

数学规划模型

数学规划模型

实际问题中 的优化模型

x~决策变量

f(x)~目标函数

 $g_i(x) \leq 0$ ~约束条件

多元函数 条件极值 决策变量个数n和 约束条件个数m较大

> 最优解在可行域 的边界上取得

数学规划

线性规划 非线性规划 整数规划

重点在模型的建立和结果的分析

数学规划模型

- 4.1 奶制品的生产与销售
- 4.3 汽车生产
- 4.4 接力队选拔和选课策略
- 4.6 钢管和易拉罐下料

4.1 奶制品的生产与销售

——线性规划模型应用

企业生产计划

空间层次

工厂级:根据外部需求和内部设备、人力、原料等 条件,以最大利润为目标制订产品生产计划;

车间级:根据生产计划、工艺流程、资源约束及费用参数等,以最小成本为目标制订生产批量计划.

时间层次

若短时间内外部需求和内部资源等不随时间变化,可 制订单阶段生产计划,否则应制订多阶段生产计划.

例1 加工奶制品的生产计划

每天: 50桶牛奶 时间480小时 至多加工100公斤A₁

制订生产计划,使每天获利最大

- 35元可买到1桶牛奶,买吗?若买,每天最多买多少?
- 可聘用临时工人,付出的工资最多是每小时几元?
- A₁的获利增加到30元/公斤,应否改变生产计划?

基本 模型

1桶

12小时

3公斤A₁ ├

→ 获利24元/公斤

8小时

4公斤A₂ |

→ 获利16元/公斤

50桶牛奶 时间480小时 至多加工100公斤A₁

决策变量

 x_1 桶牛奶生产 A_1 x_2 桶牛奶生产 A_2

目标函数

获利 24×3x₁ 获利 16×4 x₂

每天获利 $Max z = 72x_1 + 64x_2$

约束条件

原料供应 劳动时间 加工能力 非负约束

$$x_1 + x_2 \le 50$$

$$12x_1 + 8x_2 \le 480$$

$$3x_1 \le 100$$

$$x_1, x_2 \ge 0$$

线性 规划 模型 (LP)

模型分析与假设

线性规划模型

比例性

 x_i 对目标函数的"贡献"与 x_i 取值成正比

 A_1,A_2 每公斤的获利是与各自产量无关的常数

 x_i 对约束条件的"贡献"与 x_i 取值成正比

每桶牛奶加工A₁,A₂的数量, 时间是与各自产量无关的常数

可加性

 x_i 对目标函数的"贡献"与 x_j 取值无关

 A_1,A_2 每公斤的获利是与相互 产量无关的常数

 x_i 对约束条件的"贡献"与 x_j 取值无关

每桶牛奶加工 A_1,A_2 的数量,时间是与相互产量无关的常数

连续性

 x_i 取值连续

加工A₁,A₂的牛奶桶数是实数

模型求解

图解法

约束条件

$$x_1 + x_2 \le 50$$
 \Box $l_1 : x_1 + x_2 = 50$
 $12x_1 + 8x_2 \le 480$ \Box $l_2 : 12x_1 + 8x_2 = 480$
 $3x_1 \le 100$ \Box $l_3 : 3x_1 = 100$
 $x_1, x_2 \ge 0$ \Box $l_4 : x_1 = 0, l_5 : x_2 = 0$

目标 函数

$$Max z = 72x_1 + 64x_2$$

z=c (常数)~等值线

z=0 Z=2400 在B(20,30)点得到最优解

Z=3600

目标函数和约束条件是线性函数 可行域为直线段围成的凸多边形 目标函数的等值线为直线

最优解一定在凸多边 形的某个顶点取得。

模型求解

软件实现

LINGO

0.000000

model: max = 72*x1+64*x2; [milk] x1 + x2<50; [time] 12*x1+8*x2<480; [cpct] 3*x1<100; end

```
Global optimal solution found.
Objective value:
                            3360.000
Total solver iterations:
                                2
Variable Value
                     Reduced Cost
  X1 20.00000
                       0.000000
  X2
        30.00000
                       0.000000
 Row Slack or Surplus Dual Price
      3360.000
                    1.000000
 1
         0.000000
 MILK
                       48.00000
 TIME
         0.000000
                       2.000000
```

40.00000

20桶牛奶生产A₁,30桶生产A₂,利润3360元。

CPCT

结果解释

```
model:
max = 72*x1+64*x2;
Global optimal solution found.
Objective value:
```

[milk]
$$x1 + x2 < 50$$
; Total solver iterations: 2

[ume] 12^X1+8^X2<480;	Variable	Value	Reduced Cost
[cpct] 3*x1<100;	X1	20.00000	0.00000
end	X2	30.00000	0.000000

MILK	0.000000	48.00000
TIME	0.000000	2.000000

3360.000

```
时间无剩余 ←
```

三种资源

"资源"剩余为零的约束为紧约束(有效约束)

Global optimal solution found.

Objective value: 3360.000

Total solver iterations: 2

Variable Value Reduced Cost X1 20.00000 0.000000

X2 30.00000 0.000000

Row Slack or Surplus Dual Price

1 3360,000 1,000000

MILK 0.000000 48.00000

TIME 0.000000 2.000000

CPCT 40.00000 0.000000

结果解释

最优解下"资源"增加1单位 时"效益"的增量

影子价格

- → 原料增加1单位, 利润增长48
- → 时间增加1单位,利润增长2
- → 加工能力增长不影响利润

- 35元可买到1桶牛奶, 要买吗? 35 <48, 应该买!
- 聘用临时工人付出的工资最多每小时几元? 2元!

