

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

**(19) World Intellectual Property Organization
International Bureau**

(43) International Publication Date
4 January 2001 (04.01.2001)

PCT

(10) International Publication Number
WO 01/00843 A2

(51) International Patent Classification ⁷ :	C12N 15/31, 15/61, 1/21, 9/90, C07K 14/34, C12P 13/08, C12Q 1/68	199 33 004.2 199 33 005.0 199 33 006.9	14 July 1999 (14.07.1999) 14 July 1999 (14.07.1999) 14 July 1999 (14.07.1999)	DE
(21) International Application Number:	PCT/IB00/00923	60/148,613	12 August 1999 (12.08.1999)	US
(22) International Filing Date:	23 June 2000 (23.06.2000)	199 40 764.9 199 40 765.7 199 40 766.5	27 August 1999 (27.08.1999) 27 August 1999 (27.08.1999) 27 August 1999 (27.08.1999)	DE
(25) Filing Language:	English	199 40 832.7 199 41 378.9 199 41 379.7	27 August 1999 (27.08.1999) 31 August 1999 (31.08.1999) 31 August 1999 (31.08.1999)	DE
(26) Publication Language:	English	199 41 394.0 199 41 396.7	31 August 1999 (31.08.1999) 31 August 1999 (31.08.1999)	DE
(30) Priority Data:				
60/141,031	25 June 1999 (25.06.1999)	US	199 41 380.0 199 42 077.7	31 August 1999 (31.08.1999) 3 September 1999 (03.09.1999)
199 30 476.9	1 July 1999 (01.07.1999)	DE	199 42 129.3 199 42 076.9	3 September 1999 (03.09.1999) 3 September 1999 (03.09.1999)
60/142,101	2 July 1999 (02.07.1999)	US	199 42 079.3 199 42 086.6	3 September 1999 (03.09.1999) 3 September 1999 (03.09.1999)
199 31 415.2	8 July 1999 (08.07.1999)	DE	199 42 087.4 199 42 088.2	3 September 1999 (03.09.1999) 3 September 1999 (03.09.1999)
199 31 418.7	8 July 1999 (08.07.1999)	DE	199 42 095.5 199 42 124.2	3 September 1999 (03.09.1999) 3 September 1999 (03.09.1999)
199 31 419.5	8 July 1999 (08.07.1999)	DE	60/187,970 9 March 2000 (09.03.2000)	US
199 31 420.9	8 July 1999 (08.07.1999)	DE		
199 31 424.1	8 July 1999 (08.07.1999)	DE		
199 31 428.4	8 July 1999 (08.07.1999)	DE		
199 31 434.9	8 July 1999 (08.07.1999)	DE		
199 31 435.7	8 July 1999 (08.07.1999)	DE		
199 31 443.8	8 July 1999 (08.07.1999)	DE		
199 31 453.5	8 July 1999 (08.07.1999)	DE		
199 31 457.8	8 July 1999 (08.07.1999)	DE		
199 31 465.9	8 July 1999 (08.07.1999)	DE		
199 31 478.0	8 July 1999 (08.07.1999)	DE		
199 31 510.8	8 July 1999 (08.07.1999)	DE		
199 31 541.8	8 July 1999 (08.07.1999)	DE		
199 31 573.6	8 July 1999 (08.07.1999)	DE		
199 31 592.2	8 July 1999 (08.07.1999)	DE		
199 31 632.5	8 July 1999 (08.07.1999)	DE		
199 31 634.1	8 July 1999 (08.07.1999)	DE		
199 31 636.8	8 July 1999 (08.07.1999)	DE		
199 32 125.6	9 July 1999 (09.07.1999)	DE		
199 32 126.4	9 July 1999 (09.07.1999)	DE	AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,	
199 32 130.2	9 July 1999 (09.07.1999)	DE	DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,	
199 32 186.8	9 July 1999 (09.07.1999)	DE	HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,	
199 32 206.6	9 July 1999 (09.07.1999)	DE	LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,	
199 32 227.9	9 July 1999 (09.07.1999)	DE	NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,	
199 32 228.7	9 July 1999 (09.07.1999)	DE	TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.	
199 32 229.5	9 July 1999 (09.07.1999)	DE		
199 32 230.9	9 July 1999 (09.07.1999)	DE		
199 32 922.2	14 July 1999 (14.07.1999)	DE		
199 32 926.5	14 July 1999 (14.07.1999)	DE		
199 32 928.1	14 July 1999 (14.07.1999)	DE		
(71) Applicant:	BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).			
(72) Inventors:	POMPEJUS, Markus; Wenjenstr. 21, D-67251 Freinsheim (DE). KRÖGER, Burkhard; Im Walldhof 1, D-67117 Limburgerhof (DE). SCHRÖDER, Hartwig; Goethestr. 5, D-69226 Nussloch (DE). ZELDER, Oskar; Rossmarktstr. 27, D-67346 Speyer (DE). HABERHAUER, Gregor; Moselstr. 42, D-67117 Limburgerhof (DE).			
(81) Designated States (national):	AE, AG, AL, AM, AT, AU,			
	AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.			
(84) Designated States (regional):	ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,			

[Continued on next page]

(54) Title: CORYNEBACTERIUM GLUTAMICUM GENES ENCODING METABOLIC PATHWAY PROTEINS

(57) Abstract: Isolated nucleic acid molecules, designated MP nucleic acid molecules, which encode novel MP proteins from *Corynebacterium glutamicum* are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing MP nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides isolated MP proteins, mutated MP proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from *C. glutamicum* based on genetic engineering of MP genes in this organism.

WO 01/00843 A2

WO 01/00843 A2

IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

- PUBLISHED:**

 - Without international search report and to be republished upon receipt of that report.

- 1 -

**CORYNEBACTERIUM GLUTAMICUM GENES ENCODING METABOLIC
PATHWAY PROTEINS**

Related Applications

- The present application claims priority to prior filed U.S. Provisional Patent
- 5 Application Serial No. 60/141031, filed June 25 , 1999, U.S. Provisional Patent
Application Serial No. 60/142101, filed July 2, 1999, U.S. Provisional Patent
Application Serial No. 60/148613, filed August 12, 1999, and also to U.S. Provisional
Patent Application Serial No. 60/187970, filed March 9, 2000. The present application
also claims priority to prior filed German Patent Application No. 19930476.9, filed July
10 1, 1999, German Patent Application No. 19931415.2, filed July 8, 1999, German Patent
Application No. 19931418.7, filed July 8, 1999, German Patent Application No.
19931419.5, filed July 8, 1999, German Patent Application No. 19931420.9, filed July
8, 1999, German Patent Application No. 19931424.1, filed July 8, 1999, German Patent
Application No. 19931428.4, filed July 8, 1999, German Patent Application No.
15 19931434.9, filed July 8, 1999, German Patent Application No. 19931435.7, filed July
8, 1999, German Patent Application No. 19931443.8, filed July 8, 1999, German Patent
Application No. 19931453.5, filed July 8, 1999, German Patent Application No.
19931457.8, filed July 8, 1999, German Patent Application No. 19931465.9, filed July
8, 1999, German Patent Application No. 19931478.0, filed July 8, 1999, German Patent
20 Application No. 19931510.8, filed July 8, 1999, German Patent Application No.
19931541.8, filed July 8, 1999, German Patent Application No. 19931573.6, filed July
8, 1999, German Patent Application No. 19931592.2, filed July 8, 1999, German Patent
~~Application No. 19931632.3, filed July 8, 1999, German Patent Application No.~~
19931634.1, filed July 8, 1999, German Patent Application No. 19931636.8, filed July
25 8, 1999, German Patent Application No. 19932125.6, filed July 9, 1999, German Patent
Application No. 19932126.4, filed July 9, 1999, German Patent Application No.
19932130.2, filed July 9, 1999, German Patent Application No. 19932186.8, filed July
9, 1999, German Patent Application No. 19932206.6, filed July 9, 1999, German Patent
Application No. 19932227.9, filed July 9, 1999, German Patent Application No.
30 19932228.7, filed July 9, 1999, German Patent Application No. 19932229.5, filed July
9, 1999, German Patent Application No. 19932230.9, filed July 9, 1999, German Patent
Application No. 19932922.2, filed July 14, 1999, German Patent Application No.

- 2 -

19932926.5, filed July 14, 1999, German Patent Application No. 19932928.1, filed July 14, 1999, German Patent Application No. 19933004.2, filed July 14, 1999, German Patent Application No. 19933005.0, filed July 14, 1999, German Patent Application No. 19933006.9, filed July 14, 1999, German Patent Application No. 19940764.9, filed 5 August 27, 1999, German Patent Application No. 19940765.7, filed August 27, 1999, German Patent Application No. 19940766.5, filed August 27, 1999, German Patent Application No. 19940832.7, filed August 27, 1999, German Patent Application No. 19941378.9, filed August 31, 1999, German Patent Application No. 19941379.7, filed 10 August 31, 1999, German Patent Application No. 19941380.0, filed August 31, 1999, German Patent Application No. 19941394.0, filed August 31, 1999, German Patent Application No. 19941396.7, filed August 31, 1999, German Patent Application No. 19942076.9, filed September 3, 1999, German Patent Application No. 19942077.7, filed 15 September 3, 1999, German Patent Application No. 19942079.3, filed September 3, 1999, German Patent Application No. 19942086.6, filed September 3, 1999, German Patent Application No. 19942087.4, filed September 3, 1999, German Patent Application No. 19942088.2, filed September 3, 1999, German Patent Application No. 19942095.5, filed September 3, 1999, German Patent Application No. 19942124.2, filed September 3, 1999, and German Patent Application No. 19942129.3, filed September 3, 1999. The entire contents of all of the aforementioned applications are hereby expressly 20 incorporated herein by this reference.

Background of the Invention

Certain products and by-products of naturally-occurring metabolic processes in cells have utility in a wide array of industries, including the food, feed, cosmetics, and 25 pharmaceutical industries. These molecules, collectively termed 'fine chemicals', include organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors, and enzymes. Their production is most conveniently performed through large-scale culture of bacteria developed to produce 30 and secrete large quantities of a particular desired molecule. One particularly useful organism for this purpose is *Corynebacterium glutamicum*, a gram positive, nonpathogenic bacterium. Through strain selection, a number of mutant strains have

- 3 -

been developed which produce an array of desirable compounds. However, selection of strains improved for the production of a particular molecule is a time-consuming and difficult process.

5 Summary of the Invention

The invention provides novel bacterial nucleic acid molecules which have a variety of uses. These uses include the identification of microorganisms which can be used to produce fine chemicals, the modulation of fine chemical production in *C. glutamicum* or related bacteria, the typing or identification of *C. glutamicum* or related bacteria, as reference points for mapping the *C. glutamicum* genome, and as markers for transformation. These novel nucleic acid molecules encode proteins, referred to herein as metabolic pathway (MP) proteins.

C. glutamicum is a gram positive, aerobic bacterium which is commonly used in industry for the large-scale production of a variety of fine chemicals, and also for the degradation of hydrocarbons (such as in petroleum spills) and for the oxidation of terpenoids. The MP nucleic acid molecules of the invention, therefore, can be used to identify microorganisms which can be used to produce fine chemicals, e.g., by fermentation processes. Modulation of the expression of the MP nucleic acids of the invention, or modification of the sequence of the MP nucleic acid molecules of the invention, can be used to modulate the production of one or more fine chemicals from a microorganism (e.g., to improve the yield or production of one or more fine chemicals from a *Corynebacterium* or *Brevibacterium* species).

~~The MP nucleic acids of the invention may also be used to identify an organism as being *Corynebacterium glutamicum* or a close relative thereof, or to identify the presence of *C. glutamicum* or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of *C. glutamicum* genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a *C. glutamicum* gene which is unique to this organism, one can ascertain whether this organism is present. Although *Corynebacterium glutamicum* itself is nonpathogenic, it is related to species pathogenic in humans, such as *Corynebacterium*~~

- 4 -

diphtheriae (the causative agent of diphtheria); the detection of such organisms is of significant clinical relevance.

The MP nucleic acid molecules of the invention may also serve as reference points for mapping of the *C. glutamicum* genome, or of genomes of related organisms.

- 5 Similarly, these molecules, or variants or portions thereof, may serve as markers for genetically engineered *Corynebacterium* or *Brevibacterium* species.

The MP proteins encoded by the novel nucleic acid molecules of the invention are capable of, for example, performing an enzymatic step involved in the metabolism of certain fine chemicals, including amino acids, vitamins, cofactors, nutraceuticals,

- 10 nucleotides, nucleosides, and trehalose. Given the availability of cloning vectors for use in *Corynebacterium glutamicum*, such as those disclosed in Sinskey *et al.*, U.S. Patent No. 4,649,119, and techniques for genetic manipulation of *C. glutamicum* and the related *Brevibacterium* species (e.g., *lactofermentum*) (Yoshihama *et al.*, *J. Bacteriol.* 162: 591-597 (1985); Katsumata *et al.*, *J. Bacteriol.* 159: 306-311 (1984); and
- 15 Santamaria *et al.*, *J. Gen. Microbiol.* 130: 2237-2246 (1984)), the nucleic acid molecules of the invention may be utilized in the genetic engineering of this organism to make it a better or more efficient producer of one or more fine chemicals.

- This improved production or efficiency of production of a fine chemical may be due to a direct effect of manipulation of a gene of the invention, or it may be due to an
20 indirect effect of such manipulation. Specifically, alterations in *C. glutamicum* metabolic pathways for amino acids, vitamins, cofactors, nucleotides, and trehalose may have a direct impact on the overall production of one or more of these desired compounds from this organism. For example, optimizing the activity of a lysine biosynthetic pathway protein or decreasing the activity of a lysine degradative pathway
25 protein may result in an increase in the yield or efficiency of production of lysine from such an engineered organism. Alterations in the proteins involved in these metabolic pathways may also have an indirect impact on the production or efficiency of production of a desired fine chemical. For example, a reaction which is in competition for an intermediate necessary for the production of a desired molecule may be eliminated, or a
30 pathway necessary for the production of a particular intermediate for a desired compound may be optimized. Further, modulations in the biosynthesis or degradation of, for example, an amino acid, a vitamin, or a nucleotide may increase the overall

- 5 -

ability of the microorganism to rapidly grow and divide, thus increasing the number and/or production capacities of the microorganism in culture and thereby increasing the possible yield of the desired fine chemical.

- The nucleic acid and protein molecules of the invention may be utilized to
- 5 directly improve the production or efficiency of production of one or more desired fine chemicals from *Corynebacterium glutamicum*. Using recombinant genetic techniques well known in the art, one or more of the biosynthetic or degradative enzymes of the invention for amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, or trehalose may be manipulated such that its function is modulated. For example, a
- 10 biosynthetic enzyme may be improved in efficiency, or its allosteric control region destroyed such that feedback inhibition of production of the compound is prevented. Similarly, a degradative enzyme may be deleted or modified by substitution, deletion, or addition such that its degradative activity is lessened for the desired compound without impairing the viability of the cell. In each case, the overall yield or rate of production of
- 15 the desired fine chemical may be increased.

- It is also possible that such alterations in the protein and nucleotide molecules of the invention may improve the production of other fine chemicals besides the amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose through indirect mechanisms. Metabolism of any one compound is necessarily
- 20 intertwined with other biosynthetic and degradative pathways within the cell, and necessary cofactors, intermediates, or substrates in one pathway are likely supplied or limited by another such pathway. Therefore, by modulating the activity of one or more ~~of the proteins of the invention, the production or efficiency of activity of another fine~~ chemical biosynthetic or degradative pathway may be impacted. For example, amino
- 25 acids serve as the structural units of all proteins, yet may be present intracellularly in levels which are limiting for protein synthesis; therefore, by increasing the efficiency of production or the yields of one or more amino acids within the cell, proteins, such as biosynthetic or degradative proteins, may be more readily synthesized. Likewise, an alteration in a metabolic pathway enzyme such that a particular side reaction becomes
- 30 more or less favored may result in the over- or under-production of one or more compounds which are utilized as intermediates or substrates for the production of a desired fine chemical.

- 6 -

This invention provides novel nucleic acid molecules which encode proteins, referred to herein as metabolic pathway proteins (MP), which are capable of, for example, performing an enzymatic step involved in the metabolism of molecules important for the normal functioning of cells, such as amino acids, vitamins, cofactors, 5 nucleotides and nucleosides, or trehalose. Nucleic acid molecules encoding an MP protein are referred to herein as MP nucleic acid molecules. In a preferred embodiment, the MP protein performs an enzymatic step related to the metabolism of one or more of the following: amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose. Examples of such proteins include those encoded by the genes set forth 10 in Table 1.

Accordingly, one aspect of the invention pertains to isolated nucleic acid molecules (*e.g.*, cDNAs, DNAs, or RNAs) comprising a nucleotide sequence encoding an MP protein or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection or amplification of MP- 15 encoding nucleic acid (*e.g.*, DNA or mRNA). In particularly preferred embodiments, the isolated nucleic acid molecule comprises one of the nucleotide sequences set forth as the odd-numbered SEQ ID NOs in the Sequence Listing (*e.g.*, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7....), or the coding region or a complement thereof of one of these nucleotide sequences. In other particularly preferred embodiments, the 20 isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes to or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80% or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence set forth as an odd-numbered SEQ ID NO in the Sequence Listing (*e.g.*, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, 25 SEQ ID NO:7....), or a portion thereof. In other preferred embodiments, the isolated nucleic acid molecule encodes one of the amino acid sequences set forth as an even-numbered SEQ ID NO in the Sequence Listing (*e.g.*, SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8....). The preferred MP proteins of the present invention also preferably possess at least one of the MP activities described herein.

30 In another embodiment, the isolated nucleic acid molecule encodes a protein or portion thereof wherein the protein or portion thereof includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (*e.g.*, a

- 7 -

sequence having an even-numbered SEQ ID NO: in the Sequence Listing), e.g., sufficiently homologous to an amino acid sequence of the invention such that the protein or portion thereof maintains an MP activity. Preferably, the protein or portion thereof encoded by the nucleic acid molecule maintains the ability to perform an enzymatic reaction in a amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway. In one embodiment, the protein encoded by the nucleic acid molecule is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90% and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an amino acid sequence of the invention (e.g., an entire amino acid sequence selected from those having an even-numbered SEQ ID NO in the Sequence Listing). In another preferred embodiment, the protein is a full length *C. glutamicum* protein which is substantially homologous to an entire amino acid sequence of the invention (encoded by an open reading frame shown in the corresponding odd-numbered SEQ ID NOs in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7...)).

In another preferred embodiment, the isolated nucleic acid molecule is derived from *C. glutamicum* and encodes a protein (e.g., an MP fusion protein) which includes a biologically active domain which is at least about 50% or more homologous to one of the amino acid sequences of the invention (e.g., a sequence of one of the even-numbered SEQ ID NOs in the Sequence Listing) and is able to catalyze a reaction in a metabolic pathway for an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose, or one or more of the activities set forth in Table 1, and which also includes heterologous nucleic acid sequences encoding a heterologous polypeptide or regulatory regions.

In another embodiment, the isolated nucleic acid molecule is at least 15 nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO in the Sequence Listing). Preferably, the isolated nucleic acid molecule corresponds to a naturally-occurring nucleic acid molecule. More preferably, the isolated nucleic acid encodes a naturally-occurring *C. glutamicum* MP protein, or a biologically active portion thereof.

Another aspect of the invention pertains to vectors, *e.g.*, recombinant expression vectors, containing the nucleic acid molecules of the invention, and host cells into which such vectors have been introduced. In one embodiment, such a host cell is used to produce an MP protein by culturing the host cell in a suitable medium. The MP protein 5 can be then isolated from the medium or the host cell.

Yet another aspect of the invention pertains to a genetically altered microorganism in which an MP gene has been introduced or altered. In one embodiment, the genome of the microorganism has been altered by introduction of a nucleic acid molecule of the invention encoding wild-type or mutated MP sequence as a 10 transgene. In another embodiment, an endogenous MP gene within the genome of the microorganism has been altered, *e.g.*, functionally disrupted, by homologous recombination with an altered MP gene. In another embodiment, an endogenous or introduced MP gene in a microorganism has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional MP protein. In still 15 another embodiment, one or more of the regulatory regions (*e.g.*, a promoter, repressor, or inducer) of an MP gene in a microorganism has been altered (*e.g.*, by deletion, truncation, inversion, or point mutation) such that the expression of the MP gene is modulated. In a preferred embodiment, the microorganism belongs to the genus *Corynebacterium* or *Brevibacterium*, with *Corynebacterium glutamicum* being 20 particularly preferred. In a preferred embodiment, the microorganism is also utilized for the production of a desired compound, such as an amino acid, with lysine being particularly preferred.

In another aspect, the invention provides a method of identifying the presence or activity of *Corynebacterium diphtheriae* in a subject. This method includes detection of 25 one or more of the nucleic acid or amino acid sequences of the invention (*e.g.*, the sequences set forth in the Sequence Listing as SEQ ID NOs 1 through 1156) in a subject, thereby detecting the presence or activity of *Corynebacterium diphtheriae* in the subject.

Still another aspect of the invention pertains to an isolated MP protein or a 30 portion, *e.g.*, a biologically active portion, thereof. In a preferred embodiment, the isolated MP protein or portion thereof can catalyze an enzymatic reaction involved in one or more pathways for the metabolism of an amino acid, a vitamin, a cofactor, a

- 9 -

nutraceutical, a nucleotide, a nucleoside, or trehalose. In another preferred embodiment, the isolated MP protein or portion thereof is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: in the Sequence Listing) such that the protein or portion thereof maintains the ability to catalyze an enzymatic reaction involved in one or more pathways for the metabolism of an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose.

The invention also provides an isolated preparation of an MP protein. In preferred embodiments, the MP protein comprises an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing). In another preferred embodiment, the invention pertains to an isolated full length protein which is substantially homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) (encoded by an open reading frame set forth in a corresponding odd-numbered SEQ ID NO: of the Sequence Listing). In yet another embodiment, the protein is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90%, and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing). In other embodiments, the isolated MP protein comprises an amino acid sequence which is at least about 50% or more homologous to one of the amino acid sequences of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) and is able to catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, ~~nutraceutical, nucleotide, nucleoside, or trehalose~~ metabolic pathway, or has one or more of the activities set forth in Table 1.

Alternatively, the isolated MP protein can comprise an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to a nucleotide sequence of one of the even-numbered SEQ ID NOs set forth in the Sequence Listing. It is also preferred that the preferred forms of MP proteins also have one or more of the MP bioactivities described herein.

- 10 -

The MP polypeptide, or a biologically active portion thereof, can be operatively linked to a non-MP polypeptide to form a fusion protein. In preferred embodiments, this fusion protein has an activity which differs from that of the MP protein alone. In other preferred embodiments, this fusion protein, when introduced into a *C. glutamicum* pathway for the metabolism of an amino acid, vitamin, cofactor, nutraceutical, results in increased yields and/or efficiency of production of a desired fine chemical from *C. glutamicum*. In particularly preferred embodiments, integration of this fusion protein into an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway of a host cell modulates production of a desired compound from the cell.

In another aspect, the invention provides methods for screening molecules which modulate the activity of an MP protein, either by interacting with the protein itself or a substrate or binding partner of the MP protein, or by modulating the transcription or translation of an MP nucleic acid molecule of the invention.

Another aspect of the invention pertains to a method for producing a fine chemical. This method involves the culturing of a cell containing a vector directing the expression of an MP nucleic acid molecule of the invention, such that a fine chemical is produced. In a preferred embodiment, this method further includes the step of obtaining a cell containing such a vector, in which a cell is transfected with a vector directing the expression of an MP nucleic acid. In another preferred embodiment, this method further includes the step of recovering the fine chemical from the culture. In a particularly preferred embodiment, the cell is from the genus *Corynebacterium* or *Brevibacterium*, or is selected from those strains set forth in Table 3.

Another aspect of the invention pertains to methods for modulating production of a molecule from a microorganism. Such methods include contacting the cell with an agent which modulates MP protein activity or MP nucleic acid expression such that a cell associated activity is altered relative to this same activity in the absence of the agent. In a preferred embodiment, the cell is modulated for one or more *C. glutamicum* amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways, such that the yields or rate of production of a desired fine chemical by this microorganism is improved. The agent which modulates MP protein activity can be an agent which stimulates MP protein activity or MP nucleic acid expression.

- 11 -

Examples of agents which stimulate MP protein activity or MP nucleic acid expression include small molecules, active MP proteins, and nucleic acids encoding MP proteins that have been introduced into the cell. Examples of agents which inhibit MP activity or expression include small molecules, and antisense MP nucleic acid molecules.

5 Another aspect of the invention pertains to methods for modulating yields of a desired compound from a cell, involving the introduction of a wild-type or mutant MP gene into a cell, either maintained on a separate plasmid or integrated into the genome of the host cell. If integrated into the genome, such integration can be random, or it can take place by homologous recombination such that the native gene is replaced by the
10 introduced copy, causing the production of the desired compound from the cell to be modulated. In a preferred embodiment, said yields are increased. In another preferred embodiment, said chemical is a fine chemical. In a particularly preferred embodiment, said fine chemical is an amino acid. In especially preferred embodiments, said amino acid is L-lysine.

15

Detailed Description of the Invention

The present invention provides MP nucleic acid and protein molecules which are involved in the metabolism of certain fine chemicals in *Corynebacterium glutamicum*, including amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and
20 trehalose. The molecules of the invention may be utilized in the modulation of production of fine chemicals from microorganisms, such as *C. glutamicum*, either directly (e.g., where modulation of the activity of a lysine biosynthesis protein has a direct impact on the production or efficiency of production of lysine from that organism), or may have an indirect impact which nonetheless results in an increase of
25 yield or efficiency of production of the desired compound (e.g., where modulation of the activity of a nucleotide biosynthesis protein has an impact on the production of an organic acid or a fatty acid from the bacterium, perhaps due to improved growth or an increased supply of necessary co-factors, energy compounds, or precursor molecules). Aspects of the invention are further explicated below.

30

- 12 -

I. Fine Chemicals

The term 'fine chemical' is art-recognized and includes molecules produced by an organism which have applications in various industries, such as, but not limited to, the pharmaceutical, agriculture, and cosmetics industries. Such compounds include

5 organic acids, such as tartaric acid, itaconic acid, and diaminopimelic acid, both proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, nucleosides, and nucleotides (as described e.g. in Kuninaka, A. (1996) Nucleotides and related compounds, p. 561-612, in Biotechnology vol. 6, Rehm *et al.*, eds. VCH: Weinheim, and references contained therein), lipids, both saturated and unsaturated fatty

10 acids (e.g., arachidonic acid), diols (e.g., propane diol, and butane diol), carbohydrates (e.g., hyaluronic acid and trehalose), aromatic compounds (e.g., aromatic amines, vanillin, and indigo), vitamins and cofactors (as described in Ullmann's Encyclopedia of Industrial Chemistry, vol. A27, "Vitamins", p. 443-613 (1996) VCH: Weinheim and references therein; and Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids,

15 Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research -- Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press, (1995)), enzymes, polyketides (Cane *et al.* (1998) *Science* 282: 63-68), and all other chemicals described in Gutcho (1983) Chemicals by Fermentation, Noyes Data Corporation, ISBN:

20 0818805086 and references therein. The metabolism and uses of certain of these fine chemicals are further explicated below.

A. *Amino Acid Metabolism and Uses*

Amino acids comprise the basic structural units of all proteins, and as such are

25 essential for normal cellular functioning in all organisms. The term "amino acid" is art-recognized. The proteinogenic amino acids, of which there are 20 species, serve as structural units for proteins, in which they are linked by peptide bonds, while the nonproteinogenic amino acids (hundreds of which are known) are not normally found in proteins (see Ullmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97 VCH: Weinheim (1985)). Amino acids may be in the D- or L- optical configuration, though L-amino acids are generally the only type found in naturally-occurring proteins.

Biosynthetic and degradative pathways of each of the 20 proteinogenic amino acids

- 13 -

- have been well characterized in both prokaryotic and eukaryotic cells (see, for example, Stryer, L. Biochemistry, 3rd edition, pages 578-590 (1988)). The 'essential' amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine), so named because they are generally a nutritional requirement due to the complexity of their biosyntheses, are readily converted by simple biosynthetic pathways to the remaining 11 'nonessential' amino acids (alanine, arginine, asparagine, aspartate, cysteine, glutamate, glutamine, glycine, proline, serine, and tyrosine). Higher animals do retain the ability to synthesize some of these amino acids, but the essential amino acids must be supplied from the diet in order for normal protein synthesis to occur.
- Aside from their function in protein biosynthesis, these amino acids are interesting chemicals in their own right, and many have been found to have various applications in the food, feed, chemical, cosmetics, agriculture, and pharmaceutical industries. Lysine is an important amino acid in the nutrition not only of humans, but also of monogastric animals such as poultry and swine. Glutamate is most commonly used as a flavor additive (mono-sodium glutamate, MSG) and is widely used throughout the food industry, as are aspartate, phenylalanine, glycine, and cysteine. Glycine, L-methionine and tryptophan are all utilized in the pharmaceutical industry. Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are of use in both the pharmaceutical and cosmetics industries. Threonine, tryptophan, and D/L-methionine are common feed additives. (Leuchtenberger, W. (1996) Amino acids – technical production and use, p. 466-502 in Rehm *et al.* (eds.) Biotechnology vol. 6, chapter 14a, VCH: Weinheim). Additionally, these amino acids have been found to be useful as precursors for the synthesis of synthetic amino acids and proteins, such as N-acetylcysteine, S-carboxymethyl-L-cysteine, (S)-5-hydroxytryptophan, and others described in Ullmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97, VCH: Weinheim, 1985.

The biosynthesis of these natural amino acids in organisms capable of producing them, such as bacteria, has been well characterized (for review of bacterial amino acid biosynthesis and regulation thereof, see Umbarger, H.E. (1978) *Ann. Rev. Biochem.* 47: 533-606). Glutamate is synthesized by the reductive amination of α -ketoglutarate, an intermediate in the citric acid cycle. Glutamine, proline, and arginine are each subsequently produced from glutamate. The biosynthesis of serine is a three-

- 14 -

step process beginning with 3-phosphoglycerate (an intermediate in glycolysis), and resulting in this amino acid after oxidation, transamination, and hydrolysis steps. Both cysteine and glycine are produced from serine; the former by the condensation of homocysteine with serine, and the latter by the transferal of the side-chain β -carbon atom to tetrahydrofolate, in a reaction catalyzed by serine transhydroxymethylase. Phenylalanine, and tyrosine are synthesized from the glycolytic and pentose phosphate pathway precursors erythrose 4-phosphate and phosphoenolpyruvate in a 9-step biosynthetic pathway that differ only at the final two steps after synthesis of prephenate. Tryptophan is also produced from these two initial molecules, but its synthesis is an 11-step pathway. Tyrosine may also be synthesized from phenylalanine, in a reaction catalyzed by phenylalanine hydroxylase. Alanine, valine, and leucine are all biosynthetic products of pyruvate, the final product of glycolysis. Aspartate is formed from oxaloacetate, an intermediate of the citric acid cycle. Asparagine, methionine, threonine, and lysine are each produced by the conversion of aspartate. Isoleucine is formed from threonine. A complex 9-step pathway results in the production of histidine from 5-phosphoribosyl-1-pyrophosphate, an activated sugar.

Amino acids in excess of the protein synthesis needs of the cell cannot be stored, and are instead degraded to provide intermediates for the major metabolic pathways of the cell (for review see Stryer, L. Biochemistry 3rd ed. Ch. 21 "Amino Acid Degradation and the Urea Cycle" p. 495-516 (1988)). Although the cell is able to convert unwanted amino acids into useful metabolic intermediates, amino acid production is costly in terms of energy, precursor molecules, and the enzymes necessary to synthesize them. Thus it is not surprising that amino acid biosynthesis is regulated by feedback inhibition, in which the presence of a particular amino acid serves to slow or entirely stop its own production (for overview of feedback mechanisms in amino acid biosynthetic pathways, see Stryer, L. Biochemistry, 3rd ed. Ch. 24: "Biosynthesis of Amino Acids and Heme" p. 575-600 (1988)). Thus, the output of any particular amino acid is limited by the amount of that amino acid present in the cell.

30 *B. Vitamin, Cofactor, and Nutraceutical Metabolism and Uses*

Vitamins, cofactors, and nutraceuticals comprise another group of molecules which the higher animals have lost the ability to synthesize and so must ingest, although

- 15 -

they are readily synthesized by other organisms, such as bacteria. These molecules are either bioactive substances themselves, or are precursors of biologically active substances which may serve as electron carriers or intermediates in a variety of metabolic pathways. Aside from their nutritive value, these compounds also have

5 significant industrial value as coloring agents, antioxidants, and catalysts or other processing aids. (For an overview of the structure, activity, and industrial applications of these compounds, see, for example, Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996.) The term "vitamin" is art-recognized, and includes nutrients which are required by an organism for normal

10 functioning, but which that organism cannot synthesize by itself. The group of vitamins may encompass cofactors and nutraceutical compounds. The language "cofactor" includes nonproteinaceous compounds required for a normal enzymatic activity to occur. Such compounds may be organic or inorganic; the cofactor molecules of the invention are preferably organic. The term "nutraceutical" includes dietary supplements

15 having health benefits in plants and animals, particularly humans. Examples of such molecules are vitamins, antioxidants, and also certain lipids (e.g., polyunsaturated fatty acids).

The biosynthesis of these molecules in organisms capable of producing them, such as bacteria, has been largely characterized (Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons; Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research – Asia, held Sept. 25 1-3, 1994 at Penang, Malaysia, AOCS Press: Champaign, IL X, 374 S).

Thiamin (vitamin B₁) is produced by the chemical coupling of pyrimidine and thiazole moieties. Riboflavin (vitamin B₂) is synthesized from guanosine-5'-triphosphate (GTP) and ribose-5'-phosphate. Riboflavin, in turn, is utilized for the synthesis of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). The family of

30 compounds collectively termed 'vitamin B₆' (e.g., pyridoxine, pyridoxamine, pyridoxal-5'-phosphate, and the commercially used pyridoxin hydrochloride) are all derivatives of the common structural unit, 5-hydroxy-6-methylpyridine. Pantothenate (pantothenic

- 16 -

acid, (R)-(+)-N-(2,4-dihydroxy-3,3-dimethyl-1-oxobutyl)- β -alanine) can be produced either by chemical synthesis or by fermentation. The final steps in pantothenate biosynthesis consist of the ATP-driven condensation of β -alanine and pantoic acid. The enzymes responsible for the biosynthesis steps for the conversion to pantoic acid, to β -alanine and for the condensation to pantothenic acid are known. The metabolically active form of pantothenate is Coenzyme A, for which the biosynthesis proceeds in 5 enzymatic steps. Pantothenate, pyridoxal-5'-phosphate, cysteine and ATP are the precursors of Coenzyme A. These enzymes not only catalyze the formation of pantothenate, but also the production of (R)-pantoic acid, (R)-pantolacton, (R)-panthenol (provitamin B₅), pantetheine (and its derivatives) and coenzyme A.

Biotin biosynthesis from the precursor molecule pimeloyl-CoA in microorganisms has been studied in detail and several of the genes involved have been identified. Many of the corresponding proteins have been found to also be involved in Fe-cluster synthesis and are members of the nifS class of proteins. Lipoic acid is derived from octanoic acid, and serves as a coenzyme in energy metabolism, where it becomes part of the pyruvate dehydrogenase complex and the α -ketoglutarate dehydrogenase complex. The folates are a group of substances which are all derivatives of folic acid, which is turn is derived from L-glutamic acid, p-amino-benzoic acid and 6-methylpterin. The biosynthesis of folic acid and its derivatives, starting from the metabolism intermediates guanosine-5'-triphosphate (GTP), L-glutamic acid and p-amino-benzoic acid has been studied in detail in certain microorganisms.

Corrinoids (such as the cobalamines and particularly vitamin B₁₂) and porphyrines belong to a group of chemicals characterized by a tetrapyrrole ring system. The biosynthesis of vitamin B₁₂ is sufficiently complex that it has not yet been completely characterized, but many of the enzymes and substrates involved are now known. Nicotinic acid (nicotinate), and nicotinamide are pyridine derivatives which are also termed 'niacin'. Niacin is the precursor of the important coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate) and their reduced forms.

The large-scale production of these compounds has largely relied on cell-free chemical syntheses, though some of these chemicals have also been produced by large-scale culture of microorganisms, such as riboflavin, Vitamin B₆, pantothenate, and

- 17 -

biotin. Only Vitamin B₁₂ is produced solely by fermentation, due to the complexity of its synthesis. *In vitro* methodologies require significant inputs of materials and time, often at great cost.

5 *C. Purine, Pyrimidine, Nucleoside and Nucleotide Metabolism and Uses*

Purine and pyrimidine metabolism genes and their corresponding proteins are important targets for the therapy of tumor diseases and viral infections. The language "purine" or "pyrimidine" includes the nitrogenous bases which are constituents of nucleic acids, co-enzymes, and nucleotides. The term "nucleotide" includes the basic structural units of nucleic acid molecules, which are comprised of a nitrogenous base, a pentose sugar (in the case of RNA, the sugar is ribose; in the case of DNA, the sugar is D-deoxyribose), and phosphoric acid. The language "nucleoside" includes molecules which serve as precursors to nucleotides, but which are lacking the phosphoric acid moiety that nucleotides possess. By inhibiting the biosynthesis of these molecules, or their mobilization to form nucleic acid molecules, it is possible to inhibit RNA and DNA synthesis; by inhibiting this activity in a fashion targeted to cancerous cells, the ability of tumor cells to divide and replicate may be inhibited. Additionally, there are nucleotides which do not form nucleic acid molecules, but rather serve as energy stores (*i.e.*, AMP) or as coenzymes (*i.e.*, FAD and NAD).

20 Several publications have described the use of these chemicals for these medical indications, by influencing purine and/or pyrimidine metabolism (*e.g.* Christopherson, R.I. and Lyons, S.D. (1990) "Potent inhibitors of *de novo* pyrimidine and purine biosynthesis as chemotherapeutic agents." *Med. Res. Reviews* 10: 505-548). Studies of enzymes involved in purine and pyrimidine metabolism have been focused on the development of new drugs which can be used, for example, as immunosuppressants or anti-proliferants (Smith, J.L., (1995) "Enzymes in nucleotide synthesis." *Curr. Opin. Struct. Biol.* 5: 752-757; (1995) *Biochem Soc. Transact.* 23: 877-902). However, purine and pyrimidine bases, nucleosides and nucleotides have other utilities: as intermediates in the biosynthesis of several fine chemicals (*e.g.*, thiamine, S-adenosyl-methionine, folates, or riboflavin), as energy carriers for the cell (*e.g.*, ATP or GTP), and for chemicals themselves, commonly used as flavor enhancers (*e.g.*, IMP or GMP) or for several medicinal applications (see, for example, Kuninaka, A. (1996) Nucleotides and

- 18 -

Related Compounds in Biotechnology vol. 6, Rehm *et al.*, eds. VCH: Weinheim, p. 561-612). Also, enzymes involved in purine, pyrimidine, nucleoside, or nucleotide metabolism are increasingly serving as targets against which chemicals for crop protection, including fungicides, herbicides and insecticides, are developed.

- 5 The metabolism of these compounds in bacteria has been characterized (for reviews see, for example, Zalkin, H. and Dixon, J.E. (1992) "de novo purine nucleotide biosynthesis", in: Progress in Nucleic Acid Research and Molecular Biology, vol. 42, Academic Press; p. 259-287; and Michal, G. (1999) "Nucleotides and Nucleosides", Chapter 8 in: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, Wiley: New York). Purine metabolism has been the subject of intensive research, and is essential to the normal functioning of the cell. Impaired purine metabolism in higher animals can cause severe disease, such as gout. Purine nucleotides are synthesized from ribose-5-phosphate, in a series of steps through the intermediate compound inosine-5'-phosphate (IMP), resulting in the production of guanosine-5'-monophosphate (GMP) or adenosine-5'-monophosphate (AMP), from which the triphosphate forms utilized as nucleotides are readily formed. These compounds are also utilized as energy stores, so their degradation provides energy for many different biochemical processes in the cell. Pyrimidine biosynthesis proceeds by the formation of uridine-5'-monophosphate (UMP) from ribose-5-phosphate. UMP, in turn, is converted to cytidine-5'-triphosphate (CTP).
- 10 15 The deoxy- forms of all of these nucleotides are produced in a one step reduction reaction from the diphosphate ribose form of the nucleotide to the diphosphate deoxyribose form of the nucleotide. Upon phosphorylation, these molecules are able to participate in DNA synthesis.
- 20

25 D. *Trehalose Metabolism and Uses*

- Trehalose consists of two glucose molecules, bound in α, α -1,1 linkage. It is commonly used in the food industry as a sweetener, an additive for dried or frozen foods, and in beverages. However, it also has applications in the pharmaceutical, cosmetics and biotechnology industries (see, for example, Nishimoto *et al.*, (1998) U.S. Patent No. 5,759,610; Singer, M.A. and Lindquist, S. (1998) *Trends Biotech.* 16: 460-467; Paiva, C.L.A. and Panek, A.D. (1996) *Biotech. Ann. Rev.* 2: 293-314; and Shiosaka, M. (1997) *J. Japan* 172: 97-102). Trehalose is produced by enzymes from

- 19 -

many microorganisms and is naturally released into the surrounding medium, from which it can be collected using methods known in the art.

II. Elements and Methods of the Invention

5 The present invention is based, at least in part, on the discovery of novel molecules, referred to herein as MP nucleic acid and protein molecules, which play a role in or function in one or more cellular metabolic pathways. In one embodiment, the MP molecules catalyze an enzymatic reaction involving one or more amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways. In a preferred embodiment, the activity of the MP molecules of the present invention in one or more *C. glutamicum* metabolic pathways for amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides or trehalose has an impact on the production of a desired fine chemical by this organism. In a particularly preferred embodiment, the MP molecules of the invention are modulated in activity, such that the 10 MP molecules of the invention are modulated in efficiency or output, which either directly or indirectly modulates the production or efficiency of production of a desired fine chemical by *C. glutamicum*.

15 The language, "MP protein" or "MP polypeptide" includes proteins which play a role in, *e.g.*, catalyze an enzymatic reaction, in one or more amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside or trehalose metabolic pathways.

20 Examples of MP proteins include those encoded by the MP genes set forth in Table 1 and by the odd numbered SEQ ID NOS. The terms "MP gene" or "MP nucleic acid sequence" include nucleic acid sequences encoding an MP protein, which consist of a coding region and also corresponding untranslated 5' and 3' sequence regions.

25 Examples of MP genes include those set forth in Table 1. The terms "production" or "productivity" are art-recognized and include the concentration of the fermentation product (for example, the desired fine chemical) formed within a given time and a given fermentation volume (*e.g.*, kg product per hour per liter). The term "efficiency of production" includes the time required for a particular level of production to be achieved (for example, how long it takes for the cell to attain a particular rate of output of a fine chemical). The term "yield" or "product/carbon yield" is art-recognized and includes

- 20 -

the efficiency of the conversion of the carbon source into the product (*i.e.*, fine chemical). This is generally written as, for example, kg product per kg carbon source. By increasing the yield or production of the compound, the quantity of recovered molecules, or of useful recovered molecules of that compound in a given amount of culture over a given amount of time is increased. The terms "biosynthesis" or a "biosynthetic pathway" are art-recognized and include the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds in what may be a multistep and highly regulated process. The terms "degradation" or a "degradation pathway" are art-recognized and include the breakdown of a compound, preferably an organic compound, by a cell to degradation products (generally speaking, smaller or less complex molecules) in what may be a multistep and highly regulated process. The language "metabolism" is art-recognized and includes the totality of the biochemical reactions that take place in an organism. The metabolism of a particular compound, then, (*e.g.*, the metabolism of an amino acid such as glycine) comprises the overall biosynthetic, modification, and degradation pathways in the cell related to this compound.

In another embodiment, the MP molecules of the invention are capable of modulating the production of a desired molecule, such as a fine chemical, in a microorganism such as *C. glutamicum*. Using recombinant genetic techniques, one or more of the biosynthetic or degradative enzymes of the invention for amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, or trehalose may be manipulated such that its function is modulated. For example, a biosynthetic enzyme may be improved in efficiency, or its allosteric control region destroyed such that feedback inhibition of production of the compound is prevented. Similarly, a degradative enzyme may be deleted or modified by substitution, deletion, or addition such that its degradative activity is lessened for the desired compound without impairing the viability of the cell. In each case, the overall yield or rate of production of one of these desired fine chemicals may be increased.

It is also possible that such alterations in the protein and nucleotide molecules of the invention may improve the production of other fine chemicals besides the amino acids, vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, and trehalose. Metabolism of any one compound is necessarily intertwined with other biosynthetic and

- 21 -

degradative pathways within the cell, and necessary cofactors, intermediates, or substrates in one pathway are likely supplied or limited by another such pathway. Therefore, by modulating the activity of one or more of the proteins of the invention, the production or efficiency of activity of another fine chemical biosynthetic or degradative 5 pathway may be impacted. For example, amino acids serve as the structural units of all proteins, yet may be present intracellularly in levels which are limiting for protein synthesis; therefore, by increasing the efficiency of production or the yields of one or more amino acids within the cell, proteins, such as biosynthetic or degradative proteins, may be more readily synthesized. Likewise, an alteration in a metabolic pathway 10 enzyme such that a particular side reaction becomes more or less favored may result in the over- or under-production of one or more compounds which are utilized as intermediates or substrates for the production of a desired fine chemical.

The isolated nucleic acid sequences of the invention are contained within the genome of a *Corynebacterium glutamicum* strain available through the American Type 15 Culture Collection, given designation ATCC 13032. The nucleotide sequence of the isolated *C. glutamicum* MP DNAs and the predicted amino acid sequences of the *C. glutamicum* MP proteins are shown in the Sequence Listing as odd-numbered SEQ ID NOs and even-numbered SEQ ID NOs, respectively. Computational analyses were performed which classified and/or identified these nucleotide sequences as 20 sequences which encode metabolic pathway proteins.

The present invention also pertains to proteins which have an amino acid sequence which is substantially homologous to an amino acid sequence of the invention (e.g., the sequence of an even-numbered SEQ ID NO of the Sequence Listing). As used herein, a protein which has an amino acid sequence which is substantially homologous 25 to a selected amino acid sequence is least about 50% homologous to the selected amino acid sequence, e.g., the entire selected amino acid sequence. A protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence can also be least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, or 90-95%, and most preferably at least about 30 96%, 97%, 98%, 99% or more homologous to the selected amino acid sequence.

The MP protein or a biologically active portion or fragment thereof of the invention can catalyze an enzymatic reaction in one or more amino acid, vitamin,

- 22 -

cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways, or have one or more of the activities set forth in Table 1.

Various aspects of the invention are described in further detail in the following subsections:

5

A. Isolated Nucleic Acid Molecules

- One aspect of the invention pertains to isolated nucleic acid molecules that encode MP polypeptides or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes or primers for the identification or 10 amplification of MP-encoding nucleic acid (*e.g.*, MP DNA). As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (*e.g.*, cDNA or genomic DNA) and RNA molecules (*e.g.*, mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3' and 5' ends of the coding region of the gene: at least about 100 nucleotides 15 of sequence upstream from the 5' end of the coding region and at least about 20 nucleotides of sequence downstream from the 3' end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic 20 acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (*i.e.*, sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated MP nucleic acid molecule can contain less than about 5 kb, 4kb, 3kb, 2kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank 25 the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (*e.g.*, a *C. glutamicum* cell). Moreover, an "isolated" nucleic acid molecule, such as a DNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.
- 30 A nucleic acid molecule of the present invention, *e.g.*, a nucleic acid molecule having a nucleotide sequence of an odd-numbered SEQ ID NO of the Sequence Listing, or a portion thereof, can be isolated using standard molecular biology techniques and the

- 23 -

sequence information provided herein. For example, a *C. glutamicum* MP DNA can be isolated from a *C. glutamicum* library using all or portion of one of the odd-numbered SEQ ID NO sequences of the Sequence Listing as a hybridization probe and standard hybridization techniques (e.g., as described in Sambrook, J., Fritsh, E. F., and Maniatis, 5 *T. Molecular Cloning: A Laboratory Manual*. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). Moreover, a nucleic acid molecule encompassing all or a portion of one of the nucleic acid sequences of the invention (e.g., an odd-numbered SEQ ID NO:) can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this 10 sequence (e.g., a nucleic acid molecule encompassing all or a portion of one of the nucleic acid sequences of the invention (e.g., an odd-numbered SEQ ID NO of the Sequence Listing) can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this same sequence). For example, mRNA can be isolated from normal endothelial cells (e.g., by the guanidinium-thiocyanate 15 extraction procedure of Chirgwin *et al.* (1979) *Biochemistry* 18: 5294-5299) and DNA can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, MD; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, FL). Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the 20 nucleotide sequences shown in the Sequence Listing. A nucleic acid of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. ~~The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding~~ 25 to an MP nucleotide sequence can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

In a preferred embodiment, an isolated nucleic acid molecule of the invention comprises one of the nucleotide sequences shown in the Sequence Listing. The nucleic acid sequences of the invention, as set forth in the Sequence Listing, correspond to the 30 *Corynebacterium glutamicum* MP DNAs of the invention. This DNA comprises sequences encoding MP proteins (i.e., the "coding region", indicated in each odd-numbered SEQ ID NO: sequence in the Sequence Listing), as well as 5' untranslated

- 24 -

sequences and 3' untranslated sequences, also indicated in each odd-numbered SEQ ID NO: in the Sequence Listing. Alternatively, the nucleic acid molecule can comprise only the coding region of any of the nucleic acid sequences of the Sequence Listing.

For the purposes of this application, it will be understood that each of the nucleic acid and amino acid sequences set forth in the Sequence Listing has an identifying RXA, RXN, RXS, or RXC number having the designation "RXA", "RXN", "RXS", or "RXC" followed by 5 digits (*i.e.*, RXA00007, RXN00023, RXS00116, or RXC00128). Each of the nucleic acid sequences comprises up to three parts: a 5' upstream region, a coding region, and a downstream region. Each of these three regions is identified by the same RXA, RXN, RXS, or RXC designation to eliminate confusion. The recitation "one of the odd-numbered sequences of the Sequence Listing", then, refers to any of the nucleic acid sequences in the Sequence Listing, which may also be distinguished by their differing RXA, RXN, RXS, or RXC designations. The coding region of each of these sequences is translated into a corresponding amino acid sequence, which is also set forth in the Sequence Listing, as an even-numbered SEQ ID NO: immediately following the corresponding nucleic acid sequence. For example, the coding region for RXA02229 is set forth in SEQ ID NO:1, while the amino acid sequence which it encodes is set forth as SEQ ID NO:2. The sequences of the nucleic acid molecules of the invention are identified by the same RXA, RXN, RXS, or RXC designations as the amino acid molecules which they encode, such that they can be readily correlated. For example, the amino acid sequences designated RXA02229, RX00351, RXS02970, and RXC02390 are translations of the coding regions of the nucleotide sequences of nucleic acid molecules RXA02229, RX00351, RXS02970, and RXC02390, respectively. The correspondence between the RXA, RXN, RXS, and RXC nucleotide and amino acid sequences of the invention and their assigned SEQ ID NOs is set forth in Table 1.

Several of the genes of the invention are "F-designated genes". An F-designated gene includes those genes set forth in Table 1 which have an 'F' in front of the RXA, RXN, RXS, or RXC designation. For example, SEQ ID NO:5, designated, as indicated on Table 1, as "F RXA01009", is an F-designated gene, as are SEQ ID NOs: 73, 75, and 30 77 (designated on Table 1 as "F RXA00007", "F RXA00364", and "F RXA00367", respectively).

- 25 -

In one embodiment, the nucleic acid molecules of the present invention are not intended to include *C. glutamicum* those compiled in Table 2. In the case of the dapD gene, a sequence for this gene was published in Wehrmann, A., et al. (1998) *J. Bacteriol.* 180(12): 3159-3165. However, the sequence obtained by the inventors of the 5 present application is significantly longer than the published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of one of the 10 nucleotide sequences of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing), or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences of the invention is one which is sufficiently complementary to one of the nucleotide sequences shown in the Sequence Listing (e.g., the sequence of an odd-numbered SEQ ID NO:) such that it can hybridize 15 to one of the nucleotide sequences of the invention, thereby forming a stable duplex.

In still another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 20 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence of the 25 invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing), or a portion thereof. Ranges and identity values intermediate to the above-recited ranges, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. In an additional preferred embodiment, an isolated nucleic acid molecule of the invention 30 comprises a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to one of the nucleotide sequences of the invention, or a portion thereof.

Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of the sequence of one of the odd-numbered SEQ ID NOs

of the Sequence Listing, for example a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of an MP protein. The nucleotide sequences determined from the cloning of the MP genes from *C. glutamicum* allows for the generation of probes and primers designed for use in identifying and/or cloning MP homologues in other cell types and organisms, as well as MP homologues from other *Corynebacteria* or related species. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the nucleotide sequences of the invention (e.g., a sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing), an anti-sense sequence of one of these sequences, or naturally occurring mutants thereof. Primers based on a nucleotide sequence of the invention can be used in PCR reactions to clone MP homologues. Probes based on the MP nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells which misexpress an MP protein, such as by measuring a level of an MP-encoding nucleic acid in a sample of cells from a subject e.g., detecting MP mRNA levels or determining whether a genomic MP gene has been mutated or deleted.

In one embodiment, the nucleic acid molecule of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO of the Sequence Listing) such that the protein or portion thereof maintains the ability to catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway. As used herein, the language "sufficiently homologous" refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain as an amino acid residue in a sequence of one of the even-numbered SEQ ID NOs of the Sequence Listing) amino acid residues to an amino acid sequence of the invention such that the

- 27 -

protein or portion thereof is able to catalyze an enzymatic reaction in a *C. glutamicum* amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside or trehalose metabolic pathway. Protein members of such metabolic pathways, as described herein, function to catalyze the biosynthesis or degradation of one or more of: amino acids, 5 vitamins, cofactors, nutraceuticals, nucleotides, nucleosides, or trehalose. Examples of such activities are also described herein. Thus, "the function of an MP protein" contributes to the overall functioning of one or more such metabolic pathway and contributes, either directly or indirectly, to the yield, production, and/or efficiency of production of one or more fine chemicals. Examples of MP protein activities are set 10 forth in Table 1.

In another embodiment, the protein is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of 15 the Sequence Listing).

Portions of proteins encoded by the MP nucleic acid molecules of the invention are preferably biologically active portions of one of the MP proteins. As used herein, the term "biologically active portion of an MP protein" is intended to include a portion, e.g., a domain/motif, of an MP protein that catalyzes an enzymatic reaction in one or 20 more *C. glutamicum* amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathways, or has an activity as set forth in Table 1. To determine whether an MP protein or a biologically active portion thereof can catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, an assay of enzymatic activity may be performed. Such 25 assay methods are well known to those of ordinary skill in the art, as detailed in Example 8 of the Exemplification.

Additional nucleic acid fragments encoding biologically active portions of an MP protein can be prepared by isolating a portion of one of the amino acid sequences of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence 30 Listing), expressing the encoded portion of the MP protein or peptide (e.g., by recombinant expression *in vitro*) and assessing the activity of the encoded portion of the MP protein or peptide.

- 28 -

The invention further encompasses nucleic acid molecules that differ from one of the nucleotide sequences of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing) (and portions thereof) due to degeneracy of the genetic code and thus encode the same MP protein as that encoded by the nucleotide sequences 5 of the invention. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in the Sequence Listing (e.g., an even-numbered SEQ ID NO:). In a still further embodiment, the nucleic acid molecule of the invention encodes a full length C. glutamicum protein which is substantially homologous to an amino acid sequence of the 10 invention (encoded by an open reading frame shown in an odd-numbered SEQ ID NO: of the Sequence Listing).

It will be understood by one of ordinary skill in the art that in one embodiment the sequences of the invention are not meant to include the sequences of the prior art, such as those Genbank sequences set forth in Tables 2 or 4 which were available prior to 15 the present invention. In one embodiment, the invention includes nucleotide and amino acid sequences having a percent identity to a nucleotide or amino acid sequence of the invention which is greater than that of a sequence of the prior art (e.g., a Genbank sequence (or the protein encoded by such a sequence) set forth in Tables 2 or 4). For example, the invention includes a nucleotide sequence which is greater than and/or at 20 least 40% identical to the nucleotide sequence designated RXA00115 (SEQ ID NO:185), a nucleotide sequence which is greater than and/or at least % identical to the nucleotide sequence designated RXA00131 (SEQ ID NO:991), and a nucleotide sequence which is greater than and/or at least 39% identical to the nucleotide sequence designated RXA00219 (SEQ ID NO:345). One of ordinary skill in the art would be able 25 to calculate the lower threshold of percent identity for any given sequence of the invention by examining the GAP-calculated percent identity scores set forth in Table 4 for each of the three top hits for the given sequence, and by subtracting the highest GAP-calculated percent identity from 100 percent. One of ordinary skill in the art will also appreciate that nucleic acid and amino acid sequences having percent identities 30 greater than the lower threshold so calculated (e.g., at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%,

- 29 -

74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more identical) are also encompassed by the invention.

- In addition to the *C. glutamicum* MP nucleotide sequences set forth in the
- 5 Sequence Listing as odd-numbered SEQ ID NOs, it will be appreciated by one of ordinary skill in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of MP proteins may exist within a population (e.g., the *C. glutamicum* population). Such genetic polymorphism in the MP gene may exist among individuals within a population due to natural variation. As used herein, the terms
- 10 "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding an MP protein, preferably a *C. glutamicum* MP protein. Such natural variations can typically result in 1-5% variance in the nucleotide sequence of the MP gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in MP that are the result of natural variation and that do not alter the
- 15 functional activity of MP proteins are intended to be within the scope of the invention.

Nucleic acid molecules corresponding to natural variants and non-*C. glutamicum* homologues of the *C. glutamicum* MP DNA of the invention can be isolated based on their homology to the *C. glutamicum* MP nucleic acid disclosed herein using the *C. glutamicum* DNA, or a portion thereof, as a hybridization probe according to standard

20 hybridization techniques under stringent hybridization conditions. Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising a nucleotide sequence of an odd-numbered SEQ ID NO: of the Sequence Listing. In other embodiments, the nucleic acid is at least 30, 50, 100, 250 or

25 more nucleotides in length. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 65%, more preferably at least about 70%, and even more preferably at least about

30 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to one of ordinary skill in the art and can be found in *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6.

- 30 -

A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a 5 nucleotide sequence of the invention corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). In one embodiment, the nucleic acid encodes a natural *C. glutamicum* MP protein.

10 In addition to naturally-occurring variants of the MP sequence that may exist in the population, one of ordinary skill in the art will further appreciate that changes can be introduced by mutation into a nucleotide sequence of the invention, thereby leading to changes in the amino acid sequence of the encoded MP protein, without altering the functional ability of the MP protein. For example, nucleotide substitutions leading to 15 amino acid substitutions at "non-essential" amino acid residues can be made in a nucleotide sequence of the invention. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of one of the MP proteins (e.g., an even-numbered SEQ ID NO: of the Sequence Listing) without altering the activity of said MP protein, whereas an "essential" amino acid residue is required for MP protein activity.

20 Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved in the domain having MP activity) may not be essential for activity and thus are likely to be amenable to alteration without altering MP activity.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding MP proteins that contain changes in amino acid residues that are not essential 25 for MP activity. Such MP proteins differ in amino acid sequence from a sequence of an even-numbered SEQ ID NO: of the Sequence Listing yet retain at least one of the MP activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50% homologous to an amino acid sequence of the 30 invention and is capable of catalyzing an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, or has one or more activities set forth in Table 1. Preferably, the protein encoded by the nucleic

- 31 -

acid molecule is at least about 50-60% homologous to the amino acid sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing, more preferably at least about 60-70% homologous to one of these sequences, even more preferably at least about 70-80%, 80-90%, 90-95% homologous to one of these sequences, and most preferably at 5 least about 96%, 97%, 98%, or 99% homologous to one of the amino acid sequences of the invention.

To determine the percent homology of two amino acid sequences (e.g., one of the amino acid sequences of the invention and a mutant form thereof) or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be 10 introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence (e.g., one of the amino acid sequences of the invention) is occupied by the same amino acid residue or nucleotide as the corresponding position in the other 15 sequence (e.g., a mutant form of the amino acid sequence), then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity"). The percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology = # of identical positions/total # of positions x 100).

20 An isolated nucleic acid molecule encoding an MP protein homologous to a protein sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) can be created by introducing one or more nucleotide substitutions, additions or deletions into a nucleotide sequence of the invention such that one or more amino acid substitutions, additions or deletions are introduced into the 25 encoded protein. Mutations can be introduced into one of the nucleotide sequences of the invention by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic 30

- 32 -

acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, 5 phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in an MP protein is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of an MP coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for an MP activity described 10 herein to identify mutants that retain MP activity. Following mutagenesis of the nucleotide sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing, the encoded protein can be expressed recombinantly and the activity of the protein can be determined using, for example, assays described herein (see Example 8 of the Exemplification).

15 In addition to the nucleic acid molecules encoding MP proteins described above, another aspect of the invention pertains to isolated nucleic acid molecules which are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded DNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire MP coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding an 20 MP protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the entire coding 25 region of SEQ ID NO. 1 (RXA02229) comprises nucleotides 1 to 825). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding MP. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into 30 amino acids (i.e., also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding MP disclosed herein (e.g., the sequences set forth as odd-numbered SEQ ID NOs in the Sequence Listing), antisense

- 33 -

nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of MP mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of MP mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of MP mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (*e.g.*, an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, *e.g.*, phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxymethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylamino-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (*i.e.*, RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a cell or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an MCT protein to thereby inhibit expression of the protein, *e.g.*, by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, *e.g.*, by linking the antisense nucleic acid molecule to a peptide or an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong prokaryotic, viral, or eukaryotic promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α -anomeric nucleic acid molecule. An α -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gaultier *et al.* (1987) *Nucleic Acids Res.* 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (Inoue *et al.* (1987) *Nucleic Acids Res.* 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue *et al.* (1987) *FEBS Lett.* 215:327-330).

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (*e.g.*, hammerhead ribozymes (described in Haselhoff and Gerlach (1988) *Nature* 334:585-591)) can be used to catalytically cleave MP mRNA transcripts to thereby inhibit translation of MP mRNA. A ribozyme having specificity for an MP-encoding nucleic acid can be designed based upon the nucleotide sequence of an MP DNA disclosed herein (*i.e.*, SEQ ID NO: 1 (RXA02229)). For example, a derivative of a *Tetrahymena* L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an MP-encoding mRNA. See, *e.g.*, Cech *et al.*

- 35 -

U.S. Patent No. 4,987,071 and Cech *et al.* U.S. Patent No. 5,116,742. Alternatively, MP mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, *e.g.*, Bartel, D. and Szostak, J.W. (1993) *Science* 261:1411-1418.

- 5 Alternatively, MP gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of an MP nucleotide sequence (*e.g.*, an MP promoter and/or enhancers) to form triple helical structures that prevent transcription of an MP gene in target cells. See generally, Helene, C. (1991) *Anticancer Drug Des.* 6(6):569-84; Helene, C. *et al.* (1992) *Ann. N.Y. Acad. Sci.* 660:27-36; and
10 Maher, L.J. (1992) *Bioassays* 14(12):807-15.

B. Recombinant Expression Vectors and Host Cells

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an MP protein (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (*e.g.*, bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (*e.g.*, non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (*e.g.*, replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

- The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an *in vitro* transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, repressor binding sites, activator binding sites, enhancers and other expression control elements (e.g., terminators, polyadenylation signals, or other elements of mRNA secondary structure). Such regulatory sequences are described, for example, in Goeddel; *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, CA (1990).
- Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells. Preferred regulatory sequences are, for example, promoters such as cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacI^q-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, arny, SPO2, λ-P_R- or λ P_L, which are used preferably in bacteria.
- Additional regulatory sequences are, for example, promoters from yeasts and fungi, such as ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH, promoters from plants such as CaMV/35S, SSU, OCS, lib4, usp, STLS1, B33, nos or ubiquitin- or phaseolin-promoters. It is also possible to use artificial promoters. It will be appreciated by one of ordinary skill in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., MP proteins, mutant forms of MP proteins, fusion proteins, etc.).
- The recombinant expression vectors of the invention can be designed for expression of MP proteins in prokaryotic or eukaryotic cells. For example, MP genes can be expressed in bacterial cells such as *C. glutamicum*, insect cells (using baculovirus

- 37 -

- expression vectors), yeast and other fungal cells (see Romanos, M.A. *et al.* (1992) "Foreign gene expression in yeast: a review", *Yeast* 8: 423-488; van den Hondel, C.A.M.J.J. *et al.* (1991) "Heterologous gene expression in filamentous fungi" in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, eds., p. 396-428: Academic Press: San Diego; and van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F. *et al.*, eds., p. 1-28, Cambridge University Press: Cambridge), algae and multicellular plant cells (see Schmidt, R. and Willmitzer, L. (1988) High efficiency *Agrobacterium tumefaciens* -mediated transformation of *Arabidopsis thaliana* leaf and cotyledon explants" *Plant Cell Rep.*: 583-586), or mammalian cells. Suitable host cells are discussed further in Goeddel, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, CA (1990). Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*, for example using T7 promoter regulatory sequences and T7 polymerase.
- 15 Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein but also to the C-terminus or fused within suitable regions in the proteins. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.
- 20
- 25

Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D.B. and Johnson, K.S. (1988) *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the MP protein is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from

the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant MP protein unfused to GST can be recovered by cleavage of the fusion protein with thrombin.

- 5 Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amann *et al.*, (1988) *Gene* 69:301-315) pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHs1, pHs2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, λgt11, pBdCl, and pET 11d (Studier *et al.*, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 60-89; and
- 10 Pouwels *et al.*, eds. (1985) *Cloning Vectors*. Elsevier: New York ISBN 0 444 904018). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by
- 15 host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter. For transformation of other varieties of bacteria, appropriate vectors may be selected. For example, the plasmids pIJ101, pIJ364, pIJ702 and pIJ361 are known to be useful in transforming Streptomyces, while plasmids pUB110, pC194, or pBD214 are suited for transformation
- 20 of Bacillus species. Several plasmids of use in the transfer of genetic information into Corynebacterium include pHM1519, pBL1, pSA77, or pAJ667 (Pouwels *et al.*, eds. (1985) *Cloning Vectors*. Elsevier: New York ISBN 0 444 904018).

One strategy to maximize recombinant protein expression is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression, such as *C. glutamicum* (Wada *et al.* (1992) *Nucleic Acids Res.* 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

- 39 -

In another embodiment, the MP protein expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerevisiae* include pYEPSec1 (Baldari, *et al.*, (1987) *Embo J.* 6:229-234), , 2 μ. pAG-1, Yep6, Yep13, pEMBLYe23, pMFA (Kurjan and Herskowitz, (1982) *Cell* 30:933-943), pJRY88 (Schultz *et al.*, (1987) 5 *Gene* 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for the construction of vectors appropriate for use in other fungi, such as the filamentous fungi, include those detailed in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy, *et al.*, eds., p. 1-28, Cambridge 10 University Press: Cambridge, and Pouwels *et al.*, eds. (1985) Cloning Vectors. Elsevier: New York (IBSN 0 444 904018).

Alternatively, the MP proteins of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (*e.g.*, Sf 9 cells) include the pAc series (Smith *et al.* 15 (1983) *Mol. Cell Biol.* 3:2156-2165) and the pVL series (Lucklow and Summers (1989) *Virology* 170:31-39).

In another embodiment, the MP proteins of the invention may be expressed in unicellular plant cells (such as algae) or in plant cells from higher plants (*e.g.*, the spermatophytes, such as crop plants). Examples of plant expression vectors include 20 those detailed in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", *Plant Mol. Biol.* 20: 1195-1197; and Bevan, M.W. (1984) "Binary *Agrobacterium* vectors for plant transformation", *Nucl. Acid. Res.* 12: 8711-8721, and include pLGV23, pGIIac+, pBIN19, pAK2004, and pDH51 (Pouwels *et al.*, eds. (1985) Cloning Vectors. Elsevier: 25 New York IBSN 0 444 904018).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) *Nature* 329:840) and pMT2PC (Kaufman *et al.* (1987) *EMBO J.* 6:187-195). When used in mammalian cells, the 30 expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both

- 40 -

prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. *Molecular Cloning: A Laboratory Manual. 2nd, ed.*, Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

- 5 In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert *et al.* 10 (1987) *Genes Dev.* 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) *Adv. Immunol.* 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) *EMBO J.* 8:729-733) and immunoglobulins (Banerji *et al.* (1983) *Cell* 33:729-740; Queen and Baltimore (1983) *Cell* 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) *PNAS* 86:5473-5477), 15 pancreas-specific promoters (Edlund *et al.* (1985) *Science* 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) *Science* 249:374-379) and the α -fetoprotein promoter (Campes and Tilghman (1989) 20 *Genes Dev.* 3:537-546).

- The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an 25 RNA molecule which is antisense to MP mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. 30 The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell

- 41 -

type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. *et al.*, Antisense RNA as a molecular tool for genetic analysis, *Reviews - Trends in Genetics*, Vol. 1(1) 1986.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic or eukaryotic cell. For example, an MP protein can be expressed in bacterial cells such as *C. glutamicum*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those of ordinary skill in the art. Microorganisms related to *Corynebacterium glutamicum* which may be conveniently used as host cells for the nucleic acid and protein molecules of the invention are set forth in Table 3.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection", "conjugation" and "transduction" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., linear DNA or RNA (e.g., a linearized vector or a gene construct alone without a vector) or nucleic acid in the form of a vector (e.g., a plasmid, phage, phasmid, phagemid, transposon or other DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemical-mediated transfer, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, *et al.* (*Molecular Cloning: A Laboratory Manual*, 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989), and other laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these

- 42 -

integrants, a gene that encodes a selectable marker (*e.g.*, resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be 5 introduced into a host cell on the same vector as that encoding an MP protein or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (*e.g.*, cells that have incorporated the selectable marker gene will survive, while the other cells die).

To create a homologous recombinant microorganism, a vector is prepared which 10 contains at least a portion of an MP gene into which a deletion, addition or substitution has been introduced to thereby alter, *e.g.*, functionally disrupt, the MP gene. Preferably, this MP gene is a *Corynebacterium glutamicum* MP gene, but it can be a homologue from a related bacterium or even from a mammalian, yeast, or insect source. In a preferred embodiment, the vector is designed such that, upon homologous 15 recombination, the endogenous MP gene is functionally disrupted (*i.e.*, no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous MP gene is mutated or otherwise altered but still encodes functional protein (*e.g.*, the upstream regulatory region can be altered to thereby alter the expression of the 20 endogenous MP protein). In the homologous recombination vector, the altered portion of the MP gene is flanked at its 5' and 3' ends by additional nucleic acid of the MP gene to allow for homologous recombination to occur between the exogenous MP gene carried by the vector and an endogenous MP gene in a microorganism. The additional flanking MP nucleic acid is of sufficient length for successful homologous 25 recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see *e.g.*, Thomas, K.R., and Capecchi, M.R. (1987) Cell 51: 503 for a description of homologous recombination vectors). The vector is introduced into a microorganism (*e.g.*, by electroporation) and cells in which the introduced MP gene has homologously recombined with the 30 endogenous MP gene are selected, using art-known techniques.

In another embodiment, recombinant microorganisms can be produced which contain selected systems which allow for regulated expression of the introduced gene.

- 43 -

For example, inclusion of an MP gene on a vector placing it under control of the lac operon permits expression of the MP gene only in the presence of IPTG. Such regulatory systems are well known in the art.

In another embodiment, an endogenous MP gene in a host cell is disrupted (*e.g.*,

- 5 by homologous recombination or other genetic means known in the art) such that expression of its protein product does not occur. In another embodiment, an endogenous or introduced MP gene in a host cell has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional MP protein. In still another embodiment, one or more of the regulatory regions (*e.g.*, a promoter, repressor, or
- 10 inducer) of an MP gene in a microorganism has been altered (*e.g.*, by deletion, truncation, inversion, or point mutation) such that the expression of the MP gene is modulated. One of ordinary skill in the art will appreciate that host cells containing more than one of the described MP gene and protein modifications may be readily produced using the methods of the invention, and are meant to be included in the present
- 15 invention.

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (*i.e.*, express) an MP protein. Accordingly, the invention further provides methods for producing MP proteins using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of

- 20 invention (into which a recombinant expression vector encoding an MP protein has been introduced, or into which genome has been introduced a gene encoding a wild-type or altered MP protein) in a suitable medium until MP protein is produced. In another embodiment, the method further comprises isolating MP proteins from the medium or the host cell.

25

C. Isolated MP Proteins

Another aspect of the invention pertains to isolated MP proteins, and biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized.

- 30 The language "substantially free of cellular material" includes preparations of MP protein in which the protein is separated from cellular components of the cells in which

- 44 -

it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of MP protein having less than about 30% (by dry weight) of non-MP protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-MP protein, still 5 more preferably less than about 10% of non-MP protein, and most preferably less than about 5% non-MP protein. When the MP protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, *i.e.*, culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The 10 language "substantially free of chemical precursors or other chemicals" includes preparations of MP protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of MP protein having less than about 30% (by dry weight) of chemical 15 precursors or non-MP chemicals, more preferably less than about 20% chemical precursors or non-MP chemicals, still more preferably less than about 10% chemical precursors or non-MP chemicals, and most preferably less than about 5% chemical precursors or non-MP chemicals. In preferred embodiments, isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism 20 from which the MP protein is derived. Typically, such proteins are produced by recombinant expression of, for example, a *C. glutamicum* MP protein in a microorganism such as *C. glutamicum*.

An isolated MP protein or a portion thereof of the invention can catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, 25 nucleoside, or trehalose metabolic pathway, or has one or more of the activities set forth in Table 1. In preferred embodiments, the protein or portion thereof comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (*e.g.*, a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) such that the protein or portion thereof maintains the ability to catalyze an enzymatic 30 reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway. The portion of the protein is preferably a biologically active portion as described herein. In another preferred embodiment, an MP protein of

- 45 -

the invention has an amino acid sequence set forth as an even-numbered SEQ ID NO: of the Sequence Listing. In yet another preferred embodiment, the MP protein has an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, *e.g.*, hybridizes under stringent conditions, to a nucleotide sequence of the invention (*e.g.*, a 5 sequence of an odd-numbered SEQ ID NO: of the Sequence Listing). In still another preferred embodiment, the MP protein has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 10 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to one of the nucleic acid sequences of the invention, or a portion thereof. Ranges and identity values intermediate to the above-recited values, (*e.g.*, 70-90% identical or 80-95% identical) are also intended to be encompassed by the 15 present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. The preferred MP proteins of the present invention also preferably possess at least one of the MP activities described herein. For example, a preferred MP protein of the present invention includes an amino acid sequence encoded by a nucleotide sequence which 20 hybridizes, *e.g.*, hybridizes under stringent conditions, to a nucleotide sequence of the invention, and which can catalyze an enzymatic reaction in an amino acid, vitamin, cofactor, nutraceutical, nucleotide, nucleoside, or trehalose metabolic pathway, or which has one or more of the activities set forth in Table I.

In other embodiments, the MP protein is substantially homologous to an amino 25 acid sequence of the invention (*e.g.*, a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) and retains the functional activity of the protein of one of the amino acid sequences of the invention yet differs in amino acid sequence due to natural variation or mutagenesis, as described in detail in subsection I above. Accordingly, in another embodiment, the MP protein is a protein which comprises an amino acid 30 sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%,

- 46 -

78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or
91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%,
99% or more homologous to an entire amino acid sequence of the invention and which
has at least one of the MP activities described herein. Ranges and identity values
5 intermediate to the above-recited values, (e.g., 70-90% identical or 80-95% identical)
are also intended to be encompassed by the present invention. For example, ranges of
identity values using a combination of any of the above values recited as upper and/or
lower limits are intended to be included. In another embodiment, the invention pertains
10 to a full length *C. glutamicum* protein which is substantially homologous to an entire
amino acid sequence of the invention.

Biologically active portions of an MP protein include peptides comprising amino
acid sequences derived from the amino acid sequence of an MP protein, e.g., an amino
acid sequence of an even-numbered SEQ ID NO: of the Sequence Listing or the amino
acid sequence of a protein homologous to an MP protein, which include fewer amino
15 acids than a full length MP protein or the full length protein which is homologous to an
MP protein, and exhibit at least one activity of an MP protein. Typically, biologically
active portions (peptides, e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36,
37, 38, 39, 40, 50, 100 or more amino acids in length) comprise a domain or motif with
at least one activity of an MP protein. Moreover, other biologically active portions, in
20 which other regions of the protein are deleted, can be prepared by recombinant
techniques and evaluated for one or more of the activities described herein. Preferably,
the biologically active portions of an MP protein include one or more selected
domains/motifs or portions thereof having biological activity.

MP proteins are preferably produced by recombinant DNA techniques. For
25 example, a nucleic acid molecule encoding the protein is cloned into an expression
vector (as described above), the expression vector is introduced into a host cell (as
described above) and the MP protein is expressed in the host cell. The MP protein can
then be isolated from the cells by an appropriate purification scheme using standard
protein purification techniques. Alternative to recombinant expression, an MP protein,
30 polypeptide, or peptide can be synthesized chemically using standard peptide synthesis
techniques. Moreover, native MP protein can be isolated from cells (e.g., endothelial

- 47 -

cells), for example using an anti-MP antibody, which can be produced by standard techniques utilizing an MP protein or fragment thereof of this invention.

The invention also provides MP chimeric or fusion proteins. As used herein, an MP "chimeric protein" or "fusion protein" comprises an MP polypeptide operatively linked to a non-MP polypeptide. An "MP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to MP, whereas a "non-MP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the MP protein, *e.g.*, a protein which is different from the MP protein and which is derived from the same or a different organism. Within the fusion protein, the term "operatively linked" is intended to indicate that the MP polypeptide and the non-MP polypeptide are fused in-frame to each other. The non-MP polypeptide can be fused to the N-terminus or C-terminus of the MP polypeptide. For example, in one embodiment the fusion protein is a GST-MP fusion protein in which the MP sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant MP proteins. In another embodiment, the fusion protein is an MP protein containing a heterologous signal sequence at its N-terminus. In certain host cells (*e.g.*, mammalian host cells), expression and/or secretion of an MP protein can be increased through use of a heterologous signal sequence.

Preferably, an MP chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, *Current Protocols in Molecular Biology*, eds. Ausubel *et al.* John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (*e.g.*, a GST polypeptide). An MP-

- 48 -

encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the MP protein.

Homologues of the MP protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the MP protein. As used herein, the term "homologue" 5 refers to a variant form of the MP protein which acts as an agonist or antagonist of the activity of the MP protein. An agonist of the MP protein can retain substantially the same, or a subset, of the biological activities of the MP protein. An antagonist of the MP protein can inhibit one or more of the activities of the naturally occurring form of the MP protein, by, for example, competitively binding to a downstream or upstream 10 member of the MP cascade which includes the MP protein. Thus, the *C. glutamicum* MP protein and homologues thereof of the present invention may modulate the activity of one or more metabolic pathways in which MP proteins play a role in this microorganism.

In an alternative embodiment, homologues of the MP protein can be identified 15 by screening combinatorial libraries of mutants, e.g., truncation mutants, of the MP protein for MP protein agonist or antagonist activity. In one embodiment, a variegated library of MP variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of MP variants can be produced by, for example, enzymatically ligating a mixture of synthetic 20 oligonucleotides into gene sequences such that a degenerate set of potential MP sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of MP sequences therein. There are a variety of methods which can be used to produce libraries of potential MP homologues from a degenerate oligonucleotide sequence. Chemical synthesis of a 25 degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential MP sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S.A. (1983) *Tetrahedron* 39:3; 30 Itakura *et al.* (1984) *Annu. Rev. Biochem.* 53:323; Itakura *et al.* (1984) *Science* 198:1056; Ike *et al.* (1983) *Nucleic Acid Res.* 11:477.

In addition, libraries of fragments of the MP protein coding can be used to generate a variegated population of MP fragments for screening and subsequent selection of homologues of an MP protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of an

5 MP coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression

10 vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the MP protein.

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for

15 rapid screening of the gene libraries generated by the combinatorial mutagenesis of MP homologues. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a

20 desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify MP homologues (Arkin and Yourvan (1992) *PNAS* 89:7811-7815; Delgrave *et al.* (1993) *Protein Engineering* 6(3):327-331).

25 In another embodiment, cell based assays can be exploited to analyze a variegated MP library, using methods well known in the art.

D. Uses and Methods of the Invention

The nucleic acid molecules, proteins, protein homologues, fusion proteins,

30 primers, vectors, and host cells described herein can be used in one or more of the following methods: identification of *C. glutamicum* and related organisms; mapping of genomes of organisms related to *C. glutamicum*; identification and localization of *C.*

- 50 -

glutamicum sequences of interest; evolutionary studies; determination of MP protein regions required for function; modulation of an MP protein activity; modulation of the activity of an MP pathway; and modulation of cellular production of a desired compound, such as a fine chemical.

- 5 The MP nucleic acid molecules of the invention have a variety of uses. First, they may be used to identify an organism as being *Corynebacterium glutamicum* or a close relative thereof. Also, they may be used to identify the presence of *C. glutamicum* or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of *C. glutamicum* genes; by probing the
- 10 extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a *C. glutamicum* gene which is unique to this organism, one can ascertain whether this organism is present. Although *Corynebacterium glutamicum* itself is not pathogenic to humans, it is related to species which are human pathogens, such as *Corynebacterium diphtheriae*.
- 15 *Corynebacterium diphtheriae* is the causative agent of diphtheria, a rapidly developing, acute, febrile infection which involves both local and systemic pathology. In this disease, a local lesion develops in the upper respiratory tract and involves necrotic injury to epithelial cells; the bacilli secrete toxin which is disseminated through this lesion to distal susceptible tissues of the body. Degenerative changes brought about by the
- 20 inhibition of protein synthesis in these tissues, which include heart, muscle, peripheral nerves, adrenals, kidneys, liver and spleen, result in the systemic pathology of the disease. Diphtheria continues to have high incidence in many parts of the world, including Africa, Asia, Eastern Europe and the independent states of the former Soviet Union. An ongoing epidemic of diphtheria in the latter two regions has resulted in at
- 25 least 5,000 deaths since 1990.

In one embodiment, the invention provides a method of identifying the presence or activity of *Corynebacterium diphtheriae* in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the sequences set forth as odd-numbered or even-numbered SEQ ID NOS, respectively, in

30 the Sequence Listing) in a subject, thereby detecting the presence or activity of *Corynebacterium diphtheriae* in the subject. *C. glutamicum* and *C. diphtheriae* are related bacteria, and many of the nucleic acid and protein molecules in *C. glutamicum*

- 51 -

are homologous to *C. diphtheriae* nucleic acid and protein molecules, and can therefore be used to detect *C. diphtheriae* in a subject.

The nucleic acid and protein molecules of the invention may also serve as markers for specific regions of the genome. This has utility not only in the mapping of 5 the genome, but also for functional studies of *C. glutamicum* proteins. For example, to identify the region of the genome to which a particular *C. glutamicum* DNA-binding protein binds, the *C. glutamicum* genome could be digested, and the fragments incubated with the DNA-binding protein. Those which bind the protein may be additionally probed with the nucleic acid molecules of the invention, preferably with readily detectable 10 labels; binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of *C. glutamicum*, and, when performed multiple times with different enzymes, facilitates a rapid determination of the nucleic acid sequence to which the protein binds. Further, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related species such that 15 these nucleic acid molecules may serve as markers for the construction of a genomic map in related bacteria, such as *Brevibacterium lactofermentum*.

The MP nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The metabolic processes in which the molecules of the invention participate are utilized by a wide variety of prokaryotic and eukaryotic cells; 20 by comparing the sequences of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the 25 enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function.

Manipulation of the MP nucleic acid molecules of the invention may result in the production of MP proteins having functional differences from the wild-type MP 30 proteins. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity.

- 52 -

- The invention also provides methods for screening molecules which modulate the activity of an MP protein, either by interacting with the protein itself or a substrate or binding partner of the MP protein, or by modulating the transcription or translation of an MP nucleic acid molecule of the invention. In such methods, a microorganism
- 5 expressing one or more MP proteins of the invention is contacted with one or more test compounds, and the effect of each test compound on the activity or level of expression of the MP protein is assessed.

When the desired fine chemical to be isolated from large-scale fermentative culture of *C. glutamicum* is an amino acid, a vitamin, a cofactor, a nutraceutical, a

10 nucleotide, a nucleoside, or trehalose, modulation of the activity or efficiency of activity of one or more of the proteins of the invention by recombinant genetic mechanisms may directly impact the production of one of these fine chemicals. For example, in the case of an enzyme in a biosynthetic pathway for a desired amino acid, improvement in efficiency or activity of the enzyme (including the presence of multiple copies of the

15 gene) should lead to an increased production or efficiency of production of that desired amino acid. In the case of an enzyme in a biosynthetic pathway for an amino acid whose synthesis is in competition with the synthesis of a desired amino acid, any decrease in the efficiency or activity of this enzyme (including deletion of the gene) should result in an increase in production or efficiency of production of the desired amino acid, due to

20 decreased competition for intermediate compounds and/or energy. In the case of an enzyme in a degradation pathway for a desired amino acid, any decrease in efficiency or activity of the enzyme should result in a greater yield or efficiency of production of the desired product due to a decrease in its degradation. Lastly, mutagenesis of an enzyme involved in the biosynthesis of a desired amino acid such that this enzyme is no longer is

25 capable of feedback inhibition should result in increased yields or efficiency of production of the desired amino acid. The same should apply to the biosynthetic and degradative enzymes of the invention involved in the metabolism of vitamins, cofactors, nutraceuticals, nucleotides, nucleosides and trehalose.

Similarly, when the desired fine chemical is not one of the aforementioned

30 compounds, the modulation of activity of one of the proteins of the invention may still impact the yield and/or efficiency of production of the compound from large-scale culture of *C. glutamicum*. The metabolic pathways of any organism are closely

interconnected; the intermediate used by one pathway is often supplied by a different pathway. Enzyme expression and function may be regulated based on the cellular levels of a compound from a different metabolic process, and the cellular levels of molecules necessary for basic growth, such as amino acids and nucleotides, may critically affect

5 the viability of the microorganism in large-scale culture. Thus, modulation of an amino acid biosynthesis enzyme, for example, such that it is no longer responsive to feedback inhibition or such that it is improved in efficiency or turnover may result in increased cellular levels of one or more amino acids. In turn, this increased pool of amino acids provides not only an increased supply of molecules necessary for protein synthesis, but

10 also of molecules which are utilized as intermediates and precursors in a number of other biosynthetic pathways. If a particular amino acid had been limiting in the cell, its increased production might increase the ability of the cell to perform numerous other metabolic reactions, as well as enabling the cell to more efficiently produce proteins of all kinds, possibly increasing the overall growth rate or survival ability of the cell in

15 large scale culture. Increased viability improves the number of cells capable of producing the desired fine chemical in fermentative culture, thereby increasing the yield of this compound. Similar processes are possible by the modulation of activity of a degradative enzyme of the invention such that the enzyme no longer catalyzes, or catalyzes less efficiently, the degradation of a cellular compound which is important for

20 the biosynthesis of a desired compound, or which will enable the cell to grow and reproduce more efficiently in large-scale culture. It should be emphasized that optimizing the degradative activity or decreasing the biosynthetic activity of certain molecules of the invention may also have a beneficial effect on the production of certain fine chemicals from *C. glutamicum*. For example, by decreasing the efficiency of

25 activity of a biosynthetic enzyme in a pathway which competes with the biosynthetic pathway of a desired compound for one or more intermediates, more of those intermediates should be available for conversion to the desired product. A similar situation may call for the improvement of degradative ability or efficiency of one or more proteins of the invention.

30 This aforementioned list of mutagenesis strategies for MP proteins to result in increased yields of a desired compound is not meant to be limiting; variations on these mutagenesis strategies will be readily apparent to one of ordinary skill in the art. By

- 54 -

- these mechanisms, the nucleic acid and protein molecules of the invention may be utilized to generate *C. glutamicum* or related strains of bacteria expressing mutated MP nucleic acid and protein molecules such that the yield, production, and/or efficiency of production of a desired compound is improved. This desired compound may be any
- 5 natural product of *C. glutamicum*, which includes the final products of biosynthesis pathways and intermediates of naturally-occurring metabolic pathways, as well as molecules which do not naturally occur in the metabolism of *C. glutamicum*, but which are produced by a *C. glutamicum* strain of the invention.

This invention is further illustrated by the following examples which should not
10 be construed as limiting. The contents of all references, patent applications, patents, published patent applications, Tables, and the sequence listing cited throughout this application are hereby incorporated by reference.

TABLE 1: Included Genes**Lysine biosynthesis**

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig	NT Start	NT Stop	Function
1	2	RXA02229	GR0063	2793	3617	DIAMINOPIMELATE EPIMERASE (EC 5.1.1.7)
3	4	RXS02970	GR0027	4714	5943	ACETYLOLORTHINE AMINOTRANSFERASE (EC 2.6.1.11) ACETYLOLORTHINE AMINOTRANSFERASE (EC 2.6.1.11)
5	6	F RXA01009				MEMBRANE SPANNING PROTEIN INVOLVED IN LYSINE METABOLISM
7	8	RXC02390				MEMBRANE ASSOCIATED PROTEIN INVOLVED IN LYSINE METABOLISM
9	10	RXC01796				CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF LYSINE AND
11	12	RXC01207				THREONINE
13	14	RXC00657				TRANSCRIPTIONAL REGULATOR INVOLVED IN LYSINE METABOLISM
15	16	RXC00552				CYTOSOLIC PROTEIN INVOLVED IN LYSINE METABOLISM

Trehalose

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig	NT Start	NT Stop	Function
17	18	RXN00351	WV013	37078	38532	ALPHA,ALPHA-TREHALOSE-PHOSPHATE SYNTHASE (UDP-FORMING) 56 KD
19	20	F RXA00351	GR00056	1486	2931	SUBUNIT (EC 2.4.1.15) ALPHA,ALPHA-TREHALOSE-PHOSPHATE SYNTHASE (UDP-FORMING) 56 KD
21	22	RXA00873	GR00211	3	758	SUBUNIT (EC 2.4.1.15) trehalose synthase (EC 2.4.1.-)
23	24	RXA00891	GR00213	1005	4	trehalose synthase (EC 2.4.1.-)

Lysine biosynthesis

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig	NT Start	NT Stop	Function
25	26	RXA00534	GR0037	4758	3496	ASPARTOKINASE ALPHA AND BETA SUBUNITS (EC 2.7.2.4)
27	28	RXA00533	GR0037	3469	2438	ASPARTATE-SEMIALDEHYDE DEHYDROGENASE (EC 1.2.1.11)
29	30	RXA02843	GR00842	543	4	2,3,4,5-TETRAHYDROPYRIDINE-2-CARBOXYLATE N-SUCCINYLTTRANSFERASE (EC 2.3.1.117)
31	32	RXA02022	GR00613	2063	3169	SUCINYLDIAMINOPIMELATE DESUCCINYLYLASE (EC 3.5.1.8)
33	34	RXA00044	GR00007	3458	4353	DIHYDRODIPICOLINATE SYNTHASE (EC 4.2.1.52)
35	36	RXA00863	GR00336	896	1639	DIHYDRODIPICOLINATE REDUCTASE (EC 1.3.1.26)
37	38	RXA00864	GR00336	1694	2443	probable 2,3-dihydrodipicolinate N-C6-lyase (cyclizing) (EC 4.3.3.-) Corynebacterium glutamicum
39	40	RXA02843	GR00842	543	4	2,3,4,5-TETRAHYDROPYRIDINE-2-CARBOXYLATE N-SUCCINYLTTRANSFERASE (EC 2.3.1.117)
41	42	RXN00355	WV0135	31980	30961	MESO-DIAMINOPIMELATE D-DEHYDROGENASE
43	44	F RXA00352	GR00068	861	4	MESO-DIAMINOPIMELATE D-DEHYDROGENASE (EC 1.4.1.16)

Table 1 (continued)

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
45	46	RXA00972	GR00274	3	1379	DIAMINOPIMELATE DECARBOXYLASE (EC 4.1.1.20)
47	48	RXA02653	GR00752	5237	7234	DIAMINOPIMELATE DECARBOXYLASE (EC 4.1.1.20)
49	50	RXA01393	GR00408	4249	3380	LYSINE EXPORT REGULATOR PROTEIN
51	52	RXA00241	GR00036	5443	6945	L-LYSINE TRANSPORT PROTEIN
53	54	RXA01394	GR00408	4320	5018	LYSINE EXPORTER PROTEIN
55	56	RXA00865	GR00236	2647	3549	DIHYDRODIPICOLINATE SYNTHASE (EC 4.2.1.52)
57	58	RXS02021				2.3.4.5-TETRAHYDROPYRIDINE-2-CARBOXYLATE N-SUCCINYLTRANSFERASE (EC 2.3.1.117)
59	60	RXS02157				ACETYLORNITHINE AMINOTRANSFERASE (EC 6.1.1.11)
61	62	RXC00733				ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN LYSINE METABOLISM
63	64	RXC00861				PROTEIN INVOLVED IN LYSINE METABOLISM
65	66	RXC00866				ZN-DEPENDENT HYDROLASE INVOLVED IN LYSINE METABOLISM
67	68	RXC02095				ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN LYSINE METABOLISM
69	70	RXC03185				PROTEIN INVOLVED IN LYSINE METABOLISM

Glutamate and glutamine metabolism

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
71	72	RXN00367	VW0196	9744	14273	GLUTAMATE SYNTHASE [NADH] PRECURSOR (EC 1.4.1.14)
73	74	F RXA00007	GR00001	7107	8912	GLUTAMATE SYNTHASE (NADPH) LARGE CHAIN PRECURSOR (EC 1.4.1.13)
75	76	F RXA00364	GR00074	1296	4	GLUTAMATE SYNTHASE (NADPH) LARGE CHAIN PRECURSOR (EC 1.4.1.13)
77	78	F RXA00367	GR00075	1806	964	GLUTAMATE SYNTHASE (NADPH) LARGE CHAIN PRECURSOR (EC 1.4.1.13)
79	80	RXN00076	VW0154	2752	4122	GLUTAMATE SYNTHASE (NADPH) SMALL CHAIN (EC 1.4.1.13)
81	82	F RXA00075	GR00012	2757	3419	GLUTAMATE SYNTHASE (NADPH) SMALL CHAIN (EC 1.4.1.13)
83	84	RXN00198	VW0181	7916	7368	GLUTAMATE SYNTHASE (NADPH) SMALL CHAIN (EC 1.4.1.13)
85	86	F RXA00198	GR00031	2	283	GLUTAMATE SYNTHASE (NADPH) SMALL CHAIN (EC 1.4.1.13)
87	88	RXN00365	VW0196	14607	15233	GLUTAMATE SYNTHASE (NADPH) SMALL CHAIN (EC 1.4.1.13)
89	90	F RXA00365	GR00075	630	4	GLUTAMATE SYNTHASE (NADPH) SMALL CHAIN (EC 1.4.1.13)
91	92	RXA00366	GR00075	961	605	GLUTAMATE SYNTHASE (NADPH) SMALL CHAIN (EC 1.4.1.13)
93	94	RXA02072	GR00628	1259	2599	NADP-SPECIFIC GLUTAMATE DEHYDROGENASE (EC 1.4.1.4)
95	96	RXA00323	GR00057	3855	5192	GLUTAMINE SYNTHETASE (EC 6.3.1.2)
97	98	RXA00335	GR00057	19180	17750	GLUTAMINE SYNTHETASE (EC 6.3.1.2)
99	100	RXA00324	GR00057	5262	8396	GLUTAMATE-AMMONIA-LIGASE ADENYLYLTRANSFERASE (EC 2.7.7.42)
101	102	RXN03176	VW0332	2	862	GLUTAMINASE (EC 3.5.1.2)
103	104	F RXA02879	GR10017	2	862	GLUTAMINASE (EC 3.5.1.2)
105	106	RXA00278	GR00043	2612	1581	GLUTAMINE-BINDING PROTEIN PRECURSOR
107	108	RXA00727	GR00193	614	1525	GLUTAMINE-BINDING PERPLASMIC PROTEIN PRECURSOR

Alanine and Aspartate and Asparagine metabolism

Table 1 (continued)

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
109	110	RXA02139	GR00639	6739	4901	ASPARAGINE SYNTHETASE (GLUTAMINE-HYDROLYZING) (EC 6.3.5.4)
111	112	RXN00116	VW0100	26974	25814	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)
113	114	RXA00116	GR00018	510	4	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)
115	116	RXN00618	VV0135	10288	9182	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)
117	118	RXA00618	GR00163	213	746	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)
119	120	RXA00627	GR00164	854	1138	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)
121	122	RXA02550	GR00729	1585	275	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)
123	124	RXA02193	GR00645	1942	365	ASPARTATE AMMONIA-LYASE (EC 4.3.1.1)
125	126	RXA02432	GR00708	2669	1695	L-ASPARAGINASE (EC 3.5.1.1)
127	128	RXN03003	VV0138	680	6	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)
129	130	RXN00508	VW0086	4701	5783	ALANINE RACEMASE (EC 5.1.1.1)
131	132	RXN00636	VW0135	20972	19944	ALANINE RACEMASE, BIOSYNTHETIC (EC 5.1.1.1)

beta-Alanine metabolism

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
133	134	RXA02536	GR00726	8581	7826	BETA-UREIDOPROPIONASE (EC 3.5.1.6)
135	136	RXS00870				METHYLMALONATE-SEMIALDEHYDE DEHYDROGENASE (EC 1.2.1.27)
137	138	RXS02299				ASPARTATE 1-DECARBOXYLASE PRECURSOR (EC 4.1.1.1)

Glycine and serine metabolism

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
139	140	RXA01561	GR00435	11113	2042	L-SERINE DEHYDRATASE (EC 4.2.1.13)
141	142	RXA01850	GR00525	481	1827	L-SERINE DEHYDRATASE (EC 4.2.1.13)
143	144	RXA00580	GR01156	7343	6042	SERINE HYDROXYMETHYL TRANSFERASE (EC 2.1.2.1)
145	146	RXA01821	GR00515	10253	9876	SARCOSINE OXIDASE (EC 1.5.3.1)
147	148	RXN02263	VV0202	11783	12160	SARCOSINE OXIDASE (EC 1.5.3.1)
149	150	RXA02263	GR00654	33454	33813	SARCOSINE OXIDASE (EC 1.5.3.1)
151	152	RXA02176	GR00641	11454	12581	PHOSPHOSERINE AMINOTRANSFERASE (EC 2.6.1.52)
153	154	RXN02758	GR00766	5082	4648	PHOSPHOSERINE PHOSPHATASE (EC 3.1.3.3)
155	156	RXA02479	GR00717	3933	4	PHOSPHOSERINE PHOSPHATASE (EC 3.1.3.3)
157	158	RXA02758	GR00766	5082	4648	PHOSPHOSERINE PHOSPHATASE (EC 3.1.3.3)
159	160	RXA02759	GR00766	5330	5220	PHOSPHOSERINE PHOSPHATASE (EC 3.1.3.3)
161	162	RXA02501	GR00720	15041	13977	PHOSPHOSERINE PHOSPHATASE (EC 3.1.3.3)
163	164	RXN03105	VV0074	15857	15423	SARCOSINE OXIDASE (EC 1.5.3.1)
165	166	RXS01130				D-3-PHOSPHOGlycerate DEHYDROGENASE (EC 1.1.1.95)
167	168	RXS03112				D-3-PHOSPHOGlycerate DEHYDROGENASE (EC 1.1.1.95)

Threonine metabolism

Table 1 (continued)

Nucleic Acid Seq ID No	Amino Acid Seq ID No	Identification Code	Config.	NT Start	NT Stop	Function
169 170	RXNC0969 F RXA00974	VV0149 GR00274	12053 2623	13387 3015	HOMOSERINE DEHYDROGENASE (EC 1.1.1.3) HOMOSERINE DEHYDROGENASE (EC 1.1.1.3)	
171 172	RXA00970 RXA00970	GR00273	161	1087	HOMOCYSTEINE KINASE (EC 2.7.1.39)	
173 174	RXA00330 RXN00403	GR00057 VV0086	12968 70041	14410 68911	THREONINE SYNTHASE (EC 4.2.99.2) HOMOSERINE O-ACETYLTRANSFERASE HOMOSERINE O-ACETYLTRANSFERASE (EC 2.3.1.11)	
175 176	F RXA00403	GR00088	723	1832	CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF LYSINE AND THREONINE	
177 178	RXC01207				MEMBRANE ASSOCIATED PROTEIN INVOLVED IN THREONINE METABOLISM	
179 180						
181 182						
183 184	RXC00152					

Metabolism of methionine and S-adenosyl methionine

Nucleic Acid Seq ID No	Amino Acid Seq ID No	Identification Code	Config.	NT Start	NT Stop	Function
185 186	RXA00115 RXN00403	GR00017 VV0086	5359 70041	4313 68911	HOMOSERINE O-ACETYLTRANSFERASE (EC 2.3.1.31) HOMOSERINE O-ACETYLTRANSFERASE	
187 188	F RXA00403 RXS03158	GR00088	723	1832	HOMOSERINE O-ACETYLTRANSFERASE (EC 2.3.1.11) CYSTATHIONINE GAMMA-SYNTHASE (EC 4.2.99.9)	
189 190	RXS03158					
191 192	RXA00254	GR00038	2404	1811	CYSTATHIONINE GAMMA-SYNTHASE (EC 4.2.99.9)	
193 194	RXA02532	GR00726	3085	2039	CYSTATHIONINE GAMMA-SYNTHASE (EC 4.2.99.9)	
195 196	RXS03159					
197 198	F RXA02768 RXA00216	GR00770 GR00032	1919 16286	2521 15297	CYSTATHIONINE GAMMA-SYNTHASE (EC 4.2.99.9) 5-methyltetrahydrofolate-homocysteine methyltransferase (methionine synthetase)	
199 200	RXN00402	VV0086	70787	70188	O-ACETYLTHIOMOSERINE SULFHYDRYLASE (EC 4.2.99.9) SULFHDRYLASE (EC 4.2.99.8)	
201 202						
203 204						
205 206	F RXA00402	GR00088	1	576	O-ACETYLTHIOMOSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYL SERINE	
207 208	RXA00405	GR00089	3289	3801	SULFHDRYLASE (EC 4.2.99.8)	
209 210	RXA02197	GR00645	4552	4025	O-ACETYLTHIOMOSERINE SULFHYDRYLASE (EC 4.2.99.8) 5-METHYL TETRAHYDROFOLATE--HOMOCYSTEINE METHYL TRANSFERASE	
211 212	RXN02198	VV0302	9228	11726	(EC 2.1.1.13)	
213 214	F RXA02198	GR00646	2483	6	5-METHYL TETRAHYDROFOLATE--HOMOCYSTEINE METHYL TRANSFERASE	
215 216	RXN03074	VV0042	2238	1741	(EC 2.1.1.13)	
217 218	F RXA02906	GR10044	1142	645	S-ADENOSYLMETHIONINE 2'-DEMETHYL MENAQUNONE	
219 220	RXN00132 F RXA00132	VV0124 GR00020	3612 7728	5045 7624	METHYL TRANSFERASE (EC 2.1.1.13) S-ADENOSYLMETHIONINE 2'-DEMETHYL MENAQUNONE METHYL TRANSFERASE (EC 2.1.1.13) ADENOSYLHOMOCYSTEINASE (EC 3.3.1.1) ADENOSYLHOMOCYSTEINASE (EC 3.3.1.1)	
221						

- 59 -

Table 1 (continued)

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Config.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
223 224	F RXA01371	GR00398		2339	3634	ADENOSYLHOMOCYSTEINASE (EC 3.3.1.1)
225 226	RXXN02085					5-METHYL TETRAHYDROPTEROYLTRIGLUTAMATE--HOMOCYSTEINE
227 228	F RXA02085	GR00629		3496	5295	METHYLTRANSFERASE (EC 2.1.1.14)
229 230	F RXA02086	GR00629		5252	5731	5-METHYL TETRAHYDROPTEROYLTRIGLUTAMATE--HOMOCYSTEINE
231 232	RXXN02648					METHYLTRANSFERASE (EC 2.1.1.14)
233 234	F RXA02648	GR00751		5254	4730	5-METHYL TETRAHYDROPTEROYLTRIGLUTAMATE--HOMOCYSTEINE
235 236	F RXA02658	GR00752		14764	15447	METHYLTRANSFERASE (EC 2.1.1.14)
237 238	RXC02238					5-METHYL TETRAHYDROPTEROYLTRIGLUTAMATE--HOMOCYSTEINE
239 240	RXC00128					PROTEIN INVOLVED IN METABOLISM OF S-ADENOSYLMETHIONINE, PURINES AND PANTOTHENATE
						EXPORTED PROTEIN INVOLVED IN METABOLISM OF PYRIDIMES AND ADENOSYLHOMOCYSTEINE

S-adenosyl methionine (SAM) Biosynthesis

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Config.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
241	RXA02240	GR00654		7160	8380	S-ADENOSYLMETHIONINE SYNTHETASE (EC 2.5.1.6)

Cysteine metabolism

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Config.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
243 244	RXA00780	GR00206		1689	2234	SERINE ACETYLTRANSFERASE (EC 2.3.1.30)
245 246	RXA00779	GR00206		550	1482	CYSTEINE SYNTHASE (EC 4.2.99.8)
247 248	RXXN00402	VV00086		70787	70188	O-ACETYLHOMOCSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYL SERINE SULFHYDRYLASE (EC 4.2.99.8)
249 250	F RXA00402	GR00088	1	576		O-ACETYLHOMOCSERINE SULFHYDRYLASE (EC 4.2.99.10) / O-ACETYL SERINE SULFHYDRYLASE (EC 4.2.99.8)
251 252	RXS00405					O-ACETYLHOMOCSERINE SULFHYDRYLASE (EC 4.2.99.8)
253 254	RXC00164					ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN CYSTEINE METABOLISM
255	256	RXC01191				ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN CYSTEINE METABOLISM

Valine, leucine and isoleucine

Table 1 (continued)

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Config.	NT Start	NT Stop	Function
257 258	RXAC2646 RXA00766	GR00751 GR00204	3856 5091	2588 4249	THREONINE DEHYDRATASE BIOSYNTHETIC (EC 4.2.1.16) BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (EC 2.6.1.42)	
259 260	RXN01690 F RXA01690	VV0246 GR00473	1296 1248	196 196	BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE (EC 2.6.1.42)	
261 262	RXN01026 F RXA01026	VV0143 GR00294	9171 1	7513 1602	BRANCHED-CHAIN AMINO ACID AMINOTRANSFERASE LARGE SUBUNIT (EC 4.2.1.33) 3-ISOPROPYLALATE DEHYDRATASE LARGE SUBUNIT (EC 4.2.1.33)	
263 264	RXN0127 F RXA01127	VV0157 GR00315	4491 1349	3472 1651	3-ISOPROPYLALATE DEHYDRATASE LARGE SUBUNIT (EC 4.2.1.33) 3-ISOPROPYLALATE DEHYDROGENASE (EC 1.1.1.85)	
265 266	RXN0127 F RXA01132	VV0157 GR00315	4491 1349	3472 1651	3-ISOPROPYLALATE DEHYDROGENASE (EC 1.1.1.85)	
267 268	RXNC1127 F RXA01132	VV0219 GR00137	6128 6128	7498 7360	2-ISOPROPYLALATE SYNTHASE (EC 4.1.3.12) 2-ISOPROPYLALATE SYNTHASE (EC 4.1.3.1)	
269 270	RXNC02965 RXN01929	VV0143 VV0127	7711 47590	7121 48402	3-ISOPROPYLALATE DEHYDRATASE SMALL SUBUNIT (EC 4.2.1.33) 3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11) /DECARBOXYLASE (EC 4.1.1.44)	
271 272	F RXA01132 RXNC0536	VV0219 GR00137	6128 6128	7498 7360	2-ISOPROPYLALATE SYNTHASE (EC 4.1.3.12) 2-ISOPROPYLALATE SYNTHASE (EC 4.1.3.1)	
273 274	F RXA00536 F RXA01132	VV0143 VV0127	7711 47590	7121 48402	3-ISOPROPYLALATE DEHYDRATASE SMALL SUBUNIT (EC 4.2.1.33) 3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11) /DECARBOXYLASE (EC 4.1.1.44)	
275 276	RXN02965 RXN01929	GR00555 VV0122	2766 15584	1960 14643	3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11) 4'-MYCAROSYL ISOVALERYL-COA TRANSFERASE (EC 2.3.-.-)	
277 278	RXS01145 F RXA01145	GR00321	1075	1530	KETOL-ACID REDUCTOISOMERASE (EC 1.1.1.86)	
279 280	F RXA01145				KETOL-ACID REDUCTOISOMERASE (EC 1.1.1.86)	
281 282	F RXA01929 RXN01420					
283 284	RXS01145					
285 286	F RXA01145					
287 288						

Arginine and proline metabolism

Enzymes of proline biosynthesis:

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Config.	NT Start	NT Stop	Function
289 290	RXA02375 RXN02382	GR00689 VV0213	1449 5162	223 3867	GLUTAMATE 5-KINASE (EC 2.7.2.11)	
291 292	F RXA02378	GR00690	624	16	GAMMA-GLUTAMYL PHOSPHATE REDUCTASE (GPR) (EC 1.2.1.41)	
293 294	F RXA02382	GR00691	2493	1894	GAMMA-GLUTAMYL PHOSPHATE REDUCTASE (GPR) (EC 1.2.1.41)	
295 296	RXA02499 RXS02157	GR00720	11883	12692	PYRROLINE-5-CARBOXYLATE REDUCTASE (EC 1.5.1.2) ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	
297 298	RXA02499 RXS02157				ACETYLORNITHINE CYCLOCLEAMINASE (EC 4.3.1.12)	
299 300	RXS02262				ORNITHINE CYCLOCLEAMINASE (EC 4.3.1.12)	
301 302	RXS022970				ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	
303 304	F RXA01009	GR00287	4714	5943	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)	
305 306						

- 61 -

Enzymes of proline degradation:

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
307 308	RXN00023	W0127	68158	64703		PROLINE DEHYDROGENASE (EC 1.5.99.8) / DELTA-1-PYRROLINE-5-CARBOXYLATE DEHYDROGENASE (EC 1.5.1.12)
309	310	F RXA00023	GR00003	2	454	PROLINE DEHYDROGENASE (EC 1.5.99.8) / DELTA-1-PYRROLINE-5-CARBOXYLATE DEHYDROGENASE (EC 1.5.1.12)
311	312	F RXA02284	GR00660	3028	5	PROLINE DEHYDROGENASE (EC 1.5.99.8) / DELTA-1-PYRROLINE-5-CARBOXYLATE DEHYDROGENASE (EC 1.5.1.12)
313	314	RXC02498				PROTEIN INVOLVED IN PROLINE METABOLISM

Synthesis of 3-Hydroxy-proline:

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
315	316	RXA01491	GR00423	5337	4687	DNA FOR L-PROLINE 3-HYDROXYLASE, COMPLETE CDS

Enzymes of ornithine, arginine and spermidine metabolism:

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
317	318	RXA02155	GR00640	1913	3076	GLUTAMATE N-ACETYLTRANSFERASE (EC 2.3.1.35) / AMINO-ACID ACETYLTRANSFERASE (EC 2.3.1.1)
319	320	RXA02156	GR00640	3125	4075	ACETYLGLUTAMATE KINASE (EC 2.7.2.8)
321	322	RXN02153	VV0122	14106	13327	N-ACETYL-GAMMA-GLUTAMYL-PHOSPHATE REDUCTASE (EC 1.2.1.38)
323	324	F RXA02153	GR00640	757	1536	N-ACETYLGLUTAMATE-5-SEMIALDEHYDE DEHYDROGENASE
325	326	RXA02154	GR00640	1536	1826	N-ACETYLGLUTAMATE-5-SEMIALDEHYDE DEHYDROGENASE
327	328	RXA02157	GR00640	4079	5251	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)
329	330	RXS02970				ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)
331	332	F RXA01009	GR00287	4714	5943	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)
333	334	RXA02158	GR00640	5268	6224	ORNITHINE CARBAMOYLTRANSFERASE (EC 2.1.3.3)
335	336	RXA02160	GR00640	6914	8116	ARGININOSUCCINATE SYNTHASE (EC 6.3.4.5)
337	338	RXN02162	VV0122	6683	5253	ARGININOSUCCINATE LYASE (EC 4.3.2.1)
339	340	F RXA02161	GR00640	8180	8962	ARGININOSUCCINATE LYASE (EC 4.3.2.1)
341	342	F RXA02162	GR00640	8949	9611	ARGININOSUCCINATE LYASE (EC 4.3.2.1)
343	344	RXA02262	GR00654	32291	33436	ORNITHINE CYCLOCLEAMINASE (EC 4.3.1.12)
345	346	RXA00219	GR00032	19289	20230	SPERMIDINE SYNTHASE (EC 2.5.1.16)
347	348	RXA01508	GR00424	12652	14190	SPERMIDINE SYNTHASE (EC 2.5.1.16)
349	350	RXA01757	GR00498	2942	2142	PUTRESCINE OXIDASE (EC 1.4.3.10)
351	352	RXA02159	GR00640	6231	6743	ARGININE HYDROXIMATE RESISTANCE PROTEIN
353	354	RXN02154	VV0122	13327	13037	N-ACETYL-GAMMA-GLUTAMYL-PHOSPHATE REDUCTASE (EC 1.2.1.38)
355	356	RXS00147				CARBAMOYL-PHOSPHATE SYNTHASE SMALL CHAIN (EC 6.3.5.5)
357	358	RXS00905				N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)
359	360	RXS00906				N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)

Table 1 (continued)

Table 1 (continued)

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig	NT Start	NT Stop	Function
361 362	RXS00907					N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)
363 364	RXS02001					N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)
365 366	RXS02101					N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)
367 368	RXS02234					CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5)
369 370	F RXA02234	GR00654	1	3198		CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5)
371 372	RXS02565					N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)
373 374	RXS02937					N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC 3.5.1.14)

Histidine metabolism

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig	NT Start	NT Stop	Function
375 376	RXA02194	GR00645	2897	2055		ATP PHOSPHORIBOSYL-ATP PYROPHOSPHOHYDROLASE (EC 3.6.1.31)
377 378	RXA02195	GR00645	3186	2917		PHOSPHORIBOSYL-AMP CYCLOHYDROLASE (EC 3.5.4.19)
379 380	RXA01097	GR00306	4726	4373		PHOSPHORIBOSYLFORMIMINO-5-AMINOIMIDAZOLE CARBOXYAMIDE
381 382	RXA01100	GR00306	7072	6335		RIBOTIDE ISOMERASE (EC 5.3.1.16)
383 384	RXA01101	GR00306	7726	7094		AMIDOTRANSFERASE HISH (EC 2.4.2.-)
385 386	RXNC1657	VW001460	3950	39351		AMIDOTRANSFERASE HISH (EC 2.4.2.-)
387 388	F RXA01657	GR00460	2444	2944		HISF PROTEIN
389 390	RXAC1098	GR00306	5499	4726		IMIDAZOLEGLYCEROL-PHOSPHATE DEHYDRATASE (EC 4.2.1.19)
391 392	RXN01104	VW00559	7037	6432		IMIDAZOLEGLYCEROL-PHOSPHATE DEHYDRATASE (EC 4.2.1.19) /
393 394	F RXA01104	GR00306	10927	10322		HISTIDINOL-PHOSPHATASE (EC 3.1.3.15)
395 396	RXNC0446	VW01112	24181	23318		HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)
397 398	F RXA00446	GR00108	4	525		HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)
399 400	RXAC1105	GR00306	12044	10947		HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)
401 402	RXA01106	GR00306	13378	12053		HISTIDINOL DEHYDROGENASE (EC 1.1.1.23)
403 404	RXC00930					PROTEIN INVOLVED IN HISTIDINE METABOLISM
405 406	RXC01096					PROTEIN INVOLVED IN HISTIDINE METABOLISM
407 408	RXC01656					PROTEIN INVOLVED IN HISTIDINE METABOLISM
409 410	RXC01158					MEMBRANE SPANNING PROTEIN INVOLVED IN HISTIDINE METABOLISM

Metabolism of aromatic amino acids

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig	NT Start	NT Stop	Function
411 412	RXA02458	GR00712	3056	4345		3-PHOSPHOSHIKIMATE 1-CARBOXYVINYL TRANSFERASE (EC 2.5.1.19)
413 414	RXA02790	GR00777	5806	6948		4-AMINO-4-DEOXYCHORISMATE LYASE (EC 4.4.-)
415 416	RXN00954	VV0247	3197	2577		ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.18)
417 418	F RXA00954	GR00263	3	590		ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.18)
419 420	RXN00957	VV0208	1211	2764		ANTHRANILATE SYNTHASE COMPONENT I (EC 4.1.3.27)
421 422	F RXA00957	GR00264	3	1130		ANTHRANILATE SYNTHASE COMPONENT I (EC 4.1.3.27)

- 63 -

Table 1 (continued)

Nucleic Acid SEQ ID NO 423	Amino Acid SEQ ID NO 424	Identification Code RXA02687	Contig. GR00754	NT Start 11306	NT Stop 12250	Function CHORISMATE MUTASE (EC 5.4.99.5) / PREPHENATE DEHYDRATASE (EC 4.2.1.51)
425	426	RXXN01698	VV0134	11507	12736	CHORISMATE SYNTHASE (EC 4.6.1.4)
427	428	FRXA01698	GR00477	2	991	CHORISMATE SYNTHASE (EC 4.6.1.4)
429	430	RXXA01095	GR00306	3603	2821	INDOLE-3-GLYCEROL PHOSPHATE SYNTHASE (EC 4.1.1.48)
431	432	RXXA00955	GR00263	586	2007	INDOLE-3-GLYCEROL PHOSPHATE SYNTHASE (EC 4.1.1.48) / N-(5'-PHOSPHO-RIBOSYL)ANTHRANILATE ISOMERASE (EC 5.3.1.24)
433	434	RXXA02814	GR00795	598	128	ISOCHORISMATE MUTASE
435	436	RXXA00229	GR00033	1715	936	SHIKIMATE 5-DEHYDROGENASE (EC 1.1.1.25)
437	438	RXXA02093	GR00629	12444	13247	SHIKIMATE 5-DEHYDROGENASE (EC 1.1.1.25)
439	440	RXXA02791	GR00777	6968	7795	SHIKIMATE 5-DEHYDROGENASE (EC 1.1.1.25)
441	442	RXXA01699	GR00477	984	1553	TRYPТОPHAN SYNTHASE ALPHA CHAIN (EC 4.2.1.20)
443	444	RXXA00952	GR00262	97	936	TRYPТОPHAN SYNTHASE BETA CHAIN (EC 4.2.1.20)
445	446	RXXN00956	VV0247	1140	4	TRYPТОPHAN SYNTHASE BETA CHAIN (EC 4.2.1.20)
447	448	FRXA00956	GR00263	2027	3157	TYROSINE AMINOTRANSFERASE (EC 4.2.1.71)
449	450	RXXA00064	GR00010	2499	3776	PREPHENATE DEHYDROGENASE (EC 1.3.1.12)
451	452	RXXN00448	VV0112	33059	32940	PREPHENATE DEHYDROGENASE (EC 1.3.1.12)
453	454	FRXA00448	GR00109	3	668	PREPHENATE DEHYDROGENASE (EC 1.3.1.12)
455	456	FRXA00452	GR00110	854	1099	PHOSPHO-2-DEHYDRO-3-DEOXYHEPTONATE ALDOLASE (EC 4.1.2.15)
457	458	RXXA00584	GR00156	11384	10260	PARA-AMINOBENZOATE SYNTHASE COMPONENT I (EC 4.1.3.-)
459	460	RXXA00579	GR00156	5946	4087	PARA-AMINOBENZOATE SYNTHASE GLUTAMINE AMIDOTRANSFERASE COMPONENT II (EC 4.1.3.-) / ANTHRANILATE SYNTHASE COMPONENT II (EC 4.1.3.27)
461	462	RXXA00958	GR00264	1130	1753	ANTHRANILATE SYNTHASE COMPONENT II (EC 4.1.3.27)
463	464	RXXN03007	VV0208	3410	3778	TRYPTOPHAN SYNTHASE BETA CHAIN (EC 4.2.1.20)
465	466	RXXN02918	VV0086	25447	25887	3-OXODIAPATE COA-TRANSFERASE SUBUNIT B (EC 2.8.3.6)
467	468	RXXN01116	VV0182	7497	6886	3-OXODIAPATE ENOL-LACTONE HYDROLASE (EC 3.1.1.24) / 4-
469	470	RXXN01115	VV0182	10347	11099	CARBOXYMUCONOLACTONE ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)
471	472	RXXS00116	GR00018	510	4	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)
473	474	FRXA00116	RXXS00391			O-SUCCINYLBENZOIC ACID-COA LIGASE (EC 6.2.1.26)
475	476		RXXS00393			1,4-DIHYDROXY-2-NAPHTHOATE OCTAPRENYLTRANSFERASE (EC 2.5.-.-)
477	478		F RXA00393	GR00086	4911	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)
479	480		F RXA00446	GR00108	4	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9)
481	482		RXXS00618	GR00163	746	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)
483	484		F RXA00618	GR00164	854	ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)
485	486		F RXA00627		1138	2-SUCCINYL-6-HYDROXY-2,4-CYCLOHEXADIENE-1-CARBOXYLATE SYNTHASE / 2-OXOGLUTARATE DECARBOXYLASE (EC 4.1.1.71)
487	488		RXS01105			ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)
489	490		RXS02315			NAPHTHOATE SYNTHASE (EC 4.1.3.36)
491	492					O-SUCCINYLBENZOIC ACID-COA LIGASE (EC 6.2.1.26)
493	494					ASPARTATE AMINOTRANSFERASE (EC 2.6.1.1)
495	496					3-DEHYDROQUINATE DEHYDRATASE (EC 4.2.1.10)
497	498					
499	500					
501	502					
503	504					

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
505	506	RXS03074				S-ADENOSYLMETHIONINE 2-DEMETHYLMENAQUINONE METHYLTRANSFERASE (EC 2.1.1.-)
507	508	RXC01434				MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO ACIDS AND RIBOFLAVIN
509	510	RXC02080				MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO ACIDS
511	512	RXC02789				CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO ACIDS
513	514	RXC02295				MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO ACIDS

Aminobutyrate metabolism

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
515	516	RXNC03063	VV0035	666	1697	4-aminobutyrate aminotransferase (EC 2.6.1.19)
517	518	RXNC2970	VV0021	4714	6081	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)
519	520	F RXA01009	GR00287	4714	5943	ACETYLORNITHINE AMINOTRANSFERASE (EC 2.6.1.11)

Vitamins, vitamin-like substances (cofactors), nutraceuticals

Thiamine metabolism

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
521	522	RXA01551	GR00431	2945	4819	THIAMIN BIOSYNTHESIS PROTEIN THIC
523	524	RXA01019	GR00291	6	995	THIAMIN-MONOPHOSPHATE KINASE (EC 2.7.4.16)
525	526	RXA01352	GR00393	609	4	THIAMIN-PYROPHOSPHATE PYROPHORYLASE (EC 2.5.1.3)
527	528	RXA01381	GR00403	3206	2286	THIF PROTEIN
529	530	RXA01360	GR00394	162	4	THIG PROTEIN
531	532	RXA01361	GR00394	983	378	HYDROXYETHYLTHIAZOLE KINASE (EC 2.7.1.50)
533	534	RXA01268	GR00348	229	1032	APBA PROTEIN
535	536	RXA00838	GR00227	1532	633	THIAMIN BIOSYNTHESIS PROTEIN X
537	538	RXA02400	GR00699	1988	2557	PHOSPHOMETHYL PYRIMIDINE KINASE (EC 2.7.4.7)
539	540	RXN01209	VV0270	1019	2446	PHOSPHOMETHYL PYRIMIDINE KINASE (EC 2.7.4.7)
541	542	F RXA01209	GR00348	1019	2446	PHOSPHOMETHYL PYRIMIDINE KINASE (EC 2.7.4.7)
543	544	RXN01413	VV0050	27306	27905	PHOSPHOMETHYL PYRIMIDINE KINASE (EC 2.7.4.7)
545	546	RXN01617	VV0050	22187	22858	PHOSPHOMETHYL PYRIMIDINE KINASE (EC 2.7.4.7)
547	548	F RXA01617	GR00451	2	616	PYRIDOXINE KINASE (EC 2.7.1.35)
549	550	RXS01807				CYTOSOLIC KINASE INVOLVED IN METABOLISM OF SUGARS AND THIAMIN
551	552	RXC01021				

- 65 -

Riboflavin metabolism**Table 1 (continued)**

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
553	554	RXXN02246	VW0130	4388	5371	diaminohydroxyphosphoribosylaminopyrimidine deaminase (EC 3.5.4.26) / 5-amino-6-(5-phosphoribosylamino)uracil reductase (EC 1.1.1.193)
555	556	F RXA02246	GR00654	14299	15282	RIBOFLAVIN SYNTHASE ALPHA CHAIN [EC 2.5.1.9]
557	558	F RXA02247	GR00654	15286	15918	GTP CYCLOHYDROLASE II (EC 3.5.4.25) / 3,4-DIHYDROXY-2-BUTANONE 4-PHOSPHATE SYNTHASE
559	560	RXXN02248	VW0130	6021	7286	RIBA PROTEIN . GTP cyclohydrolase II [EC:3.5.4.25]
561	562	F RXA02248	GR00654	15932	17197	6,7-DIMETHYL-8-RIBITYLUMAZINE SYNTHASE (EC 2.5.1.9)
563	564	RXXN02249	VW0130	7301	7777	RIBH PROTEIN . 6,7-dimethyl-8-ribityllumazine synthase (dmrl synthase, lumazine synthase, riboflavin synthase beta chain) [EC:2.5.1.9]
565	566	F RXA02249	GR00654	17212	17688	RIBX PROTEIN
567	568	RXXA02250	GR00654	17778	18356	RIBOFLAVIN KINASE (EC 2.7.1.26) / FMN ADENYLYLTRANSFERASE (EC 2.7.7.2)
569	570	RXXA01489	GR00423	3410	2388	NICOTINATE-NUCLEOTIDE-DIMETHYLBENZIMIDAZOLE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.21)
571	572	RXXA02135	GR00639	2809	1736	RIBOFLAVIN KINASE (EC 2.7.1.26) / FMN ADENYLYLTRANSFERASE (EC 2.7.7.2)
573	574	RXXA01489	GR00423	3410	2388	RIBOFLAVIN-SPECIFIC DEAMINASE (EC 3.5.4.-)
575	576	RXXN01712	VV01191	8993	8298	RIBOFLAVIN-SPECIFIC DEAMINASE (EC 3.5.4.-)
577	578	F RXA01712	GR00484	2652	2152	RIBOFLAVIN-SPECIFIC DEAMINASE (EC 3.5.4.-)
579	580	RXXN02384	VV0213	1386	679	ALPHA-RIBAZOLE-5'-PHOSPHATE PHOSPHATASE (EC 3.1.3.-)
581	582	RXXN01560	VW0319	767	438	RIBOFLAVIN-SPECIFIC DEAMINASE (EC 3.5.4.-)
583	584	RXXN00667	VW0109	1363	350	DRAF DEAMINASE
585	586	RXXC01711				MEMBRANE SPANNING PROTEIN INVOLVED IN RIBOFLAVIN METABOLISM
587	588	RXXC02380				PROTEIN INVOLVED IN RIBOFLAVIN METABOLISM
589	590	F RXA02380	GR00691	709	56	Predicted nucleotidyltransferases
591	592	RXC02921				CYTOSOLIC PROTEIN INVOLVED IN METABOLISM OF RIBOFLAVIN AND LIPIDS
593	594	RXXC01434				MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF AROMATIC AMINO ACIDS AND RIBOFLAVIN

Vitamin B6 metabolism

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
595	596	RXXA01807	GR00509	7868	7077	PYRIDOXINE KINASE (EC 2.7.1.35), pyridoxal/pyridoxine/pyridoxamine kinase

Table 1 (continued)

Nicotinate (nicotinic acid), nicotinamide, NAD and NADP						
<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
597 598	RXN02754 F RXA02405	VV0084 GR00701	22564 774	23901 4		NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.11)
599 600	F RXA02754	GR00766	3	488		NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.11)
601 602	RXA02112	GR00632	5600	6436		NICOTINATE-PYROPHOSPHORYLASE (CARBOXYLATING) (EC 2.4.2.19)
603 604	RXA02111	GR00632	4310	5593		QUINOLINATE SYNTHETASE A
605						

NAD Biosynthesis

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
607 608	RXA01073 RXN02754	GR00300 VV0084	1274 22564	2104 23901		NH(3)-DEPENDENT NAD(+)-SYNTHETASE (EC 6.3.5.1) NICOTINATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.11)
609 610						

Pantothenate and Coenzyme A (CoA) biosynthesis

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
611 612	RXA02295 RXA01928	GR00662 GR00555	10452 1957	10859 1121		ASPARTATE 1-DECARBOXYLASE PRECURSOR (EC 4.1.1.11) PANTOATE-BETA-ALANINE LIGASE (EC 6.3.2.1)
613 614	RXN01929	VV0127	47590	48402		3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11) /DECARBOXYLASE (EC 4.1.1.44)
615 616						
617 618	F RXA01929 RXA01521	GR00555 GR00424	2766 25167	1960 25964		3-METHYL-2-OXOBUTANOATE HYDROXYMETHYLTRANSFERASE (EC 2.1.2.11) PANTOATE-BETA-ALANINE LIGASE (EC 6.3.2.1)
619 620	RXS01145	GR00321 GR00654	1075 5784	1530 7049		KETOL-ACID REDUCTOISOMERASE (EC 1.1.1.86)
621 622	F RXA01145 RXA02239	GR00156 GR00156	7572 7572	8540		DNA/PANTOTHENATE METABOLISM FLAVOPROTEIN
623 624	RXA00581					PANTOTHENATE KINASE (EC 2.7.1.33)
625 626	RXS00838					2-DEHYDROPANTOATE 2-REDUCTASE (EC 1.1.1.169)
627 628	RXS00838 RXC02238					PROTEIN INVOLVED IN METABOLISM OF S-ADENOSYLMETHIONINE, PURINES AND PANTOTHENATE
629 630						
631 632						

Biotin metabolism

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
633 634	RXN03058	VV0028	8272	8754		BIOTIN SYNTHESIS PROTEIN BIOC

Table 1 (continued)

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Config.	NT Start	NT Stop	Function
635	636	RXAA02903	GR10040	11532	12014	BIOTIN SYNTHESIS PROTEIN BIOC
637	638	RXA00166	GR00025	3650	4309	BIOTIN SYNTHESIS PROTEIN BIOC
639	640	RXA00633	GR00166	3556	2288	ADENOSYLMETHIONINE-8-AMINO-7-OXONONANOATE AMINOTRANSFERASE (EC 2.6.1.62)
641	642	RXA00632	GR00166	2281	1610	DETHIOBIOTIN SYNTHETASE (EC 6.3.3.3)
643	644	RXA00295	GR00047	3407	4408	BIOTIN SYNTHASE (EC 2.8.1.6)
645	646	RXA00223	GR00032	23967	22879	NIFS PROTEIN
647	648	RXN00262	VV0123	16681	15608	NIFS PROTEIN
649	650	RXAA00262	GR00040	79	897	NIFS PROTEIN
651	652	RXN00435	VV0112	10037	11209	NIFS PROTEIN
653	654	RXAA00435	GR01100	3563	2949	NIFS PROTEIN
655	656	RXAA02801	GR00782	438	4	NIFS PROTEIN
657	658	RXA02516	GR00723	1724	2986	NIFS PROTEIN
659	660	RXA02517	GR00723	2999	3435	NIFU PROTEIN

Lipoic Acid

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Config.	NT Start	NT Stop	Function
661	662	RXA01747	GR00495	2506	3549	LIPOIC ACID SYNTHETASE
663	664	RXA01746	GR00495	1614	2366	LIPOATE-PROTEIN LIGASE B (EC 6.-.-.-)
665	666	RXA02106	GR00632	472	1527	LIPOATE-PROTEIN LIGASE A (EC 6.-.-.-)
667	668	RXS01183				DIHYDROLIPOAMIDE SUCCINYLTRANSFERASE COMPONENT (E2) OF 2-
669	670					OXOGLUTARATE DEHYDROGENASE COMPLEX (EC 2.3.1.61)
671	672	RXS01260				LIPOAMIDE DEHYDROGENASE COMPONENT (E3) OF BRANCHED-CHAIN ALPHA-KETO ACID DEHYDROGENASE COMPLEX (EC 1.8.1.4)
		RXS01261				LIPOAMIDE DEHYDROGENASE COMPONENT (E3) OF BRANCHED-CHAIN ALPHA-KETO ACID DEHYDROGENASE COMPLEX (EC 1.8.1.4)

Folate biosynthesis

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Config.	NT Start	NT Stop	Function
673	674	RXA02717	GR00758	18281	17400	5,10-METHYLENETETRAHYDROFOLATE REDUCTASE (EC 1.7.99.5)
675	676	RXN02027	VV0296	503	1003	5-FORMYL TETRAHYDROFOLATE CYCLO-LIGASE (EC 6.3.3.2)
677	678	RXAA02027	GR00616	500	6	5-FORMYL TETRAHYDROFOLATE CYCLO-LIGASE (EC 6.3.3.2)
679	680	RXA00106	GR00014	17469	17924	DIHYDROFOLATE REDUCTASE (EC 1.5.1.3)
681	682	RXN01321	VV0082	8868	9788	FORMYL TETRAHYDROFOLATE DEFORMYLASE (EC 3.5.1.10)
683	684	RXA01321	GR00384	23	559	FORMYL TETRAHYDROFOLATE DEFORMYLASE (EC 3.5.1.10)
685	686	RXA00461	GR00116	428	1279	METHENYL TETRAHYDROFOLATE DEHYDROGENASE (EC 1.5.1.5) / METHENYL TETRAHYDROFOLATE CYCLOHYDROLASE (EC 3.5.4.9)
687	688	RXA01514	GR00424	20922	21509	GTP CYCLOHYDROLASE I (EC 3.5.4.16)
689	690	RXA01516	GR00424	22360	22749	DIHYDRONEOPTERIN ALDOLASE (EC 4.1.2.25)

Table 1 (continued)

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Config.	NT Start	NT Stop	Function
691	692	RXA01515	GR00424	21513	22364	DIHYDROPTEROATE SYNTHASE (EC 2.5.1.15)
693	694	RXA02024	GR00613	4026	4784	DIHYDROPTEROATE SYNTHASE (EC 2.5.1.15)
695	696	RXA00106	GR00014	1746	17924	DIHYDROFOLATE REDUCTASE (EC 1.5.1.3)
697	698	RXA00989	GR00280	2903	1371	FOLYPOLYGLUTAMATE SYNTHASE (EC 6.3.2.17)
699	700	RXA01517	GR00424	22752	23228	2-AMINO-4-HYDROXY-6-HYDROXYMETHYLDIHYDROPTEROIDINE PYROPHOSPHOKINASE (EC 2.7.6.3)
701	702	RXA00579	GR00156	5946	4087	PARA-AMINOBENZOATE SYNTHASE COMPONENT I (EC 4.1.3.-)
703	704	RXA00958	GR00264	1130	1753	PARA-AMINOBENZOATE SYNTHASE COMPONENT II (EC 4.1.3.-) / ANTHRANILATE SYNTHASE COMPONENT II (EC 4.1.3.-)
705	706	RXA02790	GR00777	5806	6948	4-AMINO-4-DEOXYCHORISMATE LYASE (EC 4.1.3.-)
707	708	RXA00106	GR00014	17469	17924	DIHYDROFOLATE REDUCTASE (EC 1.5.1.3)
709	710	RXN02198	VV0302	9228	11726	5-METHYL TETRAHYDROFOLATE--HOMOCYSTEINE METHYLTRANSFERASE (EC 2.1.1.13)
711	712	F RXA02198	GR00646	2483	6	5-METHYL TETRAHYDROFOLATE--HOMOCYSTEINE METHYLTRANSFERASE (EC 2.1.1.13)
713	714	RXN02085	VV0126	8483	10717	5-METHYL TETRAHYDROPTEROYL TRIGLUTAMATE--HOMOCYSTEINE METHYLTRANSFERASE
715	716	F RXA02085	GR00629	3496	5295	5-METHYL TETRAHYDROPTEROYL TRIGLUTAMATE--HOMOCYSTEINE METHYLTRANSFERASE (EC 2.1.1.14)
717	718	F RXA02086	GR00629	5252	5731	5-METHYL TETRAHYDROPTEROYL TRIGLUTAMATE--HOMOCYSTEINE METHYLTRANSFERASE (EC 2.1.1.14)
719	720	RXN02648	VV0126	8483	10717	5-METHYL TETRAHYDROPTEROYL TRIGLUTAMATE--HOMOCYSTEINE METHYLTRANSFERASE (EC 2.1.1.14)
721	722	F RXA02648	GR00751	5254	4730	5-METHYL TETRAHYDROPTEROYL TRIGLUTAMATE--HOMOCYSTEINE METHYLTRANSFERASE (EC 2.1.1.14)
723	724	F RXA02658	GR00752	14764	15447	5-METHYL TETRAHYDROPTEROYL TRIGLUTAMATE--HOMOCYSTEINE METHYLTRANSFERASE (EC 2.1.1.14)
725	726	RXS02197	VV0126	8483	10717	5-METHYL TETRAHYDROPTEROYL TRIGLUTAMATE--HOMOCYSTEINE METHYLTRANSFERASE (EC 2.1.1.14)
727	728	RXC00988	VV0126	8483	10717	PROTEIN INVOLVED IN FOLATE METABOLISM
729	730	RXC01518	VV0126	8483	10717	MEMBRANE SPANNING PROTEIN INVOLVED IN FOLATE METABOLISM
731	732	RXC01942	VV0126	8483	10717	ATP-BINDING PROTEIN INVOLVED IN FOLATE METABOLISM

Molybdopterin Metabolism

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Config.	NT Start	NT Stop	Function
733	734	RXN02802	VV0112	17369	16299	MOLYBDOPTERIN BIOSYNTHESIS MOEB PROTEIN
735	736	F RXA02802	GR00753	7	474	MOLYBDOPTERIN BIOSYNTHESIS MOEB PROTEIN
737	738	F RXA00438	GR00103	362	796	MOLYBDOPTERIN (MPT) CONVERTING FACTOR, SUBUNIT 2
739	740	RXN00437	VV0112	17824	17369	MOLYBDOPTERIN (MPT) CONVERTING FACTOR, SUBUNIT 2
741	742	F RXA00437	GR00103	3	362	MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN
743	744	RXN00439	VV0112	18742	18275	MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN
745	746	F RXA00439	GR00104	2	196	MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN
747	748	F RXA00442	GR00105	830	1087	MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN

- 69 -

Table 1 (continued)

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Config.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
749 750	RXA00440 RXXN00441	GR00104 VV0112	196	654		MOLYBDENUM COFACTOR BIOSYNTHESIS PROTEIN CB
751 752	RXA00441 FRXA00441	GR00105 RXNN02085	19942 2	18779 793		MOLYBDOPTERIN CO-FACTOR SYNTHESIS PROTEIN
753 754	755 756					5-METHYL TETRAHYDROPTEROYLTRIGLUTAMATE--HOMOCYSTEINE
757	758	FRXA02085	GR00629	3496	5295	METHYLTRANSFERASE (EC 2.1.1.14)
759	760	FRXA02086	GR00629	5252	5731	5-METHYL TETRAHYDROPTEROYLTRIGLUTAMATE--HOMOCYSTEINE
761	762	RXXN02648				METHYLTRANSFERASE (EC 2.1.1.14)
763	764	FRXA02648	GR00751	5254	4730	5-METHYL TETRAHYDROPTEROYLTRIGLUTAMATE--HOMOCYSTEINE
765	766	FRXA02658	GR00752	14764	15447	METHYLTRANSFERASE (EC 2.1.1.14)
767	768	RXA01516	GR00424	22360	22749	DHYDRONEOPTERIN ALDOLASE (EC 4.1.2.25)
769 770	RXA01515 RXXA02024	GR00424 GR00613	21513 4026	22364 4784	DHYDROPTEROATE SYNTHASE (EC 2.5.1.15)	
771 772	RXA02024 RXA01719	GR00613 GR00488	4026 1264	4784 704	DHYDROPTEROATE SYNTHASE (EC 2.5.1.15)	
773 774	RXA01719 RXA01720	GR00488 GR00488	1264 2476	704 1268	MOLYBDOPTERIN-GUANINE DINUCLEOTIDE BIOSYNTHESIS PROTEIN A	
775 776	RXXS03223 RXXA01970	GR00568 GR00748	2 1274	1207 690	MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN	
777 778	779 780	RXXA01970 RXXA02629	GR00568 GR00748	2 1274	MOLYBDOPTERIN BIOSYNTHESIS MOEA PROTEIN	
781 782	RXXA02629 RXXA02318	GR00665 GR00665	9684 9684	9962 9962	(D90909) pterin-4a-carbinolamine dehydratase [Synechocystis sp.]	
783 784	RXXA02318 RXXA01517	GR00424 GR00424	22752 22752	23228 23228	2-AMINO-4-HYDROXY-6-HYDROXYMETHYLDIHYDROPTERIDINE PYROPHOSPHOKINASE (EC 2.7.6.3)	
785	786	RXXA01517 RXXN01304	VV0148	4449	4934	MOLYBDOPTERIN BIOSYNTHESIS MOG PROTEIN
787 788	789 790	RXXN01304 RXXS02556	VV0148	4449	4934	FLAVOHEMOPROTEIN / DIHYDROPTERIDINE REDUCTASE (EC 1.6.99.7)
791	792	RXXS02556 RXXS02560				OXYGEN-INSENSITIVE NAD(P)H NITROREDUCTASE (EC 1.6.99.7)
						DHYDROPTERIDINE REDUCTASE (EC 1.6.99.7)

Vitamin B₁₂, porphyrins and heme metabolism

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Config.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
793 794	RXA00382 RXXN02503	GR00082 GR002503	2752 16256	1451 22854		GLUTAMATE-1-SEMAIALDEHYDE 2,1-AMINOMUTASE (EC 5.4.3.8)
795 796	RXA00156 FRXA02503	GR00023 GR00720	10509 16306	9400 17340		FERROCHELATASE (EC 4.99.1.1)
797 798	RXA00624 FRXA0377	GR00163 GR00081	7910 1427	8596 306		FERROCHELATASE (EC 4.99.1.1)
799 800	RXA00306 RXXN0377	GR00051 GR00081	2206 10137	1274 11276		HEM K PROTEIN
801 802	RXA00884 RXXN02503	GR00242 GR002503	10137 22056	11276 22854		OXYGEN-INDEPENDENT COPROPORPHYRINogen III OXIDASE (EC 1.1.1.1)
803 804	RXXN02503 FRXA02503	GR00720 GR00081	17340 1427	17340 306		PORPHOBILINOGEN DEAMINASE (EC 4.3.1.8)
805 806						PORPHOBILINOGEN DEAMINASE (EC 4.3.1.8)
807 808						UROPORPHYRINogen DEAMINASE (EC 4.1.1.37)
809 810						PORPHOBILINOGEN DEAMINASE (EC 4.3.1.8)
811 812						PORPHOBILINOGEN DEAMINASE (EC 4.3.1.8)

- 70 -

Table 1 (continued)

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
813	814	RXNC1162	VV0088	1849	524	PRECORRIN-6Y METHYLASE (EC 2.1.1.-)
	815	F RXA01162	GR00330	1248	4	PRECORRIN-6Y METHYLASE (EC 2.1.1.-)
	817	RXA01692	GR00474	1498	749	UROPORPHYRIN-III C-METHYL TRANSFERASE (EC 2.1.1.107)
	819	RXN00371	VV0226	4180	5973	UROPORPHYRIN-III C-METHYL TRANSFERASE (EC 2.1.1.107) / UROPORPHYRIN-III C-METHYL TRANSFERASE (EC 4.2.1.75)
	821	F RXA00371	GR00078	929	6	UROPORPHYRIN-III C-METHYL TRANSFERASE (EC 2.1.1.107) / UROPORPHYRIN-III C-METHYL TRANSFERASE (EC 4.2.1.75)
	823	F RXA00374	GR00079	1102	371	UROPORPHYRIN-III C-METHYL TRANSFERASE (EC 2.1.1.107) / UROPORPHYRIN-III C-METHYL TRANSFERASE (EC 4.2.1.75)
	825	826	RXN00383	VV0223	4206	2863
		F RXA00376	GR00081	287	6	PROTOPORPHYRINOGEN OXIDASE (EC 1.3.3.4)
	827	828	F RXA00383	GR00082	3876	2863
		RXA01253	GR00365	2936	1787	PROTOPORPHYRINOGEN OXIDASE (EC 1.3.3.4)
	830	832	RXA02134	GR00639	1721	801
		RXA02135	GR00639	2809	1736	COBALAMIN (5'-PHOSPHATE) SYNTHASE
	833	834	RXA02136	GR00639	3362	2841
		RXN03114	VV0088	1	552	Nicotinate-nucleotide-dimethylbenzimidazole
	837	838	RXN01810	VV0088	1739	663
		RXS03205	VV0082			COBINAMIDE KINASE / COBINAMIDE PHOSPHATE GUANYLYLTRANSFERASE
	839	840	RXA00306			COBG PROTEIN (EC 1.1.1.1)
		RXC01715				HEMG BINDING PERPLASMIC PROTEIN HMUT PRECURSOR
	841	842				HEMK PROTEIN
	843	844				HEMK PROTEIN
	845	846				CYTOSOLIC PROTEIN INVOLVED IN PORPHYRIN METABOLISM
	847	848				

Vitamin C precursors

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
849	850	RXN00420	VV0112	2511	1048	L-GULONOLACTONE OXIDASE (EC 1.1.3.8)
		F RXA00420	GR00096	2	541	L-GULONOLACTONE OXIDASE (EC 1.1.3.8)
	851	852	F RXA00426	GR00097	1737	2258
		RXN00708	VV0005	4678	3872	2,5-DIKETO-D-GLUCONIC ACID REDUCTASE (EC 1.1.1.8)
	853	854	F RXA00708	GR00185	2030	1359
		RXA02373	GR00688	1540	626	2,5-DIKETO-D-GLUCONIC ACID REDUCTASE (EC 1.1.1.8)
	855	856	RXS00389			oxoglutarate semialdehyde dehydrogenase (EC 1.2.1.1)
		RXS00419				ACETOACETYL-COA REDUCTASE (EC 1.1.1.36)
	861	862	RXC00416			MEMBRANE SPANNING PROTEIN INVOLVED IN METABOLISM OF VITAMIN C PRECURSORS
	863	864	RXC00416			OXIDOREDUCTASE INVOLVED IN METABOLISM OF VITAMIN C PRECURSORS
	865	866	RXC02206			
	867	868				

Vitamin K2

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
869	870	RXS03074				S-ADENOSYLMETHIONINE-2-O-DEMETHYLMENAQUINONE METHYLTRANSFERASE (EC 2.1.1.-)

Table 1 (continued)

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Config.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
871	872	RXA02906	GR10044	1142	645	S-ADENOSYLMETHIONINE-2-DEMETHYLMENAQUINONE METHYLTRANSFERASE (EC 2.1.1.-)
873	874	RXA02315	GR00655	8011	6383	2-SUCCINYL-6-HYDROXY-2,4-CYCLOHEXADIENE-1-CARBOXYLATE SYNTHASE /2-OXOGLUTARATE DECARBOXYLASE (EC 4.1.1.71)
875	876	RXA02319	GR00655	9977	10933	NAPHTHOATE SYNTHASE (EC 4.1.3.36)
877	878	RXS00393	GR00096	4030	4911	1,4-DIHYDROXY-2-NAPHTHOATE OCTAPRENYLTRANSFERASE (EC 2.5.-.)
879	880	RXA00393	GR00096	2031	2750	1,4-DIHYDROXY-2-NAPHTHOATE OCTAPRENYLTRANSFERASE (EC 2.5.-.)
881	882	RXA00391				O-SUCCINYLBENZOIC ACID--COA LIGASE (EC 6.2.1.26)
883	884	RXS02908				O-SUCCINYLBENZOIC ACID--COA LIGASE (EC 6.2.1.26)
Ubiquinone biosynthesis						
<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Config.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
885	886	RXA00997	GR00283	2389	1808	3-DEMETHYLUBIQUINONE-9-3-METHYLTRANSFERASE (EC 2.1.1.64)
887	888	RXA02189	GR00642	986	249	3-DEMETHYLUBIQUINONE-9-3-METHYLTRANSFERASE (EC 2.1.1.64)
889	890	RXA02311	GR00665	3073	2384	3-DEMETHYLUBIQUINONE-9-3-METHYLTRANSFERASE (EC 2.1.1.64)
891	892	RXXN02912	VV0135	13299	12547	UBIQUINONE/MENAQUINONE BIOSYNTHESIS METHYLTRANSFERASE UBIQ (EC 2.1.1.-)
893	894		RXS00998			COMA OPERON PROTEIN 2

Purines and Pyrimidines and other Nucleotides

Regulation of purine and pyrimidine biosynthesis pathways

Purine metabolism

Purine Biosynthesis

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Config.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
895	896	RXA01215	GR00352	1187	213	RIBOSE-PHOSPHATE PYROPHOSPHOKINASE, PRPP synthetase (EC 2.7.6.1)
897	898	RVN00558	VV0103	8235	9581	AMIDOPHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.14)
899	900	FRXA00558	GR00148	61	501	AMIDOPHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.14)
901	902	RVN00626	VV0135	11624	10362	PHOSPHORIBOSYLAMINE--GLYCINE LIGASE (EC 6.3.4.13)
903	904	FRXA00629	GR00165	1450	1713	PHOSPHORIBOSYLAMINE--GLYCINE LIGASE (EC 6.3.4.13)
905	906	FRXA00626	GR00164	1	780	PHOSPHORIBOSYLAMINE--GLYCINE LIGASE (EC 6.3.4.13)
907	908	RXA02623	GR00746	4875	4285	PHOSPHORIBOSYLGLYCINAMIDE CYCLO-LIGASE (EC 6.3.3.1) / PHOSPHORIBOSYLGLYCINAMIDE FORMYLTRANSFERASE (EC 2.1.2.2)
909	910		RXA01442	10277	9054	PHOSPHORIBOSYLGLYCINAMIDE FORMYLTRANSFERASE 2 (EC 2.1.2.2)

Table 1 (continued)

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
911	912	RXN00537	VV0103	3351	5636	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE (EC 6.3.5.3)
913	914	F RXA02805	GR00786	54	638	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE (EC 6.3.5.3)
915	916	F RXA00537	GR00138	23	697	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE (EC 6.3.5.3)
917	918	F RXA00561	GR00150	2	280	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE (EC 6.3.5.3)
919	920	F RXA00541	GR00139	2269	2937	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE SYNTHASE (EC 6.3.5.3)
921	922	RXA00620	GR00163	3049	3939	PHOSPHORIBOSYLAMINOIMIDAZOLE-SUCCINOCARBOXYAMIDE SYNTHASE (EC 6.3.2.6)
923	924	RXN00770	VV0103	9614	10783	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (EC 6.3.3.1)
925	926	F RXA00557	GR00147	15	818	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (EC 6.3.3.1)
927	928	F RXA00770	GR00204	7809	7495	PHOSPHORIBOSYLFORMYLGLYCINAMIDINE CYCLO-LIGASE (EC 6.3.3.1)
929	930	RXN02345	VV0078	4788	5984	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE ATPASE SUBUNIT (EC 4.1.1.21)
931	932	F RXA02345	GR00676	1534	725	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE ATPASE SUBUNIT (EC 4.1.1.21)
933	934	RXN02350	VV0078	8369	8863	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT (EC 4.1.1.21)
935	936	F RXA02346	GR00677	127	5	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT (EC 4.1.1.21)
937	938	F RXA02350	GR00678	1120	911	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE CATALYTIC SUBUNIT (EC 4.1.1.21)
939	940	RXA01087	GR00304	498	1373	ADENYLOSUCINATE LYASE (EC 4.3.2.2)
941	942	RXA00619	GR00163	793	2220	PHOSPHORIBOSYLAMINOIMIDAZOLE CARBOXYLASE (EC 4.1.1.21)
943	944	RXA02622	GR00746	4274	2715	PHOSPHORIBOSYLAMINOIMIDAZOLECARBOXYLASE FORMYLTRANSFERASE (EC 2.1.2.3) / IMP CYCLOHYDROLASE (EC 3.5.4.10)

GMP, GDP, AMP and ADP synthesis, from inosine-5'-monophosphate (IMP)

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
945	946	RXN00488	VV0086	19056	20583	INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (EC 1.1.1.205)
947	948	F RXA00492	GR00122	1171	1644	INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (EC 1.1.1.205)
949	950	F RXA00488	GR00121	1	534	INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (EC 1.1.1.205)
951	952	RXA02469	GR00715	1927	497	INOSINE-5'-MONOPHOSPHATE DEHYDROGENASE (EC 1.1.1.205)
953	954	RXN00487	VV0086	23734	25302	GMP SYNTHASE [GLUTAMINE-HYDROLYZING] (EC 6.3.5.2)
955	956	F RXA00487	GR00120	712	2097	GMP SYNTHASE (EC 6.3.4.1)
957	958	RXA02237	GR00654	4577	5146	GUANYLATE KINASE (EC 2.7.4.8)
959	960	RXA01446	GR00418	17785	16476	ADENYLOSUCINATE SYNTHETASE (EC 6.3.4.4)
961	962	RXA00619	GR00163	793	2220	ADENYLOSUCINATE LYASE (EC 4.3.2.2)
963	964	RXA00688	GR00179	10443	10985	ADENYLATE KINASE (EC 2.7.4.3)
965	966	RXA00266	GR00040	3769	3362	NUCLEOSIDE DIPHOSPHATE KINASE (EC 2.7.4.6)

GMP/AMP degrading activities

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
967 968	RXA00489	GR00121 VW0152	654 1893	1775 3323	GMP REDUCTASE (EC 1.6.6.8) AMP NUCLEOSIDASE (EC 3.2.2.4)	
969 970	RXN02281	GR00659	1101	34	AMP NUCLEOSIDASE (EC 3.2.2.4)	
971 972	FRXA02281					

Pyrimidine metabolism**Pyrimidine biosynthesis de novo:**

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
973 974	RXA00147	GR00022	9722	10900	CARBAMOYL-PHOSPHATE SYNTHASE SMALL CHAIN (EC 6.3.5.5)	
975 976	RXA00145	GR00022	7258	8193	ASPARTATE CARBAMOYLTRANSFERASE CATALYTIC CHAIN (EC 2.1.3.2)	
977 978	RXA00146	GR00022	8249	9589	DHYDROOROTASE (EC 3.5.2.3)	
979 980	RXA02208	GR00647	2	1003	DHYDROOROTATE DEHYDROGENASE (EC 1.3.3.1)	
981 982	RXA01660	GR00462	591	1142	OROTATE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.10)	
983 984	RXA02235	GR00654	3207	4040	ORTIDINE 5'-PHOSPHATE DECARBOXYLASE (EC 4.1.1.23)	
985 986	RXN01892	VW0150	3020	3748	URIDYLATE KINASE (EC 2.7.4.-)	
987 988	FRXA01892	GR00542	47	775	URIDYLATE KINASE (EC 2.7.4.-)	
989 990	RXA00105	GR00014	16672	17346	THYMIDYLATE SYNTHASE (EC 2.1.1.45)	
991 992	RXA00131	GR00020	7621	7013	THYMIDYLATE KINASE (EC 2.7.4.9)	
993 994	RXA00266	GR00040	3769	3362	NUCLEOSIDE DIPHOSPHATE KINASE (EC 2.7.4.6)	
995 996	RXA00718	GR00188	4576	5283	CYTIDYLATE KINASE (EC 2.7.4.14)	
997 998	RXA01599	GR00447	8780	10441	CTP SYNTHASE (EC 6.3.4.2)	
999 1000	RXN02234	VW0134	24708	28046	CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5)	
1001 1002	FRXA02234	GR00654	1	3198	CARBAMOYL-PHOSPHATE SYNTHASE LARGE CHAIN (EC 6.3.5.5)	
1003 1004	RXN00450	VW0112	34491	34814	CYTOSINE DEAMINASE (EC 3.5.4.1)	
1005 1006	FRXA00450	GR00110	322	5	CYTOSINE DEAMINASE (EC 3.5.4.1)	
1007	1008	RXN02272	WV0020	15566	CYTOSINE DEAMINASE (EC 3.5.4.1)	
1009	1010	FRXA02272	GR00655	6691	CREATININE DEAMINASE (EC 3.5.4.21)	
1011	1012	RXN03004	VW0237	1862	DEOXYCYTIDINE TRIPHOSPHATE DEAMINASE (EC 3.5.4.13)	
1013	1014	RXN03137	VW0129	9680	THYMIDYLATE SYNTHASE (EC 2.1.1.45)	
1015	1016	RXN03171	VW0328	568	URACIL PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.9)	
1017	1018	FRXA02287	GR10003	570	URACIL PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.9)	

Table 1 (continued)

Purine and pyrimidine base, nucleoside and nucleotide salvage, interconversion, reduction and degradation:

Purines:

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
1019	1020	RXA02771	GR00772	1329	1883	ADENINE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.7)
1021	1022	RXA01512	GR00424	1763	18232	HYPOTHIONINE-GUANINE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.8)
1023	1024	RXA02031	GR00618	3820	3347	XANTHINE-GUANINE PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.22)
1025	1026	RXA00981	GR00276	3388	4017	GTP PYROPHOSPHOKINASE (EC 2.7.6.5)
1027	1028	RXN02772	VV0171	2045	1011	GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC 3.1.7.2)
1029	1030	F RXA02772	GR00772	1962	2741	GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC 3.1.7.2)
1031	1032	F RXA02773	GR00772	2741	2902	GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC 3.1.7.2)
1033	1034	RXA01835	GR00517	3147	3677	GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC 3.1.7.2)
1035	1036	RXA01483	GR00422	19511	18240	DEOXYGUANOSINETRIPHOSPHATE TRIPHOSPHATE HYDROLASE (EC 3.1.5.1)
1037	1038	RXN01027	VV0143	5761	6768	DIADENOSINE 5',5"-P1,P4-TETRAPHOSPHATE HYDROLASE (EC 3.6.1.17)
1039	1040	F RXA01024	GR00293	661	5	DIADENOSINE 5',5"-P1,P4-TETRAPHOSPHATE HYDROLASE (EC 3.6.1.17)
1041	1042	F RXA01027	GR00294	5760	2347	DIADENOSINE 5',5"-P1,P4-TE TRIPHOSPHATE HYDROLASE (EC 3.6.1.17)
1043	1044	RXA01528	GR00425	5653	5126	DIADENOSINE 5',5"-P1,P4-TETRAPHOSPHATE HYDROLASE (EC 3.6.1.17)
1045	1046	RXA00072	GR00012	446	6	PHOSPHOADENOYLIC ACID 5',5"-P1,P4-TETRAPHOSPHATE HYDROLASE (EC 3.6.1.17)
1047	1048	RXA01878	GR00537	1239	2117	DIMETHYLADEENOSINE REDUCTASE (EC 1.8.99.4)
1049	1050	RXN02281	VV0152	1893	3323	DAMP NUCLEOSIDASE (EC 3.2.2.4)
1051	1052	F RXA02281	GR00659	1101	34	GTP PYROPHOSPHOKINASE (EC 2.7.6.5)
1053	1054	RXN01240	VV0090	30442	29420	GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC 3.1.7.2)
1055	1056	RXN02008	VV0171	1138	5	

Pyrimidine and purine metabolism:

Nucleic Acid SEQ ID NO	Amino Acid SEQ ID NO	Identification Code	Contig.	NT Start	NT Stop	Function
1057	1058	RXN01940	VV0120	10268	9333	INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE (EC 3.2.2.1)
1059	1060	F RXA01940	GR00557	3	581	INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE (EC 3.2.2.1)
1061	1062	RXA02559	GR00731	5418	6320	INOSINE-URIDINE PREFERRING NUCLEOSIDE HYDROLASE (EC 3.2.2.1)
1063	1064	RXA02497	GR00720	10059	10985	EXOPOLYPHOSPHATASE (EC 3.6.1.11)
1065	1066	RXN01079	VV0084	38084	35982	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE ALPHA CHAIN (EC 1.17.4.1)
1067	1068	F RXA01079	GR00301	693	4	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE ALPHA CHAIN (EC 1.17.4.1)
1069	1070	F RXA01084	GR00302	3402	2062	RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE 2 BETA CHAIN (EC 1.17.4.1)
1071	1072	RXN01920	VV0084	32843	31842	RIBONUCLEOTIDE REDUCTASE SUBUNIT R2F
1073	1074	F RXA01920	GR00550	1321	908	NRD1 PROTEIN
1075	1076	RXA01080	GR00301	1240	797	POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE (EC 2.7.7.8)
1077	1078	RXA00867	GR00237	1	627	POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE (EC 2.7.7.8)
1079	1080	RXA01416	GR00413	2	631	POLYRIBONUCLEOTIDE NUCLEOTIDYLTRANSFERASE (EC 2.7.7.8)
1081	1082	RXA01486	GR00423	660	4	

Table 1 (continued)

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Config.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
1083	1084	RXA01678	GR00467	7162	7689	2'-3'-CYCLIC-NUCLEOTIDE 2'-PHOSPHODIESTERASE (EC 3.14.1.6)
1085	1086	RXA01679	GR00467 WV0139	7729	8964	2'-3'-CYCLIC-NUCLEOTIDE 2'-PHOSPHODIESTERASE (EC 3.14.1.6) INOSINE-URIDYL PREFERRING NUCLEOSIDE HYDROLASE (EC 3.2.2.1)
1087	1088	RXN01488		39842	40789	CYTOSOLIC PROTEIN INVOLVED IN PURINE METABOLISM
1089	1090	RXC00540				PROTEIN INVOLVED IN PURINE METABOLISM
1091	1092	RXC00560				CYTOSOLIC PROTEIN INVOLVED IN PURINE METABOLISM
1093	1094	RXC01088				MEMBRANE SPANNING PROTEIN INVOLVED IN PURINE METABOLISM
1095	1096	RXC02624				PROTEIN INVOLVED IN PURINE METABOLISM
1097	1098	RXC02665				LIPOPROTEIN INVOLVED IN PURINE METABOLISM
1099	1100	RXC02770				PROTEIN INVOLVED IN METABOLISM OF S-ADENOSYLMETHIONINE, PURINES AND PANTOTHENATE
1101	1102	RXC02238				ABC TRANSPORTER ATP-BINDING PROTEIN INVOLVED IN PURINE METABOLISM
1103	1104		RXC01946			

Pyrimidines:

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Config.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
1105	1106	RXXN03171	WV0328	568	1080	URACIL PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.9)
1107	1108	FRXA02857	GR10003	570	1082	URACIL PHOSPHORIBOSYLTRANSFERASE (EC 2.4.2.9)
1109	1110	RXXN00450	VV0112	34491	34814	CYTOSINE DEAMINASE (EC 3.5.4.1)
1111	1112	FRXA00450	GR00110	322	5	CYTOSINE DEAMINASE (EC 3.5.4.1)
1113	1114	FRXA00465	GR00117	337	828	CYTOSINE DEAMINASE (EC 3.5.4.1)
1115	1116	RXA00717	GR00188	3617	4576	RIBOSOMAL SUBUNIT PSEUDOURIDINE SYNTHASE B (EC 4.2.1.70)
1117	1118	RXA01894	GR00542	1622	2476	PHOSPHATIDATE CYTIDYLTRANSFERASE (EC 2.7.7.41)
1119	1120	RXA02536	GR00726	8581	7826	BETA-UREIDOPROPIONASE (EC 3.5.1.6)
1121	1122	RXXN01209	VV0270	1019	2446	PHOSPHOMETHYL PYRIMIDINE KINASE (EC 2.7.4.7)
1123	1124	FRXA01209	GR00348	1019	2446	PHOSPHOMETHYL PYRIMIDINE KINASE (EC 2.7.4.7)
1125	1126	RXXN01617	WV0050	22187	22858	PHOSPHOMETHYL PYRIMIDINE KINASE (EC 2.7.4.7)
1127	1128	FRXA01617	GR00451	2	616	PHOSPHOMETHYL PYRIMIDINE KINASE (EC 2.7.4.7)
1129	1130	RXC01600				CYTOSOLIC PROTEIN INVOLVED IN PYRIMIDINE METABOLISM
1131	1132	RXC01622				CYTOSOLIC PROTEIN INVOLVED IN PYRIMIDINE METABOLISM
1133	1134	RXC00128				EXPORTED PROTEIN INVOLVED IN METABOLISM OF PYRIDIMES AND ADENOSYLHOMOCYSTEINE
1135	1136	RXC01709				CYTOSOLIC PROTEIN INVOLVED IN PYRIMIDINE METABOLISM
1137	1138	RXC02207				EXPORTED PROTEIN INVOLVED IN PYRIMIDINE METABOLISM

