FACULTÉ DES SCIENCES EXACTES ET APPLIQUÉES

LICENCE 1 MI (2023/2024)

Examen final d'Algèbre 1 - Durée 01h30

Questions de cours : (04 pts)

Soit $f:(G,*)\longrightarrow (G',\diamond)$ un homomorphisme de groupes et H un sous groupe de G.

- 1. Rappeler la définition d'un sous-groupe H de G.
- 2. Montrer que le noyau de f (ker f) est un sous groupe de G.

Exercice 1. (08 pts)

Soit f l'application définie de \mathbb{R} dans \mathbb{R} par $f(x) = \frac{x}{1+x^2}$

- 1. Soient les ensembles $A = \{-\frac{1}{2}, -2\}$ et $B = \{\frac{1}{2}, 2\}$.
 - a) Déterminer f(A) et f(B).
 - b) L'équation f(x) = 2 admet-elle des solutions dans \mathbb{R} ?.
 - \mathbf{c}) f est-elle injective? surjective?
- 2. On désigne par \mathcal{R} , la relation binaire définie sur \mathbb{R} par

$$\forall x, y \in \mathbb{R} : x\mathcal{R}y \iff f(x) = f(y)$$

- i Montrer que \mathcal{R} est une relation d'équivalence sur \mathbb{R} .
- ii Déterminer les classes d'équivalence de 2 et -2.

Exercice 2. (08 pts)

On considère sur $\mathbb R$ la loi * définie par :

$$\forall a, b \in \mathbb{R}: \ a * b = a + b + \frac{1}{6}$$

- 1. Montrer que $(\mathbb{R}, *)$ est un groupe commutatif.
- 2. Soit l'application définie de $(\mathbb{R}, *)$ dans $(\mathbb{R}, +)$ par $h(x) = 3x + \frac{1}{2}$. Montrer que h est un isomorphisme de groupes.

$Corrigcute{e}$

- Corrigé 1. 1. Definition d'un sous groupe : Soit (G, *) un groupe et H une partie de G, on dit que H est un sous-groupe de (G, *) si les axiomes suivants sont vérifiés :
 - $-e \in H$
 - $\forall (x,y) \in H^2 : x * y \in H.$ 2pts
 - $\forall x \in H: x^{-1} \in H.$
 - 2. Montrons que $\ker f$ est un sous groupe de G:
 - $e_G \in \ker f \operatorname{car} f(e_G) = e_{G'} \operatorname{alors} \ker f \neq \emptyset.....0,5pt$
 - Soient $x, y \in \ker f$, alors $f(x) = e_{G'}$ et $f(y) = e_{G'}$ et par le morphisme f, on obtient

$$f(x * y) = f(x) \cdot f(y) = e_{G'} \cdot e_{G'} = e_{G'} \Rightarrow x * y \in \ker f....0,75pt$$

• Soit $x \in \ker f$, montrons alors que $x^{-1} \in \ker f$

$$f(x^{-1}) = (f(x))^{-1} = e_{G'}^{-1} = e_{G'} \Rightarrow x^{-1} \in \ker f....0,75$$
pt

Corrigé 2. Soit f l'application définie de \mathbb{R} dans \mathbb{R} par $f(x) = \frac{x}{1+x^2}$

- 1. Soient les ensembles $A = \{-\frac{1}{2}, -2\}$ et $B = \{\frac{1}{2}, 2\}$.
 - **a**)

$$\begin{split} f(A) &= \{f(x) \in \mathbb{R}, x \in A\} \\ &= \{f(-2), f(-\frac{1}{2})\} = \{-\frac{2}{5}\}....\mathbf{1pt} \end{split}$$

$$f(B) = \{f(x) \in \mathbb{R}, x \in B\}$$
$$= \{f(2), f(\frac{1}{2})\} = \{\frac{2}{5}\}....1pt$$

b) Résolvons l'équation f(x) = 2. On a

$$\frac{x}{1+x^2} = 2 \Rightarrow 2x^2 - x + 2 = 0$$

 $\Delta = -15 < 0$ donc l'équation n'admet pas de solutions réelles, ce qui veut dire que 2 n'admet pas d'antecedant par l'application f....0,5pt.

c) f n'est pas injective car $\exists x_1 = 2, x_2 = \frac{1}{2} \in \mathbb{R}$ tels que

$$f(x_1) = f(x_2) = \frac{2}{5} \land x_1 \neq x_2 \dots 1$$
pt

f n'est pas surjective car $\exists y = 2 \in \mathbb{R}$ tel que $\forall x \in \mathbb{R}, \ f(x) \neq 2....1pt$.

