

SRM Institute of Science and Technology

Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS

UNIT -5 Complex Integration

Tutorial Sheet -3

Sl.No.		Questions	Answer
Part – A			
1	Find the residues of $(z) = \frac{e^{2z}}{(1+z)^2}$.		$=2e^{-2}$
2	Find the residues of $(z) = \frac{e^{zz}}{(1+z)^2}$. Find the residues of $f(z) = \frac{e^z}{z^2 + a^2}$ at $z = ai$.		= 2aie ^{ai}
3	Find the residue	s at their poles of $(z) = \frac{z}{(z-1)^2}$.	= 1
4	Find the residue	$s ext{ of } (z) = \frac{1}{(z^2+1)^2}.$	$=-\frac{i}{4},-\frac{i}{4}$
5	Find the residue	s at the poles of the function $(z) = \frac{z}{(z^2+1)}$.	$=\frac{1}{2},-\frac{1}{2}$
Part – B			
6	Evaluate $\oint_C \frac{e^{2z}}{\cos \pi}$	$\frac{1}{z}dz$ where C is a circle $ z =1$.	$= -4i \sinh 1$
7	Using Cauchy's	residue theorem evaluate $\oint_C \frac{7z-1}{z^2-3z-4}$ where C is	$=\frac{16}{3}\pi i$
8	an ellipse $x^2 + 4$ Evaluate $\int_0^{2\pi} \frac{1}{5+3}$		$=\frac{\pi}{2}$
9	Show that $\int_0^{2\pi} \frac{1}{1+1}$	$\frac{d\theta}{+a\cos\theta} = \frac{2\pi}{\sqrt{1-a^2}}, (a<1).$	
10	Evaluate $\int_0^{\pi} \frac{d}{a+b}$	$\frac{\theta}{\cos\theta}$, $a > b $.	$=\frac{\pi}{\sqrt{a^2-b^2}}$

Coordinators: Dr.N.Parvathi