

Analisi e Visualizzazione delle Reti Complesse

NS22 - Traditional Machine Learning on Graphs

Prof. Rossano Schifanella

General Pipeline

(Supervised) Machine Learning Lifecycle

This feature, that feature. Every single time!

Different types of tasks

Classic Graph ML Tasks

- Node classification: predict a property of a node
 - Example: Categorize online users/items
- Link prediction: predict whether there are missing links between two nodes
 - Example: Knowledge graph completion
- Graph classification: categorize different graphs
 - Example: Molecule property prediction
- Clustering: detect if nodes form a community
 - Example: Social circle detection
- Other tasks:
 - Graph generation: Drug discovery
 - Graph evolution: Physical simulation

Traditional LM Pipeline

- Design features for nodes/links/graphs
- Obtain features for all training data

Machine Learning Tasks: Review

- Node-level prediction
- Link-level prediction
- Graph-level prediction

Traditional LM Pipeline

- Train an ML model:
 - Logistic Regression
 - Random forest
 - Neural network, etc.

Apply the model:

- Given a new node/link/graph
- Obtain its features
- Make a prediction

Features Design

- Using **effective features** *x* over graphs is the key to achieving good model performance.
- Traditional ML pipeline uses hand-designed features.
- In this lecture, we overview the traditional features for:
 - Node-level prediction
 - Link-level prediction
 - Graph-level prediction
- For simplicity, we focus on undirected graphs.

Machine Learning in Graphs

- Goal: Make predictions for a set of objects
- Design choices:
 - Features: d-dimensional vectors x
 - Objects: Nodes, edges, sets of nodes, entire graphs
 - Objective function:
 - What task are we aiming to solve?

Node-Level Tasks

Node classification

ML needs features.

Node-Level Overview

Goal

Characterize the structure and position of a node in the network:

- Node degree
- Node centrality
- Clustering coefficient
- Graphlets

Node features

• Observation: Clustering coefficient counts the #triangles in the ego network.

 We can generalize the above by counting #(pre-specified subgraphs, i.e., graphlets)

- Goal: Describe the network structure around node u
 - Graphlets are small subgraphs that describe the structure of node *u*'s network neighborhood.

Analogy:

- Degree counts #(edges) that a node touches
- Clustering coefficient counts #(of triangles)
 that a node touches.
- Graphlet Degree Vector (GDV): Graphletbase features for nodes
 - GDV counts #(graphlets) that a node touches

- Considering graphlets of size 2-5 nodes we get:
 - A vector of 73 coordinates is a signature of a node that describes the topology of the node's neighborhood
- Graphlet degree vector provides a measure of a node's local network topology:
 - Comparing vectors of two nodes provides a more detailed measure of local topological similarity than node degrees or clustering coefficient.

Rooted connected induced non-isomorphic subgraphs

There are 30 different graphlets on up to 5 nodes

There are 73 distinct automorphism orbits (or simply orbits) for graphlets with up to 5 nodes.

Orbits are the distinct roles nodes play within those graphlets based on symmetry.

Rooted connected induced non-isomorphic subgraphs

u has graphlets:0, 1, 2, 3, 5, 10, 11, ...

■ Graphlet Degree Vector (GDV): A count vector of graphlets rooted at a given node.

■ Example:

Possible graphlets on up to 3 nodes

Graphlet instances of node u:

Node-Level Features: Summary

- Importance-based features: capture the importance of a node in a graph
 - Node degree:
 - Counts the number of neighboring nodes
 - Node centrality:
 - Models the importance of neighboring nodes in a graph
 - Different modeling choices: eigenvector centrality, betweenness centrality, closeness centrality
- Useful for predicting influential nodes in a graph
 - Example: predicting celebrity users in a social network

Node-Level Features: Summary

- Structure-based features: capture topological properties of the local neighborhood around a node.
 - Node degree:
 - Counts the number of neighboring nodes
 - Clustering coefficient:
 - Measures how connected neighboring nodes are
 - Graphlet degree vector:
 - Counts the occurrences of different graphlets
- Useful for predicting a particular role a node plays in a graph:
 - Example: predicting protein functionality in a protein-protein interaction network.

Link-Level Prediction Task: Recap

- The task is to predict new links based on the existing links.
- At test time, node pairs (with no existing links) are ranked, and top K node pairs are predicted.
- The key is to design features for a pair of nodes.

