Série 1, Exercice 6

David Wiedemann

22 septembre 2020

• Clairement le numérateur est un entier positif, il suffit donc de montrer qu'il est pair.

On distingue donc les cas.

— Supposons m pair et n pair, alors :

$$m=2i$$
 et $n=2k$

Donc

$$(m+n)^2 + m + 3n = (2i+2k)^2 + 2i + 6k$$
$$= 2(2(i+k)^2 + i + 3k)$$

Donc le numérateur est pair.

— Supposons m pair et n impair, alors

$$m = 2i$$
 et $n = 2k + 1$

Donc

$$(m+n)^{2} + m + 3n = (2i + 2k + 1)^{2} + 2i + 6k + 3$$

$$= (2i + 2k)^{2} + 2(2i + 2k) + 1 + 2i + 6k + 3$$

$$= (2i + 2k)^{2} + 2(2i + 2k) + 2i + 6k + 4$$

$$= 2(2(i + k)^{2} + (2i + 2k) + i + 3k + 2)$$

Donc le numérateur est pair.

— Supposons m impair et n pair, alors

$$m = 2i + 1$$
 et $n = 2k$

Donc

$$(m+n)^{2} + m + 3n = (2i + 2k + 1)^{2} + 2i + 6k + 1$$

$$= (2i + 2k)^{2} + 2(2i + 2k) + 1 + 2i + 6k + 1$$

$$= (2i + 2k)^{2} + 2(2i + 2k) + 2i + 6k + 2$$

$$= 2(2(i + k)^{2} + (2i + 2k) + i + 3k + 1)$$

— Finalement, supposons m impair et n impair

$$m = 2i + 1$$
 et $n = 2k + 1$

Donc

$$(m+n)^{2} + m + 3n = (2i + 2k + 2)^{2} + 2i + 6k + 4$$
$$= 2(2(i+k+1) + i + 3k + 2)$$

• Par la définition de D_k , $(m,n) \in D_k$ implique que $(k-n,n) \in D_k$ et $0 \le n \le k$.

Supposons donc $(m, n) \in D_k$, on a:

$$C(m,n) = C(k-n,n) = \frac{1}{2} \cdot \left((k-n+n)^2 + k - n + 3n \right)$$
$$= \frac{1}{2} \cdot \left(k^2 + k + 2n \right)$$
$$= \frac{k^2 + k}{2} + n$$

Donc si n=0, $C(m,n)=\frac{k^2+k}{2}$ et si n=k, $C(m,n)=\frac{k^2+k}{2}+k,$ donc les valeurs de C(m,n) sont comprises entre $\frac{k^2+k}{2}$ et $\frac{k^2+k}{2}+k.$ • On est maintenant prêt à montrer la bijectivité de $C:\mathbb{N}^2\to\mathbb{N}$. Pour ceci,

- on va procéder par étapes :
 - 1. Montrer que $C: D_k \to \{\frac{k^2+k}{2}, \dots, \frac{k^2+k}{2}+k\}$ est bijective.
 - 2. Montrer que $D_i \cap D_k = \emptyset$, si $i \neq k$.
 - 3. Montrer que $\bigcup_{i=0}^{+\infty} D_i = \mathbb{N}^2$.
 - 4. Montrer que $C(D_k) \cap C(D_i) = \emptyset, i \neq k$
 - 5. Montrer la bijectivité de $C: \mathbb{N}^2 \to \mathbb{N}$.

Pour le point 1.

Trouver un inverse pour $C: D_k \to \{\frac{k^2+k}{2}, \dots, \frac{k^2+k}{2}+k\}$ est facile, soit $a \in \{\frac{k^2+k}{2}, \dots, \frac{k^2+k}{2}+k\}$, alors

$$C^{-1}: \left\{ \frac{k^2 + k}{2}, \dots, \frac{k^2 + k}{2} + k \right\} \to D_k$$

$$a \to \left(a - \frac{1}{2} (k^2 + k), k + \frac{1}{2} (k^2 + k) - a \right)$$

Clairement, cette application est bijective car k est constante.

Pour le point 2.

Par l'absurde, supposons que $\exists (m,n) \in D_k$ et $(m,n) \in D_i$.

Donc m + n = i et m + n = k, donc i = k, ce qui est une contradiction à l'hypothèse.

Pour le point 3.

On montre la double inclusion.

L'inclusion de gauche à droite est triviale.

Supposons donc $(m, n) \in \mathbb{N}^2$. On pose $m + n = i, i \in \mathbb{N}$, donc m = i - n.

$$(m,n) = (i-n,n) \in D_i$$

On en déduit $\bigcup_{i=0}^{+\infty} D_i = \mathbb{N}^2$

Sans perte de généralité, on suppose i < k, donc $k = i + a, a \in \mathbb{Z}^+$. Montrons que $\sup(C(D_i)) < \sup(C(D_k))$.

Clairement

$$C: D_i \to \left\{ \frac{i^2+i}{2}, \dots, \frac{i^2+i}{2} + i \right\}$$

et

$$C: D_k \to \left\{\frac{k^2+k}{2}, \dots, \frac{k^2+k}{2}+k\right\} = \left\{\frac{i^2+2ia+a^2+i}{2}, \dots, \frac{i^2+2ia+a^2+i}{2}+i+a\right\}$$

On sait que $\sup(C(D_i)) = \frac{i^2+i}{2}$ et que $\inf(C(D_k)) = \frac{i^2+2ia+a^2+i}{2}$, donc

$$\inf(C(D_k)) - \sup(C(D_i)) = \frac{i^2 + 2ia + a^2 + i}{2} - \frac{i^2 + i}{2} - i$$
$$= \frac{i^2 + 2ia + a^2 + i}{2} - \frac{i^2 - 2i}{2}$$
$$= \frac{a^2 + 2ia + 3i}{2}$$

Car i, a > 0, la différence est plus grande que 0 et donc l'intersection de $C(D_i) \cap C(D_k)$ est vide.

Donc C est bijective sur $D_i \cup D_k, k \neq i$ et donc elle est bijective sur $\bigcup_{i=0}^{+\infty} D_i$