Suites de fonctions

Exercice 1 ***

ENS MP 2010

Soient $d \in \mathbb{N}$ et (P_n) une suite de polynômes de $\mathbb{R}_d[X]$. Montrer que les propositions suivantes sont équivalentes :

- (i) (P_n) converge dans $\mathbb{R}_d[X]$.
- (ii) (P_n) converge simplement sur [0,1].
- (iii) (P_n) converge uniformément sur [0, 1].

Exercice 2 ★★★

Soient $a, b \in \mathbb{R}$ tels que a < b et $p \in \mathbb{N}$. On considère une suite (P_n) de fonctions polynomiales de degré inférieur ou égal à p qui converge simplement sur [a, b] vers une fonction f.

Montrer que f est une fonction polynomiale de degré inférieur ou égal à p et que (P_n) converge uniformément vers f sur [a, b].

Exercice 3 ★

Soit f une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} . On suppose que la suite $(f^{(n)})$ des dérivées successives converge uniformément vers une fonction φ sur \mathbb{R} . Que peut-on dire de φ ?

Exercice 4 ★★

CCP MP

On pose $f_n: x \mapsto n \cos^n(x) \sin(x)$ pour $n \in \mathbb{N}$.

- **1.** Étudier la convergence simple de la suite (f_n) sur \mathbb{R} .
- **2.** La suite (f_n) converge-t-elle uniformément sur $\left[0, \frac{\pi}{2}\right]$, sur $\left[a, \frac{\pi}{2}\right]$ où $a \in \left]0, \frac{\pi}{2}\right]$?
- **3.** Soit g continue sur $\left[0, \frac{\pi}{2}\right]$. Montrer que

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} f_n(t)g(t) dt = g(0)$$

Exercice 5 ***

Théorème de Dini

- **1.** Soit (f_n) une suite croissante de fonctions réelles continues sur un segment [a, b] de \mathbb{R} . Montrer que si (f_n) converge simplement vers une fonction f continue sur [a, b], alors la convergence est uniforme.
- **2.** Soit (f_n) une suite de fonctions croissantes, réelles et continues sur un segment [a,b] de \mathbb{R} . Montrer que si (f_n) converge simplement vers une fonction f continue sur [a,b], alors la convergence est uniforme.

Exercice 6 ★★

Soit f une fonction continue sur [0, 1].

Calculer
$$\lim_{n \to +\infty} \int_{\left(1-\frac{1}{n}\right)^n}^1 x^{\frac{1}{n}} f(x) dx$$
.

Exercice 7

Soit $f: \begin{cases} [0,1] & \longrightarrow [0,1] \\ x & \longmapsto 2x(1-x) \end{cases}$. On définit la suite de fonctions (f_n) par $f_0 = \mathrm{Id}_{[0,1]}$ et $f_{n+1} = f \circ f_n$ pour tout $n \in \mathbb{N}$. Étudier la convergence de la suite (f_n) .

Exercice 8 **

Soit $f_n: x \in \mathbb{R} \mapsto n \cos^n(x) \sin(x)$ pour tout $n \in \mathbb{N}$. Étudier la convergence de la suite de fonctions (f_n) sur \mathbb{R} .

Exercice 9 ***

Soit $f_n: x \in \mathbb{R} \mapsto \sin^n(x)\cos(x)$ pour tout $n \in \mathbb{N}$. Étudier la convergence de la suite de fonctions (f_n) sur \mathbb{R} .

Exercice 10 ***

Soit (P_n) la suite de fonctions définies sur [0,1] par

- $P_0(x) = 0$ pour tout $x \in [0, 1]$;
- $P_{n+1}(x) = P_n(x) + \frac{1}{2}(x P_n(x)^2)$ pour tout $x \in [0, 1]$ et tout $n \in \mathbb{N}$.
- 1. Montrer que pour tout $x \in [0,1], 0 \le P_n(x) \le \sqrt{x}$.
- 2. Montrer que pour tout $x \in [0, 1]$,

$$0 \le \sqrt{x} - P_n(x) \le \sqrt{x} \left(1 - \frac{\sqrt{x}}{2}\right)^n$$

3. En déduire que la suite (P_n) converge uniformément sur [0,1] vers la fonction $x \mapsto \sqrt{x}$.

Exercice 11 ★★

Pour $n \in \mathbb{N}$, on pose $f_n : x \in \mathbb{R}_+ \mapsto \frac{x^n e^{-x}}{n!}$.

