Details About statistical analyses of MRI in Python Notebook:

The provided Jupyter notebook demonstrates how to perform statistical analysis on fMRI data using the General Linear Model (GLM) functionality from the **Nilearn** library. Below is a summary of the key steps and important information extracted from the notebook:

1. Data Setup and Visualization

- The notebook uses fMRI and anatomical images from subject sub-01 in the dataset ds000114.
 - fMRI Image: /data/ds000114/derivatives/fmriprep/sub-01/sestest/func/..._desc-preproc_bold.nii.gz
 - Anatomical Image: /data/ds000114/sub-01/ses-test/anat/..._T1w.nii.gz
- After loading the images, the mean functional image and anatomical image are visualized using Nilearn's plotting functions.

2. Experimental Paradigm

• The experimental paradigm (timing of tasks) is defined by loading an events file (events.tsv), which contains task timings for "fingerfootlips" tasks.

3. GLM Analysis

- A FirstLevelModel object is created to perform the GLM analysis on the fMRI data. Key parameters include:
 - TR (Repetition Time): 2.5 seconds
 - Noise Model: 'ar1'
 - HRF Model: 'spm'
- Confounds (e.g., motion correction parameters) are loaded from a confounds file and included in the model to account for noise.

4. Design Matrix

 The design matrix, which models the expected brain response during tasks, is computed and visualized. The first column corresponds to the "Finger" task.

5. Contrast Definition and Statistical Maps

Contrasts are defined to compare different conditions (e.g., "active - Finger", "active
- Foot"). These contrasts are used to compute effect size maps and z-score maps.

Z-score maps are thresholded and visualized using both statistical thresholds (e.g.,
z > 3) and corrected thresholds (e.g., False Discovery Rate, Bonferroni correction).

6. Statistical Significance Testing

- Various methods for controlling false positives are demonstrated:
 - False Positive Rate (FPR): Controls the chance of false detections.
 - **Bonferroni Correction**: A conservative method to control family-wise error rate.
 - False Discovery Rate (FDR): Controls the proportion of false discoveries among detections.

7. Saving Results

- The effect size and z-score maps are saved as .nii.gz files.
- A table summarizing cluster information is generated and saved as a .csv file.

8. Group-Level Analysis

After performing individual-level analysis for multiple subjects (sub-02 and sub-03),
a group-level analysis is performed using a second-level model (one-sample t-test).

9. BIDS Integration

• The notebook demonstrates how to automate model creation for multiple participants using the BIDS standard with Nilearn's first_level_from_bids() function.

10. Evaluation of Models

- Residuals and predicted time series are extracted and compared against actual time series for peak voxels.
- The R-squared map is plotted to show how much variance in the data is explained by the GLM.

This notebook provides a comprehensive guide to performing statistical analyses on fMRI data, including individual-level GLM analysis, group-level analysis, thresholding methods, and BIDS integration, all using Nilearn's GLM functionality.