

Dave Wilson

Shaft position sensors are VERY expensive (\$1,500 in some cases).

Many applications cannot afford the cost of a shaft sensor.

Model Based Filtering

Tracking Filters

Better tracking is obtained when α and β are high Better filtering is obtained when α and β are low

The Tracking Filter...Unmasked!

The tracking filter is revealed to be a simple 2nd order IIR filter as shown below.

Cascaded Representation

This form of the filter reveals the derivatives of the tracked variable.

Parameter Estimation with Observers

By providing an additional feedforward input, the tracking filter can make better output estimates. It then takes the form of an OBSERVER.

Force/Torque disturbance Mechanics U(z)Y(z)Servo Control Position signal E(z)Yo(z) Integrator Integrator Model of H(z) velocity

Can be designed to have zero (or near zero) estimation lag.

Source: Motion Controller Employs DSP Technology,

Robert van der Kruk and John Scannell,

Phillips Centre for Manufacturing Technology,

PCIM – September, 1988

Observers are used to "observe" a quantity which is difficult to measure by mathematically modeling the system.

Observers literally recreate the desired signal mathematically (great noise decoupling). The "guess" is corrected by comparison with an observable signal.

Servo Performance with Velocity Directly from Encoder vs. Observer

Sensorless Sinusoidal PMSM Control

Assuming no saliency, stationary frame equations are:

$$\begin{bmatrix} v_{\alpha} \\ v_{\beta} \end{bmatrix} = R_{s} \cdot \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} + L_{s} \frac{d}{dt} \cdot \begin{bmatrix} i_{\alpha} \\ i_{\beta} \end{bmatrix} + k_{E} \omega_{syn} \cdot \begin{bmatrix} -\sin(\theta_{e}) \\ \cos(\theta_{e}) \end{bmatrix}$$

Rotor with surface-mount magnets
Non-salient design (magnetically round))

Back EMF component

Stationary Frame Back EMF Observer

Back-EMF Observer Performance

Stationary Frame State Observer for a Non-Salient Machine

Sliding Mode EMF Observer

[&]quot;A Position and Velocity Sensorless Control of Brushless DC Motors Using an Adaptive Sliding Observer", Takeshi Furuashi, Somboon Sangwongwanich, Shigeru Okuma, 1990 IEEE Proceedings, 087942-600-4/90/1100-1188, pp. 1188-1192.

Low Speed Saliency Tracking Observer

ACIM Sensorless Control

Block diagram of a sensorless induction machine drive based only on stator voltage integration.

Source: Zero-Speed Tacho-less I.M. Torque Control: Simply a Matter of Stator Voltage Integration, by K.D.Hurst, T.G.Habetler, G. Griva F. Profumo, IEEE paper, 1997

ACIM Stator Flux Referenced FOC

DTC: A Peek under the Hood

