Optical Comms Solutions

Tutorial Sheet Solutions

Q1 Phase and Group velocities equal when the phase velocity is frequency independent i.e. in a non-dispersive media.

Dispersion occurs – "chromatic dispersion" – due to difference in phase velocity at different frequencies – a pulse for example becomes distorted.

Q2

No of words per hour lecture = 60x200 = 12000 No of letters = 12000x5 = 60000 No of bits (8bits/letter) = 8x60000 = 480000 bits.

Data transmitted at 1GBit/s = 10^9 Time = bits/rate = $480000/1000000000 = 480 \mu s$

Q3 (a) loss = $10 \text{ Log}_{10} \text{ P}_{i}/\text{P}_{o} = 16 \text{ dB}$

- (a) attenuation per kilometre = 16/8 = 2dB/km
- (b) -9.2 dBm
- (c) -25.2 dBm

Q4 10 GBit/s pulse stream gives time slot $T_B = 1/10x10^9 = 100ps$

Assume zero rise time and therefore shortest pulse occupies 50ps and longest pulse stream occupies 350ps.

Now average launch power = half peak power for a NRZ pulse stream - since probability of a 1 or 0 is equal and o and 1 are uncorrelated.

Hence peak power = 4mW

Acceptance Angle and Numerical Aperture

Acceptance angle – largest θ_1 such that all light is guided

$$n_{ext}Sin\theta_1 = n_1Sin\theta_2 = n_1Cos\theta_c$$

Use; Snell's Law $Sin\theta_c = n_2/n_1$ and Trig Identity $Sin^2\phi + Cos^2\phi = 1$

$$n_{ext}Sin\theta_1 = \sqrt{(n_1^2 - n_2^2)} = NA$$

$$\Delta = (n_1 - n_2)/n_1$$
, hence $n_2 = 1.47$

$$n_{ext} Sin\theta_1 = n_1 Sin\theta_2 = n_1 Cos\theta_c$$

$\theta_2 = 11.5^{\circ}, \theta_1 = 17.4^{\circ},$

Time to travel distance L down fibre for

- Axial ray: $t_A = L/v_1 = Ln_1/c$
- Critical ray: $t_C = Ln_1/(c \times sin\theta_C) = (Ln_1/c)(n_1/n_2)$.
- <u>Differential time delay</u>: $\delta t = t_C t_A = (Ln_1/c)\{(n_1/n_2) 1\}$ = $(Ln_1/c)(n_1 - n_2)/n_2 \approx (Ln_1/c)(n_1 - n_2)/n_1 = Ln_1\Delta/c$.
- The pulse spreads in time by $\delta t = Ln_1\Delta/c$ in a distance L.

$$\delta t/L = n_1 \Delta/c = \frac{10^{-10} \text{ s/m} = 10^{-7} \text{ s/km}}{\text{So for L} = 10 \text{km}}$$

$$\Rightarrow$$
 B_{max} \approx 1/ δ t = 1MB/s

$$NA = \sqrt{(n_1^2 - n_2^2)} = 0.3$$

Q6.
$$\sqrt{(n_1^2 - n_2^2)} = NA = 14^\circ$$

Q7.

Q8.

- a. $loss = 10 Log_{10} P_i/P_o = 16dB$
- b. attenuation per kilometre = 16/8 = 2dB/km
- c. Source power = 120 μ W = -9.2 dBm
- d. Output power = 3μ W = -25.23 dBm

No Margin:

Maximum attenuation for line L km long = α L = $10log_{10}(P_T/P_R)$ $P_T/P_R = 10/0.1 = 100$ hence α L = 20dBL = 20/0.2 = 100km

Dispersion limited distance:

Bit slot length = 1/data rate = 1000ps (10^{-9} s) Assume pulse broadening allowed to be ¼ Bit slot width = 250ps $\Delta\lambda$ = 1nm so broadening due to dispersion = D x $\Delta\lambda$ = 15ps/km Hence dispersion limit is 250/15 km = 16.7 km

Maximum length is determined by dispersion not attenuation = 16.7km.

For an 18dB margin:

Loss limit $\alpha L + 18 = 10log_{10}(P_T/P_R)$ Hence $\alpha L = 2$ dB and L = 10 km.

Dispersion limit as before and so fibre length determined by attenuation not dispersion in this case.

Q10.

 $\Delta\lambda = 1.6 - 1.3~\mu\text{m} = 300~\text{nm}$ Channel width = 0.4 nm No of channels = 300/0.4 = 750

Total capacity = no of channels x bit rate = 750×40 Gb/s = 30Tb/s

Q11.

 $\Delta\lambda = 1.61 - 1.53~\mu\text{m} = 80~\text{nm}$ Channel width = 0.8 nm No of channels = 80/0.8 = 100

Total capacity = no of channels x bit rate = 100 x 10Gb/s = 1Tb/s

Bit rate-distance product = 1Tb/s x 2000km = 2000 Tb/s.km

Q12.

800nm light E = hv = hc/ λ Energy of 1 photon = 6.6 x 10⁻³⁴ x 3x10⁸/800x10⁻⁹ = 2.5 x 10⁻¹⁹ J

Need 1000 photons to detect 1 bit at 100Mb/s Need a peak received power of $2.5 \times 10^{-19} \times 1000 \times 100 \times 10^6 = 2.5 \times 10^{-8} \text{ W}$

Average power = peak power/2 = $1.25 \times 10^{-8} = 1.25 \times 10^{-5} \text{ mW} = -49 \text{ dBm}$

Launch power = -10 dBm
Assuming no margin have 39 dB available in power budget as a loss in fibre
Loss = 2dB/km, hence fibre length = 39/2 = 19.5 km.