Experimental and numerical assessment of loading rate effects on Mode I delamination in carbon fiber/epoxy composites

Luca Di Stasio^{a,b}, Cláudio S. Lopes^c

^a Université de Lorraine, EEIGM, IJL, 6 Rue Bastien Lepage, F-54010 Nancy, France ^bLuleå University of Technology, University Campus, SE-97187 Luleå, Sweden ^cIMDEA Materials Institute, Getafe, Madrid, Spain

Abstract

- 1. Introduction
- 2. Objectives
- 3. Materials

If all strain levels are applied to the same specimens: 8n specimens need to be tested, where n is the number of measurements for the same combination of parameters.

If each strain level is applied to one specimen: 40n specimens need to be tested, where n is the number of measurements for the same combination of parameters.

- If each strain level is applied to one specimen only at high T: 28n specimens need to be tested, where n is the number of measurements for the same combination of parameters.
 - 4. Methods
- 5. Expected outcomes
 - 6. Audience

Students attending the Aerospace Materials course.

$v \left[\frac{mm}{min} \right]$	ε [%]	$T\ \ [^{\circ}]$		Estimated time (no counting)
		20 (400	for $L = 50 [mm], [min]$
		$\sim 20 \text{ (room)}$	120	
1	0.2	E_L, ρ_c, d	E_L, ρ_c, d	0.5
	0.4	E_L, ρ_c, d	E_L, ρ_c, d	0.6
	0.8	E_L, ρ_c, d	E_L, ρ_c, d	0.8
	1.0	E_L, ρ_c, d	E_L, ρ_c, d	0.9
	1.2	E_L, ρ_c, d	E_L, ρ_c, d	1
10	0.2	E_L, ρ_c, d	E_L, ρ_c, d	
	0.4	E_L, ρ_c, d	E_L, ρ_c, d	
	0.8	E_L, ρ_c, d	E_L, ρ_c, d	
	1.0	E_L, ρ_c, d	E_L, ρ_c, d	
	1.2	E_L, ρ_c, d	E_L, ρ_c, d	
50	0.2	E_L, ρ_c, d	E_L, ρ_c, d	
	0.4	E_L, ρ_c, d	E_L, ρ_c, d	
	0.8	E_L, ρ_c, d	E_L, ρ_c, d	
	1.0	E_L, ρ_c, d	E_L, ρ_c, d	
	1.2	E_L, ρ_c, d	E_L, ρ_c, d	
500	0.2	E_L, ρ_c, d	E_L, ρ_c, d	
	0.4	E_L, ρ_c, d	E_L, ρ_c, d	
	0.8	E_L, ρ_c, d	E_L, ρ_c, d	
	1.0	E_L, ρ_c, d	E_L, ρ_c, d	
	1.2	E_L, ρ_c, d	E_L, ρ_c, d	