Blok komentarza

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi eu nulla quis tortor ullamcorper porta. Interdum et malesuada fames ac ante ipsum primis in faucibus. int foo(42).

Wyświetlacz alfanumeryczny

Nunc nec risus at est commodo feugiat ac at metus. Integer consequat blandit metus quis dignissim. Donec hendrerit mi vitae euismod suscipit. Curabitur facilisis libero a aliquet molestie.

Rysunek 1: Wyjściowy stan wyświetlacza

Równanie

$$SMA_k = \frac{1}{k} \sum_{i=n-k+1}^{n} p_i = \frac{p_{n-k+1} + p_{n-k+2} + \dots + p_n}{k}$$
 (1)

Pseudokod

Algorithm 1 Średnia krocząca SMA_{size}

1: $measures_{index} \leftarrow ADC.TEMPERATURE()$

⊳ zapis bieżącego pomiaru

- 2: $sum \leftarrow 0$
- 3: for $i \leftarrow 0$ to size do

⊳ sumowanie wszystkich size ostatnich pomiarów

▷ obliczamy kolejny indeks w tablicy measures

▷ pilnujemy, by nie przekroczyć rozmiaru tablicy

- 4: $sum \leftarrow sum + measures_i$
- 5: end for
- 6: $index \leftarrow index + 1$
- 7: if $index \ge size$ then
- 8: $index \leftarrow 0$
- 9: end if
- 10: return $\frac{sum}{size}$

⊳ zwracamy średnią

Przebieg czasowy

Rysunek 2: Zależności czasowe przy zmianie kanałów ADC

Graf

Rysunek 3: Maszyna stanów uwzględniająca czas przełączania kanałów