Q,

(a) Set of scheduling and projection are permissible means that

In this question, $e = \begin{bmatrix} i \end{bmatrix} = \begin{bmatrix} i \end{bmatrix}$, $\begin{bmatrix} 1 \end{bmatrix}$, $\begin{bmatrix} 0 \end{bmatrix}$

$$\bar{z}$$
, $S^{t} \cdot d = [1,0][[0]] = 1 + 0$, $S^{t} \cdot e = [1,0][[0]] = [1,1,0]$

all elements are not less <

 $\ddot{t}\ddot{t}\ddot{t}$, $S^{t}.d = [1,1][5] = 1 + 0$, $S^{t}.e = [1,1][5][7] = [1,1,1]$

iv. St. d=[1,1][?]=1 to, St.e=[1,1][100]=[1,1,1]

Thus, i. ili iv are permissible. #

(p)'

U[n-2], U[n-1], U[n].

Set $d = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ then P will be $[0 \ 1]$ because $[0 \ 1]$. The dependence vector is $[1 \ 1]$, $[0 \ 1]$. Select scheduling vector $S = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. $\begin{bmatrix} S^{t} \cdot e = \begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \end{bmatrix} \ge \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} S^{t} \cdot e = \begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix} = 2 \ne 0$

from arc mapping

$$\begin{bmatrix} 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

#

(c) comparator module

After comparing, the smaller values of y(i) and i are passed to the next stage.

Add comparator to each output terminal of DG