离散数学

主要内容

- ■数理逻辑
- ■集合论
- ■图论
- ■组合分析初步
- ■代数系统简介
- ■形式语言和自动机初步

数理逻辑部分

■第1章 命题逻辑

■第2章 一阶逻辑

什么是逻辑,为什么学逻辑?

- 什么是逻辑?在数学里,逻辑是指研究某个形式语言的有效推论
- ■逻辑有什么作用? 逻辑引导人们通过推理获得事物的本质 逻辑让描述变得严谨、无歧义

什么是逻辑,为什么学逻辑?

- 逻辑是日常生活中的重要工具:
 - □ 子: "爸爸,我要玩游戏。"
 - □ 父: "不做完作业不能玩"
 - □ 如果以p表示"做完作业", q表示"玩游戏"
 - □ 常理: p→q 数学: ¬p→¬q
 - □ 小王:"小赵,借我点钱吧。"
 - □ 小赵: "我得和我老婆商量。"
 - □ 小王: "你不是没有老婆吗?"
 - □ 小赵: "对呀,所以没得商量。
- 良好的逻辑能力能够让你思路清晰,给人以信任感!

第1章 命题逻辑

- 1.1 命题符号化及联结词
- 1.2 命题公式及分类
- 1.3 等值演算
- 1.4 范式
- 1.5 联结词全功能集
- 1.6 组合电路
- 1.7 推理理论

100

1.1 命题符号化及联结词

- ■命题与真值
- ■原子命题
- ■复合命题
- ■命题常项
- ■命题变项
- ■联结词

命题与真值

命题:能够判断真假的陈述句

命题的真值: 判断的结果

真值的取值: 真与假

真命题: 真值为真的命题

假命题: 真值为假的命题

注意: 感叹句、祈使句、疑问句都不是命题 陈述句中的悖论以及判断结果不惟一确定的也不是 命题

例 下列句子中那些是命题?

(1) $\sqrt{2}$ 是无理数.

$$(2) 2+5=8.$$

(3)
$$x + 5 > 3$$
.

- (4) 你有铅笔吗?
- (5) 这只兔子跑得真快呀!
- (6) 请不要讲话!
- (7) 我正在说谎话.

真命题

假命题

真值不确定

疑问句

感叹句

祈使句

悖论

(3)~(7)都不是命题

命题的分类

简单命题(原子命题):

简单陈述句构成的命题

复合命题:

由简单命题与联结词按一定规则联结而成的命题

简单命题符号化

用小写英文字母 $p, q, r, \ldots, p_i, q_i, r_i (i \ge 1)$ 表示简单命题

p: 2是素数

q: 雪是黑色的

真值符号化:

用"1"(或者T)表示真,用"0"(或者F)表示假

命题常项

命题常项(命题常元)——简单命题

例如,令

 $p: \sqrt{2}$ 是有理数,则 p 的真值为 0

q: 2+5=7,则 q 的真值为 1

命题变项

命题变项——真值可以变化的陈述句

例如,令

$$p: x+y>5$$

联结词

- (1) 3不是偶数
- (2) 2是素数和偶数
- (3) 林芳学过英语或日语
- (4) 如果角A和角B是对顶角,则角A等于角B

联结词与复合命题

1.否定式与否定联结词"¬"

定义设p为命题,复合命题 "p"(或 "p的否定")称为p的否定式,记作p. 符号 π 称作否定联结词,并规定p 为真当且仅当p为假.

2.合取式与合取联结词" / "

定义 设p,q为二命题,复合命题 "p并且q"(或 "p与q")称为p与q的合取式,记作p人q. 人称作合取联结词,并规定 p人q为真当且仅当p与q同时为真

注意:描述合取式的灵活性与多样性(既···又,不仅···而且,虽然···但是)

分清简单命题与复合命题

例 将下列命题符号化.

- (1) 王晓既用功又聪明.
- (2) 王晓不仅聪明,而且用功.
- (3) 王晓虽然聪明,但不用功.

