Any Questions?

Instance Space Analysis on Quantum Algorithms

Vivek Katial

25/07/2020

Background

- Developing a framework to robustly evaluate quantum algorithms using Instance Space Analysis
- Explore the tools needed to develop Quantum Algorithms:
 - Adiabatic Quantum Algorithms (year 1)
 - Universal Gate Based Quantum Algorithms (year 2)
- Other things:
 - System to scale experiments
 - 2 talks with the MATILDA group on my work
 - ADF Project and Exhibition in Brisbane for QAOA and VRP

Optimisation Problems

- Constraint Satisfaction (3SAT)
- Traveling Sales Person (TSP)
- Vehicle Routing (VRP)

Quantum Performance

- How do we evaluate success when analysing quantum algorithms?
 - Classical Performance vs Quantum Performance
 - Comparing different Quantum Algorithms
 - Minimising the use of quantum resource to achieve a certain success probability

Solving Optimisation Problems using a Quantum Computer

- Different Quantum Algorithms explored:
 - Adiabatic Quantum Computing (Quantum Annealing)
 - Quantum Approximate Optimisation Algorithm (QAOA)
 - Variational Quantum Eigensolver (VQE)

Quantum Algorithms

- AQC developed an implementation to simulate using R
- QAOA leveraging IBM qiskit a Python package
- VQE leveraging IBM qiskit
- Using Matrix-Product states (MPS) to reduce memory burden

Example VRP Instance

Figure 1: VRP

Example VRP problem formulated with QAOA

Figure 2: QAOA VRP

Types of instances investigated

- Complete random graphs
- Watts-strotgatz
- Euclidean TSPs
- Euclidean TSPs with outliers
- Asymettric TSPs

Graph Features

Graph Based Features	Boolean Features
Average Distance	Bipartite
Clique Number	Connected
Algebraic Connectivity	Acyclic
Diameter	Eulerian
Edge Connectivity	Regularity
Vertex Connectivity	Planar
Maximum Node Degree	Laplacian (Spectral Features)
Minimum Node Degree	Largest Eigenvalue
Cardinality of minimal dominating set	Laplacian Second Largest Eigenvalue
Number of Components	Smallest Eigenvalue
Number of vertices	
Radius	

Figure 3: Graph Features

TSP Features

TSP Features	
NND Vertices	
NND Coefficient Variance	
Radius	
Mean	
Fractional Distinct	
Distances	
Clustering Coefficient	
Variance	
Symmetric	
Asymmetry Matrix Mean	

Results

Figure 5: QAOA VRP

Results

Figure 6: QAOA VRP

Thesis Outline

- Thesis Structure
 - Introduction
 - Solving Optimisation Problems using a Quantum Computer
 - Features and Algorithm Performance of Quantum Algorithms
 - Instance Space Analysis
 - Frameworks for Evaulating Quantum Algorithms / Discussion
 - Evaulation of Other Optimisation Algorithms
 - Conclusion

Discuss thesis outline

• Here is a link to the thesis outline

Any Questions?