

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 December 2002 (27.12.2002)

PCT

(10) International Publication Number
WO 02/102829 A2

(51) International Patent Classification⁷: C07K

(21) International Application Number: PCT/US02/19220

(22) International Filing Date: 17 June 2002 (17.06.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/298,098 15 June 2001 (15.06.2001) US

(71) Applicants: INHIBITEX, INC. [US/US]; 8995 Westside Parkway, Alpharetta, GA (US). THE PROVOST FELLOWS AND SCHOLARS OF THE COLLEGE OF THE HOLY AND UNDIVIDED TRINITY OF QUEENS ELIZABETH NEAR DUBLIN [IE/IE]; Trinity College, Dublin 2 (IE). UNIVERSITA' DEGLI STUDI DI PAVIA [IT/IT]; Strada Nuova, 65, I-27100 Pavia (IT).

(72) Inventors: FOSTER, Timothy, J.; 70 Coolamber Park, Templeogue, Dublin 16 (IE). ROCHE, Fiona; c/o The Provost Fellows and Scholars of the College, e of the Holy and Undivided Trinity of Queen Eliza, beth near Dublin, Trinity College, Dublin 2 (IE). PATTI, Joseph, M.; 6680 Stratford Place, Cumming, GA 30040 (US). HUTCHINS, Jeff, T.; c/o Inhibitex, Inc., 8995 Westside Parkway, alpharetta, GA 30004 (US). HALL, Andrea; c/o Inhibitex, Inc., 8995 Westside Parkway, Alpharetta, GA 30004 (US). DOMANSKI, Paul; 2655 N. Thompson Road, Atlanta, GA 30319 (US). PATEL, Pratiksha; 895 Yosemite Drive,

Sewanee, GA 30319 (US). SYRIBEYS, Peter; C/o Inhibitex, Inc., 8995 Westside Parkway, Alpharetta, GA (US). SPEZIALE, Pietro; c/o Universita' Degli Studi Di Pavia, Strada Nuova, 65, I-27100 Pavia (IT).

(74) Agent: SCHULMAN, Aaron, B.; Larson & Taylor, PLC, Suite 900, 1199 North Fairfax Street, Alexandria, VA 22314 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/102829 A2

(54) Title: CROSS-REACTIVE MONOCLONAL AND POLYCLONAL ANTIBODIES WHICH RECOGNIZE SURFACE PROTEINS FROM COAGULASE-NEGATIVE STAPHYLOCOCCI AND STAPHYLOCOCCUS AUREUS

(57) Abstract: Polyclonal and monoclonal antibodies which are cross-reactive to both coagulase-positive staphylococcus bacteria, such as *S. hemolyticus*, are provided which can recognize surface proteins from both coagulase-positive and coagulase negative staph bacteria. The antibodies may be generated from surface proteins that have been isolated on the basis of characteristics that may be common between *S. aureus* and coagulase-negative staphylococci, and these recombinant surface proteins are used to generate the antibodies of the invention. There is also provided vaccines and methods which utilize these proteins and antibodies for the treatment or protection against a wide variety of staphylococcal infections.

**CROSS-REACTIVE MONOCLONAL AND POLYCLONAL ANTIBODIES
WHICH RECOGNIZE SURFACE PROTEINS FROM COAGULASE-NEGATIVE
STAPHYLOCOCCI AND STAPHYLOCOCCUS AUREUS**

Cross Reference to Related Applications

5 The present application claims the benefit of U.S. provisional application Ser. No. 60/298,098 filed June 15, 2001.

Field of the Invention

The present invention relates in general to surface proteins from 10 *Staphylococcus aureus* and their active regions such as their A domains which have homologue proteins on coagulase-negative Staphylococci such as *S. epidermidis* and *S. hemolyticus* as well as antibodies which recognize said proteins, and in particular to isolated monoclonal and polyclonal antibodies which recognize specific proteins from *Staphylococcus aureus* and coagulase-negative Staphylococci and 15 which are cross-reactive against *S. aureus* and coagulase-negative Staphylococci and can thus be utilized in vaccines and methods useful for preventing or treating a wide variety of infections caused by staphylococcal bacteria.

Background of the Invention

The successful colonization of the host is a process required for most 20 microorganisms to cause infections in animals and humans. Microbial adhesion is the first crucial step in a series of events that can eventually lead to disease. Pathogenic microorganisms colonize the host by attaching to host tissues or serum conditioned implanted biomaterials, such as catheters, artificial joints, and vascular grafts, through specific adhesins present on the surface of the bacteria. 25 MSCRAMM®s (Microbial Surface Components Recognizing Adhesive Matrix Molecules) are a family of cell surface adhesins that recognize and specifically bind to distinct components in the host's extracellular matrix. Once the bacteria have successfully adhered and colonized host tissues, their physiology is dramatically altered and damaging components such as toxins and proteolytic enzymes are 30 secreted. Moreover, adherent bacteria often produce a biofilm and quickly become more resistant to the killing effect of most antibiotics.

S. aureus causes a spectrum of infections that range from cutaneous lesions such as wound infections, impetigo, and furuncles to life-threatening conditions that include pneumonia, septic arthritis, sepsis, endocarditis, and biomaterial related infections. S. aureus is known to express a repertoire of different MSCRAMMs that 5 can act individually or in concert to facilitate microbial adhesion to specific host tissue components. In addition, another type of staphylococcus bacteria is identified as the coagulase-negative bacteria, including such species as S. epidermidis and S. hemolyticus which are also have been known to express MSCRAMMs, and which also are responsible for a wide range of bacterial infections 10 and related diseases. In this regard, MSCRAMMs generally provide an excellent target for immunological attack by antibodies, both polyclonal and monoclonal antibodies.

However, because antibodies by nature are very specific and in the case of different types of Staphylococci, such as S. aureus on one hand (coagulase-positive) and S. epidermidis and S. hemolyticus on the other (coagulase-negative), it has still remained a significant problem to develop antibodies that exhibit cross-reactivity across the different types of bacteria. Such cross-reactive antibodies are particularly desirable because of their potential in immunizing human and animal patients and providing protection against infections caused by both types of 20 Staphylococcal bacteria, namely coagulase-positive bacteria such as S. aureus and the coagulase-negative bacteria, such as S. epidermidis and S. hemolyticus. Such antibodies would thus be extremely useful in preventing or treating a wide variety of the infections caused by staphylococcal bacteria.

25 Summary of the Invention

Accordingly, it is an object of the present invention to provide monoclonal antibodies that recognize MSCRAMM®'s from both coagulase-positive bacteria such as S. aureus as well as MSCRAMM®'s from coagulase-negative bacteria, such as S. epidermidis and S. hemolyticus.

It is also an object of the present invention to identify and isolate MSCRAMM®'s from staphylococcal bacteria, as well as their active regions such as the A domain, which can be used to generate monoclonal and polyclonal antibodies that will be cross-reactive against both coagulase-positive and coagulase-negative 5 staphylococci.

It is still further an object of the present invention to provide isolated antibodies that can recognize the A domain of surface proteins such as the DgsK protein from coagulase-negative staphylococci and at the same time recognize surface proteins such as the SasA protein from *Staphylococcus aureus*.

10 It is yet another object of the present invention to utilize the isolated proteins, A domains and antibodies of the invention to produce vaccines useful in the treatment or prevention of staphylococcal infections, and to provide methods wherein the vaccines and antibodies of the invention are used to prevent or treat a staphylococcal infection.

15 These and other objects are provided by virtue of the present invention which comprises the identification and isolation of surface proteins from one type of staphylococcal bacteria, such as coagulase-negative or coagulase-positive staph, which can give rise to cross-reactive antibodies which can recognize surface proteins of both types of staph and which can thus be utilized in vaccines and 20 methods of treating or preventing a wide range of staphylococcal infections. The present invention also relates to the generation of both polyclonal and monoclonal antibodies from these surface proteins and their use in preventing or treating staphylococcal infections.

25 These embodiments and other alternatives and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the present specification and/or the references cited herein, all of which are incorporated by reference.

Brief Description of the Drawing Figures

Figure 1 is a depiction of the primary structure of the in silico-predicted proteins in accordance with the present invention.

Figure 2 shows a Coomassie gel of the purified N-terminal recombinant His-tagged proteins expressing the orfs of the present invention.

5 Figures 3A-3C show Western blotting of *S. aureus* cell wall extracts showing probing with anti-KesK antibodies (Fig. 3A), anti-KnkA antibodies (Fig. 3B) and anti-DsqA antibodies (Fig. 3C), respectively.

Figures 4A-4B show Dot-blotting and Western immunoblotting of *Lactococcus lactis* expressing *S. aureus* MSCRAMM®s, namely KnkA (Fig. 4A) and 10 KesK (Fig. 4B).

Figures 5A-5D representing the probing of recombinant LPXTG proteins in accordance with the present invention with convalescent sera examining *in vivo* expression, including RrKn and RrKN2 (Fig. 5A), Kesk1 and Kesk2A (Fig. 5B), KnkA (Fig. 5C) and DsqA2 (Fig. 5D).

15 Figure 6 shows a Western blot analysis demonstrating that rabbit polyclonal antibodies against *S. aureus* SasA cross-react with a protein released from the cell surface of *S. epidermidis* HB as well as the recombinant A-region from DsgK cloned from *S. epidermidis*.

20 **DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS**

In accordance with the present invention, there are provided specific surface proteins from coagulase-positive staphylococcal bacteria, such as *S. aureus* as well 25 as from coagulase-negative staph such as *S. epidermidis* and *S. hemolyticus*, including active fragments thereof such as the A domains of these proteins or other epitotic regions which can generate antibodies that recognize the whole protein. In accordance with the invention, the identification and isolation of candidate peptide sequences and proteins was carried out based on some of the common features of the MSCRAMM®s ((Microbial Surface Components Recognizing Adhesive Matrix Molecules)) which are in most cases are covalently anchored to the cell wall 30 peptidoglycan. These surface proteins had the following common features which

were utilized in identifying and isolated the sequences of the present invention, namely: (i) an N-terminal signal peptide (approximately 40 residues in length) required for Sec-dependent secretion, (ii) a wall spanning domain either rich in proline and glycine residues or composed of serine and aspartate dipeptide repeats, (iii) an LPXTG motif required for covalent anchoring of the protein to the pentaglycine crossbridge in peptidoglycan, (iv) a hydrophobic membrane-spanning domain followed by (v) several positively charged residues.

In accordance with the invention, by exploiting the whole genome of *S. aureus* in light of the properties as set forth above, at least eight novel open reading frames encoding proteins with secretion and anchorage motifs indicative of MSCRAMMs were identified (i.e. bearing an N-terminal signal peptide and a C-terminal LPXTG motif followed by a hydrophobic domain and a positively charged tail). Table 1 illustrates the list of proteins identified including their distribution among *S. aureus* genomes, their protein size and C-terminal cell wall sorting sequence.

Table 1.

Name	Distribution	Size	C-terminus
EkeS	ENCSJM	2189 aa	LPNTGSEEMDLPLKELALITGAALLARRRS KKEKES
DsqA	ENCSJM	~1363- 2283 aa	LPDTGDSIKQNLGGVMTLLVGLGLMKR KKKKDENDQDDSSQA
KesK	ENCSJM	~909 aa	LPKTGETTSSQSWWGLYALLGMLALFIPK FRKESK
KrkN2	ENCSJM (Cowan)	~278 aa	LPKTGLTSVDNFISTVAFATLALLGSLSLLL KRKESK
KrkN	ENCSJM	~661 aa	LPQTGEESNKDMTLPLMALIALSSIVAFVLP RKRKN
RkaS	ENCSJM	~801 aa	LPKTGTNQSSSPEAMFVLLAGIGLIATVRR RKAS
RrkN	NCSJM	1629 aa	LPKTGLESTQKGLIFSSIIGIAGLMLLARRRK N
KnkA	NCSJM	629 aa	LPKAGETIKEHWLPISVIVGAMGVLMIWLS RRNKLKNKA

Abbreviations: eMRSA-16; N, 8325; C, COL; S, MSSA; J, N315, M, Mu50.
Six out of eight are conserved in all of the six staphylococcal genomes currently sequenced and the remaining two are present in 5/6 of these genomes.

In accordance with the invention, amino acid and nucleic acid sequences coding for the above proteins were obtained, and these were as follows: Ekes⁵ MRSA – SEQ ID NO:1 (DNA sequence); EkeS_MRSA – SEQ ID NO:2 (Protein sequence); DsqA (8325) – SEQ ID NO:3 (DNA sequence); DsqA (8325) – SEQ ID NO:4 (Protein sequence); KesK1 (8325) – SEQ ID NO:5 (DNA sequence); KesK1 (8325) – SEQ ID NO:6 (Protein sequence); KrkN2 (8325) — SEQ ID NO:7 (DNA sequence); KrkN2 (8325) – SEQ ID NO:8 (Protein sequence); KrkN (8325) – SEQ ID NO:9 (DNA sequence); KrkN (8325) – SEQ ID NO:10 (Protein sequence); RkaS¹⁰ (COL) – SEQ ID NO:11 (DNA sequence); RkaS (COL) – SEQ ID NO:12 (Protein sequence); RrkN (8325) – SEQ ID NO:13 (DNA sequence); RrkN (8325) – SEQ ID NO:14 (Protein sequence); KnkA (8325) – SEQ ID NO:15 (DNA sequence); KnkA (8325) – SEQ ID NO:16 (Protein sequence).

In accordance with the present invention, isolated antibodies may be generated from the above proteins or their active regions such as the A domain so as to be able to recognize said proteins and/or said domains. These antibodies may be either monoclonal or polyclonal. If polyclonal antibodies are desired, these may be generated in any of a number of conventional ways well known in the art. In a typical process, the desired surface protein or active region thereof may be injected into a suitable host animal, e.g., a mouse or rabbit, and after a suitable time period, antibodies may be isolated and recovered from the host animal. With regard to monoclonal antibodies, in accordance with the present invention, these may be produced in any number of suitable ways including, e.g., the well known method of Kohler and Milstein, Nature 256:495-497 (1975), or other suitable ways known in the field, such as those methods disclosed in U.S. Pat. Nos. 6,331,415; 5,981,216; 5,807,715; and 4,816,567; Eur. Pat. App. 519,596; and PCT publication WO 00/71585, all of these patent publications incorporated herein by reference. These methods include their preparation as chimeric, humanized, or human monoclonal antibodies in ways that would be well known in this field. Still further, monoclonal antibodies may be prepared from a single chain, such as the light or heavy chains, and in addition may be prepared from active fragments of an

antibody which retain the binding characteristics (e.g., specificity and/or affinity) of the whole antibody. By active fragments is meant an antibody fragment which has the same binding specificity as a complete antibody which binds to the particular surface protein or its homologue from the different type of staph bacteria (i.e., 5 coagulase negative or coagulase-positive), and the term "antibody" as used herein is meant to include said fragments. Additionally, antisera prepared using monoclonal or polyclonal antibodies in accordance with the invention are also contemplated and may be prepared in a number of suitable ways as would be recognized by one skilled in the art.

10 As indicated above, antibodies to the isolated surface proteins and/or their active regions in accordance with the invention may be prepared in a number of suitable ways that would be well known in the art, such as the well-established Kohler and Milstein method described above which can be utilized to generate monoclonal antibodies. For example, in preliminary steps utilized in such a 15 process, mice may be injected intraperitoneally once a week for a prolonged period with a purified recombinant MSCRAMM® in accordance with the invention or an active portion thereof, followed by a test of blood obtained from the immunized mice to determine reactivity to the purified protein. Following identification of mice reactive to the proteins, lymphocytes isolated from mouse spleens are fused to 20 mouse myeloma cells to produce hybridomas positive for the antibodies against the surface proteins of the invention which are then isolated and cultured, following by purification and isotyping.

In order to generate monoclonal antibodies in accordance with the invention, it is preferred that these be generated using recombinantly prepared MSCRAMM®'s 25 in accordance with the invention, and these recombinants may be generated and isolated using a number of standard methods well known in the art. For example, one such method employs the use of *E. coli* expression vector pQE-30 as an expression vector for cloning and expressing recombinant proteins and peptides. In one preferred method, using PCR, the A domain of the surface protein identified as 30 DgsK or SasA was amplified from the sequences described above and subcloned

into the *E. coli* expression vector PQE-30 (Qiagen), which allows for the expression of a recombinant fusion protein containing six histidine residues. This vector was subsequently transformed into *E. coli* strain ATCC 55151, grown in a 15-liter fermentor to an optical density (OD₆₀₀) of 0.7 and induced with 0.2 mM isopropyl-1-beta-D galactoside (IPTG) for 4 hours. The cells were harvested using an AG Technologies hollow-fiber assembly (pore size 0.45 µm) and the cell paste frozen at -80° C. Cells were lysed in 1X PBS (10 mL buffer/1 g of cell paste) using 2 passes through the French Press @ 1100psi. Lysed cells were spun down at 17,000rpm for 30 minutes to remove cell debris. Supernatant was passed over a 5-mL HiTrap Chelating (Pharmacia) column charged with 0.1M NiCl₂. After loading, the column was washed with 5 column volumes of 10mM Tris, pH 8.0, 100mM NaCl (Buffer A). Protein was eluted using a 0-100% gradient of 10mM Tris, pH 8.0, 100mM NaCl, 200 mM imidazole (Buffer B) over 30 column volumes. SdrGN1N2N3 or SdrGN2N3 eluted at ~13% Buffer B (~26mM imidazole). Absorbance at 280nm was monitored.

Fractions containing SdrGN1N2N3 or SdrGN2N3 were dialyzed in 1x PBS.

Next, each protein was then put through an endotoxin removal protocol. Buffers used during this protocol were made endotoxin free by passing over a 5-mL Mono-Q sepharose (Pharmacia) column. Protein was divided evenly between 4x 15mL tubes. The volume of each tube was brought to 9mL with Buffer A. 1mL of 10% Triton X-114 was added to each tube and incubated with rotation for 1 hour at 4°C. Tubes were placed in a 37°C water bath to separate phases. Tubes were spun down at 2,000rpm for 10 minutes and the upper aqueous phase from each tube was collected and the detergent extraction repeated. Aqueous phases from the 2nd extraction were combined and passed over a 5-mL IDA chelating (Sigma) column, charged with 0.1M NiCl₂ to remove remaining detergent. The column was washed with 9 column volumes of Buffer A before the protein was eluted with 3 column volumes of Buffer B. The eluant was passed over a 5-mL Detoxigel (Sigma) column and the flow-through collected and reapplied to the column. The flow-through from the second pass was collected and dialyzed in 1x PBS. The

purified product was analyzed for concentration, purity and endotoxin level before administration into the mice.

In the preferred process, monoclonal antibodies in accordance with the present invention may be prepared from the recombinant proteins identified above 5 in the following manner. In this process, *E. coli* expressed and purified recombinant SasA and DsgK proteins were used to generate a panel of murine monoclonal antibodies while the mouse sera was used as a source of polyclonal antibodies. Briefly, a group of Balb/C or SJL mice received a series of subcutaneous immunizations of 1-10 mg of protein in solution or mixed with adjuvant as described 10 below in Table 2.

Table 2. Immunization Schemes

RIMMS Injection	Day	Amount (µg)	Route	Adjuvant
#1	0	5	Subcutaneous	FCA/RIBI
#2	2	1	Subcutaneous	FCA/RIBI
#3	4	1	Subcutaneous	FCA/RIBI
#4	7	1	Subcutaneous	FCA/RIBI
#5	9	1	Subcutaneous	FCA/RIBI

Conventional Injection	Day	Amount (µg)	Route	Adjuvant
Primary	0	5	Subcutaneous	FCA
Boost #1	14	1	Intraperitoneal	RIBI
Boost #2	28	1	Intraperitoneal	RIBI
Boost #3	42	1	Intraperitoneal	RIBI

At the time of sacrifice (RIMMS) or seven days after a boost (conventional) serum was collected and titered in ELISA assays against MSCRAMM® proteins or on whole cells (*S. epidermidis* and *S. aureus*). Three days after the final boost, the 30 spleens or lymph nodes were removed, teased into a single cell suspension and the lymphocytes harvested. Lymphocytes were then fused to a P3X63Ag8.653 myeloma cell line (ATCC #CRL-1580). Cell fusion, subsequent plating and feeding were performed according to the Production of Monoclonal Antibodies protocol from Current Protocols in Immunology (Chapter 2, Unit 2.), incorporated herein by 35 reference.

Any clones that were generated from the fusion were then screened for specific anti-SasA antibody production using a standard ELISA assay. Positive clones were expanded and tested further for activity in a whole bacterial cell binding assay by flow cytometry and SasA binding by Biacore analysis. Throughout the 5 Biacore analysis, the flow rate remained constant at 10 ml/min. Prior to the SasA or DgsK injection, test antibody was adsorbed to the chip via RAM-Fc binding. At time 0, SasA or DgsK at a concentration of 30 mg/ml was injected over the chip for 3 min followed by 2 minutes of dissociation. This phase of the analysis measured the relative association and disassociation kinetics of the Mab/SasA or DgsK 10 interaction.

Next, the antibodies prepared as set forth above were tested for binding to whole bacteria. In these tests, bacterial samples *S. aureus* Newman, *S. aureus* 67-0, *S. aureus* 397 (Sal6), *S. aureus* Wood, *S. aureus* 8325-4, methicillin resistant *S. aureus* MRSA 16, *S. epidermidis* ATCC 35984, *S. epidermidis* HB, *S. epidermidis* 15 CN-899 and *S. haemolyticus* ATCC 43253 were collected, washed and incubated with Mab or PBS alone (control) at a concentration of 2 µg/ml after blocking with rabbit IgG (50 mg/ml). Following incubation with antibody, bacterial cells were incubated with Goat-F_(ab')₂-Anti-Mouse-F_(ab')₂-FITC which served as the detection antibody. After antibody labeling, bacterial cells were aspirated through the 20 FACScaliber flow cytometer to analyze fluorescence emission (excitation: 488, emission: 570). For each bacterial strain, 10,000 events were collected and measured. These data indicate that antibodies against *S. aureus* SasA were able to recognize a homologous protein on the surface of coagulase-negative staphylococci. The data support Western blot analysis demonstrating that rabbit 25 polyclonal antibodies against *S. aureus* SasA cross-react with a protein released from the cell surface of *S. epidermidis* HB as well as the recombinant A-region from DsgK cloned from *S. epidermidis* (see Figure 6 and Table 3 below).

Table 3. Polyclonal Sera Reactivity

	New man	67-0	397 (SAL 6)	Wo od 46	8325 -4	MRS A 16	ATC C 3598	HB	CN- 899	ATC C 4325
--	---------	------	-------------	----------	---------	----------	------------	----	---------	------------

							4			3
Normal Mouse Sera	-	-	-	-	-	-	-	-	-	-
Mouse anti- SasA	+	+	+/-	-	+	+	+	+	+	+

Although production of antibodies using recombinant forms of the surface proteins of the present invention is preferred, antibodies may be generated from natural isolated and purified versions of these proteins or their active regions such as the A domain, and monoclonal or polyclonal antibodies can be generated using these proteins or active regions in the same manner as described above to obtain such antibodies. Still other conventional ways are available to generate the antibodies of the present invention using recombinant or natural purified proteins or their active regions, as would be recognized by one skilled in the art.

As would be recognized by one skilled in the art, the antibodies of the present invention may also be formed into suitable pharmaceutical compositions for administration to a human or animal patient in order to treat or prevent an infection caused by staphylococcal bacteria. Pharmaceutical compositions containing the antibodies of the present invention, or effective fragments thereof, may be formulated in combination with any suitable pharmaceutical vehicle, excipient or carrier that would commonly be used in this art, including such as saline, dextrose, water, glycerol, ethanol, other therapeutic compounds, and combinations thereof. As one skilled in this art would recognize, the particular vehicle, excipient or carrier used will vary depending on the patient and the patient's condition, and a variety of modes of administration would be suitable for the compositions of the invention, as would be recognized by one of ordinary skill in this art. Suitable methods of administering any pharmaceutical composition disclosed in this application include,

but are not limited to, topical, oral, anal, vaginal, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal and intradermal administration.

For topical administration, the composition is formulated in the form of an ointment, cream, gel, lotion, drops (such as eye drops and ear drops), or solution 5 (such as mouthwash). Wound or surgical dressings, sutures and aerosols may be impregnated with the composition. The composition may contain conventional additives, such as preservatives, solvents to promote penetration, and emollients. Topical formulations may also contain conventional carriers such as cream or ointment bases, ethanol, or oleyl alcohol. Additional forms of antibody 10 compositions, and other information concerning compositions, vaccines, methods and applications with regard to other MSCRAMM®s will generally also be applicable to the present invention involving the aforementioned MSCRAMM®s and their active regions and antibodies thereto, and these other MSCRAMM®s are disclosed, for example, in U.S. patents 5,175,096; 5,320,951; 5,416,021; 5,440,014; 15 5,571,514; 5,652,217; 5,707,702; 5,789,549; 5,840,846; 5,980,908; 6,086,895; 6,008,341; 6,177,084; 5,851,794 and 6,288,214; all of these patents incorporated herein by reference.

The antibody compositions of the present invention may also be administered with a suitable adjuvant in an amount effective to enhance the 20 immunogenic response. For example, suitable adjuvants may include alum (aluminum phosphate or aluminum hydroxide), which is used widely in humans, and other adjuvants such as saponin and its purified component Quil A, Freund's complete adjuvant, RIBBI adjuvant, and other adjuvants used in research and veterinary applications. Still other chemically defined preparations such as muramyl 25 dipeptide, monophosphoryl lipid A, phospholipid conjugates such as those described by Goodman-Snitkoff *et al.* *J. Immunol.* 147:410-415 (1991) and incorporated by reference herein, encapsulation of the conjugate within a proteoliposome as described by Miller *et al.*, *J. Exp. Med.* 176:1739-1744 (1992) and incorporated by reference herein, and encapsulation of the protein in lipid

vesicles such as Novasome™ lipid vesicles (Micro Vescular Systems, Inc., Nashua, NH) may also be useful.

In any event, the antibody compositions of the present invention which recognize the proteins or their active regions as set forth above will be useful in methods of preventing or treating staphylococcal infection, and in inhibiting binding of staphylococcal bacteria to host tissue and/or cells. In accordance with the present invention, methods are provided for preventing or treating a staphylococcal infection which comprise administering an effective amount of an antibody to the surface proteins as set forth herein or their active subregions so as to treat or prevent a staphylococcal infection. In addition, these monoclonal antibodies will be useful in impairing the binding of staphylococcal bacteria to host cells

Accordingly, in accordance with the invention, administration of the antibodies of the present invention in any of the conventional ways described above (e.g., topical, parenteral, intramuscular, etc.), and will thus provide an extremely useful method of treating or preventing staphylococcal infections in human or animal patients when an effective amount of the antibody compositions are administered to a human or animal patient. By effective amount is meant that level of use, such as of an antibody titer, that will be sufficient to either prevent adherence of the bacteria, to inhibit binding of staph bacteria to host cells and thus be useful in the treatment or prevention of a staph infection. As would be recognized by one of ordinary skill in this art, the level of antibody titer needed to be effective in treating or preventing staphylococcal infection will vary depending on the nature and condition of the patient, and/or the severity of the pre-existing staphylococcal infection.

In addition to use in methods of treating or preventing a staphylococcal infection, the antibodies of the invention may also be used for the specific detection of staphylococcal proteins, or as research tools. The term "antibodies" as used herein includes monoclonal, polyclonal, chimeric, single chain, bispecific, simianized, and humanized or primatized antibodies as well as Fab fragments, such as those fragments which maintain the binding specificity of the antibodies to the

surface proteins specified above, including the products of an Fab immunoglobulin expression library. Accordingly, the invention contemplates the use of single chains such as the variable heavy and light chains of the antibodies. Generation of any of these types of antibodies or antibody fragments is well known to those skilled in the art. In the present case, antibodies to the surface proteins or their active regions as referred to above can be generated, isolated and/or purified, and then used to treat or protect against staphylococcal infection.

Any of the above described antibodies may be labeled directly with a detectable label for identification and quantification of staph bacteria. Labels for use in immunoassays are generally known to those skilled in the art and include enzymes, radioisotopes, and fluorescent, luminescent and chromogenic substances, including colored particles such as colloidal gold or latex beads. Suitable immunoassays include enzyme-linked immunosorbent assays (ELISA).

Alternatively, the antibody may be labeled indirectly by reaction with labeled substances that have an affinity for immunoglobulin. The antibody may be conjugated with a second substance and detected with a labeled third substance having an affinity for the second substance conjugated to the antibody. For example, the antibody may be conjugated to biotin and the antibody-biotin conjugate detected using labeled avidin or streptavidin. Similarly, the antibody may be conjugated to a hapten and the antibody-hapten conjugate detected using labeled anti-hapten antibody. These and other methods of labeling antibodies and assay conjugates are well known to those skilled in the art.

In accordance with the present invention, there are also provided vaccines for either active or passive immunization designed to treat or protect against staphylococcal infections, and these vaccines may be prepared from the surface proteins or their active regions as set forth above using a number of the conventional vaccine preparation methods well known in this field. In the typical vaccine, an immunogenic amount of a suitable surface protein or active fragment thereof is combined with a suitable pharmaceutically acceptable vehicle, carrier or excipient, and an amount of this vaccine effective to immunize a human or animal

patient may be administered as appropriate. By immunogenic amount it would be understood by one of ordinary skill in this art that this refers to any amount of the protein or active fragment or subregion thereof which is able to raise an immunogenic response in the human or animal patient.

5 In addition to active vaccines wherein antibodies are generated in the patient by virtue of the introduction or administration of an immunogenic amount of a protein or active fragment in accordance with the present invention, the isolated antibodies of the present invention, or active fragments thereof, may also be utilized in the development of vaccines for passive immunization against staph infections. In
10 such a case, the antibody compositions as described above, namely an effective amount of the antibody and a pharmaceutically acceptable vehicle, carrier or excipient, may be administered as appropriate to a human or animal patient.

Accordingly, in accordance with the invention, the proteins or active fragments thereof may be utilized as active vaccines, and the antibodies of the
15 invention may be used as a passive vaccine which will be useful in providing suitable antibodies to treat or prevent a staphylococcal infection. As would be recognized by one skilled in this art, a vaccine may be packaged for administration in a number of suitable ways, such as by parenteral (i.e., intramuscular, intradermal or subcutaneous) administration or nasopharyngeal (i.e., intranasal) administration.
20 One such mode is where the vaccine is injected intramuscularly, e.g., into the deltoid muscle, however, the particular mode of administration will depend on the nature of the bacterial infection to be dealt with and the condition of the patient. The vaccine is preferably combined with a pharmaceutically acceptable vehicle, carrier or excipient to facilitate administration, and the carrier is usually water or a
25 buffered saline, with or without a preservative. The vaccine may be lyophilized for resuspension at the time of administration or in solution.

In addition, in certain cases, the antibodies of the present invention may be modified as necessary so that, when necessary, they become less immunogenic in the patient to whom it is administered. For example, if the patient is a human, the
30 antibody may be "humanized" by transplanting the complimentarity determining

regions of the hybridoma-derived antibody into a human monoclonal antibody as described, e.g., by Jones *et al.*, *Nature* 321:522-525 (1986) or Tempest *et al.* *Biotechnology* 9:266-273 (1991) or "veneered" by changing the surface exposed murine framework residues in the immunoglobulin variable regions to mimic a 5 homologous human framework counterpart as described, e.g., by Padlan, *Molecular Imm.* 28:489-498 (1991), these references incorporated herein by reference. Even further, when so desired, the monoclonal antibodies of the present invention may be administered in conjunction with a suitable antibiotic to further enhance the ability of the present compositions to fight bacterial infections when necessary.

10 In addition to treating human or animal patients, the present compositions may also be used to halt or prevent infection of a medical device or other biomaterials such as an implant. Medical devices or polymeric biomaterials to be coated with the antibodies, proteins and active fragments described herein include, but are not limited to, staples, sutures, replacement heart valves, cardiac assist 15 devices, hard and soft contact lenses, intraocular lens implants (anterior chamber or posterior chamber), other implants such as corneal inlays, kerato-prostheses, vascular stents, epikeratophalia devices, glaucoma shunts, retinal staples, scleral buckles, dental prostheses, thyroplastic devices, laryngoplasty devices, vascular grafts, soft and hard tissue prostheses including, but not limited to, pumps, electrical 20 devices including stimulators and recorders, auditory prostheses, pacemakers, artificial larynx, dental implants, mammary implants, penile implants, crano/facial tendons, artificial joints, tendons, ligaments, menisci, and disks, artificial bones, artificial organs including artificial pancreas, artificial hearts, artificial limbs, and heart valves; stents, wires, guide wires, intravenous and central venous catheters, 25 laser and balloon angioplasty devices, vascular and heart devices (tubes, catheters, balloons), ventricular assists, blood dialysis components, blood oxygenators, urethral/ureteral/urinary devices (Foley catheters, stents, tubes and balloons), airway catheters (endotracheal and tracheostomy tubes and cuffs), enteral feeding tubes (including nasogastric, intragastric and jejunal tubes), wound drainage tubes, 30 tubes used to drain the body cavities such as the pleural, peritoneal, cranial, and

pericardial cavities, blood bags, test tubes, blood collection tubes, vacutainers, syringes, needles, pipettes, pipette tips, and blood tubing.

It will be understood by those skilled in the art that the term "coated" or "coating", as used herein, means to apply the antibody or active fragment, or 5 pharmaceutical composition derived therefrom, to a surface of the device, preferably an outer surface that would be exposed to streptococcal bacterial infection. The surface of the device need not be entirely covered by the protein, antibody or active fragment.

The preferred dose for administration of an antibody composition in 10 accordance with the present invention is that amount will be effective in preventing of treating a staphylococcal infection, and one would readily recognize that this amount will vary greatly depending on the nature of the infection and the condition of a patient. As indicated above, an "effective amount" of antibody or pharmaceutical agent to be used in accordance with the invention is intended to 15 mean a nontoxic but sufficient amount of the agent, such that the desired prophylactic or therapeutic effect is produced. As will be pointed out below, the exact amount of the antibody or a particular agent that is required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the condition being treated, the particular carrier or adjuvant 20 being used and its mode of administration, and the like. Accordingly, the "effective amount" of any particular antibody composition will vary based on the particular circumstances, and an appropriate effective amount may be determined in each case of application by one of ordinary skill in the art using only routine experimentation. The dose should be adjusted to suit the individual to whom the 25 composition is administered and will vary with age, weight and metabolism of the individual. The compositions may also contain stabilizers or pharmaceutically acceptable preservatives, such as thimerosal (ethyl(2-mercaptopbenzoate-S)mercury sodium salt) (Sigma Chemical Company, St. Louis, MO).

When used with suitable labels or other appropriate detectable biomolecule 30 or chemicals, the monoclonal antibodies described herein are useful for purposes

such as *in vivo* and *in vitro* diagnosis of staphylococcal infections or detection of staphylococcal bacteria. Laboratory research may also be facilitated through use of such antibodies. Various types of labels and methods of conjugating the labels to the antibodies of the invention are well known to those skilled in the art, such as the ones set forth below.

For example, the antibody can be conjugated (directly or via chelation) to a radiolabel such as, but not restricted to, ^{32}P , ^3H , ^{14}C , ^{35}S , ^{125}I , or ^{131}I . Detection of a label can be by methods such as scintillation counting, gamma ray spectrometry or autoradiography. Bioluminescent labels, such as derivatives of firefly luciferin, are also useful. The bioluminescent substance is covalently bound to the protein by conventional methods, and the labeled protein is detected when an enzyme, such as luciferase, catalyzes a reaction with ATP causing the bioluminescent molecule to emit photons of light. Fluorogens may also be used to label proteins. Examples of fluorogens include fluorescein and derivatives, phycoerythrin, allo-phycocyanin, phycocyanin, rhodamine, and Texas Red. The fluorogens are generally detected by a fluorescence detector.

The location of a ligand in cells can be determined by labeling an antibody as described above and detecting the label in accordance with methods well known to one skilled in the art, such as immunofluorescence microscopy using procedures such as those described by Warren et al. (*Mol. Cell. Biol.*, 7: 1326-1337, 1987).

As indicated above, the monoclonal antibodies of the present invention, or active portions or fragments thereof, are particularly useful for interfering with the initial physical interaction between a staphylococcal pathogen responsible for infection and a mammalian host, and this interference with the physical interaction may be useful both in treating patients and in preventing or reducing bacteria infection on in-dwelling medical devices to make them safer for use.

In another embodiment of the present invention, a kit which may be useful in isolating and identifying staphylococcal bacteria and infection is provided which comprises the antibodies of the present invention in a suitable form, such as lyophilized in a single vessel which then becomes active by addition of an aqueous

sample suspected of containing the staphylococcal bacteria. Such a kit will typically include a suitable container for housing the antibodies in a suitable form along with a suitable immunodetection reagent which will allow identification of complexes binding to the surface proteins or the antibodies of the invention. In general, these 5 kits may contain an antibody in accordance with the invention and means to identify binding of that antibody when a sample from a patient is introduced to the antibody. For example, a suitable immunodetection reagent may comprise an appropriate detectable signal or label, such as a biotin or enzyme that produces a detectable color, etc., which may be linked to the antibody or utilized in other suitable ways so 10 as to provide a detectable result when the antibody binds to the antigen.

In short, the antibodies of the present invention which recognize and bind to the surface proteins of the invention, or active fragments thereof, will thus be useful in treating a wide variety of staphylococcal infections in human and animal patients and in medical or other in-dwelling devices. In accordance with the invention, 15 because of the nature of these proteins and the fact that they contain epitopes in common with proteins of the other type of staphylococcal bacteria, i.e., a protein from a coagulase-negative staph will raise antibodies that recognize a homologous protein from *S. aureus* and vice versa, the antibodies of the invention will exhibit cross-reactivity and should be effective against a broad range of staphylococcal 20 infections. Accordingly, the present invention provides methods and compositions for improved methods of treating or protecting against a wide range of staphylococcal infections.

EXAMPLES

25 The following examples are provided which exemplify aspects of the preferred embodiments of the present invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its 30 practice. However, those of skill in the art should, in light of the present disclosure,

appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

5 **Example 1. Isolation and Sequencing of MSCRAMM's from *S. Aureus***

Staphylococcus aureus is known to express a class of surface-associated proteins which play important roles in pathogenicity by allowing bacteria to avoid host defenses and by acting as adhesins. These proteins are known as MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules) and in 10 most cases are covalently anchored to the cell wall peptidoglycan. They have several common features: (i) an N-terminal signal peptide (approximately 40 residues in length) required for Sec-dependent secretion, (ii) a wall spanning domain either rich in proline and glycine residues or composed of serine and aspartate dipeptide repeats, (iii) an LPXTG motif required for covalent anchoring of 15 the protein to the pentaglycine crossbridge in peptidoglycan, (iv) a hydrophobic membrane-spanning domain followed by (v) several positively charged residues.

