

Control Frequency Adaptation via Action Persistence in Batch Reinforcement Learning

<u>Alberto Maria Metelli</u> Flavio Mazzolini Lorenzo Bisi Luca Sabbioni Marcello Restelli

July 2020 Thirty-seventh International Conference on Machine Learning **Problem**: How to select the *control frequency* for a system?

Lower Frequencies

Higher Frequencies

Motivations

Problem: How to select the *control frequency* for a system?

Lower Frequencies

Higher Frequencies

Control Opportunities

Motivations

Problem: How to select the *control frequency* for a system?

Motivations

Problem: How to select the *control frequency* for a system?

• **Idea**: persisting each action for k steps

■ **Idea**: *persisting* each action for *k* steps

Idea: persisting each action for k steps

• **Idea**: persisting each action for k steps

Outline 3

Action persistence formalization

Performance loss due to persistence

Persistent Fitted Q-Iteration

Outline 3

Action persistence formalization

Performance loss due to persistence

Persistent Fitted Q-Iteration

Outline 3

Action persistence formalization

Performance loss due to persistence

Persistent Fitted Q-Iteration

$$\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, R, \gamma)$$
 and π

 $\pi: \mathcal{S} \to \mathscr{P}(\mathcal{A})$ is Markovian and Stationary (Puterman, 2014; Sutton and Barto, 2018)

Change the policy \rightarrow k-persistent policy

$$\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, R, \gamma)$$
 and π_k
$$\pi_{t,k}(a|h_t) = \begin{cases} \pi(a|s_t) & \text{if } t \bmod k = 0 \\ \delta_{a_{t-1}}(a) & \text{otherwise} \end{cases}$$

- History $h_t = (s_0, a_0, \dots, s_{t-1}, a_{t-1}, s_t)$
- \blacksquare π_k is Non-Markovian and Non-Stationary

Change the policy \rightarrow k-persistent policy

$$\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, R, \gamma)$$
 and π_k
$$\pi_{t,k}(a|h_t) = \begin{cases} \pi(a|s_t) & \text{if } t \bmod k = 0\\ \delta_{a_{t-1}}(a) & \text{otherwise} \end{cases}$$

- History $h_t = (s_0, a_0, \dots, s_{t-1}, a_{t-1}, s_t)$
- \blacksquare π_k is Non-Markovian and Non-Stationary

$$\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, R, \gamma)$$
 and π_k
$$\pi_{t,k}(a|h_t) = \begin{cases} \pi(a|s_t) & \text{if } t \bmod k = 0\\ \delta_{a_{t-1}}(a) & \text{otherwise} \end{cases}$$

- History $h_t = (s_0, a_0, \dots, s_{t-1}, a_{t-1}, s_t)$
- \blacksquare π_k is Non-Markovian and Non-Stationary

Change the MDP \rightarrow k-persistent MDP

$$\mathcal{M}_k = \left(\mathcal{S}, \mathcal{A}, P_k, R_k, \gamma^k\right) \quad \text{and} \quad \pi$$

$$P_k(s'|s, a) = \left((P^\delta)^{k-1}P\right)(s'|s, a)$$

$$R_k(s'|s, a) = \sum_{i=0}^{k-1} \gamma^i \left((P^\delta)^i R\right)(s'|s, a)$$

- Persistent state-action kernel $P^{\delta}(s', a'|s, a) = \delta_{a'}(a)P(s'|s, a)$
- lacksquare \mathcal{M}_k has smaller discount factor γ^k

$$\mathcal{M}_k = \left(\mathcal{S}, \mathcal{A}, P_k, R_k, \gamma^k\right) \quad \text{and} \quad \pi$$

$$P_k(s'|s, a) = \left((P^{\delta})^{k-1}P\right)(s'|s, a)$$

$$R_k(s'|s, a) = \sum_{i=0}^{k-1} \gamma^i \left((P^{\delta})^i R\right)(s'|s, a)$$

- Persistent state-action kernel $P^{\delta}(s',a'|s,a) = \delta_{a'}(a)P(s'|s,a)$
- lacksquare \mathcal{M}_k has *smaller* discount factor γ^k

