Complied using \(\text{UT}_EX \)

A Brief Summary of Statistics Course

统计学课程知识总结

Vincent

2021年4月1日

目录

1	概率	^室 论部分	4
	1.1	Some Important Distributions	4
	1.2	Probability and Probability Model	4
		1.2.1 Sample and σ -Field	4
		1.2.2 Axioms of Probability	5
		1.2.3 Conditional Probability	6
	1.3	Properties of Random Variable and Vector	6
		1.3.1 Random Variable	6
		1.3.2 Random Vector	7
	1.4	Properties of E , σ^2 and cov	8
		1.4.1 Expection	8
		1.4.2 Variance	8
		1.4.3 Covariance and Correlation	9
	1.5	PGF, MGF and C.F	10
		1.5.1 Probability Generating Function	10
		1.5.2 Moment Generating Function	10
		1.5.3 Characteristic Function	11
	1.6	Convergence and Limit Distribution	11
		1.6.1 Convergence Mode	11
		1.6.2 Law of Large Number & Central Limit Theorem	12
	1.7	Inequalities	12
	1.8	Multivariate Normal Distribution	13
		1.8.1 Linear Transform	13
		1.8.2 Distributions of Function of Normal Variable: χ^2 , $t \& F$	14

目录 2

2	统计	推断部	S分	16
	2.1	Statist	ical Model and Statistics	16
		2.1.1	Statistics	16
		2.1.2	Exponential Family	17
		2.1.3	Sufficient and Complete Statistics	18
	2.2	Point l	Estimation	19
		2.2.1	Optimal Criterion	19
		2.2.2	Method of Moments	20
		2.2.3	Maximum Likelihood Estimation	21
		2.2.4	Uniformly Minimum Variance Unbiased Estimator	22
		2.2.5	MoM and MLE in Linear Regression	24
		2.2.6	Kernel Density Estimation	27
	2.3	Interva	al Estimation	27
		2.3.1	Confidence Interval	27
		2.3.2	Pivot Variable Method	28
		2.3.3	Confidence Interval for Common Distributions	29
		2.3.4	Fisher Fiducial Argument*	31
	2.4	Hypot	hesis Testing	31
		2.4.1	Basic Concepts	31
		2.4.2	Hypothesis Testing of Common Distributions	33
		2.4.3	Likelihood Ratio Test	35
		2.4.4	Uniformly Most Powerful Test	35
		2.4.5	Duality of Hypothesis Testing and Interval Estimation	36
		2.4.6	Introduction to Non-Parametric Hypothesis Testing	37
3	结性	16000000000000000000000000000000000000	· ↑析部分	42
	3.1		Regression Model	42
		3.1.1	Data for simple linear regression	42
		3.1.2	The Ordinary Least Square Estimation	43
		3.1.3	Statistical Inference to β_0, β_1	44
		3.1.4	Prediction to Y_h	45
	3.2		sis of Variance	46
	3.3	•	Assumption and Diagnostics	47
4			·析部分	50
	4.1		variate Data	50
		4.1.1	Matrix Representation	50

目录

	4.1.2	Review: Some Matrix Notation & Lemma	53
	4.1.3	Useful Inequalities	55
4.2	Statisti	cal Inference to Multivariate Population	56
4.3	Multiv	ariate Normal Distribution	56
	4.3.1	MLE of Multivariate Normal	57
	4.3.2	Sampling distribution of $ar{X}$ and S	57

Chapter. I 概率论部分

Chapter Overview

· Basic axioms

Cover: Basic axioms, random events, σ -field; random variable/vector and their properties, some special distributions; $E \& \sigma^2 \& cov$ and their properties; probability-generating/moment-generating/characteristic function; weak/strong law of large number, central limit thm.; intro. to multivariate normal distribution.

Section 1.1 Some Important Distributions

X	$p_X(k)//f_X(x)$	E	σ^2	PGF	MGF
B(p)		p	pq		$q + pe^s$
B(n,p)	$C_n^k p^k (1-p)^{n-k}$	np	npq		$(q + pe^s)^n$
G(p)	$(1-p)^{k-1}p$	$\frac{1}{p}$	$\frac{q}{p^2}$	$\frac{ps}{1-qs}$	$\frac{pe^s}{1-ae^s}$
H(n,M,N)	$\frac{\frac{C_M^k C_{N-M}^{n-k}}{C_N^n}}{\frac{\lambda^k}{k!} e^{-\lambda}}$	$n\frac{M}{N}$	$\frac{nM(N-n)(N-M)}{N^2(n-1)}$	1-qs	$1-qe^{-}$
$P(\lambda)$	$\frac{\lambda^k}{k!}e^{-\lambda}$	λ	λ	$e^{\lambda(s-1)}$	$e^{\lambda(e^s-1)}$
U(a,b)	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$		$\frac{e^{sb} - e^{sa}}{(b-a)s}$
$N(\mu,\sigma^2)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$				$e^{\frac{\sigma^2 s^2}{2} + \mu s}$
$\epsilon(\lambda)$	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$		$\frac{\lambda}{\lambda - s}$
$\Gamma(\alpha,\lambda)$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $\lambda e^{-\lambda x}$ $\frac{\lambda^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x}$ $\frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}$ $\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}e^{-\frac{x}{2}}$ $\Gamma(\frac{\nu+1}{2})$	$\frac{\widehat{\alpha}}{\lambda}$	$\frac{\alpha}{\lambda^2}$		
$B(\alpha, \beta)$	$\frac{1}{B(\alpha,\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$		
χ^2_n	$\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}e^{-\frac{x}{2}}$	n	2n		
$t_{ u}$	$\sqrt{\frac{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})}{\nu}} \left(1 + \frac{1}{\nu}\right)^{-2}$	U	$\overline{\nu-2}$		
F(m,n)	$\frac{\Gamma(\frac{m+n}{2})}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})} \frac{m^{\frac{m}{2}}n^{\frac{n}{2}}x^{\frac{m}{2}-1}}{(mx+n)^{\frac{m+n}{2}}}$	$\frac{n}{n-2}$	$\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}$		

Definition of PGF, MGF, CF see section 1.5.

More Properties of χ^2 , t, F see section 1.8.2.

Section 1.2 Probability and Probability Model

What is **Probability**?

A 'belief' in the chance of an event occurring?

1.2.1 Sample and σ -Field

Def. sample space Ω : The set of all possible outcomes of one particular experiment.

Def. \mathscr{F} a σ -field(or a σ -algebra) as a collection of some subsets of Ω if

- $\Omega \in \mathscr{F}$
- if $A \in \mathscr{F}$, then $A^C \in \mathscr{F}$
- if $A_n \in \mathscr{F}$, then $\bigcup_{n=1}^{\infty} A_n \in \mathscr{F}$

And (Ω, \mathcal{F}) is a measurable space.

1.2.2 Axioms of Probability

P is probability measure (or probability function) defined on (Ω, \mathcal{F}) , satisfying

Nonnegativity

$$P(A) \ge 0 \quad \forall A \in \Omega$$

Normalization

$$P(\Omega) = 1$$

· Countable Additivity

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots \quad (A_i \parallel A_j \quad \forall i \neq j)$$

Then (Ω, \mathcal{F}, P) is probability space.

Properties of Probability:

· Monotonicity

$$P(A) \le P(B)$$
 for $A \subset B$

• Finite Subadditivity (Boole Inequality)

$$P(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} P(A_i)$$

• Inclusion-Exclusion Formula

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{1 \le i \le n} P(A_i) - \sum_{1 \le i < j \le n} P(A_i \cap A_j)$$

$$+ \sum_{1 \le i < j < k \le n} P(A_i \cap A_j \cap A_k) - \cdots$$

$$+ (-1)^{n-1} P(A_1 \cap A_2 \cap \cdots \cap A_n)$$

• Borel-Cantelli Lemma

$$\sum_{n=1}^{\infty} P(A_n) < \infty \Rightarrow P(\lim_{n \to \infty} \sup A_n) = 0$$

$$\sum_{n=1}^{\infty} P(A_n) = \infty \Rightarrow P(\lim_{n \to \infty} \sup A_n) = 1 \quad \text{if A_i independent}$$

1.2.3 Conditional Probability

Def. Conditional Probability of B given A:

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

(Actually a change of σ -field from Ω to B)

Application of conditional probability:

• Multiplication Formula

$$P(\bigcap_{i=1}^{n} A_i) = P(A_1) \prod_{i=2}^{n} P(A_i | A_1 \cap A_2 \cap \dots \cap A_{i-1})$$

• Total Probability Thm.

$$P(B) = \sum_{i=1}^{n} P(A_i)P(B|A_i)$$

where $\{A_i\}$ is a partition of Ω .

· Bayes's Rule

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{\sum_{j=1}^{n} P(A_j)P(B|A_j)}$$

where $\{A_i\}$ is a partition of Ω .

• Statistically Independence

$$P(A \cap B) = P(A)P(B)$$
, for $A \parallel B$

Section 1.3 Properties of Random Variable and Vector

1.3.1 Random Variable

Def. Random Variable: a **function** X defined on sample space Ω , mapping from Ω to some $\mathscr{X} \in \mathbb{R}$. Then def. Cumulative Distribution Function (CDF).

$$F_X(x) = P(X \le x)$$

For Discrete case, consider CDF as right-continuity.

• PMF: $p_X(x) = F_X(x^+) - F_X(x^-) \qquad \qquad f_X(x) = \frac{\mathrm{d} F_X(x)}{\mathrm{d} x}$

• Indicator function:

$$I_{x \in A}(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

• Convolution

$$-W = X + Y$$

$$f_W(w) = \int_{-\infty}^{\infty} f_X(x) f_Y(w - x) dx$$

$$-V = X - Y$$

$$f_V(v) = \int_{-\infty}^{\infty} f_X(x) f_Y(x - v) dx$$

$$-Z = XY$$

$$f_Z(z) = \int_{-\infty}^{\infty} \frac{1}{|x|} f_X(x) f_Y(\frac{z}{x}) dx$$

· Order Statistics

Def $X_{(1)}, X_{(2)}, \cdots, X_{(n)}$ as order statistics of \vec{X}

$$g_{X_{(i)}} = n! \prod f(x_i)$$
 for $x_1 < x_2 \cdots < x_n$

PDF of $X_{(k)}$

$$g_k(x_k) = nC_{n-1}^{k-1}[F(x_k)]^{k-1}[1 - F(x_k)]^{n-k}f(x_k)$$

• p-fractile

$$\xi_p = F^{-1}(p) = \inf\{x | F(x) \ge p\}$$

1.3.2 Random Vector

A general case of random variable.

n-dimension Random Vector $\vec{X} = (X_1, X_2, \dots, X_n)$ defined on (Ω, \mathcal{F}, P) .

CDF $F(x_1, ..., x_n)$ defined on \mathbb{R}^n :

$$F(x_1,...,x_n) = P(X_1 \le x_1,...,X_n \le x_n)$$

Joint PDF of random vector:

$$f(x_1, \dots, x_n) = \frac{\partial^n F(x_1, \dots, x_n)}{\partial x_1 \dots \partial x_n}$$

k-dimensional Marginal Distribution: For $1 \leq k < n$ and index set $S_k = \{i_1, \dots, i_k\}$, distribution of $\vec{X} = (X_{i_1}, X_{i_2}, \dots, X_{i_k})$

$$F_{S_k}(x_{i_1}, X_{i_2} \le x_{i_2}, \dots, x_{i_k}) = P(X_{i_1} \le x_{i_1}, \dots, X_{i_k} \le x_{i_k}; X_{i_{k+1}}, \dots, X_{i_n} \le \infty)$$

Marginal distribution:

$$g_{S_k}(x_{i_1},\ldots,x_{i_k}) = \int_{\mathbb{R}^{n-k}} f(x_1,\ldots,x_n) dx_{i_{k+1}} \ldots dx_{j_n} = \frac{\partial^{n-k} F(x_1,\ldots,x_n)}{\partial x_{i_{k+1}} \ldots \partial x_{i_n}}$$

Δ Function of r.v.

For $\vec{X} = (X_1, X_2, \cdots, X_n)$ with PDF $f(\vec{X})$ and define

$$\vec{Y} = (Y_1, Y_2, \dots, Y_n) = (y_1(\vec{X}), y_2(\vec{X}), \dots, y_n(\vec{X}))$$

with inverse mapping

$$\vec{X} = (X_1, X_2, \cdots, X_n) = (x_1(\vec{Y}), x_2(\vec{Y}), \cdots, x_n(\vec{Y}))$$

then

$$g(\vec{Y}) = f(x_1(\vec{Y}), x_2(\vec{Y}), \cdots, x_n(\vec{Y})) \left| \frac{\partial \vec{X}}{\partial \vec{Y}} \right| I_{D_Y}$$

(Intuitively: $g(\vec{Y})d\vec{Y} = dP = f(\vec{X})d\vec{X}$)

Section 1.4 Properties of E, σ^2 and cov

Expectation and Variance of common distributions see sec. 1.1.

1.4.1 Expection

Expectation of r.v. g(X) def.:

$$E[g(X)] = \begin{cases} \int_{\Omega} g(x) f_X(x) \mathrm{d}x = \int_{\Omega} g(x) \mathrm{d}F(x) \\ \sum_{\Omega} g(X) f_X(x) \end{cases}$$

Properties of expectation $E(\cdot)$:

• Linearity of Expectation

$$E(aX + bY) = aE(X) + bE(Y)$$

• Conditional Expectation

$$E(X|A) = \frac{E(XI_A)}{P(A)}$$

Note: if take A as Y is also a r.v. then

$$m(Y) = E(X|Y) = \int x f_{X|Y}(x) dx$$

is actually a function of Y

• Law of Total Expectation

$$E\{E[g(X)|Y]\} = E[g(X)]$$

• r.v.& Event

$$P(A|X) = E(I_A|X) \Rightarrow E[P(A|X)] = E(I_A) = P(A)$$

.

$$E[h(Y)g(X)|Y] = h(Y)E[g(X)|Y]$$

1.4.2 Variance

Variance of r.v. X:

$$var(X) = E[(X - E(X))^2] = E(X^2) - (E(X))^2$$

(sometimes denoted as σ_X^2 .)

Properties:

• Linear combination of Variance

$$var(aX + b) = a^2 var(X)$$

• Conditional Variance

$$var(X|Y) = E[X - E(X|Y)]^{2}|Y$$

· Law of Total Variance

$$var(X) = E[var(X|Y)] + var[E(X|Y)]$$

9

Standard Deviation def. as:

$$\sigma_X = \sqrt{var(X)}$$

Then can construct Standardization of r.v.

$$Y = \frac{X - E(X)}{\sqrt{var(X)}}$$

1.4.3 Covariance and Correlation

Covariance of r.v. X and Y:

$$cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)] = E(XY) - E(X)E(Y)$$

And (Pearson's) Correlation Coefficient

$$\rho_{X,Y} = corr(X,Y) = \frac{cov(X,Y)}{\sqrt{var(X)var(Y)}}$$

Remark: correlation ⇒ cause and effect.

Properties:

• Bilinear of Covariance

$$cov(X + Y, Z) = cov(X, Z) + cov(Y, Z)$$
$$cov(X, Y + Z) = cov(X, Y) + cov(X, Z)$$

• Variance and Covariance

$$var(X+Y) = var(X) + var(Y) + 2cov(X,Y)$$
(1.1)

• Covariance Matrix

Def $\Sigma = E[(X - \mu)(X - \mu)^T] = \{\sigma_{ij}\}$ (where X should be considered as a column vector)

$$\Sigma = \begin{pmatrix} var(X_1) & cov(X_1, X_2) & \dots & cov(X_1, X_n) \\ cov(X_2, X_1) & var(X_2) & \dots & cov(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ cov(X_n, X_1) & cov(X_n, X_2) & \dots & var(X_n) \end{pmatrix}$$

$$(1.2)$$

Attachment: Independence:

$$X_{i}||X_{j} \Rightarrow \begin{cases} f(x_{1}, x_{2}, \cdots, x_{n}) = \prod f(x_{i}) \\ F(x_{1}, x_{2}, \cdots, x_{n}) = \prod F(x_{i}) \\ E(\prod X_{i}) = \prod E(X_{i}) \\ var(\sum X_{i}) = \sum var(X_{i}) \end{cases}$$

Section 1.5 PGF, MGF and C.F

Generating Function: Representation of P in function space. $P \Leftrightarrow$ Generating Function.

