.attr. Грамматика, содержащая такие «расширенные» символы, называется атрибутной грамматикой.
- Дополним атрибутную грамматику $G = (\Sigma, N, P, S)$ сематническими действиями множеством функций $A G = (\Sigma, N, P, S, A)$, где $\forall a \in A \exists p \in P : a(\{l.attr: l \in L\}, \{r.attr: r \in R\}), l, r$ всевозможные символы в соответственно левой и правой частях правила p, вызывается тогда и только тогда, когда применяется правило p. Говорят, что такая грамматика задаёт схему трансляции. Далее будем рассматривать только КС-грамматики, поэтому |L| = 1.

6.2.1 Типы атрибутов

Типы атрибутов вводятся с точки зрения действия над ними семантических операций в ходе разбора.

Опр. 6.3 Синтезированные атрибуты – атрибуты, высчитываемые из правых частей правил.

Синтезированные атрибуты содержат информацию, подтягиваемую вверх по ходу восходящего разбора (либо возврата из рекурсивного спуска, etc), в общем, вычисляются по мере восхождения от терминалов к корню дерева разбора: в момент сворачивания по некоторому правилу, мы знаем атрибуты правой части, но ещё не знаем атрибуты левой. Они-то и «синтезируются» на основе атрибутов правой части. ¹³

Пример: вычисления на синтезируемых атрибутах:

```
E -> E+T { E.val = E.val + T.val then print (E.val)}
E -> T { E.val = T.val}
T -> T*F { T.val = T.val * F.val}
T -> F { T.val = F.val}
F -> Id {F.val = id}
```

Другие примеры с синтезируюмыми атрибутами были рассмотрены на паре про ${
m Flex/Bison}.$

Опр. 6.4 Наследуемые атрибуты – атрибуты, высчитываемые из соседних либо родительских вершин дерева разбора.

 $^{^{12} \}mbox{Обычно такие атрибуты могут включать в себя тип переменной, значение выражения, и т.п.$

 $^{^{13}{}m B}$ этом месте становится понятно, почему Bison работает именно на синтезированных атрибутах, и вычисления происходят именно так

Пример: присвоение типа переменным при создании (int a,b,c;). Пример грамматики составить самостоятельно.

6.3 Более общая формулировка

Возьмем понятие трансляции из прошлого подраздела. Введем СУ схему как:

Опр. 6.5 *СУТ* – это пятерка (Σ, N, P, S, Π) , где

- П- выходной алфавит
- P конечное множество правил вида $A \to \alpha, \beta, \alpha \in (N \cup \Sigma) *, \beta \in (N \cup \Pi) *,$
- вхождения нетерминалов в цепочку β образуют перестановку нетерминалов их цепочки α
- Если нетерминалы повторяются более одного раза, их различают по индексам

В таком виде мы можем задавать, как преобразовывать цепочку. Получается, СУТ-схема задает синхронный вывод 2 цепочек.

- Если $A \to (\alpha, \beta) \in P$, то $(\gamma A^i \delta, \gamma' A^i \delta') \Rightarrow (\gamma \alpha^i \delta, \gamma' \beta^i \delta')$
- Рефлексивно-транзитивное замыкание отношения ⇒ называется отношением выводимости ⇒ *
- Трансляцией называется множество пар $\{(\alpha,\beta)|(S,S)\Rightarrow *(\alpha,\beta),\alpha\in\Sigma^*,\beta\in\Pi^*\}$
- Схема называется простой, если в любых правилах вида $A \to (x,y)$ нетерминалы x,y встречаются в одном и том же порядке.
- Схема называется однозначной, если не существует двух правил $A \to a, b, A \to a, c$, таких, что b, c разные символы.

Т. 6.1 Выходная цепочка однозначной СУТ-схемы может быть сгенерирована при одностороннем выводе.

Также существует понятие обобщенной СУТ-схемы.

