CAPABL PROJECT

Predict Taxi Trip Duration

Importing Packages

```
In []: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings

plt.style.use("ggplot")
   warnings.filterwarnings('ignore')
```

Data Gathering

```
In [ ]: df = pd.read_csv(r"C:\Users\HP\Downloads\train.csv")
   test = pd.read_csv(r"C:\Users\HP\Downloads\test.csv")
   df.head()
```

Out[]:		id	vendor_id	pickup_datetime	dropoff_datetime	passenger_count	pickup_longitude
	0	id2875421	2	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.982155
	1	id2377394	1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.980415
	2	id3858529	2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.979027
	3	id3504673	2	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.010040
	4	id2181028	2	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.973053

Data Pre-Processing

```
In [ ]: print("Total number of samples in test dataset: ", df.shape[0])
    print("Number of columns in test dataset: ", df.shape[1])
```

Total number of samples in test dataset: 1458644 Number of columns in test dataset: 11

Inference:

The train dataset has 1458644 rows ans 11 columns

Loading [MathJax]/extensions/Safe.js

```
In [ ]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1458644 entries, 0 to 1458643
        Data columns (total 11 columns):
         #
             Column
                                  Non-Null Count
                                                    Dtype
                                  -----
             -----
                                                    ----
         0
             id
                                  1458644 non-null object
             vendor id
                                  1458644 non-null int64
         1
         pickup_datetime
dropoff_datetime
passenger_count
                                  1458644 non-null object
                                  1458644 non-null object
                                  1458644 non-null int64
             pickup_longitude
pickup_latitude
                                  1458644 non-null float64
         6
                                  1458644 non-null float64
                                  1458644 non-null float64
         7
             dropoff_longitude
         8
             dropoff latitude
                                  1458644 non-null float64
         9
             store and fwd flag 1458644 non-null object
         10 trip duration
                                  1458644 non-null int64
        dtypes: float64(4), int64(3), object(4)
        memory usage: 122.4+ MB
```

Inference:

It is observed that every variable has a correct datatype except pickup_datetime and dropoff_datetime which should be having datetime datatype

In []:	<pre>df.describe()</pre>								
Out[]:		vendor_id	passenger_count	pickup_longitude	pickup_latitude	dropoff_longitude	dro		
	count	1.458644e+06	1.458644e+06	1.458644e+06	1.458644e+06	1.458644e+06	1		
	mean	1.534950e+00	1.664530e+00	-7.397349e+01	4.075092e+01	-7.397342e+01	4		
	std	4.987772e-01	1.314242e+00	7.090186e-02	3.288119e-02	7.064327e-02	3		
	min	1.000000e+00	0.000000e+00	-1.219333e+02	3.435970e+01	-1.219333e+02	3		
	25%	1.000000e+00	1.000000e+00	-7.399187e+01	4.073735e+01	-7.399133e+01	4		
	50%	2.000000e+00	1.000000e+00	-7.398174e+01	4.075410e+01	-7.397975e+01	4		
	75%	2.000000e+00	2.000000e+00	-7.396733e+01	4.076836e+01	-7.396301e+01	4		
	max	2.000000e+00	9.000000e+00	-6.133553e+01	5.188108e+01	-6.133553e+01	4		

Inference:

The values of each variable have completely different ranges and have to be scaled

```
In [ ]: new_df = df.copy(deep = True) #making a copy of the original dataset
  test_df = df.copy(deep = True)
```

Missing value analysis

```
In [ ]: new_df.isnull().sum()
```

```
Out[]: id
                               0
        vendor id
                               0
        pickup datetime
                               0
        dropoff datetime
                               0
        passenger count
                               0
                               0
        pickup longitude
        pickup latitude
                               0
        dropoff_longitude
                               0
        dropoff_latitude
                               0
        store and fwd flag
                               0
        trip duration
                               0
        dtype: int64
```

Inference:

