Harmonic Analysis and Analytic Number Theory on \mathbb{Y}_3 Number Systems

Pu Justin Scarfy Yang September 15, 2024

1 Introduction

This document explores harmonic analysis and analytic number theory within the framework of \mathbb{Y}_3 number systems. We aim to generalize classical results, including the Riemann zeta function, to this non-associative setting.

2 Definition and Properties of \mathbb{Y}_3

2.1 Definition

Let \mathbb{Y}_3 be a non-associative number system with binary operation * satisfying the following properties:

- **Non-associativity**: For some $x, y, z \in \mathbb{Y}_3$, $(x * y) * z \neq x * (y * z)$.
- **Other Axioms**: Define additional axioms that characterize \mathbb{Y}_3 .

Definition 2.1. A \mathbb{Y}_3 -algebra is a vector space with a bilinear product * that satisfies the properties defined above.

2.2 Examples of \mathbb{Y}_3

Provide specific examples or constructions of \mathbb{Y}_3 number systems. For instance:

Example 2.2. Consider a specific construction of \mathbb{Y}_3 where the operation * is defined as:

$$x * y = f(x, y),$$

where f is a bilinear function that does not satisfy associativity.

3 Harmonic Analysis on \mathbb{Y}_3

3.1 Generalizing Fourier Analysis

Define the Fourier transform for \mathbb{Y}_3 :

Definition 3.1. Let $f : \mathbb{Y}_3 \to \mathbb{C}$ be a function. The \mathbb{Y}_3 -Fourier transform is given by:

$$\mathcal{F}_{\mathbb{Y}_3}(u) = \sum_{x \in \mathbb{Y}_2} f(x) \phi_u(x),$$

where ϕ_u is a character of \mathbb{Y}_3 .

3.2 Parseval's Identity

Theorem 3.2. Let $f: \mathbb{Y}_3 \to \mathbb{C}$. The \mathbb{Y}_3 -Fourier transform satisfies Parseval's identity:

$$||f||^2 = ||\mathcal{F}_{\mathbb{Y}_3}(f)||^2,$$

where the norms are defined as:

$$||f||^2 = \sum_{x \in \mathbb{Y}_3} |f(x)|^2$$
 and $||\mathcal{F}_{\mathbb{Y}_3}(f)||^2 = \sum_{u \in \mathbb{Y}_3} |\mathcal{F}_{\mathbb{Y}_3}(u)|^2$.

4 Analytic Number Theory with Y_3

4.1 Generalized Zeta Function

Define a \mathbb{Y}_3 -zeta function:

Definition 4.1. The \mathbb{Y}_3 -zeta function is defined by:

$$\zeta_{\mathbb{Y}_3}(s) = \sum_{x \in \mathbb{Y}_3} \frac{1}{x^s},$$

where s is a complex parameter, and x^s is appropriately defined in the context of \mathbb{Y}_3 .

4.2 Properties and Analytic Continuation

Investigate the properties of $\zeta_{\mathbb{Y}_3}$:

Theorem 4.2. $\zeta_{\mathbb{Y}_3}$ satisfies a functional equation of the form:

$$\zeta_{\mathbb{Y}_3}(s) = \Phi(s)\zeta_{\mathbb{Y}_3}(1-s),$$

where $\Phi(s)$ is a function related to \mathbb{Y}_3 -algebra properties.

Proof. Provide detailed proof of the functional equation, utilizing properties of \mathbb{Y}_3 and \mathbb{Y}_3 -Fourier analysis.

5 Implications for the Riemann Hypothesis

5.1 Generalized Riemann Hypothesis

Define the \mathbb{Y}_3 -Riemann Hypothesis:

Definition 5.1. The \mathbb{Y}_3 -Riemann Hypothesis posits that all non-trivial zeros of $\zeta_{\mathbb{Y}_3}(s)$ lie on the line $\Re(s) = \frac{1}{2}$.

5.2 Comparative Analysis

Compare the \mathbb{Y}_3 -zeta function with the classical Riemann zeta function. Discuss potential similarities and differences.

Theorem 5.2. If $\zeta_{\mathbb{Y}_3}(s)$ has non-trivial zeros on $\Re(s) = \frac{1}{2}$, then similar structures or results might emerge as in the classical case.

Proof. Provide a detailed analysis, including possible numerical experiments and theoretical insights. \Box

6 Conclusion

Summarize the results of the study, including any new insights into harmonic analysis and analytic number theory with \mathbb{Y}_3 . Discuss the implications for the Riemann Hypothesis and future research directions.

7 References

List any references used throughout the document, formatted according to your preferred style.