By exploiting the whole genome sequences of *S. aureus*, eight novel open reading frames encoding proteins with secretion and anchorage motifs indicative of MSCRAMMs were identified (i.e. bearing an N-terminal signal peptide and a C-terminal LPXTG motif followed by a hydrophobic domain and a positively charged tail). The following Table illustrates the list of proteins identified including their distribution among *S. aureus* genomes, their protein size and C-terminal cell wall sorting sequence.

Name	Distribution	Size	C-terminus
EkeS	ENCSJM	2189 aa	LPNTGSEEMDLPLKELALITGAALLARRRS KKEKES
DsqA	ENCSJM	~1363- 2283 aa	LPDTGDSIKQNGLLGGVMTLLVGLGLMKR KKKKDENDQDDSSQA
KesK	ENCSJM	~909 aa	LPKTGETTSSQSWWGLYALLGMLALFIPK FRKESK

KrkN2	ENCSJM (Cowan)	~278 aa	LPKTGLTSVDNFISTVAFATLALLGSLSLLF KRKESK
KrkN	ENCSJM	~661 aa	LPQTGEESNKDMTLPLMALIALSSIVAFVLP RKRKN
RkaS	ENCSJM	~801 aa	LPKTGTNQSSSPEAMFVLLAGIGLIATVRR RKAS
RrkN	NCSJM	1629 aa	LPKTGLESTQKGLIFSSIIGIAGLMLLARRRK N
KnkA	NCSJM	629 aa	LPKAGETIKEHWLPISIVGAMGVLMWLS RRNKLKNKA

Abbreviations: eMRSA-16; N, 8325; C, COL; S, MSSA; J, N315, M, Mu50.

Six out of eight are conserved in all of the six staphylococcal genomes currently sequenced and the remaining two are present in 5/6 of these genomes.

5

The following is a list of the DNA and protein sequences:

Ekes MRSA (SEQ ID NO:1)

10 acaacacagcagagaatagacaaccaggagaaaacgaaatgaattgttaaagaaaaataatatagttattag
aaaatataaagttagggatattctacttaatcgggacagtttattacttcaaacccaaatggtcacaagcttaac
tacggatcataatgtcaagggttgtcaaattcaagcattacctggcaactcacaaaatacaatgccataactc
gagacatagtaaatgattcgaaaatactcctaattgcacatgcaacagacaatacatcaacaaatcaagcattgac
taatcatcaaaacgtttagtggcaatcaagtcggcctgtccatacagcctagcgcgtcgctgcgcaaaata
15 ataataattctaattcaatcacaacagcaacagagccagcggcgaatacaataataatttagcatcaaataacaat
acattaaacgtgcctaataatacagataacaatgattcagcgcgtcatctgactttaaagaaaattcaagaagatgtt
cgtcattcgtctgataagccagagtttagtgcattgtcaagaagcatctaatacgccaaaagagaagcagac
gtgtgcgcacacagatcctaattgcacaccaggcagatccaacggctacaccaggcagatccaacggcaggaaat
ggttagtgcaccaggtagtgcattacagcgcatacagccacaactgatcccaatgccaataatataaggacaaaatg
20 cacctaacgaagtgcatttgcatttgcataacaacattagaccaagtacgaaccgttgcctacagtaactgttt
gataatttaccaggctacacactgattaatgggttaaagttaggggttttagtcatgcaatggtaagaacgagcatgt
ttgattcaggagatgccaagaactatcaagcgaaggcaatgttaattgcattggcgtttagagggaaatgataca
aatgatcatggcatttaatggatcgagaaaacattaaacagtaatccgaaattctgatatttttttttttttttttttt
25 tagttgcattatggtccgatttggcgtttaaaaagtacctgaaaatgttagtcatctaaaattcaatttgacctaaaaat
gacgcataacagatgcacgtgttatttcaattacagagatggatataactatgacttttagactcaatcggtct
tcattctgggtcacatgttatgttggaaagacgtacaatggagccacagcaacaataaaagaatttacagttac
aacgtcattaaagaataatggtaacttggcgttcatcaatacagatgattttgtatataaaaattcaattacgttgcagg
gttgaatatgttaataatttgcattactaaagattttccatcggttgcatttttttttttttttttttttttttttttttt
30 tgacgcagcaatcgaaatttacaattaaaagtactggggaggtacagggatcgccggcacgactaatgcctg
ataaaaatattggatttgcatt
taacgtataaaaacatattcacaagattt
atatcatcatgaataaaagacgcattgcacccgaagtgcattgcacccgcacaaacaacagccgattatacattgcatt
tagatatt
35 agtttctcaagcagatatgcatttagcaaaatcagatgcacacatacgtaattcgccagggttgcgtgacgctgaaaatgc

gttaatagaaaagtgtacatggaaagatttagtaaccaaaatgtgaactgacagatgaagaaaaacaagca
gcatcaagtcatcgaggAACATAAAATGAAATTGGAAATTGGTACCAACGACTGATGGCGTTACT
agaattaaAGATCAAGGTACAGACTTAAAGTGGAGACACTGCAACACCAGTTAAACCAAATGCTAAACAAG
ctatacgtgataaAGCAGCAAACAAAGAGAAAATTCAATCACACGCCAGATGCTACTCAAGATGAAATTCAAG
5 atgcattaaATCAATTACAACCGGTACAGATGCTATTGATAATGTTACGAATGCTACTCCAATGCTGTTGA
aacagctaaaaATAATGGTATTAAATACAATTGGTCAGTGCAGCCACAAGTGACACACAAACAAGCTGCAAGAGA
tgcaattaATCAAGCGACAGCAACGAAACGACAACAAATAATAGCAATAGAGAAGCAACACAAAGAGA
aaaATGCAAGCATTGAAATTACGCAAGCCACGAAACGCAAGGTTAAACAAATCAAGCGACAACCAAT
gatgttagataCTGCAAAGGTGATGGTCTGAATGCCATTAATCCTATTGCGCCTGTAACTGTTCAAGCAAGCG
10 caagagatGCCGTATCACATGATGACACAACAGCATATCGAGAGATCAATGCAAATCCTGATGCGACTCAAGAAG
aaAGACAAGCAGCAATAGAGAAAAGTAAATGCTGCTGAGCTGTCGAATACTAAATATTAAATGCTAAATACCAAT
GCTGATGTTGAGCAAGTAAAGACAAATGCAATTCAAGGTACAGGTTACAAGCATTGAAACCGACTACAAAGGTTAAACAA
gatgtctaaaaACGCTATTGATCAAAGTGCAGCAACATAATGCGATATTAAATAATGATGCGACCTGAG
15 agagcaacaAGCAGCACAACAAATTGTTGATCAAGCTGAGCCACAGCGAAGCAAAATATTAAATGCGAGCAGATA
CGAATCAAGAAGTGCACAAGCAAAAGATCAGGGCACACAAATAGTTGATTCAACCGCAACACAAAGTTA
AAACGGATGCGCAATGCTGTTAAATGAAAAGCGCGAGAGGCGATAACAAATATCAATGCTACACCTGCGCG
ACTCGAGAAAGAGAAACAAGCGATAAATCGTGTCAATACACTAAAAATAGAGCATTAAATGATATTGGTGTGA
CGTCTACTACTGCGATGGTCAATAGTATTAGAGACGATGCGTAGTCAATCAAATCGGTGAGTTCAACCGCATGTAACGA
20 agaaACAAACTGCTACAGGTGTTAAACGGACTTAGCAACTGCAAAAAAAACAGAAAATTAAATCAAACAAATG
CAACCACTGAAGAAAAGCAAGTAGCATTAAATCAAGTAGACCAAGATTAGCAACGGCAATTAAATATAAATC
AAGCTGATACTAATGCGAGTAGATCAAGCACAACAAATTAGGTACAAAAGCAATTAAATGCGATTGCGCAAATAT
TGTAAAAAAACCTGCGAGCATTGACAAAACCAATCAGCATTAGTGTCAAATTAGTGTAAATCAATGCTACACCAAG
ATGCAACAGATGATGAGAAAATGCGATCAACTTTAAATCAAGACAGACAACAGCTATTGAAAGTATTAA
ACAAGCAAATACAATGCGGAAGTAGACCAAGCTGCGACAGTGGCAGAGAATAATATCGATGCTGTTAAGTGA
25 CGTTGAAAAAAACAGCGCGAGATAAAATCAGTGTGAGTAGCGAAGCGTATTGAGCGGTTAAACAAAC
CACCTAATGCAACTGACGAAGAAAAGCAGGCTGCGAGTAAATCAATCAACTAAAGATCAAGCGTTAAACAA
ATTAAATCAAACAAACAAATGATCAGGTAGACGCAACTACAAATCAAGCGATAATGCTATAGATAATGTTAA
GCTGAAGTAGTAATTAAACCAAGGCAATTGCGAGATAATTGAAAAAGCTGTTAAAGAAAAGCAACAGCAAATGAT
AAATGCTGATTCAACAGATAATGAGAAAAGAGTGTCTTAAAGCATTAGCTAAAGAAAAAGAAAAAGCAGCTG
30 CAGCTATTGACCAAGCTAAACGAATAGTCAGGTGAATCAAGCGGCAACAAATGGTATCAGCGATTAAATT
CAACCTGAAACAAAAATTAAACCGAGCAGCAGTGAACAAATCAACAAAGCGATAATTACGTCGCAAA
TTAAATCAAGATAAAAGAAGCGACAGCAGAAGAAAAGACAAGCGCGTTAGATAAAATCAATGATTGTTGCTAAAG
CTATGACAAATATCACGAAATGATGAGACAACAAATCAGCAAGTTAAATGACTCAACAAATCAAGCGCTGACGACATTG
ATTAGTGACGCCGACCATATTGTTAGAGCAGCTGCTAGAGATGCGAGTTAAAGCACAATATGAGCTAAAAGCAC
35 GAAATTGAGCAAGCGGAACATGCGACTGATGAGAAGAAAACAAGTTGCTTAAATCAATTAGCGAATAATGAAAAAA
CGTGCATTACAAAACATTAATCAAGCAATAGCGAATAATGATGTTAAACGCGTGTGAATCAAATGGTATTGCTACGTTAA
AAGGCGTAGAACCGCAGATTGTTAAACCTGAGCTCAAGAAGCCATAAAAGCGAGCGCAGATAACCAAGTA
GAATCTATAAAAGATAACACCACATGCTACGACAGATGAGAAGCAACACAAATAACGACACACT
AAACAAGGTCAACAAGATAAGACAATACGACACACAAGATGCGAGCTGCAATGATGTTAGAAACCAAACGATTAA
GGCAATCGAAACAAATTAAACCGAAAGTTAGACGCAAACCGTGCAGCGTTGATAACATTGATGAAAGTAATAAAT
CAACTCGATGCAATACGAAATACGCTAGATAACACGCAAGATGAGAAGCAAATGTTGCTATTGCTGCTTAAATAAAT
TGTAAATGCAATTAAAGATAATTGACAAAACAAACGAAATGCGAGAAGTGGATCAAACACTGAGGCTGATGTTAA
AACAACATCAAAGTGTATTACCTAAAGTCAAGTTAAACCGAGCAGCGCTGCAATCTGTCAGCGCAAAGCTGAG
40 CTCAAAATGCACTATTGATCAAAGTGTATTCTACCGAAGAAGAAAAGATTGCTGTTAAACATTGAGAACAAG
CACTTAATCAAGCTATTGATCAGATCAATCACGCGAGATAAGACTGCGCAAGTTAAATCAAACATTGAGAACAAG
ATTATTGTTCAAACCAAGCGACAACAGTTAAAGCAACAGCATTACAACAAATTCAAAATGATGCTGCTAAAT

aaaattaatttaattaaagcaaataacgaagcgacagatgaagaacaatgcgtcaatagtacaagttaaaa
gagtttaattaaagctaaacaacaaattgcgtgcagtgactaatgcgtatgtggcatatttgcgtatggggaaaa
acgaaattcgtgaaatcgaacctgttataataaaaaagcaactgcgcgagaacaattaacaacatttcaacgt
aagaaacaagcaattgaagcgaatgttcaagcaacagttagaagaaagaaatagtatttgcacagttacaaaa
5 catttatgacactgctatggacaaattgtatcaagatcgttagcaatgcacaagttgataaaacagcaacattaaatct
acaaacaatacatgatttagacgtacatccattaaaaagccagatgcgtaaaaaagcattaatgtatctgcac
gtgttacacatttagtgc当地attatcgaaaagtagtgcataaaggctgtgcattaaagctataactgcatt
aaaattacaaatggatgaagaattaaaaacagcacgcactaatgcgtatgttgatgcagtttaaaacgattatgtt
10 gcattaggcgatataagaagcagtaattactgaaaaagaaaatgcattactgcgcattgataacattgc当地acaaac
atatgc当地aaatccaaggcgtatgc当地acaccagaacaattagctaaagttaaaagcattatgtatcaatatgtgcag
atggcaatagaatgggtatgaagatgc当地acattaaatgc当地atcaaaaaagatacgc当地actcattatgtatgaaaatt
tagcaattaaattacctgc当地atggataaaagcgtcaccaaaaagtgccc当地acctgc当地ccaaaatgttgc当地
ataaaaaaaagaagataaaacaagaatgc当地aaaaagttgtaaaagaacttccaaaatactggttgc当地agaaaatggatt
15 taccattaaaagaattagcactaattacaggcgc当地catttagctagaagacgttctaaaaagaaaagaatc
ataa

EkeS_MRSA (SEQ ID NO:2)

20	MNLLKKNKYSIRKYKVGIFSTLIGTVLLLSPNGAQALTTDHNVQGGSNQALPGNS QNTNADTNRDIVNDSQNTPNAHTDNTSTNQALTNHQNVDVANQVGPAPIQPSA SPAQNQQNSNANSTATEPAANTNNNLASNNNTLNVPNNTDNNDSARHLTKEIQE DVRHSSDKPELVAIAEEASNRPKKRSRRAAPTDPNATPADPTATPADPTAGNGSA PVAITAPYTPPTDPNANNIGQNAPNEVLSFDDNNIRPSTNRSPVTVVVDNLPGYTL INGGKVGVFSHAMVRTSMFDGDAKNYQAQGNVIALGRIRGNDTNDHGDFNGIEK
25	TLTVNPNSELIFEFTMTKNYQGMTNLIIKNADNDTVIDEKVVAYGPIWRLLKVE NVSHLKIQFVPKNDAITDARGIYQLRQDGKYYDFVDSIGLHSQSHVYVERRTMEPT ATNNKEFTVTTSLKNNGNFGASFNTDDFVYKIQLPPEGVEYVNNSLTKDFPSGNSG VDINDMNVTYDAANRIITIKSTGGGTGNSPARLMPDKILDLKYLKLRVNNVPTPRVT FNDTLTYKTYSQDFINSSPAESHTVSTNPYTIDIMNKDALQAEVDRRIQQADYTFASL
30	DIFNDLKRRAQTIILDENRNNVPLNKRVSQADIDSLANQMQHTLIRSVDAENAVNRK VDDMEDLVNQNDLTDEEKQAAIQVIEEHKNEIIGNIGDQTTDDGVTRIKDQGIQTL SGDTATPVVKPNAKQAIRDKAAKQREIINHTPDATQDEIQDALNQLTTDETDADNV TNATTNADVENTAKNNGINTIGAVAPQVTHKQAARDAINQATATKRQQINSREATQ EEKNAALNELTQATNHALEQINQATTNDDVDTAKGDGLNAINPIAPVTVVKQAARD
35	AVSHDAQQHIAEINANPDATQEERQAAIEKVYAAVAVANTNILNANTNADVEQVKT NAIQGIQIAIEPATVKVTDKNAIDQSAETQHNAIFNNNDATLEEQQAAQQLLDQAVA TAKQNIADAQNQEVAKQAKDQGTQNIVVIQPATQVKTDAWNNEKAREAITNINA TPGATREEKQEAIRVNLTKNRALNDIGVTSTTAMVNSIRDDAVNQIGAVQPHVTK KQTATGVLTDLATAKKQEINQNTNATTEEKQVALNQVDQDLATAINNINQADTNAE
40	VDQAQQLGTKAINAIQPNIVKKPAALAQTQNQHYSALKVEINATPDATDDEKNAINT LNQDRQQAIIESIKQANTNAEVQDQAATVAENNIDAVQVDVVKQAAARDKITAEVAKR IEAVKQTPNATDEEKQAAVNQINQLKDQAFNQINQNQNTNDQVDATTNQAINAIDNV EAEVVIKPKAIA DIEKAVKEKQQQIDNSLDSTDNEKEVALQALAKEKEKALAAIDQA QTNSQVNQAATNGVSAIKIIQPETKIKPAAREKINQKANELRAQINQDKEATAEERQ
45	AALDKINDLVAKAMTNITNDRTNQQVNDSTNQALDDIALVTPDHIVRAAARDAVKQ QYEAKKHEIEQAEHATDEEKQVALNQLANNEKRALQNIQAIANDVKRVESNGIA

TLKGVEPHIVVKPEAQEAIKASADNQVESIKDTPHATTDELDEANQQINDTLKQGQ
QDIDNTTQDAAVNDVRNQTIAKIEQIKPKVRRKRAALDNIIDESNNNQLDAIRNTLDT
TQDERNVAIAALNKIVNAIKNDIAQNKTNAEVTDQTEADGNNNIKVILPKVQVKPAAR
QSVSAKAEAQNALIDQSDLSTEERLAAKHLVEQALNQAIDQINHADKTAQVNQNS
5 IDAQNIISKIKPATTVKATALQQIQNIATNKINLIKANNEATDEEQNAAIVQVEKELIKA
KQQIAGAVTNADVAYLLHDGKNEIREIEPVINKKATAAREQLTTLFNDKKQAIKEANVQ
ATVEERNISILAQLQNIYDTAIGQIDQDRSNAQVDKTATLNLTQTIHDLDVHPIKKPDAE
KTINDDLARVTHLVQNYRKVSDRNKADALKAITALKLQMDEELKTARTNADVDAVL
KRFNVALGDIЕAVITEKENSLLRIDNIAQQTYAKFKAIATPEQLAKVKALIDQYVADG
10 NRMVDEDATLNDIKKDTQLIIDELAIKLPAEVIKASPKVGQPAPKVCTPIKKEDKQEVRKVVKEPLNTGSEEMDLPLKELALITGAALLARRRSKKEKES

DsqA (8325) (SEQ ID NO:3)

15	tctaatgaatgtaaagataatacacaaggagtattacatgagtaaaagacagaaaagcattcatgacagcttagcaaa cgaaaaaacaagagaacttataatctgaaaaaaaaattggtaaaatccgaaattaaagaaaatagaaaatgttc aaaattatgggctaccatttttagtcatagtttagttagtcaagataatcaaagcattagtaaaaaatgacggat acggactgaaaactacggcggttattgggtgcattcacgtaaatatgtgcattgacccagcaagcttgcggctct gatgcaccattaacttctgaattaaacacacaaggtaaacagtagttaatcaaaaactcaacgacaatcgaagcatt caacatcaacagccgattccacaagttaacgaaaaatagttagtgcgttacaaacatcaaataagtgcacacagtctc aagtggaaaatgtggaaaaggctacttcgacaactaatagtacaagcaatcaacaagagaaaatgtacatctacatc agaatcaacatcctcaaagaataactacatcaagttctgatactaaatctgtactcaacttcaagtacagaacaacc aattaatacatcaacaaaatcaaaggtaactgcatcaaataacacttcacaaagcacaacgcacatctcggtcaacttaa acaaaacttagcacaacgtcaactgacccgcaccagtaaaaacttcgacttcgcttagtgcataacatttg cgtagcagcagcacaaccgcagtaactgctaatacataattacagttataaagataactttaaaacaatatatgac aacgtcaggtaatgttatgatcaaagtaccggattgtgcgttacacaggatgcatacagccaaaaagggt ctattacatttaggaacacgtattgtactctaataagagtttcatttctggaaaagtttaggttaacaaataatgaaag ggcatggaaaatggggatgttatcggtttgccttcaccagggttattaggtgaaacagggttaacgggtccgc agtaggtattgtggcttaagtaacgcattggcttcaattgtatcacaatatacatctaaacccaaattcagctg caaaggcgaatgctgaccatctaattgttagctggggagggtgcgttgcattgtataacaacagatagttatgggtt gogacaacgtatacatcaagttcaacagctgataatgtgcgaagttaaatgttcaacccatcaaataacacgcgtcca agatttgatataactataatggtgatcaaagggttattactgtcaaatatgcaggtaacacatggacacgtatattt cagatggattgcggaaaatggtgatcgaccacactttcattataatgcacagcctcaacagggtggcgcgacaaatttac aacaagtacaatttggacatcgaatatacagagtctgttacacaagttagtgcataatgttgcataacacaggta aaagatattattccacaaaaacatattcagggaaatgttgcataagtcgtgacaatcgcataatcgcataatctgcattga ctgctaaaggatataactacacgtccgtcgatagttcatatgcgtcaacttataatgtatcacaataaaactgtaaaaat gacgaatgtggacataatcgtgcataattttactgtatgtaaaagcacaactgtactgttaggcaatcaaaccat agaagtgggtaaaacaatgaatccattgttattgtactacaacggataatggtactgggactgtgcacaaatacagttac aggattaccaacgcggatataaggtagtgcataatcattggacacacaaaatggtcaatca acagtgcacagtgttactgcaccaagcaaataacaaatgcacgcacaactttacaataaaatgttgtggatacgcaca gcaccaacacgtgcacaccaataggagatcaatcatcagaagtgattcacaatatccccgattaaaatgtctacgc agataacacgtggaaaatgcgtgcaccaatacagtgactggattgcattccgactaacattgtatgtacaaataata ctattagtggtacaccaacaaacattgttacaatgtacttataatcaatgcatttcacagatgcgcggtaacaaaacgc cgacaaactttaaatatgaagtaacaagaaaatgcacatgcgttacacatcaggatgcattgttgcattcataatct caaagtgttgcataacaagtaaaagctgactcacaacgtgcataacgcacatcaggatgcattgttgcattcataatct agctgttgcataacaagtaaaagctgactcacaacgtgcataacgcacatcaggatgcattgttgcattcataatctqaaaatg
----	--

acagtatcagtgattctacttcaataagtatcagtggttcacaaaggacatcagaatcagaatctacaagtgattcaac
 ttctatcagtactcagaatcatgagtcacatcgattcagactcgacatcgacaactcgactcaacaactgg
 ttcaacttcaacaacatcgatcatgtcaatcattaagtacgtctggttcaggttcaacgagcgtatctgactcaacatcaatga
 gtgaatctaattcatcgagtgttcaatgtcacaagacaaaatccgactcaacatcaatttagtgactcagaatcagtgtc
 5 aacaacgcacatcaacgtcatcgagtcacatccgattcgacaaggacatccgaaatctgactgagtcacatctatgtctggttc
 acaaaggacttctgactcaacatcaacaactgtccggctcaacaactgtcataactcaatgcacatccgct
 agactcaatcagatgatgcatcatactcacagcacgacatctgcgtatcaagtgaagcaacaacgagcagcag
 gaatctcagtctacattaagtcaacatctgactaaacataatggcacaccagcacaaggaaaaaaaaga
 10 ttgccagatacagggtactcaataaaaacaaaatggattacttagtgccgttatgacatttagtgttaggttaatg
 aagagaaaagaaaagaaatgatcaagatgattctcaagcataa

DsqA (8325) (SEQ ID NO:4)

SNECKDNTRSYYMSKRQKAFHDSLANEKTRVRLYKSGKNWVKSGIKEIEMFKIMG
 15 LPFISHSLVSQDNQSISKKMTGYGLKTTAVIGGAFTVNMLHDQQAFAASDAPLTSE
 LNTQSETVGNQNNTTIEASTSTADSTSVTKNSSVQTSNSDTVSSEKSEKVTSTTN
 STSNQQEKLSTSESTSSKNTTSSSDTKSVASTSSTEQPINTTNQSTASNNTSQS
 TTPSSVNLNKTSTTSTAPVKLRTFSRLAMSTFASAATTAVTANTITVNKDNLKQ
 YMTTSGNATYDQSTGIVTLTQDAYSQKGAI TLGTRIDSNSKFHSGKVNLGNKYEG
 20 HNGGDGIGFAFSPGVGETGLNGAAVGIGGLSNAFGFKLDTYHNTSKPNSAAKA
 NADPSNVAGGGAFGAFVTTDSYGVATTYSSSTADNAAKLNVQPTNNTFQDFDIN
 YNGDTKVMVTVKYAGQTWTRNISDWIAKSGTTNFSLSMATASTGGATNLQQVQFGT
 FEYTESAVTQVRYVDVTGKDIIIPPKTYSGNVDVQVTIDNQQSALTAKGYNYSVD
 SSYASTYNDTNKTVKMTNAGQSVTYYFTDVKAPTVGNQTIEVGKTMNPIVLTTT
 25 DNGTGTVTNTVTGLPSGLSYDSATNSIIGTPTKIGQSTVTVSTDQANNKSTTTFTI
 NVVDTTAPTVTPIGDQSSEVYSPISPPIKATQDNGNAVTNTVTGLPSGLTFDSTNN
 TISGTPTNIGTSTISIVSTDASGNKTTTFKYEVTRNSMSDSVSTGSTQQSQSVST
 SKADSQSASTSTSGSIVVTSASTSKSTSLSDSVSASKLSTSESNSVSSSTST
 SLVNSQSVSSSMSDSASKSTSLSDISNSSLSTEKSLSLSDSLRTSTSLSDSL
 30 SMSTSGSLSKSQSLSTSISGSSSTSASLSDSTSNAISTSTSLESASTSDSISINSI
 ANSQSASTSKSDSQSTSISLSTSLSKSMSTSESLSDSTSSTSGSVGGLSIAASQSV
 STSTSDFMSTSEIVSDSISTSGGLSASDSKMSVSSSMSTSQSGSTSSELSDSQST
 SDSDSKSLSQSTSQSGSTSTSTSASVRTSESQSTSQSMSASQSDSMSISTSFS
 DSTSDSKSASTASSESIQSASTSTSGVSTSTSNSERTSTSMSDSTSLSSTS
 35 ESDSISESTSTSISSEAISASESTFISLSESNSTSDSESQSASAFLESLSESTSES
 TSESVSSSTSESTSLSLSDSTSLSGSSTSTSLSNSTSGSTSISTSTSISESTSTFKSESV
 STLSLSMSTSTSLSLSDSTSLSLSDSTSLSKSDSLSLSTSMSSTSISSTS
 LSGSTSSESEDSTSSSESKESDSTSMSISMSQSTSQGSTSTSTSLSLSDSTSLSLSS
 ASMNQSGVDSNSASQASASNSTSTSTSSESQSTSQSTSQSESTSTSTSLS
 40 DSTSISKSTSQQSGSVSTSASLSGSESESDSQSISTSASESTSESASTLSLSDSTS
 NSGSASTSTSNSASASESDLSSTSLSLSDSTSASMQSSESQSTSASLSDSLST
 STSNRMSTIASLSTS VSTSESGSTSESTSESQSTSRSSTSASGSAST
 STSTSRSRSTSASTSTS MRTSTS QSMSLSTS TSMSDSTSLSDSVSDSTS
 TSASTSGSMSVSISLSDSTS TSASEVMSASISDSQSMSESVNDSESVSESNSE
 45 SDSKSMMSGSTSVDGSLSVTSLRKSESVESSLCSQSMSDSVSTS DSSSL
 VSTS LRSSESVSESDSLSKSTSGSTSTS QSLSTS LSGSES VSESTS LSDS

	ISMSDSTSTSLSLGSISLSGSTSLSLSDSLSKSLSSQMSGESTSTSVS DSQSSSTSNSQFDSMSISASESDSMSTSDDSSISGSNSTSTSLSTSMSGSVS STSTSLSDSISGSTSVSDSSSTSTSLSDSMSQSQSTSTSASGLSTSISTSMSM SASTSSSQSTSLSLSDSISDSTSISIGSQSTVESESTDSTSISDSESLSLSD
5	SDSTSTSDSTSGSTSTSISESLSTSMSGSTSVDSTSMSESNNSVMSQDKS DSTSISDSESVSTSTSTSLSDSTSISESLSTSMSGQSISDSTSMSGSTSTS ESNSMHPSDSMSMHHTHSTSTSRLSSEATTSTSSEQSTLSATSEVTKHNGTPAQ SEKRLPDTGDSIKQNGLLGGVMTLLVGLGLMKRKKKDENDQDDSQA
10	KesK1 (8325) (SEQ ID NO:5)
	ttattatcaattaaataatctttaggagttacaacatgaacaaacatcacccaaaattaaggctttctattctat tagaaaaatcaactctaggcggtgcattgtcattgtcactattttaattacttctcaacatcaagcacaaggcag cagaaaaatacaaataacttcagataaaaatctggaaaatcaaaaataataatgcactacaactcagccacctaagg 15 atacaaatcaaacacaacacctgctacgcaaccaggcaacactgcgaaaaactatcctgcagcggatgaatcactta aagatgcaattaaagatcctgcattagaaaataagaacatgatataaggcattcaagagaacaagtcaattccagtt ttagataaaaacaatgaaacgcagactatcactttcagcatcaaagatccagcagatgtgttattacactaaaaag aaagcagaagtgaatttagacatcaataactgctcaacatggaagaagtgttgaagtctatgaaaacaatcaaaaatt 20 gccagtgagacttgtatcatatagtctgtaccagaagaccatgcctatattcgttccagttcagatggcacacaa gaattgaaaatgttctcgactcaaattgtatggagaagaaaattatgattataactaaatttagtatttgtaaa cctatttataacgatcctcacttgtaaaatcagatcaaattgtatgcagtagtaacgaatgatcaatcagttcagtc aagtaatcaaacaaacacgaatacatctaatcaaaaataatcaacgatcaacaatgctaataatcaaccgcaggc 25 aacgaccatataatgactcaacacctgcacaacccaaatgtcaacgaaatgcagatcaagcgtcaagccaaccagctc atgaaaacaaattctaattgttataactaacgataaaaacgaatgtactgtcaagtaatcagtcggatgttcaacatgatc caccagcagatgaatcactacaagatgcaattaaaacccggctatcatcgataaagaacatacagctgataattg 30 gcgaccaattgttcaatgaaaatgataaaggtaagacagtttcatcattatgtctagactgttgaaaccagca actgtcattttacaaaaacaggaccaataattgatattgtttaaagacagctcaacatggaagaaaatttgaaagtt atgaaagggtgacaaaaagttaccagtcgaatttagtcatatgattctgataaaagattatgcctatattcgttcccagtt 35 ctaatggtagagagaaagttaaaaattgttcatctattgatattgtttagaaacatccatgaagactatgattatacgcta atggctttgcacagcttactaataacccagacgactatgtttagaaacatcataatttacaaaaatttag ctccgtatcacaagactaaaacgttagaaagacaagttatgtttagaaaaattacaagagaaaattgcccagaa aaatataaggcggaatataaaaagaaaatttagatcaaacttagatgtttagactgtatcaagttaaatcagcagtgaa 40 cggaatttggaaaatgttacacctacaaaatgtatcaattaaacagatttacaagaagcgcattttgttttggaaagtgaa gaaaatagttagtcagttatggacggcttgcatttgcatacagcaactttaaatgttcaaaaaatattgttagt gatgaaaacaaaggatgacagttactggaaaagatttaattgttagaaaggtaaacgtgtcactactgtttctaaagatcc aaaaataattctagaacgctgatttccatatacctgacaaaacgacttacaatgcgtttagaaatgcgttggt aaacattggtagatgttcaatcatgtcagaattataatcaggatatacataaaaaagatgtatgatatacatcaca aaataacacgatgtacccgcttaatgttacaaaacaggacaagaaggtaagggtgttgcatacagatgttagctgaaa 45 atagcagcactgcaacaaatctttagatgcgttgcataaaggcagatgtttagaaaccagagtcgtacgtggttaa agatgtttagataataatattgtttagaaatgttgcacatgtttagatgtttagattcgttgcataatcacttcga taaatatgtttagaaatgtttagatgttgcacatgtttagatgtttagattcgttgcataatcacttcga agcgttgcataatgttgcacatgtttagatgttgcataatcacttcga attgttgcataatgttgcacatgtttagatgttgcataatcacttcga agttactgtacaaaaaaaacaactgtttagaaatgttgcacatgtttagatgttgcataatcacttcga aagaaaaagccggcacaccatgtttagatgttgcacatgtttagatgttgcataatcacttcga aagaaaaagccggcacaccatgtttagatgttgcacatgtttagatgttgcataatcacttcga

acaactcaagccaatcatggggcttatatgcgttattaggtatgttagctttattcattcctaaattcagaaaagaat
ctaaataa

KesK1 (8325) (SEQ ID NO:6)

5 LLSIKYNLIGVVNNMNKHPKLRSFYSIRKSTLGVASVIVSTLFLITSQHQAAQAAENT
NTSDKISENQNNNATTQPPKDTNQTQPATQPANTAKNYPAADESLKDAIKDPALE
NKEHDIGPREQVNQFQLLDKNNETQYYHFFSIKDPADVYVTKKAEVELDINTASTW
10 KKFEVYENNQKLPVRLVSYSVPEDHAYIRFPVSDGTQUELKIVSSTQIDDGEETNY
DYTKLVFAKPIYNDPSLVKSNDNAVVTNDQSSSVASNQNTNTSNQNISTINNAN
NQPQATTNMSQPAQPKSSTNADQASSQPAHETNSNGNTNDKTNESSNQSDVNQ
QYPPADESLQDAIKNPAILKEHTADNWRPIDFQMKNDKGERQFYHYASTVEPATV
IFTKTGPIIELGLKTAZWKKFEVYEGDKKLPVELSYDSDKDYAYIRFPVSGTRE
VKIVSSIEYGENIHEDYDYTLMFAQPITNNPDDYVDEETYNLQKLLAPYHKAKTLE
15 RQVYELEKLQEKLPEKYKAELYKKLDQTRVELADQVKSATTEFENVPTNDQLTD
LQEAHFVVFESEENSESVMDFVEHPFYTATLNGQKYVMKTKDDSYWKDLIVEG
KRVTTVSKDPKNNSRSLIFPYIPDKAVVNAIVKVVVANIGYEGQYHRIINQDINTKD
DDTSQNNTSEPLNVQTGQEGKVADTDVAENSSTATNPKDASDKADVIEPESDVVK
20 DADNNIDKDVQHVDHLSMSDNNHFDKYDLKEMDTQIAKDTDRNVDKDADNSV
GMSSNVDTDKDSNKNKDKVIQLNHIADKNNHTGKAALKDVKQNYNNNTDKVTDKK
TTEHLPSDIHKTVDKTVKTKEAGTPSKENKLSQSKMLPKTGETTSSQSWWGLYA
LLGMLALFIPKFRKESK

KrkN2 (8325) (SEQ ID NO:7)

25 gagaaaaacaacatgacaaaacattattaaacagtaagtatcaatcagaacaacgtca
tcagctatgaaaaagattacaatgggtacagcatctatcatttaggttcccttgtatac
ataggcgccagacagccaacaagtcaatcggtcaacagaagctacgaacgcaactaataat
caaagcacacaagttctcaagcaacatcacaaccaattaatttcaagtgcggaaaaagat
30 ggctctcagagaagtccacacatggatgactatatgcacacaccctggtaaagtaattaaa
caaaataataaatattttccaaaccgtttaacaatgcattctggaaagaatac
aaatttacaatgcaaacaatcaagaattagcaacaactgttgttaacgataataaaaaa
gcggatactagaacaatcaatgtgcagtgtgaacctggatataagagcttaactactaaa
gtacatattgtcgccacaaattaattacaatcatagatatactacgcatttggaaattt
35 gaaaaaagcaattccatcttgcacgcggcaaaaccaatgtttaaccgggttca
ccaaaaccagctcaacctaaaacacctactggacaaactaaaccagttcaacctaaagtt
gaaaaagttaaacctactgttaactacaacaagcaaaactgttgaagacaatcactctactaaa
gttgtaagtactgcacacaacaaaagatcaaactaaaacacaaactgtctacatcgtttaa
acagcacaaaactgtcaagaacaaaataaagtcaaaacacccgtttaagatgttgcaca
40 gcgaaaatctgttgcacgcggcaaaaccaatgtttaaccgggttca
gttacaaaacataacgaaacgcctaaacaaggcatctaaagctaaagaattaccaaaaact
ggtttacttcagttgataactttattagcacagttgccttcgcaacacttgcccttta
ggttcattatctttattactttcaaaaagaaaagaatctaaataa

45 KrkN2 (8325) (SEQ ID NO:8)

EENNMTKHYLNSKYQSEQRSSAMKKITMGTASIILGSLVYIGADSQQVNAATEATN
ATNNQSTQVSQATSQPINFQVQKDGSSEKSHMDDYMQHPGKVIKQNNKYYFQTV
LNNASFWKEYKFYNANNQELATTVNDNKADTRTINVAVEPGYKSLLTKVHIVVP
QINYNHRYTTTHLEFEKAIPTLADAAKPNNVKPVQPKPAQPKTPTEQTCKPVQPKVEK
5 VKPTVTTSKVEDNHSTKVSTDTTKDQTKTQTAHTVKTAQTAQEQNKVQTPVKD
VATAKSESNNQAVSDNKSQQTNKVTKHNETPKQASKAKELPKTGLTSVDNFISTV
AFATLALLGSLSSLLFKRKESK

KrkN (8325) (SEQ ID NO:9)

KrkN (8325) (SEQ ID NO:10)

40 YTIRSCFYNMNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAETGG
TNTÉAQPKTEAVASPTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEV
KAPKETKEVKPAAKATNNNTYPILNQELREAIKNPAIKDKDHSAPNSRPIDFEMKKKD
GTQQFYHYASSVKPARVIFTDSKPEIELGLQSGQFWRKFEVYEGDKKLPIKLVSYD
TVKDYAYIRFSVNSGKAVKIVSSTHFNNKEEKYDTLMEFAQPIYNSADKFKTEED
45 YKAEKLLAPYKKAKTLERQVYELNKIQDKLPEKLKAEYKKKLEDTKKALDEQVKSAT
TEFQNVQPTNEKMTDLQDTKYVVYESVENNESMMDTFVKHPIKTGMLNGKKYMV

METTNDDYWKDFMVEGQRVRTISKDAKNNTRTIIFPYVEGKTLYDAIVKVHVKTIDY
DGQYHVRIVDKEAFTKANTDSNKKEQQDNSAKKEATPATPSKPTSPVEKESQK
QDSQKDDNKQLPSVEKENDASSESGKDTPATKPTKGEVESSSTTPKVVSTTQ
NVAKP TTASSKTTKDVVQTSGSSEAKDSAPLQKANIKNTNDGHTQSQNNKNTQE
5 NKA KSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

RkaS (COL) (SEQ ID NO:11)

RkaS (COL) (SEQ ID NO:12)

