

Docket No.: 713-1000

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of

:

Marco SANWALD

:

U.S. Patent Application No. 10/752,099

: Group Art Unit: 1734

Filed: January 7, 2004

: Examiner:

For: PUMPING DEVICE FOR POWDER, A METHOD THEREFORE AND A POWDER COATING DEVICE

TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENT

Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Sir:

At the time the above application was filed, priority was claimed based on the following application(s):

German Application No. 103 00280.4 filed January 8, 2003 and

European Application No. 03014661.7 filed June 27, 2003

A certified copy of the priority application is enclosed.

Respectfully submitted,

LOWE HAUPTMAN GILMAN & BERNER, LLP

Benjamin J. Hauptman
Registration No. 29,310

1700 Diagonal Road, Suite 300
Alexandria, Virginia 22314
(703) 684-1111
(703) 518-5499 Facsimile
Date: June 1, 2004
BJH/eb

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

03014661.7

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office
Le Président de l'Office européen des brevets
p.o.

R C van Dijk

Anmeldung Nr:
Application no.: 03014661.7
Demande no:

Anmelddatag:
Date of filing: 27.06.03
Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

ITW Gema AG
Mövenstrasse 17
9015 St. Gallen
SUISSE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:
(Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung.
If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Pumpeneinrichtung für Pulver, Verfahren hierfür und
Pulverbeschichtungseinrichtung

In Anspruch genommene Priorität(en) / Priority(ies) claimed /Priorité(s)
revendiquée(s)

Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

DE/08.01.03/DE 10300280

Internationale Patentklassifikation/International Patent Classification/
Classification internationale des brevets:

B05B/

Am Anmelddatag benannte Vertragstaaten/Contracting states designated at date of
filling/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL
PT RO SE SI SK TR LI

Anwalt

ITW Gema AG
P 2198-2

EPO - Munich
3

24. Juni 2003

27. Juni 2003

Pumpeneinrichtung für Pulver, Verfahren hierfür und
Pulverbeschichtungseinrichtung

Die Erfindung betrifft eine Pumpeneinrichtung für Pulver, insbesondere für Beschichtungspulver gemäß dem Oberbegriff von Anspruch 1, ein Verfahren hierfür und eine Pulverbeschichtungseinrichtung, die mindestens eine solche Pumpeneinrichtung aufweist.

Demgemäß betrifft die Erfindung eine Pumpeneinrichtung für Pulver, insbesondere für Beschichtungspulver, enthaltend mindestens eine Pulver-Pumpe, welche eine Dosierkammer aufweist, die von einem Kammergehäuse und einem Verdrängerkörper begrenzt ist, welcher relativ zum Kammergehäuse während eines Druckhubes vor und während eines Saughubes zurück bewegbar ist, wobei die Pumpenkammer einen Pulvereinlasskanal, welchem ein Pulvereinlassventil zugeordnet ist, einen Pulverauslasskanal, welchem ein Pulverauslassventil zugeordnet ist, und einen Druckgaseinlasskanal, welchem ein Druckgaseinlassventil zugeordnet ist, aufweist, wobei zum Ansaugen einer dosierten Menge von Pulver in die Dosierkammer das Pulvereinlassventil aufmachbar ist und das Pulverauslassventil und das Druckgaseinlassventil schließbar sind, so dass der sich in Saughubrichtung bewegende Verdrängerkörper

Pulver durch den Pulvereinlasskanal in die Dosierkammer saugen kann, und zum Fördern von der dosierten Pulvermenge aus der Dosierkammer das Pulvereinlassventil schließbar ist und das Pulverauslassventil und das Druckgaseinlassventil aufmachbar sind, so dass von dem Drucklufteinlasskanal in die Dosierkammer strömende Druckluft die dosierte Pulvermenge von der Dosierkammer in den Pulverauslasskanal drücken kann.

Eine Pumpeneinrichtung dieser Art ist aus der EP-A-0 124 933 bekannt. Pumpeneinrichtungen sind auch bekannt aus EP-A-1 106 547, DE-A-39 00 718, DE-A-1 087 520, US 2 667 280, US 3 391 963.

Aus der Praxis ist eine Pumpeneinrichtung bekannt, welche zwei Pumpen aufweist, die je einen Pulveransaugkolben und einen ihn antreibenden Pneumatikzylinder aufweisen. Die beiden Pumpen werden gegenläufig angetrieben, so dass der eine einen Saughub ausführt, während der andere einen Druckhub ausführt. Während des Saughubes saugt der betreffende Pulveransaugkolben Pulver von einer Pulverquelle in seine Dosierkammer. Am Ende des Saughubes wird mittels Druckluft, welche in die Dosierkammer eingeleitet wird, die dort dosierte Pulvermenge aus der Dosierkammer in eine Pulverabgableitung ausgestoßen. Danach geht der Kolben während eines Druckhubes in seine Ausgangsstellung zurück, um dann wieder während eines Saughubes Pulver von der Pulverquelle anzusaugen. Die Fördermenge pro Zeiteinheit ist von der Frequenz abhängig, mit welcher die Kolben hin und her bewegt werden. Eine Pumpeneinrichtung dieser Art ist in der WO 03/024612 A1 erst nach dem Prioritätstag der vorliegenden neuen Patentanmeldung beschrieben worden.

Ferner sind sogenannte Injektoren bekannt, bei welchen nach dem Venturi-Prinzip ein Förderluftstrom von einer Auslassdüse in eine Fangdüse strömt und im Zwischenraum dazwischen einen Unterdruck erzeugt, durch welchen Beschichtungspulver von einer Pulverquelle in den Förderluftstrom gesaugt wird. Solche Injektoren haben gegenüber den vorgenannten Kolbenpumpen die

Nachteile, dass die Pulverpartikel eine abrasive Wirkung auf die Fangdüse haben und dadurch der Wirkungsgrad der Pulverförderung im Laufe der Zeit abfällt. Eine pneumatische Pulverförderung dieser Art benötigt eine große Druckluftmenge pro Zeiteinheit.

Die vorgenannten Kolbenpumpen haben diese Nachteile nicht. Die Kolbenpumpen haben jedoch den Nachteil, dass sie das Pulver diskontinuierlich hubweise fördern und sowohl zur gleichmäßigeren Pulverförderung als auch zur Förderung von größeren Pulvermengen pro Zeiteinheit eine schnelle Kolbenbewegungsfrequenz erforderlich ist. Die Höhe der Kolbenfrequenz ist jedoch durch die Ansteuergeschwindigkeit, mit welcher die Ventile in den Strömungswegen der Pumpe ansteuerbar sind, begrenzt. Ferner muss darauf geachtet werden, dass in den Pumpen und in deren Strömungswegen Pulverpartikel nicht gespeckt werden, ansintern oder anderweitig haften bleiben und dass auch keine Zwischenräume, Vertiefungen und dergleichen existieren, in welchen sich Pulver ansammeln kann.

Durch die Erfindung soll die Aufgabe gelöst werden, eine Pumpeneinrichtung, welche mindestens einen Volumen-Verdrängerkörper aufweist, derart auszubilden, dass eine definierte und gewünschtenfalls auch große Fördermenge Pulver pro Zeiteinheit förderbar ist, ohne dass die vorgenannten Nachteile entstehen. Insbesondere soll über eine lange Betriebs-Lebensdauer eine große Prozesssicherheit und große Stabilität der Pulver-Fördermenge pro Zeiteinheit (konstante Pulverrate für eine definierte Konfiguration und definierte Einstellung der Pumpeneinrichtung) erzielt werden.

Diese Aufgabe wird gemäß der Erfindung durch die Merkmale von Anspruch 1 und der anderen unabhängigen Ansprüche gelöst.

Weitere Merkmale der Erfindung sind in den Unteransprüchen enthalten.

Demgemäß ist die Pumpeneinrichtung gemäß der Erfindung dadurch gekennzeichnet, dass eine Zeitsteuereinrichtung vorgesehen ist, durch welche in Abhängigkeit von der seit einer vorbestimmten Betriebssituation vergangenen vorbestimmten Verzögerungszeitdauer das Fördern des Pulvers aus der Dosierkammer gestartet wird, indem Druckluft in die Dosierkammer eingelassen und die bis zum Ende der Verzögerungszeitdauer dosierte Pulvermenge mittels der Druckluft aus der Dosierkammer heraus gedrückt wird.

Ferner ist gemäß der Erfindung eine Pulversprühbeschichtungseinrichtung gegeben, welche mindestens eine solche Pumpeneinrichtung aufweist.

Außerdem offenbart die Erfindung Verfahren zur Förderung von Pulver, insbesondere Beschichtungspulver.

Die Erfindung wird im Folgenden mit Bezug auf die Zeichnungen anhand von bevorzugten Ausführungsformen als Beispiele beschrieben. In den Zeichnungen zeigen

Fig. 1 schematisch, teilweise im Querschnitt, eine Doppelpumpeneinrichtung nach der Erfindung,

Fig. 2 schematisch Teile von Fig. 1 zusammen mit einem Funktionsdiagramm zur Erklärung der Erfindung,

Fig. 3 schematisch, teilweise im Querschnitt, eine weitere Ausführungsform einer Doppelpumpeneinrichtung nach der Erfindung,

Fig. 4 schematisch, teilweise im Querschnitt, eine weitere Ausführungsform einer Doppelpumpeneinrichtung nach der Erfindung,

Fig. 5 einen Längsschnitt durch ein Einwegventil nach Art eines Entenschnabels im Schließzustand, welches bei allen Ausführungsformen von Pumpeneinrichtungen nach der Erfindung als Pulvereinlassventil und/oder als Pulverauslassventil verwendbar ist,

Fig. 6 das Einwegventil von Fig. 5 in Vorderansicht entgegen der Durchlassrichtung gesehen,

Fig. 7 das Einwegventil im Längsschnitt gesehen im Offenzustand,

Fig. 8 eine Vorderansicht entgegen der Durchlassrichtung gesehen auf das Einwegventil von Fig. 7 im Offenzustand,

Fig. 9 das Einwegventil der Figuren 5 bis 8 in Seitenansicht gesehen, relativ zu den Figuren 5 und 7 um 90° um die Längsachse gedreht.

