# Multiarmed bandits Thompson Sampling team



# General statement of the problem of multi-armed bandits

- The agent interacts with the environment by choosing actions (hands) from a set of available ones
- Each action brings a random reward with an unknown distribution
- The agent's goal is to maximize the total reward over a certain number of steps, balancing between exploration (gathering information about distributions) and exploitation (using current knowledge to maximize reward)
- The main metric is regret (the difference between the reward of the optimal action and the chosen action)



#### Out-of-context bandits

#### Formally:

- At each step t, the agent chooses an action  $a_t$  from N options.
- The reward r(t) is chosen from a distribution with mathematical expectation  $\mu_{a_t}$ .
- Optimal action:  $a^* = \arg \max_a \mu_a$ .
- Regret at step t:  $\Delta_t = \mu_{a^*} \mu_{a_t}$ .
- Goal: minimize  $R(T) = \sum_{t=1}^{T} \Delta_t$ .

#### Features:

- No additional information (context) before choosing an action
- Each action has a fixed but unknown reward distribution

#### Examples of algorithms:

- $\epsilon$ -greedy
- UCB (Upper Confidence Bound)
- Thompson Sampling

#### **Contextual Bandits**

#### Features:

- Before choosing an action, the agent receives context a feature vector that affects the reward
- The reward distribution depends on the context (e.g., linearly)
- The context can be adaptive (depends on the agent's previous actions)

#### Formally:

- At step t:
  - The agent receives context vectors  $\{\mathbf{b}_i(t)\}\in R^d, i\in[1,N]$  for each action
  - Expected reward of action i:  $E[r_i(t)] = \mathbf{b}_i(t)^{\top} \mu$ , where  $\mu \in \mathbb{R}^d$  is an unknown parameter
  - The agent chooses action  $a_t$  and receives reward  $r_{a_t}(t)$
- Regret:  $\Delta_t = \max_i (\mathbf{b}_i(t)^\top \mu) \mathbf{b}_{a_t}(t)^\top \mu$
- Goal: minimize  $R(T) = \sum_{t=1}^{T} \Delta_t$

#### Examples of algorithms:

- LinUCB (Linear Upper Confidence Bound)
- LinTS (Linear Thompson Sampling)

# Comparison of algorithms

Initialize, for a = 1 to k:  $Q(a) \leftarrow 0$  $N(a) \leftarrow 0$ Loop forever:  $A \leftarrow \begin{cases} \operatorname{arg\,max}_a Q(a) & \text{with probability } 1 - \varepsilon \\ \operatorname{a random action} & \text{with probability } \varepsilon \end{cases}$  (breaking ties randomly)  $R \leftarrow bandit(A)$  $N(A) \leftarrow N(A) + 1$  $Q(A) \leftarrow Q(A) + \frac{1}{N(A)} [R - Q(A)]$ 

#### Selection at each iteration



#### Arms selection frequency histogram at $\varepsilon = 0.13$





Exploration rate through past 100 iterations Num of unoptimal arms through past 100 iterations



### Cumulative regret



### Convergence rate



$$\pi(s) = \begin{cases} \text{random action from } \mathcal{A}(s) & \text{if } \xi < \varepsilon \\ \operatorname{argmax}_{a \in \mathcal{A}(s)} Q(s, a) & \text{otherwise,} \end{cases}$$

$$f(s, a, \sigma) = \left| \frac{e^{\frac{Q_t(s, a)}{\sigma}}}{e^{\frac{Q_t(s, a)}{\sigma}} + e^{\frac{Q_{t+1}(s, a)}{\sigma}}} - \frac{e^{\frac{Q_{t+1}(s, a)}{\sigma}}}{e^{\frac{Q_t(s, a)}{\sigma}} + e^{\frac{Q_{t+1}(s, a)}{\sigma}}} \right|$$

$$= \frac{1 - e^{\frac{-|Q_{t+1}(s, a) - Q_t(s, a)|}{\sigma}}}{1 + e^{\frac{-|Q_{t+1}(s, a) - Q_t(s, a)|}{\sigma}}}$$

$$= \frac{1 - e^{\frac{-|\alpha \cdot \text{TD-Error}|}{\sigma}}}{1 + e^{\frac{-|\alpha \cdot \text{TD-Error}|}{\sigma}}}$$

$$\varepsilon_{t+1}(s) = \delta \cdot f(s_t, a_t, \sigma) + (1 - \delta) \cdot \varepsilon_t(s) ,$$

