عدد المسائل: خمس	امتحانات الشهادة الثانوية العامة فرع: العلوم العامة 2022/2023	ثانوية برجا الرسمية 07/623581
المدة: ثلاث ساعات	مسابقة في مادة الرياضيات	اعداد وتأليف الأستاذ: أحمد دمج 70/773620

- يستطيع الطالب الاجابة عن الأسئلة بالترتيب الذي يناسبه.

ملاحظات هامة

نموذج رقم: 8

يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو إختزان المعلومات او رسم البيانات.

I- (2 points)

Nº	Questions	Réponses		
11		(a)	(b)	(c)
1)	Soit $f(x) = \ln(2x - 3)$. f(2) + f'(2) =	0		2
2)	$\lim_{x\to+\infty} (x^3 - \ln(0,7) e^x) =$	+00	/ −∞	ln(0,7)
3)	L'équation : $x \ln(x-1) - x = 0$	n'admet pas des racines	admet une seule racine	admet deux racines distinctes
4)	Soit $z = 2i + (\sqrt{3} + i)^{15}$.	z est un réel	z est imaginaire pur	$ z = 2 + 2^{15}$

II- (6 points)

Le plan complexe est rapporté un repere rethourmé direct $(0; \vec{u}; \vec{v})$.

Pour tout point M d'affixe $z \neq 1$, on associe le point M' d'affixe z' tel que $z' = \frac{1+z}{1-z}$.

Soient A et B les points d'affixes respectives 1 et -1.

- 1) Dans cette partie, soit z = 2 + 3i.
 - a) Trouver la forme algebrique de z'.
 - b) Calculer [z'].
- 2) a) Vérifier que $\frac{z'-z_A}{z'-z_B} = z$.
 - b) Montrer que si M varie sur l'axe des ordonnés alors M' varie sur un cercle (C) dont on déterminera le centre et le rayon.
- 3) Dans cette partie, soit $z = e^{i\theta}$ où θ est un réel non nul.
 - a) Montrer que z' est imaginaire pur.
 - b) Montrer que $z' = i \cot(\frac{\theta}{2})$.

III- (6 points)

On donne:

- Quatre gobelets en carton :
 deux boules noires sont cachées au-dessous de deux gobelets, une boule blanche est cachée au-dessous
 d'un gobelet et aucune boule au-dessous d'un gobelet parmi ces quatre gobelets.
- Une urne U contient six boules : quatre noires et deux blanches.

On tire au hasard un gobelet :

- Si on obtient une boule noire au-dessous du gobelet tiré alors on la met dans U puis on tire simultanément et au hasard trois boules de U.
- Si on obtient une boule blanche au-dessous de gobelet firé alors on la met dans U puis on tire au hasard et successivement sans remise trois boule de ...
- Si on n'obtient pas de boule au dessous du gobelet tiré alors on tire au hasard et successivement avec remise trois boules de I/I

On considère les événements :

N « la boule obtenue au-dessous du gobelet tiré est noire »

B « la boule obtenue au-dessous du vobelet tiré est blanche »

V « il n'y pas de boule au-dessons du gobelet tiré »

D « on obtient exactement deux boules blanches parmi les trois boules tirées de U »

- 1) Calculer P(D/N) et P(D ∩ N).
- 2) Montrer que $P(D \cap B) = \frac{3}{35}$.
- 3) Montrer que $P(D/V) = \frac{2}{9}$ et calculer P(D).
- 4) On sait que parmi les trois boules tirées de U on a exactement deux boules blanches.

Calculer la probabilité qu'au-dessous du gobelet tiré on ait une boule.

IV- (6 points)

Dans la figure ci-dessous on donne :

- ABCD un carré direct de centre I et de côté 3.
- Le point E appartient au segment [BC] tel que BE = 1.
- Le point F appartient au segment [DC] tel que CF = 1.
- M est le symétrique de B par rapport à C.

N est le symétrique de B par rapport à F.

Soit R la rotation de centre I et d'angle $\frac{\pi}{2}$

- 1) a) Determiner R(A) et R(B).
 - b) Montrer que R(E) = 1
 - c) En déduire que les segments [AKLet [BF] sont égaux et perpendiculaires.
- 2) Soit S la similitude plane directe qui transforme A en B et E en N.
 - a) Calculer un angle et le rapport de S.
 - b) Monter que S(B) = M.
- 3) Le plan est rapporté au repère orthonormé direct (A; \vec{u} , \vec{v}) avec $\vec{u} = \frac{1}{3} \overrightarrow{AB}$ et $\vec{v} = \frac{1}{3} \overrightarrow{AD}$
 - a) Ecrire la forme complexe de S.
 - b) Déduire l'affixe du point W, centre de S.
 - c) Montrer que les trois points A, W et M sont alignés.

V- (10 points)

Partie A

Soit g la fonction définie sur \mathbb{R} , par $g(x) = e^x - x + 1$.

- 1) Dresser le tableau de variations de g.
- 2) En déduire que pour tout réel x, g(x) > 0.

Partie B

Soit h la fonction définie sur \mathbb{R} , par $h(x) = (x+1)e^x + 1$.

- 1) Dresser le tableau de variations de h.
- 2) En déduire que pour tout réel x, h(x) > 0.

Partie C

Soit f la fonction définie sur \mathbb{R} , par $f(x) = \frac{x^2}{e^{x}-x+1}$ et soit (C) sa nouvée représentative dans un repère orthonormé (0 ; $\vec{1}$, \vec{j}).

- 1) Calculer $\lim_{x\to +\infty} f(x)$ et déduire une asymptote à (C).
- 2) a) Calculer $\lim_{x \to -\infty} f(x)$
 - b) Vérifier que $f(x) + x + 1 = \frac{h(x)}{g(x)}$
 - c) Montrer que la droite (d) d'équation y = -x 1 est une asymptote à (C).
 - d) Étudier la position relative de (C) et (d).
- 3) Mounter que $f'(x) = \frac{(-x^2+2x)(e^x+1)}{(g(x))^2}$.
- 4) Dresser le tableau de variations de f.
- 5) Tracer (d) et (C).
- 6) Soit (C') l'image de (C) par l'homothétie h(O, -2). Écrire les équations de asymptotes de (C').