1. What is a random variable in probability theory?

A **random variable** is a variable whose possible values are numerical outcomes of a random phenomenon. It maps outcomes of a random experiment to numbers.

2. What are the types of random variables?

- Discrete Random Variables: Take countable values (e.g., 0, 1, 2).
- **Continuous Random Variables**: Take any value within a given range or interval (e.g., 2.31, 5.67).

3. What is the difference between discrete and continuous distributions?

- **Discrete distribution** describes the probability of outcomes of a discrete random variable.
- Continuous distribution describes probabilities for continuous variables using areas under a curve.

4. What are probability distribution functions (PDF)?

PDF (Probability Density Function) describes the **likelihood of a continuous random variable** taking on a specific value. The area under the PDF curve over an interval gives the probability of that interval.

5. How do cumulative distribution functions (CDF) differ from PDF?

CDF gives the probability that a variable is less than or equal to a value.

- PDF shows probability density at a point.
- CDF is the **cumulative sum** of probabilities up to a point.

6. What is a discrete uniform distribution?

A **discrete uniform distribution** is one where each possible value has an equal probability. Example: rolling a fair die (each outcome from 1 to 6 has probability 1/6).

7. What are the key properties of a Bernoulli distribution?

- Two outcomes: success (1) or failure (0)
- One trial

- Probability of success = p, failure = 1 p
- Mean = p, Variance = p(1 p)

8. What is the binomial distribution, and how is it used in probability?

Describes the number of successes in **n independent Bernoulli trials** with the same probability of success (p).

Used in scenarios like coin tosses, quality checks, etc.

9. What is the Poisson distribution and where is it applied?

Models the **number of events occurring in a fixed interval** of time or space, given that they occur with a known average rate (λ).

Used in: call arrivals, traffic flow, server requests.

10. What is a continuous uniform distribution?

A distribution where all outcomes in a continuous interval are equally likely.

PDF is constant within the interval [a, b]:

f(x)=1b-a for $a \le x \le b$ $f(x) = \frac{1}{b-a} \quad a \le x \le b$

11. What are the characteristics of a normal distribution?

- Bell-shaped, symmetric around the mean
- Mean = Median = Mode
- Defined by mean (μ) and standard deviation (σ)
- 68%-95%-99.7% rule applies

12. What is the standard normal distribution, and why is it important?

A normal distribution with **mean = 0** and **standard deviation = 1**.

Used to compute probabilities using **Z-scores** and standard normal tables.

13. What is the Central Limit Theorem (CLT), and why is it critical in statistics?

CLT states that the sampling distribution of the sample mean **approaches a normal distribution** as sample size increases, regardless of the population's distribution.

Important for making inferences and hypothesis testing.

14. How does the Central Limit Theorem relate to the normal distribution?

CLT explains why the **normal distribution is so widely used**—it justifies normal approximation of sample means and proportions for large sample sizes.

15. What is the application of Z statistics in hypothesis testing?

Z-statistics are used when population variance is known and sample size is large to determine if the sample mean significantly differs from the population mean.

16. How do you calculate a Z-score, and what does it represent?

 $Z=X-\mu\sigma Z = \frac{X - \mu\sigma Z}{sigma}Z=\sigma X-\mu Z=\sigma X$

Represents how many standard deviations a value (X) is from the mean (μ) .

17. What are point estimates and interval estimates in statistics?

- **Point estimate**: Single value estimate of a population parameter (e.g., sample mean).
- Interval estimate: Range of values (confidence interval) where the parameter likely lies.

18. What is the significance of confidence intervals in statistical analysis?

They provide a **range of plausible values** for a population parameter and reflect **uncertainty** in estimation.

19. What is the relationship between a Z-score and a confidence interval?

Z-scores determine the **margin of error** in a confidence interval (e.g., 1.96 for 95% confidence). CI = Point Estimate ± (Z * Standard Error)

20. How are Z-scores used to compare different distributions?

Z-scores standardize different datasets, allowing comparison by converting values to a **common scale** based on mean and standard deviation.

21. What are the assumptions for applying the Central Limit Theorem?

- Random, independent sampling
- Large enough sample size (typically n ≥ 30)
- Finite population variance

22. What is the concept of expected value in a probability distribution?

The long-run average value of a random variable.

 $E(X) = \sum [xi \cdot P(xi)] (for \ discrete) E(X) = \sum [xi \cdot P(xi)] (for \ discrete) E(X) = \sum [xi \cdot P(xi)] (for \ discrete) E(X) = \int [x \cdot P(xi)] (for$

23. How does a probability distribution relate to the expected outcome of a random variable?

The **shape and values of the distribution** determine the **likelihood** of outcomes and the **expected value** gives a central measure of those outcomes.