Question	Answer	Marks	Guidance
8(a)	Use $\tan^2 \beta = \frac{\sin^2 \beta}{\cos^2 \beta}$	В1	E.g. $\tan^2 \beta = \frac{\sin^2 \beta}{\cos^2 \beta}$ and then replaces $\sin^2 \beta$ with a^2 or $\cos^2 \beta$ with $1 - a^2$.
	$\cos \beta = -\sqrt{1 - a^2}$	B1	
	Obtain $\frac{a^2}{1-a^2} + 3a\sqrt{1-a^2}$	В1	
		3	

Question	Answer	Marks	Guidance
8(b)	Use correct identity to obtain 3-term quadratic equation in $\sin \theta$	*M1	
	Obtain $\sin^2\theta + 4\sin\theta + 1[=0]$	A1	
	Attempt to solve quadratic	DM1	At least as far as $\frac{-4\pm\sqrt{12}}{2}$. -15.5° implies attempt at solving quadratic.
	Obtain 195.5	A1	
	Obtain 344.5	A1FT	Following first answer; and no others for $0^{\circ} < \theta < 360^{\circ}$ but must be in 4^{th} quadrant. SC B1 for 3.41° and 6.01° .
		5	

Question	Answer	Marks	Guidance
1(a)	a=4	B1	Allow $4\sin(2x)+3$ if values of a, b and c are not stated.
	b=2	B1	
	c=3	В1	
		3	
1(b)(i)	5	B1	Ignore attempts at finding solutions.
		1	
1(b)(ii)	1	B1	Ignore attempts at finding solutions.
		1	

LOBEISHED

Question	Answer	Marks	Guidance
2	$\cos\left(\frac{\pi}{6}\right) + \tan 2x + \frac{\sqrt{3}}{2} = 0 \implies \tan 2x = -\sqrt{3}$	M1	Making $\tan 2x$ the subject. $\tan 2x = 0$ is M0. Accept decimals and one sign error.
	$\Rightarrow 2x = -\frac{\pi}{3} \Rightarrow x = -\frac{\pi}{6}$	A1	May come from non-exact working. Ignore answers outside the given range.
		2	

Question	Answer	Marks	Guidance
4	Let $x = \sin^2 \theta$ $(2x+7)(2x-1) = 0$ or $(2\sin^2 \theta + 7)(2\sin^2 \theta - 1)$	М1	Or equivalent method.
	$\Rightarrow \sin^2 \theta = \frac{1}{2} \Rightarrow \sin \theta = [\pm] \frac{1}{\sqrt{2}}$	М1	Finding $\sin^2\theta$ and then $\sin\theta$ (may be implied).
	θ = 45°, 135°, 225°, 315°	A1 A1	A1 for any two correct values. A1 for all correct and no others within the range. For answers in radians, A1 only for all 4 angles. If no (correct) working, then SC B1 for all 4 solutions.
		4	