第二章 导数与微分

第三节 高阶导数

主讲 武忠祥 教授

$$s'(t) = v(t)$$

位移
$$s(t)$$
 $s'(t) = v(t)$ $s''(t) = a(t)$

$$(y')' = y'' = \frac{d^2y}{dx^2}$$
 y''' $y^{(4)}$ $y^{(n)} = \frac{d^ny}{dx^n}$

$$y^{(n)} = \frac{d^n y}{dx^n}$$

若 $f^{(n)}(x)$ 在区间 I 上连续,称 f(x) 在 I 上 n 阶连续可导.

例1 求下列函数的 n 阶导数

1)
$$(e^x)^{(n)} = e^x$$

1)
$$(e^x)^{(n)} = e^x$$
 2) $(\sin x)^{(n)} = \sin(x + n\frac{\pi}{2})$

3)
$$(\cos x)^{(n)} = \cos(x + n\frac{\pi}{2})$$

3)
$$(\cos x)^{(n)} = \cos(x + n\frac{\pi}{2})$$
 4) $(\ln(1+x))^{(n)} = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n}$

定理 设 u,v 都是 n 阶可导,则

1)
$$(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)}$$

2) Leibniz公式
$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(n-k)} v^{(k)}$$

例 1) 设
$$f(x) = \frac{1}{x^2 - 1}$$
, 求 $f^{(n)}(x)$

2) 设
$$f(x) = x^2 e^x$$
 求 $f^{(100)}(x)$

内容小结

1. 定义(高阶导数) $y^{(n)} = [f^{(n-1)}(x)]'$,

$$f^{(n)}(x_0) = \lim_{\Delta x \to 0} \frac{f^{(n-1)}(x_0 + \Delta x) - f^{(n-1)}(x_0)}{\Delta x}$$

$$= \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x - x_0}$$

2. 高阶导数的求法

- (1) 利用归纳法
- (2) 利用公式
- 1) $(\sin x)^{(n)} = \sin(x + n \cdot \frac{\pi}{2});$ 2) $(\cos x)^{(n)} = \cos(x + n \cdot \frac{\pi}{2});$
- 3) $(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)}$ 4) $(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)}$.

作业 P100: 2; 3; 4; 10; 11.