Biocatalysis

Ravikrishnan Elangovan
Enzyme Science and Engineering
BBL433

Applications

Enzyme for

- Fine chemicals

Bioethanol Amino acids Aspartame High fructose syrup

Vitamin F/B12

Dextran

- Pharmaceutical compounds

E.g.., L-Dopa Cephalosporins etc

Advantages of Biocatalysis

- Enzymes have a very good selectivity:
 Stereoselectivity enantioselectivity in most cases are > 99 %
 Chemo- and regioselectivity react on one location over another similar group without the need for protection groups.
- Mild reaction conditions: aqueous solvent, room temperature, normal pressure, neutral pH
- Environmentally friendly: enzymes are biodegradable
- Fewer side reactions
- High efficiency
- Cheap and simple starting material can be used.
- Overall lower cost of production.

 Table 1.1.1
 Biocatalysis alignment with green chemistry.

Green chemistry principle	Biocatalysis				
1. Prevention (of waste)	Biocatalysis can enable new, more sustainable routes to APIs effectively reducing level of waste.				
2. Atom economy	Biocatalysis often enables more efficient synthetic routes.				
3. Less hazardous (less toxic reagents and intermediates) chemical syntheses	Generally low toxicity.				
4. Designing safer (less toxic) chemicals	No impact.				
5. Safer solvents and auxiliaries	Often performed in water; when solvents are used they are generally Class I or II.				
6. Design for energy efficiency	Usually performed slightly above room temperature.				
7. Use of renewable feedstocks	Biocatalysts are renewable.				
8. Reduce derivatives (e.g., protecting groups)	Chemo-, regio-, enantio-selective nature enzymes often obviates need for protecting groups.				
9. Catalysis (preferred over stoichiometric reagents)	Catalytic.				
10. Design for degradation (avoid environmental build-up)	No impact on design of products (althou biocatalysts themselves are degradable in the environment).				
11. Real-time analysis for pollution (and hazard) prevention	No impact.				
12. Inherently safer chemistry for accident prevention	Biocatalysis is generally performed under mild conditions where risk of explosions/ run-away reactions is minimal.				

Biocatalysis..recap

Case study 1: Production of acrylamide

Acrylonitrile
$$H_2O$$
 H_2O H_2O

Case study 2: Production of aspartame using Thermolysin

L-Aspartic acid
$$H_2N$$

$$Enzyme Reaction \\ Or \\ Chemical Reaction \\ H_2N$$

$$Enzyme \\ H_2N$$

$$Enzyme \\ Enzyme \\$$

Aspartame

Case study 1: Production of acrylamide

Nitrile hydratase from Rhodococcus is used with whole cell immbolization in polyacrylamide 3 % w/v substrate is used in a continuous reactor 1% w/v or 50000 U/L of enzyme used Conversion of upto 0.02 w/v

4000 tones per year using enzymatic synthesis

Whole cell biocatalysis Vs Free Enzyme

Advantage/Disadvantage

very low amidase activity which otherwise would produce unwanted acrylic acid from the acrylamide.

Case study 2: Production of aspartame

dipeptide of the natural amino acids L-aspartic acid an L-phenylalanine

Aspartame (200)

Chemical synthesis leads to production of β -derivative, Which is bitter in taste

Very poor yield

Case study 2: Production of aspartame using Thermolysin

Non aqueous enzymology

Very low water!

Completely in organic solvent

E.g.,

- 1. Monophasic organic media
- 2. Biphasic organic media (reverse micelles etc, lyophilized enzymes)
- 3. Ionic liquid/super ciritical liquids

Can enzyme work in the absence of H₂0?

E.g., Alpha chymotrypsin requires 50 molecules of water per enzyme to remain catalytically active

Some enzymes require more water molecules e.g., Poluphenol oxidase require 3.5×10^7 water molecules

Mobility of enzyme side chains are reduced, increasing stiffness!

Advantages of enzyme reaction in organic solvent

- 1. Increased solubility of non-polar substrates
- 2. Shifting thermodynamic equilibrium to favor synthesis over hydrolysis
- 3. Suppression of water dependent side reactions(e.g. hydrolysis of acid anhydrides and halides)
- 4. Alteration in substrate specificity
- Immobilization by simple adsorption to macroporous hydrophobic supports

- 6. Ease of recovery of the enzyme
- 7. Ease of product recovery from low b.p. solvents
- 8. Enhanced thermo-stability of enzymes
- 9. Elimination of microbial contamination
- 10. Use of enzymatic step directly in a multi-step chemical process

Water activity

Water activity (a_w) is the <u>partial vapor pressure</u> of water in a substance divided by the standard state partial <u>vapor</u> <u>pressure of water</u>.

