LEARNED INDEX FOR SIMILAR TRAJECTORY SEARCH IN DISTRIBUTED IN-MEMORY SYSTEM

Hani Ramadhan*, Hudzaifah E. Nursantio, Joonho Kwon

Pusan National University

Out<mark>line</mark>

- 1. Problem
- 2. Challenges
- 3. Proposed Method
- 4. Experiment
- 5. Conclusion

Problem & Motivation

- Existing systems [1][2] on similar trajectory search still suffer from false positive results before verification
 - Inefficient query processing
- Machine learning-based index
 [3][4] (learned index) may provide
 better approximation of the
 trajectory location in partition

[1] D. Xie and F. P. J. M. Li, "Distributed Trajectory Similarity Search," PVLDB 2017.

[2] Z. Shang, G. Li and Z. Bao, "DITA: Distributed In-Memory Trajectory Analytics," in SIGMOD 2018.

[3] T. Kraska, A. Beutel, E. Chi, J. Dean and N. Polyzotis, "The Case for Learned Index Structures," in SIGMOD 2018.

[4] T. Kraska, M. Alizadeh, A. Beutel, E. Chi, A. Kristo, G. Leclerc, S. Madden, H. Mao and V. Nathan, "SageDB: A Learned Database System," in CIDR 2019.

12/17/2019

Partitions containing

Related Works

- [1] (uses segmentation) and DITA [2] (uses global-local partitioning) still suffers inefficiency of exploring false positive partitions
- Learned index improves the time efficiency and the index size from the traditional indexing (disk-based) [3]
- Different learned index is deployed for nearest neighbor search of large dataset of points [5].
 - Using a representation of codebook, proved for large dataset of points
 - Contextually, it is a modified similar search. But, still not applied to trajectory
- [1] D. Xie and F. P. J. M. Li, "Distributed Trajectory Similarity Search," PVLDB 2017.
- [2] Z. Shang, G. Li and Z. Bao, "DITA: Distributed In-Memory Trajectory Analytics," in SIGMOD 2018.
- [3] T. Kraska, A. Beutel, E. Chi, J. Dean and N. Polyzotis, "The Case for Learned Index Structures," in SIGMOD 2018
- [5] C.-Y. Chiu, A. Prayoonwong and Y.-C. Liao, "Learning to Index for Nearest Neighbor Search," IEEE Transactions on Pattern An alysis/and Machine Intelligence, pp. 1-15, 2019.

Contributions

- We provide a learned index for an existing similarity trajectory search indexing (DITA) to minimize the exploration of irrelevant partitions/cluster thus improving the efficiency of the query processing
- We develop a probabilistic distance, applicable to learned index, to model the similarity between trajectories

Proposed Method

Modify the DITA indexing approach

The **probabilistic distance** to model the similarity between trajectories

Trajectory Similarity Search Query

• Task:

- Given a query trajectory T_Q
- With a distance threshold of τ
- Return all trajectories in set \mathcal{T} whose distance $\leq \tau$

$$SimTS_{\tau}^{T_Q} = \{\langle T_s \rangle, T_s \in \mathcal{T}\}$$

Trajectory Similarity Search Query

Distance (DTW)	T ₁	T ₂	T ₃
T ₁	0	0.4	10
T ₂	0.4	0	9
T ₃	10	9	0

• Example query:

- Given T₁ as query to set {T₁, T₂, T₃}
- Using threshold $\tau = 0.5$
- Result: $\{T_1, T_2\}$

$$\mathsf{DTW}(T,Q) = \begin{cases} \sum_{i=1}^m \mathsf{dist}(t_i,q_1) & \text{if } n=1\\ \sum_{j=1}^n \mathsf{dist}(t_1,q_j) & \text{if } m=1\\ \mathsf{dist}(t_m,q_n) + \min\left(\mathsf{DTW}(T^{m-1},Q^{n-1}), \\ \mathsf{DTW}(T^{m-1},Q), \mathsf{DTW}(T,Q^{n-1})\right) & \text{otherwise} \end{cases}$$

DTW → widely used in trajectory similarity functions in many experiments [6]

[6] C. S. Myers and L. R. Rabiner. A comparative study of several dynamic timewarping algorithms for connected-word recognition.

8 Bell System Technical Journal, 60:1389–1409, 1981

DITA Comparison with/out learned Index

- 1. Compute distance between first and last point to each global partition separately (2 trees)
- Then, explore a global partition if first+last total distance less than treshold

- Compute similarity between first, last, and pivot points to each global partition (only 1 time)
- 2. Then, explore a global partition if their its distance less than treshold

DITA Comparison with/out learned Index

Local Partition ≤ threshold Input: first, last, k pivot points

Have to dive 2+k levels of partition indexing (+pruning)

Goes to the local partitions that contains similar trajectories directly from single inference

Learned Index Approach for Trajectory Similarity Search

Build Dataset for Similarity Search Query

Example:

- Query Set Q: {Q₁, Q₂}
- Trajectory set T: $\{T_1, T_2, T_3, T_4, T_5\}$
- $H = \{0.1, 0.5, 1\}$

Build Dataset for Similarity Search Query

Query result

Global T_3 **Partition** Local **Partition**

Learn this using Machine Learning!

