A class function on the mapping class group of an orientable surface and the Meyer cocycle

Masatoshi Sato

Abstract

In this paper we define a \mathbf{QP}^1 -valued class function on the mapping class group $\mathcal{M}_{g,2}$ of a surface $\Sigma_{g,2}$ of genus g with two boundary components. Let E be a $\Sigma_{g,2}$ bundle over a pair of pants P. Gluing to E the product of an annulus and P along the boundaries of each fiber, we obtain a closed surface bundle over P. We have another closed surface bundle by gluing to E the product of P and two disks.

The sign of our class function cobounds the 2-cocycle on $\mathcal{M}_{g,2}$ defined by the difference of the signature of these two surface bundles over P.

Contents

0	Intr	oduction	2
1	$\textbf{Class function} m: \mathcal{M}_{g,2} \to \mathbf{QP}^1$		3
	1.1	Construction of the class function	3
	1.2	Some properties and the nontriviality of the class function	5
2	The	e difference of two Meyer cocycles $\eta^* au_{g+1}$ and $ heta^* au_g$	8
	2.1	Proof of Main Theorem	8
	2.2	Wall's Non-additivity Formula	12
		The differences of signature $\operatorname{Sign} E_q - \operatorname{Sign} E_{q,2}$ and $\operatorname{Sign} E_{q+1} - \operatorname{Sign} E_{q,2} \dots \dots \dots$	10

0 Introduction

Let $\Sigma_{g,r}$ be a compact oriented surface of genus g with r boundary components. The mapping class group $\mathcal{M}_{g,r}$ is $\pi_0 \operatorname{Diff}_+(\Sigma_{g,r}, \partial \Sigma_{g,r})$ where $\operatorname{Diff}_+(\Sigma_{g,r}, \partial \Sigma_{g,r})$ is the group of orientation preserving diffeomorphisms of $\Sigma_{g,r}$ which restrict to the identity on the boundary $\partial \Sigma_{g,r}$. We simply denote $\Sigma_g := \Sigma_{g,0}$ and $\mathcal{M}_g := \mathcal{M}_{g,0}$. Harer[4] proved that

$$H^2(\mathcal{M}_{q,r}; \mathbf{Z}) \cong \mathbf{Z} \quad q > 3, \ r > 0,$$

see also Korkmaz, Stipsicz[8]. Meyer[9] defined a cocycle $\tau_g \in Z^2(\mathcal{M}_g; \mathbf{Z})$ $(g \geq 0)$ called the Meyer cocycle

Figure 1:

which represents four times generator of the second cohomology class when $g \geq 3$. Let $P := S^2 - \coprod_{i=1}^3 \operatorname{Int} D_i$ where $D_i \subset S^2$ is a disk, $\operatorname{Int} D_i$ its interior in S^2 , and $\alpha, \beta, \gamma \in \pi_1(P)$ be the homotopy classes as shown in Figure 1. We consider a $\Sigma_{g,r}$ bundle $E_{g,r}^{\varphi,\psi}$ on the pair of pants P which has monodromies $\varphi, \psi, (\psi\varphi)^{-1} \in \mathcal{M}_{g,r}$ along $\alpha, \beta, \gamma \in \pi_1(P)$. The diffeomorphism type of $E_{g,r}^{\varphi,\psi}$ does not depend on the choice of representatives in the mapping classes φ and ψ . The Meyer cocycle is defined by

where Sign $E_g^{\varphi,\psi}$ is the signature of the compact 4-manifold $E_g^{\varphi,\psi}$. For k>0, it is known as Novikov additivity that when two compact oriented 4k-manifolds are glued by an orientation reversing diffeomorphism of their boundaries, the signature of their union is the sum of their signature. When a pants decomposition of a closed 2-manifold is given, the signature of a Σ_g bundle on the 2-manifold is the sum of the signature of the σ_g bundles restricted to each pair of pants. Therefore, it is important to study the Meyer cocycle to calculate the signature of compact 4-manifolds. For g=1,2 the Meyer cocycle τ_g is a coboundary, and the cobounding function of this cocycle is calculated by several authors, for instance, Meyer[9], Atiyah[1], Kasagawa[6], Iida[5]. The Meyer cocycle is not a coboundary if genus $g \geq 3$, but the cocycle can be a coboundary when it is restricted to a certain subgroup, and calculated by Endo[2], Morifuji[10].

Let I be the unit interval $[0,1] \subset \mathbf{R}$. By sewing a pair of disks onto the surface $\Sigma_{g,2}$ along the boundary, we have Σ_g . For $h \in \mathrm{Diff}_+(\Sigma_{g,2}, \partial \Sigma_{g,2})$, if we extend h by the identity on the pair of disks, we have a self-

diffeomorphism of Σ_g . we denote it $h \cup id_{\Pi_{i=1}^2 D^2}$. By sewing an annulus $S^1 \times I$ onto the surface $\Sigma_{g,2}$ along the boundary, we have Σ_{g+1} . In the same way, if we extend $h \in \text{Diff}_+(\Sigma_{g,2}, \partial \Sigma_{g,2})$ by the identity on the annulus, we have a self-diffeomorphism $h \cup id_{S^1 \times I}$.

Define the induced homomorphism on the mapping class group by

$$\begin{array}{cccc} \theta: & \mathcal{M}_{g,2} & \to & \mathcal{M}_g \\ & [h] & \mapsto & [h \cup id_{\coprod_{i=1}^2 D^2}] \end{array}$$

and

$$\eta: \mathcal{M}_{g,2} \to \mathcal{M}_{g+1,0}.$$

$$[h] \mapsto [h \cup id_{S^1 \times I}]$$

Hare [3][4] shows that θ and η induce an isomorphism on the second homology classes when genus $g \geq 5$, so that $\tilde{\tau}_g = \eta^* \tau_{g+1} - \theta^* \tau_g$ is a coboundary. Powell[11] proved that the first cohomology group $H_1(\mathcal{M}_{g,r}; \mathbf{Z})$ is trivial for $g \geq 3$ and $r \geq 0$, so by the universal coefficient theorem, it follows that the cobounding function of $\tilde{\tau}_g$ is unique.

