ESI 5247 – Engineering Experiments Spring 2014

Course Information

Class Meeting Time: Monday, Wednesday 3:45pm -5:00pm

Class Meeting Place: COE – A125.

Contact Information

Instructor: Dr. Arda Vanli

Office: COE A252 Tel: 410-6354 Email: <u>oavanli@eng.fsu.edu</u>

Office Hours: Tuesday, Thursday 1:30pm-3:00pm, or by appointment

Course Objectives and Outcomes

The objective of the course is to provide an understanding of the methods for designing experiments and analyzing data. The course deals with the types of experiments that are frequently conducted in engineering and industrial systems to improve performance. The goal is for you to learn how to plan and conduct experiments effectively and learn how to analyze the resulting data to obtain statistically valid conclusions. At the end of the course the students will be able to design and analyze multifactor experiments for improving performance of engineering systems using statistical software.

Textbook

Design and Analysis of Experiments (8th edition), by D.C. Montgomery, John Wiley & Sons, New York (2012), ISBN-13: 978-1118146927

Course Prerequisites

- 1. EGN 3443: Statistical Topics in Industrial Engineering. Equivalent courses on statistical methods only with approval of the instructor.
- 2. A mathematics course involving matrix and vector algebra.

Blackboard Web Site

Students must check the course's Blackboard site (accessible through campus.fsu.edu) regularly for assignments, announcements as well as other important timely information.

Grading Policy:

Project

Your course grade is based on two midterms, one final exam, homework assignments and project. The weights of these components in your final grade will be as follows:

: 15%

Midterm Exam I : 20%
 Midterm Exam II : 25%
 Final Exam : 25%
 Homework : 15%

Grading Scale:

The grades will be based on the following scale:

90 - 100 : A
 80 - 89 : B
 70 - 79 : C
 60 - 69 : D
 0 - 59 : F

Midterm Exam and Final Exam

Three in-class exams will be given. The exams will be closed-books and closed-notes but you will be allowed to bring one page typed or hand written (both sides) formula sheet to the exam. The topic coverage of the exams will be announced during the semester. Tentative dates of the exams are as follows:

Midterm I : Feb 3, 2014
 Midterm II : Mar 5, 2014
 Final : April 16, 2014

Homework

Homework problems will be assigned from the textbook or other texts. Use of statistical software and computer programming may be required to complete assignments. Homework is to be done individually (group work is not acceptable). Homework assignments are due at the start of the class on the assigned date. No late submissions will be accepted.

Project

A project that consists of planning, conducting and analyzing an experiment using design of experiments techniques will be assigned. You will submit a typed report (8 pages maximum) summarizing your objectives, experiments, analyses and main results.

Software Use

Use of statistical computer packages Minitab, Design Expert and MATLAB programming language is encouraged for statistical analyses in homework assignments and project. A 45-day free trial version of Design Expert is available for download at www.statease.com. These software packages are also available in the COE computer labs.

Topics

- Basic statistical concepts (Ch 2)
- Experiments with a single factor (Ch 3)
- Randomized block and Latin square designs (Ch 4)
- Introduction to Factorial Experiments (Ch 5)
- 2^k factorial designs (Ch 6)
- Blocking and Confounding in the 2^k factorial design (Ch 7)
- 2^{k-p} fractional factorial designs(Ch 8)
- Response surface methods (Ch 11)
- Experiments with random factors (Ch 13)
- Nested and Split-Plot designs (Ch 14)

Make-up Exam Policy:

Make-up, late or early exams will be given only if the student obtains **prior** approval from the instructor. Approvals for make-up exams will only be granted for medical and family emergencies. If a make-up examination is not granted, you will receive a **score of zero (0)** for the exam that you missed.

Academic Honor Code:

Students are expected to uphold the Academic Honor Code published in The Florida State University Bulletin and the Student Handbook. The Academic Honor System of The Florida State University is based on the premise that each student has the responsibility (1) to uphold the highest standards of academic integrity in the student's own work, (2) to refuse to tolerate violations of academic integrity in the university community, and (3) to foster a high sense of integrity and social responsibility on the part of the university community.

Americans with Disabilities Act:

Students with disabilities needing academic accommodation should:

- 1. Register with and provide documentation to the appropriate university office. For FAMU students this is the Center for Disability Access and Resources (CeDAR). For FSU students this is the Student Disability Resource Center (SDRC); and
- 2. Bring a letter to the instructor indicating the need for accommodation and what type. This should be done during the first week of class.

For more information about services available to students with disabilities:

FAMU students should contact:

Center for Disability Access and Resources

FSU students should contact:

Student Disability Resource Center

Phone: (850)599-3180 Phone: (850) 644-9566 E-mail: cedar@famu.edu E-mail: sdrc@fsu.edu

This syllabus and other class materials are available in alternative format upon request.

Syllabus Change Policy:

Except for changes that substantially affect implementation of the grading policy or grading scale, this syllabus is a guide for the course and subject to change with advance notice.

