

Government Engineering College Palakkad, Sreekrishnapuram

G2

Under Section 2(f) of UGC Act 1956 (Approved by AICTE & Affiliated to APJ Abdul Kalam Technological University)

ChatDiet: Empowering personalized nutrition-oriented food recommender chatbots through an LLM-augmented framework

SEMINAR GUIDE: MRS SUJO VASU

DATE: OCTOBER 9,2024

NAME: ASHA K WILSON

REG NO: PKD21IT024

AGENDA

- > INTRODUCTION
- > CHATDIET FRAMEWORK MAJOR COMPONENTS
- > CHATDIET CASE STUDY
- > ARCHITECTURE
- > CHAT DIET EVALUATION
- > CRITICAL CHALLENGE
- > CONCLUSION
- > REFERENCE

INTRODUCTION

- Nutrition impacts overall well-being, disease management, sleep, mood, and immunity.
- Technology is increasingly used to improve health through food recommendations.
- Traditional food services often prioritize taste over nutritional health.
- Nutrition-oriented recommendations encourage healthy, sustainable eating habits.
- Conventional nutrition services struggle with personalization and interactivity.

Why Nutrition-Oriented Food Recommendation system?

Focus on Nutritional Content Customization for Health Conditions

Challenges in Personalization

Need for Explainability and Interactivity

Why Exploiting LLMs for Recommendation Tasks?

LLMs Adaptability

Role of LLMs

- Serve as central model or facilitator.
- Data transformation

Implementation

- Prompt Engineering
- Abstract Embeddings

Limitations

- Direct use of personal data.
- Challenges in handling complex physiological and health data.

CHATDIET FRAMEWORK - MAJOR COMPONENTS

Personal Model: Integrates individual-specific data, tailoring recommendations to the user's unique health and nutritional needs.

Population Model: Incorporates general nutrition knowledge relevant to the population, providing a broader context for recommendations.

Orchestrator: Mediates between user queries and models, gathers relevant information from both personal and population models.

LLM: Combines aggregated data from the orchestrator with its internal knowledge to generate personalized and contextually relevant food recommendations.

CHATDIET - CASE STUDY

Objective: Focuses on the intricate connection between dietary habits, physical activity, sleep, and health outcomes for providing personalized food recommendations.

Dataset Used

• N-of-1 Dataset (3 Years)

Devices Used

- Oura Ring
- Arboleaf Smart Weighing Scale
- Cronometer Food-Logging Application
- Apple HealthKit

Synthetic Dataset

• To quantitatively evaluate ChatDiet with a larger sample size.

Personal Model

Purpose: The Personal Model integrates unique, individual-specific data into the recommendation process.

Personal Data: Food preferences, dietary history, electronic health records, and physiological signals from wearable devices.

Implementation: Utilizes causal discovery and inference methods to identify how nutrition affects health outcomes.

Population Model

Purpose:

Provides population-level information to ground personal recommendations in general dietary trends and health norms.

Population Data: Food knowledge graphs, General nutritional standards, Public dietary guidelines, Nutritional and supplement facts

Data Forms: Text and non-text data used to enhance recommendations.

Orchestrator

The Orchestrator in the ChatDiet framework performs three key tasks to enhance food recommendations:

Retrieving:

 Selects the most relevant data from Personal and Population Models based on user queries.

Transcribing:

Converts
non-textual
data into text
formats,
enabling
effective
input for
LLMs.

Prompt Engineering:

It ensures
that the LLM
understands
its role and
context in the
conversation.

Generative Response

•Purpose: Generate personalized, nutrition-oriented food recommendations.

Role: Processes data from the Orchestrator to generate responses.

Integration: Combines personal context, population knowledge, and the user's query processed by the Orchestrator.