Fig. 1 zeigt eine Pumpeneinrichtung nach der Erfindung für Pulver, insbesondere für Beschichtungspulver, welche zwei Pulver-Pumpen 2-1 und 2-2 aufweist, welche je eine Dosierkammer 4-1 bzw. 4-2 enthalten, die von einem Kammergehäuse 6-1 bzw. 6-2 und einem Verdrängerkörper in Form einer flexiblen Membran 8-1 bzw. 8-2 begrenzt ist.

Die beiden Membranen 8-1 und 8-2 haben einen zwischen ihnen angeordneten, gemeinsamen Antrieb 10. Der Antrieb 10 kann ein mechanischer, hydraulischer, elektrischer oder entsprechend Fig. 1 ein pneumatischer Antrieb sein. Der in Fig. 1 gezeigte pneumatische Antrieb enthält einen quer zu den Membranen 8-1 und 8-2 verschiebbaren Antriebskolben 12, von welchem sich in Bewegungsrichtung Kolbenstangen 14-1 bzw. 14-2 weg erstrecken, deren vom Antriebskolben 12 entfernte Enden mit der einen Membran 8-1 bzw. mit der anderen Membran 8-2 verbunden sind, so dass die beiden Membranen sich jeweils gemeinsam mit dem Antriebskolben 12 bewegen. Die Kolbenstangen 14-1 und 14-2 greifen jeweils im

Zentrum der betreffenden Membran 8-1 bzw. 8-2 an, welche sich jeweils zusammen mit dem Antriebskolben 12 in Kolbenaxialrichtung bewegt. Die Membranumfangsränder 16-1 bzw. 16-2 sind jeweils an einem Teil des Kammergehäuses 6-1 bzw. 6-2 befestigt und können sich nicht mit dem Membranzentrum zusammen mit dem Antriebskolben 12 quer zur Membran bewegen. Wenn im Rahmen dieser Beschreibung von Hubbewegungen der Membran die Rede ist, dann ist damit jeweils der Bereich der Membran gemeint, welcher mit dem Antriebskolben 12 zur gemeinsamen Bewegung verbunden ist, jedoch nicht die am Kammergehäuse befestigten Membranumfangsränder 16-1 bzw. 16-2.

Die Kammergehäuse 6-1 und 6-2 der beiden Pulver-Pumpen 2-1 und 2-2 sind vorzugsweise Abschnitte eines gemeinsamen Gehäuseteiles oder Gehäuses, welches in Fig. 1 im Schnitt gezeigt ist.

Die Membranen 8-1 und 8-2 (mit Ausnahme ihrer Membranumfangsränder 16-1 und 16-2) sind während eines Druckhubes vor und während eines Saughubes zurück bewegbar mittels des gemeinsamen Antriebes 10. In Fig. 1 befindet sich die links gezeigte Membran 8-1 in einer Endstellung "a", welches die Endstellung des Druckhubes und die Anfangsstellung des Saughubes ist. Hierbei hat die zugehörige Dosierkammer 4-1 ihr kleinstes Volumen. Hierbei liegt die Membran 8-1 vorzugsweise nicht vollständig an dem Kammergehäuse 6-1 an, sondern hat einen kleinen Abstand davon, damit zwischen der Membran 8-1 und dem Kammergehäuse 6-1 Pulverpartikel nicht eingequetscht werden können. Dasselbe trifft für die in Fig. 1 rechts gezeigte Membran 8-2 zu, wenn sich diese in einer Endstellung "d" befindet, welches die Endstellung ihres Druckhubes und die Anfangsstellung ihres Saughubes ist. Fig. 1 zeigt jedoch die rechte Membran 8-2 in einer linken Endstellung "c", welches ihre Endstellung des Saughubes und ihre Anfangsstellung des Druckhubes ist. Die beiden Membranen 8-1 und 8-2 werden von dem Antriebskolben 12 jeweils gemeinsam nach links oder nach rechts bewegt,

so dass die linke Membran 8-1 ihren Druckhub ausführt, wenn die rechte Membran 8-2 ihren Saughub ausführt, und umgekehrt.

Der Antriebskolben 12 befindet sich in einem Zylinder 22, welcher nahe von Zylinderstirnwänden 24 und 25 beidseitig des Antriebskolbens 12 je eine Druckluft-Steueröffnung 26 bzw. 28 hat, welche über ein Umschaltventil 30 wechselweise mit einer Druckluftquelle 32 oder mit einer Entlüftungsöffnung 34 zur Außenatmosphäre zur Entlüftung verbindbar sind. In Fig. 1 ist die rechts gezeigte Druckluft-Steueröffnung 28 mit der Druckluftquelle 32 verbunden, weshalb deren Druckluft den Antriebskolben 12 in die in Fig. 1 links gezeigte Position gedrückt hat, während die links gezeigte Druckluft-Steueröffnung 26 mit der Entlüftungsöffnung 34 des Umschaltventils 30 verbunden ist. Das Umschaltventil 30 ist umschaltbar, so dass nach der Umschaltung die rechts gezeigte Druckluft-Steueröffnung 28 mit der Entlüftungsöffnung 34 verbunden ist und die links gezeigte Druckluft-Steueröffnung 26 mit der Druckluftquelle 32 verbunden ist. Bei dieser in Fig. 1 nicht gezeigten, umgekehrten Stellung des Umschaltventils 30 treibt die Druckluft den Antriebskolben 12 zusammen mit den beiden Membranen 8-1 und 8-2 von links nach rechts. Dabei wird durch die linke Membran 8-1 von ihrer Saughubanfangsposition (Druckhubendposition) "a" in ihre Saughubendposition (Druckhubanfangsposition) "b" bewegt. Simultan dazu wird die rechte Membran 8-2 von ihrer Saughubendposition (Druckhubanfangsposition) "c" in ihre Saughubanfangsposition (Druckhubendposition) "d" bewegt. Die beiden Membranen 8-1 und 8-2 sind in ihrer linken Endstellung durch eine durchgezogene Linie und in ihrer rechten Endstellung durch eine gestrichelte Linie schematisch dargestellt.

Jede Dosierkammer 4-1 und 4-2 hat einen Pulvereinlasskanal 36-1 bzw. 36-2, welchem je ein Pulvereinlassventil 38-1 bzw. 38-2 zugeordnet ist; einen Pulverauslasskanal 40-1 bzw. 40-2, welchem je ein Pulverauslassventil 42-1 bzw. 42-2 zugeordnet ist; und einen Druckgaseinlasskanal 44-1 bzw. 44-2, welchem je ein Druckgaseinlassventil 46-1 bzw. 46-2 zugeordnet ist.

Zum Ansaugen einer dosierten Menge von Pulver in die in Fig. 1 links gezeigte Dosierkammer 4-1 ist das linke Pulvereinlassventil 38-1 aufmachbar, und das linke Pulverauslassventil 42-1 und das linke Druckgaseinlassventil 46-1 schließbar, so dass die sich in Saughubrichtung von der Saughubanfangsposition "a" in die Saughubendposition "b" bewegende linke Membran 8-1 Pulver durch den linken Pulvereinlasskanal 36-1 in die linke Dosierkammer 4-1 saugen kann. Zum Fördern der dosierten Pulvermenge aus der links gezeigten Dosierkammer 4-1 in den linken Pulverauslasskanal 40-1 ist das linke Pulvereinlassventil 38-1 schließbar und das linke Pulverauslassventil 42-1 sowie das linke Druckgaseinlassventil 46-1 aufmachbar, so dass Druckgas, z. B. Druckluft, von einer Druckgasquelle 45-1, z. B. einer Druckluftquelle, durch den linken Druckgaseinlasskanal 44-1 in die linke Dosierkammer 4-1 strömen und die dosierte Pulvermenge von der Dosierkammer 4-1 in den linken Pulverauslasskanal 40-1 drücken kann. Danach oder während dieses Ausstoßens des Pulvers aus der linken Dosierkammer 4-1, je nach Ausführungsform der Pumpeneinrichtung, wird die linke Membran 8-1 von dem Antriebskolben 12 wieder von der rechten Saughubendposition "b" in die linke Saughubanfangsposition "a" zurück bewegt, was hier als Druckhub bezeichnet wird, damit sie anschließend wieder einen Saughub ausführen kann.

Korrespondierende Funktionen führen auch die vom Antrieb 10 angetriebene, in Fig. 1 rechts gezeigte Membran 8-2 und die ihr zugeordneten Ventile 38-2, 42-2, 45-2 und 46-2 aus bezüglich der zugehörigen rechten Dosierkammer 4-2, des zugehörigen rechten Pulvereinlasskanals 36-2 und des zugehörigen rechten Pulverauslasskanals 40-2 und einer rechts gezeigten Druckgasquelle 45-2, z. B. einer Druckluftquelle. Die rechte Membran 8-2 macht jedoch ihren Druckhub, wenn die linke Membran 8-1 ihren Saughub macht, und umgekehrt.

Die beiden Pulvereinlassventile 38-1 und 38-2 haben je einen Ventilkörper 38-3 und einen Ventilsitz 38-4 mit einer Ventilöffnung, die vom Ventilkörper 38-3 verschließbar ist. Die beiden Pulverauslassventile 42-1 und 42-2 haben je einen

Ventilkörper 42-3 und einen Ventilsitz 42-4 mit einer Ventilöffnung, die vom Ventilkörper 42-3 verschließbar ist.

