

## PIN MOUNTED REFLECTOR FOR PRECISION OPTICAL DEVICES

This application claims the benefit of United States Provisional Patent  
5 Application Serial No. 60/395,891, entitled "LATERAL TRANSFER RETROREFLECTOR AND/OR PERISCOPE WITH PIN MOUNTED MIRROR PANEL ASSEMBLY," filed July 15, 2002.

### BACKGROUND OF THE INVENTION

10

This invention relates to the field precision optical devices, and more particularly, to mirror panels for retroreflectors, lateral transfer retroreflectors and periscopes.

15

Retroreflectors are old in the art. A retroreflector receives and reflects an incident light ray so that the incident and reflected light rays travel along parallel paths in opposite directions; i.e., the retroreflector reflects the incident light ray back in the direction from which it came, along a substantially parallel path. A retroreflector normally consists of three optically flat reflecting surfaces formed together in such a way that the each of the three reflecting surfaces are perpendicular to each other. Only in this configuration can the incident and reflected light rays hope to be parallel. Hence, the achievement of reflective parallelism between the incident and reflected light rays depends on both the flatness and the perpendicularity of the three mirror panels.

20

A lateral transfer retroreflector is similar in construction to a retroreflector, except that one of the mirror panels is offset from the other two, thereby allowing the reflected light ray to not only be reflected back in a parallel orientation to the incident ray, but also at a distance equal to the particular offset distance of the 30 third mirror panel. Such an assembly is described in detail in co-pending U.S. patent application No. 09/894,207, which is incorporated herein by reference.

Periscopes are also old in the art, and are meant to take an incident light ray and reflect it off of two mirror panels, in a direction substantially parallel to 35 and in the same direction as the incident ray. So, for example, the most known

use for a periscope is in a submarine. Here the person, situated below the surface of the water can nevertheless see above the water surface. This is accomplished because what the person is seeing are hundreds of incident light rays entering the part of the periscope above the water, reflecting off of a mirror panel also above the water, to a mirror panel near the person, below the water (i.e., offset in position from the mirror panel above the water), which is then reflected to the person's eye. While most common periscope usage does not require exacting parallelism between the incident and reflected rays, there are many uses of periscopes that do require such exacting parallelism.

10

Even retroreflectors, lateral transfer retroreflectors and periscopes made of highly flat mirror panels can lose the parallelism between the incident and reflected light rays, i.e., their accuracy, if they are exposed to physical stresses. Typical examples of the types of stresses that can reduce the accuracy of one of these devices are mass, thermal expansion and contraction of the substrate material from which the assembly of the parts of the device are made, or even deflection of the reflective surfaces during the process of curing the adhesive which typically joins members of the device to each other; i.e., as the adhesive dries, it shrinks and thereby causes pulling stresses to be exerted upon the various elements of the device. If the accuracies of the device are needed to be extremely high (in the range of \_\_\_\_\_ degrees of deflection between the incident and reflected rays), then even the smallest of the above stresses causing deflection of the reflective surface of one of the mirror panels will be unacceptable.

25

As indicated, retroreflectors, lateral transfer retroreflectors and periscopes are old in the art. Examples of prior art retroreflectors and lateral transfer retroreflectors are described in the following patents:

30

U.S. Pat. No. 3,977,765 to Lipkins, discloses a retroreflector mounted to a support structure through means of applying an adhesive into the joints formed between joined members of the retroreflector and the support structure.

PIN MOUNTED REFLECTOR  
FOR PRECISION OPTICAL DEVICES

U.S. Pat. No. 4,065,204 also to Lipkins, discloses a lateral transfer retroreflector consisting of a base, a roof reflector having two reflecting plates and a third reflector. The base acts as an extension element for the third reflector in order to provide the offset of the third reflector from the roof reflector to produce the lateral displacement therebetween.

5 U.S. Pat. No. 5,024,514 to Bleier and Lipkins, discloses a lateral transfer retroreflector having a tubular member, a roof mirror and a mirror panel. Both the roof mirror and mirror panel are attached to the tubular member by use of three co-planar mounting pads.

10

U.S. Pat. No. 5,301,067 to Bleier and Lipkins, discloses a high accuracy periscope assembly comprised of a hollow tubular member and two mirror panels. The mirror panels are adhered to the tubular member on slanted surfaces of the tubular member along mounting pads.

15

U.S. Pat. No. 5,361,171 to Bleier, discloses a lateral transfer retroreflector having a fixed-length tubular member, a roof mirror secured within a channel portion extending from an end of the tubular member and a mirror panel attached to the tubular member at the opposite end from the roof mirror and roof 20 mirror panel.

None of the above prior art provides the configuration of the retroreflector and periscope of the present invention, particularly the configuration of the pin mounted mirror panel. It would be desirable to be able to adhere components 25 of precision optical devices together in such a manner as to minimize stresses between the components upon curing, while achieving easy and accurate alignment of the components.

30 **SUMMARY OF THE INVENTION**

In accordance with the invention, a reflector for a precision optical device is provided. The reflector comprises a reflective surface, a back surface, a thickness between the reflective surface and the back surface defining an edge

of the reflector, at least one mounting pad located along at least a portion of the edge of the reflector for adhesion to a portion of the precision optical device, and a mounting pin extending from another portion of the edge of the reflector for adhesion within a hole in the precision optical device.

5

Accordingly, it is an object of the present invention to provide an improved reflector for a precision optical device.

A further object of the invention is to provide an improved reflector for a  
10 precision optical device having a mounting pin instead of a mounting pad.

It is a further object of the invention to provide an improved lateral transfer retroreflector utilizing the improved mounting pin of the improved reflector.

15 Yet another object of the invention is to provide an improved periscope assembly utilizing the improved mounting pin of the improved reflector.

Other objects of the invention will in part be obvious and will in part be apparent from the following description.

20

The invention accordingly comprises assemblies possessing the features, properties and the relation of components which will be exemplified in the products hereinafter described, and the scope of the invention will be indicated in the claims.

25

#### BRIEF DESCRIPTION OF THE DRAWINGS

For a fuller understanding of the invention, reference is made to the following description taken in connection with the accompanying drawings, in  
30 which:

Fig. 1 is a perspective view of the lateral transfer retroreflector of the present invention;

Fig. 2 is a diagrammatic representation of a light ray trajectory in a lateral transfer retroreflector;

Fig. 3 is a perspective view of a pin mounted mirror panel of the invention mounted between a pair of side supports;

5 Fig. 4 is a perspective view of a roof mirror assembly for use in the invention;

Fig. 5 is a first end elevation view of the roof mirror of Figure 4;

Fig. 6 is a second end elevation view of the roof mirror of Figure 4;

Fig. 7 is a bottom plan view of the roof mirror of Figure 4; and

10 Fig. 8 is a perspective view of a periscope assembly according to the present invention.

**DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS**

15 Reference is made herein to applicant's co-pending application serial no. 09/894,207, and various other prior art lateral transfer retroreflector patents, namely, U.S. Patent Nos. 4,065,204, 5,024,514, 5,301,067 and 5,361,171 which are incorporated herein by reference.

20 The improved reflectors of the subject invention are mirror panels useful in constructing precision optical devices, such as, but not limited to, lateral transfer retroreflectors ("LTRs"), periscopes and interferometers. In particular, the invention disclosed provides a new construction in the formation and 25 mounting of the reflector to the assemblies that make up the optical devices.

25 Turning first to a brief discussion of the LTR structure, Fig. 1 illustrates that LTR 10 of the present invention consists of first and second longitudinally extending side panels 20 and 30, supports or connectors 40, 50 and 60, roof 30 mirror assembly 100 and mirror panel 80.

Turning to mirror panel 80, as shown in Fig. 3, it is seen that in the preferred embodiment assembly 80 comprises a panel 82 having a reflective surface 83, two mounting pads 84 and 85 and a surface 87 from which mounting pin 86 extends. In particular, panel 82 is adhered to member 30 of LTR 10 at 5 mounting pads 84 and 85, while in place of a mounting pad on the opposite side of panel 82, panel 82 is adhered to member 20 of LTR 10 by the adherence of pin 86 within a hole 22 of panel 20. It is also anticipated that mounting pin 86 not be preliminarily connected to mirror panel 80, but later adhered thereto during the construction of the precision optical device.

10

The manner of mounting panel 82 to LTR 10 using three mounting points assures a kinematic mount. Further, the quartz material used for all of the members of LTR 10, including side panels 20 and 30, support panels 40, 50 and 60, roof mirror assembly 100, mirror panel 82 and pin 86, ensures that all of the 15 elements will expand and contract uniformly, as they will all have the same coefficient of thermal expansion.

As seen in Fig. 1, the invention anticipates that on the other side of LTR 10 from mirror panel 82 is a roof mirror assembly 100. In the particular 20 invention, roof mirror assembly 100 is substantially identical to that of the roof mirror assembly of applicant's prior pending patent application Serial No. 09/894,207, but it is to be understood herein that any known or as yet unknown manner of constructing a roof mirror is anticipated herein.

25

Roof mirror assembly 100 is best seen in FIGS 4 – 7. Roof mirror assembly 100 comprises a pair of mirror panels 102 and 112, and a pair of mounting blocks 140 and 160.