1.5.1 Probability Generating Function

PGF: used for non-negative, integer X

$$g(s) = E(s^X) = \sum_{i=0}^{\infty} s^j P(X=j), s \in [-1, 1]$$

Properties

•
$$P(X = k) = \frac{g^{(k)}(0)}{k!}$$

•
$$E(X) = g^{(1)}(1)$$

•
$$var(X) = g^{(2)}(1) + g^{(1)}(1) - [g^{(1)}(1)]^2$$

• For
$$X_1, X_2, \dots, X_n$$
 independent with $g_i(s) = E(s^{X_i}), Y = \sum_{i=1}^n X_i$, then

$$g_Y(s) = \prod_{i=1}^n g_i(s), s \in [-1, 1]$$

• For X_i i.i.d with $\psi(s)=E(s^{X_i}),$ Y with $G(s)=E(s^Y),$ $W=X_1+X_2+\cdots+X_Y,$ then

$$g_W(s) = G[\psi(s)]$$

• 2-Dimensional PGF of (X, Y)

$$g(s,t) = E(s^X t^Y) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} P_{(X,Y)}(X=i, Y=j) s^i t^j, \ s, t \in [-1, 1]$$

1.5.2 Moment Generating Function

MGF:

$$M_X(s) = E(e^{sX}) = \begin{cases} \sum_j e^{sx} P(X = x_j) \\ \int_{-\infty}^{\infty} e^{sx} f_X(x) dx \end{cases}$$

Properties

- MGF of Y = aX + b: $M_Y(s) = e^{sb}M(sa)$
- $E(X^k) = M^{(k)}(0)$
- $P(X=0) = \lim_{s \to -\infty} M(s)$
- For X_1, X_2, \dots, X_n independent with $M_{X_i}(s) = E(e^{sX_i}), Y = \sum_{i=1}^n X_i$, then

$$M_Y(s) = \prod_{i=1}^n M_{X_i}(s)$$

1.5.3 Characteristic Function

C.F is actually the Fourier Transform of f.

$$\phi(t) = E(e^{itX}) = \int_{-\infty}^{\infty} e^{itx} f_X(x) dx$$

Properties

• if $E(|X|^k) < \infty$, then

$$\phi^{(k)}(t) = i^k E(X^k e^{itX}) \qquad \phi^{(k)}(0) = i^k E(X^k)$$

• For X_1, X_2, \dots, X_n independent with $\phi_{X_i}(t) = E(e^{itX_i}), Y = \sum_{i=1}^n X_i$, then

$$\phi_Y(t) = \prod_{i=1}^n \phi_{X_i}(t)$$

• Inverse (Fourier) Transform

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi(t) dt$$

Section 1.6 Convergence and Limit Distribution

1.6.1 Convergence Mode

$$\begin{cases} \text{Convergence in Distribution} & X_n \xrightarrow{\mathscr{L}} X : \lim_{n \to \infty} F_n(x) = F(x) \\ \text{Convergence in Probability} & X_n \xrightarrow{p} X : \lim_{n \to \infty} P(|X_n - X|) \ge \varepsilon) = 0 \,, \forall \varepsilon > 0 \\ \text{Almost Sure Convergence} & X_n \xrightarrow{\text{a.s.}} X : P(\lim_{n \to \infty} X_n = X) = 1 \\ L_p \text{ Convergence} & X_n \xrightarrow{L_p} X : \lim_{n \to \infty} E(|X_n - X|^p) = 0 \end{cases}$$

Relations between convergence:

Useful Thm.:

• Continuous Mapping Thm.: For continuous function $g(\cdot)$

1.
$$X_n \xrightarrow{\text{a.s.}} X \Rightarrow g(X_n) \xrightarrow{\text{a.s.}} g(X)$$

2.
$$X_n \xrightarrow{p} X \Rightarrow g(X_n) \xrightarrow{p} g(X)$$

3.
$$X_n \xrightarrow{\mathscr{L}} X \Rightarrow g(X_n) \xrightarrow{\mathscr{L}} g(X)$$

 • Slutsky's Thm.: For $X_n \xrightarrow{\mathscr{L}} X, Y_n \xrightarrow{p} c$

1.
$$X_n + Y_n \xrightarrow{\mathscr{L}} X + c$$

2.
$$X_n Y_n \xrightarrow{\mathscr{L}} cX$$

3.
$$X_n/Y_n \xrightarrow{\mathscr{L}} X/c$$

· Continuity Thm.

$$\lim_{n \to \infty} \phi_n(t) = \varphi(t) \Leftrightarrow X_n \xrightarrow{\mathscr{L}} X$$

1.6.2 Law of Large Number & Central Limit Theorem

• WLLN

$$\frac{1}{n}\sum X_i \xrightarrow{p} E(X_1)$$

• SLLN

$$\frac{1}{n} \sum X_i \xrightarrow{\text{a.s.}} C$$

• CLT

$$\frac{1}{\sigma\sqrt{n}}\sum (X_k - \mu) \xrightarrow{\mathscr{L}} N(0, 1)$$

• de Moivre-Laplace Thm.

$$P(k \le S_n \le m) \approx \Phi(\frac{m + 0.5 - np}{\sqrt{npq}}) - \Phi(\frac{k - 0.5 - np}{\sqrt{npq}})$$

• Stirling Eqa

$$\frac{\lambda^k}{k!}e^{-\lambda} \approx \frac{1}{\sqrt{\lambda}\sqrt{2\pi}}e^{-\frac{(k-\lambda)^2}{2\lambda}} \xrightarrow[\lambda=n]{k=n} n! \approx \sqrt{2\pi n} (\frac{n}{e})^n$$

Section 1.7 Inequalities

· Cauchy-Schwarz Inequality

$$|E(XY)| \le \sqrt{E(X^2)E(Y^2)}$$

• Bonferroni Inequality

$$P(\bigcup_{i=1}^{n} A_i) \ge \sum_{1 \le i \le n} P(A_i) + \sum_{1 \le i < j \le n} P(A_i \cap A_j)$$

• Markov Inequality

$$P(|X| \ge \epsilon) \le \frac{E(|X|^{\alpha})}{\epsilon^{\alpha}}$$

Chebyshev Inequality

$$P(|X - E(X)| \ge \epsilon) \le \frac{var(X)}{\epsilon^2}$$

• Jensen Inequality: For convex function g(x):

$$E[g(X)] \ge g(E(X))$$

Section 1.8 Multivariate Normal Distribution

For X_1, X_2, \cdots, X_n independent and $X_k \sim N(\mu_k, \sigma_k^2), \ k = 1, \cdots, n, T = \sum_{k=1}^n c_k X_k, (c_k \text{ const}), \text{ then}$

$$T \sim N(\sum_{k=1}^{n} c_k \mu_k, \sum_{k=1}^{n} c_k^2 \sigma_k^2)$$

Deduction in some special cases:

• Given $\mu_1 = \mu_2 = \dots = \mu_n = \mu$, $\sigma_1^2 = \sigma_2^2 = \dots = \sigma_n^2 = \sigma^2$, i.e. X_k i.i.d., then

$$T \sim N(\mu \sum_{k=1}^{n} c_k, \sigma^2 \sum_{k=1}^{n} c_k^2)$$
 (1.3)

• Further take $c_1=c_2=\cdots=c_n=\frac{1}{n},$ i.e. $T=\sum_{k=1}^n X_k/n=\bar{X},$ then

$$T = \bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

1.8.1 Linear Transform

First consider $\epsilon_1, \epsilon_2, \cdots, \epsilon_m$ i.i.d. $\sim N(0,1), n \times 1$ const column vector $\vec{\mu}, n \times m$ const matrix $\mathbf{B} = \{b_{ij}\},$ def. $X_i = \sum_{i=1}^m b_{ij} \epsilon_j$, i.e.

$$\vec{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nm} \end{pmatrix} \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_m \end{pmatrix} + \vec{\mu}$$

We have: $\vec{X} \sim N(\vec{\mu}, \Sigma)$, where Σ , as defined in eqa.1.2 is

$$\Sigma = E[(\vec{X} - \vec{\mu})(\vec{X} - \vec{\mu})^T] = \mathbf{B}\mathbf{B}^T = \begin{pmatrix} var(X_1) & cov(X_1, X_2) & \dots & cov(X_1, X_n) \\ cov(X_2, X_1) & var(X_2) & \dots & cov(X_2, X_n) \\ \vdots & & \vdots & \ddots & \vdots \\ cov(X_n, X_1) & cov(X_n, X_2) & \dots & var(X_n) \end{pmatrix} = \{\sigma_{ij}\}$$

Furthur Consider $\vec{Y}=(Y_1,\cdots,Y_n)^T,$ $n\times n$ const square matrix $\mathbf{A}=\{a_{ij}\}$ and def. $\vec{Y}=\mathbf{A}\vec{X}$ i.e.

$$\begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{pmatrix}$$

Then $\vec{Y} \sim N(\mathbf{A}\vec{\mu}, \mathbf{A}\Sigma\mathbf{A}^T)$

Special case: X_1, \dots, X_n i.i.d. $\sim N(\mu, \sigma^2), \vec{X} = (X_1, \dots, X_n)^T$,

$$E(Y_i) = \mu \sum_{k=1}^{n} a_{ik}$$
$$var(Y_i) = \sigma^2 \sum_{k=1}^{n} a_{ik}^2$$
$$cov(Y_i, Y_j) = \sigma^2 \sum_{k=1}^{n} a_{ik} a_{jk}$$

Specially when $\mathbf{A} = \{a_{ij}\}$ orthonormal, we have Y_1, \cdots, Y_n independent

$$Y_i \sim N(\mu \sum_{k=1}^n a_{ik}, \sigma^2)$$

1.8.2 Distributions of Function of Normal Variable: χ^2 , t & F

Consider $X_1, X_2, ..., X_n$ i.i.d. $\sim N(0, 1); Y, Y_1, Y_2, ..., Y_m$ i.i.d. $\sim N(0, 1)$

• χ^2 Distribution: Def. χ^2 distribution with degree of freedom n:

$$\xi = \sum_{i=1}^{n} X_i^2 \sim \chi_n^2$$

PDF of χ_n^2 :

$$g_n(x) = \frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2} e^{-x/2} I_{x>0}$$

Properties

- E and var of $\xi \sim \chi_n^2$

$$E(\xi) = n$$
 $var(\xi) = 2n$

– For independent $\xi_i \sim \chi^2_{n_i}, \ i=1,2,\ldots,k$:

$$\xi_0 = \sum_{i=1}^k \xi_i \sim \chi_{n_1 + \dots + n_k}^2$$

– Denoted as $\Gamma(\alpha, \lambda)$:

$$\xi = \sum_{i=1}^{n} X_i \sim \Gamma(\frac{n}{2}, \frac{1}{2}) = \chi_n^2$$

• t Distribution: Def. t distribution with degree of freedom n:

$$T = \frac{Y}{\sqrt{\frac{\sum_{i=1}^{n} X_i^2}{n}}} = \frac{Y}{\sqrt{\frac{\xi}{n}}} \sim t_n$$

(Usually take ν instead of n)

PDF of t_{ν} :

$$t_{\nu}(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\nu\pi}} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

Denote: Upper α -fractile of t_{ν} , satisfies $P(T \geq c) = \alpha$:

$$c = t_{\nu,\alpha}$$

(Similar for χ^2_n and $F_{m,n}$ etc.)

• F Distribution: Def. F distribution with degree of freedom m and n:

$$F = \frac{\sum_{i=1}^{m} Y_i}{\sum_{i=1}^{n} X_i} \sim F_{m,n}$$

PDF of $F_{m,n}$:

$$f_{m,n}(x) = \frac{\Gamma(\frac{m+n}{2})m^{\frac{m}{2}}n^{\frac{n}{2}}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})}x^{\frac{m}{2}-1}(mx+n)^{-\frac{m+n}{2}}I_{x>0}$$

Properties

- If
$$Z \sim F_{m,n}$$
, then $\frac{1}{Z} \sim F_{n,m}$.

– If
$$T \sim t_n$$
, then $T^2 \sim F_{1,n}$

$$-F_{m,n,1-\alpha} = \frac{1}{F_{n,m,\alpha}}$$

- ☐ Some useful Lemma (uesd in statistic inference, see section 2.3.3):
 - For X_1, X_2, \dots, X_n independent with $X_i \sim N(\mu_i, \sigma_i^2)$, then

$$\sum_{i=1}^{n} \left(\frac{X_i - \mu_i}{\sigma_i} \right)^2 \sim \chi_n^2$$

• For X_1, X_2, \ldots, X_n i.i.d. $\sim N(\mu, \sigma^2)$, then

$$T = \frac{\sqrt{n}(\bar{X} - \mu)}{S} \sim t_{n-1}$$

For X_1, X_2, \ldots, X_m i.i.d. $\sim N(\mu_1, \sigma^2), Y_1, Y_2, \ldots, Y_n$ i.i.d. $\sim N(\mu_2, \sigma^2),$ denote sample pooled variance $S^2_\omega = \frac{(m-1)S_1^2 + (n-1)S_2^2}{m+n-2},$ then

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{S_{\omega}} \cdot \sqrt{\frac{mn}{m+n}} \sim t_{m+n-2}$$

• For X_1, X_2, \ldots, X_m i.i.d. $\sim N(\mu, \sigma^2), Y_1, Y_2, \ldots, Y_n$ i.i.d. $\sim N(\mu_2, \sigma^2)$, then

$$T = \frac{S_1^2}{S_2^2} \frac{\sigma_2^2}{\sigma_1^2} \sim F_{m-1, n-1}$$

• For X_1, X_2, \dots, X_n i.i.d. $\sim \epsilon(\lambda)$, then

$$2\lambda n\bar{X} = 2\lambda \sum_{i=1}^{n} X_i \sim \chi_{2n}^2$$

Remark: for $X_i \sim \epsilon(\lambda) = \Gamma(1,\lambda) \Rightarrow 2\lambda \sum_{i=1}^n X_i \sim \Gamma(n,1/2) = \chi^2_{2n}$.

Chapter. II 统计推断部分

Statistical Inference: use sample to estimate population.

Two main tasks of Statistical Inference:

• Parameter Estimation

- Point Estimation: 2.2

- Interval Estimation: 2.3

• Hypothesis Testing: 2.4

Section 2.1 Statistical Model and Statistics

Random sample comes from population X. In parametric model case, we have population distribution family:

$$\mathscr{F} = \{ f(x; \vec{\theta}) | \vec{\theta} \in \Theta \}$$

where parameter $\vec{\theta}$ reflect some quantities of population (e.g. mean, variance, etc.), each $\vec{\theta}$ corresponds to a distribution of population X.

Sample space: Def. as $\mathscr{X} = \{\{x_1, x_2, \dots, x_n\}, \forall x_i\}$, then $\{X_i\} \in \mathscr{X}$ is random sample from population $X \sim f(x; \vec{\theta})$.

2.1.1 Statistics

Statistic(s): function of random sample $\vec{T}(X_1, X_2, \dots, X_n)$, but not a function of parameter. Some useful statistics, e.g.

• Sample mean (Consider X_i i.i.d.)

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

• Sample variance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

- Sample moments
 - Origin moment

$$a_{n,k} = \frac{1}{n} \sum_{i=1}^{k} X_i^k$$
 $k = 1, 2, 3, \dots$

- Center moment

$$m_{n,k} = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^k$$
 $k = 2, 3, 4, \dots$

· Order statistics

$$(X_{(1)}, X_{(2)}, \dots, X_{(n)}), \text{ for } X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$$

• Sample *p*-fractile

$$m_p = X_{(m)}, \quad m = [(n+1)p]$$

• Sample coefficient of variation

$$\hat{\nu} = \frac{S}{\bar{X}}$$

17

· Skewness and Kurtosis

$$\hat{g}_1 = \frac{m_{n,3}}{m_{n,2}^{3/2}}$$
 $\hat{g}_2 = \frac{m_{n,4}}{m_{n,2}^2} - 3$

☐ Properties

Statistic T is a function of random sample $\{X_i\}$, thus has distribution (say $g_T(t)$) called **Sampling Distribution**. For X_i i.i.d. from $X \sim f(x)$ with population mean μ and variance σ^2

• Calculation of sample variance S^2

$$(n-1)S^2 = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$$

• E and var of \bar{X} and S^2

$$E(\bar{X}) = \mu$$
 $var(\bar{X}) = \frac{\sigma^2}{n}$ $E(S^2) = \sigma^2$

Further if X_i i.i.d. from $X \sim N(\mu, \sigma^2)$ where μ and σ^2 unknown.

• Independence of \bar{X} and S^2

 \bar{X} and S^2 are independent

– Distribution of
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$$

– Distribution of
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

2.1.2 Exponential Family

Def. $\mathscr{F} = \{f(x; \vec{\theta} | \vec{\theta} \in \Theta)\}$ is **Exponential Family** if $f(x; \vec{\theta})$ has the form as

$$f(x; \vec{\theta}) = C(\vec{\theta})h(x) \exp \left[\sum_{i=1}^{k} Q_i(\vec{\theta})T_i(x)\right] \quad \vec{\theta} \in \Theta$$

Canonical Form: Take $Q_i(\vec{\theta}) = \varphi_i$, then $\vec{\varphi} = (\varphi_1, \varphi_2, \dots, \varphi_k) = (Q_1(\vec{\theta}), Q_2(\vec{\theta}), \dots, Q_k(\vec{\theta}))$ is a transform from Θ to Θ^* , s.t. \mathscr{F} has canonical form, i.e.

$$f(x; \vec{\varphi}) = C^*(\vec{\varphi})h(x) \exp\left[\sum_{i=1}^k \varphi_i T_i(x)\right] \quad \vec{\varphi} \in \Theta^*$$

 Θ^* is canonical parameter space.

☐ Why we need exponential family? Have some nice properties.

