

Hochschule Magdeburg-Stendal Fachbereich Ingenieurwissenschaften und Industriedesign (IWID) Institut für Elektrotechnik

Masterarbeit

zur Erlangung des Grades eines "Master of Engineering" im Studiengang Elektrotechnik

I nema: Entwicklung eines Pruigerats für Druckschafter		
Eingereicht von:	Jan Möllering	
Angefertigt für:	Elektromotoren und Gerätebau Barleben GmbH	
Matrikel:		
Ausgabetermin:	31.07.2021	
Abgabetermin:	31.09.2021	
Schulischer Betreuer:	Herr Prof. DrIng. Rüdiger Mecke	
Betrieblicher Betreuer:	Herr DiplIng. Falk Höhne	

.....

Prüfer

.....

1. Prüfer

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit eigenständig und ohne fremde Hilfe angefertigt habe. Textpassagen, die wörtlich oder dem Sinn nach auf Publikationen oder Vorträgen anderer Autoren beruhen, sind als solche kenntlich gemacht.

Die Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Ort, Datum

Unterschrift

Abstract

Diese Arbeit beschäftigt sich mit der Entwicklung eines Prüfgeräts für Druckschalter.

This Thesis is about the development of a measurement device for pressure switches.

Inhaltsverzeichnis

Ta	bellenverzeichnis	I
Ał	bbildungsverzeichnis	II
Ał	bkürzungsverzeichnis	II
1	Motivation und Aufgabenstellung	1
	1.1 Motivation	2
	1.2 Aufgabenstellung	3
	1.3 Detaillierte Anforderungen an das Prüfgeräts	4
2	Funktionsweise CF38, Druckschalter, HTS-Levelschalter	5
	2.1 Funktionsweise CF38	6
	2.2 Funktionsweise Druckschalter	6
	2.3 Funktionsweise HTS-Levelschalter	6
3	Marktanalyse / Recherche	7
4	Entwicklung des Prüfgeräts	8
	4.1 Anforderungen und Funktionen	9
	4.2 Entwicklung der Strommessung	9
	4.3 Entwicklung des HMI	9
	4.4 Entwicklung der integrierten Spannungsversorgung	9
	4.5 Entwicklung der Steuerung	9
	4.6 Entwicklung der Platine	9
5	Erprobung und Ergebnisse	10
	5.1 Genauigkeit	11
	5.2 Stabilität	11
	5.3 Präzision	11
	5.4 Bewertung durch ein Prüflabor	11
	5.5 Diskussion der Ergebnisse	11
6	Zusammenfassung und Ausblick	12
A	Datenblätter	13
R	Schalt- und Stromlaufnläne	14

Tabellenverzeichnis

Abbildungsverzeichnis

Abkürzungsverzeichnis

GmbH Gemeinschaft mit beschränkter Haftung

USD United States Dollar

CSV Comma Seperated Values

PDF Portable Document Format

USB Universal Serial Bus

I2C Inter-Intergrated Circuit

UART Universal Asynchronous Receiver/Transmitter

HDMI High-Definition Multimedia Interface

IPC Inter Process Communication

DOM Document Object Model

LED Light Emmitting Diode

ADC Analog-to-Digital Converter

RTOS Real Time Operating System

OS Operating System

API Application Programming Interface

HTML Hypertext Markup Language

CSS Cascading Style Sheets

SCL System Clock

SDA System Data

JSON JavaScript Object Notation

XML Extensible Markup Language

SAR Successive Approximation Register

DAC Digital-to-Analog Converter

Mio Millionen

FiFo First in First out

Kapitel 1

Motivation und Aufgabenstellung

1.1 Motivation

1.2 Aufgabenstellung

Die Teilaufgaben umfassen:

- Einarbeitung in die ...
- Entwicklung der Elektronik für das Prüfgerät
 - Unterpunkt 1
 - Unterpunkt 2
 - Messen von Stromwerten im μ A Bereich
- Entwicklung und Programmierung der Software für das Prüfgerät
 - Steuerung des Prüfgeräts
 - Darstellung, Speicherung und Auswertung der Messwerte
 - Realisierung einer grafischen Oberfläche
- Auswahl aller benötigten Komponenten
- Aufbau eines funktionsfähigen Prototyps des Prüfgeräts
- Erprobung und Testung von Teilkomponenten

1.3 Detaillierte Anforderungen an das Prüfgeräts

Im Folgenden ist eine detailliertere Beschreibung der Anforderungen an den Prüfstand aufgelistet. Diese Anforderungen haben sich in Absprache mit der Abteilung Technik ergeben.

Kapitel 2

Funktionsweise CF38, Druckschalter, HTS-Levelschalter

- 2.1 Funktionsweise CF38
- 2.2 Funktionsweise Druckschalter
- 2.3 Funktionsweise HTS-Levelschalter

Kapitel 3 Marktanalyse / Recherche

Kapitel 4 Entwicklung des Prüfgeräts

- 4.1 Anforderungen und Funktionen
- 4.2 Entwicklung der Strommessung
- 4.3 Entwicklung des HMI
- 4.4 Entwicklung der integrierten Spannungsversorgung
- 4.5 Entwicklung der Steuerung
- 4.6 Entwicklung der Platine

Kapitel 5 Erprobung und Ergebnisse

- 5.1 Genauigkeit
- 5.2 Stabilität
- 5.3 Präzision
- 5.4 Bewertung durch ein Prüflabor
- 5.5 Diskussion der Ergebnisse

Kapitel 6

Zusammenfassung und Ausblick

Anhang A Datenblätter

Anhang B Schalt- und Stromlaufpläne