30

Mirror panels 102 and 112 have reflective surfaces 104 and 114, respectively, which reflective surfaces are in reflective relation with reflective surface 83 of mirror panel 82 (see Fig. 2). In particular, reflective surface 104 is substantially perpendicularly oriented to reflective surface 114, and reflective surface 83 is itself oriented substantially perpendicularly to both reflective

surfaces **104** and **114**. This mutually perpendicular orientation of the three reflective surfaces of LTR **10** essentially duplicates the construction of a Hollow<sup>TM</sup> retroreflector, as is known in the art.

5 Referring to **FIGs 4 – 6**, mirror panels **102** and **112** are seen to be adhered together at miter joint **110**. In order to create miter joint **110**, the attachment surfaces of mirror panels **102** and **112** which are joined together to create miter joint **110**, are at substantially 45 degree angles to reflective surfaces **104** and **114**, so as to create the perpendicularity between the reflective surfaces  
10 upon creation of miter joint **110**, and the associated reduction of distortive forces, as earlier discussed.

Continuing with a discussion of **FIGs 4 – 6**, it is seen that connected together panels **102** and **112** are finally formed into a secure roof mirror assembly through the mounting of back surfaces of panels **102** and **104** to portions of surfaces **142** and **162** of mounting blocks **140** and **160**. In so mounting panels **102** and **104** to blocks **140** and **160**, air gaps **150**, **152**, **154** and **156** are created between surfaces of mounting blocks **140** and **160** and surfaces **106** and **126** of panel **102**, and surfaces **116** and **136** of panel **112** (see **FIGs 5**  
20 and **6**).

As is further seen in **FIGs 5** and **6**, the back surfaces of panels **102** and **112** that are adhered to mounting blocks **140** and **160** as discussed above, are surfaces **108** and **128** for panel **102**, and surfaces **118** and **138** for panel **112**. In construction, surfaces **108/128** and **118/138** are all substantially perpendicular in orientation to miter joint **110**. Such a construction ensures that any substantial distortional effects due to thermal expansion/contraction of panels **102** and **112** and/or block **140** and **160** will be in a direction substantially perpendicular to a longitudinal axis for roof mirror assembly **100**; i.e., perpendicular to the planes of  
30 reflective surfaces **104** and **114**.

Turning again to **FIG 1**, it is seen that roof mirror assembly **100** is secured to LTR **10** by way of connection between bottom surfaces **141** and **161** of blocks

**140 and 160 to member 60.**

The invention also anticipates that instead of a lateral transfer retroreflector being created, a periscope **200** is created, as seen in Fig. 8.

5      Periscope **200**, instead of having a roof mirror assembly at one end, has a second mirror panel **282** which, apart from being inverted to that of panel **82** (therefore having its pin **286** extending through member **30**, as opposed to member **20**), is substantially identically constructed. In particular, pin **286** of periscope **200** is adhered within a hole **232** of member **30** of periscope **200**,

10     while mounting pads **284** and **285** of mirror panel **282** are adhered to member **20** of periscope **200**.

According to the light path diagram shown in Fig. 2, mirror panel **80** is mounted at a first end of an exemplary lateral transfer retroreflector. At the other end of the lateral transfer retroreflector, roof mirror **100**, comprising mirror panel **102** mounted in perpendicular relation to mirror panel **112**, is mounted. An incident light beam **I** impinges one of mirror panel **102** or mirror panel **112**. By virtue of the perpendicular relation of mirror panels **102** and **112**, the light beam is reflected to the other of mirror panel **102** or **112** and then is reflected as intermediate light beam **T** in a direction perpendicular to incident light beam **I** and toward mirror panel **80**. Upon contacting mirror panel **80**, the light beam is reflected off as reflected light beam **R** that is parallel to, but laterally offset from and in an opposite direction to, incident light beam **I**. As will be understood by those skilled in the art, whether incident light ray **I** impinges mirror panel **102** or **112** first, the resultant reflected light ray **R** achieves a parallel orientation with respect to incident light ray **I**. Further, a similar light path diagram could be drawn for the embodiment when periscope **200** replaces roof mirror **100**. The only difference in such a diagram (other than the fact that the two mirror panels **102** and **112** of the roof mirror are replaced with a single mirror panel **282** for the periscope) is that reflected light beam **R** will travel in the same direction, and substantially parallel to, the direction of incident beam **I**.

It will thus be seen that the objects set forth above, among those made

apparent from the preceding description, are efficiently attained, and, since certain changes may be made in the above constructions without departing from the spirit and scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

It is also to be understood that the following claims are intended to cover all of the generic and specific features of the invention herein described and all statements of the scope of the invention which, as a matter of language might be said to fall therebetween.