

Support vector machines for survival analysis with R

Césaire Fouodo
Computergestützte Statistik
Fakultät Statistik



#### Inhalt

- 1. Klassische Überlebenszeitanalyse
- 2. Klassische Stützvektormaschinen
- 3. Stützvektormaschinen für die Überlebenszeitanalyse
- 4. Umsetzung in R und Vergleichsstudie
- 5. Zusammenfassung
- 6. Diskussion und Ausblick



Überlebenszeit: die Zeit bis zum Auftreten eines Ereignis

#### Beispiele:

Untersuchung von zwei Therapien (in der Medizin):
 vollständige Remission von einer Erkrankung oder Tod

- Überlebenszeiten von elektronischen Geräten (in der Elektrotechnik)
- Dauer der ersten Ehe (in der Soziologie)



#### Überlebensfunktion

Sei  $T \ge 0$  eine Zufallsvariable

$$S(t) = Pr(T > t)$$
 ist die Überlebensfunktion

Es gilt:

$$S(t) = \begin{cases} 1, & \text{falls } t = 0 \\ 0, & \text{falls } t \longrightarrow \infty \end{cases}$$



#### Überlebensfunktion





#### Zensierung

| Individuen | δ | T  |
|------------|---|----|
| Α          | 1 | 10 |
| В          | 1 | 15 |
| С          | 0 | 25 |
| D          | 1 | 20 |
| E          | 0 | 30 |
| F          | 0 | 30 |
|            |   |    |

 $\delta$ : Status





#### Das proportionale Hazard (Cox) Modell<sup>1</sup>:

- $h(t|X) = h_0(t) \exp(\beta' X),$ 
  - wobei  $\beta' = (\beta_1, \beta_2, ..., \beta_d) \in \mathbb{R}^d$  der zu schätzende Parametervektor ist
- $h_0(t)$  heißt **Basis-Hazard-Funktion**
- Schätzung der Parameter anhand der partiellen Likelihood
- lacktriangle Proportionale Hazards zwischen zwei Individuen i und j

$$\frac{h(t|X_i)}{h(t|X_j)} = \frac{\exp(\beta'X_i)}{\exp(\beta'X_j)} = \exp(\beta'(X_i - X_j))$$

<sup>&</sup>lt;sup>1</sup>D. B. Cox. 1972, 34, S. 187-220,



# Proportionalitätsannahme erfüllt Beispiel







# Proportionalitätsannahme nicht erfüllt Beispiel





#### Hazard-Funktion





#### Referenzmethoden dieser Studie:

- Das proportionale Cox (oder PH) Modell
- Zufallswälder für die Überlebenszeitanalyse²
- Das Gradient-Boosting für die Überlebenszeitanalyse<sup>3</sup>

<sup>&</sup>lt;sup>2</sup>H. Ishwaran und U. Kogalur. 2007. 2. S. 25–31.

<sup>&</sup>lt;sup>3</sup>J. H. Friedman. 2001. 29. S. 1189–1232.



#### Inhalt

- 1. Klassische Überlebenszeitanalyse
- 2. Klassische Stützvektormaschinen
- 3. Stützvektormaschinen für die Überlebenszeitanalyse
- 4. Umsetzung in R und Vergleichsstudie
- 5. Zusammenfassung
- 6. Diskussion und Ausblick



#### Klassische Stützvektormaschinen<sup>4</sup>

#### streng linear trennbare Trainingsgruppen

Seien  $X \in \mathbb{R}^d$  und  $Y \in \{-1, 1\}$ 

#### SVM-Problem

Minimiere 
$$\tau(\psi) = \frac{1}{2} ||\psi||^2$$

u.d.N. 
$$y_i(\langle x_i, \psi \rangle + b) \ge 1$$



<sup>&</sup>lt;sup>4</sup>V. N. Vapnik. 1995. ISBN: 978-0-387-94559-0.



#### Lagrangefunktion

$$L(\psi, b, \lambda) = \frac{1}{2} \|\psi\|^2 - \sum_{i=1}^{n} \lambda_i (y_i(\langle x_i, \psi \rangle + b) - 1)$$

Es folgt mit den Karush-Kuhn-Tucker (KKT)-Bedingungen<sup>5</sup>

$$-(y_i(\langle x_i, \psi \rangle + b) - 1) \le 0 \tag{1a}$$

$$\lambda_i \ge 0 \tag{1b}$$

$$\lambda_i(y_i(\langle x_i, \psi \rangle + b) - 1) = 0 \tag{1c}$$

<sup>&</sup>lt;sup>5</sup>H. W. Kuhn und A. W. Tucker. 1951.



