SUBSTITUTE SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: GENSET SA
 - (B) STREET: 24 RUE ROYALE
 - (C) CITY: PARIS
 - (E) COUNTRY: FRANCE
 - (F) POSTAL CODE: 75008
- (ii) TITLE OF INVENTION: HUMAN DEFENSIN DEF-X GENE AND DNAC COMPOSITION CONTAINING SAME AND DIAGNOSTIC AND THERAPEUTIC APPLICATIONS
 - (iii) NUMBER OF SEQUENCES: 6
 - (iv) CORRESPONENCE ADDRESS:
 - (A) ADDRESSEE: Saliwanchik, Lloyd & Saliwanchik
 - (B) STREET: 2421 N.W. 41st Street, Suite A-1
 - (C) CITY: Gainesville
 - (D) STATE: Florida (E) COUNTRY: USA
 - (F) ZIP: 32606
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERARATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER (unassigned)
 - (B) FILING DATE: OCTOBER 18, 2001
 - (vii) PRIORITY APPLICATION DATA:
 - (A) APPLICATION NUMBER 09/486,580
 - (B) FILING DATE: FEBRUARY 25, 2000
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Frank C. Eisenschenk, Ph.D.
 - (B) REGISTRATION NUMBER: 45,332
 - (C) REFERENCE/DOCKET NUMBER: GEN-100D1
 - (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4415 BASE PAIRS
 - (B) TYPE: NUCLEOTIDE
 - (C) STRANDEDNESS: DOUBLE
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (ix) FEATURE:
 - (A) NAME/KEY: Exon 1
 - (B) LOCATION: 1836..1874

(A) NAME/KEY: Exon 2 (B) LOCATION: 3394..3577

(ix) FEATURE:

(A) NAME/KEY: Exon 3 (B) LOCATION: 4161..4380

(ix) FEATURE:

(A) NAME/KEY: start CDS (B) LOCATION: 3406..3408

(ix) FEATURE:

(A) NAME/KEY: stop CDS (B) LOCATION: 4276..4278

(ix) FEATURE:
 (A) NAME/KEY: polyadenylation site

(B) LOCATION: 4374..4379

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ACACCATTTG TCTTCATGTA ACCCCATTAG CTATACCCTC TAGTGCAAGG AAACCATAGG 60 GCCTAGGTCA CACCATGAGG CTGCNCTTAC AAGTTATGCA AAAACTATGG ACTTGGGAGA 120 180 CCTGTGCGTA ACAACATCAC ACNCCAAATT TAACCAGCTC TCCCCATAAC AGCACGCTCA TGTGTTACTG AGGAAATGCC TGTGGATTGG AGTGTGTTCT GTGTGCAGGA GGCTGGTCCA 240 GGTTTCACTT CTGCAGGACA CTGGACGTTT CCCAAAACCA GCAGACTTTC CCCACGTGCA 300 CACACCCCC TTCTCATTTT GCCTCTACAT CCATATCCAC TGGGCCCTTC AGGCACCTAC 360 TAATGCCCTA GAACCTAAAA CCATCATCTG GGGCCCAGTT CCCTGAATGG CCCTAATCTC 420 TTCCTCTGCT GGAATGAGTC CAGTGCCCAC TTCCTCCAAC GGTGAAATTG CTGGGCTGCT 480 ACAGATCAGG AACTCACTGC TTCCTCATAG GGGCAGCCGA CTTCACTGCT CTGCAACAGC 540 GACCACCCCT AGCGAGGCTT GAGATGCCTC TTGCCTCCTT AAGACTGAGG GAGACGCTTC 600 AGCTCTCACT CCACTGCCCC AAGTCCTCCA CAGCGCGGTG CCTGCTGCCT TCACACAGAG 660 CTGCAGGGGN AGGTCCTGTG TATCCGGCCT GCTGGACCAG CGCTGTGCAC AACCCTCCCA 720 TGGCAACAGT GGCTGCCCGG CCTGCACACT GGGCTTGGCA ACCTCGCTGT AGGTATTTAT 780 TCCCTCAGGA GTGACTGCAT TCTTTTCCCA TTTCCAGAAA ACTGATGCCA TTTACCTCAC 840 TATGAGGAGG AGGAGGAGGA GGAGGGTGGA GAGTGGTACA TTTTAAAATG TGCACTATTC 900 TCCCTAGGAC TCCCCCTCAA ATAACCCAGG AGGGACCATA CCAGCTCATT CCTGTGTATC 960 CCAAGCATAN GAGTAATCAT CCCACTCATG CTGAGTGTAT GGTGGCCATT AAGCCTGCCC 1020 TGAACTGGCT TTAGAACAAG GTGTTTGAGC ACACAGCACC GTCTTGCTGC CACCTTGGCC 1080 CCCTCCCTTG TGAGACCTCT GAGACACATT NAGGTCTCAC CTAAAAATCT CAGGATTTCT 1140