Sugars

Trehalose

Table 1 (continued)

<u>Nucleic Acid SEQ ID NO</u>	<u>Amino Acid SEQ ID NO</u>	<u>Identification Code</u>	<u>Contig.</u>	<u>NT Start</u>	<u>NT Stop</u>	<u>Function</u>
1139	1140	RXA00347	GR00065	246	1013	TREHALOSE-PHOSPHATASE (EC 3.1.3.12)
1141	1142	RXN01239	VV0090	32921	30489	maltooligosyltrehalose synthase
1143	1144	F.RXA01239	GR00368	5147	7579	maltooligosyltrehalose synthase
1145	1146	RXA02645	GR00751	714	2543	maltooligosyltrehalose trehalohydrolase
1147	1148	RXN02355	VV0061	735	4	TREHALOSE/MALTOSE BINDING PROTEIN
1149	1150	RXN02909	VV0135	38532	39017	Hypothetical Trehalose-Binding Protein
1151	1152	RXS00349				Hypothetical Trehalose Transport Protein
1153	1154	RXS03183				TREHALOSE/MALTOSE BINDING PROTEIN
1155	1156	RXC00874				TRANSMEMBRANE PROTEIN INVOLVED IN TREHALOSE METABOLISM

TABLE 2 - Excluded Genes

GenBank™ Accession No.	Gene Name	Gene Function	Reference
A09073	ppg	Phosphoenol pyruvate carboxylase	Bachmann, B. et al. "DNA fragment coding for phosphoenolpyruvat carboxylase, recombinant DNA carrying said fragment, strains carrying the recombinant DNA and method for producing L-aminino acids using said strains." Patent: EP 0 358940-A 3 03/21/90
A45579, A45581, A45583, A45585 A45587		Threonine dehydratase	Moekkel, B. et al. "Production of L-isoleucine by means of recombinant micro-organisms with deregulated threonine dehydratase," Patent: WO 9519442-A 5 07/20/95
AB003132	murC; ftsQ; ftsZ		Kobayashi, M. et al. "Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria," <i>Biochem. Biophys. Res. Commun.</i> , 236(2):383-388 (1997)
AB015023	murC; ftsQ		Wachi, M. et al. "A murC gene from Coryneform bacteria," <i>Appl. Microbiol. Biotechnol.</i> , 51(2):223-228 (1999)
AB018530	disR		Kimura, E. et al. "Molecular cloning of a novel gene, disR, which rescues the detergent sensitivity of a mutant derived from <i>Brevibacterium lactofermentum</i> ," <i>Biosci. Biotechnol. . ochem.</i> , 60(10):1565-1570 (1996)
AB018531	disR1; disR2		
AB020624	murl	D-glutamate racemase	
AB023377	tkt	D-glutamate transketolase	
AB024708	gltB; gltD	Glutamine :oxoglutarate aminotransferase large and small subunits	
AB025424	acn	aconitase	
AB027714	rep	Replication protein	
AB027715	rep; aad	Replication protein; aminoglycoside adenylyltransferase	
AF005242	argC	N-acetylglutamate-5-semialdehyde dehydrogenase	
AF005635	glnA	Glutamine synthetase	
AF030405	hisF	cyclase	
AF030520	argG	Argininosuccinate synthetase	
AF031518	argF	Ornithine carbamoyltransferase	
AF036932	aroD	3-dehydroquinate dehydratase	
AF038348	pyc	Pyruvate carboxylase	

Table 2 (continued)

AF038651	dciAE; apt; rel	Dipeptide-binding protein; adenine phosphoribosyltransferase; GTP pyrophosphokinase	Wehmeyer, L. et al. "The role of the <i>Corynebacterium glutamicum</i> rel gene in (p)ppGpp metabolism," <i>Microbiology</i> , 144:1853-1862 (1998)
AF041436	argR	Arginine repressor	
AF045998	impA	Inositol monophosphate phosphatase	
AF048764	argH	Argininosuccinate lyase	
AF049897	argC; argJ; argB; argD; argF; argR; argG; argH	N-acetylglutamylphosphate reductase; N-ornithine acetyltransferase; N-acetylglutamate kinase; acetylornithine transimase; ornithine carbamoyltransferase; arginine repressor; argininosuccinate synthase; argininosuccinate lyase	
AF050109	inhA	Enoyl-acyl carrier protein reductase	
AF050166	hisG	ATP phosphoribosyltransferase	
AF051846	hisA	Phosphoribosylformimino-5-amino-1-phosphoribosyl-4-imidazolecarboxamide isomerase	
AF052652	metA	Homoserine O-acetyltransferase	Park, S. et al. "Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in <i>Corynebacterium glutamicum</i> ," <i>Mol Cells</i> , 8(3):286-294 (1998)
AF053071	aroB	Dihydroquinate synthetase	
AF060558	hisH	Glutamine amidotransferase	
AF086704	hisE	Phosphoribosyl-ATP-pyrophosphohydrolase	
AF114233	aroA	5-enolpyruvylshikimate 3-phosphate synthase	
AF116184	panD	L-aspartate-alpha-decarboxylase precursor	Dusch, N. et al. "Expression of the <i>Corynebacterium glutamicum</i> panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in <i>Escherichia coli</i> ," <i>Appl. Environ. Microbiol.</i> , 65(4):1530-1539 (1999)
AF124518	aroD; aroE	3-dihydroquinase; shikimate dehydrogenase	
AF124600	aroC; aroK; aroB; pepQ	Chorismate synthase; shikimate kinase; 3-dihydroquinate synthase; putative cytoplasmic peptidase	
AF145897	inhA		
AF145898	inhA		

- 79 -

Table 2 (continued)

AJ001436	ecIP	Transport of ectoine, glycine betaine, proline	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EcIP," <i>J. Bacteriol.</i> , 180(22):6005-6012 (1998)
AJ004934	dapD	Tetrahydrolipocinate succinylase (incomplete ¹)	Wehrmann, A. et al. "Different modes of diaminopimelate synthesis and their role in cell wall integrity: A study with Corynebacterium glutamicum," <i>J. Bacteriol.</i> , 180(12):3159-3165 (1998)
AJ007732	ppc; secG; amt; ocd; soxA	Phosphoenolpyruvate-carboxylase; ?, high affinity ammonium uptake protein; putative ornithine-cyclodecarboxylase; sarcosine oxidase	
AJ010319	ftsY, glnB, glnD; srp; amtP	Involved in cell division; PII protein; uridylyltransferase (uridylyl-l-removing enzyme); signal recognition particle; low affinity ammonium uptake protein	Jakoby, M. et al. "Nitrogen regulation in Corynebacterium glutamicum; Isolation of genes involved in biochemical characterization of corresponding proteins," <i>FEBS Microbiol.</i> , 173(2):303-310 (1999)
AJ132968	cat	Chloramphenicol acetyl transferase	
AJ224946	mgo	L-malate: quinone oxidoreductase	Molenaar, D. et al. "Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum," <i>Eur. J. Biochem.</i> , 254(2):395-403 (1998)
AJ238250	ndh	NADH dehydrogenase	
AJ238703	porA	Porin	Lichtlinger, T. et al. "Biochemical and biophysical characterization of the cell wall porin of Corynebacterium glutamicum: The channel is formed by a low molecular mass polypeptide," <i>Biochemistry</i> , 37(43):15024-15032 (1998)
D17429		Transposable element IS31831	Vertes et al. "Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum," <i>Mol. Microbiol.</i> , 11(4):739-746 (1994)
D84102	odhA	2-oxoglutarate dehydrogenase	Usuda, Y. et al. "Molecular cloning of the Corynebacterium glutamicum (Brevibacterium lacticfermentum AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase," <i>Microbiology</i> , 142:3347-3354 (1996)
E01358	hdh; hk	Homoserine dehydrogenase; homoserine kinase	Katsumata, R. et al. "Production of L-threonine and L-isoleucine," Patent: JP 1987232392-A 1 10/12/87
E01359		Upstream of the start codon of homoserine kinase gene	Katsumata, R. et al. "Production of L-threonine and L-isoleucine," Patent: JP 1987232392-A 2 10/12/87
E01375		Tryptophan operon	
E01376	tppL; tppE	Leader peptide; anthranilate synthase	Matsuji, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87

Table 2 (continued)

E01377	Promoter and operator regions of tryptophan operon	Maisui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87
E03937	Biotin synthase	Hatakeyama, K. et al. "DNA fragment containing gene capable of coding biotin synthetase and its utilization," Patent: JP 1992278088-A 1 10/02/92
E04040	Diamino pelargonic acid aminotransferase	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1 11/18/92
E04041	Desthiobiotinsynthetase	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1 11/18/92
E04307	Flavum aspartase	Kurusu, Y. et al. "Gene DNA coding aspartase and utilization thereof," Patent: JP 1993030977-A 1 02/09/93
E04376	Isocitric acid lyase	Kaisumata, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93
E04377	Isocitric acid lyase N-terminal fragment	Kaisumata, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93
E04484	Prephenate dehydratase	Sotouchi, N. et al. "Production of L-phenylalanine by fermentation," Patent: JP 1993076352-A 2 03/30/93
E05108	Aspartokinase	Fugono, N. et al. "Gene DNA coding Aspartokinase and its use," Patent: JP 1993184366-A 1 07/27/93
E05112	Dihydro-dipiclorinate synthetase	Hatakeyama, K. et al. "Gene DNA coding dihydropicolinic acid synthetase and its use," Patent: JP 1993184371-A 1 07/27/93
E05776	Diaminopimelic acid dehydrogenase	Kobayashi, M. et al. "Gene DNA coding Diaminopimelic acid dehydrogenase and its use," Patent: JP 1993284970-A 1 11/02/93
E05779	Threonine synthase	Kohama, K. et al. "Gene DNA coding threonine synthase and its use," Patent: JP 1993284972-A 1 11/02/93
E06110	Prephenate dehydratase	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93
E06111	Mutated Prephenate dehydratase	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93
E06146	Acetoxyhydroxy acid synthetase	Inui, M. et al. "Gene capable of coding Acetoxyhydroxy acid synthetase and its use," Patent: JP 1993344893-A 1 12/27/93
E06825	Aspartokinase	Sugimoto, M. et al. "Mutant aspartokinase gene," Patent: JP 1994062866-A 1 03/08/94
E06826	Mutated aspartokinase alpha subunit	Sugimoto, M. et al. "Mutant aspartokinase gene," Patent: JP 1994062866-A 1 03/08/94

Table 2 (continued)

E06827	Mutated aspartokinase alpha subunit	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94
E07701	secY	Honno, N. et al. "Gene DNA participating in integration of membranous protein to membrane," Patent: JP 1994169780-A 1 06/21/94
E08177	Aspartokinase	Saito, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94
E08178, E08179, E08180, E08181, E08182	Feedback inhibition-released Aspartokinase	Saito, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94
E08232	Acetohydroxy-acid isomerase	Inui, M. et al. "Gene DNA coding acetohydroxy acid isomerase," Patent: JP 1994277067-A 1 10/04/94
E08234	secE	Asai, Y. et al. "Gene DNA coding for translocation machinery of protein," Patent: JP 1994277073-A 1 10/04/94
E08643	FT aminotransferase and deshiobiotin synthetase promoter region	Hatakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031476-A 1 02/03/95
E08646	Biotin synthetase	Hatakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031476-A 1 02/03/95
E08649	Aspartase	Kohama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031478-A 1 02/03/95
E08900	Dihydridipicolinate reductase	Madori, M. et al. "DNA fragment containing gene coding Dihydridipicolinate acid reductase and utilization thereof," Patent: JP 1995075578-A 1 03/20/95
E08901	Diaminopimelic acid decarboxylase	Madori, M. et al. "DNA fragment containing gene coding Diaminopimelic acid decarboxylase and utilization thereof," Patent: JP 1995075579-A 1 03/20/95
E12394	Serine hydroxymethyltransferase	Hatakeyama, K. et al. "Production of L-tryptophan," Patent: JP 1997028391-A 1 02/04/97
E12760, E12759, E12758	transposase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12764	Arginyl-tRNA synthetase; diaminopimelic acid decarboxylase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12767	Dihydridipicolinic acid synthetase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12770	aspartokinase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12773	Dihydridipicolinic acid reductase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97

Table 2 (continued)

E13655		Glucose-6-phosphate dehydrogenase	Hatakeyama, K. et al. "Glucose-6-phosphate dehydrogenase and tDNA capable of coding the same." Patent: JP 1997224661-A 1 09/02/97
L01508	IlvA	Threonine dehydratase	Moeckel, B. et al. "Functional and structural analysis of the threonine dehydratase of Corynebacterium glutamicum," <i>J. Bacteriol.</i> , 174:8065-8072 (1992)
1.07603	EC 4.2.1.13	3-deoxy-D-arabinohexitulosonate-7-phosphate synthase	Chen, C. et al. "The cloning and nucleotide sequence of <i>Corynebacterium glutamicum</i> 3-deoxy-D-arabinohexitulosonate-7-phosphate synthase gene," <i>FEMS Microbiol. Lett.</i> , 107:223-230 (1993)
1.09232	IlvB; ilvN; ilvC	Acetohydroxy acid synthase large subunit; Acetohydroxy acid synthase small subunit; Acetohydroxy acid isomeroeductase	Keilhauer, C. et al. "Isocitrate synthase in <i>Corynebacterium glutamicum</i> : molecular analysis of the ilvB-ilvN-ilvC operon," <i>J. Bacteriol.</i> , 175(17):5595-5603 (1993)
1.18874	PtsM	Phosphoenolpyruvate sugar phosphotransferase	Fouet, A. et al. "Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in <i>Escherichia coli</i> and homology to enzymes II from enteric bacteria," <i>PNAS USA</i> , 84(24):8773-8777 (1987); Lee, J.K. et al. "Nucleotide sequence of the gene encoding the <i>Corynebacterium glutamicum</i> mannose enzyme II and analyses of the deduced protein sequence," <i>FEMS Microbiol. Lett.</i> , 119(1-2):137-145 (1994)
L27123	aceB	Malate synthase	Lee, H-S. et al. "Molecular characterization of aceB, a gene encoding malate synthase in <i>Corynebacterium glutamicum</i> ," <i>J. Microbiol. Biotechnol.</i> , 4(4):256-263 (1994)
L27126		Pyruvate kinase	Jetten, M. S. et al. "Structural and functional analysis of pyruvate kinase from <i>Corynebacterium glutamicum</i> ," <i>Appl. Environ. Microbiol.</i> , 60(7):2501-2507 (1994)
L28760	aceA	Isocitrate lyase	Oguiza, J.A. et al. "Molecular cloning, DNA sequence analysis, and characterization of the <i>Corynebacterium diphtheriae</i> dtxR from <i>Brevibacterium lactofermentum</i> ," <i>J. Bacteriol.</i> , 177(2):465-467 (1995)
L35906	dtxR	Diphtheria toxin repressor	
M13774		Prephenate dehydratase	Follettie, M. T. et al. "Molecular cloning and nucleotide sequence of the <i>Corynebacterium glutamicum</i> pheA gene," <i>J. Bacteriol.</i> , 167:695-702 (1986)
M16175	5S rRNA		Park, Y-H. et al. "Phylogenetic analysis of the coryneform bacteria by 5S rRNA sequences," <i>J. Bacteriol.</i> , 169:1801-1806 (1987)
M16663	trpE	Anthranilate synthase, 5' end	Sano, K. et al. "Structure and function of the trp operon control regions of <i>Brevibacterium lactofermentum</i> , a glutamic-acid-producing bacterium," <i>Gene</i> , 52:191-200 (1987)
M16664	trpA	Tryptophan synthase, 3' end	Sano, K. et al. "Structure and function of the trp operon control regions of <i>Brevibacterium lactofermentum</i> , a glutamic-acid-producing bacterium," <i>Gene</i> , 52:191-200 (1987)

Table 2 (continued)

M25819		Phosphoenolpyruvate carboxylase	O'Regan, M. et al. "Cloning and nucleotide sequence of the Phosphoenolpyruvate carboxylase-coding gene of <i>Corynebacterium glutamicum</i> ATCC13032," <i>Gene</i> , 77(2):237-251 (1989)
M85106		23S rRNA gene insertion sequence	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," <i>J. Gen. Microbiol.</i> , 138:1167-1175 (1992)
M85107, M85108		23S rRNA gene insertion sequence	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," <i>J. Gen. Microbiol.</i> , 138:1167-1175 (1992)
M89931	aecD; brmQ; yhbw	Beta C-S lyase; branched-chain amino acid uptake carrier; hypothetical protein yhbw	Rossol, I. et al. "The <i>Corynebacterium glutamicum</i> aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminothiokysteine," <i>J. Bacteriol.</i> , 174(9):2968-2977 (1992); Tauch, A. et al. "Isoleucine uptake in <i>Corynebacterium glutamicum</i> ATCC 13032 is directed by the brmQ gene product," <i>Arch. Microbiol.</i> , 169(4):307-312 (1998)
S59299	trp	Leader gene (promoter)	Herry, D.M. et al. "Cloning of the trp gene cluster from a tryptophan-hyperproducing strain of <i>Corynebacterium glutamicum</i> : identification of a mutation in the trp leader sequence," <i>Appl. Environ. Microbiol.</i> , 59(3):791-799 (1993)
U11545	trpD	Anthranilate phosphoribosyltransferase	O'Gara, J.P. and Dunigan, L.K. (1994) Complete nucleotide sequence of the <i>Corynebacterium glutamicum</i> ATCC 21850 trpD gene." Thesis, Microbiology Department, University College Galway, Ireland.
U13922	cglIM; cglIR; cglIIIR	Putative type II 5-cytosine methyltransferase; putative type II restriction endonuclease; putative type I or type III restriction endonuclease	Schäfer, A. et al. "Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from <i>Corynebacterium glutamicum</i> ATCC 13032 and analysis of its role in intergeneric conjugation with <i>Escherichia coli</i> ," <i>J. Bacteriol.</i> , 176(23):7309-7319 (1994); Schäfer, A. et al. "The <i>Corynebacterium glutamicum</i> cglIM gene encoding a 5-cytosine in an MrBC-deficient <i>Escherichia coli</i> strain," <i>Gene</i> , 203(2):95-101 (1997)
U14965	recA		Ankri, S. et al. "Mutations in the <i>Corynebacterium glutamicum</i> proline biosynthetic pathway: A natural bypass of the proA step," <i>J. Bacteriol.</i> , 178(15):4412-4419 (1996)
U31224	ppx		Ankri, S. et al. "Mutations in the <i>Corynebacterium glutamicum</i> proline biosynthetic pathway: A natural bypass of the proA step," <i>J. Bacteriol.</i> , 178(15):4412-4419 (1996)
U31225	proC	L-proline: NADP+ 5-oxidoreductase	Ankri, S. et al. "Mutations in the <i>Corynebacterium glutamicum</i> proline biosynthetic pathway: A natural bypass of the proA step," <i>J. Bacteriol.</i> , 178(15):4412-4419 (1996)
U31230	obj; proB; unkdh	?gamma glutamyl kinase similar to D-isomer specific 2-hydroxyacid dehydrogenases	Ankri, S. et al. "Mutations in the <i>Corynebacterium glutamicum</i> proline biosynthetic pathway: A natural bypass of the proA step," <i>J. Bacteriol.</i> , 178(15):4412-4419 (1996)

Table 2 (continued)

U31281	bioB	Biotin synthase	Sercbluski, I.G., "Two new members of the bio B superfamily: Cloning, sequencing and expression of bio B genes of <i>Methylobacillus flagellatum</i> and <i>Corynebacterium glutamicum</i> ," <i>Gene</i> , 175:15-22 (1996)
U35023	thtR; accBC	Thiosulfate sulfurtransferase; acyl CoA carboxylase	Jager, W. et al. "A <i>Corynebacterium glutamicum</i> gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins," <i>Arch. Microbiol.</i> , 166(2):76-82 (1996)
U43535	cmr	Multidrug resistance protein	Jager, W. et al. "A <i>Corynebacterium glutamicum</i> gene conferring multidrug resistance in the heterologous host <i>Escherichia coli</i> ," <i>J. Bacteriol.</i> , 179(7):2449-2451 (1997)
U43556	clpB	Heat shock ATP-binding protein	
U53587	aphA-3	3'5"-aminoglycoside phosphotransferase	
U89648		<i>Corynebacterium glutamicum</i> unidentified sequence involved in histidine biosynthesis, partial sequence	Matsuji, K. et al. "Complete nucleotide and deduced amino acid sequences of the <i>Brevibacterium lactofermentum</i> tryptophan operon," <i>Nucleic Acids Res.</i> , 14(24):10113-10114 (1986)
X04960	trpA; trpB; trpC; trpD; trpE; trpG; trpL	Tryptophan operon	Yeh, P. et al. "Nucleic sequence of the <i>LysA</i> gene of <i>Corynebacterium glutamicum</i> and possible mechanisms for modulation of its expression," <i>Mol. Gen. Genet.</i> , 212(1):112-119 (1988)
X07563	lys A	DAP decarboxylase (meso-diaminopimelate decarboxylase, EC 4.1.1.20)	Eikmanns, B.J. et al. "The Phosphoenolpyruvate carboxylase gene of <i>Corynebacterium glutamicum</i> : Molecular cloning, nucleotide sequence, and expression," <i>Mol. Gen. Genet.</i> , 218(2):330-339 (1989); Lepiniec, L. et al. "Sorghum Phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution," <i>Plant Mol. Biol.</i> , 21 (3):487-502 (1993)
X14234	EC 4.1.1.31	Phosphoenolpyruvate carboxylase	Von der Osten, C.H. et al. "Molecular cloning, nucleotide sequence and fine-structural analysis of the <i>Corynebacterium glutamicum fda</i> gene: structural comparison of <i>C. glutamicum</i> fructose-1, 6-biphosphate aldolase to class I and class II aldolases," <i>Mol. Microbiol.</i> ,
X17313	fda	Fructose-bisphosphate aldolase	Bonnassie, S. et al. "Nucleic sequence of the <i>dapA</i> gene from <i>Corynebacterium glutamicum</i> ," <i>Nucleic Acids Res.</i> , 18(21):6421 (1990)
X53993	dapA	L-2, 3-dihydrodipicolinate synthetase (EC 4.2.1.52)	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of <i>Corynebacterium diphtheriae</i> , <i>Corynebacterium ulcerans</i> , <i>Corynebacterium glutamicum</i> , and the attP site of <i>lambda</i> corynephage," <i>FEMS Microbiol. Lett.</i> , 66:299-302 (1990)
X54223		AttB-related site	
X54740	argS; lysA	Arginy-l-tRNA synthetase; Diaminopimelate decarboxylase	Marcel, T. et al. "Nucleotide sequence and organization of the upstream region of the <i>Corynebacterium glutamicum lysA</i> gene," <i>Mol. Microbiol.</i> , 4(1):1819-1830 (1990)

Table 2 (continued)

X55994	trpL, trpE	Putative leader peptide; anthranilate synthase component I	Heery, D.M. et al. "Nucleotide sequence of the <i>Corynebacterium glutamicum</i> trpE gene," <i>Nucleic Acids Res.</i> , 18(23):7138 (1990)
X56037	thrC	Theorinine synthase	Han, K.S. et al. "The molecular structure of the <i>Corynebacterium glutamicum</i> threonine synthase gene," <i>Mol. Microbiol.</i> , 4(10):1693-1702 (1990)
X56075	attB-related site	Attachment site	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of <i>Corynebacterium diphtheriae</i> , <i>Corynebacterium ulcerans</i> , <i>Corynebacterium glutamicum</i> , and the attP site of lambda corynephage," <i>FEBS Microbiol. Lett.</i> , 66:299-302 (1990)
X57226	lysC-alpha; lysC-beta; asd	Aspartokinase-alpha subunit; Aspartokinase-beta subunit; aspartate beta semialdehyde dehydrogenase	Kalinowski, J. et al. "Genetic and biochemical analysis of the Aspartokinase from <i>Corynebacterium glutamicum</i> ," <i>Mol. Microbiol.</i> , 5(5):1197-1204 (1991); Kalinowski, J. et al. "Aspartokinase genes lysC alpha and lysC beta overlap and are adjacent to the aspartate beta-semialdehyde dehydrogenase gene and in <i>Corynebacterium glutamicum</i> ," <i>Mol. Gen. Genet.</i> , 224(3):317-324 (1990)
X59403	gap;pgk;tpi	Glyceraldehyde-3-phosphate; phosphoglycerate kinase; triosephosphate isomerase	Eikmanns, B.J. "Identification, sequence analysis, and expression of a <i>Corynebacterium glutamicum</i> gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerases," <i>J. Bacteriol.</i> , 174(19):6076-6086 (1992)
X59404	gdh	Glutamate dehydrogenase	Bornmann, E.R. et al. "Molecular analysis of the <i>Corynebacterium glutamicum</i> gdh gene encoding glutamate dehydrogenase," <i>Mol. Microbiol.</i> , 6(3):317-326 (1992)
X60312	lysI	L-lysine permease	Seep-Feldhaus, A.H. et al. "Molecular analysis of the <i>Corynebacterium glutamicum</i> lysI gene involved in lysine uptake," <i>Mol. Microbiol.</i> , 5(12):2995-3005 (1991)
X66078	copI	PsiI protein	Joliff, G. et al. "Cloning and nucleotide sequence of the cspI gene encoding PS1, one of the two major secreted proteins of <i>Corynebacterium glutamicum</i> . The deduced N-terminal region of PS1 is similar to the <i>Mycobacterium antigen 85</i> complex," <i>Mol. Microbiol.</i> , 6(16):2349-2362 (1992)
X66112	glt	Citrate synthase	Eikmanns, B.J. et al. "Cloning sequence, expression and transcriptional analysis of the <i>Corynebacterium glutamicum</i> gltA gene encoding citrate synthase," <i>Micribiol.</i> , 140:1817-1828 (1994)
X67737	dapB	Dihydrodipicolinate reductase	Peyret, J.L. et al. "Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in <i>Corynebacterium glutamicum</i> ," <i>Mol. Microbiol.</i> , 9(1):97-109 (1993)
X69103	csp2	Surface layer protein PS2	Bonamy, C. et al. "Identification of IS1206, a <i>Corynebacterium glutamicum</i> IS3-related insertion sequence and phylogenetic analysis," <i>Mol. Microbiol.</i> , 14(3):571-581 (1994)
X69104		IS3 related insertion element	

Table 2 (continued)

X70959	leuA	Isopropylmalate synthase	Patek, M. et al. "Leucine synthesis in <i>Corynebacterium glutamicum</i> : enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis," <i>Appl. Environ. Microbiol.</i> , 60(1):133-140 (1994).
X71489	icd	Isocitrate dehydrogenase (NADP ⁺)	Eikmanns, B.J. et al. "Cloning, sequence analysis, expression, and inactivation of the <i>Corynebacterium glutamicum</i> icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme," <i>J. Bacteriol.</i> , 177(3):774-782 (1995).
X72855	GDHA	Glutamate dehydrogenase (NADP ⁺)	Heery, D.M. et al. "A sequence from a tryptophan-hyperproducing strain of <i>Corynebacterium glutamicum</i> encoding resistance to 5-methyltryptophan," <i>Biochem. Biophys. Res. Commun.</i> , 201(3):1255-1262 (1994).
X75083, X70584	mttA	5-methyltryptophan resistance ^c	Fitzpatrick, R. et al. "Construction and characterization of recA mutant strains of <i>Corynebacterium glutamicum</i> and <i>Brevibacterium lactofermentum</i> ," <i>Appl. Microbiol. Biotechnol.</i> , 42(4):575-580 (1994).
X75085	recA		Reinscheid, D.J. et al. "Characterization of the isocitrate lyase gene from <i>Corynebacterium glutamicum</i> and biochemical analysis of the enzyme," <i>J. Bacteriol.</i> , 176(12):3474-3483 (1994).
X75504	aceA; thiX	Partial Isocitrate lyase; ?	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," <i>Antonie Van Leeuwenhoek</i> , 64:285-305 (1993).
X76875		ATPase beta-subunit	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," <i>Antonie Van Leeuwenhoek</i> , 64:285-305 (1993).
X77034	tuf	Elongation factor Tu	Billman-Jacobe, H. "Nucleotide sequence of a recA gene from <i>Corynebacterium glutamicum</i> ," <i>DNA Seq.</i> , 4(6):403-404 (1994).
X77384	recA		Reinscheid, D.J. et al. "Malate synthase from <i>Corynebacterium glutamicum</i> pia-ack operon encoding phosphotransacetylase: sequence analysis," <i>Microbiology</i> , 140:3099-3108 (1994).
X78491	aceB	Malate synthase	Rainey, F.A. et al. "Phylogenetic analysis of the genera Rhodococcus and Norcardia and evidence for the evolutionary origin of the genus Norcardia from within the radiation of Rhodococcus species," <i>Microbiol.</i> , 141:523-528 (1995).
X80629	16S rDNA	16S ribosomal RNA	Kronemeyer, W. et al. "Structure of the gluABCD cluster encoding the glutamate uptake system of <i>Corynebacterium glutamicum</i> ," <i>J. Bacteriol.</i> , 177(5):1152-1158 (1995).
X81191	gluA; gluB; gluC; gluD	Glutamate uptake system	Wehrmann, A. et al. "Analysis of different DNA fragments of <i>Corynebacterium glutamicum</i> complementing dapE of <i>Escherichia coli</i> ," <i>Microbiology</i> , 140:3349-3356 (1994).
X81379	dapE	Succinylaminopimelate desuccinylase	

- 87 -

Table 2 (continued)

X82061	16S rDNA	16S ribosomal RNA	Ruiny, R. et al. "Phylogeny of the genus <i>Corynebacterium</i> deduced from analyses of small-subunit ribosomal DNA sequences," <i>Int. J. Syst. Bacteriol.</i> , 45(4):740-746 (1995)
X82928	asd; lysC	Aspartate-semialdehyde dehydrogenase; ?	Serebrijski, I. et al. "Multiplicity suppression by asd gene and osmotic stress-dependent complementation by heterologous proA in proA mutants," <i>J. Bacteriol.</i> , 177(24):7255-7260 (1995)
X82929	proA	Gamma-glutamyl phosphate reductase	Serebrijski, I. et al. "Multiplicity suppression by asd gene and osmotic stress-dependent complementation by heterologous proA in proA mutants," <i>J. Bacteriol.</i> , 177(24):7255-7260 (1995)
X84257	16S rDNA	16S ribosomal RNA	Pascual, C. et al. "Phylogenetic analysis of the genus <i>Corynebacterium</i> based on 16S rRNA gene sequences," <i>Int. J. Syst. Bacteriol.</i> , 45(4):724-728 (1995)
X85965	arop; dape	Aromatic amino acid permease; ?	Wehrmann et al. "Functional analysis of sequences adjacent to dapE of <i>C. glutamicum</i> proline reveals the presence of aroP, which encodes the aromatic amino acid transporter," <i>J. Bacteriol.</i> , 177(20):5991-5993 (1995)
X86157	argB; argC; argD; argF; argJ	Acetylglutamate kinase; N-acetyl-gamma-glutamyl-phosphate reductase; acetylornithine aminotransferase; ornithine carbamoyl transferase; glutamate N-acetyltransferase	Sakanyan, V. et al. "Genes and enzymes of the acetyl cycle of arginine biosynthesis in <i>Corynebacterium glutamicum</i> : enzyme evolution in the early steps of the arginine pathway," <i>Microbiology</i> , 142:99-108 (1996)
X89084	pia; ackA	Phosphate acetyltransferase; acetate kinase	Reinscheid, D.J. et al. "Cloning, sequence analysis, expression and inactivation of the <i>Corynebacterium glutamicum</i> pia-ack operon encoding phosphotransacetylase and acetate kinase," <i>Microbiology</i> , 145:503-513 (1999)
X89850	attB	Attachment site	Le Marrec, C. et al. "Genetic characterization of site-specific integration functions of phi AAU2 infecting "Arthrobacter aureus C70," <i>J. Bacteriol.</i> , 178(7):1996-2004 (1996)
X90356		Promoter fragment F1	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90357		Promoter fragment F2	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90358		Promoter fragment F10	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90359		Promoter fragment F13	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)

Table 2 (continued)

X90360	Promoter fragment F22	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90361	Promoter fragment F34	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90362	Promoter fragment F37	Patek, M. et al. "Promoters from <i>C. glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90363	Promoter fragment F45	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90364	Promoter fragment F64	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90365	Promoter fragment F75	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90366	Promoter fragment PF101	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90367	Promoter fragment PF104	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90368	Promoter fragment PF109	Patek, M. et al. "Promoters from <i>Corynebacterium glutamicum</i> : cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X93513	amt	Siewe, R.M. et al. "Functional and genetic characterization of the (methyl) ammonium uptake carrier of <i>Corynebacterium glutamicum</i> ," <i>J. Biol. Chem.</i> , 271(10):5398-5403 (1996)
X93514	betP	Peter, H. et al. "Isolation, characterization, and expression of the <i>Corynebacterium glutamicum betP</i> gene, encoding the transport system for the compatible solute glycine betaine," <i>J. Bacteriol.</i> , 178(17):5229-5234 (1996)
X95649	ori4	Patek, M. et al. "Identification and transcriptional analysis of the dapB-ORF2-dapA-ORF4 operon of <i>Corynebacterium glutamicum</i> , encoding two enzymes involved in L-lysine synthesis," <i>Biootechnol. Lett.</i> , 19:1113-1117 (1997)
X96471	lysE; lysG	Vrljic, M. et al. "A new type of transporter with a new type of cellular function: L-lysine export from <i>Corynebacterium glutamicum</i> ," <i>Mol. Microbiol.</i> , 22(5):815-826 (1996)

- 89 -

Table 2 (continued)

X96580	panB; panC; xylB	3-methyl-2-oxobutanoate hydroxymethyltransferase; pantoate-beta-alanine ligase; xylose kinase	Sahm, H. et al. "D-pantothenate synthesis in <i>Corynebacterium glutamicum</i> and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction," <i>Appl. Environ. Microbiol.</i> , 65(5):1973-1979 (1999)
X96962		Insertion sequence IS1207 and transposase	
X99289		Elongation factor P	Ramos, A. et al. "Cloning, sequencing and expression of the gene encoding elongation factor P in the amino-acid producer <i>Brevibacterium lactofermentum</i> (<i>Corynebacterium glutamicum</i> ATCC 13869)," <i>Gene</i> , 198: 217-222 (1997)
Y00140	thrB	Homoserine kinase	Mateos, L.M. et al. "Nucleotide sequence of the homoserine kinase (thrB) gene of the <i>Brevibacterium lactofermentum</i> ," <i>Nucleic Acids Res.</i> , 15(9):3922 (1987)
Y00151	ddh	Meso-diaminopimelate D-dehydrogenase (EC 1.4.1.1)	Ishino, S. et al. "Nucleotide sequence of the meso-diaminopimelate D-dehydrogenase gene from <i>Corynebacterium glutamicum</i> ," <i>Nucleic Acids Res.</i> , 15(9):3917 (1987)
Y00476	thrA	Homoserine dehydrogenase	Mateos, L.M. et al. "Nucleotide sequence of the homoserine dehydrogenase (thrA) gene of the <i>Brevibacterium lactofermentum</i> ," <i>Nucleic Acids Res.</i> , 15(24):10598 (1987)
Y00546	hom; thrB	Homoserine dehydrogenase; homoserine kinase	Peoples, O.P. et al. "Nucleotide sequence and fine structural analysis of the <i>Corynebacterium glutamicum</i> hom-thrB operon," <i>Mol. Microbiol.</i> , 2(1):63-72 (1988)
Y08964	murC; ftsQ/divD; ftsZ	UDP-N-acetylglucuramate-alanine ligase; division initiation protein or cell division protein; cell division protein	Honturba, M.P. et al. "Identification, characterization, and chromosomal organization of the ftsZ gene from <i>Brevibacterium lactofermentum</i> ," <i>Mol. Gen. Genet.</i> , 259(1):97-104 (1998)
Y09163	putP	High affinity proline transport system	Peter, H. et al. "Isolation of the putP gene of <i>Corynebacterium glutamicum</i> and characterization of a low-affinity uptake system for compatible solutes," <i>Arch. Microbiol.</i> , 168(2):143-151 (1997)
Y09548	pyc	Pyruvate carboxylase	Peters-Wendisch, P.G. et al. "Pyruvate carboxylase from <i>Corynebacterium glutamicum</i> : characterization, expression and inactivation of the pyc gene," <i>Microbiology</i> , 144:915-927 (1998)
Y09578	leuB	3-isopropylmalate dehydrogenase	Patek, M. et al. "Analysis of the leuB gene from <i>Corynebacterium glutamicum</i> ," <i>Appl. Microbiol. Biotechnol.</i> , 50(1):42-47 (1998)
Y12472		Attachment site bacteriophage Phi-16	Moreau, S. et al. "Site-specific integration of corynephage Phi-16: The construction of an integration vector," <i>Microbiol.</i> , 145:539-548 (1999)
Y12537	proP	Proline/ectoine uptake system protein	Peter, H. et al. " <i>Corynebacterium glutamicum</i> is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," <i>J. Bacteriol.</i> , 180(22):6005-6012 (1998)

- 90 -

Table 2 (continued)

Y13221	glnA	Glutamine synthetase I	Jakoby, M. et al. "Isolation of <i>Corynebacterium glutamicum</i> glnA gene encoding glutamine synthetase I," <i>FEMS Microbiol. Lett.</i> , 154(1):81-88 (1997)
Y16642	lpd	Dihydrolipoamide dehydrogenase	
Y18059		Attachment site Corynephage 304L	Moreau, S. et al. "Analysis of the integration functions of φ304L: An integrase module among corynephages," <i>Virology</i> , 255(1): 150-159 (1999)
Z21501	argS; lysA	Arginyl-tRNA synthetase; diaminopimelate decarboxylase (partial)	Oguiza, J.A. et al. "A gene encoding arginyl-tRNA synthetase is located in the upstream region of the lysA gene in <i>Brevibacterium lactofermentum</i> : Regulation of argS-lysA cluster expression by arginine," <i>J. Bacteriol.</i> , 175(22):7356-7362 (1993)
Z21502	dapA; dapB	Dihydriodipicolinate synthase; dihydriodipicolinate reductase	Pisabarro, A. et al. "A cluster of three genes (dapA, orf2, and dapB) of <i>Brevibacterium lactofermentum</i> encodes dihydriodipicolinate reductase, and a third polypeptide of unknown function," <i>J. Bacteriol.</i> , 175(9):2743-2749 (1993)
Z229563	thrC	Threonine synthase	Malumbres, M. et al. "Analysis and expression of the thrC gene of the encoded threonine synthase," <i>Appl. Environ. Microbiol.</i> , 60(7):2209-2219 (1994)
Z46753	16S rDNA	Gene for 16S ribosomal RNA	Oguiza, J.A. et al. "Multiple sigma factor genes in <i>Brevibacterium lactofermentum</i> : Characterization of sigA and sigB," <i>J. Bacteriol.</i> , 178(2):550-553 (1996)
Z49822	sigA	SigA sigma factor	Oguiza, J.A. et al. "The galE gene encoding the UDP-galactose 4-epimerase of <i>Brevibacterium lactofermentum</i> is coupled transcriptionally to the dmdR gene," <i>Gene</i> , 177:103-107 (1996)
Z49823	galE; dtxR	Catalytic activity UDP-galactose 4-epimerase; diphtheria toxin regulatory protein	Oguiza, J.A. et al. "Multiple sigma factor genes in <i>Brevibacterium lactofermentum</i> : Characterization of sigA and sigB," <i>J. Bacteriol.</i> , 178(2):550-553 (1996)
Z49824	orf1; sigB	?; SigB sigma factor	Correia, A. et al. "Cloning and characterization of an IS-like element present in the genome of <i>Brevibacterium lactofermentum</i> ATCC 13869," <i>Gene</i> , 170(1):91-94 (1996)
Z66534		Transposase	A sequence for this gene was published in the indicated reference. However, the sequence obtained by the inventors of the present application is significantly longer than the published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

TABLE 3: *Corynebacterium* and *Brevibacterium* Strains Which May be Used in the Practice of the Invention

Genus	species	ATCC	FERM	NRRL	CECT	NCIMB	CBS	NCTC	DSMZ
<i>Brevibacterium</i>	ammoniagenes	21054							
<i>Brevibacterium</i>	ammoniagenes	19350							
<i>Brevibacterium</i>	ammoniagenes	19351							
<i>Brevibacterium</i>	ammoniagenes	19352							
<i>Brevibacterium</i>	ammoniagenes	19353							
<i>Brevibacterium</i>	ammoniagenes	19354							
<i>Brevibacterium</i>	ammoniagenes	19355							
<i>Brevibacterium</i>	ammoniagenes	19356							
<i>Brevibacterium</i>	ammoniagenes	21055							
<i>Brevibacterium</i>	ammoniagenes	21077							
<i>Brevibacterium</i>	ammoniagenes	21553							
<i>Brevibacterium</i>	ammoniagenes	21580							
<i>Brevibacterium</i>	ammoniagenes	39101							
<i>Brevibacterium</i>	butanicum	21196							
<i>Brevibacterium</i>	divaricatum	21792	P928						
<i>Brevibacterium</i>	flavum	21474							
<i>Brevibacterium</i>	flavum	21129							
<i>Brevibacterium</i>	flavum	21518							
<i>Brevibacterium</i>	flavum			B11474					
<i>Brevibacterium</i>	flavum			B11472					
<i>Brevibacterium</i>	flavum	21127							
<i>Brevibacterium</i>	flavum	21128							
<i>Brevibacterium</i>	flavum	21427							
<i>Brevibacterium</i>	flavum	21475							
<i>Brevibacterium</i>	flavum	21517							
<i>Brevibacterium</i>	flavum	21528							
<i>Brevibacterium</i>	flavum	21529							
<i>Brevibacterium</i>	flavum			B11477					
<i>Brevibacterium</i>	flavum			B11478					
<i>Brevibacterium</i>	flavum	21127							
<i>Brevibacterium</i>	flavum			B11474					
<i>Brevibacterium</i>	healii	15527							
<i>Brevibacterium</i>	ketoglutamicum	21004							
<i>Brevibacterium</i>	ketoglutamicum	21089							
<i>Brevibacterium</i>	ketosoreductum	21914							
<i>Brevibacterium</i>	lactofermentum				70				
<i>Brevibacterium</i>	lactofermentum				74				
<i>Brevibacterium</i>	lactofermentum				77				
<i>Brevibacterium</i>	lactofermentum	21798							
<i>Brevibacterium</i>	lactofermentum	21799							
<i>Brevibacterium</i>	lactofermentum	21800							
<i>Brevibacterium</i>	lactofermentum	21801							
<i>Brevibacterium</i>	lactofermentum			B11470					
<i>Brevibacterium</i>	lactofermentum			B11471					

- 92 -

Genus	species	ATCC	FERM	NRRL	CECT	NCIMB	CBS	NCTC	DSMZ
Brevibacterium	lactofermentum	21086							
Brevibacterium	lactofermentum	21420							
Brevibacterium	lactofermentum	21086							
Brevibacterium	lactofermentum	31269							
Brevibacterium	linens	9174							
Brevibacterium	linens	19391							
Brevibacterium	linens	8377							
Brevibacterium	paraffinolyticum					11160			
Brevibacterium	spec.						717.73		
Brevibacterium	spec.						717.73		
Brevibacterium	spec.	14604							
Brevibacterium	spec.	21860							
Brevibacterium	spec.	21864							
Brevibacterium	spec.	21865							
Brevibacterium	spec.	21866							
Brevibacterium	spec.	19240							
Corynebacterium	acetoacidophilum	21476							
Corynebacterium	acetoacidophilum	13870							
Corynebacterium	acetoglutamicum			B11473					
Corynebacterium	acetoglutamicum			B11475					
Corynebacterium	acetoglutamicum	15806							
Corynebacterium	acetoglutamicum	21491							
Corynebacterium	acetoglutamicum	31270							
Corynebacterium	acetophilum		B3671						
Corynebacterium	ammoniagenes	6872					2399		
Corynebacterium	ammoniagenes	15511							
Corynebacterium	fujikense	21496							
Corynebacterium	glutamicum	14067							
Corynebacterium	glutamicum	39137							
Corynebacterium	glutamicum	21254							
Corynebacterium	glutamicum	21255							
Corynebacterium	glutamicum	31830							
Corynebacterium	glutamicum	13032							
Corynebacterium	glutamicum	14305							
Corynebacterium	glutamicum	15455							
Corynebacterium	glutamicum	13058							
Corynebacterium	glutamicum	13059							
Corynebacterium	glutamicum	13060							
Corynebacterium	glutamicum	21492							
Corynebacterium	glutamicum	21513							
Corynebacterium	glutamicum	21526							
Corynebacterium	glutamicum	21543							
Corynebacterium	glutamicum	13287							
Corynebacterium	glutamicum	21851							
Corynebacterium	glutamicum	21253							
Corynebacterium	glutamicum	21514							
Corynebacterium	glutamicum	21516							
Corynebacterium	glutamicum	21299							

- 93 -

Genus	species	ATCC	FERM	NRRL	CECT	NCIMB	CBS	NCTC	DSMZ
Corynebacterium	glutamicum	21300							
Corynebacterium	glutamicum	39684							
Corynebacterium	glutamicum	21488							
Corynebacterium	glutamicum	21649							
Corynebacterium	glutamicum	21650							
Corynebacterium	glutamicum	19223							
Corynebacterium	glutamicum	13869							
Corynebacterium	glutamicum	21157							
Corynebacterium	glutamicum	21158							
Corynebacterium	glutamicum	21159							
Corynebacterium	glutamicum	21355							
Corynebacterium	glutamicum	31808							
Corynebacterium	glutamicum	21674							
Corynebacterium	glutamicum	21562							
Corynebacterium	glutamicum	21563							
Corynebacterium	glutamicum	21564							
Corynebacterium	glutamicum	21565							
Corynebacterium	glutamicum	21566							
Corynebacterium	glutamicum	21567							
Corynebacterium	glutamicum	21568							
Corynebacterium	glutamicum	21569							
Corynebacterium	glutamicum	21570							
Corynebacterium	glutamicum	21571							
Corynebacterium	glutamicum	21572							
Corynebacterium	glutamicum	21573							
Corynebacterium	glutamicum	21579							
Corynebacterium	glutamicum	19049							
Corynebacterium	glutamicum	19050							
Corynebacterium	glutamicum	19051							
Corynebacterium	glutamicum	19052							
Corynebacterium	glutamicum	19053							
Corynebacterium	glutamicum	19054							
Corynebacterium	glutamicum	19055							
Corynebacterium	glutamicum	19056							
Corynebacterium	glutamicum	19057							
Corynebacterium	glutamicum	19058							
Corynebacterium	glutamicum	19059							
Corynebacterium	glutamicum	19060							
Corynebacterium	glutamicum	19185							
Corynebacterium	glutamicum	13286							
Corynebacterium	glutamicum	21515							
Corynebacterium	glutamicum	21527							
Corynebacterium	glutamicum	21544							
Corynebacterium	glutamicum	21492							
Corynebacterium	glutamicum			B8183					
Corynebacterium	glutamicum			B8182					
Corynebacterium	glutamicum			B12416					
Corynebacterium	glutamicum			B12417					

Genus	species	ATCC	FERM	NRRL	CECT	NCIMB	CBS	NCTC	DSMZ
Corynebacterium	glutamicum			B12418					
Corynebacterium	glutamicum			B11476					
Corynebacterium	glutamicum	21608							
Corynebacterium	lilium		P973						
Corynebacterium	nitrilophilus	21419				11594			
Corynebacterium	spec.		P4445						
Corynebacterium	spec.		P4446						
Corynebacterium	spec.	31088							
Corynebacterium	spec.	31089							
Corynebacterium	spec.	31090							
Corynebacterium	spec.	31090							
Corynebacterium	spec.	31090							
Corynebacterium	spec.	15954							20145
Corynebacterium	spec.	21857							
Corynebacterium	spec.	21862							
Corynebacterium	spec.	21863							

ATCC: American Type Culture Collection, Rockville, MD, USA

FERM: Fermentation Research Institute, Chiba, Japan

NRRL: ARS Culture Collection, Northern Regional Research Laboratory, Peoria, IL, USA

CECT: Coleccion Espanola de Cultivos Tipo, Valencia, Spain

NCIMB: National Collection of Industrial and Marine Bacteria Ltd., Aberdeen, UK

CBS: Centraalbureau voor Schimmelcultures, Baarn, NL

NCTC: National Collection of Type Cultures, London, UK

DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany

For reference see Sugawara, H. et al. (1993) World directory of collections of cultures of microorganisms: Bacteria, fungi and yeasts (4th edn), World federation for culture collections world data center on microorganisms, Saimata, Japen.

Table 4: Alignment Results

ID #	length (NT)	Genbank Hit	Length	Accession	Name of Genbank Hit	Source of Genbank Hit	% homology (GAP)	Date of Deposit
rx00023	3579	GB_EST33_A1776129	483	A177619	EST257217 tomato resistant; Cornell Lycopersicon esculentum cDNA clone cLER17D3, mRNA sequence.	Lycopersicon esculentum	40.956	29-Jun-99
		GB_EST33_A1776129	483	A177619	EST257217 tomato resistant; Cornell Lycopersicon esculentum cDNA clone cLER17D3, mRNA sequence.	Lycopersicon esculentum	40.956	29-Jun-99
rx00044	1059	EM_PATE11760	6911	E11760	Base sequence of sucrase gene.	Corynebacterium glutamicum	42.979	08-OCT-1997 (Rel 52, Created)
		GB_PAT126124	6911	I26124	Sequence 4 from patent US 5556776.	Unknown.	42.979	07-OCT-1996
rx00064	1401	GB_BA2_ECOUw89	176195	U00008	E. coli chromosomal region from 89.2 to 92.8 minutes.	Escherichia coli	39.097	17-DEC-1993
		GB_PATE16763	2517	E16763	gDNA encoding aspartate transferase (AAT).	Corynebacterium glutamicum	95.429	28-Jul-99
rx00072		GB_HTG2_AC007892	134257	AC007892	Drosophila melanogaster chromosome 3 clone BACR02003 (D797) RPCI-98 02 O 3 map 99B-99B strain y; cn bw sp, *** SEQUENCING IN PROGRESS *** , 113 unordered pieces.	Drosophila melanogaster	31.111	2-Aug-99
		GB_HTG2_AC007892	134257	AC007892	Drosophila melanogaster chromosome 3 clone BACR02003 (D797) RPCI-98 02 O 3 map 99B-99B strain y; cn bw sp, *** SEQUENCING IN PROGRESS *** , 113 unordered pieces.	Drosophila melanogaster	31.111	2-Aug-99
rx00105	798	GB_BA1_MTV002	56414	AL008957	Mycobacterium tuberculosis H37Rv complete genome, segment 122/162.	Mycobacterium tuberculosis	37.753	17-Jun-98
		GB_BA1_ECU29581	71128	U29581	Escherichia coli K-12 genome, approximately 63 to 64 minutes.	Escherichia coli	35.669	14-Jan-97
rx00106	579	GB_BA2_AE000366	10405	AE000366	Escherichia coli K-12 MG1655 section 256 of 400 of the complete genome.	Escherichia coli	35.669	12-Nov-98
		GB_EST15_AA494237	367	AA494237	ng83104 s1 NCI_CGAP_Pt6 Homo sapiens cDNA clone IMAGE:941407 similar to SW_DYR_LACCA P00381 DIHYDROFOLATE REDUCTASE ;, mRNA sequence.	Homo sapiens	42.896	20-Aug-97
		GB_BA2_AF161327	2021	AF161327	Corynebacterium diphtheriae histidine kinase ChrS (chrS) and response regulator ChrA (chrA) genes, complete cds	Corynebacterium diphtheriae	40.210	9-Sep-99
rx00115	1170	GB_PAT_AR041189	654	AR041189	Sequence 4 from patent US 5811286.	Unknown.	41.176	29-Sep-99
		GB_PR4_AC007110	148336	AC007110	Homo sapiens chromosome 17, clone hRPK_472_J_18, complete sequence.	Homo sapiens	36.783	30-MAR-1999
rx00116		GB_HTG3_AC008537	170030	AC008537	Homo sapiens chromosome 19 clone CLT-HSPC_490E21, *** SEQUENCING Homo sapiens IN PROGRESS *** , 93 unordered pieces.	Homo sapiens	40.296	2-Sep-99
		GB_HTG3_AC008537	170030	AC008537	Homo sapiens chromosome 19 clone CLT-HSPC_490E21, *** SEQUENCING Homo sapiens IN PROGRESS *** , 93 unordered pieces.	Homo sapiens	40.296	2-Sep-99

Table 4 (continued)

Accession	Strain	GenBank ID	Length	Description	Host	Collection Date	Source
rxa00116	1284	GB_BA2:AF062345	16458	AF062345 Caulobacter crescentus Sst1 (sst1), S-layer protein subunit (rsA), ABC transporter (rsD), membrane forming unit (rsE), putative GDP-mannose-4,6-dehydratase (ipsA), putative acetyltransferase (ipsB), putative perosamine synthetase (ipsC), putative mannosyltransferase (ipsD), putative mannosyltransferase (ipsE), outer membrane protein (rsAF), and putative perosamine transferase (ipsE) genes, complete cds.	Caulobacter crescentus	36,235	19-OCT-1999
		GB_PAT:118647	3300	118647 Sequence 6 from patent US 5500353.	Unknown.	36,821	07-OCT-1996
		GB_GSS13:QA446197	751	AQ446197 nbxb0062D16r: CUGI Rice BAC Library <i>Oryza sativa</i> genomic clone nbxb0062D16r, genomic survey sequence.	<i>Oryza sativa</i>	38,124	8-Apr-99
rxa00131	732	GB_BA1:MTY20B11	36330	Z95121 Mycobacterium tuberculosis H37Rv complete genome, segment 139/162.	Mycobacterium tuberculosis	43,571	17-Jun-98
		GB_BA1:SAR7932	15176	AJ007932 Streptomyces argillaceus mithramycin biosynthetic genes.	Streptomyces argillaceus	41,116	15-Jun-99
		GB_BA1:MTY20B11	36330	Z95121 Mycobacterium tuberculosis H37Rv complete genome, segment 139/162.	Mycobacterium tuberculosis	39,726	17-Jun-98
rxa00132	1557	GB_BA1:MTY20B11	36330	Z95121 Mycobacterium tuberculosis H37Rv complete genome, segment 139/162.	Mycobacterium tuberculosis	36,788	17-Jun-98
		GB_IN2:TVU40872	1882	U40872 Trichomonas vaginalis S-adenosyl-L-homocysteine hydrolase gene, complete cds.	Trichomonas vaginalis	61,914	31-OCT-1996
		GB_HTG6:AC010706	169265	AC010706 Drosophila melanogaster chromosome X clone BACR36D15 (D887) RPCI-98 36.D.15 map 13C-13E strain y; cn bw sp. *** SEQUENCING IN PROGRESS *** , 74 unordered pieces.	Drosophila melanogaster	51,325	22-Nov-99
rxa00145	1059	GB_BA1:MTCY2B12	20431	Z81011 Mycobacterium tuberculosis H37Rv complete genome, segment 61/162.	Mycobacterium tuberculosis	63,365	18-Jun-98
		GB_BA1:PSEPYRBX	2273	L19649 Pseudomonas aeruginosa aspartate transcarbamoylase (pyrB) and dihydroorotase-like (pyrX) genes, complete cds.	Pseudomonas aeruginosa	56,080	26-Jul-93
		GB_BA1:LLP:YRBDNA	1468	X84262 L.leichmannii pyrB gene.	Lactobacillus leichmannii	47,514	29-Apr-97
rxa00146	1464	GB_BA1:MTCY2B12	20431	Z81011 Mycobacterium tuberculosis H37Rv complete genome, segment 61/162.	Mycobacterium tuberculosis	60,714	18-Jun-98
		GB_BA1:MTCY154	13935	Z98209 Mycobacterium tuberculosis H37Rv complete genome, segment 121/162.	Mycobacterium tuberculosis	39,229	17-Jun-98
		GB_BA1:MSGY154	40221	AD000002 Mycobacterium tuberculosis sequence from clone y154.	Mycobacterium tuberculosis	36,618	03-DEC-1996
rxa00147	1302	GB_BA1:MTCY2B12	20431	Z81011 Mycobacterium leprae cosmid B937 DNA sequence.	Mycobacterium leprae	61,527	18-Jun-98
		GB_BA1:MSCB937C	38914	L78820 Pseudomonas aeruginosa dihydropicolinate reductase (dapB) gene, partial cds, carbamoylphosphate synthetase small subunit (carA) and carbamoylphosphate synthetase large subunit (carB) genes, complete cds.	Pseudomonas aeruginosa	59,538	15-Jun-96
		S_B_BA1:PAU81259	7295	U81259 Streptomyces coelicolor cosmid 9B10.	Streptomyces coelicolor	55,396	23-DEC-1996
rxa00156	1233	GB_BA1:SC9B10	33320	AL009204 Streptomyces coelicolor	Streptomyces coelicolor	52,666	10-Feb-99

Table 4 (continued)

GB_BA2_AF002133	15437	AF002	33	Mycobacterium avium strain G1R10 transcriptional regulator (mav81) gene, partial cds, aconitase (acn), invasin 1 (inv1), invasin 2 (inv2), transcriptional regulator (moxR), ketoacyl-reductase (fabG), enoyl-reductase (inhA) and ferrochelatase (mav272) genes, complete cds.	Mycobacterium avium	54,191	26-MAR-1998
GB_BA1:D85417	7984	D85417		Propionibacterium freudenreichii hemY, hemH, hemB, hemX, hemR and hemL genes, complete cds.	Propionibacterium freudenreichii	46,667	6-Feb-99
rx00166	783	GB-HTG3_AC008167	174223	AC008	67 Homo sapiens clone NH0172O13, ... SEQUENCING IN PROGRESS **, 7 Homo sapiens	67 Homo sapiens	21-Aug-99
		GB-HTG3_AC008167	174223	AC008	67 Homo sapiens clone NH0172O13, ... SEQUENCING IN PROGRESS **, 7 Homo sapiens	67 Homo sapiens	21-Aug-99
		GB-HTG4_AC010118	80605	AC010	18 Drosophila melanogaster chromosome 3L/62B1 clone RPC198-10D15, ... SEQUENCING IN PROGRESS **, 51 unordered pieces.	Drosophila melanogaster	37,451
rx00198	672	GB_BA1_AB024708	8734	AB024	08 Corynebacterium glutamicum gltB and gltD genes for glutamine 2-oxoglutarate aminotransferase large and small subunits, complete cds.	Corynebacterium glutamicum	38,627
		GB_BA1_AB024708	8734	AB024	08 Corynebacterium glutamicum gltB and gltD genes for glutamine 2-oxoglutarate aminotransferase large and small subunits, complete cds.	Corynebacterium glutamicum	92,113
		GB_ES124_AI232702	528	AI232702 EST229390 Normalized rat kidney, Benito Soares Rattus sp. cDNA clone RkICF35, 3' end, mRNA sequence.	Rattus sp	93,702	
rx00216	1113	GB-HTG2_HSDJ850E	117353	AL121738	9 Homo sapiens chromosome 20 clone RP5-850E9, ... SEQUENCING IN PROGRESS **, in unordered pieces.	Homo sapiens	31-Jan-99
		GB-HTG2_HSDJ850E	117353	AL121738	9 Homo sapiens chromosome 20 clone RP5-850E9, ... SEQUENCING IN PROGRESS **, in unordered pieces.	Homo sapiens	31-Jan-99
		GB_PR2_CNS01DSA	159400	AL121776	Human chromosome 14 DNA sequence *** IN PROGRESS *** BAC R-412H8 Homo sapiens of RPCI-11 library from chromosome 14 of Homo sapiens (Human), complete sequence.	Homo sapiens	34,221
rx00219	1065	GB-HTG2_AC005079	110000	AC005079	0 Homo sapiens clone RG252P22, ... SEQUENCING IN PROGRESS **, 3 Homo sapiens	Homo sapiens	37,965
		GB-HTG2_AC005079	110000	AC005079	1 Homo sapiens clone RG252P22, ... SEQUENCING IN PROGRESS **, 3 Homo sapiens	Homo sapiens	37,965
		GB-HTG2_AC005079	110000	AC005079	1 Homo sapiens clone RG252P22, ... SEQUENCING IN PROGRESS **, 3 Homo sapiens	Homo sapiens	37,965
rx00223	1212	GB_BA1:PPEA3NIF	19771	X99694	1 Homo sapiens clone AF128444 Plasmid pEA3 nitrogen fixation genes.	Rhodobacter capsulatus	38,796
		GB_BA2_AF128444	2477	AF1284	4 Rhodobacter capsulatus molybdenum cofactor biosynthetic gene cluster, partial sequence.	Enterobacter agglomerans	11-Nov-99
		GB-HTG4_AC010111	138938	AC0101	1 Drosophila melanogaster chromosome 3L/70C1 clone RPC198-9B18, ... SEQUENCING IN PROGRESS **, 64 unordered pieces.	Drosophila melanogaster	22-Nov-98
rx00229	803	GB_BA2_AF124518	1758	AF1245	8 Corynebacterium glutamicum 3-dehydroquinase (aroD) and shikimate dehydrogenase (aroE) genes, complete cds.	Corynebacterium glutamicum	38,227
		GB_PR3_AC004593	150221	AC0045	13 Homo sapiens PAC clone DJ0964C11 from 7p14-p15, complete sequence.	Homo sapiens	18-Apr-98
		GB-HTG2_AC006907	188972	AC0069	17 Caenorhabditis elegans clone Y76B12, ... SEQUENCING IN PROGRESS **, 25 unordered pieces.	Caenorhabditis elegans	26-Feb-99
rx00241	1626	GB_BA1:CGLYSI	4232	X60312 C(glutamicum) lys1 gene for L-lysine permease.	Corynebacterium glutamicum	39,527	
						100,000	30-Jan-92

Table 4 (continued)

GB-HTG1:PFMAL13P 192581 1	AL049180	Plasmodium falciparum chromosome 13 strain 3D7, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Plasmodium falciparum	34,947	11-Aug-99
GB-HTG1:PFMAL13P 192581 1	AL049180	Plasmodium falciparum chromosome 13 strain 3D7, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Plasmodium falciparum	34,947	11-Aug-99
GB_IN2:EHU89655 rx00262 1197	U89655 3219	Entamoeba histolytica unconventional myosin IB mRNA, complete cds.	Entamoeba histolytica	36,496	23-MAY-1997
GB_IN2:EHU89655 rx00266 531	U89655 2939	Entamoeba histolytica unconventional myosin IB mRNA, complete cds.	Entamoeba histolytica	37,544	23-MAY-1997
GB_RO_AF016190 EM_PAT:E09719	E09719 3505	Mus musculus connexin-36 (Cx36) gene, complete cds. DNA encoding precursor protein of alkaline cellulase.	Mus musculus Bacillus sp.	41,856 34,741	9-Feb-99 08-OCT-1997 (Rel. 52, Created)
GB_PAT:E02133 GB_IN1:CELK05F6 GB_BA1:CGU43535 rx00278 1155	3494 36912 U43535 2531	gDNA encoding alkaline cellulase. Caenorhabditis elegans cosmid K05F6 Corynebacterium glutamicum multidrug resistance protein (cmr) gene, complete cds.	Bacillus sp Caenorhabditis elegans Corynebacterium glutamicum	34,741 36,943 36,658	29-Sep-97 6-Jan-98 9-Apr-97
GB_RO_RNU30789 GB_BA2:CGU31281 rx00295 1125	3510 1614 U31281	U30789 Rattus norvegicus clone N27 mRNA. Corynebacterium glutamicum biotin synthase (bioB) gene, complete cds.	Rattus norvegicus Corynebacterium glutamicum	38,190 99,111	20-Aug-96 21-Nov-96
GB_BA1:BRLBIOBA GB_PAT:E03937 GB_BA1:MTCY427 GB_BA1:MSGB32CS rx00323 1461	1647 1005 E03937 38110 36404	D14084 Brevibacterium flavum gene for biotin synthetase, complete cds. DNA sequence encoding Brevibacterium flavum biotin synthase. Mycobacterium tuberculosis H37Rv complete genome; segment 99/162. Mycobacterium leprae cosmid B32 DNA sequence.	Corynebacterium glutamicum Mycobacterium tuberculosis Mycobacterium leprae	98,489 98,207 3-Feb-99 29-Sep-97	3-Feb-99 29-Sep-97
GB_BA1:MTCY427 GB_BA1:MSGB32CS rx00324 3258	38110 36404	Z70692 Mycobacterium tuberculosis H37Rv complete genome, segment 99/162. Mycobacterium leprae cosmid B32 DNA sequence.	Mycobacterium tuberculosis Mycobacterium leprae	35,615 60,917	24-Jun-99 15-Jun-96
GB_BA1:MTCY427 GB_BA1:MSGB32CS rx00330 1566	38110 36404	Z70692 Mycobacterium tuberculosis H37Rv complete genome, segment 99/162. Mycobacterium leprae cosmid B32 DNA sequence.	Mycobacterium tuberculosis Mycobacterium leprae	44,606 52,516	24-Jun-99 15-Jun-96
GB_BA1:MTCY427 GB_OM_BOVELA GB_BA1:CGTHRC rx00330 1566	38110 3242 3120	Z70692 J02717 X56037	Mycobacterium tuberculosis H37Rv complete genome, segment 99/162 Bovine elastin a mRNA, complete cds. Corynebacterium glutamicum thrC gene for threonine synthase (EC 4.2.99.2). Unknown.	38,079 39,351 99,808	24-Jun-99 27-Apr-93 17-Jun-97
GB_PAT:109078 GB_BA1:BLTHRESY N GB_BA1:CGGLNA rx00335 1554	3146 1892 3686	I09078 Sequence 4 from Patent WO 8809819. Brevibacterium lactofermentum; ATCC 13869;; DNA (genomic); Corynebacterium glutamicum glnA gene.	Corynebacterium glutamicum Corynebacterium glutamicum	99,617 99,170 100,000	02-DEC-1994 20-Sep-95 28-Aug-97

Table 4 (continued)

GB_BA2:AF005635	1690	AF005635	Corynebacterium glutamicum glutamine synthetase (glnA) gene, complete cds.	Corynebacterium glutamicum Mycobacterium leprae	98,906	14-Jun-99	
GB_BA1:MSGB27CS	38793	L78817	Mycobacterium leprae cosmid B27 DNA sequence.	Drosophila melanogaster	66,345	15-Jun-96	
rx00347	891	GB_EST27:AI455217	624	AI455217 LD21828 3prime LD Drosophila melanogaster embryo pOT2 Drosophila melanogaster cDNA clone LD21828 3prime, mRNA sequence.	Drosophila melanogaster	34,510	09-MAR-1999
		GB_BA2:SSU30252	2891	U30252 Synchococcus PCC7942 nucleoside diphosphate kinase and ORF2 protein genes, complete cds, ORF1 protein gene, partial cds, and neutral site I for vector use.	Synechococcus PCC7942	37,084	29-OCT-1999
GB_EST21:AA911262	581	AA911262	o75a02 s1 NCL CGAP_Lu5 Homo sapiens cDNA clone IMAGE:1417418 3' RECEPTOR, GPI-ANCHORED (HUMAN), mRNA sequence.	Homo sapiens	37,500	21-Apr-98	
rx00361	1578	GB_BA1:MLU15187	36138	U15187 Mycobacterium leprae cosmid L296.	Mycobacterium leprae	52,972	09-MAR-1995
		GB_IN2:AC004373	72722	AC004373 Drosophila melanogaster DNA sequence (P1 DS05273 (D80)), complete sequence.	Drosophila melanogaster	46,341	17-Jul-98
		GB_IN2:AF145653	3197	AF145653 Drosophila melanogaster clone GH08860 BcDNA, GH08860 (BcDNA, GH08860) mRNA, complete cds.	Drosophila melanogaster	49,471	14-Jun-99
rx00365	727	GB_BA1:AB024708	8734	AB024708 Corynebacterium glutamicum gltB and gltD genes for glutamine 2'-oxoglutarate aminotransferase large and small subunits, complete cds.	Corynebacterium glutamicum	96,556	13-MAR-1999
		GB_BA1:MTCY1A6	37751	Z83864 Mycobacterium tuberculosis H37Rv complete genome; segment 159/162.	Mycobacterium tuberculosis	39,496	17-Jun-98
		GB_BA1:SC3A3	15901	AL109819 Streptomyces coelicolor cosmid 3A3.	Streptomyces coelicolor A3(2)	37,946	16-Aug-99
rx00366	480	GB_BA1:AB024708	8734	AB024708 Corynebacterium glutamicum gltB and gltD genes for glutamine 2'-oxoglutarate aminotransferase large and small subunits, complete cds.	Corynebacterium glutamicum	99,374	13-MAR-1999
		GB_BA1:MTCY1A6	37751	Z83864 Mycobacterium tuberculosis H37Rv complete genome; segment 159/162.	Mycobacterium tuberculosis	41,333	17-Jun-98
		GB_BA1:SC3A3	15901	AL109819 Streptomyces coelicolor cosmid 3A3.	Streptomyces coelicolor A3(2)	37,554	16-Aug-99
rx00367	4653	GB_BA1:AB024708	8734	AB024708 Corynebacterium glutamicum gltB and gltD genes for glutamine 2'-oxoglutarate aminotransferase large and small subunits, complete cds.	Corynebacterium glutamicum	99,312	13-MAR-1999
		GB_BA1:MTCY1A6	37751	Z83864 Mycobacterium tuberculosis H37Rv complete genome; segment 159/162.	Mycobacterium tuberculosis	36,971	17-Jun-98
		GB_BA1:SC3A3	15901	AL109819 Streptomyces coelicolor cosmid 3A3.	Streptomyces coelicolor A3(2)	37,905	16-Aug-99
rx00371	1917	GB_VI:SBVORFS	7568	M89923 Sugarcane bacilliform virus ORF 1,2, and 3 DNA, complete cds.	Sugarcane bacilliform virus	35,843	12-Jun-93
		GB_EST37:AI967505	380	AI967505 Ljimppest03-2-5-c10 Ljimp Lambda Hybrid Zap Iwo-hybrid library Lotus japonicus cDNA clone LP215-03-c10 5' similar to 60S ribosomal protein L39, mRNA sequence.	Lotus japonicus	42,593	24-Aug-99
		GB_IN1:CELK09H9	37881	AF04370 Caenorhabditis elegans cosmid K09H9	Caenorhabditis elegans	34,295	22-Jan-98

Table 4 (continued)

rx00377	1245	GB_BA1:CCU13664	1678	U13664	Caulobacter crescentus uroporphyrinogen decarboxylase homolog (hemE) gene, partial cds, <i>A. nidulans</i> sD gene.	Caulobacter crescentus	36,832	24-MAR-1995
		GB_PL1:ANSDFGENE	1299	Y08866		<i>Emericella nidulans</i>	39,603	17-OCT-1996
		GB_GSS4:AG730303	483	AQ730303	HS_5605_B1_C04_T7A_RPC1-11 Human Male BAC Library Homo sapiens genomic clone Plate=1081 Col=7 Row=F, genomic survey sequence	<i>Homo sapiens</i>	36,728	15-Jul-99
rx00382	1425	GB_BA1:PAHEML	4444	X82072	P.aeruginosa hemL gene.	<i>Pseudomonas aeruginosa</i>	54,175	18-DEC-1995
		GB_BA1:MTY25D10	40838	Z95558	Mycobacterium tuberculosis H37Rv complete genome; segment 28/162.	<i>Mycobacterium tuberculosis</i>	61,143	17-Jun-98
		GB_BA1:MSGY224	40051	AD000004	Mycobacterium tuberculosis sequence from clone y224.	<i>Mycobacterium tuberculosis</i>	61,143	03-DEC-1996
rx00383	1467	GB_BA1:MLCB1222	34714	AL049491	Mycobacterium leprae cosmid B1222.	<i>Mycobacterium leprae</i>	43,981	27-Aug-99
		GB_HTG2:AC006269	167171	AC006269	Homo sapiens chromosome 17 clone hRPK_515_E_23 map 17, *** SEQUENCING IN PROGRESS **, 2 ordered pieces.	<i>Homo sapiens</i>	35,444	10-Jun-99
		GB_HTG2:AC007638	178053	AC007638	Homo sapiens chromosome 17 clone hRPK_515_O_17 map 17, *** SEQUENCING IN PROGRESS **, 8 unordered pieces.	<i>Homo sapiens</i>	34,821	22-MAY-1999
rx00391	843	GB_EST38:AW01705	613	AW017053	EST272398 Schistosoma mansoni male, Phil L'Overde/Joe Merrick 3	<i>Schistosoma mansoni</i>	40,472	10-Sep-99
		GB_PAT:AR065852	32207	AR065852	Schistosoma mansoni cDNA clone SMMAS14' end, mRNA sequence.	Unknown,	38,586	29-Sep-99
		GB_VI:AF143805	28559	AF143805	Sequence 20 from patient US 5849564.	Unknown,	38,509	2-Aug-99
					Kaposi's sarcoma-associated herpesvirus ORF 68 gene, partial cds, and ORF K14, v-GPCR, putative phosphoribosylformylglycinamide synthase, (LAMP) genes, complete cds.	<i>Kaposi's sarcoma-associated herpesvirus</i>		
rx00393	1017	GB_BA1:MTY25D10	40838	Z95558	Mycobacterium tuberculosis H37Rv complete genome; segment 28/162.	<i>Mycobacterium tuberculosis</i>	36,308	17-Jun-98
		GB_BA1:MSGY224	40051	AD000004	Mycobacterium tuberculosis sequence from clone y224.	<i>Mycobacterium tuberculosis</i>	39,282	03-DEC-1996
		GB_BA1:MLB1306	7762	Y13803	Mycobacterium leprae cosmid B1306 DNA.	<i>Mycobacterium leprae</i>	39,228	24-Jun-97
rx00402	623	GB_BA2:AF052652	2096	AF052652	Corynebacterium glutamicum homoserine O-acetyltransferase (metA) gene, complete cds.	<i>Corynebacterium glutamicum</i>	99,672	19-MAR-1998
		GB_BA2:AF109162	4514	AF109162	Corynebacterium diphtheriae hemE uptake locus, complete sequence.	<i>Corynebacterium diphtheriae</i>	40,830	8-Jun-99
		GB_BA2:AF092918	20758	AF092918	Pseudomonas alcaligenes outer membrane Xcp-secretion system gene cluster.	<i>Pseudomonas alcaligenes</i>	50,161	06-DEC-1998
		GB_BA2:AF052652	2096	AF052652	Corynebacterium glutamicum homoserine O-acetyltransferase (metA) gene, complete cds.	<i>Corynebacterium glutamicum</i>	99,920	19-MAR-1998
rx00403	1254	GB_BA1:MTV016	53662	AL021841	Mycobacterium tuberculosis H37Rv complete genome; segment 143/162.	<i>Mycobacterium tuberculosis</i>	52,898	23-Jun-99
		GB_EST23:AI111288	750	A111288	SWoVAMCAQ02A05SK Onchocerca volvulus adult male cDNA (SAW98MLW-Onchocerca volvulus OvAM) Onchocerca volvulus cdNA clone SWoVAMCAQ02A05' , mRNA sequence.		37,565	31-Aug-98

Table 4 (continued)

rx00405	613	GB_BA1:MTV016	53662	AL021841	Mycobacterium tuberculosis H37Rv complete genome; segment 143/162.	Mycobacterium tuberculosis	57,259	23-Jun-99
		GB_PR4.AC005145	143678	AC005145	Homo sapiens Xp22-166-169 GSHB-523A23 (Genome Systems Human BAC library) complete sequence.	Homo sapiens	34,179	08-DEC-1998
		GB_BA1:MTV016	53662	AL021841	Mycobacterium tuberculosis H37Rv complete genome; segment 143/162.	Mycobacterium tuberculosis	40,169	23-Jun-99
rx00420	1587	GB_BA1:MTY13D12	37085	Z80343	Mycobacterium tuberculosis H37Rv complete genome; segment 156/162.	Mycobacterium tuberculosis	62,031	17-Jun-98
		GB_BA1:MSGY126	37164	AD000012	Mycobacterium tuberculosis sequence from clone Y126.	Mycobacterium tuberculosis	61,902	10-DEC-1996
	S	GB_BA1:MSGB971C	37566	L78821	Mycobacterium leprae cosmid B971 DNA sequence.	Mycobacterium leprae	39,651	15-Jun-96
rx00435	1296	GB_BA1:AFACBBTZ	2760	M68904	Alcaligenes euprofus chromosomal transketolase (cbbTc) and phosphoglycolate phosphatase (cbbZc) genes, complete cds.	Ralstonia eutropha	38,677	27-Jul-94
		GB_HTG4.AC009541	169583	AC009541	Homo sapiens chromosome 7. *** SEQUENCING IN PROGRESS ***.	Homo sapiens	36,335	12-OCT-1999
		GB_HTG4.AC009541	169583	AC009541	Homo sapiens chromosome 7. *** SEQUENCING IN PROGRESS ***.	Homo sapiens	36,335	12-OCT-1999
rx00437	579	GB_PR4.AC005951	155450	AC005951	Homo sapiens chromosome 17, clone hRPK.372_K_20, complete sequence.	Homo sapiens	31,738	18-Nov-98
		GB_BA1:SC2A11	22789	AL031184	Streptomyces coelicolor cosmid 2A11.	Streptomyces coelicolor	43,262	5-Aug-98
		GB_PR4.AC005951	155450	AC005951	Homo sapiens chromosome 17, clone hRPK.372_K_20, complete sequence.	Homo sapiens	37,647	18-Nov-98
rx00439	591	GB_BA1:MTV016	53662	AL021841	Mycobacterium tuberculosis H37Rv complete genome; segment 143/162.	Mycobacterium tuberculosis	37,088	23-Jun-99
		GB_PL2:AF167358	1022	AF167358	Rumex acetosa expansin (EXP3) gene, partial cds.	Rumex acetosa	46,538	17-Aug-99
		GB_HTG3.AC009120	269445	AC009120	Homo sapiens chromosome 16 clone RPCI-11_484E3. *** SEQUENCING IN PROGRESS ***.	Homo sapiens	43,276	3 Aug-99
		GB_BA2:SKZ86111	7860	Z86111	Streptomyces lividans rpsP, tmD, rplS, sipW, sipX, sipY, sipZ, mutT genes and 4 open reading frames.	Streptomyces lividans	43,060	27-OCT-1999
		GB_BA1:SC2E1	38962	AL023797	Streptomyces coelicolor cosmid 2E1.	Streptomyces coelicolor	42,931	4-Jun-98
		GB_BA1:SC2E1	38962	AL023797	Human DNA sequence from clone 173D1 on chromosome 1p36.21-36.33. Contains ESTs, STSS and GSSs, complete sequence.	Streptomyces coelicolor	36,702	23-Nov-99
rx00441	1287	GB_PR2:HS173D1	117338	AL031984	Homo sapiens chromosome X clone RP4-7-19K3 map q21.1-21.31, *** SEQUENCING IN PROGRESS ***.	Homo sapiens	38,027	
		GB_HTG2:HSDJ719K	267114	AL109931	Homo sapiens chromosome X clone RP4-7-19K3 map q21.1-21.31, *** SEQUENCING IN PROGRESS ***.	Homo sapiens	34,521	03-DEC-1999
	3	GB_HTG2:HSDJ719K	267114	AL109931	Homo sapiens chromosome X clone RP4-7-19K3 map q21.1-21.31, *** SEQUENCING IN PROGRESS ***.	Drosophila melanogaster	34,521	03-DEC-1999
	3	GB_BA1:SCD78	36224	AL034355	Streptomyces coelicolor cosmid D78.	Streptomyces coelicolor	56,410	26-Nov-98
		GB_HTG4.AC009367	226055	AC009367	Drosophila melanogaster chromosome 3L/76A2 clone RPCI98-48B15, *** SEQUENCING IN PROGRESS ***.	Drosophila melanogaster	34,959	16-OCT-1999
		GB_HTG4.AC009367	226055	AC009367	Drosophila melanogaster chromosome 3L/76A2 clone RPCI98-48B15, *** SEQUENCING IN PROGRESS ***.	Drosophila melanogaster	34,959	16-OCT-1999

Table 4 (continued)

Table 4 (Continued)									
rx00448	1143	GB_PR3.AC003670	88945	AC003670	Homo sapiens 12q13.1 PAC RPCI-130F5 (Roswell Park Cancer Institute Human PAC library) complete sequence.		Homo sapiens	35,682	9-Jun-98
		GB-HTG2:AF029367	148676	AF029367	Human chromosome 12 clone RPCI-1 130F5 map 12q13.1, ***		Homo sapiens	31,373	18-OCT-1997
		GB-HTG2:AF029367	148676	AF029367	Human chromosome 12 clone RPCI-1 130F5 map 12q13.1, ***		Homo sapiens	31,373	18-OCT-1997
		GB-HTG2:AC007824	133361	AC007824	Drosophila melanogaster chromosome 3 clone BACR02L16 (D715) RPCI-98 02.L.16 map 89E-90A strain y; cn bw sp. *** SEQUENCING IN PROGRESS		Drosophila melanogaster	40,000	2-Aug-99
		GB-HTG2:AC007824	133361	AC007824	***, 91 unordered pieces.		Drosophila melanogaster chromosome 3 clone BACR02L16 (D715) RPCI-98 02.L.16 map 89E-90A strain y; cn bw sp. *** SEQUENCING IN PROGRESS	40,000	2-Aug-99
		GB_EST35.AIB18057	412	AIB18057	Drosophila melanogaster chromosome 3 clone IMAGE:2412278 Homo sapiens 02.L.16 map 89E-90A strain y; cn bw sp. *** SEQUENCING IN PROGRESS		Homo sapiens	35,714	24-Aug-99
		GB_BA1.MLCB1779	43254	Z98271	***, 91 unordered pieces.		Mycobacterium leprae	39,308	8-Aug-97
		GB_IN1.DMC96E4	29352	AL021086	3' similar to gb: Y00764 UBI(QUINOL)-CYTOCHROME C REDUCTASE 11 KD PROTEIN (HUMAN), mRNA sequence.		Drosophila melanogaster	37,487	27-Apr-99
		GB_GSS15.AQ64032	467	AQ640325	Mycobacterium leprae cosmid B1779.		Trypanosoma brucei	38,116	8-Jul-99
		5			Drosophila melanogaster cosmid clone 86E4.				
					927P1-2H3 genomic survey sequence.				
rx00465									
rx00487	1692	GB_BA1.BAGUAA	3866	Y10499	B.ammoniagenes guaA gene.		Corynebacterium ammoniagenes	74,259	8-Jan-98
		GB_BA2.U00015	42325	U00015	Mycobacterium leprae cosmid B1620		Mycobacterium leprae	37,248	01-MAR-1994
		GB_BA1:MTCY78	33818	Z77165	Mycobacterium tuberculosis H37Rv complete genome; segment 145/162.		Mycobacterium tuberculosis	39,725	17-Jun-98
		GB_BA1:MTCY78	33818	Z77165	Mycobacterium tuberculosis H37Rv complete genome; segment 145/162.		Mycobacterium tuberculosis	39,451	17-Jun-98
		GB_BA2.U00015	42325	U00015	Mycobacterium leprae cosmid B1620.		Mycobacterium leprae	39,178	01-MAR-1994
		GB_BA1:SCAJ10601	4692	AJ010601	Streptomyces coelicolor A3(2) DNA for whiD and whiK loci.		Streptomyces coelicolor	60,835	17-Sep-98
		GB_BA2.U00015	42325	U00015	Mycobacterium leprae cosmid B1620.		Mycobacterium leprae	38,041	01-MAR-1994
		GB-HTG2:HS225E12	126464	AL031772	Homo sapiens chromosome 6 clone RP1-225E12 map q24, ***		Homo sapiens	36,756	03-DEC-1999
		GB-HTG2:HS225E12	126464	AL031772	SEQUENCING IN PROGRESS, *** in unordered pieces.		Homo sapiens	36,756	03-DEC-1999
		GB_BA1:CGLYS	2803	X57226	Homo sapiens chromosome 6 clone RP1-225E12 map q24, ***		Corynebacterium glutamicum	99,913	17-Feb-97
					SEQUENCING IN PROGRESS, *** in unordered pieces.				
					C. glutamicum lycS-alpha, lycS-beta and asd genes for aspartokinase-alpha and -beta subunits, and aspartate beta semialdehyde dehydrogenase, respectively (EC 2.7.2.4, EC 1.2.1.11).				

Table 4 (continued)

	GB_BA1 CGCYSCAS D	1591	X82928	C glutamicum aspartate-semialdehyde dehydrogenase gene.	Corynebacterium glutamicum synthetic construct.	99,221	17-Feb-97
	GB_PAT: A07546	2112	A07546	Recombinant DNA fragment (PstI-XbaI).	Corynebacterium glutamicum	99,391	30-Jul-93
rx00534	1386	GB_BA1 CGLYS	2803	X57226 C glutamicum lysC-alpha, lysC-beta and asd genes for aspartokinase-alpha and -beta subunits, and aspartate beta semialdehyde dehydrogenase, respectively (EC 2.7.2.4; EC 1.2.1.11).	Corynebacterium glutamicum	99,856	17-Feb-97
	GB_BA1 CORASKD	2957	L16848	Corynebacterium fluvium aspartokinase (ask), and aspartate-semialdehyde dehydrogenase (asd) genes, complete cds.	Corynebacterium flavescentis	98,701	11-Jun-93
	GB_PAT: E14514	1643	E14514	DNA encoding Brevibacterium aspartokinase.	Corynebacterium glutamicum	98,773	28-Jul-99
rx00536	1494	GB_BA1.CGLEUA	3492	X70959 C glutamicum gene leuA for isopropylmalate synthase.	Corynebacterium glutamicum	100,000	10-Feb-99
	GB_BA1:MTV/025	121125	AL022121	Mycobacterium tuberculosis H37Rv complete genome; segment 1 55/162.	Mycobacterium tuberculosis	68,003	24-Jun-99
	GB_BA1.MTU88526	2412	U88526	Mycobacterium tuberculosis putative alpha-isopropyl malate synthase (leuA) gene, complete cds.	Mycobacterium tuberculosis	68,185	26-Feb-97
rx00537	2409	GB_BA2:SCD25	41622	AL118514 Streptomyces coelicolor cosmid D25.	Streptomyces coelicolor A3(2)	63,187	21-Sep-99
	GB_BA1:MTCY7H7A	10451	Z95618	Mycobacterium tuberculosis H37Rv complete genome; segment 39/162.	Mycobacterium tuberculosis	62,401	17-Jun-98
	GB_BA1.MTU34956	2462	U34956	Mycobacterium tuberculosis phosphoribosylformylglycinamide synthase (url) gene, complete cds.	Mycobacterium tuberculosis	62,205	28-Jan-97
rx00541	792	GB_PAT:192052	2115	Sequence 19 from patient US 5726299.	Mycobacterium tuberculosis Unknown.	98,359	01-DEC-1998
	GB_BA1.MLCB5	38109	Z95151	Mycobacterium leprae phosphoribosylformylglycinamide synthase (url) gene, complete cds.	Mycobacterium leprae	62,468	24-Jun-97
	GB_BA1.MTCY369	36850	Z80226	Mycobacterium tuberculosis H37Rv complete genome; segment 36/162.	Mycobacterium tuberculosis	60,814	17-Jun-98
rx00558	1470	GB_BA1.BAPURF	1885	X91252	Mycobacterium leprae purF gene.	66,095	5-Jun-97
	GB_BA1.MLU15182	40123	U15182	Mycobacterium leprae cosmid B2266.	Mycobacterium ammoniagenes	64,315	09-MAR-1995
	GB_BA1:MTCY7H7A	10451	Z95618	Mycobacterium tuberculosis H37Rv complete genome; segment 39/162.	Mycobacterium leprae	64,863	17-Jun-98
rx00579	1983	GB_PAT: AR016483	2104	AR016483 Sequence 1 from patent US 5776740.	Mycobacterium tuberculosis Unknown.	98,810	05-DEC-1998
	EM_PAT: E11273	2104	E11273	DNA encoding serine hydroxymethyl transferase.	Corynebacterium glutamicum	98,810	08-OCT-1997 (Rel 52, Created)
	GB_PAT: E12594	2104	E12594	DNA encoding serine hydroxymethyltransferase from Brevibacterium fluvium.	Corynebacterium glutamicum	98,810	24-Jun-98
rx00580	1425	GB_PAT: E12594	2104	DNA encoding serine hydroxymethyltransferase from Brevibacterium fluvium.	Corynebacterium glutamicum	99,368	24-Jun-98

Table 4 (continued)

GB_PAT:AR016483	2104	AR016483	Sequence 1 from patent US 5775740.	Unknown.	99,368	05-DEC-1998		
EM_PAT:E11273	2104	E11273	DNA encoding serine hydroxymethyl transferase.	Corynebacterium glutamicum	99,368	08-OCT-1997 (Rel 52, Created)		
rxa00581	1092	GB_PAT:E12594	2104	E12594	DNA encoding serine hydroxymethyltransferase from <i>Brevibacterium flavum</i> .	Corynebacterium glutamicum	37,071	24-Jun-98
		EM_PAT:E11273	2104	E11273	DNA encoding serine hydroxymethyl transferase.	Corynebacterium glutamicum	37,071	08-OCT-1997 (Rel 52, Created)
rxa00584	1248	GB_BA1:CORAHP5	2104	AR016483	Sequence 1 from patent US 5776740.	Unknown.	37,071	05-DEC-1998
		GB_BA1:AOPCZA361	2370	L07603	Corynebacterium glutamicum 3-deoxy-D-arabinohexulosonate-7-phosphate synthase gene, complete cds.	Corynebacterium glutamicum	98,236	26-Apr-93
rxa00618	1230	GB_BA1:D90714	14358	D90714	Escherichia coli genomic DNA. (16.8 - 17.1 min).	Escherichia coli	53,312	7-Feb-99
		GB_EST19:AA802737	280	AA802737	GM06236 5prime GM Drosophila melanogaster ovary BlueScript Drosophila melanogaster cDNA clone GM06236 5prime, mRNA sequence.	Drosophila melanogaster	39,928	25-Nov-98
		GB_EST28:AI534381	581	AI534381	SD07186 5prime SD Drosophila melanogaster Schneider L2 cell culture pOT2 Drosophila melanogaster Drosophila melanogaster cDNA clone SD07186 5prime similar to X98958; Ani FBgn0011558 PID:9227407 SPTREMBL:Q24240, mRNA sequence.	41,136	104	
rxa00619	1551	GB_IN1:DMANILLIN	4029	X89858	D melanogaster mRNA for anillin protein.	Drosophila melanogaster	34,398	8-Nov-95
		GB_BA1:MTCY369	36850	Z80226	Mycobacterium tuberculosis H37Rv complete genome, segment 36/162.	Mycobacterium tuberculosis	62,776	17-Jun-98
		GB_BA1:MLCB5	38109	Z95151	Mycobacterium leprae cosmid B5.	Mycobacterium leprae	61,831	24-Jun-97
		GB_PAT:AA60305	1845	A60305	Sequence 5 from Patent WO9708323.	unidentified	61,785	06-MAR-1998
rxa00620	1014	GB_PL2:AF063247	1450	AF063247	Pneumocystis carinii f. sp. ratti endonuclease mRNA, complete cds.	Pneumocystis carinii f. sp. ratti	41,060	5-Jan-99
		GB_BA1:STMAPP	2069	M91546	Streptomyces lividans aminopeptidase P (PepP) gene, complete cds.	Streptomyces lividans	37,126	12-Jun-93
		GB_HTG3:AC008763	214575	AC008763	Homo sapiens chromosome 19 clone C1TB-E1_3214H19, *** SEQUENCING IN PROGRESS *** 21 unordered pieces.	Homo sapiens	40,020	3-Aug-99
rxa00624	810	GB_IN1:CEY41E3	150641	Z95559	Caenorhabditis elegans cosmid Y41E3, complete sequence.	Caenorhabditis elegans	36,986	2-Sep-99
		GB_BA1:HTG3:AA362167	372	AA362167	EST71561 Macrophage I Homo sapiens cDNA 5' end, mRNA sequence.	Homo sapiens	38,378	21-Apr-97
		GB_IN1:CEY41E3	150641	Z95559	Caenorhabditis elegans cosmid Y41E3, complete sequence.	Caenorhabditis elegans	37,694	2-Sep-99
		GB_BA1:MTCY369	36850	Z80226	Mycobacterium tuberculosis H37Rv complete genome; segment 36/162.	Mycobacterium tuberculosis	57,971	17-Jun-98
rxa00626	1386	GB_BA1:MLCB5	38109	Z95151	Mycobacterium leprae cosmid B5.	Mycobacterium leprae	58,806	24-Jun-97
		GB_BA1:MLU15187	36138	U15187	Mycobacterium leprae cosmid L296.	Mycobacterium leprae	38,007	09-MAR-1995

Table 4 (continued)

rx00632	795	GB_BA1.BRLBIOAD	2272	D14083	Brevibacterium flavum genes for 7,8-diaminopelargonic acid aminotransferase Corynebacterium glutamicum and dethiobiotin synthetase, complete cds.	97.358	3-Feb-99
		GB_PAT.E04041	675	E04041	DNA sequence coding for dethiobiotinsynthetase.	98.074	29-Sep-97
		GB_PAT.E04040	1272	E04040	DNA sequence coding for diamino pelargonic acid aminotransferase.	93.814	29-Sep-97
		GB_BA1.BRLBIOAD	2272	D14083	Brevibacterium flavum genes for 7,8-diaminopelargonic acid aminotransferase Corynebacterium glutamicum and dethiobiotin synthetase, complete cds.	95.690	3-Feb-99
		GB_PAT.E04040	1272	E04040	DNA sequence coding for diamino pelargonic acid aminotransferase.	95.755	29-Sep-97
rx00633	1392	GB_BA2.EHU38519	1290	U38519	Eniwia herbicola adenosylmethionine-8-amino-7-oxononanoate transaminase Ewinia herbicola (bioA) gene, complete cds.	55.564	4-Nov-96
		GB_BA2.EHU38519	1290	U38519	Mycobacterium tuberculosis H37Rv complete genome; segment 35/162.	60.030	17-Jun-98
rx00688	666	GB_BA1:MTV041	28826	AL021958	Brevibacterium flavum gene for SecY protein (complete cds) and gene or adenylate kinase (partial cds).	39.563	3-Feb-99
		GB_BA1:BRLSECY	1516	D14162	Mycobacterium bovis MBE50a gene, partial cds; and MBE50b, MBE50c, preprotein translocase SecY subunit (secY), adenylate kinase (adk), methionine aminopeptidase (map), RNA polymerase ECF sigma factor (sigE50), MBE50d, and MBE50e genes, complete cds.	60.030	27-Jan-99
rx00708	930	GB_BA2.AF157493	25454	AF157493	Zymomonas mobilis ZM4 fosmid clone 42D7, complete sequence.	39.116	5-Jul-99
		GB_PAT.100836	1853	I00836	Sequence 1 from Patent US 4758514.	47.419	21-MAY-1993
		GB_PAT.E00311	1853	E00311	DNA coding of 2,5-diketogluconic acid reductase.	47.419	29-Sep-97
		GB_PAT.178753	1187	I178753	Sequence 9 from patent US 5693781.	37.814	3-Apr-98
		GB_PAT.192042	1187	I92042	Sequence 9 from patent US 5726299.	37.814	01-DEC-1998
		GB_BA1:MTC1125	37432	Z98268	Mycobacterium tuberculosis H37Rv complete genome, segment 76/162.	50.647	17-Jun-98
		GB_BA1:MTC1125	37432	Z98268	Mycobacterium tuberculosis H37Rv complete genome, segment 76/162.	55.228	17-Jun-98
		GB_GSS12:AO42075	671	AQ420755	Mycobacterium tuberculosis H37Rv complete genome, segment 76/162.	40.300	17-Jun-98
		5			RPCI-11-168G18.TJ RPCI-11 Homo sapiens genomic clone RPCI-11-168G18, genomic survey sequence.	35.750	23-MAR-1999
rx00718	831	GB_HTG3.AC008332	118545	AC008332	Dirosophila melanogaster chromosome 2 clone BACR48D10 (D867) RPCI-98 Dirosophila melanogaster *** , 78 unordered pieces.	40,634	6-Aug-99
		GB_HTG3.AC008332	118545	AC008332	Dirosophila melanogaster strain Y, cn bw sp, *** SEQUENCING IN PROGRESS	48.D.10 map 34A-34A strain Y, cn bw sp, *** SEQUENCING IN PROGRESS	48.D.10 map 34A-34A strain Y, cn bw sp, *** SEQUENCING IN PROGRESS

PROGRESS***, 78 unordered pieces.

Table 4 (continued)

GB_HTG3:AC008332	118545	AC008332	Drosophila melanogaster chromosome 2 clone BACR48D10 (D867) RPCI-98	Drosophila melanogaster	33,888
48.D.10 map 34A-34A strain Y, cn bw sp.	***	SEQUENCING IN PROGRESS ***	Caenorhabditis elegans	36,737	25-Feb-99
PROGRESS *** , 78 unordered pieces.			Caenorhabditis elegans clone Y49F6, *** SEQUENCING IN PROGRESS ***	Caenorhabditis elegans	36,737
Caenorhabditis elegans clone Y49F6, *** SEQUENCING IN PROGRESS ***			Escherichia coli	36,526	25-Feb-99
2 unordered pieces.			Mycobacterium tuberculosis	66,193	29-MAY-1997
Caenorhabditis elegans clone Y49F6, *** SEQUENCING IN PROGRESS ***			Mycobacterium leprae	61,443	24-Jun-99
2 unordered pieces.			Streptomyces coelicolor	59,938	09-MAR-1995
E. coli genomic DNA, Kohara clone #319(37 4-37 8 min.).			A3(2)		21-Sep-99
GB_BA1:MTV043	68848	AL022004	Mycobacterium tuberculosis H37Rv complete genome; segment 40/162.		
GB_BA1:MLU15182	40123	U15182	Mycobacterium leprae cosmid B2266.		
GB_BA2:SCD25	41622	AL118514	Streptomyces coelicolor cosmid D25.		
GB_HTG1:CER08A5	51920	Z82281	Caenorhabditis elegans chromosome V clone R08A5, *** SEQUENCING IN PROGRESS *** , in unordered pieces.	Caenorhabditis elegans	64,896
GB_HTG1:CER08A5	51920	Z82281	Caenorhabditis elegans chromosome V clone R08A5, *** SEQUENCING IN PROGRESS *** , in unordered pieces.	Caenorhabditis elegans	64,896
GB_PL2:AF078693	1492	AF078693	Chlamydomonas reinhardtii precursor O-acetylserine(thiol)lyase precursor (Cryc1A) mRNA, nuclear gene encoding organellar protein, complete cds.	Chlamydomonas reinhardtii	57,970
GB_BA1:MTCY98	31225	Z83860	Mycobacterium tuberculosis H37Rv complete genome; segment 103/162.	Mycobacterium tuberculosis	54,410
GB_BA1:AVINIFREG	7099	M60090	Azotobacter chroococcum nifU, nifV, nifW, nifZ and nifM genes, complete cds.	Azotobacter chroococcum	51,729
GB_BA2:AF001780	6701	AF001780	Cyanothecae PCC 8801 NifP (nifP), nitrogenase (nifB), FdxN (fdxN), NifS (nifS) Cyanothecae PCC8801 and NifU (nifU) genes, complete cds, and NifH (nifH) gene, partial cds.	Cyanothecae PCC 8801	36,309
GB_EST1:Z30506	329	Z30506	ATT S24:30 AC16H Arabidopsis thaliana cDNA clone TA1306 3', mRNA sequence.	Arabidopsis thaliana	44,308
GB_PL2:AC006258	110469	AC006258	Arabidopsis thaliana BAC F18G18 from chromosome V near 60.5 cM, complete sequence.	Arabidopsis thaliana	35,571
GB_EST37:AI998439	455	AI998439	101545695 A. thaliana, Columbia Col-0, rosette-2 Arabidopsis thaliana cDNA clone 701545695, mRNA sequence.	Arabidopsis thaliana	36,044
GB_BA1:BLDAPAB	3572	Z21502	B lactofermentum dapA and dapB genes for dihydridopicolinate synthase and dihydridopicolinate reductase.	Corynebacterium glutamicum	99,539
GB_PAT:E16749	2001	E16749	gDNA encoding dihydridopicolinate synthase (DDPS).	Corynebacterium glutamicum	99,539
GB_PAT:E14520	2001	E14520	DNA encoding Brevibacterium dihydridopicolinic acid synthase.	Corynebacterium glutamicum	99,539
GB_BA1:BLDAPAB	3572	Z21502	B lactofermentum dapA and dapB genes for dihydridopicolinate synthase and dihydridopicolinate reductase.	Corynebacterium glutamicum	99,885
GB_BA1:CGDAPB	1902	X67737	C glutamicum dapB gene for dihydridopicolinate reductase.	Corynebacterium glutamicum	100,000
			1-Apr-93		

Table 4 (continued)

				DNA encoding <i>Brevibacterium</i> dihydrodipicolinic acid synthase.	Corynebacterium glutamicum	100,000	28-Jul-99	
				B lactofermentum dapA and dapB genes for dihydridopicolinate synthase and dihydridopicolinate reductase.	Corynebacterium glutamicum	100,000	16-Aug-93	
				gDNA encoding dihydridopicolinate reductase (DDPR)	Corynebacterium glutamicum	99,805	28-Jul-99	
				Sequence 18 from patent US 5804414.	Unknown.	99,805	29-Sep-99	
				Mycobacterium tuberculosis H37Rv complete genome; segment 122/162.	Mycobacterium tuberculosis	39,179	17-Jun-98	
				Mycobacterium leprae cosmid B22.	Mycobacterium leprae	39,482	22-Aug-97	
				Streptomyces antibioticus guanosine pentaphosphate synthetase (gpsl) gene.	Streptomyces antibioticus	69,706	25-OCT-1996	
				Streptomyces coelicolor A3(2) glycogen metabolism cluster II.	Streptomyces coelicolor	63,415	29-MAR-1999	
				Streptomyces coelicolor A3(2) glycogen metabolism cluster I.	Streptomyces coelicolor	61,617	29-MAR-1999	
				Pimelobacter sp. DNA for trehalose synthase, complete cds.	Pimelobacter sp.	60,594	5-Feb-99	
				Mycobacterium tuberculosis H37Rv complete genome; segment 106/162.	Mycobacterium tuberculosis	37,785	17-Jun-98	
				Mycobacterium tuberculosis sequence from clone y222.	Mycobacterium tuberculosis	38,006	03-DEC-1996	
				Sheared DNA-1O14. TF Sheared DNA <i>Typhlosoma brucei</i> genomic clone	<i>Typhlosoma brucei</i>	33,974	22-Jun-99	
				Sheared DNA-1O14, genomic survey sequence				
				Mycobacterium tuberculosis H37Rv complete genome; segment 7/162.	Mycobacterium tuberculosis	63,297	18-Jun-98	
				Streptomyces coelicolor A3(2) glycogen metabolism cluster II.	Streptomyces coelicolor	61,965	29-MAR-1999	
				Streptomyces coelicolor A3(2) glycogen metabolism cluster I.	Streptomyces coelicolor	61,727	29-MAR-1999	
				gDNA encoding tryptophan synthase.	Corynebacterium glutamicum	99,688	08-OCT-1997 (Rel 52, Created)	
				Brevibacterium lactofermentum tryptophan operon.	Corynebacterium glutamicum	98,847	10-Feb-99	
				Genomic DNA of lrp operon of <i>preribacterium latophelmentam</i> .	unidentified	98,428	29-Sep-97	
				DNA sequence of tryptophan operon.	Corynebacterium glutamicum	98,758	29-Sep-97	
				Genomic DNA of lrp operon of <i>preribacterium latophelmentam</i> .	unidentified	98,758	10-Feb-99	
				Brevibacterium lactofermentum tryptophan operon.	Corynebacterium glutamicum	98,372	29-Sep-97	
				DNA sequence of tryptophan operon.				
rx00865	1026	GB_BA1_BLDAPAB	2001	E14520	DNA encoding <i>Brevibacterium</i> dihydrodipicolinic acid synthase.	Corynebacterium glutamicum	100,000	28-Jul-99
GB_PAT:E16752		Z21502	1411	E16752	B lactofermentum dapA and dapB genes for dihydridopicolinate synthase and dihydridopicolinate reductase.	Corynebacterium glutamicum	100,000	16-Aug-93
rx00867	650	GB_PAT:AR038113	1411	AR038113	Sequence 18 from patent US 5804414.	Corynebacterium glutamicum	99,805	28-Jul-99
GB_BA1_MTV002		56414		AL008967	Mycobacterium tuberculosis H37Rv complete genome; segment 122/162.	Unknown.	99,805	29-Sep-99
GB_BA1_MLCB22		40281		Z98741	Mycobacterium leprae cosmid B22.	Mycobacterium tuberculosis	39,179	17-Jun-98
GB_BA1_SAU19858		2838		U19858	Streptomyces antibioticus guanosine pentaphosphate synthetase (gpsl) gene.	Streptomyces antibioticus	69,706	22-Aug-97
GB_BA1_SCC0001206		9184		AJ001206	Streptomyces coelicolor A3(2) glycogen metabolism cluster II.	Streptomyces coelicolor	63,415	29-MAR-1999
GB_BA1_SCC0001205		9589		AJ001205	Streptomyces coelicolor A3(2) glycogen metabolism cluster I.	Streptomyces coelicolor	61,617	29-MAR-1999
GB_BA1_D78198		2304		D78198	Pimelobacter sp. DNA for trehalose synthase, complete cds.	Pimelobacter sp.	60,594	5-Feb-99
GB_BA1_MTCY253		41230		281368	Mycobacterium tuberculosis H37Rv complete genome; segment 106/162.	Mycobacterium tuberculosis	37,785	17-Jun-98
GB_BA1_MSGY222		41156		AD000010	Mycobacterium tuberculosis sequence from clone y222.	Mycobacterium tuberculosis	38,006	03-DEC-1996
GB_GSS15_AQ65460		468		AQ654600	Sheared DNA-1O14. TF Sheared DNA <i>Typhlosoma brucei</i> genomic clone	<i>Typhlosoma brucei</i>	33,974	22-Jun-99
GB_BA1_MTCl418B		11700		Z986071	Sheared DNA-1O14, genomic survey sequence			
GB_BA1_SCC0001206		9184		AJ001206	Mycobacterium tuberculosis H37Rv complete genome; segment 7/162.	Mycobacterium tuberculosis	63,297	18-Jun-98
GB_BA1_SCC0001205		9589		AJ001205	Streptomyces coelicolor A3(2) glycogen metabolism cluster II.	Streptomyces coelicolor	61,965	29-MAR-1999
EM_PAT:E10963		3118		E10963	Streptomyces coelicolor A3(2) glycogen metabolism cluster I.	Streptomyces coelicolor	61,727	29-MAR-1999
					gDNA encoding tryptophan synthase.	Corynebacterium glutamicum	99,688	08-OCT-1997 (Rel 52, Created)
GB_BA1_BLTRP		7725		X04960	Brevibacterium lactofermentum tryptophan operon.	Corynebacterium glutamicum	98,847	10-Feb-99
GB_PAT:E01688		7725		E01688	Genomic DNA of lrp operon of <i>preribacterium latophelmentam</i> .	unidentified	98,428	29-Sep-97
GB_PAT:E01375		7726		E01375	DNA sequence of tryptophan operon.	Corynebacterium glutamicum	98,758	29-Sep-97
GB_PAT:E01688		7725		E01688	Genomic DNA of lrp operon of <i>preribacterium latophelmentam</i> .	unidentified	98,758	29-Sep-97
GB_BA1_BLTRP		7725		X04960	Brevibacterium lactofermentum tryptophan operon.	Corynebacterium glutamicum	98,758	10-Feb-99
					DNA sequence of tryptophan operon.			
rx00954	644							
rx00952	963							
rx00955	1545	GB_PAT:E01375		7726	E01375			

Table 4 (continued)

rx00956	1237	GB_BA1:BLTRP	7725	X04960	Brevibacterium lactofermentum tryptophan operon.	Corynebacterium glutamicum	98,372	10-Feb-99
		GB_PAT_E01688 EM_PAT:E10963	7725 3118	E01688 E10963	Genomic DNA of trp operon of prepibacterium latophelmentamn. gDNA encoding tryptophan synthase.	unidentified	98,242	29-Sep-97
		GB_BA1:BLTRP	7725	X04960	Brevibacterium lactofermentum tryptophan operon.	Corynebacterium glutamicum	98,949	08-OCT-1997 (Rel. 52, Created)
		GB_PAT:E01375	7726	E01375	DNA sequence of tryptophan operon	Corynebacterium glutamicum	98,945	29-Sep-97
		GB_BA1:BLTRP	7725	X04960	Brevibacterium lactofermentum tryptophan operon.	Corynebacterium glutamicum	99,165	10-Feb-99
		GB_PAT:E01375	7726	E01375	DNA sequence of tryptophan operon	Corynebacterium glutamicum	98,927	29-Sep-97
		GB_PAT:E01688 GB_BA1:BLTRP	7725 7725	E01688 X04960	Genomic DNA of trp operon of prepibacterium latophelmentamn. Brevibacterium lactofermentum tryptophan operon.	unidentified	98,867	29-Sep-97
		GB_PAT:E01375	7726	E01375	DNA sequence of tryptophan operon.	Corynebacterium glutamicum	98,792	10-Feb-99
		GB_PAT:E01688 GB_BA1:CGHOMTHR	7725 3685	E01688 Y00546	Genomic DNA of trp operon of prepibacterium latophelmentamn. Corynebacterium glutamicum hom-thrB genes for homoserine dehydrogenase and homoserine kinase.	Corynebacterium glutamicum	98,792	29-Sep-97
		GB_PAT:109077	3685	I09077	Sequence 1 from Patent WO 8809819.	unidentified	98,658	29-Sep-97
		GB_PAT:E01358	2615	E01358	DNA encoding for homoserine dehydrogenase(HDH)and homoserine kinase(HK).	Corynebacterium glutamicum	99,905	12-Sep-93
		GB_PATE16755	3579	E16755	9DNA encoding diaminopimelate decarboxylase (DDC) and arginyl-tRNA synthase.	Corynebacterium glutamicum	99,810	02-DEC-1994
		GB_PAT:AR038110 GB_PATE14508	3579 3579	AR038110 E14508	Sequence 15 from patent US 5804414.	Unknown.	97,524	29-Sep-97
		GB_OV:GGA245664 GB_PL2:AC007887	512 159434	AJ245664 AC007887	DNA encoding Brevibacterium diaminopimelic acid decarboxylase and arginyl-tRNA synthase.	Corynebacterium glutamicum	99,931	28-Jul-99
		GB_GSS1:CNS00RN	542	AL087338	Gallus gallus partial mRNA for ATP-citrate lyase (ACL gene).	Gallus gallus	37,538	28-Sep-99
		W			Genomic sequence for Arabidopsis thaliana BAC F1504 from chromosome I. complete sequence.	Arabidopsis thaliana	37,600	04-OCT-1999
					Arabidopsis thaliana genome survey sequence T7 end of BAC F14D7 of IGF library from strain Columbia of Arabidopsis thaliana, genomic survey sequence.	Arabidopsis thaliana	41,264	28-Jun-99
		GB_BA1:MTV008			Mycobacterium tuberculosis H37Rv complete genome; segment 108/162.	Mycobacterium tuberculosis	40,773	17-Jun-98
		GB_BA1:SCVALSFP	3619	Y13070	S coelicolor valS, fpgs, ndk genes.	Streptomyces coelicolor	58,119	03-MAR-1998
		GB_BA1:MTV008	63033	AL021246	Mycobacterium tuberculosis H37Rv complete genome; segment 108/162	Mycobacterium tuberculosis	38,167	17-Jun-98

Table 4 (continued)

rx00997	705	GB_BA2:CGU31225	1817	U31225	Corynebacterium glutamicum L-proline NADP+ 5-oxidoreductase (proC) gene, Corynebacterium glutamicum complete cds.	40,841	2-Aug-96
		GB_HTG1:CEY39C12 282838		AL009026	Caenorhabditis elegans chromosome IV clone Y39C12, *** SEQUENCING IN Caenorhabditis elegans PROGRESS ***, in unordered pieces.	36,416	26-OCT-1999
rx01019	1110	GB_IN1:CEB0001	39416	Z69634	Caenorhabditis elegans cosmid B0001, complete sequence.	36,416	2-Sep-99
		GB_HTG2:AC005052	144734	AC005052	Homo sapiens clone RG038K21, *** SEQUENCING IN PROGRESS ***, 3 unordered pieces.	39,172	12-Jun-98
		GB_HTG2:AC005052	144734	AC005052	Homo sapiens clone RG038K21, *** SEQUENCING IN PROGRESS ***, 3 unordered pieces.	39,172	12-Jun-98
		GB_GSS9:QA171808	512	AQ171808	HS_3179_A1_G03_T7 CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=3179 Col=5 Row=M, genomic survey sequence.	34,661	17-OCT-1998
rx01026	1782	GB_BA1:SC1C2	42210	AL031124	Streptomyces coelicolor cosmid 1C2.	68,275	15-Jan-99
		GB_BA1:ATLEUCD	2982	X84647	A leichomycteticus leuC and leuD genes.	65,935	04-OCT-1995
rx01027	1131	GB_BA1:MLCB637	70287	AL021287	Mycobacterium tuberculosis H37Rv complete genome; segment 132/162.	40,454	23-Jun-99
		GB_BA1:MTCY349	43523	Z83018	Mycobacterium leprae cosmid B637.	38,636	17-Sep-97
		GB_BA1:SPUNGIMUT	1172	Z21702	S pneumoniae ung gene and mutX genes encoding uracil-DNA glycosylase and 8-oxodGTP nucleoside triphosphatase.	51,989	17-Jun-98
rx01073	954	GB_BA1:BACOUTB	1004	M15811	Bacillus subtilis outB gene encoding a sporulation protein, complete cds.	53,723	26-Apr-93
		GB_PR4:AC007938	167237	AC007938	Homo sapiens clone UWGC:ds201 from 7q31, complete sequence.	34,322	1-Jul-99
		GB_PL2:ATAC0062282	92577	AC0062282	Arabidopsis thaliana chromosome II BAC F13k3 genomic sequence, complete sequence.	36,181	13-MAR-1999
rx01079	2226	GB_BA2:AF112535	4363	AF112535	Corynebacterium glutamicum putative glutaredoxin NrdH (nrdH), NrdI (nrdI), and ribonucleotide reductase alpha-chain (nrdE) genes, complete cds.	99,820	5-Aug-99
		GB_BA1:CANRDFGE	6054	Y09572	Corynebacterium ammoniagenes nrdH, nrdI, nrdE, nrdF genes.	75,966	18-Apr-98
N		GB_BA1:MTV012	70287	AL021287	Mycobacterium tuberculosis H37Rv complete genome; segment 132/162.	38,296	23-Jun-99
rx01080	567	GB_BA2:AF112535	4363	AF112535	Corynebacterium glutamicum putative glutaredoxin NrdH (nrdH), NrdI (nrdI), and ribonucleotide reductase alpha-chain (nrdE) genes, complete cds.	100,000	5-Aug-99
		GB_BA1:CANRDFGE	6054	Y09572	Corynebacterium ammoniagenes nrdH, nrdI, nrdE, nrdF genes.	65,511	18-Apr-98
N		GB_BA1:STNRD	4894	X73226	S.typhimurium nrdEF operon.	52,477	03-MAR-1997
rx01087	999	GB_IN2:AF063412	1093	AF063412	Limnadia lenticularis elongation factor 1-alpha mRNA, partial cds.	43,750	29-MAR-1999
		GB_PR3:HS24M15	134539	Z94055	Human DNA sequence from PAC 24M15 on chromosome 1. Contains tenascin-R (restrictin), EST.	37,475	23-Nov-99
		GB_IN2:ARU85702	1240	U85702	Anathix ralla elongation factor-1 alpha (EF-1a) gene, partial cds.	37,319	16-Jul-97

Table 4 (continued)

rx01095	857	GB_BA1:MTCY01B2	35938	Z95554	Mycobacterium tuberculosis H37Rv complete genome; segment 72/162.	43,243	17-Jun-98
		GB_HTG5AC011632	175917	AC011632	Homo sapiens clone RP11-3N13; WORKING DRAFT SEQUENCE, 9 unordered pieces.	36,471	19-Nov-99
		GB_HTG5AC011632	175917	AC011632	Homo sapiens clone RP11-3N13; WORKING DRAFT SEQUENCE, 9 unordered pieces.	36,836	19-Nov-99
rx01097	477	GB_BA2:AF030405	774	AF030405	Corynebacterium glutamicum cyclase (hisF) gene, complete cds.	100,000	13-Nov-97
		GB_BA2:AF030405	774	AF030405	Corynebacterium glutamicum cyclase (hisF) gene, complete cds.	41,206	13-Nov-97
rx01098	897	GB_BA2:AF030405	774	AF030405	Corynebacterium glutamicum cyclase (hisF) gene, complete cds.	97,933	13-Nov-97
		GB_BA1:MSGY223	42061	AD000019	Mycobacterium tuberculosis sequence from clone y223.	40,972	10-DEC-1996
rx01100	861	GB_BA1:MLCB1610	40056	AL049913	Mycobacterium leprae cosmid B1610.	61,366	27-Aug-99
		GB_BA2:AF051846	738	AF051846	Corynebacterium glutamicum phosphoribosylformimino-5-amino-1-imidazolecarboxamide isomerase (hisA) gene, complete cds.	97,154	12-MAR-1998
		GB_BA2:AF060558	636	AF060558	Corynebacterium glutamicum glutamine amidotransferase (hisH) gene, complete cds.	95,455	29-Apr-98
		GB_HTG1:HSDJ140A 221755	AL109917		Homo sapiens chromosome 1 clone RP1-140A9, *** SEQUENCING IN PROGRESS *** in unordered pieces.	30,523	23-Nov-99
rx01101	756	GB_BA2:AF060558	636	AF060558	Corynebacterium glutamicum glutamine amidotransferase (hisH) gene, complete cds.	94,462	29-Apr-98
		GB_BA1:SC4G6	36917	AL096884	Streptomyces coelicolor cosmid 4G6.	38,378	23-Jul-99
		GB_BA1:STMHISOPA 3981	M31628		S.coelicolor histidine biosynthesis operon encoding hisD, partial cds., and hisC, hisB, hisH, and hisA genes, complete cds.	60,053	26-Apr-93
		GB_BA1:SC4G6	36917	AL096884	S.coelicolor histidine biosynthesis operon encoding hisD, partial cds., and hisC, hisB, hisH, and hisA genes, complete cds.	58,333	26-Apr-93
rx01104	729	GB_BA1:STMHISOPA 3981	M31628		Streptomyces coelicolor A3(2)	39,045	23-Jul-99
		GB_BA1:SC4G6	36917	AL096884	Streptomyces coelicolor A3(2)	60,364	24-Jun-99
		GB_BA1:MTCY336	32437	Z95586	Mycobacterium tuberculosis H37Rv complete genome; segment 70/162.	60,931	24-Jun-99
rx01105	1221	GB_BA1:MTCY336	32437	Z95586	Mycobacterium tuberculosis H37Rv complete genome; segment 70/162.	36,851	10-DEC-1996
		GB_BA1:MSGY223	42061	AD000019	Mycobacterium tuberculosis sequence from clone y223.	60,902	27-Aug-99
		GB_BA1:MLCB1610	40055	AL049913	Mycobacterium leprae cosmid B1610.	37,233	10-DEC-1996
rx01106	1449	GB_BA1:MLCB1610	42061	AD000019	Mycobacterium tuberculosis sequence from clone y223.		

Table 4 (continued)

GB_BA1.MSHISCD	2298	X65512	M. smegmatis genes hisD and hisC for histidinol dehydrogenase and histidinol- Mycobacterium smegmatis	60,111	30-Jun-93	
GB_BA1.MTCY336	32437	295516	Mycobacterium tuberculosis H37Rv complete genome; segment 70/162. Phosphate aminotransferase, respectively	58,420	24-Jun-99	
GB_BA1.CORAI	4705	L0922	Corynebacterium glutamicum acetohydroxy acid synthase (livB) and (livN) genes, and acetohydroxy acid isomero-reductase (livC) gene, complete cds	100,000	23-Feb-95	
GB_BA1.BRLILVCA	1364	D14551	Brevibacterium fluvium livC gene for acetylhydroxy acid isomero-reductase, complete cds.	99,560	3-Feb-99	
GB_PAT.E08232	1017	E08212	DNA encoding acetohydroxy-acid isomero-reductase.	99,803	29-Sep-97	
ra01162 1449	GB_PAT.A60299	2869	A60219	Sequence 18 from Patent WO9706261.	38,675	06-MAR-1998
GB_PR3.HS24E5	35506	Z8215	Human DNA sequence from Fosmid 24E5 on chromosome 22q11.2-qter contains parvalbumin, ESTs, STS.	36,204	23-Nov-99	
GB_PR3.AC005265	43900	AC005265	Homo sapiens chromosome 19, cosmid F19750, complete sequence.	38,363	6-Jul-98	
GB_HTG2.AC004965	323792	AC004965	Homo sapiens clone DJ1106H14, *** SEQUENCING IN PROGRESS *** , 42 unordered pieces.	36,058	12-Jun-98	
GB_HTG2.AC004965	323792	AC004965	Homo sapiens clone DJ1106H14, *** SEQUENCING IN PROGRESS *** , 42 unordered pieces.	36,058	12-Jun-98	
ra01209 1528	GB_PL2.TAU55859	2397	U55819	Triticum aestivum heat shock protein 80 mRNA, complete cds.	37,269	1-Feb-99
	GB_HTG3.AC011469	113436	AC01469	Homo sapiens chromosome 19 clone CIT-HSPC_475D23, *** SEQUENCING IN PROGRESS ***, 31 unordered pieces.	40,000	07-OCT-1999
	GB_HTG3.AC011469	113436	AC01469	Homo sapiens chromosome 19 clone CIT-HSPC_475D23, *** SEQUENCING IN PROGRESS ***, 31 unordered pieces.	40,000	07-OCT-1999
ra01209	GB_PL1.AB010077	77380	AB01077	Arabidopsis thaliana genomic DNA, chromosome 5, P1 clone: MYH19, complete sequence.	36,803	20-Nov-99
ra01215	GB_BA1.MTCY10G2	38970	292519	Mycobacterium tuberculosis H37Rv, complete genome; segment 47/162.	37,047	17-Jun-98
	GB_IN1.LEIPRPP	1887	M76513	Leishmania donovani phosphoribosylpyrophosphate synthetase gene, complete cds.	50,738	7-Jun-93
6	GB_HTG2:HSJ799D1	130149	AL05344	Homo sapiens chromosome 1 clone RP4-799D16 map p34.3-36.1, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	38,135	29-Nov-99
ra01239	GB_BA1.MTCY48	35377	Z74010	Mycobacterium tuberculosis H37Rv complete genome; segment 69/162.	38,139	17-Jun-98
	GB_PR2:AB029032	6377	AB02032	Homo sapiens mRNA for KIAA1109 protein, partial cds.	39,394	4-Aug-99
	GB_GSS9:AQ107201	355	AQ10201	HS_3098_A1_C03_T7 CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=3098 Col=5 Row=E, genomic survey sequence.	41,408	28-Aug-98
ra01253	GB_PL2.F5O8	99923	AC00990	Arabidopsis thaliana sequence.	36,118	23-DEC-1998
	GB_PL2.F5O8	99923	AC00990	Arabidopsis thaliana sequence.	35,574	23-DEC-1998
	GB_IN1:CELC06G1	31205	U4104	Caenorhabditis elegans	38,560	30-Nov-95

Table 4 (continued)

rx01321	1044	GB_GSS14_AQ51884 441 3	AQ518843	HS_5106_A1_D10_SP6E RPCI-11 Human Male BAC Library Homo sapiens genomic clone Plate=682 Col=19 Row=G, genomic survey sequence.	41,121	05-MAY-1999
		GB_HTG2:AC007473 194859	AC007473	Drosophila melanogaster chromosome 2 clone BACR38D12 (D590) RPCI-98 38.D.12 map 48A-48B strain y; cn bw sp. *** SEQUENCING IN PROGRESS	40,634	2-Aug-99
		***	***	*** 60 unordered pieces.		
		GB_HTG4:AC011696 115847	AC011696	Drosophila melanogaster chromosome 2 clone BACR35F01 (D1156) RPCI-98 Drosophila melanogaster 35.F.1 map 48A-48C strain y; cn bw sp. *** SEQUENCING IN PROGRESS	38,290	26-OCT-1999
		***	***	*** 108 unordered pieces.		
		GB_PL2:ATAC005167 83260	AC005167	Arabidopsis thaliana chromosome II BAC F12A24 genomic sequence, complete sequence.	34,311	15-OCT-1998
		GB_PL2:ATAC005825 97380	AC005825	Arabidopsis thaliana chromosome II BAC T24I21 genomic sequence, complete sequence.	34,311	12-Apr-99
		GB_HTG3:AC011150 127222	AC011150	Homo sapiens clone 4_K_17, LOW-PASS SEQUENCE SAMPLING.		
		GB_EST32:AI725583 728	AI725583	BNLGH12371 Six-day Cotton fiber Gossypium hirsutum cDNA 5' similar to (U86081) root hair defective 3 [Arabidopsis thaliana], mRNA sequence Human DNA sequence from PAC 227P17, between markers DXS6791 and DXS8038 on chromosome X contains CpG island, EST.	38,492	01-OCT-1999
		GB_PR2:HS227P17 82951	ZB1007	AV171099 Mus musculus head C57BL/6J 14, 17 day embryo Mus musculus cDNA clone 320002M11, mRNA sequence.	39,738	11-Jun-99
		GB_EST34:AV171099 1173	AV171099	Mus musculus mGp1 gene, exon 1.	46,237	23-Nov-99
		GB_RO:AB00891551 530	AB0089155	Mus musculus mouse kidney mka Mus musculus cDNA clone uc83d10.y1 Sugano mouse kidney mRNA similar to TR:O35120 O35120 MGP11P-1, mRNA IMAGE:1432243 5' similar to TR:O35120 O35120 MGP11P-1, mRNA sequence.	45,574	6-Jul-99
		GB_EST22:AI050532 293	AI050532	Mus musculus mGp1 gene, exon 1.	44,097	28-Sep-99
				Mus musculus mRNA for mGp1p, complete cds.	41,316	9-Jul-98
		GB_RO:AB008895 3062	AB008895	Mus musculus mRNA for mGp1p, complete cds.	36,606	20-Nov-99
		GB_PL1:AB005237 87835	AB005237	Arabidopsis thaliana genomic DNA, chromosome 5, P1 clone: MJ3, complete sequence.	37,916	28-Jul-99
		GB_GSS5:AQ766840 491	AQ766840	HS_2026_A2_C09_77C CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=2026 Col=18 Row=E, genomic survey sequence.		
		GB_BA1:MTV043	68848	Mycobacterium tuberculosis H37Rv complete genome; segment 40/162.	37,419	24-Jun-99
		GB_BA1:CGLYSEG	2374	C.glutamicum lysE and lysG genes.		
		GB_BA1:SC5A7	40337	Streptomyces coelicolor cosmid 5A7.	34,831	24-Feb-97
		GB_PR3:AC004054	112184	Homo sapiens chromosome 4 clone B220G8 map 4q21, complete sequence.		
		GB_BA1:CGLYSEG	2374	Homo sapiens chromosome 4 clone B220G8 map 4q21, complete sequence.	35,138	27-Jul-98
		GB_GSS5:AQ769223 500	AQ769223	Corynebacterium glutamicum	37,277	9-Jul-98
				Corynebacterium glutamicum	100,000	24-Feb-97
				Homo sapiens	38,400	28-Jul-99

Table 4 (continued)

	GB_BA1:CGLYSEG	2374	X9671	C. glutamicum lysE and lysG genes.	33,665	24-Feb-97
ra01416	630	GB_BA1:SC3C3	31382	AL031231 Streptomyces coelicolor cosmid 3C3.	62,726	10-Aug-98
		GB_BA1:MLCB22	40281	Z9871 Mycobacterium leprae cosmid B22.	39,159	22-Aug-97
		GB_BA1:MTV002	56414	AL008967 Mycobacterium tuberculosis H37Rv complete genome; segment 122/162.	37,340	17-Jun-98
ra01442	1347	GB_BA1:D90827	18886	D90827 E. coli genomic DNA, Kohara clone #336(41.2-41.6 min.).	58,517	21-MAR-1997
		GB_BA1:D90828	14590	D90828 E. coli genomic DNA, Kohara clone #336gap(41.6-41.9 min.).	56,151	21-MAR-1997
ra01446	1413	GB_BA2:AE000279	10855	AE000279 Escherichia coli K-12 MG1655 section 169 of 400 of the complete genome.	56,021	12-Nov-98
		GB_BA1:SCH10	39524	AL038754 Streptomyces coelicolor cosmid H10.	39,037	04-MAY-1999
ra01483	1395	GB_BA1:MTY13E10	35019	Z9534 Mycobacterium tuberculosis H37Rv complete genome; segment 18/162.	40,130	17-Jun-98
		GB_BA1:MLCB4	36310	AL028514 Mycobacterium leprae cosmid B4.	37,752	27-Aug-99
		GB_BA1:MTCY98	31225	Z83810 Mycobacterium tuberculosis H37Rv complete genome; segment 103/162.	39,057	17-Jun-98
		GB_BA1:MSGB1229C	30670	L7882 Mycobacterium leprae cosmid B1229 DNA sequence.	54,382	15-Jun-96
		GB_BA2:AF027507	5168	AF027507 Mycobacterium smegmatis dGTPase (dgl), and primase (dnAG) genes, complete cds; tRNA-Asn gene, complete sequence.	52,941	16-Jan-98
ra01486	757	GB_BA1:MTV002	56414	AL008967 Mycobacterium tuberculosis H37Rv complete genome; segment 122/162.	40,941	17-Jun-98
		GB_BA1:MLCB22	40281	Z9871 Mycobacterium leprae cosmid B22.	38,451	22-Aug-97
		GB_BA1:SC3C3	31382	AL031231 Streptomyces coelicolor cosmid 3C3.	61,194	10-Aug-98
ra01489	1146	GB_BA1:CORFADS	1547	D37957 Corynebacterium ammoniagenes gene for FAD synthetase, complete cds.	58,021	8-Feb-99
		GB_BA1:MLCB22	40281	Z9871 Mycobacterium leprae cosmid B22.	38,414	22-Aug-97
		GB_BA1:SC10A7	39739	AL071618 Streptomyces coelicolor cosmid 10A7.	36,930	9-Jun-99
ra01491	774	GB_BA1:MTV002	56414	AL008967 Mycobacterium tuberculosis H37Rv complete genome; segment 122/162.	37,062	17-Jun-98
		GB_EST13-AA356956	255	AA356956 EST65614 Jurkat T-cells III Homo sapiens cDNA 5' end, mRNA sequence.	37,647	21-Apr-97
		GB_OV:OMDNAPROI	7327	X92310 O.mossambicus prolactin I gene.	38,289	19-OCT-1995
ra01508	1662	GB_IN1:CEF28C12	14653	Z9330 Caenorhabditis elegans cosmid F28C12, complete sequence.	37,984	23-Nov-98
		GB_IN1:CEF28C12	14653	Z9330 Caenorhabditis elegans cosmid F28C12, complete sequence.	38,469	23-Nov-98
ra01512	723	GB_BA1:SCE9	37730	AL041841 Streptomyces coelicolor cosmid E9.	39,021	19-MAY-1999
		GB_BA1:MAU88873	840	U88815 Mycobacterium avium hypoxanthine-guanine phosphoribosyl transferase gene, complete cds.	57,521	05-MAR-1997

Table 4 (continued)

	GB_BA1:MTY15C10	33050	295436	Mycobacterium tuberculosis H37Rv complete genome; segment 154/162.	Mycobacterium tuberculosis	40,086	17-Jun-98
	GB_BA1:MTCY7H7B	24244	295557	Mycobacterium tuberculosis H37Rv complete genome; segment 153/162.	Mycobacterium tuberculosis	43,343	18-Jun-98
rx01514	711	GB_BA1:MLCB2548	38916	AL023093 Mycobacterium leprae cosmid B2548.	Mycobacterium leprae	38,177	27-Aug-99
	GB_PL1:EGGTPCHI	242	Z49757	E.gracilis mRNA for GTP cyclohydrolase I (core region).	Euglena gracilis	64,876	20-OCT-1995
rx01515	975	GB_BA1:ECOUW93	338534	U14003 Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes.	Escherichia coli	38,943	17-Apr-96
	GB_BA1:ECOUW93	338534	U14003	Escherichia coli K-12 chromosomal region from 92.8 to 00.1 minutes.	Escherichia coli	37,500	17-Apr-96
	GB_BA1:MTCY49	39430	Z73966	Mycobacterium tuberculosis H37Rv complete genome; segment 93/162.	Mycobacterium tuberculosis	38,010	24-Jun-99
rx01516	513	GB_IN1:DME238847	5419	AJ238847 Drosophila melanogaster mRNA for drosophila dodeca-satellite protein 1 (DDP-1).	Drosophila melanogaster	36,346	13-Aug-99
	GB_HTG3:AC009210	103814	AC009210	Drosophila melanogaster chromosome 2 clone BACR01106 (D1054) RPCI-98	Drosophila melanogaster	37,897	20-Aug-99
				011.6 map 55D-55D strain y, cn bw sp. *** SEQUENCING IN PROGRESS			
				*** , 86 unordered pieces.	Drosophila melanogaster	36,149	3-Jun-99
rx01517	600	GB_IN2:AF132179	4842	AF132179 Drosophila melanogaster clone LD21677 unknown mRNA.	Arabidopsis thaliana	35,846	19-Aug-99
	GB_PL2:F6H8	82596	AF178045	Arabidopsis thaliana BAC F6H8.	Sorosporium saponariae	40,566	13-Apr-99
	GB_PL2:AF038831	647	AF038831	Sorosporium saponariae internal transcribed spacer 1, 5.8S ribosomal RNA gene; and internal transcribed spacer 2, complete sequence.			114
				Arabidopsis thaliana chromosome II BAC T15J14 genomic sequence, complete sequence.	Arabidopsis thaliana	38,095	7-Jan-99
				Anabaena sp. (clone AnH20.1) nitrogen fixation operon nifB, fdxN, nifS, nifU, and nifH genes, complete cds.	Homo sapiens	38,206	26-Apr-93
rx01521	921	GB_BA1:ANANIFBH	5936	J05111 Human BAC clone RG204116 from 7q31, complete sequence.	Homo sapiens	36,623	20-Aug-97
	GB_PR2:AC002461	197273	AC002461	Human BAC clone RG204116 from 7q31, complete sequence.	Homo sapiens	34,719	20-Aug-97
	GB_PR2:AC002461	197273	AC002461	Human BAC clone RG204116 from 7q31, complete sequence.	Mus musculus	37,500	29-Jun-99
rx01528	651	GB_RO:MM437P9	165901	AL049866 Mus musculus chromosome X, clone 437P9.	Homo sapiens	37,031	01-OCT-1998
	GB_PR3:AC005740	186780	AC005740	Homo sapiens chromosome 5p, BAC clone 50g21 (LBNL H154), complete sequence.	Homo sapiens	38,035	01-OCT-1998
	GB_PR3:AC005740	186780	AC005740	Homo sapiens chromosome 5p, BAC clone 50g21 (LBNL H154), complete sequence.	Mycobacterium tuberculosis	38,371	17-Jun-98
rx01551	1998	GB_BA1:MTCY22G10	35420	Z84724 E. coli chromosomal region from 89.2 to 92.8 minutes.	Escherichia coli	38,064	17-DEC-1993
	GB_BA2:ECOUV89	176195	U0006				
	GB_BA1:SCO11	15441	AL096823	Streptomyces coelicolor cosmid Q11.	Streptomyces coelicolor	60,775	8-Jul-99
	GB_IN1:CEY62:H9A	47396	AL032630	Caenorhabditis elegans cosmid Y62H9A, complete sequence.	Caenorhabditis elegans	38,514	2-Sep-99
	GB_PR4:HSU51003	3202	U51003	Homo sapiens DI X-2 (DLX-2) gene, complete cds.	Homo sapiens	37,730	07-DEC-1999
	GB_OM:PIGDAO1	395	M18444	Pig D-amino acid oxidase (DAO) gene, exon 1.	Sus scrofa	39,340	27-Apr-93
	GB_BA1:MTCI125	37432	Z98288	Mycobacterium tuberculosis H37Rv complete genome, segment 76/162.	Mycobacterium tuberculosis	63,300	17-Jun-98
	GB_BA1:U00021	39193	U00021	Mycobacterium leprae cosmid L247.	Mycobacterium leprae	36,756	29-Sep-94

Table 4 (continued)

rx01617	795	GB_BA1:MLCB1351 GB_PR2:HSM/MTM0	38936 217657	Z95117 AL034384	Mycobacterium leprae cosmid B1351. Human chromosome Xq28, cosmid clones 7H3, 14D7, C1230, 11E7, F1096, A12197, 12G8, A09100; complete sequence bases 1..217657.	Homo sapiens	Mycobacterium leprae Homo sapiens	36,756 40,811	24-Jun-97 5-Jul-99
		GB_PR2:HS13D10	153147	AL021407	Human sapiens DNA sequence from PAC 13D10 on chromosome 6p22.3-23. Contains CpG island.	Homo sapiens		38,768	23-Nov-99
		GB_PR2:HSM/MTM0	217657	AL034384	Human chromosome Xq28, cosmid clones 7H3, 14D7, C1230, 11E7, F1096, A12197, 12G8, A09100; complete sequence bases 1..217657.	Homo sapiens		39,018	5-Jul-99
rx01657	723	GB_BA1:MTCY1A10	25949	Z95387	Mycobacterium tuberculosis H37Rv complete genome; segment 117/162.	Mycobacterium tuberculosis Homo sapiens	40,656	17-Jun-98	
		GB_EST6:D79278	392	D79278	HUM213D06B Human aorta polyA+ (T Fujiwara) Homo sapiens cDNA clone GEN-213D06 5', mRNA sequence.		44,262	9-Feb-96	
		GB_BA2:AF129925	10243	AF129925	Thiobacillus ferrooxidans carboxysome operon, complete cds.	Thiobacillus ferrooxidans	40,709	17-MAY-1999	
rx01660	675	GB_BA1:MTV013	11364	AL021309	Mycobacterium tuberculosis H37Rv complete genome; segment 134/162.	Mycobacterium tuberculosis	40,986	17-Jun-98	
		GB_RO_MMFV1 GB_PAT:A67508	6480 6480	X97719 A67508	M.musculus retrovirus restriction gene Fv1. Sequence 1 from Patent WO9743410.	Mus musculus Mus musculus	35,364 35,364	29-Aug-96 05-MAY-1999	
rx01678	651	GB_VI:TVU95309	600	U95309	Tula virus O64 nucleocapsid protein gene, partial cds.	Tula virus	41,894	28-OCT-1997	
		GB_VI:TVU95303	600	U95303	Tula virus O52 nucleocapsid protein gene, partial cds.	Tula virus	41,712	28-OCT-1997	
		GB_VI:TVU95302	600	U95302	Tula virus O24 nucleocapsid protein gene, partial cds.	Tula virus	39,576	28-OCT-1997	
rx01679	1359	GB_EST5:HQ1843	362	H91843	ys81e01,s1 Soares retina N2b4HR Homo sapiens cDNA clone IMAGE:221208 3' similar to gb:X63749_mn1 GUANINE NUCLEOTIDE-BINDING PROTEIN G(T), ALPHA-1 (HUMAN); mRNA sequence.	Homo sapiens	39,157	29-Nov-95	
		GB_STS_G26925 GB_PL2:AF39451	362 1202	G26925 AF139451	human STS SHGC-30023, sequence tagged site. Gossypium robinsonii CeIA2 pseudogene, partial sequence.	Homo sapiens	39,157	14-Jun-96	
rx01690	1224	GB_BA1:SC1C2 GB_EST22:AL064232	42210 493	AL031124 AI064232	Streptomyces coelicolor cosmid 1C2. GH04563.5prime GH Drosophila melanogaster head pOT2 Drosophila	Gossypium robinsonii Streptomyces coelicolor Drosophila melanogaster	38,910 60,644 38,037	1-Jun-99 15-Jan-99 24-Nov-98	
rx01692	873	GB_IN2:AF117896 GB_BA2:AF067123	1020 1034	AF117896 AF067123	Drosophila melanogaster neuropeptide F (npf) gene, complete cds. Lactobacillus reuteri cobalamin biosynthesis protein J (cbuJ) gene, partial cds; Lactobacillus reuteri and uroporphyrin-III C-methyltransferase (sumT) gene, complete cds.	Drosophila melanogaster Lactobacillus reuteri	36,122 48,079	2-Jul-99 3-Jun-98	
		GB_RO:RATNFHPEP	3085	M37227	Rat heavy neurofilament (NF-H) polypeptide, partial cds.	Rattus norvegicus	37,093	27-Apr-93	
rx01698	1353	GB_RO:RSNFH GB_BA2:AF124600	3085 4115	X13804 AF124600	Rat mRNA for heavy neurofilament polypeptide NF-H C-terminus. Corynebacterium glutamicum chorismate synthase (aroC), shikimate kinase (aroK), and 3-dehydroquinate synthase (aroB) genes, complete cds; and putative cytoplasmic peptidase (pepQ) gene, partial cds.	Rattus sp Corynebacterium glutamicum	37,093 100,000	14-Jul-95 04-MAY-1999	
		GB_BA1:MTCY159	33818	Z83863	Mycobacterium tuberculosis H37Rv complete genome; segment 111/162.	Mycobacterium tuberculosis	36,323	17-Jun-98	

Table 4 (continued)

rx01699	693	GB_BA1:MSGB937C 38914 S GB_BA2:AF124600 4115	L78820	Mycobacterium leprae cosmid B937 DNA sequence.	Mycobacterium leprae	62,780	15-Jun-96
				Corynebacterium glutamicum chorismate synthase (aroC), shikimate kinase (aroK), and 3-dehydroquinate synthase (aroB) genes, complete cds, and putative cytoplasmic peptidase (pepQ) gene, partial cds.	Corynebacterium glutamicum	100,000	04-MAY-1999
		GB_BA2:AF016585 41097	AF016585	Streptomyces caelstis cyclochrome P-450 hydroxylase homolog (nrdA) gene, partial cds; polyketide synthase modules 1 through 7 (nrdA) genes, complete mRNA sequence.	Streptomyces caelstis	40,260	07-DEC-1997
		GB_EST9.C19712	399	C19712 Rice panicle at ripening stage <i>Oryza sativa</i> cDNA clone E10821_1A, <i>Oryza sativa</i> mRNA sequence.		45,425	24-OCT-1996
rx01712	805	GB_EST21:AA952466 278	AA952466	TENS1404 T. cruzi epimastigote normalized cDNA Library Trypanosoma cruzi cDNA clone 1404 5', mRNA sequence.		40,876	29-OCT-1998
		GB_EST21:AA952466 278	AA952466	TENS1404 T. cruzi epimastigote normalized cDNA Library Trypanosoma cruzi cDNA clone 1404 5', mRNA sequence.		41,367	29-OCT-1998
rx01719	684	GB_HTG1:HS DJ534K 154416 7 GB_HTG1:HS DJ534K 154416	AL109295 AL109295	Homo sapiens chromosome 1 clone RP4-534K7, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens	35,651	23-Nov-99
		GB_HTG1:HS DJ534K 154416 7 GB_EST27:AI447108 431	AI447108	Homo sapiens chromosome 1 clone RP4-534K7, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens	35,651	23-Nov-99
		GB_EST27:AI447108 431	AI447108	mq91e08.x1 Stratagene mouse heart (#937316) Mus musculus cDNA clone IMAGE:586118 3', mRNA sequence.	Mus musculus	39,671	09-MAR-1999
rx01720	1332	GB_PR4:AC006322 179640	AC006322	Homo sapiens PAC clone DJ1050B11 from 7q11.23-q21.1, complete sequence.	Homo sapiens	35,817	18-MAR-1999
		GB_PL2:TM018A10 106184	AF013294	Arabidopsis thaliana BAC TM018A10.	Arabidopsis thaliana	35,698	12-Jul-97
		GB_PR4:AC006322 179640	AC006322	Homo sapiens PAC clone DJ1050B11 from 7q11.23-q21.1, complete sequence.	Homo sapiens	37,243	18-MAR-1999
rx01746	876	GB_EST3.R46227 443	R46227	yg52a03.s1 Soares, infant brain 1N1B Homo sapiens cDNA clone IMAGE:36000 3', mRNA sequence.	Homo sapiens	42,812	22-MAY-1995
		GB_EST3.R46227 443	R46227	yg52a03.s1 Soares, infant brain 1N1B Homo sapiens cDNA clone IMAGE:36000 3', mRNA sequence.	Homo sapiens	42,655	22-MAY-1995
rx01747	1167	GB_BA1:MTCY190 34150	Z70283	Mycobacterium tuberculosis H37Rv complete genome; segment 98/162.	Mycobacterium tuberculosis	59,294	17-Jun-98
		GB_BA1:MLCB22 40281 GB_BA1:SCF57 40024	Z98741 AL098872	Mycobacterium leprae cosmid B22. Streptomyces coelicolor cosmid 5F7.	Mycobacterium leprae Streptomyces coelicolor A3(2)	57,584 61,810	22-Aug-97 22-Jul-99
rx01757	924	GB_EST21:AA918454 416	AA918454	om38c02.s1 Soares_NFL_T_GBC_S1 Homo sapiens cDNA clone IMAGE:1543298 3' similar to WP_F28F8.3 CE09157 SMALL NUCLEAR RIBONUCLEOPROTEIN E, mRNA sequence.	Homo sapiens	39,655	23-Jun-98
		GB_EST4:H34042 345	H34042	EST110563 Rat PC-12 cells, NGF-treated (9 days) Rattus sp. cDNA clone RPNB181 5' end, mRNA sequence.	Rattus sp.	35,942	2-Apr-98
		GB_EST20:AA899038 450	AA899038	NCP6G8T7 Perithelial Neurospora crassa cDNA clone NP6G8 3' end, mRNA Neurospora crassa sequence.		40,000	12-Apr-98

Table 4 (continued)

rx01807	915	GB_BA1:AP000063 GB-HTG4:AC010694	185300 113857	AP000063 AC010694	Aeropyrum pernix Drosophila melanogaster	40,067 35,450	22-Jun-99 16-OCT-1999
rx01821	401	GB_BA1:CGL007732 GB_RO:RATALGL	4460 7601	AJ007732 M24108	Drosophila melanogaster	35,450	16-OCT-1999
rx01835	654	GB_OV:APIGY2 GB_EST30:Al629479	1381 353	X78272 AI629479	Corynebacterium glutamicum 3' ppC gene, secG gene, amt gene, ocd gene and 5' soxA gene. Rattus norvegicus (clone A2U42) alpha2u globulin gene, exons 1-7.	Corynebacterium glutamicum Rattus norvegicus	100,000 38,692
rx01850	1470	GB_BA2:ECOUW67_0 GB_BA2:AE003392 GB_BA2:U32715	110000 10345 13136	U18997 AE003392 U32715	Anas platyrhynchos (Super M) IgY epsilon heavy chain gene, exon 2. 486101D10x1486 - leaf primordia cDNA library from Hake lab Zea mays CDNA, mRNA sequence. SHGC-62915 Human Homo sapiens STS genomic, sequence tagged site.	Anas platyrhynchos Zea mays	36,962 38,109
rx01878	1002	GB_HTG1:CEY64F11 GB_BA1:MTCY274	177748 39991	Z99776 Z74024	RPCI11-4112.TV RPCI-11 Homo sapiens genomic clone RPCI-11-4112. genomic survey sequence.	Homo sapiens	37,021 37,021
rx01892	852	GB_BA1:MLCB250 GB_BA1:MSGB1529C S	40603 36985 L78824	297369 Mycobacterium leprae cosmid B250. Mycobacterium tuberculosis H37Rv complete genome; segment 126/162.	Escherichia coli Haemophilus influenzae Rd	37,196 38,021 29-MAY-1998	
rx01894	978	GB_BA1:MTCY274	39991	Z74024	Caenorhabditis elegans chromosome IV clone Y64F11, *** SEQUENCING IN the complete genome. Escherichia coli K-12 MG1655 section 282 of 400 of the complete genome. Escherichia coli K-12 chromosomal region from 67.4 to 76.0 minutes.	Escherichia coli Haemophilus influenzae Rd	12-Nov-98 14-OCT-1998
rx01920	1125	GB_BA2:AF112536 GB_BA1:CANRDFGE	1798 6054	AF112536 Y09572 N	Caenorhabditis elegans chromosome IV clone Y64F11, *** SEQUENCING IN the complete genome. Escherichia coli K-12 MG1655 section 30 of 163 of the complete genome. Escherichia coli Rd	37,564 38,021 29-MAY-1998	
117							
PROGRESS *** , in unordered pieces.							
Caenorhabditis elegans chromosome IV clone Y64F11, *** SEQUENCING IN Caenorhabditis elegans							
PROGRESS *** , in unordered pieces.							
Caenorhabditis elegans chromosome IV clone Y64F11, *** SEQUENCING IN Caenorhabditis elegans							
PROGRESS *** , in unordered pieces.							
Caenorhabditis elegans chromosome IV clone Y64F11, *** SEQUENCING IN Caenorhabditis elegans							
PROGRESS *** , in unordered pieces.							
Mycobacterium tuberculosis H37Rv complete genome; segment 126/162.							
Mycobacterium tuberculosis							
Mycobacterium leprae							
Mycobacterium leprae							
Mycobacterium tuberculosis							
Mycobacterium leprae							
Mycobacterium leprae							
Caenorhabditis elegans cosmid F46H5.							
Drosophila melanogaster chromosome 2 clone BACR03E19 (D1033) RPCI-98							
03.E.19 map 36E-37C strain y, cn bw sp, *** SEQUENCING IN PROGRESS							
*** , 94 unordered pieces.							
Corynebacterium glutamicum ribonucleotide reductase beta-chain (ndf) gene, complete cds.							
Corynebacterium ammoniagenes ndfH, ndfE, ndf genes.							

Table 4 (continued)

Table 4 Continued							
GB_BA2:AF050168	1228	AF050168	Corynebacterium ammoniagenes ribonucleoside diphosphate reductase small subunit (nrdF) gene, complete cds.	72,082	23-Apr-98		
GB_BA1:CGPAN	2164	X96580	C. glutamicum panB, panC & xylB genes.	100,000	11-MAY-1999		
GB_PL1:AP00423	154478	AP00423	Arabidopsis thaliana chloroplast genomic DNA, complete sequence, strain:Columbia.	35,917	15-Sep-99		
GB_PL1:AP00423	154478	AP00423	Arabidopsis thaliana chloroplast genomic DNA, complete sequence, strain:Columbia.	33,925	15-Sep-99		
rx01928	960						
GB_BA1:CGPAN	2164	X96580	C. glutamicum panB, panC & xylB genes.	100,000	11-MAY-1999		
GB_BA1:AP00423	154478	AP00423	Arabidopsis thaliana chloroplast genomic DNA, complete sequence, strain:Columbia.	35,917	15-Sep-99		
GB_BA1:AP00423	154478	AP00423	Arabidopsis thaliana chloroplast genomic DNA, complete sequence, strain:Columbia.	33,925	15-Sep-99		
rx01929	936						
GB_BA1:XCU33548	8429	U33548	Xanthomonas campestris hrpB pathogenicity locus proteins HrpB1, HrpB2, HrpB3, HrpB4, HrpB5, HrpB6, HrpB7, HrpB8, HrpA1, and ORF62 genes, complete cds.	38,749	19-Sep-96		
GB_BA1:XANHRPB6	1329	M99174	Xanthomonas campestris hrpB6 gene, complete cds.	39,305	14-Sep-93		
A _{GB_IN2} ?;f1.;3371	1060	U43371	Crithidia fasciculata inosine-uridine preferring nucleoside hydrolase (IUNH) gene, complete cds.	61,417	18-Jun-96		
GB_BA2: - 11467	11601	AE001467	Helicobacter pylori, strain J99 section 28 of 132 of the complete genome.	38,560	20-Jan-99		
GB_RO:AI : 15967	3492	AF175967	Homo sapiens Lerman coiled-coil protein (LCP) mRNA, complete cds.	40,275	26-Sep-99		
GB_BA1:CGDAPE	1966	X81379	C. glutamicum dapE gene and orf2.	100,000	8-Aug-95		
rx02022	1230						
GB_BA1:CGDNAARO 2612		X85965	C. glutamicum ORF3 and aroP gene.	38,889	30-Nov-97		
P							
GB_BA1:APU47055	6469	U47055	Anabaena PCC7120 nitrogen fixation proteins (nifE, nifN, nifX, nifW) genes, complete cds, and nitrogenase (nifK) and hsa genes, partial cds.	36,647	17-Feb-96		
GB_BA1:MTCI364	29540	Z93777	Mycobacterium tuberculosis H37Rv complete genome, segment 52/162	59,415	17-Jun-98		
GB_BA1:MSGB1912C 38503		L01536	M. leprae genomic dna sequence, cosmid b1912.	57,093	14-Jun-96		
S							
GB_BA1:MLU15180	38675	U15180	Mycobacterium leprae cosmid B1756.	57,210	09-MAR-1995		
rx02027							
rx02031							
rx02072	1464	GB_BA1:CGGDHA	X72855	C. glutamicum GDHA gene.	99,317	24-MAY-1993	
GB_BA1:CGGDH	2037	X59404	Corynebacterium glutamicum, gdh gen for glutamate dehydrogenase.	94,387	30-Jul-99		
GB_BA1:BAE1BA04	1628	Y18494	Pseudomonas aeruginosa gdha gene, strain PAC1.	62,247	6-Feb-99		

Table 4 (continued)

rx02085	2358	GB_BA1:MTCY22G8	23550	295585	Mycobacterium tuberculosis H37Rv complete genome; segment 49/162.	38,442	17-Jun-98
		GB_BA1:MLCB33	42224	294723	Mycobacterium leprae cosmid B33.	56,486	24-Jun-97
		GB_BA1:ECOUW85	91414	M87049	E. coli genomic sequence of the region from 84.5 to 86.5 minutes.	52,127	29-MAY-1995
rx02093	927	GB_EST14:AA448146 452	AA448146	zw82h01,r1 Soares,testis_NHT Homo sapiens cDNA clone IMAGE:782737	Homo sapiens	34,163	4-Jun-97
		GB_EST17:AA641937 444	AA641937	ns18b10,r1 NCL CGAP_GCB1 Homo sapiens cDNA clone IMAGE:1183963	Homo sapiens	35,586	27-OCT-1997
		GB_PR3:AC003074	143029	AC003074	5', mRNA sequence.	31,917	6-Nov-97
rx02106	1179	GB_BA1:SC1A6	37620	AL023496	Human PAC clone D10596009 from 7p15, complete sequence.	35,818	13-Jan-99
		GB_PR4:AC005553	179651	AC005553	Streptomyces coelicolor cosmid 1A6.	34,274	31-DEC-1998
		GB_EST3:R49746	397	R49746	Homo sapiens chromosome 17, clone hRPK112_J_9, complete sequence.	41,162	18-MAY-1995
rx02111	1407	GB_BA1:SC6G10	36734	AL049497	y971g10,r1 Soares infant brain 1N1B Homo sapiens cDNA clone IMAGE:38768 5' similar to gb\W00567_BETA-2-MICROGLOBULIN PRECURSOR (HUMAN); mRNA sequence.	50,791	24-MAR-1999
		GB_BA1:U00010	41171	U00010	Streptomyces coelicolor cosmid 6G10.	37,563	01-MAR-1994
		GB_BA1:MTCY336	32437	295586	Mycobacterium leprae cosmid B1170.	39,504	24-Jun-99
rx02112	960	GB_HTG3:AC010579	157658	AC010579	Drosophila melanogaster chromosome 3 clone BACR09D08 (D1101) RPCI-98 Drosophila melanogaster 09.D8 map 96F-96F strain y, on bw sp, *** SEQUENCING IN PROGRESS	37,909	24-Sep-99
		GB_GSS3:B09839	1191	B09839	***, 121 unordered pieces.	37,843	14-MAY-1997
		GB_HTG3:AC010579	157658	AC010579	T12A12-Sp6 TAMU Arabidopsis thaliana genomic clone T12A12, genomic survey sequence.	37,909	24-Sep-99
rx02134	1044	GB_BA1:SCSECYDN A	6154	X83011	Drosophila melanogaster chromosome 3 clone BACR09D08 (D1101) RPCI-98 Drosophila melanogaster 09.D8 map 96F-96F strain y, on bw sp, *** SEQUENCING IN PROGRESS	36,533	02-MAR-1998
		GB_EST32:AI731596	568	A1731596	***, 121 unordered pieces.	33,451	11-Jun-99
		GB_BA1:SCSECYDN A	6154	X83011	S.coelicolor secY locus DNA.	36,756	02-MAR-1998
rx02135	1197	GB_PR3:HS525L6	168111	AL023807	BNLGH10185 Six-day Cotton fiber Gossypium hirsutum cDNA 5' similar to (AC004005) putative ribosomal protein L7 [Arabidopsis thaliana], mRNA sequence.	34,365	23-Nov-99
		GB_PL2:ATF2 P8	85755	AL022347	Streptomyces coelicolor	34,325	9-Jun-99
		GB_PL2:U89959	106973	U89959	Human DNA sequence from clone RP3-525L6 on chromosome 6p22.3-23 Contains CA repeat, STSS, GSSs and a CpG Island, complete sequence.	33,874	26-Jun-98
					Arabidopsis thaliana DNA chromosome 4, BAC clone F21P8 (ESSA project).	Arabidopsis thaliana	
						Arabidopsis thaliana	

Table 4 (continued)

rx02136	645	GB_PL2:ATAC005819_57752	AC005819	Arabidopsis thaliana chromosome II BAC T3A4 genomic sequence, complete sequence.	Arabidopsis thaliana	34,123	3-Nov-98	
		GB_PL2:F15k9	71097	AC005278	Arabidopsis thaliana chromosome 1 BAC F15k9 sequence, complete sequence.	Arabidopsis thaliana	31,260	7-Nov-98
		GB_PL2:U89959	106973	U89959	Arabidopsis thaliana BAC T7123, complete sequence.	Arabidopsis thaliana	34,281	26-Jun-98
		GB_BA1:MTCY190	34150	Z70283	Mycobacterium tuberculosis H37Rv complete genome, segment 98/162.	Mycobacterium tuberculosis	62,904	17-Jun-98
		GB_BA1:MSGB_554C_36548	L78814	Mycobacterium leprae cosmid B1554 DNA sequence.	Mycobacterium leprae	36,648	15-Jun-96	
S		GB_BA1:MSGB1551C_36548	L78813	Mycobacterium leprae cosmid B1551 DNA sequence.	Mycobacterium leprae	36,648	15-Jun-96	
S		GB_BA2:AF049897	9196	AF049897	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum	99,104	1-Jul-98
		GB_BA1:AF005242	1044	AF005242	Corynebacterium glutamicum N-acetylglutamate-5-semialdehyde dehydrogenase (argC) gene, complete cds.	Corynebacterium glutamicum	99,224	2-Jul-97
		GB_BA1:CGARGCJB_4355	X86157	X86157	C glutamicum argC, argJ, argB, argD, and argF genes.	Corynebacterium glutamicum	100,000	25-Jul-96
D		GB_BA2:AF049897	9196	AF049897	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), acetylornithine transaminase (argJ), N-acetylglutamate kinase (argB), ornithine carbamoyltransferase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum	98,561	1-Jul-98
		GB_BA1:AF005242	1044	AF005242	Corynebacterium glutamicum N-acetylglutamate-5-semialdehyde dehydrogenase (argC) gene, complete cds.	Corynebacterium glutamicum	98,477	2-Jul-97
		GB_BA1:CGARGCJB_4355	X86157	X86157	C glutamicum argC, argJ, argB, argD, and argF genes.	Corynebacterium glutamicum	100,000	25-Jul-96
D		GB_BA1:CGARGCJB_4355	X86157	X86157	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), acetylornithine transaminase (argJ), N-acetylglutamate kinase (argB), ornithine carbamoyltransferase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum	99,767	25-Jul-96
		GB_BA2:AF049897	9196	AF049897	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), acetylornithine transaminase (argJ), N-acetylglutamate kinase (argB), ornithine carbamoyltransferase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum	99,378	1-Jul-98
		GB_BA1:MSGB1133C_42106	L78811	Mycobacterium leprae cosmid B1133 DNA sequence.	Mycobacterium leprae	55,504	15-Jun-96	
S		GB_BA2:AF049897	9196	AF049897	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum	100,000	1-Jul-98
		rx02156	1074					

Table 4 (continued)

	GB_BA1:CGARGCJB_4355 D	X86157	C. glutamicum argC, argB, argD, and argF genes.	Corynebacterium glutamicum	100,000	25-Jul-96		
	GB_BA2:AE001816 GB_BA2:AF049897	10007 9196	AE001816 Thermologa maritima section 128 of 136 of the complete genome. Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Thermologa maritima Corynebacterium glutamicum	50,238 99,612	2-Jun-99 1-Jul-98		
ra02157	1296	GB_BA1:MTCY06H11_38000	GB_BA1:CGARGCJB_4355 D	X86157 Z85982	C. glutamicum argC, argB, argD, and argF genes. Mycobacterium tuberculosis H37Rv complete genome; segment 73/162.	Corynebacterium glutamicum Mycobacterium tuberculosis	99,612 57,278	25-Jul-96 17-Jun-98
ra02158	1080	GB_BA2:AF049897	9196	AF049897 Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum Corynebacterium glutamicum	100,000	1-Jul-98	
	GB_BA2:AF031518 D	2045	AF031518 Corynebacterium glutamicum argC, argI, argB, argD, and argF genes.	Corynebacterium glutamicum	99,898	5-Jan-99		
	GB_BA1:CGARGCJB_4355 D	X86157	GB_BA2:AF049897	9196	AF049897 Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum Corynebacterium glutamicum	100,000 99,843	25-Jul-96 1-Jul-98
	GB_BA2:AF031518 D	2045	AF031518 Corynebacterium glutamicum ornithine carbamoyltransferase (argF) gene, complete cds.	Corynebacterium glutamicum	88,679	5-Jan-99		
	GB_BA2:AF041436	516	AF041436 Corynebacterium glutamicum arginine repressor (argR) gene, complete cds.	Corynebacterium glutamicum	100,000	5-Jan-99		
ra02160	1326	GB_BA2:AF049897	9196	AF049897 Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Corynebacterium glutamicum	99,774	1-Jul-98	
	GB_BA2:AF030520	1206	AF030520 Corynebacterium glutamicum argininosuccinate synthetase (argG) gene, complete cds.	Corynebacterium glutamicum	99,834	19-Nov-97		
	GB_BA1:SCARGGH GB_BA2:AF049897	1909 9196	Z49111 AF049897 S. clavigerius argG gene and argH gene (partial). Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), ornithine acetyltransferase (argJ), N-acetylglutamate kinase (argB), acetylornithine transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH) genes, complete cds.	Streptomyces clavigerius Corynebacterium glutamicum	65,913 88,524	22-Apr-96 1-Jul-98		
ra02162	1554							

Table 4 (continued)

				Corynebacterium glutamicum argininosuccinate lyase (argH) gene, complete cds.	87,561	1-Jul-98
				Mycobacterium tuberculosis H37Rv complete genome; segment 73/162.	64,732	17-Jun-98
				Mycobacterium tuberculosis H37Rv complete genome; segment 41/162.	36,998	17-Jun-98
				Mycobacterium tuberculosis	39,910	17-Feb-95
				Corynebacterium glutamicum basidiomycete CECT 20197	38,474	19-Jul-97
				Homo sapiens Mycobacterium leprae	35,941	16-Sep-98
				Corynebacterium glutamicum	40,286	15-Jun-96
				Homo sapiens Mycobacterium leprae	33,689	16-Sep-98
				Corynebacterium glutamicum	99,353	6-Feb-99
				Corynebacterium glutamicum	99,367	29-Sep-97
				Escherichia coli	37,651	17-Apr-96
				Corynebacterium glutamicum	98,214	5-Jan-99
				Corynebacterium glutamicum	93,805	6-Feb-99
				Corynebacterium glutamicum	100,000	29-Sep-97
				Corynebacterium glutamicum	100,000	8-Feb-99
				Corynebacterium glutamicum	39,075	5-Aug-98
				Eubacterium acidaminophilum	35,542	28-Feb-95
				Drosophila melanogaster	33,938	17-Jun-98
				Eubacterium acidaminophilum	65,517	27-Aug-99
				Mycobacterium leprae	36,770	01-MAR-1994
				Mycobacterium leprae	38,674	01-MAR-1994
				Mycobacterium leprae	65,465	27-Aug-99
				Mycobacterium leprae	37,577	17-Jun-98
				Mycobacterium leprae	59,823	01-MAR-1994
				Aeropyrum pernix	39,442	22-Jun-99

Table 4 (continued)

GB_PR4:AC006236	127593	AC006336	Homo sapiens chromosome 17, clone hCIT.162_E_12, complete sequence.	Homo sapiens	37,191	29-DEC-1998
GB_BA1:MSGY154	40221	AD00002	Mycobacterium tuberculosis sequence from clone y154.	Mycobacterium tuberculosis	53,541	03-DEC-1996
GB_BA1:MTCY154	13935	Z98209	Mycobacterium tuberculosis H37Rv complete genome; segment 121/162.	Mycobacterium tuberculosis	40,407	17-Jun-98
GB_BA1:U00019	36033	U00019	Mycobacterium leprae cosmid B2235.	Mycobacterium leprae	40,541	01-MAR-1994
GB_BA1:MSGB937C_S	38914	L78820	Mycobacterium leprae cosmid B937 DNA sequence.	Mycobacterium leprae	66,027	15-Jun-96
GB_BA1:MTCY2B12	20431	Z81011	Mycobacterium tuberculosis H37Rv complete genome; segment 61/162.	Mycobacterium tuberculosis	71,723	18-Jun-98
GB_BA2:U01072	4393	U01072	Mycobacterium bovis BCG orotidine-5'-monophosphate decarboxylase (uraA) gene.	Mycobacterium bovis	67,101	22-DEC-1993
GB_BA1:MSU91572	960	U91572	Mycobacterium smegmatis carbamoyl phosphate synthetase (pyrAB) gene, partial cds and orotidine 5'-monophosphate decarboxylase (pyrF) gene, complete cds.	Mycobacterium smegmatis	60,870	22-MAR-1997
GB_HTG3:AC009364	192791	AC00964	Homo sapiens chromosome 7, *** SEQUENCING IN PROGRESS ***, 57 unordered pieces.	Homo sapiens	37,994	1-Sep-99
GB_HTG3:AC009364	192791	AC00964	Homo sapiens chromosome 7, *** SEQUENCING IN PROGRESS ***, 57 unordered pieces.	Homo sapiens	37,994	1-Sep-99
GB_BA1:MTCY21B4	39150	Z80108	Mycobacterium tuberculosis H37Rv complete genome; segment 62/162.	Mycobacterium tuberculosis	55,844	23-Jun-98
GB_BA2:AF077324	5228	AF07724	Rhodococcus equi strain 103 plasmid RE-VP1 fragment f.	Rhodococcus equi	41,185	5-Nov-98
GB_EST22:AU017763	586	AU01763	AU017763 Mouse two-cell stage embryo cDNA Mus musculus cDNA clone J0744A04 3', mRNA sequence.	Mus musculus	38,616	19-OCT-1998
GB_BA1:MTCY21B4	39150	Z80108	Mycobacterium tuberculosis H37Rv complete genome; segment 62/162.	Mycobacterium tuberculosis	56,282	23-Jun-98
GB_HTG3:AC010745	193862	AC01045	Homo sapiens clone NH0549D18, *** SEQUENCING IN PROGRESS ***, 30 unordered pieces.	Homo sapiens	36,772	21-Sep-99
GB_HTG3:AC010745	193862	AC01045	Homo sapiens clone NH0549D18, *** SEQUENCING IN PROGRESS ***, 30 unordered pieces.	Homo sapiens	36,772	21-Sep-99
EM_PAT:EO9855	1239	E09855	gDNA encoding S-adenosylmethionine synthetase.	Corynebacterium glutamicum	99,515	07-OCT-1997 (Rel. 52, Created)
GB_PAT:A37831	5392	A37831	Sequence 1 from Patent WO9408014.	Streptomyces pristinaespiralis	63,568	05-MAR-1997
GB_BA2:AF117274	2303	AF117274	Streptomyces spectabilis flavoprotein homolog Dif (dif) gene, partial cds; and Streptomyces spectabilis S-adenosylmethionine synthetase (metK) gene, complete cds.	Streptomyces spectabilis	65,000	31-MAR-1999
EM_BA1:AB003693	5589	AB00393	Corynebacterium ammoniagenes DNA for rib operon, complete cds.	Corynebacterium ammoniagenes	52,909	03-OCT-1997 (Rel. 52, Created)

Table 4 (continued)

	GB_PAT:E07957	5589	E07957	gDNA encoding at least guanosine triphosphate cyclohydrolase and riboflavin synthase.	52,909	29-Sep-97
	GB_PAT:132742	5589	I32742	Sequence 1 from patent US 5589355.	52,909	6-Feb-97
	GB_PAT:132743	2689	I32743	Sequence 2 from patent US 5589355.	57,937	6-Feb-97
rxa02247	756	EM_BA1:AB003693	5589	Corynebacterium ammoniagenes DNA for rib operon, complete cds.	57,937	03-OCT-1997 (Rel)
				52, Created)		
	GB_PAT:132742	5589	I32742	Sequence 1 from patent US 5589355.	57,937	6-Feb-97
rxa02248	1389	GB_PAT:132742	5589	Sequence 1 from patent US 5589355.	61,843	6-Feb-97
	EM_BA1:AB003693	5589	AB003693	Corynebacterium ammoniagenes DNA for rib operon, complete cds.	61,843	03-OCT-1997 (Rel)
				52, Created)		
	GB_PAT:E07957	5589	E07957	gDNA encoding at least guanosine triphosphate cyclohydrolase and riboflavin synthase.	61,843	29-Sep-97
rxa02249	600	GB_PAT:E07957	5589	gDNA encoding at least guanosine triphosphate cyclohydrolase and riboflavin synthase.	64,346	29-Sep-97
	GB_PAT:132742	5589	I32742	Sequence 1 from patent US 5589355.	64,346	6-Feb-97
	GB_PAT:132743	2689	I32743	Sequence 2 from patent US 5589355.	64,346	6-Feb-97
rxa02250	643	GB_PAT:E07957	5589	gDNA encoding at least guanosine triphosphate cyclohydrolase and riboflavin synthase.	56,318	29-Sep-97
	GB_PAT:132742	5589	I32742	Sequence 1 from patent US 5589355.	56,318	6-Feb-97
	EM_BA1:AB003693	5589	AB003693	Corynebacterium ammoniagenes DNA for rib operon, complete cds.	56,318	03-OCT-1997 (Rel)
				52, Created)		
	GB_BA1:CGL007732	4460	AJ007732	Corynebacterium glutamicum 3' ppc gene, secG gene, amt gene, ocd gene and 5' soxA gene.	100,000	7-Jan-99
rxa02262	1269	GB_BA1:CGL007732	4460	C. glutamicum amt gene.	100,000	29-MAY-1996
	GB_BA1:CGAMTGEN 2028		X93513			
	E_VI:HEHCMVCG	229354	X17403	Human cytomegalovirus strain AD169 complete genome.	38,651	10-Feb-99
	GB_VI:HEHCMVCG	229354	X17403	Corynebacterium glutamicum 3' ppc gene, secG gene, amt gene, ocd gene and 5' soxA gene.	100,000	7-Jan-99
rxa02263	488	GB_BA1:CGL007732	4460	AJ007732	37,526	7-Jan-99
	GB_BA1:CGL007732	4460	AJ007732	Corynebacterium glutamicum 3' ppc gene, secG gene, amt gene, ocd gene and 5' soxA gene.		
				Bacillus sp.	96,928	08-OCT-1997 (Rel)
rxa02272	1368	EM_PAT:E09373	1591	E09373	Creatinine deiminase gene.	52, Created)
	GB_BA1:D38505	1591	D38505	Bacillus sp. gene for creatinine deiminase, complete cds.	96,781	7-Aug-98
	GB_HTG2:AC006595	146070	AC006595	Homo sapiens, *** SEQUENCING IN PROGRESS *** , 4 unordered pieces.	36,264	20-Feb-99
rxa02281	1545	GB_GSS12:AAQ41101	551	HS_2257_B1_H02_MR CIT Approved Human Genomic Sperm Library D 0	36,197	17-MAR-1999
				Homo sapiens genomic clone Plate=2257 Col=3 Row=P, genomic survey sequence.		

