ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA KHOA KHOA ĐIỆN - ĐIỆN TỬ

THIẾT KẾ HỆ THỐNG NHÚNG

BÁO CÁO BÀI TẬP LỚN SMART WATER BOTTLE

GVHD: Bùi Quốc Bảo

Lớp: TN01 - Nhóm: 11

SV thực hiện	MSSV
Huỳnh Nhựt Huy	2311149
Bùi Nguyễn Quang Thương	2313401

Trường Đại Học Bách khoa, TP Hồ Chí Minh Khoa Điện - Điện tử

Mục lục

1	Requirement	2
	1.1 Đo và hiển thị mức nước theo thời gian thực	2
	1.2 Theo dõi lượng nước uống hằng ngày và hiển thị mục tiêu	2
	1.3 Giao diện hiển thị qua màn hình LCD đạt chuẩn	2
	1.4 Yêu cầu về nguồn và an toàn	2
	1.5 Yêu cầu về giá thành và khả năng tiếp cận	2 3 3
	1.6 Yêu cầu về độ bền và tuổi thọ sử dụng	3
	1.7 Yêu cầu về thiết kế ngoại hình tiện lợi và thẩm mỹ	
2	Architecture	4
3	Usecase	5
	3.1 Use Case UC 0001 – Power Supply (Cấp nguồn tổng)	5
	3.2 Use Case UC 0002 – Sensor (Measurement) (Cảm biến – Đo lường)	
	3.3 Use Case UC 0003 – Time (Thời gian)	
	3.4 Use Case UC_0004 – Display (Hiển thị)	
4	Schematic	12

1 Requirement

1.1 Đo và hiển thị mức nước theo thời gian thực

- Bình phải có cảm biến mức nước để phát hiện chính xác lượng nước trong bình.
- Sai số đo của cảm biến không được vượt quá $\pm 5\,\mathrm{ml}$ trong dải $0\,\mathrm{ml}$ đến dung tích tối đa.
- Hệ thống phải cập nhật và hiển thị giá trị đo trên LCD trong vòng 5 giây sau khi mức nước thay đổi.
- Khi lương nước trong bình bằng 0 ml, màn hình hiển thi cảnh báo "Hết nước".
- Khi lượng nước đạt mức tối đa (đầy bình), màn hình hiển thị cảnh báo "Đầy bình".

1.2 Theo dõi lượng nước uống hằng ngày và hiển thị mục tiêu

- Hệ thống phải có bộ nhớ để lưu trữ tổng lượng nước người dùng uống trong ngày.
- Bình phải so sánh lượng nước uống được với mục tiêu hằng ngày:
 - + Mặc định: 2000 ml
 - + Có thể thay đổi theo cài đặt của người dùng
- Màn hình LCD phải hiển thị tiến độ uống nước trong ngày dưới dạng số ml đã uống.
- Hệ thống phải tự động đặt lại bộ đếm lượng nước về 0 ml lúc 0 giờ mỗi ngày.

1.3 Giao diện hiển thị qua màn hình LCD đạt chuẩn

- Màn hình phải rõ ràng, dễ đọc dưới điều kiên ánh sáng trong nhà và ánh sáng yếu.
- Màn hình LCD phải tiêu thụ công suất nhỏ hơn 0.2W trong chế độ hoạt động bình thường.
- Khi dung lượng pin yếu (dưới 10%), màn hình phải hiển thị cảnh báo pin yếu.
- Màn hình phải hiển thị các thông tin sau:
 - + Lượng nước hiện tại trong bình
 - + Lượng nước đã uống trong ngày
 - + Phần trăm dung lượng pin hiện tại

1.4 Yêu cầu về nguồn và an toàn

- Hệ thống phải được cấp nguồn bằng pin sạc dung lượng tối thiểu 500 mAh.
- Bình phải hỗ trợ sạc qua cổng USB Type-C để thuận tiện và phổ biến.
- Hệ thống phải hoạt động tối thiểu 72 giờ liên tục sau mỗi lần sạc đầy.
- Pin sạc phải chịu được tối thiểu 1000 chu kỳ sạc/xả mà không giảm hiệu suất quá 20%.
- Toàn bộ linh kiện điện tử phải được bọc cách điện và chống nước đạt chuẩn IPX4 trở lên.

