Information Extraction

Luciano Barbosa

Objetivo

Extrair estrutura a partir de dados não estruturados

Sequence Labeling

- Objetivo: atribuir um dado rótulo a cada palavra de um sentença
- Rótulos dependem de outras palavras das sequência (não é i.i.d)

Part Of Speech Tagging

 Objetivo: atribuir a classe gramatical a cada palavra de uma sentença (substantivo, adjetivo, verbo etc)

Útil para parsing sintático e desambiguação de palavras
 John saw the saw and decided to take it to the table.
 PN V Det N Con V Part V Pro Prep Det N

Sequence Tagging

- Objetivo: atribuir rótulos a palavras de uma sentença (pessoa, local, empresa)
- Named entity recognition: identifica nomes de pessoas, locais no texto

people organizations places

- Michael Dell is the CEO of Dell Computer Corporation and lives in Austin Texas.
- Extrair partes de informação relevante para uma dada aplicação

make model year mileage price

- For sale, 2002 Toyota Prius, 20,000 mi, \$15K or best offer. Available starting July 30, 2006.

Semantic Role Labeling

 Determina o papel semântico de cada noun phrase que é argumento do verbo

agent patient source destination instrument

- John drove Mary from Austin to Dallas in his Toyota Prius.
- The hammer broke the window.

Bioinformática

Rotular sequências genéticas

extron intron

- AGCTAACGTTCGATACGGATTACAGCCT

Principais POS (Inglês)

	Tag	Description	Example
	ADJ	Adjective: noun modifiers describing properties	red, young, awesome
Class	ADV	Adverb: verb modifiers of time, place, manner	very, slowly, home, yesterday
ロ	NOUN	words for persons, places, things, etc.	algorithm, cat, mango, beauty
Open	VERB	words for actions and processes	draw, provide, go
0	PROPN	Proper noun: name of a person, organization, place, etc	Regina, IBM, Colorado
	INTJ	Interjection: exclamation, greeting, yes/no response, etc.	oh, um, yes, hello
	ADP	Adposition (Preposition/Postposition): marks a noun's	in, on, by under
S		spacial, temporal, or other relation	
Class Words	AUX	Auxiliary: helping verb marking tense, aspect, mood, etc.,	can, may, should, are
 	CCONJ	Coordinating Conjunction: joins two phrases/clauses	and, or, but
ass	DET	Determiner: marks noun phrase properties	a, an, the, this
<u></u>	NUM	Numeral	one, two, first, second
Closed	PART	Particle: a preposition-like form used together with a verb	up, down, on, off, in, out, at, by
120	PRON	Pronoun: a shorthand for referring to an entity or event	she, who, I, others
	SCONJ	Subordinating Conjunction: joins a main clause with a	that, which
		subordinate clause such as a sentential complement	
ដ	PUNCT	Punctuation	;,()
Other	SYM	Symbols like \$ or emoji	\$, %
	X	Other	asdf, qwfg

Tipos de POS

- Closed class:
 - Preposições e pronomes
 - Tendem a ser curtos
 - Alta frequência
- Open class:
 - Substativos, verbos, adjetivos e advérbios
 - Constantemente sendo criados

POS no Penn Treebank

Tag	g Description	Example	Tag	Description	Example	Tag	Description	Example
CC	coord. conj.	and, but, or	NNP	proper noun, sing.	IBM	TO	"to"	to
CD	cardinal number	one, two	NNPS	proper noun, plu.	Carolinas	UH	interjection	ah, oops
DT	determiner	a, the	NNS	noun, plural	llamas	VB	verb base	eat
EX	existential 'there'	there	PDT	predeterminer	all, both	VBD	verb past tense	ate
FW	foreign word	mea culpa	POS	possessive ending	's	VBG	verb gerund	eating
IN	preposition/	of, in, by	PRP	personal pronoun	I, you, he	VBN	verb past partici-	eaten
	subordin-conj						ple	
JJ	adjective	yellow	PRP\$	possess. pronoun	your, one's	VBP	verb non-3sg-pr	eat
JJR	comparative adj	bigger	RB	adverb	quickly	VBZ	verb 3sg pres	eats
JJS	superlative adj	wildest	RBR	comparative adv	faster	WDT	wh-determ.	which, that
LS	list item marker	1, 2, One	RBS	superlatv. adv	fastest	WP	wh-pronoun	what, who
MI) modal	can, should	RP	particle	up, off	WP\$	wh-possess.	whose
NN	sing or mass noun	llama	SYM	symbol	+,%,&	WRB	wh-adverb	how, where

