

LSIC1MO120E0080 1200 V, 80 mOhm N-Channel SiC MOSFET

Agency Approvals and Environmental

Environmental Approvals

Circuit Diagram

Product Summary

Characteristic	Value	Unit
V_{DS}	1200	V
Typical R _{DS(ON)}	80	mOhm
I _D (T _C ≤ 100 °C)	25	А

Features

- Optimized for high-frequency, high-efficiency applications
- Extremely low gate charge and output capacitance
- Low gate resistance for high-frequency switching
- Normally-off operations at all temperatures
- Ultra-low on-resistance

Applications

- High-frequency applications
- Solar Inverters
- Switch Mode Power Supplies
- UPS
- Motor Drives
- High Voltage DC/DC Converters
- Battery Chargers
- Induction Heating

1. Maximum Ratings	3
2. Thermal Characteristics	3
3. Electrical Characteristics	3
4. Reverse Diode Characteristics	
5. Performance Curves	5
6. Package Dimensions	9
7. Part Numbering and Marking	9
8. Packing Options	9
9. Packing Specifications	10

1. Maximum Ratings

Characteristic	Symbol	Conditions	Value	Unit	
Drain-Source Voltage	V _{DS}	$V_{GS} = 0 V$	1200	V	
Continuous Drain Current	I _D	$V_{GS} = 20 \text{ V}, T_{C} = 25 \text{ °C}$	39	A	
Continuous Diain Current	ID	V_{GS} = 20 V, T_{C} = 100 °C	25	A	
Pulsed Drain Current ¹	I _{D(pulse)}	T _C = 25 °C	80	А	
Power Dissipation	P _D	T _C = 25 °C, T _J = 175 °C	214	W	
	$V_{GS,MAX}$	Absolute maximum values – Steady state	-6 to +22		
Gate-Source Voltage	V _{GS,OP,TR} ²	Transient, t _{transient} < 300 nsec	-10 to +25	V	
	V _{GS,OP} ³	Recommended DC operating values	-5 to +20		
Operating Junction Temperature	Τ _J	-	-55 to +175	°C	
Storage Temperature	T _{STG}	-	-55 to +150	°C	
NA-wating Tanana		M2 (22	0.6	Nm	
Mounting Torque	M _D	M3 or 6-32 screw	5.3	in-lb	

Footnote 1: Pulse width limited by T_{J,MAX}

Footnote 2: See Figure 21 for further information

 $Footnote \ 3: MOSFET \ can \ operate \ with \ V_{GS(OFF)} = 0 \ V - dependent \ upon \ PCB \ layout. \ V_{GS(OFF)} = -5 \ V \ provides \ added \ noise \ margin \ and \ faster \ turn-off \ speed$

2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Maximum Thermal Resistance, junction-to-case	R _{th,JC,MAX}	0.7	°C/W
Maximum Thermal Resistance, junction-to-ambient	R _{th,JA,MAX}	40	°C/W

3. Electrical Characteristics

3.1. Static Characteristics (T_J = 25 °C unless otherwise specified)

Characteristic	Cymphal	Symbol Conditions	Value			Unit	
Characteristic	Symbol	Conditions	Min	Тур	Max	UIIII	
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS}=0~V,~I_{D}=100~\mu A$	1200	-	-	V	
Zero Gate Voltage Drain Current		$V_{DS} = 1200, V_{GS} = 0 V$	-	1	100		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS}=1200~V,~V_{GS}=0~V,~T_{J}=175~^{\circ}C$	-	2	-	μΑ	
Cata Lagkaga Current	I _{GSS,F}	$V_{GS} = 22 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	100	nA	
Gate Leakage Current	I _{GSS,R}	$V_{GS} = -6 \text{ V}, V_{DS} = 0 \text{ V}$	-	-	100	IIA	
Drain-Source On-State Resistance	R _{DS(ON)}	$I_D = 20 \text{ A}, V_{GS} = 20 \text{ V}$	-	80	100	mO	
Drain-Source On-State Resistance	KDS(ON)	$I_D = 20 \text{ A}, V_{GS} = 20 \text{ V}, T_J = 175 ^{\circ}\text{C}$	-	120	-	11177	
Gate Threshold Voltage	V	$V_{DS} = V_{GS}$, $I_D = 10 \text{ mA}$	1.8	2.8	4.0	V	
	V _{GS(TH)}	$V_{DS}=V_{GS},\ I_{D}=10\ mA,\ T_{J}=175\ ^{\circ}C$	-	1.8	-	v	
Internal Gate Resistance	R _{G.int}	Resonance method, Drain-Source shorted ¹	-	0.6	-	Ω	

