ABES ENGINEERING COLLEGE, GHAZIABAD (032)

B. TECH FIRST SEMESTER 2023-2024

ENGINEERING MATHEMATICS-I (BAS-103)

UNIT-2: Differential Calculus-I

Question Bank

If
$$u = f(r)$$
, where $r^2 = x^2 + y^2$, prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r)$.

2. If
$$u = x^2 \tan^{-1} \frac{y}{x} - y^2 \tan^{-1} \frac{x}{y}$$
, then prove that $\frac{\partial^2 u}{\partial x \partial y} = \frac{x^2 - y^2}{x^2 + y^2}$.

If
$$x^2 = au + bv$$
, $y^2 = au - bv$, prove that $\left(\frac{\partial u}{\partial x}\right)_v \cdot \left(\frac{\partial x}{\partial u}\right)_v = \frac{1}{2} = \left(\frac{\partial v}{\partial y}\right)_v \left(\frac{\partial y}{\partial v}\right)_u$.

4. If
$$u = \sin^{-1} \left(\frac{x^{\frac{1}{4}} + y^{\frac{1}{4}}}{\frac{1}{x^{\frac{1}{6}}} + y^{\frac{1}{6}}} \right)$$
, then prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{1}{144} \tan u \left(\sec^2 u - 12 \right)$

5. If
$$u = sin^{-1} \left(\frac{x^3 + y^3 + z^3}{ax + by + cz} \right)$$
, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 2 \tan u$.

6. If
$$u = sin^{-1} \left(\frac{x + 2y + 3z}{\sqrt{x^8 + y^8 + z^8}} \right)$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} + 3 \tan u = 0$.

7. If
$$u = x^4 y^2 sin^{-1} \left(\frac{x}{y}\right) + \log x - \log y$$
, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 6x^4 y^2 sin^{-1} \left(\frac{x}{y}\right)$.

8. If
$$u = f(2x - 3y, 3y - 4z, 4z - 2x)$$
, prove that $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z} = 0$.

9. If
$$w = \sqrt{x^2 + y^2 + z^2}$$
 and $x = \cos v$, $y = u \sin v$, $z = uv$ then prove that
$$u \frac{\partial w}{\partial u} - v \frac{\partial w}{\partial v} = \frac{u}{\sqrt{1 + v^2}}$$
.

10. If
$$u = x \log xy$$
, where $x^3 + y^3 + 3xy = 1$, find $\frac{du}{dx}$.

11. If
$$u = x^2 - y^2 + \sin yz$$
, where $y = e^x$ and $z = \log x$, find $\frac{du}{dx}$.

12. If
$$x + y = 2e^{\theta} \cos \emptyset$$
 and $x - y = 2ie^{\theta} \sin \emptyset$, show that $\frac{\partial^2 v}{\partial \theta^2} + \frac{\partial^2 v}{\partial \phi^2} = 4xy \frac{\partial^2 v}{\partial x \partial y}$.

13. Trace the curve
$$y^2(2a - x) = x^3$$

14. Trace the curve
$$y^2(a + x) = x^2(3a - x)$$

Question Bank

If $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$ show that $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$ If $y_1 = \frac{x_2x_3}{x_1}$, $y_2 = \frac{x_1x_3}{x_2}$, $y_3 = \frac{x_1x_2}{x_3}$ then show that $\frac{\partial(y_1, y_2, y_3)}{\partial(x_1, x_2, x_3)} = 4$.

If u = xyz, $v = x^2 + y^2 + z^2$, w = x + y + z, find the Jacobian $\frac{\partial(x_1, y_2, y_3)}{\partial(x_1, y_2, y_3)} = 4$.

If x + y + z = u, y + z = uv, $z = uv^{u}$.

If x + y + z = u, y + z = uv, $z = uv^{u}$. If $x = r \sin \theta \cos \emptyset$, $y = r \sin \theta \sin \emptyset$, $z = r \cos \theta$ show that $\frac{\partial(x,y,z)}{\partial(r,\theta,\emptyset)} = r^2 \sin \theta$ and find $\frac{\partial(r,\theta,\emptyset)}{\partial(x,y,z)}$

If u = xyz, $v = x^2 + y^2 + z^2$, w = x + y + z, find the Jacobian $\frac{\partial(x,y,z)}{\partial(u,v,w)}$

If x + y + z = u, y + z = uv, z = uvw, then show that $\frac{\partial(x,y,z)}{\partial(u,v,w)} = u^2v$.

If u, v, w be the roots of the equation $(x-a)^3 + (x-b)^3 + (x-c)^3 = 0$, then find $\frac{\partial(u,v,w)}{\partial(a,b,c)}$.

Verify the Chain rule for Jacobian if $x = u, y = u \tan v, z = w$.

