Docket No.: JCLA12230

AMENDMENTS

In the Claims

Please amend the claims as follows:

1. (currently amended) A compound of formula (1):

$$R^{1}-(A^{1}-Z^{1})_{m}-(A^{2}-Z^{2})_{n}-(A^{3}-Z^{3})_{q}-A^{4}-Z^{4} R^{5}$$
 R^{3}
 R^{3}

wherein R¹ represents hydrogen, halogen, -CN, -CF₃, -CF₂H, -CFH₂, -OCF₃, -OCF₂H, -N=C=O, -N=C=S, or alkyl having from 1 to 20 carbon atoms, and any -CH₂- of the alkyl may be substituted with -O-, -S-, -CO-, -COO-, -OCO-, -CH=CH-, -CF=CF- or -C≡C-, and any hydrogen thereof may be substituted with halogen or -CN; R², R³ and R⁵ each independently represent hydrogen or alkyl having from 1 to 3 carbon atoms; A¹, A², A³ and A⁴ each independently represent 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo[2.2.2]octane-1,4-diyl or bicyclo[3.1.0]hexane-3,6-diyl, and in these rings, any

-CH₂- may be substituted with -O-, and any -CH= may be substituted with -N=, and in these rings, any hydrogen may be substituted with halogen or alkyl having from 1 to 5 carbon atoms; Z^1 , Z^2 and Z^3 each independently represent a single bond, -(CH₂)_a-,

Page 2 of 16

Docket No.: JCLA12230

-C≡C-HC=CH-, -CH=CH-C≡C-, -OCF₂-, or -CF₂O-, and a indicates an integer of from 1 to 20; Z^4 represents a single bond or α,ω-alkylene having from 1 to 4 carbon atoms, and any -CH₂-of the alkylene may be substituted with -O-, -S-, -COO- or

-OCO-; m, n and q each independently indicate 0, 1 or 2; and

wherein when m+n+q=1, any $-CH_2$ — of the alkyl represented by R^1 is not substituted with -CO—and Z^4 is a single bond.

- 2. (original) A compound as claimed in claim 1, in which R⁵ in formula (1) is hydrogen.
- 3. (original) A compound as claimed in claim 2, in which R² and R³ in formula (1) in claim 1 are hydrogen.
- 4. (original) A compound as claimed in claim 3, in which A¹, A², A³ and A⁴ in formula (1) in claim 1 are independently any of 1,4-cyclohexylene or 1,4-phenylene, and any hydrogen in these rings may be substituted with halogen.
- 5. (original) A compound as claimed in claim 3, in which A^1 , A^2 , A^3 and A^4 in formula (1) in claim 1 are independently any of 1,4-cyclohexylene or 1,4-phenylene, and any hydrogen in these rings may be substituted with halogen; and Z^1 , Z^2 and Z^3 are independently any of a single bond, $-(CH_2)_a$, $-O(CH_2)_a$, $-(CH_2)_a$ O-, $-O(CH_2)_a$ O-, $-O(CH_2)_a$ O-, $-O(CH_2)_a$ O-, $-O(CH_2)_a$ O-, or $-CF_2$ O-.
- 6. (original) A compound as claimed in claim 5, in which Z^4 in formula (1) in claim 1 is a single bond.

Page 3 of 16

Docket No.: JCLA12230

7. (currently amended) Any one compound of formulae (a) to (d):

$$R^1-A^1-Z^1-A^4-Z^4-$$
 (a)

$$R^1-A^1-Z^1-A^2-Z^2-A^4-Z^4$$
 (b)

$$R^{1}-A^{1}-Z^{1}-A^{2}-Z^{2}-A^{3}-Z^{3}-A^{4}-Z^{4}$$

$$R^{1} - \left(A^{1} - Z^{1}\right)_{2} A^{2} - Z^{2} - A^{3} - Z^{3} - A^{4} - Z^{4} - \left(0\right)$$
 (d)

bicyclo[3.1.0]hexane-3,6-diyl, and in these rings, any

wherein R¹ represents hydrogen, halogen, -CN, -CF₃, -CF₂H, -CFH₂, -OCF₃, -OCF₂H, -N=C=O, -N=C=S, or alkyl having from 1 to 20 carbon atoms, and any -CH₂- of the alkyl may be substituted with -O-, -S-, -CO-, -COO-, -OCO-, -CH=CH-, -CF=CF- or -C≡C-, and any hydrogen thereof may be substituted with halogen or -CN; A¹, A², A³ and A⁴ each independently represent 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo[2.2.2]octane-1,4-diyl or

