Notes on Karel Hrbacek's "Relative set theory: Some external issues"[1]

Nicholas Todoroff

December 1, 2021

Bolded letters (**U**, **V**, etc.) are for levels in **GRIST** $^{\heartsuit}$. Capital Greek letters (Φ , Ψ , etc.) are for formulas. Latin letters (a, A, x, y, etc.) are for sets. A bar over a variable indicates a parameter list.

Relativization[♡]

- (iii) All levels are part of a hierarchy, and this is useful to assume when interpreting the other axioms.
- (o) Extensionality for levels, which is to say two levels are equal if they have the same elements.
- (i) For reference,

$$\forall x \exists \mathbf{V}. \ x \in \mathbf{V} \land \forall \mathbf{U}. \ x \in \mathbf{U} \rightarrow \mathbf{V} \subseteq \mathbf{U}.$$

This says that every set belongs to a level, and also that every set has a least level containing it. If there are two least levels \mathbf{V}, \mathbf{V}' , then $\mathbf{V} \subseteq \mathbf{V}'$ by definition of \mathbf{V} by definition of \mathbf{V}' ; so $\mathbf{V} = \mathbf{V}'$ and the least level containing a given set is unique. This allows us to define \mathbb{O}_x as the least level containing x.

- (ii) \varnothing is in every level, which implies that $\mathbb{S} := \mathbb{O}_{\varnothing}$ is the bottom of the level hierarchy. It also says that every level is the least level of some set, i.e. $\mathbf{V} = \mathbb{O}_x$ for some x.
- (iv) The hierarchy of levels has no upper bound.
- (v) Any two distinct levels have a distinct intermediary level, i.e. there are no discernable "gaps" in the hierarchy.

Some terminology appears to be useful in aiding intuition. In the following, let U,V be levels.

• We will use "obs'le" as an abbreviation of "observable".

- We say that **U** is *obs'le* to **V** if $\mathbf{U} \subseteq \mathbf{V}$, and we say that **U** is *standard* to **V** if $\mathbf{U} \subset \mathbf{V}$. Thus **U** is obs'le to **V** if it is standard to **V**, and \mathbb{S} is standard to every distinct level.
- Any x is obs'le or standard to V if \mathbb{O}_x is obs'le or standard to V, repectively. Thus x is obs'le to V if $x \in V$. We say simply that x is obs'le or standard if x is obs'le or standard to the current implicit level.
- Since $\forall \mathbf{U} \neq \mathbb{S}$. $\mathbb{S} \subset \mathbf{U}$, we way that \mathbb{S} (and its elements) are *absolutely standard*.
- We let \mathbb{S}_{U} be the class of all **U**-standard sets, which is to say that

$$\forall x. \ x \in \mathbb{S}_{\mathbf{U}} \leftrightarrow \exists \mathbf{V} \subset \mathbf{U}. \ x \in \mathbf{V}.$$

Note that while \mathbb{S} is a level, \mathbb{S}_U is not.

• We say a V-formula $\Phi(\bar{x}; \mathbf{V})$ is *relative* to V. A formula relative to some V is *relative*.

Transfer[♡]

Every relative formula with obs'le parameters may be taken relative to any level so long as its parameters remain obs'le.

Standardization[♥]

For reference: let *A* be a set and $\Phi(y, \bar{x}; \mathbf{W})$ be a relative formula. Then

$$\forall \mathbf{U} \supset \mathbb{S}. \ \exists \mathbf{V} \subset \mathbf{U}. \ \exists B \in \mathbf{V}. \ \forall \mathbf{W}. \ \mathbf{V} \subseteq \mathbf{W} \subset \mathbf{U} \rightarrow \Big(\forall y \in \mathbf{W}. \ y \in B \leftrightarrow y \in A \land \Phi(y, \bar{x}; \mathbf{W}) \Big).$$

