Контрольная работа (неблокирующий ТСР-сервер)

Общая постановка задачи

Требуется, разработать клиент-серверное приложение (программы client и server). Клиент взаимодействует с неблокирующим сервером по протоколу ТСР. Все сетевые соединения обрабатываются сервером независимо друг от друга.

Клиент в цикле

- печатает в стандартный поток вывода приглашение > ;
- считывает из стандартного потока ввода введенную пользователем строку;
- обрабатывает введенную строку;
- печатает в стандартный поток вывода результат обработки.

Обработка введенной пользователем строки состоит в следующем.

Назовем строку корректной, если она имеет следующий формат

Корректная строка содержит непустую последовательность целых чисел (тип int) отделенных друг от друга символом ';'. Перед и после каждого числа могут присутствовать пробелы. Их число неограничено. Примерами корректных строк являются 1 и 1;2; 3; 4;5.

Если введенная строка является корректной, то содержащаяся в ней последовательность целых чисел в виде массива передается на сервер. При этом, сначала отправлется длина массива в виде значения типа int, а за тем отправляются элементы массива.

В ответ сервер отправляет клиенту также массив целых чисел (тип int). При этом, сначала отправлется длина массива в виде значения типа int, а за тем отправляются элементы массива. Полученный массив клиент печатает в следующем формате. Печатается длина массива, печатается символ : и пробел, через пробел печатаются все элементы массива.

Если введенная строка не представляет собой разделенную пробелами последовательность целых чисел, то печатается слово Error.

Пример работы клиента (задача 1).

```
$ ./client
> 1; 2; 3; 4; 5; -6; 7; 8<Enter>
6: 1 2 3 4 5 -6
```

```
> 9 ; 10 ;-1; -2<Enter>
5: 7 8 9 10 -1
> abcd<Enter>
Error
...
> Ctrl-D
$
```

Обработчик каждого сетевого соединения на сервере обладает состоянием. Состояние представляет собой последовательность целых чисел. При создании соединения состояние инициализируется пустой последовательностью.

Функционирование обработчика сетевого соединения сводится к многократному выполнению следующей последоватльности шагов.

1. Пусть текущее состояние имеет вид

$$x_1, ..., x_m$$
.

2. Предположим, что от клиента была получена последовательность чисел

$$x_{m+1}, ..., x_{m+n} \quad (n \leq N).$$

3. Новым текущим состоянием становится последовательность чисел

$$x_1, ..., x_m, x_{m+1}, ..., x_{m+n}.$$

4. Предположим, что текущее состояние может быть представлено в виде

$$x_1, \dots, x_j, x_{j+1}, \dots, x_{m+n},$$
 (1)

где последовательность x_1,\ldots,x_j является допустимой, а последовательности вида x_1,\ldots,x_s (s< j) не являются допустимыми. Определение допустимой последовательности вводится индивидуально для каждой отдельной задачи.

В этом случае, клиенту отправляется последовательность чисел

$$x_1,\ldots,x_j,$$

а текущим состоянием становится последовательность чисел

$$x_{j+1},\ldots,x_{m+n}.$$

5. Если текущее состояние не может быть представлено в виде (1), то клиенту отравляется число 0 как значение типа int. Это интерпретируется как отправка пустой последовательности.

Критерии допустимости

Определение допустимой последовательности целых чисел вида

$$x_1, x_2, \dots, x_j \qquad (j > 1)$$

для каждой отдельной задачи.

Задача 1.

Число $x_i < 0$.

Задача 2.

Число $|x_j|$ – простое число.

Задача 3.

Числа $|x_{i-1}|$ и $|x_i|$ – взаимнопростые.

Залача 4

Число $|x_i|$ является степенью числа 2.

Задача 5.

Число $|x_i|$ является степенью числа 3.

Задача 6.

Наибольший общий делитель чисел $|x_1|, |x_2|, \dots, |x_j|$ равен 1.

Задача 7.

Сумма всех элементов последовательности равна нулю.

Задача 8.

Сумма всех элементов последовательности является простым числом.

Задача 9.

Наименьшее общее кратное всех положительных элементов последовательности больше 100.

Задача 10.

Числа $|x_1| + 1$ и $|x_j|$ – взаимнопростые.

Задача 11.

Число $|x_j|$ – произведение двух простых чисел.

Задача 12.

Число $|x_j|$ – ненулевая степень простого числа.

Задача 13.

Число $|x_i|$ – ненулевая степень номера j.

Задача 14.

Число $|x_1 + x_j|$ – простое число.

Задача 15.

Число $|x_{j-1} + x_j|$ – простое число.

Задача 16.

Число $|x_1+x_j|$ – ненулевая степень простого числа.

Задача 17.

Число $|x_{j-1}+x_j|$ – ненулевая степень простого числа.