CS 228 : Logic in Computer Science

Krishna. S

LTL ModelChecking

- ▶ Given transition system *TS*, and LTL formula φ , does *TS* $\models \varphi$?
- ▶ $Tr(TS) \subseteq L(\varphi)$ iff $Tr(TS) \cap \overline{L(\varphi)} = \emptyset$
- ▶ First construct NBA $A_{\neg \varphi}$ for $\neg \varphi$.
- ▶ Construct product of TS and $A_{\neg \omega}$, obtaining a new TS, say TS'.
- ▶ Check some very simple property on TS', to check $TS \models \varphi$.

An Example $TS \models \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example $TS \models \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example $TS \models \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example : $TS \nvDash \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example : $TS \nvDash \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

An Example : $TS \nvDash \varphi$

- ▶ Let $\varphi = \Box(a \lor b), \neg \varphi = \Diamond(\neg a \land \neg b)$
- ▶ Take TS and $A_{\neg \varphi}$, and check the intersection.

Product of TS and NBA

Given TS = (S, Act, I, AP, L) and $A = (Q, 2^{AP}, \delta, Q_0, G)$ NBA. Define $TS \otimes A = (S \times Q, Act, I', AP', L')$ such that

- ▶ $I' = \{(s_0, q) \mid s_0 \in I \text{ and } \exists q_0 \in Q_0, q_0 \stackrel{L(s_0)}{\to} q\}$
- ▶ AP' = Q, $L' : S \times Q \rightarrow 2^Q$ such that $L'((s, q)) = \{q\}$
- ▶ If $s \stackrel{\alpha}{\to} t$ and $q \stackrel{L(t)}{\to} p$, then $(s, q) \stackrel{\alpha}{\to} (t, p)$

Persistence Properties

Let η be a propositional logic formula over AP. A persistence property P_{pers} has the form $\Diamond \Box \eta$. How will you check a persistence property on a TS?

- ▶ For example, $TS \nvDash \Diamond \Box (a \lor b)$
- ▶ For example, $TS \models \Diamond \Box (a \lor (a \to b))$

Persistence Properties

Let η be a propositional logic formula over AP. A persistence property P_{pers} has the form $\Diamond \Box \eta$. How will you check a persistence property on a TS?

- ▶ For example, $TS \nvDash \Diamond \Box (a \lor b)$
- ▶ For example, $TS \models \Diamond \Box (a \lor (a \to b))$
- ► $TS \nvDash P_{pers}$ iff there is a reachable cycle in the TS containing a state with a label which satisfies $\neg \eta$.

LTL ModelChecking

- ▶ Given *TS* and LTL formula φ . Does *TS* $\models \varphi$?
- ▶ Construct $A_{\neg \varphi}$, and let g_1, \ldots, g_n be the good states in $A_{\neg \varphi}$.
- ▶ Build $TS' = TS \otimes A_{\neg \omega}$.
- ▶ The labels of TS' are the state names of $A_{\neg \varphi}$.
- ▶ Check if $TS' \models \Diamond \Box (\neg g_1 \land \ldots \neg g_n)$.

LTL ModelChecking

- ▶ Given *TS* and LTL formula φ . Does *TS* $\models \varphi$?
- ▶ Construct $A_{\neg \varphi}$, and let g_1, \ldots, g_n be the good states in $A_{\neg \varphi}$.
- ▶ Build $TS' = TS \otimes A_{\neg \varphi}$.
- ▶ The labels of TS' are the state names of $A_{\neg \varphi}$.
- ▶ Check if $TS' \models \Diamond \Box (\neg g_1 \land \ldots \neg g_n)$.

ModelChecking LTL in TS = Check Persistence in TS'

The following are equivalent.

- $ightharpoonup TS \models \varphi$
- ▶ $Tr(TS) \cap L(A_{\neg \varphi}) = \emptyset$
- ▶ $TS' \models \Diamond \Box (\neg g_1 \land \ldots \neg g_n).$

The hamiltonian path problem is polynomially reducible to the complement of the LTL modelchecking problem.

