

# Advanced firewalling

13 martie 2014

#### Objective

- Advanced Firewall features
- De ce avem nevoie de Application Inspection?
  - Studiu de caz: Active FTP vs Passive FTP
- ASA
  - Modular policy framework
  - Granular connection setting
  - Advanced Application Inspection (HTTP, FTP)
  - Traffic policing
- FortiGate
  - Session helpers
  - Application Control
  - Traffic shaping
  - Fortinet configuration converter



#### Advanced Firewall features















## Application Inspection(1)

- De ce este nevoie de application inspection?
  - □ (1) Scenarii în care se rulează aplicații pe porturi ne-standard
- În mod implicit orice firewall identifică aplicația după portul destinație well-known
- ▶ Ex: dacă HTTP rulează pe portul 8080, orice firewall va face în mod implicit *drop*





### Application Inspection(2)

- De ce este nevoie de application inspection?
  - (2) Aplicații ce au nevoie să deschidă porturi în mod dinamic pentru a funcționa
  - Porturile deschise sunt negociate de aplicație peste canalul de control
  - Exemplu: Active FTP, aplicații multimedia, VoIP
- Studiu de caz:
  - Active FTP vs. Passive FTP



#### **Active FTP**



- ▶ 1. Clientul inițiază o conexiune către portul 21 al serverului de pe un port sursă N, ales aleator > 1023.
- ▶ 2. Serverul răspunde cu ACK de pe portul sursă 21 către portul N al clientului.
- ▶ 3. Client transmite comanda "PORT N+1" peste canalul de control și își deschide portul N+1. Comanda PORT indica serverului care este portul clientului deschis pentru a primi date.
- ▶ 4. Serverul încearcă să realizeze o conexiune de pe portul 20 către portul N+1 al clientului.
- ▶ 5. Firewall-ul blochează conexiunea 4 din cauză că nu găsește obiectul de stare.



#### Passive FTP



- ▶ 1. Clientul inițiază o conexiune către portul 21 al serverului de pe un port sursă N, ales aleator > 1023. Clientul deschide portul N+1 pentru date.
- ▶ 2. Serverul răspunde cu ACK de pe portul sursă 21 către portul N al clientului.
- > 3. Clientul trimite comanda *PASV* către server.
- 4. Serverul își deschide un port X(aleator) > 1024 pentru conexiunea de date și trimite clientului comanda Port X.
- ▶ 5. Clientul inițiază conexiunea de date de pe portul N+1 către portul X al serverului.



#### Active FTP vs Passive FTP

#### Concluzii:

- Active FTP nu funcționează dacă clientul este în spatele unui firewall
  - > Din cauza inspecției stateful
  - Din cauza NAT
- Passive FTP ar trebui să funcționeze mereu
  - Cel puţin dacă administratorul a configurat serverul FTP în DMZ (e.g. configurat politici de acces din exterior)
- De ce dorim să folosim Active FTP?
  - □ Pentru că deschide mai puţini sockeţi pe server: http://www.faqs.org/rfcs/rfc1579.html
- Cu ajutorul Application Inspection:
  - Firewall-ul poate citi comenzile trimise pe canalul de control FTP
  - Când firewall-ul vede comanda PORT N, deschide portul N+1 pentru IPul serverului, ca acesta să poată contacta clientul în Active FTP



## Application Inspection(3)

- De ce este nevoie de application inspection?
  - □ (3) Aplicații care fac embed la adrese IP în canalul de control și intră în conflict cu NAT
  - Adresa IP de la nivelul 3 (trecută prin NAT) nu coincide cu adresa primită la nivel aplicație
  - Aplicația încearcă să deschidă sockeți către adresa IP privată și nu reușește
- Application Inspection to the rescue!
  - ☐ Firewall-ul inspectează IP-ul din canalul de control și îl înlocuiește cu cel din tabela xlate