#### Klassische Stützvektormaschinen<sup>6</sup>

#### überlappende Trainingsgruppen

#### Das SVM-Problem

$$\min_{\psi, b, \xi} \quad \tau(\psi) = \frac{1}{2} \|\psi\|^2 + C \sum_{i=1}^{n} \xi_i$$

u.d.N. 
$$-(y_i(\langle x_i, \psi \rangle + b) + \xi_i - 1) \le 0,$$

$$\xi_i \geq 0$$
,

wobei C ein Tuningparameter ist



 $x_1$ 

<sup>&</sup>lt;sup>6</sup>V. N. Vapnik. 1995. ISBN: 978-0-387-94559-0.



#### Klassische Stützvektormaschinen<sup>7</sup>

## Stützvektorregression $\epsilon$ -sensitive Fehlerfunktion



 $\xi^* > 0$ 

20

30



Ordinärer Datenpunkt Stützvektor

10

Césaire Fouodo |

30

20

<sup>&</sup>lt;sup>7</sup>C. Bishop. 2007. ISBN: 978-0-387-31073-2.



#### Stützvektorregression

Das SVM-Problem<sup>8</sup>

$$\begin{split} \min_{\psi,b,\xi,\xi*} \quad & \frac{1}{2}\|\psi\|^2 + \gamma \sum_{i=1}^n (\xi_i + \xi_i^*) \\ \text{u.d.N.} \quad & y_i - \langle \psi, F(x_i) \rangle - b \leq \epsilon + \xi_i, \; \xi_i \geq 0, \; i = 1,...,n \\ & \langle \psi, F(x_i) \rangle + b - y_i \leq \epsilon + \xi_i^*, \; \xi_i^* \geq 0, \; i = 1,...,n \end{split}$$

<sup>&</sup>lt;sup>8</sup>C. Bishop. 2007. ISBN: 978-0-387-31073-2.



#### **Der Kernel-Trick** Beispiel









#### Der Kernel-Trick

Verwendete Kernel

- linearer Kernel:  $K(x_i, x_j) = \sum_{p=1}^{d} x_{ip} x_{jp}$
- additiver Kernel<sup>9</sup>:  $K(x_i, x_j) = \sum_{p=1}^d K_p(x_i^p, x_j^p)$ , wobei
  - $K_p(x_i^p, x_j^p) = \frac{c |x_i^p x_j^p|}{c}$

für stetige und ordinale Variablen,  $c = \max_p - \min_p$ 

$$\qquad \mathbf{K}_p(x_i^p, x_j^p) = \begin{cases} 1, & \text{falls } x_i^p = x_j^p, \\ 0 & \text{sonst} \end{cases}$$

#### für binäre und kategorielle Variablen

<sup>&</sup>lt;sup>9</sup> A. Daemen und B. De Moor, 2009, S. 5913–5917.

#### Inhalt

- 1. Klassische Überlebenszeitanalyse
- 2. Klassische Stützvektormaschinen
- 3. Stützvektormaschinen für die Überlebenszeitanalyse
- 4. Umsetzung in R und Vergleichsstudie
- 5. Zusammenfassung
- 6. Diskussion und Ausblick



Regressionsansatz<sup>10</sup> 11

Regression





<sup>&</sup>lt;sup>10</sup>P. K. Shivaswamy, W. Chu und M. Jansche. 2007. S. 655-660.

<sup>&</sup>lt;sup>11</sup> Van Belle et al. 2011. 53. S. 107–118.



Regressionsansatz<sup>12</sup> 13

Regression

Formulierung des SVM-Problems

$$\begin{split} \min_{\psi,b,\xi,\xi*} \quad & \frac{1}{2} \|\psi\|^2 + \gamma \sum_{i=1}^n (\xi_i + \xi_i^*) \\ \text{u.d.N.} \quad & y_i - \langle \psi, F(x_i) \rangle - b \leq \xi_i, \\ & \langle \psi, F(x_i) \rangle + b - y_i \ \leq \xi_i^*, \\ & \xi_i, \xi_i^* \geq 0, \end{split}$$

Vorhersage gegeben einen Datenpunkt  $x^*$ 

$$\hat{y} = \sum_{i=1}^{n} (\beta_i - \delta_i \beta_i^*) K(x_i, x^*) + b_0$$

<sup>&</sup>lt;sup>12</sup>P. K. Shivaswamv, W. Chu und M. Jansche, 2007, S. 655–660.