敏感性分析

- 目标函数的系数发生变化时(假定约束条件不变),最优解和最优值会改变吗?
 - 从图看,目标函数的系数决定了等值线族的斜率,原题中该斜率(取绝对值,下同》为72/64 =9/8 ,介于直线 L_1 的斜率1与 L_2 的斜率3/2 之间,最优解自然在 L_1 和 L_2 的交点B 取得.
 - 只要目标函数系数的变化使得等值线族的 斜率仍然在(1,3/2)范围内,这个最 优解就不会改变。
 - 当目标函数系数的变化使得等值线族的斜率小于1 时,最优解将在A 点取得,大子3/2 时,最优解将在C 点取得.

这种对目标函数系数变化的影响的讨论,通常称为对目标函数系数的敏感性分析.

敏感性分析 ("LINGO | Ranges")

最优解不变时目标函数系数 允许变化范围

Ranges in which the basis is unchanged:

100.0000

CPCT

Objective Coefficient Ranges

INFINITY 40.00000

Allowable Allowable Current Variable Coefficient Increase Decrease X1 72.00000 24.00000 8.000000 X2 64.00000 8.000000 16.00000 Righthand Side Ranges **Current Allowable Allowable** Row RHS Increase Decrease 50.00000 10.00000 MILK 6.666667 TIME 480.0000 53.33333 80.00000

(约束条件不变)

x₁系数范围(64,96)

x₂系数范围(48,72)

x₁系数由24 ×3=72增加 为30×3=90,在允许范 围内

· A₁获利增加到 30元/公斤,应否改变生产计划? 不变!

结果解释

影子价格有意义时约束右端的允许变化范围

(目标函数不变)

Ranges in which the basis is unchanged:

Objective Coefficient Ranges

	Current	Allowable	Allowable
Variable	Coefficient	Increase	Decrease
X1	72.00000	24.00000	8.000000
X2	64.00000	8.000000	16.00000
	Pightha	and Side Rang	AC

Rightnand Side Ranges

Row	Current	Allowable Allowable	
	RHS	Increase Decrease	
MILK	50.00000	10.00000 6.66666	7
TIME	480.0000	53.33333 80.00000)
CPCT	100.0000	INFINITY 40.00000	

原料最多增加10

时间最多增加53

充分条件!

• 35元可买到1桶牛奶, 每天最多买多少? 最多买10桶!

Matlab线性规划实现

1、模型: min z=cX

s.t. $AX \leq b$

命令: x=linprog(c, A, b)

2、模型: min z=cX s.t. AX ≤ b

 $Aeq \cdot X = beq$

命令: x=linprog (c, A, b, Aeq,beq)

注意:若没有不等式: $AX \leq b$ 存在,则令A=[], b=[].

3、模型: $\min_{S.t.} z=cX$ $Aeq \cdot X = beq$

VLB<X<VUB

命令: [1] x=linprog (c, A, b, Aeq,beq, VLB, VUB)

[2] x=linprog (c, A, b, Aeq,beq, VLB, VUB, X_0)

注意: [1] 若没有等式约束: $Aeq \cdot X = beq$,则令Aeq=[], beq=[].

[2]其中 X_0 表示初始点

4、命令: [x,fval]=linprog(...)

返回最优解 × 及 × 处的目标函数值fval.

```
Max \ z = 72x_1 + 64x_2 c = [-72 - 64]; A = [1 1; 12 8; 3 0]; b = [50; 480; 100]; [x, fval, exitflag, output] = linprog(c, A, b) x = 20.0000 x_1, x_2 \ge 0 x_1, x_2 \ge 0 x_1 = -3360
```


Python线性规划实现

- scipy工具包
 - 线性规划函数

```
scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='interior-point', callback=None, options=None, x0=None)
```

$$egin{aligned} \min_{x} \ c^T x \ & ext{such that} \ A_{ub} x \leq b_{ub}, \ & A_{eq} x = b_{eq}, \ & l \leq x \leq u, \end{aligned}$$

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

对偶性

Max
$$z = 72x_1 + 64x_2$$

 $x_1 + x_2 \le 50$
 $12x_1 + 8x_2 \le 480$
 $3x_1 \le 100$
 $x_1, x_2 \ge 0$

Min
$$z = 50y_1 + 480y_2 + 100y_3$$

 $y_1 + 12y_2 + 3y_3 \ge 72$
 $y_1 + 8y_2 \ge 64$
 $y_1, y_2, y_3 \ge 0$

例2 奶制品的生产销售计划

在例1基础上深加工

至多100公斤A₁

制订生产计划,使每天净利润最大

- •30元可增加1桶牛奶,3元可增加1小时时间,应否投资?现投资150元,可赚回多少?
- B₁, B₂的获利经常有10%的波动,对计划有无影响?
- 每天销售10公斤A1的合同必须满足,对利润有什么影响?

决策 变量

目标函数

约束 条件

出售 $x_1 kg A_1, x_2 kg A_2, x_3 kg B_1, x_4 kg B_2$

 $x_5 kg A_1$ 加工 B_1 , $x_6 kg A_2$ 加工 B_2

利润

$$Max \quad z = 24x_1 + 16x_2 + 44x_3 + 32x_4 - 3x_5 - 3x_6$$

原料 供应

劳动

时间

$$\frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$$

附加约束

加工能力

 $4(x_1 + x_5) + 2(x_2 + x_6)$

$$+2x_5 + 2x_6 \le 480$$

非负约束

 $x_3 = 0.8x_5$

 $x_1 + x_5 \le 100$

 $x_4 = 0.75x_6$

 $x_1, \cdots x_6 \ge 0$

模型求解

软件实现

```
c=[-24 -16 -44 -32 3 3];
A=[1 \ 0 \ 0 \ 0 \ 1 \ 0; 1/3 \ 1/4 \ 0 \ 0 \ 1/3
1/4;4 2 0 0 6 41;
b=[100 50 480]'
Aeq=[0\ 0\ 1\ 0\ -0.8\ 0;0\ 0\ 1\ 0\ -
0.751;
beq=zeros(2,1)
lb=zeros(6,1)
[x, fval, exitflag, output, lambda] = lin
prog(c, A, b, Aeq, beq, lb, [])
```

Global optimal solution found.

Objective value: 3460.800

Total solver iterations: 2

ariable/	Value	Reduced Cost
X1	0.000000	1.680000
X2	168.0000	0.00000
X3	19.20000	0.000000
X 4	0.00000	0.000000
X5	24.00000	0.00000
Xe	0.00000	1.520000
Row	Slack or Surplus	S Dual Price
1	3460.800	1.000000
MILK	0.000000	3.160000
TIME	0.000000	3.260000
CPC	Г 76.00000	0.000000
5	0.00000	44.00000
6	0.00000	32.00000

结果解释

每天销售168 kgA₂ 和19.2 kgB₁, 利润3460.8(元)

8桶牛奶加工成 A_1 , 42桶牛奶加工成 A_2 , 将得到的 $24kgA_1$ 全部 加工成 B_1

> 除加工能力外 均为紧约束

30元可增加1桶牛奶,3元可增加1小时时间,应否投资?现 投资150元,可赚回多少?

结果解释

Global optimal solution found.

Objective value: 3460.800

Total solver iterations: 2

iotai	solver iterations.	
Variat	ole Value	Reduced Cost
X1	0.00000	1.680000
X2	168.0000	0.00000
X3	19.20000	0.00000
X4	0.000000	0.00000
X5	24.00000	0.00000
X6	0.00000	1.520000
Row	Slack or Surplus	Dual Price
1	3460.800	1.000000
MILK	0.000000	3.160000
TIME	0.000000	3.260000
CPCT	76.00000	0.000000
5	0.000000	44.00000
6	0.000000	32.00000

$$2) \frac{x_1 + x_5}{3} + \frac{x_2 + x_6}{4} \le 50$$

2)
$$4x_1 + 3x_2 + 4x_5 + 3x_6 \le 600$$

增加1桶牛奶使利润 增长

增加1小时时间使利润增长3.26

投资150元增加5桶牛奶,可赚回189.6元。(大于增加时间的利润增长)

结果解释

B₁,B₂的获利有10%的波动,对计划有无影响

Ranges in which the basis is unchanged:

i tan	800 II	I WITHOUT CITE DUSIS IS WITH	criarigea.	
敏感性分析		Objective Coefficie	ent Ranges	
		Current Allowable	Allowable	
Varia	able	Coefficient Increase	Decrease	
	X1	24.000000	1.680000	INFINITY
B ₁ 获利下降10% , 超出 <mark>X3</mark> 系 数允许范围	X2	16.000000	8.150000	2.100000
3X 76 M 76 PA	ХЗ	44.00000	19.750002	3.166667
B ₂ 获利上升10%,超出X4系	X4	32.000000	2.026667	INFINITY
数允许范围	X5	-3.000000 1	5.800000	2.533334
	X6	-3.000000	1.520000	INFINITY
☆☆ニもっ+**エドロオ = 目くの ☆				

波动对计划有影响

生产计划应重新制订:如将 x_3 的系数改为39.6计算,会发现结果有很大变化。

每天销售10公斤 A_1 的合同必须满足,对利润有什么影响?

结果解释

Global optimal solution found.

Objective value: 3460.800

Total solver iterations: 2

/ariable	Value	Reduced Cost
X1	0.00000	1.680000
X2	168.0000	0.00000
Х3	19.20000	0.00000
X4	0.00000	0.000000
X5	24.00000	0.00000
X6	0.000000	1.520000
Row	Slack or Surplus	S Dual Price
1	3460.800	1.000000
MILK	0.00000	3.160000
TIME	0.00000	3.260000
CPCT	76.00000	0.000000
5	0.00000	44.00000
6	0.00000	32.00000

x₁从0开始增加一个单位时, 最优目标函数值将减少1.68

公司利润减少 1.68×10=16.8(元)

最优利润为 3460.8 - 16.8 = 3444

奶制品的生产与销售

- 由于产品利润、加工时间等均为常数,可建立线性规划模型.
- 线性规划模型的三要素:决策变量、目标函数、约束条件.
- 建模时尽可能利用原始的数据信息,把尽量多的计算留给计算机去做(分析例2的建模).
- Matlab使用矩阵形式表示目标函数和线性约束条件,可以计算影子价格。
- •用LINGO求解,输出丰富,利用影子价格和灵敏性分析可对结果做进一步研究.

4.3 汽车生产 ——整数规划

例1 汽车厂生产计划

汽车厂生产三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润及工厂每月的现有量.

	小型	中型	大型	现有量
钢材(吨)	1.5	3	5	600
劳动时间(小时)	280	250	400	60000
利润(万元)	2	3	4	

- 制订月生产计划,使工厂的利润最大.
- ·如果生产某一类型汽车,则至少要生产80辆,那么最优的生产计划应作何改变?

汽车厂生产计划

模型建立

设每月生产小、中、大型 汽车的数量分别为 x_1, x_2, x_3

	小型	中型	大型	现有量
钢材	1.5	3	5	600
时间	280	250	400	60000
利润	2	3	4	

Max
$$z = 2x_1 + 3x_2 + 4x_3$$

s.t. $1.5x_1 + 3x_2 + 5x_3 \le 600$
 $280x_1 + 250x_2 + 400x_3 \le 60000$
 $x_1, x_2, x_3 \ge 0$

线性规划 模型(LP)

模型 求解

结果为小数, 怎么办?

```
      Objective Value: 632.2581

      Variable
      Value
      Reduced Cost

      X1
      64.516129
      0.000000

      X2
      167.741928
      0.000000

      X3
      0.000000
      0.946237

      Row
      Slack or Surplus
      Dual Price

      2
      0.000000
      0.731183

      3
      0.000000
      0.003226
```

- 1)舍去小数: $取x_1=64$, $x_2=167$, 算出目标函数值 z=629, 与LP最优值632.2581相差不大.
- 2) 试探:如取 x_1 =65, x_2 =167; x_1 =64, x_2 =168等, 计算函数值z,通过比较可能得到更优的解.
 - 但必须检验它们是否满足约束条件. 为什么?
- 3)模型中增加条件: x₁, x₂, x₃ 均为整数,重新求解.

模型求解

整数规划(Integer Programming, 简记IP)

$$Max$$
 $z = 2x_1 + 3x_2 + 4x_3$
 $s.t.$ $1.5x_1 + 3x_2 + 5x_3 \le 600$
 $280x_1 + 250x_2 + 400x_3 \le 60000$
 x_1, x_2, x_3 为非负整数

IP可用LINGO直接求解

```
max=2*x1+3*x2+4*x3;
1.5*x1+3*x2+5*x3<600;
280*x1+250*x2+400*x3
<60000;
@gin(x1);@gin(x2);@gin(x3);
```

Global optimal solution found.

Objective va	632.0000	
Extended so	0	
Total solver	3	
Variable	Value	Reduced Cost
X1	64.00000	-2.000000
X2	168.0000	-3.000000
X3	0.000000	-4.000000

IP 结果输出

IP 的最优解 x₁=64, x₂=168, x₃=0, 最优值z=632

Matlab整数规划求解

```
c = [-2 -3 -4];
intcon=[1 2 3];
A=[1.5 \ 3 \ 5;280 \ 250 \ 400];
b=[600 60000]';
lb=zeros(3,1);
[x, fval, exitflag, output] = intlinprog(c, intcon, A, b, [], [], lb, [])
\chi =
 64.0000
 168.0000
    0
fval =
-632.0000
```

汽车厂生产计划

• 若生产某类汽车,则至少生产80辆,求生产计划.

$$Max$$
 $z = 2x_1 + 3x_2 + 4x_3$
 $s.t.$ $1.5x_1 + 3x_2 + 5x_3 \le 600$
 $280x_1 + 250x_2 + 400x_3 \le 60000$
 $x_1, x_2, x_3 = 0$ 或 ≥80

方法1: 分解为8个LP子模型

其中3个子模型应去掉,然后逐一求解,比较目标函数值, 再加上整数约束,得最优解:

$$x_1 = 0, x_2 = 0, x_3 \ge 80$$

 $x_1 = 0, x_2 \ge 80, x_3 = 0$
 $x_1 = 0, x_2 \ge 80, x_3 \ge 80$ \times
 $x_1 \ge 80, x_2 = 0, x_3 = 0$
 $x_1 \ge 80, x_2 \ge 80, x_3 = 0$
 $x_1 \ge 80, x_2 \ge 80, x_3 \ge 80$
 $x_1 \ge 80, x_2 \ge 80, x_3 \ge 80$

 $x_1, x_2, x_3 = 0$

 x_1 =80, x_2 = 150, x_3 =0, 最优值z=610

• 若生产某类汽车,则至少生产80辆,求生产计划.

方法2: 引入0-1变量, 化为整数规划

$$x_1$$
=0 或 \geq 80 口 $x_1 \leq My_1, x_1 \geq 80y_1, y_1 \in \{0,1\}$ **M为大的正数**, x_2 =0 或 \geq 80 口 $x_2 \leq My_2, x_2 \geq 80y_2, y_2 \in \{0,1\}$ **本例可取1000**

LINGO中对0-1变量的 限定:

@bin(y1); @bin(y2);

@bin(y3);

Objective V	alue:	610.0000		
Variable	Value	Reduced Cost		
X1	80.000000	-2.000000		
X2 1	150.000000	-3.000000		/ IV & T T - 1
X3	0.000000	-4.000000	最 [*]	优解同前
Y1	1.000000	0.000000		
$\mathbf{Y2}$	1.000000	0.000000		
Y 3	0.000000	0.000000		

Matlab 0-1线性规划

```
c=[-2 -3 -4 0 0 0];
intcon=[1 2 3 4 5 6];
                                                          \chi =
A=[1.5 \ 3 \ 5 \ 0 \ 0 \ 0;280 \ 250 \ 400 \ 0 \ 0; \dots]
                                                           80
    -1 0 0 80 0 0;1 0 0 -1000 0 0; ...
                                                           150
    0 -1 0 0 80 0;0 1 0 0 -1000 0; ...
                                                            0
    0 0 -1 0 0 80;0 0 1 0 0 -1000];
                                                            1
b=[600 60000 0 0 0 0 0]';
lb=zeros(6,1);
ub=[inf inf inf 1 1 1]';
                                                          fval =
[x, fval, exitflag, output] = intlinprog(c, intco
                                                           -610
n, A, b, [], [], lb, [])
```

• 若生产某类汽车,则至少生产80辆,求生产计划.

