

Nome: nº. ano: data: / /

7^a LISTA DE EXERCÍCIOS COMPLEMENTARES DE MATEMÁTICA (PRODUTOS NOTÁVEIS)

Ensino Fundamental 8° Ano

Vamos colocar em prática os seus conhecimentos matemáticos e tudo o que estudamos em aula sobre produtos notáveis. Estes exercícios fazem parte do estudo para as avaliações, portanto é necessário seguir as orientações:

- ✓ Realize os exercícios em folhas de fichário com a identificação completa, não há necessidade de copiar as consignas;
- ✓ As questões de múltipla escolha apenas serão consideradas se resolvidas ou justificadas;
- ✓ Resolva as questões deixando registrados de forma organizada e legível todos os cálculos e procedimentos utilizados para a resolução;
- ✓ Lembre-se de que, apesar de estar em casa, o compromisso, a organização e a dedicação com os estudos são muito importantes.

Tenha um ótimo estudo!

1) Associe cada igualdade a uma das afirmações, escrevendo a letra e o símbolo romano correspondentes.

I.
$$(x + y)^2 = x^2 + 2xy + y^2$$

II.
$$(x - y)^2 = x^2 - 2xy + y^2$$

III.
$$(x + y) \cdot (x - y) = x^2 - x^2$$

- **a)** O quadrado da diferença de dois termos é igual ao quadrado do 1º termo, menos duas vezes o 1º termo vezes o 2º, mais o quadrado do 2º termo.
- **b)** O quadrado da soma de dois termos é igual ao quadrado do 1º termo, mais duas vezes o 1º termo vezes o 2º termo, mais o quadrado do 2º termo.
- **c**) O produto da soma pela diferença de dois termos é igual ao quadrado do 1º termo menos o quadrado do 2º termo.
- 2) Descobrindo parceiros. Indique as expressões equivalentes relacionando um número romano a cada letra.

A
$$(20x - y)^2$$

B
$$(20x + y)^2$$

$$\mathbf{C}$$
 $(20x)^2 + (-y)^2$

D
$$(20x + y)(20x - y)$$

$$1 400x^2 - y^2$$

11
$$400x^2 + y^2$$

111
$$400x^2 + 40xy + y^2$$

$$10^{1}$$
 $400x^2 - 40xy + y^2$

3) Considere a figura abaixo.

- a) Determine as áreas I, II, III e IV.
- **b**) Determine a área da figura toda.
- c) Calcule $(x + 5)^2$ e compare com a área da figura.
- 4) A figura abaixo representa um quadrado. As partes pintadas também são quadrados.

- a) Determine as áreas I e II.
- b) Determine a área da figura toda.
- c) Determine a medida do lado do quadrado.
 d) Calcule (a + 9)² e compare com a área da figura.
- 5) Observe a figura e calcule $(3 + x)^2$.

6) Escreva uma expressão simplificada para a área de cada uma das figuras:

Nome: n° . ano: data: / /

7) A área do retângulo é 200.

- a) Determine o valor de n.
- **b)** Quanto mede o lado menor?
- c) Quanto mede o lado maior?
- 8) A figura é formada por três quadrados e um retângulo:

- a) Qual expressão representa o perímetro da figura?
- **b)** Se o perímetro vale 53cm, qual o valor de a?
- c) Qual expressão representa a área da figura?
- **d**) Faça a = 6cm e calcule a área da figura.
- 9) Em um terreno em forma de quadrado será construído um edifício como representado no esquema.

- a) Escreva o polinômio que representa a área do terreno que não será ocupado pelo edifício.
- **b**) Sabendo que x = 80 metros e x y = 50 metros, qual a área da parte do terreno que será ocupada pelo edifício? E a área da parte que não será ocupada?

10) Ricardo calculou 48² e registrou em uma folha os procedimentos utilizados.

- a) Qual conteúdo que você estudou foi utilizado por Ricardo para realizar esse cálculo?
- **b)** De maneira semelhante, calcule.

11) Copie as igualdades substituindo cada Δ pelo monômio adequado.

a)
$$(4 + x)^2 = 16 + \Delta + x^2$$

b)
$$(2a-3)^2 = 4a - \Delta + 9$$

a)
$$(4 + x)^2 = 16 + \Delta + x^2$$

b) $(2a - 3)^2 = 4a - \Delta + 9$
c) $(2x + 2y)^2 = x^2 + 8xy + 4y^2 + \Delta$
d) $a^2 - 6ab + 9b^2 = (a - \Delta)^2$

d)
$$a^2 - 6ab + 9b^2 = (a - \Delta)^2$$

12) Associe cada quadrado sombreado ao trinômio quadrado perfeito que representa sua área, escrevendo a letra e o símbolo romano correspondentes.

$$I.\ 36y^2 - 45xy + 16x^2$$

II.
$$\frac{81}{4}x^2 - \frac{9}{2}xy + \frac{y^2}{4}$$

III. $x^2 - 4xy + 4y^2$

III.
$$x^2 - 4xy + 4y^2$$

IV.
$$4x^2 + 6xy + \frac{9}{4}y^2$$

13) Observe o quadrado.

- a) Qual monômio representa a área desse quadrado?
- b) Se diminuirmos em 5cm cada um dos lados desse quadrado, qual será o polinômio que representará sua área?

