Avertissement

Les calculatrices et documents sont interdits. La qualité de la rédaction sera un facteur important d'appréciation des copies. On invite donc le candidat à produire des raisonnements clairs, complets et concis. Le candidat peut utiliser les résultats énoncés dans les questions ou parties précédentes ; il veillera toutefois à préciser la référence du résultat utilisé.

Le but de ce problème est d'étudier le nombre de points à coordonnées entières contenus dans certaines parties de \mathbf{R}^d .

Les parties I, II et III du problème sont indépendantes les unes des autres.

Le sigle ♦ signale l'introduction dans le texte d'une définition, d'une hypothèse, d'une notation ou d'un rappel.

Notations

On note N l'ensemble des entiers positifs ou nuls, Z l'anneau des entiers relatifs, Q le corps des rationnels, R celui des nombres réels et C celui des complexes.

Pour tout nombre réel x, on note $\lfloor x \rfloor$ sa partie entière. Si X est un ensemble fini, $\operatorname{Card}(X)$ désigne son cardinal. Si X et Y sont des ensembles, on note

$$X - Y = \{ x \in X \mid x \notin Y \}.$$

Étant donné une partie X de \mathbf{R}^d et un nombre réel λ , on note

$$\lambda X = \{ y \in \mathbf{R}^d \mid \exists x \in X, y = \lambda x \}.$$

lack lack Une application $f: \mathbf N \to \mathbf Z$ sera dite polynomiale s'il existe un polynôme $P \in \mathbf C[T]$ tel que

$$f(n) = P(n)$$

pour tout $n \in \mathbb{N}$.

♦ Une application $f: \mathbf{N} \to \mathbf{Z}$ sera dite *quasi-polynomiale* s'il existe un entier N strictement positif et des polynômes $P_0, \ldots, P_{N-1} \in \mathbf{C}[T]$ tels que pour tout $n \in \mathbf{N}$ on ait

$$f(n) = P_{r_N(n)}(n)$$

où $r_N(n)$ désigne le reste de la division euclidienne de n par N.

Partie I

Un premier cas

Soit d un entier strictement positif et soient m_1, \ldots, m_d des entiers strictement positifs. Pour tout $n \in \mathbb{N}$, on pose

$$u_n = \text{Card}(\{(k_1, \dots, k_d) \in \mathbf{N}^d \mid \sum_{i=1}^d m_i k_i = n\})$$

et
$$v_n = \sum_{i=0}^n u_i$$
.

1. Démontrer que la somme et le produit de deux fonctions quasi-polynomiales sont des fonctions quasi-polynomiales.

2

- 2. (a) Déterminer la suite $(v_n)_{n\in\mathbb{N}}$ dans le cas où d=1.
 - (b) L'application $n \mapsto v_n$ est-elle quasi-polynomiale dans ce cas?
- 3. Pour $i \in \{1,\dots,d\}$, on pose $U_i = \sum_{k \in \mathbf{N}} T^{km_i}$ et on définit la série formelle

$$U = \sum_{n \in \mathbf{N}} u_n T^n \in \mathbf{Z}[[T]],$$

où les u_n ont été définis en début de partie.

- (a) Écrire U à l'aide des séries formelles U_i .
- (b) Déterminer le produit $U \times \prod_{i=1}^d (1 T^{m_i})$.
- **4.** On définit la série formelle $V = \sum_{n \in \mathbb{N}} v_n T^n$. Trouver une relation entre les séries formelles V et U.
- igoplus 1 La dérivée d'une série formelle $F = \sum_{n \in \mathbb{N}} a_n T^n$ est la série formelle $F' = \sum_{n \geqslant 1} n a_n T^{n-1}$. On pourra utiliser sans preuve la formule $(F_1 F_2)' = F_1' F_2 + F_1 F_2'$ pour des séries formelles F_1 et F_2 . Les dérivées successives d'une série formelle F sont obtenues en posant $F^{(0)} = F$ et en définissant $F^{(k+1)}$ comme la dérivée de la série $F^{(k)}$.
 - 5. On pose $G = \sum_{n \in \mathbb{N}} T^n$.
 - (a) Trouver une relation entre les séries formelles G^2 (carré de la série G) et G'.
 - (b) Soit $k \in \mathbb{N}$. Trouver une relation entre les séries G^{k+1} et $G^{(k)}$.
- (c) Trouver des expressions explicites pour les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ dans le cas où on a les égalités $m_1=\cdots=m_d=1$. Montrer dans ce cas particulier que la fonction $n\mapsto v_n$ est polynomiale.
- **6.** On revient au cas général. Démontrer que la fonction $v: \mathbf{N} \to \mathbf{Z}$ donnée par $n \mapsto v_n$ est quasi-polynomiale (on pourra utiliser la décomposition en éléments simples d'une fraction rationnelle).