45 FINNLHKINHFNIRIMIYWCMTVNGGNEMKALLKTSVWLVLFSVMGLWQVSNA
EQHTPMKAHAVTTIDKATTDKQQVPPTKEAAHHSGKEATNVSASAQGTADDTN

SKVTSNAPS NKPSTV VSTKVNETRDVDTQQASTQKPTHTATFKLSNAKTASLSPR
 MFAANAPQTTTHKILHTNDIHGR LAEEKGRVIGMAKLKTVKEQEKPDLMLDAGDAF
 QGLPLSNQSKGEEMAKAMNAVGYDAMAVGNHEFDGYDQLKKLEGMLDFPLMS
 TNVYKDGFRAFPSTIVTKNGIRYGIIGVTPETKTRPEGIKGVEFRDPLQSVTA
 5 EMMRIYKDVTDFVVISHLGIDPSTQETWRGDYLVKQLSQNPQLKKRITVIDGHSHT
 VLQNGQIYNNDALAQTGTALANIGKITFNYRNGEVSNIKPSLINVKDVENVTPNKAL
 AEQINQADQTFRAQTAEVIIPNNTIDFKGERDDVRTRETNLGNAIADAMEAYGVKN
 FSKKTDFAVTNGGGIRASIAKGKVTRYDLISVLPGNTIAQIDVKGSDVWTAFEHSL
 GAPTTQKDGT VLTANGLLHISDSIRVYYDINKPSGKRINAIQILNKETGKFENIDL
 10 KRVYHVTMNDFTASGGDGYSMFGGPREEGISLDQVLASYLKTANLAKYDTTEPQR
 MLLGKPAVSEQPAKGQQGSKGSKSGKDQPIGDDKVMMDPAKKPAPGKVVLLAH
 RGTVSSGTEGSGRTIEGATVSSKSGKQLARMSVPKSAHEKQLPKTGTNQSSSP
 EAMFVLLAGIGLIATVRRRKAS

15 RrkN (8325) (SEQ ID NO:13)

agtggaaaatatgaaaaaggagtatgcaa atgagagataagaaggaccgtaaataaaagagtagatttc
 atcaaataaattgaataaaatattcaataa gaaaaattacagt tggAACAGCactttaattggctactaatgtatttgc
 20 ggaactcaacaagaggcagaagcagctgaaaacaatattgagaatccaactacataaaagataatgtccaaatc
 aaaagaagtgaagattgaagaagtaacaacaaacaaagacactgcaccacagggttagaagctaaatctgaagta
 acttcaacaaacaaagacacaatcgaacatcgaaccatcagtaaaagctgaagatatactaaaaaaggaggatacac
 caaaagaagttagctgttgc tgaagttcagccgaaatcgtcactcataacgcagagacacctaaggtagttag
 25 aaaagctcg tctgttgc tgaaggctttgatattacaagagattctaaaaatgttagtgaatctaccccaattacaatt
 caaggtaaagaacatttgc tgaaggctacggaaagtgttgc tatacaaaaaaaaaaccaacagatttaggggtatcagagg
 taaccagg ttaatgttgc taaatgaaagtaatgggttgc ttagggacttacaattaaaaataaaatagattttagtaag
 gatttcaattttaaagtttagatgttgc taaataaccatcaatcaa ataccacacaggctgtatgg tgggggttctatttagt
 aaaggaaatgcagaagaatattaactaatgg tggaaatcc tgggataaaggctgttgc taaatcaggcggattaa
 30 aattgataactggatatacaacttatacaagttccatggacaaaactgaaaagcaagctggacaaggtaggatagac
 gagctttgtgaaaaatgacagt tctgttgc tattcacaatgg tggagaaaatattgataaaatcaaaaactaatttttaa
 actatgcggacaattcaactaatacatcagatggaaagttcatggcaacgtttaatgttgc tcatcttaacttattgttgc
 ctcaactggtaaaatgagagcagaatattgttgc taaaacttgggagacttcaataacagatttaggttatctaaaaa
 tcaggcatataatttcttaattacatctgtcaaaagatgggc ttaatcaaggatggataatgcaatggctggatgaga
 actgacttggaaaggctcagatgttactttacaccagaagcgc caaaaacaataacagaatttagaaaaaaaagtttgc
 35 aagagattccattcaagaaagaacgttaatttgc tggatattgc ttttttttttttttttttttttttttttttttttttt
 ggacaaaaagg tggagaagacaataacgc acaccaacactaaaaatccattaaactgggatgatatttttttttttttttt
 gaacccaaaagaagatcggatatt
 gtcatcggacacgatccgatccgaaatgttgc ttt
 40 aatcccgaaaacaggagacgtatgc ttt
 gatttgataaaaaaaagaagagatccattcgc gatccgatccgatccgatccgatccgatccgatccgatccgatccgatcc
 gtaacaagagaaggacaaaaaagg tggatccgatccgatccgatccgatccgatccgatccgatccgatccgatccgatcc
 att
 acgataacaccagg tcatcgc gatccgatccgatccgatccgatccgatccgatccgatccgatccgatccgatccgatcc
 accggatataaagaatccgatccgatccgatccgatccgatccgatccgatccgatccgatccgatccgatccgatccgatcc
 45 aaaaggagactcgatccgatccgatccgatccgatccgatccgatccgatccgatccgatccgatccgatccgatccgatcc
 gggacagaaaaagtaacaagagaaggacaaaaagg tggatccgatccgatccgatccgatccgatccgatccgatccgatcc

NFLNYADNSTNTSDGKFHGQRLNDVILTYVASTGKMRAEYAGKTWETSITDLGLS
KNQAYNFLTSSQRWGLNQGINANGWMRTDLKGSEFTFTPPEAPKTITELEKKVEI
PFKKERKFNPDLAPGTEKVTRREGQKGEKTITTPTLKNPLTGVIIISKGEPEKKEEIKDPI
NELTEYGPETIAPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKY
5 GPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTRREGQKGEKTITTPTLKNPLTGEII
SKGESKEEITKDPINELTEYGPETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETG
DVVRPPVDSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTRREGQKGEK
10 TITTPTLKNPLTGVIIISKGEPEKEEITKDPINELTEYGPETITPGHRDEFDPKLPTGEKE
EVPGKPGIKNPETGDVVRPPVDSVTKYGPVKGDSIVEKEEIPFKKERKFNPDLAPG
TEKVTRREGQKGEKTITTPTLKNPLTGEII SKGESKEEITKDPINELTEYGPETITPGH
RDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYGPVKGDSIVEKEEIP
15 FEKERKFNPDLAPGTEKVTRREGQKGEKTITTPTLKNPLTGEII SKGESKEEITKDPIN
ELTEYGPETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYG
PVVKGDSIVEKEEIPFKKERKFNPDLAPGTEKVTRREGQKGEKTITTPTLKNPLTGEII
KGESKEEITKDPINELTEYGPETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGD
VVVRPPVDSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTRREGQKGEKTI
20 TTPTLKNPLTGEII SKGESKEEITKDPINELTEYGPETITPGHRDEFDPKLPTGEKEEE
VPGKPGIKNPETGDVVRPPVDSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPG
EKVTREGQKGEKTITTPTLKNPLTGEII SKGESKEEITKDPVNELTEFGGEKIPQGH
KDIFDPNLPTDQTEKVPKGPKGPNPDTGKVIEEPVDV ри HGPKTGT PETKTVЕIPF
25 ETKREFNPKLQPGEERVKQEGQPGSKTTTPITVNPLTGEKV GEGQPTEEITKQPV
DKIVEFGGEKPKDPKGPNPEKPSRPTHPSGPVNPNNPGLSKDRAKPNGPVHSM
DKNDKVKKSKIAKESVANQEKKRAELPKTGESTQKGLIFSSIIGIAGLMILLARRRN
N
KnkA (8325) (SEQ ID NO:15)

ggaaggagtagttgtatggctaaatatcgagggaaaccgttcaatttatgtaaagtattcgtttcgacaatgtgg
30 gacaagtatcatttacaaacaaatctggctacgtatcccacgtcatctaaaaggataactgaaattacaaaaga
gatattatctaagcaagatttttagacaaggatgtacaaggcaattcgtcaaattgagaattaaacagttatccggctt
catctaaagaacattataaaggacaactaaatgaagcgaaaacagcatcgcacatgaaatcatataaaacga
35 gctaattgatgtggatagcaaaagacaataaaaggatctcacactgaaatgaaacggtcaaattgatatacagataaaatt
agatcaattgttcaagattaaatgaggttcttcaatgtttaggggtcaacaaatggcgaggacatcttaat
gcaatgaaaaatgatatgtcacaacacggctacaacaaaacatggggaaaaagatgataaaaatgatgaagca
40 atggtaaataaggcgtagaaagacccatgaccattgaatcagcaaatcacaatcgaaatgatcatcgaaagat
acatcggaagatcccgacgtgtctacaacagataataatcatgaagttagctaaaacgcacaaataatgatggctg
gacatgtgtttaataaattcccttcaatgaagagaatcaaagccatagtaatcgactcactgataaattacaagg
45 aacgcataaaaattatcatgtatgatgatgaaaaattagctaaaatgatcatgtccacacatataatcatataa
actgaataacgttacaatctttagatcaacgtattgcaaatacgcaacttcctaaaaatcaaaaatcagacttaatgagc
gaagtaaataagacgaaagagcgataaaaatgtcaacgaaatattttggaaagaactgcacgtactgatgata
aaaagtatgtacacaaaagcattttagaaagtatatttaataaagacgaggcgatggaaaaattctaaaatgatatacgt
gtttagtgatggatggatcaacaaaattgtcagatcaaattactcgtcatattgtatcaattatctctgacaacgcgatgtatg
attattaaacgtcattgtatgatcaatcacaagataatgtcgatattgttcttcaatttacaacacgaaaatttagggaaaag
ctgaagcagataaaattggctaaagatggacgaaatggattatcaaatcgccaaatcgatgaccaattgaagaa
45 acattttgcatcaactggcgacacgttccagatgatataattaaagcaatttgaataatgccaatcgatgaccaattgaagaa
accaattgaaacgatttagcaacacgtatagaaagacaaaaggcaaaattactggcagattactaaataataaata

5 gaaacagatcaaaataaaatttttaatttagttaaatcgccatgtaatggtaaacggatgattttgaatttacaaa
gagactcaatcaaacgaaaaaagatatagttatatttatcaccaatagtaaatcgtccaagttactagatcgatt
aataaaaatggaaaacgcacagattnaataagttagttaaatgaatcaaggatcagatttttagacagtatt
ccagatatacccacaccaaaagccagaaaagacgttaacactggtaaaggtaatggattgttaagtggattttaaa
tgctgatggtaatgtatcttgctaaagcggggaaacgataaaagaacattggccgatactgttaattgtggtg
caatgggtgtactaatgattggttatcacgacgcaataagtgaaaataaagcataa

KnkA (8325) (SEQ ID NO:16)

10 GRSMLMAKYRGKPFQLYVKLSCSTMMATSIILTNILPYDAQAASEKDTEITKEILSK
QDLDKVDKAIRQIEQLKQLSASSKEHYKAQLNEAKTASQIDEIKRANELDSKDNK
SSHTEMNGQSDIDSKLDQLLKDLNEVSSNVDRGQQSGEDDLNAMKNDMSQTATT
KHGEKDDKNDEAMVNKALEDLDHDLNQQIHKSKDASKDTSEDPAVSTTDNNHEVA
KTPNNDGSGHVVLNKFLSNEENQSHSNRLDKLQGSDKINHAMIEKLAKSNASTQ
15 HYTYHKLNTLQSLDQRARIANTQLPKNQKSDLMSEVNKTKERIKSQRNIILEELARTDD
KKYATQSILESIFNKDEAVKILKDIRVDGKTDQQIADQITRHIDQLSLTTSDLLTLSID
QSQDKSLLISQILQTKLGKAeadKLAQDWTKGLSNRQIVDQLKKHFASGTGDTSSD
DILKAILNNNAKDKKKQAIETILATRIERQKAKLLADLITKIETDQNKFNLVKSALNGKAD
20 DLLNLQKRLNQTKKDIYILSPIVNRPSLLDRLNKGKTTDLNKLANLMNQGSLLL
SIPDIPTPKPEKTLTGKGNGLLSGLLNADGNVSLPKAGETIKEHWLPISVIVGAMG
VLMIWLSRRNKLKNKA

25 Primary structure analysis:

A bioinformatic approach was used for primary structure and function prediction (Figure 1). Proteins RrkN and DsqA possessed a similar structural organization to previously described MSCRAMMs. RrkN is similar in structure to the PIs/Aap proteins of *S. aureus* and *S. epidermidis*, respectively. It contains a 200-residue domain at its N-terminus showing 40% identity to PIs and Aap. The C-terminus of the protein is predominantly composed of a 128 residue repeat domain, which varies in the numbers of repeats from strain to strain. These repeats are also present in PIs and Aap. A putative sar homolog and *fntpA* and *fntpB* lie directly upstream from RrkN on the genome.

35 DsqA is similar in structural organization to the Sdr family of proteins. It contains a typical A domain followed by a TYYFTDVK motif which is similar to a conserved TYTFTVYVD motif found in all of the Sdr proteins. The function of this motif has yet to be determined. Two 88 residue repeat domains reside in the centre of the protein

followed by a C-terminal SX-repeat motif similar to the SD-repeat motif found in the Sdr proteins. The size of this repeat varies from strain to strain. DsqA neighbors secY and secA on the genome. A DsqA homolog (>90% identical) is also found in *S. epidermidis*.

5

KnkA contains no repeat domains in its sequence. Secondary structure prediction analysis indicate that this protein is predominantly composed of alpha-helices.

RkaS contains no repeat domains in its sequence. BLAST analysis indicates that it
10 is similar to a 5' nucleotidase UDP-sugar hydrolase. The gene encoding RkaS lies directly upstream from *orfX*, the insertion site of the *mec* element.

KesK contains two 140 residue repeat domains at the N-terminus of the protein which are 38% identical. Hydropathy plot analysis (Kyte and Doolittle, 1982)
15 indicates that there is a large hydrophilic domain in the center of the protein (residue 500-560).

EkeS contains two 300 residue repeat domains in the center of the protein which are 38% identical. Blast analysis indicates that the N-terminus of the protein
20 (residues 1-1268, bearing both repeats) is 49% identical to FmtB, an LPXTG protein with 17 tandem repeats. FmtB is proposed to be involved indirectly in methicillin resistance as inactivation of *fmtB* abolishes methicillin resistance. This appears to be due to affecting cell wall composition as methicillin sensitivity can be relieved by increasing the production of the cell wall precursor glucosamine-1-phosphate
25 (Komatsuzawa *et al.*, 2000).

KrkN and KrkN2 neighbor each other on the genome.

Expression analysis:

30

Due to lack of sequence homology with protein databases, a putative function for each of these proteins could not be predicted and hence a molecular approach was taken. Unique regions of four of the *orfs* were expressed in *E. coli* as recombinant his-tagged fusion proteins using the Qiagen pQE-30 expression system. Figure 2.

5 represents a Coomassie stained SDS-PAGE gel of the purified N-terminal his-tag fusion proteins. The recombinant proteins RrkN1, DsqA2, KesK1 and KnkA were used to generate antibodies in rabbits. Western blotting analysis of *S. aureus* cell wall extracts revealed that KesK, KnkA and DsqA are expressed and cell wall-associated (Figure 3). Strain eMRSA-16 represents a *knkA*-negative strain since it

10 lacks the *knkA* gene. An immunoreactive band of 65kDa reacts with the cell wall fraction from both exponential and stationary phase cells of strain 8325-4 (Figure 3, B). The absence of this band in strain eMRSA-16 suggests that it represents the gene product of *knkA*.

15 Western immunoblotting of the cell wall fraction of strain 8325-4 using anti-KesK antibodies identified a 150kDa immunoreactive band in both exponential and stationary phase cultures. A similar sized immunoreactive protein released from the cell wall fraction of *Lactococcus lactis* expressing full length KesK on an expression plasmid (pKS80) suggests that the 150kDa band represents the *kesK* gene product

20 (data not shown). A *kesK* knockout mutant in *S. aureus* would be required to confirm the size of the cell wall-released KesK protein.

25 Western immunoblotting of the cell wall fraction of *S. aureus* strain MSSA and eMRSA-16 using anti-DsqA antibodies identified a 130kDa immunoreactive band. Expression levels are higher in stationary phase cells.

Heterologous expression in *Lactococcus lactis*:

30 Heterologous expression of *S. aureus* surface proteins in *Lactococcus lactis* (*L. lactis*) has previously been used as a tool to study protein function (Sinha *et al.*, 2000). In this study this surrogate system will be used to express each of the in

silico-predicted MSCRAMMs on the surface of *L. lactis* to fish for a function. KesK and KnkA have been cloned into *L. lactis* and shown by dot blotting to be surface expressed (Figure 4). No cross reaction was observed with the negative control (pKS80 plasmid without an insert) indicating that this is a specific reaction. Cell wall 5 and protoplast fractions of *Lactococcus lactis* bearing pKS-KnkA and pKS-KesK were generated by digestion of cells with lysozyme and mutanolysin and used in Western blotting studies using anti-KnkA and anti-KesK antibodies, respectively. Unlike what was observed in *S. aureus*, KnkA was not detected in the cell wall fraction of *L. lactis* but found to be associated with the protoplast fraction. The 10 anchoring motif of KnkA differs from the consensus LPXTG sequence in that it contains an Alanine residue instead of a Threonine (i.e. LPKAG) (Table 1). It has been recently been published that *S. aureus* contains two sortase genes, srtA and srtB (Pallen, 2001). It is possible that this variant form of the LPXTG motif is processed by the second sortase gene, which is absent in *L. lactis*. This would also 15 explain the slight increase in size of the KnkA protein observed in the protoplast fraction, as the cell wall sorting signal has not been cleaved.

KesK was detected in the cell wall fraction of *L. lactis* but migrated at a smaller molecular weight than the KesK protein released from the cell wall of *S. aureus*. 20 The majority of MSCRAMMs expressed on the surface of *L. lactis* are prone to proteolysis during the cell wall extraction procedure (Louise O'Brien, personal communication). Therefore, it is possible that the KesK protein released from the surface of *L. lactis* represents a truncated form of KesK. Shorter digestion times with lysozyme and mutanolysin has been shown to limit the extent of proteolysis.

25

Expression of in silico-predicted MSCRAMMs in vivo:

Convalescent-phase sera from 33 patients recovering from *S. aureus* infections were tested in their ability to recognize the purified N-terminal his-tag fusion proteins 30 in an ELISA assay. Pooled sera from children and healthy blood donors were used

as negative controls. A positive reaction was taken as a value equal to or greater than twice the value of the negative control. Figures 5A-5D illustrate that all of the proteins were recognized by 27-42% of the patients suggesting that these proteins are expressed *in vivo* and are immunogenic during infection of the host.

5

References:

- 10 Komatsuzawa, H., Ohta, K., Sugai, M., Fujiwara, T., Glanzmann, P., Berger-Bachi, B., Suginaka, H. (2000) Tn551-mediated insertional inactivation of the *fmtB* gene encoding a cell wall-associated protein abolishes methicillin resistance in *Staphylococcus aureus*. *J. Antimicrob. Chemother.* **45:** 421-31.
- 15 Sinha, B., Francois, P., Que, Y.A., Hussain, M., Heilmann, C., Moreillon, P., Lew, D., Krause, K.H., Peters, G., Herrmann, M. (2000) Heterologously expressed *Staphylococcus aureus* fibronectin-binding proteins are sufficient for invasion of host cells.
Infect. Immun. **68:** 6871-6878.
- 20 Pallen, M.J., Lam, A.C., Antonio, M., Dunbar, K. (2000) An embarrassment of sortases - a richness of substrates? *Trends. Microbiol.* **9:** 97-101

Example 2. Isolation and Sequencing of Cross-Reactive Proteins from *S. aureus* and from Coagulase-Negative Staphylococci

25

It has been recently shown that *S. epidermidis* contains surface proteins structurally related to *S. aureus* MSCRAMM® proteins (US 09/386,962). One protein from *S. aureus* is of particular interest since it has a close homologue in *S. epidermidis*. The protein is called DsqA or SasA (*S. aureus*) and DgsK (*S. epidermidis*). They are characterized by a typical "A" domain of approximately 500 amino acid residues,

30

followed by two B repeats of 88 residues that are ~40% identical, and a unique SXSX dipeptide repeat that can vary in length depending on the strain. Contained within the A domain of the *S. aureus* DsqA/SasA is a 180 residue region that has ~40% identity to a similar sized domain within region A of *S. aureus* proteins RrkN, Pls and *S. epidermidis* protein Aap. The A regions of the DsqA/SasA and DgsK proteins are 46 % identical at the amino acid level, the BB repeats are 50% identical. Active and passive immunization strategies that include; vaccines, polyclonal and monoclonal antibodies recognizing both *S. aureus* and coagulase-negative staphylococcal proteins are the subject of this invention.

10

Specific Examples of Antibodies that Cross-React with Coagulase-Negative Staphylococci and *S. aureus*.

Coagulase-negative staphylococcal DgsK A-Domain:

15

Amino Acid Sequence (SEQ ID NO:17)

ASETPITSEISSNSETVANQNSTTIKNSQKETVNSTSLESNHSNSTNKQMSSEVTNTAQSS
EKAGISQQSSETSQNQSSKLNTYASTDHVESTTINNDNTAQQDQNKSSNVTSK
STQSNTSSSEKNISSLNTQSIETKATDSLATSEARTSTNQISNLSTSTS
NQSSPTSFANLRTFSRFTVLNTMAAPTTSTTTSSLTSNSVVVKDNFNEHMNL
SGSATYDPKTGIATLTPDAYSQKGAISSLNTRLDNSRSFRFIGKVNLGNRYEG
SPDGVAAGGDGIGFAFSPGPLGQIGKEGAAGVGIGGLNNAFGFKLDTYHNT
STPRSDAKAKADPRNVGGGGAFGAFVSTDNRNGMATTEESTAAKLN
VQPTDNSFQDFVIDYNGDTKVMVTVYAGQTFRNLTDWIKNSGGTFSL
SMTASTGGAKNLQQVQFGTFEYTESAVAKVRYVDANTGKD
IIPPKTIAGEVDGTVNIDKQLNNFKNLGYSYVGTALKAPNYTETSG
TPTLKLTNSSQTVIYKFKDVQ

***S. aureus* SasA A-domain:**

Amino Acid Sequence (SEQ ID NO:18)

30

ASDAPLTSELNTQSETVGNQNSTTIEASTSTADSTS
TKNSSSVQTSNSDTVSSEKSEKVTSTTN
STSNNQQEKLTS
SESTSSKNTTSSSDTKSVASTSSTE
QPINTSTNQSTS
ASNNTSQSTTPSSVNLNKT
TSTTSTAPVKLRTFSR
LA
MSTFASAATT
TAVTANTI
TVNKDN
LKQYM
TTSGN
ATYDQ
STGIV
LTQ
DAYS
SQKG
AITLG
TRIDS
NKS
FHSGK
VNL
G
N
KYEGH
GN
GGDG
IGFAF
SPGV
LGET
GLNG
AAVG
IGG
LSNA
FGF
KLD
TYH
NT
SKP
NSAA
KAN
ADPS
NVAG
GGAF
GV
TTDSY
GV
ATT
YTSS
STAD
DNA
AAK
LN
VQPT
NNT
FQDF
DIN
YNG
DTK
V
M
TV
KYAG
QT
W
TRN
ISD
WIA
KSG
TTN
F
LSMT
A
STGG
AT
NL
QQV
QFG
TFE
Y
TES
AVT
Q
V
R
Y
D
V
T
G
K
D
I
I
PP
K
T
Y
SG
N
V
D
Q
V
V
T
I
D
N
Q
Q
S
AL
TA
KG
Y
N
Y
T
S
V
D
S
S
Y
A
S
T
Y
N
D
T
N
K
T
V
K
M
T
N
A
G
Q
S
V
T
Y
Y
F
D
V
V

40

The entire sequence of the Aap protein and the DNA coding therefor (with an indication of the presence of the A domain) is shown below:

S. epidermidis Aap Protein (A-domain underlined) (SEQ ID NO:19)

5

MGKRRQGPINKVDFLPNKLNKYSIRKFTVGTASILLGSTLIFGSSSHEAKAAEEKQ
VDPITQANQNDSSERSLENTNQPTVNNEAPQMSSTLQAEEGSNAEAPOQSEPTKA
EEGGNAEAQSEPTKAEEGGNAEAPOQSEPTKAEEGGNAEAQSEPTKTEEGSNV
KAAQSEPTKAEEGSNAEAPOQSEPTKTEEGSNAKAAQSEPTKAEEGGNAEAQSE
PTKTEEGSNAEAPOQSEPTKAEEGGNAEAPOQSEPTKTEEGGNAEAPOVPTIKANS
NDTQTQFSEAPTRNDLARKEDIPAVSKNEELQSSQPNTDSKIEPTTSEPVNLNYSS
PFMSLLSMPADSSSNNTKNTIDIPPTVKGRDNYDFYGRVDIESNPTDLNATNLTR
YNYGQPPGTTAGAVQFKKNQVSFDKDFDFNIRVANNRQSNTTGADGWGFMFSK
KDGDDFLKNGGILREKGTPSAAGFRIDTGYNNNDPLDKIQKQAGQQGYRGYGTFK
NDSQGNTSKVGSGTPSTDLYADNTTNLDGKFHGQKLNNVNLKYNASNQFT
ATYAGKTWTATLSELGLSPTDSYNFLVTSSQYGNNGNSGTYASGVMRADLDGATL
TYTPKAVDGDPIISTKEIPFNKKREFDPNLAPGTEKVVKGEPGIETTTPTVNP
TGEKVGEGEPTEKITKQPVDEIVHYGEEIKPGHKDEFDPNAPKGSQTTQPGKPG
VKNPDTGEVTPVDDVTKYGPVGDGPITSTEEIPFDKKREFNPDLKPGEEVKQ
KGEPGTKTITTPTTKNPLTGEKVGEGEPTEKITKQPVDEITEYGEEIKPGHKDEF
PNAPKGSQEDVPGKPGVKNPGTGEVTPVDDVTKYGPVGDGPITSTEEIPFDKK
REFNPDLKPGEEVKQKGEPGTKTITTPTTKNPLTGEKVGEGEPTEKITKQPVDEI
VHYGGEQIPQGHKDEFDPNAPVDSKTEVPGKPGVKNPDTGEVTPVDDVTKYG
PVDGDSITSTEEIPFDKKREFDPNLAPGTEKVVKGEPGTKTITTPTTKNPLTGEK
GEGKSTEKVTKQPVDEIVEYGPTKAEPGKPAEPGKPAEPGKPAEPGTPAEPGKPA
EPGTPAEPGKPAEPGKPAEPGKPAEPGKPAEPGTPAEPGKPAEPGTPA
EPGKPAEPGTPAEPGKPAESGKPVEPGTPAQSGAPEQPNRSMHSTDKNQLPD
TGENRQANEGLVGSLLAIVGSLFIFGRRKKGNEK

attttttacc taacaaatta aacaagtatt ctataagaaa attcactgtt ggtacggcct
caatattact tggtcgaca cttattttg gaagtagtag ccatgaagcg aaagctgcag
aagaaaaaca agttgatcca attacacaag ctaatcaaaa tgatagtagt gaaagatcac
ttgaaaacac aaatcaacct actgtaaaca atgaagcacc acagatgtct tctacattgc
5 aagcagaaga aggaagcaat gcagaagcac ctcaatctga gccaaacgaag gcagaagaag
gaggcaatgc agaaggcagct caatctgagc caacgaaggc agaagaagga ggcaatgcag
aagcacctca atctgagcca acgaaggcag aagaaggagg caatgcagaa gcagctaat
ctgagccaac gaagacagaa gaaggaagca acgtaaaagc agtcaatct gagccaacga
aggcagaaga aggaagcaat gcagaagcac ctcaatctga gccaaacgaag acagaagaag
10 gaagcaacgc aaaaggcagct caatctgagc caacgaaggc agaagaagga ggcaatgcag
aagcagctca atctgagcca acgaagacag aagaaggaag caatgcagaa gcacctcaat
ctgagccaac gaaggcagaa gaagggaggca atgcagaagc acctcaatct gagccaacga
agacagaaga aggaggcaat gcagaagcac cgaatgtcc aactatcaaa gctaattcag
ataatgatac acaaacacaa tttcagaag cccctacaag aaatgaccta gctagaaaag
15 aagatatccc tgctgttct aaaaacgagg aattacaatc atcacaacca aacactgaca
gtaaaataga acctacaact tcagaacctg tgaatttaaa ttatagttct ccgttatgt
ccttattaag catgcctgct gatagttcat ccaataacac taaaaataca atagatatac
cgccaactac ggttaaaggt agagataatt acgattttc cggttagt gatatcgaaa
gtaatcctac agatttaat ggcacaaatt taacgagata taattatgga cagccacctg
20 gtacaacaac agctggtgca gttcaattt aaaaatcaagt tagtttgat aaagattcg
actttaacat tagatgtca aacaatcgtc aaagtaatac aactggtgca gatggttggg
gctttatgtt cagcaagaaa gatggggatg atttcctaaa aaacggtggt atcttacgtg
aaaaaggtac acctagtgca gctggttca gaattgatac aggatattt aataacgatc
cattagataa aatacagaaa caagctggtc aaggctatag agggatggg acatttgtt
25 aaaaatgactc ccaaggtaat acttctaaag taggatcagg tactccatca acagatttc
ttaactacgc agataatact actaatgatt tagatgtta attccatgtt caaaaattaa
ataatgttaa ttgaaatat aatgctcaa atcaaacttt tacagctact tatgtgtt
aaactggac ggctacgtt tctgaattag gattgagtcc aactgtatgt tacaatttt
tagttacatc aagtcaatat ggaaatggta atagtggtac atacgcaagt ggcgttatga
30 gagctgattt agatggtgca acattgacat acactcctaa agcagtcgtt ggagatccaa

ttatatac taaggaaata ccatttaata agaacgtga atttgatcca aacttagccc
caggtacaga aaaagtagtc caaaaagggtg aaccaggaat taaaacaaca acaacaccaa
cttatgtcaa tcctaataca ggagaaaaag ttggcgaagg tgaaccaaca gaaaaaataaa
caaaacaacc agtggatgaa atcggtcatt atggcgcga agaaatcaag ccaggccata
5 aggatgaatt tgatccaaat gcaccgaaag gtatcaaacc aacgcaacca ggtaaaggccgg
gggttaaaaaa tcctgatata ggcgaagttag ttactccacc tgtggatgtat gtgacaaaaat
atggtccagt tgatggagat ccgatcacgt caacggaaga aattccattc gacaagaaac
gtgaattcaa tcctgattt aaaccagggtg aagagcgtgt taaacaaaaa ggtgaaccag
gaacaaaaac aattacaaca ccaacaacta agaacccatt aacagggaa aaagttggcg
10 aaggtaacc aacagaaaaa ataacaaaac aaccagtata taaaatcaca gaatatggtg
gcgaagaaat caagccaggc cataaggatg aatttgatcc aatgcacccg aaaggttagcc
aagaggacgt tccaggtaaa ccaggagttt aaaaacctgg aacaggcgaa gtagtcacac
caccagtggta tgatgtgaca aaatatggtc cagttgatgg agatccgatc acgtcaacccg
aagaaattcc attcgacaag aaacgtaat tcaatcctga tttaaaacca ggtgaagagc
15 gcgttaaaca gaaagggtgaa ccaggaacaa aaacaattac aacgccaaca actaagaacc
cattaacagg agaaaaaagt ggcgaagggtg aaccaacaga aaaaataaca aaacaaccag
tggatgagat tggtcattat ggtggtaac aaataccaca aggtcataaa gatgaatttg
atccaaatgc acctgtat agttaaaactg aagttccagg taaaccaggta gttaaaaatc
ctgatacagg tgaagttgtt accccaccag tggatgatgt gacaaaatat ggtccagttg
20 atggagattt gattacgtca acggaagaaa ttccgttga taaaaaacgc gaatttgatc
caaacttagc gccaggtaa gagaaggatcg ttcaaaaaagg tgaaccaggaa aaaaaacaa
ttacaacgccc aacaactaag aacccattaa caggagaaaa agtggcgaa ggtaaatcaa
cagaaaaaagt cactaaacaa cctgttgacg aaatttgttga gtatggtcca aaaaaagcag
aaccaggtaa accagcggaa ccaggtaaac cagcggaaacc aggtaaacca gcggaaccag
25 gtacgccagc agaaccaggtaa aaccagcgg aaccaggtaa gccagcagaa ccaggtaaac
cagcggaaacc aggtaaacca gcggaaccag gtaaaccaggc ggaaccaggtaa aaccagcgg
aaccaggtaa gccagcagaac ccaggtacgc cagcagaacc aggtaaacca gcggaaccag
gtacgccagc agaaccaggtaa aaccagcgg aaccaggtaa gccagcagaa ccaggtaaac
cagcggaaacc aggtaaacca gtggaaccag gtacgccagc acaatcaggtaa gtcaccagaac
30 aaccaaatacg atcaatgcataacagata ataaaaatca attacctgtat aacaggtgaaa

atcgtaaagc taatgaggga acttttagtcg gatcttattt agcaattgtc ggatcattgt
tcatatttg tcgtcgtaaa aaaggtaatg aaaaataatt tcatataaaa actttctgcc
attaa

5 **A-Domain from *S. epidermidis* Aap (amino acids 55-600) (SEQ ID NO:21)**

55 EKQVDPITQANQNDSSERSLENTNQPTVNNEAPQMSSTLQAEEGSNAEPQSE
PTKAEEGGNAEAQSEPTKAEEGGNAEAPQSEPTKAEEGGNAEAQSEPTKTEE
GSNVKAAQSEPTKAEEGSNAEAPQSEPTKTEEGSNAKAAQSEPTKAEEGGNAEA
AQSEPTKTEEGSNAEAPQSEPTKAEEGGNAEAPQSEPTKTEEGGNAEAPNVPTIK
10 ANSDNDTQTQFSEAPTRNDLARKEDIPAVSKNEELQSSQPNTDSKIEPTTSEPVNL
NYSSPFMSLLSMPADSSSNNTKNTIDIPPTTVGRDNYDFYGRVDIESNPTDLNAT
NLTRYNYGQPPGTTAGAVQFKNQVSFDKDFDFNIRVANNRQSNTGADGWGF
MFSKKDGDDFLKNGGILREKGTPSAAGFRIDTGYNNNDPLDKIQKQAGQGYRGYG
TFVKNDSQGNTSKVGSGTPSTDFLNYADNTTNLDGKFHGQKLNNVLKYNASN
15 QTFTATYAGKTWTATLSELGLSPTDSYNFLVTSSQYGNGNGNSGTYASGVMRADLD
GA⁶⁰⁰

Protein Production and Purification

20 Using PCR, the A domain of DgsK or SasA was amplified from the sequences described above and subcloned into the *E. coli* expression vector PQE-30 (Qiagen), which allows for the expression of a recombinant fusion protein containing six histidine residues. This vector was subsequently transformed into the *E. coli* strain ATCC 55151, grown in a 15-liter fermentor to an optical density (OD_{600}) of 0.7 and induced with 0.2 mM isopropyl-1-beta-D galactoside (IPTG) for 4 hours. The cells were harvested using an AG Technologies hollow-fiber assembly (pore size of 0.45 μ m) and the cell paste frozen at -80° C. Cells were lysed in 1X PBS (10 mL of buffer/1 g of cell paste) using 2 passes through the French Press @ 1100psi.
25 Lysed cells were spun down at 17,000rpm for 30 minutes to remove cell debris. Supernatant was passed over a 5-mL HiTrap Chelating (Pharmacia) column charged with 0.1M $NiCl_2$. After loading, the column was washed with 5 column
30

volumes of 10mM Tris, pH 8.0, 100mM NaCl (Buffer A). Protein was eluted using a 0-100% gradient of 10mM Tris, pH 8.0, 100mM NaCl, 200 mM imidazole (Buffer B) over 30 column volumes. SdrGN1N2N3 or SdrGN2N3 eluted at ~13% Buffer B (~26mM imidazole). Absorbance at 280nm was monitored. Fractions containing

5 SdrGN1N2N3 or SdrGN2N3 were dialyzed in 1x PBS.

Each protein was then put through an endotoxin removal protocol. Buffers used during this protocol were made endotoxin free by passing over a 5-mL Mono-Q sepharose (Pharmacia) column. Protein was divided evenly between 4x 15mL tubes. The volume of each tube was brought to 9mL with Buffer A. 1mL of 10%
10 Triton X-114 was added to each tube and incubated with rotation for 1 hour at 4°C. Tubes were placed in a 37°C water bath to separate phases. Tubes were spun down at 2,000rpm for 10 minutes and the upper aqueous phase from each tube was collected and the detergent extraction repeated. Aqueous phases from the 2nd extraction were combined and passed over a 5-mL IDA chelating (Sigma) column,
15 charged with 0.1M NiCl₂ to remove remaining detergent. The column was washed with 9 column volumes of Buffer A before the protein was eluted with 3 column volumes of Buffer B. The eluant was passed over a 5-mL Detoxigel (Sigma) column and the flow-through collected and reapplied to the column. The flow-through from the second pass was collected and dialyzed in 1x PBS. The purified
20 product was analyzed for concentration, purity and endotoxin level before administration into the mice.

Monoclonal Antibody Production

25 *E. coli* expressed and purified recombinant SasA and DsgK proteins were used to generate a panel of murine monoclonal antibodies while the mouse sera was used as a source of polyclonal antibodies. Briefly, a group of Balb/C or SJL mice received a series of subcutaneous immunizations of 1-10 mg of protein in solution or mixed with adjuvant as described in the Table below.

30

Immunization Schemes

RIMMS

<u>Injection</u>	<u>Day</u>	<u>Amount (µg)</u>	<u>Route</u>	<u>Adjuvant</u>
#1	0	5	Subcutaneous	FCA/RIBI
#2	2	1	Subcutaneous	FCA/RIBI
5 #3	4	1	Subcutaneous	FCA/RIBI
#4	7	1	Subcutaneous	FCA/RIBI
#5	9	1	Subcutaneous	FCA/RIBI

Conventional

<u>Injection</u>	<u>Day</u>	<u>Amount (µg)</u>	<u>Route</u>	<u>Adjuvant</u>
Primary	0	5	Subcutaneous	FCA
Boost #1	14	1	Intraperitoneal	RIBI
Boost #2	28	1	Intraperitoneal	RIBI
15 Boost #3	42	1	Intraperitoneal	RIBI

At the time of sacrifice (RIMMS) or seven days after a boost (conventional) serum was collected and titered in ELISA assays against MSCRAMM® proteins or on whole cells (*S. epidermidis* and *S. aureus*). Three days after the final boost, the

20 spleens or lymph nodes were removed, teased into a single cell suspension and the lymphocytes harvested. The lymphocytes were then fused to a P3X63Ag8.653 myeloma cell line (ATCC #CRL-1580). Cell fusion, subsequent plating and feeding were performed according to the Production of Monoclonal Antibodies protocol from Current Protocols in Immunology (Chapter 2, Unit 2.).

