1	1	2	3	4	5	\sum_{i}

Exame Qualificação - Topologia Geral

NOME:	RA:
110111121	

Incluir na prova, por favor, todas as "contas" feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Boa Prova!

1. (1,0pt) Considere as seguintes bases de topologia de $\mathbb R$

$$\mathcal{B}_1 = \{(a, b|, a < b\} \mid e \mid \mathcal{B}_2 = \{B, \mathbb{R} \setminus B \text{ \'e finito}\}.$$

Seja \mathcal{T}_i é a topologia associada a \mathcal{B}_i para i=1,2. Determine se a identidade $I:(\mathbb{R},\mathcal{T}_i) \to (\mathbb{R},\mathcal{T}_i)$, dada por I(x)=x, é contínua para $i\neq j$ em cada caso i,j=1,2.

- 2. (1,0pt) Seja $(\mathcal{M},\mathcal{T})$ um espaço normal. Mostrar que dados dois fechados disjuntos A e B em \mathcal{M} existem dois abertos U e V em \mathcal{M} tais que $A \subset U$ e $B \subset V$ com $\overline{U} \cap \overline{V} = \emptyset$.
- 3. (2,0pt) Seja \mathcal{M} um espaço de Hausdorff e assuma que existe uma compactificação (\mathcal{N}, ϕ) de \mathcal{M} tal que $\mathcal{N} \setminus \phi(\mathcal{M})$ contém um único ponto. Mostrar que \mathcal{M} é localmente compacto, mas não compacto.
- 4. (2,0pt) Seja \mathcal{A} uma base de filtro de \mathcal{M} e seja \mathcal{B} uma base de filtro de \mathcal{N} . Mostrar que
 - A familia

3

$$C = \{A \times B, A \in \mathcal{A}, B \in \mathcal{B}\}\$$

é uma base de filtro de $\mathcal{M} \times \mathcal{N}$.

- $C \to (a, b)$ se, e somente se, $A \to a \in B \to b$.
- 5. (4,0pt) Determine se verdadeiro ou falso. Justifique.
 - Se \mathcal{M} é conexo por caminhos então $\mathcal{M} \times [0,1]$ é conexo por caminhos.
 - Existe uma equivalência homotópica entre o Toro e a S^2 .
 - Se $(\mathcal{M}, \mathcal{T})$ um espaço de Hausdorff e A, B são dois subespaços localmente compactos de \mathcal{M} então $A \cap B$ é localmente compacto.
 - Se $(\mathcal{M}, \mathcal{T})$ um espaço de regular, K um conjunto fechado de \mathcal{M} e $x \in K^C$ um ponto então sempre existem abertos U e V de \mathcal{M} tais que $K \subset U$ e $x \in V$ e $\overline{U} \cap \overline{V} = \emptyset$.

Universidade Estadual de Campinas IMECC

Departamento de Matemática

MM 719 - Álgebra Linear Exame de Qualificação de Mestrado

Campinas, 28 de julho de 2023 Período: 2023.1

Nome	do	Aluno	(\mathbf{a})):	
nome	αo	Aluno	a):	

Respostas que não estiverem acompanhadas de argumentos que as justifiquem não serão consideradas.

 ${f Quest\~ao}$ 01 - Responda verdadeiro ou falso em cada uma das afirmações abaixo e justifique a sua resposta.

- a) (1,0 pts.) Todo subespaço de dimensão k de um espaço vetorial V de dimensão n é a interseção de n-k hiperespaços de V.
- b) (1, 0 pts.) Existem vetores v_1, v_2, \dots, v_n em \mathbb{R}^n linearmente independentes, tais que a matriz $G = (G_{ij}) \in M_n(\mathbb{R})$ dado por $G_{ij} = \langle v_i, v_j \rangle$ satisfaz det(G) = 0.
- c) (1,0pts.) Dadas matrizes $A, B \in M_n(F)$, tem-se $Tr(A \otimes B) = Tr(A)Tr(B)$, onde Tr denota a aplicação traço sobre matrizes.
- d) (1,0pts.) Seja V um espaço vetorial de dimensão $n < \infty$ sobre \mathbb{C} e seja $P: V \to V$ uma transformação linear tal que $P^2 = P$. Nestas condições o traço de P é igual ao seu posto.

