PAT-NO:

JP404147071A

DOCUMENT-IDENTIFIER: JP 04147071 A

TITLE:

TEST CIRCUIT

PUBN-DATE:

May 20, 1992

INVENTOR-INFORMATION:

NAME

COUNTRY

NAKAMURA, YASUSHI

ASSIGNEE-INFORMATION:

NAME COUNTRY

NEC CORP N/A

APPL-NO:

JP02270946

APPL-DATE: October 9, 1990

INT-CL (IPC): G01R031/28

US-CL-CURRENT: <u>714/33</u>

ABSTRACT:

PURPOSE: To optimally set an input dummy random test pattern to a test circuit to be tested by converting feedback conditions of each F/F output for determining test pattern generation of a linear feedback shift register by an external signal.

CONSTITUTION: A conversion circuit 101 is inserted between F/FYi (i = 1 to k) and an exclusive OR circuit 100, and a conversion format is set by a control terminal 102. Two conversion formats are available by X terminals 102 which are determined as necessary. An old feedback condition Ci of an F/FYi output is input to the circuit 101, while a new feedback condition C'i is input. The conversion format between the conditions is determined by a signal of the terminal 102. The number and location of transistors of the circuit 101 are selected so that such a pattern is generated that failure detection of a circuit to be tested is improved. Since the feedback condition can be thus changed by a signal from outside to the terminal 102, it is easy to set a plurality of test patterns thereby improving failure detectability.

COPYRIGHT: (C)1992, JPO& Japio

19 日本国特許庁(JP) 1D 特許出願公開

② 公開特許公報(A) 平4-147071

Slint. Cl. 5

識別記号

庁内整理番号

③公開 平成 4 年(1992) 5 月20日

G 01 R 31/28

6912-2G G 01 R 31/28

東京都港区芝5丁目7番1号

審査請求 未請求 請求項の数 1 (全4頁)

50発明の名称 テスト回路

> ②特 願 平2-270946

願 平2(1990)10月9日 223出

⑩発 明 者 康司 中村 勿出 願 人 日本電気株式会社 東京都港区芝5丁目7番1号 日本電気株式会社内

個代 理 人 弁理士 熊谷 雄太郎

1. 発明の名称

テスト回路

2. 特許請求の範囲

半導体集積回路を試験する組み込み型テスト回 路において、カスケードに接続されたフリップフ ロップからなるシフトレジスタと、外部からのコ ントロール信号により前記シフトレジスタの各ビ ットの出力を被テスト回路に適応した信号に変換 する変換回路と、該変換回路の出力を入力する維 他ORゲート回路とを有することを特徴としたテス ト回路.

3. 発明の詳細な説明

産業上の利用分野

本発明は、テスト回路に関し、特に、被テスト 回路に入力するテストパターンが外部からのコン トロール信号により変えることができるテスト回 路に関する。

従来の技術

従来におけるこの種のテスト回路は、第3図に

示すように、カスケードにつながり、シフトレジ スタを構成するフリップフロップ 2:(i=1.2, ····, k)と、各フリップフロップZ:(i=1, 2. ····, k)の出力の排他OR論理値をとる排他 ORゲート回路300 とを有し、排他ORゲート回路 300 の出力はシフトレジスタのフリップフロップ Z1の入力に帰還するという構成が採られていた (リニアフィードバックシフトレジスタ構成)。

上記テスト回路が発生するテストパターンQ (i=1,2,····,k)は上記排他ORゲート回 路 300 の構成により、一意的に決まる。

発明が解決しようとする課題

しかしながら、上述した従来のテスト回路は、 カスケードにつながったフリップフロップからな るシフトレジスタの各ピット出力が直接排他ORゲ ート回路に入力しているために、出力Qi(i=1, 2 , ···· , k) に生成されるテストパターンはシ フトレジスタのピット数Kが固定の場合には排他 ORゲート回路構成、即ち帰還条件Ci(i=1, 2. ・・・・・・、K)により一意的に決定してしまうため

に、発生テストパターンQi (i = 1, 2, ····, k)の変更ができないという課題があった。

本発明は従来の上記実情に鑑みてなされたもの であり、従って本発明の目的は、従来の技術に内 在する上記課題を解決し、被テスト回路に入力す る疑似ランダムテストパターンを被テスト回路に 応じて最適に設定することを可能とした新規なテ スト回路を提供することにある。