- 1. Montrer que (f_n) converge uniformément sur \mathbb{R}_+ vers une fonction f à déterminer.
- **2.** Calculer $\lim_{n \to +\infty} \int_0^{+\infty} f_n(t) dt$ et $\int_0^{+\infty} f(t) dt$.

Exercice 12 ★

Soient $\alpha \in \mathbb{R}$ et $f_n : x \in [0,1] \mapsto n^{\alpha} x^n (1-x)$ pour $n \in \mathbb{N}^*$. Etudier la convergence simple et uniforme de (f_n) sur [0,1].

Exercice 13 ★

On pose $f_n: x \mapsto \frac{\ln(1+nx)}{1+n^2x^2}$ pour $n \in \mathbb{N}$.

- **1.** Sur quelle partie D de \mathbb{R} la suite de fonctions (f_n) converge-t-elle simplement?
- **2.** La suite (f_n) converge-t-elle uniformément sur D?

Exercice 14

Banque Mines-Ponts MP 2019

Soit f une fonction réelle continue définie sur $\mathbb R$ telle qu'il existe $\mathbb M \in \mathbb R_+$ vérifiant :

$$\forall (x, y) \in \mathbb{R}^2, |f(x+y) - f(x) - f(y)| \le M$$

Pour tout $n \in \mathbb{N}$, on note $h_n : x \mapsto \frac{f(2^n x)}{2^n}$.

- **1.** Montrer que $(h_n)_{n\in\mathbb{N}}$ converge vers une fonction h continue sur \mathbb{R} .
- **2.** Montrer que pour tout $(x, y) \in \mathbb{R}^2$, h(x + y) = h(x) + h(y).
- **3.** Qu'en déduire sur *h*?
- **4.** Montrer que pour tout $n \in \mathbb{N}$,

$$|h_{n+1}(x) - f(x)| \le \frac{M}{2^{n+1}} + |h_n(x) - f(x)|$$

En déduire que h - f est bornée.

5. Conclure que *f* peut s'écrire comme somme d'une homothétie vectorielle et d'une fonction bornée. Unicité?

Séries de fonctions

Exercice 15 ★★

On note $S(x) = \sum_{n \ge 1} \frac{nx^{2n-1}}{1 - x^{2n}}$.

- 1. Déterminer le domaine de définition D de S.
- **2.** Montrer que S est de classe \mathcal{C}^1 sur D.
- **3.** Étudier les variations de S sur D.
- **4.** Étudier les limites de S aux bornes de D.

Exercice 16 ★★

Mines-Ponts PC

On pose $f_n(x) = \left(\sum_{k=1}^n \frac{1}{\sqrt{k+x}}\right) - 2\sqrt{n}$ pour $n \in \mathbb{N}^*$.

- 1. Étudier la convergence simple de $\sum_{n>1} f_{n+1} f_n$.
- **2.** Montrer que (f_n) converge simplement vers une fonction f de classe \mathcal{C}^1 .
- 3. Calculer $\int_0^1 f(t) dt$.

Exercice 17 ★★★

Soit $(a_n)_{n\geq 1}$ une suite décroissante de limite nulle. On pose $f_n: x\mapsto \sin nx$. Montrer que la série $\sum_{n\geq 1} a_n f_n$ converge simplement sur \mathbb{R} .

Exercice 18 ***

Soit $(a_n)_{n\geq 1}$ une suite réelle décroissante de limite nulle. On pose $f_n: x\mapsto \sin nx$. Montrer que la série $\sum_{n\geq 1} a_n f_n$ converge uniformément sur $\mathbb R$ si et seulement si la suite (na_n) converge vers 0.

Exercice 19 ★★★

Mines-Télécom MP 2018

- **1.** Déterminer l'ensemble de définition de la série de $f: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{\sinh(nx)}$. Donner un équivalent simple de f en 0.
- **2.** Mêmes questions avec $g: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{\sinh^2(nx)}$.

Mines-Télécom MP 2017

On définit la suite de fonctions (g_n) de [0,1] dans \mathbb{R} par $g_0 = 1$ et

$$\forall n \in \mathbb{N}, \ \forall x \in [0,1], \ g_{n+1}(x) = \int_0^x g_n(1-t) \ \mathrm{d}t$$

- **1.** Montrer que pour tout $n \in \mathbb{N}$, g_n est bornée et que $\forall n \in \mathbb{N}^*$, $\|g_{n+1}\|_{\infty} \le \frac{1}{2} \|g_{n-1}\|_{\infty}$.
- **2.** On pose $G: x \mapsto \sum_{n=0}^{\infty} g_n(x)$. Montrer que G est bien définie sur [0,1] et déterminer une équation différentielle vérifiée par G.
- 3. En déduire l'expression de G.

