Equation sheet - Intro Telecomm (5ETA0)

PCM system

$$\left(\frac{S}{N}\right)_{out} = \frac{M^2}{1 + 4P_e(M^2 - 1)} \tag{1}$$

where

$$P_e = Q\left(\sqrt{\left(\frac{S}{N}\right)_{in}}\right) \tag{2}$$

Q-function plot $(P_e = \frac{1}{\sqrt{2\pi}z}e^{-z^2/2} \text{ for } z > 3)$:

Figure 1: Q-function Q(z) plot.

Power spectrum of a digital signal

Pulse shape $f(t) \Leftrightarrow F(f)$; Signal spectrum $P_s(f) = \frac{|F(f)|^2}{T_s} \sum_{k=-\infty}^{\infty} R(k) e^{j2\pi k f T_s}$

Raised cosine spectrum

$$H_e(f) = \begin{cases} 1, & |f| \le f_1\\ \frac{1}{2} \left(1 + \cos(\frac{\pi(|f| - f_1)}{2f_\Delta}) \right), & f_1 \le |f| \le B\\ 0, & |f| \ge B \end{cases}$$
 (3)

with $f_0 = f_1 + f_{\Delta} = B - f_{\Delta}$; Roll-off factor $r = \frac{f_{\Delta}}{f_0}$

Figure 2: Raised cosine spectrum

The impulse response of the root-raised cosine filter:

$$h_e(t) = 2f_0 \left(\frac{\sin(2\pi f_0 t)}{2\pi f_0 t} \right) \frac{\cos(2\pi f_\Delta t)}{1 - (4f_\Delta t)^2}$$
 (4)

Information theory

Channel capacity:

$$C = B\log_2\left(1 + \frac{S}{N}\right) \tag{5}$$

Analog modulation

Frequency modulation (FM):

$$s(t) = A_c \cos\left(\omega_c t + D_f \int m(\tau) d\tau\right); \qquad \beta_f = \frac{\Delta F}{B}$$
 (6)

Carsons rule:
$$B_T = 2(\beta + 1)B; \qquad \Delta F = \frac{1}{2\pi} \cdot D_f \cdot \max[m(t)]$$
 (7)

Amplitude modulation (AM):

$$\% modulation = \frac{A_{max} - A_{min}}{2A_c} \cdot 100\%$$
 (8)

%positive Modulation =
$$\frac{A_{max} - A_c}{A_c} \cdot 100\% = max(m(t)) \cdot 100\%$$
 (9)

$$\% negative\ Modulation = \frac{A_c - A_{min}}{A_c} \cdot 100\% = min(m(t)) \cdot 100\%$$
 (10)

$$E = \frac{\langle m^2(t) \rangle}{1 + \langle m^2(t) \rangle} \cdot 100\% \tag{11}$$

Trigonometric identities:

$$2\sin(\alpha)\cos(\beta) = \sin(\alpha + \beta) + \sin(\alpha - \beta) \tag{12}$$

$$2\cos(\alpha)\sin(\beta) = \sin(\alpha + \beta) - \sin(\alpha - \beta) \tag{13}$$

$$2\cos(\alpha)\cos(\beta) = \cos(\alpha + \beta) + \cos(\alpha - \beta) \tag{14}$$

$$2\sin(\alpha)\sin(\beta) = -\cos(\alpha + \beta) + \cos(\alpha - \beta) \tag{15}$$

$$2\sin(\alpha)\cos(\alpha) = \sin(2\alpha) \tag{16}$$

$$2\cos^2(\alpha) = 1 + \cos(2\alpha) \tag{17}$$

$$2\sin^2(\alpha) = 1 - \cos(2\alpha) \tag{18}$$

order\betta	0.5	1	2	3	4	5	6	7	8	9	10
Order (betta	0.93847		0.223891				0.150645	0 300079	0.171651		
			0.576725							0.245307	
2	0.030604	0.114903	0.352834	0.486091	0.364128	0.046565	-0.24287	-0.30142	-0.11299	0.144846	0.25463
3	0.002564	0.019563	0.128943	0.309063	0.430171	0.364831	0.114768	-0.16756	-0.29113	-0.18093	0.05838
4	0.000161	0.002477	0.033996	0.132034	0.281129	0.391232	0.357642	0.157798	-0.10535	-0.26547	-0.2196
5		0.00025	0.00704	0.043028	0.132087	0.261141	0.362087	0.347896	0.185775	-0.05504	-0.23406
6			0.001202	0.011394	0.049088	0.131049	0.245837	0.339197	0.337569	0.204312	-0.01446
7			0.000175	0.002547	0.015176	0.053376	0.129587	0.233584	0.320578	0.327456	0.21671
8				0.000493	0.004029	0.018405	0.056532	0.127971	0.223455	0.305063	0.317854
9					0.000939	0.00552	0.021165	0.058921	0.126321	0.214881	0.291856
10					0.000195	0.001468	0.006964	0.023539	0.060767	0.124694	0.207486
11						0.000351	0.002048	0.008335	0.025597	0.062217	0.123117
12							0.000545	0.002656	0.009624	0.027393	0.06337
13							0.000133	0.00077	0.003275	0.01083	0.028972
14								0.000205	0.001019	0.003895	0.011957
15									0.000293	0.001286	0.004508
16										0.000393	0.001567

Figure 3: Bessel function table

Line codings

Line coding (1 bit per symbol)	First Null Bandwidth (R is bit rate)	${ m SE}~({ m Bits/Hz})$
Unipolar/Polar NRZ	R	1
Unipolar RZ (50%)	2R	0.5
Sinc Pulses	0.5R	2
Raised cosine pulses	$(1+r)\frac{R}{2}$	$\frac{2}{1+r}$

Table 1: Bandwidth and Spectral Efficiency of Various Line Coding Schemes

Figure 4: Line codings and their spectras ${\bf r}$

Received signal power in a radio communication link

$$P_{Rx} = P_{Tx} \cdot G_{AT} \cdot G_{AR} \cdot \left[\frac{\lambda}{4\pi d}\right]^2 \tag{19}$$

$$P_{Rx} \approx P_{TX}G_{TX}G_{RX} \left(\frac{h_{TX}h_{RX}}{d^2}\right)^2 \tag{20}$$

$$d_{break} = \frac{4\pi h_{Tx} h_{Rx}}{\lambda} \tag{21}$$

Knife edge

$$v = \alpha \sqrt{\frac{2d_1d_2}{\lambda(d_1 + d_2)}} \tag{22}$$

$$\alpha = \beta + \gamma \tag{23}$$

$$\beta = \tan^{-1} \left(\frac{h_{obs} - h_{TX}}{d_1} \right) \tag{24}$$

$$\gamma = \tan^{-1} \left(\frac{h_{obs} - h_{RX}}{d_2} \right) \tag{25}$$

The equation below should only be used for v > 0!

$$A(v) = 6.9 + 20\log_{10}\left(\sqrt{v^2 + 1} + v - 0.1\right) [dB]$$
 (26)

Figure 5: Diffraction loss. This figure can be used for all values of v!

Figure 6: Knife-edge diffraction geometry. The point T denotes the transmitter and R the receiver, with an infinite knife-edge obstruction blocking the life-of-sight path.

Figure 7: Knife-edge diffraction geometry when the transmitter and receiver are not at the same height. Note that if α and β are small and $h \ll d_1$ and d_2 , then h and h' are virtually identical.