Total No. of Questions—8]

[Total No. of Printed Pages—4

Seat	
No.	S.

[5152]-549

S.E. (Electrical) (Second Semester) EXAMINATION, 2017 NUMERICAL METHODS AND COMPUTER

PROGRAMMING

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4 and Q. No. 5 or Q. No. 6, Q. No. 7. or Q. No. 8.
 - (ii) Neat diagram must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (v) Assume suitable data, if necessary.
- **1.** (a) Find the real root of equation:

$$x^4 - 3x^3 + 3x^2 - 3x + 2 = 0$$

using Birge-Vieta method. Take $p_0 = 0.5$, show two iterations only. [6]

(b) What do you mean by entry control loop and exit control loop in 'C' language? Write the syntax of any command from each type of loop. [6]

P.T.O.

- What are the rules to declare a variable in 'C' language? 2. (a) Distinguish which of the following are valid or invalid variable names: [6]
 - 123 sppu (*i*)
 - sppu_123 (ii)
 - (iii) sppu @ 123
 - (iv) sppu123.
 - (*b*) Two numbers are defined with absolute error as $a \pm \epsilon_{a1}$ and $b \pm \epsilon_{a2}$. Prove that absolute error in $a \times b$ is $a\epsilon_{a2} + b\epsilon_{a1}$ and absolute error in $\frac{a}{b}$ is $\frac{b\varepsilon_{a1} - a\varepsilon_{a2}}{b^2}$ [6]
- Find the negative real root of equation $x^2 + 4 \sin(x) = 0$, 3. (a) correct to three decimal places with initial value of (-2) using NR method.
 - (*b*) Obtain the Newton's backward differences polynomial passing through all points given below:

x	y
0.1	1.4
0.2	1.56
0.3	1.76
0.4	2.00
0.5	2.28

4. (a) A series RC circuit is connected across a DC supply of 100V.
Voltage across a capacitor is recorded at different instant of time. Fit the following data point into second order degree curve using least square error method:
[6]

t (in	msec) v_c	(in	Volts)
0		C	
2		3	3
4		5	5
6		70	0
8		8	0
10		8	5

(b) Find the interpolating polynomial using Newton's divided difference formula for the following table: [7]

X	y
1	
2	7,0
3	26
5	125

[5152]-549 3 P.T.O.

- Evaluate $\int_0^{0.9} \log_e (1 + \sqrt{x}) dx$ using Trapezoidal rule of integration **5.** with nine subintervals. [6]
 - (*b*) Using modified Euler's method solve the following differential equation to find the value of y at x = 0.1 and 0.2 Take step size of 0.1. Allowed error is 0.0001 $\frac{dy}{dx} = 1 + xy$ with y(0) = 1. [7]
- Calculate following by Simpson's $\frac{3}{8}th$ rule in 8 equal intervals: [6] **6.** $\int_0^{\frac{\pi}{2}} e^{\sin\theta} d\theta.$
 - (b) Use 4th order RK method to estimate y(0.2) when $y' = x^2 + y^2$ with y(0) = 0. Take step size of 0.2. [7]
- 7. Explain Gauss Jacobi method to solve linear simultaneous (a) [6]equations.
 - Find the values of x_1 , x_2 and x_3 using Gauss Jordan method: [6] (*b*)

$$\begin{bmatrix} 1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 4 \end{bmatrix}$$

$$Or$$

- Explain Gauss elimination method to solve linear simultaneous 8. (a) equations. [6]
 - Use Gauss Seidel method to solve the following system of (*b*) equations at the end of 3rd iterations. Use initial values as [6]

$$x = 3$$
, $y = 2$ and $z = 1$:
 $8x - 3y + 2z = 20$
 $4x + 11y - z = 33$
 $6x + 3y + 12z = 35$.