IIT cs512 Computer Vision – Spring 2022 ©

Robust estimation

- * Naive approach:
 - Fit model to all points
- compute distance of buch point from model
- Discard points with largest distance Fit model to remulting points
- * Initial model is inaccurate and so we drift in the wrong direction.
- * Approaches:
 - M-estimators
 - RANSAC

M-estimators

- Mean square Enow (MSE) fitting:

$$E(\theta) = \sum_{i=1}^{\infty} d^{2} \left(X_{i} \right)^{2} \theta$$

$$= \left(\frac{1}{2} X_{i} \right)^{2}$$
for line fitting

- Robust estimation;

$$E(\theta) = \sum g \left(A(x_i; \theta) \right)$$

MSE is a special case

Where $g(x) = x^2$

Geman-McClure estimator

٧²	2	
S(x)- X2+ C2	1.8	ila jaguta sapas kali 🕒 🗕
3cx X + L	1.6	
	1.4	y = x
1 - C	1.2	
X>>0 => So(x)=1		
	0.8	1 100
X << 6 => S6(x) = 32	0.6	
. 0	0.4	10
0 ~	0.2	
large of	0	
J	-10 -8 -6 -4	-2 0 2 4 6 8 1
wider Valley		

IIT cs512 Computer Vision – Spring 2022 ©

Geman-McClure estimator

$$E(\theta) = \sum_{\sigma} \left(d(x_i; \theta) \right)$$

$$DE(\theta) = \sum_{\sigma} \frac{\partial}{\partial x} S_{\sigma} L(\theta) \frac{\partial}{\partial \theta} d(\theta)$$
For $S_{\sigma}(A) = d^2 = 1 \frac{\partial S}{\partial A} = 2d$

$$For $S_{\sigma} = \frac{d^2}{d + f^2} = 1 \frac{\partial S}{\partial A} = \frac{2d}{(d^2 + f^2)^2}$$$

Selecting bandwidth parameter

- Variable estimation: start with large 6 and decrease as converging

M-estimator summary

1) Draw a large set of quints writtening at randon
2) Select mitial Value of 6
73) Fit model $\rightarrow \theta^{(i)}$ 4) Complete $f^{(i)}$ using median chistance of points 8) continul while objective is decreasing
* To overcom incorrect initial guess of o repeat several times and select best solution

Ismalle objective)

IIT cs512 Computer Vision – Spring 2022 ©

RANSAC	
Random Sample Consensus (RANSAc):	
- perform multiple experiments	
- choose best results	
- use small sets in hope that at least one set will not have onthiers	
Parameters:	
n = # points drawn at each evaluation	
d = min # points needed to estimate model	
K = A trials	
+ = distance threshold to iluntity in lives	
RANSAC Algorithm	
Repeat K times:	
- Oraw or points unitumly at random	
(with replacement)	
- fit a model to points	
- Find inliers in entire set (distance < t)	
- Recompute model (if at least of inties)	
- applate parameters (K, t)	
	-
* Chuse best solution:	
- Langest consensus set	
(- or smallest error)	
Estimating RANSAC parameters	
x To estimate + use median distance	
from model.	
* To estimate k use.	
and the second of the second	
P: with probability of p at least	
on experiment does not have	-
what live (a - a - a - a - a - a - a - a - a - a	
outliers (e.g. pc 0.99) user selected	

probability that a point is an inlier (initially w=0.5) estimated

ω:

IIT cs512 Computer Vision − Spring 2022 ©

Estimating RANSAC parameters

Probability that all k experiments failed: $(I-P) = (I - W^n)^K$ $log (I-P) = k log (I-W^n)$ $K = \frac{log (I-P)}{log (I-W^n)}$ Smull $W \to large k$ $W \leftarrow \frac{\text{Hinliers}}{\text{prints}}$ Update $W_i k$ every iteration but set upper bound for K

-		