Feature Extraction and Image Processing for Computer Vision

5th Edition

Contents

Preface

What is New in the Fifth Edition?

Why Did We Write this Book?

The Book and its Support

In Gratitude

Final Message

Dedication

1 Introduction

- 1.1 Overview
- 1.2 Human and Computer Vision
- 1.3 The Human Vision System
 - 1.3.1 The Eve
 - 1.3.2 The Neural System
 - 1.3.3 Processing
- 1.4 Computer Vision Systems
 - 1.4.1 Cameras
 - 1.4.2 Computer Interfaces
- 1.5 Processing Images
 - 1.5.1 The Deep Learning Revolution
 - 1.5.2 Processing
 - 1.5.3 Hello Python, Hello Images!
 - 1.5.4 Mathematical Tools
 - 1.5.5 Hello Matlab
- 1.6 Associated Literature
 - 1.6.1 Journals, Magazines and Conferences
 - 1.6.2 Textbooks
 - 1.6.3 The Web
- 1.7 Conclusions
- 1.8 Chapter 1 References

2 Images, Sampling and Frequency Domain Processing

- 2.1 Overview
- 2.2 Image Formation
- 2.3 The Fourier Transform
- 2.4 The Sampling Criterion

- 2.5 The Discrete Fourier Transform (DFT)
 - 2.5.1 One Dimensional Transform
 - 2.5.2 Two Dimensional Transform
- 2.6 Properties of the Fourier Transform
 - 2.6.1 Shift Invariance
 - 2.6.2 Rotation
 - 2.6.3 Frequency Scaling
 - 2.6.4 Superposition (Linearity)
 - 2.6.5 The Importance of Phase
- 2.7 Transforms other than Fourier
 - 2.7.1 Discrete Cosine Transform
 - 2.7.2 Discrete Hartley Transform
 - 2.7.3 Introductory Wavelets
 - 2.7.3.1 Gabor Wavelet
 - 2.7.3.2 Haar Wavelet
 - 2.7.4 Deep Learning based Compression
 - 2.7.5 Other Transforms
- 2.8 Applications using Frequency Domain Properties
- 2.9 Further Reading
- 2.10 Chapter 2 References

3 Image Processing

- 3.1 Overview
- 3.2 Histograms
- 3.3 Point Operators
 - 3.3.1 Basic Point Operations
 - 3.3.2 Histogram Normalisation
 - 3.3.3 Histogram Equalisation
 - 3.3.4 Thresholding
- 3.4 Group Operations
 - 3.4.1 Template Convolution
 - 3.4.2 Averaging Operator
 - 3.4.3 On Different Template Size
 - 3.4.4 Template Convolution via the Fourier Transform
 - 3.4.5 Gaussian Averaging Operator
 - 3.4.6 More on Averaging

- 3.5 Other Image Processing Operators
 - 3.5.1 Median Filter
 - 3.5.2 Mode Filter
- 3.6 Mathematical Morphology
 - 3.6.1 Morphological Operators
 - 3.6.2 Grey Level Morphology
 - 3.6.3 Grey Level Erosion and Dilation
 - 3.6.4 Minkowski Operators
- 3.7 Further Reading
- 3.8 Chapter 3 References

4 Distance, Classification and Deep Learning

- 4.1 Overview
- 4.2 Basis of Classification and Learning
- 4.3 Distance Measures
 - 4.3.1 Basic properties
 - 4.3.2 Basic measures: Manhattan and Euclidean, L_n norms
 - 4.3.3 Measuring groups:

 Mahalanobis, Bhattacharrya
 and Matusita
 - 4.3.4 Other measures: Histogram Intersection, Chi2 (χ 2) and the Earth Mover's Distance
- 4.4 Classification
 - 4.4.1 The k-Nearest Neighbour for Classification
 - 4.4.2 Support Vector Machines
 - 4.4.3 Random Forests
 - 4.4.4 Other Approaches
- 4.5 Neural Networks
 - 4.5.1 Basis of Learning: Error Back Propagation
 - 4.5.2 Neuron Operation
 - 4.5.3 Activation Functions
 - 4.5.4 Analysing a Basic MLP
 - 4.5.5 More Activation Functions
 - 4.5.6 Basic Loss Functions
- 4.6 Deep Learning
 - 4.6.1 Basis of Deep Learning
 - 4.6.2 The Beginning of the Revolution
 - 4.6.2.1 Convolutional Layers
 - 4.6.2.2 Pooling Layers
 - 4.6.2.3 Fully Connected Layers
 - 4.6.2.4 Full Architecture
 - 4.6.2.5 Performance

