

ELETRÓLISE

A eletrólise é classificada como sendo um processo físico-químico de uma reação química não espontânea. Essa reação é estimulada pelo fornecimento de energia elétrica contínua, com voltagem suficiente, advinda de um gerador de energia e transformando essa energia elétrica em energia química. É descrita como o inverso das células galvânicas, conhecidas como pilhas e baterias, que transformam energia química em energia elétrica.

O processo eletrolítico ocorre com a redução (ganho de elétrons) do cátion no cátodo e a oxidação (perda de elétrons) do ânion no ânodo, constituindo uma reação de oxidação-redução.

A eletrólise pode ocorrer por fusão (sem presença de água) ou por dissolução (com presença de água), devido, principalmente, a mobilidade dos íons. O atual experimento irá focar na eletrólise por dissolução. Neste método ocorrerá à dissociação de um composto iônico em solução aquosa, onde o eletrodo utilizado precisa ser inerte, como o eletrodo de grafite, descrito na figura 1.

Figura 1 – Eletrodo de grafite em meio a solução aquosa de NaCl

SOLUÇÕES TECNOLÓGICAS EM EDUCAÇÃO

Na solução aquosa diluída, o composto iônico se dissocia, liberando os íons para o meio. No caso do cloreto de sódio, por exemplo, o sal dissocia e libera o cátion sódio (Na⁺) e o ânion cloreto (Cl⁻). Existem também os íons procedente da ionização da água, conforme a reação: $H_2O \rightarrow H^+ + OH^-$.

Na eletrólise em meio aquoso, existe sempre a presença de, pelo menos, 2 cátions e 2 ânions, devido a dissociação de algumas moléculas de água. No exemplo do NaCl, além do Na⁺, há também a presença do cátion H⁺, assim como os ânions Cl⁻ e OH⁻. É importante salientar que, somente um cátion reduz e somente um ânion oxida. Ou seja, ou o Na⁺ ou o H⁺ vai reduzir, da mesma forma que os ânions Cl⁻ e OH⁻.

A forma correta de saber qual dos cátions vai se reduzir ou qual dos ânions vai se oxidar é baseado na tabela de facilidade de descarga elétrica entre íons positivos (cátions) e íons negativos (ânions). Essa tabela se resume em uma comparação entre os cátions metálicos comparados com o íon H⁺ e os ânions comparados com o íon OH⁻ provenientes da dissociação de moléculas de água.

Neste experimento será possível verificar que, na solução de NaCl, o ânion Cl⁻ por ser um halogênio tem prioridade em relação ao ânion OH⁻ proveniente da dissociação de moléculas de água. O Cl⁻ se oxida no ânodo (polo +) e haverá a produção do gás Cl₂, conhecido como gás cloro. Já com relação ao cátion Na⁺, observa-se que este íon tem menos prioridade que o íon H⁺ proveniente da dissociação de moléculas de água. Sendo assim, o íon H⁺ sofrerá redução no cátodo (polo -) e haverá a produção do gás H₂, conhecido como gás hidrogênio.

Neste experimento é colocado o indicador azul de bromotimol, que tem coloração azul em meio básico e amarelo em meio ácido. Como na reação ocorre a permanência dos íons Na⁺ e OH⁻, deixando o meio básico, a solução ficará azul ao redor do eletrodo negativo (cátodo), onde ocorre a liberação do H₂ e permanece OH⁻. Dessa forma, é possível identificar visualmente a reação química acontecendo, conforme figura 2.

2

Figura 2 – Eletrólise aquosa de NaCl

FACILIDADE DE DESCARGA ELÉTRICA →		
Cátions alcalino, alcalino-terrosos e alumínio $K^+, Ca^{2+}, Na^+, Mg^{2+}, Al^{3+}$	H ⁺	Demais cátions $(Zn^{2+}, Fe^{2+}, Cr, Ni^{2+}, Cu^{2+},)$
Ânions oxigenados e fluoreto F^- , SO_4^{2-} , NO_3^- , ClO_3^-K	ОН-	Ânions não oxigenados $(Cl^-, Br^-, I^-,)$

Tabela 1 – Facilidade de descarga

3

REFERÊNCIAS BIBLIOGRÁFICAS

CHANGE, Raymond; GOLDSBY, Kenneth A. Química. 11. ed. Porto Alegre: AMGH, 2013.

CHANG, Raymond. **Química Geral – Conceitos Fundamentais**. Porto Alegre: AMGH, 2010.

ROSENBERG, Jerome L.; EPSTEIN, Lawrence M.; KRIEGER, Peter J. **Química Geral**. 9. ed. Porto Alegre: Bookman, 2013.

4