Appendice A

Esercizi

A.2 Statistica Descrittiva

Esercizio A.2.1. Sia dato il seguente campione composto di n = 19 numeri interi:

5, 4, 5, 4, 4, 1, 5, 6, 5, 4, 2, 3, 7, 5, 3, 3, 4, 3, 4.

Calcolare: la media m, la varianza s^2 , la deviazione standard s, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, la media armonica m_A , la media quadratica m_Q e la media geometrica m_G . Costruire la tabella delle frequenze assolute e relative, tracciare il diagramma a barre e il boxplot, e determinare la moda (o le mode)

Soluzione: Quando, come in questo caso, il campione non è già ordinato, conviene prima di tutto riordinarlo:

1, 2, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 7

Figura A.2: Diagramma a barre e boxplot dell'Esercizio A.2.1

Il valore della media si ottiene facilmente

$$m = \frac{77}{19} \simeq 4.05$$

Dalla Definizione 6.31 le medie armonica, quadratica e geometrica sono

$$m_A = \frac{266}{79} \simeq 3.37$$
 $m_Q = \sqrt{\frac{347}{19}} \simeq 4.27$ $m_G \simeq 3.77$

Per la varianza (e la deviasione standard) conviene prendere la media del quadrato dei dati (già usata per la media quadratica) e sottrarle il quadrato della media:

$$s^2 = \frac{347}{19} - \left(\frac{77}{19}\right)^2 = \frac{664}{361} \simeq 1.84 \qquad s = \sqrt{\frac{664}{361}} \simeq 1.36$$

Tenendo conto del campione ordinato, il range è ovviamente

$$\Delta = 7 - 1 = 6$$

mentre per i quantili si calcolano prima le loro posizioni

e poi si cercano il 10^o il 5^o e il 15^o elemento del campione

$$q_{1/2} = 4$$
 $q_{1/4} = 3$ $q_{3/4} = 5$

Le modalità w_k sono gli interi $k=1,2,\ldots,7$ e la tabella delle frequenze è

k	1	2	3	4	5	6	7
N_k	1	1	4	6	5	1	1
$ F_k $	1	2	6	12	17	18	19
p_k	0.05	0.05	0.21	0.32	0.26	0.05	0.05
$ f_k $	0.05	0.11	0.32	0.63	0.89	0.95	1.00

Sulla base di questi risultati si disegnano facilmente il diagramma a barre (delle frequenze assolute) e il boxplot rappresentati in Figura A.2: la moda è 4

Esercizio A.2.2. Nella fascia oraria fra le 12:00 e le 13:00 di ogni giorno un centralino telefonico riceve un numero aleatorio X di chiamate. Il valore di X è stato registrato in 23 giorni diversi ottenendo i seguenti risultati:

Calcolare: la media m, la varianza s^2 , la deviazione standard s, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, la media armonica m_A , la media quadratica m_Q e la media geometrica m_G . Costruire la tabella delle frequenze assolute e relative, tracciare il diagramma a barre e il boxplot, e determinare la moda (o le mode)

Figura A.3: Diagramma a barre e boxplot dell'Esercizio A.2.2

Risposta: I risultati numerici sono

$$m = \frac{217}{23} \simeq 9.43$$
 $s^2 = \frac{5052}{529} \simeq 9.55$ $s = \sqrt{\frac{5052}{529}} \simeq 3.09$ $\Delta = 12$ $q_{1/2} = 10$ $q_{1/4} = 7$ $q_{3/4} = 11$ $m_A = \frac{55540}{6707} \simeq 8.27$ $m_Q = \sqrt{\frac{2267}{23}} \simeq 9.93$ $m_G \simeq 8.88$

Il diagramma a barre e il boxplot sono rappresentati in Figura A.3. Strettamente parlando le mode sono molte, ma la loro significatività statistica è piuttosto modesta: quelle principali sono 6, 10 e 11 \Box

Esercizio A.2.3. Il numero di particelle α emesso da un campione radioattivo in ogni periodo di 10 secondi è una v-a X: supponendo che in 31 misurazioni (di 10 secondi l'una) le frequenze N_k dei valori k di X siano state:

$$k = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$$

 $N_k = 3 \ 7 \ 10 \ 8 \ 1 \ 1 \ 0 \ 1$

calcolare la media m, la varianza s^2 , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$; tracciare il diagramma a barre e il boxplot, e determinare la moda (o le mode)

Risposta: I risultati numerici sono

$$m \simeq 2.16$$
 $s^2 = \frac{5052}{529} \simeq 2.07$ $\Delta = 12$ $q_{1/2} = 2$ $q_{1/4} = 1$ $q_{3/4} = 3$

Figura A.4: Diagramma a barre e boxplot dell'Esercizio A.2.3

Il diagramma a barre e il boxplot sono rappresentati in Figura A.4, e la moda è 2 (il massimo isolato in 7 non è significativo)

Esercizio A.2.4. n = 100 giocatori di roulette partono con un capitale di 5\$ ciascuno, e alla fine del gioco hanno perduto tutto. Si registrano i valori massimi del capitale raggiunto da ogni giocatore durante il gioco ottenendo la seguente tabella

