P1: Cálculo III

	Nota:	
Nome:		

Matrícula:

INSTRUÇÕES

- 1. Prencher o nome em LETRA DE FORMA.
- 2. Para responder as questões, utilizar CANETA de cor preta, ponta grossa.
- 3. Enviar as respostas da prova em PDF, qualquer outro tipo de formato, não será aceito.
- 4. As respostas da prova deve ser enviada no arquivo nome-p1.pdf para o endereço mauricio@ime.uerj.br
- 5. PRAZO MÁXIMO de envio, quinta-feira 30 de setembro as 11:00h P.M.

	a	b	С	d	e
1					
2					
3					

- 1. Uma reta tangente à $\gamma(t) = (9\cos(t), 4\sin(t)), t \in [0, 2\pi]$ que é paralela ao eixo dos x, é:
 - **a)** (9t, 4t)
- b) NA
- **c)** (4t, 9)
- **d)** (t, 4)
- **e)** (-9t, 4)
- 2. O comprimento de arco da curva parametrizada por $\gamma(t)=(a\,t-a\,sen(t),a+a\,cos(t))$, $t\in[0,2\,\pi]$, é:
 - a) $4 a \pi$
- **b)** $8 a \pi$
- **c)** 8 a
- **d)** 4 a
- e) NA
- 3. O potencial do campo $F(x,y,z)=(y\cos(z)-y\,z\,e^x,x\cos(z)-z\,e^x,-x\,y\,sen(z)-y\,e^x)$, $(x,y,z)\in\mathbb{R}^3$, é:
 - **a)** $x y \cos(z) y^2 z e^x + c$ **b)** $x y \cos(z) y z e^x + c$ **c)** $x y \cos(z) y z^2 e^x + c$ **d)** NA
 - **e)** $x y \cos(z) x y z e^{x} + c$
- 4. Calcule $\int_C [2 x y + 2 x z] dx + [x^2 + 2 y z] dy + [x^2 + y^2] dz$, onde C é a interseção das superfícies $x^2 + y^2 z = 0$ e $z = 2 x^2 y^2$.
- 5. Seja $C=\partial D$, uma curva orientada positivamente, tal que D é a região plana definida por $2\,y\le x^2+y^2\le 4\,y$. Calcule:

$$\int_C [e^{x^2} - y^3] \, dx + [e^{y^2} + x^3] \, dy.$$