## Traffic shaping vs Traffic policing

#### Conform rate

- Rata de trafic la care se așteaptă să fie transmis trafic printr-o interfață, într-o anumită direcție, conform SLA-ului
- Exceeding rate
  - Rata de trafic peste care se consideră că traficul nu mai este în conformitate cu SLA-ul sau poate congestiona interfața
- TS și TP sunt tehnici de a trata trafic ce depășește una dintre cele două limite de mai sus
- Traffic-shaping alocă buffere interne în RAM pentru a stoca traficul în exces și a îl transmite mai târziu
- Traffic-policing poate:
  - ☐ Face drop traficului în exces
  - □ Re-marca traficul cu o prioritate mai mică la nivel 2 sau 3



#### How it works

- Majoritatea implementărilor folosesc token-uri și un token-bucket
- Un token reprezintă permisiunea de a putea trimite un număr de X biţi în reţea
- ▶ **Token-bucket**-ul grupează token-urile firewallului și definește de fapt conform rate-ul și excess-rate-ul funcție de numărul de token-uri
- Când un pachet trebuie trimis se verifică tokenbucket-ul pentru a vedea dacă există îndeajuns de multe token-uri pentru a îl trimite
- Odată trimis, pachetul scoate un număr de token-uri din token-bucket
- Dacă nu mai există token-uri, se poate aștepta adăugarea lor (traffic shaping) sau se poate face drop la pachetul care dorește token-uri (traffic policing)



Există îndeajuns de multe token-uri pentru transmiterea pachetului?



## Să încercăm o analogie

Avem o pușculiță



- În fiecare zi pușculița primește 1\$ (resursele sistemului)
- Dacă se consumă 1\$/zi, atunci se consumă la commited rate, pentru că nu se consumă mai mult decât se face
- Dacă se dorește consumarea a 3\$ pe o înghețată, dar în pușculită există doar 2\$, există 2 posibilități:
  - Se așteaptă o zi mai însorită și se "ține minte" dorința de a cumpăra înghețată (traffic shaping)
  - □ Se face drop la dorința de a cumpăra înghețată (traffic policing)
- Dacă se economisesc \$, se poate cumpăra ceva mai scump într-o anumită
   zi excess rate



## Back to QoS – traffic policing

- Nu consumă memorie pe firewall (nu are nevoie de buffere)
- Se poate aplică atât inbound cât și outbound pe o interfață
- Produce multe retransmisii TCP
  - Ar trebui folosit pe o interfață de viteză mare
- Nu produce jitter sau latență pachetelor în conform rate
- Acțiunile posibile sunt drop și re-marcarea pachetului
- Un scenariu posibil ar fi:
  - Pachetele peste conform rate să fie re-marcate cu o prioritate mai mică
  - Pachetele peste excess rate să fie dropped





## Back to QoS – traffic shaping

- Folosește memorie pentru a face buffering
- Nu cauzează retransmiteri TCP
  - Poate fi folosit pe interfețe de viteza mică
- Se poate aplica decât outbound
- ▶ Poate cauza jitter din cauza normalizării traficului
- Nu poate re-eticheta trafic
- Foarte folosit în Frame Relay unde se poate coordona cu biții de marcare a congestiei din protocolul WAN





## Traffic policing vs. traffic shaping







# ASA – Modular Policy Framework

## Modular Policy Framework

- Ce este MPF?
  - Un set de structuri şi comenzi în ASA OS
  - Un mod de a gândi legăturile dintre multiple concepte teoretice și aplicarea lor
- Ce oferă MPF?
  - □ Posibilitatea de a configura și controla cu aceleași structuri (comenzi):
    - Application Inspection
    - > IPS (AIP-SSM)
    - Anti {virus | spam | spyware} (CSC –SSM)
    - > Setarea limitelor pentru conexiuni
    - Traffic policing



#### MPF – Structuri de comenzi

- MPF este definită prin 3 structuri de bază
  - Class-map
    - > Folosite pentru a identifica traffic-flow prin diferite moduri
    - Există class-map generice care identifică la nivel 3 și 4 și class-map de inspecție care realizează identificare la nivel 7
  - Policy-map
    - > Folosite pentru a asocia una sau mai multe acțiuni pentru traficul identificat într-un class-map
    - Există policy-map generice care aplică acțiunile standard (inspect, police, set connection etc) și policy-map de inspecție ce analizează în detaliu câmpurile și mesajele unor anumite protocoale de nivel aplicație
  - Service-policy (comandă)
    - > Folosită pentru a aplica **policy-map** global sau pe anumite interfețe



## MPF – Relația între structuri



#### MPF – Class-map (1)

Definirea unui class-map (L3/L4)

Comanda match este folosită pentru a identifica trafic



#### MPF – Class-map (2)

- După ce criterii poate comanda match identifica trafic?
  - access-list: folosește un ACL pentru identificare
  - any
  - dscp: match pe câmpul ToS conform standardului IETF DSCP
  - precedence: match pe câmpul ToS conform standardului IP Precedence
  - tunnel-group: match pe trafic trimis printr-un tunel. Acest criteriu poate fi folosit doar cu acțiuni ce țin de politici QoS
  - flow ip destination-address: identificarea adresei IP destinație înăuntrul unui tunnel-group. Se poate folosi doar împreună cu tunnel-group.
  - port: identifică un port TCP sau UDP
  - default-inspection-traffic: match pe o serie de protocoale ce rulează peste porturile configurate standard



#### MPF – Class-map (3)

- Un class-map suportă o singură comandă match
  - excepția o reprezintă parametrii tunnel-group și default-inspectiontraffic care oferă posibilitatea de a da încă o comandă match
  - când există 2 comenzi match, se face **ȘI** logic între ele
- ▶ În mod implicit este activat class-map-ul inspection\_default

```
ciscoasa# sh run
....
class-map inspection_default
match default-inspection-traffic
....
```



### MPF – Class-map (4)

#### Ce reprezintă default-inspection-traffic?

```
ciscoasa(config-cmap)# match ?
mpf-class-map mode commands/options:
  access-list
                             Match an Access List
                             Match any packet
  any
  default-inspection-traffic Match default inspection traffic:
                             ctiqbe----tcp--2748
                                                     dns-----udp--53
                             ftp-----tcp--21
                                                     qtp-----udp--2123,3386
                             h323-h225-tcp--1720
                                                     h323-ras--udp--1718-1719
                             http----tcp--80
                                                     icmp----icmp
                             ils-----tcp--389
                                                     mgcp----udp--2427,2727
                             netbios---udp--137-138
                                                     radius-acct---udp--1646
                             rpc----udp--111
                                                     rsh-----tcp--514
                             rtsp-----tcp--554
                                                     sip-----tcp--5060
                             sip-----udp--5060
                                                     skinny----tcp--2000
                             smtp----tcp--25
                                                     sqlnet----tcp--1521
                             tftp-----udp--69
                                                     waas----tcp--1-65535
```



#### MPF – Policy-map

- Policy-map-ul determină acțiunea pe care firewall-ul să o ia
- ▶ Pasul 1: se dă un nume policy-map-ului
- Pasul 2: se asociază un class-map
- Pasul 3: se aplică o acțiune (sau mai multe acțiuni) traficului identificat

```
ciscoasa(config) # policy-map test_policy
ciscoasa(config-pmap) # class major_protocols
ciscoasa(config-pmap-c) # inspect ftp
ciscoasa(config-pmap-c) # inspect icmp
```



