

Problem 1. (10pt) Write down the initial simplex tableau for the following optimization problem:

$$\max z = 3.1x_1 - 4.7x_2 + 5.9x_3$$

$$1.1x_1 - 5.7x_2 + 4.0x_3 \le 10.4$$

$$6.7x_1 - 0.8x_2 - 8.8x_3 \ge -8.8$$

$$-9.1x_1 + 7.3x_2 - 9.1x_3 \le 11.7$$

$$x_1, x_2, x_3 \ge 0$$

Problem 2. (10pt) Suppose that the final simplex tableau associated to a maximization problem was the following:

1	1.77	0	0	0.74	0	0.26	0.29	208.57
0	0.57	0	1	0.14	0	-0.14	0.29	28.57
0	2.51	0	0	0.83	1	1.17	-0.14	605.71
0	0.09	1	0	-0.03	0	0.03	0.14	34.29
0	3	0	0	2	0	0	2	600

- (a) How many inequalities were considered?
- (b) How many variables were there in the original inequalities?
- (c) How many slack/surplus variables were introduced?
- (d) What was the solution to this maximization problem?

Problem 3. (10pt) Find the dual problem to the minimization problem below.

$$\min z = 2x_1 + 6x_2$$

$$6x_1 + 5x_2 \le 10$$

$$x_1 + 3x_2 \le 9$$

$$x_1, x_2 \ge 0$$