Introducción a la Inteligencia Artificial Facultad de Ingeniería Universidad de Buenos Aires

Índice

Índice

- 1. Terminology
- 2. Pipeline
- 3. Train-test-validation
- 4. Feature engineering
- 5. Regresión lineal

Input Analysis - Machine Learning Pipelines

Machine Learning Terminology

- Raw vs. Tidy Data Cruelos (raw data): sin procesor / tidy: son dates preprocesals
- Training vs. Holdout Sets Frain, test, holdout / Validation | dev (Deep learning)
- · Baseline -> (ref. of modulo) refiere al modulo de partida (Models sencito). Es mestro models a gamor
- Parameters vs. Hyperparameters -> garametros son las "stidus" del pipeline | liq. son las "stidus" del muclelo.
- Classification vs. Regression → diferencions la modurales de la Variable de salida → Y € K → clasif
- Model-Based vs. Instance-Based Learning enfogue undelscentrico enfogue chalceutrico.
- Shallow vs. Deep Learning -> clósics Us deep learning

```
t clasico VS transfer borning.
```

- . Fransfer learning to Enfoque (Actual) cle trabajo con modelos MU7 profundos y complejos que entrena dos
- . (Active) took specific training s Agorar un noelels de fairs. learning y especificarls.
- . Zero- shot so possorbo per mi farea.
- . LLM -s lorge language resclets. (+1 mM)
- . bAGI baby Artificial General Intellingence.
- . Embe deling (latent space, dense space)

-baselive - mc1 -s 1+1 - mc2 -s 1+ - mc3 -s 1+

Input Analysis - Machine Learning Pipelines

Machine Learning Pipeline

Ingeniería de Features

Ingeniería de Features

Ingeniería de Features

Train - test - validation

train es para colubr l's de los pipelines. Lest nu validar l's nu n

vouera de generar muestres representatives.

Normalización

Muchos algoritmos de Machine Learning necesitan datos de entrada centrados y normalizados. Una normalización habitual es el z-score, que implica restarle la media y dividir por el desvío a cada feature de mi dataset.

Missing Values

Es muy común en la práctica, recibir como datos de entrada, datasets que tienen información incompleta ("NaN").

ID	City	Degree	Age	Salary	Married ?
1	Lisbon	NaN	25	45,000	0
2	Berlin	Bachelor	25	NaN	1
3	Lisbon	NaN	30	NaN	1
4	Lisbon	Bachelor	30	NaN	1
5	Berlin	Bachelor	18	NaN	0
6	Lisbon	Bachelor	NaN	NaN	0
7	Berlin	Masters	30	NaN	1
8	Berlin	No Degree	NaN	NaN	0
9	Berlin	Masters	25	NaN	1
10	Madrid	Masters	25	NaN	1

Solución 1

Una forma de solucionar el problema es remover las filas y las columnas que contienen dichos valores.

ID	City	Degree	Age	Salary	Married ?
1	Lisbon	NaN	25	45,000	0
2	Berlin	Bachelor	25	NaN	1
3	Lisbon	ivalv	30	NaN	1
4	Lisbon	Bachelor	30	NaN	1
5	Berlin	Bachelor	18	NaN	0
6	Lisbon	Bachelor	ivaiv	ivaiv	0
7	Berlin	Masters	30	NaN	1
8	Borlin	No Dogree	NaN	NaN	0
9	Berlin	Masters	25	NaN	1
10	Madrid	Masters	25	NaN	1

¿Filas luego columnas ó Columnas luego filas?

Solución 2

En columnas donde el % de NaNs es relativamente bajo, es aceptable reemplazar los NaNs por la media o mediana de la columna.

Average_Age = 26.0

ID	City	Age	Married ?
1	Lisbon	25	0
2	Berlin	25	1
3	Lisbon	30	1
4	Lisbon	30	1
5	Berlin	18	0
6	Lisbon	NaN	0
7	Berlin	30	1
8	Berlin	NaN	0
9	Berlin	25	1
10	Madrid	25	1

ID	City	Age	Married ?
1	Lisbon	25	0
2	Berlin	25	1
3	Lisbon	30	1
4	Lisbon	30	1
5	Berlin	18	0
6	Lisbon	26	0
7	Berlin	30	1
8	Berlin	26	0
9	Berlin	25	1
10	Madrid	25	1

Solución avanzada

Las técnicas mencionadas producen distorsiones en la distribución conjunta del vector aleatorio. Estas distorsiones pueden ser muy considerables y afectar en gran medida el entrenamiento del modelo. Para reducir este efecto se puede utilizar MICE (Multivariate Imputation by Chained Equation)

- 1. Se trata cada columna con missing values como la variable dependiente de un problema de regresión.
- 2. Se van haciendo los fits de cada columna de manera secuencial.
- 3. Se utiliza la regresión para completar los missing values.

Ingeniería de Features

One hot encoding

En muchos problemas de Machine Learning, puedo tener como dato de entrada variables categóricas. Por ejemplo, una columna con información sobre el color: {rojo, amarillo, azul}

Para este tipo de información, donde no existe una relación ordinal natural entre las categorías, no sería correcto asignar números a las categorías.

Una forma más expresiva de resolver el problema es utilizar "one hot encoding" y transformar la información en binaria de la siguiente manera.

Bibliografía

Bibliografía

- The Elements of Statistical Learning | Trevor Hastie | Springer
- An Introduction to Statistical Learning | Gareth James | Springer
- Deep Learning | Ian Goodfellow | https://www.deeplearningbook.org/
- Stanford | CS229T/STATS231: Statistical Learning Theory | http://web.stanford.edu/class/cs229t/
- Mathematics for Machine Learning | Deisenroth, Faisal, Ong
- Artificial Intelligence, A Modern Approach | Stuart J. Russell, Peter Norvig