2.1.3 Sufficient and Complete Statistics

Note: For simplification, the following parts denote $\vec{\theta}, \vec{T}, \dots$ as θ, T, \dots etc.

▶ A Sufficient Statistic $T(\vec{X})$ for θ contains all the information of sample when infer θ , i.e.

$$f(\vec{X}; T(\vec{X})) = f(\vec{X}; T(\vec{X}), \theta)$$

Properties

- Factorization Thm. $T(\vec{X})$ is sufficient if and only if $f_{\vec{X}}(\vec{x};\theta) = f(\vec{x};\theta)$ can be written as

$$f(\vec{x}; \theta) = g[t(\vec{x}); \theta]h(\vec{x})$$

- If $T(\vec{X})$ sufficient, then $T'(\vec{X}) = g[T(\vec{X})]$ also.(require g single-valued and invertible)
- If $T(\vec{X})$ sufficient, then (T, T_1) also.
- Minimal sufficient statistic $T_{\theta}(\vec{X})$ satisfies

$$\forall$$
 sufficient statistic $S, \exists q_S(\cdot), \text{ s.t.} T_\theta = q_S(S)$

A minimal sufficient statistic not always exists.

Sufficient & Complete ⇒ Minimal sufficient.

– Usually dimension of \vec{T}_{θ} and θ equals.

Sufficient statistic is **not** unique.

► A Complete Statistic $T(\vec{X})$ for θ satisfies

$$\forall \theta \in \Theta \, ; \, \forall \varphi \text{ satisfies } E[\varphi(T(\vec{X}))] = 0, \text{ we have } P[\varphi(T) = 0; \theta] = 1$$

Explanation: $T \sim g_T(t)$. Rewrite as

$$\int \varphi(t)g_T(t)\,\mathrm{d}t = 0 \,\,\forall\,\theta \Rightarrow \varphi(T) = 0 \,\,\mathrm{a.s.}$$

i.e. $\underline{\operatorname{span}\{g_T(t); \forall \theta\}}$ is a complete space. Or to say that \nexists none-zero $\varphi(t)$ so that $E(\varphi(T)) = 0$ (unbiased estimation)

$$\varphi(T) \neq 0 \ \forall \theta \Rightarrow E[\varphi(T(\vec{X}))] \neq 0$$

So make sure the uniqueness of unbiased estimation of $\hat{\theta}$ using T.

Properties

- If $T(\vec{X})$ complete, then $T'(\vec{X}) = g[T(\vec{X})]$ also.(require g measurable)
- A complete statistic not always exists.

 \blacktriangleright An Ancillary Statistic $S(\vec{X})$ is a statistic whose distribution does not depend on θ

Basu Thm.: $\vec{X} = (X_1, X_2, \dots, X_n)$ is sample from $\mathscr{F} = \{f(x; \theta), \theta \in \Theta\}$. $T(\vec{X})$ is a complete and minimal sufficient statistic, $S(\vec{X})$ is ancillary statistic, then $S(\vec{X}) \parallel T(\vec{X})$.

lacktriangle Exponential family: For $\vec{X}=(X_1,X_2,\ldots,X_n)$ from exponential family with canonical form, i.e.

$$f(\vec{x}; \theta) = C(\theta)h(\vec{x}) \exp \left[\sum_{i=1}^k \theta_i T_i(\vec{x})\right], \quad \theta \in \Theta$$

Then if $\Theta \in \mathbb{R}^k$ interior point exists, then $T(\vec{X}) = (T_1(\vec{X}), T_2(\vec{X}), \dots, T_k(\vec{X}))$ is sufficient & complete statistic.

Section 2.2 Point Estimation

For parametric distribution family $\mathscr{F} = \{f(x,\theta), \theta \in \Theta\}$, random sample $\vec{X} = (X_1, X_2, \dots, X_n)$ from \mathscr{F} . $g(\theta)$ is a function defined on Θ .

Mission: use sample $\{X_i\}$ to estimate $g(\theta)$, called **Parameter Estimation**.

Parameter Estimation
$$\begin{cases} \text{Point Estimation} & \sqrt{} \\ \text{Interval Estimation} \end{cases}$$

Point estimation: when estimating θ or $g(\theta)$, denote the estimator (defined on sample space \mathscr{X}) as

$$\hat{\theta}(\vec{X})$$
 $\hat{g}(\vec{X})$

Estimator is a statistic, with sampling distribution.

2.2.1 Optimal Criterion

Some nice properties of estimators (that we expect)

Unbiasedness

$$E(\hat{\theta}) = \theta \quad \text{or} \quad E(\hat{g}(\vec{X})) = g(\theta)$$

Otherwise, say $\hat{\theta}$ or \hat{g} biased. Def. Bias: $E(\hat{\theta}) - \theta$

Asymptotically unbiasedness

$$\lim_{n \to \infty} E(\hat{g}_n(\vec{X})) = g(\theta)$$

• Efficiency: say $\hat{g}_1(\vec{X})$ is more efficient than $\hat{g}_2(\vec{X})$, if

$$var(\hat{q}_1) \le var(\hat{q}_2) \quad \forall \theta \in \Theta$$

• Mean Squared Error (MSE)

$$\mathrm{MSE} = E[(\hat{\theta} - \theta)^2] = var(\hat{\theta}) + [Bias(\hat{\theta})]^2$$

For unbiased estimator, i.e. $Bias(\hat{\theta}) = 0$, we have

$$MSE = E[(\hat{\theta} - \theta)^2] = var(\hat{\theta})$$

• (Weak) Consistency

$$\lim_{n \to \infty} P(|\hat{g}_n(\vec{X}) - g(\theta)| \ge \varepsilon) = 0 \quad \forall \varepsilon > 0$$

• Asymptotic Normality

2.2.2 Method of Moments

Review: Population moments & Sample moments

$$\alpha_k = E(X^k)$$
 $\mu_k = E[(X - E(X))^k]$

$$a_{n,k} = \frac{1}{n} \sum_{i=1}^n X_i^k \qquad m_{n,k} = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^k$$

Property: $a_{n,k}$ is the unbiased estimator of α_k .(while $m_{n,k}$ unually biased for μ_k)

For sample $\vec{X} = (X_1, X_2, \dots, X_n)$ from $\mathscr{F} = \{f(x; \theta, \theta \in \Theta)\}$, unknown parameter (or its function) $g(\theta)$ can be written as

$$g(\theta) = G(\alpha_1, \alpha_2, \dots, \alpha_k; \mu_2, \mu_3, \dots, \mu_l)$$

Then its **Moment Estimate** $\hat{g}(\vec{X})$ is

$$\hat{g}(\vec{X}) = G(a_{n,1}, a_{n,2}, \dots, a_{n,k}; m_{n,2}, m_{n,3}, \dots, m_{n,l})$$

Example: coefficient of variance & skewness

$$\hat{\nu} = \frac{S}{\bar{X}} \quad \hat{\beta}_1 = \frac{m_{n,3}}{m_{n,2^{3/2}}} = \sqrt{n} \frac{\sum_{i=1}^n (X_i - \bar{X})^3}{\left[\sum_{i=1}^n (X_i - \bar{X})^2\right]^{\frac{3}{2}}}$$

□ Note:

- ullet G may not have explicit expression.
- Moment estimate may not be unique.
- If $G = \sum_{i=1}^k c_i \alpha_i$ (linear combination of α , without μ), then $\hat{g}(\vec{X}) = \sum_{i=1}^k c_i a_{n,i}$ unbiased.

Usually $\hat{g}(\vec{X})$ is asymptotically unbiased.

- For small sample, not so accurate.
- May not contain all the information about θ , i.e. may not be sufficient statistic.
- Do not require a statistic model.

2.2.3 Maximum Likelihood Estimation

For sample $\vec{X} = (X_1, X_2, \dots, X_n)$ with distribution $f(\vec{x}; \theta)$ from $\mathscr{F} = \{f(x; \theta), \theta \in \Theta\}$, def. **Likelihood** Function $L(\theta; \vec{x})$, defined on Θ (as a function of θ)

$$L(\theta; \vec{x}) = f(\vec{x}; \theta)$$
 $\theta \in \Theta, \vec{x} \in \mathcal{X}$

Also def. log-likelihood function $l(\theta; \vec{x}) = \ln L(\theta; \vec{x})$.

If estimator $\hat{\theta} = \hat{\theta}(\vec{X})$ satisfies

$$L(\hat{\theta}; \vec{x}) = \sup_{\theta \in \Theta} L(\theta; \vec{x}), \quad \vec{x} \in \mathscr{X}$$

Or equivalently take $l(\theta; \vec{x})$ instead of $L(\theta; \vec{x})$.

Then $\hat{\theta} = \hat{\theta}(\vec{X})$ is a **Maximum Likelihood Estimate**(MLE) of $\theta = (\theta_1, \theta_2, \dots, \theta_k)$

How to identify MLE?

• Differentiation: Fermat Lemma

$$\left. \frac{\partial L}{\partial \theta_i} \right|_{\theta = \hat{\theta}} = 0 \qquad \left. \frac{\partial^2 L}{\partial \theta_i \partial \theta_j} \right|_{\theta = \hat{\theta}} \text{negative definite} \qquad \forall i, j = 1, 2, \dots, k$$

- Graphing method.
- Numerically compute maximum.
- ☐ Some properties of MLE
 - (Depend on the case, not always) unbiased.
 - Invariance of MLE: If $\hat{\theta}$ is MLE of θ , invertible function $g(\theta)$, then $g(\hat{\theta})$ is MLE of $g(\theta)$.
 - MLE and Sufficiency: $T = T(X_1, X_2, \dots, X_n)$ is a sufficient statistic of θ , if MLE of θ exists, say $\hat{\theta}$, then $\hat{\theta}$ is a function of T, i.e.

$$\hat{\theta} = \hat{\theta}(\vec{X}) = \hat{\theta}^*(T(\vec{X}))$$

• Asymptotic Normality:

$$\sqrt{n}(\hat{\theta}_n - \theta) \xrightarrow{d} N(0, \sigma_{\theta}^2), \quad \sigma_{\theta}^2 = \frac{1}{E_{\theta}[\frac{\partial}{\partial \theta} \ln f(\vec{X}; \theta)]^2}$$

i.e.

$$\hat{\theta}_n \xrightarrow{d} N(\theta, \frac{\sigma_{\theta}^2}{n})$$

- ☐ Comparison: MoM and MLE
 - MoM do not require statistic model; MLE need to know PDF.
 - MoM is more robust than MLE.

MLE in Exponential Family:

For sample $\vec{X} = (X_1, X_2, \dots, X_n)$ from canonical exponential family $\mathscr{F} = \{f(x; \theta), \theta \in \Theta\}$

$$f(x; \theta) = C(\theta)h(x) \exp \left[\sum_{i=1}^k \theta_i T_i(x)\right] \quad \theta = (\theta_1, \dots, \theta_k) \in \Theta$$

Likelihood function $L(\theta, \vec{x}) = \prod_{j=i}^n f(x_j; \theta)$ and log-likelihood function $l(\theta, \vec{x})$

$$\begin{split} L(\theta, \vec{x}) &= C^n(\theta) \prod_{j=1}^n h(x_j) \exp\left[\sum_{i=1}^k \theta_i \sum_{j=1}^n T_i(x_j)\right] \\ l(\theta, \vec{x}) &= n \ln C(\theta) + \sum_{i=1}^n \ln h(x_j) + \sum_{i=1}^k \theta_i \sum_{j=1}^n T_i(x_j) \end{split}$$

Solution of MLE: (Require $\hat{\theta} \in \Theta$)

$$\left. \frac{n}{C(\theta)} \frac{\partial C(\theta)}{\partial \theta_i} \right|_{\theta = \hat{\theta}} = -\sum_{j=1}^n T_i(x_j), \quad i = 1, 2, \dots, k$$

2.2.4 Uniformly Minimum Variance Unbiased Estimator

MSE: For $\hat{g}(\vec{X})$ is estimate of $g(\theta)$, then MSE

$$MSE(\hat{g}(\vec{X})) = E[(\hat{g}(\vec{X}) - g(\theta))^2] = var(\hat{g}) + [Bias(\hat{g})]^2$$

Note: Unbiased estimator (i.e. $Bias(\hat{g}) = 0$) not unique; not always exist.

Now only consider unbiased estimators of $g(\theta)$ exists, say $\hat{g}(\vec{X})$, then

$$\mathrm{MSE}(\hat{g}(\vec{X})) = var(\hat{g}(\vec{X}))$$

If \forall unbiased estimate $\hat{g}'(\vec{X})$, \hat{g} satisfies

$$var[\hat{g}(\vec{X})] \leq var[\hat{g}'(\vec{X})]$$

 $\ \square$ Then $\hat{g}(\vec{X})$ is Uniformly Minimum Variance Unbiased Estimator(UMVUE) of $g(\theta)$

How to determine UMVUE? (Not an easy task)

- Zero Unbiased Estimate Method
- Sufficient and Complete Statistic Method
- Cramer-Rao Inequality

1. Zero Unbiased Estimate Method

Let $\hat{g}(\vec{X})$ be an unbiased estimate with $var(\hat{g}) < \infty$. If $\forall \ E(\hat{l}(\vec{X})) = 0$, \hat{g} holds that

$$cov(\hat{g}, \hat{l}) = E(\hat{g} \cdot \hat{l}) = 0, \quad \forall \theta \in \Theta$$

Then \hat{g} is a UMVUE of $g(\theta)$ (sufficient & necessary).

2. Sufficient and Complete Statistic Method

For $T(\vec{X})$ sufficient statistic, $\hat{g}(\vec{X})$ unbiased estimate of $g(\theta)$, then

$$h(T) = E(\hat{g}(\vec{X})|T)$$

is an unbiased estimate of $g(\theta)$ and $var(h(T)) \leq var(\hat{g})$.

Remark:

- A method to improve estimator.
- A UMVUE has to be a function of sufficient statistic.

Lehmann-Scheffé Thm.: For $\vec{X} = (X_1, X_2, \dots, X_n)$ from population $X \sim \mathscr{F} = \{f(x, \theta, \theta \in \Theta)\}$. $T(\vec{X})$ sufficient and complete, and $\hat{g}(T(\vec{X}))$ be an unbiased estimator, then $\hat{g}(T(\vec{X}))$ is the unique UMVUE.

Can be used to construct UMVUE: given $T(\vec{X})$ sufficient and complete and some unbiased estimator $\hat{g}'(\theta)$ then

$$\hat{q}(T) = E(\hat{q} | T)$$

is the unique UMVUE.

3. Cramer-Rao Inequality

Core idea: determine a lower bound of $var(\hat{q})$.

Consider $\theta = \theta$ (One dimension parameter); For $\{X_i\}$ i.i.d. $f(x, \theta)$: def.

• Score function: Reflects the steepness/slope of likelihood function f.

$$S(\vec{x}; \theta) = \frac{\partial \ln f(\vec{x}; \theta)}{\partial \theta} = \sum_{i=1}^{n} \frac{\partial \ln f(x_i; \theta)}{\partial \theta}$$
$$E[S(\vec{X}; \theta)] = 0$$

• Fisher Information: Variance of $S(\vec{x}; \theta)$, reflects the accuracy to conduct estimation, i.e. reflects information of statistic model that sample brings.

$$I(\theta) = E\left[\left(\frac{\partial \ln f(\vec{x}; \theta)}{\partial \theta} \right)^2 \right] = -E\left[\frac{\partial^2 \ln f(\vec{x}; \theta)}{\partial \theta^2} \right]$$

Consider \mathscr{F} satisfies some regularity conditions (in most cases, regularity conditions do hold), then the lower bound of $var(\hat{g})$ satisfies **Cramer-Rao Inequality**:

$$var(\hat{g}(\vec{X})) \ge \frac{[g'(\theta)]^2}{nI(\theta)}$$

Special case: $g(\theta) = \theta$ then

$$var(\hat{\theta}) \ge \frac{1}{nI(\theta)}$$

note:

• C-R Inequality determine a lower bound, not the infimum(i.e. UMVUE $\Rightarrow var(\hat{g}(\vec{X})) = \frac{[g'(\theta)]^2}{nI(\theta)}$).

- Take '=': Only some cases in Exponential family.
- Efficiency: How good the estimator is.

$$e_{\hat{g}(\vec{X})}(\theta) = \frac{[g'(\theta)]^2/(nI(\theta))}{var(\hat{g}(\vec{X}))}$$

4. Multi-Dimensional Cramer-Rao Inequality

ReDef. Fisher Information:

$$\mathbf{I}(\theta) = \{I_{ij}(\theta)\} = \{E\left[\left(\frac{\partial \ln f(\vec{x};\theta)}{\partial \theta_i}\right) \left(\frac{\partial \ln f(\vec{x};\theta)}{\partial \theta_j}\right)\right]\}$$

Then covariance matrix $\Sigma(\theta)$ satisfies **Cramer-Rao Inequality**

$$\Sigma(\theta) \ge (n\mathbf{I}(\theta))^{-1}$$

Note: '≥' holds for all diagonal elements, i.e.

$$var(\hat{\theta}_i) \ge \frac{I_{ii}^*(\theta)}{n}, \quad \forall i = 1, 2, \dots, k$$

2.2.5 MoM and MLE in Linear Regression

Note: More detailed knowledge see sec. 3 Linear Regression Analysis.

