

 Thermo

Fachgebiet Thermodynamik
Fakultät III – Prozesswissenschaften

Aufgabe 12.1

In einer offenen Gasturbinenanlage wird ein realer, irreversibler Prozess mit einem Luftmassenstrom von $200\,\mathrm{kg/s}$ durchgeführt. Als Vergleichsprozess eignet sich der idealisierte Joule-Prozess. Es soll vereinfachend mit idealem Gasverhalten und den Stoffwerten von Luft bei 0 °C ($c_{pL} = 1.004\,\mathrm{kJ/(kg\,K)}$, $\kappa = 1,401$) gerechnet werden. Dabei wird vernachlässigt, dass die Verbrennungsabgase eine andere Zusammensetzung haben als die Zuluft.

- 1→2: Kompression vom Umgebungszustand ($p_a = 1 \text{ bar}$, $T_a = 20 \,^{\circ}\text{C}$) auf $p_2 = 15 \text{ bar}$ in einem adiabaten Verdichter mit einem isentropen Verdichterwirkungsgrad von 85 %.
- $2\rightarrow 3$: Erwärmung auf $T_3=1200\,^{\circ}\text{C}$, mit Druckabfall auf $p_3=14.3\,\text{bar}$ (entspricht der Verbrennung). Die Wärmezufuhr im Vergleichsprozess ist isobar.
- $3\rightarrow 4$: Expansion auf $p_4=1.0$ bar in einer adiabaten Turbine mit einem isentropen Turbinenwirkungsgrad von $\eta_s=94\,\%$.
- $4\rightarrow 1$: Im Vergleichsprozess: isobare Wärmeabfuhr.

Zu skizzieren und zu bestimmen sind:

- a) eine Darstellung des realen Gasturbinenprozesses und des idealisierten Prozesses im T, s-Diagramm,
- b) die Temperaturen nach der Kompression und der Expansion im realen Prozess,
- c) die Nutzleistung und der zugeführte Wärmestrom des realen Prozesses,
- d) die Nutzleistung des reversiblen Vergleichsprozesses,
- e) der thermische und exergetische Wirkungsgrad des Vergleichsprozesses,
- f) der thermische Wirkungsgrad des realen Prozesses.

Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Aufgabe 12.2

Die Abgase der Gasturbine (Massenstrom von $200\,\mathrm{kg/s}$) sollen anschließend genutzt werden, um Wasser für eine nachgeschaltete Dampfturbine isobar bei $p=10\,\mathrm{MPa}$ zu verdampfen. Das Wasser tritt dabei mit $T_\mathrm{a}=350\,\mathrm{K}$ in den Gegenstrom-Wärmeübertrager und verlässt diesen mit $T_\mathrm{b}=720\,\mathrm{K}$.

- a) Wie groß ist der Massenstrom Dampf, der erzeugt werden kann, wenn im Wärme- übertrager die minimale Temperaturdifferenz zwischen Abgas und Wasser $\Delta T=10\,\mathrm{K}$ betragen soll?
- b) Bis auf welche Temperatur T_5 werden die Abgase dabei abgekühlt?

Stoffdaten von Wasser (siedende Flüssigkeit: ('), gesättigter Dampf: (")):

T	p	ρ	h	s
[K]	[MPa]	$[\mathrm{kg/m^3}]$	[kJ/kg]	[kJ/(kg K)]
350	10	978.09	329.79	1.0317
584.15 (')	10	688.42	1408.10	3.3606
584.15 (")	10	55.463	2725.50	5.6160
720	10	33.804	3233.70	6.4098

