



#### Sistemas de Tempo Real

Disciplina de Sistemas Embarcados Prof. Renato Sampaio





#### Linux em Tempo Real

- Conceitos Gerais
  - Escalonador
  - Gerenciamento de Interrupções
  - Latência
- Características de Tempo-real no Linux
  - RP-PREEMPT
- Extensões de Tempo-real: Xenomai





## Dificuldades para Atingir Tempo-real

- O Linux é otimizado para rendimento máximo (throughput) e não determinismo.
  - CPUs que rodam Linux utilizam estruturas de memória com muitas camadas (níveis de cache)
  - O uso de Cache impede tarefas RT





#### **Jitter**

- O espalhamento do período de controle de todas as tarefas do sistema.
- Total Jitter: diferença entre os tempos de resposta máximo e mínimo.





## **Jitter**







#### Linux em Tempo-Real

Duas abordagens

#### 1. RT-Preempt

- Permite preempção das tarefas do kernel para minimizar latências.
- Escalona todas as atividades (incluindo IRQ) como threads escalonáveis.

#### 2. RT Extensions

 Adiciona uma outra camada entre o hardware e o kernel do Linux para tratar das tarefas RT.





- Escalonador
  - O Kernel suporta vários tipos de escalonadores por extensão
    - SCHED\_OTHER (padrão, não-RT)
    - SCHED\_FIFO (Usa FIFO RT)
    - SCHED\_RR (Usa RR RT)
    - SCHED\_IDLE
    - SCHED\_BATCH
    - SCHED\_DEADLINE





- Problemas no Escalonador
  - System calls: no guaranteed response time.
  - Device drivers: System calls handlers or interrupt handlers usually not implemented with care for real-time requirements. Expect uncertainties unless you implemented all kernel support code by yourself.





• Problemas - Inversão de Prioridades com Mutex







Problemas - Inversão de Prioridades com Mutex



 Problema: um processo de maior prioridade pode tirar um outro processo que esteja segurando o lock (mutex).





Problemas - Inversão de Prioridades com Mutex



 Solução: herança de prioridade. O processo que segura o lock (mutex) ganha alta prioridade.





• Problemas - Inversão de Prioridades de Interrupções



- Problema: Até a tarefa de mais alta prioridade pode ser interrompida pelo interrupt handler.
- Solução: interrupção em threads.





#### POSIX 1003.1b - Extensões RT

- Prioridades no Escalonador
- Sinais de RT
- Clocks e Timers
- Semáforos
- Passagem de Mensagens
- Memória Compartilhada
- E/S Síncrono e Assíncrono
- Locking de Memória





#### Melhorias do Kernel Linux

- A partir do Kernel 2.6
  - Interrupções em Threads: interrupções podem ser executadas por uma thread do kernel com prioridades
  - RT-Mutex: herança de prioridades
  - BKL-free: Kernel pode ser compilado sem o Big Kernel Lock
  - Aumento de determinismo com a API POSIX RT
  - Chamadas de sistema (System Calls) ainda não preemptívels por padrão mas extensívels pelo CONFIG\_PREEMPT e CONFIG\_PREEMPT-RT
  - Timers de Alta resolução nanosleep() 1us





#### Kernel RT-Preempt

- Objetivo: Tornar o sistema mais determinístico
  - Kernel preemptivo porém ainda sem garantia total de latência (alocação de memória) —> Usar mlock
  - Drivers (USB, PCI, etc) não implementados em RT.
  - IRQ em Threads
  - Frequência do Timer (100Hz -> 1000Hz) Resolução de 10ms -> 1ms.
  - Timer de alta resolução (1us)





#### Kernel RT-Preempt







#### Kernel RT-Preempt

IRQ em Threads



Kernel PREEMPT-RT





# Comparação

Kernel RT disponível em:

https://docs.emlid.com/navio/Downloads/Real-time-Linux-RPi2/







## Linux







# Linux Preempt-RT







# Linux Preempt-RT







## Linux vs Preempt-RT vs Xenomai







## Bibliografia

Kopetz, Hermann; Real-time Systems:
 Design Principles for Distributed Embedded
 Applications, 2nd Ed. Springer, 2011.