Семинар 8. Инвариантные и собственные подпространства. Часть 2.

Пример 6

Найти собственные значения и собственные векторы.

$$p = \langle 1, t, t^2 \rangle$$
, если $\varphi(p) = t^2 p'' - t p' + 2 p$.

Решение:

$$\begin{cases}
\varphi(1) &= 2: \begin{pmatrix} 2\\0\\0 \end{pmatrix} \\
\varphi(t) &= t: \begin{pmatrix} 1\\1\\0 \end{pmatrix} \\
\varphi(t^2) &= 2t: \begin{pmatrix} 0\\0\\2 \end{pmatrix}
\end{cases}
\Rightarrow A_{\varphi} = \begin{pmatrix} 2 & 0 & 0\\0 & 1 & 0\\0 & 0 & 2 \end{pmatrix}$$

 $\lambda_1 = 1$, собственный вектор: $\{t\}$.

$$\lambda_{1} = 1$$
, собственный вектор: $\{t\}$:
$$\lambda_{2,3} = 2$$
, собственный вектор: $\{1, t^{2}\}$.
Для $\lambda_{1} : \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \Rightarrow L_{1} = \langle \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \rangle.$
Проверим: $\underline{\varphi(7t)} = -7t + 14t = \underline{7t}$.

Пример 7

При каких α преобразование диагонализируемо?

$$\begin{pmatrix} 1 & 0 & \alpha^2 - \alpha \\ 0 & 1 & 0 \\ 0 & 0 & \alpha^2 \end{pmatrix}$$

Решение:

I. $\alpha^2 = 1$:

$$(a) \alpha = 1 : \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 — матрица уже диагональная.

(b)
$$\alpha = -1: \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \Rightarrow \lambda = 1$$
 — корень алгебраической кратности 3.

Тогда система уравнений: $\begin{pmatrix} 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \Rightarrow 2$ вектора, т.е. для построения базиса собственных векторов не хватает.

II. $\alpha^2 \neq 1$:

 $\lambda = 1$ — корень алгебраической кратности 2.

 $\lambda = \alpha^2$ — простой корень.

$$\begin{pmatrix} 0 & 0 & \alpha^2 - \alpha & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & \alpha - 1 & | & 0 \end{pmatrix}$$
, Rg = 1, $n = 3 \Rightarrow 2$ собственных вектора

(а)
$$\lambda = 1$$
.
$$\begin{pmatrix} 0 & 0 & \alpha^2 - \alpha & | & 0 \\ 0 & 0 & 0 & & | & 0 \\ 0 & 0 & \alpha - 1 & | & 0 \end{pmatrix}, \quad \text{Rg} = 1, n = 3 \Rightarrow 2 \text{ собственных вектора.}$$
(b) $\lambda = \alpha^2$:
$$\begin{pmatrix} 1 - \alpha^2 & 0 & \alpha^2 - \alpha & | & 0 \\ 0 & 1 - \alpha^2 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}, \quad \text{Rg} = 2, n = 3 \Rightarrow 1 \text{ собственный вектор.}$$

Otbet: $\alpha \neq -1$.

Команда ВОТАҮ!:

 \mathcal{A} . Георгий, VK

К. Ксения, VK

 Γ . Мадина, VK

 $C. \Pi aua, VK$

M. Матвей, VK