NLA 2021-2022 Eigenproblems

Martin Sombra

24 November 2021

Orthogonal iteration

It is generalization of the power method aimed to compute higher dimensional invariant subspaces

Fix $1 \leqslant r \leqslant n$. The *orthogonal iteration* writes down as

Choose a unitary
$$n \times r$$
 matrix Q_0
for $k = 0, 1, 2, ...$
 $Y_{k+1} \leftarrow A Q_k$
 $Y_{k+1} = Q_{k+1} R_{k+1}$ (QR factorization)

For r = 1 it coincides with the power method:

$$y_{k+1} = x_{k+1} \|Ay_{k+1}\|_2$$

is the QR factorization of y_{k+1}

$$\leadsto Q_{k+1} = x_{k+1}$$
 for all k

Error analysis

Suppose $A = S \wedge S^{-1}$ diagonalizable with

$$S = [s_1 \cdots s_n]$$
 and $\Lambda = diag(\lambda_1, \dots, \lambda_n)$

and that

$$|\lambda_1| \geqslant \cdots \geqslant |\lambda_r| > |\lambda_{r-1}| \geqslant \cdots \geqslant |\lambda_n|$$

Then

$$\operatorname{span}(Q_k) = \operatorname{span}(Y_k) = \cdots = \operatorname{span}(A^k Q_0)$$

 $\leadsto Q_k$ gives an orthonormal basis of the linear subspace $\operatorname{span}(A^kQ_0)$

For $k \to \infty$ it converges to a basis of the invariant subspace generated by the *dominant eigenvectors* s_1, \ldots, s_r :

$$\operatorname{span}(Q_k) = \operatorname{span}(A^k Q_0) \longrightarrow_{k \to \infty} \operatorname{span}(s_1, \dots, s_r)$$

Funtoriality

The QR factorization is compatible with restricting columns:

$$\begin{bmatrix} A' & A \end{bmatrix} = \begin{bmatrix} Q' & Q \end{bmatrix} \begin{bmatrix} R' & R \end{bmatrix}$$

so that if A = QR is the QR factorization of A, then A' = Q'R' is the QR factorization of A'

 \leadsto for $1\leqslant s\leqslant r$ the first s columns of Q_k coincide with the orthogonal iteration of dimension s starting with the first s columns of Q_0

Setting r = n runs the orthogonal iteration simultaneously for all intermediate dimensions

Convergence

Suppose for simplicity that

$$|\lambda_1| > \cdots > |\lambda_n|$$

Then for a "typical" unitary $n \times n$ matrix Q_0 , for $k \to \infty$ we have that $Q_k \to Q$ unitary and $Q_k^* A Q_k \to T$ upper triangular, giving the Schur decomposition

$$A = Q T Q^*$$

Moreover

$$\|Q - Q_k\|, \|T - Q_k^*AQ_k\| \leqslant O\left(\max_i \frac{|\lambda_{i+1}|}{|\lambda_i|}\right)$$

The QR iteration

Set

$$T_k = Q_k^* A Q_k$$
 for $k = 0, 1, 2, ...$

The QR iteration arises when considering how to compute T_k directly from T_{k-1}

From the definition of Q_k and R_k and the relation $Q_{k-1} A = R_k Q_k$:

$$T_{k-1} = Q_{k-1}^* A Q_{k-1} = (Q_{k-1}^* Q_k) R_k$$
 (1)

$$T_k = Q_k^* A Q_k = (Q_k^* A Q_{k-1}) Q_{k-1}^* Q_k = R_k (Q_{k-1}^* Q_k)$$
 (2)

We have that $Q_{k-1}^*Q_k$ is unitary and (1) is the QR factorization of \mathcal{T}_{k-1}

Drawbacks

- a single iteration costs $O(n^3)$ flops
- convergence (when it exists) is only linear

The real QR iteration

Matrices arising from applications have real entries! From now

A real
$$n \times n$$
 matrix

The real QR iteration is defined by choosing an orthogonal $n \times n$ matrix Q_0 and setting

$$H_0 \leftarrow Q_0^T A Q_0$$

for $k = 1, 2, ...$
 $H_{k-1} = Q_k R_k \ (QR \ factorization)$
 $H_k \leftarrow R_k Q_k$

