Distributed BRAM (256 width x 32 depth)

Distributed BRAM: Implemented using LUT's

As we have 256 various locations to be stored, therefore the address width is $log_2(256)=8$ and the I/O lines are of 32 bit each. For distributed BRAM asynchronous read is the key part.

Verilog code:

```
module distributed_BRAM(
input clk,
input we,
input [7:0] addr,
input [31:0] din,
output [31:0] dout
);
(* ram_type="distributed" *)
reg [31:0] mem [0:255];
always @(posedge clk) begin
if (we) begin
mem[addr]<=din;
end
end
assign dout = mem[addr];
endmodule
```

Schematics:

Figure 1: RTL Schematic

Figure 2: Synthesized Schematic

Above schematic the design utilizes block RAM256X1S, which is implemented using the LUT resources. Hence distributed BRAM is properly implemented.

Logic tables:

Site Type	1	Used	1	Fixed	I	Prohibited	1	Available	1	Util%	ı
Slice LUTs*	-+-	128	-+-	0	+	0	+	53200	-+-	0.24	-+
LUT as Logic	i	0	i	0		0		53200		0.00	
LUT as Memory	i	128	i	0		0	•	17400	•	0.74	
LUT as Distributed RAM	i	128	Ĺ	0	i		1		i		
LUT as Shift Register	I	0	1	0	I		I		1		
Slice Registers	1	0	ı	0	1	0	1	106400	1	0.00	
Register as Flip Flop	1	0	1	0	1	0	1	106400	1	0.00	
Register as Latch	1	0	1	0	1	0	I	106400	I	0.00	
F7 Muxes	I	64	1	0	1	0	1	26600	I	0.24	
F8 Muxes	I	32	1	0	1	0	1	13300	1	0.24	

Figure 3: Slice logic table

2. Memory

 	Site Type	Ī	Used	ĺ	Fixed	l	Prohibited	Ī	Available 1	Util%	I
	Block RAM Tile		0			İ	0		140		
1	RAMB36/FIFO*	1	0	I	0	I	0	I	140	0.00	
I	RAMB18	1	0	I	0	I	0	١	280	0.00	
+-		-+-		+-		4.		4.			_

Figure 4: Memory table