

How to connect to PC and use ZLAC8015(D) software

1. Connection

PC \rightarrow USB to LPT cable \rightarrow 485 module \rightarrow debugging cable (A: Orange, B: Brown, provided by ZLTECH) \rightarrow ZLAC8015(D) CAN&RS485 port (PIN 2, 4 correspond RS485 A, B signal, PIN 6, 8 correspond RS485 A, B signal)

USB to LPT cable

A: Orange B: Brown

485 module

ZLAC8015(D) CAN&RS485 port

3.1.5 Communication port

Port	Pin	Mark	Name	Function
	1	CANH	CANOPEN	
	3	CANL		
	2	Α	RS485	
2001	4	В		
6 • • 5	5	CANH	CANOPEN	
8 • • 7	7	CANL		
	6	Α	RS485	
	8	В		

2. How to set ZLAC8015(D) software

1 File → COM Settings

2 Setting port parameters

A. R485-ID: the fault RS485-ID of ZLAC8015, ZLAC8030L is 4, the fault RS485-ID of ZLAC8015D is 1.

B. Port: select corresponding port.

(Right-click My Computer → Device Manager → USB Serial Port)

USB Serial Port: supports high frequency, high baud rate (no less than 115200).

USB SERIAL CH340: only supports low baud rate (9600), function is not stable.

Note: The Com port No. cannot exceed 15.

COM serial port cannot be recognized:

Please download a driver application to download drivers.

C. Baud rate:

The fault baud rate is: 115200.

③ Open Com

How to judge if the connection succeeds:

Connetion doesn't succeed:

Connetion succeeds:

A. RS485 Help

Open RS485 communication routine.

B. CANopen Help

Open CANopen communication routine.

C. ZLAC8015(D) Help

Open ZLAC8015(D) manual.

D. About ZLTECH(-D)-HM

Software Version: 1.02

3. Software interface and function

① 3 main motor parameters:

Encoder, Phase Shift, Pole (different motors have different parameters)

Motor	Encoder Line	Phase Shift	Pole Pair
ZLLG40ASM100	1024	-60	10
ZLLG45ASM200	1024	0	10
ZLLG50ASM200/ZLLG55ASM150	1024	240	10
ZLLG50ASM200 V2.0/ZLLG55ASM150 V2.0	4096	240	10
ZLLG65ASM250/ZLLG80ASM250	1024	0	15
ZLLG65ASM250 V3.0/ZLLG80ASM250 V3.0	4096	0	15
ZLLG65ASM250-L/ZLLG80ASM250-L	1024	0	15
ZLLG65ASM250-L V3.0/ZLLG80ASM250-L V3.0	4096	0	15
ZLLG65ASM250-4096 V2.0/ZLLG80ASM250-4096 V2.0	4096	0	15
ZLLG65ASM500 V1.0	1024	60	15
ZLLG65ASM500 V2.0	4096	60	15
ZLLG80ASM800 V1.0/ZLLG10ASM800(-R) V1.0	1024	0	20
ZLLG80ASM800 V2.0/ZLLG10ASM800(-R)			
V2.0/ZLLG13ASM800 V2.0/ZLLG14ASM800	4096	0	20
V2.0/ZLLG15ASM800 V2.0/ZLLG16ASM800 V2.0			

② The relation among continuous current, peak current and overload factor:

Continuous current * Overload factor = Peak current

③ Driver Enable

ON: Shaft is locked when powered on

OFF: Shaft is released when powered on

4 Kp, Ki parameters in PID adjustment:

A. Kp (Scale coefficient): impulse the responding speed, increase the adjusting accuracy, adjust errors quickly. (Kp value cannot be too high, otherwise there will be current noise)

B. Ki (Integral coefficient): Eliminate residual errors, and adjust the rigidity of the motor at the same time.

C. How to find optimum value of Kp, Ki:

Adjust Kp from small value using scope 100, then adjust Ki from small value using scope 100

D. Empiric value of PID parameters under velocity mode

Velocity Kp: 200-300

Velocity Ki: 1000-1500

Current Kp: 600-800

Current Ki: 300-400

⑤ Acceleration and deceleration time

We suggest customer to use their own acceleration and deceleration algorithm, as customer's own acceleration and deceleration algorithm could make the control effect better.

Note: the acceleration and deceleration time must be lower than the time interval the customer changes instructions.

Eg: if the time interval the customer changes instructions is 50ms, so the acceleration and deceleration time should be set to 25ms.

4. Note for setting parameters

When setting CAN or RS485 ID, please note:

After filling in CAN or RS485 ID, press Enter→Select CAN or RS485 baud rate value, click OK→click Wite EEPROM

5. How to control motor using ZLAC8015(D) software

Please check if the motor parameters are matched with the motor P/N firstly.

- (1) Click RUN
- ② Select control mode→click OK (if you need to save control mode, you need to clock Write EEPROM→restart power)
- ③ Profile Velocity control mode: fill target velocity→press Enter
- ④ Profile Position control mode: fill target position and velocity→press Enter
- ⑤ Profile Torque control mode: fill target torque and slope→press Enter