Table 4 (continued)

GB_EST23:AI128623	363	AI128623	qa62c01.s1 Soares_fetal_heart_NbHH19W Homo sapiens cDNA clone	Homo sapiens	37,017	05-OCT-1998
GB_PL2.ATAC007019	102335	AC007019	IMAGEM:1691328 3', mRNA sequence.	Arabidopsis thaliana chromosome II BAC F7D8 genomic sequence, complete	Arabidopsis thaliana	33,988
ra02299	531	GB_BA2:AF116184	540	AF116184 Corynebacterium glutamicum L-aspartate-alpha-decarboxylase precursor (panD) gene, complete cds.	Corynebacterium glutamicum	100,000
		GB_GSS9:AQ164310	507	AQ164310 HS_2171_A2_E01_MR CIT Approved Human Genomic Sperm Library D Homo sapiens genomic clone Plate=2171 Col=2 Row=1, genomic survey sequence.	Homo sapiens	37,278
ra02311	813	GB_VI:MH68TKH	4557	X93468 Murine herpesvirus type 68 thymidine kinase and glycoprotein H genes	murine herpesvirus 68	40,288
		GB_HTG4:AC006091	176878	AC006091 Drosophila melanogaster chromosome 3 clone BACR48G05 (D475) RPCI-98 48.G.5 map 91F-191F13 strain Y, cn bw sp, *** SEQUENCING IN PROGRESS *** , 4 unordered pieces.	Drosophila melanogaster	36,454
		GB_HTG4:AC006091	176878	AC006091 Drosophila melanogaster chromosome 3 clone BACR48G05 (D475) RPCI-98 48.G.5 map 91F-191F13 strain Y, cn bw sp, *** SEQUENCING IN PROGRESS *** , 4 unordered pieces.	Drosophila melanogaster	36,454
GB_BA2:RRU65510	16259	U65510	Rhodospirillum rubrum CO-induced hydrogenase operon (cooM, cooK, cooL, cooX, cooU, cooH) genes, iron sulfur protein (cooF) gene, carbon monoxide dehydrogenase (cooS) gene, carbon monoxide dehydrogenase accessory proteins (cooC, cooT, cooJ) genes, putative transcriptional activator (cooA) gene, nicotinate-nucleotide pyrophosphorylase (nadC) gene, complete cds, L-aspartate oxidase (nadB) gene, and alkyl hydroperoxide reductase (ahpC) gene, partial cds.	Rhodospirillum rubrum	37,828	
ra02315	1752	GB_BA1:MSGY224	40051	AD000004 Mycobacterium tuberculosis sequence from clone y224.	Mycobacterium tuberculosis	49,418
		GB_BA1:MTY25D10	40838	Z95558 Mycobacterium tuberculosis H37Rv complete genome; segment 28/162.	Mycobacterium tuberculosis	49,360
		GB_BA1:MSGY224	40051	AD000004 Mycobacterium tuberculosis sequence from clone y224.	Mycobacterium tuberculosis	38,150
ra02318	402	GB_HTG3:AC011348	111083	AC011348 Homo sapiens chromosome 5 clone CIT-HSPC_303E13, *** SEQUENCING IN PROGRESS *** , 3 ordered pieces.	Homo sapiens	35,821
		GB_HTG3:AC011348	111083	AC011348 Homo sapiens chromosome 5 clone CIT-HSPC_303E13, *** SEQUENCING IN PROGRESS *** , 3 ordered pieces.	Homo sapiens	35,821
		GB_HTG3:AC011412	89234	AC011412 Homo sapiens chromosome 5 clone CIT978SKB_81K21, *** SEQUENCING IN PROGRESS *** , 3 ordered pieces.	Homo sapiens	36,181
ra02319	1080	GB_BA1:MSGY224	40051	AD000004 Mycobacterium tuberculosis sequence from clone y224.	Mycobacterium tuberculosis	37,792
		GB_BA1:MTY25D10	40838	Z95558 Mycobacterium tuberculosis H37Rv complete genome; segment 28/162.	Mycobacterium tuberculosis	37,792
		GB_EST23:AI117213	476	AI117213 ub83h02.r1 Soares 2NbMT Mus musculus cDNA clone IMAGE:1395123 5',mRNA sequence.	Mus musculus	35,084

Table 4 (continued)

rx02345	1320	GB_BA1:BAPURKE	2582	X91189	B. ammoniagenes purK and purE genes.	Corynebacterium ammoniagenes	61,731	14-Jan-97
		GB_BA1:MTCY71	42729	Z92771	Mycobacterium tuberculosis H37Rv complete genome; segment 141/162.	Mycobacterium tuberculosis	39,624	10-Feb-99
		GB_BA1:MTCY71	42729	Z92771	Mycobacterium tuberculosis H37Rv complete genome; segment 141/162.	Mycobacterium tuberculosis	39,847	10-Feb-99
rx02350	618	GB_BA1:BAPURKE	2582	X91189	B. ammoniagenes purK and purE genes.	Corynebacterium ammoniagenes	64,286	14-Jan-97
		GB_PL1:SC130KBXV	129528	X94335	S. cerevisiae 130kb DNA fragment from chromosome XV.	Saccharomyces cerevisiae	36,617	15-Jul-97
		GB_PL1:SCXVORFS	50984	X90518	S. cerevisiae DNA of 51 Kb from chromosome XV right arm.	Saccharomyces cerevisiae	36,617	1-Nov-95
rx02373	1038	GB_PAT:E00311 GB_PAT:I06030	1853 1853	E00311 I06030	DNA coding of 2,5-diketogluconic acid reductase. Sequence 4 from Patent EP 0305608.	unidentified Unknown.	56,123 56,220	29-Sep-97 02-DEC-1994
		GB_PAT:I00836	1853	I00836	Sequence 1 from Patent US 4758514.	Unknown.	56,220	21-MAY-1993
rx02375	1350	GB_BA2:CGU31230	3005	U31230	Corynebacterium glutamicum Obg protein homolog gene, partial cds, gamma glutamyl kinase (proB) gene, complete cds, and (unkdh) gene, complete cds.	Corynebacterium glutamicum	99,332	2-Aug-96
		GBHTG3:AC009946	169072	AC009946	Homo sapiens clone NH0012C17, *** SEQUENCING IN PROGRESS *** , 1 unordered pieces.	Homo sapiens	36,115	8-Sep-99
		GBHTG3:AC009946	169072	AC009946	Homo sapiens clone NH0012C17, *** SEQUENCING IN PROGRESS *** , 1 unordered pieces.	Homo sapiens	36,115	8-Sep-99
rx02380	777	GB_BA1:MTCY253	41230	Z81368	Mycobacterium tuberculosis H37Rv complete genome; segment 106/162.	Mycobacterium tuberculosis	38,088	17-Jun-98
		GBHTG4:AC010658	120754	AC010658	Drosophila melanogaster chromosome 3L7/5C1 clone RPC198-3B20, *** SEQUENCING IN PROGRESS *** , 78 unordered pieces.	Drosophila melanogaster	35,817	16-OCT-1999
		GBHTG4:AC010658	120754	AC010658	Drosophila melanogaster chromosome 3L7/5C1 clone RPC198-3B20, *** SEQUENCING IN PROGRESS *** , 78 unordered pieces.	Drosophila melanogaster	35,817	16-OCT-1999
rx02382	1419	GB_BA1:CGPROAGE	1783	X82829	C glutamicum proA gene.	Corynebacterium glutamicum	98,802	23-Jan-97
		N_BA1:MTCY428	26914	Z81451	Mycobacterium tuberculosis H37Rv complete genome; segment 107/162.	Mycobacterium tuberculosis	38,054	17-Jun-98
		GB_BA2:CGU31230	3005	U31230	Corynebacterium glutamicum Obg protein homolog gene, partial cds, gamma glutamyl kinase (proB) gene, complete cds, and (unkdh) gene, complete cds.	Corynebacterium glutamicum	98,529	2-Aug-96
rx02400	693	GB_BA1:CGAC5A	2427	X75504	C. glutamicum aceA gene and thiX genes (partial).	Corynebacterium glutamicum	100,000	9-Sep-94
		GB_PAT:I86191 GB_PAT:I13593	2135 2135	186191 I13693	Sequence 3 from patent US 5700661. Sequence 3 from patent US 5439822.	Unknown. Unknown.	100,000 100,000	10-Jun-98 26-Sep-95
rx02432	1098	GB_GSS15:AG80684	574	AQ606842	HS_5404_B2_E07_T7A RPCI-11 Human Male BAC Library Homo sapiens genomic clone Plate=980 Col=14 Row=J, genomic survey sequence.	Homo sapiens	39,716	10-Jun-99

Table 4 (continued)

GB_EST1:T05804	406	T05804	EST03693 Fetal brain, Stratagene (cat#935206) Homo sapiens cDNA clone	Homo sapiens	37,915	30-Jun-93	
GB_PL1:AB006699	77363	AB006699	HFBDG63 similar to EST containing Alu repeat, mRNA sequence.				
			Arabidopsis thaliana genomic DNA, chromosome 5, P1 clone: MDJ22, complete sequence.	Arabidopsis thaliana	35,526	20-Nov-99	
rxa02458	1413	GB_BA2:AF114233	1852	AF114233 Corynebacterium glutamicum 5-enolpyruvylshikimate 3-phosphate synthase gene, complete cds.	Corynebacterium glutamicum	100,000	7-Feb-99
		GB_EST37:AW013061	578	AW013061 DDT033 Winter flounder ovary Pleuronectes americanus cDNA clone ODT-0033 5' similar to FRUCTOSE-BISPHOSPHATE ALDOLASE B (LIVER).	Pleuronectes americanus	39,175	10-Sep-99
	1		mRNA sequence.				
		GB_GSS15:QQ65002	728	AQ650027 Sheared DNA-5L2-TF Sheared DNA Trypanosoma brucei genomic clone	Trypanosoma brucei	39,281	22-Jun-99
	7	GB_BA1:MTCY359	36021	Z83859 Sheared DNA-5L2 genomic survey sequence.	Mycobacterium tuberculosis	39,634	17-Jun-98
rxa02469	1554	GB_BA1:MLCB1788	39228	AL008609 Mycobacterium tuberculosis H37Rv complete genome; segment 84/162.	Mycobacterium leprae	59,343	27-Aug-99
		GB_BA1:SCAJ10601	4692	AJ010601 Steptomyces coelicolor A3(2) DNA for whiD and whiK loci.	Streptomyces coelicolor	48,899	17-Sep-98
rxa02497	1050	GB_BA2:CGU31224	422	U31224 Corynebacterium glutamicum (px) gene, partial cds.	Corynebacterium glutamicum	96,445	2-Aug-96
		GB_BA1:MTCY20G9	37218	Z77162 Mycobacterium tuberculosis H37Rv complete genome; segment 25/162.	Mycobacterium tuberculosis	59,429	17-Jun-98
		GB_BA1:SCE7	16911	AL049819 Streptomyces coelicolor cosmid E7.	Streptomyces coelicolor	39,510	10-MAY-1999
rxa02499	933	GB_BA2:CGU31225	1817	U31225 Corynebacterium glutamicum L-proline:NADP+ 5-oxidoreductase (proC) gene, Corynebacterium glutamicum	Corynebacterium glutamicum	97,749	2-Aug-96
		GB_BA1:NG17PLA	1920	X13965 Neisseria gonorrhoeae plA gene.	Neisseria gonorrhoeae	43,249	30-Sep-93
		GB_HTG2:AC007984	129715	AC007984 05.C.10 map 97D-97E strain Y; cn bw sp. *** SEQUENCING IN PROGRESS *** , 87 unorderded pieces.	Drosophila melanogaster	33,406	2-Aug-99
rxa02501	1188	GB_BA1:MTCY20G9	37218	Z77162 Mycobacterium tuberculosis H37Rv complete genome; segment 25/162.	Mycobacterium tuberculosis	39,357	17-Jun-98
		GB_BA1:U00018	42991	U00018 Mycobacterium leprae cosmid B2168.	Mycobacterium leprae	51,768	01-MAR-1994
		GB_VI:HE1CG	152261	X14112 Herpes simplex virus (HSV) type 1 complete genome.	human herpesvirus 1	39,378	17-Apr-97
		GB_PR3:AC005328	35414	AC005328 Homo sapiens chromosome 19, cosmid R26660, complete sequence.	Homo sapiens	39,922	28-Jul-98
		GB_PR3:AC005545	43514	AC005545 Homo sapiens chromosome 19, cosmid R26634, complete sequence.	Homo sapiens	39,922	3-Sep-98
		GB_PR3:AC005328	35414	AC005328 Homo sapiens chromosome 19, cosmid R26660, complete sequence.	Homo sapiens	34,911	28-Jul-98
		GB_BA1:MTCY20G9	37218	Z77162 Mycobacterium tuberculosis H37Rv complete genome; segment 25/162.	Mycobacterium tuberculosis	54,940	17-Jun-98
		GB_PR3:AC005328	35414	AC005328 Homo sapiens chromosome 19, cosmid R26660, complete sequence.	Homo sapiens	41,265	28-Jul-98
		GB_PR3:AC005545	43514	AC005545 Homo sapiens chromosome 19, cosmid R26634, complete sequence.	Homo sapiens	41,265	3-Sep-98
rxa02516	1386	GB_BA1:MLCL536	36224	Z99125 Mycobacterium leprae cosmid L536.	Mycobacterium leprae	37,723	04-DEC-1998
		GB_BA1:U00013	355881	U00013 Mycobacterium leprae cosmid B1496.	Mycobacterium leprae	37,723	01-MAR-1994

Table 4 (continued)

GB_BA1:MTV007	32806	AL021184	Mycobacterium tuberculosis H37Rv complete genome; segment 64/162.	Mycobacterium tuberculosis Mycobacterium leprae	61,335 37,018	17-Jun-98 04-DEC- 1998
rx02517	570	GB_BA1:MLCL536	36224 Z99125	Mycobacterium leprae cosmid L536.		
	GB_BA1:U00013	35881	U00013	Mycobacterium leprae cosmid B1496.	Mycobacterium leprae	37,018 1994
rx02532	1170	GB_BA1:SCC22	22115 AF137219	Streptomyces coelicolor cosmid C22. AF137219 Amia calva mixed lineage leukemia-like protein (Mll) gene, partial cds. vs52a10.y1 Stratagene mouse Tcell 937311 Mus musculus cDNA clone	Streptomyces coelicolor Amia calva Mus musculus	37,071 36,853 41,860
	GB_EST30:AI645057	301	AI645057	IMAGE_1149882_5 mRNA sequence.		12-Jul-99 7-Sep-99 29-Apr-99
rx02536	879	GB_EST20:AA822595	429 AA822595	vs52a10.y1 Stratagene mouse Tcell 937311 Mus musculus cDNA clone IMAGE_1149882_5 mRNA sequence.	Mus musculus	42,353 17-Feb-98
	GB_HTG2:AF130866	118874	AF130866	Homo sapiens chromosome 8 clone PAC 172N13 map 8q24, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens	40,754 21-MAR- 1999
rx02550	1434	GB_HTG2:AF130366	118874 AF130866	Homo sapiens chromosome 8 clone PAC 172N13 map 8q24, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens	40,754 21-MAR- 1999
	GB_PL1:ATT12J5	84499	AL035522	Arabidopsis thaliana DNA chromosome 4, BAC clone T12J5 (ESSAI project)	Arabidopsis thaliana	35,063 24-Feb-99
rx02559	1026	GB_BA1:MTCY279	9150	Z97991 Mycobacterium tuberculosis H37Rv complete genome; segment 17/162.	Mycobacterium tuberculosis Mycobacterium leprae	37,773 17-Jun-98
	GB_BA1:MSGB1970C	39399	L78815	Mycobacterium leprae cosmid B1970 DNA sequence.		128 15-Jun-96
	GB_BA2:SC2H4	25970	AL031514	Streptomyces coelicolor cosmid 2H4.	Streptomyces coelicolor A3(2)	37,906 19-OCT- 1999
rx02622	1683	GB_BA1:MTV004	69350 AL009198	Mycobacterium tuberculosis H37Rv complete genome; segment 144/162.	Mycobacterium tuberculosis	47,358 18-Jun-98
	GB_PAT:128684	5100	I28684	Sequence 1 from patent US 5573915.	Unknown	39,138 6-Feb-97
	GB_BA1:MTU27357	5100	U27357	Mycobacterium tuberculosis cyclopropane mycolic acid synthase (cma1) gene, complete cds.	Mycobacterium tuberculosis	39,138 26-Sep-95
	GB_BA2:AE001780	11997	AE001780	Thermotoga maritima section 92 of 136 of the complete genome.	Thermotoga maritima	44,914 2-Jun-99
	GB_OV:AF064564	49254	AF064564	Fugu rubripes neurofibromatosis type 1 (NF1), A-kinase anchor protein (AKAP84), BAW protein (BAW), and WSB1 protein (WSB1) genes, complete cds.	Fugu rubripes	39,732 17-Aug-99
rx02623	714	GB_GSS5:AQ818728	444 AQ818728	Fugu rubripes neurofibromatosis type 1 (NF1), A-kinase anchor protein (AKAP84), BAW protein (BAW), and WSB1 protein (WSB1) genes, complete cds.	Fugu rubripes	36,703 17-Aug-99
				genomic clone Plate=844 Col=17 Row=M, genomic survey sequence.	Homo sapiens	38,801 26-Aug-99
	GB_HTG5:AC011083	198586	AC011083	Homo sapiens chromosome 9 clone RP11-111M7 map 9, WORKING DRAFT	Homo sapiens	35,714 19-Nov-99
	GB_GSS6:AQ826948	544	AQ826948	SEQUENCE, 51 unordered pieces.		
				HS_5014_A2_C12_T7A RPCI-11 Human Male BAC Library Homo sapiens	Homo sapiens	39,146 27-Aug-99
				genomic clone Plate=590 Col=24 Row=E, genomic survey sequence.		

Table 4 (continued)

rx02629	708	GB_VI:BRSMGP	462	M86652	Bovine respiratory syncytial virus membrane glycoprotein mRNA, complete cds.	Bovine respiratory syncytial virus	Bovine respiratory syncytial virus	28-Apr-93
		GB_VI:BRSMGP	462	M86652	Bovine respiratory syncytial virus membrane glycoprotein mRNA, complete cds	Bovine respiratory syncytial virus	Bovine respiratory syncytial virus	28-Apr-93
rx02645	1953	GB_PAT:A45577	1925	A45577	Sequence 1 from Patent WO9519442.	Corynebacterium glutamicum	39,130	07-MAR- 1997
		GB_PAT:A45581	1925	A45581	Sequence 5 from Patent WO9519442.	Corynebacterium glutamicum	39,130	07-MAR- 1997
		GB_BA1.CORILVA	1925	L01508	Corynebacterium glutamicum threonine dehydratase (ilvA) gene, complete cds.	Corynebacterium glutamicum	39,130	26-Apr-93
rx02646	1392	GB_BA1.CORILVA	1925	L01508	Corynebacterium glutamicum threonine dehydratase (ilvA) gene, complete cds.	Corynebacterium glutamicum	99,138	26-Apr-93
		GB_PAT:A45585	1925	A45585	Sequence 9 from Patent WO9519442.	Corynebacterium glutamicum	99,066	07-MAR- 1997
		GB_PAT:A45583	1925	A45583	Sequence 7 from Patent WO9519442.	Corynebacterium glutamicum	99,066	07-MAR- 1997
rx02648	1326	GB_OV:ICTCNC	2049	M83111	ctalurus punctatus cyclic nucleotide-gated channel RNA sequence.	Ictalurus punctatus	38,402	24-MAY- 1993
		GB_EST11:AA265464	345	AA265464	mx91c06 r1 Soares mouse NML Mus musculus cDNA clone IMAGE:693706 5' mRNA sequence	Mus musculus	38,655	20-MAR- 1997
		GB_GSS8:AAQ006950	480	AQ006950	CIT-HSP:2294E14.TR CIT-HSP Homo sapiens genomic clone 2294E14, genomic survey sequence.	Homo sapiens	36,074	27-Jun-98
rx02653								129
rx02687	1068	GB_BA1:CORPHEA	1088	M13774	C. glutamicum pheA gene encoding prephenate dehydratase, complete cds.	Corynebacterium glutamicum	99,715	26-Apr-93
		GB_PAT:E04483	948	E04483	DNA encoding prephenate dehydratase.	Corynebacterium glutamicum	98,523	29-Sep-97
		GB_PAT:E06110	948	E06110	DNA encoding prephenate dehydratase.	Corynebacterium glutamicum	98,523	29-Sep-97
rx02717	1005	GB_PL1:HVCH4H	59748	Y14573	Hordeum vulgare DNA for chromosome 4H.	Hordeum vulgare	36,593	25-MAR- 1999
		GB_PR2:HS310H5	29718	Z69705	Human DNA sequence from cosmid 310H5 from a contig from the tip of the short arm of chromosome 16, spanning 2Mb of 16p13.3. Contains EST and CpG island.	Homo sapiens	36,089	22-Nov-99
		GB_PR3:AC004754	39188	AC004754	Homo sapiens chromosome 16, cosmid clone RT286 (LANL), complete sequence.	Homo sapiens	36,089	28-MAY- 1998
rx02754	1461	GB_HTG2:AC008223	130212	AC008223	Drosophila melanogaster chromosome 3 clone BACR16118 (D815).RPC1.98 16.1.18 map 95A-95A strain y; on bw sp. *** SEQUENCING IN PROGRESS*** , 101 unordered pieces.	Drosophila melanogaster	32,757	2-Aug-99

Table 4 (continued)

GB-HTG2:AC008223	130212	AC008223	Drosophila melanogaster chromosome 3 clone BACR16I18 (D8:15) RPCI-98 16:I:8 map 95A-95A strain Y; cн bw sp. *** SEQUENCING IN PROGRESS *** , 101 unordered pieces.	Drosophila melanogaster	32,757	2-Aug-99	
GB_BA1:MTCY71	42729	Z92771	Mycobacterium tuberculosis H37Rv complete genome; segment 141/162 unorderd pieces.	Mycobacterium tuberculosis	37,838	10-Feb-99	
GB-HTG5:AC011678	171967	AC011678	Homo sapiens clone 14_B_7, *** SEQUENCING IN PROGRESS *** , 20 unorderd pieces.	Homo sapiens	35,331	5-Nov-99	
GB-HTG5:AC011678	171967	AC011678	Homo sapiens clone 14_B_7, *** SEQUENCING IN PROGRESS *** , 20 unorderd pieces.	Homo sapiens	33,807	5-Nov-99	
GB_BA2:AF064070	23183	AF064070	Burkholderia pseudomallei putative dihydroorotate (pyrC) gene, partial cds; putative 1-acyl-sn-glycerol-3-phosphate acyltransferase (plsC), putative diadenosine tetraphosphatase (apaH), complete cds; type II O-antigen biosynthesis gene cluster, complete sequence; putative undecaprenyl phosphate N-acetylglucosaminyltransferase, and putative UDP-glucose 4-epimerase genes, complete cds; and putative galactosyl transferase gene, partial cds.	Burkholderia pseudomallei	36,929	20-Jan-99	
rx02771	678	GB_BA2:AF038651	4077	AF038651 Corynebacterium glutamicum dipeptide-binding protein (dicAE) gene, partial cds; adenine phosphoribosyltransferase (apt) and GTP pyrophosphokinase (rel) genes, complete cds; and unknown gene.	Corynebacterium glutamicum	99,852	14-Sep-98
GB_IN1:CEL1T19B4	37121	U80438	Caenorhabditis elegans cosmid T19B4.	Caenorhabditis elegans	43,836	04-DEC-1996	
GB_EST36:AV193572	360	AV193572	AV193572 Yuji Kohara unpublished cDNA; Strain N2 hemaphrodite embryo Caenorhabditis elegans cDNA clone yk618hb 5', mRNA sequence.	Caenorhabditis elegans	48,588	22-Jul-99	
rx02772	1158	GB_BA2:AF038651	4077	AF038651 Corynebacterium glutamicum dipeptide-binding protein (dicAE) gene, partial cds; adenine phosphoribosyltransferase (apt) and GTP pyrophosphokinase (rel) genes, complete cds; and unknown gene.	Corynebacterium glutamicum	99,914	14-Sep-98
GB_BA1:MTCY227	35946	Z77724	Mycobacterium tuberculosis H37Rv complete genome; segment 114/162.	Mycobacterium tuberculosis	38,339	17-Jun-98	
GB_BA1:U00011	40429	U00011	Mycobacterium leprae cosmid B1177.	Mycobacterium leprae	38,996	01-MAR-1994	
rx02772	1266	GB_BA1:MTCY159	33818	Z83863 Mycobacterium tuberculosis H37Rv complete genome; segment 111/162.	Mycobacterium tuberculosis	37,640	17-Jun-98
GB_PR4:AC006581	172931	AC006581	Homo sapiens 12p21 BAC RPCI11-259O18 (Roswell Park Cancer Institute Human BAC Library) complete sequence.	Homo sapiens	37,906	3-Jun-99	
GB_PR4:AC006581	172931	AC006581	Homo sapiens 12p21 BAC RPCI11-259O18 (Roswell Park Cancer Institute Human BAC Library) complete sequence.	Homo sapiens	35,280	3-Jun-99	
GB_BA1:MTCY159	33818	Z83863	Mycobacterium tuberculosis H37Rv complete genome; segment 111/162.	Mycobacterium tuberculosis	39,765	17-Jun-98	
GB_OV_CHKCEK2	3694	M35195	Chicken tyrosine kinase (cek2) mRNA, complete cds.	Gallus gallus	38,937	28-Apr-93	
GB_BA1:MSASDASK	5037	Z17372	M.smegmatis asd, ask-alpha, and ask-beta genes.	Mycobacterium smegmatis	38,495	9-Aug-94	
rx02802	1194	GB_EST24:AI223401	169	A1223401 qg48901 x1 Soares testis NHT Homo sapiens cDNA clone IMAGE:1138448 3 similar to WP:C25D7.8 CE08394 ; mRNA sequence.	Homo sapiens	40,828	27-OCT-1998

Table 4 (continued)

GB_EST24_AL223401	169	AI223401	rg48g01.x1 Soares_tests_NHT Homo sapiens cDNA clone IMAGE:1838448	Homo sapiens	40,828	27-OCT-1998
similar to WP_C25D7_8 CE08394 .. mRNA sequence						
rx02814 494	GB_BA1MTCY7D11	22070	Z95120	Mycobacterium tuberculosis H37Rv complete genome; segment 138/162.	Mycobacterium tuberculosis	58,418 17-Jun-98
GB_BA1MTCY7D11	22070	Z95120	Mycobacterium tuberculosis H37Rv complete genome; segment 138/162.	Mycobacterium tuberculosis	40,496 17-Jun-98	
GB_PR1HSAJ2962	778	AJ002962	Homo sapiens mRNA for hB-FABP.	Homo sapiens	39,826 17-Jan-98	
GB_BA1CGAJ4934	1160	AJ004934	Corynebacterium glutamicum dapD gene, complete CDS.	Corynebacterium glutamicum	100,000 17-Jun-98	
GB_BA1MTC1364	29540	Z93777	Mycobacterium tuberculosis H37Rv complete genome; segment 52/162.	Mycobacterium tuberculosis	37,710 17-Jun-98	
GB_BA1MLU15180	38675	U15180	Mycobacterium leprae cosmid B1756.	Mycobacterium leprae	39,626 09-MAR-1995	
rs03205 963	GB_BA1BLSIGBGN	2906	Z49824	B.lactofermentum orf1 gene and sigB gene.	Corynebacterium glutamicum@8.854	25-Apr-96
GB_EST21_AA980237 377	AA980237		ja32a12.r1 Soares_mammary_gland_NbMMG Mus musculus cDNA clone MAGE:1348414 5' similar to TRQ61025 Q61025 HYPOTHETICAL 15.2 KD PROTEIN .. mRNA sequence.	Mus musculus	41,489 27-MAY-1998	
GB_EST23_AL158316	371	AI158316	jd27c05.r1 Soares_thymus_2NbMT Mus musculus cDNA clone MAGE:1447112 5' mRNA sequence.	Mus musculus	38,005 30-Sep-98	
GB_IN1LMFL2743	38368	AL031910	leishmania major Friedlin chromosome 4 cosmid L2743.	Leishmania major	39,869 15-DEC-1999	
GB_PR3_HSDJ61B2	119666	AL096710	Human DNA sequence from clone RP1-61B2 on chromosome 6p11.2-12.3 Contains isoforms 1 and 3 of BPAG1 (bullosis pemphigoid antigen 1 230/240kD), an exon of a gene similar to murine MACF cytoskeletal protein, STSS and GSSS, complete sequence.	Homo sapiens	34,930 17-DEC-1999	
GB_PR3_HSDJ61B2	119666	AL096710	Human DNA sequence from clone RP1-61B2 on chromosome 6p11.2-12.3 Contains isoforms 1 and 3 of BPAG1 (bullosis pemphigoid antigen 1 230/240kD), an exon of a gene similar to murine MACF cytoskeletal protein, STSS and GSSS, complete sequence.	Homo sapiens	34,634 17-DEC-1999	

Exemplification**Example 1: Preparation of total genomic DNA of *Corynebacterium glutamicum* ATCC 13032**

5 A culture of *Corynebacterium glutamicum* (ATCC 13032) was grown overnight at 30°C with vigorous shaking in BHI medium (Difco). The cells were harvested by centrifugation, the supernatant was discarded and the cells were resuspended in 5 ml buffer-I (5% of the original volume of the culture — all indicated volumes have been calculated for 100 ml of culture volume). Composition of buffer-I: 140.34 g/l sucrose, 10 2.46 g/l MgSO₄ x 7H₂O, 10 ml/l KH₂PO₄ solution (100 g/l, adjusted to pH 6.7 with KOH), 50 ml/l M12 concentrate (10 g/l (NH₄)₂SO₄, 1 g/l NaCl, 2 g/l MgSO₄ x 7H₂O, 0.2 g/l CaCl₂, 0.5 g/l yeast extract (Difco), 10 ml/l trace-elements-mix (200 mg/l FeSO₄ x H₂O, 10 mg/l ZnSO₄ x 7 H₂O, 3 mg/l MnCl₂ x 4 H₂O, 30 mg/l H₃BO₃, 20 mg/l CoCl₂ x 6 H₂O, 1 mg/l NiCl₂ x 6 H₂O, 3 mg/l Na₂MoO₄ x 2 H₂O, 500 mg/l complexing agent 15 (EDTA or citric acid), 100 ml/l vitamins-mix (0.2 mg/l biotin, 0.2 mg/l folic acid, 20 mg/l p-amino benzoic acid, 20 mg/l riboflavin, 40 mg/l ca-pantothenate, 140 mg/l nicotinic acid, 40 mg/l pyridoxole hydrochloride, 200 mg/l myo-inositol). Lysozyme was added to the suspension to a final concentration of 2.5 mg/ml. After an approximately 4 h incubation at 37°C, the cell wall was degraded and the resulting 20 protoplasts are harvested by centrifugation. The pellet was washed once with 5 ml buffer-I and once with 5 ml TE-buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8). The pellet was resuspended in 4 ml TE-buffer and 0.5 ml SDS solution (10%) and 0.5 ml NaCl solution (5 M) are added. After adding of proteinase K to a final concentration of 25 200 µg/ml, the suspension is incubated for ca.18 h at 37°C. The DNA was purified by extraction with phenol, phenol-chloroform-isoamylalcohol and chloroform-isoamylalcohol using standard procedures. Then, the DNA was precipitated by adding 1/50 volume of 3 M sodium acetate and 2 volumes of ethanol, followed by a 30 min 30 incubation at -20°C and a 30 min centrifugation at 12,000 rpm in a high speed centrifuge using a SS34 rotor (Sorvall). The DNA was dissolved in 1 ml TE-buffer containing 20 µg/ml RNaseA and dialysed at 4°C against 1000 ml TE-buffer for at least 3 hours. During this time, the buffer was exchanged 3 times. To aliquots of 0.4 ml of the dialysed DNA solution, 0.4 ml of 2 M LiCl and 0.8 ml of ethanol are added. After a 30

- 133 -

min incubation at -20°C, the DNA was collected by centrifugation (13,000 rpm, Biofuge Fresco, Heraeus, Hanau, Germany). The DNA pellet was dissolved in TE-buffer. DNA prepared by this procedure could be used for all purposes, including southern blotting or construction of genomic libraries.

5

Example 2: Construction of genomic libraries in *Escherichia coli* of *Corynebacterium glutamicum* ATCC13032.

Using DNA prepared as described in Example 1, cosmid and plasmid libraries were constructed according to known and well established methods (see e.g., Sambrook, J. et al.

10 (1989) "Molecular Cloning : A Laboratory Manual", Cold Spring Harbor Laboratory Press, or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons.)

Any plasmid or cosmid could be used. Of particular use were the plasmids pBR322 (Sutcliffe, J.G. (1979) *Proc. Natl. Acad. Sci. USA*, 75:3737-3741); pACYC177 (Change & Cohen (1978) *J. Bacteriol* 134:1141-1156), plasmids of the pBS series (pBSSK+, pBSSK- and others; Stratagene, LaJolla, USA), or cosmids as SuperCos1 (Stratagene, LaJolla, USA) or Lorist6 (Gibson, T.J., Rosenthal A. and Waterson, R.H. (1987) *Gene* 53:283-286. Gene libraries specifically for use in *C. glutamicum* may be constructed using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

20

Example 3: DNA Sequencing and Computational Functional Analysis

Genomic libraries as described in Example 2 were used for DNA sequencing according to standard methods, in particular by the chain termination method using

ABI377 sequencing machines (see e.g., Fleischman, R.D. et al. (1995) "Whole-genome

25 Random Sequencing and Assembly of Haemophilus Influenzae Rd., *Science*, 269:496-512). Sequencing primers with the following nucleotide sequences were used: 5'-GGAAACAGTATGACCATG-3' or 5'-GTAAAACGACGGCCAGT-3'.

Example 4: *In vivo* Mutagenesis

30 *In vivo* mutagenesis of *Corynebacterium glutamicum* can be performed by passage of plasmid (or other vector) DNA through *E. coli* or other microorganisms (e.g. *Bacillus* spp. or yeasts such as *Saccharomyces cerevisiae*) which are impaired in their capabilities to maintain

- 134 -

the integrity of their genetic information. Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp, W.D. (1996) DNA repair mechanisms, in: *Escherichia coli* and *Salmonella*, p. 2277-2294, ASM: Washington.) Such strains are well known to those of ordinary skill in the art. The use of such 5 strains is illustrated, for example, in Greener, A. and Callahan, M. (1994) *Strategies* 7: 32-34.

Example 5: DNA Transfer Between *Escherichia coli* and *Corynebacterium glutamicum*

Several *Corynebacterium* and *Brevibacterium* species contain endogenous 10 plasmids (as e.g., pHM1519 or pBL1) which replicate autonomously (for review see, e.g., Martin, J.F. et al. (1987) *Biotechnology*, 5:137-146). Shuttle vectors for *Escherichia coli* and *Corynebacterium glutamicum* can be readily constructed by using standard vectors for *E. coli* (Sambrook, J. et al. (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel, F.M. et al. (1994) "Current Protocols in 15 Molecular Biology", John Wiley & Sons) to which a origin or replication for and a suitable marker from *Corynebacterium glutamicum* is added. Such origins of replication are preferably taken from endogenous plasmids isolated from *Corynebacterium* and *Brevibacterium* species. Of particular use as transformation markers for these species are genes for kanamycin resistance (such as those derived from the Tn5 or Tn903 20 transposons) or chloramphenicol (Winnacker, E.L. (1987) "From Genes to Clones — Introduction to Gene Technology, VCH, Weinheim). There are numerous examples in the literature of the construction of a wide variety of shuttle vectors which replicate in both *E. coli* and *C. glutamicum*, and which can be used for several purposes, including gene over-expression (for reference, see e.g., Yoshihama, M. et al. (1985) *J. Bacteriol.* 162:591-597, 25 Martin J.F. et al. (1987) *Biotechnology*, 5:137-146 and Eikmanns, B.J. et al. (1991) *Gene*, 102:93-98).

Using standard methods, it is possible to clone a gene of interest into one of the shuttle vectors described above and to introduce such a hybrid vectors into strains of *Corynebacterium glutamicum*. Transformation of *C. glutamicum* can be achieved by 30 protoplast transformation (Kastsumata, R. et al. (1984) *J. Bacteriol.* 159:306-311), electroporation (Liebl, E. et al. (1989) *FEMS Microbiol. Letters*, 53:399-403) and in cases where special vectors are used, also by conjugation (as described e.g. in Schäfer, A et al.

- 135 -

- (1990) *J. Bacteriol.* 172:1663-1666). It is also possible to transfer the shuttle vectors for *C. glutamicum* to *E. coli* by preparing plasmid DNA from *C. glutamicum* (using standard methods well-known in the art) and transforming it into *E. coli*. This transformation step can be performed using standard methods, but it is advantageous to use an *Mcr*-deficient
- 5 *E. coli* strain, such as NM522 (Gough & Murray (1983) *J. Mol. Biol.* 166:1-19).

Genes may be overexpressed in *C. glutamicum* strains using plasmids which comprise pCG1 (U.S. Patent No. 4,617,267) or fragments thereof, and optionally the gene for kanamycin resistance from TN903 (Grindley, N.D. and Joyce, C.M. (1980) *Proc. Natl. Acad. Sci. USA* 77(12): 7176-7180). In addition, genes may be

10 overexpressed in *C. glutamicum* strains using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

Aside from the use of replicative plasmids, gene overexpression can also be achieved by integration into the genome. Genomic integration in *C. glutamicum* or other *Corynebacterium* or *Brevibacterium* species may be accomplished by well-known

15 methods, such as homologous recombination with genomic region(s), restriction endonuclease mediated integration (REMI) (see, e.g., DE Patent 19823834), or through the use of transposons. It is also possible to modulate the activity of a gene of interest by modifying the regulatory regions (e.g., a promoter, a repressor, and/or an enhancer) by sequence modification, insertion, or deletion using site-directed methods (such as

20 homologous recombination) or methods based on random events (such as transposon mutagenesis or REMI). Nucleic acid sequences which function as transcriptional terminators may also be inserted 3' to the coding region of one or more genes of the invention, such terminators are well-known in the art and are described, for example, in Winnacker, E.L. (1987) *From Genes to Clones – Introduction to Gene Technology*. VCH:

25 Weinheim.

Example 6: Assessment of the Expression of the Mutant Protein

Observations of the activity of a mutated protein in a transformed host cell rely on the fact that the mutant protein is expressed in a similar fashion and in a similar quantity

30 to that of the wild-type protein. A useful method to ascertain the level of transcription of the mutant gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel *et al.*

- 136 -

- (1988) Current Protocols in Molecular Biology, Wiley: New York), in which a primer designed to bind to the gene of interest is labeled with a detectable tag (usually radioactive or chemiluminescent), such that when the total RNA of a culture of the organism is extracted, run on gel, transferred to a stable matrix and incubated with this probe, the binding and quantity of binding of the probe indicates the presence and also the quantity of mRNA for this gene. This information is evidence of the degree of transcription of the mutant gene. Total cellular RNA can be prepared from *Corynebacterium glutamicum* by several methods, all well-known in the art, such as that described in Bormann, E.R. *et al.* (1992) *Mol. Microbiol.* 6: 317-326.
- To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed (see, for example, Ausubel *et al.* (1988) Current Protocols in Molecular Biology, Wiley: New York). In this process, total cellular proteins are extracted, separated by gel electrophoresis, transferred to a matrix such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is generally tagged with a chemiluminescent or colorimetric label which may be readily detected. The presence and quantity of label observed indicates the presence and quantity of the desired mutant protein present in the cell.
- Example 7: Growth of Genetically Modified *Corynebacterium glutamicum* — Media and Culture Conditions**
- Genetically modified *Corynebacteria* are cultured in synthetic or natural growth media. A number of different growth media for *Corynebacteria* are both well-known and readily available (Lieb *et al.* (1989) *Appl. Microbiol. Biotechnol.*, 32:205-210; von der Osten *et al.* (1998) *Biotechnology Letters*, 11:11-16; Patent DE 4,120,867; Liebl (1992) "The Genus *Corynebacterium*, in: *The Prokaryotes*, Volume II, Balows, A. *et al.*, eds. Springer-Verlag). These media consist of one or more carbon sources, nitrogen sources, inorganic salts, vitamins and trace elements. Preferred carbon sources are sugars, such as mono-, di-, or polysaccharides. For example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose serve as very good carbon sources. It is also possible to supply sugar to the media via complex compounds such as molasses or other by-products from sugar refinement. It can also be

- 137 -

advantageous to supply mixtures of different carbon sources. Other possible carbon sources are alcohols and organic acids, such as methanol, ethanol, acetic acid or lactic acid. Nitrogen sources are usually organic or inorganic nitrogen compounds, or materials which contain these compounds. Exemplary nitrogen sources include ammonia gas or 5 ammonia salts, such as NH₄Cl or (NH₄)₂SO₄, NH₄OH, nitrates, urea, amino acids or complex nitrogen sources like corn steep liquor, soy bean flour, soy bean protein, yeast extract, meat extract and others.

Inorganic salt compounds which may be included in the media include the chloride-, phosphorous- or sulfate- salts of calcium, magnesium, sodium, cobalt, 10 molybdenum, potassium, manganese, zinc, copper and iron. Chelating compounds can be added to the medium to keep the metal ions in solution. Particularly useful chelating compounds include dihydroxyphenols, like catechol or protocatechuic, or organic acids, such as citric acid. It is typical for the media to also contain other growth factors, such as vitamins or growth promoters, examples of which include biotin, riboflavin, thiamin, folic 15 acid, nicotinic acid, pantothenate and pyridoxin. Growth factors and salts frequently originate from complex media components such as yeast extract, molasses, corn steep liquor and others. The exact composition of the media compounds depends strongly on the immediate experiment and is individually decided for each specific case. Information about media optimization is available in the textbook "Applied Microbiol. Physiology, A 20 Practical Approach (eds. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). It is also possible to select growth media from commercial suppliers, like standard 1 (Merck) or BHI (grain heart infusion, DIFCO) or others.

All medium components are sterilized, either by heat (20 minutes at 1.5 bar and 121°C) or by sterile filtration. The components can either be sterilized together or, if 25 necessary, separately. All media components can be present at the beginning of growth, or they can optionally be added continuously or batchwise.

Culture conditions are defined separately for each experiment. The temperature should be in a range between 15°C and 45°C. The temperature can be kept constant or can be altered during the experiment. The pH of the medium should be in the range of 5 to 30 8.5, preferably around 7.0, and can be maintained by the addition of buffers to the media. An exemplary buffer for this purpose is a potassium phosphate buffer. Synthetic buffers such as MOPS, HEPES, ACES and others can alternatively or simultaneously be used. It

- 138 -

is also possible to maintain a constant culture pH through the addition of NaOH or NH₄OH during growth. If complex medium components such as yeast extract are utilized, the necessity for additional buffers may be reduced, due to the fact that many complex compounds have high buffer capacities. If a fermentor is utilized for culturing the micro-
5 organisms, the pH can also be controlled using gaseous ammonia.

- The incubation time is usually in a range from several hours to several days. This time is selected in order to permit the maximal amount of product to accumulate in the broth. The disclosed growth experiments can be carried out in a variety of vessels, such as microtiter plates, glass tubes, glass flasks or glass or metal fermentors of different sizes.
10 For screening a large number of clones, the microorganisms should be cultured in microtiter plates, glass tubes or shake flasks, either with or without baffles. Preferably 100 ml shake flasks are used, filled with 10% (by volume) of the required growth medium. The flasks should be shaken on a rotary shaker (amplitude 25 mm) using a speed-range of 100 – 300 rpm. Evaporation losses can be diminished by the maintenance
15 of a humid atmosphere; alternatively, a mathematical correction for evaporation losses should be performed.

If genetically modified clones are tested, an unmodified control clone or a control clone containing the basic plasmid without any insert should also be tested. The medium is inoculated to an OD₆₀₀ of 0.5 – 1.5 using cells grown on agar plates, such as CM plates
20 (10 g/l glucose, 2.5 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l agar, pH 6.8 with 2M NaOH) that had been incubated at 30°C. Inoculation of the media is accomplished by either introduction of a saline suspension of *C. glutamicum* cells from CM plates or addition of a liquid preculture of this bacterium.
25

Example 8 – *In vitro* Analysis of the Function of Mutant Proteins

The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well
30 within the ability of one of ordinary skill in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be

- 139 -

- found, for example, in the following references: Dixon, M., and Webb, E.C., (1979) Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism. Freeman: New York; Walsh, (1979) Enzymatic Reaction Mechanisms. Freeman: San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ.
- 5 Press: Oxford; Boyer, P.D., ed. (1983) The Enzymes, 3rd ed. Academic Press: New York; Bisswanger, H., (1994) Enzymkinetik, 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., Graßl, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, "Enzymes". VCH: Weinheim, p.
- 10 352-363.

The activity of proteins which bind to DNA can be measured by several well-established methods, such as DNA band-shift assayss (also called gel retardation assays). The effect of such proteins on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar, H. *et al.* (1995) *EMBO J.* 14: 15 3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both pro- and eukaryotic cells, using enzymes such as beta-galactosidase, green fluorescent protein, and several others.

The determination of activity of membrane-transport proteins can be performed according to techniques such as those described in Gennis, R.B. (1989) "Pores, 20 Channels and Transporters", in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, p. 85-137; 199-234; and 270-322.

Example 9. Analysis of Impact of Mutant Protein on the Production of the Desired Product

- 25 The effect of the genetic modification in *C. glutamicum* on production of a desired compound (such as an amino acid) can be assessed by growing the modified microorganism under suitable conditions (such as those described above) and analyzing the medium and/or the cellular component for increased production of the desired product (*i.e.*, an amino acid). Such analysis techniques are well known to one of 30 ordinary skill in the art, and include spectroscopy, thin layer chromatography, staining methods of various kinds, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example,

- 140 -

Ullman, Encyclopedia of Industrial Chemistry, vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A. *et al.*, (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm *et al.* (1993) Biotechnology, vol. 3, Chapter III: "Product recovery and purification", page 5 469-714, VCH: Weinheim; Belter, P.A. *et al.* (1988) Bioseparations: downstream processing for biotechnology, John Wiley and Sons; Kennedy, J.F. and Cabral, J.M.S. (1992) Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz, J.A. and Henry, J.D. (1988) Biochemical separations, in: Ullmann's Encyclopedia of Industrial Chemistry, vol. B3, Chapter 11, page 1-27, VCH: Weinheim; and Dechow, 10 F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications.)

In addition to the measurement of the final product of fermentation, it is also possible to analyze other components of the metabolic pathways utilized for the production of the desired compound, such as intermediates and side-products, to 15 determine the overall efficiency of production of the compound. Analysis methods include measurements of nutrient levels in the medium (*e.g.*, sugars, hydrocarbons, nitrogen sources, phosphate, and other ions), measurements of biomass composition and growth, analysis of the production of common metabolites of biosynthetic pathways, and measurement of gasses produced during fermentation. Standard methods for these 20 measurements are outlined in Applied Microbial Physiology, A Practical Approach, P.M. Rhodes and P.F. Stanbury, eds., IRL Press, p. 103-129; 131-163; and 165-192 (ISBN: 0199635773) and references cited therein.

Example 10: Purification of the Desired Product from *C. glutamicum* Culture

25 Recovery of the desired product from the *C. glutamicum* cells or supernatant of the above-described culture can be performed by various methods well known in the art. If the desired product is not secreted from the cells, the cells can be harvested from the culture by low-speed centrifugation, the cells can be lysed by standard techniques, such as mechanical force or sonication. The cellular debris is removed by centrifugation, and 30 the supernatant fraction containing the soluble proteins is retained for further purification of the desired compound. If the product is secreted from the *C. glutamicum*

- 141 -

cells, then the cells are removed from the culture by low-speed centrifugation, and the supernate fraction is retained for further purification.

The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on 5 a chromatography resin while many of the impurities in the sample are not, or where the impurities are retained by the resin while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One of ordinary skill in the art would be well-versed in the selection of appropriate chromatography resins and in their most efficacious application for a particular molecule 10 to be purified. The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized.

There are a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for example, in Bailey, J.E. & Ollis, D.F. Biochemical 15 Engineering Fundamentals, McGraw-Hill: New York (1986).

The identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis methods are reviewed in: Patek *et al.* (1994) 20 *Appl. Environ. Microbiol.* 60: 133-140; Malakhova *et al.* (1996) *Biotehnologiya* 11: 27-32; and Schmidt *et al.* (1998) *Bioprocess Engineer.* 19: 67-70. Ullmann's Encyclopedia of Industrial Chemistry, (1996) vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-347, p. 559-566, 575-581 and p. 581-587; Michal, G. (1999) Biochemical Pathways: An 25 Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. *et al.* (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17.

Example 11: Analysis of the Gene Sequences of the Invention

The comparison of sequences and determination of percent homology between 30 two sequences are art-known techniques, and can be accomplished using a mathematical algorithm, such as the algorithm of Karlin and Altschul (1990) *Proc. Natl. Acad. Sci. USA* 87:2264-68, modified as in Karlin and Altschul (1993) *Proc. Natl. Acad. Sci. USA*

- 142 -

90:5873-77. Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) of Altschul, *et al.* (1990) *J. Mol. Biol.* 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100, wordlength = 12 to obtain nucleotide sequences homologous to MP nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to MP protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul *et al.*, (1997) *Nucleic Acids Res.* 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, one of ordinary skill in the art will know how to optimize the parameters of the program (*e.g.*, XBLAST and NBLAST) for the specific sequence being analyzed.

Another example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Meyers and Miller ((1988) *Comput. Appl. Biosci.* 4: 11-17). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art, and include ADVANCE and ADAM, described in Torelli and Robotti (1994) *Comput. Appl. Biosci.* 10:3-5; and FASTA, described in Pearson and Lipman (1988) *P.N.A.S.* 85:2444-8.

The percent homology between two amino acid sequences can also be accomplished using the GAP program in the GCG software package (available at <http://www.gcg.com>), using either a Blosum 62 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4. The percent homology between two nucleic acid sequences can be accomplished using the GAP program in the GCG software package, using standard parameters, such as a gap weight of 50 and a length weight of 3.

A comparative analysis of the gene sequences of the invention with those present in Genbank has been performed using techniques known in the art (see, *e.g.*, Bexevanis and Ouellette, eds. (1998) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. John Wiley and Sons: New York). The gene sequences of the invention

were compared to genes present in Genbank in a three-step process. In a first step, a BLASTN analysis (*e.g.*, a local alignment analysis) was performed for each of the sequences of the invention against the nucleotide sequences present in Genbank, and the top 500 hits were retained for further analysis. A subsequent FASTA search (*e.g.*, a 5 combined local and global alignment analysis, in which limited regions of the sequences are aligned) was performed on these 500 hits. Each gene sequence of the invention was subsequently globally aligned to each of the top three FASTA hits, using the GAP program in the GCG software package (using standard parameters). In order to obtain correct results, the length of the sequences extracted from Genbank were adjusted to the 10 length of the query sequences by methods well-known in the art. The results of this analysis are set forth in Table 4. The resulting data is identical to that which would have been obtained had a GAP (global) analysis alone been performed on each of the genes of the invention in comparison with each of the references in Genbank, but required significantly reduced computational time as compared to such a database-wide GAP 15 (global) analysis. Sequences of the invention for which no alignments above the cutoff values were obtained are indicated on Table 4 by the absence of alignment information. It will further be understood by one of ordinary skill in the art that the GAP alignment homology percentages set forth in Table 4 under the heading "% homology (GAP)" are listed in the European numerical format, wherein a ',' represents a decimal point. For 20 example, a value of "40,345" in this column represents "40.345%".

Example 12: Construction and Operation of DNA Microarrays

The sequences of the invention may additionally be used in the construction and application of DNA microarrays (the design, methodology, and uses of DNA arrays are 25 well known in the art, and are described, for example, in Schena, M. *et al.* (1995) *Science* 270: 467-470; Wodicka, L. *et al.* (1997) *Nature Biotechnology* 15: 1359-1367; DeSaizieu, A. *et al.* (1998) *Nature Biotechnology* 16: 45-48; and DeRisi, J.L. *et al.* (1997) *Science* 278: 680-686).

DNA microarrays are solid or flexible supports consisting of nitrocellulose, 30 nylon, glass, silicone, or other materials. Nucleic acid molecules may be attached to the surface in an ordered manner. After appropriate labeling, other nucleic acids or nucleic acid mixtures can be hybridized to the immobilized nucleic acid molecules, and the label

- 144 -

may be used to monitor and measure the individual signal intensities of the hybridized molecules at defined regions. This methodology allows the simultaneous quantification of the relative or absolute amount of all or selected nucleic acids in the applied nucleic acid sample or mixture. DNA microarrays, therefore, permit an analysis of the
5 expression of multiple (as many as 6800 or more) nucleic acids in parallel (see, e.g., Schena, M. (1996) *BioEssays* 18(5): 427-431).

The sequences of the invention may be used to design oligonucleotide primers which are able to amplify defined regions of one or more *C. glutamicum* genes by a nucleic acid amplification reaction such as the polymerase chain reaction. The choice
10 and design of the 5' or 3' oligonucleotide primers or of appropriate linkers allows the covalent attachment of the resulting PCR products to the surface of a support medium described above (and also described, for example, Schena, M. et al. (1995) *Science* 270: 467-470).

Nucleic acid microarrays may also be constructed by *in situ* oligonucleotide
15 synthesis as described by Wodicka, L. et al. (1997) *Nature Biotechnology* 15: 1359-1367. By photolithographic methods, precisely defined regions of the matrix are exposed to light. Protective groups which are photolabile are thereby activated and undergo nucleotide addition, whereas regions that are masked from light do not undergo any modification. Subsequent cycles of protection and light activation permit the
20 synthesis of different oligonucleotides at defined positions. Small, defined regions of the genes of the invention may be synthesized on microarrays by solid phase oligonucleotide synthesis.

The nucleic acid molecules of the invention present in a sample or mixture of nucleotides may be hybridized to the microarrays. These nucleic acid molecules can be
25 labeled according to standard methods. In brief, nucleic acid molecules (e.g., mRNA molecules or DNA molecules) are labeled by the incorporation of isotopically or fluorescently labeled nucleotides, e.g., during reverse transcription or DNA synthesis. Hybridization of labeled nucleic acids to microarrays is described (e.g., in Schena, M. et al. (1995) *supra*; Wodicka, L. et al. (1997), *supra*; and DeSaizieu A. et al. (1998),
30 *supra*). The detection and quantification of the hybridized molecule are tailored to the specific incorporated label. Radioactive labels can be detected, for example, as

- 145 -

described in Schena, M. *et al.* (1995) *supra*) and fluorescent labels may be detected, for example, by the method of Shalon *et al.* (1996) *Genome Research* 6: 639-645).

The application of the sequences of the invention to DNA microarray technology, as described above, permits comparative analyses of different strains of *C. glutamicum* or other *Corynebacteria*. For example, studies of inter-strain variations based on individual transcript profiles and the identification of genes that are important for specific and/or desired strain properties such as pathogenicity, productivity and stress tolerance are facilitated by nucleic acid array methodologies. Also, comparisons of the profile of expression of genes of the invention during the course of a fermentation reaction are possible using nucleic acid array technology.

Example 13: Analysis of the Dynamics of Cellular Protein Populations (Proteomics)

The genes, compositions, and methods of the invention may be applied to study the interactions and dynamics of populations of proteins, termed 'proteomics'. Protein populations of interest include, but are not limited to, the total protein population of *C. glutamicum* (e.g., in comparison with the protein populations of other organisms), those proteins which are active under specific environmental or metabolic conditions (e.g., during fermentation, at high or low temperature, or at high or low pH), or those proteins which are active during specific phases of growth and development.

Protein populations can be analyzed by various well-known techniques, such as gel electrophoresis. Cellular proteins may be obtained, for example, by lysis or extraction, and may be separated from one another using a variety of electrophoretic techniques. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separates proteins largely on the basis of their molecular weight. Isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE) separates proteins by their isoelectric point (which reflects not only the amino acid sequence but also posttranslational modifications of the protein). Another, more preferred method of protein analysis is the consecutive combination of both IEF-PAGE and SDS-PAGE, known as 2-D-gel electrophoresis (described, for example, in Hermann *et al.* (1998) *Electrophoresis* 19: 3217-3221; Fountoulakis *et al.* (1998) *Electrophoresis* 19: 1193-1202; Langen *et al.* (1997) *Electrophoresis* 18: 1184-1192; Antelmann *et al.* (1997) *Electrophoresis* 18:

1451-1463). Other separation techniques may also be utilized for protein separation, such as capillary gel electrophoresis; such techniques are well known in the art.

Proteins separated by these methodologies can be visualized by standard techniques, such as by staining or labeling. Suitable stains are known in the art, and 5 include Coomassie Brilliant Blue, silver stain, or fluorescent dyes such as Sypro Ruby (Molecular Probes). The inclusion of radioactively labeled amino acids or other protein precursors (*e.g.*, ^{35}S -methionine, ^{35}S -cysteine, ^{14}C -labelled amino acids, ^{15}N -amino acids, $^{15}\text{NO}_3^-$ or $^{15}\text{NH}_4^+$ or ^{13}C -labelled amino acids) in the medium of *C. glutamicum* permits the labeling of proteins from these cells prior to their separation. Similarly, 10 fluorescent labels may be employed. These labeled proteins can be extracted, isolated and separated according to the previously described techniques.

Proteins visualized by these techniques can be further analyzed by measuring the amount of dye or label used. The amount of a given protein can be determined quantitatively using, for example, optical methods and can be compared to the amount 15 of other proteins in the same gel or in other gels. Comparisons of proteins on gels can be made, for example, by optical comparison, by spectroscopy, by image scanning and analysis of gels, or through the use of photographic films and screens. Such techniques are well-known in the art.

To determine the identity of any given protein, direct sequencing or other 20 standard techniques may be employed. For example, N- and/or C-terminal amino acid sequencing (such as Edman degradation) may be used, as may mass spectrometry (in particular MALDI or ESI techniques (*see, e.g.*, Langen *et al.* (1997) *Electrophoresis* 18: 1184-1192)). The protein sequences provided herein can be used for the identification of *C. glutamicum* proteins by these techniques.

25 The information obtained by these methods can be used to compare patterns of protein presence, activity, or modification between different samples from various biological conditions (*e.g.*, different organisms, time points of fermentation, media conditions, or different biotopes, among others). Data obtained from such experiments alone, or in combination with other techniques, can be used for various applications, 30 such as to compare the behavior of various organisms in a given (*e.g.*, metabolic) situation, to increase the productivity of strains which produce fine chemicals or to increase the efficiency of the production of fine chemicals.

- 147 -

Equivalents

Those of ordinary skill in the art will recognize, or will be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the
5 following claims.

What is claimed:

1. An isolated nucleic acid molecule from *Corynebacterium glutamicum* encoding a metabolic pathway protein, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
2. The isolated nucleic acid molecule of claim 1, wherein said metabolic pathway protein is selected from the group consisting of proteins involved in the metabolism of an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose.
3. An isolated *Corynebacterium glutamicum* nucleic acid molecule selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOS of the Sequence Listing, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
4. An isolated nucleic acid molecule which encodes a polypeptide sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOS of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
5. An isolated nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide selected from the group of amino acid sequences consisting of those sequences set forth as even-numbered SEQ ID NOS of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
6. An isolated nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleotide sequence selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOS of the Sequence Listing, or

- 149 -

a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.

7. An isolated nucleic acid molecule comprising a fragment of at least 15 nucleotides
5 of a nucleic acid comprising a nucleotide sequence selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOS of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 10 8. An isolated nucleic acid molecule which hybridizes to the nucleic acid molecule of any one of claims 1-7 under stringent conditions.
9. An isolated nucleic acid molecule comprising the nucleic acid molecule of any one
15 of claims 1-8 or a portion thereof and a nucleotide sequence encoding a heterologous polypeptide.
10. A vector comprising the nucleic acid molecule of any one of claims 1-9.
11. The vector of claim 10, which is an expression vector.
20
12. A host cell transfected with the expression vector of claim 11.
13. ~~The host cell of claim 12, wherein said cell is a microorganism.~~
- 25 14. The host cell of claim 13, wherein said cell belongs to the genus *Corynebacterium* or *Brevibacterium*.
15. The host cell of claim 12, wherein the expression of said nucleic acid molecule results in the modulation in production of a fine chemical from said cell.
30
16. The host cell of claim 15, wherein said fine chemical is selected from the group consisting of: organic acids, nonproteinogenic amino acids, purine and pyrimidine

- 150 -

bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.

17. A method of producing a polypeptide comprising culturing the host cell of claim 12
5 in an appropriate culture medium to, thereby, produce the polypeptide.
18. An isolated metabolic pathway polypeptide from *Corynebacterium glutamicum*, or a portion thereof.
- 10 19. The protein of claim 18, wherein said polypeptide is selected from the group of metabolic pathway proteins which participate in the metabolism of an amino acid, a vitamin, a cofactor, a nutraceutical, a nucleotide, a nucleoside, or trehalose.
- 15 20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOS of the Sequence Listing, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
21. An isolated polypeptide comprising a naturally occurring allelic variant of a
20 polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOS of the Sequence Listing, or a portion thereof, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
- 25 22. The isolated polypeptide of any of claims 18-21, further comprising heterologous amino acid sequences.
23. An isolated polypeptide which is encoded by a nucleic acid molecule comprising a
30 nucleotide sequence which is at least 50% homologous to a nucleic acid selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOS of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated nucleic acid molecules set forth in Table 1.

24. An isolated polypeptide comprising an amino acid sequence which is at least 50% homologous to an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOS of the Sequence Listing,
5 provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
25. A method for producing a fine chemical, comprising culturing a cell containing a vector of claim 12 such that the fine chemical is produced.
10
26. The method of claim 25, wherein said method further comprises the step of recovering the fine chemical from said culture.
27. The method of claim 25, wherein said method further comprises the step of transfecting said cell with the vector of claim 11 to result in a cell containing said vector.
15
28. The method of claim 25, wherein said cell belongs to the genus *Corynebacterium* or *Brevibacterium*.
20
29. The method of claim 25, wherein said cell is selected from the group consisting of: *Corynebacterium glutamicum*, *Corynebacterium herculis*, *Corynebacterium lilium*, *Corynebacterium acetoactidophilum*, *Corynebacterium acetoglutamicum*, *Corynebacterium acetophilum*, *Corynebacterium ammoniagenes*, *Corynebacterium fujikense*, *Corynebacterium nitrilophilus*, *Brevibacterium ammoniagenes*, *Brevibacterium butanicum*, *Brevibacterium divaricatum*, *Brevibacterium flavum*, *Brevibacterium healii*, *Brevibacterium ketoglutamicum*, *Brevibacterium ketosoreductum*, *Brevibacterium lactofermentum*, *Brevibacterium linens*, *Brevibacterium paraffinolyticum*, and those strains set forth in Table 3.
25
30. The method of claim 25, wherein expression of the nucleic acid molecule from said vector results in modulation of production of said fine chemical.
30

- 152 -

31. The method of claim 25, wherein said fine chemical is selected from the group consisting of: organic acids, nonproteinogenic amino acids, purine and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, 5 carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.
32. The method of claim 25, wherein said fine chemical is an amino acid.
33. The method of claim 32, wherein said amino acid is drawn from the group consisting 10 of: lysine, glutamate, glutamine, alanine, aspartate, glycine, serine, threonine, methionine, cysteine, valine, leucine, isoleucine, arginine, proline, histidine, tyrosine, phenylalanine, and tryptophan.
34. A method for producing a fine chemical, comprising culturing a cell whose genomic 15 DNA has been altered by the inclusion of a nucleic acid molecule of any one of claims 1-9.
35. A method for diagnosing the presence or activity of *Corynebacterium diphtheriae* in a subject, comprising detecting the presence of one or more of SEQ ID NOs 1 20 through 1156 of the Sequence Listing in the subject, provided that the sequences are not or are not encoded by any of the F-designated sequences set forth in Table 1, thereby diagnosing the presence or activity of *Corynebacterium diphtheriae* in the subject.
- 25 36. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOs of the Sequence Listing , wherein the nucleic acid molecule is disrupted.
- 30 37. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOs in the Sequence Listing , wherein the nucleic acid molecule comprises one or more nucleic acid

- 153 -

modifications from the sequence set forth as odd-numbered SEQ ID NOS of the Sequence Listing s.

38. A host cell comprising a nucleic acid molecule selected from the group consisting of
5 the nucleic acid molecules set forth as odd-numbered SEQ ID NOS of the Sequence Listing , wherein the regulatory region of the nucleic acid molecule is modified relative to the wild-type regulatory region of the molecule.

SEQUENCE LISTING

<110> BASF Aktiengesellschaft
<120> CORYNEBACTERIUM GLUTAMICUM GENES ENCODING
METABOLIC PATHWAY PROTEINS
<130> BGI-121CPPC
<140>
<141>
<160> 1156

<210> 1
<211> 948
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(925)
<223> RXA02229

<400> 1
gctgggttcaa cagagaccac cgcggtcct gggtcgacgc ctctggcgat cccaccgcac 60
aagccttgaa gattttgggt ctacaatagc gaggggtgaat ttg acc atc ccc ttt 115
Leu Thr Ile Pro Phe
1 5

gcc aaa ggc cac gcc acc gaa aac gac ttc atc atc ccc gat gag 163
Ala Lys Gly His Ala Thr Glu Asn Asp Phe Ile Ile Ile Pro Asp Glu
10 15 20

gat gcg cgc cta gat tta act cca gaa atg gtg gtc acg ctg tgt gac 211
Asp Ala Arg Leu Asp Leu Thr Pro Glu Met Val Val Thr Leu Cys Asp
25 30 35

cgc cgc gcc ggg atc ggt gct gat ggt atc ctc cgc gtg gtt aaa gct 259
Arg Arg Ala Gly Ile Gly Ala Asp Gly Ile Leu Arg Val Val Lys Ala
40 45 50

gca gac gta gaa ggc tcc acg gtc gac cca tcg ctg tgg ttc atg gat 307
Ala Asp Val Glu Gly Ser Thr Val Asp Pro Ser Leu Trp Phe Met Asp
55 60 65

tac cgc aac gcc gat gga tct ttg gct gaa atg tgc ggc aat ggt gtg 355
Tyr Arg Asn Ala Asp Gly Ser Leu Ala Glu Met Cys Gly Asn Gly Val
70 75 80 85

cgc ctg ttc gcg cac tgg ctg tac tcc cgc ggt ctt gtt gat aat acg 403
Arg Leu Phe Ala His Trp Leu Tyr Ser Arg Gly Leu Val Asp Asn Thr
90 95 100

agc ttt gat atc ggt acc cgc gcc ggt gtc cgc cac gtt gat att ttg 451
Ser Phe Asp Ile Gly Thr Arg Ala Gly Val Arg His Val Asp Ile Leu
105 110 115

cag gca gat caa cat tct gcg cag gtc cgc gtt gat atg ggc atc cct 499
Gln Ala Asp Gln His Ser Ala Gln Val Arg Val Asp Met Gly Ile Pro
120 125 130

gac gtc acg gga tta tcc acc tgc gac atc aac ggc caa gta ttc gct 547
Asp Val Thr Gly Leu Ser Thr Cys Asp Ile Asn Gly Gln Val Phe Ala

135	140	145	
ggc ctt ggc gtt gat atg ggt aac cca cac cta gcg tgc gtt gtg ccg Gly Leu Gly Val Asp Met Gly Asn Pro His Leu Ala Cys Val Val Pro	150	155	595
160			165
ggc tta agt gcg tcg gct ctt gcc gat atg gaa ctg cgc gca cct acg Gly Leu Ser Ala Ser Ala Leu Ala Asp Met Glu Leu Arg Ala Pro Thr	170	175	643
180			
ttt gat cag gaa ttc ttc ccc cac ggt gtg aac gta gaa atc gtc aca Phe Asp Gln Glu Phe Phe Pro His Gly Val Asn Val Glu Ile Val Thr	185	190	691
195			
gaa tta gaa gat gac gca gta tcg atg cgc gtg tgg gaa cgc gga gtg Glu Leu Glu Asp Asp Ala Val Ser Met Arg Val Trp Glu Arg Gly Val	200	205	739
210			
ggc gaa acc cgc tcc tgt ggc acg gga acc gtt gct gca gcg tgt gct Gly Glu Thr Arg Ser Cys Gly Thr Gly Thr Val Ala Ala Ala Cys Ala	215	220	787
225			
gct tta gct gat gct gga ttg gga gaa ggc aca gct aaa gtg tgc gtt Ala Leu Ala Asp Ala Gly Leu Gly Glu Gly Thr Ala Lys Val Cys Val	230	235	835
240			245
cca cgt ggg gaa gta gaa gtc cag atc ttt gac gac ggc tcc aca ctc Pro Arg Gly Glu Val Glu Val Gln Ile Phe Asp Asp Gly Ser Thr Leu	250	255	883
260			
acc ggc cca agc gcc atc atc gca ctc ggt gag gtg cag atc Thr Gly Pro Ser Ala Ile Ile Ala Leu Gly Glu Val Gln Ile	265	270	925
275			
taagattcgc gattgttagtt cg			948

<210> 2
<211> 275
<212> PRT
<213> Corynebacterium glutamicum

<400> 2															
Leu	Thr	Ile	Pro	Phe	Ala	Lys	Gly	His	Ala	Thr	Glu	Asn	Asp	Phe	Ile
1														.	15
Ile Ile Pro Asp Glu Asp Ala Arg Leu Asp Leu Thr Pro Glu Met Val															
20 25 30															
Val Thr Leu Cys Asp Arg Arg Ala Gly Ile Gly Ala Asp Gly Ile Leu															
35 40 45															
Arg Val Val Lys Ala Ala Asp Val Glu Gly Ser Thr Val Asp Pro Ser															
50 55 60															
Leu Trp Phe Met Asp Tyr Arg Asn Ala Asp Gly Ser Leu Ala Glu Met															
65 70 75 80															
Cys Gly Asn Gly Val Arg Leu Phe Ala His Trp Leu Tyr Ser Arg Gly															
85 90 95															

Leu Val Asp Asn Thr Ser Phe Asp Ile Gly Thr Arg Ala Gly Val Arg
 100 105 110
 His Val Asp Ile Leu Gln Ala Asp Gln His Ser Ala Gln Val Arg Val
 115 120 125
 Asp Met Gly Ile Pro Asp Val Thr Gly Leu Ser Thr Cys Asp Ile Asn
 130 135 140
 Gly Gln Val Phe Ala Gly Leu Gly Val Asp Met Gly Asn Pro His Leu
 145 150 155 160
 Ala Cys Val Val Pro Gly Leu Ser Ala Ser Ala Leu Ala Asp Met Glu
 165 170 175
 Leu Arg Ala Pro Thr Phe Asp Gln Glu Phe Phe Pro His Gly Val Asn
 180 185 190
 Val Glu Ile Val Thr Glu Leu Glu Asp Asp Ala Val Ser Met Arg Val
 195 200 205
 Trp Glu Arg Gly Val Gly Glu Thr Arg Ser Cys Gly Thr Gly Thr Val
 210 215 220
 Ala Ala Ala Cys Ala Ala Leu Ala Asp Ala Gly Leu Gly Glu Gly Thr
 225 230 235 240
 Ala Lys Val Cys Val Pro Arg Gly Glu Val Glu Val Gln Ile Phe Asp
 245 250 255
 Asp Gly Ser Thr Leu Thr Gly Pro Ser Ala Ile Ile Ala Leu Gly Glu
 260 265 270
 Val Gln Ile
 275

<210> 3
 <211> 1491
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(1468)
 <223> RXS02970

<400> 3
 aaccgacaaa acagccgttc acgtgctaaa gcagctcggc ttgatctagg gtgaggtgag 60
 ttatcaaacttataat attttgggaa gtgaactgggt ttg qca ttg aag ggt 115
 Leu Ala Leu Lys Gly
 1 5
 tac acc aac ttt gac ggt gaa ttc atc gaa ttc gga tct gtg caa gca 163
 Tyr Thr Asn Phe Asp Gly Glu Phe Ile Glu Phe Gly Ser Val Gln Ala
 10 15 20
 aaa gaa gag gaa aaa cgg gca ttc gac aac gat cgc gcg cac gtt ttc 211
 Lys Glu Glu Lys Arg Ala Phe Asp Asn Asp Arg Ala His Val Phe
 25 30 35

ctg ttt gct tac gag cat gct ggc gac gat ttc cag cca gac atg atc 979
Leu Phe Ala Tyr Glu His Ala Gly Asp Asp Phe Gln Pro Asp Met Ile
280 285 290

acc ttc gcc aag ggt gtt aac gca ggt tac gcc cca ctc ggt ggc atc
1027
Thr Phe Ala Lys Gly Val Asn Ala Gly Tyr Ala Pro Leu Gly Gly Ile
295 300 305

gtg atg acc caa tca atc cgc gat acc ttc gga tca gag gca tac tcc
1075
Val Met Thr Gln Ser Ile Arg Asp Thr Phe Gly Ser Glu Ala Tyr Ser
310 315 320 325

ggc gga ctc acc tac tcc gga cac cca ctt gca gta gca ccc gcc aag
1123
Gly Gly Leu Thr Tyr Ser Gly His Pro Leu Ala Val Ala Pro Ala Lys
330 335 340

gca gcg ctg gag att tac gcg gaa gga gag atc att cca cgc gta gct
1171
Ala Ala Leu Glu Ile Tyr Ala Glu Gly Glu Ile Ile Pro Arg Val Ala
345 350 355

cga ctt ggc gct gaa ctg atc gaa cct cgc ctt cgt gaa cta gcg gaa
1219
Arg Leu Gly Ala Glu Leu Ile Glu Pro Arg Leu Arg Glu Leu Ala Glu
360 365 370

gaa aac gta gcg atc gct gac gtg cgg ggc atc gga ttc ttc tgg gca
1267
Glu Asn Val Ala Ile Ala Asp Val Arg Gly Ile Gly Phe Phe Trp Ala
375 380 385

gtg gag ttc aat gca gac gcc act gcc atg gct gcc ggt gct gca gaa
1315
Val Glu Phe Asn Ala Asp Ala Thr Ala Met Ala Ala Gly Ala Ala Glu
390 395 400 405

ttc aag gaa cgc ggc gtg tgg ccg atg atc tcc ggc aac cga ttc cac
1363
Phe Lys Glu Arg Gly Val Trp Pro Met Ile Ser Gly Asn Arg Phe His
410 415 420

atc gcg ccg ccg ctg acc acc act gat gac gaa ttg gta gca ctg ctg
1411
Ile Ala Pro Pro Leu Thr Thr Asp Asp Glu Leu Val Ala Leu Leu
425 430 435

gac gcg gtg gaa gct gca gcc caa gct gtc gag ctg acc ttc gct ggg
1459
Asp Ala Val Glu Ala Ala Ala Gln Ala Val Glu Leu Thr Phe Ala Gly
440 445 450

gcg ttg ttc taagtttct agataacaag gcc
1491
Ala Leu Phe
455

<211> 456

<212> PRT

<213> Corynebacterium glutamicum

<400> 4

Leu	Ala	Leu	Lys	Gly	Tyr	Thr	Asn	Phe	Asp	Gly	Glu	Phe	Ile	Glu	Phe
1															

5

10

15

Gly	Ser	Val	Gln	Ala	Lys	Glu	Glu	Glu	Lys	Arg	Ala	Phe	Asp	Asn	Asp

20

25

30

Arg	Ala	His	Val	Phe	His	Ser	Trp	Ser	Ala	Gln	Asp	Lys	Ile	Ser	Pro

35

40

45

Lys	Val	Trp	Ala	Ala	Ala	Glu	Gly	Ser	Thr	Leu	Tyr	Asp	Phe	Asp	Gly

50

55

60

Asn	Ala	Phe	Ile	Asp	Met	Gly	Ser	Gln	Leu	Val	Ser	Ala	Asn	Leu	Gly

65

70

75

80

His	Asn	Asn	Pro	Arg	Leu	Val	Glu	Ala	Ile	Gln	Arg	Gln	Ala	Ala	Arg

85

90

95

Leu	Thr	Asn	Ile	Asn	Pro	Ala	Phe	Gly	Asn	Asp	Val	Arg	Ser	Asp	Val

100

105

110

Ala	Ala	Lys	Ile	Val	Ser	Met	Ala	Arg	Gly	Glu	Phe	Ser	His	Val	Phe

115

120

125

Phe	Thr	Asn	Gly	Gly	Ala	Asp	Ala	Ile	Glu	His	Ser	Ile	Arg	Met	Ala

130

135

140

Arg	Leu	His	Thr	Gly	Arg	Asn	Lys	Ile	Leu	Ser	Ala	Tyr	Arg	Ser	Tyr

145

150

155

160

His	Gly	Ala	Thr	Gly	Ser	Ala	Met	Met	Leu	Thr	Gly	Glu	His	Arg	Arg

165

170

175

Leu	Gly	Asn	Pro	Thr	Thr	Asp	Pro	Asp	Ile	Tyr	His	Phe	Trp	Ala	Pro

180

185

190

Phe	Leu	His	His	Ser	Ser	Phe	Phe	Ala	Thr	Thr	Gln	Glu	Glu	Cys

195

200

205

Glu	Arg	Ala	Leu	Lys	His	Leu	Glu	Asp	Val	Ile	Ala	Phe	Gly	Ala

210

215

220

Gly	Met	Ile	Ala	Ala	Ile	Val	Leu	Glu	Pro	Val	Val	Gly	Ser	Ser	Gly

225

230

235

240

Ile	Ile	Leu	Pro	Pro	Ala	Gly	Tyr	Leu	Asn	Gly	Val	Arg	Glu	Leu	Cys

245

250

255

Asn	Lys	His	Gly	Ile	Leu	Phe	Ile	Ala	Asp	Glu	Val	Met	Val	Gly	Phe

260

265

270

Gly	Arg	Thr	Gly	Lys	Leu	Phe	Ala	Tyr	Glu	His	Ala	Gly	Asp	Asp	Phe

275

280

285

Gln	Pro	Asp	Met	Ile	Thr	Phe	Ala	Lys	Gly	Val	Asn	Ala	Gly	Tyr	Ala

290

295

300

Pro Leu Gly Gly Ile Val Met Thr Gln Ser Ile Arg Asp Thr Phe Gly
 305 310 315 320
 Ser Glu Ala Tyr Ser Gly Gly Leu Thr Tyr Ser Gly His Pro Leu Ala
 325 330 335
 Val Ala Pro Ala Lys Ala Ala Leu Glu Ile Tyr Ala Glu Gly Glu Ile
 340 345 350
 Ile Pro Arg Val Ala Arg Leu Gly Ala Glu Leu Ile Glu Pro Arg Leu
 355 360 365
 Arg Glu Leu Ala Glu Glu Asn Val Ala Ile Ala Asp Val Arg Gly Ile
 370 375 380
 Gly Phe Phe Trp Ala Val Glu Phe Asn Ala Asp Ala Thr Ala Met Ala
 385 390 395 400
 Ala Gly Ala Ala Glu Phe Lys Glu Arg Gly Val Trp Pro Met Ile Ser
 405 410 415
 Gly Asn Arg Phe His Ile Ala Pro Pro Leu Thr Thr Asp Asp Glu
 420 425 430
 Leu Val Ala Leu Leu Asp Ala Val Glu Ala Ala Ala Gln Ala Val Glu
 435 440 445
 Leu Thr Phe Ala Gly Ala Leu Phe
 450 455

<210> 5
 <211> 1330
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(1330)
 <223> FRXA01009

<400> 5
 aaccgacaaa acagccgttc acgtgctaaa gcagctcgcc ttgatctagg gtgaggttag 60
 ttattnaaag acttcataat atttgggaa gtgaactggg ttg gca ttg aag ggt 115
 Leu Ala Leu Lys Gly
 1 5
 tac acc aac ttt gac ggt gaa ttc atc gaa ttc gga tct gtg caa gca 163
 Tyr Thr Asn Phe Asp Gly Glu Phe Gly Ser Val Gln Ala
 10 15 20
 aaa gaa gag gaa aaa cgg gca ttc gac aac gat cgc gcg cac gtt ttc 211
 Lys Glu Glu Lys Arg Ala Phe Asp Asn Asp Arg Ala His Val Phe
 25 30 35
 cac tcc tgg tcc gcg cag gac aaa atc agc ccc aaa gta tgg gca gct 259
 His Ser Trp Ser Ala Gln Asp Lys Ile Ser Pro Lys Val Trp Ala Ala
 40 45 50

gcc gaa ggt tcc acg ctg tac gac ttc gac ggc aac gcc ttc atc gac	307
Ala Glu Gly Ser Thr Leu Tyr Asp Phe Asp Gly Asn Ala Phe Ile Asp	
55 60 65	
atg ggt tcc caa ctt gtc tcg gca aac tta ggc cac aac aac cct cga	355
Met Gly Ser Gln Leu Val Ser Ala Asn Leu Gly His Asn Asn Pro Arg	
70 75 80 85	
tta gtt gag gcg atc cag cgc caa gca gcc cggtt acc aac atc aac	403
Leu Val Glu Ala Ile Gln Arg Gln Ala Ala Arg Leu Thr Asn Ile Asn	
90 95 100	
ccg gcc ttc ggc aat gat gtg cgc tct gat gtt gct gca aag atc gtg	451
Pro Ala Phe Gly Asn Asp Val Arg Ser Asp Val Ala Ala Lys Ile Val	
105 110 115	
tcg atg gcc cgt ggc gaa ttc tcc cac gtg ttt ttc acc aac ggc ggc	499
Ser Met Ala Arg Gly Glu Phe Ser His Val Phe Phe Thr Asn Gly Gly	
120 125 130	
gcc gac gcc atc gag cac tcc atc cgc atg gct cgc ctg cac acc gga	547
Ala Asp Ala Ile Glu His Ser Ile Arg Met Ala Arg Leu His Thr Gly	
135 140 145	
cgc aac aaa att ctg tcc gca tac cgc agc tac cac ggc gca acc gga	595
Arg Asn Lys Ile Leu Ser Ala Tyr Arg Ser Tyr His Gly Ala Thr Gly	
150 155 160 165	
tcc gcg atg atg ctc acc ggc gaa cac cgc cgc ctg ggc aac ccc acc	643
Ser Ala Met Met Leu Thr Gly Glu His Arg Arg Leu Gly Asn Pro Thr	
170 175 180	
acc gac cca gat atc tac cac ttc tgg gca cca ttc ctg cac cac tcc	691
Thr Asp Pro Asp Ile Tyr His Phe Trp Ala Pro Phe Leu His His Ser	
185 190 195	
tca ttc ttt gcc acc acc caa gaa gaa gaa tgc gaa cgc gca ctc aag	739
Ser Phe Phe Ala Thr Thr Gln Glu Glu Glu Cys Glu Arg Ala Leu Lys	
200 205 210	
cac ttg gaa gat gtc atc gcg ttt gaa ggt gct ggc atg atc gca gcg	787
His Leu Glu Asp Val Ile Ala Phe Glu Gly Ala Gly Met Ile Ala Ala	
215 220 225	
atc gtc ctg gag cca gtg gtg gga tca tca gga atc atc ctg cca cca	835
Ile Val Leu Glu Pro Val Val Gly Ser Ser Gly Ile Ile Leu Pro Pro	
230 235 240 245	
gca ggt tac tta aat ggc gtg cgc gaa ctt tgc aac aag cac ggc atc	883
Ala Gly Tyr Leu Asn Gly Val Arg Glu Leu Cys Asn Lys His Gly Ile	
250 255 260	
ctc ttc atc gcc gac gaa gtc atg gtc gga ttc gga cgc acc gga aaa	931
Leu Phe Ile Ala Asp Glu Val Met Val Gly Phe Gly Arg Thr Gly Lys	
265 270 275	
ctg ttt gct tac gag cat gct ggc gac gat ttc cag cca gac atg atc	979
Leu Phe Ala Tyr Glu His Ala Gly Asp Asp Phe Gln Pro Asp Met Ile	
280 285 290	

acc ttc gcc aag ggt gtt aac gca ggt tac gcc cca ctc ggt ggc atc
1027

Thr Phe Ala Lys Gly Val Asn Ala Gly Tyr Ala Pro Leu Gly Gly Ile
295 300 305

gtg atg acc caa tca atc cgc gat acc ttc gga tca gag gca tac tcc
1075

Val Met Thr Gln Ser Ile Arg Asp Thr Phe Gly Ser Glu Ala Tyr Ser
310 315 320 325

ggc gga ctc acc tac tcc gga cac cca ctt gca gta gca ccc gcc aag
1123

Gly Gly Leu Thr Tyr Ser Gly His Pro Leu Ala Val Ala Pro Ala Lys
330 335 340

gca gcg ctg gag att tac gcg gaa gga gag atc att cca cgc gta gct
1171

Ala Ala Leu Glu Ile Tyr Ala Glu Gly Glu Ile Ile Pro Arg Val Ala
345 350 355

cga ctt ggc gct gaa ctg atc gaa cct cgc ctt cgt gaa cta gcg gaa
1219

Arg Leu Gly Ala Glu Leu Ile Glu Pro Arg Leu Arg Glu Leu Ala Glu
360 365 370

gaa aac gta gcg atc gct gac gtg cgg ggc atc gga ttc ttc tgg gca
1267

Glu Asn Val Ala Ile Ala Asp Val Arg Gly Ile Gly Phe Phe Trp Ala
375 380 385

gtg gag ttc aat gca gac gcc act gcc atg gct gcc ggt gct gca gaa
1315

Val Glu Phe Asn Ala Asp Ala Thr Ala Met Ala Ala Gly Ala Ala Glu
390 395 400 405

ttc aag gaa cgc ggc

1330

Phe Lys Glu Arg Gly
410

<210> 6

<211> 410

<212> PRT

<213> Corynebacterium glutamicum

<400> 6

Leu Ala Leu Lys Gly Tyr Thr Asn Phe Asp Gly Glu Phe Ile Glu Phe
1 5 10 15

Gly Ser Val Gln Ala Lys Glu Glu Lys Arg Ala Phe Asp Asn Asp
20 25 30

Arg Ala His Val Phe His Ser Trp Ser Ala Gln Asp Lys Ile Ser Pro
35 40 45

Lys Val Trp Ala Ala Ala Glu Gly Ser Thr Leu Tyr Asp Phe Asp Gly
50 55 60

Asn Ala Phe Ile Asp Met Gly Ser Gln Leu Val Ser Ala Asn Leu Gly
65 70 75 80

His	Asn	Asn	Pro	Arg	Leu	Val	Glu	Ala	Ile	Gln	Arg	Gln	Ala	Ala	Arg
					85				90						95
Leu	Thr	Asn	Ile	Asn	Pro	Ala	Phe	Gly	Asn	Asp	Val	Arg	Ser	Asp	Val
					100				105						110
Ala	Ala	Lys	Ile	Val	Ser	Met	Ala	Arg	Gly	Glu	Phe	Ser	His	Val	Phe
					115				120						125
Phe	Thr	Asn	Gly	Gly	Ala	Asp	Ala	Ile	Glu	His	Ser	Ile	Arg	Met	Ala
					130				135						140
Arg	Leu	His	Thr	Gly	Arg	Asn	Lys	Ile	Leu	Ser	Ala	Tyr	Arg	Ser	Tyr
					145				150			155			160
His	Gly	Ala	Thr	Gly	Ser	Ala	Met	Met	Leu	Thr	Gly	Glu	His	Arg	Arg
					165				170						175
Leu	Gly	Asn	Pro	Thr	Thr	Asp	Pro	Asp	Ile	Tyr	His	Phe	Trp	Ala	Pro
					180				185						190
Phe	Leu	His	His	Ser	Ser	Phe	Phe	Ala	Thr	Thr	Gln	Glu	Glu	Glu	Cys
					195				200						205
Glu	Arg	Ala	Leu	Lys	His	Leu	Glu	Asp	Val	Ile	Ala	Phe	Glu	Gly	Ala
					210				215						220
Gly	Met	Ile	Ala	Ala	Ile	Val	Leu	Glu	Pro	Val	Val	Gly	Ser	Ser	Gly
					225				230			235			240
Ile	Ile	Leu	Pro	Pro	Ala	Gly	Tyr	Leu	Asn	Gly	Val	Arg	Glu	Leu	Cys
					245				250						255
Asn	Lys	His	Gly	Ile	Leu	Phe	Ile	Ala	Asp	Glu	Val	Met	Val	Gly	Phe
					260				265						270
Gly	Arg	Thr	Gly	Lys	Leu	Phe	Ala	Tyr	Glu	His	Ala	Gly	Asp	Asp	Phe
					275				280						285
Gln	Pro	Asp	Met	Ile	Thr	Phe	Ala	Lys	Gly	Val	Asn	Ala	Gly	Tyr	Ala
					290				295						300
Pro	Leu	Gly	Gly	Ile	Val	Met	Thr	Gln	Ser	Ile	Arg	Asp	Thr	Phe	Gly
					305				310			315			320
Ser	Glu	Ala	Tyr	Ser	Gly	Gly	Leu	Thr	Tyr	Ser	Gly	His	Pro	Leu	Ala
					325				330						335
Val	Ala	Pro	Ala	Lys	Ala	Ala	Leu	Glu	Ile	Tyr	Ala	Glu	Gly	Glu	Ile
					340				345						350
Ile	Pro	Arg	Val	Ala	Arg	Leu	Gly	Ala	Glu	Leu	Ile	Glu	Pro	Arg	Leu
					355				360						365
Arg	Glu	Ile	Ala	Glu	Glu	Asn	Val	Ala	Ile	Ala	Asp	Val	Arg	Gly	Ile
					370				375						380
Gly	Phe	Phe	Trp	Ala	Val	Glu	Phe	Asn	Ala	Asp	Ala	Thr	Ala	Met	Ala
					385				390			395			400

Ala Gly Ala Ala Glu Phe Lys Glu Arg Gly
405 410

<210> 7
<211> 792
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(769)
<223> RXC02390

<400> 7
gctggatggtg ctgaccata cgctgaaact ccaactgctg ttgataccgc caagatgtt 60

ggccgcgagg atctcgtagc tcgcttcgag tcataggccg gtg gag tgg acc gct 115
Val Glu Trp Thr Ala
1 5

ttt ggc acc ctg att ctg ctc aat ttg gtg ggc agt tta tcc ccg ggg 163
Phe Gly Thr Leu Ile Leu Leu Asn Leu Val Gly Ser Leu Ser Pro Gly
10 15 20

cct gat acc ttt ttc ctc ctc cgc tta gcc acc cgc tcc aga gcg cac 211
Pro Asp Thr Phe Phe Leu Leu Arg Leu Ala Thr Arg Ser Arg Ala His
25 30 35

gcg atc gct ggc gtc gcc ggc atc gtc acc gga ctc acg gtg tgg gtg 259
Ala Ile Ala Gly Val Ala Gly Ile Val Thr Gly Leu Thr Val Trp Val
40 45 50

acg ctg acg gtc gtg gga gca gcg gtc ctc acc act tat ccg tcg 307
Thr Leu Thr Val Val Gly Ala Ala Ala Leu Leu Thr Thr Tyr Pro Ser
55 60 65

att ctc gga atc atc cag ctc gtc ggc acg tac cta agc ttc att 355
Ile Leu Gly Ile Ile Gln Leu Val Gly Thr Tyr Leu Ser Phe Ile
70 75 80 85

ggg tac aag ttg ctg cgc tcg gcg tcg aga gag ctt atc gac gcc cgc 403
Gly Tyr Lys Leu Leu Arg Ser Ala Ser Arg Glu Leu Ile Asp Ala Arg
90 95 100

cag ttc cgt ttc aac gcc gat gcc cga cct atc ccg gat gcg gta gaa 451
Gln Phe Arg Phe Asn Ala Asp Ala Arg Pro Ile Pro Asp Ala Val Glu
105 110 115

gca ctg gga acc cgc act cag gta tat cga caa ggt ttg gcc acc aac 499
Ala Leu Gly Thr Arg Thr Gln Val Tyr Arg Gln Gly Leu Ala Thr Asn
120 125 130

ctg tca aac cct aaa gtt gtc atg tac ttc gcg gca att ctg gct ccg 547
Leu Ser Asn Pro Lys Val Val Met Tyr Phe Ala Ala Ile Leu Ala Pro
135 140 145

atc atg cca gcg cac cca tca ccg gtg ctg gcg ttc tct atc atc gtg 595
Met Pro Ala His Pro Ser Pro Val Leu Ala Phe Ser Ile Ile Val
150 155 160 165

gct att tta gtc cag acc ttt gtt acc ttc tct gct gtc tgc ctc att	643
Ala Ile Leu Val Gln Thr Phe Val Thr Phe Ser Ala Val Cys Leu Ile	
170	175
180	
gtc tct acg gag cgt gtc cgc aaa gca atg ctg cgt gca ggt ccc tgg	691
Val Ser Thr Glu Arg Val Arg Lys Ala Met Leu Arg Ala Gly Pro Trp	
185	190
195	
ttt gac ctg ctt gct ggc gtt gtc ttc ctc gtt gtc ggt gtc act ctg	739
Phe Asp Leu Leu Ala Gly Val Val Phe Leu Val Val Gly Val Thr Leu	
200	205
210	
ctg tat gaa ggc ctg acc ggt tta ctc ggg taaaggcata aaaaatggct	789
Leu Tyr Glu Gly Leu Thr Gly Leu Leu Gly	
215	220
tcc	792

<210> 8
<211> 223
<212> PRT
<213> Corynebacterium glutamicum

<400> 8	
Val Glu Trp Thr Ala Phe Gly Thr Leu Ile Leu Leu Asn Leu Val Gly	
1	5
10	15
Ser Leu Ser Pro Gly Pro Asp Thr Phe Phe Leu Leu Arg Leu Ala Thr	
20	25
30	
Arg Ser Arg Ala His Ala Ile Ala Gly Val Ala Gly Ile Val Thr Gly	
35	40
45	
Leu Thr Val Trp Val Thr Leu Thr Val Val Gly Ala Ala Ala Leu Leu	
50	55
60	
Thr Thr Tyr Pro Ser Ile Leu Gly Ile Ile Gln Leu Val Gly Gly Thr	
65	70
75	80
Tyr Leu Ser Phe Ile Gly Tyr Lys Leu Leu Arg Ser Ala Ser Arg Glu	
85	90
95	
Leu Ile Asp Ala Arg Gln Phe Arg Phe Asn Ala Asp Ala Arg Pro Ile	
100	105
110	
Pro Asp Ala Val Glu Ala Leu Gly Thr Arg Thr Gln Val Tyr Arg Gln	
115	120
125	
Gly Leu Ala Thr Asn Leu Ser Asn Pro Lys Val Val Met Tyr Phe Ala	
130	135
140	
Ala Ile Leu Ala Pro Leu Met Pro Ala His Pro Ser Pro Val Leu Ala	
145	150
155	160
Phe Ser Ile Ile Val Ala Ile Leu Val Gln Thr Phe Val Thr Phe Ser	
165	170
175	
Ala Val Cys Leu Ile Val Ser Thr Glu Arg Val Arg Lys Ala Met Leu	
180	185
190	

Arg Ala Gly Pro Trp Phe Asp Leu Leu Ala Gly Val Val Phe Leu Val
 195 200 205

Val Gly Val Thr Leu Leu Tyr Glu Gly Leu Thr Gly Leu Leu Gly
 210 215 220

<210> 9

<211> 897

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(874)

<223> RXC01796

<400> 9

atgttaactcg atcaggtgga aatgccgc a aaagtggcg cggtggccga gggatggccg 60

ttggtgccgc atcggtgccc tgctactagt cgggctttc ttg ctc ctt ggc ggt 115
 Leu Leu Leu Gly Gly
 1 5

aac cct gcc gag atc gac cag gtt tta ggt ggc gat caa acc cag atc 163
 Asn Pro Ala Glu Ile Asp Gln Val Leu Gly Gly Asp Gln Thr Gln Ile
 10 15 20

gag tct gga gag tcc acc gga gcc ggc gac ttt gat cac tgc caa acc 211
 Glu Ser Gly Glu Ser Thr Gly Ala Gly Asp Phe Asp His Cys Gln Thr
 25 30 35

ggc gca gat gcc aac gcc agt gat gat tgt cgc ctt tac tac acc tca 259
 Gly Ala Asp Ala Asn Ala Ser Asp Asp Cys Arg Leu Tyr Tyr Thr Ser
 40 45 50

tcc tcc gtc aat gaa atg tgg cag act ttg ctt cca gct cag gct ggt 307
 Phe Ser Val Asn Glu Met Trp Gln Thr Leu Leu Pro Ala Gln Ala Gly
 55 60 65

atc gaa tac acc gag ccg aca ttg act ctt ttc aaa aac tcc acc caa 355
 Ile Glu Tyr Thr Glu Pro Thr Leu Thr Leu Phe Lys Asn Ser Thr Gln
 70 75 80 85

acc ggc tgc ggt ttc gct tct gcg tcc act ggg ccg ttt tac tgt ccg 403
 Thr Gly Cys Gly Phe Ala Ser Ala Ser Thr Gly Pro Phe Tyr Cys Pro
 90 95 100

tca gac caa gat gct tat ttt gac ttg act ttc ttc gat cag atg cgt 451
 Ser Asp Gln Asp Ala Tyr Phe Asp Leu Thr Phe Asp Gln Met Arg
 105 110 115

cag ttc ggt gca gaa aac gcc ccg ctt gcc cag atg tac atc gtg gcg 499
 Gln Phe Gly Ala Glu Asn Ala Pro Leu Ala Gln Met Tyr Ile Val Ala
 120 125 130

cac gag tac ggc cac cac gtc caa aac ctc gag ggc aca ctc gga ctg 547
 His Glu Tyr Gly His His Val Gln Asn Leu Glu Gly Thr Leu Gly Leu
 135 140 145

tcc aat tac aac gat ccg ggc gct gat tcc aac gcc gtc aag atc gag 595

Ser Asn Tyr Asn Asp Pro Gly Ala Asp Ser Asn Ala Val Lys Ile Glu
 150 155 160 165
 ttg cag gcc gat tgc tac gca ggc att tgg gct aat cac tcc agc gaa 643
 Leu Gln Ala Asp Cys Tyr Ala Gly Ile Trp Ala Asn His Ser Ser Glu
 170 175 180
 ggc ccg gat ccg cta ctc caa ccc atc acc gaa tct gag cta gat tcc 691
 Gly Pro Asp Pro Leu Leu Gln Pro Ile Thr Glu Ser Glu Leu Asp Ser
 185 190 195
 gct ctc ctt gct gca agc gcc gtg ggc gac gac aat atc cag caa cga 739
 Ala Leu Leu Ala Ala Ser Ala Val Gly Asp Asp Asn Ile Gln Gln Arg
 200 205 210
 tcc ggt ggc gat gtc aat cct gaa agc tgg act cac ggc tca tcg cag 787
 Ser Gly Gly Asp Val Asn Pro Glu Ser Trp Thr His Gly Ser Ser Gln
 215 220 225
 cag cgc aaa gac gcg ttc ctc gcc ggc tac aac acc ggc cag atg agc 835
 Gln Arg Lys Asp Ala Phe Leu Ala Gly Tyr Asn Thr Gly Gln Met Ser
 230 235 240 245
 gcc tgc gac ttc ctc ggc cgg ggc gtc tac aac gac gct taaaggcatgg 884
 Ala Cys Asp Phe Leu Gly Arg Gly Val Tyr Asn Asp Ala
 250 255
 cttttcgacg tct 897

<210> 10
 <211> 258
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 10
 Leu Leu Leu Gly Gly Asn Pro Ala Glu Ile Asp Gln Val Leu Gly Gly
 1 5 10 15
 Asp Gln Thr Gln Ile Glu Ser Gly Glu Ser Thr Gly Ala Gly Asp Phe
 20 25 30

Asp His Cys Gln Thr Gly Ala Asp Ala Asn Ala Ser Asp Asp Cys Arg
 35 40 45

Leu Tyr Tyr Thr Ser Phe Ser Val Asn Glu Met Trp Gln Thr Leu Leu
 50 55 60

Pro Ala Gln Ala Gly Ile Glu Tyr Thr Glu Pro Thr Leu Thr Leu Phe
 65 70 75 80

Lys Asn Ser Thr Gln Thr Gly Cys Gly Phe Ala Ser Ala Ser Thr Gly
 85 90 95

Pro Phe Tyr Cys Pro Ser Asp Gln Asp Ala Tyr Phe Asp Leu Thr Phe
 100 105 110

Phe Asp Gln Met Arg Gln Phe Gly Ala Glu Asn Ala Pro Leu Ala Gln
 115 120 125

Met Tyr Ile Val Ala His Glu Tyr Gly His His Val Gln Asn Leu Glu

130	135	140													
Gly	Thr	Leu	Gly	Leu	Ser	Asn	Tyr	Asn	Asp	Pro	Gly	Ala	Asp	Ser	Asn
145															160
Ala	Val	Lys	Ile	Glu	Leu	Gln	Ala	Asp	Cys	Tyr	Ala	Gly	Ile	Trp	Ala
															165
															170
															175
Asn	His	Ser	Ser	Glu	Gly	Pro	Asp	Pro	Leu	Leu	Gln	Pro	Ile	Thr	Glu
															180
															185
Ser	Glu	Leu	Asp	Ser	Ala	Leu	Leu	Ala	Ala	Ser	Ala	Val	Gly	Asp	Asp
															195
															200
															205
Asn	Ile	Gln	Gln	Arg	Ser	Gly	Gly	Asp	Val	Asn	Pro	Glu	Ser	Trp	Thr
															210
															215
															220
His	Gly	Ser	Ser	Gln	Gln	Arg	Lys	Asp	Ala	Phe	Leu	Ala	Gly	Tyr	Asn
															225
															230
															235
Thr	Gly	Gln	Met	Ser	Ala	Cys	Asp	Phe	Leu	Gly	Arg	Gly	Val	Tyr	Asn
															245
															250
															255
Asp	Ala														

<210> 11
<211> 771
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(748)
<223> RXC01207

<400> 11															
cttcatgatc	tcaccggcag	agcgcgtttt	gttacagcgc	gtaaaactgtg	actttgaaaa	60									
attttgaac	aatccgtaca	ccaacttcag	gagaaaaaca	gtg	agc	aga	atc	tat		115					
									Val	Ser	Arg	Ile	Tyr		
									1				5		
gac	tgt	gcc	gac	caa	gac	tcc	cgt	gca	gca	ggc	cta	aag	gcg	gct	gtc
															163
Asp	Cys	Ala	Asp	Gln	Asp	Ser	Arg	Ala	Ala	Gly	Leu	Lys	Ala	Ala	Val
															10
															15
															20
gat	gca	gtc	aaa	gcc	ggt	cag	ctc	gtt	gtc	ctt	ccc	acg	gat	acc	ctt
															211
Asp	Ala	Val	Lys	Ala	Gly	Gln	Leu	Val	Val	Leu	Pro	Thr	Asp	Thr	Leu
															25
															30
															35
tat	gga	ctc	ggc	tgc	gac	gct	ttc	aac	aac	gag	gca	gta	gcc	aac	ctt
															259
Tyr	Gly	Leu	Gly	Cys	Asp	Ala	Phe	Asn	Asn	Glu	Ala	Val	Ala	Asn	Leu
															40
															45
															50
ctg	gcc	acc	aaa	cac	cgt	ggc	ccc	gat	atg	ccc	gtt	cca	gtg	ctc	gtc
															307
Leu	Ala	Thr	Lys	His	Arg	Gly	Pro	Asp	Met	Pro	Val	Pro	Val	Leu	Val
															55
															60
															65
ggc	agc	tgg	gac	acc	att	caa	gga	ctt	gtg	cac	tcc	tat	tct	gcg	cag
															355

Gly Ser Trp Asp Thr Ile Gln Gly Leu Val His Ser Tyr Ser Ala Gln
 70 75 80 85
 :
 gca aaa gcg ctt gtg gag ccg ttc tgg cct ggt gga ctg tcc atc atc 403
 Ala Lys Ala Leu Val Glu Ala Phe Trp Pro Gly Gly Leu Ser Ile Ile
 90 95 100
 gtt ccg cag gca cca agc ctt ccg tgg aac ctt ggc gat acc cgt ggc 451
 Val Pro Gln Ala Pro Ser Leu Pro Trp Asn Leu Gly Asp Thr Arg Gly
 105 110 115
 acc gta atg ctg cgc atg cca ctg cac cca gtt gcc att gaa ttg ctg 499
 Thr Val Met Leu Arg Met Pro Leu His Pro Val Ala Ile Glu Leu Leu
 120 125 130
 cgc caa acc gga cca atg gct gtc tcc tcc gcc aac atc tcc gga cat 547
 Arg Gln Thr Gly Pro Met Ala Val Ser Ser Ala Asn Ile Ser Gly His
 135 140 145
 act cct cca acc acc gtg ctg gag gct cgt cag cag ctc aaccaa aat 595
 Thr Pro Pro Thr Thr Val Leu Glu Ala Arg Gln Gln Leu Asn Gln Asn
 150 155 160 165
 gtc gct gtc tac ctc gat ggt ggc gaa tgc gcg ctg gcc acc cct tca 643
 Val Ala Val Tyr Leu Asp Gly Gly Glu Cys Ala Leu Ala Thr Pro Ser
 170 175 180
 acc atc gtg gat att tca ggc ccc gca cca aag att ttg cgt gag ggt 691
 Thr Ile Val Asp Ile Ser Gly Pro Ala Pro Lys Ile Leu Arg Glu Gly
 185 190 195
 gcc atc agc gca gaa cgc gtt ggc gaa gta ctt gga gtg tcg gca gaa 739
 Ala Ile Ser Ala Glu Arg Val Gly Glu Val Leu Gly Val Ser Ala Glu
 200 205 210
 agc ctg cgc taaaatgggag tcggtttcgc ggg 771
 Ser Leu Arg
 215

<210> 12
<211> 216

<212> PRT

<213> Corynebacterium glutamicum

<400> 12

Val Ser Arg Ile Tyr Asp Cys Ala Asp Gln Asp Ser Arg Ala Ala Gly
 1 5 10 15

Leu Lys Ala Ala Val Asp Ala Val Lys Ala Gly Gln Leu Val Val Leu
 20 25 30

Pro Thr Asp Thr Leu Tyr Gly Leu Gly Cys Asp Ala Phe Asn Asn Glu
 35 40 45

Ala Val Ala Asn Leu Leu Ala Thr Lys His Arg Gly Pro Asp Met Pro
 50 55 60

Val Pro Val Leu Val Gly Ser Trp Asp Thr Ile Gln Gly Leu Val His
 65 70 75 80

Ser Tyr Ser Ala Gln Ala Lys Ala Leu Val Glu Ala Phe Trp Pro Gly
 85 90 95

Gly Leu Ser Ile Ile Val Pro Gln Ala Pro Ser Leu Pro Trp Asn Leu
 100 105 110

Gly Asp Thr Arg Gly Thr Val Met Leu Arg Met Pro Leu His Pro Val
 115 120 125

Ala Ile Glu Leu Leu Arg Gln Thr Gly Pro Met Ala Val Ser Ser Ala
 130 135 140

Asn Ile Ser Gly His Thr Pro Pro Thr Thr Val Leu Glu Ala Arg Gln
 145 150 155 160

Gln Leu Asn Gln Asn Val Ala Val Tyr Leu Asp Gly Gly Glu Cys Ala
 165 170 175

Leu Ala Thr Pro Ser Thr Ile Val Asp Ile Ser Gly Pro Ala Pro Lys
 180 185 190

Ile Leu Arg Glu Gly Ala Ile Ser Ala Glu Arg Val Gly Glu Val Leu
 195 200 205

Gly Val Ser Ala Glu Ser Leu Arg
 210 215

<210> 13

<211> 1026

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1003)

<223> RXC00657

<400> 13
 gtgcggatcg ggtatccgct ctacacttag aggtgtttaga gatcatgagt ttccacgaac 60

tgttaacgcag gattcaccaa tcaatgaaag gtcgaccgac atg agc act gaa gac 115
 Met Ser Thr Glu Asp
 1 5

att gtc gtc gta gca gta gat ggc tcg gac gcc tca aaa caa gct gtt 163
 Ile Val Val Val Ala Val Asp Gly Ser Asp Ala Ser Lys Gln Ala Val
 10 15 20

cgg tgg gct gca aat acc gcc aac aaa cgt ggc att cca ctt cgc ttg 211
 Arg Trp Ala Ala Asn Thr Ala Asn Lys Arg Gly Ile Pro Leu Arg Leu
 25 30 35

gct tcc agc tac acc atg cct cag ttc ctc tac gca gag gga atg gtt 259
 Ala Ser Ser Tyr Thr Met Pro Gln Phe Leu Tyr Ala Glu Gly Met Val
 40 45 50

cca cca caa gag ctt ttc gat gac ctc cag gcc gaa gcc ctg gaa aag 307
 Pro Pro Gln Glu Leu Phe Asp Asp Leu Gln Ala Glu Ala Leu Glu Lys
 55 60 65

att aac gaa gcc cgt gac atc gcc cat gag gta gcg cca gaa atc aag 355
 Ile Asn Glu Ala Arg Asp Ile Ala His Glu Val Ala Pro Glu Ile Lys
 70 75 80 85

atc ggg cac acc atc gct gaa ggc agt ccc atc gac atg ctg ttg gaa 403
 Ile Gly His Thr Ile Ala Glu Gly Ser Pro Ile Asp Met Leu Leu Glu
 90 95 100

atg tct ccc gat gcc aca atg atc gtc atg ggt tcc cgc gga ctc ggc 451
 Met Ser Pro Asp Ala Thr Met Ile Val Met Gly Ser Arg Gly Leu Gly
 105 110 115

gga ctc tcc gga atg gtc atg ggc tcc gtc tcc ggt gca gtg gtc agc 499
 Gly Leu Ser Gly Met Val Met Gly Ser Val Ser Gly Ala Val Val Ser
 120 125 130

cac gca aag tgt cca gtc gtt gtc cgt gaa gac agc gca gtc aac 547
 His Ala Lys Cys Pro Val Val Val Arg Glu Asp Ser Ala Val Asn
 135 140 145

gaa gac agc aag tac ggc cca gtc gtc gtc ggt gtg gat ggc tcc gaa 595
 Glu Asp Ser Lys Tyr Gly Pro Val Val Val Gly Val Asp Gly Ser Glu
 150 155 160 165

gtc tcc caa cag gca acc gaa tac gca ttt gcg gaa gct gaa gct cgt 643
 Val Ser Gln Gln Ala Thr Glu Tyr Ala Phe Ala Glu Ala Glu Ala Arg
 170 175 180

ggc gcc gaa ctc gtt gca gtc acc tgg atg gac atg cag gta cag 691
 Gly Ala Glu Leu Val Ala Val His Thr Trp Met Asp Met Gln Val Gln
 185 190 195

gca tca ctt gca ggt ctt gca gct gct caa cag cag tgg gat gaa gtg 739
 Ala Ser Leu Ala Gly Leu Ala Ala Gln Gln Gln Trp Asp Glu Val
 200 205 210

gaa cgt cag caa acc gac atg ctg atc gaa cgc ctc gca cca ctg gtg 787
 Glu Arg Gln Gln Thr Asp Met Leu Ile Glu Arg Leu Ala Pro Leu Val
 215 220 225

gaa aag tac cca agt gta acc gtc aag aag atc atc acc cgt gac cgc 835
 Glu Lys Tyr Pro Ser Val Thr Val Lys Lys Ile Ile Thr Arg Asp Arg
 230 235 240 245

cca gtt cgc gca ctt gca gaa gca tct gaa aac gcg cag ctc cta gtc 883
 Pro Val Arg Ala Leu Ala Glu Ala Ser Glu Asn Ala Gln Leu Leu Val
 250 255 260

gtt ggt tcc cat ggt cgt ggc gga ttt aag ggc atg ctc ctt ggc tcc 931
 Val Gly Ser His Gly Arg Gly Gly Phe Lys Gly Met Leu Leu Gly Ser
 265 270 275

acc tcc cgc gca ctg ctg caa tcc gca ccg tgc cca atg atg gtg gtt 979
 Thr Ser Arg Ala Leu Leu Gln Ser Ala Pro Cys Pro Met Met Val Val
 280 285 290

cgc cca cct gag aag att aag aag tagtttcttt taagtttcga tgc
 1026

Arg Pro Pro Glu Lys Ile Lys Lys
 295 300

<210> 14
<211> 301
<212> PRT
<213> Corynebacterium glutamicum

<400> 14
Met Ser Thr Glu Asp Ile Val Val Val Ala Val Asp Gly Ser Asp Ala
1 5 10 15
Ser Lys Gln Ala Val Arg Trp Ala Ala Asn Thr Ala Asn Lys Arg Gly
20 25 30
Ile Pro Leu Arg Leu Ala Ser Ser Tyr Thr Met Pro Gln Phe Leu Tyr
35 40 45
Ala Glu Gly Met Val Pro Pro Gln Glu Leu Phe Asp Asp Leu Gln Ala
50 55 60
Glu Ala Leu Glu Lys Ile Asn Glu Ala Arg Asp Ile Ala His Glu Val
65 70 75 80
Ala Pro Glu Ile Lys Ile Gly His Thr Ile Ala Glu Gly Ser Pro Ile
85 90 95
Asp Met Leu Leu Glu Met Ser Pro Asp Ala Thr Met Ile Val Met Gly
100 105 110
Ser Arg Gly Leu Gly Leu Ser Gly Met Val Met Gly Ser Val Ser
115 120 125
Gly Ala Val Val Ser His Ala Lys Cys Pro Val Val Val Arg Glu
130 135 140
Asp Ser Ala Val Asn Glu Asp Ser Lys Tyr Gly Pro Val Val Val Gly
145 150 155 160
Val Asp Gly Ser Glu Val Ser Gln Gln Ala Thr Glu Tyr Ala Phe Ala
165 170 175
Glu Ala Glu Ala Arg Gly Ala Glu Leu Val Ala Val His Thr Trp Met
180 185 190
Asp Met Gln Val Gln Ala Ser Leu Ala Gly Leu Ala Ala Ala Gln Gln
195 200 205
Gln Trp Asp Glu Val Glu Arg Gln Gln Thr Asp Met Leu Ile Glu Arg
210 215 220
Leu Ala Pro Leu Val Glu Lys Tyr Pro Ser Val Thr Val Lys Lys Ile
225 230 235 240
Ile Thr Arg Asp Arg Pro Val Arg Ala Leu Ala Glu Ala Ser Glu Asn
245 250 255
Ala Gln Leu Leu Val Val Gly Ser His Gly Arg Gly Gly Phe Lys Gly
260 265 270
Met Leu Leu Gly Ser Thr Ser Arg Ala Leu Leu Gln Ser Ala Pro Cys
275 280 285

Pro Met Met Val Val Arg Pro Pro Glu Lys Ile Lys Lys
 290 295 300

<210> 15

<211> 1059

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1036)

<223> RXC00552

<400> 15

ccgccaacaa ggcagcaaag ctcgatccaa ttgacgcctt gcgttatgag taaaaggcctc 60

gttttaagg tagccacaca tcgcactaga ctgaagaact gtg gct acc tca aaa 115
 Val Ala Thr Ser Lys
 1 5

att ctt ctt tat tac gca ttc acc ccg ctc tct gac cct aaa gcg gtt 163
 Ile Leu Leu Tyr Tyr Ala Phe Thr Pro Leu Ser Asp Pro Lys Ala Val
 10 15 20

cag ctg tgg cag cgt gag ctc tgc gag tca ctg aat ctt cgt ggc cgc 211
 Gln Leu Trp Gln Arg Glu Leu Cys Glu Ser Leu Asn Leu Arg Gly Arg
 25 30 35

atc ctg atc tcc act cac ggc atc aat gga acc gtg ggc gga gat att 259
 Ile Leu Ile Ser Thr His Gly Ile Asn Gly Thr Val Gly Gly Asp Ile
 40 45 50

gat gat tgc aag gcg tac att aaa aag acc cgc gag tac cca ggt ttc 307
 Asp Asp Cys Lys Ala Tyr Ile Lys Lys Thr Arg Glu Tyr Pro Gly Phe
 55 60 65

aac cgc atg cag ttt aag tgg tcc gag ggt ggc gct gag gat ttc cca 355
 Asn Arg Met Gln Phe Lys Trp Ser Glu Gly Ala Glu Asp Phe Pro
 70 75 80 85

aag ctc agt gtc aaa gtc cgc gat gag atc gtt gcc ttc ggc gct cca 403
~~Lys Leu Ser Val Lys Val Arg Asp Glu Ile Val Ala Phe Gly Ala Pro~~
 90 95 100

gat gag ctc aaa gtg gat gaa aac ggc gtc gtc ggt ggc ggc gtt cac 451
 Asp Glu Leu Lys Val Asp Glu Asn Gly Val Val Gly Gly Val His
 105 110 115

ctg aaa cca cag cag gtc aat gag ctt gtg gaa gcc cgt ggc gat gaa 499
 Leu Lys Pro Gln Gln Val Asn Glu Leu Val Glu Ala Arg Gly Asp Glu
 120 125 130

gtt gtg ttc ttt gac ggc cgc aac gca atg gaa gcc cag atc ggc aag 547
 Val Val Phe Phe Asp Gly Arg Asn Ala Met Glu Ala Gln Ile Gly Lys
 135 140 145

ttc aag gac gct gtt gtc cct gac gta gaa acc act cat gat ttc atc 595
 Phe Lys Asp Ala Val Val Pro Asp Val Glu Thr Thr His Asp Phe Ile
 150 155 160 165

gca gaa att gag tct gga aaa tac gac gat ctc aaa gac aag cct gtg 643
 Ala Glu Ile Glu Ser Gly Lys Tyr Asp Asp Leu Lys Asp Lys Pro Val
 170 175 180

gtc acc tac tgc acc ggc gga att cgt tgt gag atc ctg agt tca ctc 691
 Val Thr Tyr Cys Thr Gly Gly Ile Arg Cys Glu Ile Leu Ser Ser Leu
 185 190 195

atg atc aac cgt ggt ttc aaa gag gtc tac caa atc gat ggc ggc atc 739
 Met Ile Asn Arg Gly Phe Lys Glu Val Tyr Gln Ile Asp Gly Gly Ile
 200 205 210

gtt cgc tac ggc gag cag ttt ggc aac aag ggc ctg tgg gaa ggc tcc 787
 Val Arg Tyr Gly Glu Gln Phe Gly Asn Lys Gly Leu Trp Glu Gly Ser
 215 220 225

ctc tac gtt ttc gat aag cgc atg cat atg gaa ttc ggc gag gat tac 835
 Leu Tyr Val Phe Asp Lys Arg Met His Met Glu Phe Gly Glu Asp Tyr
 230 235 240 245

aaa gag gtc gga cac tgc atc cat tgc gat act ccc acc aac aaa ttt 883
 Lys Glu Val Gly His Cys Ile His Cys Asp Thr Pro Thr Asn Lys Phe
 250 255 260

gag cac tgc ctc aac gaa gat gat tgc cgc gag ctc gtg ttg atg tgc 931
 Glu His Cys Leu Asn Glu Asp Asp Cys Arg Glu Leu Val Leu Met Cys
 265 270 275

cct gat tgc ttc gcc aat gtt gag acc cgt cat tgc aag cgc gaa cgc 979
 Pro Asp Cys Phe Ala Asn Val Glu Thr Arg His Cys Lys Arg Glu Arg
 280 285 290

tgt gca gca att gct gcg gat ttc gct gag caa gga att gat ccg ctc
 1027
 Cys Ala Ala Ile Ala Ala Asp Phe Ala Glu Gln Gly Ile Asp Pro Leu
 295 300 305

gtt act tct taaaaagggt atggggctg ggt
 1059
 Val Thr Ser
 310

<210> 16
 <211> 312
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 16
 Val Ala Thr Ser Lys Ile Leu Leu Tyr Tyr Ala Phe Thr Pro Leu Ser
 1 5 10 15

Asp Pro Lys Ala Val Gln Leu Trp Gln Arg Glu Leu Cys Glu Ser Leu
 20 25 30

Asn Leu Arg Gly Arg Ile Leu Ile Ser Thr His Gly Ile Asn Gly Thr
 35 40 45

Val Gly Gly Asp Ile Asp Asp Cys Lys Ala Tyr Ile Lys Lys Thr Arg
 50 55 60

Glu Tyr Pro Gly Phe Asn Arg Met Gln Phe Lys Trp Ser Glu Gly Gly
 65 70 75 80

Ala Glu Asp Phe Pro Lys Leu Ser Val Lys Val Arg Asp Glu Ile Val
 85 90 95

Ala Phe Gly Ala Pro Asp Glu Leu Lys Val Asp Glu Asn Gly Val Val
 100 105 110

Gly Gly Gly Val His Leu Lys Pro Gln Gln Val Asn Glu Leu Val Glu
 115 120 125

Ala Arg Gly Asp Glu Val Val Phe Phe Asp Gly Arg Asn Ala Met Glu
 130 135 140

Ala Gln Ile Gly Lys Phe Lys Asp Ala Val Val Pro Asp Val Glu Thr
 145 150 155 160

Thr His Asp Phe Ile Ala Glu Ile Glu Ser Gly Lys Tyr Asp Asp Leu
 165 170 175

Lys Asp Lys Pro Val Val Thr Tyr Cys Thr Gly Gly Ile Arg Cys Glu
 180 185 190

Ile Leu Ser Ser Leu Met Ile Asn Arg Gly Phe Lys Glu Val Tyr Gln
 195 200 205

Ile Asp Gly Gly Ile Val Arg Tyr Gly Glu Gln Phe Gly Asn Lys Gly
 210 215 220

Leu Trp Glu Gly Ser Leu Tyr Val Phe Asp Lys Arg Met His Met Glu
 225 230 235 240

Phe Gly Glu Asp Tyr Lys Glu Val Gly His Cys Ile His Cys Asp Thr
 245 250 255

Pro Thr Asn Lys Phe Glu His Cys Leu Asn Glu Asp Asp Cys Arg Glu
 260 265 270

Leu Val Leu Met Cys Pro Asp Cys Phe Ala Asn Val Glu Thr Arg His
 275 280 285

Cys Lys Arg Glu Arg Cys Ala Ala Ile Ala Ala Asp Phe Ala Glu Gln
 290 295 300

Gly Ile Asp Pro Leu Val Thr Ser
 305 310

<210> 17
 <211> 1578
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(1555)
 <223> RXN00351

<400> 17
 gaaggctgct gctaagaaaa cgaccaagaa gaccactaag aaaactacta aaaagaccac 60

cgcaaagaaccacaaaaga	agtcttaagc	cggatcttat	atg	gat	gat	tcc	aat	115
			Met	Asp	Asp	Ser	Asn	
			1			5		
agc ttt gta gtt gtc aac cgt ctg cca gtg gat atg act gtc cac	Ser Phe Val Val Val Ala Asn Arg Leu Pro Val Asp Met Thr Val His	10	15	20		163		
cca gat ggt agc tat agc atc tcc ccc agc ccc ggt ggc ctt gtc acg	Pro Asp Gly Ser Tyr Ser Ile Ser Pro Ser Pro Gly Gly Leu Val Thr	25	30	35		211		
ggg ctt tcc ccc gtt ctg gaa caa cat cgt gga tgg tgg gtc gga tgg	Gly Leu Ser Pro Val Leu Glu Gln His Arg Gly Cys Trp Val Gly Trp	40	45	50		259		
cct gga act gta gat gtt gca ccc gaa cca ttt cga aca gat acg ggt	Pro Gly Thr Val Asp Val Ala Pro Glu Pro Phe Arg Thr Asp Thr Gly	55	60	65		307		
gtt ttg ctg cac cct gtt gtc ctc act gca agt gac tat gaa ggc ttc	Val Leu Leu His Pro Val Val Leu Thr Ala Ser Asp Tyr Glu Gly Phe	70	75	80		355		
tac gag ggc ttt tca aac gca acg ctg tgg cct ttc cac gat ctg	Tyr Glu Gly Phe Ser Asn Ala Thr Leu Trp Pro Leu Phe His Asp Leu	90	95	100		403		
att gtt act ccg gtg tac aac acc gat tgg tgg cat gcg ttt cgg gag	Ile Val Thr Pro Val Tyr Asn Thr Asp Trp Trp His Ala Phe Arg Glu	105	110	115		451		
gta aac ctc aag ttc gct gaa gcc gtg agc caa gtg gcg gca cac ggt	Val Asn Leu Lys Phe Ala Glu Ala Val Ser Gln Val Ala Ala His Gly	120	125	130		499		
gcc act gtg tgg gtg cag gac tat cag ctg ttg ctg gtt cct ggc att	Ala Thr Val Trp Val Gln Asp Tyr Gln Leu Leu Leu Val Pro Gly Ile	135	140	145		547		
ttg cgc cag atg cgc cct gat ttg aag atc ggt ttc ttc ctc cac att	Leu Arg Gln Met Arg Pro Asp Leu Lys Ile Gly Phe Phe Leu His Ile	150	155	160		595		
ccc ttc cct tcc cct gat ctg ttc cgt cag ctg ccg tgg cgt gaa gag	Pro Phe Pro Ser Pro Asp Leu Phe Arg Gln Leu Pro Trp Arg Glu Glu	170	175	180		643		
att gtt cga ggc atg ctg ggc gca gat ttg gtg gga ttc cat ttg gtt	Ile Val Arg Gly Met Leu Gly Ala Asp Leu Val Gly Phe His Leu Val	185	190	195		691		
caa aac gca gaa aac ttc ctt gcg tta acc cag cag gtt gcc ggc act	Gln Asn Ala Glu Asn Phe Leu Ala Leu Thr Gln Gln Val Ala Gly Thr	200	205	210		739		
gcc ggg tct cat gtg ggt cag ccg gac acc ttg cag gtc agt ggt gaa	Ala Gly Ser His Val Gly Gln Pro Asp Thr Leu Gln Val Ser Gly Glu	215	220	225		787		

gca ttg gtg cgt gag att ggc gct cat gtt gaa acc gct gac gga agg 835
 Ala Leu Val Arg Glu Ile Gly Ala His Val Glu Thr Ala Asp Gly Arg
 230 235 240 245

cga gtt agc gtc ggg gcg ttc ccg atc tcg att gat gtt gaa atg ttt 883
 Arg Val Ser Val Gly Ala Phe Pro Ile Ser Ile Asp Val Glu Met Phe
 250 255 260

ggg gag gcg tcg aaa agc gcc gtt ctt gat ctt tta aaa acg ctc gac 931
 Gly Glu Ala Ser Lys Ser Ala Val Leu Asp Leu Leu Lys Thr Leu Asp
 265 270 275

gag ccg gaa acc gta ttc ctg ggc gtt gac cga ctg gac tac acc aag 979
 Glu Pro Glu Thr Val Phe Leu Gly Val Asp Arg Leu Asp Tyr Thr Lys
 280 285 290

ggc att ttg cag cgc ctg ctt gcg ttt gag gaa ctg ctg gaa tcc ggc 1027
 Gly Ile Leu Gln Arg Leu Leu Ala Phe Glu Glu Leu Leu Glu Ser Gly
 295 300 305

gcg ttg gag gcc gac aaa gct gtg ttg ctg cag gtc gcg acg cct tcg 1075
 Ala Leu Glu Ala Asp Lys Ala Val Leu Leu Gln Val Ala Thr Pro Ser
 310 315 320 325

cgt gag cgc att gat cac tat cgt gtg tcg cgt tcg cag gtc gag gaa 1123
 Arg Glu Arg Ile Asp His Tyr Arg Val Ser Arg Ser Gln Val Glu Glu
 330 335 340

gcc gtc ggc cgt atc aat ggt cgt ttc ggt cgc atg ggg cgt ccc gtg 1171
 Ala Val Gly Arg Ile Asn Gly Arg Phe Gly Arg Met Gly Arg Pro Val
 345 350 355

gtg cat tat cta cac agg tca ttg agc aaa aat gat ctc cag gtg ctg 1219
 Val His Tyr Leu His Arg Ser Leu Ser Lys Asn Asp Leu Gln Val Leu
 360 365 370

~~tat acc gca gcc gat gtc atq ctq qtt acq cct ttt aaa cac ctt atc~~
 1267

Tyr Thr Ala Ala Asp Val Met Leu Val Thr Pro Phe Lys Asp Gly Met
 375 380 385

aac ttg gtg gct aaa gaa ttc gtg gcc aac cac cgc gac ggc act ggt 1315
 Asn Leu Val Ala Lys Glu Phe Val Ala Asn His Arg Asp Gly Thr Gly
 390 395 400 405

gct ttg gtg ctg tcc gaa ttt gcc ggc gcg gcc act gag ctg acc ggt 1363
 Ala Leu Val Leu Ser Glu Phe Ala Gly Ala Ala Thr Glu Leu Thr Gly
 410 415 420

gcg tat tta tgc aac cca ttt gat gtg gaa tcc atc aaa cgg caa atg 1411
 Ala Tyr Leu Cys Asn Pro Phe Asp Val Glu Ser Ile Lys Arg Gln Met
 425 430 435

gtg gca gct gtc cat gat ttg aag cac aat ccg gaa tct gcg gca acg
 1459
 Val Ala Ala Val His Asp Leu Lys His Asn Pro Glu Ser Ala Ala Thr
 440 445 450

cga atg aaa acg aac agc gag cag gtc tat acc cac gac gtc aac gtg
 1507
 Arg Met Lys Thr Asn Ser Glu Gln Val Tyr Thr His Asp Val Asn Val
 455 460 465

tgg gct aat agt ttc ctg gat tgt ttg gca cag tcg gga gaa aac tca
 1555
 Trp Ala Asn Ser Phe Leu Asp Cys Leu Ala Gln Ser Gly Glu Asn Ser
 470 475 480 485

tgaaccgcgc acgaatcgcg acc
 1578

<210> 18
 <211> 485
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 18
 Met Asp Asp Ser Asn Ser Phe Val Val Val Ala Asn Arg Leu Pro Val
 1 5 10 15

Asp Met Thr Val His Pro Asp Gly Ser Tyr Ser Ile Ser Pro Ser Pro
 20 25 30

Gly Gly Leu Val Thr Gly Leu Ser Pro Val Leu Glu Gln His Arg Gly
 35 40 45

Cys Trp Val Gly Trp Pro Gly Thr Val Asp Val Ala Pro Glu Pro Phe
 50 55 60

Arg Thr Asp Thr Gly Val Leu Leu His Pro Val Val Leu Thr Ala Ser
 65 70 75 80

Asp Tyr Glu Gly Phe Tyr Glu Gly Phe Ser Asn Ala Thr Leu Trp Pro
 85 90 95

Leu Phe His Asp Leu Ile Val Thr Pro Val Tyr Asn Thr Asp Trp Trp
 100 105 110

His Ala Phe Arg Glu Val Asn Leu Lys Phe Ala Glu Ala Val Ser Gln
 115 120 125

Val Ala Ala His Gly Ala Thr Val Trp Val Gln Asp Tyr Gln Leu Leu
 130 135 140

Leu Val Pro Gly Ile Leu Arg Gln Met Arg Pro Asp Leu Lys Ile Gly
 145 150 155 160

Phe Phe Leu His Ile Pro Phe Pro Ser Pro Asp Leu Phe Arg Gln Leu
 165 170 175

Pro Trp Arg Glu Glu Ile Val Arg Gly Met Leu Gly Ala Asp Leu Val
 180 185 190

Gly Phe His Leu Val Gln Asn Ala Glu Asn Phe Leu Ala Leu Thr Gln
 195 200 205
 Gln Val Ala Gly Thr Ala Gly Ser His Val Gly Gln Pro Asp Thr Leu
 210 215 220
 Gln Val Ser Gly Glu Ala Leu Val Arg Glu Ile Gly Ala His Val Glu
 225 230 235 240
 Thr Ala Asp Gly Arg Arg Val Ser Val Gly Ala Phe Pro Ile Ser Ile
 245 250 255
 Asp Val Glu Met Phe Gly Glu Ala Ser Lys Ser Ala Val Leu Asp Leu
 260 265 270
 Leu Lys Thr Leu Asp Glu Pro Glu Thr Val Phe Leu Gly Val Asp Arg
 275 280 285
 Leu Asp Tyr Thr Lys Gly Ile Leu Gln Arg Leu Leu Ala Phe Glu Glu
 290 295 300
 Leu Leu Glu Ser Gly Ala Leu Glu Ala Asp Lys Ala Val Leu Leu Gln
 305 310 315 320
 Val Ala Thr Pro Ser Arg Glu Arg Ile Asp His Tyr Arg Val Ser Arg
 325 330 335
 Ser Gln Val Glu Glu Ala Val Gly Arg Ile Asn Gly Arg Phe Gly Arg
 340 345 350
 Met Gly Arg Pro Val Val His Tyr Leu His Arg Ser Leu Ser Lys Asn
 355 360 365
 Asp Leu Gln Val Leu Tyr Thr Ala Ala Asp Val Met Leu Val Thr Pro
 370 375 380
 Phe Lys Asp Gly Met Asn Leu Val Ala Lys Glu Phe Val Ala Asn His
 385 390 395 400
 Arg Asp Gly Thr Gly Ala Leu Val Leu Ser Glu Phe Ala Gly Ala Ala
 405 410 415
 Thr Glu Leu Thr Gly Ala Tyr Leu Cys Asn Pro Phe Asp Val Glu Ser
 420 425 430
 Ile Lys Arg Gln Met Val Ala Ala Val His Asp Leu Lys His Asn Pro
 435 440 445
 Glu Ser Ala Ala Thr Arg Met Lys Thr Asn Ser Glu Gln Val Tyr Thr
 450 455 460
 His Asp Val Asn Val Trp Ala Asn Ser Phe Leu Asp Cys Leu Ala Gln
 465 470 475 480
 Ser Gly Glu Asn Ser
 485

<210> 19
 <211> 1546
 <212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1546)

<223> FRXA00351

<400> 19

gaaggctgct gctaagaaaa cgaccaagaa gaccactaag aaaactacta aaaagaccac 60

cgcaaagaag accacaaaaga agtcttaagc cggatcttat atg gat gat tcc aat	115
Met Asp Asp Ser Asn	
1	5

agc ttt gta gtt gtt gct aac cgt ctg cca gtg gat atg act gtc cac	163
Ser Phe Val Val Ala Asn Arg Leu Pro Val Asp Met Thr Val His	
10	15
20	

cca gat ggt agc tat agc atc tcc ccc agc ccc ggt ggc ctt gtc acg	211
Pro Asp Gly Ser Tyr Ser Ile Ser Pro Ser Pro Gly Gly Leu Val Thr	
25	30
35	

ggg ctt tcc ccc gtt ctg gaa caa cat cgt gga tgt tgg gtc gga tgg	259
Gly Leu Ser Pro Val Leu Glu Gln His Arg Gly Cys Trp Val Gly Trp	
40	45
50	

cct gga act gta gat gtt gca ccc gaa cca ttt cga aca gat acg ggt	307
Pro Gly Thr Val Asp Val Ala Pro Glu Pro Phe Arg Thr Asp Thr Gly	
55	60
65	

gtt ttg ctg cac cct gtt gtc ctc act gca agt gac tat gaa ggc ttc	355
Val Leu Leu His Pro Val Val Leu Thr Ala Ser Asp Tyr Glu Gly Phe	
70	75
80	85

tac gag ggc ttt tca aac gca acg ctg tgg cct ctt ttc cac gat ctg	403
Tyr Glu Gly Phe Ser Asn Ala Thr Leu Trp Pro Leu Phe His Asp Leu	
90	95
100	

att gtt act ccg gtg tac aac acc gat tgg tgg cat gcg ttt cgg gag	451
Ile Val Thr Pro Val Tyr Asn Thr Asp Trp Trp His Ala Phe Arg Glu	
105	110
115	

gta aac ctc aag ttc gct gaa gcc gtg agc caa gtg gcg gca cac ggt	499
Val Asn Leu Lys Phe Ala Glu Ala Val Ser Gln Val Ala Ala His Gly	
120	125
130	

gcc act gtg tgg gtg cag gac tat cag ctg ttg ctg gtt cct ggc att	547
Ala Thr Val Trp Val Gln Asp Tyr Gln Leu Leu Leu Val Pro Gly Ile	
135	140
145	

ttg cgc cag atg cgc cct gat ttg aag atc ggt ttc ttc ctc cac att	595
Leu Arg Gln Met Arg Pro Asp Leu Lys Ile Gly Phe Phe Leu His Ile	
150	155
160	165

ccc ttc cct tcc cct gat ctg ttc cgt cag ctg ccg tgg cgt gaa gag	643
Pro Phe Pro Ser Pro Asp Leu Phe Arg Gln Leu Pro Trp Arg Glu Glu	
170	175
180	

att gtt cga ggc atg ctg ggc gca gat ttg gtg gga ttc cat ttg gtt	691
Ile Val Arg Gly Met Leu Gly Ala Asp Leu Val Gly Phe His Leu Val	
185	190
195	

caa aac gca gaa aac ttc ctt gcg tta acc cag cag gtt gcc ggc act 739
 Gln Asn Ala Glu Asn Phe Leu Ala Leu Thr Gln Gln Val Ala Gly Thr
 200 205 210

gcc ggg tct cat gtg ggt cag ccg gac acc ttg cag gtc agt ggt gaa 787
 Ala Gly Ser His Val Gly Gln Pro Asp Thr Leu Gln Val Ser Gly Glu
 215 220 225

gca ttg gtg cgt gag att ggc gct cat gtt gaa acc gct gac gga agg 835
 Ala Leu Val Arg Glu Ile Gly Ala His Val Glu Thr Ala Asp Gly Arg
 230 235 240 245

cga gtt agc gtc ggg gcg ttc ccg atc tcg att gat gtt gaa atg ttt 883
 Arg Val Ser Val Gly Ala Phe Pro Ile Ser Ile Asp Val Glu Met Phe
 250 255 260

ggg gag gcg tcg aaa agc gcc gtt ctt gat ctt tta aaa acg ctc gac 931
 Gly Glu Ala Ser Lys Ser Ala Val Leu Asp Leu Leu Lys Thr Leu Asp
 265 270 275

gag ccg gaa acc gta ttc ctg ggc gtt gac cga ctg gac tac acc aag 979
 Glu Pro Glu Thr Val Phe Leu Gly Val Asp Arg Leu Asp Tyr Thr Lys
 280 285 290

ggc att ttg cag cgc ctg ctt gcg ttt gag gaa ctg ctg gaa tcc ggc
 1027
 Gly Ile Leu Gln Arg Leu Leu Ala Phe Glu Glu Leu Leu Glu Ser Gly
 295 300 305

gcg ttg gag gcc gac aaa gct gtg ttg ctg cag gtc gcg acg cct tcg
 1075
 Ala Leu Glu Ala Asp Lys Ala Val Leu Leu Gln Val Ala Thr Pro Ser
 310 315 320 325

cgt gag cgc att gat cac tat cgt gtg tcg cgt tcg cag gtc gag gaa
 1123
 Arg Glu Arg Ile Asp His Tyr Arg Val Ser Arg Ser Gln Val Glu Glu
 330 335 340

gcc gtc ggc cgt atc aat ggt cgt ttc ggt cgc atg ggg cgt ccc gtg
 1171
 Ala Val Gly Arg Ile Asn Gly Arg Phe Gly Arg Met Gly Arg Pro Val
 345 350 355

gtg cat tat cta cac agg tca ttg agc aaa aat gat ctc cag gtg ctg
 1219
 Val His Tyr Leu His Arg Ser Leu Ser Lys Asn Asp Leu Gln Val Leu
 360 365 370

tat acc gca gcc gat gtc atg ctg gtt acg cct ttt aaa gac ggt atg
 1267
 Tyr Thr Ala Ala Asp Val Met Leu Val Thr Pro Phe Lys Asp Gly Met
 375 380 385

aac ttg gtg gct aaa gaa ttc gtg gcc aac cac cgc gac ggc act ggt
 1315
 Asn Leu Val Ala Lys Glu Phe Val Ala Asn His Arg Asp Gly Thr Gly
 390 395 400 405

gct ttg gtg ctg tcc gaa ttt gcc ggc gcg gcc act gag ctg acc acc ggt
 1363
 Ala Leu Val Leu Ser Glu Phe Ala Gly Ala Ala Thr Glu Leu Thr Gly
 410 415 420

gcg tat tta tgc aac cca ttt gat gtg gaa tcc atc aaa cgg caa atg
 1411
 Ala Tyr Leu Cys Asn Pro Phe Asp Val Glu Ser Ile Lys Arg Gln Met
 425 430 435

gtg gca gct gtc cat gat ttg aag cac aat ccg gaa tct gcg gca acg
 1459
 Val Ala Ala Val His Asp Leu Lys His Asn Pro Glu Ser Ala Ala Thr
 440 445 450

cga atg aaa acg aac acg gag cag gtc tat acc cac gac gtc aac gtg
 1507
 Arg Met Lys Thr Asn Ser Glu Gln Val Tyr Thr His Asp Val Asn Val
 455 460 465

tgg gct aat agt ttc ctg gat tgt ttg gca cag tcg gga
 1546
 Trp Ala Asn Ser Phe Leu Asp Cys Leu Ala Gln Ser Gly
 470 475 480

<210> 20
 <211> 482
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 20
 Met Asp Asp Ser Asn Ser Phe Val Val Val Ala Asn Arg Leu Pro Val
 1 5 10 15

Asp Met Thr Val His Pro Asp Gly Ser Tyr Ser Ile Ser Pro Ser Pro
 20 25 30

Gly Gly Leu Val Thr Gly Leu Ser Pro Val Leu Glu Gln His Arg Gly
 35 40 45

Cys Trp Val Gly Trp Pro Gly Thr Val Asp Val Ala Pro Glu Pro Phe
 50 55 60

Arg Thr Asp Thr Gly Val Leu Leu His Pro Val Val Leu Thr Ala Ser
 65 70 75 80

Asp Tyr Glu Gly Phe Tyr Glu Gly Phe Ser Asn Ala Thr Leu Trp Pro
 85 90 95

Leu Phe His Asp Leu Ile Val Thr Pro Val Tyr Asn Thr Asp Trp Trp
 100 105 110

His Ala Phe Arg Glu Val Asn Leu Lys Phe Ala Glu Ala Val Ser Gln
 115 120 125

Val Ala Ala His Gly Ala Thr Val Trp Val Gln Asp Tyr Gln Leu Leu
 130 135 140

Leu Val Pro Gly Ile Leu Arg Gln Met Arg Pro Asp Leu Lys Ile Gly
 145 150 155 160

Phe	Phe	Leu	His	Ile	Pro	Phe	Pro	Ser	Pro	Asp	Leu	Phe	Arg	Gln	Leu
					165				170				175		
Pro	Trp	Arg	Glu	Glu	Ile	Val	Arg	Gly	Met	Leu	Gly	Ala	Asp	Leu	Val
					180				185				190		
Gly	Phe	His	Leu	Val	Gln	Asn	Ala	Glu	Asn	Phe	Leu	Ala	Leu	Thr	Gln
					195				200				205		
Gln	Val	Ala	Gly	Thr	Ala	Gly	Ser	His	Val	Gly	Gln	Pro	Asp	Thr	Leu
					210				215				220		
Gln	Val	Ser	Gly	Glu	Ala	Leu	Val	Arg	Glu	Ile	Gly	Ala	His	Val	Glu
					225				230				235		240
Thr	Ala	Asp	Gly	Arg	Arg	Val	Ser	Val	Gly	Ala	Phe	Pro	Ile	Ser	Ile
					245				250				255		
Asp	Val	Glu	Met	Phe	Gly	Glu	Ala	Ser	Lys	Ser	Ala	Val	Leu	Asp	Leu
					260				265				270		
Leu	Lys	Thr	Leu	Asp	Glu	Pro	Glu	Thr	Val	Phe	Leu	Gly	Val	Asp	Arg
					275				280				285		
Leu	Asp	Tyr	Thr	Lys	Gly	Ile	Leu	Gln	Arg	Leu	Leu	Ala	Phe	Glu	Glu
					290				295				300		
Leu	Leu	Glu	Ser	Gly	Ala	Leu	Glu	Ala	Asp	Lys	Ala	Val	Leu	Leu	Gln
					305				310				315		320
Val	Ala	Thr	Pro	Ser	Arg	Glu	Arg	Ile	Asp	His	Tyr	Arg	Val	Ser	Arg
					325				330				335		
Ser	Gln	Val	Glu	Glu	Ala	Val	Gly	Arg	Ile	Asn	Gly	Arg	Phe	Gly	Arg
					340				345				350		
Met	Gly	Arg	Pro	Val	Val	His	Tyr	Leu	His	Arg	Ser	Leu	Ser	Lys	Asn
					355				360				365		
Asp	Leu	Gln	Val	Leu	Tyr	Thr	Ala	Ala	Asp	Val	Met	Leu	Val	Thr	Pro
					370				375				380		
Phe	Lys	Asp	Gly	Met	Asn	Leu	Val	Ala	Lys	Glu	Phe	Val	Ala	Asn	His
					385				390				395		400
Arg	Asp	Gly	Thr	Gly	Ala	Leu	Val	Leu	Ser	Glu	Phe	Ala	Gly	Ala	Ala
					405				410				415		
Thr	Glu	Leu	Thr	Gly	Ala	Tyr	Leu	Cys	Asn	Pro	Phe	Asp	Val	Glu	Ser
					420				425				430		
Ile	Lys	Arg	Gln	Met	Val	Ala	Ala	Val	His	Asp	Leu	Lys	His	Asn	Pro
					435				440				445		
Glu	Ser	Ala	Ala	Thr	Arg	Met	Lys	Thr	Asn	Ser	Glu	Gln	Val	Tyr	Thr
					450				455				460		
His	Asp	Val	Asn	Val	Trp	Ala	Asn	Ser	Phe	Leu	Asp	Cys	Leu	Ala	Gln
					465				470				475		480

Ser Gly

```
<210> 21
<211> 779
<212> DNA
<213> Corynebacterium glutamicum
```

<220>
<221> CDS
<222> (1)..(756)
<223> RXA00873

<400> 21
act gcc caa tgg ggt att ttc ctg cgt aat cat gag ctc acc ctt 48
Thr Ala Gln Trp Gly Ile Phe Leu Arg Asn His Asp Glu Leu Thr Leu
1 5 10 15

```

gaa atg gtc tcc gat gag gaa cgc agc tac atg tac tcc caa ttc gcc 96
Glu Met Val Ser Asp Glu Glu Arg Ser Tyr Met Tyr Ser Gln Phe Ala
          20           25           30

```

tcc gaa cct cgc atg cgc gcc aac gta gga atc cgc agg cgc ctt tcc 144
 Ser Glu Pro Arg Met Arg Ala Asn Val Gly Ile Arg Arg Arg Leu Ser
 35 40 45

cca ctg ctt gaa ggc gac cgc aac cag ctg gaa ctc ctt cac ggt ttg 192
Pro Leu Leu Glu Gly Asp Arg Asn Gln Leu Glu Leu Leu His Gly Leu
50 55 60

```

ttg ctg tct cta cct ggc tca ccc gtg ttg tat tac ggt gat gaa att 240
Leu Leu Ser Leu Pro Gly Ser Pro Val Leu Tyr Tyr Gly Asp Glu Ile
   65           70           75           80

```

```

ggc atg ggc gac aat atc tgg ctc cac gac cgc gac gga gtg cgc acc 28
Gly Met Gly Asp Asn Ile Trp Leu His Asp Arg Asp Gly Val Arg Thr
          85           90           95

```

ccc atg cag tgg tcc aac gac cgc aac ggt ggt ttc tcc aaa gct gat 336
 Pro Met Gln Trp Ser Asn Asp Arg Asn Gly Gly Phe Ser Lys Ala Asp
 100 105 110

cct gaa cgc ctg tac ctt cca gcg atc caa aat gat caa tac ggc tac 384
 Pro Glu Arg Leu Tyr Leu Pro Ala Ile Gln Asn Asp Gln Tyr Gly Tyr
 115 120 125

452
gcc caa gta aac gtg gaa agc caa ctc aac cgc gaa aac tcc ctg ctg
Ala Gln Val Asn Val Glu Ser Gln Leu Asn Arg Glu Asn Ser Leu Leu
130 135 140

cgc tgg ctc cga aac caa atc ctt atc cgc aag cag tac cgc gca ttt
 Arg Trp Leu Arg Asn Gln Ile Leu Ile Arg Lys Gln Tyr Arg Ala Phe
 145 150 155 160

```

ggc gcc gga acc tac cgt gaa gtg tcc tcc acc aat gag tca gtg tlg 528
Gly Ala Gly Thr Tyr Arg Glu Val Ser Ser Thr Asn Glu Ser Val Leu
165           170           175

```

aca ttt tta cga gaa cac aag ggc caa acc att ttg tgt gtc aac aac 576
Thr Phe Leu Arg Glu His Lys Gly Gln Thr Ile Leu Cys Val Asn Asn

180	185	190	
atg agc aaa tat cct cag gca gtc tcg ctt gat ttg cgt gaa ttt gca Met Ser Lys Tyr Pro Gln Ala Val Ser Leu Asp Leu Arg Glu Phe Ala			624
195	200	205	
gga cac acc cct cga gag atg tcg ggc ggg cag ctg ttc cct acc att Gly His Thr Pro Arg Glu Met Ser Gly Gly Gln Leu Phe Pro Thr Ile			672
210	215	220	
gct gaa cgg gag tgg att gtc act tta gcc cct cac gga ttc ttc tgg Ala Glu Arg Glu Trp Ile Val Thr Leu Ala Pro His Gly Phe Phe Trp			720
225	230	235	240
ttt gat ctc acc gcc gat gaa aag gac gat atg gaa tgagcattgg Phe Asp Leu Thr Ala Asp Glu Lys Asp Asp Met Glu			766
245	250		
ccaacacatc atc			779
<210> 22			
<211> 252			
<212> PRT			
<213> Corynebacterium glutamicum			
<400> 22			
Thr Ala Gln Trp Gly Ile Phe Leu Arg Asn His Asp Glu Leu Thr Leu			
1	5	10	15
Glu Met Val Ser Asp Glu Glu Arg Ser Tyr Met Tyr Ser Gln Phe Ala			
20	25	30	
Ser Glu Pro Arg Met Arg Ala Asn Val Gly Ile Arg Arg Arg Leu Ser			
35	40	45	
Pro Leu Leu Glu Gly Asp Arg Asn Gln Leu Glu Leu Leu His Gly Leu			
50	55	60	
Leu Leu Ser Leu Pro Gly Ser Pro Val Leu Tyr Tyr Gly Asp Glu Ile			
65	70	75	80
Gly Met Gly Asp Asn Ile Trp Leu His Asp Arg Asp Gly Val Arg Thr			
85	90	95	
Pro Met Gln Trp Ser Asn Asp Arg Asn Gly Gly Phe Ser Lys Ala Asp			
100	105	110	
Pro Glu Arg Leu Tyr Leu Pro Ala Ile Gln Asn Asp Gln Tyr Gly Tyr			
115	120	125	
Ala Gln Val Asn Val Glu Ser Gln Leu Asn Arg Glu Asn Ser Leu Leu			
130	135	140	
Arg Trp Leu Arg Asn Gln Ile Leu Ile Arg Lys Gln Tyr Arg Ala Phe			
145	150	155	160
Gly Ala Gly Thr Tyr Arg Glu Val Ser Ser Thr Asn Glu Ser Val Leu			
165	170	175	
Thr Phe Leu Arg Glu His Lys Gly Gln Thr Ile Leu Cys Val Asn Asn			

180

185

190

Met Ser Lys Tyr Pro Gln Ala Val Ser Leu Asp Leu Arg Glu Phe Ala
 195 200 205

Gly His Thr Pro Arg Glu Met Ser Gly Gly Gln Leu Phe Pro Thr Ile
 210 215 220

Ala Glu Arg Glu Trp Ile Val Thr Leu Ala Pro His Gly Phe Phe Trp
 225 230 235 240

Phe Asp Leu Thr Ala Asp Glu Lys Asp Asp Met Glu
 245 250

<210> 23

<211> 1102

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1102)

<223> RXA00891

<400> 23

tcaatattcc gaagaaaacc gcgcagctct ctcactagtc tcaggtgagg cgaaagtgg 60

gaaagacccg ctacgcattgg tgcgcctggc ttttagaat gtg ctg caa acc tcc 115
 Val Leu Gln Thr Ser
 1 5

tgg cat ttc tct atc ctg gca ggc atg act gat acc tct ccg ttg aat 163
 Trp His Phe Ser Ile Leu Ala Gly Met Thr Asp Thr Ser Pro Leu Asn
 10 15 20

tct cag ccg agt gca gat cac cac cct gat cac gcg gct cgc cca gtt 211
 Ser Gln Pro Ser Ala Asp His His Pro Asp His Ala Ala Arg Pro Val
 25 30 35

ctt gat gcc cac ggc ttg atc gtt gag cac gaa tcg gaa gag ttt cca 259
 Leu Asp Ala His Gly Leu Ile Val Glu His Glu Ser Glu Glu Phe Pro
 40 45 50

gtc ccc gca ccc gct ccc ggt gaa cag ccc tgg gag aag aaa aac cgc 307
 Val Pro Ala Pro Ala Pro Gly Glu Gln Pro Trp Glu Lys Lys Asn Arg
 55 60 65

gag tgg tac aaa gac gcc gtt ttc tac gaa gtg ctg gtt cgt gcc ttc 355
 Glu Trp Tyr Lys Asp Ala Val Phe Tyr Glu Val Leu Val Arg Ala Phe
 70 75 80 85

tac gat cca gaa ggc aac gga gtc gga tcg ttg aaa ggc ctg acc gaa 403
 Tyr Asp Pro Glu Gly Asn Gly Val Gly Ser Leu Lys Gly Leu Thr Glu
 90 95 100

aaa ctg gat tac atc cag tgg ctc ggc gtt gat tgc att tgg atc cca 451
 Lys Leu Asp Tyr Ile Gln Trp Leu Gly Val Asp Cys Ile Trp Ile Pro
 105 110 115

ccg ttt tat gat tcc cca ctg cgc gac ggc ggt tac gat atc cgc aac 499

Pro Phe Tyr Asp Ser Pro Leu Arg Asp Gly Gly Tyr Asp Ile Arg Asn		
120	125	130
ttc cgt gaa atc ctg ccc gaa ttc ggc acc gtc gat gac ttc gtg gaa		547
Phe Arg Glu Ile Leu Pro Glu Phe Gly Thr Val Asp Asp Phe Val Glu		
135	140	145
ctc gtt gac cac gcc cac cgc cgt ggc ctg cgt gtt atc acc gac ttg		595
Leu Val Asp His Ala His Arg Arg Gly Leu Arg Val Ile Thr Asp Leu		
150	155	160
Val Met Asn His Thr Ser Asp Gln His Ala Trp Phe Gln Glu Ser Arg		
170	175	180
gtc atg aat cac acc tcc gac cag cca tgg ttc caa gaa tcc cg		643
Arg Asp Pro Thr Gly Pro Tyr Gly Asp Phe Tyr Val Trp Ser Asp Asp		
185	190	195
ccc acc ctg tac aac gaa gcc cgc atc atc ttt gta gat aca gaa gaa		739
Pro Thr Leu Tyr Asn Glu Ala Arg Ile Ile Phe Val Asp Thr Glu Glu		
200	205	210
tcc aac tgg acc tat gat ccg gtg cgt ggc cag tac ttc tgg cac cgc		787
Ser Asn Trp Thr Tyr Asp Pro Val Arg Gly Gln Tyr Phe Trp His Arg		
215	220	225
ttc ttc tcc caccaa cca gac ctc aac tac gac aac ccc gca gtc caa		835
Phe Phe Ser His Gln Pro Asp Leu Asn Tyr Asp Asn Pro Ala Val Gln		
230	235	240
gag gcc atg cta gat gtc ttg cgt ttc tgg ctg gac ctg gga ctt gat		883
Glu Ala Met Leu Asp Val Leu Arg Phe Trp Leu Asp Leu Gly Leu Asp		
250	255	260
ggt ttc cga cta gat gcc gtt cct tat ctt ttt gaa cgc gaa ggc acc		931
Gly Phe Arg Leu Asp Ala Val Pro Tyr Leu Phe Glu Arg Glu Gly Thr		
265	270	275
aac ggc gaa aac ctc aaa gaa acc cac gat ttc ctc aaa ctg tgt cgc		979
Asn Gly Glu Asn Leu Lys Glu Thr His Asp Phe Leu Lys Leu Cys Arg		
280	285	290
tct gtc att gag aag gaa tac ccc ggc cga atc ctg ctc gca gaa gcc		
1027		
Ser Val Ile Glu Lys Glu Tyr Pro Gly Arg Ile Leu Leu Ala Glu Ala		
295	300	305
aac caa tgg ccc caa gat gtg gtc gaa tac ttc ggt gaa aaa gac aaa		
1075		
Asn Gln Trp Pro Gln Asp Val Val Glu Tyr Phe Gly Glu Lys Asp Lys		
310	315	320
ggc gat gaa tgc cac atg gcc ttc cac		
1102		
Gly Asp Glu Cys His Met Ala Phe His		
330		

