

UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE E TECNOLOGIE

Lab Report: Differentiator and Integrator Circuits

Lorenzo Liuzzo

Bachelor's Degree: Physics

Course: Electronics Laboratory

Academic Year: 2022/2023

Instructor: Professor Valentino Liberali

Partners: Jiahao Miao

Riccardo Salto

Date Performed: May 3, 2023

Abstract

In the realm of electronics and signal processing, a profound understanding of circuit behavior is paramount for designing high-efficiency systems. The primary objective of this experiment was to delve into the intricacies of differentiator and integrator circuits, shedding light on their gain and phase responses across a wide range of frequencies. To achieve this, custom-tailored circuits were meticulously constructed to fulfill the distinct roles of measuring rate of change and cumulative input. Through comprehensive frequency sweeps that encompassed a spectrum from low to high frequencies, intricate data regarding gain and phase behaviors were collected and systematically scrutinized, revealing distinct patterns and behaviors across varying frequency ranges. Notably, the differentiator circuit demonstrated a distinct phase transition at a specific frequency, whereas the integrator circuit displayed a more gradual phase shift.

Contents

1 Introduction

This section provides an overview of the fundamental principles underlying the experience.

1.1 Feedback

A feedback loop is created when all or some portion of the output is fed back to the input. Negative feedback occurs when the fed-back output signal has a relative phase of π with respect to the input signal, while positive feedback occurs when the signals are in phase.

1.2 Operational amplifier

An operational amplifier, often abbreviated as op-amp, is a voltage-controlled voltage generator. The op-amp's primary function is to amplify the difference in voltage between its two input terminals, usually labeled as the inverting input (-) and the non-inverting input (+). It has a high input impedance, meaning it draws very little current from the input sources, and a low output impedance, enabling it to drive other circuit components effectively. In its ideal form, an op-amp has infinite voltage gain, however, real-world op-amps have limitations due to factors like power supply voltage, noise, and frequency response. Op-amps are often used in circuits with negative feedback.

1.3 Virtual ground

The concept of a virtual ground is a fundamental aspect of negative feedback operational amplifier (op-amp) circuits. In these circuits, a virtual ground is created at the inverting input terminal of the op-amp, even though it is not physically connected to the ground reference. This virtual ground serves as a reference point for analyzing and designing circuits, allowing for simplified calculations and intuitive understanding. In fact, negative feedback attempts to drive the inverting input to a voltage that matches the non-inverting input, which can result in $V^+ - V^- = 0$ V and, consequently, $I^+ = I^-$. An op-amp is a voltage-controlled voltage generator, so it does not absorb current at the input (behaves like an open circuit), therefore $I^+ = I^- = 0$ A.

1.4 Differentiator circuit

The differentiator circuit's functionality is firmly grounded in the mathematical concept of differentiation, a fundamental calculus concept. Analogous to how differentiation calculates the rate of change of a mathematical function concerning its independent variable, the differentiator circuit accentuates swift variations in input signal amplitude.

The differentiator circuit's design involves the integration of passive and active electronic components: capacitors and resistors play pivotal roles in shaping the circuit's frequency response, allowing it to differentiate signal components with varying frequencies, while the operational amplifier is employed to achieve high gain and accurate differentiation by ensuring that the inverting input adheres to a voltage level analogous to ground potential.

The schematic diagram of the differentiator circuit is illustrated in Figure ??.

Figure 1: Differentiator circuit schematic.

Applying the Kirchhoff's circuit laws at the op-amp's inverting input terminal, which is held at ground potential due to the virtual ground concept, it is possible to establish that the current flowing in the capacitor is equal to the current through the resistor, $i_C(t) = i_R(t), \forall t$, and further more:

$$C \cdot \frac{d}{dt}(V_{in}(t) - V^{-}) = \frac{V^{-} - V_{out}(t)}{R}$$

Remembering that $V^- = 0 \,\text{V}$, by solving the equation for V_{out} , it is shown that the output of the differentiator circuit is proportional to the rate of change of the input signal with respect to time:

 $V_{out}(t) = -RC \cdot \frac{d}{dt} V_{in}(t)$

1.5 Integrator circuit

The integrator circuit can be easily obtained from a differentiator circuit by simply swapping the resistor and the capacitor. The schematic diagram of the circuit is illustrated in Figure ??.

Similar to the approach taken with the differentiator circuit, Kirchhoff's circuit laws can be employed at the virtual ground node to obtain the equation that characterizes the integrator circuit's behavior:

$$\frac{V_{in}(t)}{R} = -C \cdot \frac{d}{dt} V_{out}(t) \implies V_{out}(t) = -\frac{1}{RC} \cdot \int_{0 \text{ s}}^{t} V_{in}(\tau) d\tau + V(0 \text{ s})$$

Notably, the output voltage is proportional to the integral of the input voltage over time, with adjustments related to the time constant and the initial conditions of the circuit.