Link Prediction as a Task

Two formulations of the link prediction task:

• Links missing at random:

Remove a random set of links and then aim to predict them

Links over time:

• Given $G[t_0,t_0']$ a graph defined by edges up to time t_0' , output a ranked list L of edges (not in $G[t_0,t_0']$) that are predicted to appear in time $G[t_1,t_1']$

Evaluation:

- $n=|E_{new}|$: # new edges that appear during the test period $G[t_1,t_1']$
- Take the top n elements of L and count the correct edges

 $G[t_0, t'_0]$ $G[t_1, t'_1]$

Link Prediction via Proximity

Methodology:

- For each pair of nodes (x,y) compute score c(x,y)
 - For example, c(x,y) could be the # of common neighbors of x and y
- Sort pairs (x,y) by the decreasing score c(x,y)
- Predict top n pairs as new links
- See which of these links appear in $G[t_1,t_1^\prime]$

Link-Level Features: Overview

- Distance-based feature
- Local neighborhood overlap
- Global neighborhood overlap

Distance-based Features

- Shortest-path distance between two nodes
- However, this does not capture the degree of neighborhood overlap:
 - Node pair (B, H) has 2 shared neighboring nodes, while pairs (B, E) and (A, B) only have 1 such node.
- Example:

Local Neighborhood Overlap

Captures # neighboring nodes shared between two nodes v₁ and v₂

Common neighbors $|N(v_1) \cap N(v_2)|$

$$|N(v_1) \cap N(v_2)|$$

Example:

$$|N(A) \cap N(B)| = |\{C\}| = 1$$

- Jaccard's coefficient
 - **Example:**

$$\frac{|N(v_1) \cap N(v_2)|}{|N(v_1) \cup N(v_2)|}$$

$$\frac{|N(A) \cap N(B)|}{|N(A) \cup N(B)|} = \frac{|\{C\}|}{|\{C,D\}|} = \frac{1}{2}$$

- Adamic-Adar index
 - **Example:**

$$\frac{1}{\log(k_C)} = \frac{1}{\log 4}$$

$$\sum_{u \in N(v_1) \cap N(v_2)} \frac{1}{\log(k_u)}$$

Key differences

Common Neighbors:

- Simple absolute count of shared neighbors.
- Higher count = higher similarity, but doesn't consider node size/graph density.

Jaccard Index:

- Normalizes shared count by the total unique neighbors.
- Gives a relative proportion (0 to 1), better for comparing nodes of different sizes.

Adamic-Adar Index:

- Weights shared neighbors by the inverse of their degree.
- More weight given to common neighbors who are less connected themselves (rare).

Global Neighborhood Overlap

- Limitations of local neighborhood features:
 - The metric is always zero if the two nodes do not have any neighbors in common.
 - However, the two nodes may still potentially be connected in the future.
- Global neighborhood overlap metrics resolve the limitation by considering the entire graph.

Global Neighborhood Overlap

- Katz index: count the number of walks of all lengths between a given pair of nodes.
- Question: How to compute #walks between two nodes?

Use powers of the graph adjacency matrix!

Intuition: Powers of Adj Matrices

- Computing #walks between two nodes
 - Recall: $A_{uv} = 1$ if $u \in N(v)$
 - Let $P_{uv}^{(K)} = \text{#walks of length K between u and v}$
 - We will show $P^{(K)} = A^k$
 - $P_{uv}^{(1)}$ = #walks of length 1 (direct neighborhood) between u and v = A_{uv}

$$P_{12}^{(1)} = A_{12}$$

$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

Intuition: Powers of Adj Matrices

- How to compute $P_{uv}^{(2)}$?
- Step 1: compute #walks of length 1 between each of u's neighbors and v
- Step 2: Sum up these #walks across u's neighbors

$$P_{uv}^{(2)} = \sum_{i} A_{ui} * P_{iv}^{1} = \sum_{i} A_{ui} * A_{iv} = A_{uv}^{2}$$

Node 1's neighbors

#walks of length 1 between Node 1's neighbors and Node 2

$$A^2 = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 3 \end{pmatrix}$$
 adjacency

