

Graph-Based Partitioning

CSCS-FoMICS-USI Summer School on Computer Simulations in Science and Engineering

Michael Bader July 8–19, 2013

Dwarf #6 – Unstructured Grids

- 1. dense linear algebra
- 2. sparse linear algebra
- 3. spectral methods
- 4. N-body methods
- 5. structured grids
- 6. unstructured grids
- Monte Carlo

Unstructured Grids – Characterisation

- (almost) no restrictions on grid generation, maximum flexibilty
- explicit storage of basic geometric and topological information → usually complicated data structures

Partitioning Unstructured Grids

Partitioning problem:

- divide grid into K partitions
- with uniform computational load
 - → usually: partitions of equal size
- with minimal communication effort
 - → minimise number of grid cells at partition boundaries

Graph-Based Partitioning

Graph-Representation of Grids:

- "standard" graph (V, E) for a grid:
 V = grid vertices, E = set of all grid cell edges
- vs. "dual" graph (V', E'):
 V' = grid cells, E' = tuples of adjacent grid cells

Graph-Based Partitioning

Graph-Representation of Grids:

- "standard" graph (V, E) for a grid:
 V = grid vertices, E = set of all grid cell edges
- vs. "dual" graph (V', E'):
 V' = grid cells, E' = tuples of adjacent grid cells

K-way Graph Partitioning

- divide V (or V') into K equal-sized partitions V_k : $\bigcup_k V_k = V, |V_k| = |V|/K, \ V_k \cap V_j = \emptyset \ (\text{if } k \neq j)$
- minimise edge cut: $\{(e, f) \in E : e \in V_k, f \notin V_k\}$
- NP-complete problem ⇒ use heuristics-based algorithms

Multilevel k-Way Partitioning

Algorithm by Karypis and Kumar (1998):

- 1. coarsening phase:
 - successively collapse sets of vertices to reduce problem size
 - conserve vertex/edge weights
- 2. partitioning phase:
 - perform K-way partitioning on a coarse graph
- 3. uncoarsening phase:
 - successively expand collapsed vertices to obtain respective partitioning of the original graph
 - postprocessing after each uncoarsening step to improve load balance

Coarsening Phase

Coarsening by Matching:

- "matching": set of edges, where no two edges share a common vertex
- "maximal" matching: a matching, where no further edges can be added (but some vertices might still be without a match)
- in contrast: "perfect" matching (matching covers all vertices)

Matching-based Coarsening:

- two vertices connected by an edge of the matching will be collapsed
- stop coarsening, if graph is small enough or matching does no longer lead to sufficient coarsening

Algorithms for Matching

Random Matching:

- · vertices are visited in random order
- an unmatched vertex u randomly selects an unmatched connected vertex v
 - \rightarrow (u, v) is added to the matching
- vertices stay unmatched, if they no longer have an unmatched neighbour
- ⇒ simple, greedy approach; however, does not consider minimisation of edge-cut

Algorithms for Matching (2)

Heavy Edge Matching:

- use weighted edges: W(e) and $W(A) := \sum_{e \in A} W(e)$
- E_{i+1} and E_i the edges of coarse/fine graph due to a matching M_i , then: $W(E_{i+1}) = W(E_i) W(M_i)$
- heuristics: use heavy edges for matching
- again: visit vertices in random order; pick edge (to unmatched vertex) with the largest edge weight
- ⇒ greedy approach, heuristics to keep edge-cut low, but does not guarantee minimisation of edge-cut

Algorithms for Matching (3)

Modified Heavy Edge Matching:

- experience: coarse graphs with low average degree (number of outgoing edges) of edges lead to partitions with lower edge-cut
- chose random vertex v → H(v) the set of adjacent edges with maximum weight
- for each $u \in H(v)$, define $W(v, u) = \sum W(e)$ for all edges e that
 - are adjacent to v, i.e. e = (v, u')
 - u' is connected to u
- determine maximum W(v, u) and pick resp. (v, u) for matching