- Khi phát hiện rò rỉ điện hoặc chập mạch, hệ thống phải tự động ngắt nguồn để đảm bảo an toàn.
- Vật liệu chế tạo vỏ bình phải an toàn thực phẩm, ví dụ:
 - + BPA-free
 - + Inox 304
 - + Nhưa Tritan

1.5 Yêu cầu về giá thành và khả năng tiếp cân

- Giá bán lẻ của bình nước thông minh phải dưới 500.000 VNĐ để phù hợp với sinh viên và cá nhân.
- Các linh kiện sử dụng trong bình phải phổ biến, dễ tìm, chi phí thấp để giảm giá thành sản phẩm.
- Chi phí bảo trì và thay thế linh kiện (pin, màn hình, cảm biến) phải thấp, không vượt quá 20% giá trị sản phẩm.
- Bình phải được sản xuất theo hướng quy mô nhỏ trung bình, đảm bảo tính thương mại hóa và giá cả cạnh tranh.

1.6 Yêu cầu về độ bền và tuổi thọ sử dụng

- Vỏ bình phải được làm từ vật liệu an toàn thực phẩm (Inox 304, Tritan, hoặc nhựa BPA-free).
- Toàn bộ hệ thống điện tử phải hoạt động ổn định trong ít nhất 2 năm với điều kiện sử dụng bình thường.
- Pin sạc phải có tuổi thọ tối thiểu 1000 chu kỳ sạc/xả mà không suy giảm dung lượng quá 20%.
- Bình phải chịu được va đập thông thường và chịu rơi từ độ cao 1 mét xuống nền cứng mà không hỏng hóc nghiêm trọng.
- Cảm biến mức nước và màn hình LCD phải có độ tin cậy cao, hoạt động ổn định trong ít nhất 10.000 giờ sử dụng.
- Bình phải chịu được nhiệt độ môi trường từ 0° C đến 50° C (điều kiện sinh hoạt bình thường) mà không ảnh hưởng đến chức năng đo và hiển thị.

1.7 Yêu cầu về thiết kế ngoại hình tiện lợi và thẩm mỹ

- Bình phải có dung tích tiêu chuẩn từ $700\,\mathrm{ml}$ $1000\,\mathrm{ml}$, phù hợp cho nhu cầu cá nhân thường ngày.
- Trọng lượng bình (chưa có nước) không được vượt quá $800\,\mathrm{g}$ để thuận tiện mang theo.
- Thiết kế vỏ ngoài phải dễ cầm nắm, chống trơn trượt, và có nắp chống tràn để sử dụng an toàn khi di chuyển.

- Màn hình LCD phải được bố trí ở vị trí dễ quan sát nhưng không gây cản trở thao tác uống nước.
- Bình phải có ít nhất hai lựa chọn màu sắc để phù hợp với nhiều đối tượng người dùng.
- Thiết kế tổng thể phải thanh lịch, hiện đại, phù hợp cho cả môi trường học tập, làm việc và thể thao.
- Bình phải có phụ kiện hỗ trợ như quai xách hoặc dây treo để tăng tính tiện lợi khi mang theo.

2 Architecture

Figure 1: System Architecture

3 Usecase

3.1 Use Case UC 0001 – Power Supply (Cấp nguồn tổng)

Scope

Quản lý cấp nguồn cho toàn hệ thống: chọn nguồn USB/battery, phân phối qua regulator đến MCU, LCD, cảm biến.