AGGCCCAAAN CGGTCCTAAA AAATTGTTCA GTCTGAACTC TCTAAGGTCA AGAGAAGAGG 1200 TGGTTGCTCC CTCTAAGAAA CCACATGTTG CATGTACATC CTTAATTCCG GAAAGTCCAA 1260 CAAACCTGCC CTGCTTAGCA ACACAAGCCG AGGTGGTACT CCTCTCACCC GGGCATTCTC 1320 CAACACACCT GTTTGTCCAA ACAGCTTTGA TTTGTTTTTA TAGTTGGACC CCAGGTTCCC 1380 AGGAGGCTGG TTCAGGCCAT ATTCCAAATC CTCATCTGTG TGTGAGTGGC ATTCTTAGCC 1440 TAGCCTCCTT ACAGGGTGGA TACTATGATA CACAGCCAGG CTGTCCCAGT GGCTTTCAAT ATTCTTTTGG TCCAGATAGT TCAGCCTCAG CACCAGTGTA GGCATCACAG GGTCAATTGT 1560 CTTAGGAGTC ATGGAGAATT CATAGTTGGT AGCTACCTGG GCCTGGCCAG GGCTGACCAT 1620 AGACAAGGCA TCCCTCTGTG AACTCCTATT TTAATGCCAG CTTCCCAACA AATTTCTCAA 1680 CTGCTCTTAC CAGCAGGTAT TTAAACTACT CAATAGAAAG TAACCCTGAA AATTAGGACA 1740 CCTGTTCCCA AAAGACCCTT AAATAGGGGA AGTCCTTTCN CTGCTTGTGC ACAGCTGCTG 1800 ATGTGGCAAC ATGAGGCCTG GGACAGGGGA CTGTCCTCTG CCCACTCTGG TAGCCTCACG 1860 TAGCTTAACA ATCTGTCAGT AATACAATAC AAAACTTAAA CTTTCATACT GCGGTTCCAC 1920 CCAGGAAGCT GTGTTCCCAA TCTGACCCGT GATTATGGGG CCACCTCAGA GGGNACCCAG 1980 TGAGGGAATA TTTTGCCATC TGGGACTGTT GGTTGCTGGG GGCAGTGGCT ATGAGCTCAG 2040 TTAATAAACT CAAGCAGTTT CCTTCCAAAC ACACATGTCC TACTTAACGT GTCCAACAGA 2100 GATGATCATA CTCATANGCT GCTAAAACAT TANTTTTATT TTGAGAAAAG TCTATTCATG 2160 TTCTTGGCCC ATGGAGTTTT CATTINATTA NTTTATTTAT TTTGCAGAGA TGGAGTCTCA 2220 CTATGTTGCT CAAGCTGGTC TCCAACTCCT GGGCTCAAGC GATCTTCCTA CTTTGGCCTT 2280 TGAAAGCGCT GAGATTGCCT GTGTGAGCCA TCATGGGGGC TCACTGGCCC ACTGATTAAT 2340 CAGATTAATT GTTTTTTGCT ATTGAANTTG TTTGACTTCC TTGTATATTC GGATATTTAC 2400 CCATTCTAAC ACGTAGGGTT TGCAAATATT TTCTCTCATG TTCTGTGTTG CCTTTTCACT 2460 CAGTTGATGG TTTCCTTTGC TGTGCAGGTG CTTTAGTGTT CAACGCAGCC CCGCTTGTCT 2520 ATTITICCATT TTATTGCCTG TCCCTTTGAT GTCATAGCCA AGAAATAATT GCCCAGATTA 2580 ATGTCAAAAA GCTTTATCCC TATATATTCT TCTAGTAGTT TATGGTTTCA GATCTTATGT 2640 TTAGGTCTTC AATCCATTGA GTTGATTTTT GTATGTGGTA TAAGAAAAAA GACCACATGT 2700 ATACATATCT CAAATTCTAA GGTAGTATAT ATTAGACACA TACAATGTGT CTATTTACAC 2760 ACATTGAGCT GAAAATAATA AACATATTTT TATCTTTCAA TCAACTCTAT CTCTATCTCA 2820 CTGAACTTGT TTCACCTATA GCCTGATGAG GTTGCTGTCC TCTCTACCCC AGCTCCTATA 2880 GGAGACTGCT CATCCCCTAA CCTCAAAAAC CCCTTCATGA GGGTGATAAT GCCCTTGAAT 2940 CCTGCAATGA ATTAGTTCTC TACTACAGTG GAATTCAGGT CTGTTATGAG GGTCTGGATC 3000

TCTGAAGAGA	AGAGCTCTCA	TTTTCAGAAA	ATAAGCAGGA	TTTATTCCCT	GAAATTACTG	3060
AATTAAATCA	CTGTTTCGAT	TACTTTTTGC	AATATTAAAA	GTAAATATTT	AAACAGGTAA	3120
AAACAGAAAT	AATGGTAGGG	TCCTTATCAT	CACCGTGAAT	TCCAAGCTAG	CATAGACACT	3180
AAACCTAGAG	ATTCACACTA	GAATGAAAGC	TGGGAGAGCA	GAGGAGTCTC	AGAAGGATGT	3240
GAGGCCAAT	GGACACCTGC	AACCTCTCCA	ACGAAATGCC	TACCTCCTCT	CACTGCAGCA	3300
CCATCTCTG	AGCCTTCTCG	CAGCAGAGCT	ATAAATTCAG	CCTGGCTCCT	CCGTTCCCAC	3360
ACATCCACTC	CTGCTCTCCC	тестетесте	CAGGTGACTA	CAGTTATGAG	GACCCTCACC	3420
CTCCTCTCTG	CCTTTCTCCT	GGTGGCCCTT	CAGGCCTGGG	CAGAGCCGCT	CCAGGCAAGA	3480
GCTCATGAGA	TGCCAGCCCA	GAAGCAGCCT	CCAGCAGATG	ACCAGGATGT	GGTCATTTAC	3540
TTTCAGGAG	ATGACAGCTG	CTCTCTTCAG	GTTCCAGGTG	AGAGATGCCA	GCATGCAGAG	3600
TACAGACTA	GACAGAAGGA	CAGGAGACAG	GCTCTGGAAT	TGGATCTCAG	TGGCAGATGT	3660
CACTTAGGTG	GCTATACTTA	ACATCTCTGG	TCCTGGATTT	TCTCATATCT	AAATGGAATA	3720
GAGAACCAAA	GAAATCTAAG	AGATTTTTCT	TTCTCCAAAA	ACTTGATTCC	AAGATATGAC	3780
GTGAAATTC	ACTAGATTTA	AGATATAAGG	AGATGCTACC	TAGTTCCTTC	TGGAGCCAGA	3840
CAAACAAGCT	TAAGTATATA	GGAAAATATT	TCACCCTGTC	TATATAGGAG	GTTTTAGAAC	3900
TGGAGAGGA	GCCTAAGAAT	GTGTTCAGGT	GTGTGTGTGA	TGGGCAGGAA	TGCAGAAAAG	3960
GAAGCAAAG	GAGAATGAGT	CTCGAATCCT	GTGTGACCAG	CACTGCTCTG	TGTATTTATT	4020
CTATTGACT	GAGATTGTTT	GTGCTACCGG	CTGTAATACA	GCCAACATCA	CTCATCAGCC	4080
ACATGTGAC	TTCTCCAAGA	TTCCCTTTAC	CACCCACTGC	TGNACCCCGT	ACTCAGTTTC	4140
GATGCTCTC	TCTGGGTCCC	CAGGCTCAAC	AAAGGGCTTG	ATCTGCCATT	GCAGAGTACT	4200
TACTGCATT	TTTGGAGAAC	ATCTTGGTGG	GACCTGCTTC	ATCCTTGGTG	AACGCTACCC	4260
ATCTGCTGC	TACTAAGCTT	GCAGACTAGA	GAAAAAGAGT	TCATAATTTT	CTTTGAGCAT	4320
AAAGGGAAT	TGTTATTCTT	ATACCTTGTC	CTCGATTTCC	TGTCCTCATC	CCAAATAAAT	4380
CTTGGTAAC	ATGATTTCCG	GGTTTTTTT	TTTTT			4415

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTIC:
- (A) LENGTH: 453 BASE PAIRS (B) TYPE: NUCLEOTIDE
 - (C) STRANDEDNESS: DOUBLE (D) TOPOLOGY: LINEAR

 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

CTCT	rgcco	CAC	rctgo	FTAGG	e re	CACG	rAGC.	I IA	ACAA	rerg	TGA	TAC	AGI		t Arg	
				CTC Leu											TGG Trp	10
				CAG Gln											CAG Gln	15
				GAC Asp											GAC Asp 50	20
				CAG Gln 55												24
TGC Cys	AGA Arg	GTA Val	CTA Leu 70	TAC Tyr	TGC Cys	ATT Ile	TTT Phe	GGA Gly 75	GAA Glu	CAT His	CTT Leu	GGT Gly	GGG Gly 80	ACC Thr	TGC Cys	29
				GAA Glu									GCT.	rgcA	BAC	34
TAG/	AGAA	AAA (GAGT	rcat/	AA T	rttc:	TTG	A GC	ATTA	AAGG	GAA7	TGT	TAT :	CTT	ATACCT	4 (
TGT	CCTC	JAT '	rrcc	rgrco	CT CA	ATCC	CAAA	r aai	ATAC	rtgg	TAAG	CATG				4.5

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 94 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS: SINGLE
 (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: PROTEIN
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (ix) FEATURE:
 - (A) NAME/KEY: SIGNAL PEPTIDE
 - (B) LOCATION: 1..19
 - (ix) FEATURE:
 - (A) NAME/KEY: PRO REGION (B) LOCATION: 20..63
 - (ix) FEATURE:
 - (A) NAME/KEY: MATURE PEPTIDE

(B) LOCATION: 64..94

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Met Arg Thr Leu Thr Leu Leu Ser Ala Phe Leu Leu Val Ala Leu Gln

Ala Trp Ala Glu Pro Leu Gln Ala Arg Ala His Glu Met Pro Ala Gln 20 25 30

Lys Gln Pro Pro Ala Asp Asp Gln Asp Val Val Ile Tyr Phe Ser Gly 35 40 45

Asp Asp Ser Cys Ser Leu Gln Val Pro Gly Ser Thr Lys Gly Leu Ile 50 $\,$ 60 $\,$

Cys His Cys Arg Val Leu Tyr Cys Ile Phe Gly Glu His Leu Gly Gly 65 70 75 80

Thr Cys Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr 85 90

- (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: SIGNAL PEPTIDE
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Arg Thr Leu Thr Leu Leu Ser Ala Phe Leu Leu Val Ala Leu Gln

Ala Trp Ala

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: PRO REGION
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Glu Pro Leu Gln Ala Arg Ala His Glu Met Pro Ala Gln Lys Gln Pro 1 5 10 15

Pro Ala Asp Asp Gln Asp Val Val Ile Tyr Phe Ser Gly Asp Asp Ser 20 25 30

Cys Ser Leu Gln Val Pro Gly Ser Thr Lys Gly Leu 35 40

(2) INFORMATION FOR SEQ ID NO: 6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
- (ii) MOLECULE TYPE: MATURE PEPTIDE
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Gly Thr Cys Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr $20 \hspace{1.5cm} 25 \hspace{1.5cm} 30$