In this paper we define a \mathbf{QP}^1 -valued class function m on the mapping class group $\mathcal{M}_{g,2}$ in an explicit way by using information of the first homology group of a mapping torus of $[h] \in \mathcal{M}_{g,2}$, and prove that the sign of the function m cobounds the cocycle $\tilde{\tau}_g = \eta^* \tau_{g+1} - \theta^* \tau_g$. Especially it turns out that the cocycle $\tilde{\tau}_g$ is coboundary for any $g \geq 0$.

In section 1, we construct a class function m, prove some properties of this function, and calculate the image of the function. In section 2, we prove that the sign of this function cobounds the difference $\tilde{\tau}_g = \eta^* \tau_{g+1} - \theta^* \tau_g$. By the definition of the Meyer cocycle τ_g , $\tilde{\tau}_g(\varphi, \psi)$ is just the difference $\operatorname{Sign} E_{g+1}^{\eta(\varphi), \eta(\psi)} - \operatorname{Sign} E_g^{\theta(\varphi), \theta(\psi)}$, so that we calculate the difference by using the sign of the function m. Moreover we compute the other differences of signature $\operatorname{Sign}(E_{g,2}^{\varphi,\psi}) - \operatorname{Sign}(E_g^{\theta(\varphi),\theta(\psi)})$ and $\operatorname{Sign}(E_{g+1}^{\eta(\varphi),\eta(\psi)}) - \operatorname{Sign}(E_{g,2}^{\varphi,\psi})$ by the function m.

1 Class function $m: \mathcal{M}_{g,2} \to \mathbf{QP}^1$

In this section we define the class function on the mapping class group $\mathcal{M}_{g,2}$ stated in Introduction and describe some properties of the function including the nontriviality.

For [p:q], $[r:s] \in \mathbf{QP}^1$, we define an addition in \mathbf{QP}^1 by

$$[p:q] + [r:s] = \begin{cases} [pr:ps+qr], & \text{if} \quad [p:q] \neq [0:1] \text{ or } [r:s] \neq [0:1] \\ [0:1], & \text{if} \quad [p:q] = [r:s] = [0:1]. \end{cases}$$

The projective line \mathbf{QP}^1 forms an additive monoid under this operation with [1:0] the zero element. In this section, all (co)homology groups is with \mathbf{Q} coefficients.

1.1 Construction of the class function

Before constructing the function, we prepare a fact about homology groups of compact 3-manifolds. Let Y be a compact oriented 3-manifold with boundary ∂Y and $i:\partial Y\hookrightarrow Y$ the inclusion map. Consider the commutative

diagram

where the upper and lower rows are the exact sequences of a pair $(Y, \partial Y)$, and the vertical maps are the cap products with the fundamental classes of Y and ∂Y . By the diagram and Poincaré Duality, it follows that the image of i^* is just its own annihilator with respect to the cup product of $H^1(\partial Y)$

$$\operatorname{Im} i^* = \operatorname{Ann}(\operatorname{Im} i^*).$$

In particular, we have

$$\dim \operatorname{Ker} i_* = \dim \operatorname{Im} i^* = \frac{1}{2} \dim H_1(\partial Y).$$

We define the mapping torus of $\varphi = [h] \in \mathcal{M}_{q,r}$ by

$$X^{\varphi} := \Sigma_{g,r} \times I/\sim, \quad (x,1) \sim (h(x),0),$$

and $\pi: X^{\varphi} \to I/\partial I = S^1$ by the projection $\pi([x,t]) = [t]$, where $[x,t] \in X^{\varphi}$ is the equivalent class of $(x,t) \in \Sigma_{g,r} \times I$, and $[t] \in I/\partial I = S^1$ the equivalent class of $t \in I$.

The diffeomorphism type of the mapping torus X^{φ} does not depend on the choice of the representative h. We fix the orientation on X^{φ} given by the product orientation on $\Sigma_{g,r} \times I$. Let $i_{\varphi} : \partial X^{\varphi} \hookrightarrow X^{\varphi}$ be the inclusion map. In this subsection we denote $\Sigma := \Sigma_{g,2}$, and if we fix $\varphi \in \mathcal{M}_{g,2}$, then we write simply $X := X^{\varphi}$ and $i := i_{\varphi}$. Let S_1 and S_2 be the two boundary components of Σ , and $[S_k]$ (k = 1, 2) the image under the inclusion homomorphism $H_1(S_k) \to H_1(\Sigma)$ of the fundamental homology class.

We consider Σ as a subspace of X by the embedding $\iota: \Sigma \hookrightarrow X$ $x \mapsto [x,0]$. We choose points $p_1 \in S_1$, $p_2 \in S_2$, and $p \in S^1$, and orientation-preserving homeomorphisms $\iota_1: S^1 \to S_1$ and $\iota_2: S^1 \to S_2$. We define singular cochains $f_k: I \to (S_1 \coprod S_2) \times S^1 = \partial X$ (k = 1, 2, 3, 4) by

$$f_1(t) = (\iota_1(t), p), \quad f_2(t) = (\iota_2(t), p), \quad f_3(t) = (p_1, t), \text{ and } \quad f_4(t) = (p_2, t), \text{ respectively.}$$

Let $e_k \in H_1(\partial X)$ be the homology class of f_k (k = 1, 2, 3, 4). Then the set $\{e_1, e_2, e_3, e_4\}$ forms a basis for $H_1(\partial X)$.

Now we describe the kernel of the homomorphism $i_*: H_1(\partial X) \to H_1(X)$. Since e_1 and e_2 lie in the kernel of $(\pi|_{\partial X})_*$ and $\pi_*(e_3) = \pi_*(e_4) = [S^1] \in H_1(S^1)$, we have

$$\operatorname{Ker} i_* \subset \operatorname{Ker} (\pi_* i_*) = \mathbf{Q} e_1 \oplus \mathbf{Q} e_2 \oplus \mathbf{Q} (e_3 - e_4).$$

By the definition of the map f_k , $(i \circ f_k)_*[S^1] = \iota_*[S_k]$, and so $i_*(e_1 + e_2) = \iota_*([S_1] + [S_2]) \in H_1(X)$. Since $S_1 \cup S_2$ is the boundary of Σ , we have $[S_1] + [S_2] = 0 \in H_1(\Sigma)$. Hence

$$\mathbf{Q}(e_1+e_2)\subset \mathrm{Ker}\ i_*.$$

As we saw at the beginning of this subsection, dim Ker $i_* = \frac{1}{2} \dim H_1(\partial X) = 2$. It follows that Ker $i_* = \mathbf{Q}(e_1 + e_2) \oplus \mathbf{Q}(p(e_3 - e_4) + qe_1)$ for some $p, q \in \mathbf{Q}$. Now we can define a class function.

