ATOMIC PHYSICS

- A Quick Guide -

Huan Q. Bui

 $\begin{array}{c} {\rm B.A.,\ COLBY\ COLLEGE\ (2021)} \\ {\rm MASSACHUSETTS\ INSTITUTE\ OF\ TECHNOLOGY} \end{array}$

June 15, 2021

Preface

Greetings,

While I have spent most of my undergraduate years in Professor Charles Conover's lab at Colby College working on cold atom experiments, I never had formal training in atomic, molecular, and optical physics. The closest to formal training I have for AMO physics is a standard quantum mechanics course I took in the fall of my junior year. Most of the intuition I have for atomic physics, I learned from my discussions with Professor Conover or read from books and articles here and there. This article is my attempt at formally teaching myself atomic physics.

This article is basically my version of an "atomic physics dictionary," which should keep growing as I go along in my education and research at MIT. As a result of this, there is no good way for me to organize the topics in here but by alphabetical order (hence "dictionary"). I don't know how well I'll be able to curate this article, but we'll see.

In any case, good luck and, most importantly, enjoy!

\mathbf{A}

B

Bloch's Theorem and Bloch States

Consider a periodic potential $V(\mathbf{r})$ associated with a lattice whose primitive lattice translation vectors are given by

$$\mathbf{T} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3,$$

where n_i are integers and $\mathbf{a_i}$ are the three noncoplanar vectors (**T** is basically vectors which translates from one vertex in the lattice to another arbitrary one). Since V is periodic, we have

$$V(\mathbf{T} + \mathbf{r}) = V(\mathbf{r}).$$

In Fourier components,

$$V(\mathbf{r}) = \sum_{\mathbf{G}} V_{\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}}$$

where **G** are a set of vectors and $V_{\mathbf{G}}$ are Fourier coefficients. By the periodicity of V, we have

$$e^{i\mathbf{G}\cdot\mathbf{T}} = 1 \implies \mathbf{G}\cdot\mathbf{T} = 2\rho\pi, \quad \rho \in \mathbb{Z}.$$

The only way to define G such that the above equation makes sense is:

$$\mathbf{G} = m_1 \mathbf{A}_1 + m_2 \mathbf{A}_2 + m_3 \mathbf{A}_3$$

where m_i are integers and \mathbf{A}_i are three noncoplanar vectors defined by

$$\mathbf{a}_i \cdot \mathbf{A}_l = 2\pi \delta_{il}$$

This shows the existence of an r-lattice implies that of a k-lattice, and we call G the reciprocal lattice.

What set of functions describes the motion of electrons in such a potential? Since we want to reflect the translation symmetry of the lattice, we may impose the *Born-von Karman periodic boundary condition* on the plane wave

$$\phi(\mathbf{r}) = e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)}$$

to get

$$\phi(\mathbf{r} + N_i \mathbf{a_i}) = \phi(\mathbf{r})$$

where j = 1, 2, 3 and $N = N_1 N_2 N_3$ is the number of primitive unit cells in the crystal; N_j is the number of unit cells in the jth direction. From here, we have that

$$e^{iN_j\mathbf{k}\cdot\mathbf{a}_j}=1$$

Following a similar argument as before, we find that the only allowed ${\bf k}$ vectors are of the form

$$\mathbf{k} = \sum_{j=1}^{3} \frac{m_j}{N_j} \mathbf{A}_j$$

Now, consider a Schrödinger equation with potential $V(\mathbf{r})$:

$$\widehat{H}\psi = \left[-\frac{\hbar^2 \nabla^2}{2m} + V(\mathbf{r}) \right] \psi = E\psi.$$

In Fourier components, we again have

$$V(\mathbf{r}) = \sum_{\mathbf{G}} V_{\mathbf{G}} e^{i\mathbf{G} \cdot \mathbf{r}}.$$

