

REINFORCEMENT LEARNING ADVERSARIAL LEARNING

Odalric-Ambrym Maillard

Spring 2022

Today's lecture

Aggregation of experts

▶ Compare to: Best arm, Best convex combinations, Best sequence, Best recurring sequence.

Adversarial bandits

- ▶ Exp3, Exp4
- ▶ Best of both world

Min-max games

Bandits and Nash equilibrium

Risk-aversion

▶ CVaR, EVaR, etc.

Robust planning

Autonomous vehicles.

TABLE OF CONTENTS

MOTIVATION

AGGREGATION OF EXPERTS

FROM FULL TO PARTIAL INFORMATION

GAMES

RISK-AVERSION

Robust Learning

Observe a signal $y_1, \dots, y_t \in \mathcal{Y}$

Observe a signal $y_1, \ldots, y_t \in \mathcal{Y}$

Soal: Predict observation at time t + 1?

Observe a signal $y_1, \ldots, y_t \in \mathcal{Y}$

- Goal: Predict observation at time t + 1?
- Many available models:
 - ♦ I.i.d.: [0,1]-bounded ?
 - \diamond *Parametric*: $y_t = \langle \theta, \varphi(t) \rangle + \xi_t$ for φ : polynomials, wavelets, etc. ?
 - \diamond Markov: $y_t \sim P(\cdot|y_{t-1})$, k-order Markov: $y_t \sim P(\cdot|y_{t-1},...,y_{t-k})$?
 - \diamond *States*: representation maps $\psi(h_t) = s_t$ for observation history h_t ?

Which model is best?

Parametric:
$$y_t = \langle \theta, \varphi(t) \rangle + \xi_t$$

Parametric:
$$y_t = \langle \theta, \varphi(t) \rangle + \xi_t$$

 $\varphi(t) = (1, t, t^2, t^3)$

Parametric:
$$y_t = \langle \theta, \varphi(t) \rangle + \xi_t$$
 $\varphi(t) = (1, t, t^2, t^3)$
 $\varphi(t) = (\cos(t), \cos(2t), \cos(4t), \dots)$
 $\varphi(t) = \text{wavelet basis}$


```
Parametric: y_t = \langle \theta, \varphi(t) \rangle + \xi_t

\varphi(t) = (1, t, t^2, t^3)

\varphi(t) = (\cos(t), \cos(2t), \cos(4t), \dots)

\varphi(t) = \text{wavelet basis}
```


CORRECT VS INCORRECT MODEL

CORRECT VS INCORRECT MODEL

Sample a signal $y_1,\ldots,y_t=(a_t,r_t)\in\mathcal{Y}=\mathcal{A} imes[0,1]$, $r_t\sim
u_{a_t}$.

Sample a signal $y_1,\ldots,y_t=(a_t,r_t)\in\mathcal{Y}=\mathcal{A} imes[0,1]$, $r_t\sim
u_{a_t}$.

Goal: choose $a_t \in \mathcal{A}$ to maximize rewards.

Sample a signal $y_1,\ldots,y_t=(a_t,r_t)\in\mathcal{Y}=\mathcal{A} imes[0,1]$, $r_t\sim
u_{\mathsf{a}_t}$.

- ▶ Goal: choose $a_t \in A$ to maximize rewards.
- Many available algorithms:
 - ♦ Bandits: UCB? UCB-V? KL-UCB? TS?
 - Structured bandits: OFUL, GP-UCB? IMED?
 - MDPs: UCRL? Q-learning? DQN?

Which algorithm is best?

TABLE OF CONTENTS

MOTIVATION

AGGREGATION OF EXPERTS

FROM FULL TO PARTIAL INFORMATION

GAMES

RISK-AVERSION

Robust Learning

> **Set of models** \mathcal{M} .

Decisions and Losses

Set of models \mathcal{M} .

At each time step:

Each model $m \in \mathcal{M}$ outputs a decision $x_{t,m} \in \mathcal{X}$:

$$\wedge$$
 $\mathcal{X} = \mathcal{Y}, \qquad \mathcal{X} = \mathcal{P}(\mathcal{Y}), \qquad \mathcal{X} = \mathcal{A}.$

$$\mathcal{X} = \mathcal{P}(\mathcal{Y}),$$

$$\mathcal{X} = \mathcal{A}$$

Set of models \mathcal{M} .

- Each model $m \in \mathcal{M}$ outputs a decision $x_{t,m} \in \mathcal{X}$:
 - $\wedge \quad \mathcal{X} = \mathcal{Y}, \qquad \qquad \mathcal{X} = \mathcal{P}(\mathcal{Y}), \qquad \qquad \mathcal{X} = \mathcal{A}.$

- We output decision $x_t \in \mathcal{X}$ based on $(x_{t,m})_{m \in \mathcal{M}}$.

Set of models \mathcal{M} .

- Each model $m \in \mathcal{M}$ outputs a decision $x_{t,m} \in \mathcal{X}$:
 - $\lambda = \lambda$, $\lambda = \mathcal{P}(\lambda)$, $\lambda = \lambda$.
- We output decision $x_t \in \mathcal{X}$ based on $(x_{t,m})_{m \in \mathcal{M}}$.
- All decisions evaluated via a loss $\ell: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+$
 - Quadratic: $\ell(x,y) = \frac{(x-y)^2}{2}$.
 - Self-information: $\ell(x, y) = -\log(x(y))$,
 - Reward: $\ell(x, y) = 1 v(x)$

Set of models \mathcal{M} .

- Each model $m \in \mathcal{M}$ outputs a decision $x_{t,m} \in \mathcal{X}$:
 - $\lambda = \lambda$, $\lambda = \mathcal{P}(\lambda)$, $\lambda = \lambda$.
- We output decision $x_t \in \mathcal{X}$ based on $(x_{t,m})_{m \in \mathcal{M}}$.
- All decisions evaluated via a loss $\ell: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+$
 - Quadratic: $\ell(x,y) = \frac{(x-y)^2}{2}$.
 - Self-information: $\ell(x, y) = -\log(x(y))$,
 - Reward: $\ell(x, y) = 1 v(x)$
- We receive observation $y_t \in \mathcal{Y}$, and incur loss $\ell_t(x_t) := \ell(x_t, y_t)$.

$$\text{Minimize} \quad \sum_{t=1}^{T} \ell_t(x_t) \dots$$

Set of models \mathcal{M} .

At each time step:

- Each model $m \in \mathcal{M}$ outputs a decision $x_{t,m} \in \mathcal{X}$:
 - $\wedge \quad \mathcal{X} = \mathcal{Y}, \qquad \qquad \mathcal{X} = \mathcal{P}(\mathcal{Y}), \qquad \qquad \mathcal{X} = \mathcal{A}.$
- We output decision $x_t \in \mathcal{X}$ based on $(x_{t,m})_{m \in \mathcal{M}}$.
- All decisions evaluated via a loss $\ell: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+$
 - Quadratic: $\ell(x, y) = \frac{(x-y)^2}{2}$.
 - Self-information: $\ell(x, y) = -\log(x(y))$,
 - Reward: $\ell(x, y) = 1 v(x)$
- We receive observation $y_t \in \mathcal{Y}$, and incur loss $\ell_t(x_t) := \ell(x_t, y_t)$.

Minimize
$$\sum_{t=1}^{T} \ell_t(x_t) \dots$$

Q: in Expectation? High probability?

FULL, PARTIAL INFORMATION

Say after playing x_t , you observe y_t (more generally ℓ_t). Then, you can compute $\ell_t(x)$ for all other choice.

Full information

▶ In bandit, only $\ell_t(x_t)$ is observed, but ℓ_t is unknown:

Partial information: Bandit feedback

Intermediate settings: e.g. Classification $\ell(x,y) = \mathbb{I}\{x \neq y\}$. (Only) If I receive loss 0, then, I know y, hence I can compute $\ell(x,y)$ for all x.

Semi-bandit Feedback

In the sequel, we first consider **full information**.

$$\mathsf{Minimize} \quad \sum_{t=1}^T \ell_t(\mathsf{x}_t) \ \dots$$

w.r.t.

Minimize
$$\sum_{t=1}^{T} \ell_t(x_t) \dots$$

w.r.t.

Goal 1: best model (Model selection) ?

$$\min_{\mathbf{m} \in \mathcal{M}} \sum_{t=1}^{T} \ell_t(x_{t,\mathbf{m}})$$

Minimize
$$\sum_{t=1}^{T} \ell_t(x_t) \dots$$

w.r.t.

Goal 1: best model (Model selection) ?

$$\min_{\mathbf{m}\in\mathcal{M}}\sum_{t=1}^{T}\ell_{t}(x_{t,\mathbf{m}})$$

Goal 2: best combination of models (Model aggregation)?

$$\min_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} \mathbf{q}_m \left(\sum_{t=1}^T \ell_t(\mathbf{x}_{t,m}) \right) \quad \text{or} \quad \min_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^T \ell_t \left(\sum_{m \in \mathcal{M}} \mathbf{q}_m \mathbf{x}_{t,m} \right)$$

Minimize
$$\sum_{t=1}^{T} \ell_t(x_t) \dots$$

w.r.t.

Goal 1: best model (Model selection) ?

$$\min_{\mathbf{m}\in\mathcal{M}}\sum_{t=1}^{T}\ell_{t}(x_{t,\mathbf{m}})$$

Goal 2: best combination of models (Model aggregation)?

$$\min_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} \mathbf{q}_m \left(\sum_{t=1}^I \ell_t(\mathbf{x}_{t,m}) \right) \quad \text{or} \quad \min_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^I \ell_t \left(\sum_{m \in \mathcal{M}} \mathbf{q}_m \mathbf{x}_{t,m} \right)$$

Goal 3: best sequence of models (Model tracking)?

$$\sum_{t=1}^{T} \min_{m \in \mathcal{M}} \ell_t(x_{t,m})$$

Minimize
$$\sum_{t=1}^{T} \ell_t(x_t) \dots$$

w.r.t.

Goal 1: best model (Model selection) ?

$$\min_{\mathbf{m}\in\mathcal{M}}\sum_{t=1}^{I}\ell_{t}(x_{t,\mathbf{m}})$$

Goal 2: best combination of models (Model aggregation)?

$$\min_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} \mathbf{q}_m \left(\sum_{t=1}^T \ell_t(\mathbf{x}_{t,m}) \right) \quad \text{or} \quad \min_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^T \ell_t \left(\sum_{m \in \mathcal{M}} \mathbf{q}_m \mathbf{x}_{t,m} \right)$$

Goal 3: best sequence of models (Model tracking)?

$$\sum_{t=1}^{T} \min_{m \in \mathcal{M}} \ell_t(x_{t,m})$$

TABLE OF CONTENTS

MOTIVATION

AGGREGATION OF EXPERTS

A simple aggregation strategy

Simple aggregation, revisited Best convex combinations

Best sequence: Fixed Share

Few recurring experts: Freund, MPP

FROM FULL TO PARTIAL INFORMATION

GAMES

Online Learning Game

- \triangleright You are given a **set** \mathcal{M} of models.
- At each time step,
- ▶ You maintain some **distribution** $p_t \in \mathcal{P}(\mathcal{M})$ on the set of models.
- ▶ You receive **recommendation** $x_{t,m}$ from each model $m \in \mathcal{M}$.
- \triangleright You use them in order to output some decision x_t .
- \triangleright You incur the corresponding loss $\ell_t(x_t)$, an receive feedback.

A FIRST APPROACH

ightharpoonup Choose x_t as a convex combination of the $(x_{t,m})_{m\in\mathcal{M}}$? or sample $x_t\sim p_t$?

$$x_t = \sum_{m \in \mathcal{M}} p_t(m) x_{t,m}$$
 where $p_t \in \mathcal{P}(\mathcal{M})$.

 \implies Assuming that $\ell_t(\cdot) = \ell(\cdot, y_t)$ is **convex**, convex combination is better:

$$\ell_t(x_t) \leqslant \sum_{m \in \mathcal{M}} p_t(m)\ell_t(x_{t,m}) = \mathbb{E}_{M \sim p_t}[\ell_t(x_{t,M})]$$

Technical property (Hoeffing Lemma for bounded random variables)

Let r.v. X s.t. $a \leqslant X \leqslant b$ a.s. then

$$\forall \eta \in \mathbb{R}^+, \quad \mathbb{E}[X] \leqslant -\frac{1}{\eta} \log \mathbb{E}[\exp(-\eta X)] + \eta \frac{(b-a)^2}{8} \,.$$

 \implies Assuming that ℓ is **bounded** by 1, then

$$\mathbb{E}_{M \sim p_t}[\ell_t(x_{t,M})] \leqslant -\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_t(m) e^{-\eta \ell_t(x_{t,m})} + \frac{\eta}{8}.$$

A FIRST APPROACH

For Bounded, convex loss:

$$\ell_t(x_t) \leqslant -\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_t(m) e^{-\eta \ell_t(x_{t,m})} + \frac{\eta}{8}$$

A FIRST APPROACH

For Bounded, convex loss:

$$\ell_t(x_t) \leqslant -\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_t(m) e^{-\eta \ell_t(x_{t,m})} + \frac{\eta}{8}$$

This suggests:

$$p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}, \qquad w_{t+1}(m) = w_t(m)e^{-\eta \ell_t(\mathsf{x}_{t,m})}$$

For Bounded, convex loss:

$$\ell_t(x_t) \leqslant -\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_t(m) e^{-\eta \ell_t(x_{t,m})} + \frac{\eta}{8}$$

This suggests:

$$p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}, \qquad w_{t+1}(m) = w_t(m)e^{-\eta \ell_t(\mathsf{x}_{t,m})}$$

 $\qquad \qquad \text{We get} \qquad \ell_t(x_t) \leqslant -\frac{1}{\eta} \log \left(\frac{W_{t+1}}{W_t} \right) + \frac{\eta}{8} \text{ where } W_t = \sum_{m \in \mathcal{M}} w_t(m)$

For Bounded, convex loss:

$$\ell_t(x_t) \leqslant -\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_t(m) e^{-\eta \ell_t(x_{t,m})} + \frac{\eta}{8}$$

This suggests:

$$p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}, \qquad w_{t+1}(m) = w_t(m)e^{-\eta \ell_t(x_{t,m})}$$

- ho We get $\ell_t(x_t) \leqslant -rac{1}{\eta} \log \left(rac{W_{t+1}}{W_t}
 ight) + rac{\eta}{8} ext{ where } W_t = \sum_{m \in \mathcal{M}} w_t(m)$
- Summing over t yields $\sum_{t=1}^{T} \ell_t(x_t) \leqslant -\frac{1}{\eta} \log \left(\frac{W_{T+1}}{W_1} \right) + \frac{\eta T}{8}$

For Bounded, convex loss:

$$\ell_t(x_t) \leqslant -\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_t(m) e^{-\eta \ell_t(x_{t,m})} + \frac{\eta}{8}$$

This suggests:

$$p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}, \qquad w_{t+1}(m) = w_t(m)e^{-\eta \ell_t(x_{t,m})}$$

- We get $\ell_t(x_t) \leqslant -rac{1}{\eta} \log \left(rac{W_{t+1}}{W_t}
 ight) + rac{\eta}{8} ext{ where } W_t = \sum_{m \in \mathcal{M}} w_t(m)$
- Summing over t yields $\sum_{t=1}^{T} \ell_t(x_t) \leqslant -\frac{1}{\eta} \log \left(\frac{W_{T+1}}{W_1} \right) + \frac{\eta T}{8}$
- ightharpoonup Finally, $W_1=|\mathcal{M}|$ and for any $m^\star\in\mathcal{M}$,

$$W_{T+1} \geqslant w_{t+1}(\mathbf{m}^*) = \exp\left(-\eta \sum_{t=1}^T \ell_t(\mathbf{x}_{t,\mathbf{m}^*})\right).$$

For Bounded, convex loss:

$$\ell_t(x_t) \leqslant -\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_t(m) e^{-\eta \ell_t(x_{t,m})} + \frac{\eta}{8}$$

This suggests:

$$p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}, \qquad w_{t+1}(m) = w_t(m)e^{-\eta \ell_t(x_{t,m})}$$

$$ho$$
 We get $\ell_t(x_t) \leqslant -rac{1}{\eta} \log \left(rac{W_{t+1}}{W_t}
ight) + rac{\eta}{8}$ where $W_t = \sum_{m \in \mathcal{M}} w_t(m)$

- Summing over t yields $\sum_{t=1}^{T} \ell_t(x_t) \leqslant -\frac{1}{\eta} \log \left(\frac{W_{T+1}}{W_1} \right) + \frac{\eta T}{8}$
- ightharpoonup Finally, $W_1=|\mathcal{M}|$ and for any $m^\star\in\mathcal{M}$,

$$W_{T+1} \geqslant w_{t+1}(\mathbf{m}^*) = \exp\left(-\eta \sum_{t=1}^T \ell_t(\mathbf{x}_{t,\mathbf{m}^*})\right).$$

Hence $\sum_{t=1}^{T} \ell_t(x_t) \leqslant \sum_{t=1}^{T} \ell_t(x_{t,m^*}) + \frac{\log(|\mathcal{M}|)}{\eta} + \frac{\eta T}{8}.$

This leads to the following strategy

1: Let
$$\forall m \in \mathcal{M}, w_1(m) = 1$$

- 2: **for** t = 1, ... **do**
- 3: Receive $x_{t,m}$ from each model $m \in \mathcal{M}$.

4: Let
$$p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}$$
.

