CSE 6331 HOMEWORK 3

BRENDAN WHITAKER

1. A function T(n) satisfies:

$$T(n) = \begin{cases} c, & n \le 1\\ 3T(\lfloor n/4 \rfloor) + n, & n > 1 \end{cases},$$

where c is a positive constant. Prove that T(n) is asymptotically nondecreasing.

Proof. We use induction. Let n = 1. Then

$$T(n+1) = T(2) = 3T(\lfloor 2/4 \rfloor) + 2 = 3T(0) + 2 = 3c + 2 > c.$$

So $T(1) = c \le 3c + 2 = T(2)$. So the base case holds. Now fix n and assume $T(k) \le T(k+1), \forall k \le n$. We wish to show that $T(n+1) \le T(n+2)$. We know $T(n+2) = 3T(\lfloor (n+2)/4 \rfloor) + n + 2$. And $T(n+1) = 3T(\lfloor (n+1)/4 \rfloor) + n + 1$.

Case 1: $n+1 \equiv 3 \mod 4$. Then we know (n+2)/4 is an integer, so let l+1=(n+2)/4. Then we have: $\lfloor (n+1)/4 \rfloor = l$, and then T(n+2) = 3T(l+1) + n + 2, and T(n+1) = 3T(l) + n + 1. Now since $l \le n$, we know $T(l) \le T(l+1)$. So we have:

$$T(n+1) = 3T(l) + n + 1 \le 3T(l+1) + n + 2 = T(n+2).$$

Case 2: $n+1 \not\equiv 3 \mod 4$. Then $\lfloor (n+1)/4 \rfloor = \lfloor (n+2)/4 \rfloor = l \in \mathbb{Z}$. So we have:

$$T(n+1) = 3T(l) + n + 1 \le 3T(l) + n + 2 = T(n+2).$$

Hence we know $T(n+1) \leq T(n+2)$ in all cases, so by induction this is true for all $n \in \mathbb{N}$. So T(n) is nondecreasing for positive integers. In particular it is asymptotically nondecreasing.

2. Determine the tight asymptotic complexity of the following function:

$$T(n) = \begin{cases} b, & n \leq 3 \\ T(\lfloor n/2 \rfloor) + T(\lfloor n/4 \rfloor) + cn, & n > 3 \end{cases}.$$

We claim $T(n) \in \Theta(n)$.

Proof. Assume n is a power of 4. We use a recursion tree to observe that at each level i, the time to divide and combine is $(\frac{3}{4})^i n$:

Date: SP18.

And since the height of the tree is given by the longest path to a leaf node, which is along the side with all recursive calls to $T(\lfloor n/2 \rfloor)$, we know the height is $\log_2(n)$. So we have:

$$T(n) = cn + \left(\frac{3}{4}\right)cn + \left(\frac{3}{4}\right)^2cn + \dots + \left(\frac{3}{4}\right)^{\log_2 n}b$$

$$\leq cn\left(1 + \left(\frac{3}{4}\right) + \left(\frac{3}{4}\right)^2 + \dots\right)$$

$$= 4cn \in O(n).$$

$$T(n) > cn \in \Omega(n).$$
(1)

So we know $T(n) \in \Theta(n)$.

3. Determine the tight asymptotic complexity of the following function:

$$T(n) = \begin{cases} b, & n \le 3 \\ T(\lfloor n/2 \rfloor) + 2T(\lfloor n/4 \rfloor) + cn, & n > 3 \end{cases}.$$

We claim $T(n) \in \Theta(n \log(n))$.

Proof. Again, we use a recurrence tree:

So we have that the time to divide and combine on each level of the tree adds to cn. And the height of the tree is $\log_2 n$ since the longest path to a tree node is along the left hand side, where all the recursive calls are T(n/2). So we have:

$$T(n) = cn + cn + \dots + b$$

= $\log_2 n(cn) \in \Theta(n \log n)$. (2)

- 4. Use the master method to solve the following recurrences.
 - (a) $T(n) = 4T(n/2) + n^2$. Note $a = 4, b = 2, f(n) = n^2$, and $n^{\log_2(4)} = n^2 = \Theta(n^2)$. So by the master method, this is **Case 3**, and hence $T(n) \in Theta(n^2 \log n)$.
 - (b) $T(n) = 4T(n/2) + n^2 \log^2 n$. Note $a = 4, b = 2, f(n) = n^2 \log^2 n$. And $n^{\log_2(4)} = n^2$, and $n^2 \log^2 n \in \Theta(n^2 \log^2 n)$, so this is **Case 4**. Hence $T(n) \in \Theta(n^2 \log^3 n)$.
 - (c) $T(n) = 4T(n/2) + n^3$. Note $a = 4, b = 2, f(n) = n^3$. And $n^{\log_2(4)} = n^2$. So we know $f(n) = n^3 >> n^2$, and thus this is **Case 2**. So we know $T(n) \in \Theta(n^3)$.
- 5. The running time of an algorithm A is described by the recurrence $T(n) = 7T(n/2) + n^2$. A competing algorithm A' has a running time of $T'(n) = aT'(n/4) + n^2$. What is the largest integer value for a such that A' is asymptotically faster than A?

We apply the master theorem. Note that for T(n), we have $a=7, b=2, f(n)=n^2$. And since $n^{\log_2(7)} >> n^2$, we are in **Case 1**, and $T(n) \in \Theta(n^{\log_2(7)})$. For T'(n), we have $a, b=4, f(n)=n^2$. If we choose a=17, we have $n^{\log_4(17)} >> n^2 = n^{\log_4(16)}$, and since:

$$\log_4(17) < 2.05 < 2.80 < \log_2(7),$$

we know we are in Case 1 for T'(n) as well, and $T'(n) \in \Theta(n^{\log_4(a)})$. Observe that $\log_4(7^2) = 2\log_4(7) = 2\frac{\log_2(7)}{\log_2(4)} = \log_2(7)$. So when we let $a = 7^2 = 49$, we have $T'(n) = \Theta(T(n))$. So we let $a = 7^2 - 1 = 48$, and then $T'(n) \in \Theta(n^{\log_4(48)})$, so since $n^{\log_4(48)} << n^{\log_2(7)}$, we know 48 is the largest integer a s.t. T'(n) is asymptotically faster than T(n).