Die beiden in Fig. 1 gezeigten Pulverauslasskanäle 40-1 und 40-2 haben eine gemeinsame Pulverabgabeöffnung 48, an welche über eine Pulverabgabeleitung 50 ein Pulverempfänger angeschlossen ist, beispielsweise eine Pulverspritzvorrichtung 52 zum Sprühen des Pulvers 54 auf ein zu beschichtendes Objekt oder ein Pulverzwischenbehälter, von welchem dann das Pulver 54 einer Pulverspritzvorrichtung 52 zugeführt wird, oder ein Pulversammelbehälter.

Die beiden Pulvereinlasskanäle 36-1 und 36-2 können getrennt oder gemeinsam an eine gemeinsame oder an verschiedene Pulverquellen angeschlossen sein. In Fig. 2 sind sie vorzugsweise über eine gemeinsame Pulvereinlassöffnung 56 und über eine Pulveransaugleitung 58 an einen Farbwechsler 60 angeschlossen. Der Farbwechsler 60 ist eine Kanalweiche oder Pulverweiche, durch welche je nach Weichenstellung einer von mehreren Pulverbehältern 62, 63, 64 usw. mit der Pulveransaugleitung 58 wahlweise verbindbar ist. Die Umschaltung des Farbwechslers 60 erfolgt vorzugsweise mittels Druckgas, z. B. Druckluft, einer Druckgasquelle, z. B. einer Druckluftquelle 66 über eine gesteuerte Ventilanordnung 67.

Der Farbwechsler 60 ist auch in eine Schaltstellung schaltbar, bei welcher keiner der Pulverbehälter 62, 63, 64, sondern statt dessen die Druckgasquelle 66 über eine Druckgasleitung 69 mit der Pulveransaugleitung 58 verbunden ist, so dass Druckgas, z. B. Druckluft über die Pulvereinlasskanäle 36-1, 36-2 und deren Pulvereinlassventile 38-1, 38-2 durch die Dosierkammern 4-1 und 4-2 und dann auch über deren Pulverauslassventile 42-1 bzw. 42-2 und die Pulverauslasskanäle 40-1, 40-2 zu der Pulverabgabeleitung 50 und von dieser durch die Pulverspritzvorrichtung 52 in die Außenatmosphäre strömen kann, um die ganze Anlage von Pulverresten zu reinigen. Mittels einer, vorzugsweise elektronischen oder computerisierten, Pumpensteuereinrichtung 68 kann ferner vorgesehen sein,

dass gleichzeitig oder nach dieser Reinigung Druckgas, z. B. Druckluft von einer Druckgasquelle 45-1 bzw. 45-2 über den Druckgaseinlasskanal 44-1 bzw. 44-2 und deren zugehöriges steuerbares Druckgaseinlassventil 46-1 bzw. 46-2 in das eine Ende der Dosierkammer 4-1 bzw. 4-2 eingeblasen und damit Pulver aus der Dosierkammer am anderen Kammerende durch das dortige Pulverauslassventil 42-1 bzw. 42-2 und den sich daran anschließenden Pulverauslasskanal 40-1 bzw. 40-2 durch die Pulverabgabeleitung 50 und die Pulverspritzvorrichtung 52 ausgeblasen wird. Der Druckgaseinlasskanal 44-1 bzw. 44-2 kann einen parallel zu ihm angeordneten Druckgasreinigungskanal 72-1 bzw. 72-2 aufweisen, welcher gegen die stromabwärtigen Teile des betreffenden Pulvereinlassventils 38-1 bzw. 38-2 gerichtet ist, um diese von Pulverpartikeln zu reinigen, falls nicht bereits der Druckgaseinlasskanal 44-1 bzw. 44-2 gegen die stromabwärtigen Bereiche der Pulvereinlassventile 38-1 bzw. 38-2 gerichtet ist und dadurch diese reinigt.

Gleichzeitig oder nach dieser Reinigung kann von der Pumpensteuereinrichtung 68 über eine Steuerleitung 70 ein Ventil 71 geöffnet werden, um Druckgas, z. B. Druckluft, von einer Druckgasquelle 75 durch eine Zusatzgasleitung 73-1 bzw. 73-2 auf die stromabwärtigen Teile der Pulverauslassventile 42-1 bzw. 42-2, gegen welche die Zusatzgasleitung gerichtet ist, zu blasen und von dort durch die Pulverauslasskanäle 40-1 und 40-2 und die Pulverabgabeleitung 50 zur Pulverspritzvorrichtung 52 und von dort in die Außenatmosphäre zu leiten.

Die Pumpeneinrichtung 68 steuert alle steuerbaren Ventile und den Farbwechsler 60.

Die Pumpensteuereinrichtung 68 enthält eine Zeitsteuereinrichtung 74, durch welche in Abhängigkeit von der seit einer vorbestimmten Saughubposition, z. B. P1 oder P2 der links gezeigten Membran 8-1 und einer vorbestimmten Saughubposition, z. B. P4 oder P3, der rechts gezeigten Membran 8-2, vergangenen vorbestimmten Verzögerungszeitdauer das Fördern des Pulvers aus der betreffenden Dosierkammer 4-1 bzw. 4-2 gestartet wird. Am Ende der

Verzögerungszeit wird das Druckgas der Druckgasquelle 45-1 bzw. 45-2 durch das Druckgaseinlassventil 46-1 bzw. 46-2 in die Dosierkammer 4-1 bzw. 4-2 eingelassen, so dass die bis zum Ende der Verzögerungszeit dosierte Pulvermenge mittels dieses Druckgases aus der Dosierkammer heraus gedrückt wird durch das betreffende Pulverauslassventil 42-1 bzw. 42-2 in die Pulverabgableitung 50 und von dieser zur Pulverspritzvorrichtung 52 oder zu einem Pulverbehälter.

Die genannte "vorbestimmte Saughubposition" kann gemäß einer Ausführungsform die Saughubanfangsposition "a" entsprechend P1 für die linke Membran 8-1 und "d" entsprechend P4 für die rechte Membran 8-2 sein, welche in Fig. 1 für die links gezeigte Membran 8-1 die in ausgezogenen Linien dargestellte Stellung "a" ist, und welches für die in Fig. 1 rechts gezeigte Membran 8-2 die in gestrichelten Linien gezeigte Position "d" ist.

Die Saughubanfangsposition "a" wird für die in Fig. 1 und 2 links gezeigte Membran 8-1 durch einen Sensor S1 an einer Position P1 detektiert. Dies ist für die linke Membran 8-1 gleichzeitig die Druckhubendposition. Für die rechte Membran 8-2 ist die Position P1 am Sensor S1 die Saughubendposition und gleichzeitig die Druckhubanfangsposition.

Die Saughubanfangsposition "d" wird für die in Fig. 1 und 2 rechts gezeigte Membran 8-2 durch einen Sensor S4 an einer Position P4 detektiert. Dies ist für die rechte Membran 8-2 gleichzeitig die Druckhubendposition. Für die linke Membran 8-1 ist die Position P4 am Sensor S4 die Saughubendposition und gleichzeitig die Druckhubanfangsposition.

Wenn die Membranen 8-1 und 8-2 eine dem Sensor S1 bei P1 oder dem Sensor S4 bei P4 entsprechende Endposition "a" entsprechend "c", oder "d" entsprechend "b" erreicht haben, gibt der betreffende Sensor ein Signal an die Pumpensteuereinrichtung 68 zur Umkehr der Bewegung des Antriebskolbens 12 und damit auch der beiden Membranen in der einen oder anderen Richtung durch

Druckluftzufuhr zur Druckluft-Steueröffnung 26 oder zur Druckluft-Steueröffnung 28 und durch Entlüften der jeweils anderen Druckluft-Steueröffnung.

Wenn bei der betreffenden Ausführungsform der Pumpeneinrichtung die genannte "vorbestimmte Saughubposition" die Saughubanfangsposition "a" bzw. "d" der Membran 8-1 bzw. der Membran 8-2 ist, dann erkennt die Zeitsteuereinrichtung 74 der Pumpensteuereinrichtung 68 anhand der Signale der Sensoren S1 und S4, wenn die Membranen 8-1 und 8-2 die betreffende Endposition erreicht haben.

Die Sensoren S1 und S4 können an jeder beliebigen Stelle angeordnet sein, wo Positionen der Membran 8-1 und 8-2 ermittelbar sind, insbesondere an Stellen des Zylinders 22 oder des Antriebskolbens 12 oder der Kolbenstangen 14-1 und 14-2 oder des Kammergehäuses 6-1, 6-2 oder der Membranen 8-1 und 8-2. Gemäß bevorzugter Ausführungsform sind sie am Zylinder 22, vorzugsweise auf dessen Außenseite, an Positionen P1 und P4 angeordnet, welche der Antriebskolben 12 jeweils hat, wenn sich die Membranen 8-1 und 8-2 in einer der beiden Endstellungen befinden.

Gemäß der Erfindung kann mittels Druckgas der Druckgasquelle 45-1 dosiertes Pulver aus der linken Dosierkammer 4-1, und mittels Druckgas der Druckgasquelle 45-2 dosiertes Pulver aus der rechten Dosierkammer 4-2 nicht nur bei Erreichen der Saughubendposition "b" der linken Membran 8-1 und "c" der rechten Membran 8-2 durch das betreffende Pulverauslassventil 42-1 bzw. 42-2 ausgestoßen werden, sondern auch bereits früher, wenn erst eine kleinere Pulvermenge in der betreffenden Dosierkammer ist. Dies wird durch eine Verzögerungszeitdauer erreicht, welche an der Zeitsteuereinrichtung 74 vorzugsweise variabel einstellbar ist. Dadurch ist es möglich kleinere dosierte Pulvermengen aus der betreffenden Dosierkammer 4-1 bzw. 4-2 auszustoßen, bevor die zugehörige Membran 8-1 bzw. 8-2 ihren vollen Saughub vollendet hat. Hierbei wird das jeweils zugehörige Pulvereinlassventil 38-1 bzw. 38-2 jeweils sofort geschlossen, wenn Druckgas der Druckgasquelle 45-1 bzw. 45-2 über den Druckgaseinlasskanal 44-1 bzw. 44-2 in

die betreffende Dosierkammer 4-1 bzw. 4-2 eingeblasen wird. Je nach Größe der vorbestimmten Verzögerungszeit ist zum Zeitpunkt des Pulverausstoßes eine größere oder kleinere Menge Pulver in der betreffenden Dosierkammer angesaugt worden. Dadurch besteht durch Einstellen unterschiedlicher Verzögerungszeitsdauern die Möglichkeit, die dosierte Pulverfördermenge der Dosierkammern 4-1 bzw. 4-2 zu variieren, unabhängig von der Frequenz, mit welcher die Membranen 8-1 und 8-2 von dem gemeinsamen Antrieb 10 hin und her bewegt werden. Die Bewegungsfrequenz der Membranen kann konstant gehalten werden oder ebenfalls variabel sein.

