TD13-Réduction des matrices

Exercice 1.

1. (a) On a:

$$f((1,0,0)) = (2,0,3)$$
 ; $f((0,1,0)) = (0,1,0)$; $f((0,0,1)) = (-1,0,-2)$.

Ainsi:

$$A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 0 \\ 3 & 0 & -2 \end{pmatrix}.$$

(b) Un calcul donne:

$$Au = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 0 \\ 3 & 0 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ -3 \end{pmatrix} = -u.$$

Comme u est non nul, on en déduit que c'est un vecteur propre de A associé à la valeur propre -1.

2. Le vecteur Y est non nul et on a :

$$AY = \begin{pmatrix} 4 & -2 & 5 \\ 1 & 4 & -1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 6 \\ 3 \end{pmatrix} = 3Y.$$

Ainsi Y est un vecteur propre de A et la valeur propre associée est 3.

Exercice 2.

- 1. La matrice A est triangulaire donc ses valeurs propres sont ses coefficients diagonaux. Ainsi $Sp(A) = \{1, 2\}$.
- 2. Soit $\lambda \in \mathbb{R}$.
 - **Méthode 1 : par le rang.** On a :

$$\lambda \in \operatorname{Sp}(C) \iff C - \lambda I_2$$
 n'est pas inversible $\iff \operatorname{rg}(C - \lambda I_2) < 2$.

Or:

$$rg(C - \lambda I_2) = rg\left(\begin{pmatrix} 1 - \lambda & -1 \\ 1 & 1 - \lambda \end{pmatrix}\right)$$

$$= rg\left(\begin{pmatrix} 1 & 1 - \lambda \\ 1 - \lambda & -1 \end{pmatrix}\right) \quad L_1 \longleftrightarrow L_2$$

$$= rg\left(\begin{pmatrix} 1 & 1 - \lambda \\ 0 & -1 - (1 - \lambda)^2 \end{pmatrix}\right) \quad L_2 \longleftarrow L_2 - (1 - \lambda)L_1.$$

Ainsi:

$$\lambda \in \operatorname{Sp}(C) \Longleftrightarrow -1 - (1 - \lambda)^2 = 0.$$

Or, pour tout réel λ on a : $-1 - (1 - \lambda)^2 \le -1$.

Ainsi : $Sp(C) = \emptyset$.

• Méthode 2 : par le déterminant. On a :

$$\lambda \in \operatorname{Sp}(C) \iff C - \lambda I_2 \text{ n'est pas inversible } \iff \det(C - \lambda I_2) = 0$$
 $\iff 1 + (1 - \lambda)^2 = 0.$

Or, pour tout réel λ on a : $1 + (1 - \lambda)^2 \ge 1$. Ainsi : $Sp(C) = \emptyset$.

3. Soit $\lambda \in \mathbb{R}$. On a :

$$\lambda \in \operatorname{Sp}(E) \iff E - \lambda I_3 \text{ n'est pas inversible } \iff \operatorname{rg}(E - \lambda I_3) < 3.$$

Or:

$$rg(E - \lambda I_{3}) = rg\left(\begin{pmatrix} 1 - \lambda & 2 & 0 \\ 2 & 1 - \lambda & 0 \\ 1 & 2 & 3 - \lambda \end{pmatrix}\right)$$

$$= rg\left(\begin{pmatrix} 1 & 2 & 3 - \lambda \\ 2 & 1 - \lambda & 0 \\ 1 - \lambda & 2 & 0 \end{pmatrix}\right) \quad L_{1} \longleftrightarrow L_{3}$$

$$= rg\left(\begin{pmatrix} 1 & 2 & 3 - \lambda \\ 0 & -3 - \lambda & -6 + 2\lambda \\ 0 & 2\lambda & -(1 - \lambda)(3 - \lambda) \end{pmatrix}\right) \quad L_{2} \longleftrightarrow L_{2} - 2L_{1}$$

$$= rg\left(\begin{pmatrix} 1 & 2 & 3 - \lambda \\ 0 & -3 - \lambda & -6 + 2\lambda \\ 0 & -6 & (\lambda - 5)(3 - \lambda) \end{pmatrix}\right) \quad L_{3} \longleftrightarrow L_{3} + 2L_{2}$$

$$= rg\left(\begin{pmatrix} 1 & 2 & 3 - \lambda \\ 0 & -6 & (\lambda - 5)(3 - \lambda) \\ 0 & -3 - \lambda & -6 + 2\lambda \end{pmatrix}\right) \quad L_{2} \longleftrightarrow L_{3}$$

$$= rg\left(\begin{pmatrix} 1 & 2 & 3 - \lambda \\ 0 & -6 & (\lambda - 5)(3 - \lambda) \\ 0 & -3 - \lambda & -6 + 2\lambda \end{pmatrix}\right) \quad L_{3} \longleftrightarrow L_{3} - \frac{3 + \lambda}{6}L_{2}.$$

Ainsi:

 $\lambda \in \operatorname{Sp}(E) \iff (3-\lambda)(3+2\lambda-\lambda^2) = 0 \iff (3-\lambda)^2(\lambda+1) = 0 \iff \lambda = 3 \quad \text{ou} \quad \lambda = -1.$ Donc: $\operatorname{Sp}(E) = \{-1, 3\}.$

4. Soit $\lambda \in \mathbb{R}$. On a :

 $\lambda \in \operatorname{Sp}(B) \iff B - \lambda I_3 \text{ n'est pas inversible } \iff \operatorname{rg}(B - \lambda I_3) < 3.$

