Определения

- Положительное целое число является простым (prime) числом тогда и только тогда, когда оно точно делимо без остатка на два целых числа на 1 и на само себя
- У Составное число это положительное целое число больше с чем двумя делителями
- Два положительных целых числа a и b являются взаимно простыми (coprime), если НОД (a, b) = 1
- ullet Если p простое число, тогда все числа от 1 до $p{-}1$ являются взаимно простыми к p

Количество простых чисел

- № Количество простых чисел бесконечно. Доказательство:
 - \bigcirc Пусть p –наибольшее простое. Вычислим $P=2\times 3\times 5\times ...\times p$.
 - extstyle ex
- ullet Количество $\pi(n)$ простых чисел, меньших n
 - Θ Нижний предел обнаружил Лагранж $[n/(\ln n)] < \pi(n)$
 - $^{\odot}$ Верхний предел обнаружил Гаусс $\pi(n) < [n/(\ln n 1,08366)]$

Полезные свойства простых чисел

- - Θ Доказательство: Пусть x=a imes b, a>p, b>p , $p=[\sqrt{x}]$ Тогда $a imes b\geq (p+1) imes (p+1)>x$ имеем противоречие

Малая теорема Ферма

- Первая версия
 - - \bigcirc Следствие $a^{-1} \equiv a^{p-2} mod p$
- Вторая версия
 - ullet Если p простое число и a целое число, то $a^p \equiv a \ mod \ p$
- Приложения:
 - \bigcirc Возведение в степень: $3^{100} mod \ 97 = 81 \ 99^{73} mod \ 73 = 26$
 - Мультипликативная инверсия: $5^{-1}mod\ 11 = 9$

Функция Эйлера

- ullet Функция $\varphi(n)$ вычисляет количество целых чисел меньших, чем n, и взаимно простых с n. Пример $\varphi(10)$ =4, $\{1,3,7,9\}$
- Свойства функции:
 - $\Theta \varphi(1) = 0$
- ullet Сложность нахождения $\varphi(n)$ зависит от сложности нахождения разложения n на множители

Теорема Эйлера

- Первая версия (подобна первой версии малой теоремы Ферма)
 - Θ Если a и n взаимно простые, то $a^{\varphi(n)} \equiv 1 \ mod \ n$
 - \bigcirc Следствие: $a^{-1}mod\ n = a^{\varphi(n)-1}mod\ n$
- 🕯 Вторая версия (подобна второй версии малой теоремы Ферма)
 - Θ Если n=p imes q , a< n, k целое число, то $a^{k imes arphi(n)+1}\equiv a\ mod\ n$
- Приложения:
 - \odot Возведение в степень: $6^{24} mod \ 35 = 1 \ 20^{62} mod \ 77 = 15$
 - Мультипликативная инверсия: $7^{-1}mod\ 15 = 13$

Фильтры и генераторы простых целых чисел

Фильтрация простых чисел меньше заданного *n*

- Решето Эратосфена

 - Впишем все числа от 2 до 100 в таблицу и будем последовательно вычеркивать числа делящиеся на 2, затем на 3,5,7 (кроме самих этих чисел
 - Оставшиеся числа простые (в выделенных клетках)

	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Фильтр в CrypTool

Пример реализации фильтра:

Вход: натуральное число п

Пусть A — булевый массив, индексируемый числами от 2 до n, изначально заполненный значениями ${f true}$.

```
для i := 2, 3, 4, ..., пока i^2 \le n:
если A[i] = true:
для j := i^2, i^2 + i, i^2 + 2i, ..., пока j \le n:
A[j] := false
```

Выход: числа i, для которых A[i] =true.

- ullet Сложность $O(n*ln(ln\,n))$
- Можно сократить вдвое число операций, если оперировать только нечётными числами и
- Можно существенно сэкономить потребление памяти, храня п переменных булевского типа не как п байт, а как п бит
- Детали: https://habrahabr.ru/post/91112/

Попытки генерация простых целых чисел

Простые числа Ферма

- Предполагал, что формула для генерации простого числа имеет вид $F_n = 2^{2^n} + 1$
- Подобные числа представляются битовой строкой вида 100000...001
- ullet Доказано, что если 2^k+1 простое число, то k является степенью 2^k
- $\ ^{ullet}$ Доказано, что многие номера после F_4 являются составными. Например,

$$F_5 = 4294967297 = 641 \times 6700417$$

Попытки генерация простых целых чисел

Простые числа Мерсенна

- Предполагал, что для простого числа p может вычислено другое простое M_p число (номер Мерсенна) по формуле $M_p = 2^p 1$
- № Номер Мерсенна представляется битовой строкой вида 111111...111
- extstyle ex
- Θ Обратное утверждение неверно, например, $M_{11}=2^{11}-1=2047=23\times89$, т.е. не все числа полученные по этой формуле, являются простыми
- 7 декабря 2018 года было открыто наибольшее известное простое число, которое равняется 2^{82 589 933} 1 и содержит 24 862 048 десятичных цифр.

