GEM	
Alfonso Camarillo Núñez	
05 de marzo de 2024	
MÓDULO III: MÉTODOS ESTADÍSTICOS MÚLTIPLES - SERIES DE TIEMPO	
Analís con Modelo Holt Winters	

Los datos para evaluar son obtenidos de Google trends de la compra en miles por semana de la play station 5 en el mundo en los últimos 5 años en búsquedas en la web, los datos son los siguientes:

Semana	Compras																		
10/03/2019	0	08/09/2019	1	08/03/2020	2	06/09/2020	13	07/03/2021	18	05/09/2021	12	06/03/2022	12	04/09/2022	9	05/03/2023	9	03/09/2023	10
17/03/2019	0	15/09/2019	1	15/03/2020	7	13/09/2020	51	14/03/2021	20	12/09/2021	14	13/03/2022	12	11/09/2022	10	12/03/2023	8	10/09/2023	10
24/03/2019	0	22/09/2019	1	22/03/2020	4	20/09/2020	28	21/03/2021	18	19/09/2021	15	20/03/2022	11	18/09/2022	11	19/03/2023	8	17/09/2023	11
31/03/2019	0	29/09/2019	1	29/03/2020	4	27/09/2020	15	28/03/2021	16	26/09/2021	14	27/03/2022	11	25/09/2022	12	26/03/2023	8	24/09/2023	12
07/04/2019	0	06/10/2019	6	05/04/2020	13	04/10/2020	14	04/04/2021	14	03/10/2021	13	03/04/2022	10	02/10/2022	11	02/04/2023	8	01/10/2023	12
14/04/2019	0	13/10/2019	3	12/04/2020	7	11/10/2020	14	11/04/2021	13	10/10/2021	13	10/04/2022	10	09/10/2022	11	09/04/2023	7	08/10/2023	15
21/04/2019	0	20/10/2019	3	19/04/2020	4	18/10/2020	13	18/04/2021	12	17/10/2021	14	17/04/2022	10	16/10/2022	10	16/04/2023	7	15/10/2023	12
28/04/2019	0	27/10/2019	2	26/04/2020	5	25/10/2020	17	25/04/2021	12	24/10/2021	13	24/04/2022	9	23/10/2022	12	23/04/2023	7	22/10/2023	14
05/05/2019	1	03/11/2019	2	03/05/2020	5	01/11/2020	26	02/05/2021	12	31/10/2021	14	01/05/2022	9	30/10/2022	13	30/04/2023	7	29/10/2023	13
12/05/2019	1	10/11/2019	2	10/05/2020	6	08/11/2020	87	09/05/2021	13	07/11/2021	16	08/05/2022	8	06/11/2022	15	07/05/2023	7	05/11/2023	18
19/05/2019	2	17/11/2019	3	17/05/2020	6	15/11/2020	100	16/05/2021	13	14/11/2021	19	15/05/2022	7	13/11/2022	16	14/05/2023	8	12/11/2023	24
26/05/2019	1	24/11/2019	3	24/05/2020	6	22/11/2020	73	23/05/2021	12	21/11/2021	27	22/05/2022	9	20/11/2022	20	21/05/2023	9	19/11/2023	33
02/06/2019	1	01/12/2019	3	31/05/2020	6	29/11/2020	55	30/05/2021	11	28/11/2021	19	29/05/2022	9	27/11/2022	15	28/05/2023	9	26/11/2023	23
09/06/2019	2	08/12/2019	4	07/06/2020	47	06/12/2020	45	06/06/2021	12	05/12/2021	17	05/06/2022	9	04/12/2022	13	04/06/2023	9	03/12/2023	23
16/06/2019	1	15/12/2019	4	14/06/2020	21	13/12/2020	47	13/06/2021	13	12/12/2021	18	12/06/2022	9	11/12/2022	16	11/06/2023	9	10/12/2023	22
23/06/2019	1	22/12/2019	3	21/06/2020	9	20/12/2020	36	20/06/2021	13	19/12/2021	21	19/06/2022	10	18/12/2022	16	18/06/2023	10	17/12/2023	22
30/06/2019	1	29/12/2019	3	28/06/2020	7	27/12/2020	31	27/06/2021	11	26/12/2021	21	26/06/2022	9	25/12/2022	21	25/06/2023	10	24/12/2023	28
07/07/2019	1	05/01/2020	5	05/07/2020	6	03/01/2021	25	04/07/2021	11	02/01/2022	17	03/07/2022	9	01/01/2023	15	02/07/2023	11	31/12/2023	18
14/07/2019	1	12/01/2020	3	12/07/2020	8	10/01/2021	21	11/07/2021	12	09/01/2022	14	10/07/2022	9	08/01/2023	11	09/07/2023	10	07/01/2024	14
21/07/2019	1	19/01/2020	3	19/07/2020	7	17/01/2021	24	18/07/2021	11	16/01/2022	13	17/07/2022	10	15/01/2023	11	16/07/2023	10	14/01/2024	13
28/07/2019	2	26/01/2020	2	26/07/2020	6	24/01/2021	21	25/07/2021	12	23/01/2022	13	24/07/2022	10	22/01/2023	11	23/07/2023	11	21/01/2024	13
04/08/2019	1	02/02/2020	4	02/08/2020	6	31/01/2021	19	01/08/2021	12	30/01/2022	12	31/07/2022	9	29/01/2023	12	30/07/2023	11	28/01/2024	12
11/08/2019	1	09/02/2020	3	09/08/2020	6	07/02/2021	20	08/08/2021	12	06/02/2022	11	07/08/2022	9	05/02/2023	11	06/08/2023	10	04/02/2024	11
18/08/2019	2	16/02/2020	3	16/08/2020	7	14/02/2021	21	15/08/2021	13	13/02/2022	13	14/08/2022	10	12/02/2023	9	13/08/2023	10	11/02/2024	12
25/08/2019	2	23/02/2020	3	23/08/2020	8	21/02/2021	19	22/08/2021	13	20/02/2022	13	21/08/2022	11	19/02/2023	9	20/08/2023	10	18/02/2024	13
01/09/2019	1	01/03/2020	3	30/08/2020	8	28/02/2021	19	29/08/2021	12	27/02/2022	12	28/08/2022	10	26/02/2023	9	27/08/2023	11	25/02/2024	11