Change the MDP \rightarrow k-persistent MDP

$$\mathcal{M}_k = \left(\mathcal{S}, \mathcal{A}, P_k, R_k, \gamma^k\right) \quad \text{and} \quad \pi$$

$$P_k(s'|s, a) = \left((P^{\delta})^{k-1}P\right)(s'|s, a)$$

$$R_k(s'|s, a) = \sum_{i=0}^{k-1} \gamma^i \left((P^{\delta})^i R\right)(s'|s, a)$$

- Persistent state-action kernel $P^{\delta}(s',a'|s,a) = \delta_{a'}(a)P(s'|s,a)$
- lacksquare \mathcal{M}_k has *smaller* discount factor γ^k

Bellman Operator (Bertsekas, 2005)

$$(T^*f)(s,a) = r(s,a) + \gamma \int_{\mathcal{S}} P(\mathrm{d}s'|s,a) \max_{a' \in \mathcal{A}} f(s',a')$$

- lacksquare T^* is a γ -contraction in L_∞ -norm
- lacksquare Q^* is the unique fixed point of T^*

$$T^*Q^* = Q^*$$

k-persistent MDP \mathcal{M}_{k}

Persistence Operator

$$(T^{\delta}f)(s, \boldsymbol{a}) = r(s, \boldsymbol{a}) + \gamma \int_{\mathcal{S}} P(\mathrm{d}s'|s, \boldsymbol{a}) f(s', \boldsymbol{a})$$

$$T_{k}^* = (T^\delta)^{k-1} T^*$$

- lacksquare $T_{m{k}}^{m{*}}$ is a γ^k -contraction in L_{∞} -norm
- $lacksymbol{Q_k^*}$ is the unique fixed point of T_k^*

$$T_k^* Q_k^* = Q_k^*$$

Bellman Operator (Bertsekas, 2005)

$$(T^*f)(s,a) = r(s,a) + \gamma \int_{\mathcal{S}} P(\mathrm{d}s'|s,a) \max_{a' \in \mathcal{A}} f(s',a')$$

- lacksquare T^* is a γ -contraction in L_{∞} -norm
- lacksquare Q^* is the unique fixed point of T^*

$$T^*Q^* = Q^*$$

k-persistent MDP \mathcal{M}_{k}

Persistence Operator

$$(T^{\delta}f)(s, \boldsymbol{a}) = r(s, \boldsymbol{a}) + \gamma \int_{\mathcal{S}} P(\mathrm{d}s'|s, \boldsymbol{a}) f(s', \boldsymbol{a})$$

$$T_{k}^* = (T^\delta)^{k-1} T^*$$

- $lacksymbol{T}_{oldsymbol{k}}^{oldsymbol{*}}$ is a γ^k -contraction in L_{∞} -norm
- $lacksymbol{Q_k^*}$ is the unique fixed point of T_k^*

$$T_k^* Q_k^* = Q_k^*$$

Bellman Operator (Bertsekas, 2005)

$$(T^*f)(s,a) = r(s,a) + \gamma \int_{\mathcal{S}} P(\mathrm{d}s'|s,a) \max_{a' \in \mathcal{A}} f(s',a')$$

- lacksquare T^* is a γ -contraction in L_{∞} -norm
- lacksquare Q^* is the unique fixed point of T^*

$$T^*Q^* = Q^*$$

k-persistent MDP \mathcal{M}_{k}

Persistence Operator

$$(T^{\delta}f)(s, \boldsymbol{a}) = r(s, \boldsymbol{a}) + \gamma \int_{\mathcal{S}} P(\mathrm{d}s'|s, \boldsymbol{a}) f(s', \boldsymbol{a})$$

$$T_{k}^* = (T^\delta)^{k-1} T^*$$

- lacksquare $T_{m{k}}^{m{*}}$ is a γ^k -contraction in L_{∞} -norm
- lacksquare $Q_{m{k}}^*$ is the unique fixed point of $T_{m{k}}^*$

$$T_k^* Q_k^* = Q_k^*$$

Bellman Operator (Bertsekas, 2005)

$$(T^*f)(s,a) = r(s,a) + \gamma \int_{\mathcal{S}} P(\mathrm{d}s'|s,a) \max_{a' \in \mathcal{A}} f(s',a')$$