Exercice 21 ★★★★

Banque Mines-Ponts MP 2019

- **1.** Existe-t-il une suite de réels $(a_n)_{n\in\mathbb{N}}$ telle que $\forall k\in\mathbb{N}^*, \ \sum_{n=0}^{+\infty} a_n^k = k$?
- **2.** Existe-t-il une suite de réels $(a_n)_{n\in\mathbb{N}}$ telle que $\forall k\in\mathbb{N}^*, \ \sum_{n=0}^{+\infty} a_n^k = \frac{1}{k^2}$?

Exercice 22

CCINP (ou CCP) PC 2019

Soit $t \in \mathbb{R}$ et on pose $f(t) = \sum_{n=0}^{+\infty} \ln(1 + e^{nt})$.

- 1. Quel est l'ensemble de définition de f?
- 2. Montrer que $\lim_{t \to -\infty} f(t) = \ln(2)$.
- 3. Montrer que $\lim_{t\to 0^-} f(t) = +\infty$.

Exercice 23

CCINP (ou CCP) MP 2019

Soit $(a, b) \in (\mathbb{R}_+^*)^2$.

- **1.** Pour $t \in]0,1[$, écrire $\frac{t^{a-1}}{1+t^b}$ comme somme de série $\sum_{n\geq 0} u_n(t)$, où les u_n sont des fonctions puissances.
- 2. Déterminer la nature de la série $\sum \int_0^1 |u_n(t)| dt$. Que peut-on en déduire?
- 3. Soit $S_N(t) = \sum_{n=0}^{N} u_n(t)$. Démontrer

$$\int_0^1 \frac{t^{a-1}}{1+t^b} dt = \lim_{N \to +\infty} \int_0^1 S_N(t) dt$$

4. En déduire

$$\int_0^1 \frac{t^{a-1}}{1+t^b} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{a+nb}$$

5. Calculer $\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1}$.

Exercice 24 ★

Soit $\alpha > 0$. On pose $f_n : x \mapsto e^{-n^{\alpha}x}$ et $f = \sum_{n=0}^{+\infty} f_n$.

- 1. Quel est le domaine de définition de f?
- **2.** Étudier la continuité de f.
- 3. Étudier la limite de f en $+\infty$.

Exercice 25 ★★★

Arts et Métiers PSI

Soit f une fonction continue sur [a,b] à valeurs dans \mathbb{R} . Soit (f_n) la suite de fonctions définies par $f_0 = f$ et pour tout $n \in \mathbb{N}$,

$$\forall x \in [a, b], \ f_{n+1}(x) = \int_a^x f_n(t) \ \mathrm{d}t$$

- 1. Déterminer la nature de la convergence de la série $\sum_{n\in\mathbb{N}} f_n$ sur [a,b].
- 2. On note F la somme de cette série. Montrer que

$$\forall x \in [a, b], \ F(x) = f(x) + e^x \int_a^x e^{-t} f(t) \ dt$$

Exercice 26 ***

Centrale MP

Pour $n \in \mathbb{N}^*$, on pose $u_n : x \mapsto x \ln\left(1 + \frac{1}{n}\right) - \ln\left(1 + \frac{x}{n}\right)$.

- 1. Montrer que la série $\sum_{n\in\mathbb{N}^*}u_n$ converge simplement sur \mathbb{R}_+ .
- **2.** On note g la somme de la série $\sum_{n\in\mathbb{N}^*}u_n$. Montrer que g est de classe \mathcal{C}^1 sur \mathbb{R}_+ .
- **3.** On pose $f: x \mapsto g(x) \ln(x)$. Montrer que f vérifie les trois conditions suivantes :
 - (i) f(1) = 0.
 - (ii) f est convexe sur \mathbb{R}_+^* ;
 - (iii) $\forall x \in \mathbb{R}_+^*, f(x+1) f(x) = \ln(x);$
- **4.** Réciproquement, soit f vérifiant les trois conditions de la question précédente. Montrer que pour tout $x \in \mathbb{R}_+^*$,

$$f(x) = \lim_{n \to +\infty} x \ln(n) + \ln(n!) - \sum_{k=0}^{n} \ln(x+k)$$

Exercice 27 **

E3A MP 2019

On rappelle les formules de trigonométrie que l'on pourra utiliser sans les redémontrer

$$2\cos(p)\cos(q) = \cos(p+q) + \cos(p-q)$$
 $2\sin(p)\cos(q) = \sin(p+q) + \sin(p-q)$

On rappelle que pour tout $z \in \mathbb{C}$, la série $\sum_{n \in \mathbb{N}} \frac{z^n}{n!}$ converge et a pour somme e^z .

Soit α un réel non nul fixé.

Pour tout entier naturel n, on définit la fonction u_n de $\mathbb R$ vers $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \ u_n(x) = \frac{\alpha^n \cos(nx)}{n!}$$

- **1.** Déterminer l'ensemble de définition \mathcal{D} de la fonction $C: x \mapsto \sum_{n=0}^{+\infty} u_n(x)$.
- 2. Etudier la convergence uniforme de la série de fonctions $\sum u_n \operatorname{sur} \mathcal{D}$.
- **3.** Donner pour tout $x \in \mathcal{D}$ une expression de x à l'aide des fonctions usuelles.
- **4.** Pour tout entier naturel *n*, on note

$$J_n = \int_{-\pi}^{\pi} \sin(nx)C(x) dx \qquad I_n = \int_{-\pi}^{\pi} \cos(nx)C(x) dx$$

- **a.** Calculer J_n puis I_n .
- **b.** Déterminer $\lim_{n\to+\infty} J_n$ et $\lim_{n\to+\infty} I_n$.
- 5. On pose enfin, lorsque cela existe $S(x) = \sum_{n=0}^{+\infty} \frac{\alpha^n \cos^2(nx)}{n!}$.

Déterminer l'ensemble de définition de la fonction S et donner une expression de S(x) à l'aide des fonctions usuelles.

Exercice 28 **

CCINP (ou CCP) MP 2021

- 1. Etudier la convergence simple de $\sum_{n\geq 0} (-1)^n \frac{e^{-nx}}{n+1}$ sur \mathbb{R}_+ . On note, pour $x\in\mathbb{R}_+$, $S(x)=\sum_{n=0}^{+\infty} (-1)^n \frac{e^{-nx}}{n+1}$.
- **2.** La série de fonctions considérée converge-t-elle normalement sur \mathbb{R}_+ ? Converge-t-elle uniformément ?
- **3.** Montrer que sa somme est continue sur \mathbb{R}_+ et donner sa limite en $+\infty$.
- **4.** Résoudre $y' y = -\frac{e^x}{e^x + 1} \text{ sur }]0, +\infty[.$
- 5. En déduire l'expression de S à l'aide des fonctions usuelles.

Séries alternées

Exercice 29 ★★

CCINP (ou CCP) MP 2018

Soit (λ_n) une suite strictement croissante de réels strictement positifs de limite $+\infty$. On pose pour $n \in \mathbb{N}$ et $x \in \mathbb{R}_+^*$

$$f_n(x) = (-1)^n e^{-\lambda_n x}$$

- **1.** Etudier la convergence simple de la série $\sum f_n$ sur \mathbb{R}_+^* .
- **2.** Etudier sa convergence uniforme sur \mathbb{R}_+^* .
- 3. On pose $S = \sum_{n=0}^{+\infty} f_n$. Montrer que l'intégrale $\int_0^{+\infty} S(t) dt$ converge et que

$$\int_0^{+\infty} S(t) dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{\lambda_n}$$

Exercice 30 ★★

CCINP (ou CCP) PC 2017

On considère pour x > 0 la suite (u_n) définie pour $n \in \mathbb{N}$ par $u_n(x) = \frac{(-1)^n}{x+n}$ et $f(x) = \sum_{n=0}^{+\infty} u_n(x)$.

- **1.** f est-elle bien définie et continue sur \mathbb{R}_+^* ?
- 2. Montrer que

$$\forall x > 0, \ f(x) = \frac{1}{x} - \sum_{k=0}^{+\infty} \frac{(-1)^k}{x+k+1}$$

3. Montrer que

$$\forall x > 0, \ 2f(x) = \frac{1}{x} + \sum_{k=0}^{+\infty} \frac{(-1)^k}{(x+k+1)(x+k)}$$

- **4.** Déterminer un équivalent de f en $+\infty$.
- 5. Déterminer un équivalent de f en 0^+ .
- **6.** Montrer que :

$$f(x) = \int_0^1 \frac{t^{x-1}}{1+t} \, \mathrm{d}t$$

Exercice 31 ★★

Fonction ζ alternée

On considère la fonction S: $x \mapsto \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^x}$.

