Imię i nazwisko:	
Logika di	la informatyków
Egzamin poprav	wkowy (część licencjacka)
17	lutego 2009
Aby zdać tę część egzaminu (być dopuszcz 10 punktów. Egzamin trwa 75 minut.	zonym do części zasadniczej) trzeba uzyskać co najmniej
Zadanie 1 (1 punkt). W prostokąt poniżej w postaci normalnej.	vpisz równoważną z $p \Leftrightarrow \neg (q \lor r)$ formułę w dysjunkcyjnej
· - /	równoważna formule $p \Rightarrow q$ i zbudowana tylko ze zmienasow, to w prostokąt poniżej wpisz dowolną taką formułę.
	$\Rightarrow r$) oraz $(p \land q) \Leftrightarrow (p \land r)$ są równoważne to w prostokąt rzeciwnym przypadku wpisz odpowiedni kontrprzykład.
	$\subseteq A \times B$ i $S \subseteq B \times A$. W prostokąt poniżej wpisz formułę, vrotną do S . Formuła ta nie może zawierać negacji (ale
· · · · · · · · · · · · · · · · · · ·	rmuł φ i ψ logiki pierwszego rzędu formuła $(\forall x (\varphi \lor \psi)) \Leftrightarrow$ poniżej wpisz słowo "TAUTOLOGIA". W przeciwnym

dow	olnych z	(1 punkt). Jeśli zbiorów A, B, i C, wiedni kontrprzykła	to w						
war	nych roda	(1 punkt). Jeśli i zin zbiorów $\{A_t\}_{t\in\mathbb{R}}$ wpisz odpowiedni k	$_T$ i $\{E$	$\{B_t\}_{t\in T}$, to w pros	$\subseteq \bigcup_{t \in T} A_t \cap$ stokąt poni	$\bigcup_{t \in T} B_t$ zach żej wpisz s	nodzi dla do łowo "TAK	owolnych indeks ". W przeciwny	30- 7m
licz	b rzeczy	(1 punkt). Dla wistych. W prosto znaczające ten sam	kąt p	oniżej wpisz wy	liczoną wa	rtość zbioru		[s,t], tzn. wpi	
		(1 punkt). Niech jest przechodnim			-	ostokąt pon	iżej wpisz t	aką formułę φ ,	że
Zac	danie 10	O (1 punkt). Wpi	sz w j	puste pola poniż	szej tabelk	i moce odp	owiednich z	zbiorów.	
	N{0,1}	$\{a,b\} \times \{3,4,5\}$	$\mathbb{Q}^{\mathbb{N}}$	$\mathcal{P}(\mathbb{N} \times \{0,1\})$	{2009} ^ℚ	$(\mathbb{N}\setminus\mathbb{Q})^{\mathbb{N}}$	$(\mathbb{R}\setminus\mathbb{N})^{\mathbb{N}}$	$\{0,1\}^{\{a,b,c\}}$	

Imię i nazwisko:	
Zadanie 11 (1 punkt). Jeśli istnieje bijekcja wpisz definicję dowolnej takiej bijekcji. W prze	a $f:\{a,b\}^{\mathbb{Q}\cap[0,2]}\to\mathcal{P}(\mathbb{Q}\cap[0,1])$, to w prostokąt poniżej eciwnym razie wpisz słowo "NIE".
Zadanie 12 (1 punkt). W prostokąt poniżej liczb rzeczywistych \mathbb{R} , która ma dokładnie trzy	wpisz dowolny przykład relacji równoważności na zbiorze y klasy abstrakcji.
	$\mathcal{P}(\mathbb{N}) \to \mathcal{P}(\mathbb{N})$ zadana wzorem $f(X) = \{2x \mid x \in X\}$ poniżej wpisz wyliczoną wartość tego punktu stałego.
wzorem $X \leq Y \iff X = Y \vee \min(X - Y)$ $\min(A)$ jest najmniejszą w sensie naturalnego	vszystkich podzbiorów zbioru \mathbb{N} definiujemy porządek \preceq $0 \in Y$, gdzie $$ oznacza różnicę symetryczną zbiorów, a porządku liczbą w zbiorze A . W prostokąt poniżej wpisz pści od najmniejszego do największego w porządku \preceq .
graficznym rozszerzeniem naturalnego porządk	kowane $\langle \mathbb{N} \times \{0,1\}, \leq_{lex} \rangle$ i $\langle \mathbb{N}, \leq \rangle$, gdzie \leq_{lex} jest leksykotu, są izomorficzne, to w prostokąt poniżej wpisz dowolny przypadku wpisz uzasadnienie, dlaczego taki izomorfizm

w prostokąt p	punkt). Jeśli zbiór klauzul $\{\neg p \lor \neg q \lor r, \neg p \lor \neg q \lor s, \neg p \lor q, p, \neg r \lor \neg s\}$ jest sproniżej wpisz rezolucyjny dowód sprzeczności tego zbioru. W przeciwnym przwanie spełniające ten zbiór.	
·	punkt). Jeśli zbiór uporządkowany $\langle \mathcal{P}(\mathbb{N}), \subseteq \rangle$ jest dobrze ufundowany, to w pr	ostoką
omzej wpisz sic	owo "TAK". W przeciwnym przypadku wpisz odpowiedni kontrprzykład.	
	punkt). Jeśli termy $f(x,z)$ i $f(f(y,z),g(y))$ są unifikowalne, to w prostokąt nifikator tych termów. W przeciwnym przypadku wpisz słowo "NIE".	poniże
		poniże
		poniże
		poniże
pisz dowolny u		
pisz dowolny u	nifikator tych termów. W przeciwnym przypadku wpisz słowo "NIE".	
pisz dowolny u	nifikator tych termów. W przeciwnym przypadku wpisz słowo "NIE".	
pisz dowolny u	nifikator tych termów. W przeciwnym przypadku wpisz słowo "NIE".	
pisz dowolny u	nifikator tych termów. W przeciwnym przypadku wpisz słowo "NIE".	
pisz dowolny u	nifikator tych termów. W przeciwnym przypadku wpisz słowo "NIE".	
pisz dowolny u	nifikator tych termów. W przeciwnym przypadku wpisz słowo "NIE".	

Imię i nazwisko:	
Oddane zadania:	

Logika dla informatyków

Egzamin poprawkowy (część zasadnicza)

17 lutego 2009

Za każde z poniższych zadań można otrzymać od -20 do 20 punktów. Osoba, która nie rozpoczęła rozwiązywać zadania otrzymuje za to zadanie 0 punktów. Mniej niż -2 punkty otrzymuje osoba, która umieszcza w swoim rozwiązaniu odpowiedzi kompromitująco fałszywe. Rozwiązania, w których nie ma odpowiedzi kompromitująco fałszywych, będą oceniane w skali od -2 do 20 punktów.

Zadanie 21. Rozważmy relację równoważności na zbiorze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} zdefiniowaną wzorem

$$f \sim g \iff \forall n \in \mathbb{N} \exists k \in \mathbb{Z} \ f(n) - g(n) = 2k.$$

- (a) Podaj moc klasy abstrakcji takiej funkcji $z: \mathbb{N} \to \mathbb{N}$, że z(n)=0 dla wszystkich $n \in \mathbb{N}$. Uzasadnij odpowiedź.
- (b) Udowodnij, że wszystkie klasy abstrakcji relacji \sim są równoliczne.
- (c) Podaj moc zbioru ilorazowego $\mathbb{N}^{\mathbb{N}}/_{\sim}$ (czyli zbioru klas abstrakcji relacji \sim). Uzasadnij odpowiedź.

Zadanie 22. Udowodnij, że funkcja $f:A\to B$ jest różnowartościowa wtedy i tylko wtedy, gdy $f^{-1}(f(X))=X$ dla wszystkich podzbiorów X zbioru A.

Zadanie 23. Rozważmy następujący porządek \leq w rodzinie $\mathcal{P}(\mathbb{N})$ wszystkich podzbiorów zbioru liczb naturalnych. Dla zbiorów $X,Y\in\mathcal{P}(\mathbb{N})$ zachodzi $X\leq Y$ wtedy i tylko wtedy, gdy

$$X = Y$$
 lub $\min(X - Y) \in Y$,

gdzie – oznacza różnicę symetryczną zbiorów, a $\min(A)$ jest najmniejszą w sensie naturalnego porządku liczbą w zbiorze A. Niech $A_i = \{i\}$ dla wszystkich $i \in \mathbb{N}$.

- (a) Czy rodzina zbiorów $\{A_i \mid i \in \mathbb{N}\}$ ma w $\langle \mathcal{P}(\mathbb{N}), \preceq \rangle$ kres górny? Uzasadnij odpowiedź.
- (b) Czy rodzina zbiorów $\{A_i \mid i \in \mathbb{N}\}$ ma w $\langle \mathcal{P}(\mathbb{N}), \preceq \rangle$ kres dolny? Uzasadnij odpowiedź.

Zadanie 24. Rozważmy kratę zupełną $\langle X, \leq \rangle$ i funkcję monotoniczną $f: X \to X$. Niech $a = \inf\{f^i(\top) \mid i \in \mathbb{N}\}$, gdzie \top oznacza największy element zbioru X a f^i oznacza i-krotne złożenie funkcji f.

- (a) Udowodnij, że dla każdego punktu stałego x funkcji f zachodzi nierówność $x \leq a$.
- (b) Udowodnij, że jeśli X jest zbiorem skończonym, to a jest największym punktem stałym funkcji f.

Student name:	
Logic for	Computer Science
Make-up e	exam (bachelor part)
Feb	ruary 17, 2009
This part lasts 75 minutes. To pass it one	needs at least 10 points.
Task 1 (1 point). In the box below write formula $p \Leftrightarrow \neg (q \lor r)$.	a formula in disjunctive normal form equivalent to the
· · · · · · · · · · · · · · · · · · ·	equivalent to $p \Rightarrow q$ and built only from variables p, q and the box below write any such formula. Otherwise write
Task 3 (1 point) If the formulas $n \land (a \Leftrightarrow$	$r)$ and $(p \wedge q) \Leftrightarrow (p \wedge r)$ are equivalent then in the box
	erwise write a corresponding counter-example.
` = ,	$A \times B$ and $S \subseteq B \times A$. In the box below write a formula R is not the inverse of S . The formula must not contain $\not\in$).
	(ψ)) \Leftrightarrow $(\forall x \varphi) \lor (\forall x \psi)$ is a tautology for all formulas φ elow write the word "TAUTOLOGY". Otherwise write

		ooint). If the incluing the box below v				, ,			
Tas	k 7 (1 p	point). If the inclu					or all index	ed families of	sets
	$\}_{t \in T}$ and the example of the	$\{B_t\}_{t\in T}$, then in mple.			the word "		erwise write	e a correspond	ding
Tas	k 8 (1 r	point). For $s, t \in \mathbb{R}$	R let [[s, t] be the close	d interval f	from s to t	in the set o	f real numbers	s In
		ow write the value							
sam	e set and	d contains no symb	ools ∩						
	1 0 (1		6.1						
Tas $\{\langle n, \cdot \rangle\}$	$\langle \mathbf{k} \ 9 \ (1 \ m \rangle \mid \varphi \}$	point). Let $R =$ is the transitive cl	$\{\langle n - \{ losure \} \} \}$	$ +1,n\rangle \mid n \in \mathbb{N}$ of the relation R	R. In the R	oox below v	write a fori	nula $arphi$ such t	that
Tas	k 10 (1	point). Write in	the en	npty fields of the	table belo	w the cardin	nalities of the	he respective s	sets.
	$\mathbb{N}^{\{0,1\}}$	$\{a,b\} \times \{3,4,5\}$	$\mathbb{Q}^{\mathbb{N}}$	$\mathcal{P}(\mathbb{N} \times \{0,1\})$	$\{2009\}^{\mathbb{Q}}$	$(\mathbb{N}\setminus\mathbb{Q})^{\mathbb{N}}$	$(\mathbb{R}\setminus\mathbb{N})^{\mathbb{N}}$	$\{0,1\}^{\{a,b,c\}}$	
]

