TSF TASK 1 - GRIP MARCH'21

ADITYA AMBWANI

Prediction Using Supervised ML

Aim:- To predict the percentage of students based on number of study hours.

The Sparks Foundation GRIP MARCH'21

```
# importing libraries
 In [7]:
           import numpy as np
           import pandas as pan
           import matplotlib.pyplot as mat
           # Reading Data
 In [8]:
           data = pan.read csv('https://raw.githubusercontent.com/AdiPersonalWorks/Random/master/s
           # Calculating number of rows and coloumns
 In [9]:
           data.shape
Out[9]: (25, 2)
In [10]:
           # No. of rows = 25
           # No. of coloumns = 2
           # Displaying dataset in tabular form
           data.head(25)
Out[10]:
              Hours Scores
           0
                 2.5
                        21
           1
                 5.1
                        47
           2
                 3.2
                        27
           3
                 8.5
                        75
           4
                 3.5
                        30
           5
                 1.5
                        20
           6
                 9.2
                        88
           7
                 5.5
                        60
           8
                 8.3
                        81
           9
                 2.7
                        25
          10
                 7.7
                        85
          11
                 5.9
                        62
```

	Hours	Scores
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30
21	4.8	54
22	3.8	35
23	6.9	76
24	7.8	86

RESULT:- As the no. of hours increase, the marks obtained by student increase. So study more!!!

```
In [22]: x=data.iloc[:,:-1]
y=data.iloc[:,1]

In [31]: # Splitting our data set into training and testing
    from sklearn.model_selection import train_test_split
    x_train, x_test, y_train, y_test = train_test_split(x, y,test_size = 0.2, random_state)

# Linear regression on our trained dataset
```

```
In [32]: from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(x_train,y_train)
```

```
Out[32]: LinearRegression()
```

```
In [35]: # Plotting linear regression on our actual plot
    mat.scatter(x,y)
    mat.plot(x,lr.coef_*x +lr.intercept_)
    mat.xlabel('Hours')
    mat.ylabel('Scores')
    mat.show()
```



```
In [36]: #Prediction of the scores obtained
y_pd = lr.predict(x_test)
```

```
In [37]: #Comparison
    y_pdfinal = pan.DataFrame({'Actual Scores':y_test,'Predicted Scores':y_pd})
    y_pdfinal.head()
```

Out[37]: **Actual Scores Predicted Scores** 5 20 16.884145 2 27 33.732261 19 69 75.357018 16 30 26.794801 11 62 60.491033

```
In [39]: # Evaluating the trained dataset on giving hours studied and obtaining the marks
# Hours studied = 9.25/day
hr = [[9.25]]
marks = lr.predict(hr)
res = (marks[0])
print(res)
```

93.69173248737538

RESULT:- The score obtained is 93.69 if a student studies 9.25hrs/day

In []: