[完全模型组]赛前集训 AI赛道开发技巧

主讲人: 廖腾均

- **智能车软件架构解析**
- 2 AI部署流程注意事项
- 3 AI赛道元素控制策略

目 录

智能汽车培训

-完全模型组-

智能车软件架构分析

[1] 智能车软件架构分析

[1.1] 示例|Demo

测试/开发场地

-完全模型组-

序号	分类/Type	功能/F	unc	功能说明/Info	状态	完成率
1	33307 - 372 -	相机校准		> UI显示网格线,机械对称性校验;	已完成	100.00%
2		图像采集	image collection	> 遥控手柄控制车辆(支持无线/有线);	已完成	100.00%
3	Tools	相机标定		> 单帧/连续彩图控制; > 准备工作: 采集标定板图像(>10P); > 輸出每张样片的误差. 删选优质图片; > 輸出相机的内参/外参矩阵保存.xml;	已完成	100.00%
4		图像合成	image2video	> 图片合成视频;	已完成	100.00%
5		图像预处理	image_preprocess	原始图像畸变矫正;图像增强去噪;图像二值化;	已完成	100.00%
6	Base	逆透视变换	perspective_mapping	> 二维图像透视变换(斜视→俯视);> 二维坐标透视变换(斜视→俯视);> 二维图像反透视变换(俯视→斜视);> 二维坐标反透视变换(俯视→斜视);	已完成	100.00%
7		赛道识别	track_recognition	> 搜索赛道边缘; > 搜索岔路坐标; > 计算赛道边缘斜率/方差; > 支持赛道重搜索;	已完成	100.00%
8	DGP	环岛识别	ring_recognition	> 左入环岛识别与路径规划; > 右入环岛识别与路径规划;	已完成	90.00%
9	赛道识别	十字识别	cross_recognition	> 左/右十字道路识别与路径规划; > 左/右斜入十字道路识别与路径规划;	已完成	70.00%
10		车库识别	garage_recognition	> 出库识别与路径规划; > 入库识别与路径规划;	有缺陷	90.00%
11		泛行区识别	freezone_recognition	> 左/右入泛行区识别与路径规划;	已完成	90.00%
12		施工区检测	husy detection	> 施工区AI标志检测与任务触发; > 锥桶AI检测与车道线拟合;	已完成	100.00%
13	AI	加油站检测	gasstation_detectio n	> 加油站AI标志检测与任务触发; > 锥桶AI检测与车道线拟合; > 出口AI检测;	已完成	90.00%
14	赛道检测	斑马线检测	crosswalk_detection	> 斑马线AI标志检测;	已完成	
15		泛行区检测	freezone_detection	> 泛行区&禁行标志检测: > 泛行区路径规划(蓝色部分);	已完成	
16		坡道检测	slope_detection	> 坡道AI标志检测; > 坡道图像与车辆姿态优化;	已完成	
17	Base	控制中心拟合	controlcenter_cal	> 赛道边缘有效行优化; > 赛道类型判断与运动轨迹拟合; > 加权控制中心计算;	已完成	100.00%
18	Dase	运动控制	motion_controller	加载Json调试参数;PD姿态控制器;车辆变速控制;	已完成	100.00%

[1] 智能车软件架构分析

[1.1] 示例|Demo

-完全模型组-

AI部署流程注意事项

[2.1] 数据采集|分类和比例

	《智制	じ汽车 — AI模型训	练数据3	科》	
序号	数据名称	采样说明	数量 (张)	比例	备注
1	斑马线标志	 横向采样 (入库角度): 60%; 纵向采样 (出库角度): 40%;	300	10.34%	
2	加油站标志		300	10.34%	
3	数字1标志(蓝底)	> 蓝底背景采样: 50%;	150	5.17%	
4	数字1标志(白底)	> 白底赛道采样: 50%;	150	5.17%	
5	数字2标志(白底)	> 白底赛道采样: 50%;	150	5.17%	一图一框
6	数字2标志(蓝底)	> 蓝底背景采样: 50%;	150	5.17%	
7	施工区标志		300	10.34%	
8	坡道标志		300	10.34%	
9	泛行区标志		300	10.34%	
10	禁行标志	> 蓝底360度采样;	300	10.34%	
11	锥桶	> 1m/s以上车速动态采样: 50%; > 多视角, 蓝底静态采样: 50%;	500	17.24%	一图多框
12		TOTAL	2900	100.00%	

[2.2] 采样场地布置

-完全模型组-

[2] AI部署流程注意事项

[2.3] 静/动态采样

动态采样 (1~2.2m/s)

手动遥控采样 (蓝底)

-完全模型组-

[2.4] 数据标定

VOC数据集

```
<?xml version="1.0"?>
- <annotation>
     <folder>IMAGES</folder>
     <filename>9.png</filename>
     <path>E:\icar\datafirst\trytwo\IMAGES\9.png</path>
   - <source>
        <database>Unknown</database>
     </source>
   - <size>
        <width>640</width>
        <height>480</height>
        <depth>3</depth>
     </size>
     <segmented>0</segmented>
    <object>
  <name>Numone</name>
  <pose>Unspecified</pose>
        <truncated>0</truncated>
       <difficult>0</difficult>
- <bndbox>
            <xmin>194</xmin>
            <ymin>168
            <xmax>289</xmax>
            <ymax>245</ymax>
        </bndbox>
     </object>
 </annotation>
```

