(a). Let $X, Y \subset \mathbb{A}^n_k$ be affine algebraic sets. Let $f \in I(X \cup Y)$. Then f(x) = 0 for all $x \in X \cup Y$. So f(x) = 0 for all $x \in X$, therefore $f \in I(X)$. Symmetrically, $f \in I(Y)$ as well. So $f \in I(X) \cap I(Y) \implies I(X \cup Y) \subseteq I(X) \cap I(Y)$.

Conversely, if $f \in I(X) \cap I(Y)$, then f(x) = 0 for all $x \in X$ or $x \in Y$. Therefore $f \in I(X \cup Y) \implies I(X) \cap I(Y) \subseteq I(X \cup Y)$. Hence $I(X \cup Y) = I(X) \cap I(Y)$.

For the next proof, we prove the following lemmas:

Lemma 1. Let $I, J \subset k[x_1, \cdots, x_n]$ be ideals, then $V(I+J) = V(I) \cap V(J)$.

Lemma 2. A prime ideal is radical

Proof of Lemma 1. Let $x \in V(I+J)$. Then for all $f \in I$, $g \in J$, (f+g)(x) = 0. If g = -f, then I = J and we're done. Otherwise, we assume f = 0. Then g(x) = 0 for all x, hence $x \in V(J)$. Symetrically, $x \in V(I)$ as well. Therefore $x \in V(I) \cap V(J)$.

Conversely, let $x \in V(I) \cap V(J)$. Then for all $f \in I$, $g \in J$, f(x) = g(x) = 0, therefore f(x) + g(x) = (f + g)(x) = 0. Therefore $x \in V(I + J)$.

Hence
$$V(I+J) = V(I) \cap V(J)$$
.

Proof of Lemma 2. Let I be a prime ideal. Then let $x^n \in I$ where n is minimal. If n = 1, we are done. Otherwise, we see that $x \cdot x^{n-1} \in I$. If $x \in I$ again, we are done. Otherwise, if $x^{n-1} \in I$, we have a contradiction as n was assumed minimal. Hence I is radical.

Onto the main proof:

(b). Let $X,Y\subset \mathbb{A}^n_k$ be Zariski closed, with $X=V(P_X)$ and $Y=V(P_Y)$. Assume P_X and P_Y are radical ideals as $V(P)=V(\sqrt{P})$ for any Zariski closed set P. Then

$$\sqrt{I(X) + I(Y)} = \sqrt{I(V(P_X)) + I(V(P_X))}$$

$$= \sqrt{\sqrt{P_X} + \sqrt{P_Y}}$$

$$= \sqrt{P_X + P_Y}$$

$$= I(V(P_X + P_Y))$$

$$= I(V(P_X) \cap V(P_Y))$$

$$= I(X \cap Y)$$

Where the second last line results from a use of the lemma above.

Let $P_X = \{y - x^2\}$ and $P_Y = \{y\}$ over $\mathbb{C}[x,y]$. Let $X = V(P_X)$, $Y = V(P_Y)$ and (with abuse of notation), let (P_X) , (P_Y) be the ideals generated by the polynomials in P_X , P_Y . $(P_Y) = (y)$ is radical. We see that $(P_X) = (y - x^2)$ is the kernel of the map $\phi : \mathbb{C}[x,y] \to C[t]$ where $(x,y) \mapsto (t,t^2)$. This map is surjective, hence $\mathbb{C}[x,y]/(y-x^2) \cong C[t]$. As C[t] is an integral domain, $(y-x^2)$ is a prime ideal. By Lemma 2, it is radical.

Geometrically, X,Y represent the parabola $y=x^2$ and the line y=0. We then see that $X\cap Y=\{0\}$, so $I(X\cap Y)=I(0)=(x,y)\subset \mathbb{C}[x,y]$. However $I(X)+I(Y)=(y-x^2)+(y)=(y-x^2,y)=(x^2,y)\neq (x,y)$. But $\sqrt{(x^2,y)}=(x,y)$. Hence the outer radical is necessary.

