EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos - Programa ajustado

Duração da prova: 120 minutos

Prova Modelo

2001

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação de todo o GRUPO I.

435.V1/1 v.s.f.f.

A Prova é constituída por dois Grupos, I e II.

- O Grupo I inclui sete questões de escolha múltipla.
- O Grupo II inclui cinco questões de resposta aberta, algumas delas subdivididas em alíneas, num total de doze.

Na página 11 deste enunciado encontra-se um formulário.

Grupo I

• As sete questões do primeiro grupo são de escolha múltipla.

• Para cada uma delas são indicadas quatro alternativas, das quais só uma está correcta.

• Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão.

• Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.

• Não apresente cálculos.

1. Na figura está representada parte de uma parábola, que é o gráfico de uma certa função g, de domínio \mathbb{R} .

Seja h a função, de domínio \mathbb{R} , definida por h(x)=g(x) . $(x+3)^2$ Qual pode ser o conjunto dos zeros da função h ?

(A) {2, 3, 4}

(B) $\{-3, 1, 4\}$

(C) $\{-3, 2, 3, 5\}$

(D) $\{-1, 5, 9\}$

2. Indique o valor de $\lim_{x \to 0^+} \frac{\ln x}{\sin x}$

- (A) $-\infty$
- **(B)** 0
- **(C)** 1
- (D) $+\infty$

- 3. Na figura estão representados, em referencial o. n. Oxyz:
 - ullet o ponto A, de coordenadas (0,0,4)
 - a superfície esférica de equação $x^2 + y^2 + z^2 = 9$
 - a circunferência que resulta da intersecção dessa superfície esférica com o plano $\,xOy\,$

PUm ponto percorre essa circunferência, dando uma completa.

Considere a função f que faz corresponder, à **abcissa** do ponto P, a **distância** de P a A.

Qual dos seguintes é o gráfico da função f?

(A)

(C)

(D)

4. Na figura está parte da representação gráfica de uma certa função g, de domínio \mathbb{R} .

Em qual das figuras seguintes está parte da representação gráfica da função $\,h,$ definida em $\,\mathbb{R}\,$ por $\,h(x)=\,-g(x)+1$?

(B)

(C)

(D)

5. Admita que, numa certa escola, a variável «altura das alunas do 12.º ano de escolaridade» segue uma distribuição aproximadamente normal, de média 170 cm.

Escolhe-se, ao acaso, uma aluna do 12.º ano dessa escola.

Relativamente a essa rapariga, qual dos seguintes acontecimentos é o mais provável?

- (A) A sua altura é superior a 180 cm.
- **(B)** A sua altura é inferior a 180 cm.
- (C) A sua altura é superior a 155 cm.
- (D) A sua altura é inferior a 155 cm.
- **6.** Seja S o conjunto de resultados (com um número finito de elementos) associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos, contidos em S, nenhum deles impossível, nem certo.

Sabe-se que $A \subset B$.

Indique qual das afirmações seguintes é verdadeira (P designa probabilidade, e \overline{A} e \overline{B} designam os acontecimentos contrários de A e de B, respectivamente).

(A) P(A) > P(B)

(B) $P(A \cap B) = 0$

(C) $P(A \cup B) = 1$

- **(D)** $P(\overline{A}) \ge P(\overline{B})$
- 7. Seja $z=y\,i$, com $y\in\mathbb{R}\backslash\{0\}$, um número complexo (i designa a unidade imaginária).

Qual dos quatro pontos representados na figura junta (A, B, C ou D) pode ser a imagem geométrica de z^4 ?

(A) O ponto A

(B) O ponto B

(C) O ponto C

(D) O ponto D

Grupo II

Nas questões do segundo grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

- 1. O AUTO-HEXÁGONO é um stand de venda de automóveis.
 - **1.1.** Efectuou-se um estudo sobre as vendas de automóveis nesse *stand*, o qual revelou que:
 - 15% dos clientes compram automóvel com alarme e com rádio;
 - 20% dos clientes compram automóvel sem alarme e sem rádio;
 - 45% dos clientes compram automóvel com alarme (com ou sem rádio).

Um cliente acaba de comprar um automóvel.

- 1.1.1. A Marina, empregada do stand, que nada sabia das preferências desse cliente e não tomou conhecimento do equipamento do automóvel que ele tinha comprado, apostou que esse automóvel estava equipado com rádio, mas não tinha alarme.
 - Qual é a probabilidade de a Marina acertar? Apresente o resultado na forma de percentagem.
- **1.1.2.** Alguém informou depois a Marina de que o referido automóvel vinha equipado com alarme. Ela apostou, então, que o automóvel também tinha rádio.
 - Qual é a probabilidade de a Marina ganhar esta nova aposta? Apresente o resultado na forma de fracção irredutível.
- **1.2.** O *stand*, de forma hexagonal, tem uma montra que se situa num dos lados do hexágono (ver figura).

Pretende-se arrumar seis automóveis diferentes (dois utilitários, dois desportivos e dois comerciais), de tal forma que cada automóvel fique junto de um vértice do hexágono.

Supondo que se arrumam os seis automóveis ao acaso, qual é a probabilidade de os dois desportivos ficarem junto dos vértices que se encontram nas extremidades da montra? Apresente o resultado na forma de fracção irredutível.

435.V1/7 v.s.f.f.

