- 1. Building a computer from parts
  - a. You know enough at this point to build your own computer
    - i. Add two numbers
    - ii. Implement other operations like subtract, AND, OR, XOR, so on
    - iii. Calculate a running sum of numbers

iv. Add based on values stored somewhere

- 2. Von Neumann architecture
  - a. Almost all current machine designs based on concepts developed by John von Neumann

b. Architecture based on following three key concepts

3. Tasks of a computer, as defined by Stallings (from before) a. Move data b. Process data c. Store data d. Control 4. Putting together a basic CPU i. Alternative

c. Keeping track of state

b. Let's have registers

- 5. Single bus and executing instructions
  - a. Simplistic single bus CPU below



- b. Sequence of actions
  - i. Fetch
  - ii. Decode
  - iii. Execute
- c. Example let's add two memory locations and place result in register file
  - i. Get value at first memory location
  - ii. Get value at second memory location
  - iii. Add things together and place in register file

| <ul> <li>d. von Neumann bottleneck</li> </ul> | d | . von | Neumann | bott | leneck | ( |
|-----------------------------------------------|---|-------|---------|------|--------|---|
|-----------------------------------------------|---|-------|---------|------|--------|---|

i. Idea

ii. Solution

e. Couple of reasons why we can't reduce to 1 cycle

i. Must increment PC to reach next instruction

ii. Complex addressing modes require multiple trips to memory