Calcolare la media m, la varianza s^2 , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$; tracciare il diagramma a barre e il boxplot, e determinare la moda (o le mode)

Figura A.5: Diagramma a barre e boxplot dell'Esercizio A.2.4

Risposta: I risultati numerici sono

$$m = \frac{58}{5} \simeq 11.60$$
 $s^2 = \frac{593}{10} = 59.30$ $\Delta = 40$ $q_{1/2} = 9$ $q_{1/4} = 6$ $q_{3/4} = 15$

Il diagramma a barre e il boxplot sono rappresentati in Figura A.5, e la moda è 5 (gli altri massimi non sono significativi)

Esercizio A.2.5. Il numero k di clienti che si presentano ad uno sportello bancario fra le 12:00 e le 13:00 viene registrato in n = 100 giorni lavorativi ottenendo i risultati riportati nella seguente tabella di frequenze assolute N_k :

$$k = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11$$

 $N_k = 2 \ 11 \ 15 \ 18 \ 20 \ 14 \ 10 \ 5 \ 2 \ 2 \ 1$

Calcolare la media m, la varianza s^2 , la deviazione standard s, la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$; tracciare il diagramma a barre e il boxplot, e determinare la moda (o le mode)

Risposta: I risultati numerici sono

$$m \simeq 4.84$$
 $s^2 \simeq 4.23$ $s \simeq 2.06$ $\Delta = 10$ $q_{1/2} = 5$ $q_{1/4} = 3$ $q_{3/4} = 6$

Il diagramma a barre e il boxplot non sono riportati per brevità: la moda è 5

Esercizio A.2.6. Si misura n = 230 volte il numero k di particelle α emesse in un periodo di 10 secondi da un campione radioattivo, e si ottengono i risultati riportati nella seguente tabella delle frequenze assolute N_k :

$$k=0\ 1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9\ 10\ 11\ 12\ 13\ 14$$
 $N_k=1\ 7\ 15\ 24\ 32\ 48\ 32\ 24\ 23\ 13\ 5\ 2\ 2\ 1\ 1$

Calcolare la media m, la varianza s^2 , la deviazione standard s, il coefficiente di variazione δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$; tracciare il diagramma a barre e il boxplot, e determinare la moda (o le mode)

Risposta: I risultati numerici sono

$$m \simeq 5.48$$
 $s^2 \simeq 5.78$ $s \simeq 2.40$ $\delta \simeq 0.44$ $\Delta = 14$ $q_{1/2} = 5$ $q_{1/4} = 4$ $q_{3/4} = 7$

Il diagramma a barre e il boxplotnon sono riportati per brevità: la moda è 5

Esercizio A.2.7. Si misura il numero k di clienti che telefonano ad un centralino tra le 11:00 e le 12:00 in n = 50 giornate lavorative tipiche, e si ottengono i risultati riportati nella seguente tabella delle frequenze assolute N_k :

$$k = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$$

 $N_k = 3 \ 8 \ 10 \ 12 \ 6 \ 6 \ 4 \ 1$

Calcolare la media m, la varianza s^2 , la media geometrica m_G , la media armonica m_A , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$; tracciare il diagramma a barre e il boxplot, e determinare la moda (o le mode)

Figura A.6: Diagramma a barre e boxplot dell'Esercizio A.2.8

Risposta: I risultati numerici sono

$$m \simeq 3.98$$
 $s^2 \simeq 3.02$ $m_G \simeq 3.56$ $m_A \simeq 3.08$ $q_{1/2} = 4$ $q_{1/4} = 3$ $q_{3/4} = 5$

Il diagramma a barre e il boxplot non sono riportati per brevità: la moda è 4

Esercizio A.2.8. Si rileva il numero k di telefonate pervenute ad un centralino in un periodo di 2 ore in n = 200 giornate, e si ottengono i risultati riportati nella seguente tabella delle frequenze assolute N_k :

$$k = 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10$$

 $N_k = 8 \ 19 \ 37 \ 24 \ 10 \ 6 \ 5 \ 19 \ 35 \ 28 \ 9$

Calcolare la media m, la varianza s^2 , la deviazione standard s, il coefficiente di variazione δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$; tracciare il diagramma a barre e il boxplot, e determinare la moda (o le mode)

Risposta: I risultati numerici sono

$$m \simeq 5.10$$
 $s^2 \simeq 10.05$ $s \simeq 3.17$ $\delta \simeq 0.62$ $q_{1/2} = 5$ $q_{1/4} = 2$ $q_{3/4} = 8$

Il diagramma a barre e il boxplot sono riportati in Figura A.6; le mode sono 2 e 8

Esercizio A.2.9. Si misura il numero k di clienti che telefonano ad un centralino tra le 11:00 e le 12:00 in n = 47 giornate lavorative tipiche, e si ottengono i risultati riportati nella seguente tabella delle frequenze assolute N_k :

$$k = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7$$

 $N_k = 2 \ 10 \ 12 \ 11 \ 7 \ 4 \ 1$

Calcolare la media m, la varianza s^2 , la media geometrica m_G , la media armonica m_A , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$; tracciare il diagramma a barre e il boxplot, e determinare la moda (o le mode)

Risposta: I risultati numerici sono

$$m \simeq 3.57$$
 $s^2 \simeq 1.99$ $m_G \simeq 3.27$ $m_A \simeq 2.94$ $q_{1/2} = 3$ $q_{1/4} = 2$ $q_{3/4} = 5$

Il diagramma a barre e il boxplot non sono riportati per brevità: la moda è 3

Esercizio A.2.10. Si misura n = 200 volte il numero k di particelle α emesse in un periodo di 10 secondi da un campione radioattivo, e si ottengono i risultati riportati nella seguente tabella delle frequenze assolute N_k :

$$k = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12$$

 $N_k = 4 \ 7 \ 34 \ 38 \ 36 \ 21 \ 27 \ 14 \ 10 \ 6 \ 2 \ 1$

Calcolare la media m, la varianza s^2 , la deviazione standard s, il coefficiente di variazione δ , la mediana $q_{1/2}$, i due quartili

 $q_{1/4}, q_{3/4};$ tracciare il diagramma a barre e il boxplot, e determinare la moda (o le mode)

Risposta: I risultati numerici sono

$$m \simeq 5.32$$
 $s^2 \simeq 4.84$ $s \simeq 2.20$ $\delta \simeq 0.41$ $q_{1/2} = 5$ $q_{1/4} = 4$ $q_{3/4} = 7$

Il diagramma a barre e il boxplot non sono riportati; le mode sono 3 e 6

Esercizio A.2.11. Si misura il numero k di clienti che telefonano ad un centralino tra le 11:00 e le 12:00 in n = 50 giornate lavorative tipiche, e si ottengono i risultati riportati nella seguente tabella delle frequenze assolute N_k :

$$k = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$$

 $N_k = 1 \ 2 \ 6 \ 14 \ 13 \ 6 \ 7 \ 1$

Calcolare la media m, la varianza s^2 , la media geometrica m_G , la media armonica m_A , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$; tracciare il diagramma a barre e il boxplot, e determinare la moda (o le mode)

Risposta: I risultati numerici sono

$$m \simeq 4.74$$
 $s^2 \simeq 2.23$ $m_G \simeq 4.46$ $m_A \simeq 4.09$ $q_{1/2} = 5$ $q_{1/4} = 4$ $q_{3/4} = 6$

Il diagramma a barre e il boxplot non sono riportati; le mode sono 4 e 7

Esercizio A.2.12. Si misura n = 50 volte il numero k di particelle α emesse da un campione radioattivo in un periodo di 10 secondi ottenendo i risultati riportati nella seguente tabella delle

frequenze assolute N_k :

$$k = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8$$

 $N_k = 1 \ 5 \ 15 \ 10 \ 9 \ 6 \ 3 \ 1$

Calcolare la media m, la varianza s^2 , la media geometrica m_G , la media armonica m_A , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$; tracciare il diagramma a barre e il boxplot, e determinare la moda (o le mode)

Risposta: I risultati numerici sono

$$m \simeq 4.12$$
 $s^2 \simeq 2.39$ $m_G \simeq 3.82$ $m_A \simeq 3.48$ $q_{1/2} = 4$ $q_{1/4} = 3$ $q_{3/4} = 5$

Il diagramma a barre e il boxplot non sono riportati; la moda è 3 \square

Esercizio A.2.13. Il numero k di clienti che si presentano ad uno sportello bancario fra le 12:00 e le 13:00 viene registrato

Figura A.7: Diagramma a barre e boxplot dell'Esercizio A.2.14

in n = 50 giorni lavorativi ottenendo i risultati riportati nella seguente tabella di frequenze assolute:

$$k = 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11$$

 $N_k = 2 \ 3 \ 10 \ 8 \ 7 \ 4 \ 4 \ 5 \ 5 \ 1 \ 1$

Calcolare la media m, la varianza s^2 , la deviazione standard s, il coefficiente di variazione δ , la mediana $q_{1/2}$, i due quartili

 $q_{1/4}, q_{3/4};$ tracciare il diagramma a barre e il boxplot, e determinare la moda (o le mode)

Risposta: I risultati numerici sono

$$m \simeq 5.26$$
 $s^2 \simeq 6.19$ $s \simeq 2.49$ $\delta \simeq 0.47$ $q_{1/2} = 5$ $q_{1/4} = 3$ $q_{3/4} = \frac{15}{2} = 7.50$

Il diagramma a barre e il boxplot non sono riportati; le mode sono $3, 8 \in 9$

Esercizio A.2.14. Il numero di lanci di dado necessari per ottenere per la prima volta il risultato "6" è aleatorio: si ripete l'esperimento 50 volte ottenendo i seguenti risultati

Calcolare: la media m, la varianza s^2 , la deviazione standard s, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, la media armonica m_A , la media quadratica m_Q e la media geometrica m_G . Costruire la tabella delle frequenze assolute e relative, tracciare il diagramma a barre e il boxplot, e determinare la moda (o le mode)

Risposta: I risultati numerici sono

$$m = \frac{239}{50} \simeq 4.78$$
 $s^2 = \frac{41529}{2500} \simeq 16,61$ $s = \sqrt{\frac{41529}{2500}} \simeq 4.08$ $\Delta = 15$ $q_{1/2} = 4$ $q_{1/4} = 2$ $q_{3/4} = 7$ $m_A \simeq 2.35$ $m_Q \simeq 6.28$ $m_G \simeq 3.32$

Il diagramma a barre e il boxplot sono rappresentati in Figura A.7. Le mode sono molte, ma le più significative sono 1, 2 e 4

Esercizio A.2.15. n = 53 misure di una quantità aleatoria forniscono i seguenti risultati riportati in ordine crescente:

```
1.70 1.93 2.42 2.52 2.59 2.66 2.72 2.76 2.88 3.01 3.05 3.12 3.12 3.15 3.15 3.17 3.32 3.36 3.40 3.54 3.63 3.71 3.71 3.72 3.81 3.95 4.01 4.01 4.04 4.04 4.07 4.07 4.15 4.17 4.42 4.43 4.46 4.52 4.56 4.78 4.83 5.13 5.15 5.15 5.30 5.33 5.33 5.39 5.44 5.61 5.66 5.83 6.90
```

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati nei seguenti 8 intervalli di ampiezze differenti

$$[0.0, 2.0]$$
 $(2.0, 3.0]$ $(3.0, 3.5]$ $(3.5, 4.0]$ $(4.0, 4.5]$ $(4.5, 5.0]$ $(5.0, 6.0]$ $(6.0, 8.0]$

Figura A.8: Istogramma e boxplot dell'Esercizio A.2.15

disegnare l'istogramma e determinare la class modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

Soluzione: Per campioni di caratteri continui, come quelli di questo esercizio, conviene stilare una tabella di frequenze (per semplicità omettiamo quelle cumulate) completata con le ampiezze $b_k - a_k$ delle classi, le altezze H_k dell'istogramma delle frequenze assolute, i valori

centrali \widehat{w}_k , e alcuni elementi necessari per il calcolo delle medie e varianze per dati raggruppati:

$[a_k, b_k]$	N_k	p_k	$b_k - a_k$	H_k	\widehat{w}_k	$p_k \widehat{w}_k$	$p_k \widehat{w}_k^2$
[0.0, 2.0]	2	0.038	2.0	1.0	1.00	0.038	0.038
[2.0, 3.0]	7	0.132	1.0	7.0	2.50	0.330	0.825
[3.0, 3.4]	10	0.189	0.5	20.0	3.25	0.613	1.993
[3.5, 4.0]	7	0.132	0.5	14.0	3.75	0.495	1.857
[4.0, 4.5]	11	0.208	0.5	22.0	4.25	0.882	3.749
[4.5, 5.0]	4	0.075	0.5	8.0	4.75	0.358	1.703
[5.0, 6.0]	11	0.208	1.0	11.0	5.50	1.142	6.278
[6.0, 8.0]	1	0.019	2.0	0.5	7.00	0.132	0.925
						3.990	17.368

Innanzitutto si calcola facilmente la media aritmentica del campione

$$m \simeq 3.98$$

Poi si determinano il range

$$\Delta = 6.90 - 1.70 = 5.20$$

e le posizioni dei quantili

mediana
$$\frac{n+1}{2} = 27$$
 1^o e 3^o quartile $\frac{n+1}{4} = 13.5$, $3\frac{n+1}{4} = 40.5$

Pertanto le mediana è il 27^o elemento del campione ordinato, mentre per i due quartili bisogna calcolare la media aritmetica del 13^o e 14^o elemento, e del 40^o e 41^o elemento: si ottiene così

$$q_{1/2} = 4.01$$
 $q_{1/4} = 3.135$ $q_{3/4} = 4.805$

In fondo alle ultime due colonne sono state riportate le loro somme che corrispondono rispettivamente alla media e alla media dei quadrati dei valori centrali delle classi (\widehat{w}_k) : da essi è possibile calcolare facilmente la media (6.9) e la varianza (6.14) per dati raggruppati

$$\widehat{m} \simeq 3.99 \qquad \widehat{s}^2 \simeq 1.44$$

Infine sempre dai dati della tabella delle frequenze è facile tracciare l'istogramma e il boxplot che sono riportati in Figura A.8; le classi modali sono (3.0, 3.5], (4.0, 4.5] e (5.0, 6.0]

Esercizio A.2.16. n = 40 misure di una quantità aleatoria forniscono i sequenti risultati:

```
0.12 0.13 0.18 0.18 0.21 0.25 0.30 0.35 0.46 0.54 0.87 0.92 1.10 1.19 1.43 1.45 1.47 1.67 1.79 1.84 1.89 1.90 1.91 1.91 1.97 1.98 2.09 2.26 2.35 2.70 2.75 3.39 3.58 3.62 3.89 4.20 5.50 6.43 6.96 8.48
```

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati nei seguenti intervalli di ampiezze differenti

$$[0,1]$$
 $(1,2]$ $(2,3]$ $(3,4]$ $(4,9]$

disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

Figura A.9: Istogramma e boxplot dell'Esercizio A.2.16

Risposta: I risultati numerici sono

$$m \simeq 2.16$$
 $\Delta = 8.36$ $q_{1/2} = 1.865$ $q_{1/4} = 0.705$ $q_{3/4} = 2.725$ $\widehat{m} \simeq 2.15$ $\widehat{s}^2 \simeq 3.53$