The real Schur form

If the eigenvalues of A are not real, then \mathcal{T}_k cannot converge to an upper triangular matrix

→ we content ourselves with convergence to the *real Schur form*:

$$A = Q T Q^T$$

with Q orthogonal and $\mathcal T$ block upper triangular with 1×1 and 2×2 diagonal blocks, that is

$$T = \begin{bmatrix} T_{1,1} & T_{1,2} & \cdots & T_{1,n} \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & T_{n-1,n} \\ 0 & \cdots & \cdots & 0 & T_{n,n} \end{bmatrix} \in \mathbb{R}^{n \times n}$$

where each $T_{i,i}$ is a 1×1 block or a 2×2 block with complex conjugate eigenvalues

Hessenberg reduction

To implement the QR iteration, we have to choose Q_0 carefully such that

$$T_0 = Q_0^T A Q_0$$

is an upper Hessenberg matrix, which would lower the complexity to $O(n^2)$ flops

Hessenberg reduction (cont.)

It is a variation of the QR factorization, and can be done with a sequence of Householder reflections

Let n=5 and choose $P_1=\begin{bmatrix}1&0\\0&\widetilde{P}_1\end{bmatrix}$ with \widetilde{P}_1 a Householder 4×4 matrix such that

$$P_1 A = \begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{bmatrix}, \quad A_1 = P_1 A P_1^T = \begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \end{bmatrix}$$

- P_1 leaves the first row of P_1 A unchanged
- P_1^T leaves the first column of $(P_1 A) P_1^T$ unchanged, including the zeros

Hessenberg reduction (cont.)

Choose
$$P_2 = \begin{bmatrix} \mathbb{1}_2 & \mathbb{0} \\ \mathbb{0} & \widetilde{P}_2 \end{bmatrix}$$
 with \widetilde{P}_2 a 3×3 Householder such that

$$P_2 A_1 = \begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & \times & \times & \times \end{bmatrix}, \quad A_2 = P_2 A_1 P_2^T = \begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & \times & \times & \times \end{bmatrix}$$

- P_1 leaves the first and second rows of $P_2 A_1$ unchanged
- P_2^T leaves the first and second columns of $(P_2 A_2) P_2^T$ unchanged

Hessenberg reduction (cont.)

Finally choose
$$P_3 = \begin{bmatrix} \mathbb{1}_3 & \mathbb{0} \\ \mathbb{0} & \widetilde{P}_3 \end{bmatrix}$$
 with \widetilde{P}_2 a 2 × 2 Householder s.t.

$$P_{3} A_{2} = \begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \end{bmatrix}, \quad A_{3} = P_{3} A_{2} P_{3}^{T} = \begin{bmatrix} \times & \times & \times & \times & \times \\ \times & \times & \times & \times & \times \\ 0 & \times & \times & \times & \times \\ 0 & 0 & \times & \times & \times \\ 0 & 0 & 0 & \times & \times \end{bmatrix}$$

This constructs an orthogonal $n \times n$ matrix

$$Q_0 = P_{n-2} \cdots P_1$$

such that $H_0 = Q_0^T A Q_0$ is Hessenberg

The complexity of this procedure is $5 n^3 + O(n^2)$ flops

The Hessenberg form through the QR iteration

The Hessenberg form is preserved during the QR iteration: let

$$H = QR$$
 and $H_+ = RQ$

with H Hessenberg

Since R is upper triangular, the j-th column of Q is a linear combination of the first columns of H: write

$$H = [h_1 \cdots h_n]$$
 and $Q = [q_1 \cdots q_n]$

Setting $S = R^{-1} = [s_{i,j}]_{i,j}$ we have that

$$q_j = \sum_{k=1}^J s_{k,j} h_k, \quad j = 1, \dots, n$$

and so Q is Hessenberg

Similarly the j-th row of H_+ is a linear combination of the last j rows of Q, and so H_+ is Hessenberg