Procédures de qualification

Planificatrice-électricienne CFC Planificateur-électricien CFC

Connaissances professionnelles écrites

Pos. 2.1 Bases technologiques

Dossier des expertes et experts

Temps: 30 minutes

Auxiliaires : Règle, équerre, chablon, calculatrice de poche sans transmission de

données et recueil de formules sans exemple de calcul.

Cotation : - Le nombre de points maximum est donné pour chaque exercice.

- Pour obtenir le maximum de points, les formules et les calculs doivent figurer dans la solution ainsi que les résultats avec leur unité soulignés deux fois

- Le cheminement de la solution doit être clair et son contrôle doit être aisé.
- Si dans un exercice on demande plusieurs réponses, vous êtes tenu de répondre à chacune d'elle. Les réponses sont évaluées dans l'ordre où elles sont données. Les réponses données en plus ne sont pas évaluées.
- S'il manque de la place, la solution peut être écrite au dos de la feuille et vous devez le mentionner sur l'exercice.

Barème: Nombres de points maximum: 18.0

		•		•
17,5	-	18,0	Points = Note	6,0
15,5	-	17,0	Points = Note	5,5
13,5	-	15,0	Points = Note	5,0
12,0	-	13,0	Points = Note	4,5
10,0	-	11,5	Points = Note	4,0
8,5	-	9,5	Points = Note	3,5
6,5	-	8,0	Points = Note	3,0
4,5	-	6,0	Points = Note	2,5
3,0	-	4,0	Points = Note	2,0
1,0	-	2,5	Points = Note	1,5
0,0	-	0,5	Points = Note	1,0

Les solutions ne sont pas données pour des raisons didactiques

(Décision de la commission des tâches d'examens du 09.09.2008)

Délai d'attente : Cette épreuve d'examen ne peut pas être utilisée librement comme exercice avant le 1^{er} septembre 2015.

Groupe de travail EFA de l'USIE pour la profession de planificatrice-électricienne CFC / planificateur-électricien CFC

Editeur: CSFO, département procédures de qualification, Berne

EFA_14_PE_Base_technologique_FS

Créé par :

Exer	cices	Nombre maximal	de points obtenus
1.	3.5.5 Deux batteries sont couplées en parallèle, mais les bornes de la deuxième batterie sont inversées (polarité inversée). Quelle affirmation sur ce circuit est correcte ? Cochez la bonne réponse. Un courant continu de court-circuit circule.	1	obtenus
	internes des batteries. Seul un petit courant de transition circule entre les deux blocs batteries. Aucun courant ne circule car il n'y a pas de charge.		
2.	3.2.4 Un chauffage électrique ayant une puissance électrique de 10 kW délivre en une heure et quarante minutes une énergie thermique de 58'280 kJ. Déterminez le rendement de ce chauffage.	2	
	$t = 1 \cdot 3'600s + 40 \cdot 60 s = 6'000 s$ $W_{Absorb\acute{e}} = P \cdot t = 10 \text{ kW} \cdot 6'000 s = \underline{60'000 \text{ kWs}}$ $\eta = \frac{W_{Utile}}{W_{Absorb\acute{e}}} = \frac{58'280 \text{ kJ}}{60'000 \text{ kWs}} = \underline{0,971}$	(1)	

Exer	cices		Nombre of maximal	de points obtenus
3.	3.1.2 Une plaque de protection rectangulaire aver quatre perçages est réalisée en acier. Ses dimensions sont 200 mm x 120 mm et une épaisseur de 2,5 mm. Calculez la masse exacte de cette plaque $(\rho = 7.2 \ \frac{\mathrm{kg}}{\mathrm{dm}^3})$	elle a	3	
	Masse des 4 perçages $m_{perçages} = 4 \cdot \rho \cdot \frac{d^2 \cdot \pi}{4} \cdot s = 4 \cdot 7, 2 \frac{kg}{dm}$ $= 8,14 g$	(1)		
	Masse totale de la plaque $m_{Plaque} = \rho \cdot l \cdot b \cdot s = 7,2 \ \frac{kg}{dm^3} \cdot 2 \ dm \cdot 1,2 \ dm \cdot 0,025 \ dm = \underline{432 \ g}$			
	Masse de la plaque $m=m_P-m_B=432g-8,14g=423$	$,86 g = \underline{0,424 kg}$	(1)	
4.	3.2.1 En quelle forme d'énergie utile les appareil électrique consommée ? a) Perceuse b) Tube lumineux à décharge (TL) c) Plaque vitrocéramique d) Moteur électrique	ls suivants transforment-t-ils l'énergie → Energie mécanique → Energie rayonnante (lumineuse) → Energie calorifique → Energie mécanique	2 (0,5 chacun)	

