

	<pre>StratifiedKFold(n_splits=5) sifier_for_cv = RandomForestClassifier(**params_to_use) = [] = [] fpr = np.linspace(0, 1, 100) ax = plt.subplots(figsize=(8,6)) L, (train, test) in enumerate(cv.split(X_to_use, y_to_use)): classifier_for_cv.fit(X_to_use[train], y_to_use[train]) viz = RocCurveDisplay.from_estimator(classifier_for_cv, X_to_use[test], y to use[test],</pre>
i t ax.pl mean_	<pre>x_to_use[test], name="ROC fold {}".format(i+1), alpha=0.3, lw=1, ax=ax, unterp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr) unterp_tpr[0] = 0.0 uprs.append(interp_tpr) aucs.append(viz.roc_auc) uct([0, 1], [0, 1], linestyle="", lw=2, color="r", label="Chance", alpha=0.8) _tpr = np.mean(tprs, axis=0) tpr[-1] = 1.0</pre>
mean_ std_a ax.pl m m m std_t tprs_	<pre>_auc = auc(mean_fpr, mean_tpr) auc = np.std(aucs) Lot(mean_fpr, mean_tpr, color="b", Label=r"Mean ROC (AUC = %0.2f \$\pm\$ %0.2f)" % (mean_auc, std_auc), Lw=2, alpha=0.8,</pre> <pre>cpr = np.std(tprs, axis=0)</pre>
tprs_ax.fi m tt ca al) ax.se	<pre>_lower = np.maximum(mean_tpr - std_tpr, 0) _ll_between(_mean_fpr, _tprs_lower, _tprs_upper, _tolor="grey", _alpha=0.2, _label=r"\$\pm\$ 1 std. dev.",</pre>
) ax.le plt.s	ritle="ROC for 5-fold CV of all features", egend(loc="lower right") show() ROC for 5-fold CV of all features 0-
Rate (Posi	6 -
0.	ROC fold 1 (AUC = 0.75) ROC fold 2 (AUC = 0.80) ROC fold 3 (AUC = 0.68)
[16]: X_to_ y_to_ clf = clf =	reate a decision tree from our data: _use = np.array(findat.iloc[:,my_top_feature_id]) _use = y.values = tree.DecisionTreeClassifier(max_depth=3, max_leaf_nodes=None) = clf.fit(X_to_use, y_to_use)
y_preprint Root [17]: plt.fartis for a	<pre>ed = clf.predict(X_to_use) c('Root Mean Squared Error:', np.sqrt(mean_squared_error(y, y_pred))) Mean Squared Error: 0.3517262290563295 Figure(figsize=(15,7)) sts = tree.plot_tree(clf, feature_names = ['Taurocholic acid', 'Creatinine','Tyrosine'],</pre>
#plt.	Creatinine <= 0.527 gini = 0.477 samples = 97 value = [59, 38] class = 0 Tyrosine <= 0.027
	$\begin{array}{c} \text{gini} = 0.382 \\ \text{samples} = 70 \\ \text{value} = [52, 18] \\ \text{class} = 0 \end{array}$ $\begin{array}{c} \text{Gini} = 0.384 \\ \text{samples} = 27 \\ \text{value} = [7, 20] \\ \text{class} = 1 \end{array}$ $\begin{array}{c} \text{Taurocholic acid} <= -1.23 \\ \text{gini} = 0.324 \\ \text{samples} = 64 \\ \text{value} = [51, 13] \\ \text{class} = 0 \end{array}$ $\begin{array}{c} \text{Creatinine} <= 0.131 \\ \text{gini} = 0.278 \\ \text{samples} = 6 \\ \text{value} = [1, 5] \\ \text{class} = 1 \end{array}$ $\begin{array}{c} \text{Taurocholic acid} <= 0 \\ \text{gini} = 0.486 \\ \text{samples} = 12 \\ \text{value} = [7, 5] \\ \text{class} = 0 \end{array}$ $\begin{array}{c} \text{gini} = 0.0 \\ \text{samples} = 0.0 \\ \text{samples} = 0.0 \\ \text{gini} = 0.219 \end{array}$ $\begin{array}{c} \text{gini} = 0.384 \\ \text{samples} = 27 \\ \text{value} = [7, 20] \\ \text{gini} = 0.0 \\ \text{samples} = 0.0 \\ \text{samples} = 0.0 \\ \text{samples} = 0.0 \\ \text{gini} =$
sa val C	
y_to_ class # Try param class # Fit	<pre>guse = np.array(clin_orig[['SAPS2','SOFA','NT-pro-BNP','Urea','Creatinine','Troponin','Platelets']]) guse = y.values sifier = RandomForestClassifier() out a grid of parameters: meters = {'max_features':np.arange(2,4),'n_estimators':[1000,2000],'max_depth':[2,3,4], 'random_state': sifier_opt = GridSearchCV(classifier, parameters, cv = 5) st on entire dataset to get optimal parameters: sifier_opt.fit(X_to_use,y_to_use) ms_to_use = classifier_opt.best_estimatorget_params()</pre>
class tprs aucs mean_ impor fig, for i	<pre>fpr = np.linspace(0, 1, 100) ctance_list = [] ax = plt.subplots(figsize=(8,6)) d, (train, test) in enumerate(cv.split(X_to_use, y_to_use)): classifier_for_cv.fit(X_to_use[train], y_to_use[train]) importance_list.append(classifier_for_cv.feature_importances_)</pre>
# No. 1	<pre>#scores = classifier_for_cv.predict_proba(X_to_use[test])[:,1] #aucc = roc_auc_score(y_to_use[test], scores) riz = RocCurveDisplay.from_estimator(classifier_for_cv, X_to_use[test], y_to_use[test], name="ROC fold {}".format(i+1), alpha=0.3, lw=1, ax=ax,</pre> #fpr, tpr, thresholds = roc_curve(y_to_use[test], scores, pos_label=2)
ax.pl mean_ mean_ mean_ #mear	<pre>Interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr) Interp_tpr[0] = 0.0 Interp_tpr[0] = 0.0 Interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr) Interp_tpr[0] = 0.0 Interp_tpr = np.append(interp_tpr) Interp_tpr = np.append(viz.roc_auc) Interp_tpr = np.mean(viz.roc_auc) Interp_tpr = np.mean(tpr, axis=0) Interp_tpr = np.mean(tpr = np.mean(tpr, axis=0) Interp_tpr = np.mean(tpr = np.</pre>
std_t tprs_ tprs_	<pre>mean_fpr, mean_tpr, color="b", label=r"Mean ROC (AUC = %0.2f \$\pm\$ %0.2f)" % (mean_auc, std_auc), lw=2, alpha=0.8, cpr = np.std(tprs, axis=0) upper = np.minimum(mean_tpr + std_tpr, 1) lower = np.maximum(mean_tpr - std_tpr, 0) cll between(</pre>
n t t c c a a l l l l l l l l l l l l l l l l	mean_fpr, cprs_lower, cprs_upper, color="grey", alpha=0.2, label=r"\$\pm\$ 1 std. dev.", et(clim=[-0.05, 1.05], ylim=[-0.05, 1.05],
) ax.le	egend (loc="lower right") Show() ROC for 5-fold CV of clinical variables 0-
Rate (Posi	6 -
0.	ROC fold 1 (AUC = 0.77) ROC fold 2 (AUC = 0.95) ROC fold 3 (AUC = 0.82) ROC fold 4 (AUC = 0.88) ROC fold 5 (AUC = 0.70) Chance Mean ROC (AUC = 0.82 ± 0.08) = ± 1 std. dev. 0.0 0.2 0.4 0.6 0.8 1.0
[31]: X_to_ y_to_ class # Try	False Positive Rate (Positive label: 1) clinical variables with top 3 features: use = np.array(pd.concat([findat[['pos_mz_516.3008798','pos_mz_114.066238','pos_mz_182.0808902']],
# Fit class param cv = class tprs aucs	
fig, for i	<pre>ax = plt.subplots(figsize=(8,6)) 1, (train, test) in enumerate(cv.split(X_to_use, y_to_use)): classifier_for_cv.fit(X_to_use[train], y_to_use[train]) importance_list.append(classifier_for_cv.feature_importances_) #scores = classifier_for_cv.predict_proba(X_to_use[test])[:,1] #aucc = roc_auc_score(y_to_use[test], scores) riz = RocCurveDisplay.from_estimator(classifier_for_cv, X_to_use[test],</pre>
i i t	<pre>y_to_use[test], name="ROC fold {}".format(i+1), alpha=0.3, lw=1, ax=ax, #fpr, tpr, thresholds = roc_curve(y_to_use[test], scores, pos_label=2) Interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr) Interp_tpr[0] = 0.0 Interp_tpr[0] = 0.0 Interp_tpr(interp_tpr) Interp_tpr(interp_tpr)</pre>
mean_ mean_ mean_ #mear std_a ax.pl	<pre>Lot([0, 1], [0, 1], linestyle="", lw=2, color="r", label="Chance", alpha=0.8) _tpr = np.mean(tprs, axis=0)</pre>
std_t tprs_ tprs_ ax.fi	<pre>alpha=0.8, cpr = np.std(tprs, axis=0) upper = np.minimum(mean_tpr + std_tpr, 1) lower = np.maximum(mean_tpr - std_tpr, 0) ull_between(mean_fpr, cprs_lower, cprs_upper, color="grey",</pre>
ax.se x y t	<pre>clim=[-0.05, 1.05], ylim=[-0.05, 1.05], citle="ROC for 5-fold CV of clinical variables + three top features", egend(loc="lower right") show()</pre>
1. 0.	
True Positive Rate (Positive label: 1)	1100 1014 1 (1100 0100)
	ROC fold 5 (AUC = 0.65) Chance Mean ROC (AUC = 0.79 ± 0.09) ± 1 std. dev. Parison of clinical creatinine levels and metabolomic creatinine levels (mz 114.0662):
sns.s sns.s color sns.s glog	<pre>set(rc={"figure.figsize":(10, 8)}) set(font_scale=2) set_style("whitegrid") rs = ["dimgrey"] set_palette(sns.color_palette(colors)) = lambda x: np.log2((x+np.sqrt(x**2+1))/2) # Same transformation as was made to the metabolomic data dat = pd.DataFrame([findat['pos_mz_114.066238'],glog(clin_orig['Creatinine'])]).T dat.columns = ['Creatinine (metabolomic)','Creatinine (clinical)']</pre>
r, p ax.te	sns.scatterplot(data=new_dat,x = 'Creatinine (clinical)',y = 'Creatinine (metabolomic)', alpha=0.8, s = pearsonr(new_dat['Creatinine (clinical)'],new_dat['Creatinine (metabolomic)']) ext(.1, .8, 'Pearson's r={:.2f}\n p={:.2e}'.format(r,p), transform=ax.transAxes) show() Pearson's r=0.74
etabolomic)	p=4.66e-18
Creatinine (metabolomic)	0-1
O	-2 3 4 5 6 7 8 9
	cmap = 'crest') show() ct Identifier for the Study Composite Invasive Ventilation CRRT Vasoplegic shock AIPC SAPS2 SOFA Fibrinogen Height Weight BMI PAS
	PAS PAD PAM HR Lactate CRP Sodium Potassium Chlorure Bicarbonates Creatinine Urea ASAT ALAT ALP GGT Total bilirubin Hemoglobinemia Erythrocytes Platelets D-Dimer Fibrinogen.1 Prothrombine TCA Troponin NT-pro-BNP sex_binary HTN_binary diabetes_binary pos_mz_=516.3008798
	PAM HR Jactate Sodium Potassium Chlorure Bicarbonates Creatinine Urgan ASAT AALP GGT Total bilirubin Hemoglobinemia Enythrocytes Platelets D-Dimer Fibrinogen Height Modell HR Jactate Sodium NT-bro-BNP Sodium Height Modell HR Jactate D-Dimer Height Modell HR Jactate D-Domer HR Jactat
sns.s color sns.s pears new_c ax = r, p ax.te	Lacidic CRP Potessium Potessium Bicarbonates Creatinnes Bicarbonates Dimer Fibrinogen: Fib
sns.s sns.s color sns.s pears new_c new_c ax = r, p ax.te plt.s	Leadae CRP Produim Chlorure Chromosome Chemonals Chemona
sns.s sns.s color sns.s pears new_c new_c ax = r, p ax.te plt.s	Leadae CRP Produim Chlorure Chromosome Chemonals Chemona
sns.s color sns.s pears new_c ax = r, p ax.te	Leadae CRP Produim Chlorure Chromosome Chemonals Chemona
new_o ax = r, p ax.te plt.s	Leadae CRP Produim Chlorure Chromosome Chemonals Chemona
new_o ax = r, p ax.te plt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Table binders Bechange Provide Control of C
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	The control of the co
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Table binders Bechange Provide Control of C
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Table binders Bechange Provide Control of C
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	The control of the co
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	The control of the co
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	The control of the co
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	The control of the co
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t
Sns.s solor sns.s pears new_o ax = r, p ax.teplt.s	Declaring Process of the second process of t