#### Selection at each iteration



#### Arms selection frequency histogram



#### Exploration rate through past 50 iterations



#### Num of unoptimal arms through past 50 iterations







#### Convergence rate



$$\pi(a|s) = Pr\{a_t = a|s_t = s\} = \frac{e^{\frac{Q(s,a)}{\tau}}}{\sum_b e^{\frac{Q(s,b)}{\tau}}}$$





#### Arms selection frequency histogram





Exploration rate through past 100 iterations Num of unoptimal arms through past 100 iterations



## Cumulative regret



### Convergence rate



$$A_t \doteq \operatorname*{arg\,max}_a \left[ Q_t(a) + c \sqrt{\frac{\ln t}{N_t(a)}} \right]$$





#### Arms selection frequency histogram



Exploration rate through past 100 iterations



Num of unoptimal arms through past 100 iterations







## Convergence rate



# **Algorithm 1** Thompson Sampling for Bernoulli bandits

For each arm  $i = 1, \ldots, N$  set  $S_i = 0, F_i = 0$ .

foreach  $t=1,2,\ldots,$  do

For each arm i = 1, ..., N, sample  $\theta_i(t)$  from the Beta $(S_i + 1, F_i + 1)$  distribution.

Play arm  $i(t) := \arg \max_i \theta_i(t)$  and observe reward  $r_t$ .

If r = 1, then  $S_{i(t)} = S_{i(t)} + 1$ , else  $F_{i(t)} = F_{i(t)} + 1$ .

end





#### Arms selection frequency histogram



#### Exploration rate through past 50 iterations



#### Num of unoptimal arms through past 50 iterations







### Convergence rate





#### Modifications of TS

Algorithm 1 Online stochastic gradient descent with Thompson Sampling (SGD-TS)

```
Input: T, K, \tau, \alpha.
```

- 1: Randomly choose  $a_t \in [K]$  and record  $X_t, Y_t$  for  $t \in [\tau]$ .
- 2: Calculate the maximum-likelihood estimator  $\hat{\theta}_{\tau}$  by solving  $\sum_{t=1}^{\tau} (Y_t - \mu(X_t^T \theta)) X_t = 0.$
- 3: Maintain convex set  $C = \{\theta : \|\theta \hat{\theta}_{\tau}\| < 2\}.$
- 4:  $\tilde{\theta}_0 \leftarrow \hat{\theta}_{\tau}$ .
- 5: for  $t = \tau + 1$  to T do
- if  $t\%\tau = 1$  then
- $j \leftarrow \lfloor (t-1)/\tau \rfloor$  and  $\eta_i = \frac{1}{\alpha i}$ .
- Calculate  $\nabla l_{i,\tau}$  defined in Equation 3
- Update  $\tilde{\theta}_j \leftarrow \prod_{\mathcal{C}} \left( \tilde{\theta}_{j-1} \eta_j \nabla l_{j,\tau}(\tilde{\theta}_{j-1}) \right)$ .
- 10:
- Compute  $\bar{\theta}_j = \frac{1}{j} \sum_{q=1}^{j} \tilde{\theta}_q$ . Compute  $A_j$  defined in Equation 5. 11:
- Draw  $\theta_i^{\text{TS}} \sim \mathcal{N}(\bar{\theta}_i, A_i)$ . 12:
- end if 13:
- Pull arm  $a_t \leftarrow \operatorname{argmax}_{a \in [K]} \mu(x_{t,a}^T \theta_i^{\mathrm{TS}})$  and observe reward  $Y_t$ .
- 15: end for