Definition 1.1. For $\varphi \in \mathcal{M}_{g,2}$, we take $p, q \in \mathbf{Q}$ such that $\operatorname{Ker} i_{\varphi_*} = \mathbf{Q}(e_1 + e_2) \oplus \mathbf{Q}(p(e_3 - e_4) + qe_1)$. We define $m : \mathcal{M}_{g,2} \to \mathbf{QP^1}$ by $m(\varphi) = [p:q]$.

Lemma 1.2. For $\varphi, \psi \in \mathcal{M}_{q,2}$,

$$m(\psi\varphi\psi^{-1}) = m(\varphi).$$

Proof. Define $\Psi: X^{\varphi} \to X^{\psi \varphi \psi^{-1}}$ by $\Psi(x,t) = (\psi(x),t)$. Then the following diagram commutes

$$H_1(\partial X^{\varphi}) \xrightarrow{i_{\varphi*}} H_1(X^{\varphi})$$

$$\downarrow^{\Psi_*} \qquad \qquad \downarrow^{\Psi_*}$$

$$H_1(\partial X^{\psi\varphi\psi^{-1}}) \xrightarrow{i_{\psi\varphi\psi^{-1}*}} H_1(X^{\psi\varphi\psi^{-1}}).$$

We can see from the diagram, Ψ_* gives the natural isomorphism between $\operatorname{Ker}(H_1(\partial X^{\varphi}) \to H_1(X^{\varphi}))$ and $\operatorname{Ker}(H_1(\partial X^{\psi\varphi\psi^{-1}}) \to H_1(X^{\psi\varphi\psi^{-1}}))$. Hence we have $m(\psi\varphi\psi^{-1}) = m(\varphi)$.

1.2 Some properties and the nontriviality of the class function

By the Serre spectral sequence, we have the exact sequence

$$0 \longrightarrow \operatorname{Coker}(\varphi_* - 1) \xrightarrow{\iota_*} H_1(X) \xrightarrow{\pi_*} H_1(S^1) \longrightarrow 0,$$

where $\operatorname{Coker}(\varphi_* - 1)$ is the cokernel of the homomorphism $\varphi_* - 1 : H_1(\Sigma) \to H_1(\Sigma)$.

Then we have a unique homomorphism $j_{\varphi}: \mathbf{Q}e_1 \oplus \mathbf{Q}e_2 \oplus \mathbf{Q}(e_3 - e_4) \to \operatorname{Coker}(\varphi_* - 1)$ such that the diagram with exact rows

$$0 \longrightarrow \mathbf{Q}e_1 \oplus \mathbf{Q}e_2 \oplus \mathbf{Q}(e_3 - e_4) \longrightarrow H_1(\partial X) \xrightarrow{\pi_*} H_1(S^1) \longrightarrow 0$$

$$\downarrow^{j_{\varphi}} \qquad \qquad \downarrow^{i_*} \qquad \qquad \parallel$$

$$0 \longrightarrow \operatorname{Coker}(\varphi_* - 1) \xrightarrow{\iota_*} H_1(X) \xrightarrow{\pi_*} H_1(S^1) \longrightarrow 0$$

commutes. By the diagram, we have

$$\operatorname{Ker} i_* = \operatorname{Ker} j_{\varphi}$$
, and

$$j_{\varphi}(e_1) = -j_{\varphi}(e_2) = [S_1] \in \operatorname{Coker}(\varphi_* - 1).$$

Now we introduce a cochain $\omega_l \in C^1(\mathcal{M}_{g,2}; H_1(\Sigma))$ defined in [7]. On the fiber $\Sigma = \pi^{-1}(0) \subset X$, pick a path l such that $l(0) \in S_2$ and $l(1) \in S_1$. Define ω_l by

$$\omega_l(\varphi) := \varphi(l) - l \in H_1(\Sigma).$$

Then we have

Lemma 1.3.

$$j_{\varphi}(e_3 - e_4) = [\omega_l(\varphi)] \in \operatorname{Coker}(\varphi_* - 1).$$

Proof. Define a 2-chain $L: I \times I \to X$ by L(s,t) = [l(s),t]. Its boundary is given by $-i_*(e_3) + \varphi(l) + i_*(e_4) - l \in B_1(X)$. Hence,

$$i_*(e_3 - e_4) = \iota_*([\varphi(l) - l]) \in H_1(X)$$

Since ι_* is injective, the lemma follows.

From the lemma, we see the homolopy class $[\omega_l(\varphi)] \in \operatorname{Coker}(\varphi_* - 1)$ is independent of the choice of the path l. If $\omega_l(\varphi) = 0$, then $j_{\varphi}(e_3 - e_4) = 0$.

Remark 1.4. If there exists a path l from a point in S_2 to a point in S_1 which has no common point with the support of a representative of $\varphi \in \mathcal{M}_{g,2}$, then $m(\varphi) = [1:0]$. In particular, m(id) = [1:0], the zero element of the monoid \mathbf{QP}^1 .

At the beginning of this section, we defined the commutative monoid structure on $\mathbf{QP^1}$. So integral multiples of $m(\varphi)$ are well-defined.

Proposition 1.5. If $\varphi \in \mathcal{M}_{g,2}$ and $k \in \mathbb{Z}$, then

$$m(\varphi^k) = km(\varphi).$$

Proof. The proposition is trivial for k = 0 and k = 1. Assume $k \ge 2$.