Since there no missing values, there is no need for us to do the missing value analysis

Exploratory Data Analysis

```
In []: plt.figure(figsize = (10, 6))
   plt.title("Bar plot showing the number of trips from each vendor")
   new_df["vendor_id"].value_counts().plot(kind = "bar")
   plt.show()
```


Inference:

Both of the vendors have a significant amount of trips meaning that they would be useful in predicting the duration

```
In []: sns.distplot(new_df['passenger_count'],kde=False)
    plt.title('Passenger Count Distribution')
    plt.show()
```


Inference:

Here we see that the mostly 1 or 2 passengers available in the cab. The instance of large group of people travelling together are rare.

```
In [ ]: new_df["pickup_datetime"] = pd.to_datetime(new_df["pickup_datetime"])
    new_df["dropoff_datetime"] = pd.to_datetime(new_df["dropoff_datetime"])

In [ ]: new_df['pickup_hour'] = new_df['pickup_datetime'].dt.hour
    new_df['pickup_day'] = new_df['pickup_datetime'].dt.dayofweek

In [ ]: new_df['dropoff_hour'] = new_df['dropoff_datetime'].dt.hour
    new_df['dropoff_day'] = new_df['dropoff_datetime'].dt.dayofweek

In [ ]: new_df
```

Out[]:		id	vendor_id	pickup_datetime	dropoff_datetime	passenger_count	pickup_long
	0	id2875421	2	2016-03-14 17:24:55	2016-03-14 17:32:30	1	-73.98
	1	id2377394	1	2016-06-12 00:43:35	2016-06-12 00:54:38	1	-73.98
	2	id3858529	2	2016-01-19 11:35:24	2016-01-19 12:10:48	1	-73.9
	3	id3504673	2	2016-04-06 19:32:31	2016-04-06 19:39:40	1	-74.01
	4	id2181028	2	2016-03-26 13:30:55	2016-03-26 13:38:10	1	-73.9
	1458639	id2376096	2	2016-04-08 13:31:04	2016-04-08 13:44:02	4	-73.98
	1458640	id1049543	1	2016-01-10 07:35:15	2016-01-10 07:46:10	1	-74.00
	1458641	id2304944	2	2016-04-22 06:57:41	2016-04-22 07:10:25	1	-73.9
	1458642	id2714485	1	2016-01-05 15:56:26	2016-01-05 16:02:39	1	-73.98
	1458643	id1209952	1	2016-04-05 14:44:25	2016-04-05 14:47:43	1	-73.9
	1458644	rows × 15 (columns				
In []:	<pre>test_df["pickup_datetime"] = pd.to_datetime(test_df["pickup_datetime"]) test_df["dropoff_datetime"] = pd.to_datetime(test_df["dropoff_datetime"]) test_df['pickup_hour'] = test_df['pickup_datetime'].dt.hour test_df['pickup_day'] = test_df['pickup_datetime'].dt.dayofweek test_df['dropoff_hour'] = test_df['dropoff_datetime'].dt.hour test_df['dropoff_day'] = test_df['dropoff_datetime'].dt.day_name()</pre>						
In []:	<pre>plt.figure(figsize = (10, 6))</pre>						

plt.title('Number of Pickups done on each day of the week')

sns.countplot(x='pickup_day',data = new_df)

Number of Pickups done on each day of the week

Inference

Thus we see most trips were taken on Friday and Monday being the least. The distribution of trip duration with the days of the week is something to look into as well.

```
In [ ]: plt.figure(figsize = (15, 6))
    sns.catplot(x="vendor_id", y="trip_duration",kind="strip",data=new_df)
    plt.title("The relationship between vendor id and duration")
    plt.show()
```

<Figure size 1500x600 with 0 Axes>

The relationship between vendor id and duration

Inference

Here we see that vendor 1 mostly provides short trip duration cabs while vendor 2 provides cab for both short and long trips but there has been outliers in vendor 1's case

