Cryptography and Network Security Chapter 10

Fourth Edition by William Stallings

Chapter 10 – Key Management; Other Public Key Cryptosystems

No Singhalese, whether man or woman, would venture out of the house without a bunch of keys in his hand, for without such a talisman he would fear that some devil might take advantage of his weak state to slip into his body.

—The Golden Bough, Sir James George Frazer

Key Management

- public-key encryption helps address key distribution problems
- have two aspects of this:
 - distribution of public keys
 - use of public-key encryption to distribute secret keys

Distribution of Public Keys

- can be considered as using one of:
 - public announcement
 - publicly available directory
 - public-key authority
 - public-key certificates

Public Announcement

- users distribute public keys to recipients or broadcast to community at large
 - eg. append PGP keys to email messages or post to news groups or email list
- major weakness is forgery
 - anyone can create a key claiming to be someone else and broadcast it
 - until forgery is discovered can masquerade as claimed user

Figure 10.1 Uncontrolled Public Key Distribution

Publicly Available Directory

- can obtain greater security by registering keys with a public directory
- directory must be trusted with properties:
 - contains {name,public-key} entries
 - participants register securely with directory
 - participants can replace key at any time
 - directory is periodically published
 - directory can be accessed electronically
- still vulnerable to tampering or forgery

Figure 10.2 Public Key Publication

Public-Key Authority

- improve security by tightening control over distribution of keys from directory
- has properties of directory
- and requires users to know public key for the directory
- then users interact with directory to obtain any desired public key securely
 - does require real-time access to directory when keys are needed

Public-Key Authority

Public-Key Certificates

- certificates allow key exchange without real-time access to public-key authority
- a certificate binds identity to public key
 - usually with other info such as period of validity, rights of use etc
- with all contents signed by a trusted Public-Key or Certificate Authority (CA)
- can be verified by anyone who knows the public-key authorities public-key

Public-Key Certificates

Public-Key for Distribution of Secret Keys

- use previous methods to obtain public-key
- can use for secrecy or authentication
- but public-key algorithms are slow
- so usually want to use private-key encryption to protect message contents
- hence need a session key
- have several alternatives for negotiating a suitable session

Simple Secret Key Distribution

- proposed by Merkle in 1979
 - A generates a new temporary public key pair
 - A sends B the public key and their identity
 - B generates a session key K sends it to A encrypted using the supplied public key
 - A decrypts the session key and both use
- problem is that an opponent can intercept and impersonate both halves of protocol

Figure 10.5 Simple Use of Public-Key Encryption to Establish a Session Key

Public-Key Distribution of Secret Keys

if have securely exchanged public-keys:

Hybrid Key Distribution

- retain use of private-key KDC
- shares secret master key with each user
- distributes session key using master key
- public-key used to distribute master keys
 - especially useful with widely distributed users
- rationale
 - performance
 - backward compatibility

Key Distribution Scenario

Diffie-Hellman Key Exchange

- first public-key type scheme proposed
- by Diffie & Hellman in 1976 along with the exposition of public key concepts
 - note: now know that Williamson (UK CESG) secretly proposed the concept in 1970
- is a practical method for public exchange of a secret key
- used in a number of commercial products

Diffie-Hellman Key Exchange

- a public-key distribution scheme
 - cannot be used to exchange an arbitrary message
 - rather it can establish a common key
 - known only to the two participants
- value of key depends on the participants (and their private and public key information)
- based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy
- security relies on the difficulty of computing discrete logarithms (similar to factoring) – hard

Diffie-Hellman Setup

- all users agree on global parameters:
 - large prime integer or polynomial q
 - a being a primitive root mod q
- each user (eg. A) generates their key
 - chooses a secret key (number): x_x < q
 - compute their public key: $y_A = a^{xA} \mod q$
- each user makes public that key y >

Primitive roots of small primes

n	g(n)
2	1
3	2
4	3
5	2, 3
6	5
7	3, 5
9	2, 5
10	3, 7
11	2, 6, 7, 8
13	2, 6, 7, 11

Diffie-Hellman Key Exchange

shared session key for users A & B is K_{AB}:

```
K_{AB} = a^{xA \cdot xB} \mod q
= y_A^{xB} \mod q (which B can compute)
= y_B^{xA} \mod q (which A can compute)
```

- K_{AB} is used as session key in private-key encryption scheme between Alice and Bob
- if Alice and Bob subsequently communicate, they will have the **same** key as before, unless they choose new public-keys
- attacker needs an x, must solve discrete log

Global Public Elements
$$q$$
 prime number $lpha < q$ and $lpha$ a primitive root of q

