Portland State University

Electrical & Computer Engineering EE 347 Power Systems I

-Homework #3-

Text Questions: 3-13, 3-19

<u>Text Problems</u>: 3-2(a,c,d), 3-21(b,c)

Problem 1:

Expand your power system simulation from Homework #2 by replacing the 13.2kV transmission line with a 138kV line. Correspondingly, transformers are now required at the load and generator¹. System specifications:

- 13.2kV load bus
 - o Load 1: 430kVA, PF = 0.70 lagging
 - o Load 2: 300kVA, PF = 0.85 lagging
- Transmission line:
 - o 0.80MVA capacity
 - o R = $0.02\Omega/\text{mile}$, X = $0.2\Omega/\text{mile}^2$
 - \circ d = 80 miles
 - o 138kV
- 24.2kV generator bus; set as 'system slack bus'
 - o Generator: 0.9MW, 0MVAR (these will change when the simulation runs)
- Transformers
 - o 24.2kV-138kV step-up (generator)
 - o 138kV-13.2kV step-down (load)
 - o 800kVA rating
 - o Series resistance, 0.01pu³
 - o Series reactance, 0.03pu
 - o Shunt Charging, -0.001pu (B = $1/jX_m$ from Chapman, in per-unit form)
 - o Shunt Conductance, 0.0005pu ($G = 1/R_C$ from Chapman, in per-unit form)

Run a "Single-Solution Full Newton" simulation. Turn in a printout of your simulated power system circuit. Determine the percentage of the transmission line and transformer MVA rating used by the system. Calculate the generator-to-load real power transmission efficiency. Are system components, transmission line and transformers, properly sized?

¹ In PowerWorld, transformers are connected like transmission lines except that the buses on either end are of differing voltages. Adding transformers will also require the addition of new generator and load buses.

² Per-mile R and X may be set within the line information dialogue box by clicking on the 'Calculate Impedances >" button and selecting "from per distance impedances."

³ We will learn more about the per-unit system of representation later in the term.

Problem 2:

Open-circuit and short-circuit tests were performed on the primary side of a 75 kVA, single-phase 7.20 kV-240 V distribution transformer. Determine the primary-side cantilever equivalent circuit for the transformer.

Test data are presented in Table 1. Determine the voltage regulation and transformer efficiency when a rated load with 0.85 lagging PF is connected. Voltage regulation is load regulated.

 Table 1
 Short-circuit and open-circuit test data

$V_{OC} = V_{p,Rated}$	$I_{OC} = 250 \text{ mA}$	$P_{OC} = 1500 \text{ W}$
$V_{SC} = 330 \text{ V}$	$I_{SC} = I_{p,rated}$	$P_{SC} = 1600 \text{ W}$

Fundamentals of Engineering Exam Problem 1:

The 50 kW load in the circuit below has a lagging power factor of 0.77. What size capacitor must be added to this circuit to correct the power factor to 0.95 lagging?

- (A) -48kVAr in series
- (B) -25kVAr in series
- (C) -48kVAr in parallel
- (D) -25kVAr in parallel