- 5: Choose $x_t = \sum_{m \in \mathcal{M}} p_t(m) x_{t,m}$
- 6: Receive loss function ℓ_t .
- 7: Update $w_{t+1}(m) = w_t(m)e^{-\eta \ell_t(x_{t,m})}$ for each m, Equivalently, $w_{t+1}(m) = \exp(-\eta L_{t,m})$
- 8: end for

This leads to the following strategy

- ► Choose $x_t = \sum_{m \in \mathcal{M}} p_t(m) x_{t,m}$ where $p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}$,
 - $\forall m \in \mathcal{M}, w_1(m) = 1 \text{ and } w_{t+1}(m) = w_t(m)e^{-\eta \ell_t(x_{t,m})}.$

Theorem (Cesa-Bianchi, Lugosi 2006)

Assume that ℓ_t is **convex** and **bounded** by 1, then this strategy satisfies:

$$\underbrace{\sum_{t=1}^{T} \ell_t(x_t)}_{L_T} - \min_{m \in \mathcal{M}} \underbrace{\sum_{t=1}^{T} \ell_t(x_{t,m})}_{L_{T,m}} \leqslant \frac{\log(|\mathcal{M}|)}{\eta} + \frac{\eta T}{8}$$

This leads to the following strategy

- ► Choose $x_t = \sum_{m \in \mathcal{M}} p_t(m) x_{t,m}$ where $p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}$,
 - $\forall m \in \mathcal{M}, w_1(m) = 1 \text{ and } w_{t+1}(m) = w_t(m)e^{-\eta \ell_t(x_{t,m})}.$

Theorem (Cesa-Bianchi, Lugosi 2006)

Assume that ℓ_t is **convex** and **bounded** by 1, then this strategy satisfies:

$$\underbrace{\sum_{t=1}^{T} \ell_t(x_t)}_{L_T} - \min_{m \in \mathcal{M}} \underbrace{\sum_{t=1}^{T} \ell_t(x_{t,m})}_{L_{T,m}} \leqslant \frac{\log(|\mathcal{M}|)}{\eta} + \frac{\eta T}{8}$$

In particular for the choice of parameter $\eta = \sqrt{8\log(|\mathcal{M}|)/T}$,

$$L_{T} - \min_{m \in \mathcal{M}} L_{T,m} \leqslant \sqrt{\frac{T \log(|\mathcal{M}|)}{2}}$$

$$L_T - \min_{m \in \mathcal{M}} L_{T,m} \leqslant \sqrt{\frac{T}{2} \log(|\mathcal{M}|)}$$

$$L_T - \min_{m \in \mathcal{M}} L_{T,m} \leqslant \sqrt{\frac{T}{2} \log(|\mathcal{M}|)}$$

No statistical assumption on y_t : ℓ_t only convex and bounded!

$$L_T - \min_{m \in \mathcal{M}} L_{T,m} \leqslant \sqrt{\frac{T}{2} \log(|\mathcal{M}|)}$$

- No statistical assumption on y_t : ℓ_t only convex and bounded!
- Logarithmic in $|\mathcal{M}|$: Can handle a large amount of models!

Questions

$$L_T - \min_{m \in \mathcal{M}} L_{T,m} \leqslant \sqrt{\frac{T}{2} \log(|\mathcal{M}|)}$$

- No statistical assumption on y_t : ℓ_t only convex and bounded!
- ▶ Logarithmic in $|\mathcal{M}|$: Can handle a large amount of models!

Questions

Anytime tuning of η ($\eta = \eta_t$)?
Using $\eta_t = \sqrt{8 \log(|\mathcal{M}|)/t}$ at time t, one can show (more involved):

$$L_{T} - \min_{m \in \mathcal{M}} L_{T,m} \leqslant 2\sqrt{\frac{T \log(|\mathcal{M}|)}{2}} + \sqrt{\frac{\log(|\mathcal{M}|)}{2}}$$

$$L_T - \min_{m \in \mathcal{M}} L_{T,m} \leqslant \sqrt{\frac{T}{2} \log(|\mathcal{M}|)}$$

- No statistical assumption on y_t : ℓ_t only convex and bounded!
- ightharpoonup Logarithmic in $|\mathcal{M}|$: Can handle a large amount of models!

Questions

Anytime tuning of η ($\eta = \eta_t$)? Using $\eta_t = \sqrt{8 \log(|\mathcal{M}|)/t}$ at time t, one can show (more involved):

$$L_T - \min_{m \in \mathcal{M}} L_{T,m} \leqslant 2\sqrt{\frac{T \log(|\mathcal{M}|)}{2}} + \sqrt{\frac{\log(|\mathcal{M}|)}{2}}$$

Examples of convex/bounded losses?

$$L_T - \min_{m \in \mathcal{M}} L_{T,m} \leqslant \sqrt{\frac{T}{2} \log(|\mathcal{M}|)}$$

- No statistical assumption on y_t : ℓ_t only convex and bounded!
- ▶ Logarithmic in $|\mathcal{M}|$: Can handle a large amount of models!

Questions

Anytime tuning of η ($\eta = \eta_t$)?
Using $\eta_t = \sqrt{8 \log(|\mathcal{M}|)/t}$ at time t, one can show (more involved):

$$L_T - \min_{m \in \mathcal{M}} L_{T,m} \leqslant 2\sqrt{\frac{T \log(|\mathcal{M}|)}{2}} + \sqrt{\frac{\log(|\mathcal{M}|)}{2}}$$

- > Examples of convex/bounded losses?
- Simplify this assumption, cf. Technical property ??

TABLE OF CONTENTS

MOTIVATION

AGGREGATION OF EXPERTS

A simple aggregation strategy

Simple aggregation, revisited

Best convex combinations

Best sequence: Fixed Share

Few recurring experts: Freund, MPP

From full to partial information

GAMES

We only used this:

$$\ell_t\big(\underbrace{\mathbb{E}_{M\sim p_t}[x_{t,M}]}_{\mathcal{N}}\big)\leqslant -\frac{1}{\eta}\log\mathbb{E}_{M\sim p_t}\exp\big(-\eta\ell_t(x_{t,M})\big)+\frac{\eta}{8}$$

We only used this:

$$\ell_t(\underbrace{\mathbb{E}_{M \sim p_t}[x_{t,M}]}_{X_t}) \leqslant -\frac{1}{\eta} \log \mathbb{E}_{M \sim p_t} \exp\left(-\eta \ell_t(x_{t,M})\right) + \frac{\eta}{8}$$

Satisfied if convex, bounded by 1.

Ok for quadratic loss, pb for self-information: not bounded when x small!

We only used this:

$$\ell_t\big(\underbrace{\mathbb{E}_{M\sim p_t}[x_{t,M}]}_{x_t}\big)\leqslant -\frac{1}{\eta}\log\mathbb{E}_{M\sim p_t}\exp\big(-\eta\ell_t(x_{t,M})\big)+\frac{\eta}{8}$$

- Satisfied if convex, bounded by 1.
 Ok for quadratic loss, pb for self-information: not bounded when x small!
- What about dropping $\eta/8$ term? Equivalent to $\exp(-\eta \ell_t(\cdot))$ is concave: η -exp-concavity.
 - ♦ Self-information loss is 1-exp-concave (with = instead of \leq)
 - \diamond **Quadratic** loss is η -exp-concave for $\eta \leqslant \frac{1}{2(b-a)^2}$ on $\mathcal{X} = \mathcal{Y} \subset [a,b]$.
 - \diamond **Absolute** loss $\ell(x,y) = |x-y|$ is not exp-concave for any η .

Interpretation of $-\frac{1}{\eta} \log \mathbb{E}_{M \sim p_t} \exp \left(- \eta \ell_t(x_{t,M}) \right)$?

Entropy formula:

$$-\frac{1}{\eta}\log \mathbb{E}_{M\sim p}\exp\big(-\eta X_M\big)=\inf_{q\in\mathcal{P}(\mathcal{M})}\mathbb{E}_{M\sim q}[X_M]+\frac{1}{\eta}\mathrm{KL}(q,p)\,.$$

Interpretation of $-\frac{1}{\eta} \log \mathbb{E}_{M \sim p_t} \exp \left(- \eta \ell_t(x_{t,M}) \right)$?

Entropy formula:

$$-\frac{1}{\eta}\log \mathbb{E}_{M\sim p}\exp\big(-\eta X_M\big)=\inf_{q\in \mathcal{P}(\mathcal{M})}\mathbb{E}_{M\sim q}[X_M]+\frac{1}{\eta}\mathtt{KL}(q,p)\,.$$

Hence, η -exp-concavity becomes:

η -exp-concavity

A loss ℓ is η -exp-concave if $\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \forall y \in \mathcal{Y}$,

$$\ell(\mathbb{E}_{M \sim p}[\mathbf{x}_M], y) \leqslant \inf_{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}[\ell(\mathbf{x}_M, y)] + \frac{1}{\eta} KL(q, p)$$

Interpretation of $-\frac{1}{\eta} \log \mathbb{E}_{M \sim p_t} \exp \left(- \eta \ell_t(x_{t,M}) \right)$?

Entropy formula:

$$-\frac{1}{\eta}\log \mathbb{E}_{M\sim p}\exp\big(-\eta X_M\big)=\inf_{q\in \mathcal{P}(\mathcal{M})}\mathbb{E}_{M\sim q}[X_M]+\frac{1}{\eta}\mathtt{KL}(q,p)\,.$$

Hence, η -exp-concavity becomes:

η -exp-concavity

A loss ℓ is η -exp-concave if $\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \forall y \in \mathcal{Y}$,

$$\ell(\mathbb{E}_{M \sim p}[\mathbf{x}_M], y) \leqslant \inf_{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}[\ell(\mathbf{x}_M, y)] + \frac{1}{\eta} KL(q, p)$$

Further, infimum obtained for $q(m) = \frac{\exp(-\eta X_m)p(m)}{\sum_{m' \in \mathcal{M}} \exp(-\eta X_{m'})p(m')}$.

Generalization: we don't need that $x_t = \mathbb{E}_{M \sim p_t}[x_{t,M}]$.

η -mixability

A loss ℓ is η -mixable if $\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x},\mathbf{p}} \forall y \in \mathcal{Y}$,

$$\ell(x_{\mathbf{x},\mathbf{p}},y) \leqslant \inf_{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}[\ell(\mathbf{x}_M,y)] + \frac{1}{\eta} \mathrm{KL}(q,p)$$

 $[x], p \mapsto x_{x,p}$ is called the substitution function.

Generalization: we don't need that $x_t = \mathbb{E}_{M \sim p_t}[x_{t,M}]$.

η -mixability

A loss ℓ is η -mixable if $\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x},\mathbf{p}} \forall y \in \mathcal{Y}$,

$$\ell(\mathbf{x}_{\mathbf{x},\mathbf{p}},y) \leqslant \inf_{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}[\ell(\mathbf{x}_M,y)] + \frac{1}{\eta} \mathrm{KL}(q,p)$$

 $[x], p \mapsto x_{x,p}$ is called the substitution function.

- γ -exp-concave loss is η -mixable with $x_{\mathbf{x},\mathbf{p}} = \mathbb{E}_{M \sim p} \mathbf{x}_{\mathbf{M}}$.
- Quadratic loss is η -exp-concave for $\eta \leqslant \frac{1}{2}$ on $\mathcal{X} = \mathcal{Y} \subset [0,1]$, but η -mixable for η up to $\eta \leqslant 2$!

Consider an η -mixable loss ℓ , and let $p_1 = \text{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.

- ► Consider an η -mixable loss ℓ , and let $p_1 = \mathsf{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.
- At time t+1, given $\mathbf{x}_t \in \mathcal{X}^{\mathcal{M}}$, and $p_t \in \mathcal{P}(\mathcal{M})$, output decision $\mathbf{x}_t = x_{\mathbf{x}_t, p_t}$,

- ► Consider an η -mixable loss ℓ , and let $p_1 = \mathsf{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.
- At time t+1, given $\mathbf{x}_t \in \mathcal{X}^{\mathcal{M}}$, and $\mathbf{p}_t \in \mathcal{P}(\mathcal{M})$, output decision $\mathbf{x}_t = \mathbf{x}_{\mathbf{x}_t, \mathbf{p}_t}$,
- \triangleright Receive y_t and update

Theorem

Assume that ℓ_t is η -mixable, then after T time steps, this strategy satisfies:

$$L_T - \min_{m \in \mathcal{M}} L_{T,m} \leqslant \frac{\log(|\mathcal{M}|)}{n}$$
.

- ▶ Consider an η -mixable loss ℓ , and let $p_1 = \mathsf{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.
- At time t+1, given $\mathbf{x}_t \in \mathcal{X}^{\mathcal{M}}$, and $\mathbf{p}_t \in \mathcal{P}(\mathcal{M})$, output decision $\mathbf{x}_t = \mathbf{x}_{\mathbf{x}_t, \mathbf{p}_t}$,
- \triangleright Receive y_t and update

Theorem

Assume that ℓ_t is η -mixable, then after T time steps, this strategy satisfies:

$$L_T - \min_{m \in \mathcal{M}} L_{T,m} \leqslant \frac{\log(|\mathcal{M}|)}{\eta}$$
.

Still for arbitrary $y_t \in \mathcal{Y}$.

- ► Consider an η -mixable loss ℓ , and let $p_1 = \mathsf{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.
- At time t+1, given $\mathbf{x}_t \in \mathcal{X}^{\mathcal{M}}$, and $\mathbf{p}_t \in \mathcal{P}(\mathcal{M})$, output decision $\mathbf{x}_t = \mathbf{x}_{\mathbf{x}_t, \mathbf{p}_t}$,
- \triangleright Receive y_t and update

Theorem

Assume that ℓ_t is η -mixable, then after T time steps, this strategy satisfies:

$$L_T - \min_{m \in \mathcal{M}} L_{T,m} \leqslant \frac{\log(|\mathcal{M}|)}{\eta}$$
.

- Still for arbitrary $y_t \in \mathcal{Y}$.
- > Independent on T!

- ► Consider an η -mixable loss ℓ , and let $p_1 = \mathsf{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.
- At time t+1, given $\mathbf{x}_t \in \mathcal{X}^{\mathcal{M}}$, and $\mathbf{p}_t \in \mathcal{P}(\mathcal{M})$, output decision $\mathbf{x}_t = \mathbf{x}_{\mathbf{x}_t, \mathbf{p}_t}$,
- \triangleright Receive y_t and update

$$\rho_{t+1} = \underset{q \in \mathcal{P}_M}{\operatorname{argmin}} \mathbb{E}_{M \sim q} [\underbrace{\ell(\mathbf{x}_{t,M}, y_t)}_{\ell_{t,M}}] + \frac{1}{\eta} \mathtt{KL}(q, \rho_t).$$

Theorem

Assume that ℓ_t is η -mixable, then after T time steps, this strategy satisfies:

$$L_T - \min_{m \in \mathcal{M}} L_{T,m} \leqslant \frac{\log(|\mathcal{M}|)}{\eta}$$
.

- Still for arbitrary $y_t \in \mathcal{Y}$.
- ▶ Independent on T!
- ightharpoonup Only for specific possibly small η (all $\eta' \leqslant \eta$, but not larger).

We can actually get a stronger result:

Theorem (Aggregation of experts)

Assume that ℓ_t is η -mixable, then after T time steps, the aggregation strategy with $p_1=\pi$, satisfies

$$\forall q \in \mathcal{P}(\mathcal{M}) \quad L_{\mathcal{T}} - \mathbb{E}_{\mathcal{M} \sim q} \Big[L_{\mathcal{T},\mathcal{M}} \Big] \leqslant \frac{1}{\eta} \bigg(\mathtt{KL}(q,\pi) - \mathtt{KL}(q,p_{\mathcal{T}+1}) \bigg) \,.$$

We can actually get a stronger result:

Theorem (Aggregation of experts)

Assume that ℓ_t is η -mixable, then after T time steps, the aggregation strategy with $p_1=\pi$, satisfies

$$\forall q \in \mathcal{P}(\mathcal{M}) \quad L_{\mathcal{T}} - \mathbb{E}_{M \sim q} \Big[L_{\mathcal{T},M} \Big] \leqslant \frac{1}{\eta} \Big(\mathtt{KL}(q,\pi) - \mathtt{KL}(q,p_{\mathcal{T}+1}) \Big) \,.$$

Now, we compete against convex combination of loss of experts!

We can actually get a stronger result:

Theorem (Aggregation of experts)

Assume that ℓ_t is η -mixable, then after T time steps, the aggregation strategy with $p_1=\pi$, satisfies

$$\forall q \in \mathcal{P}(\mathcal{M}) \quad L_{\mathcal{T}} - \mathbb{E}_{M \sim q} \Big[L_{\mathcal{T},M} \Big] \leqslant \frac{1}{\eta} \bigg(\mathtt{KL}(q,\pi) - \mathtt{KL}(q,p_{\mathcal{T}+1}) \bigg) \,.$$

- Now, we compete against convex combination of loss of experts!
- ightharpoonup In particular for $q=\delta_{m{m}^{\star}}$ (Dirac mass as $m{m}^{\star}$), we deduce

$$L_{\mathcal{T}} - L_{\mathcal{T},m^{\star}} \leqslant \frac{1}{\eta} \log \left(\frac{1}{\pi(m^{\star})} \right).$$

We can actually get a stronger result:

Theorem (Aggregation of experts)

Assume that ℓ_t is η -mixable, then after T time steps, the aggregation strategy with $p_1=\pi$, satisfies

$$orall q \in \mathcal{P}(\mathcal{M}) \quad L_{\mathcal{T}} - \mathbb{E}_{\mathcal{M} \sim q} \Big[L_{\mathcal{T},\mathcal{M}} \Big] \leqslant rac{1}{\eta} \Big(\mathtt{KL}(q,\pi) - \mathtt{KL}(q,p_{\mathcal{T}+1}) \Big) \,.$$

- Now, we compete against convex combination of loss of experts!
- In particular for $q = \delta_{m^*}$ (Dirac mass as m^*), we deduce

$$L_{\mathcal{T}} - L_{\mathcal{T},m^{\star}} \leqslant \frac{1}{\eta} \log \left(\frac{1}{\pi(m^{\star})} \right).$$

We can move from finitely many to countably many experts:

$$\pi(m) = \frac{1}{m(m+1)}, \quad \pi(m) = \log(2) \left(\frac{1}{\log(m+1)} - \frac{1}{\log(m+2)} \right).$$

BREGMAN AGGREGATION

Bregman divergence generalizes KL:

$$\mathcal{B}(p,q) = \psi(p) - \psi(q) - \langle p - q, \nabla \psi(q) \rangle$$

 $(\psi(p) = \sum_i p_i \log(p_i)$ gives KL as a special case.)

