

Taller de Programación

ÁRBOLES BINARIOS DE BÚSQUEDA- Características

Un **árbol binario de búsqueda** es una estructura de datos jerárquica. Está formada por nodos, donde cada nodo tiene a lo sumo dos hijos y mantienen un orden. El nodo principal del árbol se denomina raíz y los nodos que no tienen hijos se denominan hojas del árbol.

Características: homogénea – dinámica – no lineal - acceso secuencial

Operaciones: crear - imprimir - buscar - mínimo - máximo - eliminar

Cómo se ven gráficamente?

Cómo se declaran?

ÁRBOLES BINARIOS DE BÚSQUEDA- Gráficamente


```
Programa arboles;
Type
  arbol = ^nodo;
  tipo = ...;
  nodo = record
          dato: tipo;
          HI: arbol;
          HD: arbol;
         end;
Var
 a:arbol;
Begin
End.
```


Suponga que se leen los siguientes valores y se quiere crear un ABB (15, 18, 22, 16, 7) Cómo cree que quedará el árbol?

- Como el árbol es vacío, se genera un nodo nuevo y el valor 15 ocupará la raíz del árbol.
- Como el árbol NO es vacío, tengo que recorrer desde la raíz hasta el lugar correspondiente respetando el orden. Siempre se inserta en una hoja. Siempre debo generar un espacio para el nuevo dato.

Suponga que se leen los siguientes valores y se quiere crear un ABB (15, 18, 22, 16, 7) Cómo cree que quedará el árbol?

Como el árbol NO es vacío, tengo que recorrer desde la raíz hasta el lugar correspondiente respetando el orden. Siempre se inserta en una hoja. Siempre debo generar un espacio para el nuevo dato.

Como el árbol NO es vacío, tengo que recorrer desde la raíz hasta el lugar correspondiente respetando el orden. Siempre se inserta en una hoja. Siempre debo generar un espacio para el nuevo dato

Clase 3 – Módulo Imperativo.

16

Suponga que se leen los siguientes valores y se quiere crear un ABB (15, 18, 22, 16, 7) Cómo cree que quedará el árbol?

Como el árbol NO es vacío, tengo que recorrer desde la raíz hasta el lugar correspondiente respetando el orden. Siempre se inserta en una hoja. Siempre debo generar un espacio para el nuevo dato.

Cómo cree que quedará el árbol si ahora se lee el 10, 15?

Cómo se implementa?


```
Programa arboles;
Type
  arbol = ^nodo;
  nodo = record
   dato: integer;
   HI: arbol;
   HD: arbol;
  end;
Var
 abb:arbol; x:integer;
Begin
 abb:=nil;
 read (x);
 while (x<>0)do
  begin
   crear(abb,x);
   read(x);
  end;
End.
```

```
Procedure crear (var A:árbol; num:integer);
Begin
  if (A = nil) then
   begin
      new(A);
      A^.dato:= num; A^.HI:= nil; A^.HD:= nil;
   end
   else
    if (num < A^.dato) then crear(A^HI, num)</pre>
    else crear(A^.HD, num)
End;
                        Cómo funciona?
```

Clase 3 – Módulo Imperativo

Supongamos que recibe 15 7

```
Procedure crear (var A:arbol; num:integer);
Begin
  if (A = nil) then
   begin
      new(A);
      A^.dato:= num; A^.HI:= nil; A^.HD:= nil;
   end
   else
    if (num < A^.dato) then crear(A^.HI,num)</pre>
    else crear(A^.HD, num)
End;
```

Cómo se imprime?


```
a = 15
Procedure enOrden ( a : arbol );
                                                                       HI=6
                                                                              1 2 3
begin
                                                                       HD=18
   if ( a<> nil ) then begin
                                                                               Imprime 15
    enOrden (a^.HI);
                                                             a=6
                                                                               a = 18
                                                18
   write (a^.dato);
                                                             HI=nil
                                                                               HI=nil
                                                                      123
                                                                                        123
                                                                               HD=nil
                                                             HD=nil
3
    enOrden (a^.HD);
                                                               Imprime 6
                                                                                 Imprime 18
   end;
end;
                                                                                a = 22
                                                                 a=nil
                                                  a=nil
                                                                         No
                                  a=nil
                                                          No
                                          No
                                                                 HI=nil
                                                                                HI=nil
                                                                                        1 2 3
Cómo son los llamados
                                                  HI=nil
                                                                         hace
                                  HI=nil
                                                          hace
                                          hace
                                                                                HD=nil
                                                  HD=nil
                                                                 HD=nil
                                                                         nada
                                  HD=nil
                                                          nada
                                          nada
      recursivos?
  Cuántas instancias
                                                                                  Imprime 22
                                                                    a=nil
                                                                           No
                                                            No
                                                     a=nil
```

hace

nada

HT=nil

HD=nil

HI=nil

HD=nil nada

hace

Clase 3 – Módulo Imperativo

recursivas se crearon?


```
Procedure preOrden ( a : arbol );
                                                  Qué imprime?
begin
  if ( a<> nil ) then begin
                                                   Cómo son los
   write (a^.dato);
                                               llamados recursivos?
  preOrden (a^.HI);
                                       18
   preOrden (a^.HD);
  end;
                                                Cuántas instancias
end;
                                                   recursivas se
                                                      crearon?
```



```
Procedure posOrden ( a : arbol );
                                                  Qué imprime?
begin
  if ( a<> nil ) then begin
                                                    Cómo son los
   posOrden (a^.HI);
                                               llamados recursivos?
  posOrden (a^.HD);
                                       18
   write (a^.dato);
                                                Cuántas instancias
  end;
                                                   recursivas se
                                                      crearon?
end;
```


Suponga que se tiene un ABB como buscamos un elemento?

Cómo aprovecho el orden del ABB?

Dado un árbol y un valor x, esta operación retorna un puntero al nodo en el árbol A que tiene valor x o Nil si no existe.

Suponga que se tiene un ABB, ¿cómo buscamos un elemento?

Supongamosque se busca el

valor 10

Suponga que se tiene un ABB, ¿cómo buscamos un elemento?

Supongamos que se busca el valor 20


```
Function Buscar (a:arbol; x:elemento): arbol;
 begin
  if (a=nil) then
      Buscar:=nil
  else if (x = a^*.dato) then Buscar:=a
       else
        if (x < a^*.dato) then
          Buscar:= Buscar(a^.hi ,x)
        else
          Buscar:=Buscar(a^.hd ,x)
end;
```


ÁRBOLES BINARIOS DE BÚSQUEDA- Conclusiones

Un **árbol binario de búsqueda** agrega los elementos por sus hojas. Dichos elementos quedan ordenados. Esta operación lleva un tiempo de ejecución de O(log n).

Qué ocurre en vectores y listas si quiero generar la estructura ordenada?

En un **árbol binario de búsqueda** la búsqueda de un elemento es de O(log n).

Qué ocurre en vectores y listas si quiero buscar un elemento?

En qué caso no se cumple que el tiempo de búsqueda sea O(log n)?

Si los valores leídos son 7, 10, 22, 44. ¿Cómo queda formado el árbol?