Glivenko-Cantelli y etc.

24 de junio de 2024

- Ej, $\Omega = [0,1]$, \mathbb{P} unif y $X_n = \mathbb{1}\{\omega \in [0,1/n)\}$. ¿ $\lim_n F_n(x)$?

- Ej, $\Omega = [0, 1]$, \mathbb{P} unif y $X_n = \mathbb{1}\{\omega \in [0, 1/n)\}$. $\lim_n F_n(x)$?
- Es distinto, si tenemos una **muestra** $\vec{X} = \{X_1, \dots, X_n\}$ y $F_n(x) = \text{ecdf}(\vec{X})(x)$. Reflexionar la diferencia y ¿lím_n $F_n(x)$?
- Por facilidad: asumimos F es continua, pero vale en general.

- Ej, $\Omega = [0, 1]$, \mathbb{P} unif y $X_n = \mathbb{1}\{\omega \in [0, 1/n)\}$. ¿ $\lim_n F_n(x)$?
- Es distinto, si tenemos una **muestra** $\vec{X} = \{X_1, \dots, X_n\}$ y $F_n(x) =$
 - $\operatorname{ecdf}(\vec{X})(x)$. Reflexionar la diferencia y $\lim_{n \to \infty} F_n(x)$?
- ullet Por facilidad: asumimos F es continua, pero vale en general.
- o i or raemada. asammos i es continua, pero vale en general.
- Sabíamos por ejercicios prácticos que $F_n(x) \to F(x)$, pero ahora vimos que [SPOILER ALERT] $\sup_{\mathbb{R}} |F_n(x) F(x)| \to 0$.

- Ej, $\Omega = [0, 1]$, \mathbb{P} unif y $X_n = \mathbb{1}\{\omega \in [0, 1/n)\}$. $\lim_n F_n(x)$?
- Es distinto, si tenemos una **muestra** $\vec{X} = \{X_1, \dots, X_n\}$ y $F_n(x) =$ $\operatorname{ecdf}(\vec{X})(x)$. Reflexionar la diferencia y $\lim_{n} F_n(x)$?
- Por facilidad: asumimos F es continua, pero vale en general.
- Sabíamos por ejercicios prácticos que $F_n(x) \to F(x)$, pero ahora vimos
- que [SPOILER ALERT] $\sup_{\mathbb{D}} |F_n(x) F(x)| \to 0$.
- $F_n \bowtie \mu_n$ (la **medida empírica**, ver práctico 3). $\mu_n \to \mu \stackrel{\mathsf{def}}{\Leftrightarrow} \int_{\mathbb{D}} f d\mu_n \to \int_{\mathbb{D}} f d\mu$ para toda f continua y acotada.

- Ej, $\Omega = [0, 1]$, \mathbb{P} unif y $X_n = \mathbb{1}\{\omega \in [0, 1/n)\}$. $\lim_n F_n(x)$?
- Es distinto, si tenemos una **muestra** $\vec{X} = \{X_1, \dots, X_n\}$ y $F_n(x) =$ $\operatorname{ecdf}(\vec{X})(x)$. Reflexionar la diferencia y $\lim_{n} F_n(x)$?
- Por facilidad: asumimos F es continua, pero vale en general.
- Sabíamos por ejercicios prácticos que $F_n(x) \to F(x)$, pero ahora vimos que [SPOILER ALERT] $\sup_{\mathbb{D}} |F_n(x) - F(x)| \to 0$.
- $F_n \bowtie \mu_n$ (la **medida empírica**, ver práctico 3).
- $\mu_n \to \mu \stackrel{\text{def}}{\Leftrightarrow} \int_{\mathbb{D}} f d\mu_n \to \int_{\mathbb{R}} f d\mu$ para toda f continua y acotada.

Si $f=\mathbb{1}_{(-\infty,x]}$, por G-C, $\sup_{x\in\mathbb{R}}|\int_{\mathbb{R}}\mathbb{1}_{(-\infty,x]}d\mu_n-\int_{\mathbb{R}}\mathbb{1}_{(-\infty,x]}d\mu| o 0$

- Ej, $\Omega = [0, 1]$, \mathbb{P} unif y $X_n = \mathbb{1}\{\omega \in [0, 1/n)\}$. ¿ $\lim_n F_n(x)$?
- Es distinto, si tenemos una **muestra** $\vec{X} = \{X_1, \dots, X_n\}$ y $F_n(x) = \text{ecdf}(\vec{X})(x)$. Reflexionar la diferencia y $i \lim_n F_n(x)$?
 - Por facilidad: asumimos F es continua, pero vale en general.
- Sabíamos por ejercicios prácticos que $F_n(x) \to F(x)$, pero ahora vimos que [SPOILER ALERT] $\sup_{\mathbb{D}} |F_n(x) F(x)| \to 0$.
- que [SPOILER ALERT] $\sup_{\mathbb{R}} |F_n(x) F(x)| \to 0$.

 $F_n \bowtie \mu_n$ (la **medida empírica**, ver práctico 3).
- $\mu_n \to \mu \stackrel{\mathrm{def}}{\Leftrightarrow} \int_{\mathbb{R}} f d\mu_n \to \int_{\mathbb{R}} f d\mu$ para toda f continua y acotada.
 - Si $f = \mathbb{1}_{(-\infty,x]}$, por G-C, $\sup_{\mathbf{x} \in \mathbb{R}} |\int_{\mathbb{R}} \mathbb{1}_{(-\infty,x]} d\mu_n \int_{\mathbb{R}} \mathbb{1}_{(-\infty,x]} d\mu| \to 0$
- ¿Podemos cambiar $\mathbb{1}_{(-\infty,x]}$ por $\mathbb{1}_B$ con B medible?