EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

58104132

PUBLICATION DATE

21-06-83

APPLICATION DATE

14-12-81

APPLICATION NUMBER

56201181

APPLICANT:

MITSUBISHI KEIKINZOKU KOGYO KK;

INVENTOR:

MATSUOKA SHIRO;

INT.CL.

C22B 21/06

TITLE

PURIFYING METHOD FOR ALUMINUM

ABSTRACT:

PURPOSE: To purify AI by a fractional crystallization method on an industrial scale by charging molten AI into a container and carrying out cooling from the bottom of the cotainer and heating from the surface of the molten AI while agitating the molten AI to successively deposit AI crystals from the bottom of container.

CONSTITUTION: A carbonaceous material layer 3 with high heat conductivity is formed on the bottom of a container composed of a heat insulating brick layer 1 and a refractory brick layer 2, and a pipe 4 for circulating a cooling medium is buried in the layer 3. Molten Al is charged into the container, and agitators 5 are put in the container to agitate the molten Al. By circulating a cooling medium through the pipe 4, the layer 3 is cooled to a temp. below the m.p. of Al to solidify the molten Al upward from the bottom. At the same time, the surface of the molten Al is heated with a gas burner 9 or the like. In accordance with the deposition of Al crystals, the agitators 5 are gradually pulled up to keep the gap between the crystal growing surface and the agitators 5 uniform. After depositing a prescribed amount of crystals, the residual molten Al is discharged from the container.

COPYRIGHT: (C)1983,JPO&Japio

THIS PAGE BLANK (USPTO)

⑩ 日本国特許庁 (JP)

①特許出願公開

⑫公開特許公報(A)

昭58—104132

Int. Cl.³
C 22 B 21/06

識別記号

庁内整理番号 7128-4K ❸公開 昭和58年(1983)6月21日

発明の数 1 審査請求 未請求

(全 4 頁)

60アルミニウムの純化方法

願 昭56—201181

②出 願 昭56(1981)12月14日

⑫発 明 者 橋本高志

横浜市緑区長津田町2000番地34

@発 明 者 川上博

横浜市さつきが丘6番地20

の発 明 者 関義則

横浜市緑区田奈町23番地 4

@発 明 者 市川三雄

上越市港町一丁目25番16号

@発 明 者 松岡司郎

上越市福田522番地

少出 願 人 三菱軽金属工業株式会社

東京都千代田区丸の内二丁目5

番2号

個代 理 人 弁理士 長谷川一 外1名

ERL HE

発明の名称

创特

アルミニウムの純化方法

- 2 特許消求の範囲
- (2) 溶胺アルミニウムを収容する容器の頻壁から、頻應を通しての溶酸アルミニウムからの熱損失が実質的に生起しないように、断熱構造となつていることを特徴とする特許消求の範囲出!項記載のアルミニウムの純化方法。
- 3 発明の詳細な説明

本発明はアルミニウムの純化方法に関するものであり、詳しくは不純な溶融ナルミニウムから、分別結晶法により、高純度のアルミニウムを取得する方法に関するものである。

分別結晶法により高純度のアルミニク(特別 造する方法はいくつか提案されている(特別 W リリー S B O 6、S O - 2 O S J O 6、特別 V S S - 8 9 4 J 9、S 6 - S S J O の方別 V では、 S O - 2 O S S J O の方別 V では、 がいくより小さいった。 では、 例晶 放ったには、 が出するアルミニウム 結晶 なることが よった。 での 方法 での がいい に でいきに かんしん でんしん がい に かんに の アルミニクム を取得することが

特開昭58-104132(2)

