Thống kê và khảo sát COVID-19 với R

Môn: Cấu trúc rời rạc cho máy tính

Nhóm 9

Ngày 16 tháng 4 năm 2022

- Giới Thiệu
- 2 Tổng Quát Dữ Liệu
- 3 Thống Kê Dữ Liệu
- 1 Thu Nhập Dữ Liệu
- Trực Quan Dữ Liệu

- Giới Thiệu
- 2 Tổng Quát Dữ Liệu
- 3 Thống Kê Dữ Liệu
- Thu Nhập Dữ Liệu
- 5 Trực Quan Dữ Liệu

- Giới Thiệu
- 2 Tổng Quát Dữ Liệu
- Thống Kê Dữ Liệu
- Thu Nhập Dữ Liệu
- Trực Quan Dữ Liệu

- Giới Thiệu
- 2 Tổng Quát Dữ Liệu
- Thống Kê Dữ Liệu
- Thu Nhập Dữ Liệu
- 5 Trực Quan Dữ Liệu

- Giới Thiệu
- 2 Tổng Quát Dữ Liệu
- Thống Kê Dữ Liệu
- 4 Thu Nhập Dữ Liệu
- Trực Quan Dữ Liệu

Giới Thiệu

- Dữ liệu được thu nhập qua các năm: 2020, 2021, 2022
- Số lượng châu lục và số lượng dữ liệu thể hiện thu nhập dữ liệu

- Dữ liệu được thu nhập qua các năm: 2020, 2021, 2022
- Số lượng châu lục và số lượng dữ liệu thể hiện thu nhập dữ liệu

CONTINENT	OBSERVATIONS
ASIA	35528
EUROPE	36375
AFRICA	38647
NORTH AMERICA	24438
SOUTH AMERICA	9335
OCEANIA	8993

• Lượng dữ liệu thu nhập và giá trị nhỏ/lớn nhất

	THE MOST	THE LEAST
COUNTINENT	Africa - 38647	Oceania - 8993
COUNTRY	Argentina - 781	Pitcaim - 85
DATE	8/29/2021 - 238	1/3/2020 - 2
DATE/CONTINENT	Africa $1/1/2021 - 55$	Africa $1/1/2020 - 0$


```
data=read.csv(link)
continent=c(data[1,2])
count=1
for(i in 2:nrow(data))
  for(j in 1:length(continent))
    if(data[i,2]==continent[j])
      break
    else if(j==length(continent))
      if(data[i,2]=="") next
      continent=c(continent,data[i,2])
      count=count+1
chauluc=c("ASIA", "EROUPE", "AFRICA", "N.AMERICA", "S.AMERICA", "OCEANIA")
a=cbind(continent,CONTINENTS)
colnames(a)=c("Continents",paste(length(continent)))
print(a)
```


6/29

- Tìm Max Và Min
- Tứ Phân Vị
- Trung Bình Cộng
- Đô Lệch Chuẩn
- Outliers

- Tìm Max Và Min
- Tứ Phân Vị
- Trung Bình Cộng
- Độ Lệch Chuẩn
- Outliers

- Tìm Max Và Min
- Tứ Phân Vị
- Trung Bình Cộng
- Độ Lệch Chuẩn
- Outliers

- Tìm Max Và Min
- Tứ Phân Vị
- Trung Bình Cộng
- Độ Lệch Chuẩn
- Outliers

- Tìm Max Và Min
- Tứ Phân Vị
- Trung Bình Cộng
- Độ Lệch Chuẩn
- Outliers

• NEW_CASE

• NEW_CASE

• NEW_CASE

COUNTRIES	MIN	Q1	Q2	Q3	MAX	AVG	STD	OUTLIER
Indonesia	0	766	3874	6816,5	64718	7078,772	10896,68	80
Japan	0	225	1032	3342,5	104345	$5822,\!466$	$16221,\!17$	87
Việt Nam	0	1	10	4758	54830	3610,399	6913,087	102

				36

• NEW_CASE

COUNTRIES	MIN	Q1	Q2	Q3	MAX	AVG	STD	OUTLIER
Indonesia	0	766	3874	6816,5	64718	7078,772	10896,68	80
Japan	0	225	1032	3342,5	104345	$5822,\!466$	$16221,\!17$	87
Việt Nam	0	1	10	4758	54830	3610,399	6913,087	102

				36

• NEW_CASE

COUNTRIES	MIN	Q1	Q2	Q3	MAX	AVG	STD	OUTLIER
Indonesia	0	766	3874	6816,5	64718	7078,772	10896,68	80
Japan	0	225	1032	3342,5	104345	$5822,\!466$	$16221,\!17$	87
Việt Nam	0	1	10	4758	54830	3610,399	6913,087	102

COUTRIES	MIN	Q1	Q2	Q3	MAX	AVG	STD	OUTLIER
Indonesia	0	33	100	187	2069	205,6287	348.2194	74
Japan	0	4	14	46	271	29,38347	36.60783	27
Việt Nam	-1	0	0	113	804	69,28471	116.3542	36