Let $m(\varphi) = [p:q]$. By the definition of j_{φ} , $pj_{\varphi}(e_3 - e_4) = -q[S_1] \in \text{Coker}(\varphi_* - 1)$. Hence, there exists $v \in H_1(\Sigma)$ such that

$$p[\varphi(l) - l] = -q[S_1] + (\varphi_* - 1)v \in H_1(\Sigma)$$

Apply φ^i $(i=1,2,\cdots k-1)$ to the both sides of the equation and sum over i. Then

$$\sum_{i=1}^{k-1} p(\varphi^{i+1}(l) - \varphi^{i}(l)) = -\sum_{i=1}^{k-1} \{ [S_1] + (\varphi_*^{i+1}(v) - \varphi_*^{i}(v)) \},$$

that is

$$p(\varphi^k(l) - l) = -kq[S_1] + (\varphi_*^k - 1)v.$$

Hence, $m(\varphi^k) = [p : kq] = km(\varphi)$ for k > 0.

By applying φ^{-1} to the equation $p[\varphi(l)-l]=-q[S_1]+(\varphi_*-1)v$, we have

$$p[\varphi^{-1}(l) - l] = q[S_1] + (\varphi_*^{-1} - 1)v \in H_1(\Sigma).$$

Hence, $m(\varphi^{-1}) = [p:-q] = -m(\varphi)$. Since $m(\varphi^{-k}) = -m(\varphi^k) = -km(\varphi)$ for k > 0, the proposition follows for the case k < 0.

Now we compute the image of the function m. Especially we prove that m is nontrivial.

Proposition 1.6. For $g \ge 1$, m is surjective. For g = 0, $Im(m) = [1 : \mathbf{Z}]$.

Figure 2:

Proof. Suppose $g \geq 1$. We choose oriented simple closed curves α , α' , and β and paths l and l' as shown in Figure 2. We denote the Dehn twists along a simple closed curve $C \subset \Sigma$ by t_C , and the homology class of C by [C]. Then $[\alpha] + [\alpha'] + [\beta] = 0 \in H_1(\Sigma)$ since they bound a 2-chain. For $p \in \mathbf{Z}$, if we denote $\varphi := t^p_{\alpha} t_{\alpha'} t^{-1}_{\beta}$, then

$$j_{\varphi}((p+1)(e_{3}-e_{4})) = \omega_{l}(\varphi) + p\omega_{l'}(\varphi)$$

$$= (t_{\alpha}^{p}t_{\alpha'}t_{\beta}^{-1})(l) - l + p\{(t_{\alpha}^{p}t_{\alpha'}t_{\beta}^{-1})(l') - l'\}$$

$$= p([\alpha] + [\alpha'] + [\beta]) + [\beta] = [\beta] = [S_{1}].$$

Hence, $j_{\varphi}((p+1)(e_3-e_4)-e_1)=0$, so that

$$m(\varphi) = [p+1:-1].$$

By Proposition 2.5, we have

$$m(\varphi^{-q}) = -q[p+1:-1] = \begin{cases} [p+1:q], & \text{if } p \neq -1 \\ [0:1], & \text{if } p = -1. \end{cases} \quad (q \in \mathbf{Z})$$

Since p and q can run over all integers, we see m is surjective for $g \ge 1$.

For g = 0, $\mathcal{M}_{0,2}$ is the infinite cyclic group generated by t_{β} . Since $m(t_{\beta}^{-q}) = [1:q]$, we have $\text{Im}(m) = [1:\mathbf{Z}]$.

2 The difference of two Meyer cocycles $\eta^* \tau_{g+1}$ and $\theta^* \tau_g$

In this section (co)homology groups are with **Z** coefficient unless specified.

Let $g \geq 0$ be a positive integer. In Introduction, we defined the homomorphisms $\eta: \mathcal{M}_{g,2} \to \mathcal{M}_{g+1,0}$ and $\theta: \mathcal{M}_{g,2} \to \mathcal{M}_g$ to be the induced maps by sewing a pair of disks and by sewing an annulus onto the surface $\Sigma_{g,2}$ along their boundaries respectively. We denote the Meyer cocycle on the mapping class group of genus g closed orientable surface \mathcal{M}_g by $\tau_g \in Z^2(\mathcal{M}_g)$ and define $\tilde{\tau}_g \in Z^2(\mathcal{M}_{g,2})$ to be the difference between the Meyer cocycles

$$\tilde{\tau}_q := \eta^* \tau_{q+1} - \theta^* \tau_q.$$

Let $P := S^2 - \coprod_{i=1}^3 D^2$. In this section, we prove the main theorem and calculate the changes of signature associated with sewing a pair of trivial disk bundles $P \times \coprod_{i=1}^2 D^2$ and sewing an trivial annulus bundles $P \times (S^1 \times I)$ onto $\Sigma_{g,2}$ bundle on the pair of pants P along their boundaries. To state the main theorem, we define the sign of $[p:q] \in \mathbf{QP^1}$ by

$$sign([p:q]) := \begin{cases} 1 & \text{if } pq > 0, \\ 0 & \text{if } pq = 0, \\ -1 & \text{if } pq < 0. \end{cases}$$

Theorem 2.1. For $\varphi, \psi \in \mathcal{M}_{g,2}$, we define

$$\tilde{\phi}_g(\varphi) := \operatorname{sign}(m(\varphi)).$$

Then $\tilde{\phi}_g$ cobounds the difference $\tilde{\tau}_g$ between the Meyer cocycles $\eta^*\tau_{g+1}$ and $\theta^*\tau_g$

$$\tilde{\tau}_g(\varphi, \psi) = \delta \tilde{\phi}_g(\varphi, \psi)$$

$$= \operatorname{sign}(m(\varphi)) + \operatorname{sign}(m(\psi)) + \operatorname{sign}(m((\varphi\psi)^{-1})).$$

Remark 2.2. Let k be an integer. By Lemma 2.2 and Proposition 2.5, $\tilde{\phi}_g$ has the properties

$$\tilde{\phi}_g(\psi\varphi\psi^{-1}) = \tilde{\phi}_g(\varphi), and$$

$$\tilde{\phi}_g(\varphi^k) = \operatorname{sign}(k)\tilde{\phi}_g(\varphi)$$

for any $g \geq 0$.

2.1 Proof of Main Theorem

In this subsection we prove Theorem 2.1.

In Introduction, we defined $E_{g,r}^{\varphi,\psi}$ as a $\Sigma_{g,r}$ bundle on the pair of pants P which has monodromies φ , ψ , and $(\psi\varphi)^{-1} \in \mathcal{M}_{g,r}$ along α , β , and $\gamma \in \pi_1(P)$ respectively, and in Subsection 2.1, we defined $X_{g,r}^{\varphi}$ by the mapping torus of $\Sigma_{g,r} \times I/\sim$ where $(x,1)\sim (h(x),0)$ for $\varphi=[h]\in \mathcal{M}_{g,r}$.

