Master's Theorem

 Master's Theorem is a method for solving recurrence relation of the form

$$T(n) = aT(n/b) + f(n), a >= 1 and b > 1$$

- where, n = size of input
- a = number of sub-problems and n/b is the size of each sub-problem.
- F(n) is the cost of decomposition

- If T(n) = aT(n/b) + f(n) where a >= 1 and b > 1,
 Master's theorem states that:
- 1. If $f(n) = O(n^{\log_b a \epsilon})$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(f(n)^* \log n)$.
- 3. If $f(n) = \Omega(n^{\log_{b} a + \epsilon})$, then $T(n) = \Theta(f(n))$.
- ϵ > 0 is a constant.

• Solve $T(n) = 4T(n/2) + n^2$ using master's theorem Here, a = 4 b = 2 f(n) = n^2 $\log_b a = \log_2 4 = 2$ ie. $n^{\log_b a} = n^{\log_b a} = n^2$ ($n^{\log_b a}$ and f(n) are same..case 2) $T(n) = \Theta(n^2 \lg n)$

• Solve $T(n) = 8T(n/2) + n^2$ using master's theorem Here, a = 8 b = 2 f(n) = n^2 $\log_b a = \log_2 8 = 3$ ie. $n\log_b a = n\log_b a = n^3$ ($n\log_b a > f(n)$ are same..case 1) $T(n) = \Theta(n^3)$ • Solve T(n) = $3T(n/2) + n^2$ using master's theorem Here, $a = 3 b = 2 f(n) = n^2$ $\log_b a = \log_2 3 = 1.58 ie.$ $n^{\log_b a} = n^{\log_b a} = n^{1.58} (n^{\log_b a} < f(n)...case 3)$ $T(n) = \Theta(n^2)$

• Solve T(n) = 9T(n/3) + n² using master's theorem Here, a = 9 b = 3 f(n) = n² $\log_b a = \log_3 9 = 2$ ie. $n\log_b a = n\log_b a = n^2$ ($n\log_b a$ and f(n) are same..case 1) T(n)= $\Theta(n^2 \lg n)$ • Solve T(n) = 2T(n/4) + \sqrt{n} using master's theorem Here, a = 2 b = 4 f(n) = \sqrt{n} $\log_b a = \log_4 2 = .5$ ie. $n^{\log_b a} = n^{\log_b a} = n^{.5}$ ($n^{\log_b a} = f(n)$..case 2) T(n)= $\Theta(n^{.5} \lg n)$

• Solve T (n) = 2^n T (n/2) + n^n using master's theorem Here, $a = 2^n$ b = 2 f(n) = n^n $\log_b a = \log_2 2^n = n$ ie.

 $n^{\log_{h} a} = n^{\log_{h} a} = n^{n}$ ($n^{\log_{h} a}$ and f(n) are same..case 2)

 $T(n) = \Theta(n \log n)$

• Solve $T(n) = 7T(n/2) + n^2$ using master's theorem Here, a = 7 b = 2 f(n) = n^2 $\log_b a = \log_2 7 = 2.5$ ie.

$$n^{\log_b a} = n^{\log_b a} = n^{2.5} (n^{\log_b a} > f(n)...case 3)$$

 $T(n) = \Theta(n^{2.5})$

• Solve T(n) = 2T(n/2) + nlgn using master's theorem Here, a = 2 b = 2 f(n) = nlgn $log_b a = log_2 2 = 1$ ie.

 $n^{\log_b a} = n^{\log_b a} = n^1 (n^{\log_b a} < f(n))$ but f(n) is not polynomially larger than $n^{\log_b a}$, so this problem cannot be solved by master's theorem