

WHAT IS CLAIMED IS:

- 1 1. A method of forming a gate electrode of a multiple-gate transistor comprising:
 - 2 providing a semiconductor structure including a semiconductor fin overlying an insulator
 - 3 layer, and a gate dielectric overlying at least a portion of the semiconductor fin;
 - 4 forming a first gate electrode material overlying the gate dielectric;
 - 5 forming a second gate electrode material overlying the first gate electrode material;
 - 6 forming a patterned mask over the second gate electrode material;
 - 7 etching the second gate electrode material; and
 - 8 etching the first gate electrode material.
- 1 2. The method of claim 1 further comprising planarizing a non-planar top surface of the
- 2 second gate electrode material to form a planarized top surface.
- 1 3. The method of claim 2 wherein the non-planar top surface is substantially conformal with
- 2 respect to the semiconductor structure.
- 1 4. The method of claim 2 wherein planarizing a non-planar top surface comprises
- 2 performing a chemical mechanical polishing process.
- 1 5. The method of claim 2 wherein the planarizing step exposes the first gate electrode
- 2 material.
- 1 6. The method of claim 1 further comprising forming source and drain regions in the
- 2 semiconductor fin.

1 7. The method of claim 1 further comprising:
2 forming spacers on the sides of the gate electrode;
3 performing selective epitaxy on the portions of the semiconductor fin not covered by the
4 gate electrode; and
5 forming source and drain regions.

1 8. The method of claim 1 wherein the semiconductor fin comprises a silicon fin.

1 9. The method of claim 1 wherein the semiconductor fin comprises a silicon and germanium
2 fin.

1 10. The method of claim 1 wherein the patterned mask comprises a mask material selected
2 from a group comprising of silicon nitride, silicon oxynitride, silicon oxide, and photoresist, and
3 combinations thereof.

1 11. The method of claim 1 wherein etching the second gate electrode material comprises
2 performing a plasma etching process.

1 12. The method of claim 11 wherein the plasma etching process etches the second gate
2 electrode material at a faster etch rate than it etches the first gate electrode material.

1 13. The method of claim 1 wherein the etching of the second gate electrode material stops on
2 the first gate electrode material.

1 14. The method of claim 1 wherein etching the first gate electrode material comprises
2 performing a plasma etching process or a wet etching process.

- 1 15. The method of claim 1 wherein the gate dielectric comprises silicon oxide.
- 1 16. The method of claim 1 wherein the gate dielectric comprises silicon oxynitride.
- 1 17. The method of claim 1 wherein the gate dielectric comprises a high permittivity material.
- 1 18. The method of claim 17 where the gate dielectric comprises a material selected from the
2 group consisting of lanthanum oxide, aluminum oxide, hafnium oxide, hafnium oxynitride, and
3 zirconium oxide, and combinations thereof.
- 1 19. The method of claim 17 wherein the gate dielectric comprises of high permittivity
2 materials with relative permittivity greater than about 5.
- 1 20. The method of claim 1 wherein the gate dielectric has a thickness less than about 10
2 angstroms.
- 1 21. The method of claim 1 wherein the first gate electrode material is selected from a group
2 comprising of poly-Si, poly-SiGe, a metallic nitride, a metallic silicide, or a metal, or
3 combinations thereof.
- 1 22. The method of claim 1 wherein the second gate electrode material is selected from a
2 group comprising of poly-Si, poly-SiGe, a metallic nitride, a metallic silicide, or a metal, or
3 combinations thereof.

1 23. The method of claim 1 wherein the first gate electrode material comprises a metallic
2 nitride, and the second gate electrode material is selected from the group comprising of poly-Si,
3 poly-SiGe, a metallic nitride, a metallic silicide, and a metal.

1 24. The method of claim 1 wherein the first gate electrode material comprises a metal, and
2 the second gate electrode material is selected from a group comprising of poly-Si, poly-SiGe, a
3 metallic nitride, a metallic silicide, or a metal, or combinations thereof.

1 25. The method of claim 1 wherein the multiple-gate transistor is a triple-gate transistor.

1 26. The method of claim 1 wherein the multiple-gate transistor is a double-gate transistor.

1 27. A multiple-gate transistor structure comprising:
2 a semiconductor fin overlying an insulator layer;
3 a gate dielectric overlying at least a portion of the semiconductor fin;
4 a gate electrode overlying the gate dielectric, the gate electrode comprising a first gate
5 electrode material underlying a second gate electrode material, wherein the first gate electrode
6 material has a thickness of less than about 500 angstroms; and
7 source and drain regions in portions of the semiconductor fin oppositely adjacent to said
8 gate electrode.

1 28. The structure of claim 27 wherein the first gate electrode material and the second gate
2 electrode material are selected from a group consisting of poly-Si, poly-SiGe, a metallic nitride,
3 a metallic silicide, and a metal, and combinations thereof.

1 29. The structure of claim 27 wherein the first gate electrode material comprises a metallic
2 nitride, and the second gate electrode material is selected from a group consisting of poly-Si,
3 poly-SiGe, a metallic nitride, a metallic silicide, and a metal, and combinations thereof.

1 30. The structure of claim 27 wherein the first gate electrode material comprises a metal, and
2 the second gate electrode material is selected from a group consisting of poly-Si, poly-SiGe, a
3 metallic nitride, a metallic silicide, and a metal, and combinations thereof.

1 31. The structure of claim 27 wherein the second gate electrode material has a substantially
2 planar top surface.

1 32. The structure of claim 27 and further comprising spacers disposed on the sides of the gate
2 electrode.

1 33. The structure of claim 27 wherein the semiconductor fin comprises silicon.