☐ Linear Regression Model(1-dimension case):

$$y_i = \beta_0 + \beta_1 x_0 + \epsilon_i$$

where β_0, β_1 are regression coefficient, and ϵ_i are unknown random **error**. Assume:

$$\epsilon_i$$
 are i.i.d.

$$E(\epsilon_i|x_i)=0$$

$$var(\epsilon_i) = \sigma^2$$

Mission: use data $\{(x_i, y_i)\}$ to estimate β_0, β_1 (i.e. regression line), and error ϵ_i .

1. OLS (Ordinary Least Squares): Take β_0 , β_1 so that MSE min, i.e. SSE min

$$(\hat{\beta}_0, \hat{\beta}_1) = \arg\min \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

(Express in Matrix Notation (eqa.2.1), so that it can be generalized to multidimensional case) SSE can be expressed as the **Excliean Distance** between $\{y_i\}$ and $\{\hat{\beta}_0 + \hat{\beta}_1 x_i\}$, i.e.

$$\arg\min d(y,X\hat{\beta})$$

i.e. $\hat{\beta}$ is the Projection of y onto hyperplane X, then

$$(X\hat{\beta})^T(y - X\hat{\beta}) = 0 \Rightarrow \hat{\beta} = (X^TX)^{-1}X^Ty$$

Solution for 2-D case:

$$\hat{\beta} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \end{bmatrix} = \begin{bmatrix} \bar{y} - \hat{\beta}_1 \bar{x} \\ \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y}) \\ \sum_{i=1}^n (x_i - \bar{x})^2 \end{bmatrix}$$

So get regression line: $y = \hat{\beta}_0 + \hat{\beta}_1 x$

Def. Residuals

$$e_i = \hat{\epsilon}_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$$

Residuals can be used to estimate ϵ_i : $E[(\epsilon_i)^2] = \sigma^2$

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)$$

2. MoM: Consider r.v. $\epsilon \sim f(\varepsilon; x, y, \beta_0, \beta_1)$, sample $\{\epsilon_i | \epsilon_i = y_i - \beta_0 - \beta_1 x_i\}$, then obviously

$$\bar{\epsilon} = \bar{y} - \beta_0 - \beta_1 \bar{x}$$

Take moment estimate of ϵ , we have

$$E(\epsilon_i) = 0 \qquad E(\epsilon_i x_i) = 0 \text{ (note that } E(\epsilon|x) = 0)$$
i.e.
$$\begin{cases} \frac{1}{n} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0\\ \frac{1}{n} \sum_{i=1}^n x_i (y_i - \beta_0 - \beta_1 x_i) = 0 \end{cases}$$

Solution:

$$\begin{cases} \hat{\beta_0} &= \bar{y} - \beta_1 \bar{x} \\ \hat{\beta_1} &= \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \end{cases}$$

(Same as OLS)

Moment estimate of σ^2

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)$$

3. MLE: Assume $\epsilon_i \sim N(0, \sigma^2)$, then $y_i | x_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$. Get likelihood function:

$$L(\beta_0, \beta_1, \sigma^2; x_1, \dots, x_n, y_1, \dots, y_n) = (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left[-\frac{\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)}{2\sigma^2}\right]$$

Log-likelihood:

$$l(\beta_0, \beta_1, \sigma^2; x_1, \dots, x_n, y_1, \dots, y_n) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

MLE, use Fermat Lemma:

$$\begin{cases} \frac{\partial l}{\partial \beta_0} = 0 & \Rightarrow -\frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0\\ \frac{\partial l}{\partial \beta_1} = 0 & \Rightarrow -\frac{1}{\sigma^2} \sum_{i=1}^n x_i (y_i - \beta_0 - \beta_1 x_i) = 0\\ \frac{\partial l}{\partial \sigma^2} = 0 & \Rightarrow -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0 \end{cases}$$

26

Solution:

$$\hat{\beta}_0 = \bar{y} - \beta_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)$$

☐ Linear Regression Model(Multi-dimension case):

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \epsilon_i$$

Denote: $\vec{\beta} = (\beta_0, \beta_1, \dots, \beta_p), \ \vec{x_i} = (1, x_{i1}, x_{i2}, \dots, x_{ip}), \ \text{then for each } i: \ y_i = x_i^T \beta + \epsilon_i$

Further denote: Matrix form:

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1p} \\ 1 & x_{21} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_p \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} = X\vec{\beta} + \vec{\epsilon}$$
 (2.1)

Basic Assumptions: Gauss-Markov Assumptions

• OLS unbiased

$$E(\epsilon_i|x_i) = 0$$
 $E(y_i|x_i) = x_i^T \beta$

• Homogeneity of ϵ_i

$$var(\epsilon_i) = \sigma^2$$

- Independent of ϵ
- (For MLE) ϵ_i i.i.d. $\sim N(0, \sigma^2)$

Residuals:

$$e_i = \hat{\epsilon}_i = y_i - \hat{y}_i = y_i - x_i^T \beta$$

Def. Error Sum of Squares (SSE)

$$RSS = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - x_i^T \beta)^2$$

Estimator exists and unique: $(\hat{\sigma}^2)$ is after bias correction)

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (y_i - x_i^T \hat{\beta})^2$$

$$\hat{\sigma}^2 = \frac{1}{n-p-1} \sum_{i=1}^n (y_i - x_i^T \hat{\beta})^2$$
(2.2)

2.2.6 Kernel Density Estimation

Given random sample $\{X_i\}$. Def. Empirical Distribution Function

$$\hat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n I_{(-\infty,x]}(X_i)$$
(2.3)

Problem: Overfitting when getting \hat{f} . Solution: Using **Kernel Estimate**, replace $I_{(-\infty,x]}(\cdot)$ with Kernel function $K(\cdot)$, then

$$\hat{f}_n(x) = \frac{F_n(x + h_n) - F - n(x - h_n)}{2h_n} = \frac{1}{nh_n} \sum_{i=1}^n K(\frac{x - X_i}{h_n})$$

where h_n is **bandwidth**. Take proper kernel function K to get estimate of f.

Can be considered as a convolution of sample $\{X_i\}$ and kernel function K.

Useful Kernel Functions:

•
$$K(x) = \frac{1}{2}I_{[-\frac{1}{2},\frac{1}{2}]}$$

•
$$K(x) = (1 - |x|)I_{[-1,1]}$$

•
$$K(x) = \frac{1}{2\pi}e^{-\frac{x^2}{2}}$$

•
$$K(x) = \frac{1}{\pi(1+x^2)}$$

•
$$K(x) = \frac{1}{2\pi}\operatorname{sinc}^2(\frac{x}{2})$$

Section 2.3 Interval Estimation

Parameter Estimation
$$\begin{cases} \text{Point Estimation} \\ \text{Interval Estimation} \end{cases} \sqrt{}$$

Interval Estimation: to estimate $g(\theta)$, give **two** estimators $\hat{g}_1(\vec{X})$, $\hat{g}_2(\vec{X})$ defined on \mathscr{X} as the two ends of interval (i.e. give an interval $[\hat{g}_1(\vec{X}), \, \hat{g}_2(\vec{X})]$), then random interval $[\hat{g}_1(\vec{X}), \, \hat{g}_2(\vec{X})]$ is an **Interval Estimation** of $g(\theta)$.

2.3.1 Confidence Interval

How to judge an interval estimation?

Reliability

$$P(g(\theta) \in [\hat{g}_1, \hat{g}_2])$$

Precision

$$E(\hat{g}_2 - \hat{g}_1)$$

Trade off: (in most cases)

Given a level of reliability, find an interval with the highest precision above the level

 \square For a given $0 < \alpha < 1$, if

$$P(\hat{g}_1 \le g(\theta) \le \hat{g}_2) \ge 1 - \alpha$$

then $[\hat{g}_1, \hat{g}_2]$ is a **Confidence Interval** for $g(\theta)$, with **Confidence Level** $1 - \alpha$.

Confidence Coefficient:

$$\inf_{\forall \theta \in \Theta} P(\theta \in \mathrm{CI})$$

Other cases:

• Confidence Limit: Upper/Lower Confidence Limit

$$P(g \le \hat{g}_U) \ge 1 - \alpha$$

$$P(\hat{g}_L \le \theta) \ge 1 - \alpha$$

• Confidence Region: For high dimensional parameters $\vec{g} = (g_1, g_2, \dots, g_k)$

$$P(\vec{g} \in S(\vec{X})) \ge 1 - \alpha \quad \forall \theta \in \Theta$$

Mission: Determine \hat{g}_1, \hat{g}_2 .

2.3.2 Pivot Variable Method

Idea: Based on point estimation, construct a new variable and thus find the interval estimation.

Def. **Pivot Variable** T, satisfies:

- Expression of T contains θ (thus T is not a statistic).
- Distribution of T independent of θ .

In different cases, construct different pivot variable, usually base on sufficient statistics and transform.

Knowing a proper pivot variable $T = T(\hat{\varphi}, g(\theta)) \sim f$, (f is some distribution independent of θ), $\hat{\varphi}$ is a sufficient statistic), then we can take T satisfies:

$$P(f_{1-\frac{\alpha}{2}} \le T \le f_{\frac{\alpha}{2}}) = 1 - \alpha$$

Construct the inverse mapping of $T = T(\hat{\varphi}, g(\theta)) \rightleftharpoons g(\theta) = T^{-1}(T, \hat{\varphi})$, we get

$$P[T^{-1}(f_{1-\frac{\alpha}{2}},\hat{\varphi}) \le \hat{g} \le T^{-1}(f_{\frac{\alpha}{2}},\hat{\varphi})] = 1 - \alpha$$

Thus get a confidence interval for θ with confidence coefficient $1 - \alpha$.

2.3.3 Confidence Interval for Common Distributions

Some important properties of χ^2 , t and F see section 1.8.2.

1. Single normal population: $\vec{X} = \{X_1, X_2, \dots, X_n\} \in \mathscr{X} \text{ i.i.d from Normal Distribution population } N(\mu, \sigma^2).$ Denote sample mean and sample variance:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$ $S_\mu = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$,(for μ known)

Estimating $\mu \& \sigma^2$: construction of pivot variable under different circumstances:

Estimation	Pivot Variable	Confidence Interval
σ^2 known, estimate μ	$T = \frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \sim N(0, 1)$	$\left[\bar{X} - \frac{\sigma}{\sqrt{n}} N_{\frac{\alpha}{2}}, \bar{X} + \frac{\sigma}{\sqrt{n}} N_{\frac{\alpha}{2}}\right]$
σ^2 unknown, estimate μ	$T = \frac{\sqrt{n}(\bar{X} - \mu)}{S} \sim t_{n-1}$	$\left[\bar{X} - \frac{S}{\sqrt{n}} t_{n-1,\frac{\alpha}{2}}, \bar{X} + \frac{S}{\sqrt{n}} t_{n-1,\frac{\alpha}{2}}\right]$
μ known, estimate σ^2	$T = \frac{nS_{\mu}^2}{\sigma^2} \sim \chi_n^2$	$\left[\frac{nS_{\mu}^2}{\chi_{n,\frac{\alpha}{2}}^2}, \frac{nS_{\mu}^2}{\chi_{n,1-\frac{\alpha}{2}}^2}\right]$
μ unknown, estimate σ^2	$T = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$	$\left[\frac{(n-1)S^2}{\chi_{n-1,\frac{\alpha}{2}}^2}, \frac{(n-1)S^2}{\chi_{n-1,1-\frac{\alpha}{2}}^2}\right]$

2. Double normal population: $\vec{X} = \{X_1, X_2, \dots, X_m\}$ i.i.d. from $N(\mu_1, \sigma_1^2)$; $\vec{Y} = \{Y_1, Y_2, \dots, Y_n\}$ i.i.d. from $N(\mu_2, \sigma_2^2)$

Denote sample mean, sample variance and pooled sample variance:

$$\bar{X} = \frac{1}{m} \sum_{i=1}^{n} X_{i} \qquad S_{X}^{2} = \frac{1}{m-1} \sum_{i=1}^{m} (X_{i} - \bar{X})^{2} \qquad S_{\mu_{1}}^{2} = \frac{1}{m} \sum_{i=1}^{m} (X_{i} - \mu_{1})^{2}, (\mu_{1} \text{ known})$$

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_{i} \qquad S_{Y}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \bar{Y})^{2} \qquad S_{\mu_{2}}^{2} = \frac{1}{n} \sum_{i=1}^{n} (Y_{i} - \mu_{2})^{2}, (\mu_{2} \text{ known})$$

$$S_{\omega}^{2} = \frac{(m-1)S_{X}^{2} + (n-1)S_{Y}^{2}}{m+n-2}$$

Estimating $\mu_1 - \mu_2$:

When $\sigma_1^2 \neq \sigma_2^2$ unknown, estimate $\mu_1 - \mu_2$: Behrens-Fisher Problem, remain unsolved, but can deal with simplified cases.

Estimating $\frac{\sigma_1^2}{\sigma_2^2}$:

3. Non-normal population:

Estimation	Pivot Variable	Confidence Interval
σ_1^2 & σ_2^2 known, estimate $\mu_1 - \mu_2$	$T = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} \sim N(0, 1)$	$\left[\bar{X} - \bar{Y} - N_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}, \\ \bar{X} - \bar{Y} + N_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}\right]$
$\sigma_1^2 = \sigma_2^2$ unknown, estimate $\mu_1 - \mu_2$	$T = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{S_{\omega} \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim t_{m+n-2}$	$ \bar{X} - \bar{Y} - S_{\omega} t_{m+n-2,\frac{\alpha}{2}} \sqrt{\frac{1}{m} + \frac{1}{n}}, $ $ \bar{X} - \bar{Y} + S_{\omega} t_{m+n-2,\frac{\alpha}{2}} \sqrt{\frac{1}{m} + \frac{1}{n}} $
Welch's t -Interval (when m , n large enough)	$T = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{S_X^2}{m} + \frac{S_Y^2}{n}}} \xrightarrow{\mathscr{L}} N(0, 1)$	$\left[\bar{X} - \bar{Y} - N_{\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}, \right]$ $\bar{X} - \bar{Y} + N_{\frac{\alpha}{2}} \sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}} \right]$

Estimation	Pivot Variable	Confidence Interval	
μ_1, μ_2 known, estimate $\frac{\sigma_1^2}{\sigma_2^2}$	$T = \frac{S_{\mu_2}^2}{S_{\mu_1}^2} \frac{\sigma_1^2}{\sigma_2^2} \sim F_{n,m}$	$\begin{bmatrix} S_{\mu_1}^2 \frac{1}{S_{\mu_2}^2} \frac{1}{F_{m,n,\frac{\alpha}{2}}}, \frac{S_{\mu_1}^2}{S_{\mu_2}^2} \frac{1}{F_{m,n,1-\frac{\alpha}{2}}} \end{bmatrix}$ or $\begin{bmatrix} S_{\mu_1}^2 F_{m,n,\frac{\alpha}{2}}, \frac{S_{\mu_1}^2}{S_{\mu_2}^2} F_{n,m,\frac{\alpha}{2}} \end{bmatrix}$	
μ_1,μ_2 unknown, estimate $\frac{\sigma_1^2}{\sigma_2^2}$	$T = \frac{S_Y^2}{S_X^2} \frac{\sigma_1^2}{\sigma_2^2} \sim F_{n-1,m-1}$	$\begin{bmatrix} \frac{S_X^2}{S_Y^2} \frac{1}{F_{m-1,n-1,\frac{\alpha}{2}}}, \frac{S_X^2}{S_Y^2} \frac{1}{F_{m-1,n-1,1-\frac{\alpha}{2}}} \\ \text{or } \left[\frac{S_X^2}{S_Y^2} \frac{1}{F_{m-1,n-1,\frac{\alpha}{2}}}, \frac{S_X^2}{S_Y^2} F_{n-1,m-1,\frac{\alpha}{2}} \right] \end{bmatrix}$	

Estimation	Pivot Variable	Confidence Interval
Uniform Distribution: \vec{X} i.i.d. from $U(0,\theta)$	$T = \frac{X_{(n)}}{\theta} \sim U(0, 1)$	$\left[X_{(n)}, \frac{X_{(n)}}{\sqrt[n]{\alpha}}\right]$
Exponential Distribution: \vec{X} i.i.d. from $\epsilon(\lambda)$	$T = 2n\lambda \bar{X} \sim \chi_{2n}^2$	$\left[\frac{\chi^2_{2n,1-\frac{\alpha}{2}}}{2n\bar{X}},\frac{\chi^2_{2n,\frac{\alpha}{2}}}{2n\bar{X}}\right]$
Bernoulli Distribution: \vec{X} i.i.d. from $B(1, \theta)$	$T = \frac{\sqrt{n}(\bar{X} - \theta)}{\sqrt{\bar{X}(1 - \bar{X})}} \xrightarrow{\mathscr{L}} N(0, 1)$	$\left[\bar{X} - N_{\frac{\alpha}{2}} \sqrt{\frac{\bar{X}(1-\bar{X})}{n}}, \bar{X} + N_{\frac{\alpha}{2}} \sqrt{\frac{\bar{X}(1-\bar{X})}{n}}\right]$
Poisson Distribution: \vec{X} i.i.d. from $P(\lambda)$	$T = \frac{\sqrt{n}(\bar{X} - \lambda)}{\sqrt{\bar{X}}} \xrightarrow{\mathscr{L}} N(0, 1)$	$\left[\bar{X} - N_{\frac{\alpha}{2}}\sqrt{\frac{\bar{X}}{n}}, \bar{X} + N_{\frac{\alpha}{2}}\sqrt{\frac{\bar{X}}{n}}\right]$

4. General Case: Use asymptotic normality of MLE to construct CLT for large sample. MLE of θ satisfies:

$$\sqrt{n}(\hat{\theta}^* - \theta) \xrightarrow{\mathscr{L}} N(0, \frac{1}{I(\theta)})$$

where $\hat{\theta}^*$ is MLE of θ . Replace $\frac{1}{I(\theta)}$ by $\sigma^2(\hat{\theta}^*)$, then

$$T = \frac{\sqrt{n}(\hat{\theta}^* - \theta)}{\sigma(\hat{\theta}^*)} \xrightarrow{\mathscr{L}} N(0, 1)$$

confidence interval:

$$\left[\hat{\theta}^* - \frac{N_{\frac{\alpha}{2}}}{\sqrt{n}}\sigma(\hat{\theta}^*), \hat{\theta}^* + \frac{N_{\frac{\alpha}{2}}}{\sqrt{n}}\sigma(\hat{\theta}^*)\right]$$

2.3.4 Fisher Fiducial Argument*

Idea: When sample is known, we can get 'Fiducial Probability' of θ , thus can find an interval estimation based on fiducial distribution. (Similar to the idea of MLE)

Remark: Fiducial probability (denoted as $\tilde{P}(\theta)$) is 'probability of parameter', in the case that sample is known. Fiducial probability is different from Probability.

