

O Idea: Parameter-sharing across time

2 Pynamic System

$$\alpha) \quad S^{(+n)} = h(S^{(+)} : b)$$

b)
$$S^{(4+1)} = h(S^{(4)}, \chi^{(4+1)}; \theta)$$

1) Neural Network formulation

Recap:
$$S^{(t+1)} = h(S^{(t)}, \chi^{(t+1)}; 0)$$

$$y^{(t)} = g(S^{(t)}; g) := 0^{(t)}$$

$$y^{(t)} = 6_r(WS^{(t)} + U\chi^{(t+1)} + b)$$

$$\chi^{(t)} = 6_r(VS^{(t)} + C)$$

$$tanh usually (not Rela)$$

$$C = (W, W, h; 6)$$

$$\begin{cases}
0 = (W, W, b; 6r) \\
9 = (V, c; 6_0)
\end{cases}$$
parametrization

JORDAN

Consider a scaler <u>Time Series</u> { x(+): t=1,2,...}

output { y (+) : t = 1,2, ... }

Here, $y^{(t)} = \chi^{(t)} + \chi^{(t+1)} + \chi^{(t+2)}$ for $t \ge 1$ t = 1 = 2 = 3 = 4 = 5Then. if $\chi^{(t)} = 1 = 2 = 3 = 4 = 5$ then $y^{(t)} = 1 = 3 = 6 = 7 = 12$

Goal: build model to predict $\hat{y}^{(t)} = y^{(t)}$

Model: 1. \$ (4) = F(NN (x(4))

I ssur: No memory

2.
$$\hat{Y}^{(+)} = General linear function on $\{\chi^{(1)}, \dots, \chi^{(+)}\}$$$

$$= \sum_{S=1}^{t} \alpha_{S}^{(S)} \chi_{S}^{(S)}$$
fit $\alpha_{S}^{(S)}$ to data

Issue: (annot make inference (have memory)

where
$$W = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 $W = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

$$V = 1^{T} \qquad b = c = 0$$

-> Keypoint: Unroll the computational graph

Diagram

A

Self - understanding:

-> Gate Unit is trying to learn from

{ ht-1

in order to determine

- 1. how much memory should be left
- 2. how much memory should be updated
- 3. how much <u>hidden unit</u> should be transformed

$$\begin{cases} h^{(t)} = 6r (W h^{(t-1)} + (X x^{(t)} + b)) \\ y^{(t)} = 6r (V h^{(t)} + c) \end{cases}$$

1 Other Varianti
-> 1. Bi-directional RNN (Translation)
-> 2. Seg 2 Seg (Encoder - Decoder Architecture)
$\int_{\mathbb{R}^{n}}$
MODEL { input : sequence Output : sequence
Output: sequence