Assumption: ℓ is η -Bregman-mixable w.r.t. Bregman divergence \mathcal{B} :

$$\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x},\mathbf{p}} \in \mathcal{X}, \ \ell(x_{\mathbf{x},\mathbf{p}}) \leqslant \min_{q \in \mathcal{P}(\mathcal{M})} \langle q, \ell_{\mathbf{x}} \rangle + \frac{1}{\eta} \mathcal{B}(q,p).$$

where $\ell_{\mathbf{x}}$ denotes the vector $(\ell(x_1), \dots, \ell(x_M))$.

Bregman aggregation

Bregman divergence generalizes KL:

$$\mathcal{B}(p,q) = \psi(p) - \psi(q) - \langle p - q, \nabla \psi(q) \rangle$$

 $(\psi(p) = \sum_i p_i \log(p_i)$ gives KL as a special case.)

Assumption: ℓ is η -Bregman-mixable w.r.t. Bregman divergence \mathcal{B} :

$$\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x},\mathbf{p}} \in \mathcal{X}, \ \ell(x_{\mathbf{x},\mathbf{p}}) \leqslant \min_{q \in \mathcal{P}(\mathcal{M})} \langle q, \ell_{\mathbf{x}} \rangle + \frac{1}{\eta} \mathcal{B}(q,p).$$

where $\ell_{\mathbf{x}}$ denotes the vector $(\ell(x_1), \dots, \ell(x_M))$.

Strategy: Play $x_{\mathbf{x_t}, \mathbf{p_t}}$, update $p_{t+1} = \operatorname*{argmin}_{q \in \mathcal{P}(\mathcal{M})} \langle q, \ell_{\mathbf{x_t}} \rangle + \frac{1}{\eta} \mathcal{B}(q, p_t)$.

Bregman aggregation

Bregman divergence generalizes KL:

$$\mathcal{B}(p,q) = \psi(p) - \psi(q) - \langle p - q, \nabla \psi(q) \rangle$$

 $(\psi(p) = \sum_i p_i \log(p_i)$ gives KL as a special case.)

Assumption: ℓ is η -Bregman-mixable w.r.t. Bregman divergence \mathcal{B} :

$$\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x},\mathbf{p}} \in \mathcal{X}, \ \ell(x_{\mathbf{x},\mathbf{p}}) \leqslant \min_{q \in \mathcal{P}(\mathcal{M})} \langle q, \ell_{\mathbf{x}} \rangle + \frac{1}{\eta} \mathcal{B}(q,p).$$

where $\ell_{\mathbf{x}}$ denotes the vector $(\ell(x_1), \dots, \ell(x_M))$.

- Strategy: Play $x_{\mathbf{x_t},\mathbf{p_t}}$, update $p_{t+1} = \operatorname*{argmin}_{q \in \mathcal{P}(\mathcal{M})} \langle q, \ell_{\mathbf{x_t}} \rangle + \frac{1}{\eta} \mathcal{B}(q, p_t)$.
- Performance:

$$orall q \in \mathcal{P}(\mathcal{M}) \quad \mathcal{L}_{\mathcal{T}} - \langle q, \mathbf{L}_{\mathcal{T}}
angle \leqslant rac{1}{\eta} igg(\mathcal{B}(q, \pi) - \mathcal{B}(q,
ho_{\mathcal{T}+1}) igg) \,.$$

Bregman aggregation

Bregman divergence generalizes KL:

$$\mathcal{B}(p,q) = \psi(p) - \psi(q) - \langle p - q, \nabla \psi(q) \rangle$$

 $(\psi(p) = \sum_i p_i \log(p_i)$ gives KL as a special case.)

Assumption: ℓ is η -Bregman-mixable w.r.t. Bregman divergence \mathcal{B} :

$$\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x},\mathbf{p}} \in \mathcal{X}, \ \ell(x_{\mathbf{x},\mathbf{p}}) \leqslant \min_{q \in \mathcal{P}(\mathcal{M})} \langle q, \ell_{\mathbf{x}} \rangle + \frac{1}{\eta} \mathcal{B}(q,p).$$

where $\ell_{\mathbf{x}}$ denotes the vector $(\ell(x_1), \dots, \ell(x_M))$.

- Strategy: Play $x_{\mathbf{x_t},\mathbf{p_t}}$, update $p_{t+1} = \operatorname*{argmin}_{q \in \mathcal{P}(\mathcal{M})} \langle q, \ell_{\mathbf{x_t}} \rangle + \frac{1}{\eta} \mathcal{B}(q, p_t)$.
- > Performance:

$$orall q \in \mathcal{P}(\mathcal{M}) \quad \mathcal{L}_{\mathcal{T}} - \langle q, \mathbf{L}_{\mathcal{T}}
angle \leqslant rac{1}{\eta} igg(\mathcal{B}(q, \pi) - \mathcal{B}(q,
ho_{\mathcal{T}+1}) igg) \,.$$

Other interpretation: Use Legendre-Fenchel dual objective function, perform gradient descent!

SMALL LOSSES?

When the best expert has **small loss**, we may prefer to express regret bounds on terms of this loss:

▶ Consider a loss **convex and bounded** in [0, 1], then:

$$L_T - L_T^{\star} \leqslant \left(\frac{\eta}{1 - \exp(-\eta)} - 1\right) L_T^{\star} + \frac{\log(M)}{1 - \exp(-\eta)}$$

where $L_T^{\star} = \min_{m \in \mathcal{M}} L_{t,m}$

<u>Proof</u>: One can show that any loss ℓ convex and bounded in [0,1] satisfies the following extension of η -mixability property:

$$\ell(\mathbb{E}_{M \sim q}(x_M)) \leqslant -\frac{\eta}{1 - \exp(-\eta)} \frac{1}{\eta} \ln \left(\mathbb{E}_{m \sim q} \exp(-\eta \ell(x_M)) \right).$$

(almost η -mixable!) The rest is obtained by following the initial derivation.

Table of Contents

MOTIVATION

AGGREGATION OF EXPERTS

A simple aggregation strategy Simple aggregation, revisited

Best convex combinations

Best sequence: Fixed Share Few recurring experts: Freund, MPP

From full to partial information

GAMES

$$\text{Minimize} \quad \sum_{t=1}^{T} \ell_t(x_t) \dots$$

w.r.t.

Minimize
$$\sum_{t=1}^{T} \ell_t(x_t) \dots$$

w.r.t.

$$\inf_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} \mathbf{q}_m \left(\sum_{t=1}^T \ell_t(\mathbf{x}_{t,m}) \right) \quad \text{or} \quad \inf_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^T \ell_t \left(\sum_{m \in \mathcal{M}} \mathbf{q}_m \mathbf{x}_{t,m} \right)$$

Minimize
$$\sum_{t=1}^{T} \ell_t(x_t) \dots$$

w.r.t.

best combination of models (Model aggregation)?

$$\inf_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} \mathbf{q}_m \left(\sum_{t=1}^T \ell_t(\mathbf{x}_{t,m}) \right) \quad \text{or} \quad \inf_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^T \ell_t \left(\sum_{m \in \mathcal{M}} \mathbf{q}_m \mathbf{x}_{t,m} \right)$$

> Left: best combination of losses Right: loss of best combination.

Minimize
$$\sum_{t=1}^{T} \ell_t(x_t) \dots$$

w.r.t.

$$\inf_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} \mathbf{q}_m \left(\sum_{t=1}^T \ell_t(\mathbf{x}_{t,m}) \right) \quad \text{or} \quad \inf_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^T \ell_t \left(\sum_{m \in \mathcal{M}} \mathbf{q}_m \mathbf{x}_{t,m} \right)$$

- > Left: best combination of losses Right: loss of best combination.
- Right is harder: $\ell_t(\mathbf{q} \cdot \mathbf{x}_t) \leqslant \mathbf{q} \cdot \ell_t$ by convexity.

Minimize
$$\sum_{t=1}^{T} \ell_t(x_t) \dots$$

w.r.t.

$$\inf_{\mathbf{q}\in\mathcal{P}(\mathcal{M})} \sum_{m\in\mathcal{M}} \mathbf{q}_m \left(\sum_{t=1}^T \ell_t(\mathbf{x}_{t,m}) \right) \quad \text{or} \quad \inf_{\mathbf{q}\in\mathcal{P}(\mathcal{M})} \sum_{t=1}^T \ell_t \left(\sum_{m\in\mathcal{M}} \mathbf{q}_m \mathbf{x}_{t,m} \right)$$

- > Left: best combination of losses Right: loss of best combination.
- ▶ Right is **harder**: $\ell_t(\mathbf{q} \cdot \mathbf{x}_t) \leq \mathbf{q} \cdot \ell_t$ by convexity.
- \triangleright ! From set of experts ${\mathcal M}$ (finite) to set of experts ${\mathcal P}({\mathcal M})$ (continuous) !

Minimize
$$\sum_{t=1}^{T} \ell_t(x_t) \dots$$

w.r.t.

$$\inf_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} \mathbf{q}_m \left(\sum_{t=1}^T \ell_t(\mathbf{x}_{t,m}) \right) \quad \text{or} \quad \inf_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^T \ell_t \left(\sum_{m \in \mathcal{M}} \mathbf{q}_m \mathbf{x}_{t,m} \right)$$

- > Left: best combination of losses Right: loss of best combination.
- ▶ Right is **harder**: $\ell_t(\mathbf{q} \cdot \mathbf{x}_t) \leq \mathbf{q} \cdot \ell_t$ by convexity.
- ! From set of experts $\mathcal M$ (finite) to set of experts $\mathcal P(\mathcal M)$ (continuous) !
- If ℓ is η -exp-concave on \mathcal{X} , then $\overline{\ell}: q \to \ell_t(\mathbf{q} \cdot \mathbf{x}_t)$ is η -exp-concave on $\mathcal{P}(\mathcal{M})$.

Aggregation over $\mathcal{P}(\mathcal{M})$: Strategy

$$\overline{p}_1(q) = rac{1}{\operatorname{vol}(\mathcal{P}(\mathcal{M})))} = M!, \ p_1 = rac{1}{|\mathcal{M}|} \mathbf{1}.$$

$$\overline{p}_1(q) = \frac{1}{\operatorname{vol}(\mathcal{P}(\mathcal{M}))} = M!, \ p_1 = \frac{1}{|\mathcal{M}|} \mathbf{1}.$$

For given
$$(x_{t,m})_{m\in\mathcal{M}}$$
, choose $x_t=\sum_{m\in\mathcal{M}}p_t(m)x_{t,m}$, where $p_t=\mathbb{E}_{q\sim\overline{p}_t}[q]$.

- $ightharpoonup \overline{p}_1(q) = rac{1}{\operatorname{vol}(\mathcal{P}(\mathcal{M})))} = M!, \ p_1 = rac{1}{|\mathcal{M}|} \mathbf{1}.$
- For given $(x_{t,m})_{m\in\mathcal{M}}$, choose $x_t=\sum_{m\in\mathcal{M}}p_t(m)x_{t,m}$, where $p_t=\mathbb{E}_{q\sim\overline{p}_t}[q]$.
- Set the next observation y_t from which we can compute $\ell_t(\mathbf{q} \cdot \mathbf{x}_t)$ for all \mathbf{q} .

$$\overline{p}_{t+1}(q) = \frac{\overline{p}_t(q) \exp(-\eta \overline{\ell}_t(q))}{\int_{\mathcal{P}(\mathcal{M})} \overline{p}_t(u) \exp(-\eta \overline{\ell}_t(q)) du}$$

- $ightharpoonup \overline{p}_1(q) = rac{1}{\operatorname{vol}(\mathcal{P}(\mathcal{M})))} = M!, \ p_1 = rac{1}{|\mathcal{M}|} \mathbf{1}.$
- For given $(x_{t,m})_{m\in\mathcal{M}}$, choose $x_t=\sum_{m\in\mathcal{M}}p_t(m)x_{t,m}$, where $p_t=\mathbb{E}_{q\sim\overline{p}_t}[q]$.
- Get the next observation y_t from which we can compute $\ell_t(\mathbf{q} \cdot \mathbf{x}_t)$ for all \mathbf{q} .

$$\overline{p}_{t+1}(q) = \frac{\overline{p}_t(q) \exp(-\eta \overline{\ell}_t(q))}{\int_{\mathcal{P}(\mathcal{M})} \overline{p}_t(u) \exp(-\eta \overline{\ell}_t(q)) du}$$

> Update $p_{t+1}=\mathbb{E}_{q\sim\overline{p}_{t+1}}[q].$

AGGREGATION OVER $\mathcal{P}(\mathcal{M})$:PERFORMANCE

$$L_T - \inf_{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^T \overline{\ell}_t(q) \leqslant \frac{\mathcal{M}}{\eta} \left(1 + \log\left(1 + \frac{T}{\mathcal{M}}\right) \right).$$

Aggregation over $\mathcal{P}(\mathcal{M})$:Performance

$$L_T - \inf_{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^T \overline{\ell}_t(q) \leqslant \frac{M}{\eta} \left(1 + \log \left(1 + \frac{T}{M} \right) \right).$$

For comparison we had: $L_T - \inf_{q \in \mathcal{P}(\mathcal{M})} \sum_m q(m) L_{T,m} \leqslant \frac{\log(M)}{\eta}$.

AGGREGATION OVER $\mathcal{P}(\mathcal{M})$:PERFORMANCE

$$L_T - \inf_{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^T \overline{\ell}_t(q) \leqslant \frac{M}{\eta} \left(1 + \log \left(1 + \frac{T}{M} \right) \right).$$

- For comparison we had: $L_T \inf_{q \in \mathcal{P}(\mathcal{M})} \sum_m q(m) L_{T,m} \leqslant \frac{\log(M)}{\eta}$.
- Proof technique: Similar +

▶ Consider Binary prediction and self-information loss ℓ .

- ▶ Consider Binary prediction and self-information loss ℓ .
- Aggregation over all Bernoulli $\mathcal{B}(\theta)$, $\theta \in [0,1]$.

- ightharpoonup Consider Binary prediction and self-information loss ℓ .
- ightharpoonup Aggregation over all Bernoulli $\mathcal{B}(heta)$, $heta \in [0,1]$.
- KT-predictor: Use prior $g(\theta) = \frac{1}{\sqrt{\theta(1-\theta)}}$ on each parameter.

- ightharpoonup Consider Binary prediction and self-information loss ℓ .
- Aggregation over all Bernoulli $\mathcal{B}(heta)$, $heta \in [0,1]$.
- KT-predictor: Use prior $g(\theta) = \frac{1}{\sqrt{\theta(1-\theta)}}$ on each parameter.
- Yields a fully explicit solution:

$$q_t(1) = \frac{t\widehat{\theta}_t + 1/2}{t+1}$$

Efficient computation despite aggregation of continuum of models.

- ightharpoonup Consider Binary prediction and self-information loss ℓ .
- ightharpoonup Aggregation over all Bernoulli $\mathcal{B}(heta)$, $heta \in [0,1]$.
- ho KT-predictor: Use prior $g(\theta) = \frac{1}{\sqrt{\theta(1-\theta)}}$ on each parameter.
- Yields a fully explicit solution:

$$q_t(1) = \frac{t\widehat{\theta}_t + 1/2}{t+1}$$

Efficient computation despite aggregation of continuum of models.

Called "Universal prediction". Extends to all Markov models of arbitrary order.

Table of Contents

MOTIVATION

AGGREGATION OF EXPERTS

A simple aggregation strategy Simple aggregation, revisited Best convex combinations

Best sequence: Fixed Share

Few recurring experts: Freund, MPP

FROM FULL TO PARTIAL INFORMATION

GAMES

So far, we only considered fixed experts:

$$\min_{\mathbf{m} \in \mathcal{M}} \sum_{t=1}^{T} \ell_t(x_{t,\mathbf{m}}), \quad \min_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} \mathbf{q}(m) L_{T,m} \quad \min_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_t(\sum_{m \in \mathcal{M}} \mathbf{q}(m) x_{t,m})$$

So far, we only considered fixed experts:

$$\min_{\textbf{m} \in \mathcal{M}} \sum_{t=1}^{T} \ell_t(\textbf{x}_{t,\textbf{m}}), \quad \min_{\textbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} \textbf{q}(m) \textbf{L}_{T,m} \quad \min_{\textbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_t(\sum_{m \in \mathcal{M}} \textbf{q}(m) \textbf{x}_{t,m})$$

What about best sequence of experts:

$$\min_{\substack{m_1,\dots,m_T \in \mathcal{S}_k(\mathcal{M}) \\ t=1}} \sum_{t=1}^T \ell_t(x_{t,m_t}) \text{ where } \mathcal{S}_k(\mathcal{M}) \text{ : at most } k \text{ switches.}$$

- Difficulty: Concentrating mass exponentially fast to a single expert means putting near 0 on others.
- When switching to other best expert, need to catch-up!
- \diamond from \mathcal{M} to \mathcal{M}^T many experts??

