Brief Contents

1

1 Introduction

	Foundations	19					
2	Probabilistic inference	21	L				
3	Probabilistic models	41					
1	Parameter estimation	73					
5	Optimization algorithm	ns	95				
3	Information theory	141					
7	Bayesian statistics	159					
3	Bayesian decision theor	у	215				
Π	Linear models	23	39				
9	Linear discriminant and	alysis		241			
10	Logistic regression	257					
11	Linear regression	293					
12	Generalized linear mo	dels	3	41			
Π.	I Deep neural ne	etwoi	·ks		357		
13	Neural networks for u	$_{ m nstruc}$	ture	d dat	ta	359	
14	Neural networks for in	nages		395			
15	Neural networks for se	equenc	es	43	31		
Įν	Nonparametric	mo	dels	5	45'	7	
16	-				ed)	459	
17		175			,		
18		and b)OOS	ting	5	17	
	, , , 00 0			J			

viii BRIEF CONTENTS

\mathbf{V}	Beyond supervised learning 537	
19	Learning with fewer labeled examples 539	
20	Dimensionality reduction 571	
21	Clustering 619	
22	Recommender systems (Unfinished) 641	
23	Graph embeddings 645	
VI	I Appendix: Mathematical backgound	667
A	Some useful mathematics 669	
В	Linear algebra 689	
\mathbf{C}	Probability 729	
D	Frequentist statistics 749	
E	Exercises 785	

Contents

Pı	reface	$\mathbf{x}\mathbf{v}$	
1	Intro	duction	. 1
	1.1	What is	machine learning? 1
	1.2	Supervis	sed learning 1
		1.2.1	Classification 2
		1.2.2	Regression 7
		1.2.3	Overfitting and generalization 10
	1.3	Unsuper	vised learning 11
		1.3.1	Clustering 12
		1.3.2	Self-supervised learning 12
		1.3.3	Evaluating unsupervised learning 13
	1.4	Reinford	ement learning 13
		1.4.1	Challenges in RL 14
		1.4.2	Comparing supervised, unsupervised and reinforcement learning 15
	1.5	Discussi	on 15
		1.5.1	The relationship between ML and other fields 16
		1.5.2	Structure of the book 16
		1.5.3	Caveats 16
_	_	• . •	
Ι	Fou	ndatio	ns 19
2	Prob	abilistic	inference 21
	2.1	Introduc	etion 21
	2.2	Bayes' r	ule 21
		2.2.1	Example: testing for COVID-19 22
		2.2.2	Example: The Monty Hall problem 23
		2.2.3	Inverse problems 24
	2.3	Bayesiar	a concept learning 25
		2.3.1	Learning a discrete concept: the number game 26
		2.3.2	Learning a continuous concept: the healthy levels game 32

X CONTENTS

	4.1	Introdu	action 73
1	Para	meter	estimation 73
		3.8.1 $3.8.2$	Inference 70 Plate notation 70
	3.8		bilistic graphical models 68
	2 0	3.7.3	Gaussian scale mixtures 67
		3.7.2	Mixtures of Bernoullis 66
		3.7.1	Gaussian mixture models 65
	3.7		re models 64
	a =	3.6.2	Example: inferring a latent vector from multiple noisy sensors 63
		3.6.1	Example: inferring a latent vector from a noisy sensor 62
	3.6		Gaussian systems 61
		3.5.4	Example: Imputing missing values 60
		3.5.3	Marginals and conditionals of an MVN 60
		3.5.2	Mahalanobis distance 58
		3.5.1	Definition 57
	3.5	The m	ultivariate Gaussian (normal) distribution 57
		3.4.5	Gamma distribution 55
		3.4.4	Beta distribution 55
		3.4.3	Laplace distribution 54
		3.4.2	Cauchy distribution 54
		3.4.1	Student t distribution 52
	3.4		other common univariate distributions 52
		3.3.5	Half-normal 52
		3.3.4	Why is the Gaussian distribution so widely used? 51
		3.3.3	Regression 50
		3.3.2	Probability density function 49
	5.0	3.3.1	Cumulative distribution function 48
	3.3		iate Gaussian (normal) distribution 48
		3.2.3 $3.2.4$	Log-sum-exp trick 47
		3.2.3	
		3.2.1 $3.2.2$	Softmax function 45
	3.2	3.2.1	orical and multinomial distributions 45 Definition 45
	2.0	3.1.3	Binary logistic regression 44
		3.1.2	Sigmoid (logistic) function 42
		3.1.1	Definition 41
	3.1		alli and binomial distributions 41
3			ic models 41
	ъ.	1 -11	
		2.4.3	Scaling up 39
		2.4.2	Example: binary input, scalar output 38
		2.4.1	Example: scalar input, binary output 37
	2.4	Bayesia	an machine learning 35