Partie II

Étude en dimensions 1 et 2

1. Soient p et q des entiers strictement positifs et premiers entre eux. On pose x = p/q. Démontrer que la suite $(u_n)_{n \in \mathbb{N}}$ définie par

$$u_n = \operatorname{Card}(\mathbf{Z} \cap [0, nx]) - nx$$

pour $n \in \mathbb{N}$ est une suite périodique dont on déterminera une période.

2. Soient $a, b, c, d \in \mathbf{Z}$. On pose $A = (a, b) \in \mathbf{Z}^2$ et $B = (c, d) \in \mathbf{Z}^2$. On note [A, B] le segment de \mathbf{R}^2 d'extrémités A et B. Démontrer que

$$Card([A, B] \cap \mathbf{Z}^2) = pgcd(c - a, d - b) + 1.$$

igoplus Dans la suite de cette partie, on munit \mathbf{R}^2 de sa structure euclidienne usuelle et de la mesure usuelle, c'est-à-dire celle obtenue en faisant le produit des mesures de Lebesgue sur \mathbf{R} . On appellera polygone de \mathbf{R}^2 l'enveloppe convexe d'un ensemble fini de points. Si X est une partie de \mathbf{R}^2 , on note ∂X sa frontière, c'est-à-dire $\overline{X} - X^o$, où \overline{X} désigne l'adhérence de X et

 X^o son intérieur. Soit $\mathscr P$ un polygone de $\mathbf R^2$. On dit que $\mathscr P$ est un polygone à sommets entiers s'il est l'enveloppe convexe d'une partie finie de $\mathbf Z^2$.

igoplus Soit \mathscr{P} une partie compacte de \mathbf{R}^2 . On note $V(\mathscr{P})$ son aire. On dira que la partie \mathscr{P} vérifie la formule de Pick, si elle vérifie la formule

(1)
$$\operatorname{Card}(\mathscr{P} \cap \mathbf{Z}^2) = V(\mathscr{P}) + \frac{1}{2}\operatorname{Card}(\partial \mathscr{P} \cap \mathbf{Z}^2) + 1.$$

- **3.** (a) Soient $a, b, c, d \in \mathbf{Z}$ avec a < b et c < d. Le rectangle $[a, b] \times [c, d]$ vérifie-t-il la formule de Pick?
- (b) Soient a, b des entiers non nuls. Le triangle obtenu comme enveloppe convexe des points (0,0), (a,0) et (0,b) vérifie-t-il la formule de Pick?
 - 4. (a) Démontrer qu'un polygone est une partie compacte de \mathbb{R}^2 .
- (b) Soit $\mathscr P$ un polygone d'intérieur non vide. Démontrer que l'intérieur de $\mathscr P$ est dense dans $\mathscr P$.
- 5. Soient \mathscr{P}_1 (resp. \mathscr{P}_2) un polygone, enveloppe convexe d'une partie finie S_1 (resp. S_2) de \mathbf{Z}^2 . On suppose que les intérieurs de \mathscr{P}_1 et \mathscr{P}_2 sont non vides et que $\mathscr{P}_1 \cap \mathscr{P}_2$ est un segment [A,B] où A et B sont des éléments distincts de $S_1 \cap S_2$.
 - (a) Démontrer l'égalité $[A, B] = \partial \mathscr{P}_1 \cap \partial \mathscr{P}_2$.
- (b) Démontrer que \mathscr{P}_1 est contenu dans l'un des demi-plans fermés de frontière la droite (AB).
- (c) On suppose que \mathscr{P}_1 et \mathscr{P}_2 vérifient la formule de Pick. Démontrer qu'il en est de même pour $\mathscr{P}_1 \cup \mathscr{P}_2$.
- (d) On suppose que \mathscr{P}_1 et $\mathscr{P}_1 \cup \mathscr{P}_2$ vérifient la formule de Pick. Que peut-on en dire pour \mathscr{P}_2 ?
- **6.** Soient A, B et C trois points non alignés de \mathbf{R}^2 à coordonnées entières. Démontrer que l'enveloppe convexe de $\{A, B, C\}$ vérifie la formule de Pick.
- 7. Soit \mathscr{P} un polygone à sommets entiers et d'intérieur non vide. Soit S un ensemble de cardinal minimal dont \mathscr{P} est l'enveloppe convexe. On note N le cardinal de S.
- (a) Soit $A \in S$. Démontrer que A n'est pas barycentre à coefficients positifs de points de $S \{A\}$.
- (b) Soient A, B, C, D quatre points distincts de S. Soient (α, β, γ) le système de coordonnées barycentriques de D dans le repère affine (A, B, C) tel que $\alpha + \beta + \gamma = 1$. Démontrer qu'un et un seul des nombres α, β, γ est strictement négatif.
- (c) On suppose $N \ge 3$. Démontrer qu'on peut choisir une bijection $i \mapsto A_i$ de $\{1, \ldots, N\}$ sur S de sorte que A_1 soit le seul point de S dans un des deux demi-plans ouverts de frontière la droite (A_2A_3) (il est recommandé de faire un dessin).
- (d) On suppose $N \ge 4$. Soit M un point de \mathscr{P} qui n'appartient pas à l'enveloppe convexe de $\{A_2,\ldots,A_N\}$. Démontrer que M appartient à l'enveloppe convexe de $\{A_1,A_2,A_3\}$. (On pourra éventuellement écrire M comme barycentre à coefficients positifs des points A_1,\ldots,A_i avec i minimal.)

- (e) Démontrer que \mathscr{P} est la réunion de N-2 triangles dont les sommets appartiennent à S et dont les intérieurs sont non vides deux à deux disjoints.
 - 8. Soit \mathcal{P} un polygone à sommets entiers et d'intérieur non vide.
 - (a) Démontrer que ${\mathscr P}$ vérifie la formule de Pick.
- (b) Démontrer que l'application de N dans Z qui envoie un entier n sur $\operatorname{Card}(n\mathscr{P} \cap \mathbf{Z}^2)$ est polynomiale.

Partie III

Le cas d'un simplexe

Soit d un entier strictement positif. Soient A_1, \ldots, A_{d+1} des éléments de \mathbf{Q}^d . On suppose qu'il n'existe pas d'hyperplan affine de \mathbf{R}^d contenant l'ensemble $S = \{A_1, \ldots, A_{d+1}\}$. Soit \mathscr{S} l'enveloppe convexe de l'ensemble S. Pour tout $n \in \mathbf{N}$, on pose

$$w_n = \operatorname{Card}(n\mathscr{S} \cap \mathbf{Z}^d)$$

et on considère la série formelle

$$W = \sum_{n \in \mathbf{N}} w_n T^n.$$

- 1. Décrire l'ensemble des entiers $q \in \mathbf{Z}$ tels que $qA_i \in \mathbf{Z}^d$ pour tout i de $\{1, \dots, d+1\}$.
- igoplus On fixe un entier strictement positif q tel que $qA_i \in \mathbf{Z}^d$ pour $i \in \{1, \dots, d+1\}$. Soit $\widehat{\mathscr{S}}$ l'ensemble des $(x,t) \in \mathbf{R}^d \times \mathbf{R}$ tels qu'il existe un élément $(\lambda_1, \dots, \lambda_{d+1})$ de $[0,1]^{d+1}$ vérifiant la relation

$$(x,t) = \sum_{i=1}^{d+1} \lambda_i q(A_i, 1).$$

2. (a) Pour tout entier $n \in \mathbb{N}$ et tout $x \in n\mathscr{S}$ démontrer qu'il existe un unique élément $y \in \widehat{\mathscr{S}}$ et une unique famille $(n_1, \dots, n_{d+1}) \in \mathbb{N}^{d+1}$ tels que

$$(x,n) = y + \sum_{i=1}^{d+1} n_i q(A_i, 1).$$

- (b) On conserve les notations de la question (a). Démontrer que $x \in \mathbf{Z}^d$ si et seulement si $y \in \widehat{\mathscr{S}} \cap \mathbf{Z}^{d+1}$.
 - 3. Démontrer la relation

$$W = \sum_{(x,n)\in\widehat{\mathscr{S}}\cap(\mathbf{Z}^d\times\mathbf{Z})} T^n (1-T^q)^{-d-1}.$$

- 4. Démontrer que la fonction $w: \mathbf{N} \to \mathbf{Z}$ donnée par $n \mapsto w_n$ est quasi-polynomiale.
- 5. Démontrer qu'il existe une constante C telle que $w_n \leqslant 1 + Cn^d$ pour tout $n \in \mathbb{N}$.

Partie IV

Applications

Dans cette partie **K** désigne un corps commutatif. On se donne un entier strictement positif d. On appelle $mon \hat{o}me$ de $\mathbf{K}[X_1, \ldots, X_d]$ un élément de la forme $\prod_{i=1}^d X_i^{a_i}$ pour un d-uplet $\mathbf{a} = (a_1, \ldots, a_d) \in \mathbf{N}^d$. On note M l'ensemble de ces mon \hat{o} mes.

Dans la suite, on note \mathbf{N}^* l'ensemble des entiers strictement positifs et on fixe jusqu'à la fin du problème $\mathbf{m}=(m_1,\ldots,m_d)\in\mathbf{N}^{*d}$.

Pour tout $P \in \mathbf{K}[X_1, \dots, X_d]$, on note

$$\pi_{\boldsymbol{m}}(P) = \deg(P(T^{m_1}, \dots, T^{m_d}))$$

avec la convention usuelle que $\deg(0) = -\infty$. Pour $n \in \mathbb{N}$, on note $H_{m,n}$ l'ensemble des polynômes $P \in \mathbb{C}[X_1, \dots, X_d]$ tels qu'on ait la relation

$$P(T^{m_1}X_1, \dots, T^{m_d}X_d) = T^n P(X_1, \dots, X_d)$$

dans l'anneau $\mathbf{K}[X_1,\ldots,X_d][T]$.

- **1.** (a) Soit P un monôme de $\mathbf{K}[X_1,\ldots,X_d]$. Existe-t-il un $n\in\mathbf{N}$ tel que P appartienne à $H_{m,n}$?
- (b) Démontrer que $H_{m,n}$ est un K-espace vectoriel de dimension finie dont on donnera une base.
- (c) Démontrer que l'application de N dans N qui à un entier n associe la dimension de $H_{m,n}$ est quasi-polynomiale.
- (d) Démontrer que $\mathbf{K}[X_1,\dots,X_d]$ est la somme directe des sous-espaces $H_{m,n}$ où n décrit $\mathbf{N}.$
- lack Jusqu'à la fin de ce problème, on note <math>G un groupe cyclique de cardinal N et ξ une racine primitive N-ème de l'unité dans le corps ${\bf C}$ des complexes. Soit g_0 un générateur de G.
- 2. Soit V un espace vectoriel de dimension d sur \mathbb{C} et soit π une représentation de G dans V, c'est-à-dire un homomorphisme de groupes $\pi: G \to \mathrm{GL}(V)$. Démontrer qu'il existe une base (e_1, \ldots, e_d) de V et des entiers $\alpha_1, \ldots, \alpha_d$ tels que $\pi(g_0)(e_i) = \xi^{\alpha_i} e_i$ pour $i \in \{1, \ldots, d\}$.
- 3. Pour tout polynôme $P \in \mathbf{C}[X_1,\ldots,X_d]$ et tout $\boldsymbol{x}=(x_1,\ldots,x_d) \in \mathbf{C}^d$ on pose $P(\boldsymbol{x})=P(x_1,\ldots,x_d)$. Soit u un automorphisme du \mathbf{C} -espace vectoriel \mathbf{C}^d . Démontrer qu'il existe un unique automorphisme \widetilde{u} de la \mathbf{C} -algèbre $\mathbf{C}[X_1,\ldots,X_d]$ tel que

$$\widetilde{u}(P)(u(\boldsymbol{x})) = P(\boldsymbol{x})$$

pour $P \in \mathbf{C}[X_1, \dots, X_d]$ et $\mathbf{x} \in \mathbf{C}^d$. Comparer les degrés totaux de P et $\widetilde{u}(P)$.

 $igoplus ext{Soit } (e_1,\ldots,e_d)$ la base usuelle de \mathbf{C}^d . On définit une représentation π de G dans \mathbf{C}^d par la relation $\pi(g_0)(e_i) = \xi^{m_i}e_i$. On note $\tau = \pi(g_0)$ l'automorphisme de $\mathbf{C}[X_1,\ldots,X_d]$ donné par la question précédente et on définit

$$A = \{ P \in \mathbf{C}[X_1, \dots, X_d] \mid \tau(P) = P \}.$$

6

- 4. (a) Démontrer que A est une sous-algèbre de $\mathbf{C}[X_1,\dots,X_d].$
 - (b) Caractériser les monômes appartenant à A.

- (c) Démontrer que A est la somme directe des sous-espaces vectoriels $A\cap H_{m,n}$ où n décrit \mathbf{N} .
- (d) Démontrer que l'application qui envoie un entier n sur la dimension de $A \cap H_{m,n}$ est quasi-polynomiale.
- 5. On note n_0 le plus petit entier strictement positif pour lequel il existe un monôme $P \in A$ avec $\pi_{\boldsymbol{m}}(P) = n_0$. Soit S l'ensemble

$$\{\,P\in A\cap M\mid \pi_{\boldsymbol{m}}(P)=n_0\,\}.$$

On note s le cardinal de S et u_1, \ldots, u_s les éléments de S.

- (a) Démontrer que u_1, \dots, u_s sont des éléments irréductibles de A.
- (b) On suppose que s>d. Démontrer qu'il existe deux s-uplets distincts $(\alpha_1,\ldots,\alpha_s)$ et (β_1,\ldots,β_s) dans \mathbf{N}^s tels que

$$\prod_{i=1}^{s} u_i^{\alpha_i} = \prod_{i=1}^{s} u_i^{\beta_i}.$$

(c) On continue à supposer s>d. L'anneau A est-il factoriel? Peut-il exister un entier strictement positif ℓ et un isomorphisme de C-algèbres de $\mathbf{C}[X_1,\ldots,X_\ell]$ sur A?