文章编号: 1000-6788(2000)04-0079-04

BANT-PERT 的创新算法 ——兼论传统 PERT 算法存在的问题

仟世贤

(贵州省科学技术电子计算机中心、贵州 贵阳 550002)

摘要: 论证了传统 PERT 算法存在的主要问题, 给出了BANT-PERT 的创新算法.

关键词: 事件实现概率; 工作实现概率; 关联时差

中图分类号: C935

A New Network Algorithm of BANT-PERT ——A lso to Demonstrate the Chief Insufficiencies in Traditional PERT

REN Shixian

(Computer Center of Science and Technology of Guizhou Province, Guiyang 550002)

In this paper, the insufficiencies in traditional PERT is demonstrated, and a new network algorithm of BANT-PERT is given

attainable probability of event; attainable probability of activity; system float

单、双代号网络计划算法的逆向程序,本质上是数学上的逆向反演:文献[1]和文献[2]揭示和证明了 这一原则性错误,本文将这种网络算法具有逆向程序的网络计划称为传统网络,国内外目前现行的 PERT 属干传统网络计划:

1 事件实现概率的算法

1.1 传统 PERT 的两种算法

本文的数学符号均以国家标准《网络计划技术》[3]为准,如有不同者,本文均作了相应的说明、传统 PERT 计算的是某一事件(节点)完成的可能性, 称为事件实现概率.

计算事件实现概率,要先计算出概率因子,然后依据概率因子的值查正态分布表确定事件实现概率, 传统 PERT 关于概率因子的计算方法有两种:

1) 算法 [[4~ 6]:

$$Z_j = \frac{PT_j - ET_j}{\sigma(ET_i)} \tag{1}$$

在式(1)中: Z_i 为概率因子; PT_i 为事件实现的规定时间; ET_i 为节点最早时间; $\sigma(ET_i)$ 为节点最早时 间标准差.

2) 算法 [[7]:

收稿日期: 1999-05-18

$$Z_{j} = \frac{-SL_{j}}{\sigma(SL_{j})} = \frac{-(LT_{j} - ET_{j})}{\sqrt{\sigma^{2}(ET_{j}) + \sigma^{2}(LT_{j})}}$$
(2)

在式(2)中: SL_j 为节点时差; LT_j 为节点最迟必须时间(latest must event time); $\sigma(SL_j)$ 为节点时差标准差; $\sigma'(ET_j)$ 和 $\sigma'(LT_j)$ 分别为节点最早时间方差和节点最迟必须时间方差。

1.2 对传统 PERT 两种算法的评价

算法 II 是在算法 II 研究成果的基础上,应用网络系统的时间参数来描述事件实现概率的.在算法 II 中,将节点在时间上的变动范围称为节点时差 SL_j .节点时差 SL_j 本质上是网络节点 j 沿数轴(本文称为 T in e 轴)方向可以移动的机动时间(或称松驰时间).算法 II 以节点时差计算概率因子 Z_j ,这是一个新的思维.因此,式 2 对 PERT 的研究具有重要的理论意义.算法 II 从网络系统的深层结构研究事件实现概率,较算法 II 具有先进性.

应当指出,算法 II 中的节点最迟必须时间 $(LT_i = LF_i)$ 是按传统网络算法的逆向程序计算的 · 因此,算法 II 存在传统网络算法逆向程序造成的错误 ·

1.3 传统 PERT 关于事件实现概率算法的局限性

1) 关于 $SL_j = SF_i$ 的证明

在网络计划中,事件通常称为节点,节点时差就是事件时差(event float) \cdot BANT 网络是一种网络算法没有逆向程序的新的网络计划技术 \cdot 文献[8]在BANT 网络中, SF_i 称为元素关联时差 \cdot 文献[9](system float)这里的元素就是工作或活动 \cdot 本节将证明节点时差就是元素关联时差 \cdot

在网络系统中,若一个元素 i 优先于另一个元素,表示为 $i \ll j$,称为 $i \ll j$ 元素耦合关联 · 这里的 i,j 为元素的编号,且 i 小于 j; 符号" \ll "表示元素 i 和 j 之间的逻辑关系即先后顺序联系 · 在 $i \ll j$ 元素耦合关联中,i 称为前导元素,j 称为继前元素,且二者之间构成前导、继前元素的"对子"关系 · 文献[10]用 i < j 表示紧前、紧后元素之间的逻辑关系 · i < j 可视为 i < j $\mid i \ll j$ 元素耦合关联的简写,这里,i 称为紧前元素,j 称为紧后元素,i 和 j 之间构成紧前、紧后元素耦合关联,通常称为 i < j 结构 · 图 1 是用BANT 时标网络的图解方式表示的 i < j 结构,这样的图称为图解图 · 依据 i < j 结构的图解图,可以写出下面一组数学关系式:

$$LF_i^o = EF_i + AFF_i \tag{3}$$

$$LS_{i}^{o} = LF_{i}^{o} - D_{i}$$

$$\tag{4}$$

$$LT_{i}^{o} = LF_{i}^{o} \tag{5}$$

$$LF_i^o = ES_j \tag{6}$$

在(3)~(6) 式中, LF_i^c 称为元素最迟完成时间(latest finish time); LS_i^c 称为元最迟开始时间(latest start time); LT_j^c 称为节点最迟时间(latest event time).这三个时间参数统称为最迟时态时间参数,这是作者在单、双代号网络最早时态参数(即 ES_kEF_i 及 ET_j)和最迟必须时态参数(即 LS_kLF_i 及 LT_j)基础上引入的一组新的时间参数。

顺便说明,式(3)中的 AFF_i 就是单、双代号网络中的自由时差。自由时差有两个物理含义:第一,它是元素i自身拥有的机动时间;第二,它表示该机动时间的使用方式,即是用来延迟元素完工的时间(参见图 1),故本文称 AFF_i 为元素完工时差[11]。

$$ET_{j} = ES_{j}, \quad LT_{j}^{o} = LF_{j}^{o}$$

$$ET_{j} = LT_{j}^{o}$$
(7)

依据式(2)和式(7)有:

$$SL_{j} = LT_{j} - LT_{j}^{o} = LF_{i} - LF_{i}^{o}$$
 (8)

依据文献[8]有 $LF_i = EF_i + AFF_i + SF_i$ 并代入式(8),且依据式(3)有:

$$SL_j = EF_i + AFF_i + SF_i - LF_i^o$$

= $LF_i^o + SF_i - LF_i^o = SF_i$

即是: $SL_i = SF_i | i \ll j$

(9)

在式(9)中, SL_j 为节点时差, SF_i 为(节点j处的)元素时差。

2) 传统 PERT 关于事件实现概率算法的局限性

依据图 2,本文讨论事件实现概率的局限性 \cdot 图 2 中的 $\{i_m\}$ 表示在节点 j 处 $LF^o/i_1=LF^o/i_2=LF^o/i_m$ 特性的元素集合 \cdot 图 2 中的 DF/i_1 1 和

图 1 i < j 结构图解图

 DF/i_m 1 均称为信息参数 · 这里, $DF/i_m = DFi_m$ (以下类推) · 据图 2, 可得到信息参数的一般数学关系式:

$$DF/i k = ES_k - DFF_i^o | i \ll k$$
 (10)

在式(1)中,因为 $ET_i = LT_i^c(\vec{\mathbf{x}}(7))$,而 $LT_i^c = LF_i^c$,故有:

$$Z_{j} = \frac{PT_{j} - LF_{i}^{o}}{\sigma(ET_{j})} \tag{11}$$

在式(11)中, LF° 是节点j处各元素的最迟完成时间,而(PT_{j} - LF°)描述节点j处的全部元素在节点j规定完成时刻限定下实现的效果,而不是每一个元素的实现效果。可以认为,方法 I 计算的是节点j 处关键元素(ET_{j} = LF° = EF_{j})的概率因子(参见图 2)。

依据式(9)有:

$$Z_{j} = \frac{-SL_{j}}{\sigma(SL_{j})} = \frac{-SF_{i}}{\sigma(SF_{i})}$$
(12)

(a) i 为节点 i 处的元素

(b) {im}为节点j处的元素集合

图 2 $\{i_m\}$ < i 结构的图解图

文献[9]给出了关联时差的数学表达式:

$$SF_i = \min \left\{ DF/i j + AFF_j \right\} | i \ll j P/jxEnd$$
 (13)

式(13)表明,元素关联时差 SF_i 是元素可以利用的网络系统所拥有的机动时间。于是,可以知道,在式

(12) 中, SL_j 是节点 j 处各元素均可以利用的网络系统所拥有的机动时间 · 节点 j 处的元素有关键元素和非关键元素 · 据式 (12) 可以认为,方法 II 是用节点处关键元素可以利用的 SL_j 值来计算概率因子的 (多见图 (2) .

综上所述, 传统 PERT 的算示存在以下主要问题:

- 1) 在传统 PERT 的算法中, 存在传统网络算法逆向程序造成的系统结构不相容的错误.
- 2) 传统 PERT 计算的事件实现概率, 本质上是节点 j 处关键元素的实现概率 .事件实现概率不能反映 节点处非关键元素的实现概率, 这是事件实现概率的局限性, 也即是传统 PERT 算法的一个不足之处 .

2 BANT-PERT 的创新算法

文献[9]给出了BANT 网络关于总时差的一个数学关系式:

$$A T F_i = A F F_i + S F_i \tag{14}$$

在式(14)中, ATF_i 称为总完工时差; AFF_i 为完工时差; SF_i 为关联时差.

自由时差 FF_i 是元素(工作,活动)自身所拥有的机动时间,将该机动时间全部用作延迟元素完工的时间称为完工时差,同样,总时差 TF_i 是元素可以利用的全部机动时间,将该机动时间全部用作延迟元素完工的时间称为总完工时差.可见,时差是关于元素可以应用的机动时间及其应用方式的概念.在继承传统 PER T 全部研究成果的基础上,本文提出了用总完工时差来描述工作实现概率,这就是 BAN T-PER T 的算法.这一算法的核心数学关系式为:

$$Z_i^{ATF} = \frac{ATF_i}{\sigma_{CP}} \tag{15}$$

将式(14)代入,遂有:

$$Z_i^{ATF} = \frac{AFF_i + SF_i}{\sqrt{\sigma^2(ET_i) + \sigma^2(LT_i)}}$$
(16)

在式(16)中, Z_i 称为工作概率因子·顺便述及, 在BANT-PERT中, 将传统 PERT中的概率因子称为节点概率因子。

对式(16)作如下讨论:

(1) 当AFF = 0 时, 据式(16)有:

$$Z_i^{ATF} = \frac{SF_i}{\sqrt{\sigma^2(ET_j) + \sigma^2(LT_j)}} \left| i \ll j \quad P/jxEnd$$
 (17)

在BANT 网络中, 式(17) 中的 $P/J_{X}End$ 称为关联计算线路段, 这里 j 是节点的编号(同时又是前导元素 $i(i \ll j)$ 的继前元素的编号); x 为路标元素(的编号); End 为终点节点.在式(17) 中, $\sigma^2(ET_j) = (\sigma_1)^2 + (\sigma_2)^2 + \dots + (\sigma_l)^2$, 这里, σ_k , σ_k ... σ_l 为关键前关联计算线路段上元素 j 的所有先行元素工作时间标准差. σ_l σ_l

(2) 当 $SF_i = 0$ 时, 据式(16)有:

$$Z_{i}^{ATF} = \frac{AFF_{i}}{\sigma(ET_{j})} \left| i \ll j - P/S tartxj \right|$$
 (18)

在BANT 网络中, 式(18) 中的 P/S tartxj 称为前关联计算线路段, 这里, j 是节点的编号(同时又是前导元素 $i(i \ll j)$ 的继前元素的编号); x 为路标元素: S tart 为起点节点

从以上讨论可以看出, 依据式(17)或者式(18)就可以进行工作实现概率的计算; 同时, 式(17)可以作为描述事件实现概率的数学关系式.应当指出的是,该式已经克服了传统PERT 关于事件实现概率算法的局限性.

BANT-PERT 关于工作实现概率的算法没有逆向计算程序, 并且该算法克服了传统 PERT 关于事件实现概率算法的局限性, 故BANT-PERT 的算法具有创新性。

(下转第108页)

设计 对象模型 作战系统 分析 基金模型 任务空间 元数据 系统内涵 作战实体 村會 系统要素 属性 系统状态 实体状态 实体关系 结构 系统结构 实体行为 方法 系统功能 作战文电 消息 系统信息

表 1 从作战系统以概念模型和对象模型

参考文献:

- [1] 柏彦奇. 联邦式作战仿真通用技术框架研究[D]. 1999.
- [2] 柏彦奇, 龚传信·联邦式作战仿真[A]. 军事系统工程研究与发展论文集[C], 1999.
- [3] Defense Modeling and Simulation Office Department of Defense High Level Architecture Interface Specification Version 0 3, 25 January, 1996
- [4] Defense Modeling and Simulation Office Conceptual Models of the Mission Space (CMMS) Technical Framework, 13 FEB 1997.
- [5] Peter Coad, Edward Yourdon Object Oriented Analysis [M] Yourdon Press, 1990
- [6] 涂序彦. 大系统控制论[M]. 国防工业出版社, 1994.

(上接第82页)

参考文献:

- [1] 任世贤.单、双代号网络算法系统结构不相容的揭示[J].系统工程理论与实践,1995,15(4):1~9.
- [2] 任世贤.传统网络总时差计算方法的商确[J].系统工程理论与实践,1997,17(11):130~140.
- [3] 中华人民共和国国家标准:网络计划技术(GB/T13400 1~ 13400 3- 92)[S]: 北京: 中国标准出版 社, 1992.
- [4] (美) S.E. 埃尔曼夫拉比. 网络计划模型与控制[M]. 北京: 机械工业出版社, 1983.
- [5] (美) H.N. 阿尤加著. 网络法施工管理M.] 北京: 中国建筑工业出版社, 1987.
- [6] 中华人民共和国国家标准. 网络计划技术(GB/T13400 1~ 13400 3- 92)[S] 北京: 中国标准出版 社, 第 2.4.2.19 条, 1992, 136.
- [7] 中国建筑学会建筑统筹管理研究会. 工程网络计划技术[M]. 北京: 地震出版社, 1992.
- [8] 任世贤,网络计划一种没有逆向计算程序的算法[M] 决策科学与应用, 北京: 海洋出版社, 1992.
- [9] 任世贤.论相关时差[]].贵州科学,1992,(1):15~22.
- [10] (美) S.E. 埃尔曼夫拉比. 网络计划模型与控制IM]. 北京: 机械工业出版社, 1983.
- [11] (美) 阿尤加著. 网络法施工管理[M]. 北京: 中国建筑工业出版社, 1987.