L'istogramma e il boxplot sono riportati in Figura A.9 e la classe modale è (1, 2]

Esercizio A.2.17. n = 40 misure di una quantità aleatoria forniscono i sequenti risultati:

```
0.04 0.12 0.23 0.37 0.47 0.59 0.64 0.76 0.80 0.97 0.99 1.01 1.08 1.11 1.22 1.33 1.53 1.61 1.63 1.98 2.03 2.19 2.25 2.36 2.77 2.96 3.05 3.10 3.34 3.79 3.85 4.56 5.27 5.79 5.82 6.41 7.88 7.99 8.16 9.87
```

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati nei seguenti intervalli

$$[0,1]$$
 $(1,2]$ $(2,3]$ $(3,4]$ $(4,6]$ $(6,8]$ $(8,10]$

disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

Figura A.10: Istogramma e boxplot dell'Esercizio A.2.17

Risposta: I risultati numerici sono

$$m \simeq 2.80$$
 $\Delta = 9.83$ $q_{1/2} = 2.005$ $q_{1/4} = 0.98$ $q_{3/4} = 3.82$ $\widehat{m} \simeq 2.76$ $\widehat{s}^2 \simeq 5.64$

L'istogramma e il boxplot sono riportati in Figura A.10; la classe modale è (0, 1]

Esercizio A.2.18. n = 40 misure di velocità del vento in una stazione meteorologica forniscono i seguenti risultati:

```
0.12 0.23 0.24 0.50 0.50 0.56 0.77 1.01 1.03 1.10 1.40 1.45 1.64 1.68 1.72 1.72 1.81 1.83 1.84 2.14 2.28 2.31 2.34 2.43 2.55 2.91 3.00 3.12 3.53 3.59 3.94 4.17 4.70 4.73 5.02 5.07 6.73 6.97 7.09 9.74
```

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati nei seguenti intervalli

$$[0, 2]$$
 $(2, 4]$ $(4, 6]$ $(6, 8]$ $(8, 10]$

disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

Risposta: I risultati numerici sono

$$m \simeq 2.74$$
 $\Delta = 9.62$ $q_{1/2} = 2.21$ $q_{1/4} = 1.25$ $q_{3/4} = 3.765$ $\widehat{m} \simeq 2.75$ $\widehat{s}^2 \simeq 4.44$

Istogramma e boxplot non sono riportati; la classe modale è (0, 2]

Esercizio A.2.19. Un'azienda vuol condurre un'indagine sulla propria clientela misurando i consumi di un determinato prodotto in 90 famiglie. Si ottenengono i seguenti risultati:

1.72 1.92 1.99 2.04 2.06 2.012.09 2.50 2.66 2.532.552.81 2.822.93 2.983.04 3.36 2.523.48 3.543.643.713.753.823.853.91 4.01 4.11 4.23 4.23 4.234.36 4.38 4.554.54 4.594.764.83 5.29 5.61 5.19 5.295.695.71 5.785.105.91 5.92 6.08 6.226.38 6.856.89 7.007.06 5.93 6.707.09 7.23 7.947.457.66 7.80 7.81 7.427.557.967.998.88 9.10 9.20 9.38 9.41 9.75 10.02 10.07 10.41 11.28 11.38 11.82 11.86 12.37 12.53 13.54 14.22 15.80 18.37

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati negli in-

Figura A.11: Istogramma e boxplot dell'Esercizio A.2.19

tervalli delimitati dai punti 1, 3, 5, 7, 9, 11, 15, 19, disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

$$m \simeq 6.19$$

$$\Delta = 16.68$$

$$q_{1/2} = 5.65$$

$$q_{1/4} = 3.59$$

$$m \simeq 6.19$$
 $\Delta = 16.68$ $q_{1/2} = 5.65$ $q_{1/4} = 3.59$ $q_{3/4} = 7.95$

$$\widehat{m} \simeq 6.27$$

$$\widehat{m} \simeq 6.27$$
 $\widehat{s}^2 \simeq 13.24$

L'istogramma e il boxplot sono riportati in Figura A.11; la classe modale è (3, 5]

Esercizio A.2.20. La sequente tabella contiene i pesi in grammi di 40 prodotti:

21.3 21.6 21.8 21.8 22.1 22.2 22.2 22.2 22.4 22.4

22.5 22.5 22.5 22.6 22.6 22.8 22.8 22.8 22.9 23.0

23.0 23.0 23.1 23.2 23.2 23.4 23.5 23.5 23.5 23.6

23.8 23.8 23.9 23.9 24.0 24.0 24.3 24.6 24.6 24.9

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}, q_{3/4}, \ e \ disegnare \ il \ boxplot.$ Costruire la $tabella \ delle \ fre$ quenze (assolute e relative) dei ritrovamenti dei dati in 8 classi di ampiezza 0.5 partendo dall'intervallo [20.95, 21.45], disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

Risposta: I risultati numerici sono

$$m \simeq 23.0$$
 $\Delta = 3.6$ $q_{1/2} = 23.0$ $q_{1/4} = 22.5$ $q_{3/4} = 23.7$ $\widehat{m} \simeq 23.1$ $\widehat{s}^2 \simeq 0.75$