- 4.6.3 Deep Learning Architectures/ Backbones and Objectives
 - 4.6.3.1 Resnet, VGG and other Convolutional Networks
 - 4.6.3.2 U-net
 - 4.6.3.3 Applying Deep Learning
- 4.6.4 Building Blocks: Architectures and Strategies
 - 4.6.4.1 Range of Approaches and Performance
 - 4.6.4.2 Feature Pyramid Networks
 - 4.6.4.3 Non-Local Operations
 - 4.6.4.4 Encoder and Autoencoder
 - 4.6.4.5 Generative Adversarial Networks (GAN)
 - 4.6.4.6 Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM)
 - 4.6.4.7 Transformer
 - 4.6.4.8 Diffusion Models
 - 4.6.4.9 Other Components: CapsNet and 3D CNN
 - 4.6.4.10 Recent Developments:

 Neural Radiance Fields

 (NeRFs) and Foundation

 Models
 - 4.6.4.11 Example Architecture
- 4.6.5 Applying Deep Learning
 - 4.6.5.1 Training and Application
 - 4.6.5.2 More Loss Functions
 - 4.6.5.3 Advanced Loss Functions

 Arcface and Cosface
- 4.6.6 Data
- 4.6.7 Understanding the Results
- 4.6.8 Applying Deep Learning: Classification
- 4.7 Image Segmentation with Deep Learning
 - 4.7.1 Segmentation by Encoding and Decoding
 - 4.7.2 Region with CNN Features
 - 4.7.3 You Only Look Once
- 4.8 Further Reading
- 4.9 Chapter 4 References

5 Low-Level Feature Extraction (including Edge Detection)

- 5.1 Overview
- 5.2 Edge Detection
 - 5.2.1 Handcrafted First Order Edge Detection Operators
 - 5.2.1.1 Basic Operators
 - 5.2.1.2 Analysis of the Basic Operators
 - 5.2.1.3 Prewitt Edge Detection Operator
 - 5.2.1.4 Sobel Edge Detection Operator
 - 5.2.1.5 The Canny Edge Detector
 - 5.2.2 Second Order Edge Detection Operators
 - 5.2.2.1 Motivation
 - 5.2.2.2 Basic Operators: The Laplacian
 - 5.2.2.3 The Marr-Hildreth Operator
 - 5.2.3 Other Handcrafted Edge
 Detection Operators
 - 5.2.4 Comparison of Handcrafted Edge Detection Operators
 - 5.2.5 Deep Learning Edge Detection Operators
 - 5.2.6 Further Reading on Edge Detection
- 5.3 Phase Congruency
- 5.4 Localised Feature Extraction
 - 5.4.1 Detecting Image Curvature (Corner Extraction)
 - 5.4.1.1 Definition of Curvature
 - 5.4.1.2 Measuring Curvature by Changes in Intensity (Differentiation)
 - 5.4.1.3 Moravec and Harris
 Detectors
 - 5.4.1.4 Further Reading on Curvature
 - 5.4.2 Feature Point Detection; Region/Patch Analysis
 - 5.4.2.1 Scale Invariant Feature Transform (SIFT)
 - 5.4.2.2 Speeded Up Robust Features (SURF)

- 5.4.2.3 FAST, ORB, FREAK, LOCKY and other Handcrafted Keypoint Detectors
- 5.4.2.4 Deep Learning-Based Feature Detectors
- 5.4.3 Saliency
 - 5.4.3.1 Basic Saliency
 - 5.4.3.2 Context Aware Saliency
 - 5.4.3.3 Other Handcrafted Saliency

Operators

- 5.4.3.4 Saliency by Deep Learning
- 5.5 Describing Image Motion
 - 5.5.1 Area-based approach
 - 5.5.2 Differential approach
 - 5.5.3 Advancing Optical Flow:
 Deepflow, Epicflow and
 extensions; Acceleration
 - 5.5.4 Analysis of Optical Flow
 - 5.5.5 Optical Flow by Deep Learning
 - 5.6 Further Reading
- 5.7 Chapter 5 References

6 High-Level Feature Extraction: Fixed Shape Analysis

- 6.1 Overview
- 6.2 Segmenting Objects from Images
 - 6.2.1 Segmentation by Thresholding and Subtraction
 - 6.2.2 Segmentation by Deep Learning
 - 6.2.2.1 Semantic Segmentation by Convolutional Networks, with Extensions
 - 6.2.2.2 Generic Segmentation
 - 6.2.2.3 Matting
- 6.3 Feature Extraction by Low Level Features
 - 6.3.1 Appearance-Based Approaches
 - 6.3.1.1 Object Detection by Templates
 - 6.3.1.2 Object Detection by Combinations of Parts
 - 6.3.2 Distribution-Based Descriptors
 - 6.3.2.1 Description by Interest Points (SIFT, SURF, BRIEF)
 - 6.3.2.2 Characterising Object
 Appearance and Shape