Gemäß der bevorzugten Ausführungsform der Erfindung befindet sich die "vorbestimmte Saughubposition" an einer Stelle zwischen der Saughubfangsposition "a" bzw. "d" und der Saughubendposition "b" bzw. "a", vorzugsweise näher bei der Saughubfangsposition als bei der Saughubendposition.

Bei der bevorzugten Ausführungsform wird diese vorbestimmte Saughubposition für die in Fig. 1 und 2 links gezeigte Membran 8-1 durch einen Sensor S2 an einer Position P2 und für die in Fig. 1 und 2 rechts gezeigte Membran 8-2 durch einen Sensor S3 an einer Position P3 definiert. Die beiden Sensoren S2 und S3 können wie die Sensoren S1 und S2 an jeder beliebigen Stelle angeordnet sein, wo sie definierte Positionen der Membran 8-1 und 8-2 zwischen deren Endpositionen a, b, c und d detektieren können, beispielsweise am Zylinder 22, am Antriebskolben 12, an dessen Kolbenstangen 14-1 und 14-2 oder an den Membranen selbst oder an dem Kammergehäuse 6-1, 6-2. Gemäß bevorzugter Ausführungsform der Erfindung sind sie an dem Zylinder 22 angeordnet. Es wird ein Sensorsignal ausgelöst, wenn der Antriebskolben 12 oder ein bestimmter Teil des Antriebskolbens 12 dem jeweiligen Sensor benachbart ist. Der Sensor S2 sendet jeweils dann ein Signal an die Zeitsteuereinrichtung 74 der Pumpensteuereinrichtung 68, wenn die linke Membran 8-1 eine dem Sensor S2 entsprechende Position erreicht, die so gewählt wird, dass sie beim Saughub der

vorbestimmten Saughubposition der linken Membran 8-1 entspricht. Entsprechend sendet der Sensor S3 jeweils dann ein Signal an die Zeitsteuereinrichtung 74 der Pumpensteuereinrichtung 68, wenn die rechte Membran 8-2 eine dem Sensor S3 entsprechende Position erreicht, die so gewählt wird, dass sie beim Saughub der vorbestimmten Saughubposition der rechten Membran 8-2 entspricht. Durch die zeitliche Abfolge der Signale der angebrachten Sensoren erkennt die Zeitsteuereinrichtung, ob bei Empfang eines Signals des Sensors S2 bzw. des Sensors S3 die linke Membran 8-1 oder die rechte Membran 8-2 zu diesem Zeitpunkt einen Saughub ausführt. Im Falle eines Saughubes startet die Zeitverzögerungseinrichtung 74 die vorbestimmte Zeitverzögerungsdauer, an deren Ende Druckgas in die Dosierkammer 4-1 bzw. in die Dosierkammer 4-2 gelassen wird zum Herausdrücken der dosierten Pulvermenge.

Gemäß der bevorzugten Ausführungsform ist die Bewegungsstrecke der Membranen 8-1 und 8-2 bei allen Hubbewegungen konstant gleich groß und sie erstreckt sich von dem Sensor S1 bis zum Sensor S4 bzw. umgekehrt. Durch entsprechende Ansteuerung der Antriebsdruckluft mittels des Umschaltventils 30 könnte die Bewegungsstrecke auch verkürzt werden.

Fig. 2 zeigt über der Pumpeneinrichtung ein Diagramm, in welchem auf der horizontalen Achse S die Hubstrecke des Antriebskolbens 12, welche der Bewegungsstrecke der Membranen 8-1 und 8-2 entspricht, mit der Endposition P1 bei dem Sensor S1, der Endposition P4 bei dem Sensor S4, der vorbestimmten Saug-Teilhubposition P2 bei dem Sensor S2 und der vorbestimmten Saug-Teilhubposition P3 bei dem Sensor S3. Auf der vertikalen Achse des Diagramms sind die Saughubzeiten lt_0 bis lt_{10} für die links gezeigte Membran 8-1 aufgetragen. In umgekehrter Richtung von der Endposition P4 bis zur Endposition P1 entspricht dies dem Druckhub der links gezeigten Membran 8-1. Wenn die links gezeigte Membran 8-1 sich von der Saughubanfangsposition P1 nach rechts bewegt, erreicht sie die vorbestimmte Saug-Teilhubposition P2 bei dem Sensor S2. Bei Erreichen dieser vorbestimmten Saug-Teilhubposition P2 wird von der

Zeitsteuereinrichtung 74 eine vorbestimmte, vorzugsweise variabel einstellbare, Verzögerungszeitdauer gestartet, bei deren Ablauf das Druckgas der Druckgasquelle 45-1 über den Druckgaseinlasskanal 44-1 in die Dosierkammer 4-1 eingelassen wird, damit das Druckgas die bis dahin in diese Dosierkammer 4-1 eingesaugte Pulvermenge durch das Pulverauslassventil 42-1 in die Pulverabgabeleitung 50 drückt und durch diese hindurch aus der Pulverspritzvorrichtung 52. Das Ende der Verzögerungszeitdauer kann jeder beliebige Zeitpunkt sein, während welchem sich der Antriebskolben 12 und entsprechend die links gezeigte Membran 8-1 zwischen der vorbestimmten Saug-Teilhubposition P2 bei dem Sensor S2 und der Saughubendposition P4 bei dem Sensor S4 befindet.

Wenn der Antriebskolben 12 den Sensor S4 in der Endposition P4 erreicht hat, wird dies von der Pumpensteuereinrichtung 68 durch ein Signal des Sensors S4 erkannt. Die Pumpensteuereinrichtung 68 schaltet daraufhin das Umschaltventil 30 in die in Fig. 1 gezeigte Stellung um, in welcher Druckluft der Druckluftquelle 32 den Antriebskolben 12 wieder zurück treibt zur anderen Endposition P1 bei dem Sensor S1. Durch ein Signal von dem Sensor S1 beginnt dann der Zyklus erneut. Die Umschaltung der Bewegung der beiden Membranen 8-1 und 8-2, und damit auch des Antriebkolbens 12, von der einen Bewegungsrichtung in die andere Bewegungsrichtung an den Bewegungspunkten kann jeweils ohne oder mit Zeitverzögerung erfolgen. Die Zeitverzögerung kann fest eingestellt oder variabel einstellbar sein, beispielsweise in einem Programm programmierbar sein.

Bei der Bewegung des Antriebskolbens 12 von der rechts gezeigten Endposition P4 bei dem Sensor S4 zur links gezeigten Endposition P1 bei dem Sensor S1 wird die links gezeigte Membran 8-1 von ihrer gestrichelt gezeichneten Druckhubanfangsposition "b", welche der Saughubendposition entspricht, in die Druckhubendposition "a" bewegt, welche mit ausgezogener Linie 8-1 dargestellt ist.

Während dieses Druckhubes der linken Membran 8-1 wir die rechts gezeigte Membran 8-2 von dem Antriebskolben 12 von ihrer in gestrichelten Linien gezeigten Saughubanfangsposition "d" (Druckhubendposition) in die in ausgezogenen Linien gezeigte Saughubendposition "c" bewegt, wobei sie über das Pulvereinlassventil 38-2 Pulver vom Farbwechsler 60 in ihre Dosierkammer 4-2 einsaugt. Wenn der Antriebskolben 12 bei diesem Saughub von Position P4 bei S4 kommend die vorbestimmte Saughubposition P3 bei dem Sensor S3 erreicht, wird durch ein Signal dieses Sensors S3 von der Zeitsteuereinrichtung 74 eine vorbestimmte, vorzugsweise variabel einstellbare, Verzögerungszeitdauer gestartet. Bei Ablauf dieser Verzögerungszeitdauer wird von der Pumpensteuereinrichtung 68, ausgelöst durch die Zeitsteuereinrichtung 74, Druckgas der in Fig. 1 rechts gezeigten Druckgasquelle 45-2 über deren Druckgaseinlassventil 46-2 und den Drucklufteinlaßkanal 44-2 in die rechts gezeigte Dosierkammer 4-2 eingelassen, um die bis zu diesem Zeitpunkt eingesaugte und damit entsprechend dosierte Pulvermenge aus dieser Dosierkammer 4-2 durch deren Pulverauslassventil 42-2 zur Pulverabgabeleitung 50 und von dieser durch die Pulverspritzvorrichtung 52 zu drücken. Dieser Zeitpunkt, zu welchem das Pulver mittels des Druckgases aus der Dosierkammer 4-2 ausgestoßen wird, kann an einer beliebigen Stelle der Bewegung des Antriebskolbens 12 zwischen der vorbestimmten Saughubposition P3 beim Sensor S3 und der Saughubendposition P1 beim Sensor S1 liegen. Dies entspricht einem Zeitraum zwischen der in Fig. 2 in der oberen Hälfte des Diagramms gezeigten Zeitskala t_0 bis t_{10} . Wenn die rechte Membran 8-2 ihre Saughubendposition "c" erreicht hat, hat gleichzeitig die links gezeichnete Membran 8-1 ihre Druckhubendposition "a" erreicht, welches gleichzeitig deren Saughubanfangsposition wird.