CONTENTS xi

4.2	Maxim	um likelihood estimation (MLE) 73
	4.2.1	Definition 73
	4.2.2	Justification for MLE 74
	4.2.3	Example: MLE for the Bernoulli distribution 75
	4.2.4	Example: MLE for the categorical distribution 76
	4.2.5	Example: MLE for the univariate Gaussian 77
	4.2.6	Example: MLE for the multivariate Gaussian 78
	4.2.7	Example: MLE for linear regression 80
4.3	Empiri	cal risk minimization (ERM) 81
	4.3.1	Example: minimizing the misclassification rate 81
	4.3.2	Surrogate loss 81
4.4	Regula	rization 82
	4.4.1	Example: MAP estimation for the Bernoulli distribution 8
	4.4.2	Example: MAP estimation for the multivariate Gaussian 8
	4.4.3	Example: weight decay 85
	4.4.4	Picking the regularizer using a validation set 87
	4.4.5	Cross-validation 87
	4.4.6	Early stopping 89
	4.4.7	Using more data 89
4.5	The me	ethod of moments 91
	4.5.1	Example: MOM for the univariate Gaussian 91
	4.5.2	Example: MOM for the uniform distribution 91
4.6	Online	(recursive) estimation 92
	4.6.1	Example: recursive MLE for the mean of a Gaussian 92
	4.6.2	Exponentially-weighted moving average (EMA) 93
	4.6.3	Bayesian inference 94
4.7	Parame	eter uncertainty 94
Opt	imizatio	on algorithms 95
5.1	Introdu	_
0.1	5.1.1	Local vs global optimization 95
	5.1.2	Constrained vs unconstrained optimization 97
	5.1.3	Convex vs nonconvex optimization 97
	5.1.4	Smooth vs nonsmooth optimization 98
5.2		rder methods 98
	5.2.1	Descent direction 99
	5.2.2	Step size (learning rate) 99
	5.2.3	Convergence rates 101
	5.2.4	Momentum methods 102
5.3		-order methods 104
-	5.3.1	Newton's method 104
	5.3.2	BFGS and other quasi-Newton methods 105
	5.3.3	Trust region methods 106
	5.3.4	Natural gradient descent 107
5 4		stic gradient descent 110

5

xii CONTENTS

	5.4.1	Application to finite sum problems 111
	5.4.2	Example: SGD for fitting linear regression 111
	5.4.3	Choosing the step size 112
	5.4.4	Iterate averaging 113
	5.4.5	Variance reduction 113
	5.4.6	Preconditioned SGD 114
5.5	Constr	ained optimization 117
	5.5.1	Lagrange multipliers 118
	5.5.2	The KKT conditions 119
	5.5.3	Linear programming 120
	5.5.4	Quadratic programming 122
	5.5.5	Mixed integer linear programming 123
5.6	Proxin	nal gradient method 123
	5.6.1	Projected gradient descent 124
	5.6.2	Proximal operator for ℓ_1 -norm regularizer 125
	5.6.3	Proximal operator for quantization 126
5.7	Bound	optimization 127
	5.7.1	The general algorithm 127
	5.7.2	The EM algorithm 128
	5.7.3	Example: EM for a GMM 131
	5.7.4	Example: EM for an MVN with missing data 135
5.8	Blackb	ox and derivative free optimization 138
	5.8.1	Grid search and random search 138
	5.8.2	Simulated annealing 138
	5.8.3	Model-based blackbox optimization 139
Info	rmatio	n theory 141
6.1	Entrop	v 141
	6.1.1	Entropy for discrete random variables 141
	6.1.2	Cross entropy 143
	6.1.3	Joint entropy 143
	6.1.4	Conditional entropy 144
	6.1.5	- · · · · · · · · · · · · · · · · · · ·
	6.1.6	Differential entropy for continuous random variables 145
6.2	Relativ	ve entropy (KL divergence) 146
	6.2.1	Definition 147
	6.2.2	Interpretation 147
	6.2.3	Example: KL divergence between two Gaussians 147
	6.2.4	Non-negativity of KL 148
	6.2.5	KL divergence and MLE 148
	6.2.6	Forward vs reverse KL 149
6.3	Mutua	l information 150
	6.3.1	Definition 150
	6.3.2	Interpretation 151
	633	Example 151

6

CONTENTS xiii

		6.3.4	Conditional mutual information 152
		6.3.5	Normalized mutual information 153
		6.3.6	MI as a "generalized correlation coefficient" 153
		6.3.7	Data processing inequality 155
		6.3.8	Sufficient Statistics 156
		6.3.9	Fano's inequality 156
7	Baye	esian st	atistics 159
	7.1	Introdu	action 159
		7.1.1	Computing the posterior 159
		7.1.2	Summarizing the posterior 159
	7.2		ate priors 163
		7.2.1	The beta-binomial model 164
		7.2.2	The Dirichlet-multinomial model 170
		7.2.3	The Gaussian-Gaussian model 174
		7.2.4	The multivariate Gaussian-Gaussian model 179
		7.2.5	Beyond conjugate priors 185
	7.3		ormative priors 185
		7.3.1	Jeffreys priors 186
		7.3.2	Invariant priors 188
		7.3.3	Reference priors 189
	7.4		chical priors 189
		7.4.1	A hierarchical binomial model 190
		7.4.2	A hierarchical Gaussian model 191
	7.5	_	cal priors 194
		7.5.1	A hierarchical binomial model 195
		7.5.2	A hierarchical Gaussian model 196
	7.6		an model selection 197
		7.6.1	Example: polynomial regression 198
		7.6.2	Bayesian Occam's razor 198
		7.6.3	Connection between cross validation and marginal likelihood 199
		7.6.4	Bayes model averaging 201
		7.6.5	The minimum description length (MDL) principle 201
		7.6.6	Bayesian hypothesis testing 202
		7.6.7	Group comparisons 204
		7.6.8	Posterior predictive checks 206
	7.7		cimate inference algorithms 208
			Grid approximation 208
		7.7.2	Laplace approximation 209
		7.7.3	Variational approximation 210
		7.7.4	Markov Chain Monte Carlo (MCMC) approximation 211
		7.7.5	Online inference using assumed density filtering 213
8	Baye	esian de	ecision theory 215
	8.1	Bavesia	an decision theory 215

