MODE TRANSMISI DATA LAPISAN FISIK

Mode Transmisi Data

- Mode Transmisi Paralel

Mode Transmisi Serial

Proses pengiriman data pada *mode transmisi* s*erial* adalah dilakukan *bit per bit*

Mode Transmisi Paralel

Proses pengiriman data pada mode transmisi paralel adalah dilakukan byte per Byte

Transmitter Receiver

Mode Transmisi Paralel

SKEW EFFECT adalah Gejala pengiriman data secara paralel yang mana data dikirim secara bersamaan tapi tiba tidak bersamaan atau tidak langkan

Metode Transmisi Data

Metode Half Duplex

☐ Metode Full Duplex

Sinkronisasi

Pada transmisi data di lapis fisik, selain modulasi diperlukan kemampuan untuk sinkronisasi, yaitu teknik mendapatkan bit di suatu sinyal yang melibatkan masalah waktu pengambilan sampel dari sinyal, format suatu karakter dan format paket.

Jenis Sinkronisasi

Terdapat 3 jenis teknik sinkronisasi data yaitu:

- Asynchronous
- Synchronous
- Isochronous

Asynchronous

Asynchronous

Misal format pengirim [start bit][bit data][bit pariti][stop bit]

0101010101

Synchronous

FLAG Karakter Karakter Karakter FLAG

Diawali dan diakhiri dengan karakter flag

Panjang karakter tetap dan berurutan

Tanpa pariti

Menuntut kualitas saluran sangat baik (error minimal, tidak terjadi pergeseran waktu dll)

Sangat efisient (rasio payload tinggi)

Contoh: X.25

Synchronous

SYN		SYN	STX	Char 1	Char 2		Char 100	ETX						
8-bit		8-bit	8-bit	8-bit										
-	Number of additional bits = 32 bits													

Synchronous

Sistem Kode ASCII

	Bit		7	0	0	0	0	1	1	1	1
			6	0	0	1	1	0	0	1	1
Positions			5	0	1	0	1	0	1	0	1
4	3	2	1								
0	0	0	0	NUL	DLE	SP	0	@	P	١ ١	p
0	0	0	1	SOH	DC1	!	1	Α	Q	a	q
0	0	1	0	STX	DC2	"	2	В	R	b	r
0	0	1	1	ETX	DC3	#	3	С	S	С	s
0	1	0	0	EOT	DC4	\$	4	D	T	d	t
0	1	0	1	ENQ	NAK	%	5	Е	U	e	u
0	1	1	0	ACK	SYN	&	6	F	v	f	v
0	1	1	1	BEL	ETB	,	7	G	W	g	w
1	0	0	0	BS	CAN	(8	H	X	h	x
1	0	0	1	HT	EM)	9	I	Y	i	у
1	0	1	0	LF	SUB	*	:	J	Z	j	z
1	0	1	1	VT	ESC	+	;	K	[k	{
1	1	0	0	FF	FS	,	<	L	١	1	
1	1	0	1	CR	GS	-	=	M]	m	}
1	1	1	0	so	RS		>	N	^	n	~
1	1	1	1	SI	US	/	?	0		0	DEL

Isochronous

FLAG Karakter Karakter FLAG

Gabungan dari asinkron dan sinkron

Diawali dengan karakter flag

Setiap karakter data diawali dengan start bit dan diakhiri dengan stop bit

Sudah jarang digunakan dikarenakan paling tidak efisien

Isochronous

Teknik Transmisi di Lapis Fisik

- Jika masalah pengkodean saluran sudah bisa dianggap selesai, maka urusan selanjutnya adalah bagaimana penerima mendapatkan data yang ditujukan kepadanya dari sinyal yang dikirim
- Pada dasarnya lapis fisik harus mampu memisahkan bit-demi-bit yang terkodekan di sinyal yang diterima
- Proses ini disebut Sinkronisasi Bit

Proses Sinkronisasi

Sinkronisasi Bit

Semakin banyak jumlah sample, maka akan semakin akurat prediksi bit yang didapat apakah bit '0' atau bit '1' dengan konsep sederhana 'mayoritas menentukan hasil', jika mayoritas bit di suatu perioda sampling (sepanjang slot pada laju bit pengirim) cenderung ke bit tertentu, maka dianggap bit tersebut yang diterima.

