Modelli Probabilistici per le Decisioni

Contenuti

- Rappresentare l'incertezza:
 - Rappresentare la conoscenza in ambienti incerti
- Ragionamento Probabilistico:
 - Reti Bayesiane
 - Apprendimento
 - Inferenza
- Ragionamento prob. nel tempo
 - Hidden Markov Models
 - Filtro di Kalman
- Reti Bayesiane
- Hidden Markov Model

Lezioni frontali + Esercitazioni

Laboratorio

Contenuti

- Rappresentare l'incertezza:
 - Rappresentare la conoscenza in ambienti incerti
- Ragionamento Probabilistico:
 - Reti Bayesiane
 - Apprendimento
 - Inferenza
- Ragionamento prob. nel tempo
 - Hidden Markov Models
 - Filtro di Kalman

Lezioni frontali

Esercitazioni

• Hidden Markov Model

• Reti Bayesiane

Laboratorio

Molti dati a disposizione ma

- Società: web, social networks, mobile networks, pubblica amministrazione, archivi digitali
- Scienza: esperimenti scientifici, dati biomedici, dati climatici ...
- Business: e-commerce, mercati finanziari, pubblicità, personalizzazione

Come trattare, modellare, interpretare tutti questi dati perché siano effettivamente utilizzabili per prendere delle decisioni?

Motivazioni

- Quando devo prendere delle decisioni nel mondo reale:
 - Dati mancanti/inesatti
 - Evidenze inconsistenti
 - ...diverse fonti di incertezza/rumore

Obiettivi

Fornire strumenti modellistici:

- Per rappresentare l'incertezza nel modello (struttura e parametri) e il rumore nei dati
- che siano "automatizzati" e adattivi
- Che siano "robusti"
- Che siano scalabili

Obiettivi

Fornire strumenti modellistici:

- Per rappresentare l'incertezza nel modello (struttura e parametri) e il rumore nei dati
- che siano "automatizzati" e adattivi
- Che siano "robusti"
- Che siano scalabili

Modelli probabilistici:

 Modelli che descrivono i dati che possono essere generati da un sistema

Se usiamo la teoria delle probabilità per esprimere tutte le forme di incertezza e di rumore associate al nostro modello...

.... la teoria baysiana (regola di Bayes) ci permetterà di inferire quantità sconosciute, adattare i nostri modelli, fare previsionapprendere dai dati

Modelli Probabilistici

Goal: software that can adapt, learn, and reason

Reasoning

Intelligent software

Goal: software that can adapt, learn, and reason

Reasoning backwards

Reasoning & uncertainty

We are uncertain about a player's skill Each result provides relevant information But we are never completely certain

How can we compute with uncertainty in a principled way?

http://mlss.tuebingen.mpg.de/2013/bishop_slides.pdf

*TrueSkill*TM

Ralf Herbrich, Tom Minka, and Thore Graepel (NIPS, 2007)

Elo

International standard for chess grading A single rating for each player Limitations:

- not applicable to more than two players
- not applicable to team games

