### ECE6703J

Computer-Aided Design of Integrated Circuits

Computational Boolean Algebra

#### Outline

- Cofactor and Shannon Expansion
- Combinations of Cofactors
  - Boolean Difference
  - Quantification
  - Quantification Application: Network Repair
- Application of Computational Boolean Algebra: Tautology Checking

### Roadmap

- Going forward: Logic synthesis and verification
  - E.g., how to implement a Boolean function by a digital circuit? how to verify two digital circuits implement the same thing?
  - They deal with Boolean stuffs
- Begin with computational Boolean algebra

### Computational Boolean Algebra

#### Motivation

- Background
  - You've done Boolean algebra, hand manipulations, Karnaugh maps to simplify...
  - But this is not sufficient for real designs!
- Example: a multiplier of two 16-bit numbers
  - It has 32 inputs.
  - Its Karnaugh map has  $2^{32} = 4,294,967,296$  squares
    - This is too big!
  - There must be a better way...

### Need a Computational Approach

- Need algorithmic, computational strategies for Boolean stuff.
  - Need to be able to think of Boolean objects as data structures + operators
- What will we study?
  - Decomposition strategies
    - Ways of decomposing complex functions into simpler pieces.
    - A set of advanced concepts you need to be able to do this.
  - Computational strategies
    - Ways to manipulate Boolean functions by programs.
  - Interesting applications
    - When you have new tools, there are some useful new things to do.

### Advanced Boolean Algebra

#### Useful Analogy to Calculus

- In calculus, you can represent complex functions like  $e^x$  using simpler functions.
  - If you can only use  $1, x, x^2, x^3, ...$  as the pieces ...
  - ... turns out  $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$
- It corresponds to the **Taylor series expansion**.

• 
$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \cdots$$

Question: Anything like this for Boolean functions?

Yes. It is called **Shannon Expansion**.

## **Shannon Expansion**

- Proposed by Claude Shannon, the father of information theory.
- Suppose we have a function  $F(x_1, x_2, ..., x_n)$ .
- Define a new function if we set one of the  $x_i = const$ 
  - $F(x_1, x_2, ..., x_i = 1, ..., x_n)$
  - $F(x_1, x_2, ..., x_i = 0, ..., x_n)$
- Example:  $F(x, y, z) = xy + x\bar{z} + y(\bar{x}z + \bar{z})$ 
  - $\bullet F(x = 1, y, z) = y + \overline{z} + y\overline{z}$
  - $\bullet F(x, y = 0, z) = x\overline{z}$

Note: this is a new function that no longer depends on the variable  $x_i$ .

## Shannon Expansion: Cofactors

- Turns out to be an incredibly useful idea.
- It is also known as **Shannon cofactor** with respect to  $x_i$ .
  - We write  $F(x_1, x_2, ..., x_i = 1, ..., x_n)$  as  $F_{x_i}$ . We call it positive cofactor.
  - We write  $F(x_1, x_2, ..., x_i = 0, ..., x_n)$  as  $F_{\overline{x_i}}$ . We call it negative cofactor.
  - Often, just write them as  $F(x_i = 1)$  and  $F(x_i = 0)$ .
- Why are these useful functions to get from F?

## **Shannon Expansion Theorem**

- Why we care: **Shannon Expansion Theorem**
- Given any Boolean function  $F(x_1, x_2, ..., x_n)$  and pick any  $x_i$  in F's inputs, F can be represented as

$$F(x_1, x_2, ..., x_n) = x_i \cdot F(x_i = 1) + \overline{x_i} \cdot F(x_i = 0)$$

- Proof:
  - Consider any  $(x_1, x_2, ..., x_n) \in \{0,1\}^n$ 
    - If  $x_i = 1$ :
    - If  $x_i = 0$ :

# Shannon Expansion: Another View



10

### Shannon Expansion: Multiple Variables

- Can do it on more than one variable, too.
  - Just keep on applying the theorem on each variable.
- Example: Expand F(x, y, z, w) around x and y
  - First, expand around x:  $F(x, y, z, w) = x \cdot F(x = 1) + \bar{x} \cdot F(x = 0)$
  - Then, expand cofactors F(x = 1) and F(x = 0) around y:  $F(x = 1) = y \cdot F(x = 1, y = 1) + \bar{y} \cdot F(x = 1, y = 0)$   $F(x = 0) = y \cdot F(x = 0, y = 1) + \bar{y} \cdot F(x = 0, y = 0)$
  - Final result:

$$F(x, y, z, w) = xy \cdot F(x = 1, y = 1) + x\bar{y} \cdot F(x = 1, y = 0) + \bar{x}y \cdot F(x = 0, y = 1) + \bar{x}\bar{y} \cdot F(x = 0, y = 0)$$

### Shannon Cofactors: Multiple Variables

- There is notation for these multiple-variable expansions as well.
- Shannon cofactor with respect to  $x_i$  and  $x_i$ :
  - Write  $F(x_1, ..., x_i = 1, ..., x_j = 0, ..., x_n)$  as  $F_{x_i \overline{x_i}}$ .
  - The same for any number of variables  $x_i, x_j, x_k, ...$
  - Notice that order does **not** matter:  $(F_x)_y = (F_y)_x = F_{xy}$ .
- For the previous example:

$$F(x, y, z, w) = xy \cdot F_{xy} + x\bar{y} \cdot F_{x\bar{y}} + \bar{x}y \cdot F_{\bar{x}y} + \bar{x}\bar{y} \cdot F_{\bar{x}\bar{y}}$$

- Again, remember: each of the cofactors is a **function**, not a number.
  - $F_{xy} = F(x = 1, y = 1, z, w)$  is a Boolean function of z and w.

### Next Question: Properties of Cofactors

- What *else* can you do with cofactors?
- Suppose you have 2 functions F(X) and G(X), where  $X = (x_1, x_2, ..., x_n)$ .
- Suppose you make a new function H, from F and G, say...
  - $\bullet$   $H = \overline{F}$
  - $H = F \cdot G$ , i.e.,  $H(X) = F(X) \cdot G(X)$
  - H = F + G, i.e., H(X) = F(X) + G(X)
  - $H = F \oplus G$ , i.e.,  $H(X) = F(X) \oplus G(X)$
- Question: can you tell anything about H's cofactors from those of F and G?
  - $(F \cdot G)_{x} = \text{what}? (\overline{F})_{x} = \text{what}?$

## Nice Properties of Cofactors

- Cofactors of F and G tell you everything you need to know.
- Complements
  - $(\overline{F})_{\chi} = \overline{(F_{\chi})}$
  - In English: cofactor of complement is complement of cofactor.
- Binary Boolean operators
  - $(F \cdot G)_{x} = F_{x} \cdot G_{x}$  cofactor of AND is AND of cofactors
  - $(F+G)_x = F_x + G_x$  cofactor of OR is OR of cofactors
  - $(F \oplus G)_{x} = F_{x} \oplus G_{x}$  cofactor of XOR is XOR of cofactors
- Very useful! Can often help in getting cofactors of complex formulas.

#### Outline

- Cofactor and Shannon Expansion
- Combinations of Cofactors
  - Boolean Difference
  - Quantification
  - Quantification Application: Network Repair
- Application of Computational Boolean Algebra: Tautology Checking

#### Combinations of Cofactors

- Now consider **operations** on cofactors themselves.
- Suppose we have F(X), and get  $F_{\chi}$  and  $F_{\overline{\chi}}$ .
  - $F_{\chi} \oplus F_{\overline{\chi}} = ?$
  - $F_x \cdot F_{\overline{x}} = ?$
  - $F_{\chi} + F_{\overline{\chi}} = ?$
- Turns out these are all useful **new** functions.
  - Indeed, they even have names!
- Next: let's look at these interesting, useful new functions.

### Calculus Revisited: Derivatives

- Remember how you defined derivatives?
  - Suppose you have y = f(x).



Defined as slope of curve at point x.

• How to compute?

• 
$$\frac{df(x)}{dx} = \lim_{\Delta \to 0} \frac{f(x+\Delta) - f(x)}{\Delta}$$

#### **Boolean Derivatives**

- So, do Boolean functions have "derivatives"?
  - Actually, yes. Trick is how to define them...
- Basic idea
  - For real-valued f(x),  $\frac{df}{dx}$  tells how f changes when x changes.
  - For 0,1-valued Boolean function, we cannot change  $\boldsymbol{x}$  by small delta.
  - Can only change  $0 \leftarrow \rightarrow 1$ , but can still ask how f changes with  $x \dots$
  - For Boolean function f(x), define  $\frac{\partial f}{\partial x} = f_x \oplus f_{\overline{x}}$

### **Boolean Derivatives**

$$\frac{\partial f}{\partial x} = f_x \oplus f_{\overline{x}}$$

- Compare value of f when x = 0 against when x = 1.
- $\frac{\partial f}{\partial x} = 1$  if and only if f(x = 0) is different from f(x = 1).
- $\frac{\partial f}{\partial x}$  is also known as **Boolean difference**.

### Interpreting the Boolean Difference



- What does  $\partial F(a, b, ..., w, x)/\partial x = 1$  mean?
  - If you apply a pattern of inputs (a, b, ..., w) that makes  $\partial F/\partial x = 1$ , then any change in x will force a change in output F.

#### Boolean Difference: Gate-Level View

- Consider simple examples for  $\partial f/\partial x$ .
- Inverter:  $f = \bar{x}$ 
  - $f_x = 0$ ,  $f_{\overline{x}} = 1$ ,  $\partial f / \partial x = f_x \oplus f_{\overline{x}} = 1$
- AND: f = xy
  - $f_x = y$ ,  $f_{\overline{x}} = 0$ ,  $\partial f / \partial x = f_x \oplus f_{\overline{x}} = y$
- OR: f = x + y
  - $f_x = 1$ ,  $f_{\overline{x}} = y$ ,  $\partial f / \partial x = f_x \oplus f_{\overline{x}} = \overline{y}$
- XOR:  $f = x \oplus y$ 
  - $f_x = \overline{y}$ ,  $f_{\overline{x}} = y$ ,  $\partial f / \partial x = f_x \oplus f_{\overline{x}} = 1$

Meaning: When  $\partial f/\partial x = 1$ , then f changes if x changes!

#### **Boolean Difference**

- Boolean difference also behaves sort of like regular derivatives...
- Can do on multiple vars. Order of variables does not matter  $(\partial f/\partial x)/\partial y = (\partial f/\partial y)/\partial x$
- Derivative of XOR is XOR of derivatives

$$\frac{\partial (f \oplus g)}{\partial x} = \frac{\partial f}{\partial x} \oplus \frac{\partial g}{\partial x}$$

- Like addition
- If function f is constant (f = 1 or f = 0 for all inputs), then  $\partial f/\partial x = 0$  for any x.

#### **Boolean Difference**

- But some things are just more complex
  - Derivatives of  $(f \cdot g)$  and (f + g) do not work the same...

$$\frac{\partial}{\partial x}(f \bullet g) = \left[ f \bullet \frac{\partial g}{\partial x} \right] \oplus \left[ g \bullet \frac{\partial f}{\partial x} \right] \oplus \left[ \frac{\partial f}{\partial x} \bullet \frac{\partial g}{\partial x} \right]$$

$$\frac{\partial}{\partial x}(f+g) = \left[ \overline{f} \bullet \frac{\partial g}{\partial x} \right] \oplus \left[ \overline{g} \bullet \frac{\partial f}{\partial x} \right] \oplus \left[ \frac{\partial f}{\partial x} \bullet \frac{\partial g}{\partial x} \right]$$

- Why?
  - Because AND and OR on Boolean values do not always behave like MULTIPLICATION and ADDITION on real numbers.

# Boolean Difference: Example

$$\begin{array}{ccc}
a & \longrightarrow \\
b & \longrightarrow \\
c_{in} & \longrightarrow \\
\end{array}
\begin{array}{cccc}
& 1-\text{Bit Full} & \longrightarrow & s & s = a \oplus b \oplus c_{in} \\
& \longrightarrow & c_{out} & c_{out} = ab + ac_{in} + bc_{in}
\end{array}$$

- When is  $\partial c_{out}/\partial c_{in} = 1$ ?
  - $c_{out}(c_{in} = 1) = a + b$
  - $c_{out}(c_{in} = 0) = ab$
  - $\partial c_{out}/\partial c_{in} = c_{out}(c_{in} = 1) \oplus c_{out}(c_{in} = 0)$ =  $(a + b) \oplus (ab) = a \oplus b$
- Make sense?
  - $a \oplus b = 1 \Longrightarrow a \neq b$

## Boolean Difference: Summary

- ullet Boolean difference explains under what situations an inputchange can cause output-change for a Boolean function f.
- $\partial f/\partial x$  is another Boolean function, but it does not depend on x!
  - It cannot, because it is made out of cofactors with respect to x, which eliminate all the x and  $\bar{x}$  terms by setting them to constants.
- Very useful! (we will see more, later...)

#### Outline

- Cofactor and Shannon Expansion
- Combinations of Cofactors
  - Boolean Difference
  - Quantification
  - Quantification Application: Network Repair
- Application of Computational Boolean Algebra: Tautology Checking

### AND of $F_{\chi}$ and $F_{\bar{\chi}}$ : Universal Quantification

- AND the cofactors:  $F_{x_i} \cdot F_{\overline{x_i}}$ 
  - Name: **Universal Quantification** of function F with respect to variable  $x_i$ .
  - Represented as:  $(\forall x_i F)(x_1, x_2, ..., x_{i-1}, x_{i+1}, ..., x_n)$
- $(\forall x_i F)$  is a new function
  - It does not depend on  $x_i!$
  - "∀" sign is the "for all" symbol from logic.



### OR of $F_{\chi}$ and $F_{\bar{\chi}}$ : Existential Quantification

- OR the cofactors:  $F_{x_i} + F_{\overline{x_i}}$ 
  - Name: Existential Quantification of function F with respect to variable  $x_i$ .
  - Represented as:  $(\exists x_i \ F)(x_1, x_2, ..., x_{i-1}, x_{i+1}, ..., x_n)$
- $(\exists x_i F)$  is a new function
  - It does not depend on  $x_i!$
  - "∃" sign is the "there exists" symbol from logic.



### Quantification Notation Makes Sense...



### Quantification: Gate-Level View

- Consider simple examples for  $(\forall x \ f)$  and  $(\exists x \ f)$ .
- Inverter:  $f = \bar{x}$ 
  - $f_x = 0$ ,  $f_{\overline{x}} = 1$ ,  $(\forall x f) = f_x f_{\overline{x}} = 0$ ,  $(\exists x f) = f_x + f_{\overline{x}} = 1$
- AND: f = xy
  - $f_x = y$ ,  $f_{\overline{x}} = 0$ ,  $(\forall x f) = f_x f_{\overline{x}} = 0$ ,  $(\exists x f) = f_x + f_{\overline{x}} = y$
- OR: f = x + y
  - $f_x = 1$ ,  $f_{\overline{x}} = y$ ,  $(\forall x f) = f_x f_{\overline{x}} = y$ ,  $(\exists x f) = f_x + f_{\overline{x}} = 1$
- XOR:  $f = x \oplus y$ 
  - $f_x = \overline{y}$ ,  $f_{\overline{x}} = y$ ,  $(\forall x f) = f_x f_{\overline{x}} = 0$ ,  $(\exists x f) = f_x + f_{\overline{x}} = 1$

Make sense?

#### Extends to More Variables in Obvious Way

- Like Boolean difference, can do with respect to more than 1 variable
  - Suppose we have F(x, y, z, w).
  - $(\forall xy \ F)(z, w) = (\forall x \ (\forall y \ F)) = F_{xy} \cdot F_{x\overline{y}} \cdot F_{\overline{x}y} \cdot F_{\overline{x}\overline{y}}$
  - $(\exists xy \ F)(z, w) = (\exists x \ (\exists y \ F)) = F_{xy} + F_{x\overline{y}} + F_{\overline{x}y} + F_{\overline{x}y}$

- Consider the following circuit, it adds x = 0 or x = 1 to a 2-bit number  $a_1 a_0$ .
  - It's just a 2-bit adder, but instead of  $b_1b_0$  for the second operand, it is just 0x.
  - ullet It has a carry-in d and produces a carry-out c.
  - Hence, c is function of  $a_1$ ,  $a_0$ , d and x.
- Questions:
  - What is  $(\forall a_1 a_0 c)(x, d)$ ?
  - What is  $(\exists a_1 a_0 c)(x, d)$ ?





- What is  $(\forall a_1 a_0 c)(x, d)$ ?
  - A function of only x and d. x and d that let this function be 1 should make carry c = 1 for all values of inputs  $a_1$  and  $a_0$ .
- What is  $(\exists a_1 a_0 c)(x, d)$ ?
  - A function of only x and d. x and d that let this function be 1 should make carry c = 1 for **some value** of inputs  $a_1$  and  $a_0$ , i.e., there exists some  $a_1$  and  $a_0$  that for this x and d, c = 1.



- Compute  $(\forall a_1 a_0 c)(x, d)$ 
  - $c_{a_1 a_0} \cdot c_{a_1 \bar{a}_0} \cdot c_{\bar{a}_1 a_0} \cdot c_{\bar{a}_1 \bar{a}_0}$  = 0
- Compute  $(\exists a_1 a_0 c)(x, d)$ 
  - $c_{a_1 a_0} + c_{a_1 \bar{a}_0} + c_{\bar{a}_1 a_0} + c_{\bar{a}_1 \bar{a}_0}$ = x + d

#### Need four cofactors:

- $\bullet \ c_{a_1 a_0} = x + d$
- $c_{a_1\bar{a}_0} = xd$
- $c_{\bar{a}_1 a_0} = 0$
- $c_{\bar{a}_1\bar{a}_0} = 0$



- $\bullet (\forall a_1 a_0 c)(x, d) = 0$ 
  - Make sense: No values of x and d that make c=1 independent of  $a_1$  and  $a_0$
- $(\exists a_1 a_0 c)(x, d) = x + d$ 
  - Make sense: If at least one of x and d = 1, then there exist  $a_1$  and  $a_0$  that let c = 1.

#### Outline

- Cofactor and Shannon Expansion
- Combinations of Cofactors
  - Boolean Difference
  - Quantification
  - Quantification Application: Network Repair
- Application of Computational Boolean Algebra: Tautology Checking

## Quantification Application: Network Repair

- Suppose that some one specified a logic block for you to implement:  $f(a,b) = ab + \overline{b}$ 
  - ...but you implemented it **wrong**: in particular, you got ONE gate wrong.

    Implemented



- Goal
  - Can we deduce how precisely to **change this gate** to restore correct function?
  - Go with this very trivial test case to see how mechanics work...

## Network Repair

- Clever trick: Replace our suspect gate by a 4-to-1 MUX with 4 arbitrary new variables  $d_0$ ,  $d_1$ ,  $d_2$ ,  $d_3$ .
  - By cleverly assigning values to  $d_0$ ,  $d_1$ ,  $d_2$ ,  $d_3$ , we can **fake** any gate.
  - Question is: what are the right values of  $d_i$ 's so g is repaired, i.e.,



#### Aside: Faking a Gate with a MUX

• You can do **any** function of 2 variables with one 4-to-1 multiplexor (MUX).



#### Aside: Faking a Gate with a MUX

• You can do **any** function of 2 variables with one 4-to-1 multiplexor (MUX).



#### Network Repair: Using Quantification

• Next trick: XNOR  $G(a, b, d_0, ..., d_3)$  with the specification f(a, b).



#### Using Quantification

- What do we need?
  - Values of  $d_0$ ,  $d_1$ ,  $d_2$ ,  $d_3$  that make z = 1 for all possible values of inputs a, b.
  - They are values of  $d_0$ ,  $d_1$ ,  $d_2$ ,  $d_3$  that let  $(\forall ab\ z)(d_0,d_1,d_2,d_3)=1$
  - The above equation is **universal quantification** of function Z with respect to a, b!
  - Any pattern of  $(d_0, d_1, d_2, d_3)$  that makes  $(\forall ab\ z)(d_0, d_1, d_2, d_3) = 1$  will do the repair!



- As a result
  - $G(a, b, d_0, ..., d_3) = d_0 \bar{a}b + d_1 ab + d_2 \bar{b}$
  - $f(a,b) = ab + \overline{b}$
  - $z(a, b, d_0, \dots, d_3) = G(a, b, d_0, \dots, d_3) \overline{\bigoplus} f(a, b)$
- We want to get

$$(\forall ab \ z)(d_0, d_1, d_2, d_3)$$
  
=  $z_{\bar{a}\bar{b}} \cdot z_{\bar{a}b} \cdot z_{a\bar{b}} \cdot z_{ab}$ 

• To simplify the computation, we will apply the relation:

$$z_{ab} = G_{ab} \overline{\bigoplus} f_{ab}$$

- $G(a, b, d_0, ..., d_3) = d_0 \bar{a}b + d_1 ab + d_2 \bar{b}$
- $f(a,b) = ab + \overline{b}$
- $z(a, b, d_0, \dots, d_3) = G(a, b, d_0, \dots, d_3) \overline{\bigoplus} f(a, b)$
- $z_{\bar{a}\bar{b}} = G_{\bar{a}\bar{b}} \overline{\bigoplus} f_{\bar{a}\bar{b}} = d_2 \overline{\bigoplus} 1 = d_2$
- $z_{\bar{a}b} = G_{\bar{a}b} \overline{\bigoplus} f_{\bar{a}b} = d_0 \overline{\bigoplus} 0 = \overline{d_0}$
- $z_{a\bar{b}} = G_{a\bar{b}} \overline{\bigoplus} f_{a\bar{b}} = d_2 \overline{\bigoplus} 1 = d_2$
- $z_{ab} = G_{ab} \overline{\bigoplus} f_{ab} = d_1 \overline{\bigoplus} 1 = d_1$
- $(\forall ab \ z)(d_0, d_1, d_2, d_3) = z_{\bar{a}\bar{b}} \cdot z_{\bar{a}b} \cdot z_{a\bar{b}} \cdot z_{ab} = \overline{d_0}d_1d_2$

- Finally, we obtain  $(\forall ab\ z)(d_0,d_1,d_2,d_3)=\overline{d_0}d_1d_2$
- To repair, we should find values of  $d_0$ ,  $d_1$ ,  $d_2$ ,  $d_3$  so that  $(\forall ab\ z)(d_0,d_1,d_2,d_3)=1$ 
  - Not hard:  $d_0 = 0$ ,  $d_1 = 1$ ,  $d_2 = 1$ ,  $d_3 = X(\text{don't care})$

#### Network Repair

- Does  $d_0 = 0$ ,  $d_1 = 1$ ,  $d_2 = 1$ ,  $d_3 = X$  work?
  - Case 1:  $d_0 = 0$ ,  $d_1 = 1$ ,  $d_2 = 1$ ,  $d_3 = 1$





MUX is an OR gate. Expected!

#### Network Repair

- Does  $d_0 = 0$ ,  $d_1 = 1$ ,  $d_2 = 1$ ,  $d_3 = X$  work?
  - Case 2:  $d_0 = 0$ ,  $d_1 = 1$ ,  $d_2 = 1$ ,  $d_3 = 0$





MUX is an XOR gate.
Unexpected but works!

#### Network Repair: Summary

- This example is **tiny**...
  - But in a real example, you have a big network 100 inputs, 50,000 gates.
  - When the design doesn't work, it is a major hassle to go through the design to fix it.
  - This gives a mechanical procedure to answer: Can we change 1 gate to repair?
- What we haven't seen yet: **Computation strategy** to mechanically find inputs to make

$$(\forall ab \ z)(d_0, d_1, d_2, d_3) = 1$$

- This computation is called **Boolean Satisfiability (SAT)**.
- We will see how to solve Boolean SAT problem efficiently later.

#### Outline

- Cofactor and Shannon Expansion
- Combinations of Cofactors
  - Boolean Difference
  - Quantification
  - Quantification Application: Network Repair
- Application of Computational Boolean Algebra: Tautology Checking

# Important Example of Computation: Tautology Checking

- Tautology: a Boolean function is 1 for every input.
- We are going to look at how to do tautology checking, i.e. whether a Boolean function f is 1 for every input.
- Why study this problem?
  - To show a **representation**, i.e., a data structure, for a Boolean function f.
  - To show an important **computational strategy**: recursion
- How <u>hard</u> is this problem?
  - Very, very hard!
  - What happens if you are given a sum-of-product expression with 50 variables and 800 products?

### Start with: Representation

- We use a simple representation scheme for functions
  - Represent a function as a set of OR'ed product terms, i.e., a sum of products (SOP).
- Each product term is also called a  ${\tt cube}$ , e.g., abc is a cube.
  - Why call it cube?



How does f as a product terms look like?

#### Properties of Cubes

- In what follows, we refer to **product term** as **cube**.
- For each variable x, x and  $\bar{x}$  do not appear simultaneously.
  - However, for each variable x, it is possible that none of x and  $\bar{x}$  appears in the cube.
  - If **for each** variable x, one of x and  $\bar{x}$  appears in the cube. The cube is a **minterm**.
- The number of vertices in a cube is  $2^k$ .



#### Positional Cube Notation (PCN)

- We represent a cube using <u>Positional Cube Notation (PCN)</u>.
  - One slot per variable.
  - In slot for variable x:
    - put "1", if cube has x in it;
    - put "0", if cube has  $\bar{x}$  in it;
    - put "-", if cube has no x or  $\bar{x}$  in it.
- Example: In a Boolean space on three variables a, b, c a b c
  - $\bar{b}$ : [ 0 ]
  - $a\bar{c}$ : [ 1 0 ]

### Positional Cube Notation (PCN)

- To represent cube in program, we need to encode "1", "0", and "-".
  - We need at least two bits to encode three values.
  - One encoding: "01" to encode "1"; "10" to encode "0"; "11" to encode "-".
- Example: In a Boolean space on three variables *a*, *b*, *c*

#### **PCN Cube List**

- A sum-of-products (SOP) expression of a Boolean function is also called a cover of cubes.
  - We present a cover of cubes using a list of cubes in positional cube notation.
- Example:  $f = \bar{a} + bc + ab$

### Tautology Checking

- How do we approach tautology checking as a computation?
  - ullet Input: a list of cube in PCN representing an SOP expression of f
  - Output: Yes, when f is always 1; No, when f is not always 1.
- Cofactors to rescue
  - Great result: f is a tautology if and only if  $f_{\chi}$  and  $f_{\bar{\chi}}$  are both tautologies.
  - This makes sense:
    - If function f = 1, then cofactors both obviously = 1.
    - If both cofactors = 1, then  $f = x \cdot f_x + \bar{x} \cdot f_{\bar{x}} = x + \bar{x} = 1$

### Recursive Tautology Checking

- Suggests a recursive computation strategy:
  - If you cannot tell immediately that f is a tautology, go try to see if each cofactor is a tautology.