推顧を解決するための手段

上記目的を達成する為に、本発明に係るテスト 回路は、カスケードに接続されたフリップフロッ アからなるシフトレジスタの各ビットの出力が一 旦変換回路により被テスト回路に最適なものへと 変換されたのちに排他ORゲート回路に入力する構 成が採られ、上記変換回路は外部からのコントロ ール信号により変換方法を設定できることを特徴 としている。

実施例

次に本発明をその好ましい一実施例について図 面を参照して具体的に説明する。

C'a、C'b、C'r)の変換形式はコントロール端 子信号aε、aβ、arにより決まる。

変換回路 101 のトランジスタT ra、Trb、Trr の数、配置方法は被テスト回路の故障検出を高め るようなパターンが発生できるように選ばれる。 トランジスタTra、TrB、Trzが"オフ"のとき に、それぞれの出力 C'a、C'ß、C'r が不定に ならないようにアルダウン抵抗201,202 、203 を 通してグランドにおとすという対策が採られてい

第1図のノード 1 (103) における論理値 X 。は 時刻nの時には

$$X_n = \sum_{i=1}^{n} C_i X_{n-i}$$
 (modulo 2) · · · · · (1)

式(1) のように書くことができる。但しX。- ; (i = 1 , 2 , ···· , k) は時刻 n におけるフリッ プフロップ Y : (i = 1 , 2 , ····, K) の論理 値, C 1は第1図の変換回路101 の出力である新 帰還条件である.

発明の効果

第1図は本発明の一実施例を示す回路ブロック 権成図である。

第1図を参照するに、第1図に示された本発明 が第3図の従来例と異なる点は、変換回路101 が フリップフロップ Y_i ($i = 1, 2, \dots, K$) と 排他ORゲート回路100 の間に挿入されていること である.変換回路101 はコントロール端子102 に より、変換形式が設定されるような構成になって いる。いま、コントロール端子102 の本数がX本 (0 ≤ X ≤ k) あるとすると、変換回路 101 の変 換形式は2×とおりあることになる、×の値は必 要に応じて決めればよい。

第2図は第1図に示された変換回路101の内部 構成例を示すものである。

第2図を参照するに、変換回路101 には、第1 図のフリップフロップ Y, (i = 1 , 2 , ….. k)の出力である旧帰還条件 C a 、 C l 、 C r (1 ≦ α 、β 、 γ ≦ k) が入力し、変換回路 101 から新帰還条件C'a、C'β、C'τ(1 ≦α、β、 ァ ≤ k)を出力する。 (C a 、 C β 、 C τ)→ (

以上説明したように、本発明によれば、リニア フィードバックシフトレジスタのテストパターン 発生を決定する各フリップフロップの出力の帰還 条件を外部からの信号により変換することにより 帰還条件を変えられるので、複数のテストパター ンのセットが容易となり、被テスト回路の故障検 出率が高くなるという効果が得られる。

4. 図面の簡単な説明

第1図は本発明の一実施例を示すブロック構成 図、第2図は第1図に示された変換回路の具体的 回路構成図、第3図は従来のリニアフィードバッ クシフトレジスタを用いたテスト回路のブロック 図である.

Y, (i = 1 , 2 , ····, k) ··· フリップフロッ プ、 Q₁ , Q₂ , ····, Q_K···· 出力、100 ··· 排他 ORゲー ト回路、101 …変換回路、102 … コントロール端 子、103 ··· ノード 1 、 C₁ , C₂ , ···· , C_K ··· 旧帰還 条件、C'1, C'2, ····, C'x···新帰還条件

· Ca,Ca,····, C ; ··· 旧帰還条件、Tra, Tra Tr7… MOS トランジスタ、C'a, C'1,... ·, C ′ ₇ ··· 新帰還条件、 a e, a e, · · · · , a r · · · コントロール端子信号、 201 、 202 、 203 · · · プルダウン抵抗

 Z_1 (i=1 , 2 , ····, k) … フリップフロップ、 Q_1 、 Q_2 , ····, Q_K … 出力、300 … 排他 OR ゲート回路、 C_1 , C_2 , ····, C_K … 帰週条件

特許出願人 日本電気株式会社 代理人 弁理士 熊谷雄太郎

第1図

k:ビット教

第 3 図