Quiz 4

Due No due date **Points** 20 **Questions** 10 **Time Limit** None

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	45 minutes	18 out of 20

Score for this quiz: **18** out of 20 Submitted Nov 5 at 11:15am This attempt took 45 minutes.

	Question 1	0 / 2 pts
	(1) The correlation between two orthogonal predictor variables is:	
	○ a. 1.0	
orrect Answer	O b. 0.0	
	O c. 0.5	
ou Answered	d. Correlation does not exist.	

Question 2

(2) Consider a regression model with predictor variables X1, X2, and X3. If X1 has a VIF value of 2, then the R-Squared value from regressing X1 on X2 and X3 is:

a. 0.0

	O b. 0.25	
	O c. 0.75	
rrect!	• d. 0.50	
	Question 3	2 / 2 pts
	(3) How can multicollinearity affect regression models?	
	a. Unstable regression coefficients, i.e. regression coefficients, will change as variables are added or deleted from the model.	ange
	b. Estimates of regression coefficients will have large variances.	
	c. Regression coefficients will show as statistically significant when the should not.	еу
ect!	d. Regression coefficients will be both unstable, i.e. regression coefficients change sign as variables are added or deleted from the model, and h variances.	
	Question 4	2 / 2 pts
	(4) Diagnostics for multicollinearity include:	
	a. The Overall F-Test	

b. Variance Inflation Factors

c. The condition index for the X'X matrix	
d. Both variance inflation factors and the condition index for the X'	X matrix.
Question 5	2 / 2 pts
(5) Suppose we have 5 variables: X1, X2, X3, X4, and X5 in a day 2000 observations. We use the covariance matrix to compute the components. How many principal components are there?	
○ a. 2	
• b. 5	
C. 2000	
O d. 400	
Question 6	2 / 2 pts
(6) Suppose we have 5 variables: X1, X2, X3, X4, and X5 in a da 2000 observations. We use the covariance matrix to estimate the	
factors. How many common factors are there?	
factors. How many common factors are there?	
a. 2	

Question 7	2 / 2 pts
(7) Given the variables X1, X2, X3, X4, and X5. The eigenvector as with the largest eigenvalue is (0.5,0,-0.2,0,0.7). How do we compute principal component?	
a. 0.2*(X1 + X2 + X3 + X4 + X5)	
○ b. 0.5*X5 – 0.2*X3 + 0.7*X1	
C. 0.2*(X1 + X2 + X3 + X4 + X5)/5	

Correct!

(8) If the sum of the eigenvalues is 90 and the second eigenvalue is 15, how much of the variance is explained by the second principal component?

a. 85.0%

• d. 0.5*X1 – 0.2*X3 + 0.7*X5

Correct!

• b. 16.7%

c. 15.0%

d. 12.5%

Question 9 2 / 2 pts

(9) Similarities between factor analysis and principal components analysis include:

	a. Both aim to reduce the dimensionality of the data.
	b. Both are estimated with the assumption of an underlying statistical model.
	c. Both try to explain the correlations between the predictor variables.
	d. Both are not useful when the predictor variables are uncorrelated.
Correct!	e. Both aim to reduce the dimensionality of the data and are not useful when the predictor variables are uncorrelated.

	Question 10	2 / 2 pts	
Correct!	(10) Rotations are used in factor analysis to:		
	a. Improve the model fit.		
	b. Improve the interpretability of the model.		
	c. Change the number of common factors to include in the model.		
	d. Increase the variance explained by the model.		

Quiz Score: 18 out of 20