- (1) $p \wedge q$
- (2) $p \wedge q$
- (3) $p \land \neg q$.

M

例:将下列命题符号化(续)

- (4) 张辉与王丽都是三好生.
- (5) 张辉与王丽是同学.

令r: 张辉是三好学生,s:王丽是三好学生

- (4) $r \wedge s$.
- (5) 令 t: 张辉与王丽是同学, t 是简单命题.

说明:

- (1)~(4)说明描述合取式的灵活性与多样性.
- (5) 中"与"联结的是两个名词,整个句子是
- 一个简单命题.

联结词与复合命题(续)

3.析取式与析取联结词"\"

定义 设 p, q为二命题,复合命题"p或q"称作p与q的析取式,记作pVq. V称作析取联结词,并规定pVq为假当且仅当p与q同时为假.

例 将下列命题符号化

- (1) 2或4是素数.
- (2) 2或3是素数.
- (3) 4或6是素数.
- (4) 小元元只能拿一个苹果或一个梨.
- (5) 王晓红生于1975年或1976年.

- м
- (1) 2或4是素数.
- (2) 2或3是素数.
- (3) 4或6是素数.
- (4) 小元元只能拿一个苹果或一个梨.
- (5) 王晓红生于1975年或1976年.

解令 p:2是素数, q:3是素数, r:4是素数, s:6是素数, 则 (1), (2), (3) 均为相容或. 分别符号化为: $p \lor r$, $p \lor q$, $r \lor s$, 它们的真值分别为 1, 1, 0.

(4),(5)为排斥或.

令 t:小元元拿一个苹果,u:小元元拿一个梨,

则 (4) 符号化为 $(t \land \neg u) \lor (\neg t \land u)$.

令v:王晓红生于1975年,w:王晓红生于1976年,则(5) 既可符号化为($v \land \neg w$) $\lor (\neg v \land w)$,又可符号化为 $v \lor w$.19

联结词与复合命题(续)

4.蕴涵式与蕴涵联结词"→"

定义 设 p, q为二命题,复合命题 "如果p, 则q" 称作p与q的蕴涵式,记作 $p \rightarrow q$,并称p是蕴涵式的前件,q为蕴涵式的后件. \rightarrow 称作蕴涵联结词,并规定, $p \rightarrow q$ 为假当且仅当 p 为真 q 为假.

м

联结词与复合命题(续)

 $p \rightarrow q$ 的逻辑关系: p 为 q 的充分条件,或者q 为 p 的必要条件 "如果 p,则 q"的不同表述法很多: 若 p, 就 q只要 p,就 qp 仅当 q只有 q 才 p除非 q, 才 p 或 除非 q, 否则非 p. 注意: $p \rightarrow q$ 中, p 和 q 不一定有联系 当 p 为假时, $p \rightarrow q$ 为真 常出现的错误:不分充分与必要条件

w

例 设 p:天冷, q:小王穿羽绒服, 将下列命题符号化

- (1) 只要天冷,小王就穿羽绒服. $p \rightarrow q$
- (2) 因为天冷,所以小王穿羽绒服. $p \rightarrow q$
- (3) 若小王不穿羽绒服,则天不冷. $p \rightarrow q$
- (4) 只有天冷,小王才穿羽绒服. $q \rightarrow p$
- (5) 除非天冷,小王才穿羽绒服. $q \rightarrow p$
- (6) 除非小王穿羽绒服,否则天不冷。 $p \rightarrow q$
- (7) 如果天不冷,则小王不穿羽绒服. $q \rightarrow p$
- (8) 小王穿羽绒服仅当天冷的时候. $q \rightarrow p$

注意: $p \rightarrow q$ 与 $\neg q \rightarrow \neg p$ 等值(真值相同)

联结词与复合命题(续)

5. 等价式与等价联结词"↔"

定义 设p, q为二命题,复合命题 "p当且仅当q"称作p与q的等价式,记作 $p \leftrightarrow q$. \leftrightarrow 称作等价联结词. 并规定 $p \leftrightarrow q$ 为真当且仅当p与q同时为真或同时为假.

