

University of Waterloo Midterm Examination

Term: Winter Year: 2017

Student Name:					
UW Student ID Number:					
Course Abbreviation and Num	ber: ECE 124				
Course Title:	Digital Circuits				
Instructor(s):	Andrew Kennings				
Sections(s):	\Box LEC 001 - ECE (12:30-1:20 lectures)				
	\square LEC 002 - SE (9:30-10:20 lectures)				
Date of Exam:	Wednesday, February 15, 2017				
Time Period:	Start time: 2:30pm End time: 4:00pm				
Duration of Exam:	1.5 hours				
Location:	RCH 103, RCH 301, RCH 302, STC 0020				
Number of Exam Pages:	13				
Exam Type:	Closed Book				
Additional Materials Allowed:	Electronic calculator (any type)				

Question	Score	Question	Score
1)	/12	3)	/16
2)	/14	4)	/18
		Total	/60

Instructions

- 1. Answer all questions.
- 2. The examination is a closed book examination.
- 3. Electronic calculators are allowed.
- 4. Clearly show all steps used in the solution process unless stated otherwise. No marks will be given for final answers unless accompanied by a correct solution method.
- 5. You may use the back of the examination pages if you need extra space.

Question 1: Each part of this question is multiple choice. Each part has only one correct answer. A correct answer will receive full marks while an incorrect answer will receive zero marks.

Part (a) (2 Marks) On the front page of this midterm examination, I remembered to write my name (first and last), ID number and correctly identify which lecture section I am enrolled in.

- (A) True
- (B) False

Your answer	is:		
-------------	-----	--	--

Part (b) (2 Marks) The logic function f = a'b' + a'c + bc can be simplified to:

- (A) f = a'b'
- (B) f = bc
- (C) f = a'c
- (D) f = a'c + bc
- (E) f = a'b' + a'c
- $(F) \quad f = a'b' + bc$

Your answer	is:		
-------------	-----	--	--

Your answer is:

0		
inputs are available available as an inp	as) Assume that you have any type of logic gate available. Assume uncomplemented only (this means that if x is an input, only at and if x' is required, you would need an inverter). The fewest materials implement the 3-input function $f = ((x + y)z' + z + xy)'$ is:	y x is
Your answer is:		
	ks) Assume you are given the 12 bits 110000110101_2 . You are toloned integer. The value of the integer is:	ld this

Part (e) (2 Marks) Assume you are given the 12 bits 110000110101_2 .	You are told this
represents an signed integer and that negative values are represented using	ng 2s complement.
The value of the integer is:	

- (A) 3125
- (B) -1077
- (C) 971
- (D) -971

Your answer is:	
-----------------	--

Part (f) (2 Marks) Assume you have the 3 input logic function $f = f(a, b, c) = \sum (3, 4, 5, 6)$ which is a sum of minterms expression. Let g = f'. The proper **product of maxterms** representation for g is:

- (A) $\sum (3,4,5,6)$ (B) $\sum (1,2,7)$
- (C) $\Pi(1,2,7)$
- (D) $\Pi(3,4,5,6)$

Your answer is:

Question 2:

Part (a) (6 Marks) Consider the 3-input logic function f = (ab)'c + a'c'. Express f as both a sum of minterms and as a product of maxterms. You must write out all minterms and all maxterms in full — do not use shorthand notation.

Part (b) (8 Marks) Shown below is a truth table for a 4-input function f = f(a, b, c, d). Derive both a minimized sum of products expression for f and a minimized product of sums expression for f. Blank Karnaugh maps are provided if required.

a	b	c	d	f
0	0	0	0	0
0	0	0	1	0
0	0	1	0	X
0	0	1	1	X
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	1
1	0	1	0	X
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0
1	1	1	1	0

ab	d ₀₀	01	11	10
00				
01				
11				
10				

ab	d ₀₀	01	11	10
00				
01				
11				
10				

Question 3:

Part (a) (6 Marks) Assume you are given the 4 input logic function $f = f(a, b, c, d) = b'(a \oplus c) + bd$. **Implement and draw** this function as optimized 2-level circuit using only **NOR** gates. You may assume that the inputs are available **both** complemented and uncomplemented. You may also assume that you have any size of **NOR** gate required. A blank Karnaugh map is shown below if you need it.

ab	00 b	01	11	10
00				
01				
11				
10				

Part (b) (10 Marks) Assume you are given the 5 input logic function f = f(a, b, c, d, e) = b'd'e' + ace + c'e' + bcde which is minimized SOP representation for f. Implement and draw f as a multi-level circuit using only 2-input NAND gates. No NAND gate can be used as a NOT gate. You may assume that inputs are available both complemented and uncomplemented. Hint 1: You might need to consider factoring to eliminate the larger gates. Hint 2: The Boolean identify xb + x'a = (x + a)(x' + b) might be useful.

Question 4:

Part (a) (6 Marks) Represent both $(56)_{10}$ and $(79)_{10}$ in base 2 assuming that you have 8 bits available. Subtract $(79)_{10}$ from $(56)_{10}$ by adding the negative of the subtrahend to the minuend. Show all work.

Part (b) (12 Marks) Assume you require a circuit capable of performing 2-bit division. The four inputs to the circuit are $A = (a_1 a_0)$ and $B = (b_1 b_0)$. The circuit should perform $A \div B$ and produce as output the quotient $Q = (q_1 q_0)$ and the remainder $R = (r_1 r_0)$. For example, if $a_1 a_0 = 10$ and $b_1 b_0 = 11$, then the output should be $q_1 q_0 = 00$ and $r_1 r_0 = 10$ since $2 \div 3$ is 0 with remainder 2.

When $b_1b_0 = 00$ which means divison by zero, the remainder should always be $r_1r_0 = 11$ but the quotient q_1q_0 can have any combination of values.

Based on this description, design and draw a circuit capable of performing 2-bit division. Implement all outputs as minimized SOP expressions. Blank Karnaugh maps are provided if you need them.

b_1b_0	$ \begin{array}{c} a_0 \\ 00 \end{array} $	01	11	10
00				
01				
11				
10				

b_1b_0	$ \begin{array}{c} a_0 \\ 00 \end{array} $	01	11	10
00				
01				
11				
10				

b_1b_0	$ \begin{array}{c} a_0 \\ 00 \end{array} $	01	11	10
00				
01				
11				
10				

b_1b_0	$ \begin{array}{c} a_0 \\ 00 \end{array} $	01	11	10
00				
01				
11				
10				