UNVEILING THE SECRETS OF AIRBNB IN NYC: DATA INSIGHTS

AGENDA

Objective Data life cycle Analysis methods Recommendations Appendix:

- Data sources
- Data methodology
- Data model assumptions

OBJECTIVE

To Conduct a thorough analysis of New York Airbnb Dataset.

Ask effective questions that can lead to data insights

Process, analyse and share findings by data visualization and statistical techniques

DATA LIFE CYCLE

In the first phase the data captured and loaded into various environment.

Once data is cleaned, EDA is done and new features are created.

Then Meaningful insights are derived using various analytical methods.

1. Importing libraries and reading the data

					g			g		p		
0	2539	Clean & quiet apt home by the park	2787	John	Brooklyn	Kensington	40.64749	-73.97237	Private room	149	1	
1	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	-73.98377	Entire home/apt	225	1	
2	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	-73.94190	Private room	150	3	
3	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	-73.95976	Entire home/apt	89	1	
4	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	-73.94399	Entire home/apt	80	10	

2. Creating features

```
def availability_365_categories_function(row):
    """
    Categorizes the "minimum_nights" column into 5 categories
    """
    if row <= 1:
        return 'very Low'
    elif row <= 100:
        return 'Low'
    elif row <= 200 :
        return 'Medium'
    elif (row <= 300):
        return 'High'
    else:
        return 'very High'</pre>
```

2.3 categorizing the "number_of_reviews" column into 5 categories

```
def number_of_reviews_categories_function(row):
    """
    Categorizes the "number_of_reviews" column into 5 categories
    """
    if row <= 1:
        return 'very Low'
    elif row <= 5:
        return 'Low'
    elif row <= 10 :
        return 'Medium'
    elif (row <= 30):
        return 'High'
    else:
        return 'very High'</pre>
```

2.2 categorizing the "minimum_nights" column into 5 categories

```
def minimum_night_categories_function(row):
    """
    Categorizes the "minimum_nights" column into 5 categories
    """
    if row <= 1:
        return 'very Low'
    elif row <= 3:
        return 'Low'
    elif row <= 5 :
        return 'Medium'
    elif (row <= 7):
        return 'High'
    else:
        return 'very High'</pre>
```

3. Fixing columns

```
import warnings
warnings.filterwarnings("ignore")
inp0.last review = pd.to datetime(inp0.last review)
inp0.last review
        2018-10-19
        2019-05-21
               NaT
        2019-05-07
        2018-11-19
48890
               NaT
48891
               NaT
48892
               NaT
48893
               NaT
48894
               NaT
Name: last review, Length: 48895, dtype: datetime64[ns]
inp0.columns
Index(['id', 'name', 'host id', 'host name', 'neighbourhood group',
       'neighbourhood', 'latitude', 'longitude', 'room type', 'price',
       'minimum nights', 'number of reviews', 'last review',
       'reviews per month', 'calculated host listings count',
       'availability_365', 'availability_365_categories',
       'minimum night categories', 'number of reviews categories',
       'price categories'],
      dtyne='object')
```

4. Data types

```
: inp0.columns
   Index(['id', 'name', 'host id', 'host name', 'neighbourhood group',
           'neighbourhood', 'latitude', 'longitude', 'room_type', 'price',
          'minimum_nights', 'number_of_reviews', 'last_review',
          'reviews per month', 'calculated host listings count',
          'availability_365', 'availability_365_categories',
          'minimum_night_categories', 'number_of reviews categories',
          'price categories'],
         dtype='object')
 : # Categorical nominal
   categorical_columns = inp0.columns[[0,1,3,4,5,8,16,17,18,19]]
   categorical columns
  Index(['id', 'name', 'host name', 'neighbourhood group', 'neighbourhood',
           'room_type', 'availability_365_categories', 'minimum_night_categories',
          'number of reviews categories', 'price categories'],
         dtype='object')
4.2 Numerical
numerical_columns = inp0.columns[[9,10,11,13,14,15]]
numerical columns
Index(['price', 'minimum_nights', 'number_of_reviews', 'reviews_per_month',
       'calculated host listings count', 'availability 365'],
     dtype='object')
inp0[numerical columns].head()
```

	price	minimum_nights	number_of_reviews	reviews_per_month	$calculated_host_listings_count$	availability_365
0	149	1	9	0.21	6	365
1	225	1	45	0.38	2	355
2	150	3	0	NaN	1	365
3	89	1	270	4.64	1	194
4	80	10	9	0.10	1	0

4.3 Coordinates and date

coordinates = inp0.columns[[5,6,12]]
inp0[coordinates]

	neighbourhood	latitude	last_review
0	Kensington	40.64749	2018-10-19
1	Midtown	40.75362	2019-05-21
2	Harlem	40.80902	NaT
3	Clinton Hill	40.68514	2019-05-07
4	East Harlem	40.79851	2018-11-19
48890	Bedford-Stuyvesant	40.67853	NaT
48891	Bushwick	40.70184	NaT
48892	Harlem	40.81475	NaT
48893	Hell's Kitchen	40.75751	NaT
48894	Hell's Kitchen	40.76404	NaT

48895 rows x 3 columns

5. Missing values

```
: # To see the number of missing values
inp0.isnull().sum()
```

: id 0 16 name host id host name 21 neighbourhood group neighbourhood latitude longitude room type price minimum_nights number of reviews last review 10052 reviews per month 10052 calculated_host_listings_count availability 365 availability_365_categories minimum night categories number_of_reviews_categories price categories dtype: int64

- Two columns (last_review , reviews_per_month) has around 20.56% missing values. name and host_name has 0.3% and 0.4 % missing values
- We need to see if the values are, MCAR: It stands for Missing completely at random.