Thus get

$$\tilde{P}(\hat{g}_1 \le g(\theta) \le \hat{g}_2) = 1 - \alpha$$

Section 2.4 Hypothesis Testing

Hypothesis is a statement about the characteristic of population, e.g. distribution form, parameters, etc.

Mission: Use sample to test the hypothesis, i.e. judge whether population has some characteristic.

2.4.1 Basic Concepts

Parametric hypothesis testing.

For random sample $\vec{X} = (X_1, X_2, \dots, X_n) \in \mathcal{X}$ i.i.d. from $\mathscr{F} = \{f(x; \theta); \theta \in \Theta\}$

• Null Hypothesis H_0 & Alternative Hypothesis H_1 : Wonder whether a statement is true. Def. Null Hypothesis: $H_0: \theta \in \Theta_0 \subset \Theta$, a statement that we try to reject based on sample; $H_1: \theta \in \Theta_1 = \Theta - \Theta_0$ is Alternative Hypothesis.

32

 \square Note: Cannot exchange H_0 and H_1 , because when the evidence is ambiguity, we have to accept H_0 , regardless of what H_0 is. So it is **very important** to pick the proper H_0 .

Thus Hypothesis Testing:

$$H_0: \theta \in \Theta_0 \longleftrightarrow H_1: \theta \in \Theta_1$$

• Rejection Region R & Acceptance Region R^C : Judge whether to reject H_0 from sample, Def. **Rejection Region**:

$$R \subset \mathcal{X}$$
: reject H_0 if $\vec{X} \in R$

Acceptance Region: accept H_0 if $\vec{X} \in \mathbb{R}^C$

- Test Function: Describe how to make a decision.
 - Continuous Case:

$$\varphi(\vec{X}) = \begin{cases} 1, & \vec{X} \in R \\ 0, & \vec{X} \in R^C \end{cases}$$

i.e. $R = \{\vec{X} : \varphi(\vec{X}) = 1\}$. Where R to be determined.

- Discrete Case: Randomized Test Function

$$\varphi(\vec{X}) = \begin{cases} 1, & \vec{X} \in R - \partial R \\ r, & \vec{X} \in \partial R \\ 0, & \vec{X} \in R^C \end{cases}$$

Where R and r to be determined.

- Type I Error & Type II Error: Sample is random, possible to make a wrong judge.
 - Type I Error (弃真): H_0 is true but sample falls in R, thus H_0 is rejected.

$$P(\text{type I error}) = P(\vec{X} \in R|H_0) = \alpha(\theta)$$

- Type II Error (取伪): H_0 is wrong but sample falls in \mathbb{R}^C , thus H_0 is accepted.

$$P(\mathsf{type}\;\mathsf{II}\;\mathsf{error}) = P(\vec{X} \notin R|H_1) = \beta(\theta)$$

	Judgement			
		Accept H_0	Reject H_0	
Real Case	H_0	$\sqrt{}$	Type I Error	
	H_1	Type II Error	$\sqrt{}$	

表 1: 'Confusion Matrix'

□ Neyman-Pearson Principle: First control $\alpha \leq \alpha_0$, then take min β .

How to determine α_0 ? Depend on specific problem.¹

• p-value: probability to get larger bias than observed \vec{x}_0 under H_0 .

e.g. For reject region $R = \{\vec{X} | T(\vec{X}) \ge C\}$, p-value:

$$p(\vec{x}) = P[T(\vec{X}) \ge t(\vec{x}_0)|H_0]$$

Remark: Under H_0 , the probability to get a worse result than \vec{x}_0 .

Rule: Reject H_0 if $p(\vec{x}_0) \leq \alpha_0$

• Power Function: (when H_0 is given), probability to reject H_0 by sampling.

$$\pi(\theta) = \begin{cases} P(\mathsf{type}\;\mathsf{I}\;\mathsf{error}), & \theta \in \Theta_0 \\ 1 - P(\mathsf{type}\;\mathsf{II}\;\mathsf{error}), & \theta \in \Theta_1 \end{cases} = \begin{cases} \alpha(\theta), & \theta \in \Theta_0 \\ 1 - \beta(\theta), & \theta \in \Theta_1 \end{cases}$$

Express as test function:

$$\pi(\theta) = E[\varphi(\vec{X})|\theta]$$

A nice test: $\pi(\theta)$ small under H_0 , large under H_1 (and grows very fast at the boundary of H_0 and H_1).

- ☐ General Steps of Hypothesis Testing:
 - 1. Propose $H_0 \& H_1$.
 - 2. Determine R (usually in the form of a statistic, e.g. $R=\{\vec{X}:T(\vec{X})\geq c\}$).
 - 3. Select a proper α (to determine c).
 - 4. Sampling, get sample (as well as $t(\vec{x})$), then
 - compare with R and determine whether to reject/accept H_0 , or
 - calculate p-value and determine whether to reject/accept H_0

2.4.2 Hypothesis Testing of Common Distributions

For some common distribution populations, determine rejection region R under certain H_0 with confidence coefficient α .

Definition of necessary statistics see section 2.3.3.

1. Single normal population:

¹In most cases, take $\alpha_0 = 0.05$.

Condition	H_0	H_1	Testing Statistic T	Rejection Region R
	$\mu = \mu_0$	$\mu \neq \mu_0$		$ T > N_{\frac{lpha}{2}}$
σ^2 known, test μ	$\mu \leq \mu_0$	$\mu > \mu_0$	$T = \frac{\sqrt{n(X - \mu_0)}}{\sigma} \sim N(0, 1)$	$T > N_{\alpha}$
	$\mu \ge \mu_0$	$\mu < \mu_0$		$T < -N_{\alpha}$
	$\mu = \mu_0$	$\mu \neq \mu_0$		$ T > t_{n-1,\frac{\alpha}{2}}$
σ^2 unknown, test μ	$\mu \leq \mu_0$	$\mu > \mu_0$	$T = \frac{\sqrt{n}(X - \mu_0)}{S} \sim t_{n-1}$	$T > t_{n-1,\alpha}$
	$\mu \geq \mu_0$	$\mu < \mu_0$		$T < -t_{n-1,\alpha}$
	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$T = \frac{nS_{\mu}^2}{\sigma_0^2} \sim \chi_n^2$	$T < \chi^2_{n,1-\frac{\alpha}{2}} \cup T > \chi^2_{n,\frac{\alpha}{2}}$
μ known, test σ^2	$\sigma^2 \le \sigma_0^2$	$\sigma^2 > \sigma_0^2$		$T > \chi^2_{n,\alpha}$
	$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$	U	$T < \chi^2_{n,1-\alpha}$
	$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	(1) (2)	$T < \chi^2_{n-1,1-\frac{\alpha}{2}} \cup T > \chi^2_{n-1,\frac{\alpha}{2}}$
μ unknown, test σ^2	$\sigma^2 \le \sigma_0^2$	$\sigma^2 > \sigma_0^2$	$T = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{n-1}^2$	$T > \chi^2_{n-1,\alpha}$
	$\sigma^2 \ge \sigma_0^2$	$\sigma^2 < \sigma_0^2$, and the second	$T < \chi^2_{n-1,1-\alpha}$

2. Double normal population:

Condition	H_0	H_1	Testing Statistic T	Rejection Region R
σ_1^2, σ_2^2 known,	$\mu_1 - \mu_2 = \mu_0$	$\mu_1 - \mu_2 \neq \mu_0$	$T = \bar{X} - \bar{Y} - \mu_0$	$ T > N_{\frac{\alpha}{2}}$
test $\mu_1 - \mu_2$	$\mu_1 - \mu_2 \le \mu_0$	$\mu_1 - \mu_2 > \mu_0$	$T = \frac{\bar{X} - \bar{Y} - \mu_0}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} \sim N(0, 1)$	$T > N_{\alpha}$
, , , , ,	$\mu_1 - \mu_2 \ge \mu_0$	$\mu_1 - \mu_2 < \mu_0$	V m n	$T < -N_{\alpha}$
σ^2 σ^2 unknown	$\mu_1 - \mu_2 = \mu_0$	$\mu_1 - \mu_2 \neq \mu_0$	$T - \bar{X} - \bar{Y} - \mu_0$	$ T > t_{m+n-2,\frac{\alpha}{2}}$
σ_1^2, σ_2^2 unknown, test $\mu_1 - \mu_2$	$\mu_1 - \mu_2 \le \mu_0$	$\mu_1 - \mu_2 > \mu_0$	$T = \frac{X - Y - \mu_0}{S_\omega} \sqrt{\frac{mn}{m+n}}$ $\sim t_{m+n-2}$	$T > t_{m+n-2,\alpha}$
	$\mu_1 - \mu_2 \ge \mu_0$	$\mu_1 - \mu_2 < \mu_0$		$T < -t_{m+n-2,\alpha}$
	$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 eq \sigma_2^2$		$T < F_{n,m,1-\frac{\alpha}{2}}$
μ_1, μ_2 known, σ^2			$T = \frac{S_{\mu_2}^2}{S_{\mu_1}^2} \sim F_{n,m}$	$\cup T > F_{n,m,\frac{\alpha}{2}}$
test $\frac{\sigma_1^2}{\sigma_2^2}$	$\sigma_1^2 \geq \sigma_2^2$	$\sigma_1^2 < \sigma_2^2$	$S_{\mu_1}^2$, n,m	$T > F_{n,m,\alpha}$
	$\sigma_1^2 \le \sigma_2^2$	$\sigma_1^2 > \sigma_2^2$		$T < F_{n,m,1-\alpha}$
	$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$		$T < F_{n-1,m-1,1-\frac{\alpha}{2}}$
μ_1, μ_2 unknown,	1 2		$T = \frac{S_2^2}{S_2^2} \sim F_{n-1,m-1}$	$ \mid \cup T > F_{n-1,m-1,\frac{\alpha}{2}} \mid $
test $\frac{\sigma_1^2}{\sigma_2^2}$	$\sigma_1^2 \geq \sigma_2^2$	$\sigma_1^2 < \sigma_2^2$	S_2^2 $n=1,m=1$	$T > F_{n-1,m-1,\alpha}$
_	$\sigma_1^2 \le \sigma_2^2$	$\sigma_1^2 > \sigma_2^2$		$T < F_{n-1,m-1,1-\alpha}$

3. None normal population:

Condition	H_0	H_1	Testing Statistic T	Rejection Region R
\vec{X} from $B(1,p)$, test p	$p=p_0$	$p \neq p_0$	$T = \frac{\sqrt{n}(\bar{X} - p_0)}{\sqrt{p_0(1 - p_0)}} \xrightarrow{\mathscr{L}} N(0, 1)$	$ T >N_{rac{lpha}{2}}$
\vec{X} from $P(\lambda)$, test λ	$\lambda = \lambda_0$	$\lambda \neq \lambda_0$	$T = \frac{\sqrt{n}(\bar{X} - \lambda_0)}{\sqrt{\lambda_0}} \xrightarrow{\mathscr{L}} N(0, 1)$	$ T >N_{rac{lpha}{2}}$

2.4.3 Likelihood Ratio Test

Idea: To test $H_0: \theta \in \Theta_0 \longleftrightarrow H_1: \theta \in \Theta_1$ known \vec{x} , examine the likelihood function $L(\theta; \vec{x})$ and **compare** $L_{\theta \in \Theta_0}$ and $L_{\theta \in \Theta}$ to see the likelihood that H_0 is true.

Def. Likelihood Ratio (LR):

$$\lambda(\vec{x}) = \frac{\sup_{\theta \in \Theta_0} L(\theta; \vec{x})}{\sup_{\theta \in \Theta} L(\theta; \vec{x})}$$

Reject H_0 if $\lambda(\vec{x}) < \lambda_0$. Or equivalently

Reject H_0 if $-2 \ln \lambda(\vec{x}) > C(= -2 \ln \lambda_0)$.

where λ_0 (or equivalently $C = -2 \ln \lambda_0$) satisfies:

$$E_{\Theta_0}[\varphi(\vec{X})] \le \alpha, \quad \forall \theta \in \Theta_0$$

LR and sufficient statistic: $\lambda(\vec{x})$ can be expressed as $\lambda(\vec{x}) = \lambda^*(T(\vec{x}))$, where $T(\vec{X})$ is sufficient statistic.

☐ Limiting Distribution of LR: Wilks' Thm.

If dim $\Theta = k > \dim \operatorname{span}\{\Theta_0\} = s^2$, then under $H_0 : \theta \in \Theta_0$:

$$\Lambda_{\theta \in \Theta_0}(\vec{x}) = -2 \ln \lambda(\vec{x}) \xrightarrow{\mathscr{L}} \chi_{k-s}^2$$

2.4.4 Uniformly Most Powerful Test

Idea: Neyman-Pearson Principle: control α , find min β . i.e. control α , find max $\pi(\theta)$

Def. Uniformly Most Powerful Test (UMP) φ_{UMP} with level of significance α satisfies

$$\pi_{\text{UMP}}(\theta) \geq \pi(\theta), \forall \theta \in \Theta_1$$

Neyman-Pearson Lemma: For $\vec{X} = (X_1, X_2, \dots, X_n)$ i.i.d. from $f(\vec{x}; \theta)$.

Test hypothesis $H_0: \theta = \theta_0 \longleftrightarrow H_1: \theta = \theta_1$. Def. test function φ as:

$$\varphi(\vec{x}) = \begin{cases}
1, & \frac{f(\vec{x}; \theta_1)}{f(\vec{x}; \theta_0)} > C \\
r, & \frac{f(\vec{x}; \theta_1)}{f(\vec{x}; \theta_0)} = C \\
0, & \frac{f(\vec{x}; \theta_1)}{f(\vec{x}; \theta_0)} < C
\end{cases} \tag{2.4}$$

Then there exists C and r such that

²Here 'dimension' refers to 'degree of freedom'.

•
$$E[\varphi(\vec{x})|\theta_0] = P(\frac{f(\vec{x};\theta_1)}{f(\vec{x};\theta_0)} > C) + rP(\frac{f(\vec{x};\theta_1)}{f(\vec{x};\theta_0)} = C) = \alpha$$

• This φ is UMP of level of significance α

Actually kind of 1-dimensional case of LRT.

Note: UMT exist for **simple** H_0 , H_1 , otherwise may not exist.

UMP and sufficient statistics: Test function $\varphi(\vec{X})$ given by eqa.2.4 is function of sufficient statistics $T(\vec{X})$, i.e. $\varphi(\vec{X}) = \varphi^*(T(\vec{X}))$.

UMP and Exponential Family: For sample $\vec{X} = (X_1, X_2, \dots, X_n)$ from exponential family:

$$f(\vec{x}; \theta) = C(\theta)h(\vec{x}) \exp\{Q(\theta)T(\vec{x})\}\$$

Test single hypothesis $H_0: \theta = \theta_0 \longleftrightarrow H_1: \theta = \theta_1$, (where $\theta_0 < \theta_1$). If

- θ_0 is inner point of Θ
- $Q(\theta)$ monotone increase with θ

Then UMP exists, in the form of:

$$\varphi(\vec{x}) = \begin{cases} 1, & T(\vec{x}) > C \\ r, & T(\vec{x}) = C \\ 0, & T(\vec{x}) < C \end{cases}$$

$$(2.5)$$

where C and r satisfies $E[\varphi(\vec{x})|\theta_0] = \alpha$.

