MORADABAD INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Sessional Test – 1

Course: B.T.ch.

Session: 2025-2026

Subject Name: DSTL

Max. Marks: 20

Bloom's Cognitive Level

Q. No.

CO

3

2

K3

4

K3

Semester: 3rd

Section: A, B, C, D

Subject Code: BCS303

K3

Time:	60	min
5		6
2		

K3

1

K3

Section(A)

1

K3

Attempt all questions.

Q1. Show that for any two sets A and B: $(A \cup B)' = A' \cap B'$ using the method of mutual subsets. (2 marks)

Q2. If R is a relation on the set of integers defined by $R = \{(x, y) : (x \cong x) \in \mathbb{R}^n \}$ y) mod m}, where \cong denotes congruence modulo m, then prove that R is an equivalence relation. (3 marks)

Q3. Let A and B be two sets. If $f: A \to B$ is one-to-one and onto, prove that $f^{-1}: B \to B$ A is also one-to-one and onto. (3 marks)

Section(B)

Attempt all questions. Each question carries 4 marks. (3*4=12)Q4. Show that D₆₄, denoting the set of divisors of 64 ordered by divisibility, forms a lattice $(D_{64}, /)$.

Q5(i). Solve the following Boolean function using a K-map:

164

$$F(A, B, C, D) = \sum (0,1,2,5,7,8,9,10,13,15).$$

(ii). Also, express the following Boolean expression in conjunctive normal

form:

$$(x+y+z)(xy+x^{\dagger}z)'$$

Q6(i). Show that $(p \ V \ q) \ \Lambda(p' \Lambda(q' \ V'))') \ V(p' \Lambda q') \ V(p' \ V')$ is a tautology.

(ii) Show that the statements $P \leftrightarrow Q$ and $(P \land Q) \lor (\sim P \land \sim Q)$ are equivalent.

MORADABAD INSTITUTE OF TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING SESSIONAL TEST -1st

Course: B.Tech. Semester: 3rd

Session: 2025-26

Subject: Computer Organization & Architecture

Max. Marks: 20

Section: A, B, C, D, I, J Subject Code: BCS-302

Time: 1 hr 15 min.

Q.No. :	1	2	3	4	5	6
CO No.:	<u>1</u>	2	1	2	1	1
Bloom's Level	2	<u>3</u>	2	3	3	2

Note:

1. This paper contains two section A and B.

2. All sections are compulsory.

SECTION- A

Q1. Discuss the role of ALU in a processor?

2 marks

Q2. Perform single and double precision IEEE standard floating-point number representation for (-1460.125)₁₀.

3 marks

Q3. Explain Bus Arbitration and its types.

3 marks

SECTION-B

Q4. Show the multiplication process step by step using Booth's Algorithm for (-19) * (+20).

OR

Divide 39 by 17 using Binary Division Algorithm also draw the flowchart of Division Algorithm.

4 marks

Q5. Convert the following numerical arithmetic expression into reverse polish notation and show the stack operations for evaluating the numerical result.

$$(3+4)[10(2+6)+8]$$

Write the PUSH and POP operation of stack.

4 marks

Q6. Explain General Register Organisation with proper diagram. Also define control word and write control word for following microoperation.

- a. R5← 0
- b. Output ← Input

4 marks

ALL THE BEST

MORADABAD INSTITUTE OF TECHNOLOGY

- 0	Collence				*			25 26	
CT I	Cyber S	ecurity	BCC3	01	2 nd ye	ar	Session	25-20	
CSE	Section	A/B/C		Max	. Marks 2	20	Duration	1 60 Mi	ns
	Q.No	1	2	3		4	5	6	/
	CO	I	I	I		II	I	11	11
	Blooms Level	2	2	2		2	2	2	2

CO1: Understand the basic concepts of cyber security and cybercrimes.

CO2: Understanding the challenges posed by mobile devices and applying remedial measures to overcome them.

SET 2

Fart A

Attempt all questions from all parts.

1. Elaborate what do you mean by Cybercrime?	,*	[2]
2. Explain any 3 survival mantras for netizens?		[2]
3. Elaborate various cybercrime classifications?	*.	[2]
4. Explain any 3 mobile devices?	2.	[2]
Part B		
5. Explain with a diagram what is a botnet?	•	[4]
6. Elaborate on the security challenges posed by mobile devices?		[4]
7 To 1: 2 to mabile?	A ~~~	[4]
7. Explain any 3 trends in mounts. Section A/B →Mr. Vikas Bhatnagar (B-104/ Control Room) Section C Mr. Varun	Agarw	(C-304)

Moradabad Institute of Technology CT-1

Session – 2025-26

Subject – Technical Communication

Max. Marks - 20

Section – A,B,C,D Subject Code- BAS-391 Time – 1:00 Hr.