Feature Selection

```
In [ ]: new_df["longitudinal_distance"] = abs(new_df["pickup_longitude"] - new_df["conew_df["latitudinal_distance"] = abs(new_df["pickup_latitude"] - new_df["drowdf.columns]

Out[ ]: Index(['id', 'vendor_id', 'pickup_datetime', 'dropoff_datetime', 'passenger_count', 'pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'store_and_fwd_flag', 'trip_duration', 'pickup_hour', 'pickup_day', 'dropoff_hour', 'dropoff_day', 'longitudinal_distance', 'latitudinal_distance'], dtype='object')

In [ ]: X = new_df[["vendor_id", "passenger_count", "pickup_longitude", "pickup_lation | latitudinal_distance", "latitudinal_distance"]
In [ ]: X.head()
```

```
vendor_id passenger_count pickup_longitude pickup_latitude dropoff_longitude dropoff_latit
Out[]:
          0
                    2
                                               -73.982155
                                                               40.767937
                                                                                -73.964630
                                                                                                 40.76
          1
                     1
                                               -73.980415
                                                               40.738564
                                                                                -73.999481
                                                                                                 40.731
          2
                     2
                                               -73.979027
                                                               40.763939
                                                                                -74.005333
                                                                                                 40.710
                     2
                                               -74.010040
                                                                                -74.012268
                                                                                                 40.706
          3
                                                               40.719971
                     2
                                      1
                                                                                                 40.782
                                               -73.973053
                                                               40.793209
                                                                                -73.972923
In [ ]: y = new_df.trip_duration
          Training the model
```

```
In [ ]: from sklearn.linear model import LinearRegression
        from sklearn.model selection import train test split
        from sklearn.metrics import mean absolute percentage error
In [ ]: x train,x test,y train,y test = train test split(X,y,test size = 0.3,random
In [ ]:
        regression model = LinearRegression()
        regression model.fit(x train, y train)
Out[]: ▼ LinearRegression
        LinearRegression()
In [ ]: regression model.intercept
Out[]: 149265.28284166197
In [ ]:
        regression_model.coef_
Out[]: array([ 1.97905863e+02, 9.46743403e+00, -3.17959649e+01, -1.09621649e+03,
                9.22815538e+02, -9.42473845e+02, -6.22246315e+00, -2.05902016e+02,
                1.99808399e+02, 9.61403407e+00, 7.73704143e+03, 6.91226594e+03])
In [ ]: y predict = regression model.predict(x test)
In [ ]: y predict
Out[]: array([1157.38636882, 924.31649304, 769.96502678, ..., 674.18571211,
               1508.38661454, 789.25471437])
In [ ]: predictions = pd.DataFrame({'Actual': y test, 'Predicted': y predict.flatter
In [ ]: predictions
```

Out[]:		Actual	Predicted
		528024	1357	1157.386369
		251854	268	924.316493
		433742	116	769.965027
		471693	1073	865.840080
		1431726	485	869.308208
		455353	491	638.950499
		1132514	313	832.103683
		990885	892	674.185712
		177633	1651	1508.386615
		385879	931	789.254714

437594 rows × 2 columns

Testing the model

Out[]:		Actual	Predicted
		528024	1357	1157.386369
		251854	268	924.316493
		433742	116	769.965027
		471693	1073	865.840080
		1431726	485	869.308208
		455353	491	638.950499
		1132514	313	832.103683
		990885	892	674.185712
		177633	1651	1508.386615
		385879	931	789.254714

437594 rows × 2 columns

```
In [ ]: mean_absolute_percentage_error(y_test, y_predict)
Out[ ]: 1.0852261261993381
```

The Accuracy rate of the taxi_duration is 100% - 10.8% = 89.%(accuracy_score)

Conclusion

We have successfully modelled a linear regression model to predict the time taken by vehicles and can be used in bussiness model to optimize transport