Основные формулы по геометрии

Репетитор по физике и математике – Волович Виктор Валентинович

Площадь треугольника через две стороны и угол между ними	$S = \frac{1}{2} ab \cdot \sin \gamma$
Площадь треугольника через основание и высоту	$S = \frac{1}{2} bh$
Площадь треугольника (формула Герона)	$S = \sqrt{p(p-a)(p-b)(p-c)}$ где: $p = \frac{a+b+c}{2}$
Площадь треугольника через радиус описанной окружности	$S = \frac{abc}{4R}$
Формула медианы	$m_a = \frac{1}{2}\sqrt{2(b^2 + c^2) - a^2}$
Свойство биссектрисы	$\frac{b}{b_{l}} = \frac{b_{l}}{c_{l}}$
Формула биссектрисы	$l_a = \sqrt{bc - b_1 c_1}$
Основное свойство высот треугольника	$\frac{h_a}{b} = \frac{h_b}{a}$
Формула высоты	$h_a = \frac{2}{a} \sqrt{p(p-a)(p-b)(p-c)}$
Теорема Пифагора	$a^2 = b^2 + c^2$
Теорема косинусов	$a^2 = b^2 + c^2 - 2bc \cdot \cos \alpha$
Теорема синусов	$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$
Радиус окружности, вписанной в правильный треугольник	$r = \frac{a\sqrt{3}}{6}$

Радиус окружности, описанной около правильного треугольника	$R = \frac{a\sqrt{3}}{3}$
Радиус окружности, вписанной в прямоугольный треугольник	$r = \frac{a+b-c}{2}$
Радиус окружности, описанной около прямоугольного треугольника	$R = \frac{c}{2}$
Свойство высоты, опущенной на гипотенузу прямоугольного треугольника	$a \qquad b_c$ $h \qquad b_c$ $h^2 = a_c \cdot b_c$
Свойство высоты, опущенной на гипотенузу прямоугольного треугольника	$a^2 = a_c \cdot c$
Свойство высоты, опущенной на гипотенузу прямоугольного треугольника	$b^2 = b_c \cdot c$
Площадь правильного треугольника	$S = \frac{a^2 \sqrt{3}}{4}$
Средняя линия трапеции	$l = \frac{a+b}{2}$
Площадь трапеции	$S = l \cdot h = \frac{a+b}{2} \cdot h$
Площадь параллелограмма через сторону и высоту	S = bh
Площадь параллелограмма через две стороны и угол между ними	$S = ab \cdot \sin \gamma$
Площадь квадрата	$S = a^2$
Площадь произвольного выпуклого четырехугольника через диагонали	$S = \frac{1}{2}d_1d_2\sin\varphi$
Теорема о пропорциональных отрезках хорд	$BO \cdot OD = AO \cdot OC$

Теорема о касательной и секущей и о двух секущих:	$BA^{2} = BC \cdot BD$ $HF \cdot HE = HM \cdot HN$
Теорема о центральном и вписанном углах	$\angle BOC = 2 \cdot \angle BAC$
Сумма углов <i>n</i> -угольника	$\alpha_1 + \alpha_2 + + \alpha_n = 180^{\circ} \cdot (n-2) = \pi \cdot (n-2)$ рад
Сумма углов треугольника	$\alpha + \beta + \gamma = 180^\circ = \pi$ рад
Центральный угол правильного <i>n</i> -угольника	$\alpha = \frac{360^{\circ}}{n} = \frac{2\pi}{n}$ рад
Окружность вписана в четырёхугольник (условие, когда это возможно)	a + c = b + d
Окружность описана около четырехугольника (условие, когда это возможно)	$\alpha + \gamma = \beta + \varphi = 180^{\circ}$
Площадь фигуры через полупериметр и радиус вписанной окружности	S = pr
Длина окружности	$L=2\pi R$

Репетитор по физике и математике – Волович Виктор Валентинович Математика

$L_{ exttt{дуги}} = rac{\pi \cdot R \cdot lpha_{ ext{град}}}{180} = lpha_{ ext{рад}} R$
$S=\pi R^2$
$S_{ m ceктopa} = rac{\pi \cdot R^2 \cdot lpha_{ m rpag}}{360} = rac{lpha_{ m pag} R^2}{2}$
$S = \pi \left(R^2 - r^2 \right)$
$S = \frac{R^2}{2} (\alpha - \sin \alpha)$
$r = \frac{S}{p}$
$d = a\sqrt{3}$
$S=\pi R^2$
$S_{ extit{ iny 606}\kappa}=\pi R l$ где: $l-$ длина образующей: $l=\sqrt{h^2+R^2}$
$S_{ ilde{o}o\kappa}=2\pi Rh$
$S=4\pi R^2$
$V = S_{ m och} \cdot h$
$V = \pi R^2 h$
$V = \frac{S_{\text{och}} \cdot h}{3}$
$V = \frac{\pi R^2 h}{3}$
$V = \frac{4}{3} \pi R^3$
пересечении биссектрис.
пересечении посерединных перпендикуляров.
8
6
12