- lacksquare T^* is a γ -contraction in L_{∞} -norm
- lacksquare Q^* is the unique fixed point of T^*

$$T^*Q^* = Q^*$$

k-persistent MDP \mathcal{M}_{k}

Persistence Operator

$$(T^{\delta}f)(s, \boldsymbol{a}) = r(s, a) + \gamma \int_{\mathcal{S}} P(\mathrm{d}s'|s, a) f(s', \boldsymbol{a})$$

$$T_{k}^* = (T^\delta)^{k-1} T^*$$

- $lacksymbol{T}_{oldsymbol{k}}^{oldsymbol{*}}$ is a γ^k -contraction in L_{∞} -norm
- lacksquare $Q_{m{k}}^*$ is the unique fixed point of $T_{m{k}}^*$

$$T_k^* Q_k^* = Q_k^*$$

Bellman Operator (Bertsekas, 2005)

$$(T^*f)(s,a) = r(s,a) + \gamma \int_{\mathcal{S}} P(\mathrm{d}s'|s,a) \max_{a' \in \mathcal{A}} f(s',a')$$

- lacksquare T^* is a γ -contraction in L_{∞} -norm
- lacksquare Q^* is the unique fixed point of T^*

$$T^*Q^* = Q^*$$

k-persistent MDP \mathcal{M}_{k}

Persistence Operator

$$(T^{\delta}f)(s, \boldsymbol{a}) = r(s, a) + \gamma \int_{\mathcal{S}} P(\mathrm{d}s'|s, a) f(s', \boldsymbol{a})$$

$$T_{\mathbf{k}}^* = (T^\delta)^{\mathbf{k} - 1} T^*$$

- lacksquare $T_{m{k}}^{m{*}}$ is a γ^k -contraction in L_{∞} -norm
- $lacksymbol{Q_k^*}$ is the unique fixed point of T_k^*

$$T_k^* Q_k^* = Q_k^*$$

Bellman Operator (Bertsekas, 2005)

$$(T^*f)(s,a) = r(s,a) + \gamma \int_{\mathcal{S}} P(\mathrm{d}s'|s,a) \max_{a' \in \mathcal{A}} f(s',a')$$

- lacksquare T^* is a γ -contraction in L_{∞} -norm
- Q* is the unique fixed point of T*

$$T^*Q^* = Q^*$$

k-persistent MDP \mathcal{M}_{k}

Persistence Operator

$$(T^{\delta}f)(s, \boldsymbol{a}) = r(s, a) + \gamma \int_{\mathcal{S}} P(\mathrm{d}s'|s, a) f(s', \boldsymbol{a})$$

$$T_{\mathbf{k}}^* = (T^\delta)^{\mathbf{k} - 1} T^*$$

- lacksquare $T_{m{k}}^*$ is a γ^k -contraction in L_∞ -norm
- $lacksymbol{Q_k^*}$ is the unique fixed point of T_k^*

$$T_k^* Q_k^* = Q_k^*$$

Bellman Operator (Bertsekas, 2005)

$$(T^*f)(s,a) = r(s,a) + \gamma \int_{\mathcal{S}} P(\mathrm{d}s'|s,a) \max_{a' \in \mathcal{A}} f(s',a')$$

- lacksquare T^* is a γ -contraction in L_{∞} -norm
- lacksquare Q^* is the unique fixed point of T^*

$$T^*Q^* = Q^*$$

k-persistent MDP \mathcal{M}_{k}

Persistence Operator

$$(T^{\delta}f)(s, \boldsymbol{a}) = r(s, a) + \gamma \int_{\mathcal{S}} P(\mathrm{d}s'|s, a) f(s', \boldsymbol{a})$$

$$T_{\mathbf{k}}^* = (T^\delta)^{\mathbf{k} - 1} T^*$$

- lacksquare $T_{m{k}}^*$ is a γ^k -contraction in L_∞ -norm
- lacksquare $Q_{m{k}}^*$ is the unique fixed point of $T_{m{k}}^*$

$$T_{\mathbf{k}}^* Q_{\mathbf{k}}^* = Q_{\mathbf{k}}^*$$

- $Q_k^* \leqslant Q^*$ for all $k \geqslant 1$
- How much do we lose by persisting k times the actions of policy π ?

$$\|Q^{\pi} - Q_k^{\pi}\|_{p,\mu} \le \frac{\gamma}{1 - \gamma} \left\| \frac{1 - \gamma^{k-1}}{1 - \gamma^k} \right\|_{p,\mu}$$

- \blacksquare Increasing with k
- $d(P^{\pi}, P^{\delta})$: discrepancy between transition kernels
 - Can be bounded under Lipschitz conditions (Rachelson and Lagoudakis, 2010)