The term V(0 s) represents the initial condition of the output voltage at t = 0 s and plays a pivotal role in shaping the behavior of the circuit, as it introduces an offset or a foundational voltage level to the integrated output signal. This offset can serve as a calibration factor, facilitating the alignment of the output signal with a desired reference level.

For instance, in cases where the initial measurements demonstrated an unexpected shift, it became imperative to introduce a robust resistor ($R=0.98\,\mathrm{M}\Omega$) to the circuit. This strategic inclusion was necessary to rectify the observed shifts in measurements and to achieve the desired circuit response. The high-value resistor played a crucial role in mitigating these deviations and aligning the measurements with the intended outcomes.

Figure 2: integrator circuit schematic.

2 Equipment

The experimental setup consists of the following components:

- Bread-board
- Probe and coaxial cables
- Resistor $(9.94 \,\mathrm{k}\Omega)$
- Capacitor (2.27 nF)
- Operational Amplifier (Op-Amp uA741): used to amplify the voltage difference between its input terminals.
- Power supplies: provide the necessary voltage levels for the Op-Amp.
- Signal generator Agilent 33220A: provides the input voltage signal.
- Oscilloscope Tektronix TDS2012C: used to measure and visualize the input and output waveforms and their time shift.

3 Procedure

The following steps were undertaken to conduct the experiment:

- 1. **Frequency Setup**: Begin by setting the desired frequency of the input signal using the function generator. It is advised to follow a logarithmic scale
- 2. **Input Signal Configuration**: Configure the input signal to align with the chosen frequency and amplitude specifications. Opt for a sinusoidal waveform as input signal. Establish the connection between the configured signal and the circuit under investigation.
- 3. **Output Signal Measurement**: Employ an oscilloscope to measure the output signal of the circuit. Connect the oscilloscope to the circuit's output to visualize its response to the input signal.
- 4. Voltage Measurement Across Resistor (Differentiator Circuit): For the differentiator circuit, measure the voltage across the resistor using the oscilloscope.
- 5. Voltage Measurement Across Capacitor (Integrator Circuit): For the integrator circuit, introduce an additional resistor to incorporate an offset voltage and measure the voltage across the capacitor using the oscilloscope.
- 6. **Time Difference Measurement**: Further analyze the phase shift between the input and output signals by measuring the time difference between corresponding points on the two signals using the oscilloscope's cursors.
- 7. Gain Calculation: Calculate the gain of the circuit in decibels (dB) using the formula:

$$\mathrm{Gain_{dB}} = 20 \log_{10} \left(\frac{V_{\mathrm{out}}}{V_{\mathrm{in}}} \right)$$

where $V_{\rm out}$ represents the measured output voltage and $V_{\rm in}$ is the input voltage.

8. **Phase Shift Calculation**: From the time difference measured, determine the phase shift between the input and output signals in radians through the formula:

Phase shift (radians) = $2\pi \cdot \text{Time difference} \cdot \text{Frequency}$

4 Discussion

The experimental investigation of the differentiator and integrator circuits' frequency response characteristics is presented in this section.

4.1 Experimental results

In our pursuit of understanding these circuits' behaviors across different frequencies, we harnessed the power of Bode plots — a graphical representation that reveals gain and phase shift patterns over a spectrum of frequencies. These plots provide an insightful visualization of the circuits' responses.

Figures ?? and ?? showcase the Bode plots of the differentiator and integrator circuits, respectively. To generate these plots, data was extracted from a text file containing recorded frequency values along with their corresponding circuit gain (expressed in decibels) and phase shift (in radians). The dataset used for each Bode plot is also included in the Appendix (Tables ?? and ??).

A logarithmic scale is employed on the x-axis to cover the range of frequencies effectively. The incorporation of dual y-axes facilitates the visual comprehension of the frequency response traits exhibited by the circuits: the left y-axis is dedicated to displaying gain, while the right y-axis portrays phase shift. To enhance clarity, data is displayed with different color markers: blue for the gain and yellow for the phase shift.

Figure 3: Bode plot for the differentiator circuit.

Figure 4: Bode plot for the integrator circuit.

4.2 Simulated results

To delve deeper into the analysis of our experimental findings, the differentiator and integrator circuits were simulated using Ngspice, a renowned simulation tool based on the Berkeley SPICE software. This simulation process aimed to replicate the behavior of the electronic circuits under investigation. The net-lists employed for simulating these circuits can be found in the Appendix for reference.

Figures ?? and ?? provide a platform for comparing the experimental data with the corresponding simulated results for the differentiator circuit. Similarly, figures ?? and ?? present a comparative analysis between experimental and simulated data for the integrator circuit.

