Problem 1. Consider the function $f: [0, 2\pi] \to [-1, 1]$ given by $f(x) = \cos x$. Determine each of the following sets.

- (i) $f([0,\pi])$
- (ii) $f(\lbrace \pi \rbrace)$

- (ii) $f(\{n\})$ (iii) $f((0, \frac{\pi}{2}))$ (iv) $f((0, \pi))$ (v) $f^{-1}(\{-1, 1\}) = \{0, \pi, 2\pi\}$ (vi) $f^{-1}(\{0, 1\})$ (vii) $f^{-1}(\{-1, 0\})$ (viii) $f^{-1}(\{0\})$

Solution.

- (i) [-1,1]
- (ii) $\{-1\}$
- (iii) (0,1)
- (iv) (-1,1)
- (v) $\{0, \pi, 2\pi\}$
- (vi) $\{\frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi\}$
- (vii) $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$
- (viii) $\{\frac{\pi}{2}, \frac{3\pi}{2}\}$

Problem 2. Consider $f: A \to B$.

- (i) Prove f is injective if and only if $X = f^{-1}(f(X))$ for all $X \subseteq A$.
- (ii) Prove f is surjective if and only if $Y = f(f^{-1}(Y))$ for all $Y \subseteq B$.

Solution.

(i)

Suppose $X \subseteq A$.

Suppose the function f is injective with a range of B'.

Consider the image of $f_{\text{img}}: \mathscr{P}(A) \to \mathscr{P}(B')$ where

$$f_{\rm img} = \{(X, \{f(x) \in B' : x \in X\}) \in \mathscr{P}(A) \times \mathscr{P}(B')\}.$$

This relationship is a function because for every subset X of A there is exactly one related subset of B', particularly $\{f(x) \in B' : x \in X\}$.

 f_{img} is also injective, as seen below:

Assume f_{img} is not injective.

Then, for some M and N, $f_{\text{img}}(M) = f_{\text{img}}(N)$ and $M \neq N$.

Then
$$\{f(x) \in B' : x \in M\} = \{f(x) \in B' : x \in N\}.$$

Let $m \in M$ and $x \notin N$ without loss of generality.

Because f is injective, f(m) is only in $f_{\text{img}}(M)$ and not $f_{\text{img}}(N)$.

So, $f_{\text{img}}(M) \neq f_{\text{img}}(N)$, which is a contradiction.

 $f_{\rm img}$ is also surjective:

Let
$$M \in \mathscr{P}(B')$$
.

Then
$$M = f_{\text{img}}(\{x \in A : f(x) \in M\}).$$

So f_{img} is bijective.

Recall that bijective functions are invertible, so $f_{\text{img}}^{-1}: \mathscr{P}(B') \to \mathscr{P}(A)$

So, the images composed: $f_{\text{img}}^{-1} \circ f_{\text{img}} = i_{\mathscr{P}(A)}$.

Thus,
$$f^{-1}(f(X)) = X$$
.

Suppose that $X = f^{-1}(f(X))$ for all $X \subseteq A$.

So, for all singletons $\{x\} \subseteq A$, $\{x\} = f^{-1}(f(\{x\}))$.

Assume there exists some $y, z \in A$ such that f(y) = f(z) and $y \neq z$.

So, the set $f^{-1}(f(\{y\}))$ contains both y and z.

This is a contradiction. So, if f(y) = f(z), then y = z, for all $y, z \in A$.

Thus, f is injective.

(ii)

Suppose $Y \subseteq B$.

Suppose the function f is surjective.

Then, for every $b \in B$, $f^{-1}(\{b\}) \neq \emptyset$.

Because this is true for every $b \in B$, it is certainly true for all elements of Y.

In symbols:

$$\{f(x) : x \in \{x \in A : f(x) \in Y\}\} = Y$$

Every element of Y is reachable by some x, which is included in the set $\{x \in A : x \in$

 $f(x) \in Y$. This set is then used to get f's image.

So,
$$f(f^{-1}(Y)) = Y$$
.

Suppose $Y = f(f^{-1}(Y))$ for all $Y \subseteq B$.

So, for all singletons $\{y\} \subseteq B$, $\{y\} = f(f^{-1}(\{y\}))$.

Therefore, for every $y \in B$, there is some $x \in A$ such that f(x) = y.