Testeigenschaften:

Intel Core i7-3770K CPU 3.50GHz (Ivy Bridge), 1 CPU, 8 logical and 4 physical cores

Es wurde ein Array mit 10_000_000 Elementen erstellt welches zu sortieren war. Dieses Array war für alle Ausführungen gleich, damit kein Bias entsteht bzw. alle Methoden denselben Ausgang haben. Jede Methode wurde zwischen 15-100 mal durchlaufen und ein Mittelwert gebildet.

Sollte der Threshold Wert unterschritten werden wird die Sortierung Sequenziell anstatt Parallel durchgeführt.

Ergebnis:

efaultJob : .NET 7.0.4 (7.0	[Host] : .NET 7.0.4 (7.0.423.11508), X64 RyUJIT AVX									
DefaultJob : .NET 7.8.4 (7.8.423.11508), X64 RyuJIT AVX										
Method	Threshold					Gen0	Gen1	Gen2	Allocated	
								:		
QuickSortSequentially	1000		3.78 ms] 3.35 ms	775.9 ms			- 1	38.15 MB	
QuickSortParallelNaive		1,608.1 ms		682.50 ms		647000.0000		- 1	2607.03 ME	
QuickSortParallelThreshold			7.36 ms	21.72 ms	136.6 ms	1250.0000	500.0000	250.0000	42.38 MB	
MergeSortSequentially		1,394.6 ms		17.69 ms	1,386.3 ms	278000.0000	4000.0000	4000.0000	1440.34 ME	
MergeSortParallelNaive				812.52 ms		2451500.0000	4500.0000	1500.0000		
MergeSortParallelThreshold	1000		26.13 ms	77.04 ms	345.9 ms	371666.6667	11333.3333	2000.0000	1863.39 ME	
QuickSortSequentially	10000	766.9 ms	2.65 ms	2.22 ms	766.5 ms			- 1	38.15 MI	
QuickSortParallelNaive	10000	1,518.8 ms	176.82 ms	518.59 ms	1,535.2 ms	1049500.0000		- 1	4205.25 ME	
QuickSortParallelThreshold	10000	118.3 ms	6.83 ms	20.15 ms	117.2 ms			- 1	38.98 ME	
MergeSortSequentially	10000	1,364.6 ms		4.84 ms	1,364.5 ms	278000.0000	4000.0000	4000.0000	1440.34 ME	
MergeSortParallelNaive	10000	2,408.9 ms	181.76 ms	533.07 ms	2,400.7 ms	1433500.0000	500.0000	- 1	5931 ME	
MergeSortParallelThreshold	10000	348.8 ms	28.63 ms	84.43 ms		317000.0000	6000.0000	666.6667	1607.22 ME	
QuickSortSequentially	100000	780.3 ms	2.49 ms	2.33 ms	779.9 ms			- 1	38.15 MB	
QuickSortParallelNaive	100000	1,589.8 ms	109.23 ms	322.06 ms	1,626.1 ms	618000.0000	333.3333	- 1	2493.29 ME	
QuickSortParallelThreshold	100000	127.5 ms	5.44 ms	16.03 ms	128.9 ms	250.0000	250.0000	250.0000	38.2 ME	
MergeSortSequentially	100000	1,390.1 ms	8.44 ms	7.05 ms	1,388.6 ms	278000.0000	4000.0000	4000.0000	1440.34 ME	
MergeSortParallelNaive	100000	2,482.6 ms	185.74 ms	547.67 ms	2,467.2 ms	1602500.0000	500.0000	- 1	6650.55 ME	
MergeSortParallelThreshold	100000	354.6 ms	23.06 ms	67.99 ms	364.9 ms	244666.6667	7000.0000	666.6667	1257.43 ME	
QuickSortSequentially	1250000	771.8 ms	1.21 ms	1.01 ms	771.9 ms			i - i	38.15 ME	
QuickSortParallelNaive	1250000	1,587.2 ms	160.84 ms	474.25 ms	1,579.0 ms	882000.0000		i - i	3540.29 ME	
QuickSortParallelThreshold	1250000	116.6 ms	6.12 ms	17.95 ms	111.5 ms			i - i	38.15 ME	
MergeSortSequentially	1250000	1,378.2 ms	4.35 ms	3.63 ms	1,377.2 ms	278000.0000	4000.0000	4000.0000	1440.34 ME	
MergeSortParallelNaive		2,477.6 ms	207.34 ms	611.36 ms	2,456.0 ms	1844500.0000	500.0000	i - i	7622.15 MI	
MergeSortParallelThreshold	1250000	384.7 ms	37.12 ms	109.44 ms	374.0 ms	161000.0000	7500.0000	i - i	872.21 MI	
QuickSortSequentially	2500000	760.5 ms	1.79 ms	1.58 ms	760.1 ms			-	38.15 MI	
QuickSortParallelNaive		1,545.3 ms	95.19 ms	279.18 ms	1,550.5 ms	1118666.6667		- 1	4479.61 MI	
QuickSortParallelThreshold	2500000	123.7 ms	2.47 ms	6.77 ms	122.6 ms			- i	38.15 ME	
MergeSortSequentially		1,362.5 ms	13.73 ms	11.46 ms	1,358.3 ms	278000.0000	4000.0000	4000.0000	1440.34 ME	
MergeSortParallelNaive		2,419.5 ms		655.01 ms		1757000.0000		-	7267.95 ME	
, , , , , , , , , , , , , , , , , , ,										

Schlussfolgerungen:

Es ist zu erkennen, dass in allen Naiven Implementationen die Software länger für das Sortieren braucht und gleichzeitig am meisten Speicher verwendet.

Die Threshold Variante ist mit Abstand die schnellste Methode bei den durchgeführten Tests.

Der Speicherplatzverbrauch unterscheidet sich kaum zwischen den Sequenziellen und Threshold Ansatz. Beim naiven Ansatz ist ein deutlicher Speicherverbrauch zu sehen.

Beim Quicksort gibt es kaum Performance Verbesserungen mit einem kleinerem Threshold. Beim Mergesort gibt es leichte Performance Verbesserungen bei kleinerem Threshold. Die beste Performance gab es beim Threshold von 1.25M welches ungefähr 1/8 der Sortiergröße und der Anzahl der Threads entspricht.