<210> 24
<211> 334

<212> PRT

<213> Corynebacterium glutamicum

<400> 24

Val	Leu	Gln	Thr	Ser	Trp	His	Phe	Ser	Ile	Leu	Ala	Gly	Met	Thr	Asp
1									10					15	

Thr	Ser	Pro	Leu	Asn	Ser	Gln	Pro	Ser	Ala	Asp	His	His	Pro	Asp	His
													20	25	30

Ala	Ala	Arg	Pro	Val	Leu	Asp	Ala	His	Gly	Leu	Ile	Val	Glu	His	Glu
													35	40	45

Ser	Glu	Glu	Phe	Pro	Val	Pro	Ala	Pro	Gly	Glu	Gln	Pro	Trp		
													50	55	60

Glu	Lys	Lys	Asn	Arg	Glu	Trp	Tyr	Lys	Asp	Ala	Val	Phe	Tyr	Glu	Val	
													65	70	75	80

Leu	Val	Arg	Ala	Phe	Tyr	Asp	Pro	Glu	Gly	Asn	Gly	Val	Gly	Ser	Leu
													85	90	95

Lys	Gly	Leu	Thr	Glu	Lys	Leu	Asp	Tyr	Ile	Gln	Trp	Leu	Gly	Val	Asp
													100	105	110

Cys	Ile	Trp	Ile	Pro	Pro	Phe	Tyr	Asp	Ser	Pro	Leu	Arg	Asp	Gly	Gly
													115	120	125

Tyr	Asp	Ile	Arg	Asn	Phe	Arg	Glu	Ile	Leu	Pro	Glu	Phe	Gly	Thr	Val
													130	135	140

Asp	Asp	Phe	Val	Glu	Leu	Val	Asp	His	Ala	His	Arg	Arg	Gly	Leu	Arg	
													145	150	155	160

Val	Ile	Thr	Asp	Leu	Val	Met	Asn	His	Thr	Ser	Asp	Gln	His	Ala	Trp
													165	170	175

Phe	Gln	Glu	Ser	Arg	Arg	Asp	Pro	Thr	Gly	Pro	Tyr	Gly	Asp	Phe	Tyr
													180	185	190

Val	Trp	Ser	Asp	Asp	Pro	Thr	Leu	Tyr	Asn	Glu	Ala	Arg	Ile	Ile	Phe
													195	200	205

Val	Asp	Thr	Glu	Glu	Ser	Asn	Trp	Thr	Tyr	Asp	Pro	Val	Arg	Gly	Gln
													210	215	220

Tyr	Phe	Trp	His	Arg	Phe	Phe	Ser	His	Gln	Pro	Asp	Leu	Asn	Tyr	Asp	
													225	230	235	240

Asn	Pro	Ala	Val	Gln	Glu	Ala	Met	Leu	Asp	Val	Leu	Arg	Phe	Trp	Leu
													245	250	255

Asp	Leu	Gly	Leu	Asp	Gly	Phe	Arg	Leu	Asp	Ala	Val	Pro	Tyr	Leu	Phe
													260	265	270

Glu	Arg	Glu	Gly	Thr	Asn	Gly	Glu	Asn	Leu	Lys	Glu	Thr	His	Asp	Phe
													275	280	285

Leu	Lys	Leu	Cys	Arg	Ser	Val	Ile	Glu	Lys	Glu	Tyr	Pro	Gly	Arg	Ile
													290	295	300

Leu Leu Ala Glu Ala Asn Gln Trp Pro Gln Asp Val Val Glu Tyr Phe
 305 310 315 320

Gly Glu Lys Asp Lys Gly Asp Glu Cys His Met Ala Phe His
 325 330

<210> 25

<211> 1386

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1363)

<223> RXA00534

<400> 25

ctgtgcagaa agaaaaacact cctctggcta ggttagacaca gtttataaaag gtagagttga 60

gcgggtaact gtcagcacgt agatcgaaag gtgcacaaaag gtg gcc ctg gtc gta 115
 Val Ala Leu Val Val
 1 5

cag aaa tat ggc ggt tcc tcg ctt gag agt gcg gaa cgc att aga aac 163
 Gln Lys Tyr Gly Ser Ser Leu Glu Ser Ala Glu Arg Ile Arg Asn
 10 15 20

gtc gct gaa cgg atc gtt gcc acc aag aag gct gga aat gat gtc gtg 211
 Val Ala Glu Arg Ile Val Ala Thr Lys Lys Ala Gly Asn Asp Val Val
 25 30 35

gtt gtc tgc tcc gca atg gga gac acc acg gat gaa ctt cta gaa ctt 259
 Val Val Cys Ser Ala Met Gly Asp Thr Thr Asp Glu Leu Leu Glu Leu
 40 45 50

gca gcg gca gtg aat ccc gtt ccg cca gct cgt gaa atg gat atg ctc 307
 Ala Ala Ala Val Asn Pro Val Pro Pro Ala Arg Glu Met Asp Met Leu
 55 60 65

ctg act gct ggt gag cgt att tct aac gct ctc gtc gcc atg gct att 355
 Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu Val Ala Met Ala Ile
 70 75 80 85

gag tcc ctt ggc gca gaa gcc caa tct ttc acg ggc tct cag gct ggt 403
 Glu Ser Leu Gly Ala Glu Ala Gln Ser Phe Thr Gly Ser Gln Ala Gly
 90 95 100

gtg ctc acc acc gag cgc cac gga aac gca cgc att gtt gat gtc act 451
 Val Leu Thr Glu Arg His Gly Asn Ala Arg Ile Val Asp Val Thr
 105 110 115

cca ggt cgt gtg cgt gaa gca ctc gat gag ggc aag atc tgc att gtt 499
 Pro Gly Arg Val Arg Glu Ala Leu Asp Glu Gly Lys Ile Cys Ile Val
 120 125 130

gct ggt ttc cag ggt gtt aat aaa gaa acc cgc gat gtc acc acg ttg 547
 Ala Gly Phe Gln Gly Val Asn Lys Glu Thr Arg Asp Val Thr Thr Leu
 135 140 145

ggc cgt ggt ggt tct gac acc act gca gtt gcg ttg gca gct gct ttg 595

Gly Arg Gly Gly Ser Asp Thr Thr Ala Val Ala Leu Ala Ala Ala Leu
 150 155 160 165
 aac gct gat gtg tgt gag att tac tcg gac gtt gac cgt gtg tat acc 643
 Asn Ala Asp Val Cys Glu Ile Tyr Ser Asp Val Asp Gly Val Tyr Thr
 170 175 180
 gct gac ccg cgc atc gtt cct aat gca cag aag ctg gaa aag ctc agc 691
 Ala Asp Pro Arg Ile Val Pro Asn Ala Gln Lys Leu Glu Lys Leu Ser
 185 190 195
 ttc gaa gaa atg ctg gaa ctt gct gct gtt ggc tcc aag att ttg gtg 739
 Phe Glu Glu Met Leu Glu Leu Ala Ala Val Gly Ser Lys Ile Leu Val
 200 205 210
 ctg cgc agt gtt gaa tac gct cgt gca ttc aat gtg cca ctt cgc gta 787
 Leu Arg Ser Val Glu Tyr Ala Arg Ala Phe Asn Val Pro Leu Arg Val
 215 220 225
 cgc tcg tct tat agt aat gat ccc ggc act ttg att gcc ggc tct atg 835
 Arg Ser Ser Tyr Ser Asn Asp Pro Gly Thr Leu Ile Ala Gly Ser Met
 230 235 240 245
 gag gat att cct gtg gaa gaa gca gtc ctt acc ggt gtc gca acc gac 883
 Glu Asp Ile Pro Val Glu Glu Ala Val Leu Thr Gly Val Ala Thr Asp
 250 255 260
 aag tcc gaa gcc aaa gta acc gtt ctg ggt att tcc gat aag cca ggc 931
 Lys Ser Glu Ala Lys Val Thr Val Leu Gly Ile Ser Asp Lys Pro Gly
 265 270 275
 gag gct gcg aag gtt ttc cgt gcg ttg gct gat gca gaa atc aac att 979
 Glu Ala Ala Lys Val Phe Arg Ala Leu Ala Asp Ala Glu Ile Asn Ile
 280 285 290
 gac atg gtt ctg cag aac gtc tct tct gta gaa gac ggc acc acc gac
 1027
 Asp Met Val Leu Gln Asn Val Ser Ser Val Glu Asp Gly Thr Thr Asp
 295 300 305
 atc acc ttc acc tgc cct cgt tcc gac ggc cgc cgc gcg atg gag atc
 1075
 Ile Thr Phe Thr Cys Pro Arg Ser Asp Gly Arg Arg Ala Met Glu Ile
 310 315 320 325
 ttg aag aag ctt cag gtt cag ggc aac tgg acc aat gtg ctt tac gac
 1123
 Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr Asn Val Leu Tyr Asp
 330 335 340
 gac cag gtc ggc aaa gtc tcc ctc gtg ggt gct ggc atg aag tct cac
 1171
 Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala Gly Met Lys Ser His
 345 350 355
 cca ggt gtt acc gca gag ttc atg gaa gct ctg cgc gat gtc aac gtg
 1219
 Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu Arg Asp Val Asn Val
 360 365 370

aac atc gaa ttg att tcc acc tct gag att cgt att tcc gtg ctg atc
1267

Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg Ile Ser Val Leu Ile
375 380 385

cgt gaa gat gat ctg gat gct gct gca cgt gca ttg cat gag cag ttc
1315

Arg Glu Asp Asp Leu Asp Ala Ala Arg Ala Leu His Glu Gln Phe
390 395 400 405

cag ctg ggc ggc gaa gac gaa gcc gtc gtt tat gca ggc acc gga cgc
1363

Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr Ala Gly Thr Gly Arg
410 415 420

taaagtttta aaggagtat ttt
1386

<210> 26

<211> 421

<212> PRT

<213> Corynebacterium glutamicum

<400> 26

Val Ala Leu Val Val Gln Lys Tyr Gly Gly Ser Ser Leu Glu Ser Ala
1 5 10 15

Glu Arg Ile Arg Asn Val Ala Glu Arg Ile Val Ala Thr Lys Lys Ala
20 25 30

Gly Asn Asp Val Val Val Cys Ser Ala Met Gly Asp Thr Thr Asp
35 40 45

Glu Leu Leu Glu Leu Ala Ala Val Asn Pro Val Pro Pro Ala Arg
50 55 60

Glu Met Asp Met Leu Leu Thr Ala Gly Glu Arg Ile Ser Asn Ala Leu
65 70 75 80

Val Ala Met Ala Ile Glu Ser Leu Gly Ala Glu Ala Gln Ser Phe Thr
85 90 95

Gly Ser Gln Ala Gly Val Leu Thr Thr Glu Arg His Gly Asn Ala Arg
100 105 110

Ile Val Asp Val Thr Pro Gly Arg Val Arg Glu Ala Leu Asp Glu Gly
115 120 125

Lys Ile Cys Ile Val Ala Gly Phe Gln Gly Val Asn Lys Glu Thr Arg
130 135 140

Asp Val Thr Thr Leu Gly Arg Gly Ser Asp Thr Thr Ala Val Ala
145 150 155 160

Leu Ala Ala Ala Leu Asn Ala Asp Val Cys Glu Ile Tyr Ser Asp Val
165 170 175

Asp Gly Val Tyr Thr Ala Asp Pro Arg Ile Val Pro Asn Ala Gln Lys
180 185 190

Leu Glu Lys Leu Ser Phe Glu Glu Met Leu Glu Leu Ala Ala Val Gly
 195 200 205
 Ser Lys Ile Leu Val Leu Arg Ser Val Glu Tyr Ala Arg Ala Phe Asn
 210 215 220
 Val Pro Leu Arg Val Arg Ser Ser Tyr Ser Asn Asp Pro Gly Thr Leu
 225 230 235 240
 Ile Ala Gly Ser Met Glu Asp Ile Pro Val Glu Glu Ala Val Leu Thr
 245 250 255
 Gly Val Ala Thr Asp Lys Ser Glu Ala Lys Val Thr Val Leu Gly Ile
 260 265 270
 Ser Asp Lys Pro Gly Glu Ala Ala Lys Val Phe Arg Ala Leu Ala Asp
 275 280 285
 Ala Glu Ile Asn Ile Asp Met Val Leu Gln Asn Val Ser Ser Val Glu
 290 295 300
 Asp Gly Thr Thr Asp Ile Thr Phe Thr Cys Pro Arg Ser Asp Gly Arg
 305 310 315 320
 Arg Ala Met Glu Ile Leu Lys Lys Leu Gln Val Gln Gly Asn Trp Thr
 325 330 335
 Asn Val Leu Tyr Asp Asp Gln Val Gly Lys Val Ser Leu Val Gly Ala
 340 345 350
 Gly Met Lys Ser His Pro Gly Val Thr Ala Glu Phe Met Glu Ala Leu
 355 360 365
 Arg Asp Val Asn Val Asn Ile Glu Leu Ile Ser Thr Ser Glu Ile Arg
 370 375 380
 Ile Ser Val Leu Ile Arg Glu Asp Asp Leu Asp Ala Ala Ala Arg Ala
 385 390 395 400
 Leu His Glu Gln Phe Gln Leu Gly Gly Glu Asp Glu Ala Val Val Tyr
 405 410 415
 Ala Gly Thr Gly Arg
 420

<210> 27
 <211> 1155
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(1132)
 <223> RXA00533

<400> 27
 ctgcacgtgc attgcatgag cagttccagc tgggcggcga agacgaagcc gtcgtttatg 60
 caggcacccgg acgctaaagt tttaaaggag tagttttaca atg acc acc atc gca 115
 Met Thr Thr Ile Ala

1	5	
gtt gtt ggt gca acc ggc cag gtc ggc cag gtt atg cgc acc ctt ttg Val Val Gly Ala Thr Gly Gln Val Gly Gln Val Met Arg Thr Leu Leu	10 15	163
gaa gag cgc aat ttc cca gct gac act gtt cgt ttc ttt gct tcc cca Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg Phe Phe Ala Ser Pro	25 30	211
cgt tcc gca ggc cgt aag att gaa ttc cgt ggc acg gaa atc gag gta Arg Ser Ala Gly Arg Lys Ile Glu Phe Arg Gly Thr Glu Ile Glu Val	40 45	259
gaa gac att act cag gca acc gag gag tcc ctc aag gac atc gac gtt Glu Asp Ile Thr Gln Ala Thr Glu Glu Ser Leu Lys Asp Ile Asp Val	55 60	307
gcg ttg ttc tcc gct gga ggc acc gct tcc aag cag tac gct cca ctg Ala Leu Phe Ser Ala Gly Gly Thr Ala Ser Lys Gln Tyr Ala Pro Leu	70 75	355
ttc gct gct gca ggc gcg act gtt gtg gat aac tct tct gct tgg cgc Phe Ala Ala Ala Gly Ala Thr Val Val Asp Asn Ser Ser Ala Trp Arg	90 95	403
aag gac gac gag gtt cca cta atc gtc tct gag gtg aac cct tcc gac Lys Asp Asp Glu Val Pro Leu Ile Val Ser Glu Val Asn Pro Ser Asp	105 110	451
aag gat tcc ctg gtc aag ggc att att gcg aac cct aac tgc acc acc Lys Asp Ser Leu Val Lys Gly Ile Ile Ala Asn Pro Asn Cys Thr Thr	120 125	499
atg gct gcg atg cca gtg ctg aag cca ctt cac gat gcc gct ggt ctt Met Ala Ala Met Pro Val Leu Lys Pro Leu His Asp Ala Ala Gly Leu	135 140	547
gta aag ctt cac gtt tcc tct tac cag gct gtt tcc ggt tct ggt ctt Val Lys Leu His Val Ser Ser Tyr Gln Ala Val Ser Gly Ser Gly Leu	150 155	595
gca ggc gtg gaa acc ttg gca aag cag gtt gct gca gtt gga gac cac Ala Gly Val Glu Thr Leu Ala Lys Gln Val Ala Ala Val Gly Asp His	170 175	643
aac gtt gag ttc gtc cat gat gga cag gct gct gac gca ggc gat gtc Asn Val Glu Phe Val His Asp Gly Gln Ala Ala Asp Ala Gly Asp Val	185 190	691
gga cct tat gtt tca cca atc gct tac aac gtg ctg cca ttc gcc gga Gly Pro Tyr Val Ser Pro Ile Ala Tyr Asn Val Leu Pro Phe Ala Gly	200 205	739
aac ctc gtc gat gac ggc acc ttc gaa acc gat gaa gag cag aag ctg Asn Leu Val Asp Asp Gly Thr Phe Glu Thr Asp Glu Glu Gln Lys Leu	215 220	787
cgc aac gaa tcc cgc aag att ctc ggt ctc cca gac ctc aag gtc tca Arg Asn Glu Ser Arg Lys Ile Leu Gly Leu Pro Asp Leu Lys Val Ser	230 235	835
	240	245

ggc acc tgc gtc cgc gtg ccg gtt ttc acc ggc cac acg ctg acc att 883
 Gly Thr Cys Val Arg Val Pro Val Phe Thr Gly His Thr Leu Thr Ile
 250 255 260
 cac gcc gaa ttc gac aag gca atc acc gtg gac cag gcg cag gag atc 931
 His Ala Glu Phe Asp Lys Ala Ile Thr Val Asp Gln Ala Gln Glu Ile
 265 270 275
 ttg ggt gcc gct tca ggc gtc aag ctt gtc gac gtc cca acc cca ctt 979
 Leu Gly Ala Ala Ser Gly Val Lys Leu Val Asp Val Pro Thr Pro Leu
 280 285 290
 gca gct gcc ggc att gac gaa tcc ctc gtt gga cgc atc cgt cag gac
 1027
 Ala Ala Ala Gly Ile Asp Glu Ser Leu Val Gly Arg Ile Arg Gln Asp
 295 300 305
 tcc act gtc gac gat aac cgc ggt ctg gtt ctc gtc gta tct ggc gac
 1075
 Ser Thr Val Asp Asp Asn Arg Gly Leu Val Leu Val Val Ser Gly Asp
 310 315 320 325
 aac ctc cgc aag ggt gct gcg cta aac acc atc cag atc gct gag ctg
 1123
 Asn Leu Arg Lys Gly Ala Ala Leu Asn Thr Ile Gln Ile Ala Glu Leu
 330 335 340
 ctg gtt aag taaaaaccccg ccattaaaaa ctc
 1155
 Leu Val Lys

```

<210> 28
<211> 344
<212> PRT
<213> Corvnebacterium glutamicum

<400> 28
Met Thr Thr Ile Ala Val Val Gly Ala Thr Gly Gln Val Gly Gln Val
      1           5                   10                  15
Met Arg Thr Leu Leu Glu Glu Arg Asn Phe Pro Ala Asp Thr Val Arg
      20                  25                  30
Phe Phe Ala Ser Pro Arg Ser Ala Gly Arg Lys Ile Glu Phe Arg Gly
      35                  40                  45
Thr Glu Ile Glu Val Glu Asp Ile Thr Gln Ala Thr Glu Glu Ser Leu
      50                  55                  60
Lys Asp Ile Asp Val Ala Leu Phe Ser Ala Gly Gly Thr Ala Ser Lys
      65                  70                  75                  80
Gln Tyr Ala Pro Leu Phe Ala Ala Gly Ala Thr Val Val Asp Asn
      85                  90                  95
Ser Ser Ala Trp Arg Lys Asp Asp Glu Val Pro Leu Ile Val Ser Glu
      100                 105                 110

```

Val Asn Pro Ser Asp Lys Asp Ser Leu Val Lys Gly Ile Ile Ala Asn
 115 120 125

Pro Asn Cys Thr Thr Met Ala Ala Met Pro Val Leu Lys Pro Leu His
 130 135 140

Asp Ala Ala Gly Leu Val Lys Leu His Val Ser Ser Tyr Gln Ala Val
 145 150 155 160

Ser Gly Ser Gly Leu Ala Gly Val Glu Thr Leu Ala Lys Gln Val Ala
 165 170 175

Ala Val Gly Asp His Asn Val Glu Phe Val His Asp Gly Gln Ala Ala
 180 185 190

Asp Ala Gly Asp Val Gly Pro Tyr Val Ser Pro Ile Ala Tyr Asn Val
 195 200 205

Leu Pro Phe Ala Gly Asn Leu Val Asp Asp Gly Thr Phe Glu Thr Asp
 210 215 220

Glu Glu Gln Lys Leu Arg Asn Glu Ser Arg Lys Ile Leu Gly Leu Pro
 225 230 235 240

Asp Leu Lys Val Ser Gly Thr Cys Val Arg Val Pro Val Phe Thr Gly
 245 250 255

His Thr Leu Thr Ile His Ala Glu Phe Asp Lys Ala Ile Thr Val Asp
 260 265 270

Gln Ala Gln Glu Ile Leu Gly Ala Ala Ser Gly Val Lys Leu Val Asp
 275 280 285

Val Pro Thr Pro Leu Ala Ala Ala Gly Ile Asp Glu Ser Leu Val Gly
 290 295 300

Arg Ile Arg Gln Asp Ser Thr Val Asp Asp Asn Arg Gly Leu Val Leu
 305 310 315 320

Val Val Ser Gly Asp Asn Leu Arg Lys Gly Ala Ala Leu Asn Thr Ile
 325 330 335

Gin Ile Ala Glu Leu Leu Val Lys
 340

<210> 29
 <211> 608
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (69)..(608)
 <223> RXA02843

<400> 29
 cccatgcgc ggaggtcgca ccccttccga cttaactga taggcccata gaaatttttc 60

tggacgtcatg act act gct tcc gca acc gga att gca aca ctg acc tcc 110
 Met Thr Thr Ala Ser Ala Thr Gly Ile Ala Thr Leu Thr Ser

1	5	10	
acc ggc gac gtc ctg gac gtg tgg tat cca gaa atc ggg tcc acc gac Thr Gly Asp Val Leu Asp Val Trp Tyr Pro Glu Ile Gly Ser Thr Asp	15	20	158
		25	30
cag tcc gcg ctc aca cct cta gaa ggc gtc gat gaa gat cga aac gtc Gln Ser Ala Leu Thr Pro Leu Glu Gly Val Asp Glu Arg Asn Val	35	40	206
			45
acc cgc aaa atc gtg acg aca act atc gac acc gca gcc ccc acc Thr Arg Lys Ile Val Thr Thr Ile Asp Thr Asp Ala Ala Pro Thr	50	55	254
			60
gac acc tac gat gca tgg ctg cgc ctt cac ctc ctc tcc cac cgc gtt Asp Thr Tyr Asp Ala Trp Leu Arg Leu His Leu Ser His Arg Val	65	70	302
			75
ttc cgc cct cac acc atc aac cta gac ggc att ttc ggc ctc ctc aac Phe Arg Pro His Thr Ile Asn Leu Asp Gly Ile Phe Gly Leu Leu Asn	80	85	350
			90
aat gtc gtg tgg acc aac ttc gga ccg tgc gca gtt gac ggt ttc gca Asn Val Val Trp Thr Asn Phe Gly Pro Cys Ala Val Asp Gly Phe Ala	95	100	398
			105
			110
ctc acc cgc gcg cgc ctg tca cgc cga ggc caa gtt acg gtt tat agc Leu Thr Arg Ala Arg Leu Ser Arg Arg Gly Gln Val Thr Val Tyr Ser	115	120	446
			125
gtc gac aag ttc cca cgc atg gtc gac tat gtg gtt ccc tcg ggc gtg Val Asp Lys Phe Pro Arg Met Val Asp Tyr Val Val Pro Ser Gly Val	130	135	494
			140
cgc atc ggt gac gcc gac cgc gtc cga ctt ggc gcg tac ctg gca gat Arg Ile Gly Asp Ala Asp Arg Val Arg Leu Gly Ala Tyr Leu Ala Asp	145	150	542
			155
ggc acc acc gtg atg cat gag ggc ttc gtg aac ttc aac gct ggc acg Gly Thr Thr Val Met His Glu Gly Phe Val Asn Phe Asn Ala Gly Thr	160	165	590
			170
ctc ggc gct tcc atg gtt Leu Gly Ala Ser Met Val	175	180	608
<210> 30			
<211> 180			
<212> PRT			
<213> Corynebacterium glutamicum			
<400> 30			
Met Thr Thr Ala Ser Ala Thr Gly Ile Ala Thr Leu Thr Ser Thr Gly	1	5	10
			15
Asp Val Leu Asp Val Trp Tyr Pro Glu Ile Gly Ser Thr Asp Gln Ser	20	25	30
Ala Leu Thr Pro Leu Glu Gly Val Asp Glu Asp Arg Asn Val Thr Arg	35	40	45

Lys Ile Val Thr Thr Thr Ile Asp Thr Asp Ala Ala Pro Thr Asp Thr
 50 55 60

Tyr Asp Ala Trp Leu Arg Leu His Leu Leu Ser His Arg Val Phe Arg
 65 70 75 80

Pro His Thr Ile Asn Leu Asp Gly Ile Phe Gly Leu Leu Asn Asn Val
 85 90 95

Val Trp Thr Asn Phe Gly Pro Cys Ala Val Asp Gly Phe Ala Leu Thr
 100 105 110

Arg Ala Arg Leu Ser Arg Arg Gly Gln Val Thr Val Tyr Ser Val Asp
 115 120 125

Lys Phe Pro Arg Met Val Asp Tyr Val Val Pro Ser Gly Val Arg Ile
 130 135 140

Gly Asp Ala Asp Arg Val Arg Leu Gly Ala Tyr Leu Ala Asp Gly Thr
 145 150 155 160

Thr Val Met His Glu Gly Phe Val Asn Phe Asn Ala Gly Thr Leu Gly
 165 170 175

Ala Ser Met Val
 180

<210> 31
<211> 1230
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1207)
<223> RXA02022

<400> 31
tatttgcat tccaaactgct tgggctccgc gaatgtttc actcattttt taatcgaccg 60

cttccatcat gtttaacta aggttgtag gcttaaacct gtg aac tct gaa ctc 115
 Val Asn Ser Glu Leu
 1 5

aaa cca gga tta gat ctc ctc ggc gac cca att gtc ctt act caa cgt 163
 Lys Pro Gly Leu Asp Leu Gly Asp Pro Ile Val Leu Thr Gln Arg
 10 15 20

ttg gta gat ata ccg agt ccg tcg ggt cag gaa aag cag att gct gat 211
 Leu Val Asp Ile Pro Ser Pro Ser Gly Gln Glu Lys Gln Ile Ala Asp
 25 30 35

gaa att gaa gat gcc ctt cgg aac ctt aat cta cct ggt gta gag gtc 259
 Glu Ile Glu Asp Ala Leu Arg Asn Leu Asn Leu Pro Gly Val Glu Val
 40 45 50

ttc cgc ttc aac aac aac gtt ctt gct cgc acg aac agg gga ttg gcc 307
 Phe Arg Phe Asn Asn Val Leu Ala Arg Thr Asn Arg Gly Leu Ala
 55 60 65

tcg agg gtc atg ctt gct ggt cat atc gat aca gtg ccg atc gcg gac 355
 Ser Arg Val Met Leu Ala Gly His Ile Asp Thr Val Pro Ile Ala Asp
 70 75 80 85
 aat ctg cca agc cgt gtg gaa gac ggc atc atg tat ggc tgt ggc acc 403
 Asn Leu Pro Ser Arg Val Glu Asp Gly Ile Met Tyr Gly Cys Gly Thr
 90 95 100
 gtc gat atg aaa tct ggg ttg gcg gtg tat ttg cat act ttt gcc acc 451
 Val Asp Met Lys Ser Gly Leu Ala Val Tyr Leu His Thr Phe Ala Thr
 105 110 115
 ttg gcc acg tcg act gag ctt aaa cat gat ctg acg ctg att gcg tat 499
 Leu Ala Thr Ser Thr Glu Leu Lys His Asp Leu Thr Leu Ile Ala Tyr
 120 125 130
 gag tgc gag gaa gtt gct gat cac ctc aat ggt ttg ggc cac att cgc 547
 Glu Cys Glu Glu Val Ala Asp His Leu Asn Gly Leu Gly His Ile Arg
 135 140 145
 gat gag cat ccg gag tgg ttg gcg gct gat ttg gcg ttg ttg ggt gag 595
 Asp Glu His Pro Glu Trp Leu Ala Ala Asp Leu Ala Leu Gly Glu
 150 155 160 165
 cct act ggc ggc tgg att gag gcg ggc tgc cag ggc aat ctg cgc atc 643
 Pro Thr Gly Trp Ile Glu Ala Gly Cys Gln Gly Asn Leu Arg Ile
 170 175 180
 aag gtg acg gcg cat ggt gtg cgt gcc cat tcg gcg aga agc tgg ttg 691
 Lys Val Thr Ala His Gly Val Arg Ala His Ser Ala Arg Ser Trp Leu
 185 190 195
 ggt gat aat gcg atg cat aag ttg tcg ccg atc att tcg aag gtt gct 739
 Gly Asp Asn Ala Met His Lys Leu Ser Pro Ile Ile Ser Lys Val Ala
 200 205 210
 gcg tat aag gcc gca gaa gtc aac att gat ggc ttg acc tac cgt gaa 787
 Ala Tyr Lys Ala Ala Glu Val Asn Ile Asp Gly Leu Thr Tyr Arg Glu
 215 220 225
 ggc ctc aac atc gtt ttc tgc gaa tcg ggc gtg gca aac aac gtc att 835
 Gly Leu Asn Ile Val Phe Cys Glu Ser Gly Val Ala Asn Asn Val Ile
 230 235 240 245
 cca gac ctc gcg tgg atg aac ctc aac ttc cgt ttc gcg ccg aat cgc 883
 Pro Asp Leu Ala Trp Met Asn Leu Asn Phe Arg Phe Ala Pro Asn Arg
 250 255 260
 gat ctc aac gag gcg atc gag cat gtc gtc gaa acg ctt gag ctt gac 931
 Asp Leu Asn Glu Ala Ile Glu His Val Val Glu Thr Leu Glu Leu Asp
 265 270 275
 ggt caa gac ggc atc gaa tgg gcc gta gaa gac ggg gca ggc ggt gcc 979
 Gly Gln Asp Gly Ile Glu Trp Ala Val Glu Asp Gly Ala Gly Gly Ala
 280 285 290
 ctt cca ggc ttg ggg cag cag gtg aca agc ggg ctt atc gac gcc gtc
 1027
 Leu Pro Gly Leu Gly Gln Gln Val Thr Ser Gly Leu Ile Asp Ala Val
 295 300 305

ggc cgc gaa aaa atc cgc gca aaa ttc ggc tgg acc gat gtc tca cgt
1075

Gly Arg Glu Lys Ile Arg Ala Lys Phe Gly Trp Thr Asp Val Ser Arg
310 315 320 325

ttt tca gcc atg gga att cca gcc cta aac ttt ggc gct ggt gat cca
1123

Phe Ser Ala Met Gly Ile Pro Ala Leu Asn Phe Gly Ala Gly Asp Pro
330 335 340

agt ttc gcg cat aaa cgc gac gag cag tgc cca gtg gag caa atc acg
1171

Ser Phe Ala His Lys Arg Asp Glu Gln Cys Pro Val Glu Gln Ile Thr
345 350 355

gat gtg gca gca att ttg aag cag tac ctg agc gag taaccgcatt
1217

Asp Val Ala Ala Ile Leu Lys Gln Tyr Leu Ser Glu
360 365

cggggttatac gtg
1230

<210> 32

<211> 369

<212> PRT

<213> Corynebacterium glutamicum

<400> 32

Val Asn Ser Glu Leu Lys Pro Gly Leu Asp Leu Leu Gly Asp Pro Ile
1 5 10 15

Val Leu Thr Gln Arg Leu Val Asp Ile Pro Ser Pro Ser Gly Gln Glu
20 25 30

Lys Gln Ile Ala Asp Glu Ile Glu Asp Ala Leu Arg Asn Leu Asn Leu
35 40 45

Pro Gly Val Glu Val Phe Arg Phe Asn Asn Asn Val Leu Ala Arg Thr
50 55 60

Asn Arg Gly Leu Ala Ser Arg Val Met Leu Ala Gly His Ile Asp Thr
65 70 75 80

Val Pro Ile Ala Asp Asn Leu Pro Ser Arg Val Glu Asp Gly Ile Met
85 90 95

Tyr Gly Cys Gly Thr Val Asp Met Lys Ser Gly Leu Ala Val Tyr Leu
100 105 110

His Thr Phe Ala Thr Leu Ala Thr Ser Thr Glu Leu Lys His Asp Leu
115 120 125

Thr Leu Ile Ala Tyr Glu Cys Glu Glu Val Ala Asp His Leu Asn Gly
130 135 140

Leu Gly His Ile Arg Asp Glu His Pro Glu Trp Leu Ala Ala Asp Leu
145 150 155 160

Ala Leu Leu Gly Glu Pro Thr Gly Gly Trp Ile Glu Ala Gly Cys Gln
 165 170 175

Gly Asn Leu Arg Ile Lys Val Thr Ala His Gly Val Arg Ala His Ser
 180 185 190

Ala Arg Ser Trp Leu Gly Asp Asn Ala Met His Lys Leu Ser Pro Ile
 195 200 205

Ile Ser Lys Val Ala Ala Tyr Lys Ala Ala Glu Val Asn Ile Asp Gly
 210 215 220

Leu Thr Tyr Arg Glu Gly Leu Asn Ile Val Phe Cys Glu Ser Gly Val
 225 230 235 240

Ala Asn Asn Val Ile Pro Asp Leu Ala Trp Met Asn Leu Asn Phe Arg
 245 250 255

Phe Ala Pro Asn Arg Asp Leu Asn Glu Ala Ile Glu His Val Val Glu
 260 265 270

Thr Leu Glu Leu Asp Gly Gln Asp Gly Ile Glu Trp Ala Val Glu Asp
 275 280 285

Gly Ala Gly Gly Ala Leu Pro Gly Leu Gly Gln Gln Val Thr Ser Gly
 290 295 300

Leu Ile Asp Ala Val Gly Arg Glu Lys Ile Arg Ala Lys Phe Gly Trp
 305 310 315 320

Thr Asp Val Ser Arg Phe Ser Ala Met Gly Ile Pro Ala Leu Asn Phe
 325 330 335

Gly Ala Gly Asp Pro Ser Phe Ala His Lys Arg Asp Glu Gln Cys Pro
 340 345 350

Val Glu Gln Ile Thr Asp Val Ala Ala Ile Leu Lys Gln Tyr Leu Ser
 355 360 365

Glu

<210> 33

<211> 1059

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1036)

<223> RXA00044

<400> 33

attacctcag ctttccaaggc tgatgatgca ttacttaaaa actgcagaca ctggaaaaac 60

ttctcaccccg cactcggtcc ctcaaccac aaggagcacc atg gct tcc gca act 115
 Met Ala Ser Ala Thr
 1 5

ttc acc ggc gtg atc cca ccc gta atg acc cca ctc cac gcc gac ggc 163

Phe Thr Gly Val Ile Pro Pro Val Met Thr Pro Leu His Ala Asp Gly		
10	15	20
agt gtg gat gta gaa agc ctc cgc aag ctc gtt gac cac ctc atc aat		211
Ser Val Asp Val Glu Ser Leu Arg Lys Leu Val Asp His Leu Ile Asn		
25	30	35
ggt ggc gtc gac gga ctt ttc gca ctg ggc tcc tca ggc gaa gcg gca		259
Gly Gly Val Asp Gly Leu Phe Ala Leu Gly Ser Ser Gly Glu Ala Ala		
40	45	50
ttc ctc acc cgc gcc cag cgc aaa ctc gca ctg acc acc atc atc gag		307
Phe Leu Thr Arg Ala Gln Arg Lys Leu Ala Leu Thr Thr Ile Ile Glu		
55	60	65
cac acc gca ggc cgc gtt ccc gta act gct ggt gtc att gaa acc acc		355
His Thr Ala Gly Arg Val Pro Val Thr Ala Gly Val Ile Glu Thr Thr		
70	75	80
act gct cgc gtg att gag ctc gtg gaa gat gcc ctg gag gct ggt gcc		403
Thr Ala Arg Val Ile Glu Leu Val Glu Asp Ala Leu Glu Ala Gly Ala		
90	95	100
gaa ggc ctc gtt gcc act gca cct ttc tac acc cgc acc cac gat gtg		451
Glu Gly Leu Val Ala Thr Ala Pro Phe Tyr Thr Arg Thr His Asp Val		
105	110	115
gaa att gaa gaa cac ttc cgc aag atc cac gcc gcc gct cca gag ctt		499
Glu Ile Glu Glu His Phe Arg Lys Ile His Ala Ala Ala Pro Glu Leu		
120	125	130
cca ctg ttt gcc tac aac atc cca gtg tcg gtg cac tcc aac ctc aac		547
Pro Leu Phe Ala Tyr Asn Ile Pro Val Ser Val His Ser Asn Leu Asn		
135	140	145
cca gtc atg ctt ttg acg ctg gcc aag gat ggc gtt ctt gca ggc acc		595
Pro Val Met Leu Leu Thr Leu Ala Lys Asp Gly Val Leu Ala Gly Thr		
150	155	160
aag gat tcc agt ggc aat gat ggc gca atc cgc tca ctg atc gaa gct		643
Lys Asp Ser Ser Gly Asn Asp Gly Ala Ile Arg Ser Leu Ile Glu Ala		
170	175	180
cgt gat gat gct gga ctc act gag cag ttc aag atc ctc acc ggc agc		691
Arg Asp Asp Ala Gly Leu Thr Glu Gln Phe Lys Ile Leu Thr Gly Ser		
185	190	195
gaa acc acc gtt gat ttc gcc tac ctt gcg ggt gcc gat gga gtt gtc		739
Glu Thr Thr Val Asp Phe Ala Tyr Leu Ala Gly Ala Asp Gly Val Val		
200	205	210
cca ggc ctg ggc aat gtt gat cct gca gca tac gca gct tta gca aaa		787
Pro Gly Leu Gly Asn Val Asp Pro Ala Ala Tyr Ala Ala Leu Ala Lys		
215	220	225
ctc tgc ctc gat gga aag tgg gca gaa gct gct gct ttg cag aag cgc		835
Leu Cys Leu Asp Gly Lys Trp Ala Glu Ala Ala Leu Gln Lys Arg		
230	235	240
atc aac cac ctc ttc cac atc gtc ttc gtg gga gac acc tcc cat atg		883
Ile Asn His Leu Phe His Ile Val Phe Val Gly Asp Thr Ser His Met		

250	255	260	
tcc gga tcc agc gct ggt ttg ggc ggt ttc aag aca gca ctc gca cac 931 Ser Gly Ser Ser Ala Gly Leu Gly Gly Phe Lys Thr Ala Leu Ala His			
265	270	275	
ctt ggc att att gaa tcc aat gcg atg gca gtt cct cac cag agc ctc 979 Leu Gly Ile Ile Glu Ser Asn Ala Met Ala Val Pro His Gln Ser Leu			
280	285	290	
agc gac gaa gaa act gct cgc att cac gcc att gtt gat gaa ttc ctg 1027 Ser Asp Glu Glu Thr Ala Arg Ile His Ala Ile Val Asp Glu Phe Leu			
295	300	305	
tac acc gct taaggccac acctcatgac tga			
1059			
Tyr Thr Ala			
310			
<210> 34			
<211> 312			
<212> PRT			
<213> Corynebacterium glutamicum			
<400> 34			
Met Ala Ser Ala Thr Phe Thr Gly Val Ile Pro Pro Val Met Thr Pro 15			
1	5	10	15
Leu His Ala Asp Gly Ser Val Asp Val Glu Ser Leu Arg Lys Leu Val 30			
20	25	30	
Asp His Leu Ile Asn Gly Gly Val Asp Gly Leu Phe Ala Leu Gly Ser 45			
35	40	45	
Ser Gly Glu Ala Ala Phe Leu Thr Arg Ala Gln Arg Lys Leu Ala Leu 60			
50	55	60	
Thr Thr Ile Ile Glu His Thr Ala Gly Arg Val Pro Val Thr Ala Gly 80			
65	70	75	80
Val Ile Glu Thr Thr Ala Arg Val Ile Glu Leu Val Glu Asp Ala 95			
85	90	95	
Leu Glu Ala Gly Ala Glu Gly Leu Val Ala Thr Ala Pro Phe Tyr Thr 110			
100	105	110	
Arg Thr His Asp Val Glu Ile Glu Glu His Phe Arg Lys Ile His Ala 125			
115	120	125	
Ala Ala Pro Glu Leu Pro Leu Phe Ala Tyr Asn Ile Pro Val Ser Val 140			
130	135	140	
His Ser Asn Leu Asn Pro Val Met Leu Leu Thr Leu Ala Lys Asp Gly 160			
145	150	155	160
Val Leu Ala Gly Thr Lys Asp Ser Ser Gly Asn Asp Gly Ala Ile Arg 175			
165	170	175	
Ser Leu Ile Glu Ala Arg Asp Asp Ala Gly Leu Thr Glu Gln Phe Lys			

180	185	190
Ile Leu Thr Gly Ser Glu Thr Thr Val Asp Phe Ala Tyr Leu Ala Gly		
195	200	205
Ala Asp Gly Val Val Pro Gly Leu Gly Asn Val Asp Pro Ala Ala Tyr		
210	215	220
Ala Ala Leu Ala Lys Leu Cys Leu Asp Gly Lys Trp Ala Glu Ala Ala		
225	230	235
Ala Leu Gln Lys Arg Ile Asn His Leu Phe His Ile Val Phe Val Gly		
245	250	255
Asp Thr Ser His Met Ser Gly Ser Ser Ala Gly Leu Gly Gly Phe Lys		
260	265	270
Thr Ala Leu Ala His Leu Gly Ile Ile Glu Ser Asn Ala Met Ala Val		
275	280	285
Pro His Gln Ser Leu Ser Asp Glu Glu Thr Ala Arg Ile His Ala Ile		
290	295	300
Val Asp Glu Phe Leu Tyr Thr Ala		
305	310	
<210> 35		
<211> 867		
<212> DNA		
<213> Corynebacterium glutamicum		
<220>		
<221> CDS		
<222> (101)..(844)		
<223> RXA00863		
<400> 35		
aacggtcagt taggtatgga tatcagcacc ttctgaacgg gtacgtctag actggtgccc 60		
gtttgaaaaa ctcttcgccc cacgaaaatg aaggagcata atg gga atc aag gtt 115 Met Gly Ile Lys Val		
1	5	
ggc gtt ctc gga gcc aaa ggc cgt gtt ggt caa act att gtg gca gca 163 Gly Val Leu Gly Ala Lys Gly Arg Val Gly Gln Thr Ile Val Ala Ala		
10	15	20
gtc aat gag tcc ga. gat ctg gag ctt gtt gca gag atc ggc gtc gac 211 Val Asn Glu Ser Asp Asp Leu Glu Leu Val Ala Glu Ile Gly Val Asp		
25	30	35
gat gat ttg agc ctt ctg gta gac aac ggc gct gaa gtt gtc gtt gac 259 Asp Asp Leu Ser Leu Leu Val Asp Asn Gly Ala Glu Val Val Val Asp		
40	45	50
ttc acc act cct aac gct gtg atg ggc aac ctg gag ttc tgc atc aac 307 Phe Thr Thr Pro Asn Ala Val Met Gly Asn Leu Glu Phe Cys Ile Asn		
55	60	65
aac ggc att tct gcg gtt gga acc acg ggc ttc gat gat gct cgt 355		

Asn Gly Ile Ser Ala Val Val Gly Thr Thr Gly Phe Asp Asp Ala Arg			
70	75	80	85
ttg gag cag gtt cgc gac tgg ctt gaa gga aaa gac aat gtc ggt gtt			403
Leu Glu Gln Val Arg Asp Trp Leu Glu Gly Lys Asp Asn Val Gly Val			
90	95	100	
ctg atc gca cct aac ttt gct atc tct gcg gtg ttg acc atg gtc ttt			451
Leu Ile Ala Pro Asn Phe Ala Ile Ser Ala Val Leu Thr Met Val Phe			
105	110	115	
tcc aag cag gct gcc cgc ttc ttc gaa tca gct gaa gtt att gag ctg			499
Ser Lys Gln Ala Ala Arg Phe Phe Glu Ser Ala Glu Val Ile Glu Leu			
120	125	130	
cac cac ccc aac aag ctg gat gca cct tca ggc acc gcg atc cac act			547
His His Pro Asn Lys Leu Asp Ala Pro Ser Gly Thr Ala Ile His Thr			
135	140	145	
gct cag ggc att gct gcg gca cgc aaa gaa gca ggc atg gac gca cag			595
Ala Gln Gly Ile Ala Ala Arg Lys Glu Ala Gly Met Asp Ala Gln			
150	155	160	165
cca gat gcg acc gag cag gca ctt gag ggt tcc cgt ggc gca agc gta			643
Pro Asp Ala Thr Glu Gln Ala Leu Glu Gly Ser Arg Gly Ala Ser Val			
170	175	180	
gat gga atc ccg gtt cat gca gtc cgc atg tcc ggc atg gtt gct cac			691
Asp Gly Ile Pro Val His Ala Val Arg Met Ser Gly Met Val Ala His			
185	190	195	
gag caa gtt atc ttt ggc acc cag ggt cag acc ttg acc atc aag cag			739
Glu Gln Val Ile Phe Gly Thr Gln Gly Gln Thr Leu Thr Ile Lys Gln			
200	205	210	
gac tcc tat gat cgc aac tca ttt gca cca ggt gtc ttg gtg ggt gtg			787
Asp Ser Tyr Asp Arg Asn Ser Phe Ala Pro Gly Val Leu Val Gly Val			
215	220	225	
cgc aac att gca cag cac cca ggc cta gtc gta gga ctt gag cat tac			835
Arg Asn Ile Ala Gln His Pro Gly Leu Val Val Gly Leu Glu His Tyr			
230	235	240	245
cta ggc ctg taaaggctca tttcagcagc ggg			867
Leu Gly Leu			

<210> 36
<211> 248
<212> PRT
<213> Corynebacterium glutamicum

<400> 36
Met Gly Ile Lys Val Gly Val Leu Gly Ala Lys Gly Arg Val Gly Gln
1 5 10 15
Thr Ile Val Ala Ala Val Asn Glu Ser Asp Asp Leu Glu Leu Val Ala
20 25 30
Glu Ile Gly Val Asp Asp Leu Ser Leu Leu Val Asp Asn Gly Ala

35	40	45	
Glu Val Val Val Asp Phe Thr Thr Pro Asn Ala Val Met Gly Asn Leu			
50	55	60	
Glu Phe Cys Ile Asn Asn Gly Ile Ser Ala Val Val Gly Thr Thr Gly			
65	70	75	80
Phe Asp Asp Ala Arg Leu Glu Gln Val Arg Asp Trp Leu Glu Gly Lys			
85	90	95	
Asp Asn Val Gly Val Leu Ile Ala Pro Asn Phe Ala Ile Ser Ala Val			
100	105	110	
Leu Thr Met Val Phe Ser Lys Gln Ala Ala Arg Phe Phe Glu Ser Ala			
115	120	125	
Glu Val Ile Glu Leu His His Pro Asn Lys Leu Asp Ala Pro Ser Gly			
130	135	140	
Thr Ala Ile His Thr Ala Gln Gly Ile Ala Ala Ala Arg Lys Glu Ala			
145	150	155	160
Gly Met Asp Ala Gln Pro Asp Ala Thr Glu Gln Ala Leu Glu Gly Ser			
165	170	175	
Arg Gly Ala Ser Val Asp Gly Ile Pro Val His Ala Val Arg Met Ser			
180	185	190	
Gly Met Val Ala His Glu Gln Val Ile Phe Gly Thr Gln Gly Gln Thr			
195	200	205	
Leu Thr Ile Lys Gln Asp Ser Tyr Asp Arg Asn Ser Phe Ala Pro Gly			
210	215	220	
Val Leu Val Gly Val Arg Asn Ile Ala Gln His Pro Gly Leu Val Val			
225	230	235	240
Gly Leu Glu His Tyr Leu Gly Leu			
245			

```
<210> 37
<211> 873
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(850)
<223> RXA00864

<400> 37
acagcaccca ggcctagtcg taggacttga gcattaccta ggcctgtaaa ggctcatttc 60
agcagcgggt ggaatttttt aaaaggagcg tttaaaggct gtg gcc gaa caa gtt      115
                                         Val Ala Glu Gln Val
                                         1                      5

aaa ttg agc gtg gag ttg ata gcg tgc agt tct ttt act cca ccc gct 163
Lys Leu Ser Val Glu Leu Ile Ala Cys Ser Ser Phe Thr Pro Pro Ala
```

10	15	20	
gat gtt gag tgg tca act gat gtt gag ggc gcg gaa gca ctc gtc gag Asp Val Glu Trp Ser Thr Asp Val Glu Gly Ala Glu Ala Leu Val Glu 25 30 35			211
ttt gcg ggt cgt gcc tgc tac gaa act ttt gat aag ccg aac cct cga Phe Ala Gly Arg Ala Cys Tyr Glu Thr Phe Asp Lys Pro Asn Pro Arg 40 45 50			259
act gct tcc aat gct gcg tat ctg cgc cac atc atg gaa gtg ggg cac Thr Ala Ser Asn Ala Ala Tyr Leu Arg His Ile Met Glu Val Gly His 55 60 65			307
act gct ttg ctt gag cat gcc aat gcc acg atg tat atc cga ggc att Thr Ala Leu Leu Glu His Ala Asn Ala Thr Met Tyr Ile Arg Gly Ile 70 75 80 85			355
tct cgg tcc gcg acc cat gaa ttg gtc cga cac cgc cat ttt tcc ttc Ser Arg Ser Ala Thr His Glu Leu Val Arg His Arg His Phe Ser Phe 90 95 100			403
tct caa ctg tct cag cgt ttc gtg cac agc gga gaa tcg gaa gta gtg Ser Gln Leu Ser Gln Arg Phe Val His Ser Gly Glu Ser Glu Val Val 105 110 115			451
gtg ccc act ctc atc gat gaa gat ccg cag ttg cgt gaa ctt ttc atg Val Pro Thr Leu Ile Asp Glu Asp Pro Gln Leu Arg Glu Leu Phe Met 120 125 130			499
cac gcc atg gat gag tct cgg ttc gct ttc aat gag ctg ctt aat gcg His Ala Met Asp Glu Ser Arg Phe Ala Phe Asn Glu Leu Leu Asn Ala 135 140 145			547
ctg gaa gaa aaa ctt ggc gat gaa ccg aat gca ctt tta agg aaa aag Leu Glu Glu Lys Leu Gly Asp Glu Pro Asn Ala Leu Leu Arg Lys Lys 150 155 160 165			595
cag gct cgt caa gca gct cgc gct gtg ctg ccc aac gct aca gag tcc Gln Ala Arg Gln Ala Ala Arg Ala Val Leu Pro Asn Ala Thr Glu Ser 170 175 180			643
aga atc gtg gtg tct gga aac ttc ccg acc tgg agg cat ttc att ggc Arg Ile Val Val Ser Gly Asn Phe Arg Thr Trp Arg His Phe Ile Gly 185 190 195			691
atg cga gcc agt gaa cat gca gac gtc gaa atc cgc gaa gta gcg gta Met Arg Ala Ser Glu His Ala Asp Val Glu Ile Arg Glu Val Ala Val 200 205 210			739
gaa lgt tta aga aag ctg cag gta gca gcg cca act gtt ttc qqt gat Glu Cys Leu Arg Lys Leu Gln Val Ala Ala Pro Thr Val Phe Gly Asp 215 220 225			787
ttt gag att gaa act ttg gca gac gga tcg caa atg gca aca agc ccg Phe Glu Ile Glu Thr Leu Ala Asp Gly Ser Gln Met Ala Thr Ser Pro 230 235 240 245			835
tat gtc atg gac ttt taacgcaaag ctcacaccca cga Tyr Val Met Asp Phe 250			873

<210> 38
 <211> 250
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 38																
Val	Ala	Glu	Gln	Val	Lys	Leu	Ser	Val	Glu	Leu	Ile	Ala	Cys	Ser	Ser	
1				5				10							15	
Phe	Thr	Pro	Pro	Ala	Asp	Val	Glu	Trp	Ser	Thr	Asp	Val	Glu	Gly	Ala	
						20			25						30	
Glu	Ala	Leu	Val	Glu	Phe	Ala	Gly	Arg	Ala	Cys	Tyr	Glu	Thr	Phe	Asp	
						35			40						45	
Lys	Pro	Asn	Pro	Arg	Thr	Ala	Ser	Asn	Ala	Ala	Tyr	Leu	Arg	His	Ile	
						50			55						60	
Met	Glu	Val	Gly	His	Thr	Ala	Leu	Leu	Glu	His	Ala	Asn	Ala	Thr	Met	
						65			70			75			80	
Tyr	Ile	Arg	Gly	Ile	Ser	Arg	Ser	Ala	Thr	His	Glu	Leu	Val	Arg	His	
						85					90				95	
Arg	His	Phe	Ser	Phe	Ser	Gln	Leu	Ser	Gln	Arg	Phe	Val	His	Ser	Gly	
						100			105						110	
Glu	Ser	Glu	Val	Val	Val	Pro	Thr	Leu	Ile	Asp	Glu	Asp	Pro	Gln	Leu	
						115			120						125	
Arg	Glu	Leu	Phe	Met	His	Ala	Met	Asp	Glu	Ser	Arg	Phe	Ala	Phe	Asn	
						130			135			140				
Glu	Leu	Leu	Asn	Ala	Leu	Glu	Glu	Lys	Leu	Gly	Asp	Glu	Pro	Asn	Ala	
						145			150			155			160	
Leu	Leu	Arg	Lys	Lys	Gln	Ala	Arg	Gln	Ala	Ala	Arg	Ala	Val	Leu	Pro	
						165					170				175	
Asn	Ala	Thr	Glu	Ser	Arg	Ile	Val	Val	Ser	Gly	Asn	Phe	Arg	Thr	Trp	
						180			185			190				
Arg	His	Phe	Ile	Gly	Met	Arg	Ala	Ser	Glu	His	Ala	Asp	Val	Glu	Ile	
						195			200			205				
Arg	Glu	Val	Ala	Val	Glu	Cys	Leu	Arg	Lys	Leu	Gln	Val	Ala	Ala	Pro	
						210			215			220				
Thr	Val	Phe	Gly	Asp	Phe	Glu	Ile	Glu	Thr	Leu	Ala	Asp	Gly	Ser	Gln	
						225			230			235			240	
Met	Ala	Thr	Ser	Pro	Tyr	Val	Met	Asp	Phe							
						245			250							

<210> 39
 <211> 608
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (69)..(608)
<223> RXA02843

<400> 39
cccattgcgc ggaggtcgca ccccttccga cttgaactga taggcccata gaaattattc 60
tggacgtcatg act act gct tcc gca acc gga att gca aca ctg acc tcc 110
Met Thr Thr Ala Ser Ala Thr Gly Ile Ala Thr Leu Thr Ser
1 5 10
acc ggc gac gtc ctg gac gtg tat cca gaa atc ggg tcc acc gac 158
Thr Gly Asp Val Leu Asp Val Trp Tyr Pro Glu Ile Gly Ser Thr Asp
15 20 25 30
cag tcc gcg ctc aca cct cta gaa ggc gtc gat gaa gat cga aac gtc 206
Gln Ser Ala Leu Thr Pro Leu Glu Gly Val Asp Glu Asp Arg Asn Val
35 40 45
acc cgc aaa atc gtg acg aca act atc gac acc gca gcc ccc acc 254
Thr Arg Lys Ile Val Thr Thr Ile Asp Thr Asp Ala Ala Pro Thr
50 55 60
gac acc tac gat gca tgg ctg cgc ctt cac ctc ctc tcc cac cgc gtt 302
Asp Thr Tyr Asp Ala Trp Leu Arg Leu His Leu Leu His Arg Val
65 70 75
ttc cgc cct cac acc atc aac cta gac ggc att ttc ggc ctc ctc aac 350
Phe Arg Pro His Thr Ile Asn Leu Asp Gly Ile Phe Gly Leu Leu Asn
80 85 90
aat gtc gtg tgg acc aac ttc gga ccg tgc gca gtt gac ggt ttc gca 398
Asn Val Val Trp Thr Asn Phe Gly Pro Cys Ala Val Asp Gly Phe Ala
95 100 105 110
ctc acc cgc gcg cgc ctg tca cgc cga ggc caa gtt acg gtt tat agc 446
Leu Thr Arg Ala Arg Leu Ser Arg Arg Gly Gln Val Thr Val Tyr Ser
115 120 125
gtc gac aag ttc cca cgc atg gtc gac tat gtg gtt ccc tcg ggc gtg 494
Val Asp Lys Phe Pro Arg Met Val Asp Tyr Val Val Pro Ser Gly Val
130 135 140
cgc atc ggt gac gcc gac cgc gtc cga ctt ggc gcg tac ctg gca gat 542
Arg Ile Gly Asp Ala Asp Arg Val Arg Leu Gly Ala Tyr Leu Ala Asp
145 150 155
ggc acc acc gtg atg cat gag ggc ttc gtg aac ttc aac gct ggc acg 590
Gly Thr Thr Val Met His Glu Phe Val Asn Phe Asn Ala Gly Thr
160 165 170
ctc ggc gct tcc atg gtt 608
Leu Gly Ala Ser Met Val
175 180

<210> 40
<211> 180
<212> PRT

<213> Corynebacterium glutamicum

<400> 40

Met	Thr	Thr	Ala	Ser	Ala	Thr	Gly	Ile	Ala	Thr	Leu	Thr	Ser	Thr	Gly
1					5				10				15		

Asp	Val	Leu	Asp	Val	Trp	Tyr	Pro	Glu	Ile	Gly	Ser	Thr	Asp	Gln	Ser
				20				25				30			

Ala	Leu	Thr	Pro	Leu	Glu	Gly	Val	Asp	Glu	Asp	Arg	Asn	Val	Thr	Arg
					35			40			45				

Lys	Ile	Val	Thr	Thr	Thr	Ile	Asp	Thr	Asp	Ala	Ala	Pro	Thr	Asp	Thr
					50			55			60				

Tyr	Asp	Ala	Trp	Leu	Arg	Leu	His	Leu	Leu	Ser	His	Arg	Val	Phe	Arg
				65			70			75		80			

Pro	His	Thr	Ile	Asn	Leu	Asp	Gly	Ile	Phe	Gly	Leu	Leu	Asn	Asn	Val
					85			90				95			

Val	Trp	Thr	Asn	Phe	Gly	Pro	Cys	Ala	Val	Asp	Gly	Phe	Ala	Leu	Thr
					100			105			110				

Arg	Ala	Arg	Leu	Ser	Arg	Arg	Gly	Gln	Val	Thr	Val	Tyr	Ser	Val	Asp
					115			120			125				

Lys	Phe	Pro	Arg	Met	Val	Asp	Tyr	Val	Val	Pro	Ser	Gly	Val	Arg	Ile
				130			135			140					

Gly	Asp	Ala	Asp	Arg	Val	Arg	Leu	Gly	Ala	Tyr	Leu	Ala	Asp	Gly	Thr
					145		150			155		160			

Thr	Val	Met	His	Glu	Gly	Phe	Val	Asn	Phe	Asn	Ala	Gly	Thr	Leu	Gly
					165			170			175				

Ala	Ser	Met	Val												
			180												

<210> 41

<211> 1143

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1120)

<223> RXN00355

<400> 41

aatagatcg	cgcacccgtg	gtggAACCAA	aaggctcaac	aatacgaaac	gttcgtttc	60
-----------	------------	------------	------------	------------	-----------	----

ggtcctgatg	aaagagatgt	ccctgaatca	tcatctaagt	atg	cat	ctc	ggt	aag	115
				Met	His	Leu	Gly	Lys	
									5
				1					

ctc	gac	cag	gac	agt	gcc	acc	aca	att	ttg	gag	gat	tac	aag	aac	atg	163
Leu	Asp	Gln	Asp	Ser	Ala	Thr	Thr	Ile	Leu	Glu	Asp	Tyr	Lys	Asn	Met	
					10				15			20				

acc aac atc cgc gta gct atc gtg ggc tac gga aac ctg gga cgc agc 211
 Thr Asn Ile Arg Val Ala Ile Val Gly Tyr Gly Asn Leu Gly Arg Ser
 25 30 35

 gtc gaa aag ctt att gcc aag cag ccc gac atg gac ctt gta gga atc 259
 Val Glu Lys Leu Ile Ala Lys Gln Pro Asp Met Asp Leu Val Gly Ile
 40 45 50

 ttc tcg cgc cg^g acc ctc gac aca aag acg cca gtc ttt gat gtc 307
 Phe Ser Arg Arg Ala Thr Leu Asp Thr Lys Thr Pro Val Phe Asp Val
 55 60 65

 gcc gac gtg gac aag cac gac gac gtg gac gtg ctg ttc ctg tgc 355
 Ala Asp Val Asp Lys His Ala Asp Asp Val Asp Val Leu Phe Leu Cys
 70 75 80 85

 atg ggc tcc gcc acc gac atc cct gag cag gca cca aag ttc gcg cag 403
 Met Gly Ser Ala Thr Asp Ile Pro Glu Gln Ala Pro Lys Phe Ala Gln
 90 95 100

 ttc gcc tgc acc gta gac acc tac gac aac cac cgc gac atc cca cgc 451
 Phe Ala Cys Thr Val Asp Thr Tyr Asp Asn His Arg Asp Ile Pro Arg
 105 110 115

 cac cgc cag gtc atg aac gaa gcc acc gca gcc ggc aac gtt gca 499
 His Arg Gln Val Met Asn Glu Ala Ala Thr Ala Ala Gly Asn Val Ala
 120 125 130

 ctg gtc tct acc ggc tgg gat cca gga atg ttc tcc atc aac cgc gtc 547
 Leu Val Ser Thr Gly Trp Asp Pro Gly Met Phe Ser Ile Asn Arg Val
 135 140 145

 tac gca gcg gca gtc tta gcc gag cac cag cag cac acc ttc tgg ggc 595
 Tyr Ala Ala Ala Val Leu Ala Glu His Gln Gln His Thr Phe Trp Gly
 150 155 160 165

 cca ggt ttg tca cag ggc cac tcc gat gct ttg cga cgc atc cct ggc 643
 Pro Gly Leu Ser Gln Gly His Ser Asp Ala Leu Arg Arg Ile Pro Gly
 170 175 180

 gtt caa aag gca gtc cag tac acc ctc cca tcc gaa gac gcc ctg gaa 691
 Val Gln Lys Ala Val Gln Tyr Thr Leu Pro Ser Glu Asp Ala Leu Glu
 185 190 195

 aag gcc cgc cgc ggc gaa gcc ggc gac ctt acc gga aag caa acc cac 739
 Lys Ala Arg Arg Gly Glu Ala Gly Asp Leu Thr Gly Lys Gln Thr His
 200 205 210

 aag cgc caa tgc ttc gtg gtt gcc gac gcg gcc gat cac gag cgc atc 787
 Lys Arg Gln Cys Phe Val Val Ala Asp Ala Ala Asp His Glu Arg Ile
 215 220 225

 gaa aac gac atc cgc acc atg cct gat tac ttc gtt ggc tac gaa gtc 835
 Glu Asn Asp Ile Arg Thr Met Pro Asp Tyr Phe Val Gly Tyr Glu Val
 230 235 240 245

 gaa gtc aac ttc atc gac gaa gca acc ttc gac tcc gag cac acc ggc 883
 Glu Val Asn Phe Ile Asp Glu Ala Thr Phe Asp Ser Glu His Thr Gly
 250 255 260

 atg cca cac ggt ggc cac gtg att acc acc ggc gac acc ggt ggc ttc 931

Met Pro His Gly Gly His Val Ile Thr Thr Gly Asp Thr Gly Gly Phe
 265 270 275
 aac cac acc gtg gaa tac atc ctc aag ctg gac cga aac cca gat ttc 979
 Asn His Thr Val Glu Tyr Ile Leu Lys Leu Asp Arg Asn Pro Asp Phe
 280 285 290
 acc gct tcc tca cag atc gct ttc ggt cgc gca gct cac cgc atg aag
 1027
 Thr Ala Ser Ser Gln Ile Ala Phe Gly Arg Ala Ala His Arg Met Lys
 295 300 305
 cag cag ggc caa agc gga gct ttc acc gtc ctc gaa gtt gct cca tac
 1075
 Gln Gln Gly Gln Ser Gly Ala Phe Thr Val Leu Glu Val Ala Pro Tyr
 310 315 320 325
 ctg ctc tcc cca gag aac ttg gac gat ctg atc gca cgc gac gtc
 1120
 Leu Leu Ser Pro Glu Asn Leu Asp Asp Leu Ile Ala Arg Asp Val
 330 335 340
 taatttagct cgagggcaa gga
 1143

<210> 42
 <211> 340
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 42
 Met His Leu Gly Lys Leu Asp Gln Asp Ser Ala Thr Thr Ile Leu Glu
 1 5 10 15
 Asp Tyr Lys Asn Met Thr Asn Ile Arg Val Ala Ile Val Gly Tyr Gly
 20 25 30
 Asn Leu Gly Arg Ser Val Glu Lys Leu Ile Ala Lys Gln Pro Asp Met
 35 40 45
 Asp Leu Val Gly Ile Phe Ser Arg Arg Ala Thr Leu Asp Thr Lys Thr
 50 55 60
 Pro Val Phe Asp Val Ala Asp Val Asp Lys His Ala Asp Asp Val Asp
 65 70 75 80
 Val Leu Phe Leu Cys Met Gly Ser Ala Thr Asp Ile Pro Glu Gln Ala
 85 90 95
 Pro Lys Phe Ala Gln Phe Ala Cys Thr Val Asp Thr Tyr Asp Asn His
 100 105 110
 Arg Asp Ile Pro Arg His Arg Gln Val Met Asn Glu Ala Ala Thr Ala
 115 120 125
 Ala Gly Asn Val Ala Leu Val Ser Thr Gly Trp Asp Pro Gly Met Phe
 130 135 140
 Ser Ile Asn Arg Val Tyr Ala Ala Val Leu Ala Glu His Gln Gln
 145 150 155 160

```
<210> 43  
<211> 958  
<212> DNA  
<213> Corynebacterium glutamicum
```

<220>
<221> CDS
<222> (101)..(958)
<223> FRXA00352

<400> 43
aatagatcccgatccgtg gtggaaaccaa aaggctcaac aatacgttttc 60

ggtcctgatg aaagagatgt ccctgaatca tcatctaagt atg cat ctc ggt aag 115
Met His Leu Gly Lys
1 5

ctc gac cag gac agt gcc acc aca att ttg gag gat tac aag aac atg 163
 Leu Asp Gln Asp Ser Ala Thr Thr Ile Leu Glu Asp Tyr Lys Asn Met
 10 15 20

acc aac atc cgc gta gct atc gtg ggc tac gga aac ctg gga cgc agc 211
 Thr Asn Ile Arg Val Ala Ile Val Gly Tyr Gly Asn Leu Gly Arg Ser

25	30	35	
gtc gaa aag ctt att gcc aag cag ccc gac atg gac ctt gta gga atc Val Glu Lys Leu Ile Ala Lys Gln Pro Asp Met Asp Leu Val Gly Ile	40	45	259
		50	
ttc tcg cgc cgg gcc acc ctc gac aca aag acg cca gtc ttt gat gtc Phe Ser Arg Arg Ala Thr Leu Asp Thr Lys Thr Pro Val Phe Asp Val	55	60	307
		65	
gcc gac gtg gac aag cac gcc gac gac gtg gac gtg ctg ttc ctg tgc Ala Asp Val Asp Lys His Ala Asp Asp Val Asp Val Leu Phe Leu Cys	70	75	355
		80	
		85	
atg ggc tcc gcc acc gac atc cct gag cag gca cca aag ttc gcg cag Met Gly Ser Ala Thr Asp Ile Pro Glu Gln Ala Pro Lys Phe Ala Gln	90	95	403
		100	
ttc gcc tgc acc gta gac acc tac gac aac cac cgc gac atc cca cgc Phe Ala Cys Thr Val Asp Thr Tyr Asp Asn His Arg Asp Ile Pro Arg	105	110	451
		115	
cac cgc cag gtc atg aac gaa gcc gcc acc gca gcc ggc aac gtt gca His Arg Gln Val Met Asn Glu Ala Ala Thr Ala Ala Gly Asn Val Ala	120	125	499
		130	
ctg gtc tct acc ggc tgg gat cca gga atg ttc tcc atc aac cgc gtc Leu Val Ser Thr Gly Trp Asp Pro Gly Met Phe Ser Ile Asn Arg Val	135	140	547
		145	
tac gca gcg gca gtc tta gcc gag cac cag cag cac acc ttc tgg ggc Tyr Ala Ala Val Leu Ala Glu His Gln Gln His Thr Phe Trp Gly	150	155	595
		160	
		165	
cca ggt ttg tca cag ggc cac tcc gat gct ttg cga cgc atc cct ggc Pro Gly Leu Ser Gln Gly His Ser Asp Ala Leu Arg Arg Ile Pro Gly	170	175	643
		180	
gtt caa aag gca gtc cag tac acc ctc cca tcc gaa gac gcc ctg gaa Val Gln Lys Ala Val Gln Tyr Thr Leu Pro Ser Glu Asp Ala Leu Glu	185	190	691
		195	
aag gcc cgc cgc ggc gaa gcc ggc gac ctt acc gga aag caa acc cac Lys Ala Arg Arg Gly Glu Ala Gly Asp Leu Thr Gly Lys Gln Thr His	200	205	739
		210	
aag cgc caa tgc ttc gtg gtt gcc gac gcg gcc gat cac gag cgc atc Lys Arg Gln Cys Phe Val Val Ala Asp Ala Asp His Glu Arg Ile	215	220	787
		225	
gaa aac gac atc cgc acc atg cct gat tac ttc gtt ggc tac gaa gtc Glu Asn Asp Ile Arg Thr Met Pro Asp Tyr Phe Val Gly Tyr Glu Val	230	235	835
		240	
		245	
gaa gtc aac ttc atc gac gaa gca acc ttc gac tcc gag cac acc ggc Glu Val Asn Phe Ile Asp Glu Ala Thr Phe Asp Ser Glu His Thr Gly	250	255	883
		260	
atg cca cac ggt ggc cac gtg att acc acc ggc gac acc ggt ggc ttc Met Pro His Gly Gly His Val Ile Thr Thr Gly Asp Thr Gly Gly Phe	265	270	931
		275	

aac cac acc gtg gaa tac atc ctc aag		958
Asn His Thr Val Glu Tyr Ile Leu Lys		
280	285	
<210> 44		
<211> 286		
<212> PRT		
<213> Corynebacterium glutamicum		
<400> 44		
Met His Leu Gly Lys Leu Asp Gln Asp Ser Ala Thr Thr Ile Leu Glu		
1	5	10
15		
Asp Tyr Lys Asn Met Thr Asn Ile Arg Val Ala Ile Val Gly Tyr Gly		
20	25	30
Asn Leu Gly Arg Ser Val Glu Lys Leu Ile Ala Lys Gln Pro Asp Met		
35	40	45
Asp Leu Val Gly Ile Phe Ser Arg Arg Ala Thr Leu Asp Thr Lys Thr		
50	55	60
Pro Val Phe Asp Val Ala Asp Val Asp Lys His Ala Asp Asp Val Asp		
65	70	75
80		
Val Leu Phe Leu Cys Met Gly Ser Ala Thr Asp Ile Pro Glu Gln Ala		
85	90	95
Pro Lys Phe Ala Gln Phe Ala Cys Thr Val Asp Thr Tyr Asp Asn His		
100	105	110
Arg Asp Ile Pro Arg His Arg Gln Val Met Asn Glu Ala Ala Thr Ala		
115	120	125
Ala Gly Asn Val Ala Leu Val Ser Thr Gly Trp Asp Pro Gly Met Phe		
130	135	140
Ser Ile Asn Arg Val Tyr Ala Ala Ala Val Leu Ala Glu His Gln Gln		
145	150	155
160		
His Thr Phe Trp Gly Pro Gly Leu Ser Gln Gly His Ser Asp Ala Leu		
165	170	175
Arg Arg Ile Pro Gly Val Gln Lys Ala Val Gln Tyr Thr Leu Pro Ser		
180	185	190
Glu Asp Ala Leu Glu Lys Ala Arg Arg Gly Glu Ala Gly Asp Leu Thr		
195	200	205
Gly Lys Gln Thr His Lys Arg Gln Cys Phe Val Val Ala Asp Ala Ala		
210	215	220
Asp His Glu Arg Ile Glu Asn Asp Ile Arg Thr Met Pro Asp Tyr Phe		
225	230	235
240		
Val Gly Tyr Glu Val Glu Val Asn Phe Ile Asp Glu Ala Thr Phe Asp		
245	250	255
Ser Glu His Thr Gly Met Pro His Gly Gly His Val Ile Thr Thr Gly		

	260	265	270
Asp Thr Gly Gly Phe Asn His Thr Val Glu Tyr Ile Leu Lys			
275	280		285
<210> 45			
<211> 1400			
<212> DNA			
<213> Corynebacterium glutamicum			
<220>			
<221> CDS			
<222> (1)..(1377)			
<223> RXA00972			
<400> 45			
cct gca cct ggt tgg cgt ttc cgc acc gga gaa gat gta aca atg gct			48
Pro Ala Pro Gly Trp Arg Phe Arg Thr Gly Glu Asp Val Thr Met Ala			
1	5	10	15
aca gtt gaa aat ttc aat gaa ctt ccc gca cac gta tgg cca cgc aat			96
Thr Val Glu Asn Phe Asn Glu Leu Pro Ala His Val Trp Pro Arg Asn			
20	25		30
gcc gtg cgc caa gaa gac ggc gtt gtc acc gtc gct ggt gtg cct ctg			144
Ala Val Arg Gln Glu Asp Gly Val Val Thr Val Ala Gly Val Pro Leu			
35	40	45	
cct gac ctc gct gaa gaa tac gga acc cca ctg ttc gta gtc gac gag			192
Pro Asp Leu Ala Glu Tyr Gly Thr Pro Leu Phe Val Val Asp Glu			
50	55	60	
gac gat ttc cgt tcc cgc tgt cgc gac atg gct acc gca ttc ggt gga			240
Asp Asp Phe Arg Ser Arg Cys Arg Asp Met Ala Thr Ala Phe Gly Gly			
65	70	75	80
cca ggc aat gtg cac tac gca tct aaa gcg ttc ctg acc aag acc att			288
Pro Gly Asn Val His Tyr Ala Ser Lys Ala Phe Leu Thr Lys Thr Ile			
85	90	95	
gca cgt tgg gtt gat gaa gag ggg ctg gca ctg gac att qca tcc atc			336
Ala Arg Trp Val Asp Glu Glu Gly Leu Ala Leu Asp Ile Ala Ser Ile			
100	105	110	
aac gaa ctg ggc att gcc ctg gcc gct ggt ttc ccc gcc agc cgt atc			384
Asn Glu Leu Gly Ile Ala Leu Ala Gly Phe Pro Ala Ser Arg Ile			
115	120	125	
acc gcg cac ggc aac aac aaa ggc gta gag ttc ctg cgc gcg ttg gtt			432
Thr Ala His Gly Asn Asn Lys Gly Val Glu Phe Leu Arg Ala Leu Val			
130	135	140	
caa aac ggt gtg gga cac gtg gtg ctg gac tcc gca cag gaa cta gaa			480
Gln Asn Gly Val Gly His Val Val Ile Asp Ser Ala Gln Glu Leu Glu			
145	150	155	160
ctg ttg gat tac gtt gcc gct ggt gaa ggc aag att cag gac gtg ttg			528
Leu Leu Asp Tyr Val Ala Ala Gly Glu Gly Lys Ile Gln Asp Val Leu			
165	170	175	

atc cgc gta aag cca ggc atc gaa gca cac acc cac gag ttc atc gcc Ile Arg Val Lys Pro Gly Ile Glu Ala His Thr His Glu Phe Ile Ala	180	185	190	576
act agc cac gaa gac cag aag ttc gga ttc tcc ctg gca tcc ggt tcc Thr Ser His Glu Asp Gln Lys Phe Gly Phe Ser Leu Ala Ser Gly Ser	195	200	205	624
gca ttc gaa gca gca aaa gcc gcc aac aac gca gaa aac ctg aac ctg Ala Phe Glu Ala Ala Lys Ala Ala Asn Asn Ala Glu Asn Leu Asn Leu	210	215	220	672
gtt ggc ctg cac tgc cac gtt ggt tcc cag gtg ttc gac gcc gaa ggc Val Gly Leu His Cys His Val Gly Ser Gln Val Phe Asp Ala Glu Gly	225	230	235	720
ttc aag ctg gca gca gaa cgc gtg ttg ggc ctg tac tca cag atc cac Phe Lys Leu Ala Ala Glu Arg Val Leu Gly Leu Tyr Ser Gln Ile His	245	250	255	768
agc gaa ctg ggc gtt gcc ctt cct gaa ctg gat ctc ggt ggc gga tac Ser Glu Leu Gly Val Ala Leu Pro Glu Leu Asp Leu Gly Gly Tyr	260	265	270	816
ggc att gcc tat acc gca gct gaa gaa cca ctc aac gtc gca gaa gtt Gly Ile Ala Tyr Thr Ala Ala Glu Glu Pro Leu Asn Val Ala Glu Val	275	280	285	864
gcc tcc gac ctg ctc acc gca gtc gga aaa atg gca gcg gaa cta ggc Ala Ser Asp Leu Leu Thr Ala Val Gly Lys Met Ala Ala Glu Leu Gly	290	295	300	912
atc gac gca cca acc gtg ctt gtt gag ccc ggc cgc gct atc gca ggc Ile Asp Ala Pro Thr Val Leu Val Glu Pro Gly Arg Ala Ile Ala Gly	305	310	315	960
ccc tcc acc gtg acc atc tac gaa gtc ggc acc acc aaa gac gtc cac 1008				
Pro Ser Thr Val Thr Ile Tyr Glu Val Gly Thr Thr Lys Asp Val His	325	330	335	
gta gac gac gac aaa acc cgc cgt tac atc gcc gtg gac gga ggc atg 1056				
Val Asp Asp Asp Lys Thr Arg Arg Tyr Ile Ala Val Asp Gly Gly Met	340	345	350	
tcc gac aac atc cgc cca gca ctc tac ggg tcc gaa tac gac gcc cgc 1104				
Ser Asp Asn Ile Arg Pro Ala Leu Tyr Gly Ser Glu Tyr Asp Ala Arg	355	360	365	
gta gta tcc cgc ttc gcc gaa gga gac cca gta agc acc cgc atc gtg 1152				
Val Val Ser Arg Phe Ala Glu Gly Asp Pro Val Ser Thr Arg Ile Val	370	375	380	
ggc tcc cac tgc gaa tcc ggc gat atc ctg atc aac gat gaa atc tac 1200				
Gly Ser His Cys Glu Ser Gly Asp Ile Leu Ile Asn Asp Glu Ile Tyr	385	390	395	
			400	

cca tct gac atc acc agc ggc gac ttc ctt gca ctc gca gcc acc ggc
 1248
 Pro Ser Asp Ile Thr Ser Gly Asp Phe Leu Ala Leu Ala Ala Thr Gly
 405 410 415

 gca tac tgc tac gcc atg agc tcc cgcc tac aac gcc ttc aca cgg ccc
 1296
 Ala Tyr Cys Tyr Ala Met Ser Ser Arg Tyr Asn Ala Phe Thr Arg Pro
 420 425 430

 gcc gtc gtg tcc gtc cgcc gct ggc agc tcc cgcc ctc atg ctg cgcc cgcc
 1344
 Ala Val Val Ser Val Arg Ala Gly Ser Ser Arg Leu Met Leu Arg Arg
 435 440 445

 gaa acg ctc gac gac atc ctc tca cta gag gca taacgctttt cgacgcctga
 1397
 Glu Thr Leu Asp Asp Ile Leu Ser Leu Glu Ala
 450 455

 ccc
 1400

<210> 46
 <211> 459
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 46
 Pro Ala Pro Gly Trp Arg Phe Arg Thr Gly Glu Asp Val Thr Met Ala
 1 5 10 15

Thr Val Glu Asn Phe Asn Glu Leu Pro Ala His Val Trp Pro Arg Asn
 20 25 30

Ala Val Arg Gln Glu Asp Gly Val Val Thr Val Ala Gly Val Pro Leu
 35 40 45

Pro Asp Leu Ala Glu Glu Tyr Gly Thr Pro Leu Phe Val Val Asp Glu
 50 55 60

Asp Asp Phe Arg Ser Arg Cys Arg Asp Met Ala Thr Ala Phe Gly Gly
 65 70 75 80

Pro Gly Asn Val His Tyr Ala Ser Lys Ala Phe Leu Thr Lys Thr Ile
 85 90 95

Ala Arg Trp Val Asp Glu Glu Gly Leu Ala Leu Asp Ile Ala Ser Ile
 100 105 110

Asn Glu Leu Gly Ile Ala Leu Ala Ala Gly Phe Pro Ala Ser Arg Ile
 115 120 125

Thr Ala His Gly Asn Asn Lys Gly Val Glu Phe Leu Arg Ala Leu Val
 130 135 140

Gln Asn Gly Val Gly His Val Val Leu Asp Ser Ala Gln Glu Leu Glu
 145 150 155 160

Leu Leu Asp Tyr Val Ala Ala Gly Glu Gly Lys Ile Gln Asp Val Leu

165	170	175
Ile Arg Val Lys Pro Gly Ile Glu Ala His Thr His Glu Phe Ile Ala		
180	185	190
Thr Ser His Glu Asp Gln Lys Phe Gly Phe Ser Leu Ala Ser Gly Ser		
195	200	205
Ala Phe Glu Ala Ala Lys Ala Ala Asn Asn Ala Glu Asn Leu Asn Leu		
210	215	220
Val Gly Leu His Cys His Val Gly Ser Gln Val Phe Asp Ala Glu Gly		
225	230	240
Phe Lys Leu Ala Ala Glu Arg Val Leu Gly Leu Tyr Ser Gln Ile His		
245	250	255
Ser Glu Leu Gly Val Ala Leu Pro Glu Leu Asp Leu Gly Gly Tyr		
260	265	270
Gly Ile Ala Tyr Thr Ala Ala Glu Glu Pro Leu Asn Val Ala Glu Val		
275	280	285
Ala Ser Asp Leu Leu Thr Ala Val Gly Lys Met Ala Ala Glu Leu Gly		
290	295	300
Ile Asp Ala Pro Thr Val Leu Val Glu Pro Gly Arg Ala Ile Ala Gly		
305	310	320
Pro Ser Thr Val Thr Ile Tyr Glu Val Gly Thr Thr Lys Asp Val His		
325	330	335
Val Asp Asp Asp Lys Thr Arg Arg Tyr Ile Ala Val Asp Gly Gly Met		
340	345	350
Ser Asp Asn Ile Arg Pro Ala Leu Tyr Gly Ser Glu Tyr Asp Ala Arg		
355	360	365
Val Val Ser Arg Phe Ala Glu Gly Asp Pro Val Ser Thr Arg Ile Val		
370	375	380
Gly Ser His Cys Glu Ser Gly Asp Ile Leu Ile Asn Asp Glu Ile Tyr		
385	390	400
Pro Ser Asp Ile Thr Ser Gly Asp Phe Leu Ala Leu Ala Ala Thr Gly		
405	410	415
Ala Tyr Cys Tyr Ala Met Ser Ser Arg Tyr Asn Ala Phe Thr Arg Pro		
420	425	430
Ala Val Val Ser Val Arg Ala Gly Ser Ser Arg Leu Met Leu Arg Arg		
435	440	445
Glu Thr Leu Asp Asp Ile Leu Ser Leu Glu Ala		
450	455	

<210> 47
<211> 2121
<212> DNA
<213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(2098)
 <223> RXA02653

<400> 47
 agacagagtg ttagtgcgtg gggcagctct cactttcatc gacatcactc gagtatgctc 60
 accggccgta ttcattccaa taacccgcac agggaaaacta atg ata ccg aag ccc 115
 Met Ile Pro Lys Pro
 1 5

gac gtg acc gac tta tat tta gag gac ctc tta aat gag ggt tcg gaa 163
 Asp Val Thr Asp Leu Tyr Leu Glu Asp Leu Leu Asn Glu Gly Ser Glu
 10 15 20

aag att cggtccgcc aag gat ctt tcc gaa ctt agg aca gtt cta aaa 211
 Lys Ile Arg Ser Ala Lys Asp Leu Ser Glu Leu Arg Thr Val Leu Lys
 25 30 35

gag gtt tcc tcc caa att cag gaa cga gct ggg aaa aaa gat gaa gaa 259
 Glu Val Ser Ser Gln Ile Gln Glu Arg Ala Gly Lys Lys Asp Glu Glu
 40 45 50

tgg gga atg ggg gcc act tgg cgg gag ctg tac ccc agc atc gtg gaa 307
 Trp Gly Met Gly Ala Thr Trp Arg Glu Leu Tyr Pro Ser Ile Val Glu
 55 60 65

cgc gct tcc tac gaa ggg cgt gac agc cta atc gga ttt gat cac tta 355
 Arg Ala Ser Tyr Glu Gly Arg Asp Ser Leu Ile Gly Phe Asp His Leu
 70 75 80 85

gcc cggtccgaaatggaaaga tta gcc ttc ggc cca cca tcc gaa agt ttt 403
 Ala Arg Glu Met Glu Arg Leu Ala Phe Gly Pro Pro Ser Glu Ser Phe
 90 95 100

gaa tac ctc caa gaa ctc gta aaa tcc gga gtg gta gac atc act cac 451
 Glu Tyr Leu Gln Glu Leu Val Lys Ser Gly Val Val Asp Ile Thr His
 105 110 115

cta cat cat gac cag gaa cca ctg aca gat tta gtt cat gaa ctt gaa 499
 Leu His Arg Gly Arg Glu Pro Leu Thr Asp Leu Val Arg Glu Leu Glu
 120 125 130

ata act gtg gtg ata gac gct gtt ctt ccc ccg ccg gga gta gtg cca 547
 Ile Thr Val Val Ile Asp Ala Val Leu Pro Pro Pro Gly Val Val Pro
 135 140 145

ggc aca ttg gtg cac aat ttg gta aaa gag gga tat gcc aga atg cgt 595
 Gly Thr Leu Val His Asn Leu Val Lys Glu Gly Tyr Ala Arg Met Arg
 150 155 160 165

cct ggg act cgg ggg tta gat gta gcg gct gac ggc acc gtt caa ggg 643
 Pro Gly Thr Arg Gly Leu Asp Val Ala Ala Asp Gly Thr Val Gln Gly
 170 175 180

caa cga cat ttg gct gca gtc gga cgg atg acg gaa gat gtg gtt ttg 691
 Gln Arg His Leu Ala Ala Val Gly Arg Met Thr Glu Asp Val Val Leu
 185 190 195

ggt aat gac aca ttg tcg cga tca tta cat gac ata atc ccg aag tgg 739
 Gly Asn Asp Thr Leu Ser Arg Ser Leu His Asp Ile Ile Pro Lys Trp
 200 205 210

 gct cgt cga gtt atc cgc gac gcg agc acg tat ccc gat agg gta cat 787
 Ala Arg Arg Val Ile Arg Asp Ala Ser Thr Tyr Pro Asp Arg Val His
 215 220 225

 ggt act cca ccg ctt ccg gca cg^g ttg gaa ccc tgg gc^g gaa aag ctc 835
 Gly Thr Pro Pro Leu Pro Ala Arg Leu Glu Pro Trp Ala Glu Lys Leu
 230 235 240 245

 act tca gat ccg gcc aca tgc cgc cac ctg att gaa gaa ttc ggg agt 883
 Thr Ser Asp Pro Ala Thr Cys Arg His Leu Ile Glu Glu Phe Gly Ser
 250 255 260

 cct gtg aat gta ctc cat tca ggt tct atg cct cgt aat ata aat gag 931
 Pro Val Asn Val Leu His Ser Gly Ser Met Pro Arg Asn Ile Asn Glu
 265 270 275

 ttg gtt gac gcc ggc att cag atg ggg gtg gat act cga ata ttt ttt 979
 Leu Val Asp Ala Gly Ile Gln Met Gly Val Asp Thr Arg Ile Phe Phe
 280 285 290

 gcc cgc aaa gcg aat aag ggt ctt acc ttc gtt gat gcc gtt aaa gac
 1027
 Ala Arg Lys Ala Asn Lys Gly Leu Thr Phe Val Asp Ala Val Lys Asp
 295 300 305

 acc ggt cat ggt gta gat gta gcc agt gaa cga gag tta tct cag gtg
 1075
 Thr Gly His Gly Val Asp Val Ala Ser Glu Arg Glu Leu Ser Gln Val
 310 315 320 325

 ctt aat cgt gga gtc cca gga gag cgg atc att cta tcc gca gct atc
 1123
 Leu Asn Arg Gly Val Pro Gly Glu Arg Ile Ile Leu Ser Ala Ala Ile
 330 335 340

 aaa ccg gac aga cta ttg gca tta gcg atc gaa aat ggc gtg atc atc
 1171
 Lys Pro Asp Arg Leu Leu Ala Leu Ala Ile Glu Asn Gly Val Ile Ile
 345 350 355

 tct gtg gat tcg cgt gat gaa tta gat cgc att tcg gct ttg gtt ggt
 1219
 Ser Val Asp Ser Arg Asp Glu Leu Asp Arg Ile Ser Ala Leu Val Gly
 360 365 370

 gac cgc gtt gca cga gtt gcg cct aga gta gct cca gat cct gca gtc
 1267
 Asp Arg Val Ala Arg Val Ala Pro Arg Val Ala Pro Asp Pro Ala Val
 375 380 385

 tta cct cca act aga ttt ggt gag cgt gct gca gac tgg ggt aat ccg
 1315
 Leu Pro Pro Thr Arg Phe Gly Glu Arg Ala Ala Asp Trp Gly Asn Arg
 390 395 400 405

 ctt acc gag gtg ata ccc ggc gtg gat att gtg ggt ctt cac gtt cac
 1363

Leu Thr Glu Val Ile Pro Gly Val Asp Ile Val Gly Leu His Val His
 410 415 420
 ctc cat ggc tat gct gca aaa gac cgt gct ctg gct ctg cag gaa tgt
 1411
 Leu His Gly Tyr Ala Ala Lys Asp Arg Ala Leu Ala Leu Gln Glu Cys
 425 430 435
 tgc caa ctc gtc gat tct ctc aga gaa tgc ggg cat tcc cca cag ttt
 1459
 Cys Gln Leu Val Asp Ser Leu Arg Glu Cys Gly His Ser Pro Gln Phe
 440 445 450
 att gac ctt gga gga ggg gtg cct atg agc tac att gaa tct gag gaa
 1507
 Ile Asp Leu Gly Gly Val Pro Met Ser Tyr Ile Glu Ser Glu Glu
 455 460 465
 gat tgg atc cgt tat caa tcc gct aaa tct gcg act tca gcc ggg tat
 1555
 Asp Trp Ile Arg Tyr Gln Ser Ala Lys Ser Ala Thr Ser Ala Gly Tyr
 470 475 480 485
 gcc gaa tcc ttt acg tgg aaa gac gat ccg tta tct aat acg tac ccg
 1603
 Ala Glu Ser Phe Thr Trp Lys Asp Asp Pro Leu Ser Asn Thr Tyr Pro
 490 495 500
 ttc tat cag acc cca gtg cgc ggt aat tgg ttg aaa gac gtg ctt tct
 1651
 Phe Tyr Gln Thr Pro Val Arg Gly Asn Trp Leu Lys Asp Val Leu Ser
 505 510 515
 aag ggg gta gct cag atg ctc att gac cgg gga ttg cgg tta cac ata
 1699
 Lys Gly Val Ala Gln Met Leu Ile Asp Arg Gly Leu Arg Leu His Ile
 520 525 530
 gag cct ggt cga agt tta cta gat ggg tgt ggc gtc act ctt gcc gaa
 1747
 Glu Pro Gly Arg Ser Leu Leu Asp Gly Cys Gly Val Thr Leu Ala Glu
 535 540 545
 gtt gct ttt gtg aaa acc cga agt gac ggg ttg cct cta gtg gga ctg
 1795
 Val Ala Phe Val Lys Thr Arg Ser Asp Gly Leu Pro Leu Val Gly Leu
 550 555 560 565
 gct atg aac cga acg cag tgc cgg act aca tcc gat gat ttt ctc att
 1843
 Ala Met Asn Arg Thr Gln Cys Arg Thr Thr Ser Asp Asp Phe Leu Ile
 570 575 580
 gat ccc ctg cat atc act gac ggt gat gta ggc gag gaa atc gaa gca
 1891
 Asp Pro Leu His Ile Thr Asp Gly Asp Val Gly Glu Glu Ile Glu Ala
 585 590 595
 tat cta gtg ggt gcc tac tgc atc gaa gat gag ctg att tta cgc cgg
 1939
 Tyr Leu Val Gly Ala Tyr Cys Ile Glu Asp Glu Leu Ile Leu Arg Arg

600	605	610													
cga atc cgc ttc ccg aga gga gtc aaa cca gga gat atc atc gga att 1987															
Arg	Ile	Arg	Phe	Pro	Arg	Gly	Val	Lys	Pro	Gly	Asp	Ile	Ile	Gly	Ile
	615			620			625								
cct aac acc gca gga tac ttc atg cat atc ttg gaa agt gca tcg cac 2035															
Pro	Asn	Thr	Ala	Gly	Tyr	Phe	Met	His	Ile	Leu	Glu	Ser	Ala	Ser	His
	630			635			640			645					
caa atc ccg ttg gcg aaa aat gta gtg tgg ccg gag ggg cag tta gac 2083															
Gln	Ile	Pro	Leu	Ala	Lys	Asn	Val	Val	Trp	Pro	Glu	Gly	Gln	Leu	Asp
		650				655					660				
gat atc gat gct gat taagacataa ccattcgcta atc 2121															
Asp	Ile	Asp	Ala	Asp											
		665													
<210> 48															
<211> 666															
<212> PRT															
<213> Corynebacterium glutamicum															
<400> 48															
Met	Ile	Pro	Lys	Pro	Asp	Val	Thr	Asp	Leu	Tyr	Leu	Glu	Asp	Leu	Leu
1			5				10				15				
Asn	Glu	Gly	Ser	Glu	Lys	Ile	Arg	Ser	Ala	Lys	Asp	Leu	Ser	Glu	Leu
			20				25				30				
Arg	Thr	Val	Leu	Lys	Glu	Val	Ser	Ser	Gln	Ile	Gln	Glu	Arg	Ala	Gly
			35				40				45				
Lys	Lys	Asp	Glu	Glu	Trp	Gly	Met	Gly	Ala	Thr	Trp	Arg	Glu	Leu	Tyr
		50			55			60							
Pro	Ser	Ile	Val	Glu	Arg	Ala	Ser	Tyr	Glu	Gly	Arg	Asp	Ser	Leu	Ile
		65			70			75			80				
Gly	Phe	Asp	His	Leu	Ala	Arg	Glu	Met	Glu	Arg	Leu	Ala	Phe	Gly	Pro
			85			90			95						
Pro	Ser	Glu	Ser	Phe	Glu	Tyr	Leu	Gln	Glu	Leu	Val	Lys	Ser	Gly	Val
		100			105			110							
Val	Asp	Ile	Thr	His	Leu	His	Arg	Gly	Arg	Glu	Pro	Leu	Thr	Asp	Leu
		115			120			125							
Val	Arg	Glu	Leu	Glu	Ile	Thr	Val	Val	Ile	Asp	Ala	Val	Leu	Pro	Pro
		130			135			140							
Pro	Gly	Val	Val	Pro	Gly	Thr	Leu	Val	His	Asn	Leu	Val	Lys	Glu	Gly
		145			150			155			160				
Tyr	Ala	Arg	Met	Arg	Pro	Gly	Thr	Arg	Gly	Leu	Asp	Val	Ala	Ala	Asp
			165			170			175						

Gly Thr Val Gln Gly Gln Arg His Leu Ala Ala Val Gly Arg Met Thr
 180 185 190
 Glu Asp Val Val Leu Gly Asn Asp Thr Leu Ser Arg Ser Leu His Asp
 195 200 205
 Ile Ile Pro Lys Trp Ala Arg Arg Val Ile Arg Asp Ala Ser Thr Tyr
 210 215 220
 Pro Asp Arg Val His Gly Thr Pro Pro Leu Pro Ala Arg Leu Glu Pro
 225 230 235 240
 Trp Ala Glu Lys Leu Thr Ser Asp Pro Ala Thr Cys Arg His Leu Ile
 245 250 255
 Glu Glu Phe Gly Ser Pro Val Asn Val Leu His Ser Gly Ser Met Pro
 260 265 270
 Arg Asn Ile Asn Glu Leu Val Asp Ala Gly Ile Gln Met Gly Val Asp
 275 280 285
 Thr Arg Ile Phe Phe Ala Arg Lys Ala Asn Lys Gly Leu Thr Phe Val
 290 295 300
 Asp Ala Val Lys Asp Thr Gly His Gly Val Asp Val Ala Ser Glu Arg
 305 310 315 320
 Glu Leu Ser Gln Val Leu Asn Arg Gly Val Pro Gly Glu Arg Ile Ile
 325 330 335
 Leu Ser Ala Ala Ile Lys Pro Asp Arg Leu Leu Ala Leu Ala Ile Glu
 340 345 350
 Asn Gly Val Ile Ile Ser Val Asp Ser Arg Asp Glu Leu Asp Arg Ile
 355 360 365
 Ser Ala Leu Val Gly Asp Arg Val Ala Arg Val Ala Pro Arg Val Ala
 370 375 380
 Pro Asp Pro Ala Val Leu Pro Pro Thr Arg Phe Gly Glu Arg Ala Ala
 385 390 395 400
 Asp Trp Gly Asn Arg Leu Thr Glu Val Ile Pro Gly Val Asp Ile Val
 405 410 415
 Gly Leu His Val His Leu His Gly Tyr Ala Ala Lys Asp Arg Ala Leu
 420 425 430
 Ala Leu Gln Glu Cys Cys Gln Leu Val Asp Ser Leu Arg Glu Cys Gly
 435 440 445
 His Ser Pro Gln Phe Ile Asp Leu Gly Gly Val Pro Met Ser Tyr
 450 455 460
 Ile Glu Ser Glu Glu Asp Trp Ile Arg Tyr Gln Ser Ala Lys Ser Ala
 465 470 475 480
 Thr Ser Ala Gly Tyr Ala Glu Ser Phe Thr Trp Lys Asp Asp Pro Leu
 485 490 495

Ser Asn Thr Tyr Pro Phe Tyr Gln Thr Pro Val Arg Gly Asn Trp Leu
 500 505 510
 Lys Asp Val Leu Ser Lys Gly Val Ala Gln Met Leu Ile Asp Arg Gly
 515 520 525
 Leu Arg Leu His Ile Glu Pro Gly Arg Ser Leu Leu Asp Gly Cys Gly
 530 535 540
 Val Thr Leu Ala Glu Val Ala Phe Val Lys Thr Arg Ser Asp Gly Leu
 545 550 555 560
 Pro Leu Val Gly Leu Ala Met Asn Arg Thr Gln Cys Arg Thr Thr Ser
 565 570 575
 Asp Asp Phe Leu Ile Asp Pro Leu His Ile Thr Asp Gly Asp Val Gly
 580 585 590
 Glu Glu Ile Glu Ala Tyr Leu Val Gly Ala Tyr Cys Ile Glu Asp Glu
 595 600 605
 Leu Ile Leu Arg Arg Arg Ile Arg Phe Pro Arg Gly Val Lys Pro Gly
 610 615 620
 Asp Ile Ile Gly Ile Pro Asn Thr Ala Gly Tyr Phe Met His Ile Leu
 625 630 635 640
 Glu Ser Ala Ser His Gln Ile Pro Leu Ala Lys Asn Val Val Trp Pro
 645 650 655
 Glu Gly Gln Leu Asp Asp Ile Asp Ala Asp
 660 665

<210> 49
 <211> 993
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)...(970)
 <223> RXA01393

<400> 49
 caaaaaggcaga cctgtaatga agatttccat gatcaccatc gtgacccatg gaagtactta 60
 agtaaaatga ttgggttctta acatggttta atatacgtttc atg aac ccc att caa 115
 Met Asn Pro Ile Gln
 1 5
 ctg gac act ttg ctc tca atc att gat gaa ggc agc ttc gaa ggc gcc 163
 Leu Asp Thr Leu Leu Ser Ile Ile Asp Glu Gly Ser Phe Glu Gly Ala
 10 15 20
 tcc tta gcc ctt tcc att tcc ccc tcg gcg gtg agt cag cgc gtt aaa 211
 Ser Leu Ala Leu Ser Ile Ser Pro Ser Ala Val Ser Gln Arg Val Lys
 25 30 35
 gct ctc gag cat cac gtg ggt cga gtg tta tcg cgc acc caa ccg 259
 Ala Leu Glu His His Val Gly Arg Val Leu Val Ser Arg Thr Gln Pro

40	45	50	
gcc aaa gca acc gaa gcg ggt gaa gtc ctt gtg caa gca gcg cgg aaa Ala Lys Ala Thr Glu Ala Gly Glu Val Leu Val Gln Ala Ala Arg Lys 55 60 65			
atg gtg ttg ctg caa gca gaa act aaa gcg caa cta tct gga cgc ctt 307 Met Val Leu Leu Gln Ala Glu Thr Lys Ala Gln Leu Ser Gly Arg Leu 70 75 80 85			
gct gaa atc ccg tta acc atc gcc atc aac gca gat tcg cta tcc aca 403 Ala Glu Ile Pro Leu Thr Ile Ala Ile Asn Ala Asp Ser Leu Ser Thr 90 95 100			
tgg ttt cct ccc gtg ttc aac gag gta gct tct tgg ggt gga gca acg 451 Trp Phe Pro Pro Val Phe Asn Glu Val Ala Ser Trp Gly Gly Ala Thr 105 110 115			
ctc acg ctg cgc ttg gaa gat gaa gcg cac aca tta tcc ttg ctg cgg 499 Leu Thr Leu Arg Leu Glu Asp Glu Ala His Thr Leu Ser Leu Leu Arg 120 125 130			
cgt gga gat gtt tta gga gcg gta acc cgt gaa gct aat ccc gtg gcg 547 Arg Gly Asp Val Leu Gly Ala Val Thr Arg Glu Ala Asn Pro Val Ala 135 140 145			
gga tgt gaa gta gta gaa ctt gga acc atg cgc cac ttg gcc att gca 595 Gly Cys Glu Val Val Glu Leu Gly Thr Met Arg His Leu Ala Ile Ala 150 155 160 165			
acc ccc tca ttg cgg gat gcc tac atg gtt gat ggg aaa cta gat tgg 643 Thr Pro Ser Leu Arg Asp Ala Tyr Met Val Asp Gly Lys Leu Asp Trp 170 175 180			
gct gcg atg ccc gtc tta cgc ttc ggt ccc aaa gat gtg ctt caa gac 691 Ala Ala Met Pro Val Leu Arg Phe Gly Pro Lys Asp Val Leu Gln Asp 185 190 195			
cgt gac ctg gac ggg cgc gtc gat ggt cct gtg ggg cgc agg cgc gta 739 Arg Asp Leu Asp Gly Arg Val Asp Gly Pro Val Gly Arg Arg Arg Val 200 205 210			
<hr/> tcc att gtc ccg tcg gcg gaa ggt ttt ggt gag gca att cgc cga ggc 787 Ser Ile Val Pro Ser Ala Glu Gly Phe Gly Glu Ala Ile Arg Arg Gly 215 220 225			
ctt ggt tgg gga ctt ctt ccc gaa acc caa gct gct ccc atg cta aaa 835 Leu Gly Trp Gly Leu Leu Pro Glu Thr Gln Ala Ala Pro Met Leu Lys 230 235 240 245			
gca gga gaa gtg atc ctc ctc gat gag ata ccc att gac aca ccg atg 883 Ala Gly Glu Val Ile Leu Leu Asp Glu Ile Pro Ile Asp Thr Pro Met 250 255 260			
tat tgg caa cga tgg cgc ctg gaa tct aga tct cta gct aga ctc aca 931 Tyr Trp Gln Arg Trp Arg Leu Glu Ser Arg Ser Leu Ala Arg Leu Thr 265 270 275			
gac gcc gtc gtt gat gca gca atc gag gga ttg cgg cct tagttacttc 980 Asp Ala Val Val Asp Ala Ala Ile Glu Gly Leu Arg Pro 280 285 290			

tgaaaaggtt cag	993
<210> 50	
<211> 290	
<212> PRT	
<213> Corynebacterium glutamicum	
<400> 50	
Met Asn Pro Ile Gln Leu Asp Thr Leu Leu Ser Ile Ile Asp Glu Gly	
1	5
10	15
Ser Phe Glu Gly Ala Ser Leu Ala Leu Ser Ile Ser Pro Ser Ala Val	
20	25
30	
Ser Gln Arg Val Lys Ala Leu Glu His His Val Gly Arg Val Leu Val	
35	40
45	
Ser Arg Thr Gln Pro Ala Lys Ala Thr Glu Ala Gly Glu Val Leu Val	
50	55
60	
Gln Ala Ala Arg Lys Met Val Leu Leu Gln Ala Glu Thr Lys Ala Gln	
65	70
75	80
Leu Ser Gly Arg Leu Ala Glu Ile Pro Leu Thr Ile Ala Ile Asn Ala	
85	90
95	
Asp Ser Leu Ser Thr Trp Phe Pro Pro Val Phe Asn Glu Val Ala Ser	
100	105
110	
Trp Gly Gly Ala Thr Leu Thr Leu Arg Leu Glu Asp Glu Ala His Thr	
115	120
125	
Leu Ser Leu Leu Arg Arg Gly Asp Val Leu Gly Ala Val Thr Arg Glu	
130	135
140	
Ala Asn Pro Val Ala Gly Cys Glu Val Val Glu Leu Gly Thr Met Arg	
145	150
155	160
His Leu Ala Ile Ala Thr Pro Ser Leu Arg Asp Ala Tyr Met Val Asp	
165	170
175	
Gly Lys Leu Asp Trp Ala Ala Met Pro Val Leu Arg Phe Gly Pro Lys	
180	185
190	
Asp Val Leu Gln Asp Arg Asp Leu Asp Gly Arg Val Asp Gly Pro Val	
195	200
205	
Gly Arg Arg Arg Val Ser Ile Val Pro Ser Ala Glu Gly Phe Gly Glu	
210	215
220	
Ala Ile Arg Arg Gly Leu Gly Trp Gly Leu Leu Pro Glu Thr Gln Ala	
225	230
235	240
Ala Pro Met Leu Lys Ala Gly Glu Val Ile Leu Leu Asp Glu Ile Pro	
245	250
255	
Ile Asp Thr Pro Met Tyr Trp Gln Arg Trp Arg Leu Glu Ser Arg Ser	
260	265
270	

Leu Val Phe Gly Val Val Ser Arg Gly Ile Ser Gln Ala Ala Phe Leu
 150 155 160 165
 aca acg gtc acc acc gtg gcc aaa att ctg cct ctg ttg tgc ttc atc 643
 Thr Thr Val Thr Val Ala Lys Ile Leu Pro Leu Leu Cys Phe Ile
 170 175 180
 atc ctt gtt gca ttc ttg ggc ttt agc tgg gag aag ttc act gtt gat 691
 Ile Leu Val Ala Phe Leu Gly Phe Ser Trp Glu Lys Phe Thr Val Asp
 185 190 195
 tta tgg gcg cgt gat ggt ggc gtg ggc agc att ttt gat cag gtg cgc 739
 Leu Trp Ala Arg Asp Gly Gly Ser Ile Phe Asp Gln Val Arg
 200 205 210
 ggc atc atg gtg tac acc gtg tgg gtg ttc atc ggt atc gaa ggt gca 787
 Gly Ile Met Val Tyr Thr Val Trp Val Phe Ile Gly Ile Glu Gly Ala
 215 220 225
 tcg gta tat tcc cgc cag gca cgc tca cgc agt gat gtc agc cga gct 835
 Ser Val Tyr Ser Arg Gln Ala Arg Ser Arg Asp Val Ser Arg Ala
 230 235 240 245
 acc gtg att ggt ttt gtg gct gtt ctc ctt ttg ctg gtg tcg att tct 883
 Thr Val Ile Gly Phe Val Ala Val Leu Leu Leu Val Ser Ile Ser
 250 255 260
 tcg ctg agc ttc ggt gta ctg acc caa caa gag ctc gct gcg tta cca 931
 Ser Leu Ser Phe Gly Val Leu Thr Gln Gln Glu Leu Ala Ala Leu Pro
 265 270 275
 gat aat tcc atg gcg tcg gtg ctc gaa gct gtt gtt ggt cca tgg ggt 979
 Asp Asn Ser Met Ala Ser Val Leu Glu Ala Val Val Gly Pro Trp Gly
 280 285 290
 gcc gca ttg att tcg ttg ggt ctg tgt ctt tcg gtt ctt ggg gcc tat
 1027
 Ala Ala Leu Ile Ser Leu Gly Leu Cys Leu Ser Val Leu Gly Ala Tyr
 295 300 305
 tcg tcc tgg cag atg ctc tgc gca gaa cca ctg gcg ttg atg gca atg
 1075
 Val Ser Trp Gln Met Leu Cys Ala Glu Pro Leu Ala Leu Met Ala Met
 310 315 320 325
 gat ggc ctc att cca agc aaa atc ggg gcc atc aac agc cgc ggt gct
 1123
 Asp Gly Leu Ile Pro Ser Lys Ile Gly Ala Ile Asn Ser Arg Gly Ala
 330 335 340
 gcc tgg atg gct cag ctg atc tcc acc atc gtg att cag att ttc atc
 1171
 Ala Trp Met Ala Gln Leu Ile Ser Thr Ile Val Ile Gln Ile Phe Ile
 345 350 355
 atc att ttc ttc ctc aac gag acc acc tac gtc tcc atg gtg caa ttg
 1219
 Ile Ile Phe Phe Leu Asn Glu Thr Thr Tyr Val Ser Met Val Gln Leu
 360 365 370

<210> 52
<211> 501
<212> PRT
<213> *Corynebacterium glutamicum*

```

<400> 52
Val Asn Thr Gln Ser Asp Ser Ala Gly Ser Gln Gly Ala Ala Ala Thr
      1          5          10          15

Ser Arg Thr Val Ser Ile Arg Thr Leu Ile Ala Leu Ile Ile Gly Ser
      20         25         30

Thr Val Gly Ala Gly Ile Phe Ser Ile Pro Gln Asn Ile Gly Ser Val
      35         40         45

Ala Gly Pro Gly Ala Met Leu Ile Gly Trp Leu Ile Ala Gly Val Gly
      50         55         60

```

Met Leu Ser Val Ala Phe Val Phe His Val Leu Ala Arg Arg Lys Pro
 65 70 75 80
 His Leu Asp Ser Gly Val Tyr Ala Tyr Ala Arg Val Gly Leu Gly Asp
 85 90 95
 Tyr Val Gly Phe Ser Ser Ala Trp Gly Tyr Trp Leu Gly Ser Val Ile
 100 105 110
 Ala Gln Val Gly Tyr Ala Thr Leu Phe Phe Ser Thr Leu Gly His Tyr
 115 120 125
 Val Pro Leu Phe Ser Gln Asp His Pro Phe Val Ser Ala Leu Ala Val
 130 135 140
 Ser Ala Leu Thr Trp Leu Val Phe Gly Val Val Ser Arg Gly Ile Ser
 145 150 155 160
 Gln Ala Ala Phe Leu Thr Thr Val Thr Thr Val Ala Lys Ile Leu Pro
 165 170 175
 Leu Leu Cys Phe Ile Ile Leu Val Ala Phe Leu Gly Phe Ser Trp Glu
 180 185 190
 Lys Phe Thr Val Asp Leu Trp Ala Arg Asp Gly Gly Val Gly Ser Ile
 195 200 205
 Phe Asp Gln Val Arg Gly Ile Met Val Tyr Thr Val Trp Val Phe Ile
 210 215 220
 Gly Ile Glu Gly Ala Ser Val Tyr Ser Arg Gln Ala Arg Ser Arg Ser
 225 230 235 240
 Asp Val Ser Arg Ala Thr Val Ile Gly Phe Val Ala Val Leu Leu
 245 250 255
 Leu Val Ser Ile Ser Ser Leu Ser Phe Gly Val Leu Thr Gln Gln Glu
 260 265 270
 Leu Ala Ala Leu Pro Asp Asn Ser Met Ala Ser Val Leu Glu Ala Val
 275 280 285
 Val Gly Pro Trp Gly Ala Ala Leu Ile Ser Leu Gly Leu Cys Leu Ser
 290 295 300
 Val Leu Gly Ala Tyr Val Ser Trp Gln Met Leu Cys Ala Glu Pro Leu
 305 310 315 320
 Ala Leu Met Ala Met Asp Gly Leu Ile Pro Ser Lys Ile Gly Ala Ile
 325 330 335
 Asn Ser Arg Gly Ala Ala Trp Met Ala Gln Leu Ile Ser Thr Ile Val
 340 345 350
 Ile Gln Ile Phe Ile Ile Phe Phe Leu Asn Glu Thr Thr Tyr Val
 355 360 365
 Ser Met Val Gln Leu Ala Thr Asn Leu Tyr Leu Val Pro Tyr Leu Phe
 370 375 380

Ser Ala Phe Tyr Leu Val Met Leu Ala Thr Arg Gly Lys Gly Ile Thr
 385 390 395 400

His Pro His Ala Gly Thr Arg Phe Asp Asp Ser Gly Pro Glu Ile Ser
 405 410 415

Arg Arg Glu Asn Arg Lys His Leu Ile Val Gly Leu Val Ala Thr Val
 420 425 430

Tyr Ser Val Trp Leu Phe Tyr Ala Ala Glu Pro Gln Phe Val Leu Phe
 435 440 445

Gly Ala Met Ala Met Leu Pro Gly Leu Ile Pro Tyr Val Trp Thr Arg
 450 455 460

Ile Tyr Arg Gly Glu Gln Val Phe Asn Arg Phe Glu Ile Gly Val Val
 465 470 475 480

Val Val Leu Val Val Ala Ala Ser Ala Gly Val Ile Gly Leu Val Asn
 485 490 495

Gly Ser Leu Ser Leu
 500

<210> 53
<211> 822
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(799)
<223> RXA01394

<400> 53
gagcaaagtgc tccagttgaa tgggttcat gaagctatata taaaccatgt taagaaccaa 60

tcattttact taagtacttc cataggtcac gatggtgatc atg gaa atc ttc att 115
Met Glu Ile Phe Ile
1 5

aca ggt ctg ctt ttg ggg gcc agt ctt tta ctg tcc atc gga ccg cag 163
Thr Gly Leu Leu Leu Gly Ala Ser Leu Leu Ser Ile Gly Pro Gln
10 15 20

aat gta ctg gtg att aaa caa gga att aag cgc gaa gga ctc att gcg 211
Asn Val Leu Val Ile Lys Gln Gly Ile Lys Arg Glu Gly Leu Ile Ala
25 30 35

gtt ctt ctc gtg tgt tta att tct gac gtc ttt ttg ttc atc gcc ggc 259
Val Leu Leu Val Cys Leu Ile Ser Asp Val Phe Leu Phe Ile Ala Gly
40 45 50

acc ttg ggc gtt gat ctt ttg tcc aat gcc gcg ccg atc gtg ctc gat 307
Thr Leu Gly Val Asp Leu Leu Ser Asn Ala Ala Pro Ile Val Leu Asp
55 60 65

att atg cgc tgg ggt ggc atc gct tac ctg tta tgg ttt gcc gtc atg 355
Ile Met Arg Trp Gly Gly Ile Ala Tyr Leu Leu Trp Phe Ala Val Met
70 75 80 85

gca gcg aaa gac gcc atg aca aac aag gtg gaa gcg cca cag atc att		403	
Ala Ala Lys Asp Ala Met Thr Asn Lys Val Glu Ala Pro Gln Ile Ile			
90	95	100	
gaa gaa aca gaa cca acc gtg ccc gat gac acg cct ttg ggc ggt tcg		451	
Glu Glu Thr Glu Pro Thr Val Pro Asp Asp Thr Pro Leu Gly Gly Ser			
105	110	115	
gcg gtg gcc act gac acg cgc aac cgg gtg cgg gtg gag gtg agc gtc		499	
Ala Val Ala Thr Asp Thr Arg Asn Arg Val Arg Val Glu Val Ser Val			
120	125	130	
gat aag cag cgg gtt tgg gta aag ccc atg ttg atg gca atc gtg ctg		547	
Asp Lys Gln Arg Val Trp Val Lys Pro Met Leu Met Ala Ile Val Leu			
135	140	145	
acc tgg ttg aac ccg aat gcg tat ttg gac gcg ttt gtg ttt atc ggc		595	
Thr Trp Leu Asn Pro Asn Ala Tyr Leu Asp Ala Phe Val Phe Ile Gly			
150	155	160	165
ggc gtc ggc gcg caa tac ggc gac acc gga cgg tgg att ttc gcc gct		643	
Gly Val Gly Ala Gln Tyr Gly Asp Thr Gly Arg Trp Ile Phe Ala Ala			
170	175	180	
ggc gcg ttc gcg gca agc ctg atc tgg ttc ccg ctg gtg ggt ttc ggc		691	
Gly Ala Phe Ala Ala Ser Leu Ile Trp Phe Pro Leu Val Gly Phe Gly			
185	190	195	
gca gca gca ttg tca cgc ccg ctg tcc agc ccc aag gtg tgg cgc tgg		739	
Ala Ala Ala Leu Ser Arg Pro Leu Ser Ser Pro Lys Val Trp Arg Trp			
200	205	210	
atc aac gtc gtc gtg gca gtt gtg atg acc gca ttg gcc atc aaa ctg		787	
Ile Asn Val Val Ala Val Val Met Thr Ala Leu Ala Ile Lys Leu			
215	220	225	
atg ttg atg ggt tagtttgcg gggtttggaa atc		822	
Met Leu Met Gly			
230			
<210> 54			
<211> 233			
<212> PRT			
<213> Corynebacterium glutamicum			
<400> 54			
Met Glu Ile Phe Ile Thr Gly Leu Leu Gly Ala Ser Leu Leu Leu			
1	5	10	15
Ser Ile Gly Pro Gln Asn Val Leu Val Ile Lys Gln Gly Ile Lys Arg			
20	25	30	
Glu Gly Leu Ile Ala Val Leu Leu Val Cys Leu Ile Ser Asp Val Phe			
35	40	45	
Leu Phe Ile Ala Gly Thr Leu Gly Val Asp Leu Leu Ser Asn Ala Ala			
50	55	60	
Pro Ile Val Leu Asp Ile Met Arg Trp Gly Gly Ile Ala Tyr Leu Leu			

65	70	75	80
Trp Phe Ala Val Met Ala Ala Lys Asp Ala Met Thr Asn Lys Val Glu			
85	90	95	
Ala Pro Gln Ile Ile Glu Glu Thr Glu Pro Thr Val Pro Asp Asp Thr			
100	105	110	
Pro Leu Gly Gly Ser Ala Val Ala Thr Asp Thr Arg Asn Arg Val Arg			
115	120	125	
Val Glu Val Ser Val Asp Lys Gln Arg Val Trp Val Lys Pro Met Leu			
130	135	140	
Met Ala Ile Val Leu Thr Trp Leu Asn Pro Asn Ala Tyr Leu Asp Ala			
145	150	155	160
Phe Val Phe Ile Gly Gly Val Gly Ala Gln Tyr Gly Asp Thr Gly Arg			
165	170	175	
Trp Ile Phe Ala Ala Gly Ala Phe Ala Ala Ser Leu Ile Trp Phe Pro			
180	185	190	
Leu Val Gly Phe Gly Ala Ala Ala Leu Ser Arg Pro Leu Ser Ser Pro			
195	200	205	
Lys Val Trp Arg Trp Ile Asn Val Val Val Ala Val Val Met Thr Ala			
210	215	220	
Leu Ala Ile Lys Leu Met Leu Met Gly			
225	230		
<210> 55			
<211> 1026			
<212> DNA			
<213> Corynebacterium glutamicum			
<220>			
<221> CDS			
<222> (101)..(1003)			
<223> EXA00865			
<400> 55			
ttatcggaat gtggcttggg cgattgttat gcaaaagttg ttaggtttt tgccgggttg 60			
tttaacccccc aaatgaggga agaaggtaac cttgaactct atg agc aca ggt tta	115		
Met Ser Thr Gly Leu	1	5	
aca gct aag acc gga gta gag cac ttc ggc acc gtt gga gta gca atg	163		
Thr Ala Lys Thr Gly Val Glu His Phe Gly Thr Val Gly Val Ala Met	10	15	20
gtt act cca ttc acg gaa tcc gga gac atc gat atc gct gct ggc cgc	211		
Val Thr Pro Phe Thr Glu Ser Gly Asp Ile Asp Ile Ala Ala Gly Arg	25	30	35
gaa gtc gcg gct tat ttg gtt gat aag ggc ttg gat tct ttg gtt ctc	259		
Glu Val Ala Ala Tyr Leu Val Asp Lys Gly Leu Asp Ser Leu Val Leu	40	45	50

gct ggc acc act ggt gaa tcc cca acg aca acc gcc gct gaa aaa cta		307
Ala Gly Thr Thr Gly Glu Ser Pro Thr Thr Ala Ala Glu Lys Leu		
55	60	65
gaa ctg ctc aag gcc gtt cgt gag gaa gtt ggg gat cgg gct aag ctc		355
Glu Leu Leu Lys Ala Val Arg Glu Glu Val Gly Asp Arg Ala Lys Leu		
70	75	80
85		
atc gcc ggt gtc gga acc aac aac acg cgg aca tct gtg gaa ctt gct		403
Ile Ala Gly Val Gly Thr Asn Asn Thr Arg Thr Ser Val Glu Leu Ala		
90	95	100
gaa gct gct tct gct ggc gca gac ggc ctt tta gtt gta act cct		451
Glu Ala Ala Ala Ser Ala Gly Ala Asp Gly Leu Leu Val Val Thr Pro		
105	110	115
tat tac tcc aag ccg agc caa gag gga ttg ctg gct cac ttc ggt gca		499
Tyr Tyr Ser Lys Pro Ser Gln Glu Gly Leu Leu Ala His Phe Gly Ala		
120	125	130
att gct gca gca aca gag gtt cca att tgt ctc tat gac att cct ggt		547
Ile Ala Ala Ala Thr Glu Val Pro Ile Cys Leu Tyr Asp Ile Pro Gly		
135	140	145
cgg tca ggt att cca att gag tct gat acc atg aga cgc ctg agt gaa		595
Arg Ser Gly Ile Pro Ile Glu Ser Asp Thr Met Arg Arg Leu Ser Glu		
150	155	160
165		
tta cct acg att ttg gct aag gac gcc aag ggt gac ctc gtt gca		643
Leu Pro Thr Ile Leu Ala Val Lys Asp Ala Lys Gly Asp Leu Val Ala		
170	175	180
gcc acg tca ttg atc aaa gaa acg gga ctt gcc tgg tat tca ggc gat		691
Ala Thr Ser Leu Ile Lys Glu Thr Gly Leu Ala Trp Tyr Ser Gly Asp		
185	190	195
gac cca cta aac ctt gtt tgg ctt gct ttg ggc gga tca ggt ttc att		739
Asp Pro Leu Asn Leu Val Trp Leu Ala Leu Gly Gly Ser Gly Phe Ile		
200	205	210
tcc gta att gga cat gca gcc ccc aca gca tta cgt gag ttg tac aca		787
Ser Val Ile Gly His Ala Ala Pro Thr Ala Leu Arg Glu Leu Tyr Thr		
215	220	225
agc ttc gag gaa ggc gac ctc cgt gct ggg gaa atc aac gcc aaa		835
Ser Phe Glu Glu Gly Asp Leu Val Arg Ala Arg Glu Ile Asn Ala Lys		
230	235	240
245		
cta tca ccg ctg gta gct gcc caa ggt cgc ttg ggt gga gtc agc ttg		883
Leu Ser Pro Leu Val Ala Ala Gln Gly Arg Leu Gly Gly Val Ser Leu		
250	255	260
gca aaa gct gct ctg cgt ctg cag ggc atc aac gta gga gat cct cga		931
Ala Lys Ala Ala Leu Arg Leu Gln Gly Ile Asn Val Gly Asp Pro Arg		
265	270	275
ctt cca att atg gct cca aat gag cag gaa ctt gag gct ctc cga gaa		979
Leu Pro Ile Met Ala Pro Asn Glu Gln Glu Leu Glu Ala Leu Arg Glu		
280	285	290

gac atg aaa aaa gct gga gtt cta taaatatgaa tgattcccgaa aat
1026

Asp Met Lys Lys Ala Gly Val Leu
295 300

<210> 56

<211> 301

<212> PRT

<213> Corynebacterium glutamicum

<400> 56

Met Ser Thr Gly Leu Thr Ala Lys Thr Gly Val Glu His Phe Gly Thr
1 5 10 15

Val Gly Val Ala Met Val Thr Pro Phe Thr Glu Ser Gly Asp Ile Asp
20 25 30

Ile Ala Ala Gly Arg Glu Val Ala Ala Tyr Leu Val Asp Lys Gly Leu
35 40 45

Asp Ser Leu Val Leu Ala Gly Thr Thr Gly Glu Ser Pro Thr Thr Thr
50 55 60

Ala Ala Glu Lys Leu Glu Leu Leu Lys Ala Val Arg Glu Glu Val Gly
65 70 75 80

Asp Arg Ala Lys Leu Ile Ala Gly Val Gly Thr Asn Asn Thr Arg Thr
85 90 95

Ser Val Glu Leu Ala Glu Ala Ala Ala Ser Ala Gly Ala Asp Gly Leu
100 105 110

Leu Val Val Thr Pro Tyr Tyr Ser Lys Pro Ser Gln Glu Gly Leu Leu
115 120 125

Ala His Phe Gly Ala Ile Ala Ala Ala Thr Glu Val Pro Ile Cys Leu
130 135 140

Tyr Asp Ile Pro Gly Arg Ser Gly Ile Pro Ile Glu Ser Asp Thr Met
145 150 155 160

Arg Arg Leu Ser Glu Leu Pro Thr Ile Leu Ala Val Lys Asp Ala Lys
165 170 175

Gly Asp Leu Val Ala Ala Thr Ser Leu Ile Lys Glu Thr Gly Leu Ala
180 185 190

Trp Tyr Ser Gly Asp Asp Pro Leu Asn Leu Val Trp Leu Ala Leu Gly
195 200 205

Gly Ser Gly Phe Ile Ser Val Ile Gly His Ala Ala Pro Thr Ala Leu
210 215 220

Arg Glu Leu Tyr Thr Ser Phe Glu Gly Asp Leu Val Arg Ala Arg
225 230 235 240

Glu Ile Asn Ala Lys Leu Ser Pro Leu Val Ala Ala Gln Gly Arg Leu
245 250 255

Gly Gly Val Ser Leu Ala Lys Ala Ala Leu Arg Leu Gln Gly Ile Asn

260	265	270	
Val Gly Asp Pro Arg Leu Pro Ile Met Ala Pro Asn Glu Gln Glu Leu			
275	280	285	
Glu Ala Leu Arg Glu Asp Met Lys Lys Ala Gly Val Leu			
290	295	300	
<210> 57			
<211> 1071			
<212> DNA			
<213> Corynebacterium glutamicum			
<220>			
<221> CDS			
<222> (101)..(1048)			
<223> RXS02021			
<400> 57			
ttgggtcgcc gaggagatct aatcctggtt tgagttcaga gttcacaggt ttaagcctac	60		
aaaccttagt taaaacatga tggaagcggt cgattaaaaa atg agt gaa aac att		115	
Met Ser Glu Asn Ile		5	
1			
cgc gga gcc caa gca gtt gga atc gca aat atc gcc atg gac ggg acc		163	
Arg Gly Ala Gln Ala Val Gly Ile Ala Asn Ile Ala Met Asp Gly Thr			
10	15	20	
atc ctg gac acg tgg tac cca gaa ccc caa att ttc aac ccg gat cag		211	
Ile Leu Asp Thr Trp Tyr Pro Glu Pro Gln Ile Phe Asn Pro Asp Gln			
25	30	35	
tgg gct gaa cgc tac cca ttg gaa gtg ggc acc aca cgc ctc gga gca		259	
Trp Ala Glu Arg Tyr Pro Leu Glu Val Gly Thr Thr Arg Leu Gly Ala			
40	45	50	
aac gaa ctc acc cca cgg atg ctg cag ttg gta aaa ctg gac caa gat		307	
Asn Glu Leu Thr Pro Arg Met Leu Gln Leu Val Lys Leu Asp Gln Asp			
55	60	65	
cgc ctc gtc gaa cag gta gca gtc cgc acc gtt atc ccc gat ctg tct		355	
Arg Leu Val Glu Gln Val Ala Val Arg Thr Val Ile Pro Asp Leu Ser			
70	75	80	85
caa cct cca gta gac gcg cac gat gtt tac ctg cgc ctc cac ctg ctt		403	
Gln Pro Pro Val Asp Ala His Asp Val Tyr Leu Arg Leu His Leu Leu			
90	95	100	
tcc cac cgg ctg gtc cgc ccc cac gaa atg cac atg caa aac acc ttg		451	
Ser His Arg Leu Val Arg Pro His Glu Met His Gln Asn Thr Leu			
105	110	115	
gag ctg ctg tcc gac gtg gtg aca aac aag ggc cct tgc ctt cct		499	
Glu Leu Leu Ser Asp Val Val Trp Thr Asn Lys Gly Pro Cys Leu Pro			
120	125	130	
gaa aac ttt gag tgg gtg cgt ggt gct ctg cgg tcc cgc gga ctc atc		547	
Glu Asn Phe Glu Trp Val Arg Gly Ala Leu Arg Ser Arg Gly Leu Ile			
135	140	145	

cac gtc tac tgt gtg gac cgt ctt ccc cgc atg gtc gac tat gtg gtt 595
 His Val Tyr Cys Val Asp Arg Leu Pro Arg Met Val Asp Tyr Val Val
 150 155 160 165

ccc cct gga gtc cgc atc tcc gaa gca gaa cgc gtg cgc cta ggt gca 643
 Pro Pro Gly Val Arg Ile Ser Glu Ala Glu Arg Val Arg Leu Gly Ala
 170 175 180

tac ctt gct ccg ggt acc tct gtg ctg cgt gaa ggt ttc gtg tct ttc 691
 Tyr Leu Ala Pro Gly Thr Ser Val Leu Arg Glu Gly Phe Val Ser Phe
 185 190 195

aac tcc ggc acc ttg ggt gcc gca aag gtg gaa ggc cgc ctg agt tcc 739
 Asn Ser Gly Thr Leu Gly Ala Ala Lys Val Glu Gly Arg Leu Ser Ser
 200 205 210

ggt gtg gtc atc ggt gaa ggt tcc gag att gga ctg tct tct act att 787
 Gly Val Val Ile Gly Glu Gly Ser Glu Ile Gly Leu Ser Ser Thr Ile
 215 220 225

cag tcc ccg aga gat gaa cag cgc cgc cgt ttg ccg ttg agc atc ggc 835
 Gln Ser Pro Arg Asp Glu Gln Arg Arg Arg Leu Pro Leu Ser Ile Gly
 230 235 240 245

caa aac tgc aac ttt ggt gtc agc tcc gga atc atc gga gtc agt ctg 883
 Gln Asn Cys Asn Phe Gly Val Ser Ser Gly Ile Ile Gly Val Ser Leu
 250 255 260

gga gac aat tgc gac atc gga aat aac att gtc ttg gat gga gat acc 931
 Gly Asp Asn Cys Asp Ile Gly Asn Asn Ile Val Leu Asp Gly Asp Thr
 265 270 275

ccc att tgg ttc gca gcc gat gag gag tta cgc act atc gac tcc atc 979
 Pro Ile Trp Phe Ala Ala Asp Glu Glu Leu Arg Thr Ile Asp Ser Ile
 280 285 290

gaa ggc caa gca aat tgg tca atc aag cgt gaa tcc ggc ttc cat gag
 1027
 Glu Gly Gln Ala Asn Trp Ser Ile Lys Arg Glu Ser Gly Phe His Glu
 295 300 305

cca gtt gcc cgc ctc aaa gct tgacccattt tcataaccag tgc
 1071
 Pro Val Ala Arg Leu Lys Ala
 310 315

<210> 58
 <211> 316
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 58
 Met Ser Glu Asn Ile Arg Gly Ala Gln Ala Val Gly Ile Ala Asn Ile
 1 5 10 15

Ala Met Asp Gly Thr Ile Leu Asp Thr Trp Tyr Pro Glu Pro Gln Ile
 20 25 30

Phe Asn Pro Asp Gln Trp Ala Glu Arg Tyr Pro Leu Glu Val Gly Thr

35	40	45
Thr Arg Leu Gly Ala Asn Glu	Leu Thr Pro Arg Met	Leu Gln Leu Val
50	55	60
Lys Leu Asp Gln Asp Arg	Leu Val Glu Gln Val	Ala Val Arg Thr Val
65	70	75
80		
Ile Pro Asp Leu Ser Gln Pro	Pro Val Asp Ala His	Asp Val Tyr Leu
85	90	95
Arg Leu His Leu Leu Ser His	Arg Leu Val Arg Pro	His Glu Met His
100	105	110
Met Gln Asn Thr Leu Glu	Leu Ser Asp Val Val	Trp Thr Asn Lys
115	120	125
Gly Pro Cys Leu Pro Glu Asn	Phe Glu Trp Val Arg	Gly Ala Leu Arg
130	135	140
Ser Arg Gly Leu Ile His	Val Tyr Cys Val Asp Arg	Leu Pro Arg Met
145	150	155
160		
Val Asp Tyr Val Val Pro	Pro Gly Val Arg Ile	Ser Glu Ala Glu Arg
165	170	175
Val Arg Leu Gly Ala Tyr	Leu Ala Pro Gly Thr	Ser Val Leu Arg Glu
180	185	190
Gly Phe Val Ser Phe Asn Ser	Gly Thr Leu Gly Ala	Ala Lys Val Glu
195	200	205
Gly Arg Leu Ser Ser Gly	Val Val Ile Gly Glu	Gly Ser Glu Ile Gly
210	215	220
Leu Ser Ser Thr Ile Gln	Ser Pro Arg Asp Glu	Gln Arg Arg Arg Leu
225	230	235
240		
Pro Leu Ser Ile Gly Gln	Asn Cys Asn Phe	Gly Val Ser Ser Gly Ile
245	250	255
Ile Gly Val Ser Leu Gly	Asp Asn Cys Asp	Ile Gly Asn Asn Ile Val
260	265	270
275		
Leu Asp Gly Asp Thr Pro	Ile Trp Phe Ala Ala Asp	Glu Glu Leu Arg
280	285	
Thr Ile Asp Ser Ile Glu	Gly Gln Ala Asn Trp	Ser Ile Lys Arg Glu
290	295	300
305		
Ser Gly Phe His Glu Pro	Val Ala Arg Leu	Lys Ala
310	315	

<210> 59
 <211> 1296
 <212> DNA
 <213> Corynebacterium glutamicum
 <220>
 <221> CDS

<222> (101)..(1273)

<223> RXS02157

<400> 59

gggttggaaatt ggcacgatgg tgctgccgga tgtttttgat cgggagaatt atcctgaagg 60

caccgtttttt agaaaagacg acaaggatgg ggaactgtaa atg acg acg ctg gaa 115
Met Ser Thr Leu Glu
1 5act tgg cca cag gtc att att aat acg tac ggc acc cca cca gtt gag 163
Thr Trp Pro Gln Val Ile Ile Asn Thr Tyr Gly Thr Pro Pro Val Glu
10 15 20ctg gtg tcc ggc aag ggc gca acc gtc act gat gac cag ggc aat gtc 211
Leu Val Ser Gly Lys Gly Ala Thr Val Thr Asp Asp Gln Gly Asn Val
25 30 35tac atc gac ttg ctc gcg ggc atc gca gtc aac gcg ttg ggc cac gcc 259
Tyr Ile Asp Leu Leu Ala Gly Ile Ala Val Asn Ala Leu Gly His Ala
40 45 50cac ccg gcg atc atc gag gcg gtc acc aac cag atc ggc caa ctt ggt 307
His Pro Ala Ile Ile Glu Ala Val Thr Asn Gln Ile Gly Gln Leu Gly
55 60 65cac gtc tca aac ttg ttc gca tcc agg ccc gtc gtc gag gtc gcc gag 355
His Val Ser Asn Leu Phe Ala Ser Arg Pro Val Val Glu Val Ala Glu
70 75 80 85gag ctc atc aag cgt ttt tcg ctt gac gac gcc acc ctc gcc gcg caa 403
Glu Leu Ile Lys Arg Phe Ser Leu Asp Asp Ala Thr Leu Ala Ala Gln
90 95 100acc cgg gtt ttc ttc tgc aac tcg ggc gcc gaa gca aac gag gct gct 451
Thr Arg Val Phe Phe Cys Asn Ser Gly Ala Glu Ala Asn Glu Ala Ala
105 110 115ttc aag att gca cgc ttg act ggt cgt tcc cgg att ctg gct gca gtt 499
Phe Lys Ile Ala Arg Leu Thr Gly Arg Ser Arg Ile Leu Ala Ala Val
120 125 130cat ggt ttc cac ggc cgc acc atg ggt tcc ctc gcg ctg act ggc cag 547
His Gly Phe His Gly Arg Thr Met Gly Ser Leu Ala Leu Thr Gly Gln
135 140 145cca gac aag cgt gaa gcg ttc ctg cca atg cca agc ggt gtg gag ttc 595
Pro Asp Lys Arg Glu Ala Phe Leu Pro Met Pro Ser Gly Val Glu Phe
150 155 160 165tac cct tac ggc gac acc gat tac ttg cgc aaa atg gta gaa acc aac 643
Tyr Pro Tyr Gly Asp Thr Asp Tyr Leu Arg Lys Met Val Glu Thr Asn
170 175 180cca acg gat gtg gct gct atc ttc ctc gag cca atc cag ggt gaa acg 691
Pro Thr Asp Val Ala Ala Ile Phe Leu Glu Pro Ile Gln Gly Glu Thr
185 190 195ggc gtt gtt cca gca cct gaa gga ttc ctc aag gca gtg cgc gag ctg 739
Gly Val Val Pro Ala Pro Glu Gly Phe Leu Lys Ala Val Arg Glu Leu
200 205 210

tgc gat gag tac ggc atc ttg atg atc acc gat gaa gtc cag act ggc 787
 Cys Asp Glu Tyr Gly Ile Leu Met Ile Thr Asp Glu Val Gln Thr Gly
 215 220 225

gtt ggc cgt acc ggc gat ttc ttt gca cat cag cac gat ggc gtt gtt 835
 Val Gly Arg Thr Gly Asp Phe Phe Ala His Gln His Asp Gly Val Val
 230 235 240 245

ccc gat gtg gtg acc atg gcc aag gga ctt ggc ggc ggt ctt ccc atc 883
 Pro Asp Val Val Thr Met Ala Lys Gly Leu Gly Gly Leu Pro Ile
 250 255 260

ggt gct tgt ttg gcc act ggc cgt gca gct gaa ttg atg acc cca ggc 931
 Gly Ala Cys Leu Ala Thr Gly Arg Ala Ala Glu Leu Met Thr Pro Gly
 265 270 275

aag cac ggc acc act ttc ggt ggc aac cca gtt gct tgt gca gct gcc 979
 Lys His Gly Thr Thr Phe Gly Gly Asn Pro Val Ala Cys Ala Ala Ala
 280 285 290

aag gca gtg ctg tct gtt gtc gat gac gct ttc tgc gca gaa gtt gcc 1027
 Lys Ala Val Leu Ser Val Val Asp Asp Ala Phe Cys Ala Glu Val Ala
 295 300 305

cgc aag ggc gag ctg ttc aag gaa ctt ctt gcc aag gtt gac ggc gtt 1075
 Arg Lys Gly Glu Leu Phe Lys Glu Leu Leu Ala Lys Val Asp Gly Val
 310 315 320 325

gta gac gtc cgt ggc agg ggc ttg atg ttg ggc gtc gtc gag cgc 1123
 Val Asp Val Arg Gly Arg Gly Leu Met Leu Gly Val Val Leu Glu Arg
 330 335 340

gac gtc gca aag caa gct ctt gat ggt ttt aag cac ggc gtt att 1171
 Asp Val Ala Lys Gln Ala Val Leu Asp Gly Phe Lys His Gly Val Ile
 345 350 355

ttg aat gca ccg gcg gac aac att atc cgt ttg acc ccg ccg ctg gtc 1219
 Leu Asn Ala Pro Ala Asp Asn Ile Ile Arg Leu Thr Pro Pro Leu Val
 360 365 370

atc acc gac gaa gaa atc gca gac gca gtc aag gct att gcc gag aca 1267
 Ile Thr Asp Glu Glu Ile Ala Asp Ala Val Lys Ala Ile Ala Glu Thr
 375 380 385

atc gca taaaggactc aaaccttatga ctt
 1296
 Ile Ala
 390

<210> 60
 <211> 391
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 60
 Met Ser Thr Leu Glu Thr Trp Pro Gln Val Ile Ile Asn Thr Tyr Gly
 1 5 10 15
 Thr Pro Pro Val Glu Leu Val Ser Gly Lys Gly Ala Thr Val Thr Asp
 20 25 30
 Asp Gln Gly Asn Val Tyr Ile Asp Leu Leu Ala Gly Ile Ala Val Asn
 35 40 45
 Ala Leu Gly His Ala His Pro Ala Ile Ile Glu Ala Val Thr Asn Gln
 50 55 60
 Ile Gly Gln Leu Gly His Val Ser Asn Leu Phe Ala Ser Arg Pro Val
 65 70 75 80
 Val Glu Val Ala Glu Glu Leu Ile Lys Arg Phe Ser Leu Asp Asp Ala
 85 90 95
 Thr Leu Ala Ala Gln Thr Arg Val Phe Phe Cys Asn Ser Gly Ala Glu
 100 105 110
 Ala Asn Glu Ala Ala Phe Lys Ile Ala Arg Leu Thr Gly Arg Ser Arg
 115 120 125
 Ile Leu Ala Ala Val His Gly Phe His Gly Arg Thr Met Gly Ser Leu
 130 135 140
 Ala Leu Thr Gly Gln Pro Asp Lys Arg Glu Ala Phe Leu Pro Met Pro
 145 150 155 160
 Ser Gly Val Glu Phe Tyr Pro Tyr Gly Asp Thr Asp Tyr Leu Arg Lys
 165 170 175
 Met Val Glu Thr Asn Pro Thr Asp Val Ala Ala Ile Phe Leu Glu Pro
 180 185 190
 Ile Gln Gly Glu Thr Gly Val Val Pro Ala Pro Glu Gly Phe Leu Lys
 195 200 205
 Ala Val Arg Glu Leu Cys Asp Glu Tyr Gly Ile Leu Met Ile Thr Asp
 210 215 220
 Glu Val Gln Thr Gly Val Gly Arg Thr Gly Asp Phe Phe Ala His Gln
 225 230 235 240
 His Asp Gly Val Val Pro Asp Val Val Thr Met Ala Lys Gly Leu Gly
 245 250 255
 Gly Gly Leu Pro Ile Gly Ala Cys Leu Ala Thr Gly Arg Ala Ala Glu
 260 265 270
 Leu Met Thr Pro Gly Lys His Gly Thr Thr Phe Gly Gly Asn Pro Val
 275 280 285
 Ala Cys Ala Ala Ala Lys Ala Val Leu Ser Val Val Asp Asp Ala Phe
 290 295 300
 Cys Ala Glu Val Ala Arg Lys Gly Glu Leu Phe Lys Glu Leu Leu Ala
 305 310 315 320

Lys Val Asp Gly Val Val Asp Val Arg Gly Arg Gly Leu Met Leu Gly
 325 330 335

Val Val Leu Glu Arg Asp Val Ala Lys Gln Ala Val Leu Asp Gly Phe
 340 345 350

Lys His Gly Val Ile Leu Asn Ala Pro Ala Asp Asn Ile Ile Arg Leu
 355 360 365

Thr Pro Pro Leu Val Ile Thr Asp Glu Glu Ile Ala Asp Ala Val Lys
 370 375 380

Ala Ile Ala Glu Thr Ile Ala
 385 390

<210> 61

<211> 1008

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)...(985)

<223> RXC00733

<400> 61

acggcgaggt tgtcggatt ggaacgcaca cgaatttgct gaacacgtgc ggtacctacc 60

gtgaaattgt tgaatccaa gagactgcgc aggcgcaatc atg agt aat act gca 115
 Met Ser Asn Thr Ala
 1 5

ggc ccc cgc ggg cgt tcc cat cag gca gac gcc gcg ccg aat caa aag 163
 Gly Pro Arg Gly Arg Ser His Gln Ala Asp Ala Ala Pro Asn Gln Lys
 10 15 20

gca cag aat ttc gga cca tct gcc aaa agg ctt ttc gga att cta ggc 211
 Ala Gln Asn Phe Gly Pro Ser Ala Lys Arg Leu Phe Gly Ile Leu Gly
 25 30 35

cat gac cgt aac acc tta att ttt gtt atc ttc cta gcc gtc ctg agc 259
 His Asp Arg Asn Thr Leu Ile Phe Val Ile Phe Leu Ala Val Leu Ser
 40 45 50

gtt gga ctt acc gtc ttg ggc cca tgg ttg ctg ggt aaa gcc acc aac 307
 Val Gly Leu Thr Val Leu Gly Pro Trp Leu Leu Gly Lys Ala Thr Asn
 55 60 65

gtg gtg ttt gaa gga ttc cta tct aag cgc atg ccg gct ggt ggc tca 355
 Val Val Phe Glu Gly Phe Leu Ser Lys Arg Met Pro Ala Gly Ala Ser
 70 75 80 85

aag gaa gat atc atc gcg cag ttg cag gct gca ggt aaa cat aat cag 403
 Lys Glu Asp Ile Ile Ala Gln Leu Gln Ala Ala Gly Lys His Asn Gln
 90 95 100

gct tcc atg atg gaa gac atg aac ctt gtt cca ggc tca ggc att gat 451
 Ala Ser Met Met Glu Asp Met Asn Leu Val Pro Gly Ser Gly Ile Asp
 105 110 115

ttt gaa aaa tta gcc atg atc ctc gga ctg gtg atc ggt gct tat ctc 499
 Phe Glu Lys Leu Ala Met Ile Leu Gly Leu Val Ile Gly Ala Tyr Leu
 120 125 130

 atc ggt agc ctg ttg tcg ttg ttc cag gcg cggt atc aac cgc atc 547
 Ile Gly Ser Leu Leu Ser Leu Phe Gln Ala Arg Met Leu Asn Arg Ile
 135 140 145

 gtg caa agt gcc atg cac cgg ctg cgc atg gag gtg gag gaa aaa atc 595
 Val Gln Ser Ala Met His Arg Leu Arg Met Glu Val Glu Glu Lys Ile
 150 155 160 165

 cac cgc cta ccg ctg agc tat ttc gat tcc atc aaa cgt ggt gat ctg 643
 His Arg Leu Pro Leu Ser Tyr Phe Asp Ser Ile Lys Arg Gly Asp Leu
 170 175 180

 ctt agc cgt gtg acc aac gat gtg gat aat atc ggt caa tcc ctg caa 691
 Leu Ser Arg Val Thr Asn Asp Val Asp Asn Ile Gly Gln Ser Leu Gln
 185 190 195

 caa acc ttg tca cag gcg atc act tcc cta ctg acc gtc atc ggt gtg 739
 Gln Thr Leu Ser Gln Ala Ile Thr Ser Leu Leu Thr Val Ile Gly Val
 200 205 210

 ttg gtg atg atg ttt atc atc tcc cca ctg ctc gca ctc gtg gcg ctg 787
 Leu Val Met Met Phe Ile Ile Ser Pro Leu Leu Ala Leu Val Ala Leu
 215 220 225

 gta tcc att ccg gtc acc atc gtg gtc act gtg gtg gtt gcg agc cgt 835
 Val Ser Ile Pro Val Thr Ile Val Val Thr Val Val Val Ala Ser Arg
 230 235 240 245

 tcc cag aaa ctc ttt gcg gaa cag tgg aag cag acc ggt att ttg aat 883
 Ser Gln Lys Leu Phe Ala Glu Gln Trp Lys Gln Thr Gly Ile Leu Asn
 250 255 260

 gcg cgc ctg gag gaa acc tac tct ggc cac gcc gtg gtt aag gtt ttc 931
 Ala Arg Leu Glu Glu Thr Tyr Ser Gly His Ala Val Val Lys Val Phe
 265 270 275

 qqa cac caa aag qat qtt caa qaa qca ttc qag qaa qaa aat caa qct 979
 Gly His Gln Lys Asp Val Gln Glu Ala Phe Glu Glu Glu Asn Gln Ala
 280 285 290

tgt gta taaggccagc tttgggtgcc agt
 1008
 Cys Val
 295

<210> 62
 <211> 295
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 62
 Met Ser Asn Thr Ala Gly Pro Arg Gly Arg Ser His Gln Ala Asp Ala
 1 5 10 15

 Ala Pro Asn Gln Lys Ala Gln Asn Phe Gly Pro Ser Ala Lys Arg Leu

20	25	30
Phe	Gly	Ile
Leu	Gly	His
Asp	Arg	Asn
Thr	Leu	Ile
Phe	Val	Ile
35	40	45
Leu	Ala	Val
Leu	Ser	Val
Gly	Leu	Thr
Val	Gly	Pro
Leu	Leu	Trp
50	55	60
Gly	Lys	Ala
Thr	Asn	Val
Val	Phe	Gly
Glu	Leu	Ser
70	75	80
Pro	Ala	Gly
Ala	Ser	Lys
Glu	Asp	Ile
Ile	Ala	Gln
Gln	Leu	Gln
85	90	95
Gly	Lys	His
Asn	Gln	Ala
Ser	Met	Met
Glu	Asp	Met
100	105	110
Gly	Ser	Gly
Ile	Asp	Phe
Glu	Lys	Leu
Ala	Met	Ile
Leu	Gly	Leu
115	120	125
Ile	Gly	Ala
Tyr	Leu	Ile
Gly	Ser	Leu
Leu	Ser	Leu
Phe	Gln	Ala
130	135	140
Met	Leu	Asn
Arg	Ile	Val
Gln	Ser	Ala
Met	His	Arg
Arg	Leu	Arg
145	150	155
160		
Val	Glu	Glu
Lys	Ile	His
Arg	Leu	Pro
165	170	175
Gly	Arg	Gly
Asp	Leu	Leu
Ser	Arg	Val
180	185	190
Gly	Gln	Ser
Leu	Gln	Gln
Thr	Leu	Ser
Gln	Ala	Ile
Ile	Thr	Ser
Ser	Leu	Leu
195	200	205
Thr	Val	Ile
Gly	Val	Leu
Leu	Val	Met
Met	Met	Phe
210	215	220
Ala	Leu	Val
Ala	Leu	Val
Ser	Ile	Pro
225	230	235
240		
Val	Val	Ala
Ser	Arg	Ser
Gln	Leu	Phe
Lys	Ala	Glu
245	250	255
Gly	Ile	Leu
Asn	Ala	Arg
Leu	Glu	Glu
260	265	270
Val	Val	Lys
Val	Phe	Gly
275	280	285
Glu	Glu	Asn
Gln	Ala	Cys
290	295	

<210> 63

<211> 426

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(426)

<223> RXC00861

<400> 63

atg gct cct cac aag gtc atg ctg att acc act ggt act cag ggt gag 48
 Met Ala Pro His Lys Val Met Leu Ile Thr Thr Gly Thr Gln Gly Glu
 1 5 10 15

cct atg gct gcg ctg tct cgc atg gcg cgt cgt gag cac cga cag atc 96
 Pro Met Ala Ala Leu Ser Arg Met Ala Arg Arg Glu His Arg Gln Ile
 20 25 30

act gtc cgt gat gga gac ttg att atc ctt tct tcc tcc ctg gtt cca 144
 Thr Val Arg Asp Gly Asp Leu Ile Ile Leu Ser Ser Leu Val Pro
 35 40 45

ggt aac gaa gaa gca gtg ttc ggt gtc atc aac atg ctg gct cag atc 192
 Gly Asn Glu Glu Ala Val Phe Gly Val Ile Asn Met Leu Ala Gln Ile
 50 55 60

ggt gca act gtt gtt acc ggt cgc gac gcc aag gtg cac acc tcg ggc 240
 Gly Ala Thr Val Val Thr Gly Arg Asp Ala Lys Val His Thr Ser Gly
 65 70 75 80

cac ggc tac tcc gga gag ctg ttg ttc ttg tac aac gcc gct cgt ccg 288
 His Gly Tyr Ser Gly Glu Leu Leu Phe Leu Tyr Asn Ala Ala Arg Pro
 85 90 95

aag aac gct atg cct gtc cac ggc gag tgg cgc cac ctg cgc gcc aac 336
 Lys Asn Ala Met Pro Val His Gly Glu Trp Arg His Leu Arg Ala Asn
 100 105 110

aag gaa ctg gct atc tcc act ggt gtt aac cgc gac aac gtt gtg ctt 384
 Lys Glu Leu Ala Ile Ser Thr Gly Val Asn Arg Asp Asn Val Val Leu
 115 120 125

gca caa aac ggt gtt gtg gtt gat atg gtc aac ggt cgc gca 426
 Ala Gln Asn Gly Val Val Asp Met Val Asn Gly Arg Ala
 130 135 140

<210> 64

<211> 142

<212> PRT

<213> Corynebacterium glutamicum

<400> 64

Met Ala Pro His Lys Val Met Leu Ile Thr Thr Gly Thr Gln Gly Glu
 1 5 10 15

Pro Met Ala Ala Leu Ser Arg Met Ala Arg Arg Glu His Arg Gln Ile
 20 25 30

Thr Val Arg Asp Gly Asp Leu Ile Ile Leu Ser Ser Leu Val Pro
 35 40 45

Gly Asn Glu Glu Ala Val Phe Gly Val Ile Asn Met Leu Ala Gln Ile
 50 55 60

Gly Ala Thr Val Val Thr Gly Arg Asp Ala Lys Val His Thr Ser Gly
 65 70 75 80

His Gly Tyr Ser Gly Glu Leu Leu Phe Leu Tyr Asn Ala Ala Arg Pro
 85 90 95

Lys Asn Ala Met Pro Val His Gly Glu Trp Arg His Leu Arg Ala Asn
 100 105 110

Lys Glu Leu Ala Ile Ser Thr Gly Val Asn Arg Asp Asn Val Val Leu
 115 120 125

Ala Gln Asn Gly Val Val Val Asp Met Val Asn Gly Arg Ala
 130 135 140

<210> 65

<211> 1066

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1066)

<223> RXC00866

<400> 65

gcatcaacgt aggagatcct cgacttccaa ttatggctcc aaatgagcag gaacttgagg 60

ctctccgaga agacatgaaa aaagctggag ttctataaat atg aat gat tcc cga 115
 Met Asn Asp Ser Arg
 1 5

aat cgc ggc cgg aag gtt acc cgc aag gcg ggc cca cca gaa gct ggt 163
 Asn Arg Gly Arg Lys Val Thr Arg Lys Ala Gly Pro Pro Glu Ala Gly
 10 15 20

cag gaa aac cat ctg gat acc cct gtc ttt cag gca cca gat gct tcc 211
 Gln Glu Asn His Leu Asp Thr Pro Val Phe Gln Ala Pro Asp Ala Ser
 25 30 35

tct aac cag agc gct gta aaa gct gag acc gcc gga aac gac aat cgg 259
 Ser Asn Gln Ser Ala Val Lys Ala Glu Thr Ala Gly Asn Asp Asn Arg
 40 45 50

gat gct gcg caa ggt gct caa gga tcc caa gat tct cag ggt tcc cag 307
 Asp Ala Ala Gln Gly Ala Gln Gly Ser Gln Asp Ser Gln Gly Ser Gln
 55 60 65

aac gct caa ggt tcc cag aac cgc gag tcc gga aac aac aac cgc aac 355
 Asn Ala Gln Gly Ser Gln Asn Arg Glu Ser Gly Asn Asn Arg Asn
 70 75 80 85

cgt tcc aac aac cgt cgc ggt ggt cgt gga cgt cgt gga tcc gga 403
 Arg Ser Asn Asn Arg Arg Gly Gly Arg Gly Arg Gly Ser Gly
 90 95 100

aac gcc aat gag ggc gcg aac aac aac agc ggt aac cag aac cgt cag 451
 Asn Ala Asn Glu Gly Ala Asn Asn Ser Gly Asn Gln Asn Arg Gln
 105 110 115

ggc gga aac cgt ggc aac cgc ggt ggc gga cgc cga aac gtt gtt aag 499
 Gly Gly Asn Arg Gly Asn Arg Gly Gly Arg Arg Asn Val Val Lys

120	125	130	
tcg atg cag ggt gcg gat ctg acc cag cgc ctg cca gag cca cca aag Ser Met Gln Gly Ala Asp Leu Thr Gln Arg Leu Pro Glu Pro Pro Lys 135	140	145	547
gca ccg gca aac ggt ctg cgt att tac gca ctt ggt ggc att tcc gaa Ala Pro Ala Asn Gly Leu Arg Ile Tyr Ala Leu Gly Gly Ile Ser Glu 150	155	160	595
atc ggt cgc aac atg acc gtg ttt gag tac aac aac cgt ctg ctc atc Ile Gly Arg Asn Met Thr Val Phe Glu Tyr Asn Asn Arg Leu Leu Ile 170	175	180	643
gtg gac tgt ggt gtg ctc ttc cca tct tca ggt gag cca ggc gtt gac Val Asp Cys Gly Val Leu Phe Pro Ser Ser Gly Glu Pro Gly Val Asp 185	190	195	691
ctg att ctt cct gac ttc ggc cca att gag gat cac ctg cac cgc gtc Leu Ile Leu Pro Asp Phe Gly Pro Ile Glu Asp His Leu His Arg Val 200	205	210	739
gat gca ttg gtg gtt act cac gga cac gaa gac cac att ggt gct att Asp Ala Leu Val Val Thr His Gly His Glu Asp His Ile Gly Ala Ile 215	220	225	787
ccc tgg ctg ctg aag ctg cgc aac gat atc cca atc ttg gca tcc cgt Pro Trp Leu Leu Lys Leu Arg Asn Asp Ile Pro Ile Leu Ala Ser Arg 230	235	240	835
ttc acc ttg gct ctg att gca gct aag tgt aag gaa cac cgt cag cgt Phe Thr Leu Ala Leu Ile Ala Ala Lys Cys Lys Glu His Arg Gln Arg 250	255	260	883
ccg aag ctg atc gag gtc aac gag cag tcc aat gag gac cgc gga ccg Pro Lys Leu Ile Glu Val Asn Glu Gln Ser Asn Glu Asp Arg Gly Pro 265	270	275	931
ttc aac att cgc ttc tgg gct gtt aac cac tcc atc cca gac tgc ctt Phe Asn Ile Arg Phe Trp Ala Val Asn His Ser Ile Pro Asp Cys Leu 280	285	290	979
<hr/>			
ggc ccc gct acc aag act cct gct ggt ttg gtc atc cac acc ggt gac 1027			
Gly Leu Ala Ile Lys Thr Pro Ala Gly Leu Val Ile His Thr Gly Asp 295	300	305	
atc aag ctg gat cag act cct cct gat gga cgc cca act 1066			
Ile Lys Leu Asp Gln Thr Pro Pro Asp Gly Arg Pro Thr 310	315	320	
<210> 66			
<211> 322			
<212> PRT			
<213> Corynebacterium glutamicum			
<400> 66			
Met Asn Asp Ser Arg Asn Arg Gly Arg Lys Val Thr Arg Lys Ala Gly 1	5	10	15

Pro Pro Glu Ala Gly Gln Glu Asn His Leu Asp Thr Pro Val Phe Gln
 20 25 30

Ala Pro Asp Ala Ser Ser Asn Gln Ser Ala Val Lys Ala Glu Thr Ala
 35 40 45

Gly Asn Asp Asn Arg Asp Ala Ala Gln Gly Ala Gln Gly Ser Gln Asp
 50 55 60

Ser Gln Gly Ser Gln Asn Ala Gln Gly Ser Gln Asn Arg Glu Ser Gly
 65 70 75 80

Asn Asn Asn Arg Asn Arg Ser Asn Asn Asn Arg Arg Gly Gly Arg Gly
 85 90 95

Arg Arg Gly Ser Gly Asn Ala Asn Glu Gly Ala Asn Asn Asn Ser Gly
 100 105 110

Asn Gln Asn Arg Gln Gly Gly Asn Arg Gly Asn Arg Gly Gly Arg
 115 120 125

Arg Asn Val Val Lys Ser Met Gln Gly Ala Asp Leu Thr Gln Arg Leu
 130 135 140

Pro Glu Pro Pro Lys Ala Pro Ala Asn Gly Leu Arg Ile Tyr Ala Leu
 145 150 155 160

Gly Gly Ile Ser Glu Ile Gly Arg Asn Met Thr Val Phe Glu Tyr Asn
 165 170 175

Asn Arg Leu Leu Ile Val Asp Cys Gly Val Leu Phe Pro Ser Ser Gly
 180 185 190

Glu Pro Gly Val Asp Leu Ile Leu Pro Asp Phe Gly Pro Ile Glu Asp
 195 200 205

His Leu His Arg Val Asp Ala Leu Val Val Thr His Gly His Glu Asp
 210 215 220

His Ile Gly Ala Ile Pro Trp Leu Leu Lys Leu Arg Asn Asp Ile Pro
 225 230 235 240

Ile Leu Ala Ser Arg Phe Thr Leu Ala Leu Ile Ala Ala Lys Cys Lys
 245 250 255

Glu His Arg Gln Arg Pro Lys Leu Ile Glu Val Asn Glu Gln Ser Asn
 260 265 270

Glu Asp Arg Gly Pro Phe Asn Ile Arg Phe Trp Ala Val Asn His Ser
 275 280 285

Ile Pro Asp Cys Leu Gly Leu Ala Ile Lys Thr Pro Ala Gly Leu Val
 290 295 300

Ile His Thr Gly Asp Ile Lys Leu Asp Gln Thr Pro Pro Asp Gly Arg
 305 310 315 320

Pro Thr

<210> 67
 <211> 1527
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(1504)
 <223> RXC02095