1 34. The structure of claim 27 wherein the semiconductor fin comprises silicon and
2 germanium.

1 35. The structure of claim 27 wherein the semiconductor structure further comprises an
2 etchant mask overlying the semiconductor fin.

1 36. The structure of claim 27 wherein the insulator layer is recessed, resulting in a notch at
2 the base of the semiconductor fin.

1 37. The structure of claim 27 wherein the gate dielectric comprises silicon oxide.

1 38. The structure of claim 27 wherein the gate dielectric comprises silicon oxynitride.

1 39. The structure of claim 27 wherein the gate dielectric comprises a high permittivity
2 material with relative permittivity greater than 5.

1 40. The structure of claim 39 wherein the gate dielectric comprises a material selected from
2 the group consisting of lanthanum oxide, aluminum oxide, hafnium oxide, hafnium oxynitride,
3 and zirconium oxide, and combinations thereof.

1 41. The structure of claim 27 wherein the gate dielectric has a thickness of less than about 10
2 angstroms.

- 1 42. The structure of claim 27 wherein the multiple-gate transistor is a triple-gate transistor.

- 1 43. The structure of claim 27 wherein the multiple-gate transistor is a double-gate transistor.

1 44. A method of forming semiconductor device, the method comprising:
2 providing a semiconductor-on-insulator substrate;
3 forming a semiconductor fin on the semiconductor-on-insulator substrate;
4 forming a gate dielectric over at least a portion of the semiconductor fin;
5 forming a first gate electrode material overlying the gate dielectric;
6 forming a second gate electrode material overlying the first gate electrode material;
7 planarizing the second gate electrode material;
8 etching the second gate electrode material selectively with respect to first gate electrode
9 material; and
10 etching the first gate electrode material.

1 45. The method of claim 44 and further comprising forming source and drain regions in the
2 semiconductor fin after etching the first gate electrode material.

1 46. The method of claim 45 and further comprising forming sidewall spacers along sidewalls
2 of the semiconductor fin prior to forming source and drain regions.

1 47. The method of claim 44 wherein planarizing the second gate electrode material comprises
2 performing a chemical mechanical polishing process.

1 48. The method of claim 47 wherein the planarizing step exposes the first gate electrode
2 material.

1 49. The method of claim 44 wherein the gate dielectric comprises a high permittivity material
2 with a relative permittivity greater than about 5.

1 50. The method of claim 44 wherein the first gate electrode material is selected from a group
2 comprising of poly-Si, poly-SiGe, a metallic nitride, a metallic silicide, or a metal, or
3 combinations thereof.

1 51. The method of claim 44 wherein the second gate electrode material is selected from a
2 group comprising of poly-Si, poly-SiGe, a metallic nitride, a metallic silicide, or a metal, or
3 combinations thereof.

1 52. The method of claim 51 wherein the first gate electrode material comprises a metallic
2 nitride, and the second gate electrode material is selected from the group comprising of poly-Si,
3 poly-SiGe, a metallic nitride, a metallic silicide, and a metal.

1 53. A method of forming a multiple gate transistor device, the method comprising:
2 providing a semiconductor structure including a semiconductor fin overlying an insulator
3 layer, and a gate dielectric overlying at least a portion of the semiconductor fin;
4 forming a gate electrode material over the gate dielectric;
5 forming a planarizing layer over the gate electrode material;
6 etching the planarizing layer and the gate electrode material to form a gate electrode layer
7 with a substantially planar upper surface; and
8 patterning and etching the gate electrode material to form a gate electrode.

1 54. The method of claim 53 wherein etching the planarizing layer and the gate electrode
2 material comprises performing an etch back process.

1 55. The method of claim 53 wherein etching the planarizing layer and the gate electrode
2 material comprises performing a chemical-mechanical polish process.

1 56. The method of claim 53 wherein the planarizing layer comprises a dielectric layer.

1 57. The method of claim 53 and further comprising forming a second gate electrode layer
2 over the gate dielectric before forming the gate electrode material.

1 58. The method of claim 53 further comprising forming source and drain regions in the
2 semiconductor fin.

1 59. The method of claim 53 further comprising:
2 forming spacers on the sides of the gate electrode;
3 performing selective epitaxy on the portions of the semiconductor fin not covered by the

4 gate electrode; and

5 forming source and drain regions.

1 60. The method of claim 53 wherein the semiconductor fin comprises a silicon fin.

1 61. The method of claim 53 wherein the semiconductor fin comprises a silicon and
2 germanium fin.

1 62. The method of claim 53 wherein the gate dielectric comprises silicon oxide.

1 63. The method of claim 53 wherein the gate dielectric comprises silicon oxynitride.

1 64. The method of claim 53 wherein the gate dielectric comprises of high permittivity
2 materials with relative permittivity greater than about 5.

1 65. The method of claim 64 where the gate dielectric comprises a material selected from the
2 group consisting of lanthanum oxide, aluminum oxide, hafnium oxide, hafnium oxynitride, and
3 zirconium oxide, and combinations thereof.

1 66. The method of claim 53 wherein the gate dielectric has a thickness less than about 10
2 angstroms.

1 67. The method of claim 53 wherein the first gate electrode material is selected from a group
2 comprising of poly-Si, poly-SiGe, a metallic nitride, a metallic silicide, or a metal, or
3 combinations thereof.

1 68. The method of claim 53 wherein the planarizing layer is formed from a material selected
2 from the group consisting of silicon rich oxide, spin-on glass, silicon oxide, and doped glass.

1 69. The method of claim 53 wherein the planarizing layer comprises silicon rich oxide and
2 the gate electrode material comprises polysilicon.