Mathematical Modelling of Myeloproliferative Neoplasms and Hematopoietic Stem Cells

An overview of our recent work and a look to the future

Rasmus Kristoffer Pedersen

rakrpe@ruc.dk Roskilde University, Denmark

 2^{nd} Nordic Biomathematics Days May 10^{th} , 2022

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Purpose

The model

Model behavior

Relating to clinical data

Hypothetical scenarios
Population modelling

Discussion

Our results The future

Introduction

► Who am I?

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Background

The model

Relating to clinical data

Discussion

Introduction

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Background

The model

Description Made I behaviour

Relating to clinical data

Hypothetical scenarios
Population modelling

Discussion

Our results

► Who am I?

► Postdoc at the PandemiX Research Center, working on COVID-19 and historical epidemics.

Introduction

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Background

Purpose

The model

Description

Relating to clinical

data

Fitting to data
Hypothetical scenarios

Discussion

Our results

► Who am I?

- Postdoc at the PandemiX Research Center, working on COVID-19 and historical epidemics.
- ► Ph.D. at Roskilde University: Mathematical modelling of blood cancers, with Johnny and Morten.

Background

i urpose

The model

Description

Relating to clinical

data
Fitting to data

Hypothetical scenarios
Population modelling

Discussion

Our results

▶ Who am I?

- Postdoc at the PandemiX Research Center, working on COVID-19 and historical epidemics.
- ▶ Ph.D. at Roskilde University: Mathematical modelling of blood cancers, with Johnny and Morten.

► This talk:

Description

Relating to clinical

data

Hypothetical scenarios

Discussion

Our results

► Who am I?

- Postdoc at the PandemiX Research Center, working on COVID-19 and historical epidemics.
- ▶ Ph.D. at Roskilde University: Mathematical modelling of blood cancers, with Johnny and Morten.

- ► This talk:
 - Illustration of how mathematical modelling could contribute to clinical practice in the future.

The model

Description

Relating to clinical

Fitting to data
Hypothetical scenarios

Discussion

Our results

► Who am I?

- Postdoc at the PandemiX Research Center, working on COVID-19 and historical epidemics.
- ▶ Ph.D. at Roskilde University: Mathematical modelling of blood cancers, with Johnny and Morten.

- ► This talk:
 - Illustration of how mathematical modelling could contribute to clinical practice in the future.
 - Focus on general aspects of mathematical modelling rather than mathematical details.

Our purpose and goal

Myeloproliferative Neoplasms (MPNs): Group of diseases characterized by overproduction of blood cells.

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Purpose

The model

Relating to clinical data

Discussion

Our purpose and goal

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgroun

Purpose

The model

Description

Relating to clinical

Hypothetical scenarios

Discussion

Our results

Myeloproliferative Neoplasms (MPNs): Group of diseases characterized by overproduction of blood cells. Believed to arise from mutations occurring in hematopoietic stem cells (HSC)

The model

Description

Relating to clinical

Fitting to data
Hypothetical scenario

Discussion

Our results

► Myeloproliferative Neoplasms (MPNs): Group of diseases characterized by overproduction of blood cells. Believed to arise from mutations occurring in hematopoietic stem cells (HSC)

▶ Clinicians from Zealand University Hospital: MPN-patients treated with pegylated interferon- α obtain long-term normalization of cell-counts.

The model

Description

Relating to clinical

Fitting to data

Hypothetical scenario

Population modelling

Discussion

- ► Myeloproliferative Neoplasms (MPNs): Group of diseases characterized by overproduction of blood cells. Believed to arise from mutations occurring in hematopoietic stem cells (HSC)
- ▶ Clinicians from Zealand University Hospital: MPN-patients treated with pegylated interferon- α obtain long-term normalization of cell-counts.
- ▶ **Data:** Clinical trial with patients treated with interferon- α .

Our purpose and goal

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Background Purpose

The model

Description

Relating to clinical data

Hypothetical scenarios
Population modelling

Discussion

Our results
The future

The model

Description

Relating to clinical

Fitting to data

Discussion

Our results

► Myeloproliferative Neoplasms (MPNs): Group of diseases characterized by overproduction of blood cells. Believed to arise from mutations occurring in hematopoietic stem cells (HSC)

- ▶ Clinicians from Zealand University Hospital: MPN-patients treated with pegylated interferon- α obtain long-term normalization of cell-counts.
- Data: Clinical trial with patients treated with interferon-α.
- ▶ **Goal:** Can the effects of interferon- α be accurately described by a mathematical model?

