Skin Cancer Detection using Deep Learning

VS.

MELANOMA

miliskin.com

NORMAL MOLES

Kaggle Challenge: ISIC 2024 - Skin Cancer Detection with 3D-TBP

Team J: Mario El Shaer, Omar Shehata, Khaled Saleh, Aymane Aaquil

COMP433. December 8th 2024

Problem Statement and Project Goals

The Problem

Skin cancer and melanoma particularly is life-threatening

- Manual examination can be very timely and not cost-effective.
 - Also prone to Human error

What we want to do

 Develop a scalable and accurate skin cancer detection model.

Minimize false negatives to prevent missed diagnoses

Data Overview

Data breakdown: 400,666 benign cases Vs 393 Malignant Malgnant 0.176 Benign 99.5%

Data included:

- 1. JPG images
- 2. A CSV file with metadata including
 - a. Age
 - b. Sex
 - c. Legion size
 - d. Location

And much much more

Methodology Overview

Approach:

- Data Preprocessing: Balancing, cleaning, feature selection.
- CNN Models: ResNet50 & EfficientNetB0.
- Multimodal Integration: Combining image and tabular data.
- Model Evaluation: Metrics such as precision, recall, F1-score.

Data Processing & Feature Selection

Data Processing

• Undersampling benign cases

Data Augmentation for malignant cases

Purpose: Handle class imbalance

Feature selection

• LightGBM, XGBoost, CatBoost models to select top 20 features from the csv file.

ResNet50 extracted the 2048 features from the images

Model Design and Training

Model Design:

- ResNet50 & EfficientNetB0 were used for image feature extraction.
 - Final choice was ResNet50 as it had better results
- Fully connected neural network for the multimodal learning

Training Details:

• Learning Rate: 0.00001

• Batch Size: 128

• Epochs: 200

Weighted loss function was used to prioritize malignant cases

Result Summary

Model	LR	BS	Epoch	Test Recall
Model 1 Itr.1	0.001	64	100	0.32
Model 1 Itr.2	0.001	32	50	0.25
Model 1 Itr.3	0.001	64	25	0.33
Model 2 Itr.1	0.00001	128	100	0.46
Model 2 Itr.2	0.00001	128	200	0.54
Model 2 Itr.3	0.00001	64	200	0.24
Model 3 Itr.1	0.00001	64	200	0.25
Model 3 Itr.2	0.00001	128	200	0.54

Class	Precision	Recall	F1-Score	Support
Negative	0.98	0.96	0.97	1600
Positive	0.34	0.54	0.42	63
Accuracy	0.94			1663
Macro Avg	0.66	0.75	0.70	1663
Weighted Avg	0.96	0.94	0.95	1663

Comparative Analysis

Key improvements:

• Recall: From under 40% to 54%

 This reduced the false negatives which us very crucial in medical diagnosis

<u>Tradeoff:</u> Precision of 0.34 was acceptable to prioritize recall

Challenges & Limitations

Challenges:

- Severe class imbalance
 - < 1% Malignant cases
 </p>
- Limited computing resources

Limitations:

- Moderate precision for malignant cases
- Limited ability to train on larger dataset

Conclusion & Future Work

Conclusion:

 Achieved 94% accuracy and 54% recall using multimodal learning

 Improved out previous models through weighted loss and feature selection

Future Directions:

Ensemble models and synthetic data generation

Exploring advanced attention-based architecture