- 6.3.3 Learning-Based Feature Descriptors
- 6.4 Feature Extraction by Shape
 - 6.4.1 Template Matching
 - 6.4.1.1 Definition
 - 6.4.1.2 Fourier Transform Implementation
 - 6.4.1.3 Discussion of Template Matching
 - 6.4.2 Shape Extraction/ Object
 Detection by Deep Learning
- 6.5 Hough Transform (HT)
 - 6.5.1 Overview
 - 6.5.2 HT for Lines
 - 6.5.3 HT for Circles
 - 6.5.4 HT for Ellipses
 - 6.5.5 Parameter Space Decomposition
 - 6.5.5.1 Parameter space reduction for lines
 - 6.5.5.1 Parameter space reduction for circles
 - 6.5.5.3 Parameter space reduction for ellipses
 - 6.5.6 Generalised Hough Transform (GHT)
 - 6.5.6.1 Formal Definition of the GHT
 - 6.5.6.2 Polar definition
 - 6.5.6.3 The GHT Technique
 - 6.5.6.4 Invariant GHT
 - 6.5.7 Other Extensions to the HT
 - 6.5.8 HT and Deep Learning
- 6.6 Further Reading
- 6.7 Chapter 6 References

7 High-Level Feature Extraction: Deformable Shape Analysis

- 7.1 Overview
- 7.2 Deformable Shape Analysis
 - 7.2.1 Deformable Templates
 - 7.2.2 Parts-based Shape Analysis
- 7.3 Active Contours (Snakes)
 - 7.3.1 Basics
 - 7.3.2 The Greedy Algorithm for Snakes

- 7.3.3 Complete (Kass) Snake Implementation
- 7.3.4 Other Snake Approaches
- 7.3.5 Further Snake Developments
- 7.3.6 Geometric Active Contours (Level-Set Based Approaches)
- 7.3.7 Deep Learning based Active Contours
- 7.4 Shape Skeletonisation
 - 7.4.1 Distance Transforms
 - 7.4.2 Symmetry
 - 7.4.3 Skeletonisation in the Deep Era
- 7.5 Flexible Shape Models Active Shape and Active Appearance
- 7.6 Further Reading
- 7.7 Chapter 7 References

8 Object Description

- 8.1 Overview and Invariance Requirements
- 8.2 Boundary Descriptions
 - 8.2.1 Boundary and Region
 - 8.2.2 Chain Codes
 - 8.2.3 Fourier Descriptors
 - 8.2.3.1 Basis of Fourier Descriptors
 - 8.2.3.2 Fourier Expansion
 - 8.2.3.3 Shift invariance
 - 8.2.3.4 Discrete computation
 - 8.2.3.5 Cumulative Angular Function
 - 8.2.3.6 Elliptic Fourier Descriptors
 - 8.2.3.7 Invariance
- 8.3 Region Descriptors
 - 8.3.1 Basic Region Descriptors
 - 8.3.2 Moments
 - 8.3.2.1 Definition and Properties
 - 8.3.2.2 Geometric Moments
 - 8.3.2.3 Geometric Complex

 Moments and Centralised

 Moments
 - 8.3.2.4 Rotation and Scale Invariant Moments
 - 8.3.2.5 Zernike Moments
 - 8.3.2.6 Tchebichef Moments

8.3.2.7 Krawtchouk Moments 8.3.2.8 Other Moments 8.4 **Further Reading** 8.5 **Chapter 8 References** 9 Region Based Analysis 9.1 Overview 9.2 Advanced Denoising Operators and Image Super-Resolution 9.2.1 Region-based Filtering 9.2.1.1 Non-Local Means/Self-Similarity 9.2.1.2 Non-Local Means by Deep Learning 9.2.1.3 Bilateral Filtering 9.2.1.4 Anisotropic Diffusion 9.2.1.5 Comparison of Handcrafted Smoothing **Operators** 9.2.2 Image Denoising and Superresolution by Deep Learning 9.2.3 Other Processing Operators 9.2.3.1 Force Field Transform 9.2.3.2 Image Ray Transform 9.3 Region-Based Analysis 9.3.1 Watershed transform 9.3.2 Maximally Stable Extremal Regions 9.3.3 Superpixels 9.3.3.1 Basic Techniques and **Normalised Cuts** 9.3.3.2 Simple Linear Iterative Clustering (SLIC) 9.3.3.3 Superpixels by Deep Learning 9.4 Texture Description and Analysis 9.4.1 What is Texture? 9.4.2 Performance Requirements 9.4.3 Structural Approaches 9.4.4 Statistical Approaches 9.4.4.1 Co-occurrence Matrix 9.4.4.2 Machine learning based

> approaches 9.4.5 Combination Approaches

9.4.7 Deep Learning for Texture

9.4.6 Local Binary Patterns

9.4.8 Other Approaches

9.5 Further Reading 9.6 Chapter 9 References 10 Moving Object Detection, Description and Tracking 10.1 Overview 10.2 Moving Object Detection 10.2.1 Basic Handcrafted **Approaches** 10.2.1.1 Detection by Subtracting the Background 10.2.1.2 Improving Quality by Morphology 10.2.2 Modelling and Adapting to the (Static) Background 10.2.3 Background Segmentation by Thresholding 10.2.4 Problems and Advances: in comes Deep Learning 10.3 Tracking Moving Features 10.3.1 Tracking Moving Objects 10.3.2 Tracking by Local Search 10.3.3 Problems in Tracking 10.3.4 Approaches to Tracking 10.3.5 MeanShift and Camshift 10.3.5.1 Kernel-Based Density Estimation 10.3.5.2 MeanShift Tracking 10.3.5.3 Camshift Technique 10.3.6 Deep tracking 10.4 Moving Feature Extraction and Description 10.4.1 Moving (Biological) Shape **Analysis** 10.4.2 Space-Time Interest Points 10.4.3 Detecting Moving Shapes by Shape Matching in Image Sequences 10.4.4 Moving Shape Description 10.4.5 Deep Learning for Moving **Shape Recognition** 10.5 Further Reading 10.6 Chapter 10 References 11 Camera Geometry Fundamentals

11.1 Overview

11.2 Projective Space

- 11.2.1 Homogeneous co-ordinates and Projective Geometry
- 11.2.2 Representation of a Line,
 Duality and Ideal Points
- 11.2.3 Transformations in the Projective Space
- 11.2.4 Computing a Planar Homography
- 11.3 The Perspective Camera
 - 11.3.1 Perspective Camera Model
 - 11.3.2 Parameters of the Perspective Camera Model
 - 11.3.3 Computing a Projection from an Image
- 11.4 Affine Camera
 - 11.4.1 Affine Camera Model
 - 11.4.2 Affine Camera Model and the Perspective Projection
 - 11.4.3 Parameters of the Affine Camera Model
- 11.5 Weak Perspective Model
- 11.6 Discussion
- 11.7 Further Reading
- 11.8 Chapter 11 References

12 Colour Images

- 12.1 Overview
- 12.2 Colour Image Theory
 - 12.2.1 Colour Images
 - 12.2.2 Tristimulus Theory
 - 12.2.3 The Colourimetric Equation
 - 12.2.4 Luminosity Function
- 12.3 Perception based Colour Models:

CIE RGB and CIE XYZ

- 12.3.1 CIE RGB Colour Model:
 - Wright-Guild Data
- 12.3.2 CIE RGB Colour Matching Functions
- 12.3.3 CIE RGB Chromaticity
 Diagram and Chromaticity
 Coordinates
- 12.3.4 CIE XYZ Colour Model
- 12.3.5 CIE XYZ Colour Matching Functions
- 12.3.6 XYZ Chromaticity Diagram
- 12.4 Additive and Subtractive Colour Models
 - 12.4.1 RGB and CMY

- 12.4.2 Transformation between RGB Models
- 12.4.3 Transformation between RGB and CMY Models
- 12.5 Luminance and Chrominance Colour Models
 - 12.5.1 YUV, YIQ and YCbCr Models
 - 12.5.2 Luminance and Gamma Correction
 - 12.5.3 Chrominance
 - 12.5.4 Transformations between YUV, YIQ and RGB Colour Models
 - 12.5.5 Colour Model for Component Video: YPbPr
 - 12.5.6 Colour Model for Digital Video: YCbCr
- 12.6 Additive Perceptual Colour Models
 - 12.6.1 The HSV and HLS Colour Models
 - 12.6.2 The Hexagonal Model: HSV
 - 12.6.3 The Triangular Model: HLS
 - 12.6.4 Transformation between HLS and RGB
 - 12.7 More Colour Models
 - 12.8 Chapter 12 References

Index