25 Any clones that were generated from the fusion were then screened for specific anti-SasA antibody production using a standard ELISA assay. Positive clones were expanded and tested further for activity in a whole bacterial cell binding assay by flow cytometry and SasA binding by Biacore analysis.

30

Biacore Analysis

Throughout the analysis, the flow rate remained constant at 10 ml/min. Prior to the SasA or DgsK injection, test antibody was adsorbed to the chip via RAM-Fc binding.

35 At time 0, SasA or DgsK at a concentration of 30 mg/ml was injected over the chip for 3 min followed by 2 minutes of dissociation. This phase of the analysis

measured the relative association and disassociation kinetics of the Mab / SasA or DgsK interaction.

Binding to Whole Bacteria

5

Bacterial samples *S. aureus* Newman, *S. aureus* 67-0, *S. aureus* 397 (Sal6), *S. aureus* Wood, *S. aureus* 8325-4, methicillin resistant *S. aureus* MRSA 16, *S. epidermidis* ATCC 35984, *S. epidermidis* HB, *S. epidermidis* CN-899 and *S. haemolyticus* ATCC 43253 were collected, washed and incubated with Mab or PBS alone (control) at a concentration of 2 µg/ml after blocking with rabbit IgG (50 mg/ml). Following incubation with antibody, bacterial cells were incubated with Goat-F_(ab')₂-Anti-Mouse-F_(ab')₂-FITC which served as the detection antibody. After antibody labeling, bacterial cells were aspirated through the FACScaliber flow cytometer to analyze fluorescence emission (excitation: 488, emission: 570). For each bacterial strain, 10,000 events were collected and measured. These data indicate that antibodies against *S. aureus* SasA were able to recognize a homologous protein on the surface of coagulase-negative staphylococci. The data support Western blot analysis demonstrating that rabbit polyclonal antibodies against *S. aureus* SasA cross-react with a protein released from the cell surface of *S. epidermidis* HB as well as the recombinant A-region from DsgK cloned from *S. epidermidis* (see Table below and Figure 6).

Polyclonal Sera Reactivity

	New man	67-0	397 (SAL 6)	Wo od 46	8325 -4	MRS A 16	ATC C 3598 4	HB	CN- 899	ATC C 4325 3
Normal Mouse Sera	-	-	-	-	-	-	-	-	-	-
Mouse anti- SasA	+	+	+/-	-	+	+	+	+	+	+

What is claimed is:

1. An isolated antibody which binds to a staphylococcal surface protein selected from the group consisting of SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 5 18, 19 and 21.
2. The antibody according to Claim 1 wherein the antibody is raised against the A domain of the surface protein.
- 10 3. The antibody according to Claim 1, wherein the antibody treats or prevents *S. aureus* infection in a human or animal.
- 15 4. The antibody according to Claim 1, wherein the antibody is suitable for parenteral, oral, intranasal, subcutaneous, aerosolized or intravenous administration in a human or animal.
5. The antibody according to Claim 1, wherein said antibody is a monoclonal antibody.
- 20 6. The antibody according to Claim 1, wherein said antibody is a polyclonal antibody.
- 25 7. The antibody according to Claim 5 wherein the monoclonal antibody is of a type selected from the group consisting of murine, chimeric, humanized and human monoclonal antibodies.
8. The antibody according to Claim 5 wherein the antibody is a single chain monoclonal antibody.

9. The antibody according to Claim 1 which comprises an antibody fragment having the same binding specificity of an antibody which binds to a staphylococcal surface protein having the sequence selected from the group
5 consisting of SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21.

10. The antibody according to Claim 1 that is raised against a protein having an amino acid sequence selected from the group consisting of SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21.

10

11. The antibody according to Claim 1 wherein the surface protein has an amino acid sequence encoded by a nucleic acid sequence selected from the group consisting of nucleic acid sequences SEQ ID NOS. 1, 3, 5, 7, 9, 11, 13, 15, 20 and the nucleic acid sequences coding for the A domain of the Aap protein or
15 degenerates thereof.

12. Isolated antisera containing an antibody according to Claim 1.

13. A diagnostic kit comprising an antibody according to Claim 1 and
20 means for detecting binding by that antibody.

14. A diagnostic kit according to Claim 13 wherein said means for detecting binding comprises a detectable label that is linked to said antibody.

25

15. A method of diagnosing an infection of *S. aureus* comprising adding an antibody according to Claim 1 to a sample suspected of being infected with *S. aureus*, and determining if antibodies have bound to the sample.

16. A pharmaceutical composition for treating or preventing an infection of *S. aureus* comprising an effective amount of the antibody of Claim 1 and a pharmaceutically acceptable vehicle, carrier or excipient.

5 17. A method of treating or preventing an infection of *S. aureus* comprising administering to a human or animal patient an effective amount of an antibody according to Claim 1.

10 18. A method of inducing an immunological response comprising administering to a human or animal an immunogenic amount of an isolated protein selected from the group consisting of the amino acid sequences SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21.

15 19. An isolated antibody according to Claim 1 that has the ability to bind to an amino acid sequence coded by the nucleic acid sequence of SEQ ID NOS. 1, 3, 5, 7, 9, 11, 13, 15, 20 and the nucleic acid sequences coding for the A domain of the Aap protein or degenerates thereof.

20 20. An isolated active fragment from the A domain of the DsqA protein.

21. An isolated antibody according to Claim 1 further comprising a physiologically acceptable antibiotic.

25 22. A vaccine for treating or preventing an infection of *S. aureus* comprising an amount of a protein sequence selected from the group consisting of SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21 in an amount effective to elicit an immune response, and a pharmaceutically acceptable vehicle, carrier or excipient.

Figure 1. Primary structure of in silico-predicted LPXTG proteins.

Figure 1 (CONT'D)

	Residues	Predicted MW	Apparent MW
• RrkN 1	60 - 215	19	29
• RrkN 2	60 - 437	45	48
• DsqA 1	54 - 279	27	38
• DsqA 2	54 - 533	58	62
• KesK 1	55 - 335	34	47
• KnkA	39 - 210	20	27
• KesK 2	329 - 591	31	40

Figure 2. Coomassie gel of the purified N-terminal His-tagged fusion proteins.

Figure 3. Western blotting of *S. aureus* cell wall extracts. Bacterial cells were standardised to an OD₆₀₀ of 50 units and cell walls were isolated by lysostaphin digestion of stabilised protoplasts.

A. Lane 1, 8325-4 (early exponential phase); lane 2, 8325-4 (stationary phase).

B. Lanes 1 and 2, eMRSA-16 ; lanes 3 and 4, 8325-4; lanes 1 and 3 represent early exponential phase cells and lanes 2 and 4 represent stationary phase cells.

C. Lanes 1 and 2, MSSA ; lanes 3 and 4, eMRSA-16; lanes 1 and 3 represent early exponential phase cells and lanes 2 and 4 represent stationary phase cells.

Figure 4. Dot blotting and Western immunoblotting of *Lactococcus lactis* expressing *S.aureus* MSCRAMMs. Full length *knkA* and *kesK* were cloned into the *L.lactis* expression plasmid pKS80 and electroporated into competent *L.lactis* MG1363 cells. Positive KnkA and KesK expressing clones were detected using dot blotting with anti-KnkA (A) and anti-KesK (B) antibodies, respectively. *L.lactis* bearing pKS80 was used as a negative control.

A.(i) lane 1, *L.lactis* pKS-KnkA; lane 2, *L.lactis* pKS80. B. (ii) lane 1, *L.lactis* pKS-KesK; lane 2, *L.lactis* pKS80. Western immunoblotting was used to examine the expression of KesK and KnkA in *S.aureus* and *L.lactis*. A (ii). Lane 1, cell wall extract from exponential phase *S.aureus* strain 8325-4, lane 2, protoplast fraction from *L.lactis* bearing pKS80; lane 3, protoplast fraction from *L.lactis* bearing pKS-KnkA. B. (ii) Lane 1, cell wall extract from exponential phase *S.aureus* strain 8325-4; lane 2, cell wall extract from *L.lactis* bearing pKS-KesK; lane 3, cell wall extract from *L.lactis* bearing pKS80.

Figure 5A. Probing recombinant LPXTG proteins with convalescent sera to study *in vivo* expression.

④ Kesk1

④ Kesk2A

Figure 5B

Figure 5C

Figure 5D

Western immunoblotting analysis
of proteins released from the cell
wall of *S. aureus* Newman (N)
and *S. epidermidis* HB (H).
Probed with rabbit anti-*S. aureus*
SasA region A antibodies and
goat anti-rabbit conjugated to
horseradish peroxidase

Cross reaction of *S. aureus* SasA A-region antibodies
with DgsK expressed in *E. coli*. Lane 1, FPLC purified
SasA A-region control. Lanes 2, 4 and 6, DgsK A-region
expressed from pQE-30 in *E. coli* strain TOPP-3
(induced); lanes 3, 5 and 7, TOPP-3 bearing pQE-30 with
dgsK insert (uninduced).

FIGURE 6

SEQUENCE LISTING

5 <110> FOSTER, Timothy
 <120> CROSS-REACTIVE MONOCLONAL AND POLYCLONAL ANTIBODIES. . .

10 <130> P07263US01/BAS
 <150> US 60/298,098
 <151> 2001-06-15
 15 <160> 29
 <170> PatentIn version 3.1
 20 <210> 1
 <211> 6609
 <212> DNA
 <213> *Staphylococcus epidermidis*
 25 <400> 1
 acaacacagc agagaataga caaccaggag gaaaacgaaa tgaatttgtt aaagaaaaat 60
 aaatatagta ttagaaaata taaagttaggg atattctcta cttaatcgg gacagttta 120
 30 ttactttcaa acccaaattgg tgcacaagct ttaactacgg atcataatgt gcaaggtgg
 tcaaattcaag cattacctgg caactcacaa aatacaaattg ccgataactaa tcgagacata 180
 gtaaatgatt cgcaaaatatac tcctaattgca catgcaacag acaatacatc aacaaatcaa 240
 35 gcattgacta atcatcaaaa cgttgatgtg gcaaattcaag tcgggcctgc tccataacag
 cctagcgcgt cgcctgcgca aaataataat aattctaatg ctaattcaac agcaacagag 300
 40 ccagcggcga atacaaataa taatttagca tcaaataaca atacattaaa cgtgcctaatt
 aatacagata acaatgattc agcgcgtcat ctgactttaa aagaaattca agaagatgtt 360
 cgtcattcgt ctgataagcc agagtttagtt gcgattgctg aagaagcatc taatagaccg 420
 45 aaaaagagaa gcagacgtgc tgcgc当地 aatcataatg caacaccaggc agatccaacg
 gctacaccag cagatccaac ggcaggaaat ggtatgtcac cagttgc当地 tacagcgc当地 480
 50 tacacgcca当地 caactgatcc caatgccaat aatataaggac aaaatgcacc taacgaatgt
 ct当地tatttg atgataacaa cattagacca agtacgaacc gttctgtgcc tacagtaact
 gttgtt当地ata atttaccagg ctacacactg attaatggc gtaaagttagg ggtgtt当地at
 55 catgcaatgg taagaacgag catgtt当地at tcaggagatg ccaagaacta tcaagcgc当地
 ggcaatgtaa ttgcattggg tcgtattaga gggaaatgata caaatgatca tggcgat当地 540
 aatggtatcg agaaaacatt aacagtaaat cc当地attctg aattaatctt tgaatttaat
 actatgacta ctaaaaaacta tcaaggatcg acaaatttaat tc当地aaaaa tgctgataac 600
 gataactgtta ttgggtgaaaa agtagttgat tatggccga tt当地ggcgctt attaaaatgta 660
 65 1080
 70 1140
 75 1200

	cctgaaaatg ttagtcatct aaaaattcaa tttgtaccta aaaatgacgc aataacagat	1260
5	gcacgtggta tttatcaatt acgagatgga tataaatact atgactttgt agactcaatc	1320
	ggtcttcatt ctgggtcaca tgtctatgtt gaaagacgta caatggagcc aacagcaaca	1380
	aataataaag aatttacagt tacaacgtca ttaaagaata atggtaactt tggcgcttca	1440
10	ttcaatacacag atgattttgt atataaaatt caattacctg aagggtttga atatgtaaat	1500
	aattcattga ctaaagattt tcctagcggt aattcaggtg ttgatattaa tgatatgaat	1560
15	gtgacgtatg acgcagcaaa tcgaattatt acaattaaaa gtactggtgg aggtacaggg	1620
	aattcgccgg cacgactaat gcctgataaa atattggatt tgaagtataa gctacgttg	1680
	aacaatgtgc caacaccaag aacagtaaca ttaaacgata catthaacgta taaaacatat	1740
20	tcacaagatt ttattaattc acctgctgaa agtcatactg taagtacaaa tccatataca	1800
	attgatataca tcatgaataa agacgcattt caagccgaag tcgatagacg aattcaacaa	1860
25	gcggattata catttgcatc attagatatt ttatgatc ttaaaagacg cgcacaaaca	1920
	attttagatg aaaaccgtaa caatgtacct ttaaacaaaaa gagtttctca agcagatatc	1980
	gattcattag caaatcagat gcaacatacg ttaattcgca gtgttgacgc tgaaaatgcc	2040
30	gttaatagaa aagttgatga catggaagat ttagttaacc aaaatgatga actgacagat	2100
	gaagaaaaac aagcagcgat tcaagtcatc gaggaacata aaaaatgaaat tattggaaat	2160
35	attggtgacc aaacgactga tcatggcggtt actagaatta aagatcaagg tatacagact	2220
	ttaagtggag acactgcaac accagttgtt aaaccaaattt ctaaacaagc tatacgttat	2280
	aaagcagcga aacaaagaga aattatcaat cacacgccag atgctactca agatgaaatt	2340
40	caagatgcat taaatcaatt aacaacggat gaaacagatg ctattgataa tggttacgaaat	2400
	gctactacca atgctgatgt tggaaacagct aaaaataatg gtatataatc aattggtgca	2460
45	gttgcgccac aagtgacaca caaacaagct gcaagagatg caatataatca agcgacagca	2520
	acgaaacgc aacaaataaaa tagcaataga gaagcaacac aagaagagaa aaatgcagca	2580
	ttgaatgaat taacgcaagc cacgaaccac gcattagaac aaatcaatca agcgacaacc	2640
50	aatgatgatg tagatactgc caaagggtat ggtctgaatg ccattaatcc tattgcgcct	2700
	gttaactgttgc tcaagcaagc agcaagagat gccgtatcac atgatgcaca acagcatatc	2760
55	gcagagatca atgcaaattcc tcatggcgact caagaagaaa gacaagcagc aatagagaaa	2820
	gttaaatgctg ctgttagctgt tgcgaataact aatataattaa atgctaatac caatgctgat	2880
	gttggagcaag taaagacaaa tgcaattcaa ggtataacaag ccattgaacc agctacaaag	2940
60	gttaaaaacag atgctaataaaa cgcttattgtat caaagtgcgg aaacgcaaca taatgcgata	3000

	ttaataata atgatgcgac cttagaagag caacaaggcag cacaacaatt gcttgatcaa	3060
5	gctgtagcca cagcgaagca aaatattaat gcagcagata cgaatcaaga agttgcacaa	3120
	gcaaaaagatc agggcacaca aaatatagtt gtgattcaac cggcaacaca agttaaaacg	3180
	gatgcacgca atgctgtaaa tgaaaaagcg cgagaggcga taacaaatat caatgctaca	3240
10	cctggcgcga ctgcagaaga gaaacaagaa gcgataaaatc gtgtcaatac actaaaaat	3300
	agagcattaa atgatattgg tgtgacgtct actactgcga tggcaatag tattagagac	3360
15	gatgcagtca atcaaatcg tgcagttcaa ccgcattgtaa cgaagaaaca aactgctaca	3420
	ggtgttattaa cggacttagc aactgcaaaa aaacaagaaa ttaatcaaaa tacaaatgca	3480
	accactgaag aaaagcaagt agcattaaat caagtagacc aagatttagc aacggcaatt	3540
20	aataatataa atcaagctga tactaatgca gaagtagatc aagcacaaca attaggtaca	3600
	aaagcaatta atgcgattca gocaaatatt gtaaaaaaac ctgcagcatt agcacaaacc	3660
25	aatcagcatt atagtctaa attagttgaa atcaatgcta caccagatgc aacagatgt	3720
	gagaaaaatg ctgcgatcaa tactttaaat caagacagac aacaagctat tgaaagtatt	3780
	aaacaagcaa atacaaatgc ggaagttagac caagctgcga cagtggcaga gaataatatc	3840
30	gatgctgttc aagttgacgt tgtaaaaaaa caagcagcgc gagataaaat cactgctgaa	3900
	gtagcgaagc gtattgaagc gttaaacaa acacctaattc caactgacga agaaaagcag	3960
35	gctgcagtta atcaaatcaa tcaacttaaa gatcaagcgt ttaatcaaat taatcaaaac	4020
	caaacaatg atcaggttaga cgcaactaca aatcaagcga ttaatgctat agataatgat	4080
	gaagctgaag tagtaattaa accaaaggca attgcagata ttgaaaaagc tggtaaagaa	4140
40	aagcaacagc aaattgataa tagtcttgc tcaacagata atgagaaaga agttgcttta	4200
	caagcattag ctaaagaaaa agaaaaagca cttgcagcta ttgaccaagc tcaaacgaat	4260
45	agtcaaggta atcaagcggc aacaaatggt gtatcagcga taaaatttat tcaacctgaa	4320
	acaaaaattt aaccagcagc acgtgaaaaa atcaatcaaa aagcgaatga attacgtgcg	4380
	caaattaatc aagataaaaga agcgacagca gaagaaagac aagcggcggt agataaaatc	4440
50	aatgatttag ttgctaaagc tatgacaaat atcacgaatg atagaacaaa tcagcaagtt	4500
	aatgactcaa caaatcaagc gcttgacgac attgcattag tgacgcctga ccatattgtt	4560
55	agagcagctg ctagagatgc agttaagcaa caatatgaag ctaaaaagca cggaaatttgag	4620
	caagcggAAC atgcgactga tgaagaaaaa caagttgcctt taaatcaatt agcgaataat	4680
	gaaaaacgtg cattacaaaa catatcaaa gcaatagcga ataatgatgt gaaacgtgtt	4740
60	gaatcaaatg gtattgctac gttaaaaaggc gtagaaaccgc acatttggt taaacctgaa	4800

	gctcaagaag ccataaaagc gagcgcagat aaccaagtag aatctataaa agatacacca	4860
5	catgctacga cagatgaatt agatgaagca aaccaacaaa taaacgacac acttaaacaa	4920
	ggtcaacaag atatagacaa tacgacacaa gatgcagctg tcaatgtatgt tagaaaccaa	4980
	acgattaagg caatcgaca aattaaaccg aaagtttagac gcaaacgtgc agcgttggat	5040
10	aacattgtatg aaagtaataa taatcaactc gatgcaatac gaaatacgct agatacaacg	5100
	caagatgaac gaaatgttgc tattgctgcg ttaaataaaaa ttgttaatgc aattaaaaat	5160
15	gatattgcac aaaacaaaac gaatgcagaa gtggatcaaa ctgaggctga tggtacaac	5220
	aacatcaaag tgattttacc taaagttcaa gttaaaccag cagcgcgtca atctgtcagc	5280
	gcaaaagctg aagctaaaaa tgcacttatt gatcaaagtg atttatctac cgaagaagaa	5340
20	agattagctg ctaaacattt agtagaacaa gcacttaatc aagctattga tcagatcaat	5400
	cacgcagata agactgcgca agttaatcaa aatagtatcg atgctaaaaa tattttca	5460
25	aaaattaaac cagcgacaac agttaaagca acagcattac aacaaattca aaatatcgct	5520
	acaaataaaaa ttaatttaat taaagcaaat aacgaagcga cagatgaaga acaaaatgct	5580
	gcaatagtac aagttaaaaa agagttatt aaagctaaac aacaaattgc tggtgcagtg	5640
30	actaatgctg atgtggcata tttattgcat gatggaaaaa acgaaattcg tgaaatcgaa	5700
	cctgttatta ataaaaaagc aactgcgcga gaacaattaa caacattatt caacgataag	5760
35	aaacaagcaa ttgaagcgaa tgttcaagca acagtagaaag aaagaaaatag tattttagca	5820
	cagttacaaa acatttatga cactgctatt ggacaaattg atcaagatcg tagcaatgca	5880
	caagttgata aaacagcaac attaaatcta caaacaatac atgatttgc cgtacatcct	5940
40	attaaaaagc cagatgctga aaaaacgatt aatgtatgatc ttgcacgtgt tacacattta	6000
	gtgcaaaatt atcgaaaagt aagtgtatcg aataaggctg atgcattaaa agctataact	6060
45	gcattaaaat tacaatgga tgaagaatta aaaacagcac gcactaatgc tgatgttgat	6120
	gcagtttaa aacgatttaa tgttgcatta ggcgatatacg aagcagtaat tactgaaaaa	6180
	gaaaatagct tactgcgcatt tgataacatt gctcaacaaa catatgcgaa attcaaagcg	6240
50	atcgcaacac cagaacaatt agctaaagta aaagcattaa ttgatcaata tgttgcagat	6300
	ggcaatagaa tggttgatga agatgcgaca ttaaatgaca tcaaaaaaaga tacgcactc	6360
55	attattgtatg aaattttatgc aattaaatta cctgctgaag tgataaaaagc gtcaccaaaa	6420
	gtggggcaac ctgtccaaa agtttgtacg cctattaaaa aagaagataa acaagaagtgc	6480
	cgaaaagttg taaaagaact tccaaatact ggttctgaag aaatggattt accattaaaa	6540
60	gaattagcac taattacagg cgacgcattt ttagctagaa gacgttctaa aaaaagaaaaa	6600

gaatcataa 6609

5 <210> 2
 <211> 2189
 <212> PRT
 <213> *Staphylococcus epidermidis*

10 <400> 2

Met Asn Leu Leu Lys Lys Asn Lys Tyr Ser Ile Arg Lys Tyr Lys Val
 1 5 10 15

15 Gly Ile Phe Ser Thr Leu Ile Gly Thr Val Leu Leu Leu Ser Asn Pro
 20 25 30

Asn Gly Ala Gln Ala Leu Thr Thr Asp His Asn Val Gln Gly Gly Ser
 35 40 45

20 Asn Gln Ala Leu Pro Gly Asn Ser Gln Asn Thr Asn Ala Asp Thr Asn
 50 55 60

25 Arg Asp Ile Val Asn Asp Ser Gln Asn Thr Pro Asn Ala His Ala Thr
 65 70 75 80

Asp Asn Thr Ser Thr Asn Gln Ala Leu Thr Asn His Gln Asn Val Asp
 85 90 95

30 Val Ala Asn Gln Val Gly Pro Ala Pro Ile Gln Pro Ser Ala Ser Pro
 100 105 110

Ala Gln Asn Asn Asn Ser Asn Ala Asn Ser Thr Ala Thr Glu Pro
 115 120 125

35 Ala Ala Asn Thr Asn Asn Leu Ala Ser Asn Asn Thr Leu Asn
 130 135 140

40 Val Pro Asn Asn Thr Asp Asn Asn Asp Ser Ala Arg His Leu Thr Leu
 145 150 155 160

Lys Glu Ile Gln Glu Asp Val Arg His Ser Ser Asp Lys Pro Glu Leu
 165 170 175

45 Val Ala Ile Ala Glu Glu Ala Ser Asn Arg Pro Lys Lys Arg Ser Arg
 180 185 190

Arg Ala Ala Pro Thr Asp Pro Asn Ala Thr Pro Ala Asp Pro Thr Ala
 195 200 205

50 Thr Pro Ala Asp Pro Thr Ala Gly Asn Gly Ser Ala Pro Val Ala Ile
 210 215 220

55 Thr Ala Pro Tyr Thr Pro Thr Asp Pro Asn Ala Asn Asn Ile Gly
 225 230 235 240

Gln Asn Ala Pro Asn Glu Val Leu Ser Phe Asp Asp Asn Asn Ile Arg
 245 250 255

60 Pro Ser Thr Asn Arg Ser Val Pro Thr Val Thr Val Val Asp Asn Leu

	260	265	270
	Pro Gly Tyr Thr Leu Ile Asn Gly	Gly Lys Val Gly Val Phe Ser His	
5	275 280	285	
	Ala Met Val Arg Thr Ser Met Phe Asp Ser Gly Asp Ala Lys Asn Tyr		
	290 295	300	
10	Gln Ala Gln Gly Asn Val Ile Ala Leu Gly Arg Ile Arg Gly Asn Asp		
	305 310	315	320
	Thr Asn Asp His Gly Asp Phe Asn Gly Ile Glu Lys Thr Leu Thr Val		
	325 330	335	
15	Asn Pro Asn Ser Glu Leu Ile Phe Glu Phe Asn Thr Met Thr Thr Lys		
	340 345	350	
	Asn Tyr Gln Gly Met Thr Asn Leu Ile Ile Lys Asn Ala Asp Asn Asp		
20	355 360	365	
	Thr Val Ile Gly Glu Lys Val Val Ala Tyr Gly Pro Ile Trp Arg Leu		
	370 375	380	
25	Leu Lys Val Pro Glu Asn Val Ser His Leu Lys Ile Gln Phe Val Pro		
	385 390	395	400
	Lys Asn Asp Ala Ile Thr Asp Ala Arg Gly Ile Tyr Gln Leu Arg Asp		
	405 410	415	
30	Gly Tyr Lys Tyr Tyr Asp Phe Val Asp Ser Ile Gly Leu His Ser Gly		
	420 425	430	
	Ser His Val Tyr Val Glu Arg Arg Thr Met Glu Pro Thr Ala Thr Asn		
35	435 440	445	
	Asn Lys Glu Phe Thr Val Thr Thr Ser Leu Lys Asn Asn Gly Asn Phe		
	450 455	460	
40	Gly Ala Ser Phe Asn Thr Asp Asp Phe Val Tyr Lys Ile Gln Leu Pro		
	465 470	475	480
	Glu Gly Val Glu Tyr Val Asn Asn Ser Leu Thr Lys Asp Phe Pro Ser		
	485 490	495	
45	Gly Asn Ser Gly Val Asp Ile Asn Asp Met Asn Val Thr Tyr Asp Ala		
	500 505	510	
	Ala Asn Arg Ile Ile Thr Ile Lys Ser Thr Gly Gly Thr Gly Asn		
50	515 520	525	
	Ser Pro Ala Arg Leu Met Pro Asp Lys Ile Leu Asp Leu Lys Tyr Lys		
	530 535	540	
55	Leu Arg Val Asn Asn Val Pro Thr Pro Arg Thr Val Thr Phe Asn Asp		
	545 550	555	560
	Thr Leu Thr Tyr Lys Thr Tyr Ser Gln Asp Phe Ile Asn Ser Pro Ala		
	565 570	575	
60	Glu Ser His Thr Val Ser Thr Asn Pro Tyr Thr Ile Asp Ile Ile Met		

	580	585	590
	Asn Lys Asp Ala Leu Gln Ala Glu Val Asp Arg Arg Ile Gln Gln Ala		
	595	600	605
5	Asp Tyr Thr Phe Ala Ser Leu Asp Ile Phe Asn Asp Leu Lys Arg Arg		
	610	615	620
	Ala Gln Thr Ile Leu Asp Glu Asn Arg Asn Asn Val Pro Leu Asn Lys		
10	625	630	635
	Arg Val Ser Gln Ala Asp Ile Asp Ser Leu Ala Asn Gln Met Gln His		
	645	650	655
15	Thr Leu Ile Arg Ser Val Asp Ala Glu Asn Ala Val Asn Arg Lys Val		
	660	665	670
	Asp Asp Met Glu Asp Leu Val Asn Gln Asn Asp Glu Leu Thr Asp Glu		
20	675	680	685
	Glu Lys Gln Ala Ala Ile Gln Val Ile Glu Glu His Lys Asn Glu Ile		
	690	695	700
	Ile Gly Asn Ile Gly Asp Gln Thr Thr Asp Asp Gly Val Thr Arg Ile		
25	705	710	715
	Lys Asp Gln Gly Ile Gln Thr Leu Ser Gly Asp Thr Ala Thr Pro Val		
	725	730	735
30	Val Lys Pro Asn Ala Lys Gln Ala Ile Arg Asp Lys Ala Ala Lys Gln		
	740	745	750
	Arg Glu Ile Ile Asn His Thr Pro Asp Ala Thr Gln Asp Glu Ile Gln		
35	755	760	765
	Asp Ala Leu Asn Gln Leu Thr Thr Asp Glu Thr Asp Ala Ile Asp Asn		
	770	775	780
	Val Thr Asn Ala Thr Thr Asn Ala Asp Val Glu Thr Ala Lys Asn Asn		
40	785	790	795
	Gly Ile Asn Thr Ile Gly Ala Val Ala Pro Gln Val Thr His Lys Gln		
	805	810	815
45	Ala Ala Arg Asp Ala Ile Asn Gln Ala Thr Ala Thr Lys Arg Gln Gln		
	820	825	830
	Ile Asn Ser Asn Arg Glu Ala Thr Gln Glu Glu Lys Asn Ala Ala Leu		
50	835	840	845
	Asn Glu Leu Thr Gln Ala Thr Asn His Ala Leu Glu Gln Ile Asn Gln		
	850	855	860
55	Ala Thr Thr Asn Asp Asp Val Asp Thr Ala Lys Gly Asp Gly Leu Asn		
	865	870	875
	Ala Ile Asn Pro Ile Ala Pro Val Thr Val Val Lys Gln Ala Ala Arg		
	885	890	895
60	Asp Ala Val Ser His Asp Ala Gln Gln His Ile Ala Glu Ile Asn Ala		

	900	905	910
	Asn Pro Asp Ala Thr Gln Glu Glu Arg Gln Ala Ala Ile Glu Lys Val		
	915	920	925
5	Tyr Ala Ala Val Ala Val Ala Asn Thr Asn Ile Leu Asn Ala Asn Thr		
	930	935	940
	Asn Ala Asp Val Glu Gln Val Lys Thr Asn Ala Ile Gln Gly Ile Gln		
10	945	950	955
	Ala Ile Glu Pro Ala Thr Lys Val Lys Thr Asp Ala Lys Asn Ala Ile		
	965	970	975
15	Asp Gln Ser Ala Glu Thr Gln His Asn Ala Ile Phe Asn Asn Asn Asp		
	980	985	990
	Ala Thr Leu Glu Glu Gln Gln Ala Ala Gln Gln Leu Leu Asp Gln Ala		
20	995	1000	1005
	Val Ala Thr Ala Lys Gln Asn Ile Asn Ala Ala Asp Thr Asn Gln		
	1010	1015	1020
25	Glu Val Ala Gln Ala Lys Asp Gln Gly Thr Gln Asn Ile Val Val		
	1025	1030	1035
	Ile Gln Pro Ala Thr Gln Val Lys Thr Asp Ala Arg Asn Ala Val		
	1040	1045	1050
30	Asn Glu Lys Ala Arg Glu Ala Ile Thr Asn Ile Asn Ala Thr Pro		
	1055	1060	1065
	Gly Ala Thr Arg Glu Glu Lys Gln Glu Ala Ile Asn Arg Val Asn		
35	1070	1075	1080
	Thr Leu Lys Asn Arg Ala Leu Asn Asp Ile Gly Val Thr Ser Thr		
	1085	1090	1095
40	Thr Ala Met Val Asn Ser Ile Arg Asp Asp Ala Val Asn Gln Ile		
	1100	1105	1110
	Gly Ala Val Gln Pro His Val Thr Lys Lys Gln Thr Ala Thr Gly		
	1115	1120	1125
45	Val Leu Thr Asp Leu Ala Thr Ala Lys Lys Gln Glu Ile Asn Gln		
	1130	1135	1140
	Asn Thr Asn Ala Thr Thr Glu Glu Lys Gln Val Ala Leu Asn Gln		
50	1145	1150	1155
	Val Asp Gln Asp Leu Ala Thr Ala Ile Asn Asn Ile Asn Gln Ala		
	1160	1165	1170
55	Asp Thr Asn Ala Glu Val Asp Gln Ala Gln Gln Leu Gly Thr Lys		
	1175	1180	1185
	Ala Ile Asn Ala Ile Gln Pro Asn Ile Val Lys Lys Pro Ala Ala		
	1190	1195	1200
60	Leu Ala Gln Thr Asn Gln His Tyr Ser Ala Lys Leu Val Glu Ile		

	1205	1210	1215
	Asn Ala Thr Pro Asp Ala Thr	Asp Asp Glu Lys Asn	Ala Ala Ile
	1220	1225	1230
5	Asn Thr Leu Asn Gln Asp Arg	Gln Gln Ala Ile Glu	Ser Ile Lys
	1235	1240	1245
10	Gln Ala Asn Thr Asn Ala Glu	Val Asp Gln Ala Ala	Thr Val Ala
	1250	1255	1260
	Glu Asn Asn Ile Asp Ala Val	Gln Val Asp Val Val	Lys Lys Gln
	1265	1270	1275
15	Ala Ala Arg Asp Lys Ile Thr	Ala Glu Val Ala Lys	Arg Ile Glu
	1280	1285	1290
	Ala Val Lys Gln Thr Pro Asn	Ala Thr Asp Glu Glu	Lys Gln Ala
20	1295	1300	1305
	Ala Val Asn Gln Ile Asn Gln	Leu Lys Asp Gln Ala	Phe Asn Gln
	1310	1315	1320
25	Ile Asn Gln Asn Gln Thr Asn	Asp Gln Val Asp Ala	Thr Thr Asn
	1325	1330	1335
	Gln Ala Ile Asn Ala Ile Asp	Asn Val Glu Ala Glu	Val Val Ile
	1340	1345	1350
30	Lys Pro Lys Ala Ile Ala Asp	Ile Glu Lys Ala Val	Lys Glu Lys
	1355	1360	1365
	Gln Gln Gln Ile Asp Asn Ser	Leu Asp Ser Thr Asp	Asn Glu Lys
35	1370	1375	1380
	Glu Val Ala Leu Gln Ala Leu	Ala Lys Glu Lys Glu	Lys Ala Leu
	1385	1390	1395
40	Ala Ala Ile Asp Gln Ala Gln	Thr Asn Ser Gln Val	Asn Gln Ala
	1400	1405	1410
	Ala Thr Asn Gly Val Ser Ala	Ile Lys Ile Ile Gln	Pro Glu Thr
	1415	1420	1425
45	Lys Ile Lys Pro Ala Ala Arg	Glu Lys Ile Asn Gln	Lys Ala Asn
	1430	1435	1440
	Glu Leu Arg Ala Gln Ile Asn	Gln Asp Lys Glu Ala	Thr Ala Glu
50	1445	1450	1455
	Glu Arg Gln Ala Ala Leu Asp	Lys Ile Asn Asp Leu	Val Ala Lys
	1460	1465	1470
55	Ala Met Thr Asn Ile Thr Asn	Asp Arg Thr Asn Gln	Gln Val Asn
	1475	1480	1485
	Asp Ser Thr Asn Gln Ala Leu	Asp Asp Ile Ala Leu	Val Thr Pro
	1490	1495	1500
60	Asp His Ile Val Arg Ala Ala	Ala Arg Asp Ala Val	Lys Gln Gln

	1505	1510	1515
	Tyr Glu Ala Lys Lys His Glu	Ile Glu Gln Ala Glu	His Ala Thr
5	1520 1525	1525	1530
	Asp Glu Glu Lys Gln Val Ala	Leu Asn Gln Leu Ala	Asn Asn Glu
	1535 1540	1540	1545
10	Lys Arg Ala Leu Gln Asn Ile	Asn Gln Ala Ile Ala	Asn Asn Asp
	1550 1555	1555	1560
	Val Lys Arg Val Glu Ser Asn	Gly Ile Ala Thr Leu	Lys Gly Val
	1565 1570	1570	1575
15	Glu Pro His Ile Val Val Lys	Pro Glu Ala Gln Glu	Ala Ile Lys
	1580 1585	1585	1590
	Ala Ser Ala Asp Asn Gln Val	Glu Ser Ile Lys Asp	Thr Pro His
20	1595 1600	1600	1605
	Ala Thr Thr Asp Glu Leu Asp	Glu Ala Asn Gln Gln	Ile Asn Asp
	1610 1615	1615	1620
25	Thr Leu Lys Gln Gly Gln Gln	Asp Ile Asp Asn Thr	Thr Gln Asp
	1625 1630	1630	1635
	Ala Ala Val Asn Asp Val Arg	Asn Gln Thr Ile Lys	Ala Ile Glu
	1640 1645	1645	1650
30	Gln Ile Lys Pro Lys Val Arg	Arg Lys Arg Ala Ala	Leu Asp Asn
	1655 1660	1660	1665
	Ile Asp Glu Ser Asn Asn Asn	Gln Leu Asp Ala Ile	Arg Asn Thr
35	1670 1675	1675	1680
	Leu Asp Thr Thr Gln Asp Glu	Arg Asn Val Ala Ile	Ala Ala Leu
	1685 1690	1690	1695
40	Asn Lys Ile Val Asn Ala Ile	Lys Asn Asp Ile Ala	Gln Asn Lys
	1700 1705	1705	1710
	Thr Asn Ala Glu Val Asp Gln	Thr Glu Ala Asp Gly	Asn Asn Asn
	1715 1720	1720	1725
45	Ile Lys Val Ile Leu Pro Lys	Val Gln Val Lys Pro	Ala Ala Arg
	1730 1735	1735	1740
	Gln Ser Val Ser Ala Lys Ala	Glu Ala Gln Asn Ala	Leu Ile Asp
50	1745 1750	1750	1755
	Gln Ser Asp Leu Ser Thr Glu	Glu Glu Arg Leu Ala	Ala Lys His
	1760 1765	1765	1770
55	Leu Val Glu Gln Ala Leu Asn	Gln Ala Ile Asp Gln	Ile Asn His
	1775 1780	1780	1785
	Ala Asp Lys Thr Ala Gln Val	Asn Gln Asn Ser Ile	Asp Ala Gln
	1790 1795	1795	1800
60	Asn Ile Ile Ser Lys Ile Lys	Pro Ala Thr Thr Val	Lys Ala Thr

