Optimization methods. Seminar 6. Convex functions

Alexandr Katrutsa

Moscow Institute of Physics and Technology Department of Control and Applied Mathematics

October 16, 2017

Reminder

- Derivative by scalar
- Derivative by vector
- Derivative by matrix
- Chain rule

Functions definitions

Convex function

A function $f: X \subset \mathbb{R}^n \to \mathbb{R}$ is called conves (strictly convex), if X is a convex set and $\forall x_1, x_2 \in X$ and $\alpha \in [0,1]$ ($\alpha \in (0,1)$): $f(\alpha x_1 + (1-\alpha)x_2) \leq (<) \alpha f(x_1) + (1-\alpha)f(x_2)$

Concave function

A function f is concave (strictly concave), if -f is convex (strictly convex).

Strongly convex function

A function $f: X \subset \mathbb{R}^n \to \mathbb{R}$ is called strongly convex with constant m > 0, if X is a convex set and $\forall \mathbf{x}_1, \mathbf{x}_2 \in X$ in $\alpha \in [0,1]$: $f(\alpha \mathbf{x}_1 + (1-\alpha)\mathbf{x}_2) \leq \alpha f(\mathbf{x}_1) + (1-\alpha)f(\mathbf{x}_2) - \frac{m}{2}\alpha(1-\alpha)\|\mathbf{x}_1 - \mathbf{x}_2\|_2^2$

Sets definitions

Epigraph

An epigraph of a function f is called a set $epif = \{(\mathbf{x}, y) : \mathbf{x} \in \mathbb{R}^n, y \in \mathbb{R}, y \geq f(\mathbf{x})\} \subset \mathbb{R}^{n+1}$

Sublevel set

A sublevel set of a function f is called a set

$$C_{\gamma} = \{\mathbf{x} | f(\mathbf{x}) \leq \gamma\}.$$

Quasi-convex function

A function f is called quasi-convex, if its domain is convex set and sublevel set for any γ is convex.

Convex function criteria

First order criterion

A function f is convex \Leftrightarrow the function is defined on the convex set X and $\forall \mathbf{x}, \mathbf{y} \in X \subset \mathbb{R}^n$:

$$f(\mathbf{y}) \geq f(\mathbf{x}) + (\nabla f(\mathbf{x}))^{\mathsf{T}} (\mathbf{y} - \mathbf{x})$$

Second order criterion

A continuous and twice differentiable function f is convex \Leftrightarrow the function is defined on the convex set X and $\forall \mathbf{x}, \mathbf{y} \in \mathbf{relint}(X) \subset \mathbb{R}^n$:

$$\nabla^2 f(\mathbf{x}) \succeq 0.$$

Relation to the epigraph property

A function is convex \Leftrightarrow its epigraph is convex set.

Restriction to the line

A function $f: X \to \mathbb{R}$ is convex iff X is a convex set and the univariate function $g(t) = f(\mathbf{x} + t\mathbf{v})$ defined on the set $\{t | \mathbf{x} + t\mathbf{v} \in X, \ \forall \mathbf{x}, \mathbf{v}\}$ is convex.

) Q (

Strongly convexity criteria

First order criterion

A function f is strongly convex with constant $m \Leftrightarrow \text{the}$ function is defined on the convex set X and $\forall \mathbf{x}, \mathbf{y} \in X \subset \mathbb{R}^n$:

$$f(\mathbf{y}) \geq f(\mathbf{x}) + (\nabla f(\mathbf{x}))^{\mathsf{T}} + \frac{m}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

Second order criterion

A continuous and twice differentiable function f is strongly convex with constant $m \Leftrightarrow$ the function is defined on the convex set X and $\forall x \in \mathbf{relint}(X) \subset \mathbb{R}^n$:

$$\nabla^2 f(\mathbf{x}) \succeq m\mathbf{I}$$
.

Examples

- 1. Quadratic function: $f(x) = \frac{1}{2}x^{\mathsf{T}}\mathsf{P}x + \mathsf{q}^{\mathsf{T}}x + r, \ \mathbf{x} \in \mathbb{R}^n, \ \mathsf{P} \in \mathsf{S}^n$
- 2. Proper norms in \mathbb{R}^n
- 3. $f(\mathbf{x}) = \log(e^{x_1} + \ldots + e^{x_n}), \mathbf{x} \in \mathbb{R}^n$ smooth approximation of maximum
- 4. Log determinant: $f(X) = -\log \det X$, $X \in S_{++}^n$
- 5. A set of the convex functions is a convex cone
- 6. Element-wise maximum of convex functions: $f(\mathbf{x}) = \max\{f_1(\mathbf{x}), f_2(\mathbf{x})\}, \text{ dom } f = \text{dom } f_1 \cap \text{dom } f_2$
- 7. Extension to the infinite set of functions: if for any $\mathbf{y} \in \mathcal{A}$ a function $f(\mathbf{x}, \mathbf{y})$ is convex on \mathbf{x} , then $\sup_{\mathbf{y} \in \mathcal{A}} f(\mathbf{x}, \mathbf{y})$ is convex on \mathbf{x}
- 8. Leading eigenvalue: $f(\mathbf{X}) = \lambda_{\mathsf{max}}(\mathbf{X})$

Alexandr Katrutsa Seminar 6 7/10

Jensen inequality

Jensen inequality

For any convex function f we have the following inequality:

$$f\left(\sum_{i=1}^n \alpha_i \mathbf{x}_i\right) \leq \sum_{i=1}^n \alpha_i f(\mathbf{x}_i),$$

where $\alpha_i \geq 0$ and $\sum_{i=1}^n \alpha_i = 1$.

Or in the case of infinitely many \mathbf{x}_i : $p(x) \geq 0$ u $\int\limits_X p(x) = 1$

$$f\left(\int\limits_X p(x)xdx\right)\leq \int\limits_X f(x)p(x)dx$$

if integrals exist.

Examples

- 1. Hölder inequality
- 2. Arithmetic mean vs. geometric mean
- 3. $f(E(x)) \leq E(f(x))$
- 4. Convexity of the hyperbolic set $\{\mathbf{x} | \prod_{i=1}^{n} x_i \geq 1\}$

Recap

- Convex function
- Epigraph and sublevel set of function
- Convex function criteria
- Jensen inequality