PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-108686

(43) Date of publication of application: 09.04.1992

(51)Int.Cl.

C30B 15/22 C30B 27/02

H01L 21/208

(21)Application number : 02-228822

(71)Applicant : FURUKAWA ELECTRIC CO LTD:THE

(22)Date of filing:

30.08.1990

(72)Inventor: YOSHIDA KIYOTERU

OZAWA SHOICHI KIJIMA TAKASHI SUZUKI YUZURU

(54) GROWING METHOD FOR COMPOUND SEMICONDUCTOR SINGLE CRYSTAL

(57) Abstract:

PURPOSE: To drastically enhance the crystallization yield of single crystal by immersing seed crystal in the melt of a raw material and thereafter slowly lowering the temp. of the melt by the specified conditions, and growing single crystal to a necessary shape and then starting pulling—up thereof.

CONSTITUTION: A crucible 4 is provided to the inside of a high-pressure vessel 1 filled with inert gas 9 and holds both melt 13 for a raw material of a compound semiconductor and a liquid sealer 12 for covering the top face of this melt 13. After seed crystal 10 of the compound semiconductor is brought into contact with the top face of the melt 13, the seed crystal 10 is pulled up to the upper part. Thereby, single crystal is grown by slowly coagulating the melt 13. The following means are adopted in the above-mentioned method. In other words, after the seed crystal 10 is attached to the top face of the melt 13, the temp. thereof is lowered by 6–12° C and crystal is grown on the seed crystal 10. Firstly, rotation of the crucible 4 is gradually increased without pulling up the seed crystal 10. The temp. in the center part of the melt 13 is lowered. After elapse of 0.5–2 minutes, furthermore, the temp. of the melt is

slowly lowered at the lowering rate of -0.21 to-\$0.88° C/minute and crystal is grown in the lateral direction. At a point of time when crystal reaches a prescribed shape, the seed crystal 10 is pulled up at the specified pulling-up velocity.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

® 日本国特許庁(JP)

⑩ 公 開 特 許 公 報 (A) 平4-108686

@Int. Cl. 5

識別記号

广内整理番号

33公開 平成 4年(1992) 4月 9日

C 30 B 15/22 27/02 8924—4 G 8924—4 G

H 01 L 21/208

8924—4 G P 7353—4M

審査請求 未請求 請求項の数 1 (全5頁)

60発明の名称

化合物半導体単結晶の成長方法

②特 頭 平2-228822

孝

譲

②出 願 平2(1990)8月30日

@発明者 告田 清

東京都千代田区丸の内2丁目6番1号 古河電気工業株式

会社内

@発明者 小沢 章 -

東京都千代田区丸の内2丁目6番1号 古河電気工業株式

会补内

@発明者 木島

東京都千代田区丸の内2丁目6番1号

古河電気工業株式

会社内

@発明者 鈴木

東京都千代田区丸の内2丁目6番1号 古河電気工業株式

会社内

勿出 願 人 古河電気工業株式会社

東京都千代田区丸の内2丁目6番1号

個代 理 人 弁理士 箕 浦 清

明細言

1. 発明の名称

化合物半導体単結晶の成長方法

2. 特許請求の範囲

3. 発明の詳細な説明

〔産業上の利用分野〕

本発明は化合物半導体単結晶の成長方法に関 するもので、特に引上げる単結晶の周部からの 双晶発生を抑止したものである。

〔従来の技術〕

世来被体對止引上法(LEC法)による化合 物半導体単結晶の成長方法としては、第4図に 示すように高圧チャンパー(1)内に設けた設置した。 では、10円にと一ター(3)とルツボ(4)を設置した。 高圧チャンパー(1)内に不活性ガス(9)を充環を記憶を充環体がである。 ルツボ(4)内に化合物半導体の原料酸液でで、 では、10円の上面を液体對止剤的でルツボ(4)である。 をでは、10円の上面を液体がで、10円ではは、10円では、10円でで、10円でで、10円では、 示す。

なお実際に単結晶を成長させるためには、特定の面方位、例えば(801) 方位、(111) 方位を育する種結晶を原料融液の表面に没し、融液を徐々に冷却しながら種結晶を成長させることにより、成長結晶に一定の肩角度をつけてから引上げる方法が良好で、このようにすれば双晶或いは多結晶発生を抑えながら単結晶を成長させることができる。

[発明が解決しようとする課題]

このように一定の関角度をつけて単結晶を引上げる際、化合物半導体単結晶、例えば「nP等の機層欠陥エネルギーの小さい材料は、なおこの関部より双晶が発生しやすく、単結晶化が難しかった。

〔課題を解決するための手段〕

本発明はこれに鑑み種々検討の結果、肩部からの双晶発生を抑止し、結晶頭部より単結晶を 育成することができる化合物半導体単結晶の成 長方法を開発したものである。

このようにして融液の湿度を6~12℃下げ、0.5~2分後に -0.21~-0.88 ℃/minの温度降下レートで湿度を下げることにより、種結晶より結晶を協方向に成長させることができる。その後ルツボの回転数を徐々に上げていくことにより、結晶を更に大きくする。通常ルツボの回転を上昇させると融液の中心部の湿度が下がるため、ルツボの回転数を-5ィpa から-15ィpaに変えることにより、融液の中心部の湿度を8℃程度下げることができる。

このようにしてルツボの回転を上げることにより、結晶を検方向に広げ、結晶形状を必要形状に近づけ、温度降下レートを -0.15℃/aioと小さくし、必要な直径(60~65 mm)に到達したところで相結晶を10 mm / brの速度で上方に引上げる。

このようにして額結品を酸液につけ、 種結品 を引上げることなく、 単結晶を必要な形状まで 広げることにより、 ツイン又はデンドライトの 発生を抑制し、仮にツインが入っても結晶の再