#### MPF – Acțiuni posibile

Un singur policy-map poate avea mai multe acțiuni și de mai multe tipuri

```
ciscoasa(config-pmap-c)# ?
MPF policy-map class configuration commands:
                  Content Security and Control service module
  CSC
  exit
                  Exit from MPF class action configuration mode
  flow-export
                  Configure filters for NetFlow events
 help
                  Help for MPF policy-map class/match submode commands
  inspect
                  Protocol inspection services
                  Intrusion prevention services
  ips
                  Negate or set default values of a command
  no
                  Rate limit traffic for this class
 police
 priority
                  Strict scheduling priority for this class
 quit
                  Exit from MPF class action configuration mode
  service-policy Configure QoS Service Policy
                  Set connection values
  set
  shape
                  Traffic Shaping
```



#### MPF – Exemple de acțiuni

```
ciscoasa# sh run
class-map http map
match port tcp eq www
policy-map http policy
class http map
  inspect http
 police input 1000000
  set connection conn-max 1000 per-client-embryonic-max 50
```

#### MPF – Aplicarea unei politici

- O politică se poate aplica pe interfață sau la nivel global
- Politica la nivel global afectează tot traficul ce trece prin orice interfață a ASA, dar doar în direcția ingress
- Politica la nivel de interfață afectează tot traficul ce trece prin acea interfață, ingress și egress



```
# aplicare la nivel global
ciscoasa(config)# service-policy inspect_http global
# aplicare pe interfață
ciscoasa(config)# service-policy inspect_http interface inside
```

#### MPF – Procesarea unei politici

 Dacă acțiunea politicii este diferită, pachetele pot face match de mai multe ori într-un policy-map, cât timp class-map-urile identifică acel pachet

```
class-map example
match port tcp eq www
policy-map http_policy
class example
police input 1000000
set connection conn-max 1000 per-client-embryonic-max 50
class inspection_default
inspect http
```

 Dacă acțiunea este aceeași, se face match pe un singur classmap





# ASA – Advanced MPF

#### Inspecția pe un port ne-standard

```
asal(config)# class-map 8080_INSPECT_TRAFFIC
asal(config-cmap)# match port tcp eq 8080
asal(config-cmap)# exit
asal(config)# policy-map global_policy
asal(config-pmap)# class 8080_inspect_traffic
asal(config-pmap-c)# inspect http
asal(config-pmap-c)# exit
asal(config-pmap)# exit
```



**HTTP: port 8080** 



### **Advanced Application Inspection**

- Permite controlul granular asupra aplicaţiilor
  - Blocarea fișierelor cu extensia .exe
  - Blocarea Kazaa şi alte protocoale p2p
  - Setarea de limite pe câmpuri interne ale protocolului (ex: lungimea unui URL)
  - Protejarea serviciilor web prin validarea XML

Resetarea unei conexiuni TCP care în câmpul de date conține un anumit

string





### Configurarea advanced protocol inspection

- Se folosesc structuri adiționale de tip inspect
  - (Opțional) class-map type inspect folosite pentru a face match după criterii specifice unei anumite aplicații
  - □ Policy-map type inspect folosite pentru a defini acțiuni speciale pentru inspecția unei anumite aplicații
  - Class-map (L3/L4) folosite pentru a identifica trafic la nivel 3 și 4
  - □ Policy-map (L3/L4) folosite pentru a aplica acțiuni traficului identificat de un class-map L3/L4
  - Service-policy folosite pentru a aplica o politică la nivel de interfață sau global
- Un policy-map type inspect este aplicat într-un policy-map L3/L4



#### Advanced MPF – Exemplu

Exemplu: drop la conexiuni HTTP ce folosesc metoda POST

```
asal(config) # class-map type inspect http POST METHOD
asal(config-cmap) # match request method post
asa1(config-cmap)# exit
asal(config) # policy-map type inspect http MY HTTP MAP
asa1(config-pmap)# class POST METHOD
asa1(config-pmap-c)# drop-connection log
asa1(config-pmap-c)# exit
asa1(config-pmap)# exit
asal(config) # policy-map WEB POLICY
asa1(config-pmap)# class inspection default
asal(config-pmap-c) # inspect http MY HTTP MAP
asa1(config-pmap-c)# exit
asa1(config-pmap)# exit
asal(config)# service-policy WEB POLICY interface inside
```



