Arquitetura de Computadores Aulas Práticas 2021/2022

Licenciatura em Engenharia Informática e Computação FCUP/FEUP – Universidade do Porto

Implementação AArch64 (II)

- 1. Tendo por base o CPU da implementação multi-ciclo da arquitetura MIPS apresentado na Figura 1 e a correspondente máquina de estados apresentada na Figura 3, siga o trajecto do fluxo da informação correspondente à execução das seguintes instruções MIPS conforme os passos descritos na Figura 2 (use como referência a resolução apresentada nos slides 58 e 59 das aulas teóricas):
 - (a) lw \$t2, 100(\$t1) (instrução de load: \$t2 = MEM[\$t1 + 100])
 - (b) sw \$t2, -12(\$t1) (instrução de *store*: MEM[\$t1 -12] = \$t2)
 - (c) add \$t3, \$t1, \$t2 (instrução de adição: \$t3 = \$t1 + \$t2)
 - (d) beq \$t1, \$t2, _label (instrução de salto condicional: if (\$t1==\$t2) PC = _label)
 - (e) j _label (instrução de salto incondicional: PC = _label)

Figure 1: CPU da implementação multi-ciclo da arquitetura MIPS

Step name	Action for R-type instructions	Action for memory- reference instructions	Action for branches	Action for jumps
Instruction fetch		IR <= Memory[PC] PC <= PC + 4		
Instruction decode/register fetch	A <= Reg [IR[25:21]] B <= Reg [IR[20:16]] ALUOut <= PC + (sign-extend (IR[15:0]) << 2)			
Execution, address computation, branch/jump completion	ALUOut <= A op B	ALUOut <= A + sign-extend (IR[15:0])	if (A == B) PC <= ALUOut	PC <= {PC [31:28], (IR[25:0]],2'b00)}
Memory access or R-type completion	Reg [IR[15:11]] <= ALUOut	Load: MDR <= Memory[ALUOut] or Store: Memory [ALUOut] <= B		
Memory read completion		Load: Reg[IR[20:16]] <= MDR		

Figure 2: Passos da implementação multi-ciclo da arquitetura MIPS

Figure 3: Máquina de estados da implementação multi-ciclo da arquitetura MIPS