Probability and Statistics II

Derek Li

Contents

1	Rev	iew of Probability	4
	1.1	Probability	4
	1.2	Expectation	4
	1.3	Indicator function	4
	1.4	Law of large number (LLN)	5
	1.5	Central limit theorem (CLT)	5
	1.6	Linear combination of Normal variables	5
	1.7	Z and χ^2 distribution	6
	1.8	t and \widetilde{F} distribution	6
2	Data	a Collection	7
	2.1	Population and sample	7
	2.2	Parameter and statistic	7
	2.3	Finite populations	7
	2.4	Infinite populations	8
	2.5	Simple random sampling	8
	2.6	Empirical CDF	8
	2.7	Density histogram	9
	2.8	Quantile/Percentile for population	9
	2.9	Boxplot	10
	2.10		10
3	Poir	nt Estimation	11
	3.1	Type of inference	11
	3.2	v -	11
	3.3		12
	3.4	Sampling distribution of an estimator	13

	3.5 3.6	Measuring quality of an estimator	
4		apling Distribution of S^2	16
+	4.1	Sample variance (S^2)	
	4.2	Sampling distribution of S^2 under Normal distribution	
	4.3	_	18
		$\frac{X-\mu}{S/\sqrt{n}} \sim t_{(n-1)} \dots \dots \dots \dots \dots \dots$	
	4.4	$\chi^{2}_{(m)}$	19
5		perties of an Estimator: Consistency, Efficiency and Suf-	
	ficie	ency	20
6	Inte	erval Estimation	21
	6.1	Confidence interval	21
	6.2	CI for parameters of Normal distribution	21
		6.2.1 CI for μ with σ^2 known	21
		6.2.2 CI for μ with σ^2 unknown	21
		6.2.3 CI for σ^2	
	6.3	CI for mean of a non-Normal distribution using CLT	22
	6.4	Interpreting CI	22
7	Tes	t of Hypothesis	24
	7.1	Types of hypothesis	24
	7.2	Two approaches of hypothesis testing	
		7.2.1 Critical region approach	24
		7.2.2 p -value approach	25
	7.3	Type-1, 2 error and power of a test	
	7.4	Test of hypothesis using CI	27
8	Like	elihood Ratio Test and Comparing Two Populations	28
	8.1	Likelihood ratio test (LRT)	28
	8.2	Constructing CI using LRT	29
	8.3	Comparing two independent Normal population	29
		8.3.1 Equality of two variances	29
		8.3.2 Equality of two means with variances known	30
		8.3.3 Equality of two means with variances unknown	30
	8.4	Comparing two population means (paired data)	31
	8.5	Comparing two populations using LRT	31

	8.6	Numerical example	•	•	•	 •	•	•		•	32
9	Mod	del Checking									34
	9.1	χ^2 goodness of fit test									34
	9.2	Discrepancy statistic									36
	9.3	Residual and quantile/probability plots									37

1 Review of Probability

1.1 Probability

- The probability measure P for each event A defined on sample space Ω satisfies the following properties:
 - $\circ P(A)$ is non-negative and $0 \le P(A) \le 1$.
 - $\circ P(A) = 0$ when A is empty.
 - $\circ P(A) = 1$ when A is the entire sample space Ω .
 - $\circ P$ is countably additive.

1.2 Expectation

- \bullet Expected value/mean/average of r.v. X is defined as
 - $\circ \mathbb{E}[X] = \int_{-\infty}^{\infty} x f(x) dx$, when X is continuous;
 - $\circ \mathbb{E}[X] = \sum_{i} x_i P(X = x_i)$, when X is discrete.
- Expectation is a *linear operator*: Let X and Y are two r.v.s., then $\mathbb{E}[aX + bY + c] = a\mathbb{E}[X] + b\mathbb{E}[Y] + c$.

1.3 Indicator function

• If A is any event, define the *indicator function* of A, I_A to be the r.v. for all $s \in \Omega$,

$$I_A(s) = \begin{cases} 1, s \in A \\ 0, s \notin A \end{cases} .$$

Example 1.1. We are rolling a dice and $A = \{2, 4, 6\}$.

Therefore, $\mathbb{E}[I_A] = \frac{1}{6}(0+1+0+1+0+1) = \frac{1}{2} = P(A)$.

1.4 Law of large number (LLN)

• Let $X_1, X_2, ..., X_i$ be a sequence of independent r.v.s. with $\mathbb{E}[X_i] = \mu$. Let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then $\overline{X}_n \stackrel{P}{\longrightarrow} \mu$ as $n \to \infty$, i.e.,

$$\forall \varepsilon > 0, \lim_{n \to \infty} P(|\overline{X} - \mu| > \varepsilon) = 0.$$

• In naive words: Sample mean approaches the population mean as the sample size increases.

1.5 Central limit theorem (CLT)

• Suppose $X_1, X_2, ...$ is an i.i.d. sequence of r.v.s. each having finite mean μ and finite variance σ^2 . Let $\overline{X}_n = \frac{1}{n}$, then as $n \to \infty, \overline{X}_n \xrightarrow{D} \mathcal{N}(\mu, \frac{\sigma^2}{n})$ or

$$\frac{\overline{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}} \xrightarrow{D} \mathcal{N}(0, 1).$$

 \circ In naive words: A r.v. can follow some distribution with mean μ and variance σ^2 . If we pick a fixed number of samples n and calculate the sample mean repeatedly, then those sample means will have a Normal distribution with mean μ and variance $\frac{\sigma^2}{n}$.

1.6 Linear combination of Normal variables

• Let $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$ where i = 1, 2, ..., n. Let Y be a linear combination of all the X_i 's with

$$Y = a_1 X_1 + \dots + a_n X_n + b = \sum_{i=1}^{n} a_i X_i + b,$$

where
$$a_i, b \in \mathbb{R}$$
. Then $Y \sim \mathcal{N}\left(\sum_{i=1}^n a_i \mu_i + b, \sum_{i=1}^n a_i^2 \sigma_i^2\right)$.

Example 1.2. Let $X_1 \sim \mathcal{N}(10, 2), X_2 \sim \mathcal{N}(20, 3), Y = 0.4X_1 + 0.6X_2$. Then $Y \sim \mathcal{N}(16, 1.4)$.

1.7 Z and χ^2 distribution

- Standard normal/ $\mathcal{N}(0,1)/Z$ distribution: If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $\frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1)$.
- χ^2 distribution: Let $U = Z^2$, then $U \sim \chi^2_{(1)}$.
 - o Additive property: If $X \sim \chi^2_{(m)}, Y \sim \chi^2_{(n)}$, then $X + Y \sim \chi^2_{(m+n)}$.
 - $\circ \text{ If } X \sim \chi^2_{(m)}, \text{ then } \mathbb{E}[X] = m.$

1.8 t and F distribution

- t distribution: Let $Z \sim \mathcal{N}(0,1)$ and $U \sim \chi^2_{(m)}$ be independent, then $\frac{Z}{\sqrt{U/m}} \sim t_{(m)}$.
- F distribution: Let $X \sim \chi^2_{(m)}, Y \sim \chi^2_{(n)}$ be independent, then $\frac{X/m}{Y/n} \sim F_{(m,n)}$.

2 Data Collection

2.1 Population and sample

- **Population** is a collection of all the subjects that have something in common.
- Sample is a subset of the population.
 - We use the sample to make inference about the unknown characteristics of our population.
 - The sample should be representative.

2.2 Parameter and statistic

- **Parameter** is a characteristic (summary) of the population. For example, mean (μ) , standard deviation (σ) , etc.
 - \circ We use θ to represent the parameter(s) of population. For example, $X \sim \mathcal{N}(\mu, \sigma^2)$, θ stands for both μ and σ .
- **Statistic** is any summary of the sample. For example, sample total $(\sum X_i)$, etc.
 - \circ When a statistic is used to estimate a parameter, it is called an estimator. For example, S is an estimator of σ .
 - $\circ T(X)$ is used to represent a statistic/estimator. For example, if we are dealing with sample mean, then $T(X) = \overline{X}$.
 - When we have observed a sample and calculate the value of an estimator, then that numerical value is called the estimate and we use lowercase letters to represent.

Parameter (θ)	Estimator (T)	Estimate (t)
μ	\overline{X}	\overline{x}
Unknown constant	Random variable	Known constant

2.3 Finite populations

• Let π represent individual subjects in a finite population Π . For each π , we have a real valued quantity $X(\pi)$.

