Universität Würzburg Institut für Mathematik Lehrstuhl für Komplexe Analysis

Prof. Dr. Oliver Roth Annika Moucha

Einführung in die Funktionentheorie

5. Übungsblatt, Abgabe bis 22. Mai 2024 um 10 Uhr

Hausaufgaben

H5.1 Komplexes Integral (3)

Es sei $n \in \mathbb{N}$. Zeigen Sie

$$\int_{\partial \mathbb{D}} \frac{1}{z} \left(z + \frac{1}{z} \right)^{2n} dz = 4^n i \int_0^{2\pi} \cos^{2n}(t) dt.$$

Folgern Sie mithilfe des binomischen Lehrsatzes

$$\int_0^{2\pi} \cos^{2n}(t)dt = \frac{\pi(2n)!}{2^{2n-1}(n!)^2}.$$

H_{5.2} Komplexe partielle Integration (2)

Es seien G ein Gebiet in \mathbb{C} , $f,g \in \mathscr{H}(G)$ mit $f',g':G\to\mathbb{C}$ stetig sowie γ ein geschlossener Weg in G. Zeigen Sie, dass

$$\int_{\gamma} f'(w)g(w) dw = -\int_{\gamma} f(w)g'(w) dw.$$

H5.3 Abstände von Mengen (3)

Für eine nicht-leere Menge $A \subseteq \mathbb{C}$ und einen Punkt $z \in \mathbb{C}$ bezeichne

$$dist(z, A) := \inf\{|z - a| : a \in A\}$$

den Abstand von z zu A. Im Beweis von Korollar 4.8 der Vorlesung wurde folgende Hilfsaussage aus der Analysis verwendet: Es sei U eine offene Menge in $\mathbb C$ und K eine nicht-leere kompakte Teilmenge von U. Dann gibt es ein $\delta_0 > 0$ derart, dass die Menge $S_{\delta_0} := \{z \in \mathbb C : dist(z, K) \leq \delta_0\}$ in U enthalten ist. Beweisen Sie diese Aussage.

H5.4 Zusammenhangskomponenten (1+1+1)

Es sei U eine offene Menge in \mathbb{C} .

- (a) Zeigen Sie, dass U höchstens abzählbar viele Komponenten besitzt.
- (b) Konstruieren Sie ein Beispiel einer unbeschränkten offenen Menge ${\cal U}$ mit unendlich vielen Komponenten.
- (c) Konstruieren Sie ein Beispiel einer beschränkten offenen Menge U mit unendlich vielen Komponenten.