 $\mathbf{2}$

Proof. Let $X \subset A_k^n$, $f: X \to \mathbb{A}_k^1$ be a regular function. Let $x = (x_1, \cdots, x_n) \in X$ and $y \in \mathbb{A}_k^1$. Then let X = V(F) where $F = \{F_i\}_{i \in I}$ for some indexing set I. Then define $G: X \times \mathbb{A}_k^1 \to \mathbb{A}_k^1$ with G(x,y) = y - f(x). Viewing $\{F_i\}$, f as regular functions in \mathbb{A}_k^{n+1} , with $(x,y) \in \mathbb{A}_k^{n+1}$, we claim that $\Gamma = \{(x,f(x)) \mid x \in X\} = V(F \cup \{G\})$. We see that:

$$(x,y) \in V(F \cup \{G\}) \iff F_1(x) = F_2(x) = \dots = 0, G(x,y) = y - f(x) = 0$$

 $\iff x \in X \text{ and } y = f(x)$
 $\iff (x,y) \in \Gamma$

Therefore Γ is Zariski closed.

3

Proof. Let $X \subset \mathbb{A}^n_k$, $Y \subset \mathbb{A}^m_k$ be Zariski closed. Then let $X = V(P_X) \ni x = (x_1, \cdots, x_n)$ and $Y = V(P_Y) \ni y = (y_1, \cdots, y_m)$. Define $P_X = \{p_i\}_{i \in I} \subset k[x_1, \cdots, x_n], P_Y = \{q_j\}_{j \in J} \subset k[y_1, \cdots, y_m]$, with I, J indexing sets, such that $p_i(x) = 0$ and $q_j(y) = 0$ for all i, j.

We define $\hat{p}_i, \hat{q}_j \in k[x_1, \dots, x_n, y_1, \dots, y_m]$ such that

$$\hat{p}_i(x, y) = p_i(x) = 0$$
$$\hat{q}_i(x, y) = q_i(y) = 0$$

We let $\hat{P}_X = \{\hat{p}_i\}, \hat{P}_Y = \{\hat{q}_j\}$ as subsets of $k[x_1, \dots, x_n, y_1, \dots, y_m]$. Then $X \times Y = V(\hat{P}_X \cup \hat{P}_Y)$. Hence $X \times Y$ is Zariski closed.

We observe that points in $\mathbb{A}^n_{\mathbb{C}}$ correspond to maximal ideals (of the form $I=(x_1-a_1,\cdots,x_n-a_n)$) of $\mathbb{C}[x_1,\cdots,x_n]$ by Hilbert's Nullstellensatz. We then observe that if $x\in V(P)$ for some set $P\subset \mathbb{C}[x_1,\cdots,x_n]$, then for all $f\in P$, f(x)=0.

Looking at $\mathbb{C}[x_1,\dots,x_n]/I$ for $(a_1,\dots,a_n)\in V(P)$, we see that the corresponding evaluation map has kernel I. As $f(a_1,\dots,a_n)=0$, f is in the kernel as well, hence $(P)\subset I$ where (P) is the ideal generated by all $f\in P$. Therefore, the ideals containing (P) are the maximal ideals (x_1-a_1,\dots,x_n-a_n) such that $f(a_1,\dots,a_n)=0$ for all $f\in P$.

For a ring R and an ideal $I \subset R$, we then see that the maximal ideals in R/I are precisely the maximal ideals of R containing R. Therefore the maximal ideals of $\mathbb{C}[x_1,\dots,x_n]/I$ are in correspondence with the points $x \in V(P)$.

(a) For $\mathbb{C}[x,y]/(x^2+y^2-1,y+x)$, we look for the solutions of the set of equations $x^2+y^2=1,y=-x$. We observe that the solutions are:

$$V(\{x^2 + y^2 - 1, y + x\}) = \left\{ \left(\pm \frac{1}{\sqrt{2}}, \mp \frac{1}{\sqrt{2}} \right) \right\}$$

Defining the canonical homomorphism $\pi: \mathbb{C}[x,y] \to \mathbb{C}[x,y]/(x^2+y^2-1,y+x)$, we see that the vanishing set above correspond to the following maximal ideals in $\mathbb{C}[x,y]/(x^2+y^2-1,y+x)$:

$$\left\{\pi\left[\left(x-\frac{1}{\sqrt{2}},y+\frac{1}{\sqrt{2}}\right)\right],\pi\left[\left(x+\frac{1}{\sqrt{2}},y-\frac{1}{\sqrt{2}}\right)\right]\right\}$$

(b) For $\mathbb{C}[x,y]/(xy)$, we solve for xy=0 and observe that:

$$V(xy) = \{(a,0) \mid a \in \mathbb{C}\} \cup \{(0,b) \mid b \in \mathbb{C}^{\times}\}\$$