- What else do we need?
  - Selection rules: which x is good to pick to split on?
  - Termination rules: how do we know when to stop splitting, so we can answer that the function at this node of tree is tautology or not?
  - Mechanics: how hard is it to actually obtain the cofactors?

## Recursive Cofactoring

- Do mechanics first (easy!). For each cube in the list:
  - If you want **positive** cofactor w.r.t. var x, look at x slot in each cube:
    - [... 10 ...]  $\rightarrow$  just remove this cube from list, since it is a term with  $\bar{x}$ .
    - [... 01 ...]  $\rightarrow$  just make this slot 11 (don't care), since we will strike x from the product term.
    - [... 11 ...]  $\rightarrow$  just leave this alone, since this term doesn't have any  $x/\bar{x}$  in it.

### Recursive Cofactoring

- Do mechanics first (easy!). For each cube in the list:
  - If you want **negative** cofactor w.r.t. var x, look at x slot in each cube:
    - [... 01 ...]  $\rightarrow$  just remove this cube from list, since it is a term with x.
    - [... 10 ...]  $\rightarrow$  just make this slot 11 (don't care), since we will strike  $\bar{x}$  from the product term.
    - [... 11 ...]  $\rightarrow$  just leave this alone, since this term doesn't have any  $x/\bar{x}$  in it.

## Recursive Cofactoring: Example

|          | $f = acd + b\bar{c}$ | $f_a$         | $f_{\overline{c}}$ |
|----------|----------------------|---------------|--------------------|
| acd      | [01 11 01 01]        | [11 11 01 01] |                    |
| $bar{c}$ | [11 01 10 11]        | [11 01 10 11] | [11 01 11 11]      |

#### **Unate Functions**

- Selection / termination, another trick: **Unate functions** 
  - Special class of Boolean functions
  - f is **positive unate** in var x: if changing  $x \ 0 \rightarrow 1$  but keeping other variables constant (no matter what values they are), keeps f constant or makes f change  $0 \rightarrow 1$ .
  - f is negative unate in var x: if changing  $x \ 0 \rightarrow 1$  but keeping other variables constant (no matter what values they are), keeps f constant or makes f change  $1 \rightarrow 0$ .
  - f is unate in var x if f is either positive unate in var x or negative unate in var x.
- E.g., f = ab is positive unate in a
- E.g.,  $f = \bar{a}b + a\bar{b}$  is not unate in a.

#### **Unate Functions**

- Analogous to monotonic continuous functions.
  - A monotonically non-decreasing function: whenever  $x_2 \ge x_1$ , we have  $f(x_2) \ge f(x_1)$ .
- Example, for a Boolean function f positive unate in x:



#### **Checking Unateness**

- How to check unateness?
  - Not easy if *f* is represented using truth table.
  - Very easy if f is represented as an SOP.
- Suppose that f is represented as an SOP. Then f is unate in var x if ...
  - For all the cubes that contain var  $\mathcal{X}$ ,  $\mathcal{X}$  appears in exactly **one** polarity, either all true, or all complemented.
    - E.g.,  $f = ab + a\bar{c}d + \bar{c}d\bar{e}$  is unate in a, b, c, d, e.
  - A <u>sufficient</u> condition only!! If not satisfied, may be either unate or not unate.
    - E.g.,  $f = xy + \bar{x}y + \bar{x}y\bar{z} + \bar{z}$  is unate in y, z, but may or may NOT be unate in x. (Actually, it is unate in x!)

#### **Unate Functions**

- If <u>for each</u> var x, f is either positive or negative unate in that var x, then f is said to be **unate**.
  - If <u>for each</u> var x, f is positive unate in that var x, then f is said to be positive unate.
  - If <u>for each</u> var x, f is negative unate in that var x, then f is said to be <u>negative unate</u>.
- Function that is not unate is called **binate**.
- E.g.,  $f = ab + a\bar{c}d + \bar{c}d\bar{e}$  is unate.
- E.g.,  $f = x\bar{y} + \bar{x}y$  is NOT unate.

