COSTI UNIFORMI (GENERALMENTE UTILIZZATO)

· TUTTI I PASSI ELEMENTANI COSTANO 1

COSTI LOGARITHICI

· UN OPENAZIONE SU UN OPENANDA DI VALORE X HA COSTO log x

CASI

CASO PEGGIOTIE: DIAMO UNA CATANZIA SUL TEMPO DI ESECUZIONE,
INDICAIAMO CON TEMPO (1) IL TEMPO DI ESECUZIONE
OVVERO IL NUMERO DI PASSI EVEMENTARI

Twonst (m) = MAX TEMPO (I)}

CASO MEDIA: TEMPO DI ESECUZIONE NEZ CASO MEDIO,
OVVERO SULLE ISTANZE DI INGRESSO
TIPICHE PER IL PROBREMA.

DELL' ISTANZA

TAVG (m) = S | STANZE I DI DIMENSIONE M { P(i) · TEMPO (I)}

CHE PSSUMO

NOTAZIONE ASINTOTICA

COMPLESSITÀ DI UN ALGONITMO ESPRESSA CON UNA FUNZIONE T(m)

T(m)= * PASSI EZEMENTANI ESECUITI NEL CASO PESGIONE

$$70 n^2 + 150 \lceil (n+1)/4 \rceil + 5$$
 se n è dispari

QUINDI IGNORIAMO:

- · COSTANTI MOLTIPLICATIVE
- · TERMINI DI ORDERE INFERIORE

NOTAZIONE O-GRANDE

CUARDO

DOPO IL PUNTO MO LA FUNZIONE (M)
CRESCE PIÚ LENTAMENTE RISPETTO A g(M)

ESEMPIO:

SiA
$$f(m) = 2m^2 + 3m$$
, ALLORA:

- $l(m) = O(m^3)$
- $\hat{f}(m) = O(m^2)$
- f(m) \(\int \) (m)

NOTAZIONE IL

\$\(m) = \D_ (g(m)) SE } (>0 & m,>0 T.C. \$\(m) \geq \cdot g(m) ≥0 \quad m>m_0

ESEMPIO:

SiA $l(m) = 2m^2 - 3m$, ALLORA:

•
$$f(m) = \Omega (m^2)$$

• $f(m) \neq \Omega (m^3)$

NOTAZIONE O

L(m) = ()(g(m)) SE 3 C1, C2 > 0 € m ≥ 0 T.c. C, g(m) & (m) & C2. g(m) ¥ m > m.

SIA V(m) = 2 m2 + 3 m, ALLORA

- $l(m) = \Theta(m^2)$
- \$(m) ≠ ⊙ (m)
- $\psi(m) \neq \Theta(m^3)$

IMPLICAZIONI ASINTOTICHE

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = O(g(n))$$

$$f(n) = O(g(n))$$
 $f(n) = O(g(n))$

$$f(n) = \Theta(g(n)) \Rightarrow f(n) = \Omega(g(n))$$

$$f(n) = \Omega(g(n))$$
 $f(n) = \Theta(g(n))$

INFATTI ABBIAHO CHE:

$$f(n) = \Theta(g(n)) \Leftrightarrow f(n) = \Omega(g(n)) e f(n) = O(g(n))$$

NOTAZIONE 0-PICCOLO

$$O(g(m)) = \left\{ f(m) : \forall c > 0, \exists m, T.c. \forall m \ge m, o \ne f(m) \angle c \cdot g(m) \right\}$$

ATTENZIONE: NOTIANO CHE O(g(m)) C O(g(m))

NOTAZIONE W-PICCOLO

PATTENZIONE: NOTIANO CHE $\omega(g(m)) \subset \Omega(g(m))$

ANALOGIE

0	Ω	0	0	3
4	7	1	4	>