<sup>13</sup> Van Belle et al. 2011, 53, S. 107-118,



Regressionsansatz<sup>14</sup> 15

Regression

Formulierung des SVM-Problems

$$\begin{split} \min_{\psi,b,\xi,\xi*} \quad & \frac{1}{2} \|\psi\|^2 + \gamma \sum_{i=1}^n (\xi_i + \xi_i^*) \\ \text{u.d.N.} \quad & y_i - \langle \psi, F(x_i) \rangle - b \leq \xi_i, \\ & \frac{\delta_i(\langle \psi, F(x_i) \rangle + b - y_i)}{\xi_i^*, \xi_i^* \geq 0,} \end{split}$$

Vorhersage gegeben einen Datenpunkt  $x^*$ 

$$\hat{y} = \sum_{i=1}^{n} (\beta_i - \delta_i \beta_i^*) K(x_i, x^*) + b_0$$

<sup>&</sup>lt;sup>14</sup>P. K. Shivaswamv, W. Chu und M. Jansche, 2007, S. 655–660.

<sup>&</sup>lt;sup>15</sup>Van Belle et al. 2011, 53, S, 107-118,



#### Ranking-Ansatz<sup>16</sup> 17

- Datenpunkte werden in steigender Reihenfolge nach den Überlebenszeiten geordnet
- **Z**wei Datenpunkte i und j (i < j) vergleichbar, wenn  $\delta_i = 1 \Rightarrow t_i < t_j$
- i und j sind konkordant, wenn gilt:  $u(x_i) < u(x_j)$ , wobei u eine Vorhersagefunktion ist

Sei 
$$v_{ij} = \begin{cases} 1, & \text{falls } i \text{ und } j \text{ vergeichbar sind,} \\ 0 & \text{sonst} \end{cases}$$

<sup>&</sup>lt;sup>16</sup>L. Evers und C.-M. Messow. 2008. 24. S. 1632–1638.

<sup>&</sup>lt;sup>17</sup> Van Belle et al. 2011. 53. S. 107-118.



### Ranking-Ansatz<sup>18</sup>

vanbelle1

$$\begin{split} \min_{\psi,\varepsilon} &\quad \frac{1}{2} \|\psi\|^2 + \gamma \sum_{\substack{j < i \\ \delta_i = 1}} v_{ij} \varepsilon_{ij} \\ \text{u.d.N.} &\quad \langle \psi, F(x_i) \rangle - \langle \psi, F(x_j) \rangle \geq 1 - \varepsilon_{ij}, \\ \varepsilon_{ij} > 0, \ i, j = 1, ..., n, \end{split}$$

Vorhersage gegeben einen Datenpunkt  $x^*$ 

$$\hat{u}(x^*) = \sum_{j < i} \alpha_{ij} (K(x_i, x^*) - K(x_j, x^*))$$

<sup>&</sup>lt;sup>18</sup> Van Belle et al. 2011. 53. S. 107–118.



#### Ranking-Ansatz<sup>19</sup>

vanbelle2

k-nächste Nachbarn

$$C_i = \{(i, j) : t_j \text{ ist } k\text{-nächste bei } t_i\}, i = 1, ..., n,$$

- lacksquare  $\mathcal{C}_i$  bestimmt die k-nächsten Nachbarn des Datenpunktes  $x_i$
- x<sub>i</sub> wird mit seinem nächsten Nachbar verglichen
- $ar{j}(i)$  bezeichnet den nächsten Nachbar von i, wenn er existiert
- Voraussetzung:  $\delta_{(1)} = 1$

<sup>19</sup> Van Belle et al. 2011, 53, S. 107-118.



#### Ranking-Ansatz<sup>20</sup>

vanbelle2

Formulierung des SVM-Problems

$$\min_{\psi,\varepsilon} \quad \frac{1}{2} \|\psi\|^2 + \gamma \sum_{i=1}^n \varepsilon_i$$

u.d.N. 
$$\langle \psi, F(x_i) \rangle - \langle \psi, F(x_{\bar{j}(i)}) \rangle \ge y_i - y_{\bar{j}(i)} - \varepsilon_i,$$
  
 $\varepsilon_i > 0,$ 

Vorhersage gegeben einen Datenpunkt  $x^*$ 

$$\hat{u}(x^*) = \sum_{i=1}^{n} \alpha_i \left( K(x_i, x^*) - K(x_{\bar{j}(i)}, x^*) \right)$$

<sup>&</sup>lt;sup>20</sup> Van Belle et al. 2011. 53. S. 107-118.