2. Em \mathbb{C} , conjunto dos números complexos, considere

$$z_{\scriptscriptstyle 1} = 7 + 24\,i$$
 (i designa a unidade imaginária)

- **2.1.** Um certo ponto P é a imagem geométrica, no plano complexo, de uma das raízes quadradas de $\,z_{\scriptscriptstyle 1}$. Sabendo que o ponto $\,P$ tem abcissa $\,4$, determine a sua ordenada.
- **2.2.** Seja $z_2=cis\,\alpha$ com $\alpha\in\left]\frac{3\,\pi}{4}\,,\,\pi\right[$ Indique, justificando, em que quadrante se situa a imagem geométrica de $z_1\times z_2$
- **3.** Considere a função h, de domínio \mathbb{R} , definida por

$$h(x) = \begin{cases} \frac{x+1}{x} & \text{se } x < 0 \\ \frac{1}{2} & \text{se } x = 0 \\ \frac{\sin x}{2x} & \text{se } x > 0 \end{cases}$$

- 3.1. Utilizando métodos exclusivamente analíticos, resolva as duas alíneas seguintes:
 - **3.1.1.** Estude a função h quanto à continuidade no ponto 0. (Deve indicar, justificando, se a função h é contínua nesse ponto e, no caso de não ser, se se verifica a continuidade à esquerda, ou à direita, nesse mesmo ponto.)
 - **3.1.2.** Considere a função j, de domínio $\mathbb{R}\backslash\{0\}$, definida por $j(x)=\frac{1}{3\,x}$ Mostre que, no intervalo $[-1\,,\,1000\,\pi]$, os gráficos de j e de h se intersectam em 1001 pontos.
- **3.2.** Dos 1001 pontos referidos na alínea anterior, seja A o que tem menor abcissa positiva. Determine as coordenadas desse ponto (apresente os valores na forma de dízima, com aproximação às décimas).

- **4.** Considere a função f, de domínio \mathbb{R} , definida por $f(x) = \frac{x+3\sin\frac{x}{2}}{\ln(e^x+4)}$
 - **4.1.** Sabe-se que existe $\lim_{x\to +\infty} f(x)$ e que o seu valor é um número inteiro. Recorrendo à sua calculadora, conjecture-o. Explique como procedeu.
 - **4.2.** Será conclusivo, para a determinação do valor de $\lim_{x \to +\infty} f(x)$, um método que se baseie exclusivamente na utilização da calculadora? Justifique a sua resposta.
- **5.** Malmequeres de Baixo é uma povoação com cinco mil habitantes.
 - 5.1. Num certo dia, ocorreu um acidente em Malmequeres de Baixo, que foi testemunhado por algumas pessoas. Admita que, t horas depois do acidente, o número (expresso em milhares) de habitantes de Malmequeres de Baixo que sabiam do ocorrido era, aproximadamente,

$$f(t) = \frac{5}{1 + 124 e^{-0.3t}}, \quad t \ge 0$$

Recorrendo exclusivamente a processos analíticos, estude a função $\,f\,$ quanto à monotonia e quanto à existência de assimptotas do seu gráfico. Interprete as conclusões a que chegou, no contexto do problema.

5.2. Alguns dias depois, ocorreu outro acidente no mesmo local, testemunhado pelas mesmas pessoas. No entanto, neste segundo acidente, a notícia propagou-se mais depressa, no sentido em que, decorrido o mesmo tempo após o acidente, mais pessoas sabiam do ocorrido. Admita que, t horas depois deste segundo acidente, o número (expresso em milhares) de habitantes de Malmequeres de Baixo que sabiam do ocorrido era, aproximadamente,

$$g(t) = \frac{5}{1 + a\,e^{-\,b\,t}} \ , \quad t \geq 0 \qquad \qquad \text{(para certos valores de a e b)}.$$

Numa pequena composição, com cerca de dez linhas, refira o que pode garantir sobre os valores de a e de b, comparando cada um deles com o valor da constante correspondente da expressão analítica de f.

FIM

435.V1/9 v.s.f.f.

COTAÇÕES

Grupo I63
Cada resposta certa
Nota: Um total negativo neste grupo vale 0 (zero) pontos.
Grupo II
1 32
1.1.
1.2. 12
2.
3.
3.1.1
4.
5.
TOTAL200

Formulário

Áreas de figuras planas

$$\textbf{Losango:} \ \ \frac{\textit{Diagonal maior} \times \textit{Diagonal menor}}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Círculo:
$$\pi r^2$$
 $(r-raio)$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$
 $(r - raio da base; g - geratriz)$

Área de uma superfície esférica:
$$4\,\pi\,r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$\mathrm{sen}\,(a+b) = \mathrm{sen}\,a\,.\cos b + \mathrm{sen}\,b\,.\cos a$$

$$cos(a+b) = cos a \cdot cos b - sen a \cdot sen b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta) \cdot (\rho' \operatorname{cis} \theta') = \rho \rho' \operatorname{cis} (\theta + \theta')$$

$$\frac{\rho \, cis \, \theta}{\rho' \, cis \, \theta'} = \frac{\rho}{\rho'} \, cis \, (\theta - \theta')$$

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \cos \theta} = \sqrt[n]{\rho} \cos \frac{\theta + 2k\pi}{n} , k \in \{0, ..., n-1\} \qquad \lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$

Progressões

Soma dos n primeiros termos de uma

Prog. Aritmética:
$$\frac{u_1 + u_n}{2} \times n$$

Prog. Geométrica:
$$u_1 imes \frac{1-r^n}{1-r}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$