Control and Data Flow Analysis

4190.409 Compilers, Spring 2016

Control-Flow Analysis

Control-Flow Analysis

- prerequisite for data-flow analysis
- simply put a flowchart illustrating the different paths ("control flows") a program may take

Control-Flow Analysis

- three main approaches for control-flow analysis
 - dominators + loop detection
 - interval analysis
 - structural analysis
- elimination methods have advantages over dominators and iterative data-flow analysis
 - faster
 - easier to update
 - better structure to do low-level control-flow optimizations
- current compilers use dominators + iterative data-flow analysis
 - easier to implement
 - provide sufficient information

Def. basic block

a maximal sequence of instructions that can only be entered at the first and exited at the last instruction

- potential leaders:
 - entry point
 - branch target
 - instruction following a control-flow instruction
 - what about subroutine calls?
- construction is straight forward for straight-line three-address intermediate code
 - identify all leaders
 - include all instructions until next leader
 - add extra entry and exit blocks

Example

```
get m
 1
       f0 <- 0
      f1 <- 1
       if m <= 1 goto L3
       i <- 2
 6 L1: if i <= m goto L2</pre>
       return f2
 8 L2: f2 <- f0 + f1
       f0 <- f1
       f1 <- f2
10
       i <- i + 1
11
12
       goto L1
13 L3: return m
```


Def. flow graph

```
G = \langle N, E \rangle
```

N: basic blocks (incl. entry & exit)

E: control-flow edges

Def. (immediate) successor/predecessor sets of a basic block b

```
Succ(b) = { n \in N \mid \exists e \in E \text{ such that } e = b \rightarrow n \}
Pred(b) = { n \in N \mid \exists e \in E \text{ such that } e = n \rightarrow b \}
```

- a branch node has more than one successor
- a join node has more than one predecessor

Def. extended basic block

a maximal sequence of instructions that beginning with a leader that contains no join nodes other than its leader

- multiple exits
- subtree of flow graph

Dominators and Postdominators

Def. dominator

A node d dominates node i, d dom i, iff every possible execution path from entry to i includes d.

reflexive, transitive, antisymmetric

Def. strict dominator

A node *d strictly dominates* node *i*, *d sdom i*, if *d dom i* and $d \neq i$.

Def. immediate dominator

A node *d immediately dominates* node *i*, *d idom i*, iff *a sdom b*, and there is no node *c* for which *a sdom c* and *c sdom b*.

Def. postdominator

A node p postdominates node i, p pdom i, if every possible execution path from i to exit includes p.

Computing Dominator Relations

- Plenty of code out there, one example:
 - idea: a dom b iff
 - $\rightarrow a = b$
 - a is the unique immediate predecessor of b
 - b has more than one immediate predecessor and for all immediate predecessors c of b, $c \neq a$ and $a \ dom \ c$.
 - more efficient algorithms exist (Lengauer & Tarjan) but are much more complicated (see Muchnick)
- idom is easy as well (see e.g. Cytron's SSA paper)

```
procedure dom rel(N, Pred, root)
begin
  dom(root) := { root }
  for each n in N-{root} do
    dom(n) := N
  od
  repeat
    change := false
    for each n in N-{root} do
      T := N
      for each p in Pred(n) do
        T := T \cap dom(p)
      od
      D := \{n\} \cup T
      if D \neq dom(n) then
        change := true
        dom(n) := D
      fi
    od
  until !change
  return dom
end
```

Natural Loops

Def. backedge

A back edge is an edge in a flowgraph whose head dominates its tail, i.e., $tail \rightarrow head$ and head dom tail.

Def. natural loop

The natural loop of $m \rightarrow n$ is the subgraph consisting of n and all the nodes from which m can be reached without passing through n plus the connecting edges.

n is called the **loop header**.

Natural Loops

- Often, it is beneficial to insert a preheader just before the loop header.
 - (initially) empty
 - single edge from preheader to header
 - all incoming edges to the loop header are moved to the preheader

- Properties of natural loops
 - different loop header: disjoint or nested
 - same header: not clear

Strongly Connected Components

- A natural loop is well-structured.
- Languages with unstructured control flow ("goto"s) can have arbitrary looping structures with more than one entry point

- General loop structure: strongly connected components (SCC)
- **Def. strongly connected component** A subgraph $G_s = \langle N_s, E_s \rangle$ of G such that every node in N_s is reachable from every other node by a path that includes only edges in E_s .
- Computation of SCCs: Tarjan's algorithm

Well-Structured Flow Graphs

Def. well-structured flowgraphs (aka reducible flowgraphs)
A flowgraph G=<N, E> is well-structured iff E can be partitioned into a forward set, E_f , and a disjoint backward set, E_b , such that G=<N, $E_f>$ forms a DAG in which each node can be reached from the entry node and the node is E_b are all backedges.

In reducible flowgraphs, all loops are entered through their headers.

Most modern programming languages (Java, C#, Modula-2 and descendants) only generate reducible flowgraphs.

Data-Flow Analysis

Data-Flow Analysis

 provide global information about how a block, procedure, or larger segment of a program manipulates its data

example

```
i = 16; i = 16; i = 16; a = b / 16; a = b >> 4;
```

but what if

```
if (cond) i = 16;
...
a = b / i;
```

Data-Flow Analysis

data-flow approximation
 often, we cannot determine exactly how the data is manipulated

conservative approximations
if we cannot determine the exact manipulation, then at least a conservative
approximation of it

aggressive data-flow analysis
 as aggressive as possible while still being conservative

 we will look into iterative data-flow analysis based on the dominator control-flow analysis

- **Def. reaching definition**a definition of a variable *d* is said to *reach* a given point *p* in a procedure if there is an execution path from the *d* to *p* such that the variable use at *p* may have the
 - value assigned at d.
- Obvious pre-requisite: control-flow graph
- Typical approach:
 - 1. local flow analysis
 - 2. global flow analysis
- Bit-vector or set representation
 - model the problem as bit-vectors with operations defined on them
 - typically GEN/KILL (alternative: GEN/PRSV)

Iterative forward bit-vector formulation

Assign a bit position to every definition. For each position, "1" signifies that the definition may, "0" that the definition does not reach a given point.

Bit	Definition	ВВ
1	m (1)	
2	f0 (2)	B1
3	f1 (3)	
4	i (5)	B3
5	f2 (8)	
6	f0 (9)	B6
7	f1 (10)	DU
8	i (11)	

exit

Iterative forward bit-vector formulation

Let RCHin/RCHout(b) be the set of reaching definitions that may reach the

Def

f0 (9)

f1 (10) i (11)

B6

20

beginning/end of a basic block b. Then

conservative initialization:

$$RCHin(i) = <000000000>$$

Compute PRSV(i) as the set of bits that represent the definitions preserved by

block i

PRSV(B1) =
$$<00011001>$$

PRSV(B3) = $<11101110>$
PRSV(B6) = $<10000000>$
all other blocks ($i \notin \{1,3,6\}$):
PRSV(B_i) = $<11111111>$

entry

B1

Bit

1

Iterative forward bit-vector formulation

Let GEN(b) be the set of generated definitions (and not subsequently killed) by

block b.

all other blocks ($i \notin \{1,3,6\}$):

$$GEN(i) = <000000000>$$

Iterative forward bit-vector formulation

Data-flow formulation: a definition may reach the end of block b iff either it is generated within b or reaches the beginning of and is preserved by b.

$$RCHout(b) = GEN(b) \cup (RCHin(b) \cap PRSV(b))$$
 for all i

as bitvector operations

$$RCHout(b) = GEN(b) \lor (RCHin(b) \land PRSV(b))$$
 for all i

Likewise, a definition may reach the beginning of block b if it may reach the end of some predecessor of b.

$$RCHin(b) = \bigcup_{i \in Pred(b)} RCHout(j)$$
 for all i

$$RCHin(b) = \bigvee\nolimits_{j \in Pred(b)} RCHout(j) \quad \text{ for all } i$$

Iterative forward bit-vector formulation

To solve this system, we initialize RCHin() and iteratively apply the iterative flow equations until no changes occur.

