WaveNet: A Generative Model for Raw Audio

Ирина Понамарева

Higher School of Economics

26 апреля 2019 г.

Overview

- 🚺 Задача генерации звука
- 2 Архитектура модели
- Модель с обуславливанием
- 4 Эксперименты и сравнение с другими моделями

Как моделировать звук?

- Звук делится на интервалы, кодируется в одно из 16 (32, 64) значений
- ullet $x=\{x_i\}_{i=1}^{\mathcal{T}}$ звук как временной ряд
- $p(X) = \prod_{i=1}^T p(x_i|x_{i-1},...,x_1)$ каждый следующий элемент обусловлен предыдущими

Откуда взялась идея? PixelCNN

- Следующий пиксель обуславливается только предыдущими
- Для того, чтобы модель видела только то, что нужно, использовались маски
- Каждый слой по отдельности имеет свои "слепые пятна"

Устройство сети: сверточный слой

- Идея casual convolution: каждое следующее значение обусловлено предыдущими
- Для аудио: сдвиг выхода обычной конволюции на несколько шагов
- Быстрее рекуррентных!

Устройство сети: разрежаем свёрточный слой

- Таким образом, экспоненциально расширяется receptive field нейросети
- 1, 2, 4, ..., 512, 1, ...
- 1 блок (1, ..., 512) эквивалентен 1 конволюции 1 * 1024

Трансформация сигнала

- Обычно глубина кодирования 16, поэтому нужно было бы 65536 вероятностей (софтмаксов) для каждого временного шага. Очень дорого!
- ullet Решение: μ -law companding transformation
- $f(x_t) = (x_t) \frac{\ln(1+\mu|x_t|)}{1+\mu}$
- ullet $-1 < x_t < 1, \mu = 256$, затем квантуется в 256 значений
- ullet Размерность 65536
 ightarrow 256

Gated Activation Units: Как устроены слои?

Gated Activation Unit

- $\mathbf{z} = \tanh(W_{f,k} * \mathbf{x}) \odot (W_{g,k} * \mathbf{x})$
- f filter, g gate (см. GRU)
- k номер слоя
- W обучаемый конволюционный фильтр

Residual and Skip connections

- Ускоряют сходимость
- Позволяют обучать более глубокие модели

9 / 17

Обуславливание

$$p(x|h) = \prod_{t=1}^{T} p(x_t|x_{t-1},...,x_1,h)$$

Глобальное обуславливание

- ullet например, $h-\mathsf{ID}$ говорящего
- $\mathbf{z} = tanh(W_{f,k} * \mathbf{x} + V_{g,k}^T \mathbf{h}) \odot \sigma(W_{g,k} * \mathbf{x} + V_{f,k}^T * \mathbf{h})$
- V обучаемая линейная проекция

Локальное обуславливание

- ullet например, h_t лингвистические фичи
- $\mathbf{y} = f(\mathbf{h})$, имеет то же разрешение, что и аудиосигнал (upsampling)
- $\mathbf{z} = \tanh(W_{f,k} * \mathbf{x} + V_{f,k}^T \mathbf{y}) \odot \sigma(W_{g,k} * \mathbf{x} + V_{f,k}^T * \mathbf{y})$
- V − 1 * 1 конволюция

Multi-speaker speech generation

- Обуславливание ID говорящего
- Нет обуславливания текстом (поэтому результат ненастоящие слова)
- Обучение на 44 часах речи 109 людей
- Результат сеть выучивает речевые особенности говорящих, результат похож на речь

Text to Speech (TTS)

- Обуславливание ID говорящего
- Обуславливание лингвистическими фичами (+"фундаментальной частотой— определенное свойство звуковой волны)
- Сравнение с другими моделями: LSTM-RNN-based statistical parametric и HMM-driven unit selection concatenative
- Mean Opinion Score (MOS)

	Subjective 5-scale MOS in naturalness	
Speech samples	North American English	Mandarin Chinese
LSTM-RNN parametric	3.67 ± 0.098	3.79 ± 0.084
HMM-driven concatenative	3.86 ± 0.137	3.47 ± 0.108
WaveNet (L+F)	4.21 ± 0.081	4.08 ± 0.085
Natural (8-bit μ-law)	4.46 ± 0.067	4.25 ± 0.082
Natural (16-bit linear PCM)	4.55 ± 0.075	4.21 ± 0.071

Музыка

- Сложно оценить результат
- Гармонично, эстетически приятно
- Необходимо большое receptive field
- Интересно, что можно обуславливать жанром или инструментом

Выводы

- Авторегрессионная модель, моделирует звук как волну
- Сочетает casual filters и dilated convolutions
- Высокое качество результата
- Может использовать обуславливающие переменные, что даёт интересные результаты

Источники

 Van Den Oord, Aäron, et al. "WaveNet: A generative model for raw audio."https://arxiv.org/pdf/1609.03499.pdf