- $Q_k^* \leqslant Q^*$ for all $k \geqslant 1$
- How much do we lose by persisting k times the actions of policy π ?

$$\|Q^{\pi} - Q_k^{\pi}\|_{p,\mu} \le \frac{\gamma}{1 - \gamma} \left[\frac{1 - \gamma^{k-1}}{1 - \gamma^k} \right] \|d(P^{\pi}, P^{\delta})\|_{p,\mu}$$

- \blacksquare Increasing with k
- $d(P^{\pi}, P^{\delta})$: discrepancy between transition kernels
 - Can be bounded under Lipschitz conditions (Rachelson and Lagoudakis, 2010)

- $Q_k^* \leqslant Q^*$ for all $k \geqslant 1$
- How much do we lose by persisting k times the actions of policy π ?

$$\|Q^{\pi} - Q_k^{\pi}\|_{p,\mu} \le \frac{\gamma}{1-\gamma} \quad \frac{1-\gamma^{k-1}}{1-\gamma^k} \left[\|d(P^{\pi}, P^{\delta})\|_{p,\mu} \right]$$

- \blacksquare Increasing with k
- $d(P^{\pi}, P^{\delta})$: discrepancy between transition kernels
 - Can be bounded under Lipschitz conditions (Rachelson and Lagoudakis, 2010)

$$P^{\pi}(s', a'|s, a) = \pi(a'|s') P(s'|s, a)$$

$$P^{\delta}(s', a'|s, a) = \delta_{a'}(a) P(s'|s, a)$$

- $Q_k^* \leqslant Q^*$ for all $k \geqslant 1$
- How much do we lose by persisting k times the actions of policy π ?

$$\|Q^{\pi} - Q_k^{\pi}\|_{p,\mu} \le \frac{\gamma}{1 - \gamma} \left\| \frac{1 - \gamma^{k-1}}{1 - \gamma^k} \right\| d(P^{\pi}, P^{\delta}) \|_{p,\mu}$$

- \blacksquare Increasing with k
- $d(P^{\pi}, P^{\delta})$: discrepancy between transition kernels
 - Can be bounded under Lipschitz conditions (Rachelson and Lagoudakis, 2010)

$$\left\| d(P^{\pi}, P^{\delta}) \right\|_{p,\mu} \leqslant L \left[(L_{\pi} + 1)L_T + \sigma_p \right]$$

Fitted Q-Iteration

(Ernst et al., 2005)

- lacksquare Approximation space ${\mathcal F}$
- Initial estimate $Q^{(0)}$
- Dataset

$$\mathcal{D} = \{(S_i, A_i, S_{i+1}, R_i)\}_{i=1}^n \sim \nu$$

$$Q^{(j+1)} = \Pi_{\mathcal{F}} \widehat{T}^* Q^{(j)}$$

- $Q^{(j)} \leadsto Q^*$
- What about Q_k^* ?

$$(\widehat{T}^*f)(S_i, A_i) = R_i + \gamma \max_{a \in \mathcal{A}} f(S_{i+1}, a)$$

$$T^* \simeq \Pi_{\mathcal{F}} \widehat{T}^*$$

- lacksquare Approximation space ${\cal F}$
- Initial estimate $Q^{(0)}$
- Dataset

$$\mathcal{D} = \{(S_i, A_i, S_{i+1}, R_i)\}_{i=1}^n \sim \nu$$

$$Q^{(j+1)} = \begin{cases} \Pi_{\mathcal{F}} \widehat{T}^* Q^{(j)} & \text{if } j \bmod k = 0 \\ \Pi_{\mathcal{F}} \widehat{T}^{\delta} Q^{(j)} & \text{otherwise} \end{cases}$$

 $Q^{(j)} \leadsto Q_k^*$

- lacksquare Approximation space ${\cal F}$
- Initial estimate $Q^{(0)}$
- Dataset

$$\mathcal{D} = \{(S_i, A_i, S_{i+1}, R_i)\}_{i=1}^n \sim \nu$$

$$Q^{(j+1)} = \begin{cases} \prod_{\mathcal{F}} \widehat{T}^* Q^{(j)} & \text{if } j \bmod k = 0 \\ \prod_{\mathcal{F}} \widehat{T}^{\delta} Q^{(j)} & \text{otherwise} \end{cases}$$

