Using Quantum Chemistry to Parameterize the Frenkel/Charge-Transfer Holstein Hamiltonian

Nicholas Hestand

Overview

Frenkel/CT Holstein Hamiltonian:

Overview

Coulombic Coupling (Transition Charges)

LUMO
$$\uparrow$$
 \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow

Point Dipole Approximation breaks down at close intermolecular distances relevant for π -stacked systems.

Charge-Transfer Integrals

Energy splitting method requires symmetry.

Huang Rhys Factors

Displaced Harmonic Oscillator:

- The potential energy surfaces of the ground and excited states have different equilibria.
- λ^2 is related to the relaxation energy via $\lambda^2 = E_{rel}/\hbar\omega$

To calculate the Huang Rhys factor, we need to know:

- The geometries of the ground and excited states
- The normal vibrational modes (of the ground state) and their frequencies

These can be calculated using Gaussian 09.

Example: Ethylene

We can project the displacement onto the normal modes to find the Huang-Rhys Factor for each mode.

Double Bond Lengthens

Ground State

Excited State

12 Normal Modes (Excluding Translation/Rotation):

Huang Rhys Factors From Gaussian 09

Steps:

- 1. Calculate the optimized geometry of the ground and excited state
- 2. Calculate the normal vibrational modes by diagonalizing the mass weighted Hessian
- 3. Project the difference of the excited and ground state geometries onto the normal coordinates
- 4. Calculate the Huang-Rhys factor for each normal mode

$$\lambda_i^2 = \frac{m_i \omega_i}{2\hbar} R_i^2$$

5. Calculate an effective Huang-Rhys factor and Frequency

$$\lambda_{eff}^2 = \sum_i \lambda_i^2$$
 $\omega_{eff} = \frac{1}{\lambda_{eff}^2} \sum_i \lambda_i^2 \omega_i$

Running g09_lambda.exe will calculate the Huang-Rhys parameters for ground to excited (neutral, cation, anion) transformations.

Options:

- -i in_file: specify the input file containing the necessary information
- -o out_file: specify the file to write the results
- -m: make the Gaussian 09 input files

Example Input File:

```
# ethylene.inp input file for making G09 input
# Lines starting with # are ignored
# Formatted checkpoint file names
ground fch 'test g.fch' # Ground
excited fch 'test e.fch' # Neutral Excited
cation fch 'test c.fch' # Cation
anion fch 'test a.fch' # Anion
# Info for effective parameter calculations
lower bound 1000.d0
upper bound 1800.d0
# Information for setting up Gaussian calculations
# QC method (ground/cation/anion)
method 'B3LYP/cc-pVTZ'
# QC method (neutral excited)
emethod 'TD=(nstates=1,root=1) B3LYP/cc-pVTZ'
# name of G09 input files generated
task ethylene
# xyz file containing coordinates to be optimized
xyz file ethylene.xyz
```

Example XYZ File:

```
C 0.00000000 0.00000000 0.00000000
C 1.30860442 0.03217880 0.000000000
H 1.87664502 -0.89810604 0.000000000
H 1.83023441 0.98925881 0.000000000
H -0.52162999 -0.95708001 0.00000000
```

Example Usage:

```
./g09_lambda.exe -m -i ethylene.inp

(Run Gaussian 09 Calculations)
(Convert chk files to fch files using formchk)

./g09_lambda.exe -i ethylene.inp -o ethylene.out
```

Results:

ethylene.out UB3LYP CC-pVTZ

Mode Frequency (cm-1) lambda

1 -5.2587794055 -0.00000000000

2 -0.0203707857 -0.00000000000

3 -0.0184218903 -0.0000000000

4 0.0483418898 0.00000000000

5 4.3071018492 -0.0000000000

6 5.0345663643 0.00000000000

7 836.0866449198 -0.0000000013

8 979.0992814061 -0.0000000000

9 983.6754136707 0.00000000000

10 1067.1879585596 -0.00000000000

11 1246.5645659156 0.00000000000

12 1382.1199683765 -0.1245280739

13 1478.8808287271 0.00000990000

14 1692.7685822881 -1.3967306397

15 3125.5667698884 0 000000000000

 $16\ 3139.3324582045\ 0.2790954152$

17 3194.7104980596 0.00000000000

18 3223.1612822683 -0.0000000006

Effective HR range (cm-1): 1000.0 1800.0

Effective HR Factor: 1.97

Effective HR Frequency: 1690.32

Ground State

Excited State

1692 cm⁻¹

Results (continuted):

```
***********************
                                                             ***********************
Mode Frequency (cm-1) lambda-
                                                             Mode Frequency (cm-1) lambda+
*********************
                                                             **********************
1 -5.2587794055 -0.0000000000
                                                             1 -5.2587794055 -0.0000000000
                                                             2 -0.0203707857 -0.00000000000
2 -0.0203707857 -0.0000000000
3 -0.0184218903 -0.0000000000
                                                             3 -0.0184218903 -0.0000000000
4 0.0483418898 0.00000000000
                                                             4 0.0483418898 0.00000000000
5 4.3071018492 -0.00000000000
                                                             5 4.3071018492 -0.00000000000
6 5.0345663643 0.00000000000
                                                             6 5.0345663643 0.00000000000
7 836.0866449198 -0.0000000021
                                                             7 836.0866449198 -0.0000000016
                                                             8 979.0992814061 -0.0000000000
8 979.0992814061 -0.0000000000
9 983.6754136707 0.00000000000
                                                             9 983.6754136707 0.00000000000
10 1067.1879585596 -0.0000000000
                                                             10 1067.1879585596 -0.0000000000
11 1246.5645659156 0.00000000000
                                                             11 1246.5645659156 0.00000000000
12 1382.1199683765 0.9816962551
                                                             12 1382.1199683765 0.6214830337
13 1478.8808287271 0.00000000000
                                                             13 1478.8808287271 0.00000000000
14 1692.7685822881 -1.0280110470
                                                             14 1692.7685822881 -0.9267322291
15 3125.5667698884 -0.00000000000
                                                             15 3125.5667698884 -0.00000000000
16 3139.3324582045 -0.0567008341
                                                             16 3139.3324582045 -0.0465989385
17 3194.7104980596 -0.0000000000
                                                             17 3194.7104980596 -0.0000000000
18 3223.1612822683 -0.00000000004
                                                             18 3223.1612822683 -0.00000000004
Effective HR- range (cm-1): 1000.0 1800.0
                                                             Effective HR+ range (cm-1): 1000.0 1800.0
Effective HR- Factor: 2.02
                                                             Effective HR+ Factor: 1.25
                                                             Effective HR+ Frequency: 1596.40
Effective HR- Frequency: 1544.60
```

Charge Transfer Integrals

Charge Transfer Integrals

$$t_h = -\langle \phi_1^H | H | \phi_2^H \rangle$$
$$t_e = \langle \phi_1^L | H | \phi_2^L \rangle$$

To calculate the charge transfer integrals, we need to know:

- The Hamiltonian in the molecular orbital basis
- 2. The overlap matrix in the molecular orbital basis

These can be calculated with the help of Gaussian 09.

Example: Ethylene

- The integrals correspond to the interaction energy between MOs
- Cofacial Energy splitting method should be fine since both molecules have the same energy
- Face to End Energy splitting method will not work well since the molecules have different energies (they are not symmetry related)

Charge Transfer Integrals From Gaussian 09

Steps:

- 1. Calculate the molecular orbitals of the monomers, C_1 and C_2
- 2. Calculate the supramolecular orbitals of the dimer C, the overlap matrix S, and the eigenvalues E
- 3. Calculate the dimer Hamiltonian in the atomic orbital basis from the Roothan Equation

$$H_{AO} = SCEC^{-1}$$

4. Project the Hamiltonian and overlap matrix onto the basis of monomer molecular orbitals, $C_{MO} = C_1 \oplus C_2$

$$H_{MO} = C_{MO}^T H_{AO} C_{MO} \qquad S_{MO} = C_{MO}^T S C_{MO}$$

5. Orthogonalize the relevant monomeric wave functions using Lowdin's transformation

$$H'_{MO} = S_{MO}^{-1/2} H_{MO} S_{MO}^{-1/2}$$

Running g09_ctint.exe will calculate the Hamiltonian submatrix relevant for charge transfer.

Options:

- -i in_file: specify the input file containing the necessary information
- -o out_file: specify the file to write the results
- -m: make the Gaussian 09 input files

Example Input File:

```
# ct ethylene.inp input file for making G09 input
# Lines starting with # are ignored
# log file and fch file names from G09 output
fch m1
        ethylene cofacial m1.fch #mol 1
fch m2
              ethylene cofacial m2.fch #mol 2
              ethylene cofacial m2.out
log m2
fch d
              ethylene cofacial d.fch #dimer
              ethylene cofacial d.out
log d
# Information for setting up Gaussian calculations
method
              'B3LYP/6-31++G**'
# Name of the Gaussian files to create
task ethylene cofacial
# file with xyz of molecule 1
              ethylene m1.xyz
xyz file m1
# file with xyz of molecule 2
xyz file m2 ethylene m2.xyz
```