	1 st round:	RCHout(entry)	=	<00000000>	RCHin(entry)	=	<00000000>
		RCHout(B1)	=	<11100000>	RCHin(B1)	=	<00000000>
		RCHout(B2)	=	<11100000>	RCHin(B2)	=	<11100000>
		RCHout(B3)	=	<11110000>	RCHin(B3)	=	<11100000>
		RCHout(B4)	=	<11110000>	RCHin(B4)	=	<11110000>
		RCHout(B5)	=	<11110000>	RCHin(B5)	=	<11110000>
		RCHout (B6)	=	<10001111>	RCHin(B6)	=	<11110000>
		RCHout(exit)	=	<11110000>	RCHin(exit)	=	<11110000>
	2 nd round:	RCHout(entry)	=	<00000000>	RCHin(entry)	=	<00000000>
•	2 nd round:	RCHout(entry) RCHout(B1)	=	<00000000> <11100000>	RCHin(entry) RCHin(B1)	=	<00000000> <00000000>
•	2 nd round:	_			-		
•	2 nd round:	RCHout (B1)	=	<11100000>	RCHin(B1)	=	<00000000>
•	2 nd round:	RCHout (B1) RCHout (B2)	=	<11100000> <11100000>	RCHin(B1) RCHin(B2)	=	<00000000> <11100000>
•	2 nd round:	RCHout (B1) RCHout (B2) RCHout (B3)	= =	<11100000> <11100000> <11110000>	RCHin(B1) RCHin(B2) RCHin(B3)	= =	<00000000> <11100000> <11100000>
•	2 nd round:	RCHout (B1) RCHout (B2) RCHout (B3) RCHout (B4)	= = =	<11100000> <11100000> <11110000> <111111111>	RCHin(B1) RCHin(B2) RCHin(B3) RCHin(B4)	= = =	<00000000> <11100000> <111100000> <111111111>

termination?

- Data-flow analysis is performed by operating on lattices
- A *lattice* L is an algebraic structure consisting of a set of values and two operations meet (\square) and join (\square) with the following properties
 - 1. closure $\forall x, y \in \mathbf{L}$ there exist unique $z, w \in \mathbf{L}$ such that $x \sqcap y = z$ and $x \sqcup y = w$
 - 2. commutativity $\forall x, y \in \mathbf{L} \ x \sqcap y = y \sqcap x \text{ and } x \sqcup y = y \sqcup x$
 - 3. associativity $\forall x, y,z \in \mathbf{L} \ (x \sqcap y) \sqcap z = x \sqcap (y \sqcap z) \text{ and } (x \sqcup y) \sqcup z = x \sqcup (y \sqcup z)$
 - 4. existence of top (T) and bottom (\perp) element $\exists \perp$,T such that $\forall x \in \mathbf{L} \ x \sqcap \perp = \perp \text{ and } x \sqcup T = T$
 - 5. distributivity holds for most data-flow problems $\forall x, y,z \in \mathbf{L} \ (x \sqcap y) \sqcup z = (x \sqcup z) \sqcap (y \sqcup z) \ \text{and} \ (x \sqcup y) \sqcap z = (x \sqcap z) \sqcup (y \sqcap z)$

Example: bitvector lattices

Notation: \mathbf{BV}^n lattice of bitvectors of length n

For \mathbf{BV}^n , the top and bottom element are

$$\perp = <000...0>$$
 $T = <111...1>$

and meet and join can be defined as

 \Box = bitwise AND \Box = bitwise OR

■ Meet and join induce a partial order on the values, written as ⊑

$$x \sqsubseteq y \text{ iff } x \sqcap y = x$$

analog for join and \sqsubseteq , \sqsupset , and \beth .