Let us set the background potential to zero, i.e., $V_0 \equiv 0$. Next, let us write the solution $\phi(\mathbf{r})$ as a combination of plane waves obeying the Born-von Karman PBC:

$$\psi(\mathbf{r}) = \sum_{\mathbf{k}} C_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}},$$

so that $\phi(\mathbf{r})$ also satisfies the Born-von Karman PBC. Plugging this into the SE, we find

$$\sum_{\mathbf{k}} \frac{\hbar^2 k^2}{2m} C_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} + \underbrace{\left[\sum_{\mathbf{G}} V_{\mathbf{G}} e^{i\mathbf{G}\cdot\mathbf{r}}\right] \left[\sum_{\mathbf{k}} C_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}}\right]}_{V(\mathbf{r}\psi)} = E \sum_{\mathbf{k}} C_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}}$$

where we can re-write:

$$V(\mathbf{r})\psi = \sum_{\mathbf{G},\mathbf{k}} V_{\mathbf{G}} C_{\mathbf{k}} e^{i(\mathbf{G}+\mathbf{k})\cdot\mathbf{r}} = \sum_{\mathbf{G},\mathbf{k}} V_{\mathbf{G}} C_{\mathbf{k}-\mathbf{G}} e^{i\mathbf{k}\cdot\mathbf{r}}.$$

With this, we can factor out $e^{i\mathbf{k}\cdot\mathbf{r}}$ in each term of the SE and use the fact that the plane waves form an orthogonal basis, we find

$$\left(\frac{\hbar^2 k^2}{2m} - E\right) C_{\mathbf{k}} + \sum_{\mathbf{G}} V_{\mathbf{G}} C_{\mathbf{k} - \mathbf{G}} = 0.$$

Let us write $\mathbf{k} = \mathbf{q} - \mathbf{G}'$ and let $\mathbf{G}'' = \mathbf{G}' + \mathbf{G}$, where \mathbf{q} lies in the first Brillouin zone. With this change of variables, we have the result

$$\left(\frac{\hbar^2(\mathbf{q} - \mathbf{G}')^2}{2m} - E\right)C_{\mathbf{q} - \mathbf{G}'} + \sum_{\mathbf{G}''} V_{\mathbf{G}'' - \mathbf{G}'}C_{\mathbf{q} - \mathbf{G}''} = 0.$$

Now, we're ready for the statement of the **Bloch's Theorem**. The result above involves coefficients $C_{\mathbf{k}}$ in which $\mathbf{k} = \mathbf{q} - \mathbf{G}$, where \mathbf{G} are general reciprocal lattice vectors. This means that if we fix \mathbf{q} , then the only $C_{\mathbf{k}}$ that feature are of the form $C_{\mathbf{q}-\mathbf{G}}$. In other words, for each \mathbf{q} , there is a wavefunction $\psi_{\mathbf{q}}(r)$ that takes the form

$$\psi_{\mathbf{q}}(\mathbf{r}) = \sum_{\mathbf{G}} C_{\mathbf{q} - \mathbf{G}} e^{i(\mathbf{q} - \mathbf{G}) \cdot \mathbf{r}},$$

where we have substituted $\mathbf{k} = \mathbf{q} - \mathbf{G}$. Factoring out $e^{i\mathbf{q}\cdot\mathbf{r}}$, we find

$$\psi_{\mathbf{q}}(\mathbf{r}) = e^{i\mathbf{q}\cdot\mathbf{r}} \sum_{\mathbf{G}} C_{\mathbf{q}-\mathbf{G}} e^{-i\mathbf{G}\cdot\mathbf{r}} \equiv e^{i\mathbf{q}\cdot\mathbf{r}} u_{j,\mathbf{q}}$$

So, the solution is a plane wave with wave vector within the first Brillouin zone TIMES a function with the periodicity of the lattice. Functions of this form are known as **Bloch functions** or **Bloch states**. They serve as a suitable basis for the wave functions or states of electrons in crystalline solids.

Bloch's Theorem is as follows: The eigenstates ψ of a one-electron Hamiltonian defined above for all Bravais lattice translation vectors \mathbf{T} can be chosen to be a plane wave times a function with the periodicity of the Bravais lattice. We note two things:

- This is true for any particle propagating in a lattice
- The theorem makes no assumption about the *strength/depth* of the potential.

Notes: The terminologies in blue can be found in [1] or Wikipedia. The concepts are simple enough, so I won't include their definitions here.

C

D

 ${f E}$

 \mathbf{F}

Feshbach Resonance

 \mathbf{G}

 \mathbf{H}

Ι

 \mathbf{K}

 ${f L}$

\mathbf{M}

 \mathbf{N}

O

P

Q

Quantum Harmonic Oscillator

\mathbf{R}

Raman side-band cooling Recoil temperature \mathbf{S}

 \mathbf{T}

 \mathbf{U}

\mathbf{V}

${f W}$

 \mathbf{X}

\mathbf{Y}

 \mathbf{Z}

Bibliography

[1] C. Kittel, P. McEuen, and P. McEuen, Introduction to solid state physics, vol. 8. Wiley New York, 1996.