Cluster Expansion

Solvers

Results

Conclusion

Cluster Expansion of Thermal States using Tensor Networks

David Devoogdt

Faculty of Engineering and Architecture
Ghent University

June 17, 2021

Introduction

Introduction
Problem Statement

Overview Thesis

Cluster Expans

Solvers

Results

Conclusio

Overview condensed matter physics

Introduction

Problem Statement Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

- Overview condensed matter physics
- Strongly correlated materials [1]
 - Superconductors
 - Quantum spin liquids
 - Strange metals
 - Quantum Criticality
 - Correlated topological matter

Introduction

Problem Statement Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

- Overview condensed matter physics
- Strongly correlated materials
- How to proceed
 - Material synthesis and discovery
 - Numerical methods
 - Analytical methods

Simulating Quantum Many-body Systems

Introduction

Problem Statement Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

- Equations are known
- Curse of dimensionality
- Tensor networks

Tensor Networks: Introduction

uctio

Statement

Tensor Networks

Overview Thesis

Cluster Expansion

5017615

Results

$$|\Psi\rangle = \sum_{i_1 i_2 \cdots i_n} C^{i_1 i_2 \cdots i_n} |i_1\rangle \otimes |i_2\rangle \otimes \cdots \otimes |i_n\rangle. \tag{1}$$

$$C^{i_1 i_2 \cdots i_n} - Tr(C^{i_1}C^{i_2} \cdots C^{i_n}M). \tag{2}$$

$$C^{i_1i_2\cdots i_n}=Tr(C^{i_1}C^{i_2}\cdots C^{i_n}M).$$
 (2)

Tensor Networks: Graphical Notation

roduction

Problem Statement

Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

conventional	Einstein	tensor notation
\vec{x}	x_{α}	(x)—
М	$M_{lphaeta}$	<u> </u>
$\vec{x} \cdot \vec{y}$	$x_{\alpha}y_{\alpha}$	<u>x</u> — <u>y</u>

Problem Statement

Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

 ${\sf Conclusior}$

Tensor Networks: Operators

Introductio

Tensor Networks

Overview Thesis

C 1

Results

Conclusion

$$\hat{O} = \cdots \longrightarrow \cdots$$
 (5)

(6)

Operator exponential

Introduction

Problem Statement Tensor Networks

Overview Thesis

Cluster Expansion

Solvers

Results

Conclusior

- (Real) Time eveolution: $\hat{O} = e^{-i\hat{H}t}$
- Statistical ensembles: $\hat{O} = e^{-\beta \hat{H}}$

Cluster Expansion

Cluster Expansion

Cluster Expansion

$$= \exp - \beta$$

 $\bigcirc = \exp(-\beta H(\bigcirc))$

(8)

Introductio

Cluster Expansion

1D

2D

Solvers

D ---- lu--

Results

4 D > 4 B > 4 E > 4 E > 9 Q C

(9)

Cluster Expansion

←□ → ←□ → ← = → ← = → へ へ ○ 12 / 34

(9)

Cluster Expansion

1D: Variant A

(10d)(10e)

(10a)

(10b)

(10c)

0

1D: Variant E

(11a)

(11b)

(11c)

(11d)

(11e)

1D: Variant F

 \bigcirc $\frac{1}{\bigcirc}$ \bigcirc $\frac{2}{\bigcirc}$ \bigcirc +

1 2 2 1

(12a)

(12b)

(12c)

(12d)

2D: Linear Blocks

(13a)

(13b)

(13c)

2D: Nonlinear Blocks

 α

(15)

(14)

Cluster Expansion

Solvers

Linear Solver

nlinear Solv

sults

Conclusior

Solvers

Introduction

Cluster Expansio

Solvers

Linear Solver

Nonlinear Solver
Sequential Linear Solve

Results

Conclusio

(16)

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

Introduction

Cluster Expansion

Solvers

Linear Solver

Nanlineau Salveu

Sequential Linear Solver

Results

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

Linear Solver: Inversion Scheme

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

- Invert A^i separately
 - Fast
 - Numerically unstable

Linear Solver: Inversion Scheme

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

- Invert A^i separately
- Full inversion $A = A^1 \otimes A^2 \cdots \otimes A^m$
 - Slow
 - Stable for pseudoinverse

