

Overview

Intended audience

- systems neuroscientists interested in making more rigorous conclusions in circuit ID problems
- experimental neuroscientists looking for guidance on evaluating required intervention to answer circuit hypothesis questions

Goal - Provide a practical conceptual framework for applying closed-loop to circuit identification problems

- What's the value of closed-loop?
- What can i say about causal connections given the experiments i'm doing?
- How do I design an intervention which improves the strength of hypothesis testing?

Table of Contents

- Introduction
- Methods
- Figure GAUSSIAN: Gaussian and spiking networks simulated in Brian2
- Figure PIPELINE: Process of detecting connections in a network model
- Results
- Figure DEMO: Applying CLINC to distinguish a pair of circuits (casestudy)
- [Binary Sim.] Characterizing circuit-pair ambiguity through binary reachability properties
- Figure PROPS: impact of intrinsic network properties on identifiability

- Figure MOTIF: Interaction of network structure and intervention location on identifiability
- Figure DATA: Analysis of simulated circuits suggest stronger intervention facilitates identification with less data
- Figure PREDICT: Comparing predicted and emprical identification performance
- Figure DISAMBIG: Stronger intervention facilitates disambiguating equivalent hypotheses
- Discussion
- Supplement

Introduction

- · Interventions in neuro
 - lesion studies in neuro
 - disadvantages of lesioning
- What is closed-loop control?
 - Responsive and per-sample feedback control in neuro
 - Comparison to standard neuro system identification procedures (stim, lesions)
 - Stanley, Rozell prior work in closed-loop opto
- Causal methods for network discovery from time-series
 - What challenges are faced when estimating network connectivity?
 - [...]
 - background building from granger causality towards more complex methods
 - highlight limitations with current approaches
 - cite J.Runge
- · Interventions from the perspective of causal inference
 - core idea is that "stronger" interventions lead to "higher inferential power"
 - may mean identifying circuits with less data
 - but may also mean distinguishing circuits which may have

Methods

Multiple complementary perspectives (representations) of the same underlying network structure:

· The circuit view

$$\circ$$
 (A) \rightarrow (B) \leftrightarrow (C)

· The dynamical system view

$$\begin{cases} x' = Ax + Bu \\ y = Cx + \eta \end{cases}$$

The connectivity (adjacency matrix) view

$$egin{bmatrix} \dot{ar{x}_A} \ \dot{ar{x}_B} \ \dot{ar{x}_C} \end{bmatrix} = egin{bmatrix} w_{AA} & w_{AB} & w_{AC} \ w_{BA} & w_{BB} & w_{BC} \ w_{CA} & w_{CB} & w_{CC} \end{bmatrix} egin{bmatrix} x_A \ x_B \ x_C \end{bmatrix}$$

· why consider multiple

Interventions in causal identification

- intervention types
 - passive observation
 - open-loop stimulation
 - simulated as direct current injection
 - but uniform across a population

- (see Kyle Johnsen's cleosim toolbox for more detailed simulation of stimulation)
- closed-loop stimulation
 - approaches for control
 - going with "model-free" PID control of output rates
 - comparison to randomization in traditional experiment design

Reachability

- concept of binary reachability as a "best case scenario" for identification.
 - binary reachability describes which pairs of nodes we expect to have any correlation
 - can be used to predict "equivalence classes", i.e. circuits which may be indistinguishable under certain interventions
 - how binary reachability is computed
 - [...equations here...]
- graded reachability can help predict the influence of parameter values (e.g. edge weights, time-constants) on identifiability
 - quantifies impact of inputs, noise on outputs
 - easiest to describe/understand in linear-gaussian setting
 - [...equations here...]

Understanding identification through derived properties of circuits (reachability rules)

- connect binary reachability to classes of ambiguity
 - a pair of networks are ambiguous (given some intervention) if they are in the same markov equivalence class
 - ambiguity x intervention leads to the following classes

- passively unambiguous
- open-loop unambiguous
- (single-site) closed-loop unambiguous

ı

- · connect graded reachability to ID-SNR
 - \circ $ext{IDSNR}_{ij}$ measures the strength of signal related to the connection i o j relative to in the output of node j
 - for true, direct connections this quantity increasing means a (true positive) connection will be identified more easily (with high certainty, requiring less data)
 - for false or indirect connections, this quantity increasing means a false positive connection is more likely to be identified
 - as a result we want to maximize IDSNR for true links, and minimize it for false/indirect links

Network simulations

Gaussian network (delayed interactions)

LIF spiking network (delayed interactions)

 $small_circuit_scripts/circuit_functions/delayed_gaussian_network.py$

Figure GAUSSIAN: Gaussian and spiking networks simulated in Brian2

- built on Brian2 spiking neural network simulator
- · (delayed) linear-gaussian network
 - required custom functionality to implement
 - [brian_delayed_gaussian] repository
- spiking network

Extracting circuit estimates

Figure PIPELINE: Process of detecting connections in a network model

Outputs of network

spikes from populations of neurons

lagged cross-correlation

- connection to / equivalence with Granger Causality (GC)
 - review of GC in neuro
 - requisite assumptions
 - limitations of GC
- · xcorr features
 - peak-SNR
 - prominence
 - time of peak
- window of time-lags considered for direct connections
 - some multiple of expected synaptic delay

multivariate transfer entropy (muTE)

advantages above usual GC approach

statistical testing

- · for muTE, handled by IDTxI
 - includes appropriate multiple-comparison testing

Results

Figure DEMO: Applying CLINC to distinguish a pair of circuits (case-study)

- · explanation using binary reachability rules
 - consider postponing until we introduce intervention?
 - i.e. have one figure that walks through both reachability and impact of intervention
- (e.g. Advancing functional connectivity research from association to causation, Combining multiple functional connectivity methods to improve causal inferences)

[Binary Sim.] - Characterizing circuit-pair ambiguity through binary reachability properties

- · proportion of each ambiguity class as a function of circuit size
- · possibly weight proportions by observed frequency of triplet motifs
 - Figure: ambiguity class by circuit size X
 - SCOPE: cut?

