Introduction to Proximal Algorithms

NSI - ML Masters Seminar

Karol Chojnacki 429229

December 2024

Introduction

- **Proximal algorithms** solve nonsmooth, constrained, large-scale, or distributed optimization problems.
- Applications include:
 - First DNN Homework
 - Lasso, matrix decomposition, minimizing loss, portfolio optimization, visual and audio processing etc.

Definition of Proximal Operator

Proximal Operator: For a closed, proper, convex function $f: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$, the proximal operator is defined as:

$$\operatorname{prox}_f(v) = \arg \min_{\boldsymbol{x}} \left(f(\boldsymbol{x}) + \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{v}\|^2 \right).$$

Scaled Proximal Operator:

$$\operatorname{prox}_{\lambda f}(v) = \arg\min_{x} \left(f(x) + \frac{1}{2\lambda} ||x - v||^{2} \right),$$

where $\lambda > 0$ scales the problem.

Intuition for Proximal Operator

- Similar to how gradient descent takes steps proportional to the gradient to move towards a minimizer for smooth problems
- Proximal methods handle nonsmoothness by adding the regularization term:

$$\operatorname{prox}_{f}(v) = \arg\min_{x} f(x) + \underbrace{\frac{1}{2} \|x - v\|^{2}}_{regularization}$$

Thanks to regularization term prox_f(v) is a point that compromises between minimizing f and being near to v
⇒ prox_f(v) is called a proximal point of v with respect to f

Properties of Proximal Operators

Separable Sum:

$$f(x,y) = g(x) + h(y) \implies \operatorname{prox}_f(v,w) = (\operatorname{prox}_g(v), \operatorname{prox}_h(w)).$$

Affine Addition:

$$f(x) = g(x) + a^{T}x + b \implies \operatorname{prox}_{f}(v) = \operatorname{prox}_{g}(v - \lambda a).$$

Fixed Point Property:

$$x^*$$
 minimizes $f \iff x^* = \operatorname{prox}_f(x^*)$.

Moreau Decomposition

Theorem:

$$v = \operatorname{prox}_f(v) + \operatorname{prox}_{f^*}(v),$$

where f^* is the convex conjugate of f:

$$f^*(y) = \sup_{x} (y^T x - f(x)).$$

Geometric Intuition:

• *v* is split into two orthogonal components:

$$v = \operatorname{prox}_f(v)$$
 (aligned with f) + $\operatorname{prox}_{f^*}(v)$ (aligned with f^*).

 These components are complementary and balance primal and dual perspectives.

Example:

• For $f(x) = ||x||_1$:

$$\operatorname{prox}_f(v) = \operatorname{soft}(v, \lambda), \quad \operatorname{prox}_{f^*}(v) = \operatorname{proj}_{\|\cdot\|_{\infty} \leq \lambda}(v).$$

Proximal Gradient Method

Problem: Solve $\min_{x} f(x) + g(x)$, where:

- *f* is differentiable with Lipschitz gradient.
- g is closed, proper, convex.

Iteration:

$$x_{k+1} = \operatorname{prox}_{\lambda g}(x_k - \lambda \nabla f(x_k)),$$

where λ is the step size.

Convergence:

- O(1/k) for fixed λ .
- Accelerated (allowing to change λ) versions achieve $O(1/k^2)$.

Evaluating Proximal Operators

Approaches to Evaluate:

- Closed-form solutions:
 - For simple f(x), the proximal operator has an explicit formula.
 - Example: L1 norm $f(x) = \lambda ||x||_1$ leads to soft-thresholding.
- Iterative solvers:
 - For complex f(x), use gradient-based or numerical methods.
 - Solve by the definition iteratively.
- Decomposable functions:

$$f(x) = \sum_{i} f_i(x_i) \implies \operatorname{prox}_f(v) = \left(\operatorname{prox}_{f_1}(v_1), \dots, \operatorname{prox}_{f_n}(v_n)\right).$$

Common Functions and Proximal Operators:

• L1 Norm:

$$f(x) = \lambda ||x||_1 \implies \operatorname{prox}_f(v) = \underbrace{\operatorname{sgn}(v_i) \operatorname{max}(|v| - \lambda, 0)}_{\operatorname{soft}(v, \lambda)},$$

• Quadratic Function: (from DNN Homework)

$$f(x) = \frac{1}{2} ||Ax - b||^2 \implies \operatorname{prox}_f(v) = (A^T A + I)^{-1} (A^T b + v).$$

• Elastic Net: Combination of the two above

Common Functions and Proximal Operators:

• Indicator function of a convex set C:

$$f(x) = I_C(x) \implies \operatorname{prox}_f(v) = \Pi_C(v),$$

where $\Pi_C(v)$ is the projection of v on C.

• Nuclear Norm (Low-Rank Matrices):

$$f(X) = ||X||_* \implies \operatorname{prox}_f(V) = U\operatorname{soft}(\Sigma, \lambda)V^T,$$

where $U\Sigma V^T$ is the SVD of V.

Applications: Denoising, Deblurring, Super-Resolution

Flexibility:

- Neural networks generalize across noise levels and problem settings without retraining.
- The same denoising network can be used for deblurring, demosaicking, and super-resolution.

Performance:

- Competitive PSNR (Peak Signal-to-Noise Ratio) compared to problem-specific methods.
- Faster runtime due to GPU-based denoising.

Example:

Image Demosaicking:

$$\min_{u} \frac{\alpha}{2} ||Au - f||^2 + R(u),$$

where R(u) is regularization handled by a denoising network.

Applications: Audio De-clipping

Audio De-clipping: Restoring clipped audio signals by solving an optimization problem.

Problem Formulation:

$$\min_{x} \frac{1}{2} \|y - Ax\|^2 + \lambda \|x\|_1,$$

where:

- y: Observed clipped audio signal.
- A: Linear operator (e.g., a matrix modeling the clipping process).
- $||x||_1$: Sparse regularization promoting a clean audio signal.

Proximal Gradient Method:

- Alternates between:
 - Solving the least squares data fidelity term.
 - Applying the proximal operator for sparsity (soft-thresholding).
- Ensures stable reconstruction of the unclipped signal.

- Proximal Algorithms Neal Parikh Stanford University for general overview of proximal algorithms
- Learning Proximal Operators: Using Denoising Networks for Regularizing Inverse Imaging Problems - Tim Meinhardt - Image problems mentioned on slide 11.
- Proximal gradient algorithms: Applications in signal processing -Niccolo Antonello - Audio problems mentioned on slide 12.

Thank for very much for listening (: