```
In [2]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
In [3]:
data=pd.read_csv("haberman.csv")
In [4]:
data.head()
Out[4]:
  age year nodes status
0 30
        64
1
   30
        62
2 30
              0
        65
3 31
        59
              2
   31
        65
              4
                    1
In [5]:
data.shape
Out[5]:
(306, 4)
In [6]:
data.columns
Out[6]:
Index(['age', 'year', 'nodes', 'status'], dtype='object')
In [7]:
data['nodes'].describe()
Out[7]:
count 306.000000
          4.026144
mean
          7.189654
std
min
          0.000000
          0.000000
25%
50%
         1.000000
75%
          4.000000
         52.000000
max
Name: nodes, dtype: float64
In [9]:
data['age'].describe()
Out[9]:
count 306.000000
```

```
mean
         52.457516
         10.803452
std
min
         30.000000
         44.000000
2.5%
50%
          52.000000
75%
          60.750000
         83.000000
max
Name: age, dtype: float64
In [10]:
data['status'].describe()
Out[10]:
         306.000000
count
         1.264706
mean
std
           0.441899
          1.000000
min
25%
          1.000000
50%
          1.000000
75%
          2.000000
max
           2.000000
Name: status, dtype: float64
In [11]:
data['year'].describe()
Out[11]:
         306.000000
count
        62.852941
mean
          3.249405
std
min
          58.000000
25%
          60.000000
50%
          63.000000
75%
         65.750000
max
         69.000000
Name: year, dtype: float64
In [12]:
print(data.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 306 entries, 0 to 305
Data columns (total 4 columns):
       306 non-null int64
age
         306 non-null int64
year
         306 non-null int64
nodes
status
         306 non-null int64
dtypes: int64(4)
memory usage: 9.7 KB
None
In [14]:
data['status'].unique()
Out[14]:
array([1, 2], dtype=int64)
In [4]:
data1=data
In [5]:
```

```
data1.head()
Out[5]:
   age year nodes status
   30
         62
                 3
                       1
1
    30
2
    30
         65
                 2
                       1
3
    31
         59
    31
                 4
In [6]:
data['status']=data['status'].replace([1,2],["yes","no"])
In [7]:
data.head()
Out[7]:
   age year nodes status
0
   30
         64
                      yes
1
    30
         62
                      yes
                 0
2
    30
         65
                      yes
    31
         59
                 2
3
                      yes
    31
         65
                      yes
In [32]:
data['status'].value_counts()
Out[32]:
      225
yes
       81
Name: status, dtype: int64
OBSERVATIONS
There are no missing values in the data The status column has 1 or 2 which is mapped to 'yes' or 'no' No. of features=3 (age, year
and nodes) No. of points= No. of observations= 306 No. of classes= 2 = yes or no No. of data points in 'yes' class= 225 No. of data
points in 'no' class = 81
```

```
In [28]:
```

```
data.describe()
```

Out[28]:

	age	year	nodes
count	306.000000	306.000000	306.000000
mean	52.457516	62.852941	4.026144
std	10.803452	3.249405	7.189654
min	30.000000	58.000000	0.000000
25%	44.000000	60.000000	0.000000
50%	52.000000	63.000000	1.000000

75%	60.750 898	65.75 000 0	4.0 00066
max	83.000000	69.000000	52.000000

OBSERVATIONS

The median age group is 52 years 75% of people have 4 or less than 4 positive lymph nodes. Out of which 25% of the people have 0 positive lymph nodes. The data set is imbalanced with 73% values being a yes under the status column

OBJECTIVE

To predict whether the patient will survive after 5 years "yes" or not "no" based on the age, year of treatment and no. of positive lymph nodes

UNIVARIATE ANALYSIS

In [13]:

```
fig=sns.FacetGrid(data, hue='status', size=5)
fig.map(sns.distplot, "age").add_legend()
plt.title('Age Vs Status')
plt.show()
```


In [14]:

```
fig=sns.FacetGrid(data,hue='status',size=5)
fig.map(sns.distplot,"year").add_legend()
plt.title('Year Vs Status')
plt.show()
```



```
0.02

0.00

55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5

year
```

In [15]:

```
fig=sns.FacetGrid(data, hue='status', size=5)
fig.map(sns.distplot, "nodes").add_legend()
plt.title('Number of lymphatic nodes Vs Status')
plt.show()
```


OBSERVATIONS

We can clearly state that the two classes cannot be separated using either of the features mentioned such as age, year and nodes

In [19]:

```
fig=plt.figure()
fig.suptitle("Box plot: Status Vs Age, Year & No. of nodes")
plt.subplot(131)
sns.boxplot(x='status',y='age',data=data)
plt.show()

plt.subplot(132)
sns.boxplot(x='status',y='year',data=data)
plt.show()

plt.subplot(133)
sns.boxplot(x='status',y='nodes',data=data)
plt.show
```

Box plot: Status Vs Age, Year & No. of nodes

Out[19]:

<function matplotlib.pyplot.show(*args, **kw)>

OBSERVATIONS

Age of the 75% patients who survived beyond 5 years of treatment is less than or equal to 45 years. Year of treatment for 75% patients who survived beyond 5 years of treatment is less than or equal to 1966. No. of lymph nodes for 75% patients who survived beyond 5 years of treatment is less than or equal to 5

In [20]:

```
fig=plt.figure()
fig.suptitle("Violin plot: Status Vs Age, Year & No. of nodes")

plt.subplot(311)
sns.violinplot(x='status',y='age',data=data)
plt.show()

plt.subplot(312)
sns.violinplot(x='status',y='year',data=data)
plt.show()

plt.subplot(313)
sns.violinplot(x='status',y='nodes',data=data)
plt.show
```

Violin plot: Status Vs Age, Year & No. of nodes

Out[20]:

<function matplotlib.pyplot.show(*args, **kw)>

OBSERVATIONS

The no. of lymph nodes of the survivors is dense around 0 to 5 The patients treated after 1966 have the slighlty higher chance to surive that the rest. The patients treated before 1959 have the slighlty lower chance to surive that the rest.

In [21]:

```
data_yes=data.loc[data['status']=='yes']
data_no=data.loc[data['status']=='no']
data_yes.head()
```

Out[21]:

	age	year	nodes	status
0	30	64	1	yes
1	30	62	3	yes
2	30	65	0	yes
3	31	59	2	yes
4	31	65	4	yes

In [34]:

```
counts,bin_edges=np.histogram(data_yes['age'],bins=10,density=True)
pdf=counts/(sum(counts))
print(pdf)
print(bin_edges)

cdf=np.cumsum(pdf)
print(cdf)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:],cdf)
plt.grid()
plt.grid()
plt.xlabel('age')
plt.ylabel('probability')
plt.title('CDF & PDF plot against Age for Positive Class')
plt.legend(['PDF','CDF'])
plt.show()
```

```
[0.05333333 0.10666667 0.12444444 0.09333333 0.16444444 0.16444444 0.09333333 0.11111111 0.06222222 0.02666667]
[30. 34.7 39.4 44.1 48.8 53.5 58.2 62.9 67.6 72.3 77.]
[0.05333333 0.16 0.28444444 0.37777778 0.54222222 0.70666667 0.8 0.91111111 0.97333333 1.]
```


In [32]:

```
counts,bin_edges=np.histogram(data_yes['year'],bins=10,density=True)
pdf=counts/sum(counts)
cdf=np.cumsum(pdf)
print(pdf)
print(cdf)
print(bin_edges)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:],cdf)
plt.grid()
plt.xlabel('year')
plt.ylabel('probabilities')
plt.title('CDF & PDF plot against Year for Positive Class')
plt.legend(['PDF','CDF'])
plt.show()
```

```
[0.18666667 0.10666667 0.10222222 0.07111111 0.09777778 0.10222222 0.06666667 0.09777778 0.09333333 0.07555556]
[0.18666667 0.29333333 0.395555556 0.46666667 0.56444444 0.66666667 0.73333333 0.83111111 0.92444444 1. ]
[58. 59.1 60.2 61.3 62.4 63.5 64.6 65.7 66.8 67.9 69.]
```


In [33]:

```
counts,bin_edges=np.histogram(data_yes['nodes'],bins=10,density=True)
pdf=counts/sum(counts)
cdf=np.cumsum(pdf)
print(pdf)
print(cdf)
print(bin_edges)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:],cdf)
plt.grid()
plt.xlabel('nodes')
plt.ylabel('probabilities')
plt.title('CDF & PDF plot against No. of Nodes for Positive Class')
plt.legend(['PDF','CDF'])
```


In [29]:

```
counts,bin_edges=np.histogram(data_no['age'],bins=10,density=True)
pdf=counts/(sum(counts))
print(pdf)
print(bin_edges)

cdf=np.cumsum(pdf)
print(cdf)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:],cdf)
plt.grid()
plt.xlabel('age')
plt.ylabel('probability')
plt.title('CDF & PDF plot against Age for Negative Class')
plt.legend(['PDF','CDF'])
plt.show()
```

```
[0.03703704 0.12345679 0.19753086 0.19753086 0.13580247 0.12345679 0.09876543 0.04938272 0.02469136 0.01234568] [34. 38.9 43.8 48.7 53.6 58.5 63.4 68.3 73.2 78.1 83. ] [0.03703704 0.16049383 0.35802469 0.55555556 0.69135802 0.81481481 0.91358025 0.96296296 0.98765432 1.
```


In [30]:

```
counts,bin_edges=np.histogram(data_no['year'],bins=10,density=True)
pdf=counts/(sum(counts))
print(pdf)
print(bin_edges)
```

```
cdf=np.cumsum(pdf)
print(cdf)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:],cdf)
plt.grid()
plt.xlabel('year')
plt.ylabel('probability')
plt.title('CDF & PDF plot against Year for Negative Class')
plt.legend(['PDF','CDF'])
plt.show()
```

```
[0.25925926 0.04938272 0.03703704 0.08641975 0.09876543 0.09876543 0.16049383 0.07407407 0.04938272 0.08641975] [58. 59.1 60.2 61.3 62.4 63.5 64.6 65.7 66.8 67.9 69. ] [0.25925926 0.30864198 0.34567901 0.43209877 0.5308642 0.62962963 0.79012346 0.86419753 0.91358025 1. ]
```


In [31]:

```
counts,bin_edges=np.histogram(data_no['nodes'],bins=10,density=True)
pdf=counts/(sum(counts))
print(pdf)
print(bin_edges)

cdf=np.cumsum(pdf)
print(cdf)
plt.plot(bin_edges[1:],pdf)
plt.plot(bin_edges[1:],cdf)
plt.plot(bin_edges[1:],cdf)
plt.grid()
plt.xlabel('nodes')
plt.ylabel('probability')
plt.title('CDF & PDF plot against Year for Negative Class')
plt.legend(['PDF','CDF'])
plt.show()
```

```
[0.56790123 0.14814815 0.13580247 0.04938272 0.07407407 0. 0.01234568 0. 0. 0.01234568] [0. 5.2 10.4 15.6 20.8 26. 31.2 36.4 41.6 46.8 52.] [0.56790123 0.71604938 0.85185185 0.90123457 0.97530864 0.97530864 0.98765432 0.98765432 1.]
```


BIVARIATE ANALYSIS

```
In [37]:
```

```
plt.close()
sns.set_style("whitegrid")
sns.pairplot(data, hue='status')
plt.suptitle('Pair Plot for positive and negative class against Year, Age and Nodes')
plt.show()
```


OBSERVATIONS

We can clearly see that year of treatment and number of positive lymphatic nodes can be clearly distinguished between the two classes (yes or no)

In []: