

50th AIAA Aerospace Sciences Meeting Nashville, Tennessee January 9-12, 2012

Reduction of Defects in Germanium-Silicon

Martin. P. Volz¹, Arne Cröll², Konstantin Mazuruk³

¹NASA, Marshall Space Flight Center, EM31, Huntsville, AL 35812, USA

²Kristallographisches Institute, University of Freiburg, Hebelstr. 25, D-79104, Freiburg, Germany

³University of Alabama in Huntsville, Huntsville, AL 35762, USA

RDGS Flight Investigation

- "Reduction of Defects in Germanium-Silicon" (RDGS) is a NASA Materials Science Flight Investigation
- RDGS is a collaborative investigation between NASA and the European Space Agency (ESA)
- The RDGS experiments will be conducted in the Low Gradient Furnace (LGF) in the Materials Science Laboratory on the International Space Station (ISS)

Materials Science Laboratory

Overview of Investigation

This investigation involves the comparison of results achieved from three types of crystal growth of germanium and germanium-silicon alloys:

- Float zone growth
- Bridgman growth
- Detached Bridgman growth

An understanding of the de-wetting process that enables detached Bridgman growth and of the roles of thermo- and solutocapillary convection in determining the characteristics of float zone Ge-Si crystals are the prerequisite objectives of this investigation. The fundamental objective is a quantitative comparison of the defects induced by various growth factors among the three types of growth methods.

Why Study Germanium-Silicon Alloys?

- Technological applications
 - X-ray and neutron optics (gradient crystals)
 - High-efficiency solar cell material
 - Thermoelectric converters
 - High-speed, high frequency electronic devices (HBTs, HBFETs) as alternative to GaAs
- Characterization methods for silicon and germanium are well-established and are applicable to the alloy crystals.
- Relatively well known material properties and material parameters
- The vapor pressure of silicon and germanium melts can be neglected; they are non-toxic materials.

Technological Challenges of Ge_{1-x}Si_x

- Large separation of solidus and liquidus curves leads to strong segregation
- Lattice mismatch (4%) leads to increased stress, cracks, high dislocation densities, polycrystalline growth
- The reactivity of liquid silicon leads to a reaction with crucible materials (sticking) as well as contamination of the melt and the crystals

Principles of Detached Bridgman Growth

Sufficient condition for detachment^{1,2}: $(\alpha+\theta \ge 180^\circ)$

Advantages

- No sticking of the crystal to the ampoule wall
- Reduced stress
- Reduced dislocations
- No heterogeneous nucleation by the ampoule
- Reduced contamination

¹V. S. Zemskov:

Fiz. Khim. Obrab. Mater. 17 (1983) 56

²T.Duffar, I.Paret-Harter, P.Dusserre: J.Crystal Growth 100 (1990) 171.

Growth Angle and Wetting Angle

Growth angle α :

$$\alpha = \arccos\left(\frac{\gamma_{\text{sg}}^2 + \gamma_{\text{lg}}^2 - \gamma_{\text{sl}}^2}{2 \cdot \gamma_{\text{sg}} \cdot \gamma_{\text{lg}}}\right)$$

W.Bardsley, F.C. Frank, G.W. Green, D.T.J. Hurle: J. Crystal Growth 23 (1974), 341

Wetting angle θ :

$$\theta = \arccos \frac{\gamma_{sg} - \gamma_{sl}}{\gamma_{lg}}$$

(Young equation)

 $\gamma_{\text{\tiny lg}}$: surface energy liquid-gas

 γ_{si} : surface energy solid-liquid

 γ_{sq} : surface energy solid-gas

Gas Pressure Below Meniscus

Higher pressure below the meniscus by active pressurization

Higher pressure below the meniscus by temperature reduction above the melt

Higher pressure below the meniscus due to segregation at the interface

Schematic Diagram of Detached Solidification

M. P. Volz, K. Mazuruk, *Journal of Crystal Growth* 321 (2011) 29-35

Calculation of Meniscus Shapes

$$\frac{\frac{d^2z}{dr^2}}{\left(1+\left(\frac{dz}{dr}\right)^2\right)^{\frac{3}{2}}} + \frac{\frac{dz}{dr}}{r\left(1+\left(\frac{dz}{dr}\right)^2\right)^{\frac{1}{2}}} = \Delta P - Bz(r)$$

Young-Laplace Equation

$$\Delta P = \frac{\Delta P_m r_0}{\sigma}, \quad \Delta P_m = P_H - P_C + \rho g h + 2 \frac{\sigma}{r_H}$$

$$\Delta P$$
: Dimensionless pressure differential across the meniscus

$$B = \frac{\rho g_0 r_0^2}{\sigma}$$
 $B = 3.248$; Ge, $r_0 = 6$ mm
 $B = 4.651$; InSb, $r_0 = 5.5$ mm

B: Bond number; ratio of gravity force to surface tension force

$$\frac{\partial r}{\partial s} = \cos \beta, \quad \frac{\partial z}{\partial s} = \sin \beta, \quad \frac{\partial \beta}{\partial s} = -\frac{\sin \beta}{r} + \Delta P - Bz$$

Set of 3 coupled differential equations

Boundary Conditions

$$z(0) = 0; \ \beta(0) = 90^{\circ} - \alpha;$$

$$\beta(1) = \theta - 90^{\circ}; \ r(1) = 1$$

α: growth angle

 θ : contact or wetting angle

Gap Width vs. Pressure Differential (Ge at 1g)

Meniscus Shapes vs. ΔP for $\theta = 140^{\circ}$

Gap Width vs. Pressure Differential (Ge at $g = 1 \times 10^{-6} g_0$)

"Attached" Germanium

Partially Attached GeSi

M. P. Volz, M. Schweizer, N. Kaiser, S. D. Cobb, L. Vujisic, S. Motakef, F. R. Szofran, *JCG* 237-239 (2002) 1844-1848

Detached Ge in pBN Ampoule

In-situ Pressure Control Setup

Fig. 1. Experimental system: (a) growth configuration; (b) ampoule with silica crucible; (c) ampoule with pBN insert.

W. Palosz, M. P. Volz, S. Cobb, S. Motakef, F. R. Szofran, *JCG* 277 (2005) 124-132

Ge Grown with Controlled △P

W. Palosz, M. P. Volz, S. Cobb, S. Motakef, F. R. Szofran, JCG 277 (2005) 124-132

Propagation of Defects in Detached/Attached Crystals

Fig. 3. Axial EPD variation along the edge in detached- (closed symbols) and attached-grown (open symbols) crystals. In the detached-grown crystals the EPD is reduced more than two orders of magnitude compared to the attached-grown crystal UMC6.

Fig. 4. Axial EPD variation in the middle in detached- (closed symbols) and attached-grown (open symbols) crystals.

M. Schweizer, S. D. Cobb, M. P. Volz, J. Szoke, F. R. Szofran, *JCG* 235 (2002) 161-166

Etch Pit Densities in Detached/Attached Crystals

Fig. 5. Micrograph from the detached-grown sample UMC7 and from the attached-grown sample UMC6.

Etch Pit Density Variation With Attachment

Fig. 6. Localized increased EPD after the crystal attaches partially to the wall.

M. Schweizer, S. D. Cobb, M. P. Volz, J. Szoke, F. R. Szofran, *JCG* 235 (2002) 161-166

X-Ray Synchrotron Topography of Detached Ge

Double Crystal Rocking Curve Maps of Detached Ge

M. P. Volz, M. Schweizer, B. Raghothamachar, M. Dudley, J. Szoke, S. D. Cobb, F. R. Szofran, JCG 290 (2006) 446-451

Rotating Magnetic Fields for Ge_{1-x}Si_x Growth

A rotating magnetic field is available on the LGF furnace and is expected to be utilized for the RDGS experiments. There are several potential uses for the RMF which include the following:

- Mix GeSi alloys prior to growth
- Affect (flatten) the melt/crystal interface shape
- Intentionally cause periods of flow instability or demarcations in the crystals
- Suppress thermal or solutal convection
- Affect the transport of dissolved gas from the melt/crystal interface
 - Calculations suggest that RMF produces radially inward flow at the melt /crystal interface, so that rejected gas is convected away form the detached free surface (J. S. Walker, M. P. Volz, F. R. Szofran, S. Motakef, *J. Mat. Synth. Proc.* 9, (2001) 73-81)

Bridgman Growth in a Rotating Magnetic Field

M. P. Volz, J. S. Walker, M. Schweizer, S. D. Cobb, F. R. Szofran, JCG 282 (2005) 305-312

Effect of RMF on Interface Shape

Growth direction 1

Unmelted seed end

Influence of a RMF on the growth interface shape. The RMF decreases the concavity and induces a w-shape.

Ratio of the interface deflection with a RMF on to the interface deflection with a RMF off.

Flight Experiment Objectives

- 1. Determine the influence of containment on processing defects and impurity incorporation in germanium-silicon crystals.
- Test the theory of detachment by evaluating the following parameters: pressure difference across the meniscus, growth angle, contact angle, and Bond number (ratio of gravitational and capillary forces).
- 3. Determine the influence of thermo- and solutocapillary convection along the free melt at the meniscus on the compositional segregation.
- 4. Control time-dependent STDC (Surface Tension Driven Convection) by the use of rotating magnetic fields. Examine the influence of the RMF on the heat and mass transport and the interface curvature.
- 5. Quantitatively compare the defect structure and impurity levels of microgravity-grown normal and detached Bridgman and float-zone crystals to determine the optimum growth process.

Acknowledgements

The authors gratefully acknowledge support from the NASA International Space Station Research Project.

The following personnel have contributed to the U.S. portion of the RDGS investigation:

Marshall S	pace Flig	ght Center

Dr. Martin Volz (NASA PI)

Dr. Frank Szofran

Dr. Sharon Cobb

Dr. Shari Feth

Dr. Witold Palosz

Ms. Penny Pettigrew

University of Alabama in Huntsville

Dr. Konstantin Mazuruk

Cape Simulations

Dr. Shariar Motakef

Dr. Ljubomir Vujisic

University of Illinois

Dr. John Walker

Visiting Scientists (Germany)

Dr. Arne Cröll (ESA PI),

Dr. Natalie Kaiser (Salk)

Dr. Peter Dold

Dr. Markus Schweizer

Visiting Scientists (Hungary)

Dr. Janos Szoke

Technical Support

C. Bahr/D. Lovell/J. Quick, Qualis Corp.

P. Carpenter/C. Cochrane, USRA

S. Gallop, Tec-Masters