Collapse Graph after Matching

Determine Coarse Vertices:

- matching M_i computed for (V_i, E_i)
- each $m \in M_i$ becomes a vertex of V_{i+1}
- each non-matched v ∈ V_i becomes a vertex of V_{i+1}
- weight vertices to preserve load balance info: weights are added for matched edges

Determine Coarse Edges:

- an edge between two vertices of V_{i+1} is generated, if an edge in E_i connects any of the former members
- the edge weights are added over all such connections
 → preserve edge-cut

Partitioning of the Coarse Graph

Options:

- coarsen until only k graph vertices are left?
 - → bad partitions (vertices no longer equally weighted);
 - → matching does not reduce graph size well for small partitions
- switch to multilevel recursive bisection
 - → turns out as successful choice
- Fiedler vector for partitioning (spectral methods)
 - → solve eigenvalue problem on the adjacency matrix
- geometric methods (coordinates required)
- combinatorial methods

Uncoarsening of the Graph Partitions

Backprojection:

- partitioning P_{i+1} given on coarse graph
- put vertex v of P_i to partition p ∈ P_i, if match-vertex of v belongs to p in P_{i+1}

Local Refinement:

- even, if P_i might be (locally) optimal, P_{i+1} can be improved, as more degrees of freedom are available
- approach: swap vertices between partitions to reduce edge cut (until a local minimum is reached)

Local Refinement Algorithm

- define neighbourhood N(v) for each vertex v: set of adjacent partitions
- for each vertex, compute gains for moving v into each of the partitions in N(v)
- move vertex from partition a to $b \in N(v)$, if
 - **1.** gain g(v, b) is large (largest among N(v) and
 - balancing is maintained:

$$W_i[b] + W(v) \le W_{\text{max}}$$
 and $W_i[a] - W(v) \ge W_{\text{min}}$

- greedy refinement: visit vertices at partition boundaries in random order; move to the partition with largest gain
- in addition: move vertex, if edge cut stays equal but balance is improved

Local Refinement Algorithm (2)

Determine gain of vertex:

sum up weights of edges to neighbour partition

$$\rightarrow$$
 external degree: $ED[v, b] := \sum_{u \in P_b} W(v, u)$

sum up weights of edges in the same partition

$$\rightarrow$$
 internal degree: $ID[v] := \sum_{u \in P[v]} W(v, u)$

• gain of moving v to b: g[v,b] = ED[v,b] - ID[v]

Start with dual graph:

Start with dual graph:

Random matching:

Collapse vertices and re-build adjacency graph:

(bigger discs indicated heavier vertices, i.e. multiple grid cells)

Random matching:

Collapse vertices and re-build adjacency graph:

(multiple edges between matchings lead to edge weights > 1)

Random matching:

Collapse vertices and re-build adjacency graph:

(yellow numbers indicated vertex weights)

MLkP-Example – Partitioning

Determine initial partitioning on coarsened graph:

(minimize edge-cut: do not cut 2-/3-weighted edges)

Inflate collapsed vertices:

Local improvement:

(right-most vertex moves from pink to blue partition)

Inflate collapsed vertices:

Local improvement:

(here: no vertex moves that improve edge-cut or balance)

Inflate collapsed vertices:

Local improvement:

(top-left vertex moves from green to pink partition)

MLkP-Example – Computed Partition

Partitioning obtained via (our) MLkP algorithm:

MLkP-Example – Computed Partition

Compare with optimal(?) partitioning:

Analyse: what choices lead to different partitioning?

Literature/References

- G. Karypis and V. Kumar:
 Multilevel k-way Partitioning Scheme for Irregular Graphs.
 J. Parallel Distrib. Comput. 48, 96–129 (1998).
- G. Karypis and V. Kumar:
 A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.

 SIAM J. Sci. Comput. 20(1), 269, 202 (1998)
 - SIAM J. Sci. Comput. 20(1), 369–392 (1998).