Student name:	
Task 11 (1 point). If there exists a bijection write an expression defining any such bijection	In $f: \{a,b\}^{\mathbb{Q}\cap [0,2]} \to \mathcal{P}(\mathbb{Q}\cap [0,1])$, then in the box below in Otherwise write the word "NO".
Task 12 (1 point). In the box below write a numbers $\mathbb R$ with exactly three equivalence class	any example of an equivalence relation on the set of real ses.
· - /	$\rightarrow \mathcal{P}(\mathbb{N})$ defined by $f(X) = \{2x \mid x \in X\}$ has the least value of this least fixed point. Otherwise write the word
defined by $X \preceq Y \iff X = Y \vee \min(X \stackrel{\cdot}{-} Y)$	he family $\mathcal{P}(\mathbb{N})$ of all subsets of the set of natural numbers $Y \in Y$, where $$ is the symmetric difference of sets and ne box below write sets $\emptyset, \{1\}, \{2\}, \{1,2\}, \{1,3\}, \{2,3\}$ in g with the greatest.
	$\{0,1\}, \leq_{lex} \rangle$ and $\langle \mathbb{N}, \leq \rangle$, where \leq_{lex} is the lexicographic, then in the box below write any isomorphism of these ch an order does not exist.

Γ

Task 16 (1 point). If the ordered sets $\langle \mathbb{R}, \leq \rangle$ and $\langle \mathcal{P}(\mathbb{N}), \subseteq \rangle$ are isomorphic, then in the box below write any isomorphism of these orders. Otherwise write a justification why such an order does not exist
write any isomorphism of these orders. Otherwise write a justification why such an order does not exist.
Task 17 (1 point). If the set of clauses $\{\neg p \lor \neg q \lor r, \neg p \lor \neg q \lor s, \neg p \lor q, p, \neg r \lor \neg s\}$ is inconsistent then in the box below write a resolution proof of inconsistency of this set. Otherwise write a valuation satisfying this set.
Task 18 (1 point). If the ordered set $\langle \mathcal{P}(\mathbb{N}), \subseteq \rangle$ is well-founded, then in the box below write the word "YES". Otherwise write a corresponding counter-example.
Task 19 (1 point). If the terms $f(x,z)$ i $f(f(y,z),g(y))$ are unifiable, then in the box below write any unifier of these terms. Otherwise write the word "NO".
Task 20 (1 point). In the box below write a formulation of (any version of) the induction principle.

Student name:	
Solutions returned:	

Logic for Computer Science

Make-up exam (main part)

February 17, 2009

Each of the task below is scored from -20 to 20 points. Empty solutions are scored with 0 points. Only solutions that contain discreditably false statements are scored with negative points.

Task 21. Consider the equivalence relation on the set $\mathbb{N}^{\mathbb{N}}$ of all functions from \mathbb{N} to \mathbb{N} defined by

$$f \sim g \iff \forall n \in \mathbb{N} \exists k \in \mathbb{Z} \ f(n) - g(n) = 2k.$$

- (a) What is the cardinality of the equivalence class of the function $z : \mathbb{N} \to \mathbb{N}$, such that z(n) = 0 for all $n \in \mathbb{N}$. Justify your answer.
- (b) Prove that all equivalence classes of the relation \sim are equinumerous.
- (c) What is the cardinality of the quotient set $\mathbb{N}^{\mathbb{N}}/_{\sim}$ (that is, of the set of all equivalence classes of the relation \sim). Justify your answer.

Task 22. Prove that a function $f: A \to B$ is an injection if and only if $f^{-1}(f(X)) = X$ for all subsets X of the set A.

Task 23. Consider the order \leq on the family $\mathcal{P}(\mathbb{N})$ of all subsets of the set of natural numbers defined by $X \leq Y \iff X = Y \vee \min(X \doteq Y) \in Y$, where $\dot{}$ is the symmetric difference of sets and $\min(A)$ is the least number in the set A. Let $A_i = \{i\}$ for all $i \in \mathbb{N}$.

- (a) Does the family $\{A_i \mid i \in \mathbb{N}\}$ have a least upper bound in the ordered set $\langle \mathcal{P}(\mathbb{N}), \preceq \rangle$? Justify your answer.
- (b) Does the family $\{A_i \mid i \in \mathbb{N}\}$ have a greatest lower bound in the ordered set $\langle \mathcal{P}(\mathbb{N}), \preceq \rangle$? Justify your answer.

Task 24. Consider a complete lattice $\langle X, \leq \rangle$ and a monotone function $f: X \to X$. Let $a = \inf\{f^i(\top) \mid i \in \mathbb{N}\}$, where \top is the greatest element of the set X and f^i denotes the function f composed i times with itself.

- (a) Prove that for all fixed points x of the function f the inequality $x \leq a$ is true.
- (b) Prove that if X is a finite set then a is the greatest fixed point of the function f.