 \bullet Số ngày có số ca nhiễm/tử vong là thấp/cao nhất

 \bullet Số ngày có số ca nhiễm/tử vong là thấp/cao nhất

Country	Infections	Deaths
Indonesia	1	9
Japan	1	22
Vietnam	0	190

 \bullet Số ngày có số ca nhiễm/tử vong là thấp/cao nhất

Country	Infections	Deaths
Indonesia	1	9
Japan	1	22
Vietnam	0	190

 \bullet Số ngày có số ca nhiễm/tử vong là thấp/cao nhất

Country	Infections	Deaths
Indonesia	1	9
Japan	1	22
Vietnam	0	190

Country	No_Data_New_Case	No_Data_ Death_Case	No_ New_Case
Indonesia	1	9	1
Japan	1	22	1
Vietnam	0	190	1

Country	No_Data_New_Case	No_Data_ Death_Case	No_ New_Case
Indonesia	1	9	3
Japan	1	22	3
Vietnam	0	190	22


```
func <-function(chuoi){</pre>
   i = 1
   while(who[i, 3] != chuoi){
       i = i+1:
   i = i+1:
   while(who[j, 3] == chuoi){
       j = j+1;
   j = j-1; res_1 = 1;
   vector_1 <- c();vector_2 <- c()</pre>
   res 2 = 1;
   for( k in i:j){
        if(is.na(who$new_case[k])& is.na(who$new_cases[k+1])){
            res 1 = res 1 + 1:
            if(is.na(who$new case[k])){
                vector 1 <- c(vector 1, res 1);
        if(is.na(who$new deaths[k]) & is.na(who$new deaths[k+1])){
            res 2 = res 2 + 1:
```


• Biểu đồ tần số tích lũy/tương đối quốc gia cho các châu lục

- Biểu đồ thể hiện nhiễm bệnh/tử vong trong 7 ngày cuối của năm cuối cùng
 - Việt Nam

Indonesia

Japan

• Biểu đồ phổ đất nước xuất hiện outliers cho nhiễm bệnh và tử vong


```
qsiv3 <- function(chuoi){</pre>
   i =1
    while(who[i,3] != chuoi){
        i = i+1:
    i = i+1:
    while(whoe[i,3] == chuoi){
       i = i+1:
   i = i-1;
   i = i-6:
    vector1 <- c()
    for(k in i:j){
        vector1 <- c(vector1, who$new case[k])</pre>
    string = paste("Biểu đô thể hiện số ca nhiễm đã báo cáo vào 7 ngày cuối", chuoi)
    barplot(vector1, main=string, xlab = "Ngày",ylab = "Số ca nhiễm đã báo cáo"'
           names.arg = c("Ngày 1", "Ngày 2", "Ngày 3", "Ngày 4", "Ngày 5", "Ngày 6", "Ngày 7")
           col = "darked", horiz = FALSE)
asiv3('Indonesia')
qsiv3('Japan')
```


Nhận xét

19 / 29

Nhận xét

- Indo đang có xu hướng tăng
- Japan đang có xu hướng tăng
- Việt Nam đang tăng nhanh và liên tục

Nhận xét

- Indo đang có xu hướng tăng
- Japan đang có xu hướng tăng
- Việt Nam đang tăng nhanh và liên tục

Nhận xét

- Indo đang có xu hướng tăng
- Japan đang có xu hướng tăng
- Việt Nam đang tăng nhanh và liên tục

 \bullet Dữ liệu Nhiễm bệnh và tử vong theo tháng

• Dữ liệu nhiễm bệnh và tử vong cho từng tháng

• Dữ liệu nhiễm bệnh và tử vong cho 2 tháng cuối

• Dữ liệu nhiễm bệnh và tử vong tích lũy cho từng tháng

• Dữ liệu Nhiễm bệnh và tử vong 7 ngày gần nhất của mỗi tháng

Từng tháng

Hai tháng cuối

• Tích lũy từng tháng

Sự tương quan giữa nhiễm bệnh và tử vong

• Phần trăm tích lũy

Nhận xét chung

- Thời gian bùng phát dịch bệnh lớn nhất của Indo trùng với Japan (29/7/2021 3/9/2021) và cũng trùng với một đợt bùng phát dịch tại Việt Nam
- \bullet Thời gian bùng phát dịch bệnh lớn nhất của Việt Nam trùng với một đợt bùng phát tại Indo và Japan (2/1/2022 18/2/2022)

Dư đoár

- \bullet Đại dịch sẽ bắt đầu suy giảm từ sau tháng 4/2022 đến cuối năm 2022 giảm tối thiểu
- Phải đến cuối năm 2023 thậm chí 2024 đại dịch mới có khả năng kết thúc

Nhận xét chung

- Thời gian bùng phát dịch bệnh lớn nhất của Indo trùng với Japan (29/7/2021 3/9/2021) và cũng trùng với một đợt bùng phát dịch tại Việt Nam
- \bullet Thời gian bùng phát dịch bệnh lớn nhất của Việt Nam trùng với một đợt bùng phát tại Indo và Japan (2/1/2022 18/2/2022)

Dự đoán

- \bullet Đại dịch sẽ bắt đầu suy giảm từ sau tháng 4/2022 đến cuối năm 2022 giảm tối thiểu
- Phải đến cuối năm 2023 thậm chí 2024 đại dịch mới có khả năng kết thúc

THE END

