CS345 Theoretical Assignment 4

Ayush Agarwal, 13180 M.Arunothia, 13378

Contents

	Any Guarantee of our First-Attempt Algorithm 1.1 Counter Example	
2	A max flow application	
	2.1 Without Extra Constraint	
	2.1.1 Overview	
	2.1.2 Notations	
	2.1.3 Claim	
	2.1.4 Proof - Part 1	
	2.1.5 Proof - Part 2	
	2.2 With Extra Constraint	
	2.2.1 Overview	
	2.2.2 Claim	
	2.2.3 Proof	

1 Any Guarantee of our First-Attempt Algorithm

1.1 Counter Example

2 A max flow application

2.1 Without Extra Constraint

2.1.1 Overview

2.1.2 Notations

 p_i denotes the exact number of doctors required on day i

 L_i denotes the list of days where doctor i is available

 L'_i denotes the list of days that doctor i has to work to produce the required match. Note, $L'_i \subseteq L_i$

 $\vec{D} = \sum_{i=1}^{n} p_i$

n =Number of days in total

k =Number of Doctors in total

2.1.3 Claim

Construction of L'_i s is possible if and only if the max-flow in the source-sink graph constructed (in image) is D.

2.1.4 Proof - Part 1

Given L_i 's list for all doctors, show that the max flow of source-sink graph shown above is D

Construct a flow f of the source-sink graph as follows.

f(source, Doctor[i]) is $|L'_i|$ - satisfies capacity constraint as these edges had infinite capacity

f(Doctor[i], Day[j]) is 1 if j lies in L'_i , otherwise is 0 - satisfies capacity constraint

f(Day[j], sink) is p_j - satisfies capacity constraint

Flow Conservation is ensured as it is given to us that L'_i s of such definitions exist.

Hence, the above is a valid flow.

As the cut - capacity between sink and the rest of the graph is D, by min - cut - max - flow theorem, f should be a max flow of the source-sink graph. Hence, proved.

2.1.5 Proof - Part 2

Given the max flow of source-sink graph to be D, show that L_i 's list for all doctors exist

Let f be the integral max-flow of the source-sink graph. (Note: Integral flow exists was proved in class) Construct L'_i as follows.

If f(Doctor[i], Day[j]) is 1 then add j to L'_i otherwise do nothing.

Note: f(Doctor[i], Day[j]) can be only 0 or 1 by integral flow property.

The L'_i s thus constructed are valid as value(f) = D implying every day j has got the exact number of doctors wanted (p_j) . Moreover, $L'_i \subseteq L_i$ is ensured from the construction of the source-sink graph itself. Hence, proved.

2.2 With Extra Constraint

2.2.1 Overview

- 2.2.2 Claim
- 2.2.3 Proof