てきる。

本発明は工業的に大規模に実施するのに好適. な、分別結晶法によるアルミニウムの純化方法 を提供するものである。

本発明を更に詳細に説明するに、第1図およ

黒鉛ないしは準黒鉛質のものが好ましい。との 炭素質材料層中には冷却媒体流通管(4)が埋設さ れている。(5)は攪拌機であり、溶融アルミニウ ムに接する部分は溶融アルミニウムを汚染しな い材料、好ましくは黒鉛で構成されている。(6) は滑拌機の駆動装置であり、駆動中に攪拌機の 軸(7)を上昇させりるようになつている。軸(7)は 上方部材と下方部材とを溶融アルミニウムから 露出した部分において、断熱材を介して結合し た構造とするのが好ましい。このような構造と すると、機械的強度を保持するため上方部材を 冷却しても下方部材が冷却されないので、溶融 アルミニウムが攪拌機上に析出するのを防止す ることができる。(8)は上方を覆う蓋であり、機 拌機を装膺外に取り出し得るように取り外し可 能となつている。(9)は加熱用のガスパーナーで

図示の装置を用いてアルミニウムの純化を行なう方法について説明すると、先ず装置内に容 数フルミニウムを入れ、これに攪拌機(5)を挿入

び第2図は本発明方法を実施するのに好適な装 置の→例の断面図である。との装置は、方形、 例えば2m×2mの機い鍋状でその一方の側壁 の上部を欠いて溶融アルミニウムの排出口を形 成してある下部構造と、その上部を覆う上部構 造と、該上部構造に支持した攪拌装置とから成 つている。図中、(1)は断熱レンガ層、(2)は耐火 レンガ層である。耐火レンガ層のうち、谷融ア ルミニウムと接触する側壁部分には、容融アル ミニウムを汚染しないもの、例えば高アルミナ 質耐火レンガを用いる。若し所望ならば、溶融 アルミニウムと接触する側壁部分も、底面と同 じく、耐火レンガ層の上に更に炭素質材料で内 張りを施してもよい。との場合には、内張り盾 を通って熱が底面の炭素質材料層に実質的に流 出しないような構造とする。(3)は熱伝導率の大 きい炭素質材料の層である。通常、との層はア ルミニウム電解槽の陰極と同じく、炭素プロツ クを並べ、その間隙に炭素質結合材を充填する ことにより構成される。炭素プロツクとしては

して攪拌を含め、 はいのでは、 ないのでは、 はいのでは、 はいのではいいのでは、 はいのでは、 はいのではいのでは、 はいのでは、 はいのでは、 はいのでは、 はいのでは、 はいので

より樹枝状結晶間に多量の溶融アルミニウムが 保留されて、 得られる固体アルミニウムの純度 が低下することを防止することができる。

本発明方法では、アルミニウムの晶析の間、 アルミニウムの表面を加熱して、底面以外にア ルミニウムが析出しないようにする。 若し、表 血からの加熱を行なわなければ、表面からの熱

本発明方法におけるアルミニウムの純化率は、アルミニウムの晶析速度、機伴の強さおよび晶 析率により変化する。晶析速度は小さいほ**物機** 純化率は向上する。通常は10~150 mm/時 の晶析速度が採用される。複字も強いほど純化

特開昭58-104132(3)

所定量のアルミニウムが底面上に析出したならば、残存する容融アルミニウムを装置から排出する。この排出は、通常は装置を傾動させて、路融アルミニウムを排出口より流出させることにより行なう。この際、加熱装置により残存する容融アルミニウムを急速に加熱するのが有利

本発明方法によれば、不純な容融でルミニウムを取るに高純度のアルミニウムを取得また。例えば、鉄/670ppm、珪素 J s o p pm を含む容融アルミニウムを本発明方法により、攪拌酸の先端速度 3 J m / 秒、晶析速度 4 0 mm / 時で晶析率が 5 0 %に 達案 8 で ppm まで純化されたフルミニウムを得ることが

特開昭53-104132 (4)

できる。

図面の簡単な説明

第 / 図は本発明方法を実施するのに適した装置の一例の本体部分の断面と撹拌機とを示す図である。

第 2 図は第 / 図の装置の A - A に沿り断面図である。

/ 断熱レンガ層

ュー耐火レンガ層

3. 炭素質材料層

冷却媒体流通管

J. 192 11- 184

数 動 柱 僧

2 #4 #4 #44

e ##

9 ガスパーナー

特許出願人 三菱醛金属工業株式会社 代 埋 人 弁理士 長谷川 一

ほかノ名

第1図

第 2 図