- 1. Déterminer le domaine de définition D de S.
- 2. Déterminer la limite de S en $+\infty$.
- 3. Montrer que pour tout $x \in D$,

$$2S(x) - 1 = \sum_{n=1}^{+\infty} (-1)^{n-1} u_n(x)$$

avec
$$u_n(x) = \frac{1}{n^x} - \frac{1}{(n+1)^x}$$
.

4. En déduire la limite de S en 0⁺.

Exercice 32

CCINP (ou CCP) MP 2021

Soit
$$S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x}$$
.

1. Montrer que S est définie et de classe \mathcal{C}^1 sur \mathbb{R}_+^* et montrer que

$$\forall x \in \mathbb{R}_+^*, \ S'(x) = \sum_{n=0}^{+\infty} \frac{(-1)^{n+1}}{(n+x)^2}$$

- 2. À l'aide du critère spécial des séries alternées, trouver la monotonie de S.
- 3. Montrer que

$$\forall x \in \mathbb{R}_+^*, \ S(x+1) + S(x) = \frac{1}{x}$$

puis en déduire un équivalent simple de S(x) pour x qui tend vers 0.

Exercice 33 ***

On pose
$$S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{1 + nx}$$
 pour $x > 0$.

- **1.** Justifier que S est définie et continue sur \mathbb{R}_+^* .
- 2. Étudier la limite de S en $+\infty$.
- **3.** Montrer que S est de classe \mathcal{C}^1 sur \mathbb{R}_+^* .

Exercice 34 ★★

E3A PSI 2020

Pour tout entier naturel n, on définit sur l'intervalle $J = [1, +\infty[$, la fonction f_n par :

$$f_n(x) = \frac{(-1)^n}{\sqrt{1+nx}}$$

- 1. Déterminer que la série de fonctions $\sum_{n\in\mathbb{N}} f_n$ converge simplement sur J. On note alors $\varphi(x)$ sa somme pour tout x de J.
- 2. Montrer que cette série de fonctions ne converge pas normalement sur J.
- **3.** Etudier alors sa convergence uniforme sur J.
- **4.** Déterminer $\ell = \lim_{x \to +\infty} \varphi(x)$.
- 5. Pour $n \in \mathbb{N}^*$, on note $u_n = \frac{(-1)^n}{\sqrt{n}}$.
 - **a.** Justifier la convergence de la série $\sum u_n$. On note $a = \sum_{n=1}^{+\infty} u_n$ sa somme.
 - **b.** Montrer que l'on a au voisinage de l'infini :

$$\varphi(x) = \ell + \frac{a}{\sqrt{x}} + \mathcal{O}\left(\frac{1}{x^{3/2}}\right)$$

Exercice 35

CCINP MP 2022

On pose pour $n \in \mathbb{N}$,

$$u_n(x) = \begin{cases} (-1)^{n+1} x^{2n+2} \ln(x) & \text{si } x \in]0, 1] \\ 0 & \text{si } x = 0 \end{cases}$$

- 1. Calculer $\sum_{n=0}^{+\infty} u_n(x)$ pour $x \in [0,1]$.
- 2. Montrer que $\sum u_n$ converge uniformément sur [0,1].
- 3. En déduire que

$$\int_0^1 \frac{x^2 \ln(x) \, dx}{1 + x^2} = \sum_{n=1}^{+\infty} \frac{(-1)^n}{(2n+1)^2}$$

Approximations

Exercice 36 ***

Soit $f:[a,b]\to\mathbb{R}$ continue telle que pour tout $k\in\mathbb{N},$ $\int_a^b f(t)t^k\,\mathrm{d}t=0$. Que peut-on dire de f?

Exercice 37 ★★★

Lemme de Riemann-Lebesgue

On considère un segment [a, b] de \mathbb{R} et un espace vectoriel normé de dimension finie E.

1. Soit φ une fonction en escalier sur [a, b] à valeurs dans E. Montrer que

$$\lim_{\lambda \to +\infty} \int_{a}^{b} e^{i\lambda t} \varphi(t) \, dt = 0$$

2. Soit f une fonction continue par morceaux sur [a,b] à valeurs dans E. Montrer que

$$\lim_{\lambda \to +\infty} \int_{a}^{b} e^{i\lambda t} f(t) \, dt = 0$$

3. Soit f une fonction intégrable sur $\mathbb R$ à valeurs dans E. Montrer que

$$\lim_{\lambda \to +\infty} \int_{-\infty}^{\infty} e^{i\lambda t} f(t) \, dt = 0$$