**Der hybride Ansatz**<sup>21</sup> (Ranking + Regression) *hybrid* 

Das SVM-Problem

$$\begin{split} \min_{\psi,\varepsilon} & \quad & \frac{1}{2} \|\psi\|^2 + \gamma \sum_{i=1}^n \varepsilon_i \\ \text{u.d.N.} & \quad & \langle \psi, F(x_i) \rangle - \langle \psi, F(x_{\bar{j}(i)}) \rangle \geq y_i - y_{\bar{j}(i)} - \varepsilon_i, \end{split}$$

$$\varepsilon_i \geq 0$$

Vorhersage gegeben einen Datenpunkt  $x^*$ 

$$\hat{u}(x^*) = \sum_{i=1}^{n} \langle \alpha_i \left( F(x_i) - F(x_{\bar{j}(i)}) \right) , F(x^*) \rangle$$

<sup>21</sup> Van Belle et al. 2011, 53, S. 107-118.



**Der hybride Ansatz**<sup>22</sup> (Ranking + Regression) *hybrid* 

Das SVM-Problem

$$\begin{split} \min_{\psi,\varepsilon,b,\xi,\xi^*} \quad & \frac{1}{2} \|\psi\|^2 + \gamma \sum_{i=1}^n \varepsilon_i + \mu \sum_{i=1}^n (\xi_i + \xi_i^*) \\ \text{u.d.N.} \quad & \langle \psi, F(x_i) \rangle - \langle \psi, F(x_{\bar{\jmath}(i)}) \rangle \geq y_i - y_{\bar{\jmath}(i)} - \varepsilon_i, \\ & y_i - \langle \psi, F(x_i) \rangle - b \leq \xi_i, \\ & \delta_i (\langle \psi, F(x_i) \rangle + b - y_i) \leq \xi_i^*, \\ & \varepsilon_i \geq 0, \xi_i \geq 0, \xi_i^* \geq 0 \end{split}$$

Vorhersage gegeben einen Datenpunkt x\*

$$\hat{u}(x^*) = \sum_{i=1}^{n} \langle \alpha_i \left( F(x_i) - F(x_{\vec{j}(i)}) \right) + (\beta_i - \delta_i \beta_i^*) F(x_i), F(x^*) \rangle + b_0$$

<sup>22</sup> Van Belle et al. 2011, 53, S. 107-118



#### Inhalt

- 1. Klassische Überlebenszeitanalyse
- 2. Klassische Stützvektormaschinen
- 3. Stützvektormaschinen für die Überlebenszeitanalyse
- 4. Umsetzung in R und Vergleichsstudie
- 5. Zusammenfassung
- 6. Diskussion und Ausblick



#### Verwendete R-Pakete

- 1. survival<sup>23</sup>
- 2. randomForestSRC<sup>24</sup>
- 3.  $mboost^{25}$
- 4. survivalsvm
- 5.  $m1r^{26}$

<sup>23</sup> T. M. Therneau. R package version 2.38. 2015.

<sup>&</sup>lt;sup>24</sup>H. Ishwaran und U. Kogalur. R package version 2.3.0. manual, 2016.

<sup>25</sup> H. Binder, R package version 1.4, 2013.

<sup>&</sup>lt;sup>26</sup>B. Bischl u. a. R package version 2.9. 2016.