Там, фактически, параллельно строятся два дерева разбора:

Для каждой внутренней вершины дерева, соответсующей нетерминалу

A, с каждым A_j связвывается цепочка (трансляция) символа A_j TODO: дописать

Рис. 6: Обобщенная СУТ, позволяющая описать простейшее дифференцирование

Рис. 7: МП-преобразователь

6.4 Магазинный преобразователь

Под этим лежит (может лежать) формальный вычислитель — магазинный преобразователь — выходная лента + МП автомат, который на каждый шаг на выходную ленту что-нибудб печатает.

Доказывается, что, так как МП-преобразователь не может что-нибудь переставить на своем стеке, то класс трансляций МП-автомата не шире класса простых СУ-трансляций.

Также доказывается, что по любой простой СУ-схеме можно простроить МП-преобразователь, то есть классы совпадают.

7 Компиляторные технологии

7.1 Представление кода в виде дерева

Дерево разбора (именуемое ещё «concrete syntax tree» в книгах по компиляторам [6]) – подробно разобранная нами в разделе 5 структура представления синтаксиса. В компиляторах его использование, вернее, использование его как явного представления программы, избыточно, так как некоторые синтаксические конструкции могут быть удалены или слиты воедино после синтаксического разбора.

Опр. 7.1 Abstract syntax tree – упрощённое представление синтаксической структуры программы – помеченное ориентированное дерево, в котором внутренние вершины помечены операторами языка программирования, а листья – соответствующими операндами.

Таким образом, листья AST являются пустыми операторами и представляют только переменные и константы.

AST отличается от дерева разбора тем, что в нём отсутствуют узлы и рёбра для тех синтаксических правил, которые не влияют на семантику программы. Например:

- отсутствует информация о скобках она задается структурой дерева
- ullet вышеупомянутое упрощение numterm--leafnode
 ightarrow leafnode: <math>val

Обычно всё незначимая подцепочка просто заменяется на значение(я) из терминала(ов).

```
TranslationUnitDecl 0x58e128 <<invalid sloc> <invalid sloc> <inval
```

Рис. 8: Clang AST для функции целочисленного осреднения 2 целых чисел

Понятно, что структура элементов дерева укладывается в иерархии. Здесь следует отметить 2 момента по программированию:

Рис. 9: Clang FE: Иерархия Stmt в Clang AST

- У 2 разных корней (ноды разных категорий) может не быть общего предка, и на практике они наследованы от разных базовых классов. То есть иерархически по классам дерево получается не деревом, а лесом. И методы для каждого дерева из леса могут быть различными.
- Представим, мы находимся в вершине дерева A, и нам нужно сделать кодогенерацию для дочерней вершины B, которая может быть типов $C_1, C_2, C_3, ..., C_n$. Следовательно, в функцию CG:: GenerateCodeA придётся вставить switch-case на n элементов для каждой из альтернатив C_i . Но так придётся делать для каждой из функций!

Напрашивается способ, как решить вышеуказанные моменты изящно. Для этого служит паттерн ООП «Visitor»[7], который мы рассматривать не будем. Любой модуль, использующий AST для своих целей (AST Consumer) реализует в себе такой «Visitor».

7.2 Синтаксический разбор

Как правило, в компиляторах на данный момент доминируют 3 способа построения AST по входной программе:

• LALR(1)-парсинг + модификации парсера для специфических операций типа «составление таблицы символов», еtc. Использовался ранее в GCC до версии 3.X.X, затем был переработан во вручную написанный рекурсивный спуск.

- Рекурсивный спуск, написанный вручную. Используется в Clang, современном GCC, Rust C и др 14 .
- GLR-анализ обобщенный LR-разбор, как правило, использующий GLR-парсеры общего назначения, частично доработанные. Пример Elsa C++ Parser.

