STAT210B Theoretical Statistics

Lecture 21 - 04/06/2023

Lecture 21: High Dimensional PCA

Instructor: Song Mei Scriber: Sharan Sahu Proof reader: Raghav Ramanujam

1 LASSO Prediction Error Bound

Instead of bounding $||\hat{\theta} - \theta^*||_2^2$, we would like to bound our prediction error (with fixed design), which is given by

$$\frac{1}{n} \mathbb{E}_{\tilde{w}}[||\tilde{y} - X\hat{\theta}||_2^2] = \frac{1}{n} \mathbb{E}_{\tilde{w}}[||\tilde{w} + X(\theta^* - \hat{\theta})||_2^2] = \frac{1}{n} ||X(\hat{\theta} - \theta^*)||_2^2 + \sigma^2$$
(1)

where $\tilde{y} = X\theta^* + \tilde{w}$. It is possible to bound $\frac{1}{n}||X(\hat{\theta} - \theta^*)||_2^2$ by $||\frac{1}{n}X^\top X||_{\text{op}}||\hat{\theta} - \theta^*||_2^2$, but since $||\frac{1}{n}X^\top X||_{\text{op}}$ is of order d/n (which blows up for n << d), this is not always desirable. Instead, we want to bound the prediction error directly

Theorem 1 (Prediction error bound). Let θ^* be s-sparse. Let $\hat{\theta}$ be the minimizer of λ -formulation with $\lambda_n \geq 2||\frac{X^T w}{n}||_{\infty}$. Then,

1. Any optimal solution $\hat{\theta}$ satisfies the bound

$$\frac{1}{n}||X(\hat{\theta} - \theta^*)||_2^2 \le 12||\theta^*||_1 \cdot \lambda_n$$

2. If X satisfies $RE(s, (\kappa, 3))$, then

$$\frac{1}{n}||X(\hat{\theta} - \theta^*)||_2^2 \le \frac{9}{\kappa}s\lambda_n^2$$

Proof. The theorem follows from application of the basic inequality followed by algebra involving the Holder's and the triangle inequality. \Box

Remark 2. Note that (1) from the theorem tells us that the bound $\lesssim C||\theta^*||_1 \cdot \sqrt{\frac{\log d}{n}} = \mathcal{O}(\frac{1}{\sqrt{n}})$. This is our slow rate bound. The second bound from the theorem gives the bound $\lesssim C||\theta^*||_1 \cdot \frac{\log d}{n} = \mathcal{O}(\frac{1}{n})$. This is our fast rate bound.

In general, slow rates tend to be provable without local geometric assumptions whereas fast rates require such assumptions.

2 Principal Component Analysis In High Dimension

Consider $X_1, X_2, \dots, X_n \sim_{iid} X \in \mathbb{R}^d$ such that $\mathbb{E}[X] = 0$ and $Cov(X) = \Sigma \in \mathcal{S}_+^{d \times d}$.

Definition 3 (Eigenvalue decomposition of $\Sigma \in \mathcal{S}_{+}^{d \times d}$). There exists

$$\lambda_1(\Sigma) \ge \lambda_2(\Sigma) \ge \dots \ge \lambda_d(\Sigma) \ge 0$$

and pairwise orthonormal vectors

$$v_1(\Sigma), \cdots v_n(\Sigma) \in \mathbb{R}^d$$

such that $\Sigma v_i = \lambda_i v_i, \forall i \in [d]$. In matrix notation, we can represent this as

$$\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_d) \in \mathbb{R}^{d \times d}$$
$$V = [v_1, \dots, v_d] \in \mathbb{R}^{d \times d}$$
$$\Sigma = V\Lambda V^{\top} \iff \Sigma V = V\Lambda$$

A statistical interpretation of v_1, \dots, v_d is as follows: First, we notice that

$$\operatorname{argmax}_{||v||_2=1} \operatorname{Var}(\langle X, v \rangle), X \in \mathbb{R}^d, \mathbb{E}[X] = 0$$
 (2)

is equivalent to

$$\operatorname{argmax}_{||v||_2=1} \mathbb{E}[\langle v, XX^{\top}v\rangle] \tag{3}$$

Since

$$\operatorname{argmax}_{||v||_2=1}\operatorname{Var}(\langle X,v\rangle) = \operatorname{argmax}_{||v||_2=1}\mathbb{E}[\langle X,v\rangle^2] = \operatorname{argmax}_{||v||_2=1}\mathbb{E}[v^\top XX^\top v] \tag{4}$$

