

Mining of Massive Datasets CSE6017

Dr. Ramesh Ragala VIT Chennai

Syllabus Introduction

Course Objective:

 To provide comprehensive knowledge on developing and applying machine learning algorithms for massive real-world datasets in distributed frameworks

Expected Outcomes:

- 1. Identify right machine learning / mining algorithm for handling massive data
- 2. Implement machine learning algorithms in distributed frameworks such as MapReduce and Spark
- 3. Use deep learning and extreme learning to solve real-life problems having multifarious complexities
- 4. Use big data analytics tools such as Spark, Mahout and H₂O in solving problems based on Machine learning

Syllabus Introduction – UNIT -I

- MapReduce Based Machine Learning on
 - K-Means, k-means++
 - PLANET
 - Parallel SVM
 - Association Rule Mining in MapReduce
 - Inverted Index
 - Page Ranking
 - Expectation Maximization
 - Bayesian Networks

Syllabus Introduction – UNIT -II

- Classification & Regression models with Spark & Mahout
 - Linear support vector machines
 - Naive Bayes model
 - Decision Trees
 - Least square regression
 - Decision trees for regression

Syllabus Introduction – UNIT -III

- Clustering in Spark and Mahout
 - Hierarchical Clustering in a Euclidean and Non-Euclidean Space
 - The Algorithm of Bradley, Fayyad, and Reina
 - A variant of K-means algorithm
 - Processing Data in BFR Algorithm
 - CURE algorithm
 - Clustering models with Spark
 - Spectral clustering using Mahout

Syllabus Introduction – UNIT -IV

- Mining Social-Network Graphs
 - Clustering of Social-Network Graphs
 - Direct Discovery of Communities
 - Partitioning of Graphs
 - Finding Overlapping Communities
 - Counting Triangles using MapReduce
 - Neighborhood Properties of Graphs

Syllabus Introduction – UNIT -V

- Semi-Supervised Learning
 - Introduction to Semi-Supervised Learning
 - Semi-Supervised Clustering
 - Transductive Support Vector Machines

Syllabus Introduction – UNIT -VI

- Deep Learning
 - Introduction to Deep Learning
 - Deep Neural Networks
 - Deep Belief Networks
 - Auto Encoders
 - Recurrent Networks

Syllabus Introduction – UNIT -VII

- Extreme Learning Machine
 - Introduction to Extreme Learning Machines (ELM)
 - ELM auto encoder
 - Extreme Support Vector Regression

Syllabus Introduction – UNIT -VIII

RECENT TRENDS

 Jure Leskovec, AnandRajaraman, Jeff Ullman, "Mining of Massive Datasets", Standford Press, 2011

Nick Pentreath, "Machine Learning with Spark", Packt

Publishing, 2015

 Olivier Chapelle, Bernhard Scholkopf, Alexander Zien "Semi-Supervised Learning", The MIT Press, 2006.

 Ron Bekkerman, Mikhail Bilenko, John Langford "Scaling Up Machine Learning: Parallel and Distributed Approaches", Cambridge University

Press, 2012.

 Jimmy Lin, Chris Dyer, "Data-Intensive Text Processing with MapReduce", Morgan & Claypool Publishers, 2010.

• Li Deng, Dong Yu, "Deep Learning: Methods and Applications", Now Publisher, 2014.

ChandramaniTiwary "Learning Apache Mahout", Packt Publishing, 2015.

 Fuchen Sun, Kar-Ann Toh, Manuel Grana Romay, KezhiMao,"Extreme Learning Machines 2013: Algorithms and Applications", Springer, 2014.

List of Experiments

- 1. K-means implementation in MapReduce
- 2. Association Rule Mining with MapReduce
- 3. Decision trees in Spark and MapReduce
- 4. Naïve Bayes classification using Spark and MapReduce
- 5. Advanced text processing with Spark
- 6. Clustering models with Spark
- 7. Building a recommendation engine with Spark

List of Experiments

- 8. Representing social-network data using Graphs
- 9. Implementing Semi-supervised Clustering
- 10. Deep Learning using H₂O
- 11. Predictive analysis using H₂O tool
- 12. SVM Classification using Mahout
- 13. Spectral clustering using Mahout
- 14. Building a recommendation engine with Sparkling water
- 15. Deep Learning using DL4J