L'istogramma e il boxplot non sono riportati; le classi modali sono [22.45, 22.95] e [23.45, 23.95]

Esercizio A.2.21. n = 28 misure di una quantità aleatoria forniscono i seguenti risultati (non ordinati):

14.00 5.99 26.35 35.95 15.95 24.95 19.95 32.95 59.00 9.95 69.95 61.35 14.95 12.95 16.95 10.95 57.35 29.95 5.95 41.95 66.95 19.85 11.95 15.95 50.25 74.65 68.00 69.95

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati in 7 classi di ampiezza 10 partendo dall'intervallo [5.455, 15.455], disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

Risposta: I risultati numerici sono

$$m \simeq 33.75$$
 $\Delta = 68.70$ $q_{1/2} = 25.65$ $q_{1/4} = 14.475$ $q_{3/4} = 58.175$ $\widehat{m} \simeq 34.38$ $\widehat{s}^2 \simeq 523.85$

L'istogramma e il boxplot sono riportati in Figura A.12; le classi modali sono [5.455, 15.455] e [65.455, 75.455]

Esercizio A.2.22. Vengono eseguite n = 50 misure di una quantità aleatoria ottenendo i seguenti risultati riportati in ordine

Figura A.12: Istogramma e boxplot dell'Esercizio A.2.21

crescente:

0.04 0.04 0.07 0.11 0.11 0.14 0.17 0.19 0.19 0.20 0.25 0.32 0.36 0.43 0.52 0.55 0.62 0.64 0.67 0.88 0.88 0.97 1.04 1.09 1.10 1.16 1.20 1.22 1.22 1.32 1.49 1.62 1.67 1.87 1.89 1.99 2.17 2.21 2.53 2.60 2.65 2.68 2.90 3.18 3.50 4.57 5.03 5.91 7.56 9.20

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili

 $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati negli intervalli delimitati dai punti 0, 1, 2, 3, 5, 10, disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \hat{m} e la varianza \hat{s}^2 approssimate per dati raggruppati

Risposta: I risultati numerici sono

$$m \simeq 1.70$$
 $\Delta = 9.16$ $q_{1/2} = 1.13$ $q_{1/4} = 0.34$ $q_{3/4} = 2.37$ $\widehat{m} \simeq 1.83$ $\widehat{s}^2 \simeq 3.73$

L'istogramma e il boxplot non sono riportati; la classe modale è [0, 1]

Esercizio A.2.23. Vengono eseguite n=42 misure di una quantità aleatoria ottenendo i seguenti risultati riportati in ordine

crescente:

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati negli intervalli delimitati dai punti

$$-3.0 -1.0 -0.5 0.0 0.5 1.0 3.0$$

disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

Figura A.13: Istogramma e boxplot dell'Esercizio A.2.23

$$m \simeq -0.03$$
 $\Delta = 5.15$ $q_{1/2} = -0.04$ $q_{1/4} = -0.62$ $q_{3/4} = 0.765$ $\widehat{m} \simeq -0.05$ $\widehat{s}^2 \simeq 1.32$

L'istogramma e il boxplot sono riportati in Figura A.13; la classe modale è (-0.5, 0.0]

Esercizio A.2.24. Vengono eseguite n = 50 misure di una quan-

tità aleatoria ottenendo i seguenti risultati riportati in ordine crescente:

```
0.02 0.04 0.10 0.16 0.17 0.23 0.28 0.34 0.35 0.36 0.43 0.56 0.56 0.64 0.64 0.80 0.83 0.85 0.87 0.91 0.96 1.05 1.07 1.19 1.21 1.23 1.38 1.68 1.74 1.77 1.81 1.86 1.87 1.95 2.18 2.32 2.52 2.59 2.59 2.68 2.93 3.31 3.80 3.97 4.12 4.46 5.05 6.44 6.69 9.82
```

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati negli intervalli delimitati dai punti 0, 1, 2, 3, 4, 5, 10, disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \hat{m} e la varianza \hat{s}^2 approssimate per dati raggruppati

$$m \simeq 1.91$$

$$\Delta = 9.80$$

$$q_{1/2} = 1.22$$

$$q_{1/4} = 0.56$$

$$m \simeq 1.91$$
 $\Delta = 9.80$ $q_{1/2} = 1.22$ $q_{1/4} = 0.56$ $q_{3/4} = 2.59$

$$\widehat{m} \simeq 1.94$$

$$\widehat{m} \simeq 1.94 \qquad \widehat{s}^2 \simeq 3.85$$

L'istogramma e il boxplot non sono riportati; la classe modale è [0, 1]

Esercizio A.2.25. Vengono eseguite n = 38 misure di una quantità aleatoria ottenendo i sequenti risultati riportati in ordine crescente:

1.61 1.86 2.42 2.72 2.83 2.84 2.87 2.98 3.06 3.07

3.22 3.33 3.33 3.40 3.40 3.70 3.77 3.78 3.81 3.84

3.85 3.95 3.95 4.14 4.17 4.36 4.36 4.43 4.52 4.57

4.59 4.70 4.75 4.81 5.05 5.06 5.46 5.86

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quar $tili\ q_{1/4},\ q_{3/4},\ e\ disegnare\ il\ boxplot.$ Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati negli intervalli delimitati dai punti