Danach beginnt der Zyklus von vorne.

Die Zahlen der Zeitachsen t_0 bis t_{10} und r_0 bis r_{10} sind beliebig gewählt.

Wenn die von der Pumpensteuereinrichtung 68 in Abhängigkeit von Signalen der Endpositions-Sensoren S1 und S4 gesteuerten Druckgaszufuhrventile 46-1 und 46-2 nicht sehr nahe bei der betreffenden Dosierkammer 4-1 bzw. 4-2 positionierbar sind, kann es zweckmäßig sein, in dem Druckgaseinlasskanal 44-1 bzw. 44-2, oder dessen Zuleitung zum gesteuerten Ventil, ein Rückschlagventil 76-1 bzw. 76-2 nahe des Einlasses des Druckgaseinlasskanals 44-1 bzw. 44-2 in die Dosierkammer 4-1 bzw. 4-2 anzuordnen, welches in Druckgaszufuhrrichtung selbsttätig öffnet und in entgegengesetzter Strömungsrichtung selbsttätig schließt. Damit wird vermieden, dass Pulverpartikel aus der Dosierkammer 4-1 bzw. 4-2 in die Druckgaseinlassventile 46-1 und 46-2 zurück wandern können.

Gemäß der bevorzugten Ausführungsform der Erfindung sind die Pulvereinlassventile 38-1 und 38-2 und/oder die Pulverauslassventile 42-1 und 42-2 keine gesteuerten Ventile, sondern selbsttätig öffnende und schließende Ventile nach Art eines Rückschlagventiles. Hierbei sind die Pulvereinlassventile 38-1 und 38-2 derart angeordnet, dass sie vom Sog bzw. Unterdruck in ihrer Dosierkammer 4-1 bzw. 4-2 während des Saughubes der zugehörigen Membran 8-1 bzw. 8-2 geöffnet werden, um Pulver von dem betreffenden Pulverbehälter 62, 63 oder 64 durch den Pulvereinlasskanal 36-1 bzw. 36-2 in die Dosierkammern 4-1 bzw. 4-2 einzusaugen. Der zum Ausstoßen der dosierten Pulvermenge aus der betreffenden Dosierkammer 4-1 bzw. 4-2 verwendete Gasdruck der Druckgasquelle 45-1 bzw. 45-2 ist größer als der Unterdruck und bewirkt, dass das Pulvereinlassventil 38-1 bzw. 38-2 automatisch geschlossen wird. Gemäß einer anderen Ausführungsform sind die Pulvereinlassventile 38-1 und 38-2 und/oder die Pulverauslassventile 42-1 und 42-1 von der Pumpensteuereinrichtung 68 gesteuerte Ventile.

Die Pulverauslassventile 42-1 und 42-2 sind umgekehrt zu den Pulvereinlaßventilen angeordnet. Dadurch wird das betreffende Pulverauslassventil 42-1 bzw. 42-2 vom Unterdruck während des Saughubes der zugehörigen Membran 8-1 bzw. 8-2 geschlossen und von dem Druckgas in den Dosierkammern zum Ausstoßen der dosierten Pulvermenge geöffnet, um die dosierte Pulvermenge mittels des

Druckgases durch das geöffnete Pulverauslassventil 42-1 bzw. 42-2 und den sich anschließenden Pulverauslasskanal 40-1 bzw. 40-2 in die Pulverabgabeleitung 50 und von dieser in die Pulverspritzvorrichtung 52 zu drücken. Das Druckgas überwindet den Unterdruck.

Die Pulveransaugleitung 58 könnte anstatt an einen Farbwechsler 60 direkt zu einem der Pulverbehälter 62, 63 oder 64 gehen.

Die Pulverspritzvorrichtung 52, üblicherweise auch als Pulversprühvorrichtung bezeichnet, kann zum Spritzen oder Sprühen des Pulvers eine Düse oder einen Rotationskörper oder eine rotierende Düse aufweisen, wie dies aus dem Stand der Technik bekannt ist.

Somit ist gemäß der Erfindung ein Verfahren zur Förderung von Pulver, insbesondere Beschichtungspulver, gegeben, bei welchem durch Vergrößern des Volumens einer Dosierkammer 4-1 und/oder 4-2 Pulver von einer Pulverquelle in die Dosierkammer 4-1 bzw. 4-2 einsaugbar und anschließend mittels Druckgas die dosierte Pulvermenge aus der Dosierkammer heraus drückbar ist. Der Zyklus ist periodisch wiederholbar. Mittels der Sensoren S1, S4, S2 und S3 wird eine vorbestimmte Phase oder Position der periodisch erfolgenden Volumenänderungen der Dosierkammer 4-1 bzw. 4-2 ermittelt und nach einer vorbestimmten Zeitverzögerung nach dem Erreichen der vorbestimmten Phase wird mittels der Druckluft die bis dahin dosierte Pulvermenge aus der Dosierkammer 4-1 bzw. 4-2 heraus gedrückt.

Es ist offensichtlich, dass die Erfindung auch mit nur einer Dosierkammer 4-1 oder 4-2 ausführbar ist, ohne eine zweite Dosierkammer 4-2 oder 4-1. Ferner ist ersichtlich, dass anstelle eines einzigen Antriebes 10 für beide Membranen 8-1 und 8-2, jede Membran 8-1 und 8-2 einen eigenen Antrieb 10 haben kann.

Die Verwendung einer Membran 8-1 bzw. 8-2 als Verdrängerkörper ermöglicht eine kompakte kleine Bauweise. Die Erfindung ist jedoch nicht auf die Verwendung einer Membran beschränkt, sondern anstelle einer Membran kann auch ein Kolben in einem Zylinder verwendet werden.

Fig. 3 zeigt eine Ausführungsform der Erfindung, bei welcher anstelle einer Membran ein Kolben als Verdrängerkörper verwendet wird. Ferner zeigt Fig. 3 die Möglichkeit, anstelle eines einzigen Antriebes für zwei oder mehr Verdrängerkörper (Membran oder Kolben) für jeden Verdrängerkörper (Membran oder Kolben) einen eigenen Antrieb zu verwenden.

In Fig. 3 sind den Fig. 1 und 2 entsprechende Teile mit gleichen Bezugszahlen versehen. Damit trifft die vorstehende Beschreibung der Fig. 1 und 2 auch auf Fig. 3 zu. Fig. 3 zeigt auch die Möglichkeit, die Sensoren S1, S2, S3 und S4 nicht zur Detektion des Antriebskolbens 12 anzugeben, sondern zur Detektion der jeweiligen Position des Verdrängerkörperkolbens 8-1 bzw. 8-2. Bei Fig. 3 besteht jedoch ebenfalls die Möglichkeit, diese Sensoren nicht dem Verdrängerkörperkolben 8-1 und 8-2 zuzuordnen, sondern dem Antriebskolben 12 oder einem anderen Element.

In Fig. 3 ist für jeden Pulvereinlasskanal 36-1 und 36-2 eine eigene Pulveransaugleitung 58 vorgesehen, welche zu verschiedenen Pulverquellen (Pulverbehälter oder Farbwechsler) oder gemäß in Fig. 3 zu einer gemeinsamen Pulverquelle, z. B. einem Pulverbehälter 62 führen können. Anstelle dieser Ausführungsform könnte auch eine gemeinsame Pulveransaugleitung 58 ähnlich Fig. 1 für beide Pulvereinlasskanäle 36-1 und 36-2 vorgesehen werden. Diese können direkt zu einem Pulverbehälter, z. B. 62, führen oder zu einem Farbwechsler 60 entsprechend Fig. 1.

Merkmale der Fig. 1 und 2 einerseits und Fig. 3 andererseits sind gegenseitig austauschbar zur Bildung von neuen Kombinationen.

Die Erfindung ist auch für Kombinationen von drei oder mehr Pulverpumpen verwendbar, deren Pulvereinlaßkanäle an eine gemeinsame oder an verschiedene Pulverquellen angeschlossen oder anschließbar sind und deren Pulverauslaßkanäle alle mit einer gemeinsamen Pulverabgabeöffnung verbunden sind, wobei eine Pumpensteuereinrichtung derart ausgebildet ist, dass sie die Pumpen ansteuert, um relativ zueinander zeitlich versetzt ihre Saughübe und dazu korrespondierend zeitlich versetzt auch ihre Druckhübe auszuführen, so dass die Pumpen zeitlich zueinander versetzt Pulver ansaugen und zeitlich zueinander versetzt dosierte Pulvermengen abgeben, jedoch bei mindestens einer Pumpe ihr Verdrängerkörper (Membran oder Pulververdrängerkolben) sich in einer Zwischenstellung zwischen Endstellungen befindet, wenn der Verdrängerkörper von mindestens einer der anderen der Pumpen sich in einer Endstellung befindet.

Alle genannten Druckgase und Druckgasquellen können Druckluft bzw. Druckluftquellen sein. Jedoch sind auch andere Druckgase, z. B. Edelgase, und entsprechende andere Druckgasquellen, z. B. Edelgasquellen, verwendbar. Zwei oder mehr oder alle genannten Druckgasquellen können zusammen eine einzige Druckgasquelle sein, von welcher die verschiedenen Druckgase entnehmbar sind.

Bei den bevorzugten Ausführungsformen der Erfindung, welche in den Figuren 1, 2 und 3 gezeigt sind, ist die Pumpensteuereinrichtung 68 ausgebildet, um die Umschaltungen der Bewegungen der Verdrängerkörper 8-1 und 8-2 von Saughub auf Druckhub, und umgekehrt, in Abhängigkeit von Signalen von den Sensoren S1 und S4 zu bewirken, welche jeweils ein Signal erzeugen, wenn sich der Verdrängerkörper 8-1 bzw. 8-2 längs der Hubstrecke an der einen oder der anderen von zwei vorbestimmten Bewegungsumkehrpositionen befindet.