 $Q^{(j)} \leadsto Q_k^*$

$$(\widehat{T}^*f)(S_i, A_i) = R_i + \gamma \max_{a \in \mathcal{A}} f(S_{i+1}, a)$$

- Approximation space \mathcal{F}
- Initial estimate $Q^{(0)}$
- Dataset

$$\mathcal{D} = \{(S_i, A_i, S_{i+1}, R_i)\}_{i=1}^n \sim \nu$$

$$Q^{(j+1)} = \begin{cases} \prod_{\mathcal{F}} \widehat{T}^* Q^{(j)} & \text{if } j \bmod k = 0\\ \prod_{\mathcal{F}} \widehat{T}^{\delta} Q^{(j)} & \text{otherwise} \end{cases}$$

 $Q^{(j)} \leadsto Q_k^*$

$$(\widehat{T}^*f)(S_i, A_i) = R_i + \gamma \max_{a \in \mathcal{A}} f(S_{i+1}, a)$$
$$(\widehat{T}^{\delta}f)(S_i, A_i) = R_i + \gamma f(S_{i+1}, A_i)$$

$$T_k^* = (T^\delta)^{k-1} T^* \simeq (\Pi_{\mathcal{F}} \widehat{T}^\delta)^{k-1} \Pi_{\mathcal{F}} \widehat{T}^*$$

- lacksquare Approximation space ${\mathcal F}$
- Initial estimate $Q^{(0)}$
- Dataset

$$\mathcal{D} = \{(S_i, A_i, S_{i+1}, R_i)\}_{i=1}^n \sim \nu$$

$$Q^{(j+1)} = \begin{cases} \prod_{\mathcal{F}} \widehat{T}^* Q^{(j)} & \text{if } j \bmod k = 0\\ \prod_{\mathcal{F}} \widehat{T}^{\delta} Q^{(j)} & \text{otherwise} \end{cases}$$

 $Q^{(j)} \leadsto Q_k^*$

$$(\widehat{T}^*f)(S_i, A_i) = R_i + \gamma \max_{a \in \mathcal{A}} f(S_{i+1}, a)$$
$$(\widehat{T}^{\delta}f)(S_i, A_i) = R_i + \gamma f(S_{i+1}, A_i)$$

$$T_k^* = (T^\delta)^{k-1} T^* \simeq (\Pi_{\mathcal{F}} \widehat{T}^\delta)^{k-1} \Pi_{\mathcal{F}} \widehat{T}^*$$

Computational Complexity: monotonically decreasing with k

$$\mathcal{O}\left(Jn\left(1+rac{|\mathcal{A}|-1}{k}
ight)
ight)$$
 for J iterations

Error propagation

$$\left\|Q_k^* - Q_k^{\pi^{(J)}}\right\|_{p,\mu} \leqslant \frac{2}{1-\gamma} \quad \frac{\gamma^k}{1-\gamma^k} \quad \mathcal{E}(J,\mu,\nu,p)$$

- Decreasing with k
- Approximation errors $\epsilon^{(j)}$ and concentrability coefficients (Farahmand, 2011)

$$\epsilon^{(j)} = \begin{cases} T^*Q^{(j)} - Q^{(j+1)} & \text{if } j \bmod k = 0 \\ T^{\delta}Q^{(j)} - Q^{(j+1)} & \text{otherwise} \end{cases}$$

Computational Complexity: monotonically decreasing with k

$$\mathcal{O}\left(Jn\left(1+rac{|\mathcal{A}|-1}{k}
ight)
ight)$$
 for J iterations

Error propagation

$$\left\|Q_k^* - Q_k^{\pi^{(J)}}\right\|_{p,\mu} \leqslant \frac{2}{1-\gamma} \quad \frac{\gamma^k}{1-\gamma^k} \quad \mathcal{E}(J,\mu,\nu,p)$$

- Decreasing with k
- Approximation errors $\epsilon^{(j)}$ and concentrability coefficients (Farahmand, 2011)

$$\epsilon^{(j)} = \begin{cases} T^* Q^{(j)} - Q^{(j+1)} & \text{if } j \bmod k = 0 \\ T^{\delta} Q^{(j)} - Q^{(j+1)} & \text{otherwise} \end{cases}$$

Computational Complexity: monotonically decreasing with k

$$\mathcal{O}\left(Jn\left(1+rac{|\mathcal{A}|-1}{k}
ight)
ight)$$
 for J iterations