Note: or take $Q(\theta)$ mono decreased, then in eqa.2.5, take opposite inequality operators.

☐ General Steps of UMP:

- 1. Find a point $\theta_0 \in \Theta_0$ and a point $\theta_1 \in \Theta_1$. (Note: **one** point)
- 2. Construct test function in the form of eqa. 2.4, use $E[\varphi(\vec{x})|\theta_0] = \alpha$ to determine C and r.
- 3. Get R and $\varphi(\vec{x})$.
- 4. If φ does **not** depend on θ_1 , then H_1 can be generalized to $H_1: \theta \in \Theta_1$.
- 5. If φ satisfies $E_{\theta \in \Theta_0}(\varphi) \leq \alpha$, then H_0 and be generalized to $H_0: \theta \in \Theta_0$.

2.4.5 Duality of Hypothesis Testing and Interval Estimation

• Thm.: $\forall \theta_0 \in \Theta$ there exists hypothesis testing $H_0: \theta = \theta_0 \longleftrightarrow H_1: \theta \neq \theta_0$ of level α with rejection region R_{θ_0} . Then

$$C(\vec{X}) = \{\theta : \vec{X} \in R_{\theta}^C\}$$

is a $1 - \alpha$ confidence region for θ

• Thm.: $C(\vec{X})$ is a $1 - \alpha$ confidence region for θ . Then $\forall \theta_0 \in C(\vec{X})$, the rejection region of hypothesis testing $H_0: \theta = \theta_0 \longleftrightarrow H_1: \theta \neq \theta_0$ of level α satisfies

$$R_{\theta_0}^C = \{ \vec{X} : \theta_0 \in C(\vec{X}) \}$$

☐ Idea:

$$H_0: \theta = \theta_0 \longleftrightarrow H_1: \theta \neq \theta_0$$

$$\updownarrow$$

$$P(R^C(\vec{X})|H_0) = P(R^C(\vec{X})|\theta_0) = 1 - \alpha$$

$$\updownarrow$$

Confidence Interval: $\theta_0 \in R^C(\vec{X})$

Similar for Confidence Limit and One-Sided Testing.

2.4.6 Introduction to Non-Parametric Hypothesis Testing

Motivation: Usually distribution form unknown, cannot use parametric hypothesis testing.

Useful Method:

• Sign Test: Used for paired comparison $\vec{X} = (X_1, X_2, \dots, X_n, \vec{Y} = (Y_1, Y_2, \dots, Y_n).$

Take $Z_i = Y_i - X_i$ i.i.d., denote $E(Z) = \mu$. Test $H_0: \mu = 0 \longleftrightarrow H_1: \mu \neq 0$.

Denote $n_+ = \#(\text{positive } Z_i)$ and $n_- = \#(\text{negative } Z_i)$, $n_0 = n_+ + n_-$. Then $n_+ \sim B(n_0, \theta)$, test $H_0: \theta = \frac{1}{2} \longleftrightarrow H_1: \theta \neq \frac{1}{2}$

Then use Binomial Testing or large sample CLT Normal Testing.

Remark:

- Also can test $H_0: \theta \leq \frac{1}{2} \longleftrightarrow H_1: \theta > \frac{1}{2}$
- Drawback: ignores magnitudes.
- Wilcoxon Signed Rank Sum Test: Improvement of Sign Test. Base on order statistics.

Order Statistics of Z_i : $Z_{(1)} < Z_{(2)} < \ldots < Z_{(n)}$, where each $Z_{(j)}$ corresponds to some Z_i , denote as $Z_i = Z_{(R_i)}$, then R_i is the rank of Z_i .

Def. $\vec{R} = (R_1, R_2, \dots, R_n)$ is **Rank Statistics** of (Z_1, Z_2, \dots, Z_n)

Def. Sum of Wilcoxon Signed Rank:

$$W^{+} = \sum_{i=1}^{n_0} R_i I_{Z_i > 0}$$

Distribution of W^+ is complex. E and var of W^+ under H_0 :

$$E(W^+) = \frac{n_0(n_0+1)}{4}$$
 $var(W^+) = \frac{n_0(n_0+1)(2n_0+1)}{24}$

Usually consider large sample CLT, construct normal approximation:

$$T = \frac{W^+ - E(W^+)}{\sqrt{var(W^+)}} \xrightarrow{\mathscr{L}} N(0,1)$$

Rejection Region: $R = \{|T| > N_{\frac{\alpha}{2}}\}$

³If some X_i, X_j, \ldots equal, then take same rank $R = \text{mean}\{R_i, R_j, \ldots\}$.

• Wilcoxon Two-Sample Rank Sum Test: Used for two independent sample comparison.

Assume $\vec{X} = (X_1, \dots, X_m)$ i.i.d. $\sim f(x); \vec{Y} = (Y_1, \dots, Y_n)$ i.i.d. $\sim f(x - \theta)$, test $H_0 : \theta = 0 \longleftrightarrow H_1 : \theta \neq 0$. Rank X_i and Y_i as:

$$Z_1 \leq Z_2 \leq \ldots \leq Z_{m+n}$$

in which denote rank of Y_i as R_i , and def. Wilcoxon two-sample rank sum:

$$W = \sum_{i=1}^{n} R_i$$

E and var of W under H_0 :

$$E(W) = \frac{n(m+n+1)}{2}$$
 $var(W) = \frac{mn(n+m+1)}{12}$

Use large sample approximation, construct CLT:

$$T = \frac{W - E(W)}{\sqrt{var(W)}} \xrightarrow{\mathscr{L}} N(0, 1)$$

• Goodness-of-Fit Test: For $\vec{X} = (X_1, X_2, \dots, X_n)$ i.i.d. from some certain population X. Test $H_0 : X \sim F(x)$. where F is theoretical distribution, can be either parametric or non-parametric.

Idea: Define some quantity $D = D(X_1, ..., X_n; F)$ to measure the difference between F and sample. And def. Goodness-of-fit when observed value of D (say d_0) is given:

$$p(d_0) = P(D \ge d_0|H_0)$$

Goodness-of-Fit Test: Reject H_0 if $p(d_0) < \alpha$.

Pearson χ^2 Test: Usually used for discrete case.

Test $H_0: P(X_i = a_i) = p_i, i = 1, 2, ..., r$. Denote $\#(X_j = a_i) = \nu_i$, take D as:

$$K_n = K_n(X_1, \dots, X_n; F) = \sum_{i=1}^r \frac{(\nu_i - np_i)^2}{np_i}$$
 (2.6)

Pearson Thm.: For K_n defined as eqa. 2.6, then under H_0 :

$$K_n \xrightarrow{\mathscr{L}} \chi^2_{r-1-s}$$

Here s is number of unknown parameter, r - 1 - s is the degree of freedom.

Note:

- $-a_i$ must **not** depend on sample.
- For continuous case, construct division:

$$\mathbb{R} \to (-\infty, a_1, a_2, \dots, a_{r-1}, \infty = a_r)$$

and test $H_0: P(X \in I_i) = p_i$

Criterion: Pick proper interval so that np_i and ν_i both ≥ 5 .

- Contingency Table Independence & Homogeneity Test
 - Independence Test:

Test a two-parameter sample and to see whether these two parameters(features) are independent. Denote Z = (X, Y) are some 'level' of sample, n_{ij} is number of sample with level (i, j)

Contingency Table:

Y	1		j		s	Σ
1	n_{11}		n_{1j}		n_{1s}	n_1 .
:	:	٠.	÷	٠.	÷	:
i	n_{i1}		n_{ij}		n_{is}	n_{i} .
:	:	٠	:	٠.	:	:
r	n_{r1}		n_{rj}		n_{rs}	n_r .
Σ	$n_{\cdot 1}$		$n_{\cdot j}$		$n_{\cdot s}$	n

Test $H_0: X \& Y$ are independent. i.e. $H_0: P(X=i,Y=j) = P(X=i)P(Y=j) = p_{i\cdot p\cdot j}$. Construct χ^2 test statistic:

$$K_n = \sum_{i=1}^r \sum_{j=1}^s \frac{[n_{ij} - n(\frac{n_{i.}}{n})(\frac{n_{.j}}{n})]^2}{n(\frac{n_{.i}}{n})(\frac{n_{.j}}{n})} = n \left(\sum_{i=1}^r \sum_{j=1}^s \frac{n_{ij}^2}{n_{i.}n_{.j}} - 1\right)$$
(2.7)

Then under H_0 , $K_n \xrightarrow{\mathscr{L}} \chi^2_{rs-1-(r+s-2)} = \chi^2_{(r-1)(s-1)}$ Reject H_0 if $p(k_0) = P(K_n \ge k_0) < \alpha$

- Homogeneity Test:

Test R groups of sample with category rank, to see whether these groups has similar rank distribution.

Category	Category 1		Category j		Category C	Σ
Group 1	n_{11}		n_{1j}		n_{1C}	n_1 .
:	:	٠.	÷:	٠	:	:
Group i	n_{i1}		n_{ij}		n_{iC}	n_{i} .
i i	:	٠	÷	٠٠.	:	:
Group R	n_{R1}		n_{Rj}		n_{RC}	n_{R} .
\sum	$n_{\cdot 1}$		$n_{\cdot j}$		nC	n

Denote $P(\text{Category } j|\text{Group } i) = p_{ij}. \text{ Test } H_0: p_{ij} = p_j, \ \forall 1 \leq i \leq R.$

Construct χ^2 test statistic:

$$D = \sum_{i=1}^{R} \sum_{j=1}^{C} \frac{\left[n_{ij} - n\left(\frac{n_{i\cdot}}{n}\right)\left(\frac{n_{\cdot j}}{n}\right)\right]^{2}}{n\left(\frac{n_{i\cdot}}{n}\right)\left(\frac{n_{\cdot j}}{n}\right)} = n\left(\sum_{i=1}^{R} \sum_{j=1}^{C} \frac{n_{ij}^{2}}{n_{i\cdot}n_{\cdot j}} - 1\right)$$
(2.8)

Then under H_0 , $D \xrightarrow{\mathscr{L}} \chi^2_{R(C-1)-(C-1)} = \chi^2_{(R-1)(C-1)}$

• Test of Normality: normality is a good & useful assumption.

For
$$\vec{Y} = (Y_1, Y_2, \dots, Y_n),$$

Test H_0 : exists $\mu \& \sigma^2$ such that Y_i i.i.d. $\sim N(\mu, \sigma^2)$.

– Kolmogorov-Smirnov Test: Assume \vec{X} form population CDF F(x), test $H_0: F(x) = F_0(x)$ (where can take $F_0 = \Phi$ or some other known CDF).

use $F_n(x)$ (as defined in eqa.2.3) as approx. to F(x), test

$$D_n = \sum_{-\infty < x < +\infty} |F_n(x) - F_0(x)|$$

Reject H_0 if $D_n > c$

or use goodness-of-fit: denote observed value of D_n as d_n . Reject H_0 if

$$p(d_n) = P(D_n > d_n | H_0) < \alpha$$

- Shapiro-Wilk Test:

Test H_0 : exists $\mu \& \sigma^2$ such that X_i i.i.d. $\sim N(\mu, \sigma^2)$.

Denote
$$Y_{(i)} = \frac{X_{(i)-\mu}}{\sigma}$$
, $m_i = E(Y_{(i)})$

Under H_0 , $(X_{(i)}, m_i)$ falls close to straight line. Test Statistic: Correlation

$$R^{2} = \frac{\left(\sum_{i=1}^{n} (X_{(i)} - \bar{X})(m_{i} - \bar{m})\right)^{2}}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \sum_{i=1}^{n} (m_{i} - \bar{m})^{2}}$$

Reject H_0 if $R^2 < c$

Shapiro-Wilk correction:

$$W = \frac{\left(\sum_{i=1}^{[n/2]} a_i (X_{(n+1-i)} - X_{(i)})\right)^2}{\sum_{i=1}^{n} (X_{(i)} - \bar{X})^2}$$

☐ Summary: Useful Non-Parameter Hypothesis Testing.

Chapter. III 线性回归分析部分

Steps	in	Reg	ression	Anal	vsis
		0			J

- 1. Exploratory Data Analysis (EDA)
- 2. Statement of the problem;
- 3. Selection of potentially relevant variables;
- 4. Data collection;
- 5. Model specification;
- 6. Choice of fitting method;
- 7. Model fitting;
- 8. Model validation and criticism;
- 9. Using the chosen model(s) for the solution of the posed problem.

Section 3.1 Linear Regression Model

- · Assume a Model
 - 1. Parameter of the model
 - 2. Basic Assumptions
 - 3. Dsitribution of error
- Parametric Estimation
 - 1. Ordinary Least Squares Estimation
 - 2. Maximun Likelihood Estimation
- Statistics Inference
 - 1. Hypotheses Testing
 - 2. Interval Estimation

3.1.1 Data for simple linear regression

We will observe pairs of variables, called 'cases'(样本点)

A sample is $(X_1, Y_1), ..., (X_n, Y_n)$

Linear Model: ⁴

⁴Here in linear regression, we consider X_i only as real number, **without** randomness. So here Y_i can be considered as an r.v. with X_i as parameter, i.e. $Y_i|_{X_i=x_i}$

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

where ε_i i.i.d. $\sim \varepsilon$ is a random error term, satisfies ⁵

$$E(\varepsilon_i) = 0$$
 $var(\varepsilon_i) = \sigma^2$

Normal Error Assumption: Further in most cases, we consider $\varepsilon \sim N(0, \sigma^2)$ —-because of its well-property distribution, $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ i.i.d. $N(0, \sigma^2)$.

What does Linear Regression do? Under Linear Model, try to estimate

- β_0 (intercept);
- β_1 (slope);
- σ^2 (variance of error).

(Thus Linear Regression is also a Statistics Inference process: deduce properties of model from data)

3.1.2 The Ordinary Least Square Estimation

Aim: use (x_i, y_i) to estimate $\beta_0, \beta_1, \sigma^2$. The idea is to define a 'loss function' to reflect the 'distance' from sample point to estimation point.

Estimate Principle: ⁷

• Ordinary Least Squares:

$$(\hat{\beta}_0, \hat{\beta}_1) = \arg\min \sum_{i=1}^n (y - \beta_0 - \beta_1 x_i)^2$$

• MLE or MoM Estimation.

And get $\hat{\beta}_1$, $\hat{\beta}_0$ as well as $\hat{\sigma^2}$ (see eqa(3.3):⁸

- It represents the intrinsic random property of the model.
- Based on ε , we can take r.v. into our statistic model.

$$Y_i \sim N(\beta_0 + \beta_1 X_i, \sigma^2)$$
 $i = 1, 2, ..., n$

$$\hat{\beta}_1 = r_{XY} \frac{\sqrt{s_Y}}{\sqrt{s_X}} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$

⁵Note: Why we need ε as 'random error term'?

⁶i.e. Y_i are independent

⁷Detailed Definition and Derivation see sec.2.2.5.

⁸A memory trick: use $\frac{Y}{\sqrt{s_Y}} = r_{XY} \frac{X}{\sqrt{s_X}}$ to get formular of $Y \sim X$:

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$

$$\hat{\sigma}^{2} = \frac{1}{n - p - 1} \sum_{i=1}^{n} (y_{i} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{i})^{2}$$
(3.1)

Def. Residual: distance from sample point to estimate point, to reflect how the sample points fit the model.

$$e_i = y_i - \hat{y}_i = \text{observed value of } \varepsilon_i$$

Note: under least square estimation, we have⁹

$$\sum e_i = 0 \qquad \sum x_i e_i = 0 \tag{3.2}$$

Then use e_i to estimate σ^2 (because it is ε_0 that are i.i.d., not Y_i), where (n-p-1) is Degree of Freedom (df or dof)¹⁰

$$\hat{\sigma_n^2} = \frac{1}{n} \sum e_i^2 \quad \text{(use MLE or MoM)}$$

$$\hat{\sigma^2} = \frac{1}{n-p-1} \sum e_i^2 = \frac{1}{n-2} \sum e_i^2 \quad \text{(use OLS, unbiased)}$$
(3.3)

3.1.3 Statistical Inference to β_0, β_1

 \square Sampling Distribution of $\hat{\beta}_1, \hat{\beta}_0$

Consider $\hat{\beta}_1, \hat{\beta}_0$ as statistics of sample, then we can examine the sampling distribution of $\hat{\beta}_1, \hat{\beta}_0$. Their randomness comes from

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

(The following part treats $\hat{\beta}_1$, $\hat{\beta}_0$ as r.v., and note that X_i are **not** r.v.. And for convenience and conciseness, denote $S_{XX} = \sum_{i=1}^n (X_i - \bar{X})^2$)

$$\hat{\beta}_1 = \beta_1 + \sum_{i=1}^n \frac{X_i - \bar{X}}{S_{XX}} \varepsilon_i$$

$$\hat{\beta}_0 = \beta_0 + \sum_{i=1}^n \left(\frac{1}{n} - \frac{(X_i - \bar{X})\bar{X}}{S_{XX}}\right) \varepsilon_i$$

Denote corresponding variance as $\sigma^2_{\hat{\beta}_1}$ and $\sigma^2_{\hat{\beta}_0}$, using eqa(1.3) to get:

$$\sigma_{\hat{\beta}_1}^2 = \frac{\sigma^2}{S_{XX}} \qquad \sigma_{\hat{\beta}_0}^2 = \sigma^2(\frac{1}{n} + \frac{\bar{X}^2}{S_{XX}})$$

Comment from R.A.Fisher: $\sum e_i^2$ should be divided by 'number of e_i^2 that contribute to variance'. Here (n-p-1) corresponds to 'degree of freedom' = (n-2), p=1 corresponds to 'one' variable (see sec.2.2.5, eqa(2.2)), and corresponds to the two equations of e_i , eqa(3.2)

⁹Intuitively, they each means $E(\varepsilon) = 0$ and $X \parallel \varepsilon$.

