Power Distribution System for a CubeSat

Presented by :

Ansaf Niyaz | TRV19EE016 | Govind Murali | TRV19EE025 | Jijesh J. Kumar | TRV19EE029 | Naveen A.B. | TRV19EE038

GEC Barton Hill, Thiruvananthapuram

February 25, 2023

Guided by: Dr. Dinesh Gopinath

Contents

- 1. Objectives
- 2. System Architecture
- 3. Hardware Design
- 4. Project Timeline
- 5. References

Objective

To design and implement a fully autonomous power generation, storage and distribution system for a CubeSat

System Architecture

Figure 1: CubeSat EPS Architecture

Hardware Design - Buck and Boost Converters with Monitoring

Figure 2: Circuit design of buck and boost converters with monitoring.

Hardware Design - Buck and Boost Converters with Monitoring (Contd.)

Figure 3: PCB Layout of buck and boost converters with monitoring.

Hardware Design - Buck and Boost Converters with Monitoring (Contd.)

Figure 4: 3-D model of buck and boost converters with monitoring.

Hardware Design - Battery Charger

Figure 5: Circuit design of Battery Charger

Hardware Design - Battery Charger (Contd.)

Figure 6: PCB Layout of Battery Charger

Hardware Design - Battery Charger (Contd.)

Figure 7: 3-D modelof Battery Charger

Hardware Design - MPPT

Figure 8: Circuit design of MPPT.

Hardware Design - MPPT (Contd.)

Figure 9: PCB Layout of MPPT.

Hardware Design - MPPT (Contd.)

Figure 10: 3-D model of MPPT.

Project Timeline

Activity	Oct week 3-4	Nov week 1-2	Nov week 3-4	Dec week 1-2	Dec week 3-4
Literature Review					
Hardware Design					
Report Writing					
Component selection					
Component Procurement					

References

- Knap, Vaclav & Vestergaard, Lars & Stroe, Daniel-Ioan (2020)
 A Review of Battery Technology in CubeSats and Small Satellite Solutions Energies, vol. 13
- Comparison of Peak Power Tracking Based Electric Power System Architectures for CubeSats

A. Edpuganti, V. Khadkikar, H. Zeineldin, M. S. E. Moursi and M. Al Hosani (2021)

- IEEE Transactions on Industry Applications, vol. 57, no. 3, pp. 2758-2768, May-June 2021
- Review on the charging techniques of a Li-lon battery
 Third International Conference on Technological Advances in Electrical, Electronics and
 Computer Engineering (TAEECE), 2015, pp. 50-55

E. Ayoub and N. Karami (2015)

References (Contd.)

- [4] B. Hussein, A. M. Massoud and T. Khattab (2022) Centralized, Distributed, and Module-Integrated Electric Power System Schemes in CubeSats: Performance Assessment IEEE Access, vol. 10, pp. 55396-55407
- 5] A. Edpuganti, V. Khadkikar, M. S. E. Moursi, H. Zeineldin, N. Al-Sayari and K. Al Hosani (2022) A Comprehensive Review on CubeSat Electrical Power System Architectures

IEEE Transactions on Power Electronics, vol. 37, no. 3, pp. 3161-3177, March 2022

[6] Aulia Indana, Dharu Arseno, Edwar, and Adilla Safira (2020) Output Power Analysis of Tel-USat Electrical Power System AIP Conference Proceedings 2226

Thank You