Or:

$$rg(B - \lambda I_{3}) = rg \begin{pmatrix} \begin{pmatrix} 1 - \lambda & 0 & 1 \\ 0 & 1 - \lambda & 0 \\ 1 & 1 & 1 - \lambda \end{pmatrix} \end{pmatrix}$$

$$= rg \begin{pmatrix} \begin{pmatrix} 1 & 1 & 1 - \lambda \\ 0 & 1 - \lambda & 0 \\ 1 - \lambda & 0 & 1 \end{pmatrix} \end{pmatrix} L_{1} \longleftrightarrow L_{3}$$

$$= rg \begin{pmatrix} \begin{pmatrix} 1 & 1 & 1 - \lambda \\ 0 & 1 - \lambda & 0 \\ 0 & \lambda - 1 & 1 - (1 - \lambda)^{2} \end{pmatrix} L_{3} \longleftrightarrow L_{3} - (1 - \lambda)L_{1}$$

$$= rg \begin{pmatrix} \begin{pmatrix} 1 & 1 & 1 - \lambda \\ 0 & 1 - \lambda & 0 \\ 0 & 0 & 1 - (1 - \lambda)^{2} \end{pmatrix} \end{pmatrix} L_{3} \longleftrightarrow L_{3} + L_{2}$$

Ainsi:

 $\lambda \in \operatorname{Sp}(B) \Longleftrightarrow 1 - \lambda = 0 \text{ ou } 1 - (1 - \lambda)^2 = 0 \Longleftrightarrow \lambda = 1 \text{ ou } \lambda = 2 \text{ ou } \lambda = 0.$ Donc: $\operatorname{Sp}(B) = \{0, 1, 2\}.$

- 5. Soit $\lambda \in \mathbb{R}$.
 - Méthode 1 : par le rang. On a :

 $\lambda \in \operatorname{Sp}(D) \iff D - \lambda I_2 \text{ n'est pas inversible } \iff \operatorname{rg}(D - \lambda I_2) < 2.$

Or:

$$rg(D - \lambda I_2) = rg\left(\begin{pmatrix} 1 - \lambda & 2 \\ 2 & 1 - \lambda \end{pmatrix}\right)$$

$$= rg\left(\begin{pmatrix} 2 & 1 - \lambda \\ 1 - \lambda & 2 \end{pmatrix}\right) \quad L_1 \longleftrightarrow L_2$$

$$= rg\left(\begin{pmatrix} 2 & 1 - \lambda \\ 0 & 4 - (1 - \lambda)^2 \end{pmatrix}\right) \quad L_2 \longleftrightarrow 2L_2 - (1 - \lambda)L_1.$$

Ainsi:

 $\lambda \in \operatorname{Sp}(D) \Longleftrightarrow 4 - (1 - \lambda)^2 = 0 \Longleftrightarrow (1 + \lambda)(3 - \lambda) = 0.$

Ainsi : $Sp(D) = \{-1, 3\}.$

• Méthode 2 : par le déterminant. On a :

 $\lambda \in \operatorname{Sp}(D) \Longleftrightarrow D - \lambda I_2$ n'est pas inversible $\iff \det(D - \lambda I_2) = 0$ $\iff (1 - \lambda)^2 - 4 = 0$ $\iff (3 - \lambda)(-1 - \lambda) = 0.$

Ainsi : $Sp(C) = \{-1, 3\}.$

6. Voir Test 2.

Exercice 3.

1. On a:

$$\psi((1,0,0)) = (1,0,0)$$
 ; $\psi((0,1,0)) = (1,2,0)$; $\psi((0,0,1)) = (1,2,3)$.

Ainsi:

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}.$$

2. La matrice A est triangulaire donc ses valeurs propres sont ses coefficients diagonaux. Ainsi :

$$Sp(A) = \{1, 2, 3\}.$$

3. On sait que $A \in \mathcal{M}_3(\mathbb{R})$ possède trois valeurs propres distinctes donc chaque sousespace propre est de dimension 1.

D'après la question 1, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \in E_1(A)$. Comme $\dim(E_1(A)) = 1$ alors $\begin{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \end{pmatrix}$ est une base de $E_1(A)$.

Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
.

On a:

$$X \in E_2(A) \iff \begin{cases} x + y + z = 2x \\ 2y + 2z = 2y \\ 3z = 2z \end{cases} \iff \begin{cases} -x + y + z = 0 \\ z = 0 \end{cases}$$
$$\iff \begin{cases} x = y \\ z = 0 \end{cases}$$

Ainsi
$$E_2(A) = \text{Vect}\left(\begin{pmatrix}1\\1\\0\end{pmatrix}\right)$$
 et $\begin{pmatrix}1\\1\\0\end{pmatrix}$ est une base de $E_2(A)$.

De même on a:

$$X \in E_{3}(A) \iff \begin{cases} x + y + z = 3x \\ 2y + 2z = 3y \\ 3z = 3z \end{cases} \iff \begin{cases} -2x + y + z = 0 \\ y = 2z \end{cases}$$

$$\iff \begin{cases} x + \frac{a}{b}y + \frac{a}{b}z = 3x \\ \frac{b}{a}x + y + \frac{b}{b}z = 3y \\ \frac{c}{a}x + \frac{c}{b}y + z = 3z \end{cases}$$

$$\iff \begin{cases} x = \frac{3}{2}z \\ y = 2z \end{cases}$$

$$\iff \begin{cases} -2x + \frac{a}{b}y + \frac{a}{b}z = 0 \\ \frac{b}{a}x + \frac{c}{b}y + z = 0 \end{cases}$$

Ainsi
$$E_3(A) = \operatorname{Vect}\left(\begin{pmatrix} \frac{3}{2} \\ 2 \\ 1 \end{pmatrix}\right)$$
 et $\left(\begin{pmatrix} \frac{3}{2} \\ 2 \\ 1 \end{pmatrix}\right)$ est une base de $E_3(A)$.

Exercice 4. Vu en TD.

Exercice 5.