	1805	1810	1815
	Ala Leu Gln Gln Ile Gln Asn	Ile Ala Thr Asn Lys	Ile Asn Leu
5	1820	1825	1830
	Ile Lys Ala Asn Asn Glu Ala	Thr Asp Glu Glu Gln	Asn Ala Ala
	1835	1840	1845
10	Ile Val Gln Val Glu Lys Glu	Leu Ile Lys Ala Lys	Gln Gln Ile
	1850	1855	1860
	Ala Gly Ala Val Thr Asn Ala	Asp Val Ala Tyr Leu	Leu His Asp
	1865	1870	1875
15	Gly Lys Asn Glu Ile Arg Glu	Ile Glu Pro Val Ile	Asn Lys Lys
	1880	1885	1890
20	Ala Thr Ala Arg Glu Gln Leu	Thr Thr Leu Phe Asn	Asp Lys Lys
	1895	1900	1905
	Gln Ala Ile Glu Ala Asn Val	Gln Ala Thr Val Glu	Glu Arg Asn
	1910	1915	1920
25	Ser Ile Leu Ala Gln Leu Gln	Asn Ile Tyr Asp Thr	Ala Ile Gly
	1925	1930	1935
	Gln Ile Asp Gln Asp Arg Ser	Asn Ala Gln Val Asp	Lys Thr Ala
	1940	1945	1950
30	Thr Leu Asn Leu Gln Thr Ile	His Asp Leu Asp Val	His Pro Ile
	1955	1960	1965
35	Lys Lys Pro Asp Ala Glu Lys	Thr Ile Asn Asp Asp	Leu Ala Arg
	1970	1975	1980
	Val Thr His Leu Val Gln Asn	Tyr Arg Lys Val Ser	Asp Arg Asn
	1985	1990	1995
40	Lys Ala Asp Ala Leu Lys Ala	Ile Thr Ala Leu Lys	Leu Gln Met
	2000	2005	2010
	Asp Glu Glu Leu Lys Thr Ala	Arg Thr Asn Ala Asp	Val Asp Ala
	2015	2020	2025
45	Val Leu Lys Arg Phe Asn Val	Ala Leu Gly Asp Ile	Glu Ala Val
	2030	2035	2040
50	Ile Thr Glu Lys Glu Asn Ser	Leu Leu Arg Ile Asp	Asn Ile Ala
	2045	2050	2055
	Gln Gln Thr Tyr Ala Lys Phe	Lys Ala Ile Ala Thr	Pro Glu Gln
	2060	2065	2070
55	Leu Ala Lys Val Lys Ala Leu	Ile Asp Gln Tyr Val	Ala Asp Gly
	2075	2080	2085
	Asn Arg Met Val Asp Glu Asp	Ala Thr Leu Asn Asp	Ile Lys Lys
	2090	2095	2100
60	Asp Thr Gln Leu Ile Ile Asp	Glu Ile Leu Ala Ile	Lys Leu Pro

	2105	2110	2115	
	Ala Glu Val Ile Lys Ala Ser	Pro Lys Val Gly Gln	Pro Ala Pro	
5	2120 2125	2125	2130	
	Lys Val Cys Thr Pro Ile Lys	Lys Glu Asp Lys Gln	Glu Val Arg	
	2135 2140	2140	2145	
10	Lys Val Val Lys Glu Leu Pro	Asn Thr Gly Ser Glu	Glu Met Asp	
	2150 2155	2155	2160	
	Leu Pro Leu Lys Glu Leu Ala	Leu Ile Thr Gly Ala	Ala Leu Leu	
	2165 2170	2170	2175	
15	Ala Arg Arg Arg Ser Lys	Lys Glu Lys Glu Ser		
	2180 2185	2185		
	<210> 3			
20	<211> 6852			
	<212> DNA			
	<213> Staphylococcus epidermidis			
	<400> 3			
25	tctaatgaat gtaaaagataa tacaaggagt tattacatga gtaaaaagaca gaaagcattt		60	
	catgacagct tagcaaacga aaaaacaaga gtaagacttt ataaatctgg aaaaaattgg		120	
	gtaaaatccg gaattaaaga aatagaaatg ttcaaaatta tggggctacc atttattagt		180	
30	catagtttag tgagtcaaga taatcaaagc attagtaaaa aaatgacggg atacggactg		240	
	aaaactacgg cggttattgg tggtgcattc acggtaaata tggtgcatga ccagcaagct		300	
	tttgccgctt ctgatgcacc attaacttct gaattaaaca cacaaagtga aacagttagt		360	
35	aatcaaaact caacgacaat cgaagcatca acatcaacag ccgattccac aagtgtaacg		420	
	aaaaatagta gttcggtaca aacatcaaatt agtgacacag tctcaagtga aaagtctgaa		480	
40	aaggtcactt cgacaactaa tagtacaagc aatcaacaag agaaaattgac atctacatca		540	
	gaatcaacat cctcaaagaa tactacatca agttctgata ctaaatctgt agcttcaact		600	
	tcaagtacag aacaaccaat taatacatca acaaataaaa gtactgcate aaataacact		660	
45	tcacaaagca caacgccatc ttccgtcaac ttaaacaaaa ctagcacaac gtcaactagc		720	
	accgcaccag taaaacttcg aactttcagt cgcttagcta tgtcaacatt tgcgtcagca		780	
50	gchgacacaa ccgcagtaac tgctaataca attacagttt ataaaagataa cttaaaacaa		840	
	tatatgacaa cgtcaggtaa tgctacccat gatcaaagta ccggatttgt gacgttaaca		900	
	caggatgcat acagccaaaa aggtgctatt acattaggaa cacgtattga ctctaataag		960	
55	agttttcatt ttctggaaa agtaaatttta ggtaacaaat atgaaggcgt tggaaatgg		1020	
	ggagatggta tcgggtttgc ctttcacca ggtgtattag gtgaaacagg gttaaacgg		1080	
60	gccgcagtag gtattggtgg cttaagtaac gcattggct tcaaattgga tacgtatcac		1140	

	aatacatcta aaccaaattc agctgcaaag gcgaatgctg acccatctaa tgttagctgg	1200
5	ggaggtgcgt ttggtgccatt tgtaacaaca gatagttatg gtgttgcgac aacgtataca	1260
	tcaaggtaaa cagctgataa tgctgcaaag ttaaatgttc aacctacaaa taacacgttc	1320
	caagattttg atattaacta taatggtgat acaaaggta tgactgtcaa atatgcaggt	1380
10	caaacatgga cacgtaatat ttccagattgg attgcgaaaa gtggtacgac caactttca	1440
	ttatcaatga cagcctcaac aggtggcgcg acaaatttac aacaagtaca atttggaaaca	1500
15	ttcgaatata cagagtctgc tgttacacaa gtgagatacg ttgatgtaac aacaggtaaa	1560
	gatattttc caccaaaaac atattcagga aatgttgatc aagtcgtgac aatcgataat	1620
	cagcaatctg cattgactgc taaaggatata aactacacgt ccgtcgatag ttcatatgog	1680
20	tcaacttata atgatacataaa taaaactgta aaaatgacga atgctggaca atcagtgaca	1740
	tattatTTt ctgatgtaaa agcaccaact gtaactgttag gcaatcaaac catagaagtg	1800
25	ggtaaaaacaa tgaatcctat tgtattgact acaacggata atggtaactgg gactgtgaca	1860.
	aatacagtta caggattacc aagcggatta agttacgata gtgcaacgaa ttcaatcatt	1920
	gggacaccaa caaaaattgg tcaatcaaca gtgacagttg tgtctactga ccaagcaaat	1980
30	aacaatcga cgacaacttt tacaataat gttgtggata cgacagcacc aacagtgaca	2040
	ccaataggag atcaatcatc agaagtgtat tcaccaatat ccccgattaa aattgctacg	2100
35	caagataaca gtggaaatgc ggtgacgaat acagtgactg gattgccatc cggactaaca	2160
	tttgatagta caaataatac tattatgtt acaccaacaa acattggtaac aagtactata	2220
	tcaatcgTTt ctacagatgc gagcggtaac aaaacgacga caactttaa atatgaagta	2280
40	acaagaaata gcatgagtga ttccgtatca acatcaggaa gtacacaaca atctcaaagt	2340
	gtgtcaacaa gtaaagctga ctcacaaagt gcatcaacga gtacatcagg atcgattgtg	2400
45	gtatctacat cagctagttac ctcgaaatcg acaagtgtaa gcctatctga ttctgtgagt	2460
	gcatctaagt cattaagcac atctgaaagt aatagtgtat caagctcaac aagcacaagt	2520
	tttagtgaatt cacaaggatgt atcatcaagc atgtcggatt cagctagtaa atcaacatca	2580
50	ttaagcgatt ctatttcaaa ctctagcagt actgaaaaat ccgaaagtct atcaacaagt	2640
	acatctgatt cattgcgtac atcaacatca ctcagtact cattaagttat gaggatcatca	2700
55	ggaagcttgt ctaagtcaca aagcttatca acgagttat cagggtcgtc tagtacatca	2760
	gcatcattaa gtgacagttac atcgaatgca attagttat cAACATCATT gagcggatca	2820
	gctagcacct cggtactctat cagttttca aatagcatag ccaactctca aagtgcgtca	2880
60	acaagcaaat cagattcaca aagtacatca atatcattaa gtacaagtga ttcaaaatcg	2940

	atgagtagacat cagaatcatt gagcgattcg acgagcacaa gtggttctgt ttctggatca	3000
5	ctaaggcatag cagcatcaca aagtgtctca acaagtacat cagactcgat gaggtaattca	3060
	gagatagtaa gtgactctat cagtacaagt gggtcattat ctgcatacaga cagtaaatca	3120
	atgtccgtaa gttagttcaat gaggcactt cagtcaggta gtacatcaga atcattaagt	3180
10	gattcacaaa gtacatctga ttctgtat aagtcattat cacaaggatc tagtcaatca	3240
	ggttcaacaa gtacatcaac gtcgacaagt gcttcagttac gtacttcgga atcacaaggat	3300
15	acgtctgggtt caatgagtgc aagtcaatcc gattcaatga gcataatcaac gtcgtttagt	3360
	gattcaacga gtgatagcaa atcagcatca actgcataa gtgaatcaat atcacaaggat	3420
	gcttctacga gcacatctgg ttcggtaagt acttcgacat cgtaaggatc aagtaattca	3480
20	gaacgtacat caacatctat gaggattcc acaagcttaa gtacatcaga gtctgattca	3540
	ataaggtaat caacgtcaac gagcgacttctc ataaggtaag caatatctgc ttccagagac	3600
25	acgtttatata cattaagtga atcaaatagt actagcgatt cagaatcaca aagtgcatct	3660
	gccttttaa gtgaatcatt aagtggaaatgt acgtctgaat caacatcaga gtcagtggat	3720
	agttcgacaa gtgagagttac gtcattatca gacagtacat cagaatctgg tagcacatca	3780
30	acatcattaa gtaattcaac aagtggtagt acgtccattt caacatcgac aagtatcagt	3840
	gaatcaacgt caacgtttaa gagcgaggt gttcaacat cactgagttat gtcaacgaggt	3900
35	acaaggttgt ctgactctac aagtttgtca acatcattaa gtgattccac aagtggatgt	3960
	aagtctgatt cattaagtac atcaatgtcg acaaggattt caatcgtac aagtaatct	4020
	gattccattaa gtacatccac atcattaagt ggttctacaa gtgaaaggatca atccgactca	4080
40	acatcatcaa gtgaaaggtaa atccgattca acatcaatga gcataaggat gtctcaatca	4140
	acatcaggaa gtacaaggatc gtcaacgaggt acaaggttgt ctgactcaac gagtagatca	4200
45	ttgtcaactaa gtgcctcaat gaatcaaaggc ggagtagact ccaaactcagc aagccaaagt	4260
	gcctcaaaact caacaaggatc aagcacgagc gaatccgatt cacaaaggcac atcatcatat	4320
	acaaggatcgtt caacaaggcca aagtggatcc acatcgacat caacgtcaact aagcgattca	4380
50	acaaggatataat ctaaaaggatc gaggtaatca ggttcggtaa gcacatcagc gtcattaaatgt	4440
	ggttcagaga gtgaatctga ttccacaaatgt atctcaacaa gtgcaaggatca gtcaacatca	4500
55	gaaaggatgcgtt caacatcact cagtgactca acaaggatcaca gtaactcagg atcagcaagt	4560
	acgtcaacat cgctcagtaa ctcagcaagc gcaaggatcaat ccgatttgtc gtcaacatct	4620
	ttaaggatgattt caacatctgc gtcaatgcaa agcaggatcaat ccgattcaca aagcacatca	4680
60	gcacatcattaa gtgattcgct aagtacatca acttcaaaacc gcatgtcgac cattgcaagt	4740

	ttatctacat cggttaagtac atcagagtct ggctcaacat cagaaagtac aagtgaatcc	4800
5	gattcaacat caacatcatt aagcgattca caaaggcacat caagaagtac aagtgcattca	4860
	ggatcagcaa gtacatcaac atcaacaagt gactctcgta gtacatcagc ttcaactagt	4920
	acttcgatgc gtacaagtac tagtgattca caaagtatgt cgcttcgac aagtacatca	4980
10	acaagtatga gtgattcaac gtcattatct gatagtgtt gtgattcaac atcagactca	5040
	acaagtgcga gtacatctgg ttcgatgagt gtgtctatat cgttaagtga ttgcacaagt	5100
15	acatcaacat cggctagtga agtaatgagc gcaagcataat ctgattcaca aagtatgtca	5160
	aatctgtaa atgattcaga aagtgttaatgtaattt ctgaaagtga ctctaaatcg	5220
	atgagtggct caacaagtgt cagtgattct ggctcattga gcgtctcaac gtcattaaga	5280
20	aaatcagaaa gtgttaagcga gtcaagttca ttgagttgct cacaatcgat gagcgattca	5340
	gtaaggcacaa gcgattcgatc atcattaatgt gtatcgacgt cactaagaag ttcatcaga	5400
25	gtgagtgaaat ctgattcatt aagtgttca aaatcaacaa gtggttcgac ttcaacaagt	5460
	acatctggtt cattgagttac ctcaacatca ttaagtggtt cagaaagcgt aagcgagtct	5520
	acctcgctaa gtgattcaat atcaatgagt gattctacta gtacaagtga ctccgactca	5580
30	ttaagtggat caatatcttt aagtggttcc acaagtctta gcacttcgga ttcatcaatgt	5640
	gattcaaaat cattgagtag ctgcacaaatgt atgagtggtt cagaatcaac gtcaacaagt	5700
35	gtgagcgatt cgcacgtcaag ctcaacaaatgt aatagtcaat ttgactctat gagcatcgt	5760
	gcatcagaaa gcgactcaat gtctacaatgt gattcgtcta gcatcagtggtt atcaaattca	5820
	acgagttacat cactttcaac atctgactca atgagcgaa gctgtatcgt ttcaacatcg	5880
40	acaagttaa gtgactcaat atcaggttca acaagtgtaa gtgactcgag ctcaacaacgc	5940
	acatctacat cattaagtga ttcaatgtca caaaggccagt caacaagtac aagtgcattct	6000
45	ggttccttaa gtacatcgat atcaacatca atgtcaatgtca gtgcttagtac atcgtcatca	6060
	caaaggcacat cgggtgtcgac atcattatca acatcagaca gtatcgtga ttctacttca	6120
	ataagtatca gtggttcaca aagtacagta gaatcagaat ctacaagtga ttcaacttct	6180
50	atcagtgact cagaatcattt gaggatcatca gattcagact cgacatcgac aagtacatcg	6240
	gactcaacaa gtggttcaac ttcaacaacgc atatctgaat cattaagtac gtctgggttca	6300
55	ggttcaacga gcgttatctga ctcaacatca atgagtgaaat ctaattcatc gagtgtttca	6360
	atgtcacaag acaaattccga ctcaacatca attagtgact cagaatcgt gtcaacaacgc	6420
	acatcaacgt cattgagcac atccgattcg acaaggcacat ccgaatcact gagtacatct	6480
60	atgtctggtt cacaaggcat ttctgactca acatcaacaa gtatgtccgg ctcaacaagt	6540

	acatctgaat ctaactcaat gcattccgtca gactcaatga gtatgcata tactcacagc	6600
5	acgaggcacat ctcgcttatac aagtgaagca acaacgagca cgagtgaatc tcagtctaca	6660
	ttaagtgcaa catctgaagt gactaaacat aatggcacac cagcacaaag tgaaaaaaaga	6720
	ttgccagata caggtgactc aataaaacaa aatggattac taggtggcgt tatgacatta	6780
10	ttagttggtt taggttaat gaagagaaaag aaaaagaaaag atgaaaatga tcaagatgat	6840
	tctcaagcat aa	6852
15	<210> 4 <211> 2283 <212> PRT <213> <i>Staphylococcus epidermidis</i>	
20	<400> 4	
	Ser Asn Glu Cys Lys Asp Asn Thr Arg Ser Tyr Tyr Met Ser Lys Arg	
	1 5 10 15	
25	Gln Lys Ala Phe His Asp Ser Leu Ala Asn Glu Lys Thr Arg Val Arg	
	20 25 30	
	Leu Tyr Lys Ser Gly Lys Asn Trp Val Lys Ser Gly Ile Lys Glu Ile	
30	35 40 45	
	Glu Met Phe Lys Ile Met Gly Leu Pro Phe Ile Ser His Ser Leu Val	
	50 55 60	
35	Ser Gln Asp Asn Gln Ser Ile Ser Lys Lys Met Thr Gly Tyr Gly Leu	
	65 70 75 80	
	Lys Thr Thr Ala Val Ile Gly Gly Ala Phe Thr Val Asn Met Leu His	
	85 90 95	
40.	Asp Gln Gln Ala Phe Ala Ala Ser Asp Ala Pro Leu Thr Ser Glu Leu	
	100 105 110	
	Asn Thr Gln Ser Glu Thr Val Gly Asn Gln Asn Ser Thr Thr Ile Glu	
45	115 120 125	
	Ala Ser Thr Ser Thr Ala Asp Ser Thr Ser Val Thr Lys Asn Ser Ser	
	130 135 140	
50	Ser Val Gln Thr Ser Asn Ser Asp Thr Val Ser Ser Glu Lys Ser Glu	
	145 150 155 160	
	Lys Val Thr Ser Thr Asn Ser Thr Ser Asn Gln Gln Glu Lys Leu	
	165 170 175	
55	Thr Ser Thr Ser Glu Ser Thr Ser Ser Lys Asn Thr Thr Ser Ser Ser	
	180 185 190	
	Asp Thr Lys Ser Val Ala Ser Thr Ser Ser Thr Glu Gln Pro Ile Asn	
60	195 200 205	

Thr Ser Thr Asn Gln Ser Thr Ala Ser Asn Asn Thr Ser Gln Ser Thr
 210 215 220
 5 Thr Pro Ser Ser Val Asn Leu Asn Lys Thr Ser Thr Thr Ser Thr Ser
 225 230 235 240
 Thr Ala Pro Val Lys Leu Arg Thr Phe Ser Arg Leu Ala Met Ser Thr
 245 250 255
 10 Phe Ala Ser Ala Ala Thr Thr Thr Ala Val Thr Ala Asn Thr Ile Thr
 260 265 270
 Val Asn Lys Asp Asn Leu Lys Gln Tyr Met Thr Thr Ser Gly Asn Ala
 15 275 280 285
 Thr Tyr Asp Gln Ser Thr Gly Ile Val Thr Leu Thr Gln Asp Ala Tyr
 290 295 300
 20 Ser Gln Lys Gly Ala Ile Thr Leu Gly Thr Arg Ile Asp Ser Asn Lys
 305 310 315 320
 Ser Phe His Phe Ser Gly Lys Val Asn Leu Gly Asn Lys Tyr Glu Gly
 325 330 335
 25 His Gly Asn Gly Gly Asp Gly Ile Gly Phe Ala Phe Ser Pro Gly Val
 340 345 350
 Leu Gly Glu Thr Gly Leu Asn Gly Ala Ala Val Gly Ile Gly Gly Leu
 30 355 360 365
 Ser Asn Ala Phe Gly Phe Lys Leu Asp Thr Tyr His Asn Thr Ser Lys
 370 375 380
 35 Pro Asn Ser Ala Ala Lys Ala Asn Ala Asp Pro Ser Asn Val Ala Gly
 385 390 395 400
 Gly Gly Ala Phe Gly Ala Phe Val Thr Thr Asp Ser Tyr Gly Val Ala
 405 410 415
 40 Thr Thr Tyr Thr Ser Ser Thr Ala Asp Asn Ala Ala Lys Leu Asn
 420 425 430
 Val Gln Pro Thr Asn Asn Thr Phe Gln Asp Phe Asp Ile Asn Tyr Asn
 435 440 445
 45 Gly Asp Thr Lys Val Met Thr Val Lys Tyr Ala Gly Gln Thr Trp Thr
 450 455 460
 Arg Asn Ile Ser Asp Trp Ile Ala Lys Ser Gly Thr Thr Asn Phe Ser
 50 465 470 475 480
 Leu Ser Met Thr Ala Ser Thr Gly Gly Ala Thr Asn Leu Gln Gln Val
 485 490 495
 55 Gln Phe Gly Thr Phe Glu Tyr Thr Glu Ser Ala Val Thr Gln Val Arg
 500 505 510
 Tyr Val Asp Val Thr Thr Gly Lys Asp Ile Ile Pro Pro Lys Thr Tyr
 515 520 525
 60

Ser Gly Asn Val Asp Gln Val Val Thr Ile Asp Asn Gln Gln Ser Ala
 530 535 540
 5 Leu Thr Ala Lys Gly Tyr Asn Tyr Thr Ser Val Asp Ser Ser Tyr Ala
 545 550 555 560
 Ser Thr Tyr Asn Asp Thr Asn Lys Thr Val Lys Met Thr Asn Ala Gly
 565 570 575
 10 Gln Ser Val Thr Tyr Phe Thr Asp Val Lys Ala Pro Thr Val Thr
 580 585 590
 Val Gly Asn Gln Thr Ile Glu Val Gly Lys Thr Met Asn Pro Ile Val
 595 600 605
 15 Leu Thr Thr Thr Asp Asn Gly Thr Gly Thr Val Thr Asn Thr Val Thr
 610 615 620
 20 Gly Leu Pro Ser Gly Leu Ser Tyr Asp Ser Ala Thr Asn Ser Ile Ile
 625 630 635 640
 Gly Thr Pro Thr Lys Ile Gly Gln Ser Thr Val Thr Val Val Ser Thr
 645 650 655
 25 Asp Gln Ala Asn Asn Lys Ser Thr Thr Phe Thr Ile Asn Val Val
 660 665 670
 Asp Thr Thr Ala Pro Thr Val Thr Pro Ile Gly Asp Gln Ser Ser Glu
 675 680 685
 30 Val Tyr Ser Pro Ile Ser Pro Ile Lys Ile Ala Thr Gln Asp Asn Ser
 690 695 700
 Gly Asn Ala Val Thr Asn Thr Val Thr Gly Leu Pro Ser Gly Leu Thr
 705 710 715 720
 Phe Asp Ser Thr Asn Asn Thr Ile Ser Gly Thr Pro Thr Asn Ile Gly
 725 730 735
 40 Thr Ser Thr Ile Ser Ile Val Ser Thr Asp Ala Ser Gly Asn Lys Thr
 740 745 750
 Thr Thr Thr Phe Lys Tyr Glu Val Thr Arg Asn Ser Met Ser Asp Ser
 755 760 765
 45 Val Ser Thr Ser Gly Ser Thr Gln Gln Ser Gln Ser Val Ser Thr Ser
 770 775 780
 50 Lys Ala Asp Ser Gln Ser Ala Ser Thr Ser Thr Ser Gly Ser Ile Val
 785 790 795 800
 Val Ser Thr Ser Ala Ser Thr Ser Lys Ser Thr Ser Val Ser Leu Ser
 805 810 815
 55 Asp Ser Val Ser Ala Ser Lys Ser Leu Ser Thr Ser Glu Ser Asn Ser
 820 825 830
 Val Ser Ser Ser Thr Ser Thr Ser Leu Val Asn Ser Gln Ser Val Ser
 835 840 845
 60

Ser Ser Met Ser Asp Ser Ala Ser Lys Ser Thr Ser Leu Ser Asp Ser
 850 855 860
 Ile Ser Asn Ser Ser Ser Thr Glu Lys Ser Glu Ser Leu Ser Thr Ser
 5 865 870 875 880
 Thr Ser Asp Ser Leu Arg Thr Ser Thr Ser Leu Ser Asp Ser Leu Ser
 885 890 895
 10 Met Ser Thr Ser Gly Ser Leu Ser Lys Ser Gln Ser Leu Ser Thr Ser
 900 905 910
 Ile Ser Gly Ser Ser Ser Thr Ser Ala Ser Leu Ser Asp Ser Thr Ser
 915 920 925
 15 Asn Ala Ile Ser Thr Ser Thr Ser Leu Ser Glu Ser Ala Ser Thr Ser
 930 935 940
 Asp Ser Ile Ser Ile Ser Asn Ser Ile Ala Asn Ser Gln Ser Ala Ser
 20 945 950 955 960
 Thr Ser Lys Ser Asp Ser Gln Ser Thr Ser Ile Ser Leu Ser Thr Ser
 965 970 975
 25 Asp Ser Lys Ser Met Ser Thr Ser Glu Ser Leu Ser Asp Ser Thr Ser
 980 985 990
 Thr Ser Gly Ser Val Ser Gly Ser Leu Ser Ile Ala Ala Ser Gln Ser
 995 1000 1005
 30 Val Ser Thr Ser Thr Ser Asp Ser Met Ser Thr Ser Glu Ile Val
 1010 1015 1020
 Ser Asp Ser Ile Ser Thr Ser Gly Ser Leu Ser Ala Ser Asp Ser
 35 1025 1030 1035
 Lys Ser Met Ser Val Ser Ser Ser Met Ser Thr Ser Gln Ser Gly
 1040 1045 1050
 40 Ser Thr Ser Glu Ser Leu Ser Asp Ser Gln Ser Thr Ser Asp Ser
 1055 1060 1065
 Asp Ser Lys Ser Leu Ser Gln Ser Thr Ser Gln Ser Gly Ser Thr
 45 1070 1075 1080
 Ser Thr Ser Thr Ser Thr Ser Ala Ser Val Arg Thr Ser Glu Ser
 1085 1090 1095
 50 Gln Ser Thr Ser Gly Ser Met Ser Ala Ser Gln Ser Asp Ser Met
 1100 1105 1110
 Ser Ile Ser Thr Ser Phe Ser Asp Ser Thr Ser Asp Ser Lys Ser
 1115 1120 1125
 55 Ala Ser Thr Ala Ser Ser Glu Ser Ile Ser Gln Ser Ala Ser Thr
 1130 1135 1140
 Ser Thr Ser Gly Ser Val Ser Thr Ser Thr Ser Leu Ser Thr Ser
 60 1145 1150 1155

	Asn Ser Glu Arg Thr Ser Thr	Ser Met Ser Asp Ser	Thr Ser Leu
	1160	1165	1170
5	Ser Thr Ser Glu Ser Asp Ser	Ile Ser Glu Ser	Thr Ser Thr Ser
	1175	1180	1185
	Asp Ser Ile Ser Glu Ala Ile	Ser Ala Ser Glu Ser	Thr Phe Ile
	1190	1195	1200
10	Ser Leu Ser Glu Ser Asn Ser	Thr Ser Asp Ser Glu	Ser Gln Ser
	1205	1210	1215
	Ala Ser Ala Phe Leu Ser Glu	Ser Leu Ser Glu Ser	Thr Ser Glu
	1220	1225	1230
15	Ser Thr Ser Glu Ser Val Ser	Ser Ser Thr Ser Glu	Ser Thr Ser
	1235	1240	1245
20	Leu Ser Asp Ser Thr Ser Glu	Ser Gly Ser Thr Ser	Thr Ser Leu
	1250	1255	1260
	Ser Asn Ser Thr Ser Gly Ser	Thr Ser Ile Ser Thr	Ser Thr Ser
	1265	1270	1275
25	Ile Ser Glu Ser Thr Ser Thr	Phe Lys Ser Glu Ser	Val Ser Thr
	1280	1285	1290
	Ser Leu Ser Met Ser Thr Ser	Thr Ser Leu Ser Asp	Ser Thr Ser
	1295	1300	1305
30	Leu Ser Thr Ser Leu Ser Asp	Ser Thr Ser Asp Ser	Lys Ser Asp
	1310	1315	1320
35	Ser Leu Ser Thr Ser Met Ser	Thr Ser Asp Ser Ile	Ser Thr Ser
	1325	1330	1335
	Lys Ser Asp Ser Ile Ser Thr	Ser Thr Ser Leu Ser	Gly Ser Thr
	1340	1345	1350
40	Ser Glu Ser Glu Ser Asp Ser	Thr Ser Ser Ser Glu	Ser Lys Ser
	1355	1360	1365
	Asp Ser Thr Ser Met Ser Ile	Ser Met Ser Gln Ser	Thr Ser Gly
	1370	1375	1380
45	Ser Thr Ser Thr Ser Thr Ser	Thr Ser Leu Ser Asp	Ser Thr Ser
	1385	1390	1395
50	Thr Ser Leu Ser Leu Ser Ala	Ser Met Asn Gln Ser	Gly Val Asp
	1400	1405	1410
	Ser Asn Ser Ala Ser Gln Ser	Ala Ser Asn Ser Thr	Ser Thr Ser
	1415	1420	1425
55	Thr Ser Glu Ser Asp Ser Gln	Ser Thr Ser Ser Tyr	Thr Ser Gln
	1430	1435	1440
60	Ser Thr Ser Gln Ser Glu Ser	Thr Ser Thr Ser Thr	Ser Leu Ser
	1445	1450	1455

	Asp Ser Thr Ser Ile Ser Lys	Ser Thr Ser Gln Ser Gly Ser Val	
	1460	1465	1470
5	Ser Thr Ser Ala Ser Leu Ser Gly Ser Glu Ser Glu Ser Asp Ser		
	1475	1480	1485
	Gln Ser Ile Ser Thr Ser Ala Ser Glu Ser Thr Ser Glu Ser Ala		
	1490	1495	1500
10	Ser Thr Ser Leu Ser Asp Ser Thr Ser Thr Ser Asn Ser Gly Ser		
	1505	1510	1515
	Ala Ser Thr Ser Thr Ser Leu Ser Asn Ser Ala Ser Ala Ser Glu		
	1520	1525	1530
15	Ser Asp Leu Ser Ser Thr Ser Leu Ser Asp Ser Thr Ser Ala Ser		
	1535	1540	1545
20	Met Gln Ser Ser Glu Ser Asp Ser Gln Ser Thr Ser Ala Ser Leu		
	1550	1555	1560
	Ser Asp Ser Leu Ser Thr Ser Thr Ser Asn Arg Met Ser Thr Ile		
	1565	1570	1575
25	Ala Ser Leu Ser Thr Ser Val Ser Thr Ser Glu Ser Gly Ser Thr		
	1580	1585	1590
	Ser Glu Ser Thr Ser Glu Ser Asp Ser Thr Ser Thr Ser Leu Ser		
	1595	1600	1605
30	Asp Ser Gln Ser Thr Ser Arg Ser Thr Ser Ala Ser Gly Ser Ala		
	1610	1615	1620
35	Ser Thr Ser Thr Ser Thr Ser Asp Ser Arg Ser Thr Ser Ala Ser		
	1625	1630	1635
	Thr Ser Thr Ser Met Arg Thr Ser Thr Ser Asp Ser Ser Gln Ser Met		
	1640	1645	1650
40	Ser Leu Ser Thr Ser Thr Ser Thr Ser Met Ser Asp Ser Thr Ser		
	1655	1660	1665
	Leu Ser Asp Ser Val Ser Asp Ser Thr Ser Asp Ser Thr Ser Ala		
	1670	1675	1680
45	Ser Thr Ser Gly Ser Met Ser Val Ser Ile Ser Leu Ser Asp Ser		
	1685	1690	1695
50	Thr Ser Thr Ser Thr Ser Ala Ser Glu Val Met Ser Ala Ser Ile		
	1700	1705	1710
	Ser Asp Ser Gln Ser Met Ser Glu Ser Val Asn Asp Ser Glu Ser		
	1715	1720	1725
55	Val Ser Glu Ser Asn Ser Glu Ser Asp Ser Lys Ser Met Ser Gly		
	1730	1735	1740
	Ser Thr Ser Val Ser Asp Ser Gly Ser Leu Ser Val Ser Thr Ser		
	1745	1750	1755

60

	Leu	Arg	Lys	Ser	Glu	Ser	Val	Ser	Glu	Ser	Ser	Ser	Leu	Ser	Cys
	1760	.	.	.	1765	.	.	.	1770	.	.	.	1770	.	.
5	Ser	Gln	Ser	Met	Ser	Asp	Ser	Val	Ser	Thr	Ser	Asp	Ser	Ser	Ser
	1775	.	.	.	1780	.	.	.	1785	.	.	.	1785	.	.
	Leu	Ser	Val	Ser	Thr	Ser	Leu	Arg	Ser	Ser	Glu	Ser	'Val	Ser	Glu
	1790	.	.	.	1795	.	.	1800	.	.	1800	.	.	1800	.
10	Ser	Asp	Ser	Leu	Ser	Asp	Ser	Lys	Ser	Thr	Ser	Gly	Ser	Thr	Ser
	1805	.	.	.	1810	.	.	1815	.	.	1815	.	.	1815	.
	Thr	Ser	Thr	Ser	Gly	Ser	Leu	Ser	Thr	Ser	Thr	Ser	Leu	Ser	Gly
	1820	.	.	.	1825	.	.	1830	.	.	1830	.	.	1830	.
15	Ser	Glu	Ser	Val	Ser	Glu	Ser	Thr	Ser	Leu	Ser	Asp	Ser	Ile	Ser
	1835	.	.	.	1840	.	.	1845	.	.	1845	.	.	1845	.
20	Met	Ser	Asp	Ser	Thr	Ser	Thr	Ser	Asp	Ser	Asp	Ser	Leu	Ser	Gly
	1850	.	.	.	1855	.	.	1860	.	.	1860	.	.	1860	.
	Ser	Ile	Ser	Leu	Ser	Gly	Ser	Thr	Ser	Leu	Ser	Thr	Ser	Asp	Ser
	1865	.	.	.	1870	.	.	1875	.	.	1875	.	.	1875	.
25	Leu	Ser	Asp	Ser	Lys	Ser	Leu	Ser	Ser	Ser	Gln	Ser	Met	Ser	Gly
	1880	.	.	.	1885	.	.	1890	.	.	1890	.	.	1890	.
	Ser	Glu	Ser	Thr	Ser	Thr	Ser	Val	Ser	Asp	Ser	Gln	Ser	Ser	Ser
	1895	.	.	.	1900	.	.	1905	.	.	1905	.	.	1905	.
30	Thr	Ser	Asn	Ser	Gln	Phe	Asp	Ser	Met	Ser	Ile	Ser	Ala	Ser	Glu
	1910	.	.	.	1915	.	.	1920	.	.	1920	.	.	1920	.
35	Ser	Asp	Ser	Met	Ser	Thr	Ser	Asp	Ser	Ser	Ser	Ile	Ser	Gly	Ser
	1925	.	.	.	1930	.	.	1935	.	.	1935	.	.	1935	.
	Asn	Ser	Thr	Ser	Thr	Ser	Leu	Ser	Thr	Ser	Asp	Ser	Met	Ser	Gly
	1940	.	.	.	1945	.	.	1950	.	.	1950	.	.	1950	.
40	Ser	Val	Ser	Val	Ser	Thr	Ser	Thr	Ser	Leu	Ser	Asp	Ser	Ile	Ser
	1955	.	.	.	1960	.	.	1965	.	.	1965	.	.	1965	.
	Gly	Ser	Thr	Ser	Val	Ser	Asp	Ser	Ser	Ser	Thr	Ser	Thr	Ser	Thr
	1970	.	.	.	1975	.	.	1980	.	.	1980	.	.	1980	.
45	Ser	Leu	Ser	Asp	Ser	Met	Ser	Gln	Ser	Gln	Ser	Thr	Ser	Thr	Ser
	1985	.	.	.	1990	.	.	1995	.	.	1995	.	.	1995	.
50	Ala	Ser	Gly	Ser	Leu	Ser	Thr	Ser	Ile	Ser	Thr	Ser	Met	Ser	Met
	2000	.	.	.	2005	.	.	2010	.	.	2010	.	.	2010	.
	Ser	Ala	Ser	Thr	Ser	Ser	Ser	Gln	Ser	Thr	Ser	Val	Ser	Thr	Ser
	2015	.	.	.	2020	.	.	2025	.	.	2025	.	.	2025	.
55	Leu	Ser	Thr	Ser	Asp	Ser	Ile	Ser	Asp	Ser	Thr	Ser	Ile	Ser	Ile
	2030	.	.	.	2035	.	.	2040	.	.	2040	.	.	2040	.
	Ser	Gly	Ser	Gln	Ser	Thr	Val	Glu	Ser	Glu	Ser	Thr	Ser	Asp	Ser
	2045	.	.	.	2050	.	.	2055	.	.	2055	.	.	2055	.
60															

	Thr Ser Ile Ser Asp Ser Glu Ser Leu Ser Thr Ser Asp Ser Asp	
	2060 2065 2070	
5	Ser Thr Ser Thr Ser Asp Ser Thr Ser Gly Ser Thr Ser	
	2075 2080 2085	
	Thr Ser Ile Ser Glu Ser Leu Ser Thr Ser Gly Ser Gly Ser Thr	
	2090 2095 2100	
10	Ser Val Ser Asp Ser Thr Ser Met Ser Glu Ser Asn Ser Ser Ser	
	2105 2110 2115	
	Val Ser Met Ser Gln Asp Lys Ser Asp Ser Thr Ser Ile Ser Asp	
	2120 2125 2130	
15	Ser Glu Ser Val Ser Thr Ser Thr Ser Thr Ser Leu Ser Thr Ser	
	2135 2140 2145	
20	Asp Ser Thr Ser Thr Ser Glu Ser Leu Ser Thr Ser Met Ser Gly	
	2150 2155 2160	
	Ser Gln Ser Ile Ser Asp Ser Thr Ser Thr Ser Met Ser Gly Ser	
	2165 2170 2175	
25	Thr Ser Thr Ser Glu Ser Asn Ser Met His Pro Ser Asp Ser Met	
	2180 2185 2190	
	Ser Met His His Thr His Ser Thr Ser Thr Ser Arg Leu Ser Ser	
	2195 2200 2205	
30	Glu Ala Thr Thr Ser Thr Ser Glu Ser Gln Ser Thr Leu Ser Ala	
	2210 2215 2220	
35	Thr Ser Glu Val Thr Lys His Asn Gly Thr Pro Ala Gln Ser Glu	
	2225 2230 2235	
	Lys Arg Leu Pro Asp Thr Gly Asp Ser Ile Lys Gln Asn Gly Leu	
	2240 2245 2250	
40	Leu Gly Gly Val Met Thr Leu Leu Val Gly Leu Gly Leu Met Lys	
	2255 2260 2265	
	Arg Lys Lys Lys Asp Glu Asn Asp Gln Asp Asp Ser Gln Ala	
	2270 2275 2280	
45	<210> 5	
	<211> 2730	
	<212> DNA	
	<213> Staphylococcus epidermidis	
50	<400> 5	
	ttattatcaa ttaaatataa tccttatagga gttgttaaca acatgaacaa acatcaccca	60
55	aaattaaggt ctttctattc tattaaaaa tcaactctag gcgttgcattc ggtcattgtc	120
	agtacactat tttaattac ttctcaacat caagcacaag cagcagaaaa tacaaatact	180
	tcatgataaaa tctcgaaaaa tcaaaataat aatgcaacta caactcagcc acctaaggat	240
60	acaaatcaaa cacaacctgc tacgcaacca gcaaacactg cgaaaaacta tcctgcagcg	300

	gatgaatcac ttaaagatgc aattaaagat cctgcattag aaaataaaga acatgatata	360
5	ggtccaagag aacaagtcaa ttccagttt ttagataaaa acaatgaaac gcagtactat	420
	cacttttca gcatcaaaga tccagcagat gtgtattaca ctaaaaagaa agcagaagtt	480
	gaattagaca tcaatactgc ttcaacatgg aagaagttt aagtctatga aaacaatcaa	540
10	aaattgccag tgagacttgt atcatatagt cctgtaccag aagaccatgc ctatattcga	600
	ttcccagttt cagatggcac acaagaattt aaaaattgttt cttcgactca aattgatgtat	660
15	ggagaagaaa caaattatga ttatactaaa ttgttatttg ctaaacctat ttataacgt	720
	ccttcacttg taaaatcaga tacaatgtat gcagtagtaa cgaatgatca atcaagttca	780
	gtcgcaagta atcaaacaaa cacgaataca tctaataaaa atatatcaac gataacaat	840
20	gctaataatc aaccgcaggc aacgaccaat atgagtcaac ctgcacaacc aaaatcgta	900
	acgaatgcag atcaaggcgtc aagccaaacca gctcatgaaa caaattctaa tggtaatact	960
25	aacgataaaa cgaatgagtc aagtaatcag tcggatgtt atcaacagta tccaccagca	1020
	gatgaatcac tacaagatgc aattaaaaac ccggcttatca tcgataaaaga acatacagct	1080
	gataattggc gaccaattga ttttcaaattt aaaaatgata aaggtgaaag acagttctat	1140
30	cattatgcta gtactgttga accagcaact gtcattttta caaaaacagg accaataatt	1200
	gaatttaggtt taaagacagc ttcaacatgg aagaaatttg aagtttatga aggtgacaaa	1260
35	aagttaccag tcgaatttagt atcatatgtat tctgataaaag attatgccta tattcgtttc	1320
	ccagtatcta atggatcgag agaagttaaa attgtgtcat ctattgtata tggtgagaac	1380
	atccatgaag actatgatta tacgctaattt gtctttgcac agcctattac taataaccca	1440
40	gacgactatg tggatgaaga aacatacaat ttacaaaaat tattagctcc gtatcacaaa	1500
	gctaaaaacgt tagaaagaca agtttatgaa tttagaaaaat tacaagagaa attgccagaa	1560
45	aaatataagg cgaaatataaa aaagaaattt gatcaaacta gagtagagtt agctgatcaa	1620
	gttaaatcag cagtgacgga atttggaaat gttacaccta caaatgatca attaacagat	1680
	ttacaagaag cgcattttgt tggatgttga agtgaagaaa atagttagtc agttatggac	1740
50	ggctttgtt aacatccatt ctatacagca actttaaatg gtcaaaaata tggatgtat	1800
	aaaacaaagg atgacagttt ctggaaagat ttaattgttag aaggtaacg tgtcactact	1860
55	gtttctaaag atcctaaaaa taattctaga acgctgattt tcccatatata' acctgacaaa	1920
	gcagtttaca atgcgattgt taaagtcgtt gtggcaaaca ttggatgtatga aggtcaatata	1980
	catgtcagaa ttataaatca ggatataat acaaaagatg atgatacatc acaaaataac	2040
60	acgagtgAAC cgctaaatgt acaaaacagga caagaaggta aggttgctga tacagatgtat	2100

	gctgaaaata	gcagcactgc	aacaaatcct	aaagatgcgt	ctgataaagc	agatgtgata	2160											
5	gaaccagagt	ctgacgtggt	taaagatgct	gataataata	ttgataaaga	tgtgcaacat	2220											
	gatgttgatc	atttatccga	tatgtcggt	aataatcact	tcgataaata	tgatttaaaa	2280											
	gaaatggata	ctcaaattgc	caaagatact	gatagaaatg	tggataaaga	tgccgataat	2340											
10	agcgttggta	tgtcatctaa	tgtcgatact	gataaaagact	ctaataaaaa	taaagacaaa	2400											
	gtcatacagc	tgaatcatat	tgccgataaa	aataatcata	ctggaaaagc	agcaaagctt	2460											
15	gacgtagtga	aacaaaatta	taataataca	gacaaagtta	ctgacaaaaa	aacaactgaa	2520											
	catctgccga	gtgatattca	taaaactgta	gataaaacag	tgaaaacaaa	agaaaaagcc	2580											
	ggcacacccat	cgaaggaaaaa	caaacttagt	caatctaaaa	tgctacccaa	aactggagaa	2640											
20	acaacttcaa	gccaatcatg	gtggggctta	tatgcgttat	taggtatgtt	agctttattc	2700											
	attcctaaat	tcagaaaaga	atctaaataa				2730											
25	<210>	6																
	<211>	909																
	<212>	PRT																
	<213>	Staphylococcus epidermidis																
30	<400>	6																
	Leu	Leu	Ser	Ile	Lys	Tyr	Asn	Leu	Ile	Gly	Val	Val	Asn	Asn	Met	Asn		
	1				5					10						15		
35	Lys	His	His	Pro	Lys	Leu	Arg	Ser	Phe	Tyr	Ser	Ile	Arg	Lys	Ser	Thr		
					20				25			30						
	Leu	Gly	Val	Ala	Ser	Val	Ile	Val	Ser	Thr	Leu	Phe	Leu	Ile	Thr	Ser		
					35				40			45						
40	Gln	His	Gln	Ala	Gln	Ala	Ala	Glu	Asn	Thr	Asn	Thr	Ser	Asp	Lys	Ile		
					50				55			60						
45	Ser	Glu	Asn	Gln	Asn	Asn	Ala	Thr	Thr	Thr	Gln	Pro	Pro	Lys	Asp			
					65				70			75				80		
	Thr	Asn	Gln	Thr	Gln	Pro	Ala	Thr	Gln	Pro	Ala	Asn	Thr	Ala	Lys	Asn		
					85				90						95			
50	Tyr	Pro	Ala	Ala	Asp	Glu	Ser	Leu	Lys	Asp	Ala	Ile	Lys	Asp	Pro	Ala		
					100				105			110						
	Leu	Glu	Asn	Lys	Glu	His	Asp	Ile	Gly	Pro	Arg	Glu	Gln	Val	Asn	Phe		
					115				120			125						
55	Gln	Leu	Leu	Asp	Lys	Asn	Asn	Glu	Thr	Gln	Tyr	Tyr	His	Phe	Phe	Ser		
					130				135			140						
60	Ile	Lys	Asp	Pro	Ala	Asp	Val	Tyr	Tyr	Thr	Lys	Lys	Lys	Ala	Glu	Val		
					145				150			155				160		

	Glu Leu Asp Ile Asn Thr Ala Ser Thr Trp Lys Lys Phe Glu Val Tyr			
	165	170	175	
5	Glu Asn Asn Gln Lys Leu Pro Val Arg Leu Val Ser Tyr Ser Pro Val			
	180	185	190	
	Pro Glu Asp His Ala Tyr Ile Arg Phe Pro Val Ser Asp Gly Thr Gln			
	195	200	205	
10	Glu Leu Lys Ile Val Ser Ser Thr Gln Ile Asp Asp Gly Glu Glu Thr			
	210	215	220	
15	Asn Tyr Asp Tyr Thr Lys Leu Val Phe Ala Lys Pro Ile Tyr Asn Asp			
	225	230	235	240
	Pro Ser Leu Val Lys Ser Asp Thr Asn Asp Ala Val Val Thr Asn Asp			
	245	250	255	
20	Gln Ser Ser Ser Val Ala Ser Asn Gln Thr Asn Thr Asn Thr Ser Asn			
	260	265	270	
	Gln Asn Ile Ser Thr Ile Asn Asn Ala Asn Asn Gln Pro Gln Ala Thr			
	275	280	285	
25	Thr Asn Met Ser Gln Pro Ala Gln Pro Lys Ser Ser Thr Asn Ala Asp			
	290	295	300	
30	Gln Ala Ser Ser Gln Pro Ala His Glu Thr Asn Ser Asn Gly Asn Thr			
	305	310	315	320
	Asn Asp Lys Thr Asn Glu Ser Ser Asn Gln Ser Asp Val Asn Gln Gln			
	325	330	335	
35	Tyr Pro Pro Ala Asp Glu Ser Leu Gln Asp Ala Ile Lys Asn Pro Ala			
	340	345	350	
	Ile Ile Asp Lys Glu His Thr Ala Asp Asn Trp Arg Pro Ile Asp Phe			
	355	360	365	
40	Gln Met Lys Asn Asp Lys Gly Glu Arg Gln Phe Tyr His Tyr Ala Ser			
	370	375	380	
45	Thr Val Glu Pro Ala Thr Val Ile Phe Thr Lys Thr Gly Pro Ile Ile			
	385	390	395	400
	Glu Leu Gly Leu Lys Thr Ala Ser Thr Trp Lys Lys Phe Glu Val Tyr			
	405	410	415	
50	Glu Gly Asp Lys Lys Leu Pro Val Glu Leu Val Ser Tyr Asp Ser Asp			
	420	425	430	
	Lys Asp Tyr Ala Tyr Ile Arg Phe Pro Val Ser Asn Gly Thr Arg Glu			
	435	440	445	
55	Val Lys Ile Val Ser Ser Ile Glu Tyr Gly Glu Asn Ile His Glu Asp			
	450	455	460	
60	Tyr Asp Tyr Thr Leu Met Val Phe Ala Gln Pro Ile Thr Asn Asn Pro			
	465	470	475	480

Asp Asp Tyr Val Asp Glu Glu Thr Tyr Asn Leu Gln Lys Leu Leu Ala
 485 490 495

5 Pro Tyr His Lys Ala Lys Thr Leu Glu Arg Gln Val Tyr Glu Leu Glu
 500 505 510

Lys Leu Gln Glu Lys Leu Pro Glu Lys Tyr Lys Ala Glu Tyr Lys Lys
 515 520 525

10 Lys Leu Asp Gln Thr Arg Val Glu Leu Ala Asp Gln Val Lys Ser Ala
 530 535 540

Val Thr Glu Phe Glu Asn Val Thr Pro Thr Asn Asp Gln Leu Thr Asp
 15 545 550 555 560

Leu Gln Glu Ala His Phe Val Val Phe Glu Ser Glu Glu Asn Ser Glu
 565 570 575

20 Ser Val Met Asp Gly Phe Val Glu His Pro Phe Tyr Thr Ala Thr Leu
 580 585 590

Asn Gly Gln Lys Tyr Val Val Met Lys Thr Lys Asp Asp Ser Tyr Trp
 25 595 600 605

Lys Asp Leu Ile Val Glu Gly Lys Arg Val Thr Thr Val Ser Lys Asp
 610 615 620

30 Pro Lys Asn Asn Ser Arg Thr Leu Ile Phe Pro Tyr Ile Pro Asp Lys
 625 630 635 640

Ala Val Tyr Asn Ala Ile Val Lys Val Val Val Ala Asn Ile Gly Tyr
 645 650 655

35 Glu Gly Gln Tyr His Val Arg Ile Ile Asn Gln Asp Ile Asn Thr Lys
 660 665 670

Asp Asp Asp Thr Ser Gln Asn Asn Thr Ser Glu Pro Leu Asn Val Gln
 40 675 680 685

Thr Gly Gln Glu Gly Lys Val Ala Asp Thr Asp Val Ala Glu Asn Ser
 690 695 700

Ser Thr Ala Thr Asn Pro Lys Asp Ala Ser Asp Lys Ala Asp Val Ile
 45 705 710 715 720

Glu Pro Glu Ser Asp Val Val Lys Asp Ala Asp Asn Asn Ile Asp Lys
 725 730 735

50 Asp Val Gln His Asp Val Asp His Leu Ser Asp Met Ser Asp Asn Asn
 740 745 750

His Phe Asp Lys Tyr Asp Leu Lys Glu Met Asp Thr Gln Ile Ala Lys
 755 760 765

55 Asp Thr Asp Arg Asn Val Asp Lys Asp Ala Asp Asn Ser Val Gly Met
 770 775 780

60 Ser Ser Asn Val Asp Thr Asp Lys Asp Ser Asn Lys Asn Lys Asp Lys
 785 790 795 800

Val Ile Gln Leu Asn His Ile Ala Asp Lys Asn Asn His Thr Gly Lys
 805 810 815

5 Ala Ala Lys Leu Asp Val Val Lys Gln Asn Tyr Asn Asn Thr Asp Lys
 820 825 830

Val Thr Asp Lys Lys Thr Thr Glu His Leu Pro Ser Asp Ile His Lys
 835 840 845

10 Thr Val Asp Lys Thr Val Lys Thr Lys Glu Lys Ala Gly Thr Pro Ser
 850 855 860

Lys Glu Asn Lys Leu Ser Gln Ser Lys Met Leu Pro Lys Thr Gly Glu
 15 865 870 875 880

Thr Thr Ser Ser Gln Ser Trp Trp Gly Leu Tyr Ala Leu Leu Gly Met
 885 890 895

20 Leu Ala Leu Phe Ile Pro Lys Phe Arg Lys Glu Ser Lys
 900 905

<210> 7
 <211> 1065
 25 <212> DNA
 <213> Staphylococcus epidermidis

<400> 7
 gagggaaaaca acatgacaaa acattattta aacagtaagt atcaatcaga acaacgttca 60
 30 ttagctatga aaaagattac aatgggtaca gcatctatca ttttaggttc ctttgtatac 120
 ataggcgcaag acagccaaaca agtcaatgcg gcaacagaag ctacgaacgc aactaataat 180
 35 caaagcacac aagtttctca agcaacatca caaccaatta atttccaagt gaaaaaagat 240
 ggctttcag agaagtccaca catggatgac tatatgcaac accctggtaa agtaattaaa 300
 40 caaaataata aatattattt ccaaaccgtg ttaaacaatg catcattctg gaaagaatac 360
 aaattttaca atgcaaacaa tcaagaatta gcaacaactg ttgttaacga taataaaaaa 420
 gcggatacta gaacaatcaa tggtgcagtt gaacctggat ataagagctt aactactaaa 480
 45 gtacatattt tcgtgccaca aattaattac aatcatagat atactacgca tttggaaattt 540
 gaaaaagcaa ttcc tacatt agctgacgca gcaaaaccaa acaatgttaa accggttcaa 600
 50 ccaaaaccag ctcaacctaa aacacctact gagcaaacta aaccaggtaa acctaaaggta 660
 gaaaaagtta aacctactgt aactacaaca agcaaagttg aagacaatca ctctactaaa 720
 gttgtaagta ctgacacaac aaaagatcaa actaaaacac aaactgctca tacagttaaa 780
 55 acagcacaaa ctgctcaaga acaaaataaa gttcaaacac ctgttaaaga tggtgcaaca 840
 gcgaaatctg aaagcaacaa tcaagctgta agtgataata aatcacaaca aactaacaaa 900
 60 gttacaaaac ataacgaaac gcctaaacaa gcatctaaag ctaaagaatt accaaaaact 960

ggtttaactt cagttgataa ctttatttagc acagttgcct tcgcaacact tgccctttta 1020
 ggtcattat ctttattact tttcaaaaga aaagaatcta aataa 1065
 5 <210> 8
 <211> 354
 <212> PRT
 <213> Staphylococcus epidermidis
 10 <400> 8
 Glu Glu Asn Asn Met Thr Lys His Tyr Leu Asn Ser Lys Tyr Gln Ser
 1 5 10 15
 15 Glu Gln Arg Ser Ser Ala Met Lys Lys Ile Thr Met Gly Thr Ala Ser
 20 25 30
 Ile Ile Leu Gly Ser Leu Val Tyr Ile Gly Ala Asp Ser Gln Gln Val
 35 40 45
 20 Asn Ala Ala Thr Glu Ala Thr Asn Ala Thr Asn Asn Gln Ser Thr Gln
 50 55 60
 25 Val Ser Gln Ala Thr Ser Gln Pro Ile Asn Phe Gln Val Gln Lys Asp
 65 70 75 80
 Gly Ser Ser Glu Lys Ser His Met Asp Asp Tyr Met Gln His Pro Gly
 85 90 95
 30 Lys Val Ile Lys Gln Asn Asn Lys Tyr Tyr Phe Gln Thr Val Leu Asn
 100 105 110
 Asn Ala Ser Phe Trp Lys Glu Tyr Lys Phe Tyr Asn Ala Asn Asn Gln
 115 120 125
 35 Glu Leu Ala Thr Thr Val Val Asn Asp Asn Lys Lys Ala Asp Thr Arg
 130 135 140
 Thr Ile Asn Val Ala Val Glu Pro Gly Tyr Lys Ser Leu Thr Thr Lys
 40 145 150 155 160
 Val His Ile Val Val Pro Gln Ile Asn Tyr Asn His Arg Tyr Thr Thr
 165 170 175
 45 His Leu Glu Phe Glu Lys Ala Ile Pro Thr Leu Ala Asp Ala Ala Lys
 180 185 190
 Pro Asn Asn Val Lys Pro Val Gln Pro Lys Pro Ala Gln Pro Lys Thr
 195 200 205
 50 Pro Thr Glu Gln Thr Lys Pro Val Gln Pro Lys Val Glu Lys Val Lys
 210 215 220
 55 Pro Thr Val Thr Thr Ser Lys Val Glu Asp Asn His Ser Thr Lys
 225 230 235 240
 Val Val Ser Thr Asp Thr Thr Lys Asp Gln Thr Lys Thr Gln Thr Ala
 245 250 255
 60 His Thr Val Lys Thr Ala Gln Thr Ala Gln Glu Gln Asn Lys Val Gln

	260	265	270
	Thr Pro Val Lys Asp Val Ala Thr Ala Lys Ser Glu Ser Asn Asn Gln		
	275	280	285
5	Ala Val Ser Asp Asn Lys Ser Gln Gln Thr Asn Lys Val Thr Lys His		
	290	295	300
10	Asn Glu Thr Pro Lys Gln Ala Ser Lys Ala Lys Glu Leu Pro Lys Thr		
	305	310	315
	Gly Leu Thr Ser Val Asp Asn Phe Ile Ser Thr Val Ala Phe Ala Thr		
	325	330	335
15	Leu Ala Leu Leu Gly Ser Leu Ser Leu Leu Leu Phe Lys Arg Lys Glu		
	340	345	350
	Ser Lys		
20	<210> 9 <211> 1965 <212> DNA <213> Staphylococcus epidermidis		
25	<400> 9 tataacaatta ggagttgttt ctacaacatg aacaaacagc aaaaagaatt taaatcattt	60	
	tattcaatta gaaagtcatc actaggcggt gcattctgttag caatttagtac acttttattt	120	
30	ttaatgtcaa atggcgaagc acaagcagca gctgaagaaa caggtggtag aaatacagaa	180	
	gcacaaccaa aaactgaagc agttgcaagt ccaacaacaa catctgaaaa agctccagaa	240	
35	actaaaccag tagctaattgc tgtctcagta tctaataaag aagttgaggc ccctacttct	300	
	gaaacaaaag aagctaaaga agttaaagaa gttaaagccc ctaagggaaac aaaagaagtt	360	
	aaaccagcag caaaagccac taacaataca tatcctattt tgaatcagga acttagagaa	420	
40	gcgattaaaa accctgcaat aaaagacaaa gatcatagcg caccaactc tcgtccaatt	480	
	gattttgaaa tgaaaaagaa agatgaaact caacagtttt atcattatgc aagttctgtt	540	
45	aaacctgcta gagttatttt cactgattca aaaccagaaa ttgaattagg attacaatca	600	
	ggtcaatttt ggagaaaatt tgaagtttat gaaggtgaca aaaagttgcc aattaaatta	660	
	gtatcatacg atactgttaa agattatgct tacattcgct tctctgtatc aaacggaaca	720	
50	aaagctgtta aaattgttag ttcaacacac ttcaataaca aagaagaaaa atacgattac	780	
	acattaatgg aattcgcaca accaatttat aacagtgcag ataaattcaa aactgaagaa	840	
55	gattataaag ctgaaaaatt attagcgcca tataaaaaag cgaaaacact agaaagacaa	900	
	gtttatgaat taaataaaaat tcaagataaa cttcctgaaa aattaaaggc tgagtacaag	960	
	aagaaattag aggatacaaa gaaagcttta gatgagcaag tgaaatcagc tattactgaa	1020	
60	ttccaaaatg tacaaccaac aaatgaaaaa atgactgatt tacaagatac aaaatatgtt	1080	

	gtttatgaaa gtgttgagaa taacgaatct atgatggata cttttgttaa acaccattt	1140
5	aaaacaggta tgcttaacgg caaaaaatat atggcatgg aaactactaa tgacgattac	1200
	tggaaagatt tcatggttga aggtcaacgt gttagaacta taagcaaaga tgctaaaaat	1260
	aatactagaa caattatTTT cccatatgtt gaaggtaaaa ctctatatga tgctatcgTT	1320
10	aaagttcacg taaaaacgt tgattatgtt ggacaatacc atgtcagaat cgttgataaa	1380
	gaagcattt caaaagccaa taccgataaa tctaacaaaa aagaacaaca agataactca	1440
15	gctaaagaagg aagctactcc agctacgcct agcaaaccAA caccatcacc ttttgaaaaa	1500
	gaatcacAAA aacaagacAG ccaaaaAGAT gacaataaac AATTACCAAG ttggaaaaa	1560
	gaaaatgacG catctagtGA gtcaggtAAA gacaaaacgc ctgctacAAA accaactaaa	1620
20	ggtaagtag aatcaagtag tacaactcca actaaggtAG tatctacgac tcaaaatgtt	1680
	gcaaaaccaa caactgcttc atcaaaaaca acaaaAGATG ttgttcaaAC tttagcaggt	1740
25	tctagcgaag caaaagatAG tgctccatta caaaagcaa acattaaaaa cacaatgtat	1800
	ggacacactc aaagccAAA caataAAAAT acacaagAAA ataaagcaaA atcattacca	1860
	caaactggtg aagaatcaaA taaagatATG acattaccat taatggcatt attagcttA	1920
30	agtagcatcg ttgcattcgt attacctaga aaacgtaaaa actaa	1965
	<210> 10	
35	<211> 654	
	<212> PRT	
	<213> Staphylococcus epidermidis	
	<400> 10	
40	Tyr Thr Ile Arg Ser Cys Phe Tyr Asn Met Asn Lys Gln Gln Lys Glu	
	1 5 10 15	
	Phe Lys Ser Phe Tyr Ser Ile Arg Lys Ser Ser Leu Gly Val Ala Ser	
	20 25 30	
45	Val Ala Ile Ser Thr Leu Leu Leu Met Ser Asn Gly Glu Ala Gln	
	35 40 45	
50	Ala Ala Ala Glu Glu Thr Gly Gly Thr Asn Thr Glu Ala Gln Pro Lys	
	50 55 60	
	Thr Glu Ala Val Ala Ser Pro Thr Thr Ser Glu Lys Ala Pro Glu	
	65 70 75 80	
55	Thr Lys Pro Val Ala Asn Ala Val Ser Val Ser Asn Lys Glu Val Glu	
	85 90 95	
	Ala Pro Thr Ser Glu Thr Lys Glu Ala Lys Glu Val Lys Glu Val Lys	
60	100 105 110	

Ala Pro Lys Glu Thr Lys Glu Val Lys Pro Ala Ala Lys Ala Thr Asn
 115 120 125
 Asn Thr Tyr Pro Ile Leu Asn Gln Glu Leu Arg Glu Ala Ile Lys Asn
 5 130 135 140
 Pro Ala Ile Lys Asp Lys Asp His Ser Ala Pro Asn Ser Arg Pro Ile
 145 150 155 160
 10 Asp Phe Glu Met Lys Lys Asp Gly Thr Gln Gln Phe Tyr His Tyr
 165 170 175
 Ala Ser Ser Val Lys Pro Ala Arg Val Ile Phe Thr Asp Ser Lys Pro
 15 180 185 190
 195 200 205
 20 Val Tyr Glu Gly Asp Lys Lys Leu Pro Ile Lys Leu Val Ser Tyr Asp
 210 215 220
 Thr Val Lys Asp Tyr Ala Tyr Ile Arg Phe Ser Val Ser Asn Gly Thr
 225 230 235 240
 25 Lys Ala Val Lys Ile Val Ser Ser Thr His Phe Asn Asn Lys Glu Glu
 245 250 255
 260 265 270
 30 Ala Asp Lys Phe Lys Thr Glu Glu Asp Tyr Lys Ala Glu Lys Leu Leu
 275 280 285
 290 295 300
 Asn Lys Ile Gln Asp Lys Leu Pro Glu Lys Leu Lys Ala Glu Tyr Lys
 305 310 315 320
 40 Lys Lys Leu Glu Asp Thr Lys Ala Leu Asp Glu Gln Val Lys Ser
 325 330 335
 Ala Ile Thr Glu Phe Gln Asn Val Gln Pro Thr Asn Glu Lys Met Thr
 340 345 350
 45 Asp Leu Gln Asp Thr Lys Tyr Val Val Tyr Glu Ser Val Glu Asn Asn
 355 360 365
 50 Glu Ser Met Met Asp Thr Phe Val Lys His Pro Ile Lys Thr Gly Met
 370 375 380
 Leu Asn Gly Lys Lys Tyr Met Val Met Glu Thr Thr Asn Asp Asp Tyr
 385 390 395 400
 55 Trp Lys Asp Phe Met Val Glu Gly Gln Arg Val Arg Thr Ile Ser Lys
 405 410 415
 Asp Ala Lys Asn Asn Thr Arg Thr Ile Ile Phe Pro Tyr Val Glu Gly
 60 420 425 430

Lys Thr Leu Tyr Asp Ala Ile Val Lys Val His Val Lys Thr Ile Asp
 435 440 445
 Tyr Asp Gly Gln Tyr His Val Arg Ile Val Asp Lys Glu Ala Phe Thr
 5 450 455 460
 Lys Ala Asn Thr Asp Lys Ser Asn Lys Lys Glu Gln Gln Asp Asn Ser
 465 470 475 480
 10 Ala Lys Lys Glu Ala Thr Pro Ala Thr Pro Ser Lys Pro Thr Pro Ser
 485 490 495
 Pro Val Glu Lys Glu Ser Gln Lys Gln Asp Ser Gln Lys Asp Asp Asn
 15 500 505 510
 Lys Gln Leu Pro Ser Val Glu Lys Glu Asn Asp Ala Ser Ser Glu Ser
 515 520 525
 20 Gly Lys Asp Lys Thr Pro Ala Thr Lys Pro Thr Lys Gly Glu Val Glu
 530 535 540
 Ser Ser Ser Thr Thr Pro Thr Lys Val Val Ser Thr Thr Gln Asn Val
 545 550 555 560
 25 Ala Lys Pro Thr Thr Ala Ser Ser Lys Thr Thr Lys Asp Val Val Gln
 565 570 575
 Thr Ser Ala Gly Ser Ser Glu Ala Lys Asp Ser Ala Pro Leu Gln Lys
 30 580 585 590
 Ala Asn Ile Lys Asn Thr Asn Asp Gly His Thr Gln Ser Gln Asn Asn
 595 600 605
 Lys Asn Thr Gln Glu Asn Lys Ala Lys Ser Leu Pro Gln Thr Gly Glu
 35 610 615 620
 Glu Ser Asn Lys Asp Met Thr Leu Pro Leu Met Ala Leu Leu Ala Leu
 625 630 635 640
 40 Ser Ser Ile Val Ala Phe Val Leu Pro Arg Lys Arg Lys Asn
 645 650
 <210> 11
 <211> 2406
 45 <212> DNA
 <213> Staphylococcus epidermidis
 <400> 11
 50 tttataaaata atttacataaa aatcaatcat tttaatataa ggattatgtat aatatattgg 60
 tgtatgacag ttaatggagg gaacgaaatg aaagctttat tacttaaaac aagtgtatgg 120
 ctcgtttgc ttttttgtgt aatgggatta tggcaagtct cgaacgcggc tgagcagcat 180
 55 acaccaatga aagcacatgc agtaacaacg atagacaaag caacaacaga taagcaacaa 240
 gtaccgccaa caaaggaagc ggctcatcat tctggcaaag aagcgccaac caacgtatca 300
 60 gcatcagcgc agggAACAGC tgatgataca aacagcaaag taacatccaa cgccaccatct 360

	aacaaaccat ctacagtagt ttcaacaaaa gtaaacgaaa cacgcacgt agatacacaa	420
	caaggcctcaa cacaaaaacc aactcacaca gcaacgttca aattatcaaa tgctaaaaca	480
5	gcatacactt caccacgaat gtttgcgtct aatgcaccac aaacaacaac acataaaaata	540
	ttacatacaa atgatatcca tggccgacta gccgaagaaa aagggcgtgt catcggtatg	600
10	gctaaattaa aaacagtaaa agaacaagaa aagcctgatt taatgttaga cgcaggagac	660
	gccttccaag gtttaccact ttcaaaccag tctaaagggt aagaaatggc taaagcaatg	720
	aatgcagtag gttatgtatgc tatggcagtc ggtaaccatg aatttgactt tggtatcgat	780
15	cagttaaaaa agtttagaggg tatgttagac ttcccgtatgc taagtactaa cgtttataaa	840
	gatggaaaac gcgcgtttaa gccttcaacg attgtaacaa aaaatggtat tcgttatgga	900
20	attattggtg taacgcacacc agaaacaaag acgaaaacaa gacctgaagg cattaaaggc	960
	gttgaattta gagatccatt acaaagtgtg acagcggaaa tggatcgat ttataaagac	1020
	gtagatacat ttgttgttat atcacattt ggaattgtat cttcaacaca agaaacatgg	1080
25	cgtggtgatt acttagtgaa acaattaagt caaaatccac aattgaagaa acgtattaca	1140
	gttattgtat gtcattcaca tacagtactt caaaatggtc aaatttataa caatgtatca	1200
30	ttggcacaaa caggtacagc acttgcgaat atcggtaaga ttacatttaa ttatcgcaat	1260
	ggagaggtat cgaatattaa accgtcattt attaatgtt aagacgttga aaatgttaca	1320
	ccgaacaaag cattagctga acaaatttaat caagctgatc aaacatttag agcacaaact	1380
35	gcagaggtaa ttattccaaa caataccatt gatttcaaag gagaaagaga tgacgttata	1440
	acgcgtgaaa caaaatttagg aaacgcgtt gcaatgttca tggaaacgtt tggcggtttaag	1500
40	aatttctcta aaaagactga ctgttgcgtt acaaatgggtt gaggattcg tgcctctatc	1560
	gcaaaaggta aggtgacacg ctatgattt atctcgtt taccattttt aaatacgatt	1620
	gcaatgtttaatgg ttcagacgtc tggacggctt tcgaacatag tttaggcgc	1680
45	ccaaacacac aaaaggacgg taagacagt ttaacagcga atggcggtt actacatatc	1740
	tctgattcaa tccgttta ctatgatata aataaaccgt ctggcaacacg aattaatgtt	1800
50	attcaaattt taaataaaga gacaggtaag tttgaaaata ttgattttt acgtgtat	1860
	cacgttacga tgaatgttcc attagatcaa gtactagca gtttattttt aacagcttac	1920
	ccttagagaag aaggattttt attagatcaa gtactagca gtttattttt aacagcttac	1980
55	tttagcttaatgtt atgatacgac agaaccacaa cgtatgtt taggtaaacc agcagtaat	2040
	gaacaaccac ctaaaggaca acaaggtagt aaggttagt agtctggtaa agatacacaa	2100
60	ccaaattgggtt acgacaaatgtt gatggatcca gcaaaaaac cagctccagg taaagttgtt	2160

	ttgttgctag cgcatacagg aactgttagt agcggtacag aaggttctgg tcgcacaata	2220
	gaaggagcta ctgttatcaag caagagtggg aaacaattgg ctagaatgtc agtgcctaaa	2280
5	ggtagcgcgc atgagaaaca gttaccaaaa actggaacta atcaaagttc aagcccagaa	2340
	gcgatgtttg tattattagc aggtataggt ttaatcgcgta ctgtacgacg tagaaaagct	2400
	agctaa	2406
10	<210> 12	
	<211> 801	
	<212> PRT	
	<213> Staphylococcus epidermidis	
15	<400> 12	
	Phe Ile Asn Asn Leu His Lys Ile Asn His Phe Asn Ile Arg Ile Met	
20	1 5 10 15	
	Ile Ile Tyr Trp Cys Met Thr Val Asn Gly Gly Asn Glu Met Lys Ala	
	20 25 30	
25	Leu Leu Leu Lys Thr Ser Val Trp Leu Val Leu Leu Phe Ser Val Met	
	35 40 45	
	Gly Leu Trp Gln Val Ser Asn Ala Ala Glu Gln His Thr Pro Met Lys	
	50 55 60	
30	Ala His Ala Val Thr Thr Ile Asp Lys Ala Thr Thr Asp Lys Gln Gln	
	65 70 75 80	
	Val Pro Pro Thr Lys Glu Ala Ala His His Ser Gly Lys Glu Ala Ala	
35	85 90 95	
	Thr Asn Val Ser Ala Ser Ala Gln Gly Thr Ala Asp Asp Thr Asn Ser	
	100 105 110	
40	Lys Val Thr Ser Asn Ala Pro Ser Asn Lys Pro Ser Thr Val Val Ser	
	115 120 125	
	Thr Lys Val Asn Glu Thr Arg Asp Val Asp Thr Gln Gln Ala Ser Thr	
	130 135 140	
45	Gln Lys Pro Thr His Thr Ala Thr Phe Lys Leu Ser Asn Ala Lys Thr	
	145 150 155 160	
	Ala Ser Leu Ser Pro Arg Met Phe Ala Ala Asn Ala Pro Gln Thr Thr	
50	165 170 175	
	Thr His Lys Ile Leu His Thr Asn Asp Ile His Gly Arg Leu Ala Glu	
	180 185 190	
55	Glu Lys Gly Arg Val Ile Gly Met Ala Lys Leu Lys Thr Val Lys Glu	
	195 200 205	
	Gln Glu Lys Pro Asp Leu Met Leu Asp Ala Gly Asp Ala Phe Gln Gly	
	210 215 220	
60	Leu Pro Leu Ser Asn Gln Ser Lys Gly Glu Glu Met Ala Lys Ala Met	

	225	230	235	240
	Asn Ala Val Gly Tyr Asp Ala Met Ala Val Gly Asn His Glu Phe Asp			
	245	250	255	
5	Phe Gly Tyr Asp Gln Leu Lys Lys Leu Glu Gly Met Leu Asp Phe Pro			
	260	265	270	
10	Met Leu Ser Thr Asn Val Tyr Lys Asp Gly Lys Arg Ala Phe Lys Pro			
	275	280	285	
	Ser Thr Ile Val Thr Lys Asn Gly Ile Arg Tyr Gly Ile Ile Gly Val			
	290	295	300	
15	Thr Thr Pro Glu Thr Lys Thr Lys Arg Pro Glu Gly Ile Lys Gly			
	305	310	315	320
	Val Glu Phe Arg Asp Pro Leu Gln Ser Val Thr Ala Glu Met Met Arg			
20	325	330	335	
	Ile Tyr Lys Asp Val Asp Thr Phe Val Val Ile Ser His Leu Gly Ile			
	340	345	350	
25	Asp Pro Ser Thr Gln Glu Thr Trp Arg Gly Asp Tyr Leu Val Lys Gln			
	355	360	365	
	Leu Ser Gln Asn Pro Gln Leu Lys Lys Arg Ile Thr Val Ile Asp Gly			
	370	375	380	
30	His Ser His Thr Val Leu Gln Asn Gly Gln Ile Tyr Asn Asn Asp Ala			
	385	390	395	400
	Leu Ala Gln Thr Gly Thr Ala Leu Ala Asn Ile Gly Lys Ile Thr Phe			
35	405	410	415	
	Asn Tyr Arg Asn Gly Glu Val Ser Asn Ile Lys Pro Ser Leu Ile Asn			
	420	425	430	
40	Val Lys Asp Val Glu Asn Val Thr Pro Asn Lys Ala Leu Ala Glu Gln			
	435	440	445	
	Ile Asn Gln Ala Asp Gln Thr Phe Arg Ala Gln Thr Ala Glu Val Ile			
	450	455	460	
45	Ile Pro Asn Asn Thr Ile Asp Phe Lys Gly Glu Arg Asp Asp Val Arg			
	465	470	475	480
	Thr Arg Glu Thr Asn Leu Gly Asn Ala Ile Ala Asp Ala Met Glu Ala			
50	485	490	495	
	Tyr Gly Val Lys Asn Phe Ser Lys Lys Thr Asp Phe Ala Val Thr Asn			
	500	505	510	
55	Gly Gly Gly Ile Arg Ala Ser Ile Ala Lys Gly Lys Val Thr Arg Tyr			
	515	520	525	
	Asp Leu Ile Ser Val Leu Pro Phe Gly Asn Thr Ile Ala Gln Ile Asp			
	530	535	540	
60	Val Lys Gly Ser Asp Val Trp Thr Ala Phe Glu His Ser Leu Gly Ala			