Horseradish peroxidase catalyzed oxidation of p-anisidine in mono-phasic organic solvents

solvent	Reaction rate (µmol/mg E/min)		
Toluene	60	 Dioxane 	00
Benzene	54	• Dioxane +	
Hexane	<i>75</i>	5% aq. buffer	08
Hexadecane	<i>75</i>	• Dioxane +	
Cyclohexane	<i>75</i>	 15% aq. Buffer 	33
Chloroform	09	• Dioxane +	
Ethyl acetate	45	30% aq. Buffer	129
Diethyl ether	105		
Methanol	00		

13

Properties of common organic solvents

Solvent											
	MTBE	Acetone	CH₃OH	THF	Hexane	DIPE	EA	C ₂ H ₅ O H	C ₆ H ₁₂	Toluene	DMF
B.P. [°C] M[g/mol] ε[-] Log P μ[D]	55.2 8.15 4.5 1.15 1.23	56.2 58.08 20.7 -0.23 2.70	65.0 32.04 32.63 -0.76 1.71	67.0 72.1 7.58 0.49 1.74	69.0 86.17 1.89 3.5 0.0	69.0 102.17 3.23 1.9 1.24	77.1 88.10 6.02 0.68 1.83	78.5 46.07 24.3 -0.24 1.4	80.7 84.16 2.02 3.2 0.0	110.6 92.13 2.38 2.5 0.30	153 73.09 36.7 -1.0 3.24

Boiling point

Dielectric constant

Log P

Density

 $Log P = log \{[A]_{water}/[A]_{n-octanol}$

n-octanol is chosen as a reference because it mimics biological membranes with a hydrophobic tail and a hydrophilic head capable of hydrogen bonding

Hexane has 0.001% solubility in water., Ethanol/Acetone has 100% solubility in water

Ionic liquids

- Salts that do not crystalize at room temperature
- No vapour pressure
- Stable in room temperature
- Does not de-activate enzymes

The chemical structure of <u>1-butyl-3-methylimidazolium</u> <u>hexafluorophosphate</u> ([BMIM]PF₆)

Lipase enzyme example

Figure 4 Reaction mechanism of lipase biocatalysis. The nucleophilic attack on carbonyl functionalities serves as target for reaction engineering approaches.

Applications of Lipase catalyzed trans/Interesterification reactions

- > Cocoa Butter substitute
- > Human milk fat substitute
- ➤ Structured lipids (MLM type)
- > Low- calorie structured lipids (LML type)
- **>** Biodiesel
- **➤** Monoglycerides

Hydrolysis

Esterification

$$+$$
 R_2 -OH \longrightarrow R_1 OR_2 $+$ H_2O

Transesterification

Acidolysis + OR_2 R_3 OH R_3 OR_2 R_1 OR_2 R_1 OR_2 R_3 OR_3 OR_4 OR_5 OR_5

Alcoholysis

Interesterification

$$+ OR_2 R_3 OR_4 R_3 OR_2 R_1 OR_4$$

Aminolysis

$$+$$
 R_3 -NH₂ $+$ R_2 -OH NHR₃

Kinetic resolution of alcohols/Amines

Biocatalysis in Organic Synthesis

- There are lots of examples of application of enzymes outside living system to carry-out organic reactions.
 - Desymmetrization

Kinetic Resolution

Asymmetric synthesis

Faber, K. Biotransformation in Organic Chemistry. Springer, 2004

L-Dopa

- Treatment for Parkinson's disease, which is caused by lack of Dopamine or its receptors in brain.
- L-Dopa is decarboxylated in vivo to become Dopamine.
- Since Dopamine cannot pass through blood brain barrier, L-Dopa is administered with dopadecarboxylase-inhibitors to maintain its form outside the brain.
- About 250 tons are produced per year.

L-Dopa Chemical Synthesis

- The first use of asymmetric catalysis in pharmaceutical industry (1968)
- Developed by William Knowles, Noble Prize winner in Chemistry 2001 (together with Noyori and Sharpless) for asymmetric hydrogenation and oxidation reactions.