[2.5] 模型选择

AI任务需求

- ✓ 帧率/FPS: 50ms → 20fps → Lower
- ✓ 精度/Map:

推桶-Ap > 60% 标志-AP > 80% 平均-Map > 75%

-完全模型组-

网络↩	输入尺寸↩	单帧耗时
		FZ3←
Mobilenet-v1←	224 x 224←	10ms←
Resnet50←	224 x 224€	44ms←
Inception-v2	299 x 299€	42ms←
Inception-v3←	299 x 299€	73ms←
Mobilenet-ssd←	224 x 224←	25ms←
Mobilenet-ssd-640←	640 x 640€	89ms←
Vgg-ssd←	300 x 300€	256ms←
Yolo-v3←	608 x 608€	701ms←

[2.5] 模型选择

-完全模型组-

[2.6] Aistudio训练

公共版训练教程

赛事开源训练教程

[2.7] 训练脚本

Not	tebook	终端-1 ×
\triangleright	DD	⑤ ⑤ ○ ○ □ + Code + Markdown ○ 定位列当前返行Cell
[]	1	
		# View dataset directory.
		# This directory will be recovered automatically after resetting environment
	4	!ls /home/aistudio/data
G	data12	6272
: 解日	E数据 ()	共4行)
rom	future_	_ import absolute_import (共74行)
	future_ 文模型(J	
定义	V模型 (3	
: 定义: 定义	文模型 () 文训练时们	共109行)
: 定义 : 定义 : : 定义	文模型 () 文训练时们	共109行) 桌,数据增强需要的辅助类,例如外接矩形框、采样器(共50行) B,主要是采样。利用随机截取训练图上的框来生成新的训练样本。同时要保证采样的样本能包;
: 定义: 定义: 定义: 计测线: 图像	义模型 (3) 文训练时(4) 东数据增强 (3)	共109行) 桌,数据增强需要的辅助类,例如外接矩形框、采样器(共50行) B,主要是采样。利用随机截取训练图上的框来生成新的训练样本。同时要保证采样的样本能包;

自定义训练脚本

[2.8] 模型训练

创建工程/Fork

上传数据

划分数据集

选择/上传预训练模型

模型配置

开始训练

导出/验证结果

```
0 batch train, cur map: 0.5000000596046448 accum map v: 0.2780109941959381
2022-06-29 17:30:02,762-INFO: 0 batch train, cur map:0.02606060728430748 accum map v:0.268
0 batch train, cur map: 0.02606060728430748 accum map v: 0.26828837394714355
2022-06-29 17:30:02,946-INFO: 0 batch train, cur map:1.0000001192092896 accum map v:0.2717
0 batch train, cur map:1.0000001192092896 accum map v:0.27173128724098206
2022-06-29 17:30:03,138-INFO: 0 batch train, cur map:0.02200956828892231 accum map v:0.270
0 batch train, cur map: 0.02200956828892231 accum map v: 0.27066904306411743
2022-06-29 17:30:03,323-INFO: 0 batch train, cur map:1.000000238418579 accum map v:0.27190
0 batch train, cur map:1.000000238418579 accum map v:0.27190443873405457
2022-06-29 17:30:03,509-INFO: 0 batch train, cur map:0.26608189940452576 accum map v:0.269
0 batch train, cur map: 0.26608189940452576 accum map v: 0.2697581350803375
2022-06-29 17:30:03,696-INFO: 0 batch train, cur map:0.7499998211860657 accum map v:0.2698
0 batch train, cur map:0.7499998211860657 accum map v:0.26981306076049805
2022-06-29 17:30:03,880-INFO: 0 batch train, cur map:0.5000000596046448 accum map v:0.2698
0 batch train, cur map: 0.5000000596046448 accum map v: 0.2698725461959839
2022-06-29 17:30:04,067-INFO: 0 batch train, cur map:0.2670454680919647 accum map v:0.2699
0 batch train, cur map: 0.2670454680919647 accum map v: 0.26992619037628174
```

训练中ing...

AI赛道元素控制策略

[3.1] 模块化/状态机

[3.2] 多线程

创建多线程任务

✓ 数据对齐: 互斥锁/mutex,共享数据块

✓ 行为对齐:模式切换;

调试状态 or 比赛状态;

✓ 任务划分:

OpenCV图像采集; 数字图像处理; Paddle模型推理; 车辆控制; 存图/自动记录;

-完全模型组-

[3.3] 目标检测及路径规划

AI目标检测

俯视域路径规划 (IPM)

原始域车辆控制

[3.3] 目标检测及路径规划

按赛道斜率划分区域

按水平划分区域

按四象限划分区域

[3.3] 目标检测及路径规划

[3.3]目标检测及路径规划

泛行区忽略禁行标志

[3.3]目标检测及路径规划

泛行区避开禁行标志

[3.3]目标检测及路径规划

-完全模型组-

[完全模型组] - 赛前集训 AI赛道开发技巧

预祝所有参赛队员斩获佳绩!!!