Error propagation

$$\left\|Q_k^* - Q_k^{\pi^{(J)}}\right\|_{p,\mu} \leqslant \frac{2}{1 - \gamma} \left[\frac{\gamma^k}{1 - \gamma^k}\right] \mathcal{E}(J,\mu,\nu,p)$$

- Decreasing with k
- ullet Approximation errors $\epsilon^{(j)}$ and concentrability coefficients (Farahmand, 2011)

$$\epsilon^{(j)} = \begin{cases} T^*Q^{(j)} - Q^{(j+1)} & \text{if } j \bmod k = 0 \\ T^{\delta}Q^{(j)} - Q^{(j+1)} & \text{otherwise} \end{cases}$$

Computational Complexity: monotonically decreasing with k

$$\mathcal{O}\left(Jn\left(1+rac{|\mathcal{A}|-1}{k}
ight)
ight)$$
 for J iterations

Error propagation

$$\left\|Q_k^* - Q_k^{\pi^{(J)}}\right\|_{p,\mu} \leqslant \frac{2}{1-\gamma} \quad \frac{\gamma^k}{1-\gamma^k} \quad \underbrace{\mathcal{E}(J,\mu,\nu,p)}$$

- Decreasing with k
- Approximation errors $\epsilon^{(j)}$ and concentrability coefficients (Farahmand, 2011)

$$\epsilon^{(j)} = \begin{cases} T^*Q^{(j)} - Q^{(j+1)} & \text{if } j \bmod k = 0 \\ T^{\delta}Q^{(j)} - Q^{(j+1)} & \text{otherwise} \end{cases}$$

$$\left\| Q^* - Q_k^{\pi^{(J)}} \right\|_{p,\mu} \leqslant \| Q^* - Q_k^* \|_{p,\mu} + \| Q_k^* - Q_k^{\pi^{(J)}} \|_{p,\mu}$$

- Control Opportunities
- Algorithm-independent
- **■** Increasing with k

- Sample Complexity
- Algorithm-dependent
- Decreasing with k

• How to identify the optimal persistence?

$$\left\| Q^* - Q_k^{\pi^{(J)}} \right\|_{p,\mu} \leqslant \left[\|Q^* - Q_k^*\|_{p,\mu} \right] + \left\| Q_k^* - Q_k^{\pi^{(J)}} \right\|_{p,\mu}$$

- Control Opportunities
- Algorithm-independent
- \blacksquare Increasing with k

- Sample Complexity
- Algorithm-dependent
- lacksquare Decreasing with k

• How to identify the optimal persistence?

$$\left\| Q^* - Q_k^{\pi^{(J)}} \right\|_{p,\mu} \leqslant \| Q^* - Q_k^* \|_{p,\mu} + \left[\left\| Q_k^* - Q_k^{\pi^{(J)}} \right\|_{p,\mu} \right]$$

- Control Opportunities
- Algorithm-independent
- lacktriangle Increasing with k

- Sample Complexity
- Algorithm-dependent
- Decreasing with k

• How to identify the optimal persistence?

$$\left\| Q^* - Q_k^{\pi^{(J)}} \right\|_{p,\mu} \leqslant \| Q^* - Q_k^* \|_{p,\mu} + \| Q_k^* - Q_k^{\pi^{(J)}} \|_{p,\mu}$$

- Control Opportunities
- Algorithm-independent
- lacktriangle Increasing with k

- Sample Complexity
- Algorithm-dependent
- Decreasing with k

How to identify the optimal persistence?

- How to identify the optimal persistence in a batch setting?
- Given estimated Q-function $\{Q_k : k \in \mathcal{K}\}$

$$\widetilde{k} \in \operatorname*{arg\,max}_{k \in \mathcal{K}} B_k = \left\| \widehat{J}_k - \frac{1}{1 - \gamma^k} \right\| \left\| \widetilde{Q}_k - Q_k \right\|_{\mathcal{D}}$$

- \blacksquare estimated performance derived from Q_k
- ightharpoonup \simeq Bellman residual ($\widetilde{Q}_k \simeq T_k^* Q_k$) (Farahmand and Szepesvári, 2011)