So far, we only considered fixed experts:

$$\min_{\textbf{m} \in \mathcal{M}} \sum_{t=1}^{T} \ell_t(x_{t,\textbf{m}}), \quad \min_{\textbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} \textbf{q}(m) L_{T,m} \quad \min_{\textbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_t(\sum_{m \in \mathcal{M}} \textbf{q}(m) x_{t,m})$$

What about best sequence of experts:

$$\min_{\substack{m_1,\dots,m_T \in \mathcal{S}_k(\mathcal{M}) \\ k}} \sum_{t=1}^T \ell_t(x_{t,m_t}) \text{ where } \mathcal{S}_k(\mathcal{M}) \text{ : at most } k \text{ switches.}$$

- Difficulty: Concentrating mass exponentially fast to a single expert means putting near 0 on others.
- When switching to other best expert, need to catch-up!
- \diamond from \mathcal{M} to \mathcal{M}^T many experts??

FIXED SHARE AND MARKOV HEDGE

Fixed-share solution

FIXED SHARE AND MARKOV HEDGE

Fixed-share solution

Guarantees each m never has not too small weight, hence can catch-up fast enough.

FIXED SHARE AND MARKOV HEDGE

Fixed-share solution

Guarantees each *m* never has not **too small** weight, hence can catch-up fast enough.

 $\tilde{p}_{t+1}(\cdot) = (1 - \alpha)p_{t+1}(\cdot) + \frac{\alpha}{M}$

FIXED-SHARE PERFORMANCE

For all sequence $q_1, \ldots, q_T \in \mathcal{P}(\mathcal{M})$ with at most k switches,

$$L_T - \sum_{t=1}^T q_t \ell_t \leqslant \frac{\log(M)}{\eta} + \frac{k}{\eta} \log\left(\frac{M}{\alpha}\right) + \frac{T - k - 1}{\eta} \log\left(\frac{1}{1 - \alpha}\right).$$

FIXED-SHARE PERFORMANCE

For all sequence $q_1, \ldots, q_T \in \mathcal{P}(\mathcal{M})$ with at most k switches,

$$L_T - \sum_{t=1}^T q_t \ell_t \leqslant \frac{\log(M)}{\eta} + \frac{k}{\eta} \log\left(\frac{M}{\alpha}\right) + \frac{T - k - 1}{\eta} \log\left(\frac{1}{1 - \alpha}\right).$$

ightharpoonup Choosing lpha=k/(T-1) yields

$$L_T - \sum_{t=1}^T q_t \ell_t \leqslant \frac{\log(M)}{\eta} + \frac{k}{\eta} \log\left(\frac{M(T-1)}{k}\right) + \frac{k}{\eta}.$$

FIXED-SHARE PERFORMANCE

For all sequence $q_1, \ldots, q_T \in \mathcal{P}(\mathcal{M})$ with at most k switches,

$$L_T - \sum_{t=1}^T q_t \ell_t \leqslant \frac{\log(M)}{\eta} + \frac{k}{\eta} \log\left(\frac{M}{\alpha}\right) + \frac{T - k - 1}{\eta} \log\left(\frac{1}{1 - \alpha}\right).$$

ightharpoonup Choosing lpha=k/(T-1) yields

$$L_{T} - \sum_{t=1}^{T} q_{t} \ell_{t} \leqslant \frac{\log(M)}{\eta} + \frac{k}{\eta} \log\left(\frac{M(T-1)}{k}\right) + \frac{k}{\eta}.$$

ightharpoonup lpha going to 0 but not exponentially fast.

Markov-hedge

Let us consider \tilde{p}_t obtained from p_t as $\tilde{p}_{t+1}(\cdot) = \sum_{m' \in \mathcal{M}} \theta(\cdot|m') p_{t+1}(m')$, from a Markov chain with initial low ω and transition matrix θ .

For all sequence $m_1, \ldots, m_T \in \mathcal{M}$ with at most k switches

$$L_T - \sum_{t=1}^T \ell_{t,m_t} \leqslant \frac{1}{\eta} \log \left(\frac{1}{\omega(m_1)} \right) + \frac{1}{\eta} \sum_{t=2}^T \log \left(\frac{1}{\theta_t(m_t|m_{t-1})} \right).$$

Markov-hedge

Let us consider \tilde{p}_t obtained from p_t as $\tilde{p}_{t+1}(\cdot) = \sum_{m' \in \mathcal{M}} \theta(\cdot|m') p_{t+1}(m')$, from a Markov chain with initial low ω and transition matrix θ .

For all sequence $m_1, \ldots, m_T \in \mathcal{M}$ with at most k switches

$$L_T - \sum_{t=1}^T \ell_{t,m_t} \leqslant \frac{1}{\eta} \log \left(\frac{1}{\omega(m_1)} \right) + \frac{1}{\eta} \sum_{t=2}^T \log \left(\frac{1}{\theta_t(m_t|m_{t-1})} \right).$$

Fixed share: $\theta(m'|m) = (1 - \alpha)\mathbb{I}\{m = m'\} + \alpha/M$.

Markov-hedge

Let us consider \tilde{p}_t obtained from p_t as $\tilde{p}_{t+1}(\cdot) = \sum_{m' \in \mathcal{M}} \theta(\cdot|m') p_{t+1}(m')$, from a Markov chain with initial low ω and transition matrix θ .

For all sequence $m_1, \ldots, m_T \in \mathcal{M}$ with at most k switches

$$L_T - \sum_{t=1}^T \ell_{t,m_t} \leqslant \frac{1}{\eta} \log \left(\frac{1}{\omega(m_1)} \right) + \frac{1}{\eta} \sum_{t=2}^T \log \left(\frac{1}{\theta_t(m_t|m_{t-1})} \right).$$

- Fixed share: $\theta(m'|m) = (1 \alpha)\mathbb{I}\{m = m'\} + \alpha/M$.
- ▶ Variable share, sleeping experts, etc.

Note: even though huge amount of experts $O(M^T)$ they share a **rich structure**. This enables to have an efficient strategy maintaining only few quantities O(MT).

TABLE OF CONTENTS

MOTIVATION

AGGREGATION OF EXPERTS

A simple aggregation strategy Simple aggregation, revisited Best convex combinations Best sequence: Fixed Share

Few recurring experts: Freund, MPP

FROM FULL TO PARTIAL INFORMATION

GAMES

Best sequence of experts:

$$\min_{\substack{m_1,\dots,m_T \in \mathcal{S}_k(\mathcal{M}) \\ t-1}} \sum_{t-1}^T \ell_t(x_{t,m_t}) \text{ where } \mathcal{S}_k(\mathcal{M}) \text{ : at most } k \text{ switches.}$$

BEST SEQUENCE OF EXPERTS

Best sequence of experts:

$$\min_{\substack{m_1,\dots,m_T \in \mathcal{S}_k(\mathcal{M}) \\ t=1}} \sum_{t=1}^T \ell_t(x_{t,m_t}) \text{ where } \mathcal{S}_k(\mathcal{M}) \text{ : at most } k \text{ switches.}$$

Best sequence of experts with few good experts:

$$\min_{m_1,\dots,m_T\in\mathcal{S}_k(\mathcal{M}_0)}\sum_{t=1}^T\ell_t(x_{t,m_t}) \text{ where } \mathcal{M}_0\subset\mathcal{M} \text{ unknown but small }.$$

Intuition: the good experts should be good in the recent past.

MIXING PAST POSTERIORS

> Ensure that experts good in the recent past have large enough weight and catch-up.

MIXING PAST POSTERIORS

- Ensure that experts good in the recent past have large enough weight and catch-up.
- Mixing past posterior $\tilde{p}_{t+1}(\cdot) = \sum_{s=0}^{t} \beta_{t+1}(s) p_s(\cdot)$

MIXING PAST POSTERIORS

- Ensure that experts good in the recent past have large enough weight and catch-up.
- Mixing past posterior $\tilde{p}_{t+1}(\cdot) = \sum_{s=0}^{t} \beta_{t+1}(s) p_s(\cdot)$
- In particular:

$$\diamond$$
 Hedge: $\beta_{t+1}(t') = \begin{cases} 1 & \text{if } t' = t \\ 0 & \text{else} \end{cases}$

MIXING PAST POSTERIORS: PERFORMANCE

Assume ℓ is η -mixable. For all sequence $(q_t)_{t\in\mathcal{T}}$ with k switches between at most n values,

$$L_{T} - \sum_{t=1}^{T} q_{t} \cdot \ell_{t} \leqslant \frac{n}{\eta} \log \left(|\mathcal{M}| \right) + \frac{1}{\eta} \sum_{t=1}^{T} \log \left(\frac{1}{\beta_{t}(\tau_{t})} \right).$$

where au_t is last au < t such that $q_ au = q_t$ (or 0 if first occurrence).

OTHER MODELS

Sleeping experts (Koolen et al. 2012): When experts are not available at all rounds.

OTHER MODELS

- > Sleeping experts (Koolen et al. 2012): When experts are not available at all rounds.
- Growing experts (Mourtada&M. 2017): When set of base experts \mathcal{M} is no longer fixed but may increase with time; Especially useful to handle non-stationarity.

OTHER MODELS

- Sleeping experts (Koolen et al. 2012): When experts are not available at all rounds.
- Growing experts (Mourtada&M. 2017): When set of base experts \mathcal{M} is no longer fixed but may increase with time; Especially useful to handle non-stationarity.
- > ...

Most results are minimax-optimal, valid for any input sequence.

This contrasts with typical results for bandits: instance-optimal, for stochastic sequence.

TAKE HOME MESSAGE

Full information

▶ Powerful: Handle large number of experts

TAKE HOME MESSAGE

Full information

- Powerful: Handle large number of experts
- Increasingly challenging targets:
 - \diamond **Constant** expert, **combination of loss** of experts. Convex and bounded or η -mixable loss.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)

TAKE HOME MESSAGE

Full information

- Powerful: Handle large number of experts
- Increasingly challenging targets:
 - \diamond Constant expert, combination of loss of experts. Convex and bounded or η-mixable loss.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
- Powerful results, log of number of experts

Take home message

Full information

- Powerful: Handle large number of experts
- Increasingly challenging targets:
 - \diamond Constant expert, combination of loss of experts. Convex and bounded or η-mixable loss.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
 - Powerful results, log of number of experts
- ▶ Computationally efficient algorithms, leveraging structure of experts.

TABLE OF CONTENTS

MOTIVATION

AGGREGATION OF EXPERTS

FROM FULL TO PARTIAL INFORMATION

GAMES

RISK-AVERSION

Robust Learning

TABLE OF CONTENTS

MOTIVATION

AGGREGATION OF EXPERTS

From full to Partial Information Aggregation in the bandit world

Exp3
Exp3 variants
Exp4
Stochastic or Adversarial?
Best of both world strategies

GAMES

Adjusting for the differences:

Adjusting for the differences:

Decision are arms $\mathcal{X} = \mathcal{A}$. Consider one expert per arm $\mathcal{M} = \mathcal{A}$.

Adjusting for the differences:

- Decision are arms $\mathcal{X} = \mathcal{A}$. Consider one expert per arm $\mathcal{M} = \mathcal{A}$.
- ▷ Losses $(\ell_{t,m})_{m \in \mathcal{M}}$ become rewards $(r_{t,a})_{a \in \mathcal{A}}$

Adjusting for the differences:

- Decision are arms $\mathcal{X} = \mathcal{A}$. Consider one expert per arm $\mathcal{M} = \mathcal{A}$.
- ▶ Losses $(\ell_{t,m})_{m \in \mathcal{M}}$ become rewards $(r_{t,a})_{a \in \mathcal{A}}$
- Can only output an arm $A_t \in \mathcal{A}$ (not a combination): $x_t = \sum_{m \in \mathcal{M}} p_{t,m} x_{t,m}$ becomes $x_t = x_{t,m_t}$ with $m_t \sim p_t$.
 - \diamond Less good, but ok as long as \mathbb{E} performance.

Problem: we only observe the reward of A_t (i.e., only r_{t,A_t})!!

Partial information: We don't observe $r_{t,a}$ for all arms.

Terminology: Adversarial setup. We want guarantees against arbitrary (bounded) sequence of rewards/losses.

THE EXPONENTIALLY WEIGHTED AVERAGE FORECASTER

Output $m_t \sim p_t$ where $p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}$, $\forall m \in \mathcal{M}, w_1(m) = 1 \text{ and } w_{t+1}(m) = w_t(m) \exp(-\eta \ell_{t,m})$.

$$\ell_{t,m}$$
 is not available for all arms!
$$\ell_{t,m} = 1 - r_{t,a}?$$

We can use importance sampling

$$\widehat{\ell}_{t,m} = \begin{cases} \frac{\ell_{t,m}}{p_t(m)} & \text{if } m = m_t \\ 0 & \text{otherwise} \end{cases}$$

We can use importance sampling

$$\widehat{\ell}_{t,m} = \begin{cases} \frac{\ell_{t,m}}{p_t(m)} & \text{if } m = m_t \\ 0 & \text{otherwise} \end{cases}$$

Why it is a good idea:

We can use importance sampling

$$\widehat{\ell}_{t,m} = egin{cases} rac{\ell_{t,m}}{p_t(m)} & \text{if } m = m_t \\ 0 & \text{otherwise} \end{cases}$$

Why it is a good idea:

 \triangleright $\widehat{\ell}_{t,m}$ is an **unbiased** estimator of $\ell_{t,m}$:

$$\mathbb{E}[\widehat{\ell}_{t,m}] = \frac{\ell_{t,m}}{\rho_t(m)} \rho_t(m) + 0(1 - \rho_t(m)) = \ell_{t,m}$$

We can use importance sampling

$$\widehat{\ell}_{t,m} = egin{cases} rac{\ell_{t,m}}{p_t(m)} & ext{if } m = m_t \\ 0 & ext{otherwise} \end{cases}$$

Why it is a good idea:

 \triangleright $\widehat{\ell}_{t,m}$ is an **unbiased** estimator of $\ell_{t,m}$:

$$\mathbb{E}[\widehat{\ell}_{t,m}] = \frac{\ell_{t,m}}{p_t(m)}p_t(m) + 0(1-p_t(m)) = \ell_{t,m}$$

Why it may be a bad idea:

We can use importance sampling

$$\widehat{\ell}_{t,m} = egin{cases} rac{\ell_{t,m}}{p_t(m)} & ext{if } m = m_t \\ 0 & ext{otherwise} \end{cases}$$

Why it is a good idea:

 \triangleright $\hat{\ell}_{t,m}$ is an **unbiased** estimator of $\ell_{t,m}$:

$$\mathbb{E}[\widehat{\ell}_{t,m}] = \frac{\ell_{t,m}}{p_t(m)}p_t(m) + 0(1 - p_t(m)) = \ell_{t,m}$$

Why it may be a bad idea:

 $p_{t,m}$ typically small for bad arms, hence this estimates has large variance for bad arms!

Table of Contents

MOTIVATION

AGGREGATION OF EXPERTS

FROM FULL TO PARTIAL INFORMATION

Aggregation in the bandit world

Exp3

Exp3 variants
Exp4
Stochastic or Adversarial?
Best of both world strategies

GAMES

Exp3: Exponential-weight algorithm for Exploration and Exploitation

 $\forall m \in \mathcal{M}, w_1(m) = 1.$

- $\forall m \in \mathcal{M}, w_1(m) = 1.$
- Output $m_t \sim p_t$ where $p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}$

- $\forall m \in \mathcal{M}, w_1(m) = 1.$
- Output $m_t \sim p_t$ where $p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}$
- \triangleright Receive r_{t,m_t}

- $\forall m \in \mathcal{M}, w_1(m) = 1.$
- Output $m_t \sim p_t$ where $p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}$
- \triangleright Receive r_{t,m_t}
- Update $\forall m \in \mathcal{M}, w_{t+1}(m) = w_t(m) \exp(-\eta \hat{\ell}_{t,m}).$

Question: is this enough? is this algorithm actually exploring enough?

Question: is this enough? is this algorithm actually exploring enough?

Answer: more or less...

Question: is this enough? is this algorithm actually exploring enough? **Answer**: more or less...

Exp3 has a small regret in expectation

Question: is this enough? is this algorithm actually exploring enough? **Answer**: more or less...