#### **Unate Cube-List**

- A sufficient condition on cube list: A <u>cube-list</u> is unate if <u>for each</u> var  $\mathcal{X}$  and <u>for all</u> the cubes that contain var  $\mathcal{X}$ ,  $\mathcal{X}$  only appears in one polarity, not both.
- Easier to see if draw the cube-list vertically.

$$a + bc + ac$$
  $a + \overline{b}c + bc$ 
 $a = [01 \ 11 \ 11]$   $a = [01 \ 11 \ 11]$ 
 $bc = [11 \ 01 \ 01]$   $bc = [11 \ 01 \ 01]$ 
 $bc = [01 \ 11 \ 01]$ 

Unate cube list

Cannot tell unateness

• A unate cube-list corresponds to a unate function

#### Using Unate Functions in Tautology Checking

- It is <u>very easy</u> to check a <u>unate</u> cube-list for <u>tautology</u>:
  - Unate cube-list for f is tautology iff it contains a cube whose elements are all don't care: [11 11 ... 11].
  - Question: what exactly is [11 11 ... 11] as a product term?
- This result actually makes sense...
  - If without [11 11 ... 11], then the SOP looks like  $a + a\overline{b} + \overline{b}c$
  - It will be 0 for value which lets the variable be 0 (i.e., a = 0, b = 1, c = 0).

#### Termination Rules Using Unateness

- If we have a **unate** cube-list, we can check for tautology directly.
  - Rule 1: The function is a **tautology** if cube-list has an all-don't-care cube [11 11 ... 11].
  - Rule 2: The function is **NOT tautology** if cube-list does not have any all-don't-care cube [11 11 ... 11].
- There are some more possible termination rules. For example:
  - Rule 3: The function is **tautology** if cube list has **single var cube** that appears in <u>both polarities</u>.
    - Why? function =  $x + \bar{x} + \text{stuff} = 1$

#### Selection Rule

- We can't use easy termination rules <u>unless</u> cube-list is <u>unate</u>
- Selection rule...? Pick splitting var to make unate cofactors
  - Strategy: pick "most non-unate (binate)" var as split var
  - Pick binate var with the **most** product terms dependent on it
    - Why? A product independent of a var is duplicated twice
  - If a tie, pick var with minimum | #true\_var #compl\_var |
    - Why? Left subtree and right subtree are balanced

```
      x
      y
      z
      w

      01
      01
      01
      01
      x: binate, in 4 cubes, | true-compl | = |2-2|=0

      10
      11
      01
      01
      y: unate

      10
      11
      11
      10
      x: unate

      01
      01
      11
      01
      w: binate, in 4 cubes, | true-compl | = |3-1|=2
```

#### Recursive Tautology Checking: Algorithm

```
tautology(f represented as cubelist) {
  /* check if we can terminate recursion */
  if (f is unate) {
    if (f has all-don't-care cube) return 1
    else return 0
  else if (any other termination rules, like rule 3, work?) {
    return the appropriate value (1 or 0)
  else { /* cannot tell -- find splitting variable */
    \mathbf{x} = \text{most binate variable in } \mathbf{f}
    return ( tautology(f(x=1)) && tautology(f(x=0)))
```

## Recursive Tautology Checking Example

• Example:  $f = ab + ac + a\bar{b}\bar{c} + \bar{a}$ 

- *f* unate?
  - No
- Which var to pick?
  - Most binate var: *a*

- $f_a$  unate?
  - No
  - Need to further split



 $f_{\bar{a}}$ 

- ---
- 11 11 1

- $f_{\bar{a}}$  unate?
  - Yes!
- Tautology?
  - Yes!
  - Terminate!

## Recursive Tautology Checking Example

- $f_a$  unate?
  - No
- Which var to pick?
  - Either *b* or *c*
  - For example, we pick *b*

 $f_{ab}$ 

- a b c 11 11 11 11 11 01
- $f_{ab}$  unate?
  - Yes!
- Tautology?
  - Yes! (contain all-don't-care cube)
  - Terminate!

 $f_{a\bar{b}}$ 

b c

11 11 01

11 11 10

- $f_{a\bar{b}}$  unate?
  - No
- Can we terminate?
  - Yes, due to Rule 3

## Recursive Tautology Checking Example

• The recursion tree we finally get is



- ullet The tree has tautologies at all leaves, so f is tautology.
- Note: if any leaf is NOT tautology, f is NOT!

## Recursive Tautology Checking Summary

- This strategy is so general and useful it has a name: **Unate Recursive Paradigm (URP)**.
- Again, we see that **cofactors** are important and useful.
- Representations (data structures) for Boolean functions are critical.
  - Truth tables, Karnaugh maps, Boolean expressions cannot be manipulated by software.
  - See one real representation: **positional cube notation**