• The population CDF.

$$F_X(x) = \frac{|\{\pi | X(\pi) \leqslant x\}|}{N},$$

where $N = |\Pi|$. Or,

$$F_X(x) = \frac{1}{N} \sum I_{(-\infty,x]}(X(\pi)) = \mathbb{E}[I_{(-\infty,x]}(X(\pi))].$$

 \circ In naive words: $F_X(x)$ is the proportion of elements in the population with their X measurement less or equal to x.

2.4 Infinite populations

• We use probability distributions to represent the population. Informally, we can think it as a limiting distribution of a finite population of size N when $N \to \infty$.

2.5 Simple random sampling

- With replacement:
 - \circ Every subject of the population will have the same probability $\frac{1}{N}$ of being selected in the sample in each draw.
 - Samples are independent.
- Without replacement:
 - Not independent.
 - o If $N \to \infty, n << N$, where n is the sample size: $P(B) = \frac{1}{N}, P(B|A) = \frac{1}{N-1}$. But for a large N and n << N, $P(B) \approx P(B|A)$, then samples are independent.

2.6 Empirical CDF

• Suppose we select a sample $\{\pi_1, ..., \pi_n\} \subset \Pi$, we can approximate the population CDF F_X by the **empirical CDF**

$$\widehat{F}_X(x) = \frac{\{|\pi_i|X(\pi_i) \le x, i = 1, ..., n|\}}{n} = \frac{1}{n} \sum_{i=1}^n I_{(-\infty, x]}(X(\pi_i)).$$

• Assuming independence, then by LLN,

$$\frac{1}{n} \sum_{i=1}^{n} I_{(-\infty,x]}(X(\pi_i)) \xrightarrow{P} \mathbb{E}[I_{(-\infty,x]}(X(\pi_i))] = P(I_{(-\infty,x]}(X(\pi_i)))$$
$$= P(X(\pi_i) \leqslant x) = F_X(x).$$

2.7 Density histogram

• Suppose we have continuous variable X and can group X into intervals given by $(h_1, h_2], ..., (h_{m-1}, h_m]$. The **density histogram function**

$$h_X(x) = \begin{cases} \frac{|\{\pi | X(\pi) \in (h_i, h_{i+1}]\}|}{N(h_{i+1} - h_i)}, & x \in (h_i, h_{i+1}] \\ 0, & \text{otherwise} \end{cases}.$$

- o In naive words: In density histogram, the height of each of the bar is the relative frequency, divided by the corresponding length of the interval.
- \circ When the interval lengths $(h_{i+1} h_i)$ gets smaller and N gets bigger, we get a smooth function.

2.8 Quantile/Percentile for population

- For $p \in [0,1]$, the pth quantile (100pth percentile) x_p , for the distribution with CDF F_X , is defined to be the **smallest number** x_p satisfying $p \leq F_X(x_p)$.
 - \circ When F_X is strictly increasing and continuous, x_p satisfies $F_X(x_p) = p$.
 - When X is discrete, $F_X(x_p) = p$ may not have a solution.
- Estimating quantiles: Suppose the sample is $(x_1, ..., x_n)$ and after ordering we have $x_{(1)} < \cdots < x_{(n)}, x_{(i)}$ is the $(\frac{i}{n})$ th quantile of the empirical distribution because $\hat{F}_X(x_{(i)}) = \frac{i}{n}$. The sample pth quantile is x_p whenever $\frac{i-1}{n} .$
 - Linear interpolation: $\widetilde{x}_p = x_{(i-1)} + n(x_{(i)} x_{(i-1)})(p \frac{i-1}{n})$.

Proof. We have
$$\frac{\widetilde{x}_p - x_{(i-1)}}{np - (i-1)} = \frac{x_{(i)} - x_{(i-1)}}{i - (i-1)}$$
.
Therefore, $\widetilde{x}_p = x_{(i-1)} + n(x_{(i)} - x_{(i-1)})(p - \frac{i-1}{n})$.

Example 2.1. $-2.1 - 0.3 \ 0.4 \ 1.2 \ 1.5 \ 2.1 \ 2.2 \ 3.3 \ 4.0 \ 5.0$ First quantile $= Q_1 = \widetilde{x}_{0.25} = x_{(2)} + 10(x_{(3)} - x_{(2)})(0.25 - \frac{2}{10}) = 0.05$ Third quantile $= Q_3 = \widetilde{x}_{0.75} = x_{(7)} + 10(x_{(8)} - x_{(7)})(0.75 - \frac{7}{10}) = 2.75$ Inter quantile range $= IQR = Q_3 - Q_1 = 2.7$

• Median/Second quantile: We can use linear interpolation formula or

$$Q_2 = \widetilde{x}_{0.5} = \begin{cases} x_{(\frac{n+1}{2})}, & n \text{ is odd} \\ \frac{1}{2}(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}), & n \text{ is even} \end{cases}.$$

2.9 Boxplot

- Draw a box using Q_1 and Q_3 as the sides and Q_2 as a line inside the box.
- Lower limit= $Q_1 1.5 \cdot IQR$, Upper limit= $Q_3 + 1.5 \cdot IQR$.
- Adjacent values are the two extreme data points that falls within the lower and upper limit.
- Whiskers are the vertical lines from the quantiles to the adjacent values.
- Values beyond the adjacent values are plotted with * and called outliers.
- If the variable is categorical, we use $bar\ charts$. Categories on x-axis and proportions on y-axis.

2.10 Choice of summary measures

- Choice of summary measures based on the skewness of the distribution
 - Mean and s.d. when distribution is symmetric.
 - \circ Median and IQR when distribution is skewed.

3 Point Estimation

3.1 Type of inference

- Estimation:
 - \circ Point estimation: Based on the sample observations, calculating a particular value as an estimate of the parameter.
 - \circ Interval estimation: Calculating a range of values that is likely to contain θ .
- Hypothesis testing: Based on the sample, assess whether a hypothetical value θ_0 is a plausible value of the θ or not.

3.2 Method of moments estimation

- Let $X_1, ..., X_n$ be i.i.d. r.v.s. and let the kth **population moment** $\mu_k = \mathbb{E}[X^k], k$ th **sample moment** $\widehat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$.
- We use $\hat{\mu}_k$ as an estimator of μ_k .

Example 3.1. $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda)$. Find the method of moments estimator of λ .

Solution. We have
$$\lambda = \mathbb{E}[X] = \mu$$
, then $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}$.

Example 3.2. $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Find the method of moments estimator of μ and σ^2 .

Solution. We have $\mu = \mathbb{E}[X], \sigma^2 = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$ and thus

$$\widehat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X},$$

and

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - (\overline{X})^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - \frac{1}{n} n(\overline{X})^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2.$$

- Summary of method:
 - \circ Express the lower order population moment(s) in terms of the parameter(s).
 - o Invert the expression(s) to express the parameter(s) in terms of the population moment(s).
 - Replace the population moment(s) using the sample moment(s).

3.3 Maximum likelihood estimation

- Suppose $X_1, ..., X_n$ has a joint density or mass function $f(x_1, ..., x_n | \theta)$ and we observe sample $X_1 = x_1, ..., X_n = x_n$. The *likelihood function* of $\theta, L(\theta) = f(x_1, ..., x_n | \theta)$.
 - \circ If X follows a discrete distribution, it gives the **probability of observing the sample** as a function of θ .
- If $X_1, ..., X_n$ are i.i.d. then $L(\theta) = \prod_{i=1}^n f_{\theta}(x_i)$.
 - $\circ L(\theta)$ is not a PDF or PMF of θ .
 - \circ Likelihood introduces a belief ordering on parameter space Ω . If $L(\theta_1) > L(\theta_2)$, the data is more likely to come from f_{θ_1} than f_{θ_2} .
 - \circ The value $L(\theta)$ is very small for every value of θ , so often we are interested in the *likelihood ratio* $\frac{L(\theta_1)}{L(\theta_2)}$.
- Maximum likelihood estimation (MLE): If we are interested in a point estimation of θ , a sensible choice will be to pick $\hat{\theta}$ that maximizes $L(\theta)$, i.e., $L(\hat{\theta}) \ge L(\theta), \forall \theta \in \Omega$.
 - Computation for MLE:
 - * Log-Likelihood function

$$l(\theta) = \ln(L(\theta)) = \ln\left(\prod_{i=1}^n f_{\theta}(x_i)\right) = \sum_{i=1}^n \ln(f_{\theta}(x_i)).$$

Since $\ln x$ is an injective increasing function of x > 0, then $L(\widehat{\theta}) \ge L(\theta), \forall \theta \in \Omega \text{ iff } l(\widehat{\theta}) \ge l(\theta).$

* Solve $\frac{\partial l(\theta)}{\partial \theta} = 0$ and $\hat{\theta}$ is the solution.

* Check if
$$\frac{\partial^2 l(\theta)}{\partial \theta^2} \Big|_{\theta = \hat{\theta}} < 0.$$

Example 3.3. $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda)$. Find the MLE of λ .

Solution. We have $f(x) = \frac{e^{-\lambda}\lambda^x}{x!}$ and thus

$$L(\lambda) = \frac{e^{-n\lambda} \lambda_{i=1}^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} x_i!}.$$

Therefore, $l(\lambda) = -n\lambda + \ln \lambda \sum_{i=1}^{n} x_i + C$. Let $\frac{\partial l(\lambda)}{\partial \lambda} = 0$, we have $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i = \overline{x}$.

- o Properties of MLE:
 - * MLE is not unique.
 - * MLE may not exists.
- * The likelihood may not always be differentiable. For example, $X_1,...,X_n \overset{\text{i.i.d.}}{\sim} \text{Unif}[0,\theta], \widehat{\theta} = \max\{x_1,...,x_n\}.$
- * Invariance property of MLE: Let $\widehat{\theta}$ be the MLE of θ and $\psi(\theta)$ be any injective function of θ defined on Ω , then $\psi(\widehat{\theta})$ is the MLE of $\psi(\theta)$.

3.4 Sampling distribution of an estimator

- An estimator (T) is a r.v. and if we repeat the sampling procedure and keep calculating T for each set of sample and finally draw a density histogram based on the T values, we get the sampling distribution of T.
- Assume $X_1, ..., X_n$ is an i.i.d. sequence of r.v.s., each having finite mean μ and finite variance σ^2 , then

$$\mathbb{E}[\overline{X}] = \mathbb{E}\left[\frac{1}{n}X_1 + \dots + \frac{1}{n}X_n\right] = \frac{1}{n}\mathbb{E}[X_1] + \dots + \frac{1}{n}\mathbb{E}[X_n]$$
$$= \frac{1}{n}n\mu = \mu,$$

and

$$\operatorname{Var}[\overline{X}] = \operatorname{Var}\left[\frac{1}{n}X_1 + \dots + \frac{1}{n}X_n\right] = \operatorname{Var}\left[\frac{1}{n}X_1\right] + \dots + \operatorname{Var}\left[\frac{1}{n}X_n\right]$$
$$= \frac{1}{n^2}\operatorname{Var}[X_1] + \dots + \frac{1}{n^2}\operatorname{Var}[X_n] = \frac{1}{n^2}n\sigma^2 = \frac{\sigma^2}{n}.$$

Besides, $SE(\overline{X}) = \frac{\sigma}{\sqrt{n}}$. (**Standard error** is the standard deviation of an estimator)

- $\circ \overline{X}$ is a linear combination of $X_1, ..., X_n$.
- $\circ~\mathbb{E}[\overline{X}] = \mu$ and $\mathrm{Var}[\overline{X}] = \frac{\sigma^2}{n}$ are regardless of the distribution of X.

3.5 Measuring quality of an estimator

- Let $\psi(\theta)$ be any real valued function of θ , suppose T is an estimator of $\psi(\theta)$. The most commonly used measurement of **accuracy** of an estimator is **mean squared error**, $MSE_{\theta}(T) = \mathbb{E}_{\theta}[(T \psi(\theta))^2]$.
 - \circ The smaller the value of $MSE_{\theta}(T)$, the more concentrated the sampling distribution of T is about the value $\psi(\theta)$.
 - \circ Since the true value of θ is unknown, often we evaluate the $MSE_{\theta}(T)$ at $\theta = \hat{\theta}$.
- $MSE_{\theta}(T) = Var_{\theta}[T] + (\mathbb{E}_{\theta}[T] \psi(\theta))^2$.

Proof.

$$MSE_{\theta}(T) = \mathbb{E}_{\theta}[(T - \psi(\theta))^{2}] = \mathbb{E}_{\theta}[(T - \mathbb{E}_{\theta}[T] + \mathbb{E}_{\theta}[T] - \psi(\theta))^{2}]$$
$$= \mathbb{E}_{\theta}[(T - \mathbb{E}_{\theta}[T])^{2}] + \mathbb{E}_{\theta}[(\mathbb{E}_{\theta}[T] - \psi(\theta))^{2}] + 2\mathbb{E}_{\theta}[(T - \mathbb{E}_{\theta}[T])(\mathbb{E}_{\theta}[T] - \psi(\theta))].$$

We know

$$\mathbb{E}_{\theta}[(T - \mathbb{E}_{\theta}[T])(\mathbb{E}_{\theta}[T] - \psi(\theta))] = \mathbb{E}_{\theta}[T - \mathbb{E}_{\theta}[T]](\mathbb{E}_{\theta}[T] - \psi(\theta))$$
$$= (\mathbb{E}_{\theta}[T] - \mathbb{E}_{\theta}[T])(\mathbb{E}_{\theta}[T] - \psi(\theta)) = 0.$$

Besides,
$$\mathbb{E}_{\theta}[(T - \mathbb{E}_{\theta}[T])^2] = \operatorname{Var}_{\theta}[T]$$
, and thus $\operatorname{MSE}_{\theta}(T) = \operatorname{Var}_{\theta}[T] + (\mathbb{E}_{\theta}[T] - \psi(\theta))^2$.

3.6 Unbiasedness

- The bias of an estimator T of $\psi(\theta)$ is given by $\mathbb{E}_{\theta}[T] \psi(\theta)$.
- When the bias of an estimator is zero, it is called unbiased, i.e., T is unbiased estimator of $\psi(\theta)$ when $\mathbb{E}_{\theta}[T] = \psi(\theta)$. In other words, T is unbiased if $\psi(\theta)$ is the mean of the sampling distribution of T.
- $MSE_{\theta}(T) = Var_{\theta}[T] + (Bias(T))^2$.
 - o For unbiased estimators, $MSE_{\theta}(T) = Var_{\theta}[T]$.
 - \circ If all the other properties are similar, then an unbiased estimator is preferred over a biased estimator.

4 Sampling Distribution of S^2

4.1 Sample variance (S^2)

- Population variance: $\sigma^2 = \mathbb{E}[(X \mu)^2]$, where $\mu = \mathbb{E}[X]$. If we have equally likely N data points in population, $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (X_i \mu)^2$.
- $\sum_{i} (X_i \mu)^2 = \sum_{i} (X_i \overline{X})^2 + n(\overline{X} \mu)^2.$

Proof. We have

$$\sum_{i} (X_{i} - \mu)^{2} = \sum_{i} (X_{i} - \overline{X} + \overline{X} - \mu)^{2}$$

$$= \sum_{i} (X_{i} - \overline{X})^{2} + \sum_{i} (\overline{X} - \mu)^{2} + 2 \sum_{i} (X_{i} - \overline{X})(\overline{X} - \mu)$$

$$= \sum_{i} (X_{i} - \overline{X})^{2} + n(\overline{X} - \mu)^{2} + 2(\overline{X} - \mu) \sum_{i} (X_{i} - \overline{X}).$$

We know

$$\sum_{i} (X_i - \overline{X}) = \sum_{i} X_i - n\overline{X} = n\overline{X} - n\overline{X} = 0.$$

Therefore,

$$\sum_{i} (X_i - \mu)^2 = \sum_{i} (X_i - \overline{X})^2 + n(\overline{X} - \mu)^2. \quad \Box$$

• Biased and unbiased estimator of σ^2 : We have $\sum_i (X_i - \overline{X})^2 = \sum_i (X_i - \mu)^2 - n(\overline{X} - \mu)^2$, then we take expectation on both sides and have

$$\mathbb{E}\left[\sum_{i}(X_{i}-\overline{X})^{2}\right] = \mathbb{E}\left[\sum_{i}(X_{i}-\mu)^{2}\right] - \mathbb{E}\left[n(\overline{X}-\mu)^{2}\right]$$
$$= \sum_{i}\mathbb{E}[(X_{i}-\mu)^{2}] - n\mathbb{E}[(\overline{X}-\mu)^{2}]$$
$$= \sum_{i}\operatorname{Var}[X_{i}] - n\operatorname{Var}[\overline{X}]$$
$$= \sum_{i}\sigma^{2} - n\frac{\sigma^{2}}{n} = (n-1)\sigma^{2}.$$

Therefore, $\mathbb{E}\left[\frac{1}{n}\sum_{i}(X_{i}-\overline{X})^{2}\right] = \frac{n-1}{n}\sigma^{2}$, $\mathbb{E}\left[\frac{1}{n-1}\sum_{i}(X_{i}-\overline{X})^{2}\right] = \sigma^{2}$, i.e., $\frac{1}{n}\sum_{i}(X_{i}-\overline{X})^{2}$ is a biased estimator of σ^{2} , $\frac{1}{n-1}\sum_{i}(X_{i}-\overline{X})^{2}$ is an unbiased estimator of σ^{2} .

- \circ For Normal distribution, both method of moments and MLE gives $\frac{1}{n}\sum_{i}(X_{i}-\overline{X})^{2}$ as an estimator of σ^{2} .
- $\circ \frac{n-1}{n} \to 1$ as $n \to \infty$, i.e., for large n both estimators will produce similar estimate.

• We choose
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
.

4.2 Sampling distribution of S^2 under Normal distribution

• Though the expression of S^2 contains \overline{X} , they are independent. Besides, we can see a relation between S^2 and χ^2 distribution.

Theorem 4.1. Suppose
$$X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2), \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i, S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
, then $\overline{X} \perp S^2$, and $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$.

Proof.

Lemma 1. Suppose $X_1, ..., X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2), U$ and V are two different linear combinations of the $X_i, \text{cov}[U, V] = 0$ iff $U \perp V$.

We know
$$\overline{X} = \frac{1}{n}X_1 + \dots + \frac{1}{n}X_n, X_1 - \overline{X} = (1 - \frac{1}{n})X_1 - \frac{1}{n}X_2 - \dots - \frac{1}{n}X_n$$

Besides,
$$\operatorname{cov}[\overline{X}, X_1 - \overline{X}] = \operatorname{cov}[\overline{X}, X_1] - \operatorname{cov}[\overline{X}, \overline{X}] = \frac{\sigma^2}{n} - \frac{\sigma^2}{n} = 0.$$

Similarly, $\operatorname{cov}[\overline{X}, X_i - \overline{X}] = 0, \forall i = 1, ..., n.$

By the Lemma, we know $\overline{X} \perp X_i - \overline{X}$, and thus

$$\overline{X} \perp \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = S^2.$$

Since
$$\sum_{i} (X_i - \mu)^2 = \sum_{i} (X_i - \overline{X})^2 + n(\overline{X} - \mu)^2$$
, then

$$\frac{\sum_{i}(X_{i}-\mu)^{2}}{\sigma^{2}} = \frac{\sum_{i}(X_{i}-\overline{X})^{2}}{\sigma^{2}} + \frac{n(\overline{X}-\mu)^{2}}{\sigma^{2}},$$

i.e.,

$$\sum_{i} \left(\frac{X_i - \mu}{\sigma} \right)^2 = \frac{(n-1)S^2}{\sigma^2} + \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \right)^2.$$

Since $X_i \sim \mathcal{N}(\mu, \sigma^2)$, then $\frac{X_i - \mu}{\sigma} \sim \mathcal{N}(0, 1)$, and $\sum_i \left(\frac{X_i - \mu}{\sigma}\right)^2 \sim \chi^2_{(n)}$.

Since $\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$, and $\sum_{i} \left(\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}\right)^2 \sim \chi^2_{(1)}$. Besides, we have $S^2 \perp \overline{X}$, and therefore, we have

$$(1-2t)^{-\frac{n}{2}} = M_{\frac{(n-1)S^2}{\sigma^2}}(t) \cdot (1-2t)^{-\frac{1}{2}},$$

i.e,
$$M_{\frac{(n-1)S^2}{2}}(t) = (1-2t)^{-\frac{n-1}{2}}$$
, and thus $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$.

- The mean of a χ^2 distribution is its df, then by theorem, we have $\mathbb{E}\left[\frac{(n-1)S^2}{\sigma^2}\right] = n-1$, i.e., $\mathbb{E}[S^2] = \sigma^2$. Hence, S^2 is an unbiased estimator for σ^2 under Normal distribution.
- An example of $cov = 0 \Rightarrow independence$.

Example 4.1. $X \sim \mathcal{N}(0,1), Y = X^2, X$ and Y are dependent. However,

$$\operatorname{cov}[X,Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] = \mathbb{E}[X^3] - \mathbb{E}[X]\mathbb{E}[X^2] = \mathbb{E}[X^3] = 0.$$

4.3
$$\frac{\overline{X}-\mu}{S/\sqrt{n}} \sim t_{(n-1)}$$

• We know $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1), \frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}, \text{ and } \overline{X} \perp S^2, \text{ then}$

$$\frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{\sqrt{\frac{(n-1)S^2}{\sigma^2} / (n-1)}} = \frac{\frac{\overline{X} - \mu}{\sigma / \sqrt{n}}}{S / \sigma} = \frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t_{(n-1)}.$$

4.4 $\chi^2_{(m)}$

- $\chi^2_{(m)} \sim \text{Gamma}\left(\frac{m}{2}, \frac{1}{2}\right)$.

 o Gamma distribution: $f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}$.
- $\frac{\chi_{(m)}^2}{m} = \frac{1}{m}(Z_1^2 + \dots + Z_m^2) = \frac{1}{m}\sum_{i=1}^m Z_i^2$, where $Z_i \sim \mathcal{N}(0,1)$. By LLN,

$$\frac{1}{m} \sum_{i=1}^{m} Z_i^2 \xrightarrow{P} \mathbb{E}[Z_i^2] = 1,$$

as $m \to \infty$.

•
$$t_{(m)} \xrightarrow{D} Z$$
, as $m \to \infty$.

5 Properties of an Estimator: Consistency, Efficiency and Sufficiency

6 Interval Estimation

6.1 Confidence interval

• An interval $C(X_1,...,X_n) = (l(X_1,...,X_n), u(X_1,...,X_n))$ is a γ -confidence interval for $\psi(\theta)$ if $P_{\theta}[\psi(\theta) \in C(X_1,...,X_n)] \geqslant \gamma, \forall \theta \in \Omega.\gamma$ represents the confidence level of the interval.

 \circ In naive words: We want two numbers which will have at least γ chance of containing the true parameter.

6.2 CI for parameters of Normal distribution

6.2.1 CI for μ with σ^2 known

• We know $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$, we can write

$$P\left[k_1 \leqslant \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leqslant k_2\right] \geqslant \gamma \Rightarrow P\left[\overline{X} - k_2 \frac{\sigma}{\sqrt{n}} \leqslant \mu \leqslant \overline{X} - k_1 \frac{\sigma}{\sqrt{n}}\right] \geqslant \gamma.$$

- k_1 and k_2 are quantiles of $\mathcal{N}(0,1)$ s.t. $P[k_1 \leq Z \leq k_2] \geqslant \gamma$.
- The sampling distribution is unimodal and symmetric around the mode, the middle γ part gives the shortest interval and thus $z_{\frac{1-\gamma}{2}}$ and $z_{\frac{1+\gamma}{2}}$ are preferred as the value of k_1 and k_2 . For example, if $\gamma = 0.95, k_1 = z_{0.025} = -1.96, k_2 = z_{0.975} = 1.96$.
- For $X_1, ..., X_n \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with σ^2 known, the γ -CI of μ is

$$\left[\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right].$$

6.2.2 CI for μ with σ^2 unknown

- When σ^2 is unknown, we use S^2 as an estimator of σ^2 and we have $\frac{\overline{X} \mu}{S/\sqrt{n}} \sim t_{(n-1)}$.
- For $X_1, ..., X_n \stackrel{\text{i.i.d}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with σ^2 unknown, the γ -CI of μ is

$$\left[\overline{X} - t_{\frac{1+\gamma}{2}(n-1)} \frac{S}{\sqrt{n}}, \overline{X} + t_{\frac{1+\gamma}{2}(n-1)} \frac{S}{\sqrt{n}}\right],$$

where $t_{\frac{1+\gamma}{2}(n-1)}$ is the $\frac{1+\gamma}{2}$ quantile of a $t_{(n-1)}$ distribution.

6.2.3 CI for σ^2

• We know $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{(n-1)}$, we can write

$$P\left[\chi^{2}_{\frac{1-\gamma}{2}(n-1)} \leqslant \frac{(n-1)S^{2}}{\sigma^{2}} \leqslant \chi^{2}_{\frac{1+\gamma}{2}(n-1)}\right] \geqslant \gamma \Rightarrow P\left[\frac{(n-1)S^{2}}{\chi^{2}_{\frac{1+\gamma}{2}(n-1)}} \leqslant \sigma^{2} \leqslant \frac{(n-1)S^{2}}{\chi^{2}_{\frac{1-\gamma}{2}(n-1)}}\right] \geqslant \gamma.$$

- $\bullet \ \text{ For } X_1,...,X_n \overset{\text{i.i.d}}{\sim} \mathcal{N}(\mu,\sigma^2) \text{ , the } \gamma\text{-CI of } \sigma^2 \text{ is } \left[\frac{(n-1)S^2}{\chi^2_{\frac{1+\gamma}{2}(n-1)}} \leqslant \sigma^2 \leqslant \frac{(n-1)S^2}{\chi^2_{\frac{1-\gamma}{2}(n-1)}}\right].$
- Remark:
 - $\circ \chi^2$ is not a symmetric distribution (at least for lower df).
 - \circ The shape of χ^2 depends on its df.
 - \circ Using $\chi^2_{\frac{1+\gamma}{2}(n-1)}$ and $\chi^2_{\frac{1-\gamma}{2}(n-1)}$ as two ends may not result in the shortest length.

6.3 CI for mean of a non-Normal distribution using CLT

• The γ -CI of μ is $\left[\overline{X} - z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\frac{1+\gamma}{2}} \frac{\sigma}{\sqrt{n}}\right]$, σ^2 may be unknown. • If σ^2 is unknown, we can use MLE to calculate $SE = \frac{\sigma}{\sqrt{n}}$.

Example 6.1. CI for λ when data follows Poisson(λ).

Solution. By CLT, $\frac{\overline{X}-\lambda}{\sqrt{\lambda/n}} \xrightarrow{D} \mathcal{N}(0,1)$, where $SE(\overline{X}) = \sqrt{\frac{\lambda}{n}}$. We know \overline{X} is the MLE of λ , then the estimated $SE = \sqrt{\frac{\overline{X}}{n}}$. Thus, the γ -CI for λ is $\left[\overline{X} - z_{\frac{1+\gamma}{2}}\sqrt{\frac{\overline{X}}{n}}, \overline{X} + z_{\frac{1+\gamma}{2}}\sqrt{\frac{\overline{X}}{n}}\right]$.

6.4 Interpreting CI

• For z and t interval, the sample mean \overline{X} is the midpoint of the lower and upper bound.

- Width of the interval = Upper bound–Lower bound. Half of the width is known as the **margin of error** (ME). CI: $[\overline{X} \pm ME]$.
 - $\circ \gamma \uparrow \Rightarrow$ Width of the interval \uparrow .
 - $\circ \sigma \text{ or } s \uparrow \Rightarrow \text{Width of the interval } \uparrow$.
 - o $n \uparrow \Rightarrow$ Width of the interval \downarrow .
- Interpretation: If we keep taking samples (infinite times) and keep constructing γ -CIs, in $100\gamma\%$ of the cases, our CIs will capture the true value of the parameter.

7 Test of Hypothesis

7.1 Types of hypothesis

- **Null hypothesis**/ H_0 : The hypothesis that we want to test.
- Alternative hypothesis/ H_A/H_1 : The alternative values of the parameter of interest.
 - o Often this is what we are trying to prove as a researcher.
- *Simple hypothesis*: When a hypothesis involves only a single value from the parameter space.
- Composite hypothesis: When a hypothesis involves more than one values from the parameter space.
- In practice, often we test *simple null* hypothesis against *composite alternative* hypothesis.

7.2 Two approaches of hypothesis testing

7.2.1 Critical region approach

- Due to uncertainty, often we reject H_0 even though it could be true. We assign a preferably small predefined probability of making this mistake and call it *level of significance*, denoted by α .
- **Test statistic**, T(X), is a quantity that simultaneously serves few purposes:
 - It summarizes the sample data through an estimator.
 - \circ When H_0 is true, it has a known distribution.
 - \circ Under that distribution, it is possible to find some areas that has probability α .
- Critical region, $R_{\alpha}(T)$, is a region of the distribution of the test statistic s.t. we will reject H_0 if $T(X) \in R_{\alpha}(T)$. We need $P[T(X) \in R_{\alpha}(T)|H_0$ is true] = α .

- Testing $H_0: \mu = \mu_0$ when $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with σ^2 known:
 - $\circ H_0: \mu = \mu_0.$
 - $\circ T = \frac{\overline{X} \mu}{\sigma / \sqrt{n}}.$
 - o If H_0 is true, then $\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}} \sim \mathcal{N}(0,1)$.
 - Rejection region: $\left(-\infty, z_{\frac{\alpha}{2}}\right) \cup \left(z_{1-\frac{\alpha}{2}}.\infty\right)$.
 - We reject H_0 if $\frac{\overline{X} \mu_0}{\sigma/\sqrt{n}} < z_{\frac{\alpha}{2}}$ or $\frac{\overline{X} \mu_0}{\sigma/\sqrt{n}} > z_{1-\frac{\alpha}{2}}$.
 - \circ Intuition: We reject the null hypothesis when the test statistic falls in the lower probability area of the distribution under the null. In naive words: If μ_0 is the true mean, then \overline{X} should not be too far from μ_0 .
 - \circ Note: We never say we accept H_0 . We failed to prove that H_0 is wrong $\Rightarrow H_0$ is right.
- Testing $H_0: \mu = \mu_0$ when $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$ with σ^2 unknown:
 - $\circ T = \frac{\overline{X} \mu_0}{S/\sqrt{n}} \sim t_{(n-1)}.$
 - $\circ \text{ Rejection region: } \left(-\infty, t_{\frac{\alpha}{2}(n-1)}\right) \cup \left(t_{1-\frac{\alpha}{2}(n-1)}\right).$
- Testing $H_0: \sigma^2 = \sigma_0^2$ when $X_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$:
 - $\circ T = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{(n-1)}^2$
 - $\circ \ R_{\alpha}(T) = \left(-\infty, \chi^2_{\frac{\alpha}{2}(n-1)}\right) \cup \left(\chi^2_{1-\frac{\alpha}{2}(n-1)}\right).$

7.2.2 p-value approach

- p-value: It is the smallest level of significance at which H_0 would be rejected based on the observed data. Also, it is the probability of observing the result as or more extreme than that actually observed if H_0 is true. In naive words: p-value suggests how surprising the observed sample is if we assume H_0 to be true.
 - \circ Conventionally, we compare *p*-value to 0.01, 0.05 or 0.1.
 - \circ If p-value is less than a predefined cut-off, we reject $H_0.$

- For z-test, p-value = $2\left[1 \Phi\left(\left|\frac{\overline{X} \mu_0}{\sigma/\sqrt{n}}\right|\right)\right]$.
- For t-test, p-value = $2\left[1 G\left(\left|\frac{\overline{X} \mu_0}{S/\sqrt{n}}\right|\right)\right]$, where G is the CDF of a $t_{(n-1)}$ distribution.

7.3 Type-1, 2 error and power of a test

- Definition
 - $\circ P[\text{Type} 1 \text{ error}] = \alpha = P[\text{Reject } H_0 | H_0 \text{ is true}].$
 - $\circ P[\text{Type} 2 \text{ error}] = \beta = P[\text{Fail to reject } H_0 | H_0 \text{ is false}].$
 - Power of a test = $1 \beta = P[\text{Reject } H_0 | H_0 \text{ is false}].$
- Graph analysis: Suppose we are testing two simple hypotheses, H_0 : $\mu = 1, H_1 : \mu = 4$, and there are no other options. The area shaded in red is type-1 error and in cyan is type-2 error.

Figure 7.1: $H_0: \mu = 1, H_1: \mu = 4$.

Example 7.1. Suppose we have $\mathcal{N}(\mu, \sigma^2)$ populations with unknown μ and $\sigma = 3$. We want to test $H_0: \mu = 1, H_1: \mu = 4$ at $\alpha = 0.05, n = 9$. Calculate β and $1 - \beta$.