Actors

Primary Actor: Hệ thống (firmware Power Manager)

Secondary Actors: Người dùng, USB nguồn ngoài

Stakeholders & Interests

• Người dùng: thiết bị luôn bật ổn định, an toàn

• Hệ thống: chuyển đổi mượt giữa USB và pin, không reset

Preconditions

- Pin còn dung lượng hoặc đang cắm USB 5V
- Mạch regulator sẵn sàng

Postconditions

- \bullet Tất cả rail (3.3V/5V) đạt mức danh định
- MCU, LCD, cảm biến hoạt động bình thường

Main Flow of Events

- 1. Hệ thống kiểm tra nguồn vào: USB present? Battery voltage?
- 2. Nếu có USB và cấu hình ưu tiên USB \rightarrow chọn đường USB làm nguồn chính
- 3. Nếu không có USB \rightarrow chọn pin
- 4. Bật các regulator theo thứ tự (sequencing: 3.3V trước, 5V sau nếu cần)
- 5. Chạy tự kiểm (Power-Good, brown-out flags)
- 6. Thông báo trạng thái cấp nguồn cho MCU (GPIO/ADC/PMIC IRQ)
- 7. Vào chế độ hoạt động bình thường

Alternative Flows

A1 - Chỉ dùng pin: Bỏ qua kiểm USB, cấp nguồn từ pin \rightarrow quay lại bước 4

A2 - USB yếu (sag): nếu $VBUS < 4.5V \rightarrow rơi về pin \rightarrow quay lại bước 4$

Exception Flows

- **E1 Brown-out khi chuyển nguồn:** nếu rail tụt < ngưỡng \rightarrow reset mềm, retry sequencing tối đa N lần
- ${f E2-Qu\'a}$ nhiệt PMIC: cắt tải không thiết yếu (LCD backlight), ghi log, cảnh báo người dùng

Special Requirements

- \bullet Thời gian chuyển nguồn USB \leftrightarrow Battery <50 ms, không được reset MCU
- Có tín hiệu Power-Good và bảo vệ ngược cực / quá dòng
- EMC/ESD theo chuẩn IEC 61000-4-2 ở cổng USB

Assumptions

- Board đã có mạch ORing/PMIC để chọn nguồn
- MCU đọc được cờ trạng thái nguồn

Notes

- Ưu tiên USB để sạc và cấp tải; pin làm dự phòng
- Có thể thêm "Low-Power Mode" khi pin yếu

3.2 Use Case UC_0002 – Sensor (Measurement) (Cảm biến – Đo lường)

Scope (Pham vi)

Đo level/weight (mực/khối lượng) của bình bằng Level/Weight Sensor; đọc dữ liệu thô qua Sensor Driver; áp Calibration/Tare để suy ra thể tích (mL); đồng bộ chu kỳ đo và gắn Time (thời gian) cho bản ghi.

Actors

Primary Actor(s): MCU (vi điều khiển)

Secondary Actors: :

- Level/Weight Sensor phần cứng tạo tín hiệu thô theo mức nước/khối lượng
- Sensor Driver giao tiếp ADC/HX711, lọc nhiễu, trả dữ liệu xử lý
- Calibration/Tare phần mềm hiệu chuẩn/trừ bì
- Display/UI hiển thị kết quả đo cho người dùng
- Storage ghi log kết quả đo để tính tổng/ngày

Stakeholders & Interests

- Người dùng: số đo mL chính xác, ổn định, phản hồi nhanh
- Hệ thống: tiêu thụ điện thấp, chống nhiễu, dữ liệu có time stamp để tính daily intake

Preconditions (Điều kiện trước)

- Cảm biến lắp đúng, dây tín hiệu tốt
- Sensor Driver đã khởi tạo, sample rate được cấu hình
- Calibration/Tare có offset & gain
- Time (RTC/tick) hoạt động

Postconditions (Điều kiện sau)

- Có volume mL hợp lệ (đã lọc và trừ bì)
- Dữ liệu kèm time stamp được gửi cho Display/UI và Logger