<400> 67
 ctctcttggc cctctccca cccatttta agtactcaag acccttccaa cagaaaggat 60
 tactccccca acaggctcaa aaatactgaa aggctcacgc atg aaa act gag caa 115
 Met Lys Thr Glu Gln
 1 5

tcc caa aaa gca caa tta gcc cct aag aaa gca cct gaa aag cca caa 163
 Ser Gln Lys Ala Gln Leu Ala Pro Lys Lys Ala Pro Glu Lys Pro Gln
 10 15 20

cgc atc cgc caa ctt att tcc gtg gcg tgg cag cga cct tgg ctc acc 211
 Arg Ile Arg Gln Leu Ile Ser Val Ala Trp Gln Arg Pro Trp Leu Thr
 25 30 35

tca ttc acc gta atc agc gct tta gct gca acg ttg ttt gaa ctt aca 259
 Ser Phe Thr Val Ile Ser Ala Leu Ala Ala Thr Leu Phe Glu Leu Thr
 40 45 50

ctt cct ctt ttg acc ggt ggc gcc atc gat atc gcg ctc gga aat acc 307
 Leu Pro Leu Leu Thr Gly Gly Ala Ile Asp Ile Ala Leu Gly Asn Thr
 55 60 65

gga gat act tta acc act gac ctg ctg gac cgg ttc act ccg agt gga 355
 Gly Asp Thr Leu Thr Asp Leu Leu Asp Arg Phe Thr Pro Ser Gly
 70 75 80 85

tta agc gtg ttg acc agc gtc att gcc ctt atc gtg ctt ctc gcg ttg 403
 Leu Ser Val Leu Thr Ser Val Ile Ala Leu Ile Val Leu Leu Ala Leu
 90 95 100

ctt cgc tat gcc agt caa ttt gga cgg cga tac acc gca ggc aag ctc 451
 Leu Arg Tyr Ala Ser Gln Phe Gly Arg Arg Tyr Thr Ala Gly Lys Leu
 105 110 115

agc atg ggg gta cag cat gat gtc cgg ctt aaa acg atg cgc tca ttg 499
 Ser Met Gly Val Gln His Asp Val Arg Leu Lys Thr Met Arg Ser Leu
 120 125 130

cag aac ctc gat ggg cca ggt cag gac tct att cgc aca ggc caa gta 547
 Gln Asn Leu Asp Gly Pro Gly Gln Asp Ser Ile Arg Thr Gly Gln Val
 135 140 145

gtc agt cgg tcc att tcg gat atc aac atg gtg caa agc ctt gtg gcg 595
 Val Ser Arg Ser Ile Ser Asp Ile Asn Met Val Gln Ser Leu Val Ala
 150 155 160 165

atg ttg ccg atg ttg atc gga aat gtg gtc aag ctt gtg ctc act ttg 643
 Met Leu Pro Met Leu Ile Gly Asn Val Val Lys Leu Val Leu Thr Leu
 170 175 180

gtg atc atg ctg gct att tcc ccg ccg ctg acc atc atc gct gca gtg 691
 Val Ile Met Leu Ala Ile Ser Pro Pro Leu Thr Ile Ile Ala Ala Val
 185 190 195

 ttg gtg cct ttg ctg ttg tgg gcc gtg gcc tat tcg cga aaa gcg ctt 739
 Leu Val Pro Leu Leu Leu Trp Ala Val Ala Tyr Ser Arg Lys Ala Leu
 200 205 210

 ttt gcg tcc acg tgg tcg gcc cag caa aag gct gcg gat ctg acc act 787
 Phe Ala Ser Thr Trp Ser Ala Gln Gln Lys Ala Ala Asp Leu Thr Thr
 215 220 225

 cat gtg gaa gaa act gtc acg ggt atc cgc gtg gtc aag gca ttt gcg 835
 His Val Glu Glu Thr Val Thr Gly Ile Arg Val Val Lys Ala Phe Ala
 230 235 240 245

 cag gaa gac cgc gag acc gac aaa ttg gat ctc acc gca cgt gag tta 883
 Gln Glu Asp Arg Glu Thr Asp Lys Leu Asp Leu Thr Ala Arg Glu Leu
 250 255 260

 ttt gcc cag cgc atg cgc act gca cgt ctg acg gca aag ttc atc ccc 931
 Phe Ala Gln Arg Met Arg Thr Ala Arg Leu Thr Ala Lys Phe Ile Pro
 265 270 275

 atg gtt gag cag ctt ccg cag ctt gct ttg gtg gtc aac att gtt ggc 979
 Met Val Glu Gln Leu Pro Gln Leu Ala Leu Val Val Asn Ile Val Gly
 280 285 290

 ggt ggc tat ttg gcc atg act ggt cac atc acg gtg ggc acg ttt gtg
 1027
 Gly Gly Tyr Leu Ala Met Thr Gly His Ile Thr Val Gly Thr Phe Val
 295 300 305

 gcg ttt tct tcc tat ctc act agc ttg tcg gcg gtg gct agg tcc ctg
 1075
 Ala Phe Ser Ser Tyr Leu Thr Ser Leu Ser Ala Val Ala Arg Ser Leu
 310 315 320 325

 tcg ggc atg ctc atg cgc gtg cag ttg gcg ctg tct tct gtg gag cgc
 1123
 Ser Gly Met Leu Met Arg Val Gln Leu Ala Leu Ser Ser Val Glu Arg
 330 335 340

 atc ttt gaa gtc att gat ctt cag cct gaa cgc acc gat cct gca cac
 1171
 Ile Phe Glu Val Ile Asp Leu Gln Pro Glu Arg Thr Asp Pro Ala His
 345 350 355

 ccc ctg tca ctt ccc gac act ccc ctg ggt ctg tcg ttc aac aac gta
 1219
 Pro Leu Ser Leu Pro Asp Thr Pro Leu Gly Leu Ser Phe Asn Asn Val
 360 365 370

 gat ttc cgt ggg att ctc aac ggt ttt gag ctg ggt gtt cag gcc ggt
 1267
 Asp Phe Arg Gly Ile Leu Asn Gly Phe Glu Leu Gly Val Gln Ala Gly
 375 380 385

 gaa acc gtt gtg ttg gtg ggc cct cca ggt tca ggc aag acc atg gct
 1315

Glu Thr Val Val Leu Val Gly Pro Pro Gly Ser Gly Lys Thr Met Ala
390 395 400 405

gtg cag ctt gct gga aac ttt tat caa cca gac agc ggc cac atc gcc
1363

Val Gln Leu Ala Gly Asn Phe Tyr Gln Pro Asp Ser Gly His Ile Ala
410 415 420

ttt gat agc aac ggc cat cgc act cgc ttc gac gac ctc acc cac agc
1411

Phe Asp Ser Asn Gly His Arg Thr Arg Phe Asp Asp Leu Thr His Ser
425 430 435

gat atc cgc agg aat ctc atc gcg gtt ttt gat gag ccg ttc ttg tac
1459

Asp Ile Arg Arg Asn Leu Ile Ala Val Phe Asp Glu Pro Phe Leu Tyr
440 445 450

tcc tcc tcc ata ccg cga gaa cat ctc gat ggg ttt gga tgt cag
1504

Ser Ser Ser Ile Pro Arg Glu His Leu Asp Gly Phe Gly Cys Gln
455 460 465

tgatgaggcag atcgaacacg cag
1527

<210> 68

<211> 468

<212> PRT

<213> *Corynebacterium glutamicum*

<400> 68

Met Lys Thr Glu Gln Ser Gln Lys Ala Gln Leu Ala Pro Lys Lys Ala
1 5 10 15

Pro Glu Lys Pro Gln Arg Ile Arg Gln Leu Ile Ser Val Ala Trp Gln
 20 25 30

Arg Pro Trp Leu Thr Ser Phe Thr Val Ile Ser Ala Leu Ala Ala Thr
 35 40 45

Lys Thr Glu Leu Thr Leu Pro Leu Leu Thr Gly Gly Ala Ile Asp Ile
50 55 60

Ala Leu Gly Asn Thr Gly Asp Thr Leu Thr Thr Asp Leu Leu Asp Arg
65 70 75 80

Phe Thr Pro Ser Gly Leu Ser Val Leu Thr Ser Val Ile Ala Leu Ile
85 90 95

Val Leu Leu Ala Leu Leu Arg Tyr Ala Ser Gln Phe Gly Arg Arg Tyr
100 105 110

Thr Ala Gly Lys Leu Ser Met Gly Val Gln His Asp Val Arg Leu Lys
115 120 125

Thr Met Arg Ser Leu Gln Asn Leu Asp Gly Pro Gly Gln Asp Ser Ile
130 135 140

Arg Thr Gly Gin Val Val Ser Arg Ser Ile Ser Asp Ile Asn Met Val

145	150	155	160
Gln Ser Leu Val Ala Met Leu Pro Met Leu Ile Gly Asn Val Val Lys			
165	170	175	
Leu Val Leu Thr Leu Val Ile Met Leu Ala Ile Ser Pro Pro Leu Thr			
180	185	190	
Ile Ile Ala Ala Val Leu Val Pro Leu Leu Leu Trp Ala Val Ala Tyr			
195	200	205	
Ser Arg Lys Ala Leu Phe Ala Ser Thr Trp Ser Ala Gln Gln Lys Ala			
210	215	220	
Ala Asp Leu Thr Thr His Val Glu Glu Thr Val Thr Gly Ile Arg Val			
225	230	235	240
Val Lys Ala Phe Ala Gln Glu Asp Arg Glu Thr Asp Lys Leu Asp Leu			
245	250	255	
Thr Ala Arg Glu Leu Phe Ala Gln Arg Met Arg Thr Ala Arg Leu Thr			
260	265	270	
Ala Lys Phe Ile Pro Met Val Glu Gln Leu Pro Gln Leu Ala Leu Val			
275	280	285	
Val Asn Ile Val Gly Gly Tyr Leu Ala Met Thr Gly His Ile Thr			
290	295	300	
Val Gly Thr Phe Val Ala Phe Ser Ser Tyr Leu Thr Ser Leu Ser Ala			
305	310	315	320
Val Ala Arg Ser Leu Ser Gly Met Leu Met Arg Val Gln Leu Ala Leu			
325	330	335	
Ser Ser Val Glu Arg Ile Phe Glu Val Ile Asp Leu Gln Pro Glu Arg			
340	345	350	
Thr Asp Pro Ala His Pro Leu Ser Leu Pro Asp Thr Pro Leu Gly Leu			
355	360	365	
Ser Phe Asn Asn Val Asp Phe Arg Gly Ile Leu Asn Gly Phe Glu Leu			
370	375	380	
Gly Val Gln Ala Gly Glu Thr Val Val Leu Val Gly Pro Pro Gly Ser			
385	390	395	400
Gly Lys Thr Met Ala Val Gln Leu Ala Gly Asn Phe Tyr Gln Pro Asp			
405	410	415	
Ser Gly His Ile Ala Phe Asp Ser Asn Gly His Arg Thr Arg Phe Asp			
420	425	430	
Asp Leu Thr His Ser Asp Ile Arg Arg Asn Leu Ile Ala Val Phe Asp			
435	440	445	
Glu Pro Phe Leu Tyr Ser Ser Ser Ile Pro Arg Glu His Leu Asp Gly			
450	455	460	
Phe Gly Cys Gln			
465			

<210> 69
 <211> 295
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (84)..(272)
 <223> RXC03185

<400> 69
 agcgcccaac cgttcagacc agcggttct ctgaggatgc aaagtccatg atgggnagg 60
 tcactgagct gtccgaaacc accatg aat gat ctt gca gct gaa ggt gaa aac 113
 Met Asn Asp Leu Ala Ala Glu Gly Glu Asn
 1 5 10

gat cct tac cgc atg gtt cag cag ctg cgc cgc aag ctc tct cgc ttc 161
 Asp Pro Tyr Arg Met Val Gln Gln Leu Arg Arg Lys Leu Ser Arg Phe
 15 20 25

gtc gag cag aag tgg aag cgc cag ccg gtc atc atg cca acc gtc att 209
 Val Glu Gln Lys Trp Lys Arg Gln Pro Val Ile Met Pro Thr Val Ile
 30 35 40

ccg atg act gcg gaa acc acg cac atc ggt gac gat gag gtt cgc gct 257
 Pro Met Thr Ala Glu Thr Thr His Ile Gly Asp Asp Glu Val Arg Ala
 45 50 55

tca cgc gag tcc ctg taaaagcatt tcgctttcg acg 295
 Ser Arg Glu Ser Leu
 60

<210> 70
 <211> 63
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 70
 Met Asn Asp Leu Ala Ala Glu Gly Glu Asn Asp Pro Tyr Arg Met Val
 1 5 10 15

Gln Gln Leu Arg Arg Lys Leu Ser Arg Phe Val Glu Gln Lys Trp Lys
 20 25 30

Arg Gln Pro Val Ile Met Pro Thr Val Ile Pro Met Thr Ala Glu Thr
 35 40 45

Thr His Ile Gly Asp Asp Glu Val Arg Ala Ser Arg Glu Ser Leu
 50 55 60

<210> 71
 <211> 4653
 <212> DNA
 <213> Corynebacterium glutamicum

<220>

<221> CDS
<222> (101)..(4630)
<223> RXN00367

<400> 71
atcgaaaagta accctttgt tacttgcgtt gcaggttagtg tccctgattt tcttattatc 60
gaacgaaatga tagaaacagg attaaagtga ggtatccgc atg aaa cca caa gga 115
Met Lys Pro Gln Gly
1 5
ctc tac aac cct gcg cat gaa cat gac gcc tgc ggt gtg gcg ttt att 163
Leu Tyr Asn Pro Ala His Glu His Asp Ala Cys Gly Val Ala Phe Ile
10 15 20
gcg gat atc cac ggt cga ccc agc cgc agc att gtt gat cgt gca ctt 211
Ala Asp Ile His Gly Arg Pro Ser Arg Ser Ile Val Asp Arg Ala Leu
25 30 35
gag gcg ctt cgc aac att gac cac cga ggt gcc gcc ggt gca gag aag 259
Glu Ala Leu Arg Asn Ile Asp His Arg Gly Ala Ala Gly Ala Glu Lys
40 45 50
aac act ggc gat ggt gcg ggc atc ctc atg cag att ccg gac ggc ttt 307
Asn Thr Gly Asp Gly Ala Gly Ile Leu Met Gln Ile Pro Asp Gly Phe
55 60 65
tat cgt gaa gta tct ggc att gag ctt cct gag gca ggg gag tat gcc 355
Tyr Arg Glu Val Ser Gly Ile Glu Leu Pro Glu Ala Gly Glu Tyr Ala
70 75 80 85
act ggt att gcg ttc ttg cct cgc ggt cgc atg gcg atg atg gat gct 403
Thr Gly Ile Ala Phe Leu Pro Arg Gly Arg Met Ala Met Met Asp Ala
90 95 100
cag aag gaa att gag cgc atc gca aag caa gaa ggt gcc gat gtg ctt 451
Gln Lys Glu Ile Glu Arg Ile Ala Lys Gln Glu Gly Ala Asp Val Leu
105 110 115
ggg tgg cgc atg gtt cct ttt gat tct cgt gat ttg ggt tcc atg gct 499
Gly Trp Arg Met Val Pro Phe Asp Ser Arg Asp Leu Gly Ser Met Ala
120 125 130
gag gag gcg atg cct agt ttc gcg cag att ttc ctt act gtg cct gga 547
Glu Glu Ala Met Pro Ser Phe Ala Gln Ile Phe Leu Thr Val Pro Gly
135 140 145
aaa tct ggt gaa gat ctt gac cgt gtg atg ttc ttt atc cgt aag cgt 595
Lys Ser Gly Glu Asp Leu Asp Arg Val Met Phe Phe Ile Arg Lys Arg
150 155 160 165
tgt gag cgt gag ctg ggc acc acc aat ggt cgc gat acg gtg tat ttc 643
Cys Glu Arg Glu Leu Gly Thr Thr Asn Gly Arg Asp Thr Val Tyr Phe
170 175 180
ccg tcg cta tct tca cgc acc atc att tac aaa ggc atg ttg acc act 69..
Pro Ser Leu Ser Ser Arg Thr Ile Ile Tyr Lys Gly Met Leu Thr Thr
185 190 195
ctg cag ctt gag ggc ttc ttt gag gat ctg ggt gat gct cgc ctg gag 739
Leu Gln Leu Glu Gly Phe Phe Glu Asp Leu Gly Asp Ala Arg Leu Glu

200	205	210	
tcg gcc att gct att gtg cac tcg cgt ttc tcc acg aac act ttc cca Ser Ala Ile Ala Ile Val His Ser Arg Phe Ser Thr Asn Thr Phe Pro 215	220	225	787
agc tgg ccg ctg gcg cac ccg tac cgt ttc gtt gcc cac aac ggt gag Ser Trp Pro Leu Ala His Pro Tyr Arg Phe Val Ala His Asn Gly Glu 230	235	240	835
atc aac act gtg cgt ggc aat gaa aac tgg atg cgc gcc cgc gag gcg Ile Asn Thr Val Arg Gly Asn Glu Asn Trp Met Arg Ala Arg Glu Ala 250	255	260	883
ctt atc aaa aac gac aag ctg ggc aat ttg agc agc gtg ctg cct atc Leu Ile Lys Asn Asp Lys Leu Gly Asn Leu Ser Ser Val Leu Pro Ile 265	270	275	931
tgc acc ccg gag ggc tcg gat acc gcg cgt ttc gac gag gct ttg gag Cys Thr Pro Glu Gly Ser Asp Thr Ala Arg Phe Asp Glu Ala Leu Glu 280	285	290	979
ctt ttg cac ctg ggc gga tac tca ctt ccg cat gct gtt gcg atg atg 1027 Leu Leu His Leu Gly Gly Tyr Ser Leu Pro His Ala Val Ala Met Met 295	300	305	
atc cct cag gcg tgg gaa cac aac aag acg ctg agc cct gag ctg cgt 1075 Ile Pro Gln Ala Trp Glu His Asn Lys Thr Leu Ser Pro Glu Leu Arg 310	315	320	325
gat ttc tac gaa tac cac tct tgt ctg atg gag cca tgg gat ggt cct 1123 Asp Phe Tyr Glu Tyr His Ser Cys Leu Met Glu Pro Trp Asp Gly Pro 330	335	340	
gca gcg ctg gca ttt act gac ggt cgt ttt gtg ggt gcc gtg ctg gac 1171 Ala Ala Leu Ala Phe Thr Asp Gly Arg Phe Val Gly Ala Val Leu Asp 345	350	355	
<hr/>			
cgt aat ggc ctg cga cct ggg cga atc acc att act gat tcg ggt ttg 1219 Arg Asn Gly Leu Arg Pro Gly Arg Ile Thr Ile Thr Asp Ser Gly Leu 360	365	370	
gtt gtg atg gct tct gaa tcg gga gtg ttg gac ttg agg gag gag agc 1267 Val Val Met Ala Ser Glu Ser Gly Val Leu Asp Leu Arg Glu Glu Ser 375	380	385	
gtc gta aag cgt act cgc gta cag cct gga cgc atg ttc ctt gtt gac 1315 Val Val Lys Arg Thr Arg Val Gln Pro Gly Arg Met Phe Leu Val Asp 390	395	400	405
act gcc gag ggc cgc atc gtt gaa gac gag gaa atc aag cag aaa tta 1363 Thr Ala Glu Gly Arg Ile Val Glu Asp Glu Glu Ile Lys Gln Lys Leu 410	415	420	

agc gaa gcg cag cca tat ggt gag tgg att cgc gat aat ttt gtg cat
1411

Ser Glu Ala Gln Pro Tyr Gly Glu Trp Ile Arg Asp Asn Phe Val His
425 430 435

ctg gat cgt ctg cct cag aca cgc tac aac tac atg gcg cac tct cgt
1459

Leu Asp Arg Leu Pro Gln Thr Arg Tyr Asn Tyr Met Ala His Ser Arg
440 445 450

gct gtg ttg cgt cag cgt gtt ttc gga atc act gaa gaa gat gtg gat
1507

Ala Val Leu Arg Gln Arg Val Phe Gly Ile Thr Glu Glu Asp Val Asp
455 460 465

ttg ttg ctg ctg ccg atg gcc cgc cag ggt gct gag gcg att ggt tcc
1555

Leu Leu Leu Pro Met Ala Arg Gln Gly Ala Glu Ala Ile Gly Ser
470 475 480 485

atg ggt tcg gat acg cca att gcg gcg cta tcc cag cga cca cgc atg
1603

Met Gly Ser Asp Thr Pro Ile Ala Ala Leu Ser Gln Arg Pro Arg Met
490 495 500

ctt tat gat ttc ttc gcg cag cgc ttt gct cag gtg aca aac cca ccg
1651

Leu Tyr Asp Phe Phe Ala Gln Arg Phe Ala Gln Val Thr Asn Pro Pro
505 510 515

ttg gac tct atc cgc gaa aag cct gtg acc agc atg ttc act ttg ttg
1699

Leu Asp Ser Ile Arg Glu Lys Pro Val Thr Ser Met Phe Thr Leu Leu
520 525 530

ggt gcg cag tct gac gtg ctc aat ccg ggt cct gat gcg gcg cga cgt
1747

Gly Ala Gln Ser Asp Val Leu Asn Pro Gly Pro Asp Ala Ala Arg Arg
535 540 545

atc cgt ttg gaa tcg ccg atc att gat aac cat gag ctg gcc acc ttg
1795

Ile Arg Leu Glu Ser Pro Ile Ile Asp Asn His Glu Leu Ala Thr Leu
550 555 560 565

atc aat gcc aac gcg cat ggt gag tgg gat tcc ttt ggt gct gct gta
1843

Ile Asn Ala Asn Ala His Gly Glu Trp Asp Ser Phe Gly Ala Ala Val
570 575 580

att tct ggt ttg tac cca gtg gct cac cat ggt gcc ggc atg aag gct
1891

Ile Ser Gly Leu Tyr Pro Val Ala His His Gly Ala Gly Met Lys Ala
585 590 595

gcg att gct cgt gtg cgc cgc gag gtt tct gaa gca atc cgc aat ggc
1939

Ala Ile Ala Arg Val Arg Arg Glu Val Ser Glu Ala Ile Arg Asn Gly
600 605 610

aag acg ttg atc gtg ctg tcg gat cgt gaa tct gat gag cgc atg gca
 1987

Lys Thr Leu Ile Val Leu Ser Asp Arg Glu Ser Asp Glu Arg Met Ala
 615 620 625

cct atc cct gcg ctg ctg act tcc gct gtg cat cag tac ttg gtg
 2035

Pro Ile Pro Ala Leu Leu Leu Thr Ser Ala Val His Gln Tyr Leu Val
 630 635 640 645

cag caa cgt acc cgt acc cag tgc tcc ctg gtg gaa tcc ggc gat
 2083

Gln Gln Arg Thr Arg Thr Gln Cys Ser Leu Val Val Glu Ser Gly Asp
 650 655 660

gcc cgc gag gtt cat cac ctg gcg atg ctc att ggt ttt ggt gcc gat
 2131

Ala Arg Glu Val His His Leu Ala Met Leu Ile Gly Phe Gly Ala Asp
 665 670 675

gcf atc aac ccg tac atg gca ttt gaa acc atc gat gag ctg cgc atg
 2179

Ala Ile Asn Pro Tyr Met Ala Phe Glu Thr Ile Asp Glu Leu Arg Met
 680 685 690

aag ggt cag ttg ggt gat ctt tct ttg gat gag gca tcc cga aac tac
 2227

Lys Gly Gln Leu Gly Asp Leu Ser Leu Asp Glu Ala Ser Arg Asn Tyr
 695 700 705

atc aag gca gcc acc act ggt gtg ctg aag gtg atg tcc aag atg ggc
 2275

Ile Lys Ala Ala Thr Thr Gly Val Leu Lys Val Met Ser Lys Met Gly
 710 715 720 725

att gca acg gtg tct tcg tac cgt ggc gcg cag ctt gcc gat gtc act
 2323

Ile Ala Thr Val Ser Ser Tyr Arg Gly Ala Gln Leu Ala Asp Val Thr
 730 735 740

ggf ctg cac cag gat ctc ctg gac aac tac ttc ggt att gct tca
 2371

~~Gly Leu His Gln Asp Leu Leu Asp Asn Tyr Phe Gly Gly Ile Ala Ser~~
 745 750 755

cca att tct ggc atc ggt ctg gat gaa gtt gca gct gac gta gaa gct
 2419

Pro Ile Ser Gly Ile Gly Leu Asp Glu Val Ala Ala Asp Val Glu Ala
 760 765 770

cgt cac cgc agc gca ttt ttg cca cgc cct gaa gag cac gct cac cgt
 2467

Arg His Arg Ser Ala Phe Leu Pro Arg Pro Glu Glu His Ala His Arg
 775 780 785

gaa ttg gat ttg ggt ggt gaa tac aag tgg cgc cgc gaa ggt gaa tac
 2515

Glu Leu Asp Leu Gly Gly Glu Tyr Lys Trp Arg Arg Glu Gly Glu Tyr
 790 795 800 805

cac ctg ttc aac cca gaa acc atc ttc aag ctg cag cat gca acg cgt
2563

His Leu Phe Asn Pro Glu Thr Ile Phe Lys Leu Gln His Ala Thr Arg
810 815 820

tct ggc agc tac gag att ttc aag gat tac acc cgc aag gtt gat gat
2611

Ser Gly Ser Tyr Glu Ile Phe Lys Asp Tyr Thr Arg Lys Val Asp Asp
825 830 835

caa tcc act cgc ttg ggt act att cgt gga ctg ttt gag ttc agc acg
2659

Gln Ser Thr Arg Leu Gly Thr Ile Arg Gly Leu Phe Glu Phe Ser Thr
840 845 850

gac cgc aag cca att tcg gtg tct gag gtg gag ccg gtc agt gag atc
2707

Asp Arg Lys Pro Ile Ser Val Ser Glu Val Glu Pro Val Ser Glu Ile
855 860 865

gtg aag cgt ttc tcc act ggt gcg atg tct tat ggc tcg att tct gct
2755

Val Lys Arg Phe Ser Thr Gly Ala Met Ser Tyr Gly Ser Ile Ser Ala
870 875 880 885

gaa gcc cat gag gtc ttg gcc atc gcc atg aac cga ctg ggc ggt atg
2803

Glu Ala His Glu Val Leu Ala Ile Ala Met Asn Arg Leu Gly Gly Met
890 895 900

tcc aac tcc ggc gaa ggt ggc gag gac gcc cgc cga ttt gat gtg gaa
2851

Ser Asn Ser Gly Glu Gly Glu Asp Ala Arg Arg Phe Asp Val Glu
905 910 915

ccc aac ggt gac tgg aag cgc tct gcc att aag cag gtg gcc tcg gga
2899

Pro Asn Gly Asp Trp Lys Arg Ser Ala Ile Lys Gln Val Ala Ser Gly
920 925 930

cgt ttc ggc gtg acc agc cac tac ttg aac aac tgc acc gat att cag
2947

Arg Phe Gly Val Thr Ser His Tyr Leu Asn Asn Cys Thr Asp Ile Gln
935 940 945

atc aag atg gca cag ggc gca aag ccc ggt gaa ggt ggc cag ctg cca
2995

Ile Lys Met Ala Gln Gly Ala Lys Pro Gly Glu Gly Gly Gln Leu Pro
950 955 960 965

cca aac aag gtg tac cca tgg gtt gca gaa qtc cgc atc acc acc cca
3043

Pro Asn Lys Val Tyr Pro Trp Val Ala Glu Val Arg Ile Thr Thr Pro
970 975 980

ggc gtt ggt ctg att tcc cct cca cca cac cac gat att tac tcc att
3091

Gly Val Gly Leu Ile Ser Pro Pro Pro His His Asp Ile Tyr Ser Ile
985 990 995

gag gat ctc gct cag ctg atc cac gac ctg aag aac gct aac cca cgc
 3139
 Glu Asp Leu Ala Gln Leu Ile His Asp Leu Lys Asn Ala Asn Pro Arg
 1000 1005 1010

gca cga atc cac gtg aag cta gtg gca gaa caa ggc gtg ggc acc gtt
 3187
 Ala Arg Ile His Val Lys Leu Val Ala Glu Gln Gly Val Gly Thr Val
 1015 1020 1025

gcc gca ggt gtg tcc aaa gca cac gct gat gtg gtg ctt att tcc ggc
 3235
 Ala Ala Gly Val Ser Lys Ala His Ala Asp Val Val Leu Ile Ser Gly
 1030 1035 1040 1045

cac gat ggc gga act ggc gca tct cct ttg acc tcc ctg aag cat gcc
 3283
 His Asp Gly Gly Thr Gly Ala Ser Pro Leu Thr Ser Leu Lys His Ala
 1050 1055 1060

ggt ggt cca tgg gag ttg ggc ttg gct gaa acc cag caa acg ttg ctg
 3331
 Gly Gly Pro Trp Glu Leu Gly Leu Ala Glu Thr Gln Gln Thr Leu Leu
 1065 1070 1075

ctc aac ggc ctg cgc gat cgt att cgc gtg cag tgc gat ggt cag ctg
 3379
 Leu Asn Gly Leu Arg Asp Arg Ile Arg Val Gln Cys Asp Gly Gln Leu
 1080 1085 1090

aaa act ggc cga gac gtg gtt atc gca gct ctt ctc ggt gcc gaa gaa
 3427
 Lys Thr Gly Arg Asp Val Val Ile Ala Ala Leu Leu Gly Ala Glu Glu
 1095 1100 1105

ttc ggt ttt gcc acc gca ccg ctg gtg gtt gaa ggc tgc atc atg atg
 3475
 Phe Gly Phe Ala Thr Ala Pro Leu Val Val Glu Gly Cys Ile Met Met
 1110 1115 1120 1125

cgc gtc tgc cac ctg gac acc tgc ccg gtg ggt atc gct acc cag aac
 3523
~~Arg Val Cys His Leu Asp Thr Cys Pro Val Gly Ile Ala Thr Gln Asn~~
 1130 1135 1140

ccg gat ttg cgt tcc aag ttc acc ggc aag gct gaa cac gtg gtc aac
 3571
 Pro Asp Leu Arg Ser Lys Phe Thr Gly Lys Ala Glu His Val Val Asn
 1145 1150 1155

ttc ttc acc ttc atc gcc cag gaa gtc cgt gag tac ttg gca cag ctt
 3619
 Phe Phe Thr Phe Ile Ala Gln Glu Val Arg Glu Tyr Leu Ala Gln Leu
 1160 1165 1170

ggt ttc cgc tct att gat gaa gcc gtc gga caa gcc cag gtg ctg cgc
 3667
 Gly Phe Arg Ser Ile Asp Glu Ala Val Gly Gln Ala Gln Val Leu Arg
 1175 1180 1185

aag cgt tcc gga atc cca gct gat tcc cgc gca gca cac ctg gat ttg
 3715
 Lys Arg Ser Gly Ile Pro Ala Asp Ser Arg Ala Ala His Leu Asp Leu
 1190 1195 1200 1205

agc cca att ttc cat cgc cca gaa act cca cac ttc cca act cag gat
 3763
 Ser Pro Ile Phe His Arg Pro Glu Thr Pro His Phe Pro Thr Gln Asp
 1210 1215 1220

gtg cgt tgc acc aag acc cag gaa cac agc cta gaa aaa gcc ctg gac
 3811
 Val Arg Cys Thr Lys Thr Gln Glu His Ser Leu Glu Lys Ala Leu Asp
 1225 1230 1235

aac gca ttt att gat aag gct tcg gac acg atc acc cgt gcc gca gcg
 3859
 Asn Ala Phe Ile Asp Lys Ala Ser Asp Thr Ile Thr Arg Ala Ala Ala
 1240 1245 1250

ggt gtg gaa acc agc att gtt att gat agc tcc atc agc aac gtc aac
 3907
 Gly Val Glu Thr Ser Ile Val Ile Asp Ser Ser Ile Ser Asn Val Asn
 1255 1260 1265

cgt tca gtt ggc acg atg ctg ggt tct gca gtc agc cgc gtg gct ggt
 3955
 Arg Ser Val Gly Thr Met Leu Gly Ser Ala Val Ser Arg Val Ala Gly
 1270 1275 1280 1285

gcc caa ggt ttg cca gac ggc acc atc acc ttg aat ctt caa ggc tgc
 4003
 Ala Gln Gly Leu Pro Asp Gly Thr Ile Thr Leu Asn Leu Gln Gly Cys
 1290 1295 1300

gcc ggt aac tcc ttt ggc gcg ttc atc cca cga ggc atc acc atc aac
 4051
 Ala Gly Asn Ser Phe Gly Ala Phe Ile Pro Arg Gly Ile Thr Ile Asn
 1305 1310 1315

ctc acc ggc gat gcc aat gac ttt gtg ggc aag gga tta tct ggc gga
 4099
 Leu Thr Gly Asp Ala Asn Asp Phe Val Gly Lys Gly Leu Ser Gly Gly
 1320 1325 1330

aag att gtg atc aag cct tcc gct cag gct ccg aag cag ctg aag aac
 4147
 Lys Ile Val Ile Lys Pro Ser Ala Gln Ala Pro Lys Gln Leu Lys Asn
 1335 1340 1345

aat cca aat atc att gcc gga aac gtg ctt gga tac ggc gca acc agt
 4195
 Asn Pro Asn Ile Ile Ala Gly Asn Val Leu Gly Tyr Gly Ala Thr Ser
 1350 1355 1360 1365

ggc gaa ttg ttc att cgt ggc cag gtc ggc gaa cgt ttc tgc gtc cgt
 4243
 Gly Glu Leu Phe Ile Arg Gly Gln Val Gly Glu Arg Phe Cys Val Arg
 1370 1375 1380

aac tct ggc gcc acc gca gtg gtt gaa ggt atc gga aac cac ggt tgt
 4291
 Asn Ser Gly Ala Thr Ala Val Val Glu Gly Ile Gly Asn His Gly Cys
 1385 1390 1395

 gag tac atg act ggc ggc cga gtc ctg gtt ttg ggc ccg gtt ggt gag
 4339
 Glu Tyr Met Thr Gly Gly Arg Val Leu Val Leu Gly Pro Val Gly Glu
 1400 1405 1410

 aac ttt ggt gcc ggc atg tct ggt ggc att gca tac ctg gct aat tcc
 4387
 Asn Phe Gly Ala Gly Met Ser Gly Gly Ile Ala Tyr Leu Ala Asn Ser
 1415 1420 1425

 ccg gac cta aac cag aag atc aat ggc gaa ttg gtg gat gtt gtt cca
 4435
 Pro Asp Leu Asn Gln Lys Ile Asn Gly Glu Leu Val Asp Val Val Pro
 1430 1435 1440 1445

 ctg agc gct gac gat ctg acg tgg gct gat gag ctc att gct cgc cac
 4483
 Leu Ser Ala Asp Asp Leu Thr Trp Ala Asp Glu Leu Ile Ala Arg His
 1450 1455 1460

 cgc gaa ctc acc gga tcc gag acc aag ctg cgt gca caa gat ttg gtg
 4531
 Arg Glu Leu Thr Gly Ser Glu Thr Lys Leu Arg Ala Gln Asp Leu Val
 1465 1470 1475

 aaa atc atg ccg cgc gat ttc caa aaa gta ctc aac atc atc gaa acg
 4579
 Lys Ile Met Pro Arg Asp Phe Gln Lys Val Leu Asn Ile Ile Glu Thr
 1480 1485 1490

 gcc cac gct gag ggc caa gac cca gca atc aag atc atg gag gca gtg
 4627
 Ala His Ala Glu Gly Gln Asp Pro Ala Ile Lys Ile Met Glu Ala Val
 1495 1500 1505

 agc taatggccga cccacaagga ttc
 4653
 Scl
 1510

<210> 72
 <211> 1510
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 72
 Met Lys Pro Gln Gly Leu Tyr Asn Pro Ala His Glu His Asp Ala Cys
 1 5 10 15

Gly Val Ala Phe Ile Ala Asp Ile His Gly Arg Pro Ser Arg Ser Ile
 20 25 30

Val Asp Arg Ala Leu Glu Ala Leu Arg Asn Ile Asp His Arg Gly Ala
 35 40 45

Ala Gly Ala Glu Lys Asn Thr Gly Asp Gly Ala Gly Ile Leu Met Gln
 50 55 60

Ile Pro Asp Gly Phe Tyr Arg Glu Val Ser Gly Ile Glu Leu Pro Glu
 65 70 75 80

Ala Gly Glu Tyr Ala Thr Gly Ile Ala Phe Leu Pro Arg Gly Arg Met
 85 90 95

Ala Met Met Asp Ala Gln Lys Glu Ile Glu Arg Ile Ala Lys Gln Glu
 100 105 110

Gly Ala Asp Val Leu Gly Trp Arg Met Val Pro Phe Asp Ser Arg Asp
 115 120 125

Leu Gly Ser Met Ala Glu Glu Ala Met Pro Ser Phe Ala Gln Ile Phe
 130 135 140

Leu Thr Val Pro Gly Lys Ser Gly Glu Asp Leu Asp Arg Val Met Phe
 145 150 155 160

Phe Ile Arg Lys Arg Cys Glu Arg Glu Leu Gly Thr Thr Asn Gly Arg
 165 170 175

Asp Thr Val Tyr Phe Pro Ser Leu Ser Ser Arg Thr Ile Ile Tyr Lys
 180 185 190

Gly Met Leu Thr Thr Leu Gln Leu Glu Gly Phe Phe Glu Asp Leu Gly
 195 200 205

Asp Ala Arg Leu Glu Ser Ala Ile Ala Ile Val His Ser Arg Phe Ser
 210 215 220

Thr Asn Thr Phe Pro Ser Trp Pro Leu Ala His Pro Tyr Arg Phe Val
 225 230 235 240

Ala His Asn Gly Glu Ile Asn Thr Val Arg Gly Asn Glu Asn Trp Met
 245 250 255

Arg Ala Arg Glu Ala Leu Ile Lys Asn Asp Lys Leu Gly Asn Leu Ser
 260 265 270

Ser Val Leu Pro Ile Cys Thr Pro Glu Gly Ser Asp Thr Ala Arg Phe
 275 280 285

Asp Glu Ala Leu Glu Leu His Leu Gly Gly Tyr Ser Leu Pro His
 290 295 300

Ala Val Ala Met Met Ile Pro Gln Ala Trp Glu His Asn Lys Thr Leu
 305 310 315 320

Ser Pro Glu Leu Arg Asp Phe Tyr Glu Tyr His Ser Cys Leu Met Glu
 325 330 335

Pro Trp Asp Gly Pro Ala Ala Leu Ala Phe Thr Asp Gly Arg Phe Val
 340 345 350

Gly Ala Val Leu Asp Arg Asn Gly Leu Arg Pro Gly Arg Ile Thr Ile
 355 360 365

Thr Asp Ser Gly Leu Val Val Met Ala Ser Glu Ser Gly Val Leu Asp

370	375	380
Leu Arg Glu Glu Ser Val Val Lys Arg Thr Arg Val Gln Pro Gly Arg		
385	390	395
400		
Met Phe Leu Val Asp Thr Ala Glu Gly Arg Ile Val Glu Asp Glu Glu		
405	410	415
Ile Lys Gln Lys Leu Ser Glu Ala Gln Pro Tyr Gly Glu Trp Ile Arg		
420	425	430
Asp Asn Phe Val His Leu Asp Arg Leu Pro Gln Thr Arg Tyr Asn Tyr		
435	440	445
Met Ala His Ser Arg Ala Val Leu Arg Gln Arg Val Phe Gly Ile Thr		
450	455	460
Glu Glu Asp Val Asp Leu Leu Leu Pro Met Ala Arg Gln Gly Ala		
465	470	475
480		
Glu Ala Ile Gly Ser Met Gly Ser Asp Thr Pro Ile Ala Ala Leu Ser		
485	490	495
Gln Arg Pro Arg Met Leu Tyr Asp Phe Phe Ala Gln Arg Phe Ala Gln		
500	505	510
Val Thr Asn Pro Pro Leu Asp Ser Ile Arg Glu Lys Pro Val Thr Ser		
515	520	525
Met Phe Thr Leu Leu Gly Ala Gln Ser Asp Val Leu Asn Pro Gly Pro		
530	535	540
Asp Ala Ala Arg Arg Ile Arg Leu Glu Ser Pro Ile Ile Asp Asn His		
545	550	555
560		
Glu Leu Ala Thr Leu Ile Asn Ala Asn Ala His Gly Glu Trp Asp Ser		
565	570	575
Phe Gly Ala Ala Val Ile Ser Gly Leu Tyr Pro Val Ala His His Gly		
580	585	590
Ala Gly Met Lys Ala Ala Ile Ala Arg Val Arg Arg Glu Val Ser Glu		
595	600	605
Ala Ile Arg Asn Gly Lys Thr Leu Ile Val Leu Ser Asp Arg Glu Ser		
610	615	620
Asp Glu Arg Met Ala Pro Ile Pro Ala Leu Leu Leu Thr Ser Ala Val		
625	630	635
640		
His Gln Tyr Leu Val Gln Gln Arg Thr Arg Thr Gln Cys Ser Leu Val		
645	650	655
660		
Val Glu Ser Gly Asp Ala Arg Glu Val His His Leu Ala Met Leu Ile		
665	670	
Gly Phe Gly Ala Asp Ala Ile Asn Pro Tyr Met Ala Phe Glu Thr Ile		
675	680	685
Asp Glu Leu Arg Met Lys Gly Gln Leu Gly Asp Leu Ser Leu Asp Glu		
690	695	700

Ala Ser Arg Asn Tyr Ile Lys Ala Ala Thr Thr Gly Val Leu Lys Val
 705 710 715 720

 Met Ser Lys Met Gly Ile Ala Thr Val Ser Ser Tyr Arg Gly Ala Gln
 725 730 735

 Leu Ala Asp Val Thr Gly Leu His Gln Asp Leu Leu Asp Asn Tyr Phe
 740 745 750

 Gly Gly Ile Ala Ser Pro Ile Ser Gly Ile Gly Leu Asp Glu Val Ala
 755 760 765

 Ala Asp Val Glu Ala Arg His Arg Ser Ala Phe Leu Pro Arg Pro Glu
 770 775 780

 Glu His Ala His Arg Glu Leu Asp Leu Gly Gly Glu Tyr Lys Trp Arg
 785 790 795 800

 Arg Glu Gly Glu Tyr His Leu Phe Asn Pro Glu Thr Ile Phe Lys Leu
 805 810 815

 Gln His Ala Thr Arg Ser Gly Ser Tyr Glu Ile Phe Lys Asp Tyr Thr
 820 825 830

 Arg Lys Val Asp Asp Gln Ser Thr Arg Leu Gly Thr Ile Arg Gly Leu
 835 840 845

 Phe Glu Phe Ser Thr Asp Arg Lys Pro Ile Ser Val Ser Glu Val Glu
 850 855 860

 Pro Val Ser Glu Ile Val Lys Arg Phe Ser Thr Gly Ala Met Ser Tyr
 865 870 875 880

 Gly Ser Ile Ser Ala Glu Ala His Glu Val Leu Ala Ile Ala Met Asn
 885 890 895

 Arg Leu Gly Gly Met Ser Asn Ser Gly Glu Gly Gly Glu Asp Ala Arg
 900 905 910

 Arg Phe Asp Val Glu Pro Asn Gly Asp Trp Lys Arg Ser Ala Ile Lys
 915 920 925

 Gln Val Ala Ser Gly Arg Phe Gly Val Thr Ser His Tyr Leu Asn Asn
 930 935 940

 Cys Thr Asp Ile Gln Ile Lys Met Ala Gln Gly Ala Lys Pro Gly Glu
 945 950 955 960

 Gly Gly Gln Leu Pro Pro Asn Lys Val Tyr Pro Trp Val Ala Glu Val
 965 970 975

 Arg Ile Thr Thr Pro Gly Val Gly Leu Ile Ser Pro Pro Pro His His
 980 985 990

 Asp Ile Tyr Ser Ile Glu Asp Leu Ala Gln Leu Ile His Asp Leu Lys
 995 1000 1005

 Asn Ala Asn Pro Arg Ala Arg Ile His Val Lys Leu Val Ala Glu Gln
 1010 1015 1020

Gly Val Gly Thr Val Ala Ala Gly Val Ser Lys Ala His Ala Asp Val
 1025 1030 1035 1040
 Val Leu Ile Ser Gly His Asp Gly Gly Thr Gly Ala Ser Pro Leu Thr
 1045 1050 1055
 Ser Leu Lys His Ala Gly Gly Pro Trp Glu Leu Gly Leu Ala Glu Thr
 1060 1065 1070
 Gln Gln Thr Leu Leu Leu Asn Gly Leu Arg Asp Arg Ile Arg Val Gln
 1075 1080 1085
 Cys Asp Gly Gln Leu Lys Thr Gly Arg Asp Val Val Ile Ala Ala Leu
 1090 1095 1100
 Leu Gly Ala Glu Glu Phe Gly Phe Ala Thr Ala Pro Leu Val Val Glu
 1105 1110 1115 1120
 Gly Cys Ile Met Met Arg Val Cys His Leu Asp Thr Cys Pro Val Gly
 1125 1130 1135
 Ile Ala Thr Gln Asn Pro Asp Leu Arg Ser Lys Phe Thr Gly Lys Ala
 1140 1145 1150
 Glu His Val Val Asn Phe Phe Thr Phe Ile Ala Gln Glu Val Arg Glu
 1155 1160 1165
 Tyr Leu Ala Gln Leu Gly Phe Arg Ser Ile Asp Glu Ala Val Gly Gln
 1170 1175 1180
 Ala Gln Val Leu Arg Lys Arg Ser Gly Ile Pro Ala Asp Ser Arg Ala
 1185 1190 1195 1200
 Ala His Leu Asp Leu Ser Pro Ile Phe His Arg Pro Glu Thr Pro His
 1205 1210 1215
 Phe Pro Thr Gln Asp Val Arg Cys Thr Lys Thr Gln Glu His Ser Leu
 1220 1225 1230
 Glu Lys Ala Leu Asp Asn Ala Phe Ile Asp Lys Ala Ser Asp Thr Ile
 1235 1240 1245
~~Thr Arg Ala Ala Ala Gly val Gln Thr Ser Ile Val Ile Asp Ser Ser~~
 1250 1255 1260
 Ile Ser Asn Val Asn Arg Ser Val Gly Thr Met Leu Gly Ser Ala Val
 1265 1270 1275 1280
 Ser Arg Val Ala Gly Ala Gln Gly Leu Pro Asp Gly Thr Ile Thr Leu
 1285 1290 1295
 Asn Leu Gln Gly Cys Ala Gly Asn Ser Phe Gly Ala Phe Ile Pro Arg
 1300 1305 1310
 Gly Ile Thr Ile Asn Leu Thr Gly Asp Ala Asn Asp Phe Val Gly Lys
 1315 1320 1325
 Gly Leu Ser Gly Gly Lys Ile Val Ile Lys Pro Ser Ala Gln Ala Pro
 1330 1335 1340
 Lys Gln Leu Lys Asn Asn Pro Asn Ile Ile Ala Gly Asn Val Leu Gly

1345	1350	1355	1360
Tyr Gly Ala Thr Ser Gly Glu Leu Phe Ile Arg Gly Gln Val Gly Glu			
1365	1370	1375	
Arg Phe Cys Val Arg Asn Ser Gly Ala Thr Ala Val Val Glu Gly Ile			
1380	1385	1390	
Gly Asn His Gly Cys Glu Tyr Met Thr Gly Gly Arg Val Leu Val Leu			
1395	1400	1405	
Gly Pro Val Gly Glu Asn Phe Gly Ala Gly Met Ser Gly Gly Ile Ala			
1410	1415	1420	
Tyr Leu Ala Asn Ser Pro Asp Leu Asn Gln Lys Ile Asn Gly Glu Leu			
1425	1430	1435	1440
Val Asp Val Val Pro Leu Ser Ala Asp Asp Leu Thr Trp Ala Asp Glu			
1445	1450	1455	
Leu Ile Ala Arg His Arg Glu Leu Thr Gly Ser Glu Thr Lys Leu Arg			
1460	1465	1470	
Ala Gln Asp Leu Val Lys Ile Met Pro Arg Asp Phe Gln Lys Val Leu			
1475	1480	1485	
Asn Ile Ile Glu Thr Ala His Ala Glu Gly Gln Asp Pro Ala Ile Lys			
1490	1495	1500	
Ile Met Glu Ala Val Ser			
1505	1510		

<210> 73
<211> 1906
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1906)
<223> FRXA00007

<400> 73			
atcgaaagta acccttttgt tacttgcgtt gcaggttagtg tccctgattt tcttattatc	60		
gaacgattga tagaaacagg attaaagtga ggtatccgc atg aaa cca caa gga	115		
Met Lys Pro Gln Gly	1	5	
10	15	20	
ctc tac aac cct gcg cat gaa cat gac gcc tgc ggt gtg gcg ttt att	163		
Leu Tyr Asn Pro Ala His Glu His Asp Ala Cys Gly Val Ala Phe Ile			
25	30	35	
gcg gat atc cac ggt cga ccc agc cgc agc att gtt gat cgt gca ctt	211		
Ala Asp Ile His Gly Arg Pro Ser Arg Ser Ile Val Asp Arg Ala Leu			
40	45	50	
gag gcg ctt cgc aac att gac cac cga ggt gcc gcc ggt gca gag aag	259		
Glu Ala Leu Arg Asn Ile Asp His Arg Gly Ala Ala Gly Ala Glu Lys			

aac act ggc gat ggt gcg ggc atc ctc atg cag att ccg gac ggc ttt	307
Asn Thr Gly Asp Gly Ala Gly Ile Leu Met Gln Ile Pro Asp Gly Phe	
55	60
65	
tat cgt gaa gta tct ggc att gag ctt cct gag gca ggg gag tat gcc	355
Tyr Arg Glu Val Ser Gly Ile Glu Leu Pro Glu Ala Gly Glu Tyr Ala	
70	75
80	85
act ggt att gcg ttc ttg cct cgc ggt cgc atg gcg atg atg gat gct	403
Thr Gly Ile Ala Phe Leu Pro Arg Gly Arg Met Ala Met Met Asp Ala	
90	95
100	
cag aag gaa att gag cgc atc gca aag caa gaa ggt gcc gat gtg ctt	451
Gln Lys Glu Ile Glu Arg Ile Ala Lys Gln Glu Gly Ala Asp Val Leu	
105	110
115	
ggc tgg cgc atg gtt cct ttt gat tct cgt gat ttg ggt tcc atg gct	499
Gly Trp Arg Met Val Pro Phe Asp Ser Arg Asp Leu Gly Ser Met Ala	
120	125
130	
gag gag gcg atg cct agt ttc gcg cag att ttc ctt act gtg cct gga	547
Glu Glu Ala Met Pro Ser Phe Ala Gln Ile Phe Leu Thr Val Pro Gly	
135	140
145	
aaa tct ggt gaa gat ctt gac cgt gtg atg ttc ttt atc cgt aag cgt	595
Lys Ser Gly Glu Asp Leu Asp Arg Val Met Phe Phe Ile Arg Lys Arg	
150	155
160	165
tgt gag cgt gag ctg ggc acc acc aat ggt cgc gat acg gtg tat ttc	643
Cys Glu Arg Glu Leu Gly Thr Thr Asn Gly Arg Asp Thr Val Tyr Phe	
170	175
180	
ccg tcg cta tct tca cgc acc atc att tac aaa ggc atg ttg acc act	691
Pro Ser Leu Ser Ser Arg Thr Ile Ile Tyr Lys Gly Met Leu Thr Thr	
185	190
195	
ctg cag ctt gag ggc ttc ttt gag gat ctg ggt gat gct cgc ctg gag	739
Leu Gln Leu Glu Gly Phe Phe Glu Asp Leu Gly Asp Ala Arg Leu Glu	
200	205
210	
tcg gcc att gct att gtg cac tcg cgt ttc tcc acg aac act ttc cca	787
Ser Ala Ile Ala Ile Val His Ser Arg Phe Ser Thr Asn Thr Phe Pro	
215	220
225	
agc tgg ccg ctg gcg cac ccg tac cgt ttc gtt gcc cac aac ggt gag	835
Ser Trp Pro Leu Ala His Pro Tyr Arg Phe Val Ala His Asn Gly Glu	
230	235
240	245
atc aac act gtg cgt ggc aat gaa aac tgg atg cgc gcc cgc gag gcg	883
Ile Asn Thr Val Arg Gly Asn Glu Asn Trp Met Arg Ala Arg Glu Ala	
250	255
260	
ctt atc aaa aac gac aag ctg ggc aat ttg agc agc gtg ctg cct atc	931
Leu Ile Lys Asn Asp Lys Leu Gly Asn Leu Ser Ser Val Leu Pro Ile	
265	270
275	
tgc acc ccg gag ggc tcg gat acc gcg cgt ttc gac gag gct ttg gag	979
Cys Thr Pro Glu Gly Ser Asp Thr Ala Arg Phe Asp Glu Ala Leu Glu	
280	285
290	

ctt ttg cac ctg ggc gga tac tca ctt ccg cat gct gtt gcg atg atg
1027
Leu Leu His Leu Gly Gly Tyr Ser Leu Pro His Ala Val Ala Met Met
295 300 305

atc cct cag gcg tgg gaa cac aac aag acg ctg agc cct gag ctg cgt
1075
Ile Pro Gln Ala Trp Glu His Asn Lys Thr Leu Ser Pro Glu Leu Arg
310 315 320 325

gat ttc tac gaa tac cac tct tgt ctg atg gag cca tgg gat ggt cct
1123
Asp Phe Tyr Glu Tyr His Ser Cys Leu Met Glu Pro Trp Asp Gly Pro
330 335 340

gca gcg ctg gca ttt act gac ggt cgt ttt gtg ggt gcc gtg ctg gac
1171
Ala Ala Leu Ala Phe Thr Asp Gly Arg Phe Val Gly Ala Val Leu Asp
345 350 355

cgt aat ggc ctg cga cct ggg cga atc acc att act gat tcg ggt ttg
1219
Arg Asn Gly Leu Arg Pro Gly Arg Ile Thr Ile Thr Asp Ser Gly Leu
360 365 370

gtt gtg atg gct tct gaa tcg gga gtg ttg gac ttg agg gag gag gag
1267
Val Val Met Ala Ser Glu Ser Gly Val Leu Asp Leu Arg Glu Glu Ser
375 380 385

gtc gta aag cgt act cgc gta cag cct gga cgc atg ttc ctt gtt gac
1315
Val Val Lys Arg Thr Arg Val Gln Pro Gly Arg Met Phe Leu Val Asp
390 395 400 405

act gcc gag ggc cgc atc gtt gaa gac gag gaa atc aag cag aaa tta
1363
Thr Ala Glu Gly Arg Ile Val Glu Asp Glu Glu Ile Lys Gln Lys Leu
410 415 420

agc gaa gcg cag cca tat ggt gag tgg att cgc gat aat ttt gtg cat
1411
Ser Glu Ala Gln Pro Tyr Gly Glu Trp Ile Arg Asp Asn Phe Val His
425 430 435

ctg gat cgt ctg cct cag aca cgc tac aac tac atg gcg cac tct cgt
1459
Leu Asp Arg Leu Pro Gln Thr Arg Tyr Asn Tyr Met Ala His Ser Arg
440 445 450

gct gtg ttg cgt cag cgt gtt ttc gga atc act gaa gaa gat gtg gat
1507
Ala Val Leu Arg Gln Arg Val Phe Gly Ile Thr Glu Glu Asp Val Asp
455 460 465

ttg ttg ctg ctg ccg atg gcc cgc cag ggt gct gag gag gcg att ggt tcc
1555
Leu Leu Leu Pro Met Ala Arg Gln Gly Ala Glu Ala Ile Gly Ser
470 475 480 485

atg ggt tcg gat acg cca att gcg gcg cta tcc cag cga cca cgc atg
1603

Met Gly Ser Asp Thr Pro Ile Ala Ala Leu Ser Gln Arg Pro Arg Met
490 495 500

ctt tat gat ttc ttc gcg cag cgc ttt gct cag gtg aca aac cca ccg
1651

Leu Tyr Asp Phe Phe Ala Gln Arg Phe Ala Gln Val Thr Asn Pro Pro
505 510 515

ttg gac tct atc cgc gaa aag cct gtg acc agc atg ttc act ttg ttg
1699

Leu Asp Ser Ile Arg Glu Lys Pro Val Thr Ser Met Phe Thr Leu Leu
520 525 530

ggc gcg cag tct gac gtg ctc aat ccg ggt cct gat gcg gcg cga cgt
1747

Gly Ala Gln Ser Asp Val Leu Asn Pro Gly Pro Asp Ala Ala Arg Arg
535 540 545

att cgt ttg gaa tcg ccg atc att gat aac cat gag ctg gcc acc ttg
1795

Ile Arg Leu Glu Ser Pro Ile Ile Asp Asn His Glu Leu Ala Thr Leu
550 555 560 565

atc aat gcc aac gcg cat ggt gag tgg gat tcc ttt ggt gct gct gta
1843

Ile Asn Ala Asn Ala His Gly Glu Trp Asp Ser Phe Gly Ala Ala Val
570 575 580

att tct ggt ttg tac cca gtg gct cac cat ggt gcc ggc atg aag gct
1891

Ile Ser Gly Leu Tyr Pro Val Ala His His Gly Ala Gly Met Lys Ala
585 590 595

gcg att gct cgt gtg

1906

Ala Ile Ala Arg Val
600

<210> 74

<211> 602

<212> PRT

<213> Corynebacterium glutamicum

<400> 74

Met Lys Pro Gln Gly Leu Tyr Asn Pro Ala His Glu His Asp Ala Cys
1 5 10 15

Gly Val Ala Phe Ile Ala Asp Ile His Gly Arg Pro Ser Arg Ser Ile
20 25 30

Val Asp Arg Ala Leu Glu Ala Leu Arg Asn Ile Asp His Arg Gly Ala
35 40 45

Ala Gly Ala Glu Lys Asn Thr Gly Asp Gly Ala Gly Ile Leu Met Gln
50 55 60

Ile Pro Asp Gly Phe Tyr Arg Glu Val Ser Gly Ile Glu Leu Pro Glu
65 70 75 80

Ala Gly Glu Tyr Ala Thr Gly Ile Ala Phe Leu Pro Arg Gly Arg Met
 85 90 95

 Ala Met Met Asp Ala Gln Lys Glu Ile Glu Arg Ile Ala Lys Gln Glu
 100 105 110

 Gly Ala Asp Val Leu Gly Trp Arg Met Val Pro Phe Asp Ser Arg Asp
 115 120 125

 Leu Gly Ser Met Ala Glu Glu Ala Met Pro Ser Phe Ala Gln Ile Phe
 130 135 140

 Leu Thr Val Pro Gly Lys Ser Gly Glu Asp Leu Asp Arg Val Met Phe
 145 150 155 160

 Phe Ile Arg Lys Arg Cys Glu Arg Glu Leu Gly Thr Thr Asn Gly Arg
 165 170 175

 Asp Thr Val Tyr Phe Pro Ser Leu Ser Ser Arg Thr Ile Ile Tyr Lys
 180 185 190

 Gly Met Leu Thr Thr Leu Gln Leu Glu Gly Phe Phe Glu Asp Leu Gly
 195 200 205

 Asp Ala Arg Leu Glu Ser Ala Ile Ala Ile Val His Ser Arg Phe Ser
 210 215 220

 Thr Asn Thr Phe Pro Ser Trp Pro Leu Ala His Pro Tyr Arg Phe Val
 225 230 235 240

 Ala His Asn Gly Glu Ile Asn Thr Val Arg Gly Asn Glu Asn Trp Met
 245 250 255

 Arg Ala Arg Glu Ala Leu Ile Lys Asn Asp Lys Leu Gly Asn Leu Ser
 260 265 270

 Ser Val Leu Pro Ile Cys Thr Pro Glu Gly Ser Asp Thr Ala Arg Phe
 275 280 285

 Asp Glu Ala Leu Glu Leu Leu His Leu Gly Gly Tyr Ser Leu Pro His
 290 295 300

 Ala Val Ala Met Met Ile Pro Gln Ala Trp Glu His Asn Lys Thr Leu
 305 310 315 320

 Ser Pro Glu Leu Arg Asp Phe Tyr Glu Tyr His Ser Cys Leu Met Glu
 325 330 335

 Pro Trp Asp Gly Pro Ala Ala Leu Ala Phe Thr Asp Gly Arg Phe Val
 340 345 350

 Gly Ala Val Leu Asp Arg Asn Gly Leu Arg Pro Gly Arg Ile Thr Ile
 355 360 365

 Thr Asp Ser Gly Leu Val Val Met Ala Ser Glu Ser Gly Val Leu Asp
 370 375 380

 Leu Arg Glu Glu Ser Val Val Lys Arg Thr Arg Val Gln Pro Gly Arg
 385 390 395 400

Met Phe Leu Val Asp Thr Ala Glu Gly Arg Ile Val Glu Asp Glu Glu
 405 410 415

 Ile Lys Gln Lys Leu Ser Glu Ala Gln Pro Tyr Gly Glu Trp Ile Arg
 420 425 430

 Asp Asn Phe Val His Leu Asp Arg Leu Pro Gln Thr Arg Tyr Asn Tyr
 435 440 445

 Met Ala His Ser Arg Ala Val Leu Arg Gln Arg Val Phe Gly Ile Thr
 450 455 460

 Glu Glu Asp Val Asp Leu Leu Leu Pro Met Ala Arg Gln Gly Ala
 465 470 475 480

 Glu Ala Ile Gly Ser Met Gly Ser Asp Thr Pro Ile Ala Ala Leu Ser
 485 490 495

 Gln Arg Pro Arg Met Leu Tyr Asp Phe Phe Ala Gln Arg Phe Ala Gln
 500 505 510

 Val Thr Asn Pro Pro Leu Asp Ser Ile Arg Glu Lys Pro Val Thr Ser
 515 520 525

 Met Phe Thr Leu Leu Gly Ala Gln Ser Asp Val Leu Asn Pro Gly Pro
 530 535 540

 Asp Ala Ala Arg Arg Ile Arg Leu Glu Ser Pro Ile Ile Asp Asn His
 545 550 555 560

 Glu Leu Ala Thr Leu Ile Asn Ala Asn Ala His Gly Glu Trp Asp Ser
 565 570 575

 Phe Gly Ala Ala Val Ile Ser Gly Leu Tyr Pro Val Ala His His Gly
 580 585 590

 Ala Gly Met Lys Ala Ala Ile Ala Arg Val
 595 600

<210> 75
 <211> 1362
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (70)..(1362)
 <223> FRXA00364

<400> 75
 accaatttct ggcatcggtc tggatgaagt tgcagctgac gtagaaagct cgtcaccgca 60

 gcgcatttttg cca cgc cct gaa gag cac gct cac cgt gaa ttg gat ttg 111
 Leu Pro Arg Pro Glu Glu His Ala His Arg Glu Leu Asp Leu
 1 5 10

ggt ggt gaa tac aag tgg cgc cgc gaa ggt gaa tac cac ctg ttc aac 159
 Gly Gly Glu Tyr Lys Trp Arg Arg Glu Gly Glu Tyr His Leu Phe Asn
 15 20 25 30

cca gaa acc atc ttc aag ctg cag cat gca acg cgt tct ggc agc tac Pro Glu Thr Ile Phe Lys Leu Gln His Ala Thr Arg Ser Gly Ser Tyr	35	40	45	207
gag att ttc aag gat tac acc cgc aag gtt gat gat caa tcc act cgc Glu Ile Phe Lys Asp Tyr Thr Arg Lys Val Asp Asp Gln Ser Thr Arg	50	55	60	255
ttg ggt act att cgt gga ctg ttt gag ttc agc acg gac cgc aag cca Leu Gly Thr Ile Arg Gly Leu Phe Glu Phe Ser Thr Asp Arg Lys Pro	65	70	75	303
att tcg gtg tct gag gtg gag ccg gtc agt gag atc gtg aag cgt ttc Ile Ser Val Ser Glu Val Glu Pro Val Ser Glu Ile Val Lys Arg Phe	80	85	90	351
tcc act ggt gcg atg tct tat ggc tcg att tct gct gaa gcc cat gag Ser Thr Gly Ala Met Ser Tyr Gly Ser Ile Ser Ala Glu Ala His Glu	95	100	105	399
gtc ttg gcc atc gcc atg aac cga ctg ggc ggt atg tcc aac tcc ggc Val Leu Ala Ile Ala Met Asn Arg Leu Gly Gly Met Ser Asn Ser Gly	115	120	125	447
gaa ggt ggc gag gac gcc cgc cga ttt gat gtg gaa ccc aac ggt gac Glu Gly Glu Asp Ala Arg Arg Phe Asp Val Glu Pro Asn Gly Asp	130	135	140	495
tgg aag cgc tct gcc att aag cag gtg gcc tcg gga cgt ttc ggc gtg Trp Lys Arg Ser Ala Ile Lys Gln Val Ala Ser Gly Arg Phe Gly Val	145	150	155	543
acc agc cac tac ttg aac aac tgc acc gat att cag atc aag atg gca Thr Ser His Tyr Leu Asn Asn Cys Thr Asp Ile Gln Ile Lys Met Ala	160	165	170	591
cag ggc gca aag ccc ggt gaa ggt ggc cag ctg cca cca aac aag gtc Gln Gly Ala Lys Pro Gly Glu Gly Gln Leu Pro Pro Asn Lys Val	175	180	185	639
tac cca tgg gtt gca gaa gtc cgc atc acc acc cca ggc gtt ggt ctg Tyr Pro Trp Val Ala Glu Val Arg Ile Thr Thr Pro Gly Val Gly Leu	195	200	205	687
att tcc cct cca cca cac cac gat att tac tcc att gag gat ctg gct Ile Ser Pro Pro His His Asp Ile Tyr Ser Ile Glu Asp Leu Ala	210	215	220	735
cag ctg atc cac gac ctg aag aac gct aac cca cgc gca cga atc cac Gln Leu Ile His Asp Leu Lys Asn Ala Asn Pro Arg Ala Arg Ile His	225	230	235	783
gtg aag cta gtg gca gaa caa ggc gtg ggc acc gtt gcc gca ggt gtc Val Lys Leu Val Ala Glu Gln Gly Val Gly Thr Val Ala Ala Gly Val	240	245	250	831
tcc aaa gca cac gct gat gtg gtg ctt att tcc ggc cac gat ggc gga Ser Lys Ala His Ala Asp Val Val Leu Ile Ser Gly His Asp Gly Gly	255	260	265	879
act qgc qca tct cct ttg acc tcc ctg aag cat gcc ggt ggt cca tgg				927

Thr Gly Ala Ser Pro Leu Thr Ser Leu Lys His Ala Gly Gly Pro Trp
 275 280 285
 gag ttg ggc ttg gct gaa acc cag caa acg ttg ctg ctc aac ggc ctg 975
 Glu Leu Gly Leu Ala Glu Thr Gln Gln Thr Leu Leu Leu Asn Gly Leu
 290 295 300
 cgc gat cgt att cgc gtg cag tgc gat ggt cag ctg aaa act ggc cga
 1023
 Arg Asp Arg Ile Arg Val Gln Cys Asp Gly Gln Leu Lys Thr Gly Arg
 305 310 315
 gac gtg gtt atc gca gct ctt ctc ggt gcc gaa ttc ggt ttt gcc
 1071
 Asp Val Val Ile Ala Ala Leu Leu Gly Ala Glu Glu Phe Gly Phe Ala
 320 325 330
 acc gca ccg ctg gtg gtt gaa ggc tgc atc atg atg cgc gtc tgc cac
 1119
 Thr Ala Pro Leu Val Val Glu Gly Cys Ile Met Met Arg Val Cys His
 335 340 345 350
 ctg gac acc tgc ccg gtg ggt atc gct acc cag aac ccg gat ttg cgt
 1167
 Leu Asp Thr Cys Pro Val Gly Ile Ala Thr Gln Asn Pro Asp Leu Arg
 355 360 365
 tcc aag ttc acc ggc aag gct gaa cac gtg gtc aac ttc ttc acc ttc
 1215
 Ser Lys Phe Thr Gly Lys Ala Glu His Val Val Asn Phe Phe Thr Phe
 370 375 380
 atc gcc cag gaa gtc cgt gag tac ttg gca cag ctt ggt ttc cgc tct
 1263
 Ile Ala Gln Glu Val Arg Glu Tyr Leu Ala Gln Leu Gly Phe Arg Ser
 385 390 395
 att gat gaa gcc gtc gga caa gcc cag gtg ctg cgc aag cgt tcc gga
 1311
 Ile Asp Glu Ala Val Gly Gln Ala Gln Val Leu Arg Lys Arg Ser Gly
 400 405 410
 atc cca gct gat tcc cgc gca gca cac ctg gat ttg agc cca att ttc
 1359
 Ile Pro Ala Asp Ser Arg Ala Ala His Leu Asp Leu Ser Pro Ile Phe
 415 420 425 430
 atc
 1362
 Ile

<210> 76
 <211> 431
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 76
 Leu Pro Arg Pro Glu Glu His Ala His Arg Glu Leu Asp Leu Gly Gly
 1 5 10 15

Glu Tyr Lys Trp Arg Arg Glu Gly Glu Tyr His Leu Phe Asn Pro Glu
 20 25 30

Thr Ile Phe Lys Leu Gln His Ala Thr Arg Ser Gly Ser Tyr Glu Ile
 35 40 45

Phe Lys Asp Tyr Thr Arg Lys Val Asp Asp Gln Ser Thr Arg Leu Gly
 50 55 60

Thr Ile Arg Gly Leu Phe Glu Phe Ser Thr Asp Arg Lys Pro Ile Ser
 65 70 75 80

Val Ser Glu Val Glu Pro Val Ser Glu Ile Val Lys Arg Phe Ser Thr
 85 90 95

Gly Ala Met Ser Tyr Gly Ser Ile Ser Ala Glu Ala His Glu Val Leu
 100 105 110

Ala Ile Ala Met Asn Arg Leu Gly Gly Met Ser Asn Ser Gly Glu Gly
 115 120 125

Gly Glu Asp Ala Arg Arg Phe Asp Val Glu Pro Asn Gly Asp Trp Lys
 130 135 140

Arg Ser Ala Ile Lys Gln Val Ala Ser Gly Arg Phe Gly Val Thr Ser
 145 150 155 160

His Tyr Leu Asn Asn Cys Thr Asp Ile Gln Ile Lys Met Ala Gln Gly
 165 170 175

Ala Lys Pro Gly Glu Gly Gln Leu Pro Pro Asn Lys Val Tyr Pro
 180 185 190

Trp Val Ala Glu Val Arg Ile Thr Thr Pro Gly Val Gly Leu Ile Ser
 195 200 205

Pro Pro Pro His His Asp Ile Tyr Ser Ile Glu Asp Leu Ala Gln Leu
 210 215 220

Ile His Asp Leu Lys Asn Ala Asn Pro Arg Ala Arg Ile His Val Lys
 225 230 235 240

Leu Val Ala Glu Gln Gly Val Gly Thr Val Ala Ala Gly Val Ser Lys
 245 250 255

Ala His Ala Asp Val Val Leu Ile Ser Gly His Asp Gly Gly Thr Gly
 260 265 270

Ala Ser Pro Leu Thr Ser Leu Lys His Ala Gly Gly Pro Trp Glu Leu
 275 280 285

Gly Leu Ala Glu Thr Gln Gln Thr Leu Leu Leu Asn Gly Leu Arg Asp
 290 295 300

Arg Ile Arg Val Gln Cys Asp Gly Gln Leu Lys Thr Gly Arg Asp Val
 305 310 315 320

Val Ile Ala Ala Leu Leu Gly Ala Glu Glu Phe Gly Phe Ala Thr Ala
 325 330 335

Pro Leu Val Val Glu Gly Cys Ile Met Met Arg Val Cys His Leu Asp
 340 345 350

Thr Cys Pro Val Gly Ile Ala Thr Gln Asn Pro Asp Leu Arg Ser Lys
 355 360 365

Phe Thr Gly Lys Ala Glu His Val Val Asn Phe Phe Thr Phe Ile Ala
 370 375 380

Gln Glu Val Arg Glu Tyr Leu Ala Gln Leu Gly Phe Arg Ser Ile Asp
 385 390 395 400

Glu Ala Val Gly Gln Ala Gln Val Leu Arg Lys Arg Ser Gly Ile Pro
 405 410 415

Ala Asp Ser Arg Ala Ala His Leu Asp Leu Ser Pro Ile Phe Ile
 420 425 430

<210> 77

<211> 866

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(843)

<223> FRXA00367

<400> 77

cac	agc	cta	gaa	aaa	gcc	ctg	gac	aac	gca	ttt	att	gat	aag	gct	tcg	48
His	Ser	Leu	Glu	Lys	Ala	Leu	Asp	Asn	Ala	Phe	Ile	Asp	Lys	Ala	Ser	
1					5					10					15	

gac	acg	atc	acc	cgt	gcc	gca	gcg	ggt	gtg	gaa	acc	agc	att	gtt	att	96
Asp	Thr	Ile	Thr	Arg	Ala	Ala	Gly	Val	Glu	Thr	Ser	Ile	Val	Ile		
20					25					30						

gat	agc	tcc	atc	agc	aac	gtc	aac	cgt	tca	gtt	ggc	acg	atg	ctg	ggt	144
Asp	Ser	Ser	Ile	Ser	Asn	Val	Asn	Arg	Ser	Val	Gly	Thr	Met	Leu	Gly	
35					40										45	

tct	gca	gtc	agc	cgc	gtg	gct	ggt	gcc	caa	ggt	ttg	cca	gac	ggc	acc	192
Ser	Ala	Val	Ser	Arg	Val	Ala	Gly	Ala	Gln	Gly	Leu	Pro	Asp	Gly	Thr	
50					55						60					

atc	acc	ttg	aat	ctt	caa	ggc	tgc	gcc	ggt	aac	tcc	ttt	ggc	gcg	ttc	240
Ile	Thr	Leu	Asn	Leu	Gln	Gly	Cys	Ala	Gly	Asn	Ser	Phe	Gly	Ala	Phe	
65					70					75					80	

atc	cca	cga	ggc	atc	acc	atc	aac	ctc	acc	ggc	gat	gcc	aat	gac	ttt	288
Ile	Pro	Arg	Gly	Ile	Thr	Ile	Asn	Leu	Thr	Gly	Asp	Ala	Asn	Asp	Phe	
85											90				95	

gtg	ggc	aag	gga	tta	tct	ggc	gga	aag	att	gtg	atc	aag	cct	tcc	gct	336
Val	Gly	Lys	Gly	Leu	Ser	Gly	Gly	Lys	Ile	Val	Ile	Lys	Pro	Ser	Ala	
100										105					110	

cag	gct	ccg	aag	cag	ctg	aag	aac	aat	cca	aat	atc	att	gcc	gga	aac	384
Gln	Ala	Pro	Lys	Gln	Leu	Lys	Asn	Asn	Pro	Asn	Ile	Ile	Ala	Gly	Asn	
115					120										125	

gtc ctt gga tac ggc gca acc agt ggt gaa ttg ttc att cgt ggc cag 432
 Val Leu Gly Tyr Gly Ala Thr Ser Gly Glu Leu Phe Ile Arg Gly Gln
 130 135 140

 gtc ggc gaa cgt ttc tgc gtc cgt aac tct ggc gcc acc gca gtc gtt 480
 Val Gly Glu Arg Phe Cys Val Arg Asn Ser Gly Ala Thr Ala Val Val
 145 150 155 160

 gaa ggt atc gga aac cac ggt tgc gag tac atg act ggc ggc cga gtc 528
 Glu Gly Ile Gly Asn His Gly ,s Glu Tyr Met Thr Gly Gly Arg Val
 165 170 175

 ctg gtt ttg ggc ccg gtt ggt gag aac ttt ggt gcc ggc atg tct ggt 576
 Leu Val Leu Gly Pro Val Gly Glu Asn Phe Gly Ala Gly Met Ser Gly
 180 185 190

 ggc att gca tac ctg gct aat tcc ccg gac cta aac cag aag atc aat 624
 Gly Ile Ala Tyr Leu Ala Asn Ser Pro Asp Leu Asn Gln Lys Ile Asn
 195 200 205

 ggc gaa ttg gtg gat gtt gtt cca ctg agc gct gac gat ctg acg tgg 672
 Gly Glu Leu Val Asp Val Val Pro Leu Ser Ala Asp Asp Leu Thr Trp
 210 215 220

 gct gat gag ctc att gct cgc cac cgc gaa ctc acc gga tcc gag acc 720
 Ala Asp Glu Leu Ile Ala Arg His Arg Glu Leu Thr Gly Ser Glu Thr
 225 230 235 240

 aag ctg cgt gca caa gat ttg gtg aaa atc atg ccg cgc gat ttc caa 768
 Lys Leu Arg Ala Gln Asp Leu Val Lys Ile Met Pro Arg Asp Phe Gln
 245 250 255

 aaa gta ctc aac atc atc gaa acg gcc cac gct gag ggc caa gac cca 816
 Lys Val Leu Asn Ile Ile Glu Thr Ala His Ala Glu Gly Gln Asp Pro
 260 265 270

 gca atc aag atc atg gag gca gtg agc taatggccga cccacaagga 863
 Ala Ile Lys Ile Met Glu Ala Val Ser
 275 280

 ttc 866

<210> 78
 <211> 281
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 78
 His Ser Leu Glu Lys Ala Leu Asp Asn Ala Phe Ile Asp Lys Ala Ser
 1 5 10 15

 Asp Thr Ile Thr Arg Ala Ala Gly Val Glu Thr Ser Ile Val Ile
 20 25 30

 Asp Ser Ser Ile Ser Asn Val Asn Arg Ser Val Gly Thr Met Leu Gly
 35 40 45

 Ser Ala Val Ser Arg Val Ala Gly Ala Gln Gly Leu Pro Asp Gly Thr
 50 55 60

Ile Thr Leu Asn Leu Gln Gly Cys Ala Gly Asn Ser Phe Gly Ala Phe
 65 70 75 80

Ile Pro Arg Gly Ile Thr Ile Asn Leu Thr Gly Asp Ala Asn Asp Phe
 85 90 95

Val Gly Lys Gly Leu Ser Gly Gly Lys Ile Val Ile Lys Pro Ser Ala
 100 105 110

Gln Ala Pro Lys Gln Leu Lys Asn Asn Pro Asn Ile Ile Ala Gly Asn
 115 120 125

Val Leu Gly Tyr Gly Ala Thr Ser Gly Glu Leu Phe Ile Arg Gly Gln
 130 135 140

Val Gly Glu Arg Phe Cys Val Arg Asn Ser Gly Ala Thr Ala Val Val
 145 150 155 160

Glu Gly Ile Gly Asn His Gly Cys Glu Tyr Met Thr Gly Gly Arg Val
 165 170 175

Leu Val Leu Gly Pro Val Gly Glu Asn Phe Gly Ala Gly Met Ser Gly
 180 185 190

Gly Ile Ala Tyr Leu Ala Asn Ser Pro Asp Leu Asn Gln Lys Ile Asn
 195 200 205

Gly Glu Leu Val Asp Val Val Pro Leu Ser Ala Asp Asp Leu Thr Trp
 210 215 220

Ala Asp Glu Leu Ile Ala Arg His Arg Glu Leu Thr Gly Ser Glu Thr
 225 230 235 240

Lys Leu Arg Ala Gln Asp Leu Val Lys Ile Met Pro Arg Asp Phe Gln
 245 250 255

Lys Val Leu Asn Ile Ile Glu Thr Ala His Ala Glu Gly Gln Asp Pro
 260 265 270

Ala Ile Lys Ile Met Glu Ala Val Ser
 275 280

<210> 79

<211> 1494

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1471)

<223> RXN00076

<400> 79

tctaggagtgtttaaacagcc tggacttgaa acacccttaa ctacttgatt ttcacaccct 60

tgtttccata aaagggctca cgaaaggcaa cttcaaacac atg aca act ccc ctg 115
 Met Thr Thr Pro Leu
 1 5

cgc gta gcc gtc atc gga gct ggc cct gct ggc att tac gca tcc gac	163
Arg Val Ala Val Ile Gly Ala Gly Pro Ala Gly Ile Tyr Ala Ser Asp	
10 15 20	
ctc ctc atc cgc aat gaa gag cgc gaa gtg ttc gtt gac ctt ttc gag	211
Leu Leu Ile Arg Asn Glu Glu Arg Glu Val Phe Val Asp Leu Phe Glu	
25 30 35	
caa atg cct gca ccg ttc gga ctc atc cgt tac ggc gtt gct cca gac	259
Gln Met Pro Ala Pro Phe Gly Leu Ile Arg Tyr Gly Val Ala Pro Asp	
40 45 50	
cac cca cgc atc aag ggc atc gtt aag tcc ctg cac aac gtg ttg gac	307
His Pro Arg Ile Lys Gly Ile Val Lys Ser Leu His Asn Val Leu Asp	
55 60 65	
aag cca cgc ctg cgc ctg ctc ggt aac att gaa atc ggc aaa gac atc	355
Lys Pro Arg Leu Arg Leu Leu Gly Asn Ile Glu Ile Gly Lys Asp Ile	
70 75 80 85	
acc gtc gaa gaa ctc cgc gac tac tac gat gca gtc gtg ttc tcc acc	403
Thr Val Glu Glu Leu Arg Asp Tyr Tyr Asp Ala Val Val Phe Ser Thr	
90 95 100	
ggc gca gtt gca gac cgc gac ctc aac atc ccc gga att gaa gca gaa	451
Gly Ala Val Ala Asp Arg Asp Leu Asn Ile Pro Gly Ile Glu Ala Glu	
105 110 115	
ggc tcc ttc ggt gcc ggc gag ttc gtt ggc ttc tac gac ggc aac cca	499
Gly Ser Phe Gly Ala Gly Glu Phe Val Gly Phe Tyr Asp Gly Asn Pro	
120 125 130	
cgc ttc gag cgc tcc tgg gat ctg tct gca cag tcc gtc gct gtt atc	547
Arg Phe Glu Arg Ser Trp Asp Leu Ser Ala Gln Ser Val Ala Val Ile	
135 140 145	
ggc gtt ggt aac gtc ggc ctc gac gta gcc cgc atc ctg gct aag aca	595
Gly Val Gly Asn Val Gly Leu Asp Val Ala Arg Ile Leu Ala Lys Thr	
150 155 160 165	
ggc gac gag ctc aaa gtc acc gaa att tcc gac aac gtc tac gac tcc	643
Gly Asp Glu Leu Lys Val Thr Glu Ile Ser Asp Asn Val Tyr Asp Ser	
170 175 180	
ctc aaa gaa aac aag gcc act gaa att tcc gac aac gtc tac gac tcc	691
Leu Lys Glu Asn Lys Ala Thr Glu Val His Val Phe Gly Arg Arg Gly	
185 190 195	
cca gca cag gtc aag ttc acc cca cag gaa ctc aaa gaa ctc gac cac	739
Pro Ala Gln Val Lys Phe Thr Pro Gln Glu Leu Lys Glu Leu Asp His	
200 205 210	
tcc ccc acc atc aac gtg gtt gat cca gaa gac atc gac tac gac	787
Ser Pro Thr Ile Asn Val Val Asp Pro Glu Asp Ile Asp Tyr Asp	
215 220 225	
ggc gcc tct gaa gaa gcc cgc cgc gca tcc aag tcc cag gac ctg gtc	835
Gly Ala Ser Glu Glu Ala Arg Arg Ala Ser Lys Ser Gln Asp Leu Val	
230 235 240 245	
tgc cag atc ctg gaa cag tac gca atc cgc gag cca aag gac gct ccg	883

Cys Gln Ile Leu Glu Gln Tyr Ala Ile Arg Glu Pro Lys Asp Ala Pro
 250 255 260

cac acc ctg cag atc cac ctc ttt gaa aac cca gtt gag gtt ctt caa 931
 His Thr Leu Gln Ile His Leu Phe Glu Asn Pro Val Glu Val Leu Gln
 265 270 275

aag gac ggc aag gtt gtt ggc ctg cgc acc gaa cgc acc tca ctt gat 979
 Lys Asp Gly Lys Val Val Gly Leu Arg Thr Glu Arg Thr Ser Leu Asp
 280 285 290

ggc aac ggc ggc gta aac gga acc ggc gaa ttc aag gac tgg cca ~tc
 1027

Gly Asn Gly Val Asn Gly Thr Gly Glu Phe Lys Asp Trp Pro Val
 295 300 305

cag gct gtc tac cgc gca gtc ggc tac aag tcc gac ccc atc gac ggc
 1075

Gln Ala Val Tyr Arg Ala Val Gly Tyr Lys Ser Asp Pro Ile Asp Gly
 310 315 320 325

gtc cca ttc gat gag aac aag cac gtc atc cct aat gac ggc gga cat
 1123

Val Pro Phe Asp Glu Asn His Val Ile Pro Asn Asp Gly Gly His
 330 335 340

gtc ctc acc gct cca ggc gca gaa cca gta cca ggc ctc tat gca acc
 1171

Val Leu Thr Ala Pro Gly Ala Glu Pro Val Pro Gly Leu Tyr Ala Thr
 345 350 355

ggc tgg atc aag cgt gga cca atc ggt cta atc ggc aac acc aag tcc
 1219

Gly Trp Ile Lys Arg Gly Pro Ile Gly Leu Ile Gly Asn Thr Lys Ser
 360 365 370

gac gcc aag gaa acc acc gac atc ctc atc aag gat gcc gtc gcc ggt
 1267

Asp Ala Lys Glu Thr Thr Asp Ile Leu Ile Lys Asp Ala Val Ala Gly
 375 380 385

gta ctt gaa gct cca aag cac cag ggc gaa gaa gcc atc atc gag ctt
 1315

Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu Ala Ile Ile Glu Leu
 390 395 400 405

ctc gat tcc cgc aac atc cca ttc acc acc tgg gaa ggc tgg tac aaa
 1363

Leu Asp Ser Arg Asn Ile Pro Phe Thr Thr Trp Glu Gly Trp Tyr Lys
 410 415 420

ctc gac gca gca gag cgc gca ctc ggt gaa gcc gaa ggc cgc gag cgc
 1411

Leu Asp Ala Ala Glu Arg Ala Leu Gly Glu Ala Glu Gly Arg Glu Arg
 425 430 435

aag aag att gtt gat tgg gaa gaa atg gtc cgc cag gcc cgc gaa gct
 1459

Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg Gln Ala Arg Glu Ala
 440 445 450

cca gca att gtc taaaattgttt taacgcgtga agc

1494

Pro Ala Ile Val
455

<210> 80

<211> 457

<212> PRT

<213> Corynebacterium glutamicum

<400> 80

Met Thr Thr Pro Leu Arg Val Ala Val Ile Gly Ala Gly Pro Ala Gly
1 5 10 15

Ile Tyr Ala Ser Asp Leu Leu Ile Arg Asn Glu Glu Arg Glu Val Phe
20 25 30

Val Asp Leu Phe Glu Gln Met Pro Ala Pro Phe Gly Leu Ile Arg Tyr
35 40 45

Gly Val Ala Pro Asp His Pro Arg Ile Lys Gly Ile Val Lys Ser Leu
50 55 60

His Asn Val Leu Asp Lys Pro Arg Leu Arg Leu Leu Gly Asn Ile Glu
65 70 75 80

Ile Gly Lys Asp Ile Thr Val Glu Glu Leu Arg Asp Tyr Tyr Asp Ala
85 90 95

Val Val Phe Ser Thr Gly Ala Val Ala Asp Arg Asp Leu Asn Ile Pro
100 105 110

Gly Ile Glu Ala Glu Gly Ser Phe Gly Ala Gly Glu Phe Val Gly Phe
115 120 125

Tyr Asp Gly Asn Pro Arg Phe Glu Arg Ser Trp Asp Leu Ser Ala Gln
130 135 140

Ser Val Ala Val Ile Gly Val Gly Asn Val Gly Leu Asp Val Ala Arg
145 150 155 160

Ile Leu Ala Lys Thr Gly Asp Glu Leu Lys Val Thr Glu Ile Ser Asp
165 170 175

Asn Val Tyr Asp Ser Leu Lys Glu Asn Lys Ala Thr Glu Val His Val
180 185 190

Phe Gly Arg Arg Gly Pro Ala Gln Val Lys Phe Thr Pro Gln Glu Leu
195 200 205

Lys Glu Leu Asp His Ser Pro Thr Ile Asn Val Val Val Asp Pro Glu
210 215 220

Asp Ile Asp Tyr Asp Gly Ala Ser Glu Glu Ala Arg Arg Ala Ser Lys
225 230 235 240

Ser Gln Asp Leu Val Cys Gln Ile Leu Glu Gln Tyr Ala Ile Arg Glu
245 250 255

Pro Lys Asp Ala Pro His Thr Leu Gln Ile His Leu Phe Glu Asn Pro

	260	265	270
Val Glu Val Leu Gln Lys Asp Gly Lys Val Val Gly Leu Arg Thr Glu			
275	280	285	
Arg Thr Ser Leu Asp Gly Asn Gly Gly Val Asn Gly Thr Gly Glu Phe			
290	295	300	
Lys Asp Trp Pro Val Gln Ala Val Tyr Arg Ala Val Gly Tyr Lys Ser			
305	310	315	320
Asp Pro Ile Asp Gly Val Pro Phe Asp Glu Asn Lys His Val Ile Pro			
325	330	335	
Asn Asp Gly Gly His Val Leu Thr Ala Pro Gly Ala Glu Pro Val Pro			
340	345	350	
Gly Leu Tyr Ala Thr Gly Trp Ile Lys Arg Gly Pro Ile Gly Leu Ile			
355	360	365	
Gly Asn Thr Lys Ser Asp Ala Lys Glu Thr Thr Asp Ile Leu Ile Lys			
370	375	380	
Asp Ala Val Ala Gly Val Leu Glu Ala Pro Lys His Gln Gly Glu Glu			
385	390	395	400
Ala Ile Ile Glu Leu Leu Asp Ser Arg Asn Ile Pro Phe Thr Thr Trp			
405	410	415	
Glu Gly Trp Tyr Lys Leu Asp Ala Ala Glu Arg Ala Leu Gly Glu Ala			
420	425	430	
Glu Gly Arg Glu Arg Lys Lys Ile Val Asp Trp Glu Glu Met Val Arg			
435	440	445	
Gln Ala Arg Glu Ala Pro Ala Ile Val			
450	455		
<210> 81			
<211> 786			
<212> DNA			
<213> Corynebacterium glutamicum			
<220>			
<221> CDS			
<222> (101)..(763)			
<223> FRXA00075			
<400> 81			
tctaggagtgtt aaacagcc tggacttgaa acacctttaa ctacttgatt ttcacaccct	60		
tgtttccata aaagggctca cgaaaggcaa cttcaaacac atg aca act ccc ctg	115		
Met Thr Thr Pro Leu			
1	5		
cgc gta gcc gtc atc gga gct ggc cct gct ggc att tac gca tcc gac	163		
Arg Val Ala Val Ile Gly Ala Gly Pro Ala Gly Ile Tyr Ala Ser Asp			
10	15	20	
ctc ctc atc cgc aat gaa gag cgc gaa gtg ttc gtt gac ctt ttc gag	211		

Leu Leu Ile Arg Asn Glu Glu Arg Glu Val Phe Val Asp Leu Phe Glu		
25	30	35
caa atg cct gca ccg ttc gga ctc atc cgt tac ggc gtt gct cca gac		259
Gln Met Pro Ala Pro Phe Gly Leu Ile Arg Tyr Gly Val Ala Pro Asp		
40	45	50
cac cca cgc atc aag ggc atc gtt aag tcc ctg cac aac gtg ttg gac		307
His Pro Arg Ile Lys Gly Ile Val Lys Ser Leu His Asn Val Leu Asp		
55	60	65
aag cca cgc ctg cgc ctg ctc ggt aac att gaa atc ggc aaa gac atc		355
Lys Pro Arg Leu Arg Leu Leu Gly Asn Ile Glu Ile Gly Lys Asp Ile		
70	75	80
acc gtc gaa gaa ctc cgc gac tac tac gat gca gtc gtg ttc tcc acc		403
Thr Val Glu Glu Leu Arg Asp Tyr Tyr Asp Ala Val Val Phe Ser Thr		
90	95	100
ggc gca gtt gca gac cgc gac ctc aac atc ccc gga att gaa gca gaa		451
Gly Ala Val Ala Asp Arg Asp Leu Asn Ile Pro Gly Ile Glu Ala Glu		
105	110	115
ggc tcc ttc ggt gcc ggc gag ttc gtt ggc ttc tac gac ggc aac cca		499
Gly Ser Phe Gly Ala Gly Glu Phe Val Gly Phe Tyr Asp Gly Asn Pro		
120	125	130
cgc ttc gag cgc tcc tgg gat ctg tct gca cag tcc gtc gct gtt atc		547
Arg Phe Glu Arg Ser Trp Asp Leu Ser Ala Gln Ser Val Ala Val Ile		
135	140	145
ggc gtt ggt aac gtc ggc ctc gac gta gcc cgc atc ctg gct aag aca		595
Gly Val Gly Asn Val Gly Leu Asp Val Ala Arg Ile Leu Ala Lys Thr		
150	155	160
165		
ggc gac gag ctc aaa gtc acc gaa att tcc gac aac gtc tac gac tcc		643
Gly Asp Glu Leu Lys Val Thr Glu Ile Ser Asp Asn Val Tyr Asp Ser		
170	175	180
ctc aaa gaa aac aag gyc wct gaa gtg cac gtt ttc gga cgt cgg tgg		691
Leu Lys Glu Asn Lys Xaa Xaa Glu Val His Val Phe Gly Arg Arg Trp		
185	190	195
ccc agc aca ggt caa gtt cac ccc aca gga act maa aga act cgr cca		739
Pro Ser Thr Gly Gln Val His Pro Thr Gly Thr Xaa Arg Thr Xaa Pro		
200	205	210
ctc ccc cac cat caa cgt ggt tgt tgatccagaa gacatcgact acg		786
Leu Pro His His Gln Arg Gly Cys		
215	220	

<210> 82

<211> 221

<212> PRT

<213> Corynebacterium glutamicum

<400> 82

Met Thr Thr Pro Leu Arg Val Ala Val Ile Gly Ala Gly Pro Ala Gly
1 5 10 15

Ile Tyr Ala Ser Asp Leu Leu Ile Arg Asn Glu Glu Arg Glu Val Phe
 20 25 30

Val Asp Leu Phe Glu Gln Met Pro Ala Pro Phe Gly Leu Ile Arg Tyr
 35 40 45

Gly Val Ala Pro Asp His Pro Arg Ile Lys Gly Ile Val Lys Ser Leu
 50 55 60

His Asn Val Leu Asp Lys Pro Arg Leu Arg Leu Leu Gly Asn Ile Glu
 65 70 75 80

Ile Gly Lys Asp Ile Thr Val Glu Glu Leu Arg Asp Tyr Tyr Asp Ala
 85 90 95

Val Val Phe Ser Thr Gly Ala Val Ala Asp Arg Asp Leu Asn Ile Pro
 100 105 110

Gly Ile Glu Ala Glu Gly Ser Phe Gly Ala Gly Glu Phe Val Gly Phe
 115 120 125

Tyr Asp Gly Asn Pro Arg Phe Glu Arg Ser Trp Asp Leu Ser Ala Gln
 130 135 140

Ser Val Ala Val Ile Gly Val Gly Asn Val Gly Leu Asp Val Ala Arg
 145 150 155 160

Ile Leu Ala Lys Thr Gly Asp Glu Leu Lys Val Thr Glu Ile Ser Asp
 165 170 175

Asn Val Tyr Asp Ser Leu Lys Glu Asn Lys Xaa Xaa Glu Val His Val
 180 185 190

Phe Gly Arg Arg Trp Pro Ser Thr Gly Gln Val His Pro Thr Gly Thr
 195 200 205

Xaa Arg Thr Xaa Pro Leu Pro His His Gln Arg Gly Cys
 210 215 220

<210> 83

<211> 672

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(649)

<223> RXN00198

<400> 83

atgcaggatt agagcagcag caacggagcc agaatcagtc tcccaatttg atatccagcc 60

ccgcgcgtcct ttccagcgcg ccgattccac tccatggccg atg tac ccc aac ctc 115
Met Tyr Pro Asn Leu
1 5

ttc cgc acc gca acg gct cac gaa gga ggc gaa tac atc atc act ggc
Phe Arg Thr Ala Thr Ala His Glu Glu Gly Glu Tyr Ile Ile Thr Gly
10 15 20 163

gat gaa tca gcc gat gaa atc gca gcc ctg ggc ctc gcc gaa cgt gcc Asp Glu Ser Ala Asp Glu Ile Ala Ala Leu Gly Leu Ala Glu Arg Ala	211		
25	30	35	
 gca ggc tcc acg ctt ggt gaa cgt aaa ttt gct gtc aac acc gtg gaa Ala Gly Ser Thr Leu Gly Glu Arg Lys Phe Ala Val Asn Thr Val Glu	259		
40	45	50	
 ttc cac ggc aac aac ggc cac gtc acc gga ctc acc ggc aac caa atc Phe His Gly Asn Asn Gly His Val Thr Gly Leu Thr Gly Asn Gln Ile	307		
55	60	65	
 cga gtt gtc aac ggc aaa cgt gaa cca atc gaa ggc acc gaa ttc ccc Arg Val Val Asn Gly Lys Arg Glu Pro Ile Glu Gly Thr Glu Phe Pro	355		
70	75	80	85
 ttc gaa gca gac ctc gtt ctt gtt gca ctt ggc ttc acc ggc gca gaa Phe Glu Ala Asp Leu Val Leu Val Ala Leu Gly Phe Thr Gly Ala Glu	403		
90	95	100	
 caa ggc gga ttg gca cac gaa cta ggc gta ggt ttc gac gac cgg ggc Gln Gly Gly Leu Ala His Glu Leu Gly Val Gly Phe Asp Asp Arg Gly	451		
105	110	115	
 cgc atc ctc cgc gat tcc gaa tac cgc agc ccc acc aac tcc cgc gtt Arg Ile Leu Arg Asp Ser Glu Tyr Arg Ser Pro Thr Asn Ser Arg Val	499		
120	125	130	
 tac atc gca ggc gac aac ggc cgt ggc cag tcc ctg atc gtg tgg gca Tyr Ile Ala Gly Asp Asn Gly Arg Gly Gln Ser Leu Ile Val Trp Ala	547		
135	140	145	
 atc gcc gaa ggc cgc gca tgc gcc gca gct atc gac gcc gat ctc atg Ile Ala Glu Gly Arg Ala Cys Ala Ala Ile Asp Ala Asp Leu Met	595		
150	155	160	165
 ggg gaa act gca ctc cct gta gca gtt gca cca cag gac gtg ccg ctg Gly Glu Thr Ala Leu Pro Val Ala Val Ala Pro Gln Asp Val Pro Leu	643		
170	175	180	
 gct gtc tagcttggt agaaaatgct aga Ala Val	672		

```

<210> 84
<211> 183
<212> PRT
<213> Corynebacterium glutamicum

<400> 84
Met Tyr Pro Asn Leu Phe Arg Thr Ala Thr Ala His Glu Glu Gly Glu
      1           5           10          15
Tyr Ile Ile Thr Gly Asp Glu Ser Ala Asp Glu Ile Ala Ala Leu Gly
      20          25          30
Leu Ala Glu Arg Ala Ala Gly Ser Thr Leu Gly Glu Arg Lys Phe Ala
      35          40          45
Val Asn Thr Val Glu Phe His Gly Asn Asn Gly His Val Thr Gly Leu

```

50	55	60
Thr Gly Asn Gln Ile Arg Val Val Asn Gly Lys Arg Glu Pro Ile Glu		
65	70	75
Gly Thr Glu Phe Pro Phe Glu Ala Asp Leu Val Leu Val Ala Leu Gly		
85	90	95
Phe Thr Gly Ala Glu Gln Gly Gly Leu Ala His Glu Leu Gly Val Gly		
100	105	110
Phe Asp Asp Arg Gly Arg Ile Leu Arg Asp Ser Glu Tyr Arg Ser Pro		
115	120	125
Thr Asn Ser Arg Val Tyr Ile Ala Gly Asp Asn Gly Arg Gly Gln Ser		
130	135	140
Leu Ile Val Trp Ala Ile Ala Glu Gly Arg Ala Cys Ala Ala Ala Ile		
145	150	155
Asp Ala Asp Leu Met Gly Glu Thr Ala Leu Pro Val Ala Val Ala Pro		
165	170	175
Gln Asp Val Pro Leu Ala Val		
180		
<210> 85		
<211> 305		
<212> DNA		
<213> Corynebacterium glutamicum		
<220>		
<221> CDS		
<222> (1)..(282)		
<223> FRXA00198		
<400> 85		
ctc gtt ctt gtc ctt ggc ttc acc ggc gca gaa caa ggc gga ttg 48		
Leu Val Leu Val Ala Leu Gly Phe Thr Gly Ala Glu Gln Gly Gly Leu		
1	5	10
15		
gca tac gaa cta ggc gta ggt ttc gac gac cgg ggc cgc atc ctc cgc 96		
Ala His Glu Leu Gly Val Gly Phe Asp Asp Arg Gly Arg Ile Leu Arg		
20	25	30
gat tcc gaa tac cgc agc ccc acc aac tcc cgc gtt tac atc gca ggc 144		
Asp Ser Glu Tyr Arg Ser Pro Thr Asn Ser Arg Val Tyr Ile Ala Gly		
35	40	45
gac aac ggc cgt ggc cag tcc ctg atc gtg tgg gca atc gcc gaa ggc 192		
Asp Asn Gly Arg Gly Gln Ser Leu Ile Val Trp Ala Ile Ala Glu Gly		
50	55	60
cgc gca tgc gcc gca gct atc gac gcc gat ctc atg ggt gaa act gca 240		
Arg Ala Cys Ala Ala Ala Ile Asp Ala Asp Leu Met Gly Glu Thr Ala		
65	70	75
80		
ctc cct gta gca gtt gca cca cag gac gtg ccg ctg gct gtc 282		
Leu Pro Val Ala Val Ala Pro Gln Asp Val Pro Leu Ala Val		
85	90	

tagcttgggt agaaaaatgct aga 305

<210> 86
<211> 94
<212> PRT
<213> Corynebacterium glutamicum

<400> 86
Leu Val Leu Val Ala Leu Gly Phe Thr Gly Ala Glu Gln Gly Gly Leu
1 5 10 15
Ala His Glu Leu Gly Val Gly Phe Asp Asp Arg Gly Arg Arg Ile Leu Arg
20 25 30
Asp Ser Glu Tyr Arg Ser Pro Thr Asn Ser Arg Val Tyr Ile Ala Gly
35 40 45
Asp Asn Gly Arg Gly Gln Ser Leu Ile Val Trp Ala Ile Ala Glu Gly
50 55 60
Arg Ala Cys Ala Ala Ile Asp Ala Asp Leu Met Gly Glu Thr Ala
65 70 75 80
Leu Pro Val Ala Val Ala Pro Gln Asp Val Pro Leu Ala Val
85 90

<210> 87
<211> 727
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(727)
<223> RXN00365

<400> 87
gaagcctacg atcgcttgca cgcgaccaac aattcccccg agttcacccgg ccgttgtgc 60
ccgcaccct gcgaaggcgc ctgcgtgctc ggtatcaacg atg att ctg tca cca 115
Met Ile Leu Ser Pro
1 5
tca aaa acg ttt gag ctg gaa atc gtc gaa aaa gca ttc cgc gaa ggc 163
Ser Lys Thr Phe Glu Leu Glu Ile Val Glu Lys Ala Phe Arg Glu Gly
10 15 20
tgg gtg caa cca gta atc cca tcc atg tct acc ggg ctg tca gtc gcc 211
Trp Val Gin Pro Val Ile Pro Ser Met Ser Thr Gly Leu Ser Val Ala
25 30 35
gtc gtc ggt tcc ggc ccc gct ggc ctt gcc gcc gcg cag cag ctc acc 259
Val Val Gly Ser Gly Pro Ala Gly Leu Ala Ala Gln Gln Leu Thr
40 45 50
cgc gca ggc cac agc gtt acc gtc ttt gaa cgc gac gac cgc ctc ggc 307
Arg Ala Gly His Ser Val Thr Val Phe Glu Arg Asp Asp Arg Leu Gly
55 60 65

ggc ctc atg cgc tac ggc gtg cca gaa tac aaa atg gag aac cgc tgg 355
 Gly Leu Met Arg Tyr Gly Val Pro Glu Tyr Lys Met Glu Asn Arg Trp
 70 75 80 85

 atc gac cgc cgc atc gag caa atg gaa gca gag ggc aca act ttc cag 403
 Ile Asp Arg Arg Ile Glu Gln Met Glu Ala Glu Gly Thr Thr Phe Gln
 90 95 100

 gta ggc acc tcg ccg cgc gcc gct gaa cta gcg ctt ttc gac gcg atc 451
 Val Gly Thr Ser Pro Arg Ala Ala Glu Leu Ala Leu Phe Asp Ala Ile
 105 110 115

 ctc ctc gca acc ggc acc cca gtg gcc cgc gaa ctc tca gtt cca ggc 499
 Leu Leu Ala Thr Gly Thr Pro Val Ala Arg Glu Leu Ser Val Pro Gly
 120 125 130

 cac gat ctc aac ggc atc cat gcg gca atg gat tac ctc acc gcc caa 547
 His Asp Leu Asn Gly Ile His Ala Ala Met Asp Tyr Leu Thr Ala Gln
 135 140 145

 aac cgc atc aac gaa ggc gac ggt gaa gtc tct cca atc aac gcc aaa 595
 Asn Arg Ile Asn Glu Gly Asp Gly Glu Val Ser Pro Ile Asn Ala Lys
 150 155 160 165

 ggc aag aaa gtt gtc atc atc ggt ggc ggc gac acc ggc acc gac tgc 643
 Gly Lys Lys Val Val Ile Ile Gly Gly Asp Thr Gly Thr Asp Cys
 170 175 180

 ttc ggc acc gca ctg cgc caa gga gca gaa tca gtc acc caa ttt gat 691
 Phe Gly Thr Ala Leu Arg Gln Gly Ala Glu Ser Val Thr Gln Phe Asp
 185 190 195

 atc cgc ccc cgc gct cct ttc cag cgc gcc gat tcc 727
 Ile Arg Pro Arg Ala Pro Phe Gln Arg Ala Asp Ser
 200 205

<210> 88
 <211> 209
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 88
 Met Ile Leu Ser Pro Ser Lys Thr Phe Glu Leu Glu Ile Val Glu Lys
 1 5 10 15

 Ala Phe Arg Glu Gly Trp Val Gln Pro Val Ile Pro Ser Met Ser Thr
 20 25 30

 Gly Leu Ser Val Ala Val Val Gly Ser Gly Pro Ala Gly Leu Ala Ala
 35 40 45

 Ala Gln Gln Leu Thr Arg Ala Gly His Ser Val Thr Val Phe Glu Arg
 50 55 60

 Asp Asp Arg Leu Gly Gly Leu Met Arg Tyr Gly Val Pro Glu Tyr Lys
 65 70 75 80

 Met Glu Asn Arg Trp Ile Asp Arg Arg Ile Glu Gln Met Glu Ala Glu
 85 90 95

Gly Thr Thr Phe Gln Val Gly Thr Ser Pro Arg Ala Ala Glu Leu Ala
 100 105 110

Leu Phe Asp Ala Ile Leu Leu Ala Thr Gly Thr Pro Val Ala Arg Glu
 115 120 125

Leu Ser Val Pro Gly His Asp Leu Asn Gly Ile His Ala Ala Met Asp
 130 135 140

Tyr Leu Thr Ala Gln Asn Arg Ile Asn Glu Gly Asp Gly Glu Val Ser
 145 150 155 160

Pro Ile Asn Ala Lys Gly Lys Lys Val Val Ile Ile Gly Gly Asp
 165 170 175

Thr Gly Thr Asp Cys Phe Gly Thr Ala Leu Arg Gln Gly Ala Glu Ser
 180 185 190

Val Thr Gln Phe Asp Ile Arg Pro Arg Ala Pro Phe Gln Arg Ala Asp
 195 200 205

Ser

<210> 89

<211> 727

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)...(727)

<223> FRXA00365

<400> 89

gaaggcctacg atcgcttgca cgcgaccaac aatttccccc agttcacccgg ccgtttgtgc 60

cccgaccct gcgaaggcgc ctgcgtgctc ggtatcaacg atg att ctg tca cca 115
 Met Ile Leu Ser Pro
 1 5

tca aaa acg ttt gag ctg gaa atc gtc gaa aaa gca ttc cgc gaa ggc 163
 Ser Lys Thr Phe Glu Leu Glu Ile Val Glu Lys Ala Phe Arg Glu Gly
 10 15 20

tgg gtg caa cca gta atc cca tcc atg tct acc ggg ctg tca gtc gcc 211
 Trp Val Gln Pro Val Ile Pro Ser Met Ser Thr Gly Leu Ser Val Ala
 25 30 35

gtc gtc ggt tcc ggc ccc gct ggc ctt gcc gcc qcg cag cag ctc acc 259
 Val Val Gly Ser Gly Pro Ala Gly Leu Ala Ala Gln Gln Leu Thr
 40 45 50

cgc gca ggc cac agc gtt acc gtc ttt gaa cgc gac gac cgc ctc ggc 307
 Arg Ala Gly His Ser Val Thr Val Phe Glu Arg Asp Asp Arg Leu Gly
 55 60 65

ggc ctc atg cgc tac ggc gtg cca gaa tac aaa atg gag aac cgc tgg 355
 Gly Leu Met Arg Tyr Gly Val Pro Glu Tyr Lys Met Glu Asn Arg Trp

70	75	80	85	
atc gac cgc cgc atc gag caa atg gaa gca gag ggc aca act ttc cag Ile Asp Arg Arg Ile Glu Gln Met Glu Ala Glu Gly Thr Thr Phe Gln				403
90	95			100
gta ggc acc tcg ccg cgc gcc gct gaa cta gcg ctt ttc gac gcg atc Val Gly Thr Ser Pro Arg Ala Ala Glu Leu Ala Leu Phe Asp Ala Ile				451
105	110			115
ctc ctc gca acc ggc acc cca gtg gcc cgc gaa ctc tca gtt cca ggc Leu Leu Ala Thr Gly Thr Pro Val Ala Arg Glu Leu Ser Val Pro Gly				499
120	125	130		
cac gat ctc aac ggc atc cat gcg gca atg gat tac ctc acc gcc caa His Asp Leu Asn Gly Ile His Ala Ala Met Asp Tyr Leu Thr Ala Gln				547
135	140	145		
aac cgc atc aac gaa ggc gac ggt gaa gtc tct cca atc aac gcc aaa Asn Arg Ile Asn Glu Gly Asp Gly Glu Val Ser Pro Ile Asn Ala Lys				595
150	155	160		165
ggc aag aaa gtt gtc atc atc ggt ggc gac acc ggc acc gac tgc Gly Lys Lys Val Val Ile Ile Gly Gly Asp Thr Gly Thr Asp Cys				643
170	175			180
ttc ggc acc gca ctg cgc caa gga gca gaa tca gtc acc caa ttt gat Phe Gly Thr Ala Leu Arg Gln Gly Ala Glu Ser Val Thr Gln Phe Asp				691
185	190			195
atc cgc ccc cgc gct cct ttc cag cgc gcc gat tcc Ile Arg Pro Arg Ala Pro Phe Gln Arg Ala Asp Ser				727
200	205			

<210> 90

<211> 209

<212> PRT

<213> Corynebacterium glutamicum

<400> 90

Met Ile Leu Ser Pro Ser Lys Thr Phe Glu Leu Glu Ile Val Glu Lys

1 5 10 15

Ala Phe Arg Glu Gly Trp Val Gln Pro Val Ile Pro Ser Met Ser Thr

20 25 30

Gly Leu Ser Val Ala Val Val Gly Ser Gly Pro Ala Gly Leu Ala Ala

35 40 45

Ala Gln Gln Leu Thr Arg Ala Gly His Ser Val Thr Val Phe Glu Arg

50 55 60

Asp Asp Arg Leu Gly Gly Leu Met Arg Tyr Gly Val Pro Glu Tyr Lys

65 70 75 80

Met Glu Asn Arg Trp Ile Asp Arg Arg Ile Glu Gln Met Glu Ala Glu

85 90 95

Gly Thr Thr Phe Gln Val Gly Thr Ser Pro Arg Ala Ala Glu Leu Ala

100 105 110

Leu Phe Asp Ala Ile Leu Leu Ala Thr Gly Thr Pro Val Ala Arg Glu
 115 120 125

Leu Ser Val Pro Gly His Asp Leu Asn Gly Ile His Ala Ala Met Asp
 130 135 140

Tyr Leu Thr Ala Gln Asn Arg Ile Asn Glu Gly Asp Gly Glu Val Ser
 145 150 155 160

Pro Ile Asn Ala Lys Gly Lys Lys Val Val Ile Ile Gly Gly Asp
 165 170 175

Thr Gly Thr Asp Cys Phe Gly Thr Ala Leu Arg Gln Gly Ala Glu Ser
 180 185 190

Val Thr Gln Phe Asp Ile Arg Pro Arg Ala Pro Phe Gln Arg Ala Asp
 195 200 205

Ser

<210> 91

<211> 480

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(457)

<223> RXA00366

<400> 91

aaatcatgcc gcgcgatttc caaaaagtac tcaacatcat cgaaacggcc cacgctgagg 60

gccaagaccc agcaatcaag atcatggagg cagttagcta atg gcc gac cca caa 115
 Met Ala Asp Pro Gln
 1 5

gga ttc atc aaa tac tcc cga cgc gag cct gca cac cgc ccg gtc ccg 163
 Gly Phe Ile Lys Tyr Ser Arg Arg Glu Pro Ala His Arg Pro Val Pro
 10 15 20

ctg cgc ctc atg gac cac tcc gag gtc tac gaa aag gca ccg gca ggt 211
 Leu Arg Leu Met Asp His Ser Glu Val Tyr Glu Lys Ala Pro Ala Gly
 25 30 35

cag atc gag gaa cag gct gcc cgc tgc atg gat tgc ggt gtc ccg ttc 259
 Gln Ile Glu Glu Gln Ala Ala Arg Cys Met Asp Cys Gly Val Pro Phe
 40 45 50

tgc cac gaa ggc tgc cca ctg ggc aac atc atc cct gag tgg aat gat 307
 Cys His Glu Gly Cys Pro Leu Gly Asn Ile Ile Pro Glu Trp Asn Asp
 55 60 65

ctg gta cgc caa ggt cgg tgg aag gaa gcc tac gat cgc ttg cac gcg 355
 Leu Val Arg Gln Gly Arg Trp Lys Glu Ala Tyr Asp Arg Leu His Ala
 70 75 80 85

acc aac aat ttc ccc gag ttc acc ggc cgt ttg tgc ccc gca ccc tgc 403

Thr Asn Asn Phe Pro Glu Phe Thr Gly Arg Leu Cys Pro Ala Pro Cys			
90	95	100	
gaa ggc gcc tgc gtg ctc ggt atc aac gat gat tct gtc acc atc aaa 451			
Glu Gly Ala Cys Val Leu Gly Ile Asn Asp Asp Ser Val Thr Ile Lys			
105	110	115	
aac gtt tgagctggaa atcgtcgaaa aag 480			
Asn Val			

<210> 92			
<211> 119			
<212> PRT			
<213> Corynebacterium glutamicum			
<400> 92			
Met Ala Asp Pro Gln Gly Phe Ile Lys Tyr Ser Arg Arg Glu Pro Ala			
1	5	10	15
His Arg Pro Val Pro Leu Arg Leu Met Asp His Ser Glu Val Tyr Glu			
20	25	30	
Lys Ala Pro Ala Gly Gln Ile Glu Glu Gln Ala Ala Arg Cys Met Asp			
35	40	45	
Cys Gly Val Pro Phe Cys His Glu Gly Cys Pro Leu Gly Asn Ile Ile			
50	55	60	
Pro Glu Trp Asn Asp Leu Val Arg Gln Gly Arg Trp Lys Glu Ala Tyr			
65	70	75	80
Asp Arg Leu His Ala Thr Asn Asn Phe Pro Glu Phe Thr Gly Arg Leu			
85	90	95	
Cys Pro Ala Pro Cys Glu Gly Ala Cys Val Leu Gly Ile Asn Asp Asp			
100	105	110	
Ser Val Thr Ile Lys Asn Val			
115			

<210> 93			
<211> 1464			
<212> DNA			
<213> Corynebacterium glutamicum			
<220>			
<221> CDS			
<222> (101)..(1441)			
<223> RXA02072			
<400> 93			
tacatggtgc cctcaatggg aaccaccaac atcactaaat ggcccaggta cacactttaa 60			
aatcgtgcgc gcattgcagcc gagatggaa cgaggaaatc atg aca gtt gat gag 115			
Met Thr Val Asp Glu			
1	5		
cag gtc tct aac tat tac gac atg ctt ctg aag cgc aat gct ggc gag 163			

Gln Val Ser Asn Tyr Tyr Asp Met Leu Leu Lys Arg Asn Ala Gly Glu			
10	15	20	
cct gaa ttt cac cag gca gtg gca gag gtt ttg gaa tct ttg aag atc			211
Pro Glu Phe His Gln Ala Val Ala Glu Val Leu Glu Ser Leu Lys Ile			
25	30	35	
gtc ctg gaa aag gac cct cat tac gct gat tac ggt ctc atc cag cgc			259
Val Leu Glu Lys Asp Pro His Tyr Ala Asp Tyr Gly Leu Ile Gln Arg			
40	45	50	
ctg tgc gag cct gag cgt cag ctc atc ttc cgt gtg cct tgg gtt gat			307
Leu Cys Glu Pro Glu Arg Gln Leu Ile Phe Arg Val Pro Trp Val Asp			
55	60	65	
gac cag ggc cag gtc cac gtc aac cgt ggt ttc cgc gtg cag ttc aac			355
Asp Gin Gly Gin Val His Val Asn Arg Gly Phe Arg Val Gln Phe Asn			
70	75	80	85
tct gca ctt gga cca tac aag ggc ggc ctg cgc ttc cac cca tct gta			403
Ser Ala Leu Gly Pro Tyr Lys Gly Gly Leu Arg Phe His Pro Ser Val			
90	95	100	
aac ctg ggc att gtg aag ttc ctg ggc ttt gag cag atc ttt aaa aac			451
Asn Leu Gly Ile Val Lys Phe Leu Gly Phe Glu Gln Ile Phe Lys Asn			
105	110	115	
tcc cta acc ggc ctg cca atc ggt ggt ggc aag ggt gga tcc gac ttc			499
Ser Leu Thr Gly Leu Pro Ile Gly Gly Lys Gly Ser Asp Phe			
120	125	130	
gac cct aag ggc aag tcc gat ctg gaa atc atg cgt ttc tgc cag tcc			547
Asp Pro Lys Gly Lys Ser Asp Leu Glu Ile Met Arg Phe Cys Gln Ser			
135	140	145	
ttc atg acc gag ctg cac cgc cac atc ggt gag tac cgc gac gtt cct			595
Phe Met Thr Glu Leu His Arg His Ile Gly Glu Tyr Arg Asp Val Pro			
150	155	160	165
gca ggt aac atc gga gtt ggt ggc cac gag atc ggt tac ctg ttt ggc			643
Ala Gly Asn Ile Gly Val Gly His Glu Ile Gly Tyr Leu Phe Gly			
170	175	180	
cac tac cgt cgc atg gct aac cag cac gag tcc ggc gtt ttg acc ggt			691
His Tyr Arg Arg Met Ala Asn Gln His Glu Ser Gly Val Leu Thr Gly			
185	190	195	
aag ggc ctg acc tgg ggt gga tcc ctg gtc cgc acc gag gca act ggc			739
Lys Gly Leu Thr Trp Gly Gly Ser Leu Val Arg Thr Glu Ala Thr Gly			
200	205	210	
tac ggc tgc gtt tac ttc gtg agt gaa atg atc aag gct aag ggc gag			787
Tyr Gly Cys Val Tyr Phe Val Ser Glu Met Ile Lys Ala Lys Gly Glu			
215	220	225	
agc atc agc ggc cag aag atc atc gtt tcc ggt tcc ggc aac gta gca			835
Ser Ile Ser Gly Gln Ile Ile Val Ser Gly Ser Gly Asn Val Ala			
230	235	240	245
acc tac gcg att gaa aag gct cag gaa ctc ggc gca acc gtt att ggt			883
Thr Tyr Ala Ile Glu Lys Ala Gln Glu Leu Gly Ala Thr Val Ile Gly			

250	255	260	
ttc tcc gat tcc agc ggt tgg gtt cat acc cct aac ggc gtt gac gtg 931 Phe Ser Asp Ser Ser Gly Trp Val His Thr Pro Asn Gly Val Asp Val			
265	270	275	
gct aag ctc cgc gaa atc aag gaa gtt cgt cgc gca cgc gta tcc gtg 979 Ala Lys Leu Arg Glu Ile Lys Glu Val Arg Arg Ala Arg Val Ser Val			
280	285	290	
tac gcc gac gaa gtt gaa ggc gca acc tac cac acc gac ggt tcc atc 1027			
Tyr Ala Asp Glu Val Glu Gly Ala Thr Tyr His Thr Asp Gly Ser Ile 295 300 305			
tgg gat ctc aag tgc gat atc gct ctt cct tgt gca act cag aac gag 1075			
Trp Asp Leu Lys Cys Asp Ile Ala Leu Pro Cys Ala Thr Gln Asn Glu 310 315 320 325			
ctc aac ggc gag aac gct aag act ctt gca gac aac ggc tgc cgt ttc 1123			
Leu Asn Gly Glu Asn Ala Lys Thr Leu Ala Asp Asn Gly Cys Arg Phe 330 335 340			
gtt gct gaa ggc gcg aac atg cct tcc acc cct gag gct gtt gag gtc 1171			
Val Ala Glu Gly Ala Asn Met Pro Ser Thr Pro Glu Ala Val Glu Val 345 350 355			
ttc cgt gag cgc gac atc cgc ttc gga cca ggc aag gca gct aac gct 1219			
Phe Arg Glu Arg Asp Ile Arg Phe Gly Pro Gly Lys Ala Ala Asn Ala 360 365 370			
ggg ggc gtt gca acc tcc gct ctg gag atg cag cag aac gct tcg cgc 1267			
Gly Gly Val Ala Thr Ser Ala Leu Glu Met Gln Gln Asn Ala Ser Arg 375 380 385			
gat tcc tgg agc ttc gag tac acc gac gag cgc ctc cag gtg atc atg 1315			
Asp Ser Ile Ser Phe Glu Tyr Thr Asp Glu Arg Leu Gln Val Ile Met 390 395 400 405			
aag aac atc ttc aag acc tgg gca gag acc gca gca gag tat gga cac 1363			
Lys Asn Ile Phe Lys Thr Cys Ala Glu Thr Ala Ala Glu Tyr Gly His 410 415 420			
gag aac gat tac gtt gtc ggc gct aac att gct ggc ttc aag aag gta 1411			
Glu Asn Asp Tyr Val Val Gly Ala Asn Ile Ala Gly Phe Lys Lys Val 425 430 435			
gct gac gcg atg ctg gca cag ggc gtc atc taagaccct gcgctttact 1461			
Ala Asp Ala Met Leu Ala Gln Gly Val Ile 440 445			

taa
1464

<210> 94
<211> 447
<212> PRT
<213> Corynebacterium glutamicum

<400> 94
Met Thr Val Asp Glu Gln Val Ser Asn Tyr Tyr Asp Met Leu Leu Lys
1 5 10 15

Arg Asn Ala Gly Glu Pro Glu Phe His Gln Ala Val Ala Glu Val Leu
20 25 30

Glu Ser Leu Lys Ile Val Leu Glu Lys Asp Pro His Tyr Ala Asp Tyr
35 40 45

Gly Leu Ile Gln Arg Leu Cys Glu Pro Glu Arg Gln Leu Ile Phe Arg
50 55 60

Val Pro Trp Val Asp Asp Gln Gly Gln Val His Val Asn Arg Gly Phe
65 70 75 80

Arg Val Gln Phe Asn Ser Ala Leu Gly Pro Tyr Lys Gly Gly Leu Arg
85 90 95

Phe His Pro Ser Val Asn Leu Gly Ile Val Lys Phe Leu Gly Phe Glu
100 105 110

Gln Ile Phe Lys Asn Ser Leu Thr Gly Leu Pro Ile Gly Gly Lys
115 120 125

Gly Gly Ser Asp Phe Asp Pro Lys Gly Lys Ser Asp Leu Glu Ile Met
130 135 140

Arg Phe Cys Gln Ser Phe Met Thr Glu Leu His Arg His Ile Gly Glu
145 150 155 160

Tyr Arg Asp Val Pro Ala Gly Asn Ile Gly Val Gly His Glu Ile
165 170 175

Gly Tyr Leu Phe Gly His Tyr Arg Arg Met Ala Asn Gln His Glu Ser
180 185 190

Gly Val Leu Thr Gly Lys Gly Leu Thr Trp Gly Gly Ser Leu Val Arg
195 200 205

Thr Glu Ala Thr Gly Tyr Gly Cys Val Tyr Phe Val Ser Glu Met Ile
210 215 220

Lys Ala Lys Gly Glu Ser Ile Ser Gly Gln Lys Ile Ile Val Ser Gly
225 230 235 240

Ser Gly Asn Val Ala Thr Tyr Ala Ile Glu Lys Ala Gln Glu Leu Gly
245 250 255

Ala Thr Val Ile Gly Phe Ser Asp Ser Ser Gly Trp Val His Thr Pro
260 265 270

Asn Gly Val Asp Val Ala Lys Leu Arg Glu Ile Lys Glu Val Arg Arg
 275 280 285

Ala Arg Val Ser Val Tyr Ala Asp Glu Val Glu Gly Ala Thr Tyr His
 290 295 300

Thr Asp Gly Ser Ile Trp Asp Leu Lys Cys Asp Ile Ala Leu Pro Cys
 305 310 315 320

Ala Thr Gln Asn Glu Leu Asn Gly Glu Asn Ala Lys Thr Leu Ala Asp
 325 330 335

Asn Gly Cys Arg Phe Val Ala Glu Gly Ala Asn Met Pro Ser Thr Pro
 340 345 350

Glu Ala Val Glu Val Phe Arg Glu Arg Asp Ile Arg Phe Gly Pro Gly
 355 360 365

Lys Ala Ala Asn Ala Gly Gly Val Ala Thr Ser Ala Leu Glu Met Gln
 370 375 380

Gln Asn Ala Ser Arg Asp Ser Trp Ser Phe Glu Tyr Thr Asp Glu Arg
 385 390 395 400

Leu Gln Val Ile Met Lys Asn Ile Phe Lys Thr Cys Ala Glu Thr Ala
 405 410 415

Ala Glu Tyr Gly His Glu Asn Asp Tyr Val Val Gly Ala Asn Ile Ala
 420 425 430

Gly Phe Lys Lys Val Ala Asp Ala Met Leu Ala Gln Gly Val Ile
 435 440 445

<210> 95

<211> 1461

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1438)

<223> KKA00323

<400> 95

cgcgcacatcc tttagtaact ctgagaaaaa ctaccccgaa tggagtata aaagtggcaa 60

atgcgcagtc gatgtcccat cgctgcgtag attagtttc atg aac agc gaa cag 115
 Met Asn Ser Glu Gln
 1 5

gaa ttt gta ctc agc gcc att gaa gaa cgc gac att aag ttt gtg cgt 163
 Glu Phe Val Leu Ser Ala Ile Glu Glu Arg Asp Ile Lys Phe Val Arg
 10 15 20

cta tgg ttc act gac att ctt ggc cac ttg aag tca gtg gtt gtg gct 211
 Leu Trp Phe Thr Asp Ile Leu Gly His Leu Lys Ser Val Val Ala
 25 30 35

cct gca gaa cta gag tct gcg ttg gaa gaa ggc atc gga ttc gat ggc 259
 Pro Ala Glu Leu Glu Ser Ala Leu Glu Glu Gly Ile Gly Phe Asp Gly

40	45	50	
tca gcc att gag ggc tac gcg cgt atc tcg gaa gcg gac acc att gcc Ser Ala Ile Glu Gly Tyr Ala Arg Ile Ser Glu Ala Asp Thr Ile Ala	55	60	307
cgc cca gat cca tcg aca ttc cag gtc ctc cca cta gaa gcg ggc atc Arg Pro Asp Pro Ser Thr Phe Gln Val Leu Pro Leu Glu Ala Gly Ile	70	75	355
cgc cca gat cca tcg aca ttc cag gtc ctc cca cta gaa gcg ggc atc Arg Pro Asp Pro Ser Thr Phe Gln Val Leu Pro Leu Glu Ala Gly Ile	80	85	403
tca aaa ctg cag gca gca cgc ctg ttt tgc gat gtc acg atg cca gac Ser Lys Leu Gln Ala Ala Arg Leu Phe Cys Asp Val Thr Met Pro Asp	90	95	451
gga cag cca tct ttt tct gac ccg cgc caa gtg ctg cgc agg cag gtc Gly Gln Pro Ser Phe Ser Asp Pro Arg Gln Val Leu Arg Arg Gln Val	105	110	499
caa cta gct gca gat gaa ggc ttg acc tgc atg atc tca cca gag att Gln Leu Ala Ala Asp Glu Gly Leu Thr Cys Met Ile Ser Pro Glu Ile	120	125	547
gag ttc tat ttg gtg caa agc ctt cgc acc aac gga ctg cca cct gtg Glu Phe Tyr Leu Val Gln Ser Leu Arg Thr Asn Gly Leu Pro Pro Val	135	140	595
ccg act gac aac ggc gga tat ttc gac caa gcc aca ttc aat gag gcg Pro Thr Asp Asn Gly Tyr Phe Asp Gln Ala Thr Phe Asn Glu Ala	150	155	643
ccg aat ttc cgt cga aac gcg atg gta gcg ctg gag gaa ctc ggc atc Pro Asn Phe Arg Arg Asn Ala Met Val Ala Leu Glu Glu Leu Gly Ile	170	175	691
cct gtc gag ttc tcc cac cat gaa act gca cct ggc cag caa gaa atc Pro Val Glu Phe Ser His His Glu Thr Ala Pro Gly Gln Gln Glu Ile	185	190	739
gat tta cgc cat gcg gat gcg ctc acc atg gcc gac aac atc atg acc Asp Leu Arg His Ala Asp Ala Leu Thr Met Ala Asp Asn Ile Met Thr	200	205	787
ttc cgc tac atc atg aaa cag gtg gca agg gac caa ggc gtc ggg gca Phe Arg Tyr Ile Met Lys Gln Val Ala Arg Asp Gln Gly Val Gly Ala	215	220	835
tca ttt atg ccc aag cca ttc caa gaa cat gca ggc tcc gcc atg cac Ser Phe Met Pro Lys Pro Phe Gln Glu His Ala Gly Ser Ala Met His	230	235	883
acg cac atg tcc tta ttt gag ggc gat acc aac gcg ttc cac qat cca Thr His Met Ser Leu Phe Glu Gly Asp Thr Asn Ala Phe His Asp Pro	250	255	931
gac gat tct tac atg ctg tcc aaa acc gca aaa cag ttc atc gct gga Asp Asp Ser Tyr Met Leu Ser Lys Thr Ala Lys Gln Phe Ile Ala Gly	265	270	979
atc ttg cat cac gct cca gaa ttc acc gct gtg acc aac cag tgg gtc Ile Leu His His Ala Pro Glu Phe Thr Ala Val Thr Asn Gln Trp Val	280	285	275

aat tcc tac aaa cgc atc gtg tac gga aac gaa gct cca act gcg gca
 1027
 Asn Ser Tyr Lys Arg Ile Val Tyr Gly Asn Glu Ala Pro Thr Ala Ala
 295 300 305

 acc tgg ggt gta tct aat cgt tct gcg ctg gtt cgt gtt cct acc tac
 1075
 Thr Trp Gly Val Ser Asn Arg Ser Ala Leu Val Arg Val Pro Thr Tyr
 310 315 320 325

 cgt ttg aat aag gag gag tcg cgc cggtt cgt ctt cct gat
 1123
 Arg Leu Asn Lys Glu Glu Ser Arg Arg Val Glu Val Arg Leu Pro Asp
 330 335 340

 acc gct tgt aac cca tat ttg gcg ttt tca gtg atg ctc ggc gct ggt
 1171
 Thr Ala Cys Asn Pro Tyr Leu Ala Phe Ser Val Met Leu Gly Ala Gly
 345 350 355

 ttg aaa ggc att aaa gaa ggt tat gag ctc gac gag cca gct gag gac
 1219
 Leu Lys Gly Ile Lys Glu Gly Tyr Glu Leu Asp Glu Pro Ala Glu Asp
 360 365 370

 gat atc tcc aac ttg agc ttc cgg gaa cgt cgc gcc atg ggc tac aac
 1267
 Asp Ile Ser Asn Leu Ser Phe Arg Glu Arg Arg Ala Met Gly Tyr Asn
 375 380 385

 gat ctg cca agc agc ctt gat cag gca ctg cgc caa atg gaa aag tca
 1315
 Asp Leu Pro Ser Ser Leu Asp Gln Ala Leu Arg Gln Met Glu Lys Ser
 390 395 400 405

 gag ctt gtt gct gac atc ctc ggt gag cac gtt ttt gag ttt ttc ttg
 1363
 Glu Leu Val Ala Asp Ile Leu Gly Glu His Val Phe Glu Phe Leu
 410 415 420

 cgc aat aag tgg cgt gaa tgg cgt gac tac caa gag cag atc act ccg
 1411
 Arg Asn Lys Trp Arg Glu Trp Arg Asp Tyr Gln Glu Gln Ile Thr Pro
 425 430 435

 tgg gag ctc cga aac aat ctt gat tac tagacttttg cactccaatg
 1458
 Trp Glu Leu Arg Asn Asn Leu Asp Tyr
 440 445

 gaa
 1461

<210> 96
 <211> 446
 <212> PRT
 <213> Corynebacterium glutamicum

 <400> 96

Met Asn Ser Glu Gln Glu Phe Val Leu Ser Ala Ile Glu Glu Arg Asp
 1 5 10 15

Ile Lys Phe Val Arg Leu Trp Phe Thr Asp Ile Leu Gly His Leu Lys
 20 25 30

Ser Val Val Val Ala Pro Ala Glu Leu Glu Ser Ala Leu Glu Glu Gly
 35 40 45

Ile Gly Phe Asp Gly Ser Ala Ile Glu Gly Tyr Ala Arg Ile Ser Glu
 50 55 60

Ala Asp Thr Ile Ala Arg Pro Asp Pro Ser Thr Phe Gln Val Leu Pro
 65 70 75 80

Leu Glu Ala Gly Ile Ser Lys Leu Gln Ala Ala Arg Leu Phe Cys Asp
 85 90 95

Val Thr Met Pro Asp Gly Gln Pro Ser Phe Ser Asp Pro Arg Gln Val
 100 105 110

Leu Arg Arg Gln Val Gln Leu Ala Ala Asp Glu Gly Leu Thr Cys Met
 115 120 125

Ile Ser Pro Glu Ile Glu Phe Tyr Leu Val Gln Ser Leu Arg Thr Asn
 130 135 140

Gly Leu Pro Pro Val Pro Thr Asp Asn Gly Gly Tyr Phe Asp Gln Ala
 145 150 155 160

Thr Phe Asn Glu Ala Pro Asn Phe Arg Arg Asn Ala Met Val Ala Leu
 165 170 175

Glu Glu Leu Gly Ile Pro Val Glu Phe Ser His His Glu Thr Ala Pro
 180 185 190

Gly Gln Gln Glu Ile Asp Leu Arg His Ala Asp Ala Leu Thr Met Ala
 195 200 205

Asp Asn Ile Met Thr Phe Arg Tyr Ile Met Lys Gln Val Ala Arg Asp
 210 215 220

Gln Gly Val Gly Ala Ser Phe Met Pro Lys Pro Phe Gln Glu His Ala
 225 230 235 240

Gly Ser Ala Met His Thr His Met Ser Leu Phe Glu Gly Asp Thr Asn
 245 250 255

Ala Phe His Asp Pro Asp Asp Ser Tyr Met Leu Ser Lys Thr Ala Lys
 260 265 270

Gln Phe Ile Ala Gly Ile Leu His His Ala Pro Glu Phe Thr Ala Val
 275 280 285

Thr Asn Gln Trp Val Asn Ser Tyr Lys Arg Ile Val Tyr Gly Asn Glu
 290 295 300

Ala Pro Thr Ala Ala Thr Trp Gly Val Ser Asn Arg Ser Ala Leu Val
 305 310 315 320

Arg Val Pro Thr Tyr Arg Leu Asn Lys Glu Glu Ser Arg Arg Val Glu

325	330	335
Val Arg Leu Pro Asp Thr Ala Cys Asn Pro Tyr Leu Ala Phe Ser Val		
340	345	350
Met Leu Gly Ala Gly Leu Lys Gly Ile Lys Glu Gly Tyr Glu Leu Asp		
355	360	365
Glu Pro Ala Glu Asp Asp Ile Ser Asn Leu Ser Phe Arg Glu Arg Arg		
370	375	380
Ala Met Gly Tyr Asn Asp Leu Pro Ser Ser Leu Asp Gln Ala Leu Arg		
385	390	395
Gln Met Glu Lys Ser Glu Leu Val Ala Asp Ile Leu Gly Glu His Val		
405	410	415
Phe Glu Phe Phe Leu Arg Asn Lys Trp Arg Glu Trp Arg Asp Tyr Gln		
420	425	430
Glu Gln Ile Thr Pro Trp Glu Leu Arg Asn Asn Leu Asp Tyr		
435	440	445
<210> 97		
<211> 1554		
<212> DNA		
<213> Corynebacterium glutamicum		
<220>		
<221> CDS		
<222> (101)..(1531)		
<223> RXA00335		
<400> 97		
actacatttg cagccaagtc tactacttga tcttcaaagg tcagcaattt gaaacaaggc 60		
tacaaaataaa ccgttccgcc catgtcaatg aggagtcacc gtg gcg ttt gaa acc 115		
	Val	Ala
	Phe	Glu
	Thr	5
ccg gaa gaa att gtc aag ttc atc aag gat gaa aac gtc gag ttc qtt 163		
Pro Glu Glu Ile Val Lys Phe Ile Lys Asp Glu Asn Val Glu Phe Val		
10	15	20
gac gtt cga ttc acc gac ctt ccc ggc acc gag cag cac ttc agc atc 211		
Asp Val Arg Phe Thr Asp Leu Pro Gly Thr Glu Gln His Phe Ser Ile		
25	30	35
cca gct gcc agc ttc gat gca gat aca atc gaa gaa ggt ctc gca ttc 259		
Pro Ala Ala Ser Phe Asp Ala Asp Thr Ile Glu Glu Gly Leu Ala Phe		
40	45	50
gac gga tcc tcg atc cgt ggc ttc acc acg atc gac gaa tct gac atg 307		
Asp Gly Ser Ser Ile Arg Gly Phe Thr Thr Ile Asp Glu Ser Asp Met		
55	60	65
aat ctc ctg cca gac ctc gga acg gcc acc ctt gat cca ttc cgc aag 355		
Asn Leu Leu Pro Asp Leu Gly Thr Ala Thr Leu Asp Pro Phe Arg Lys		
70	75	80

gca aag acc ctg aac gtt aag ttc ttc gtt cac gat cct ttc acc cgc 403
 Ala Lys Thr Leu Asn Val Lys Phe Phe Val His Asp Pro Phe Thr Arg
 90 95 100

 gag gca ttc tcc cgc gac cca cgc aac gtt gca cgc aag gca gag cag 451
 Glu Ala Phe Ser Arg Asp Pro Arg Asn Val Ala Arg Lys Ala Glu Gln
 105 110 115

 tac ctg gca tcc acc ggc att gca gac acc tgc aac ttc ggc gcc gag 499
 Tyr Leu Ala Ser Thr Gly Ile Ala Asp Thr Cys Asn Phe Gly Ala Glu
 120 125 130

 gct gag ttc tac ctc ttc gac tcc gtt cgc tac tcc acc gag atg aac 547
 Ala Glu Phe Tyr Leu Phe Asp Ser Val Arg Tyr Ser Thr Glu Met Asn
 135 140 145

 tcc ggc ttc tac gaa gta gat acc gaa gaa ggc tgg tgg aac cgt ggc 595
 Ser Gly Phe Tyr Glu Val Asp Thr Glu Gly Trp Trp Asn Arg Gly
 150 155 160 165

 aag gaa acc aac ctc gac ggc acc cca aac ctg ggc gca aag aac cgc 643
 Lys Glu Thr Asn Leu Asp Gly Thr Pro Asn Leu Gly Ala Lys Asn Arg
 170 175 180

 gtc aag ggt ggc tac ttc cca gta gca cca tac gac caa acc gtt gac 691
 Val Lys Gly Gly Tyr Phe Pro Val Ala Pro Tyr Asp Gln Thr Val Asp
 185 190 195

 gtg cgc gat gac atg gtt cgc aac ctc gca gct tcc ggc ttc gct ctt 739
 Val Arg Asp Asp Met Val Arg Asn Leu Ala Ala Ser Gly Phe Ala Leu
 200 205 210

 gag cgt ttc cac cac gaa gtc ggt ggc gga cag cag gaa atc aac tac 787
 Glu Arg Phe His His Glu Val Gly Gly Gln Glu Ile Asn Tyr
 215 220 225

 cgc ttc aac acc atg ctc cac gcg gca gat gat atc cag acc ttc aag 835
 Arg Phe Asn Thr Met Leu His Ala Ala Asp Asp Ile Gln Thr Phe Lys
 230 235 240 245

 tac atc atc aag aac acc gct cgc ctc cac ggc aag gct gca acc ttc 883
 Tyr Ile Ile Lys Asn Thr Ala Arg Leu His Gly Lys Ala Ala Thr Phe
 250 255 260

 atg cct aag cca ctg gct ggc gac aac ggt tcc ggc atg cac gct cac 931
 Met Pro Lys Pro Leu Ala Gly Asp Asn Gly Ser Gly Met His Ala His
 265 270 275

 cag tcc ctc tgg aag gac ggc aag cca ctc ttc cac gat gag tcc ggc 979
 Gln Ser Leu Trp Lys Asp Gly Lys Pro Leu Phe His Asp Glu Ser Gly
 280 285 290

 tac gca ggc ctg tcc gac atc gcc cgc tac tac atc ggc ggc atc ctg
 1027
 Tyr Ala Gly Leu Ser Asp Ile Ala Arg Tyr Tyr Ile Gly Gly Ile Leu
 295 300 305

 cac cac gca ggc gct gtt ctg gcg ttc acc aac gca acc ctg aac tcc
 1075
 His His Ala Gly Ala Val Leu Ala Phe Thr Asn Ala Thr Leu Asn Ser
 310 315 320 325

tac cac cgt ctg gtt cca ggc ttc gag gct cca atc aac ctg gtg tac
1123

Tyr His Arg Leu Val Pro Gly Phe Glu Ala Pro Ile Asn Leu Val Tyr
330 335 340

tca cag cgc aac cgt tcc gct gtc cgt atc cca atc acc gga tcc
1171

Ser Gln Arg Asn Arg Ser Ala Ala Val Arg Ile Pro Ile Thr Gly Ser
345 350 355

aac ccg aag gca aag cgc atc gaa ttc cgc gct cca gac cca tca ggc
1219

Asn Pro Lys Ala Lys Arg Ile Glu Phe Arg Ala Pro Asp Pro Ser Gly
360 365 370

aac cca tac ctg ggc ttt gca gcg atg atg atg gcc ggc ctc gac ggc
1267

Asn Pro Tyr Leu Gly Phe Ala Ala Met Met Met Ala Gly Leu Asp Gly
375 380 385

atc aag aac cgc atc gag cca cac gct cca gtg gac aag gac ctc tac
1315

Ile Lys Asn Arg Ile Glu Pro His Ala Pro Val Asp Lys Asp Leu Tyr
390 395 400 405

gaa cta cca cca gag gaa gct gca tcc att cca cag gca cca acc tcc
1363

Glu Leu Pro Pro Glu Glu Ala Ala Ser Ile Pro Gln Ala Pro Thr Ser
410 415 420

ctg gaa gca tcc ctg aag gca ctg cag gaa gac acc gac ttc ctc acc
1411

Leu Glu Ala Ser Leu Lys Ala Leu Gln Glu Asp Thr Asp Phe Leu Thr
425 430 435

gag tct gac gtc ttc acc gag gat ctc atc gag gcg tac atc cag tac
1459

Glu Ser Asp Val Phe Thr Glu Asp Leu Ile Glu Ala Tyr Ile Gln Tyr
440 445 450

aag tac gac aac gag atc tcc cca gtt cgc ctg cgc cca acc ccg cag
1507

Lys Tyr Asp Asn Glu Ile Ser Pro Val Arg Leu Arg Pro Thr Pro Gln
455 460 465

gaa ttc gaa ttg tac ttc gac tgc taattcactt agctagccga tag
1554

Glu Phe Glu Leu Tyr Phe Asp Cys
470 475

<210> 98

<211> 477

<212> PRT

<213> Corynebacterium glutamicum

<400> 98

Val Ala Phe Glu Thr Pro Glu Glu Ile Val Lys Phe Ile Lys Asp Glu
1 5 10 15

340	345	350
Pro Ile Thr Gly Ser Asn Pro Lys Ala Lys Arg Ile Glu Phe Arg Ala		
355	360	365
Pro Asp Pro Ser Gly Asn Pro Tyr Leu Gly Phe Ala Ala Met Met Met		
370	375	380
Ala Gly Leu Asp Gly Ile Lys Asn Arg Ile Glu Pro His Ala Pro Val		
385	390	395
Asp Lys Asp Leu Tyr Glu Leu Pro Pro Glu Glu Ala Ala Ser Ile Pro		
405	410	415
Gln Ala Pro Thr Ser Leu Glu Ala Ser Leu Lys Ala Leu Gln Glu Asp		
420	425	430
Thr Asp Phe Leu Thr Glu Ser Asp Val Phe Thr Glu Asp Leu Ile Glu		
435	440	445
Ala Tyr Ile Gln Tyr Lys Tyr Asp Asn Glu Ile Ser Pro Val Arg Leu		
450	455	460
Arg Pro Thr Pro Gln Glu Phe Glu Leu Tyr Phe Asp Cys		
465	470	475

<210> 99
<211> 3258
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(3235)
<223> RXA00324

<400> 99		
tccgtggag ctccgaaaca atcttgattt ctagactttt gcactccat ggaaacccta	60	
cggcgaccca attgcgaccc gatgaaggag gggagaagct atg tca gga ccg tta	115	
Met Ser Gly Pro Leu		
1	5	
<hr/>		
aga agt gaa cgt aaa gtc gtt ggc ttt gtc aga gac cca ctg cca aaa	163	
Arg Ser Glu Arg Lys Val Val Gly Phe Val Arg Asp Pro Leu Pro Lys		
10	15	20
<hr/>		
gtt ggt tct tta tcg ctg aaa tct gag cat gcc caa gca gat cta gag	211	
Val Gly Ser Leu Ser Lys Ser Glu His Ala Gln Ala Asp Leu Glu		
25	30	35
<hr/>		
cat ttg ggt tgg cgc aat gtt gag tct ttg gat ttg tgg tgg ggc ttg	259	
His Leu Gly Trp Arg Asn Val Glu Ser Leu Asp Leu Leu Trp Gly Leu		
40	45	50
<hr/>		
tca ggt gca ggc gat ccc gat gtc gcg ctg aac ctt ctt att cgg ctg	307	
Ser Gly Ala Gly Asp Pro Asp Val Ala Leu Asn Leu Leu Ile Arg Leu		
55	60	65
<hr/>		
tat cag gca ctt gaa gca atc ggc gag gat gct cga aac gag ctt gat	355	

Tyr Gln Ala Leu Glu Ala Ile Gly Glu Asp Ala Arg Asn Glu Leu Asp
 70 75 80 85
 caa gag att cgc cag gat gaa aaa cta cga gtc cgc ctt ttt gca ttg 403
 Gln Glu Ile Arg Gln Asp Glu Lys Leu Arg Val Arg Leu Phe Ala Leu
 90 95 100
 ttg ggt ggt tcc tcg gct gtc ggt gat cac ttg gtc gcc aat cct ttg 451
 Leu Gly Gly Ser Ser Ala Val Gly Asp His Leu Val Ala Asn Pro Leu
 105 110 115
 cag tgg aaa ctc tta aaa ctt gat gcg cca tcg agg gaa gag atg ttt 499
 Gln Trp Lys Leu Leu Lys Leu Asp Ala Pro Ser Arg Glu Glu Met Phe
 120 125 130
 cag gcg ctg ctg gaa tct gtg aaa gct cag cct gct gtg ctt gag gtt 547
 Gln Ala Leu Leu Glu Ser Val Lys Ala Gln Pro Ala Val Leu Glu Val
 135 140 145
 gag gat ttc agc gat gca cac aac att gcc cga gac gat ttg agc acg 595
 Glu Asp Phe Ser Asp Ala His Asn Ile Ala Arg Asp Asp Leu Ser Thr
 150 155 160 165
 cct ggt ttt tac acg gct agt gtt acc ggg cct gaa gca gag cga gtc 643
 Pro Gly Phe Tyr Thr Ala Ser Val Thr Gly Pro Glu Ala Glu Arg Val
 170 175 180
 ttg aaa tgg act tat cgc acg ttg ctg acc cgg att gct gcg cat gat 691
 Leu Lys Trp Thr Tyr Arg Thr Leu Leu Thr Arg Ile Ala Ala His Asp
 185 190 195
 tta gcg ggt acc tat ccc acc gac atg cgg aga aaa ggt ggc gat cct 739
 Leu Ala Gly Thr Tyr Pro Thr Asp Met Arg Arg Lys Gly Gly Asp Pro
 200 205 210
 gtt ccg ttt agc aca gtg acc atg cag ctc agc gac cta gct gat gct 787
 Val Pro Phe Ser Thr Val Thr Met Gln Leu Ser Asp Leu Ala Asp Ala
 215 220 225
 gct ttg act gct gct tta gct gtg gca att gcc aat gtt tat ggt gaa 835
 Ala Leu Thr Ala Ala Leu Ala Val Ala Ile Ala Asn Val Tyr Gly Glu
 230 235 240 245
 aag ccg gtt gat tca gct tta tct gtc atc gcg atg ggc aaa tgt ggc 883
 Lys Pro Val Asp Ser Ala Leu Ser Val Ile Ala Met Gly Lys Cys Gly
 250 255 260
 gcg cag gaa ttg aac tac att tca gat gtg gac gtg gtg ttt gtt gca 931
 Ala Gln Glu Leu Asn Tyr Ile Ser Asp Val Asp Val Val Phe Val Ala
 265 270 275
 gag ccg gca aac tct aaa tca aca cgc acc gca gca gag ctc att cgc 979
 Glu Pro Ala Asn Ser Lys Ser Thr Arg Thr Ala Ala Glu Leu Ile Arg
 280 285 290
 atc ggt agc aac tcg ttc ttt gag gtg gat gca gca ctt cgc cca gaa
 1027
 Ile Gly Ser Asn Ser Phe Phe Glu Val Asp Ala Ala Leu Arg Pro Glu
 295 300 305

ggt aaa agt ggc gct ctt gtg cgc tct ttg gat tcc cat atg gcg tat
 1075
 Gly Lys Ser Gly Ala Leu Val Arg Ser Leu Asp Ser His Met Ala Tyr
 310 315 320 325

 tac aag cgc tgg gcg gaa acc tgg gag ttt cag gca ctg ctg aaa gct
 1123
 Tyr Lys Arg Trp Ala Glu Thr Trp Glu Phe Gln Ala Leu Leu Lys Ala
 330 335 340

 cgt ccc atg acg ggt gat att aac ctt ggg cag tcc tat gtg gat gct
 1171
 Arg Pro Met Thr Gly Asp Ile Asn Leu Gly Gln Ser Tyr Val Asp Ala
 345 350 355

 ctt tca ccg ttg att tgg acg gct agc cag cgg gaa tca ttt gtc aca
 1219
 Leu Ser Pro Leu Ile Trp Thr Ala Ser Gln Arg Glu Ser Phe Val Thr
 360 365 370

 gat gtc caa gct atg cgc cgt cga gtg ttg gac aat gtt ccg gaa gac
 1267
 Asp Val Gln Ala Met Arg Arg Val Leu Asp Asn Val Pro Glu Asp
 375 380 385

 ttg cgt gat cgt gag ctg aag ctt ggt cgc ggt ggt ttg agg gat gtg
 1315
 Leu Arg Asp Arg Glu Leu Lys Leu Gly Arg Gly Leu Arg Asp Val
 390 395 400 405

 gag ttt gct gtc cag ctc ctt cag atg gtg cat ggt cgc att gat gag
 1363
 Glu Phe Ala Val Gln Leu Leu Gln Met Val His Gly Arg Ile Asp Glu
 410 415 420

 acg ttg cgg gtt cgg tca acg gta aat gct ttg cat gtg ttg gtt gat
 1411
 Thr Leu Arg Val Arg Ser Thr Val Asn Ala Leu His Val Leu Val Asp
 425 430 435

 cag gga tat gtg ggt cgt gaa gac ggg cat aat ctc att gag tcg tat
 1459
~~Gln Gly Tyr Val Gly Arg Glu Asp Gly HIS Asn Leu Ile Glu Ser Tyr~~
 440 445 450

 gag ttt ttg cgt ctg ttg gag cat cgc ctt caa ttg gag cgg atc aag
 1507
 Glu Phe Leu Arg Leu Leu Glu His Arg Leu Gln Leu Glu Arg Ile Lys
 455 460 465

 cgc act cac ttg tta ccg aaa cct gat gac cga atg aat atg cgc tgg
 1555
 Arg Thr His Leu Leu Pro Lys Pro Asp Asp Arg Met Asn Met Arg Trp
 470 475 480 485

 ttg gcg cgc gct tct ggg ttt act ggt tcg atg gag caa agt tcg gcc
 1603
 Leu Ala Arg Ala Ser Gly Phe Thr Gly Ser Met Glu Gln Ser Ser Ala
 490 495 500

aaa gct atg gaa cgg cat ttg cgt aag gtt cgt ttg cag att cag tcg

1651

Lys Ala Met Glu Arg His Leu Arg Lys Val Arg Leu Gln Ile Gln Ser
505 510 515

ttg cat agt cag ctg ttt tat cgg cca ctg ctg aac tct gtg gtc aac

1699

Leu His Ser Gln Leu Phe Tyr Arg Pro Leu Leu Asn Ser Val Val Asn
520 525 530

ttg agc gcg gat gcc atc agg ttg tct ccg gat gct gca aag cta caa

1747

Leu Ser Ala Asp Ala Ile Arg Leu Ser Pro Asp Ala Ala Lys Leu Gln
535 540 545

ttg gcg gca ttg gga tac ctg cat cca tca cgt gct tat gaa cac ctg

1795

Leu Ala Ala Leu Gly Tyr Leu His Pro Ser Arg Ala Tyr Glu His Leu
550 555 560 565

act gct ctt gca tca gga gct agc cgt aaa gcc aag att cag gcg atg

1843

Thr Ala Leu Ala Ser Gly Ala Ser Arg Lys Ala Lys Ile Gln Ala Met
570 575 580

ttg ctg ccc acg ttg atg gag tgg ctg tct caa aca gct gaa cca gat

1891

Leu Leu Pro Thr Leu Met Glu Trp Leu Ser Gln Thr Ala Glu Pro Asp
585 590 595

gcg gga ttg ctg aat tac cgc aag ctt tct gat gct tcc tat gat cgc

1939

Ala Gly Leu Leu Asn Tyr Arg Lys Leu Ser Asp Ala Ser Tyr Asp Arg
600 605 610

agc tgg ttt ttg cgc atg ctg cgt gat gag ggc gta gtg ggg cag cgg

1987

Ser Trp Phe Leu Arg Met Leu Arg Asp Glu Gly Val Val Gly Gln Arg
615 620 625

ttg atg cgt att ttg gga aat tct ccc tat att tct gaa ctg att atc

2035

Leu Met Arg Ile Leu Gly Asn Ser Pro Tyr Ile Ser Glu Leu Ile Ile
630 635 640 645

tcc act ccg gac ttt atg aaa cag ctg ggt gat gcg gcg tct ggt cct

2083

Ser Thr Pro Asp Phe Met Lys Gln Leu Gly Asp Ala Ala Ser Gly Pro
650 655 660

aaa ttg ctt gct act gca ccg act cag gtt gtg aaa gca atc aag gca

2131

Lys Leu Leu Ala Thr Ala Pro Thr Gln Val Val Lys Ala Ile Lys Ala

665 670

675

acg gtg tcg cgt cat gag tca cct gat cgg gcg atc cag gct gca cga

2179

Thr Val Ser Arg His Glu Ser Pro Asp Arg Ala Ile Gln Ala Ala Arg
680 685 690

tcg ctg agg agg cag gag ctg gca cgc att gcc tct gct gat ttg ctc
2227

Ser Leu Arg Arg Gln Glu Leu Ala Arg Ile Ala Ser Ala Asp Leu Leu
695 700 705

aac atg ctc act gtt cag gaa gta tgc caa agc ttg tca cta gtc tgg
2275

Asn Met Leu Thr Val Gln Glu Val Cys Gln Ser Leu Ser Leu Val Trp
710 715 720 725

gat gcg gtg ttg gat gct gcc ttg gat gcg gaa atc cgt gct gca ctt
2323

Asp Ala Val Leu Asp Ala Ala Leu Asp Ala Glu Ile Arg Ala Ala Leu
730 735 740

aac gat cca cag aaa cca gat cag cct ctg gcc aat att tct gtg atc
2371

Asn Asp Pro Gln Lys Pro Asp Gln Pro Leu Ala Asn Ile Ser Val Ile
745 750 755

ggc atg ggc cgt ttg ggt gga gca gaa ctt gga tac ggt tct gat gcc
2419

Gly Met Gly Arg Leu Gly Gly Ala Glu Leu Gly Tyr Gly Ser Asp Ala
760 765 770

gat gtg atg ttt gta tgc gag ccg gta gcc ggt gtg gaa gag cat gag
2467

Asp Val Met Phe Val Cys Glu Pro Val Ala Gly Val Glu Glu His Glu
775 780 785

gcc gtc aca tgg tct att gct atc tgt gat tcc atg cgg tcg agg ctt
2515

Ala Val Thr Trp Ser Ile Ala Ile Cys Asp Ser Met Arg Ser Arg Leu
790 795 800 805

gcg cag cct ggt gat cca cct ttg gag gtg gat ctg ggg ctg cgt
2563

Ala Gln Pro Ser Gly Asp Pro Pro Leu Glu Val Asp Leu Gly Leu Arg
810 815 820

cct gaa ggg aga tct ggt gcg att gtg cgc acc gtt gat tcc tat gtg
2611

~~Pro Glu Gly Arg Ser Gly Ala Ile Val Arg Thr Val Asp Ser Tyr Val~~
825 830 835

aag tac tac gaa aag tgg ggt gaa act tgg gag att cag gcg ctg ctg
2659

Lys Tyr Tyr Glu Lys Trp Gly Glu Thr Trp Glu Ile Gln Ala Leu Leu
840 845 850

agg gct gcg tgg gtt gct ggt gat cgt gag ctg ggt att aag ttc ttg
2707

Arg Ala Ala Trp Val Ala Gly Asp Arg Glu Leu Gly Ile Lys Phe Leu
855 860 865

gag tcg att gat cgt ttc cgc tac cca gtt gac ggg gca acg cag gcg
2755

Glu Ser Ile Asp Arg Phe Arg Tyr Pro Val Asp Gly Ala Thr Gln Ala
870 875 880 885

cag ctt cgt gaa gtt cgt cga att aag gcg agg gtg gat aat gag agg
 2803
 Gln Leu Arg Glu Val Arg Arg Ile Lys Ala Arg Val Asp Asn Glu Arg
 890 900

ctt ccg cgc ggg gct gat cga aat acc cat acc aag ctg ggt cgg gga
 2851
 Leu Pro Arg Gly Ala Asp Arg Asn Thr His Thr Lys Leu Gly Arg Gly
 905 910 915

gcg tta act gac atc gag tgg act gtg cag ttg acc atg atg cat
 2899
 Ala Leu Thr Asp Ile Glu Trp Thr Val Gln Leu Leu Thr Met Met His
 920 925 930

gct cat gag att ccg gag ctg cac aat acg tcg acg ttg gaa gtt ctt
 2947
 Ala His Glu Ile Pro Glu Leu His Asn Thr Ser Thr Leu Glu Val Leu
 935 940 945

gaa gtg ctg gaa aag cat cag att att aac cct gtg cag gtg cag acg
 2995
 Glu Val Leu Glu Lys His Gln Ile Ile Asn Pro Val Gln Val Gln Thr
 950 955 960 965

ctt cgg gaa gcg tgg ctg acg gca acg gct gct agg aat gcg ctt gtg
 3043
 Leu Arg Glu Ala Trp Leu Thr Ala Thr Ala Ala Arg Asn Ala Leu Val
 970 975 980

ctg gtc agg ggt aag aga tta gat cag tta cct act cct ggt ccg cac
 3091
 Leu Val Arg Gly Lys Arg Leu Asp Gln Leu Pro Thr Pro Gly Pro His
 985 990 995

ctt gcg cag gtg gct ggt gcg tct ggt tgg gat cca aat gag tac cag
 3139
 Leu Ala Gln Val Ala Gly Ala Ser Gly Trp Asp Pro Asn Glu Tyr Gln
 1000 1005 1010

gag tat ttg gaa aac tat ctg aaa gtg acc agg aag agt cgt cag gtt
 3187
 Glu Tyr Leu Glu Asn Tyr Leu Lys Val Thr Arg Lys Ser Arg Gln Val
 1015 1020 1025

gtt gat gaa gtc ttc tgg ggt gtg gac tct atg gag caa cgt gag ttt
 3235
 Val Asp Glu Val Phe Trp Gly Val Asp Ser Met Glu Gln Arg Glu Phe
 1030 1035 1040 1045

taggttaggtg gtggagcccc caa
 3258

<210> 100
 <211> 1045
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 100
 Met Ser Gly Pro Leu Arg Ser Glu Arg Lys Val Val Gly Phe Val Arg

1	5	10	15
Asp Pro Leu Pro Lys Val Gly Ser Leu Ser Leu Lys Ser Glu His Ala			
20 25 30			
Gln Ala Asp Leu Glu His Leu Gly Trp Arg Asn Val Glu Ser Leu Asp			
35 40 45			
Leu Leu Trp Gly Leu Ser Gly Ala Gly Asp Pro Asp Val Ala Leu Asn			
50 55 60			
Leu Leu Ile Arg Leu Tyr Gln Ala Leu Glu Ala Ile Gly Glu Asp Ala			
65 70 75 80			
Arg Asn Glu Leu Asp Gln Glu Ile Arg Gln Asp Glu Lys Leu Arg Val			
85 90 95			
Arg Leu Phe Ala Leu Leu Gly Gly Ser Ser Ala Val Gly Asp His Leu			
100 105 110			
Val Ala Asn Pro Leu Gln Trp Lys Leu Leu Lys Leu Asp Ala Pro Ser			
115 120 125			
Arg Glu Glu Met Phe Gln Ala Leu Leu Glu Ser Val Lys Ala Gln Pro			
130 135 140			
Ala Val Leu Glu Val Glu Asp Phe Ser Asp Ala His Asn Ile Ala Arg			
145 150 155 160			
Asp Asp Leu Ser Thr Pro Gly Phe Tyr Thr Ala Ser Val Thr Gly Pro			
165 170 175			
Glu Ala Glu Arg Val Leu Lys Trp Thr Tyr Arg Thr Leu Leu Thr Arg			
180 185 190			
Ile Ala Ala His Asp Leu Ala Gly Thr Tyr Pro Thr Asp Met Arg Arg			
195 200 205			
Lys Gly Gly Asp Pro Val Pro Phe Ser Thr Val Thr Met Gln Leu Ser			
210 215 220			
Asp Leu Ala Asp Ala Ala Leu Thr Ala Ala Leu Ala Val Ala Ile Ala			
<hr/> 225 230 235 240			
Asn Val Tyr Gly Glu Lys Pro Val Asp Ser Ala Leu Ser Val Ile Ala			
245 250 255			
Met Gly Lys Cys Gly Ala Gln Glu Leu Asn Tyr Ile Ser Asp Val Asp			
260 265 270			
Val Val Phe Val Ala Glu Pro Ala Asn Ser Lys Ser Thr Arg Thr Ala			
275 280 285			
Ala Glu Leu Ile Arg Ile Gly Ser Asn Ser Phe Phe Glu Val Asp Ala			
290 295 300			
Ala Leu Arg Pro Glu Gly Lys Ser Gly Ala Leu Val Arg Ser Leu Asp			
305 310 315 320			
Ser His Met Ala Tyr Tyr Lys Arg Trp Ala Glu Thr Trp Glu Phe Gln			
325 330 335			