We consider

$$E_{q+1}^{\eta(\varphi),\eta(\psi)} = E_{q,2}^{\varphi,\psi} \cup (-S^1 \times I \times P),$$

and

$$X_{g+1}^{\eta(\varphi)} = X_{g,2}^{\varphi} \cup (-S^1 \times I \times S^1).$$

Define

$$G: \partial D^2 \times I \rightarrow \{1\} \times S^1 \times I.$$

 $(x,t) \mapsto (1,x,\frac{1+t}{3})$

By the map G, we can glue $D^2 \times I$ to $I \times S^1 \times I$ as shown in figure 3. Glue $D^2 \times I \times P$ to $I \times E_{g+1}^{\eta(\varphi),\eta(\psi)} = I$

Figure 3: Gluing map G

 $(I \times E_{g,2}^{\varphi,\psi}) \cup (-I \times S^1 \times I \times P)$ with the gluing map $G \times id_P : \partial D^2 \times I \times P \to \{1\} \times S^1 \times I \times P$. In the same way, glue $D^2 \times I \times S^1$ to $I \times X_{g+1}^{\eta(\varphi)} = (I \times X_{g,2}^{\varphi}) \cup (-I \times S^1 \times I \times S^1)$ with the gluing map $G \times id_{S^1} : \partial D^2 \times I \times S^1 \to \{1\} \times S^1 \times I \times S^1$. Denote

$$\tilde{E}^{\varphi,\psi}:=(I\times E_{g+1}^{\eta(\varphi),\eta(\psi)})\cup (D^2\times I\times P), \text{ and } \tilde{X}^{\varphi}:=(I\times X_{g+1}^{\eta(\varphi)})\cup (D^2\times I\times S^1).$$

To prove main theorem, it suffices to prove Lemma 2.3 and Lemma 2.4 below.

Lemma 2.3.

$$(\eta^* \tau_{g+1} - \theta^* \tau_g)(\varphi, \psi) = \operatorname{Sign} \tilde{X}^{\varphi} + \operatorname{Sign} \tilde{X}^{\psi} + \operatorname{Sign} \tilde{X}^{(\varphi\psi)^{-1}} \text{ for } \varphi, \psi \in \mathcal{M}_{g,2}, \ g \ge 0.$$

Lemma 2.4.

Sign
$$\tilde{X}^{\varphi} = \text{sign}(m(\varphi))$$
 for $\varphi \in \mathcal{M}_{g,2}, g \ge 0$.

proof of Lemma 3.3. Note that

$$X^{\varphi} = \tilde{E}^{\varphi,\psi}|_{\partial D_1}.$$

Then we can see

$$\begin{split} \partial \tilde{E}^{\varphi,\psi} &= (\tilde{E}^{\varphi,\psi}|_{\partial D_1} \cup \tilde{E}^{\varphi,\psi}|_{\partial D_2} \cup \tilde{E}^{\varphi,\psi}|_{\partial D_3}) \cup E_g^{\theta(\varphi),\theta(\psi)} \cup -E_{g+1}^{\eta(\varphi),\eta(\psi)} \\ &= (\tilde{X}^{\varphi} \cup \tilde{X}^{\psi} \cup \tilde{X}^{(\psi\varphi)^{-1}}) \cup E_g^{\theta(\varphi),\theta(\psi)} \cup -E_{g+1}^{\eta(\varphi),\eta(\psi)}. \end{split}$$

By Novikov Additivity, the fact Sign $\partial \tilde{E}^{\varphi,\psi} = 0$ implies

$$\operatorname{Sign}(E_{g+1}^{\eta(\varphi),\eta(\psi)}) - \operatorname{Sign}(E_g^{\theta(\varphi),\theta(\psi)}) = \operatorname{Sign}\tilde{X}^{\varphi} + \operatorname{Sign}\tilde{X}^{\psi} + \operatorname{Sign}\tilde{X}^{(\psi\varphi)^{-1}}.$$

Notice that $\tilde{X}^{(\psi\varphi)^{-1}}$ is diffeomorphic to $\tilde{X}^{(\varphi\psi)^{-1}}$, so that $\operatorname{Sign} \tilde{X}^{(\psi\varphi)^{-1}} = \operatorname{Sign} \tilde{X}^{(\varphi\psi)^{-1}}$. By the definition of the Meyer cocycle, we have

$$\operatorname{Sign}(E_{g+1}^{\eta(\varphi),\eta(\psi)}) = \eta^* \tau_{g+1}(\varphi,\psi), \text{ and } \operatorname{Sign}(E_g^{\theta(\varphi),\theta(\psi)}) = \theta^* \tau_g(\varphi,\psi).$$

Define $\tilde{\phi}(\varphi) = \operatorname{Sign}(\tilde{X}^{\varphi})$, then we have $\delta \tilde{\phi} = \eta^* \tau_{g+1} - \theta^* \tau_g$. We get the cobounding function $\tilde{\phi}$.

proof of Lemma 3.4. Write simply $X := X_{g+1}^{\eta(\varphi)}$, $X' := X_{g,2}^{\varphi}$, and $Y := \tilde{X}^{\varphi} = (I \times X) \cup (D^2 \times I \times S^1)$. For i = 0, 1, define

$$j_i: X \rightarrow I \times X \hookrightarrow Y,$$

 $x \mapsto (i, x)$

where $I \times X \hookrightarrow Y$ is a natural embedding. We will prove there is a exact sequence

$$H_2(X') \xrightarrow{j_{0*}=j_{1*}} H_2(Y) \longrightarrow \operatorname{Ker}(H_1(\partial X') \to H_1(X')) \longrightarrow 0.$$

Define $Y_1:=I\times X'$ and $Y_2:=(I\times S^1\times I\times S^1)\cup (D^2\times I\times S^1)\subset Y,$ then

$$Y_1 \simeq X', Y_2 \simeq S^1, Y_1 \cap Y_2 \simeq \partial X' = (S_1 \coprod S_2) \times S^1.$$

By the Mayer-Vietoris exact sequence, we have

Denote the map $H_1(\partial X') \to H_1(X') \oplus H_1(S^1)$ in the above diagram by h. the projection $H_1(\partial X') \to H_1(S^1)$ to the second entry of h is the composite of inclusion homomorphism $H_1(\partial X') \to H_1(X')$ and $\pi_* : H_1(X') \to H_1(S^1)$. Therefore,

$$\operatorname{Ker}(H_1(\partial X') \to H_1(X') \oplus H_1(S^1)) = \operatorname{Ker}(H_1(\partial X') \to H_1(X')).$$

So the sequence is exact.

