华东理工大学 2017 - 2018 学年第二学期

《 复变函数与积分变换》课程期终考试试卷 A 2018.6

开课学院:理学院,考试形式:闭卷,所需时间:120分钟

班级:

任课教师:

				<u>-</u> '				
题序		11	三	四	五.	六	七	总分
得分								
评卷								
(本试卷共七道大题)								
积分变换表:								
$\mathcal{F}[\delta(t)]=1, \mathcal{F}[1]=2\pi i\delta(\omega), \mathcal{F}[u(t)]=\frac{1}{i\omega}+\pi\delta(\omega), \mathcal{L}[1]=\frac{1}{s}, \mathcal{L}[t^m]=\frac{1}{s^{m+1}}$								
$\mathcal{L}[\sin kt] = \frac{k}{s^2 + k^2}, \mathcal{L}[\delta(t)] = 1, \mathcal{L}[\cos kt] = \frac{s}{s^2 + k^2}, \mathcal{L}[e^{kt}] = \frac{1}{s - k}$								

一. 填空(每小题 4 分, 共 24 分)

1. 设
$$z = \text{Ln}(2 - \sqrt{3}i)$$
,则 $\text{Re}(z) =$

学号:

2
$$(1+\sqrt{3}i)^6 =$$
 .

考生姓名:

3. 幂级数
$$\sum_{n=0}^{\infty} (3+i)^n z^n$$
 的收敛半径为_____.

4. Re
$$s[\sin \frac{1}{z}, \infty] =$$
_____.

5. 分式线性映射
$$f(z) = \frac{z-i}{z+i}$$
 在 $z = i$ 处的旋转角为______, 伸缩率为______.

6. 函数
$$f(t) = \begin{cases} 1 & |t| < 1 \\ 0 & |t| > 1 \end{cases}$$
 的傅里叶变换为 ______.

二、单项选择题(每小题4分,共16分)

- 1. 已知 $f(z) = \frac{1}{3}x^3 + iy$,则以下结论中正确的是()
 - A. 函数 f(z) 在两个直线 $x = \pm 1$ 上处处可导,但在复平面上处处不解析;
 - B. 函数 f(z) 在两条直线 $x = \pm 1$ 上处处解析;
 - C. 函数 f(z) 在复平面上处处解析;
 - D. 函数 f(z) 在除两条直线 $x = \pm 1$ 外处处可导。
- 2. $35 \sum_{n=0}^{\infty} \frac{(2+7i)^n}{10^n} \neq 0$
 - A. 无法判定 B. 发散 C. 条件收敛 D. 绝对收敛

3 若
$$f(z) = z^2 e^{\frac{1}{z}}$$
,则 Re $s[f(z),0] = ($)

- A. 0 B. $\frac{1}{2}$ C. 1 D. $\frac{1}{6}$

4. 设
$$f(t) = \delta(t - t_0) + e^{i\omega_0 t}$$
,则 $\mathcal{F}[f(t)] = ($

- A. $e^{i\omega t_0} + 2\pi\delta(\omega \omega_0)$ B. $e^{-i\omega t_0} + 2\pi\delta(\omega \omega_0)$
- C. $e^{-i\omega t_0} + 2\pi\delta(\omega + \omega_0)$ D. $e^{i\omega t_0} + 2\pi\delta(\omega + \omega_0)$
- 三、计算下列积分(每小题6分,共24分)
- 1...求 $\int_{C} (\mathbf{i} \overline{z}) dz$, 其中 C 为从原点到 $1 + \mathbf{i}$ 的直线段.

2.
$$\oint_C \frac{e^z}{z^2 - 1} dz$$
 $C: |z| = 2$ 正向。

3. 计算积分
$$\oint_{|z|=3} \frac{z^{17}}{(z^2-1)^5(z^4-2)^2} dz$$

4.
$$\int_{-\infty}^{+\infty} \frac{x+2}{x^4+5x^2+4} dx$$
;

四、(10 分)设 $u = e^{-x} \sin y$ 为调和函数,求v使函数 f(z) = u + iv 在复平面上解析.

五、(8 分) 设 $f(z) = \frac{2z+3}{z^2+3z-10}$, 求 f(z) 在 0 < |z| < 2 及 2 < |z| < 5 内的 Laurent 展开式。

六(6 分). 求把单位圆|z|<1映射成单位圆|w|<1的分式线性映射w=f(z),并满足条件: $f(\frac{1}{2})=0$, $\arg f'(\frac{1}{2})=\frac{\pi}{2}$.

七、(12分)(1) **求**函数 $F(s) = \frac{7s+5}{s(s+2)(s+3)}$ 的拉氏逆变换

- (2) 利用拉氏变换的性质计算积分 $\int_0^{+\infty} \frac{1-\cos t}{t} e^{-2t} dt$
 - (3) 利用拉氏变换求解常微分方程初值问题: $\begin{cases} y'' 6y' + 9y = e^{3t} \\ y(0) = 0, y'(0) = 0. \end{cases}$