Predict StackOverflow Underrated Answers

Hanhan Wu

Introduction

Why StackOverflow?

- Most popular Software Development Community
- Rapidly Growing
- Crowd Sourcing
- Benefits
 - Share knowledge and experience with fellow developers
 - Gain reputation
 - Learning
 - Other

Motivation

Studies are showing:

- StackOverflow is a major channel for developers to get help
- Top Voted or Accepted solution may not be the best solution

Invoked Questions:

- Is there any Underrated Answer?
- Is it easy to find Underrated Answers?
- Is there anyway to detect Underrated Answers, automatically?

Terminology

Underrated Answer - Less votes but better than the top rated solution

Better Solution Criteria

- Simpler
- Serves for more platform
- Still works now
- More Efficient
- Closer to the question code?
- More positive sentiment?

Goals

- Look into Underrated Answers
 - Are they rare?
 - O What makes them better?
 - Why did they get underrated?

- Try to Detect Underrated Answers Automatically
 - o Is there any effective method?

Approach - Overall

- 1. Data Collection
- 2. Feature Generation
- 3. Data Science Workflow
- 4. Generate Insights

Approach - Data Collection

- 107,558 random posts
- "Python" tag, 3+ Answers
- 2000+ Json Files

Format for Each File:

- 1 Post (id, title, text, votes, favorite count, code)
 - All the Answers (id, text, code, vote)
 - All the Comments for each Answer (id, text, code, vote)

Approach - Feature Generation

- Code Metrics (46 features)
 - Coding Style, Python Syntax
 - 4 levels Module, Class, Function, Code
 - E.g. code percentage, comment percentage, class badname, etc.
 - Raw metrics
 - E.g. LOC, LLOC, Multiline Strings, Blank Lines, etc.
 - Cyclomatic Complexity number of decisions in a code block
 - E.g. complexity of each function, all functions complexity, etc.
 - Analysis through AST tree
 - E.g. number of distinct operators, bugs, difficulty, etc.
 - Maintainability Index

Approach - Feature Generation

- Sentiment Analysis (12 features)
 - Sentence based analysis
 - Comments Sentiment for Each Answer
 - Take Vote Count into consideration
 - Answer Sentiment
 - Format:
 - Sentiment Score
 - Very Positive Count
 - Positive Count
 - Neutral Count
 - Negative Count
 - Very Negative Count

Approach - Feature Generation

- Other (3)
 - Answer Code vs Question Code
 - Sequence Match Score
 - Ignore Junk Items
 - Each Answer vs Top Rated Answer
 - Vote/TotalVote
 - MaxVote Vote

- Label IsUnderrated
- IDs
 - Question ID
 - Answer ID

Start With 61 Numerical Features

Each Row: QuestionID - AnswerID - Features

Approach - Data Science Workflow

- Clustering
 - Explore whether there are grouped patterns
 - Explore whether Underrated Answers could be grouped together
- Classification
 - Prediction with Ground Truth
 - Explore whether there is an effective prediction method

Challenges

- Data Collection
 - StackOverflow API cannot link data together
 - Hidden data
 - Text Data Cleaning is troublesome
- Feature Generation
 - Python Version Conflicts & Syntax Error
 - Limited open source output
 - Sentient analysis for text data
- Data Labeling for Classification
 - Crowd Sourcing can be biased, participants need training
 - Manually labeling is also time consuming
- Small Amount of Data

Current Progress

- 1. Data Collection (Done)
- 2. Feature Generation (Done)
- 3. Data Science Workflow (TO-DO)
- 4. Generate Insights (TO-DO)

In case PPT changed format

In Case Link