Clustering

Stephen Boyd (with thanks to Karanveer Mohan) EE103 Stanford University

September 29, 2015

Outline

Clustering

Algorithm

Examples

Clustering

- ▶ given N n-vectors x_1, \ldots, x_N
- ightharpoonup goal: partition (divide, cluster) into k groups
- want vectors in the same group to be close to one another

Clustering

Example settings

- topic discovery and document classification
 - x_i is word count histogram for document i
- patient clusering
 - x_i are patient attributes, test results, symptoms
- customer market segmentation
 - x_i is purchase history and other attributes of customer i
- color compression of images
 - x_i are RGB pixel values

Clustering 4

Clustering objective

- ▶ $G_j \subset \{1, \ldots, N\}$ is group j, $j = 1, \ldots, k$
- $ightharpoonup c_i$ is group that x_i is in: $x_i \in G_{c_i}$
- group representatives: n-vectors z_1, \ldots, z_k
- clustering objective is

$$J = \frac{1}{N} \sum_{i=1}^{N} ||x_i - z_{c_i}||^2$$

mean square distance from vectors to associated representative

- J small means good clustering
- lacktriangledown goal: choose clustering c_i and representatives z_j to minimize J

Outline

Clustering

Algorithm

Examples

Partitioning the vectors given the representatives

- suppose representatives z_1, \ldots, z_k are given
- \blacktriangleright how do we assign the vectors to groups, *i.e.*, choose c_1, \ldots, c_N ?

- $ightharpoonup c_i$ only appears in term $||x_i z_{c_i}||^2$ in J
- lacktriangle to minimize over c_i , choose c_i so $\|x_i z_{c_i}\|^2 = \min_j \|x_i z_j\|^2$
- ▶ i.e., assign each vector to its nearest representative

Algorithm 7

Choosing representatives given the partition

- ▶ given the partition G_1, \ldots, G_k , how do we choose representatives z_1, \ldots, z_k to minimize J?
- ▶ J splits into a sum of k sums, one for each z_i :

$$J = J_1 + \dots + J_k, \qquad J_j = (1/N) \sum_{i \in G_j} ||x_i - z_j||^2$$

- \blacktriangleright so we choose z_j to minimize mean square distance to the points in its partition
- this is the mean (or average or centroid) of the points in the partition:

$$z_j = (1/|G_j|) \sum_{i \in G_j} x_i$$

k-means algorithm

- alternate between updating the partition, then the representatives
- ▶ a famous algorithm called *k-means*
- objective J decreases in each step

```
given x_1,\dots,x_N\in \mathbf{R}^n and z_1,\dots,z_k\in \mathbf{R}^n. repeat  \begin{array}{c} \textit{Update partition. assign $i$ to $G_j$, $j=\mathrm{argmin}_{j'}\|x_i-z_{j'}\|^2$} \\ \textit{Update centroids. } z_j=\frac{1}{|P_j|}\sum_{i\in P_j}x_i \\ \text{until } z_1,\dots,z_k \text{ stop changing} \end{array}
```

Algorithm 9

Convergence of *k*-means algorithm

- ▶ J goes down in each step, until the z_j 's stop changing
- but (in general) the k-means algorithm does not find the partition that minimizes J
- ▶ *k*-means is a *heuristic*: it is not guaranteed to find the smallest possible value of *J*
- ▶ the final partition (and its value of J) can depend on the initial representatives
- common approach:
 - run k-means 10 times, with different (often random) initial representatives
 - take as final partition the one with the smallest value of J

Algorithm 10

Outline

Clustering

Algorithm

Examples

Applications

Data

Iteration 1

Iteration 2

Iteration 10

Final clustering

Convergence

Outline

Clustering

Algorithm

Examples

Applications

Color compression

- ▶ 3-vectors $x_1, ... x_N$ represent RGB values of each pixel in an image
- ▶ in 24-bit color representation $(x_i)_m \in \{1, 2, \dots, 256\}$
- ▶ total of $256^3 \approx 1.7 \times 10^7$ possible colors
- ightharpoonup compress color vectors to k colors using k-means

Compressed image for various values of \boldsymbol{k}

Handwritten digit image set

- ► MNIST images of handwritten digits (via Yann Lecun)
- $ightharpoonup N = 60,000\ 28 \times 28$ images, represented as 784-vectors x_i
- 25 examples shown below

k-means image clustering

- run k-means with k=20
- representatives shown as images below
- k-means has 'discovered' the digits (mostly)