Q. No.	1	2	3	4	5	6
C.O	1	2	2	1	1	3
Bloom's Level	2	2	1	2	2	2

Note-1. This paper contains three sections (A) and (B)

2. Both Sections are compulsory

SECTION A

- 1. Explain the concept of stimulus and response in the communication process.
- 2. Describe the interview process and explain various types 3 of interviews.
- 3. Discuss the essential dos and don'ts to be followed during a Group Discussion.

SECTION B

- 4. Explain the seven C's of effective communication with 4 suitable illustrations.
- 5. Identify major barriers to effective communication and suggest practical strategies to overcome them.
- 6. What do you understand by Project Report Writing with
 its elements and structure?

MORADABAD INSTITUTE OF TECHNOLOGY COMPUTER SCIENCE & ENGINEERING

CLASS TEST-1 (3rd SEMESTER)

Session 2025-26

Subject: Digital Electronics

MM: 20

Branch: CSE

fai2

Sub Code: BOE310

Duration: 1 HR

Sec: A, B, C

7-10
3
()
B-17

Q.NO.	1	2	3	4	5	6	
CO	1	1	1	3	2	2	
Bloom's	K1	K2	K2	К3	K6	Ķ6	
Level			, .,		4		

CO1: Apply concepts of Digital Binary System and implementation of Gates.

CO2: Analyze and design of Combinational logic circuits

CO3: Analyze and design of Sequential logic circuits with their applications.

Note: 1)

This paper contains two sections A and B.

105 150

2) All sections are compulsory.

Section A (08 Marks)

2-101110

- Represent the unsigned decimal numbers 791 and 658 in BCD, and then show the steps necessary to form their sum.
- 2. (i) Convert (A5D8)16 into BCD number.

 $[3 \times 1 = 3]$

- (ii) Convert (46)₁₀ to Gray Code.
 - (iii) Represent -37 in 8-bit 2's complement.
- 3. Simplify using K-map and implement with NAND gates:

$$F(A, B, C, D) = \Sigma m(0,1,2,5,8,9,10,13)$$

[3]

Section B (12 Marks)

- 4. Derive the characteristic equation of SR flip flop with block diagram. [4]
- Design a full adder by half adder and obtain the required expression for sum and carry.
- 6. Design a combinational circuit that converts a four-bit binary number to a four-bit gray code. [4]

faiz

Moradabad Institute of Technology Computer Science & Engineering and Allied Class Test-1

Session: 2025-26

Subject Name: Data Structure

Subject Code: BCS301

Branch: CSE, AIML, DS, IOT

Year: 2nd

MM: 20

Duration: 1hr

Section: A, B, C, D, I, J

Sem: 3rd

Q. No	1	2	2	,		
CO	CO1	CO3	5	4	5	6
Bloom's Level	K2	V2	CO1	CO1	CO2	CO3
Piootti 2 FeAEI	NZ	K3	K3	K3	K3	К3

CO1	Implement and explain how arrays and linked lists are represented in memory, used by the algorithms and their common applications.
CO2	Implement and use linear data structures stacks and queues in computer science applications.
CO3	Implement the concept of recursion, application of recursion and removal of recursion.

Note:

This paper contains two sections (A) and (B). All sections are compulsory.

Sect	tion (A)	Marks
Atte	mpt all questions.	
1)	Explain Linear and Non-Linear Data Structure with example.	(2)
2)	Explain stack . Write C function for push and pop operations. Assume stack is stored in array.	(3)
3)	Write a C function to insert an element at the end of a doubly linked list.	(3)
Sect	ion (B)	
Atte	empt all questions.	
4)	Consider the following multidimensional array, X [-2:3, 1:3, 0:6]. a). Find the length of each dimension b). Find number of elements in X. c). Find the address of element X [3, 2, 4] if X is stored in row major. Assume Base(X) = 200, w = 4.	(4)
5).	Write an algorithm to convert inix expression to postfix. Convert the following infix	(4)
6).	expression to Postfix form using stack. At (B C/E P+G*H 1)+3 k Explain recursion. Write a recursive function to find the factorial of any number. Explain the limitations of recursion?	(4)