说明:

- $(1) p \leftrightarrow q$ 的逻辑关系:p = q 互为充分必要条件
- $(2) p \leftrightarrow q$ 为真当且仅当p与q同真或同假

例

例 求下列复合命题的真值

(1)
$$2+2=4$$
 当且仅当 $3+3=6$. 1

$$(2)$$
 2+2=4当且仅当3是偶数. 0

$$(3)$$
 2+2=4当且仅当太阳从东方升起. 1

$$(4)$$
 2+2=4当且仅当 美国位于非洲. 0

(5) 函数 f(x) 在 x_0 可导的充要条件是它在 x_0 连续.

联结词与复合命题(续)

以上给出了5个联结词: \neg , \wedge , \vee , \rightarrow , \leftrightarrow ,组成一个联结词集合{¬, \wedge , \vee , \rightarrow , \leftrightarrow },

联结词的优先顺序为: ¬,∧,∨,→,↔;如果出现的联结词同级,又无括号时,则按从左到右的顺序运算;若遇有括号时,应该先进行括号中的运算.

注意:本书中使用的括号全为圆括号.

100

1.2 命题公式及分类

- ■命题变项与合式公式
- 公式的赋值
- ■真值表
- 命题的分类 重言式 矛盾式 可满足式
- ■真值函数

.

命题变项与合式公式

命题常项:简单命题

命题变项: 真值不确定的陈述句

定义 合式公式 (命题公式,公式) 严格定义如下:

- (1) 单个命题常项或变项 $p,q,r,...,p_i,q_i,r_i,...,0,1$ 是合式公式
- (2) 若A是合式公式,则 $(\neg A)$ 也是合式公式
- (3) 若A, B是合式公式,则 $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$ 也是合式公式
- (4) 只有有限次地应用(1)~(3)形成的符号串才是合式公式

说明: 外层括号可以省去

M

合式公式的层次

定义

- (1) 若公式A是单个的命题常项/变项,则称A为0层公式.
- (2) $称 A \ge n + 1$ ($n \ge 0$) 层公式是指下面情况之一:
 - (a) $A=\neg B$, B 是n 层公式;
 - (b) $A=B\land C$, 其中B,C分别为i层和j层公式,且 $n=\max(i,j)$;
 - (c) $A=B\lor C$, 其中B,C的层次及n同(b);
 - (d) $A=B\rightarrow C$, 其中B,C的层次及n同(b);
 - (e) $A=B\leftrightarrow C$, 其中B,C的层次及n同(b).

.

合式公式的层次(续)

例如 公式

\boldsymbol{p}	0层
$\neg p$	1层
$\neg p \rightarrow q$	2层
$\neg (p \rightarrow q) \leftrightarrow r$	3层
$((\neg p \land q) \rightarrow r) \leftrightarrow (\neg r \lor s)$	4层

м

公式的赋值

定义 给公式A中的命题变项 p_1, p_2, \ldots, p_n 指定一组真值称为对A的一个赋值或解释

成真赋值: 使公式为真的赋值

成假赋值: 使公式为假的赋值

说明:

赋值 $\alpha = \alpha_1 \alpha_2 \dots \alpha_n$ 之间不加标点符号, $\alpha_i = 0$ 或1.

A中仅出现 $p_1, p_2, ..., p_n$,给A赋值 $\alpha_1 \alpha_2 ... \alpha_n$ 是

指 $p_1=\alpha_1, p_2=\alpha_2, ..., p_n=\alpha_n$

A中仅出现 $p_1q, r, ...,$ 给A赋值 $\alpha_1\alpha_2\alpha_3...$ 是指

 $p=\alpha_1,q=\alpha_2,r=\alpha_3...$

含n个变项的公式有 2^n 种赋值.