Linear Solver: Inversion Scheme

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

- Invert *Aⁱ* separately
- Full inversion $A = A^1 \otimes A^2 \cdots \otimes A^m$
- Sparse full inversion

$$A^i = U\Sigma V^\dagger$$

$$S = S^1 \otimes S^2 \cdots \otimes S^m$$

Linear Solver: Applicability

Introduction

Cluster Expansio

Solvers

Linear Solver

Nonlinear Solver

Results

Conclusion

(17)

Linear Solver: Applicability

Linear Solver

(18)

(19a)

Nonlinear Solver

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

Conclusior

- Nonlinear least squares
- Jacobian
- Permutations

Sequential Linear Solver

Introduction

Cluster Expansion

Solvers

Linear Solver

Nonlinear Solver

Sequential Linear Solver

Results

- Based on linear solver
- Sweep over unknown tensors
- Permutations

Cluster Expansion

Solvers

JOIVEIS

Results

2D exact

model

Conclusion

Results

1D: Transverse Field Ising

Introduction

Cluster Expansion

Solvers

Result

1D exact

20 0000

2D Transverse Isin

Table: χ

	Α	E/F
3	5	10
5	21	42
7	85	170

1D: Heisenberg XXX

Introduction

Cluster Expansion

Solvers

Results

1D exact

2D exact

2D Transverse Ising

2D: TFI

Introduction

Cluster Expansion

Solvers

Result

1D exac

2D exact

2D Transverse Ising model

Table: χ		
no loops	21	
loops	27	
extensions	43	

2D: TFI

Introduction

Cluster Expansion

Solvers

Result

10

2D Transverse Ising model

Figure: Figure taken from [2]

2D: Classical Ising

Introduction

Cluster Expansion

Solvers

_ .

10

20 ----

2D Transverse Ising model

2D: TFI g = 2.5

Introduction

Cluster Expansion

Solvers

Resu

1D avad

2D exac

2D Transverse Ising

Conclusion

Table: Data from [3]

	I_c
Fit QMC TN	1.2736(6) 1.2737(6) 1.2737(2)

Cluster Expansior

Solvers

Results

Conclusion

References I

Introductio

Cluster Expansion

Solvers

Results

Conclusion

A. Alexandradinata, N. P. Armitage, A. Baydin, W. Bi, Y. Cao, H. J. Changlani, E. Chertkov, E. H. d. S. Neto, L. Delacretaz, I. E. Baggari, G. M. Ferguson, W. J. Gannon, S. A. A. Ghorashi, B. H. Goodge, O. Goulko, G. Grissonnanche, A. Hallas, I. M. Haves, Y. He, E. W. Huang, A. Kogar, D. Kumah, J. Y. Lee, A. Legros, F. Mahmood, Y. Maximenko, N. Pellatz, H. Polshyn, T. Sarkar, A. Scheie, K. L. Seyler, Z. Shi, B. Skinner, L. Steinke, K. Thirunavukkuarasu, T. V. Trevisan, M. Vogl, P. A. Volkov, Y. Wang, Y. Wang, D. Wei, K. Wei, S. Yang, X. Zhang, Y.-H. Zhang, L. Zhao, A. Zong, The Future of the Correlated Electron Problem (oct 2020). arXiv:2010.00584. URL http://arxiv.org/abs/2010.00584

References II

Introduction

Cluster Expansion

Solvers

 $\mathsf{Results}$

Conclusion

S. Hesselmann, S. Wessel, Thermal Ising transitions in the vicinity of two-dimensional quantum critical points, PHYSICAL REVIEW B 93 (2016) 155157.

doi:10.1103/PhysRevB.93.155157.

P. Czarnik, P. Corboz, Finite correlation length scaling with infinite projected entangled pair states at finite temperature, Physical Review B 99 (2019) 245107.

doi:10.1103/PhysRevB.99.245107.