 $Footnote \ 1: For a \ description \ of \ the \ resonance \ method \ for \ measuring \ R_{G_{a}} \ refer \ to \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ resonance \ refer \ to \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ refer \ to \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ refer \ to \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ refer \ to \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ refer \ to \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ refer \ to \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ refer \ to \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ refer \ to \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ refer \ to \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ refer \ to \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ refer \ to \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ refer \ to \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ refer \ to \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ refer \ the \ JEDEC \ Standard \ JESD24-11 \ test \ method \ refer \ the \ JEDEC \ Standard \ JESD24-11 \ test \ the \ JEDEC \ Standard \ JESD24-11 \ test \$

3.2. Dynamic Characteristics (T_J = 25 °C unless otherwise specified)

Characteristic	Sumbol	Conditions	Value			Unit
CHall acter istic	Symbol	Conditions	Min	Тур	Max	Offit
Turn-On Switching Energy	Eon	$V_{DD} = 800 \text{ V}, I_D = 20 \text{ A},$	-	220	-	
Turn-Off Switching Energy	Eoff	$V_{GS} = -5 / +20 V$, $R_{G,ext} = 2 \Omega$, L = 714 μ H,	-	32	-	μJ
Total Per-Cycle Switching Energy	E _{TS}	FWD = LSIC2SD120A10	-	252	-	
Input Capacitance	Ciss		-	1700	-	
Output Capacitance	Coss	$V_{DD} = 800 \text{ V}, V_{GS} = 0 \text{ V},$	-	82	-	pF
Reverse Transfer Capacitance	C _{RSS}	$f = 1 MHz$, $V_{AC} = 25 mV$	-	9	-	
COSS Stored Energy	Eoss		-	26	-	μJ
Total Gate Charge	Qg	$V_{DD} = 800 \text{ V}, I_D = 20 \text{ A},$ $V_{CS} = -5 \text{ / } + 20 \text{ V}$	-	92	-	
Gate-Source Charge	Qgs		-	28	-	nC
Gate-Drain Charge	Q _{gd}		-	35	-	
Turn-On Delay Time	t _{d(on)}	$V_{DD} = 800 \text{ V}, I_D = 20 \text{ A},$ $V_{GS} = -5 \text{ / } + 20 \text{ V},$ $R_{Gast} = 2 \Omega, R_L = 40 \Omega,$	-	10	-	
Rise Time	t _r		-	10	-	nc
Turn-Off Delay Time	t _{d(off)}		-	16	-	ns
Fall Time	t _f	Timing relative to V _{DS}	-	8	-	

4. Reverse Diode Characteristics

Characteristic	Cumbal	Conditions	Value			Unit	
CHai acteristic	Symbol	Conditions	Min	Тур	Max	OTIL	
Diode Forward Voltage	V _{SD}	$I_S=10~A,~V_{GS}=0~V$	-	3.6	-	V	
blode i di ward voltage	V SD	V _{SD} I _S = 10 A, V _{GS} = 0 V, T _J = 175 °C		3.2	-	V	
Continuous Diode Forward Current	Is	V _{cs} = 0 V, T _c = 25 °C	-	-	35	А	
Peak Diode Forward Current ¹	I _{SP}	V _{GS} = 0 V, 1c = 25 C	-	-	85	A	
Reverse Recovery Time	t _{rr}	V _{GS} = -5 V, I _S = 20 A,	-	21	-	ns	
Reverse Recovery Charge	Qrr	V _R = 800 V,	-	210	-	nC	
Peak Reverse Recovery Current	Irm	dI/dt = 5.5 A/ns	-	19	-	А	