Solution. We have $SE(\overline{X}) = \frac{\sigma}{\sqrt{n}} = 1$.

Therefore, under $H_0, \overline{X} \sim \mathcal{N}(1,1)$ and under $H_1, \overline{X} \sim \mathcal{N}(4,1)$. Hence, $R_{\alpha} = \frac{\overline{X}-1}{1} > z_{0.95} \Rightarrow \overline{X} > 2.645$.

Therefore,

$$1 - \beta = P[\overline{X} > 2.645 | H_1] = P\left[\frac{\overline{X} - 4}{1} > \frac{2.645 - 1}{1}\right] = 0.912,$$

and $\beta = 1 - 0.912 = 0.088$.

7.4 Test of hypothesis using CI

• Let $\alpha = 1 - \gamma$. Constructing a γ level CI for μ and checking whether μ_0 is inside or note is equivalent of testing the hypothesis of $\mu = \mu_0$ at $(1 - \gamma)$ level of significant.

8 Likelihood Ratio Test and Comparing Two Populations

8.1 Likelihood ratio test (LRT)

- General definition: Suppose we are testing $H_0: \theta \in \Omega_0, H_1: \theta \in \Omega_1$. Let $L(\theta)$ represents the likelihood function. The generalized likelihood ratio is defined as $\Lambda^* = \frac{\max\limits_{\theta \in \Omega_0} L(\theta)}{\max\limits_{\theta \in \Omega_1} L(\theta)}$. A small value of Λ^* provides evidence against H_0 .
- Special case: $\Lambda = \frac{\max\limits_{\theta \in \Omega_0} L(\theta)}{\max\limits_{\substack{\theta \in \Omega_0 \\ \theta \in \Omega}} L(\theta)} = \frac{\max\limits_{\theta \in \Omega_0} L(\theta)}{L(\widehat{\theta})}$, where $\widehat{\theta}$ is MLE of θ .
 - o If $\hat{\theta} \in \Omega_0$, then $\Lambda = 1 \Rightarrow$ we will not reject H_0 .
 - \circ If $\hat{\theta} \notin \Omega_0$, we look for the most likely θ value in Ω_0 and check if it does a good enough job as it is done by the MLE.
 - o Λ value closer to 0 will provide evidence against H_0 .

Theorem 8.1. Let $p = \dim \Omega$ be the number of free parameters in the whole parameter space, $d = \dim \Omega_0$ be the number of free parameters under the null, then we have $-2 \ln \Lambda \xrightarrow{P} \chi^2_{(p-d)}$, when H_0 is true.

Example 8.1. $(X_1,...,X_n) \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu,\sigma_0^2)$. Test $H_0: \mu = \mu_0$ at level of significance α .

Solution. We have $L(\mu) = (2\pi\sigma_0^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_0^2}\sum (X_i - \mu)^2\right]$.

Under
$$H_0, L(\mu_0) = (2\pi\sigma_0^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_0^2}\sum_i(X_i - \mu_0)^2\right].$$

We know $L(\mu)$ is maximized at \overline{X} and thus

$$L(\widehat{\mu}) = (2\pi\sigma_0^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_0^2} \sum_{i} (X_i - \overline{X})^2\right].$$

Therefore,

$$\Lambda = \frac{L(\mu_0)}{L(\widehat{\mu})} = \exp\left[-\frac{1}{2\sigma_0^2} \left(\sum (X_i - \mu_0)^2 - \sum (X_i - \overline{X})^2\right)\right]$$
$$= \exp\left[-\frac{1}{2\sigma_0^2} n(\overline{X} - \mu_0)^2\right].$$

Besides, p = 1, d = 0 and thus

$$-2\ln\Lambda = \frac{1}{\sigma_0^2}n(\overline{X} - \mu_0)^2 = \left(\frac{\overline{X} - \mu_0}{\sigma_0/\sqrt{n}}\right)^2 \sim \chi_{(1)}^2.$$

We reject H_0 if $-2 \ln \Lambda > \chi^2_{1-\alpha(1)}$.

• LRT for non-Normal distribution: LRT allows us to test hypothesis for non-Normal distributions since all we need is the likelihood function evaluated at θ_0 and $\hat{\theta}$.

Example 8.2. Suppose $X_i \sim \text{Exp}(\theta), \mathbb{E}[X] = \theta$. We test $H_0: \theta = 60, H_1: \theta \neq 60$. Besides, $n = 100, \overline{x} = 75$.

Solution. (Method 1) $L(\theta) = \frac{1}{\theta^n} \exp \left[-\frac{1}{\theta} \sum_{i=1}^n X_i \right]$ and the MLE is \overline{X} .

Therefore, $\Lambda = \left(\frac{\overline{X}}{\theta}\right)^n \exp\left[n(1-\frac{\overline{X}}{\theta_0})\right]$ and thus

$$-2\ln\Lambda = -2n\left(\ln\overline{X} - \ln\theta_0 + 1 - \frac{\overline{X}}{\theta_0}\right) \sim \chi_{(1)}^2.$$

Since $\theta_0 = 60, n = 100, \overline{x} = 75$, then $-2 \ln \Lambda = 5.37 > \chi^2_{0.95(1)} = 3.84$. Thus we reject H_0 at $\alpha = 0.05$.

(Method 2) If H_0 is true, then $-2 \ln \Lambda \sim \chi^2_{(1)}$ and p-value = $P(\chi^2_{(1)} > 5.37) = 0.02$.

8.2 Constructing CI using LRT

• Under H_0 , $-2\ln\Lambda \xrightarrow{D} \chi^2_{(p-d)}$, we reject H_0 if $-2\ln\Lambda > \chi^2_{1-\alpha(p-d)}$. Conversely, we will fail to reject if $-2\ln\Lambda < \chi^2_{1-\alpha(p-d)}$. Thus, $(1-\alpha)$ level CI for θ is the interval of θ values for which $-2\ln\Lambda < \chi^2_{1-\alpha(p-d)}$, i.e., $L(\theta) > L(\widehat{\theta}) \exp\left[-\frac{\chi^2_{1-\alpha(p-d)}}{2}\right]$.

8.3 Comparing two independent Normal population

8.3.1 Equality of two variances

- Suppose we have two independent Normal samples $X_1, ..., X_n \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y_1, ..., Y_m \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$. We want to test $H_0: \sigma_X^2 = \sigma_Y^2 H_1: \sigma_X^2 \neq \sigma_Y^2$.
- We have $\frac{(n-1)S_X^2}{\sigma_X^2} \sim \chi_{(n-1)}^2, \frac{(m-1)S_Y^2}{\sigma_Y^2} \sim \chi_{(m-1)}^2$ and thus

$$\frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F_{(n-1,m-1)}.$$

Under H_0 , we have $\frac{S_X^2}{S_Y^2} \sim F_{(n-1,m-1)}$.

• The rejection region is $\left(-\infty, F_{\frac{\alpha}{2}(n-1,m-1)}\right) \cup \left(F_{1-\frac{\alpha}{2}(n-1,m-1)}, \infty\right)$.

8.3.2 Equality of two means with variances known

- We want to test $H_0: \mu_X = \mu_Y$, which is same to test $H_0: \mu_X \mu_Y = 0$.
- We have $\overline{X} \sim \mathcal{N}(\mu_X, \frac{\sigma_X^2}{n}), \overline{Y} \sim \mathcal{N}(\mu_Y, \frac{\sigma_Y^2}{m})$ and thus

$$\frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim \mathcal{N}(0, 1).$$

Under H_0 , we have

$$\frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}} \sim \mathcal{N}(0, 1).$$

- The (1α) level CI is $\left[(\overline{X} \overline{Y}) \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}} \right]$ and check if 0 is inside or not. Or, the rejection region is $(-\infty, z_{\frac{\alpha}{2}}) \cup (z_{1-\frac{\alpha}{2},\infty})$. Or, calculate the p-value.
- If $\sigma_X = \sigma_Y = \sigma$, then under H_0 , we have $\frac{\overline{X} \overline{Y}}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim \mathcal{N}(0, 1)$.

8.3.3 Equality of two means with variances unknown

- Suppose $\sigma_X = \sigma_Y = \sigma$.
- We have $\frac{\overline{X}-\overline{Y}}{\sigma\sqrt{\frac{1}{n}+\frac{1}{m}}} \sim \mathcal{N}(0,1)$, and

$$\frac{(n-1)S_X^2}{\sigma^2} + \frac{(m-1)S_Y^2}{\sigma^2} = \frac{1}{\sigma^2} [(n-1)S_X^2 + (m-1)S_Y^2]$$
$$\sim \chi_{(n-1)}^2 + \chi_{(n-1)}^2 = \chi_{(n+m-2)}^2.$$

Therefore,

$$\frac{\frac{\overline{X} - \overline{Y}}{\sigma \sqrt{\frac{1}{n} + \frac{1}{m}}}}{\sqrt{\frac{1}{\sigma^2} [(n-1)S_X^2 + (m-1)S_Y^2]/(n+m-2)}} \sim t_{(n+m-2)},$$

i.e.,

$$\frac{\overline{X} - \overline{Y}}{S_p \sqrt{\frac{1}{n} + \frac{1}{m}}} \sim t_{(n+m-2)},$$

where $S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}$ is called the **pooled sample variance**.

8.4 Comparing two population means (paired data)

- In many practical setting, the samples are paired and thus the observations are not independent.
- We want to test $H_0: \mu_X \mu_Y = 0, H_1: \mu_X \mu_Y \neq 0.$
 - \circ If we use $\overline{X}-\overline{Y}, \mathrm{Var}[\overline{X}-\overline{Y}]$ will contain a covariance term.
 - \circ To simplify, define $D = X Y \Rightarrow \mu_D = \mu_X \mu_Y$, and thus

$$\frac{\overline{D}}{S_D/\sqrt{n}} \sim t_{(n-1)}.$$

8.5 Comparing two populations using LRT

• Suppose we have two independent Normal samples: $X_1, X_n \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y_1, Y_m \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$, where σ_X^2 and σ_Y^2 are known. We want to test $H_0: \mu_X = \mu_Y$ by LRT.

 \circ We have two unknown parameters μ_X, μ_Y . Under $H_0, \mu_X = \mu_Y = \mu$, then we have one unknown parameter.

• We have

$$L(\mu_X, \mu_Y) = (2\pi\sigma_X^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_X^2} \sum_{i=1}^n (X_i - \mu_X)^2\right] (2\pi\sigma_Y^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_Y^2} \sum_{i=1}^n (Y_i - \mu_Y)^2\right],$$

and $\hat{\mu}_X = \overline{X}, \hat{\mu}_Y = \overline{Y}.$

 \circ Under H_0 , we have

$$L(\mu) = (2\pi\sigma_X^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_X^2} \sum_{i=1}^n (X_i - \mu)^2\right] (2\pi\sigma_Y^2)^{-\frac{n}{2}} \exp\left[-\frac{1}{2\sigma_Y^2} \sum_{i=1}^n (Y_i - \mu)^2\right],$$

and to find the MLE of μ , we have

$$l(\mu) = C - \frac{1}{2\sigma_X^2} \sum_{i} (X_i - \mu)^2 - \frac{1}{2\sigma_Y^2} \sum_{i} (Y_j - \mu)^2.$$

Hence,

$$\partial_{\mu}l = \frac{1}{\sigma_X^2}\sum(X_i - \mu) + \frac{1}{\sigma_Y^2}\sum(Y_j - \mu) = \frac{1}{\sigma_X^2}(n\overline{X} - n\mu) + \frac{1}{\sigma_Y^2}(m\overline{Y} - m\mu).$$

Let $\partial_{\mu}l = 0$, we have

$$\widehat{\mu} = \frac{\frac{1}{\sigma_X^2/n}}{\frac{1}{\sigma_Y^2/n} + \frac{1}{\sigma_Y^2/m}} \overline{X} + \frac{\frac{1}{\sigma_Y^2/m}}{\frac{1}{\sigma_Y^2/n} + \frac{1}{\sigma_Y^2/m}} \overline{Y}.$$

 $\circ \text{ Hence, } -2\ln\Lambda = -2\ln\frac{L(\hat{\mu})}{L(\hat{\mu}_X,\hat{\mu}_Y)} \text{ and under } H_0, -2\ln\Lambda \sim \chi^2_{(1)}.$

8.6 Numerical example

Example 8.3. $(4, 10, 10, 4, 6, 8, 8, 3, 4, 4) \stackrel{\text{i.i.d.}}{\sim} \text{Pois}(\lambda)$. Test $H_0: \lambda = 5$.

Solution. (Method 1) $L(\lambda) = \frac{e^{-n\lambda}\lambda^{\sum x_i}}{\prod x_i!}$. Since $n = 10, \lambda_0 = 5, \widehat{\lambda} = \overline{x} = 6.1$, then we have

$$\Lambda = \frac{e^{-50}5^{61}}{e^{-61}(6.1)^{61}} = 0.3231, -2\ln\Lambda = 2.2598.$$

Since $\chi^2_{0.95(1)} = 3.841459, -2 \ln \Lambda < \chi^2_{0.95(1)}$, then we fail to reject H_0 .

(Method 2) If H_0 is true, then $-2 \ln \Lambda \sim \chi^2_{(1)}$. Thus, p-value = $P[\chi^2_{(1)} > 2.2598] = 0.13 > 0.05$.

Example 8.4. (Rice, pp.425, B) $\overline{x}_A = 80.02, \overline{x}_B = 79.98, s_{x_A} = 0.024, s_{x_B} = 0.031$, and σ_A, σ_B are unknown.

Solution. We have
$$s_p^2 = \frac{12(0.024)^2 + 7(0.031)^2}{19}, s_p \sqrt{\frac{1}{n} + \frac{1}{m}} = 0.012.$$

The test statistic is $T=3.3333, t_{0.975(19)}=2.093$. Since $T>t_{0.975(19)},$ we reject H_0 . The 95% CI for $\mu_{x_A}-\mu_{x_B}$ is $\left[\left(\overline{x}_A-\overline{x}_B\pm t_{0.975(19)}s_p\sqrt{\frac{1}{n}+\frac{1}{m}}\right)\right]=[0.015,0.065]$.

Example 8.5. (Week 8 slide, pp. 32) Let X and Y represent the before and after measurements of 10 participants. Check whether the drink changes the blood sugar level or not.

Solution. We have $\overline{d} = 4.47, s_d = 3.545106$.

The test statistic is $T = \frac{\bar{d}}{s_d/\sqrt{n}} = 3.987294, t_{0.975(9)} = 2.262$. Since $T > t_{0.975(9)}$, we reject H_0 . Besides, the rejection region is $(-\infty, -2.262) \cup (2.262, \infty)$.

9 Model Checking

9.1 χ^2 goodness of fit test

- The test is used to assess whether or not a *categorical random variable* W, which takes finite values $\{1, 2, ..., k\}$, has a specified probability measure P.
 - \circ When we have discrete r.v. which takes infinitely many values, we partition the possible values into k categories.
 - \circ When we have a continuous r.v., we partition the real line into k sub-intervals.

Naturally, the counts of these k categories form a multinomial distribution.

• Let $X_1, ..., X_k$ be the observed counts of category 1, 2, ..., k respectively. We can write $(X_1, ..., X_k) \sim \text{Multinomial}(n, p_1, ..., p_k)$.

Besides, $\mathbb{E}[X_i] = np_i, \operatorname{Var}[X_i] = np_i(1-p_i)$. The test statistic T is $X^2 = \sum_{i=1}^k \frac{(X_i - np_i)^2}{np_i} \xrightarrow{D} \chi^2_{(k-1)}$. Or we can say

$$X^{2} = \sum_{i=1}^{k} \frac{(\text{Observed count of } i - \text{Expected count of } i)^{2}}{\text{Expected count of } i} \xrightarrow{D} \chi^{2}_{(k-1)}.$$

Proof. (For the simple case, i.e., k = 2)

We have

$$X^{2} = \sum_{i=1}^{2} \frac{(X_{i} - np_{i})^{2}}{np_{i}} = \frac{(X_{1} - np_{1})^{2}}{np_{1}} + \frac{(X_{2} - np_{2})^{2}}{np_{2}}$$

$$= \frac{(X_{1} - np_{1})^{2}}{np_{1}} + \frac{(n - X_{1} - n(1 - p_{1}))^{2}}{np_{2}} = \frac{(X_{1} - np_{1})^{2}}{np_{1}} + \frac{(X_{1} - np_{1})^{2}}{np_{2}}$$

$$= \frac{(X_{1} - np_{1})^{2}}{n} \left(\frac{1}{p_{1}} + \frac{1}{p_{2}}\right) = \left(\frac{X_{1} - np_{1}}{\sqrt{np_{1}p_{2}}}\right)^{2} \xrightarrow{D} \chi_{(1)}^{2}.$$

• It is recommended to ensure that $\mathbb{E}[X_i] = np_i \ge 1, \forall i$.

Example 9.1. Suppose we have 10000 random numbers generated from a Uniform[0, 1] distribution. After dividing them into 10 equal length bins, we test if these numbers look uniform or not.

\overline{i}	1	2	3	4	5	6	7	8	9	10
x_i	993	1044	1061	1021	1017	973	975	965	996	955

Solution. If the numbers are really from a Uniform[0, 1] distribution then expected counts for each cell is $10000 \cdot \frac{1}{10} = 1000$, so we have

\overline{i}	1	2	3	4	5	6	7	8	9	10
x_i	993	1044	1061	1021	1017	973	975	965	996	955
$\hat{x_i}$	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000

The test statistic is $X^2 = \frac{(993-1000)^2}{1000} + \cdots + \frac{(955-1000)^2}{1000} = 11.056$. The *p*-value is 0.27189, and thus we fail to reject the statement that these number are from a Uniform[0, 1] distribution. In naive words, they look uniform.

The code for p-value is:

 $1 \ \boxed{1 - \mathbf{pchisq}(11.056, 9)}$

Example 9.2. Suppose life-lengths of light bulbs (Y_i) follows an Exponential (β) , where β is unknown. We have the partitions as

$$(0,1], (1,2], (2,3], (3,\infty).$$

Based on the sample of size n = 30, the observed counts are 5, 16, 8, 1. We test H_0 : The true model is Exponential(β).

Solution. First, we find the MLE for β . If the life-lengths of the 30 bulbs are available, then

$$L(\beta) = \beta^{30} \exp\left[-\beta \sum y_i\right] \Rightarrow \hat{\beta} = \frac{1}{\overline{y}}.$$

If all we have is the counts of Y_i 's that fall into those four partitions, we can define

$$L(\beta) = (1 - e^{-\beta})^2 (e^{-\beta} - e^{-2\beta})^{16} (e^{-2\beta} - e^{-3\beta})^8 (e^{-3\beta})^1,$$

where $(1-e^{-\beta}) = P(Y_i \in (0,1])$, similarly the other terms. For instance,

$$p_2 = \int_1^2 \beta e^{-\beta x} dx = e^{-\beta} - e^{-2\beta}.$$

Thus, we have $\hat{\beta} = 0.603535$, and

$$p_1 = 0.453125,$$

 $p_2 = 0.247803,$
 $p_3 = 0.135517,$
 $p_4 = 0.163555.$

The expected counts are 13.59375, 7.43409, 4.06551, 4.90665, respectively.

Hence, the test statistic is $X^2 = \frac{(5-13.59375)^2}{13.59375} + \cdots = 22.22$. The *p*-value is 0.000015, and thus we reject H_0 , i.e., we have strong evidence that Exponential(β) is not the true model for these data.

The code for p-value is:

```
1 1 - pchisq(22.22, 2)
```

9.2 Discrepancy statistic

- Suppose $(X_1, ..., X_n)$ is believed to be from f_{θ} with $\theta \in \Omega$. **Discrepancy statistic**, D(X) is a function that takes the samples observations and maps it to \mathbb{R} . It measures the deviation from the model under consideration. A large value of D(X) implies a deviation has occurred.
 - \circ In test of hypothesis sense, we asses whether D(X) lies in the region of low probability of its distribution when the model is correct.
 - \circ Restriction: When the model is correct, D must have a single distribution, i.e., the distribution of D cannot depend on θ .

- \circ A statistic D whose distribution under the model does not depend upon θ is called **ancillary**, i.e., if $(X_1, ..., X_n) \sim f_{\theta}$, then D(X) has the same distribution for every $\theta \in \Omega$.
- * Being ancillary does not mean D can be used as a discrepancy statistic.
- \ast If D is constant, then it is ancillary, but not useful for model checking.

Example 9.3. Suppose $(X_1, ..., X_n) \sim \mathcal{N}(\mu, \sigma_0^2), X_i$'s are independent. Define $R_i = X_i - \overline{X}$. For instance,

$$X_1 - \overline{X} = X_1 - \frac{1}{n}(X_1 + \dots + X_n) = (1 - \frac{1}{n})X_1 - \frac{1}{n}X_2 - \dots - \frac{1}{n}X_n.$$

Thus,

$$\mathbb{E}[X_1 - \overline{X}] = \mathbb{E}[X_1] - \mathbb{E}[\overline{X}] = \mu - \mu = 0,$$

and

$$Var[X_1 - \overline{X}] = cov(X_1 - \overline{X}, X_1 - \overline{X})$$

$$= cov((1 - \frac{1}{n})X_1 - \frac{1}{n}X_2 - \dots - \frac{1}{n}X_n, (1 - \frac{1}{n})X_1 - \frac{1}{n}X_2 - \dots - \frac{1}{n}X_n)$$

$$= (1 - \frac{1}{n})\sigma_0^2,$$

Therefore, $R_i \sim \mathcal{N}(0, (1-\frac{1}{n})\sigma_0^2)$. The discrepancy statistic

$$D(R) = \frac{1}{\sigma_0^2} \sum_{i=1}^n R_i^2 = \frac{1}{\sigma_0^2} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{(n-1)S^2}{\sigma_0^2} \sim \chi_{(n-1)}^2$$

If D(r) represent the observed value of D based on the current sample then, then we can calculate the p-value.

9.3 Residual and quantile/probability plots

• Residual plot: Since $R_i \sim \mathcal{N}(0, (1 - \frac{1}{n}\sigma_0^2))$, we can define **standardized** residual

$$r_i^* = \frac{x_i - \overline{x}}{\sqrt{(1 - \frac{1}{n}\sigma_0^2)}}.$$

If the true model is $\mathcal{N}(\mu, \sigma_0^2)$, then our expectation is that r_i^* 's will behave like values from a $\mathcal{N}(0, 1)$.

- \circ Plotting $r_1^*,...,r_n^*$ against (1,...,n).
- The points should be clustered around zero.
- The points should lie in (-3, 3).
- They should look random (should not depict any pattern).

Example 9.4. Points in Figure 9.2 satisfies the conditions above. Some of points in Figure 9.3 are outside (-3, 3), indicating longer tail. Most of points in Figure 9.4 are on positive side, indicating right skewed.

• Quantile/Probability plots: Suppose (X_i) is believed to be from $\mathcal{N}(\mu, \sigma^2)$. Let $X_{(i)}$ represent the *i*-th order statistic. We have

$$\mathbb{E}[X_{(i)}] = \mu + \sigma \cdot \Phi^{-1}\left(\frac{i}{n+1}\right),\,$$

where Φ^{-1} is the inverse CDF of $\mathcal{N}(0,1)$.

Let x_j correspond to the oder statistic $x_{(i)}$, then $\Phi^{-1}\left(\frac{i}{n+1}\right)$ is the **Normal score** of x_j . If we plot the points $\left(x_{(i)}, \Phi^{-1}\left(\frac{i}{n+1}\right)\right)$, they should lie approximately on a straight line with intercept μ and slope σ .

Example 9.5. Suppose we want to assess whether or not the following data set can be considered a sample of sample of size n = 10 from some Normal distribution:

The order statistics and associated Normal scores are

i	1	2	3	4	5
$\overline{x_{(i)}}$	0.28	0.47	1.18	1.66	1.77
$\Phi^{-1}\left(\frac{i}{n+1}\right)$	-1.34	-0.91	-0.61	-0.35	-0.12
i	6	7	8	9	10
$\frac{\mathrm{i}}{x_{(i)}}$	$\frac{6}{2.00}$	$\frac{7}{3.33}$	8 4.15	9 6.43	10 8.17

Figure 9.2: A plot of the standardized residuals for a sample of 100 from an $\mathcal{N}(0,1)$ distribution.

Figure 9.3: A plot of the standardized residuals for a sample of 100 from $X = (\sqrt{3})^{-1}Z$, where $Z \sim t_{(3)}$.

Figure 9.4: A plot of the standardized residuals for a sample of 100 from an Exponential(1) distribution. \$39\$