- Exp3 has a small regret in expectation
- Exp3 might have large deviations with **high probability** (ie, from time to time it may **concentrate** \hat{p}_t **on the wrong arm** for too long and then incur a large regret)

Fix: add some extra uniform exploration

Fix: add some extra uniform exploration

$$\forall m \in \mathcal{M}, w_1(m) = 1.$$

Fix: add some extra uniform exploration

$$\forall m \in \mathcal{M}, w_1(m) = 1.$$

Output
$$m_t \sim p_t$$
 where $p_t(m) = (1 - \gamma) \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)} + \frac{\gamma}{|\mathcal{M}|}$

Fix: add some extra uniform exploration

- $\forall m \in \mathcal{M}, w_1(m) = 1.$
- Output $m_t \sim p_t$ where $p_t(m) = (1 \gamma) \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)} + \frac{\gamma}{|\mathcal{M}|}$
- \triangleright Receive r_{t,m_t}

Fix: add some extra uniform exploration

- $\forall m \in \mathcal{M}, w_1(m) = 1.$
- Output $m_t \sim p_t$ where $p_t(m) = (1 \gamma) \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)} + \frac{\gamma}{|\mathcal{M}|}$
- \triangleright Receive r_{t,m_t}
- Update $\forall m \in \mathcal{M}, w_{t+1}(m) = w_t(m) \exp(-\eta \widehat{\ell}_{t,m}).$

Theorem

If Exp3 is run with $\gamma = \eta$, then it achieves a regret

$$R_T = \max_{a \in \mathcal{A}} \sum_{t=1}^T r_{t,a} - \mathbb{E}\Big[\sum_{t=1}^T r_{t,\mathbf{A}_t}\Big] \leqslant (e-1)\gamma G_{\max} + \frac{A \log A}{\gamma}$$

with $G_{\text{max}} = \max_{a \in \mathcal{A}} \sum_{t=1}^{T} r_{t,a}$.

Theorem

If Exp3 is run with

$$\gamma = \eta = \sqrt{\frac{A \log A}{(e-1)T}}$$

then it achieves a regret

$$R_T \leqslant O(\sqrt{TA \log A})$$

Comparison with online learning (convex, bounded):

$$R_T(Exp3) \leqslant O(\sqrt{TA \log A})$$

$$R_T(EWA) \leqslant O(\sqrt{T \log A})$$

Comparison with online learning (convex, bounded):

$$R_T(Exp3) \leqslant O(\sqrt{TA \log A})$$

$$R_T(EWA) \leqslant O(\sqrt{T \log A})$$

Intuition: in online learning at each round we obtain *A* feedbacks, while in bandits we receive 1 feedback.

EXPECTED REGRET

$$R_T(Exp3) = \mathbb{E}\left(\sum_{t=1}^T r_{t,a} - r_{t,a_t}\right) \leqslant \frac{\log(A)}{\eta} + \frac{A}{2}\eta T.$$

Further, For any non-increasing sequence $(\eta_t)_t$:

$$R_T(Exp3) = \mathbb{E}\left(\sum_{t=1}^T r_{t,a} - r_{t,a_t}\right) \leqslant \frac{\log(A)}{\eta_T} + \frac{A}{2}\sum_{t=1}^T \eta_t.$$

Step 1. $\mathbb{E}_{a\sim p_t}$ $_n ilde{\ell}_t(a)=1-r_{t,a_t}$ and $\mathbb{E}_{a_t\sim p_t}$ $_n ilde{\ell}_t(a)=1-r_{t,a}$. Thus:

$$\forall a \in \mathcal{A}, \quad \sum_{t=1}^{T} r_{t,a} - r_{t,a_t} = \sum_{t=1}^{T} \mathbb{E}_{a \sim p_{t,\eta}} \tilde{\ell}_t(a) - \sum_{t=1}^{T} \mathbb{E}_{a_t \sim p_{t,\eta}} \tilde{\ell}_t(a).$$

Step 2. The random variable $X = ilde{\ell}_t(a)$, is positive. By Hoeffd<code>ing</code>'s <code>lemma</code>,

$$\begin{split} \mathbb{E}_{\mathbf{a} \sim p_{t,\eta}}(\tilde{\ell}_{t}(\mathbf{a})) & \leq & -\frac{1}{\eta} \log \left(\mathbb{E}_{\mathbf{a} \sim p_{t,\eta}} \left[\exp(-\eta \tilde{\ell}_{t}(\mathbf{a})) \right] \right) + \frac{\eta}{2} \mathbb{E}_{\mathbf{a} \sim p_{t,\eta}}(\tilde{\ell}_{t}(\mathbf{a})^{2}) \\ & = & -\frac{1}{\eta} \log \left(\frac{\sum_{\mathbf{a} \in \mathcal{A}} e^{-\sum_{s=1}^{t} \eta \tilde{\ell}_{s}(\mathbf{a})}}{\sum_{s=1}^{t-1} \eta \tilde{\ell}_{s}(\mathbf{a})} \right) + \frac{\eta}{2} \mathbb{E}_{\mathbf{a} \sim p_{t,\eta}}(\tilde{\ell}_{t}(\mathbf{a})^{2}) \,. \end{split}$$

Step 3. Thus,

$$\sum_{t=1}^{T} \mathbb{E}_{\boldsymbol{a} \sim p_{t,\eta}}(\tilde{\ell}_{t}(\boldsymbol{a})) \leqslant -\frac{1}{\eta} \log \left(\frac{1}{A} \sum_{b} \exp(-\sum_{t=1}^{T} \eta \tilde{\ell}_{t}(b)) \right) + \sum_{t=1}^{T} \frac{\eta}{2} \mathbb{E}_{\boldsymbol{a} \sim p_{t,\eta}}(\tilde{\ell}_{t}(\boldsymbol{a})^{2}).$$

Since the reward function is bounded by 1 we have:

$$\mathbb{E}_{a\sim p_{t,\eta}}(ilde{\ell}_t(a)^2) = \mathbb{E}_{a\sim p_{t,\eta}}(rac{(1-r_{t,\mathcal{A}_t})^2}{p_t^2(\mathcal{A}_t)}\mathbb{I}\{\mathcal{A}_t=a\}) \leqslant rac{1}{p_t(a_t)}.$$

Step 4. Using the fact that the sum of positive terms is bigger than any of its term

$$-rac{1}{\eta}\log{(\sum_b \exp(-\sum_{t=1}^I \eta ilde{\ell}_t(b)))} \leqslant \sum_{t=1}^I ilde{\ell}_t(a) ext{ for each } a \in \mathcal{A}$$
 .

Taking expectations, it comes for all $a\in\mathcal{A}$,

$$\mathbb{E}\bigg[\sum_{t=1}^T r_{t,a} - r_{t,a_t}\bigg] \leqslant \frac{\log(A)}{\eta} + \sum_{t=1}^T \frac{\eta}{2} \underbrace{\mathbb{E}\bigg[\frac{1}{p_t(a_t)}\bigg]}_{}.$$

TABLE OF CONTENTS

MOTIVATION

AGGREGATION OF EXPERTS

FROM FULL TO PARTIAL INFORMATION

Aggregation in the bandit world Exp3

Exp3 variants

Exp4

Stochastic or Adversarial?
Best of both world strategies

GAMES

$$ho$$
 Exp3.P (Auer et al. 2002): $ilde{r}_{t,a}=r_{t,a}+rac{eta}{
ho_{t,a}}$

- ho Exp3.P (Auer et al. 2002): $ilde{r}_{t,a}=r_{t,a}+rac{eta}{
 ho_{t,a}}$
- Exp3-IX (Kocak et al, 2014; Neu 2015): $\tilde{\ell}_{t,a} = \frac{\ell_{t,a}}{p_{t,a} + \gamma}$.

- ho Exp3.P (Auer et al. 2002): $\tilde{r}_{t,a}=r_{t,a}+rac{eta}{
 ho_{t,a}}$
- Exp3-IX (Kocak et al, 2014; Neu 2015): $\tilde{\ell}_{t,a} = \frac{\ell_{t,a}}{p_{t,a} + \gamma}$.
- Many other variants.

Table of Contents

MOTIVATION

AGGREGATION OF EXPERTS

FROM FULL TO PARTIAL INFORMATION

Aggregation in the bandit world Exp3
Exp3 variants

Exp4

Stochastic or Adversarial?

Best of both world strategies

GAMES

Decisions are **distributions** on arms $\mathcal{X} = \mathcal{P}(\mathcal{A})$.

- Decisions are **distributions** on arms $\mathcal{X} = \mathcal{P}(\mathcal{A})$.
- One expert outputs $\xi_{t,m} \in \mathcal{P}(A)$ at time t.

- Decisions are **distributions** on arms $\mathcal{X} = \mathcal{P}(\mathcal{A})$.
- One expert outputs $\xi_{t,m} \in \mathcal{P}(\mathcal{A})$ at time t.
- ▶ Loss of expert $m \in \mathcal{M}$: $\ell_{t,m} = \sum_{a \in \mathcal{A}} \xi_{t,m}(a) r_t(a)$ (Instead of reward)

- Decisions are **distributions** on arms $\mathcal{X} = \mathcal{P}(\mathcal{A})$.
- One expert outputs $\xi_{t,m} \in \mathcal{P}(\mathcal{A})$ at time t.
- Loss of expert $m \in \mathcal{M}$: $\ell_{t,m} = \sum_{a \in A} \xi_{t,m}(a) r_t(a)$ (Instead of reward)
- hd Case when $|\mathcal{M}|\gg |\mathcal{A}|$?

Exponential-weight algorithm for exploration and exploitation using expert advice.

 $\forall m \in \mathcal{M}, w_1(m) = 1.$

- $\forall m \in \mathcal{M}, w_1(m) = 1.$
- Output $a_t \sim p_t \in \mathcal{P}(\mathcal{A})$ where $p_t(a) = (1 \gamma) \frac{w_t(m)\xi_{t,m}(a)}{\sum_{m \in \mathcal{M}} w_t(m)} + \frac{\gamma}{|\mathcal{A}|}$

- $\forall m \in \mathcal{M}, w_1(m) = 1.$
- Output $a_t \sim p_t \in \mathcal{P}(\mathcal{A})$ where $p_t(a) = \frac{(1-\gamma)}{\sum_{m \in \mathcal{M}} w_t(m)} + \frac{\gamma}{|\mathcal{A}|}$
- Receive r_{t,a_t} , build $\widehat{\ell}_t(a) = \begin{cases} \frac{1-r_t(a)}{p_t(a)} & \text{if } a = a_t \\ 0 & \text{else} \end{cases}$

- $\forall m \in \mathcal{M}, w_1(m) = 1.$
- Output $a_t \sim p_t \in \mathcal{P}(\mathcal{A})$ where $p_t(a) = \frac{(1-\gamma)}{\sum_{m \in \mathcal{M}} w_t(m)} + \frac{\gamma}{|\mathcal{A}|}$
- Receive r_{t,a_t} , build $\widehat{\ell}_t(a) = \begin{cases} \frac{1-r_t(a)}{p_t(a)} & \text{if } a = a_t \\ 0 & \text{else} \end{cases}$
- Update $\forall m \in \mathcal{M}, w_{t+1}(m) = w_t(m) \exp(-\eta \widehat{\ell}_{t,m})$. where $\widehat{\ell}_{t,m} = \sum_{a \in \mathcal{A}} \xi_{t,m}(a) \widehat{\ell}_t(a)$.

REGRET OF EXP4

Theorem

If Exp4 is run with $\gamma \in [0,1]$, then it achieves a regret

$$R_T = \max_{a \in \mathcal{A}} \sum_{t=1}^T r_{t,a} - \mathbb{E}\left[\sum_{t=1}^T r_{t,A_t}\right] \leqslant (e-1)\gamma G_{\max} + \frac{A \log M}{\gamma}$$

with $G_{\max} = \max_{a \in \mathcal{A}} \sum_{t=1}^{T} r_{t,a}$.

TABLE OF CONTENTS

MOTIVATION

AGGREGATION OF EXPERTS

FROM FULL TO PARTIAL INFORMATION

Aggregation in the bandit world
Exp3
Exp3 variants
Exp4

Stochastic or Adversarial?

Best of both world strategies

GAMES

 $\Phi: \mathcal{H} \to \mathcal{D}$, mapping from set of histories to some set \mathcal{D} , such that $h_1 \sim h_2$ iff $\Phi(h_1) = \Phi(h_2)$ defines **equivalence relation**; let [h] the equivalence class of h.

- $\Phi: \mathcal{H} \to \mathcal{D}$, mapping from set of histories to some set \mathcal{D} , such that $h_1 \sim h_2$ iff $\Phi(h_1) = \Phi(h_2)$ defines **equivalence relation**; let [h] the equivalence class of h.
- Φ -constrained policy is $\pi: \mathcal{H}/\Phi \to \mathcal{A}$.

- $\Phi: \mathcal{H} \to \mathcal{D}$, mapping from set of histories to some set \mathcal{D} , such that $h_1 \sim h_2$ iff $\Phi(h_1) = \Phi(h_2)$ defines **equivalence relation**; let [h] the equivalence class of h.
- hd -constrained policy is $\pi: \mathcal{H}/\Phi o \mathcal{A}$.
- Examples:
 - ϕ $\Phi(h) = 1$ gives constant experts.
 - $\Phi(h) = (a_{-1}, \dots, a_{-m})$ last m actions, gives experts depending on last m actions only.
 - $\Phi(h) = |h| \mod k$ gives periodic experts.

- $\Phi: \mathcal{H} \to \mathcal{D}$, mapping from set of histories to some set \mathcal{D} , such that $h_1 \sim h_2$ iff $\Phi(h_1) = \Phi(h_2)$ defines **equivalence relation**; let [h] the equivalence class of h.
- ightharpoonup ho-constrained policy is $\pi: \mathcal{H}/\Phi o \mathcal{A}$.
- Examples:
 - ϕ $\Phi(h) = 1$ gives constant experts.
 - $\Phi(h) = (a_{-1}, \dots, a_{-m})$ last m actions, gives experts depending on last m actions only.
 - $\Phi(h) = |h| \mod k$ gives periodic experts.
- We define the Φ-constrained regret:

$$\mathcal{R}_{T}^{\Phi} = \sup_{\pi: \mathcal{H}/\Phi o \mathcal{A}} \mathbb{E}igg[\sum_{t=1}^{T} r_{t,\pi([h_t])}igg] - \mathbb{E}igg[\sum_{t=1}^{T} r_{t,a_t}igg]$$

More challenging than best constant expert.

Φ -Exp4

We can define a version of Exp4 for Φ-constrained policies.

Φ -Exp4

- \triangleright We can define a version of Exp4 for Φ-constrained policies.
- We simply contextualize Exp4 by indexing losses, weights, parameters η by the equivalence classes, and computing the current active class $c_t = \Phi(h_t)$.

Φ -Exp4

- \triangleright We can define a version of Exp4 for Φ -constrained policies.
- We simply contextualize Exp4 by indexing losses, weights, parameters η by the equivalence classes, and computing the current active class $c_t = \Phi(h_t)$.
- Result (M. Munos, 2011)

$$\mathcal{R}_{\mathcal{T}}^{\Phi} \leqslant \sum_{c \in \mathcal{H}/\Phi} \mathbb{E} \left[\frac{A\eta_c}{2} \, T_c + \frac{\log(A)}{\eta_c} \right].$$

where T_c is number of activation times of class c until time T.

POOL OF CONSTRAINED STRATEGIES?

We consider we have a set $(\Phi_{\theta})_{\theta \in \Theta}$ of constrained strategies.

POOL OF CONSTRAINED STRATEGIES?

- We consider we have a set $(\Phi_{\theta})_{\theta \in \Theta}$ of constrained strategies.
- One Φ_{θ} -Exp3 strategy for each θ : see them as different experts?

POOL OF CONSTRAINED STRATEGIES?

- We consider we have a set $(\Phi_{\theta})_{\theta \in \Theta}$ of constrained strategies.
- One Φ_{θ} -Exp3 strategy for each θ : see them as different experts?
- ▶ Run Exp4 with all these base experts: Φ_1 -Exp3, ..., Φ_P -Exp3?

Difficulty: The experts are **learning** algorithms. Their performance depends on the observations they received.

We are in partial feedback: When Φ_p -Exp3 recommends to play action a, Exp4 may instead play (and received reward from) action b. Hence Φ_p -Exp3 not only faces partial feedback, but also it does not observe the reward corresponding to what it decides.

Double-bandit feedback

Exp4 on Φ_{θ} -Exp3 strategies

Theorem (M. Munos, 2011)

In the double-bandit feedback setup, Exp4, run on $(\Phi_{\theta}$ -Exp3) $_{\theta \in \Theta}$ strategies with appropriate parameter tuning satisfies

$$\mathcal{R}_T = O\bigg(T^{2/3}(A\log(A)C)^{1/3}\log(|\Theta|)^{1/2}\bigg) \text{ with } C = \max_{\theta \in \theta} |\mathcal{H}/\Phi_\theta|.$$

Table of Contents

MOTIVATION

AGGREGATION OF EXPERTS

FROM FULL TO PARTIAL INFORMATION

Aggregation in the bandit world
Exp3
Exp3 variants
Exp4
Stochastic or Adversarial?

Best of both world strategies

GAMES

STOCHASTIC VERSUS ADVERSARIAL BANDITS

Strategies for **Stochastic** bandits: UCB, KL-UCB, etc. log(T) regret bounds when stochastic model, but strong assumptions on signal.

STOCHASTIC VERSUS ADVERSARIAL BANDITS

- Strategies for Stochastic bandits: UCB, KL-UCB, etc. log(T) regret bounds when stochastic model, but strong assumptions on signal.
- Strategies for Adversarial bandits: Exp3, Exp4, etc. \sqrt{T} regret bounds with little assumption on model, but perhaps too conservative.

Can we have the best of both worlds?

Best of both worlds

Several works on the topic

- ▶ Bubeck&Slivkins 2012, Auer&Chiang, 2016.
- Zimmert-Seldin 2018.