Model Used: GPT-3.5-turbo

ChatDiet Realization on N-of-1 Data CHATDIET - ARCHITECTURE

Personalized Nutriton-oriented Food Recommendation

Personal Food Log Data Smart Ring Data User's Query

Personal Nutrition Effect

Food Nutrition Content

Orchestrator

- BM25
- Transcribing
- Intructive Prompt Engineering

Aggregated Information Generative Response

gpt-3.5-turbo

Population Model

Causal Discovery

Causal Inference

Food Nutrition List Loading

Personal Model

Food Nutrition List

CHATDIET EVALUATION

- Purpose: Assess effectiveness of food recommendations, explainability, personalization, and interactivity.
- Evaluation Details:
 - Effectiveness Test Results:
 - HRV: 0.95
 - Overall Sleep Quality: 0.93
 - REM Sleep Duration: 0.85
 - Deep Sleep Duration: 0.95

Quantitative Validation of Effectiveness

Example:

• If a recommendation explains that a food (e.g., Acai berries) affects a health outcome (e.g., deep sleep) due to a specific nutrient (e.g., Vitamin E), and this aligns with the estimated nutritional impact, the recommendation is classified as 'correct'.

Results:

- Recommendation Effectiveness Ratio (RER):
 - HRV: 0.95
 - Overall Sleep Quality: 0.93
 - REM Sleep Duration: 0.85
 - Deep Sleep Duration: 0.95

ChatDiet's Explainability

Objective: Showcase ChatDiet's ability to explain its recommendations.

Features:

- **Explainability**: Emphasizes the logic and decision-making process behind recommendations.
- Example:
 - If a user wants to improve REM sleep duration, ChatDiet suggests foods rich in Vitamin E, Valine, and Protein (e.g., Almonds).

ChatDiet's Personalization

Objective: Show ChatDiet's ability to tailor food recommendations based on **individual nutrition effects**.

Personalization Approach: Illustrates how ChatDiet integrates personal data into recommendations, contrasting with general population knowledge.

ChatDiet's Interactivity Demonstration

Objective: Demonstrate ChatDiet's interactive capabilities.

Examples:

- Clarification: Users can request more details if initial responses are unclear.
- Adaptability: Offers alternative recommendations if the user shows disinterest in suggested foods.

What food would you recommend to enhance my REM sleep?

Based on your personal nutrition effects, I recommend consuming foods high in Valine (g) to improve your REM sleep duration. Valine has a positive effect of 66.9828 per unit on REM sleep duration.

One food that is rich in Valine is tofu. Tofu is a plant-based protein source made from soybeans. It contains all essential amino acids, including Valine. Consuming tofu as part of your diet can provide a good amount of Valine, which can potentially improve your REM sleep duration.

ChatDiet

*Estimated by personal model, the average treatment effect of Valine on REM Sleep is 66.9828

CRITICAL CHALLENGE - HALLUCINATION IN RECOMMENDATIONS

Suggest me a food to enhance my deep sleep duration.

Almonds contain several nutrients that have positive effects on deep sleep duration, such as vitamin E, magnesium, tryptophan, and tryrosine.

Vitamin E: Almonds are a good source of vitamin E, which has a positive effect on deep sleep duration (3.3408 per unit).

Tryptophan: Almonds also contain tryptophan, an amino acid that is a precursor of serotonin and melatonin, both of which aid in promoting deep sleep (-22.8412 per unit).

Tyrosine: Additionally, almonds contain tyrosine, an amino acid that helps in the production of neurotransmitters like dopamine and norepinephrine, which are important for regulating sleep (-6.5572 per unit).

CONCLUSION

Implementation Success: The ChatDiet chatbot, developed using three years of individual health data, achieved a 92% effectiveness rate in food recommendations.

Limitations: ChatDiet's recommendations are limited to the factors available in the dataset, and occasional inaccuracies may occur, leading to nonsensical suggestions.

Challenges: Faced issues with hallucinations in recommendations, leading to inconsistencies and credibility concerns.

Future Focus: Future enhancements will include counterfactual analysis to predict user engagement and improve recommendation accuracy.

REFERENCE

 Zhongqi Yang et al. ChatDiet: Empowering personalized nutritionoriented food recommender chatbots through an LLM-augmented framework, smart health 32(1):100465 (March 2024).

THANK YOU