Next we construct the splitting $H_2(Y; \mathbf{Q}) = j_{i*}H_2(X'; \mathbf{Q}) \oplus \operatorname{Ker}(H_1(\partial X'; \mathbf{Q})) \to H_1(X'; \mathbf{Q})$. Note that there exist $p, q \in \mathbf{Q}$ such that

$$\operatorname{Ker}(H_1(\partial X'; \mathbf{Q}) \to H_1(X'; \mathbf{Q})) = \mathbf{Q}(e_1 + e_2) \oplus \mathbf{Q}\{p(e_3 - e_4) + qe_1\}$$

as in section 1. To construct the splitting, we choose elements of inverse images of $e_1 + e_2$, $p(e_3 - e_4) + qe_1$ under $H_2(Y) \to H_1(\partial X')$. Define $\iota_Y : \Sigma_{q+1} \to Y$ by

then we have

$$H_2(\tilde{X}) \rightarrow H_1(Y_1 \cap Y_2) \rightarrow H_1(\partial X'),$$

 $\iota_{Y*}[\Sigma_g] \mapsto \partial_* \iota_{Y*}[\Sigma_g] \rightarrow e_1 + e_2$

so we choose $\iota_{Y*}[\Sigma_g]$ as an element of the inverse image of $e_1 + e_2$.

Next, we choose an element of the inverse image of $p(e_3-e_4)+qe_1$. Since $p(e_3-e_4)+qe_1 \in \text{Ker}(H_1(\partial X'; \mathbf{Q}) \to H_1(X'; \mathbf{Q}))$, there exists a singular 2-cochain $s \in C_2(X'; \mathbf{Q})$ such that

$$\partial s = p(f_3 - f_4) + qf_1 \in B_1(X'; \mathbf{Q}).$$

For i = 0, 1, define $s'_{0i}: I \times S^1 \to I \times S^1 \times I \times S^1 \hookrightarrow Y_2$ by $s'_{0i}(s, t) = (i, 0, s, t)$. then

$$[\partial s'_{0i}] = [j_i f_3 - j_i f_4] \in H_1(Y_1 \cap Y_2; \mathbf{Q}).$$

Define $s'_{1i}:D^2\to (-I\times S^1\times I\times S^1)\cup (D^2\times I\times S^1)\subset Y$ as shown in Figure 4 by

Figure 4: Images of s'_{10} and $s'_{11}\subset (I\times S^1\times I\times 0)\cup (D^2\times I\times 0)\subset Y$

$$\begin{split} s_{10}'(x) &= \left\{ \begin{array}{ll} (6x,1,0) &\in D^2 \times I \times S^1 & (||x|| \leq \frac{1}{6}), \\ (2-6||x||,\frac{x}{||x||},\frac{2}{3},0) &\in I \times S^1 \times I \times S^1 & (\frac{1}{6} \leq ||x|| \leq \frac{1}{3}), \\ (0,1-||x||,\frac{x}{||x||},0) &\in I \times S^1 \times I \times S^1 & (\frac{1}{3} \leq ||x|| \leq 1), \\ s_{11}'(x,t) &= \left\{ \begin{array}{ll} (\frac{3}{2}x,0,0) &\in D^2 \times I \times S^1 & (||x|| \leq \frac{2}{3}), \\ (1,\frac{x}{||x||},1-||x||,0) &\in I \times S^1 \times I \times S^1 & (\frac{2}{3} \leq ||x|| \leq 1). \end{array} \right. \end{split}$$

Then, we have $[\partial s'_{1i}] = [j_i f_1] \in H_1(Y_1 \cap Y_2; \mathbf{Q}).$

Define $s'_i = ps'_{0i} + qs'_{1i}$, then it follows that

$$[\partial s_i'] = [j_i(p(f_3 - f_4) + qf_1)] \in H_1(Y_1 \cap Y_2; \mathbf{Q}),$$

so that we have $[\partial(j_i s - s_i')] = 0 \in H_1(Y_1 \cap Y_2; \mathbf{Q}).$

We see

$$\begin{array}{cccc} H_2(Y;\mathbf{Q}) & \to & H_1(Y_1\cap Y_2;\mathbf{Q}) & \to & H_1(\partial X';\mathbf{Q}), \\ [j_is-s_i'] & \mapsto & \partial_*[j_is-s_i'] & \mapsto & p(e_3-e_4)+qe_1 \end{array}$$

so that we can choose $[j_i s - s'_i]$ as an element of the inverse image of $p(e_3 - e_4) + qe_1$.

Now we calculate the intersection form of $H_2(Y; \mathbf{Q})$. Define $X_1'' = j_1(X) \cup (D^2 \times 0 \times S^1) \subset (I \times X) \cup (D^2 \times I \times S^1) \subset Y$, then X_1'' is deformation retract of Y. Hence, every element of $H_2(Y; \mathbf{Q})$ is represented by a cocycle in X_1'' . Therefore, a cohomology class is included in the annihilator of intersection form in $H_2(Y; \mathbf{Q})$ if it is represented by a cocycle which have no common point with X_1'' . We see

$$j_0(X') \cap X_1'' = \emptyset$$
, and $\iota_Y(\Sigma_{g+1}) \cap X_1'' = \emptyset$,

so that $\mathbf{Q}(e_1 + e_2)$ and $j_{0*}H_2(X';\mathbf{Q})$ are included in the annihilator of intersection form in $H_2(Y;\mathbf{Q})$.