1. On vérifie par le calcul qu'on a bien $M^2 = 3M$. En particulier :

$$M^2 - 3M = 0_{\mathcal{M}_3(\mathbb{R})}.$$

Donc, le polynôme $X^2 - 3X$ est un polynôme annulateur de M. Les valeurs propres de M sont donc des racines de $X^2 - 3X$. Ainsi :

$$Sp(M) \subset \{0,3\}.$$

2. Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R}).$$

On a :

$$MX = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} x + \frac{a}{b}y + \frac{a}{c}z = 0 \\ \frac{b}{a}x + y + \frac{b}{c}z = 0 \\ \frac{c}{a}x + \frac{c}{b}y + z = 0 \end{cases}$$

$$\iff \begin{cases} x + \frac{a}{b}y + \frac{a}{c}z = 0 \\ + 0 = 0 \\ 0 = 0 \end{cases} \quad L_{2} \leftarrow L_{2} - \frac{b}{a}L_{1}$$

$$\iff x = -\frac{a}{b}y - \frac{a}{c}z.$$

En particulier, 0 est bien valeur propre de M et :

$$E_0(M) = \operatorname{Vect}\left(\begin{pmatrix} -a/b \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -a/c \\ 0 \\ 1 \end{pmatrix}\right).$$

La famille $\begin{pmatrix} -a/b \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} -a/c \\ 0 \\ 1 \end{pmatrix}$) étant génératrice de $E_0(M)$ et formée de deux vecteurs non colinéaires, il s'agit d'une base de $E_0(M)$. Donc $\dim(E_0(M)) = 2$.

• On a:

$$MX = 3X \iff \begin{cases} x + \frac{a}{b}y + \frac{a}{c}z = 3x \\ \frac{b}{a}x + y + \frac{b}{c}z = 3y \\ \frac{c}{a}x + \frac{c}{b}y + z = 3z \end{cases}$$

$$\iff \begin{cases} -2x + \frac{a}{b}y + \frac{a}{c}z = 0 \\ \frac{b}{a}x - 2y + \frac{b}{c}z = 0 \\ \frac{c}{a}x + \frac{c}{b}y - 2z = 0 \end{cases}$$

$$\iff \begin{cases} -2x + \frac{a}{b}y + \frac{a}{c}z = 0 \\ -\frac{3}{2}y + \frac{3b}{2c}z = 0 \\ \frac{3c}{2b}y - \frac{3}{2}z = 0 \end{cases}$$

$$\iff \begin{cases} x = \frac{a}{c}z \\ y = \frac{b}{c}z \end{cases}.$$

En particulier, 3 est bien valeur propre de *M* et :

$$E_3(M) = \text{Vect}\left(\begin{pmatrix} a/c \\ b/c \\ 1 \end{pmatrix}\right).$$

La famille $\binom{a/c}{b/c}$ étant génératrice de $E_3(M)$ et formée d'un vecteur non nul, il s'agit d'une base de $E_3(M)$. Donc $\dim(E_3(M)) = 1$.

- Finalement : $Sp(M) = \{0, 3\}.$
- 3. D'après ce qui précède : $\dim(E_0(M)) + \dim(E_3(M)) = 3$. Ainsi M est diagonalisable.

Exercice 6.

- La matrice *A* est triangulaire donc ses valeurs propres sont ses coefficients diagonaux.
- Si c = 1 alors $Sp(A) = \{1\}$. Supposons par l'absurde que A est diagonalisable. Alors il existe une matrice inversible P et une matrice diagonale D dont les coefficients diagonaux sont les valeurs propres de A telles que :

$$D = P^{-1}AP.$$

Or, comme 1 est la seule valeur propre de A, on a $D = I_3$. Donc :

$$I_3 = P^{-1}AP.$$

En multipliant membre à membre par P à gauche et P^{-1} à droite on obtient :

$$A = PI_3P^{-1} = I_3.$$

Ceci est absurde : donc A n'est pas diagonalisable.

• Si
$$c \neq 1$$
 alors $Sp(A) = \{1, c\}$.

— **Déterminons**
$$E_1(A)$$
. Soit $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$.

$$X \in E_1(A) \iff AX = X \iff \begin{cases} x + ay + z = x \\ y + bz = y \\ cz = z \end{cases}$$

$$\iff \begin{cases} ay + z = 0 \\ bz = 0 \\ (c-1)z = 0 \end{cases}$$

$$\iff \begin{cases} ay = 0 \\ z = 0 \text{ car } c \neq 1 \end{cases}$$

* Si $a \neq 0$ alors on obtient :

$$X \in E_1(A) \iff AX = X \iff \begin{cases} y = 0 \\ z = 0 \end{cases} \quad \operatorname{car} a \neq 0.$$

Donc
$$E_1(A) = \text{Vect} \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right)$$
.

* Si a = 0 alors on obtient :

$$X \in E_1(A) \iff AX = X \iff z = 0$$

Donc
$$E_1(A) = \text{Vect}\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}\right).$$

— **Déterminons**
$$E_c(A)$$
. Soit $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$.

$$X \in E_c(A) \iff AX = cX \iff \begin{cases} x + ay + z = cx \\ y + bz = cy \\ cz = cz \end{cases}$$

$$\iff \begin{cases} (1-c)x + ay + z = 0 \\ (1-c)y + bz = 0 \end{cases}$$

$$\iff \begin{cases} x = \frac{ab+c-1}{(1-c)^2}z \\ y = -\frac{b}{1-c}z \end{cases} \text{ car } c \neq 1.$$

Ainsi :
$$E_c(A) = \text{Vect}\left(\begin{pmatrix} \frac{ab+c-1}{(1-c)^2} \\ -\frac{b}{1-c} \\ 1 \end{pmatrix}\right)$$
.

Conclusion.

Si $a \neq 0$ alors $\dim(E_1(A)) + \dim(E_c(A)) = 2 < 3$ donc A n'est pas diagonalisable.

Si a = 0 alors $dim(E_1(A)) + dim(E_c(A)) = 3$ donc A est diagonalisable.

• Finalement A est diagonalisable si et seulement si $c \neq 1$ et a = 0.

Exercice 7.

1. Un calcul donne:

$$\varphi(1) = 1$$
 ; $\varphi(X) = 2X + 1$; $\varphi(X^2) = 3X^2 + 2X$.