Idea: Online Mirror Descent regularized by Tsallis Entropy

 α -Tsallis entropy:

$$H_{\alpha}(x) = \frac{1}{1-\alpha} (1 - \sum_{a \in \mathcal{A}} x_a^{\alpha})$$

- $\diamond \quad \lim_{lpha
 ightarrow 1} H_lpha(x) = \sum_{a \in \mathcal{A}} x_a \log(x_a)$
- $\diamond \quad \lim_{\alpha \to 0} H_{\alpha}(x) = -\sum_{a \in \mathcal{A}} \log(x_a)$

Let us consider the potential:

$$\Psi_{t,\alpha}(q) = -\sum_{\mathbf{a}\in\mathcal{A}} \frac{q^{\alpha}(\mathbf{a})}{\alpha}$$

Strategy:

Let us consider the potential:

$$\Psi_{t,\alpha}(q) = -\sum_{\mathbf{a}\in\mathcal{A}} \frac{q^{\alpha}(\mathbf{a})}{\alpha}$$

Strategy:

Choose

$$p_t = \operatorname*{argmin}_{q \in \mathcal{P}(\mathcal{A})} \langle q, \widehat{L}_{t-1} \rangle + \frac{1}{\eta_t} \Psi_{\alpha}(q)$$

(This is gradient of dual of $\Psi_{t,\alpha}/\eta_t$ at position \widehat{L}_{t-1})

Let us consider the potential:

$$\Psi_{t,\alpha}(q) = -\sum_{\mathsf{a}\in\mathcal{A}} rac{q^{lpha}(\mathsf{a})}{lpha}$$

Strategy:

Choose

$$p_t = \operatorname*{argmin}_{q \in \mathcal{P}(\mathcal{A})} \langle q, \widehat{L}_{t-1} \rangle + \frac{1}{\eta_t} \Psi_{\alpha}(q)$$

(This is gradient of dual of $\Psi_{t,\alpha}/\eta_t$ at position \widehat{L}_{t-1})

hd Sample $a_t \sim p_t$

Let us consider the potential:

$$\Psi_{t,\alpha}(q) = -\sum_{\mathsf{a}\in\mathcal{A}} rac{q^{lpha}(\mathsf{a})}{lpha}$$

Strategy:

Choose

$$p_t = \operatorname*{argmin}_{q \in \mathcal{P}(\mathcal{A})} \langle q, \widehat{L}_{t-1} \rangle + \frac{1}{\eta_t} \Psi_{lpha}(q)$$

(This is gradient of dual of $\Psi_{t,\alpha}/\eta_t$ at position \widehat{L}_{t-1})

- Sample $a_t \sim p_t$
- Observe ℓ_{t,a_t} then build $\widehat{\ell}_t$ as unbiased estimate of ℓ_t , then $\widehat{L}_t=\widehat{L}_{t-1}+\widehat{\ell}_t$.

Best of both worlds

$lim_{lpha o 0}$	Regime Sto	$\frac{ \text{Upper bound}}{ \text{Lower bound}} \\ O(1)$	Learning rate $\Theta(\Delta_a)$
	Adv	$O(\sqrt{\ln(T)}$	$\Theta\!\left(rac{ln(t)}{\sqrt{t}} ight)$
$\alpha = \frac{1}{2}$	Sto&Adv	<i>O</i> (1)	$\frac{1}{\sqrt{t}}$
$\lim_{lpha o 1}$	Sto	$O(\ln(T))$	$\Theta\left(\frac{\ln(t)}{\Delta_a t}\right)$
	Adv	$O(\sqrt{\ln(A)}$	$\Theta\left(\frac{1}{\sqrt{t}}\right)$.

Full information

> Powerful: Handle large number of experts

Take home message

Full information

- Powerful: Handle large number of experts
 - Increasingly challenging targets:
 - \diamond **Constant** expert, **combination of loss** of experts. Convex and bounded or η -mixable loss.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)

Full information

- Powerful: Handle large number of experts
 - Increasingly challenging targets:
 - \diamond Constant expert, combination of loss of experts. Convex and bounded or η-mixable loss.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
- Powerful results, log of number of experts

Take home message

Full information

- Powerful: Handle large number of experts
 - Increasingly challenging targets:
 - \diamond Constant expert, combination of loss of experts. Convex and bounded or η -mixable loss.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
- Powerful results, log of number of experts
- > Computationally efficient algorithms, leveraging structure of experts.

Take home message

Full information

- Powerful: Handle large number of experts
- Increasingly challenging targets:
 - Constant expert, combination of loss of experts. Convex and bounded or η-mixable loss.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
- Powerful results, log of number of experts
- ▶ Computationally efficient algorithms, leveraging structure of experts.

Bandit information

Only output one arm, not a convex combination of arms.

Full information

- Powerful: Handle large number of experts
- Increasingly challenging targets:
 - Constant expert, combination of loss of experts. Convex and bounded or η-mixable loss.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
- ▶ Powerful results, log of number of experts
- Computationally efficient algorithms, leveraging structure of experts.

- Only output **one** arm, not a convex combination of arms.
- Only receive reward on one arm.

Full information

- Powerful: Handle large number of experts
- Increasingly challenging targets:
 - Constant expert, combination of loss of experts. Convex and bounded or η-mixable loss.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
- Powerful results, log of number of experts
- Computationally efficient algorithms, leveraging structure of experts.

- Only output one arm, not a convex combination of arms.
- Only receive reward on one arm.
- Difficulty to estimate reward/loss [Still not satisfactory]

Full information

- Powerful: Handle large number of experts
- Increasingly challenging targets:
 - Constant expert, combination of loss of experts. Convex and bounded or η-mixable loss.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
- Powerful results, log of number of experts
- ▶ Computationally efficient algorithms, leveraging structure of experts.

- Only output one arm, not a convex combination of arms.
- Only receive reward on one arm.
- Difficulty to estimate reward/loss [Still not satisfactory]
- \triangleright \sqrt{A} factor in regret bounds.

Take home message

Full information

- Powerful: Handle large number of experts
- Increasingly challenging targets:
 - Constant expert, combination of loss of experts. Convex and bounded or η-mixable loss.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
- Powerful results, log of number of experts
- Computationally efficient algorithms, leveraging structure of experts.

- Only output **one** arm, not a convex combination of arms.
- Only receive reward on one arm.
- Difficulty to estimate reward/loss [Still not satisfactory]
- \triangleright \sqrt{A} factor in regret bounds.
- Useful in games.

OPEN QUESTIONS

- Bandit results for
 - Best sequence of experts?
 - Best sequence of few recurring experts?
 - Sleeping, Growing experts ?
 - Beyond convex/bounded?

OPEN QUESTIONS

- Bandit results for
 - Best sequence of experts?
 - Best sequence of few recurring experts?
 - Sleeping, Growing experts?
 - Beyond convex/bounded?
- Best of both world: Exact stochastic optimality? Estimation of loss?

OPEN QUESTIONS

- Bandit results for
 - Best sequence of experts?
 - Best sequence of few recurring experts?
 - Sleeping, Growing experts?
 - Beyond convex/bounded?
- Best of both world: Exact stochastic optimality? Estimation of loss?
- Mixed world bandit: Some arms are stochastic, others are arbitrary bounded?

TABLE OF CONTENTS

MOTIVATION

AGGREGATION OF EXPERTS

FROM FULL TO PARTIAL INFORMATION

GAMES

RISK-AVERSION

Robust Learning

▶ A two-player zero-sum game

	Α	В	С
1	30, -30	-10, 10	20, -20
2	10, -10	-20, 20	-20, 20

A two−player zero−sum game

	Α	В	С
1	30, -30	-10, 10	20, -20
2	10, -10	-20, 20	-20, 20

Nash equilibrium:

A set of strategies is a **Nash equilibrium** if **no player** can do better by **unilaterally changing** his strategy.

A two−player zero−sum game

	Α	В	С
1	30, -30	-10, 10	20, -20
2	10, -10	-20, 20	-20, 20

Nash equilibrium:

Red: take action 1 with prob. 1
Blue: take action B with prob. 1

▶ A two-player zero-sum game

	Α	В	С
1	30, -30	-10, 10	20, -20
2	10, -10	-20, 20	-20, 20

Nash equilibrium:

Value of the game: V = -10 (reward of Red at the equilibrium)

A two-player zero-sum game

	Α	В
1	-2, 2	3, -3
2	3, -3	-4, 4

A two-player zero-sum game

	Α	В
1	-2, 2	3, -3
2	3, -3	-4, 4

Nash equilibrium:

A set of strategies is a Nash equilibrium if **no player** can do better by **unilaterally changing** his strategy.

A two-player zero-sum game

	Α	В
1	-2, 2	3, -3
2	3, -3	-4, 4

Nash equilibrium:

Red: take action 1 with prob. 7/12 and action 2 with prob. 5/12

Blue: take action A with prob. 7/12 and action B with prob. 5/7

A two-player zero-sum game

	Α	В
1	-2, 2	3, -3
2	3, -3	-4, 4

Nash equilibrium:

Value of the game: V = 1/12 (reward of Red at the equilibrium)

At each round t

- Now player computes a mixed strategy $\widehat{\mathbf{p}}_t = (\widehat{p}_{1,t}, \dots, \widehat{p}_{N,t})$
- Column player computes a mixed strategy $\widehat{\mathbf{q}}_t = (\widehat{q}_{1,t}, \dots, \widehat{q}_{M,t})$

At each round t

- Now player computes a mixed strategy $\widehat{\mathbf{p}}_t = (\widehat{p}_{1,t}, \dots, \widehat{p}_{N,t})$
- lacktriangle Column player computes a mixed strategy $\widehat{f q}_t = (\widehat{q}_{1,t}, \ldots, \widehat{q}_{M,t})$
- ▶ Row player selects action $I_t \in \{1, ..., N\}$
- lacksquare Column player selects action $J_t \in \{1, \dots, M\}$

At each round t

- lacktriangle Row player computes a mixed strategy $\widehat{f p}_t = (\widehat{p}_{1,t}, \dots, \widehat{p}_{N,t})$
- lacktriangle Column player computes a mixed strategy $\widehat{f q}_t = (\widehat{q}_{1,t}, \ldots, \widehat{q}_{M,t})$
- ▶ Row player selects action $I_t \in \{1, ..., N\}$
- ▶ Column player selects action $J_t \in \{1, ..., M\}$
- ▶ Row player suffers $\ell(I_t, J_t)$
- ▶ Column player suffers $-\ell(I_t, J_t)$

At each round t

- Now player computes a mixed strategy $\widehat{\mathbf{p}}_t = (\widehat{p}_{1,t}, \dots, \widehat{p}_{N,t})$
- lacktriangle Column player computes a mixed strategy $\widehat{f q}_t = (\widehat{q}_{1,t}, \dots, \widehat{q}_{M,t})$
- ▶ Row player selects action $I_t \in \{1, ..., N\}$
- ▶ Column player selects action $J_t \in \{1, ..., M\}$
- ▶ Row player suffers $\ell(I_t, J_t)$
- ▶ Column player suffers $-\ell(I_t, J_t)$

Value of the game

$$V = \max_{\mathbf{q}} \min_{\mathbf{p}} ar{\ell}(\mathbf{p}, \mathbf{q})$$

with

$$\bar{\ell}(\mathbf{p},\mathbf{q}) = \sum_{i=1}^{N} \sum_{j=1}^{M} p_i q_j \ell(i,j)$$

Question: what if the two players are both bandit algorithms (e.g., Exp3)?

Question: what if the two players are both bandit algorithms (e.g., Exp3)? **Row player**: a bandit algorithm is able to minimize

$$R_n(\text{row}) = \sum_{t=1}^n \ell_{I_t, J_t} - \min_{i=1, ..., N} \sum_{t=1}^n \ell_{i, J_t}$$

Question: what if the two players are both bandit algorithms (e.g., Exp3)? **Row player**: a bandit algorithm is able to minimize

$$R_n(\text{row}) = \sum_{t=1}^n \ell_{I_t, J_t} - \min_{i=1,...,N} \sum_{t=1}^n \ell_{i,J_t}$$

Col player: a bandit algorithm is able to minimize

$$R_n(\text{col}) = \sum_{t=1}^n \ell_{I_t, J_t} - \min_{j=1, \dots, M} \sum_{t=1}^n \ell_{I_t, j}$$

Theorem

If both the row and column players play according to an **Hannan-consistent** strategy, then

$$\lim \sup_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \ell(I_t, J_t) = V$$

Theorem

The empirical distribution of plays

$$\widehat{p}_{i,n} = \frac{1}{n} \sum_{t=1}^{n} \mathbb{I} I_t = i \quad \widehat{q}_{j,n} = \frac{1}{n} \sum_{t=1}^{n} \mathbb{I} J_t = j$$

induces a product distribution $\hat{\mathbf{p}}_n \times \hat{\mathbf{q}}_n$ which converges to the **set of Nash equilibria** $\mathbf{p} \times \mathbf{q}$.

Since $ar{\ell}(\mathbf{p},J_t)$ is linear, over the simplex, the minimum is at one of the corners

$$\min_{i=1,\ldots,N} \frac{1}{N} \sum_{t=1}^n \ell(i,J_t) = \min_{\mathbf{p}} \frac{1}{n} \sum_{t=1}^n \bar{\ell}(\mathbf{p},J_t)$$

Since $\bar{\ell}(\mathbf{p},J_t)$ is linear, over the simplex, the minimum is at one of the corners mathl

$$\min_{i=1,\ldots,N} \frac{1}{N} \sum_{t=1}^n \ell(i,J_t) = \min_{\mathbf{p}} \frac{1}{n} \sum_{t=1}^n \bar{\ell}(\mathbf{p},J_t)$$

We consider the empirical probability of the row player [def]

$$\widehat{q}_{j,n} = \frac{1}{n} \sum_{t=1}^{n} \mathbb{I} J_t = j$$

Since $\bar{\ell}(\mathbf{p},J_t)$ is linear, over the simplex, the minimum is at one of the corners $\mathbf{math}_{\mathbf{l}}$

$$\min_{i=1,...,N} rac{1}{N} \sum_{t=1}^n \ell(i,J_t) = \min_{\mathbf{p}} rac{1}{n} \sum_{t=1}^n ar{\ell}(\mathbf{p},J_t)$$

We consider the empirical probability of the row player [def]

$$\widehat{q}_{j,n} = \frac{1}{n} \sum_{t=1}^{n} \mathbb{I} J_t = j$$

Elaborating on it [math]

$$\min_{\mathbf{p}} \frac{1}{n} \sum_{t=1}^{n} \bar{\ell}(\mathbf{p}, J_{t}) = \min_{\mathbf{p}} \sum_{j=1}^{M} \widehat{q}_{j,n} \bar{\ell}(\mathbf{p}, j)
= \min_{\mathbf{p}} \bar{\ell}(\mathbf{p}, \widehat{\mathbf{q}}_{n})
\leqslant \max_{\mathbf{q}} \min_{\mathbf{p}} \bar{\ell}(\mathbf{p}, \mathbf{q}) = V$$

By definition of Hannan's consistent strategy [def]

$$\lim \sup_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \ell(I_t, J_t) = \min_{i=1, \dots, N} \frac{1}{n} \sum_{t=1}^{n} \ell(i, J_t)$$

By definition of Hannan's consistent strategy [def]

$$\lim \sup_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \ell(I_t, J_t) = \min_{i=1,...,N} \frac{1}{n} \sum_{t=1}^{n} \ell(i, J_t)$$

Then

$$\lim \sup_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \ell(I_t, J_t) \leqslant V$$

By definition of Hannan's consistent strategy [def]

$$\lim \sup_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \ell(I_{t}, J_{t}) = \min_{i=1,...,N} \frac{1}{n} \sum_{t=1}^{n} \ell(i, J_{t})$$

Then

$$\lim \sup_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \ell(I_t, J_t) \leqslant V$$

If we do the same for the other player <code>[zero-sum game]</code>

$$\lim \sup_{n \to \infty} \frac{1}{n} \sum_{t=1}^{n} \ell(I_t, J_t) \geqslant V$$

Question: how fast do they converge to the Nash equilibrium?

Question: how fast do they converge to the Nash equilibrium? **Answer**: it depends on the specific algorithm. For EWA(η), we now that

$$\sum_{t=1}^{n} \ell(I_{t}, J_{t}) - \min_{i=1,...,N} \sum_{t=1}^{n} \ell(i, J_{t}) \leqslant \frac{\log N}{\eta} + \frac{n\eta}{8} + \sqrt{\frac{n}{2} \log \frac{1}{\delta}}$$

Generality of the results

▶ Players do not know the payoff matrix

Generality of the results

- ▶ Players do not know the payoff matrix
- ▶ Players do not observe the loss of the other player

Generality of the results

- ▶ Players do not know the payoff matrix
- Players do not observe the loss of the other player
- ▶ Players do not even observe the action of the other player

INTERNAL REGRET AND CORRELATED EQUILIBRIA

External (expected) regret

$$R_{n} = \sum_{t=1}^{n} \bar{\ell}(\hat{\mathbf{p}}_{t}, y_{t}) - \min_{i=1,\dots,N} \sum_{t=1}^{n} \ell(i, y_{t})$$

$$= \max_{i=1,\dots,N} \sum_{t=1}^{n} \sum_{i=1}^{N} \hat{p}_{j,t}(\ell(j, y_{t}) - \ell(i, y_{t}))$$

Internal Regret and Correlated Equilibria

External (expected) regret

$$R_{n} = \sum_{t=1}^{n} \bar{\ell}(\hat{\mathbf{p}}_{t}, y_{t}) - \min_{i=1,\dots,N} \sum_{t=1}^{n} \ell(i, y_{t})$$
$$= \max_{i=1,\dots,N} \sum_{t=1}^{n} \sum_{j=1}^{N} \hat{p}_{j,t}(\ell(j, y_{t}) - \ell(i, y_{t}))$$

Internal (expected) regret

$$R_n^I = \max_{i,j=1,...,N} \sum_{t=1}^n \widehat{p}_{j,t}(\ell(i,y_t) - \ell(j,y_t))$$

Internal Regret and Correlated Equilibria

Internal (expected) regret

$$R_n^I = \max_{i,j=1,...,N} \sum_{t=1}^n \widehat{p}_{j,t}(\ell(i,y_t) - \ell(j,y_t))$$

Intuition: an algorithm has **small internal regret** if, for each pair of experts (i, j), the learner does not regret of not having followed expert j each time it followed expert i.