-CH₂- may be substituted with -O-, and any -CH= may be substituted with -N=, and in these rings, any hydrogen may be substituted with halogen or alkyl having from 1 to 5 carbon atoms; Z^1 , Z^2 and Z^3 each independently represent a single bond, -(CH₂)_a-,

$$-O(CH_2)_a-,-(CH_2)_aO-,-O(CH_2)_aO-,-CH=CH-,-C\equiv C-,-COO-,-OCO-,-(CF_2)_2-,$$

Application No.: 10/664,671 Docket No.: JCLA12230

-C≡C-HC=CH-, -CH=CH-C≡C-, -OCF₂- or -CF₂O-, and a indicates an integer of from 1 to 20; Z^4 represents a single bond or α,ω-alkylene having from 1 to 4 carbon atoms, and any -CH₂- of the alkylene may be substituted with -O-, -S-, -COO- or

-OCO-, and

wherein in formula (a), any $-CH_2$ — of the alkyl represented by R^1 is not substituted with -CO—and Z^4 is a single bond.

- 8. (original) A compound as claimed in claim 7, in which R¹ in formulae (a) to (d) is hydrogen, halogen, -CN, -CF₃, -CF₂H, -CFH₂, -OCF₃, -OCF₂H, alkyl having from 1 to 10 carbon atoms, alkoxy having from 1 to 10 carbon atoms, alkoxyalkyl having from 2 to 10 carbon atoms, or alkenyl having from 2 to 10 carbon atoms; A¹, A², A³ and A⁴ are independently any of 1,4-cyclohexylene or 1,4-phenylene, and in these rings, any hydrogen may be substituted with halogen; Z¹, Z² and Z³ are independently any of a single bond, -(CH₂)₂-, -(CH₂)₄-, -OCH₂-, -O(CH₂)₃-, -CH₂O-, -(CH₂)₃O-, -CH₂O-, -CH₂CH-, -C≡C-, -COO-, -OCO-, -(CF₂)₂-, -CF=CF-, -OCF₂- or -CF₂O-; Z⁴ is a single bond.
- 9. (currently amended) A liquid-crystal composition containing at least two polymerizable compounds, in which at least one polymerizable compound is the compound of-any-one-of-claims 1.
- 10. (currently amended) A liquid-crystal composition as claimed in claim 9, in which all the polymerizable compounds are the compounds of any one of claims 1 to 8 claim 1.

Page 5 of 16

Docket No.: JCLA12230

- 11. (currently amended) A liquid-crystal composition as claimed in claim 9, which contains at least one compound of any one of claims 1 to 8 claim 1 and at least one polymerizable compound except the compound.
- 12. (original) A liquid-crystal composition as claimed in claim 9, which additionally contains an optically-active compound.
 - 13. (currently amended) A polymer having a constitutional unit of formula (2):

$$R^{1} - \left(A^{1} - Z^{1}\right)_{m} \left(A^{2} - Z^{2}\right)_{n} \left(A^{3} - Z^{3}\right)_{q} A^{4} - Z^{4}$$

$$R^{5} - R^{2}$$

$$R^{3} - R^{2}$$

$$R^{3} - R^{2}$$

$$R^{3} - R^{2}$$

wherein R¹ represents hydrogen, halogen, -CN, -CF₃, -CF₂H, -CFH₂, -OCF₃, -OCF₂H, -N=C=O, -N=C=S, or alkyl having from 1 to 20 carbon atoms, and any -CH₂- of the alkyl may be substituted with -O-, -S-, -CO-, -COO-, -OCO-, -CH=CH-, -CF=CF- or -C=C-, and any hydrogen thereof may be substituted with halogen or -CN; R², R³ and R⁵ each independently represent hydrogen or an alkyl having from 1 to 3 carbon atoms; A¹, A², A³ and A⁴ each independently represent 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4-phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo[2.2.2]octane-1,4-diyl or bicyclo[3.1.0]hexane-3,6-diyl, and in these rings, any