Global Neighborhood Overlap

- Katz index: count the number of walks of all lengths between a pair of nodes.
- How to compute #walks between two nodes?
- Use adjacency matrix powers!
 - A_{uv} specifies #walks of length 1 (direct neighborhood) between u and v
 - A_{uv}^2 specifies #walks of length 2 between u and v
 - •
 - $A_{uv}^{\,l}$ specifies #walks of length l between u and v

Global Neighborhood Overlap

• Katz index between v_1 and v_2 is calculated as the sum over all walks lengths:

$$S_{v_1v_2} = \sum_{l=1}^{\infty} \beta^l A_{v_1v_2}^l$$

- $0 < \beta < 1$: attenuation factor (longer paths counts less)
- Katz index matrix is computed in closed form:

$$S = \sum_{i=1}^{\infty} \beta^i A^i = (I - \beta A)^{-1} - I$$
 by geometric series of matrices

Link-Level Features: Summary

Distance-based features:

• It uses the shortest path length between two nodes but does not capture how the neighborhood overlaps.

Local neighborhood overlap:

- Captures how many neighboring nodes are shared by two nodes.
- Becomes zero when no neighbor nodes are shared.

Global neighborhood overlap:

- It uses a global graph structure to score two nodes.
- Katz index counts #walks of all lengths between two nodes.

Graph-Level Features

- Goal: We want features that characterize the structure of an entire graph.
- For example:

Background: Kernel Methods

- Goal: We want to use machine learning (ML) to make predictions about entire graphs (e.g., classify molecules, detect communities).
 - Standard ML Approach: ML models usually work with feature vectors lists of numbers describing each data point.
 - The Problem with Graphs: How do you represent a complex graph as a simple list of numbers (a feature vector)?
 - Designing good, informative features by hand that capture the graph's structure can be very difficult and time-consuming.
- The Kernel Idea: What if, instead of defining features first, we directly define a way to measure similarity between two graphs? This similarity measure is called a **kernel**.

Graph-Level Features: Overview

Graph Kernels:

- Measure the similarity between two graphs:
 - Graphlet Kernel [1]
 - Weisfeiler-Lehman Kernel [2]
 - Other kernels are also proposed in the literature
 - (beyond the scope of this lecture)
 - Random-walk kernel
 - Shortest-path graph kernel
 - And many more...
- 1. Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.
- 2. Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

Graph Kernel: Key Idea

- Goal: Design graph feature vector $\Phi(G)$
- Key idea: <u>Bag-of-Words</u> (BoW) for a graph
 - Recall: BoW uses the word counts as document features (no ordering considered).
 - Naïve extension to a graph: regard nodes as words.
 - Since both graphs have 4 red nodes, we get the same feature vector for two different graphs...

Graph Kernel: Key Idea

What if we use **Bag of node degrees**?

Deg1: Deg2: Deg3:
$$\phi(1) = \text{count}(1) = [1, 2, 1]$$
Obtains different features for different graphs!
$$\phi(1) = \text{count}(1) = [0, 2, 2]$$

Both Graphlet Kernel and Weisfeiler-Lehman (WL) Kernel use Bagof-* representation of graph, where * is more sophisticated than node degrees!

- Key idea: Count the number of different graphlets in a graph.
 - Note: The definition of graphlets here differs slightly from the node-level features.
 - The two differences are:
 - •Nodes in graphlets here do not need to be connected (allows for isolated nodes)
 - The graphlets here are not rooted.
 - Examples in the next slide illustrate this.

Let $gk = (g1, g2, ..., gn_k)$ be a list of graphlets of size k.

• For k = 3, there are 4 graphlets.

• For k = 4, there are 11 graphlets.

Given graph G and a graphlet list $G_k = (g_1, g_2, ..., g_{n_k})$ define the graphlet count vector $f_G \in \mathbb{R}^{n_k}$ as

$$f(G)_i = \#(g_i \subseteq G) \text{ for } i = 1, 2, ..., n_k$$

Example for k = 3.

Graph-Level Graphlet Kernel

Given two graphs, G and G', graphlet kernel is computed as the dot product

$$K(G, G') = f(G)^T f(G')$$

Problem: if G and G' have different sizes, that will greatly skew the value.