Then, we have that

$$\operatorname{argmax}_{||v||_2=1} \mathbb{E}[\langle c, XX^\top c \rangle] = \operatorname{argmax}_{||v||_2=1} \mathbb{E}\langle v, \mathbb{E}[XX^\top]v \rangle = \operatorname{argmax}_{||v||_2=1} \mathbb{E}\langle v, \Sigma v \rangle = v_1$$
 (5)

Therefore, we can interpret v_1 as the max variance direction. More generally, we have for $V_k = [v_1, ..., v_k] \in \mathbb{R}^{d \times k}$

$$V_k \in \operatorname{argmax}_{U \in \mathbb{R}^{d \times k}} \mathbb{E}[||U^T x||_2^2] = \operatorname{argmax}_{[u_1, \dots, u_k] \in \mathbb{R}^{d \times k}} \sum_{i=1}^k \operatorname{Var}(\langle u_1, X \rangle)$$
 (6)

where $[u_1, ..., u_k]$ are orthonormal.

Now, we ask ourselves a statistical question: Given samples $\{x_i\}_{i\in[n]} \sim_{\text{iid}} X \in \mathbb{R}^d$, how to estimate the principle components? Focusing on when k=1, and defining $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^n X_i X_i^T$, let

Estimator:
$$\hat{\theta} \in \operatorname{argmax}_{||\theta||_2=1} \langle \theta, \hat{\Sigma}\theta \rangle$$
 (7)

Ground Truth:
$$\theta^* \in \operatorname{argmax}_{||\theta||_2=1} \langle \theta, \Sigma \theta \rangle$$
 (8)

How can we bound $\hat{\theta} - \theta^*$? Recall Weyl's inequality which tells us that

$$|\lambda_i(\hat{\Sigma}) - \lambda_i(\Sigma)| \le ||\hat{\Sigma} - \Sigma||_{\text{op}}$$
 (9)

To bound $\hat{\theta} - \theta^*$, we also need the eigengap, which is defined as $\nu = \lambda_1(\Sigma) - \lambda_2(\Sigma)$, to be large. To see why this is important, let us take a look at an example

Example (Instability With Small Eigengap): Let

$$Q_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1.01 \end{bmatrix} \tag{10}$$

We have that

$$\lambda_1(Q_0) = 1.01, \lambda_2(Q_0) = 1, \nu(Q_0) = 0.01, v_1(Q_0) = \begin{bmatrix} 0\\1 \end{bmatrix}$$
(11)

Now, let us define

$$Q_{\epsilon} = Q_0 + \epsilon \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \epsilon \begin{bmatrix} 1 & \epsilon \\ \epsilon & 1.01 \end{bmatrix}$$
 (12)

If we let $\epsilon = 0.01$, then $v_1(Q_{\epsilon}) \approx \begin{bmatrix} 0.53 \\ 0.85 \end{bmatrix}$. Therefore, if we have a small eigengap, even a small perturbation can mix our eigenspace.

3 General Perturbation Bound For Eigenvectors

We now state a theorem for the (loose) general perturbation bound for eigenvectors:

Theorem 4. Let $\Sigma \in \mathcal{S}_{+}^{d \times d}$, and let $\theta^* \in \mathbb{R}^d$ be the eigenvector for $\lambda_1(\Sigma)$. Let $\nu = \lambda_1(\Sigma) - \lambda_2(\Sigma) > 0$ be the first eigengap. Let $P = \hat{\Sigma} - \Sigma \in \mathcal{S}^{d \times d}$. If $\hat{\theta} \in \mathbb{R}^d$ is the eigenvector for $\lambda_1(\hat{\Sigma})$. Then

$$||\hat{\theta} - \theta^*||_2 \le \frac{2\sqrt{2} \cdot ||P||_{\text{op}}}{\nu}$$

We can actually obtain a sharper bound seen below:

Theorem 5. Under the same conditions as the Theorem above,

$$||\hat{\theta} - \theta^*|| \le \frac{2||\tilde{P}||_2}{\nu - 2||P||_{\text{op}}}$$

where

$$\tilde{P} = U^T P U = \begin{bmatrix} \tilde{P}_{11} & \tilde{P}^\top \\ \tilde{P} & \tilde{P}_{22} \end{bmatrix} \in \mathbb{R}^{d \times d}$$

and U is defined such that $\Sigma = U\Lambda U^{\top}$

Before we prove Theorem 4, we introduce the following lemma which will help us in our proof

Lemma 6 (PCA Basic Inequality).

$$||\theta - \theta^*||_2^2 = 1 - \langle \hat{\theta}, \theta^* \rangle \le 1 - \langle \hat{\theta}, \theta^* \rangle^2 \le \frac{1}{\nu} [\langle \hat{\theta}, P\hat{\theta} \rangle - \langle \theta^*, P\theta^* \rangle]$$

Proof. First, let us note that

$$||\hat{\theta} - \theta^*|| = ||\hat{\theta}||_2^2 + ||\theta^*||_2^2 - 2\langle \hat{\theta}, \theta^* \rangle = 2(1 - \langle \hat{\theta}, \theta^* \rangle)$$

Furthermore, since $0 \leq \langle \hat{\theta}, \theta^* \rangle \leq 1$, we have that $1 - \langle \hat{\theta}, \theta^* \rangle \leq 1 - \langle \hat{\theta}, \theta^* \rangle^2$. Since $\hat{\theta} = \operatorname{argmax}_{\theta} \langle \theta, \hat{\Sigma} \theta \rangle$, we have that $\langle \hat{\theta}, \hat{\Sigma} \hat{\theta} \rangle \geq \langle \theta^*, \hat{\Sigma} \theta^* \rangle$. With some manipulation, we obtain that

$$\langle \hat{\theta}, \Sigma \hat{\theta} \rangle + \langle \hat{\theta}, P \hat{\theta} \rangle \ge \langle \theta^*, \Sigma \theta^* \rangle + \langle \theta^*, P \theta^* \rangle$$

This implies that

$$\langle \theta^*, \Sigma \theta^* \rangle - \langle \hat{\theta}, \Sigma \hat{\theta} \rangle \le \langle \hat{\theta}, P \hat{\theta} \rangle - \langle \theta^*, P \theta^* \rangle$$

Now, we decompose $\hat{\theta}$ as $\rho\theta^* + \sqrt{1-\rho^2}z$, where $\rho = \langle \hat{\theta}, \theta^* \rangle \in [0, 1]$, $||z||_2 = 1$, and z is orthogonal to θ^* . Using these definitions, we get that

$$\langle \hat{\theta}, \Sigma \hat{\theta} \rangle = \langle \rho \theta^* + \sqrt{1 - \rho^2} z, \Sigma (\rho \theta^* + \sqrt{1 - \rho^2} z) \rangle = \rho^2 \langle \hat{\theta}, \Sigma \hat{\theta} \rangle + 2\rho \sqrt{1 - \rho^2} \langle \theta^*, \Sigma z \rangle + (1 - \rho^2) \langle z, \Sigma z \rangle$$

Now, notice the following

$$\langle \theta^*, \Sigma \theta^* \rangle = \lambda_1(\Sigma)$$

$$\langle z, \Sigma \theta^* \rangle = \lambda_1(\Sigma) \langle z, \theta^* \rangle = 0$$

$$\langle z, \Sigma z \rangle \leq \sup_{z: ||z||_2 = 1, \langle z, \theta^* \rangle = 0} \langle z, \Sigma z \rangle = \lambda_2(\Sigma)$$

Using these, we get that $\langle \hat{\theta}, \Sigma \hat{\theta} \rangle \leq \rho^2 \lambda_1(\Sigma) + (1 - \rho^2) \lambda_2(\Sigma)$. Using this, we get that

$$\langle \theta^*, \Sigma \theta^* \rangle - \langle \hat{\theta}, \Sigma \hat{\theta} \rangle = \lambda_1(\Sigma) - \rho^2 \lambda_1(\Sigma) + (1 - \rho^2) \lambda_2(\Sigma) = (1 - \rho^2) (\lambda_1(\Sigma) - \lambda_2(\Sigma)) = (1 - \rho^2) \nu$$

By combining our results, we have proved the PCA Basic Inequality

Now that we have the PCA Basic Inequality, we can now try to bound $\Psi(P) = \langle \hat{\theta}, P\hat{\theta} \rangle - \langle \theta^*, P\theta^* \rangle$. First, we note that we can naively bound $\Psi(P) \leq 2||P||_{\text{op}}$. Then, using the PCA Basic Inequality, we see that

$$\frac{1}{2}||\hat{\theta} - \theta^*||_2^2 \le \frac{2}{\nu}||P||_{\text{op}}$$

Thus, this implies that

$$||\hat{\theta} - \theta^*||_2 \le 2\sqrt{\frac{||P||_{\text{op}}}{\nu}}$$

We will now show a sharper bound of $\Psi(P) \leq 4||P||_{\text{od}}\sqrt{1-\rho^2}$

Proof. Notice the following:

$$\Psi(P) \le \langle \rho \theta^* + z \sqrt{1 - \rho^2}, P(\rho \theta^* + z \sqrt{1 - \rho^2}) \rangle - \langle \theta^*, P \theta^* \rangle$$

Doing some basic algebra on the right-hand side gets us

$$\Psi(P) \le (\rho^2 - 1)\langle \theta^*, P\theta^* \rangle + 2\rho\sqrt{1 - \rho^2}\langle \theta^*, Pz \rangle + (1 - \rho^2)\langle z, Pz \rangle$$

The right-hand side is now bounded by $2||P||_{op}(1-\rho^2)+2\rho||P||_{op}\sqrt{1-\rho^2}$. Thus, we get

$$\Psi(P) \le 2||P||_{\text{op}}(1-\rho^2) + 2\rho||P||_{\text{op}}\sqrt{1-\rho^2} \le 4||P||_{\text{op}}\sqrt{1-\rho^2}$$

Using this sharper bound, we can now see that

$$(1 - \rho^2) \le \frac{4}{\nu} ||P||_{\text{op}} \sqrt{1 - \rho^2} \tag{13}$$

Thus,

$$||\hat{\theta} - \theta^*||_2 \le \sqrt{2}\sqrt{1 - \rho^2} \le \frac{4\sqrt{2}||P||_{\text{op}}}{\nu}$$
 (14)

Remark 7. It should be noted that the bound that we proved above is not the sharpest bound. In fact, the sharpest bound is $\Psi(P) \leq 2||P||_{\text{op}}(1-\rho^2) + 2\rho||\tilde{P}||_{\text{op}}\sqrt{1-\rho^2}$

4 Consequences For A Spiked Ensemble

Let $\theta^* \in \mathbb{R}^d$, $||\theta^*||_2 = 1$. Then, the spiked covariance model is $x_i = \sqrt{\nu}\xi_i\theta^* + w_i \in \mathbb{R}^d$ with $i \in [n]$ where $\xi_i \in \mathbb{R}$, $\mathbb{E}[\xi_i] = 0$, $\mathbb{E}[\xi_i^2] = 1$ and $w_i \in \mathbb{R}^d$, $\mathbb{E}[w_i] = 0$, $\mathbb{E}[w_iw_i^\top] = I_d$. Here, $\{\xi_i\}$ and $\{w_i\}$ are mutually independent. Notice that using the properties above, one can easily note that $\mathbb{E}[x_i] = 0$ and

$$\mathbb{E}[x_i x_i^{\top}] = \mathbb{E}[(\sqrt{\nu} \xi_i \theta^* + w_i)(\sqrt{\nu} \xi_i \theta^* + w_i)^{\top}] = \nu \mathbb{E}[\xi_i^2] \theta^* \theta^{*\top} + \mathbb{E}[w_i w_i^{\top}] = \nu \theta^* \theta^{*\top} + I_d$$
 (15)

We will denote this Σ . The largest eigenvalue is $\lambda_{\max}(\Sigma) = \nu + 1$. The second largest eigenvalue is $\lambda_2(\Sigma)$. Thus, $\nu = \lambda_{\max}(\Sigma) - \lambda_2(\Sigma)$ is the eigengap, and the leading eigenvector of Σ is θ^* . We can estimate θ by

$$\hat{\theta} = \underset{\|\theta\|_{2}=1}{\arg\max} \langle \theta, \Sigma \theta \rangle \tag{16}$$

Using Theorem 5, we have the following corollary:

Corollary 8. Assume $\xi_i \sim SG(1)$ and $w_i \sim SG(1)$. If n > d and $\sqrt{\frac{\nu+1}{\nu^2}} \sqrt{\frac{d}{n}} \leq \frac{1}{128}$, then

$$||\hat{\theta} - \theta^*||_2 \lesssim \sqrt{\frac{\nu + 1}{\nu^2}} \sqrt{\frac{d}{n}}$$

with high probability

Proof. Recall that

$$||\hat{\theta} - \theta^*|| \le \frac{2||\tilde{P}||_2}{\nu - 2||P||_{\text{op}}}$$

We need to upper bound $||\tilde{P}||_2$ and $||P||_{op}$. Notice that

$$P = \hat{\Sigma} - \Sigma = \frac{1}{n} \sum_{i=1}^{n} (\sqrt{\nu} \xi_i \theta^* + w_i) (\sqrt{\nu} \xi_i \theta^* + w_i)^{\top} - (\nu \theta^* \theta^{*\top} + I_d)$$

Doing some algebra on the right hand side, we get

$$P = (\frac{1}{n} \sum_{i=1}^{n} \xi_i^2 - 1) \nu \theta^* \theta^{*\top} + \sqrt{\nu} (\frac{1}{n} \sum_{i=1}^{n} \xi_i w_i) \theta^{*\top} + (\frac{1}{n} \sum_{i=1}^{n} \xi_i w_i) \theta^* + (\frac{1}{n} \sum_{i=1}^{n} w_i w_i^\top - I_d)$$

Thus, we get that

$$||P||_{\text{op}} \le \nu |\frac{1}{n} \sum_{i=1}^{n} \xi_{i}^{2} - 1| + 2\sqrt{\nu} ||\frac{1}{n} \sum_{i=1}^{n} \xi_{i} w_{i}||_{2} + ||\frac{1}{n} \sum_{i=1}^{n} w_{i} w_{i}^{\top} - I_{d}||_{\text{op}}$$

Notice that we can bound the first term by $\sqrt{\frac{1}{n}}$ by the sub-gaussian concentration. The second and third term can be bounded by $\sqrt{\frac{d}{n}}$ by an ε -covering argument. Thus, we get that

$$||P||_{\text{op}} \lesssim \nu \sqrt{\frac{1}{n}} + (\sqrt{\nu} + 1) \sqrt{\frac{d}{n}}$$

Similarly, we can bound $||\tilde{P}||_2$ as

$$||\tilde{P}||_2 \le \sqrt{\nu} \|\frac{1}{n} \sum_{i=1}^n \xi_i w_i\|_2 + \|\frac{1}{n} \sum_{i=1}^n w_i w_i^\top - I_d\|_{\text{op}}$$

Using the arguments that we used to bound $||P||_{op}$, we get that

$$||\tilde{P}||_2 \lesssim (\sqrt{\nu} + 1)\sqrt{\frac{d}{n}}$$

Now, if $\sqrt{\frac{d}{n}} << \frac{\nu}{\sqrt{\nu}+1}$, then $\nu - 2||P||_{\text{op}} \ge \frac{\nu}{2}$. This gives us

$$||\hat{\theta} - \theta^*||_2 \lesssim \frac{4||\tilde{P}||_2}{\nu} \lesssim \sqrt{\frac{\nu+1}{\nu^2}} \sqrt{\frac{d}{n}}$$

Let us now see an example of how to use the metric entropy bound for bounding the first term in $||\tilde{P}||_2$.

Example: Notice that

$$\|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}w_{i}\|_{2} = \sup_{\|\nu\|_{2}=1}\langle\nu, \frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}w_{i}\rangle = \sup_{\|\nu\|_{2}=1}\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\langle w_{i}, \nu\rangle$$

$$(17)$$

Recall the fact that if $X \sim \text{SG}(\sigma_1)$ and $Y \sim \text{SG}(\sigma_2)$, then $XY \sim \text{SE}(C\sigma_1\sigma_2, C\sigma_1\sigma_2)$ for some constant C. Notice that $\varepsilon_i \sim \text{SG}(1)$ and $\langle w_i, \nu \rangle \sim \text{SG}(1)$. Thus, $\varepsilon_i \langle w_i, \nu \rangle \sim \text{SE}(1, 1)$. Using the sub-exponential tail bound, we see that

$$\mathbb{P}(|\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\langle w_{i},\nu\rangle| \geq t) \leq 2\exp\{-n\min\{t,t^{2}\}\} \quad \forall \nu \in \mathcal{S}^{d-1}$$
(18)

Now, let $\Omega_{1/4}$ be the 1/4-cover of \mathcal{S}^{d-1} . Thus, $|\Omega_{1/4}| \leq C^d$ for some constant C. One can show that this implies

$$\sup_{\nu \in \mathcal{S}^{d-1}} |\langle \nu, a \rangle| \le 2 \sup_{\nu \in \Omega_{1/4}} |\langle \nu, a \rangle| \tag{19}$$

Using the Union Bound,

$$\mathbb{P}(||\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}w_{i}||_{2} \geq t) \leq \mathbb{P}(2\sup_{\nu\in\Omega_{1/4}}\frac{1}{n}\sum_{i=1}^{n}\varepsilon_{i}\langle w_{i},\nu\rangle \geq t) \leq C^{d}\exp\{-n\min\{t,t^{2}\}\}$$
(20)

The examples come at the courtesy of [Wai19]

References

[Wai19] Martin J. Wainwright, *High-dimensional statistics: A non-asymptotic viewpoint*, first ed., Cambridge University Press, New York, NY, USA, 2019.