 $-CH_2$ - may be substituted with -O-, and any -CH= may be substituted with -N=, and in these rings, any hydrogen may be substituted with halogen or alkyl having from 1 to 5 carbon atoms; Z^1 , Z^2 and Z^3 each independently represent a single bond, $-(CH_2)_a$ -,

$$-O(CH_2)_a$$
, $-(CH_2)_aO$, $-O(CH_2)_aO$, $-CH=CH$, $-C=C$, $-COO$, $-OCO$, $-(CF_2)_2$,

Page 6 of 16

Docket No.: JCLA12230

Application No.: 10/664,671

-C=C-COO-, -OCO-C=C-, -CH=CH-(CH₂)₂-, -(CH₂)₂-CH=CH-, -CF=CF-,

-C=C-HC=CH-, -CH=CH-C=C-, -OCF₂-, or -CF₂O-, and a indicates an integer of from 1 to 20: Z⁴ represents a single bond or α,ω-alkylene having from 1 to 4 carbon atoms, and any -CH₂-

of the alkylene may be substituted with -O-, -S-, -COO- or

-OCO-; and m, n and q each independently indicate 0, 1 or 2; and

wherein when m+n+q=1, any -CH₂- of the alkyl represented by R¹ is not substituted with -COand Z^4 is a single bond.

- 14. (original) A polymer as claimed in claim 13, in which R⁵ in formula (2) is hydrogen.
- 15. (original) A polymer as claimed in claim 14, in which R² and R³ in formula (2) in claim 13 are hydrogen.
- 16. (original) A polymer as claimed in claim 15, in which A¹, A², A³ and A⁴ in formula (2) in claim 13 are independently any of 1,4-cyclohexylene or 1,4-phenylene, and any hydrogen in these rings may be substituted with halogen.
- 17. (original) A polymer as claimed in claim 15, in which A¹, A², A³ and A⁴ in formula (2) in claim 13 are independently any of 1,4-cyclohexylene or 1,4-phenylene, and any hydrogen in these rings may be substituted with halogen; and Z¹, Z² and Z³ are independently any of a single bond, $-(CH_2)_a$, $-O(CH_2)_a$, $-(CH_2)_aO$, $-O(CH_2)_aO$,

-CH=CH-, -C=C-, -COO-, -OCO-, $-OCF_2-$, or $-CF_2O-$.

18. (original) A polymer as claimed in claim 17, in which Z^4 in formula (2) in claim 13 is a single bond.

Page 7 of 16

Docket No.: JCLA12230

- 19. (original) A polymer as claimed in claim 13, in which R¹ in formula (2) is hydrogen, halogen, -CN, -CF₃, -CF₂H, -CFH₂, -OCF₃, -OCF₂H, alkyl having from 1 to 10 carbon atoms, alkoxyalkyl having from 2 to 10 carbon atoms, or alkenyl having from 2 to 10 carbon atoms; R², R³ and R⁵ are hydrogen; A¹, A², A³ and A⁴ are independently any of 1,4-cyclohexylene or 1,4-phenylene, and in these rings, any hydrogen may be substituted with halogen; Z¹, Z² and Z³ are independently any of a single bond, -(CH₂)₂-, -(CH₂)₄-, -OCH₂-, -O(CH₂)₃-,
- $-CH_2O_-$, $-(CH_2)_3O_-$, $-O(CH_2)_2O_-$, $-CH=CH_-$, $-C=C_-$, $-COO_-$, $-OCO_-$, $-(CF_2)_2-$, $-CF=CF_-$, $-OCF_2-$ or $-CF_2O_-$; Z^4 is a single bond.
- 20. (currently amended) A polymer as claimed in claim 13, which is obtained through homopolymerization of one compound of any one of claims 1 to 8 claim 1.
- 21. (currently amended) A polymer as claimed in claim 13, which is obtained from the liquid-crystal composition of any one of claims 9 to 12 claim 9.
- 22. (currently amended) An optically-anisotropic material of the polymer of any one of claims 13 to 21 claim 13.
- 23. (currently amended) A liquid-crystal display device, which contains the polymer of-any one of claims 13 to 21 claim 13.
- 24. (original) A liquid-crystal display device, which contains the optically-anisotropic material of claim 22.