CONTENTSxiv

		0.1.1 D: 915
		8.1.1 Basics 215
		8.1.2 Classification problems 216
		8.1.3 ROC curves 218
		8.1.4 Precision-recall curves 220
		8.1.5 Regression problems 222
	0.0	8.1.6 Probabilistic prediction problems 223
	8.2	A/B testing 225
		8.2.1 A Bayesian approach 225
	0.9	8.2.2 Example 228
	8.3	Bandit problems 229
		8.3.1 Contextual bandits 230
		8.3.2 Markov decision processes 231
		8.3.3 Exploration-exploitation tradeoff 232
		8.3.4 Optimal solution 232
		8.3.5 Regret 234
		8.3.6 Upper confidence bounds (UCB) 235
		8.3.7 Thompson sampling 236 8.3.8 Simple heuristics 237
	8.4	8.3.8 Simple heuristics 237 Discussion 238
	0.4	8.4.1 The separation principle and its limits 238
		8.4.2 Optimality of the Bayesian approach and its limits 238
		6.4.2 Optimality of the Dayesian approach and its limits 256
11 9		near models 239 ar discriminant analysis 241
	9.1	Introduction 241
	9.2	Gaussian discriminant analysis 241
	· · -	9.2.1 Quadratic decision boundaries 242
		9.2.2 Linear decision boundaries 243
		9.2.3 The connection between LDA and logistic regression 243
		9.2.4 Model fitting 244
		9.2.5 Nearest centroid classifier 246
		9.2.6 Fisher's linear discriminant analysis 246
	9.3	Naive Bayes classifiers 250
		9.3.1 Example models 251
		9.3.2 Model fitting 252
		9.3.3 Bayesian naive Bayes 253
		9.3.4 The connection between naive Bayes and logistic regression 25
	9.4	Generative vs discriminative classifiers 254
		9.4.1 Advantages of discriminative classifiers 254
		9.4.2 Advantages of generative classifiers 255
		9.4.3 Handling missing features 255

10.1	Introduction 257
10.2	Binary logistic regression 257
	10.2.1 Linear classifiers 257
	10.2.2 Nonlinear classifiers 258
	10.2.3 Maximum likelihood estimation 260
	10.2.4 Stochastic gradient descent 263
	10.2.5 Perceptron algorithm 264
	10.2.6 Iteratively reweighted least squares 264
	10.2.7 MAP estimation 266
	10.2.8 Standardization 267
10.3	Multinomial logistic regression 268
	10.3.1 Linear and nonlinear classifiers 268
	10.3.2 Maximum likelihood estimation 269
	10.3.3 Gradient-based optimization 271
	10.3.4 Bound optimization 271
	10.3.5 MAP estimation 273
	10.3.6 Maximum entropy classifiers 273
	10.3.7 Hierarchical classification 274
	10.3.8 Handling large numbers of classes 275
10.4	Bayesian logistic regression 277
	10.4.1 Approximating the posterior predictive 277
	10.4.2 Laplace approximation 278
	10.4.3 MCMC approximation 280
	10.4.4 Variational inference 282
	10.4.5 Online inference using assumed density filtering 286
10.5	Preprocessing discrete input data 288
	10.5.1 One-hot encoding 288
	10.5.2 Feature crosses 289
	10.5.3 Dealing with text 289
11 Lines	ar regression 293
	Introduction 293
	Standard linear regression 293
11.2	11.2.1 Terminology 293
	11.2.2 Least squares estimation 294
	11.2.3 Other approaches to computing the MLE 298
	11.2.4 Measuring goodness of fit 301
11.3	Ridge regression 303
11.0	11.3.1 Computing the MAP estimate 304
	11.3.2 Connection between ridge regression and PCA 305
	11.3.3 Choosing the strength of the regularizer 307
11.4	Robust linear regression 307
	11.4.1 Robust regression using the Student t distribution 307
	11.4.2 Robust regression using the Laplace distribution 309
	11.4.3 Robust regression using Huber loss 310

