STAT 663 Statistical Graphics and Data Exploration I

Week 13

Lecture 2

Lesson Objectives

- Neural Network Auto-Regressive (NNAR) models
- The nnetar() function in R
- Application of the NNAR model to COVID-19 study

Neural Networks

Input Layer

Hidden Layers

Output Layer

Neural Network Autoregression (NNAR) Models

- Lagged values of the time series can be used as inputs to a neural network.
- NNAR(p,k): p lagged inputs and k nodes in the single hidden layer.
- NNAR(p,0) model is equivalent to an ARIMA(p,0,0) model but without stationarity restrictions.
- Seasonal NNAR $(p, P, k)_m$: inputs $(Y_{t-1}, Y_{t-2}, ..., Y_{t-p}, Y_{t-m}, Y_{t-2m}, Y_{t-Pm})$ and k neurons in the hidden layer.
- NNAR $(p, P, 0)_m$ model is equivalent to an ARIMA $(p, 0, 0)(P, 0, 0)_m$ model but without stationarity restrictions.

NNAR models in R

- The nnetar() function in R can be used to fit an NNAR $(p, P, k)_m$ model.
- If p and P are not specified, they are automatically selected.
- For non-seasonal time series, default p = optimal number of lags (according to the AIC) for a linear AR(p) model.
- For seasonal time series, defaults are P = 1 and p is chosen from the optimal linear model fitted to the seasonally adjusted data.
- Default k = (p + P + 1)/2 (rounded to the nearest integer).

NNAR Models: Rolling Forecast

- The network is applied iteratively.
- For forecasting one step ahead, we simply use the available historical inputs.
- For forecasting two steps ahead, we use the one-step forecast as an input, along with the historical data.
- This process proceeds until we have computed all the required forecasts.

Time Series Plot for Florida

Florida daily new death count

The nnetar function

We can also specify the options in the nnetar function.

- The repeats option of nnetar shows the number of networks (default = 20) to fit with different random starting weights. These networks are then averaged when producing forecasts.
- The size option provides number of nodes in the hidden layer. Default is half of the number of input nodes (including external regressors, if given) plus 1.
- We can consider a Box-Cox transformation for the data.
 - o If lambda = auto, then a transformation is automatically selected using BoxCox.alpha.
 - The transformation is ignored if lambda = NULL.
 - Otherwise, data transformed before model is estimated.

A Time Series Plot for Florida

```
library(slid)
library(dplyr)
data(state.ts)
Florida.ts <- state.ts %>%
dplyr::filter(State == "Florida")
y \leftarrow ts(Florida.ts$Y.Death, start = c(2020,1),
frequency = 7
library(forecast)
set.seed(2020)
fit <- nnetar(y)
fit
## Series: y
## Model: NNAR(21,1,11)[7]
## Call: nnetar(y = y)
##
## Average of 20 networks, each of which is
## a 21-11-1 network with 254 weights
## options were - linear output units
##
## sigma^2 estimated as 6.598
```

```
nnar.fc.report <- as.data.frame(forecast(fit, h = 14)) %>%
mutate(DATE = as.Date("2020-12-11") + 1:14)
names(nnar.fc.report) <- c("Y.Death", "DATE")</pre>
# plot of reported vs NNAR predictions
qqplot() +
geom_line(aes(x = DATE, y = Y.Death, color = "Reported"),
data = Florida.ts) +
geom_line(aes(x = DATE, y = Y.Death, color = "NNAR"),
data = nnar.fc.report) +
scale_color_manual(
values = c(Reported = "black", NNAR = "red")) +
labs(y = "Death count",
title = "Reported vs NNAR(21,1,11)[7] predictions") +
guides(color = guide_legend(title = "Series"))
```

NNAR Prediction

Reported vs NNAR(21,1,11)[7] predictions

Log Transformation

fit <- nnetar(y + 1, lambda = 0, size = 5)

Reported vs NNAR(14,1,5)[7] predictions

Prediction Intervals

• Define the NNAR(p, k) model as

$$Y_t = f(Y_{t-1}, \dots, Y_{t-p}) + \varepsilon_t,$$

where f is a neural network with k hidden nodes in a single layer. The error series $\{\varepsilon_t\}$ is assumed to be homogeneous.

- We can simulate future sample paths of this model iteratively, by randomly generating a value for ε_t , either from a normal distribution, or by resampling from the historical values.
 - So if ε_{T+1}^* is a random draw from the distribution of errors at time T+1, then

$$Y_{T+1}^* = f(Y_T, \dots, Y_{T-p+1}) + \varepsilon_{T+1}^*$$

is one possible draw from the forecast distribution for Y_{T+1} .

• We can then repeat the process to get

$$Y_{T+2}^* = f(Y_{T+1}^*, Y_T, \dots, Y_{T-p+1}) + \varepsilon_{T+2}^*$$

and obtain a sample path $\{Y_{T+1}^*, Y_{T+2}^*, \dots, Y_{T+h}^*\}.$

• If we generate many sample paths, we can get a good picture of the forecast distributions.

Prediction Intervals

```
fcast <- forecast(fit, PI = TRUE, h = 14, npaths = 500)
```

```
#autoplot(fcast, xlab = "Days", ylab = "Daily new deaths")
fcast.report <- as.data.frame(fcast) %>%
mutate(DATE = as.Date("2020-12-11") + 1:14)
names(fcast.report) <- c("Y.Death", "Lo.80", "Hi.80", "Lo.95", "Hi.95", "DATE")
ggplot(Florida.ts, aes(DATE, Y.Death)) +
geom_line() +
labs(x = "Days", y = "Death Count") +
# Add prediction intervals
geom_ribbon(mapping = aes(x = DATE, y = Y.Death, ymin = Lo.95, ymax = Hi.95,
fill = '95% Prediction intervals'), data = fcast.report, alpha = 0.4) +
# Add line for predicted values
geom\_line(mapping = aes(x = DATE, y = Y.Death, colour = 'Predicted values'),
linetype = "dashed", data = fcast.report, key_glyph = "timeseries") +
scale_colour_manual("", values = "red") +
scale_fill_manual("", values = "pink") +
theme(legend.position = "bottom")
```

Prediction Intervals

Two Statistical Cultures

