Feuille 6 - Équations différentielles

Exercice 1 - Critère de Cauchy pour la limite d'une fonction en un point.

- a) Soit $f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}^p$, soit $a \in \overline{U}$. Montrer que f admet une limite en a ssi $\forall \epsilon, \exists \eta > 0$ tel que $\forall x, y \in U$, si $|x a| < \eta$ et $|y a| < \eta$, alors $|f(x) f(y)| < \epsilon$.
- b) Soient U un ouvert de $\mathbb{R} \times \mathbb{R}^n$, $f: U \to \mathbb{R}^n$ une application continue localement lipschitzienne en la seconde variable. On considère u une solution maximale de l'équation différentielle y' = f(t, y(t)) et I l'intervalle de définition de u. Montrer que pour tout $a \in I$ et tout compact K contenu dans U, il existe $t_+ \in I$ avec $t_+ > a$ et $t_- \in I$ avec $t_- < a$ tel que $(t_+, u(t_+)) \notin K$ et $(t_-, u(t_-)) \notin K$.

Exercice 2 - Périodicité.

Soit f est une fonction continue sur Ω ouvert de \mathbb{R}^n localement lipschitzienne, et u est une solution maximale de x'(t) = f(x(t)) définie sur un intervalle ouvert I. On suppose de plus qu'il existe $t_1, t_2 \in I$ tels que $u(t_1) = u(t_2)$. Montrer que u est périodique et que u est définie sur \mathbb{R} .

Exercice 3 - Barrière.

Soit $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ continue, K-lipschitzienne par rapport à la deuxième variable. Soit $x: [t_0, t_0 + T[\to \mathbb{R} \text{ telle que } x'(t) = f(t, x(t)) \text{ pour tout } t \text{ et } y: [t_0, t_0 + T[\to \mathbb{R} \text{ telle que } x'(t)]$

$$\begin{cases} y(t_0) \leqslant x(t_0) \\ y'(t) \leqslant f(t, y(t)) \quad \forall t \end{cases}$$

Montrer que $\forall t \in [t_0, t_0 + T[, y(t) \leq x(t)].$

Exercice 4 - Comportement asymptotique.

Soient U un ouvert de \mathbb{R}^n et X un champ de vecteurs continu sur U. On considère une application dérivable $f: [t_0, \infty[\to U \text{ telle que } f'(t) = X(f(t)) \text{ et } f(t) \text{ tend vers } a \in U \text{ en } +\infty.$ Montrer que a est un point singulier de X (ie que X(a) = 0).

Exercice 5 – Maximalité des solutions.

On considère le problème de Cauchy

$$\begin{cases} x'(t) = -x(t) + \alpha(t)x^2(t) \\ x(0) = x_0 \end{cases}$$

où α est une fonction continue de $[0, \infty[$ vérifiant $|\alpha(t)| \leq 1$ pour tout $t \geq 0$. Le but de l'exercice est de montrer que si $|x_0| < 1$ alors la solution maximale du problème de Cauchy est définie sur \mathbb{R}^+ . On note $[0, T^*[$ le domaine d'existence de la solution maximale et on suppose que $T^* < +\infty$. On pose $|x_0| = 1 - \delta_0$ avec $\delta_0 \in]0, 1[$ et on considère $\delta \in]0, \delta_0[$. On pose alors

$$A = \{T \in [0, T^*[, \quad \forall t \in [0, T], \quad |x(t)| \leqslant 1 - \delta\}$$

- a) Montrer que $0 \in A$ et que A est un intervalle. On suppose que $\sup A < T^*$.
- **b)** Montrer que, pour $t \in [0, T^*[$, on a

$$x(t) = \exp(-t)x_0 + \int_0^t \exp(-(t-s))\alpha(s)x^2(s) ds$$

- c) En déduire, grâce au lemme de Grönwall que pour $T \in A$, on a $|x(t)| \leq |x_0| \exp(-\delta t)$ pour tout $t \in [0, T[$.
- **d)** Montrer que $|x(t)| \leq 1 \delta_0$ pour tout $t \in [0, \sup A]$. Aboutir à une contradiction et conclure.

Exercice 6 - Stabilité et flot.

On considère Ω un ouvert de \mathbb{R}^n et $f:\Omega\to\mathbb{R}^n$ un champ localement lipschitzien. Pour tout $x\in\Omega$, on note J_x l'intervalle de définition de la solution maximale de l'équation différentielle y'=f(y) telle que y(0)=x et $D(f)=\bigcup_{x\in\Omega}J_x\times\{x\}$. On définit le flot associé à f, note ϕ , par $\phi_t(x)=y(t)$. Alors ϕ est une application continue sur l'ouvert D(f) par le théorème de continuité par rapport aux conditions initiales.

Pour tout $x \in \Omega$ tel que $\phi_t(x)$ est définie pour tout $t \ge 0$, on définit $\omega(x)$ comme l'ensemble des $y \in \Omega$ tel qu'il existe une suite $(t_n)_{n \in \mathbb{N}}$ tendant vers $+\infty$ et vérifiant $\phi_{t_n}(x) \to y$.

a) Montrer que $\omega(x)$ est stable par le flot de f ie que $\forall y \in \omega(x)$ et $\forall t \in J_x$, $\phi_t(y) \in \omega(x)$.

Exercice 7 - Wronskien.

On considère l'équation y'' + py = 0 avec p continue sur \mathbb{R}^+ telle que $\int_{\mathbb{R}} |p| < \infty$.

- a) Montrer que si y est solution bornée alors $y'(t) \longrightarrow_{\infty} 0$.
- b) En utilisant le Wronskien d'une base de solutions, en déduire qu'il existe des solutions non bornées.

Exercice 8 – Norme et gradient. Soit $f \in C^1(\mathbb{R}^n, \mathbb{R}_+)$.

- a) Si n = 1, montrer que la norme du gradient tend vers 0.
- **b)** En raisonnant par l'absurde et en considérant l'équation $x'(t) = -\frac{\nabla f(x(t))}{\|\nabla f(x(t))\|^2}$, montrer le résultat pour $n \in \mathbb{N}$.