	11.4.4 Robust regression by randomly or iteratively removing outliers 311	L	
11.5	0		
	11.5.1 MAP estimation with a Laplace prior (ℓ_1 regularization) 311		
	11.5.2 Why does ℓ_1 regularization yield sparse solutions? 312		
	11.5.3 Hard vs soft thresholding 313		
	11.5.4 Regularization path 315		
	11.5.5 Comparison of least squares, lasso, ridge and subset selection 316		
	11.5.6 Variable selection consistency 317		
	11.5.7 Group lasso 318		
	11.5.8 Elastic net (ridge and lasso combined) 321		
11.0	11.5.9 Optimization algorithms 321		
11.6	Bayesian linear regression 323		
	11.6.1 Computing $p(\mathbf{w} \mathcal{D}, \sigma^2)$ with Gaussian prior 323		
	11.6.2 Computing $p(\mathbf{w}, \sigma^2 \mathcal{D})$ with Gaussian-Gamma prior 327		
	11.6.3 Uninformative priors 329 11.6.4 Sparsity-promoting priors 331		
	11.6.4 Sparsity-promoting priors 331 11.6.5 Hierarchical priors 334		
	11.6.6 Empirical Bayes (Automatic relevancy determination) 336		
	11.6.7 Online inference (recursive least squares) 339		
	()		
12 Gene	eralized linear models 341		
12.1	Introduction 341		
12.2	The exponential family 341		
	12.2.1 Definition 341		
	12.2.2 Examples 342		
	12.2.3 Log partition function is cumulant generating function 346		
	12.2.4 MLE for the exponential family 348		
400	12.2.5 Exponential dispersion family 348		
12.3	Generalized linear models (GLMs) 349		
	12.3.1 Examples 349		
	12.3.2 Maximum likelihood estimation 351		
12.4	12.3.3 GLMs with non-canonical link functions 352 Probit regression 353		
12.4	Probit regression 353 12.4.1 Latent variable interpretation 353		
	12.4.2 Maximum likelihood estimation 354		
	12.4.3 Bayesian inference 355		
	12.4.4 Ordinal probit regression 355		
	12.4.5 Multinomial probit models 356		
	12.10 Patrillomar prosts models		
III D	Deep neural networks 357		
13 Neur	ral networks for unstructured data 359		
13.1	Introduction 359		
13.2	Multilayer perceptrons (MLPs) 360		

Draft of "Probabilistic Machine Learning: An Introduction". December 21, 2020

CONTENTS xvii

	13.2.1	The XOR problem 360	
	13.2.2	Differentiable MLPs 361	
	13.2.3	Activation functions 362	
	13.2.4	Example models 364	
	13.2.5	The importance of depth 368	
	13.2.6	Connections with biology 370	
13.3	Backpr	opagation 372	
	13.3.1	Forwards pass 372	
	13.3.2	Backwards pass 372	
	13.3.3	Automatic differentiation 374	
	13.3.4	-	
13.4	Trainin	g neural networks 378	
	13.4.1	Tuning the learning rate 378	
	13.4.2		
	13.4.3	Residual connections 380	
	13.4.4	Batch normalization 381	
		Parameter initialization 383	
13.5	_	rization 385	
		Early stopping 385	
		Weight decay 385	
	13.5.3		
		Dropout 387	
		Bayesian neural networks 387	
13.6		kinds of feedforward networks 388	
	13.6.1		
	13.6.2	Mixtures of experts 389	
14 Neu	ral netw	vorks for images 395	
14.1	Introdu	action 395	
14.2	Basics		
		Convolution in 1d 395	
		Convolution in 2d 397	
		Convolution as matrix-vector multiplication	398
		Boundary conditions and strides 398	
		Pooling layers 401	
		Normalization layers 402	
		Putting it altogether 403	
14.3		classification using CNNs 403	
	14.3.1	Common datasets 403	
	14.3.2	Common models 407	
14.4		other discriminative vision tasks with CNNs	411
	14.4.1	Image tagging 411	
	14.4.2	Object detection 412	
	14.4.3	Human pose estimation 413	
	14.4.4	Image segmentation 413	

xviii CONTENTS

14.0	Generating images by inverting CNNs 410
	14.5.1 Converting a trained classifier into a generative model 416
	14.5.2 Image priors 416
	14.5.3 Visualizing the features learned by a CNN 418
	14.5.4 Deep Dream 419
	14.5.5 Neural style transfer 420
14.6	Adversarial Examples 423
	14.6.1 Whitebox (gradient-based) attacks 424
	14.6.2 Blackbox (gradient-free) attacks 425
	14.6.3 Real world adversarial attacks 426
	14.6.4 Defenses based on robust optimization 426
	14.6.5 Why models have adversarial examples 427
15 Neu	ral networks for sequences 431
15.1	Introduction 431
15.2	Recurrent neural networks (RNNs) 431
	15.2.1 Vec2Seq (sequence generation) 431
	15.2.2 Seq2Vec (sequence classification) 434
	15.2.3 Seq2Seq (sequence translation) 435
	15.2.4 Beam search 437
	15.2.5 Backpropagation through time 437
	15.2.6 Gating and long term memory 438
15.3	1d CNNs 440
	15.3.1 1d CNNs for sequence classification 440
	15.3.2 Causal 1d CNNs for sequence generation 441
15.4	Attention 442
	15.4.1 Seq2seq with attention 443
	15.4.2 Seq2vec with attention 444
	15.4.3 Attention as a soft dictionary lookup 444
	15.4.4 Soft vs hard attention 446
15.5	Transformers 446
	15.5.1 Self-attention 447
	15.5.2 Multi-headed attention 448
	15.5.3 Positional encoding 449
	15.5.4 Putting it altogether 449
	15.5.5 Comparing transformers, CNNs and RNNs 450
15.6	Efficient transformers 451
	15.6.1 Fixed non-learnable localized attention patterns 451
	15.6.2 Learnable sparse attention patterns 452
	15.6.3 Memory and recurrence methods 453
	15.6.4 Low-rank and kernel methods 453

IV	N	onpar	ametric models 457
16	Exen	nplar-b	ased methods (Unfinished) 459
		16.0.1	K nearest neighbor (KNN) classification 459
	16.1	Kernel	density estimation (KDE) 463
		16.1.1	Kernel functions 463
		16.1.2	Parzen window density estimator 464
		16.1.3	How to choose the bandwidth parameter 466
		16.1.4	From KDE to KNN classification 466
		16.1.5	Kernel regression 466
	16.2	Learnin	g distance metrics 469
		16.2.1	Linear and convex methods 469
		16.2.2	Deep metric learning 470
		16.2.3	Speedup tricks 473
17	Kern	el metl	nods 475
	17.1	Inferrin	g functions from data 475
		17.1.1	
		17.1.2	Inference from noise-free observations 476
			Inference from noisy observations 478
	17.2	Mercer	kernels 478
		17.2.1	Mercer's theorem 478
		17.2.2	Some popular Mercer kernels 479
	17.3	Gaussia	n processes 484
		17.3.1	Noise-free observations 484
		17.3.2	Noisy observations 485
		17.3.3	Weight space vs function space 486
		17.3.4	Numerical issues 487
			Estimating the kernel 487
		17.3.6	GPs for classification 490
		17.3.7	Connections with deep learning 492
	17.4	_	GPs to large datasets 492
			(Sparse) variational inference 492
		17.4.2	
		17.4.3	Random feature approximation 498
	17.5		t vector machines (SVMs) 500
		17.5.1	Large margin classifiers 500
			The dual problem 502
		17.5.3	Soft margin classifiers 504
		17.5.4	The kernel trick 505
		17.5.5	Converting SVM outputs into probabilities 505
		17.5.6	Connection with logistic regression 506
		17.5.7	Multi-class classification with SVMs 507
		17.5.8	How to choose the regularizer C 508
		17.5.9	Kernel ridge regression 509

XX CONTENTS

		17.5.10 SVMs for regression 510
	17.6	Sparse vector machines 512
		17.6.1 Relevance vector machines (RVMs) 513
		17.6.2 Comparison of sparse and dense kernel methods 513
18	Trees	s, forests, bagging and boosting 517
	18.1	Classification and regression trees (CART) 517
		18.1.1 Model definition 517
		18.1.2 Model fitting 518
		18.1.3 Regularization 519
		18.1.4 Pros and cons 519
	18.2	Ensemble learning 521
		18.2.1 Stacking 521
		18.2.2 Ensembling is not Bayes model averaging 521
		Bagging 522
		Random forests 523
	18.5	Boosting 524
		18.5.1 Forward stagewise additive modeling 525
		18.5.2 Quadratic loss and least squares boosting 525
		18.5.3 Exponential loss and AdaBoost 525
		18.5.4 LogitBoost 528
	10.6	18.5.5 Gradient boosting 530
	18.0	Interpreting tree ensembles 533
		18.6.1 Feature importance 534 18.6.2 Partial dependency plots 535
		18.6.2 Partial dependency plots 535
V	Be	yond supervised learning 537
19		ning with fewer labeled examples 539
	19.1	Data augmentation 539
		19.1.1 Examples 539 19.1.2 Theoretical justification 540
	19.2	19.1.2 Theoretical justification 540 Transfer learning 541
	19.2	19.2.1 Fine-tuning 541
		19.2.2 Supervised pre-training 542
		19.2.3 Unsupervised pre-training (self-supervised learning) 543
		19.2.4 Domain adaptation 544
	19.3	Meta-learning 544
	10.0	19.3.1 Model-agnostic meta-learning (MAML) 545
	19.4	Few-shot learning 546
		19.4.1 Matching networks 547
	19.5	Word embeddings 548
		19.5.1 Methods based on SVD 548
		19.5.2 Word2vec 550

