Simetrías y cantidades conservadas

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

22 de agosto de 2024

Agenda

- Variables conjugadas y cíclicas
- Ejemplo: Partícula cono invertido
- Siemplo: Partícula en medio viscoso
- Teorema de Noether
- Ejemplo: Coordenada cíclica
- 6 Ejemplo: Partícula en campo gravitatorio
- Homogeneidad del espacio y conservación del momento lineal
- 🔞 lsotropía del espacio y conservación del momento angular
- Sección
- Sección

• Dado un sistema caracterizado por un Lagrangiano $\mathcal{L}(q_j, \dot{q}_j, t)$, se define el momento conjugado, $p_j(q_j, \dot{q}_j, t) \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}_j}$ asociado a la coordenada generalizada q_i . También llamado momento canónico.

- Dado un sistema caracterizado por un Lagrangiano $\mathcal{L}\left(q_{j},\dot{q}_{j},t\right)$, se define el momento conjugado, $p_{j}\left(q_{j},\dot{q}_{j},t\right)\equiv\frac{\partial\mathcal{L}}{\partial\dot{q}_{j}}$ asociado a la coordenada generalizada q_{j} . También llamado momento canónico.
- El p_j no necesariamente es el momento lineal. También puede corresponder al momento angular o a otra cantidad física.

- Dado un sistema caracterizado por un Lagrangiano $\mathcal{L}(q_j, \dot{q}_j, t)$, se define el momento conjugado, $p_j(q_j, \dot{q}_j, t) \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}_j}$ asociado a la coordenada generalizada q_i . También llamado momento canónico.
- El p_j no necesariamente es el momento lineal. También puede corresponder al momento angular o a otra cantidad física.
- Si un Lagrangiano \mathcal{L} de un sistema no contiene explícitamente una coordenada q_i (puede contener \dot{q}_i y t), se dice que q_i es una coordenada cíclica o ignorable.

- Dado un sistema caracterizado por un Lagrangiano $\mathcal{L}(q_j, \dot{q}_j, t)$, se define el momento conjugado, $p_j(q_j, \dot{q}_j, t) \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}_j}$ asociado a la coordenada generalizada q_i . También llamado momento canónico.
- El p_j no necesariamente es el momento lineal. También puede corresponder al momento angular o a otra cantidad física.
- Si un Lagrangiano \mathcal{L} de un sistema no contiene explícitamente una coordenada q_i (puede contener \dot{q}_i y t), se dice que q_i es una coordenada cíclica o ignorable.
- Entonces, el momento conjugado p_i asociado a una coordenada cíclica, q_i , es constante. Luego, la cantidad $p_i\left(q_j,\dot{q}_j,t\right)$ es una cantidad conservada, i.e. una primera integral del movimiento.

- Dado un sistema caracterizado por un Lagrangiano $\mathcal{L}(q_j, \dot{q}_j, t)$, se define el momento conjugado, $p_j(q_j, \dot{q}_j, t) \equiv \frac{\partial \mathcal{L}}{\partial \dot{q}_j}$ asociado a la coordenada generalizada q_i . También llamado momento canónico.
- El p_j no necesariamente es el momento lineal. También puede corresponder al momento angular o a otra cantidad física.
- Si un Lagrangiano \mathcal{L} de un sistema no contiene explícitamente una coordenada q_i (puede contener \dot{q}_i y t), se dice que q_i es una coordenada cíclica o ignorable.
- Entonces, el momento conjugado p_i asociado a una coordenada cíclica, q_i , es constante. Luego, la cantidad $p_i\left(q_j,\dot{q}_j,t\right)$ es una cantidad conservada, i.e. una primera integral del movimiento.
- Si una coordenada q_i es cíclica, entonces $\frac{\partial \mathcal{L}}{\partial q_i} = 0$, y la ecuación de Lagrange para esa coordenada cíclica q_i es $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_i} \right) = \frac{\mathrm{d}p_i}{\mathrm{d}t} = 0 \Rightarrow p_i = \mathrm{cte}$.

• Consideremos una partícula que se mueve sobre una supreficie cónica

• Su Lagrangeano es $\mathcal{L}(r,\dot{r},\dot{\varphi}) = \frac{1}{2}m\left(\dot{r}^2\csc^2\alpha + r^2\dot{\varphi}^2\right) - mgr\cot\alpha$

- Su Lagrangeano es $\mathcal{L}(r,\dot{r},\dot{\varphi})=\frac{1}{2}m\left(\dot{r}^2\csc^2\alpha+r^2\dot{\varphi}^2\right)-mgr\cot\alpha$
- La coordenada φ es cíclica. El momento conjugado p_{φ} asociado con la coordenada angular φ es constante, $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2 \dot{\varphi} = \text{ cte }.$

- Su Lagrangeano es $\mathcal{L}(r,\dot{r},\dot{\varphi}) = \frac{1}{2}m\left(\dot{r}^2\csc^2\alpha + r^2\dot{\varphi}^2\right) mgr\cot\alpha$
- La coordenada φ es cíclica. El momento conjugado p_{φ} asociado con la coordenada angular φ es constante, $p_{\varphi}=\frac{\partial \mathcal{L}}{\partial \dot{\varphi}}=mr^2\dot{\varphi}=$ cte .
- El momento angular de la partícula, $\mathbf{L} = \mathbf{r} \times m\mathbf{v} = m \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ x & y & z \\ \dot{x} & \dot{y} & \dot{z} \end{vmatrix}$