Footnote 1: Pulse width limited by T_{J,MAX}

5. Performance Curves

Figure 1. Maximum Power Dissipation ($T_J = 175$ °C)

Figure 3. Typical Output Characteristics (T_J = 25 °C)

Figure 5. Typical Output Characteristics ($T_J = -55$ °C)

Figure 2. Typical Transfer Characteristics

Figure 4. Typical Output Characteristics (T_J = 175 °C)

Figure 6. Typical Reverse Conduction Characteristics (T_J = 25 °C)

Figure 7. Typical Reverse Conduction Characteristics (T_J = 175 °C) Figure 8. Typical Reverse Conduction Characteristics (T_J = -55 °C)

Figure 9. Normalized Transient Thermal Impedance

Figure 11. On-resistance vs. Drain Current

Figure 10. Maximum Safe Operating Area (T_C = 25 °C)

Figure 12. Normalized On-resistance vs. Junction Temperature

Figure 13. Typical On-resistance vs. Junction Temperature

Figure 15. Typical Junction Capacitances up to 1000 V

Figure 17. Typical Coss Stored Energy Eoss

Figure 14. Typical Threshold Voltage

Figure 16. Typical Junction Capacitances up to 200 $\rm V$

Figure 18. Typical Gate Charge

Figure 19. Typical Switching Energy vs. Drain Current

Figure 21. V_{GS} Waveform Definitions

Figure 20. Typical Switching Energy vs. External Gate Resistance

6. Package Dimensions

Recommended Hole Pattern Layout:

Notes:

- 1. Dimensions are in millimeters
- Dimension D, E do not include mold flash. Mold flash shall not exceed 0.127 mm per side measured at outer most extreme of plastic body.
- 3. øP to have a maximum draft angle of 1.7° to the top of the part with a maximum hole diameter of 3.912 mm.

Cumbal	Millimeters		
Symbol	Min	Nom	Max
Α	4.699	-	5.309
A1	2.210	-	2.591
A2	1.499	-	2.489
b	0.990	-	1.400
b2	1.650	-	2.390
b4	2.590	-	3.430
С	0.380	-	0.890
D	20.800	-	21.463
D1	13.081	-	-
D2	0.508	-	1.350
е		5.440 BSC	
Е	15.494	-	16.256
E1	13.060	-	14.150
E2	3.429	-	5.486
L	19.810	-	20.570
L1	3.810	-	4.496
øΡ	3.550	-	3.660
øP1	7.060	-	7.390
Q	5.385	-	6.200
S	6.050	-	6.300

7. Part Numbering and Marking

- SiC = SiC 1 = Gen 1 MO = MOSFET
- 120 = Voltage Rating (1200 V)
- E = TO-247-3L
- $0080 = R_{DS(ON)} (80 \text{ mOhm})$
- $egin{array}{ll} {\sf YY} &= {\sf Year} \\ {\sf WW} &= {\sf Week} \\ {\sf D} &= {\sf Special Code} \\ \end{array}$
- ZZZZZZ-ZZ = Lot Number

8. Packing Options

Part Number	Marking	Packing Mode	M.O.Q.
LSIC1MO120E0080	SIC1MO120E0080	Tube (30 pcs)	450

9. Packing Specifications

For additional information please visit www.Littelfuse.com/powersemi

Disclaimer Notice - Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly forth in applicable Littelfuse product documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation.

Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics

