LOS INDICES DE COLOMBIA

Emiliano Bojanini¹

^{1,2}Escuela de Ingeniería, Universidad de los Andes, delcurso, deallado@uniandes.edu.col ¹Instituto de altas investigaciones financieras, Banco del Parque, delcurso@bp.com.col

30 de Junio de 2018

Abstract

Este es mi primer trabajo en exploración y modelamiento de indices usando LATEX, R, Anaconda y Zotero. Este es mi primer trabajo en exploración y modelamiento de indices usando LATEX, R, Anaconda y Zotero. Este es mi primer trabajo en exploración y modelamiento de indices usando LATEX, R, Anaconda y Zotero. Este es mi primer trabajo en exploración y modelamiento de indices usando LATEX, R, Anaconda y Zotero.

Introducción

Introducción

Aqui les presento mi investigacion sobre diversos estadisticos de Colombia, en el curso de vacaciones de la universidad de los Andes. Aqui les presento mi investigacion sobre diversos estadisticos de Colombia, en el curso de vacaciones de la universidad de los Andes. Aqui les presento mi investigacion sobre diversos estadisticos de Colombia, en el curso de vacaciones de la universidad de los Andes. Aqui les presento mi investigacion sobre diversos estadisticos de Colombia, en el curso de vacaciones de la universidad de los Andes. Aqui les presento mi investigacion sobre diversos estadisticos de Colombia, en el curso de vacaciones de la universidad de los Andes. Aqui les presento mi investigacion sobre diversos estadisticos de Colombia, en el curso de vacaciones de la universidad de los Andes. Aqui les presento mi investigacion sobre diversos estadisticos de Colombia, en el curso de vacaciones de la universidad de los Andes. Aqui les presento mi investigacion sobre diversos estadisticos de Colombia, en el curso de vacaciones de la universidad de los Andes.

1 Exploración Univariada

En esta sección exploro cada índice.

Para conocer el comportamiento de las variables se ha preparado la Tabla 1, donde se estadisticos de cada variable. Los números representan la situación de algun región en ese indicador.

Table 1: Medidas estadísticas

Statistic	N	Mean	Median	Min	Max
IDH	32	0.802	0.804	0.691	0.879
PoblaciÃ ³ n.Cabecera	32	1,196,730.000	717,197	13,090	10,070,801
PoblaciÃ ³ n.Resto	32	360,590.300	$268,\!111.5$	21,926	1,428,858
PoblaciÃ ³ n.Total	32	$1,\!557,\!320.000$	$1,\!028,\!429$	$43,\!446$	10,985,285

Para resaltar lo anterior, tenemos la Figura 1 en la página 3.

Dado el sesgo de las pobaciones,podriamos transformarla para que se acerque

Figure 1: Distribución de Indicadores

2 Exploración Bivariada

En este trabajo estamos interesados en el impacto de la poblacion en el el IDH, veamos IDH con cada uno:

Table 2: Correlación de Democracia con las demás variables

cabeLog	restoLog	totaLog
0.487	0.177	0.424

La correlación entre las variables independientes:

Table 3: Correlación de Democracia con las demás variables

	cabeLog	restoLog	totaLog
cabeLog	1		
restoLog	0.84	1	
totaLog	0.99	0.9	1

Visualmente:

Lo visto en la Tabla ?? se refuerza claramente en la Figura 2.

Figure 2: correlaci \tilde{A}^3 n entre predictores

3 Modelos de Regresión

Veamos los modelos propuestos. Primero sin poblacion resto, luego con esa: Resultados

Table 4: Modelos de Regresión

	Dependent variable: IDH		
	(1)	(2)	
cabeLog	0.013***	0.066	
, and the second	(0.004)	(0.046)	
restoLog		-0.016	
-		(0.020)	
totaLog		-0.051	
-		(0.064)	
Constant	0.634***	0.818***	
	(0.055)	(0.092)	
Observations	32	32	
\mathbb{R}^2	0.238	0.437	
Adjusted R ²	0.212	0.377	
Residual Std. Error	0.037 (df = 30)	0.033 (df = 28)	
F Statistic	$9.347^{***} (df = 1; 30)$	` ,	
	* O. * * O. O. * * * O. O. *		

Note:

*p<0.1; **p<0.05; ***p<0.01

4 Exploración Espacial

Calculemos conglomerados de regiones, usando toda la información de las tres variables. Usaremos la tecnica de k-me ans propuesta por MacQueen.[1]

Como acabamos de ver en la Tabla 4 en la página 5, si quisieras sintetizar la multidimensionalidad de nuestros indicadores, podrÃ?amos usar tres de las cuatro variables que tenemos (un par de las originales tiene demasiada correlación).

Figure 3: Paises conglomerados segun sus indicadores sociopolÃ?ticos

Bibliography

[1] A. P. Reynolds, G. Richards, B. de la Iglesia, and V. J. Rayward-Smith. Clustering Rules: A Comparison of Partitioning and Hierarchical Clustering Algorithms. *Journal of Mathematical Modelling and Algorithms*, 5(4):475–504, Dec. 2006.