Internal Regret and Correlated Equilibria

Theorem

Given a K-person game with a set of correlated equilibria \mathcal{C} . If all the players are internal-regret minimizers, then the **distance** between the **empirical distribution** of plays and the set of **correlated equilibria** \mathcal{C} converges to 0.

NASH EQUILIBRIA IN EXTENSIVE FORM GAMES

A powerful model for sequential games

- ► Checkers / Chess / Go
- Poker
- Bargaining
- Monitoring
- Patrolling

NASH EQUILIBRIA IN EXTENSIVE FORM GAMES

TABLE OF CONTENTS

MOTIVATION

AGGREGATION OF EXPERTS

FROM FULL TO PARTIAL INFORMATION

GAMES

RISK-AVERSION

Robust Learning

ADVERSARIAL SETUP?

- ▶ We considered adversarial setup. One way to address risk.
- ▶ Other ways: Risk-aversion (model), Robust strategies (min-max).

ILLUSTRATION OF RISK-AVERSION.

Choice for 1 sample ? For 1000 samples?

- DSSAT simulator: 30y of agronomy expertise, climate, ground, plant growth, etc.
- Distribution of yields for 4 different planting date (action) using DSSAT

May not want best expectation, but rather risk-averse criterion.

Table of Contents

MOTIVATION

AGGREGATION OF EXPERTS

FROM FULL TO PARTIAL INFORMATION

GAMES

RISK-AVERSION

Conditional Value At Risk

Entropic Value At Risk

- Novel bandit strategy for Conditional Value at Risk (CVaR)
- Provably optimal (regret bound matches lower bound).
- > Based on novel statistical estimation tools. Performance (blue) against Sota:

- Novel bandit strategy for Conditional Value at Risk (CVaR)
- Provably optimal (regret bound matches lower bound).
- Based on novel statistical estimation tools. Performance (blue) against Sota:

- Novel bandit strategy for Conditional Value at Risk (CVaR)
- Provably optimal (regret bound matches lower bound).
- > Based on novel statistical estimation tools. Performance (blue) against Sota:

CONDITIONAL VALUE AT RISK

Consider a Gain (reward): We are interested in risky (low) gains.

Maximize gain in worst-case situations

▶ Formally, for given $\alpha \in [0,1]$:

$$\operatorname{CVaR}_{\alpha}(\nu_{k}) = \sup_{x \in \mathbb{R}} \left\{ x - \frac{1}{\alpha} \mathbb{E}_{X \sim \nu_{k}} \left[(x - X)^{+} \right] \right\} . \tag{1}$$

▶ For continuous distributions, $\text{CVaR}_{\alpha}(\nu_k) = \mathbb{E}_{X \sim \nu_k}[X|X \leqslant q_{\alpha}(\nu_k)]$, where $q_{\alpha}(\nu_k) = \inf\{x : \mathbb{P}(X \leqslant x) > \alpha\}$ is the quantile at level α .

CVAR

- $\alpha = 1$ is the **expectation**, $\alpha = 0$ is very risk-averse (extreme).
- ▶ It is a **coherent** risk measure (Rockafellar, Acerbi et al.): many good properties.
- Rich litterature on CVaR in finance.
- \triangleright Parameter α is easy to interpret for many practitioners.

CVAR REGRET AND BANDITS

- \triangleright Unknown arm distributions $\nu = (\nu_1, \dots, \nu_K)$, given risk-level α .
- \triangleright We write $c_k^{\alpha} = \text{CVaR}_{\alpha}(\nu_k)$.
- Best arm is the one with the largest CVaR.
- ightharpoonup The CVaR regret of a sequential sampling strategy $\mathcal{A}=(A_t)_{t\in\mathbb{N}}$ is

$$\mathcal{R}_{\nu}^{\alpha}(T) = \mathbb{E}_{\nu} \left[\sum_{t=1}^{T} \left(\max_{k} c_{k}^{\alpha} - c_{A_{t}}^{\alpha} \right) \right] = \sum_{k=1}^{K} \Delta_{k}^{\alpha} \mathbb{E}_{\nu}[N_{k}(T)],$$

where $\Delta_{k}^{\alpha} = \max_{k'} c_{k'}^{\alpha} - c_{k}^{\alpha}$ is the CVaR gap.

▶ Algorithms: UCB style, we need upper confidence bounds for CVaR; TS, we need sampling scheme.

CVAR IN RL

- ▶ Concentration: Brown 2007, Thomas and Learned-Miller 2019.
- ▶ Bandits: Agrawal et al. 2020, Galichet 2013, Tamkin et al. 2020, etc.
- ▶ MDPs:

Optimizing the CVaR via Sampling, Tamar et al. 2014

Risk-Sensitive and Robust Decision-Making: a CVaR Optimization Approach, Chow et al. 2015

REGRET LOWER BOUNDS

Definition

For any $\nu \in \mathcal{C}$ and $c \in \mathbb{R}$, we define

$$\mathcal{K}_{\inf}^{\alpha,\mathcal{C}}(\nu,c) := \inf \left\{ \mathrm{KL}(\nu,\nu') : \nu' \in \mathcal{C}, \mathtt{CVaR}_{\alpha}(\nu') \geqslant c \right\}.$$

Theorem (Regret Lower Bound in CVaR bandits)

Let $\alpha \in (0,1]$. Let $\mathcal{F} = \mathcal{F}_1 \times \cdots \times \mathcal{F}_K$ be a set of bandit models $\boldsymbol{\nu} = (\nu_1,\dots,\nu_K)$ where each ν_k belongs to the class of distribution \mathcal{F}_k . Let \mathcal{A} be a strategy satisfying $\mathcal{R}^{\alpha}_{\boldsymbol{\nu}}(\mathcal{A},T) = o(T^{\beta})$ for any $\beta > 0$ and $\nu \in \mathcal{F}$. Then for any $\nu \in \mathcal{D}$, for any sub-optimal arm k, under the strategy \mathcal{A} it holds that

$$\lim_{T\to+\infty}\frac{\mathbb{E}_{\nu}[N_k(T)]}{\log T}\geqslant \frac{1}{\mathcal{K}_{\inf}^{\alpha,\mathcal{F}_k}(\nu_k,c^*)},$$

where $c^* = \max_{i \in [K]} \text{CVaR}_{\alpha}(\nu_i)$.

SOME TOOLS

hd One can rewrite the CVaR in terms of the CDF $F(x) = \mathbb{P}(X \leqslant x)$.

$$ext{CVaR}_{lpha}(
u) = rac{1}{lpha} \int g_{lpha}(F_{
u}(x))) dx$$

for some monotonic function g_{α} . Also, it holds

$$|\mathtt{CVaR}_{lpha}(
u) - \mathtt{CVaR}_{lpha}(
u')| \leqslant rac{1}{lpha} \| extstyle F_{
u} - extstyle F_{
u'} \|_{\infty}$$

▶ Main tool is Massart's version of Dvoretzky-Kiefer-Wolfowitz (DKW) inequality:

$$\forall \delta_0 \in [0, 0.5) \quad \mathbb{P}\bigg(\sup_{x \in \mathbb{R}} F_{\nu}(x) - F_n(x) > \sqrt{\frac{\ln(1/\delta_0)}{2n}}\bigg) \leqslant \delta_0.$$

where F_n is empirical CDF.

- Novel bandit strategy for Conditional Value at Risk (CVaR)
- Provably optimal (regret bound matches lower bound).
- > Based on novel statistical estimation tools. Performance (blue) against Sota:

BANDIT STRATEGY FOR RISK AVERSION

- Novel bandit strategy for Conditional Value at Risk (CVaR)
- Provably optimal (regret bound matches lower bound).
- Based on novel statistical estimation tools. Performance (blue) against Sota:

BANDIT STRATEGY FOR RISK AVERSION

- Novel bandit strategy for Conditional Value at Risk (CVaR)
- Provably optimal (regret bound matches lower bound).
- > Based on novel statistical estimation tools. Performance (blue) against Sota:

Table of Contents

MOTIVATION

AGGREGATION OF EXPERTS

From full to partial information

GAMES

RISK-AVERSION
Conditional Value At Risk

BIG/SMALL RANDOM VARIABLE

We want to control how big/small can a random variable be

$$\mathbb{P}\Big[X\geqslant\ldots\Big]\leqslant\delta\tag{2}$$

$$\mathbb{P}\Big[X\leqslant\ldots\Big]\leqslant\delta\tag{3}$$

▶ Quantiles, expectiles, expected shortfall, value at risk.

BIG/SMALL RANDOM VARIABLE

We want to control how big/small can a random variable be

$$\mathbb{P}\left[X \geqslant \inf_{\lambda > 0} \left\{ \frac{1}{\lambda} \log \mathbb{E} \exp(\lambda X) + \frac{\log(1/\delta)}{\lambda} \right\} \right] \leqslant \delta \tag{4}$$

$$\mathbb{P}\left[X \leqslant \sup_{\lambda > 0} \left\{ -\frac{1}{\lambda} \log \mathbb{E} \exp(-\lambda X) - \frac{\log(1/\delta)}{\lambda} \right\} \right] \leqslant \delta \tag{5}$$

(by Markov's inequality, whenever $\log \mathbb{E} \exp$ is defined near 0)

For all $\lambda > 0$,

$$\begin{split} \mathbb{P}[X \geqslant \varepsilon] &= \mathbb{P}[\exp(\lambda X) \geqslant \exp(\lambda \varepsilon)] \\ &\leqslant \mathbb{E}[\exp(\lambda X)] \exp(-\lambda \varepsilon) \\ &= \exp\left(-\lambda \left(\varepsilon - \frac{1}{\lambda} \log \mathbb{E} \exp(\lambda X)\right)\right) \end{split}$$

For $arepsilon=rac{1}{\lambda}\log\mathbb{E}\exp(\lambda X)+rac{\log(1/\delta)}{\lambda}$, we get

$$\mathbb{P}\Big[X\geqslant rac{1}{\lambda}\log\mathbb{E}\exp(\lambda X)+rac{\log(1/\delta)}{\lambda}\Big]\leqslant rac{\pmb{\delta}}{\pmb{\delta}}\,.$$

$$\kappa_{\lambda,\nu} \stackrel{\text{def}}{=} \frac{1}{\lambda} \log \mathbb{E}_{\nu} \exp\left(\lambda X\right), \tag{6}$$

$$\kappa_{\lambda,\nu} \stackrel{\text{def}}{=} \frac{1}{\lambda} \log \mathbb{E}_{\nu} \exp(\lambda X),$$
(6)

more then one century year old,

$$\kappa_{\lambda,\nu} \stackrel{\text{def}}{=} \frac{1}{\lambda} \log \mathbb{E}_{\nu} \exp(\lambda X),$$
(6)

- more then one century year old,
- ▶ at the heart of many key-results and tools in statistical theory (Cramer-Chernoff method, Chernoff transform, log-Laplace transform)

$$\kappa_{\lambda,\nu} \stackrel{\text{def}}{=} \frac{1}{\lambda} \log \mathbb{E}_{\nu} \exp(\lambda X),$$
(6)

- more then one century year old,
- ▶ at the heart of many key-results and tools in statistical theory (Cramer-Chernoff method, Chernoff transform, log-Laplace transform)
- $ightharpoonup \kappa_{-\lambda,\nu}$ is a key quantity to control the **probability that** X is small.

EXAMPLE: GAUSSIAN DISTRIBUTIONS.

▶ Let $\{Z_k\}_{k=1,...,t}$ i.i.d. from $\mathcal{N}(\mu, \sigma^2)$.

Example: Gaussian distributions.

- ▶ Let $\{Z_k\}_{k=1,...,t}$ i.i.d. from $\mathcal{N}(\mu, \sigma^2)$.
- Let $X = \sum_{k=1}^t Z_k$ (thus $\mathcal{N}(\mu t, \sigma^2 t)$).

EXAMPLE: GAUSSIAN DISTRIBUTIONS.

- ▶ Let $\{Z_k\}_{k=1,...,t}$ i.i.d. from $\mathcal{N}(\mu, \sigma^2)$.
- ▶ Let $X = \sum_{k=1}^{t} Z_k$ (thus $\mathcal{N}(\mu t, \sigma^2 t)$).
- ▶ We recover in the Gaussian case the mean-variance

$$\kappa_{-\lambda,\nu} = \mu t - \frac{\lambda \sigma^2 t}{2}$$

EXAMPLE: GAUSSIAN DISTRIBUTIONS.

- ▶ Let $\{Z_k\}_{k=1,...,t}$ i.i.d. from $\mathcal{N}(\mu,\sigma^2)$.
- Let $X = \sum_{k=1}^{t} Z_k$ (thus $\mathcal{N}(\mu t, \sigma^2 t)$).
- ▶ We recover in the Gaussian case the mean-variance

$$\kappa_{-\lambda,\nu} = \mu t - \frac{\lambda \sigma^2 t}{2}$$

 $\lambda = \sqrt{\frac{2\log(1/\delta)}{\sigma^2 t}}$ optimizes (4) and (5) and gives the familiar

$$\mathbb{P}\left(\frac{1}{t}\sum_{k=1}^{t} Z_k - \mu \geqslant \sigma \sqrt{\frac{2\log(1/\delta)}{t}}\right) \leqslant \delta$$

$$\mathbb{P}\left(\mu - \frac{1}{t} \sum_{k=1}^{t} Z_{k} \geqslant \sigma \sqrt{\frac{2 \log(1/\delta)}{t}}\right) \leqslant \delta.$$

Tails and Mixability gaps

We introduce the mixability gaps (always non negative):

$$m_{\lambda,
u}^+ = \kappa_{\lambda,
u} - \mathbb{E}_
u ig[X ig] ext{ and } m_{\lambda,
u}^- = \mathbb{E}_
u ig[X ig] - \kappa_{-\lambda,
u} \,.$$

Tails and Mixability gaps

We introduce the mixability gaps (always non negative):

$$m_{\lambda,
u}^+ = \kappa_{\lambda,
u} - \mathbb{E}_
u ig[X ig] ext{ and } m_{\lambda,
u}^- = \mathbb{E}_
u ig[X ig] - \kappa_{-\lambda,
u} \,.$$

▶ Now equations (4) and (5) rewrite more compactly as

$$\mathbb{P}\Big[X - \mathbb{E}_
u\Big[X\Big] \geqslant \inf_{\lambda > 0} \Big\{m_{\lambda,
u}^+ + rac{\log(1/\delta)}{\lambda}\Big\}\Big] \leqslant \delta\,,$$

$$\mathbb{P}\left[\mathbb{E}_{\nu}\left[X\right] - X \geqslant \inf_{\lambda > 0} \left\{m_{\lambda,\nu}^{-} + \frac{\log(1/\delta)}{\lambda}\right\}\right] \leqslant \delta. \tag{8}$$

(7)

Properties of $\kappa_{-\lambda,\nu}$

Entropic Value At Risk

▶ Control of the upper/lower tails involves $\kappa_{\lambda,\nu}/\kappa_{-\lambda,\nu}$.

PROPERTIES OF $\kappa_{-\lambda,\nu}$

- ► Control of the upper/lower tails involves $\kappa_{\lambda,\nu}/\kappa_{-\lambda,\nu}$.
- Coincides with mean-variance for Gaussian.

PROPERTIES OF $\kappa_{-\lambda,\nu}$

- ► Control of the upper/lower tails involves $\kappa_{\lambda,\nu}/\kappa_{-\lambda,\nu}$.
- Coincides with mean-variance for Gaussian.
- Coherence.

Properties of $\kappa_{-\lambda,\nu}$

- ► Control of the upper/lower tails involves $\kappa_{\lambda,\nu}/\kappa_{-\lambda,\nu}$.
- Coincides with mean-variance for Gaussian.
- Coherence.
- General interpretation as penalty

$$\kappa_{-\lambda,\nu} = \inf_{\nu' \in \mathcal{M}(\mathbb{R})} \left\{ \mathbb{E}_{\nu'}(X) + \frac{1}{\lambda} \text{KL}(\nu'||\nu) \right\} \leqslant \mathbb{E}_{\nu}[X]. \tag{9}$$

Properties of $\kappa_{-\lambda,\nu}$

Entropic Value At Risk

- ► Control of the upper/lower tails involves $\kappa_{\lambda,\nu}/\kappa_{-\lambda,\nu}$.
- Coincides with mean-variance for Gaussian.
- Coherence.
- General interpretation as penalty

$$\kappa_{-\lambda,\nu} = \inf_{\nu' \in \mathcal{M}(\mathbb{R})} \left\{ \mathbb{E}_{\nu'}(X) + \frac{1}{\lambda} \text{KL}(\nu'||\nu) \right\} \leqslant \mathbb{E}_{\nu}[X]. \tag{9}$$

Natural measure of risk-aversion.

