

#### **SMART RETAIL VERIFICATION**

Edge Al 2025

Tanisha Bhatia (DESE), Shubham Lanjewar (DESE) and Pandarasamy Arjunan

#### **Background and Motivation**

- Traditional retail relies heavily on manual item identification and checkout processes
- Growing demand for seamless, automated retail experiences
- Overcome manual item identification
- Human error in billing and stock verification
- Improve customer experience
- Lower operational costs
- Enable loss prevention by ensuring that scanned items match items taken by the customer.

#### **Objectives**

- Collection of dataset for training & Validation.
- Identifying model for Edge AI deployment.
- Model Compression
- Deployment & Testing
- Verification on Python GUI

#### **Dataset / Data collection**

- 4 classes of food item
- Total samples: 4050
- Pre-processing:
  - Resizing to 96 x96
  - Grayscale Conversion
  - Normalizing
- Augmentation:
  - > Flip, Rotation
  - Brightness, Exposure
  - > Shear, Blur

#### **Edge Al Model**

- FOMO: Small Size, accurate and faster
- Model compression: INT8 Quantization
- Model characteristics
  - Model Size :
  - > 887 KB (Before Compression)
  - > 240 KB (After Compression)
- Performance : F1 Score 89%
- Latency : 60ms

#### Hardware and Software specs.

- Nicla Vision : Dual ARM Cortex M7, 480MHz, 2MP Color Camera, 1MB RAM, 2MB Flash
- Software: Edge Impulse, Roboflow

#### **Prototype & demonstration**

- Camera is mounted on a stand to capture an image from the top
- Demonstration done with multiple objects

#### Github Link:

https://github.com/shubhamlanjewar97/Smar tRetailVerification\_EdgeAl\_CP\_330

#### Demo Video:

https://youtu.be/41o1G4XasQA



CP 330: Edge AI

**Smart Retail Verification** 

Tanisha Bhatia, DESE, tanishab@iisc.ac.in Shubham Lanjewar, DESE, shubhaml@iisc.ac.in Pandarasamy Arjunan, RBCCPS, samy@iisc.ac.in Indian Institute of Science, Bangalore



## Introduction

- Smart retail verification using object detection on Nicla Vision
- Nicla Vision captures the image and does inference
- Sends object detection data to the Windows application
- Windows application provides a user interface for billing and verification

## **Motivation**

- Traditional retail relies heavily on manual item identification and checkout processes
- Growing demand for seamless, automated retail experiences
- Manual processes lead to human errors in billing and stock verification
- Need to reduce checkout time and improve customer experience
- Enable loss prevention through verification of scanned vs. taken items

## Methodology

## **Edge Device – Nicla Vision**

- Nicla Vision captures images through the onboard camera
- Runs FOMO object detection model
- Process detections to merge nearby objects of the same class
- Sends data to PC over UART communication with costom-desined protocol

## Methodology

## **PC** Application

- Provides a GUI for the user
- Maintains product catalog with prices
- Receives detection data from the Nicla Vision
- Allows manual item entry for billing
- Performs verification between billed and detected items

## **Data Collection and Preprocessing**

### **Dataset**

- 4 classes [KitKat, Goodday, HiddenSeek, Unibic]
- Total Samples: 4050 (After Aggregation)
- Samples: 1350 (Before Augmentation)
- Augmentation on Roboflow
- Resizing to 96\*96 and convert to grayscale

## **Model Development**

### **Model Selection FOMO**

- FOMO (faster objects, more objects)
- Small size, Faster inference
- Suitability for edge devices

## **Model Compression**

- INT8 quantization
- Original peak ram usage: 363.2KB
- Compressed Size: 119.4 KB

#### Model

Model version: ② Unoptimized (float32) ▼

#### Last training performance (validation set)



F1 SCORE ⑦ 92.0%

#### Confusion matrix (validation set)

|            | BACKGROUND | HIDENSEEK | KITKAT | UNIBIC | GOODDAY |
|------------|------------|-----------|--------|--------|---------|
| BACKGROUND | 100.0%     | 0.0%      | 0.0%   | 0.0%   | 0.0%    |
| HIDENSEEK  | 4.3%       | 95.7%     | 0%     | 0%     | 0%      |
| KITKAT     | 0%         | 0%        | 100%   | 0%     | 0%      |
| UNIBIC     | 11.1%      | 0%        | 0%     | 88.9%  | 0%      |
| GOODDAY    | 4.2%       | 0%        | 0%     | 0%     | 95.8%   |
| F1 SCORE   | 1.00       | 0.95      | 0.92   | 0.90   | 0.90    |

#### Metrics (validation set)



| METRIC                       | VALUE |
|------------------------------|-------|
| Precision (non-background) ③ | 0.89  |
| Recall (non-background) ②    | 0.95  |
| F1 Score (non-background) ①  | 0.92  |

#### On-device performance ③

Engine:

EON™ Compiler (RAM optimized) ▼



115 ms.





# Model Summary (float32)

#### Model

Model version: ⑦ Quantized (int8) ▼

#### Last training performance (validation set)



F1 SCORE ®

91.3%

#### Confusion matrix (validation set)

|            | BACKGROUND | HIDENSEEK | KITKAT | UNIBIC | GOODDAY |
|------------|------------|-----------|--------|--------|---------|
| BACKGROUND | 100.0%     | 0.0%      | 0.0%   | 0.0%   | 0.0%    |
| HIDENSEEK  | 4.4%       | 95.6%     | 0%     | 0%     | 0%      |
| KITKAT     | 0%         | 0%        | 100%   | 0%     | 0%      |
| UNIBIC     | 10.8%      | 0%        | 0%     | 89.2%  | 0%      |
| GOODDAY    | 8.3%       | 0%        | 0%     | 0%     | 91.7%   |
| F1 SCORE   | 1.00       | 0.92      | 0.90   | 0.92   | 0.90    |

#### Metrics (validation set)



| METRIC                       | VALUE |
|------------------------------|-------|
| Precision (non-background) 🔊 | 0.89  |
| Recall (non-background) ②    | 0.94  |
| F1 Score (non-background) ①  | 0.91  |

#### On-device performance ③

Engine: ②

EON™ Compiler (RAM optimized) •







# Model Summary (int8)

## Conclusion

## **Project outcomes**

- Successful implementation of an Edge Al-based retail verification system
- Effective model compression for embedded deployment
- Creation of a user-friendly interface for retail verification
- Real-time detection and verification capabilities

## Setup



## Object Detection





## User Interface (success case)



## User Interface (fail case)

# Thank you