- Su Lagrangeano es $\mathcal{L}(r,\dot{r},\dot{\varphi}) = \frac{1}{2}m\left(\dot{r}^2\csc^2\alpha + r^2\dot{\varphi}^2\right) mgr\cot\alpha$
- La coordenada φ es cíclica. El momento conjugado p_{φ} asociado con la coordenada angular φ es constante, $p_{\varphi} = \frac{\partial \mathcal{L}}{\partial \dot{\varphi}} = mr^2 \dot{\varphi} = \text{ cte }.$
- El momento angular de la partícula, $\mathbf{L} = \mathbf{r} \times m\mathbf{v} = m \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ x & y & z \\ \dot{x} & \dot{y} & \dot{z} \end{vmatrix}$
- La componente z es $\mathcal{L}_z = m(x\dot{y} y\dot{x}) = mr^2\dot{\varphi} \equiv p_{\varphi} = \mathrm{cte}$, ya que $\begin{cases} x = r\cos\varphi, & \dot{x} = \dot{r}\cos\varphi - r\dot{\varphi}\mathrm{sen}\,\varphi \\ y = r\mathrm{sen}\,\varphi, & \dot{y} = \dot{r}\mathrm{sen}\,\varphi + r\dot{\varphi}\cos\varphi \end{cases}$

• Consideremos una partícula de masa m que se mueve con velocidad \mathbf{v} en un medio viscoso, con coeficiente de fricción α .

$$F = -\alpha \mathbf{v}$$

$$\downarrow 0$$

• Se mueve en la dirección x, de modo que $\mathcal{L}=\frac{1}{2}m\dot{x}^2e^{\frac{\alpha}{m}t}$

$$\begin{array}{c}
\mathbf{F} = -\alpha \mathbf{v} \\
\downarrow \\
\mathbf{0} \\
\downarrow \\
\end{array}$$

- Se mueve en la dirección x, de modo que $\mathcal{L}=rac{1}{2}m\dot{x}^2e^{rac{lpha}{m}t}$
- La coordenada x es cíclica, i.e., $\frac{\partial \mathcal{L}}{\partial x} = 0$. El momento conjugado p_x es constante, $p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}e^{\frac{\alpha}{m}t} = \text{cte } = mv_0 \Rightarrow \dot{x} = v_x(t) = v_0e^{-\frac{\alpha}{m}t}$.

$$\begin{array}{c}
\mathbf{F} = -\alpha \mathbf{v} \\
\bullet \\
\mathbf{0} \\
\end{array}$$

- Se mueve en la dirección x, de modo que $\mathcal{L} = \frac{1}{2}m\dot{x}^2e^{\frac{\alpha}{m}t}$
- La coordenada x es cíclica, i.e., $\frac{\partial \mathcal{L}}{\partial x} = 0$. El momento conjugado p_x es constante, $p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}e^{\frac{\alpha}{m}t} = \text{cte } = mv_0 \Rightarrow \dot{x} = v_x(t) = v_0e^{-\frac{\alpha}{m}t}$.
- Note que el momento conjugado es distinto del momento lineal $p = mv_x(t)$, que no es constante.

$$\begin{array}{c}
\mathbf{F} = -\alpha \mathbf{v} \\
\bullet \\
\mathbf{0} \\
\end{array}$$

- Se mueve en la dirección x, de modo que $\mathcal{L}=\frac{1}{2}m\dot{x}^2e^{\frac{\alpha}{m}t}$
- La coordenada x es cíclica, i.e., $\frac{\partial \mathcal{L}}{\partial x} = 0$. El momento conjugado p_x es constante, $p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}e^{\frac{\alpha}{m}t} = \text{cte } = mv_0 \Rightarrow \dot{x} = v_x(t) = v_0e^{-\frac{\alpha}{m}t}$.
- Note que el momento conjugado es distinto del momento lineal $p = mv_x(t)$, que no es constante.
- La posición será $x(t) = x_0 + \frac{v_0 m}{\alpha} \left(1 e^{-(\alpha/m)t}\right)$

$$0 | \xrightarrow{\mathbf{F} = -\alpha \mathbf{v}} \mathbf{v}$$

- Se mueve en la dirección x, de modo que $\mathcal{L}=\frac{1}{2}m\dot{x}^2e^{\frac{\alpha}{m}t}$
- La coordenada x es cíclica, i.e., $\frac{\partial \mathcal{L}}{\partial x} = 0$. El momento conjugado p_x es constante, $p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}e^{\frac{\alpha}{m}t} = \text{cte } = mv_0 \Rightarrow \dot{x} = v_x(t) = v_0e^{-\frac{\alpha}{m}t}$.
- Note que el momento conjugado es distinto del momento lineal $p = mv_x(t)$, que no es constante.
- La posición será $x(t) = x_0 + \frac{v_0 m}{\alpha} \left(1 e^{-(\alpha/m)t}\right)$
- A partir del Lagrangiano se obtiene la ecuación de movimiento, $m\ddot{x}=-\alpha\dot{x}$

$$0 | \xrightarrow{\mathbf{F} = -\alpha \mathbf{v}} \mathbf{v}$$

- Se mueve en la dirección x, de modo que $\mathcal{L}=rac{1}{2}m\dot{x}^2e^{rac{lpha}{m}t}$
- La coordenada x es cíclica, i.e., $\frac{\partial \mathcal{L}}{\partial x} = 0$. El momento conjugado p_x es constante, $p_x = \frac{\partial \mathcal{L}}{\partial \dot{x}} = m\dot{x}e^{\frac{\alpha}{m}t} = \text{cte } = mv_0 \Rightarrow \dot{x} = v_x(t) = v_0e^{-\frac{\alpha}{m}t}$.
- Note que el momento conjugado es distinto del momento lineal $p = mv_x(t)$, que no es constante.
- La posición será $x(t) = x_0 + \frac{v_0 m}{\alpha} \left(1 e^{-(\alpha/m)t}\right)$
- A partir del Lagrangiano se obtiene la ecuación de movimiento, $m\ddot{x}=-\alpha\dot{x}$
- Que es la Segunda Ley de Newton para la componente x de la fuerza $\mathbf{F} = -\alpha \mathbf{v}$ ejercida por el fluido sobre la partícula.