We can derive $\mathbf{FRIST}^{\heartsuit}$ Standardization from $\mathbf{GRIST}^{\heartsuit}$ Standardization and Granularity. First define

$$\Psi(A, \bar{x}; \mathbf{V}) \equiv \exists B \in \mathbf{V}. \ \forall y \in \mathbf{V}. \ y \in B \leftrightarrow y \in A \land \Phi(y, \bar{x}; \mathbf{V}),$$

and note that this is indeed a formula relative to V. Then, by Standardization $^{\circ}$, taking W=V proves that

$$\forall \mathbf{U} \supset \mathbb{S}. \ \exists \mathbf{V} \subset \mathbf{U}. \ \Psi(A, \bar{x}; \mathbf{V}). \tag{*}$$

But by Granularity $^{\heartsuit}$, there is a least **X** such that $\Psi(A, \bar{x}; \mathbf{X})$. If $\mathbf{X} \supset \mathbb{S}$ then (*) applies with $\mathbf{U} = \mathbf{X}$ and \mathbf{X} is not minimal, a contradiction. So $\mathbf{X} = \mathbb{S}$ since \mathbb{S} is absolutely standard, and $\forall A \forall \bar{x}$. $\Psi(A, \bar{x}; \mathbb{S})$ is satisfied, which is exactly **FRIST** $^{\heartsuit}$ Standardization. By Transfer $^{\heartsuit}$, $\forall A \forall \bar{x}$. $\Psi(A, \bar{x}; \mathbf{U})$ is also satisfied for any level \mathbf{U} , which is "**FRIST** $^{\heartsuit}$ Standardization relative to \mathbf{U} ".

We can put $(\mathbf{GRIST}^{\heartsuit})$ Standardization $^{\heartsuit}$ in a more intuitive form. Since levels exist in a hierarchy, we can note that y ranges over all values in $\mathbb{S}_{\mathbf{U}}$ and that the only thing that matters is that Φ is satisfied for some \mathbf{W} . It follows that an equivalent formulation is

$$\forall \mathbf{U} \supset \mathbb{S}. \ \exists \mathbf{V} \subset \mathbf{U}. \ \exists B \in \mathbf{V}. \ \forall y \in \mathbb{S}_{\mathbf{U}}.$$
$$y \in B \leftrightarrow y \in A \land \exists \mathbf{W}. \ \mathbf{V} \subseteq \mathbf{W} \subset \mathbf{U} \land \Phi(y, \bar{x}; \mathbf{W}). \quad (ST')$$

Since the **W** quantifier is existential and B is **V**-obs'le, we can weaken $\mathbf{V} \subseteq \mathbf{W} \subset \mathbf{U}$ to $\mathbb{O}_B \subseteq \mathbf{W} \subset \mathbf{U}$. But then $\exists \mathbf{V} \subset \mathbf{U}$. $\exists B \in \mathbf{B}$ is equivalent to $\exists B \in \mathbb{S}_{\mathbf{U}}$ since there is no further mention of **V**. Finally we have

$$\forall \mathbf{U} \supset \mathbb{S}. \ \exists B \in \mathbb{S}_{\mathbf{U}}. \ \forall y \in \mathbb{S}_{\mathbf{U}}.$$
$$y \in B \leftrightarrow y \in A \land \exists \mathbf{W}. \ \mathbb{O}_B \subseteq \mathbf{W} \subset \mathbf{U} \land \Phi(y, \bar{x}; \mathbf{W}). \quad (ST^*)$$

However, this statement in itself implies Standardization $^{\heartsuit}$ by taking $\mathbf{V} = \mathbb{O}_B$ in (ST'). In words, it says the following:

Let A be a set and Φ be a relative formula, and fix a nonstandard level \mathbf{U} which "standard" refers to. Then there is a standard set B whose standard elements are exactly those of A which satisfy Φ relative to some standard level \mathbf{W} in which B is obs'le.

Idealization[♥]

Let **V** be a level which "standard" refers to, A be a standard set, and Φ be a relative formula. Then Φ is finitely satisfied relative to **V** over standard elements of A iff it is universally satisfied for all standard elements of A.

Granularity[♡]

Every formula satisfied relative to some level has a least level it is satisfied relative to.

References

^[1] Karel Hrbacek. "Relative Set Theory: Some External Issues". In: Journal of Logic and Analysis 2.0 (0 2010). ISSN: 1759-9008. DOI: 10.4115/jla.2010.2.8. URL: http://www.logicandanalysis.com/index.php/jla/article/view/75 (visited on 12/01/2021).