

RICH AI

Mukund Iyer, Nico Van den Hooff, Rakesh Pandey, Shiva Jena

Agenda

- 1) Background and scope
- 2) Data
- 3) Machine learning approach
- 4) Evaluation metrics
- 5) Timelines

1. Background and scope

The NA62 particle physics experiment at CERN detects sub-atomic particles

Geneva, Switzerland

The challenge is to match the experimental results to the standard model

There are 3 main particles generated in the NA62 experiment

The RICH detector is used to produce light

Each particle produces a different size ring.. image classification!

RICH - SALEVE Disk - Run 8152, Burst 5, Event 1824966

Current method

- MLE used to fit rings analytically

Challenges

- Pion decay is very rare
- Capture as many pion decays as possible
- Reduce the number of incorrect classifications

2. Data

Data: description

^{*}Source: As per the initial datasets shared by TRIUMF for 2018 (B & E); Other 4 years data would be shared on need basis https://qithub.com/TRIUMF-Capstone2022/RICHPID/tree/main/docs

Data: flow

3. Machine Learning Approach

Machine learning approach

Task

Build a classification model: pions, muons, positrons

Goals

Goal 1: Maintain pion efficiency of 95% (TP rate)

Goal 2: Reduce pion/muon misclassification by 10x

Baseline

Gradient Boosted Tree (XGBoost or LightGBM)

Deep Learning

Model 1: PointNet or PointNet++

Model 2: Graph CNNs

Deep Learning Implementation

PyTorch Geometric

4. Evaluation metrics

Evaluation: ROC curve to compare classifiers

ROC Curve

- Useful in comparing different classifiers
- Diagonal line represents random classifier
- Models below diagonal lines are worse than random classifier
- Area under ROC curve (AOC) ability of a classifier to distinguish between classes

**Image source: wikipedia

Evaluation: Pion efficiency

Fraction of matched detected pions out of the all the pion particles.

	Predicted PION	Predicted NOT PION
IS a PION	True Positives	False Negatives
NOT a PION	False Positives	True Negatives

Need 95% efficiency for the signal

5. Timelines

1

Proposal (W1, W2) (May 02 - 13)

TIMELINE(tentative)

- Meet with Capstone Partner
- Data exploration
- Brainstorming
- Proposal

2

Implementation (W3 - W5) (May 16 - June 03)

- Create input image data
- Perform EDA
- Implement ML techniques

3

Evaluation (W6) (June 06 - 07)

- Evaluate against target metrics
- Improve models if needed

4

Code refactoring (W6) (June 08 - 10)

- Modularize code
- Create deliverable package

5

Documentation & Report (W7) (June 11 - 25)

- Document code implementation and steps to run in production
- Write project report

6

Final submissions and Handover (W8) (June 26 - 30)

THANK YOU

APPENDIX

Data - structure and indexing

^{*}Source: https://github.com/TRIUMF-Capstone2022/RICHPID/tree/main/docs

HDF5 format

```
HDF5 "run_8562_sample.h5" {
GROUP "/" {
  ATTRIBUTE "data_version" {
     DATATYPE H5T STRING {
        STRSIZE H5T_VARIABLE;
        STRPAD H5T_STR_NULLTERM;
        CSET H5T_CSET_ASCII;
        CTYPE H5T_C_S1;
     DATASPACE SCALAR
  ATTRIBUTE "description" {
     DATATYPE H5T_STRING {
        STRSIZE H5T_VARIABLE;
        STRPAD H5T_STR_NULLTERM;
        CSET H5T_CSET_ASCII;
        CTYPE H5T_C_S1;
     DATASPACE SCALAR
  ATTRIBUTE "entries" {
     DATATYPE H5T_STD_I64LE
     DATASPACE SCALAR
```

 $\underline{\text{https://github.com/TRIUMF-Capstone2022/RICHPID/blob/86a82e48ec32cad9fdf6bed99a57cfe8e1c0f024/docs/hdf5_format.t}$

^{*}Source: As per TRIUMF RICHPID docs

Data

Description: Large particle-tagged data sets for training

Data source: NA65 datasets generated from light sensing RICH detector (~2000 pixels) for 2016, 2017, 2018 and 2021
We would be using 2018 data (2 periods)

Data Format:

-HDF5 (File directory structured array data)

Number of training examples:

~ 11.5 Million from 2018 B and 2018 E periods

Class Imbalance

Particle * (Class)	N*	%	
Pion	1,169,556	10 %	
Muon	10,281,301	89%	
Positron	113,112	1 %	
Total	11,5	11,563,969	

^{*}Source: As per the initial datasets shared by TRIUMF for 2018 (B & E); Other 4 years data would be shared on need basis https://github.com/TRIUMF-Capstone2022/RICHPID/tree/main/docs

Machine learning - key features

Machine learning - current analytical performance