#### Expresii regulate

- Practic oferă posibilități infinite de identificare a traficului
- Folosește obiecte de tip "regex" care se adaugă la un classmap type regex
- Class-map-ul de tip regex poate fi folosit într-un class-map type inspect

```
asal(config)# regex P2P_custom Kazaa2.1_custom
asal(config)# regex ANYGIF ".+\.[Gg][Ii][Ff]"
asal# test regex file.gif ".+\.[Gg][Ii][Ff]"
INFO: Regular expression match succeeded.
asal(config)#class-map type regex match-any NEW_P2P
asal(config-cmap)#match regex P2P_custom
asal(config-cmap)#match regex ANYGIF
```



#### Exemplu – expresii regulate

```
asal(config) #regex COMPANY CONFIDENTIAL
  "[Cc][Oo][Nn][Ff][Ii][Dd][Ee][Nn][Tt][Ii][Aa][L1]"
asa1(config) #reqex CLASSIFIED "[Cc][L1][Aa][Ss][Ss][Ii][Ff][Ii][Ee][Dd]"
asa1(config)#class-map type regex match-any CLASSIFIED DOCUMENTS
asa1(config-cmap) #match regex COMPANY CONFIDENTIAL
asa1(config-cmap) #match regex CLASSIFIED
asal(config)#class-map type inspect http match-all CLASSIFIED TRAFFIC
asa1(config-cmap) #match request header user-agent regex class CLASSIFIED DOCUMENTS
asal(config-cmap) #match request method post
asal(config) #policy-map type inspect http CONFIDENTIAL POLICY
asa1(config-pmap) #class CLASSIFIED TRAFFIC
asa1(config-pmap-c)#drop-connection log
asal(config) #policy-map DOCUMENT SECURITY
asa1(config-pmap)#class inspection default
asa1(config-pmap-c) #inspect http CONFIDENTIAL POLICY
asa1(config) #service-policy DOCUMENT SECURITY interface inside
```



# FortiGate – Application Control

#### Session helpers

- Folosiți pentru a configura inspecția la nivel aplicație pentru diferite protocoale
- Se pot configura doar din linie de comandă

```
Fortigate51B # show system session-helper
config system session-helper
    edit 1
        set name pptp
        set port 1723
        set protocol 6
    next
    edit 9
        set name ftp
        set port 21
        set protocol 6
    next
```

#### Session helpers

 Cu ajutorul session helpers se poate modifica portul pe care se realizează inspecția pentru o aplicație

```
Fortigate51B # config system session-helper
Fortigate51B (session-helper) # edit 1
Fortigate51B (1) # set
*name helper name
*port protocol port
*protocol protocol number
Fortigate51B (1) # set name ftp
Fortigate51B (1) # set protocol 6
Fortigate51B (1) # set port 55555
```

Câmpul "protocol" este numărul de protocol din antetul IP



#### **Application Control**

- Permite controlul granular al aplicaţiilor
- FortiGate permite fine-tuning pe 1500+ aplicații
- Asemănător ASA, FortiGate are cod intern scris pentru a analiza nivelul 7 și a manipula mesajele din canalul de control





- Ne propunem să blocăm facebook chat
- Pasul 1: definirea politicii de application control





 Pasul 2: creare unei intrări noi în politică de App Control și alegerea aplicației dorite





- Pasul 3: aplicarea în politica de firewall
- Application Control e o funcționalitate de UTM





 FortiGate oferă logging sau monitorizare în timp real pentru traficul afectat de Application Control



- Logging vs monitorizare
  - Logging se face implicit în RAM
  - Monitorizarea se face implicit într-o bază de date SQL salvată pe HDD