Если смотреть по соотношению в индустрии, подход \mathbb{N}_2 с рекурсивным спуском существенно доминирует. Почему так? Этому есть, как минимум, 4 причины:

7.3 Лексический анализ С-подобных языков

```
int 'int'
                 [StartOfLine] Loc=<1.c:1:1>
identifier 'f'
                 [LeadingSpace] Loc=<1.c:1:5>
l_paren '('
                        Loc=<1.c:1:6>
int 'int'
                        Loc=<1.c:1:7>
identifier 'a' [LeadingSpace] Loc=<1.c:1:11>
comma ','
                        Loc=<1.c:1:12>
int 'int'
                 [LeadingSpace] Loc=<1.c:1:14>
identifier 'b'
                 [LeadingSpace] Loc=<1.c:1:18>
r_paren ')'
                        Loc=<1.c:1:19>
l_brace '{'
                 [LeadingSpace] Loc=<1.c:1:21>
return 'return' [StartOfLine] [LeadingSpace]
                                                 Loc=<1.c:2:2>
l_paren '('
                [LeadingSpace] Loc=<1.c:2:9>
identifier 'a'
                        Loc=<1.c:2:10>
plus '+'
                        Loc=<1.c:2:11>
identifier 'b'
                        Loc=<1.c:2:12>
r paren ')'
                        Loc=<1.c:2:13>
slash '/'
                        Loc=<1.c:2:14>
numeric_constant '2'
                                Loc=<1.c:2:15>
semi ';
                        Loc=<1.c:2:16>
r brace '}'
                 [StartOfLine] Loc=<1.c:3:1>
eof ''
                Loc=<1.c:3:2>
```

Рис. 10: Токены для функции целочисленного осреднения 2 целых чисел

Проблемы:

• Есть 2 типа токенов (или даже больше!) – Token и PreprocessingToken (для макроопределений)

Интуитивно бы сделать 1 лексер на 2 класса токенов. Но в некоторых компиляторах, например в Clang, все с точностью до наоборот – 2 лексера (Lexer и TokenLexer) и один класс токенов (Token)! Как результат, при обработке, например, #include, нужно поддерживать целый стек лексеров, какие-то из которых просто лексеры, а какие-то TokenLexer.

 $^{^{14}}$ На момент проведения занятия весной 2022 г. было выяснено, что MSVC тоже использует рекурсивный спуск, о других проприетарных компиляторах автору ничего не известно.

Рис. 11: Два лексера в Clang

7.4 Взаимодействие компонент фронтенда

В учебниках по компиляторам [6] и различных курсах часто пишут, что взаимодействие компонент фронтенда выглядит как конвейер:

лексический -> синтаксический -> семантический анализ

Это крайне грубое представление о работе современных компиляторных фронтендов. В следующем подразделе мы покажем, что в деталях это совсем не так.

7.5 Clang как фронтенд

При вызове clang -cc1 создаётся экземпляр класса Clang::CompilerInstance в методе cc1_main, в нём выставляется базовое действие, которое должен сделать фронтенд¹⁵. Действие активируется Act, после чего Clang его выполняет.

7.5.1 Иерархия базовых действий:

Как правило, мы хотим что-то выводить — y нас Emit<actionname>Action. Стоит отметить, что:

- Все такие действия наследуют от CodeGenAction
- CodeGenAction делает CodeGen консьюмером для AST

 $^{$^{-15}}$ только одно, поэтому clang не может одновременно, например, скомпилировать программу (-emit-obj) и сдампить AST (-ast-dump)

Рис. 12: Clang FE: Иерархия действий при парсинге

- ASTFrontendAction добавляет использование семантического анализа
- Точка входа при таких действиях: ParseAST.

7.5.2 Парсинг в Clang

Puc. 13: Clang FE: Диаграмма зависимостей при парсинге / консьюминге AST

Главный модуль в парсинге – Parser. Его задача – подготовить AST, далее включаются все продьюсеры, потребляющие AST. Лексер – однопроходный и по умолчанию не зависит от парсера 16 . Это 2 лексера, описанных

 $[\]overline{\ \ \ }^{16}$ Это не совсем так, в виду возможности махинаций с токенами и возможностью бектрекинга

выше. Стек лексеров хранит объект класса Preprocess, он и является настоящим лексером в Clang. Семантический модуль Sema, по теории, не должен зависеть от лексера, но он от него зависит! (Ужас!).