	545	550	555	560
	Pro Thr Thr Gln Lys Asp Gly Lys	Thr Val Leu Thr Ala Asn Gly Gly		
5	565	570	575	
	Leu Leu His Ile Ser Asp Ser Ile Arg Val Tyr Tyr Asp Ile Asn Lys			
	580	585	590	
10	Pro Ser Gly Lys Arg Ile Asn Ala Ile Gln Ile Leu Asn Lys Glu Thr			
	595	600	605	
	Gly Lys Phe Glu Asn Ile Asp Leu Lys Arg Val Tyr His Val Thr Met			
	610	615	620	
15	Asn Asp Phe Thr Ala Ser Gly Gly Asp Gly Tyr Ser Met Phe Gly Gly			
	625	630	635	640
	Pro Arg Glu Glu Gly Ile Ser Leu Asp Gln Val Leu Ala Ser Tyr Leu			
20	645	650	655	
	Lys Thr Ala Asn Leu Ala Lys Tyr Asp Thr Thr Glu Pro Gln Arg Met			
	660	665	670	
25	Leu Leu Gly Lys Pro Ala Val Ser Glu Gln Pro Ala Lys Gly Gln Gln			
	675	680	685	
	Gly Ser Lys Gly Ser Lys Ser Gly Lys Asp Thr Gln Pro Ile Gly Asp			
	690	695	700	
30	Asp Lys Val Met Asp Pro Ala Lys Lys Pro Ala Pro Gly Lys Val Val			
	705	710	715	720
	Leu Leu Leu Ala His Arg Gly Thr Val Ser Ser Gly Thr Glu Gly Ser			
	725	730	735	
35	Gly Arg Thr Ile Glu Gly Ala Thr Val Ser Ser Lys Ser Gly Lys Gln			
	740	745	750	
	Leu Ala Arg Met Ser Val Pro Lys Gly Ser Ala His Glu Lys Gln Leu			
40	755	760	765	
	Pro Lys Thr Gly Thr Asn Gln Ser Ser Pro Glu Ala Met Phe Val			
	770	775	780	
45	Leu Leu Ala Gly Ile Gly Leu Ile Ala Thr Val Arg Arg Arg Lys Ala			
	785	790	795	800
	Ser			
50	<210> 13			
	<211> 4914			
	<212> DNA			
	<213> Staphylococcus epidermidis			
55	<400> 13			
	agtggaaaaat atggaaaaag gagtatgcaa atgagagata agaaaggacc ggttaataaa		60	
	agagtagatt ttcttatcaaa taaattgaat aaatattcaa taagaaaatt tacagttgga		120	
60	acagcatcta tttaattgg ctcactaatg tatggaa ctcaacaaga ggcagaagca		180	

	gctgaaaaca atattgagaa tccaaactaca ttaaaagata atgtccaatc aaaaagaagt	240
5	aagattgaag aagtaacaaa caaagacact gcaccacagg gtgtagaagc taaatctgaa	300
	gtaacttcaa acaaagacac aatcgAACat gaaccatcag taaaagctga agatatatca	360
	aaaaaggagg atacaccaaa agaAGTAGCT gatgttgctg aagttcagcc gaaatcgtca	420
10	gtcactcata acgcagagac acctaaggTT agaaaAGCTC gttCTGTTGA tgaaggctct	480
	tttGATATT CAAGAGATTc taaaatgtA gttGAATCTA ccccaattac aattcaaggT	540
15	aaagaacatt ttGAAGGTtA CGGAAGTGTt gatatacAAA aaaaACCAAC agatttaggg	600
	gtatcagagg taaccaggTT taatGTTGGT aatgAAAGTA atGGTTGAT aggAGCTTA	660
	caattaaaaa ataaaaatAGA ttttagtaAG gatttcaatt ttaaAGTTAG agtggcaaat	720
20	aaccatcaat caaataccAC aggtgctgat ggttgggggt tcttatttag taaaggaaat	780
	gcagaagaat atttaactAA tggTgGAATC CTTGGGATA aaggTCgtt aaattcaggc	840
25	ggattttAAA ttgatactgg atacatttAt acaagttCCA tggacAAAAC tgAAAAGCAA	900
	gctggacaag gttatAGAGG atacggAGCT tttgtgAAAAA atgacAGTtC tggtaattca	960
	caaATGGTTG gagaaaaatAT tgataAAatCA AAAACTAATT ttttaaACTA tgCGGACAAT	1020
30	tcaactaata catcagatgg aaagttcat gggcaacgtt taaatgatgt catcttaact	1080
	tatGTTGCTT caactggtaa aatgagAGCA gaatATGCTG gtaAAACTTG ggAGACTTC	1140
35	ataacagatt tagGTTTATC taaaatcAG gcatataatt tcttaattAC atctAGTC	1200
	agatggggCC ttaatcaagg gataAAATGCA aatGGCTGGA tgagaACTGA CTTGAAAGGT	1260
	tcagAGTTA CTTTACACC agaAGCGCCA AAAACAATAA cagaATTAGA aaaaaaaAGTT	1320
40	gaagagATTc cattcaagaa agaacgtAAA ttAAATCCGG ATTAGCACC agggACAGAA	1380
	aaAGTAACAA gagaAGGACA AAAAGGTGAG aAGACAAATAA CGACACCAAC ACTAAAAAAAT	1440
45	ccattaACTG gagtaattAT tagtaaAGGT gaACCAAAAG AAGAGATTAC AAAAGATCCG	1500
	attaatGAAT taacAGAAATA CGGACCTGAA ACAATAGCGC CAGGTcatCG AGACGAATT	1560
	GATCCGAAGT taccaACAGG AGAGAAAGAG GAAGTTCCAG gtaAAACCAGG AATTAAGAAT	1620
50	ccagAAACAG gagACGTAGT tagACCGCCG GTCGATAGCG TAACAAAATA TGGACCTGTA	1680
	AAAGGAGACT CGATTGTAGA AAAAGAAGAG ATTCCATTG AgAAAGAACG TAAATTAAAT	1740
55	CCTGATTAG CACCAGGGAC AGAAAAAGTA ACAAGAGAAAG GACAAAAAGG TGAGAAAGACA	1800
	ATAACGACGC CAACACTAAA AAATCCATTA ACTGGAGAAA TTATTAGTAAG GTGAATCG	1860
	AAAGAAGAAA TCACAAAAGA TCCGATTAAT GAATTACAG AATACGGACC AGAAACGATA	1920
60	ACACCAGGTC ATCGAGACGA ATTGATCCG AAGTTACCAA CAGGAGAGAA AGAGGAAGTT	1980

	ccaggttaaac caggaattaa gaatccagaa acaggagatg tagttagacc accggtcgtat	2040
5	agcgtaacaa aatatggacc tgtaaaagga gactcgattg tagaaaaaga agagattcca	2100
	ttcgagaaaag aacgtaaatt taatcctgat ttagcaccag ggacagaaaa agtaacaaga	2160
	gaaggacaaa aaggtgagaa gacaataacg acaccaacac taaaaaatcc attaactgga	2220
10	gtatttatta gttaagggtga accaaaagaa gaaatcacaa aagatccgtat taatgaatta	2280
	acagaataacg gaccagaaac gataacacca ggtcatcgag acgaatttga tccgaagtta	2340
15	ccaacaggag agaaagaaga agttccaggt aaaccaggaa ttaagaatcc agaaacagga	2400
	gacgtagttt gaccaccggcgt cgatagcgta acaaaatatg gacctgtaaa aggagactcg	2460
	attgtagaaa aagaagagat tccattcaag aaagaacgta aatthaatcc ggatttagca	2520
20	ccagggacag aaaaagtaac aagagaagga caaaaagggtg agaagacaat aacgacgcac	2580
	acactaaaaa atccattaac tggagaaaatt attagtaaag gtgaatcgaa agaagaaatc	2640
25	acaaaagatc cgattaatgt attaacagaa tacggaccag aaacgataac accaggtcat	2700
	cgagacgaat ttgatccgaa gttaccaaca ggagagaaaag aggaagtcc aggttaacca	2760
	ggaattaaga atccagaaac aggagatgta gttagaccac cggtcgatag cgtaacaaaa	2820
30	tatggacctg taaaaggaga ctgcattgtat gaaaaagaag agattccatt cgagaaagaa	2880
	cgtaaattta atcctgattt agcaccaggg acagaaaaag taacaagaga aggacaaaaaa	2940
35	ggtgagaaga caataacgac gccAACACTA aaaaatccat taactggaga aattattatgt	3000
	aaaggtgaat cgaaagaaga aatcacaaaa gatccgatta atgaattaac agaatacgga	3060
	ccagaaacga taacaccagg tcatcgagac gaatttgcgt cgaagttacc aacaggagag	3120
40	aaagaggaag ttccaggtaa accaggaatt aagaatccag aaacaggaga cgtagttgaa	3180
	ccaccggtcg atagcgtaac aaaatatgga cctgtaaaag gagactcgat tgtagaaaaaa	3240
45	gaagaaaattc cattcaagaa agaacgtaaa ttaatcctg atttagcacc agggacagaa	3300
	aaagtaacaa gagaaggaca aaaaggttag aagacaataa cgacgccaac actaaaaat	3360
	ccattaactg gagaaattat tagtaaagggt gaatcgaaag aagaaatcactaaagatccg	3420
50	attaatgaat taacagaata cggaccagaa acgataacac caggtcatcg agacgaattt	3480
	gatccgaagt taccaacagg agagaaagag gaagttccag gttaaccagg aatthaagaat	3540
55	ccagaaacag gagatgtat tagaccaccg gtcgatagcg taacaaaata tggacctgtat	3600
	aaaggagact cgattgtaga aaaagaagaa attccattcg agaaagaacg taaatttaat	3660
	cctgatttag caccaggac agaaaaagta acaagagaag gacaaaaagg tgagaagaca	3720
60	ataacgacgc caacactaaa aaatccatta actggagaaa ttattagtaa aggtgaatcg	3780

	aaagaagaaa tcacaaaaga tccgattaat gaattaacag aatacggacc agaaacgata	3840
5	acaccaggc atcgagacga atttgatccg aagttaccaa caggagagaa agaggaagt	3900
	ccaggtaaac caggaattaa gaatccagaa acaggagatg tagtagacc accggtcgat	3960
	agcgtaacaa aatatggacc tgtaaaagga gactcgattg tagaaaaaga agaaattcca	4020
10	ttcgagaaag aacgtaaatt taatcctgat ttgcaccag ggacagaaaa agtaacaaga	4080
	gaaggacaaa aagggtgagaa gacaataacg acgccaacac taaaaaatcc attaactgga	4140
15	gaaattatta gtaaagggtga atcgaaagaa gaaatcacaa aagatccagt taatgaatta	4200
	acagaattcg gtggcgagaa aataccgcaa ggtcataaag atatcttga tccaaactta	4260
	ccaacagatc aaacggaaaa agtaccaaggt aaaccaggaa tcaagaatcc agacacagga	4320
20	aaagtatcg aagagccagt ggatgatgtg attaaacacg gacaaaaac ggttacacca	4380
	gaaacaaaaa cagtagagat accgttgaa acaaaaacgtg agttaatcc aaaattacaa	4440
25	cctggtaag agcgagtgaa acaagaagga caaccaggaa gtaagacaat cacaacacca	4500
	atcacagtga acccattaac aggtgaaaaa gttggcgagg gtcaaccaac agaagagatc	4560
	acaaaaacaac cagtagataa gattgttagag ttcggtgag agaaaccaa agatccaaaa	4620
30	ggacctgaaa acccagagaa gccgagcaga ccaactcatc caagtggccc agtaaatcct	4680
	aacaatccag gattatcgaa agacagagca aaaccaaattg gcccagttca ttcaatggat	4740
35	aaaaatgata aagttaaaaa atctaaaatt gctaaagaat cagtagctaa tcaagagaaa	4800
	aaacgagcag aattaccaa aacaggtta gaaagcacgc aaaaaggittt gatcttttagt	4860
	agtataattt gaattgctgg attaatgtta ttggctcgta gaagaaagaa ttaa	4914
40	<210> 14 <211> 1637 <212> PRT <213> Staphylococcus epidermidis	
45	<400> 14	
	Ser Gly Lys Tyr Gly Lys Arg Ser Met Gln Met Arg Asp Lys Lys Gly	
	1 5 10 15	
50	Pro Val Asn Lys Arg Val Asp Phe Leu Ser Asn Lys Leu Asn Lys Tyr	
	20 25 30	
	Ser Ile Arg Lys Phe Thr Val Gly Thr Ala Ser Ile Leu Ile Gly Ser	
	35 40 45	
55	Leu Met Tyr Leu Gly Thr Gln Gln Glu Ala Glu Ala Ala Glu Asn Asn	
	50 55 60	
60	Ile Glu Asn Pro Thr Thr Leu Lys Asp Asn Val Gln Ser Lys Glu Val	
	65 70 75 80	

Lys Ile Glu Glu Val Thr Asn Lys Asp Thr Ala Pro Gln Gly Val Glu
 85 90 95

5 Ala Lys Ser Glu Val Thr Ser Asn Lys Asp Thr Ile Glu His Glu Pro
 100 105 110

Ser Val Lys Ala Glu Asp Ile Ser Lys Lys Glu Asp Thr Pro Lys Glu
 115 120 125

10 Val Ala Asp Val Ala Glu Val Gln Pro Lys Ser Ser Val Thr His Asn
 130 135 140

Ala Glu Thr Pro Lys Val Arg Lys Ala Arg Ser Val Asp Glu Gly Ser
 15 145 150 155 160

Phe Asp Ile Thr Arg Asp Ser Lys Asn Val Val Glu Ser Thr Pro Ile
 165 170 175

20 Thr Ile Gln Gly Lys Glu His Phe Glu Gly Tyr Gly Ser Val Asp Ile
 180 185 190

Gln Lys Lys Pro Thr Asp Leu Gly Val Ser Glu Val Thr Arg Phe Asn
 195 200 205

25 Val Gly Asn Glu Ser Asn Gly Leu Ile Gly Ala Leu Gln Leu Lys Asn
 210 215 220

Lys Ile Asp Phe Ser Lys Asp Phe Asn Phe Lys Val Arg Val Ala Asn
 30 225 230 235 240

Asn His Gln Ser Asn Thr Thr Gly Ala Asp Gly Trp Gly Phe Leu Phe
 245 250 255

35 Ser Lys Gly Asn Ala Glu Glu Tyr Leu Thr Asn Gly Gly Ile Leu Gly
 260 265 270

Asp Lys Gly Leu Val Asn Ser Gly Gly Phe Lys Ile Asp Thr Gly Tyr
 275 280 285

40 Ile Tyr Thr Ser Ser Met Asp Lys Thr Glu Lys Gln Ala Gly Gln Gly
 290 295 300

Tyr Arg Gly Tyr Gly Ala Phe Val Lys Asn Asp Ser Ser Gly Asn Ser
 45 305 310 315 320

Gln Met Val Gly Glu Asn Ile Asp Lys Ser Lys Thr Asn Phe Leu Asn
 325 330 335

50 Tyr Ala Asp Asn Ser Thr Asn Thr Ser Asp Gly Lys Phe His Gly Gln
 340 345 350

Arg Leu Asn Asp Val Ile Leu Thr Tyr Val Ala Ser Thr Gly Lys Met
 355 360 365

55 Arg Ala Glu Tyr Ala Gly Lys Thr Trp Glu Thr Ser Ile Thr Asp Leu
 370 375 380

60 Gly Leu Ser Lys Asn Gln Ala Tyr Asn Phe Leu Ile Thr Ser Ser Gln
 385 390 395 400

Arg Trp Gly Leu Asn Gln Gly Ile Asn Ala Asn Gly Trp Met Arg Thr
 405 410 415

5 Asp Leu Lys Gly Ser Glu Phe Thr Phe Thr Pro Glu Ala Pro Lys Thr
 420 425 430

Ile Thr Glu Leu Glu Lys Lys Val Glu Glu Ile Pro Phe Lys Lys Glu
 10 435 440 445

Arg Lys Phe Asn Pro Asp Leu Ala Pro Gly Thr Glu Lys Val Thr Arg
 450 455 460

15 Glu Gly Gln Lys Gly Glu Lys Thr Ile Thr Thr Pro Thr Leu Lys Asn
 465 470 475 480

Pro Leu Thr Gly Val Ile Ile Ser Lys Gly Glu Pro Lys Glu Glu Ile
 485 490 495

20 Thr Lys Asp Pro Ile Asn Glu Leu Thr Glu Tyr Gly Pro Glu Thr Ile
 500 505 510

Ala Pro Gly His Arg Asp Glu Phe Asp Pro Lys Leu Pro Thr Gly Glu
 25 515 520 525

Lys Glu Glu Val Pro Gly Lys Pro Gly Ile Lys Asn Pro Glu Thr Gly
 530 535 540

30 Asp Val Val Arg Pro Pro Val Asp Ser Val Thr Lys Tyr Gly Pro Val
 545 550 555 560

Lys Gly Asp Ser Ile Val Glu Lys Glu Glu Ile Pro Phe Glu Lys Glu
 565 570 575

35 Arg Lys Phe Asn Pro Asp Leu Ala Pro Gly Thr Glu Lys Val Thr Arg
 580 585 590

Glu Gly Gln Lys Gly Glu Lys Thr Ile Thr Thr Pro Thr Leu Lys Asn
 40 595 600 605

Pro Leu Thr Gly Glu Ile Ile Ser Lys Gly Glu Ser Lys Glu Glu Ile
 610 615 620

Thr Lys Asp Pro Ile Asn Glu Leu Thr Glu Tyr Gly Pro Glu Thr Ile
 45 625 630 635 640

Thr Pro Gly His Arg Asp Glu Phe Asp Pro Lys Leu Pro Thr Gly Glu
 645 650 655

50 Lys Glu Glu Val Pro Gly Lys Pro Gly Ile Lys Asn Pro Glu Thr Gly
 660 665 670

Asp Val Val Arg Pro Pro Val Asp Ser Val Thr Lys Tyr Gly Pro Val
 55 675 680 685

Lys Gly Asp Ser Ile Val Glu Lys Glu Glu Ile Pro Phe Glu Lys Glu
 690 695 700

60 Arg Lys Phe Asn Pro Asp Leu Ala Pro Gly Thr Glu Lys Val Thr Arg
 705 710 715 720

Glu Gly Gln Lys Gly Glu Lys Thr Ile Thr Thr Pro Thr Leu Lys Asn
 725 730 735

5 Pro Leu Thr Gly Val Ile Ile Ser Lys Gly Glu Pro Lys Glu Glu Ile
 740 745 750

Thr Lys Asp Pro Ile Asn Glu Leu Thr Glu Tyr Gly Pro Glu Thr Ile
 755 760 765

10 Thr Pro Gly His Arg Asp Glu Phe Asp Pro Lys Leu Pro Thr Gly Glu
 770 775 780

15 Lys Glu Glu Val Pro Gly Lys Pro Gly Ile Lys Asn Pro Glu Thr Gly
 785 790 795 800

Asp Val Val Arg Pro Pro Val Asp Ser Val Thr Lys Tyr Gly Pro Val
 805 810 815

20 Lys Gly Asp Ser Ile Val Glu Lys Glu Glu Ile Pro Phe Lys Lys Glu
 820 825 830

Arg Lys Phe Asn Pro Asp Leu Ala Pro Gly Thr Glu Lys Val Thr Arg
 835 840 845

25 Glu Gly Gln Lys Gly Glu Lys Thr Ile Thr Pro Thr Leu Lys Asn
 850 855 860

30 Pro Leu Thr Gly Glu Ile Ile Ser Lys Gly Glu Ser Lys Glu Glu Ile
 865 870 875 880

Thr Lys Asp Pro Ile Asn Glu Leu Thr Glu Tyr Gly Pro Glu Thr Ile
 885 890 895

35 Thr Pro Gly His Arg Asp Glu Phe Asp Pro Lys Leu Pro Thr Gly Glu
 900 905 910

Lys Glu Glu Val Pro Gly Lys Pro Gly Ile Lys Asn Pro Glu Thr Gly
 915 920 925

40 Asp Val Val Arg Pro Pro Val Asp Ser Val Thr Lys Tyr Gly Pro Val
 930 935 940

45 Lys Gly Asp Ser Ile Val Glu Lys Glu Glu Ile Pro Phe Glu Lys Glu
 945 950 955 960

Arg Lys Phe Asn Pro Asp Leu Ala Pro Gly Thr Glu Lys Val Thr Arg
 965 970 975

50 Glu Gly Gln Lys Gly Glu Lys Thr Ile Thr Pro Thr Leu Lys Asn
 980 985 990

Pro Leu Thr Gly Glu Ile Ile Ser Lys Gly Glu Ser Lys Glu Glu Ile
 995 1000 1005

55 Thr Lys Asp Pro Ile Asn Glu Leu Thr Glu Tyr Gly Pro Glu Thr
 1010 1015 1020

60 Ile Thr Pro Gly His Arg Asp Glu Phe Asp Pro Lys Leu Pro Thr
 1025 1030 1035

	Gly	Glu	Lys	Glu	Glu	Val	Pro	Gly	Lys	Pro	Gly	Ile	Lys	Asn	Pro
	1040					1045							1050		
5	Glu	Thr	Gly	Asp	Val	Val	Arg	Pro	Pro	Val	Asp	Ser	Val	Thr	Lys
	1055					1060						1065			
10	Tyr	Gly	Pro	Val	Lys	Gly	Asp	Ser	Ile	Val	Glu	Lys	Glu	Glu	Ile
	1070					1075						1080			
15	Pro	Phe	Lys	Lys	Glu	Arg	Lys	Phe	Asn	Pro	Asp	Leu	Ala	Pro	Gly
	1085					1090						1095			
20	Thr	Glu	Lys	Val	Thr	Arg	Glu	Gly	Gln	Lys	Gly	Glu	Lys	Thr	Ile
	1100					1105						1110			
25	Thr	Thr	Pro	Thr	Leu	Lys	Asn	Pro	Leu	Thr	Gly	Glu	Ile	Ile	Ser
	1115					1120						1125			
30	Lys	Gly	Glu	Ser	Lys	Glu	Glu	Ile	Thr	Lys	Asp	Pro	Ile	Asn	Glu
	1130					1135						1140			
35	Leu	Thr	Glu	Tyr	Gly	Pro	Glu	Thr	Ile	Thr	Pro	Gly	His	Arg	Asp
	1145					1150						1155			
40	Glu	Phe	Asp	Pro	Lys	Leu	Pro	Thr	Gly	Glu	Lys	Glu	Glu	Val	Pro
	1160					1165						1170			
45	Gly	Lys	Pro	Gly	Ile	Lys	Asn	Pro	Glu	Thr	Gly	Asp	Val	Val	Arg
	1175					1180						1185			
50	Pro	Pro	Val	Asp	Ser	Val	Thr	Lys	Tyr	Gly	Pro	Val	Lys	Gly	Asp
	1190					1195						1200			
55	Ser	Ile	Val	Glu	Lys	Glu	Glu	Ile	Pro	Phe	Glu	Lys	Glu	Arg	Lys
	1205					1210						1215			
60	Phe	Asn	Pro	Asp	Leu	Ala	Pro	Gly	Thr	Glu	Lys	Val	Thr	Arg	Glu
	1220					1225						1230			
65	Gly	Gln	Lys	Gly	Glu	Lys	Thr	Ile	Thr	Thr	Pro	Thr	Leu	Lys	Asn
	1235					1240						1245			
70	Pro	Leu	Thr	Gly	Glu	Ile	Ile	Ser	Lys	Gly	Glu	Ser	Lys	Glu	Glu
	1250					1255						1260			
75	Ile	Thr	Lys	Asp	Pro	Ile	Asn	Glu	Leu	Thr	Glu	Tyr	Gly	Pro	Glu
	1265					1270						1275			
80	Thr	Ile	Thr	Pro	Gly	His	Arg	Asp	Glu	Phe	Asp	Pro	Lys	Leu	Pro
	1280					1285						1290			
85	Thr	Gly	Glu	Lys	Glu	Glu	Val	Pro	Gly	Lys	Pro	Gly	Ile	Lys	Asn
	1295					1300						1305			
90	Pro	Glu	Thr	Gly	Asp	Val	Val	Arg	Pro	Pro	Val	Asp	Ser	Val	Thr
	1310					1315						1320			
95	Lys	Tyr	Gly	Pro	Val	Lys	Gly	Asp	Ser	Ile	Val	Glu	Lys	Glu	Glu
	1325					1330						1335			

	Ile Pro Phe Glu Lys Glu Arg Lys Phe Asn Pro Asp Leu Ala Pro	
	1340 1345 1350	
5	Gly Thr Glu Lys Val Thr Arg Glu Gly Gln Lys Gly Glu Lys Thr	
	1355 1360 1365	
	Ile Thr Thr Pro Thr Leu Lys Asn Pro Leu Thr Gly Glu Ile Ile	
10	1370 1375 1380	
	Ser Lys Gly Glu Ser Lys Glu Glu Ile Thr Lys Asp Pro Val Asn	
	1385 1390 1395	
15	Glu Leu Thr Glu Phe Gly Gly Glu Lys Ile Pro Gln Gly His Lys	
	1400 1405 1410	
	Asp Ile Phe Asp Pro Asn Leu Pro Thr Asp Gln Thr Glu Lys Val	
	1415 1420 1425	
20	Pro Gly Lys Pro Gly Ile Lys Asn Pro Asp Thr Gly Lys Val Ile	
	1430 1435 1440	
	Glu Glu Pro Val Asp Asp Val Ile Lys His Gly Pro Lys Thr Gly	
25	1445 1450 1455	
	Thr Pro Glu Thr Lys Thr Val Glu Ile Pro Phe Glu Thr Lys Arg	
	1460 1465 1470	
30	Glu Phe Asn Pro Lys Leu Gln Pro Gly Glu Glu Arg Val Lys Gln	
	1475 1480 1485	
	Glu Gly Gln Pro Gly Ser Lys Thr Ile Thr Thr Pro Ile Thr Val	
	1490 1495 1500	
35	Asn Pro Leu Thr Gly Glu Lys Val Gly Glu Gly Gln Pro Thr Glu	
	1505 1510 1515	
	Glu Ile Thr Lys Gln Pro Val Asp Lys Ile Val Glu Phe Gly Gly	
40	1520 1525 1530	
	Glu Lys Pro Lys Asp Pro Lys Gly Pro Glu Asn Pro Glu Lys Pro	
	1535 1540 1545	
45	Ser Arg Pro Thr His Pro Ser Gly Pro Val Asn Pro Asn Asn Pro	
	1550 1555 1560	
	Gly Leu Ser Lys Asp Arg Ala Lys Pro Asn Gly Pro Val His Ser	
	1565 1570 1575	
50	Met Asp Lys Asn Asp Lys Val Lys Lys Ser Lys Ile Ala Lys Glu	
	1580 1585 1590	
	Ser Val Ala Asn Gln Glu Lys Lys Arg Ala Glu Leu Pro Lys Thr	
55	1595 1600 1605	
	Gly Leu Glu Ser Thr Gln Lys Gly Leu Ile Phe Ser Ser Ile Ile	
	1610 1615 1620	
60	Gly Ile Ala Gly Leu Met Leu Leu Ala Arg Arg Arg Lys Asn	
	1625 1630 1635	

	gatcgattga ataaaaatgg gaaaacgaca gatttaaata agtagcaaa ttatgaat	1680
5	caaggatcag atttattaga cagtattcca gatataccca caccaaagcc agaaaagacg	1740
	ttaacacttg gtaaaggtaa tggattgtta agtggattat taaatgctga tggtaatgta	1800
	tcttcgccta aagcggggga aacgataaaa gaacattggt tgccgatatac tgtaattgtt	1860
10	ggtgcaatgg gtgtactaat gatttggta tcacgacgca ataagttgaa aaataaagca	1920
	taa	1923
15	<210> 16	
	<211> 640	
	<212> PRT	
	<213> Staphylococcus epidermidis	
20	<400> 16	
	Gly Arg Ser Met Leu Met Ala Lys Tyr Arg Gly Lys Pro Phe Gln Leu	
	1 5 10 15	
25	Tyr Val Lys Leu Ser Cys Ser Thr Met Met Ala Thr Ser Ile Ile Leu	
	20 25 30	
	Thr Asn Ile Leu Pro Tyr Asp Ala Gln Ala Ala Ser Glu Lys Asp Thr	
	35 40 45	
30	Glu Ile Thr Lys Glu Ile Leu Ser Lys Gln Asp Leu Leu Asp Lys Val	
	50 55 60	
35	Asp Lys Ala Ile Arg Gln Ile Glu Gln Leu Lys Gln Leu Ser Ala Ser	
	65 70 75 80	
	Ser Lys Glu His Tyr Lys Ala Gln Leu Asn Glu Ala Lys Thr Ala Ser	
	85 90 95	
40	Gln Ile Asp Glu Ile Ile Lys Arg Ala Asn Glu Leu Asp Ser Lys Asp	
	100 105 110	
	Asn Lys Ser Ser His Thr Glu Met Asn Gly Gln Ser Asp Ile Asp Ser	
	115 120 125	
45	Lys Leu Asp Gln Leu Leu Lys Asp Leu Asn Glu Val Ser Ser Asn Val	
	130 135 140	
50	Asp Arg Gly Gln Gln Ser Gly Glu Asp Asp Leu Asn Ala Met Lys Asn	
	145 150 155 160	
	Asp Met Ser Gln Thr Ala Thr Lys His Gly Glu Lys Asp Asp Lys	
	165 170 175	
55	Asn Asp Glu Ala Met Val Asn Lys Ala Leu Glu Asp Leu Asp His Leu	
	180 185 190	
	Asn Gln Gln Ile His Lys Ser Lys Asp Ala Ser Lys Asp Thr Ser Glu	
	195 200 205	
60	Asp Pro Ala Val Ser Thr Thr Asp Asn Asn His Glu Val Ala Lys Thr	

	210	215	220
	Pro Asn Asn Asp Gly Ser Gly His Val Val Leu Asn Lys Phe Leu Ser		
5	225 230	235	240
	Asn Glu Glu Asn Gln Ser His Ser Asn Arg Leu Thr Asp Lys Leu Gln		
	245 250	255	
10	Gly Ser Asp Lys Ile Asn His Ala Met Ile Glu Lys Leu Ala Lys Ser		
	260 265	270	
	Asn Ala Ser Thr Gln His Tyr Thr Tyr His Lys Leu Asn Thr Leu Gln		
	275 280	285	
15	Ser Leu Asp Gln Arg Ile Ala Asn Thr Gln Leu Pro Lys Asn Gln Lys		
	290 295	300	
	Ser Asp Leu Met Ser Glu Val Asn Lys Thr Lys Glu Arg Ile Lys Ser		
20	305 310	315	320
	Gln Arg Asn Ile Ile Leu Glu Leu Ala Arg Thr Asp Asp Lys Lys		
	325 330	335	
25	Tyr Ala Thr Gln Ser Ile Leu Glu Ser Ile Phe Asn Lys Asp Glu Ala		
	340 345	350	
	Val Lys Ile Leu Lys Asp Ile Arg Val Asp Gly Lys Thr Asp Gln Gln		
	355 360	365	
30	Ile Ala Asp Gln Ile Thr Arg His Ile Asp Gln Leu Ser Leu Thr Thr		
	370 375	380	
	Ser Asp Asp Leu Leu Thr Ser Leu Ile Asp Gln Ser Gln Asp Lys Ser		
35	385 390	395	400
	Leu Leu Ile Ser Gln Ile Leu Gln Thr Lys Leu Gly Lys Ala Glu Ala		
	405 410	415	
40	Asp Lys Leu Ala Lys Asp Trp Thr Asn Lys Gly Leu Ser Asn Arg Gln		
	420 425	430	
	Ile Val Asp Gln Leu Lys His Phe Ala Ser Thr Gly Asp Thr Ser		
	435 440	445	
45	Ser Asp Asp Ile Leu Lys Ala Ile Leu Asn Asn Ala Lys Asp Lys Lys		
	450 455	460	
	Gln Ala Ile Glu Thr Ile Leu Ala Thr Arg Ile Glu Arg Gln Lys Ala		
50	465 470	475	480
	Lys Leu Leu Ala Asp Leu Ile Thr Lys Ile Glu Thr Asp Gln Asn Lys		
	485 490	495	
55	Ile Phe Asn Leu Val Lys Ser Ala Leu Asn Gly Lys Ala Asp Asp Leu		
	500 505	510	
	Leu Asn Leu Gln Lys Arg Leu Asn Gln Thr Lys Lys Asp Ile Asp Tyr		
	515 520	525	
60	Ile Leu Ser Pro Ile Val Asn Arg Pro Ser Leu Leu Asp Arg Leu Asn		

	530	535	540	
	Lys Asn Gly Lys Thr Thr Asp Leu Asn Lys Leu Ala Asn Leu Met Asn			
5	545	550	555	560
	Gln Gly Ser Asp Leu Leu Asp Ser Ile Pro Asp Ile Pro Thr Pro Lys			
	565	570	575	
10	Pro Glu Lys Thr Leu Thr Leu Gly Lys Gly Asn Gly Leu Leu Ser Gly			
	580	585	590	
	Leu Leu Asn Ala Asp Gly Asn Val Ser Leu Pro Lys Ala Gly Glu Thr			
	595	600	605	
15	Ile Lys Glu His Trp Leu Pro Ile Ser Val Ile Val Gly Ala Met Gly			
	610	615	620	
	Val Leu Met Ile Trp Leu Ser Arg Arg Asn Lys Leu Lys Asn Lys Ala			
20	625	630	635	640
	<210> 17			
	<211> 522			
	<212> PRT			
25	<213> Staphylococcus epidermidis			
	<400> 17			
	Ala Ser Glu Thr Pro Ile Thr Ser Glu Ile Ser Ser Asn Ser Glu Thr			
30	1	5	10	15
	Val Ala Asn Gln Asn Ser Thr Thr Ile Lys Asn Ser Gln Lys Glu Thr			
	20	25	30	
35	Val Asn Ser Thr Ser Leu Glu Ser Asn His Ser Asn Ser Thr Asn Lys			
	35	40	45	
	Gln Met Ser Ser Glu Val Thr Asn Thr Ala Gln Ser Ser Glu Lys Ala			
	50	55	60	
40	Gly Ile Ser Gln Gln Ser Ser Glu Thr Ser Asn Gln Ser Ser Lys Leu			
	65	70	75	80
	Asn Thr Tyr Ala Ser Thr Asp His Val Glu Ser Thr Thr Ile Asn Asn			
45	85	90	95	
	Asp Asn Thr Ala Gln Gln Asp Gln Asn Lys Ser Ser Asn Val Thr Ser			
	100	105	110	
50	Lys Ser Thr Gln Ser Asn Thr Ser Ser Ser Glu Lys Asn Ile Ser Ser			
	115	120	125	
	Asn Leu Thr Gln Ser Ile Glu Thr Lys Ala Thr Asp Ser Leu Ala Thr			
	130	135	140	
55	Ser Glu Ala Arg Thr Ser Thr Asn Gln Ile Ser Asn Leu Thr Ser Thr			
	145	150	155	160
	Ser Thr Ser Asn Gln Ser Ser Pro Thr Ser Phe Ala Asn Leu Arg Thr			
	165	170	175	
60				

Phe Ser Arg Phe Thr Val Leu Asn Thr Met Ala Ala Pro Thr Thr Thr
 180 185 190

5 Ser Thr Thr Thr Ser Ser Leu Thr Ser Asn Ser Val Val Val Asn
 195 200 205

Lys Asp Asn Phe Asn Glu His Met Asn Leu Ser Gly Ser Ala Thr Tyr
 210 215 220

10 Asp Pro Lys Thr Gly Ile Ala Thr Leu Thr Pro Asp Ala Tyr Ser Gln
 225 230 235 240

Lys Gly Ala Ile Ser Leu Asn Thr Arg Leu Asp Ser Asn Arg Ser Phe
 245 250 255

15 Arg Phe Ile Gly Lys Val Asn Leu Gly Asn Arg Tyr Glu Gly Tyr Ser
 260 265 270

20 Pro Asp Gly Val Ala Gly Gly Asp Gly Ile Gly Phe Ala Phe Ser Pro
 275 280 285

Gly Pro Leu Gly Gln Ile Gly Lys Glu Gly Ala Ala Val Gly Ile Gly
 290 295 300

25 Gly Leu Asn Asn Ala Phe Gly Phe Lys Leu Asp Thr Tyr His Asn Thr
 305 310 315 320

Ser Thr Pro Arg Ser Asp Ala Lys Ala Lys Ala Asp Pro Arg Asn Val
 325 330 335

30 Gly Gly Gly Ala Phe Gly Ala Phe Val Ser Thr Asp Arg Asn Gly
 340 345 350

35 Met Ala Thr Thr Glu Glu Ser Thr Ala Ala Lys Leu Asn Val Gln Pro
 355 360 365

Thr Asp Asn Ser Phe Gln Asp Phe Val Ile Asp Tyr Asn Gly Asp Thr
 370 375 380

40 Lys Val Met Thr Val Thr Tyr Ala Gly Gln Thr Phe Thr Arg Asn Leu
 385 390 395 400

Thr Asp Trp Ile Lys Asn Ser Gly Gly Thr Thr Phe Ser Leu Ser Met
 405 410 415

45 Thr Ala Ser Thr Gly Gly Ala Lys Asn Leu Gln Gln Val Gln Phe Gly
 420 425 430

50 Thr Phe Glu Tyr Thr Glu Ser Ala Val Ala Lys Val Arg Tyr Val Asp
 435 440 445

Ala Asn Thr Gly Lys Asp Ile Ile Pro Pro Lys Thr Ile Ala Gly Glu
 450 455 460

55 Val Asp Gly Thr Val Asn Ile Asp Lys Gln Leu Asn Asn Phe Lys Asn
 465 470 475 480

Leu Gly Tyr Ser Tyr Val Gly Thr Asp Ala Leu Lys Ala Pro Asn Tyr
 485 490 495

60

Thr Glu Thr Ser Gly Thr Pro Thr Leu Lys Leu Thr Asn Ser Ser Gln
 500 505 510

5 Thr Val Ile Tyr Lys Phe Lys Asp Val Gln
 515 520

<210> 18
 <211> 485
 <212> PRT
 10 <213> *Staphylococcus epidermidis*
 <400> 18

Ala Ser Asp Ala Pro Leu Thr Ser Glu Leu Asn Thr Gln Ser Glu Thr
 15 1 5 10 15

Val Gly Asn Gln Asn Ser Thr Thr Ile Glu Ala Ser Thr Ser Thr Ala
 20 25 30

20 Asp Ser Thr Ser Val Thr Lys Asn Ser Ser Ser Val Gln Thr Ser Asn
 35 35 40 45

Ser Asp Thr Val Ser Ser Glu Lys Ser Glu Lys Val Thr Ser Thr Thr
 50 50 55 60

25 Asn Ser Thr Ser Asn Gln Gln Glu Lys Leu Thr Ser Thr Ser Glu Ser
 65 65 70 75 80

30 Thr Ser Ser Lys Asn Thr Thr Ser Ser Asp Thr Lys Ser Val Ala
 85 85 90 95

Ser Thr Ser Ser Thr Glu Gln Pro Ile Asn Thr Ser Thr Asn Gln Ser
 100 100 105 110

35 Thr Ala Ser Asn Asn Thr Ser Gln Ser Thr Thr Pro Ser Ser Val Asn
 115 115 120 125

Leu Asn Lys Thr Ser Thr Thr Ser Thr Ser Thr Ala Pro Val Lys Leu
 130 130 135 140

40 Arg Thr Phe Ser Arg Leu Ala Met Ser Thr Phe Ala Ser Ala Ala Thr
 145 145 150 155 160

45 Thr Thr Ala Val Thr Ala Asn Thr Ile Thr Val Asn Lys Asp Asn Leu
 165 165 170 175

Lys Gln Tyr Met Thr Thr Ser Gly Asn Ala Thr Tyr Asp Gln Ser Thr
 180 180 185 190

50 Gly Ile Val Thr Leu Thr Gln Asp Ala Tyr Ser Gln Lys Gly Ala Ile
 195 195 200 205

Thr Leu Gly Thr Arg Ile Asp Ser Asn Lys Ser Phe His Phe Ser Gly
 210 210 215 220

55 Lys Val Asn Leu Gly Asn Lys Tyr Glu Gly His Gly Asn Gly Gly Asp
 225 225 230 235 240

60 Gly Ile Gly Phe Ala Phe Ser Pro Gly Val Leu Gly Glu Thr Gly Leu
 245 245 250 255

Asn Gly Ala Ala Val Gly Ile Gly Gly Leu Ser Asn Ala Phe Gly Phe
 260 265 270
 5 Lys Leu Asp Thr Tyr His Asn Thr Ser Lys Pro Asn Ser Ala Ala Lys
 275 280 285
 Ala Asn Ala Asp Pro Ser Asn Val Ala Gly Gly Ala Phe Gly Ala
 290 295 300
 10 Phe Val Thr Thr Asp Ser Tyr Gly Val Ala Thr Thr Tyr Thr Ser Ser
 305 310 315 320
 Ser Thr Ala Asp Asn Ala Ala Lys Leu Asn Val Gln Pro Thr Asn Asn
 15 325 330 335
 Thr Phe Gln Asp Phe Asp Ile Asn Tyr Asn Gly Asp Thr Lys Val Met
 340 345 350
 20 Thr Val Lys Tyr Ala Gly Gln Thr Trp Thr Arg Asn Ile Ser Asp Trp
 355 360 365
 Ile Ala Lys Ser Gly Thr Thr Asn Phe Ser Leu Ser Met Thr Ala Ser
 370 375 380
 25 Thr Gly Gly Ala Thr Asn Leu Gln Gln Val Gln Phe Gly Thr Phe Glu
 385 390 395 400
 Tyr Thr Glu Ser Ala Val Thr Gln Val Arg Tyr Val Asp Val Thr Thr
 30 405 410 415
 Gly Lys Asp Ile Ile Pro Pro Lys Thr Tyr Ser Gly Asn Val Asp Gln
 420 425 430
 35 Val Val Thr Ile Asp Asn Gln Gln Ser Ala Leu Thr Ala Lys Gly Tyr
 435 440 445
 Asn Tyr Thr Ser Val Asp Ser Ser Tyr Ala Ser Thr Tyr Asn Asp Thr
 450 455 460
 40 Asn Lys Thr Val Lys Met Thr Asn Ala Gly Gln Ser Val Thr Tyr Tyr
 465 470 475 480
 Phe Thr Asp Val Val
 45 485
 <210> 19
 <211> 1245
 <212> PRT
 50 <213> Staphylococcus epidermidis
 <400> 19
 55 Met Gly Lys Arg Arg Gln Gly Pro Ile Asn Lys Lys Val Asp Phe Leu
 1 5 10 15
 Pro Asn Lys Leu Asn Lys Tyr Ser Ile Arg Lys Phe Thr Val Gly Thr
 20 25 30
 60 Ala Ser Ile Leu Leu Gly Ser Thr Leu Ile Phe Gly Ser Ser Ser His