With canonical homomorphism $\pi: \mathbb{C}[x,y] \to \mathbb{C}[x,y]/(xy)$, we see that the set of maximal ideals in $\mathbb{C}[x,y]/(xy)$ corresponding to V(xy) is:

$$\left\{\pi\left[\left(x-a,y\right)\right],\mid a\in\mathbb{C}\right\}\cup\left\{\pi\left[\left(x,y-b\right)\right],\mid b\in\mathbb{C}^{\times}\right\}$$

(c) For $\mathbb{C}[x,y,z]/(xy,yz,zx)$, we solve for xy=yz=xz=0 and observe that:

$$V(xy, yz, xz) = \{(a, 0, 0) \mid a \in \mathbb{C}\} \cup \{(0, b, 0) \mid b \in \mathbb{C}^{\times}\} \cup \{(0, 0, c) \mid c \in \mathbb{C}^{\times}\}$$

With canonical homomorphism $\pi: \mathbb{C}[x,y,z] \to \mathbb{C}[x,y,z]/(xy,yz,xz)$, we see that the set of maximal ideals in $\mathbb{C}[x,y,z]/(xy,yz,xz)$ corresponding to V(xy,yz,xz) is:

$$\left\{\pi\left[\left(x-a,y,z\right)\right],\mid a\in\mathbb{C}\right\}\cup\left\{\pi\left[\left(x,y-b,z\right)\right],\mid b\in\mathbb{C}^{\times}\right\}$$

$$\cup\left\{\pi\left[\left(x,y,z-c\right)\right],\mid c\in\mathbb{C}^{\times}\right\}$$

5

We prove the following theorem:

Theorem 1 (Chinese Remainder Theorem for Quotient Rings). Let R be a (commutative) ring and $I, J \subset R$ be ideals. Then if I + J = R, then:

$$^R/_{(I\cap J)}\cong ^R/_I\times ^R/_J$$

Proof of CRT. We define the map $\phi: R \to {}^R/I \times {}^R/J$ with $\phi(r) = (r+I, r+J)$. As each component of this map is a ring homomorphism (canonical homomorphisms w.r.t I and J), ϕ is a ring homomorphism. For surjectivity, assume $r+I \in {}^R/I$ and $s+J \in {}^R/J$. We see that there exists $i \in I, j \in J$ such that i+j=1. So, letting x=rj+si, we see that:

$$x = rj + si \equiv rj \equiv rj + ri = r(i+j) \equiv r \pmod{I}$$

 $x = rj + si \equiv si \equiv sj + si = s(i+j) \equiv s \pmod{J}$

So for any $r+J\in R/I$ and $s+J\in R/J$, there exists an $x\in R$ such that $\phi(x)=(r+I,s+J)$. We observe that this solution is unique up to congruence in $I\cap J$ as if $x\equiv x'\pmod I$ and $x\equiv x'\pmod J$, then $x-x'\in I$ and $x-x'\in J$, therefore $x-x'\in I\cap J$. This implies that $\ker\phi=I\cap J$ as $\phi(x)=(I,J)$ iff $x\in I$ and $x\in J$.

So, by the First Isomorphism Theorem for Rings, we have that:

$$^R/_{(I\cap J)}\cong ^R/_I\times ^R/_J$$

We observe that:

$$R/I \times R/J \cong R/I \oplus R/J$$

As a direct sum of a finite number of rings is isomorphic to the Cartesian product of the same rings.

We begin the main proof.

Main proof. We observe that $k[X] \cong {}^{k[x_1,\dots,x_n]}/I(X)$. So with the properties defined in question 1:

$$k[X \cup Y] \cong {}^{k[x_1, \dots, x_n]}/{}_{I(X \cup Y)}$$

 $\cong {}^{k[x_1, \dots, x_n]}/{}_{[I(X) \cap I(Y)]}$

We observe that if $X,Y\subset \mathbb{A}^n_k$ disjoint, then $\sqrt{I(X)+I(Y)}=I(X\cap Y)=I(\emptyset)=k[x_1,\cdots,x_n].$

So $1 \in \sqrt{I(X) + I(Y)}$. But for any ideal J, $1 \in J \iff 1 \in \sqrt{J}$. So $I(X) + I(Y) = (1) = k[x_1, \cdots, x_n]$. We can apply the Chinese Remainder Theorem for Quotient Rings to see that

$$k[X \cup Y] \cong {}^{k[x_1, \cdots, x_n]}/{}_{I(X)} \oplus {}^{k[x_1, \cdots, x_n]}/{}_{I(Y)} \cong k[X] \oplus k[Y]$$

6