Probabilistic Distance $d_p(T_O|T_C)$

- A parameter $p \rightarrow$ uncovered threshold from H
- Also interchangable with the partitions

•
$$T_C \leftrightarrow G_i \leftrightarrow l_{i,j}$$

$$d_p(T_Q|T_C) = \begin{cases} 1, & T_C \in SimTS_{\tau}^{T_Q}, \tau = \min(H) \\ p, & T_C \notin SimTS_{\tau}^{T_Q}, \tau = \max(H) \\ p + \frac{\max(H) - \tau_{i-1}}{\max(H)} \times (1 - p), & T_C \in SimTS_{\tau}^{T_Q} \land T_C \notin SimTS_{\tau-1}^{T_Q} \end{cases}$$

$$T_{C} \in SimTS_{\tau}^{T_{Q}}, \tau = \min(H)$$

$$T_{C} \notin SimTS_{\tau}^{T_{Q}}, \tau = \max(H)$$

$$T_{C} \in SimTS_{\tau}^{T_{Q}} \land T_{C} \notin SimTS_{\tau-1}^{T_{Q}}$$

Example:
$$p = 0.05$$

 $d_p(Q_1|T_1) = 0.05$
 $d_p(Q_2|T_2) = 0.905$
 $d_p(Q_1|G_3) = 0.48$
 $d_p(Q_2|l_{2,1}) = 1$

Train the ML Model (Single Level)

Sample input:

- First point (x_f, y_f)
- Last point (x_1, y_1)
- K pivot points {(x₁,y₁), (x₂,y₂),..., (x_k,y_k)}

Train the ML Model (Multi-level)

Predict the Partitions & Trajectories

- Suppose we have a query with different threshold au'
- Find All $T_i \in \mathcal{T}$ that satisfies $d_p \big(T_Q \big| T_i \big) \ge d_p \big(T_i \big| T_Q, \tau' \big)$
 - T_i = similar trajectories/partitions containing

•
$$d_p(T_i|T_Q,\tau') = \begin{cases} \frac{max(H)-\tau'}{max(H)} \times (1-p), & \tau' \leq max(H) \\ \frac{max(H)}{\tau'} \times p, & \tau' > max(H) \end{cases}$$

Example:
$$\tau' = 3$$

 $p = 0.05, max(H) = 7.5$
 $d_p(T_i | T_Q, \tau') = 0.6333$

$$d_p(Q_A|G_3) = 0.47$$
 G_3 is NOT IN the result $d_p(Q_A|l_{2,1}) = 0.97$ $l_{2,1}$ is IN the result

Experiment Setup

- Dataset: DITA example trajectories of taxi driving. Using (https://github.com/TsinghuaDatabaseGroup/DITA)
 - 10,000 trajectories
- Input: first point, last point, pivot point (k=1)
- Model type: Simple Deep Neural Network
 - 1-level model
 - 2-level model, similar to RMI [3]
- Training dataset: random sampling of 1,381 trajectories Q, threshold $H = \{0.001,0.005,0.01,0.05,0.1,0.5,1,2.5,5,7.5,10\}$, and distance: DTW
- Test dataset: 60 trajectories $\notin Q$ and $H' = \{0.075, 0.03, 0.4, 6\}$
- Evaluation Metric: precision, compared to ground truth (DITA)

18

Experiment Setup

- Hardware
 - Intel(R) Core(TM) 3.60GHz
 - 16 GB RAM
- Software
 - Hadoop-2.6 for Windows, Spark 2.2.0, TensorFlow and TensorFlow Java API 1.13.1, and Python 3.6
 - Train the model in Python first, then call the model using Scala (*DITA is built using Scala)

Result

- Our developed model nearly achieved the ground truth performance within p variations
- The 2-level recursive model has better performance than the single model
 - Slightly similar to DITA original structure, however more complex

Discussion and Future Works

- This is still preliminary work
- The input of the ML model (the first, last, and pivot points) may not quite represent the trajectory for machine learning
 - Trajectory representation using Vector [6] & Cluster [7]
 - However, implementation for in-memory approach still need to be discussed

Conclusion

- We developed a learned index approach for an existing similarity trajectory search indexing (DITA) to minimize the exploration of irrelevant partitions/cluster
- We developed a probabilistic distance, applicable to learned index, to model the similarity between trajectories

Thank you for your attention

Trajectory Similarity Search Query

Distance (DTW)	T ₁	T ₂	T ₃
T ₁	0	0.4	10
T ₂	0.4	0	9
T ₃	10	9	0

Task:

- Given a query trajectory T_Q
- With a distance threshold of τ
- Return all trajectories in set \mathcal{T} whose distance $\leq \tau$ $SimTS_{\tau}^{T_Q} = \{\langle T_S \rangle, T_S \in \mathcal{T} \}$
- Example query:
 - Given T₁ as query to set {T₁, T₂, T₃}
 - Using threshold $\tau = 0.5$
 - Result: {T₁, T₂}
- Learned index: learn the similarity relationship between the trajectories

Build Dataset for Similarity Search Query