If $u^3 + v^3 = x + y$ and $u^2 + v^2 = x^3 + y^3$, show that $\frac{\partial(u,v)}{\partial(x,y)} = \frac{(y^2 - x^2)}{2uv(u-v)}$

If $u = sin^{-1}x + sin^{-1}y$ and $v = x\sqrt{1-y^2} + y\sqrt{1-x^2}$ find $\frac{\partial(u,v)}{\partial(x,y)}$, is u,v functionally related. If so, find the relationship. Relationship is pending

The period T of a simple pendulum is given by $T=2\pi\sqrt{\frac{l}{g}}$. Find the maximum error in T due to possible errors up to 1% in I and 2.5 in g.

The time T of a complete oscillation of a simple pendulum of length L is governed by the equation $=2\pi\sqrt{\frac{L}{a}}$, where g is a constant. Find the approximate error in the calculate value T corresponding to an error of 2% in the value of L.

The indicated horse-power I of an engine is calculated from the formula $=\frac{PLAN}{33000}$, where $A=\frac{\pi}{4}d^2$. Assuming the error of r percent may have been made in measuring P, L, N and d. Find the greatest possible error in I.

In estimating the cost of pile of bricks measured as $6m \times 50m \times 4m$, the tape is stretched 1% beyond the standard length. If the count is 12 bricks in $1m^3$ and bricks cost Rs. 100per 1000, find the approximate error in the cost.

Find the possible percentage error in computing the parallel resistance r of three resistances r_1, r_2, r_3 from the formula $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3}$ if r_1, r_2, r_3 are each in error by 1.2%.

Compute an approximate value of $(1.04)^{3.01}$.

Find an approximate value of $\left[(0.98)^2 + (2.01)^2 + (1.94)^2 \right]^{\frac{1}{2}}$.

- 16.
- Find the extreme value of the function $x^3 + y^3 3axy$.
- 17/
- Show that the rectangular solid of maximum volume that can be inscribe in a given sphere is a cube.
- 18
- Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$
- 19.
- Find the maximum and minimum distance of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 1$
- Find the dimension of a rectangular box of maximum capacity whose surface area is given by when

 (i) box is open of the top, (ii) box is closed.
- **_21**.
- Expand $e^x \sin y$ in power of x and y as far as term of the third degree.
- 22.
- Expand $tan^{-1}\frac{y}{x}$ in the neighborhood of (1, 1) up to and inclusive of second degree terms. Hence compute f(1.1, 0.9) approximately.
- 23/
- Expand x^y in power of (x-1) and (y-1) up to the third degree term and hence evaluate $(1.1)^{1.02}$.
- 24
- Expand $e^x \cos y$ near the point $\left(1, \frac{\pi}{4}\right)$ by Taylor's theorem.
- 2/5
- Expand Sinxy in powers of (x-1) and $\left(y-\frac{\pi}{2}\right)$ up to second degree terms.
- 26
- Expand $f(x, y) = x^2y + 3y 2$ in power of (x-1) and (y+2) by Taylor's theorem.

Answers

UNIT-2: Differential Calculus-I

10.
$$1 + \log(xy) - \frac{x(x^2+y)}{y(y^2+x)}$$
.

11.
$$2(x - e^{2x}) + e^x \cos(e^x \log x) (\log x + \frac{1}{x})$$

UNIT-3: Differential Calculus-II

1.
$$\frac{1}{r^2 sin\theta}$$

3.
$$-2(x-y)(y-z)(z-x)$$

5.
$$\frac{-2(a-b)(b-c)(c-a)}{(u-v)(v-w)(w-u)}$$

8.
$$\frac{\partial(u,v)}{\partial(x,y)}$$
=0, relation $v = sinu$

16. Maximum value =
$$a^3$$
 , Minimum value = $-a^3$

18.
$$\frac{8abc}{3\sqrt{3}}$$

20. (i)
$$x = y = \sqrt{\frac{s}{3}}$$
, $z = 1/2\sqrt{\frac{s}{3}}$ (ii) $x = y = z = \sqrt{\frac{s}{6}}$

21.
$$y + xy + \frac{1}{2}x^2y - \frac{1}{6}y^3 + \cdots$$
...

23. 1.1021
$$24. \frac{e}{\sqrt{2}} \left\{ 1 + (x - 1) - \left(y - \frac{\pi}{4} \right) + \frac{(x - 1)^2}{2} - (x - 1) \left(y - \frac{\pi}{4} \right) + \cdots \right\}$$

25.
$$1 - \frac{\pi^2}{8} \frac{(x-1)^2}{-\frac{\pi}{2}} - \frac{\pi}{2} (x-1) \left(y - \frac{\pi}{2} \right) - \frac{1}{2} (y - \frac{\pi}{2})^2 \dots$$
26. $-10 - 4(x-1) + 4(y+2) - 2(x-1)^2 + 2(x-1)(y+2) + (x-1)^2 (y+2)$