1830

Министерство науки и высшего образования Российской Федерации

Калужский филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУК Информатика и управление

КАФЕДРА ИУК4 математика и физика

ОТЧЕТ

ДОМАШНЯЯ РАБОТА № 1

Вариант № _18_

дисциплина:	Аналитическ	ая геометрия		
TEMA:	Матричное и	исчисление и	системы л	инейных уравнений
Выполнил студент группы			подпись	Моряков В.Ю ФИО Зенкина И.А ФИО
Дата сдачи (защиты) Результаты сдачи(за				
Балльная Оценка:	оценка:			

Banuaum 18 Baganus 1

Lewuni nampurance ynabaeaue A·X=B

$$A = \begin{pmatrix} 5 & -1 & -2 \\ 2 & 3 & 0 \\ -2 & 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Demenne

|A| = (5.3.1) + (-1.0.62) + (2.1.62) = $0(2.61).1) = (-2.3.62) - (1.0.5) = 1 \pm 0 =>$ nebipongeniae u vineem odpaninge.

det borreduum no ngrabany Esperiora.

$$A \cdot X = B \Leftrightarrow A'AX = A'B \Leftrightarrow EX = A'B \Leftrightarrow$$

$$EX = A'B$$

$$A = \begin{pmatrix} A_{11}/P_A & A_{12}/P_A & \dots & A_{1n}/P_A \\ A_{21}/P_A & A_{21}/P_A & \dots & A_{2n}/P_A \end{pmatrix}$$

$$A_{n1}/P_A & A_{n2}/P_A & \dots & A_{nn}/P_A \end{pmatrix}$$

THE DA= |A|
(GEMENWENAAM)
Ann - awesnaveaa
gonaveaue A

$$A' = \begin{pmatrix} 5 & 2 & -2 \\ -1 & 3 & 1 \end{pmatrix} A' - Transnour robusus A uanyuya A$$

Slawghu arretnoncemue gonormense nammuya A'

$$A_{1,1} = (-1)^{1+1} \begin{vmatrix} 3 & 1 \\ 0 & 1 \end{vmatrix} = 3 A_{1,2} = (-1)^{1+2} \begin{vmatrix} -1 & 1 \\ -2 & 1 \end{vmatrix} = -1$$

$$A_{1,3} = (-1)^{1+3} \begin{vmatrix} -1 & 3 \\ -2 & 0 \end{vmatrix} = 6 \qquad A_{2,1} = (-1)^{2+1} \begin{vmatrix} 2 & -2 \\ 0 & 1 \end{vmatrix} = -2$$

$$A_{2,1} = (-1)^{2+2} \begin{vmatrix} 5 & -2 \\ -2 & 1 \end{vmatrix} = 1 \qquad A_{2,3} = (-1)^{2+3} \begin{vmatrix} 5 & 2 \\ -2 & 0 \end{vmatrix} = -4$$

$$A_{3,1} = (-1)^{3+1} \begin{vmatrix} 2 & -2 \\ 3 & 1 \end{vmatrix} = 1 \qquad A_{3,2} = (-1)^{3+2} \begin{vmatrix} 5 & -2 \\ -1 & 1 \end{vmatrix} = 3$$