## Traffic shaping

- Pe FortiGate, funcționalitatea de traffic shaping include:
  - Traffic policing
  - Traffic shaping
  - QoS prin cozi prioritare
- FortiGate suportă 3 tipuri de shaping:
  - Shared suportă controlul lățimii de bandă la nivelul politicii de firewall
  - □ Per-IP suportă controlul lățimii de bandă funcție de IP sursă
  - Application Control Shaping suportă controlul lățimii de bandă folosind application inspection



#### Shared shapers

- Prin metoda shared se poate defini un shaper pentru:
  - O politică
  - Toate politicile
- Fiecare shaper trebuie să definească:
  - Maximum bandwidth lățimea de bandă maximă ce poate fi folosită de traficul dintr-o anumită politică
  - ☐ Guaranteed bandwidth lățimea de bandă garantată unei conexiuni
    - Atenție: această valoare trebuie să fie aleasă cu mult mai mică decât valoarea reală a lățimii de bandă a interfeței. Altfel există riscul de a rămâne fără bandă pentru trafic ce nu face match pe politică
  - Prioritarea traficului definește cum este tratat traficul relativ la alte shapere
    - high/medium/low



## Shared shapers



- Atenție: trebuie setat un shaper pentru toate politicile.
  - Orice politică fără shaper are în mod implicit prioritatea high și poate satura lățimea de bandă



#### Per-IP shaper

- Definește un shaper ce se aplică tuturor IP-urilor dintr-o politică de firewall
- Diferența fața de shared este că împiedică un utilizator să consume toată banda
  - Toţi userii sunt egali
- Suportă definirea:
  - Lățimii de bandă maxime
  - Numărul maxim de conexiuni permise





#### **Application Control Shaper**

 Permite definirea lățimii de bandă și priorității pentru o anumită aplicație



Acest tip de shaper are prioritate în fața oricărui alt shaper



#### Configuration converter

- Fortinet oferă un serviciu prin care se pot converti fișiere de configurare Cisco, Juniper, Checkpoint în fișiere de configurare Fortinet
- Sunt convertite feature-uri de policy, object, static route, NAT, VPN
- Cisco
  - □ Router: IOS 10.x,11.x,12.x
  - □ PIX/ASA: Pix 4.x, Pix 5.x, Pix 6.x, Pix 7.x, Pix 8.x
- https://convert.fortinet.com/forticonverter/



# Configuration converter



#### Support Platform

| Platform      | Version                                                                                                  |  |
|---------------|----------------------------------------------------------------------------------------------------------|--|
| Cisco router  | IOS 10.x, IOS 11.x, IOS 12.x                                                                             |  |
| Cisco PIX/ASA | Pix 4.x, Pix 5.x, Pix 6.x, Pix 7.x, Pix 8.x                                                              |  |
| Checkpoint    | Smart Center, Provider-1 (excluding VPN-1 Edge, Safe@Office, SMP), with OS NG FP1 (4.0) to NGX R65 (6.5) |  |
| Juniper       | ssg with OS 5.x                                                                                          |  |

#### Support Feature

|              | Cisco router | Cisco PIX | Checkpoint | Juniper |
|--------------|--------------|-----------|------------|---------|
| Policy       | √            | √         | √          | √       |
| Object       | √            | √         | √          | √       |
| Static route | √            | √         | ×          | √       |
| Service      | √            | √         | √          | √       |
| NAT          | √            | √         | √          | √       |
| VPN          | √            | √         | √          | √       |

#### **Known Issues**

| Platforms               | Service object | Issue                            |
|-------------------------|----------------|----------------------------------|
| Cisco router /FWSM /PIX | User DB        | Will be available in version 3.1 |
| Checkpoint              | User DB        | Will be available in version 3.1 |
| Juniper                 | User DB        | Will be available in version 3.1 |



#### Overview



#### Cursul viitor...

ACL Object grouping



- Routing and switching
  - Rute statice
  - Protocoale de rutare dinamice
  - PBR
  - BGP
  - VLAN-uri



