REMARKS

Applicants respectfully request reconsideration of the present application in view of the foregoing amendments and in view of the reasons that follow.

Claims 1-8 have been amended.

New claims 9-15 have been added.

This amendment changes and adds claims in this application. A detailed listing of all claims that are, or were, in the application, irrespective of whether the claim(s) remain under examination in the application, is presented, with an appropriate defined status identifier.

After amending the claims as set forth above, claims 1-15 are now pending in this application.

Abstract

The abstract has been amended to be within the range of 50 to 150 words.

Claim objections

Claims 2, 4-5 and 7 were objected to based on the use of the term "function." The claims have been amended to remove the term "function", and applicants submit that the objection has been overcome.

Rejection under 35 U.S.C. § 102

Claims 1-8 were rejected under 35 U.S.C. § 102(b) as being unpatentable over U.S. Patent 5,463,620 to Sriram. ("Sriram"). Applicants respectfully traverse this rejections for at least the following reasons.

Independent claims 1 and 2 are directed to a "network system for carrying out communication between a control station and a plurality of devices connected to a network and controlled by the control station." Sriram fails to disclose or suggest at least this feature of claims 1 and 2.

Sriram is directed to bandwidth allocation and transmission scheduling (title). The scheduling in Sriram is in the context of a network comprising a plurality of interconnected nodes (See FIG. 1, col. 2, lines 62-65).

Sriram, however, fails to disclose a "network system for carrying out communication between a control station and a plurality of devices connected to a network and controlled by the control station." While Sriram discloses a number of interconnected nodes, Sriram does not disclose or suggest that the nodes are arranged such that one of the nodes functions as a control station, and the remaining nodes are controlled by the control station. Claims 1 and 2 are patentable over Sriram for at least this reason. The remaining independent claims 3 and 5-8, are also in the context of a network having a control station and a plurality of devices controlled by the control station, and are patentable over Sriram for at least this reason.

Moreover, independent claim 1 includes additional patentable features over Sriram. Claims 1 defines a "a first data communication in which data is transmitted from the control station to the devices and data in response to this transmission is transmitted from the devices to the control station", and "a second data communication in which data is transmitted from the control station at a prescribed timing, the second data communication transmitting data of a higher priority than the first data communication." The first and second data communications in claim 1 are carried out as follows: "wherein after the data communication is carried out in accordance with a predetermined cycle time, the control means carries out an appropriate switching between the message communication and the second data communication in the remaining time of the cycle time to complete one cycle." Thus, in claim 1, a data communication is carried out (where the data communication includes data with real time attributes), and then further communication is carried out by switching between message communication data (not having real time attributes) and second data communication data (where the data communication includes data with real time attributes and has a higher priority than the first data communication). Sriram fails to disclose these features of claim 1.

Sriram discloses that call traffic in each of the nodes is classified in accordance with signal characteristics, and there is at least one queue for each traffic classification (col. 3,

lines 43-49). FIG. 5 illustrates a number of queuing circuits where various data types are queued. A dynamic time slice (DTS) server 48 defines a predetermined cycle time D_c during which it visits each of the queuing circuits in sequence and withdraws a predetermined number of ATM cells from the queuing circuit and transfers the predetermined cells onto an output link 28 (col. 5, lines 35-39). D_c is selected so that it is no longer than the maximum amount of time delay which is tolerable for the most delay sensitive traffic handled by a node (col. 5, lines 40-43).

Sriram, however does not disclose as recited in claim 1, "after the data communication is carried out in accordance with a predetermined cycle time, the control means carries out an appropriate switching between the message communication and the second data communication in the remaining time of the cycle time to complete one cycle", where the first data communication, the second data communication, and the message communication are defined as in claim 1. In Sriram, for a particular cycle, DTS server 48 visits the queues in sequence (col. 5, lines 35-39). Nowhere, however, does Sriram suggest that in a particular cycle the queues are visited first to obtain data for a data communication (where the data communication includes data with real time attributes), and then switches between further queues for message communication data (not having real time attributes) and second data communication data (where the data communication includes data with real time attributes and has a higher priority than the first data communication). In fact, during a particular cycle, Sriram suggests the higher priority data would be removed from the queues first, and thus would not be removed after lower priority data.

Independent claim 3 recites "wherein after the data communication is carried out in accordance with a predetermined cycle time, the control means carries out an appropriate switching between the message communication and the second data communication in the remaining time of the cycle time to complete one cycle", and thus is patentable for reasons analogous to claim 1.

Moreover, Sriram fails to disclose or suggest as recited in claim 8 "wherein at least one of the transmission queues holds data communication data requiring priority transmission, and at least one of the transmission queues holds both data communication data

having a lower priority than the data communication data requiring priority transmission and message communication data." In Sriram the data of different classification types are stored in separate queues and thus Siriram does not suggest this feature of claim 8.

The dependent claims are patentable for at least the same reasons as their respective independent claims, as well as for further patentable features recited therein.

Applicants believe that the present application is now in condition for allowance. Favorable reconsideration of the application as amended is respectfully requested.

The Examiner is invited to contact the undersigned by telephone if it is felt that a telephone interview would advance the prosecution of the present application.

The Commissioner is hereby authorized to charge any additional fees which may be required regarding this application under 37 C.F.R. §§ 1.16-1.17, or credit any overpayment, to Deposit Account No. 19-0741. Should no proper payment be enclosed herewith, as by a check being in the wrong amount, unsigned, post-dated, otherwise improper or informal or even entirely missing, the Commissioner is authorized to charge the unpaid amount to Deposit Account No. 19-0741. If any extensions of time are needed for timely acceptance of papers submitted herewith, Applicant hereby petitions for such extension under 37 C.F.R. §1.136 and authorizes payment of any such extensions fees to Deposit Account No. 19-0741.

Respectfully submitted,

Date

FOLEÝ & LARDNER LLP

Washington Harbour

3000 K Street, N.W., Suite 500

Washington, D.C. 20007-5143

Telephone:

(202) 672-5485

Facsimile: (202) 672-5399

By

William T. Ellis

Attorney for Applicant

Registration No. 26,874

Thos Show

Thomas G. Bilodeau Attorney for Applicant Registration No. 43,438