STA302/1001: Methods of Data Analysis

Instructor: Fang Yao

Chapter 8: Diagnostics via Residuals

Regression Diagnostics

- also known as model checking
- check if your fitted model is "healthy" or not
- mainly to check if the linear model assumptions are satisfied or not
- up to now, the only tool that you have learnt for model checking is the lack-of-fit test
- we have also looked at some residual plots but they were not that formal
- now we examine the residuals in a more formal way

Regression Diagnostics: Residuals

- recall: $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$
- then $\hat{\mathbf{Y}} = \mathbf{X}\hat{eta}$ $= \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$
- define $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$
- $m{ ilde{e}}$ residuals: $\hat{\mathbf{e}} = \mathbf{Y} \hat{\mathbf{Y}} = \mathbf{Y} \mathbf{H}\mathbf{Y} = (\mathbf{I} \mathbf{H})\mathbf{Y}$
- idempotent projection matrix

$$H' = H$$
, $HH = H$, $HX = X$

Difference between ê and e

- assumptions for e (the statistical errors):
- \bullet E(e) = 0, Cov(e) = σ^2 I
- with these assumptions, it is easy to show (later)

$$\mathrm{E}(\hat{\mathbf{e}}) = \mathbf{0}$$
 and $\mathrm{Cov}(\hat{\mathbf{e}}) = \sigma^2(\mathbf{I} - \mathbf{H})$

- note that the variances of \hat{e}_i 's are not the same
- Let h_{ii} be the ith diagonal element of H leverage value
- then $Var(\hat{e}_i) = \sigma^2(1 h_{ii})$
- **•** also \hat{e}_i 's are correlated—but we usually ignore this \mathcal{LR} :
- if intercept is included, $\sum_{i=1}^{n} \hat{e}_i = 0$ (check SLR case)

 filled regression $\hat{\gamma}_i = \hat{\lambda} + \hat{\beta} x_i = \hat{\gamma} \hat{\beta} \hat{x} + \hat{\beta} x_i = \hat{\gamma} + \hat{\beta} (x_i \hat{x})$ $\hat{e}_i = \hat{\gamma}_i \hat{\gamma}_i = \hat{\gamma}_i \hat{\gamma} \hat{\beta} (x_i \hat{x})$

The Hat Matrix

• verify:
$$HH = X(X'X)^{-1}X' \cdot X(X'X)^{-1}X'$$
$$= X(X'X)^{-1}X'X(X'X)^{-1}X'$$
$$= X(X'X)^{-1}X'X(X'X)^{-1}X'$$

$$= \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' = \mathbf{H} \qquad \begin{array}{c} \mathbf{H} \mathbf{X} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' = \mathbf{X} \\ \mathbf{E}(\mathbf{A}) = \mathbf{E}(\mathbf{I} - \mathbf{H})\mathbf{Y} \mathbf{J} \end{array}$$

- ullet similarly, $(\mathbf{I} \mathbf{H})$ is also idempotent
- some direct consequences:

The direct consequences.
$$(\mathbf{I} - \mathbf{H})\mathbf{X} = \mathbf{0} \Rightarrow \mathrm{E}(\hat{\mathbf{e}}) = \mathbf{0}, \qquad \mathbf{H}(\mathbf{I} - \mathbf{H}) = 0$$

$$Cov(\hat{\mathbf{e}}, \hat{\mathbf{Y}}) = Cov((\mathbf{I} - \mathbf{H})\mathbf{Y}, \mathbf{H}\mathbf{Y}) = \sigma^2 \mathbf{H}(\mathbf{I} - \mathbf{H}) = \mathbf{0}$$

$$Cov(\mathbf{Y}) = \sigma^2 \mathbf{I}, \quad Cov(\hat{\mathbf{Y}}) = \sigma^2 \mathbf{H} \mathbf{H}' = \sigma^2 \mathbf{H}$$

$$Cov(\hat{\mathbf{e}}) = \sigma^2(\mathbf{I} - \mathbf{H})(\mathbf{I} - \mathbf{H})' = \sigma^2(\mathbf{I} - \mathbf{H})$$

note that
$$\operatorname{Cov}(\hat{\mathbf{e}}) = \operatorname{Cov}(\mathbf{Y} - \hat{\mathbf{Y}}) = \operatorname{Cov}(\mathbf{Y}) - \operatorname{Cov}(\hat{\mathbf{Y}})$$

=(I-H)XB

Diagonal of the Hat Matrix h_{ii}

- Let us look at h_{ii} more carefully:
- with an intercept, one can show $\frac{1}{n} \leq h_{ii} \leq \frac{1}{r_i}$ where r_i is # of replicates for \mathbf{x}_i
- so, the bigger the h_{ii} , the smaller the $Var(\hat{e}_i)$
- what does it mean when $Var(\hat{e}_i) = 0$? only the *i*th observation itself is used to get \hat{y}_i
- h_{ii} is sometimes called the leverage of the ith observation
- what does a high-leverage observation mean?

Diagonal of the Hat Matrix h_{ii} - con't

- H is idompotent, $h_{ii} = h_{ij}^2$, i.e., $h_{ii}(1 h_{ii}) = \sum_{j \neq i} h_{ij}^2$
- $\hat{y}_i = \sum_{j=1}^n h_{ij} y_j = h_{ii} y_i + \sum_{j \neq i}^n h_{ij} y_j$
- as $h_{ii} \to 1$, $\hat{y}_i \to y_i$, \hat{y}_i is mostly determined by y_i only is this what we want?
- with an intercept, use a centered design matrix (think about SLR case)

$$h_{ii} = \frac{1}{n} + (\mathbf{x}_i - \bar{\mathbf{x}})'(\mathbf{X}'\mathbf{X})^{-1}(\mathbf{x}_i - \bar{\mathbf{x}})$$

- this is the equation of an ellipsoid centered at $\bar{\mathbf{x}}$
- large values of h_{ii} indicate unusual values for \mathbf{x}_i (large leverage values \neq outliers)

Large Leverage Values

FIG. 8.1 Contours of constant leverage in two dimensions.

When doing WLS

- assumption: $Var(\mathbf{e}) = \sigma^2 \mathbf{W}^{-1}$, \mathbf{W} : known weights
- then $\mathbf{H} = \mathbf{W}^{1/2}\mathbf{X}(\mathbf{X}'\mathbf{W}\mathbf{X})^{-1}\mathbf{X}'\mathbf{W}^{1/2}$
- fitted values: $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{H}\mathbf{Y}$
- residuals may be defined in different ways
- definition 1: $\hat{e}_i = y_i \hat{y}_i$
- definition 2: $\hat{e}_i = \sqrt{w_i}(y_i \hat{y}_i)$
- we will use definition 2
- in R: definition 2 is sometimes known as Pearson residuals, or weighted residuals

When the model is CORRECT...

- ullet let U be any of the terms, or any linear combination of the terms, e.g., fitted value
- then $E(\hat{e}_i|U_i) = 0$ and $Var(\hat{e}_i|U_i) = \sigma^2(1 h_{ii})$
- ullet so a plot of residuals against U should have constant mean zero
- and that the variance function of $\hat{\mathbf{e}}$ is <u>not</u> constant (even if the model is correct)
- the variability will be smaller for large h_{ii}
- so when the model is correct, residual plots should look like null plots

When the model is INCORRECT

except (a), the rest residuals plots are not null (Fig 8.2)

Fuel Consumption Data

Fig 8.5

Fuel Consumption Data - con't

- three possible problematic data points:
 AK (Alaska), WY (Wyoming), DC (District of Columbia)
- WY: large but sparsely populated with a well-developed road system, people tend to drive longer for daily life
- AK: also large and sparsely populated, but road system is not good, people don't drive that much
- DC: compact urban area with good public transit
- WY and AK: possible outliers (more in next chapter) while DC has smaller residuals but unusual values in x_i
- **DC** indeed has high leverage: $h_{ii} = 0.415$

Testing Curvature in Residual Plot

- sometimes "looking" is not enough
- a simple test for detecting curvature in residual plots
- test \hat{e} versus U, where U can be any terms, combination of terms, or fitted values:
 - 1. refit the data with the original model + U^2
 - 2. test the significance of the coefficient of U^2
- if U does not depend on any estimated coefficients (like one of the terms), use t-test
- otherwise (like fitted value), use approximate z-test, called "Tukey's test for non-additivity".

Testing for Curvature - con't

TABLE 8.1 Significance Levels for the Lack-of-Fit Tests for the Residual Plots in Figure 8.5

Term	Test Stat.	Pr(> t)
Tax	-1.08	0.29
Dlic	-1.92	0.06
Income	-0.09	0.93
log(Miles)	-1.35	0.18
Fitted values	-1.45	0.15

obtained by R function: residualPlots(...)

Nonconstant Variance

- residual plots often show this issue
- many ways to fix this problem, and you will see two
- one option: do WLS
- it's not the simple case with $w_i = n_i$ any more, the challenge is how to determine the weights
- another option: variance stabilizing transformation
- our usual model: $Var(Y|X=\mathbf{x})=\sigma^2$
- now we have $Var(Y|X = \mathbf{x}) = \sigma^2 g(E(Y|X = \mathbf{x}))$
- where $g(\cdot)$ is an increasing (or decreasing) function

Variance Stabilizing Transform

$$\sqrt{Y}$$
, $\log(Y)$, $\frac{1}{Y}$

• (actually power transform)

•
$$\log(Y)$$
: most common, usually when response is counts or prices

en
$$\log$$
-transform is too for "time to an event",

 Y^{-1} : typically for "time to an event", like "time to heal after

•
$$\sqrt{Y}$$
: mild, when \log -transform is too much • Y^{-1} : typically for "time to an event", like "ti

a monotone differentiable function surgery" In the linear model: $E(T|X) = |X| = f(\beta_0 + \beta_1 X)$ $f^{-1}(|W_X|) = \beta_0 + \beta_1 X$ Probability: $E(T|X) = |W_X| = \underbrace{e \times p(\beta_0 + \beta_1 X)}_{1 + e \times p(\beta_0 + \beta_1 X)}$

Some clarifications:
$\frac{1}{n} \sum_{i=1}^{n} h_{ii} = \frac{p+1}{n}$ $= \frac{1}{n} + trace$
$\sum_{i=1}^{n} h_{ii} = tr(H) = tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = p+1$
$ \frac{1}{2} h_{ii} = tr(H) = tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = p+1 $ $ \frac{1}{2} h_{ii} = tr(H) = tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = p+1 $ $ \frac{1}{2} h_{ii} = tr(H) = tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = p+1 $ $ \frac{1}{2} h_{ii} = tr(H) = tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = p+1 $ $ \frac{1}{2} h_{ii} = tr(H) = tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = p+1 $ $ \frac{1}{2} h_{ii} = tr(H) = tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = p+1 $ $ \frac{1}{2} h_{ii} = tr(H) = tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = p+1 $ $ \frac{1}{2} h_{ii} = tr(H) = tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = p+1 $ $ \frac{1}{2} h_{ii} = tr(H) = tr(X(X'X)^{-1}X') = tr((X'X)^{-1}X'X) = p+1 $ $ \frac{1}{2} h_{ii} = tr(H) = tr(X(X'X)^{-1}X'X) = tr((X'X)^{-1}X'X) = p+1 $ $ \frac{1}{2} h_{ii} = tr(H) = tr(X(X'X)^{-1}X'X) = tr((X'X)^{-1}X'X) = p+1 $ $ \frac{1}{2} h_{ii} = tr(H) = tr(X(X'X)^{-1}X'X) = tr((X'X)^{-1}X'X) = p+1 $ $ \frac{1}{2} h_{ii} = tr(H) = tr(X(X'X)^{-1}X'X) = tr((X'X)^{-1}X'X) $
* $tr(H) = rank(H) = p+1$ here since H is idenpotent. $H^2 = H \iff ONQ'QAQ' = QAQ'$ can write symmetric motrix $H = QAQ'$ $\iff QA^2Q' = QAQ'$
$\Rightarrow Tr(H) = 1$