

Study Of Intel PML Effectiveness For Virtual Machine Working Set Size Estimation

PhD Student Stella Bitchebe SupervisorS Pr. Alain Tchana Pr. Laurent Réveillère

Research team
SCALE - I3S

Dresden-Germany March'19

Introduction - Virtualization

Basic building block in data centers

Users reserve resources by booking VMs

Overestimate VMs Sizes

A large percentage of VMs require many fewer resources than their allocations

(SOSP'17)

There is a significant potential for oversubscribing physical resources

On-demand allocation

Context

- To avoid resource waste
- Needs accurate and efficient estimation
- Especially for memory: limiting resource

Existing solutions

- All software base

 Several drawbacks
- Examples
 - □ Self-Ballooning
 - □ Geiger
 - □ ZBalloon
 - □ VMWare

On-demand allocation

Context

- To avoid resource waste
- Needs accurate and efficient estimation
- Especially for memory: limiting resource

Existing solutions

- All software base
 Several drawbacks
- Examples
 - □ Self-Ballooning
 - □ Geiger
 - □ ZBalloon
 - VMWare

VMWare Technique

- Periodically and randomly select n pages from the VM's memory and invalidate them
- Estimation is done by counting the number of pages which were subject to a non-present or read-only fault during the previous time interval

On-demand allocation

Context

- To avoid resource waste
- Needs accurate and efficient estimation
- Especially for memory: limiting resource

Existing solutions

- All software base > Several drawbacks
- Examples
 - □ Self-Ballooning
 - □ Geiger
 - □ ZBalloon
 - VMWare

VMWare Technique

- Periodically and randomly select n pages from the VM's memory and invalidate them
- Estimation is done by counting the number of pages which were subject to a non-present or read-only fault during the previous time interval

INTEL PML

Page Modification Logging

33

PML ... provides a faster mechanism for a hypervisor to monitor all the memory pages that a guest VM modifies, in order to improve working page set analysis, checkpointing, and even VM migration.

• PML Architecture

- Once PML is enabled, if the VM modifies a page the CPU logs its GPA (Guest-Physical address) inside a buffer (*PML logging buffer*)
- When the log is full (512 addresses logged), the CPU raises a VMExit which traps inside the hypervisor
- The handler of the VMEexit does certain task (e.g., copy the content of the *PML logging buffer* to a larger buffer which is shared with the pVM)
- Then the *PML index* is reset to 511 and the VM resumes

Contribution

1

Study of PML effectiveness for Live Migration, Checkpointing and Working Set Size estimation

- Xen and KVM Implemented PML
- Xen use PML for Live migration

Contribution

- Study of PML effectiveness for Live Migration, Checkpointing and Working Set Size estimation
 - Xen and KVM Implemented PML
 - Xen use PML for Live migration

WSS estimation algorithm based on PML

With Xen Hypervisor

$$M = wss * size_of_a_page + &$$

Testbed

On this machine:

PML is not yet

present on servers

Testbed

On this machine:

PML is not yet

present on servers

VM with single vCPU and 5GB (for micro bench)/10 (for macro benchs) memory

Testbed

On this machine:

PML is not yet

present on servers

VM with single vCPU and 5GB (for micro bench)/10 (for macro benchs) memory Micro Bench: A
synthetic application
written for the
purpose

Results for Live migration

- Baseline: classical approach (write protecting)
- synt-x: x is the write intensity (100 means write only and 0 means read only)
- Average of 10 executions
- Metric 1 (m1): impact on live migration duration
- Metric 2 (*m2*): impact on user application performance

- → PML reduces the duration of live migration by 0.98%-10.18%: especially for read intensive applications
- → PML reduces the impact of live migration on user applications by 0.065%-0.95%: especially for write intensive applications

Results for Checkpointing

→ PML does not improve checkpointing

→ Live Checkpointing is likely to take advantage of PML

Results for WSS estimation

PML Hard Limit - PML is not able to accurately estimate a VM WSS

- → PML does not log accessed pages
- **→** With PML it is not possible to track hot pages

Results for WSS estimation

PML Hard Limit - PML is not able to accurately estimate a VM WSS

- → PML does not log accessed pages
- → With PML it is not possible to track hot pages

PML Soft Limit - PML is unfair for cloud users and their VMs

→ The VMExit on *PML log buffer full* is handled by the CPU that runs the VM for which WSS is estimated

Conclusion - Ongoing Work

Proposed Extension of PML: PRL (Page Reference Logged)

PRL implementation under Gem5 simulator

PRL-based WSS estimation algorithm

That was all!

• ANY QUESTIONS?