2012 年度 大問 4

hari64boli64 (hari64boli64@gmail.com)

2023年5月22日

1 問題

双対問題を用いた最適化

2 解答

(1),(2),(3)

略

(4)

(3) より、

Minimize s

subject to
$$3x_1^2 - 4x_1x_2 - 2x_2^2 + s \ge 0 \quad (\forall x \in U)$$

を解けばよい。

(2) より、

$$3x_1^2 - 4x_1x_2 - 2x_2^2 + s \ge t_1(-2x_1^2 - 2x_1x_2 - x_2^2 + 4)$$
$$+t_2(x_1^2 - 1) \quad (\forall \mathbf{x} \in \mathbb{R}^n)$$

を満たす t_1, t_2 が存在する範囲内で、sを最小化すればよい。 (1) より、

$$\begin{pmatrix} 3 + 2t_1 - t_2 & -2 + t_1 \\ -2 + t_1 & -2 + t_1 \\ & s - 4t_1 + t_2 \end{pmatrix} \succeq 0$$

の下で、s を最小化すればよい。 則ち、

$$\begin{pmatrix} 3 + 2t_1 - t_2 & -2 + t_1 \\ -2 + t_1 & -2 + t_1 \end{pmatrix} \succeq 0$$

の下で、 $4t_1 - t_2$ を最小化すればよい。

これは、固有値を求めた上で考えると、解の配置問題である。

尤も、直接解くのはかなり厳しい。

しかし、適当に考えると、 $t_1 = 2, t_2 = 7$ の時、固有値は共に0で、目的関数の値は1になる。

そして、 $x_1 = 1, x_2 = -1 + \sqrt{3}$ を代入すると、確かに元の最適化問題において、制約を満たした上で、これの目的関数も 1 になる。

以上より、s=1 が最適解である。

なお、後半3行は計算機パワーを用いたチートであり、試験の上では、(3),(2),(1) を用いた変形さえ出来ていれば、十分ではないかと思われる。

3 おまけ

ソースコード 1 vis

```
import matplotlib.pyplot as plt
import random
import numpy as np
from tqdm import tqdm

def g_0(x1, x2):
    return -3 * x1 * x1 + 4 * x1 * x2 + 2 * x2 * x2

def g_1(x1, x2):
    return -2 * x1 * x1 - 2 * x1 * x2 - x2 * x2 + 4

def g_2(x1, x2):
    return x1 * x1 - 1
```

```
18
   def solve():
19
        ans = -1e9
20
        best_x1 = 0
21
        best_x2 = 0
22
        for _ in tqdm(range(int(1e5))):
23
             x1 = random.random() * 10 - 5
24
             x2 = random.random() * 10 - 5
25
             if g_1(x1, x2) >= 0 and g_2(x1, x2) >= 0:
                  ans = max(ans, g_0(x1, x2))
27
                  if ans == g_0(x1, x2):
28
                      best_x1 = x1
29
                      best_x2 = x2
30
        print(f"ans:_{\sqcup}{ans}_{\sqcup}x1:_{\sqcup}{best\_x1}_{\sqcup}x2:_{\sqcup}{best\_x2}")
31
32
        x1 = np.linspace(-5, 5, 1000)
33
34
        x2 = np.linspace(-5, 5, 1000)
        X1, X2 = np.meshgrid(x1, x2)
35
36
        Z = g_0(X1, X2)
37
        Z[g_1(X1, X2) < 0] -= 100
38
        Z[g_2(X1, X2) < 0] -= 100
39
40
        plt.imshow(Z, extent=[-5, 5, -5, 5], origin="lower")
        plt.title("visualizationuofuproblem")
41
        plt.savefig("4_vis.png")
42
        plt.close()
44
        Z[g_1(X1, X2) < 0] = np.nan
45
        Z[g_2(X1, X2) < 0] = np.nan
        plt.imshow(Z, extent=[-5, 5, -5, 5], origin="lower")
47
        plt.colorbar()
48
        plt.title("maximize_{\square}g_{\square}0_{\square}s.t._{\square}g_{\square}1_{\square}>=_{\square}0,_{\square}g_{\square}2_{\square}>=_{\square}0")
49
        plt.savefig("4_actual.png")
50
        plt.close()
51
52
53
   def solve2():
54
        ans = +1e9
55
        best_t1 = 0
56
        best_t2 = 0
57
        for _ in tqdm(range(int(1e5))):
             t1 = random.random() * 20 - 10
59
             t2 = random.random() * 20 - 10
             A = np.array([[3 + 2 * t1 - t2, -2 + t1], [-2 + t1, -2 +
61
                 t1]])
62
             if np.all(np.linalg.eigvals(A) >= 0):
                  ans = min(ans, 4 * t1 - t2)
63
```

```
if ans == 4 * t1 - t2:
64
65
                         best_t1 = t1
66
                         best_t2 = t2
         print(f"ans:_{\sqcup}{ans}_{\sqcup}t1:_{\sqcup}{best\_t1}_{\sqcup}t2:_{\sqcup}{best\_t2}")
67
68
69
   def main():
70
         solve()
71
         # solve2()
72
73
74
   if __name__ == "__main__":
75
         main()
76
```


図1 イメージ図

1 個目の条件式は、とある楕円形内部の点であることを表す。 2 個目の条件式は、 $x_1 \le -1$ 、または、 $x_1 \ge 1$ を表す。 目的関数は右上と左下の値が高い、双曲線のような形をしている。 そのことに対応した図であることが読みとれるかと思われる。

図 2 総当たりによる実際の図