Ala Leu Leu Lys Ala Arg Pro Met Thr Gly Asp Ile Asn Leu Gly Gln
340 345 350

Ser Tyr Val Asp Ala Leu Ser Pro Leu Ile Trp Thr Ala Ser Gln Arg
355 360 365

Glu Ser Phe Val Thr Asp Val Gln Ala Met Arg Arg Arg Val Leu Asp
370 375 380

Asn Val Pro Glu Asp Leu Arg Asp Arg Glu Leu Lys Leu Gly Arg Gly
385 390 395 400

Gly Leu Arg Asp Val Glu Phe Ala Val Gln Leu Leu Gln Met Val His
405 410 415

Gly Arg Ile Asp Glu Thr Leu Arg Val Arg Ser Thr Val Asn Ala Leu
420 425 430

His Val Leu Val Asp Gln Gly Tyr Val Gly Arg Glu Asp Gly His Asn
435 440 445

Leu Ile Glu Ser Tyr Glu Phe Leu Arg Leu Leu Glu His Arg Leu Gln
450 455 460

Leu Glu Arg Ile Lys Arg Thr His Leu Leu Pro Lys Pro Asp Asp Arg
465 470 475 480

Met Asn Met Arg Trp Leu Ala Arg Ala Ser Gly Phe Thr Gly Ser Met
485 490 495

Glu Gln Ser Ser Ala Lys Ala Met Glu Arg His Leu Arg Lys Val Arg
500 505 510

Leu Gln Ile Gln Ser Leu His Ser Gln Leu Phe Tyr Arg Pro Leu Leu
515 520 525

Asn Ser Val Val Asn Leu Ser Ala Asp Ala Ile Arg Leu Ser Pro Asp
530 535 540

Ala Ala Lys Leu Gln Leu Ala Ala Leu Gly Tyr Leu His Pro Ser Arg
545 550 555 560

Ala Tyr Glu His Leu Thr Ala Leu Ala Ser Gly Ala Ser Arg Lys Ala
565 570 575

Lys Ile Gln Ala Met Leu Leu Pro Thr Leu Met Glu Trp Leu Ser Gln
580 585 590

Thr Ala Glu Pro Asp Ala Gly Leu Leu Asn Tyr Arg Lys Leu Ser Asp
595 600 605

Ala Ser Tyr Asp Arg Ser Trp Phe Leu Arg Met Leu Arg Asp Glu Gly
610 615 620

Val Val Gly Gln Arg Leu Met Arg Ile Leu Gly Asn Ser Pro Tyr Ile
625 630 635 640

Ser Glu Leu Ile Ile Ser Thr Pro Asp Phe Met Lys Gln Leu Gly Asp
645 650 655

Ala Ala Ser Gly Pro Lys Leu Leu Ala Thr Ala Pro Thr Gln Val Val
 660 665 670
 Lys Ala Ile Lys Ala Thr Val Ser Arg His Glu Ser Pro Asp Arg Ala
 675 680 685
 Ile Gln Ala Ala Arg Ser Leu Arg Arg Gln Glu Leu Ala Arg Ile Ala
 690 695 700
 Ser Ala Asp Leu Leu Asn Met Leu Thr Val Gln Glu Val Cys Gln Ser
 705 710 715 720
 Leu Ser Leu Val Trp Asp Ala Val Leu Asp Ala Ala Leu Asp Ala Glu
 725 730 735
 Ile Arg Ala Ala Leu Asn Asp Pro Gln Lys Pro Asp Gln Pro Leu Ala
 740 745 750
 Asn Ile Ser Val Ile Gly Met Gly Arg Leu Gly Gly Ala Glu Leu Gly
 755 760 765
 Tyr Gly Ser Asp Ala Asp Val Met Phe Val Cys Glu Pro Val Ala Gly
 770 775 780
 Val Glu Glu His Glu Ala Val Thr Trp Ser Ile Ala Ile Cys Asp Ser
 785 790 795 800
 Met Arg Ser Arg Leu Ala Gln Pro Ser Gly Asp Pro Pro Leu Glu Val
 805 810 815
 Asp Leu Gly Leu Arg Pro Glu Gly Arg Ser Gly Ala Ile Val Arg Thr
 820 825 830
 Val Asp Ser Tyr Val Lys Tyr Tyr Glu Lys Trp Gly Glu Thr Trp Glu
 835 840 845
 Ile Gln Ala Leu Leu Arg Ala Ala Trp Val Ala Gly Asp Arg Glu Leu
 850 855 860
 Gly Ile Lys Phe Leu Glu Ser Ile Asp Arg Phe Arg Tyr Pro Val Asp
 865 870 875 880
 Gly Ala Thr Gln Ala Gln Leu Arg Glu Val Arg Arg Ile Lys Ala Arg
 885 890 895
 Val Asp Asn Glu Arg Leu Pro Arg Gly Ala Asp Arg Asn Thr His Thr
 900 905 910
 Lys Leu Gly Arg Gly Ala Leu Thr Asp Ile Glu Trp Thr Val Gln Leu
 915 920 925
 Leu Thr Met Met His Ala His Glu Ile Pro Glu Leu His Asn Thr Ser
 930 935 940
 Thr Leu Glu Val Leu Glu Val Leu Glu Lys His Gln Ile Ile Asn Pro
 945 950 955 960
 Val Gln Val Gln Thr Leu Arg Glu Ala Trp Leu Thr Ala Thr Ala Ala
 965 970 975
 Arg Asn Ala Leu Val Leu Val Arg Gly Lys Arg Leu Asp Gln Leu Pro

980

985

990

Thr Pro Gly Pro His Leu Ala Gln Val Ala Gly Ala Ser Gly Trp Asp
 995 1000 1005

Pro Asn Glu Tyr Gln Glu Tyr Leu Glu Asn Tyr Leu Lys Val Thr Arg
 1010 1015 1020

Lys Ser Arg Gln Val Val Asp Glu Val Phe Trp Gly Val Asp Ser Met
 1025 1030 1035 1040

Glu Gln Arg Glu Phe
 1045

<210> 101
<211> 861
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (1)..(861)
<223> RXN03176

<400> 101
gag ttg gcc gat tac atc ccg gaa cta aaa tct gcg gac cca aac ccg 48
Glu Leu Ala Asp Tyr Ile Pro Glu Leu Lys Ser Ala Asp Pro Asn Pro
1 5 10 15

ctg gca gta gcc ctg tgc acc gtt aac gga cac atc tac agc gca ggc 96
Leu Ala Val Ala Leu Cys Thr Val Asn Gly His Ile Tyr Ser Ala Gly
20 25 30

gat gac gac atc gaa ttc acc atg caa agt att tcc aag cca ttt gcc 144
Asp Asp Asp Ile Glu Phe Thr Met Gln Ser Ile Ser Lys Pro Phe Ala
35 40 45

tac gca ctc gca ctc caa gaa tgc ggc ttt gat gag gtc tct gca tcc 192
Tyr Ala Leu Ala Leu Gln Glu Cys Gly Phe Asp Glu Val Ser Ala Ser
50 55 60

gtg gcc ttg gag ccc tcc ggt gag gcc ttc aac gaa ctt tcc ctc gac 240
Val Ala Leu Glu Pro Ser Gly Glu Ala Phe Asn Glu Leu Ser Leu Asp
65 70 75 80

ggc gaa aac cgc ccc atg aac ccc atg atc aac gcc ggc gcg atc gcc 288
Gly Glu Asn Arg Pro Met Asn Pro Met Ile Asn Ala Gly Ala Ile Ala
85 90 95

atc aac cag ctg atc aac ggc tcc gat tcc acc gtg gaa gac cgc gtg 336
Ile Asn Gln Leu Ile Asn Gly Ser Asp Ser Thr Val Glu Asp Arg Val
100 105 110

gaa aaa atc cga cac tac ttc tct gaa ctt gct gga cgc gaa ctc acc 384
Glu Lys Ile Arg His Tyr Phe Ser Glu Leu Ala Gly Arg Glu Leu Thr
115 120 125

atc gac cgc gtg ctt gcc gaa tcc gaa ctc gcc ggc gac cgc aac 432
Ile Asp Arg Val Leu Ala Glu Ser Glu Leu Ala Gly Ala Asp Arg Asn
130 135 140

ctc tcc atc gcc cac atg ctg cgc aat tac ggc gtc atc gaa gac gaa	480
Leu Ser Ile Ala His Met Leu Arg Asn Tyr Gly Val Ile Glu Asp Glu	
145 150 155 160	
gcc cac gac gcc gtc ctc agc tac acg ctg caa tgc gcc atc aaa gta	528
Ala His Asp Ala Val Leu Ser Tyr Thr Leu Gln Cys Ala Ile Lys Val	
165 170 175	
acc acg cgc gac ctc gca gtc atg acc gcc acg ctc gcc ggc ggc	576
Thr Thr Arg Asp Leu Ala Val Met Thr Ala Thr Leu Ala Ala Gly Gly	
180 185 190	
aca cac cca att acc ggc aag aag ctt ctc gac gcc cgc gtc tgc cgc	624
Thr His Pro Ile Thr Gly Lys Lys Leu Leu Asp Ala Arg Val Cys Arg	
195 200 205	
ctc acc ctc tcc gtc atg gct tca gca ggc atg tac gac gag gca ggg	672
Leu Thr Leu Ser Val Met Ala Ser Ala Gly Met Tyr Asp Glu Ala Gly	
210 215 220	
cag tgg ctc tcc acc gta ggc atc ccc gcg aaa tca gga gtc gcc ggc	720
Gln Trp Leu Ser Thr Val Gly Ile Pro Ala Lys Ser Gly Val Ala Gly	
225 230 235 240	
gga ctc atc ggc att ctg cca ggt cag ctg ggc atc gcc aca ttt tcc	768
Gly Leu Ile Gly Ile Leu Pro Gly Gln Leu Gly Ile Ala Thr Phe Ser	
245 250 255	
cca cgc ctg aac ccc aaa ggc aac agc gtg cgc ggc gta aaa ata ttc	816
Pro Arg Leu Asn Pro Lys Gly Asn Ser Val Arg Gly Val Lys Ile Phe	
260 265 270	
aaa cag ctt tcc gac gac atg ggc ctc cac ctc atg tcc acc gag	861
Lys Gln Leu Ser Asp Asp Met Gly Leu His Leu Met Ser Thr Glu	
275 280 285	

<210> 102

<211> 287

<212> PRT

<213> Corynebacterium glutamicum

<400> 102

Glu Leu Ala Asp Tyr Ile Pro Glu Leu Lys Ser Ala Asp Pro Asn Pro	
1 5 10 15	

Leu Ala Val Ala Leu Cys Thr Val Asn Gly His Ile Tyr Ser Ala Gly	
20 25 30	

Asp Asp Asp Ile Glu Phe Thr Met Gln Ser Ile Ser Lys Pro Phe Ala	
35 40 45	

Tyr Ala Leu Ala Leu Gln Glu Cys Gly Phe Asp Glu Val Ser Ala Ser	
50 55 60	

Val Ala Leu Glu Pro Ser Gly Glu Ala Phe Asn Glu Leu Ser Leu Asp	
65 70 75 80	

Gly Glu Asn Arg Pro Met Asn Pro Met Ile Asn Ala Gly Ala Ile Ala	
85 90 95	

Ile Asn Gln Leu Ile Asn Gly Ser Asp Ser Thr Val Glu Asp Arg Val
 100 105 110

Glu Lys Ile Arg His Tyr Phe Ser Glu Leu Ala Gly Arg Glu Leu Thr
 115 120 125

Ile Asp Arg Val Leu Ala Glu Ser Glu Leu Ala Gly Ala Asp Arg Asn
 130 135 140

Leu Ser Ile Ala His Met Leu Arg Asn Tyr Gly Val Ile Glu Asp Glu
 145 150 155 160

Ala His Asp Ala Val Leu Ser Tyr Thr Leu Gln Cys Ala Ile Lys Val
 165 170 175

Thr Thr Arg Asp Leu Ala Val Met Thr Ala Thr Leu Ala Ala Gly Gly
 180 185 190

Thr His Pro Ile Thr Gly Lys Leu Leu Asp Ala Arg Val Cys Arg
 195 200 205

Leu Thr Leu Ser Val Met Ala Ser Ala Gly Met Tyr Asp Glu Ala Gly
 210 215 220

Gln Trp Leu Ser Thr Val Gly Ile Pro Ala Lys Ser Gly Val Ala Gly
 225 230 235 240

Gly Leu Ile Gly Ile Leu Pro Gly Gln Leu Gly Ile Ala Thr Phe Ser
 245 250 255

Pro Arg Leu Asn Pro Lys Gly Asn Ser Val Arg Gly Val Lys Ile Phe
 260 265 270

Lys Gln Leu Ser Asp Asp Met Gly Leu His Leu Met Ser Thr Glu
 275 280 285

<210> 103

<211> 861

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)...(861)

<223> FRXA02879

<400> 103

gag ttg gcc gat tac atc ccg gaa cta aaa tct gcg gac cca aac ccg 48
 Glu Leu Ala Asp Tyr Ile Pro Glu Leu Lys Ser Ala Asp Pro Asn Pro
 1 5 10 15

ctg gca gta gcc ctg tgc acc gtt aac gga cac atc tac agc gca ggc 96
 Leu Ala Val Ala Leu Cys Thr Val Asn Gly His Ile Tyr Ser Ala Gly
 20 25 30

gat gac gac atc gaa ttc acc atg caa agt att tcc aag cca ttt gcc 144
 Asp Asp Asp Ile Glu Phe Thr Met Gln Ser Ile Ser Lys Pro Phe Ala
 35 40 45

tac gca ctc gca ctc caa gaa tgc ggc ttt gat gag gtc tct gca tcc	192
Tyr Ala Leu Ala Leu Gln Glu Cys Gly Phe Asp Glu Val Ser Ala Ser	
50 55 60	
gtg gcc ttg gag ccc tcc ggt gag gcc ttc aac gaa ctt tcc ctc gac	240
Val Ala Leu Glu Pro Ser Gly Glu Ala Phe Asn Glu Leu Ser Leu Asp	
65 70 75 80	
ggc gaa aac cgc ccc atg aac ccc atg atc aac gcc ggc gcg atc gcc	288
Gly Glu Asn Arg Pro Met Asn Pro Met Ile Asn Ala Gly Ala Ile Ala	
85 90 95	
atc aac cag ctg atc aac ggc tcc gat tcc acc gtg gaa gac cgc gtg	336
Ile Asn Gln Leu Ile Asn Gly Ser Asp Ser Thr Val Glu Asp Arg Val	
100 105 110	
gaa aaa atc cga cac tac ttc tct gaa ctt gct gga cgc gaa ctc acc	384
Glu Lys Ile Arg His Tyr Phe Ser Glu Leu Ala Gly Arg Glu Leu Thr	
115 120 125	
atc gac cgc gtg ctt gcc gaa tcc gaa ctc gcc ggc gcc gac cgc aac	432
Ile Asp Arg Val Leu Ala Glu Ser Glu Leu Ala Gly Ala Asp Arg Asn	
130 135 140	
ctc tcc atc gcc cac atg ctg cgc aat tac ggc gtc atc gaa gac gaa	480
Leu Ser Ile Ala His Met Leu Arg Asn Tyr Gly Val Ile Glu Asp Glu	
145 150 155 160	
gcc cac gac gcc gtc ctc agc tac acg ctgcaa tgc gcc atc aaa gta	528
Ala His Asp Ala Val Leu Ser Tyr Thr Leu Gln Cys Ala Ile Lys Val	
165 170 175	
acc acg cgc gac ctc gca gtc atg acc gcc acg ctc gcc gcc ggc	576
Thr Thr Arg Asp Leu Ala Val Met Thr Ala Thr Leu Ala Ala Gly Gly	
180 185 190	
aca cac cca att acc ggc aag aag ctt ctc gac gcc cgc gtc tgc cgc	624
Thr His Pro Ile Thr Gly Lys Lys Leu Leu Asp Ala Arg Val Cys Arg	
195 200 205	
ctc acc ctc tcc gtc atg gct tca gca ggc atg tac gac gag gca ggg	672
Leu Thr Leu Ser Val Met Ala Ser Ala Gly Met Tyr Asp Glu Ala Gly	
210 215 220	
cag tgg ctc tcc acc gta ggc atc ccc gcg aaa tca gga gtc gcc ggc	720
Gln Trp Leu Ser Thr Val Gly Ile Pro Ala Lys Ser Gly Val Ala Gly	
225 230 235 240	
gga ctc atc ggc att ctg cca ggt cag ctg ggc atc gcc aca ttt tcc	768
Gly Leu Ile Gly Ile Leu Pro Gly Gln Leu Gly Ile Ala Thr Phe Ser	
245 250 255	
cca cgc ctg aac ccc aaa ggc aac agc gtg cgc ggc gta aaa ata ttc	816
Pro Arg Leu Asn Pro Lys Gly Asn Ser Val Arg Gly Val Lys Ile Phe	
260 265 270	
aaa cag ctt tcc gac gac atg ggc ctc aac ctc aat ggc acc gag	861
Lys Gln Leu Ser Asp Asp Met Gly Leu His Leu Me' Ser Thr Glu	
275 280 285	

<210> 104
<211> 287
<212> PRT
<213> Corynebacterium glutamicum

<400> 104															
Glu	Leu	Ala	Asp	Tyr	Ile	Pro	Glu	Leu	Lys	Ser	Ala	Asp	Pro	Asn	Pro
1					5				10					15	
Leu Ala Val Ala Leu Cys Thr Val Asn Gly His Ile Tyr Ser Ala Gly															
20 25 30															
Asp Asp Asp Ile Glu Phe Thr Met Gln Ser Ile Ser Lys Pro Phe Ala															
35 40 45															
Tyr Ala Leu Ala Leu Gln Glu Cys Gly Phe Asp Glu Val Ser Ala Ser															
50 55 60															
Val Ala Leu Glu Pro Ser Gly Glu Ala Phe Asn Glu Leu Ser Leu Asp															
65 70 75 80															
Gly Glu Asn Arg Pro Met Asn Pro Met Ile Asn Ala Gly Ala Ile Ala															
85 90 95															
Ile Asn Gln Leu Ile Asn Gly Ser Asp Ser Thr Val Glu Asp Arg Val															
100 105 110															
Glu Lys Ile Arg His Tyr Phe Ser Glu Leu Ala Gly Arg Glu Leu Thr															
115 120 125															
Ile Asp Arg Val Leu Ala Glu Ser Glu Leu Ala Gly Ala Asp Arg Asn															
130 135 140															
Leu Ser Ile Ala His Met Leu Arg Asn Tyr Gly Val Ile Glu Asp Glu															
145 150 155 160															
Ala His Asp Ala Val Leu Ser Tyr Thr Leu Gln Cys Ala Ile Lys Val															
165 170 175															
Thr Thr Arg Asp Leu Ala Val Met Thr Ala Thr Leu Ala Ala Gly Gly															
180 185 190															
Thr His Pro Ile Thr Gly Lys Lys Leu Leu Asp Ala Arg Val Cys Arg															
195 200 205															
Leu Thr Leu Ser Val Met Ala Ser Ala Gly Met Tyr Asp Glu Ala Gly															
210 215 220															
Gln Trp Leu Ser Thr Val Gly Ile Pro Ala Lys Ser Gly Val Ala Gly															
225 230 235 240															
Gly Leu Ile Gly Ile Leu Pro Gly Gln Leu Gly Ile Ala Thr Phe Ser															
245 250 255															
Pro Arg Leu Asn Pro Lys Gly Asn Ser Val Arg Gly Val Lys Ile Phe															
260 265 270															
Lys Gln Leu Ser Asp Asp Met Gly Leu His Leu Met Ser Thr Glu															
275 280 285															

<210> 105
 <211> 1155
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(1132)
 <223> RXA00278

<400> 105
 ggccacggag ttgggtgtccg tcatggtgat gattctgtct gtcgtttctg tgttggctt 60

gtgggtcggc atccggcccc	gtttgcagga gtacttataa	atg cac gct ttt cga	115
		Met His Ala Phe Arg	
		1	5

cgc ccc cct cca ctc acc acg cga gtc ggc gct gca ttg ctg gcc gca	163		
Arg Pro Pro Pro Leu Thr Thr Arg Val Gly Ala Ala Leu Leu Ala Ala			
10	15	20	

acg ctg ctt gct tcc tgc act cca aca cct gtg gaa ccg gca gaa acc	211		
Thr Leu Leu Ala Ser Cys Thr Pro Thr Pro Val Glu Pro Ala Glu Thr			
25	30	35	

ttg act gct ttg gat ccc gat gcc ggt cca cca ctg cca ccg gat tct	259		
Leu Thr Ala Leu Asp Pro Asp Ala Gly Pro Pro Leu Pro Pro Asp Ser			
40	45	50	

tcg att gaa gct ccc ggt gaa aaa gag ccc att gtg gaa gta ata gag	307		
Ser Ile Glu Ala Pro Gly Glu Lys Glu Pro Ile Val Glu Val Ile Glu			
55	60	65	

aat tgg cca ggt tct tta cgc ccg gat gat ctg acc cct gag gag ccg	355		
Asn Trp Pro Gly Ser Leu Arg Pro Asp Asp Leu Thr Pro Glu Glu Arg			
70	75	80	85

gta cct ggc atc gtc aac ccg ggt cgc atc att gtg ggt gtg gat caa	403		
Val Pro Gly Ile Val Asn Arg Gly Arg Ile Ile Val Gly Val Asp Gln			
90	95	100	

tcg caa aac ttg ctc agt ttc cgt gat ccg gtg act ggt gag ctg cgc	451		
Ser Gin Asn Leu Leu Ser Phe Arg Asp Pro Val Thr Gly Glu Leu Arg			
105	110	115	

ggt ttt gaa gtg gaa tta gcg agg gaa att tcc cgc gac att ttc ggt	499		
Gly Phe Glu Val Glu Leu Ala Arg Glu Ile Ser Arg Asp Ile Phe Gly			
120	125	130	

gac ccc aat aag gtg gat ttc cga ttc gtc ggc tcg tcc gac cgt ctg	547		
Asp Pro Asn Lys Val Asp Phe Arg Phe Val Gly Ser Ser Asp Arg Leu			
135	140	145	

cgt tcc ctt gac caa ggt gat gta gat att gtg att cgt tcc gtc acg	595		
Arg Ser Leu Asp Gln Gly Asp Val Asp Ile Val Ile Arg Ser Val Thr			
150	155	160	165

atc acc gac gaa cgc gcc aaa ttg gtg gaa ttt tcc aca ccg tac ctg	643		
Ile Thr Asp Glu Arg Ala Lys Leu Val Glu Phe Ser Thr Pro Tyr Leu			
170	175	180	

cgc acc caa acc cgc atg ttg acc atg gaa tct tca gga atc acg tcc Arg Thr Gln Thr Arg Met Leu Thr Met Glu Ser Ser Gly Ile Thr Ser 185	190	195	691
atc gca gat cta ccc ggc cac acc att tgt gtc acc gat ggc tcc act Ile Ala Asp Leu Pro Gly His Thr Ile Cys Val Thr Asp Gly Ser Thr 200	205	210	739
tca ttg cag cga gcc cgc acc att gcg ccg gag gcc tca atc tta aaa Ser Leu Gln Arg Ala Arg Thr Ile Ala Pro Glu Ala Ser Ile Leu Lys 215	220	225	787
act cgc aat tgg tcc gat tgt ctc a tg gcg ttg cag cag cat cag gct Thr Arg Asn Trp Ser Asp Cys Leu Met Ala Leu Gln Gln His Gln Ala 230	235	240	835
cag gtc att ttg ggc gat gat gtc att ttg tcc ggc atc gca gca cag Gln Val Ile Leu Gly Asp Asp Val Ile Leu Ser Gly Ile Ala Ala Gln 250	255	260	883
gat ccc tac acc gag att ctt gat acc tcc ctc gat tcc cat tcc tat Asp Pro Tyr Thr Glu Ile Leu Asp Thr Ser Leu Asp Ser His Ser Tyr 265	270	275	931
gga gtg gca gcg gca tcg acc act gct gaa aca gac tct tcg ggg ttg Gly Val Ala Ala Ala Ser Thr Thr Ala Glu Thr Asp Ser Ser Gly Leu 280	285	290	979
att cgg cag gta aac tac aca att gaa cgg atc cgc aca gac cgc atg 1027 Ile Arg Gln Val Asn Tyr Thr Ile Glu Arg Ile Arg Thr Asp Arg Met 295	300	305	
tgg tgg aca atg ttc gac gat tgg ttc gga cct tat ctc tgg tcc tac 1075 Trp Trp Thr Met Phe Asp Asp Trp Phe Gly Pro Tyr Leu Trp Ser Tyr 310	315	320	325
ggt cca cca cag ctg cag tac atg cca gag gaa gaa ggg aca gaa aac 1123 Gly Pro Pro Gln Leu Gln Tyr Met Pro Glu Glu Glu Gly Thr Glu Asn 330	335	340	
gat gaa gga taatgaagat ttcgatccag att 1155 Asp Glu Gly			

<210> 106
<211> 344
<212> PRT
<213> *Corynebacterium glutamicum*

<400> 106
Met His Ala Phe Arg Arg Pro Pro Pro Leu Thr Thr Arg Val Gly Ala
1 5 10 15

Ala Leu Leu Ala Ala Thr Leu Leu Ala Ser Cys Thr Pro Thr Pro Val
20 25 30

Glu Pro Ala Glu Thr Leu Thr Ala Leu Asp Pro Asp Ala Gly Pro Pro
 35 40 45
 Leu Pro Pro Asp Ser Ser Ile Glu Ala Pro Gly Glu Lys Glu Pro Ile
 50 55 60
 Val Glu Val Ile Glu Asn Trp Pro Gly Ser Leu Arg Pro Asp Asp Leu
 65 70 75 80
 Thr Pro Glu Glu Arg Val Pro Gly Ile Val Asn Arg Gly Arg Ile Ile
 85 90 95
 Val Gly Val Asp Gln Ser Gin Asn Leu Leu Ser Phe Arg Asp Pro Val
 100 105 110
 Thr Gly Glu Leu Arg Gly Phe Glu Val Glu Leu Ala Arg Glu Ile Ser
 115 120 125
 Arg Asp Ile Phe Gly Asp Pro Asn Lys Val Asp Phe Arg Phe Val Gly
 130 135 140
 Ser Ser Asp Arg Leu Arg Ser Leu Asp Gln Gly Asp Val Asp Ile Val
 145 150 155 160
 Ile Arg Ser Val Thr Ile Thr Asp Glu Arg Ala Lys Leu Val Glu Phe
 165 170 175
 Ser Thr Pro Tyr Leu Arg Thr Gln Thr Arg Met Leu Thr Met Glu Ser
 180 185 190
 Ser Gly Ile Thr Ser Ile Ala Asp Leu Pro Gly His Thr Ile Cys Val
 195 200 205
 Thr Asp Gly Ser Thr Ser Leu Gln Arg Ala Arg Thr Ile Ala Pro Glu
 210 215 220
 Ala Ser Ile Leu Lys Thr Arg Asn Trp Ser Asp Cys Leu Met Ala Leu
 225 230 235 240
 Gln Gln His Gln Ala Gln Val Ile Leu Gly Asp Asp Val Ile Leu Ser
 245 250 255
 Gly Ile Ala Ala Gln Asp Pro Tyr Thr Glu Ile Leu Asp Thr Ser Leu
 260 265 270
 Asp Ser His Ser Tyr Gly Val Ala Ala Ala Ser Thr Thr Ala Glu Thr
 275 280 285
 Asp Ser Ser Gly Leu Ile Arg Gln Val Asn Tyr Thr Ile Glu Arg Ile
 290 295 300
 Arg Thr Asp Arg Met Trp Trp Thr Met Phe Asp Asp Trp Phe Gly Pro
 305 310 315 320
 Tyr Leu Trp Ser Tyr Gly Pro Pro Gln Leu Gln Tyr Met Pro Glu Glu
 325 330 335
 Glu Gly Thr Glu Asn Asp Glu Gly
 340

<210> 107
<211> 1035
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1012)
<223> RXA00727

<400> 107
ttattgcacc atggcaggtt gtatggcc catgatttag agtttcaccc gattgcgaat 60
ttcgcagaca ccgcctctga aacggctact gcatacgact ttg cgt ttc ccc aaa 115
Leu Arg Phe Pro Lys
1 5
atc ccc aag cgc gct gta gcg gcg acc gtc ggc atc gtg gca acc tca 163
Ile Pro Lys Arg Ala Val Ala Ala Thr Val Gly Ile Val Ala Thr Ser
10 15 20
ttc acc ttg gct tct tgt gtc acc aat gag gag cag ggc aac cca gat 211
Phe Thr Leu Ala Ser Cys Val Thr Asn Glu Glu Gln Gly Asn Pro Asp
25 30 35
ggc tgg gag cag atc gtt cca gat cct gta ccg gag att cag gcg atg 259
Gly Trp Glu Gln Ile Val Pro Asp Pro Val Pro Glu Ile Gln Ala Met
40 45 50
gtt ccc gaa gct ctg gct cag cgc ggt gtg ctc acc gcc ggt gcc aac 307
Val Pro Glu Ala Leu Ala Gln Arg Gly Val Leu Thr Ala Gly Ala Asn
55 60 65
cca cct ttc cca ccg ttt gag ttt aaa gat tcc gat ggt cag att atc 355
Pro Pro Phe Pro Pro Phe Glu Phe Lys Asp Ser Asp Gly Gln Ile Ile
70 75 80 85
ggg gtg gaa atg gac ctc gtg cgt gca atg gcg ggg gtg atg ggc ttg 403
Gly Val Glu Met Asp Leu Val Arg Ala Met Ala Gly Val Met Gly Leu
90 95 100
gag ttc agc cct cag gag cag gat ttc tcc ctc atc ctt cca tcg gtt 451
Glu Phe Ser Pro Gln Glu Gln Asp Phe Ser Leu Ile Leu Pro Ser Val
105 110 115
caa gct ggc acc ctt gat atc gga gcc tct ggc ttc act gac aac gag 499
Gln Ala Gly Thr Leu Asp Ile Gly Ala Ser Gly Phe Thr Asp Asn Glu
120 125 130
gaa cgc cgc gag aac ttt gat ttc atc gat ttc ctc ttc gca ggt gtg 547
Glu Arg Arg Glu Asn Phe Asp Phe Ile Asp Phe Leu Phe Ala Gly Val
135 140 145
cag tgg gcg cag gca act gat cgt gaa acc cca atc gat ccg gaa aac 595
Gln Trp Ala Gln Ala Thr Asp Arg Glu Thr Pro Ile Asp Pro Glu Asn
150 155 160 165
gcc tgt ggt ctc acc gtt gct gta cag cgc aca acc gtg gca gag acc 643
Ala Cys Gly Leu Thr Val Ala Val Gln Arg Thr Thr Val Ala Glu Thr
170 175 180

gac gat gtc cgt cct cgc tca gct caa tgt gaa gcc gaa ggc aaa gag 691
 Asp Asp Val Arg Pro Arg Ser Ala Gln Cys Glu Ala Glu Gly Lys Glu
 185 190 195

ccg atc acc att ttg tct tat gaa acc gca gat act gca gct acc gca 739
 Pro Ile Thr Ile Leu Ser Tyr Glu Thr Ala Asp Thr Ala Ala Thr Ala
 200 205 210

ttg atc ctg gga cgc gca gac gca ctt gct gcg gac tcc cct gtt tca 787
 Leu Ile Leu Gly Arg Ala Asp Ala Leu Ala Ala Asp Ser Pro Val Ser
 215 220 225

gct tgg gct gca gag cgc tcc gaa ggc cgc atc gaa gtt gtg ggc gat 835
 Ala Trp Ala Ala Glu Arg Ser Glu Gly Arg Ile Glu Val Val Gly Asp
 230 235 240 245

atg tac ttg gct gcg cca ttt ggt ttc gca ttc ccg ttg gaa tct gac 883
 Met Tyr Leu Ala Ala Pro Phe Gly Phe Ala Phe Pro Leu Glu Ser Asp
 250 255 260

ctc acc cca gca gca gct gcg gcg ttc caa cac ttg att gac acc ggc 931
 Leu Thr Pro Ala Ala Ala Ala Phe Gln His Leu Ile Asp Thr Gly
 265 270 275

gat tac cag cgc atc atg gcg caa tgg ggc att gaa gaa ggc ctt ctt 979
 Asp Tyr Gln Arg Ile Met Ala Gln Trp Gly Ile Glu Glu Gly Leu Leu
 280 285 290

gat gag gcc ctg atc aac gaa cag cca ctc aac tagaggcttc cagcaactaa
 1032
 Asp Glu Ala Leu Ile Asn Glu Gln Pro Leu Asn
 295 300

aaa
 1035

<210> 108
<211> 304
<212> PRT
<213> Corynebacterium glutamicum

<400> 108
Leu Arg Phe Pro Lys Ile Pro Lys Arg Ala Val Ala Ala Thr Val Gly
 1 5 10 15

Ile Val Ala Thr Ser Phe Thr Leu Ala Ser Cys Val Thr Asn Glu Glu
 20 25 30

Gln Gly Asn Pro Asp Gly Trp Glu Gln Ile Val Pro Asp Pro Val Pro
 35 40 45

Glu Ile Gln Ala Met Val Pro Glu Ala Leu Ala Gln Arg Gly Val Leu
 50 55 60

Thr Ala Gly Ala Asn Pro Pro Phe Pro Pro Phe Glu Phe Lys Asp Ser
 65 70 75 80

Asp Gly Gln Ile Ile Gly Val Glu Met Asp Leu Val Arg Ala Met Ala
 85 90 95

Gly Val Met Gly Leu Glu Phe Ser Pro Gln Glu Gln Asp Phe Ser Leu
 100 105 110
 Ile Leu Pro Ser Val Gln Ala Gly Thr Leu Asp Ile Gly Ala Ser Gly
 115 120 125
 Phe Thr Asp Asn Glu Glu Arg Arg Glu Asn Phe Asp Phe Ile Asp Phe
 130 135 140
 Leu Phe Ala Gly Val Gln Trp Ala Gin Ala Thr Asp Arg Glu Thr Pro
 145 150 155 160
 Ile Asp Pro Glu Asn Ala Cys Gly Leu Thr Val Ala Val Gln Arg Thr
 165 170 175
 Thr Val Ala Glu Thr Asp Asp Val Arg Pro Arg Ser Ala Gln Cys Glu
 180 185 190
 Ala Glu Gly Lys Glu Pro Ile Thr Ile Leu Ser Tyr Glu Thr Ala Asp
 195 200 205
 Thr Ala Ala Thr Ala Leu Ile Leu Gly Arg Ala Asp Ala Leu Ala Ala
 210 215 220
 Asp Ser Pro Val Ser Ala Trp Ala Ala Glu Arg Ser Glu Gly Arg Ile
 225 230 235 240
 Glu Val Val Gly Asp Met Tyr Leu Ala Ala Pro Phe Gly Phe Ala Phe
 245 250 255
 Pro Leu Glu Ser Asp Leu Thr Pro Ala Ala Ala Ala Phe Gln His
 260 265 270
 Leu Ile Asp Thr Gly Asp Tyr Gln Arg Ile Met Ala Gln Trp Gly Ile
 275 280 285
 Glu Glu Gly Leu Leu Asp Glu Ala Leu Ile Asn Glu Gln Pro Leu Asn
 290 295 300

<210> 109
 <211> 1962
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)...(1939)
 <223> RXA02139

<400> 109
 tcaggaggat tttcaatca tgtgcggcct tcttggcata ttgactgcaa atggAACGC 60
 tgaaggatcc gttcctgcac tcgagcgggc cttgccatgc atg cgc cac cgt ggt 115
 Met Arg His Arg Gly
 1 5
 cct gac gat gcc ggc act tgg cat gac gcc gat gca gcg ttt gga ttc 163

Pro Asp Asp Ala Gly Thr Trp His Asp Ala Asp Ala Ala Phe Gly Phe			
10	15	20	
aac cgc ctc tcc atc att gat att gca cac tcc cac caa cca ctg cgt		211	
Asn Arg Leu Ser Ile Ile Asp Ile Ala His Ser His Gln Pro Leu Arg			
25	30	35	
tgg gga cct gcg gat gaa ccc gac cgc tac gca atg act ttc aac ggt		259	
Trp Gly Pro Ala Asp Glu Pro Asp Arg Tyr Ala Met Thr Phe Asn Gly			
40	45	50	
gag atc tac aac tac gtt gag ctg cgt aaa gag ctc tcg gat ttg gga		307	
Glu Ile Tyr Asn Tyr Val Glu Leu Arg Lys Glu Leu Ser Asp Leu Gly			
55	60	65	
tat gcc ttt aat act tct ggc gat ggc gag cca att gtt gtc ggt ttc		355	
Tyr Ala Phe Asn Thr Ser Gly Asp Gly Glu Pro Ile Val Val Gly Phe			
70	75	80	85
cac cac tgg ggc gag tcc gtg gtc gag cat ctc cgc gga atg ttc ggc		403	
His His Trp Gly Glu Ser Val Val Glu His Leu Arg Gly Met Phe Gly			
90	95	100	
att gcc att tgg gat aca aag gaa aag tcg ctt ttc ctt gcg cgt gat		451	
Ile Ala Ile Trp Asp Thr Lys Glu Lys Ser Leu Phe Leu Ala Arg Asp			
105	110	115	
cag ttc ggc att aag cca ctg ttc tac gca acc acc gag cat ggc acc		499	
Gln Phe Gly Ile Lys Pro Leu Phe Tyr Ala Thr Thr Glu His Gly Thr			
120	125	130	
gtg ttc tcc tca gag aag aag acc atc ttg gag atg gcc gag gag atg		547	
Val Phe Ser Ser Glu Lys Lys Thr Ile Leu Glu Met Ala Glu Glu Met			
135	140	145	
aat cta gat ctg ggc ctt gat aag cgc acc att gag cac tac gtg gac		595	
Asn Leu Asp Leu Gly Leu Asp Lys Arg Thr Ile Glu His Tyr Val Asp			
150	155	160	165
ttg cag tac gtg ccc gag cca gat acc ctt cac gcg cag att tcc cgc		643	
Leu Gln Tyr Val Pro Glu Pro Asp Thr Leu His Ala Gln Ile Ser Arg			
170	175	180	
ttg gag tca ggc tgc acc gca aca gtt cgt ccg ggc ggc aag ctg gaa		691	
Leu Glu Ser Gly Cys Thr Ala Thr Val Arg Pro Gly Gly Lys Leu Glu			
185	190	195	
cag aag cgt tac ttc aag cct cag ttc cca gta cag aag gtc gta aag		739	
Gln Lys Arg Tyr Phe Lys Pro Gln Phe Pro Val Gln Lys Val Val Lys			
200	205	210	
ggt aag gag cag gac ctc ttc gat cgc att gcc cag gtg ttg gag gat		787	
Gly Lys Glu Gln Asp Leu Phe Asp Arg Ile Ala Gln Val Leu Glu Asp			
215	220	225	
agc gtc gaa aag cat atg cgt gcc gac gtg acc gta ggc tcg ttc ctt		835	
Ser Val Glu Lys His Met Arg Ala Asp Val Thr Val Gly Ser Phe Leu			
230	235	240	245
tcc ggc ggc att gac tca acc gca att gcg gcg ctt gca aag cgc cac		883	
Phe Gly Gly Ile Asp Ser Thr Ala Ile Ala Ala Leu Ala Lys Arg His			

250	255	260
aac cct gac ctg ctc acc ttc acc acc ggt ttc gag cgt gaa ggc tac		931
Asn Pro Asp Leu Leu Thr Phe Thr Thr Gly Phe Glu Arg Glu Gly Tyr		
265	270	275
tcg gag gtc gat gtg gct gcg gag tcc gcc gct gcg att ggc gct gag		979
Ser Glu Val Asp Val Ala Ala Glu Ser Ala Ala Ile Gly Ala Glu		
280	285	290
cac atc gtg aag att gtc tcg cct gag gaa tac gcc aac gcg att cct		
1027		
His Ile Val Lys Ile Val Ser Pro Glu Glu Tyr Ala Asn Ala Ile Pro		
295	300	305
aag atc atg tgg tac ttg gat gat cct gta gct gac cca tca ttg gtc		
1075		
Lys Ile Met Trp Tyr Leu Asp Asp Pro Val Ala Asp Pro Ser Leu Val		
310	315	320
ccg ctg tac ttc gtg gca gcg gaa gca cgt aag cac gtc aag gtt gtg		
1123		
Pro Leu Tyr Phe Val Ala Ala Glu Ala Arg Lys His Val Lys Val Val		
330	335	340
ctg tct ggc gag ggc gca gat gag ctg ttc ggt gga tac acc att tac		
1171		
Leu Ser Gly Glu Gly Ala Asp Glu Leu Phe Gly Gly Tyr Thr Ile Tyr		
345	350	355
aag gag ccg cta tcg ctt gct cca ttt gag aag atc cct tcc cca cta		
1219		
Lys Glu Pro Leu Ser Leu Ala Pro Phe Glu Lys Ile Pro Ser Pro Leu		
360	365	370
cgt aaa ggc ctg gga aag ctc agc aag gtt ctg cca gac ggc atg aag		
1267		
Arg Lys Gly Leu Gly Lys Leu Ser Lys Val Leu Pro Asp Gly Met Lys		
375	380	385
ggc aag tcc ctt ctt gag cgt ggc tcc atg acc atg gaa gag cgc tac		
1315		
Gly Lys Ser Leu Leu Glu Arg Gly Ser Met Thr Met Glu Glu Arg Tyr		
390	395	400
405		
tac ggc aac gct cgc tcc ttc aat ttc gag cag atg caa cgc gtt att		
1363		
Tyr Gly Asn Ala Arg Ser Phe Asn Phe Glu Gln Met Gln Arg Val Ile		
410	415	420
cca tgg gca aag cgc gaa tgg gac cac cgc gaa gtc act gcg ccg atc		
1411		
Pro Trp Ala Lys Arg Glu Trp Asp His Arg Glu Val Thr Ala Pro Ile		
425	430	435
tac gca cag tcc cgc aac ttt gat cca gta gcc cgc atg caa cac ctg		
1459		
Tyr Ala Gln Ser Arg Asn Phe Asp Pro Val Ala Arg Met Gln His Leu		
440	445	450

gat ctg ttc acc tgg atg cgc ggc gac atc ctg gtc aag gct gac aag
 1507
 Asp Leu Phe Thr Trp Met Arg Gly Asp Ile Leu Val Lys Ala Asp Lys
 455 460 465

atc aac atg gcg aac tcc ctt gag ctg cga gtt cca ttc ttg gat aag
 1555
 Ile Asn Met Ala Asn Ser Leu Glu Leu Arg Val Pro Phe Leu Asp Lys
 470 475 480 485

gaa gtt ttc aag gtt gca gag acc att cct tac gac ctg aag att gcc
 1603
 Glu Val Phe Lys Val Ala Glu Thr Ile Pro Tyr Asp Leu Lys Ile Ala
 490 495 500

aac ggt acc acc aag tac gcg ctg cgc agg gca ctc gag cag att gtt
 1651
 Asn Gly Thr Thr Lys Tyr Ala Leu Arg Arg Ala Leu Glu Gln Ile Val
 505 510 515

ccg cct cac gtt ttg cac cgc aag aag ctg ggc ttc cct gtt ccc atg
 1699
 Pro Pro His Val Leu His Arg Lys Lys Leu Gly Phe Pro Val Pro Met
 520 525 530

cgc cac tgg ctt gcc ggc gat gag ctg ttc ggt tgg gcg cag gac acc
 1747
 Arg His Trp Leu Ala Gly Asp Glu Leu Phe Gly Trp Ala Gln Asp Thr
 535 540 545

atc aag gaa tcc ggt act gaa gat atc ttc aac aag cag gct gtg ctg
 1795
 Ile Lys Glu Ser Gly Thr Glu Asp Ile Phe Asn Lys Gln Ala Val Leu
 550 555 560 565

gat atg ctg aac gag cac cgc gat ggc gtg tca gat cat tcc cgt cga
 1843
 Asp Met Leu Asn Glu His Arg Asp Gly Val Ser Asp His Ser Arg Arg
 570 575 580

ctg tgg act gtt ctg tca ttt atg gtg tgg cac ggc att ttt gtg gaa
 1891
~~Ile Trp Thr Val Leu Ser Phe Met Val Trp His Gly Ile Phe Val Glu~~
 585 590 595

aac cgc att gat cca cag att gag gac cgc tcc tac cca gtc gag ctt
 1939
 Asn Arg Ile Asp Pro Gln Ile Glu Asp Arg Ser Tyr Pro Val Glu Leu
 600 605 610

taagtcttaa agcctaaacc ccc
 1962

<210> 110
<211> 613
<212> PRT
<213> Corynebacterium glutamicum

<400> 110
Met Arg His Arg Gly Pro Asp Asp Ala Gly Thr Trp His Asp Ala Asp

1	5	10	15
Ala Ala Phe Gly Phe Asn Arg Leu Ser Ile Ile Asp Ile Ala His Ser			
20		25	30
His Gln Pro Leu Arg Trp Gly Pro Ala Asp Glu Pro Asp Arg Tyr Ala			
35		40	45
Met Thr Phe Asn Gly Glu Ile Tyr Asn Tyr Val Glu Leu Arg Lys Glu			
50		55	60
Leu Ser Asp Leu Gly Tyr Ala Phe Asn Thr Ser Gly Asp Gly Glu Pro			
65		70	75
Ile Val Val Gly Phe His His Trp Gly Glu Ser Val Val Glu His Leu			
85		90	95
Arg Gly Met Phe Gly Ile Ala Ile Trp Asp Thr Lys Glu Lys Ser Leu			
100		105	110
Phe Leu Ala Arg Asp Gln Phe Gly Ile Lys Pro Leu Phe Tyr Ala Thr			
115		120	125
Thr Glu His Gly Thr Val Phe Ser Ser Glu Lys Lys Thr Ile Leu Glu			
130		135	140
Met Ala Glu Glu Met Asn Leu Asp Leu Gly Leu Asp Lys Arg Thr Ile			
145		150	155
Glu His Tyr Val Asp Leu Gln Tyr Val Pro Glu Pro Asp Thr Leu His			
165		170	175
Ala Gln Ile Ser Arg Leu Glu Ser Gly Cys Thr Ala Thr Val Arg Pro			
180		185	190
Gly Gly Lys Leu Glu Gln Lys Arg Tyr Phe Lys Pro Gln Phe Pro Val			
195		200	205
Gln Lys Val Val Lys Gly Lys Glu Gln Asp Leu Phe Asp Arg Ile Ala			
210		215	220
Gln Val Leu Glu Asp Ser Val Glu Lys His Met Arg Ala Asp Val Thr			
225		230	235
240			
Val Gly Ser Phe Leu Phe Gly Gly Ile Asp Ser Thr Ala Ile Ala Ala			
245		250	255
Leu Ala Lys Arg His Asn Pro Asp Leu Leu Thr Phe Thr Thr Gly Phe			
260		265	270
Glu Arg Glu Gly Tyr Ser Glu Val Asp Val Ala Ala Glu Ser Ala Ala			
275		280	285
Ala Ile Gly Ala Glu His Ile Val Lys Ile Val Ser Pro Glu Glu Tyr			
290		295	300
Ala Asn Ala Ile Pro Lys Ile Met Trp Tyr Leu Asp Asp Pro Val Ala			
305		310	315
320			
Asp Pro Ser Leu Val Pro Leu Tyr Phe Val Ala Ala Glu Ala Arg Lys			
325		330	335

His Val Lys Val Val Leu Ser Gly Glu Gly Ala Asp Glu Leu Phe Gly
 340 345 350
 Gly Tyr Thr Ile Tyr Lys Glu Pro Leu Ser Leu Ala Pro Phe Glu Lys
 355 360 365
 Ile Pro Ser Pro Leu Arg Lys Gly Leu Gly Lys Leu Ser Lys Val Leu
 370 375 380
 Pro Asp Gly Met Lys Gly Lys Ser Leu Leu Glu Arg Gly Ser Met Thr
 385 390 395 400
 Met Glu Glu Arg Tyr Tyr Gly Asn Ala Arg Ser Phe Asn Phe Glu Gln
 405 410 415
 Met Gin Arg Val Ile Pro Trp Ala Lys Arg Glu Trp Asp His Arg Glu
 420 425 430
 Val Thr Ala Pro Ile Tyr Ala Gln Ser Arg Asn Phe Asp Pro Val Ala
 435 440 445
 Arg Met Gln His Leu Asp Leu Phe Thr Trp Met Arg Gly Asp Ile Leu
 450 455 460
 Val Lys Ala Asp Lys Ile Asn Met Ala Asn Ser Leu Glu Leu Arg Val
 465 470 475 480
 Pro Phe Leu Asp Lys Glu Val Phe Lys Val Ala Glu Thr Ile Pro Tyr
 485 490 495
 Asp Leu Lys Ile Ala Asn Gly Thr Thr Lys Tyr Ala Leu Arg Arg Ala
 500 505 510
 Leu Glu Gln Ile Val Pro Pro His Val Leu His Arg Lys Lys Leu Gly
 515 520 525
 Phe Pro Val Pro Met Arg His Trp Leu Ala Gly Asp Glu Leu Phe Gly
 530 535 540
 Trp Ala Gln Asp Thr Ile Lys Glu Ser Gly Thr Glu Asp Ile Phe Asn
 545 550 555 560
 Lys Gln Ala Val Leu Asp Met Leu Asn Glu His Arg Asp Gly Val Ser
 565 570 575
 Asp His Ser Arg Arg Leu Trp Thr Val Leu Ser Phe Met Val Trp His
 580 585 590
 Gly Ile Phe Val Glu Asn Arg Ile Asp Pro Gln Ile Glu Asp Arg Ser
 595 600 605
 Tyr Pro Val Glu Leu
 610

<210> 111
 <211> 1284
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(1261)
 <223> RXN00116

<400> 111	cgcggcacgc acgctgggg caagcgtcga caagcacaaa cttttgctt aattgaatcc	60	
tttgcgacc aatcaatggg ggatcaaata tagtagctgc atg agt aat gac ttc	Met Ser Asn Asp Phe	115	
1	5		
gtc gtt tct agg ctt aga ccc ttt ggt gaa acg att ttt gca acc atg	Val Val Ser Arg Leu Arg Pro Phe Gly Glu Thr Ile Phe Ala Thr Met	163	
10	15	20	
acc cag cga gct gtt gag gcg ggt gca atc aat ctt ggt cag ggc ttt	Thr Gln Arg Ala Val Glu Ala Gly Ile Asn Leu Gly Gln Gly Phe	211	
25	30	35	
cct gat gag gat ggt cct cgt cggt atg tta gag atc gcg tcg gag cag	Pro Asp Glu Asp Gly Pro Arg Arg Met Leu Glu Ile Ala Ser Glu Gln	259	
40	45	50	
att ctc ggg gga aat aat cag tat tcg gcg ggg cgt ggg gat gct tcg	Ile Leu Gly Gly Asn Asn Gln Tyr Ser Ala Gly Arg Gly Asp Ala Ser	307	
55	60	65	
ttt agg gca gct gtg gct cgt gat cat ttg gag agg ttt gat ctg gag	Leu Arg Ala Ala Val Ala Arg Asp His Leu Glu Arg Phe Asp Leu Glu	355	
70	75	80	85
tac aac cct gat tcg gag gtg ttg atc acg gtg ggg gcc act gag gcg	Tyr Asn Pro Asp Ser Glu Val Leu Ile Thr Val Gly Ala Thr Glu Ala	403	
90	95	100	
att acg gcg act gtg ttg ggt ttg gtg gag cct ggg gat gaa gtg atc	Ile Thr Ala Thr Val Leu Gly Leu Val Glu Pro Gly Asp Glu Val Ile	451	
105	110	115	
gtt ttg gaa ccg tat tac gat gcg tat gcg gcg gct att gcg ttg gcg	Val Leu Glu Pro Tyr Tyr Asp Ala Tyr Ala Ala Ile Ala Leu Ala	499	
120	125	130	
ggg gcg acg cgg gtg gcg gtt cct ttg cag gag gtg gag aac tcg tgg	Gly Ala Thr Arg Val Ala Val Pro Leu Gln Glu Val Glu Asn Ser Trp	547	
135	140	145	
gat gtg gat gtc gat aag ttg cat gcg gcg gtg act aag aag acg cgg	Asp Val Asp Val Asp Lys Leu His Ala Ala Val Thr Lys Lys Thr Arg	595	
150	155	160	165
atg att atc gtt aat tcg ccg cat aat ccg acg ggt tcg gtg ttt tct	Met Ile Ile Val Asn Ser Pro His Asn Pro Thr Gly Ser Val Phe Ser	643	
170	175	180	
aag aag gcg ttg aag cag ttg gcg ggt gtt gct cgt gcg tat gac ttg	Lys Lys Ala Leu Lys Gln Leu Ala Gly Val Ala Arg Ala Tyr Asp Leu	691	
185	190	195	
ttg gtg ttg tca gat gag gtg tat gag cat ctt gtt ttt gat gat cag		739	

Leu Val Leu Ser Asp Glu Val Tyr Glu His Leu Val Phe Asp Asp Gln
 200 205 210

aag cat gtg agt gtc gcg aag ctg ccc ggt atg tgg gat cgc acg gtg 787
 Lys His Val Ser Val Ala Lys Leu Pro Gly Met Trp Asp Arg Thr Val
 215 220 225

acg gtg tcg tcg gcg gcg aaa acg ttc aat gtg act ggt tgg aag acg 835
 Thr Val Ser Ser Ala Ala Lys Thr Phe Asn Val Thr Gly Trp Lys Thr
 230 235 240 245

ggg tgg gcg ttg gca ccg gag ccg ttg ttg gag gcg gtg ttg aag gcg 883
 Gly Trp Ala Leu Ala Pro Glu Pro Leu Leu Glu Ala Val Leu Lys Ala
 250 255 260

aag cag ttt atg tct tat gtg ggg gct aca cct ttt cag ccg gct gtg 931
 Lys Gln Phe Met Ser Tyr Val Gly Ala Thr Pro Phe Gln Pro Ala Val
 265 270 275

gcg cat gcg att gaa cat gag cag aag tgg gtg tca aag atg tct aag 979
 Ala His Ala Ile Glu His Glu Gln Lys Trp Val Ser Lys Met Ser Lys
 280 285 290

ggg ctt gag ctc aag cgg gat att ttg cgt act gcg tta gat aag gcg
 1027
 Gly Leu Glu Leu Lys Arg Asp Ile Leu Arg Thr Ala Leu Asp Lys Ala
 295 300 305

ggg ctg aag act cat gac agt atg ggc acg tat ttc atc gtt gcg gat
 1075
 Gly Leu Lys Thr His Asp Ser Met Gly Thr Tyr Phe Ile Val Ala Asp
 310 315 320 325

att ggg gat cgt gat ggt gcg gag ttc tgt ttt gag ttg att gag aag
 1123
 Ile Gly Asp Arg Asp Gly Ala Glu Phe Cys Phe Glu Leu Ile Glu Lys
 330 335 340

gtt ggg gtg gcg gcg att ccg gtg cag gcg ttt gtg gat cat ccg aag
 1171
 Val Gly Val Ala Ala Ile Pro Val Gln Ala Phe Val Asp His Pro Lys
 345 350 355

aag tgg tcg tcg aag gtt cgt ttt gcg ttt tgc aaa aaa gaa gag acg
 1219
 Lys Trp Ser Ser Lys Val Arg Phe Ala Phe Cys Lys Lys Glu Glu Thr
 360 365 370

ctc cgc gaa gct gcg gag cgt ctc aag ggg att aag aaa cta
 1261
 Leu Arg Glu Ala Ala Glu Arg Leu Lys Gly Ile Lys Lys Leu
 375 380 385

tagtttgaac aggttgttgg ggg
 1284

<210> 112

<211> 387

<212> PRT

<213> Corynebacterium glutamicum

<400> 112
Met Ser Asn Asp Phe Val Val Ser Arg Leu Arg Pro Phe Gly Glu Thr
1 5 10 15
Ile Phe Ala Thr Met Thr Gln Arg Ala Val Glu Ala Gly Ala Ile Asn
20 25 30
Leu Gly Gln Gly Phe Pro Asp Glu Asp Gly Pro Arg Arg Met Leu Glu
35 40 45
Ile Ala Ser Glu Gln Ile Leu Gly Gly Asn Asn Gln Tyr Ser Ala Gly
50 55 60
Arg Gly Asp Ala Ser Leu Arg Ala Ala Val Ala Arg Asp His Leu Glu
65 70 75 80
Arg Phe Asp Leu Glu Tyr Asn Pro Asp Ser Glu Val Leu Ile Thr Val
85 90 95
Gly Ala Thr Glu Ala Ile Thr Ala Thr Val Leu Gly Leu Val Glu Pro
100 105 110
Gly Asp Glu Val Ile Val Leu Glu Pro Tyr Tyr Asp Ala Tyr Ala Ala
115 120 125
Ala Ile Ala Leu Ala Gly Ala Thr Arg Val Ala Val Pro Leu Gln Glu
130 135 140
Val Glu Asn Ser Trp Asp Val Asp Val Asp Lys Leu His Ala Ala Val
145 150 155 160
Thr Lys Lys Thr Arg Met Ile Ile Val Asn Ser Pro His Asn Pro Thr
165 170 175
Gly Ser Val Phe Ser Lys Lys Ala Leu Lys Gln Leu Ala Gly Val Ala
180 185 190
Arg Ala Tyr Asp Leu Leu Val Leu Ser Asp Glu Val Tyr Glu His Leu
195 200 205
Val Phe Asp Asp Gln Lys His Val Ser Val Ala Lys Leu Pro Gly Met
210 215 220
Trp Asp Arg Thr Val Thr Val Ser Ser Ala Ala Lys Thr Phe Asn Val
225 230 235 240
Thr Gly Trp Lys Thr Gly Trp Ala Leu Ala Pro Glu Pro Leu Leu Glu
245 250 255
Ala Val Leu Lys Ala Lys Gln Phe Met Ser Tyr Val Gly Ala Thr Pro
260 265 270
Phe Gln Pro Ala Val Ala His Ala Ile Glu His Glu Gln Lys Trp Val
275 280 285
Ser Lys Met Ser Lys Gly Leu Glu Leu Lys Arg Asp Ile Leu Arg Thr
290 295 300
Ala Leu Asp Lys Ala Gly Leu Lys Thr His Asp Ser Met Gly Thr Tyr
305 310 315 320

Phe Ile Val Ala Asp Ile Gly Asp Arg Asp Gly Ala Glu Phe Cys Phe
 325 330 335

Glu Leu Ile Glu Lys Val Gly Val Ala Ala Ile Pro Val Gln Ala Phe
 340 345 350

Val Asp His Pro Lys Lys Trp Ser Ser Lys Val Arg Phe Ala Phe Cys
 355 360 365

Lys Lys Glu Glu Thr Leu Arg Glu Ala Ala Glu Arg Leu Lys Gly Ile
 370 375 380

Lys Lys Leu
 385

<210> 113

<211> 607

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(607)

<223> FRXA00116

<400> 113

tttgcgcacc aatcaatggg ggatcaaata tagtagctgc atgagtaatg acttcgtcgt 60

ttctaggctt agaccctttg gtgaaacgat ttttgcacc acc atg acc cag cga gct 115
 Met Thr Gln Arg Ala
 1 5

gtt gag gcg ggt gca atc aat ctt ggt cag ggc ttt cct gat gag gat 163
 Val Glu Ala Gly Ala Ile Asn Leu Gly Gln Gly Phe Pro Asp Glu Asp
 10 15 20

ggt cct cgt cggt atg tta gag atc gcg tcg gag cag att ctc ggg gga 211
 Gly Pro Arg Arg Met Leu Glu Ile Ala Ser Glu Gln Ile Leu Gly Gly
 25 30 35

aat aat cag tat tcg gcg ggg cgt ggg gat gct tcg ttg agg gca gct 259
 Asn Asn Gln Tyr Ser Ala Gly Arg Gly Asp Ala Ser Leu Arg Ala Ala
 40 45 50

gtg gct cgt gat cat ttg gag agg ttt gat ctg gag tac aac cct gat 307
 Val Ala Arg Asp His Leu Glu Arg Phe Asp Leu Glu Tyr Asn Pro Asp
 55 60 65

tcg gag gtg ttg atc acg gtg ggg gcc act gag gcg att acg gcg act 355
 Ser Glu Val Leu Ile Thr Val Gly Ala Thr Glu Ala Ile Thr Ala Thr
 70 75 80 85

gtg ttg ggt ttg gtg gag cct ggg gat gaa gtg atc gtt ttg gaa ccg 403
 Val Leu Gly Leu Val Glu Pro Gly Asp Glu Val Ile Val Leu Glu Pro
 90 95 100

tat tac gat gcg tat gcg gct att gcg ttg gcg ggg gcg acg ccg 451
 Tyr Tyr Asp Ala Tyr Ala Ala Ile Ala Leu Ala Gly Ala Thr Arg
 105 110 115

gtg	gcg	gtt	cct	ttg	cag	gag	gtg	gag	aac	tcg	tgg	gat	gtg	gat	gtc	499
Val	Ala	Val	Pro	Leu	Gln	Glu	Val	Glu	Asn	Ser	Trp	Asp	Val	Asp	Val	
120							125					130				
gat	aag	ttg	cat	gct	gcg	gtg	act	aag	aag	acg	cg	atg	att	atc	gtt	547
Asp	Lys	Leu	His	Ala	Ala	Val	Thr	Lys	Lys	Thr	Arg	Met	Ile	Ile	Val	
135							140					145				
aat	tcg	ccg	cat	aat	ccg	acg	ggt	tcg	ttt	tct	aag	aag	gct	ttg	595	
Asn	Ser	Pro	His	Asn	Pro	Thr	Gly	Ser	Val	Phe	Ser	Lys	Lys	Ala	Leu	
150							155			160		165				
aag	cag	ttg	gct													607
Lys	Gln	Leu	Ala													

<210>	114															
<211>	169															
<212>	PRT															
<213>	Corynebacterium	glutamicum														
<400>	114															
Met	Thr	Gln	Arg	Ala	Val	Glu	Ala	Gly	Ala	Ile	Asn	Leu	Gly	Gln	Gly	
1					5					10				15		
Phe	Pro	Asp	Glu	Asp	Gly	Pro	Arg	Arg	Met	Leu	Glu	Ile	Ala	Ser	Glu	
						20				25				30		
Gln	Ile	Leu	Gly	Gly	Asn	Asn	Gln	Tyr	Ser	Ala	Gly	Arg	Gly	Asp	Ala	
					35				40				45			
Ser	Leu	Arg	Ala	Ala	Val	Ala	Arg	Asp	His	Leu	Glu	Arg	Phe	Asp	Leu	
					50				55				60			
Glu	Tyr	Asn	Pro	Asp	Ser	Glu	Val	Leu	Ile	Thr	Val	Gly	Ala	Thr	Glu	
						65			70				75		80	
Ala	Ile	Thr	Ala	Thr	Val	Leu	Gly	Leu	Val	Glu	Pro	Gly	Asp	Glu	Val	
						85			90				95			
Ile	Val	Leu	Glu	Pro	Tyr	Tyr	Asp	Ala	Tyr	Ala	Ala	Ile	Ala	Leu		
					100				105				110			
Ala	Gly	Ala	Thr	Arg	Val	Ala	Val	Pro	Leu	Gln	Glu	Val	Glu	Asn	Ser	
					115				120				125			
Trp	Asp	Val	Asp	Val	Asp	Lys	Leu	His	Ala	Ala	Val	Thr	Lys	Lys	Thr	
						130			135				140			
Arg	Met	Ile	Ile	Val	Asn	Ser	Pro	His	Asn	Pro	Thr	Gly	Ser	Val	Phe	
					145				150			155		160		
Ser	Lys	Lys	Ala	Leu	Lys	Gln	Leu	Ala								
					165											

<210>	115															
<211>	1230															
<212>	DNA															

<213> *Corynebacterium glutamicum*

<220>

<221> CDS

<222> (101) . . (1207)

<223> RXN00618

<400> 115

gctgcattag agggtcgtat ctcgatcaa aaggcgtacg cagataggct tgcgtttat 60

gaagccaaac actagaagca atgttcagcc gtttcgcgtc atg cag atg ttg gac 115
Met Gln Met Leu Asp
1 5

```

cga gtc cac cgt cgc agg cgc gaa ggc aaa gac acc tta atg ttc tgc 163
Arg Val His Arg Arg Arg Glu Gly Lys Asp Thr Leu Met Phe Cys
          10           15           20

```

gct ggc cag ccg tca act ggt gcg cca gaa gca gtc atc gaa gaa gca 211
Ala Gly Gln Pro Ser Thr Gly Ala Pro Glu Ala Val Ile Glu Glu Ala
25 30 35

gag atc gct ctt cgc tcg ggt cct ttg gga tac acc gag gtg att ggt 259
Glu Ile Ala Leu Arg Ser Gly Pro Leu Gly Tyr Thr Glu Val Ile Gly
40 45 50

gat cgt gag ttc cgt gaa cgc atc gcc gat tgg cac tct gct act tat 307
Asp Arg Glu Phe Arg Glu Arg Ile Ala Asp Trp His Ser Ala Thr Tyr
55 60 65

```

gac gta gac acc aac cct gac aat gtt att gtc acc acc ggt tct tca 355
Asp Val Asp Thr Asn Pro Asp Asn Val Ile Val Thr Thr Gly Ser Ser
    70           75           80           85

```

```

ggt gga ttc gtg gca tcg ttt atc gcc acc ttg gat cac ggg gat tat 403
Gly Gly Phe Val Ala Ser Phe Ile Ala Thr Leu Asp His Gly Asp Tyr
         90          95          100

```

```

gtg gca atg cct acc ccg ggg tac ccg gca tat cgc aat att ctg gaa 451
Val Ala Met Pro Thr Pro Gly Tyr Pro Ala Tyr Arg Asn Ile Leu Glu
          105           110           115

```

ccg ggg gct aag gtc ttc aac ttc ctc tgc tgc act acc gca gag act cgt 499
Ser Leu Gly Ala Lys Val Leu Asn Leu Arg Cys Thr Ala Glu Thr Arg
120 125 130

ttc cag cca acc gct caa atg ttg gag gaa ctg cca cac aag ccg aag 547
 Phe Gln Pro Thr Ala Gln Met Leu Glu Glu Leu Pro His Lys Pro Lys
 135 140 145

```

gct gtt att gtc acc agc cca gga aac cca acg ggc acc atc att gat 595
Ala Val Ile Val Thr Ser Pro Gly Asn Pro Thr Gly Thr Ile Ile Asp
150          155          160          165

```

```

ccg gaa gag cta gag cgc atc gcc aag tgg tgc gat gac aat gat gct 643
Pro Glu Glu Leu Glu Arg Ile Ala Lys Trp Cys Asp Asp Asn Asp Ala
170          175          180

```

gtt ctt atc tct gat gag gac tac cac ggc atg agc ttt ggt cgt ccg 691
 Val Leu Ile Ser Asp Glu Asp Tyr His Gly Met Ser Phe Gly Arg Pro
 185 190 195

ctg gca act gcg cat cag ttt tcc aag aac gcc atc gtg gtg ggt acc 739
 Leu Ala Thr Ala His Gln Phe Ser Lys Asn Ala Ile Val Val Gly Thr
 200 205 210

 ttg tcc aag tac ttc tcc atg acg ggt tgg cgc gtg ggt tgg atc atc 787
 Leu Ser Lys Tyr Phe Ser Met Thr Gly Trp Arg Val Gly Trp Ile Ile
 215 220 225

 gtt cca gat gag ctg gtc aca ccg att gaa aac ctg cag gct tct ctt 835
 Val Pro Asp Glu Leu Val Thr Pro Ile Glu Asn Leu Gln Ala Ser Leu
 230 235 240 245

 tcc ttg tgt gct cct gcc atc ggg cag gct gcg gga cgc gca gcc ttc 883
 Ser Leu Cys Ala Pro Ala Ile Gly Gln Ala Ala Gly Arg Ala Ala Phe
 250 255 260

 act ttg gag gct ggg gcc gaa ctt gat gcc cac gtt gaa gcg tat cgc 931
 Thr Leu Glu Ala Gly Ala Glu Leu Asp Ala His Val Glu Ala Tyr Arg
 265 270 275

 gag gcc cg^g gag gtg ttc gtc gat aag ctc cct gaa atc ggg ctt ggc 979
 Glu Ala Arg Glu Val Phe Val Asp Lys Leu Pro Glu Ile Gly Leu Gly
 280 285 290

 act ttc gcc gac ccg gat ggc ggc ctg tat ttg tgg gtc gat gtt tct
 1027
 Thr Phe Ala Asp Pro Asp Gly Gly Leu Tyr Leu Trp Val Asp Val Ser
 295 300 305

 gca tac acc gat gat tca gag gaa tgg gca ttg cgt ttg ctc gat gaa
 1075
 Ala Tyr Thr Asp Asp Ser Glu Glu Trp Ala Leu Arg Leu Leu Asp Glu
 310 315 320 325

 gcg ggc gtg gcc gtc gcg ccg ggt gtt gat ttt gat cct gag gaa ggc
 1123
 Ala Gly Val Ala Val Ala Pro Gly Val Asp Phe Asp Pro Glu Glu Gly
 330 335 340

 cac aag tgg att cgt ttg agc ctg tgc gcg tca aag gaa gac acc att
 1171
 His Lys Trp Ile Arg Leu Ser Leu Cys Ala Ser Lys Glu Asp Thr Ile
 345 350 355

 gaa ggt gtg cgc aaa atc gga gaa ttc atc aaa aaa tagcagcgcac
 1217
 Glu Gly Val Arg Lys Ile Gly Glu Phe Ile Lys Lys
 360 365

 taggttagtt tcg
 1230

<210> 116
<211> 369
<212> PRT
<213> *Corynebacterium glutamicum*

<400> 116
Met Glr Met Leu Asp Arg Val His Arg Arg Arg Arg Glu Gly Lys Asp

1	5	10	15
Thr Leu Met Phe Cys Ala Gly Gln Pro Ser Thr Gly Ala Pro Glu Ala			
20		25	30
Val Ile Glu Glu Ala Glu Ile Ala Leu Arg Ser Gly Pro Leu Gly Tyr			
35		40	45
Thr Glu Val Ile Gly Asp Arg Glu Phe Arg Glu Arg Ile Ala Asp Trp			
50		55	60
His Ser Ala Thr Tyr Asp Val Asp Thr Asn Pro Asp Asn Val Ile Val			
65		70	75
Thr Thr Gly Ser Ser Gly Gly Phe Val Ala Ser Phe Ile Ala Thr Leu			
85		90	95
Asp His Gly Asp Tyr Val Ala Met Pro Thr Pro Gly Tyr Pro Ala Tyr			
100		105	110
Arg Asn Ile Leu Glu Ser Leu Gly Ala Lys Val Leu Asn Leu Arg Cys			
115		120	125
Thr Ala Glu Thr Arg Phe Gln Pro Thr Ala Gln Met Leu Glu Glu Leu			
130		135	140
Pro His Lys Pro Lys Ala Val Ile Val Thr Ser Pro Gly Asn Pro Thr			
145		150	155
Gly Thr Ile Ile Asp Pro Glu Glu Leu Glu Arg Ile Ala Lys Trp Cys			
165		170	175
Asp Asp Asn Asp Ala Val Leu Ile Ser Asp Glu Asp Tyr His Gly Met			
180		185	190
Ser Phe Gly Arg Pro Leu Ala Thr Ala His Gln Phe Ser Lys Asn Ala			
195		200	205
Ile Val Val Gly Thr Leu Ser Lys Tyr Phe Ser Met Thr Gly Trp Arg			
210		215	220
Val Gly Trp Ile Ile Val Pro Asp Glu Leu Val Thr Pro Ile Glu Asn			
225		230	235
Leu Gln Ala Ser Leu Ser Leu Cys Ala Pro Ala Ile Gly Gln Ala Ala			
245		250	255
Gly Arg Ala Ala Phe Thr Leu Glu Ala Gly Ala Glu Leu Asp Ala His			
260		265	270
Val Glu Ala Tyr Arg Glu Ala Arg Glu Val Phe Val Asp Lys Leu Pro			
275		280	285
Glu Ile Gly Leu Gly Thr Phe Ala Asp Pro Asp Gly Gly Leu Tyr Leu			
290		295	300
Trp Val Asp Val Ser Ala Tyr Thr Asp Asp Ser Glu Glu Trp Ala Leu			
305		310	315
Arg Leu Leu Asp Glu Ala Gly Val Ala Val Ala Pro Gly Val Asp Phe			
325		330	335

Asp Pro Glu Glu Gly His Lys Trp Ile Arg Leu Ser Leu Cys Ala Ser
 340 345 350

Lys Glu Asp Thr Ile Glu Gly Val Arg Lys Ile Gly Glu Phe Ile Lys
 355 360 365

Lys

<210> 117

<211> 657

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(634)

<223> FRXA00618

<400> 117

cccaacgggc accatcattg atccggaaga gctagagcgc atcgccaagt ggtgcgatga 60

caatgatgct gttcttatct ctgatgagga ctaccacggc atg agc ttt ggt cgt	115
Met Ser Phe Gly Arg	
1	5

ccg ctg gca act gcg cat cag ttt tcc aag aac gcc atc gtg gtg ggt	163	
Pro Leu Ala Thr Ala His Gln Phe Ser Lys Asn Ala Ile Val Val Gly		
10	15	20

acc ttg tcc aag tac ttc tcc atg acg ggt tgg cgc gtg ggt tgg atc	211	
Thr Leu Ser Lys Tyr Phe Ser Met Thr Gly Trp Arg Val Gly Trp Ile		
25	30	35

atc gtt cca gat gag ctg gtc aca ccg att gaa aac ctg cag gct tct	259	
Ile Val Pro Asp Glu Leu Val Thr Pro Ile Glu Asn Leu Gln Ala Ser		
40	45	50

ctt tcc ttg tgt gct cct gcc atc ggg cag gct gcg gga cgc gca gcc	307	
Leu Ser Leu Cys Ala Pro Ala Ile Gly Gln Ala Ala Gly Arg Ala Ala		
55	60	65

ttc act ttg gag gct ggg gcc gaa ctt gat gcc cac gtt gaa gcg tat	355		
Phe Thr Leu Glu Ala Gly Ala Glu Leu Asp Ala His Val Glu Ala Tyr			
70	75	80	85

cgc gag gcc cgg gag gtg ttc gtc gat aag ctc cct gaa atc ggg ctt	403	
Arg Glu Ala Arg Glu Val Phe Val Asp Lys Leu Pro Glu Ile Gly Leu		
90	95	100

ggc act ttc gcc gac ccg gat ggc ggc ctg tat ttg tgg gtc gat gtt	451	
Gly Thr Phe Ala Asp Pro Asp Gly Gly Leu Tyr Leu Trp Val Asp Val		
105	110	115

tct gca tac acc gat gat tca gag gaa tgg gca ttg cgt ttg ctc gat	499	
Ser Ala Tyr Thr Asp Asp Ser Glu Glu Trp Ala Leu Arg Leu Leu Asp		
120	125	130

gaa gcg ggc gtg gcc gtc gcg ccg ggt gtt gat ttt gat cct gag gaa	547
---	-----

Glu Ala Gly Val Ala Val Ala Pro Gly Val Asp Phe Asp Pro Glu Glu
 135 140 145
 ggc cac aag tgg att cgt ttg agc ctg tgc gcg tca aag gaa gac acc 595
 Gly His Lys Trp Ile Arg Leu Ser Leu Cys Ala Ser Lys Glu Asp Thr
 150 155 160 165
 att gaa ggt gtc cgc aaa atc gga gaa ttc atc aaa aaa tagcagcgac 644
 Ile Glu Gly Val Arg Lys Ile Gly Glu Phe Ile Lys Lys
 170 175
 tagtttagtt tcg 657

<210> 118
 <211> 178
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 118
 Met Ser Phe Gly Arg Pro Leu Ala Thr Ala His Gln Phe Ser Lys Asn
 1 5 10 15

Ala Ile Val Val Gly Thr Leu Ser Lys Tyr Phe Ser Met Thr Gly Trp
 20 25 30

Arg Val Gly Trp Ile Ile Val Pro Asp Glu Leu Val Thr Pro Ile Glu
 35 40 45

Asn Leu Gln Ala Ser Leu Ser Leu Cys Ala Pro Ala Ile Gly Gln Ala
 50 55 60

Ala Gly Arg Ala Ala Phe Thr Leu Glu Ala Gly Ala Glu Leu Asp Ala
 65 70 75 80

His Val Glu Ala Tyr Arg Glu Ala Arg Glu Val Phe Val Asp Lys Leu
 85 90 95

Pro Glu Ile Gly Leu Gly Thr Phe Ala Asp Pro Asp Gly Gly Leu Tyr
 100 105 110

Leu Trp Val Asp Val Ser Ala Tyr Thr Asp Asp Ser Glu Glu Trp Ala
115 120 125

Leu Arg Leu Leu Asp Glu Ala Gly Val Ala Val Ala Pro Gly Val Asp
 130 135 140

Phe Asp Pro Glu Glu Gly His Lys Trp Ile Arg Leu Ser Leu Cys Ala
 145 150 155 160

Ser Lys Glu Asp Thr Ile Glu Gly Val Arg Lys Ile Gly Glu Phe Ile
 165 170 175

Lys Lys

<210> 119
 <211> 385
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)...(385)
<223> FRXA00627

<400> 119
gctgcattag agggtcgtat ctgcgtctaa aaggcgtacg cagataggct tgcgttcttat 60
gaagccaagc actagaagca atgttcagcc gtttcgcgtc atg cag atg ttg gac 115
Met Gln Met Leu Asp
1 5
cga gtc cac cgt cgc agg cgc gaa ggc aaa gac acc tta atg ttc tgc 163
Arg Val His Arg Arg Arg Glu Gly Lys Asp Thr Leu Met Phe Cys
10 15 20
gct ggc cag ccg tca act ggt gcg cca gaa gca gtc atc gaa gaa gca 211
Ala Gly Gln Pro Ser Thr Gly Ala Pro Glu Ala Val Ile Glu Glu Ala
25 30 35
gag atc gct ctt cgc tcg ggt cct ttg gga tac acc gag gtg att ggt 259
Glu Ile Ala Leu Arg Ser Gly Pro Leu Gly Tyr Thr Glu Val Ile Gly
40 45 50
gat cgt gag ttc cgt gaa cgc atc gcc gat tgg cac tct gct act tat 307
Asp Arg Glu Phe Arg Glu Arg Ile Ala Asp Trp His Ser Ala Thr Tyr
55 60 65
gac gta gac acc aac cct gac aat gtt att gtc acc acc ggt tct tca 355
Asp Val Asp Thr Asn Pro Asp Asn Val Ile Val Thr Thr Gly Ser Ser
70 75 80 85
ggt gga ttc gtg gca tcg ttt atc gcc acc 385
Gly Gly Phe Val Ala Ser Phe Ile Ala Thr
90 95

<210> 120
<211> 95
<212> PRT
<213> Corynebacterium glutamicum

<400> 120
Met Gln Met Leu Asp Arg Val His Arg Arg Arg Glu Gly Lys Asp 15
1 5 10 15
Thr Leu Met Phe Cys Ala Gly Gln Pro Ser Thr Gly Ala Pro Glu Ala
20 25 30
Val Ile Glu Glu Ala Glu Ile Ala Leu Arg Ser Gly Pro Leu Gly Tyr
35 40 45
Thr Glu Val Ile Gly Asp Arg Glu Phe Arg Glu Arg Ile Ala Asp Trp
50 55 60
His Ser Ala Thr Tyr Asp Val Asp Thr Asn Pro Asp Asn Val Ile Val
65 70 75 80
Thr Thr Gly Ser Ser Gly Gly Phe Val Ala Ser Phe Ile Ala Thr
85 90 95

<210> 121
 <211> 1434
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(1411)
 <223> RXA02550

<400> 121
 gatcttaggc agccgtggga ttacaccctt ttagagctag aacagtaaaa attcacccaa 60

tagcttcaa ctacgcacac aaagtggcaa cattgagcgg	gtg act aca gac aag	115
	Val Thr Thr Asp Lys	
	1	5

cgc aaa acc tct aag acc acc gac acc gcc aac aag gct gtg ggc gcg 163
 Arg Lys Thr Ser Lys Thr Thr Asp Thr Ala Asn Lys Ala Val Gly Ala
 10 15 20

gat cag gca gcg cgt ccc act cgg cga aca act cgc cgc atc ttc gat 211
 Asp Gln Ala Ala Arg Pro Thr Arg Arg Thr Thr Arg Arg Ile Phe Asp
 25 30 35

cag tcg gag aag atg aag gac gtg ctg tac gag atc cgt ggc ccg gtg 259
 Gln Ser Glu Lys Met Lys Asp Val Leu Tyr Glu Ile Arg Gly Pro Val
 40 45 50

gcc gcg gag gcg gaa cgc atg gag ctt gat ggg cat aac atc tta aag 307
 Ala Ala Glu Ala Glu Arg Met Glu Leu Asp Gly His Asn Ile Leu Lys
 55 60 65

ctc aac acg gga aat cca gcc gtg ttc gga ttc gat gcc ccc gac gtg 355
 Leu Asn Thr Gly Asn Pro Ala Val Phe Gly Phe Asp Ala Pro Asp Val
 70 75 80 85

att atg cgt gac atg atc gcc aac ctt cca act tcc caa ggg tat tcc 403
 Ile Met Arg Asp Met Ile Ala Asn Leu Pro Thr Ser Gln Gly Tyr Ser
 90 95 100

acc tcc aaa ggc att att ccg gcc cgg cga gca gtg gtc acc cgc tac 451
 Thr Ser Lys Gly Ile Ile Pro Ala Arg Arg Ala Val Val Thr Arg Tyr
 105 110 115

gaa gtt gtg ccc gga ttc ccc cac ttc gat gtt gat gat gtg ttc tta 499
 Glu Val Val Pro Gly Phe Pro His Phe Asp Val Asp Asp Val Phe Leu
 120 125 130

ggc aac ggt gtc tca gaa cta atc acc atg acc acc caa gca ctc ctc 547
 Gly Asn Gly Val Ser Glu Leu Ile Thr Met Thr Thr Gln Ala Leu Leu
 135 140 145

aac gac ggc gat gaa gtt ctt atc ccc gca ccg gac tac cca ctg tgg 595
 Asn Asp Gly Asp Glu Val Leu Ile Pro Ala Pro Asp Tyr Pro Leu Trp
 150 155 160 165

act gcc gca acc tcc ctg gct ggt ggt aag cct gtg cac tac ctc tgt 643
 Thr Ala Ala Thr Ser Leu Ala Gly Gly Lys Pro Val His Tyr Leu Cys

170	175	180	
gat gag gaa gat gac tgg aac cca tcc atc gaa gac atc aag tcc aaa Asp Glu Glu Asp Asp Trp Asn Pro Ser Ile Glu Asp Ile Lys Ser Lys 185	190	195	691
atc tca gag aaa acc aaa gct att gtg gtg atc aac ccc aac aac ccc Ile Ser Glu Lys Thr Lys Ala Ile Val Val Ile Asn Pro Asn Asn Pro 200	205	210	739
acg gga gct gtc tac ccg cgc cgg gtg ttg gaa caa atc gtc gag att Thr Gly Ala Val Tyr Pro Arg Arg Val Leu Glu Gln Ile Val Glu Ile 215	220	225	787
gca cgc gag cat gac ctg ctg att ttg gcc gat gaa atc tac gac cgc Ala Arg Glu His Asp Leu Leu Ile Leu Ala Asp Glu Ile Tyr Asp Arg 230	235	240	835
att ctc tac gat gat gcc gag cac atc agc ctg gca acc ctt gca cca Ile Leu Tyr Asp Asp Ala Glu His Ile Ser Leu Ala Thr Leu Ala Pro 250	255	260	883
gat ctc ctt tgc atc aca tac aac ggt cta tcc aag gca tac cgc gtc Asp Leu Leu Cys Ile Thr Tyr Asn Gly Leu Ser Lys Ala Tyr Arg Val 265	270	275	931
gca gga tac cga gct ggc tgg atg gta ttg act gga cca aag caa tac Ala Gly Tyr Arg Ala Gly Trp Met Val Leu Thr Gly Pro Lys Gln Tyr 280	285	290	979
gca cgt gga ttt att gag ggc ctc gaa ctc ctc gca ggc act cga ctc 1027			
Ala Arg Gly Phe Ile Glu Gly Leu Glu Leu Leu Ala Gly Thr Arg Leu 295	300	305	
tgc cca aat gtc cca gct cag cac gct att cag gta gct ctg ggt gga 1075			
Cys Pro Asn Val Pro Ala Gln His Ala Ile Gln Val Ala Leu Gly Gly 310	315	320	325
cgc cag tcc atc tac gac ctc act ggc gaa cac ggc cga ctc ctg gaa 1123			
Arg Gln Ser Ile Tyr Asp Leu Thr Gly Glu His Gly Arg Leu Leu Glu 330	335	340	
cag cgc aac atg gca tgg acg aaa ctc aac gaa atc cca ggt gtc agc 1171			
Gln Arg Asn Met Ala Trp Thr Lys Leu Asn Glu Ile Pro Gly Val Ser 345	350	355	
tgt gtg aaa cca atg gga gct cta tac gcg ttc ccc aag ctc gac ccc 1219			
Cys Val Lys Pro Met Gly Ala Leu Tyr Ala Phe Pro Lys Leu Asp Pro 360	365	370	
aac gtg tac gaa atc cac gac gac acc caa ctc atg ctg gat ctt ctc 1267			
Asn Val Tyr Glu Ile His Asp Asp Thr Gln Leu Met Leu Asp Leu Leu 375	380	385	

cgt gcc gag aaa atc ctc atg gtt cag ggc act ggc ttc aac tgg cca
 1315

Arg Ala Glu Lys Ile Leu Met Val Gln Gly Thr Gly Phe Asn Trp Pro
 390 395 400 405

cat cac gat cac ttc cga gtg gtc acc ctg cca tgg gca tcc cag ttg
 1363

His His Asp His Phe Arg Val Val Thr Leu Pro Trp Ala Ser Gln Leu
 410 415 420

gaa aac gca att gag cgc ctg ggt aac ttc ctg tcc act tac aag cag
 1411

Glu Asn Ala Ile Glu Arg Leu Gly Asn Phe Leu Ser Thr Tyr Lys Gln
 425 430 435

tagtagttgt taggattcac cac
 1434

<210> 122

<211> 437

<212> PRT

<213> Corynebacterium glutamicum

<400> 122

Val Thr Thr Asp Lys Arg Lys Thr Ser Lys Thr Thr Asp Thr Ala Asn
 1 5 10 15

Lys Ala Val Gly Ala Asp Gln Ala Ala Arg Pro Thr Arg Arg Thr Thr
 20 25 30

Arg Arg Ile Phe Asp Gln Ser Glu Lys Met Lys Asp Val Leu Tyr Glu
 35 40 45

Ile Arg Gly Pro Val Ala Ala Glu Ala Arg Met Glu Leu Asp Gly
 50 55 60

His Asn Ile Leu Lys Leu Asn Thr Gly Asn Pro Ala Val Phe Gly Phe
 65 70 75 80

Asp Ala Pro Asp Val Ile Met Arg Asp Met Ile Ala Asn Leu Pro Thr
 85 90 95

Ser Gln Gly Tyr Ser Thr Ser Lys Gly Ile Ile Pro Ala Arg Arg Ala
 100 105 110

Val Val Thr Arg Tyr Glu Val Val Pro Gly Phe Pro His Phe Asp Val
 115 120 125

Asp Asp Val Phe Leu Gly Asn Gly Val Ser Glu Leu Ile Thr Met Thr
 130 135 140

Thr Gln Ala Leu Leu Asn Asp Gly Asp Glu Val Leu Ile Pro Ala Pro
 145 150 155 160

Asp Tyr Pro Leu Trp Thr Ala Ala Thr Ser Leu Ala Gly Gly Lys Pro
 165 170 175

Val His Tyr Leu Cys Asp Glu Glu Asp Asp Trp Asn Pro Ser Ile Glu
 180 185 190

Asp Ile Lys Ser Lys Ile Ser Glu Lys Thr Lys Ala Ile Val Val Ile
 195 200 205

 Asn Pro Asn Asn Pro Thr Gly Ala Val Tyr Pro Arg Arg Val Leu Glu
 210 215 220

 Gln Ile Val Glu Ile Ala Arg Glu His Asp Leu Leu Ile Leu Ala Asp
 225 230 235 240

 Glu Ile Tyr Asp Arg Ile Leu Tyr Asp Asp Ala Glu His Ile Ser Leu
 245 250 255

 Ala Thr Leu Ala Pro Asp Leu Leu Cys Ile Thr Tyr Asn Gly Leu Ser
 260 265 270

 Lys Ala Tyr Arg Val Ala Gly Tyr Arg Ala Gly Trp Met Val Leu Thr
 275 280 285

 Gly Pro Lys Gln Tyr Ala Arg Gly Phe Ile Glu Gly Leu Glu Leu
 290 295 300

 Ala Gly Thr Arg Leu Cys Pro Asn Val Pro Ala Gln His Ala Ile Gln
 305 310 315 320

 Val Ala Leu Gly Gly Arg Gln Ser Ile Tyr Asp Leu Thr Gly Glu His
 325 330 335

 Gly Arg Leu Leu Glu Gln Arg Asn Met Ala Trp Thr Lys Leu Asn Glu
 340 345 350

 Ile Pro Gly Val Ser Cys Val Lys Pro Met Gly Ala Leu Tyr Ala Phe
 355 360 365

 Pro Lys Leu Asp Pro Asn Val Tyr Glu Ile His Asp Asp Thr Gln Leu
 370 375 380

 Met Leu Asp Leu Leu Arg Ala Glu Lys Ile Leu Met Val Gln Gly Thr
 385 390 395 400

 Gly Phe Asn Trp Pro His His Asp His Phe Arg Val Val Thr Leu Pro
 405 410 415

 Trp Ala Ser Gln Leu Glu Asn Ala Ile Glu Arg Leu Gly Asn Phe Leu
 420 425 430

 Ser Thr Tyr Lys Gln
 435

<210> 123
 <211> 1701
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(1678)
 <223> RXA02193

<400> 123
 ccccccggaaa tgttagtggtt agttccacac tgcctttac aagtacgtag gataatccac 60

aat gag ttt gtc gac atc atc aag atg ggc cgc acc cag ttg cag gat 835
 Asn Glu Phe Val Asp Ile Ile Lys Met Gly Arg Thr Gln Leu Gln Asp
 230 235 240 245

 gct gtt ccc atg agc ttg ggc gaa gag ttc cga gca ttc gcg cac aac 883
 Ala Val Pro Met Ser Leu Gly Glu Phe Arg Ala Phe Ala His Asn
 250 255 260

 ctc gca gaa gag cag acc gtg ctg cgt gaa gct gcc aac cgt ctc ctc 931
 Leu Ala Glu Glu Gln Thr Val Leu Arg Glu Ala Ala Asn Arg Leu Leu
 265 270 275

 gag gtc aat ctt ggt gca acc gca atc ggt act ggt gtg aac act cca 979
 Glu Val Asn Leu Gly Ala Thr Ala Ile Gly Thr Gly Val Asn Thr Pro
 280 285 290

 gca ggc tac cgc cac cag gtt gtc gct gct ctg tct gag gtc acc gga 1027
 Ala Gly Tyr Arg His Gln Val Val Ala Ala Leu Ser Glu Val Thr Gly
 295 300 305

 ctg gaa cta aag tcc gca cgt gat ctc atc gag gct acc tct gac acc 1075
 Leu Glu Leu Lys Ser Ala Arg Asp Leu Ile Glu Ala Thr Ser Asp Thr
 310 315 320 325

 ggt gca tat gtt cat gcg cac tcc gca atc aag cgt gca gcc atg aaa 1123
 Gly Ala Tyr Val His Ala His Ser Ala Ile Lys Arg Ala Ala Met Lys
 330 335 340

 ctg tcc aag atc tgt aac gat cta cgt ctg ctg tct tct ggt cct cgt 1171
 Leu Ser Lys Ile Cys Asn Asp Leu Arg Leu Leu Ser Ser Gly Pro Arg
 345 350 355

 gct ggc ttg aac gaa atc aac ctg cca cca cgc cag gct ggt tcc tcc 1219
 Ala Gly Leu Asn Glu Ile Asn Leu Pro Pro Arg Gln Ala Gly Ser Ser
 360 365 370

 atc atg cca gcc aag gtc aac cca gtg atc cca gaa gtg gtc aac cag 1267
 Ile Met Pro Ala Lys Val Asn Pro Val Ile Pro Glu Val Val Asn Gln
 375 380 385

 gtc tgc ttc aag gtc ttc ggt aac gat ctc acc gtc acc atg gct gcg 1315
 Val Cys Phe Lys Val Phe Gly Asn Asp Leu Thr Val Thr Met Ala Ala
 390 395 400 405

 gaa gct ggc cag ttg cag ctc aac gtc atg gag cca gtc att ggc gaa 1363
 Glu Ala Gly Gln Leu Gln Leu Asn Val Met Glu Pro Val Ile Gly Glu
 410 415 420

 tcc ctc ttc cag tca ctg cgc atc ctg ggc aat gca gcc aag act ttg 1411
 Ser Leu Phe Gln Ser Leu Arg Ile Leu Gly Asn Ala Ala Lys Thr Leu
 425 430 435

cgt gag aag tgc gtc gta gga atc acc gcc aac gct gat gtt tgc cgt
 1459

Arg Glu Lys Cys Val Val Gly Ile Thr Ala Asn Ala Asp Val Cys Arg
 440 445 450

gct tac gtt gat aac tcc atc ggg att atc act tac ctg aac cca ttc
 1507

Ala Tyr Val Asp Asn Ser Ile Gly Ile Ile Thr Tyr Leu Asn Pro Phe
 455 460 465

ctg ggc cac gac att gga gat cag atc ggt aag gaa gca gcc gaa act
 1555

Leu Gly His Asp Ile Gly Asp Gln Ile Gly Lys Glu Ala Ala Glu Thr
 470 475 480 485

ggt cga cca gtg cgt gaa ctc atc ctg gaa aag aag ctc atg gat gaa
 1603

Gly Arg Pro Val Arg Glu Leu Ile Leu Glu Lys Lys Leu Met Asp Glu
 490 495 500

aag acg ctc gag gca gtc ctg tcc aag gag aac ctc atg cac cca atg
 1651

Lys Thr Leu Glu Ala Val Leu Ser Lys Glu Asn Leu Met His Pro Met
 505 510 515

ttc cgc gga agg ctc tac ttg gag aac taatccaaga tctcgctctga
 1698

Phe Arg Gly Arg Leu Tyr Leu Glu Asn
 520 525

tac
 1701

<210> 124

<211> 526

<212> PRT

<213> Corynebacterium glutamicum

<400> 124

Met Ser Lys Thr Ser Asn Lys Ser Ser Ala Asp Ser Lys Asn Asp Ala
 1 5 10 15

Lys Ala Glu Asp Ile Val Asn Gly Glu Asn Gln Ile Ala Thr Asn Glu
 20 25 30

Ser Gln Ser Ser Asp Ser Ala Ala Val Ser Glu Arg Val Val Glu Pro
 35 40 45

Lys Thr Thr Val Gln Lys Lys Phe Arg Ile Glu Ser Asp Leu Leu Gly
 50 55 60

Glu Leu Gln Ile Pro Ser His Ala Tyr Tyr Gly Val His Thr Leu Arg
 65 70 75 80

Ala Val Asp Asn Phe Gln Ile Ser Arg Thr Thr Ile Asn His Val Pro
 85 90 95

Asp Phe Ile Arg Gly Met Val Gln Val Lys Lys Ala Ala Ala Leu Ala
 100 105 110

Asn Arg Arg Leu His Thr Leu Pro Ala Gln Lys Ala Glu Ala Ile Val
 115 120 125
 Trp Ala Cys Asp Gln Ile Leu Ile Glu Glu Arg Cys Met Asp Gln Phe
 130 135 140
 Pro Ile Asp Val Phe Gln Gly Gly Ala Gly Thr Ser Leu Asn Met Asn
 145 150 155 160
 Thr Asn Glu Val Val Ala Asn Leu Ala Leu Glu Phe Leu Gly His Glu
 165 170 175
 Lys Gly Glu Tyr His Ile Leu His Pro Met Asp Asp Val Asn Met Ser
 180 185 190
 Gln Ser Thr Asn Asp Ser Tyr Pro Thr Gly Phe Arg Leu Gly Ile Tyr
 195 200 205
 Ala Gly Leu Gln Thr Leu Ile Ala Glu Ile Asp Glu Leu Gln Val Ala
 210 215 220
 Phe Arg His Lys Gly Asn Glu Phe Val Asp Ile Ile Lys Met Gly Arg
 225 230 235 240
 Thr Gln Leu Gln Asp Ala Val Pro Met Ser Leu Gly Glu Glu Phe Arg
 245 250 255
 Ala Phe Ala His Asn Leu Ala Glu Glu Gln Thr Val Leu Arg Glu Ala
 260 265 270
 Ala Asn Arg Leu Leu Glu Val Asn Leu Gly Ala Thr Ala Ile Gly Thr
 275 280 285
 Gly Val Asn Thr Pro Ala Gly Tyr Arg His Gln Val Val Ala Ala Leu
 290 295 300
 Ser Glu Val Thr Gly Leu Glu Leu Lys Ser Ala Arg Asp Leu Ile Glu
 305 310 315 320
 Ala Thr Ser Asp Thr Gly Ala Tyr Val His Ala His Ser Ala Ile Lys
 325 330 335
 Arg Ala Ala Met Lys Leu Ser Lys Ile Cys Asn Asp Leu Arg Leu Leu
 340 345 350
 Ser Ser Gly Pro Arg Ala Gly Leu Asn Glu Ile Asn Leu Pro Pro Arg
 355 360 365
 Gln Ala Gly Ser Ser Ile Met Pro Ala Lys Val Asn Pro Val Ile Pro
 370 375 380
 Glu Val Val Asn Gln Val Cys Phe Lys Val Phe Gly Asn Asp Leu Thr
 385 390 395 400
 Val Thr Met Ala Ala Glu Ala Gly Gln Leu Gln Leu Asn Val Met Glu
 405 410 415
 Pro Val Ile Gly Glu Ser Leu Phe Gln Ser Leu Arg Ile Leu Gly Asn
 420 425 430
 Ala Ala Lys Thr Leu Arg Glu Lys Cys Val Val Gly Ile Thr Ala Asn

435	440	445
Ala Asp Val Cys Arg Ala Tyr Val Asp Asn Ser Ile Gly Ile Ile Thr		
450	455	460
Tyr Leu Asn Pro Phe Leu Gly His Asp Ile Gly Asp Gln Ile Gly Lys		
465	470	475
Glu Ala Ala Glu Thr Gly Arg Pro Val Arg Glu Leu Ile Leu Glu Lys		
485	490	495
Lys Leu Met Asp Glu Lys Thr Leu Glu Ala Val Leu Ser Lys Glu Asn		
500	505	510
Leu Met His Pro Met Phe Arg Gly Arg Leu Tyr Leu Glu Asn		
515	520	525
<210> 125		
<211> 1098		
<212> DNA		
<213> Corynebacterium glutamicum		
<220>		
<221> CDS		
<222> (101)..(1075)		
<223> RXA02432		
<400> 125		
cacgtgattc atttgtgacc aacaacccgaa actgagccag aagactgtca atccccctgct 60		
gtgcacataa caactgcagc tagttgatac gctagagcgc atg tcg aag cag cac 115		
Met Ser Lys Gln His		
1 5		
tcc aca cca tta aac aat gat gaa gaa cac act tcc gct cct caa aag 163		
Ser Thr Pro Leu Asn Asn Asp Glu Glu His Thr Ser Ala Pro Gln Lys		
10	15	20
gtt gcg gta atc acc acg ggc gga acc atc gcc tgt act tcc gac gca 211		
Val Ala Val Ile Thr Thr Gly Gly Thr Ile Ala Cys Thr Ser Asp Ala		
25	30	35
aat ggg cat ctg ctt ccc acc gtc agc ggt gca gac ctg ctt gcg cca 259		
Asn Gly His Leu Leu Pro Thr Val Ser Gly Ala Asp Leu Leu Ala Pro		
40	45	50
atc gca cca cgg ttc aat gga gcg cag atc gct ttc gaa atc cac gaa 307		
Ile Ala Pro Arg Phe Asn Gly Ala Gln Ile Ala Phe Glu Ile His Glu		
55	60	65
atc aac cgc ctt gat tcc tcc atg acg ttt gag gat ctc gat tcc 355		
Ile Asn Arg Leu Asp Ser Ser Met Thr Phe Glu Asp Leu Asp Ser		
70	75	80
85		
atc atc gcc acg gtt cat aag gtg ttg gag gat ccg gat gtt ggc 403		
Ile Ile Ala Thr Val His Lys Val Leu Glu Asp Pro Asp Val Val Gly		
90	95	100
gta gta gtt acc cac ggc acc gat tcc atg gaa gag tcc gcc atc gcc 451		
Val Val Val Thr His Gly Thr Asp Ser Met Glu Glu Ser Ala Ile Ala		

105	110	115	
gta gac acc ttc ctt gat gat ccc cgc cca gtc att ttc acc ggc gcc Val Asp Thr Phe Leu Asp Asp Pro Arg Pro Val Ile Phe Thr Gly Ala			499
120	125	130	
caa aaa ccc ttc gat cat ccc gaa gcc gac ggc cca aac aac ctt ttc Gln Lys Pro Phe Asp His Pro Glu Ala Asp Gly Pro Asn Asn Leu Phe			547
135	140	145	
gaa gcc tgc ctc atc gca tcc gac ccc tcc gct cgc gga att ggt gca Glu Ala Cys Leu Ile Ala Ser Asp Pro Ser Ala Arg Gly Ile Gly Ala			595
150	155	160	165
ctc att gtc ttc ggt cac gcc gtc atc cct gct cgc ggc tgc gtt aaa Leu Ile Val Phe Gly His Ala Val Ile Pro Ala Arg Gly Cys Val Lys			643
170	175	180	
tgg cac acc tct gat gag ctg gcg ttt gca acc aac ggc cct gaa gaa Trp His Thr Ser Asp Glu Leu Ala Phe Ala Thr Asn Gly Pro Glu Glu			691
185	190	195	
cca gag cgc ccc gat gcg ctg ccc gta gct aaa ttg gcg gat gtc tct Pro Glu Arg Pro Asp Ala Leu Pro Val Ala Lys Leu Ala Asp Val Ser			739
200	205	210	
gtc gaa atc atc ccc gca tac cct ggt gcc acc ggc gca atg gtg gaa Val Glu Ile Ile Pro Ala Tyr Pro Gly Ala Thr Gly Ala Met Val Glu			787
215	220	225	
gct gcc atc gct gcc ggt gct caa gga ctt gta gtg gaa gca atg gga Ala Ala Ile Ala Ala Gly Ala Gln Gly Leu Val Val Glu Ala Met Gly			835
230	235	240	245
tca ggc aat gtt ggt tcc cgc atg ggt gat gcc cta ggt aaa gca ctt Ser Gly Asn Val Gly Ser Arg Met Gly Asp Ala Leu Gly Lys Ala Leu			883
250	255	260	
gac gct gga att ccc gtg gtg atg agc act agg gtt cct cgt ggt gaa Asp Ala Gly Ile Pro Val Val Met Ser Thr Arg Val Pro Arg Gly Glu			931
265	270	275	
gta tcc gga gtg tat ggc ggt gca ggt gga ggt gcg act ttg gct gcg Val Ser Gly Val Tyr Gly Ala Gly Gly Ala Thr Leu Ala Ala			979
280	285	290	
aag ggc gct gtg gga tct cgc tac ttc aga gct ggt cag gca cgt att 1027			
Lys Gly Ala Val Gly Ser Arg Tyr Phe Arg Ala Gly Gln Ala Arg Ile			
295	300	305	
ttg ctc gcg att gcc att gcg acg ggc gca cat ccg gtg acg ctt tac 1075			
Leu Leu Ala Ile Ala Ile Ala Thr Gly Ala His Pro Val Thr Leu Tyr			
310	315	320	325
taatttgcgc cttgggtcttg cat 1098			

<211> 325

<212> PRT

<213> Corynebacterium glutamicum

<400> 126

Met	Ser	Lys	Gln	His	Ser	Thr	Pro	Leu	Asn	Asn	Asp	Glu	Glu	His	Thr
1														10	15

Ser	Ala	Pro	Gln	Lys	Val	Ala	Val	Ile	Thr	Thr	Gly	Gly	Thr	Ile	Ala
					20				25					30	

Cys	Thr	Ser	Asp	Ala	Asn	Gly	His	Leu	Leu	Pro	Thr	Val	Ser	Gly	Ala
					35			40				45			

Asp	Leu	Leu	Ala	Pro	Ile	Ala	Pro	Arg	Phe	Asn	Gly	Ala	Gln	Ile	Ala
					50			55				60			

Phe	Glu	Ile	His	Glu	Ile	Asn	Arg	Leu	Asp	Ser	Ser	Ser	Met	Thr	Phe
					65			70			75		80		

Glu	Asp	Leu	Asp	Ser	Ile	Ile	Ala	Thr	Val	His	Lys	Val	Leu	Glu	Asp
					85				90				95		

Pro	Asp	Val	Val	Gly	Val	Val	Val	Thr	His	Gly	Thr	Asp	Ser	Met	Glu
					100				105				110		

Glu	Ser	Ala	Ile	Ala	Val	Asp	Thr	Phe	Leu	Asp	Asp	Pro	Arg	Pro	Val
					115			120				125			

Ile	Phe	Thr	Gly	Ala	Gln	Lys	Pro	Phe	Asp	His	Pro	Glu	Ala	Asp	Gly
					130			135			140				

Pro	Asn	Asn	Leu	Phe	Glu	Ala	Cys	Leu	Ile	Ala	Ser	Asp	Pro	Ser	Ala
					145			150			155		160		

Arg	Gly	Ile	Gly	Ala	Leu	Ile	Val	Phe	Gly	His	Ala	Val	Ile	Pro	Ala
					165				170			175			

Arg	Gly	Cys	Val	Lys	Trp	His	Thr	Ser	Asp	Glu	Leu	Ala	Phe	Ala	Thr
					180			185				190			

Asn	Gly	Pro	Glu	Glu	Pro	Glu	Arg	Pro	Asp	Ala	Leu	Pro	Val	Ala	Lys
					195			200			205				

Leu	Ala	Asp	Val	Ser	Val	Glu	Ile	Ile	Pro	Ala	Tyr	Pro	Gly	Ala	Thr
					210			215			220				

Gly	Ala	Met	Val	Glu	Ala	Ala	Ile	Ala	Ala	Gly	Ala	Gln	Gly	Leu	Val
					225			230			235		240		

Val	Glu	Ala	Met	Gly	Ser	Gly	Asn	Val	Gly	Ser	Arg	Met	Gly	Asp	Ala
					245			250			255				

Leu	Gly	Lys	Ala	Leu	Asp	Ala	Gly	Ile	Pro	Val	Val	Met	Ser	Thr	Arg
					260				265			270			

Val	Pro	Arg	Gly	Glu	Val	Ser	Gly	Val	Tyr	Gly	Gly	Ala	Gly	Gly	Gly
					275			280			285				

Ala	Thr	Leu	Ala	Ala	Lys	Gly	Ala	Val	Gly	Ser	Arg	Tyr	Phe	Arg	Ala
					290			295			300				

Gly Gln Ala Arg Ile Leu Leu Ala Ile Ala Ile Ala Thr Gly Ala His
305 310 315 320

Pro Val Thr Leu Tyr
325

<210> 127
<211> 775
<212> DNA
<213> *Corynebacterium glutamicum*

<220>
<221> CDS
<222> (101)..(775)
<223> RXN03003

<400> 127
tcgatgatct gggctcccca ggtggtgccgg ctaagcttgg accacaagat tttgatcacc 60

caatgatcgc tgcgtgccg cctcaggcat aatctaaccgc atg acc tct cgc acc 115
Met Thr Ser Arg Thr
1 5

ccg ctt gtt tct gtt ctt cct gat ttt ccg tgg gat tcg ctc gct tcc 163
 Pro Leu Val Ser Val Leu Pro Asp Phe Pro Trp Asp Ser Leu Ala Ser
 10 15 20

gca aaa gcc aaa gct gcg tct cac ccg gat ggg atc gtg aat ctt tct 211
Ala Lys Ala Lys Ala Ala Ser His Pro Asp Gly Ile Val Asn Leu Ser
25 30 35

```

gtt ggc act ccg gtt gat ccg gtc gcg ccc agc att cag atc gcg ttg 259
Val Gly Thr Pro Val Asp Pro Val Ala Pro Ser Ile Gln Ile Ala Leu
        40           45           50

```

```

gca gaa gca gcg ggg ttt tcg ggt tac cct caa acc acc atc ggc acc ccg      307
Ala Glu Ala Ala Gly Phe Ser Gly Tyr Pro Gln Thr Ile Gly Thr Pro
      55           60           65

```

```

gaa ctc cgc gca gcc atc agg ggc gcg ctt gag cgg cgc tac aac atg      355
Glu Leu Arg Ala Ala Ile Arg Gly Ala Leu Glu Arg Arg Tyr Asn Met
    70           75           80           85

```

aca aag ctt gtc gac gcc tcc ctc ctc ccc gtc gtc ggt acc aag gag 403
 Thr Lys Leu Val Asp Ala Ser Leu Leu Pro Val Val Gly Thr Lys Glu
 90 95 100

```

gca att gcc ctt ctt cca ttc gcg ttg ggt att tcc ggc acc gtt gtc 451
Ala Ile Ala Leu Leu Pro Phe Ala Leu Gly Ile Ser Gly Thr Val Val
          105           110           115

```

atc cca gag att gcg tac cca acc tac gaa gtc gct gtc gtg gcc gca 499
Ile Pro Glu Ile Ala Tyr Pro Thr Tyr Glu Val Ala Val Val Ala Ala
120 125 130

```

gga tgc acc gtg ttg cgt tct gat tcg ctg ttt aag ctc ggc ccg cag      547
Gly Cys Thr Val Leu Arg Ser Asp Ser Leu Phe Lys Leu Gly Pro Gln
   135          140          145

```

atc ccg tcg atg atg ttt atc aac tca cca tcc aac ccc aca ggc aag 595
 Ile Pro Ser Met Met Phe Ile Asn Ser Pro Ser Asn Pro Thr Gly Lys
 150 155 160 165

gtt ctg ggc atc cca cac ttg cgc aag gtt gtg aag tgg gcg cag gaa 643
 Val Leu Gly Ile Pro His Leu Arg Lys Val Val Lys Trp Ala Gln Glu
 170 175 180

aac aac gtg atc ctc gca gct gat gaa tgc tac ttg ggt ctt ggc tgg 691
 Asn Asn Val Ile Leu Ala Ala Asp Glu Cys Tyr Leu Gly Leu Gly Trp
 185 190 195

gac gat gaa aac cca ccg atc tca att ttg gat cca cgt gtc tgc gat 739
 Asp Asp Glu Asn Pro Pro Ile Ser Ile Leu Asp Pro Arg Val Cys Asp
 200 205 210

ggc gac cac acc aac ttg atc gcc att cac tcg ctg 775
 Gly Asp His Thr Asn Leu Ile Ala Ile His Ser Leu
 215 220 225

<210> 128

<211> 225

<212> PRT

<213> *Corynebacterium glutamicum*

<400> 128

Met Thr Ser Arg Thr Pro Leu Val Ser Val Leu Pro Asp Phe Pro Trp
 1 5 10 15

Asp Ser Leu Ala Ser Ala Lys Ala Lys Ala Ala Ser His Pro Asp Gly
 20 25 30

Ile Val Asn Leu Ser Val Gly Thr Pro Val Asp Pro Val Ala Pro Ser
 35 40 45

Ile Gln Ile Ala Leu Ala Glu Ala Ala Gly Phe Ser Gly Tyr Pro Gln
 50 55 60

Thr Ile Gly Thr Pro Glu Leu Arg Ala Ala Ile Arg Gly Ala Leu Glu
 65 70 75 80

Arg Arg Tyr Asn Met Thr Lys Leu Val Asp Ala Ser Leu Leu Pro Val
 85 90 95

Val Gly Thr Lys Glu Ala Ile Ala Leu Leu Pro Phe Ala Leu Gly Ile
 100 105 110

Ser Gly Thr Val Val Ile Pro Glu Ile Ala Tyr Pro Thr Tyr Glu Val
 115 120 125

Ala Val Val Ala Ala Gly Cys Thr Val Leu Arg Ser Asp Ser Leu Phe
 130 135 140

Lys Leu Gly Pro Gln Ile Pro Ser Met Met Phe Ile Asn Ser Pro Ser
 145 150 155 160

Asn Pro Thr Gly Lys Val Leu Gly Ile Pro His Leu Arg Lys Val Val
 165 170 175

Lys Trp Ala Gln Glu Asn Asn Val Ile Leu Ala Asp Glu Cys Tyr

gag cag gag tgg gag ggc gtg ttc agc gcg ttg gct gct gcc ccg cac 547
 Glu Gln Glu Trp Glu Gly Val Phe Ser Ala Leu Ala Ala Ala Pro His
 135 140 145

 att gag gtc acg ggc atg ttc acg cac ttg gcg tgc gcg gat gag cca 595
 Ile Glu Val Thr Gly Met Phe Thr His Leu Ala Cys Ala Asp Glu Pro
 150 155 160 165

 gag aat ccg gaa act gat cgc caa att att gct ttt cga cgc gcc ctt 643
 Glu Asn Pro Glu Thr Asp Arg Gln Ile Ile Ala Phe Arg Arg Ala Leu
 170 175 180

 gcg ctc gcc cgc aag cac ggg ctt gag tgc ccg gtc aac cac gta tgc 691
 Ala Leu Ala Arg Lys His Gly Leu Glu Cys Pro Val Asn His Val Cys
 185 190 195

 aac tca cct gca ttc ttg act cga tct gat tta cac atg gag atg gtc 739
 Asn Ser Pro Ala Phe Leu Thr Arg Ser Asp Leu His Met Glu Met Val
 200 205 210

 cga ccg ggt ttg gcc ttt tat ggg ttg gaa ccc gtg gcg gga ctg gag 787
 Arg Pro Gly Leu Ala Phe Tyr Gly Leu Glu Pro Val Ala Gly Leu Glu
 215 220 225

 cat ggt ttg aag ccg gcg atg acg tgg gag gcg aag gtg agc gtc gta 835
 His Gly Leu Lys Pro Ala Met Thr Trp Glu Ala Lys Val Ser Val Val
 230 235 240 245

 aag caa att gaa gct gga caa ggc act tcc tat ggc ctg acc tgg cgc 883
 Lys Gln Ile Glu Ala Gly Gln Gly Thr Ser Tyr Gly Leu Thr Trp Arg
 250 255 260

 gct gag gat cgc ggc ttt gtg gct gtg gtg cct gcg ggc tat gcc gat 931
 Ala Glu Asp Arg Gly Phe Val Ala Val Val Pro Ala Gly Tyr Ala Asp
 265 270 275

 ggc atg ccg cgg cat gcc cag ggg aaa ttc tcc gtc acg att gat ggc 979
 Gly Met Pro Arg His Ala Gln Gly Lys Phe Ser Val Thr Ile Asp Gly
 280 285 290

 ctg gac tat ccg cag gtt ggg cgc gta tgc atg gat cag ttc gtt att
 1027
 Leu Asp Tyr Pro Gln Val Gly Arg Val Cys Met Asp Gln Phe Val Ile
 295 300 305

 tct ttg ggc gac aat cca cac ggc gtg gaa gct ggg gcg aag gcc gtg
 1075
 Ser Leu Gly Asp Asn Pro His Gly Val Glu Ala Gly Ala Lys Ala Val
 310 315 320 325

 ata ttc ggt gag aat ggg cat gac gca act gat ttt gcg gag cgt tta
 1123
 Ile Phe Gly Glu Asn Gly His Asp Ala Thr Asp Phe Ala Glu Arg Leu
 330 335 340

 gac acc att aac tat gag gta gtg tgc cga cca acc ggc cga act gtc
 1171
 Asp Thr Ile Asn Tyr Glu Val Val Cys Arg Pro Thr Gly Arg Thr Val
 345 350 355

cgc gca tat gtt taagtgaata cgtttaagga gca
 1206
 Arg Ala Tyr Val
 360

<210> 130
 <211> 361
 <212> PRT
 <213> Corynebacterium glutamicum

<400>	130		
Met Asn Leu Leu Thr Thr Lys Ile Asp Leu Asp Ala Ile Ala His Asn			
1	5	10	15
Thr Arg Val Leu Lys Gln Met Ala Gly Pro Ala Lys Leu Met Ala Val			
20	25	30	
Val Lys Ala Asn Ala Tyr Asn His Gly Val Glu Lys Val Ala Pro Val			
35	40	45	
Ile Ala Ala His Gly Ala Asp Ala Phe Gly Val Ala Thr Leu Ala Glu			
50	55	60	
Ala Met Gln Leu Arg Asp Ile Gly Ile Ser Gln Glu Val Leu Cys Trp			
65	70	75	80
Ile Trp Thr Pro Glu Gln Asp Phe Arg Ala Ala Ile Asp Arg Asn Ile			
85	90	95	
Asp Leu Ala Val Ile Ser Pro Ala His Ala Lys Ala Leu Ile Glu Thr			
100	105	110	
Asp Ala Glu His Ile Arg Val Ser Ile Lys Ile Asp Ser Gly Leu His			
115	120	125	
Arg Ser Gly Val Asp Glu Gln Glu Trp Glu Gly Val Phe Ser Ala Leu			
130	135	140	
Ala Ala Ala Pro His Ile Glu Val Thr Gly Met Phe Thr His Leu Ala			
145	150	155	160
Cys Ala Asp Glu Pro Glu Asn Pro Glu Thr Asp Arg Gln Ile Ile Ala			
165	170	175	
Phe Arg Arg Ala Leu Ala Leu Ala Arg Lys His Gly Leu Glu Cys Pro			
180	185	190	
Val Asn His Val Cys Asn Ser Pro Ala Phe Leu Thr Arg Ser Asp Leu			
195	200	205	
His Met Glu Met Val Arg Pro Gly Leu Ala Phe Tyr Gly Leu Glu Pro			
210	215	220	
Val Ala Gly Leu Glu His Gly Leu Lys Pro Ala Met Thr Trp Glu Ala			
225	230	235	240
Lys Val Ser Val Val Lys Gln Ile Glu Ala Gly Gln Gly Thr Ser Tyr			
245	250	255	
Gly Leu Thr Trp Arg Ala Glu Asp Arg Gly Phe Val Ala Val Val Pro			

260	265	270
Ala Gly Tyr Ala Asp Gly Met Pro Arg His Ala Gln Gly Lys Phe Ser		
275	280	285
Val Thr Ile Asp Gly Leu Asp Tyr Pro Gln Val Gly Arg Val Cys Met		
290	295	300
Asp Gln Phe Val Ile Ser Leu Gly Asp Asn Pro His Gly Val Glu Ala		
305	310	315
Gly Ala Lys Ala Val Ile Phe Gly Glu Asn Gly His Asp Ala Thr Asp		
325	330	335
Phe Ala Glu Arg Leu Asp Thr Ile Asn Tyr Glu Val Val Cys Arg Pro		
340	345	350
Thr Gly Arg Thr Val Arg Ala Tyr Val		
355	360	
<210> 131		
<211> 1152		
<212> DNA		
<213> Corynebacterium glutamicum		
<220>		
<221> CDS		
<222> (101)..(1129)		
<223> RXN00636		
<400> 131		
tcatggatt cagcaaggcg gccacccgaa ccgtcttgg tggaggagta ggagcgatga	60	
tcgatctggc ccgttcgaac ataaggaata ttcctactcc atg atg att gat aca		115
	Met Met Ile Asp Thr	
	1	5
cct gct gtt ctc att gac cgc gag cgc tta act gcc aac att tcc agg		163
Pro Ala Val Leu Ile Asp Arg Glu Arg Leu Thr Ala Asn Ile Ser Arg		
10	15	20
atg gca gct cac gcc ggt gcc cat gag att gcc ctg cgt ccg cat gtg		211
Met Ala Ala His Ala Gly Ala His Glu Ile Ala Leu Arg Pro His Val		
25	30	35
aaa acg cac aaa atc att gaa att gcg cag atg cag gtc gac gcc ggt		259
Lys Thr His Lys Ile Ile Glu Ile Ala Gln Met Gln Val Asp Ala Gly		
40	45	50
gcc cga ggg atc acc tgc gca acc att ggc gag gcg gaa att ttt gcc		307
Ala Arg Gly Ile Thr Cys Ala Thr Ile Gly Glu Ala Glu Ile Phe Ala		
55	60	65
ggc gca ggt ttt acg gac atc ttt att gca tat ccg ctg tat cta acc		355
Gly Ala Gly Phe Thr Asp Ile Phe Ile Ala Tyr Pro Leu Tyr Leu Thr		
70	75	80
gat cat gca gtg caa cgc ctg aac gcg atc ccc gga gaa att tcc att		403
Asp His Ala Val Gln Arg Leu Asn Ala Ile Pro Gly Glu Ile Ser Ile		
90	95	100

Glu Ala Asp Gly Thr Phe Arg Thr Trp Lys Val Val Ala Arg Gly Arg
 330 335 340

aac aat tagggaaacc tcttgacctt cac
 1152
 Asn Asn

<210> 132
 <211> 343
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 132
 Met Met Ile Asp Thr Pro Ala Val Leu Ile Asp Arg Glu Arg Leu Thr
 1 5 10 15

Ala Asn Ile Ser Arg Met Ala Ala His Ala Gly Ala His Glu Ile Ala
 20 25 30

Leu Arg Pro His Val Lys Thr His Lys Ile Ile Glu Ile Ala Gln Met
 35 40 45

Gln Val Asp Ala Gly Ala Arg Gly Ile Thr Cys Ala Thr Ile Gly Glu
 50 55 60

Ala Glu Ile Phe Ala Gly Ala Gly Phe Thr Asp Ile Phe Ile Ala Tyr
 65 70 75 80

Pro Leu Tyr Leu Thr Asp His Ala Val Gln Arg Leu Asn Ala Ile Pro
 85 90 95

Gly Glu Ile Ser Ile Gly Val Asp Ser Val Glu Met Ala Gln Ala Thr
 100 105 110

Ala Gly Leu Arg Glu Asp Ile Lys Ala Leu Ile Glu Val Asp Ser Gly
 115 120 125

His Arg Arg Ser Gly Val Thr Ala Thr Ala Ser Glu Leu Ser Gln Ile
 130 135 140

~~Arg Glu Ala Leu Gly Ser Arg Tyr Ala Gly Val Phe Thr Phe Pro Gly~~
~~145 150 155 160~~

His Ser Tyr Gly Pro Gly Asn Gly Glu Gln Ala Ala Ala Asp Glu Leu
 165 170 175

Gln Ala Leu Asn Asn Ser Val Gln Arg Leu Ala Gly Gly Leu Thr Ser
 180 185 190

Gly Gly Ser Ser Pro Ser Ala Gln Phe Thr Asp Ala Ile Asp Glu Met
 195 200 205

Arg Pro Gly Val Tyr Val Phe Asn Asp Ser Gln Gln Ile Thr Ser Gly
 210 215 220

Ala Cys Thr Glu Lys Gln Val Ala Met Thr Val Leu Ser Thr Val Val
 225 230 235 240

Ser Arg Asn Val Ser Asp Arg Arg Ile Ile Leu Asp Ala Gly Ser Lys

245	250	255
Ile Leu Ser Thr Asp Lys Pro Ala Trp Ile Asp Gly Asn Gly Phe Val		
260	265	270
Leu Gly Asn Pro Glu Ala Arg Ile Ser Ala Leu Ser Glu His His Ala		
275	280	285
Thr Ile Phe Trp Pro Asp Lys Val Leu Leu Pro Val Ile Gly Glu Gln		
290	295	300
Leu Asn Ile Val Pro Asn His Ala Cys Asn Val Ile Asn Leu Val Asp		
305	310	315
Glu Val Tyr Val Arg Glu Ala Asp Gly Thr Phe Arg Thr Trp Lys Val		
325	330	335
Val Ala Arg Gly Arg Asn Asn		
340		

<210> 133
<211> 879
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(856)
<223> RXA02536

<400> 133 aagaagtat cacgcgaacc tgtgtataac ttgcctcaaa gcgccttaggc tgtggattat	60
gcttattgcc ttgcttcaga tctcgacgaa ttccgataag atg gac aac ttc gcc	115
Met Asp Asn Phe Ala	1
	5
ctg ctg cgt gat gct gaa aaa gct gcg gaa cag ggg gct cgg gtg	163
Leu Leu Arg Asp Ala Ala Glu Lys Ala Ala Glu Gln Gly Ala Arg Val	
10	15
	20
ttg gtg ttt ccg gag gcg act tcg caa agc ttt ggt acg gga agg ctt	211
Leu Val Phe Pro Glu Ala Thr Ser Gln Ser Phe Gly Thr Gly Arg Leu	
25	30
	35
gat act cag gcg gag gag ctc gat ggc gaa ttc tcc acc gcg gta cga	259
Asp Thr Gln Ala Glu Glu Leu Asp Gly Glu Phe Ser Thr Ala Val Arg	
40	45
	50
aaa tta gcc gat gag ctg gac gtt qtc atc gtt gcg ggc atg ttc acc	307
Lys Leu Ala Asp Glu Leu Asp Val Val Ile Val Ala Gly Met Phe Thr	
55	60
	65
cct gct gac acc gtg cag cgc ggt gaa aaa acg atc tcg cgc gtc aac	355
Pro Ala Asp Thr Val Gln Arg Gly Glu Lys Thr Ile Ser Arg Val Asn	
70	75
	80
	85
aac acc gtg ctg att agt ggc gct gga ttg cat cag gga tac aac aaa	403
Asn Thr Val Leu Ile Ser Gly Ala Gly Leu His Gln Gly Tyr Asn Lys	
90	95
	100

att cac aca tat gac gcg ttc ggt tat agg gaa tcc gac act gtg aaa	451
Ile His Thr Tyr Asp Ala Phe Gly Tyr Arg Glu Ser Asp Thr Val Lys	
105	110
	115
ccg ggc gat gag ctg gtt gta ttc gag gtc gac gat att aaa ttt ggt	499
Pro Gly Asp Glu Leu Val Val Phe Glu Val Asp Asp Ile Lys Phe Gly	
120	125
	130
gtg gcg aca tgc tac gat att cga ttc cca gaa cag ttc aaa gac ctc	547
Val Ala Thr Cys Tyr Asp Ile Arg Phe Pro Glu Gln Phe Lys Asp Leu	
135	140
	145
gcc cgc aac ggt gca cag ata att gtg gtt ccc acg tcg tgg caa gac	595
Ala Arg Asn Gly Ala Gln Ile Ile Val Val Pro Thr Ser Trp Gln Asp	
150	155
	160
	165
ggt cct gga aaa tta gaa caa tgg gaa gtc ctc cct cgc gcg cgt gca	643
Gly Pro Gly Lys Leu Glu Gln Trp Glu Val Leu Pro Arg Ala Arg Ala	
170	175
	180
ctg gat tcc acc tgc tgg atc gta gcg tgt ggg caa gcg cga ctt cca	691
Leu Asp Ser Thr Cys Trp Ile Val Ala Cys Gly Gln Ala Arg Leu Pro	
185	190
	195
gaa gaa tta cgc gat gaa cga aaa ggc cct acg ggg att ggt cat tcc	739
Glu Glu Leu Arg Asp Glu Arg Lys Gly Pro Thr Gly Ile Gly His Ser	
200	205
	210
atg gtg aca aac cca cac ggt gaa gta att gct agc gcg ggt tat gag	787
Met Val Thr Asn Pro His Gly Glu Val Ile Ala Ser Ala Gly Tyr Glu	
215	220
	225
cca gaa atg ttg atc gcg gat att gat gtc agc ggt ttg gcc aaa att	835
Pro Glu Met Leu Ile Ala Asp Ile Asp Val Ser Gly Leu Ala Lys Ile	
230	235
	240
	245
cg ^g gag gca ttg cct gtt ctt taaccactgt ctaaggaatc act	879
Arg Glu Ala Leu Pro Val Leu	
250	

<210> 134

<211> 252

<212> PRT

<213> Corynebacterium glutamicum

<400> 134

Met Asp Asn Phe Ala Leu Leu Arg Asp Ala Ala Glu Lys Ala Ala Glu	
1	5
	10
	15

Gln Gly Ala Arg Val Leu Val Phe Pro Glu Ala Thr Ser Gln Ser Phe	
20	25
	30

Gly Thr Gly Arg Leu Asp Thr Gln Ala Glu Glu Leu Asp Gly Glu Phe	
35	40
	45

Ser Thr Ala Val Arg Lys Leu Ala Asp Glu Leu Asp Val Val Ile Val	
50	55
	60

Ala Gly Met Phe Thr Pro Ala Asp Thr Val Gln Arg Gly Glu Lys Thr	
---	--

65	70	75	80
Ile Ser Arg Val Asn Asn Thr Val Leu Ile Ser Gly Ala Gly Leu His			
85		90	95
Gln Gly Tyr Asn Lys Ile His Thr Tyr Asp Ala Phe Gly Tyr Arg Glu			
100		105	110
Ser Asp Thr Val Lys Pro Gly Asp Glu Leu Val Val Phe Glu Val Asp			
115		120	125
Asp Ile Lys Phe Gly Val Ala Thr Cys Tyr Asp Ile Arg Phe Pro Glu			
130		135	140
Gln Phe Lys Asp Leu Ala Arg Asn Gly Ala Gln Ile Ile Val Val Pro			
145		150	155
Thr Ser Trp Gln Asp Gly Pro Gly Lys Leu Glu Gln Trp Glu Val Leu			
165		170	175
Pro Arg Ala Arg Ala Leu Asp Ser Thr Cys Trp Ile Val Ala Cys Gly			
180		185	190
Gln Ala Arg Leu Pro Glu Glu Leu Arg Asp Glu Arg Lys Gly Pro Thr			
195		200	205
Gly Ile Gly His Ser Met Val Thr Asn Pro His Gly Glu Val Ile Ala			
210		215	220
Ser Ala Gly Tyr Glu Pro Glu Met Leu Ile Ala Asp Ile Asp Val Ser			
225		230	235
Gly Leu Ala Lys Ile Arg Glu Ala Leu Pro Val Leu			
245		250	
<210> 135			
<211> 1635			
<212> DNA			
<213> Corynebacterium glutamicum			
<220>			
<221> CDS			
<222> (101)..(1612)			
<223> RXS00870			
<400> 135			
caagacggcg atgtcgccgc cgctgttgat accgcagcgc gacttggta cacagatatt 60			
caacaattca cttcgcagag catttaagga atttacacac atg tct gaa cca caa 115			
Met Ser Glu Pro Gln			
1 5			
acc atc tcg cac tgg att gac ggc gcg att tcc cca tcc act tcc ggc 163			
Thr Ile Ser His Trp Ile Asp Gly Ala Ile Ser Pro Ser Thr Ser Gly			
10		15	20
aag acc gct cct gtc tac aat cct gca act ggc cag gtc acc gcc aat 211			
Lys Thr Ala Pro Val Tyr Asn Pro Ala Thr Gly Gln Val Thr Ala Asn			
25		30	35

gtt	gct	ctg	gct	agc	cag	gaa	gag	atc	gat	gcc	acc	atc	gct	tct	gcc	259
Val	Ala	Leu	Ala	Ser	Gln	Glu	Glu	Ile	Asp	Ala	Thr	Ile	Ala	Ser	Ala	
								40	45						50	
acc	aag	gct	gct	aag	acg	tgg	ggc	aac	ctg	tct	atc	gct	aag	cgc	caa	307
Thr	Lys	Ala	Ala	Lys	Thr	Trp	Gly	Asn	Leu	Ser	Ile	Ala	Lys	Arg	Gln	
								55	60						65	
gct	gtg	ctt	tcc	aac	tcc	cgt	gag	ctg	aat	gct	cgc	aag	ggt	gag		355
Ala	Val	Leu	Phe	Asn	Phe	Arg	Glu	Leu	Leu	Asn	Ala	Arg	Lys	Gly	Glu	
								70	75						85	
ctg	gct	gag	atc	atc	act	gca	gag	cac	ggc	aag	gtc	ttg	tcc	gat	gcc	403
Leu	Ala	Glu	Ile	Ile	Thr	Ala	Glu	His	Gly	Lys	Val	Leu	Ser	Asp	Ala	
								90	95						100	
atg	ggt	gaa	atc	ctg	cgc	ggc	cag	gaa	gtc	gtg	gag	ctt	gct	acc	ggt	451
Met	Gly	Ile	Leu	Arg	Gly	Gln	Glu	Val	Val	Glu	Leu	Ala	Thr	Gly		
								105	110						115	
ttc	cca	cac	ctg	ctt	aaa	ggt	gct	ttc	aac	gag	aac	gtc	tcc	acc	ggc	499
Phe	Pro	His	Leu	Leu	Lys	Gly	Ala	Phe	Asn	Glu	Asn	Val	Ser	Thr	Gly	
								120	125						130	
att	gat	gtg	tat	tcc	ttg	aag	cag	cca	ctg	ggt	gtt	gtc	ggt	atc	atc	547
Ile	Asp	Val	Tyr	Ser	Leu	Lys	Gln	Pro	Leu	Gly	Val	Val	Gly	Ile	Ile	
								135	140						145	
agc	ccg	tcc	aac	tcc	cct	gct	atg	gtg	ccg	atg	tgg	ttt	tcc	cca	atc	595
Ser	Pro	Phe	Asn	Phe	Pro	Ala	Met	Val	Pro	Met	Trp	Phe	Phe	Pro	Ile	
								150	155						165	
gca	atc	gct	gca	ggc	aac	gca	gtt	att	ttg	aag	cct	tca	gag	aag	gat	643
Ala	Ile	Ala	Ala	Gly	Asn	Ala	Val	Ile	Leu	Lys	Pro	Ser	Glu	Lys	Asp	
								170	175						180	
cct	tcg	gca	gct	ctg	tgg	atg	gct	cag	atc	tgg	aag	gaa	gct	ggt	ttt	691
Pro	Ser	Ala	Ala	Leu	Trp	Met	Ala	Gln	Ile	Trp	Lys	Glu	Ala	Gly	Leu	
								185	190						195	
cca	gac	ggc	gta	tcc	aac	gtg	ctc	cag	ggc	gac	aag	ctg	gct	gtt	gat	739
Pro	Asp	Gly	Val	Phe	Asn	Val	Leu	Gln	Gly	Asp	Lys	Leu	Ala	Val	Asp	
								200	205						210	
ggt	ttg	ctg	aac	agc	cct	gat	gtc	tct	gct	att	tcc	ttc	gtg	ggt	tcc	787
Gly	Leu	Leu	Asn	Ser	Pro	Asp	Val	Ser	Ala	Ile	Ser	Phe	Val	Gly	Ser	
								215	220						225	
acc	cca	atc	gca	aag	tac	atc	tac	gag	act	tcc	gct	aag	aac	ggc	aag	835
Thr	Pro	Ile	Ala	Lys	Tyr	Ile	Tyr	Glu	Thr	Ser	Ala	Lys	Asn	Gly	Lys	
								230	235						245	
cgc	gtc	cag	gct	ttg	ggc	ggc	gct	aag	aac	cac	atg	ctg	gtg	ctg	cca	883
Arg	Val	Gln	Ala	Leu	Gly	Gly	Ala	Lys	Asn	His	Met	Leu	Val	Leu	Pro	
								250	255						260	
gat	gct	gat	ctg	gat	ctg	gtt	gcc	gat	cag	gca	atc	aac	gca	ggt	tac	931
Asp	Ala	Asp	Leu	Asp	Leu	Val	Ala	Asp	Gln	Ala	Ile	Asn	Ala	Gly	Tyr	
								265	270						275	
ggc	gct	gcc	ggt	gag	cgt	tgc	atg	gct	gtt	tct	gtg	gtc	ttg	gct	att	979

Gly Ala Ala Gly Glu Arg Cys Met Ala Val Ser Val Val Leu Ala Ile
 280 285 290
 gaa tct gtt gcc gac gag ctc att gag aag atc aag gag cgc atc gac
 1027
 Glu Ser Val Ala Asp Glu Leu Ile Glu Lys Ile Lys Glu Arg Ile Asp
 295 300 305
 acc ctg cgc atc ggc aac ggt gcc ggc gac gag cag ggc gag ccg cac
 1075
 Thr Leu Arg Ile Gly Asn Gly Ala Gly Asp Glu Gln Gly Glu Pro His
 310 315 320 325
 ctg ggc cca cta atc acc gac gtc cac cgc gac aag gtc gct tct tat
 1123
 Leu Gly Pro Leu Ile Thr Asp Val His Arg Asp Lys Val Ala Ser Tyr
 330 335 340
 gtc gac atc gct gag gcc gac ggc gcc aag atc atc gtg gac ggg cgt
 1171
 Val Asp Ile Ala Glu Ala Asp Gly Ala Lys Ile Ile Val Asp Gly Arg
 345 350 355
 aac tgc gcc gta gac ggg cac gag gac ggc ttc ttc ttc ggc cct acg
 1219
 Asn Cys Ala Val Asp Gly His Glu Glu Gly Phe Phe Gly Pro Thr
 360 365 370
 ctt atc gac gac atc cca ctc acg ttc cgc gcc tac acc gaa gaa atc
 1267
 Leu Ile Asp Asp Ile Pro Leu Thr Phe Arg Ala Tyr Thr Glu Glu Ile
 375 380 385
 ttc ggc ccg gtc ctc tct gtc cgt gtc gca tcc ttc gac gag gca
 1315
 Phe Gly Pro Val Leu Ser Val Val Arg Val Ala Ser Phe Asp Glu Ala
 390 395 400 405
 att gag ctg atc aac tcc ggt gaa ttc ggc aac gga acc gca atc ttc
 1363
 Ile Glu Leu Ile Asn Ser Gly Glu Phe Gly Asn Gly Thr Ala Ile Phe
 410 415 420
 acc aac gat ggt gga gcg gca cgc cgc ttc cag cat gag atc gaa gtg
 1411
 Thr Asn Asp Gly Gly Ala Ala Arg Arg Phe Gln His Glu Ile Glu Val
 425 430 435
 ggc atg atc ggc atc aac gta cca atc cca gtg cct gtt gcg tac cac
 1459
 Gly Met Ile Gly Ile Asn Val Pro Ile Pro Val Pro Val Ala Tyr His
 440 445 450
 tcc ttc ggt ggt tgg aag aac tcc ctc ttc ggt gac gcc aag gca tat
 1507
 Ser Phe Gly Gly Trp Lys Asn Ser Leu Phe Gly Asp Ala Lys Ala Tyr
 455 460 465
 ggc act caa ggt ttt gat ttc ttc acc agg gaa aag gcg atc acc agc
 1555
 Gly Thr Gln Gly Phe Asp Phe Phe Thr Arg Glu Lys Ala Ile Thr Ser

470	475	480	485
cgt tgg ctc gac cca gca acc cac ggt ggc att aac ctc ggt ttc cca			
1603			
Arg Trp Leu Asp Pro Ala Thr His Gly Gly Ile Asn Leu Gly Phe Pro			
490		495	
500			

cag aac gat taattgaagg agagcacagg act			
1635			
Gln Asn Asp			

<210> 136			
<211> 504			
<212> PRT			
<213> Corynebacterium glutamicum			

<400> 136																
Met	Ser	Glu	Pro	Gln	Thr	Ile	Ser	His	Trp	Ile	Asp	Gly	Ala	Ile	Ser	
1																15

Pro	Ser	Thr	Ser	Gly	Lys	Thr	Ala	Pro	Val	Tyr	Asn	Pro	Ala	Thr	Gly
20															30

Gln	Val	Thr	Ala	Asn	Val	Ala	Leu	Ala	Ser	Gln	Glu	Glu	Ile	Asp	Ala
35															45

Thr	Ile	Ala	Ser	Ala	Thr	Lys	Ala	Ala	Lys	Thr	Trp	Gly	Asn	Leu	Ser
50															60

Ile	Ala	Lys	Arg	Gln	Ala	Val	Leu	Phe	Asn	Phe	Arg	Glu	Leu	Leu	Asn
65															80

Ala	Arg	Lys	Gly	Glu	Leu	Ala	Glu	Ile	Ile	Thr	Ala	Glu	His	Gly	Lys
85															95

Val	Leu	Ser	Asp	Ala	Met	Gly	Glu	Ile	Leu	Arg	Gly	Gln	Glu	Val	Val
100															110

Glu	Leu	Ala	Thr	Gly	Phe	Pro	His	Leu	Leu	Lys	Gly	Ala	Phe	Asn	Glu
115															125

Asn	Val	Ser	Thr	Gly	Ile	Asp	Val	Tyr	Ser	Leu	Lys	Gln	Pro	Leu	Gly
130															140

Val	Val	Gly	Ile	Ile	Ser	Pro	Phe	Asn	Phe	Pro	Ala	Met	Val	Pro	Met
145															160

Trp	Phe	Phe	Pro	Ile	Ala	Ile	Ala	Gly	Asn	Ala	Val	Ile	Leu	Lys	
165															175

Pro	Ser	Glu	Lys	Asp	Pro	Ser	Ala	Ala	Leu	Trp	Met	Ala	Gln	Ile	Trp
180															190

Lys	Glu	Ala	Gly	Leu	Pro	Asp	Gly	Val	Phe	Asn	Val	Leu	Gln	Gly	Asp
195															205

Lys	Leu	Ala	Val	Asp	Gly	Leu	Leu	Asn	Ser	Pro	Asp	Val	Ser	Ala	Ile
210															220

Ser Phe Val Gly Ser Thr Pro Ile Ala Lys Tyr Ile Tyr Glu Thr Ser
 225 230 235 240
 Ala Lys Asn Gly Lys Arg Val Gln Ala Leu Gly Gly Ala Lys Asn His
 245 250 255
 Met Leu Val Leu Pro Asp Ala Asp Leu Asp Leu Val Ala Asp Gln Ala
 260 265 270
 Ile Asn Ala Gly Tyr Gly Ala Ala Gly Glu Arg Cys Met Ala Val Ser
 275 280 285
 Val Val Leu Ala Ile Glu Ser Val Ala Asp Glu Leu Ile Glu Lys Ile
 290 295 300
 Lys Glu Arg Ile Asp Thr Leu Arg Ile Gly Asn Gly Ala Gly Asp Glu
 305 310 315 320
 Gln Gly Glu Pro His Leu Gly Pro Leu Ile Thr Asp Val His Arg Asp
 325 330 335
 Lys Val Ala Ser Tyr Val Asp Ile Ala Glu Ala Asp Gly Ala Lys Ile
 340 345 350
 Ile Val Asp Gly Arg Asn Cys Ala Val Asp Gly His Glu Glu Gly Phe
 355 360 365
 Phe Phe Gly Pro Thr Leu Ile Asp Asp Ile Pro Leu Thr Phe Arg Ala
 370 375 380
 Tyr Thr Glu Glu Ile Phe Gly Pro Val Leu Ser Val Val Arg Val Ala
 385 390 395 400
 Ser Phe Asp Glu Ala Ile Glu Leu Ile Asn Ser Gly Glu Phe Gly Asn
 405 410 415
 Gly Thr Ala Ile Phe Thr Asn Asp Gly Gly Ala Ala Arg Arg Phe Gln
 420 425 430
 His Glu Ile Glu Val Gly Met Ile Gly Ile Asn Val Pro Ile Pro Val
 435 440 445
 Pro Val Ala Tyr His Ser Phe Gly Gly Trp Lys Asn Ser Leu Phe Gly
 450 455 460
 Asp Ala Lys Ala Tyr Gly Thr Gln Gly Phe Asp Phe Phe Thr Arg Glu
 465 470 475 480
 Lys Ala Ile Thr Ser Arg Trp Leu Asp Pro Ala Thr His Gly Gly Ile
 485 490 495
 Asn Leu Gly Phe Pro Gln Asn Asp
 500

<210> 137
 <211> 531
 <212> DNA
 <213> Corynebacterium glutamicum
 <220>

<221> CDS

<222> (101)..(508)

<223> RXS02299

<400> 137

acgcgggggt ttttgcggaa tcgaaaatatt ccttccttg tcatacgtacg ctatgattc 60

taaaacttgc aggacaaccc ccataaggac accacaggac atg ctg cgc acc atc 115
Met Leu Arg Thr Ile
1 5

ctc gga agt aag att cac cga gcc act gtc act caa gct gat cta gat 163
 Leu Gly Ser Lys Ile His Arg Ala Thr Val Thr Gln Ala Asp Leu Asp
 10 15 20

tat gtt ggc tct gta acc atc gac gcc gac ctg gtt cac gcc gcc gga 211
 Tyr Val Gly Ser Val Thr Ile Asp Ala Asp Leu Val His Ala Ala Gly
 25 30 35

ttg atc gaa ggc gaa aaa gtt gcc atc gta gac atc acc aac ggc gct 259
Leu Ile Glu Gly Glu Lys Val Ala Ile Val Asp Ile Thr Asn Gly Ala
40 45 50

cgt ctg gaa act tat gtc att gtg ggc gac gcc gga acg ggc aat att 307
 Arg Leu Glu Thr Tyr Val Ile Val Gly Asp Ala Gly Thr Gly Asn Ile
 55 60 65

```

tgc atc aat ggt gcc gct gca cac ctt att aat cct ggc gat ctt gtg 355
Cys Ile Asn Gly Ala Ala His Leu Ile Asn Pro Gly Asp Leu Val
    70           75           80           85

```

atc atc atg agc tac ctt cag gca act gat gcg gaa gcc aag gcg tat 403
Ile Ile Met Ser Tyr Leu Gln Ala Thr Asp Ala Glu Ala Lys Ala Tyr
90 95 100

gag cca aag att gtg cac gtg gac gcc gac aac cgc atc gtt gcg ctc 451
Glu Pro Lys Ile Val His Val Asp Ala Asp Asn Arg Ile Val Ala Leu
105 110 115

ggc aac gat ctt gcg gaa gca cta cct gga tcc ggg ctt ttg acg tcg 499
Gly Asn Asp Leu Ala Glu Ala Leu Pro Gly Ser Gly Leu Leu Thr Ser
120 125 130

aga agc att tagcgttta gctcgccaat att 531
Arg Ser Ile
135

<210> 138

<211> 136

<212> PRT

<213> *Corynebacterium glutamicum*

<400> 138

Met Leu Arg Thr Ile Leu Gly Ser Lys Ile His Arg Ala Thr Val Thr
1 5 10 15

Gln Ala Asp Leu Asp Tyr Val Gly Ser Val Thr Ile Asp Ala Asp Leu
 20 25 30

Val His Ala Ala Gly Leu Ile Glu Gly Glu Lys Val Ala Ile Val Asp

35

40

45

Ile Thr Asn Gly Ala Arg Leu Glu Thr Tyr Val Ile Val Gly Asp Ala
 50 55 60

Gly Thr Gly Asn Ile Cys Ile Asn Gly Ala Ala Ala His Leu Ile Asn
 65 70 75 80

Pro Gly Asp Leu Val Ile Ile Met Ser Tyr Leu Gln Ala Thr Asp Ala
 85 90 95

Glu Ala Lys Ala Tyr Glu Pro Lys Ile Val His Val Asp Ala Asp Asn
 100 105 110

Arg Ile Val Ala Leu Gly Asn Asp Leu Ala Glu Ala Leu Pro Gly Ser
 115 120 125

Gly Leu Leu Thr Ser Arg Ser Ile
 130 135

<210> 139

<211> 1053

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1030)

<223> RXA01561

<400> 139

gtgcccagaa attctgcttg cactcaccca agccgttag caaatggAAC ctcacgttca 60

taataatgtt cattttcatc gagttctaga aaacacaggc atg ctc acc ctc aac 115
 Met Leu Thr Leu Asn
 1 5

gat gtc atc acc gcc caa caa cga acc gcc cct cat gtt cga cga acg 163
 Asp Val Ile Thr Ala Gln Gln Arg Thr Ala Pro His Val Arg Arg Thr
 10 15 20

cca ctt ttc gaa gca gac ccc atc gac ggc aca caa atc tgg atc aaa 211
 Pro Leu Phe Glu Ala Asp Pro Ile Asp Gly Thr Gln Ile Trp Ile Lys
 25 30 35

gca gag ttc ctc caa aag tgc ggc gtg ttc aaa acg cgt gga gca ttc 259
 Ala Glu Phe Leu Gln Lys Cys Gly Val Phe Lys Thr Arg Gly Ala Phe
 40 45 50

aac cgc cag ctc gca gct tcg qaa aac qqa cta ctc gac cca acg gtt 307
 Asn Arg Gln Leu Ala Ala Ser Glu Asn Gly Leu Leu Asp Pro Thr Val
 55 60 65

ggc atc gtc gcg gca tca ggc gga aac gca gga ctc gca aat gct ttt 355
 Gly Ile Val Ala Ala Ser Gly Gly Asn Ala Gly Leu Ala Asn Ala Phe
 70 75 80 85

gcc gca gca tcc tta agc gtt ccc gcc acg gta ttg gtg ccc gaa act 403
 Ala Ala Ala Ser Leu Ser Val Pro Ala Thr Val Leu Val Pro Glu Thr
 90 95 100

gcc cca caa gta aaa gtt gat cgc ctc aag caa tac ggt gca acc gtg 451
 Ala Pro Gln Val Lys Val Asp Arg Leu Lys Gln Tyr Gly Ala Thr Val
 105 110 115

 caa caa atc gga tct gaa tat gcg gaa gca ttt gag gca gct caa acc 499
 Gln Gln Ile Gly Ser Glu Tyr Ala Glu Ala Phe Glu Ala Ala Gln Thr
 120 125 130

 ttt gag tcg gaa act ggt gct ctg ttt tgc cac gcc tac gac cag ccc 547
 Phe Glu Ser Glu Thr Gly Ala Leu Phe Cys His Ala Tyr Asp Gln Pro
 135 140 145

 gac atc gca gct gga gca ggc gtc att ggg cta gaa att gtc gaa gat 595
 Asp Ile Ala Ala Gly Ala Gly Val Ile Gly Leu Glu Ile Val Glu Asp
 150 155 160 165

 ctt ccc gac gtt gac acc atc gtg gtt gct gtc ggt ggc ggt gga ctc 643
 Leu Pro Asp Val Asp Thr Ile Val Val Ala Val Gly Gly Gly Leu
 170 175 180

 tat gca gga atc gca gca gcc gtc gta gca gcc cac gac atc aaa gtg gtg 691
 Tyr Ala Gly Ile Ala Ala Val Val Ala Ala His Asp Ile Lys Val Val
 185 190 195

 gcc gtt gaa ccc tcc aaa att cca acc ctg cac aac tca ctc att gcc 739
 Ala Val Glu Pro Ser Lys Ile Pro Thr Leu His Asn Ser Leu Ile Ala
 200 205 210

 ggc caa cca gtc gat gtg aac gtt tct ggt atc gcg gca gat tct ttg 787
 Gly Gln Pro Val Asp Val Asn Val Ser Gly Ile Ala Ala Asp Ser Leu
 215 220 225

 ggg gct cgc caa att gga cga gaa gcc ttt gac atc gca act gcc cat 835
 Gly Ala Arg Gln Ile Gly Arg Glu Ala Phe Asp Ile Ala Thr Ala His
 230 235 240 245

 ccc cca ata ggc gtc cta gtg gac gat gaa gca atc atc gca gct cga 883
 Pro Pro Ile Gly Val Leu Val Asp Asp Glu Ala Ile Ile Ala Ala Arg
 250 255 260

 cgc cac ctc tgg gac aac tac cgc atc cct gcc gag cat ggc gct gcc 931
 Arg Mis Leu Ile Asp Asn Tyr Arg Ile Pro Ala Glu His Gly Ala Ala
 265 270 275

 gca gca ctc gcc tct ctt acc agt gga gca tac aaa cct gca gca gat 979
 Ala Ala Leu Ala Ser Leu Thr Ser Gly Ala Tyr Lys Pro Ala Ala Asp
 280 285 290

 gaa aaa gtg gca gtc att gtg tgc gga gcg aac act gac ctc aca aca
 1027
 Glu Lys Val Ala Val Ile Val Cys Gly Ala Asn Thr Asp Leu Thr Thr
 295 300 305

 ctg tgatgtgatt tcaaacgatc aca
 1053
 Leu
 310

<210> 140

<211> 310
<212> PRT
<213> Corynebacterium glutamicum

<400> 140
Met Leu Thr Leu Asn Asp Val Ile Thr Ala Gln Gln Arg Thr Ala Pro
1 5 10 15
His Val Arg Arg Thr Pro Leu Phe Glu Ala Asp Pro Ile Asp Gly Thr
20 25 30
Gln Ile Trp Ile Lys Ala Glu Phe Leu Gln Lys Cys Gly Val Phe Lys
35 40 45
Thr Arg Gly Ala Phe Asn Arg Gln Leu Ala Ala Ser Glu Asn Gly Leu
50 55 60
Leu Asp Pro Thr Val Gly Ile Val Ala Ala Ser Gly Gly Asn Ala Gly
65 70 75 80
Leu Ala Asn Ala Phe Ala Ala Ala Ser Leu Ser Val Pro Ala Thr Val
85 90 95
Leu Val Pro Glu Thr Ala Pro Gln Val Lys Val Asp Arg Leu Lys Gln
100 105 110
Tyr Gly Ala Thr Val Gln Gln Ile Gly Ser Glu Tyr Ala Glu Ala Phe
115 120 125
Glu Ala Ala Gln Thr Phe Glu Ser Glu Thr Gly Ala Leu Phe Cys His
130 135 140
Ala Tyr Asp Gln Pro Asp Ile Ala Ala Gly Ala Gly Val Ile Gly Leu
145 150 155 160
Glu Ile Val Glu Asp Leu Pro Asp Val Asp Thr Ile Val Val Ala Val
165 170 175
Gly Gly Gly Leu Tyr Ala Gly Ile Ala Ala Val Val Ala Ala His
180 185 190
Asp Ile Lys Val Val Ala Val Glu Pro Ser Lys Ile Pro Thr Leu His
195 200 205
Asn Ser Leu Ile Ala Gly Gln Pro Val Asp Val Asn Val Ser Gly Ile
210 215 220
Ala Ala Asp Ser Leu Gly Ala Arg Gln Ile Gly Arg Glu Ala Phe Asp
225 230 235 240
Ile Ala Thr Ala His Pro Pro Ile Gly Val Leu Val Asp Asp Glu Ala
245 250 255
Ile Ile Ala Ala Arg Arg His Leu Trp Asp Asn Tyr Arg Ile Pro Ala
260 265 270
Glu His Gly Ala Ala Ala Leu Ala Ser Leu Thr Ser Gly Ala Tyr
275 280 285
Lys Pro Ala Ala Asp Glu Lys Val Ala Val Ile Val Cys Gly Ala Asn
290 295 300

Thr Asp Leu Thr Thr Leu
305 310

<210> 141
<211> 1470
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1447)
<223> RXA01850

<400> 141
ttcggtcaac ttcagactct tacggaggcg atggaccaaa aacaactaca atcaaggcaga 60

tcacccgtta caccaccaga gaaaaggccc accctcagcc atg gct atc agt gtt 115
Met Ala Ile Ser Val
1 5

gtt gat cta ttt agc atc ggt atc gga cca tca tcc tca cat acc gtc 163
Val Asp Leu Phe Ser Ile Gly Ile Gly Pro Ser Ser Ser His Thr Val
10 15 20

ggc ccc atg aga gcc gcc ctc acg tat atc tct gaa ttt ccc agc tcg 211
Gly Pro Met Arg Ala Ala Leu Thr Tyr Ile Ser Glu Phe Pro Ser Ser
25 30 35

cat gtc gat atc acg ttg cac gga tcc ctt gcc acc ggt aaa ggc 259
His Val Asp Ile Thr Leu His Gly Ser Leu Ala Ala Thr Gly Lys Gly
40 45 50

cac tgc act gac cgg gcg gta tta ctg ggt ctg gtg gga tgg gaa cca 307
His Cys Thr Asp Arg Ala Val Leu Leu Gly Leu Val Gly Trp Glu Pro
55 60 65

acg ata gtt ccc att gat gct gca ccc tca ccc ggc gcg ccg att cct 355
Thr Ile Val Pro Ile Asp Ala Ala Pro Ser Pro Gly Ala Pro Ile Pro
70 75 80 85

gct aaa ggt tct gtg aac ggg cca aag gga acg gtg tcg tat tcc ctg 403
Ala Lys Gly Ser Val Asn Gly Pro Lys Gly Thr Val Ser Tyr Ser Leu
90 95 100

acg ttt gat cct cat cct ctt cca gaa cac ccc aat gcc gtt acc ttt 451
Thr Phe Asp Pro His Pro Leu Pro Glu His Pro Asn Ala Val Thr Phe
105 110 115

aaa gga tca acc aca agg act tat ttg tcg gtg ggt ggt ggg ttc att 499
Lys Gly Ser Thr Thr Arg Thr Tyr Leu Ser Val Gly Gly Phe Ile
120 125 130

atg acg ttg gag gat ttc cgg aag ctg gac gat atc gga tca ggt gtg 547
Met Thr Leu Glu Asp Phe Arg Lys Leu Asp Asp Ile Gly Ser Gly Val
135 140 145

tca acc att cat cca gag gca gag gtg cct tgt cct ttt cag aag agt 595
Ser Thr Ile His Pro Glu Ala Glu Val Pro Cys Pro Phe Gln Lys Ser
150 155 160 165

tcc caa tta ctc gca tat ggt cgc gat ttt gcg gag gtc atg aag gat 643
 Ser Gln Leu Leu Ala Tyr Gly Arg Asp Phe Ala Glu Val Met Lys Asp
 170 175 180

aat gag cgc tta atc cac ggg gat ctt ggc aca gtg gat gcc cat ttg 691
 Asn Glu Arg Leu Ile His Gly Asp Leu Gly Thr Val Asp Ala His Leu
 185 190 195

gat cga gtg tgg cag att atg cag gag tgc gtg gca caa ggc atc gca 739
 Asp Arg Val Trp Gln Ile Met Gln Glu Cys Val Ala Gln Gly Ile Ala
 200 205 210

acg ccg ggg att tta ccg ggt ggg ttg aat gtg caa cgt ccg gcg ccg 787
 Thr Pro Gly Ile Leu Pro Gly Gly Leu Asn Val Gln Arg Arg Ala Pro
 215 220 225

cag gta cac gcg ctg att agc aac ggg gat acg tgt gag ctg ggt gct 835
 Gln Val His Ala Leu Ile Ser Asn Gly Asp Thr Cys Glu Leu Gly Ala
 230 235 240 245

gat ctt gat gct gtg gag tgg gtg aat ctg tac gcc ttg gcg gtg aat 883
 Asp Leu Asp Ala Val Glu Trp Val Asn Leu Tyr Ala Leu Ala Val Asn
 250 255 260

gaa gaa aac gcc gct ggt cgt gtg gtt act gct ccg act aat ggt 931
 Glu Glu Asn Ala Ala Gly Gly Arg Val Val Thr Ala Pro Thr Asn Gly
 265 270 275

gct gcg ggg att att ccg gcg gtg atg cac tat gcg ccg gat ttt ttg 979
 Ala Ala Gly Ile Ile Pro Ala Val Met His Tyr Ala Arg Asp Phe Leu
 280 285 290

aca ggt ttt ggg gcg gag cag gcg ccg acg ttt ttg tat acc gcg ggt
 1027
 Thr Gly Phe Gly Ala Glu Gln Ala Arg Thr Phe Leu Tyr Thr Ala Gly
 295 300 305

gcg gtg ggc atc atc att aag gaa aat gcc tcg atc tct ggc gcg gag
 1075
 Ala Val Gly Ile Ile Lys Glu Asn Ala Ser Ile Ser Gly Ala Glu
 310 315 320 325

gtg ggg tgt cag ggt gag gtt ggt tca gcg tcc gcg atg gcg gct gcc
 1123
 Val Gly Cys Gln Gly Glu Val Gly Ser Ala Ser Ala Met Ala Ala Ala
 330 335 340

ggg ttg tgt gca gtc tta ggt ggt tct ccg caa cag gtg gaa aac gcc
 1171
 Gly Leu Cys Ala Val Leu Gly Gly Ser Pro Gln Gln Val Glu Asn Ala
 345 350 355

gcg gag att gcg ttg gag cac aat ttg gga ttg acg tgc gat ccg gtg
 1219
 Ala Glu Ile Ala Leu Glu His Asn Leu Gly Leu Thr Cys Asp Pro Val
 360 365 370

ggc ggg tta gtg cag att ccg tgt att gaa cgc aac gct att gct gcc
 1267
 Gly Gly Leu Val Gln Ile Pro Cys Ile Glu Arg Asn Ala Ile Ala Ala

375	380	385
atg aag tcc atc aat gcg gca agg ctt gcc cggtt att ggt gat ggc aac 1315		
Met Lys Ser Ile Asn Ala Ala Arg Leu Ala Arg Ile Gly Asp Gly Asn 390	395	400 405
aat cgc gtg agt ttg gat gat gtg gtg gtc acg atg gct gcc acc ggc 1363		
Asn Arg Val Ser Leu Asp Asp Val Val Val Thr Met Ala Ala Thr Gly 410	415	420
cggtt gac atg ctg acc aaa tat aag gaa acg tcc ctt ggt ggt ttg gca 1411		
Arg Asp Met Leu Thr Lys Tyr Lys Glu Thr Ser Leu Gly Gly Leu Ala 425	430	435
acc acc ttg ggc ttc ccg gtg tcg atg acg gag tgt tagcggtaac 1457		
Thr Thr Leu Gly Phe Pro Val Ser Met Thr Glu Cys 440	445	
 gcttttaaacac ggc 1470		
 <210> 142		
<211> 449		
<212> PRT		
<213> Corynebacterium glutamicum		
 <400> 142		
Met Ala Ile Ser Val Val Asp Leu Phe Ser Ile Gly Ile Gly Pro Ser 1 5 10 15		
Ser Ser His Thr Val Gly Pro Met Arg Ala Ala Leu Thr Tyr Ile Ser 20 25 30		
Glu Phe Pro Ser Ser His Val Asp Ile Thr Leu His Gly Ser Leu Ala 35 40 45		
Ala Thr Gly Lys Gly His Cys Thr Asp Arg Ala Val Leu Leu Gly Leu 50 55 60		
Val Gly Trp Glu Pro Thr Ile Val Pro Ile Asp Ala Ala Pro Ser Pro 65 70 75 80		
Gly Ala Pro Ile Pro Ala Lys Gly Ser Val Asn Gly Pro Lys Gly Thr 85 90 95		
Val Ser Tyr Ser Leu Thr Phe Asp Pro His Pro Leu Pro Glu His Pro 100 105 110		
Asn Ala Val Thr Phe Lys Gly Ser Thr Thr Arg Thr Tyr Leu Ser Val 115 120 125		
Gly Gly Gly Phe Ile Met Thr Leu Glu Asp Phe Arg Lys Leu Asp Asp 130 135 140		
Ile Gly Ser Gly Val Ser Thr Ile His Pro Glu Ala Glu Val Pro Cys 145 150 155 160		

Pro Phe Gln Lys Ser Ser Gln Leu Leu Ala Tyr Gly Arg Asp Phe Ala
 165 170 175
 Glu Val Met Lys Asp Asn Glu Arg Leu Ile His Gly Asp Leu Gly Thr
 180 185 190
 Val Asp Ala His Leu Asp Arg Val Trp Gln Ile Met Gln Glu Cys Val
 195 200 205
 Ala Gln Gly Ile Ala Thr Pro Gly Ile Leu Pro Gly Gly Leu Asn Val
 210 215 220
 Gln Arg Arg Ala Pro Gln Val His Ala Leu Ile Ser Asn Gly Asp Thr
 225 230 235 240
 Cys Glu Leu Gly Ala Asp Leu Asp Ala Val Glu Trp Val Asn Leu Tyr
 245 250 255
 Ala Leu Ala Val Asn Glu Glu Asn Ala Ala Gly Gly Arg Val Val Thr
 260 265 270
 Ala Pro Thr Asn Gly Ala Ala Gly Ile Ile Pro Ala Val Met His Tyr
 275 280 285
 Ala Arg Asp Phe Leu Thr Gly Phe Gly Ala Glu Gln Ala Arg Thr Phe
 290 295 300
 Leu Tyr Thr Ala Gly Ala Val Gly Ile Ile Ile Lys Glu Asn Ala Ser
 305 310 315 320
 Ile Ser Gly Ala Glu Val Gly Cys Gln Gly Glu Val Gly Ser Ala Ser
 325 330 335
 Ala Met Ala Ala Ala Gly Leu Cys Ala Val Leu Gly Gly Ser Pro Gln
 340 345 350
 Gln Val Glu Asn Ala Ala Glu Ile Ala Leu Glu His Asn Leu Gly Leu
 355 360 365
 Thr Cys Asp Pro Val Gly Gly Leu Val Gln Ile Pro Cys Ile Glu Arg
 370 375 380
 Asn Ala Ile Ala Ala Met Lys Ser Ile Asn Ala Ala Arg Leu Ala Arg
 385 390 395 400
 Ile Gly Asp Gly Asn Asn Arg Val Ser Leu Asp Asp Val Val Val Thr
 405 410 415
 Met Ala Ala Thr Gly Arg Asp Met Leu Thr Lys Tyr Lys Glu Thr Ser
 420 425 430
 Leu Gly Gly Leu Ala Thr Thr Leu Gly Phe Pro Val Ser Met Thr Glu
 435 440 445
 Cys