- How to identify the optimal persistence in a batch setting?
- Given estimated Q-function $\{Q_k : k \in \mathcal{K}\}$

$$\widetilde{k} \in \operatorname*{arg\,max}_{k \in \mathcal{K}} B_k = \left[\widehat{J}_k \right] - \frac{1}{1 - \gamma^k} \left\| \widetilde{Q}_k - Q_k \right\|_{\mathcal{D}}$$

- lacktriangle estimated performance derived from Q_k
- ightharpoonup \simeq Bellman residual ($\widetilde{Q}_k \simeq T_k^* Q_k$) (Farahmand and Szepesvári, 2011)

- How to identify the optimal persistence in a batch setting?
- Given estimated Q-function $\{Q_k : k \in \mathcal{K}\}$

$$\widetilde{k} \in \operatorname*{arg\,max}_{k \in \mathcal{K}} B_k = \widehat{J}_k - \frac{1}{1 - \gamma^k} \left[\left\| \widetilde{Q}_k - Q_k \right\|_{\mathcal{D}} \right]$$

- \blacksquare estimated performance derived from Q_k
- ightharpoonup \simeq Bellman residual ($\widetilde{Q}_k \simeq T_k^* Q_k$) (Farahmand and Szepesvári, 2011)

Environments	Best Persistence
Cartpole	4
Mountain Car	8, 16, 32
LunarLander	4, 8
Pendulum	1, 2, 4
Acrobot	2, 4
Swimmer	2, 4, 8
Hopper	64
Walker2D	8, 16, 32, 64

- The best persistence is usually not 1
- **Excessive increase** of the persistence prevents control at all

■ PFQI & ExtraTrees (Geurts et al., 2006)

Environments	Best Persistence
Cartpole	4
Mountain Car	8, 16, 32
LunarLander	4, 8
Pendulum	1, 2, 4
Acrobot	2, 4
Swimmer	2, 4, 8
Hopper	64
Walker2D	8, 16, 32, 64

- The best persistence is usually not 1
- **Excessive increase** of the persistence prevents control at all

- Overestimated lower persistence Q-functions
- The persistence selection heuristic correctly selects k=4

- Overestimated lower persistence Q-functions
- The persistence selection heuristic correctly selects k=4

Research Question: Can we exploit this trade-off to find an optimal control frequency?

- Open Questions
 - Can persistence improve exploration?
 - Persistence in on—line RL
 - **Dynamic** persistent selection

Research Question: Can we exploit this trade-off to find an optimal control frequency? Yes!

- Open Questions
 - Can persistence improve exploration?
 - Persistence in on—line RL
 - **Dynamic** persistent selection

Research Question: Can we exploit this trade-off to find an optimal control frequency? Yes!

Open Questions

- Can persistence improve exploration?
- Persistence in on-line RL
- Bynamic persistent selection

Research Question: Can we exploit this trade-off to find an optimal control frequency? Yes!

Open Questions

- Can persistence improve exploration?
- Persistence in on-line RL
- Bynamic persistent selection

Research Question: Can we exploit this trade-off to find an optimal control frequency? Yes!

Open Questions

- Can persistence improve exploration?
- Persistence in on-line RL
- **Oynamic** persistent selection

Thank You for Your Attention!

- Dimitri P. Bertsekas. *Dynamic programming and optimal control, 3rd Edition*. Athena Scientific, 2005. ISBN 1886529264.
- Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning. *J. Mach. Learn. Res.*, 6:503–556, 2005.
- Amir Massoud Farahmand. Regularization in Reinforcement Learning. PhD thesis, University of Alberta, 2011.
- Amir Massoud Farahmand and Csaba Szepesvári. Model selection in reinforcement learning. *Machine Learning*, 85(3):299–332, 2011. doi: 10.1007/s10994-011-5254-7.
- Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. *Machine Learning*, 63(1):3–42, 2006. doi: 10.1007/s10994-006-6226-1.
- Alberto Maria Metelli, Mirco Mutti, and Marcello Restelli. Configurable markov decision processes. In Jennifer G. Dy and Andreas Krause, editors, *Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018*, volume 80 of *Proceedings of Machine Learning Research*, pages 3488–3497. PMLR, 2018.
- Martin L Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, 2014.
- Emmanuel Rachelson and Michail G. Lagoudakis. On the locality of action domination in sequential decision making. In *International Symposium on Artificial Intelligence and Mathematics, ISAIM 2010, Fort Lauderdale, Florida, USA, January 6-8, 2010, 2010.*
- Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.