Exemplos

There/PRO/EX are/VERB/VBP 70/NUM/CD children/NOUN/NNS there/ADV/RB ./PUNC/.

Preliminary/ADJ/JJ findings/NOUN/NNS were/AUX/VBD reported/VERB/VBN in/ADP/IN today/NOUN/NN 's/PART/POS New/PROPN/NNP England/PROPN/NNP Journal/PROPN/NNP of/ADP/IN Medicine/PROPN/NNP

Part-of-Speech Tagging

- Atribuir a classe gramatical a cada palavra de uma sentença (substantivo, adjetivo, verbo etc)
- Tarefa de desambiguação: palavras podem ter mais de uma class gramatical
 - Ex: book, that etc
- Classe mais frequente: 92% de acurácia
- Estado da arte: 97%

Types:	WSJ			Bro	wn
Unambiguous	(1 tag)	44,432	(86%)	45,799	(85%)
Ambiguous	(2+ tags)	7,025	(14%)	8,050	(15%)
Tokens:					
Unambiguous	(1 tag)	577,421	(45%)	384,349	(33%)
Ambiguous	(2+ tags)	711,780	(55%)	786,646	(67%)

Named Entity Recognition (Information Extraction)

Named entity: tudo que se refere a um nome próprio (regra geral)

Туре	Tag	Sample Categories	Example sentences
People	PER	people, characters	Turing is a giant of computer science.
Organization	ORG	companies, sports teams	The IPCC warned about the cyclone.
Location	LOC	regions, mountains, seas	Mt. Sanitas is in Sunshine Canyon.
Geo-Political Entity	GPE	countries, states	Palo Alto is raising the fees for parking.

- Pode ser qualquer entidade: produto, doenças etc
- Natural language understanding: Q&A, chatbot
- Dificuldades:
 - Encontrar o pedaço do texto que contém a entidade
 - Ambiguidade: JFK (pessoa ou aeroporto)

BIO Tagging

Convenção para rotulagem de sequência

Words	IO Label	BIO Label	BIOES Label
Jane	I-PER	B-PER	B-PER
Villanueva	I-PER	I-PER	E-PER
of	0	0	0
United	I-ORG	B-ORG	B-ORG
Airlines	I-ORG	I-ORG	I-ORG
Holding	I-ORG	I-ORG	E-ORG
discussed	0	0	0
the	0	0	0
Chicago	I-LOC	B-LOC	S-LOC
route	0	0	0
	0	0	0

HMM POS Tagging

- Modelo probabilístico sequencial
- Computa a probabilidade para possíveis sequências de rótulos
- Escolhe a melhor sequência

Markov Chain

Probabilidade do próximo rótulo só depende do anterior

$$P(q_i = a|q_1...q_{i-1}) = P(q_i = a|q_{i-1})$$

Markov Chain: Componentes

$Q=q_1q_2\ldots q_N$	a set of N states
$A = a_{11}a_{12} \dots a_{N1} \dots a_{NN}$	a transition probability matrix A , each a_{ij} represent-
	ing the probability of moving from state i to state j , s.t.
	$\sum_{j=1}^{n} a_{ij} = 1 \forall i$
$\pi = \pi_1, \pi_2,, \pi_N$	an initial probability distribution over states. π_i is the
	probability that the Markov chain will start in state i .
	Some states j may have $\pi_i = 0$, meaning that they cannot
	be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