Парсер – это рукописный рекурсивный спуск, как было сказано ранее. То есть написан набор методов Parser:Parse<XYZ>, по функции для каждого нетерминала. Если в ходе парсинга происходит ошибка, в принципе, предпостроенная часть AST имеет право на существование, а в месте, в котором возник затык, вставляется вершина с записью о возможной ошибке (ошибки вставляются по сопоставлению с большим enum'ом). Также есть опция -fixit, позволяющая исправлять простейшие синтаксические ошибки.

LALR(1) не используется, потому что C/C++ языки, для которых:

- Грамматика ну «почти» регулярная довольно простая 17
- При этом язык на самом деле контекстно-зависимый
- Потенциально мало бектрекинга
- Довольно строгий стандарт
- Много особых случаев, которые гораздо проще прописывать вручную

Проблемы:

- Невозможность раннего определения идентификаторам категории (лексер даже не пытается). Поток токенов ну оооочень простой. Парсер должен по грамматике догадаться по грамматике, что это. А сам язык сложный.
- Бектрекинг может быть необходим при таком подходе!

Бектрекинг в лексере: интерфейс (завёрнутый в TentativeParsingAction-объект)

- EnableBacktrackAtThisPos¹⁸ запомнить точку отката
- CommitBacktrackedTokens забыть
- Backtrack откатиться

Следовательно: лексер поддерживает бектрекинг, после которого подпоследовательность снова считывается, и снова сопоставляется по грамматике парсером. Это довольно накладно по производительности, поэтому придумали ещё один тип токенов — аннотирующие.

Как правило, их используют для typename, scope_identifiers. Парсер внедряет этот токен в последовательность токенов для указания, что уже

 $^{^{17} \}Pi$ о крайней мере, большинство правил

 $^{^{18}}$ Данный вызов укладывает позиции в стек: откатываясь к n-й контрольной точке, далее можно откатиться к n-1-й

понял, что это за тип и т.д. (проверка условия: if TryAnnotateTypeOrScopeToken(), установка: setTypeAnnotation(tok,ty)).

Maло того, парсер может вставлять не только такие токены, а и вообще любые. ExpectAndConsume. Иногда это используется для обработки ошибок.

7.5.3 Семантический анализ

Семантический анализ выполняется модулем Sema по вызову из модуля Parser.

Рис. 14: Clang FE: Parser + Sema

Семантический анализ происходит по схеме: Parse(XX) -> Sema::ActOn(XX) -> Ok -> change AST / No -> err, то есть AST строит именно семантический анализатор. То есть Sema по сути решает 2 задачи:

- Ищет ошибки
- Строит АЅТ

8 Приложение

8.1 Необходимые определения из близких областей

8.1.1 Графы

В данном курсе мы будем рассматривать только конечные ориентированные помеченные графы, подразумевая под «графами» именно такие графы, если не указано противное.

Опр. 8.1 Граф G = (V, E, L), где V — конечное множество вершин, E — конечное множество рёбер, L

Опр. 8.2 Отношением достижимости на графе в смысле нашего определения называется двухместное,

Опр. 8.3 Транзитивным замыканием графа называется транзитивное замыкание отношения достижимости по всему графу.

Список литературы

- [1] Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений. Санкт-Петербург : Вильямс, 2008.
- [2] http://neerc.ifmo.ru/wiki/index.php? title=Минимизация_ДКА,_алгоритм_за_0(n%5E2)_c_построением_пар_различимых_состояний
- [3] http://neerc.ifmo.ru/wiki/index.php? title=Минимизация_ДКА,_алгоритм_Хопкрофта_(сложность_O(n_log_n))
- [4] http://neerc.ifmo.ru/wiki/index.php?title=Алгоритм_Бржозовского
- [5] https://habr.com/ru/post/171667, 2013 (перевод, оригинал тоже гуглится).
- [6] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Compilers: Principles, Techniques, and Tools.
- [7] Fluentcpp: Design Patterns vs Design Principless: Visitor https://www.fluentcpp.com/2022/02/09/design-patterns-vs-design-principles-visitor/