Main Flow of Events

- 1. Time phát tick theo chu kỳ T m
s \rightarrow MCU kích hoạt đo
- 2. MCU gọi Sensor Driver để read_raw() từ cảm biến qua ADC/HX711
- 3. Sensor Driver loại offset, phát hiện overflow/timeout, áp lọc (IIR/MA) \rightarrow filtered value
- 4. MCU áp Calibration/Tare: tare offset & gain \rightarrow volume mL
- 5. MCU kiểm tra validity: dải đo, slew limit, stable detection
- 6. MCU đóng gói kết quả với time stamp \rightarrow Display/UI + Logger
- 7. Nếu phát hiện pour/drink event \rightarrow tăng sample rate tạm thời, sau đó khôi phục

Alternative Flows

- A1 Adaptive filtering: Khi biến động lớn dùng IIR nhanh; khi tĩnh dùng MA dài
- A2 Geometry lookup: Nếu dùng level sensor thì tra bảng level \rightarrow mL
- A3 Auto-cal reminder: Nếu sai lệch tích lũy vượt ngưỡng, nhắc Calibration/Tare

Exception Flows

- **E1 Sensor/ADC fault:** Mất kết nối, CRC/parity fail, timeout \rightarrow đặt sensor_fault, giữ giá trị cuối, cảnh báo
- E2 Out-of-range: Giá trị vượt dải \rightarrow kẹp biên, log sự kiện
- E3 Time invalid: Mất RTC \rightarrow vẫn đo nhưng gắn cờ time unsynced
- ${f E4-Wrong\ tare:}\ {f tare_offset\ sai}\ ({f b}{\ inh\ không\ trống\ khi\ tare})
 ightarrow {f c}{\ anh\ b}{\ ao},\ {f b}{\ o}$ tare khung hiện tại

Special Requirements

- Accuracy $\leq \pm 2\%$ trong dải 0–1000 mL khi đã Calibration/Tare
- Noise sau lọc khi tĩnh: $< \pm 1$ –2 mL
- End-to-end latency từ đo đến hiển thị: < 300 ms khi đang uống
- Sample rate: 10-20 Hz (burst 50-80 Hz khi rót/uống)
- Power budget trung bình < 5 mA (ADC/Amplifier bật/tắt theo chu kỳ)
- Luu calibration data vào NVM kèm checksum/version

Assumptions

- Phần cứng load cell + HX711/ADC hoặc level sensor có bảng tra
- Bình có hình học đã biết; RTC/tick hệ thống khả dụng

Notes

- Khi LCD backlight bật hoặc có nhiễu, trì hoãn vài trăm ms trước khi đo
- Có thể bật temperature compensation nếu có NTC

3.3 Use Case UC_{0003} – Time (Thời gian)

Scope (Phạm vi)

Quản lý Time Reading (đọc thời gian thực), Time Setting (chỉnh ngày/giờ từ nút), Day Rollover (chốt dữ liệu khi sang ngày mới) dựa trên Realtime Clock (RTC/system tick) để:

- Đóng dấu thời gian cho đo lường
- Reset bộ đếm theo ngày
- Hiển thị đúng trên LCD

Actors

Primary Actor: MCU (vi điều khiển)

Secondary Actors: :

- Người dùng (nút chỉnh giờ)
- Realtime Clock (RTC)
- Display/UI
- Logger/Storage

Stakeholders & Interests

- Người dùng: thời gian hiển thị đúng, chỉnh giờ nhanh và dễ
- Hệ thống: có time stamp tin cậy, rollover ngày ổn định để tính daily intake và days-met-goal

Preconditions (Điều kiện trước)

- RTC đã chạy ổn định (có nguồn nuôi) hoặc system tick dự phòng
- Nút TIME/HOUR/MIN hoạt động và đã debounce
- Timezone mặc định đã thiết lập (hoặc local time)

