$$(\sqrt{2})$$

$$= \frac{\partial^{2}}{\partial q_{i}q_{j}} = \frac{1}{|q_{i}-q_{i}|^{3}}$$

$$= \sqrt{2}$$

$$(\sqrt{q_{i}-q_{i}})^{2}$$

$$= \sqrt{2}$$

$$\sqrt{2}$$

$$\sqrt{q_{i}q_{j}} = \sqrt{2}$$

$$\sqrt{2}$$

$$\sqrt{q_{i}q_{j}} = \sqrt{2}$$

$$\sqrt{2}$$

$$\sqrt{q_{i}q_{j}} = \sqrt{2}$$

$$\sqrt{2}$$

$$\sqrt{q_{i}q_{j}} = \sqrt{2}$$

$$\sqrt{2}$$

$$\sqrt$$

Démage: (2)
$$V(q+\sigma G)-2V(G)+V(G-\sigma G)$$

$$\sim G^{T}\nabla^{2}VG\sigma^{2}$$

$$+O(\sigma^{4})$$

(Galéatoire)

 $+W(q) \cdot 66$ $+\frac{976}{2}V^{2}VG + O(0^{3})$

Calulu N-2

Everyle Mod (O(Ath) Option renormalisée: as 15 $Vq)z(q^2-1)^2$

Il délargage de fonts d'en. no enficée

HGMPM)

$$A P = 72VGM)PM$$
 $A P = 72VGM)PM$
 $A P = 72VGM$
 $A P =$

 $\frac{1}{a_1b} = \frac{1}{a_1b_1}$ $\frac{1}{a_1b_2} = \frac{1}{a_1b_2}$ $\frac{1}{a_1b_2} = \frac{1}{a_1b_2}$ $\frac{1}{a_1b_2} = \frac{1}{a_1b_2}$ => varial (()

$$\begin{array}{lll}
 & = & \text{Id} \\
 & = & \text{Id$$

$$\int \nabla H_3 = \begin{pmatrix} + \sqrt{\rho} \cdot i_3 \\ - \nabla_q \cdot H_3 \end{pmatrix} \qquad \rho = \nabla^2 (\partial_i \vee) \rho$$

 $\nabla_{1}H_{3} = \frac{1}{6} \nabla^{2}V \cdot P$ $\nabla_{2}H_{3} = -\frac{1}{12} \nabla^{2}V \cdot \nabla V$ $\nabla_{3}H_{3} = -\frac{1}{12} \nabla^{3}V \cdot P \cdot P$

On doit trower $\{1, (qp) = 1 \}$ $\{1, (q$ 1D - verfur sealing /t m