真值表

真值表: 公式A在所有赋值下的取值情况列成的表

例 公式 $A=(q\rightarrow p) \land q\rightarrow p$ 的真值表

p q	$q \rightarrow p$	$(q\rightarrow p) \land q$	$(q \rightarrow p) \land q \rightarrow p$
0 0	1	0	1
0 1	0	0	1
1 0	1	0	1
1 1	1	1	1

实例

例 $B = \neg (\neg p \lor q) \land q$ 的真值表

p	q	$\neg p$	$\neg p \lor q$	$\neg (\neg p \lor q)$	$\neg (\neg p \lor q) \land q$
0	0	1	1	0	0
0	1	1	1	0	0
1	0	0	0	1	0
1	1	0	1	0	0

例 $C=(p\lor q) \rightarrow \neg r$ 的真值表

p q r	$p \lor q$	¬r	$(p \lor q) \rightarrow \neg r$
0 0 0	0	1	1
0 0 1	0	0	1
0 1 0	1	1	1
0 1 1	1	0	0
1 0 0	1	1	1
1 0 1	1	0	0
1 1 0	1	1	1
1 1 1	1	0	0

м

公式的类型

定义 设A为一个命题公式

- (1) 若A无成假赋值,则称A为重言式(也称永真式)
- (2) 若A无成真赋值,则称A为矛盾式(也称永假式)
- (3) 若A不是矛盾式,则称A为可满足式

注意: 重言式是可满足式,但反之不真. 上例中A为重言式,B为矛盾式,C为可满足式 $A=(q\rightarrow p)\land q\rightarrow p$, $B=\neg(\neg p\lor q)\land q$, $C=(p\lor q)\rightarrow \neg r$

真值函數

问题: 含n个命题变项的所有公式一共会产生多少张互不相同的真值表?

定义 称定义域为 $\{00...0,00...1,...,11...1\}$,值域为 $\{0,1\}$ 的函数是n元真值函数,定义域中的元素是长为<math>n的0,1串. 常用 $F:\{0,1\}^n \to \{0,1\}$ 表示F是n元真值函数.

共有 2^{2^n} 个n元真值函数.

例如 $F:\{0,1\}^2 \rightarrow \{0,1\}$, 且F(00)=F(01)=F(11)=0, F(10)=1,则F为一个确定的2元真值函数.

命题公式与真值函数

对于任何一个含n个命题变项的命题公式A,都存在惟一的一个n元真值函数F 对应 A的真值表.

等值的公式对应的真值函数相同.

下表给出所有2元真值函数对应的真值表,每一个含2个命题变项的公式的真值表都可以在下表中找到.

例如: $p \rightarrow q$, $\neg p \lor q$, $(\neg p \lor q) \lor (\neg (p \rightarrow q) \land q)$ 等都对应表中的 $F_{13}^{(2)}$

2元真值函数对应的真值表

p q	$F_0^{(2)}$	$F_1^{(2)}$	$F_2^{(2)}$	$F_3^{(2)}$	$F_4^{(2)}$	$F_5^{(2)}$	F(2)	$F_7^{(2)}$
0 0	0	0	0	0	0	0	/0	0
0 1	0	0	0	0	1	1 /	1	1
1 0	0	0	1	1	0	0 //	1	1
1 1	0	1	0	1	0	1//	0	1
p q	$F_8^{(2)}$	$F_9^{(2)}$	$F_{10}^{(2)}$	$F_{11}^{(2)}$	$F_{12}^{(2)}$	$F_{13}^{(2)}$	$F_{14}^{(2)}$	$F_{15}^{(2)}$
$\begin{array}{ c c } \hline p & q \\ \hline \hline 0 & 0 \\ \hline \end{array}$	$F_8^{(2)}$ 1	F ₉ ⁽²⁾	$\frac{F_{10}^{(2)}}{1}$	$F_{11}^{(2)}$ 1	$F_{12}^{(2)}$ 1	$F_{13}^{(2)}$ 1	$F_{14}^{(2)}$ 1	$F_{15}^{(2)}$ 1
0 0	1	1	1	1	1	1	1	1