Sinkronisasi Bit

- Untuk mendapatkan bit yang terdapat pada sinyal yang berubah-ubah dengan cepat, dilakukan teknik sampling sinyal dengan jumlah sample beberapa kali dari laju data.
- Pada sistem RS-232, umum dilakukan sampling sebesar 8x, 16x atau 64x dari laju data pengirim

Sinkronisasi Bit

- Setelah mendapatkan bit-bit informasi, maka tugas selanjutnya adalah mendapatkan set bit yang membentuk karakternya.
- Tugas ini sangat penting dikarenakan salah memilih posisi bit dalam karakter akan memberikan karakter lain yang berbeda artinya sama sekali

□ Contoh: diterima 0011000101

Jika dibaca sebagai MSB mulai dari bit paling kiri, maka akan didapatkan karakter ASCII 31h (angka 1) → 00110001

Jika dibaca sebagai MSB mulai dari bit kedua dari kiri, maka akan didapatkan karakter ASCII 62h (hurup b) → 01100010

- Digunakan karakter SYN [0010110] sebagai penanda mulainya bit dari suatu karakter
- Cara kerjanya relatif sederhana:

Penerima akan mencari (hunting) karakter **SYN** [0010110] dalam urutan bit yang diterimanya akan dicocokkan 8 bit pertama yang dimulai dari bit '0' (kondisi ini disebut memasuki mode hunting)

- ☐ Jika cocok, **maka 8 bit** tersebut ditetapkan sebagai karakter pertama
- Jika tidak cocok, maka akan mencari bit '0' berikutnya untuk selanjutnya melakukan hunting lagi
- Disediakan 2 atau 3 karakter SYN [0010110] untuk berjaga-jaga jika terlewat menerima karakter SYN [0010110] pertama

