ESS 575 Models for Ecological Data

N. Thompson Hobbs

January 24, 2019

ESS 575 Models for Ecological Data

N. Thompson Hobbs

January 24, 2019

Today

- ▶ A high elevation view of approaches for statistical inference
- Some motivation for learning
- ▶ The basic ideas of Bayesian inference

Exercise

What sets statements of scientists apart from statements made by journalists, lawyers, and logicians?

Some notation

- y data
- lacktriangledown heta a parameter or other unknown quantity of interest
- lackbox[y| heta] The probability distribution of y conditional on heta
- $lackbox{ } [\theta|y]$ The probability distribution of θ conditional on y
- ▶ $[y|\theta] = P(y|\theta) = p(y|\theta) = f(y|\theta) = f(y,\theta)$, different notation that means the same thing.

Board work on confidence envelopes

Exercise

Describe how Bayesian analysis differs from other types of statistical analysis.

- ▶ Bayesians divide the world into things that are observed (y) and unobserved (θ) .
- ▶ All unobserved quantities are treated as random variables.
- ▶ A random variable is a quantity whose behavior is governed by chance.
- Probability distributions are mathematical abstractions of "governed by chance."
- ▶ We seek to understand the characteristics of these probability distributions, particularly $[\theta|y]$. ◆□ → ←問 → ← 匝 → ← 匝 → □

Treating unobserved quantities as random variables is profound.

All unobserved quantities are treated in exactly the same way.

- Parameters
- Latent states
- Missing data
- Censored data
- Predictions
- Forecasts

An unobserved quanity (θ)

Prior results from the "Define a confidence interval" exercise from faculty, researchers, and graduate students at:

- Swedish Agricultural University
- University of Alaska Anchorage
- Woods Hole Research Institute
- Conservation Science Partners
- National Socio-environmental Synthesis Center (3 courses)
- ► ESS 575 (2 courses)

Cut to R to illustrate updating with today's data.

You can understand it.

	Design or Purpose	Measurement Variables	Ranked Variables	Attributes
1 variable 1 sample	Examination of a single sample	Procedure for grossing a frequency distribution, Box 3.1; seem and leaf dipley, Section 2.5; testing for ordiers, Section 13.4 Computing median of frequency distribution, Box 4.1 Computing arthratise insur. unrodred sample, Box 4.2; frequency distribution, Box 4.3 unrodred sample, Box 4.2; frequency distribution, Box 4.3 Setting confidence limits: mean, Box 7.2; variance, Box 7.3 Computing, and ag., Box 6.2		Confidence limits for a percentage, Section 17.1 Runs test for randomness in dichotomized data, Box 18.3
	Comparison of a single sample with an expected frequency distribution	Normal expected frequencies, Box 6.1 Goodness of fit tests; parameters from an extrinsic hypothesis, Box 17.1; from an intrinsic hypothesis, Box 17.2 Kolmogorov-Smirrov test of goodness of fit; Box 17.3 Graphic Tests for normality: large sample sizes, Box 6.3; small sample sizes irankit testi, Box 6.4 Test of sample staticis against expected value, Box 7.4		Binomial expected frequencies, Box 5.1 Poisson expected frequencies, Box 5.2 Goodness of fit tests: parameters from an extrinsic hypothesis, Box 17.1; from an intrinsic hypothesis, Box 17.2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Single classification	Single classification arrows unique and seek and	Kruskal-Wallis test, Box 13.5 Unplanned comparison of means by a nonparametric STP, Box 17.5	Great for homogeneity of percentages, Boxes 17:3 and 17.8 Comparison of several samples with an expected frequency distribution, Box 17:1 unplanned analysis of replicated tests of goodness of fit, Box 17:5.
	Nested classification	Two level nested anova: equal sample sizes. Box 10.1; unequal sample sizes. Box 10.4 Three-level nested anova: equal sample sizes. Box 10.3; unequal sample sizes. Box 10.5		
	Two way or multi-way classification	Two way anove: with replication. Box 111: without replication, Box 11.2; unequal but proportional bubbless sizes. Box 11.4; unequal but proportional bubbles sizes. Box 11.4. Three way anova. Box 12.1 and 12.1 and Box 12.2. Trees for nonadiativity in a town way anova. Box 13.1 and Box 12.2. Test for nonadiativity in a town way anova. Box 13.1 and Box 12.2.	Friedman's method for randomized blocks, Box 13.9	Three way log-linear model, Box 17.9 Randomized blocks for frequency data (repeated testing of the same individuals) Box 17.11

You can understand it.

Pralee:

the show the libely had to norte that a value is the same as another

Confidence Interval— Shows A range of values that we have a certain level of confidence our value of interest falls in.

Definition of Pushue
The probability of the tignificant
difference between nearwed (elserned)
value & other measured values

The range of measured (chserved)

ralue can occur within it

You can understand it.

- Rules of probability
 - Conditioning and independence
 - Law of total probability
 - Factoring joint probabilities
- Distribution theory
- Markov chain Monte Carlo

One approach applies to many problems

- An unobservable state of interest, z
- ▶ A deterministic model of a process, $g(\theta,x)$, controlling the state.
- ► A model of the data
- Models of parameters