	35	40	45
	Glu Ala Lys Ala Ala Glu	Glu Lys Gln Val Asp Pro	Ile Thr Gln Ala
5	50 55	60	
	Asn Gln Asn Asp Ser Ser	Glu Arg Ser Leu Glu Asn Thr Asn Gln Pro	
	65 70	75	80
10	Thr Val Asn Asn Glu Ala Pro Gln Met	Ser Ser Thr Leu Gln Ala Glu	
	85	90	95
	Glu Gly Ser Asn Ala Glu Ala Pro Gln	Ser Glu Pro Thr Lys Ala Glu	
	100	105	110
15	Glu Gly Gly Asn Ala Glu Ala Ala Gln	Ser Glu Pro Thr Lys Ala Glu	
	115	120	125
	Glu Gly Gly Asn Ala Glu Ala Pro Gln Ser	Glu Pro Thr Lys Ala Glu	
20	130 135	140	
	Glu Gly Gly Asn Ala Glu Ala Ala Gln	Ser Glu Pro Thr Lys Thr Glu	
	145 150	155	160
25	Glu Gly Ser Asn Val Lys Ala Ala Gln	Ser Glu Pro Thr Lys Ala Glu	
	165	170	175
	Glu Gly Ser Asn Ala Glu Ala Pro Gln Ser	Glu Pro Thr Lys Thr Glu	
	180	185	190
30	Glu Gly Ser Asn Ala Lys Ala Ala Gln	Ser Glu Pro Thr Lys Ala Glu	
	195	200	205
	Glu Gly Gly Asn Ala Glu Ala Ala Gln	Ser Glu Pro Thr Lys Thr Glu	
35	210 215	220	
	Glu Gly Ser Asn Ala Glu Ala Pro Gln Ser	Glu Pro Thr Lys Ala Glu	
	225 230	235	240
40	Glu Gly Gly Asn Ala Glu Ala Pro Gln Ser	Glu Pro Thr Lys Thr Glu	
	245	250	255
	Glu Gly Gly Asn Ala Glu Ala Pro Asn Val	Pro Thr Ile Lys Ala Asn	
	260	265	270
45	Ser Asp Asn Asp Thr Gln Thr Gln Phe	Ser Glu Ala Pro Thr Arg Asn	
	275	280	285
	Asp Leu Ala Arg Lys Glu Asp Ile Pro Ala Val	Ser Lys Asn Glu Glu	
50	290 295	300	
	Leu Gln Ser Ser Gln Pro Asn Thr Asp Ser Lys	Ile Glu Pro Thr Thr	
	305 310	315	320
55	Ser Glu Pro Val Asn Leu Asn Tyr Ser Ser	Pro Phe Met Ser Leu Leu	
	325	330	335
	Ser Met Pro Ala Asp Ser Ser Asn Asn Thr Lys	Asn Thr Ile Asp	
	340	345	350
60	Ile Pro Pro Thr Thr Val Lys Gly Arg Asp Asn	Tyr Asp Phe Tyr Gly	

	355	360	365
	Arg Val Asp Ile Glu Ser Asn Pro Thr Asp Leu Asn Ala Thr Asn Leu		
	370	375	380
5	Thr Arg Tyr Asn Tyr Gly Gln Pro Pro Gly Thr Thr Thr Ala Gly Ala		
	385	390	395
	Val Gln Phe Lys Asn Gln Val Ser Phe Asp Lys Asp Phe Asp Phe Asn		
10	405	410	415
	Ile Arg Val Ala Asn Asn Arg Gln Ser Asn Thr Thr Gly Ala Asp Gly		
	420	425	430
15	Trp Gly Phe Met Phe Ser Lys Lys Asp Gly Asp Asp Phe Leu Lys Asn		
	435	440	445
	Gly Gly Ile Leu Arg Glu Lys Gly Thr Pro Ser Ala Ala Gly Phe Arg		
20	450	455	460
	Ile Asp Thr Gly Tyr Tyr Asn Asn Asp Pro Leu Asp Lys Ile Gln Lys		
	465	470	475
	Gln Ala Gly Gln Gly Tyr Arg Gly Tyr Gly Thr Phe Val Lys Asn Asp		
25	485	490	495
	Ser Gln Gly Asn Thr Ser Lys Val Gly Ser Gly Thr Pro Ser Thr Asp		
	500	505	510
30	Phe Leu Asn Tyr Ala Asp Asn Thr Thr Asn Asp Leu Asp Gly Lys Phe		
	515	520	525
	His Gly Gln Lys Leu Asn Asn Val Asn Leu Lys Tyr Asn Ala Ser Asn		
35	530	535	540
	Gln Thr Phe Thr Ala Thr Tyr Ala Gly Lys Thr Trp Thr Ala Thr Leu		
	545	550	555
	Ser Glu Leu Gly Leu Ser Pro Thr Asp Ser Tyr Asn Phe Leu Val Thr		
40	565	570	575
	Ser Ser Gln Tyr Gly Asn Gly Asn Ser Gly Thr Tyr Ala Ser Gly Val		
	580	585	590
45	Met Arg Ala Asp Leu Asp Gly Ala Thr Leu Thr Tyr Thr Pro Lys Ala		
	595	600	605
	Val Asp Gly Asp Pro Ile Ile Ser Thr Lys Glu Ile Pro Phe Asn Lys		
50	610	615	620
	Lys Arg Glu Phe Asp Pro Asn Leu Ala Pro Gly Thr Glu Lys Val Val		
	625	630	635
	Gln Lys Gly Glu Pro Gly Ile Glu Thr Thr Thr Pro Thr Tyr Val		
55	645	650	655
	Asn Pro Asn Thr Gly Glu Lys Val Gly Glu Gly Glu Pro Thr Glu Lys		
	660	665	670
60	Ile Thr Lys Gln Pro Val Asp Glu Ile Val His Tyr Gly Gly Glu		

	675	680	685
	Ile Lys Pro Gly His Lys Asp Glu Phe Asp Pro Asn Ala Pro Lys Gly		
	690	695	700
5	Ser Gln Thr Thr Gln Pro Gly Lys Pro Gly Val Lys Asn Pro Asp Thr		
	705	710	715
			720
10	Gly Glu Val Val Thr Pro Pro Val Asp Asp Val Thr Lys Tyr Gly Pro		
	725	730	735
	Val Asp Gly Asp Pro Ile Thr Ser Thr Glu Glu Ile Pro Phe Asp Lys		
	740	745	750
15	Lys Arg Glu Phe Asn Pro Asp Leu Lys Pro Gly Glu Glu Arg Val Lys		
	755	760	765
	Gln Lys Gly Glu Pro Gly Thr Lys Thr Ile Thr Thr Pro Thr Thr Lys		
	770	775	780
20	Asn Pro Leu Thr Gly Glu Lys Val Gly Glu Gly Glu Pro Thr Glu Lys		
	785	790	795
			800
25	Ile Thr Lys Gln Pro Val Asp Glu Ile Thr Glu Tyr Gly Gly Glu Glu		
	805	810	815
	Ile Lys Pro Gly His Lys Asp Glu Phe Asp Pro Asn Ala Pro Lys Gly		
	820	825	830
30	Ser Gln Glu Asp Val Pro Gly Lys Pro Gly Val Lys Asn Pro Gly Thr		
	835	840	845
	Gly Glu Val Val Thr Pro Pro Val Asp Asp Val Thr Lys Tyr Gly Pro		
	850	855	860
35	Val Asp Gly Asp Pro Ile Thr Ser Thr Glu Glu Ile Pro Phe Asp Lys		
	865	870	875
			880
40	Lys Arg Glu Phe Asn Pro Asp Leu Lys Pro Gly Glu Glu Arg Val Lys		
	885	890	895
	Gln Lys Gly Glu Pro Gly Thr Lys Thr Ile Thr Thr Pro Thr Thr Lys		
	900	905	910
45	Asn Pro Leu Thr Gly Glu Lys Val Gly Glu Gly Glu Pro Thr Glu Lys		
	915	920	925
	Ile Thr Lys Gln Pro Val Asp Glu Ile Val His Tyr Gly Gly Glu Gln		
	930	935	940
50	Ile Pro Gln Gly His Lys Asp Glu Phe Asp Pro Asn Ala Pro Val Asp		
	945	950	955
			960
55	Ser Lys Thr Glu Val Pro Gly Lys Pro Gly Val Lys Asn Pro Asp Thr		
	965	970	975
	Gly Glu Val Val Thr Pro Pro Val Asp Asp Val Thr Lys Tyr Gly Pro		
	980	985	990
60	Val Asp Gly Asp Ser Ile Thr Ser Thr Glu Glu Ile Pro Phe Asp Lys		

	995	1000	1005
	Lys Arg Glu Phe Asp Pro Asn	Leu Ala Pro Gly Thr	Glu Lys Val
5	1010 1015		1020
	Val Gln Lys Gly Glu Pro Gly	Thr Lys Thr Ile Thr	Thr Pro Thr
	1025 1030		1035
10	Thr Lys Asn Pro Leu Thr Gly	Glu Lys Val Gly Glu	Gly Lys Ser
	1040 1045		1050
	Thr Glu Lys Val Thr Lys Gln	Pro Val Asp Glu Ile	Val Glu Tyr
	1055 1060		1065
15	Gly Pro Thr Lys Ala Glu Pro	Gly Lys Pro Ala Glu	Pro Gly Lys
	1070 1075		1080
	Pro Ala Glu Pro Gly Lys Pro	Ala Glu Pro Gly Thr	Pro Ala Glu
20	1085 1090		1095
	Pro Gly Lys Pro Ala Glu Pro	Gly Thr Pro Ala Glu	Pro Gly Lys
	1100 1105		1110
25	Pro Ala Glu Pro Gly Lys Pro	Ala Glu Pro Gly Lys	Pro Ala Glu
	1115 1120		1125
	Pro Gly Lys Pro Ala Glu Pro	Gly Thr Pro Ala Glu	Pro Gly Thr
	1130 1135		1140
30	Pro Ala Glu Pro Gly Lys Pro	Ala Glu Pro Gly Thr	Pro Ala Glu
	1145 1150		1155
	Pro Gly Lys Pro Ala Glu Pro	Gly Thr Pro Ala Glu	Pro Gly Lys
35	1160 1165		1170
	Pro Ala Glu Ser Gly Lys Pro	Val Glu Pro Gly Thr	Pro Ala Gln
	1175 1180		1185
40	Ser Gly Ala Pro Glu Gln Pro	Asn Arg Ser Met His	Ser Thr Asp
	1190 1195		1200
	Asn Lys Asn Gln Leu Pro Asp	Thr Gly Glu Asn Arg	Gln Ala Asn
	1205 1210		1215
45	Glu Gly Thr Leu Val Gly Ser	Leu Leu Ala Ile Val	Gly Ser Leu
	1220 1225		1230
	Phe Ile Phe Gly Arg Arg Lys	Lys Gly Asn Glu Lys	
50	1235 1240		1245
	<210> 20		
	<211> 3765		
	<212> DNA		
55	<213> Staphylococcus epidermidis		
	<400> 20		
	atggccaaac gtagacaagg tcctattaat aaaaaagtgg atttttacc taacaaatta		60
60	aacaagtatt ctataagaaa attcactgtt ggtacggcct caatattact tggttcgaca		120

	cttattttg gaagtagtag ccatgaagcg aaagctgcag aagaaaaaca agttgatcca	180
	attacacaag ctaatcaaaa tgatagtagt gaaagatcac ttgaaaacac aaatcaacct	240
5	actgtaaaca atgaaggcacc acagatgtct tctacattgc aagcagaaga aggaagcaat	300
	gcagaagcac ctcaatctga gccaacgaag gcagaagaag gaggcaatgc agaaggcagct	360
10	caatctgagc caacgaaggc agaagaagga ggcataatgcag aagcacctca atctgagcca	420
	acgaaggcag aagaaggagg caatgcagaa gcagctcaat ctgagccaac gaagacagaa	480
	gaaggaagca acgtaaaagc agtcaatct gagccaacga aggcaaga aggaagcaat	540
15	gcagaagcac ctcaatctga gccaacgaag acagaagaag gaagcaacgc aaaaggcagct	600
	caatctgagc caacgaaggc agaagaagga ggcataatgcag aagcagctca atctgagcca	660
20	acgaagacag aagaaggaag caatgcagaa gcacctcaat ctgagccaac gaaggcagaa	720
	gaaggaggca atgcagaagc acctcaatct gagccaacga agacagaaga aggaggcaat	780
	gcagaagcac cgaatgttcc aactatcaaa gctaatttcg ataatgatac acaaacacaa	840
25	ttttcagaag cccctacaag aaatgaccta gctagaaaag aagatatccc tgctgttct	900
	aaaaacgagg aatatacatac atcacaacca aacactgaca gtaaaataga acctacaact	960
30	tcagaacctg tgaatttaaa ttatagttct ccgttatgt cttattaag catgcctgt	1020
	gatagttcat ccaataacac taaaataca atagatatac cgccaaactac gttaaagg	1080
	agagataatt acgatttttca cggtagagta gatatcgaaa gtaatcctac agatttaat	1140
35	gccccaaatt taacgagata taattatggc cagccacctg gtacaacaac agctggcga	1200
	gttcaatttta aaaaatcaagt tagtttgcgaa aagatttcg actttaacat tagatgtca	1260
40	aacaatcgatc aaagtaatac aactggcga gatgggtggc gctttatgtt cagcaagaaa	1320
	gatggggatg atttcctaaa aaacgggtgt atcttacgtg aaaaagggtac acctagtgc	1380
	gctgggttca gaattgatac agatattat aataacgatc cattagataa aatacagaaa	1440
45	caagctggtc aaggctatac agggatggg acatttgtt aaaaatgactc ccaaggtaat	1500
	acttctaaag taggatcagg tactccatca acagattttc ttaactacgc agataatact	1560
50	actaatgatt tagatggtaa attccatggt caaaaattaa ataatgttaa tttgaaatata	1620
	aatgcttcaa atcaaacttt tacagctact tatgctggta aaacttggac ggctacgtt	1680
	tctgaattag gattgagtcc aactgatagt tacaattttt tagttacatc aagtcaatata	1740
55	ggaaaatggta atagtggtac atacgcaagt ggcgttatga gagctgattt agatggcga	1800
	acattgacat acactcctaa agcagtcgtt ggagatccaa ttatataac taaggaaata	1860
60	ccatttaata agaaacgtga atttgatcca aacttagccc caggtacaga aaaagtatgc	1920

	caaaaaggtaaccaggaat taaaaacaaca acaacaccaa cttatgtcaa tcctaaataca	1980
	ggagaaaaag ttggcgaagg tgaaccaaca gaaaaataa caaaaacaacc agtggatgaa	2040
5	atcgttcatt atggtggcga agaaatcaag ccaggccata aggatgaatt tgatccaaat	2100
	gcaccgaaag gtagtcaaacc aacgcaacca ggttaagccgg gggtaaaaaa tcctgataca	2160
10	ggcgaagtag ttactccacc tgtggatgat gtgacaaaat atggtcagt tgatggagat	2220
	ccgatcacgt caacggaaga aattccattc gacaagaaac gtgaattcaa tcctgattta	2280
	aaaccaggta aagagcgtgt taaacaaaaa ggtgaaccag gaacaaaaac aattacaaca	2340
15	ccaacaacta agaaccatt aacagggaa aaagttggcg aaggtgaacc aacagaaaaa	2400
	ataacaaaac aaccagtaga taaaaatcaca gaatatggtg gcgaagaaat caagccaggc	2460
20	cataaggatg aatttgcattt aatgcaccc aaaggttagcc aagaggacgt tccaggtaaa	2520
	ccaggagtta aaaaccctgg aacaggcgaa gtagtcacac caccagtggta tgatgtgaca	2580
	aaatatggtc cagttgatgg agatccgatc acgtcaacgg aagaaattcc attcgacaag	2640
25	aaacgtgaat tcaatcctga tttaaaaacca ggtgaagagc gcgttaaaca gaaaggtaaa	2700
	ccaggaacaa aaacaattac aacgccaaca actaagaacc cattaacagg agaaaaagtt	2760
30	ggcgaaggtg aaccaacaga aaaaataaca aaacaaccag tggatgagat tgttcattat	2820
	ggtggtaac aaataccaca aggtcataaa gatgaatttg atccaaatgc acctgttagat	2880
	agtaaaaactg aagttccagg taaaccagga gttaaaaatc ctgatacagg tgaagttgtt	2940
35	accccaccag tggatgatgt gacaaaatat ggtccagttg atggagattc gattacgtca	3000
	acggaagaaa ttccgtttga taaaaaacgc gaatttgcataaacttagc gccaggtaca	3060
40	gagaaagtgc ttcaaaaagg tgaaccagga acaaaaaacaa ttacaacgcc aacaactaag	3120
	aaccattaa caggagaaaa agttggcgaa ggtaaatcaa cagaaaaagt cactaaacaa	3180
	cctgttgacg aaattgttga gtatggtcca acaaaaagcag aaccagtaa accagcggaa	3240
45	ccaggtaaac cagcggacc accgtaaacca gcggaccag gtacgcccgc agaaccaggt	3300
	aaaccagcgg aaccaggtaac gccagcagaa ccaggtaaac cagcggacc accgtaaacca	3360
50	gcggaccag gtaaaccagc ggaaccaggtaaaccagcgg aaccaggtaac gccagcagaa	3420
	ccaggtacgc cagcagaacc aggtaaacca gcggaccag gtacgcccgc agaaccaggt	3480
	aaaccagcgg aaccaggtaac gccagcagaa ccaggtaaac cagcggacc accgtaaacca	3540
55	gtggaccag gtacgcccgc acaatcaggtaaaccagcgc accaaatag atcaatgcata	3600
	tcaacagata ataaaaatca attacctgat acaggtaaaa atcgtaacgc taatgaggga	3660
60	actttagtcg gatctctatt agcaattgtc ggatcattgt tcatattgg tcgtcgtaaa	3720

aaaggtaatg aaaaataatt tcatataaaa actttctgcc attaa 3765
 5 <210> 21
 <211> 546
 <212> PRT
 <213> Staphylococcus epidermidis
 10 <400> 21
 Glu Lys Gln Val Asp Pro Ile Thr Gln Ala Asn Gln Asn Asp Ser Ser
 1 5 10 15
 15 Glu Arg Ser Leu Glu Asn Thr Asn Gln Pro Thr Val Asn Asn Glu Ala
 20 25 30
 Pro Gln Met Ser Ser Thr Leu Gln Ala Glu Glu Gly Ser Asn Ala Glu
 35 40 45
 20 Ala Pro Gln Ser Glu Pro Thr Lys Ala Glu Glu Gly Gly Asn Ala Glu
 50 55 60
 25 Ala Ala Gln Ser Glu Pro Thr Lys Ala Glu Glu Gly Gly Asn Ala Glu
 65 70 75 80
 Ala Pro Gln Ser Glu Pro Thr Lys Ala Glu Glu Gly Gly Asn Ala Glu
 85 90 95
 30 Ala Ala Gln Ser Glu Pro Thr Lys Thr Glu Glu Gly Ser Asn Val Lys
 100 105 110
 Ala Ala Gln Ser Glu Pro Thr Lys Ala Glu Glu Gly Ser Asn Ala Glu
 115 120 125
 35 Ala Pro Gln Ser Glu Pro Thr Lys Thr Glu Glu Gly Ser Asn Ala Lys
 130 135 140
 Ala Ala Gln Ser Glu Pro Thr Lys Ala Glu Glu Gly Gly Asn Ala Glu
 145 150 155 160
 40 Ala Ala Gln Ser Glu Pro Thr Lys Thr Glu Glu Gly Ser Asn Ala Glu
 165 170 175
 45 Ala Pro Gln Ser Glu Pro Thr Lys Ala Glu Glu Gly Gly Asn Ala Glu
 180 185 190
 Ala Pro Gln Ser Glu Pro Thr Lys Thr Glu Glu Gly Gly Asn Ala Glu
 195 200 205
 50 Ala Pro Asn Val Pro Thr Ile Lys Ala Asn Ser Asp Asn Asp Thr Gln
 210 215 220
 Thr Gln Phe Ser Glu Ala Pro Thr Arg Asn Asp Leu Ala Arg Lys Glu
 225 230 235 240
 55 Asp Ile Pro Ala Val Ser Lys Asn Glu Glu Leu Gln Ser Ser Gln Pro
 245 250 255
 60 Asn Thr Asp Ser Lys Ile Glu Pro Thr Thr Ser Glu Pro Val Asn Leu
 260 265 270

	Asn Tyr Ser Ser Pro Phe Met Ser Leu Leu Ser Met Pro Ala Asp Ser			
	275	280	285	
5	Ser Ser Asn Asn Thr Lys Asn Thr Ile Asp Ile Pro Pro Thr Thr Val			
	290	295	300	
	Lys Gly Arg Asp Asn Tyr Asp Phe Tyr Gly Arg Val Asp Ile Glu Ser			
	305	310	315	320
10	Asn Pro Thr Asp Leu Asn Ala Thr Asn Leu Thr Arg Tyr Asn Tyr Gly			
	325	330	335	
15	Gln Pro Pro Gly Thr Thr Ala Gly Ala Val Gln Phe Lys Asn Gln			
	340	345	350	
	Val Ser Phe Asp Lys Asp Phe Asp Phe Asn Ile Arg Val Ala Asn Asn			
	355	360	365	
20	Arg Gln Ser Asn Thr Thr Gly Ala Asp Gly Trp Gly Phe Met Phe Ser			
	370	375	380	
	Lys Lys Asp Gly Asp Asp Phe Leu Lys Asn Gly Gly Ile Leu Arg Glu			
	385	390	395	400
25	Lys Gly Thr Pro Ser Ala Ala Gly Phe Arg Ile Asp Thr Gly Tyr Tyr			
	405	410	415	
30	Asn Asn Asp Pro Leu Asp Lys Ile Gln Lys Gln Ala Gly Gln Gly Tyr			
	420	425	430	
	Arg Gly Tyr Gly Thr Phe Val Lys Asn Asp Ser Gln Gly Asn Thr Ser			
	435	440	445	
35	Lys Val Gly Ser Gly Thr Pro Ser Thr Asp Phe Leu Asn Tyr Ala Asp			
	450	455	460	
	Asn Thr Thr Asn Asp Leu Asp Gly Lys Phe His Gly Gln Lys Leu Asn			
	465	470	475	480
40	Asn Val Asn Leu Lys Tyr Asn Ala Ser Asn Gln Thr Phe Thr Ala Thr			
	485	490	495	
45	Tyr Ala Gly Lys Thr Trp Thr Ala Thr Leu Ser Glu Leu Gly Leu Ser			
	500	505	510	
	Pro Thr Asp Ser Tyr Asn Phe Leu Val Thr Ser Ser Gln Tyr Gly Asn			
	515	520	525	
50	Gly Asn Ser Gly Thr Tyr Ala Ser Gly Val Met Arg Ala Asp Leu Asp			
	530	535	540	
	Gly Ala			
	545			
55	<210> 22			
	<211> 36			
	<212> PRT			
60	<213> Staphylococcus aureus			

<400> 22

Leu Pro Asn Thr Gly Ser Glu Glu Met Asp Leu Pro Leu Lys Glu Leu
1 . 5 10 15

5 Ala Leu Ile Thr Gly Ala Ala Leu Leu Ala Arg Arg Arg Ser Lys Lys
20 25 30

10 Glu Lys Glu Ser
35

<210> 23
<211> 43
<212> PRT
15 <213> Staphylococcus aureus

<400> 23

Leu Pro Asp Thr Gly Asp Ser Ile Lys Gln Asn Gly Leu Leu Gly Gly
1 5 10 15

20 Val Met Thr Leu Leu Val Gly Leu Gly Leu Met Lys Arg Lys Lys Lys
20 25 30

25 Lys Asp Glu Asn Asp Gln Asp Asp Ser Gln Ala
35 40

<210> 24
<211> 35
30 <212> PRT
<213> Staphylococcus aureus

<400> 24

35 Leu Pro Lys Thr Gly Glu Thr Thr Ser Ser Gln Ser Trp Trp Gly Leu
1 5 10 15

40 Tyr Ala Leu Leu Gly Met Leu Ala Leu Phe Ile Pro Lys Phe Arg Lys
20 25 30

Glu Ser Lys
35

45 <210> 25
<211> 38
<212> PRT
<213> Staphylococcus aureus

<400> 25

50 Leu Pro Lys Thr Gly Leu Thr Ser Val Asp Asn Phe Ile Ser Thr Val
1 5 10 15

55 Ala Phe Ala Thr Leu Ala Leu Leu Gly Ser Leu Ser Leu Leu Phe
20 25 30

Lys Arg Lys Glu Ser Lys
35

60 <210> 26

<211> 36
<212> PRT
<213> Staphylococcus aureus

5 <400> 26

Leu Pro Gln Thr Gly Glu Ser Asn Lys Asp Met Thr Leu Pro Leu
1 5 10 15

10 Met Ala Leu Ile Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro Arg
20 25 30

Lys Arg Lys Asn
35

15 <210> 27
<211> 34
<212> PRT
<213> Staphylococcus aureus

20 <400> 27

Leu Pro Lys Thr Gly Thr Asn Gln Ser Ser Ser Pro Glu Ala Met Phe
1 5 10 15

25 Val Leu Leu Ala Gly Ile Gly Leu Ile Ala Thr Val Arg Arg Arg Lys
20 25 30

30 Ala Ser
<210> 28
<211> 33
<212> PRT
<213> Staphylococcus aureus

35 <400> 28

Leu Pro Lys Thr Gly Leu Glu Ser Thr Gln Lys Gly Leu Ile Phe Ser
1 5 10 15
40 Ser Ile Ile Gly Ile Ala Gly Leu Met Leu Leu Ala Arg Arg Arg Lys
20 25 30

45 Asn
<210> 29
<211> 39
<212> PRT
<213> Staphylococcus aureus

50 <400> 29

55 Leu Pro Lys Ala Gly Glu Thr Ile Lys Glu His Trp Leu Pro Ile Ser
1 5 10 15
Val Ile Val Gly Ala Met Gly Val Leu Met Ile Trp Leu Ser Arg Arg
20 25 30

60 Asn Lys Leu Lys Asn Lys Ala
35

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
27 December 2002 (27.12.2002)

PCT

(10) International Publication Number
WO 2002/102829 A3

(51) International Patent Classification⁷: **G01N 33/569,**
C12N 5/06, 5/16, C07K 16/00

the Holy and Undivided Trinity of Queen Eliza, beth Near
Dublin, Trinity College, Dublin 2 (IE).

(21) International Application Number:
PCT/US2002/019220

(74) Agent: SCHULMAN, Aaron, B.; Larson & Taylor, PLC,
Suite 900, 1199 North Fairfax Street, Alexandria, VA
22314 (US).

(22) International Filing Date: 17 June 2002 (17.06.2002)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/298,098 15 June 2001 (15.06.2001) US

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

(71) Applicants: INHIBITEX, INC. [US/US]; 8995 West-
side Parkway, Alpharetta, GA (US). THE PROVOST
FELLOWS AND SCHOLARS OF THE COLLEGE
OF THE HOLY AND UNDIVIDED TRINITY OF
QUEENS ELIZABETH NEAR DUBLIN [IE/IE];
Trinity College, Dublin 2 (IE). UNIVERSITA' DEGLI
STUDI DI PAVIA [IT/IT]; Strada Nuova, 65, I-27100
Pavia (IT).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(72) Inventors: FOSTER, Timothy, J.; 70 Coolamber Park,
Templeogue, Dublin 16 (IE). ROCHE, Fiona; C/o The
Provost Fellows and Scholars of the Colleg, e of the Holy
and Undivided Trinity of Queen Eliza, beth near Dublin,
Trinity College, Dublin 2 (IE). PATTI, Joseph, M.; 6680
Stratford Place, Cumming, GA 30040 (US). HUTCHINS,
Jeff, T.; 1120 Quail Run Lane, Cumming, GA 30041 (US).
SPEZIALE, Pietro; c/o Universita' Degli Studi Di Pavia,
Strada Nuova, 65, I-27100 Pavia (IT). PALLEN, Mark;
C/o The Provost Fellows and Scholars of the Colleg, e of

(88) Date of publication of the international search report:
25 March 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CROSS-REACTIVE MONOCLONAL AND POLYCLONAL ANTIBODIES WHICH RECOGNIZE SURFACE PROTEINS FROM COAGULASE-NEGATIVE STAPHYLOCOCCI AND STAPHYLOCOCCUS AUREUS

(57) Abstract: Polyclonal and monoclonal antibodies which are cross-reactive to both coagulase-positive staphylococcus bacteria, such as *S. hemolyticus*, are provided which can recognize surface proteins from both coagulase-positive and coagulase negative staph bacteria. The antibodies may be generated from surface proteins that have been isolated on the basis of characteristics that may be common between *S. aureus* and coagulase-negative staphylococci, and these recombinant surface proteins are used to generate the antibodies of the invention. There is also provided vaccines and methods which utilize these proteins and antibodies for the treatment or protection against a wide variety of staphylococcal infections.

WO 2002/102829 A3

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/19220

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : G01 N 33/569; C12 N 5/06, 5/16; C07 K 16/00
US CL : 435/7.33, 326, 332, 530/388.2, 388.4

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
U.S. : 435/7.33, 326, 332, 530/388.2, 388.4

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Please See Continuation Sheet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute ,EBI (Cambridge, UK) Accession number Q9L470, 100% identical to SEQ.ID.NO: 21, SEQ.ID.NO: 19.	1-16, 19 and 21
Y	Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute ,EBI (Cambridge, UK) Accession number Q99QY4, 99.8% identical to SEQ.ID.NO: 18.	1-16, 19 and 21
Y	Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute ,EBI (Cambridge, UK) Accession number Q99QZ2, 97.4% identical to SEQ.ID.NO: 16.	1-16, 19 and 21
Y	Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute ,EBI (Cambridge, UK) Accession number Q99XE9, 92 % identical to SEQ.ID.NO: 12.	1-16, 19 and 21

<input checked="" type="checkbox"/>	Further documents are listed in the continuation of Box C.	<input type="checkbox"/>	See patent family annex.
*	Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A"	document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E"	earlier application or patent published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L"	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O"	document referring to an oral disclosure, use, exhibition or other means		
"P"	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search 28 September 2003 (28.09.2003)	Date of mailing of the international search report 19 FEB 2004
Name and mailing address of the ISA/US Mail Stop PCT, Attn: ISA/US Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450 Facsimile No. (703)305-3230	Authorized officer Padmavathi v Baskar Telephone No. (703)308-0196

PCT/US02/19220

INTERNATIONAL SEARCH REPORT

C. (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Database SPTRREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute ,EBI (Cambridge, UK) Accession number Q99UX5, 97.8 % identical to SEQ.ID.NO: 10.	1-16, 19 and 21
Y	Database SPTRREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute ,EBI (Cambridge, UK) Accession number Q99UX4, 98.8 % identical to SEQ.ID.NO: 8.	1-16, 19 and 21
Y	Database SPTRREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute ,EBI (Cambridge, UK) Accession number Q931P4, 96.7 % identical to SEQ.ID.NO: 6 and Accession number Q99TD3, 96.6 % identical to SEQ.ID.NO: 6	1-16, 19 and 21
Y	Database SPTRREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute ,EBI (Cambridge, UK) Accession number Q99QY4, 98.6 % identical to SEQ.ID.NO: 4.	1-16, 19 and 21
Y	Database SPTRREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute ,EBI (Cambridge, UK) Accession number Q99TB0, 91.6 % identical to SEQ.ID.NO: 2.	1-16, 19 and 21
Y	OHLSEN. K. et al Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant <i>Staphylococcus aureus</i> isolates. <i>Antimicrob Agents Chemother</i> , November1998 , Vol 42, No.11, pages 2817-2823.	1-16, 19 and 21

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/19220

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claim Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claim Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:
Please See Continuation Sheet

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: Please See Continuation Sheet

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

PCT/US02/19220

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions 1-58 which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Groups 1-21 Claim(s) 1-14, 16, 19, 21 and 15, drawn to an isolated antibodies that bind to SEQ.ID.NOS: 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19, 21, nucleic acid sequence encoding amino acid sequences SEQ.ID.NOS: 1, 3, 5, 7, 9, 11, 13, 15, 20 and the nucleic sequences coding for the A domain of the Aap protein or degenerate.

Groups 22-33 Claims 20 and 22 drawn to fragment of the DsqA protein and a vaccine comprising a protein SEQ.ID.NOS: 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21

Groups 34-45 Claim 17 drawn to a method for treating or preventing S.aureus infection using antibodies that bind to SEQ.ID.NOS: 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21.

Groups 46-57 Claim 18 drawn to a method inducing an immune response using protein SEQ.ID.NOS: 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21.

The inventions listed as Groups 1-58 do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Group 1, claim(s) 1-14, 16, 19, 21 and 15, claim(s) 1-14, 16, 19, 21 drawn to an isolated antibodies that bind to SEQ.ID.NOS: 2, diagnostic kit comprising antibody to SEQ.ID.NOS: 2, pharmaceutical composition comprising said antibody and a method of diagnosing S.aureus infection using said antibody which is the first product and first product of use.

Pursuant to PCT Rule 13.2 the ISA/US considers that where multiple products, processes and methods are claimed, the main invention shall consist of the first invention of the category first mentioned in the claims and the first recited invention of each of the other categories related thereto. Accordingly the main invention (Group 1) comprises the first product and a method of use.

Further pursuant to PCT Rule 13.2 the ISA/US considers that any feature which the subsequently recited products and methods share with the main invention does not constitute a special technical feature within the meaning of PCT Rule 13.2 and that each of such products and methods accordingly defines a separate invention. Therefore, the groups of inventions below do not constitute a special technical feature within the meaning of PCT Rule 13.2 and that each of such products and methods accordingly defines a separate invention.

Groups 2-21 drawn to different isolated antibodies that bind to SEQ.ID.NOS: 4, 6, 8, 10, 12, 14, 16, 17, 18, 19, 21, nucleic acid sequence encoding amino acid sequences SEQ.ID.NOS: 1, 3, 5, 7, 9, 11, 13, 15, 20 and the nucleic sequences coding for the A domain of the Aap protein or degenerate that are different to each other and lack the same or corresponding special technical features because each antibody bind to a protein having a specific amino acid sequence. They are structurally different to each other since each sequence has been identified with a specific sequence identification number that contains specific amino acids. In the instant case the different inventions represent structurally different antibodies that bind to different polypeptides. Therefore, where structural identity is required, such as for expression, the different sequences have different effects. Thus, each sequence is unique and lacks the same or corresponding special technical features.

Groups 22-33 drawn to fragment of the DsqA protein and a vaccine comprising a protein SEQ.ID.NOS: 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19, and 21. These proteins are different to each other and lack the same or corresponding special technical features because each protein contains a specific amino acid sequence. They are structurally different to each other since each sequence has been identified with a specific sequence identification number that contains specific amino acids. In the instant case the different inventions represent structurally different proteins. Therefore, where structural identity is required, such as for expression, the different sequences have different effects. Thus, each sequence is unique and lacks the same or corresponding special technical features

INTERNATIONAL SEARCH REPORT

PCT/US02/19220

Groups 34-45 and 46-57 are different methods utilizing different products of antibodies or proteins that are unique and lack the same or corresponding special technical features that result in a different outcome such as preventing an infection with antibody or inducing an immune response with specific protein. These methods are different to each other in utilizing different reagents such as different polypeptides and antibodies as discussed above and thus lack the same or special technical features as explained above.

Continuation of Box II Item 3:

1-16, 19 and 21 with respect to SEQ.ID.NOS: 2, 4, 6, 8, 10, 12, 16, 18, 19 and 21

Continuation of B. FIELDS SEARCHED Item 3:

SEQ.ID.NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 17, 18 and 21 searched on MEDLINE, STN, A-GENSEQ, N-GENSEQ, EST, DERWENT, SWISS-PROT, PIR, USPTOWEST, SWISSPRTREMBL, GENEMBEL, PUBLISHED APPLICATIONS AND ISSUED PATENTS