Dies ist nur eine Möglichkeit, durch welche die Pumpensteuereinrichtung 68 erkennen kann, wann sich der betreffende Verdrängerkörper 8-1 bzw. 8-2 in einer vorbestimmten Saughubposition befindet.

Eine andere Möglichkeit ist in einer anderen bevorzugten Ausführungsform der Erfindung verkörpert, welche in Fig. 4 schematisch dargestellt ist. Bei der Ausführungsform von Fig. 4 enthält die Pumpensteuereinrichtung 68 einen Taktzeitgeber 80, durch welchen die zeitverzögerte Einspritzung von Druckgas in die Dosierkammer 4-1 bzw. 4-2 einer festen Taktzeit unterliegt. Nach Ablauf dieser Taktzeit sendet die Pumpensteuereinrichtung 68 Steuersignale an das Umschaltventil 30, welches durch Druckgaszufuhr und Druckgasabfuhr in bzw. aus dem Zylinder 22 des Antriebes 10 die Bewegungen der Verdrängerkörper 8-1 und 8-2 und damit die einander entgegen gerichteten Volumenänderungen der beiden Dosierkammern 4-1 und 4-2 bewirkt.

Diese Steuersignale, vorzugsweise das Steuersignal zum Starten des Saughubes, bewirken gleichzeitig auch, dass die Zeitverzögerung der Zeitsteuereinrichtung 74 gestartet wird. Sobald dann die vorbestimmte Verzögerungszeitdauer abgelaufen ist, wird Druckgas durch das eine Druckgaseinlassventil 46-1 in die eine Dosierkammer 8-1 oder durch das andere Druckgaseinlassventil 46-2 in die andere Dosierkammer 4-2 eingeleitet zur Pulverförderung in der mit Bezug auf die Figuren 1 bis 3 beschriebenen Art und Weise. Der Unterschied zu den Figuren 1 bis 3 besteht darin, dass die Pumpensteuereinrichtung 68 die vorbestimmte Saughubposition der Verdrängerkörper 8-1 und 8-2 nicht anhand von Sensorsignalen (Sensoren S1, S2, S3, S4) erkennt, sondern durch Steuersignale, welche jeweils bei Ablauf der Taktzeit des Taktzeitgebers 80 erzeugt werden.

Dabei wird angenommen, dass der Antriebskolben 12 und damit auch die Verdrängerkörper 8-1 und 8-2 bei Ablauf der Taktzeit ihre vorbestimmten Endpositionen erreicht haben. Abweichungen zwischen den vorbestimmten Endpositionen und den tatsächlich erreichten Endpositionen können dann entstehen, wenn sich die Bewegungswiderstände der zu bewegenden Elementen verändern, beispielsweise durch Materialabnutzung, Materialermüdung oder durch Verschmutzungen. Zur Erkennung von solchen Abweichungen zwischen Sollwertpositionen und Istwertpositionen kann entlang der Bewegungsstrecke der

Verdrängerkörper 8-1 oder 8-2 oder entlang eines mit ihnen bewegungsfest verbundenen Elementes, vorzugsweise des Antriebskolbens 12, mit Abstand von dessen Endstellungen, ein Sensor S5 an einer Position P5 angeordnet sein, welche der Pumpensteuereinrichtung 68 ein Signal liefert, wenn sich das betreffende Element, in der bevorzugten Ausführungsform der Antriebskolben 12 in der Position P5 des Kontrollsensors S5 befindet. Durch Vergleich des Zeitpunktes des Kontrollsignals des Kontrollsensors S5 mit dem Zeitpunkt des Steuersignals zum Umschalten der Bewegungsrichtung des Antriebskolbens 12 kann die Pumpenantriebssteuereinrichtung 68 errechnen, ob der Antriebskolben 12 den Kontrollsensor S5 in einer vorbestimmten Zeitdauer erreicht hat (oder mit einer vorbestimmten Geschwindigkeit), welche erforderlich ist, damit er auch rechtzeitig seine Endposition erreicht. Bei Abweichungen um einen vorbestimmten Wert kann die Pumpensteuereinrichtung 68 ein Defektsignal (oder Warnsignal) erzeugen.

Fig. 4 zeigt zusätzlich zum Kontrollsensor S5 einen weiteren Kontrollsensor S6 an einer Position P6 im Abstand in Bewegungsrichtung des Antriebskolbens 12 von dem einen Kontrollsensor S5 und auch im Abstand von den beiden Endpositionen des Antriebskolbens 12, zur Erzeugung eines Kontrollsignals in der Pumpensteuereinrichtung 68 jeweils dann, wenn sich der Antriebskolben 12 gegenüber einem dieser beiden Kontrollsensoren S5 oder S6 befindet. Bei dieser Ausführungsform der Erfindung kann die Pumpensteuereinrichtung 68 durch Vergleichen der Zeitdifferenz zwischen dem Erzeugen der beiden Kontrollsignale der beiden Kontrollsensoren S5 und S6 mit einer Sollzeitdauer ermitteln, ob die Verdrängerkörper 8-1, 8-2 innerhalb der Taktzeit jeweils ihre vorbestimmte Endposition erreichen. Auch bei dieser Ausführungsform kann anhand der Zeitdifferenz die Geschwindigkeit des Antriebskolbens 12 oder der Verdrängerkörper 4-1, 4-2 von der Pumpensteuereinrichtung errechnet und mit einer Sollgeschwindigkeit verglichen werden. Bei Abweichungen zwischen Sollzeit und Istzeit oder zwischen Sollgeschwindigkeit und Istgeschwindigkeit, und damit auch zwischen Abweichungen von der vorbestimmten Endposition und der tatsächlich erreichten Endposition des Antriebskolbens 12 bei seiner

Bewegungsumkehrung, um einen bestimmten Abweichungs-Wert, kann die Pumpensteuereinrichtung 68 ein Defektsignal erzeugen.

Das Defektsignal kann für verschiedene Zwecke verwendet werden, beispielsweise zur optischen und/oder akustischen Anzeige des Defekts oder zur Speicherung des Defektwertes im Speicher eines Rechners für Diagnosezwecke.

Gemäß einer anderen Ausführungsform der Erfindung kann das Defektsignal dazu verwendet werden, in Abhängigkeit von der Differenz zwischen Sollzeit (oder -geschwindigkeit) und Istzeit (oder -geschwindigkeit) des Antriebskolbens 12 das Umschaltventil 30 entsprechend so anzusteuern, dass die veränderte Geschwindigkeit des Antriebskolbens 12 durch eine Änderung seiner Hubfrequenz kompensiert wird, so dass die Pulvervolumenförderung der Pumpeneinrichtung innerhalb eines vorbestimmten Toleranzbereiches konstant bleibt.

Die Ausführungsform von Fig. 4 ist identisch mit der von Fig. 1 und 2, mit der Ausnahme, dass die Pumpensteuereinrichtung 68 den Taktzeitgeber 80 enthält und die Sensoren S1, S2, S3 und S4 durch den Kontrollsensor S5 oder durch die beiden Kontrollsensoren S5 und S6 ersetzt sind. Gleiche Teile haben jeweils die gleichen Bezugszahlen.

Die mit Bezug auf Fig. 4 beschriebenen Ausführungsformen der Erfindung sind auch auf Ausführungsformen anwendbar, welche nicht wie die Figuren 1, 2 und 4 Membranen, sondern Kolben gemäß Fig. 3 als Verdrängerkörper 8-1 bzw. 8-2 haben.

Gemäß bevorzugten Ausführungsformen der Erfindung kann die Taktzeit und/oder die Verzögerungszeit variabel einstellbar sein. Gemäß besonders bevorzugter Ausführungsform der Erfindung wird, um eine gewünschte Änderung der Pulverfördermenge pro Zeiteinheit einzustellen, die Taktzeit konstant gehalten und es ist die Verzögerungszeitdauer variabel einstellbar, um die gewünschte

Pulverfördermenge pro Zeiteinheit einzustellen. Die Verzögerungszeitdauer ist hier die Zeitdauer, um welche das Fördern des Pulvers aus der betreffenden Dosierkammer 4-1 oder 4-2 verzögert gestartet wird, nachdem die betreffende Taktzeit abgelaufen ist, bei welcher der Verdrängerkörper 8-1 bzw. 8-2 von Druckhub auf Saughub umgeschaltet wurde.

Die Figuren 5 bis 8 zeigen eine weitere Ausführungsform der Erfindung, gemäß welcher die Pulvereinlassventile 38-1 und 38-2 und/oder die Pulverauslassventile 42-1 und 42-2 selbsttätig funktionierende Einwegventile nach Art eines Entenschnabels (duck bill valve) sind, welche in Durchlassrichtung von dem Druck des Druckgases selbsttätig geöffnet und in Sperrrichtung von dem Druck des Druckgases und/oder durch eigene Material-Federelastizität selbsttätig geschlossen werden. Ein solches Einwegventil ist in den Figuren 5 bis 8 mit der Bezugszahl 38/42 bezeichnet. Es besteht aus einem einstückigen Körper aus federelastischem Material, beispielsweise Gummi. Es enthält einen zylindrischen Teil 82 mit einem radial nach außen ringförmig abstehenden Flansch 84 am einen Ende und mit einem entenschnabelartig verjüngten Schlauchteil 86 am anderen Ende.

Wenn in beiden Strömungsrichtungen keine Differenzdruck auf das Einwegventil wirkt, ist es gemäß dem Längsschnitt von Fig. 5 und der Vorderansicht auf die Ventilspitze von Fig. 6 geschlossen durch seine eigene Material-Federelastizität. Die Ventilschließkraft wird verstärkt, wenn Druckgas 88 in Ventilsperrrichtung auf das Einwegventil wirkt entsprechend Fig. 5.

