Séquence 01 - TP01 - Îlot 02

Lycée Dorian Renaud Costadoat Françoise Puig

Modélisation linéaire

Référence S01 - TP01 - I02

Compétences D2-06: Justifier le choix d'un capteur ou d'un appareil de mesure vis-à-vis

de la grandeur physique à mesur

D3-04: Identifier les erreurs de mesure. D3-05: Identifier les erreurs de méthode.

Description Déterminer des caractéristiques par la mesure physique

Système Ressort

Objectif du TP:

Déterminer les caractéristiques d'un ressort.

1 Modèle du ressort élastique

Dans un premier temps, on considérera que le ressort utilisé dans cette expérience peut être modélisé comme un ressort élastique pur.

Question 1 : Déterminer la raideur pure d'un ressort qui nécessite un effort de traction F pour s'allonger d'une longueur ΔL . On rappelle que la raideur d'un ressort s'exprime en $N.m^{-1}$.

Une masse m_1 est suspendue à un ressort de raideur K, sa longueur mesurée est L_1 . Une masse m_2 est suspendue à ce ressort (en remplacement de la précédente), sa longueur est maintenant L_2 .

Question 2 : Déterminer la raideur de ce ressort en fonction de L_1 , L_2 , m_1 et m_2 . Prendre toutes les hypothèses nécessaire à la mise en équation du problème. Est-ce que cela vous paraît raisonnable de prendre ces hypothèses?

2 Vérification de la raideur pure d'un ressort

Il faudra pour la suite mettre en place un protocole de mesure permettant la répétabilité des mesures, il faut donc au préalable effectuer une installation propre et stable du matériel fournis. Il faudra aussi donner la liste et les caractéristiques (sensibilité, plage de mesure,...) du matériel de mesure utilisé.

Question 3: Suspendre une masse m_1 à un ressort et mesurer sa longueur.

Question 4 : Suspendre une masse m_2 à un ressort et mesurer sa longueur.

Question 5 : Suspendre une masse m_3 à un ressort et mesurer sa longueur.

2.1 Déterminer le comportement élastique d'un ressort

Question 6 : A l'aide des résultats expérimentaux et des résultats de la question 2, déterminer la raideur K du ressort.

3 Modèle du ressort élastique/amortisseur

Le modèle du ressort va maintenant évoluer afin de prendre en compte le coefficient d'amortissement du ressort. Pour cela, un fichier python modele_ressort_dyn.py doit être ouvert avec le logiciel Spyder. Il permet de tracer le comportement d'un ressort amorti en fonction des paramètres suivants :

- la durée de la mesure (s),
- la raideur du ressort $(N.m^{-1})$,
- la masse suspendue (kg),
- le coefficient d'amortissement $(N.m^{-1}.s)$.

Question 7: Définir l'influence de chacun de ces paramètres sur la courbe tracée.

3.1 Mesure de la trajectoire amortie du ressort

Question 8 : Filmer le mouvement du ressort après avoir lâché la masse (le ressort doit être en position de repos au départ).

Question 9 : Utiliser un logiciel de traitement pour déterminer la position de la masse en fonction du temps.

3.2 Identifier le coefficient d'amortissement du ressort

Question 10: A partir des relevés expérimentaux et du programme python modele_ressort_dyn.py, déterminer le coeffcient d'amortissement du ressort.

4 Correction

Question 2: $K=\frac{(m_1-m_2).g}{L_1-L_2}$, l'accélération de pesanteur est choisie égale à $9.81m.s^{-2}$.