Ainsi:

$$A = \operatorname{Mat}_{(1,X,X^2)}(\varphi) = \operatorname{Mat}_{(1,X,X^2)}(1,2X+1,3X^2+2X) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}.$$

2. La matrice A est triangulaire donc ses valeurs propres sont ses coefficients diagonaux. Donc :

$$Sp(A) = \{1, 2, 3\}.$$

• Déterminons une base de $E_1(A)$: soit $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Alors on a :

$$X \in E_1(A) \iff AX = X \iff \begin{cases} x + y & = x \\ 2y + 2z = y \\ 3z = z \end{cases}$$
$$\iff \begin{cases} y = 0 \\ z = 0 \end{cases}$$

Ainsi :
$$E_1(A) = \operatorname{Vect}\left(\begin{pmatrix}1\\0\\0\end{pmatrix}\right)$$
.
En particulier, $\begin{pmatrix}1\\0\\0\end{pmatrix}$ est une base de $E_1(A)$.

• Déterminons une base de $E_2(A)$. On a :

$$X \in E_2(A) \iff AX = 2X \iff \begin{cases} x + y & = 2x \\ 2y + 2z = 2y \\ 3z = 2z \end{cases}$$
$$\iff \begin{cases} x = y \\ z = 0 \end{cases}$$

Ainsi :
$$E_2(A) = \operatorname{Vect}\left(\begin{pmatrix}1\\1\\0\end{pmatrix}\right)$$
.
En particulier, $\begin{pmatrix}1\\1\\0\end{pmatrix}$ est une base de $E_2(A)$.

• Déterminons une base de $E_3(A)$. On a :

$$X \in E_3(A) \iff \begin{cases} x + y & = 3x \\ 2y + 2z = 3y \\ 3z = 3z \end{cases}$$

$$\iff \begin{cases} y = 2x \\ z = y \\ \Rightarrow \begin{cases} y = 2x \\ z = 2x \end{cases}$$

Ainsi :
$$E_3(A) = \operatorname{Vect}\left(\begin{pmatrix}1\\2\\2\end{pmatrix}\right)$$
.
En particulier, $\begin{pmatrix}\begin{pmatrix}1\\1\\0\end{pmatrix}\end{pmatrix}$ est une base de $E_3(A)$.

3. La matrice A est de taille 3×3 et possède trois valeurs propres distinctes donc A est diagonalisable. En posant :

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix},$$

on a bien:

$$D = P^{-1}AP.$$

Exercice 8.

1. Soit $\lambda \in \mathbb{R}$.On a :

$$\lambda \in \operatorname{Sp}(A) \Longleftrightarrow A - \lambda I_3 \text{ n'est pas inversible } \Longleftrightarrow \operatorname{rg}(A - \lambda I_3) < 3.$$

Or:

$$rg(A - \lambda I_3) = rg\left(\begin{pmatrix} 1 - \lambda & 1 & 1\\ 0 & -\lambda & -1\\ -2 & -2 & -1 - \lambda \end{pmatrix}\right)$$

$$= rg\left(\begin{pmatrix} -2 & -2 & -1 - \lambda\\ 0 & -\lambda & -1\\ 1 - \lambda & 1 & 1 \end{pmatrix}\right) \quad L_1 \longleftrightarrow L_3$$

$$= rg\left(\begin{pmatrix} -2 & -2 & -1 - \lambda\\ 0 & -\lambda & -1\\ 0 & \lambda & \frac{1+\lambda^2}{2} \end{pmatrix}\right) \quad L_3 \longleftrightarrow L_3 + \frac{1-\lambda}{2}L_1$$

$$= rg\left(\begin{pmatrix} -2 & -2 & -1 - \lambda\\ 0 & -\lambda & -1\\ 0 & 0 & \frac{\lambda^2 - 1}{2} \end{pmatrix}\right) \quad L_3 \longleftrightarrow L_3 + L_2$$

Ainsi:

$$\lambda \in \operatorname{Sp}(A) \Longleftrightarrow \lambda = 0 \quad ou \quad \frac{\lambda^2 - 1}{2} = 0 \Longleftrightarrow \lambda = 0 \quad \text{ou} \quad \lambda = -1 \quad \text{ou} \quad \lambda = 1.$$

Donc: $Sp(A) = \{-1, 0, 1\}.$

• Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$
. On a:

$$X \in E_0(A) \iff AX = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \iff \begin{cases} x + y + z = 0 \\ -2x - 2y - z = 0 \end{cases}$$
$$\iff \begin{cases} x = -y \\ z = 0 \end{cases}.$$

Ainsi :
$$E_0(A) = \text{Vect}\left(\begin{pmatrix} -1\\1\\0\end{pmatrix}\right)$$
.

• Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$
. On a:

$$X \in E_{-1}(A) \iff AX = -X \iff \begin{cases} x + y + z = -x \\ -z - z = -y \\ -2x - 2y - z = -z \end{cases}$$

$$\iff \begin{cases} 2x + y + z = 0 \\ y - z = 0 \\ -2x - 2y = 0 \end{cases}$$

$$\iff \begin{cases} x = -y \\ y = z \end{cases}.$$

Ainsi :
$$E_{-1}(A) = \text{Vect}\left(\begin{pmatrix} -1\\1\\1\end{pmatrix}\right)$$
.

• Soit
$$X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$$
. On a:

$$X \in E_1(A) \iff AX = X \iff \begin{cases} x + y + z = x \\ -z - z = y \\ -2x - 2y - z = z \end{cases}$$

$$\iff \begin{cases} y + z = 0 \\ y + z = 0 \\ -2x - 2y - 2z = 0 \end{cases}$$

$$\iff \begin{cases} y = -z \\ x = 0 \end{cases}$$

Ainsi :
$$E_1(A) = \text{Vect}\left(\begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}\right)$$
.