Contoh

Table ASCII

Dec	Hex	Oct	Bin	Char	Dec	Hex	Oct	Bin	Char	Dec	Hex	Oct	Bin	Char	Dec	Hex	Oct	Bin	Char
0	0x00	000	0000000	NUL	32	0x20	040	0100000	space	64	0x40	100	1000000	@	96	0x60	140	1100000	*
1	0x01	001	0000001	SOH	33	0x21	041	0100001		65	0x41	101	1000001	A	97	0x61	141	1100001	а
2	0x02	002	0000010	STX	34	0x22	042	0100010	-	66	0x42	102	1000010	В	98	0x62	142	1100010	ь
3	0x03	003	0000011	ETX	35	0x23	043	0100011	#	67	0x43	103	1000011	С	99	0x63	143	1100011	c
4	0x04	004	0000100	EOT	36	0x24	044	0100100	s	68	0x44	104	1000100	D	100	0x64	144	1100100	d
5	0x05	005	0000101	ENQ	37	0x25	045	0100101	96	69	0x45	105	1000101	E	101	0x65	145	1100101	e
6	0x06	006	0000110	ACK	38	0x26	046	0100110	&c	70	0x46	106	1000110	F	102	0x66	146	1100110	f
7	0x07	007	0000111	BEL	39	0x27	047	0100111		71	0x47	107	1000111	G	103	0x67	147	1100111	g
8	0x08	010	0001000	BS	40	0x28	050	0101000	(72	0x48	110	1001000	н	104	0x68	150	1101000	h
9	0x09	011	0001001	TAB	41	0x29	051	0101001)	73	0x49	111	1001001	1	105	0x69	151	1101001	i
10	Ox0A	012	0001010	LF	42	0x2A	052	0101010	•	74	0x4A	112	1001010	J	106	0х6А	152	1101010	j
11	Ox0B	013	0001011	VT	43	0x2B	053	0101011	+	75	0x4B	113	1001011	K	107	0x6B	153	1101011	k
12	0x0C	014	0001100	FF	44	0x2C	054	0101100	,	76	0x4C	114	1001100	L	108	0x6C	154	1101100	1
13	0x0D	015	0001101	CR	45	0x2D	055	0101101	-	77	0x4D	115	1001101	M	109	0x6D	155	1101101	m
14	Ox0E	016	0001110	SO	46	0x2E	056	0101110		78	0x4E	116	1001110	N	110	0x6E	156	1101110	n
15	Ox0F	017	0001111	SI	47	0x2F	057	0101111	/	79	0x4F	117	1001111	0	111	0x6F	157	1101111	0
16	0x10	020	0010000	DLE	48	0x30	060	0110000	0	80	0x50	120	1010000	P	112	0x70	160	1110000	Р
17	0x11	021	0010001	DC1	49	0x31	061	0110001	1	81	0x51	121	1010001	Q	113	0x71	161	1110001	q
18	0x12	022	0010010	DC2	50	0x32	062	0110010	2	82	0x52	122	1010010	R	114	0x72	162	1110010	r
19	0x13	023	0010011	DC3	51	0x33	063	0110011	3	83	0x53	123	1010011	s	115	0x73	163	1110011	s
20	0x14	024	0010100	DC4	52	0x34	064	0110100	4	84	0x54	124	1010100	Т	116	0x74	164	1110100	t
21	0x15	025	0010101	NAK	53	0x35	065	0110101	5	85	0x55	125	1010101	U	117	0x75	165	1110101	u
22	0x16	026	0010110	SYN	54	0x36	066	0110110	6	86	0x56	126	1010110	V	118	0x76	166	1110110	v
23	0x17	027	0010111	ETB	55	0x37	067	0110111	7	87	0x57	127	1010111	w	119	0x77	167	1110111	w
24	0x18	030	0011000	CAN	56	0x38	070	0111000	8	88	0x58	130	1011000	X	120	0x78	170	1111000	×
25	0x19	031	0011001	EM	57	0x39	071	0111001	9	89	0x59	131	1011001	Y	121	0x79	171	1111001	У
26	0x1A	032	0011010	SUB	58	ОхЗА	072	0111010	:	90	0x5A	132	1011010	Z	122	0x7A	172	1111010	z
27	0x1B	033	0011011	ESC	59	ОхЗВ	073	0111011	;	91	0x5B	133	1011011	1	123	0x7B	173	1111011	{
28	0x1C	034	0011100	FS	60	ОхЗС	074	0111100	<	92	0x5C	134	1011100	Α.	124	0x7C	174	1111100	- 1
29	0x1D	035	0011101	GS	61	0x3D	075	0111101	=	93	0x5D	135	1011101	1	125	0x7D	175	1111101	}
30	0x1E	036	0011110	RS	62	ОхЗЕ	076	0111110	>	94	0x5E	136	1011110	^	126	0x7E	176	1111110	~
31	0x1F	037	0011111	US	63	ОхЗЕ	077	0111111	?	95	0x5F	137	1011111	_	127	0x7F	177	1111111	DEL

□ Setelah mendapatkan karakter-karakter didapat masalah baru, yaitu karakter mana yang merupakan informasi (frame data) dan mana yang merupakan karakter random yang ditambahkan sistem transmisi (pada komunikasi sinkron) atau noise yang kebetulan memenuhi syarat untuk dibaca sebagai suatu karakter (pada komunikasi asinkron)

□ Pada prinsipnya, suatu deretan karakter yang mengandung informasi diapit oleh karakter-karakter khusus sebagai penanda, karakter tersebut adalah STX [0000010] sebagai tanda awal frame dan ETX [0000011] sebagai tanda akhir frame

Terdapat dua jenis sinkronisasi frame

Untuk yang berupa karakter (teks),
mengandung informasi yang hanya terdiri
dari karakter-karakter huruf, angka dan
karakter lain (umumnya merupakan karakter
ASCII 00h s/d 7Fh) → cukup digunakan
karakter STX [0000010] dan ETX [0000011]

2. Untuk data biner, mengandung informasi yang menggunakan semua kombinasi ASCII (data gambar, suara dan data-data lain yang dikodekan dari 00h s/d FFh) → menggunakan karakter DLE [0010000] yaitu STX dan DLE ETX

contoh

- Kirimkan dgn format sinkronisasi frame
- ada apa

 STX a d a space a p a ETX
- ada apa → DLE STX a d a ETX space a p
 a DLE ETX