1.0 2.5 3.0 3.5 4.0 4.5 6.0

disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

Risposta: I risultati numerici sono

$$m \simeq 3.80$$
 $\Delta = 4.25$ $q_{1/2} = 3.825$ $q_{1/4} = 3.065$ $q_{3/4} = 4.545$ $\widehat{m} \simeq 3.83$ $\widehat{s}^2 \simeq 1.11$

L'istogramma e il boxplot non sono riportati; la classe modale è (3.5, 4.0]

Esercizio A.2.26. Vengono eseguite n=39 misure di una quantità aleatoria ottenendo i seguenti risultati riportati in ordine

crescente:

 $0.04 \ 0.16 \ 0.26 \ 0.29 \ 0.30 \ 0.32 \ 0.32 \ 0.36 \ 0.39 \ 0.42$

 $0.43 \ 0.47 \ 0.48 \ 0.51 \ 0.51 \ 0.51 \ 0.53 \ 0.53 \ 0.54 \ 0.60$

 $0.61 \ 0.63 \ 0.66 \ 0.66 \ 0.70 \ 0.70 \ 0.75 \ 0.78 \ 0.79$

 $0.79 \ 0.83 \ 0.88 \ 0.89 \ 0.89 \ 0.89 \ 0.90 \ 0.94 \ 0.96$

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati negli intervalli delimitati dai punti

 $0.005 \qquad 0.305 \qquad 0.505 \qquad 0.60$

 $0.605 \qquad 0.705$

0.805

1.005

disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

$$m \simeq 0.59$$
 $\Delta = 0.92$ $q_{1/2} = 0.60$ $q_{1/4} = 0.42$ $q_{3/4} = 0.79$ $\widehat{m} \simeq 0.59$ $\widehat{s}^2 \simeq 0.06$

L'istogramma e il boxplot non sono riportati; la classe modale è $(0.505\,,\,0.605]$

Esercizio A.2.27. Vengono eseguite n = 45 misure di una quantità aleatoria ottenendo i seguenti risultati riportati in ordine crescente:

- 0.67 1.19 1.25 1.56 1.59 1.83 1.85 2.03 2.20 2.21 2.25 2.37 2.41 2.44 2.45 2.45 2.48 2.48 2.52 2.63
- 2.66 2.72 2.81 2.81 2.84 2.89 2.91 2.92 3.07 3.12
- $3.20\ 3.26\ 3.27\ 3.32\ 3.34\ 3.37\ 3.46\ 3.48\ 3.55\ 3.58$
- 3.66 3.66 3.76 3.78 3.82

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati negli intervalli delimitati dai punti

$$0.0 1.0 2.0 2.5 3.0 3.5 4.0$$

disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

Risposta: I risultati numerici sono

$$m \simeq 2.71$$
 $\Delta = 3.15$ $q_{1/2} = 2.91$ $q_{1/4} = 2.31$ $q_{3/4} = 3.33$ $\widehat{m} \simeq 2.68$ $\widehat{s}^2 \simeq 0.59$

Istogramma e boxplot sono riportati in Figura A.14; la classe modale è (2.0, 2.5]

Figura A.14: Istogramma e boxplot dell'Esercizio A.2.27

Esercizio A.2.28. Vengono eseguite n = 40 misure di una quantità aleatoria ottenendo i seguenti risultati riportati in ordine crescente:

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati negli intervalli delimitati dai punti

$$-3.0$$
 -1.0 -0.5 0.0 0.5 1.0 3.0

disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

Risposta: I risultati numerici sono

$$m \simeq -0.17$$
 $\Delta = 3.91$ $q_{1/2} = -0.205$ $q_{1/4} = -0.84$ $q_{3/4} = 0.40$ $\widehat{m} \simeq 0.21$ $\widehat{s}^2 \simeq 1.60$

L'istogramma e il boxplot non sono riportati; la classe modale è (-0.5, 0.0]

Esercizio A.2.29. Vengono eseguite n=37 misure di una quantità aleatoria ottenendo i seguenti risultati riportati in ordine crescente:

```
0.40 0.78 0.91 1.06 1.25 1.31 1.33 1.40 1.53 1.58 1.65 1.77 1.85 1.92 2.03 2.07 2.15 2.39 2.66 2.87 2.98 3.14 3.15 3.16 3.66 3.71 3.82 4.59 4.83 5.67 5.78 5.99 6.39 6.59 6.81 7.93 8.22
```

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati negli intervalli delimitati dai punti 0, 1, 2, 3, 4, 6, 8, 10, disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

Figura A.15: Istogramma e boxplot dell'Esercizio A.2.29

$$m \simeq 3,23$$
 $\Delta = 7,82$ $q_{1/2} = 2.66$ $q_{1/4} = 1.555$ $q_{3/4} = 4.71$ $\widehat{m} \simeq 3.20$ $\widehat{s}^2 \simeq 4.47$

Istogramma e boxplot sono riportati in Figura A.15; la classe modale è (1, 2]

