4330 Assignment 3 1

For this assignment, you need to submit two files: a Python program for Problem 1, and a PDF for Problems 2 and/or 3 (legibly handwritten and scanned to PDF, or typed - either is fine). The files should be named, respectively:

Please: name your files in exactly this way; lowercase 'hw', a dash (not an underscore), and **NO SPACES** in the filename!

(1) (10 points) Suppose $y \ge 1$ is a real number, and consider the sequence $\{x_n\}$ defined by

$$x_0 = 1,$$

 $x_n = \frac{1}{2} \left(x_{n-1} + \frac{y}{x_{n-1}} \right), \text{ for } n \ge 1.$

Choose a value of y and compute x_3 by hand, to make sure you understand this sequence, and to give you a test case for the program you will write. Then write a Python program which does the following:

- (i) Input a floating point number y greater or equal 1 and a positive integer $\mathbb N$ from the user.
- (ii) Compute the N-th term x_N of the sequence defined above, for the given values of y and N, and print it out with 8 decimal digits. Do this using a loop and variables $prev_x$ and $next_x$ to represent the previous and next terms in the sequence. Do NOT use a list or other data structure to store every term in the sequence.
- (2) (10 points) Prove that if $\lim_{n\to\infty} x_n$ exists, then it equals \sqrt{y} .
- $\overline{\textbf{(3) (Extra credit 10 points)}}$ Prove that $\lim_{n\to\infty} x_n$ exists.

¹This document is copyright 2020 Chris Monico, and may not be reproduced in any form without written permission from the author