¹⁰Generally, MLE and LSE are different.

And under normal error assumption, distribution of $\hat{\beta}_1, \hat{\beta}_0$ are

$$\hat{\beta}_1 \sim N(\beta_1, \sigma_{\hat{\beta}_1}^2) = N(\beta_1, \frac{\sigma^2}{S_{XX}})$$

$$\hat{\beta}_0 \sim N(\beta_0, \sigma_{\hat{\beta}_0}^2) = N(\beta_0, \sigma^2(\frac{1}{n} + \frac{\bar{X}^2}{S_{XX}}))$$

Based on sampling distribution of $\hat{\beta}_1$, $\hat{\beta}_0$, we can conduct statistical inference, including CI and HT.¹¹

Note: In linear regression model, we usually focus more on β_1 . And note that when 0 is **not** within the fitting range, β_0 is not so important.¹²

Why we choose OLS to get regression coefficients?

☐ Gauss-Markov Thm.: the OLS estimator has the lowest sampling variance within the class of linear unbiased estimators, i.e. OLS is the Best Linear Unbiased Estimator(BLUE). 13

3.1.4 Prediction to Y_h

For a new X_h at which we wish to **predict** the corresponding Y_h (based on other known point (X_i, Y_i)), denote the estimator as $\hat{\mu}_h$:

$$\hat{\mu}_h = \hat{\beta}_1 X_h + \hat{\beta}_0 = \beta_1 X_h + \beta_0 + \sum_{i=1}^n \left(\frac{1}{n} + \frac{(X_i - \bar{X})(X_h - \bar{X})}{S_{XX}} \right) \varepsilon_i$$

Thus we can get¹⁴

$$E(\hat{\mu}_h) = \beta_1 X_h + \beta_0 \qquad \sigma_{\hat{\mu}_h}^2 = \left(\frac{1}{n} + \frac{(X_h - \bar{X})^2}{S_{XX}}\right) \sigma^2$$

Under Normal assumption:

$$\hat{\mu}_h \sim N(\beta_1 X_h + \beta_0, \left(\frac{1}{n} + \frac{(X_h - \bar{X})^2}{S_{XX}}\right) \sigma^2)$$

Base on distribution we can give CI and HT.

Note: Remember that when we consider the estimator $\hat{\mu}$, we **must** have the randomness of $\hat{\beta}_0$, $\hat{\beta}_1$ considered(if they are unknown).

Prediction Error: Y_h itself is an Y of the linear model, i.e. $Y_i = \beta_0 + \beta_1 X_h + \varepsilon_h$, we can consider Y_h itself as an r.v. v.s. predicted Y_h from other sample points and define Prediction Error:

$$d_h = Y_h - \hat{\mu}_h$$

$$E(d_h) = 0$$
 $\sigma_{d_h}^2 = var(Y_h - \hat{\mu}_h) = \sigma^2 \left[1 + \frac{1}{n} + \frac{(X_h - \bar{X})}{S_{XX}} \right] > \sigma_{\hat{\mu}_h}^2$

☐ Simultaneous Confidence Band(SCB)

- The etimation error of Y from $\hat{\beta}_1$ increases with $X_h \bar{X}$;
- $\beta_1 == 0$ is important: decides whether linear model can be used.

¹¹Detail see sec.2.4, estimating/testing $\hat{\beta}_1$, $\hat{\beta}_0$ usually corresponds to 'estimate μ , with σ^2 unknown'.

¹²Two reason:

¹³This Thm. does **not** require normal error assumption.

¹⁴So $\sigma^2(\hat{\mu}_h)$ increases with $X_h - \bar{X}$. Intuitively it make sense, because (\bar{X}, \bar{Y}) must falls on regression line.

Confidence Band is **not** the CI at each point, but really a **band** for the **entire** regression line. ¹⁵

Aim: Find lower and upper function L(x) and U(x) such that

$$P[L(x) < (\beta_0 + \beta_1 x) < U(x), \forall x \in I_x] = 1 - \alpha$$

and get Confidence Band:

$$\{(x,y)|L(x) < y < U(x)| \forall x \in I_x\}$$

Where (L(x), U(x)) can be derived as

$$(L(x), U(x)) = \hat{\mu}_x \pm s_{\hat{\mu}_x} W_{2,n-2,1-\alpha}$$

Where W correponds to W distribution: $W_{m,n} = \sqrt{2F_{m,n}}$

Small sample case: Bonferroni correction.

Section 3.2 Analysis of Variance

ANalysis Of VAriance (ANOVA): One-sample t test \rightsquigarrow Two sample t test \rightsquigarrow ANOVA

- Partition of Totla Sum of Squares;
- Partition of Degree of Freedom;
- MSS → F-test;
- ANOVA table;
- General linear test. –to be examined further in later sections.
- (Pearson) Correlation Coefficient $\leftrightarrow R^2$

SST: Total Sum of Squares

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

Note: Here Y_i are not i.i.d. (different mean).

Idea: take partition of SST. For instance

$$Y_i - \bar{Y} = (Y_i - \hat{Y}) + (\hat{Y} - \bar{Y}) = e_i$$

Note: $\bar{Y} = \hat{\hat{Y}}$

then we partition SST into 16

Also, we will see that for linear model, the boundary of SCB forms hyperbola, which make sense considering its asymptotic line.

¹⁶**IMPORTANT:** In some books

- SSError → SSResidual;
- SSRegression \rightarrow SSExplained.

And Cause Confusion! In this summary we take the former.

¹⁵Why they are different? We require the confidence band have a **simultaneous** converage probability. For the same band (L(x), U(x)), P(the whole line) < P(each point), so Confidence Band is wider than $\bigcup C$ to hold the same $1 - \alpha$.

• variation due to model (SSRegression) (which is explained by regression line);

$$SSR = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$$

• variation attribtes to ε (SSError).

$$SSE = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)$$

can prove

$$SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 + \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = SSR + SSE$$

That is: we partition SST into two parts, so that we can examine them seperately.

☐ ANOVA Table 17

Source	dof	SS	MS
Regression	1	$\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$	${ m SSR}/dof_R$
Error	n-2	$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$	${\sf SSE}/dof_E$
Total	n-1	$\sum_{i=1}^{n} (Y_i - \bar{Y})^2$	$\operatorname{SST}/\operatorname{dof}_T$

Properties:

$$E(MSE) = \sigma^2$$
 $E(MSR) = \sigma^2 + \beta_1^2 S_{XX}$

- \Box Hypotheses Testing to $H_0: \beta_1 = 0$
 - We can examine $F = \frac{\text{MSR}}{\text{MSE}} \sim F_{dof_R, dof_E} = F_{1, n-2}$
 - Or: General Linear Test (GLT)
 - Full model: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$.
 - Reduced model: $Y_i = \beta_0 + \varepsilon_i$.

and examine

$$F = \frac{(\text{SSE}_{\text{R}} - \text{SSE}_{\text{F}})/dof_{R-F}}{\text{SSE}_{\text{F}}/dof_{F}} \sim F_{dof_{R} - dof_{F}, dof_{F}}$$

 \square Pearson Correlation Coefficient \mathbb{R}^2

$$R^2 = \frac{\text{SSR}}{\text{SST}}$$

Note: under simple linear model, $r^2 = R^2$, where $r = \hat{\beta}_1 \frac{\sigma_X}{\sigma_Y}$

Section 3.3 Model Assumption and Diagnostics

 \square Diagonostics to X

Considering the dependence of Y_i on X_i , we cannot just focus on the (marginal) distribution of Y_i . Thus we also need a better 'distribution' of X_i

$$^{17}SSR = \hat{\beta}_1^2 \sum_{i=1}^n (X_i - \bar{X})^2$$
, so $dof_R = 1$

- 4 statistics(parameters);¹⁸
 - Mean: Location;

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- Standard Deviation: Variability;

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

- Skewness: Lack of Symmertry;

$$\hat{g}_1 = \frac{m_{n,3}}{m_{n,2}^{3/2}} = \frac{\frac{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^3}{\left(\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})\right)^{3/2}}$$

Adjusted Skewness (Least MSE):

$$\frac{\sqrt{n(n-1)}}{n-2}\hat{g}_1$$

- * $\hat{g}_1 > 0$: Right skewness, longer right tail;
- * $\hat{g}_1 < 0$: Left skewness, longer left tail.

Fisher-Pearson coefficient of skewness.

- Kurtosis: Heavy/Light Tailed.

$$\hat{g}_2 = \frac{m_{n,4}}{m_{n,2}^2} - 3 = \frac{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^4}{\left(\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})\right)^2} - 3$$

 $\hat{g}_2 = 0 \Rightarrow \text{similar to normal.}$

- * $\hat{g}_2 > 0$: Leptokurtic, heavy tail slender;
- * $\hat{g}_2 < 0$: Platykurtic, light tail broad.

Note: In expression of \hat{g}_1 and \hat{g}_2 , we already divide the variance. So Skewness and Kurtosis only reflect the difference from normal, but not related to variance!

Best tool to determine Kurtosis: QQ-Plot.

- Useful Plots:
 - BoxPlot: a rough distribution.

25%-quantile \Box 1.5IQR \vdash \Box 25%-quantile \Box 75%-quantile \Box \exists 75%-quantile + 1.5IQR \Box 1

- Histogram Plots: Frequency distribution (can deal with many-peak)
- Quantile-Quantile Plots: Examine the similarity between distribution.

For two CDF q = F(x) and q = G(x) (where q for quantile), with $x = F^{-1}(q)$, $x = G^{-1}(q)$. And Plot $F^{-1}(q)$ - $G^{-1}(q)$.

Usually test normality, take $G = \Phi$

¹⁸See sec.2.1.1

¹⁹IQR:InterQuartile Range

- Normality;
- Bias:
 - Selection Bias: Not completely random sampling;
 - Information Bias: Difference between 'designed' and 'get', e.g. no response;
 - Confounding: Exist another important variable, while the model actually focuses on a less important variable, or even reverse the causality.

☐ Diagnostics to Residual

Residual Plot: Reflect the linearity and variance assumption

Testing of

- The Assumption of Equal Variances:
 - Bartlett's test: Comes from UMPT, useful when normality assumption satisfied.
 - Levene's test:
 - Brown-Forsythe test (Modified Levene's test):
 - Breusch-Pagan test:
- The Assumption of Normality:
 - Shapiro-Wilk Test (Most Powerful):
- The Assumption of Independence:

Chapter. IV 多元统计分析部分

Section 4.1 Multivariate Data

In this section, we consider a **Multivariate Statistic Model**. Sample comes from p dimension multivariate population $f(x_1, x_2, \dots, x_p)$.

Notation: In this section, we still denote random variable in upper case and observed value in lower case, specially express random vector in bold font. **But** in this section we usually omit the vector symbol $\vec{\cdot}$. e.g. random vector with n **variable** is denoted as $\mathbf{X} = (X_{\cdot 1}, X_{\cdot 2}, \dots, X_{\cdot p})$; sample of size n from the multivariate population is a $n \times p$ matrix $\{x_{ij}\}$, each sample item (a row in sample matrix) is denoted as x_i' or x_i^T .

4.1.1 Matrix Representation

- Random Variable Representation
- Sample Representation
- Statistics Representation
- Sample Statistics Properties
- ☐ Random Variable Representation:
 - Random Matrix: Definition and basic properties of r.v. see section 1.3. Now extend the definition to matrix $X = \{X_{ij}\}.$

$$X = \{X_{ij}\} = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1p} \\ X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{1n} & X_{n2} & \dots & X_{np} \end{bmatrix}$$

And we can further define $E(X) = \{E(X_{ij})\}$. For any const matrix A, B we have

$$E(AXB) = AE(X)B$$

• Random Vector: For a $p \times 1$ random vector $\vec{X} = (X_1, X_2, \dots, X_p)^T$, denote (Marginal) expectation and variance, and covariance, correlation coefficient between X_i, X_j as follows:

$$\mu_i = E(X_i)$$

$$\sigma_{ii} = \sigma_i^2 = E(X_i - \mu_i)^2$$

$$\sigma_{ij} = E[(X_i - \mu_i)(X_j - \mu_j)]$$

$$\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii}}\sqrt{\sigma_{jj}}}$$

²⁰Here sample item (or sample case) $x_i = [x_{i1}, x_{i2}, \dots, x_{ip}]^T$ is a column vector.

and we have covariance matrix (as defined in section 1.4.3, eqa.1.2)

$$\Sigma = E[(X - \mu)(X - \mu)^T] = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1p} & \sigma_{p2} & \dots & \sigma_{pp} \end{bmatrix}$$

and Standard Deviation Matrix

$$V^{1/2} = diag\{\sqrt{\sigma_{ii}}\}$$

Based on $\vec{X}=(X_1,X_2,\ldots,X_p)$, consider the linear combination: $Y=c'X=c_1X_1+c_2X_2+\ldots c_pX_p$

$$E(y) = c'\mu \qquad var(Y) = c'\Sigma c$$

and $Z_i = \sum_{j=1}^p c_{ij} X_j$ (i.e. Z = CX):

$$\mu_Z = E(Z) = C\mu_X \qquad \Sigma_Z = C\Sigma_X C^T$$

and Correlation Matrix

$$\rho = \begin{bmatrix} \rho_{11} & \rho_{12} & \dots & \rho_{1p} \\ \rho_{21} & \rho_{22} & \dots & \rho_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1p} & \rho_{p2} & \dots & \rho_{pp} \end{bmatrix} = V^{-1/2} \Sigma V^{-1/2}$$

☐ Sample Representation:

Sample of n items from population characterized by p variables

Variable Item	Variable 1	Variable 2		Variable j		Variable p
Item 1	x_{11}	x_{12}		x_{1j}		x_{1p}
Item 1	x_{21}	x_{22}		x_{2j}		x_{2p}
:	:	:	٠.	:	٠.	:
Item j	x_{i1}	x_{i2}		x_{ij}		x_{ip}
<u>:</u>	:	:	٠.	:	٠.	:
Item n	x_{n1}	x_{n2}		x_{nj}		x_{np}

Or represented in condense notation:

$$X = \{x_{ij}\} = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_n^T \end{bmatrix} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix} = \begin{bmatrix} y_1 & y_2 & \dots & y_p \end{bmatrix}$$

☐ Statistics Representation

• Unit 1 vector:

$$\mathbf{1}_k = (\underbrace{1, 1, \dots, 1}_{k \text{ l in total}})^T$$

52

• Sample mean:

$$\bar{x}_i = \frac{x_{1i} + x_{2i} + \ldots + x_{ni}}{n} = \frac{y_i' \mathbf{1}_n}{n}$$

• Deviation of measurement of the i^{th} variable:

$$d_i = y_i - \bar{x}_i \mathbf{1}_n = \begin{bmatrix} x_{1i} - \bar{x}_i \\ x_{2i} - \bar{x}_i \\ \vdots \\ x_{ni} - \bar{x}_i \end{bmatrix}$$

- Covariance Matrix:
 - Variance of y_i :

$$s_i^2 = s_{ii} = \frac{1}{n} d_i' d_i = \frac{1}{n} \sum_{k=1}^n (x_{ki} - \bar{x}_i)^2, \quad i = 1, 2, \dots p$$

- Covariance between y_i and y_j :

$$s_{ij} = \frac{1}{n} d'_i d_j = \frac{1}{n} \sum_{k=1}^n (x_{ki} - \bar{x}_i)(x_{kj} - \bar{x}_j), \quad i, j = 1, 2, \dots p$$

- Correlation Coefficient:

$$r_{ij} = \frac{s_{ij}}{\sqrt{s_{ii}}\sqrt{s_{jj}}} = \frac{\sum_{k=1}^{n} (x_{ki} - \bar{x}_i)(x_{kj} - \bar{x}_j)}{\sqrt{\sum_{k=1}^{n} (x_{ki} - \bar{x}_i)^2} \sqrt{\sum_{k=1}^{n} (x_{kj} - \bar{x}_j)^2}}, \quad i, j = 1, 2, \dots p$$

In condense notation, define Covariance Matrix from sample of size n:

$$S_n = \begin{bmatrix} s_{11} & s_{12} & \dots & s_{1p} \\ s_{21} & s_{22} & \dots & s_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ s_{1p} & s_{p2} & \dots & s_{pp} \end{bmatrix}$$

and sample Correlation Coefficient Matrix:

$$R_n = \begin{bmatrix} r_{11} & r_{12} & \dots & r_{1p} \\ r_{21} & r_{22} & \dots & r_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ r_{1p} & r_{p2} & \dots & r_{pp} \end{bmatrix}$$

- Generalized sample variance: $|S| = \lambda_1 \lambda_2 \dots \lambda_p$, where λ_i are eigenvalues.
- 'Statistical Distance' between vectors: to measure the difference between two vectors $x=(x_1,x_2,\ldots,x_p)$ and $y=(y_1,y_2,\ldots,y_p)$.