$$A_{3,5} = (-1)^{3+3} \begin{vmatrix} 5 & 2 \\ -1 & 3 \end{vmatrix} = 17$$

$$A_{3,5} = (-1)^{3+3} \begin{vmatrix} 5 & 2 \\ -1 & 3 \end{vmatrix} = 17$$

$$A_{1,2} = (-1)^{3+2} \begin{vmatrix} -1 & 1 \\ -2 & 1 \end{vmatrix} = -1$$

$$A_{2,1} = (-1)^{2+1} \begin{vmatrix} 2 & -2 \\ 0 & 1 \end{vmatrix} = -2$$

$$A_{2,3} = (-1)^{2+3} \begin{vmatrix} 5 & 2 \\ -2 & 0 \end{vmatrix} = -4$$

$$A_{3,2} = (-1)^{3+2} \begin{vmatrix} 5 & -2 \\ -1 & 1 \end{vmatrix} = 3$$

$$A = \begin{pmatrix} 3 & -1 & 6 \\ -2 & 1 & -4 \\ 8 & -3 & 17 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 3 & -1 & 6 \\ -2 & 1 & -4 \\ 8 & -3 & 17 \end{pmatrix} \quad X = A^{-1}B = \begin{pmatrix} 3 & -1 & 6 \\ -2 & 1 & -4 \\ 8 & -3 & 17 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \cdot 1 + (-1) \cdot 0 + 6 \cdot 0 & 3 \cdot 0 + (-1) \cdot 1 + 6 \cdot 0 & 3 \cdot 0 + (-1) \cdot 1 + 6 \cdot 1 \\ -2 \cdot 1 + 1 \cdot 0 + (-4) \cdot 0 & (-2) \cdot 0 + 1 \cdot 1 + (-4) \cdot 0 & (2) \cdot 0 + 1 \cdot 1 + (-4) \cdot 1 \\ f \cdot 1 + (-3) \cdot 0 + 17 \cdot 0 & f \cdot 0 + (-3) \cdot 1 + 17 \cdot 0 & f \cdot 0 + (-3) \cdot 1 + 17 \cdot 1 \end{pmatrix}$$

$$= \begin{pmatrix} 3 & -1 & 5 \\ -2 & 1 & -3 \\ f & -3 & 14 \end{pmatrix}$$

Ombeni
$$X = \begin{pmatrix} 3 & -1 & 5 \\ -2 & 1 & -3 \\ f & -3 & 14 \end{pmatrix}$$

Tyrolynua.

$$A \times = B$$

$$\begin{pmatrix} 5 & -1 & -2 \\ 2 & 3 & 0 \\ 2 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 & 5 \\ -2 & 1 & -3 \\ 4 & -3 & 14 \end{pmatrix} = \begin{pmatrix} 5 \cdot 3 + (-1) \cdot (-2) + (-2) \cdot (-2) + (-1) \cdot 1 + (-2) \cdot (-3) & 5 \cdot 5 + (-1)(-3) + (-2) \cdot 1 \\ 2 \cdot 3 + 3(-2) \cdot 0 \cdot 6 & 2(-1) + 3 \cdot 1 + 0(-3) & 2 \cdot 5 + 3(-3) + 0 \cdot 14 \\ (-2) \cdot 3 + 1 \cdot (-2) + 1 \cdot 6 & (-2) \cdot (-1) + 1 \cdot 1 + 1 \cdot (-3) & -2 \cdot 5 + 1(-3) + 1 \cdot 14 \end{pmatrix}$$

$$(=)\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = B \quad 4T M$$

Jaganue 2

Typuwenne mognessy Konsend-Kaneuse ucclegolamo cobsessmusiono u matinu cotigee u taimase necuesuse cuimana unetimore ypabalensii-

$$\begin{cases} 3 \times 140 \times 2 + 7 \times 3 + \times 4 = 17 \\ 5 \times 1 + 19 \times 2 + \times 3 - 17 \times 4 = 39 \\ 2 \times 1 + 6 \times 2 + 2 \times 3 - 9 \times 4 = 19 \\ \times 1 - 2 \times 2 - 19 \times 3 - 37 \times 4 = 27 \end{cases}$$

$$A | B = \begin{pmatrix} 3 & 10 & 7 & 1 & 17 \\ 5 & 14 & 1 - 17 & 39 \\ 2 & 6 & 2 - 4 & 14 \\ 1 & -2 & -19 - 37 & 27 \end{pmatrix}$$

