Division

As you can see, this method has a recursive structure, that

multiply 2 by 10 and make 20, and then divide it by 7 and

$$\frac{2}{7} = \frac{1}{10} \times \left(2 + \frac{6}{7}\right)$$

So we can find **all digits of** $\frac{2}{7}$ by calculating **all digits of** $\frac{6}{7}$ which is a selfrepeating problem.

Given three positive integers p, q (p < q) and d, write a program that finds the value of $\frac{p}{q}$ until d digits after the decimal point.

Input

Your input consists of an arbitrary number of lines, but no more than 1,000. For each input line, three positive integers p, q ($1 \le p < q \le 1,000,000$) and d $(1 \le d \le 100)$

The end of input is indicated by a line containing only the value -1.

Output

For each input line, print exactly d+2 characters of the form " $0.x_1x_2\cdots x_d$ " (refer to the samples) Do not round the value, just truncate except the d digits

Example

Standard input	Standard output
2 7 6 2 7 3 2 5 10 -1	0.285714 0.285 0.400000000

Time Limit

1 second.