方法3: 化为非线性规划

最优解同前.

$$x_2(x_2 - 80) \ge 0$$

 $x_1(x_1 - 80) \ge 0$

$$x_3(x_3 - 80) \ge 0$$

非线性规划 (Non-Linear Programming, 简记NLP)

```
max=2*x1+3*x2+4*x3;

1.5*x1+3*x2+5*x3<600;

280*x1+250*x2+400*x3<60000;

x1*(x1-80)>0;

x2*(x2-80)>0;

x3*(x3-80)>0;

@gin(x1);@gin(x2);@gin(x3);
```

一般地,整数规划和非 线性规划的求解比线性 规划困难得多,特别是 问题规模较大或者要求 得到全局最优解时.

总结: 混合整数规划

- 决策变量为整数, 建立整数规划模型.
- 求解整数规划和非线性规划比线性规划困难得多 (即便用数学软件).
- 当整数变量取值很大时,可作为连续变量处理, 问题简化为线性规划.
- •对于类似于 "x=0 或 ≥ 80 "这样的条件,通常引入0-1变量处理,尽量不用非线性规划(特别是引入的整数变量个数较少时).
- 当遇到分段线性函数约束时,也可以通过引入0-1变量处理。(实验2)

4.4 接力队选拔和选课策略

——分派问题

若干项任务分给一些候选人来完成,每人的专长不同,完成每项任务取得的效益或需要的资源不同,如何分派任务使获得的总效益最大,或付出的总资源最少?

若干种策略供选择,不同的策略得到的收益或付出的成本不同,各个策略之间有相互制约关系,如何在满足一定条件下作出抉择,使得收益最大或成本最小?

例1 混合泳接力队的选拔

5名候选人的百米成绩

	甲	乙	丙	丁	戊
蝶泳	1'06"8	57"2	1'18"	1'10"	1'07"4
仰泳	1'15"6	1'06"	1'07"8	1'14"2	1'11"
蛙泳	1'27"	1'06"4	1'24"6	1'09"6	1'23"8
自由泳	58"6	53"	59"4	57"2	1'02"4

如何选拔队员组成4×100米混合泳接力队?

讨论:丁的蛙泳成绩退步到1'15"2; 戊的自由泳成绩 进步到57"5,组成接力队的方案是否应该调整?

穷举法:组成接力队的方案共有5!=120种.

0-1规划模型 $c_{ii}(\mathfrak{d})$ ~队员i 第j 种泳姿的百米成绩

c_{ij}	<i>i</i> =1	<i>i</i> =2	<i>i</i> =3	<i>i</i> =4	<i>i</i> =5
j=1	66.8	57.2	78	70	67.4
j=2	75.6	66	67.8	74.2	7 1
<i>j</i> =3	87	66.4	84.6	69.6	83.8
<i>j</i> =4	58.6	53	59.4	57.2	62.4

若选择队员i参加泳姿j 的比赛,记 x_{ii} =1,否则记 x_{ii} =0

目标 函数

Min
$$Z = \sum_{j=1}^{4} \sum_{i=1}^{5} c_{ij} x_{ij}$$

约束 条件

每人最多入选泳姿之一

$$\sum_{i=1}^{4} x_{ij} \le 1, \ i = 1, \dots 5$$

$$\sum_{i=1}^{5} x_{ij} = 1, \quad j = 1, \dots 4$$

每种泳姿有且只有1人

输入LINGO求解


```
MODEL:
  sets:
   person/1..5/;
   position/1..4/;
   link(person,position): c,
X;
  endsets
  data:
   c = 66.8, 75.6, 87, 58.6,
    57.2, 66, 66.4, 53,
     78, 67.8, 84.6, 59.4,
     70, 74.2, 69.6, 57.2,
     67.4, 71, 83.8, 62.4;
  enddata
```

Matlab求解

```
c=[66.8 75.6 87 58.6 ...
    57.2 66 66.4 53 ...
    78 67.8 84.6 59.4 ...
    70 74.2 69.6 57.2 ...
    67.4 71 83.8 62.4];
A=blkdiag(ones(1,4),ones(1,4),ones(1,4),ones(1,4),ones(1,4)
(1,4), ones (1,4));
b = ones(5, 1);
Aeq=[eye(4) eye(4) eye(4) eye(4)];
beq=ones(4,1);
lb=zeros(20,1);
ub=ones (20, 1);
intcon=[1:20];
[x, fval, exitflag, output] = intlinprog(c, intcon
,A,b,Aeq,beq,lb,ub);
xm = reshape(x, 4, 5)
```

模型求解

最优解: $x_{14} = x_{21} = x_{32} = x_{43} = 1$, 其它变量为0;

成绩为253.2(秒)=4'13"2

	甲	乙	丙	丁	戊
蝶泳	1'06"8	57"2	1'18"	1'10"	1'07"4
仰泳	1'15"6	1'06"	1'07"8	1'14"2	1'11"
蛙泳	1'27"	1'06"4	1'24"6	1'09"6	1'23"8
自由泳	58"6	53"	59"4	57"2	1'02"4

甲~自由泳、乙~蝶泳、丙~仰泳、丁~蛙泳.