14) Calcule utilizando produtos notáveis:

a)
$$(x + y)^2$$

b) $(a + 7)^2$

b)
$$(a + 7)^2$$

b)
$$(a + 7)^2$$

c) $(3x + 1)^2$

d)
$$(10y + x)^2$$

e)
$$(a + 3x)^2$$

f)
$$(xy + 5)^2$$

e)
$$(a + 3x)^2$$

f) $(xy + 5)^2$
g) $(3m^2 + 4n)^2$
h) $(xy + p^3)^2$

h)
$$(xy + p^3)^2$$

i)
$$(0.3 + x)^2$$

j) $(10x + 0.1)^2$

15) Calcule utilizando produtos notáveis:

a)
$$(x - y)^2$$

b)
$$(m-3)$$

b)
$$(m-3)^2$$

c) $(2a-5)^2$

d)
$$(7-3c)^2$$

e)
$$(5x - 2y)^2$$

e)
$$(5x - 2y)^2$$

f) $(4m^2 - 1)^2$
g) $(3m^2 - 4n)^2$
h) $(2 - m^3)^2$

g)
$$(3m^2 - 4n)^2$$

h)
$$(2 - m^3)^2$$

- **i)** $(xy-5)^2$ **j)** $(10x-0,1)^2$

i) $(7x + 5z) \cdot (7x - 5z)$ j) $(5x^2 + 2y) \cdot (5x^2 - 2y)$

16) Calcule utilizando produtos notáveis:

a)
$$(x + 9) \cdot (x - 9)$$

b)
$$(m-3) \cdot (m+3)$$

c)
$$(2a-5) \cdot (2a+5)$$

d)
$$(3x + 5) \cdot (3x - 5)$$

e)
$$(5x - 2y) \cdot (5x + 2y)$$

f)
$$(m^2 - 5) \cdot (m^2 + 5)$$

f)
$$(m^2 - 5) \cdot (m^2 + 5)$$

g) $(p^3 - 3) \cdot (p^3 + 3)$
h) $(a^2 + b^5) \cdot (a^2 - b^5)$

h)
$$(a^2 + b^5) \cdot (a^2 - b^5)$$

17) Qual é a área do quadrado maior?

18) Verifique se a igualdade a seguir é verdadeira. Justifique sua resposta.

$$(4m+1)^2 - (m+2)^2 = 15m^2 + 5m - 4$$

- 19) (SARESP-SP) A expressão algébrica que representa a situação "o quadrado da soma de dois números, mais 5 unidades" é
- a) $x + y + 5^2$. b) $(x + y + 5)^2$. c) $(x + y)^2 + 5$. d) $x^2 + y + 5^2$.

- **20**) Sabendo que xy = 12, quanto vale $(x y)^2 (x + y)^2$?
- **a**) 16
- **b)** 48
- c) 16
- (d) 48
- 21) (Escola Técnica Federal-RJ) Considere as expressões:

Então:

- a) São todas falsas.
- **b**) São todas verdadeiras.
- c) Somente II e III são verdadeiras.
- d) Somente I e III são verdadeiras.
- **22**) (MACK-SP) Se $(x y)^2 (x + y)^2 = -20$, então $x \cdot y$ é igual a
- **a**) 0.
- **b**) -1.
- **c)** 5.
- **d)** 10.
- 23) (Olimpíada Bras. de Matemática) Se x + y = 8 e xy = 15, qual é o valor de $x^2 + 6xy + y^2$?
- **a)** 109
- **b**) 120
- **c)** 124
- **d**) 154

Nome:

nº.

ano:

data:

24) (PUC-SP) A expressão $(x + y) \cdot (x^2 + y^2) \cdot (x - y)$ é igual a

- a) $x^4 + y^4$. b) $x^4 y^4$. c) $x^3 + xy^2 x^2y y^3$. d) $x^3 + xy^2 + x^2y + y^3$.

25) (SEE-SP) Sendo A = x + 2 e B = x - 2, a expressão $A^2 + AB - B^2$ é equivalente a

- **a)** $x^2 + 4$. **b)** $x^2 4$.
- **c**) $x^2 + 8x + 8$. **d**) $x^2 8x 4$.

26) Se x - y = 7 e xy = 60, então o valor da expressão $x^2 - y^2$ é

- **a**) 53.
- **b**) 109.
- **c**) 420.
- **d**)169.

27) (FCC-SP) A expressão $(x - y)^2 - (x + y)^2$ é equivalente a

- **a**) 0.
- **b**) $2y^2$. **c**) $-2y^3$.
- \mathbf{d}) -4xy.

28) (PUC-MG) O valor da fração $\frac{a^2 - b^2}{a^2 + 2ab + b^2}$, quando a = 51 e b = 49, é

- **a**) 0,02.
- **b**) 0,20.
- **c)** 2,00.
- **d**) 20,0.

29) (PUC-MG) Considere a igualdade $P = \sqrt{\frac{(x+y)^2 - 4xy}{(x-y)^2 + 4xy}}$, com x > y e x + y > 0. Simplificando o radicando, obtém-se para o valor de P

- $\mathbf{a})\frac{\mathbf{y}+\mathbf{x}}{\mathbf{v}-\mathbf{x}}.$
- $\mathbf{b)} \; \frac{\mathbf{x} \mathbf{y}}{\mathbf{x} + \mathbf{y}} \, .$
- c) $\frac{x+y}{x-y}$.
- $\mathbf{d})\frac{\mathbf{y}-\mathbf{x}}{\mathbf{y}+\mathbf{x}}.$