L-Dopa Enzymatic Synthesis

- The reaction are first used in 1993 by Ajinomoto Co. Ltd., Japan
- L-Dopa is insoluble in reaction medium and appears as crystalline precipitation in reaction.
- One of the most economical processes to date. Most of L-Dopa productions today are from this method.
- Tyrosine Phenol Lyase is enzyme that catalyzes breakdown of tyrosine in vivo.

Atorvastatin Calcium (Lipitor)

- Member of anti-cholesterol statin drugs
- Marketed by Pfizer company, world's best selling drugs since 2001
- Inhibit HMG CoA Reductase, which is the rate limiting step in cholesterol biosynthesis.
- Penta-substitute pyrrole is synthesized by Paal-Knorr pyrrole reactions.

Chemical Synthesis

2. Me₂C(OMe)₂ CH₃SO₃H

Ra-Ni, H₂ CH₃OH, 50 PSI

Chemoenzymatic Methods

2% w/w

DERA = 2-deoxyribose-5-phosphate aldolase

- 1. H_2SO_4
- 2. (MeO)₂CMe₂
- _3. TMSCHN₂

ee >99.9 %, de >99.8%

7-aminocephasporanic acid (7-ACA)

- Precursor to semi-synthetic penicillins.
- Annual synthesis of 7-ACA is 1000 tons/year

Transformation of 7-ACA

- Cephalosporin C is readily available by fermentation of Cephalosporium acremonium.
- Cephalosporin C exhibits weak antibiotic activity.
- Semi-synthetic penicillins show better antibiotic activity.
- Have to cleave the amide bond in the presence of more labile β-lactam amide bond.
- Chemical methods reaction are proved to be complicated.

7-ACA Chemical Synthesis

$$\begin{array}{c} -O_2C \\ NH_2 \\ Zn^{2+} \end{array}$$

$$\begin{array}{c} CH_2CI_2 \\ CO_2 \\ \end{array}$$

$$\begin{array}{c} (Me)_3SiO_2C \\ (CH_3)_3SiCI \end{array}$$

$$\begin{array}{c} NH_2Si(Me)_3 \\ O \\ \end{array}$$

$$\begin{array}{c} O \\ \end{array}$$

$$\begin{array}{c} (HCI \text{ produced trapped by dimethylaniline)} \end{array}$$

Cephalosporin C (Zn salt)

$$\frac{\text{Hydrolysis}}{\text{T} < 0 \text{ °C}} \text{ (Me)}_{3}\text{SiO}_{2}\text{C} \text{ NH}_{2}\text{Si(Me)}_{3} \text{ CI} \text{ NH}_{2}\text{Si(Me)}_{3} \text{ O} \text{ CO}_{2}\text{Si(Me)}_{3} \text{ O} \text{$$

7-aminocephalosporanic acid

7-ACA Enzymatic Synthesis

$$O_2C$$
 O_2C
 O_2C

Chepalosporin C (aq. solution)

7-aminocephalosporanic acid

α-amino acid oxidase pH 7.3, 25 °C

glutaryl 7-ACA acylase pH 8.3, 30 °C

glutaryl-7-ACA

Chemical vs Enzymatic Methods of 7-ACA

	Chemical	Enzymatic
Waste generated	31 tons/ton of ACA	0.3 tons/ ton of ACA
Heavy atom used	Zn	no heavy atom
Hazardous chemicals	PCI ₅ , TMSCI	no toxic chemicals
Solvents	dichloromethane	water
Volume of chemical used	equimolar	catalytic enzyme
Temperature	low T	room temperature
Equipment used	highly-corrosion-resistant alloy	stainless steel

- Biocatalytic method reduces raw material costs by factor of 4 in Hoeschst company, Germany.
- Environmental Protection Cost are reduced by 90%.

Enzymes	Reactions
Esterase, lipases	Ester hydrolysis, formation
Amidases (proteases, acylases)	Amide hydrolysis, formation
Dehydrogenases	Oxidoreduction of alcohols and ketones
Oxidases (mono- and dioxygenases)	Oxidation
Peroxidases	Oxidation, epoxidation, halohydration
Kinases	Phosphorylation (ATP-dependent)
Aldolases, transketolases	Aldol reaction (C–C bond)
Glycosidases, glycosyltransferases	Glycosidic bond formation
Phosphorylases, phosphatases	Formation and hydrolysis of phosphate
Sulphotransferases	Formation of sulphate esters
Transaminases	Amino acid synthesis (C–N bond)
Hydrolases	Hydrolysis
Isomerases, lyases, hydratases	Isomerization, addition, elimination, replacement

Questions?