МОСКОВСКОЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ

Кафедра «Управление и моделирование систем»

Предмет «Формализованные модели и методы решения аналитических задач»

Домашняя работа №4 на тему «Принятие решений в условиях неопределенности»

Ф.И.О. студента: Васильев А.В.	
Группа БКБО-01-13	
Шифр студента 130097	Ф.И.О. преподавателя Серов В.А.
Kypc 4	Подпись преподавателя
Подпись студента	Дата

Принятие решений в условиях неопределенности

Основано на том, что вероятности различных вариантов ситуаций развития событий субъекту, принимающему рисковое решение, неизвестны. В этом случае при выборе альтернативы принимаемого решения субъект руководствуется, с одной стороны, своим рисковым предпочтением, а с другой — соответствующим критерием выбора из всех альтернатив по составленной им «матрице решений».

Основные критерии, используемые в процессе принятия решений в условиях неопределенности, представлены ниже:

- 1. Критерий Вальда.
 - а) Для $\forall x_i$ вычисляем :

$$a_i = \frac{\min q_{ij}}{j = 1, n}$$

b) Далее вычислить:

$$a_{ib} = \frac{\max a_i = a^*}{i = 1, m}$$

,где x_{ib} – рекомендуемое решение

- 2. Критерий Сэвиджа
 - а) Для $\forall x_i$ вычисляем :

$$b_i = \frac{\max r_{ij}}{j = 1, n}$$

b) Далее вычислить:

$$b_{ic} = \frac{\min b_i = b^*}{i = \overline{1.n}}$$

,где x_{ic} – рекомендуемое решение

- 3.Критерий Гурвица
 - а) Выбирается весовой коэффициент $\lambda \in [0;1]$, характеризующий склонность к пессимизму($\lambda_1=0.2$; $\lambda_2=0.5 => \lambda_2$ отражает больший пессимизм).
 - b) Для $\forall x_i$ вычисляем :

$$c_i = \frac{\lambda \min q_{ij}}{j = \overline{1, n}} + \frac{(1 - \lambda)\max q_{ij}}{j = \overline{1, n}}$$

с) Далее вычислить:

$$c_{ir} = \max_{i = 1, m} c_i$$

,где x_{ir} – рекомендуемое решение

При $\lambda = 1$ – критерий Вальда; $\lambda = 0$ – критерий максимума.

- 4. Критерий Лапласа (Принцип недостаточного обоснования) Полагается, что все состояния Z_j , $j=\overline{1,n}$ -равновероятны
 - a) $\forall z_j \rightarrow p_j = \frac{1}{n}$
 - b) $\forall x_i$ вычислить: $d_i = \frac{1}{n} \sum_{j=1}^n q_{ij}$ среднее значение выигрыша при x_i
 - с) Вычислить $d_{i\lambda}=\dfrac{maxd_i}{i=\overline{1,m}}$ (Для Q) (Для R: $d_{i\lambda}=\dfrac{mind_i}{i=\overline{1,m}}$, $d_i=\dfrac{1}{n}\sum_{j=1}^n r_{ij}$)

Задача

Возможно строительство 4-х типов электростанций. Эффективность каждого из типов зависит от различных факторов. Предполагается, что выделено 4 различных состояния, каждое из которых означает определенное состояние внешних факторов, влияющих на эффективность объектов. Экономическая эффективность отдельных типов электростанций задана матрицей А. Принять решение о строительстве электростанций, используя критерии:

- 1. Вальда;
- 2. Сэвиджа;
- Турвица(a=0.6)
- 4. Лапласа

Решение

Вариант 5.

$$Q = A = \begin{pmatrix} 2 & 2 & 3 & 4 \\ 2 & 4 & 3 & 4 \\ 3 & 2 & 6 & 1 \\ 1 & 5 & 1 & 3 \end{pmatrix}$$

$$R: \begin{pmatrix} 1 & 3 & 3 & 0 \\ 1 & 1 & 3 & 0 \\ 0 & 3 & 0 & 3 \\ 2 & 0 & 5 & 1 \end{pmatrix}$$

1. Критерий Вальда

Q:

X1 2 2 3 4 2 X2 2 4 3 4 2 X3 3 2 6 1 1 X4 1 5 1 3 1	X∖Z	Z ₁	Z ₂	Z ₃	Z ₄	$a_i = minq_{ij}$
X ₃ 3 2 6 1 1	X ₁	2	2	3	4	2
	X ₂	2	4	3	4	2
X ₄ 1 5 1 3 1	X ₃	3	2	6	1	1
	X ₄	1	5	1	3	1

 $a^* = maxa_i => x_1$ и x_2 — оптимальные решения

2. Критерий Сэвиджа

1) Вычислить
$$\beta_j=\max q_{ij}=>\beta_1=2, \beta_2=4, \beta_3=6, \beta_4=5$$
 2) $Q\to R: r_{ij}=b_j-a_{ij}=>R=-Q$

2)
$$Q \to R : r_{ij} = b_j - a_{ij} = R = -Q$$

R:

X∖Z	Z ₁	Z ₂	Z ₃	Z ₄	$b_i = maxr_{ij}$
X ₁	0	0	-1	-2	0
X ₂	2	0	1	0	2
X ₃	3	4	0	5	5
X ₄	4	0	4	2	4

3) $b^* = minb_i = > x_1 -$ оптимальное решение

3.**Критерий Гурвица** ($\lambda=0.6$)

Q:

X∖Z	Z ₁	Z ₂	Z ₃	Z ₄	$minq_{ij}$	$maxq_{ij}$	$c_i(\lambda$	$c_i(\lambda$
					,		= 0.6)	= 0.4)
X_1	2	2	3	4	2	4	1.2	1.6
X ₂	2	4	3	4	2	4	1.2	1.6
X ₃	3	2	6	1	1	6	0.6	2.4
X ₄	1	5	1	3	1	5	0.6	2

$$c_i=\lambda\min q_{ij}+(1-\lambda)maxq_{ij}=0.6minq_{ij}+0.4maxq_{ij}$$
 Вычислить $c_{ir}=maxc_i=>x_1$ и x_2- оптимальные решения

4. Критерий Лапласа

Q:

X\Z	Z ₁	Z ₂	Z ₃	Z ₄	$d_i = \frac{1}{N} \sum_{j=1}^{N} q_{ij}$
X ₁	2	2	3	4	2.75
X ₂	2	4	3	4	3.25
X ₃	3	2	6	1	3
X ₄	1	5	1	3	2.5
p _i	0.25	0.25	0.25	0.25	
<u> </u>	•				\downarrow

 $d_{i\lambda} = maxd_i => x_2$ — оптимальное решение

Результаты (оптимальные решения):

- 1) Критерий Вальда: x_1 и x_2
- 2) Критерий Сэдвиджа: х1
- 3) Критерий Гурвица: x_1 и x_2
- 4) Критерий Лапласа: х2