Example XYZ Files:

```
C 0.672749 0.000000 0.000000
C -0.672749 0.000000 0.000000
H 1.242623 0.934806 0.000000
H 1.242623 -0.934806 0.000000
H -1.242623 0.934806 0.000000
H -1.242623 -0.934806 0.000000
   ethylene m1.xyz
C 0.672749 0.000000 4.000000
C -0.672749 0.000000 4.000000
H 1.242623 0.934806 4.000000
H 1.242623 -0.934806 4.000000
H -1.242623 0.934806 4.000000
H -1.242623 -0.934806 4.000000
   ethylene m2.xyz
```

Example Usage:

```
./g09_ctint.exe -m -i ct_ethylene.inp

(Run Gaussian 09 Calculations)
(Convert chk files to fch files using formchk)

./g09_ctint.exe -i ct_ethylene.inp -o ct_ethylene.out
```

Results (Cofacial ethylene):

Nonorth	ogonal Sub Ham	iltonian (cm-1)	
	HOMO1>	HOMO2>	LUMO1>	LUM02>
<h0m01 < td=""><td>-59949.1</td><td>5062.521</td><td>0</td><td>0</td></h0m01 <>	-59949.1	5062.521	0	0
<h0m02 < td=""><td>5062.521</td><td>-59949.1</td><td>0</td><td>0</td></h0m02 <>	5062.521	-59949.1	0	0
<lom01 < td=""><td>0</td><td>0</td><td>-2651.71</td><td>2830.339</td></lom01 <>	0	0	-2651.71	2830.339
<lomo2 < td=""><td>0</td><td>0</td><td>2830.339</td><td>-2651.71</td></lomo2 <>	0	0	2830.339	-2651.71
Orthogo	nalized Sub Ha			
	HOMO1>	HOMO2>	LUMO1>	LUMO2>
<h0m01 < td=""><td>-59851.8</td><td>1765.845</td><td>e</td><td>0</td></h0m01 <>	-59851.8	1765.845	e	0
<h0m02 < td=""><td>1765.845</td><td>-59851.8</td><td>0</td><td>0</td></h0m02 <>	1765.845	-59851.8	0	0
<lom01 < td=""><td>0</td><td>0</td><td>-2266.34</td><td>2477.862</td></lom01 <>	0	0	-2266.34	2477.862
<lomo2 < td=""><td>0</td><td>0</td><td>2477.862</td><td>-2266.34</td></lomo2 <>	0	0	2477.862	-2266.34
0verlap	Sub Matrix			
	HOMO1>	HOMO2>	LUMO1>	LUMO2>
<homo1 < td=""><td>1</td><td>-0.0551</td><td>0</td><td>0</td></homo1 <>	1	-0.0551	0	0
<h0m02 < td=""><td>-0.0551</td><td>1</td><td>0</td><td>0</td></h0m02 <>	-0.0551	1	0	0
<lom01 < td=""><td>0</td><td>0</td><td>1</td><td>-0.1555</td></lom01 <>	0	0	1	-0.1555
<lomo2 < td=""><td>0</td><td>0</td><td>-0.1555</td><td>1</td></lomo2 <>	0	0	-0.1555	1

- Failure to orthogonalize results in integrals that are too large and dependent on the reference energy.
- Note that the integrals relevant for singlet fission are also available, although they are zero here for the perfectly eclipsed system.

Example: Ethylene

Cofacial

	t_e	t_h
Direct	2478 cm ⁻¹	-1766 cm ⁻¹
Energy Splitting	2465 cm ⁻¹	-1777 cm ⁻¹

Face to End

	t_e	t_h
Direct	1160 cm ⁻¹	0
Energy Splitting	1208 cm ⁻¹	446 cm ⁻¹

Coulomb Coupling (Transition Charges)

Coulombic Coupling (Transition Charges)

LUMO
$$\uparrow$$
 \downarrow \uparrow \uparrow \uparrow \uparrow

Point Dipole Approximation breaks down at close intermolecular distances relevant for π -stacked systems.

To calculate the transition charges, we need to know:

- 1. Overlap Matrix
- Configuration Interaction Matrix for the excited state
- 3. Molecular Orbital Matrix

These can be calculated with the help of Gaussian 09.

$$J_{n,m} = \frac{1}{4\pi\varepsilon} \sum_{i,j}^{N_n,N_m} \frac{q_i^n q_j^m}{|\mathbf{R}_i^n - \mathbf{R}_j^m|}$$

Example: Ethylene

Point Dipole

$$J_{n,m} = \frac{\bar{\mu}_1 \bar{\mu}_2 - 3(\bar{\mu}_1 \cdot \vec{R})(\bar{\mu}_2 \cdot \vec{R})}{4\pi \varepsilon R^3}$$

Transition Charges

$$J_{n,m} = \frac{1}{4\pi\varepsilon} \sum_{i,j}^{N_n,N_m} \frac{q_i^n q_j^m}{|\mathbf{R}_i^n - \mathbf{R}_j^m|}$$

- Using transition charges gives spatial resolution to the transition moments which is necessary for accurate couplings when the molecules are close.
- The difference may not be that significant for ethylene, but can be bigger molecules like perylene.

