Introduction to the Theory of Computation Homework 1

Arthur Nunes-Harwitt

Due December, 9th

Before you start on the homework, please read the rules on collaboration and submission in the syllabus.

- 1. Exercise 0.2.
- 2. Suppose S is a set with n elements.
 - (a) How many relations are there on S?
 - (b) How many reflexive relations are there on S?
 - (c) How many symmetric relations are there on S?
 - (d) How many relations are there on S that are both reflexive and symmetric?
- 3. Exercise 0.11.
- 4. Let $\Sigma = \{a, b\}$. In each part below, a recursive definition is given of $L \subseteq \Sigma^*$. Give a simple non-recursive definition in each case. (Regular expressions as answers are *not* allowed.)
 - (a) $a \in L$; $xa \in L$ if $x \in L$; $xb \in L$ if $x \in L$.
 - (b) $a \in L$; $bx \in L$ if $x \in L$; $xb \in L$ if $x \in L$.
- 5. Give recursive definitions of each of the following sets.
 - (a) The set \mathcal{N} of all natural numbers.
 - (b) The set S of all natural numbers divisible by 7.
 - (c) The set A of all strings in $\{a, b\}^*$ containing the substring aa.
- 6. Let $\Sigma = \{a, b\}$. Give a recursive definition of function n_b on Σ^* such that for all strings $x \in \Sigma^*$, $n_b(x)$ is the number of bs in x.
- 7. Use structural induction to show that given an alphabet Σ , for any $x, y \in \Sigma^*$, |xy| = |x| + |y|.