			Nombre maximal	obtenu
3.2.5			maximal	obtent
	ndez aux questions suivantes	S.	2	
a)	a) Comment nomme-t-on l'induction restant dans un matériau ferromagnétique lorsque le champ magnétisant disparaît ?			
	Induction rémanente		(0,5)	
b)	 b) On fait une distinction entre les matériaux magnétiques doux et les matériaux magnétiques durs. Indiquez si l'on utilise des matériaux magnétiques doux ou durs pour les applications suivantes. 			
	Noyau de transformateur	→ matériaux magnétiques doux	(0,5	
	Aimant permanent	→ matériaux magnétiques dur	chacun)	
	Electroaimant	→ matériaux magnétiques doux		
3.5.2 Une pompe à eau délivre 50 litres d'eau par seconde dans un réservoir situé 60 m plus haut. Les pertes dans la canalisation montante sont de 10 % (il s'agit d'une diminution de pression), alors que le rendement de la pompe est de 80 %. La pompe est directement couplée à un moteur électrique dont la puissance absorbée est de 45 kW. Calculez le rendement du moteur.				
η_{Globa}		$\frac{50 \text{ kg} \cdot 9,81 \frac{\text{N}}{\text{kg}} \cdot 60 \text{ m}}{45'000 \text{W} \cdot 1\text{s}} = \underline{0,654}$	(2)	
η _{Globa}	$\mathbf{w}_{ ext{Absorb\acute{e}e}} = rac{\mathbf{m} \cdot \mathbf{g} \cdot \mathbf{h}}{\mathbf{P}_{ ext{el}} \cdot \mathbf{t}} = \mathbf{g} \cdot \mathbf{h}$		(2)	
	$\mathbf{w}_{\mathrm{H}} = rac{\mathbf{W}_{\mathrm{Utile}}}{\mathbf{W}_{\mathrm{Absorb\acute{e}e}}} = rac{\mathbf{m} \cdot \mathbf{g} \cdot \mathbf{h}}{\mathbf{P}_{\mathrm{el}} \cdot \mathbf{t}} = 0$			
	$\mathbf{w}_{\mathrm{H}} = rac{\mathbf{W}_{\mathrm{Utile}}}{\mathbf{W}_{\mathrm{Absorb\acute{e}e}}} = rac{\mathbf{m} \cdot \mathbf{g} \cdot \mathbf{h}}{\mathbf{P}_{\mathrm{el}} \cdot \mathbf{t}} = 0$			
	$\mathbf{w}_{\mathrm{H}} = rac{\mathbf{W}_{\mathrm{Utile}}}{\mathbf{W}_{\mathrm{Absorb\acute{e}e}}} = rac{\mathbf{m} \cdot \mathbf{g} \cdot \mathbf{h}}{\mathbf{P}_{\mathrm{el}} \cdot \mathbf{t}} = 0$			
	$\mathbf{w}_{\mathrm{H}} = rac{\mathbf{W}_{\mathrm{Utile}}}{\mathbf{W}_{\mathrm{Absorb\acute{e}e}}} = rac{\mathbf{m} \cdot \mathbf{g} \cdot \mathbf{h}}{\mathbf{P}_{\mathrm{el}} \cdot \mathbf{t}} = 0$			
	$\mathbf{w}_{\mathrm{H}} = rac{\mathbf{W}_{\mathrm{Utile}}}{\mathbf{W}_{\mathrm{Absorb\acute{e}e}}} = rac{\mathbf{m} \cdot \mathbf{g} \cdot \mathbf{h}}{\mathbf{P}_{\mathrm{el}} \cdot \mathbf{t}} = 0$			
	$\mathbf{w}_{\mathrm{H}} = rac{\mathbf{W}_{\mathrm{Utile}}}{\mathbf{W}_{\mathrm{Absorb\acute{e}e}}} = rac{\mathbf{m} \cdot \mathbf{g} \cdot \mathbf{h}}{\mathbf{P}_{\mathrm{el}} \cdot \mathbf{t}} = 0$			

Exercices	Nombre de points maximal obtenus
 3.5.3 7. Une clé dynamométrique est réglée sur 120 Nm. Quelle force doit être appliq sur la clé sachant que son bras de levier a une longueur de 430 mm? 	juée 2
$M = F \cdot r \rightarrow F = \frac{M}{r} = \frac{120 \text{ Nm}}{430 \cdot 10^{-3} \text{ m}} = \frac{279, 1 \text{ N}}{1000 \cdot 1000}$	
3.5.7	
8. Un réparateur a installé, il y a 10 ans, un éclairage composé de 12 lampes halogènes basse tension de 35 W. L'efficacité lumineuse des lampes halogè basse tension est de 21 lm/W. Il désire remplacer cet éclairage par des lampes LED pour économiser de l'énergie. Les lampes LED ont une puissance de 7 W et une efficacité lumine de 70 lm/W. Combien de lampes LED doit-il installer si le flux lumineux doit rester le mêm Le facteur de vieillissement est négligé.	euse
$P_{tot Hal} = n \cdot P_{1 Hal} = 12 \cdot 35 W = 420 W$	
$\Phi_{tot \; Hal} = \Phi_{tot \; LED} = \eta_{Hal} \cdot P_{tot \; Hal} = 21 \cdot \frac{lm}{W} \cdot 420 \; W = \underline{8'820 \; lm}$	(1)
$P_{tot \ LED} = \frac{\Phi_{tot \ LED}}{\eta_{LED}} = \frac{8'820 \ lm}{70 \ \frac{lm}{W}} = \underline{126 \ W}$	(1)
$n = \frac{P_{tot LED}}{P_{1 LED}} = \frac{126 \text{ W}}{7 \text{ W}} = \underline{\frac{18 \text{ lampes}}{18 \text{ lampes}}}$	(1)
Total	18