Wenn das Einwegventil 38/42 in Durchlassrichtung von Druckgas 90 beaufschlagt wird, drückt dieses Druckgas 90 die beiden Entenschnabelteile 86-1 und 86-2 auseinander, so dass das Ventil öffnet. Diese Offenstellung des Einwegventils ist in Fig. 7 im Längsschnitt und in Fig. 8 in Vorderansicht entgegen der Durchlassrichtung gezeigt.

Fig. 9 zeigt das Einwegventil 38/42 in Seitenansicht relativ zu den Figuren 5 und 7 um 90° gedreht.

Bei allen Ausführungsformen der Erfindung kann an den Bewegungsumkehrstellen (Todpunkten) der Verdrängerkörper 8-1, 8-2 eine Wartezeit vorgesehen sein, während welcher sich die Pumpeneinrichtung beruhigen kann, bevor die nächste Hubbewegung beginnt.

Die Beschreibung, Ansprüche und Zeichnungen beschreiben und zeigen bevorzugte Ausführungsformen der Erfindung, ohne dass die Erfindung darauf beschränkt ist. Die Erfindung umfasst jedoch auch beliebige Kombinationen von mindestens zwei Merkmalen aus der Beschreibung, den Ansprüchen und/oder den Zeichnungen.

ITW Gema AG

24. Juni 2003

P 2198-2

EPO - Munich

3

27. Juni 2003

Patentansprüche

1. Pumpeneinrichtung für Pulver (54), insbesondere für Beschichtungspulver, enthaltend mindestens eine Pulver-Pumpe (2-1,2-2), welche eine Dosierkammer (4-1,4-2) aufweist, die von einem Kammergehäuse (6-1,6-2) und einem Verdrängerkörper (8-1,8-2) begrenzt ist; welcher relativ zum Kammergehäuse während eines Druckhubes vor und während eines Saughubes zurück bewegbar ist, wobei die Pumpenkammer einen Pulvereinlasskanal (36-1,36-2), welchem ein Pulvereinlassventil (38-1,38-2) zugeordnet ist, einen Pulverauslasskanal (40-1,40-2), welchem ein Pulverauslassventil (42-1,42-2) zugeordnet ist, und einen Druckgaseinlasskanal (44-1,44-2), welchem ein Druckgaseinlassventil (46-1, 46-2) zugeordnet ist, aufweist, wobei zum Ansaugen einer dosierten Menge von Pulver (54) in die Dosierkammer (4-1,4-2) das Pulvereinlassventil (38-1, 38-2) aufmachbar ist und das Pulverauslassventil (42-1,42-2) und das Druckgaseinlassventil (46-1,46-2) schließbar sind, so dass der sich in Saughubrichtung bewegende Verdrängerkörper Pulver (54) durch den Pulvereinlasskanal (36-1,36-2) in die Dosierkammer (4-1,4-2) saugen kann, und zum Fördern von der dosierten Pulvermenge aus der Dosierkammer (4-1, 4-2) das Pulvereinlassventil (38-1,38-2) schließbar ist und das Pulverauslassventil (42-1,42-2) und das Druckgaseinlassventil (46-1,46-2) aufmachbar sind, so dass von dem Druckgaseinlasskanal (44-1,44-2) in die Dosierkammer (4-1,4-2) strömendes Druckgas die dosierte Pulvermenge von der Dosierkammer (4-1,4-2) in den Pulverauslasskanal (40-1,40-2) drücken

kann, und eine Pumpensteuereinrichtung (68) zur Steuerung des Druckgaseinlassventils (46-1, 46-2)
dadurch gekennzeichnet,
dass die Pumpensteuereinrichtung (68) eine Zeitsteuereinrichtung (74)
aufweist, durch welche in Abhängigkeit von der seit einem vorbestimmten Betriebszeitpunkt vergangenen vorbestimmten Verzögerungszeitdauer das Fördern des Pulvers aus der Dosierkammer (4-1, 4-2) gestartet wird, wobei am Ende der Verzögerungszeitdauer das Druckgas in die Dosierkammer (4-1, 4-2) eingelassen und die bis zum Ende Verzögerungszeitdauer dosierte Pulvermenge mittels des Druckgases aus der Dosierkammer (4-1, 4-2) heraus gedrückt wird.

2. Pumpeneinrichtung nach Anspruch 1,
dadurch gekennzeichnet,
dass die Pumpensteuereinrichtung (68) einen Taktzeitgeber aufweist und jeweils nach Ablauf einer vorbestimmten Taktzeit Steuersignale an eine Umschalteinrichtung (34) zur Umschaltung der Bewegung des Verdrängerträgers (8-1, 8-2) von Saughub auf Druckhub, und umgekehrt von Druckhub auf Saughub, im Rhythmus der vorbestimmten Taktzeit sendet, und dass die Pumpensteuereinrichtung (68) ausgebildet ist, um an der Zeitsteuereinrichtung (74) die vorbestimmte Verzögerungszeitdauer jeweils in Abhängigkeit von dem Zeitpunkt des Entstehens desjenigen Steuersignals zu starten, welches den Start des Saughubes bewirkt, wobei am Ende der Verzögerungszeitdauer das Druckgas in die Dosierkammer (4-1, 4-2) eingelassen und die bis zum Ende Verzögerungszeitdauer dosierte Pulvermenge mittels des Druckgases aus der Dosierkammer (4-1, 4-2) heraus gedrückt wird.
3. Pumpeneinrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet,

dass mindestens ein Kontrollsensor (S5, S6) vorgesehen ist zur Erkennung, wann sich der Verdrängerkörper (8-1, 8-2) in einer vorbestimmten Position befindet, und zur Erzeugung eines Sensorsignals bei Erkennung, wenn sich der Verdrängerkörper in der vorbestimmten Position befindet, dass die Pumpensteuereinrichtung (68) mit dem mindestens einen Kontrollsensor funktionsmäßig verbunden ist, und dass die Pumpensteuereinrichtung (68) ausgebildet ist zum automatischen Vergleichen des Zeitpunktes des Sensorsignals mit dem Zeitpunkt von mindestens einem der Steuersignale zur Kontrolle, ob die Zeitdauer zwischen den beiden Zeitpunkten von einem vorbestimmten Wert abweicht, und zur Erzeugung eines Defektsignals, wenn eine vorbestimmte Abweichung von dem vorbestimmten Wert entsteht.

4. Pumpeneinrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass mindestens zwei Kontrollsensoren (S5, S6) vorgesehen und mit der Pumpensteuereinrichtung (68) verbunden sind zur Erkennung, wann sich der Verdrängerkörper (8-1, 8-2) jeweils in einer von zwei verschiedenen vorbestimmten Positionen befindet und zur Erzeugung von Sensorsignalen bei Erkennung des Verdrängerkörpers in den vorbestimmten Positionen, und dass die Pumpensteuereinrichtung (168) ausgebildet ist zum Vergleichen der Zeitdifferenz zwischen den Signalen des einen Kontrollsensors und den Signalen des anderen Kontrollsensors mit einer vorbestimmten Zeitdauer, und zur Erzeugung eines Defektsignals dann, wenn die Zeitdifferenz von der vorbestimmten Zeitdauer um mehr als einen vorbestimmten Wert abweicht.
5. Pumpeneinrichtung nach Anspruch 1,
dadurch gekennzeichnet,
dass die Pumpensteuereinrichtung (68) eine Zeitsteuereinrichtung (74) aufweist, um in Abhängigkeit von der seit einer vorbestimmten Saughubposition des Verdrängerkörpers (8-1, 8-2) vergangenen vorbestimmten Verzögerungszeitdauer das Fördern des Pulvers aus der

Dosierkammer zu starten, wobei am Ende der Verzögerungszeitdauer das Druckgas in die Dosierkammer (4-1,4-2) eingelassen und die bis zum Ende der Verzögerungszeitdauer dosierte Pulvermenge mittels des Druckgases aus der Dosierkammer (4-1,4-2) heraus gedrückt wird.

6. Pumpeneinrichtung nach Anspruch 5,
dadurch gekennzeichnet,
dass die vorbestimmte Saughubposition eine Saughubanfangsposition ist.
7. Pumpeneinrichtung nach Anspruch 5,
dadurch gekennzeichnet,
dass die vorbestimmte Saughubposition zwischen einer
Saughubanfangsposition und einer Saughubendposition liegt.
8. Pumpeneinrichtung nach Anspruch 5,
dadurch gekennzeichnet,
dass die vorbestimmte Saughubposition zwischen einer
Saughubanfangsposition und einer Saughubendposition näher bei der
Saughubanfangsposition als bei der Saughubendposition liegt.
9. Pumpeneinrichtung nach mindestens einem der vorhergehenden Ansprüche 5
bis 8,
dadurch gekennzeichnet,
dass die Zeitsteuereinrichtung (74) mindestens einen Sensor (S1,S4;S2,S3)
zur Erzeugung eines Signals aufweist, wenn sich der Verdrängerkörper (8-1,
8-2) in der vorbestimmten Saughubposition befindet.
10. Pumpeneinrichtung nach einem der Ansprüche 5 bis 9,
dadurch gekennzeichnet,
dass eine Pumpensteuereinrichtung (68) vorgesehen ist, durch welche die
Umschaltungen der Bewegungen des Verdrängerkörpers (8-1,8-2) von

Saughub auf Druckhub, und umgekehrt, in Abhängigkeit von Signalen von Sensoren (S1,S4) erfolgt, welche jeweils ein Signal erzeugen, wenn sich der Verdrängerkörper (8-1,8-2) längs der Hubstrecke an der einen oder der anderen von zwei vorbestimmten Bewegungsumkehrpositionen befindet.

11. Pumpeneinrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Bewegungsstrecke des Verdrängerkörpers (8-1,8-2) bei allen Hubbewegungen konstant gleich groß ist.
12. Pumpeneinrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass an mindestens einem der Bewegungsumkehr-Totpunkte des Verdrängerkörpers (8-1, 8-2) eine zweite Zeitverzögerungsdauer vorgesehen ist, bevor der Verdrängerkörper (8-1, 8-2) nach der einen Bewegungsrichtung in die betreffende andere Bewegungsrichtung bewegt wird!
13. Pumpeneinrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass die Verzögerungszeitdauer variabel einstellbar ist.
14. Pumpeneinrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass der Verdrängerkörper (8-1,8-2) eine flexible Membran ist.
15. Pumpeneinrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet,
dass das Pulvereinlassventil (38-1,38-2) und das Pulverauslassventil (42-1, 42-2) selbsttätige Ventile sind, welche durch Differenzdruck zwischen ihren beiden Ventilseiten selbsttätig öffnen bzw. schließen.

16. Pumpeneinrichtung nach Anspruch 15,
dadurch gekennzeichnet,
dass das Pulvereinlassventil (38-1,38-2) und das Pulverauslassventil (42-1,
42-2) selbstt ige Ventile sind, welche nach Art eines R ckschlagventils durch
Differenzgasdruck  ber ihrem Ventilk rper (38-3,42-3) bet igbar sind, wobei
der Ventilk rper (38-3,42-3) in Abh ngigkeit von diesem Differenzgasdruck
relativ zu einem Ventilsitz (38-4,42-4) in Offenstellung oder in Schlie ststellung
bewegbar ist und in der betreffenden Stellung haltbar ist.
17. Pumpeneinrichtung nach Anspruch 15,
dadurch gekennzeichnet,
dass das Pulvereinlassventil (38-1,38-2) und das Pulverauslassventil (42-1,
42-2) selbstt ige Ventile nach Art eines Entenschnabels sind, dessen
Entenschnabel durch Druckdifferenz zwischen Entenschnabelinnenseite und
Entenschnabelau enseite selbstt ig  ffnet bzw. schlie t.
18. Pumpeneinrichtung nach mindestens einem der vorhergehenden Anspr che,
dadurch gekennzeichnet,
dass mindestens zwei der genannten Pulver-Pumpen (2-1,2-2) vorgesehen
sind, deren Pulvereinlasskan le (36-1,36-2) mit einer Pulverquelle verbindbar
oder verbunden sind und deren Pulverauslasskan le (40-1,40-2) mit einer
gemeinsamen Pulverabgabe ffnung (48) verbindbar oder verbunden sind,
und dass die beiden Pulver-Pumpen (2-1,2-2) relativ zueinander gegenl ufig
betreibbar sind, so dass wechselweise von der Dosierkammer (4-1) der einen
Pulver-Pumpe (2-1) oder der Dosierkammer (4-2) der anderen Pulver-Pumpe
(2-2) eine dosierte Pulvermenge mittels des Druckgases in den
Pulverauslasskanal (40-1,40-2) aussto bar ist, und entgegengesetzt
wechselweise Pulver durch die Pulvereinlasskan le (36-1,36-2) in die andere
oder die eine Dosierkammer (4-1,4-2) einsaugbar ist.

19. Pumpeneinrichtung nach Anspruch 18,
dadurch gekennzeichnet,
dass die Verdrängerkörper (8-1,8-2) der beiden Pumpen einen gemeinsamen
Antrieb (10) haben.
20. Pulverbeschichtungseinrichtung,
gekennzeichnet durch
eine Pumpeneinrichtung nach mindestens einem der vorhergehenden
Ansprüche zur Förderung von Beschichtungspulver.
21. Verfahren zur Förderung von Pulver (54), insbesondere Beschichtungspulver,
bei welchem durch Vergrößern des Volumens einer Dosierkammer (4-1,4-2)
Pulver (54) von einer Pulverquelle in die Dosierkammer (4-1,4-2) eingesaugt
und anschließend mittels Druckgas die dosierte Pulvermenge aus der
Dosierkammer (4-1,4-2) heraus gedrückt wird, wonach das Volumen der
Dosierkammer (4-1,4-2) verkleinert wird, und dann der Zyklus periodisch
wiederholt wird,
dadurch gekennzeichnet,
dass mittels Sensoren (S1,S4;S2,S3) eine vorbestimmte Phase der periodisch
erfolgenden Volumenänderung der Dosierkammer (4-1,4-2) ermittelt wird und
dass mit einer vorbestimmten Zeitverzögerung nach dem Erreichen der
vorbestimmten Phase mittels des Druckgases die bis dahin dosierte
Pulvermenge aus der Dosierkammer (4-1,4-2) heraus gedrückt wird.
22. Verfahren nach Anspruch 21,
dadurch gekennzeichnet,
dass in einem Pulvereinlasskanal (36-1,36-2) in die Dosierkammer (4-1,4-2),
und in einem Pulverauslasskanal (40-1,40-2) aus der Dosierkammer (4-1,4-2),
je mindestens ein Ventil in dem betreffenden Weg verwendet wird, welches in
Abhängigkeit von der jeweiligen Gasdruckdifferenz zwischen seiner

stromaufwärtigen Seite und seiner stromabwärtigen Seite nach Art eines Rückschlagventiles selbstständig auf und zu macht

23. Verfahren zur Förderung von Pulver (54), insbesondere Beschichtungspulver, bei welchem durch Vergrößern des Volumens von mindestens einer Dosierkammer (4-1, 4-2) Pulver (54) von einer Pulverquelle in die Dosierkammer (4-1, 4-2) eingesaugt und anschließend mittels Druckgas die dosierte Pulvermenge aus der Dosierkammer (4-1, 4-2) herausgedrückt wird, wonach das Volumen der Dosierkammer (4-1, 4-2) verkleinert wird, und dann der Zyklus periodisch wiederholt wird,
dadurch gekennzeichnet,
dass die Volumenänderungen der mindestens einen Dosierkammer (4-1, 4-2) durch einen vorbestimmte Taktzeit gesteuert werden, dass jeweils nach Ablauf der vorbestimmten Taktzeit mindestens ein Steuersignal erzeugt wird, dass durch dieses mindestens eine Steuersignal die Richtung der Volumenänderung von Vergrößern auf Verkleinern, bzw. von Verkleinern auf Vergrößern, umgekehrt wird, und gleichzeitig eine vorbestimmte Zeitverzögerung gestartet wird, und dass erst bei Ablauf der vorbestimmten Zeitverzögerung mittels des Druckgases die dosierte Pulvermenge aus der Dosierkammer herausgedrückt wird.
24. Verfahren nach Anspruch 23,
dadurch gekennzeichnet,
dass die Volumenänderungen der mindestens einen Dosierkammer (4-1, 4-2) durch einen Verdrängerkörper (8-1, 8-2) bewirkt werden, dass mittels mindestens eines Kontrollsensors (S5, S6) die Präsenz des Verdrängerkörpers in einer vorbestimmten Position ermittelt wird und dabei ein Kontrollsignal bei Erkennung des Verdrängerkörpers in der vorbestimmten Position erzeugt wird, und dass die Zeitdifferenz zwischen dem Zeitpunkt des Steuersignals und dem Zeitpunkt des mindestens einen Steuersignals mit einer vorbestimmten Zeitdauer verglichen wird, welche die Zeitdifferenz haben würde, wenn der

Verdrängerkörper innerhalb jeder Taktzeit eine vorbestimmte Wegstrecke zurücklegen würde, und dass ein Defektsignal erzeugt wird, wenn der Unterschied zwischen der Zeitdifferenz und der vorbestimmten Zeitdauer einen vorbestimmten Wert übersteigt.

25. Verfahren nach Anspruch 23,
dadurch gekennzeichnet,
dass die Volumenänderungen der mindestens einen Dosierkammer durch einen Verdrängerkörper (8-1, 8-2) bewirkt wird, dass mit mindestens zwei Kontrollsensoren (S5, S6), welche entlang einer der maximalen Bewegungsstrecke des Verdrängerkörpers entsprechenden Strecke mit Abstand voneinander angeordnet sind, Kontrollsignale erzeugt werden, wenn der Verdrängerkörper in einer der Sensorposition entsprechenden Position ist, dass die Zeitdifferenz zwischen den Kontrollsignalen des einen Kontrollsensors zu den Kontrollsignalen des anderen Kontrollsensors mit einer vorbestimmten Zeitdauer verglichen wird, welche die Zeitdifferenz betragen würde, wenn sich der Verdrängerkörper innerhalb der Taktzeit eine vorbestimmte Soll-Bewegungsstrecke bewegen würde, und dass jeweils mindestens dann ein Defektsignal erzeugt wird, wenn die Zeitdifferenz von der vorbestimmten Zeitdauer um mehr als einen vorbestimmten Wert abweicht.
26. Verfahren nach einem der Ansprüche 21 bis 25,
dadurch gekennzeichnet,
dass zwei von den Dosierkammern (4-1, 4-2) gleichzeitig, jedoch phasenverschoben zueinander bezüglich ihres Volumens verändert werden, wobei das Volumen der einen Dosierkammer vergrößert wird, während das Volumen der anderen Dosierkammer verkleinert wird, und umgekehrt.

07.01.03

27. Juni 2003

1/5

Fig. 1

2/5

Fig. 2

3/5

Fig. 3

4/5

Fig. 4

Fig. 5

5/5

Fig. 7

Fig. 6

Fig. 8

Fig. 9

ITW Gema AG
P 2198-2

24. Juni 2003

EPO - Munich
3
27. Juni 2003

Zusammenfassung

Pumpeneinrichtung für Pulver, insbesondere für Beschichtungspulver, und Pulverbeschichtungseinrichtung. Es ist eine Zeitsteuereinrichtung (74) vorgesehen, durch welche in Abhängigkeit von der seit einem vorbestimmten Betriebszeitpunkt vergangenen vorbestimmten Verzögerungszeitdauer Druckgas in eine Dosierkammer eingelassen und damit eine bis zum Ende der Verzögerungszeitdauer in die Dosierkammer eingebrachte Pulvermenge aus der Dosierkammer ausgestoßen wird.

(Fig. 1)