The reason behind the missing value is not dependent on any other features or if it is MNAR: It stands for Missing not at random. There is a specific reason behind the missing value.

- There is no dropping or imputation of columns as we are just analyzing the dataset and not making a model. Also most of the features are important for our analysis.

5.1 Missing value analysis

```
plt.title('Missing values')
sns.barplot(x = inp3.index, y = inp3.values)
plt.show()
```

'Shared room' has the highest missing value percentage (27 %) for 'last' review' feature while to other room types has only about 20 %.

- The pricing is higher when 'last_review' feature is missing .
- reviews are less likely to be given for shared rooms
- When the prices are high reviews are less likely to be given
- The above analysis seems to show that the missing values here are not MCAR (missing completely at random)

6. Analysis

6.3 host_name

```
inp0.host_name.value_counts()
Michael
                      417
David
                      403
Sonder (NYC)
                      327
John
                      294
Alex
                      279
Rhonycs
                        1
Brandy-Courtney
                        1
Shanthony
Aurore And Jamila
                        1
Ilgar & Aysel
                        1
Name: host_name, Length: 11452, dtype: int64
```


6.6 room_type

inp0.room_type.value_counts()

Entire home/apt 25409
Private room 22326
Shared room 1160
Name: room_type, dtype: int64

THE PROBLEMS WITH SHARED ROOMS

Shared rooms only account for 2 % of the total types of rooms.

They are less likely to be reviewed.

Median rates for shared rooms are significantly lower.

EVERY HOST MATTER

The top 60 hosts only make up 20% of the total host count!

MOST CONTRIBUTING NEIGHBOURHOODS

6.4 neighbourhood_group

inp0.neighbourhood_group.value_counts()
Manhattan 21661

Brooklyn 20104 Queens 5666 Bronx 1091

Staten Island

Name: neighbourhood_group, dtype: int64

373

- 81 % of the listing are Manhattan and Brooklyn neighbourhood group
- Staten Island has the lowest contribution.

MINIMUM NIGHT CATEGORIES

Minimum night category percentages

Low	40.280192
very Low	26.014930
very High	14.997444
Medium	12.960425
High	5.747009

• Low category in minimum night feature contributes 40 %

EFFECT OF MINIMUM NIGHT ON REVIEWS

Customers are more likely to leave reviews for lower number of minimum nights.

7. Bivariate and Multivariate Analysis

7.1 Finding the correalations

inp0[numerical_columns].head()

	price	minimum_nights	number_of_reviews	reviews_per_month	$calculated_host_listings_count$	availability_365
0	149	1	9	0.21	6	365
1	225	1	45	0.38	2	355
2	150	3	0	NaN	1	365
3	89	1	270	4.64	1	194
4	80	10	9	0.10	1	0

CONCLUSION

- 1. Strong significant insights are derived based on various attributes in the dataset.
- Ample amount and variety of visuals have can used in the presentations for the stakeholders.
- 3. Data collection team should collect data about review scores so that it can strengthen the later analysis.
- 4. A clustering machine learning model to identify groups of similar objects in datasets with two or more variable quantities can be made.

APPENDIX - DATA SOURCES

The columns in the dataset are self-explanatory. You can refer to the diagram given below to get a better idea of what each column signifies.

Column	Description
id	listing ID
name	name of the listing
host_id	host ID
host_name	name of the host
neighbourhood_group	location
neighbourhood	area
latitude	latitude coordinates
longitude	longitude coordinates
room_type	listing space type
price	
minimum_nights	amount of nights minimum
number_of_reviews	number of reviews
last_review	latest review
reviews_per_month	number of reviews per month
calculated_host_listings_count	amount of listing per host
availability_365	number of days when listing is available for booking

APPENDIX –DATA METHODOLOGY

- Conducted a thorough analysis of New York Airbnbs Dataset.
- Cleaned the data set using python.
- Derived the necessary features.
- Used group aggregation, pivot table and other statistical methods.
- Created charts and visualizations using Tableau.

APPENDIX - DATA ASSUMPTIONS

```
Categorical Variables:

    room type

    neighbourhood group

    - neighbourhood
Continous Variables(Numerical):
    - Price

    minimum_nights

    - number of reviews
    - reviews per month
    - calculated_host_listings_count
    - availability_365
- Continous Variables could be binned in to groups too
Location Varibles:
    - latitude

    longitude

Time Varibale:
    - last review
```