GPU Working Group Outbrief

GPU Performance and Correctness

Issues of interest

- Attribution of performance to computational kernels
- Control of WARP scheduler for reproducibility
 - without control, hard to do correctness analysis
- Why unpredictable slowdowns?
 - hidden synchronization
 - CUPTI slow
 - driver+library change causes slowdowns
- Performance counters and power management
 - ACPI allows host to sleep a GPU
 - cap power used by nvidia GPU using nvidia-smi
- Missing information in nvprof

Challenges

- Understanding performance with PC sampling
 - very high sampling rates
 - delivers histograms of PC samples to the host
 - unknown how to tune performance based on PC sample information
- Capturing missing synchronization
 - NVIDIA omits mention of "activities", e.g., synchronization
 - without NVIDIA's help, can only catch these with binary instrumentation
 - capture GPU memory access behavior and synchronizations
 - PTX binary analysis Hollingsworth
- Understanding needs for FP precision
 - Are FP precision analysis tools of use for ML?
 - FPTuner (Utah) github.com/soarlab/fptuner
 - Verificarlo

Other Topics

- Interest in performance data related to
 - threads, thread blocks,
 - See cudaOccupancyCalculator
- What's next from AMD APU for exascale design?
 - http://www.computermachines.org/joe/publications/pdfs/ hpca2017_exascale_apu.pdf
- Are new ML HW designs of interest for HPC?

Action Items

Identify issues of broader interest to NVIDIA to engage them

- Performance analysis of "altcoin" mining
 - Levinthal, Mellor-Crummey, Welton
- Work with machine learning community to identify performance infrastructure needs
 - David to suggest ML benchmark that we should measure
 - analysis of LSTM language translator
 - Pytorch/tensorflow calls nvidia libCUdnn
 - David to provide URL, instructions, etc.