2. La matrice A appartient à $\mathcal{M}_3(\mathbb{R})$ et possède trois valeurs propres distinctes donc A est diagonalisable. En posant :

$$D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} -1 & -1 & 0 \\ 1 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix},$$

d'après les formules de changement de bases :

$$D = P^{-1}AP.$$

Exercice 9. Partie A

1. On a:

$$E = \left\{ \begin{pmatrix} 3x & -2x & 2x \\ -x & 4x & -2x \\ 0 & 4x & -x \end{pmatrix} + \begin{pmatrix} 0 & 2y & -y \\ -y & -3y & y \\ -2y & -4y & y \end{pmatrix} ; (x,y) \in \mathbb{R}^2 \right\}$$

$$= \left\{ x \begin{pmatrix} 3 & -2 & 2 \\ -1 & 4 & -2 \\ 0 & 4 & -1 \end{pmatrix} + y \begin{pmatrix} 0 & 2 & -1 \\ -1 & -3 & 1 \\ -2 & -4 & 1 \end{pmatrix} ; (x,y) \in \mathbb{R}^2 \right\}$$

$$= \operatorname{Vect} \left(\begin{pmatrix} 3 & -2 & 2 \\ -1 & 4 & -2 \\ 0 & 4 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 2 & -1 \\ -1 & -3 & 1 \\ -2 & -4 & 1 \end{pmatrix} \right).$$

Ainsi, E est le sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ engendré par $\left(\begin{pmatrix} 3 & -2 & 2 \\ -1 & 4 & -2 \\ 0 & 4 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 2 & -1 \\ -1 & -3 & 1 \\ -2 & -4 & 1 \end{pmatrix}\right)$. La famille $\left(\begin{pmatrix} 3 & -2 & 2 \\ -1 & 4 & -2 \\ 0 & 4 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 2 & -1 \\ -1 & -3 & 1 \\ -2 & -4 & 1 \end{pmatrix}\right)$ étant formée de deux vecteurs non colinéaires, il s'agit d'une famille libre.

Ainsi
$$\left(\begin{pmatrix} 3 & -2 & 2 \\ -1 & 4 & -2 \\ 0 & 4 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 2 & -1 \\ -1 & -3 & 1 \\ -2 & -4 & 1 \end{pmatrix} \right)$$
 est une base de E et dim $(E) = 2$.

2. On a
$$A = \begin{pmatrix} 3 & -2 & 2 \\ -1 & 4 & -2 \\ 0 & 4 & -1 \end{pmatrix}$$
. Soit $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathcal{M}_{3,1}(\mathbb{R})$.

• On a:

$$AX = X \iff \begin{cases} 3x - 2y + 2z = x \\ -x + 4y - 2z = y \\ 4y - z = z \end{cases}$$

$$\iff \begin{cases} 2x - 2y + 2z = 0 \\ -x + 3y - 2z = 0 \\ 4y - 2z = 0 \end{cases}$$

$$\iff \begin{cases} x = -y \\ z = 2y \end{cases}.$$

Ainsi 1 est bien valeur propre et
$$E_1(A) = \text{Vect}\left(\begin{pmatrix} -1\\1\\2 \end{pmatrix}\right) = \text{Vect}\left(\begin{pmatrix} 1\\-1\\-2 \end{pmatrix}\right)$$
.

• On a:

$$AX = 2X \iff \begin{cases} 3x - 2y + 2z = 2x \\ -x + 4y - 2z = 2y \\ 4y - z = 2z \end{cases}$$

$$\iff \begin{cases} x - 2y + 2z = 0 \\ -x + 2y - 2z = 0 \\ 4y - 3z = 0 \end{cases}$$

$$\iff \begin{cases} x - 2y + 2z = 0 \\ 4y - 3z = 0 \end{cases}$$

$$\iff \begin{cases} x - 2y + 2z = 0 \\ 4y - 3z = 0 \end{cases}$$

$$\iff \begin{cases} x = -\frac{1}{2}z \\ y = \frac{3}{4}z \end{cases}$$

Ainsi 2 est bien valeur propre et $E_2(A) = \text{Vect}\left(\begin{pmatrix} -1/2\\3/4\\1\end{pmatrix}\right) = \text{Vect}\left(\begin{pmatrix} -2\\3\\4\end{pmatrix}\right)$.

• On a:

$$AX = 3X \iff \begin{cases} 3x - 2y + 2z = 3x \\ -x + 4y - 2z = 3y \\ 4y - z = 3z \end{cases}$$

$$\iff \begin{cases} -2y + 2z = 0 \\ -x + y - 2z = 0 \\ 4y - 4z = 0 \end{cases}$$

$$\iff \begin{cases} x = -z \\ y = z \end{cases}$$

Ainsi 3 est bien valeur propre et
$$E_3(A) = \text{Vect}\left(\begin{pmatrix} -1\\1\\1 \end{pmatrix}\right) = \text{Vect}\left(\begin{pmatrix} 1\\-1\\-1 \end{pmatrix}\right)$$
.

Comme A est une matrice de taille 3x3 avec trois valeurs propres distinctes, elle n'en possède pas d'autre et est diagonalisable.

3. En posant $P = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 3 & -1 \\ -2 & 4 & -1 \end{pmatrix}$ on obtient :

$$D_A = P^{-1}AP.$$

En multipliant à gauche par P et à droite par P^{-1} on obtient bien :

$$A = PD_A P^{-1}.$$

4.

$$\begin{pmatrix} 1 & -2 & 1 & | & 1 & 0 & 0 \\ -1 & 3 & -1 & | & 0 & 1 & 0 \\ -2 & 4 & -1 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 & 1 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 1 & 1 & 0 \\ 0 & 0 & 1 & | & 2 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 & 2 & -1 \\ 0 & 1 & 0 & | & 1 & 1 & 0 \\ 0 & 0 & 1 & | & 2 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & | & 1 & 2 & -1 \\ 0 & 1 & 0 & | & 1 & 1 & 0 \\ 0 & 0 & 1 & | & 2 & 0 & 1 \end{pmatrix}$$

$$L_2 \leftarrow L_2 + L_1 \\ L_3 \leftarrow L_3 + 2L_1$$

$$L_1 \leftarrow L_1 - L_3 + 2L_2 \\ L_3 \leftarrow L_3 + 2L_1$$

Ainsi
$$P^{-1} = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$
.