#### Online Stochastic Gradient Descent and Thompson Sampling

Algorithm 1 BootstrapLinTS for partially observable delayed feedback

```
Input: n_{\text{prior}}, D_{\text{max}}, T, d, K.
 1: Data D_0 = ()
 2: for n = 1, ..., T do
 3:
         Update data D_n with observed conversions
 4:
         for j = 1, \ldots, n_{\text{prior}} do
              Sample prior \vartheta_i and x_i uniformly over [0,1]^d
 5:
              Normalise sampled \vartheta_i and x_i
 6:
              Sample prior reward from Bernoulli(\vartheta_i \cdot x_i)
              Sample delays uniformly over [0, D_{\text{max}}]
 8:
 9:
         end for
         Concatenate n_{\text{prior}} times and rewards with D_n
10:
         Sample with replacement n + n_{prior} data points
11:
         Estimate \hat{S}(t, x) and \hat{p}_1(x) via EM
12:
         Observe current contexts x_A, A = 1, \dots, K
13:
         for A = 1, \ldots, K do
14:
              Calculate probability (1 - \hat{S}(T, x_A))\hat{p}_1(x_A)
15:
16:
         end for
         Select arm \operatorname{argmax}_{i}(1-\hat{S}(T,x_A))\hat{p}_{1}(x_A)
17:
```

#### Bootstrapped Thompson Sampling

18: end for

# Linear Thompson Sampling (LinTS)

# **Algorithm 1** Thompson Sampling for Contextual bandits

```
Set B = I_d, \hat{\mu} = 0_d, f = 0_d.
for all t = 1, 2, ..., do
   Sample \tilde{\mu}(t) from distribution \mathcal{N}(\hat{\mu}, v^2 B^{-1}).
   Play arm a(t) := \arg \max_i b_i(t)^T \tilde{\mu}(t), and observe
   reward r_t.
   Update B = B + b_{a(t)}(t)b_{a(t)}(t)^{T}, f = f +
  b_{a(t)}(t)r_t, \, \hat{\mu} = B^{-1}f.
end for
```

LinTS

Exploration rate through past 100 iterations 
Num of unoptimal arms through past 100 iterations





Mushroom dataset

### LinTS



Mushroom dataset

LinTS

Exploration rate through past 100 iterations 
Num of unoptimal arms through past 100 iterations





Iris dataset

### LinTS



Iris dataset

LinTS

Exploration rate through past 100 iterations Num of unoptimal arms through past 100 iterations





Breast cancer dataset

### LinTS



Breast cancer dataset

SGD-TS



#### **Algorithm 1** Generalized Thompson Sampling

**Input:**  $\eta > 0, \gamma > 0, \{\mathcal{E}_1, \dots, \mathcal{E}_N\}$ , and prior p

Initialize posterior:  $\mathbf{w}_1 \leftarrow \mathbf{p}$ ;  $W_1 \leftarrow \|\mathbf{w}_1\|_1 = 1$ for  $t = 1, \ldots, T$  do

Receive context  $x_t \in \mathcal{X}$ 

Select arm 
$$a_t$$
 according to the mixture probabilities: for each  $a$ 

$$\Pr(a) = (1 - \gamma) \sum_{i=1}^{N} rac{w_{i,t} \mathbb{I}(\mathcal{E}_i(x_t) = a)}{W_t} + rac{\gamma}{K}$$

Observe reward 
$$r_t$$
, and updates weights:

end for

$$\forall i: w_{i,t+1} \leftarrow w_{i,t} \cdot \exp\left(-\eta \cdot \ell\left(f_i(x_t, a_t), r_t\right)\right); \qquad W_{t+1} \leftarrow \|\mathbf{w}_{t+1}\|_1 = \sum_i w_{i,t+1}$$

**GTS** 