#### Das R-Paket survivalsym

Verwendungsbeispiel

```
library(survivalsvm)
library(survival) # 'survival' ist für den Befehl 'Surv' benötigt.
data(veteran, package = "survival")
```



#### Das R-Paket survivalsvm

Verwendungsbeispiel

```
library(survivalsvm)
library(survival) # 'survival' ist für den Befehl 'Surv' benötigt.
data(veteran, package = "survival")
```

```
# Bestimmung der Trainings- und Testdatensätze.
set.seed(123)
n <- nrow(veteran)
train.index <- sample(1:n, 120, replace = FALSE)
test.index <- setdiff(1:n, train.index)</pre>
```



#### Das R-Paket survivalsvm

Verwendungsbeispiel

```
library(survivalsvm)
library(survival) # 'survival' ist für den Befehl 'Surv' benötigt.
data(veteran, package = "survival")
```

```
# Bestimmung der Trainings- und Testdatensätze.
set.seed(123)
n <- nrow(veteran)
train.index <- sample(1:n, 120, replace = FALSE)
test.index <- setdiff(1:n, train.index)</pre>
```



### Das R-Paket survivalsvm

Verwendungsbeispiel

```
print(survsvm.reg)

##

## survivalsvm result

##

## Call:

##

## survivalsvm(Surv(time, status) ~ ., subset = train.index, data = veteran, type = "regression", gamm

##

## Survival svm approach : regression

## Type of Kernel : add_kernel

## Optimization solver used : quadprog

## Number of support vectors retained : 104
```



#### Das R-Paket survivalsvm Verwendungsbeispiel

```
# Vorhersage für die Testindex.
predict(object = survsvm.reg, newdata = veteran, subset = test.index)
```

```
## ## survivalsvm prediction
## Type of survivalsvm : regression
## Type of kernel : add_kernel
## Optimization solver used in model : quadprog
## predictions : 154.9441 138.9379 129.4329 138.882 126.5404 ...
```



### Verschachtelte Kreuzvalidierung





Geschätzter Vorhersagefehler

 $\hat{\theta}$ 



### Datensätze

| Datensatz      | Größe ( Beob. × Var.)                                          | Studie                                                                                                                        |
|----------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Veteran<br>LVR | $\begin{array}{c c} 137 \times 8 \\ 129 \times 10 \end{array}$ | Veteran's administration lung cancer Trial <sup>27</sup><br>Interpretation of a Leukemia Trial Stopped<br>Early <sup>28</sup> |
| LT             | 129 × 10                                                       | Interpretation of a Leukemia Trial Stopped Early                                                                              |
| GBCSG2<br>MLC  | $686 \times 10$<br>$228 \times 10$                             | German Breast Cancer Study Group <sup>29</sup><br>Mayo clinic lung cancer <sup>30</sup>                                       |

<sup>&</sup>lt;sup>27</sup> J. D. Kalbfleisch und R. L. Prentice, 2002, ISBN: 978-0-471-36357-6.

<sup>28</sup> S. Ermerson und P. Banks. 1994.

<sup>&</sup>lt;sup>29</sup>M. Schumacher u. a. 1994. 12. S. 2086 –2093.

<sup>&</sup>lt;sup>30</sup>C. L. Loprinzi u. a. 1994. 12. S. 601-607.



### **Boxplot der C-Indizes**





### **Boxplot der C-Indizes**





### **Boxplot der C-Indizes**





### **Boxplot der C-Indizes**





### **Boxplot der C-Indizes**



### Inhalt

- 1. Klassische Überlebenszeitanalyse
- 2. Klassische Stützvektormaschinen
- 3. Stützvektormaschinen für die Überlebenszeitanalyse
- 4. Umsetzung in R und Vergleichsstudie
- 5. Zusammenfassung
- 6. Diskussion und Ausblick



# Zusammenfassung

- Referenzmodelle
  - Cox Modell
  - Zufallswälder für die Überlebenszeitanalyse
  - Grandient-Boosting für die Überlebenszeitanalyse



## Zusammenfassung

### Referenzmodelle

- Cox Modell
- Zufallswälder für die Überlebenszeitanalyse
- Grandient-Boosting f
  ür die Überlebenszeitanalyse

#### SVM-Modelle

- Regressionsansatz
- Ranking-Ansatz
- hybrider Ansatz (Ranking + Regression) ⇒ bessere Ergebnisse



### Inhalt

- 1. Klassische Überlebenszeitanalyse
- 2. Klassische Stützvektormaschinen
- 3. Stützvektormaschinen für die Überlebenszeitanalyse
- 4. Umsetzung in R und Vergleichsstudie
- 5. Zusammenfassung
- 6. Diskussion und Ausblick



### **Diskussion und Ausblick**

- Diskussion
  - hybrid-Modell: zwei Tuningparameter
  - Andere SVM-Modelle: ein Tuningparameter
    - ⇒ längere Laufzeit bei hybrid-Modell, dafür besser
  - Die Gütemaße der SVM-Modelle sind von den Kernelfunktionen beeinflusst