Properties of ⊑:

- 1. transitivity $\forall x, y,z \in \mathbf{L} \ x \sqsubseteq y \text{ and } y \sqsubseteq z \rightarrow x \sqsubseteq z$
- 2. antisymmetry $\forall x, y \in \mathbf{L} \ x \sqsubseteq y \text{ and } y \sqsubseteq x \rightarrow x = y$
- 3. reflexivity $\forall x \in \mathbf{L} \ x \sqsubseteq x$

Function mappings for lattices

$$f: \mathbf{L} \to \mathbf{L}$$

- f is monotone if $\forall x, y \in \mathbf{L} \ x \sqsubseteq y \rightarrow f(x) \sqsubseteq f(y)$
- Height of a lattice

the length of the longest strictly ascending chain such that

$$\perp = x_1 \sqsubset x_2 \sqsubset x_3 \sqsubset \ldots \sqsubset x_n = \mathsf{T}$$

Effective height of a lattice the effective height of a lattice is the longest strictly ascending chain obtained by iteratively applying a function $f: L \rightarrow L$ with

$$X_1 \sqsubset f(X_1) \sqsubset f(f(X_1)) \sqsubset f^3(X_1) \sqsubset \ldots \sqsubset f^n(X_1) \sqsubset \top$$

here, we use f^x to denote x-fold repeated application of f. The effective height is n+1.

Fixed-point of a function f: L \rightarrow L is reached when

$$f(\mathbf{x}) = \mathbf{x}$$

Meet-over-all-paths (MOP)

Goal when solving data-flow equations

Informally: start with some value Init at the entry (exit) node of a flowgraph, then apply the composition of the appropriate flow functions along all possible paths from the entry (exit) node and form for each node the meet of the results.

$$MOP(B) = \prod_{p \in Path(B)} F_p(Init)$$
 for B = entry, B1, ..., Bn, exit

with F_p being the composition of the flow functions F_{Bx} through the path p

$$F_p = F_{Bn} \circ F_{Bn-1} \circ \dots \circ F_{B1}$$

Maximum fixed point (MFP) solution

Even with monotone flow functions there may be no algorithm that computes MOP for all possible flowgraphs. The algorithms compute the solution to the data-flow equation that is maximal in the ordering of the underlying lattice, that is, the solution that provides the most information. This point is called the *maximum fixed point* (MFP) solution.

By the way: what gives more accurate results? associating the entry point of basic blocks with data-flow information or the edges?

Iterative Data-Flow Analysis

General Framework

Given:

- a flowgraph G = <N, E>
- a lattice L
- a data-flow transfer function for block B, F_B()
- models the effect of combining the data-flow information on edges entering a block

Then

$$in(B) = \begin{cases} Init & B = entry \\ \prod_{P \in Pred(B)} out(P) & otherwise \end{cases}$$
 $out(B) = F_B(in(B))$

If \sqcup models the effect of combining the data-flow information, then \sqcup is used in the algorithm. *Init* is typically initialized to \bot or \top .

Iterative Data-Flow Analysis

Similarly, for backward problems

$$out(B) = \begin{cases} Init & B = exit \\ \prod_{P \in Succ(B)} in(P) & otherwise \end{cases}$$
$$in(B) = F_B(out(B))$$

 \blacksquare computing F_B for every block B

apply the transfer function to each statement in the basic block given GEN() / KILL()

Reaching Definitions (revisited)

For each definition d: $u = v \circ w$, the transfer function is given as

$$f_d(x) = gen_d \cup (x - kill_d)$$

with $gen_d = \{d\}$, and $kill_d$ the set of all other definitions of u.

For a basic block,

$$f_B(x) = gen_B \cup (x - kill_B)$$

with

$$kill_B = kill_1 \cup kill_2 \cup ... \cup kill_n$$

and

$$gen_{B} = gen_{n} \cup (gen_{n-1} - kill_{n}) \cup (gen_{n-2} - kill_{n-1} - kill_{n}) \cup \dots \cup (gen_{1} - kill_{2} - \dots - kill_{n})$$