讨论 原分配方案:

甲~自由泳、乙~蝶泳、丙~仰泳、丁~蛙泳.

丁蛙泳 c_{43} = 69.6 \rightarrow 75.2 (秒),戊自由泳 c_{54} = 62.4

→ 57.5 (秒), 方案是否调整? 敏感性分析?

IP一般没有与LP相类似的理论,LINGO输出的敏感性分析结果通常是没有意义的.

 c_{43} , c_{54} 的新数据重新输入模型,求解

最优解: $x_{21} = x_{32} = x_{43} = x_{51} = 1$, 成绩为4'17"7

新方案: 乙~蝶泳、丙~仰泳、丁~蛙泳、戊~自由泳

总结 混合泳接力队的选拔

指派(Assignment)问题:有若干项任务,每项任务必有且只能有一人承担,每人只能承担一项,不同人员承担不同任务的效益(或成本)不同,怎样分派各项任务使总效益最大(或总成本最小)?

- 人员数量与任务数量相等
- 人员数量大于任务数量(本例)
- 人员数量小于任务数量?

建立0-1规划模型是常用方法

例2 选课策略

课号	课名	学分	所属类别	先修课要求
1	微积分	5	数学	
2	线性代数	4	数学	
3	最优化方法	4	数学;运筹学	微积分;线性代数
4	数据结构	3	数学; 计算机	计算机编程
5	应用统计	4	数学;运筹学	微积分;线性代数
6	计算机模拟	3	计算机;运筹学	计算机编程
7	计算机编程	2	计算机	
8	预测理论	2	运筹学	应用统计
9	数学实验	3	运筹学; 计算机	微积分;线性代数

要求至少选两门数学课、三门运筹学课和两门计算机课

为了选修课程门数最少,应学习哪些课程? 选修课程最少,且学分尽量多,应学习哪些课程?

0-1规划模型

课号	课名	所属类别
1	微积分	数学
2	线性代数	数学
3	最优化方法	数学;运筹学
4	数据结构	数学; 计算机
5	应用统计	数学;运筹学
6	计算机模拟	计算机;运筹学
7	计算机编程	计算机
8	预测理论	运筹学
9	数学实验	运筹学; 计算机

约束条件

最少2门数学课, 3门运筹学课, 2门计算机课.

决策变量

 $x_i=1$ ~选修课号i 的课程($x_i=0$ ~不选)

目标函数

选修课程总数最少

$$Min \quad Z = \sum_{i=1}^{9} x_i$$

$$x_1 + x_2 + x_3 + x_4 + x_5 \ge 2$$

$$x_3 + x_5 + x_6 + x_8 + x_9 \ge 3$$

$$x_4 + x_6 + x_7 + x_9 \ge 2$$

0-1规划模型

课号	课名	先修课要求
* 1	微积分	
* 2	线性代数	
* 3	最优化方法	微积分;线性代数
4	数据结构	计算机编程
5	应用统计	微积分;线性代数
* 6	计算机模拟	计算机编程
* 7	计算机编程	
8	预测理论	应用统计
* 9	数学实验	微积分;线性代数

模型求解

最优解: $X_1 = X_2 = X_3 = X_6 = X_7 = X_9 = 1$, 其它为0;6门课程,总学分21.

约束条件

先修课程要求

$$x_3 = 1$$
必有 $x_1 = x_2 = 1$

$$x_3 \le x_1, x_3 \le x_2$$

$$2x_3 - x_1 - x_2 \le 0$$

$$x_4 \le x_7 \ \square \ x_4 - x_7 \le 0$$

$$2x_5 - x_1 - x_2 \le 0$$

$$x_6 - x_7 \le 0$$

$$x_8 - x_5 \le 0$$

$$2x_9 - x_1 - x_2 \le 0$$

讨论: 选修课程最少, 学分尽量多, 应学习哪些课程?

课程最少

学分最多

$$Min \quad Z = \sum_{i=1}^{9} x_i$$

$$Max W = 5x_1 + 4x_2 + 4x_3 + 3x_4 + 4x_5$$
$$+3x_6 + 2x_7 + 2x_8 + 3x_9$$

两目标(多目标)规划

 $Min \{Z, -W\}$

多目标优化的处理方法: 化成单目标优化。

• 以课程最少为目标, 不管学分多少.

最优解如上,6门 课程,总学分21.

• 以学分最多为目标, 不管课程多少.

最优解显然是选修 所有9门课程.

多目标规划

在课程最少的前提下 以学分最多为目标。

增加约束	$\sum x_i = 6,$
以学分最多	, 为目标求解.

课号	课名	学分
* 1 *	微积分	5
* 2 *	线性代数	4
* 3 *	最优化方法	4
4	数据结构	3
* 5 *	应用统计	4
* 6	计算机模拟	3
* 7 *	计算机编程	2
8	预测理论	2
9 *	数学实验	3

最优解: $X_1 = X_2 = X_3 = X_5$ = $X_7 = X_9 = 1$, 其它为0; 总学分由21增至22.

注意:最优解不唯一!

可将 $x_9 = 1$ 易为 $x_6 = 1$

LINGO不能告诉优化 问题的解是否唯一.

多目标规划

• 对学分数和课程数加权形成一个目标, 如三七开.

$$| \nabla Min Y = \lambda_1 Z - \lambda_2 W = 0.7Z - 0.3W$$

课号	课名	学分
1 *	微积分	5
2 *	线性代数	4
3 *	最优化方法	4
4 *	数据结构	3
5 *	应用统计	4
6 *	计算机模拟	3
7 *	计算机编程	2
8	预测理论	2
9 *	数学实验	3

$$Z = \sum_{i=1}^{9} x_i$$

$$W = 5x_1 + 4x_2 + 4x_3 + 3x_4 + 4x_5$$
$$+3x_6 + 2x_7 + 2x_8 + 3x_9$$

最优解: $X_1 = X_2 = X_3 = X_4$ = $X_5 = X_6 = X_7 = X_9 = 1$, 其它为0; 总学分28.

多目标规划

讨论与思考

Min
$$Y = \lambda_1 Z - \lambda_2 W$$
 $\lambda_1 + \lambda_2 = 1$, $0 \le \lambda_1, \lambda_2 \le 1$

$$Z = \sum_{i=1}^{9} x_i$$

$$W = 5x_1 + 4x_2 + 4x_3 + 3x_4 + 4x_5$$

$$+3x_6 + 2x_7 + 2x_8 + 3x_9$$

$$\lambda_1 < 2/3$$

最优解与 $\lambda_1=0$, $\lambda_2=1$ 的结果相同——学分最多.

$$\lambda_1 > 3/4$$

最优解与 $\lambda_1=1$, $\lambda_2=0$ 的结果相同——课程最少.

选课策略

用0-1变量表示策略选择是常用的方法

- "要选甲 (x_1) 必选乙 (x_2) " 可用 $x_1 \le x_2$ 描述.
- "要选甲 (x₁)必不选乙 (x₂)" 怎样描述?
- "甲乙二人至多选一人" 怎样描述?
- "甲乙二人至少选一人" 怎样描述?

双(多)目标规划的处理方法

- 加权组合成一个新目标, 化为单目标规划.
- 一个目标作为约束, 解另一个目标的规划.

4.6 钢管下料 ——原料下料问题

生产中通过切割、剪裁、冲压等手段, 将原材料加工成规定大小的成材.

优化问题:按照工艺要求,确定下料方案,使所用材料最省,或利润最大.

例1钢管下料

客户需求

原料钢管:每根19米

4米50根

6米20根

8米15根

问题1. 如何下料最节省? 节省的标准是什么?

问题2. 客户增加需求: ————

5米10根

由于采用不同切割模式太多,会增加生产和管理成本,规定切割模式不能超过3种.如何下料最节省?

钢管下料

切割模式

按照客户需要在一根原料钢管上安排切割的一种组合,如:

合理切割模式的余料应小于客户需要钢管的最小尺寸.

合理切割模式

模式	4米钢管根数	6米钢管根数	8米钢管根数	余料(米)
1	4	0	0	3
2	3	1	0	1
3	2	0	1	3
4	1	2	0	3
5	1	1	1	1
6	0	3	0	1
7	0	0	2	3

为满足客户需要,按照哪些种合理模式切割,每种模式切割多少根原料钢管,最为节省?

节省的 两种标准

- 1. 原料钢管剩余总余量最小.
- 2. 所用原料钢管总根数最少.

决策变量 x_i ~按第i 种模式切割的原料钢管根数(i=1,...7)

目标1(总余量) *Min* $Z_1 = 3x_1 + x_2 + 3x_3 + 3x_4 + x_5 + x_6 + 3x_7$

模式	4米 根数	6米 根数	8 米 根数	余料
1	4	0	0	3米
2	3	1	0	1米
3	2	0	1	3米
4	1	2	0	3米
5	1	1	1	1米
6	0	3	0	1米
7	0	0	2	3米
需求	50	20	15	

约束 满足需求

$$4x_1 + 3x_2 + 2x_3 + x_4 + x_5 \ge 50$$

$$x_2 + 2x_4 + x_5 + 3x_6 \ge 20$$

$$x_3 + x_5 + 2x_7 \ge 15$$

整数约束: x_i为整数

最优解: x₂=12, x₅=15,

其余为0;

最优值: 27.

按模式2切割12根,按模式5切割15根,共27根,余料27米.

目标2(总根数) Min $Z_2 = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$

约束条 件不变

$$4x_1 + 3x_2 + 2x_3 + x_4 + x_5 \ge 50$$

 $x_2 + 2x_4 + x_5 + 3x_6 \ge 20$
 $x_3 + x_5 + 2x_7 \ge 15$
 x_i 为整数

最优解: x₂=15, x₅=5, x₇=5, 其余为0; 最优值: 25.

按模式2切割15根,按模式5切割5根,按模式7切割5根,共25根,余料35米.

与目标1的结果"共切割27根,余料27米"相比.

目标2切割减少了2根, 但余料增加8米, 为什么?

原料钢管:每根19米

目标1(总余量) ~ x_2 =12, x_5 =15, 共27根, 余27米

目标2(总根数) ~ x_2 =15, x_5 =5, x_7 =5, 共25根, 余35米

模式	4米 根数	6米 根数	8米 根数	余料 (米)
2	3	1	0	1
5	1	1	1	1
7	0	0	2	3

	4米 根数	6米 根数	8米 根数
需求	50	20	15
目标1	51	27	15
目标2	50	20	15

按照目标1比需求多生产1根4米、7根6米, 共46米, 正好等于2根原料(38米)再加8米.