2. On désigne par \mathcal{R} , la relation binaire définie sur \mathbb{R} par

$$\forall x, y \in \mathbb{R} : x\mathcal{R}y \iff f(x) = f(y)$$

2

i \mathcal{R} est une relation d'équivalence sur \mathbb{R} . Facilement, on montre que \mathcal{R} est réflexive....0,5pt, symétrique....0,5pt et transitive....0,5pt.

ii

$$\overline{2} = \{x \in \mathbb{R}/x\mathbb{R}2\}....0,5\mathbf{pt}
= \{x \in \mathbb{R}/f(x) = f(2)\}
= \{x \in \mathbb{R}/\frac{x}{1+x^2} = \frac{2}{5}\}
= \{x \in \mathbb{R}/2x^2 - 5x + 2 = 0\} = \{2, \frac{1}{2}\}....0,5\mathbf{pt}$$

De même, on calcule $\overline{-2} = \{-2, -\frac{1}{2}\}$1pt

Corrigé 3. 1. $(\mathbb{R}, *)$ est un groupe commutatif. En effet,

- $a*b=a+b+\frac{1}{6}\in\mathbb{R}$ car l'addition est stable dans \mathbb{R} . Ainsi * est une loi de composition interne....0,5
- * est commutative0,5
- L'associativité : Soient $a, b, c \in \mathbb{R}$ $(a*b)*c = (a+b+\frac{1}{6})*c = a+b+\frac{1}{6}+c+\frac{1}{6}=a+b+c+\frac{1}{3}....0,5pt$ $a*(b*c) = a*(b+c+\frac{1}{6}) = a+b+c+\frac{1}{6}+\frac{1}{6}=a+b+c+\frac{1}{3}....0,5pt$ donc on a bien (a*b)*c = a*(b*c)
- L'élément neutre : $\exists e? \in \mathbb{R}, \forall x \in \mathbb{R} : a * e = a....0,5pt$

$$a * e = a \Rightarrow a + e + \frac{1}{6} = a \Rightarrow e = -\frac{1}{6}$$

donc $e = -\frac{1}{6} \in \mathbb{R}$ est l'élément neutre.0,5pt

• L'existence du symétrique : $\forall a \in \mathbb{R}, \exists a' \in \mathbb{R} : a * a' = e \dots 0,5pt$

$$a*a' = a + a' + \frac{1}{6} = -\frac{1}{6} \Rightarrow a' = -a - \frac{1}{3} \in \mathbb{R}$$
0,5pt

2. Soit l'application $h: (\mathbb{R}, *) \longmapsto (\mathbb{R}, +)$ définie par $h(x) = 3x + \frac{1}{2}$. Etant données les deux groupes $(\mathbb{R}, *)$ et $(\mathbb{R}, +)$, alors

h est un morphisme de groupes $\Longleftrightarrow \forall x,y \in \mathbb{R}: f(x*y) = f(x) + f(y) ... \mathbf{1pt}$

$$f(x*y) = 3(x*y) + \frac{1}{2} = 3(x+y+\frac{1}{6}) + \frac{1}{2} = 3x + 3y + 1....0,5pt$$

$$f(x) + f(y) = (3x + \frac{1}{2}) + (3y + \frac{1}{2}) = 3x + 3y + 1....0,5pt$$

donc h est bien un morphisme de groupes.

Montrons maintenant que h est bijective. L'injectivité peut être démontrée de deux manières différentes (L'étudiant pourra choisir ce que lui convient!)

• En utilisant la définition. Soient $x, x' \in \mathbb{R}$, et supposons que h(x) = h(x') alors $3x + \frac{1}{2} = 3x' + \frac{1}{2}$ ce qui implique que x = x'.

 \bullet En utilisant le noyau de h. Notons e'=0 l'élément neutre du groupe $(\mathbb{R},+)$ alors

$$kerh = \{x \in \mathbb{R}, h(x) = e'\}$$

Calculons alors le noyau de h

$$kerh = \{x \in \mathbb{R}, h(x) = 0\} = \{x \in \mathbb{R}, 3x + \frac{1}{2} = 0\} = \{-\frac{1}{6}\} = \{e\}$$

De même pour la surjectivité, il existe deux manières pour la démontrer.

- En utilisant la définition. Soit $y \in \mathbb{R}$, il existe $x? \in \mathbb{R}$ tel que f(x) = y, il suffit alors de choisir $x = \frac{1}{3}y \frac{1}{6} \in \mathbb{R}$.
- En calculant l'image de $h: Imh = Im(\mathbb{R}) = \{h(x)/x \in \mathbb{R}\} = \mathbb{R}$. En effet, on a $-\infty < x < +\infty \implies -\infty < 3x + \frac{1}{2} < +\infty$

 ${f 1pt}$ pour l'injectivité et ${f 1pt}$ pour la surjectivité.