Al graficar tenemos la siguiente imagen, mostrando una línea de tendencia creciente:

Donde realizando un análisis por mes tenemos la siguiente gráfica:

Al hacerlo por trimestre vemos lo siguiente

Por año vemos el patrón de tendencia el cual va disminuyendo en los últimos años

Al descomponer la serie mensual vemos la siguiente grafica donde vemos la serie original su tendencia que primero fue creciente y después de mediados de 2021 decrecio pero después se ha mantenido con un ligero crecimiento, la estacionalidad donde se ve que si hay este componente y en algunos meses la compra está por debajo del promedio y en otros se tiene un pico, y al fina el componente aleatorio.

Analizando la estacionalidad a nivel mensual vemos en las siguientes graficas que hay cierto paralelismo en las gráficas de cada mes y se nota que el mes donde mas se adquiere es entre septiembre y octubre

Para el análisis de autocorrelación de primer grado tenemos hasta el segundo orden que si se presenta estacionalidad, donde después ya no es tan significativa la autocorrelación con la serie

Para la autocorrelación parcial tenemos

Y los desfases serían los siguientes

Al descomponer la serie trimestral vemos la siguiente grafica donde vemos la serie original su tendencia que primero fue creciente y después de mediados de 2021 decreció, pero después se ha mantenido con un ligero crecimiento, la estacionalidad donde se ve que si hay este componente y en algunos meses la compra está por debajo del promedio y en otros se tiene un pico, y al fina el componente aleatorio.