Postconditions (Điều kiện sau)

- Hệ thống có current time hợp lệ để đóng dấu log
- Khi rollover ngày, dữ liệu được chốt và bộ đếm reset đúng

Main Flow of Events

- 1. MCU đọc thời gian từ RTC/system tick, cập nhật time cache mỗi T ms/s
- 2. Cập nhật Display/UI (hiển thị HH:MM), gắn time stamp vào mẫu đo/nhật ký
- 3. Người dùng nhấn TIME \rightarrow vào chế độ cải đặt; HOUR/MIN để tăng; nhấn TIME lần nữa để xác nhận
- 4. MCU ghi giá tri mới xuống RTC, đồng bộ time cache, log sư kiện time changed
- 5. Day Rollover: tại $00:00:00 \to \text{MCU}$ sinh sự kiện midnight, chốt daily intake, đánh giá goal, reset bộ đếm ngày
- 6. Tiếp tục vòng lặp: đọc, hiển thị, ghi log, rollover hàng ngày

Alternative Flows

- ${\bf A1-Auto~Sync:}$ Khi kết nối USB/App, hệ thống nhận time sync \rightarrow cập nhật RTC, log $time_changed$
- A2 24h/12h Display: Người dùng chọn định dạng hiển thị, internal time vẫn 24h
- A3 DST/Timezone: Khi đổi DST/múi giờ, áp offset cho hiển thị/time stamp tương lai; log quá khứ giữ nguyên

Exception Flows

- E1 RTC lost/invalid: Nếu RTC reset (mất pin nuôi) \rightarrow dùng system tick tạm, gắn cờ time unsynced, yêu cầu Time Setting/Auto Sync
- ${\bf E2-Button\ bounce/long-press\ error:}$ Nếu rung/kẹt \rightarrow debounce hoặc bỏ qua, giới hạn repeat rate
- E3 Missed rollover: Nếu thiết bị ngủ qua $00:00 \rightarrow khi$ dậy, so sánh ngày, chạy rollover bù
- **E4 Back-in-time change:** Nếu chỉnh giờ lùi nhiều \rightarrow đánh dấu $time_warp$ để không cộng sai daily intake; tách log trước/sau thay đổi

Special Requirements

- Accuracy RTC: sai số $\leq \pm 20$ ppm ($\approx \pm 1.7$ s/ngày) hoặc có periodic sync
- Rollover latency: xử lý trong ≤ 1 s sau midnight
- \bullet UI responsiveness: vào/thoát Time Setting ≤ 100 ms; mỗi lần tăng HOUR/MIN cập nhật hiển thị ≤ 100 ms
- Debounce nút: 20–50 ms; long-press ≥ 1 s; auto-repeat 5–10 Hz
- Power: RTC backup cell $< 1\,\mu\mathrm{A}$; giữ thời gian khi ngủ sâu

Assumptions

- Có RTC crystal 32.768 kHz hoặc internal RC đã hiệu chỉnh, có backup supply
- Các nút TIME/HOUR/MIN nối GPIO hỗ trợ interrupt
- Không yêu cầu xử lý leap seconds

Notes

- Khi Auto Sync từ USB/App, hiển thị thông báo "Time synced" ngắn
- Day Rollover nên theo local time; khi đổi múi giờ, rollover ngày tiếp theo theo múi giờ mới

3.4 Use Case UC 0004 – Display (Hiển thị)

Scope (Phạm vi): Quản lý hiển thị Status View (Today, Goal, Streak, Last sip), điều hướng Menu/Setting UI, giao tiếp Display Driver (LCD/OLED – I²C), tối ưu Brightness Control để tiết kiệm pin mà vẫn rõ ràng.

