

Weather Driven Sales Prediction Regression Analysis

Group 9

Adil Alkhateeb Linda Wong Mahammad Ali

April 21st, 2018

Overview

- * Walmart Challenge
- Dataset Overview & Preparation
- ***** Regression Analysis
- ***** Conclusion
- * Q & A

Walmart Challenge

Predict the sales of 111 potentially weather-sensitive products (like umbrellas, bread, and milk) around the time of major weather events at 45 of their retail stores

20 Automated Weather Observing System (AWOS) stations covering 45 stores

Daily weather measurements of 18 local climatological data

tmax	tmin	tavg	depart	dewpoint	wetbulb	heat	cool	sunrise
sunset	codesum	snowfall	preciptotal	stnpressure	sealevel	resultspeed	resultdir	avgspeed

Daily products sales per store

Duration from Jan 2012 to Oct 2014

Dataset Overview

Declining sales trend

Minimal to moderate correlation between units and weather condition

Top 3 selling items 45, 5, and 9

station_nbr date	tmax	tmin	tavg	depart	dewpoi	nt wetbulb	heat	cool	sunris	e sunse	et codesum	snowfall	preciptotal	stnpressure se	alevel	resultspeed resultd	r av	gspeed
1 2012-01-	01	52	31	42 M		36	40	23	0 -		RA FZFG E	BR M	0.05	29.78	29.9	2 3.6	20	4.6
2 2012-01-	01	48	33	41	16	37	39	24	0	716	1626 RA		0.07	28.82	29.9	9.1	23	11.3
3 2012-01-)1	55	34	45	9	24	36	20	0	735	1720		0 0	29.77	30.4	7 9.9	31	10
4 2012-01-	01	63	47	55	4	28	43	10	0	728	1742		0 0	29.79	30.4	8 8	35	8.2
6 2012-01-	01	63	34	49	0	31	43	16	0	727	1742		0 0	29.95	30.4	7 14	36	13.8
7 2012-01-)1	50	33	42 M		26	35	23	0 -		20000		0 0	29.15	30.5	4 10.3	32	10.2

Products masked into item numbers only to maintain their anonymity and reduce potential prediction bias

Data Preparation

Missing Data Filling by Interpolation

Using the surrounding days within the same station

```
for i in range(stations.size):
    weather.loc[weather.station nbr == stations[i]] = weather.loc[weather.station_nbr == stations[i]]\
    .interpolate(method='time',limit_direction = "both")
```

	station_nbr	tmax	tmin	depart	dewpoint	١
date						
2012- 05-30	20	91.0	68.0	NaN	63.0	
2012- 05-31	20	NaN	NaN	NaN	NaN	
2012- 06-01	20	87.0	58.0	NaN	50.0	

Encoding weather phenomena flags

into 32 binary features

Expanded the weather features significantly from 18 to 49 feature

desum		rain	freezing_rain	fog	mis
RA FZFG BR	0	1	0	1	•
RA	1	1	0	0	(
	2	0	0	0	(
NaN	3	0	0	0	(
NaN	4	0	0	0	(
NaN	5	0	0	0	(

Items - Stores - Stations linking

Train / Test

80:20

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Forward

Train / Test 80 : 20

> Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Backwards

Train / Test 80 : 20

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Forward

Train / Test 80 : 20

> Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

R² Adjusted

Backwards

Train / Test 80 : 20

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

R² Adjusted

Evaluation Criteria:

item	selection
45	Forward
	45 45 45 45

R2_Adj

MSE
13478.00381
14433.33723
13811.41438
14609.54234
13935.26545

Forward

Train / Test 80 : 20

> Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

R² Adjusted

Backwards

Train / Test 80 : 20

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

R² Adjusted

Evaluation Criteria:

Folds	item	selection
fold1	45	Forward
fold2	45	Forward
fold3	45	Forward
fold4	45	Forward
fold5	45	Forward

Forward

Backwards

Forward

Train / Test 80 : 20

> Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

R² Adjusted MSE

Backwards

Train / Test

80:20

Fold 1 Fold 2

Fold 3

Fold 4 Fold 5

MSE

R² Adjusted

Evaluation Criteria: R2_Adj MSE MSE Improvement

<u>Folds</u>	item	selection	R2_Adj	MSE	R2_Adj	MSE	MSE Delta	<u>%</u>
fold1	45	Forward	0.560251715	13478.00381	0.450041386	6377.37534	-7100.63	-53%
fold2	45	Forward	0.565887125	14433.33723	0.449557781	6731.300762	-7702.04	-53%
fold3	45	Forward	0.563067961	13811.41438	0.449110138	6450.697522	-7360.72	-53%
fold4	45	Forward	0.56039181	14609.54234	0.457753509	7176.632181	-7432.91	-51%
fold5	45	Forward	0.566636608	13935.26545	0.464221146	7389.851892	-6545.41	-47%

Forward

Train / Test 80 : 20

> Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

R² Adjusted MSE

Backwards

Train / Test

80 : 20

Fold 1 Fold 2 Fold 3

Fold 4

Fold 5

R² Adjusted

MSE

	E	valuatio	on Criteria:	R2_	Adj	M:	SE	MSE Improv	ement
	Folds	item	selection	R2_Adj	MSE	R2_Adj	MSE	MSE Delta	%
\rightarrow	fold1	45	Forward	0.560251715	13478.00381	0.450041386	6377.37534	-7100.63	-53%
	fold2	45	Forward	0.565887125	14433.33723	0.449557781	6731.300762	-7702.04	-53%
	fold3	45	Forward	0.563067961	13811.41438	0.449110138	6450.697522	-7360.72	-53%
	fold4	45	Forward	0.56039181	14609.54234	0.457753509	7176.632181	-7432.91	-51%
	fold5	45	Forward	0.566636608	13935.26545	0.464221146	7389.851892	-6545.41	-47%

Optimum Prediction Models

	model	selection	rsquared_adj	MSE	^
item_nbr					1 hr 40 mins
1	$<\!statsmodels.regression.linear_model.Regressio$	backward	0.048489	0.130139	" 40 mins
2	$<\!statsmodels.regression.linear_model.Regressio$	backward	0.061097	0.918617	Optimum models serialized and saved using 'Pickle' package for immed :
3	$<\!statsmodels.regression.linear_model.Regressio$	backward	0.089020	0.075939	rickle' package for immediate
4	$<\!statsmodels.regression.linear_model.Regressio$	backward	0.007371	0.026946	using 'Pickle' package for immediate prediction
5	$<\!statsmodels.regression.linear_model.Regressio$	forward	0.176935	3611.746326	

Forward selection was better in predicting **high** sales items

Backward elimination was better in predicting **low** sales items

Item	Quantity Sold	Selection
45	1,005,111	Forward
9	916,615	Forward
5	846,662	Forward
44	577,193	Backward
16	226,772	Backward

Final results had **Backwards** models selected for **101** items and **Forward** models selected for **9** items

Top Three Items Prediction Results

Monthly Sale Prediction for Item 45 Monthly Sale Prediction for Item 9 Monthly Sale Prediction for Item 5

Yearly Sale Prediction for Item 45

Yearly Sale Prediction for Item 9

Yearly Sale Prediction for Item 5

Prediction models successfully captured the reducing sales seasonal trend and produced moderately fitted prediction models.

Conclusion

- Weather may not be a great influencer to consumers buying behavior for basic products
- weather based prediction models can be improved if combined with directly related consumer buying influencers

 Day of week, holidays, paycheck days, promotions
- Online competition