Teorema de Noether

• Consideremos una transformación infinitesimal del Lagrangiano $\mathcal{L} \to \mathcal{L}' = \mathcal{L} + \delta \mathcal{L}$ que no modifica las ecuaciones de movimiento.

Teorema de Noether

- Consideremos una transformación infinitesimal del Lagrangiano $\mathcal{L} \to \mathcal{L}' = \mathcal{L} + \delta \mathcal{L}$ que no modifica las ecuaciones de movimiento.
- Esta transformación infinitesimal representa una simetría del sistema, una simetría de la acción y se dice que la acción es invariante bajo esa transformación.

Teorema de Noether

- Consideremos una transformación infinitesimal del Lagrangiano $\mathcal{L} \to \mathcal{L}' = \mathcal{L} + \delta \mathcal{L}$ que no modifica las ecuaciones de movimiento.
- Esta transformación infinitesimal representa una simetría del sistema, una simetría de la acción y se dice que la acción es invariante bajo esa transformación.
- Teorema de Noether en Mecánica Clásica
 - Si la acción de un sistema es invariante bajo una transformación infinitesimal de coordenadas $q'_j = q_j + \delta q_j$ que cambia el Lagrangiano a $\mathcal{L}' = \mathcal{L} + \delta \mathcal{L}$, tal que $\delta \mathcal{L} = \frac{\mathrm{d} f(q_j,t)}{\mathrm{d} t}$ para alguna función $f(q_j,t)$.
 - Entonces el Lagrangiano (y el sistema) $\mathcal{L}(q_j, \dot{q}_j, t)$ posee una simetría y la función $\mathcal{J}(q_j, \dot{q}_j, t) = \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial q_j} \delta q_j f$ constituye una cantidad conservada asociada a esa transformación.
 - ullet La cantidad ${\mathcal J}$ se denomina corriente de Noether.

• La transformación $q_j' = q_j + \delta q_j$ (donde t es fijo, $\delta t = 0$) produce la siguiente variación $\delta \mathcal{L}(q_j, \dot{q}_j, t) = \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial q_i} \delta q_j + \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta \dot{q}_j$

- La transformación $q'_j = q_j + \delta q_j$ (donde t es fijo, $\delta t = 0$) produce la siguiente variación $\delta \mathcal{L}(q_j, \dot{q}_j, t) = \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial q_i} \delta q_j + \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta \dot{q}_j$
- Las ecuaciones de Lagrange, conducen a $\delta \mathcal{L} = \sum_{j=1}^{s} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \right) \delta q_{j} + \sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \frac{\mathrm{d}}{\mathrm{d}t} \left(\delta q_{j} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} \right)$

- La transformación $q_j' = q_j + \delta q_j$ (donde t es fijo, $\delta t = 0$) produce la siguiente variación $\delta \mathcal{L}(q_j, \dot{q}_j, t) = \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial q_i} \delta q_j + \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta \dot{q}_j$
- Las ecuaciones de Lagrange, conducen a $\delta \mathcal{L} = \sum_{j=1}^{s} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \right) \delta q_{j} + \sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \frac{\mathrm{d}}{\mathrm{d}t} \left(\delta q_{j} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} \right)$
- Según el teorema, la variación $\delta \mathcal{L}$ se puede escribir $\delta \mathcal{L} = \frac{\mathrm{d} f\left(q_j,t\right)}{\mathrm{d} t}$.

- La transformación $q_j' = q_j + \delta q_j$ (donde t es fijo, $\delta t = 0$) produce la siguiente variación $\delta \mathcal{L}(q_j, \dot{q}_j, t) = \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial q_i} \delta q_j + \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta \dot{q}_j$
- Las ecuaciones de Lagrange, conducen a $\delta \mathcal{L} = \sum_{j=1}^{s} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \right) \delta q_{j} + \sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \frac{\mathrm{d}}{\mathrm{d}t} \left(\delta q_{j} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} \right)$
- Según el teorema, la variación $\delta \mathcal{L}$ se puede escribir $\delta \mathcal{L} = \frac{\mathrm{d} f\left(q_j,t\right)}{\mathrm{d} t}$.
- Luego $\frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} \right) = \frac{\mathrm{d}f \left(q_{j}, t \right)}{\mathrm{d}t} \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} f \right) = 0 \Rightarrow$ $\mathcal{J} \left(q_{j}, \dot{q}_{j}, t \right) \equiv \sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \delta q_{j} f = \text{ cte.}$