Primary Actor(s) (Tác nhân chính): MCU (vi điều khiển) Secondary Actors (Tác nhân phụ):

- Người dùng (nút bấm)
- Sensor (Measurement)
- Storage
- Time

Preconditions (Điều kiện trước):

- Display Driver đã khởi tạo, bus I²C ổn định
- Có dữ liệu từ Sensor (mL), Storage (goal, đơn vị), Time (giờ/phút) để hiển thị
- Nút điều hướng (UP/DOWN/OK/BACK) hoạt động, đã debounce

Postconditions (Điều kiện sau):

- Status View (Today/Goal/Streak/Last sip) hiển thị cập nhật, dễ đọc
- Người dùng vào Menu/Setting UI, thay đổi tham số và thấy phản hồi ngay

• Brightness Control áp dụng theo môi trường/cấu hình, tiết kiệm pin

Main Flow of Events (Luồng sự kiện chính):

- 1. MCU nhận dữ liệu từ Sensor/Storage/Time, dựng Status View.
- 2. MCU gọi Display Driver (I²C) để vẽ văn bản/biểu tượng theo layout (chống nhấp nháy).
- Định kỳ (250–500 ms) hoặc theo sự kiện, Status View được refresh một phần để giảm nhấp nháy và tiết kiệm năng lượng.
- 4. Người dùng nhấn nút \rightarrow chuyển sang Menu/Setting UI:
 - Điều hướng mục (Goal, Unit, Time, Brightness...).
 - Chỉnh giá trị, preview, OK để lưu.
- 5. Khi lưu, MCU cập nhật Storage, phản chiếu thay đổi lên Status View.
- 6. Áp Brightness Control: giảm sáng khi idle/ánh sáng thấp; tăng sáng khi có thao tác.
- 7. Sau idle lâu, chuyển về Status View hoặc dim/off.

Alternative Flows (Luồng thay thế):

- A1 Quick Toggle: Nhấn ngắn để luân phiên Status sub-views (Today \leftrightarrow Goal \leftrightarrow Streak \leftrightarrow Last sip).
- A2 Units/Locale: Người dùng chọn mL/oz, 24h/12h; UI cập nhật tức thì.
- A3 Auto-Dim by Time: Sau N giây không bấm \rightarrow giảm sáng; có bấm \rightarrow tăng sáng lại.
- A4 Low-Power Screen: Khi pin yếu, UI chuyển layout tối giản.

Exception Flows (Luồng ngoại lệ):

- E1 I²C error: Giao tiếp lỗi \rightarrow retry; nếu quá số lần, đặt cờ display_fault, chuyển low-update mode.
- E2 Font/Asset missing: Dùng fallback font/biểu tượng.
- E3 Oversized text: Tràn khung \rightarrow truncate/scroll, log để chỉnh UI sau.
- E4 Brightness sensor fail: Không đọc được → chuyển manual brightness.

Special Requirements (Yêu cầu đặc biệt):

- Readability: chữ ≥ 12 –14 px, tương phản cao
- UI latency: phản hồi nút ≤ 100 ms; cập nhật khung hình ≤ 200 ms
- Refresh policy: partial update để giảm nhấp nháy, tiết kiệm điện
- Power: với Brightness Control bật, tiết kiệm $\geq 30\%$ năng lượng
- Layout: Status View gồm 4 muc: Today, Goal, Streak, Last sip
- Accessibility: h\tilde{0} tro High-contrast, Large font

Assumptions (Giá định):

- \bullet Màn LCD/OLED nhỏ (0.96–1.3"), điều khiển qua I²C
- Nút tactile có interrupt để UI nhanh nhạy
- Không yêu cầu đồ họa phức tạp (bitmap lớn)

Notes (Ghi chú):

- Khi Status View hiển thị Last sip, nên kèm time stamp ngắn.
- \bullet Nếu dùng OLED: ưu tiên nền tối +auto-dim để tăng tuổi thọ màn hình.

4 Schematic

Figure 2: COVER PAGE

Figure 3: BLOCK DIAGRAM

Figure 4: BATTERY

Figure 5: CONNECTER