Solution: normalize each feature vector

$$h(G) = \frac{f_G}{sum(f_G)}$$

The Graphlet Kernel

- Limitations: Counting graphlets is expensive!
- Counting size-k graphlets for a graph with size n by enumeration takes n^k .
- This is unavoidable in the worst case since the subgraph isomorphism test (judging whether a graph is a subgraph of another graph) is **NP-hard**.
- If a graph's node degree is bounded by d, an $O(nd^{k-1})$ algorithm exists to count all the graphlets of size k.
- Can we design a more efficient graph kernel?

Weisfeiler-Lehman Kernel

- Goal: Design an efficient graph feature descriptor $\Phi(G)$
- <u>Idea</u>: Use neighborhood structure to enrich node vocabulary iteratively.
 - Generalized version of Bag of node degrees since node degrees are one-hop neighborhood information.
- Algorithm to achieve this:
 - Color refinement

Color Refinement

Given: A graph *G* with a set of nodes *V*.

- Assign an initial color $c^{(0)}(v)$ to each node v.
- Iteratively refine node colors by

$$c^{k+1}(v) = HASH(c^{(k)}(v), \{c^{(k)}(u)\}_{u \in N(v)})$$

where HASH maps different inputs to different colors

- After k steps of color refinement, $c^{(K)}(v)$ summarizes the structure of the K-hop neighborhood

Color Refinement (1)

Example of color refinement given two graphs

Assign initial colors

Aggregate neighboring colors

Color Refinement (2)

Example of color refinement given two graphs

Aggregated colors

1,11

Hash aggregated colors

Hash table

1,111

1,1	>	2	
1,11	>	3	
1,111	>	4	
1,1111	>	5	

Color Refinement (3)

Example of color refinement given two graphs

Aggregated colors

Hash aggregated colors

Color Refinement (4)

Example of color refinement given two graphs

Aggregated colors

Hash aggregated colors

Hash table

2,4	<u> </u>
2,5	> 7
3,44	> 8
3,45	> 9
4,245	> 10
4,345	> 11
5,2244	> 12
5,2344	> 13

Color Refinement (5)

Stopping Condition:

- It stops when node colors stabilize.
- Stabilization: no node's color changes in an iteration based on its current color and neighbors' colors.

In Practice (for Graph Kernels):

- Often run for a predefined number of iterations (h) for consistent feature vectors.
- Guaranteed to stabilize within the number of nodes.
- Ensure that the resulting feature vectors have the same number of features.
 - NB: the list of unique colors is **global** to all the graphs in the dataset

Weisfeiler-Lehman Graph Features

After color refinement, WL kernel counts number of nodes with a given color.

$$1,2,3,4,5,6,7,8,9,10,11,12,13$$

= $[6,2,1,2,1,1,1,0,1,1,1,0,1]$

Weisfeiler-Lehman Kernel

The WL kernel value is computed by the inner product of the color count vectors:

$$K(\stackrel{\checkmark}{\longleftrightarrow}, \stackrel{\checkmark}{\longleftrightarrow})$$

$$= \phi(\stackrel{\checkmark}{\longleftrightarrow})^{T}\phi(\stackrel{\checkmark}{\longleftrightarrow})$$

$$= 49$$

Weisfeiler-Lehman Kernel

- WL kernel is computationally efficient.
 - The time complexity for color refinement at each step is linear in #(edges) since it aggregates neighboring colors.
- When computing a kernel value, only colors appearing in the two graphs must be tracked.
 - Thus, at most, #(colors) is the total number of nodes.
- Counting colors takes linear time w.r.t. #(nodes).
- In total, time complexity is linear in #(edges).

Graph-level Features: Summary

Graphlet Kernel

- Graph is represented as Bag-of-graphlets
- Computationally expensive

Weisfeiler-Lehman Kernel

- Apply K-step color refinement algorithm to enrich node colors
 - Different colors capture different *K*-hop neighborhood structures
- Graph is represented as Bag-of-colors
- Computationally efficient
- Closely related to Graph Neural Networks (for the next course!)

Summary

- Traditional ML Pipeline
 - Hand-crafted (structural) features + ML model
- Hand-crafted features for graph data
 - Node-level:
 - Node degree, centrality, clustering coefficient, graphlets
 - Link-level:
 - Distance-based feature
 - local/global neighborhood overlap
 - Graph-level:
 - Graphlet kernel, WL kernel
- However, we only considered featurizing the graph structure (but not the attribute of nodes and their neighbors)