<210> 143
 <211> 1425

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1402)

<223> RXA00580

<400> 143

ttttatatat gggtatcgcc ggtctatgct tgtggcgta cctgtcccg 60

ttacgcgcgg gattcgtctt gtgaaagggtt agctgacctg atg acc gat gcc cac 115
Met Thr Asp Ala His
1 5caa gcg gac gat gtc cgt tac cag cca ctg aac gag ctt gat cct gag 163
Gln Ala Asp Asp Val Arg Tyr Gln Pro Leu Asn Glu Leu Asp Pro Glu
10 15 20gtg gct gct gcc atc gct ggg gaa ctt gcc cgt caa cgc gat aca tta 211
Val Ala Ala Ala Ile Ala Gly Glu Leu Ala Arg Gln Arg Asp Thr Leu
25 30 35gag atg atc gcg tct gag aac ttc gtt ccc cgt tct gtt ttg cag gcg 259
Glu Met Ile Ala Ser Glu Asn Phe Val Pro Arg Ser Val Leu Gln Ala
40 45 50cag ggt tct gtt ctt acc aat aag tat gcc gag ggt tac cct ggc cgc 307
Gln Gly Ser Val Leu Thr Asn Lys Tyr Ala Glu Gly Tyr Pro Gly Arg
55 60 65cgt tac tac ggt tgc gaa caa gtt gac atc att gag gat ctt gca 355
Arg Tyr Tyr Gly Gly Cys Glu Gln Val Asp Ile Ile Glu Asp Leu Ala
70 75 80 85cgt gat cgt gcg aag gct ctc ttc ggt gca gag ttc gcc aat gtt cag 403
Arg Asp Arg Ala Lys Ala Leu Phe Gly Ala Glu Phe Ala Asn Val Gln
90 95 100cct cac tct ggc gca cag gct aat gct gct gtg ctg atg act ttg gct 451
Pro His Ser Gly Ala Gln Ala Asn Ala Ala Val Leu Met Thr Leu Ala
105 110 115gag cca ggc gac aag atc atg ggt ctg tct ttg gct cat ggt gac 499
Glu Pro Gly Asp Lys Ile Met Gly Leu Ser Leu Ala His Gly Gly His
120 125 130ttg acc cac gga atg aag ttg aac ttc tcc gga aag ctg tac gag gtt 547
Leu Thr His Gly Met Lys Leu Asn Phe Ser Gly Lys Leu Tyr Glu Val
135 140 145gtt gcg tac ggt gtt gat cct gag acc atg cgt gtt gat atg gat cag 595
Val Ala Tyr Gly Val Asp Pro Glu Thr Met Arg Val Asp Met Asp Gln
150 155 160 165gtt cgt gag att gct ctg aag gag cag cca aag gta att atc gct ggc 643
Val Arg Glu Ile Ala Leu Lys Glu Gln Pro Lys Val Ile Ile Ala Gly
170 175 180tgg tct gca tac cct cgc cac ctt gat ttc gag gct ttc cag tct att 691
Trp Ser Ala Tyr Pro Arg His Leu Asp Phe Glu Ala Phe Gln Ser Ile

	185	190	195	
gct gcg gaa gtt ggc gcg aag ctg tgg gtc gat atg gct cac ttc gct Ala Ala Glu Val Gly Ala Lys Leu Trp Val Asp Met Ala His Phe Ala	200	205	210	739
ggt ctt gtt gct gct ggt ttg cac cca agc cca gtt cct tac tct gat Gly Leu Val Ala Ala Gly Leu His Pro Ser Pro Val Pro Tyr Ser Asp	215	220	225	787
gtt gtt tct tcc act gtc cac aag act ttg ggt gga cct cgt tcc ggc Val Val Ser Ser Thr Val His Lys Thr Leu Gly Gly Pro Arg Ser Gly	230	235	240	835
atc att ctg gct aag cag gag tac gcg aag aag ctg aac tct tcc gta Ile Ile Leu Ala Lys Gln Glu Tyr Ala Lys Lys Leu Asn Ser Ser Val	250	255	260	883
ttc cca ggt cag cag ggt ggt cct ttg atg cac gca gtt gct gcg aag Phe Pro Gly Gln Gln Gly Gly Pro Leu Met His Ala Val Ala Ala Lys	265	270	275	931
gct act tct ttg aag att gct ggc act gag cag ttc cgt gac cgt cag Ala Thr Ser Leu Lys Ile Ala Gly Thr Glu Gln Phe Arg Asp Arg Gln	280	285	290	979
gct cgc acg ttg gag ggt gct cgc att ctt gct gag cgt ctg act gct 1027 Ala Arg Thr Leu Glu Gly Ala Arg Ile Leu Ala Glu Arg Leu Thr Ala	295	300	305	
tct gat gcg aag gcc gct ggc gtg gat gtc ttg acc ggt ggc act gat 1075 Ser Asp Ala Lys Ala Ala Gly Val Asp Val Leu Thr Gly Gly Thr Asp	310	315	320	325
gtg cac ttg gtt ttg gct gat ctg cgt aac tcc cag atg gat ggc cag 1123 Val His Leu Val Leu Ala Asp Leu Arg Asn Ser Gln Met Asp Gly Gln	330	335	340	
cag gcg gaa gat ctg ctg cac gag gtt ggt atc act gtg aac cgt aac 1171 Gln Ala Glu Asp Leu Leu His Glu Val Gly Ile Thr Val Asn Arg Asn	345	350	355	
gcg gtt cct ttc gat cct cgt cca cca atg gtt act tct ggt ctg cgt 1219 Ala Val Pro Phe Asp Pro Arg Pro Pro Met Val Thr Ser Gly Leu Arg	360	365	370	
att ggt act cct gcg ctg gct acc cgt ggt ttc gat att cct gca ttc 1267 Ile Gly Thr Pro Ala Leu Ala Thr Arg Gly Phe Asp Ile Pro Ala Phe	375	380	385	
act gag gtt gca gac atc att ggt act gct ttg gct aat ggt aag tcc 1315 Thr Glu Val Ala Asp Ile Ile Gly Thr Ala Leu Ala Asn Gly Lys Ser	390	395	400	405

gca gac att gag tct ctg cgt ggc cgt gta gca aag ctt gct gca gat
 1363
 Ala Asp Ile Glu Ser Leu Arg Gly Arg Val Ala Lys Leu Ala Ala Asp
 410 415 420

tac cca ctg tat gag ggc ttg gaa gac tgg acc atc gtc taagtttgc
 1412
 Tyr Pro Leu Tyr Glu Gly Leu Glu Asp Trp Thr Ile Val
 425 430

tttgagttt cat
 1425

<210> 144
 <211> 434
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 144
 Met Thr Asp Ala His Gln Ala Asp Asp Val Arg Tyr Gln Pro Leu Asn
 1 5 10 15

Glu Leu Asp Pro Glu Val Ala Ala Ile Ala Gly Glu Leu Ala Arg
 20 25 30

Gln Arg Asp Thr Leu Glu Met Ile Ala Ser Glu Asn Phe Val Pro Arg
 35 40 45

Ser Val Leu Gln Ala Gln Gly Ser Val Leu Thr Asn Lys Tyr Ala Glu
 50 55 60

Gly Tyr Pro Gly Arg Arg Tyr Tyr Gly Gly Cys Glu Gln Val Asp Ile
 65 70 75 80

Ile Glu Asp Leu Ala Arg Asp Arg Ala Lys Ala Leu Phe Gly Ala Glu
 85 90 95

Phe Ala Asn Val Gln Pro His Ser Gly Ala Gln Ala Asn Ala Ala Val
 100 105 110

Leu Met Thr Leu Ala Glu Pro Gly Asp Lys Ile Met Gly Leu Ser Leu
 115 120 125

Ala His Gly Gly His Leu Thr His Gly Met Lys Leu Asn Phe Ser Gly
 130 135 140

Lys Leu Tyr Glu Val Val Ala Tyr Gly Val Asp Pro Glu Thr Met Arg
 145 150 155 160

Val Asp Met Asp Gln Val Arg Glu Ile Ala Leu Lys Glu Gln Pro Lys
 165 170 175

Val Ile Ile Ala Gly Trp Ser Ala Tyr Pro Arg His Leu Asp Phe Glu
 180 185 190

Ala Phe Gln Ser Ile Ala Ala Glu Val Gly Ala Lys Leu Trp Val Asp
 195 200 205

Met Ala His Phe Ala Gly Leu Val Ala Ala Gly Leu His Pro Ser Pro
 210 215 220

Val Pro Tyr Ser Asp Val Val Ser Ser Thr Val His Lys Thr Leu Gly
 225 230 235 240
 Gly Pro Arg Ser Gly Ile Ile Leu Ala Lys Gln Glu Tyr Ala Lys Lys
 245 250 255
 Leu Asn Ser Ser Val Phe Pro Gly Gln Gln Gly Pro Leu Met His
 260 265 270
 Ala Val Ala Ala Lys Ala Thr Ser Leu Lys Ile Ala Gly Thr Glu Gln
 275 280 285
 Phe Arg Asp Arg Gln Ala Arg Thr Leu Glu Gly Ala Arg Ile Leu Ala
 290 295 300
 Glu Arg Leu Thr Ala Ser Asp Ala Lys Ala Ala Gly Val Asp Val Leu
 305 310 315 320
 Thr Gly Gly Thr Asp Val His Leu Val Leu Ala Asp Leu Arg Asn Ser
 325 330 335
 Gln Met Asp Gly Gln Gln Ala Glu Asp Leu Leu His Glu Val Gly Ile
 340 345 350
 Thr Val Asn Arg Asn Ala Val Pro Phe Asp Pro Arg Pro Pro Met Val
 355 360 365
 Thr Ser Gly Leu Arg Ile Gly Thr Pro Ala Leu Ala Thr Arg Gly Phe
 370 375 380
 Asp Ile Pro Ala Phe Thr Glu Val Ala Asp Ile Ile Gly Thr Ala Leu
 385 390 395 400
 Ala Asn Gly Lys Ser Ala Asp Ile Glu Ser Leu Arg Gly Arg Val Ala
 405 410 415
 Lys Leu Ala Ala Asp Tyr Pro Leu Tyr Glu Gly Leu Glu Asp Trp Thr
 420 425 430
 Ile Val

<210> 145
 <211> 401
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (1)..(378)
 <223> RXA01821

<400> 145 48
 cga aac agc caa ggc aaa tgg tgc cca agt acg cga tca cca aaa aat
 Arg Asn Ser Gln Gly Lys Trp Cys Pro Ser Thr Arg Ser Pro Lys Asn
 1 5 10 15
 acc agc atc gaa gac aac ggc gat cac gta gtc atc caa gca ggc gaa 96
 Thr Ser Ile Glu Asp Asn Gly Asp His Val Val Ile Gln Ala Gly Glu

20	25	30	
gaa acc aca atc gtg gac cgc gtt atc gtc acc acc ggc agc tgg aca Glu Thr Thr Ile Val Asp Arg Val Ile Val Thr Thr Gly Ser Trp Thr	35	40	144
45			
agc gag ctc gtg ccc tcc atc gcg cca ctg ctt gaa gtg cga cgc cta Ser Glu Leu Val Pro Ser Ile Ala Pro Leu Leu Glu Val Arg Arg Leu	50	55	192
55			
60			
gtg ctc acc tgg ttc ctg ccc aac aat cca gtg gac ttc caa ccg gaa Val Leu Thr Trp Phe Leu Pro Asn Asn Pro Val Asp Phe Gln Pro Glu	65	70	240
75			
80			
aac ctg cca tgc ttc atc cgt gac cgt gat ggc ttc cac gta ttt gga Asn Leu Pro Cys Phe Ile Arg Asp Arg Asp Gly Phe His Val Phe Gly	85	90	288
95			
gca cca tgc gtc gat ggg tac agc atc aaa att gcc gga ttg gat gag Ala Pro Cys Val Asp Gly Tyr Ser Ile Lys Ile Ala Gly Leu Asp Glu	100	105	336
110			
tgg ggc gtt cca tta agc ctc gat cca ccg atg tgc cct cg Trp Gly Val Pro Leu Ser Leu Asp Pro Pro Met Cys Pro Arg	115	120	378
125			
tgatgtcctg atccccgttc cg			401
<210> 146			
<211> 126			
<212> PRT			
<213> Corynebacterium glutamicum			
<400> 146			
Arg Asn Ser Gln Gly Lys Trp Cys Pro Ser Thr Arg Ser Pro Lys Asn 1 5 10 15			
Thr Ser Ile Glu Asp Asn Gly Asp His Val Val Ile Gln Ala Gly Glu 20 25 30			
Glu Thr Thr Ile Val Asp Arg Val Ile Val Thr Thr Gly Ser Trp Thr 35 40 45			
Ser Glu Leu Val Pro Ser Ile Ala Pro Leu Leu Glu Val Arg Arg Leu 50 55 60			
Val Leu Thr Trp Phe Leu Pro Asn Asn Pro Val Asp Phe Gln Pro Glu 65 70 75 80			
Asn Leu Pro Cys Phe Ile Arg Asp Arg Asp Gly Phe His Val Phe Gly 85 90 95			
Ala Pro Cys Val Asp Gly Tyr Ser Ile Lys Ile Ala Gly Leu Asp Glu 100 105 110			
Trp Gly Val Pro Leu Ser Leu Asp Pro Pro Met Cys Pro Arg 115 120 125			
<210> 147			

<211> 488
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(478)
<223> RXN02263

<400> 147
cctggcaac ccaagtgtat gaaaacgccc tggaaaaagg cgtcgccacc acattgaacc 60
tgcggaaatc acccgactg gcttgagaga agaaaacaaca atg aaa att gcg gta 115
Met Lys Ile Ala Val
1 5
atc ggc ctt gga tca acc ggc tcc atg gca ctg tgg cac tta agt aac 163
Ile Gly Leu Gly Ser Thr Gly Ser Met Ala Leu Trp His Leu Ser Asn
10 15 20
atc cca ggt gta gag gcc atc ggc ttt gaa caa ttc ggc atc tcc cat 211
Ile Pro Gly Val Glu Ala Ile Gly Phe Glu Gln Phe Gly Ile Ser His
25 30 35
ggc tac ggc gca ttc aca ggg gag tcc cga ctg ttt cgc atg gcc tac 259
Gly Tyr Gly Ala Phe Thr Gly Glu Ser Arg Leu Phe Arg Met Ala Tyr
40 45 50
cac gaa ggc agc acc tac gtt ccg ttg ctc aaa cgc gca cga gca cta 307
His Glu Gly Ser Thr Tyr Val Pro Leu Leu Lys Arg Ala Arg Ala Leu
55 60 65
tgg tca tca ctg agc gag att tcc gga cgc gaa ctc ttc cac aac ttc 355
Trp Ser Ser Leu Ser Glu Ile Ser Gly Arg Glu Leu Phe His Asn Phe
70 75 80 85
ggt gtc tta agc acc ggc aag gaa gac gaa gca ccc ttc caa cgc ctg 403
Gly Val Leu Ser Thr Gly Lys Glu Asp Glu Ala Pro Phe Gln Arg Leu
90 95 100
gtg gaa tca gtg gaa cgt tat gag ctg cca cat gaa cga ctt acc gcc 451
Val Glu Ser Val Glu Arg Tyr Glu Leu Pro His Glu Arg Leu Thr Ala
105 110 115
gcu cag atg cgc agc gtt acc cag gtc tagacttccg 488
Ala Gln Met Arg Ser Val Thr Gln Val
120 125

<210> 148
<211> 126
<212> PRT
<213> Corynebacterium glutamicum

<400> 148
Met Lys Ile Ala Val Ile Gly Leu Gly Ser Thr Gly Ser Met Ala Leu
1 5 10 15
Trp His Leu Ser Asn Ile Pro Gly Val Glu Ala Ile Gly Phe Glu Gln
20 25 30

Phe Gly Ile Ser His Gly Tyr Gly Ala Phe Thr Gly Glu Ser Arg Leu
 35 40 45

Phe Arg Met Ala Tyr His Glu Gly Ser Thr Tyr Val Pro Leu Leu Lys
 50 55 60

Arg Ala Arg Ala Leu Trp Ser Ser Leu Ser Glu Ile Ser Gly Arg Glu
 65 70 75 80

Leu Phe His Asn Phe Gly Val Leu Ser Thr Gly Lys Glu Asp Glu Ala
 85 90 95

Pro Phe Gln Arg Leu Val Glu Ser Val Glu Arg Tyr Glu Leu Pro His
 100 105 110

Glu Arg Leu Thr Ala Ala Gln Met Arg Ser Val Thr Gln Val
 115 120 125

<210> 149

<211> 460

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(460)

<223> FRXA02263

<400> 149

cctggcaac ccaagtgtat gaaaacgccc tggaaaaagg cgtcggcacc acattgaacc 60

tgtggaaatc acccgcaactg gcttgagaga agaaacaaca atg aaa att gcg gta 115
 Met Lys Ile Ala Val
 1 5

atc ggc ctt gga tca acc ggc tcc atg gca ctg tgg cac tta agt aac 163
 Ile Gly Leu Gly Ser Thr Gly Ser Met Ala Leu Trp His Leu Ser Asn
 10 15 20

atc cca ggt gta gag gcc atc ggc ttt gaa caa ttc ggc atc tcc cat 211
 Ile Pro Gly Val Glu Ala Ile Gly Phe Glu Gln Phe Gly Ile Ser His
 25 30 35

ggc tac ggc gca ttc aca ggg gag tcc cga ctg ttt cgc atg gcc tac 259
 Gly Tyr Gly Ala Phe Thr Gly Glu Ser Arg Leu Phe Arg Met Ala Tyr
 40 45 50

cac gaa ggc agc acc tac gtt ccg ttg ctc aaa cgc gca cga gca cta 307
 His Glu Gly Ser Thr Tyr Val Pro Leu Leu Lys Arg Ala Arg Ala Leu
 55 60 65

tgg tca tca ctg agc gag att tcc gga cgc gaa ctc ttc cac aac ttc 355
 Trp Ser Ser Leu Ser Glu Ile Ser Gly Arg Glu Leu Phe His Asn Phe
 70 75 80 85

ggt gtc tta agc acc qgc aag gaa gac gaa gca ccc ttc caa cgc ctg 403
 Gly Val Leu Ser Thr Gly Lys Glu Asp Glu Ala Pro Phe Gln Arg Leu
 90 95 100

gtg gaa tca gtg gaa cgt tat gag ctg cca cat gaa cga ctt acc gcc 451

Val Glu Ser Val Glu Arg Tyr Glu Leu Pro His Glu Arg Leu Thr Ala
 105 110 115

gcg cag atg 460
 Ala Gln Met
 120

<210> 150
 <211> 120
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 150
 Met Lys Ile Ala Val Ile Gly Leu Gly Ser Thr Gly Ser Met Ala Leu
 1 5 10 15

Trp His Leu Ser Asn Ile Pro Gly Val Glu Ala Ile Gly Phe Glu Gln
 20 25 30

Phe Gly Ile Ser His Gly Tyr Gly Ala Phe Thr Gly Glu Ser Arg Leu
 35 40 45

Phe Arg Met Ala Tyr His Glu Gly Ser Thr Tyr Val Pro Leu Leu Lys
 50 55 60

Arg Ala Arg Ala Leu Trp Ser Ser Leu Ser Glu Ile Ser Gly Arg Glu
 65 70 75 80

Leu Phe His Asn Phe Gly Val Leu Ser Thr Gly Lys Glu Asp Glu Ala
 85 90 95

Pro Phe Gln Arg Leu Val Glu Ser Val Glu Arg Tyr Glu Leu Pro His
 100 105 110

Glu Arg Leu Thr Ala Ala Gln Met
 115 120

<210> 151
 <211> 1251
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(1228)
 <223> RXA02176

<400> 151
 gggtgctagg aactgacagc ttcaagggtta tagttgttqq gtcagatcgt taacgatccc 60

tggccctttt acttccaagc gcagaaaagt gcccgaaagac atg acc gac ttc ccc 115
 Met Thr Asp Phe Pro
 1 5

acc ctg ccc tct gag ttc atc cct ggc gac ggc cgt ttc ggc tgc gga 163
 Thr Leu Pro Ser Glu Phe Ile Pro Gly Asp Gly Arg Phe Gly Cys Gly
 10 15 20

cct tcc aag gtt cga cca gaa cag att cag gct att gtc gac gga tcc 211

Pro Ser Lys Val Arg Pro Glu Gln Ile Gln Ala Ile Val Asp Gly Ser		
25	30	35
gca tcc gtc atc ggt acc tca cac cgt cag ccg gca gta aaa aac gtc		259
Ala Ser Val Ile Gly Thr Ser His Arg Gln Pro Ala Val Lys Asn Val		
40	45	50
gtg ggt tca atc cgc gag gga ctc tcc gac ctc ttc tcc ctt cca gaa		307
Val Gly Ser Ile Arg Glu Gly Leu Ser Asp Leu Phe Ser Leu Pro Glu		
55	60	65
ggc tac gag atc atc ctt tcc cta ggt ggt gcg acc gca ttc tgg gat		355
Gly Tyr Glu Ile Ile Leu Ser Leu Gly Gly Ala Thr Ala Phe Trp Asp		
70	75	80
gca gca acc ttc gga ctc att gaa aag aag tcc ggt cac ctt tct ttc		403
Ala Ala Thr Phe Gly Leu Ile Glu Lys Lys Ser Gly His Leu Ser Phe		
90	95	100
ggt gag ttc tcc tcc aag ttc gca aag gct tct aag ctt gct cct tgg		451
Gly Glu Phe Ser Ser Lys Phe Ala Lys Ala Ser Lys Leu Ala Pro Trp		
105	110	115
ctc gac gag cca gag atc gtc acc gca gaa acc ggt gac tct ccg gcc		499
Leu Asp Glu Pro Glu Ile Val Thr Ala Glu Thr Gly Asp Ser Pro Ala		
120	125	130
cca cag gca ttc gaa ggc gcc gat gtt att gca tgg gca cac aac gaa		547
Pro Gln Ala Phe Glu Gly Ala Asp Val Ile Ala Trp Ala His Asn Glu		
135	140	145
acc tcc act ggc gcc atg gtt cca gtt ctt cgc ccc gaa ggc tct gaa		595
Thr Ser Thr Gly Ala Met Val Pro Val Leu Arg Pro Glu Gly Ser Glu		
150	155	160
165		
ggc tcc ctg gtt gcc att gac gca acc tcc ggc gct ggt gga ctg cca		643
Gly Ser Leu Val Ala Ile Asp Ala Thr Ser Gly Ala Gly Gly Leu Pro		
170	175	180
gta gac atc aag aac tcc gat gtt tac tac ttc tcc cca cag aag tgc		691
Val Asp Ile Lys Asn Ser Asp Val Tyr Tyr Phe Ser Pro Gln Lys Cys		
185	190	195
ttc gca tcc gac ggt ggc ctg tgg ctt gca gcg atg agc cca gca gct		739
Phe Ala Ser Asp Gly Gly Leu Trp Leu Ala Ala Met Ser Pro Ala Ala		
200	205	210
ctc gag cgc atc gag aag atc aac gct tcc gat cgc ttc atc cct gag		787
Leu Glu Arg Ile Glu Lys Ile Asn Ala Ser Asp Arg Phe Ile Pro Glu		
215	220	225
ttc ctc aac ctg cag acc gca gtg gat aac tcc ctg aag aac cag acc		835
Phe Leu Asn Leu Gln Thr Ala Val Asp Asn Ser Leu Lys Asn Gln Thr		
230	235	240
245		
tac aac acc cca gct gtt gct acc ttg ctg atg ctg gac aac cag gtc		883
Tyr Asn Thr Pro Ala Val Ala Thr Leu Leu Met Leu Asp Asn Gln Val		
250	255	260
aag tgg atg aac tcc aac ggc ggc ctg gat gga atg gtt gct cgc acc		931
Lys Trp Met Asn Ser Asn Gly Gly Leu Asp Gly Met Val Ala Arg Thr		

265

270

275

aca gca agc tcc tcc gcc ctg tac aac tgg gct gag gct cgc gag gag 979
 Thr Ala Ser Ser Ser Ala Leu Tyr Asn Trp Ala Glu Ala Arg Glu Glu
 280 285 290

gca tcc cca tac gtg gca gat gca gct aag cgc tcc ctc gtt gtc ggc 1027
 Ala Ser Pro Tyr Val Ala Asp Ala Ala Lys Arg Ser Leu Val Val Gly
 295 300 305

acc atc gac ttc gat gac tcc atc gac gca gca gtg atc gct aag ata 1075
 Thr Ile Asp Phe Asp Asp Ser Ile Asp Ala Ala Val Ile Ala Lys Ile
 310 315 320 325

ctg cgc gca aac ggc atc ctg gac acc gag cct tac cgc aag ctg gga 1123
 Leu Arg Ala Asn Gly Ile Leu Asp Thr Glu Pro Tyr Arg Lys Leu Gly
 330 335 340

cgc aac cag ctg cgc atc ggt atg ttc cca gcg atc gat tcc acc gat 1171
 Arg Asn Gln Leu Arg Ile Gly Met Phe Pro Ala Ile Asp Ser Thr Asp
 345 350 355

gtg gaa aag ctc acc gga gca atc gac ttc atc ctc gat ggc ggt ttt 1219
 Val Glu Lys Leu Thr Gly Ala Ile Asp Phe Ile Leu Asp Gly Gly Phe
 360 365 370

gca agg aag taatacccc actttgaaaa aca 1251
 Ala Arg Lys
 375

<210> 152
<211> 376
<212> PRT
<213> Corynebacterium glutamicum

<400> 152
Met Thr Asp Phe Pro Thr Leu Pro Ser Glu Phe Ile Pro Gly Asp Gly 1
1 5 10 15

Arg Phe Gly Cys Gly Pro Ser Lys Val Arg Pro Glu Gln Ile Gln Ala 20
20 25 30

Ile Val Asp Gly Ser Ala Ser Val Ile Gly Thr Ser His Arg Gln Pro 35
35 40 45

Ala Val Lys Asn Val Val Gly Ser Ile Arg Glu Gly Leu Ser Asp Leu 50
50 55 60

Phe Ser Leu Pro Glu Gly Tyr Glu Ile Ile Leu Ser Leu Gly Gly Ala 65
65 70 75 80

Thr Ala Phe Trp Asp Ala Ala Thr Phe Gly Leu Ile Glu Lys Lys Ser 85
85 90 95

Gly His Leu Ser Phe Gly Glu Phe Ser Ser Lys Phe Ala Lys Ala Ser
 100 105 110
 Lys Leu Ala Pro Trp Leu Asp Glu Pro Glu Ile Val Thr Ala Glu Thr
 115 120 125
 Gly Asp Ser Pro Ala Pro Gln Ala Phe Glu Gly Ala Asp Val Ile Ala
 130 135 140
 Trp Ala His Asn Glu Thr Ser Thr Gly Ala Met Val Pro Val Leu Arg
 145 150 155 160
 Pro Glu Gly Ser Glu Gly Ser Leu Val Ala Ile Asp Ala Thr Ser Gly
 165 170 175
 Ala Gly Gly Leu Pro Val Asp Ile Lys Asn Ser Asp Val Tyr Tyr Phe
 180 185 190
 Ser Pro Gln Lys Cys Phe Ala Ser Asp Gly Gly Leu Trp Leu Ala Ala
 194 200 205
 Met Ser Pro Ala Ala Leu Glu Arg Ile Glu Lys Ile Asn Ala Ser Asp
 210 215 220
 Arg Phe Ile Pro Glu Phe Leu Asn Leu Gln Thr Ala Val Asp Asn Ser
 225 230 235 240
 Leu Lys Asn Gln Thr Tyr Asn Thr Pro Ala Val Ala Thr Leu Leu Met
 245 250 255
 Leu Asp Asn Gln Val Lys Trp Met Asn Ser Asn Gly Gly Leu Asp Gly
 260 265 270
 Met Val Ala Arg Thr Thr Ala Ser Ser Ser Ala Leu Tyr Asn Trp Ala
 275 280 285
 Glu Ala Arg Glu Glu Ala Ser Pro Tyr Val Ala Asp Ala Ala Lys Arg
 290 295 300
 Ser Leu Val Val Gly Thr Ile Asp Phe Asp Asp Ser Ile Asp Ala Ala
 305 310 315 320
 Val Ile Ala Lys Ile Leu Arg Ala Asn Gly Ile Leu Asp Thr Glu Pro
 325 330 335
 Tyr Arg Lys Leu Gly Arg Asn Gln Leu Arg Ile Gly Met Phe Pro Ala
 340 345 350
 Ile Asp Ser Thr Asp Val Glu Lys Leu Thr Gly Ala Ile Asp Phe Ile
 355 360 365
 Leu Asp Gly Gly Phe Ala Arg Lys
 370 375

<210> 153
 <211> 1422
 <212> DNA
 <213> Corynebacterium glutamicum

<220>

<221> CDS
 <222> (101)..(1399)
 <223> RXN02758

<400> 153
 atacatctca cccaaattcccc cataactaga caattgcccc gcaacgactg ataagtctcc 60
 aatgtcggt tccgcgctca gacatgagac aattgttgcc gtg act gaa ctc atc 115
 Val Thr Glu Leu Ile
 1 5

cag aat gaa tcc caa gaa atc gct gag ctg gaa gcc ggc cag cag gtt 163
 Gln Asn Glu Ser Gln Glu Ile Ala Glu Leu Ala Gly Gln Gln Val
 10 15 20

gca ttg cgt gaa ggt tat ctt cct gcg gtg atc aca gtg agc ggt aaa 211
 Ala Leu Arg Glu Gly Tyr Leu Pro Ala Val Ile Thr Val Ser Gly Lys
 25 30 35

gac cgc cca ggt gtg act gcc gcg ttc ttt agg gtc ttg tcc gct aat 259
 Asp Arg Pro Gly Val Thr Ala Ala Phe Phe Arg Val Leu Ser Ala Asn
 40 45 50

cag gtt cag gtc ttg gac gtt gag cag tca atg ttc cgt ggc ttt ttg 307
 Gln Val Gln Val Leu Asp Val Glu Gln Ser Met Phe Arg Gly Phe Leu
 55 60 65

aac ttg gcg gcg ttt gtg ggt atc gca cct gag cgt gtc gag acc gtc 355
 Asn Leu Ala Ala Phe Val Gly Ile Ala Pro Glu Arg Val Glu Thr Val
 70 75 80 85

acc aca ggc ctg act gac acc ctc aag gtg cat gga cag tcc gtg gtg 403
 Thr Thr Gly Leu Thr Asp Thr Leu Lys Val His Gly Gln Ser Val Val
 90 95 100

gtg gag ctg cag gaa act gtg cag tcg tcc cgt cct cgt tct tcc cat 451
 Val Glu Leu Gln Glu Thr Val Gln Ser Ser Arg Pro Arg Ser Ser His
 105 110 115

gtt gtt gtg gtg ttg ggt gat ccg gtt gat gcg ttg gat att tcc cgc 499
 Val Val Val Leu Gly Asp Pro Val Asp Ala Leu Asp Ile Ser Arg
 120 125 130

att ggt cag acc ctg gcg gat tac gat gcc aac att gac acc att cgt 547
 Ile Gly Gln Thr Leu Ala Asp Tyr Asp Ala Asn Ile Asp Thr Ile Arg
 135 140 145

ggt att tcg gat tac cct gtg acc ggc ctg gag ctg aag gtg act gtg 595
 Gly Ile Ser Asp Tyr Pro Val Thr Gly Leu Glu Leu Lys Val Thr Val
 150 155 160 165

ccg gat gtc agc cct ggt ggt gaa gca gcg atg cgt aag gca ctt gct 643
 Pro Asp Val Ser Pro Gly Gly Glu Ala Met Arg Lys Ala Leu Ala
 170 175 180

gct ctt acc tct gag ctg aat gtg gat att gca att gag cgt tct ggt 691
 Ala Leu Thr Ser Glu Leu Asn Val Asp Ile Ala Ile Glu Arg Ser Gly
 185 190 195

ttg ctg cgt cgt tct aag cgt ctg gtg tgc ttc gat tgt gat tcc acg 739
 Leu Leu Arg Arg Ser Lys Arg Leu Val Cys Phe Asp Cys Asp Ser Thr

200	205	210	
ttg atc act ggt gag gtc att gag atg ctg gcg gct cac gcg ggc aag 787			
Leu Ile Thr Gly Glu Val Ile Glu Met Leu Ala Ala His Ala Gly Lys			
215	220	225	
gaa gct gaa gtt gcg gca gtt act gag cgt gcg atg cgc ggt gag ctc 835			
Glu Ala Glu Val Ala Ala Val Thr Glu Arg Ala Met Arg Gly Glu Leu			
230	235	240	245
gat ttc gag gag tct ctg cgt gag cgt gtg aag gcg ttg gct ggt ttg 883			
Asp Phe Glu Glu Ser Leu Arg Glu Arg Val Lys Ala Leu Ala Gly Leu			
250	255	260	
gat gcg tcg gtg atc gat gag gtc gct gcc gct att gag ctg acc cct 931			
Asp Ala Ser Val Ile Asp Glu Val Ala Ala Ala Ile Glu Leu Thr Pro			
265	270	275	
ggc gcg cgc acc acg atc cgt acg ctg aac cgc atg ggt tac cag acc 979			
Gly Ala Arg Thr Thr Ile Arg Thr Leu Asn Arg Met Gly Tyr Gln Thr			
280	285	290	
gct gtt gtt tcc ggt ggt ttc atc cag gtg ttg gaa ggt ttg gct gag 1027			
Ala Val Val Ser Gly Gly Phe Ile Gln Val Leu Glu Gly Leu Ala Glu			
295	300	305	
gag ttg gag ttg gat tat gtc cgc gcc aac act ttg gaa atc gtt gat 1075			
Glu Leu Glu Leu Asp Tyr Val Arg Ala Asn Thr Leu Glu Ile Val Asp			
310	315	320	325
ggc aag ctg acc ggc aac gtc acc gga aag atc gtt gac cgc gct gcg 1123			
Gly Lys Leu Thr Gly Asn Val Thr Gly Lys Ile Val Asp Arg Ala Ala			
330	335	340	
aag gct gag ttc ctc cgt gag ttc gct gcg gat tct ggc ctg aag atg 1171			
Lys Ala Glu Phe Leu Arg Glu Phe Ala Ala Asp Ser Gly Leu Lys Met			
345	350	355	
tac cag act gtc gct gtc ggt gat ggc gct aat gac atc gat atg ctc 1219			
Tyr Gln Thr Val Ala Val Gly Asp Gly Ala Asn Asp Ile Asp Met Leu			
360	365	370	
tcc gct gcg ggt ctg ggt gtt gct ttc aac gcg aag cct gcg ctg aag 1267			
Ser Ala Ala Gly Leu Gly Val Ala Phe Asn Ala Lys Pro Ala Leu Lys			
375	380	385	
gag att gcg gat act tcc gtg aac cac cca ttc ctc gac gag gtt ttg 1315			
Glu Ile Ala Asp Thr Ser Val Asn His Pro Phe Leu Asp Glu Val Leu			
390	395	400	405
cac atc atg ggc att tcc cgc gac gag atc gat ctg gcg gat cag gaa 1363			
His Ile Met Gly Ile Ser Arg Asp Glu Ile Asp Leu Ala Asp Gln Glu			
410	415	420	

gac ggc act ttc cac cgc gtt cca ttg acc aat gcc taaagattcg
1409
Asp Gly Thr Phe His Arg Val Pro Leu Thr Asn Ala
425 430

tttctcgacg ccc
1422

<210> 154
<211> 433
<212> PRT
<213> Corynebacterium glutamicum

<400> 154
Val Thr Glu Leu Ile Gln Asn Glu Ser Gln Glu Ile Ala Glu Leu Glu
1 5 10 15

Ala Gly Gln Gln Val Ala Leu Arg Glu Gly Tyr Leu Pro Ala Val Ile
20 25 30

Thr Val Ser Gly Lys Asp Arg Pro Gly Val Thr Ala Ala Phe Phe Arg
35 40 45

Val Leu Ser Ala Asn Gln Val Gln Val Leu Asp Val Glu Gln Ser Met
50 55 60

Phe Arg Gly Phe Leu Asn Leu Ala Ala Phe Val Gly Ile Ala Pro Glu
65 70 75 80

Arg Val Glu Thr Val Thr Gly Leu Thr Asp Thr Leu Lys Val His
85 90 95

Gly Gln Ser Val Val Glu Leu Gln Glu Thr Val Gln Ser Ser Arg
100 105 110

Pro Arg Ser Ser His Val Val Val Leu Gly Asp Pro Val Asp Ala
115 120 125

Leu Asp Ile Ser Arg Ile Gly Gln Thr Leu Ala Asp Tyr Asp Ala Asn
130 135 140

Ile Asp Thr Ile Arg Gly Ile Ser Asp Tyr Pro Val Thr Gly Leu Glu
145 150 155 160

Leu Lys Val Thr Val Pro Asp Val Ser Pro Gly Gly Glu Ala Met
165 170 175

Arg Lys Ala Leu Ala Ala Leu Thr Ser Glu Leu Asn Val Asp Ile Ala
180 185 190

Ile Glu Arg Ser Gly Leu Leu Arg Arg Ser Lys Arg Leu Val Cys Phe
195 200 205

Asp Cys Asp Ser Thr Leu Ile Thr Gly Glu Val Ile Glu Met Leu Ala
210 215 220

Ala His Ala Gly Lys Glu Ala Glu Val Ala Ala Val Thr Glu Arg Ala
225 230 235 240

Met Arg Gly Glu Leu Asp Phe Glu Glu Ser Leu Arg Glu Arg Val Lys
 245 250 255
 Ala Leu Ala Gly Leu Asp Ala Ser Val Ile Asp Glu Val Ala Ala Ala
 260 265 270
 Ile Glu Leu Thr Pro Gly Ala Arg Thr Thr Ile Arg Thr Leu Asn Arg
 275 280 285
 Met Gly Tyr Gln Thr Ala Val Val Ser Gly Gly Phe Ile Gln Val Leu
 290 295 300
 Glu Gly Leu Ala Glu Glu Leu Glu Leu Asp Tyr Val Arg Ala Asn Thr
 305 310 315 320
 Leu Glu Ile Val Asp Gly Lys Leu Thr Gly Asn Val Thr Gly Lys Ile
 325 330 335
 Val Asp Arg Ala Ala Lys Ala Glu Phe Leu Arg Glu Phe Ala Ala Asp
 340 345 350
 Ser Gly Leu Lys Met Tyr Gln Thr Val Ala Val Gly Asp Gly Ala Asn
 355 360 365
 Asp Ile Asp Met Leu Ser Ala Ala Gly Leu Gly Val Ala Phe Asn Ala
 370 375 380
 Lys Pro Ala Leu Lys Glu Ile Ala Asp Thr Ser Val Asn His Pro Phe
 385 390 395 400
 Leu Asp Glu Val Leu His Ile Met Gly Ile Ser Arg Asp Glu Ile Asp
 405 410 415
 Leu Ala Asp Gln Glu Asp Gly Thr Phe His Arg Val Pro Leu Thr Asn
 420 425 430
 Ala

 <210> 155
 <211> 490
 <212> DNA
 <213> Corynebacterium glutamicum

 <220>
 <221> CDS
 <222> (101)..(490)
 <223> FRXA02479

 <400> 155
 atacatctca cccaaattcccc cataactaga caattgcccc gcaacgactg ataagtctcc 60
 aatgtcgtgt tccgcgcgtca gacatgagac aattgttgcgt act gaa ctc atc 115
 Val Thr Glu Leu Ile
 1 5
 cag aat gaa tcc caa gaa atc gct gag ctg gaa gcc ggc cag cag gtt 163
 Gln Asn Glu Ser Gln Glu Ile Ala Glu Leu Glu Ala Gly Gln Gln Val
 10 15 20

gca ttg cgt gaa ggt tat ctt cct gcg gtg atc aca gtg agc ggt aaa 211
 Ala Leu Arg Glu Gly Tyr Leu Pro Ala Val Ile Thr Val Ser Gly Lys
 25 30 35

gac cgc cca ggt gtg act gcc gcg ttc ttt agg gtc ttg tcc gct aat 259
 Asp Arg Pro Gly Val Thr Ala Ala Phe Phe Arg Val Leu Ser Ala Asn
 40 45 50

cag gtt cag gtc ttg gac gtt gag cag tca atg ttc cgt ggc ttt ttg 307
 Gln Val Gln Val Leu Asp Val Glu Gln Ser Met Phe Arg Gly Phe Leu
 55 60 65

aac ttg gcg gcg ttt gtg ggt atc gca cct gag cgt gtc gag acc gtc 355
 Asn Leu Ala Ala Phe Val Gly Ile Ala Pro Glu Arg Val Glu Thr Val
 70 75 80 85

acc aca ggc ctg act gac acc ctc aag gtg cat gga cag tcc gtg gtg 403
 Thr Thr Gly Leu Thr Asp Thr Leu Lys Val His Gly Gln Ser Val Val
 90 95 100

gtg gag ctg cag gaa act gtg cag tcg tcc cgt cct cgt tct tcc cat 451
 Val Glu Leu Gln Glu Thr Val Gln Ser Ser Arg Pro Arg Ser Ser His
 105 110 115

gtt gtt gtg gtg ttg ggt gat ccg gtt gat gcg ctg gat 490
 Val Val Val Val Leu Gly Asp Pro Val Asp Ala Leu Asp
 120 125 130

<210> 156

<211> 130

<212> PRT

<213> Corynebacterium glutamicum

<400> 156
 Val Thr Glu Leu Ile Gln Asn Glu Ser Gln Glu Ile Ala Glu Leu Glu
 1 5 10 15

Ala Gly Gln Gln Val Ala Leu Arg Glu Gly Tyr Leu Pro Ala Val Ile
 20 25 30

Thr Val Ser Gly Lys Asp Arg Pro Gly Val Thr Ala Ala Phe Phe Arg
 35 40 45

Val Leu Ser Ala Asn Gln Val Gln Val Leu Asp Val Glu Gln Ser Met
 50 55 60

Phe Arg Gly Phe Leu Asn Leu Ala Ala Phe Val Gly Ile Ala Pro Glu
 65 70 75 80

Arg Val Glu Thr Val Thr Thr Gly Leu Thr Asp Thr Leu Lys Val His
 85 90 95

Gly Gln Ser Val Val Glu Leu Gln Glu Thr Val Gln Ser Ser Arg
 100 105 110

Pro Arg Ser Ser His Val Val Val Leu Gly Asp Pro Val Asp Ala
 115 120 125

Leu Asp
 130

<210> 157
 <211> 558
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(535)
 <223> FRXA02758

<400> 157
 aaggcggtgg ctgggttgg a tgcgtcggtg atcgatgagg tcgctgccgc tattgagctg 60

acccttggtg	cgcgcaccac	gatccgtacg	gttgaaccgc	atg	ggt	tac	cag	acc	115
				Met	Gly	Tyr	Gln	Thr	
				1				5	

gct gtt gtt tcc ggt ggt ttc atc cag gtg ttg gaa ggt ttg gct gag 163
 Ala Val Val Ser Gly Gly Phe Ile Gln Val Leu Glu Gly Leu Ala Glu
 10 15 20

gag ttg gag ttg gat tat gtc cgc gcc aac act ttg gaa atc gtt gat 211
 Glu Leu Glu Leu Asp Tyr Val Arg Ala Asn Thr Leu Glu Ile Val Asp
 25 30 35

ggc aag ctg acc ggc aac gtc acc gga aag atc gtt gac cgc gct gcg 259
 Gly Lys Leu Thr Gly Asn Val Thr Gly Lys Ile Val Asp Arg Ala Ala
 40 45 50

aag gct gag ttc ctc cgt gag ttc gct gcg gat tct ggc ctg aag atg 307
 Lys Ala Glu Phe Leu Arg Glu Phe Ala Ala Asp Ser Gly Leu Lys Met
 55 60 65

tac cag act gtc gct gtc ggt gat ggc gct aat gac atc gat atg ctc 355
 Tyr Gln Thr Val Ala Val Gly Asp Gly Ala Asn Asp Ile Asp Met Leu
 70 75 80 85

tcc gct gcg ggt ctg ggt gtt gct ttc aac gcg aag cct gcg ctg aag 403
 Ser Ala Ala Gly Leu Gly Val Ala Phe Asn Ala Lys Pro Ala Leu Lys
 90 95 100

gag att gcg gat act tcc gtg aac cac cca ttc ctc gac gag gtt ttg 451
 Glu Ile Ala Asp Thr Ser Val Asn His Pro Phe Leu Asp Glu Val Leu
 105 110 115

cac atc atg ggc att tcc cgc gac gag atc gat ctg gcg gat cag gaa 499
 His Ile Met Gly Ile Ser Arg Asp Glu Ile Asp Leu Ala Asp Gln Glu
 120 125 130

gac ggc act ttc cac cgc gtt cca ttg acc aat gcc taaagattcg 545
 Asp Gly Thr Phe His Arg Val Pro Leu Thr Asn Ala
 135 140 145

tttctcgacg ccc 558

<210> 158
 <211> 145
 <212> PRT

<213> Corynebacterium glutamicum

<400> 158

Met	Gly	Tyr	Gln	Thr	Ala	Val	Val	Ser	Gly	Gly	Phe	Ile	Gln	Val	Leu
1															15

Glu	Gly	Leu	Ala	Glu	Glu	Leu	Glu	Leu	Asp	Tyr	Val	Arg	Ala	Asn	Thr
															30
		20						25							

Leu	Glu	Ile	Val	Asp	Gly	Lys	Leu	Thr	Gly	Asn	Val	Thr	Gly	Lys	Ile
															45
						35		40							

Val	Asp	Arg	Ala	Ala	Lys	Ala	Glu	Phe	Leu	Arg	Glu	Phe	Ala	Ala	Asp
															50
									55						60

Ser	Gly	Leu	Lys	Met	Tyr	Gln	Thr	Val	Ala	Val	Gly	Asp	Gly	Ala	Asn
															65
									70		75				80

Asp	Ile	Asp	Met	Leu	Ser	Ala	Ala	Gly	Leu	Gly	Val	Ala	Phe	Asn	Ala
															85
										90					95

Lys	Pro	Ala	Leu	Lys	Glu	Ile	Ala	Asp	Thr	Ser	Val	Asn	His	Pro	Phe
															100
									105						110

Leu	Asp	Glu	Val	Leu	His	Ile	Met	Gly	Ile	Ser	Arg	Asp	Glu	Ile	Asp
															115
									120						125

Leu	Ala	Asp	Gln	Glu	Asp	Gly	Thr	Phe	His	Arg	Val	Pro	Leu	Thr	Asn
															130
									135						140

Ala

145

<210> 159

<211> 205

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (72)..(182)

<223> FRXA02759

<400> 159

tcttacttct	aagctgaatg	tgatattgcg	attaagcggt	ctggtttgct	gcgtcgttct	60
------------	------------	------------	------------	------------	------------	----

aagcgtctgg	tgtg	ctt	cga	ttg	tat	ccc	acg	ttg	atc	act	ggt	gag	gtc	110
														Val
														Ile
														Gly
														Gl
														u
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
														l
														A
				</td										

<211> 37

<212> PRT

<213> Corynebacterium glutamicum

<400> 160

Val	Leu	Arg	Leu	Tyr	Pro	Thr	Leu	Ile	Thr	Gly	Glu	Val	Ile	Glu	Met
1															15

Leu	Ala	Ala	His	Ala	Gly	Lys	Glu	Ala	Lys	Val	Ala	Ala	Val	Thr	Glu
														30	
														25	

Arg	Ala	Met	Arg	Gly											
															35

<210> 161

<211> 1188

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1165)

<223> RXA02501

<400> 161

cgcccccggaaa	gctttaccat	ggatacgata	ctcaatggag	atatccatta	tcgggttggc	60
--------------	------------	------------	------------	------------	------------	----

gtctgtgcgc	tcatgaacca	ggaagggttt	tgtttgtctc	atg	agc	tct	gaa	gga	115
				Met	Ser	Ser	Glu	Gly	
				1			5		

aga	aac	cac	aac	tgg	gac	tac	gcc	gcc	atc	ggc	acc	cca	gag	gat	ttc	163
Arg	Asn	His	Asn	Trp	Asp	Tyr	Ala	Ala	Ile	Gly	Thr	Pro	Glu	Asp	Phe	
															20	
							10		15							

ctc	gcc	agc	tgg	agc	gca	tcc	cgc	gga	aat	cta	cga	cgc	ttt	ttc	gaa	211
Leu	Ala	Ser	Trp	Ser	Ala	Ser	Arg	Gly	Asn	Leu	Arg	Arg	Phe	Phe	Glu	
															35	
							25		30							

gac	cac	gca	gcc	ccc	ata	aac	gat	gcc	gcc	cag	cgc	caa	gca	ggt	259
Asp	His	Ala	Ala	Ala	Pro	Ile	Asn	Asp	Ala	Ala	Gln	Arg	Gln	Ala	Gly
							40		45						50

gaa	gcc	gca	gca	acc	caa	gcc	gtc	gca	gcf	atc	tac	ggc	atg	gag	ctc	307
Glu	Ala	Ala	Ala	Thr	Gln	Ala	Val	Ala	Ala	Ile	Tyr	Gly	Met	Glu	Leu	
															55	
								55	60			65				

aac	gaa	ttc	aac	gca	ggt	gtc	gac	gcc	gtc	gcc	ggc	gcc	atc	gaa	tct	355
Asn	Glu	Phe	Asn	Ala	Gly	Val	Asp	Ala	Val	Ala	Gly	Ala	Ile	Glu	Ser	
								70	75			80		85		

gcc	ggc	gcc	atc	cac	gtc	agc	atc	ccc	gat	ccc	gat	gtc	ccc	caa	gat	403
Ala	Gly	Ala	Ile	His	Val	Ser	Ile	Pro	Asp	Pro	Asp	Val	Pro	Gln	Asp	
								90	95			100				

gtc	gga	gcc	gca	gca	ttt	ttc	gac	gtc	gac	aac	acc	ctc	atc	caa	ggc	451
Val	Gly	Ala	Ala	Ala	Phe	Phe	Asp	Val	Asp	Asn	Thr	Leu	Ile	Gln	Gly	
								105	110			115				

tcc	tcc	ctc	atc	gtt	ttc	gcc	caa	gga	ctc	ttc	cgg	aag	aaa	ttc	ttc	499
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

Ser Ser Leu Ile Val Phe Ala Gln Gly Leu Phe Arg Lys Lys Phe Phe
 120 125 130
 acc atc aaa gaa atc ctc ccc gtg gtg tgg aaa caa gtg aaa ttc aaa 547
 Thr Ile Lys Glu Ile Leu Pro Val Val Trp Lys Gln Val Lys Phe Lys
 135 140 145
 ctc acc ggc tcc gaa aac gcc gac gac gtc tcc cgc ggc cgc gaa caa 595
 Leu Thr Gly Ser Glu Asn Ala Asp Asp Val Ser Arg Gly Arg Glu Gln
 150 155 160 165
 gcc ctc gaa ttc atc aaa ggc cgc ccc gtc caa gaa cta gtt gac ctc 643
 Ala Leu Glu Phe Ile Lys Gly Arg Pro Val Gln Glu Leu Val Asp Leu
 170 175 180
 tgc gaa gaa atc gtc gac caa cgc atg gcc gac aaa atg tgg ccc ggc 691
 Cys Glu Glu Ile Val Asp Gln Arg Met Ala Asp Lys Met Trp Pro Gly
 185 190 195
 acc aaa caa ctc gcc gac atg cac atc gcc gcc ggc cac caa gtc tgg 739
 Thr Lys Gln Leu Ala Asp Met His Ile Ala Ala Gly His Gln Val Trp
 200 205 210
 ctc gtc tcc gca acc ccc gtc caa ctc gcc caa atc ctg gca caa cgc 787
 Leu Val Ser Ala Thr Pro Val Gln Leu Ala Gln Ile Leu Ala Gln Arg
 215 220 225
 ctc ggc ttc acc gga gcg atc ggc aca gtc gca gaa gca aaa gat gga 835
 Leu Gly Phe Thr Gly Ala Ile Gly Thr Val Ala Glu Ala Lys Asp Gly
 230 235 240 245
 gta ttc acc ggc cga ctc gtc ggc gac atc ctc cac gga ccc ggc aaa 883
 Val Phe Thr Gly Arg Leu Val Gly Asp Ile Leu His Gly Pro Gly Lys
 250 255 260
 aga cac gca gtc gca gca ctc gca tcc atc gaa caa ctc gac ctc acc 931
 Arg His Ala Val Ala Ala Leu Ala Ser Ile Glu Gln Leu Asp Leu Thr
 265 270 275
 cga tgc acc gcc tac tcc gac tcc atc aac gac ctc ccc atg ctc tcc 979
 Arg Cys Thr Ala Tyr Ser Asp Ser Ile Asn Asp Leu Pro Met Leu Ser
 280 285 290
 atg gtc ggc acc gcc gtc gca gta aac ccc gac tcc aaa ctc cgc aaa
 1027
 Met Val Gly Thr Ala Val Ala Val Asn Pro Asp Ser Lys Leu Arg Lys
 295 300 305
 gaa gcc gaa acc cga ggc tgg gac gtc cgc gat ttc cga agc atc cgc
 1075
 Glu Ala Glu Thr Arg Gly Trp Asp Val Arg Asp Phe Arg Ser Ile Arg
 310 315 320 325
 aaa gcc acc cgc gaa tac gga atc ccc gcc ctg gtc acc gcc gca ttc
 1123
 Lys Ala Thr Arg Glu Tyr Gly Ile Pro Ala Leu Val Thr Ala Ala Phe
 330 335 340
 agt gtc gcc ggc tgg agt cta cgc cgc cga tgg aga aaa caa
 1165
 Ser Val Ala Gly Trp Ser Leu Arg Arg Arg Trp Arg Lys Gln

345

350

355

taacgcacag gagccgtttt aag
1188

<210> 162

<211> 355

<212> PRT

<213> Corynebacterium glutamicum

<400> 162

Met	Ser	Ser	Glu	Gly	Arg	Asn	His	Asn	Trp	Asp	Tyr	Ala	Ala	Ile	Gly
1														15	

Thr	Pro	Glu	Asp	Phe	Leu	Ala	Ser	Trp	Ser	Ala	Ser	Arg	Gly	Asn	Leu
														30	
20															

Arg	Arg	Phe	Phe	Glu	Asp	His	Ala	Ala	Ala	Pro	Ile	Asn	Asp	Ala	Ala
														45	
35															

Gln	Arg	Gln	Ala	Gly	Glu	Ala	Ala	Ala	Thr	Gln	Ala	Val	Ala	Ala	Ile
50														60	

Tyr	Gly	Met	Glu	Leu	Asn	Glu	Phe	Asn	Ala	Gly	Val	Asp	Ala	Val	Ala
														80	
65															

Gly	Ala	Ile	Glu	Ser	Ala	Gly	Ile	His	Val	Ser	Ile	Pro	Asp	Pro	
														95	
85															

Asp	Val	Pro	Gln	Asp	Val	Gly	Ala	Ala	Ala	Phe	Phe	Asp	Val	Asp	Asn
														110	
100															

Thr	Leu	Ile	Gln	Gly	Ser	Ser	Leu	Ile	Val	Phe	Ala	Gln	Gly	Leu	Phe
														125	
115															

Arg	Lys	Lys	Phe	Phe	Thr	Ile	Lys	Glu	Ile	Leu	Pro	Val	Val	Trp	Lys
														140	
130															

Gln	Val	Lys	Phe	Lys	Leu	Thr	Gly	Ser	Glu	Asn	Ala	Asp	Asp	Val	Ser
														160	
145															

Arg	Gly	Arg	Gly	Gln	Ala	Leu	Glu	Phe	Ile	Lys	Gly	Arg	Pro	Val	Gln
														175	
165															

Glu	Leu	Val	Asp	Leu	Cys	Glu	Glu	Ile	Val	Asp	Gln	Arg	Met	Ala	Asp
														190	
180															

Lys	Met	Trp	Pro	Gly	Thr	Lys	Gln	Leu	Ala	Asp	Met	His	Ile	Ala	Ala
														205	
195															

Gly	His	Gln	Val	Trp	Leu	Val	Ser	Ala	Thr	Pro	Val	Gln	Leu	Ala	Gln
														220	
210															

Ile	Leu	Ala	Gln	Arg	Leu	Gly	Phe	Thr	Gly	Ala	Ile	Gly	Thr	Val	Ala
														240	
225															

Glu	Ala	Lys	Asp	Gly	Val	Phe	Thr	Gly	Arg	Leu	Val	Gly	Asp	Ile	Leu
														255	
245															

His Gly Pro Gly Lys Arg His Ala Val Ala Ala Ser Ile Glu

ggc gaa ctc gca gca caa cga gcg gtc gga aac acc tcg ccg ctg tac 451
 Gly Glu Leu Ala Ala Gln Arg Ala Val Gly Asn Thr Ser Pro Leu Tyr
 105 110 115

agc gaa gac ttt cggtatc gcc tcg cat gaa cca atc aaa gag cggtgc 499
 Ser Glu Asp Phe Arg Ile Ala Ser His Glu Pro Ile Lys Glu Arg Cys
 120 125 130

acg tat aga aag cta acc ttt tta agt gcg cggttt tagggtgaga 545
 Thr Tyr Arg Lys Leu Thr Phe Leu Ser Ala Arg Phe
 135 140 145

atctaacgct gag 558

<210> 164

<211> 145

<212> PRT

<213> Corynebacterium glutamicum

<400> 164

Leu Ile Leu Pro Val Gln Glu Gly Ile Ser Tyr Phe Pro Thr Pro Leu
 1 5 10 15

His Leu Asn His Ile Gly Gly Ser Arg Leu Ser Ala His Val Glu Asp
 20 25 30

Glu Asp Leu Arg Leu Asp Arg Asp Ala Val Ser Glu Phe Gly Arg Lys
 35 40 45

Thr His Glu Leu Phe Pro Gly Val Asn Pro Glu Pro Asn Arg Phe Ser
 50 55 60

Val His Tyr Asp Thr Tyr Thr Ala Asp Lys Ser Pro Ile Ile Asp Ala
 65 70 75 80

Val Asp Asn Val Ile Val Leu Thr Gly Gly Ser Gly His Ala Phe Lys
 85 90 95

Leu Ser Pro Ala Tyr Gly Glu Leu Ala Ala Gln Arg Ala Val Gly Asn
 100 105 110

Thr Ser Pro Leu Tyr Ser Glu Asp Phe Arg Ile Ala Ser His Glu Pro
 115 120 125

Ile Lys Glu Arg Cys Thr Tyr Arg Lys Leu Thr Phe Leu Ser Ala Arg
 130 135 140

Phe
 145

<210> 165

<211> 687

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (62)...(664)

<223> RXS01130

<400> 165
 agttcggtgc ggtatgctgtg aacgttccg gtggtcgcgt gggcgaagag gttctgtgtg 60
 gatg gat ctg gct cgc aag ctt ggt ctt gct ggc aag ctt gtc gac 109
 Met Asp Leu Ala Arg Lys Leu Gly Leu Leu Ala Gly Lys Leu Val Asp
 1 5 10 15

gcc gcc cca gtc tcc att gag gtt gag gct cga ggc gag ctt tct tcc 157
 Ala Ala Pro Val Ser Ile Glu Val Glu Ala Arg Gly Glu Leu Ser Ser
 20 25 30

gag cag gtc aat gca ctt ggt ttg tcc gct gtt cgt ggt ttg ttc tcc 205
 Glu Gln Val Asn Ala Leu Gly Leu Ser Ala Val Arg Gly Leu Phe Ser
 35 40 45

gga att atc gaa gag tcc gtt act ttc gtc aac gct cct cgc att gct 253
 Gly Ile Ile Glu Glu Ser Val Thr Phe Val Asn Ala Pro Arg Ile Ala
 50 55 60

gaa gag cgt ggc ctg gac atc tcc gtg aag acc aac tct gag tct gtt 301
 Glu Glu Arg Gly Leu Asp Ile Ser Val Lys Thr Asn Ser Glu Ser Val
 65 70 75 80

act cac cgt tcc gtc ctg cag gtc aag gtc att act ggc agc ggc gcg 349
 Thr His Arg Ser Val Leu Gln Val Lys Val Ile Thr Gly Ser Gly Ala
 85 90 95

agc gca act gtt gtt ggt gcc ctg act ggt ctt gag cgc gtt gag aag 397
 Ser Ala Thr Val Val Gly Ala Leu Thr Gly Leu Glu Arg Val Glu Lys
 100 105 110

atc acc cgc atc aat ggc cgt ggc ctg gat ctg cgc gca gag ggt ctg 445
 Ile Thr Arg Ile Asn Gly Arg Gly Leu Asp Leu Arg Ala Glu Gly Leu
 115 120 125

aac ctc ttc ctg cag tac act gac gct cct ggt gca ctg ggt acc gtt 493
 Asn Leu Phe Leu Gln Tyr Thr Asp Ala Pro Gly Ala Leu Gly Thr Val
 130 135 140

ggt acc aag ctg ggt gct ggt ggc atc aac atc gag gct gct gcg ttg 541
 Gly Thr Lys Leu Gly Ala Ala Gly Ile Asn Ile Glu Ala Ala Leu
 145 150 155 160

act cag gct gag aag ggt gac ggc gct gtc ctg atc ctg cgt gtt gag 589
 Thr Gln Ala Glu Lys Gly Asp Gly Ala Val Leu Ile Leu Arg Val Glu
 165 170 175

tcc gct gtc tct gaa gag ctg gaa gct gaa atc aac gct gag ttg ggt 637
 Ser Ala Val Ser Glu Glu Leu Glu Ala Glu Ile Asn Ala Glu Leu Gly
 180 185 190

gct act tcc ttc cag gtt gat ctt gac taatttagaga tccatggct 684
 Ala Thr Ser Phe Gln Val Asp Leu Asp
 195 200

tga 687

<210> 166

<211> 201
<212> PRT
<213> Corynebacterium glutamicum

<400> 166

Met	Asp	Leu	Ala	Arg	Lys	Leu	Gly	Leu	Leu	Ala	Gly	Lys	Leu	Val	Asp		
1															15		
Ala Ala Pro Val Ser Ile Glu Val Glu Ala Arg Gly Glu Leu Ser Ser																	
				20					25					30			
Glu Gln Val Asn Ala Leu Gly Leu Ser Ala Val Arg Gly Leu Phe Ser																	
				35					40					45			
Gly Ile Ile Glu Glu Ser Val Thr Phe Val Asn Ala Pro Arg Ile Ala																	
				50					55					60			
Glu Glu Arg Gly Leu Asp Ile Ser Val Lys Thr Asn Ser Glu Ser Val																	
				65					70					75			80
Thr His Arg Ser Val Leu Gln Val Lys Val Ile Thr Gly Ser Gly Ala																	
				85					90					95			
Ser Ala Thr Val Val Gly Ala Leu Thr Gly Leu Glu Arg Val Glu Lys																	
				100					105					110			
Ile Thr Arg Ile Asn Gly Arg Gly Leu Asp Leu Arg Ala Glu Gly Leu																	
				115					120					125			
Asn Leu Phe Leu Gln Tyr Thr Asp Ala Pro Gly Ala Leu Gly Thr Val																	
				130					135					140			
Gly Thr Lys Leu Gly Ala Ala Gly Ile Asn Ile Glu Ala Ala Ala Leu																	
				145					150					155			160
Thr Gln Ala Glu Lys Gly Asp Gly Ala Val Leu Ile Leu Arg Val Glu																	
				165					170					175			
Ser Ala Val Ser Glu Glu Leu Glu Ala Glu Ile Asn Ala Glu Leu Gly																	
				180					185					190			
Ala Thr Ser Phe Gln Val Asp Leu Asp																	
				195					200								

<210> 167
<211> 604
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(604)
<223> RXS03112

<400> 167

gtgagcacgc aatttctttg ctgcgtctca ctgctcgcca gatcctgctg ctgatgcac 60
gctgcgtgag ggcgagtgga agcggcttc tttcaacgggt gtg gaa att ttc gga 115
Val Glu Ile Phe Gly
1 5

aaa act gtc ggt atc gtc ggt ttt ggc cac att ggt cag ttg ttt gct	163		
Lys Thr Val Gly Ile Val Gly Phe Gly His Ile Gly Gln Leu Phe Ala			
10	15	20	
cag cgt ctt gct gcg ttt gag acc acc att gtt gct tac gat cct tac	211		
Gln Arg Leu Ala Ala Phe Glu Thr Thr Ile Val Ala Tyr Asp Pro Tyr			
25	30	35	
gct aac cct gct cgt gcg gct cag ctg aac gtt gag ttg gtt gag ttg	259		
Ala Asn Pro Ala Arg Ala Ala Gln Leu Asn Val Glu Leu Val Glu Leu			
40	45	50	
gat gag ctg atg agc cgt tct gac ttt gtc acc att cac ctt cct aag	307		
Asp Glu Leu Met Ser Arg Ser Asp Phe Val Thr Ile His Leu Pro Lys			
55	60	65	
acc aag gaa act gct ggc atg ttt gat gcg cac ctc ctt gct aag tcc	355		
Thr Lys Glu Thr Ala Gly Met Phe Asp Ala His Leu Leu Ala Lys Ser			
70	75	80	85
aag aag ggc cag atc atc atc aac gct gct cgt ggt ggc ctt gtt gat	403		
Lys Lys Gly Gln Ile Ile Ile Asn Ala Ala Arg Gly Gly Leu Val Asp			
90	95	100	
gag cag gct ttg gct gat gcg att gag tcc ggt cac att cgt ggc gct	451		
Glu Gln Ala Leu Ala Asp Ala Ile Glu Ser Gly His Ile Arg Gly Ala			
105	110	115	
ggc ttc gat gtg tac tcc acc gag cct tgc act gat tct cct ttg ttc	499		
Gly Phe Asp Val Tyr Ser Thr Glu Pro Cys Thr Asp Ser Pro Leu Phe			
120	125	130	
aag ttg cct cag gtt gtt gtg act cct cac ttg ggt gct tct act gaa	547		
Lys Leu Pro Gln Val Val Val Thr Pro His Leu Gly Ala Ser Thr Glu			
135	140	145	
gag gct caa gat cgt gcg ggt act gac att gct gat tct gtg ctc aag	595		
Glu Ala Gln Asp Arg Ala Gly Thr Asp Ile Ala Asp Ser Val Leu Lys			
150	155	160	165
gcg ctg gct	604		
Ala Leu Ala			

```
<210> 168  
<211> 168  
<212> PRT  
<213> Corynebacterium glutamicum
```

<400> 168
 Val Glu Ile Phe Gly Lys Thr Val Gly Ile Val, Glu Phe Gly His Ile
 1 5 10 15
 Gly Gln Leu Phe Ala Gln Arg Leu Ala Ala Phe Glu Thr Thr Ile Val
 20 25 30
 Ala Tyr Asp Pro Tyr Ala Asn Pro Ala Arg Ala Ala Gln Leu Asn Val
 35 40 45

Glu Leu Val Glu Leu Asp Glu Leu Met Ser Arg Ser Asp Phe Val Thr
 50 55 60
 Ile His Leu Pro Lys Thr Lys Glu Thr Ala Gly Met Phe Asp Ala His
 65 70 75 80
 Leu Leu Ala Lys Ser Lys Lys Gly Gln Ile Ile Ile Asn Ala Ala Arg
 85 90 95
 Gly Gly Leu Val Asp Glu Gln Ala Leu Ala Asp Ala Ile Glu Ser Gly
 100 105 110
 His Ile Arg Gly Ala Gly Phe Asp Val Tyr Ser Thr Glu Pro Cys Thr
 115 120 125
 Asp Ser Pro Leu Phe Lys Leu Pro Gln Val Val Val Thr Pro His Leu
 130 135 140
 Gly Ala Ser Thr Glu Glu Ala Gln Asp Arg Ala Gly Thr Asp Ile Ala
 145 150 155 160
 Asp Ser Val Leu Lys Ala Leu Ala
 165

<210> 169
 <211> 1458
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(1435)
 <223> RXN00969

<400> 169
 ctatagtggc taggtaccct ttttgtttg gacacatgta gggtgccga aacaaagtaa 60
 taggacaaca acgctcgacc gcgattattt ttggagaatc atg acc tca gca tct 115
 Met Thr Ser Ala Ser
 1 5

gct cca aac ttt aac ccc ggc aag ggt ccc ggc tca gca gtc gga att 163
 Ala Pro Ser Phe Asn Pro Gly Lys Gly Pro Gly Ser Ala Val Gly Ile
 10 15 20

gcc ctt tta gga ttc gga aca gtc ggc act gag gtg atg cgt ctg atg 211
 Ala Leu Leu Gly Phe Gly Thr Val Gly Thr Glu Val Met Arg Leu Met
 25 30 35

acc gag tac ggt gat gaa ctt gcg cac cgc att ggt ggc cca ctg gag 259
 Thr Glu Tyr Gly Asp Glu Leu Ala His Arg Ile Gly Gly Pro Leu Glu
 40 45 50

gtt cgt ggc att gct gtt tct gat atc tca aag cca cgt gaa ggc gtt 307
 Val Arg Gly Ile Ala Val Ser Asp Ile Ser Lys Pro Arg Glu Gly Val
 55 60 65

gca cct gag ctg ctc act gag gac gct ttt gca ctc atc gag cgc gag 355
 Ala Pro Glu Leu Leu Thr Glu Asp Ala Phe Ala Leu Ile Glu Arg Glu
 70 75 80 85

gat gtt gac atc gtc gtt gag gtt atc ggc ggc att gag tac cca cgt 403
 Asp Val Asp Ile Val Val Glu Val Ile Gly Gly Ile Glu Tyr Pro Arg
 90 95 100

 gag gta gtt ctc gca gct ctg aag gcc ggc aag tct gtt acc gcc 451
 Glu Val Val Leu Ala Ala Leu Lys Ala Gly Lys Ser Val Val Thr Ala
 105 110 115

 aat aag gct ctt gtt gca gct cac tct gct gag ctt gct gat gca gcg 499
 Asn Lys Ala Leu Val Ala Ala His Ser Ala Glu Leu Ala Asp Ala Ala
 120 125 130

 gaa gcc gca aac gtt gac ctg tac ttc gag gct gct gtt gca tgc gca 547
 Glu Ala Ala Asn Val Asp Leu Tyr Phe Glu Ala Ala Val Ala Cys Ala
 135 140 145

 att cca gtg gtt ggc cca ctg cgt cgc tcc ctg gct ggc gat cag atc 595
 Ile Pro Val Val Gly Pro Leu Arg Arg Ser Leu Ala Gly Asp Gln Ile
 150 155 160 165

 cag tct gtg atg ggc atc gtt aac ggc acc acc aac ttc atc ttg gac 643
 Gln Ser Val Met Gly Ile Val Asn Gly Thr Thr Asn Phe Ile Leu Asp
 170 175 180

 gcc atg gat tcc acc ggc gct gac tat gca gat tct ttg gct gag gca 691
 Ala Met Asp Ser Thr Gly Ala Asp Tyr Ala Asp Ser Leu Ala Glu Ala
 185 190 195

 act cgt ttg ggt tac gcc gaa gct gat cca act gca aac gtc gaa ggc 739
 Thr Arg Leu Gly Tyr Ala Glu Ala Asp Pro Thr Ala Asn Val Glu Gly
 200 205 210

 cat gac gcc gca tcc aag gct gca att ttg gca tgc atc gct ttc cac 787
 His Asp Ala Ala Ser Lys Ala Ala Ile Leu Ala Cys Ile Ala Phe His
 215 220 225

 acc cgt gtt acc gcg gat gat gtg tac tgc gaa ggt att agg aac atc 835
 Thr Arg Val Thr Ala Asp Asp Val Tyr Cys Glu Gly Ile Arg Asn Ile
 230 235 240 245

 aac gct gcc gac att gag gca gca cag cag gca ggc cac acc atc aag 883
 Asn Ala Ala Asp Ile Glu Ala Ala Gln Gln Ala Gly His Thr Ile Lys
 250 255 260

 tgg ttg gcc atc tgt gag aag ttc acc aac aag gaa gga aag tcg gct 931
 Leu Leu Ala Ile Cys Glu Lys Phe Thr Asn Lys Glu Gly Lys Ser Ala
 265 270 275

 att tct gct cgc gtg cac ccg act cta tta cct gtg tcc cac cca ctg 979
 Ile Ser Ala Arg Val His Pro Thr Leu Leu Pro Val Ser His Pro Leu
 280 285 290

 gcg tcg gta aac aag tcc ttt aat gca atc ttt gtt gaa gca gaa gca
 1027
 Ala Ser Val Asn Lys Ser Phe Asn Ala Ile Phe Val Glu Ala Glu Ala
 295 300 305

 gct ggt cgc ctg atg ttc tac gga aac ggt gca ggt ggc gcg cca acc
 1075
 Ala Gly Arg Leu Met Phe Tyr Gly Asn Gly Ala Gly Gly Ala Pro Thr

310	315	320	325
gct tct gct gtg ctt ggc gac gtc gtt ggt gcc gca cga aac aag gtg 1123			
Ala Ser Ala Val Leu Gly Asp Val Val Gly Ala Ala Arg Asn Lys Val 330	335		340
cac ggt ggc cgt gct cca ggt gag tcc acc tac gct aac ctg ccg atc 1171			
His Gly Gly Arg Ala Pro Gly Glu Ser Thr Tyr Ala Asn Leu Pro Ile 345	350		355
gct gat ttc ggt gag acc acc act cgt tac cac ctc gac atg gat gtg 1219			
Ala Asp Phe Gly Glu Thr Thr Thr Arg Tyr His Leu Asp Met Asp Val 360	365		370
gaa gat cgc gtg ggg gtt ttg gct gaa ttg gct agc ctg ttc tct gag 1267			
Glu Asp Arg Val Gly Val Leu Ala Glu Leu Ala Ser Leu Phe Ser Glu 375	380		385
caa gga atc tcc ctg cgt aca atc cga cag gaa gag cgc gat gat gat 1315			
Gln Gly Ile Ser Leu Arg Thr Ile Arg Gln Glu Glu Arg Asp Asp Asp 390	395		400
405			
gca cgt ctg atc gtg gtc acc cac tct gcg ctg gaa tct gat ctt tcc 1363			
Ala Arg Leu Ile Val Val Thr His Ser Ala Leu Glu Ser Asp Leu Ser 410	415		420
425			
cgc acc gtt gaa ctg ctg aag gct aag cct gtt gtt aag gca atc aac 1411			
Arg Thr Val Glu Leu Leu Lys Ala Lys Pro Val Val Lys Ala Ile Asn 425	430		435
440			
agt gtg atc cgc ctc gaa agg gac taatttact gacatggcaa ttg 1458			
Ser Val Ile Arg Leu Glu Arg Asp 440	445		

```

<210> 170
<211> 445
<212> PRT
<213> Corynebacterium glutamicum

<400> 170
Met Thr Ser Ala Ser Ala Pro Ser Phe Asn Pro Gly Lys Gly Pro Gly
      1           5           10          15

Ser Ala Val Gly Ile Ala Leu Leu Gly Phe Gly Thr Val Gly Thr Glu
      20          25          30

Val Met Arg Leu Met Thr Glu Tyr Gly Asp Glu Leu Ala His Arg Ile
      35          40          45

Gly Gly Pro Leu Glu Val Arg Gly Ile Ala Val Ser Asp Ile Ser Lys
      50          55          60

```

Pro Arg Glu Gly Val Ala Pro Glu Leu Leu Thr Glu Asp Ala Phe Ala
 65 70 75 80
 Leu Ile Glu Arg Glu Asp Val Asp Ile Val Val Glu Val Ile Gly Gly
 85 90 95
 Ile Glu Tyr Pro Arg Glu Val Val Leu Ala Ala Leu Lys Ala Gly Lys
 100 105 110
 Ser Val Val Thr Ala Asn Lys Ala Leu Val Ala Ala His Ser Ala Glu
 115 120 125
 Leu Ala Asp Ala Ala Glu Ala Ala Asn Val Asp Leu Tyr Phe Glu Ala
 130 135 140
 Ala Val Ala Cys Ala Ile Pro Val Val Gly Pro Leu Arg Arg Ser Leu
 145 150 155 160
 Ala Gly Asp Gln Ile Gln Ser Val Met Gly Ile Val Asn Gly Thr Thr
 165 170 175
 Asn Phe Ile Leu Asp Ala Met Asp Ser Thr Gly Ala Asp Tyr Ala Asp
 180 185 190
 Ser Leu Ala Glu Ala Thr Arg Leu Gly Tyr Ala Glu Ala Asp Pro Thr
 195 200 205
 Ala Asn Val Glu Gly His Asp Ala Ala Ser Lys Ala Ala Ile Leu Ala
 210 215 220
 Cys Ile Ala Phe His Thr Arg Val Thr Ala Asp Asp Val Tyr Cys Glu
 225 230 235 240
 Gly Ile Arg Asn Ile Asn Ala Ala Asp Ile Glu Ala Ala Gln Gln Ala
 245 250 255
 Gly His Thr Ile Lys Leu Leu Ala Ile Cys Glu Lys Phe Thr Asn Lys
 260 265 270
 Glu Gly Lys Ser Ala Ile Ser Ala Arg Val His Pro Thr Leu Leu Pro
 275 280 285
 Val Ser His Pro Leu Ala Ser Val Asn Lys Ser Phe Asn Ala Ile Phe
 290 295 300
 Val Glu Ala Glu Ala Ala Gly Arg Leu Met Phe Tyr Gly Asn Gly Ala
 305 310 315 320
 Gly Gly Ala Pro Thr Ala Ser Ala Val Leu Gly Asp Val Val Gly Ala
 325 330 335
 Ala Arg Asn Lys Val His Gly Gly Arg Ala Pro Gly Glu Ser Thr Tyr
 340 345 350
 Ala Asn Leu Pro Ile Ala Asp Phe Gly Glu Thr Thr Arg Tyr His
 355 360 365
 Leu Asp Met Asp Val Glu Asp Arg Val Gly Val Leu Ala Glu Leu Ala
 370 375 380
 Ser Leu Phe Ser Glu Gln Gly Ile Ser Leu Arg Thr Ile Arg Gln Glu

385	390	395	400
Glu Arg Asp Asp Asp Ala Arg Leu Ile Val Val Thr His Ser Ala Leu			
405	410	415	
Glu Ser Asp Leu Ser Arg Thr Val Glu Leu Leu Lys Ala Lys Pro Val			
420	425	430	
Val Lys Ala Ile Asn Ser Val Ile Arg Leu Glu Arg Asp			
435	440	445	
<210> 171			
<211> 493			
<212> DNA			
<213> Corynebacterium glutamicum			
<220>			
<221> CDS			
<222> (101)..(493)			
<223> FRXA00974			
<400> 171			
ctatagtggc taggtaccct ttttgtttg gacacatgta gggtggccga aacaaagtaa 60			
taggacaaca acgctcgacc gcgattattt ttggagaatc atg acc tca gca tct	115		
	Met Thr Ser Ala Ser		
	1	5	
gcc cca agc ttt aac ccc ggc aag ggt ccc ggc tca gca gtc gga att	163		
Ala Pro Ser Phe Asn Pro Gly Lys Gly Pro Gly Ser Ala Val Gly Ile			
10	15	20	
gcc ctt tta gga ttc gga aca gtc ggc act gag gtg atg cgt ctg atg	211		
Ala Leu Leu Gly Phe Gly Thr Val Gly Thr Glu Val Met Arg Leu Met			
25	30	35	
acc gag tac ggt gat gaa ctt gcg cac cgc att ggt ggc cca ctg gag	259		
Thr Glu Tyr Gly Asp Glu Leu Ala His Arg Ile Gly Gly Pro Leu Glu			
40	45	50	
gtt cgt ggc att gct gtt tct gat atc tca aag cca cgt gaa ggc gtt	307		
Val Arg Glu Ile Ala Val Ser Asp Ile Ser Lys Pro Arg Glu Gly Val			
55	60	65	
gca cct gag ctc act gag gac gct ttt gca ctc atc gag cgc gag	355		
Ala Pro Glu Leu Leu Thr Glu Asp Ala Phe Ala Leu Ile Glu Arg Glu			
70	75	80	85
gat gtt gac atc gtc gtt gag gtt atc ggc ggc att gag tac cca cgt	403		
Asp Val Asp Ile Val Val Glu Val Ile Gly Gly Ile Glu Tyr Pro Arg			
90	95	100	
gag gta gtt ctc gca gct ctc aag gcc ggc aag tct gtt acc gcc	451		
Glu Val Val Leu Ala Ala Leu Lys Ala Gly Lys Ser Val Val Thr Ala			
105	110	115	
aat aag gct ctt gtt gca gct cac tct gct gag ctt gct gat	493		
Asn Lys Ala Leu Val Ala Ala His Ser Ala Glu Leu Ala Asp			
120	125	130	

<210> 172
<211> 131
<212> PRT
<213> Corynebacterium glutamicum

<400> 172
Met Thr Ser Ala Ser Ala Pro Ser Phe Asn Pro Gly Lys Gly Pro Gly
1 5 10 15
Ser Ala Val Gly Ile Ala Leu Leu Gly Phe Gly Thr Val Gly Thr Glu
20 25 30
Val Met Arg Leu Met Thr Glu Tyr Gly Asp Glu Leu Ala His Arg Ile
35 40 45
Gly Gly Pro Leu Glu Val Arg Gly Ile Ala Val Ser Asp Ile Ser Lys
50 55 60
Pro Arg Glu Gly Val Ala Pro Glu Leu Leu Thr Glu Asp Ala Phe Ala
65 70 75 80
Leu Ile Glu Arg Glu Asp Val Asp Ile Val Val Glu Val Ile Gly Gly
85 90 95
Ile Glu Tyr Pro Arg Glu Val Val Leu Ala Ala Leu Lys Ala Gly Lys
100 105 110
Ser Val Val Thr Ala Asn Lys Ala Leu Val Ala Ala His Ser Ala Glu
115 120 125
Leu Ala Asp
130

<210> 173
<211> 1050
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1027)
<223> RXA00970

<400> 173
gaatctgatc tttccgcac cgttgaactg ctgaaggcta agcctgttgt taaggcaatc 60
aacagtgtga tccgcctcga aaggactaa ttttactgac atg gca att gaa ctg 115
Met Ala Ile Glu Leu
1 5
aac gtc ggt cgt aag gtt acc gtc acg gta cct gga tct tct gca aac 163
Asn Val Gly Arg Lys Val Thr Val Thr Val Pro Gly Ser Ser Ala Asn
10 15 20
ctc gga cct ggc ttt gac act tta ggt ttg gca ctg tcg gta tac gac 211
Leu Gly Pro Gly Phe Asp Thr Leu Gly Leu Ala Leu Ser Val Tyr Asp
25 30 35
act gtc gaa gtg gaa att att cca tct ggc ttg gaa gtg gaa gtt ttt 259

Thr Val Glu Val Glu Ile Ile Pro Ser Gly Leu Glu Val Glu Val Phe		
40	45	50
ggc gaa ggc caa ggc gaa gtc cct ctt gat ggc tcc cac ctg gtg gtt		307
Gly Glu Gly Gln Gly Glu Val Pro Leu Asp Gly Ser His Leu Val Val		
55	60	65
aaa gct att cgt gct ggc ctg aag gca gct gac gct gaa gtt cct gga		355
Lys Ala Ile Arg Ala Gly Leu Lys Ala Ala Asp Ala Glu Val Pro Gly		
70	75	80
ttg cga gtg gtg tgc cac aac att ccg cag tct cgt ggt ctt ggc		403
Leu Arg Val Val Cys His Asn Asn Ile Pro Gln Ser Arg Gly Leu Gly		
90	95	100
tcc tct gct gca gcg gcg gtt gct ggt gtt gct gca gct aat ggt ttg		451
Ser Ser Ala Ala Ala Val Ala Gly Val Ala Ala Ala Asn Gly Leu		
105	110	115
gcg gat ttc ccg ctg act caa gag cag att gtt cag ttg tcc tct gcc		499
Ala Asp Phe Pro Leu Thr Gln Glu Gln Ile Val Gln Leu Ser Ser Ala		
120	125	130
ttt gaa ggc cac cca gat aat gct gcg gct tct gtg ctg ggt gga gca		547
Phe Glu Gly His Pro Asp Asn Ala Ala Ser Val Leu Gly Gly Ala		
135	140	145
gtg gtg tcg tgg aca aat ctg tct atc gac ggc aag agc cag cca cag		595
Val Val Ser Trp Thr Asn Leu Ser Ile Asp Gly Lys Ser Gln Pro Gln		
150	155	160
165		
tat gct gct gta cca ctt gag gtg cag gac aat att cgt gcg act gcg		643
Tyr Ala Ala Val Pro Leu Glu Val Gln Asp Asn Ile Arg Ala Thr Ala		
170	175	180
ctg gtt cct aat ttc cac gca tcc acc gaa gct gtg cgc cga gtc ctt		691
Leu Val Pro Asn Phe His Ala Ser Thr Glu Ala Val Arg Arg Val Leu		
185	190	195
ccc act gaa gtc act cac atc gat gcg cga ttt aac gtg tcc cgc gtt		739
Pro Thr Glu Val Thr His Ile Asp Ala Arg Phe Asn Val Ser Arg Val		
200	205	210
gca gtg atg atc gtt gcg ttg cag cag cgt cct gat ttg ctg tgg gag		787
Ala Val Met Ile Val Ala Leu Gln Gln Arg Pro Asp Leu Leu Trp Glu		
215	220	225
ggt act cgt gac cgt ctg cac cag cct tat cgt gca gaa gtg ttg cct		835
Gly Thr Arg Asp Arg Leu His Gln Pro Tyr Arg Ala Glu Val Leu Pro		
230	235	240
245		
att acc tct gag tgg gta aac cgc ctg cgc aac cgt ggc tac gcg gca		883
Ile Thr Ser Glu Trp Val Asn Arg Leu Arg Asn Arg Gly Tyr Ala Ala		
250	255	260
tac ctt tcc ggt gcc ggc cca acc gcc atg gtg ctg tcc act gag cca		931
Tyr Leu Ser Gly Ala Gly Pro Thr Ala Met Val Leu Ser Thr Glu Pro		
265	270	275
att cca gac aag gtt ttg gaa gat gct cgt gag tct ggc att aag gtg		979
Ile Pro Asp Lys Val Leu Glu Asp Ala Arg Glu Ser Gly Ile Lys Val		

280

285

290

ctt gag ctt gag gtt gcg gga cca gtc aag gtt gaa gtt aac caa cct
 1027
 Leu Glu Leu Glu Val Ala Gly Pro Val Lys Val Glu Val Asn Gln Pro
 295 300 305

taggccccaac aaggaaggcc ccc
 1050

<210> 174
 <211> 309
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 174
 Met Ala Ile Glu Leu Asn Val Gly Arg Lys Val Thr Val Thr Val Pro
 1 5 10 15

Gly Ser Ser Ala Asn Leu Gly Pro Gly Phe Asp Thr Leu Gly Leu Ala
 20 25 30

Leu Ser Val Tyr Asp Thr Val Glu Val Glu Ile Ile Pro Ser Gly Leu
 35 40 45

Glu Val Glu Val Phe Gly Glu Gly Gln Gly Glu Val Pro Leu Asp Gly
 50 55 60

Ser His Leu Val Val Lys Ala Ile Arg Ala Gly Leu Lys Ala Ala Asp
 65 70 75 80

Ala Glu Val Pro Gly Leu Arg Val Val Cys His Asn Asn Ile Pro Gln
 85 90 95

Ser Arg Gly Leu Gly Ser Ser Ala Ala Ala Val Ala Gly Val Ala
 100 105 110

Ala Ala Asn Gly Leu Ala Asp Phe Pro Leu Thr Gln Glu Gln Ile Val
 115 120 125

Gln Leu Ser Ser Ala Phe Glu Gly His Pro Asp Asn Ala Ala Ala Ser
 130 135 140

Val Leu Gly Gly Ala Val Val Ser Trp Thr Asn Leu Ser Ile Asp Gly
 145 150 155 160

Lys Ser Gln Pro Gln Tyr Ala Ala Val Pro Leu Glu Val Gln Asp Asn
 165 170 175

Ile Arg Ala Thr Ala Leu Val Pro Asn Phe His Ala Ser Thr Glu Ala
 180 185 190

Val Arg Arg Val Leu Pro Thr Glu Val Thr His Ile Asp Ala Arg Phe
 195 200 205

Asn Val Ser Arg Val Ala Val Met Ile Val Ala Leu Gln Gln Arg Pro
 210 215 220

Asp Leu Leu Trp Glu Gly Thr Arg Asp Arg Leu His Gln Pro Tyr Arg
 225 230 235 240

Ala Glu Val Leu Pro Ile Thr Ser Glu Trp Val Asn Arg Leu Arg Asn
 245 250 255

Arg Gly Tyr Ala Ala Tyr Leu Ser Gly Ala Gly Pro Thr Ala Met Val
 260 265 270

Leu Ser Thr Glu Pro Ile Pro Asp Lys Val Leu Glu Asp Ala Arg Glu
 275 280 285

Ser Gly Ile Lys Val Leu Glu Leu Glu Val Ala Gly Pro Val Lys Val
 290 295 300

Glu Val Asn Gln Pro
 305

<210> 175

<211> 1566

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1543)

<223> RXA00330

<400> 175

gcaacacttt agggtatcgc gtggcgaaag tcacctttt caacatattt gagacggtgt 60

gggggagtat tgtgtcaccc cttgggatag ggttatatcc gtg gac tac att tcg 115
 Val Asp Tyr Ile Ser
 1 5

acg cgt gat gcc agc cgt acc cct gcc cgc ttc agt gat att ttg ctg 163
 Thr Arg Asp Ala Ser Arg Thr Pro Ala Arg Phe Ser Asp Ile Leu Leu
 10 15 20

ggc ggt cta gca cca gac ggc gga ctg tac ctg cct gca acc tac cct 211
 Gly Gly Leu Ala Pro Asp Gly Gly Leu Tyr Leu Pro Ala Thr Tyr Pro
 25 30 35

caa cta gat gat gcc cag ctg agt aaa tgg cgt gag gta tta gcc aac 259
 Gln Leu Asp Asp Ala Gln Leu Ser Lys Trp Arg Glu Val Leu Ala Asn
 40 45 50

gaa gga tac gca gct ttg gct gct gaa gtt atc tcc ctg ttt gtt gat 307
 Glu Gly Tyr Ala Ala Leu Ala Ala Glu Val Ile Ser Leu Phe Val Asp
 55 60 65

gac atc cca gta gaa gac atc aag gcg atc acc gca cgc gcc tac acc 355
 Asp Ile Pro Val Glu Asp Ile Lys Ala Ile Thr Ala Arg Ala Tyr Thr
 70 75 80 85

tac ccg aag ttc aac agc gaa gac atc gtt cct gtc acc gaa ctc gag 403
 Tyr Pro Lys Phe Asn Ser Glu Asp Ile Val Pro Val Thr Glu Leu Glu
 90 95 100

gac aac att tac ctg ggc cac ctt tcc gaa ggc cca acc gct gca ttc 451
 Asp Asn Ile Tyr Leu Gly His Leu Ser Glu Gly Pro Thr Ala Ala Phe
 105 110 115

aaa gac atg gcc atg cag ctg ctc ggc gaa ctt ttc gaa tac gag ctt		499
Lys Asp Met Ala Met Gln Leu Leu Gly Glu Leu Phe Glu Tyr Glu Leu		
120	125	130
cgc cgc cgc aac gaa acc atc aac atc ctg ggc gct acc tct ggc gat		547
Arg Arg Arg Asn Glu Thr Ile Asn Ile Leu Gly Ala Thr Ser Gly Asp		
135	140	145
acc ggc tcc tct gcg gaa tac gcc atg cgc ggc gag gga atc cgc		595
Thr Gly Ser Ser Ala Glu Tyr Ala Met Arg Gly Arg Glu Gly Ile Arg		
150	155	160
165		
gta ttc atg ctg acc cca gct ggc cgc atg acc cca ttc cag caa gca		643
Val Phe Met Leu Thr Pro Ala Gly Arg Met Thr Pro Phe Gln Gln Ala		
170	175	180
cag atg ttt ggc ctt gac gat cca aac atc ttc aac atc gcc ctc gac		691
Gln Met Phe Gly Leu Asp Asp Pro Asn Ile Phe Asn Ile Ala Leu Asp		
185	190	195
ggc gtt ttc gac gat tgc caa gac gta gtc aag gct gtc tcc gcc gac		739
Gly Val Phe Asp Asp Cys Gln Asp Val Val Lys Ala Val Ser Ala Asp		
200	205	210
gca gaa ttc aaa aaa gac aac cgc atc ggt gcc gtg aac tcc atc aac		787
Ala Glu Phe Lys Lys Asp Asn Arg Ile Gly Ala Val Asn Ser Ile Asn		
215	220	225
tgg gca cgc ctt atg gca cag gtt gtg tac tac gtt tcc tca tgg atc		835
Trp Ala Arg Leu Met Ala Gln Val Val Tyr Tyr Val Ser Ser Trp Ile		
230	235	240
245		
cgc acc aca acc agc aat gac caa aag gtc agc ttc tcc gta cca acc		883
Arg Thr Thr Ser Asn Asp Gln Lys Val Ser Phe Ser Val Pro Thr		
250	255	260
ggc aac ttc ggt gac att tgc gca ggc cac atc gcc cgc caa atg gga		931
Gly Asn Phe Gly Asp Ile Cys Ala Gly His Ile Ala Arg Gln Met Gly		
265	270	275
ctt ccc atc gat cgc ctc atc gtg gcc acc aac gaa aac gat gtg ctc		979
Leu Pro Ile Asp Arg Leu Ile Val Ala Thr Asn Glu Asn Asp Val Leu		
280	285	290
gac gag ttc ttc cgt acc ggc gac tac cga gtc cgc agc tcc gca gac		
1027		
Asp Glu Phe Phe Arg Thr Gly Asp Tyr Arg Val Arg Ser Ser Ala Asp		
295	300	305
acc cac gag acc tcc tca cct tcg atg gat atc tcc cgc gcc tcc aac		
1075		
Thr His Glu Thr Ser Ser Pro Ser Met Asp Ile Ser Arg Ala Ser Asn		
310	315	320
325		
ttc gag cgt ttc atc ttc gac ctg ctc ggc cgc gac gcc acc cgc gtc		
1123		
Phe Glu Arg Phe Ile Phe Asp Leu Leu Gly Arg Asp Ala Thr Arg Val		
330	335	340

aac gat cta ttt ggt acc cag gtt cgc caa ggc gga ttc tca ctg gct
 1171
 Asn Asp Leu Phe Gly Thr Gln Val Arg Gln Gly Gly Phe Ser Leu Ala
 345 350 355

gat gac gcc aac ttt gag aag gct gca gca gaa tac ggt ttc gcc tcc
 1219
 Asp Asp Ala Asn Phe Glu Lys Ala Ala Ala Glu Tyr Gly Phe Ala Ser
 360 365 370

gga cga tcc acc cat gct gac cgt gtg gca acc atc gct gac gtg cat
 1267
 Gly Arg Ser Thr His Ala Asp Arg Val Ala Thr Ile Ala Asp Val His
 375 380 385

tcc cgc ctc gac gta cta atc gat ccc cac acc gcc gac ggc gtt cac
 1315
 Ser Arg Leu Asp Val Leu Ile Asp Pro His Thr Ala Asp Gly Val His
 390 395 400 405

gtg gca cgc cag tgg agg gac gag gtc aac acc cca atc atc gtc cta
 1363
 Val Ala Arg Gln Trp Arg Asp Glu Val Asn Thr Pro Ile Ile Val Leu
 410 415 420

gaa act gca ctc cca gtg aaa ttt gcc gac acc atc gtc gaa gca att
 1411
 Glu Thr Ala Leu Pro Val Lys Phe Ala Asp Thr Ile Val Glu Ala Ile
 425 430 435

ggt gaa gca cct caa act cca gag cgt ttc gcc gcg atc atg gat gct
 1459
 Gly Glu Ala Pro Gln Thr Pro Glu Arg Phe Ala Ala Ile Met Asp Ala
 440 445 450

cca ttc aag gtt tcc gac cta cca aac gac acc gat gca gtt aag cag
 1507
 Pro Phe Lys Val Ser Asp Leu Pro Asn Asp Thr Asp Ala Val Lys Gln
 455 460 465

tac ata gtc gat gcg att gca aac act tcc gtg aag taacttgctt
 1553

~~Tyr Ile Val Asp Ala Ile Ala Asn Thr Ser Val Lys~~
 470 475 480

tacgccaagg cct
 1566

<210> 176
 <211> 481
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 176
 Val Asp Tyr Ile Ser Thr Arg Asp Ala Ser Arg Thr Pro Ala Arg Phe
 1 5 10 15

Ser Asp Ile Leu Leu Gly Gly Leu Ala Pro Asp Gly Gly Leu Tyr Leu
 20 25 30

Pro Ala Thr Tyr Pro Gln Leu Asp Asp Ala Gln Leu Ser Lys Trp Arg
 35 40 45

Glu Val Leu Ala Asn Glu Gly Tyr Ala Ala Leu Ala Ala Glu Val Ile
 50 55 60

Ser Leu Phe Val Asp Asp Ile Pro Val Glu Asp Ile Lys Ala Ile Thr
 65 70 75 80

Ala Arg Ala Tyr Thr Tyr Pro Lys Phe Asn Ser Glu Asp Ile Val Pro
 85 90 95

Val Thr Glu Leu Glu Asp Asn Ile Tyr Leu Gly His Leu Ser Glu Gly
 100 105 110

Pro Thr Ala Ala Phe Lys Asp Met Ala Met Gln Leu Leu Gly Glu Leu
 115 120 125

Phe Glu Tyr Glu Leu Arg Arg Arg Asn Glu Thr Ile Asn Ile Leu Gly
 130 135 140

Ala Thr Ser Gly Asp Thr Gly Ser Ser Ala Glu Tyr Ala Met Arg Gly
 145 150 155 160

Arg Glu Gly Ile Arg Val Phe Met Leu Thr Pro Ala Gly Arg Met Thr
 165 170 175

Pro Phe Gln Gln Ala Gln Met Phe Gly Leu Asp Asp Pro Asn Ile Phe
 180 185 190

Asn Ile Ala Leu Asp Gly Val Phe Asp Asp Cys Gln Asp Val Val Lys
 195 200 205

Ala Val Ser Ala Asp Ala Glu Phe Lys Lys Asp Asn Arg Ile Gly Ala
 210 215 220

Val Asn Ser Ile Asn Trp Ala Arg Leu Met Ala Gln Val Val Tyr Tyr
 225 230 235 240

Val Ser Ser Trp Ile Arg Thr Thr Ser Asn Asp Gln Lys Val Ser
 245 250 255

Phe Ser Val Pro Thr Gly Asn Phe Gly Asp Ile Cys Ala Gly His Ile
 260 265 270

Ala Arg Gln Met Gly Leu Pro Ile Asp Arg Leu Ile Val Ala Thr Asn
 275 280 285

Glu Asn Asp Val Leu Asp Glu Phe Phe Arg Thr Gly Asp Tyr Arg Val
 290 295 300

Arg Ser Ser Ala Asp Thr His Glu Thr Ser Ser Pro Ser Met Asp Ile
 305 310 315 320

Ser Arg Ala Ser Asn Phe Glu Arg Phe Ile Phe Asp Leu Leu Gly Arg
 325 330 335

Asp Ala Thr Arg Val Asn Asp Leu Phe Gly Thr Gln Val Arg Gln Gly
 340 345 350

Gly Phe Ser Leu Ala Asp Asp Ala Asn Phe Glu Lys Ala Ala Ala Glu

355	360	365
Tyr Gly Phe Ala Ser Gly Arg Ser Thr His Ala Asp Arg Val Ala Thr		
370	375	380
Ile Ala Asp Val His Ser Arg Leu Asp Val Leu Ile Asp Pro His Thr		
385	390	395
400		
Ala Asp Gly Val His Val Ala Arg Gln Trp Arg Asp Glu Val Asn Thr		
405	410	415
Pro Ile Ile Val Leu Glu Thr Ala Leu Pro Val Lys Phe Ala Asp Thr		
420	425	430
Ile Val Glu Ala Ile Gly Glu Ala Pro Gln Thr Pro Glu Arg Phe Ala		
435	440	445
Ala Ile Met Asp Ala Pro Phe Lys Val Ser Asp Leu Pro Asn Asp Thr		
450	455	460
Asp Ala Val Lys Gln Tyr Ile Val Asp Ala Ile Ala Asn Thr Ser Val		
465	470	475
480		

Lys

<210>	177
<211>	1254
<212>	DNA
<213>	Corynebacterium glutamicum
<220>	
<221>	CDS
<222>	(101)..(1231)
<223>	RXN00403
<400>	177
tttttcagac tcgtgagaat gcaaactaga ctagacagag ctgtccatat acactggacg	60
aagttttagt cttgtccacc cagaacaggc ggttattttc atg ccc acc ctc gcg	115
Met Pro Thr Leu Ala	
1	5
cct tca ggt caa ctt gaa atc caa gcg atc ggt gat gtc tcc acc gaa	163
Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly Asp Val Ser Thr Glu	
10	15
20	
gcc gga gca atc att aca aac gct gaa atc gcc tat cac cgc tgg ggt	211
Ala Gly Ala Ile Ile Thr Asn Ala Glu Ile Ala Tyr His Arg Trp Gly	
25	30
35	
gaa tac cgc gta gat aaa gaa gga cgc agc aat gtc gtt ctc atc gaa	259
Glu Tyr Arg Val Asp Lys Glu Gly Arg Ser Asn Val Val Leu Ile Glu	
40	45
50	
cac gcc ctc act gga gat tcc aac gca gcc gat tgg tgg gct gac ttg	307
His Ala Leu Thr Gly Asp Ser Asn Ala Ala Asp Trp Trp Ala Asp Leu	
55	60
65	
ctc ggt ccc ggc aaa gcc atc aac act gat att tac tgc gtg atc tgt	355

Leu Gly Pro Gly Lys Ala Ile Asn Thr Asp Ile Tyr Cys Val Ile Cys
 70 75 80 85
 acc aac gtc atc ggt ggt tgc aac ggt tcc acc cga cct ggc tcc atg 403
 Thr Asn Val Ile Gly Gly Cys Asn Gly Ser Thr Gly Pro Gly Ser Met
 90 95 100
 cat cca gat gga aat ttc tgg ggt aat cgc ttc ccc gcc acg tcc att 451
 His Pro Asp Gly Asn Phe Trp Gly Asn Arg Phe Pro Ala Thr Ser Ile
 105 110 115
 cgt gat cag gta aac gcc gaa aaa caa ttc ctc gac gca ctc ggc atc 499
 Arg Asp Gln Val Asn Ala Glu Lys Gln Phe Leu Asp Ala Leu Gly Ile
 120 125 130
 acc acg gtc gcc gca gta ctt ggt ggt tcc atg ggt ggt gcc cgc acc 547
 Thr Thr Val Ala Ala Val Leu Gly Ser Met Gly Gly Ala Arg Thr
 135 140 145
 cta gag tgg gcc gca atg tac cca gaa act gtt ggc gca gct gct gtt 595
 Leu Glu Trp Ala Ala Met Tyr Pro Glu Thr Val Gly Ala Ala Ala Val
 150 155 160 165
 ctt gca gtt tct gca cgc gcc agc gcc tgg caa atc ggc att caa tcc 643
 Leu Ala Val Ser Ala Arg Ala Ser Ala Trp Gln Ile Gly Ile Gln Ser
 170 175 180
 gcc caa att aag gcg att gaa aac gac cac cac tgg cac gaa ggc aac 691
 Ala Gln Ile Lys Ala Ile Glu Asn Asp His His Trp His Glu Gly Asn
 185 190 195
 tac tac gaa tcc ggc tgc aac cca gcc acc gga ctc ggc gcc gca 739
 Tyr Tyr Glu Ser Gly Cys Asn Pro Ala Thr Gly Leu Gly Ala Ala Arg
 200 205 210
 cgc atc gcc cac ctc acc tac cgt ggc gaa cta gaa atc gac gaa cgc 787
 Arg Ile Ala His Leu Thr Tyr Arg Gly Glu Leu Glu Ile Asp Glu Arg
 215 220 225
 ttc ggc acc aaa gcc caa aag aac gaa aac cca ctc ggt ccc tac cgc 835
 Phe Gly Thr Lys Ala Gln Lys Asn Glu Asn Pro Leu Gly Pro Tyr Arg
 230 235 240 245
 aag ccc gac cag cgc ttc gcc gtg gaa tcc tac ttg gac tac caa gca 883
 Lys Pro Asp Gln Arg Phe Ala Val Glu Ser Tyr Leu Asp Tyr Gln Ala
 250 255 260
 gac aag cta gta cag cgt ttc gac gcc ggc tcc tac gtc ttg ctc acc 931
 Asp Lys Leu Val Gln Arg Phe Asp Ala Gly Ser Tyr Val Leu Leu Thr
 265 270 275
 gac gcc ctc aac cgc cac gac att ggt cgc gac cgc gga ggc ctc aac 979
 Asp Ala Leu Asn Arg His Asp Ile Gly Arg Asp Arg Gly Gly Leu Asn
 280 285 290
 aag gca ctc gaa tcc atc aaa gtt cca gtc ctt gtc gca ggc gta gat
 1027
 Lys Ala Leu Glu Ser Ile Lys Val Pro Val Leu Val Ala Gly Val Asp
 295 300 305

acc gat att ttg tac ccc tac cac cag caa gaa cac ctc tcc aga aac
 1075
 Thr Asp Ile Leu Tyr Pro Tyr His Gln Gln Glu His Leu Ser Arg Asn
 310 315 320 325

ctg gga aat cta ctg gca atg gca aaa atc gta tcc cct gtc ggc cac
 1123
 Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val Ser Pro Val Gly His
 330 335 340

gat gct ttc ctc acc gaa agc cgc caa atg gat cgc atc gtg agg aac
 1171
 Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp Arg Ile Val Arg Asn
 345 350 355

ttc ttc agc ctc atc tcc cca gac gaa gac aac cct tcg acc tac atc
 1219
 Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn Pro Ser Thr Tyr Ile
 360 365 370

gag ttc tac atc taataggtat ttacgacaaa tag
 1254
 Glu Phe Tyr Ile
 375

<210> 178
 <211> 377
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 178
 Met Pro Thr Leu Ala Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly
 1 5 10 15

Asp Val Ser Thr Glu Ala Gly Ala Ile Ile Thr Asn Ala Glu Ile Ala
 20 25 30

Tyr His Arg Trp Gly Glu Tyr Arg Val Asp Lys Glu Gly Arg Ser Asn
 35 40 45

Val Val Leu Ile Glu His Ala Leu Thr Gly Asp Ser Asn Ala Ala Asp
 50 55 60

Trp Trp Ala Asp Leu Leu Gly Pro Gly Lys Ala Ile Asn Thr Asp Ile
 65 70 75 80

Tyr Cys Val Ile Cys Thr Asn Val Ile Gly Gly Cys Asn Gly Ser Thr
 85 90 95

Gly Pro Gly Ser Met His Pro Asp Gly Asn Phe Trp Gly Asn Arg Phe
 100 105 110

Pro Ala Thr Ser Ile Arg Asp Gln Val Asn Ala Glu Lys Gln Phe Leu
 115 120 125

Asp Ala Leu Gly Ile Thr Thr Val Ala Ala Val Leu Gly Gly Ser Met
 130 135 140

Gly Gly Ala Arg Thr Leu Glu Trp Ala Ala Met Tyr Pro Glu Thr Val
 145 150 155 160

Gly Ala Ala Ala Val Leu Ala Val Ser Ala Arg Ala Ser Ala Trp Gln
 165 170 175

 Ile Gly Ile Gln Ser Ala Gln Ile Lys Ala Ile Glu Asn Asp His His
 180 185 190

 Trp His Glu Gly Asn Tyr Tyr Glu Ser Gly Cys Asn Pro Ala Thr Gly
 195 200 205

 Leu Gly Ala Ala Arg Arg Ile Ala His Leu Thr Tyr Arg Gly Glu Leu
 210 215 220

 Glu Ile Asp Glu Arg Phe Gly Thr Lys Ala Gln Lys Asn Glu Asn Pro
 225 230 235 240

 Leu Gly Pro Tyr Arg Lys Pro Asp Gln Arg Phe Ala Val Glu Ser Tyr
 245 250 255

 Leu Asp Tyr Gln Ala Asp Lys Leu Val Gln Arg Phe Asp Ala Gly Ser
 260 265 270

 Tyr Val Leu Leu Thr Asp Ala Leu Asn Arg His Asp Ile Gly Arg Asp
 275 280 285

 Arg Gly Gly Leu Asn Lys Ala Leu Glu Ser Ile Lys Val Pro Val Leu
 290 295 300

 Val Ala Gly Val Asp Thr Asp Ile Leu Tyr Pro Tyr His Gln Gln Glu
 305 310 315 320

 His Leu Ser Arg Asn Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val
 325 330 335

 Ser Pro Val Gly His Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp
 340 345 350

 Arg Ile Val Arg Asn Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn
 355 360 365

 Pro Ser Thr Tyr Ile Glu Phe Tyr Ile
 370 375

<210> 179
 <211> 1210
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(1210)
 <223> FRXA00403

<400> 179
 ttttcagac tcgtgagaat gcaaactaga ctagacagag ctgtccatat acactggacg 60
 aagttttagt cttgtccacc cagaacaggc ggttatttc atg ccc acc ctc gcg 115
 Met Pro Thr Leu Ala
 1 5

cct tca ggt caa ctt gaa atc caa gcg atc ggt gat gtc tcc acc gaa 163
 Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly Asp Val Ser Thr Glu
 10 15 20

gcc gga gca atc att aca aac gct gaa atc gcc tat cac cgc tgg ggt 211
 Ala Gly Ala Ile Ile Thr Asn Ala Glu Ile Ala Tyr His Arg Trp Gly
 25 30 35

gaa tac cgc gta gat aaa gaa gga cgc agc aat gtc gtt ctc atc gaa 259
 Glu Tyr Arg Val Asp Lys Glu Gly Arg Ser Asn Val Val Leu Ile Glu
 40 45 50

cac gcc ctc act gga gat tcc aac gca gcc gat tgg tgg gct gac ttg 307
 His Ala Leu Thr Gly Asp Ser Asn Ala Ala Asp Trp Trp Ala Asp Leu
 55 60 65

ctc ggt ccc ggc aaa gcc atc aac act gat att tac tgc gtg atc tgt 355
 Leu Gly Pro Gly Lys Ala Ile Asn Thr Asp Ile Tyr Cys Val Ile Cys
 70 75 80 85

acc aac gtc atc ggt ggt tgc aac ggt tcc acc gga cct gcc tcc atg 403
 Thr Asn Val Ile Gly Gly Cys Asn Gly Ser Thr Gly Pro Gly Ser Met
 90 95 100

cat cca gat gga aat ttc tgg ggt aat cgc ttc ccc gcc acg tcc att 451
 His Pro Asp Gly Asn Phe Trp Gly Asn Arg Phe Pro Ala Thr Ser Ile
 105 110 115

cgt gat cag gta aac gcc gaa aaa caa ttc ctc gac gca ctc ggc atc 499
 Arg Asp Gln Val Asn Ala Glu Lys Gln Phe Leu Asp Ala Leu Gly Ile
 120 125 130

acc acg gtc gcc gca gta ctt ggt ggt tcc atg ggt ggt gcc cgc acc 547
 Thr Thr Val Ala Ala Val Leu Gly Gly Ser Met Gly Gly Ala Arg Thr
 135 140 145

cta gag tgg gcc gca atg tac cca gaa act gtt ggc gca gct gct gtt 595
 Leu Glu Trp Ala Ala Met Tyr Pro Glu Thr Val Gly Ala Ala Ala Val
 150 155 160 165

ctt gca gtt tct gca cgc gcc agc gcc tgg caa atc ggc att caa tcc 643
 Leu Ala Val Ser Ala Arg Ala Ser Ala Trp Gln Ile Gly Ile Gln Ser
 170 175 180

gcc caa att aag gcg att gaa aac gac cac cac tgg cac gaa ggc aac 691
 Ala Gln Ile Lys Ala Ile Glu Asn Asp His His Trp His Glu Gly Asn
 185 190 195

tac tac gaa tcc ggc tgc aac cca gcc acc gga ctc ggc gcc gcc cga 739
 Tyr Tyr Glu Ser Gly Cys Asn Pro Ala Thr Gly Leu Gly Ala Ala Arg
 200 205 210

cgc atc gcc cac ctc acc tac cgt ggc gaa cta gaa atc gac gaa cgc 787
 Arg Ile Ala His Leu Thr Tyr Arg Gly Glu Leu Glu Ile Asp Glu Arg
 215 220 225

ttc ggc acc aaa gcc caa aag aac gaa aac cca ctc ggt ccc tac cgc 835
 Phe Gly Thr Lys Ala Gln Lys Asn Glu Asn Pro Leu Gly Pro Tyr Arg
 230 235 240 245

aag ccc gac cag cgc ttc gcc gtg gaa tcc tac ttg gac tac caa gca 883

Lys Pro Asp Gln Arg Phe Ala Val Glu Ser Tyr Leu Asp Tyr Gln Ala
 250 255 260
 gac aag cta gta cag cgt ttc gac gcc ggc tcc tac gtc ttg ctc acc 931
 Asp Lys Leu Val Gin Arg Phe Asp Ala Gly Ser Tyr Val Leu Leu Thr
 265 270 275
 gac gcc ctc aac cgc cac gac att ggt cgc gac cgc gga ggc ctc aac 979
 Asp Ala Leu Asn Arg His Asp Ile Gly Arg Asp Arg Gly Gly Leu Asn
 280 285 290
 aag gca ctc gaa tcc atc aaa gtt cca gtc ctt gtc gca ggc gta gat
 1027
 Lys Ala Leu Glu Ser Ile Lys Val Pro Val Leu Val Ala Gly Val Asp
 295 300 305
 acc gat att ttg tac ccc tac cac cag caa gaa cac ctc tcc aga aac
 1075
 Thr Asp Ile Leu Tyr Pro Tyr His Gln Gln Glu His Leu Ser Arg Asn
 310 315 320 325
 ctg gga aat cta ctg gca atg gca aaa atc gta tcc cct gtc ggc cac
 1123
 Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val Ser Pro Val Gly His
 330 335 340
 gat gct ttc ctc acc gaa agc cgc caa atg gat cgc atc gtg agg aac
 1171
 Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp Arg Ile Val Arg Asn
 345 350 355
 ttc ttc agc ctc atc tcc cca gac gaa gac aac cct tcg
 1210
 Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn Pro Ser
 360 365 370

 <210> 180
 <211> 370
 <212> PRT
 <213> Corynebacterium glutamicum

 <400> 180
 Met Pro Thr Leu Ala Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly
 1 5 10 15
 Asp Val Ser Thr Glu Ala Gly Ala Ile Ile Thr Asn Ala Glu Ile Ala
 20 25 30
 Tyr His Arg Trp Gly Glu Tyr Arg Val Asp Lys Glu Gly Arg Ser Asn
 35 40 45
 Val Val Leu Ile Glu His Ala Leu Thr Gly Asp Ser Asn Ala Ala Asp
 50 55 60
 Trp Trp Ala Asp Leu Leu Gly Pro Gly Lys Ala Ile Asn Thr Asp Ile
 65 70 75 80
 Tyr Cys Val Ile Cys Thr Asn Val Ile Gly Gly Cys Asn Gly Ser Thr
 85 90 95

Gly Pro Gly Ser Met His Pro Asp Gly Asn Phe Trp Gly Asn Arg Phe
 100 105 110

Pro Ala Thr Ser Ile Arg Asp Gln Val Asn Ala Glu Lys Gln Phe Leu
 115 120 125

Asp Ala Leu Gly Ile Thr Thr Val Ala Ala Val Leu Gly Gly Ser Met
 130 135 140

Gly Gly Ala Arg Thr Leu Glu Trp Ala Ala Met Tyr Pro Glu Thr Val
 145 150 155 160

Gly Ala Ala Ala Val Leu Ala Val Ser Ala Arg Ala Ser Ala Trp Gln
 165 170 175

Ile Gly Ile Gln Ser Ala Gln Ile Lys Ala Ile Glu Asn Asp His His
 180 185 190

Trp His Glu Gly Asn Tyr Tyr Glu Ser Gly Cys Asn Pro Ala Thr Gly
 195 200 205

Leu Gly Ala Ala Arg Arg Ile Ala His Leu Thr Tyr Arg Gly Glu Leu
 210 215 220

Glu Ile Asp Glu Arg Phe Gly Thr Lys Ala Gln Lys Asn Glu Asn Pro
 225 230 235 240

Leu Gly Pro Tyr Arg Lys Pro Asp Gln Arg Phe Ala Val Glu Ser Tyr
 245 250 255

Leu Asp Tyr Gln Ala Asp Lys Leu Val Gln Arg Phe Asp Ala Gly Ser
 260 265 270

Tyr Val Leu Leu Thr Asp Ala Leu Asn Arg His Asp Ile Gly Arg Asp
 275 280 285

Arg Gly Gly Leu Asn Lys Ala Leu Glu Ser Ile Lys Val Pro Val Leu
 290 295 300

Val Ala Gly Val Asp Thr Asp Ile Leu Tyr Pro Tyr His Gln Gln Glu
 305 310 315 320

His Leu Ser Arg Asn Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val
 325 330 335

Ser Pro Val Gly His Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp
 340 345 350

Arg Ile Val Arg Asn Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn
 355 360 365

Pro Ser
 370

<210> 181

<211> 771

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS
<222> (101)..(748)
<223> RXC01207

<400> 181
 cttcatgatc tcacccggcag agcgcgtttt gttacagcgc gtaaaactgtg actttaaaaa 60
 attttgaac aatccctaca ccaacttcag gagaaaaaca gtg agc aga atc tat 115
 Val Ser Arg Ile Tyr
 1 5
 gac tgt gcc gac caa gac tcc cgt gca gca ggc cta aag gcg gct gtc 163
 Asp Cys Ala Asp Gln Asp Ser Arg Ala Ala Gly Leu Lys Ala Ala Val
 10 15 20
 gat gca gtc aaa gcc ggt cag ctc gtt gtc ctt ccc acg gat acc ctt 211
 Asp Ala Val Lys Ala Gly Gln Leu Val Val Leu Pro Thr Asp Thr Leu
 25 30 35
 tat gga ctc ggc tgc gac gct ttc aac aac gag gca gta gcc aac ctt 259
 Tyr Gly Leu Gly Cys Asp Ala Phe Asn Asn Glu Ala Val Ala Asn Leu
 40 45 50
 ctg gcc acc aaa cac cgt ggc ccc gat atg ccc gtt cca gtg ctc gtc 307
 Leu Ala Thr Lys His Arg Gly Pro Asp Met Pro Val Pro Val Leu Val
 55 60 65
 ggc agc tgg gac acc att caa gga ctt gtg cac tcc tat tct gcg cag 355
 Gly Ser Trp Asp Thr Ile Gln Gly Leu Val His Ser Tyr Ser Ala Gln
 70 75 80 85
 gca aaa gcg ctt gtg gag gcg ttc tgg cct ggt gga ctg tcc atc atc 403
 Ala Lys Ala Leu Val Glu Ala Phe Trp Pro Gly Gly Leu Ser Ile Ile
 .90 95 100
 gtt ccg cag gca cca agc ctt ccg tgg aac ctt ggc gat acc cgt ggc 451
 Val Pro Gln Ala Pro Ser Leu Pro Trp Asn Leu Gly Asp Thr Arg Gly
 105 110 115
 acc gta atg ctg cgc atg cca ctg cac cca gtt gcc att gaa ttg ctg 499
 Thr Val Met Leu Arg Met Pro Leu His Pro Val Ala Ile Glu Leu Leu
 120 125 130
 cgc caa acc gga cca atg gct gtc tcc gcc aac atc tcc gga cat 547
 Arg Gln Thr Gly Pro Met Ala Val Ser Ser Ala Asn Ile Ser Gly His
 135 140 145
 act cct cca acc acc gtg ctg gag gct cgt cag cag ctc aac caa aat 595
 Thr Pro Pro Thr Thr Val Leu Glu Ala Arg Gln Gln Leu Asn Gln Asn
 150 155 160 165
 gtc gct gtc tac ctc gat ggt ggc gaa tgc gcg ctg gcc acc cct tca 643
 Val Ala Val Tyr Leu Asp Gly Gly Glu Cys Ala Leu Ala Thr Pro Ser
 170 175 180
 acc atc gtg gat att tca ggc ccc gca cca aag att ttg cgt gag ggt 691
 Thr Ile Val Asp Ile Ser Gly Pro Ala Pro Lys Ile Leu Arg Glu Gly
 185 190 195
 gcc atc agc gca gaa cgc qtt ggc gaa gta ctt gga gtc tcg gca gaa 739
 Ala Ile Ser Ala Glu Arg Val Gly Glu Val Leu Gly Val Ser Ala Glu

200

205

210

agc ctg cgc taaaatgggag tcggtttcgc ggg
 Ser Leu Arg
 215

771

<210> 182
 <211> 216
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 182
 Val Ser Arg Ile Tyr Asp Cys Ala Asp Gln Asp Ser Arg Ala Ala Gly
 1 5 10 15

Leu Lys Ala Ala Val Asp Ala Val Lys Ala Gly Gln Leu Val Val Leu
 20 25 30

Pro Thr Asp Thr Leu Tyr Gly Leu Gly Cys Asp Ala Phe Asn Asn Glu
 35 40 45

Ala Val Ala Asn Leu Leu Ala Thr Lys His Arg Gly Pro Asp Met Pro
 50 55 60

Val Pro Val Leu Val Gly Ser Trp Asp Thr Ile Gln Gly Leu Val His
 65 70 75 80

Ser Tyr Ser Ala Gln Ala Lys Ala Leu Val Glu Ala Phe Trp Pro Gly
 85 90 95

Gly Leu Ser Ile Ile Val Pro Gln Ala Pro Ser Leu Pro Trp Asn Leu
 100 105 110

Gly Asp Thr Arg Gly Thr Val Met Leu Arg Met Pro Leu His Pro Val
 115 120 125

Ala Ile Glu Leu Leu Arg Gln Thr Gly Pro Met Ala Val Ser Ser Ala
 130 135 140

Asn Ile Ser Gly His Thr Pro Pro Thr Thr Val Leu Glu Ala Arg Gln
 145 150 155 160

Gln Leu Asn Gln Asn Val Ala Val Tyr Leu Asp Gly Gly Glu Cys Ala
 165 170 175

Leu Ala Thr Pro Ser Thr Ile Val Asp Ile Ser Gly Pro Ala Pro Lys
 180 185 190

Ile Leu Arg Glu Gly Ala Ile Ser Ala Glu Arg Val Gly Glu Val Leu
 195 200 205

Gly Val Ser Ala Glu Ser Leu Arg
 210 215

<210> 183
 <211> 1419
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(1396)
 <223> RXC00152

<400> 183
 gtcattgata tccaaaggcac gaccgcgatt gtatggaaaag aagcctaaat ttttaacaat 60
 caaatagtagc tggccattcc caactaaaac tggagtaacg atg aca gga cta atc 115
 Met Thr Gly Leu Ile
 1 5

ctc gcc ata gtt ttc ctg gtc ttt gtc gcc gtc gtg gtg atc aag tcc 163
 Leu Ala Ile Val Phe Leu Val Phe Val Ala Val Val Val Ile Lys Ser
 10 15 20

ata gcc ctg att ccc cag ggt gaa gcc gcc gtc att gaa cgc ctt ggt 211
 Ile Ala Leu Ile Pro Gln Gly Glu Ala Ala Val Ile Glu Arg Leu Gly
 25 30 35

agc tac acc cgc acc gtt tca ggt ggc ctg acc ctg ctg gtt cca ttc 259
 Ser Tyr Thr Arg Thr Val Ser Gly Gly Leu Thr Leu Leu Val Pro Phe
 40 45 50

gtg gac cga gta cgc gca agg atc gac acc cgt gag cgc gtg gtc tca 307
 Val Asp Arg Val Arg Ala Arg Ile Asp Thr Arg Glu Arg Val Val Ser
 55 60 65

ttc cca ccg cag gct gtt att acc caa gac aac ctg acc gtg gcc atc 355
 Phe Pro Pro Gln Ala Val Ile Thr Gln Asp Asn Leu Thr Val Ala Ile
 70 75 80 85

gat atc gtg gtc acc ttc caa atc aac gaa cca gag cgc gcc atc tac 403
 Asp Ile Val Val Thr Phe Gln Ile Asn Glu Pro Glu Arg Ala Ile Tyr
 90 95 100

ggc gtg gac aac tac atc gtc ggt gtg gag cag att tct gta gca aca 451
 Gly Val Asp Asn Tyr Ile Val Gly Val Glu Gln Ile Ser Val Ala Thr
 105 110 115

ctt cga gac gtt gtc ggt ggc atg acc ctg gaa gaa acc ctc act tca 499
 Leu Arg Asp Val Val Gly Gly Met Thr Leu Glu Glu Thr Leu Thr Ser
 120 125 130

cgt gac gtg atc aac cgc cgc ctc cgt ggc gag ctc gat gca gca acc 547
 Arg Asp Val Ile Asn Arg Arg Leu Arg Gly Glu Leu Asp Ala Ala Thr
 135 140 145

acc aaa tgg ggc ctg cgc atc agc cgt gtg gaa cta aag gca att gat 595
 Thr Lys Trp Gly Leu Arg Ile Ser Arg Val Glu Leu Lys Ala Ile Asp
 150 155 160 165

ccg cca cca tcc atc cag caa tcg atg gaa aag cag atg aag gca gac 643
 Pro Pro Pro Ser Ile Gln Gln Ser Met Glu Lys Gln Met Lys Ala Asp
 170 175 180

cgt gaa aag cgc gcc acc att ttg acc gca gaa ggt cag cgc gaa gcc 691
 Arg Glu Lys Arg Ala Thr Ile Leu Thr Ala Glu Gly Gln Arg Glu Ala
 185 190 195

qac atc aaa act gcc gaa ggt gaa aag caa gcc aag atc ctc caa gct 739

Asp Ile Lys Thr Ala Glu Gly Glu Lys Gln Ala Lys Ile Leu Gln Ala			
200	205	210	
gag ggt gaa aag cac gca tcc atc ctg aac gca gaa gca gaa cgc caa			787
Glu Gly Glu Lys His Ala Ser Ile Leu Asn Ala Glu Ala Glu Arg Gln			
215	220	225	
gcg atg atc ctg cgc gcc gaa ggt gaa cgc gca gca cgc tac ctc cag			835
Ala Met Ile Leu Arg Ala Glu Gly Glu Arg Ala Ala Arg Tyr Leu Gln			
230	235	240	245
gcg cag ggt gaa gcc cga gca atc caa aag gtc aac gca gca atc aag			883
Ala Gln Gly Glu Ala Arg Ala Ile Gln Lys Val Asn Ala Ala Ile Lys			
250	255	260	
tct gcc aag ttg acc cca gag gtt ctt gct tat caa tac ctc gaa aag			931
Ser Ala Lys Leu Thr Pro Glu Val Leu Ala Tyr Gln Tyr Leu Glu Lys			
265	270	275	
ctt cct aag atc gca gag ggc aac gcc tcc aag atg tgg gtc atc cca			979
Leu Pro Lys Ile Ala Glu Gly Asn Ala Ser Lys Met Trp Val Ile Pro			
280	285	290	
agc cag ttc tcc gat tct ctg gaa ggt ttt gcg aag cag ttc ggc gca			
1027			
Ser Gln Phe Ser Asp Ser Leu Glu Gly Phe Ala Lys Gln Phe Gly Ala			
295	300	305	
aag gat gca gaa ggt gtc ttc cgc tac gaa cca aac acc gtg gat gaa			
1075			
Lys Asp Ala Glu Gly Val Phe Arg Tyr Glu Pro Asn Thr Val Asp Glu			
310	315	320	325
gaa acc cgc gac atc gca aac gcc gac aac gtg gaa gac tgg ttc tcc			
1123			
Glu Thr Arg Asp Ile Ala Asn Ala Asp Asn Val Glu Asp Trp Phe Ser			
330	335	340	
acc gaa tca gac cct gaa atc gca gca gca gtc gcc gca gca aac gcc			
1171			
Thr Glu Ser Asp Pro Glu Ile Ala Ala Val Ala Ala Ala Asn Ala			
345	350	355	
gtg gcc aac aag cca gtc gat cca gaa ccc ggt gag atc ctt tcc aag			
1219			
Val Ala Asn Lys Pro Val Asp Pro Glu Pro Gly Glu Ile Leu Ser Lys			
360	365	370	
aag acc gca cga cgc gtt gaa cct gaa gca gta ttg gag gct ttg caa			
1267			
Lys Thr Ala Arg Arg Val Glu Pro Glu Ala Val Leu Glu Ala Leu Gln			
375	380	385	
aac gga acc act aca caa cct gag gtt gag gca gca cct cct acc gca			
1315			
Asn Gly Thr Thr Gln Pro Glu Val Glu Ala Ala Pro Pro Thr Ala			
390	395	400	405
aac ttc gcc caa gaa ttc cct gca cca cag gca aac cct gaa gat tac			
1363			
Asn Phe Ala Gln Glu Phe Pro Ala Pro Gln Ala Asn Pro Glu Asp Tyr			

410

415

420

tcc gac caa cac cga gag aat cct tac gga aac taatcaggca taagaaaagg
 1416

Ser Asp Gln His Arg Glu Asn Pro Tyr Gly Asn
 425 430

cgg
 1419

<210> 184
 <211> 432
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 184
 Met Thr Gly Leu Ile Leu Ala Ile Val Phe Leu Val Phe Val Ala Val
 1 5 10 15

Val Val Ile Lys Ser Ile Ala Leu Ile Pro Gln Gly Glu Ala Ala Val
 20 25 30

Ile Glu Arg Leu Gly Ser Tyr Thr Arg Thr Val Ser Gly Gly Leu Thr
 35 40 45

Leu Leu Val Pro Phe Val Asp Arg Val Arg Ala Arg Ile Asp Thr Arg
 50 55 60

Glu Arg Val Val Ser Phe Pro Pro Gln Ala Val Ile Thr Gln Asp Asn
 65 70 75 80

Leu Thr Val Ala Ile Asp Ile Val Val Thr Phe Gln Ile Asn Glu Pro
 85 90 95

Glu Arg Ala Ile Tyr Gly Val Asp Asn Tyr Ile Val Gly Val Glu Gln
 100 105 110

Ile Ser Val Ala Thr Leu Arg Asp Val Val Gly Gly Met Thr Leu Glu
 115 120 125

Glu Thr Leu Thr Ser Arg Asp Val Ile Asn Arg Arg Leu Arg Gly Glu
 130 135 140

Leu Asp Ala Ala Thr Thr Lys Trp Gly Leu Arg Ile Ser Arg Val Glu
 145 150 155 160

Leu Lys Ala Ile Asp Pro Pro Ser Ile Gln Gln Ser Met Glu Lys
 165 170 175

Gln Met Lys Ala Asp Arg Glu Lys Arg Ala Thr Ile Leu Thr Ala Glu
 180 185 190

Gly Gln Arg Glu Ala Asp Ile Lys Thr Ala Glu Gly Glu Lys Gln Ala
 195 200 205

Lys Ile Leu Gln Ala Glu Gly Glu Lys His Ala Ser Ile Leu Asn Ala
 210 215 220

Glu Ala Glu Arg Gln Ala Met Ile Leu Arg Ala Glu Gly Glu Arg Ala
 225 230 235 240

Ala Arg Tyr Leu Gln Ala Gln Gly Glu Ala Arg Ala Ile Gln Lys Val
 245 250 255
 Asn Ala Ala Ile Lys Ser Ala Lys Leu Thr Pro Glu Val Leu Ala Tyr
 260 265 270
 Gln Tyr Leu Glu Lys Leu Pro Lys Ile Ala Glu Gly Asn Ala Ser Lys
 275 280 285
 Met Trp Val Ile Pro Ser Gln Phe Ser Asp Ser Leu Glu Gly Phe Ala
 290 295 300
 Lys Gln Phe Gly Ala Lys Asp Ala Glu Gly Val Phe Arg Tyr Glu Pro
 305 310 315 320
 Asn Thr Val Asp Glu Glu Thr Arg Asp Ile Ala Asn Ala Asp Asn Val
 325 330 335
 Glu Asp Trp Phe Ser Thr Glu Ser Asp Pro Glu Ile Ala Ala Val
 340 345 350
 Ala Ala Ala Asn Ala Val Ala Asn Lys Pro Val Asp Pro Glu Pro Gly
 355 360 365
 Glu Ile Leu Ser Lys Lys Thr Ala Arg Arg Val Glu Pro Glu Ala Val
 370 375 380
 Leu Glu Ala Leu Gln Asn Gly Thr Thr Thr Gln Pro Glu Val Glu Ala
 385 390 395 400
 Ala Pro Pro Thr Ala Asn Phe Ala Gln Glu Phe Pro Ala Pro Gln Ala
 405 410 415
 Asn Pro Glu Asp Tyr Ser Asp Gln His Arg Glu Asn Pro Tyr Gly Asn
 420 425 430

<210> 185
 <211> 1170
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101) ..(1147)
 <223> RXA00115

<400> 185
 tggattctcg agtctgtaca cccttgatca aagcccgagt gttccgtaga ttaacttgt 60
 cgtatattgt gacctacacc ccatactgtt aggagtttc atg ctc gac aat agt 115
 Met Leu Asp Asn Ser
 1 5

ttt tac acc gca gag gtt cag ggc cca tac gaa acc gct tcc att ggc 163
 Phe Tyr Thr Ala Glu Val Gln Gly Pro Tyr Glu Thr Ala Ser Ile Gly
 10 15 20

tgg aag tgg cag cat ggc gat gtc tct cgc cac acc ggc ggc gac ttg 931
 Trp Lys Trp Gln His Gly Asp Val Ser Arg His Thr Gly Gly Asp Leu
 265 270 275

gca gcg gct ctt ggc cga gtg aag gct aag acc ttc gtt atg ccc atc 979
 Ala Ala Ala Leu Gly Arg Val Lys Ala Lys Thr Phe Val Met Pro Ile
 280 285 290

agc gag gac atg ttc ttt cct gtt cgt gac tgt gcc gca gaa caa gca 1027
 Ser Glu Asp Met Phe Phe Pro Val Arg Asp Cys Ala Ala Glu Gln Ala
 295 300 305

ctc atc cca ggc agc gag ctt cga gtg atc gaa gac atc gcc ggt cac 1075
 Leu Ile Pro Gly Ser Glu Leu Arg Val Ile Glu Asp Ile Ala Gly His
 310 315 320 325

ctt ggg ctt ttt aac gtc tct gag aat tac atc cca cag atc gac aaa 1123
 Leu Gly Leu Phe Asn Val Ser Glu Asn Tyr Ile Pro Gln Ile Asp Lys
 330 335 340

aat ctg aaa gag ctg ttc gag agc taaacactga tgtcaaagag cct 1170
 Asn Leu Lys Glu Leu Phe Glu Ser
 345

<210> 186

<211> 349

<212> PRT

<213> Corynebacterium glutamicum

<400> 186

Met Leu Asp Asn Ser Phe Tyr Thr Ala Glu Val Gln Gly Pro Tyr Glu
 1 5 10 15

Thr Ala Ser Ile Gly Arg Leu Glu Leu Glu Gly Val Ile Glu
 20 25 30

Asp Cys Trp Leu Ala Tyr Ala Thr Ala Gly Thr Leu Asn Glu Asp Lys
 35 40 45

Ser Asn Ala Ile Leu Ile Pro Thr Trp Tyr Ser Gly Thr His Gln Thr
 50 55 60

Trp Phe Gln Gln Tyr Ile Gly Thr Asp His Ala Leu Asp Pro Ser Lys
 65 70 75 80

Tyr Phe Ile Ile Ser Ile Asn Gln Ile Gly Asn Gly Leu Ser Val Ser
 85 90 95

Pro Ala Asn Thr Ala Asp Asp Ser Ile Ser Met Ser Lys Phe Pro Asn
 100 105 110

Val Arg Ile Gly Asp Asp Val Val Ala Gln Asp Arg Leu Leu Arg Gln
 115 120 125

Glu Phe Gly Ile Thr Glu Leu Phe Ala Val Val Gly Gly Ser Met Gly
 130 135 140

Ala Gln Gln Thr Tyr Glu Trp Ile Val Arg Phe Pro Asp Gln Val His
 145 150 155 160

Arg Ala Ala Pro Ile Ala Gly Thr Ala Lys Asn Thr Pro His Asp Phe
 165 170 175

Ile Phe Thr Gln Thr Leu Asn Glu Thr Val Glu Ala Asp Pro Gly Phe
 180 185 190

Asn Gly Gly Glu Tyr Ser Ser His Glu Glu Val Ala Asp Gly Leu Arg
 195 200 205

Arg Gln Ser His Leu Trp Ala Ala Met Gly Phe Ser Thr Glu Phe Trp
 210 215 220

Lys Gln Glu Ala Trp Arg Arg Leu Gly Leu Glu Ser Lys Glu Ser Val
 225 230 235 240

Leu Ala Asp Phe Leu Asp Pro Leu Phe Met Ser Met Asp Pro Asn Thr
 245 250 255

Leu Leu Asn Asn Ala Trp Lys Trp Gln His Gly Asp Val Ser Arg His
 260 265 270

Thr Gly Asp Leu Ala Ala Leu Gly Arg Val Lys Ala Lys Thr
 275 280 285

Phe Val Met Pro Ile Ser Glu Asp Met Phe Phe Pro Val Arg Asp Cys
 290 295 300

Ala Ala Glu Gln Ala Leu Ile Pro Gly Ser Glu Leu Arg Val Ile Glu
 305 310 315 320

Asp Ile Ala Gly His Leu Gly Leu Phe Asn Val Ser Glu Asn Tyr Ile
 325 330 335

Pro Gln Ile Asp Lys Asn Leu Lys Glu Leu Phe Glu Ser
 340 345

<210> 187

<211> 1254

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1231)

<223> RXN00403

<400> 187

ttttcagac tcgtgagaat gcaaactaga ctagacagag ctgtccatat acactggacg 60

aagttttagt cttgtccacc cagaacaggc gtttatccc atg ccc acc ctc gcg 115
 Met Pro Thr Leu Ala
 1 5

cct tca ggt caa ctt gaa atc caa gcg atc ggt gat gtc tcc acc gaa 163
 Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly Asp Val Ser Thr Glu
 10 15 20

gcc gga gca atc att aca aac gct gaa atc gcc tat cac cgc tgg ggt		211
Ala Gly Ala Ile Ile Thr Asn Ala Glu Ile Ala Tyr His Arg Trp Gly		
25	30	35
gaa tac cgc gta gat aaa gaa gga cgc agc aat gtc gtt ctc atc gaa		259
Glu Tyr Arg Val Asp Lys Glu Gly Arg Ser Asn Val Val Leu Ile Glu		
40	45	50
cac gcc ctc act gga gat tcc aac gca gcc gat tgg tgg gct gac ttg		307
His Ala Leu Thr Gly Asp Ser Asn Ala Ala Asp Trp Trp Ala Asp Leu		
55	60	65
ctc ggt ccc ggc aaa gcc atc aac act gat att tac tgc gtg atc tgt		355
Leu Gly Pro Gly Lys Ala Ile Asn Thr Asp Ile Tyr Cys Val Ile Cys		
70	75	80
85		
acc aac gtc atc ggt ggt tgc aac ggt tcc acc gga cct ggc tcc atg		403
Thr Asn Val Ile Gly Gly Cys Asn Gly Ser Thr Gly Pro Gly Ser Met		
90	95	100
cat cca gat gga aat ttc tgg ggt aat cgc ttc ccc gcc acg tcc att		451
His Pro Asp Gly Asn Phe Trp Gly Asn Arg Phe Pro Ala Thr Ser Ile		
105	110	115
cgt gat cag gta aac gcc gaa aaa caa ttc ctc gac gca ctc ggc atc		499
Arg Asp Gln Val Asn Ala Glu Lys Gln Phe Leu Asp Ala Leu Gly Ile		
120	125	130
acc acg gtc gcc gca gta ctt ggt ggt tcc atg ggt ggt gcc cgc acc		547
Thr Thr Val Ala Ala Val Leu Gly Gly Ser Met Gly Gly Ala Arg Thr		
135	140	145
cta gag tgg gcc gca atg tac cca gaa act gtt ggc gca gct gct gtt		595
Leu Glu Trp Ala Ala Met Tyr Pro Glu Thr Val Gly Ala Ala Ala Val		
150	155	160
165		
ctt gca gtt tct gca cgc gcc agc gcc tgg caa atc ggc att caa tcc		643
Leu Ala Val Ser Ala Arg Ala Ser Ala Trp Gln Ile Gly Ile Gln Ser		
170	175	180
gcc caa att aag gcg att gaa aac gac cac cac tgg cac gaa ggc aac		691
Ala Gln Ile Lys Ala Ile Glu Asn Asp His His Trp His Glu Gly Asn		
185	190	195
tac tac gaa tcc ggc tgc aac cca gcc acc gga ctc ggc gcc gcc cga		739
Tyr Tyr Glu Ser Gly Cys Asn Pro Ala Thr Gly Leu Gly Ala Ala Arg		
200	205	210
cgc atc gcc cac ctc acc tac cgt ggc gaa cta gaa atc gac gaa cgc		787
Arg Ile Ala His Leu Thr Tyr Arg Gly Glu Leu Glu Ile Asp Glu Arg		
215	220	225
ttc ggc acc aaa gcc caa aag aac gaa aac cca ctc ggt ccc tac cgc		835
Phe Gly Thr Lys Ala Gln Lys Asn Glu Asn Pro Leu Gly Pro Tyr Arg		
230	235	240
245		
aag ccc gac cag cgc ttc gcc gtg gaa tcc tac ttg gac tac caa gca		883
Lys Pro Asp Gln Arg Phe Ala Val Glu Ser Tyr Leu Asp Tyr Gln Ala		
250	255	260

gac aag cta gta cag cgt ttc gac gcc ggc tcc tac gtc ttg ctc acc 931
 Asp Lys Leu Val Gln Arg Phe Asp Ala Gly Ser Tyr Val Leu Leu Thr
 265 270 275

gac gcc ctc aac cgc cac gac att ggt cgc gac cgc gga ggc ctc aac 979
 Asp Ala Leu Asn Arg His Asp Ile Gly Arg Asp Arg Gly Gly Leu Asn
 280 285 290

aag gca ctc gaa tcc atc aaa gtt cca gtc ctt gtc gca ggc gta gat
 1027
 Lys Ala Leu Glu Ser Ile Lys Val Pro Val Leu Val Ala Gly Val Asp
 295 300 305

acc gat att ttg tac ccc tac cac cag caa gaa cac ctc tcc aga aac
 1075
 Thr Asp Ile Leu Tyr Pro Tyr His Gln Gln Glu His Leu Ser Arg Asn
 310 315 320 325

ctg gga aat cta ctg gca atg gca aaa atc gta tcc cct gtc ggc cac
 1123
 Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val Ser Pro Val Gly His
 330 335 340

gat gct ttc ctc acc gaa agc cgc caa atg gat cgc atc gtg agg aac
 1171
 Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp Arg Ile Val Arg Asn
 345 350 355

ttc ttc agc ctc atc tcc cca gac gaa gac aac cct tcg acc tac atc
 1219
 Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn Pro Ser Thr Tyr Ile
 360 365 370

gag ttc tac atc taataggtat ttacgacaaa tag
 1254
 Glu Phe Tyr Ile
 375

<210> 188
<211> 377
<212> PRT
<213> Corynebacterium glutamicum

<400> 188
Met Pro Thr Leu Ala Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly
 1 5 10 15

Asp Val Ser Thr Glu Ala Gly Ala Ile Ile Thr Asn Ala Glu Ile Ala
 20 25 30

Tyr His Arg Trp Gly Glu Tyr Arg Val Asp Lys Glu Gly Arg Ser Asn
 35 40 45

Val Val Leu Ile Glu His Ala Leu Thr Gly Asp Ser Asn Ala Ala Asp
 50 55 60

Trp Trp Ala Asp Leu Leu Gly Pro Gly Lys Ala Ile Asn Thr Asp Ile
 65 70 75 80

Tyr Cys Val Ile Cys Thr Asn Val Ile Gly Gly Cys Asn Gly Ser Thr

85	90	95
Gly Pro Gly Ser Met His Pro Asp Gly Asn Phe Trp Gly Asn Arg Phe		
100	105	110
Pro Ala Thr Ser Ile Arg Asp Gln Val Asn Ala Glu Lys Gln Phe Leu		
115	120	125
Asp Ala Leu Gly Ile Thr Thr Val Ala Ala Val Leu Gly Gly Ser Met		
130	135	140
Gly Gly Ala Arg Thr Leu Glu Trp Ala Ala Met Tyr Pro Glu Thr Val		
145	150	155
Gly Ala Ala Ala Val Leu Ala Val Ser Ala Arg Ala Ser Ala Trp Gln		
165	170	175
Ile Gly Ile Gln Ser Ala Gln Ile Lys Ala Ile Glu Asn Asp His His		
180	185	190
Trp His Glu Gly Asn Tyr Tyr Glu Ser Gly Cys Asn Pro Ala Thr Gly		
195	200	205
Leu Gly Ala Ala Arg Arg Ile Ala His Leu Thr Tyr Arg Gly Glu Leu		
210	215	220
Glu Ile Asp Glu Arg Phe Gly Thr Lys Ala Gln Lys Asn Glu Asn Pro		
225	230	235
240		
Leu Gly Pro Tyr Arg Lys Pro Asp Gln Arg Phe Ala Val Glu Ser Tyr		
245	250	255
Leu Asp Tyr Gln Ala Asp Lys Leu Val Gln Arg Phe Asp Ala Gly Ser		
260	265	270
Tyr Val Leu Leu Thr Asp Ala Leu Asn Arg His Asp Ile Gly Arg Asp		
275	280	285
Arg Gly Gly Leu Asn Lys Ala Leu Glu Ser Ile Lys Val Pro Val Leu		
290	295	300
Val Ala Gly Val Asp Thr Asp Ile Leu Tyr Pro Tyr His Gln Gln Glu		
305	310	315
320		
His Leu Ser Arg Asn Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val		
325	330	335
Ser Pro Val Gly His Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp		
340	345	350
Arg Ile Val Arg Asn Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn		
355	360	365
Pro Ser Thr Tyr Ile Glu Phe Tyr Ile		
370	375	

<210> 189

<211> 1210

<212> DNA

<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1210)
<223> FRXA00403

<400> 189
ttttcagac tcgtgagaat gcaaactaga ctagacagag ctgtccatat acactggacg 60
aagttttagt cttgtccacc cagaacaggc ggtttatatttc atg ccc acc ctc gcg 115
Met Pro Thr Leu Ala
1 5

cct tca ggt caa ctt gaa atc caa gcg atc ggt gat gtc tcc acc gaa 163
Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly Asp Val Ser Thr Glu
10 15 20

gcc gga gca atc att aca aac gct gaa atc gcc tat cac cgc tgg ggt 211
Ala Gly Ala Ile Ile Thr Asn Ala Glu Ile Ala Tyr His Arg Trp Gly
25 30 35

gaa tac cgc gta gat aaa gaa gga cgc agc aat gtc gtt ctc atc gaa 259
Glu Tyr Arg Val Asp Lys Glu Gly Arg Ser Asn Val Val Leu Ile Glu
40 45 50

cac gcc ctc act gga gat tcc aac gca gcc gat tgg tgg gct gac ttg 307
His Ala Leu Thr Gly Asp Ser Asn Ala Ala Asp Trp Trp Ala Asp Leu
55 60 65

ctc ggt ccc ggc aaa gcc atc aac act gat att tac tgc gtg atc tgt 355
Leu Gly Pro Gly Lys Ala Ile Asn Thr Asp Ile Tyr Cys Val Ile Cys
70 75 80 85

acc aac gtc atc ggt ggt tgc aac ggt tcc acc gga cct ggc tcc atg 403
Thr Asn Val Ile Gly Gly Cys Asn Gly Ser Thr Gly Pro Gly Ser Met
90 95 100

cat cca gat gga aat ttc tgg ggt aat cgc ttc ccc gcc acg tcc att 451
His Pro Asp Gly Asn Phe Trp Gly Asn Arg Phe Pro Ala Thr Ser Ile
105 110 115

cgt gat cag gta aac gcc gaa aaa caa ttc ctc gac gca ctc ggc atc 499
Arg Asp Gln Val Asn Ala Glu Lys Gln Phe Leu Asp Ala Leu Gly Ile
120 125 130

acc acg gtc gcc gca gta ctt ggt ggt tcc atg ggt ggt gcc cgc acc 547
Thr Thr Val Ala Ala Val Leu Gly Gly Ser Met Gly Gly Ala Arg Thr
135 140 145

cta gag tgg gcc gca atg tac cca gaa act gtt ggc gca gct gct gtt 595
Leu Glu Trp Ala Ala Met Tyr Pro Glu Thr Val Gly Ala Ala Ala Val
150 155 160 165

ctt gca gtt tct gca cgc gcc agc gcc tgg caa atc ggc att caa tcc 643
Leu Ala Val Ser Ala Arg Ala Ser Ala Trp Gln Ile Gly Ile Gln Ser
170 175 180

gcc caa att aag gcg att gaa aac gac cac cac tgg cac gaa ggc aac 691
Ala Gln Ile Lys Ala Ile Glu Asn Asp His His Trp His Glu Gly Asn
185 190 195

tac tac gaa tcc ggc tgc aac cca gcc acc gga ctc ggc gcc gcc cga 739
 Tyr Tyr Glu Ser Gly Cys Asn Pro Ala Thr Gly Leu Gly Ala Ala Arg
 200 205 210

cgc atc gcc cac ctc acc tac cgt ggc gaa cta gaa atc gac gaa cgc 787
 Arg Ile Ala His Leu Thr Tyr Arg Gly Glu Leu Glu Ile Asp Glu Arg
 215 220 225

ttc ggc acc aaa gcc caa aag aac gaa aac cca ctc ggt ccc tac cgc 835
 Phe Gly Thr Lys Ala Gln Lys Asn Glu Asn Pro Leu Gly Pro Tyr Arg
 230 235 240 245

aag ccc gac cag cgc ttc gcc gtg gaa tcc tac ttg gac tac caa gca 883
 Lys Pro Asp Gln Arg Phe Ala Val Glu Ser Tyr Leu Asp Tyr Gln Ala
 250 255 260

gac aag cta gta cag cgt ttc gac gcc ggc tcc tac gtc ttg ctc acc 931
 Asp Lys Leu Val Gln Arg Phe Asp Ala Gly Ser Tyr Val Leu Leu Thr
 265 270 275

gac gcc ctc aac cgc cac gac att ggt cgc gac cgc gga ggc ctc aac 979
 Asp Ala Leu Asn Arg His Asp Ile Gly Arg Asp Arg Gly Gly Leu Asn
 280 285 290

aag gca ctc gaa tcc atc aaa gtt cca gtc ctt gtc gca ggc gta gat
 1027
 Lys Ala Leu Glu Ser Ile Lys Val Pro Val Leu Val Ala Gly Val Asp
 295 300 305

acc gat att ttg tac ccc tac cac cag caa gaa cac ctc tcc aga aac
 1075
 Thr Asp Ile Leu Tyr Pro Tyr His Gln Gln Glu His Leu Ser Arg Asn
 310 315 320 325

ctg gga aat cta ctg gca atg gca aaa atc gta tcc cct gtc ggc cac
 1123
 Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val Ser Pro Val Gly His
 330 335 340

gat gct ttc ctc acc gaa agc cgc caa atg gat cgc atc gtg agg aac
 1171
 Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp Arg Ile Val Arg Asn
 345 350 355

ttc ttc agc ctc atc tcc cca gac gaa gac aac cct tcg
 1210
 Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn Pro Ser
 360 365 370

<210> 190
 <211> 370
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 190
 Met Pro Thr Leu Ala Pro Ser Gly Gln Leu Glu Ile Gln Ala Ile Gly
 1 5 10 15
 Asp Val Ser Thr Glu Ala Gly Ala Ile Ile Thr Asn Ala Glu Ile Ala
 20 25 30

Tyr His Arg Trp Gly Glu Tyr Arg Val Asp Lys Glu Gly Arg Ser Asn
 35 40 45

 Val Val Leu Ile Glu His Ala Leu Thr Gly Asp Ser Asn Ala Ala Asp
 50 55 60

 Trp Trp Ala Asp Leu Leu Gly Pro Gly Lys Ala Ile Asn Thr Asp Ile
 65 70 75 80

 Tyr Cys Val Ile Cys Thr Asn Val Ile Gly Gly Cys Asn Gly Ser Thr
 85 90 95

 Gly Pro Gly Ser Met His Pro Asp Gly Asn Phe Trp Gly Asn Arg Phe
 100 105 110

 Pro Ala Thr Ser Ile Arg Asp Gln Val Asn Ala Glu Lys Gln Phe Leu
 115 120 125

 Asp Ala Leu Gly Ile Thr Thr Val Ala Ala Val Leu Gly Gly Ser Met
 130 135 140

 Gly Gly Ala Arg Thr Leu Glu Trp Ala Ala Met Tyr Pro Glu Thr Val
 145 150 155 160

 Gly Ala Ala Ala Val Leu Ala Val Ser Ala Arg Ala Ser Ala Trp Gln
 165 170 175

 Ile Gly Ile Gln Ser Ala Gln Ile Lys Ala Ile Glu Asn Asp His His
 180 185 190

 Trp His Glu Gly Asn Tyr Tyr Glu Ser Gly Cys Asn Pro Ala Thr Gly
 195 200 205

 Leu Gly Ala Ala Arg Arg Ile Ala His Leu Thr Tyr Arg Gly Glu Leu
 210 215 220

 Glu Ile Asp Glu Arg Phe Gly Thr Lys Ala Gln Lys Asn Glu Asn Pro
 225 230 235 240

 Leu Gly Pro Tyr Arg Lys Pro Asp Gln Arg Phe Ala Val Glu Ser Tyr
 245 250 255

 Leu Asp Tyr Gln Ala Asp Lys Leu Val Gln Arg Phe Asp Ala Gly Ser
 260 265 270

 Tyr Val Leu Leu Thr Asp Ala Leu Asn Arg His Asp Ile Gly Arg Asp
 275 280 285

 Arg Gly Gly Leu Asn Lys Ala Leu Glu Ser Ile Lys Val Pro Val Leu
 290 295 300

 Val Ala Gly Val Asp Thr Asp Ile Leu Tyr Pro Tyr His Gln Gln Glu
 305 310 315 320

 His Leu Ser Arg Asn Leu Gly Asn Leu Leu Ala Met Ala Lys Ile Val
 325 330 335

 Ser Pro Val Gly His Asp Ala Phe Leu Thr Glu Ser Arg Gln Met Asp
 340 345 350

Arg Ile Val Arg Asn Phe Phe Ser Leu Ile Ser Pro Asp Glu Asp Asn
 355 360 365

Pro Ser
 370

<210> 191
 <211> 687
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(664)
 <223> RXS03158

<400> 191
 caaagctcac cgaaggcacc aacgccaagt tggttgttga caaacaccttg gcatccccat 60

acctgcagca gccactaaaa ctcggcgac acgcaagtcc ttg cac tcc acc acc 115
 Leu His Ser Thr Thr
 1 5

aag tac atc gaa gga cac tcc gac gtt gtt ggc ggc ctt gtg ggt acc 163
 Lys Tyr Ile Glu Gly His Ser Asp Val Val Gly Gly Leu Val Gly Thr
 10 15 20

aac gac cag gaa atg gac gaa ctg ctg ttc atg cag ggc ggc atc 211
 Asn Asp Gln Glu Met Asp Glu Glu Leu Leu Phe Met Gln Gly Gly Ile
 25 30 35

gga ccg atc cca tca gtt ttc gat gca tac ctg acc gcc cgt ggc ctc 259
 Gly Pro Ile Pro Ser Val Phe Asp Ala Tyr Leu Thr Ala Arg Gly Leu
 40 45 50

aag acc ctt gca gtg cgc atg gat cgc cac tgc gac aac gca gaa aag 307
 Lys Thr Leu Ala Val Arg Met Asp Arg His Cys Asp Asn Ala Glu Lys
 55 60 65

atc gcg gaa ttc ctg gac tcc cgc cca gag gtc tcc acc gtg ctc tac 355
 Ile Ala Glu Phe Leu Asp Ser Arg Pro Glu Val Ser Thr Val Leu Tyr
 70 75 80 85

cca ggt ctg aag aac cac cca ggc cac gaa gtc gca gcg aag cag atg 403
 Pro Gly Leu Lys Asn His Pro Gly His Glu Val Ala Ala Lys Gln Met
 90 95 100

aag cgc ttc ggc ggc atg atc tcc gtc cgt ttc gca ggc ggc gaa gaa 451
 Lys Arg Phe Gly Gly Met Ile Ser Val Arg Phe Ala Gly Gly Glu Glu
 105 110 115

gca gct aag aag ttc tgt acc tcc acc aaa ctg atc tgt ctg gcc gag 499
 Ala Ala Lys Lys Phe Cys Thr Ser Thr Lys Leu Ile Cys Leu Ala Glu
 120 125 130

tcc ctc ggt ggc gtg gaa tcc ctc ctg gag cac cca gca acc atg acc 547
 Ser Leu Gly Gly Val Glu Ser Leu Leu Glu His Pro Ala Thr Met Thr
 135 140 145

cac cag tca gct gcc ggc tct cag ctc gag gtt ccc cgc gac ctc gtg 595

His Gln Ser Ala Ala Gly Ser Gln Leu Glu Val Pro Arg Asp Leu Val			
150	155	160	165
cgc atc tcc att ggt att gaa gac att gaa gac ctg ctc gca gat gtc			643
Arg Ile Ser Ile Gly Ile Glu Asp Ile Glu Asp Leu Leu Ala Asp Val			
170		175	180
gag cag gcc ctc aat aac ctt tagaaaactat ttggcgccaa gca			687
Glu Gln Ala Leu Asn Asn Leu			
185			
<210> 192			
<211> 188			
<212> PRT			
<213> Corynebacterium glutamicum			
<400> 192			
Leu His Ser Thr Thr Lys Tyr Ile Glu Gly His Ser Asp Val Val Gly			
1	5	10	15
Gly Leu Val Gly Thr Asn Asp Gln Glu Met Asp Glu Glu Leu Leu Phe			
20	25	30	
Met Gln Gly Gly Ile Gly Pro Ile Pro Ser Val Phe Asp Ala Tyr Leu			
35	40	45	
Thr Ala Arg Gly Leu Lys Thr Leu Ala Val Arg Met Asp Arg His Cys			
50	55	60	
Asp Asn Ala Glu Lys Ile Ala Glu Phe Leu Asp Ser Arg Pro Glu Val			
65	70	75	80
Ser Thr Val Leu Tyr Pro Gly Leu Lys Asn His Pro Gly His Glu Val			
85	90	95	
Ala Ala Lys Gln Met Lys Arg Phe Gly Gly Met Ile Ser Val Arg Phe			
100	105	110	
Ala Gly Gly Glu Glu Ala Ala Lys Lys Phe Cys Thr Ser Thr Lys Leu			
115	120	125	
Ile Cys Leu Ala Glu Ser Leu Gly Gly Val Glu Ser Leu Leu Glu His			
130	135	140	
Pro Ala Thr Met Thr His Gln Ser Ala Ala Gly Ser Gln Leu Glu Val			
145	150	155	160
Pro Arg Asp Leu Val Arg Ile Ser Ile Gly Ile Glu Asp Ile Glu Asp			
165	170	175	
Leu Leu Ala Asp Val Glu Gln Ala Leu Asn Asn Leu			
180	185		

<210> 193			
<211> 617			
<212> DNA			
<213> Corynebacterium glutamicum			
<220>			

<221> CDS
<222> (1)..(594)
<223> FRXA00254

<400> 193

cag cca cta aaa ctc ggc gca cac gca gtc ttg cac tcc acc acc aag	48
Gln Pro Leu Lys Leu Gly Ala His Ala Val Leu His Ser Thr Thr Lys	
1 5 10 15	

tac atc gga gga cac tcc gac gtt gtt ggc ggc ctt gtg gtt acc aac

Tyr Ile Gly Gly His Ser Asp Val Val Gly Gly Leu Val Val Thr Asn	96
20 25 30	

gac cag gaa atg gac gaa gaa ctg ctg ttc atg cag ggc ggc atc gga

Asp Gln Glu Met Asp Glu Leu Leu Phe Met Gln Gly Gly Ile Gly	144
35 40 45	

ccg atc cca tca gtt ttc gat gca tac ctg acc gcc cgt ggc ctc aag

Pro Ile Pro Ser Val Phe Asp Ala Tyr Leu Thr Ala Arg Gly Leu Lys	192
50 55 60	

acc ctt gca gtg cgc atg gat cgc cac tgc gac aac gca gaa aag atc

Thr Leu Ala Val Arg Met Asp Arg His Cys Asp Asn Ala Glu Lys Ile	240
65 70 75 80	

gcg gaa ttc ctg gac tcc cgc cca gag gtc tcc acc gtg ctc tac cca

Ala Glu Phe Leu Asp Ser Arg Pro Glu Val Ser Thr Val Leu Tyr Pro	288
85 90 95	

ggc ctg aag aac cac cca ggc cac gaa gtc gca gcg aag cag atg aag

Gly Leu Lys Asn His Pro Gly His Glu Val Ala Ala Lys Gln Met Lys	336
100 105 110	

ccg ttc ggc ggc atg atc tcc gtc cgt ttc gca ggc ggc gaa gaa gca

Arg Phe Gly Gly Met Ile Ser Val Arg Phe Ala Gly Gly Glu Glu Ala	384
115 120 125	

gct aag aag ttc tgt acc tcc acc aaa ctg atc tgt ctg gcc gag tcc

Ala Lys Lys Phe Cys Thr Ser Thr Lys Leu Ile Cys Leu Ala Glu Ser	432
130 135 140	

ctc ggt ggc gtg gaa tcc ctc ctg gag cac cca gca acc atg acc cac

Leu Gly Gly Val Glu Ser Leu Leu Glu His Pro Ala Thr Met Thr His	480
145 150 155 160	

cag tca gct gcc ggc tct cag ctc gag gtt ccc cgc gac ctc gtg cgc

Gln Ser Ala Ala Gly Ser Gln Leu Glu Val Pro Arg Asp Leu Val Arg	528
165 170 175	

atc tcc att ggt att gaa gac att gaa gac ctg ctc gca gat gtc gag

Ile Ser Ile Gly Ile Glu Asp Ile Glu Asp Leu Leu Ala Asp Val Glu	576
180 185 190	

cag gcc ctc aat aac ctt tagaaaactat ttggcggcaa gca

Gln Ala Leu Asn Asn Leu	617
195	

<210> 194
<211> 198
<212> PRT

<213> *Corynebacterium glutamicum*

<400> 194

Gln Pro Leu Lys Leu Gly Ala His Ala Val Leu His Ser Thr Thr Lys
 1 5 10 15

Tyr Ile Gly Gly His Ser Asp Val Val Gly Gly Leu Val Val Thr Asn
20 25 30

Asp Gln Glu Met Asp Glu Glu Leu Leu Phe Met Gln Gly Gly Ile Gly
35 40 45

Pro Ile Pro Ser Val Phe Asp Ala Tyr Leu Thr Ala Arg Gly Leu Lys
50 55 60

Thr Leu Ala Val Arg Met Asp Arg His Cys Asp Asn Ala Glu Lys Ile
65 70 75 80

Ala Glu Phe Leu Asp Ser Arg Pro Glu Val Ser Thr Val Leu Tyr Pro
85 90 95

Gly Leu Lys Asn His Pro Gly His Glu Val Ala Ala Lys Gln Met Lys
100 105 110

Arg Phe Gly Gly Met Ile Ser Val Arg Phe Ala GlY Gly Glu Glu Ala
115 120 125

Ala Lys Lys Phe Cys Thr Ser Thr Lys Leu Ile Cys Leu Ala Glu Ser
130 135 140

Leu Gly Gly Val Glu Ser Leu Leu Glu His Pro Ala Thr Met Thr His
145 150 155 160

Gln Ser Ala Ala Gly Ser Gln Leu Glu Val Pro Arg Asp Leu Val Arg
165 170 175

Tie Ser Tie Gly Tie Glu Asp Tie Glu Asp Leu Leu Ala Asp Val Glu
180 185 190

Gin Ara Bed Ash Ash Bed
195

<210> 195

<211> 1170
<212> DNA

<212> DNA
<213> Corv

<13> *Corynebacterium glutamicum*

220

221

<221> CDS

<222> RYA02532

22232 RRAUZ332

400 195

gatgaatccat tccccccat cgttacatccat taacccctggcg tggcggtttcac ccacagtcac 60

tggtgcggccgg ccagaacttcc tggtgccggc atg aac cca cct att 115
Met Asn Pro Pro Ile
1 5

acq ttq tcc aqc act tat gtt cat qat tca gaa aaa gct tat qqq cqg 163

Thr Leu Ser Ser Thr Tyr Val His Asp Ser Glu Lys Ala Tyr Gly Arg		
10	15	20
gat ggc aat gat gga tgg ggt gca ttt gag gct gcc atg gga act cta		211
Asp Gly Asn Asp Gly Trp Gly Ala Phe Glu Ala Ala Met Gly Thr Leu		
25	30	35
gat ggt ggg ttc gcg gta tct tat tct tca ggt ttg gca gcg gca acg		259
Asp Gly Gly Phe Ala Val Ser Tyr Ser Ser Gly Leu Ala Ala Ala Thr		
40	45	50
tcg att gct gat ttg gtt cct act ggt ggc aca gtt gtt tta cct aaa		307
Ser Ile Ala Asp Leu Val Pro Thr Gly Gly Thr Val Val Leu Pro Lys		
55	60	65
gct gcc tat tat ggc gtg acc aat att ttc gcc agg atg gaa gcc cgc		355
Ala Ala Tyr Tyr Gly Val Thr Asn Ile Phe Ala Arg Met Glu Ala Arg		
70	75	80
85		
gga agg ctg aag gtt cga act gtt gat gca gac aat acc gaa gaa gtg		403
Gly Arg Leu Lys Val Arg Thr Val Asp Ala Asp Asn Thr Glu Glu Val		
90	95	100
att gct gctcaa ggt gca gat gtg gtg tgg gtg gaa tcg atc gct		451
Ile Ala Ala Ala Gln Gly Ala Asp Val Val Trp Val Glu Ser Ile Ala		
105	110	115
aat ccg acg atg gtg gta gct gat atc cct gca ata gtc gac ggt gtg		499
Asn Pro Thr Met Val Val Ala Asp Ile Pro Ala Ile Val Asp Gly Val		
120	125	130
cgt ggg ctt gga gtt ttg act gtc gtt gac gcg act ttc gca acg cca		547
Arg Gly Leu Gly Val Leu Thr Val Val Asp Ala Thr Phe Ala Thr Pro		
135	140	145
ctt cgt caa cgt cca ttg gaa ctt ggt gct gat att gtg ctt tac tcg		595
Leu Arg Gln Arg Pro Leu Glu Leu Gly Ala Asp Ile Val Leu Tyr Ser		
150	155	160
165		
gca acc aaa ctt atc ggt gga cac tct gat ctt ctt ctt gga gtc gca		643
Ala Thr Lys Leu Ile Gly Gly His Ser Asp Leu Leu Leu Gly Val Ala		
170	175	180
gtg tgc aag tct gag cac cat gcg cag ttt ctt gcc act cac cgt cat		691
Val Cys Lys Ser Glu His His Ala Gln Phe Leu Ala Thr His Arg His		
185	190	195
gat cat ggt tca gtg ccg gga ggt ctt gaa gcg ttt ctt gct ctc cgt		739
Asp His Gly Ser Val Pro Gly Gly Leu Glu Ala Phe Leu Ala Leu Arg		
200	205	210
gga ttg tat tcc ttg gcg gtg cgt ctt gat cga gca gaa tcc aac gca		787
Gly Leu Tyr Ser Leu Ala Val Arg Leu Asp Arg Ala Glu Ser Asn Ala		
215	220	225
gca gaa ctt tcg cgg cga ctt aac gcg cat cct tcg gtt acc cgc gtc		835
Ala Glu Leu Ser Arg Arg Leu Asn Ala His Pro Ser Val Thr Arg Val		
230	235	240
245		
aat tat cca gga ctt cct gat gat ccc caa cat gaa aaa gcc gtg cga		883
Asn Tyr Pro Gly Leu Pro Asp Asp Pro Gin His Glu Lys Ala Val Arg		