- La transformación $q_j' = q_j + \delta q_j$ (donde t es fijo, $\delta t = 0$) produce la siguiente variación $\delta \mathcal{L}(q_j, \dot{q}_j, t) = \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial q_i} \delta q_j + \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta \dot{q}_j$
- Las ecuaciones de Lagrange, conducen a $\delta \mathcal{L} = \sum_{j=1}^{s} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \right) \delta q_{j} + \sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \frac{\mathrm{d}}{\mathrm{d}t} \left(\delta q_{j} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} \right)$
- Según el teorema, la variación $\delta \mathcal{L}$ se puede escribir $\delta \mathcal{L} = \frac{\mathrm{d} f\left(q_j,t\right)}{\mathrm{d} t}$.
- Luego $\frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} \right) = \frac{\mathrm{d}f \left(q_{j}, t \right)}{\mathrm{d}t} \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} f \right) = 0 \Rightarrow$ $\mathcal{J} \left(q_{j}, \dot{q}_{j}, t \right) \equiv \sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} f = \text{ cte.}$
- El Teorema de Noether establece que a cada simetría de un sistema, le corresponde una cantidad conservada

- La transformación $q_j' = q_j + \delta q_j$ (donde t es fijo, $\delta t = 0$) produce la siguiente variación $\delta \mathcal{L}(q_j, \dot{q}_j, t) = \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial q_i} \delta q_j + \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta \dot{q}_j$
- Las ecuaciones de Lagrange, conducen a $\delta \mathcal{L} = \sum_{j=1}^{s} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \right) \delta q_{j} + \sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \frac{\mathrm{d}}{\mathrm{d}t} \left(\delta q_{j} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} \right)$
- Según el teorema, la variación $\delta \mathcal{L}$ se puede escribir $\delta \mathcal{L} = \frac{\mathrm{d} f\left(q_j,t\right)}{\mathrm{d} t}$.
- Luego $\frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} \right) = \frac{\mathrm{d}f \left(q_{j}, t \right)}{\mathrm{d}t} \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} f \right) = 0 \Rightarrow$ $\mathcal{J} \left(q_{j}, \dot{q}_{j}, t \right) \equiv \sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} f = \text{ cte.}$
- El Teorema de Noether establece que a cada simetría de un sistema, le corresponde una cantidad conservada
- Las simetrías y cantidades conservadas permiten conocer propiedades de un sistema y hacer predicciones sobre su comportamiento.

- La transformación $q_j' = q_j + \delta q_j$ (donde t es fijo, $\delta t = 0$) produce la siguiente variación $\delta \mathcal{L}(q_j, \dot{q}_j, t) = \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial q_i} \delta q_j + \sum_{j=1}^s \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta \dot{q}_j$
- Las ecuaciones de Lagrange, conducen a $\delta \mathcal{L} = \sum_{j=1}^{s} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \right) \delta q_{j} + \sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \frac{\mathrm{d}}{\mathrm{d}t} \left(\delta q_{j} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} \right)$
- Según el teorema, la variación $\delta \mathcal{L}$ se puede escribir $\delta \mathcal{L} = \frac{\mathrm{d} f\left(q_j,t\right)}{\mathrm{d} t}$.
- Luego $\frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} \right) = \frac{\mathrm{d}f \left(q_{j}, t \right)}{\mathrm{d}t} \Rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} f \right) = 0 \Rightarrow$ $\mathcal{J} \left(q_{j}, \dot{q}_{j}, t \right) \equiv \sum_{j=1}^{s} \frac{\partial \mathcal{L}}{\partial \dot{q}_{j}} \delta q_{j} f = \text{ cte.}$
- El Teorema de Noether establece que a cada simetría de un sistema, le corresponde una cantidad conservada
- Las simetrías y cantidades conservadas permiten conocer propiedades de un sistema y hacer predicciones sobre su comportamiento.
- Las ecuaciones de movimiento son ecuaciones diferenciales de segundo orden para las q_j , mientras que las cantidades conservadas $\mathcal{J}(q_j,\dot{q}_j,t)=cte$, son ecuaciones diferenciales de primer orden

• Supongamos que la coordenada q_i es cíclica, $\frac{\partial \mathcal{L}}{\partial q_i} = 0$, para un Lagrangiano $\mathcal{L}(q_i, \dot{q}_i, t)$.

- Supongamos que la coordenada q_i es cíclica, $\frac{\partial \mathcal{L}}{\partial q_i} = 0$, para un Lagrangiano $\mathcal{L}(q_i, \dot{q}_i, t)$.
- La transformación de coordenadas $q_i' = q_i + \delta q_i$, con $\delta q_i =$ cte, y $q_j' = q_j, \delta q_j = 0$, para $i \neq j$, no produce cambios $\delta \mathcal{L}$ en el Lagrangiano. Esto es $\delta \mathcal{L} = \sum_j \frac{\partial \mathcal{L}}{\partial q_j} \delta q_j + \sum_j \frac{\partial \mathcal{L}}{\partial \dot{q}_j} \underbrace{\delta \dot{q}_j}_{=0} = \underbrace{\frac{\partial \mathcal{L}}{\partial q_i}}_{\delta} \delta q_i = 0$

- Supongamos que la coordenada q_i es cíclica, $\frac{\partial \mathcal{L}}{\partial q_i} = 0$, para un Lagrangiano $\mathcal{L}(q_i, \dot{q}_i, t)$.
- La transformación de coordenadas $q_i' = q_i + \delta q_i$, con $\delta q_i =$ cte, y $q_j' = q_j, \delta q_j = 0$, para $i \neq j$, no produce cambios $\delta \mathcal{L}$ en el Lagrangiano. Esto es $\delta \mathcal{L} = \sum_j \frac{\partial \mathcal{L}}{\partial q_j} \delta q_j + \sum_j \frac{\partial \mathcal{L}}{\partial \dot{q}_j} \underbrace{\delta \dot{q}_j}_{=0} = \underbrace{\frac{\partial \mathcal{L}}{\partial q_i}}_{=0} \delta q_i = 0$
- ullet Por otro lado, la función f surge de $\delta \mathcal{L} = rac{\mathrm{d} f}{\mathrm{d} t} = 0 \quad \Rightarrow f = c = \mathrm{cte}$

