

Distributed Blockchain-based Product Review System

CS7610 - FDS - Fall 2024 6 Dec 2024

Significance of Online Reviews

Market Impact:

- Majority of consumers read online reviews before purchasing
- People trust online reviews as much as personal recommendations
- Online reviews annually have a billion dollar market impact.

The Evolution of Product Reviews

Trust Crisis: Why Traditional Systems Fall Short?

- Fake Review Farms
 - Organized review manipulation
 - Sophisticated Al-generated reviews
- Platform Bias
 - Selective review filtering
 - Opaque ranking algorithms
- 3. Data Security
 - Centralized data breaches
 - Review history manipulation

Project Goals

- Create a decentralized platform for authentic and immutable product reviews in Go.
- Validate authentic purchases and reviews without a central authority.
- Achieve distributed consensus on review validity across nodes.
- Implement a trust mechanism to prevent review manipulation and transparent history.

Challenges

- Scalability: Efficiently handling high review volume under PoW constraints
- **Immutable Storage:** Balancing permanent record-keeping with storage costs
- Proof of Purchase: Verifying that reviewers are actual buyers
- Building Blockchain From Scratch: Implementing foundational structures and protocols
- Meaningful Rewards: Incentivizing honest participation via purchase-backed tokens

Elements

Purchase Transaction

Inputs - UTXOs from wallet Outputs - UTXOs for the seller + surplus to buyer

Review Transaction

No input and output

Coinbase Transaction

Outputs - Reward UTXOs for the miner and reviewers

Block Confirmation

Based on a predefined confirmation depth, currently set to 6

Data Structures

Priority Queues for Mempool Global UTXOSet for faster lookup

Incentives

Rewards for block miners Rewards for reviewers

Wallet

Private Key Public Key Bitcoin Address Balance UTXOs

Communication Protocols

UDP Broadcasting of transactions and blocks for validation

TCP communication for the GetBlocks protocol to resolve block forking

Normal Operation

Validate a transaction

For review transactions

- 1. Digital signature
- Proof of Purchase
- Duplicate Reviews

For purchase transaction

- 1. Digital Signature
- Sufficient balance.
- 3. Double spending

Cryptography

- Data is serialized and hashed using SHA-256 algorithm
- Digitally signed using ECDSA algorithm

Forking

Validate a block

- Proof of Work
- Merkle Root
- 3. Transactions
- 4. Timestamp

Block Forking

- 1. Detect forking (Block does not extend the ledger)
- 2. Request for missing blocks
- 3. Prefer longer chains with more transaction fee
- 4. Update the ledger

Future Work

Data Structures and Storage

Oracle Integration (Purchase Validation)

Web platform development

Smart contracts

Performance optimization and scalable solutions

Node Types (Reduce burden)

Conclusion

- Our distributed blockchain-based product review system addresses key issues like transparency, immutability, and trust in modern review systems.
- Successfully implemented:
 - A peer-to-peer network for transaction and block communication.
 - Proof of Work consensus to validate blocks.
 - Incentive mechanisms to reward miners and reviewers.
- Trustify showcases how blockchain technology can replace centralized product reviews, ensuring fairness, transparency, and trust for users.

[&]quot;Empowering trust in product reviews through decentralization." - Trustify Team.