Draft of "Probabilistic Machine Learning: An Introduction". December 21, 2020

	19.5.3	RAND-WALK model of word embeddings	552
	19.5.4	Word analogies 553	
	19.5.5	Contextual word embeddings 554	
19.6	Semi-su	pervised learning 558	
	19.6.1	Self-training and pseudo-labeling 559	
	19.6.2	Entropy minimization 560	
	19.6.3	Co-training 562	
	19.6.4	Label propagation on graphs 563	
	19.6.5	Consistency regularization 564	
	19.6.6	Deep generative models 565	
19.7	Active	learning 568	
	19.7.1	Decision-theoretic approach 569	
	19.7.2	Information-theoretic approach 569	
	19.7.3	Batch active learning 570	
20 Dim	ensiona	lity reduction 571	
20.1	Princip	pal components analysis (PCA) 571	
	20.1.1	Examples 571	
	20.1.2	Derivation of the algorithm 573	
	20.1.3	Computational issues 576	
	20.1.4	Choosing the number of latent dimensions	578
20.2	Factor	analysis 580	
	20.2.1	Generative model 580	
	20.2.2	Probabilistic PCA 582	
	20.2.3	EM algorithm for FA/PPCA 583	
	20.2.4	Unidentifiability of the parameters 585	
	20.2.5	Nonlinear factor analysis 587	
	20.2.6	Mixtures of factor analysers 588	
	20.2.7	Exponential family factor analysis 589	
	20.2.8	Factor analysis models for paired data 59	90
20.3	Autoen		
	20.3.1		
	20.3.2	0	
	20.3.3		
	20.3.4	•	
		Variational autoencoders 598	
20.4		ld learning 603	
		What are manifolds? 603	
	20.4.2	The manifold hypothesis 603	
	20.4.3	Approaches to manifold learning 604	
	20.4.4	Multi-dimensional scaling (MDS) 605	
	20.4.5	Isomap 608	
	20.4.6	Kernel PCA 608	
	20.4.7	Maximum variance unfolding (MVU) 610)
	20.4.8	Local linear embedding (LLE) 611	

xxii CONTENTS

			Laplacian eigenmaps 612 t-SNE 615
21	Clust	tering	619
		_	cal agglomerative clustering 619
	21.1		The algorithm 619
			Example 622
	21.2		clustering 623
			The algorithm 623
		21.2.2	Examples 624
		21.2.3	Vector quantization 625
		21.2.4	The K-means++ algorithm 626
		21.2.5	The K-medoids algorithm 627
		21.2.6	Speedup tricks 627
		21.2.7	Choosing the number of clusters K 628
	21.3	Clusterin	g using mixture models 631
			Mixtures of Gaussians 631
	21.4	-	clustering 633
			Normalized cuts 633
			Eigenvectors of the graph Laplacian encode the clustering 634
			Example 634
			Connection with other methods 635
	21.5	Bicluster	· ·
			Basic biclustering 636
		21.5.2	Nested partition models (Crosscat) 637
22	Reco	mmende	r systems (Unfinished) 641
	22.1		feedback 641
			Netflix competition 641
			Matrix factorization 642
			Autoencoders 642
	22.2		Feedback 642
			Ranking loss 642
	00.0		Neural collaborative filtering 642
	22.3		ng side information 642
			Sequence-aware recommendation 642 Factorization machines 642
	22.4		Factorization machines 642 ion-exploitation tradeoff 642
	22.4	Explorati	on-exploitation tradeon 042
23	_	h embed	-
	23.1	Introduct	
	23.2		mbedding as an Encoder/Decoder Problem 646
	23.3		graph embeddings 648
			Unsupervised embeddings 648
		23 3 2	Distance-based: Euclidean methods 649

Draft of "Probabilistic Machine Learning: An Introduction". December 21, 2020

CONTENTS xxiii

		23.3.3 Distance-based: non-Euclidean methods 650
		23.3.4 Outer product-based: Matrix factorization methods 650
		23.3.5 Outer product-based: Skip-gram methods 651
		23.3.6 Supervised embeddings 652
	23.4	Graph Neural Networks 653
		23.4.1 Message passing GNNs 653
		23.4.2 Spectral Graph Convolutions 655
		23.4.3 Spatial Graph Convolutions 655
		23.4.4 Non-Euclidean Graph Convolutions 657
	23.5	Deep graph embeddings 657
		23.5.1 Unsupervised embeddings 657
		23.5.2 Semi-supervised embeddings 660
	23.6	Applications 661
		23.6.1 Unsupervised applications 661
		23.6.2 Supervised applications 663
۸ -		lian cer
AJ	ppend	lices 665
\mathbf{V}	I A	ppendix: Mathematical backgound 667
A		e useful mathematics 669
	A.1	
	A.2	· ·
		A.2.1 Functions 669
		A.2.2 Relations 673
	A.3	Matrix calculus 674
		A.3.1 Derivatives 674
		A.3.2 Gradients 675
		A.3.3 Jacobian 676
		A.3.4 Hessian 676
		A.3.5 Gradients of commonly used functions 676
	A.4	Convexity 678
		A.4.1 Convex sets 678
		A.4.2 Convex functions 680
		A.4.3 Jensen's inequality 682
		A.4.4 Subgradients 682
		A.4.5 Taylor series approximation 683
		A.4.6 Bregman divergence 684
		A.4.7 Conjugate duality 685
\mathbf{B}	Line	ar algebra 689
	B.1	Introduction 689
		B.1.1 Notation 689
		B.1.2 Vector spaces 692
		B.1.3 Norms of a vector and matrix 694