5. On rappelle que : $B = \begin{pmatrix} 0 & 2 & -1 \\ -1 & -3 & 1 \\ -2 & -4 & 1 \end{pmatrix}$. On obtient alors :

•
$$BX_1 = \begin{pmatrix} 0 & 2 & -1 \\ -1 & -3 & 1 \\ -2 & -4 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix};$$

$$\begin{pmatrix} 0 & 2 & -1 \end{pmatrix} \begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$$

•
$$BX_2 = \begin{pmatrix} 0 & 2 & -1 \\ -1 & -3 & 1 \\ -2 & -4 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ -4 \end{pmatrix} = -X_2;$$

•
$$BX_3 = \begin{pmatrix} 0 & 2 & -1 \\ -1 & -3 & 1 \\ -2 & -4 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = -X_3.$$

En particulier -1 est valeur propre de B et (X_2, X_3) est une famille libre de $E_{-1}(B)$; 0 est valeur propre de B et (X_1) est une famille libre de $E_0(B)$. Comme la somme des dimensions des sous-espaces propres de B ne doit pas excéder 3 alors nécessairement on a :

$$Sp(B) = \{-1, 0\}$$
; $E_0(B) = Vect(X_1)$; $E_{-1}(B) = Vect(X_2, X_3)$.

En particulier on a, en posant $D_B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$:

$$D_B = P^{-1}BP.$$

En multipliant à gauche par P et à droite par P^{-1} on obtient bien :

$$B = PD_BP^{-1}.$$

6. Soit $(x, y) \in \mathbb{R}^2$. D'après les calculs de la question 1, on remarque que :

$$M(x,y) = xA + yB = xPD_AP^{-1} + yPD_BP^{-1} = P(xD_A + yD_B)P^{-1}.$$

Ainsi la matrice suivante convient :

$$D(x,y) = xD_A + yD_B = \begin{pmatrix} x & 0 & 0 \\ 0 & 2x - y & 0 \\ 0 & 0 & 3x - y \end{pmatrix}.$$

7. Soit $(x,y) \in \mathbb{R}^2$. La matrice M(x,y) est inversible si et seulement si D(x,y) l'est. Or D(x,y) étant diagonale, elle est inversible si et seulement si tous ses coefficients diagonaux sont non nuls. Ainsi :

$$M(x,y)$$
 inversible $\iff x \neq 0$ et $y \neq 2x$ et $y \neq 3x$.

8. On a:

$$B^{2} = (PD_{B}P^{-1})^{2} = PD_{B}^{2}P^{-1} = P\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{-1} = PD(0, -1)P^{-1} = M(0, -1).$$

Ainsi B^2 appartient à E.

De même $A^2 = PD_A^2P^{-1}$ appartient à E si et seulement si il existe $(x,y) \in \mathbb{R}^2$ tel que $D(x,y) = D_A^2$. Or :

$$D(x,y) = D_A^2 \iff \begin{cases} x = 1 \\ 2x - y = 4 \\ 3x - y = 9 \end{cases} \iff \begin{cases} x = 1 \\ y = -2 \\ y = -6 \end{cases}.$$

Le système n'a donc pas de solution. Ainsi A^2 n'appartient pas à E.

Partie B

1.
$$X_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
.

2. Pour tout $n \in \mathbb{N}$ on a :

$$X_{n+1} = \begin{pmatrix} 3a_n + 4b_n + c_n \\ -4a_n - 5b_n + c_n \\ -6a_n - 8b_n + 2c_n \end{pmatrix} = \begin{pmatrix} 3 & 4 & -1 \\ -4 & -5 & 1 \\ -6 & -8 & 2 \end{pmatrix} X_n.$$

Ainsi la matrice $C = \begin{pmatrix} 3 & 4 & -1 \\ -4 & -5 & 1 \\ -6 & -8 & 2 \end{pmatrix}$ convient.

Si C=M(x,y) alors en identifiant les coefficients (1,1) et (1,2) on doit nécessairement avoir (x,y)=(1,3). Réciproquement, on vérifie que M(1,3) est bien égale à C.

- 3. Par récurrence montrons que $\mathcal{P}_n : \ll X_n = C^n X_0 \gg \text{est vraie pour tout } n \in \mathbb{N}$.
 - Initialisation : $C^0 = I_3$ donc \mathcal{P}_0 est vraie.
 - Hérédité : supposons \mathcal{P}_n vraie pour un entier naturel n fixé et montrons que \mathcal{P}_{n+1} est vraie.

Par hypothèse de récurrence, on sait que $X_n = C^n X_0$ donc :

$$X_{n+1} = CX_n = CC^n X_0 = C^{n+1} X_0.$$

Donc \mathcal{P}_{n+1} est vraie.

- Conclusion : par le principe de récurrence, pour tout entier naturel n, $X_n = C^n X_0$.
- 4. On sait que $C = M(1,3) = PD(1,3)P^{-1}$. Par récurrence immédiate, on montre que :

$$\forall n \in \mathbb{N}^*, \quad C^n = (PD(1,3)P^{-1})^n = PD(1,3)^nP^{-1} = P\begin{pmatrix} 1 & 0 & 0 \\ 0 & (-1)^n & 0 \\ 0 & 0 & 0 \end{pmatrix}P^{-1}.$$

Ainsi pour tout entier naturel n non nul :

$$X_{n} = P \begin{pmatrix} 1 & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & 0 \end{pmatrix} P^{-1}X_{0}$$

$$= P \begin{pmatrix} 1 & 0 & 0 \\ 0 & (-1)^{n} & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$

$$= P \begin{pmatrix} 1 \\ (-1)^{n} \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 - 2(-1)^{n} \\ -1 + 3(-1)^{n} \\ -2 + 4(-1)^{n} \end{pmatrix}.$$

Ainsi:

$$\forall n \in \mathbb{N}^*, \begin{cases} a_n = 1 - 2(-1)^n \\ b_n = -1 + 3(-1)^n \\ c_n = -2 + 4(-1)^n \end{cases}$$

Exercice 10.

- 1. La matrice A est symétrique à coefficients réels donc diagonalisable.
- 2. Soit $\lambda \in \mathbb{R}$.On a :

$$\lambda \in \operatorname{Sp}(A) \iff A - \lambda I_4 \text{ n'est pas inversible } \iff \operatorname{rg}(A - \lambda I_4) < 4.$$

Or:

$$rg(A - \lambda I_4) = rg \begin{pmatrix} -\lambda & 0 & 0 & 2 \\ 0 & -\lambda & 1 & 0 \\ 0 & 1 & -\lambda & 0 \\ 2 & 0 & 0 & -\lambda \end{pmatrix}$$

$$= rg \begin{pmatrix} 2 & 0 & 0 & -\lambda \\ 0 & -\lambda & 1 & 0 \\ 0 & 1 & -\lambda & 0 \\ -\lambda & 0 & 0 & 2 \end{pmatrix} \qquad L_1 \longleftrightarrow L_4$$

$$= rg \begin{pmatrix} 2 & 0 & 0 & -\lambda \\ 0 & -\lambda & 1 & 0 \\ 0 & 1 & -\lambda & 0 \\ 0 & 0 & 0 & 2 - \frac{\lambda^2}{2} \end{pmatrix} \qquad L_4 \longleftrightarrow L_4 + \frac{\lambda}{2}L_1$$

$$= rg \begin{pmatrix} 2 & 0 & 0 & -\lambda \\ 0 & 1 & -\lambda & 0 \\ 0 & -\lambda & 1 & 0 \\ 0 & -\lambda & 1 & 0 \\ 0 & 0 & 0 & \frac{4-\lambda^2}{2} \end{pmatrix} \qquad L_3 \longleftrightarrow L_2$$

$$= rg \begin{pmatrix} 2 & 0 & 0 & -\lambda \\ 0 & 1 & -\lambda & 0 \\ 0 & 0 & 1 - \lambda^2 & 0 \\ 0 & 0 & 0 & \frac{4-\lambda^2}{2} \end{pmatrix} \qquad L_3 \longleftrightarrow L_2$$

Ainsi:

 $\lambda \in \operatorname{Sp}(A) \Longleftrightarrow 1 - \lambda^2 = 0 \quad \text{ou} \quad 4 - \lambda^2 = 0 \Longleftrightarrow \lambda^2 = 1 \quad \text{ou} \quad \lambda^2 = 4.$ Donc: $\operatorname{Sp}(A) = \{-2, -1, 1, 2\}.$

• Soit
$$X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathcal{M}_{4,1}(\mathbb{R})$$
. On a:

$$X \in E_{-2}(A) \iff AX = -2X \iff \begin{cases} 2t &= -2x \\ z &= -2y \\ y &= -2z \\ 2x &= -2t \end{cases}$$

$$\iff \begin{cases} x &= -t \\ y &= 0 \\ z &= 0 \end{cases}.$$

Ainsi :
$$E_{-2}(A) = \text{Vect} \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
.

• Soit
$$X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathcal{M}_{4,1}(\mathbb{R})$$
. On a:

$$X \in E_{-1}(A) \iff AX = -X \iff \begin{cases} 2t &= -x \\ z &= -y \\ y &= -z \\ 2x &= -t \end{cases}$$

$$\iff \begin{cases} y &= -z \\ x &= 0 \\ t &= 0 \end{cases}.$$

Ainsi :
$$E_{-1}(A) = \text{Vect} \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}$$
.

• Soit
$$X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathcal{M}_{4,1}(\mathbb{R})$$
. On a:

$$X \in E_1(A) \iff AX = X \iff \begin{cases} & 2t = x \\ & z = y \\ y & = z \\ 2x & = t \end{cases}$$

$$\iff \begin{cases} z = y \\ x = 0 \\ t = 0 \end{cases}$$

Ainsi :
$$E_1(A) = \text{Vect} \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$
.

• Soit
$$X = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathcal{M}_{4,1}(\mathbb{R})$$
. On a:

$$X \in E_2(A) \iff AX = 2X \iff \begin{cases} 2t &= 2x \\ z &= 2y \\ y &= 2z \\ 2x &= 2t \end{cases}$$

$$\iff \begin{cases} x &= t \\ y &= 0 \\ z &= 0 \end{cases}$$

Ainsi :
$$E_2(A) = \text{Vect} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
.

3. On pose:

$$D = \begin{pmatrix} -2 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}.$$

Alors on a : $D = P^{-1}AP$.

4. La matrice nulle appartient à C_A donc C_A est un sous-ensemble non vide de $\mathcal{M}_4(\mathbb{R})$. Soit $(M, N) \in C_A \times C_A$ et $\lambda \in \mathbb{R}$. Alors, comme M et N commutent avec A on a :

$$A(M + \lambda N) = AM + \lambda AN = MA + \lambda NA = (M + \lambda N)A.$$

Ainsi, $M + \lambda N$ commute avec $A : M + \lambda N \in C_A$. D'après la caractérisation des sous-espaces vectoriels, C_A est un sous-espace vectoriel de $\mathcal{M}_4(\mathbb{R})$.

5. Notons que : $M = PNP^{-1}$. On a donc :

$$M \in C_A \iff AM = MA \iff APNP^{-1} = PNP^{-1}A$$

 $\iff P^{-1}APNP^{-1} = NP^{-1}A$ en multipliant par P^{-1}
 $\iff P^{-1}APN = NP^{-1}AP$ en multipliant par P
 $\iff DN = ND$ car $D = P^{-1}AP$
 $\iff N \in C_D$.

