

NCEAC.FORM.001-D

COURSE DESCRIPTION FORM

INSTITUTION National University of Computer and Emerging Sciences (NUCES-FAST)

PROGRAM (S) TO	BS(CS)
BE	
EVALUATED	

A. Course Description

(Fill out the following table for each course in your computer science curriculum. A filled out form should not be more than 2-3 pages.)

Course Code	EE227	EE227								
Course Title	Digital Lo	Digital Logic Design (DLD)								
Credit Hours	3+1									
Prerequisites by Course(s) and Topics	(EE117) Applied Physics									
Assessment Instruments	Assessme	ent Tools (AT) & Criteria								
with Weights (homework,	AT	Description	Weight							
quizzes, midterms,	1	Mid Term I and II	30							
final, programming	2	Assignments	10							
assignments,	3	Quizzes	10							
lab work, etc.)	4	Final Examination	50							

AT to CLO Mapping

	AT 1	AT 2	AT 3	AT 4	Weight
CLO 1	5	2	2.5	5	17
CLO 2	10	2	2.5	10	22
CLO 3	15	2	2.5	10	28
CLO 4		2	2.5	25	33

NCEAC.FORM.001-D

	AT1	AT 2	AT 3	AT 4	Wei ght
PLO 1					
PLO 2	15	7		15	37
PLO 3	15	8	5	35	63
PLO 4					
PLO 5					
PLO 6					
PLO 7					
PLO 8					
PLO 9					
PLO 10					
PLO 11					
PLO 12					

Course Coordinator	Engr. Kashan Hussain
URL (if any)	
Current Catalog Description	The goal of this course is to introduce concepts & tools for the design of digital electronic circuits using sequential and combinational logic to the freshmen computer science students.
Textbook (or Laboratory Manual for Laboratory Courses)	Digital Fundamentals , 11 th Edition, Floyd and Jain
Reference Material	 Digital Systems Principles and Applications 8th Ed, Tocci, Widmer and Moss Digital Design by Moris Mano

NCEAC.FORM.001-D

Course Goals

Course Learning Outcomes (CLO)

No.	Course Learning Outcomes (CLO)	Domain	Taxonomy Level	PLO
1	Identify and explain fundamental concepts of digital logic design including basic and universal gates, number systems, binary coded system, basic components of combinational and sequence circuits.	Cognitive	2	2
2	Demonstrate the acquired knowledge to apply techniques related to the design and analysis of digital electronics circuits, including Boolean Algebra and Multi-variable Karnaugh map methods.	Cognitive	3	2
3	Analyze small –scale combinational digital circuits.	Cognitive	3	3
4	Design small-scale combinational and synchronous sequential digital circuit using Boolean Algebra and K-map.	Cognitive	3	3

Relevant Program Learning Outcomes (PLOs):

PLO 1	Computing Knowledge	Apply knowledge of mathematics, natural sciences, computing fundamentals, and a computing specialization to the solution of complex computing problems.
PLO 2	Problem Analysis	Identify, formulate, research literature, and analyse complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences.
PLO 3	Design/Develop Solutions	Design solutions for complex computing problems and design systems, components, and processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
PLO 4	Investigation & Experimentation	Conduct investigation of complex computing problems using research based knowledge and research based methods
PLO 5	Modern Tool Usage	Create, select, and apply appropriate techniques, resources and modern computing tools, including prediction and modelling for complex computing problems.
PLO 6	Society Responsibility	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal, and cultural issues relevant to context of complex computing problems.
PLO 7	Environment and Sustainability	Understand and evaluate sustainability and impact of professional computing work in the solution of complex computing problems
PLO 8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of computing practice.

NCEAC.FORM.001-D

PLO 9	Individual and Team Work	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.					
PLO 10	Communication	Communicate effectively on complex computing activities with the computing community and with society at large.					
PLO 11	Project Mgmnt and Finance	Demonstrate knowledge and understanding of management principles and economic decision making and apply these to one's own work as a member or a team.					
PLO Life Long Learning		Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological changes.					

Relation between CLOs and PLOs (CLO: Course Learning Outcome, PLOs: Program Learning Outcomes)													
			PLOs										
		1	2	3	4	5	6	7	8	9	10	11	12
	1		>										
CLOs	2		*										
CL	3			~									
	4			~									

Topics Covered in the Course,	Week No.	Course Contents/Topics	Chapter	CLOs	Tools
with Number of Lectures on Each Topic (assume 15- week	1	INTRODUCTORY CONCEPTS Digital and Analog Quantities, Binary Digits, Logic Levels, and Digital Waveforms, Basic Logic Functions, Combinational and Sequential Logic Functions	1	1	M1, F
instruction and one-hour lectures)	2	NUMBER SYSTEMS, OPERATIONS, AND CODES Decimal Numbers, Binary Numbers, Decimal-to-Binary Conversion, Binary Arithmetic, Complements of Binary Numbers, Signed Numbers, Arithmetic Operations with Signed Numbers, Hexadecimal Numbers, Octal Numbers, Binary Coded Decimal (BCD), Digital Codes (Gray code with conversion)	2	1	A1,M1,F

NCEAC.FORM.001-D

3	LOGIC GATES The Inverter, The AND Gate, The OR Gate, The NAND Gate, The NOR Gate,	3	2	A2,P,M1,F
	The Exclusive-OR and Exclusive- NOR Gates			
4-5	BOOLEAN ALGEBRA AND LOGIC SIMPLIFICATION Boolean Operations and Expressions, Laws and Rules of Boolean Algebra, DeMorgan's Theorems, Boolean Analysis of Logic Circuits, Logic Simplification Using Boolean Algebra, Standard Forms of Boolean Expressions, Boolean Expressions and Truth Tables, The Karnaugh Map, Karnaugh Map SOP Minimization, Karnaugh Map POS Minimization	4	2	A2,P,M1,F
6		Mid- Term I		
7-8	COMBINATIONAL LOGIC ANALYSIS Basic Combinational Logic Circuits, Implementing Combinational Logic, The Universal Property of NAND and NOR gates, Combinational Logic Using NAND and NOR Gates, Pulse Waveform Operation	5	3	A3,M2,P,F
9-10	FUNCTIONS OF COMBINATIONAL LOGIC Half and Full Adders, Parallel Binary Adders, Ripple Carry, Comparators, Decoders, Encoders, Code Converters, Multiplexers, Demultiplexers	6	3	A4,M2, P,F
11		Mid-Term II		_
12	LATCHES, FLIP-FLOPS, AND TIMERS Latches, Flip-Flops, Flip-Flop Operating Characteristics, Flip-Flop Applications, One-Shots, The Astable Multivibrator	7	4	A5,P,F
13	SHIFT REGISTERS Shift Register Operations, Types of Shift Register Data I/Os, Bidirectional Shift Regist	8	4	A6,P,F
	ers, Shift			

-

National Computing Education Accreditation Council NCEAC

NCEAC.FORM.001-D

	14-15	COUNTERS Finite State M Counters, Synch Up/Down Sy Design of S Cascaded	Regist Register Applications Asynchronous ronous Counters, ynchronous Counters, bynchronous Counters,	9	4	A7,P,F	
	16	Counters, Counter Decoding Presentations					
			Fina	al Examinati	ion		
Laboratory Projects/Exp eriments Done in the Course							
Programmin g Assignments Done in the Course							
Class Time Spent on (in		neory	Problem Analysis	S	Solution Design	ļ	Social and I
credit hours)		30	10		5		
Oral and Written Communicat ions	typically10_		t at least1 written reponse. Include only material that accuracy.				

Instructor Name:

Instructor Signature

Date