- Supongamos que la coordenada q_i es cíclica, $\frac{\partial \mathcal{L}}{\partial q_i} = 0$, para un Lagrangiano $\mathcal{L}(q_i, \dot{q}_i, t)$.
- La transformación de coordenadas $q_i' = q_i + \delta q_i$, con $\delta q_i =$ cte, y $q_j' = q_j, \delta q_j = 0$, para $i \neq j$, no produce cambios $\delta \mathcal{L}$ en el Lagrangiano. Esto es $\delta \mathcal{L} = \sum_j \frac{\partial \mathcal{L}}{\partial q_j} \delta q_j + \sum_j \frac{\partial \mathcal{L}}{\partial \dot{q}_j} \underbrace{\delta \dot{q}_j}_{=0} = \underbrace{\frac{\partial \mathcal{L}}{\partial q_i}}_{=0} \delta q_i = 0$
- Por otro lado, la función f surge de $\delta \mathcal{L} = \frac{\mathrm{d}f}{\mathrm{d}t} = 0 \quad \Rightarrow f = c = \mathrm{cte}$
- La corriente de Noether conservada \mathcal{J} es $\mathcal{J} = \sum_j \frac{\partial \mathcal{L}}{\partial \dot{q}_j} \delta q_j f = \text{cte } \Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i c = \text{cte } \Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \equiv p_i = \text{cte.}$

- Supongamos que la coordenada q_i es cíclica, $\frac{\partial \mathcal{L}}{\partial q_i} = 0$, para un Lagrangiano $\mathcal{L}(q_i, \dot{q}_i, t)$.
- La transformación de coordenadas $q_i' = q_i + \delta q_i$, con $\delta q_i =$ cte, y $q_j' = q_j, \delta q_j = 0$, para $i \neq j$, no produce cambios $\delta \mathcal{L}$ en el Lagrangiano. Esto es $\delta \mathcal{L} = \sum_j \frac{\partial \mathcal{L}}{\partial q_j} \delta q_j + \sum_j \frac{\partial \mathcal{L}}{\partial \dot{q}_j} \underbrace{\delta \dot{q}_j}_{=0} = \underbrace{\frac{\partial \mathcal{L}}{\partial q_i}}_{=0} \delta q_i = 0$
- Por otro lado, la función f surge de $\delta \mathcal{L} = \frac{\mathrm{d}f}{\mathrm{d}t} = 0 \quad \Rightarrow f = c = \mathrm{cte}$
- La corriente de Noether conservada \mathcal{J} es $\mathcal{J} = \sum_j \frac{\partial \mathcal{L}}{\partial \dot{q}_j} \delta q_j f = \text{cte } \Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \delta q_i c = \text{cte } \Rightarrow \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \equiv p_i = \text{cte.}$
- El momento conjugado p_i asociado a q_i es constante.

Partícula en campo gravitatorio

• Consideremos una partícula en movimiento vertical en el campo gravitacional con un lagrangiano $\mathcal{L} = \frac{1}{2}m\dot{y}^2 - mgy$

Partícula en campo gravitatorio

• Consideremos una partícula en movimiento vertical en el campo gravitacional con un lagrangiano $\mathcal{L} = \frac{1}{2}m\dot{y}^2 - mgy$

• El cambio en \mathcal{L} bajo la transformación de coordenadas, $y' = y + \delta y$, con $\delta y =$ cte, es $\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial y} \delta y + \frac{\partial \mathcal{L}}{\partial \dot{y}} \underbrace{\delta \dot{y}}_{=0} \equiv -mg \delta y$

Partícula en campo gravitatorio

• Consideremos una partícula en movimiento vertical en el campo gravitacional con un lagrangiano $\mathcal{L} = \frac{1}{2}m\dot{y}^2 - mgy$

- El cambio en \mathcal{L} bajo la transformación de coordenadas, $y' = y + \delta y$, con $\delta y =$ cte, es $\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial y} \delta y + \frac{\partial \mathcal{L}}{\partial \dot{y}} \underbrace{\delta \dot{y}}_{=0} \equiv -mg\delta y$
- Con lo cual $\delta \mathcal{L} = \frac{\mathrm{d}f}{\mathrm{d}t} = -mg\delta y \Rightarrow f = -mgt\delta y$

Partícula en campo gravitatorio

• Consideremos una partícula en movimiento vertical en el campo gravitacional con un lagrangiano $\mathcal{L} = \frac{1}{2}m\dot{y}^2 - mgy$

- El cambio en \mathcal{L} bajo la transformación de coordenadas, $y' = y + \delta y$, con $\delta y =$ cte, es $\delta \mathcal{L} = \frac{\partial \mathcal{L}}{\partial y} \delta y + \frac{\partial \mathcal{L}}{\partial \dot{y}} \underbrace{\delta \dot{y}}_{=0} \equiv -mg\delta y$
- Con lo cual $\delta \mathcal{L} = \frac{\mathrm{d}f}{\mathrm{d}t} = -mg\delta y \Rightarrow f = -mgt\delta y$
- Con la cantidad conservada $\mathcal{J} = \frac{\partial \mathcal{L}}{\partial \dot{y}} \delta y f = \text{cte} \Rightarrow m\dot{y}\delta y + mgt\delta y = \text{cte} \Rightarrow \dot{y} + gt = \text{cte}$

• Consideremos un sistema de N partículas con posiciones $\mathbf{r}_{\alpha} = (x_{1\,\alpha}, x_{2\,\alpha}, x_{3\,\alpha}) \ \alpha = 1, \dots, N$, con un Lagrangiano $\mathcal{L}(\mathbf{r}_{\alpha}, \dot{\mathbf{r}}_{\alpha}, t)$.

- Consideremos un sistema de N partículas con posiciones $\mathbf{r}_{\alpha} = (x_{1\alpha}, x_{2\alpha}, x_{3\alpha}) \ \alpha = 1, \dots, N$, con un Lagrangiano $\mathcal{L}(\mathbf{r}_{\alpha}, \dot{\mathbf{r}}_{\alpha}, t)$.
- Homogenidad del espacio significa que las propiedades mecánicas de un sistema no cambian si todo el sistema es desplazado en una dirección arbitraria del espacio.

- Consideremos un sistema de N partículas con posiciones $\mathbf{r}_{\alpha} = (x_{1\alpha}, x_{2\alpha}, x_{3\alpha}) \ \alpha = 1, \dots, N$, con un Lagrangiano $\mathcal{L}(\mathbf{r}_{\alpha}, \dot{\mathbf{r}}_{\alpha}, t)$.
- Homogenidad del espacio significa que las propiedades mecánicas de un sistema no cambian si todo el sistema es desplazado en una dirección arbitraria del espacio.

• Supongamos la transformación de coordenadas $\mathbf{r}'_{\alpha} = \mathbf{r}_{\alpha} + \delta \mathbf{r}$, donde $\delta \mathbf{r} = (\delta x_1, \delta x_2, \delta x_3)$ es un vector infinitesimal cuyas componentes δx_j son constantes; i. e., $\delta \dot{\mathbf{r}} = 0$.

- Consideremos un sistema de N partículas con posiciones $\mathbf{r}_{\alpha} = (x_{1\alpha}, x_{2\alpha}, x_{3\alpha}) \ \alpha = 1, \dots, N$, con un Lagrangiano $\mathcal{L}(\mathbf{r}_{\alpha}, \dot{\mathbf{r}}_{\alpha}, t)$.
- Homogenidad del espacio significa que las propiedades mecánicas de un sistema no cambian si todo el sistema es desplazado en una dirección arbitraria del espacio.

- Supongamos la transformación de coordenadas $\mathbf{r}'_{\alpha} = \mathbf{r}_{\alpha} + \delta \mathbf{r}$, donde $\delta \mathbf{r} = (\delta x_1, \delta x_2, \delta x_3)$ es un vector infinitesimal cuyas componentes δx_j son constantes; i. e., $\delta \dot{\mathbf{r}} = 0$.
- Homogeneidad del espacio implica que la transformación infinitesimal no produce cambios en el Lagrangiano del sistema, $\delta \mathcal{L} = 0 = \frac{\mathrm{d}f}{\mathrm{d}t}$ implica que f es constante.

• La corriente conservada es $\mathcal{J} = \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{j}} \delta x_{j} - f = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{i}} \delta x_{j} = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \frac{\partial \mathcal{L}}{\partial \dot{r}_{\alpha}} \cdot \delta \mathbf{r} = \text{cte}$

- La corriente conservada es $\mathcal{J} = \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{j}} \delta x_{j} f = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{i}} \delta x_{j} = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \frac{\partial \mathcal{L}}{\partial \dot{r}_{\alpha}} \cdot \delta \mathbf{r} = \text{cte}$
- Donde $\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{r}}_{\alpha}} \equiv \left(\frac{\partial \mathcal{L}}{\partial \dot{x}_{1\,\alpha}}, \frac{\partial \mathcal{L}}{\partial \dot{x}_{2\,\alpha}}, \frac{\partial \mathcal{L}}{\partial \dot{x}_{3\,\alpha}} \right)$

- La corriente conservada es $\mathcal{J} = \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{j}_{\alpha}} \delta x_{j} f = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{j}_{\alpha}} \delta x_{j} = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \frac{\partial \mathcal{L}}{\partial \dot{r}_{\alpha}} \cdot \delta \mathbf{r} = \text{cte}$
- Donde $\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{r}}_{\alpha}} \equiv \left(\frac{\partial \mathcal{L}}{\partial \dot{x}_{1\,\alpha}}, \frac{\partial \mathcal{L}}{\partial \dot{x}_{2\,\alpha}}, \frac{\partial \mathcal{L}}{\partial \dot{x}_{3\,\alpha}} \right)$
- Como $\delta \mathbf{r}$ es constante, $\mathbf{P}_{\mathrm{T}} \equiv \sum_{\alpha=1}^{N} \frac{\partial L}{\partial \dot{\mathbf{r}}_{\alpha}} = \mathrm{cte}$

- La corriente conservada es $\mathcal{J} = \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{j}_{\alpha}} \delta x_{j} f = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{j}_{\alpha}} \delta x_{j} = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \frac{\partial \mathcal{L}}{\partial \dot{r}_{\alpha}} \cdot \delta \mathbf{r} = \text{cte}$
- $\bullet \ \, \mathsf{Donde} \,\, \tfrac{\partial \mathcal{L}}{\partial \dot{\mathbf{r}}_\alpha} \equiv \left(\tfrac{\partial \mathcal{L}}{\partial \dot{x}_1 \, \alpha}, \tfrac{\partial \mathcal{L}}{\partial \dot{x}_2 \, \alpha}, \tfrac{\partial \mathcal{L}}{\partial \dot{x}_3 \, \alpha} \right)$
- Como $\delta {\bf r}$ es constante, ${\bf P}_{\rm T} \equiv \sum_{\alpha=1}^{N} {\partial L \over \partial \dot{{\bf r}}_{\alpha}} = {
 m cte}$
- ullet La cantidad ${f P}_{
 m T}$ es el momento lineal total del sistema.

- La corriente conservada es $\mathcal{J} = \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{j}} \delta x_{j} f = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{j}} \delta x_{j} = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \frac{\partial \mathcal{L}}{\partial \dot{r}_{\alpha}} \cdot \delta \mathbf{r} = \text{cte}$
- Donde $\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{r}}_{\alpha}} \equiv \left(\frac{\partial \mathcal{L}}{\partial \dot{x}_{1\,\alpha}}, \frac{\partial \mathcal{L}}{\partial \dot{x}_{2\,\alpha}}, \frac{\partial \mathcal{L}}{\partial \dot{x}_{3\,\alpha}} \right)$
- Como $\delta {\bf r}$ es constante, ${\bf P}_{\rm T} \equiv \sum_{\alpha=1}^{N} {\partial L \over \partial \dot{\bf r}_{\alpha}} = {
 m cte}$
- ullet La cantidad $oldsymbol{P}_{\mathrm{T}}$ es el momento lineal total del sistema.
- Si el Lagrangiano de un sistema cuya energía potencial depende solamente de las coordenadas, $L=\frac{1}{2}\sum_{\alpha=1}^{N}m_{\alpha}\dot{\mathbf{r}}_{\alpha}^{2}-V\left(\mathbf{r}_{1},\mathbf{r}_{2},\ldots,\mathbf{r}_{N}\right)$

- La corriente conservada es $\mathcal{J} = \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{j}} \delta x_{j} f = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{j}} \delta x_{j} = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \frac{\partial \mathcal{L}}{\partial \dot{r}_{\alpha}} \cdot \delta \mathbf{r} = \text{cte}$
- Donde $\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{r}}_{\alpha}} \equiv \left(\frac{\partial \mathcal{L}}{\partial \dot{x}_{1\,\alpha}}, \frac{\partial \mathcal{L}}{\partial \dot{x}_{2\,\alpha}}, \frac{\partial \mathcal{L}}{\partial \dot{x}_{3\,\alpha}} \right)$
- Como $\delta \mathbf{r}$ es constante, $\mathbf{P}_{\mathrm{T}} \equiv \sum_{\alpha=1}^{N} \frac{\partial L}{\partial \dot{\mathbf{r}}_{\alpha}} = \mathrm{cte}$
- ullet La cantidad ${f P}_{
 m T}$ es el momento lineal total del sistema.
- Si el Lagrangiano de un sistema cuya energía potencial depende solamente de las coordenadas, $L=\frac{1}{2}\sum_{\alpha=1}^{N}m_{\alpha}\dot{\mathbf{r}}_{\alpha}^{2}-V\left(\mathbf{r}_{1},\mathbf{r}_{2},\ldots,\mathbf{r}_{N}\right)$
- Entonces, $\mathbf{P}_{\mathrm{T}} = \sum_{\alpha=1}^{N} \frac{\partial L}{\partial \dot{\mathbf{r}}_{\alpha}} = \sum_{\alpha=1}^{N} m_{\alpha} \dot{\mathbf{r}} = \sum_{\alpha=1}^{N} m_{\alpha} \mathbf{v}_{\alpha}$

- La corriente conservada es $\mathcal{J} = \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{j}} \delta x_{j} f = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{j}} \delta x_{j} = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \frac{\partial \mathcal{L}}{\partial \dot{r}_{\alpha}} \cdot \delta \mathbf{r} = \text{cte}$
- Donde $\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{r}}_{\alpha}} \equiv \left(\frac{\partial \mathcal{L}}{\partial \dot{x}_{1\,\alpha}}, \frac{\partial \mathcal{L}}{\partial \dot{x}_{2\,\alpha}}, \frac{\partial \mathcal{L}}{\partial \dot{x}_{3\,\alpha}} \right)$
- Como $\delta {\bf r}$ es constante, ${\bf P}_{\rm T} \equiv \sum_{\alpha=1}^{N} {\partial L \over \partial \dot{{\bf r}}_{\alpha}} = {
 m cte}$
- ullet La cantidad ${f P}_{
 m T}$ es el momento lineal total del sistema.
- Si el Lagrangiano de un sistema cuya energía potencial depende solamente de las coordenadas, $L=\frac{1}{2}\sum_{\alpha=1}^{N}m_{\alpha}\dot{\mathbf{r}}_{\alpha}^{2}-V\left(\mathbf{r}_{1},\mathbf{r}_{2},\ldots,\mathbf{r}_{N}\right)$
- Entonces, $\mathbf{P}_{\mathrm{T}} = \sum_{\alpha=1}^{N} \frac{\partial L}{\partial \dot{\mathbf{r}}_{\alpha}} = \sum_{\alpha=1}^{N} m_{\alpha} \dot{\mathbf{r}} = \sum_{\alpha=1}^{N} m_{\alpha} \mathbf{v}_{\alpha}$
- El momento lineal de una partícula es ${f p}_{lpha}=m_{lpha}{f v}_{lpha}=rac{\partial L}{\partial \dot{{f r}}_{lpha}}$