User A Key Generation

 $X_B < q$

User B Key Generation

Calculate public Y_B	$Y_B = \alpha^{X_B} \bmod q$

$$K = (Y_B)^{X_A} \bmod q$$

Select private X_B

Calculation of Secret Key by User B

$$K = (Y_A)^{X_B} \bmod q$$

Figure 10.7 The Diffie-Hellman Key Exchange Algorithm

Diffie-Hellman Example

- users Alice & Bob who wish to swap keys:
- \square agree on prime q=353 and a=3
- select random secret keys:
 - A chooses $x_A = 97$, B chooses $x_B = 233$
- compute respective public keys:
 - $y_A = 3^{97} \mod 353 = 40$ (Alice)
 - $y_B = 3^{233} \mod 353 = 248 \pmod{Bob}$
- compute shared session key as:
 - $K_{AB} = y_B^{XA} \mod 353 = 248^{97} = 160 (Alice)$
 - $K_{AB} = y_A^{XB} \mod 353 = 40^{233} = 160 \text{ (Bob)}$

Key Exchange Protocols

- users could create random private/publicD-H keys each time they communicate
- users could create a known private/public D-H key and publish in a directory, then consulted and used to securely communicate with them
- both of these are vulnerable to a meet-in-the-Middle Attack
- authentication of the keys is needed

Figure 10.8 Diffie-Hellman Key Exchange

Elliptic Curve Cryptography

- majority of public-key crypto (RSA, D-H) use either integer or polynomial arithmetic with very large numbers/polynomials
- imposes a significant load in storing and processing keys and messages
- an alternative is to use elliptic curves
- offers same security with smaller bit sizes
- newer, but not as well analysed

Real Elliptic Curves

- an elliptic curve is defined by an equation in two variables x & y, with coefficients
- consider a cubic elliptic curve of form
 - $y^2 = x^3 + ax + b$
 - where x,y,a,b are all real numbers
 - also define zero point O
- have addition operation for elliptic curve
 - geometrically sum of Q+R is reflection of intersection R

Figure 10.9 Example of Elliptic Curves

Real Elliptic Curve Example

Finite Elliptic Curves

- Elliptic curve cryptography uses curves whose variables & coefficients are finite
- have two families commonly used:
 - prime curves E_p (a,b) defined over Z_p
 - use integers modulo a prime
 - best in software
 - binary curves E_{2m} (a,b) defined over GF(2ⁿ)
 - use polynomials with binary coefficients
 - best in hardware

Elliptic Curve Cryptography

- ECC addition is analog of modulo multiply
- ECC repeated addition is analog of modulo exponentiation
- need "hard" problem equiv to discrete log
 - Q=kP, where Q,P belong to a prime curve
 - is "easy" to compute Q given k,P
 - but "hard" to find k given Q,P
 - known as the elliptic curve logarithm problem
- ☐ Certicom example: E₂₃ (9,17)

ECC Diffie-Hellman

- can do key exchange analogous to D-H
- users select a suitable curve E_p (a,b)
- select base point G=(x, y,)
 - with large order n s.t. nG=0
- □ A & B select private keys n_A<n, n_B<n
- compute public keys: P_A=n_AG, P_B=n_BG
- compute shared key: K=n_AP_B, K=n_BP_A
 - same since $K=n_A n_B G$

ECC Encryption/Decryption

- several alternatives, will consider simplest
- must first encode any message M as a point on the elliptic curve P_m
- select suitable curve & point G as in D-H
- each user chooses private key n_A<n</p>
- and computes public key P_A=n_AG
- \square to encrypt $P_m : C_m = \{ kG, P_m + kP_b \}, k random$
- decrypt C_m compute:

$$P_{m}+kP_{b}-n_{B}(kG) = P_{m}+k(n_{B}G)-n_{B}(kG) = P_{m}$$

ECC Security

- relies on elliptic curve logarithm problem
- fastest method is "Pollard rho method"
- compared to factoring, can use much smaller key sizes than with RSA etc
- for equivalent key lengths computations are roughly equivalent
- hence for similar security ECC offers significant computational advantages

Comparable Key Sizes for Equivalent Security

Symmetric scheme (key size in bits)	ECC-based scheme (size of <i>n</i> in bits)	RSA/DSA (modulus size in bits)
56	112	512
80	160	1024
112	224	2048
128	256	3072
192	384	7680
256	512	15360

Summary

- have considered:
 - distribution of public keys
 - public-key distribution of secret keys
 - Diffie-Hellman key exchange
 - Elliptic Curve cryptography