XXIV CONTENTS

	B.1.4	Properties of a matrix 696
	B.1.5	Special types of matrices 698
B.2	Matrix	multiplication 702
	B.2.1	Vector-Vector Products 702
	B.2.2	Matrix-Vector Products 702
	B.2.3	Matrix-Matrix Products 703
	B.2.4	Application: manipulating data matrices 705
	B.2.5	Kronecker products 707
	B.2.6	Einstein summation 708
B.3	Matrix	inversion 709
	B.3.1	The inverse of a square matrix 709
	B.3.2	Schur complements 709
	B.3.3	The matrix inversion lemma 711
	B.3.4	Matrix determinant lemma 711
B.4	Eigenva	lue decomposition (EVD) 712
	B.4.1	Basics 712
	B.4.2	Diagonalization 713
	B.4.3	Eigenvalues and eigenvectors of symmetric matrices 713
	B.4.4	Geometry of quadratic forms 714
	B.4.5	Standardizing and whitening data 714
	B.4.6	Power method 716
	B.4.7	Deflation 717
	B.4.8	Eigenvectors optimize quadratic forms 717
B.5		r value decomposition (SVD) 717
	B.5.1	Basics 717
	B.5.2	Connection between SVD and EVD 718
	B.5.3	Pseudo inverse 719
	B.5.4	SVD and the range and null space of a matrix 720
	B.5.5	Truncated SVD 721
	B.5.6	Application: matrix factorization (MF) 722
B.6		natrix decompositions 722
	B.6.1	LU factorization 722
	B.6.2	QR decomposition 723
	B.6.3	Cholesky decomposition 724
B.7		systems of linear equations 724
	B.7.1	Solving square systems 725
	B.7.2	Solving underconstrained systems (least norm estimation) 726
	B.7.3	Solving overconstrained systems (least squares estimation) 727
Prol	oability	729
C.1	Introdu	ction 729
	C.1.1	What is probability? 729
	C.1.2	Types of uncertainty 729
	C.1.3	Fundamental rules of probability 730
C.2	Randon	n variables 731

 \mathbf{C}

C.2.2 Continuous random variables 732 C.3 Sets of related random variables 734 C.3.1 Light representational distributions 734	
O 2 1	
	734
C.3.2 Bayes' rule 735	
1	35
C.4 Properties of a distribution 736	
C.4.1 Moments of a distribution 736	
C.4.2 Covariance 739	
C.4.3 Correlation 739	
C.4.4 Uncorrelated does not imply indpendent 740	
C.4.5 Correlation does not imply causation 741	
C.4.6 Simpsons' paradox 741	
C.5 Transformations of random variables 742	
C.5.1 Discrete case 743	
C.5.2 Continuous case 743	
C.5.3 Invertible transformations (bijectors) 743	
C.5.4 Moments of a linear transformation 745	
C.5.5 The convolution theorem 746	
C.5.6 Central limit theorem 748	
Frequentist statistics 749	
D.1 Introduction 749	
D.2 Fisher information matrix (FIM) 749	
D.2.1 Definition 749	
D.2.2 Connection between the FIM and the Hessian of t	he NLL 750
D.2.3 Examples 751	
8	752
D.3 Sampling distributions 753	
D.3.1 Exact sampling distribution of the MLE 753	
D.3.2 Large sample approximation 755	
D.3.3 Bootstrap approximation 756	
D.3.4 Confidence intervals 758	
D.4 Bias and variance 759	
D.4.1 Bias of an estimator 759	
D.4.2 Variance of an estimator 759	
D.4.3 The bias-variance tradeoff 760	
D.4.3 The bias-variance tradeoff 760 D.4.4 Jacknife 762	
D.4.3 The bias-variance tradeoff 760 D.4.4 Jacknife 762 D.5 Frequentist decision theory 764	
D.4.3 The bias-variance tradeoff 760 D.4.4 Jacknife 762 D.5 Frequentist decision theory 764 D.5.1 Computing the risk of an estimator 764	
D.4.3 The bias-variance tradeoff 760 D.4.4 Jacknife 762 D.5 Frequentist decision theory 764 D.5.1 Computing the risk of an estimator 764 D.5.2 Consistent estimators 767	
D.4.3 The bias-variance tradeoff 760 D.4.4 Jacknife 762 D.5 Frequentist decision theory 764 D.5.1 Computing the risk of an estimator 764 D.5.2 Consistent estimators 767 D.5.3 Admissible estimators 767	
D.4.3 The bias-variance tradeoff 760 D.4.4 Jacknife 762 D.5 Frequentist decision theory 764 D.5.1 Computing the risk of an estimator 764 D.5.2 Consistent estimators 767	

 \mathbf{D}

xxvi CONTENTS

Bibliography			821
\mathbf{E}	Exer	cises	785
		D.8.5	Why isn't everyone a Bayesian? 782
		D.8.4	p-values depend on the stopping rule 781
		D.8.3	p-values overstate evidence against the null hypothesis 780
		D.8.2	p-values confuse deduction with induction 780
		D.8.1	Confidence intervals are not credible 779
	D.8	Patholo	ogies of frequentist statistics 778
		D.7.5	p-values 778
		D.7.4	χ^2 test 777
		D.7.3	t-test 776
		D.7.2	Null hypothesis significance testing (NHST) 776
		D.7.1	Likelihood ratio test 775
	D.7		esis testing 774
		D.6.4	Statistical learning theory 773
		D.6.3	Cross-validation 772
		D.6.2	Structural risk 772

Preface

In 2012, I published a 1200-page book called "Machine learning: a probabilistic perspective", which provided a fairly comprehensive coverage of the field of machine learning (ML) at that time, under the unifying lens of probabilistic modeling. The book was well received, and won the De Groot prize in 2013.