- La corriente conservada es $\mathcal{J} = \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{j}} \delta x_{j} f = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial \mathcal{L}}{\partial \dot{x}_{j}} \delta x_{j} = \text{cte} \Rightarrow \sum_{\alpha=1}^{N} \frac{\partial \mathcal{L}}{\partial \dot{r}_{\alpha}} \cdot \delta \mathbf{r} = \text{cte}$
- Donde $\frac{\partial \mathcal{L}}{\partial \dot{\mathbf{r}}_{\alpha}} \equiv \left(\frac{\partial \mathcal{L}}{\partial \dot{x}_{1\,\alpha}}, \frac{\partial \mathcal{L}}{\partial \dot{x}_{2\,\alpha}}, \frac{\partial \mathcal{L}}{\partial \dot{x}_{3\,\alpha}} \right)$
- Como $\delta \mathbf{r}$ es constante, $\mathbf{P}_{\mathrm{T}} \equiv \sum_{\alpha=1}^{N} \frac{\partial L}{\partial \dot{\mathbf{r}}_{\alpha}} = \mathrm{cte}$
- ullet La cantidad ${f P}_{
 m T}$ es el momento lineal total del sistema.
- Si el Lagrangiano de un sistema cuya energía potencial depende solamente de las coordenadas, $L=\frac{1}{2}\sum_{\alpha=1}^{N}m_{\alpha}\dot{\mathbf{r}}_{\alpha}^{2}-V\left(\mathbf{r}_{1},\mathbf{r}_{2},\ldots,\mathbf{r}_{N}\right)$
- Entonces, $\mathbf{P}_{\mathrm{T}} = \sum_{\alpha=1}^{N} \frac{\partial L}{\partial \dot{\mathbf{r}}_{\alpha}} = \sum_{\alpha=1}^{N} m_{\alpha} \dot{\mathbf{r}} = \sum_{\alpha=1}^{N} m_{\alpha} \mathbf{v}_{\alpha}$
- El momento lineal de una partícula es ${f p}_{lpha}=m_{lpha}{f v}_{lpha}=rac{\partial L}{\partial \dot{{f r}}_{lpha}}$
- En un sistema donde existe simetría translacional en una dirección espacial, la componente del momento lineal total del sistema en esa dirección se conserva.

• Consideremos una partícula en la posición $\mathbf{r} = (x, y, z)$ respecto a O y una rotación infinitesimal del vector \mathbf{r} alrededor del eje con $|\mathbf{r}|$ fijo.

• Sea $\delta \varphi$ la magnitud constante del ángulo rotado en sentido antihorario.

- Sea $\delta \varphi$ la magnitud constante del ángulo rotado en sentido antihorario.
- El vector de posición de la partícula transformado por la rotación infinitesimal es $\mathbf{r}' = \mathbf{r} + \delta \mathbf{r}$

- Sea $\delta \varphi$ la magnitud constante del ángulo rotado en sentido antihorario.
- El vector de posición de la partícula transformado por la rotación infinitesimal es ${\bf r}'={\bf r}+\delta {\bf r}$
- Sonde $\delta \mathbf{r}$ tiene dirección perpendicular al plano $(\mathbf{r}, \delta \varphi)$ y magnitud $\delta \mathbf{r} = \mathbf{r} \sec \theta \delta \varphi$, con θ es el ángulo entre $\delta \varphi$ y \mathbf{r} . Entonces $\delta \mathbf{r} = \delta \varphi \times \mathbf{r}$

- Sea $\delta \varphi$ la magnitud constante del ángulo rotado en sentido antihorario.
- El vector de posición de la partícula transformado por la rotación infinitesimal es ${\bf r}'={\bf r}+\delta{\bf r}$
- Sonde $\delta \mathbf{r}$ tiene dirección perpendicular al plano $(\mathbf{r}, \delta \varphi)$ y magnitud $\delta r = r \sin \theta \delta \varphi$, con θ es el ángulo entre $\delta \varphi$ y r. Entonces $\delta \mathbf{r} = \delta \varphi \times \mathbf{r}$
- Consideremos a continuación un sistema de N partículas con posiciones $\mathbf{r}_{\alpha}, \alpha=1,\ldots,N$, sujeto a una rotación infinitesimal $\delta \varphi$

• El cambio en el vector de posición de la partícula α es $\delta \mathbf{r}_{\alpha} = \delta \varphi \times \mathbf{r}_{\alpha}$.

- El cambio en el vector de posición de la partícula α es $\delta \mathbf{r}_{\alpha} = \delta \varphi \times \mathbf{r}_{\alpha}$.
- La isotropía del espacio implica que esta transformación infinitesimal no introduce cambios en el Lagrangiano del sistema; i. e., $\delta L=0$. Expresando $\delta L=\frac{df}{dt}$, obtenemos f= cte

- El cambio en el vector de posición de la partícula α es $\delta {\bf r}_{\alpha} = \delta \varphi \times {\bf r}_{\alpha}.$
- La isotropía del espacio implica que esta transformación infinitesimal no introduce cambios en el Lagrangiano del sistema; i. e., $\delta L=0$. Expresando $\delta L=\frac{df}{dt}$, obtenemos f= cte
- Entonces, el teorema de Noether establece $J = \sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial L}{\partial \dot{x}_{j}(\alpha)} \delta x_{j}(\alpha) f = \text{cte } \Rightarrow$ $\sum_{\alpha=1}^{N} \sum_{j=1}^{3} \frac{\partial L}{\partial \dot{x}_{j}(\alpha)} \delta x_{j}(\alpha) = \text{cte } \Rightarrow \sum_{\alpha=1}^{N} \frac{\partial L}{\partial \dot{r}_{\alpha}} \cdot \delta \mathbf{r}_{\alpha} = \text{cte.}$

Título transparencia