To describe the signature of Y, it suffices to calculate the self-intersection number of $[j_i s - s'_i] = p(e_3 - e_4) + qe_1$. The cocycle $j_i s - s'_i$ satisfies

$$\operatorname{Im}(j_{0}s) \cap (\operatorname{Im}(j_{1}s) \cup \operatorname{Im}(s'_{01}) \cup \operatorname{Im}(s'_{11})) = \emptyset$$
$$\operatorname{Im}(s'_{00}) \cap (\operatorname{Im}(j_{1}s) \cup \operatorname{Im}(s'_{01})) = \emptyset$$
$$\operatorname{Im}(s'_{10}) \cap (\operatorname{Im}(j_{1}s) \cup \operatorname{Im}(s'_{01}) \cup \operatorname{Im}(s'_{11})) = \emptyset,$$

so that

$$(j_0s - s'_0) \cdot (j_1s - s'_1) = (j_0s - (ps'_{00} + qs'_{10})) \cdot (j_1s - (ps'_{01} + qs'_{11}))$$
$$= ps'_{00} \cdot qs'_{11}.$$

We can see s'_{00} and s'_{11} intersect only once positively. Hence, $\operatorname{Sign}(Y) = \operatorname{Sign}(pq) = \operatorname{Sign}(m(\varphi))$.

2.2 Wall's Non-additivity Formula

Wall derives the Novikov additivity for a more general case: two compact oriented smooth 4k-manfolds are glued along a common submanifolds, which itself have boundary, of the boundaries of the original manifolds.

We will give the specific case of his formula for k = 1:

Let Z be a closed oriented smooth 2-manifold, X_- , X_0 , X_+ compact oriented smooth 3-manifolds with the boundaries $\partial X_- = \partial X_0 = \partial X_+ = Z$, and Y_- , Y_+ compact oriented smooth 4-manifolds with the boundaries $\partial Y_- = X_- \cup_Z (-X_0)$, $\partial Y_+ = X_0 \cup_Z (-X_+)$. Here we denote by $M \cup_B (-N)$ the union of two manifolds M and N glued by orientation reversing diffeomorphism of their common boundaries $\partial M = \partial N = B$. Let $Y = Y_- \cup_{X_0} Y_+$ be the union of Y_- and Y_+ glued along submanifolds X_0 of their boundaries. Suppose Y is oriented by the induced orientation of Y_- and Y_+ .

Write $V = H_1(Z; \mathbf{R})$; let A, B, and C be the kernels of the maps on first homology induce by the inclusions of Z in X_- , X_0 and X_+ respectively.

We define

$$W := \frac{B \cap (C+A)}{(B \cap C) + (B \cap A)},$$

and a bilinear form Ψ by

$$\Psi: \quad W \quad \times \quad W \quad \to \quad \mathbf{R}.$$

$$(b \quad , \quad b') \quad \mapsto \quad b \cdot c'$$

Here c' is a element which satisfies a' + b' + c' = 0, and $b \cdot c'$ denote the intersection product of b and c'.

Then Ψ is independent of c' and well-defined on W. Denote the signature of the bilinear form Ψ by $\operatorname{Sign}(V;BCA)$ and the signature of the compact oriented 4-manifold M by $\operatorname{Sign}M$. We are now ready to state the formula.

Theorem 2.5 (Wall[12]). Sign $Y = \operatorname{Sign} Y_{-} + \operatorname{Sign} Y_{+} - \operatorname{Sign}(V; BCA)$.

2.3 The differences of signature $\operatorname{Sign} E_g - \operatorname{Sign} E_{g,2}$ and $\operatorname{Sign} E_{g+1} - \operatorname{Sign} E_{g,2}$

In this subsection, we calculate the difference of signature associated with sewing the trivial Disk bundles onto the $\Sigma_{q,2}$ bundle.

In Introduction, we defined $E_{g,r}^{\varphi,\psi}$ as a oriented $\Sigma_{g,r}$ bundle on P which has monodromies $\varphi, \psi, (\psi\varphi)^{-1} \in \mathcal{M}_{g,r}$ along $\alpha, \beta, \gamma \in \pi_1(P)$. If we fix $\varphi, \psi \in \mathcal{M}_{g,2}$, we denote simply

$$E_{g,2} := E_{g,2}^{\varphi,\psi}, \quad E_g := E_q^{\theta(\varphi),\theta(\psi)}, \text{ and } \quad E_{g+1} := E_{g+1}^{\eta(\varphi),\eta(\psi)} \quad (g \ge 0).$$

Proposition 2.6.
$$\operatorname{Sign}(E_q) - \operatorname{Sign}(E_{q,2}) = -\operatorname{Sign}(m(\varphi) + m(\psi) + m((\varphi\psi)^{-1}))$$
 $(g \ge 0)$

Proof. E_g is the union of $E_{g,2}$ and $E_D := (D^2 \coprod D^2) \times P$ glued along their boundaries. Using Non-additivity formula Theorem 2.5, we calculate $Sign(E_g) - Sign(E_{g,2})$.

Define $Y_{-}, Y_{+}, X_{-}, X_{0}, X_{+}, \text{ and } Z$ by

$$\begin{split} Y_- := (\amalg_{j=1}^2 D^2) \times P, \quad Y_+ := E_{g,2}, \\ X_- := (\amalg_{j=1}^2 D^2) \times \partial P, \quad X_+ := E_{g,2}|_{\partial P}, \quad X_0 := (\amalg_{j=1}^2 \partial D^2) \times P, \\ \text{and } Z := (\amalg_{j=1}^2 \partial D^2) \times \partial P, \quad \text{respectively}. \end{split}$$

Here, by the notation stated in subsection 1.1,

$$X_{+} = E_{q,2}|_{\partial P} \cong X^{\varphi} \coprod X^{\psi} \coprod X^{(\psi\varphi)^{-1}}, \quad Z \cong \partial X^{\varphi} \coprod \partial X^{\psi} \coprod \partial X^{(\psi\varphi)^{-1}}.$$

Define V, A, B, and C as stated in subsection 3.1.

Since $X^{\varphi} = X^{\psi} = X^{(\psi\varphi)^{-1}} = S^1 \times S^1$, we can choose the base of $H_1(\partial X^{\varphi}; \mathbf{R})$, $H_1(\partial X^{\psi}; \mathbf{R})$, and $H_1(\partial X^{(\psi\varphi)^{-1}}; \mathbf{R})$ as in section 1.1. Denote their base by $\{e_{11}, e_{12}, e_{13}, e_{14}\}$, $\{e_{21}, e_{22}, e_{23}, e_{24}\}$, $\{e_{31}, e_{32}, e_{33}, e_{34}\}$ respectively.