### **Diskussion und Ausblick**

#### Diskussion

- hybrid-Modell: zwei Tuningparameter
- Andere SVM-Modelle: ein Tuningparameter
  - ⇒ längere Laufzeit bei hybrid-Modell, dafür besser
- Die Gütemaße der SVM-Modelle sind von den Kernelfunktionen beeinflusst

#### Ausblick:

- Das R-Paket und den Methodenvergleich veröffentlichen
- Die SVM für die Überlebenszeitanalyse mit noch mehr Verfahren vergleichen



Danke für die Aufmerksamkeit!



| Datensatz | Methode                      | Kernel              | C-Index (SD <sub>CI</sub> )                     | Log-Rank (SD <sub>LR</sub> )                    | Hazard Rate (SD <sub>HR</sub> )                 |
|-----------|------------------------------|---------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Veteran   | vanbelle1                    | lineare<br>additive | 0, 68 (0, 05)<br>0, 57 (0, 07)                  | 6, 72 (4, 72)<br>2, 90 (4, 30)                  | 0, 12 (0, 07)<br>0, 46 (0, 34)                  |
|           | vanbelle2                    | lineare<br>additive | 0, 59 (0, 15)<br>0, 59 (0, 07)                  | 3, 70 (3, 72)<br>1, 99 (1, 40)                  | 1, 39 (2, 73)<br>0, 67 (0, 79)                  |
|           | svrc                         | lineare<br>additive | 0.69 (0, 03)<br>0, 71 (0, 05)                   | 4, 32 (5, 82)<br>5, 22 (2, 88)                  | 0, 11 (0, 07)<br>0, 15 (0, 13)                  |
|           | hybrid                       | lineare additive    | 0.69 (0, 04)<br>0, 71(0, 02)                    | 4, 31 (4, 62)<br>5, 18 (2.35)                   | 0, 13 (0, 07)<br>0, 10 (0.04)                   |
|           | P.H. Modell<br>RSF<br>GBoost |                     | 0, 71 (0, 04)<br>0, 70 (0, 05)<br>0, 70 (0, 09) | 7, 77 (7, 95)<br>6, 31 (3, 69)<br>8, 79 (6, 98) | 0, 09 (0, 06)<br>0, 08 (0, 06)<br>0, 10 (0, 08) |
| LVR       | vanbelle1                    | lineare<br>additive | 0, 61 (0, 05)<br>0, 63 (0, 06)                  | 1, 92 (2, 08)<br>5, 76 (4, 58)                  | 0, 20 (0, 20)<br>0, 18 (0, 20)                  |
|           | vanbelle2                    | lineare<br>additive | 0, 59 (0.06)<br>0, 57 (0.03)                    | 2, 04 (2, 77)<br>1, 20 (0, 78)                  | 0, 37 (0, 23)<br>0, 43 (0, 26)                  |
|           | svrc                         | lineare<br>additive | 0, 66 (0, 05)<br>0, 70 (0, 03)                  | 3, 33 (1, 60)<br>3, 68 (3, 69)                  | 0, 08 (0, 07)<br>0, 11 (0, 06)                  |
|           | hybrid                       | lineare<br>additive | 0, 71 (0, 05)<br>0, 72 (0, 02)                  | 5, 29 (4, 37)<br>5, 31 (2, 44)                  | 0, 05 (0, 03)<br>0, 06 (0, 04)                  |
|           | P.H. Modell<br>RSF<br>GBoost |                     | 0, 73 (0, 03)<br>0, 70 (0, 06)<br>0, 73 (0, 03) | 4, 42 (3, 49)<br>5, 66 (4, 39)<br>3, 82 (1, 91) | 0, 05 (0, 02)<br>0, 10 (0, 10)<br>0, 05 (0, 03) |