Hidden Markov Model

- Rótulos estão escondidos (hidden)
- Observa palavras
- Inferir rótulos (ex. POS) da sequência de palavras

Hidden Markov Model: Componentes

 $Q = q_1 q_2 \dots q_N$ a set of N states $A = a_{11} \dots a_{ij} \dots a_{NN}$ a **transition probability matrix** A, each a_{ij} representing the probability of moving from state i to state j, s.t. $\sum_{i=1}^{N} a_{ij} = 1 \quad \forall i$ $O = o_1 o_2 \dots o_T$ a sequence of T observations, each one drawn from a vocabulary V = $v_1, v_2, ..., v_V$ $B = b_i(o_t)$ a sequence of observation likelihoods, also called emission probabilities, each expressing the probability of an observation o_t being generated from a state q_i an initial probability distribution over states. π_i is the probability that $\pi = \pi_1, \pi_2, ..., \pi_N$ the Markov chain will start in state i. Some states j may have $\pi_i = 0$, meaning that they cannot be initial states. Also, $\sum_{i=1}^{n} \pi_i = 1$

Markov Assumption: $P(q_i|q_1,...,q_{i-1}) = P(q_i|q_{i-1})$

Output Independence: $P(o_i|q_1,\ldots,q_i,\ldots,q_T,o_1,\ldots,o_i,\ldots,o_T)=P(o_i|q_i)$

HMM Tagger

Matrix A: probabilidades de transição das tags

$$P(t_i|t_{i-1}) = \frac{C(t_{i-1},t_i)}{C(t_{i-1})}$$

WSJ corpus
$$P(VB|MD) = \frac{C(MD, VB)}{C(MD)} = \frac{10471}{13124} = .80$$

HMM Tagger

Matrix B: probabilidades de uma palavra associada a uma tag

$$P(w_i|t_i) = \frac{C(t_i,w_i)}{C(t_i)}$$

WSJ corpus
$$P(will|MD) = \frac{C(MD, will)}{C(MD)} = \frac{4046}{13124} = .31$$

HMM Tagger: Exemplo

Decoding

 Dado um HMM como entrada: matrizes (A,B) e uma sequência de observações (palavras), encontrar a sequência de estados mais provável

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n | w_1...w_n)$$

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} \frac{P(w_1 ... w_n | t_1 ... t_n) P(t_1 ... t_n)}{P(w_1 ... w_n)}$$

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(w_1...w_n|t_1...t_n) P(t_1...t_n)$$

$$\hat{t}_{1:n} = \underset{t_1...t_n}{\operatorname{argmax}} P(t_1...t_n | w_1...w_n) \approx \underset{t_1...t_n}{\operatorname{argmax}} \prod_{i=1}^n \underbrace{P(w_i | t_i)}_{P(t_i | t_{i-1})}$$

Matriz B

Matriz A

cin.ufpe.br

Viterbi Algorithm

- Input: Janet will back the bill
- Output: Janet/NNP will/MD back/VB the/DT bill/NN

	NNP	MD	VB	JJ	NN	RB	DT
< <i>s</i> >	0.2767	0.0006	0.0031	0.0453	0.0449	0.0510	0.2026
NNP	0.3777	0.0110	0.0009	0.0084	0.0584	0.0090	0.0025
MD	0.0008	0.0002	0.7968	0.0005	0.0008	0.1698	0.0041
VB	0.0322	0.0005	0.0050	0.0837	0.0615	0.0514	0.2231
JJ	0.0366	0.0004	0.0001	0.0733	0.4509	0.0036	0.0036
NN	0.0096	0.0176	0.0014	0.0086	0.1216	0.0177	0.0068
RB	0.0068	0.0102	0.1011	0.1012	0.0120	0.0728	0.0479
DT	0.1147	0.0021	0.0002	0.2157	0.4744	0.0102	0.0017