ESI 5247 - Engineering Experiments - Outline - Spring 2014

Cl	Dete	Transis	Day Bara	Lauria Olivatia	Assignment
Class	Date	Topic	Reading	Learning Objectives - Basic Principles and	Due
				applications for designing	
				experiments	
1	6-Jan	Introduction to DOE.	1.1-1.3		
				- Use of probability	
				distributions and expectation and variance operators	
				- Random sampling and	
		Simple Comparative	2.1, 2.2,	sampling distributions:	
2	8-Jan	Experiments	2.3	Normal, t, Chi2, F	
				- Hypothesis testing and confidence intervals to make	
				inference on differences in	
		Simple Comparative	2.4.1,	means	
3	13-Jan	Experiments	2.4.2, 2.5	- Paired comparison problem	
				- Fixed effects model for	
		Experiments with a	3.1, 3.2,	single factor experiments - ANOVA to compare	
4	15-Jan	single factor	3.1, 3.2,	treatments of the factor	HW 1 - Ch 2
		333-623 333 33			
		Mortin Luther Vine			
5	20-Jan	Martin Luther King, Jr. Day. No Classes.			
	20 5411	vi. Buj. 1 (o Glasses.		- Checking adequacy of	
				model assumptions	
		T	2425	- Comparing pairs of	
6	22-Jan	Experiments with a single factor	3.4, 3.5, 3.7	treatment means: contrasts, Fisher LSD method	
	22-Jan	single factor	3.7	- Use of blocking to eliminate	
				effects of a nuisance factor	
				- Statistical analysis of the	
			4 1 1	RCBD	
		Randomized Blocks,	4.1.1, 4.1.2,	- Use of Latin square designs to block against two nuisance	
7	27-Jan	Latin Squares	4.1.4, 4.2	factors	
					HW 2 - Ch
8	29-Jan	Exam Review			3,4
9	3-Feb	Midterm Exam I			
				- Analysis of multiple factor	
		Introduction to	5152	experiments Understand the concept of	
10	5-Feb			•	
10	5-Feb	Introduction to factorial design.	5.1,5.2, 5.3.1,5.3.2	- Understand the concept of interaction between factors	

	T	T	T	T	,
				- Model with no interaction	
				and single replicate	
		Introduction to	5.3.3,5.3.6,	- Modeling three or more	
11	10-Feb	factorial design.	5.3.7, 5.4	factors	
-			,	- Use of two-level	
				experimental designs for	
				factor screening	
12	12-Feb	2 ^k factorial designs	6.1., 6.2	- Two factor designs	
12	12-1700	2 K factorial designs	0.1., 0.2	Ü	
				- Three factor designs	
				- General 2 ^k design for four	
				or more factors	
			6.3, 6.4,	- Experiments with single	
13	17-Feb	2 ^k factorial designs	6.5	replicate	
				- Examples usign Design	
				Expert	
				- Add center points to assess	
				curvature	
			6.6., 6.8,	- Importance of coded design	HW 3- Ch 5,
14	19-Feb	2 ^k factorial designs	6.9	variables	6
	17-100	2 K factorial designs	0.7	variables	
				- Response surface models.	
		Response surface		- Process optimization with	
15	24-Feb	Methods	11 1 11 2		
13	24-160	Methods	11.1,11.2	steepest ascent	
				- Analysis of second order	
				models.	
		Response surface		- Experimental designs for	
16	26-Feb	Methods	11.3,11.4	response surfaces	
4.	0.3.6				*****
_17	3-Mar	Exam Review			HW 4 - Ch 11
4.0					
18	5-Mar	Midterm Exam II			
19	10-Mar	Spring break			
• •	10.34				
20	12-Mar	Spring break			
				- Blocking in replicated	
				factorial design	
				- Confounding when	
				blocking is used for	
		Blocking and		unreplicated design	
		Confounding in 2 ^k		- Confounding with four or	
21	17-Mar	factorial	7.1-7.7	more blocks	
	1 / 1/141	1	1 / 1 / 1 / 1 / 1	more brooms	

				- Use of fractionated designs	
				for large number of variables. Definition of design	
22	10.34	2^k-p fractional	0.1.0.2	resolution. Analysis of one-	
	19-Mar	factorial designs	8.1,8.2	half fraction design	
				- General fractional	
		2^k-p fractional		factorials. Generalized	
23	24-Mar	factorial designs	8.3, 8.4	interaction	
				- Resolution III designs, fold	
24	26-Mar	2^k-p fractional factorial designs	8.6, 8.7	over designs, Resolution IV and V designs	
		Experiments with			HW 5 - Ch
25	31-Mar	random factors	13.1, 13.2		7,8
26	2-Apr	Experiments with random factors	13.3, 13.4, 13.5		
	2 7101	Tundom factors	13.3		
		Nested and Split-Plot	14.1, 14.2,		
27	7-Apr	Designs	14.3		
28	0.455	Nested and Split-Plot Designs	14 4 14 5		HW 6- Ch 13, 14
	9-Apr	Designs	14.4, 14.5		14
29	14-Apr	Exam Review			
20	16.4	E: 1E			
30	16-Apr	Final Exam			
31	21-Apr	Project Presentations			
	•				
					Presentation
32	23-Apr	Project Presentations			files. Report.