| Datensatz | Methode       | Kernel               | C-Index $(\sigma_{CI})$        | Log-Rank ( $\sigma_{LR}$ )       | Hazard Rate ( $\sigma_{HR}$ )    |
|-----------|---------------|----------------------|--------------------------------|----------------------------------|----------------------------------|
| LT        | vanbelle1     | linearer<br>additive | 0, 62 (0, 06)<br>0, 66 (0, 08) | 1, 90 (2, 18)<br>4, 31 (5, 41)   | 0,31 (0,20)<br>0,25 (0,25)       |
|           | vanbelle2     | lineare<br>additive  | 0, 61 (0, 08)<br>0, 64 (0, 10) | 1, 76 (2.89)<br>1, 87 (1, 99)    | 0, 37 (0, 26)<br>0, 28 (0, 25)   |
|           | svrc          | lineare<br>additive  | 0, 68 (0, 08)<br>0, 71 (0, 09) | 4, 38 (4, 89)<br>7, 10 (6, 05)   | 0, 12 (0, 08)<br>0, 12 (0, 09)   |
|           | hybrid        | lineare<br>additive  | 0, 68 (0, 05)<br>0, 72 (0, 09) | 4, 50 (4.14)<br>6, 89 (6, 45)    | 0, 14 (0, 10)<br>0, 09 (0, 09)   |
|           | P.H. Modell   |                      | 0, 70 (0, 10)<br>0, 72 (0.09)  | 7, 38 (6, 06)<br>5, 66 (4, 39)   | 0, 08 (0, 08)<br>0, 10 (0, 11)   |
|           | GBoost        |                      | 0, 69 (0, 09)                  | 8, 51 (6, 72)                    | 0, 09 (0, 07)                    |
| GBCSG2    | vanbelle1     | lineare<br>additive  | 0, 60 (0, 05)<br>0, 59 (0, 03) | 7, 57 (6, 63)<br>4, 59 (1, 59)   | 0, 16 (0, 10)<br>0, 16 (0, 09)   |
|           | vanbelle2     | lineare<br>additive  | 0, 59 (0, 06)<br>0, 58 (0, 04) | 4, 58 (4, 36)<br>2, 92 (1, 78)   | 0, 23 (0, 23)<br>0, 25 (0, 13)   |
|           | svrc          | lineare<br>additive  | 0, 67 (0, 04)<br>0, 67 (0, 04) | 14, 81 (8, 79)<br>10, 93 (7, 94) | 0, 05 (0, 05)<br>0, 10 (0, 08)   |
|           | hybrid        | lineare<br>additive  | 0, 68 (0, 04)<br>0, 68 (0, 05) | 13, 26 (6, 29)<br>16, 13 (8, 40) | 0, 03 (0, 03)<br>0, 07 (0, 08)   |
|           | P.H. Modell   |                      | 0, 68 (0, 03)                  | 10,66 (1,70)                     | 0,02(0,02)                       |
|           | RSF<br>GBoost |                      | 0, 69 (0, 03)<br>0, 68 (0, 03) | 16, 18 (8, 38)<br>11, 69 (2, 48) | $0, 10 (0, 06) \\ 0, 02 (0, 02)$ |



| Datensatz | Methode                      | Kernel              | C-Index ( $\sigma_{CI}$ )                     | Log-Rank ( $\sigma_{LR}$ )                     | Hazard Rate ( $\sigma_{HR}$ )                  |
|-----------|------------------------------|---------------------|-----------------------------------------------|------------------------------------------------|------------------------------------------------|
| MLC       | vanbelle1                    | lineare<br>additive | 0, 61 (0, 05)<br>0, 62 (0, 05)                | 2, 03 (2, 07)<br>1, 83 (2, 28)                 | 0, 46 (0, 28)<br>0, 49 (0, 33)                 |
|           | vanbelle2                    | lineare<br>additive | 0, 61 (0, 06)<br>0, 62 (0, 05)                | 1, 42 (1, 66)<br>1, 73 (2, 26)                 | 0, 38 (0, 27)<br>0, 48 (0, 35)                 |
|           | svrc                         | lineare additive    | 0, 63 (0, 09)<br>0, 64 (0, 08)                | 2, 59 (3, 11)<br>3, 37 (5, 81)                 | 0, 44 (0, 36)<br>0, 45 (0, 31)                 |
|           | hybrid                       | lineare additive    | 0, 62 (0, 03)<br>0, 61 (0, 05)                | 2, 36 (2, 52)<br>1, 18 (1, 43)                 | 0, 28 (0, 15)<br>0, 45 (0, 34)                 |
|           | P.H. Modell<br>RSF<br>GBoost |                     | 0, 61 (0.05)<br>0, 60 (0.02)<br>0, 61 (0, 06) | 1, 39 (1.18)<br>0, 34 (0, 40)<br>1, 83 (1, 62) | 0, 30 (0.22)<br>0, 39 (0, 11)<br>0, 32 (0, 22) |