Figure 5: Gain comparison between experimental and simulated data for the differentiator circuit.

Figure 6: Phase comparison between experimental and simulated data for the differentiator circuit.

Figure 7: Gain comparison between experimental and simulated data for the integrator circuit.

Figure 8: Phase comparison between experimental and simulated data for the integrator circuit.

The alignment between our real-world tests and simulated results demonstrates the harmony between our theoretical predictions and observed outcomes, underscoring the accuracy of our hands-on methods.

Appendix

Experimental datasets

Table 1: Differentiator Circuit Data

ν [kHz]	V_{in} [V]	V_{out} [V]	G [dB]	$\tau \text{ [ms]}$	ϕ [rad]
0.01	5.08	0.015	-50.6	-25	-1.57
0.02	5.08	0.017	-49.5	-12.3	-1.55
0.05	5.08	0.04	-42.1	-5	-1.57
0.1	5.08	0.0744	-36.7	-2.5	-1.57
0.2	5.08	0.148	-30.7	-1.28	-1.61
0.5	5.04	0.364	-22.8	-0.5	-1.57
1	5.08	0.72	-17.0	-0.252	-1.58
2	5.08	1.43	-11.0	-0.126	-1.58
5	5.08	3.64	-2.9	-0.05	-1.57
10	5.08	7.2	3.0	-0.025	-1.57
20	5.08	17.2	10.6	-0.012	-1.51
50	0.101	0.62	15.8	-0.0053	-1.67
100	0.102	1.2	21.4	-0.0035	-2.20
200	0.102	0.61	15.5	-0.0037	-4.65
500	0.102	0.2	5.8	-0.0015	-4.71
1000	0.1	0.096	-0.4	-0.0008	-5.03
2000	0.1	0.05	-6.0	-0.00045	5 - 5.65

Table 2: Integrator Circuit Data

$\nu [\mathrm{kHz}]$	V_{in} [V]	V_{out} [V]	G [dB]	$\tau [\mathrm{ms}]$	ϕ [rad]
0.01	0.1	14.4	43.2	49	3.08
0.02	0.1	13.8	42.8	22.8	2.87
0.05	0.1	11.8	41.4	7.9	2.48
0.1	0.1	8.16	38.2	3.36	2.11
0.2	0.1	4.6	33.3	1.48	1.86
0.5	0.1	2.2	26.8	0.52	1.63
1	0.1	1.1	20.8	0.26	1.63
2	0.2	1.4	16.9	0.126	1.58
5	0.2	0.42	6.4	0.044	1.38
10	0.504	0.54	0.6	0.022	1.38
20	0.5	0.27	-5.4	0.012	1.51
50	0.5	0.11	-13.2	0.005	1.57
100	5.08	0.56	-19.2	0.0024	1.51
200	5.08	0.3	-24.6	0.00125	1.57
500	10	0.28	-31.1	0.00035	5 1.10

NGSPICE Op Amp Model and Circuit Net-lists Op Amp Model (uA741)

^{*} Model for uA741 Op Amp (from EVAL library in PSpice)

```
| inverting input
               | | positive power supply
               I I I I I I
.subckt uA741 1 2 3 4 5
c1 11 12 8.661E-12
c2 6 7 30.00E-12
dc 5 53 dy
de 54 5 dy
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 10.61E6 -1E3 1E3 10E6 -10E6
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 5.961E-9
iee 10 4 dc 15.16E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 5.305E3
rc2 3 12 5.305E3
re1 13 10 1.836E3
re2 14 10 1.836E3
ree 10 99 13.19E6
ro1 8 5 50
ro2 7 99 100
rp 3 4 18.16E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 40
vln 0 92 dc 40
.model dx D(Is=800.0E-18 Rs=1)
.model dy D(Is=800.00E-18 Rs=1m Cjo=10p)
.model qx NPN(Is=800.0E-18 Bf=93.75)
.ends
                                          Integrator Circuit
  Differentiator Circuit
                                          .include UA741.SPI
   .include UA741.SPI
                                          Vin 1 0 DC 0 AC 1
  Vin 1 0 DC 0 AC 1
                                          Rgen 0 1 50
  Rgen 0 1 50
                                          R 1 2 9.94K
  C 1 2 2.27e-9
                                          Roff 2 3 0.98e6
  R 2 3 9.94K
                                          C 2 3 2.27e-9
  XOA 0 2 10 11 3 UA741
                                          XOA 0 2 10 11 3 UA741
  VSP 10 0 12V
                                          VSP 10 0 12V
  VSN 11 0 -12V
                                          VSN 11 0 -12V
```

* connections: non-inverting input

.control

ac dec 100 10 1e6

.control

ac dec 100 10 5e6