FUNCIÓN DE PROBABILIDAD DE POISSON

$$f(x) = \frac{\mu^x e^{-\mu}}{x!}$$

en donde

f(x) = probabilidad de x ocurrencias en un intervalo u = valor esperado o número medio de ocurrencias

 μ = valor esperado o número medio de ocurrencias en un intervalo

e = 2.71828

Ejemplo visto en clase

En la Liga Española 2018-2019 hubo un promedio de 2.58684211 goles por Partido.

 $\mu = 2.58684211$ goles (por partido)

 μ = 2.58684211 goles (por partido)

# de goles	f(x)	frecuencia esperada	frecuencia observada
0	0.07525732	28.5977816	28
1	0.1946788	73.9779455	71
2	0.25180166	95.6846321	102
3	0.21712372	82.5070117	84
4	0.14041619	53.358153	51
5	0.0726469	27.6058234	26
6	0.03132101	11.9019844	11
7	0.01157464	4.3983649	2
más de 7	0.00517975	1.96830345	5
	1	380	380

 μ = 2.58684211 goles (por partido)

 μ = 2.58684211 goles (por partido)

Un Partido de futbol generalmente dura 90 minutos:

Si dividimos 90 minutos entre 2.58684211 goles, resulta en 34.7914547 (minutos/goles). Esto se puede interpreter que suceden 34.7914547 minutos entre cada gol, o que cada 34.7914547 minutos sucede un gol.

34.7914547 minutos es otra cara de la moneda del mismo fenómeno.

FUNCIÓN DE DENSIDAD DE PROBABILIDAD EXPONENCIAL

$$f(x) = \frac{1}{\mu} e^{-x/\mu}$$
 para $x \ge 0, \mu > 0$

donde μ = valor esperado o media

FUNCIÓN DE DENSIDAD DE PROBABILIDAD EXPONENCIAL

$$f(x) = \frac{1}{\mu} e^{-x/\mu}$$
 para $x \ge 0, \mu > 0$

donde μ = valor esperado o media

Este valor esperado esta expresado en intervalo de tiempo entre ocurrencias, por ejemplo: 34.7914547 minutos entre goles

Si μ = 34.7914547 minutos entre goles

Gráficada con Wolfram Alpha

FUNCIÓN DE DENSIDAD DE PROBABILIDAD EXPONENCIAL

$$f(x) = \frac{1}{\mu} e^{-x/\mu}$$
 para $x \ge 0, \mu > 0$

donde μ = valor esperado o media

- Es una distribución continua porque el tiempo es una variable continua
- Las probabilidades se calculan para intervalos, al igual que en las otras distribuciones continuas.

FIGURA 6.10 DISTRIBUCIÓN EXPONENCIAL PARA EL EJEMPLO DEL ÁREA DE CARGA

Como ejemplo de la distribución exponencial, suponga que x representa el tiempo que se necesita para cargar un camión en un área de carga, y que este tiempo de carga sigue una distribución exponencial. Si el tiempo de carga medio o promedio es 15 minutos ($\mu = 15$), la función de densidad de probabilidad apropiada para x es

$$f(x) = \frac{1}{15} e^{-x/15}$$

En el ejemplo del área de carga, x = tiempo de carga en minutos y $\mu = 15$ minutos. A partir de la ecuación (6.5)

$$P(x \le x_0) = 1 - e^{-x_0/15}$$

Por tanto, la probabilidad de que cargar un camión requiera 6 minutos o menos es

$$P(x \le 6) = 1 - e^{-6/15} = 0.3297$$

Con la ecuación (6.5) se calcula la probabilidad de que cargar un camión requiera 18 minutos o menos.

$$P(x \le 18) = 1 - e^{-18/15} = 0.6988$$

De manera que la probabilidad de que para cargar un camión se necesiten entre 6 y 18 minutos es igual a 0.6988 - 0.3297 = 0.3691. Probabilidades para cualquier otro intervalo se calculan de manera semejante.