Characterization of network estimation performance

Extracting circuit estimates

(see methods for xcorr, muTE)

Quantifying successful identification

- binary "classification" metrics
 - accuracy, F1 score (Wang & Shanechi 2019)
 - AUC (Pastore)
 - Jaccard index (Lepage, Ching, and Kramer 2013)
 - · true/false positives, true/false negatives
- graded metrics (not a core focus here)
 - distance between identified connection strength and ground-truth
 - MSE (Lepperod et al. 2018)
 - error in output reconstruction
- relevant "negative control" for comparison (?)
 - identified connectivity for random network?
 - some shuffled data-surrogate procedure?
- relevant "positive control" for comparison (?)

Impact of node, network parameters

- gaussian network simulation
 - click to expand
 - parameters
 - ullet synaptic (edge) weights w
 - synaptic (edge) delay δ
 - time-constants τ
 - node noise σ
 - expected results
 - weight increases xcorr peaks
 - τ blurs xcorr peak in time

- delay δ increases time-separability of sources
 - at $\delta=0$ limit, connections are harder to distinguish
 - especially direct v.s. indirect
- noise σ has a "location specific" impact describe by IDSNR transfer function
 - generally, high noise "upstream" of a connection increases the strength of a hypothesized connection
 - as long as any path is present between i o o j
 - high noise "downstream" of a connection, but impinging on the output node competes with / blurs / corrupts
 - The location-dependent impact of noise on connection identifiability may be one key way in which different forms of intervention impact circuit estimates
- spiking network simulation
 - all gaussian params, plus ...
 - spiking nonlinearity
 - gain
 - bias
 - spiking threshold

Tau:

Time-constant of internal noise effective noise amplitude seems to increase with low tau

Sigma:

Std dev. of internal noise for neurons

Weight:

Connection strength, Change in downstream voltage after and upstream spike

Figure PROPS: impact of intrinsic network properties on identifiability

- (e.g. Identification of excitatory-inhibitory links and network topology in large-scale neuronal assemblies from multi-electrode recordings)
- comparison to predicted IDSNR
- impact of circuit structure
- degree of nodes
 - · in/out-degree
 - \circ of source i
 - \circ of target j

- · presence of indirect correlations
- · presence of feedback loops
- · # of circuits in equivalence class

Figure MOTIF: Interaction of network structure and intervention location on identifiability

Impact of intervention

- intervention types
 - passive observation
 - open-loop stimulation
 - closed-loop stimulation
 - controller stregnth
 - gain
 - bandwidth
 - controller delay
 - additional stimulation factors (open- & closed-loop)
 - click to expand
 - stimulus location
 - single-site
 - multi-site
 - location relative to features of network
 - in-degree/out-degree
 - upstream/downstream of hypothesized connection
 - stimulus intensity
 - expected mean output rate
 - frequency content

Figure DATA: Analysis of simulated circuits suggest stronger intervention facilitates identification with less data

- metric: # of samples required to reach accuracy threshold
- closed-loop > open-loop > passive

Figure PREDICT: Comparing predicted and emprical identification performance

- layout: scatterplot and curve fit of emprical vs predicted accuracy (false positives, false negatives)
 - segmented by circuit type?
- · could be part of figures above

Figure DISAMBIG: Stronger intervention facilitates disambiguating equivalent hypotheses

- SCOPE: can this be combined with case-study walkthrough?
- like a quantitative version of binary proportion figure
- in example: shows a dataset with many correlations, multiple plausible circuit hypotheses
 - patterns of correlation become more specific with increasing intervention strength
- in aggregate: focuses on reduced bias, higher accuracy for "infinite" data limit
- closed-loop > open-loop > passive

Discussion

- Comparison to related work
 - comparison to work in ANNs
 - Kording, fakhar
 - comparison to Shanechi
 - comparison to Bassett "network controllability" view
- Limitations of evaluated interventions
 - quantifying the impact of imperfect / realistic control
 - barriers such as low spatial / temporal precision may prevent high-

performing control

- Limitations of network extraction approach
 - limitations of bivariate xcorr
 - effect of design / hyperparameters
 - nonlinear TE estimators
 - time bin size
 - extraction from spiking, firing rates, LFP
- Limitations of network simulation
 - small number of nodes
 - simple neuron dynamics
 - didn't focus on intricate connectivity that has been observed
 - future work apply to more complex Brian2 network models
 - assumed measurement from entire network
 - homogeneity in network parameters
 - understanding mediating effect of spike counts

Recommendations for designing network discovery experiments

- At the experiment-design phase, analyze competing hypotheses
 - through the lens of CLINC reachability / IDSNR
 - evaluate what can be distinguished under different interventions
- A spectrum of interventions pick the right tool for the job
 - stronger interventions generally come with cost
 - increased experiment complexity
 - depending on challenges, similarity of hypothesized circuits...
 - passive observation may be enough
 - or stronger interventions may be required

- Future work
 - tighter integration of knowledge of intervention into network estimation procedure
 - stimulus-conditional transfer entropy

Supplement

• organization of clinc-gen, clinc-analysis codebases