- Given graph G = (V, E) synthesize in polynomial time a TS and an LTL formula φ
- ▶ Show that *G* has a HP iff $TS \nvDash \varphi$

The hamiltonian path problem is polynomially reducible to the complement of the LTL modelchecking problem.

- ▶ Given graph G = (V, E) synthesize in polynomial time a TS and an LTL formula φ
- ▶ Show that *G* has a HP iff $TS \nvDash \varphi$
- ► TS is the graph itself, with one new node added, say b such all vertices of G have an edge to b, and b has a self loop. Let the label of a node in the TS be the name of the vertex.
- ▶ Write an LTL formula to capture absence of a HP in G. Assume $V = \{v_1, \dots, v_n\}$.
- ▶ The formula $\varphi = \neg \psi$ where ψ is

$$(\lozenge v_1 \land \Box (v_1 \rightarrow \bigcirc \Box \neg v_1)) \land \ldots (\lozenge v_n \land \Box (v_n \rightarrow \bigcirc \Box \neg v_n))$$

▶ Show that *G* has a HP iff $TS \nvDash \varphi$.

Assume $TS \nvDash \neg \psi$. Then there is a path witnessing ψ .

▶ Let π be the path in TS such that $\pi \models \psi$.

- ▶ Let π be the path in *TS* such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.

- ▶ Let π be the path in *TS* such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.
- \blacktriangleright π has the form $v_{i_1}v_{i_2}\ldots v_{i_n}b^{\omega}$, $i_1,\ldots,i_n\in\{1,2,\ldots,n\}$, $i_i\neq i_k$.

- ▶ Let π be the path in *TS* such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.
- \blacktriangleright π has the form $v_{i_1}v_{i_2}\ldots v_{i_n}b^{\omega}$, $i_1,\ldots,i_n\in\{1,2,\ldots,n\}$, $i_i\neq i_k$.
- ▶ So *G* has the HP $v_{i_1}v_{i_2}\ldots v_{i_n}$.

- ▶ Let π be the path in *TS* such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.
- \blacktriangleright π has the form $v_i, v_i, \dots, v_n, b^{\omega}, i_1, \dots, i_n \in \{1, 2, \dots, n\}, i_i \neq i_k$.
- ▶ So G has the HP $v_{i_1}v_{i_2}\ldots v_{i_n}$.
- ► The converse is similar : a HP in G extends to a path $\pi = v_{i_1} v_{i_2} \dots v_{i_n} b^{\omega}$ in TS. Clearly, $\pi \models \psi$.

- ▶ Let π be the path in *TS* such that $\pi \models \psi$.
- ▶ As $\pi \models \bigwedge_{v \in V} (\lozenge v \land \Box (v \to \bigcirc \Box \neg v))$, π witnesses all vertices of V, and does not repeat any vertex.
- \blacktriangleright π has the form $v_i, v_i, \dots, v_n, b^{\omega}, i_1, \dots, i_n \in \{1, 2, \dots, n\}, i_i \neq i_k$.
- ▶ So G has the HP $v_{i_1}v_{i_2}\ldots v_{i_n}$.
- ► The converse is similar : a HP in G extends to a path $\pi = v_i, v_i, \dots, v_i, b^{\omega}$ in TS. Clearly, $\pi \models \psi$.
- ▶ So LTL model checking is co-NP hard as HP is NP-complete.
- ▶ Actual complexity of LTL model checking : PSPACE-complete. For this, show that given a LBTM M and a word w, construct in poly time a TS and an LTL formula φ such that M accepts w iff $TS \models \varphi$.

LTL Summary

- ► LTL : temporal logic for specification of programs/systems, useful in checking program/system correctness
- Studied modelchecking
- ▶ Widely used in industry : SPIN tool for LTL modelchecking