Matriz A (WSJ corpus)

cin.ufpe.br

Viterbi Algorithm

	Janet	will	back	the	bill
NNP	0.000032	0	0	0.000048	0
MD	0	0.308431	0	0	0
VB	0	0.000028	0.000672	0	0.000028
JJ	0	0	0.000340	0	0
NN	0	0.000200	0.000223	0	0.002337
RB	0	0	0.010446	0	0
DT	0	0	0	0.506099	0

Matriz B (WSJ corpus)

cın.utpe.br

UNIVERSIDADE

RNN para POS Tagging

Relation Extraction

Encontrar e classificar relações entre entidades

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday] and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

Exemplos de Relações

Relations	Types	Examples
Physical-Located	PER-GPE	He was in Tennessee
Part-Whole-Subsidiary	ORG-ORG	XYZ, the parent company of ABC
Person-Social-Family	PER-PER	Yoko's husband John
Org-AFF-Founder	PER-ORG	Steve Jobs, co-founder of Apple

cin.ufpe.br

Extração Baseada em Padrões

Hearst para extração de hyponyms

Exemplo

Agar is a substance prepared from a mixture of red algae, such as Gelidium, for laboratory or industrial use.

Padrão:

$$NP_0$$
 such as $NP_1\{,NP_2\ldots,(and|or)NP_i\}, i \geq 1$

hyponym(Gelidium, red algae)

cin.ufpe.br

Extração Baseada em Padrões

Hearst para extração de hyponyms

```
NP \{, NP\}^* \{,\} \text{ (and | or) other NP}_H \text{ temples, treasuries, and other important civic buildings} NP_H \text{ such as } \{NP,\}^* \{ (\text{or | and}) \} \text{ NP} such as \{NP,\}^* \{ (\text{or | and}) \} \text{ NP} such authors as Herrick, Goldsmith, and Shakespeare} NP_H \{,\} \text{ including } \{NP,\}^* \{ (\text{or | and}) \} \text{ NP} common-law countries, including Canada and England} NP_H \{,\} \text{ especially } \{NP\}^* \{ (\text{or | and}) \} \text{ NP} European countries, especially France, England, and Spain}
```


Extração Baseada em ML

- Definem-se as relações e entidades a serem extraídas
- 2. Anotam-se exemplos para treinamento

function FINDRELATIONS(words) returns relations

```
relations \leftarrow nil

entities \leftarrow FINDENTITIES(words)

forall entity pairs \langle e1, e2 \rangle in entities do

if Related?(e1, e2)

relations \leftarrow relations + Classify Relation(e1, e2)
```


Exemplos de Features

American Airlines, a unit of AMR, immediately matched the move, spokesman Tim Wagner said

- Palavras ou bigramas ao redor
- Tipos das entidades
- Número de entidades entre as entidades candidatas
- Part-of-speech

Baseado em Rede Neural

Bootstrapping

Rótulos são difíceis de obter

Bootstrapping

Occurrences of seed tuples:

ORGANIZATION	LOCATION
MICROSOFT	REDMOND
IBM	ARMONK
BOEING	SEATTLE
INTEL	SANTA CLARA

Computer servers at Microsoft's headquarters in Redmond...

In mid-afternoon trading, share of Redmond-based Microsoft fell...

The Armonk-based IBM introduced a new line...

The combined company will operate from Boeing's headquarters in Seattle.

Intel, Santa Clara, cut prices of its
Pentium processor.

Bootstrapping

Bootstrapping: Gerando Novas Sementes

Uso dos padrões aprendidos

ORGANIZATION	LOCATION
AG EDWARDS	ST LUIS
157TH STREET	MANHATTAN
7TH LEVEL	RICHARDSON
3COM CORP	SANTA CLARA
3DO	REDWOOD CITY
JELLIES	APPLE
MACWEEK	SAN FRANCISCO