Transition Charges From Gaussian 09

$$q_P = \sqrt{2} \sum_{b}^{N_{AO,P}} \sum_{c}^{N_{AO}} \sum_{i}^{\text{unocc occ}} \sum_{i}^{\text{occ}} A_{i,j} c_i^{Pb} c_j^c S_{bc}$$

 $A_{i,j}$ - The CI coefficient from molecular orbital i to molecular orbital j c_i^{Pb} - The MO expansion coefficient of the b^{th} atomic orbital centered on atom P for the i^{th} MO

 c_{j}^{c} - The MO expansion coefficient of the c^{th} atomic orbital for the j^{th} MO

 \mathcal{S}_{bc} - The overlap matrix of atomic orbitals b and c

 $N_{AO,P}$ - The number of atomic orbitals centered on atom P

 N_{AO} - The total number of atomic orbitals

 q_P - The transition charge on atom P

Running g09_tq.exe will calculate the transition charges of a molecule

Options:

- -i in_file: specify the input file containing the necessary information
- -o out_file: specify the file to write the results
- -m: make the Gaussian 09 input files
- -c tq_file_m1, tq_file_m2 : calculate the coupling between two molecules after the transition charges have been calculated

Example Input File:

```
# ct ethylene.inp input file for making G09 input
# Lines starting with # are ignored
# log file and fch file names from G09 output
             ta ethylene.fch
fch
             tq ethylene.out
log
# The excited state of interest
estate
             1
# Information for setting up Gaussian calculations
emethod
             'CIS(nstates=1,root=1)/cc-pVTZ'
# Name of the Gaussian input files to create
             tq ethylene
task
# file with xvz coordinates
             ethylene.xyz
xyz file
```

Example XYZ Files:

```
C 0.672749 0.000000 0.000000
C -0.672749 0.000000 0.000000
H 1.242623 0.934806 0.000000
H -1.242623 -0.934806 0.000000
H -1.242623 -0.934806 0.000000
H -1.242623 -0.934806 0.000000
```

ethylene.xyz

Example Usage:

```
./g09_tq.exe -m -i tq_ethylene.inp

(Run Gaussian 09 Calculations)
(Convert chk files to fch files using formchk)

./g09_tq.exe -i tq_ethylene.inp -o tq_ethylene_tqs.out

./g09_tq.exe -c tq_ethylene_tqs.out

tq_ethylene_shift_tqs.out
```

Results:

Atomic Number	X (bohr)	Y(bohr)	Z(bohr)	TQ (au)
6	0	0	(0.341555
6	2.472904	0.060809	(0.34156
1	3.546345	-1.69717	(0.02038
1	3.458642	1.869428	(0.02038
1	-0.98574	-1.80862	(0.020381
1	-1.07344	1.757984	(0.020381
tq sum	1.04E-09			
tq dipole (au)	-1.02937	-0.02531	()
tq dipole (debye)	-2.61622	-0.06433	()

- The transition charges should sum to zero
- The transition dipole moment calculated from the transition charges should be fairly close to the one calculated by Gaussian, although this is not always the case.
- The transition charges can now be used to calculate the couplings (-c)

Example: Ethylene

Unscreened, π-stacked at 8 Bohr (Approx. 4.2 Å)

	Jc
Transition Dipole	454 cm ⁻¹
Transition Charge	404 cm ⁻¹

Unscreened, π -stacked at 2 Bohr (Approx. 1 Å) where the spatial resolution becomes more important for

ethylene

	Jc
Transition Dipole	29086 cm ⁻¹
Transition Charge	11130 cm ⁻¹

Some References

Huang Rhys Calculation

• Gisslen, L.; Scholz, R. *Phys. Rev. B* **2009**, *80*, 115309. (Sec II B, C, and D.)

Charge-transfer Integrals

- Valeev, E. F.; Coropceanu, V.; da Silva Filho, D. A.; Salman, S.; Bredas, J. L. J. Am. Chem. Soc. 2006, 128, 9882.
- Senthilkumar, K.; Grozema, F. C.; Bickelhaupt, F. M.; Siebbeles, L. D. A. *J. Chem. Phys.* **2003**, *119*, 9809.

Transition Charges

Kistler, K. A.; Spano, F. C.; Matsika, S. J. Phys. Chem. B 2013, 117, 2032.