RISK-AVERSE MULTI-ARMED BANDIT

Setting: Unknown real-valued distributions $\{\nu_a\}_{a=1,\dots,A}$. At each t, we choose $A_t \in \{1,\dots,A\}$, receive reward $Y_t \sim \nu_{A_t}$.

The expected regret $\overline{\mathcal{R}}_T$ gives no information on the risk of the strategy and of pulling one arm (no control on the tails):

$$\overline{\mathcal{R}}_{\mathcal{T}} = \sum_{\mathbf{a}' \in \mathcal{A}} \left(\max_{\mathbf{a} \in \mathcal{A}} \mathbb{E}_{\nu_{\mathbf{a}}}[X] - \mathbb{E}_{\nu_{\mathbf{a}'}}[X] \right) \mathbb{E} \left[N_{\mathcal{T}, \mathbf{a}'} \right],$$

where
$$N_{T,a'} = \sum_{t=1}^{A} \mathbb{I}\{A_t = a'\}.$$

Best risk-averse arm

We are given some λ .

We define the optimal arm a^* as the one maximizing the risk aversion at level λ

$$a^* \in \operatorname*{argmax}_{a=1,\ldots,A} \kappa_{-\lambda,\nu_{a^*}}.$$

Example: For $\mathcal{N}(\mu, \sigma^2)$ distributions $\kappa_{-\lambda, \nu_{a^*}} = \mu_a - \frac{\lambda \sigma_a^2}{2}$. In general it holds $\kappa_{-\lambda, \nu_{a^*}} \leqslant \mathbb{E}_{\nu_a}[X]$.

EMPIRICAL AND RISK-AVERSE REGRET.

The empirical regret $\mathcal{R}_{\mathcal{T}}(\lambda)$ of π with respect to the strategy \star that constantly pulls arm a^{\star} is:

$$\mathcal{R}_{\mathcal{T}}(\lambda) \stackrel{\text{def}}{=} \sum_{i=1}^{T} X_{i,a^{\star}} - \sum_{a=1}^{A} \sum_{i=1}^{N_{T,a}^{a}} X_{i,a}, \qquad (10)$$

where $X_{i,a}$ denotes the i^{th} (i.i.d) sample from arm a.

EMPIRICAL AND RISK-AVERSE REGRET.

► The empirical regret $\mathcal{R}_T(\lambda)$ of π with respect to the strategy \star that constantly pulls arm a^{\star} is:

$$\mathcal{R}_{\mathcal{T}}(\lambda) \stackrel{\text{def}}{=} \sum_{i=1}^{\mathcal{T}} X_{i,a^*} - \sum_{a=1}^{A} \sum_{i=1}^{N_{\mathcal{T},a}^a} X_{i,a}, \qquad (10)$$

where $X_{i,a}$ denotes the i^{th} (i.i.d) sample from arm a.

▶ The risk-averse regret $\overline{\mathcal{R}}_T(\lambda)$ is defined by

$$\overline{\mathcal{R}}_{T}(\lambda) = \sum_{a \in \mathcal{A}} \left(\kappa_{-\lambda, \nu_{a^{\star}}} - \kappa_{-\lambda, \nu_{a}} \right) \mathbb{E} \left[N_{T, a} \right]$$

$$= \sum_{a \in \mathcal{A}} \Delta_{a} \mathbb{E} \left[N_{T, a} \right]$$
(11)

EMPIRICAL AND RISK-AVERSE REGRET.

► The empirical regret $\mathcal{R}_T(\lambda)$ of π with respect to the strategy \star that constantly pulls arm a^{\star} is:

$$\mathcal{R}_{\mathcal{T}}(\lambda) \stackrel{\text{def}}{=} \sum_{i=1}^{\mathcal{T}} X_{i,a^{\star}} - \sum_{a=1}^{\mathcal{A}} \sum_{i=1}^{N_{\mathcal{T},a}^{\circ}} X_{i,a}, \qquad (10)$$

where $X_{i,a}$ denotes the i^{th} (i.i.d) sample from arm a.

▶ The risk-averse regret $\overline{\mathcal{R}}_T(\lambda)$ is defined by

$$\overline{\mathcal{R}}_{T}(\lambda) = \sum_{a \in \mathcal{A}} \left(\kappa_{-\lambda, \nu_{a^{*}}} - \kappa_{-\lambda, \nu_{a}} \right) \mathbb{E} \left[N_{T, a} \right]$$

$$= \sum_{a \in \mathcal{A}} \Delta_{\mathbf{a}} \mathbb{E} \left[N_{T, a} \right]$$
(11)

► We study both (10) and (12) since they offer interesting and easy interpretations.

THE PRICE FOR RISK-AVERSION

Tradeoff between being risk-averse versus targeting high reward:

THE PRICE FOR RISK-AVERSION

Tradeoff between being risk-averse versus targeting high reward:

► If "not enough" risk-averse (protect against light lower tails only but arms have fat lower tails),

⇒ we may get high-regret.

THE PRICE FOR RISK-AVERSION

Tradeoff between being risk-averse versus targeting high reward:

- ► If "not enough" risk-averse (protect against light lower tails only but arms have fat lower tails),
 - ⇒ we may get high-regret.
- ► If "too much" risk-averse (protect against fat lower tails but all arms have light lower tails),
 - \implies a less cautious algorithm can (e.g. UCB) get better rewards.

 λ defines the **risk-aversion** of the problem, irrespectively of the actual distributions of the environment.

If we design an optimal algorithm for risk-averse level λ ,

➤ Some environments will be "simpler" (a less risk-averse algorithm, e.g. UCB, gets better rewards),

 λ defines the **risk-aversion** of the problem, irrespectively of the actual distributions of the environment.

If we design an optimal algorithm for risk-averse level λ ,

- ➤ Some environments will be "simpler" (a less risk-averse algorithm, e.g. UCB, gets better rewards),
- ▶ Others will be "harder" (a more risk-averse algorithm, e.g. Exp3, gets better rewards).

 λ defines the **risk-aversion** of the problem, irrespectively of the actual distributions of the environment.

If we design an optimal algorithm for risk-averse level λ ,

- ➤ Some environments will be "simpler" (a less risk-averse algorithm, e.g. UCB, gets better rewards),
- ▶ Others will be "harder" (a more risk-averse algorithm, e.g. Exp3, gets better rewards).

 λ defines the **risk-aversion** of the problem, irrespectively of the actual distributions of the environment.

If we design an optimal algorithm for risk-averse level λ ,

- ➤ Some environments will be "simpler" (a less risk-averse algorithm, e.g. UCB, gets better rewards),
- ▶ Others will be "harder" (a more risk-averse algorithm, e.g. Exp3, gets better rewards).

We want to defeat e.g. not-enough cautious algorithms in hard environments.

STRATEGY AND RESULTS

Risk-aversion for a fixed λ (often justified in practical applications).

- Decompose empirical regret with number of pulls of sub-optimal arms (allows robust analysis).
- Introduce RAUCB for risk-aversion.
- Get numerically efficient dual formulation.
- Ontrol both risk-averse and empirical regret.

1. Empirical regret decomposition

Theorem (Generic decomposition of the empirical regret)

Let the event that strategy π does not pull sub-optimal arms too often be (for some non-negative constants $\{u_a\}_{a=1,...,A}$):

$$\Omega \stackrel{\mathrm{def}}{=} \Big\{ \exists a \neq a^{\star} : N_{T,a} > u_a \Big\}.$$

For all $\delta \in (0,1)$, with probability higher than $1-\delta-\mathbb{P}(\Omega)$, the empirical regret of π is upper bounded by

$$\mathcal{R}_{\mathcal{T}}(\lambda) \leqslant \sum_{a \neq a^*} \Delta_a u_a + \left(\dots \mathbf{m}_{\lambda, \nu_{a^*}}^- + \frac{\dots}{\lambda} \right) + \inf_{\lambda' > \mathbf{0}} \left\{ \dots \mathbf{m}_{\lambda', \nu_{a^*}}^+ + \frac{\dots}{\lambda'} \right\}.$$

- First term: essentially risk-averse regret.
- Other terms: tails.

2. Risk-averse algorithm: RAUCB

 \triangleright Consider all rewards are upper bounded by B (known).

2. RISK-AVERSE ALGORITHM: RAUCB

- Consider all rewards are upper bounded by *B* (known).
- ▶ RAUCB selects at time t + 1 arm $A_{t+1} = \operatorname{argmax}_{a \in \mathcal{A}} U_t(a)$,

2. Risk-averse algorithm: Raucb

- Consider all rewards are upper bounded by B (known).
- ▶ RAUCB selects at time t+1 arm $A_{t+1} = \operatorname{argmax}_{a \in \mathcal{A}} U_t(a)$, where $U_t(a)$ is an **upper confidence bound** on the risk aversion of arm a at level λ , defined by

$$U_t(a) \stackrel{\mathsf{def}}{=} \sup_{\nu \in \mathcal{P}(\mathbb{R}_B)} \left\{ \kappa_{-\boldsymbol{\lambda},\nu} \, : \, \mathbf{K}(\widehat{\nu}_{\mathsf{t}}(\mathbf{a}), \kappa_{-\boldsymbol{\lambda},\nu}) \leqslant \frac{f(t)}{N_{t,a}} \right\},\,$$

2. Risk-averse algorithm: RAUCB

- Consider all rewards are upper bounded by B (known).
- ▶ RAUCB selects at time t+1 arm $A_{t+1} = \operatorname{argmax}_{a \in \mathcal{A}} U_t(a)$, where $U_t(a)$ is an **upper confidence bound** on the risk aversion of arm a at level λ , defined by

$$U_t(a) \stackrel{\mathsf{def}}{=} \sup_{\nu \in \mathcal{P}(\mathbb{R}_B)} \left\{ \kappa_{-\boldsymbol{\lambda},\nu} \, : \, \mathbf{K}(\widehat{\nu}_{\mathsf{t}}(\mathbf{a}), \kappa_{-\boldsymbol{\lambda},\nu}) \leqslant \frac{f(t)}{N_{t,a}} \right\},\,$$

with parameter $f(t) \simeq \log(t)$ and where we introduced

$$\mathrm{K}(\widehat{\nu}_{\mathsf{t}}(\mathbf{a}), r) \stackrel{\mathrm{def}}{=} \inf_{\nu \in \mathcal{M}(\mathbb{R}_B)} \left\{ \mathrm{KL}(\widehat{\nu}_{\mathsf{t}}(\mathbf{a}) || \nu) : \kappa_{-\lambda, \nu} \geqslant r \right\}.$$

2. RISK-AVERSE ALGORITHM: RAUCB

- Consider all rewards are upper bounded by B (known).
- ▶ RAUCB selects at time t+1 arm $A_{t+1} = \operatorname{argmax}_{a \in \mathcal{A}} U_t(a)$, where $U_t(a)$ is an **upper confidence bound** on the risk aversion of arm a at level λ , defined by

$$U_t(a) \stackrel{\mathsf{def}}{=} \sup_{\nu \in \mathcal{P}(\mathbb{R}_B)} \left\{ \kappa_{-\boldsymbol{\lambda},\nu} \, : \, \mathbf{K}(\widehat{\nu}_{\mathsf{t}}(\mathbf{a}), \kappa_{-\boldsymbol{\lambda},\nu}) \leqslant \frac{f(t)}{N_{t,a}} \right\},\,$$

with parameter $f(t) \simeq \log(t)$ and where we introduced

$$\mathrm{K}(\widehat{\nu}_{\mathsf{t}}(\mathbf{a}),r) \stackrel{\mathrm{def}}{=} \inf_{\nu \in \mathcal{M}(\mathbb{R}_B)} \left\{ \mathrm{KL}(\widehat{\nu}_{\mathsf{t}}(a)||\nu) : \kappa_{-\lambda,\nu} \geqslant r \right\}.$$

▶ Note 1: Using mean-based confidence bounds is useless here.

2. Risk-averse algorithm: Raucb

- Consider all rewards are upper bounded by B (known).
- ▶ RAUCB selects at time t+1 arm $A_{t+1} = \operatorname{argmax}_{a \in \mathcal{A}} U_t(a)$, where $U_t(a)$ is an **upper confidence bound** on the risk aversion of arm a at level λ , defined by

$$U_t(a) \stackrel{\mathsf{def}}{=} \sup_{\nu \in \mathcal{P}(\mathbb{R}_B)} \left\{ \kappa_{-\boldsymbol{\lambda},\nu} \, : \, \mathbf{K}(\widehat{\nu}_{\mathsf{t}}(\mathbf{a}), \kappa_{-\boldsymbol{\lambda},\nu}) \leqslant \frac{f(t)}{N_{t,a}} \right\},\,$$

with parameter $f(t) \simeq \log(t)$ and where we introduced

$$\mathrm{K}(\widehat{\nu}_{\mathsf{t}}(\mathbf{a}), r) \stackrel{\mathrm{def}}{=} \inf_{\nu \in \mathcal{M}(\mathbb{R}_B)} \left\{ \mathrm{KL}(\widehat{\nu}_{\mathsf{t}}(\mathbf{a}) || \nu) : \kappa_{-\lambda, \nu} \geqslant r \right\}.$$

- Note 1: Using mean-based confidence bounds is useless here.
- Note 2: Similarly to bandits, we do not need to estimate $\kappa_{-\lambda,\nu_a}$ (+ it would too loose here).

3. Computing the bound

 $\mathbf{K}(\widehat{\nu}_t(a),r)$ and then $U_t(a)$ can be solved numerically (deeply linked to numerically efficient dual formulation considered for standard MAB, e.g. Borwein-Lewis, 91, Harari-Kermadec, 06):

Lemma (Dual formulation)

Let $\widehat{\nu}_n$ be an empirical distribution built with n atoms $\{x_i\}_{1\leqslant i\leqslant n}$. Then the following dual formulation holds

$$\mathbf{K}(\widehat{\nu}_n, r) = \max_{0 \leqslant \gamma^* \leqslant \frac{\lambda}{1 - e^{-\lambda(B-r)}}} \left\{ \frac{1}{n} \sum_{i=1}^n \log \left(1 - \frac{\gamma^*}{\lambda} \left(1 - e^{-\lambda(x_i - r)} \right) \right) \right\}.$$

4. Regret guarantee (see full result in the paper)

Theorem (Regret of RAUCB)

The expected regret of RAUCB (for suitable f), is bounded by

$$\overline{\mathcal{R}}_{\mathcal{T}}(\lambda) \leqslant 5 \sum_{a \neq a^{\star}} \frac{(1 + \varepsilon_{a})\Delta_{a}}{\mathbf{K}_{a}} \log (\mathcal{T}) + O(1).$$

The empirical regret of RAUCB is bounded with high probability, for sub-Gaussians distributions of rewards (includes bounded as special case) and risk-aversion $\lambda = \Theta(\log(T)^{-1/2})$ as

$$\mathcal{R}_{\mathcal{T}}(\lambda) \leqslant 5 \sum_{a \neq a^{\star}} \frac{(1 + \varepsilon_{a})\Delta_{a}}{\mathbf{K}_{a}} \log(T) + O(\sqrt{\log(T)}).$$

COMMENTS ABOUT THE RESULT

RAUCB tuned with known horizon T (not anytime).

COMMENTS ABOUT THE RESULT

- ▶ RAUCB tuned with **known horizon** *T* (not anytime).
- ► Ratio $\frac{\Delta_a}{K_a} \log(T)$ similar to best known bounds for the expected regret Burnetas-Katehakis, 96; Cappe et al., 2013,

COMMENTS ABOUT THE RESULT

- ▶ RAUCB tuned with **known horizon** *T* (not anytime).
- ► Ratio $\frac{\Delta_a}{K_a} \log(T)$ similar to best known bounds for the expected regret Burnetas-Katehakis, 96; Cappe et al. 2013,
- ▶ Choice of λ not too critical: still get $O(\log(T))$ for any λ not depending on T.

FURTHER REFERENCES

- ➤ Sani, A., Lazaric, A., Munos, R. *Risk-aversion in multi-armed bandits*. In NIPS 2012 (pp. 3275-3283).
- ► Maillard, O-A. *Robust risk-averse stochastic multi-armed bandits* ICML 2013. Springer, Berlin, Heidelberg.
- ► Galichet, N. PhD. Thesis, Torossian L., PhD. Thesis : Several risk measures (quantiles, expectiles, etc.)
- ▶ Baudry, Dorian, et al. *Optimal Thompson Sampling strategies for support-aware CVaR bandits.* International Conference on Machine Learning, 2021.

TABLE OF CONTENTS

MOTIVATION

AGGREGATION OF EXPERTS

FROM FULL TO PARTIAL INFORMATION

GAMES

RISK-AVERSION

ROBUST LEARNING

ROBUST PLANNING

Slides Edouard:

https://eleurent.github.io/robust-beyond-quadratic/paper/oral

SELF-CHECK

- Full information vs Partial information (Bandit, semi-bandit)
- Dijectives: Best model vs Best combination of losses vs Best combination of models vs Best sequence
- Convex losses
- ▶ Exponential weights, Hedge strategy
- Self-information loss
- ▶ Exp-concavity, mixability
- Entropy formula
- Bregman agggregation
- Fixed-share strategy
- Markov-Hedge
- Mixing past posteriors
- ▶ Exp3, Importance sampling, Exp3-P, Exp3-IX, Exp4
- Tsallis entropy
- Nash equilibria, Hannan consistency
- ▶ Conditional value at risk, mixability gap
- ▶ Robust learning

"The more applied you go, the stronger theory you need"

MERCI

odalricambrym.maillard@inria.fr odalricambrymmaillard.wordpress.com