Генератор в Cryptool

Тестирование на простоту

Вероятностные тесты

• Вероятностный алгоритм правильно выявляет простое число в большинстве (но не во всех) случаях. Вероятность ошибки (назвать составное простым) настолько маленькая, что это почти гарантирует, что алгоритм вырабатывает правильный ответ

Детерминированные тесты

• Детерминированный алгоритм принимает целое число и выдает на выходе признак: это число — простое число или составное. Детерминированный алгоритм всегда дает правильный ответ.

Вероятностные тесты на простоту

Идея вероятностных тестов на простоту

- В основе вероятностного алгоритма лежит математически доказанное свойство простого числа
- Проверяется выполнение этого свойства, как необходимого условия «простоты» числа: ЕСЛИ число простое ТО свойство
- Если проверяемое целое число фактически является простым число, алгоритм объявит его простым
- ullet Если проверяемое целое число фактически является составным , алгоритм объявляет его составным с вероятностью 1-arepsilon , но может объявить простым числом с arepsilon вероятностью.
- Вероятность ошибки может быть улучшена, если проверять необходимое условие несколько раз с различными параметрами или с использованием различных методов

Вероятностный тест испытания кв. корнем

- Если п составное число, то кроме указанных значений могут быть и еще другие
- № Когда дано число n, то все числа, меньшие, чем n (кроме чисел 1 и n-1), должны быть возведены в квадрат по модулю, чтобы гарантировать, что ни одно из них не дает решения равного 1

Вероятностный тест Ферма

- ullet Необходимое условие простоты числа: если p-простое число, то $a^{p-1} \equiv 1 \ mod \ p$
- ullet Вероятность может быть улучшена, если проверка делается с несколькими числами a_i , i=1,100.
- ullet Сложность разрядной операции теста Ферма равна сложности алгоритма быстрого возведения в степень $O(p_b)$

Вероятностный тест Миллера-Рабина

- Является комбинацией тестов Ферма и квадратного корня
- Изначально алгоритм был разработан Гари Миллером в 1976 году, а Майкл
 Рабин модифицировал его в 1980 году
- № В основе используется доказанное утверждение:

Пусть p>2- простое число. Представим число p-1 в виде $p-1=2^sd$, где d- нечётно. Тогда для любого a из \mathbb{Z}_p выполняется одно из условий:

```
1. a^d \equiv 1 \pmod{p}
2. \exists r, 0 \le r \le s - 1 : a^{2^r d} \equiv -1 \pmod{p}
```

У Если это утверждение выполняется для некоторых чисел а и р, то число а называют свидетелем простоты числа р, а само число р — вероятно простым

Псевдокод теста Миллера-Рабина

```
Вход: p > 2, нечётное натуральное число, которое необходимо проверить на
простоту; k — количество раундов.
Выход: составное, означает, что р является составным числом;
            вероятно простое, означает, что р с высокой вероятностью простое
Представить p-1 в виде 2^s \cdot d, где d нечётно
ЦИКЛ A: повторить k раз:
     Выбрать случайное целое число a в отрезке [2, p-2]
    x \leftarrow a^d \mod p
    <u>ЕСЛИ</u> x = 1 или x = p - 1, то перейти на следующую итерацию цикла А
    <u>ЦИКЛ</u> В: повторить s - 1 раз
         x \leftarrow x^2 \mod p
         <u>если</u> x = 1, <u>то</u> <u>вернуть</u> составное
         <u>если</u> x = p - 1, <u>то</u> перейти на следующую итерацию цикла А
     КОНЕЦ ЦИКЛА В
     вернуть составное
КОНЕЦ ЦИКЛА А
вернуть вероятно простое
```


Тест Миллера-Рабина в CrypTool

Свойства теста

- Идея теста заключается в том, чтобы проверять для случайно выбранных чисел a<p, являются ли они свидетелями простоты числа p.
- Если на определённом шаге алгоритма было проверено k чисел, и все они оказались свидетелями простоты, то вероятность того, что число p составное не более $\binom{1}{4}^k$ (это доказано)
- ullet Время работы алгоритма полиномиально $O(k imes log_2^{\ 2}n)$

Рекомендованные тесты

- Сегодня один из самых популярных тестов простоты чисел комбинация теории делимости и теста Миллера-Рабина. При этом рекомендуются следующее шаги:
 - ⊌ Выбрать нечетное целое число
 - [●] Сделать некоторые тривиальные испытания теории делимости на некоторых известных простых числах, таких как 3, 5, 7, 11, 13. Если они не являются делителями выбранного числа, перейти к следующему шагу, иначе выбрать другое нечетное число.
 - Выбрать набор оснований для теста. Большое множество оснований предпочтительно.
 - Сделать тест Миллера-Рабина на каждом из оснований. Если одно из них не проходит, выбрать другое нечетное число. Если тесты прошли для всех оснований, объявите выбранное число, как сильное псевдопростое число.