Esercizio A.2.30. Vengono eseguite n = 41 misure di una quan-

tità aleatoria ottenendo i seguenti risultati riportati in ordine crescente:

```
0.78 \ 1.53 \ 1.53 \ 1.65 \ 1.66 \ 1.72 \ 1.80 \ 1.93 \ 1.94 \ 2.02
```

$$2.07\ 2.26\ 2.27\ 2.34\ 2.44\ 2.54\ 2.64\ 2.67\ 2.76\ 2.80$$

$$3.38 \ 3.42 \ 3.43 \ 3.45 \ 3.46 \ 3.52 \ 3.58 \ 3.65 \ 3.71 \ 3.76 \ 3.95$$

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati negli intervalli delimitati dai punti

$$0.0 1.0 2.0 2.5 3.0 3.5 4.0$$

disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

$$m \simeq 2.70$$
 $\Delta = 3.17$ $q_{1/2} = 2.84$ $q_{1/4} = 2.045$ $q_{3/4} = 3.40$ $\widehat{m} \simeq 2.63$ $\widehat{s}^2 \simeq 0.65$

L'istogramma e il boxplot non sono riportati; la classe modale è (2.5, 3.0]

Esercizio A.2.31. Vengono eseguite n = 43 misure di una quantità aleatoria ottenendo i seguenti risultati riportati in ordine crescente:

Calcolare la media m, il range Δ , la mediana $q_{1/2}$, i due quartili $q_{1/4}$, $q_{3/4}$, e disegnare il boxplot. Costruire la tabella delle frequenze (assolute e relative) dei ritrovamenti dei dati negli intervalli delimitati dai punti

$$0 \frac{1}{2} 1 \frac{4}{3} \frac{5}{3} 2 \frac{5}{2} 3$$

disegnare l'istogramma e determinare la classe modale (o le classi modali). Usando poi la tabella delle frequenze relative, calcolare la media \widehat{m} e la varianza \widehat{s}^2 approssimate per dati raggruppati

Risposta: I risultati numerici sono

$$m \simeq 1.27$$
 $\Delta = 2.72$ $q_{1/2} = 1.35$ $q_{1/4} = 0.78$ $q_{3/4} = 1.61$ $\widehat{m} \simeq 1.29$ $\widehat{s}^2 \simeq 0.41$

L'istogramma e il boxplot non sono riportati; la classe modale è (4/3, 5/3]

Esercizio A.2.32. \star n=20 misure di due caratteri X e Y forniscono i seguenti risultati

X	\overline{Y}	X	Y	X	Y	X	Y
0.02	-0.13	0.36	-0.34	0.58	0.62	0.82	2.62
0.03	0.82	0.37	0.38	0.63	0.05	0.84	1.44
0.16	-0.96	0.52	-0.37	0.66	-0.13	0.87	0.43
0.23	-0.57	0.54	0.26	0.67	0.22	0.89	0.61
0.27	1.59	0.57	0.84	0.72	1.59	0.96	-0.38

Calcolare le medie m_X, m_Y e le varianze s_X^2, s_Y^2 di X e Y, la covarianza s_{XY} , il coefficiente di correlazione r_{XY} e i coefficienti a e b della retta di regressione

Risposta: I risultati numerici sono

$$m_X \simeq 0.54$$
 $m_Y \simeq 0.43$ $s_X^2 \simeq 0.08$ $s_Y^2 \simeq 0.73$ $s_{XY} \simeq 0.08$ $r_{XY} \simeq 0.32$ $a \simeq 0.98$ $b \simeq -0.09$

Figura A.16: Scatterplot e retta di regressione dell'Esercizio A.2.32

Lo scatterplot dei dati e la retta di regressione sono riportati a scopo illustrativo nella Figura A.16

Esercizio A.2.33.* n=28 misure di due caratteri X e Y forniscono i seguenti risultati

X	\overline{Y}	X	Y	X	Y	X	Y
0.04	1.41	0.28	0.53	0.45	1.05	0.65	0.26
0.07	-0.31	0.29	0.39	0.45	1.23	0.65	1.08
0.18	-1.18	0.30 -	-0.89	0.51	0.40	0.83	1.88
0.18	-1.01	0.30	1.20	0.55	1.04	0.88	0.48
0.21	-0.15	0.39 -	-0.52	0.57 -	-0.91	0.88	1.42
0.22	-0.31	0.42	1.79	0.58 -	-1.33	0.89	0.36
0.22	0.32	0.45	0.74	0.62	1.73	0.97	-0.37

Calcolare le medie m_X, m_Y e le varianze s_X^2, s_Y^2 di X e Y, la covarianza s_{XY} , il coefficiente di correlazione r_{XY} e i coefficienti

a e b della retta di regressione

Risposta: I risultati numerici sono

$$m_X \simeq 0.47$$
 $m_Y \simeq 0.37$ $s_X^2 \simeq 0.07$ $s_Y^2 \simeq 0.87$ $s_{XY} \simeq 0.06$ $r_{XY} \simeq 0.25$ $a \simeq 0.91$ $b \simeq -0.06$

Lo scatterplot dei dati e la retta di regressione non sono riportati \square