Eine Woche, ein Beispiel 10.2 equivariant K-theory of Steinberg variety

Ref:

[Ginz] Ginzburg's book "Representation Theory and Complex Geometry"

[LCBE] Langlands correspondence and Bezrukavnikov's equivalence

[LW-BWB] The notes by Liao Wang: The Borel-Weil-Bott theorem in examples (can not be found on the internet)

https://people.math.harvard.edu/~gross/preprints/sat.pdf

Task. Complete the following tables: Ghere is SL_n but not GL_n (to make

sure the correctness of K(St))

We use the shorthand.

K-(-)	pt	B 7*B	3×B T*(8×B)	St
G	R(T)w	R(T)	R(T) OR(G) R(T)	Z[Wext]
В	R(T)	R(T) OR(G) R(T)	$R(T) \otimes_{R(G)} R(T) \otimes_{R(G)} R(T)$	
Id	7/			RU/1×Z[W]
C×C*	R(G)[t ^{±1}]			Hext
β× ¢ *	R(T)[t ^{±1}]			
C*	Z[t±]			

$$R(B) = Z(X^*(T)] = H(\hat{T}(F), \hat{T}(O_F))$$

$$R(G) = Z(X^*(T)]^{w} \neq H(\hat{G}(F), \hat{G}(O_F))$$

$$R(G)[q^{\frac{1}{2}}] = Z[X^*(T)]^{w}[q^{\frac{1}{2}}] = \mathcal{H}_{sph}[q^{\frac{1}{2}}]$$

$$R(G \times C^*) = Z[X^*(T)]^{w}[t^{\frac{1}{2}}]$$

$$K^{G \times C^*}(St) = \mathcal{H}_{ext} \qquad \stackrel{?}{\neq} H(\hat{G}(F), I)$$

Here is an initial example.

K-(-)	pt	B T*B	3×B T*(8×B)	St
SL ₂	Z(v)	Z [₹ ^{±'}]		$Z[W_{ext}] = \bigoplus_{w \in W} Z[z_w^{\pm 1}]$
B	$\mathbb{Z}[y^{\pm 1}]$	Z[yt',z]/(z-y)(z-y')	Z(y ^{±1} , ₹1, ₹2]/((₹,-y)(₹,-y ⁻¹), (₹1-y)(₹1-y ⁻¹))	
Id	72	7/[2]/(2-1)2	Z[2,, 2,]/((2,-1)2,(2,-1)2)	$R(T)/_{I_{T}} \times Z[W_{f}] = \bigoplus_{\omega \in W} Z[z_{\omega}^{\pm 1}]/_{(z_{\omega}-1)^{*}}$
Sr xCx	Z ∕[×,t ^{±1}]			Hext = (Z[zw, t]
B× C *	Z[yt,t]			
(* C*	Z[t±]			

K-(-)	pt	Fd Repd(Q)	Fd × Fd,	Zd.d'			
Gd	R(Ta) ^{wa}	R(T _d)	R(Td)@R(Td)				
Bu	R(Ta)	R(J)& _{R(Ca)} R(J _d)	R(T) & R(T) & R(T) R(T)	[⊕] _{υ.ω'εw} R(τ) [<u>π</u> ν.ω] ^τ α			
Id	Z	"Q _{1,1} ℤ[፴"]		Bicky Z/[Mww.]			
C4×C*	R(Gd)[t ^{±1}]						
B _a × ¢ *	R(T,)[t ^{±1}]	C) II G					
C*	Z(t [±] 1	$\bigoplus_{n \in M^1} K(\mathbb{C}_*) [\underline{\mathcal{U}}^n]_{\mathfrak{C}_*}$		$\bigoplus_{\omega,\omega'\in w_{d}} R(T_{d} \times \check{\mathfrak{C}}) \left[\overline{\widetilde{\Omega}_{\omega,\omega'}} \right]^{T_{d} \times \check{\mathfrak{C}}^{x}}$ $\bigoplus_{\omega,\omega'\in w_{d}} R(C^{x}) \left[\overline{\widetilde{\Omega}_{\omega,\omega'}} \right]^{C^{x}}$			

