Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 2D Reflection Models

Local vs. Global Reflection Models

- Local reflection models determine the interaction between a point on the object surface and a light source
 - Only considers direct path illumination
 - Used along with interpolated shading algorithms in common graphics systems
 - Ray-casting solves for the local reflection at the nearest intersected object
- Global reflection models also consider light reaching the point through indirect paths
 - Reflections from other surfaces
 - Transmission through semi-transparent surfaces
 - Recursive ray-tracing and radiosity methods

Phong Reflection Model – Local Reflection

- Ray-casting and ray-tracing require a solution to the local reflection model at the intersection of a ray and the object
- Phong reflection model
 - Developed by Phong Bui-Tuong in 1975
 - Model is a linear combination of three components
 - Ambient, diffuse, and specular
 - Has become the standard reflection model used in computer graphics
 - Reflection model for non-perfect reflectors
 - Phong's primary contribution was modeling the specular component
 - Approximation to photo-realism
 - Graphics systems often approximate or simplify the physics of light and surface interaction
 - Mostly to simplify computation
- Other models (e.g., Cook and Torrance) are available
 - More accurate model at the cost of higher computation expense

Phong Reflection Model: Ambient Component

- Ambient light component is used to simulate global illumination
 - Simulates a diffuse, non-directional source of light
 - Product of multiple reflections from surfaces in the scene
- Ambient component is normally modeled as a constant
 - $I_g = I_a k_a$
 - I_g is global illumination
 - I_a is the ambient illumination (constant)
 - k_a is the material's ambient reflection coefficient (0-1.0)
- Surfaces facing away from light sources become black without the ambient component
 - No light reaches the surface via a direct path
 - Surface may be visible from the view reference point
 - In reality such surfaces would be illuminated from reflections from other objects in the scene

Diffuse Reflection

- Diffuse reflection component is constant over each planar surface in a scene regardless of viewing angle
 - Ideal diffuse component described by the BRDF
 - Diffuse reflection is primary reflection in dull surfaces
 - They reflect light uniformly in all directions
- Also called Lambertian reflection
 - Reflection governed by Lambert's cosine law
 - Radiant energy from any small surface area dA in any direction relative to the surface normal is proportional to cos(θ)
 - Reflected intensity depends only on the angle between the light source and the surface normal
- Intensity of reflection depends on the surface's orientation relative to the light source
 - Surface oriented perpendicular to the light direction appears brighter than one tilted away from that direction
 - Projected area of a surface patch perpendicular to the light direction is proportional to cos

Phong Reflection Model: Diffuse Component

- Diffuse reflection intensity defined as:
 - I_i is the intensity of the light source
 - θ is the angle between the surface normal (at the point being considered) and a line from the point to the light source
 - k_d is the material's diffuse reflection coefficient (0-1)
 - Can be wavelength dependent
- Angle limited to 0 to 90 degrees
 - Surfaces are assumed to be self-occluding
 - Light cast from behind the surface does not illuminate it
- Vector operations for efficiency!
 - If N and L are unit vectors defined as illustrated:
 - $I_d = I_i k_d (L \cdot N)$
 - Diffuse component is constant over a planar surface if θ does not vary
 - Directional light source

Specular Component

- Specular component is a function of the angle between the viewing direction and the mirror direction R
 - $I_s = I_i k_s \cos^n \Omega$
 - Or: $I_s = I_i k_s (R \cdot V)^n$
 - n is an index that simulates surface roughness
 - k_s is the material's specular reflection coefficient (0-1)
- n generates a reflection 'lobe'
 - Specular reflection spread around the mirror axis
 - Large n very thin lobe
 - Reflection decreases rapidly off R
 - Simulates a glossy surface
 - Perfect mirror n is infinity and light is restricted to the mirror direction R
 - Small n wider lobe
 - Simulates a rougher, less glossy surface

Specular Highlights

- Specular reflection component effectively produces a highlight
 - Highlight is a reflection of the light source spread over an area of the surface
 - Size of the highlight will depend on n
 - Large n produces a smaller highlight
 - Small n produces a larger highlight
- Color of specularly reflected light generally different than that of diffuse
 - Look at the glare off a wooden surface illuminated by white light
 - Specular reflection is mostly white in this case
 - In simple models the color of the specular reflection is the color of the light source
 - e.g., red surface illuminated with white light
 - Diffuse reflection is red
 - Specular highlight will be white
 - Metals: more complex specular interaction

Point vs. Directional Light Sources

- Point light sources emit light equally in all directions
 - Vector L from point to the light varies across a surface
 - Can be attenuated
 - Can be a spotlight
- Directional light is a point light source at infinity
 - All L vectors constant across all surfaces
 - No attenuation
 - If assume infinite viewer (constant V) then H is constant across all surfaces
 - Reflection computation only depends on normal vector N

Spotlights

- Spotlight adds a predominant direction to a point light source
 - Uses an intensity distribution centered around a light direction
 - Similar to applying Phong specular reflection intensity to the light source
- Light source is assumed to have a predominate direction L_N
 - Source intensity is given by: $I_s = I_i(L_N \cdot L)^s$
 - Restricts the light emitted by a source to a cone
 - With a drop-off from the primary direction
 - Can also have a cutoff angle

Local Illumination Equation

- For now we will calculate the local component with a variation of the Phong model
 - Similar to OpenGL except no "light source" ambient
- OpenGL illumination equation (summed over j light sources):

$$I_{\text{local}} = E_m + I_a k_a + \sum_j f_{\text{att}j} S_j \left[I_{dj} k_d (L \cdot N) + I_{sj} k_s (H \cdot N)^n \right]$$

- E_m is the material emission
- I_a is the global light intensity
- S_i is the spotlight effect from the jth light source
- f_{att} is the attenuation factor
- Iai is the ambient intensity of the jth light source (vice constant ambient term)
- I_{dj} is the diffuse intensity of the jth light source
- I_{sj} is the specular intensity of the jth light source
- ka, kd, ks are the material ambient, diffuse, and specular reflection coefficients
- L is vector from the intersection location to the light source
- N is the normal to the surface at the intersection location
- H is the halfway vector: H = (L + V) / | L + V |
- · Solved for R, G, and B

Global Light Terms

- Ray tracing adds two global terms to the local illumination model
 - Contribution from a reflected ray incident on the surface
 - Also a refracted or transmitted ray (if the object is transparent)
 - Both ray's color contributions are returned from their ray tracing procedure
- $I = I_{local} + k_{rg}I_{reflected} + k_{tg}I_{transmitted}$
 - Expresses the summation of 3 values at a point in the recursive process
 - Similar expressions evaluated at all depths of the ray tracing tree
 - Could write as: $I(P) = I_{local}(P) + k_{rg}I(P_r) + k_{tg}I(P_t)$
 - P is the intersection point under consideration
 - P_r is the first hit of the reflected ray from P
 - Pt is the first hit from the transmitted ray from P

Illumination Model (cont.)

Final expression is:

•
$$I = I_{local} + I_{global} = E_m + I_a k_a + \sum_j f_{attj} S_j \left[I_{dj} k_d (L \cdot N) + I_{sj} k_s (H \cdot N)^n \right] + k_{rg} I_r + k_{tg} I_t$$

- As before there are R,G,B components
- May include distance attenuation coefficients with k_{rg} and k_s
 - Not shown here

Attenuation

See how illumination intensity is attenuated at each recursion

Floating Point Imprecision and Self Shadowing

- Early editions of Real-Time Rendering discuss use of an error tolerance in intersection tests
 - Page 711-712 in Edition 2, less description in Edition 3 and 4
 - Due to numerical imprecision and round off
- Imprecision can cause issues in ray-tracing
- Self shadowing ray originating on the surface of an object may cause an intersection with the surface itself
 - Effect is to cause blotches and irregularities in some surfaces
- Some solutions
 - Check if t is within some tolerance
 - e.g., t < EPSILON implies the ray is on the surface
 - Move the intersection point inside or outside the object by a small amount
 - "nudge" each ray origin slightly along the ray direction
 - Convex objects do not test intersection if ray prior intersection is with that object
 - e.g., spheres, planar surfaces

Basic Ray Tracing Deficiencies

- Despite claims of realism the strength of ray tracing is its generality
 - Ability to integrate major phenomena that contribute to light/object interaction
- Produces "wrong" images
 - Inconsistent specular reflections depending on whether direct or indirect illumination is involved
 - Only possible to trace specular reflection and transmission since rays are infinitely thin
 - Excludes major light transport mechanisms such as interaction of diffuse surfaces
 - Modeling diffuse interaction would require a large number of rays to be spawned at each intersection - quickly becoming computationally impossible
 - This produces the signature ray-traced appearance
- Basic ray tracer we have discussed is inefficient due to excessive number of ray/object intersection calculations

Some Web Resources

- Since text does not have much information on how to build a ray tracer you may want to look at some web sources
 - http://www.flipcode.com/archives/Raytracing_Topics_Techniques-Part 1 Introduction.shtml
 - https://www.scratchapixel.com/lessons/3d-basic-rendering/ introduction-to-ray-tracing/ray-tracing-practical-example
 - You can find more of course!
- NVidia Optix
 - http://www.nvidia.com/object/optix.html
 - "Interactive" ray-tracing using CUDA computing architecture