若多生产的也视为余料,则总余量最小等价于总根数最少.

若余料没有用处,通常以总根数最少为目标.

增加一种需求: 5米10根; 切割模式不超过3种.

现有4种需求: 4米50根,5米10根,6米20根,8 米15根,用枚举法确定合理切割模式,过于复杂.

对大规模问题,用模型的约束条件界定合理模式.

决策变量

 x_i ~按第i 种模式切割的原料钢管根数(i=1,2,3).

 r_{1i} , r_{2i} , r_{3i} , r_{4i} ~ 第i 种切割模式下,每根原料钢管生产4米、5米、6米和8米长的钢管的数量.

目标函数(总根数)

Min $x_1 + x_2 + x_3$

约束 条件

满足需求

$$r_{11}x_1 + r_{12}x_2 + r_{13}x_3 \ge 50$$

$$r_{21}x_1 + r_{22}x_2 + r_{23}x_3 \ge 10$$

$$r_{31}x_1 + r_{32}x_2 + r_{33}x_3 \ge 20$$

$$r_{41}x_1 + r_{42}x_2 + r_{43}x_3 \ge 15$$

模式合理: 每根

余料不超过3米

$$16 \le 4r_{11} + 5r_{21} + 6r_{31} + 8r_{41} \le 19$$

$$16 \le 4r_{12} + 5r_{22} + 6r_{32} + 8r_{42} \le 19$$

$$16 \le 4r_{13} + 5r_{23} + 6r_{33} + 8r_{43} \le 19$$

整数约束: $x_i, r_{1i}, r_{2i},$ r_{3i}, r_{4i} (i=1,2,3)为整数

整数非线性规划模型

增加约束,缩小可行域,便于求解.

需求: 4米50根, 5米10

根,6米20根,8米15根

原料钢管总根数下界:

每根原料钢管长19米

$$\left[\frac{4 \times 50 + 5 \times 10 + 6 \times 20 + 8 \times 15}{19} \right] = 26$$

特殊生产计划:对每根原料钢管

模式1: 切割成4根4米钢管,需13根;

模式2: 切割成1根5米和2根6米钢管,需10根;

模式3: 切割成2根8米钢管,需8根.

原料钢管总根数上界: 13+10+8=31

$$26 \le x_1 + x_2 + x_3 \le 31$$
 模式排列顺序可任定 $x_1 \ge x_2 \ge x_3$

LINGO求解整数非线性规划模型

_	imal solution f	
Objectiv	e value:	28.00000
Variable	Value Redu	aced Cost
X (1)	10.00000	1.000000
X (2)	10.00000	1.000000
X (3)	8.000000	1.000000
R(1,1)	3.000000	0.000000
R(1,2)	2.000000	0.000000
R(1,3)	0.000000	0.000000
R(2,1)	0.000000	0.000000
R(2,2)	1.000000	0.000000
R(2,3)	0.000000	0.000000
R(3,1)	1.000000	0.000000
R(3,2)	1.000000	0.000000
R(3,3)	0.000000	0.000000
R(4,1)	0.000000	0.000000
R(4,2)	0.000000	0.000000
R(4,3)	2.000000	0.000000

(也是全局最优解)

模式1: 每根原料钢管切割成3根4米和1根6米钢管, 共10根;

模式2: 每根原料钢管切割成2

根4米、1根5米和1根6米钢管,

共10根;

模式3: 每根原料钢管切割成2

根8米钢管, 共8根.

原料钢管总根数为28根.

关于离散优化 (组合优化)

- 典型问题
 - 整数非线性规划Mixed integer Non-Linear Programing (MINLP)
 - Bin packing装箱问题
 - Job shop problem车间调度
 - · 图论中一些问题和模型如TSP, VRP
- Matlab未提供官方MINLP函数
- 用LINGO仅仅可求解比较简单的、变量数目比较少的MINLP模型
- 复杂MINLP问题,通常因问题而异,设计启发式算法算法

使用Matlab或Python求解P95页例1 自来水输送问题

基本用水量(千吨)

小

 X

收入: 900元/千吨

支出 引水管理费

其他费用:450元/千吨

元/千吨	甲	Z	丙	丁
${f A}$	160	130	220	170
В	140	130	190	150
C	190	200	230	/

- 应如何分配水库供水量,公司才能获利最多?
- 若水库供水量都提高一倍,公司利润可增加到多少?

使用Matlab或Python求解P104页例2原油采购与加工

市场上可买到不超过1500吨的原油A:

- 购买量不超过500吨时的单价为10000元/吨;
- · 购买量超过500吨但不超过1000吨时,超过500吨的部分8000元/吨;
- 购买量超过1000吨时,超过1000吨的部分6000元/吨.

应如何安排原油的采购和加工?

使用Matlab或Python求解P127例2 易拉罐下料

板材规格1: 正方形,边长 24cm,5万张。

板材规格2: 长方形, 32×28cm, 2万张。

模式1: 1.5秒

模式4:3秒

模式2:2秒

模式3:1秒

下底

罐身高10cm, 上盖、下底直 径均5cm.

每周工作40小时,每只易拉罐利润0.10元,原料余料损失0.001元/cm²(不能装配的罐身、盖、底也是余料).

如何安排每周生产?