Analizando la estacionalidad a nivel trimestral vemos en las siguientes graficas que hay cierto paralelismo en las gráficas de cada mes y se nota que el mes donde más se adquiere es entre septiembre y octubre

Para el análisis de autocorrelación de primer grado tenemos hasta el segundo orden que si se presenta estacionalidad, donde después ya no es tan significativa la autocorrelación con la serie

Para la autocorrelación parcial tenemos

Y los desfases serían los siguientes

Aplicando el modelo de suavización simple de Holt Winters en las compras mensuales tenemos:

```
Call:
HoltWinters(x = compras_m, beta = FALSE, gamma = FALSE)

Smoothing parameters:
alpha: 0.451346
beta : FALSE
gamma: FALSE
Coefficients:
[,1]
a 61.58069
```

Con este ajuste observamos que el modelo no se ajusta bien a lo esperado hay variación, no es tan preciso.

Al graficar los residuales vemos que son aleatorios ya que no se ve algún patrón por lo que el modelo cumple la independencia de observaciones

Al calcular las medias de precisión tenemos los siguientes valores, y al evaluar los residuales vemos además que no hay autocorrelación y los valores se ajustan una distribución normal.

```
ME RMSE MAE MPE MAPE MASE ACF1
Training set 2.312506 43.25182 20.66961 -1.09283 33.43832 0.5100983 0.02684347
>
```

```
Ljung-Box test

data: Residuals from HoltWinters
Q* = 6.4381, df = 12, p-value = 0.8924

Model df: 0. Total lags used: 12
```

Aplicando el modelo de suavización doble de Holt Winters en las compras mensuales tenemos:

```
Holt-Winters exponential smoothing with trend and without seasonal component.

Call:
HoltWinters(x = compras_m, gamma = FALSE)

Smoothing parameters:
alpha: 0.4513559
beta : 0
gamma: FALSE

Coefficients:
[,1]
a 61.58043
b 0.00000
```

Con este ajuste observamos que el modelo no se ajusta bien a lo esperado hay variación, no es tan preciso.

Al graficar los residuales vemos que son aleatorios ya que no se ve algún patrón por lo que el modelo cumple la independencia de observaciones

Al calcular las medias de precisión tenemos los siguientes valores, y al evaluar los residuales vemos además que no hay autocorrelación y los valores se ajustan una distribución normal.

```
ME RMSE MAE MPE MAPE MASE ACF1
Training set 2.352315 43.62308 21.02598 -1.092941 33.4382 0.5188931 0.02688175
```

```
Ljung-Box test
data: Residuals from HoltWinters
Q* = 6.3497, df = 12, p-value = 0.8974
Model df: 0. Total lags used: 12
```


Aplicando el modelo de suavización triple aditivo de Holt Winters en las compras mensuales tenemos que con este ajuste el modelo no se ajusta bien a lo esperado hay mucha variación, no es tan preciso.

Al graficar los residuales vemos que son aleatorios ya que no se ve algún patrón por lo que el modelo cumple la independencia de observaciones

Al calcular las medias de precisión tenemos los siguientes valores, y al evaluar los residuales vemos además que no hay autocorrelación y los valores se ajustan una distribución normal.

ME RMSE MAE MPE MAPE MASE ACF1
Training set -6.814877 49.5774 31.65858 -17.20647 50.21122 0.7812915 -0.03105801

Al evaluar los tres modelos vemos que los valores son muy parecidos por lo que podemos elegir el modelo simple.

Simple

ME	RMSE	MAE	MPE	MAPE	MASE	ACF1
Training set 2.312506	43.25182	20.66961	-1.09283	33.43832	0.5100983	0.02684347

Doble

ME	KMSE	MAE	MPE	MAPE	MASE	ACF1
Training set 2.352315	43.62308	21.02598	-1.092941	33.4382	0.5188931	0.02688175

Triple

ME RMSE MAE MPE MAPE MASE ACF1
Training set -6.814877 49.5774 31.65858 -17.20647 50.21122 0.7812915 -0.03105801

Prediciendo el siguiente año tenemos:

**	fit	upr	lwr	> foreca	st(fit1,12)				
Jan 2024	60.67063	157.9367	-36.59543		Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
Feb 2024	64.34646	170.0221	-41.32919	Jan 2024	60.67063	-2.928227	124.2695	-36.59543	157.9367
Mar 2024	60.22730	174.3516	-53.89704	Feb 2024	64.34646	-4.751134	133.4441	-41.32919	170.0221
Apr 2024	84.78209	207.4120	-37.84781	Mar 2024	60.22730	-14.394598	134.8492	-53.89704	174.3516
May 2024	49.33383	180.5393	-81.87164	Apr 2024	84.78209	4.598704	164.9655	-37.84781	207.4120
Jun 2024	44.12514	183.9860	-95.73572	May 2024	49.33383	-36.456813	135.1245	-81.87164	180.5393
Jul 2024	74.85090	223.4544	-73.75257	Jun 2024	44.12514	-47.324962	135.5752	-95.73572	183.9860
Aug 2024	84.38469	241.8236	-73.05425	Jul 2024	74.85090	-22.315689	172.0175	-73.75257	223.4544
Sep 2024	114.26308	280.6346	-52.10846	Aug 2024	84.38469	-18.559101	187.3285	-73.05425	241.8236
Oct 2024	95.31709	270.7216	-80.08744	Sep 2024	114.26308	5.478576	223.0476	-52.10846	280.6346
Nov 2024	75.34910	259.8895	-109.19126	Oct 2024		-19.373767			The second second
Dec 2024	69.54981	263.3307	-124.23106	Nov 2024		-45.315355			
				Dec 2024	69.54981	-57.156694	196.2563	-124.23106	263.3307

Para validar

Particionamos la información

```
The train series is a ts object with 1 variable and 48 observations
Frequency: 12
Start time: 2019 1
End time: 2022 12
ts_info(test)
The test series is a ts object with 1 variable and 12 observations
Frequency: 12
Start time: 2023 1
End time: 2023 12
```

```
> accuracy(fc1, test)

ME RMSE MAE MPE MAPE MASE ACF1 Theil's U
Training set -8.760712 55.39876 34.76839 -19.60096 52.77009 0.6930575 -0.05348417 NA
Test set -6.897862 23.23256 21.16365 -24.27179 45.71275 0.4218667 0.00201613 1.790693
```


Al evaluar los residuales vemos además que no hay autocorrelación y los valores se ajustan una distribución normal.

Regresión en la serie de tiempo

```
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
             19.7354
                         28.3537
                                   0.696
                                            0.4910
(Intercept)
trend
              0.7771
                          0.5647
                                   1.376
                                            0.1775
             -5.5271
                                            0.8825
season2
                         37.1207
                                  -0.149
             -1.8042
                         37.1336
                                  -0.049
                                            0.9615
season3
season4
              7.1687
                         37.1550
                                   0.193
                                            0.8481
                         37.1851
             -6.3583
season5
                                  -0.171
                                            0.8652
             -2.6354
                                            0.9440
                         37.2236
                                  -0.071
season6
season7
             13.0875
                         37.2707
                                   0.351
                                            0.7276
season8
              9.0604
                         37.3263
                                   0.243
                                            0.8096
                                            0.0315 *
season9
             83.7833
                         37.3903
                                   2.241
             38.2563
                                            0.3142
                         37.4628
                                   1.021
season10
             20.7292
                         37.5435
                                   0.552
                                            0.5844
season11
season12
              1.7021
                         37.6326
                                   0.045
                                            0.9642
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 52.49 on 35 degrees of freedom
Multiple R-squared: 0.2803,
                                 Adjusted R-squared: 0.03351
F-statistic: 1.136 on 12 and 35 DF, p-value: 0.3645
```

Al analizar la regresión vemos que el modelo no estima tan bien ya que el r² no es muy alto

Al analizar las medidas de error tenemos

```
ME RMSE MAE MPE MAPE MASE ACF1 Theil's U
Training set 5.181764e-16 44.82231 26.73281 -Inf Inf 0.5328800 0.4870784 NA
Test set -2.079167e+01 25.81860 22.44792 -46.60696 48.07267 0.4474668 -0.7236439 1.691838
```

Realizando un pronóstico obtenemos

Al checar los residuos de la regresión vemos que no están dentro de lo esperado por lo que hay autocorrelación, aunque los residuales se ajustan a una distribución normal.

Breusch-Godfrey test for serial correlation of order up to 16 data: Residuals from Linear regression model LM test = 24.302, df = 16, p-value = 0.08312