6. Soit $N = (n_{i,i}) \in \mathcal{M}_4(\mathbb{R})$. Un calcul donne :

$$DN = \begin{pmatrix} -2n_{1,1} & -2n_{1,2} & -2n_{1,3} & -2n_{1,4} \\ -n_{2,1} & -n_{2,2} & -n_{2,3} & -n_{2,4} \\ n_{3,1} & n_{3,2} & n_{3,3} & n_{3,4} \\ 2n_{4,1} & 2n_{4,2} & 2n_{4,3} & 2n_{4,4} \end{pmatrix} \quad \text{et} \quad ND = \begin{pmatrix} -2n_{1,1} & -n_{1,2} & n_{1,3} & 2n_{1,4} \\ -2n_{2,1} & -n_{2,2} & n_{2,3} & 2n_{2,4} \\ -2n_{3,1} & -n_{3,2} & n_{3,3} & 2n_{3,4} \\ -2n_{4,1} & -n_{4,2} & n_{4,3} & 2n_{4,4} \end{pmatrix}. \quad \begin{pmatrix} \mathbb{R}^4 \longrightarrow \mathbb{R}^4 \\ (n_{1,1}, \dots, n_{4,4}) \longmapsto \frac{1}{2} (n_{1,1} + n_{4,4}, -n_{1,1} + n_{4,4}, n_{2,2} + n_{3,3}, -n_{2,2} + n_{3,3}) \end{pmatrix}$$

Ainsi:

$$N \in C_D \iff DN = ND$$

$$\begin{cases}
-2n_{1,1} &= -2n_{1,1} \\
-2n_{1,2} &= -n_{1,2} \\
-2n_{1,3} &= n_{1,3} \\
-2n_{1,4} &= 2n_{1,4} \\
-n_{2,1} &= -2n_{2,1} \\
-n_{2,2} &= -n_{2,2} \\
-n_{2,3} &= n_{2,3} \\
-n_{2,4} &= 2n_{2,4} \\
n_{3,1} &= -2n_{3,1} \\
n_{3,2} &= -n_{3,2} \\
n_{3,3} &= n_{3,3} \\
n_{3,4} &= 2n_{3,4} \\
2n_{4,1} &= -2n_{4,1} \\
2n_{4,2} &= -n_{4,2} \\
2n_{4,3} &= n_{4,3} \\
2n_{4,4} &= 2n_{4,4} \\
\iff n_{i,j} = 0 \text{ pour tout } i \neq j.$$

Ainsi:
$$C_D = \left\{ \begin{pmatrix} n_{1,1} & 0 & 0 & 0 \\ 0 & n_{2,2} & 0 & 0 \\ 0 & 0 & n_{3,3} & 0 \\ 0 & 0 & 0 & n_{4,4} \end{pmatrix}, (n_{1,1}, n_{2,2}, n_{3,3}, n_{4,4}) \in \mathbb{R}^4 \right\}.$$

7. D'après les questions 5 et 6, on a :

$$C_A = \left\{ P \begin{pmatrix} n_{1,1} & 0 & 0 & 0 \\ 0 & n_{2,2} & 0 & 0 \\ 0 & 0 & n_{3,3} & 0 \\ 0 & 0 & 0 & n_{4,4} \end{pmatrix} P^{-1}, (n_{1,1}, n_{2,2}, n_{3,3}, n_{4,4}) \in \mathbb{R}^4 \right\}.$$

Or,
$$P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$
. Donc:

$$C_A = \left\{ \frac{1}{2} \begin{pmatrix} n_{1,1} + n_{4,4} & 0 & 0 & -n_{1,1} + n_{4,4} \\ 0 & n_{2,2} + n_{3,3} & -n_{2,2} + n_{3,3} & 0 \\ 0 & -n_{2,2} + n_{3,3} & n_{2,2} + n_{3,3} & 0 \\ -n_{1,1} + n_{4,4} & 0 & 0 & n_{1,1} + n_{4,4} \end{pmatrix}, (n_{1,1}, \dots, n_{4,4}) \in \mathbb{R}^4 \right\}.$$

Or l'application :

$$\mathbb{R}^4 \longrightarrow \mathbb{R}^4$$

$$(n_{1,1}, \dots, n_{4,4}) \longmapsto \frac{1}{2} (n_{1,1} + n_{4,4}, -n_{1,1} + n_{4,4}, n_{2,2} + n_{3,3}, -n_{2,2} + n_{3,3})$$

est une bijection de \mathbb{R}^4 . Donc, en posant

$$(a,b,c,d) = \frac{1}{2} (n_{1,1} + n_{4,4}, -n_{1,1} + n_{4,4}, n_{2,2} + n_{3,3}, -n_{2,2} + n_{3,3})$$

on obtient:

$$C_A = \left\{ egin{pmatrix} a & 0 & 0 & b \ 0 & c & d & 0 \ 0 & d & c & 0 \ b & 0 & 0 & a \end{pmatrix} , \ (a,b,c,d) \in \mathbb{R}^4
ight\}.$$

8. D'après la question précédente, la famille :

$$\left(\begin{pmatrix}1&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&1\end{pmatrix},\begin{pmatrix}0&0&0&1\\0&0&0&0\\0&0&0&0\\1&0&0&0\end{pmatrix},\begin{pmatrix}0&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&0\end{pmatrix},\begin{pmatrix}0&0&0&0\\0&0&1&0\\0&0&0&0\end{pmatrix}\right)$$

est une famille génératrice de C_A . De plus, pour tout $(a, b, c, d) \in \mathbb{R}^4$ on a :

$$\iff a = b = c = d = 0.$$

Ainsi cette famille est aussi libre.

Finalement, la famille suivante est une base de C_A :

$$\left(\begin{pmatrix}1&0&0&0\\0&0&0&0\\0&0&0&0\\0&0&0&1\end{pmatrix},\begin{pmatrix}0&0&0&1\\0&0&0&0\\0&0&0&0\\1&0&0&0\end{pmatrix},\begin{pmatrix}0&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&0\end{pmatrix},\begin{pmatrix}0&0&0&0\\0&0&1&0\\0&1&0&0\\0&0&0&0\end{pmatrix}\right).$$

En particulier, $\dim(C_A) = 4$.