Questão 02 - (1,5 pts.) Seja $T:\mathbb{C}^4\longrightarrow\mathbb{C}^4$ uma transformação linear cuja a matriz de representação na base canônica é dada por

$$\begin{pmatrix} 2 & 0 & 2 & 2 \\ -2 & 4 & 2 & 0 \\ 2 & -2 & 2 & 2 \\ 0 & 0 & 0 & 4 \end{pmatrix}.$$

Determine a forma canônica de Jordan de T.

Questão 03 - Sejam V um espaço vetorial sobre um corpo F e $\beta = \{v_i\}_{i \in I}$ uma base de V. Para cada $i \in I$, defina um funcional linear $f_i : V \longrightarrow \mathbb{F}$ tal que $f_i(v_j) = \delta_{ij}$.

- a) (0,5pts.) Mostre que $\{f_i\}_{i\in I}$ é linearmente independente.
- b) (1,0pts.) Mostre que $\{f_i\}_{i\in I}$ é uma base de V^* se, e somente se, I é finito.

Questão 04 - Seja V um espaço vetorial sobre os reais \mathbb{R} . Denotemos por $\mathcal{B}(V;\mathbb{R})$ o conjunto de todas as aplicações bilineares de $V \times V$ em \mathbb{R} .

- a) (0,5 pts.) Mostre que $\mathcal{B}(V;\mathbb{R}) = \mathcal{B}_s(V;\mathbb{R}) \oplus \mathcal{B}_a(V;\mathbb{R})$, onde $\mathcal{B}_a(V;\mathbb{R})$ é formado pelos elementos de $\mathcal{B}(V;U)$ antisimétrica enquanto $\mathcal{B}_s(V;\mathbb{R})$ são as formas simétricas.
- b) (1,0 pts.) Supondo agora que $\dim_{\mathbb{R}} V$ é finita, determine as dimensões de $\mathcal{B}_s(V;\mathbb{R})$ e $\mathcal{B}_a(V;\mathbb{R})$.

Questão 05 - (1,5 pts.) Enunciar e demonstrar o Teorema de Cayley-Hamilton.

Boa Prova!

Exame de Qualificação do Programa de Mestrado

Departamento de Matemática - IMECC - UNICAMP

MM 720 - Análise no \mathbb{R}^n

24 de julho de 2023.

Escolha e resolva 4 dentre as 5 primeiras questões abaixo e resolva a questão 6.

Questões escolhidas: $_{---}$, $_{---}$, $_{---}$, $_{---}$ e $\underline{6}$.

- 1. Seja $K_1 \supseteq K_2 \supseteq K_3 \supseteq \ldots$ uma família decrescente de subconjuntos compactos de \mathbb{R}^n tais que $\bigcap_{i=1}^{\infty} K_i \subset U$, onde U é um aberto.
 - (i) Mostre que existe $j \geq 1$ tal que $K_j \subset U$.
 - (ii) Dê um contra-exemplo mostrando que não basta supor que os K_i sejam fechados para obter o item anterior.
- Enuncie o teorema da aplicação inversa. Enuncie e demonstre a forma local das submersões. A partir desta demonstração, estabeleça o teorema da aplicação implícita.
- 3. Dada uma aplicação de classe C^k , $f:U\subset\mathbb{R}^n\to\mathbb{R}^m$ descreva a fórmula de Taylor de f a partir de um ponto $a\in U$. Descreva a fórmula de Taylor das funções do tipo: a) f linear; b) $\varphi:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}^k$ bilinear simétrica (mostre claramente qual é a diferencial da φ no ponto (a,b) aplicada ao vetor (u,v)).
- 4. Utilize o Teorema da Função Implícita para mostrar que o sistema

$$\begin{cases} w^2 + 2x^2 + y^2 - z^2 - 6 = 0 \\ wxy - xyz = 0. \end{cases}$$

pode ser resolvido em termos de w=(y;z) e x=x(y;z) numa vizinhança do ponto (x;y;z;w)=(1;2;1;1). Calcule as derivadas parciais de w e de x nesses pontos.

5. Ache os valores máximo e mínimo de z onde (x,y,z) satisfazem aos vínculos $x^2 + y^2 = z^2 + 1$ e x + y + 2z = 0.

6. Defina uma 1-forma ω em $\mathbb{R}^2 \setminus 0$ dada por:

$$\omega_{(x,y)} = \left(\frac{-y}{x^2 + y^2}\right) dx + \left(\frac{x}{x^2 + y^2}\right) dy.$$

Calcule a integral de ω ao longo de um círculo de raio r centrado na origem. Essa forma é exata? Mostre que o campo de vetores:

$$\left(\frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}\right)$$

não é o gradiente de nenhuma função.