K-(-)	pt	Fa Repal(Q)	$F_d \times F_d$	Zd = 11 Zd.d'
Gd	R(Ta) ^{wa}	PR(Ta)	₱ R(T4)⊗ _{R(C4)} R(T4)	
Bi	R(Ta)	PRIJORICARITA)	€ R(J ₁) ⊗ _{R(G₁₎} R(J ₁) ⊗ _{R(G₁)} R(J ₁) ⊕ (J ₁) R(J ₁) [<i>O</i>) → (J ₁)	⊕ R(Td) [O) مرمدا
Id	Z	or ElWal Z [Ow]	O O O O O	D. C. W. M. Z. [O w. w.]
$C^q \times \mathbb{C}_x$	R(Gd)[t ^{±1}]			
β _a × ¢ *	R(T₁)[t ^{±1}] ⊕ ₩ε₩ _₩ R(C₀×C)		Down College Range	⊕'e Wydj R(Td×C) [Ōw,w] ^{Td×C*}
C*	72 C ± 1			$\bigoplus_{w,w'\in W_{kd}} R(\mathbb{C}^{x}) [\widetilde{\widetilde{\mathcal{O}}}_{w,w'}]^{\mathbb{C}^{x}}$

H* (Zd,d) = QNHd1

 $K^{Gd}(Z_{\underline{d},\underline{d}}) \cong R(T_d) \otimes_{R(G_d)} R(T_d) \cong \bigotimes R(T_{d_1}) \otimes_{R(G_{d_1})} R(T_{d_1})$ Black. know the alg structure under tensor prod (not convolution prod)
Orange: only know the $R(G_{vp})$ -module structure, and the alg structure is yet not known light yellow: $R(G_d)$ -module + W_d -equiv iso

$$d = (1,2) \qquad \begin{array}{c} a \longrightarrow b \\ \langle v_1 \rangle \longrightarrow \langle v_2 \rangle \end{array}$$

$$\overrightarrow{V} \text{ The action on Flag is not the same as in} \qquad \begin{array}{c} \text{http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tom2} \\ \text{sz%20Przezdziecki.pdf} \end{array}$$

₩ = wu				w	<u>d</u> = u	order of basis	((w)	(w)	Bw	В	₩B₩ ⁻¹	
Id	Id	(123)	111	C			ξυ., ν ₂ , ν ₃ }					[* * <u>*</u>
ŧ	(23)	(133)	IX	[',']	Ι <u>Χ</u> Ι	abb 📙	[v,,v3,v2]	ı		[* * <i>*</i>]		
2	(12)	(123)	ΧŢ	[',']	ΙЦ	bab XI	[v., v., v3]	1	0	[* * *]	[* * <u>*</u>	[* * *]
ts	(132)	(312)	×	[, ',]	IΧ	bab XI	{U3, U, ,U2}	2	ı	[* * * * *	* **	[* * _*]
sŧ	(123)	(123)	X	[',']	ΙЦ	bba 💥	[V.,V3,V1]	2	0	* * *	[* * <u>*</u>]	[* * *]
sts	(13)	(123)	\mathbb{X}	['']	<u> X</u>	bba 💥	[{N3, N2, N1}	3	1	* * * * * * *	[* * *]	[* * *]

Conclusions on the summer vacation.

I guess that most part of my tasks coincide with this paper: http://www.math.uni-bonn.de/ag/stroppel/Master%27s%20Thesis_Tomasz%20Przezdziecki.pdf Sadly, I only found it in the last week of the vacation.

Some possible tasks to work on. 1. Work out what Kod (B)

In [3264], the author computes the Chow group of G(2,4). https://pbelmans.ncag.info/blog/2018/08/22/rank-flag-varieties/

http://www.math.tau.ac.il/~bernstei/Publication_list/publication_texts/BGG-SchubCells-Usp.pdf

The module structure is easy, see

[https://math.stackexchange.com/questions/1012699/when-does-a-smooth-projective-variety-x-have-a-free-grothendieck-group]

- 2. Work out what $\mathcal{H}(G(F), I)$ is, ie
 - Bernstein presentation
 - try to understand the center of H(G(F), I)
 - How does $\mathcal{H}(G(F), I)$ reflect informations on the rep theory
 - How can the Hecke algebra be realized as a Hecke algebra?

ref. [Hecke, Sec 10-17], [Williamson 114-122]

3. Try to understand what the Hall algebra / Quantum group is. ref: [Lec 1-4, Appendix 4, https://arxiv.org/pdf/math/o611617.pdf]

- understand
$$\mathcal{H}_{\mathsf{Rep}_{\mathsf{K}}}^{\mathsf{nil}}(\omega)$$
 where $Q = \cdot \cdot \rightarrow \cdot$.
- understand $\mathcal{H}_{\mathsf{P}'} \cong \mathcal{U}_{\mathsf{V}}(\widehat{\mathfrak{sl}}_{2})$

[Lec 2-3] [Lec 4]

- understand

- define (Quantum) Kac-Moody/loop algs

[Appendix 4]

- Why is that graded

$$K_{\bullet}(Rep^{\frac{1}{2}}(R)) = U_{q}(n(Q))$$

$$R = \bigoplus_{\underline{a}} H.^{G \times G}(Z_{\underline{a}})$$
and what is
$$K_{o}\left(\operatorname{Rep}^{Z}\left(\bigoplus_{\underline{a}} K_{o}^{G \times G^{*}}(Z_{\underline{a}})\right)\right)?$$

4. Work out the big picture

5. A closer check of Satake iso

Ko combinations Hecke alg

$$R(B) = \mathbb{Z}[X^*(T)] = \mathcal{H}(\widehat{T}(F), \widehat{T}(\mathcal{O}_F))$$

$$R(G) = \mathbb{Z}[X^*(T)]^{W} \neq \mathcal{H}(\widehat{G}(F), \widehat{G}(\mathcal{O}_F))$$

$$R(G)[q^{\pm 1}] = \mathbb{Z}[X^*(T)]^{W}[q^{\pm \frac{1}{2}}] = \mathcal{H}_{sph}[q^{\pm \frac{1}{2}}]$$

$$R(G \times \mathcal{C}) = \mathbb{Z}[X^*(T)]^{W}[z^{\pm 1}]$$

$$R(T) \otimes_{R(G)} R(T) = N \mathcal{H}_n \subset_{End_{\mathbb{Z}}} \mathbb{Z}[X^*(T)]$$

$$K^{c_1c_1^{c_1}}(St) = \mathcal{H}_{ext} \qquad \stackrel{?}{+} \mathcal{H}(\widehat{G}(F), I)$$
It's claimed by my school mate that
$$K_0(Perv_B(G/B)) \cong \mathcal{H}(G, B)$$

$$Sym \text{ monoidal structure induced from the convolution}$$
then, what is
$$K_0^B(B) \cong \mathcal{T}_{K_0^{Td}}(B) \cong \mathcal{T$$

Now, about Steinberg varieties.

6 Draw a picture, indicating the shape/generalization of the following spaces.

(e.p. in the case of \cdot , \cdot 5, $\cdot \rightarrow \cdot$)

G, B,T

B, T*B, St

g, g, gs, gs, N, N, N, h, n gh, Oh, Mw

7. Try to understand what Kazhdan - Lusztig polynomials are [KL2], and

- Compute the transformation matrix between

[[Tw], weWf] and [[]], weWf]?

- understand what standard /crystal basis is

- understand the relationship between KL poly and crystal basis

- see if it is related to two basis in Rep (G) (irr reps & multiplicative basis)

Answer from my schoolmate:

standard basis (KL-poly)

[[Tw], we Wf]

irr reps

canonical basis $\stackrel{\text{tix q}}{\leadsto}$ crystal basis [[Nm], w∈Wf]

multiplicative basis

8 Try to understand the module part, i.e.,

- numbers of components of the Springer fiber
- how does Korr(St) act on Korr (Springer fiber) also act on Korr (Repolar)

- does that occupy "all rep" of Korp (St)

9 Ways of finding multiplication structure

1 By direct computation (with techniques)

double coset calculus

Hecke algebra

2. By formulas as alg-isos

KG (B)

induction formula

3 By geometrical computation cohomology

cup product? de Rham calculus index theorem

Chow group

4. By deformation (indirect)

H top (St)

K G x C (St)

intersection theory

How to get a clear intersection formula of Grothendieck? It's claimed in the introduction of $[https://www.uni-due.de/~adc3o1m/staff.uni-duisburg-essen.de/Publications_files/excessgw.pdf], and the control of the contro$ but I can not find any other references about this excess intersection formula. How is it related to the Riemann-Roch theorem?

10. Different views on the double coset

$$B\backslash G/B = (*/B) \times_{*/G} (*/B)$$

- as a set
- as flag variety quotient B-action
- as a stack
- groupoid structure

Some excuses for not working a lot on the project.

Preparation for summer school	2	weeks
Summer school of the modular form	1	week
Tourism in Paris	1	week
Conference in Antwerp	1	week
Reading [Ginz, Chap 5]	2	weeks
Computing H(G,B), Hsph, (Haff)		week
Applying for tutorials, extend the residence permit, preparation for TOEFL exam, Klein AG	2	weeks
Summer school on Langlands & ICM watch (part)	1	week
. 1		
In total	11	weeks

tough new semester.

- 3 Seminars (+ Master Thesis Seminar)
- Tutorial
- TUEFL exam on 15th Qt.
- The seminar handout and other materials are not completed.
 - · L-parameters
 - · moduli in AG
 - some following developments of the modular form (different type of gps, Hecke operators,...)
 - · reps of GLi(Q)
- applying for the PhD program.