250

255

260

gtc cta ccc tct gga tgt gga aac atg ttg tca ttt gag ctt gat gca 931
 Val Leu Pro Ser Gly Cys Gly Asn Met Leu Ser Phe Glu Leu Asp Ala
 265 270 275

aca cct gaa cga act gat gag att ctc gaa agc ctg tca ctt tta acc 979
 Thr Pro Glu Arg Thr Asp Glu Ile Leu Glu Ser Leu Ser Leu Thr
 280 285 290

cac gcg acc agt tgg gga ggt gtg gaa aca gcc att gaa cgt cgc acc
 1027
 His Ala Thr Ser Trp Gly Gly Val Glu Thr Ala Ile Glu Arg Arg Thr
 295 300 305

agg cgg gat gct gaa gtg gtg gca gaa gta ccg atg act ctt tgc cgc
 1075
 Arg Arg Asp Ala Glu Val Val Ala Glu Val Pro Met Thr Leu Cys Arg
 310 315 320 325

gtt tcc gta gga att gaa gac gtt gaa gat cta tgg gaa gac ctc aac
 1123
 Val Ser Val Gly Ile Glu Asp Val Glu Asp Leu Trp Glu Asp Leu Asn
 330 335 340

gcc tca atc gac aaa gtt ctg ggt tagaactcgt agccagtaac cag
 1170
 Ala Ser Ile Asp Lys Val Leu Gly
 345

<210> 196

<211> 349

<212> PRT

<213> Corynebacterium glutamicum

<400> 196

Met Asn Pro Pro Ile Thr Leu Ser Ser Thr Tyr Val His Asp Ser Glu
 1 5 10 15

Lys Ala Tyr Gly Arg Asp Gly Asn Asp Gly Trp Gly Ala Phe Glu Ala
 20 25 30

Ala Met Gly Thr Leu Asp Gly Gly Phe Ala Val Ser Tyr Ser Ser Gly
 35 40 45

Leu Ala Ala Ala Thr Ser Ile Ala Asp Leu Val Pro Thr Gly Gly Thr
 50 55 60

Val Val Leu Pro Lys Ala Ala Tyr Tyr Gly Val Thr Asn Ile Phe Ala
 65 70 75 80

Arg Met Glu Ala Arg Gly Arg Leu Lys Val Arg Thr Val Asp Ala Asp
 85 90 95

Asn Thr Glu Glu Val Ile Ala Ala Gln Gly Ala Asp Val Val Trp
 100 105 110

Val Glu Ser Ile Ala Asn Pro Thr Met Val Val Ala Asp Ile Pro Ala
 115 120 125

Ile Val Asp Gly Val Arg Gly Leu Gly Val Leu Thr Val Val Asp Ala
 130 135 140

Thr Phe Ala Thr Pro Leu Arg Gln Arg Pro Leu Glu Leu Gly Ala Asp
 145 150 155 160

Ile Val Leu Tyr Ser Ala Thr Lys Leu Ile Gly Gly His Ser Asp Leu
 165 170 175

Leu Leu Gly Val Ala Val Cys Lys Ser Glu His His Ala Gln Phe Leu
 180 185 190

Ala Thr His Arg His Asp His Gly Ser Val Pro Gly Gly Leu Glu Ala
 195 200 205

Phe Leu Ala Leu Arg Gly Leu Tyr Ser Leu Ala Val Arg Leu Asp Arg
 210 215 220

Ala Glu Ser Asn Ala Ala Glu Leu Ser Arg Arg Leu Asn Ala His Pro
 225 230 235 240

Ser Val Thr Arg Val Asn Tyr Pro Gly Leu Pro Asp Asp Pro Gln His
 245 250 255

Glu Lys Ala Val Arg Val Leu Pro Ser Gly Cys Gly Asn Met Leu Ser
 260 265 270

Phe Glu Leu Asp Ala Thr Pro Glu Arg Thr Asp Glu Ile Leu Glu Ser
 275 280 285

Leu Ser Leu Leu Thr His Ala Thr Ser Trp Gly Gly Val Glu Thr Ala
 290 295 300

Ile Glu Arg Arg Thr Arg Arg Asp Ala Glu Val Val Ala Glu Val Pro
 305 310 315 320

Met Thr Leu Cys Arg Val Ser Val Gly Ile Glu Asp Val Glu Asp Leu
 325 330 335

Trp Glu Asp Leu Asn Ala Ser Ile Asp Lys Val Leu Gly
 340 345

<210> 197

<211> 861

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(838)

<223> RXS03159

<400> 197

aggggctagt tttacacaaa agtggacagc ttggcttatac attgccagaa gaccggcttc 60

tttagggcca tagaattctg attacaggag ttgtatctacc ttg tct ttt gac cca 115
 Leu Ser Phe Asp Pro
 1 5

aac acc cag ggt ttc tcc act gca tcg att cac gct ggg tat gag cca 163

Asn Thr Gln Gly Phe Ser Thr Ala Ser Ile His Ala Gly Tyr Glu Pro			
10	15	20	
gac gac tac tac ggt tcg att aac acc cca atc tat gcc tcc acc acc			211
Asp Asp Tyr Tyr Gly Ser Ile Asn Thr Pro Ile Tyr Ala Ser Thr Thr			
25	30	35	
ttc gcg cag aac gct cca aac gaa ctg cgc aaa ggc tac gag tac acc			259
Phe Ala Gln Asn Ala Pro Asn Glu Leu Arg Lys Gly Tyr Glu Tyr Thr			
40	45	50	
cgt gtg ggc aac ccc acc atc gtg gca tta gag cag acc gtc gca gca			307
Arg Val Gly Asn Pro Thr Ile Val Ala Leu Glu Gln Thr Val Ala Ala			
55	60	65	
ctc gaa ggc gca aag tat ggc cgc gca ttc tcc tcc ggc atg gct gca			355
Leu Glu Gly Ala Lys Tyr Gly Arg Ala Phe Ser Ser Gly Met Ala Ala			
70	75	80	85
acc gac atc ctg ttc cgc atc atc ctc aag ccg ggc gat cac atc gtc			403
Thr Asp Ile Leu Phe Arg Ile Ile Leu Lys Pro Gly Asp His Ile Val			
90	95	100	
ctc ggc aac gat gct tac ggc gga acc tac cgc ctg atc gac acc gta			451
Leu Gly Asn Asp Ala Tyr Gly Thr Tyr Arg Leu Ile Asp Thr Val			
105	110	115	
ttc acc gca tgg ggc gtc gaa tac acc gtt gat acc tcc gtc gtg			499
Phe Thr Ala Trp Gly Val Glu Tyr Thr Val Val Asp Thr Ser Val Val			
120	125	130	
gaa gag gtc aag gca gcg atc aag gac aac acc aag ctg atc tgg gtg			547
Glu Glu Val Lys Ala Ala Ile Lys Asp Asn Thr Lys Leu Ile Trp Val			
135	140	145	
gaa acc cca acc aac cca gca ctt ggc atc acc gac atc gaa gca gta			595
Glu Thr Pro Thr Asn Pro Ala Leu Gly Ile Thr Asp Ile Glu Ala Val			
150	155	160	165
gca aag ctc acc gaa ggc acc aac gcc aag ttg gtt gac aac acc			643
Ala Lys Leu Thr Glu Gly Thr Asn Ala Lys Leu Val Val Asp Asn Thr			
170	175	180	
ttg gca tcc cca tac ctg cag cag cca cta aaa ctc ggc gca cac gca			691
Leu Ala Ser Pro Tyr Leu Gln Gln Pro Leu Lys Leu Gly Ala His Ala			
185	190	195	
agt cct tgc act cca cca agt aca tcg aag gac act ccg acg ttg			739
Ser Pro Cys Thr Pro Pro Ser Thr Ser Lys Asp Thr Pro Thr Leu			
200	205	210	
ttg gcg gcc ttg tgg gta cca acg acc agg aaa ttg acg aag aac tgc			787
Leu Ala Ala Leu Trp Val Pro Thr Thr Arg Lys Trp Thr Lys Asn Cys			
215	220	225	
tgt tca tgc agg gcg gca tcg gac cga tcc cat cag ttt tcg atg cat			835
Cys Ser Cys Arg Ala Ala Ser Asp Arg Ser His Gln Phe Ser Met His			
230	235	240	245
acc tgaccgccccg tggcctcaag acc			861
Thr			

<210> 198
 <211> 246
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 198
 Leu Ser Phe Asp Pro Asn Thr Gln Gly Phe Ser Thr Ala Ser Ile His
 1 5 10 15

Ala Gly Tyr Glu Pro Asp Asp Tyr Tyr Gly Ser Ile Asn Thr Pro Ile
 20 25 30

Tyr Ala Ser Thr Thr Phe Ala Gln Asn Ala Pro Asn Glu Leu Arg Lys
 35 40 45

Gly Tyr Glu Tyr Thr Arg Val Gly Asn Pro Thr Ile Val Ala Leu Glu
 50 55 60

Gln Thr Val Ala Ala Leu Glu Gly Ala Lys Tyr Gly Arg Ala Phe Ser
 65 70 75 80

Ser Gly Met Ala Ala Thr Asp Ile Leu Phe Arg Ile Ile Leu Lys Pro
 85 90 95

Gly Asp His Ile Val Leu Gly Asn Asp Ala Tyr Gly Thr Tyr Arg
 100 105 110

Leu Ile Asp Thr Val Phe Thr Ala Trp Gly Val Glu Tyr Thr Val Val
 115 120 125

Asp Thr Ser Val Val Glu Glu Val Lys Ala Ala Ile Lys Asp Asn Thr
 130 135 140

Lys Leu Ile Trp Val Glu Thr Pro Thr Asn Pro Ala Leu Gly Ile Thr
 145 150 155 160

Asp Ile Glu Ala Val Ala Lys Leu Thr Glu Gly Thr Asn Ala Lys Leu
 165 170 175

Val Val Asp Asn Thr Leu Ala Ser Pro Tyr Leu Gln Gln Pro Leu Lys
 180 185 190

Leu Gly Ala His Ala Ser Pro Cys Thr Pro Pro Pro Ser Thr Ser Lys
 195 200 205

Asp Thr Pro Thr Leu Leu Ala Ala Leu Trp Val Pro Thr Thr Arg Lys
 210 215 220

Trp Thr Lys Asn Cys Cys Ser Cys Arg Ala Ala Ser Asp Arg Ser His
 225 230 235 240

Gln Phe Ser Met His Thr
 245

<210> 199
 <211> 703
 <212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(703)

<223> FRXA02768

<400> 199

aggggctagt tttacacaaa agtggacagc ttggctatc attgccagaa gaccggtcct 60

tttagggcca tagaattctg attacaggag ttgatctacc ttg tct ttt gac cca	115
Leu Ser Phe Asp Pro	
1	5

aac acc cag ggt ttc tcc act gca tcg att cac gct ggg tat gag cca	163
Asn Thr Gln Gly Phe Ser Thr Ala Ser Ile His Ala Gly Tyr Glu Pro	
10	20

gac gac tac tac ggt tcg att aac acc cca atc tat gcc tcc acc acc	211
Asp Asp Tyr Tyr Gly Ser Ile Asn Thr Pro Ile Tyr Ala Ser Thr Thr	
25	35

ttc gcg cag aac gct cca aac gaa ctg cgc aaa ggc tac gag tac acc	259
Phe Ala Gln Asn Ala Pro Asn Glu Leu Arg Lys Gly Tyr Glu Tyr Thr	
40	50

cgt gtg ggc aac ccc acc atc gtg gca tta gag cag acc gtc gca gca	307
Arg Val Gly Asn Pro Thr Ile Val Ala Leu Glu Gln Thr Val Ala Ala	
55	65

ctc gaa ggc gca aag tat ggc cgc gca ttc tcc tcc ggc atg gct gca	355
Leu Glu Gly Ala Lys Tyr Gly Arg Ala Phe Ser Ser Gly Met Ala Ala	
70	85

acc gac atc ctg ttc cgc atc atc ctc aag ccg ggc gat cac atc gtc	403
Thr Asp Ile Leu Phe Arg Ile Ile Leu Lys Pro Gly Asp His Ile Val	
90	100

ctc ggc aac gat gct tac ggc gga acc tac cgc ctg atc gac acc gta	451
Leu Gly Asn Asp Ala Tyr Gly Thr Arg Leu Ile Asp Thr Val	
105	115

ttc acc gca tgg ggc gtc gaa tac acc gtt gat acc tcc gtc gtg	499
Phe Thr Ala Trp Gly Val Glu Tyr Thr Val Val Asp Thr Ser Val Val	
120	130

gaa gag gtc aag gca gcg atc aag gac aac acc aag gct gat ctt ggt	547
Glu Glu Val Lys Ala Ala Ile Lys Asp Asn Thr Lys Ala Asp Leu Gly	
135	145

gga aac ccc aac caa ccc agc act ttg gca tta ccc gac atc gaa gca	595
Gly Asn Pro Asn Gln Pro Ser Thr Leu Ala Leu Pro Asp Ile Glu Ala	
150	165

gtn tgc aaa act tca ccc gaa agg cac caa ccc caa gct tgt tgt ttg	643
Val Cys Lys Thr Ser Pro Glu Arg His Gln Pro Gln Ala Cys Cys Leu	
170	180

aca aca cct tcg cat tcc cca tac ctg cag can cca ctt aaa ant tnn	691
Thr Thr Pro Ser His Ser Pro Tyr Leu Gln Xaa Pro Leu Lys Xaa Xaa	
185	195

gng cac acg cag 703
 Xaa His Thr Gln
 200

<210> 200
 <211> 201
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 200
 Leu Ser Phe Asp Pro Asn Thr Gln Gly Phe Ser Thr Ala Ser Ile His
 1 5 10 15

Ala Gly Tyr Glu Pro Asp Asp Tyr Tyr Gly Ser Ile Asn Thr Pro Ile
 20 25 30

Tyr Ala Ser Thr Thr Phe Ala Gln Asn Ala Pro Asn Glu Leu Arg Lys
 35 40 45

Gly Tyr Glu Tyr Thr Arg Val Gly Asn Pro Thr Ile Val Ala Leu Glu
 50 55 60

Gln Thr Val Ala Ala Leu Glu Gly Ala Lys Tyr Gly Arg Ala Phe Ser
 65 70 75 80

Ser Gly Met Ala Ala Thr Asp Ile Leu Phe Arg Ile Ile Leu Lys Pro
 85 90 95

Gly Asp His Ile Val Leu Gly Asn Asp Ala Tyr Gly Gly Thr Tyr Arg
 100 105 110

Leu Ile Asp Thr Val Phe Thr Ala Trp Gly Val Glu Tyr Thr Val Val
 115 120 125

Asp Thr Ser Val Val Glu Glu Val Lys Ala Ala Ile Lys Asp Asn Thr
 130 135 140

Lys Ala Asp Leu Gly Gly Asn Pro Asn Gln Pro Ser Thr Leu Ala Leu
 145 150 155 160

~~Pro Asp Ile Glu Ala Val Cys Lys Thr Ser Pro Gln Arg His Gln Pro~~
 165 170 175

Gln Ala Cys Cys Leu Thr Thr Pro Ser His Ser Pro Tyr Leu Gln Xaa
 180 185 190

Pro Leu Lys Xaa Xaa Xaa His Thr Gln
 195 200

<210> 201
 <211> 1113
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(1090)
 <223> RXA00216

Asp Val Ala Arg Gly Ala Gly Ala Asp Thr Val Gln Ile Ser Met Asp
 215 220 225
 caa gtc cgt gga aat gaa cat ttg gat ggt ttt ggt gaa acc atc acc 835
 Gln Val Arg Gly Asn His Leu Asp Gly Phe Gly Glu Thr Ile Thr
 230 235 240 245
 agt gga att cgt ctt ggt ttg ggc att acg aca gga aaa gat gtc gta 883
 Ser Gly Ile Arg Leu Gly Leu Gly Ile Thr Thr Gly Lys Asp Val Val
 250 255 260
 gat gaa ctg ctc gag cga ccg cg 931
 Asp Glu Leu Leu Glu Arg Pro Arg Gln Lys Ala Val Glu Val Ala Arg
 265 270 275
 ttt ttt gat cgt tta ggt gtg ggc cga aac tat ctc gtg gat gct gtt 979
 Phe Phe Asp Arg Leu Gly Val Gly Arg Asn Tyr Leu Val Asp Ala Val
 280 285 290
 gat att cat ccg ggt gag gat ttg gtg cag ggg acc atc acc gag gcc
 1027
 Asp Ile His Pro Gly Glu Asp Leu Val Gln Gly Thr Ile Thr Glu Ala
 295 300 305
 gcg cag gct tat cgc atg gcc ccg gtg atg tcg gag atg ttg tcg aag
 1075
 Ala Gln Ala Tyr Arg Met Ala Arg Val Met Ser Glu Met Leu Ser Lys
 310 315 320 325
 gat tca tgc gac ctt taaggctta ccggcgctgg gtg
 1113
 Asp Ser Cys Asp Leu
 330

<210> 202
 <211> 330
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 202
 Leu Gly Ala Tyr Gly Leu Gly Glu Leu Pro Gly Lys Ser Ala Ala Glu
 1 5 10 15

Ala Ala Asp Ile Ile Gln Gly Glu Thr Gly Asp Leu Leu His Ile Pro
 20 25 30

Gln Leu Pro Ala Arg Gly Leu Gly Ala Asp Leu Ile Gly Arg Thr Val
 35 40 45

Gly Leu Leu Asp Met Ile Asn Val Asp Arg Gly Ala Arg Ser Trp Val
 50 55 60

Met Ser Thr Arg Pro Ser Arg Leu Thr His Leu Thr Gly Asp Phe Leu
 65 70 75 80

Asp Met Asp Leu Asp Ala Cys Glu Glu Thr Trp Gly Thr Gly Val Asp
 85 90 95

Lys Leu Lys Ile Gln Val Ala Gly Pro Trp Thr Leu Gly Ala Arg Ile
 100 105 110

Glu Leu Ala Asn Gly His Arg Val Leu Ser Asp Arg Gly Ala Met Arg
 115 120 125
 Asp Leu Thr Gln Ala Leu Ile Ala Gly Ile Asp Ala His Ala Arg Lys
 130 135 140
 Val Ala Gly Arg Phe Arg Ala Glu Val Gln Val Gln Ile Asp Glu Pro
 145 150 155 160
 Glu Leu Lys Ser Leu Ile Asp Gly Ser Leu Pro Gly Thr Ser Thr Phe
 165 170 175
 Asp Ile Ile Pro Ala Val Asn Val Ala Asp Ala Ser Glu Arg Leu Gln
 180 185 190
 Gln Val Phe Ser Ser Ile Glu Gly Pro Thr Tyr Leu Asn Leu Thr Gly
 195 200 205
 Gln Ile Pro Thr Trp Asp Val Ala Arg Gly Ala Gly Ala Asp Thr Val
 210 215 220
 Gln Ile Ser Met Asp Gln Val Arg Gly Asn Glu His Leu Asp Gly Phe
 225 230 235 240
 Gly Glu Thr Ile Thr Ser Gly Ile Arg Leu Gly Leu Gly Ile Thr Thr
 245 250 255
 Gly Lys Asp Val Val Asp Glu Leu Leu Glu Arg Pro Arg Gln Lys Ala
 260 265 270
 Val Glu Val Ala Arg Phe Phe Asp Arg Leu Gly Val Gly Arg Asn Tyr
 275 280 285
 Leu Val Asp Ala Val Asp Ile His Pro Gly Glu Asp Leu Val Gln Gly
 290 295 300
 Thr Ile Thr Glu Ala Ala Gln Ala Tyr Arg Met Ala Arg Val Met Ser
 305 310 315 320
 Glu Met Leu Ser Lys Asp Ser Cys Asp Leu
 325 330

<210> 203
 <211> 623
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (1)...(600)
 <223> RXN00402

<400> 203
 act gac gaa aag gat gga aag cca gta ttg ccc tac ttc gtc act cca 48
 Thr Asp Glu Lys Asp Gly Lys Pro Val Leu Pro Tyr Phe Val Thr Pro
 1 5 10 15
 gat gct gct tac cac gga ttg aag tac gca gac ctt ggt gca cca gcc 96
 Asp Ala Ala Tyr His Gly Leu Lys Tyr Ala Asp Leu Gly Ala Pro Ala

20

25

30

ttc ggc ctc aag gtt cgc gtt ggc ctt cta cgc gac acc ggc tcc acc 144
 Phe Gly Leu Lys Val Arg Val Gly Leu Leu Arg Asp Thr Gly Ser Thr
 35 40 45

ctc tcc gca ttc aac gca tgg gct gca gtc cag ggc atc gac acc ctt 192
 Leu Ser Ala Phe Asn Ala Trp Ala Ala Val Gln Gly Ile Asp Thr Leu
 50 55 60

tcc ctg cgc ctg gag cgc cac aac gaa aac gcc atc aag gtt gca gaa 240
 Ser Leu Arg Leu Glu Arg His Asn Glu Asn Ala Ile Lys Val Ala Glu
 65 70 75 80

ttc ctc aac aac cac gag aag gtg gaa aag gtt aac ttc gca ggc ctg 288
 Phe Leu Asn Asn His Glu Lys Val Glu Lys Val Asn Phe Ala Gly Leu
 85 90 95

aag gat tcc cct tgg tac gca acc aag gaa aag ctt ggc ctg aag tac 336
 Lys Asp Ser Pro Trp Tyr Ala Thr Lys Glu Lys Leu Gly Leu Lys Tyr
 100 105 110

acc ggc tcc gtt ctc acc ttc gag atc aag ggc ggc aag gat gag gct 384
 Thr Gly Ser Val Leu Thr Phe Glu Ile Lys Gly Gly Lys Asp Glu Ala
 115 120 125

tgg gca ttt atc gac gcc ctg aag cta cac tcc aac ctt gca aac atc 432
 Trp Ala Phe Ile Asp Ala Leu Lys Leu His Ser Asn Leu Ala Asn Ile
 130 135 140

ggc gat gtt cgc tcc ctc gtt cac cca gca acc acc acc cat tca 480
 Gly Asp Val Arg Ser Leu Val Val His Pro Ala Thr Thr Thr His Ser
 145 150 155 160

cag tcc gac gaa gct ggc ctg gca cgc gcg ggc gtt acc cag tcc acc 528
 Gln Ser Asp Glu Ala Gly Leu Ala Arg Ala Gly Val Thr Gln Ser Thr
 165 170 175

gtc cgc ctg tcc gtt ggc atc gag acc att gat gat atc atc gct gac 576
 Val Arg Leu Ser Val Gly Ile Glu Thr Ile Asp Asp Ile Ile Ala Asp
 180 185 190

ctc gaa ggc ggc ttt gct gca atc tagctttaaa tagactcacc cca 623
 Leu Glu Gly Gly Phe Ala Ala Ile
 195 200

<210> 204
<211> 200
<212> PRT
<213> Corynebacterium glutamicum

<400> 204
Thr Asp Glu Lys Asp Gly Lys Pro Val Leu Pro Tyr Phe Val Thr Pro
 1 5 10 15

Asp Ala Ala Tyr His Gly Leu Lys Tyr Ala Asp Leu Gly Ala Pro Ala
 20 25 30

Phe Gly Leu Lys Val Arg Val Gly Leu Leu Arg Asp Thr Gly Ser Thr
 35 40 45

<210> 205
<211> 599
<212> DNA
<213> *Corynebacterium glutamicum*

<220>
<221> CDS
<222> (1)..(576)
<223> FRXA00402

```

<400> 205
gta ttg ccc tac ttc gtc act cca gat gct gct tac cac gga ttg aag      48
Val Leu Pro Tyr Phe Val Thr Pro Asp Ala Ala Tyr His Gly Leu Lys
   1           5           10          15

tac gca gac ctt ggt gca cca gcc ttc ggc ctc aag gtt cgc gtt ggc      96
Tyr Ala Asp Leu Gly Ala Pro Ala Phe Gly Leu Lys Val Arg Val Gly
   20          25          30

ctt cta cgc gac acc ggc tcc acc ctc tcc gca ttc aac gca tgg gct     144
Leu Leu Arg Asp Thr Gly Ser Thr Leu Ser Ala Phe Asn Ala Trp Ala
   35          40          45

gca gtc cag ggc atc gac acc ctt tcc ctg cgc ctg gag cgc cac aac     192
Ala Val Gln Gly Ile Asp Thr Leu Ser Leu Arg Leu Glu Arg His Asn
   50          55          60

gaa aac gcc atc aag gtt gca gaa ttc ctc aac aac cac gag aag gtg     240
Glu Asn Ala Ile Lys Val Ala Glu Phe Leu Asn Asn His Glu Lys Val

```

65	70	75	80	
gaa aag gtt aac ttc gca ggc ctg aag gat tcc cct tgg tac gca acc				288
Glu Lys Val Asn Phe Ala Gly Leu Lys Asp Ser Pro Trp Tyr Ala Thr				
85	90	95		
aag gaa aag ctt ggc ctg aag tac acc ggc tcc gtt ctc acc ttc gag				336
Lys Glu Lys Leu Gly Leu Lys Tyr Thr Gly Ser Val Leu Thr Phe Glu				
100	105	110		
atc aag ggc ggc aag gat gag gct tgg gca ttt atc gac gcc ctg aag				384
Ile Lys Gly Gly Lys Asp Glu Ala Trp Ala Phe Ile Asp Ala Leu Lys				
115	120	125		
cta cac tcc aac ctt gca aac atc ggc gat gtt cgc tcc ctc gtt gtt				432
Leu His Ser Asn Leu Ala Asn Ile Gly Asp Val Arg Ser Leu Val Val				
130	135	140		
cac cca gca acc acc acc cat tca cag tcc gac gaa gct ggc ctg gca				480
His Pro Ala Thr Thr His Ser Gln Ser Asp Glu Ala Gly Leu Ala				
145	150	155	160	
cgc gcg ggc gtt acc cag tcc acc gtc cgc ctg tcc gtt ggc atc gag				528
Arg Ala Gly Val Thr Gln Ser Thr Val Arg Leu Ser Val Gly Ile Glu				
165	170	175		
acc att gat gat atc atc gct gac ctc gaa ggc ggc ttt gct gca atc				576
Thr Ile Asp Asp Ile Ile Ala Asp Leu Glu Gly Gly Phe Ala Ala Ile				
180	185	190		
tagcttaaaa tagactcacc cca				599

<210> 206

<211> 192

<212> PRT

<213> Corynebacterium glutamicum

<400> 206

Val	Leu	Pro	Tyr	Phe	Val	Thr	Pro	Asp	Ala	Ala	Tyr	His	Gly	Leu	Lys
1															

tyr	Ala	Asp	Leu	Gly	Ala	Pro	Ala	Phe	Gly	Leu	Lys	Val	Arg	Val	Gly
20															

Leu	Leu	Arg	Asp	Thr	Gly	Ser	Thr	Leu	Ser	Ala	Phe	Asn	Ala	Trp	Ala
35															

Ala	Val	Gln	Gly	Ile	Asp	Thr	Leu	Ser	Leu	Arg	Leu	Glu	Arg	His	Asn
50															

Glu	Asn	Ala	Ile	Lys	Val	Ala	Glu	Phe	Leu	Asn	Asn	His	Glu	Lys	Val
65															

Glu	Lys	Val	Asn	Phe	Ala	Gly	Leu	Lys	Asp	Ser	Pro	Trp	Tyr	Ala	Thr
85															

Lys	Glu	Lys	Leu	Gly	Leu	Lys	Tyr	Thr	Gly	Ser	Val	Leu	Thr	Phe	Glu
100															

Ile	Lys	Gly	Gly	Lys	Asp	Glu	Ala	Trp	Ala	Phe	Ile	Asp	Ala	Leu	Lys

115	120	125
Leu His Ser Asn Leu Ala Asn Ile Gly Asp Val Arg Ser Leu Val Val		
130	135	140
His Pro Ala Thr Thr His Ser Gln Ser Asp Glu Ala Gly Leu Ala		
145	150	155
Arg Ala Gly Val Thr Gln Ser Thr Val Arg Leu Ser Val Gly Ile Glu		
165	170	175
Thr Ile Asp Asp Ile Ile Ala Asp Leu Glu Gly Gly Phe Ala Ala Ile		
180	185	190

<210> 207

<211> 613

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(613)

<223> RXA00405

<400> 207

agaataaaatt tataccacac agtctattgc aatagaccaa gctgttcagt agggtgcatg 60

ggagaagaat ttccctaataa aaactcttaa ggacctccaa atg cca aag tac gac	115
Met Pro Lys Tyr Asp	
1	5

aat tcc aat gct gac cag tgg ggc ttt gaa acc cgc tcc att cac gca	163
Asn Ser Asn Ala Asp Gln Trp Gly Phe Glu Thr Arg Ser Ile His Ala	
10	15
20	

ggc cag tca gta gac gca cag acc agc gca aac ctt ccg atc tac	211
Gly Gln Ser Val Asp Ala Gln Thr Ser Ala Arg Asn Leu Pro Ile Tyr	
25	30
35	

caa tcc acc gct ttc gtg ttc gac tcc gct gag cac gcc aag cag cgt	259
Gln Ser Thr Ala Phe Val Phe Asp Ser Ala Glu His Ala Lys Gln Arg	
40	45
50	

ttc gca ctt gag gat cta ggc cct gtt tac tcc cgc ctc acc aac cca	307
Phe Ala Leu Glu Asp Leu Gly Pro Val Tyr Ser Arg Leu Thr Asn Pro	
55	60
65	

acc gtt gag gct ttg gaa aac cgc atc gct tcc ctc gaa ggt ggc gtc	355
Thr Val Glu Ala Leu Glu Asn Arg Ile Ala Ser Leu Glu Gly Val	
70	75
80	
85	

cac gct gta gcg ttc tcc gga cag gcc gca acc acc aac gcc att	403
His Ala Val Ala Phe Ser Ser Gly Gln Ala Ala Thr Thr Asn Ala Ile	
90	95
100	

ttg aac ctg gca gga gcg ggc gac cac atc gtc acc tcc cca cgc ctc	451
Leu Asn Leu Ala Gly Asp His Ile Val Thr Ser Pro Arg Leu	

105	110	115	
tac ggt ggc acc gag act cta ttc ctt atc act ctt aac cgc ctg ggt			499
Tyr Gly Gly Thr Glu Thr Leu Phe Leu Ile Thr Leu Asn Arg Leu Gly			
120	125	130	

atc gat gtt tcc ttc gtg gaa aac ccc gac gac cct gag tcc tgg cag			547
Ile Asp Val Ser Phe Val Glu Asn Pro Asp Asp Pro Glu Ser Trp Gln			
135	140	145	

gca gcc gtt cag cca aac acc aaa gca ttc ttc ggc gag act ttc gcc			595
Ala Ala Val Gln Pro Asn Thr Lys Ala Phe Phe Gly Glu Thr Phe Ala			
150	155	160	165

aac cca cag gca gac gtc			613
Asn Pro Gln Ala Asp Val			
170			

<210> 208

<211> 171

<212> PRT

<213> Corynebacterium glutamicum

<400> 208

Met Pro Lys Tyr Asp Asn Ser Asn Ala Asp Gln Trp Gly Phe Glu Thr			
1	5	10	15

Arg Ser Ile His Ala Gly Gln Ser Val Asp Ala Gln Thr Ser Ala Arg			
20	25	30	

Asn Leu Pro Ile Tyr Gln Ser Thr Ala Phe Val Phe Asp Ser Ala Glu			
35	40	45	

His Ala Lys Gln Arg Phe Ala Leu Glu Asp Leu Gly Pro Val Tyr Ser			
50	55	60	

Arg Leu Thr Asn Pro Thr Val Glu Ala Leu Glu Asn Arg Ile Ala Ser			
65	70	75	80

Leu Glu Gly Val His Ala Val Ala Phe Ser Ser Gly Gln Ala Ala			
85	90	95	

Thr Thr Asn Ala Ile Leu Asn Leu Ala Gly Ala Gly Asp His Ile Val			
100	105	110	

Thr Ser Pro Arg Leu Tyr Gly Gly Thr Glu Thr Leu Phe Leu Ile Thr			
115	120	125	

Leu Asn Arg Leu Gly Ile Asp Val Ser Phe Val Glu Asn Pro Asp Asp			
130	135	140	

Pro Glu Ser Trp Gln Ala Ala Val Gln Pro Asn Thr Lys Ala Phe Phe			
145	150	155	160

Gly Glu Thr Phe Ala Asn Pro Gln Ala Asp Val			
165	170		

<210> 209

<211> 551

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(528)

<223> RXA02197

<400> 209

gcc gaa cgc atg cgc ttt agc ttc cca cgc cag cag cgccagg ttc 48
 Ala Glu Arg Met Arg Phe Ser Phe Pro Arg Gln Gln Arg Gly Arg Phe
 1 5 10 15

ttg tgc atc gcg gat ttc att cgc cca cgc gag caa gct gtc aag gac 96
 Leu Cys Ile Ala Asp Phe Ile Arg Pro Arg Glu Gln Ala Val Lys Asp
 20 25 30

ggc caa gtg gac gtc atg cca ttc cag ctg gtc acc atg ggt aat cct 144
 Gly Gln Val Asp Val Met Pro Phe Gln Leu Val Thr Met Gly Asn Pro
 35 40 45

att gct gat ttc gcc aac gag ttg ttc gca gcc aat gaa tac cgc gag 192
 Ile Ala Asp Phe Ala Asn Glu Leu Phe Ala Ala Asn Glu Tyr Arg Glu
 50 55 60

tac ttg gaa gtt cac ggc atc ggc gtg cag ctc acc gaa gca ttg gcc 240
 Tyr Leu Glu Val His Gly Ile Gly Val Gln Leu Thr Glu Ala Leu Ala
 65 70 75 80

gag tac tgg cac tcc cga gtg cgc agc gaa ctc aag ctg aac gac ggt 288
 Glu Tyr Trp His Ser Arg Val Arg Ser Glu Leu Lys Leu Asn Asp Gly
 85 90 95

gga tct gtc gct gat ttt gat cca gaa gac aag acc aag ttc ttc gac 336
 Gly Ser Val Ala Asp Phe Asp Pro Glu Asp Lys Thr Lys Phe Phe Asp
 100 105 110

ctg gat tac cgc ggc gcc cgc ttc tcc ttt ggt tac ggt tct tgc cct 384
 Leu Asp Tyr Arg Gly Ala Arg Phe Ser Phe Gly Tyr Gly Ser Cys Pro
 115 120 125

gat ctg gaa gac cgc gca aag ctg gtg gaa ttg ctc gag cca ggc cgt 432
 Asp Leu Glu Asp Arg Ala Lys Leu Val Glu Leu Leu Glu Pro Gly Arg
 130 135 140

atc ggc gtg gag ttg tcc gag gaa ctc cag ctg cac cca gag cag tcc 480
 Ile Gly Val Glu Leu Ser Glu Glu Leu Gln Leu His Pro Glu Gln Ser
 145 150 155 160

aca gac gcg ttt gtg ctc tac cac cca gag gca aag tac ttt aac gtc 528
 Thr Asp Ala Phe Val Leu Tyr His Pro Glu Ala Lys Tyr Phe Asn Val
 165 170 175

taaacacctt gagagggaaa act 551

<210> 210

<211> 176

<212> PRT

<213> Corynebacterium glutamicum

<400> 210
 Ala Glu Arg Met Arg Phe Ser Phe Pro Arg Gln Gln Arg Gly Arg Phe
 1 5 10 15

Leu Cys Ile Ala Asp Phe Ile Arg Pro Arg Glu Gln Ala Val Lys Asp
 20 25 30

Gly Gln Val Asp Val Met Pro Phe Gln Leu Val Thr Met Gly Asn Pro
 35 40 45

Ile Ala Asp Phe Ala Asn Glu Leu Phe Ala Ala Asn Glu Tyr Arg Glu
 50 55 60

Tyr Leu Glu Val His Gly Ile Gly Val Gln Leu Thr Glu Ala Leu Ala
 65 70 75 80

Glu Tyr Trp His Ser Arg Val Arg Ser Glu Leu Lys Leu Asn Asp Gly
 85 90 95

Gly Ser Val Ala Asp Phe Asp Pro Glu Asp Lys Thr Lys Phe Phe Asp
 100 105 110

Leu Asp Tyr Arg Gly Ala Arg Phe Ser Phe Gly Tyr Gly Ser Cys Pro
 115 120 125

Asp Leu Glu Asp Arg Ala Lys Leu Val Glu Leu Leu Glu Pro Gly Arg
 130 135 140

Ile Gly Val Glu Leu Ser Glu Glu Leu Gln Leu His Pro Glu Gln Ser
 145 150 155 160

Thr Asp Ala Phe Val Leu Tyr His Pro Glu Ala Lys Tyr Phe Asn Val
 165 170 175

<210> 211
 <211> 2599
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
 <221> CDS
 <222> (101)..(2599)
 <223> RXN02198

<400> 211
 agactagtgg cgctttgcct gtgttgctta ggcggcgttg aaaaatgaact acgaatgaaa 60
 agttcgggaa ttgtctaatac cgtactaagc tgtctacaca atg tct act tca .gtt 115
 Met Ser Thr Ser Val
 1 5

act tca cca gcc cac aac aac gca cat tcc tcc gaa ttt ttg gat gcg 163
 Thr Ser Pro Ala His Asn Asn Ala His Ser Ser Glu Phe Leu Asp Ala
 10 15 20

ttg gca aac cat gtg ttg atc ggc gac ggc ggc atg ggc acc cag ctc 211
 Leu Ala Asn His Val Leu Ile Gly Asp Gly Ala Met Gly Thr Gln Leu

25	30	35	
caa ggc ttt gac ctg gac gtg gaa aag gat ttc ctt gat ctg gag ggg Gln Gly Phe Asp Leu Asp Val Glu Lys Asp Phe Leu Asp Leu Glu Gly 40	45	50	259
tgt aat gag att ctc aac gac acc cgc cct gat gtg ttg agg cag att Cys Asn Glu Ile Leu Asn Asp Thr Arg Pro Asp Val Leu Arg Gln Ile 55	60	65	307
cac cgc gcc tac ttt gag gcg gga gct gac ttg gtt gag acc aat act His Arg Ala Tyr Phe Glu Ala Gly Ala Asp Leu Val Glu Thr Asn Thr 70	75	80	355
ttt ggt tgc aac ctg ccg aac ttg gcg gat tat gac atc gct gat cgt Phe Gly Cys Asn Leu Pro Asn Leu Ala Asp Tyr Asp Ile Ala Asp Arg 90	95	100	403
tgc cgt gag ctt gcc tac aag ggc act gca gtg gct agg gaa gtg gct Cys Arg Glu Leu Ala Tyr Lys Gly Thr Ala Val Ala Arg Glu Val Ala 105	110	115	451
gat gag atg ggg ccg ggc cga aac ggc atg cgg cgt ttc gtg gtt ggt Asp Glu Met Gly Pro Gly Arg Asn Gly Met Arg Arg Phe Val Val Gly 120	125	130	499
tcc ctg gga cct gga acg aag ctt cca tcg ctg ggc cat gca ccg tat Ser Leu Gly Pro Gly Thr Lys Leu Pro Ser Leu Gly His Ala Pro Tyr 135	140	145	547
gca gat ttg cgt ggg cac tac aag gaa gca gcg ctt ggc atc atc gac Ala Asp Leu Arg Gly His Tyr Lys Glu Ala Ala Leu Gly Ile Ile Asp 150	155	160	595
ggt ggt ggc gat gcc ttt ttg att gag act gct cag gac ttg ctt cag Gly Gly Asp Ala Phe Leu Ile Glu Thr Ala Gln Asp Leu Leu Gln 170	175	180	643
gtc aag gct gcg gtt cac ggc gtt caa gat gcc atg gct gaa ctt gat Val Lys Ala Ala Val His Gly Val Gln Asp Ala Met Ala Glu Leu Asp 185	190	195	691
aca ttc ttg ccc att att tgc cac gtc acc gta gag acc acc ggc acc Thr Phe Leu Pro Ile Ile Cys His Val Thr Val Glu Thr Thr Gly Thr 200	205	210	739
atg ctc atg ggt tct gag atc ggt gcc gcg ttg aca gcg ctg cag cca Met Leu Met Gly Ser Glu Ile Gly Ala Ala Leu Thr Ala Leu Gln Pro 215	220	225	787
ctg ggt atc gac atq att ggt ctg aac tgc gcc acc ggc cca gat gag Leu Gly Ile Asp Met Ile Gly Leu Asn Cys Ala Thr Gly Pro Asp Glu 230	235	240	835
atg agc gag cac ctg cgt tac ctg tcc aag cac gcc gat att cct gtg Met Ser Glu His Leu Arg Tyr Leu Ser Lys His Ala Asp Ile Pro Val 250	255	260	883
tcg gtg atg cct aac gca ggt ctt cct gtc ctg ggt aaa aac ggt gca Ser Val Met Pro Asn Ala Gly Leu Pro Val Leu Gly Lys Asn Gly Ala 265	270	275	931

gaa tac cca ctt gag gct gag gat ttg gcg cag gcg ctg gct gga ttc 979
 Glu Tyr Pro Leu Glu Ala Glu Asp Leu Ala Gln Ala Leu Ala Gly Phe
 280 285 290

gtc tcc gaa tat ggc ctg tcc atg gtg ggt ggt tgt tgt ggc acc aca 1027
 Val Ser Glu Tyr Gly Leu Ser Met Val Gly Gly Cys Cys Gly Thr Thr
 295 300 305

cct gag cac atc cgt gtc cg^c gat g^c g^c g^t g^t g^t g^t cca gag 1075
 Pro Glu His Ile Arg Ala Val Arg Asp Ala Val Val Gly Val Pro Glu
 310 315 320 325

cag gaa acc tcc aca ctg acc aag atc cct gca ggc cct gtt gag cag 1123
 Gln Glu Thr Ser Thr Leu Thr Lys Ile Pro Ala Gly Pro Val Glu Gln
 330 335 340

gcc tcc cgc gag gtg gag aaa gag gac tcc gtc gcg tcg ctg tac acc 1171
 Ala Ser Arg Glu Val Glu Lys Glu Asp Ser Val Ala Ser Leu Tyr Thr
 345 350 355

tcg gtg cca ttg tcc cag gaa acc ggc att tcc atg atc ggt gag cgc 1219
 Ser Val Pro Leu Ser Gln Glu Thr Gly Ile Ser Met Ile Gly Glu Arg
 360 365 370

acc aac tcc aac ggt tcc aag gca ttc cgt gag gca atg ctg tct ggc 1267
 Thr Asn Ser Asn Gly Ser Lys Ala Phe Arg Glu Ala Met Leu Ser Gly
 375 380 385

gat tgg gaa aag tgt gtg gat att gcc aag cag caa acc cgc gat ggt 1315
 Asp Trp Glu Lys Cys Val Asp Ile Ala Lys Gln Gln Thr Arg Asp Gly
 390 395 400 405

gca cac atg ctg gat ctt tgt gtg gat tac gtg gga cga gac ggc acc 1363
 Ala His Met Leu Asp Leu Cys Val Asp Tyr Val Gly Arg Asp Gly Thr
 410 415 420

gcc gat atg gcg acc ttg gca gca ctt ctt gct acc agc tcc act ttg 1411
 Ala Asp Met Ala Thr Leu Ala Ala Leu Leu Ala Thr Ser Ser Thr Leu
 425 430 435

cca atc atg att gac tcc acc gag cca gag gtt att cgc aca ggc ctt 1459
 Pro Ile Met Ile Asp Ser Thr Glu Pro Glu Val Ile Arg Thr Gly Leu
 440 445 450

gag cac ttg ggt gga cga agc atc gtt aac tcc gtc aac ttt gaa gac 1507
 Glu His Leu Gly Gly Arg Ser Ile Val Asn Ser Val Asn Phe Glu Asp
 455 460 465

ggc gat ggc cct gag tcc cgc tac cag cgc atc atg aaa ctg gta aag
 1555
 Gly Asp Gly Pro Glu Ser Arg Tyr Gln Arg Ile Met Lys Leu Val Lys
 470 475 480 485

 cag cac ggt gcg gcc gtg gtt gcg ctg acc att gat gag gaa ggc cag
 1603
 Gln His Gly Ala Ala Val Val Ala Leu Thr Ile Asp Glu Glu Gly Gln
 490 495 500

 gca cgt acc gct gag cac aag gtg cgc att gct aaa cga ctg att gac
 1651
 Ala Arg Thr Ala Glu His Lys Val Arg Ile Ala Lys Arg Leu Ile Asp
 505 510 515

 gat atc acc ggc agc tac ggc ctg gat atc aaa gac atc gtt gtg gac
 1699
 Asp Ile Thr Gly Ser Tyr Gly Leu Asp Ile Lys Asp Ile Val Val Asp
 520 525 530

 tgc ctg acc ttc ccg atc tct act ggc cag gaa gaa acc agg cga gat
 1747
 Cys Leu Thr Phe Pro Ile Ser Thr Gly Gln Glu Glu Thr Arg Arg Asp
 535 540 545

 ggc att gaa acc atc gaa gcc atc cgc gag ctg aag aag ctc tac cca
 1795
 Gly Ile Glu Thr Ile Glu Ala Ile Arg Glu Leu Lys Lys Leu Tyr Pro
 550 555 560 565

 gaa atc cac acc acc ctg ggt ctg tcc aat att tcc ttc ggc ctg aac
 1843
 Glu Ile His Thr Thr Leu Gly Leu Ser Asn Ile Ser Phe Gly Leu Asn
 570 575 580

 cct gct gca cgc cag gtt ctt aac tct gtg ttc ctc aat gag tgc att
 1891
 Pro Ala Ala Arg Gln Val Leu Asn Ser Val Phe Leu Asn Glu Cys Ile
 585 590 595

 gag gct ggt ctg gac tct gcg att gcg cac agc tcc aag att ttg ccg
 1939
 Glu Ala Gly Leu Asp Ser Ala Ile Ala His Ser Ser Lys Ile Leu Pro
 600 605 610

 atg aac cgc att gat gat cgc cag cgc gaa gtg gcg ttg gat atg gtc
 1987
 Met Asn Arg Ile Asp Asp Arg Gln Arg Glu Val Ala Leu Asp Met Val
 615 620 625

 tat gat cgc cgc acc gag gat tac gat ccg ctg cag gaa ttc atg cag
 2035
 Tyr Asp Arg Arg Thr Glu Asp Tyr Asp Pro Leu Gln Glu Phe Met Gln
 630 635 640 645

 ctg ttt gag ggc gtt tct gct gcc gat gcc aag gat gct cgc gct gaa
 2083
 Leu Phe Glu Gly Val Ser Ala Ala Asp Ala Lys Asp Ala Arg Ala Glu
 650 655 660

cag ctg gcc gct atg cct ttg ttt gag cgt ttg gca cag cgc atc atc
 2131
 Gln Leu Ala Ala Met Pro Leu Phe Glu Arg Leu Ala Gln Arg Ile Ile
 665 670 675

gac ggc gat aag aat ggc ctt gag gat gat ctg gaa gca ggc atg aag
 2179
 Asp Gly Asp Lys Asn Gly Leu Glu Asp Asp Leu Glu Ala Gly Met Lys
 680 685 690

gag aag tct cct att gcg atc atc aac gag gac ctt ctc aac ggc atg
 2227
 Glu Lys Ser Pro Ile Ala Ile Ile Asn Glu Asp Leu Leu Asn Gly Met
 695 700 705

aag acc gtg ggt gag ctg ttt ggt tcc gga cag atg cag ctg cca ttc
 2275
 Lys Thr Val Gly Glu Leu Phe Gly Ser Gly Gln Met Gln Leu Pro Phe
 710 715 720 725

gtg ctg caa tcg gca gaa acc atg aaa act gcg gtg gcc tat ttg gaa
 2323
 Val Leu Gln Ser Ala Glu Thr Met Lys Thr Ala Val Ala Tyr Leu Glu
 730 735 740

ccg ttc atg gaa gag gaa gca gaa gct acc gga tct gcg cag gca gag
 2371
 Pro Phe Met Glu Glu Ala Glu Ala Thr Gly Ser Ala Gln Ala Glu
 745 750 755

ggc aag ggc aaa atc gtc gtg gcc acc gtc aag ggt gac gtg cac gat
 2419
 Gly Lys Gly Lys Ile Val Val Ala Thr Val Lys Gly Asp Val His Asp
 760 765 770

atc ggc aag aac ttg gtg gac atc att ttg tcc aac aac ggt tac gac
 2467
 Ile Gly Lys Asn Leu Val Asp Ile Ile Leu Ser Asn Asn Gly Tyr Asp
 775 780 785

gtg gtg aac ttg ggc atc aag cag cca ctg tcc gcc atg ttg gaa gca
 2515
 Val Val Asn Leu Gly Ile Lys Gln Pro Leu Ser Ala Met Leu Glu Ala
 790 795 800 805

gcg gaa gaa cac aaa gca gac gtc atc ggc atg tcg gga ctt ctt gtg
 2563
 Ala Glu Glu His Lys Ala Asp Val Ile Gly Met Ser Gly Leu Leu Val
 810 815 820

aag tcc acc gtg gtg atg aag caa acc atc agc gac
 2599
 Lys Ser Thr Val Val Met Lys Gln Thr Ile Ser Asp
 825 830

<210> 212
<211> 833
<212> PRT
<213> Corynebacterium glutamicum

<400> 212
 Met Ser Thr Ser Val Thr Ser Pro Ala His Asn Asn Ala His Ser Ser
 1 5 10 15
 Glu Phe Leu Asp Ala Leu Ala Asn His Val Leu Ile Gly Asp Gly Ala
 20 25 30
 Met Gly Thr Gln Leu Gln Gly Phe Asp Leu Asp Val Glu Lys Asp Phe
 35 40 45
 Leu Asp Leu Glu Gly Cys Asn Glu Ile Leu Asn Asp Thr Arg Pro Asp
 50 55 60
 Val Leu Arg Gln Ile His Arg Ala Tyr Phe Glu Ala Gly Ala Asp Leu
 65 70 75 80
 Val Glu Thr Asn Thr Phe Gly Cys Asn Leu Pro Asn Leu Ala Asp Tyr
 85 90 95
 Asp Ile Ala Asp Arg Cys Arg Glu Leu Ala Tyr Lys Gly Thr Ala Val
 100 105 110
 Ala Arg Glu Val Ala Asp Glu Met Gly Pro Gly Arg Asn Gly Met Arg
 115 120 125
 Arg Phe Val Val Gly Ser Leu Gly Pro Gly Thr Lys Leu Pro Ser Leu
 130 135 140
 Gly His Ala Pro Tyr Ala Asp Leu Arg Gly His Tyr Lys Glu Ala Ala
 145 150 155 160
 Leu Gly Ile Ile Asp Gly Gly Asp Ala Phe Leu Ile Glu Thr Ala
 165 170 175
 Gln Asp Leu Leu Gln Val Lys Ala Ala Val His Gly Val Gln Asp Ala
 180 185 190
 Met Ala Glu Leu Asp Thr Phe Leu Pro Ile Ile Cys His Val Thr Val
 195 200 205
 Glu Thr Thr Gly Thr Met Leu Met Gly Ser Glu Ile Gly Ala Ala Leu
 210 215 220
 Thr Ala Leu Gln Pro Leu Gly Ile Asp Met Ile Gly Leu Asn Cys Ala
 225 230 235 240
 Thr Gly Pro Asp Glu Met Ser Glu His Leu Arg Tyr Leu Ser Lys His
 245 250 255
 Ala Asp Ile Pro Val Ser Val Met Pro Asn Ala Gly Leu Pro Val Leu
 260 265 270
 Gly Lys Asn Gly Ala Glu Tyr Pro Leu Glu Ala Glu Asp Leu Ala Gln
 275 280 285
 Ala Leu Ala Gly Phe Val Ser Glu Tyr Gly Leu Ser Met Val Gly Gly
 290 295 300
 Cys Cys Gly Thr Thr Pro Glu His Ile Arg Ala Val Arg Asp Ala Val
 305 310 315 320

Val Gly Val Pro Glu Gln Glu Thr Ser Thr Leu Thr Lys Ile Pro Ala
 325 330 335
 Gly Pro Val Glu Gln Ala Ser Arg Glu Val Glu Lys Glu Asp Ser Val
 340 345 350
 Ala Ser Leu Tyr Thr Ser Val Pro Leu Ser Gln Glu Thr Gly Ile Ser
 355 360 365
 Met Ile Gly Glu Arg Thr Asn Ser Asn Gly Ser Lys Ala Phe Arg Glu
 370 375 380
 Ala Met Leu Ser Gly Asp Trp Glu Lys Cys Val Asp Ile Ala Lys Gln
 385 390 395 400
 Gln Thr Arg Asp Gly Ala His Met Leu Asp Leu Cys Val Asp Tyr Val
 405 410 415
 Gly Arg Asp Gly Thr Ala Asp Met Ala Thr Leu Ala Ala Leu Leu Ala
 420 425 430
 Thr Ser Ser Thr Leu Pro Ile Met Ile Asp Ser Thr Glu Pro Glu Val
 435 440 445
 Ile Arg Thr Gly Leu Glu His Leu Gly Gly Arg Ser Ile Val Asn Ser
 450 455 460
 Val Asn Phe Glu Asp Gly Asp Gly Pro Glu Ser Arg Tyr Gln Arg Ile
 465 470 475 480
 Met Lys Leu Val Lys Gln His Gly Ala Ala Val Val Ala Leu Thr Ile
 485 490 495
 Asp Glu Glu Gly Gln Ala Arg Thr Ala Glu His Lys Val Arg Ile Ala
 500 505 510
 Lys Arg Leu Ile Asp Asp Ile Thr Gly Ser Tyr Gly Leu Asp Ile Lys
 515 520 525
 Asp Ile Val Val Asp Cys Leu Thr Phe Pro Ile Ser Thr Gly Gln Glu
 530 535 540
~~Glu Thr Arg Arg Asp Gly Ile Glu Thr Ile Glu Ala Ile Arg Glu Leu~~
 545 550 555 560
 Lys Lys Leu Tyr Pro Glu Ile His Thr Thr Leu Gly Leu Ser Asn Ile
 565 570 575
 Ser Phe Gly Leu Asn Pro Ala Ala Arg Gln Val Leu Asn Ser Val Phe
 580 585 590
 Leu Asn Glu Cys Ile Glu Ala Gly Leu Asp Ser Ala Ile Ala His Ser
 595 600 605
 Ser Lys Ile Leu Pro Met Asn Arg Ile Asp Asp Arg Gln Arg Glu Val
 610 615 620
 Ala Leu Asp Met Val Tyr Asp Arg Arg Thr Glu Asp Tyr Asp Pro Leu
 625 630 635 640
 Gln Glu Phe Met Gln Leu Phe Glu Gly Val Ser Ala Ala Asp Ala Lys

645	650	655
Asp Ala Arg Ala Glu Gln Leu Ala Ala Met Pro Leu Phe Glu Arg Leu		
660	665	670
Ala Gln Arg Ile Ile Asp Gly Asp Lys Asn Gly Leu Glu Asp Asp Leu		
675	680	685
Glu Ala Gly Met Lys Glu Lys Ser Pro Ile Ala Ile Ile Asn Glu Asp		
690	695	700
Leu Leu Asn Gly Met Lys Thr Val Gly Glu Leu Phe Gly Ser Gly Gln		
705	710	715
Met Gln Leu Pro Phe Val Leu Gln Ser Ala Glu Thr Met Lys Thr Ala		
725	730	735
Val Ala Tyr Leu Glu Pro Phe Met Glu Glu Glu Ala Glu Ala Thr Gly		
740	745	750
Ser Ala Gln Ala Glu Gly Lys Gly Lys Ile Val Val Ala Thr Val Lys		
755	760	765
Gly Asp Val His Asp Ile Gly Lys Asn Leu Val Asp Ile Ile Leu Ser		
770	775	780
Asn Asn Gly Tyr Asp Val Val Asn Leu Gly Ile Lys Gln Pro Leu Ser		
785	790	795
Ala Met Leu Glu Ala Ala Glu Glu His Lys Ala Asp Val Ile Gly Met		
805	810	815
Ser Gly Leu Leu Val Lys Ser Thr Val Val Met Lys Gln Thr Ile Ser		
820	825	830

Asp

<210> 213
<211> 2578
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(2578)
<223> FRXA02198

<400> 213		
agactagttgg cgtttgcct gtgttgctta ggccgcgttq aaaatgaact acgaatgaaa	60	
agttcggaa ttgtctaatac cgtactaaggc tgtctacaca atg tct act tca gtt	115	
	Met	Ser
	Ser	Thr
	Ser	Val
1	5	
act tca cca gcc cac aac gca cat tcc tcc gaa ttt ttg gat gcg	163	
Thr Ser Pro Ala His Asn Asn Ala His Ser Ser Glu Phe Leu Asp Ala		
10	15	20
ttg gca aac cat gtg ttg atc ggc gac ggc gcc atg ggc acc cag ctc	211	

Leu Ala Asn His Val Leu Ile Gly Asp Gly Ala Met Gly Thr Gln Leu		
25	30	35
caa ggc ttt gac ctg gac gtg gaa aag gat ttc ctt gat ctg gag ggg		259
Gln Gly Phe Asp Leu Asp Val Glu Lys Asp Phe Leu Asp Leu Glu Gly		
40	45	50
tgt aat gag att ctc aac gac acc cgc cct gat gtg ttg agg cag att		307
Cys Asn Glu Ile Leu Asn Asp Thr Arg Pro Asp Val Leu Arg Gln Ile		
55	60	65
cac cgc gcc tac ttt gag gcg gga gct gac ttg gtt gag acc aat act		355
His Arg Ala Tyr Phe Glu Ala Gly Ala Asp Leu Val Glu Thr Asn Thr		
70	75	80
85		
ttt ggt tgc aac ctg ccg aac ttg gcg gat tat gac atc gct gat cgt		403
Phe Gly Cys Asn Leu Pro Asn Leu Ala Asp Tyr Asp Ile Ala Asp Arg		
90	95	100
tgc cgt gag ctt gcc tac aag ggc act gca gtg gct agg gaa gtg gct		451
Cys Arg Glu Leu Ala Tyr Lys Gly Thr Ala Val Ala Arg Glu Val Ala		
105	110	115
gat gag atg ggg ccg ggc cga aac ggc atg cgg cgt ttc gtg gtt ggt		499
Asp Glu Met Gly Pro Gly Arg Asn Gly Met Arg Arg Phe Val Val Gly		
120	125	130
tcc ctg gga cct gga acg aag ctt cca tcg ctg ggc cat gca ccg tat		547
Ser Leu Gly Pro Gly Thr Lys Leu Pro Ser Leu Gly His Ala Pro Tyr		
135	140	145
gca gat ttg cgt ggg cac tac aag gaa gca gcg ctt ggc atc atc gac		595
Ala Asp Leu Arg Gly His Tyr Lys Glu Ala Ala Leu Gly Ile Ile Asp		
150	155	160
165		
ggt ggt ggc gat gcc ttt ttg att gag act gct cag gac ttg ctt cag		643
Gly Gly Asp Ala Phe Leu Ile Glu Thr Ala Gln Asp Leu Leu Gln		
170	175	180
gtc aag gct gcg gtt cac ggc gtt caa gat gcc atg gct gaa ctt gat		691
Val Lys Ala Ala Val His Gly Val Gln Asp Ala Met Ala Glu Leu Asp		
185	190	195
aca ttc ttg ccc att att tgc cac gtc acc gta gag acc acc ggc acc		739
Thr Phe Leu Pro Ile Ile Cys His Val Thr Val Glu Thr Thr Gly Thr		
200	205	210
atg ctc atg ggt tct gag atc ggt gcc gcg ttg aca gcg ctg cag cca		787
Met Leu Met Gly Ser Glu Ile Gly Ala Ala Leu Thr Ala Leu Gln Pro		
215	220	225
ctg ggt atc gac atg att ggt ctg aac tgc gcc acc ggc cca gat gag		835
Leu Gly Ile Asp Met Ile Gly Leu Asn Cys Ala Thr Gly Pro Asp Glu		
230	235	240
245		
atg agc gag cac ctg cgt tac ctg tcc aag cac gcc gat att cct gtg		883
Met Ser Glu His Leu Arg Tyr Leu Ser Lys His Ala Asp Ile Pro Val		
250	255	260
tcg gtg atg cct aac gca ggt ctt cct gtc ctg ggt aaa aac ggt gca		931
Ser Val Met Pro Asn Ala Gly Leu Pro Val Leu Gly Lys Asn Gly Ala		

265	270	275													
gaa tac cca ctt gag gct gag gat ttg gcg cag gcg ctg gct gga ttc 979															
Glu	Tyr	Pro	Leu	Glu	Ala	Glu	Asp	Leu	Ala	Gln	Ala	Leu	Ala	Gly	Phe
280			285			290									
gtc tcc gaa tat ggc ctg tcc atg gtg ggt tgt tgt ggc acc aca															
1027															
Val	Ser	Glu	Tyr	Gly	Leu	Ser	Met	Val	Gly	Gly	Cys	Cys	Gly	Thr	Thr
295			300			305									
cct gag cac atc cgt gcg gtc cgc gat gcg gtg gtt ggt gtt cca gag															
1075															
Pro	Glu	His	Ile	Arg	Ala	Val	Arg	Asp	Ala	Val	Val	Gly	Val	Pro	Glu
310			315			320			325						
cag gaa acc tcc aca ctg acc aag atc cct gca ggc cct gtt gag cag															
1123															
Gln	Glu	Thr	Ser	Thr	Leu	Thr	Lys	Ile	Pro	Ala	Gly	Pro	Val	Glu	Gln
330			335			340									
gcc tcc cgc gag gtg gag aaa gag gac tcc gtc gcg tcg ctg tac acc															
1171															
Ala	Ser	Arg	Glu	Val	Glu	Lys	Glu	Asp	Ser	Val	Ala	Ser	Leu	Tyr	Thr
345			350			355									
tcg gtg cca ttg tcc cag gaa acc ggc att tcc atg atc ggt gag cgc															
1219															
Ser	Val	Pro	Leu	Ser	Gln	Glu	Thr	Gly	Ile	Ser	Met	Ile	Gly	Glu	Arg
360			365			370									
acc aac tcc aac ggt tcc aag gca ttc cgt gag gca atg ctg tct ggc															
1267															
Thr	Asn	Ser	Asn	Gly	Ser	Lys	Ala	Phe	Arg	Glu	Ala	Met	Leu	Ser	Gly
375			380			385									
gat tgg gaa aag tgt gtg gat att gcc aag cag caa acc cgc gat ggt															
1315															
Asp	Trp	Glu	Lys	Cys	Val	Asp	Ile	Ala	Lys	Gln	Gln	Thr	Arg	Asp	Gly
390			395			400			405						
gca cac atg ctg gat ctt tgt gtg gat tac gtg gga cga gac ggc acc															
1363															
Ala	His	Met	Leu	Asp	Leu	Cys	Val	Asp	Tyr	Val	Gly	Arg	Asp	Gly	Thr
410			415			420									
gcc gat atg gcg acc ttg gca gca ctt ctt gct acc agc tcc act ttg															
1411															
Ala	Asp	Met	Ala	Thr	Leu	Ala	Ala	Leu	Leu	Ala	Thr	Ser	Ser	Thr	Leu
425			430			435									
cca atc atg att gac tcc acc gag cca gag gtt att cgc aca ggc ctt															
1459															
Pro	Ile	Met	Ile	Asp	Ser	Thr	Glu	Pro	Glu	Val	Ile	Arg	Thr	Gly	Leu
440			445			450									
gag cac ttg ggt gga cga agc atc gtt aac tcc gtc aac ttt gaa gac															
1507															
Glu	His	Leu	Gly	Gly	Arg	Ser	Ile	Val	Asn	Ser	Val	Asn	Phe	Glu	Asp
455			460			465									

ggc gat ggc cct gag tcc cgc tac cag cgc atc atg aaa ctg gta aag
 1555
 Gly Asp Gly Pro Glu Ser Arg Tyr Gln Arg Ile Met Lys Leu Val Lys
 470 475 480 485

 cag cac ggt gcg gcc gtc gtt gcg ctg acc att gat gag gaa ggc cag
 1603
 Gln His Gly Ala Ala Val Val Ala Leu Thr Ile Asp Glu Glu Gly Gln
 490 495 500

 gca cgt acc gct gag cac aag gtc cgc att gct aaa cga ctg att gac
 1651
 Ala Arg Thr Ala Glu His Lys Val Arg Ile Ala Lys Arg Leu Ile Asp
 505 510 515

 gat atc acc ggc agc tac ggc ctg gat atc aaa gac atc gtt gtc gac
 1699
 Asp Ile Thr Gly Ser Tyr Gly Leu Asp Ile Lys Asp Ile Val Val Asp
 520 525 530

 tgc ctg acc ttc ccg atc tct act ggc cag gaa gaa acc agg cga gat
 1747
 Cys Leu Thr Phe Pro Ile Ser Thr Gly Gln Glu Glu Thr Arg Arg Asp
 535 540 545

 ggc att gaa acc atc gaa gcc atc cgc gag ctg aag aag ctc tac cca
 1795
 Gly Ile Glu Thr Ile Glu Ala Ile Arg Glu Leu Lys Lys Leu Tyr Pro
 550 555 560 565

 gaa atc cac acc acc ctg ggt ctg tcc aat att tcc ttc ggc ctg aac
 1843
 Glu Ile His Thr Thr Leu Gly Leu Ser Asn Ile Ser Phe Gly Leu Asn
 570 575 580

 cct gct gca cgc cag gtt ctt aac tct gtc ttc ctc aat gag tgc att
 1891
 Pro Ala Ala Arg Gln Val Leu Asn Ser Val Phe Leu Asn Glu Cys Ile
 585 590 595

 gag gct ggt ctg gac tct gcg att gcg cac agc tcc aag att ttg ccg
 1939
Glu Ala Gly Leu Asp Ser Ala Ile Ala His Ser Ser Lys Ile Leu Pro
 600 605 610

 atg aac cgc att gat gat cgc cag cgc gaa gtc gcg ttg gat atg gtc
 1987
 Met Asn Arg Ile Asp Asp Arg Gln Arg Glu Val Ala Leu Asp Met Val
 615 620 625

 tat gat cgc cgc acc gag gat tac gat ccg ctg cag gaa ttc atg cag
 2035
 Tyr Asp Arg Arg Thr Glu Asp Tyr Asp Pro Leu Gln Glu Phe Met Gln
 630 635 640 645

 ctg ttt gag ggc gtt tct gct gcc gat gcc aag gat gct cgc gct gaa
 2083
Leu Phe Glu Gly Val Ser Ala Ala Asp Ala Lys Asp Ala Arg Ala Glu
 650 655 660

cag ctg gcc gct atg cct ttg ttt gag cgt ttg gca cag cgc atc atc
 2131
 Gln Leu Ala Ala Met Pro Leu Phe Glu Arg Leu Ala Gln Arg Ile Ile
 665 670 675

gac ggc gat aag aat ggc ctt gag gat gat ctg gaa gca ggc atg aag
 2179
 Asp Gly Asp Lys Asn Gly Leu Glu Asp Asp Leu Glu Ala Gly Met Lys
 680 685 690

gag aag tct att gcg atc atc aac gag gac ctt ctc aac ggc atg
 2227
 Glu Lys Ser Pro Ile Ala Ile Ile Asn Glu Asp Leu Leu Asn Gly Met
 695 700 705

aag acc gtg ggt gag ctg ttt ggt tcc gga cag atg cag ctg cca ttc
 2275
 Lys Thr Val Gly Glu Leu Phe Gly Ser Gly Gln Met Gln Leu Pro Phe
 710 715 720 725

gtg ctg caa tcg gca gaa acc atg aaa act gcg gtg gcc tat ttg gaa
 2323
 Val Leu Gln Ser Ala Glu Thr Met Lys Thr Ala Val Ala Tyr Leu Glu
 730 735 740

ccg ttc atg gaa gag gaa gca gaa gct acc gga tct gcg cag gca gag
 2371
 Pro Phe Met Glu Glu Ala Glu Ala Thr Gly Ser Ala Gln Ala Glu
 745 750 755

ggc aag ggc aaa atc gtc gtg gcc acc gtc aag ggt gac gtg cac gat
 2419
 Gly Lys Gly Lys Ile Val Val Ala Thr Val Lys Gly Asp Val His Asp
 760 765 770

atc ggc aag aac ttg gtg gac atc att ttg tcc aac aac ggt tac gac
 2467
 Ile Gly Lys Asn Leu Val Asp Ile Ile Leu Ser Asn Asn Gly Tyr Asp
 775 780 785

gtg gtg aac ttg ggc atc aag cag cca ctg tcc gcc atg ttg gaa gca
 2515
 Val Val Asn Leu Gly Ile Lys Gln Pro Leu Ser Ala Met Leu Glu Ala
 790 795 800 805

gcg gaa gaa cac aaa gca gac gtc atc ggc atg tcg gga ctt ctt gtg
 2563
 Ala Glu Glu His Lys Ala Asp Val Ile Gly Met Ser Gly Leu Leu Val
 810 815 820

aag tcc acc gtg gtg
 2578
 Lys Ser Thr Val Val
 825

<210> 214
<211> 826
<212> PRT
<213> Corynebacterium glutamicum

<400> 214
 Met Ser Thr Ser Val Thr Ser Pro Ala His Asn Asn Ala His Ser Ser
 1 5 10 15

Glu Phe Leu Asp Ala Leu Ala Asn His Val Leu Ile Gly Asp Gly Ala
 20 25 30

Met Gly Thr Gln Leu Gln Gly Phe Asp Leu Asp Val Glu Lys Asp Phe
 35 40 45

Leu Asp Leu Glu Gly Cys Asn Glu Ile Leu Asn Asp Thr Arg Pro Asp
 50 55 60

Val Leu Arg Gln Ile His Arg Ala Tyr Phe Glu Ala Gly Ala Asp Leu
 65 70 75 80

Val Glu Thr Asn Thr Phe Gly Cys Asn Leu Pro Asn Leu Ala Asp Tyr
 85 90 95

Asp Ile Ala Asp Arg Cys Arg Glu Leu Ala Tyr Lys Gly Thr Ala Val
 100 105 110

Ala Arg Glu Val Ala Asp Glu Met Gly Pro Gly Arg Asn Gly Met Arg
 115 120 125

Arg Phe Val Val Gly Ser Leu Gly Pro Gly Thr Lys Leu Pro Ser Leu
 130 135 140

Gly His Ala Pro Tyr Ala Asp Leu Arg Gly His Tyr Lys Glu Ala Ala
 145 150 155 160

Leu Gly Ile Ile Asp Gly Gly Asp Ala Phe Leu Ile Glu Thr Ala
 165 170 175

Gln Asp Leu Leu Gln Val Lys Ala Ala Val His Gly Val Gln Asp Ala
 180 185 190

Met Ala Glu Leu Asp Thr Phe Leu Pro Ile Ile Cys His Val Thr Val
 195 200 205

Glu Thr Thr Gly Thr Met Leu Met Gly Ser Glu Ile Gly Ala Ala Leu
 210 215 220

Thr Ala Leu Gln Pro Leu Gly Ile Asp Met Ile Gly Leu Asn Cys Ala
 225 230 235 240

Thr Gly Pro Asp Glu Met Ser Glu His Leu Arg Tyr Leu Ser Lys His
 245 250 255

Ala Asp Ile Pro Val Ser Val Met Pro Asn Ala Gly Leu Pro Val Leu
 260 265 270

Gly Lys Asn Gly Ala Glu Tyr Pro Leu Glu Ala Glu Asp Leu Ala Gln
 275 280 285

Ala Leu Ala Gly Phe Val Ser Glu Tyr Gly Leu Ser Met Val Gly Gly
 290 295 300

Cys Cys Gly Thr Thr Pro Glu His Ile Arg Ala Val Arg Asp Ala Val
 305 310 315 320

Val Gly Val Pro Glu Gln Glu Thr Ser Thr Leu Thr Lys Ile Pro Ala
 325 330 335
 Gly Pro Val Glu Gln Ala Ser Arg Glu Val Glu Lys Glu Asp Ser Val
 340 345 350
 Ala Ser Leu Tyr Thr Ser Val Pro Leu Ser Gln Glu Thr Gly Ile Ser
 355 360 365
 Met Ile Gly Glu Arg Thr Asn Ser Asn Gly Ser Lys Ala Phe Arg Glu
 370 375 380
 Ala Met Leu Ser Gly Asp Trp Glu Lys Cys Val Asp Ile Ala Lys Gln
 385 390 395 400
 Gln Thr Arg Asp Gly Ala His Met Leu Asp Leu Cys Val Asp Tyr Val
 405 410 415
 Gly Arg Asp Gly Thr Ala Asp Met Ala Thr Leu Ala Ala Leu Leu Ala
 420 425 430
 Thr Ser Ser Thr Leu Pro Ile Met Ile Asp Ser Thr Glu Pro Glu Val
 435 440 445
 Ile Arg Thr Gly Leu Glu His Leu Gly Gly Arg Ser Ile Val Asn Ser
 450 455 460
 Val Asn Phe Glu Asp Gly Asp Gly Pro Glu Ser Arg Tyr Gln Arg Ile
 465 470 475 480
 Met Lys Leu Val Lys Gln His Gly Ala Ala Val Val Ala Leu Thr Ile
 485 490 495
 Asp Glu Glu Gly Gln Ala Arg Thr Ala Glu His Lys Val Arg Ile Ala
 500 505 510
 Lys Arg Leu Ile Asp Asp Ile Thr Gly Ser Tyr Gly Leu Asp Ile Lys
 515 520 525
 Asp Ile Val Val Asp Cys Leu Thr Phe Pro Ile Ser Thr Gly Gln Glu
 530 535 540
 Glu Thr Arg Arg Asp Gly Ile Glu Thr Ile Glu Ala Ile Arg Glu Leu
 545 550 555 560
 Lys Lys Leu Tyr Pro Glu Ile His Thr Thr Leu Gly Leu Ser Asn Ile
 565 570 575
 Ser Phe Gly Leu Asn Pro Ala Ala Arg Gln Val Leu Asn Ser Val Phe
 580 585 590
 Leu Asn Glu Cys Ile Glu Ala Gly Leu Asp Ser Ala Ile Ala His Ser
 595 600 605
 Ser Lys Ile Leu Pro Met Asn Arg Ile Asp Asp Arg Gln Arg Glu Val
 610 615 620
 Ala Leu Asp Met Val Tyr Asp Arg Arg Thr Glu Asp Tyr Asp Pro Leu
 625 630 635 640
 Gln Glu Phe Met Gln Leu Phe Glu Gly Val Ser Ala Ala Asp Ala Lys

645	650	655
Asp Ala Arg Ala Glu Gln Leu Ala Ala Met Pro Leu Phe Glu Arg Leu		
660	665	670
Ala Gln Arg Ile Ile Asp Gly Asp Lys Asn Gly Leu Glu Asp Asp Leu		
675	680	685
Glu Ala Gly Met Lys Glu Lys Ser Pro Ile Ala Ile Ile Asn Glu Asp		
690	695	700
Leu Leu Asn Gly Met Lys Thr Val Gly Glu Leu Phe Gly Ser Gly Gln		
705	710	715
Met Gln Leu Pro Phe Val Leu Gln Ser Ala Glu Thr Met Lys Thr Ala		
725	730	735
Val Ala Tyr Leu Glu Pro Phe Met Glu Glu Glu Ala Glu Ala Thr Gly		
740	745	750
Ser Ala Gln Ala Glu Gly Lys Gly Lys Ile Val Val Ala Thr Val Lys		
755	760	765
Gly Asp Val His Asp Ile Gly Lys Asn Leu Val Asp Ile Ile Leu Ser		
770	775	780
Asn Asn Gly Tyr Asp Val Val Asn Leu Gly Ile Lys Gln Pro Leu Ser		
785	790	795
Ala Met Leu Glu Ala Ala Glu Glu His Lys Ala Asp Val Ile Gly Met		
805	810	815
Ser Gly Leu Leu Val Lys Ser Thr Val Val		
820	825	
<210> 215		
<211> 621		
<212> DNA		
<213> Corynebacterium glutamicum		
<220>		
<221> CDS		
<222> (101)..(598)		
<223> RXN03074		
<400> 215		
tttgtggca atctgggttt ttcgtaattt tgtggatga atctcttaaa aattcacatt 60		
tagcaggaca agcatactgt tttagttcta tgctgtggc atg act caa agt gct 115 Met Thr Gln Ser Ala 1 5		
cca gaa ttc att gcc acc gca gac ctc gta gac atc atc ggc gac aac 163 Pro Glu Phe Ile Ala Thr Ala Asp Leu Val Asp Ile Ile Gly Asp Asn 10 15 20		
gcg caa tca tgc gac act cag ttt caa aac ctt gga ggt gcc aca gaa 211 Ala Gln Ser Cys Asp Thr Gln Phe Gln Asn Leu Gly Gly Ala Thr Glu 25 30 35		

ttc cac gga ata ata acc acc gtg aaa tgc ttc caa gac aac gcc ctc	259		
Phe His Gly Ile Ile Thr Thr Val Lys Cys Phe Gln Asp Asn Ala Leu			
40	45	50	
ctg aaa tcc atc ctg agc gag gat aat cct ggg gga gtg ctg gtt atc	307		
Leu Lys Ser Ile Leu Ser Glu Asp Asn Pro Gly Gly Val Leu Val Ile			
55	60	65	
gat ggc gac gca tcc gtg cac acc gcg cta gtt ggc gac atc att gca	355		
Asp Gly Asp Ala Ser Val His Thr Ala Leu Val Gly Asp Ile Ile Ala			
70	75	80	85
gga ctt gga aaa gat cat ggt tgg tcc gga gta att gtc aac gga gca	403		
Gly Leu Gly Lys Asp His Gly Trp Ser Gly Val Ile Val Asn Gly Ala			
90	95	100	
att cga gac tcc gca gtc atc ggc acc atg acc ttt ggt tgt aaa gcc	451		
Ile Arg Asp Ser Ala Val Ile Gly Thr Met Thr Phe Gly Cys Lys Ala			
105	110	115	
ctt gga acc aac ccg cgaaaaa tcc act aaa act ggt tcc ggc gaa cga	499		
Leu Gly Thr Asn Pro Arg Lys Ser Thr Lys Thr Gly Ser Gly Glu Arg			
120	125	130	
gac gta gtg gta tcg att ggt ggc att gac ttc att cct ggt cat tac	547		
Asp Val Val Val Ser Ile Gly Gly Ile Asp Phe Ile Pro Gly His Tyr			
135	140	145	
gtc tac gcg gac tct gac gga att atc gtc acc gag gcg cca att aag	595		
Val Tyr Ala Asp Ser Asp Gly Ile Ile Val Thr Glu Ala Pro Ile Lys			
150	155	160	165
cag taattttttt tgacgacgca gta	621		
Gln			

<210> 216			
<211> 166			
<212> PRT			
<213> Corynebacterium glutamicum			
<400> 216			
Met Thr Gln Ser Ala Pro Glu Phe Ile Ala Thr Ala Asp Leu Val Asp			
1	5	10	15
Ile Ile Gly Asp Asn Ala Gln Ser Cys Asp Thr Gln Phe Gln Asn Leu			
20	25	30	
Gly Gly Ala Thr Glu Phe His Gly Ile Ile Thr Thr Val Lys Cys Phe			
35	40	45	
Gln Asp Asn Ala Leu Leu Lys Ser Ile Leu Ser Glu Asp Asn Pro Gly			
50	55	60	
Gly Val Leu Val Ile Asp Gly Asp Ala Ser Val His Thr Ala Leu Val			
65	70	75	80
Gly Asp Ile Ile Ala Gly Leu Gly Lys Asp His Gly Trp Ser Gly Val			
85	90	95	

Ile Val Asn Gly Ala Ile Arg Asp Ser Ala Val Ile Gly Thr Met Thr
 100 105 110

Phe Gly Cys Lys Ala Leu Gly Thr Asn Pro Arg Lys Ser Thr Lys Thr
 115 120 125

Gly Ser Gly Glu Arg Asp Val Val Val Ser Ile Gly Gly Ile Asp Phe
 130 135 140

Ile Pro Gly His Tyr Val Tyr Ala Asp Ser Asp Gly Ile Ile Val Thr
 145 150 155 160

Glu Ala Pro Ile Lys Gln
 165

<210> 217

<211> 621

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(598)

<223> FRXA02906

<400> 217

tttgtggca atctgggtttt ttctgtaattt tttggatga atctcttaaa aattcacatt 60

tagcaggaca agcatactgt ttttagttcta tgctgtgggc atg act caa agt gct 115
 Met Thr Gln Ser Ala
 1 5

cca gaa ttc att gcc acc gca gac ctc gta gac atc atc ggc gac aac 163
 Pro Glu Phe Ile Ala Thr Ala Asp Leu Val Asp Ile Ile Gly Asp Asn
 10 15 20

gcg caa tca tgc gac act cag ttt caa aac ctt gga ggt gcc aca gaa 211
 Ala Gln Ser Cys Asp Thr Gln Phe Gln Asn Leu Gly Gly Ala Thr Glu
 25 30 35

ttc cac gga ata ata acc acc gtg aaa tgc ttc caa gac aac gcc ctc 259
Phe His Gly Ile Ile Thr Thr Val Lys Cys Phe Gln Asn Ala Ile
 40 45 50

ctg aaa tcc atc ctg agc gag gat aat cct ggg gga gtg ctg gtt atc 307
 Leu Lys Ser Ile Leu Ser Glu Asp Asn Pro Gly Gly Val Leu Val Ile
 55 60 65

gat ggc gac gca tcc gtg cac acc gcg cta gtt ggc gac atc att gca 355
 Asp Gly Asp Ala Ser Val His Thr Ala Leu Val Gly Asp Ile Ile Ala
 70 75 80 85

gga ctt gga aaa gat cat ggt tgg tcc gga gta att gtc aac gga gca 403
 Gly Leu Gly Lys Asp His Gly Trp Ser Gly Val Ile Val Asn Gly Ala
 90 95 100

att cga gac tcc gca gtc atc ggc acc atg acc ttt ggt tgt aaa gcc 451
 Ile Arg Asp Ser Ala Val Ile Gly Thr Met Thr Phe Gly Cys Lys Ala
 105 110 115

ctt gga acc aac ccg cg	aaa tcc act aaa act ggt tcc ggc gaa cga	499	
Leu Gly Thr Asn Pro Arg Lys Ser Thr Lys Thr Gly Ser Gly Glu Arg			
120	125	130	
gac gta gtg gta tcg att ggt ggc att gac ttc att cct ggt cat tac	547		
Asp Val Val Val Ser Ile Gly Gly Ile Asp Phe Ile Pro Gly His Tyr			
135	140	145	
gtc tac gcg gac tct gac gga att atc gtc acc gag gcg cca att aag	595		
Val Tyr Ala Asp Ser Asp Gly Ile Ile Val Thr Glu Ala Pro Ile Lys			
150	155	160	165
cag taatttgttt tgacgacgca gta	621		
Gln			

<210> 218			
<211> 166			
<212> PRT			
<213> Corynebacterium glutamicum			
<400> 218			
Met Thr Gln Ser Ala Pro Glu Phe Ile Ala Thr Ala Asp Leu Val Asp			
1	5	10	15
Ile Ile Gly Asp Asn Ala Gln Ser Cys Asp Thr Gln Phe Gln Asn Leu			
20	25	30	
Gly Gly Ala Thr Glu Phe His Gly Ile Ile Thr Thr Val Lys Cys Phe			
35	40	45	
Gln Asp Asn Ala Leu Leu Lys Ser Ile Leu Ser Glu Asp Asn Pro Gly			
50	55	60	
Gly Val Leu Val Ile Asp Gly Asp Ala Ser Val His Thr Ala Leu Val			
65	70	75	80
Gly Asp Ile Ile Ala Gly Leu Gly Lys Asp His Gly Trp Ser Gly Val			
85	90	95	
Ile Val Asn Gly Ala Ile Arg Asp Ser Ala Val Ile Gly Thr Met Thr			
100	105	110	
Phe Gly Cys Lys Ala Leu Gly Thr Asn Pro Arg Lys Ser Thr Lys Thr			
115	120	125	
Gly Ser Gly Glu Arg Asp Val Val Val Ser Ile Gly Gly Ile Asp Phe			
130	135	140	
Ile Pro Gly His Tyr Val Tyr Ala Asp Ser Asp Gly Ile Ile Val Thr			
145	150	155	160
Glu Ala Pro Ile Lys Gln			
165			

<210> 219			
<211> 1557			
<212> DNA			
<213> Corynebacterium glutamicum			

<220>
<221> CDS
<222> (101)..(1534)
<223> RXN00132

<400> 219
aacagcttca atcaattcgg tgtccactcc aacatgtaga gtggtgcgcg ttaaaaaagt 60

tttcctaatt	ttcattttct	taaaaggagc	tcgccaggac	atg	gca	cag	gtt	atg	115
					Met	Ala	Gln	Val	Met
					1				5

gac ttc aag gtt gcc gat ctt tca cta gca gag gca gga cgt cac cag 163
Asp Phe Lys Val Ala Asp Leu Ser Leu Ala Glu Ala Gly Arg His Gln
10 15 20

att cgt ctt gca gag tat gag atg cca ggt ctc atg cag ttg cgc aag 211
Ile Arg Leu Ala Glu Tyr Glu Met Pro Gly Leu Met Gln Leu Arg Lys
25 30 35

gaa ttc gca gac gag cag cct ttg aag ggc gcc cga att gct ggt tct 259
Glu Phe Ala Asp Glu Gln Pro Leu Lys Gly Ala Arg Ile Ala Gly Ser
40 45 50

atc cac atg acg gtc cag acc gcc gtg ctt att gag acc ctc act gct 307
Ile His Met Thr Val Gln Thr Ala Val Leu Ile Glu Thr Leu Thr Ala
55 60 65

ttg ggc gct gag cgt tgg gct tcc tgc aac att ttc tcc acc cag 355
Leu Gly Ala Glu Val Arg Trp Ala Ser Cys Asn Ile Phe Ser Thr Gln
70 75 80 85

gat gag gct gca gcg gct atc gtt gtc ggc tcc ggc acc gtc gaa gag 403
Asp Glu Ala Ala Ala Ile Val Val Gly Ser Gly Thr Val Glu Glu
90 95 100

cca gct ggt gtt cca gta ttc gcg tgg aag ggt gag tca ctg gag gag 451
Pro Ala Gly Val Pro Val Phe Ala Trp Lys Gly Glu Ser Leu Glu Glu
105 110 115

tac tgg tgg tgc atc aac cag atc ttc agc tgg ggc gat gag ctg cca 499
Tyr Trp Trp Cys Ile Asn Glu Ile Phe Ser Trp Gly Asp Glu Leu Pro
120 125 130

aac atg atc ctc gac gac ggc ggt gac gcc acc atg gct gtt att cgc 547
Asn Met Ile Leu Asp Asp Gly Gly Asp Ala Thr Met Ala Val Ile Arg
135 140 145

ggt cgc gaa tac gag cag gct ggt ctg gtt cca cca gca gag gcc aac 595
Gly Arg Glu Tyr Glu Gln Ala Gly Leu Val Pro Pro Ala Glu Ala Asn
150 155 160 165

gat tcc gat gag tac atc gca ttc ttg ggc atg ctg cgt gag gtt ctt 643
Asp Ser Asp Glu Tyr Ile Ala Phe Leu Gly Met Leu Arg Glu Val Leu
170 175 180

gct gca gag cct ggc aag tgg ggc aag atc gct gag gcc gtt aag ggt 691
Ala Ala Glu Pro Gly Lys Trp Gly Lys Ile Ala Glu Ala Val Lys Gly
185 190 195

gtc acc gag gaa acc acc ggt gtg cac cgc ctg tac cac ttc gct 739
 Val Thr Glu Glu Thr Thr Gly Val His Arg Leu Tyr His Phe Ala
 200 205 210

 gaa gaa ggc gtg ctg cct ttc cca gcg atg aac gtc aac gac gct gtc 787
 Glu Glu Gly Val Leu Pro Phe Pro Ala Met Asn Val Asn Asp Ala Val
 215 220 225

 acc aag tcc aag ttt gat aac aag tac ggc acc cgc cac tcc ctg atc 835
 Thr Lys Ser Lys Phe Asp Asn Lys Tyr Gly Thr Arg His Ser Leu Ile
 230 235 240 245

 gac ggc atc aac cgc gcc act gac atg ctc atg ggc ggc aag aac gtc 883
 Asp Gly Ile Asn Arg Ala Thr Asp Met Leu Met Gly Gly Lys Asn Val
 250 255 260

 ctt gtc tgc ggt tac ggc gat gtc ggc aag ggc tgc gct gag gct ttc 931
 Leu Val Cys Gly Tyr Gly Asp Val Gly Lys Gly Cys Ala Glu Ala Phe
 265 270 275

 gac ggc cag ggc gct cgc aag gtc acc gaa gct gac cca atc aac 979
 Asp Gly Gln Gly Ala Arg Val Lys Val Thr Glu Ala Asp Pro Ile Asn
 280 285 290

 gct ctt cag gct ctg atg gat ggc tac tct gtg gtc acc gtt gat gag
 1027
 Ala Leu Gln Ala Leu Met Asp Gly Tyr Ser Val Val Thr Val Asp Glu
 295 300 305

 gcc atc gag gac gcc gac atc gtg atc acc gcg acc ggc aac aag gac
 1075
 Ala Ile Glu Asp Ala Asp Ile Val Ile Thr Ala Thr Gly Asn Lys Asp
 310 315 320 325

 atc att tcc ttc gag cag atg ctc aag atg aag gat cac gct ctg ctg
 1123
 Ile Ile Ser Phe Glu Gln Met Leu Lys Met Lys Asp His Ala Leu Leu
 330 335 340

 ggc aac atc ggt cac ttt gat aat gag atc gat atg cat tcc ctg ttg
 1171
 Gly Asn Ile Gly His Phe Asp Asn Glu Ile Asp Met His Ser Leu Leu
 345 350 355

 cac cgc gac gac gtc acc cgc acc acg atc aag cca cag gtc gac gag
 1219
 His Arg Asp Asp Val Thr Arg Thr Ile Lys Pro Gln Val Asp Glu
 360 365 370

 ttc acc ttc tcc acc ggt cgc tcc atc atc gtc ctg tcc gaa ggt cgc
 1267
 Phe Thr Phe Ser Thr Gly Arg Ser Ile Ile Val Leu Ser Glu Gly Arg
 375 380 385

 ctg ttg aac ctt ggc aac gcc acc gga cac cca tca ttt gtc atg tcc
 1315
 Leu Leu Asn Leu Gly Asn Ala Thr Gly His Pro Ser Phe Val Met Ser
 390 395 400 405

 aac tct ttc gcc gat cag acc att gcg cag atc gaa ctg ttc caa aac
 1363

Asn Ser Phe Ala Asp Gln Thr Ile Ala Gln Ile Glu Leu Phe Gln Asn
 410 415 420

gaa gga cag tac gag aac gag gtc tac cgt ctg cct aag gtt ctc gac
 1411

Glu Gly Gln Tyr Glu Asn Glu Val Tyr Arg Leu Pro Lys Val Leu Asp
 425 430 435

gaa aag gtg gca cgc atc cac gtt gag gct ctc ggc ggt cag ctc acc
 1459

Glu Lys Val Ala Arg Ile His Val Glu Ala Leu Gly Gly Gln Leu Thr
 440 445 450

gaa ctg acc aag gag cag gct gag tac atc ggc gtt gac gtt gca ggc
 1507

Glu Leu Thr Lys Glu Gln Ala Glu Tyr Ile Gly Val Asp Val Ala Gly
 455 460 465

cca ttc aag ccg gag cac tac cgc tac taatgattgt cagcatttag
 1554

Pro Phe Lys Pro Glu His Tyr Arg Tyr
 470 475

gga
 1557

<210> 220

<211> 478

<212> PRT

<213> Corynebacterium glutamicum

<400> 220

Met Ala Gln Val Met Asp Phe Lys Val Ala Asp Leu Ser Leu Ala Glu
 1 5 10 15

Ala Gly Arg His Gln Ile Arg Leu Ala Glu Tyr Glu Met Pro Gly Leu
 20 25 30

Met Gln Leu Arg Lys Glu Phe Ala Asp Glu Gln Pro Leu Lys Gly Ala
 35 40 45

~~Arg Ile Ala Gly Ser Ile His Met Thr Val Gln Thr Ala Val Leu Ile~~
 50 55 60

Glu Thr Leu Thr Ala Leu Gly Ala Glu Val Arg Trp Ala Ser Cys Asn
 65 70 75 80

Ile Phe Ser Thr Gln Asp Glu Ala Ala Ala Ile Val Val Gly Ser
 85 90 95

Gly Thr Val Glu Glu Pro Ala Gly Val Pro Val Phe Ala Trp Lys Gly
 100 105 110

Glu Ser Leu Glu Glu Tyr Trp Trp Cys Ile Asn Gln Ile Phe Ser Trp
 115 120 125

Gly Asp Glu Leu Pro Asn Met Ile Leu Asp Asp Gly Gly Asp Ala Thr
 130 135 140

Met Ala Val Ile Arg Gly Arg Glu Tyr Glu Gln Ala Gly Leu Val Pro

145	150	155	160
Pro Ala Glu Ala Asn Asp Ser Asp Glu Tyr Ile Ala Phe Leu Gly Met			
165	170	175	
Leu Arg Glu Val Leu Ala Ala Glu Pro Gly Lys Trp Gly Lys Ile Ala			
180	185	190	
Glu Ala Val Lys Gly Val Thr Glu Glu Thr Thr Gly Val His Arg			
195	200	205	
Leu Tyr His Phe Ala Glu Glu Gly Val Leu Pro Phe Pro Ala Met Asn			
210	215	220	
Val Asn Asp Ala Val Thr Lys Ser Lys Phe Asp Asn Lys Tyr Gly Thr			
225	230	235	240
Arg His Ser Leu Ile Asp Gly Ile Asn Arg Ala Thr Asp Met Leu Met			
245	250	255	
Gly Gly Lys Asn Val Leu Val Cys Gly Tyr Gly Asp Val Gly Lys Gly			
260	265	270	
Cys Ala Glu Ala Phe Asp Gly Gln Gly Ala Arg Val Lys Val Thr Glu			
275	280	285	
Ala Asp Pro Ile Asn Ala Leu Gln Ala Leu Met Asp Gly Tyr Ser Val			
290	295	300	
Val Thr Val Asp Glu Ala Ile Glu Asp Ala Asp Ile Val Ile Thr Ala			
305	310	315	320
Thr Gly Asn Lys Asp Ile Ile Ser Phe Glu Gln Met Leu Lys Met Lys			
325	330	335	
Asp His Ala Leu Leu Gly Asn Ile Gly His Phe Asp Asn Glu Ile Asp			
340	345	350	
Met His Ser Leu Leu His Arg Asp Asp Val Thr Arg Thr Thr Ile Lys			
355	360	365	
Pro Gln Val Asp Glu Phe Thr Phe Ser Thr Gly Arg Ser Ile Ile Val			
370	375	380	
Leu Ser Glu Gly Arg Leu Leu Asn Leu Gly Asn Ala Thr Gly His Pro			
385	390	395	400
Ser Phe Val Met Ser Asn Ser Phe Ala Asp Gln Thr Ile Ala Gln Ile			
405	410	415	
Glu Leu Phe Gln Asn Glu Gly Gln Tyr Glu Asn Glu Val Tyr Arg Leu			
420	425	430	
Pro Lys Val Leu Asp Glu Lys Val Ala Arg Ile His Val Glu Ala Leu			
435	440	445	
Gly Gly Gln Leu Thr Glu Leu Thr Lys Glu Gln Ala Glu Tyr Ile Gly			
450	455	460	
Val Asp Val Ala Gly Pro Phe Lys Pro Glu His Tyr Arg Tyr			
465	470	475	

```

<210> 221
<211> 128
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (1)..(105)
<223> FRXA00132

<400> 221
cac gtt gag gct ctc ggc ggt cag ctc acc gaa ctg acc aag gag cag 48
His Val Glu Ala Leu Gly Gly Gln Leu Thr Glu Leu Thr Lys Glu Gln
1 5 10 15

gct gag tac atc ggc gtt gac gtt gca ggc cca ttc aag ccg gag cac 96
Ala Glu Tyr Ile Gly Val Asp Val Ala Gly Pro Phe Lys Pro Glu His
20 25 30

tac cgc tac taatgattgt cagcatttag gga 128
Tyr Arg Tyr
35

<210> 222
<211> 35
<212> PRT
<213> Corynebacterium glutamicum

<400> 222
His Val Glu Ala Leu Gly Gly Gln Leu Thr Glu Leu Thr Lys Glu Gln 15
1 5 10 15

Ala Glu Tyr Ile Gly Val Asp Val Ala Gly Pro Phe Lys Pro Glu His
20 25 30

Tyr Arg Tyr
35

<210> 223
<211> 1396
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1396)
<223> FRXA01371

<400> 223
aacagttca atcaattcggttgtccactcc aacatgtaga gtggtgcgcg ttaaaaaaaaagt 60
tttcctaatt ttcatttct taaaaggagc tcgccaggac atg gca cag gtt atg 115
Met Ala Gln Val Met
1 5

gac ttc aag gtt gcc gat ctt tca cta gca gag gca gga cgt cac cag 163
Asp Phe Lys Val Ala Asp Leu Ser Leu Ala Glu Ala Gly Arg His Gln

```

10	15	20	
att cgt ctt gca gag tat gag atg cca ggt ctc atg cag ttg cgc aag Ile Arg Leu Ala Glu Tyr Glu Met Pro Gly Leu Met Gln Leu Arg Lys	25	30	211
gaa ttc gca gac gag cag cct ttg aag ggc gcc cga att gct ggt tct Glu Phe Ala Asp Glu Gln Pro Leu Lys Gly Ala Arg Ile Ala Gly Ser	40	45	259
atc cac atg acg gtc cag acc gcc gtg ctt att gag acc ctc act gct Ile His Met Thr Val Gln Thr Ala Val Leu Ile Glu Thr Leu Thr Ala	55	60	307
ttg ggc gct gag cgt tgg gct tcc tgc aac att ttc tcc acc cag Leu Gly Ala Glu Val Arg Trp Ala Ser Cys Asn Ile Phe Ser Thr Gln	70	75	355
gat gag gct gca gcg gct atc gtt gtc ggc tcc ggc acc gtc gaa gag Asp Glu Ala Ala Ala Ile Val Val Gly Ser Gly Thr Val Glu Glu	90	95	403
cca gct ggt gtt cca gta ttc gcg tgg aag ggt gag tca ctg gag gag Pro Ala Gly Val Pro Val Phe Ala Trp Lys Gly Glu Ser Leu Glu Glu	105	110	451
tac tgg tgg tgc atc aac cag atc ttc agc tgg ggc gat gag ctg cca Tyr Trp Trp Cys Ile Asn Gln Ile Phe Ser Trp Gly Asp Glu Leu Pro	120	125	499
aac atg atc ctc gac gac ggc ggt gac gcc acc atg gct gtt att cgc Asn Met Ile Leu Asp Asp Gly Gly Asp Ala Thr Met Ala Val Ile Arg	135	140	547
ggt cgc gaa tac gag cag gct ggt ctg gtt cca cca gca gag gcc aac Gly Arg Glu Tyr Glu Gln Ala Gly Leu Val Pro Pro Ala Glu Ala Asn	150	155	595
gat tcc gat gag tac atc gca ttc ttg ggc atg ctg cgt gag gtt ctt Asp Ser Asp Glu Tyr Ile Ala Phe Leu Gly Met Leu Arg Glu Val Leu	170	175	643
gct gca gag cct ggc aag tgg ggc aag atc gct gag gcc gtt aag ggt Ala Ala Glu Pro Gly Lys Trp Gly Lys Ile Ala Glu Ala Val Lys Gly	185	190	691
gtc acc gag gaa acc acc acc ggt gtg cac cgc ctg tac cac ttc gct Val Thr Glu Glu Thr Thr Gly Val His Arg Leu Tyr His Phe Ala	200	205	739
gaa gaa ggc gtg ctg cct ttc cca gcg atg aac gtc aac gac gct gtc Glu Glu Gly Val Leu Pro Phe Pro Ala Met Asn Val Asn Asp Ala Val	215	220	787
acc aag tcc aag ttt gat aac aag tac ggc acc cgc cac tcc ctg atc Thr Lys Ser Lys Phe Asp Asn Lys Tyr Gly Thr Arg His Ser Leu Ile	230	235	835
gac ggc atc aac cgc gcc act gac atg ctc atg ggc ggc aag aac gtg Asp Gly Ile Asn Arg Ala Thr Asp Met Leu Met Gly Gly Lys Asn Val	250	255	883
			245
			260

ctt gtc tgc ggt tac ggc gat gtc ggc aag ggc tgc gct gag gct ttc 931
 Leu Val Cys Gly Tyr Gly Asp Val Gly Lys Gly Cys Ala Glu Ala Phe
 265 270 275

gac ggc cag ggc gct cgc gtc aag gtc acc gaa gct gac cca atc aac 979
 Asp Gly Gln Gly Ala Arg Val Lys Val Thr Glu Ala Asp Pro Ile Asn
 280 285 290

gct ctt cag gct ctg atg gat ggc tac tct gtg gtc acc gtt gat gag 1027
 Ala Leu Gln Ala Leu Met Asp Gly Tyr Ser Val Val Thr Val Asp Glu
 295 300 305

gcc atc gag gac gcc gac atc gtc atc acc gcg acc ggc aac aag gac 1075
 Ala Ile Glu Asp Ala Asp Ile Val Ile Thr Ala Thr Gly Asn Lys Asp
 310 315 320 325

atc att tcc ttc gag cag atg ctc aag atg aag gat cac gct ctg ctg 1123
 Ile Ile Ser Phe Glu Gln Met Leu Lys Met Lys Asp His Ala Leu Leu
 330 335 340

ggc aac atc ggt cac ttt gat aat gag atc gat atg cat tcc ctg ttg 1171
 Gly Asn Ile Gly His Phe Asp Asn Glu Ile Asp Met His Ser Leu Leu
 345 350 355

cac cgc gac gac gtc acc cgc acc acg atc aag cca cag gtc gac gag 1219
 His Arg Asp Asp Val Thr Arg Thr Thr Ile Lys Pro Gln Val Asp Glu
 360 365 370

tcc acc ttc tcc acc ggt cgc tcc atc atc gtc ctg tcc gaa ggt cgc 1267
 Phe Thr Phe Ser Thr Gly Arg Ser Ile Ile Val Leu Ser Glu Gly Arg
 375 380 385

ctg ttg aac ctt ggc aac gcc acc gga cac cca tca ttt gtc atg tcc 1315
 Leu Leu Asn Leu Gly Asn Ala Thr Gly His Pro Ser Phe Val Met Ser
 390 395 400 405

aac tct ttc gcc gat cag acc att gcg cag atc gaa ctg ttc caa aac 1363
 Asn Ser Phe Ala Asp Gln Thr Ile Ala Gln Ile Glu Leu Phe Gln Asn
 410 415 420

gaa gga cag tac gag aac gag gtc tac cgt ctg
 1396
 Glu Gly Gln Tyr Glu Asn Glu Val Tyr Arg Leu
 425 430

<210> 224
<211> 432
<212> PRT
<213> Corynebacterium glutamicum

<400> 224

Met Ala Gln Val Met Asp Phe Lys Val Ala Asp Leu Ser Leu Ala Glu
 1 5 10 15
 Ala Gly Arg His Gln Ile Arg Leu Ala Glu Tyr Glu Met Pro Gly Leu
 20 25 30
 Met Gln Leu Arg Lys Glu Phe Ala Asp Glu Gln Pro Leu Lys Gly Ala
 35 40 45
 Arg Ile Ala Gly Ser Ile His Met Thr Val Gln Thr Ala Val Leu Ile
 50 55 60
 Glu Thr Leu Thr Ala Leu Gly Ala Glu Val Arg Trp Ala Ser Cys Asn
 65 70 75 80
 Ile Phe Ser Thr Gln Asp Glu Ala Ala Ala Ile Val Val Gly Ser
 85 90 95
 Gly Thr Val Glu Glu Pro Ala Gly Val Pro Val Phe Ala Trp Lys Gly
 100 105 110
 Glu Ser Leu Glu Glu Tyr Trp Trp Cys Ile Asn Gln Ile Phe Ser Trp
 115 120 125
 Gly Asp Glu Leu Pro Asn Met Ile Leu Asp Asp Gly Gly Asp Ala Thr
 130 135 140
 Met Ala Val Ile Arg Gly Arg Glu Tyr Glu Gln Ala Gly Leu Val Pro
 145 150 155 160
 Pro Ala Glu Ala Asn Asp Ser Asp Glu Tyr Ile Ala Phe Leu Gly Met
 165 170 175
 Leu Arg Glu Val Leu Ala Ala Glu Pro Gly Lys Trp Gly Lys Ile Ala
 180 185 190
 Glu Ala Val Lys Gly Val Thr Glu Glu Thr Thr Gly Val His Arg
 195 200 205
 Leu Tyr His Phe Ala Glu Glu Gly Val Leu Pro Phe Pro Ala Met Asn
 210 215 220
 Val Asn Asp Ala Val Thr Lys Ser Lys Phe Asp Asn Lys Tyr Gly Thr
 225 230 235 240
 Arg His Ser Leu Ile Asp Gly Ile Asn Arg Ala Thr Asp Met Leu Met
 245 250 255
 Gly Gly Lys Asn Val Leu Val Cys Gly Tyr Gly Asp Val Gly Lys Gly
 260 265 270
 Cys Ala Glu Ala Phe Asp Gly Gln Gly Ala Arg Val Lys Val Thr Glu
 275 280 285
 Ala Asp Pro Ile Asn Ala Leu Gln Ala Leu Met Asp Gly Tyr Ser Val
 290 295 300
 Val Thr Val Asp Glu Ala Ile Glu Asp Ala Asp Ile Val Ile Thr Ala
 305 310 315 320
 Thr Gly Asn Lys Asp Ile Ile Ser Phe Glu Gln Met Leu Lys Met Lys

325	330	335
Asp His Ala Leu Leu Gly Asn Ile Gly His Phe Asp Asn Glu Ile Asp		
340	345	350
Met His Ser Leu Leu His Arg Asp Asp Val Thr Arg Thr Thr Ile Lys		
355	360	365
Pro Gln Val Asp Glu Phe Thr Phe Ser Thr Gly Arg Ser Ile Ile Val		
370	375	380
Leu Ser Glu Gly Arg Leu Leu Asn Leu Gly Asn Ala Thr Gly His Pro		
385	390	395
Ser Phe Val Met Ser Asn Ser Phe Ala Asp Gln Thr Ile Ala Gln Ile		
405	410	415
Glu Leu Phe Gln Asn Glu Gly Gln Tyr Glu Asn Glu Val Tyr Arg Leu		
420	425	430

<210> 225
<211> 2358
<212> DNA
<213> *Corynebacterium glutamicum*

<220>
<221> CDS
<222> (101)..(2335)
<223> RXN02085

<400> 225
caccgggtga tttcgcaac cttgaaacat cgtcagaaga ttgccgtgcg tcctagccgg 60
gatccgcacg ttccggctcaa gcagaaaatc tttaactcac atg act tcc aac ttt 115
Met Thr Ser Asn Phe
1 5

tct tcc act gtc gct ggt ctt cct cgc atc gga gcg aag cgt gaa ctg 163
Ser Ser Thr Val Ala Gly Leu Pro Arg Ile Gly Ala Lys Arg Glu Leu
10 15 20

aag ttc gcg ctc gaa ggc tac tgg aat gga tca att gaa ggt cgc gaa 211
Lys Phe Ala Leu Glu Gly Tyr Trp Asn Gly Ser Ile Glu Gly Arg Glu
25 30 35

ctt gcg cag acc gcc cgc caa ttg gtc aac act gca tcg gat tct ttg 259
Leu Ala Gln Thr Ala Arg Gln Leu Val Asn Thr Ala Ser Asp Ser Leu
40 45 50

tct gga ttg gat tcc gtt ccg ttt gca gga cgt tcc tac tac gac gca 307
Ser Gly Leu Asp Ser Val Pro Phe Ala Gly Arg Ser Tyr Tyr Asp Ala
55 60 65

atg ctc gat acc gcc gct att ttg ggt gtg ctg ccg gag cgt ttt gat 355
Met Leu Asp Thr Ala Ala Ile Leu Gly Val Leu Pro Glu Arg Phe Asp
70 75 80 85

gac atc gct gat cat gaa aac gat ggt ctc cca ctg tgg att gac cgc		403	
Asp Ile Ala Asp His Glu Asn Asp Gly Leu Pro Leu Trp Ile Asp Arg			
90	95	100	
tac ttt ggc gct gct cgcc ggt act gag acc ctg cct gca cag gca atg		451	
Tyr Phe Gly Ala Ala Arg Gly Thr Glu Thr Leu Pro Ala Gln Ala Met			
105	110	115	
acc aag tgg ttt gat acc aac tac cac tac ctc gtg ccg gag ttg tct		499	
Thr Lys Trp Phe Asp Thr Asn Tyr His Tyr Leu Val Pro Glu Leu Ser			
120	125	130	
gcg gat aca cgt ttc gtt ttg gat gcg tcc gcg ctg att gag gat ctc		547	
Ala Asp Thr Arg Phe Val Leu Asp Ala Ser Ala Leu Ile Glu Asp Leu			
135	140	145	
cgt tgc cag cag gtt cgt ggc gtt aat gcc cgc cct gtt ctg gtt ggt		595	
Arg Cys Gln Gln Val Arg Gly Val Asn Ala Arg Pro Val Leu Val Gly			
150	155	160	165
cca ctg act ttc ctt tcc ctt gct cgc acc act gat ggt tcc aat cct		643	
Pro Leu Thr Phe Leu Ser Leu Ala Arg Thr Thr Asp Gly Ser Asn Pro			
170	175	180	
ttg gat cac ctg cct gca ctg ttt gag gtc tac gag cgc ctc atc aag		691	
Leu Asp His Leu Pro Ala Leu Phe Glu Val Tyr Glu Arg Leu Ile Lys			
185	190	195	
tct ttc gat act gag tgg gtt cag atc gat gag cct gcg ttg gtc acc		739	
Ser Phe Asp Thr Glu Trp Val Gln Ile Asp Glu Pro Ala Leu Val Thr			
200	205	210	
gat gtt gct cct gag gtt ttg gag cag gtc cgc gct ggt tac acc act		787	
Asp Val Ala Pro Glu Val Leu Glu Gln Val Arg Ala Gly Tyr Thr Thr			
215	220	225	
ttg gct aag cgc gat ggc gtg ttt gtc aat act tac ttc ggc tct ggc		835	
Leu Ala Lys Arg Asp Gly Val Phe Val Asn Thr Tyr Phe Gly Ser Gly			
230	235	240	245
gat cag cgc ctg aac act ctt gcg ggc atc ggc ctt ggc gcg att ggc		883	
Asp Gln Ala Leu Asn Thr Leu Ala Gly Ile Gly Leu Gly Ala Ile Gly			
250	255	260	
gtt gac ttg gtc acc cat ggc gtc act gag ctt gct gcg tgg aag ggt		931	
Val Asp Leu Val Thr His Gly Val Thr Glu Leu Ala Ala Trp Lys Gly			
265	270	275	
gag gag ctg ctg gtt gcg ggc atc gtt gat ggt cgt aac att tgg cgc		979	
Glu Glu Leu Leu Val Ala Gly Ile Val Asp Gly Arg Asn Ile Trp Arg			
280	285	290	
acc gac ctg tgt gct gct ctt gct tcc ctg aag cgc ctg gca gct cgc			
1027			
Thr Asp Leu Cys Ala Ala Ser Leu Lys Arg Leu Ala Ala Arg			
295	300	305	
ggc cca atc gca gtg tct acc tct tgt tca ctg ctg cac gtt cct tac			
1075			
Gly Pro Ile Ala Val Ser Thr Ser Cys Ser Leu Leu His Val Pro Tyr			
310	315	320	325

acc ctc gag gct gag aac att gag cct gag gtc cg_c gac tgg ctt gcc
1123

Thr Leu Glu Ala Glu Asn Ile Glu Pro Glu Val Arg Asp Trp Leu Ala
330 335 340

ttc ggc tcg gag aag atc acc gag gtc aag ctg ctt gcc gac gcc cta
1171

Phe Gly Ser Glu Lys Ile Thr Glu Val Lys Leu Leu Ala Asp Ala Leu
345 350 355

gcc ggc aac atc gac gc_g gct gc_g ttc gat gc_g gc_g tcc gca gca att
1219

Ala Gly Asn Ile Asp Ala Ala Phe Asp Ala Ala Ser Ala Ala Ile
360 365 370

gct tct cga cg_c acc tcc cca cg_c acc gca cca atc acg cag gaa ctc
1267

Ala Ser Arg Arg Thr Ser Pro Arg Thr Ala Pro Ile Thr Gln Glu Leu
375 380 385

cct ggc cgt agc cgt gga tcc ttc gac act cgt gtt acg ctg cag gag
1315

Pro Gly Arg Ser Arg Gly Ser Phe Asp Thr Arg Val Thr Leu Gln Glu
390 395 400 405

aag tca ctg gag ctt cca gct ctg cca acc acc acc att ggt tct ttc
1363

Lys Ser Leu Glu Leu Pro Ala Leu Pro Thr Thr Ile Gly Ser Phe
410 415 420

cca cag acc cca tcc att cgt tct gct cg_c gct cgt ctg cg_c aag gaa
1411

Pro Gln Thr Pro Ser Ile Arg Ser Ala Arg Ala Arg Leu Arg Lys Glu
425 430 435

tcc atc act ttg gag cag tac gaa gag gca atg cg_c gaa gaa atc gat
1459

Ser Ile Thr Leu Glu Gln Tyr Glu Glu Ala Met Arg Glu Glu Ile Asp
440 445 450

ctg gtc atc gcc aag cag gaa gaa ctt ggt ctt gat gtg ttg gtt cac
1507

Leu Val Ile Ala Lys Gln Glu Glu Leu Gly Leu Asp Val Leu Val His
455 460 465

ggt gag cca gag cg_c aac gac atg gtt cag tac ttc tct gaa ctt ctc
1555

Gly Glu Pro Glu Arg Asn Asp Met Val Gln Tyr Phe Ser Glu Leu Leu
470 475 480 485

gac ggt ttc ctc tca acc gcc aac ggc tgg gtc caa agc tac ggc tcc
1603

Asp Gly Phe Leu Ser Thr Ala Asn Gly Trp Val Gln Ser Tyr Gly Ser
490 495 500

cg_c tgt gtt cgt cct cca gtg ttg gga aac gtt tcc cg_c cca cg_c
1651

Arg Cys Val Arg Pro Pro Val Leu Phe Gly Asn Val Ser Arg Pro Ala
505 510 515

cca atg act gtc aag tgg ttc cag tac gca cag agc ctg acc cag aag
 1699
 Pro Met Thr Val Lys Trp Phe Gln Tyr Ala Gln Ser Leu Thr Gln Lys
 520 525 530

 cat gtc aag gga atg ctc acc ggt cca gtc acc atc ctt gca tgg tcc
 1747
 His Val Lys Gly Met Leu Thr Gly Pro Val Thr Ile Leu Ala Trp Ser
 535 540 545

 ttc gtt cgc gat gat cag ccg ctg gct acc act gct gac cag gtt gca
 1795
 Phe Val Arg Asp Asp Gln Pro Leu Ala Thr Thr Ala Asp Gln Val Ala
 550 555 560 565

 ctg gca ctg cgc gat gaa att aac gat ctc atc gag gct ggc gcg aag
 1843
 Leu Ala Leu Arg Asp Glu Ile Asn Asp Leu Ile Glu Ala Gly Ala Lys
 570 575 580

 atc atc cag gtg gat gag cct gcg att cgt gaa ctg ttg ccg cta cga
 1891
 Ile Ile Gln Val Asp Glu Pro Ala Ile Arg Glu Leu Leu Pro Leu Arg
 585 590 595

 gac gtc gat aag cct gcc tac ctg cag tgg tcc gtg gac tcc ttc cgc
 1939
 Asp Val Asp Lys Pro Ala Tyr Leu Gln Trp Ser Val Asp Ser Phe Arg
 600 605 610

 ctg gcg act gcc gca ccc gac gac gtc caa atc cac acc cac atg
 1987
 Leu Ala Thr Ala Gly Ala Pro Asp Asp Val Gln Ile His Thr His Met
 615 620 625

 tgc tac tcc gag ttc aac gaa gtg atc tcc tcg gtc atc gcg ttg gat
 2035
 Cys Tyr Ser Glu Phe Asn Glu Val Ile Ser Ser Val Ile Ala Leu Asp
 630 635 640 645

 gcc gat gtc acc acc atc gaa gca gca cgt tcc gac atg cag gtc ctc
 2083
 Ala Asp Val Thr Thr Ile Glu Ala Ala Arg Ser Asp Met Gln Val Leu
 650 655 660

 gct gct ctg aaa tct tcc ggc ttc gag ctc ggc gtc gga cct ggt gtg
 2131
 Ala Ala Leu Lys Ser Ser Gly Phe Glu Leu Gly Val Gly Pro Gly Val
 665 670 675

 tgg gat atc cac tcc ccg cgc gtt cct tcc gcg cag aaa gtg gac ggt
 2179
 Trp Asp Ile His Ser Pro Arg Val Pro Ser Ala Gln Lys Val Asp Gly
 680 685 690

 ctc ctc gag gct gca ctg cag tcc gtg gat cct cgc cag ctg tgg gtc
 2227
 Leu Leu Glu Ala Ala Leu Gln Ser Val Asp Pro Arg Gln Leu Trp Val
 695 700 705

aac cca gac tgt ggt ctg aag acc cgt gga tgg cca gaa gtg gaa gct
 2275
 Asn Pro Asp Cys Gly Leu Lys Thr Arg Gly Trp Pro Glu Val Glu Ala
 710 715 720 725

tcc cta aag gtt ctc gtt gag tcc gct aag cag gct cgt gag aaa atc
 2323
 Ser Leu Lys Val Leu Val Glu Ser Ala Lys Gln Ala Arg Glu Lys Ile
 730 735 740

gga gca act atc taaattgggt taccgctagg aac
 2358
 Gly Ala Thr Ile
 745

<210> 226
<211> 745
<212> PRT
<213> Corynebacterium glutamicum

<400> 226
Met Thr Ser Asn Phe Ser Ser Thr Val Ala Gly Leu Pro Arg Ile Gly
 1 5 10 15

Ala Lys Arg Glu Leu Lys Phe Ala Leu Glu Gly Tyr Trp Asn Gly Ser
 20 25 30

Ile Glu Gly Arg Glu Leu Ala Gln Thr Ala Arg Gln Leu Val Asn Thr
 35 40 45

Ala Ser Asp Ser Leu Ser Gly Leu Asp Ser Val Pro Phe Ala Gly Arg
 50 55 60

Ser Tyr Tyr Asp Ala Met Leu Asp Thr Ala Ala Ile Leu Gly Val Leu
 65 70 75 80

Pro Glu Arg Phe Asp Asp Ile Ala Asp His Glu Asn Asp Gly Leu Pro
 85 90 95

Leu Trp Ile Asp Arg Tyr Phe Gly Ala Ala Arg Gly Thr Glu Thr Leu
 100 105 110

Pro Ala Gln Ala Met Thr Lys Trp Phe Asp Thr Asn Tyr His Tyr Leu
 115 120 125

Val Pro Glu Leu Ser Ala Asp Thr Arg Phe Val Leu Asp Ala Ser Ala
 130 135 140

Leu Ile Glu Asp Leu Arg Cys Gln Gln Val Arg Gly Val Asn Ala Arg
 145 150 155 160

Pro Val Leu Val Gly Pro Leu Thr Phe Leu Ser Leu Ala Arg Thr Thr
 165 170 175

Asp Gly Ser Asn Pro Leu Asp His Leu Pro Ala Leu Phe Glu Val Tyr
 180 185 190

Glu Arg Leu Ile Lys Ser Phe Asp Thr Glu Trp Val Gln Ile Asp Glu
 195 200 205

Pro Ala Leu Val Thr Asp Val Ala Pro Glu Val Leu Glu Gln Val Arg
 210 215 220
 Ala Gly Tyr Thr Thr Leu Ala Lys Arg Asp Gly Val Phe Val Asn Thr
 225 230 235 240
 Tyr Phe Gly Ser Gly Asp Gln Ala Leu Asn Thr Leu Ala Gly Ile Gly
 245 250 255
 Leu Gly Ala Ile Gly Val Asp Leu Val Thr His Gly Val Thr Glu Leu
 260 265 270
 Ala Ala Trp Lys Gly Glu Glu Leu Leu Val Ala Gly Ile Val Asp Gly
 275 280 285
 Arg Asn Ile Trp Arg Thr Asp Leu Cys Ala Ala Ser Leu Lys
 290 295 300
 Arg Leu Ala Ala Arg Gly Pro Ile Ala Val Ser Thr Ser Cys Ser Leu
 305 310 315 320
 Leu His Val Pro Tyr Thr Leu Glu Ala Glu Asn Ile Glu Pro Glu Val
 325 330 335
 Arg Asp Trp Leu Ala Phe Gly Ser Glu Lys Ile Thr Glu Val Lys Leu
 340 345 350
 Leu Ala Asp Ala Leu Ala Gly Asn Ile Asp Ala Ala Phe Asp Ala
 355 360 365
 Ala Ser Ala Ala Ile Ala Ser Arg Arg Thr Ser Pro Arg Thr Ala Pro
 370 375 380
 Ile Thr Gln Glu Leu Pro Gly Arg Ser Arg Gly Ser Phe Asp Thr Arg
 385 390 395 400
 Val Thr Leu Gln Glu Lys Ser Leu Glu Leu Pro Ala Leu Pro Thr Thr
 405 410 415
 Thr Ile Gly Ser Phe Pro Gln Thr Pro Ser Ile Arg Ser Ala Arg Ala
 420 425 430
 Arg Leu Arg Lys Glu Ser Ile Thr Leu Glu Gln Tyr Glu Glu Ala Met
 435 440 445
 Arg Glu Glu Ile Asp Leu Val Ile Ala Lys Gln Glu Glu Leu Gly Leu
 450 455 460
 Asp Val Leu Val His Gly Glu Pro Glu Arg Asn Asp Met Val Gln Tyr
 465 470 475 480
 Phe Ser Glu Leu Leu Asp Gly Phe Leu Ser Thr Ala Asn Gly Trp Val
 485 490 495
 Gln Ser Tyr Gly Ser Arg Cys Val Arg Pro Pro Val Leu Phe Gly Asn
 500 505 510
 Val Ser Arg Pro Ala Pro Met Thr Val Lys Trp Phe Gln Tyr Ala Gln
 515 520 525
 Ser Leu Thr Gln Lys His Val Lys Gly Met Leu Thr Gly Pro Val Thr

530	535	540
Ile Leu Ala Trp Ser Phe Val Arg Asp Asp Gln Pro Leu Ala Thr Thr		
545	550	555
560		
Ala Asp Gln Val Ala Leu Ala Leu Arg Asp Glu Ile Asn Asp Leu Ile		
565	570	575
Glu Ala Gly Ala Lys Ile Ile Gln Val Asp Glu Pro Ala Ile Arg Glu		
580	585	590
Leu Leu Pro Leu Arg Asp Val Asp Lys Pro Ala Tyr Leu Gln Trp Ser		
595	600	605
Val Asp Ser Phe Arg Leu Ala Thr Ala Gly Ala Pro Asp Asp Val Gln		
610	615	620
Ile His Thr His Met Cys Tyr Ser Glu Phe Asn Glu Val Ile Ser Ser		
625	630	635
640		
Val Ile Ala Leu Asp Ala Asp Val Thr Thr Ile Glu Ala Ala Arg Ser		
645	650	655
Asp Met Gln Val Leu Ala Ala Leu Lys Ser Ser Gly Phe Glu Leu Gly		
660	665	670
Val Gly Pro Gly Val Trp Asp Ile His Ser Pro Arg Val Pro Ser Ala		
675	680	685
Gln Lys Val Asp Gly Leu Leu Glu Ala Ala Leu Gln Ser Val Asp Pro		
690	695	700
Arg Gln Leu Trp Val Asn Pro Asp Cys Gly Leu Lys Thr Arg Gly Trp		
705	710	715
720		
Pro Glu Val Glu Ala Ser Leu Lys Val Leu Val Glu Ser Ala Lys Gln		
725	730	735
Ala Arg Glu Lys Ile Gly Ala Thr Ile		
740	745	
<hr/>		
<210> 227		
<211> 1923		
<212> DNA		
<213> Corynebacterium glutamicum		
<hr/>		
<220>		
<221> CDS		
<222> (101)..(1900)		
<223> FRXA02085		
<hr/>		
<400> 227		
cacccgggtga ttgcgcgaac cttgaaacat cgtcagaaga ttgccgtgcg tcctagccgg	60	
gatccgcacg ttccggctcaa gcagaaaatc tttaactcac atg act tcc aac ttt	115	
Met Thr Ser Asn Phe		
1	5	
tct tcc act gtc gct ggt ctt cct cgc atc gga gcg aag cgt gaa ctg	163	
Ser Ser Thr Val Ala Gly Leu Pro Arg Ile Gly Ala Lys Arg Glu Leu		

10	15	20	
aag ttc gcg ctc gaa ggc tac tgg aat gga tca att gaa ggt cgc gaa Lys Phe Ala Leu Glu Gly Tyr Trp Asn Gly Ser Ile Glu Gly Arg Glu 25	30	35	211
ctt gcg cag acc gcc cgc caa ttg gtc aac act gca tcg gat tct ttg Leu Ala Gln Thr Ala Arg Gln Leu Val Asn Thr Ala Ser Asp Ser Leu 40	45	50	259
tct gga ttg gat tcc gtt ccg ttt gca gga cgt tcc tac tac gac gca Ser Gly Leu Asp Ser Val Pro Phe Ala Gly Arg Ser Tyr Tyr Asp Ala 55	60	65	307
atg ctc gat acc gcc gct att ttg ggt gtg ctg ccg gag cgt ttt gat Met Leu Asp Thr Ala Ala Ile Leu Gly Val Leu Pro Glu Arg Phe Asp 70	75	80	355
gac atc gct gat cat gaa aac gat ggt ctc cca ctg tgg att gac cgc Asp Ile Ala Asp His Glu Asn Asp Gly Leu Pro Leu Trp Ile Asp Arg 90	95	100	403
tac ttt ggc gct gct cgc ggt act gag acc ctg cct gca cag gca atg Tyr Phe Gly Ala Ala Arg Gly Thr Glu Thr Leu Pro Ala Gln Ala Met 105	110	115	451
acc aag tgg ttt gat acc aac tac cac tac ctc gtg ccg gag ttg tct Thr Lys Trp Phe Asp Thr Asn Tyr His Tyr Leu Val Pro Glu Leu Ser 120	125	130	499
gcg gat aca cgt ttc gtt ttg gat gcg tcc gcg ctg att gag gat ctc Ala Asp Thr Arg Phe Val Leu Asp Ala Ser Ala Leu Ile Glu Asp Leu 135	140	145	547
cgt tgc cag cag gtt cgt ggc gtt aat gcc cgc cct gtt ctg gtt ggt Arg Cys Gln Gln Val Arg Gly Val Asn Ala Arg Pro Val Leu Val Gly 150	155	160	595
cca ctg act ttc ctt tcc ctt gct cgc acc act gat ggt tcc aat cct Pro Leu Thr Phe Leu Ser Leu Ala Arg Thr Thr Asp Gly Ser Asn Pro 170	175	180	643
ttg gat cac ctg cct gca ctg ttt gag gtc tac gag cgc ctc atc aag Leu Asp His Leu Pro Ala Leu Phe Glu Val Tyr Glu Arg Leu Ile Lys 185	190	195	691
tct ttc gat act gag tgg gtt cag atc gat gag cct gcg ttg gtc acc Ser Phe Asp Thr Glu Trp Val Gln Ile Asp Glu Pro Ala Leu Val Thr 200	205	210	739
gat gtt gct cct gag gtt ttg gag cag gtc cgc gct ggt tac acc act Asp Val Ala Pro Glu "gl Leu Glu Gln Val Arg Ala Gly Tyr Thr Thr 215	220	225	787
ttg gct aag cgc gat ggc gtc ttt gtc aat act tac ttc ggc tct ggc Leu Ala Lys Arg Asp Gly Val Phe Val Asn Thr Tyr Phe Gly Ser Gly 230	235	240	835
gat cag gcg ctg aac act ctt gcg ggc atc ggc ctt ggc gcg att ggc Asp Gln Ala Leu Asn Thr Leu Ala Gly Ile Gly Leu Gly Ala Ile Gly 250	255	260	883

gtt gac ttg gtc acc cat ggc gtc act gag ctt gct gcg tgg aag ggt 931
 Val Asp Leu Val Thr His Gly Val Thr Glu Leu Ala Ala Trp Lys Gly
 265 270 275

 gag gag ctg ctg gtt gcg ggc atc gtt gat ggt cgt aac att tgg cgc 979
 Glu Glu Leu Leu Val Ala Gly Ile Val Asp Gly Arg Asn Ile Trp Arg
 280 285 290

 acc gac ctg tgt gct gct ctt gct tcc ctg aag cgc ctg gca gct cgc
 1027
 Thr Asp Leu Cys Ala Ala Leu Ala Ser Leu Lys Arg Leu Ala Ala Arg
 295 300 305

 ggc cca atc gca gtg tct acc tct tgt tca ctg ctg cac gtt cct tac
 1075
 Gly Pro Ile Ala Val Ser Thr Ser Cys Ser Leu Leu His Val Pro Tyr
 310 315 320 325

 acc ctc gag gct gag aac att gag cct gag gtc cgc gac tgg ctt gcc
 1123
 Thr Leu Glu Ala Glu Asn Ile Glu Pro Glu Val Arg Asp Trp Leu Ala
 330 335 340

 ttc ggc tcg gag aag atc acc gag gtc aag ctg ctt gcc gac gcc cta
 1171
 Phe Gly Ser Glu Lys Ile Thr Glu Val Lys Leu Leu Ala Asp Ala Leu
 345 350 355

 gcc ggc aac atc gac gcg gct gcg ttc gat gcg gcg tcc gca gca att
 1219
 Ala Gly Asn Ile Asp Ala Ala Phe Asp Ala Ala Ser Ala Ala Ile
 360 365 370

 gct tct cga cgc acc tcc cca cgc acc gca cca atc acg cag gaa ctc
 1267
 Ala Ser Arg Arg Thr Ser Pro Arg Thr Ala Pro Ile Thr Gln Glu Leu
 375 380 385

 cct ggc cgt agc cgt gga tcc ttc gac act cgt gtt acg ctg cag gag
 1315
 Pro Gly Arg Ser Arg Gly Ser Phe Asp Thr Arg Val Thr Leu Gln Glu
 390 395 400 405

aag tca ctg gag ctt cca gct ctg cca acc acc acc att ggt tct ttc
 1363
 Lys Ser Leu Glu Leu Pro Ala Leu Pro Thr Thr Thr Ile Gly Ser Phe
 410 415 420

cca cag acc cca tcc att cgt tct gct cgc gct cgt ctg cgc aag gaa
 1411
 Pro Gln Thr Pro Ser Ile Arg Ser Ala Arg Ala Arg Leu Arg Lys Glu
 425 430 435

tcc atc act ttg gag cag tac gaa gag gca atg cgc gaa gaa atc gat
 1459
 Ser Ile Thr Leu Glu Gln Tyr Glu Glu Ala Met Arg Glu Glu Ile Asp
 440 445 450

ctg gtc atc gcc aag cag gaa gaa ctt ggt ctt gat gtg ttg gtt cac
 1507

Leu Val Ile Ala Lys Gln Glu Glu Leu Gly Leu Asp Val Leu Val His
 455 460 465

 ggt gag cca gag cgc aac gac atg gtt cag tac ttc tct gaa ctt ctc
 1555
 Gly Glu Pro Glu Arg Asn Asp Met Val Gln Tyr Phe Ser Glu Leu Leu
 470 475 480 485

 gac ggt ttc ctc tca acc gcc aac ggc tgg gtc caa agc tac ggc tcc
 1603
 Asp Gly Phe Leu Ser Thr Ala Asn Gly Trp Val Gln Ser Tyr Gly Ser
 490 495 500

 cgc tgt gtt cgt cct cca gtg ttg ttc gga aac gtt tcc cgc cca gcg
 1651
 Arg Cys Val Arg Pro Pro Val Leu Phe Gly Asn Val Ser Arg Pro Ala
 505 510 515

 cca atg act gtc aag tgg ttc cag tac gca cag agc ctg acc cag aag
 1699
 Pro Met Thr Val Lys Trp Phe Gln Tyr Ala Gln Ser Leu Thr Gln Lys
 520 525 530

 cat gtc aag gga atg ctc acc ggt cca gtc acc atc ctt gca tgg tcc
 1747
 His Val Lys Gly Met Leu Thr Gly Pro Val Thr Ile Leu Ala Trp Ser
 535 540 545

 ttc gtt cgc gat gat cag ccg ctg gct acc act gct gac cag gtt gca
 1795
 Phe Val Arg Asp Asp Gln Pro Leu Ala Thr Thr Ala Asp Gln Val Ala
 550 555 560 565

 ctg gca ctg cgc gat gaa att aac gat ctc atc gag gct ggc gcg aag
 1843
 Leu Ala Leu Arg Asp Glu Ile Asn Asp Leu Ile Glu Ala Gly Ala Lys
 570 575 580

 atc atc cag gtg gat gag cct gcg att cgt gaa ctg ttg ccc gct acg
 1891
 Ile Ile Gln Val Asp Glu Pro Ala Ile Arg Glu Leu Leu Pro Ala Thr
 585 590 595

 aga cgt cga taaggctgcc tacctgcagt ggt
 1923
 Arg Arg Arg
 600

 <210> 228
 <211> 600
 <212> PRT
 <213> Corynebacterium glutamicum

 <400> 228
 Met Thr Ser Asn Phe Ser Ser Thr Val Ala Gly Leu Pro Arg Ile Gly
 1 5 10 15

 Ala Lys Arg Glu Leu Lys Phe Ala Leu Glu Gly Tyr Trp Asn Gly Ser
 20 25 30

Ile Glu Gly Arg Glu Leu Ala Gln Thr Ala Arg Gln Leu Val Asn Thr
 35 40 45

Ala Ser Asp Ser Leu Ser Gly Leu Asp Ser Val Pro Phe Ala Gly Arg
 50 55 60

Ser Tyr Tyr Asp Ala Met Leu Asp Thr Ala Ala Ile Leu Gly Val Leu
 65 70 75 80

Pro Glu Arg Phe Asp Asp Ile Ala Asp His Glu Asn Asp Gly Leu Pro
 85 90 95

Leu Trp Ile Asp Arg Tyr Phe Gly Ala Ala Arg Gly Thr Glu Thr Leu
 100 105 110

Pro Ala Gln Ala Met Thr Lys Trp Phe Asp Thr Asn Tyr His Tyr Leu
 115 120 125

Val Pro Glu Leu Ser Ala Asp Thr Arg Phe Val Leu Asp Ala Ser Ala
 130 135 140

Leu Ile Glu Asp Leu Arg Cys Gln Gln Val Arg Gly Val Asn Ala Arg
 145 150 155 160

Pro Val Leu Val Gly Pro Leu Thr Phe Leu Ser Leu Ala Arg Thr Thr
 165 170 175

Asp Gly Ser Asn Pro Leu Asp His Leu Pro Ala Leu Phe Glu Val Tyr
 180 185 190

Glu Arg Leu Ile Lys Ser Phe Asp Thr Glu Trp Val Gln Ile Asp Glu
 195 200 205

Pro Ala Leu Val Thr Asp Val Ala Pro Glu Val Leu Glu Gln Val Arg
 210 215 220

Ala Gly Tyr Thr Thr Leu Ala Lys Arg Asp Gly Val Phe Val Asn Thr
 225 230 235 240

Tyr Phe Gly Ser Gly Asp Gln Ala Leu Asn Thr Leu Ala Gly Ile Gly
 245 250 255

~~Leu Gly Ala Ile Gly Val Asp Leu Val Thr His Gly Val Thr Glu Leu~~
 260 265 270

Ala Ala Trp Lys Gly Glu Glu Leu Leu Val Ala Gly Ile Val Asp Gly
 275 280 285

Arg Asn Ile Trp Arg Thr Asp Leu Cys Ala Ala Leu Ala Ser Leu Lys
 290 295 300

Arg Leu Ala Ala Arg Gly Pro Ile Ala Val Ser Thr Ser Cys Ser Leu
 305 310 315 320

Leu His Val Pro Tyr Thr Leu Glu Ala Glu Asn Ile Glu Pro Glu Val
 325 330 335

Arg Asp Trp Leu Ala Phe Gly Ser Glu Lys Ile Thr Glu Val Lys Leu
 340 345 350

Leu Ala Asp Ala Leu Ala Gly Asn Ile Asp Ala Ala Phe Asp Ala

355	360	365
Ala Ser Ala Ala Ile Ala Ser Arg Arg Thr Ser Pro Arg Thr Ala Pro		
370	375	380
Ile Thr Gln Glu Leu Pro Gly Arg Ser Arg Gly Ser Phe Asp Thr Arg		
385	390	395
400		
Val Thr Leu Gln Glu Lys Ser Leu Glu Leu Pro Ala Leu Pro Thr Thr		
405	410	415
Thr Ile Gly Ser Phe Pro Gln Thr Pro Ser Ile Arg Ser Ala Arg Ala		
420	425	430
Arg Leu Arg Lys Glu Ser Ile Thr Leu Glu Gln Tyr Glu Glu Ala Met		
435	440	445
Arg Glu Glu Ile Asp Leu Val Ile Ala Lys Gln Glu Glu Leu Gly Leu		
450	455	460
Asp Val Leu Val His Gly Glu Pro Glu Arg Asn Asp Met Val Gln Tyr		
465	470	475
480		
Phe Ser Glu Leu Leu Asp Gly Phe Leu Ser Thr Ala Asn Gly Trp Val		
485	490	495
Gln Ser Tyr Gly Ser Arg Cys Val Arg Pro Pro Val Leu Phe Gly Asn		
500	505	510
Val Ser Arg Pro Ala Pro Met Thr Val Lys Trp Phe Gln Tyr Ala Gln		
515	520	525
Ser Leu Thr Gln Lys His Val Lys Gly Met Leu Thr Gly Pro Val Thr		
530	535	540
Ile Leu Ala Trp Ser Phe Val Arg Asp Asp Gln Pro Leu Ala Thr Thr		
545	550	555
560		
Ala Asp Gln Val Ala Leu Ala Leu Arg Asp Glu Ile Asn Asp Leu Ile		
565	570	575
Glu Ala Gly Ala Lys Ile Ile Gln Val Asp Glu Pro Ala Ile Arg Glu		
580	585	590
Leu Leu Pro Ala Thr Arg Arg Arg		
595	600	

<210> 229

<211> 603

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)...(580)

<223> FRXA02086

<400> 229

gatgatcagc cgctggctac cactgctgac caggttgcac tggcactgcg cgatgaaatt 60

aacgatctca tcgaggctgg cgcgaaagatc atccagggtgg atg agc ctg cga ttc Val Asn Cys Cys Pro Leu Arg Asp Val Lys Pro Ala Tyr Leu Gln	10	15	20	115	
Met Ser Leu Arg Phe 5					
gtg aac tgt tgc ccg cta cga gac gtc gat aag cct gcc tac ctg cag Trp Ser Val Asp Ser Phe Arg Leu Ala Thr Ala Gly Ala Pro Asp Asp	25	30	35	163	
tgg tcc gtg gac tcc ttc cgc ctg gcg act gcc ggc gca ccc gac gac Val Gln Ile His Thr His Met Cys Tyr Ser Glu Phe Asn Glu Val Ile	40	45	50	211	
259					
gtc caa atc cac acc cac atg tgc tac tcc gag ttc aac gaa gtg atc Ser Ser Val Ile Ala Leu Asp Ala Asp Val Thr Thr Ile Glu Ala Ala	55	60	65	307	
55					
cgt tcc gac atg cag gtc ctc gct ctg aaa tct tcc ggc ttc gag Arg Ser Asp Met Gln Val Leu Ala Leu Lys Ser Ser Gly Phe Glu	70	75	80	85	355
70					
ctc ggc gtc gga cct ggt gtg gat atc cac tcc ccg cgc gtt cct Leu Gly Val Gly Pro Gly Val Trp Asp Ile His Ser Pro Arg Val Pro	90	95	100	403	
90					
tcc gcg cag aaa gtg gac ggt ctc ctc gag gct gca ctg cag tcc gtg Ser Ala Gln Lys Val Asp Gly Leu Leu Glu Ala Ala Leu Gln Ser Val	105	110	115	451	
105					
gat cct cgc cag ctg tgg gtc aac cca gac tgt ggt ctg aag acc cgt Asp Pro Arg Gln Leu Trp Val Asn Pro Asp Cys Gly Leu Lys Thr Arg	120	125	130	499	
120					
gga tgg cca gaa gtg gaa gct tcc cta aag gtt ctc gtt gag tcc gct Gly Trp Pro Glu Val Glu Ala Ser Leu Lys Val Leu Val Glu Ser Ala	135	140	145	547	
135					
aag cag gct cgt gag aaa atc gga gca act atc taaattgggt taccgctagg 600 Lys Gln Ala Arg Glu Lys Ile Gly Ala Thr Ile	150	155	160		
150					
aac				603	

<210> 230
<211> 160
<212> PRT
<213> Corynebacterium glutamicum

<400> 230 Met Ser Leu Arg Phe Val Asn Cys Cys Pro Leu Arg Asp Val Asp Lys 1 5 10 15				
Pro Ala Tyr Leu Gln Trp Ser Val Asp Ser Phe Arg Leu Ala Thr Ala 20 25 30				
Gly Ala Pro Asp Asp Val Gln Ile His Thr His Met Cys Tyr Ser Glu 35 40 45				

Phe Asn Glu Val Ile Ser Ser Val Ile Ala Leu Asp Ala Asp Val Thr
 50 55 60

Thr Ile Glu Ala Ala Arg Ser Asp Met Gln Val Leu Ala Ala Leu Lys
 65 70 75 80

Ser Ser Gly Phe Glu Leu Gly Val Gly Pro Gly Val Trp Asp Ile His
 85 90 95

Ser Pro Arg Val Pro Ser Ala Gln Lys Val Asp Gly Leu Leu Glu Ala
 100 105 110

Ala Leu Gln Ser Val Asp Pro Arg Gln Leu Trp Val Asn Pro Asp Cys
 115 120 125

Gly Leu Lys Thr Arg Gly Trp Pro Glu Val Glu Ala Ser Leu Lys Val
 130 135 140

Leu Val Glu Ser Ala Lys Gln Ala Arg Glu Lys Ile Gly Ala Thr Ile
 145 150 155 160

<210> 231
<211> 1326
<212> DNA
<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1303)
<223> RXN02648

<400> 231
atgaataaaaa ttccgggtgc agtgaccgta ggtgaggtaa acgcggtagt agtcgaatga 60
gagtttgata ctttctttcg acttttagat tggatttca atg agc cag aac cgc 115
Met Ser Gln Asn Arg
1 5

atc agg acc act cac gtt ggt tcc ttg ccc cgt acc cca gag cta ctt 163
Ile Arg Thr Thr His Val Gly Ser Leu Pro Arg Thr Pro Glu Leu Leu
10 15 20

gat gca aac atc aag cgt tct aac ggt gag att ggg gag gag gaa ttc 211
Asp Ala Asn Ile Lys Arg Ser Asn Gly Glu Ile Gly Glu Glu Phe
25 30 35

ttc cag att ctg cag tct tct gta gat gac gtg atc aag cgc cag gtt 259
Phe Gln Ile Leu Gln Ser Ser Val Asp Asp Val Ile Lys Arg Gln Val
40 45 50

gac ctg ggt atc gac atc ctt aac gag ggc gaa tac ggc cac gtc acc 307
Asp Leu Gly Ile Asp Ile Leu Asn Glu Gly Glu Tyr Gly His Val Thr
55 60 65

tcc ggt gca gtt gac ttc ggt gca tgg tgg aac tac tac tcc ttc acc cgc 355
Ser Gly Ala Val Asp Phe Gly Ala Trp Trp Asn Tyr Ser Phe Thr Arg

70	75	80	85	
ctg ggc gga ctg acc atg acc gat acc gac cgt tgg gca agc cag gaa Leu Gly Gly Leu Thr Met Thr Asp Thr Asp Arg Trp Ala Ser Gln Glu	90	95	100	403
gca gtg cgt tcc acc cct ggc aac atc gag ctg acc agc ttc tct gat Ala Val Arg Ser Thr Pro Gly Asn Ile Glu Leu Thr Ser Phe Ser Asp	105	110	115	451
cgt cgc gac cgc gca ttg ttc agc gaa gca tac gag gat cca gta tct Arg Arg Asp Arg Ala Leu Phe Ser Glu Ala Tyr Glu Asp Pro Val Ser	120	125	130	499
ggc atc ttc acc ggt cgc gct tct gtg ggc aac cca gag ttc acc gga Gly Ile Phe Thr Gly Arg Ala Ser Val Gly Asn Pro Glu Phe Thr Gly	135	140	145	547
cct att acc tac att ggc cag gaa gaa act cag acg gat gtt gat ctg Pro Ile Thr Tyr Ile Gly Gln Glu Thr Gln Thr Asp Val Asp Leu	150	155	160	595
ctg aag aag ggc atg aac gca gcg gga gct acc gac ggc ttc gtt gca Leu Lys Lys Gly Met Asn Ala Ala Gly Ala Thr Asp Gly Phe Val Ala	170	175	180	643
gca cta tcc cca gga tct gca gct cga ttg acc aac aag ttc tac gac Ala Leu Ser Pro Gly Ser Ala Ala Arg Leu Thr Asn Lys Phe Tyr Asp	185	190	195	691
act gat gaa gaa gtc gtc gca gca tgt gct gat gcg ctt tcc cag gaa Thr Asp Glu Glu Val Val Ala Ala Cys Ala Asp Ala Leu Ser Gln Glu	200	205	210	739
tac aag atc atc acc gat gca ggt ctg acc gtt cag ctc gac gca ccg Tyr Lys Ile Ile Thr Asp Ala Gly Leu Thr Val Gln Leu Asp Ala Pro	215	220	225	787
gac ttg gca gaa gca tgg gat cag atc aac cca gag cca agc gtg aag Asp Leu Ala Glu Ala Trp Asp Gln Ile Asn Pro Glu Pro Ser Val Lys	230	235	240	835
gat tac ttg gac tgg atc ggt aca cgc atc qat gcc atc aac act gca Asp Tyr Leu Asp Trp Ile Gly Thr Arg Ile Asp Ala Ile Asn Ser Ala	250	255	260	883
gtg aag ggc ctt cca aag gaa cag acc cgc ctg cac atc tgc tgg ggc Val Lys Gly Leu Pro Lys Glu Gln Thr Arg Leu His Ile Cys Trp Gly	265	270	275	931
tct tgg cac gga cca cac gtc act gac atc cca ttc ggt gac atc att Ser Trp His Gly Pro His Val Thr Asp Ile Pro Phe Gly Asp Ile Ile	280	285	290	979
ggt gag atc ctg cgc gca gag gtc ggt ggc ttc tcc ttc gaa ggc gca 1027				
Gly Glu Ile Leu Arg Ala Glu Val Gly Gly Phe Ser Phe Glu Gly Ala	295	300	305	
tct cct cgt cac gca cac gag tgg cgt gta tgg gaa gaa aac aag ctt 1075				

Ser Pro Arg His Ala His Glu Trp Arg Val Trp Glu Glu Asn Lys Leu
 310 315 320 325

cct gaa ggc tct gtt atc tac cct ggt gtt gtg tct cac tcc atc aac
 1123
 Pro Glu Gly Ser Val Ile Tyr Pro Gly Val Val Ser His Ser Ile Asn
 330 335 340

gct gtg gag cac cca cgc ctg gtt gct gat cgt atc gtt cag ttc gcc
 1171
 Ala Val Glu His Pro Arg Leu Val Ala Asp Arg Ile Val Gln Phe Ala
 345 350 355

aag ctt gtt ggc cct gag aac gtc att gcg tcc act gac tgt ggt ctg
 1219
 Lys Leu Val Gly Pro Glu Asn Val Ile Ala Ser Thr Asp Cys Gly Leu
 360 365 370

ggc gga cgt ctg cat tcc cag atc gca tgg gca aag ctg gag tcc cta
 1267
 Gly Gly Arg Leu His Ser Gln Ile Ala Trp Ala Lys Leu Glu Ser Leu
 375 380 385

gta gag ggc gct cgc att gca tca aag gaa ctg ttc taagctagac
 1313
 Val Glu Gly Ala Arg Ile Ala Ser Lys Glu Leu Phe
 390 395 400

aacgagggtt gct
 1326

<210> 232
<211> 401
<212> PRT
<213> Corynebacterium glutamicum

<400> 232
Met Ser Gln Asn Arg Ile Arg Thr Thr His Val Gly Ser Leu Pro Arg
 1 5 10 15

Thr Pro Glu Leu Leu Asp Ala Asn Ile Lys Arg Ser Asn Gly Glu Ile
 20 25 30

Gly Glu Glu Glu Phe Phe Gln Ile Leu Gln Ser Ser Val Asp Asp Val
 35 40 45

Ile Lys Arg Gln Val Asp Leu Gly Ile Asp Ile Leu Asn Glu Gly Glu
 50 55 60

Tyr Gly His Val Thr Ser Gly Ala Val Asp Phe Gly Ala Trp Trp Asn
 65 70 75 80

Tyr Ser Phe Thr Arg Leu Gly Gly Leu Thr Met Thr Asp Thr Asp Arg
 85 90 95

Trp Ala Ser Gln Glu Ala Val Arg Ser Thr Pro Gly Asn Ile Glu Leu
 100 105 110

Thr Ser Phe Ser Asp Arg Arg Asp Arg Ala Leu Phe Ser Glu Ala Tyr
 115 120 125

Glu Asp Pro Val Ser Gly Ile Phe Thr Gly Arg Ala Ser Val Gly Asn
 130 135 140
 Pro Glu Phe Thr Gly Pro Ile Thr Tyr Ile Gly Gln Glu Glu Thr Gln
 145 150 155 160
 Thr Asp Val Asp Leu Leu Lys Lys Gly Met Asn Ala Ala Gly Ala Thr
 165 170 175
 Asp Gly Phe Val Ala Ala Leu Ser Pro Gly Ser Ala Ala Arg Leu Thr
 180 185 190
 Asn Lys Phe Tyr Asp Thr Asp Glu Glu Val Val Ala Ala Cys Ala Asp
 195 200 205
 Ala Leu Ser Gln Glu Tyr Lys Ile Ile Thr Asp Ala Gly Leu Thr Val
 210 215 220
 Gln Leu Asp Ala Pro Asp Leu Ala Glu Ala Trp Asp Gln Ile Asn Pro
 225 230 235 240
 Glu Pro Ser Val Lys Asp Tyr Leu Asp Trp Ile Gly Thr Arg Ile Asp
 245 250 255
 Ala Ile Asn Ser Ala Val Lys Gly Leu Pro Lys Glu Gln Thr Arg Leu
 260 265 270
 His Ile Cys Trp Gly Ser Trp His Gly Pro His Val Thr Asp Ile Pro
 275 280 285
 Phe Gly Asp Ile Ile Gly Glu Ile Leu Arg Ala Glu Val Gly Gly Phe
 290 295 300
 Ser Phe Glu Gly Ala Ser Pro Arg His Ala His Glu Trp Arg Val Trp
 305 310 315 320
 Glu Glu Asn Lys Leu Pro Glu Gly Ser Val Ile Tyr Pro Gly Val Val
 325 330 335
 Ser His Ser Ile Asn Ala Val Glu His Pro Arg Leu Val Ala Asp Arg
 340 345 350
 Ile Val Gln Phe Ala Lys Leu Val Gly Pro Glu Asn Val Ile Ala Ser
 355 360 365
 Thr Asp Cys Gly Leu Gly Gly Arg Leu His Ser Gln Ile Ala Trp Ala
 370 375 380
 Lys Leu Glu Ser Leu Val Glu Gly Ala Arg Ile Ala Ser Lys Glu Leu
 385 390 395 400
 Phe

<210> 233
 <211> 548
 <212> DNA
 <213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (1)..(525)
<223> FRXA02648

<400> 233
gac gca ccg gac ttg gca gaa gca tgg gat cag atc aac cca gag cca 48
Asp Ala Pro Asp Leu Ala Glu Ala Trp Asp Gln Ile Asn Pro Glu Pro
1 5 10 15

agc gtg aag gat tac ttg gac tgg atc ggt aca cgc atc gat gcc atc 96
Ser Val Lys Asp Tyr Leu Asp Trp Ile Gly Thr Arg Ile Asp Ala Ile
20 25 30

aac agt gca gtg aag ggc ctt cca aag gaa cag acc cgc ctg cac atc 144
Asn Ser Ala Val Lys Gly Leu Pro Lys Glu Gln Thr Arg Leu His Ile
35 40 45

tgc tgg ggc tct tgg cac gga cca cac gtc act gac atc cca ttc ggt 192
Cys Trp Gly Ser Trp His Gly Pro His Val Thr Asp Ile Pro Phe Gly
50 55 60

gac atc att ggt gag atc ctg cgc gca gag gtc ggt ggc ttc tcc ttc 240
Asp Ile Ile Gly Glu Ile Leu Arg Ala Glu Val Gly Gly Phe Ser Phe
65 70 75 80

gaa ggc gca tct cct cgt cac gca cac gag tgg cgt gta tgg gaa gaa 288
Glu Gly Ala Ser Pro Arg His Ala His Glu Trp Arg Val Trp Glu Glu
85 90 95

aac aag ctt cct gaa ggc tct gtt atc tac cct ggt gtt gtg tct cac 336
Asn Lys Leu Pro Glu Gly Ser Val Ile Tyr Pro Gly Val Val Ser His
100 105 110

tcc atc aac gct gtg gag cac cca cgc ctg gtt gct gat cgt atc gtt 384
Ser Ile Asn Ala Val Glu His Pro Arg Leu Val Ala Asp Arg Ile Val
115 120 125

cag ttc gcc aag ctt gtt ggc cct gag aac gtc att gcg tcc act gac 432
Gln Phe Ala Lys Leu Val Gly Pro Glu Asn Val Ile Ala Ser Thr Asp
130 135 140

tgt ggt ctg ggc gga cgt ctg cat tcc cag atc gca tgg gca aag ctg 480
Cys Gly Leu Gly Gly Arg Leu His Ser Gln Ile Ala Trp Ala Lys Leu
145 150 155 160

gag tcc cta gta gag ggc gct cgc att gca tca aag gaa ctg ttc 525
Glu Ser Leu Val Glu Gly Ala Arg Ile Ala Ser Lys Glu Leu Phe
165 170 175

taagcttagac aacgagggtt gct 548

<210> 234
<211> 175
<212> PRT
<213> Corynebacterium glutamicum

<400> 234
Asp Ala Pro Asp Leu Ala Glu Ala Trp Asp Gln Ile Asn Pro Glu Pro
1 5 10 15

Ser Val Lys Asp Tyr Leu Asp Trp Ile Gly Thr Arg Ile Asp Ala Ile
 20 25 30

Asn Ser Ala Val Lys Gly Leu Pro Lys Glu Gln Thr Arg Leu His Ile
 35 40 45

Cys Trp Gly Ser Trp His Gly Pro His Val Thr Asp Ile Pro Phe Gly
 50 55 60

Asp Ile Ile Gly Glu Ile Leu Arg Ala Glu Val Gly Phe Ser Phe
 65 70 75 80

Glu Gly Ala Ser Pro Arg His Ala His Glu Trp Arg Val Trp Glu Glu
 85 90 95

Asn Lys Leu Pro Glu Gly Ser Val Ile Tyr Pro Gly Val Val Ser His
 100 105 110

Ser Ile Asn Ala Val Glu His Pro Arg Leu Val Ala Asp Arg Ile Val
 115 120 125

Gln Phe Ala Lys Leu Val Gly Pro Glu Asn Val Ile Ala Ser Thr Asp
 130 135 140

Cys Gly Leu Gly Gly Arg Leu His Ser Gln Ile Ala Trp Ala Lys Leu
 145 150 155 160

Glu Ser Leu Val Glu Gly Ala Arg Ile Ala Ser Lys Glu Leu Phe
 165 170 175

<210> 235

<211> 784

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(784)

<223> FRXA02658

<400> 235

atgaataaaa ttccgggtgc agtgaccgta ggtgaggtaa acgcggtag agtcgaatga 60

gagtttgcata ctttcttcg acttttagat tggatttca atg agc cag aac cgc 115
 Met Ser Gln Asn Arg
 1 5

atc agg acc act cac gtt ggt tcc ttg ccc cgt acc cca gag cta ctt 163
 Ile Arg Thr Thr His Val Gly Ser Leu Pro Arg Thr Pro Glu Leu Leu
 10 15 20

gat gca aac atc aag cgt tct aac ggt gag att ggg gag gag gaa ttc 211
 Asp Ala Asn Ile Lys Arg Ser Asn Gly Glu Ile Gly Glu Glu Phe
 25 30 35

ttc cag att ctg cag tct tct gta gat gac gtg atc aag cgc cag gtt 259
 Phe Gln Ile Leu Gln Ser Ser Val Asp Asp Val Ile Lys Arg Gln Val
 40 45 50

gac ctg ggt atc gac atc ctt aac gag ggc gaa tac ggc cac gtc acc 307
 Asp Leu Gly Ile Asp Ile Leu Asn Glu Gly Glu Tyr Gly His Val Thr
 55 60 65

tcc ggt gca gtt gac ttc ggt gca tgg tgg aac tac tcc ttc acc cgc 355
 Ser Gly Ala Val Asp Phe Gly Ala Trp Trp Asn Tyr Ser Phe Thr Arg
 70 75 80 85

ctg ggc gga ctg acc atg acc gat acc gac cgt tgg gca agc cag gaa 403
 Leu Gly Gly Leu Thr Met Thr Asp Thr Asp Arg Trp Ala Ser Gln Glu
 90 95 100

gca gtg cgt tcc acc cct ggc aac atc gag ctg acc agc ttc tct gat 451
 Ala Val Arg Ser Thr Pro Gly Asn Ile Glu Leu Thr Ser Phe Ser Asp
 105 110 115

cgt cgc gac cgc gca ttg ttc agc gaa gca tac gag gat cca gta tct 499
 Arg Arg Asp Arg Ala Leu Phe Ser Glu Ala Tyr Glu Asp Pro Val Ser
 120 125 130

ggc atc ttc acc ggt cgc gct tct gtg ggc aac cca gag ttc acc gga 547
 Gly Ile Phe Thr Gly Arg Ala Ser Val Gly Asn Pro Glu Phe Thr Gly
 135 140 145

cct att acc tac att ggc cag gaa gaa act cag acg gat gtt gat ctg 595
 Pro Ile Thr Tyr Ile Gly Gln Glu Thr Gln Thr Asp Val Asp Leu
 150 155 160 165

ctg aag aag ggc atg aac gca gcg gga gct acc gac ggc ttc gtt gca 643
 Leu Lys Lys Gly Met Asn Ala Ala Gly Ala Thr Asp Gly Phe Val Ala
 170 175 180

gca cta tcc cca gga tct gca gct cga ttg acc aac aag ttc tac gac 691
 Ala Leu Ser Pro Gly Ser Ala Ala Arg Leu Thr Asn Lys Phe Tyr Asp
 185 190 195

act gat gaa gaa gtc gtc gca gca tgt gct gat gcg ctt tcc cag gaa 739
 Thr Asp Glu Glu Val Val Ala Ala Cys Ala Asp Ala Leu Ser Gln Glu
 200 205 210

tac aag atc atc acc gat gca ggt ctg acc gtt cag ctc gac gca 784
 Tyr Lys Ile Ile Thr Asp Ala Gly Leu Thr Val Gln Leu Asp Ala
 215 220 225

<210> 236
 <211> 228
 <212> PRT
 <213> Corynebacterium glutamicum

<400> 236
 Met Ser Gln Asn Arg Ile Arg Thr Thr His Val Gly Ser Leu Pro Arg
 1 5 10 15

Thr Pro Glu Leu Leu Asp Ala Asn Ile Lys Arg Ser Asn Gly Glu Ile
 20 25 30

Gly Glu Glu Glu Phe Phe Gln Ile Leu Gln Ser Ser Val Asp Asp Val
 35 40 45

Ile Lys Arg Gln Val Asp Leu Gly Ile Asp Ile Leu Asn Glu Gly Glu