Docket No.: JCLA12230

25. (original) A method for producing a vinyl ketone compound of formula (1b), which comprises reacting one molar equivalent of a compound of formula (1a) with from 1 to 10 molar equivalents of a Lewis acid at -70°C to 200°C, followed by dehydrohalogenating the resulting compound:

$$R^{4} - \left(A^{1} - Z^{1}\right)_{m} \left(A^{2} - Z^{2}\right)_{n} \left(A^{3} - Z^{3}\right)_{q} A^{4} - Z^{4} - \left(A^{3} - Z^{4}\right)_{q} R^{3}$$
 (1a)

$$R^{4} - \left(A^{1} - Z^{1}\right)_{m} \left(A^{2} - Z^{2}\right)_{n} \left(A^{3} - Z^{3}\right)_{q} A^{4} - Z^{4} - \left(A^{3} - Z^{3}\right$$

wherein R⁴ represents hydrogen, halogen, -OH, -CN, -CF₃, -CF₂H, -CFH₂, -OCF₃,

-OCF₂H, -N=C=O, -N=C=S, or alkyl having from 1 to 20 carbon atoms, and any -CH₂- of the alkyl may be substituted with -O-, -S-, -CO-, -COO-, -OCO-, -CH=CH-,

-CF=CF- or -C≡C-, and any hydrogen thereof may be substituted with halogen or -CN; R², R³ and R⁵ each independently represent hydrogen or an alkyl having from 1 to 3 carbon atoms; A¹, A², A³ and A⁴ each independently represent 1,4-cyclohexylene, 1,4-cyclohexenylene, 1,4phenylene, naphthalene-2,6-diyl, tetrahydronaphthalene-2,6-diyl, fluorene-2,7-diyl, bicyclo[2.2.2]octane-1,4-diyl or bicyclo[3.1.0]hexane-3,6-diyl, and in these rings, any -CH₂may be substituted with -O-, and any -CH= may be substituted with -N=, and in these rings, any hydrogen may be substituted with halogen or alkyl having from 1 to 5 carbon atoms; Z¹, Z² and Z^3 each independently represent a single bond, $-(CH_2)_a$ -, $-O(CH_2)_a$ -, $-(CH_2)_a$ O-, $-O(CH_2)_a$ O-, CH=CH-, -C≡C-, -COO-,

Page 9 of 16

Docket No.: JCLA12230

 $-\text{OCO-}, -(\text{CF}_2)_2-, -\text{C} \equiv \text{C}-\text{COO-}, -\text{OCO-} \text{C} \equiv \text{C}-, -\text{CH} = \text{CH-}(\text{CH}_2)_2-, -(\text{CH}_2)_2-\text{CH} = \text{CH-}, -(\text{CH}_2)_2-, -(\text{CH}_2)_$

-CF=CF-, -C=C-HC=CH-, -CH=CH-C=C-, -OCF₂- or -CF₂O-, and a indicates an integer of from 1 to 20; Z^4 represents a single bond or α, ω -alkylene having from 1 to 4 carbon atoms, and

any -CH₂- of the alkylene may be substituted with -O-, -S-, -COO- or -OCO-; m, n and q

each independently indicate 0, 1 or 2; Hal represents chlorine, bromine or iodine.