

# LaTeX4EI Template Documentation

## 1. Introduction

#### 1.1. Terms of use

This template may be used only for cheat sheets that are published on the LaTeX4EI web page.

A lot of effort has been put into this template and therefore all cheat sheets created with this template shall also be available on the *LaTeX4EI* project web page.

©LaTeX4EI. 2015

## 1.2. Purpuse

The purpuse of this document is to give an overview over all functions of the LaTeX4EI template with the goal to help the reader to create beautiful cheat sheets.

## 2. Box Environments

For the structuring of the document, the LaTeX4EI template offers different boxes.

#### 2.1. Sectionbox

The main structure is defined through the sectionbox environment.

\begin{sectionbox}
 content of the sectionbox
\end{sectionbox}

#### 2.2. Tablebox

Tables can be set using the tablebox or a tablebox\* environment. The table entries are embedded within \begin{tablebox\*}{1111} and \end{tablebox\*}.

Example for a table with tablebox:

In contrast to that a normal LATEXtable:

A small table with two lines

#### 2.3. Symbolbox

A symbolbox can be used to define symbols for different values.

The equation is embedded within \begin{symbolbox} and \end{symbolbox}.

Example of a symbolbox (to define symbols)

Preasure  $[p] = \frac{N}{m^2}$ Seebeck-Ko.  $[S] = \frac{\mu V}{K}$ Wärmeleitf.  $[\lambda] = \frac{W}{m^{-K}}$ 

#### 2.4. Cookbox

a so-called cookbox can be used to set beautiful step-by-step instructions. The items are embedded within \begin{cookbox} and \end{cookbox}.

#### How to create a beautiful cheat sheet

- 1. Read this manual
- 2. Create a beautiful cheat sheet

#### 2.5. Emphbox

really important formulars can be set in a box with a red border.

The equations are embedded within \begin{emphbox} and \end{emphbox}.

$$x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

## 3. Language and Text

#### 3.1. Tex

The LATEX source code of this template is interpreted as unicode. Therefore special characters like the german umlauts  $(\ddot{a}, \ddot{o}, \ddot{u})$  can be used easily.

Also greek characters can be written as math commands ( $\alpha, \beta, \gamma$ ) or as unicode  $\alpha, \beta, \gamma$ ).

This is also vailed for the math characters:  $\int_{-1}^{1} \partial_{x} \mathbb{R}$  or  $\int_{-1}^{1} \partial_{x} \mathbb{R}$ .

#### 3.2. Language

The language can be choosen with the options english or german.

It is also possible to define a different language for a part of a document: \EngGer{You have chosen the language option english}{Du hast ngerman als Sprachoption gewählt}

However, you can also switch to english in a german cheat sheet using \selectlanguage{english}. This guarantees that words are hyphenated correctly.

And back to german with \selectlanguage{ngerman} (use ngerman not german!)

## 4. Images

Images can be included using the \includegraphics command.

Do not use figure environment.

The width should be set as a fraction of \columnwidth.

\begin{center}
 \includegraphics[width = 0.5\columnwidth]{Logo}
\end{center}

The  $\it include graphics$  command searches for images in ./ and ./img. The file extension is added automatically.

## 5. Conventions

## Why?

Different formatting is helpful for the understanding of: variables, constants, functions, fixed units, vectors, matrices, sets, complex values, random variables . . .

#### 5.1. General conventions for cheat sheets

- $\bullet$  Always the name first and the the symbol afterwards! Example: "The angular velocity  $\omega,$  "The angular velocity \omega"
- Densities are always set in small letters
- Brackets around fractions or bigger equations are set with \left( .\right)

## 5.2. Tables

| Line                | B/W    | Colored |
|---------------------|--------|---------|
| Line on top         | \trule | \ctrule |
| Linie in the middle | \mrule | \cmrule |
| Line at bottom      | \brule | \cbrule |

## 5.3. Boxes

Different topics are categorized within boxes. The following types of boxes are available:

sectionbox: for a topic (grey)

tablebox: for colored tables

symbolbox: for units and symbols (orange)

emphbox: for very important equations (red box)

topicbox: for important overviews about the topic

For further information on how to use the different boxes please refer to section  $2. \,$ 

#### 5.4. Vectors and matrices

| vector symbol | \vec r                 |  |
|---------------|------------------------|--|
| vector        | \vect{ x \\ y \\ z}    |  |
| transpose     | \vec r^\top            |  |
| matrix symbol | \ma M                  |  |
| matrix        | \mat{ a & b \\ c & d } |  |
| tensor        | \tensor C              |  |
|               |                        |  |

## 5.5. Indicies and superscript

Depending on what the index refers to it should be set differently:

- $\bullet$   $E_{
  m kin}$  (E\_{\ir kin}) if an index refers to a word (e.g. "kinetic"). The command name \ir is an abbriviation for "index roman".
- $\bullet$   $E_x$  (E\_x) if the index refers to a symbol (e.g. the x component of the electromagnetic field).

The same difference also applies for the superscript (^)

## 5.6. Functions

The trigonometric functions are usually set upright. Therefore the commands \exp, \sin, \cos, \sinh, \cosh and \sinc should be used.

Similar we can set:

Differential operators: \grad, \div, \rot and \lpo

Maximum, minium and limes operators: \min, \maxand \lim

Stochastic operators: \E, \Var and \Cov

Transformations are usually set in italic letters:  $\T$ ,  $\L$ T,  $\D$ FT,  $\Z$ T and  $\D$ TFT

## 5.7. Complex values

Complex variable: \cx z

Complex conjugate: \cxc z

Imaginary: \i or \j or \k (hypercomplex)

## 6. Macros

## 6.1. Own Macros for cheat sheets

Arrows:  $\rightarrow$ ,  $\Rightarrow$ ,  $\uparrow$ ,  $\downarrow$ 

## 6.2. Own Macros in the scientific package

Vectors and Matrices:  $\vec{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$   $M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 

Proper delta for differential equaions:  $d^3x dy dz \frac{df(x)}{dx}$ 

Functions: SI Units:  $G = 6.67 \times 10^{-11} \, \frac{\mathrm{kg}}{\mathrm{s}^2}$ 

Sets:  $\mathbb{NRC}$ Random variable: X Y ZStochastic: P(X = 3), E(X), Var(X)

Further information about the use of the *scientific* package can be found in *Scientific Package Documentation.pdf*