Does the function

$$f(x) = \begin{cases} 1/x & 0 < x \le 1 \\ 0 & x = 0 \end{cases}$$

have a maximum?

a	762)	z]:	ftel	
20.5 6.25 0.10 6.01	2 4 10 100	1 0.5 0.25 0.1	1 2 4 10	0 0.51
	_ 1	~ ~ 1	- \$	$f(x)=1 \in \frac{1}{\sqrt{2}} \forall x \in I$

. One at
$$x = 1 \rightarrow f(x) = 1 \in \frac{1}{2} \forall x \in 1$$
.

• One at
$$x = 1$$
 \rightarrow $\uparrow (x) = 0$ \rightarrow $\uparrow (x) = 0$ \in $1 \in \frac{1}{x}$

Let $f(x) = x^3$. What is f'(0)? Is f(0) a local maximum or local minimum?

$$f'(x) = 3x^2$$

The solution to $f'(x) = 0$
 $3x^2 = 0$
 $x = 0$

It seems that z=0 is a local max or local min.

z is not a maximum and not a minimum!

Let f(x) = |x|. Is f(0) a local maximum, global maximum, local minimum, or global minimum?

Ane $f'(0) \not A$ But f(0) = 0 is an absolute minimum.

Find the critical numbers of $f(x) = x^{3/5}(4-x)$.

$$\frac{f'(z)}{f'(z)} = (z^{3/5})' (4-x) + z^{3/5} \cdot (-1)$$

$$= \frac{3}{5} z^{-2/5} (4-z) - z^{3/5}$$

$$= \frac{3 \cdot 4}{5} z^{-2/5} - \frac{3}{5} z^{3/5} - z^{3/5}$$

$$= \frac{12}{5} z^{-2/5} - z^{3/5} \left(\frac{8}{5}\right)$$

$$= \frac{12 - 8x}{5 z^{2/5}}$$

$$=\frac{4(3-2x)}{5x^{2/5}}$$

$$f'(x) = 0 \iff \frac{4(3-7x)}{5x^{2/5}} = 0$$

$$\angle 3$$

Answer critical numbers are 3/2 d 0

Find the absolute maximum and minimum values of the function $f(x) = x^3 - 3x^2 + 1$ on the interval [-1/2, 4].

$$\Leftrightarrow$$
 $x=2$ or $x=0$

We have
$$f(0) = 1 + f(2) = -3$$
.

) Compute the values of
$$\frac{1}{4}a^{4}$$
 enapoints $a = \frac{1}{a}$ $a = \frac{1}{a}$ $a = \frac{1}{4}$ $a = \frac{1}{4}$.

Show that the equation $x^3 + x - 1 = 0$ has at least one root.

Here
$$f(x) = x^3 + x - 1$$
.
 $f(0) = 0 + 0 - 1 = -1$ $a = 0$
 $f(1) = 1$ $b = 1$
So, $f(0) < 0$ $f(1) > 0$.
So, $\exists c \in (0,1)$ $o.t.$ $f(c) = 0$.
In other words, $c^3 + c - 1 = 0$.

Show that the equation $x^3 + x - 1 = 0$ has exactly one root.

Suppose that there are two different routs $a d b (a \neq b)$.

$$50, \quad f(\omega) = 0 = f(b).$$

. f is cont. on [aib]

. is diff. on (a,b).

So, by Rolle's theorem, f'(c) = 0 for some $C \in (a_1b)$.

Contradiction.

 $f'(x) = 3x^2 + 1 \ge 1$, so $f'(x) \ne 0$.

So, we mast conclude that there is only one root.

Consider $f(x) = x^2$.

- Find the slope of the secant line passing through Q = (0,0) and P = (2,4).
- Can you find a tangent line to $y = x^2$ with the same slope?

$$m_{PQ} = \frac{4-0}{22-21} = \frac{4-0}{2-0} = 2$$

$$f'(x) = 2 \qquad \text{(2)} \qquad 2x = 2$$

$$f(x) = 1$$

Find the numbers $c \in [0,2]$ such that the average of the function $f(x) = x^3 - x$ on the interval [0,2] is attained by f'(c).

Here,
$$a=0$$
, $b=a$.
 $f(x) = 3c^3 - 3c$ - $continuous$ on $iving$.
 $cliffentiable$ on $(0,iz)$.

50, ∃c ∈ (012) o.t.

$$f'(x) = 3x^2 - 1$$
 $f(x) - f(0) = \frac{6 - 0}{2} = 3$

50, $3c^2-1=3$

$$\Rightarrow$$
 $3c^2 = 4$

$$=$$
 $C = + \sqrt{4/3}$ or $-\sqrt{4/3}$

The slope of the tangent line is the same us the slope of the secont it to clues not to EDITO

$$x = \frac{2}{13}$$
 or $x = -\frac{2}{13}$