Subsetting and Sorting

Contents

1	\mathbf{Sub}	setting and Sorting	1
	1.1	Subsetting -quick review	1
	1.2	Logicals and ors	2
	1.3	Dealing with missing values	2
	1.4	Sorting	2
		Ordering	
	1.6	Ordering with plyr	
	1.7	Adding rows and columns	4
		Notes and further resources	

1 Subsetting and Sorting

1.1 Subsetting -quick review

```
set.seed(13435)
X <- data.frame("var1"=sample(1:5), "var2"=sample(6:10), "var3"=sample(11:15))
X</pre>
```

var1	var2	var3
3	8	14
1	7	15
5	6	13
4	10	12
2	9	11

```
X <- X[sample(1:5),] # kind with random order?</pre>
```

	var1	var2	var3
5	2	9	11
4	4	10	12
1	3	8	14
2	1	7	15
3	5	6	13

```
X$var2[c(1,3)] = NA
X
```

_			
	var1	var2	var3
5	2	NA	11
4	4	10	12
1	3	NA	14
2	1	7	15
3	5	6	13
_	-	•	

```
X[,1] # get first col
## [1] 2 4 3 1 5
X[,"var1"] # get col with name
## [1] 2 4 3 1 5
```

X[1:2,"var2"] # get 1st and snd row of col named "var2"

[1] NA 10

1.2 Logicals ands and ors

X[(X\$var1 <= 3 & X\$var3 > 11),] # get all rows that meets the condition

var1	var2	var3
3	NA	14
1	7	15

X[(X\$var1 <=3 | X\$var3 > 15),] # logical or

	var1	var2	var3
5	2	NA	11
1	3	NA	14
2	1	7	15

1.3 Dealing with missing values

X[which(X\$var2 >8),]

	var1	var2	var3
$\overline{4}$	4	10	12

1.4 Sorting

```
sort(X$var1)
## [1] 1 2 3 4 5
sort(X$var1, decreasing = T)
## [1] 5 4 3 2 1
```

```
sort(X$var2, na.last=TRUE) # put NA values at the last
```

[1] 6 7 10 NA NA

1.5 Ordering

X[order(X\$var1),]

	var1	var2	var3
2	1	7	15
5	2	NA	11
1	3	NA	14
4	4	10	12
3	5	6	13

X[order(X\$var1,X\$var3),]

	var1	var2	var3
2	1	7	15
5	2	NA	11
1	3	NA	14
4	4	10	12
3	5	6	13

The order() function in R returns a permutation of the vector that rearranges it into ascending or sorted order.

So, X[order(Xvar1, Xvar3)] is reordering the rows of the data frame X first by the values of var1 in ascending order. For rows where var1 is equal, it will then order by var3.

The result will be a data frame where the rows are sorted first by var1, and then by var3.

1.6 Ordering with plyr

library(plyr)

The pieces are the "ply" (similar to how plywood is layers of wood veneer) and the "r" represents the R programming language.

The plyr package is a set of tools for manipulating data in R. It provides a number of functions that make it easier to manipulate and reshape data.

arrange(X,var1)

var1	var2	var3
1	7	15
2	NA	11
3	NA	14
4	10	12
5	6	13

arrange(X,desc(var1))

var1	var2	var3
5	6	13
4	10	12
3	NA	14
2	NA	11
1	7	15

1.7 Adding rows and columns

```
X$var4 <- rnorm(5)
X</pre>
```

	var1	var2	var3	var4
5	2	NA	11	-0.4150458
4	4	10	12	2.5437602
1	3	NA	14	1.5545298
2	1	7	15	-0.6192328
3	5	6	13	-0.9261035

```
Y <- cbind(X,rnorm(5))
y
```

	var1	var2	var3	var4	rnorm(5)
5	2	NA	11	-0.4150458	-0.6654995
4	4	10	12	2.5437602	-0.0216674
1	3	NA	14	1.5545298	-0.1741195
2	1	7	15	-0.6192328	0.2390044
3	5	6	13	-0.9261035	-1.8324596

1.8 Notes and further resources

 $R\ programming\ in\ the\ Data\ Science\ Track\ Andrew\ Jaffe's\ lecture\ notes\ 1http://www.biostat.jhsph.edu/~ajaffe/lec_winterR/I$