Детерминированные тесты на простоту

Идея детерминированных тестов на простоту

- В основе детерминированного алгоритма тоже лежит математически доказанное свойство простого числа
- Проверяется выполнение этого свойства, как достаточного условия «простоты» числа: ЕСЛИ свойство ТО число простое
- Если проверяемое целое число фактически является простым число, алгоритм объявит его простым
- Если проверяемое целое число фактически является составным, алгоритм объявляет его составным

Детерминированный алгоритм пробного деления

- ullet Используем в качестве делителей все числа, меньшие, чем \sqrt{n} .
- \bullet Если любое из этих чисел делит n, тогда n составное
- ullet Алгоритм может быть улучшен, если проверять только нечетные номера и использовать таблицу простых чисел от 2 до \sqrt{n}
- Сложность разрядной операции алгоритма $2^{n_b/2}$, где n_b число битов в n

```
Тест на делимость (n) \{ \\ r \leftarrow 2 \\ \text{while } (r < \sqrt{n}) \\ \{ \\ \text{if } (r | \text{n}) \text{ return "a composite"// составное} \\ r \leftarrow r+1 \\ \} \\ \text{return "a prime"//простое} \}
```


Алгоритм на основе подбора разложения

- - $b^{p-1} = 1 \mod p$
 - $b^{p-1/m_i} \neq 1 mod \ p$ для каждого простого делителя m_i числа p-1

Алгоритм:

- ullet Случайным образом выбираются простые числа $\{m_1, m_2, ... m_q\}$
- Θ Вычисляем $p = 1 + 2 \prod_{i=1}^{q} m_i$
- Θ Выбирается $b \leq p-1$ и проверяются условия Теоремы. Если есть такое b, то p найдено, если нет, то выбирается новые $\{m_1, m_2, ..., m_q\}$

Свойства решения:

- $ilde{ullet}$ Длина p примерно в q раз больше средней длины $\{m_1, m_2, ... m_q\}$
- Мы заранее знаем разложение р-1

Алгоритм из стандарта ГОСТ Р 34.10-94

- Алгоритм формирования числа р длины t≥ 17 бит:
 - ullet Построим убывающий набор натуральных чисел t_0 , t_1 , ... , t_s , в котором $t_0 = t$ и $t_s < 17$ бит, таким образом, что $t_i = [rac{t_{i-1}}{2}]$
 - ullet Последовательно генерируются простые числа $p_{\scriptscriptstyle S}$, $p_{\scriptscriptstyle S-1}$, ... , $p_{\scriptscriptstyle 0}$: $p_{i-1}=p_iN+1$
 - p_{S} формируется случайным выбором числа <u>размером</u> t_{S} бит и проверки на простоту методом пробного деления
 - Arr N случайное целое чётное число, такое, что <u>размер</u> числа $p_{i-1} = p_i N + 1$ равен значению t_{i-1}
 - ullet Число p_{i-1} считается полученным, если $2^{p_iN} = 1 \ mod \ p_{i-1}$ и $2^N
 eq 1 \ mod \ p_{i-1}$
 - ullet Если одно из условий не выполнено, то N увеличивается на 2 и вычисляется новое p_{i-1} и так до получения простого числа p_{i-1}

Детерминированный AKS-алгоритм

- В 2002 г. индийские ученые Агравал, Каял и Сахсена (Agrawal, Kayal и Saxena) объявили, что они нашли алгоритм для испытания простоты чисел с полиномиальной сложностью времени разрядных операций
- В основе этого теста на простоту лежит доказанное тождество:

Теорема ASK

● Пусть $n \ge 2$; n — целое; q, r — простые числа, причем :

- а) $\forall m \in \{1, 2, \dots, r\} : HOД(m, n) = 1$
- б) $q \mid (r-1)$
- в) $q\geqslant 4\sqrt{r}\log n$, где $\log\equiv\log_2$
- Γ) $n^{(r-1)/q} \not\equiv 1 \pmod{r}$
- д) $\forall a \in \{1, \dots, \lfloor 2\sqrt{r} \log n \rfloor + 1\} : (x a)^n \equiv (x^n a) \pmod{n, x^r 1}$

Тогда n — простое число

Псевдокод алгоритма ASK

```
r=2;
while (r < n) {
     if (НОД(r,n) \neq 1) output составное;
     if (r - простое число, r > 2) {
        q = наибольший простой делитель у (r-1);
        if (q \ge 4\sqrt{r} \log n) and (n^{(r-1)/q} \not\equiv 1 \pmod{r}) break;
    r \leftarrow r + 1;
for a = 1 to (|2\sqrt{r}\log n| + 1)
    if ((x-a)^n \equiv (x^n-a) \pmod{x^r-1,n} ) output составное;
if (n=a^b; a, b - \text{целые}; a, b \ge 2) output составное;
     else output простое;
```

- ullet Сложность алгоритма $O(\log_2^{-19} n)$
- Это первый детерминированный алгоритм, работающий за полиномиальное время и имеющий изящное доказательство
- Алгоритм может оказаться практически применимым, если будет доказана правильность его более эффективного варианта