

XAI for Large Language Models

Kerrian Le Caillec
Ibrahim Al Khalil Ridene
Lydia Hammache

Contexte et Objectifs

Problème : Comment s'assurer que la réponse d'un LLM soit cohérente et vérifie un certain nombre de critères ?

- Pas de mesure de la validité des réponses du LLM.
- Améliorer la compréhension du processus de génération des LLMs.
- Développer des outils pratiques pour analyser les prises de décision des LLMs, notamment en cas d'hallucinations.
- Définir des métriques pour quantifier un niveau de certitude sur une réponse générée.
- Définir un seuil à partir duquel une réponse est risquée.

Plan de travail

- Etat de l'art
 - Méthode d'évaluations dans le cadre de text generation et d'explicabilité.
- Mise en pratique

Approche

Synthèse de métrique globale

- Pondération
- seuil

Définir la tâche:

- Extraction d'info
- Synthèse
- raisonnement

Définir un modèle:

- Embedding
- RAG
- hyperparamètres

Compréhension des hallucinations

Métriques d'évaluations

- LLM as a judge

Méthodes

RAG Models

RAG pipeline:

- o Retrieval evaluation
 - O How relevant are the chosen documents?
 - Are all documents as relevant?
- Generation evaluation
 - How relevant is the answer compared to the query?
 - How accurate is the answer given the context?

[https://huggingface.co/blog/hrishioa/retrieval-augmented-generation-1-basics]

RAG evaluation metrics

1/ Embedding Evaluation

2/ Retrieval Evaluation

3/ Generation Evaluation

1/ Embedding Evaluation

Task based methods

• Évaluer les performances sur des tâches spécifiques (e.g., classification, clustering) sans fine-tuning.

Qualitative Approaches

- Visualizations: t-SNE, UMAP
- Projection interpretation : étude de la représentation vectorielle des prompts en dimension réduire (PCA)

MNIST - TSNE

T-SNE for MNIST dataset

Mastering t-SNE(t-distributed stochastic neighbor embedding)
Sachinsoni

2/ Retrieval Evaluation

o Recall

 Mesure la proportion de documents pertinents qui figurent dans les K premiers résultats.

$$Recall@k = \frac{true\ positives@k}{(true\ positives@k) + (false\ negatives@k)}$$

o Precision

 Mesure la proportion de documents pertinents parmi les K premiers documents récupérés.

$$Precision@k = rac{true\ positives@k}{(true\ positives@k) + (false\ positives@k)}$$

o F1-score

 Combine précision et rappel dans une seule mesure harmonique.

$$F1@K = 2 \cdot \frac{Precision@K \cdot Recall@K}{Precision@K + Recall@K}$$

- o Robustesse au bruit
 - Ajouter du bruit au prompt et vérifier si les documents récupérés sont pertinents

Exp: remplacer "Paris" par "pariss" ou "ville lumière".

2/ Retrieval Evaluation

o nDCG@K (Normalized Discounted Cumulative Gain)

- utilisée pour évaluer la qualité d'une liste de résultats ordonnés : ordre + pertinence ("très pertinent",
 "peu pertinent", ou "non pertinent")
- DCG: Discount Cumulative Gain
- IDCG : Ideal Discount Cumulative Gain

$$nDCG@K = \frac{1}{IDCG@K}$$

- relevance(i): Score de pertinence attribué au document à la position i
 - exp: 2 (très pertinent), 1 (peu pertinent), ou 0 (non pertinent).
- i : Position du document dans la liste récupérée.
- log2 (i+1): Pondère l'importance de la position du document. Plus un document est bas dans la liste (plus i est grand), plus son score de pertinence contribue moins au DCG.

$$ext{DCG@K} = \sum_{i=1}^{K} rac{2^{ ext{relevance}(i)} - 1}{\log_2(i+1)}$$

2/ Context-related evaluation

o Completeness

- o Check if answer contains all the relevant information from the references, and let the model decides a grade/5.
 - o => which granularity do we want ?

Context relevancy

$$\circ$$
 $CR = \frac{\#relevant\ sentences}{\#setences\ in\ context}$

=> May not be the most pertinent metric in this setting

Positive acceptance / Negative rejection

- o Did the model refrain from responding when it wasn't supposed to?
- o Did the model respond when it wasn't supposed to?

3/ Generation evaluation

Faithfulness/Hallucinations

- Given context, how faithful the statements made by the LLM are.
- $\circ \ \textit{Faithful} = \frac{\textit{\#true statements}}{\textit{\#statements}}$
 - => Can be too restrictive « What is type I error in statistics? » « Null hypothesis ≠ Original hypothesis »
 - => Need many statements to be reliable

Answer relevancy

- Generate questions q_i based on the provided RAG answer.
- $o AR = \frac{1}{n} \sum_{i=1}^{n} cosine _sim(q_i, q)$
 - => How to make a decision from it?

RAG Pipeline

Example of an "explainable" RAG Pipeline

- How to build the system of priority? => Build a trainset
- How can we maintain good results from the model while in inference?

Synthèse Bibliographique

Bibliographie: Transformers and GPTs

Title	Problem statement	Methodology	For our project?
Attention Is All You Need	Prior to the architecture developed in the paper, the model used for NLP were complex recurrent or convolutional neural networks in an encoder-decoder configuration.	Transformer architecture: feed-forward architecture with attention mechanisms, dispensing with recurrence and convolutions entirely.	Transformer architecture used everywhere
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding	Existing language representation models are limited by their unidirectional context and shallow understanding, leading to inadequate performance in complex NLP tasks. BERT provides a deep bidirectional representation that captures the full context of language, thereby improving the model's ability to understand and generate human-like text.	Combines bidirectional training through masked language modeling and next sentence prediction, followed by fine-tuning on specific tasks, all built upon the powerful Transformer architecture.	Type of transformer. Useful for understanding natural language.
GPT-4 Technical Report	Fast models for text generation struggles with limited context.	Transformer decoder-based architecture (GPT) useful for chat completion as it is auto-regressive.	Base of most of the generative transformers nowadays.
Latent Retrieval for Weakly Supervised Open Domain Question Answering	Chat generation often lacks contextualized data to answer a user query.	Model proposes an approach to add a retrieval part to be used as context for a text generation model afterwards	RAG model will be cornerstone model of our project

Bibliographie: RAG evaluation

Title	Problem statement	Methodology	For our project?
RAGAS: Automated Evaluation of Retrieval Augmented Generation	Evaluating RAG architectures is challenging because there are several dimensions to consider: the ability of the retrieval system to identify relevant and focused context passages	Suite of metrics which can be used to evaluate these different dimensions without having to rely on ground truth human annotations	Metrics useful to quantify and evaluate the output of RAGs: how relevant is the context/the answer?
GroUSE: A Benchmark to Evaluate Evaluators in Grounded Question Answering	RAG evaluation methods were incomplete	To assess the calibration and discrimination capabilities of judge models, 7 generator failure modes were identified	More useful metrics to evaluate a RAG model, is the answer complete, should there be an answer?
GPTScore: Evaluate as You Desire	Need to compare output of a text generation model with ground truth.	Compute the correlation between several outputs on train dataset with human feedback as ground-truth	If we have a trainset to define a ground-truth, we can compare the output of the model with
Is ChatGPT a Good NLG Evaluator? A Preliminary Study	Need for a good NLG evaluation metric	LLM-as-Judge, use benchmark language models to evaluate the output of another model	Evaluate the performances of the rag model using

Bibliographie: XAI

Title	Problem statement	Methodology	For our project?
A Unified Approach to Interpreting Model Predictions	How to measure how changes in a feature impact the output of a regression/classification machine learning model?	SHAP (SHapley A dditive exPlanations). SHAP assigns to each feature an importance value for a particular prediction. Surrogate model that comes on top of the language model.	If we consider simple sentiment analysis cases, we may be able to determine the impact of tokens.
TokenSHAP: Interpreting Large Language Models with Monte Carlo Shapley Value Estimation	How to measure how changes in a feature impact the output of a text generation model?	theoretical framework extending Shapley values to variable-length text LLM inputs. An efficient Monte Carlo sampling approach tailored for language models.	For text generation, it can be interesting to detect hallucinations more efficiently => We know which tokens affect the output text
RAGBench: Explainable Benchmark for Retrieval- Augmented Generation Systems	comprehensive evaluation of RAG systems remains a challenge due to the lack of unified evaluation criteria and annotated datasets	Introduces RAGBench, a comprehensive dataset designed to evaluate RAG systems, emphasizing the need for unified evaluation criteria and annotated datasets	Can help to have a standard evaluation metric for RAGs
RAGE Against the Machine: Retrieval-Augmented LLM Explanations		Presents RAGE, an interactive tool for explaining LLMs augmented with retrieval capabilities, focusing on counterfactual explanations	RAGE includes pruning methods to navigate the vast space of possible explanations> producing better generation