Since $Z = \partial X^{\varphi} \coprod \partial X^{\psi} \coprod \partial X^{(\psi\varphi)^{-1}}$, we think of e_{ij} as an element of $H_1(Z; \mathbf{R})$.

Denote
$$m(\varphi) = [a_1 : b_1], m(\psi) = [a_2 : b_2],$$
 and $m((\psi \varphi)^{-1}) = [a_3 : b_3]$ respectively, then

$$V = H_1(Z, \mathbf{R}) = \bigoplus_{i=1}^{3} \bigoplus_{j=1}^{4} \mathbf{R}e_{ij},$$

$$A = \mathbf{R}e_{11} \oplus \mathbf{R}e_{21} \oplus \mathbf{R}e_{31} \oplus \mathbf{R}e_{12} \oplus \mathbf{R}e_{22} \oplus \mathbf{R}e_{32},$$

$$B = \mathbf{R}(e_{11} - e_{21}) \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{22}) \oplus \mathbf{R}(e_{12} - e_{32})$$
$$\oplus \mathbf{R}(e_{13} + e_{23} + e_{33}) \oplus \mathbf{R}(e_{14} + e_{24} + e_{34}),$$

$$\bigoplus \mathbf{R}(e_{13} + e_{23} + e_{33}) \oplus \mathbf{R}(e_{14} + e_{24} + e_{34}),$$

$$C = \bigoplus_{i=1}^{3} \begin{cases} \mathbf{R}(e_{i1} + e_{i2}) \oplus \mathbf{R}(e_{i3} - e_{i4} + m_{i}e_{i1}) & \text{if } a_{i} \neq 0 \\ \mathbf{R}e_{i1} \oplus \mathbf{R}e_{i2} & \text{if } a_{i} = 0. \end{cases}$$
Here we denote $m_{i} := \frac{b_{i}}{a_{i}}$.

Hence,

$$B \cap A = \mathbf{R}(e_{11} - e_{21}) \oplus \mathbf{R}(e_{12} - e_{22}) \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}),$$

$$\begin{pmatrix} \mathbf{R}(e_{11} - e_{21} + e_{12} - e_{22}) \\ \oplus \mathbf{R}(e_{11} - e_{31} + e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{13} + e_{23} + e_{33} - e_{14} - e_{24} - e_{34} + m_1e_{11} + m_2e_{21} + m_3e_{31}) \\ \oplus \mathbf{R}(e_{13} + e_{21} + e_{12} - e_{22}) \\ \oplus \mathbf{R}(e_{11} - e_{31} + e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31} + e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31} + e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31} + e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31} + e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31} + e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31} + e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{22}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus \mathbf{R}(e_{11} - e_{31}) \oplus \mathbf{R}(e_{12} - e_{32}) \\ \oplus$$

By computing the signature of Ψ , we have

$$\operatorname{Sign}(V; BCA) = \begin{cases} \operatorname{Sign}(m_1 + m_2 + m_3) & \text{if } a_i \neq 0 \text{ for } i = 1, 2, 3, \\ 0 & \text{otherwise.} \end{cases}$$

Hence,

$$Sign(V; BCA) = Sign(m(\varphi) + m(\psi) + m((\psi\varphi)^{-1}))$$
$$= Sign(m(\varphi) + m(\psi) + m((\varphi\psi)^{-1})).$$

By Non-additivity formula, we have

$$\operatorname{Sign}(E_q) = \operatorname{Sign}(E_D) + \operatorname{Sign}(E_{q,2}) - \operatorname{Sign}(V; BCA).$$

Since E_D is a trivial bundle $(D^2 \coprod D^2) \times P$, we have $Sign(E_D) = 0$.

This completes the proof of the proposition.

By the theorem and Proposition 2.6, we can calculate the difference of signature $Sign(E_g) - Sign(E_{g,2})$. Corollary 2.7. For g > 0,

$$Sign(E_{g+1}) - Sign(E_{g,2}) = Sign(m(a)) + Sign(m(b)) + Sign(m((ab)^{-1})) - Sign(m(a) + m(b) + m((ab)^{-1})).$$

References

- [1] M. Atiyah, The logarithm of the dedekind η -function, Mathematische Annalen 278 (1987), no. 1, 335–380.
- [2] H. Endo, Meyer's signature cocycle and hyperelliptic fibrations, Mathematische Annalen **316** (2000), no. 2, 237–257.
- [3] J. L. Harer, The second homology group of the mapping class group of an orientable surface, Inventiones Mathematicae 72 (1983), no. 2, 221–239.
- [4] ______, Stability of the Homology of the Mapping Class Groups of Orientable Surfaces, The Annals of Mathematics 121 (1985), no. 2, 215–249.
- [5] S. Iida, Adiabatic limit of η -invariants and the Meyer function of genus two, Master's thesis, University of Tokyo, (2004).
- [6] R. Kasagawa, On a function on the mapping class group of a surface of genus 2, Topology and its Applications 102 (2000), no. 3, 219–237.
- [7] N. Kawazumi, A generalization of the Morita-Mumford classes to extended mapping class groups for surfaces, Inventiones Mathematicae 131 (1997), no. 1, 137–149.
- [8] M. Korkmaz and A.I. Stipsicz, *The second homology groups of mapping class groups of orientable surfaces*, Mathematical Proceedings of the Cambridge Philosophical Society **134** (2003), no. 03, 479–489.
- [9] W. Meyer, Die Signatur von Flächenbündeln, Mathematische Annalen 201 (1973), no. 3, 239–264.
- [10] T. Morifuji, On Meyer's function of hyperelliptic mapping class groups, J. Math. Soc. Japan 55 (2003), no. 1, 117–129.
- [11] J. Powell, Two Theorems on the Mapping Class Group of a Surface, Proceedings of the American Mathematical Society 68 (1978), no. 3, 347–350.
- [12] CTC Wall, Non-additivity of the signature, Inventiones Mathematicae 7 (1969), no. 3, 269–274.