(作用)

本発明は上記の如く、原料融液中に程結晶を 下げて、原料融液中に種結晶の先端をつけ、先 ず最初は種結晶を引上げずに結晶成長を開始す る。尚種結晶は3 tpc 程度で回転させる。

溶融が可能となり、この方法を繰返すことにより、結晶頭部を完全に単結晶化することができ、 単結晶化の歩留りを大幅に向上することができる。

(実施例)

以下本発明を実施例について説明する。

奥施例

第1 図に示すしE C 装置を用いて、 [n P の 単結晶成長を行った。図において(1) は高圧チャンパー、(2) はホットゾーン、(3) はヒーター、(4) はルツボ、(5) は無電対、(6) は電極、(7) はルツボ 帕、(8) は引上げ帕、(9) は不活性ガス、(0) は種結晶、(2) はB 2 O 3 、(2) は [n P ポリ結晶原料を示す。

チャージした『n P 結晶は !. 2㎏、B 2 O 3 は 200g、ルツボは石英ルツボで直径 4 インチ サイズのものを使用した。『n P 種結晶は (001) 方位のもので、ヒータはワインカップ型 のものを用いた。高圧チャンバー内にはアルゴン又はN 2 ガスを導入し、ガス圧を15㎏/cd と

した。

このようにしてInPポリ結晶原料を溶触し、 ルツボ内の湿度を1010℃(InP融点温度である1062°以上)とし、InPの融液ができた後、 橙結晶を下げて融液中に無結晶の先端をつける。 融液中に租結晶をつけてから15分後(融液内の 湿度が安定した後)に結晶成長を開始する。こ こからの湿度の下げかた及びルツボの回転のし かたを第2図を用いて説明する。尚簡結晶の回 転は3rpaである。

まず、融液温度を7℃程度下げ、50秒後にルツボ温度を -0.21℃/aisの温度降下レートで下げることにより、種結晶の4つの角に結晶が成長しはじめる。この成長をはじめた結晶を更に大きくするため、ルツボの回転を徐々に上げていく。通常ルツボの回転を上昇させると、融をの中心部の温度が下がり、ルツボの回転を-5cpa より-15cpsに変えることにより、8℃程度融液の温度を下げることができる。このようにしてルツボの回転を上げることにより、結晶

これは融液内の過冷却度が小さい場合で、回転数を変化させるときツイン又はデンドライトが入りやすい場合である。温度降下レートも-0.5℃/minと前述の実施例1の場合の2倍としている。結晶の広がりかたが遅い場合は、温度降下レートを大きくする(-1℃/ais<△ T / △ t < -0.1℃/ais)。

途中でツイン又はデンドライトが発生した場合は、再度溶験して種づけを再度繰返す。この方法は結晶を引上げなくても、結晶頭部を必要直径(60~65mm φ)になるまで、単結晶かどうかを確認しながら結晶成長を行なうことができる利点がある。従来の両角度を作る方法では必要直径に到達するまでにツインが入ると結晶頭部がB2O,から出てしまい、再溶験ができなくなってしまう。この点が結晶頭部をフラットトップにした場合の大きな利点である。

以上の点を考慮して第3図の条件に従って InP単結晶を成長した。その結果実施例1と 間様良好な単結晶が得られた。 を横方向に広げ、結晶形状が必要形状に近づいたところで、温度降下レートを小さくする (-0.15℃/aia)。こうして必要な直径(60~65 m ゆ)に到達した所で、種結晶を10 m/b にの速度で引上げ、結晶を成長させた。その結果ツィン又はデンドライトの発生を抑制し、良好なIn P 単結晶を得ることができた。

実施例 2

実施例1と同様にしてInP単結晶の成長を 行った。この場合温度の下げかた及びルツボの 回転のしかたは第3図の通りである。

これは成長開始時の温度の下げかたを2段階に分けて行なう場合で、温度を段階的に下げたとき、温度のオーバーシュートが大きくなってリメルトしたりする場合に行なう。リメルトすると最初に広がった結晶がとけてしまい、次に成長するとき、ツインが種結晶の直下より入ってしまうためである。

溶融の状況によっては、ルツボの回転を8回 転より15回転に徐々に上げていく場合もある。

このフラットトップで結晶を引上げる方法は 頭部を必要直径まで単結晶化できれば、そのま ま一定温度で結晶を引上げればよく、単結晶成 長に非常に有利である。この結晶成長方法は GaAs、GaSb、InSb、InAs等他 の化合物半導体の結晶成長にも応用できる。

(発明の効果)

このように本発明によれば、種づけ後結晶を引上げることなく、単結晶を必要形状まで広げることができ、更にツイン又はデンドライトの発生も単結晶を引上げずに確認でき、仮にツインが入っても結晶を再度溶験して種づけを繰返すことができ、この方法によって結晶頭部は完全に単結晶でき、単結晶化歩留りも大幅に向上する等工業上顕著な効果を奏するものである。

4. 図面の簡単な説明

第1図は本発明におけるLEC装置の一例を示す優略図、第2図は本発明の一実施例における結晶成長開始時における溶融温度の下げかたとルツボ回転の経時変化を示す説明図、第3図

特別平4-108686 (4)

は本発明の他の実施例における成長開始時の温度の下げかたとルツボの回転数の上昇のしかたを示す説明図、第4図は従来の化合物半導体単結晶の成長方法の一例を示す概略図である。

1…高圧チャンパー

2…ホットゾーン

3 … ヒータ

4…ルツボ

7…ルツボ軸

8…引上伊帕

9…不活性ガス

10… 磁結晶

[]…単結晶

12…被体封止新

13…原料融液

第1図

代理人 弁理士 箕 浦

化压入 开程工 类 师

第3図

第4図