- Euclidean Distance:

$$d_E(x,y) = \sqrt{(x-y)^T(x-y)}$$

- Mahalanobis Distance: Scale invariant distance, and include information about relativity:

$$d_M(x,y) = \sqrt{(x-y)'S^{-1}(x-y)}$$

Note: P, Q are from the same distribution with covariance matrix S_p . When S = I, return to Euclidean distance.

Remark: Mahalanobis distance is actually the normalized Euclidean distance in principal component space. So we can actually define the Mahalanobis distance for one sample case $\vec{x}=(x_1,x_2,\ldots,x_p)$ from distribution of $\vec{\mu}, \Sigma$

$$d_M(\vec{x}) = \sqrt{(\vec{x} - \vec{\mu})^T \Sigma^{-1} (\vec{x} - \vec{\mu})}$$
 (4.1)

Note: the hyper-sruface $d_M(\vec{x})$ forms a ellipsoid.

☐ Sample Statistics Properties

Consider take an n cases sample from r.v. population $\vec{X} = (X_1, X_2, \dots, X_p)$, population mean μ and covariance matrix Σ .

- $E(\bar{X}) = \mu;$
- $cov(\bar{X}) = \frac{1}{n}\Sigma;$
- $E(S_n) = \frac{n-1}{n} \Sigma$

4.1.2 Review: Some Matrix Notation & Lemma

• Orthonormality: For square matrix P satisfies:

$$x_i^T x_j = \delta_{ij}$$

where x_i, x_j are columns of P.

• Eigenvalue and Eigenvector: For square matrix A, its eigenvalues λ_i and corresponding eigenvectors e_i satisfies:

$$Ae_i = \lambda_i e_i, \forall i = 1, 2, \dots p$$

Denote $P = [e_1, e_2, \dots, e_p]$, which is an orthonormal matrix. And denote $\Lambda = diag\lambda_1, \lambda_2, \dots, \lambda_p$.

$$A = \sum_{i=1}^{p} \lambda_i e_i e_i^T = P \Lambda P^T = P \Lambda P^{-1}$$

is called the Spectral Decomposition of A

• Square root matrix: Def. as

$$A^{1/2} = \sum_{i=1}^{p} \sqrt{\lambda_i} e_i e_i^T = P \Lambda^{1/2} P^T$$

Properties:

$$-A^{1/2}A^{1/2}A;$$

$$-A^{-1/2} = (A^{1/2})^{-1} = PL^{-1/2}P^{T};$$

$$-tr(A) = \sum_{i=1}^{n} \lambda_{n};$$

$$-|A| = \prod_{i=1}^{n} \lambda_{n}.$$

• (Symmetric) Positive Definite Matrix: Say A a Positive Definite Matrix if

$$x^T A x > 0, \forall x \in \mathbb{R}^p$$

where x^TAx is called a Quadric Form.

Properties:

- Use the Spectral Decomposition of A, we can write the Quadric Form as

$$x^{T}Ax = x^{T}P\Lambda P^{T}x = y^{T}\Lambda y = \sum_{i=1}^{p} \lambda_{i}y_{i}^{2} = \sum_{i=1}^{p} (\sqrt{\lambda_{i}}y_{i})^{2}$$

- Eigenvalues $\lambda_i > 0, \forall i = 1, 2, \dots, p$
- A can be written as product of symmetric matrix: $A = Q^T Q$ (Q is symmetric);
- Trace of Matrix: For $p \times p$ square matrix A

$$tr(A) = \sum_{i=1}^{p} a_{ii}$$

Properties:

$$- tr(AB) = tr(BA);$$

$$- x'Ax = tr(x'Ax) = tr(Axx')$$

• Calculus Notations: We want to take derivative of $y=(y_1,y_2,\ldots,y_q)^T$ over $x=(x_1,x_2,\ldots,x_p)^T$ We use 'Denominator-layout', which is

$$\frac{\partial y}{\partial x} = \frac{\partial y^T}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \dots & \frac{\partial y_q}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_2}{\partial x_p} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_p} & \frac{\partial y_2}{\partial x_p} & \dots & \frac{\partial y_q}{\partial x_p} \end{bmatrix}$$

Properties (under denominator-layout):

$$- \frac{\partial}{\partial x} Ax = A^T;$$

$$- \frac{\partial}{\partial x} x^T A = A;$$

$$-\frac{\partial}{\partial x}x^Tx = 2x;$$

$$-\frac{\partial}{\partial x}x^TAx = Ax + A^Tx;$$

$$-\frac{\partial}{\partial x}\log(x^TAx) = \frac{2Ax}{x^TAx};$$

$$-\frac{\partial|A|}{\partial A} = |A|A^{-1};$$

$$-\frac{\partial tr(AB)}{\partial A} = B^T;$$

$$-\frac{\partial tr(A^{-1}B)}{\partial A} = -A^{-1}B^TA^{-1}$$

• Kronecker Product: For matrix $\underset{m \times n}{A} = \{a_{ij}\}, \underset{p \times q}{B} = \{b_{ij}\}.$ Their Kronecker product

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \dots & a_{1n}B \\ a_{21}B & a_{22}B & \dots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{1m}B & a_{m2}B & \dots & a_{mn}B \end{bmatrix}$$

4.1.3 Useful Inequalities

• Cauchy-Schwartz Inequality:

Let b, d are any $p \times 1$ vectors.

$$(b'd)^2 \le (b'b)(d'd)$$

• Extended Cauchy-Schwartz Inequality:

Let B be a positive definite matrix.

$$(b'd)^2 \leq (b'Bb)(d'B^{-1}d)$$

• Maximazation Lemma:

d be a given vector, for any non-zero vector x,

$$\frac{(x'd)^2}{x'Bx} \le d'B^{-1}d$$

Take Maximum when $x = cB^{-1}d$.

Section 4.2 Statistical Inference to Multivariate Population

Statistics model: a n cases sample X_1, X_2, \dots, X_n , where each X_i i.i.d. from a multivariate population (usually consider a multi-normal). i.e.

$$\mathbf{X} = \begin{bmatrix} X_{11} & X_{12} & \dots & X_{1p} \\ X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ X_{1n} & X_{n2} & \dots & X_{np} \end{bmatrix} = \begin{bmatrix} \mathbf{X}'_1 \\ \mathbf{X}'_2 \\ \vdots \\ \mathbf{X}'_n \end{bmatrix}$$

$$(4.2)$$

Section 4.3 Multivariate Normal Distribution

Univariate Noraml Distribution: $N(\mu, \sigma^2)$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Multivariate Normal Distribution: $X \sim N_p(\vec{\mu}, \Sigma)^{21}$

$$f(\vec{x}) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} \exp\left(-\frac{(\vec{x} - \vec{\mu})' \Sigma^{-1} (\vec{x} - \vec{\mu})}{2}\right)$$

Note: Here in the exp, the $(\vec{x} - \vec{\mu})'\Sigma^{-1}(\vec{x} - \vec{\mu})$ is the Mahalanobis Distance d_M defined in eqa.4.1

Remark: A n-dimension multivariate normal has $p + \frac{p(p-1)}{2} = \frac{p(p+1)}{2}$ free parameters. Thus for a very high dimension, contains too many free parameters to be determined!

Properties: Consider $X \sim N_p(\mu, \Sigma)$

- Linear Transform:
 - For a $p \times 1$ vector a:

$$X \sim N_p(\mu, \Sigma) \Leftrightarrow a'X \sim N(a'\mu, a'\Sigma a), \forall a \in \mathbb{R}^p$$

(Proof: use characteristic function.)

- For a $q \times p$ const matrix A:

$$AX + a \sim N_a(A\mu + a, A\Sigma A')$$

• Marginal Distribution: Take partition of X into X_1 and X_2 , where $q_1+q_2=p$. Write in matrix form: $q_1\times q_2 = p$.

$$X = \begin{bmatrix} X_1 \\ q_1 \times 1 \\ X_2 \\ q_2 \times 2 \end{bmatrix} \qquad \mu = \begin{bmatrix} \mu_1 \\ q_1 \times 1 \\ \mu_2 \\ q_2 \times 2 \end{bmatrix} \qquad \sum_{p \times p} = \begin{bmatrix} \sum_{11} & \sum_{12} \\ q_1 \times q_1 & q_1 \times q_2 \\ \sum_{21} & \sum_{22} \\ q_2 \times q_1 & q_2 \times q_2 \end{bmatrix}$$

i.e.

$$X_{p \times 1} = \begin{bmatrix} X_1 \\ q_1 \times 1 \\ X_2 \\ q_2 \times 2 \end{bmatrix} \sim N_{q_1 + q_2} \left(\begin{bmatrix} \mu_1 \\ q_1 \times 1 \\ \mu_2 \\ q_2 \times 2 \end{bmatrix}, \begin{bmatrix} \sum_{11} & \sum_{12} \\ q_1 \times q_1 & q_1 \times q_2 \\ \sum_{21} & \sum_{22} \\ q_2 \times q_1 & q_2 \times q_2 \end{bmatrix} \right)$$

Properties: $X_1 \parallel X_2 \Leftrightarrow \Sigma_{21} = \Sigma_{12}^T = 0$

²¹Detailed derivation see section 1.8

Then the marginal distribution of X_1^{22} is given by

$$X_1|_{X_2=x_2} \sim N_p(\mu_1 + \Sigma_{12}\Sigma_{22}^{-1}(x_2 - \mu_2), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$

• Multivariate Normal & χ^2 Let $X \sim N_p(\mu, \Sigma)$, then

$$(X - \mu)^T \Sigma^{-1} (X - \mu) \sim \chi_p^2$$

• Linear Combination: Let X_1, X_2, \ldots, X_n with $X_i \sim N_p(\mu_i, \Sigma)$ (different mean, same Σ). And denote $V_1 = \sum_{i=1}^n c_i X_i$, then

$$V_1 \sim N_p(\sum_{i=1}^n c_i \mu_i, \sum_{i=1}^n c_j^2 \Sigma)$$

4.3.1 MLE of Multivariate Normal

Under the notation in eqa(4.2), i.e. each sample case X_i i.i.d. $\sim N_p(\mu, \Sigma)$, we can get the joint PDF of X:

$$f_{\mathbf{X_1},\dots,\mathbf{X_n};\mu,\Sigma}(x_1,\dots,x_n) = \frac{1}{(2\pi)^{np/2}|\Sigma|^{n/2}} \exp\left(-\sum_{i=1}^n \frac{(x_i-\mu)'\Sigma^{-1}(x_i-\mu)}{2}\right)$$

and at the same time get likelihood function²³:

$$L(\mu, \Sigma; x_1, \dots, x_n) = \frac{1}{(2\pi)^{np/2} |\Sigma|^{n/2}} \exp \left[-\frac{1}{2} tr \left(\sum_{i=1}^n (x_i - \bar{x})(x_i - \bar{x})' + n(\bar{x} - \mu)(\bar{x} - \mu)' \right) \right) \right]$$

And we can get the MLE of μ and Σ as follows²⁴:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}$$

$$\hat{\sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})' = \frac{n-1}{n} S$$

And we can furthur construct MLE of function of μ , Σ (use invariance property of MLE).

Note: $(\hat{\mu}, \hat{\Sigma})$ is sufficient statistic of multi-normal population.

4.3.2 Sampling distribution of \bar{X} and S

Wishart Distribution:

• Review: monovariate case:Consider (X_1, X_2, \dots, X_n) i.i.d. $\sim N(\mu, \sigma^2)$

Then
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$

$$x'Ax = tr(x'Ax) = tr(Ax'x)$$

²²i.e. the conditional distribution $X_1|X_2=x_2$

²³Here we need to use the property of trace

²⁴Detailed proof see 'Applied Multivariate Statistical Analysis' P130

Define an orthogonal matrix

$$Q = \begin{bmatrix} \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \dots & \frac{1}{\sqrt{n}} \\ & & & & \end{bmatrix}_{n \times n}$$

and def

$$Y = QX \sim N(Q\mathbf{1}_n\mu, \sigma^2 I) = N(\begin{bmatrix} \sqrt{n}\mu \\ 0 \\ \vdots \\ 0 \end{bmatrix})$$

• Multivariate case:

$$\sum_{i=1}^{n} Y_i Y_i' = \sum_{i=1}^{n} X_i X_i' = \sum_{i=1}^{n} (X_i - \bar{X})(X_i - \bar{X})' + n\bar{X}\bar{X}' = (n-1)S + Y_1 Y_1'$$

$$\Rightarrow (n-1)S = \sum_{i=2}^{n} Y_i Y_i' \parallel \bar{X} = \frac{1}{\sqrt{n}} Y_1$$

Then consider the distribution of $\sum_{i=2}^{n} Y_i Y_i' \sum W_p(n-1,\Sigma)$, which is Wishart distribution.

 \square Wishart distribution is the matrix generization of χ_n^2

For Z_1, Z_2, \ldots, Z_m i.i.d. $\sim N_p(0, \sigma)$, def p dimensional **Wishart Distribution** with dof m as $W_p(n, \Sigma)$.

$$W = \sum_{i=1}^{n} Z_i Z_i'$$

PDF of $W_p(n, \Sigma)$:

$$f_W(w) = \frac{|w|^{\frac{m-p-1}{2}} \exp\left(-\frac{1}{2}tr(\Sigma^{-1}w)\right)}{2^{\frac{mp}{2}}|\Sigma|^{-1/2}\pi^{\frac{p(p-1)}{4}} \prod_{i=1}^{p} \Gamma(\frac{m-i+1}{2})}$$

C.F.

$$\phi(T) = |I_p - 2i\Sigma T|^{-\frac{m}{2}}$$

Stein's method

 $^{^{25}}W_p(m,\Sigma)$ is a distribution defined on $p \times p$ matrix space.

索引

σ -field, 4	K-S Test (Kolmogorov-Smirnov Test), 40				
<i>t</i> -test, 33	KDE (Kernel Density Estimation), 27				
ANOVA (Analysis of Variance), 46	LLN (Law of Large Number), 12				
Basu Thm., 19	LRT (Likelihood Ratio Test), 35				
Borel-Cantelli Lemma, 5	LS Thm. (Lehmann-Scheffé Thm.), 23				
C.F. (Characteristic Function), 11 CB (Confidence Band), 45 CDF (Cumulative Distribution Function), 6	MGF (Moment Generating Function), 10 MLE (Maximum Likelihood Estimation), 2 MoM (Method of Moments), 20				
CI (Confidence Interval), 27	MSE (Mean Squared Error), 19				
CLT (Central Limit Theorem), 12	NP-Lemma (Neyman-Pearson Lemma), 35				
Confidence Coefficient, 28 Contingency Table, 39 Convergence, 11	OLS (Ordinary Least Squares), 24 Ordinary Least Squares, 43				
CR Inequality (Cramer-Rao Inequality), 23	PDF (Probability Density Function), 6				
EDA (Exploratory Data Analysis), 42 EF (Exponential Family), 17	Pearson's Correlation Coefficient, 9 PGF (Probability Generating Function), 10 Pivot Variable, 28				
Factorization Thm., 18	PMF (Probability Mass Function), 6				
Fisher Information, 23	Power Function, 33				
Fractile	Probability Space, 5				
p -fractile, 7 Upper α -fractile, 15	QQ-Plot (Quantile-Quantile Plots), 48				
Gauss-Markov Thm. '', 45 GLT (General Linear Test), 47	r.v. (Random Variable or Random Vector), 7 Residual, 44				
HT (Hypothesis Testing), 31	S-W Test (Shapiro-Wilk Test), 40 Sample Space, 16				
Inclusion-Exclusion Formula, 5	SCB (Simultaneous Confidence Band), 45				
Indicator Function, 6	Score Function, 23				
Inequality	Slutsky's Thm., 12				
Bonferroni Inequality, 12	SSE (Error Sum of Squares), 47				
Cauchy-Schwarz Inequality, 12	SSR (Regression Sum of Squares), 47				
Chebyshev Inequality, 12	SST (Total Sum of Squares), 46				
Markov Inequality, 12	Standardization, 9				
Invariance of MLE, 21	Statistics				
IQR (InterQuartile Range), 48	Ancillary Statistic, 19				

索引 60

```
Complete Statistic, 18
Sufficient Statistic, 18
Test Function, 32
UMPT (Uniformly Most Powerful Test), 35
UMVUE (Uniformly Minimum Variance Unbiased Estimator), 22
```

WSRT (Wilcoxon Signed Rank Sum Test), 37