2012 was also the year that is generally considered the start of the "deep learning revolution". The term "deep learning" refers to a branch of ML that is based on neural networks with many layers (hence the term "deep"). Although this basic technology had been around for many years, it was not until 2012 that it started to significantly outperform other, more "classical" approaches to ML, on several challenging benchmarks. For example, [KSH12] used deep neural networks (DNNs) to win the ImageNet image classification challenge, [CMS12] used DNNs to win a different image classification challenge, and [DHK13] used DNNs to outperform existing methods for speech recognition by a large margin. These breakthroughs were enabled by advances in hardware technology (in particular, the repurposing of fast graphics processing units from video games to ML), data collection technology (in particular, the use of crowd sourcing to collect large labeled datasets such as ImageNet), as well as various new algorithmic ideas.

Since 2012, the field of deep learning has exploded, with new advances coming at an increasing pace. Interest in the field has also exploded, fueled by the commercial success of the technology, and the breadth of applications to which it can be applied. Therefore, in 2018, I decided to write a second edition of my book, to attempt to summarize some of this progress.

By Spring 2020, my draft of the second edition had swollen to about 1600 pages, and I was still not done. At this point, 3 major events happened. First, MIT Press told me they could not publish a 1600 page book, and that I would need to split it into two volumes. Second, the COVID-19 pandemic struck, so I decided to put the book on hold, so I could work 100% on various internal and external modeling efforts. Third, as a consequence of my "pivot" towards COVID-19 work, I realized that I would never finish the book unless I got help from others; fortunately I managed to recruit several colleagues to help me write the last $\sim 15\%$ of "missing content". (See acknowledgements below.)

The result is two new books, "Probabilistic Machine Learning: An Introduction", which you are currently reading, and "Probabilistic Machine Learning: Advanced Topics", which is the sequel to this book [Mur22]. Together these two books attempt to present a fairly broad coverage of the field of ML c. 2020, using the same unifying lens of probabilistic modeling and Bayesian decision theory that I used in the first book.

Most of the content from the first book has been reused, but it is now split fairly evenly between

xxviii Preface

the two new books. In addition, each book has lots of new material, covering some topics from deep learning, but also advances in other parts of the field, such as generative models, variational inference and reinforcement learning. To make the book more self-contained and useful for students, I have also added some more background content, on topics such as optimization and linear algebra, that was omitted from the first book due to lack of space.

Another major change is that nearly all of the software now uses Python instead of Matlab. The new code leverages standard Python libraries, such as numpy, scipy, scikit-learn, etc. Some examples also rely on various deep learning libraries, such as TensorFlow, PyTorch and JAX. In addition to scripts to create some of the figures, there are Jupyter notebooks to accompany each chapter, which discuss practical aspects that we don't have space to cover in the main text. Details can be found at http://mlbayes.ai.

Acknowledgements

I would like to thank the following people for helping me to write various parts of this book:

- Frederik Kunstner, Si Yi Meng, Aaron Mishkin, Sharan Vaswani, and Mark Schmidt who helped write parts of Chapter 5 (Optimization algorithms).
- Lihong Lig, who helped write parts of Sec. 8.3 (Bandit problems).
- Justin Gilmer, who helped write Sec. 14.6 (Adversarial Examples).
- Krzysztof Choromanski, who helped write Sec. 15.6 (Efficient transformers).
- Andrew Wilson, who helped write Sec. 17.4.2 (Exploiting structure in the kernel matrix).
- Colin Raffel, who helped write Sec. 19.2 (Transfer learning) and Sec. 19.6 (Semi-supervised learning).
- Bryan Perozzi, who helped write Chapter 23 (Graph embeddings).
- Zico Kolter, who helped write parts of Chapter B (Linear algebra).

I would like to thank John Fearns for very carefully proofreading the entire book, Peter Cerno who also spotted many errors.

I would like to thank the following people for feedback on various sections: Sebastien Bratieres, Kai Brodersen, Daniel Galvez, Abhishek Kumar, Max Lepikhin, Aaron Michelony, Hal Varian.

I would like to thank the following people for help with Python coding: Andrew Carr, Duane Rich, Theodore Vasiloudis. I would also like to thank those who shared their open soure code (see credits in each file online).

I would like to thank all those who shared figures from their own papers (see credits in each figure caption), as well as Sandeep Choudhary for help making some of the figures, and Aurélien Géron for letting me use the Python code from his excellent book [Gér19] to make some of the figures.

Finally I would like to thank my manager at Google, Doug Eck, for letting me invest the (significant) time needed to make this book a reality. I hope my efforts to synthesize all this material together in one place will help to save you time in your journey of discovery into the "land of ML".

Kevin Patrick Murphy Palo Alto, California December 2020.