Anisha Dhadge¶

Task 1: Prediction using Supervised ML¶

Predict the percentage of an student based on the no. of study hours.¶

This is a simple linear regression task as it involves just 2 variables.¶

Importing libraries¶

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import linear_model
import sklearn.metrics as sm
from sklearn.model_selection import train_test_split
from sklearn import metrics
```

Loading data¶

```
In [2]:
```

```
df=pd.read csv("A:\\msc1\\task1.csv")
```

In [3]:

df.head()

Out[3]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27

		Scores
3 8.5	5	75
4 3.5	5	30

In [4]:

df.columns

Out[4]:

Index(['Hours', 'Scores'], dtype='object')

In [5]:

df.shape

Out[5]:

(25, 2)

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 25 entries, 0 to 24

Data columns (total 2 columns):

Column Non-Null Count Dtype

0 Hours 25 non-null float64
1 Scores 25 non-null int64

dtypes: float64(1), int64(1)
memory usage: 528.0 bytes

In [7]:

df.describe()

Out[7]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000

	Hours	Scores
75%	7.400000	75.000000
max	9.200000	95.000000

Checking for null values¶

```
In [8]:
df.isnull().sum()
Out[8]:
Hours    0
Scores    0
dtype: int64
```

As we can see there are no null values

Data Visualization¶

Scatter Plot¶

```
In [9]:
plt.scatter(df['Hours'],df['Scores'])
plt.title('Study hours v/s Scores')
plt.xlabel('Study Hours')
plt.ylabel('Scores')
Out[9]:
Text(0, 0.5, 'Scores')
```


The two variables Hours and Scores show positive linear relationship.

Preparing the data¶

Here we divide the data into feature and target variables

```
In [10]:
x=df.iloc[:, 0].values
y=df.iloc[:, 1].values
x=x.reshape(-1,1)
y=y.reshape(-1,1)
```

(5, 1)

Splitting the data¶

Here we split data into training and testing sets

```
In [11]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
In [12]:
print(x_train.shape)
print(y_train.shape)
print(x_test.shape)
print(y_test.shape)
(20, 1)
(20, 1)
(5, 1)
```

Training of Model¶

```
We use Linear Regression Model
In [13]:
model=linear_model.LinearRegression()
In [14]:
model.fit(x_train,y_train)
print("Intercept: ",model.intercept_[0])
print("Coefficient: ",model.coef_[0][0])
Intercept: 2.2761104096145814
Coefficient: 9.669231813302295
```

Above are regression coefficients

Regression line¶

```
In [15]:
plt.scatter(x_train,y_train)
plt.plot(x_train,model.intercept_+(x_train*model.coef_),color='red',label="Regression
line")
plt.legend()
plt.title('Linear Regression')
plt.xlabel('Study Hours')
plt.ylabel('Scores')
Out[15]:
Text(0, 0.5, 'Scores')
```


As we know the relationship between the two variables is positive linear relationship that is as the number of study hours increases the score increases

Predictions using testing set¶

```
In [16]:
y_pred=model.predict(x_test)
In [17]:
d1=pd.DataFrame(y_test)
d2=pd.DataFrame(y_pred)
```

Comparing actual and predicted values¶

```
In [18]:
d=pd.concat([d1,d2],axis=1)
d.columns=['Actual','Prediction']
d
```

Out[18]:

	Actual	Prediction
0	81	82.530734
1	62	59.324578
2	24	20.647651
3	86	77.696119

	Actual	Prediction
4	67	61.258424

What will be predicted score if a student studies for 9.25 hrs/ day?¶

In [21]:

```
pred=model.predict([[9.25]])
print("Predicted score if a student studies for 9.25 hrs/ day is: ",pred[0][0])
Predicted score if a student studies for 9.25 hrs/ day is: 91.7165046826608
```

Accuracy of model¶

In [20]:

```
print("Mean Absolute Error: ",metrics.mean_absolute_error(y_test,y_pred))
print("Mean Squared Error: ",metrics.mean_squared_error(y_test,y_pred))
print("R-squared: ",metrics.r2_score(y_test,y_pred))
```

Mean Absolute Error: 4.320792494581102 Mean Squared Error: 24.531882343025423

R-squared: 0.9485920319718663

R-squared reveals that 98% of the data fit the regression model.

Thank you¶