Lecture 7: Numerical Linear Algebra (UMA021): Roots of Non-Linear Equations

Dr. Meenu Rani

Department of Mathematics TIET, Patiala Punjab-India

## Importance:

well known and most power full method

p= 1.2 [1,2]

b=1.5

## Conditions for the convergence:

Suppose  $f \in C^2[a, b]$ . Let  $p_0 \in [a, b]$  be an approximation to p such that  $f'(p_0) \neq 0$  and p = 0 is small.

IVT

$$f \in C[a,b]$$
  
 $f \in C^1(a,b) =) f, f' \in C[a,b]$   
 $f \in C^2(a,b) =) f, f', f'' \in C[a,b)$ 

#### **Derivation:**

Let 
$$f(n)=0$$
 be the equation of  $p$  be the enact root of  $f(n)=0$  is  $f(p)=0$ 

Let  $p_0$  be an initial guess to the root  $p$ 

Let  $f \in C^2[a,b]$  and  $p_0 p_0 p_0$  is small.

Consider The Taylor's polynomial for  $f(x)$  about  $p_0$ 
 $f(p) \approx f(p_0) + (p_0 p_0) f'(p_0) + (p_0 p_0)^2 f''(p_0)$ .

 $f(p_0) \approx f(p_0) + (p_0 p_0) f'(p_0)$ 
 $f(p_0) \approx f(p_0) + (p_0 p_0) f'(p_0)$ 

$$\frac{-f(p_0)}{f'(p_0)} \approx p - p_0$$

$$p_1 = p_0 - \underline{f(p_0)}$$
(say)
$$f'(p_0)$$

$$|f| = |f| - \frac{f(h_1)}{f'(h_1)}$$

$$|f| = |f| - \frac{f(h_1)}{f'(h_2)}$$

$$|f| = |f| - \frac{f(h_1)}{f'(h_2)}$$

$$p_{n+1} = p_n - \frac{f(p_n)}{f'(p_n) \neq 0}$$

-> Newton's method

# **Graphical representation:**

## **Example:**

Find the root of an equation  $f(x) = \cos(x) - x = 0$  with an occurring of  $10^{-2}$ 

$$= pn - \frac{(os(pn) - pn)}{-sinpn - 1}$$

$$= pn + \frac{(ospn - pn)}{sinpn + 1}$$
(et as take an initial guess  $po = 0.5$ 

$$p_1 = 0.5 + \frac{(oslo.5) - 0.5}{sin(0.5) + 1} = 0.7552$$

$$p_2 = 0.7552 + \frac{(oslo.7552) - 0.7552}{sin[0.7552) + 1}$$

$$= 0.7391$$

$$p_3 = 0.7391 + \frac{(oslo.7391) - 0.7391}{sin(0.7391) + 1}$$

$$= 0.7390$$
Ay.

/p2-p3/<10-2

## Convergence result for Newton's method:

Let  $f \in C^2[a, b]$ , If  $p \in (a, b)$  is such that f(p) = 0 and  $f'(p) \neq 0$ , then there exists a  $\delta > 0$  such that Newton's method generates a sequence  $\{p_n\}_{n=1}^{\infty}$  converging to p for any initial approximation  $p_0 \in [p - \delta, p + \delta]$ .

nud of 
$$p$$

is  $p-p_0$  is small  $p-s+p$ 
 $p \rightarrow p$ 

#### Case of failure:

(i) When the initial guess is on the inflection of the function i.e.  $f''(p_0) = 0$ .



#### Case of failure:

(iii) When there is an another slope near to the initial guess.

for e.g.
$$f(n) = Sinn$$
or
$$f(n) = Cosn$$



#### Case of failure:

When the initial guess or any iterative value of function never hits the x-axis i.e. f'(x) = 0.



#### Case of failure:

When the initial guess is between local maximum or local minimum.



pn is oscullating not coping top

#### **Exercise:**

- Find the root of an equation  $x e^{-x} = 0$  by using Newton's method with the accuracy of  $10^{-2}$ .
- 2 The function  $f(x) = \sin x$  has a zero on the interval (3,4) namely,  $x = \pi$ . Perform three iterations of Newton's method to approximate this zero, using  $x_0 = 4$ .