Model description

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgro

The model

Description

Model be

Relating to clinical data

Fitting to data
Hypothetical scenario

Discussion

Our results

(Pedersen et al, 2021)

Model description

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgrou

The model

Description

Model bel

Relating to clinical data

Fitting to data
Hypothetical scenarios

Discussion

Our results
The future

(Pedersen et al, 2021)

Based on previous model of Andersen et al (2017), combined with a model of HSC developed together with Thomas Stiehl (Roskilde University & RWTH Aachen).

► System of 6 ODEs, with about 16 parameters.

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgro Purpose

The model

Description

Model behaviour

Relating to clinical data

Hypothetical scenarios

Discussion

Our results
The future

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgro

The model

Description

Model behaviour

Relating to clinical

Hypothetical scenarios

Discussion

System of 6 ODEs, with about 16 parameters.

Most parameters determined from the literature.

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Purpos

The model

Description

Model behaviour

data

Relating to clinical

Fitting to data Hypothetical scenarios

Discussion

Our results

System of 6 ODEs, with about 16 parameters.

► Most parameters determined from the literature.

► General model behaviour in agreement with clinical intuition.

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgr

The model

Model behaviour

Relating to clinical

Fitting to data Hypothetical scenarios

Discussion

Our results

System of 6 ODEs, with about 16 parameters.

Most parameters determined from the literature.

- ► General model behaviour in agreement with clinical intuition.
 - ightharpoonup No mutations ightarrow long-term health.

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Purpose

The model

Model behaviour

Relating to clinical

Fitting to data Hypothetical scenarios

Discussion

- System of 6 ODEs, with about 16 parameters.
- Most parameters determined from the literature.
- General model behaviour in agreement with clinical intuition.
 - ► No mutations → long-term health.
 - ▶ Disease progression over a long period (15+ years).

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Purpose

The model

Model behaviour

Relating to clinical

Fitting to data
Hypothetical scenarios

. . .

Discussion

- System of 6 ODEs, with about 16 parameters.
- Most parameters determined from the literature.
- General model behaviour in agreement with clinical intuition.
 - ightharpoonup No mutations ightarrow long-term health.
 - ▶ Disease progression over a long period (15+ years).
 - ► Chronic inflammation leads to faster disease progression.

The model

Model behaviour

Relating to clinical

Fitting to data

Discussion

- System of 6 ODEs, with about 16 parameters.
- Most parameters determined from the literature.
- General model behaviour in agreement with clinical intuition.
 - ightharpoonup No mutations ightarrow long-term health.
 - ▶ Disease progression over a long period (15+ years).
 - ► Chronic inflammation leads to faster disease progression.
- We can perturb specific model-parameters that relate to the biological effect of interferon- α treatment.

Rasmus Kristoffer Pedersen

Introduction

Purpose

The model

Model behaviour

Relating to clinical

Fitting to data
Hypothetical scenarios

Discussion

Typical disease progression in the model.

Rasmus Kristoffer Pedersen

Introduction

The model

· · · · · · ·

Model behaviour

Relating to clinical

Fitting to data
Hypothetical scenarios

Discussion

Our results
The future

Zooming in on year 20 after original mutation.

Rasmus Kristoffer Pedersen

Purpose

The model

Model behaviour

Relating to clinical data

Fitting to data
Hypothetical scenarios

Discussion

Considering two years of treatment.

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgrou

Purpose

The model

Model behaviour

Relating to clinical data

Fitting to data
Hypothetical scenarios
Population modelling

Discussion

Our results
The future

Considering two years of treatment.

Perturbing model-parameters related to treatment.

Fitting to data

Rasmus Kristoffer Pedersen

Introduction

Backgro

Purpose

The model

Description

Relating to clinical data

Fitting to data

Hypothetical scenarios

Discussion

Our results

0

2 3

Time [years]

Raw data

Fitting to data

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgrou

Purpose

The model

Description

Model behavior

model beliavious

Relating to clinical data

Fitting to data

Hypothetical scenarios

Discussion

Adding modelled scenario without treatment, time-shifted to agree with baseline data (and PK/PD-modelling of treatment)

Fitting to data

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgrou

Purpose

The model

Description

Model behavior

Relating to clinical data

Fitting to data

Population modelling

Discussion

Our results
The future

Dose-dependent fitting of model-parameters

Halting treatment

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgrou

The model

Description

Relating to clinical

Fitting to data

Hypothetical scenarios

Population modelling

Discussion

Halting treatment

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

The model

Relating to clinical data

Hypothetical scenarios

Discussion

Actual treatment:

Hypothetical treatment:

Halting treatment

Rasmus Kristoffer Pedersen

Introduction

Purpose

The model

Description

Relating to clinical data

Fitting to data

Hypothetical scenarios

Discussion

Rasmus Kristoffer Pedersen

Introduction

Backgroui

The model

Description

Relating to clinical

data
Fitting to data

Population modelling

r opulation modelling

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backe

Purpose

The model

Description

Model beh

Relating to clinical data

Hypothetical scenarios

Population modelling

Discussion

Baseline data

Time [years]

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

0 1

Purpose

The model

Description

Relating to clinical

Fitting to data

Population modelling

Discussion

Estimating stage of disease progression and prediction in absence of treatment.

Time [years]

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgro

Purpose

The model

Description

Relating to clinical data

Fitting to data
Hypothetical scenarios

Population modelling

Simulation 1000 virtual patients with same treatment-plan.

Population modelling

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgrou

Purpose

The model

Description

Model behavior

Relating to clinical data

Hypothetical scenarios

Population modelling

Discussion

Comparing to actual patient data

Population modelling

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgroui

Purpose

The model

Description

Model behaviou

Relating to clinical data

Fitting to data
Hypothetical scenarios

Population modelling

Completely hypothetical patient: Baseline data from mean of cohort.

► Mathematical modelling can relate mechanistic

understanding of treatment to clinical measures.

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgrou Purpose

The model

Description

Relating to clinical

Hypothetical scenarios

Discussion

Our results

ne future

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgroi Purpose

The model

Description

Relating to clinical data

Hypothetical scenarios

Discussion

Our results

he future

 Mathematical modelling can relate mechanistic understanding of treatment to clinical measures.

Individual patients' response to treatment can be captured by the model.

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

The model

Relating to clinical data

Discussion

Our results

Mathematical modelling can relate mechanistic understanding of treatment to clinical measures.

- Individual patients' response to treatment can be captured by the model.
- ► Combining the response of multiple patients could make forecasting possible.

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Purpose

The model

Model behaviour

Relating to clinical data

Hypothetical scenarios

Discussion

Our results

Mathematical modelling can relate mechanistic understanding of treatment to clinical measures.

- ► Individual patients' response to treatment can be captured by the model.
- ► Combining the response of multiple patients could make forecasting possible.
- ► However, further validation is required before predictions can be used in the clinic.

Comments on the future

► Highly complex diseases affecting the entire body can be modelled successfully.

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

Backgrou Purnose

The model

Description

Relating to clinical data

Hypothetical scenarios

Discussion

The model

Description Made between

Relating to clinical data

Hypothetical scenarios
Population modelling

Discussion

Our results
The future

► Highly complex diseases affecting the entire body can be modelled successfully.

► Mathematical models as expert-assistance tool.

- ► Highly complex diseases affecting the entire body can be modelled successfully.
- ► Mathematical models as expert-assistance tool.
- And as a tool for patient-communication.

Pedersen

Introduction

Purnose

The model

Model behaviour

Relating to clinical data

Fitting to data

Hypothetical scenarios

Population modelling

Discussion

Comments on the future

- ► Highly complex diseases affecting the entire body can be modelled succesfully.
- Mathematical models as expert-assistance tool.
- And as a tool for patient-communication.
- Promising for the future of oncology and heamatology, but careful and thoughtful validation is important.

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

The model

Relating to clinical data

Discussion

The future

(Brady & Enderling, 2019)

Thank you for your attention.

Any questions?

rakrpe@ruc.dk rasmuspedersen.com

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

The model

Relating to clinical data

Discussion

References and related articles

Mathematical Modelling of MPNs and HSC

Rasmus Kristoffer Pedersen

Introduction

- Pedersen RK, et al (2021), Dose-dependent mathematical modeling of interferon-α-treatment for personalized treatment of myeloproliferative neoplasms. Comp. Sys. Onco.; 1:e1030. https://doi.org/10.1002/cso2.1030
- Pedersen RK, et al (2021), Mathematical modelling of the hematopoietic stem cell-niche system: Clonal dominance based on stem cell fitness. Journal of Theoretical Biology, Volume 518, 110620, https://doi.org/10.1016/j.jtbi.2021.110620
- Ottesen JT. Pedersen RK. et al (2020). Mathematical Modeling of MPNs Offers Understanding and Decision Support for Personalized Treatment. Cancers; 12(8):2119. https://doi.org/10.3390/cancers12082119
- Andersen M. Saiid Z. Pedersen RK, et al (2017). Mathematical modelling as a proof of concept for MPNs as a human inflammation model for cancer development. PLoS ONE 12(8): e0183620. https://doi.org/10.1371/journal.pone.0183620

Flowchart for prediction of "optimal" treatment from

Brady, R., & Enderling, H. (2019). Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to. Bulletin of Mathematical Biology, 81(10), 3722-3731. https://doi.org/10.1007/s11538-019-00640-x

The model

Relating to clinical data

Discussion