Reaching Definitions (revisited)
The control-flow equations for basic blocks are

OUT[ENTRY] =
$$\emptyset$$
;
OUT[B] = $gen_B \cup (IN[B] - kill_B)$
 $IN[B] = \bigcup_{P \in Pred(B)} OUT[P]$

and can now be solved iteratively:

```
OUT[ENTRY] = \emptyset;

for (each basic block B other than ENTRY) OUT[B] = \emptyset;

while (changes to any OUT occur) {

  for (each basic block B other than ENTRY) {

    IN[B] = \mathbf{U}_{P \in Pred(B)} OUT[P];

    OUT[B] = gen_B U (IN[B] - kill_B);

}
```

Live-Variable Analysis

Problem formulation: for variable x and program point p, can the value of x at p be used along some path starting at p?

We define

- 1. def_B as the set of variables definitely assigned in B prior to any use
- 2. use_B as the set of variables whose values used in B prior to any definition

This is a *backward* problem: we follow the uses upwards to the definitions. Hence:

$$IN[EXIT] = \emptyset;$$

$$IN[B] = use_B \cup (OUT[B] - def_B)$$

$$OUT[B] = \bigcup_{S \in Succ(B)} IN[S]$$

Live-Variable Analysis

iterative algorithm

```
IN[EXIT] = \emptyset;
for (each basic block B other than ENTRY) IN[B] = \emptyset;
while (changes to any IN occur) {
  for (each basic block B other than ENTRY) {
    OUT[B] = \mathbf{U}_{S \in \text{Succ}(B)} \text{ IN}[S];
    IN[B] = use_B \cup (OUT[B] - def_B);
}
```

Available Expressions

Problem formulation: an expression $x \oplus y$ is available at point p if every path from the entry node to p evaluates $x \oplus y$, and after the last such evaluation prior to reaching p, there are no subsequent assignments to x or y.

We define

- 1. e_gen_B : the set of expressions generated by B
- 2. e_{kill_B} : the set of expressions killed in B

This is a *forward* problem: an expression is available iff it is available at the end of all predecessor blocks:

$$OUT[EXIT] = \emptyset$$
; $OUT[N-\{EXIT\}] = U$;

$$OUT[B] = e_gen_B \cup (IN[B] - e_kill_B)$$

$$IN[B] = \bigcap_{P \in Pred(B)} OUT[P]$$

Available Expressions

Computing e_gen_B and e_kill_B for a block:

 e_gen_B , the set of available expressions in B, is empty at the beginning of the block. So is e_kill_B , the set of expressions killed by the block.

For an assignment $z = x \oplus y$

- 1. add expression $x \oplus y$ to e_gen_B .
- 2. add all expressions involving z to e_kill_B .

```
OUT[ENTRY] = \emptyset;

for (each basic block B other than ENTRY) OUT[B] = U;

while (changes to any OUT occur) {

  for (each basic block B other than ENTRY) {

    IN[B] = \mathbf{n}_{P \in Pred(B)} OUT[P];

    OUT[B] = e_{gen_{B}} U (IN[B] - e_{kill_{B}});

  }

}
```

Iterative Data-Flow Analysis: Summary

Summary of three data-flow problems

	Reaching Definitions	Live Variables	Available Expressions	
Domain	Set of definitions	Sets of variables	Sets of expressions	
Direction	forwards	backwards	forwards	
Transfer function	$gen_B \cup (x-kill_B)$	$use_B \cup (x - def_B)$	$e_gen_B \cup (x - e_kill_B)$	
Boundary	$OUT[ENTRY] = \emptyset$	$IN[EXIT] = \emptyset$	$OUT[ENTRY] = \emptyset$	
Initialize	$OUT[B] = \emptyset$	$IN[B] = \emptyset$	OUT[B] = T	
Meet	U	U	\cap	
Equations	$OUT[B] = f_B(IN[B])$ $IN[B] = \bigcup_{P \in Pred(B)} OUT[P]$	$IN[B] = f_B(OUT[B])$ $OUT[B] = \bigcup_{S \in Succ(B)} IN[S]$	$OUT[B] = f_B(IN[B])$ $IN[B] = \bigcup_{P \in Pred(B)} OUT[P]$	