Tymbeghu paulingelinge manguly in - youvery College gut younge to maneure confinement analy large gut younge navenum navenum confinement of 1 -2 -19 -37 | 27 \ \tau(-5)+7; \tau(-2)+7; \tau(-3)+1 \\ \Delta | 1 - 17 | 3 9 \\ 2 6 2 - 4 | 1 4 \\ 3 10 7 1 | 1 7 \\ \end{array} 0 0 1 r(A/B)= r(A)=2; rge r-paux mammunger To meopere Knankena-Kanaius musegennal Evene culmera convenire n=4; yen-was rependentise h < r => culmerus aconpegnienas. While Jaguilline rependance = ~ (panear)=> h-2 = rune choteguenenenemence Emplylum Jayulane neglillance no commer nally on up it munny (neplany) 10 -2 = 0

Dagueune repeneume Xi; Xr Clevologune nepeneume X3; Xu Odognarum X3=Ci; Xu=Cz rge Ci u Cr swood rumo Vannunen ynonscennym culmany

$$\begin{cases} x_1 - 2x_1 - 19x_3 - 37x_4 = 27 \\ x_1 + 4x_3 + 7x_4 = 4 \end{cases}$$

Onleem?

$$X_{0} = \begin{pmatrix} 35 + 11C_{1} + 23C_{2} \\ 4 - 4C_{1} - 7C_{2} \\ C_{1} \\ C_{2} \end{pmatrix}$$

$$x_z = \begin{pmatrix} 35 \\ 4 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 + x_4 - x_5 = 0 \\ 2x_4 - 2x_2 - 6x_3 - 4x_4 + x_5 = 0 \\ 3x_4 - 2x_2 + 3x_3 + 3x_4 + 5 = 0 \end{cases}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 1 & -1 \\ 2 & -2 & -6 & -4 & 1 \\ 3 & -2 & 3 & 3 & -5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & -2 & 3 & 3 & -5 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 1 & -1 \\
0 & -24 & -44 & -24 & 12 \\
0 & 0 & 30 & 24 & -14
\end{pmatrix}
\cdot \frac{1}{12}$$

$$\begin{pmatrix}
1 & 2 & 3 & 1 & -1 \\
0 & -2 & -4 & -2 & 1 \\
0 & 0 & 5 & 4 & -3
\end{pmatrix}$$

The mane.

r(A)=3= Elles Fogueranx nepelleury n-r(A)=2= rune cloudogunx nepenen Communica on after Munon $\begin{vmatrix} 1 & 2 & 3 \\ 0 & -24 & -48 \\ 0 & 0 & \frac{12}{30} \end{vmatrix} = 1 \cdot (-24) \cdot \frac{30}{6} = -10 \neq 0$ X1; X2; X3 - Saguense replusiones × 4; ×5 - chosogure replueume. X4=C1 $X_1 = 1$ X2=-2 X5=Cz X3 = 5 Januaren cumeny & combemember c manquigete. /X1+2×2+3×3+X4-X5=0 -2×2-4×3-2×4+×5=0 5×3+4×4-3×5=0 5 x3 + 4C1 -3C2 =0 => X3 = 3C2-4C1 -2×2-4×3-2×4+ ×5=0=> × z=-4×3-2×4+×5= $= -12\ell_2 + 16\ell_1 - 2\ell_1 + \ell_2 = 6\ell_1 - 7\ell_2$

 $\times 1 = \times 5 - \times 4 - 2 \times 2 - 3 \times 3 = C - C + \frac{7C - 6C + \frac{12C - 9C}{5}$ $\times 1 = 5C 2 - 5C + 7C 2 - 6C + 12C - 9C 2 - 3C 2 + C 1$

$$X_0 = \left(\frac{3Cr + C1}{5}\right)$$

$$\frac{6C1 - 7Cr}{10}$$

$$\frac{3Cr - 4C1}{5}$$

$$\frac{3Cr}{5}$$

$$\frac{C4}{5}$$

Xo-cotigas cuemens

Hawyen P.C.J.

$$E_1 = X(C_1=1;C_2=0) = \begin{pmatrix} 0,2\\0,6\\-0,8 \end{pmatrix}$$

$$E_2 = X(C_1=0;C_2=1) \in \begin{pmatrix} 0,2\\0,6\\1\\0 \end{pmatrix}$$

Comblem
$$X_0 = \begin{cases} 0,2C_1 + 0,6C_2 \\ 0,6C_1 + -9,7C_1 \\ -0,4C_1 + 0,6C_2 \end{cases}$$
; $E_1 = \begin{cases} 0,2 \\ 0,6 \\ -0,4 \end{cases}$

$$\overline{E_2} = \begin{pmatrix} 0, 6 \\ -q, 7 \\ 0, 6 \\ 0 \end{pmatrix}$$

Tyrolynka.

$$AX = B$$

$$\begin{pmatrix} 5 & -1 & -2 \\ 2 & 3 & 0 \\ 2 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 3 & -1 & 5 \\ -2 & 1 & -3 \\ f & -3 & 14 \end{pmatrix} =$$

$$= \begin{pmatrix} 5 \cdot 3 + (-1) \cdot (-2) + (-1) \cdot 1 \end{pmatrix} + (-1) \cdot 1 + (-1) \cdot (-3) + (-1) \cdot (-1) \cdot (-1) + (-1) \cdot (-1) +$$

Jaganne 2

Topument mooneny Kongrega-Kaneure uccelegobamo cobreemmenoemo u matinu cotigee u talmace nellemen cumana maetino ynabalmin.

$$\begin{cases} 3 \times 1400 \times 2 + 7 \times 3 + \times 4 = 17 \\ 5 \times 1 + 19 \times 2 + \times 3 - 17 \times 4 = 39 \\ 2 \times 1 + 6 \times 2 + 2 \times 3 - 9 \times 4 = 19 \\ \times 1 - 2 \times 2 - 19 \times 3 - 37 \times 4 = 27 \end{cases}$$

$$A | B = \begin{pmatrix} 3 & 10 & 7 & 1 & 17 \\ 5 & 14 & 1 - 17 & 39 \\ 2 & 6 & 2 - 4 & 14 \\ 1 & -2 & -19 - 37 & 27 \end{pmatrix}$$

задание 2 (Плавки). отерпируем спрожи (3×1+10×2+7×3+×4=17 no 1-My avaneumy 6 nopregne y Torbanus) 5×1+14×2+ ×3-17×4=39 2 X1+6 X2 + 2 X3 - 4 X4 = 14 $A|B = \begin{pmatrix} 1 & -2 & -19 & -37 & 27 \\ 2 & 6 & 2 & -4 & 14 \\ 3 & 10 & 7 & 1 & 17 \\ 5 & 14 & 1 & -17 & 39 \end{pmatrix}$ X1-2X2-19X3-37X4=27 -19 -37 27 40 70 -40 -91 ~ $\sim \int_{0}^{1} \frac{-2}{10}$ 64 112 -64 \· 1,5 96 168 -96 2(A/B) = 2(A) = 2; 2ge 2 - pans матрици n=4; rge n- waro replulame To meopene Knonenepa-Kanhun yur Segennax boune cuemena cobulemna n-2 = Tulio chatoguia replueaux n < 7 => cuemena neonnegluena Onpeglillan Jaguenore replaneaux no replain communately on white minory 101 =0

Fazuente reneweanne xi; x2 Chotogure reneweanne x3; x4

O Tognarum X3=C1; X4=C2 rge C1 n C2 motoe

запишем укорогенную систему

$$\begin{cases} x_1 - 2x_2 - 19x_3 - 37x_4 = 27 \\ x_2 + 4x_3 + 7x_4 = -4 \end{cases}$$

$$\times 1 = 2(4 + 4C1 + 7C2) + 19C1 + 37C2 + 27 =$$

$$= -f - 9C1 - 14C2 + 19C1 + 37C2 + 27 = 19 + 23C2 + 11C1$$

$$X_{o} = \begin{pmatrix} 19 + 11C1 + 23Cz \\ -4 - 4C1 - 7Cz \\ C1 \\ C2 \end{pmatrix}$$

Ombem:
$$X_0 = \begin{pmatrix} 19 + 11C_1 + 23C_2 \\ -4 & -4C_1 - 7C_2 \end{pmatrix}$$
, $X_2 = \begin{pmatrix} 19 \\ -4 \\ 0 \end{pmatrix}$

Faganue 3 (Tipalenu).

$$\begin{cases} x_1 + 2x_2 + 3x_3 + x_4 - x_5 = 0 \\ 2x_1 - 2x_2 - 6x_3 - 4x_4 + x_5 = 0 \\ 3x_1 - 2x_2 + 3x_3 + 3x_4 - x_5 = 0 \end{cases}$$

$$A = \begin{pmatrix} 1 & 2 & 3 & 1 & -1 \\ 2 & -2 & -6 & -9 & 1 \\ 3 & -2 & 3 & 3 & -1 \end{pmatrix} \stackrel{\times (-2)}{\leftarrow} \stackrel{+}{,} \stackrel{+}{,} \stackrel{\times (-3)^{+}}{\leftarrow}$$

11 Dannomen company 2 na (-1) u mentabian u3-

2(A)=3//nam nampuny; n=5// ruais repe-

T<n => Culmena neonpeglesennar no Kyumenno neonpeglesenoimu u uncem kan mpubualbuoe, mak u ne-mpubualbuoe paineme.

r-r(A)=3= rusio Tajuran reparenaon r-r(A)=2= rusio chatoguas repeneusas humop omuravia om mpse

$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & -2 & -4 \\ 0 & 0 & 5 \end{vmatrix} = -10 \pm 0$$

X1; X2; X3 - Jaquenne replevenune X4; X5 - Chooogane ngianemane X42C1; X5=C2 rge C1,C2 ER

Janualle cumery & coombenienbur c nalyremore namparfeir

$$\begin{cases} x_1 + 2x^2 + 3x_3 + x_4 - x_5 = 6 \\ -2x^2 - 4x_3 + (-2x_4) + x_5 = 6 \\ 5x_3 + 4x_4 - x_5 = 6 \end{cases} \quad \begin{cases} x_3 = \frac{C_2 - 4C_1}{5} \\ x_2 = \frac{6C_1 + C_2}{10} \end{cases}$$

$$X_{1} = \underbrace{5Cx - 5C1 - 3Cx + 12C1 - 6C1 - C2}_{5} = \underbrace{Cx + C1}_{5}$$

$$X_{0} = \left(\begin{array}{c} C_{1} + C_{2} \\ \hline S \\ \underline{CC_{1} + C_{2}} \\ \hline C_{1} \\ \hline C_{2} \\ \hline C_{1} \\ \hline C_{2} \end{array}\right) \left(\begin{array}{c} Laxigene & \mathcal{P}.C.J. \\ E_{1} = X(C_{1} = 1;C_{2} = 0) = \begin{pmatrix} 0,2 \\ -0,6 \\ -0,6 \\ 1 \\ 0 \end{pmatrix}\right)$$

$$\left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline C_{1} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} E_{2} = X(C_{1} = 0;C_{2} = 1) = \begin{pmatrix} 0,2 \\ 0,1 \\ 0,2 \\ 0 \\ 1 \\ \end{array}\right)$$

$$\left(\begin{array}{c} C_{1} + C_{2} \\ C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1} + C_{2} \\ \hline C_{2} \\ \hline \end{array}\right) \left(\begin{array}{c} C_{1$$

Ottule nemenue nomem James zanneano reper 96.5.

$$X = C_{1}E_{1} + C_{1}E_{1} = C_{1}\begin{pmatrix} 0,2\\0,6\\-0,1\\0\\0\end{pmatrix} + C_{2}\begin{pmatrix} 0,2\\0,1\\0,2\\0\end{pmatrix}$$

Ombeni,
$$X_0 = \begin{pmatrix} \frac{C_1 + C_2}{5} \\ \frac{6C_1 + C_2}{10} \\ \frac{C_2 - 4C_1}{5} \\ \frac{C_1}{5} \\ \frac{C$$