v7.1

Le mouvement circulaire

NGC 2997b

a_r: accélération centripète(vers le centre)

Q.: prouver cette formule par analyse dimensionnelle

$$\mathbf{F}_{\rm r} = -m(v^2/r)\mathbf{r}^{\mathbf{A}}$$

Les angles

 θ radians = s / r

exemple: $s = 2\pi r \implies \theta = 2\pi r / r = 2\pi$

donc 2π radians $\equiv 360^{\circ}$

radians = degrés / 57.32

Vitesse angulaire : $\omega = d\theta / dt$

Accélération angulaire : $\alpha = d\omega / dt$

<u>Cas important</u>: mouvement circulaire à vitesse constante v sur un cercle de rayon r :

L'objet parcourt le cercle en un temps

$$T = 2\pi r / v$$
 (T est la période)

la vitesse angulaire est alors (en radians/s):

$$\omega = 2\pi / T = 2\pi v / 2\pi r = v / r$$

Conventions pour une représentation vectorielle:

Le vecteur ω est parallèle à l'axe de rotation.

Le sens est celui du pas de vis (ou du tire-bouchon).

 $\alpha = d\omega / dt$ est aussi // à l'axe de rotation

p. ex., dans la figure ω est positif, parallèle à z.

 $\alpha > 0$ indique que ω augmente avec le temps

α non nul <=> mouvement non uniforme

cas où le mouvement n'est pas uniforme α≠0

$$|\vec{v}| \neq cte$$

 $v = \omega r$ est toujours valable instantanément

avec
$$v = v(t)$$
, $\omega = \omega(t)$.

Nous avons alors une accélération "tangentielle"

$$a_{t} = \frac{d|\vec{v}|}{dt} = \frac{dv}{dt}$$

Q.: montrer que $a_t = \alpha r$

cas où le mouvement est uniforme, $|\vec{v}| = cte$

on a
$$\mathbf{v} = \mathbf{\omega} \mathbf{r}$$
 constant $(\mathbf{a}_t = \mathbf{0})$

que l'on remplace dans $\mathbf{a}_{r} = -(\mathbf{v}^{2}/r)^{\hat{\mathbf{r}}}$

$$\mathbf{a}_{r} = -(\omega^2 r^2 / r)^{\hat{\mathbf{r}}} = -\omega^2 r \hat{\mathbf{r}}$$

Attention: ne pas confondre a_r avec l'accélération tangentielle a_t que l'on observe quand la vitesse de rotation change, $\omega \neq$ cte.

Démontrer que dans un mouvement circulaire uniforme ${\bf a_r}=$ - ω^2 r ${\bf r}$

$$\mathbf{a}_{\rm r} = - \omega^2 \, \mathrm{r} \, \mathbf{r}$$

par la méthode des "petits accroissements"

Calcul de l'accélération dans un mouvement circulaire de rayon r, à vitesse cte = v

Calcul de l'accélération .2

angles en rad! Calcul de l'accélération .3

δθ

$$\delta\theta \approx \frac{\delta v}{v} \implies \delta v \approx v \, \delta\theta$$

avec ω la vitesse angulaire

$$\omega = \delta\theta/\delta t$$
 et $v = \omega r$

$$a_{r} \approx \frac{\delta v}{\delta t} = \frac{v\delta\theta}{\delta t} = v\omega =$$

$$= \omega^{2} r = \frac{v^{2}}{r}$$

transport parallèle de δv au milieu

Moment des forces τ, accélération angulaire α et moment d'inertie I

Force F appliquée à une tige fixée en C F_t est la composante qui agit sur la rotation du point de masse m F_t est \bot au rayon r

Moment d'inertie .1

$$I = m_a r_a^2 + m_b r_b^2$$

tige de masse m (densité uniforme) et de longueur ℓ =2a

masse d'un élément de longueur dx vaut (m/2a)dx

I =
$$\int_{-a}^{a} x^2 (m/2a) dx = (m/2a) x^3/3 \Big|_{-a}^{a} = ma^2/3$$

(ou
$$I = m(\ell/2)^2/3 = m\ell^2/12$$
) ¹⁴

Moment d'inertie .2

$$I = m \ell^2 / 12$$

$$I = m \ell^2/3$$

attention à la position de l'axe de rotation!

tube (mince) de rayon R: $I = mR^2$

disque de rayon R: $I = mR^2/2$ sphère homogène $I = 2mR^2/5$ enveloppe sphérique $I = 2mR^2/3$

Moment des forces et rotation

Un τ positif induit un α positif (cas de la figure). Si l'objet est initialement au repos, il acquiert un ω positif (une rotation anti-horaire)

Exemple

Une meule de r=0.08 m et M=2 kg

$$I = Mr^2/2 = 2 \times 0.08^2/2 = 0.0064 \text{ kg m}^2$$

moment de la force qui fait passer le disque du repos $\rightarrow \omega = 120 \text{ rad/s}$ en 8 secondes ?

$$\alpha = \frac{\Delta \omega}{\Delta t} = \frac{120}{8} = 15 \text{ rad/s}^2$$

$$\tau = I\alpha = 0.0064 \times 15 = 0.096 \text{ kg} \frac{\text{m}}{\text{s}^2} \text{m} = 0.096 \text{ Nm}$$

Exemple 2

poulie de masse M et rayon R qui tourne sans frottement

Calculer l'accélération tangentielle de la roue si m₂=M et m₁=M/2

a = module de l'accélération des deux masses = ?

$$T_1$$
 et T_2 = tensions:

$$T_1 = m_1(g+a) = \frac{M}{2}(g+a)$$

$$T_2 = m_2(g - a) = M(g - a)$$

Exemple 2

$$T_1 = m_1(g+a) = \frac{M}{2}(g+a)$$

$$T_2 = m_2(g - a) = M(g - a)$$

moment total des forces sur la poulie:

$$\tau = T_2R - T_1R = (T_2 - T_1)R =$$

$$\tau = T_2 R - T_1 R = (T_2 - T_1) R =$$

$$M \left[(g - a) - \frac{1}{2} (g + a) \right] R = MR \frac{1}{2} (g - 3a)$$

on a aussi
$$\tau = I\alpha = I\frac{a}{R}$$
 $I = \frac{1}{2}MR^2$

$$\tau = I\alpha = \frac{1}{2}MR^2 \frac{a}{R} = \frac{1}{2}MRa \implies MR \frac{1}{2}(g - 3a) = \frac{1}{2}MRa \quad a = g/4$$