

PROPOSAL PROGRAM KREATIVITAS MAHASISWA JUDUL PROGRAM

Perancangan dan Realisasi Prototype Alat Pengusir Nyamuk Menggunakan Frekuensi Ultrasonik

Berbasis Arduino Uno

BIDANG KEGIATAN: PKM KC

Diusulkan oleh:

Ketua : Khoerunnisa Nurul Jannah 161344016 Tahun Angkatan 2016
 Anggota : 1. Desi Dewi Anjani 151344009 Tahun Angkatan 2015
 2. Muhammad Asadullah A 151344021 Tahun Angkatan 2015

POLITEKNIK NEGERI BANDUNG BANDUNG 2018

PENGESAHAN PKM-KC

1. Judul Kegiatan : Perancangan Dan Realisasi Prototype Alat Pengusir

Nyamuk Menggunakan Frekuensi Ultrasonik Berbasis Arduino

2. Bidang Kegiatan : PKM-KC

3. Ketua Pelaksana Kegiatan

a. Nama Lengkap : Khoerunnisa Nurul Jannah

b. NIM : 151344016 c. Jurusan : Teknik Elektro

d. Politeknik Negeri Bandung

e. Alamat Rumah : jln. Gandasari Kampung Sukarajin RT 02 RW 03 Desa

Gandasari Kecamatan Katapang Kabupaten Bandung

f. Nomor Tel/HP : 089606554207

g. Alamat email : Jannah8116@gmail.com

4. Anggota Pelaksana Kegiatan/Penulis : 3 orang

5. Dosen Pendamping

a. Nama Lengkap dan Gelar : Tata Supriyadi, DUT., ST., M.Eng.

b. NIDN : 0026116303

c. Alamat Rumah : Perum Dinas POLBAN, Jl. Sipil No.3,

Sariwangi, Parongpong, Bandung Barat.

d. Nomot Tel/HP : 08121496565
 6. Biaya Kegiatan Total : Rp. 6.450.000

7. Jangka Waktu Pelaksanaan : 4 bulan

Bandung, 26 Mei 2018

Menyetujui

Ketua Jurusan Ketua Pelaksana Kegiatan

Malayusfi, BSEE., M. Eng. Khoerunnisa Nurul Jannah

NIP. 19540101 198403 1 001 NIM. 151344016

Ketua Prodi, Dosen Pendamping

T.B. Utomo, ST., MT. Tata Supriyadi, DUT., ST., M.Eng.

NIP. 19610804 198903 1 003 NIP. 19631126 199303 1 002

DAFTAR ISI

PENGESAHAN PKM-KC	i
DAFTAR ISI	ii
BAB 1 PENDAHULUAN	1
1.1 Latar Belakang Masalah	1
1.2. Perumusan Masalah	2
1.3 Pemecahan Masalah	2
1.4 Batasan Masalah	2
1.5 Luaran yang Diharapkan	2
1.6 Manfaat	2
BAB 2 TINJAUAN PUSTAKA	3
2.1 Tinjauan Pustaka	3
2.2 Gambaran Umum Sistem	4
2.2.1. Ilustrasi Sistem Monitoring	4
2.2.2. Blok Diagram Sistem	5
2.2.3. Flowchart	6
BAB 3 METODOLOGI PENYELESAIAN	7
3.1 Perancangan	7
3.2 Implementasi	7
3.3 Pengujian	7
3.4 Analisa	8
BAB 4 BIAYA DAN JADWAL KEGATAN	9
4.1 Anggaran Biaya	9
4.2 Jadwal Kegiatan	9
DAFTAR PUSTAKA	
Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pendamping	11
Lampiran 2. Justifikasi Anggaran Kegiatan	17
Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas	18
Lampiran 4. Surat Pernyataan Ketua Peneliti	19
SURAT PERNYATAAN KETUA PENELITI/PELAKSANA	19

BAB 1

PENDAHULUAN

Pada bab ini akan dibahas mengenai latar belakang, identifikasi masalah, pemecahan masalah awal, pembatasan masalah, manfaat dan tujuan.

1.1 Latar Belakang Masalah

Nyamuk merupakan salah satu musuh kecil manusia yang sering membuat manusia jengkel dan marah. Kebiasaannya yang suka menghisap darah manusia membuat manusia merasa risih. Tak hanya itu, nyamuk juga sering membuat manusia tidak bisa tidur atau sulit berkonsentrasi, sebab nyamuk suka terbang didekat telinga dan mengeluarkan suara yang mendenging [2]. Kebanyakan nyamuk betina harus mendapatkan darah yang cukup untuk makan sebelum ia dapat mengembangkan telur. Jika mereka tidak mendapatkan makanan darah, maka mereka akan mati tanpa meletakkan telur [2].

Pada solusi yang sudah ada mengenai pengusir nyamuk diantaranya tanaman berpotensi mengusir nyamuk seperti bunga lavender, lavender dikenal sebagai anti nyamuk karena pada bunga lavender mengandung zat linalool dan linalil asetat sehingga nyamuk akan menghindar, akan tetapi kelemahan dari tanaman tersebut yaitu jika tanaman disimpan didalam ruangan atau bahkan dikamar kita untuk mengusir nyamuk, kita harus berbagi oksigen dengan dengan tanaman tersebut karena tanamanpun butuh oksigen [7]. Selanjutnya ada obat nyamuk untuk mengusir nyamuk tetapi bahwa bahan aktif tersebut sangat berbahaya [8] [10]. Lalu solusi lain untuk mengusir nyamuk adalah dengan raket listrik meskipun ampuh untuk mengusir nyamuk tapi sebagai umat muslim dilarang membunuh binatang dengan cara membakarnya, akan tetapi jika aliran listrik dianggap beda dengan api, maka boleh-boleh saja menggunakan raket listrik untuk membasmi nyamuk. Buktikan raket listrik tidak dapat membakar kertas yang ada di atas jaring raket. Maka membunuh nyamuk dengan raket listrik tidak bisa disamakan dengan membakarnya [1] [6].

Solusi agar nyamuk menghindar atau bahkan mati kami membuat rancangan suatu alat yang berfungsi untuk mengusir nyamuk dengan frekuensi ultrasonik, dimana pada frekuensi diatas 20KHz itu sensitif bagi nyamuk dan frekuensi tersebut terlalu tinggi bagi telinga manusia sehingga tidak berpengaruh pada kesehatan manusia. Dengan begitu kami mengusulkan judul "Perancangan dan Realisasi Prototype Alat Pengusir Nyamuk Menggunakan Frekuensi Ultrasonik Berbasis Arduino Uno".

Gambaran umum cara kerja dari alat yang kami buat adalah ketika alat diberikan daya dari adaptor lalu masuk ke cayu daya maka arduino memiliki fungsi untuk mengatur keluaran

dan membangkitkan frekuensi ultrasonik dari frekuensi 20KHz-65KHz secara berkala sesuai dengan yang kita inginkan. Lalu masuk ke rangkaian penguat sehingga keluaran bunyi memancarkan gelombang ultasonik melalui speaker dan kuat lemahnya bunyi akan diatur oleh potensiometer. Lalu pada LCD akan menampilkan nilai frekuensi.

1.2. Perumusan Masalah

Program kegiatan PKM Teknologi ini dilakukan untuk memecahkan masalah-masalah seperti berikut ini:

- 1. Bagaimana merancang, mengimplementasikan serta menguji alat pengusir nyamuk dalam memancarkan gelombang ultrasonik ?
- 2. Pada frekuensi berapakah yang digunakan dalam perancangan alat pengusir nyamuk ini agar alat bekerja optimal ?
- 3. Berapakah jarak optimal dari alat yang dirancang memancarkan gelombang ultrasonik

1.3 Pemecahan Masalah

- 1. Studi literatur terkait dengan perancangan dan pengimplementasian alat pengusir nyamuk dengan pemancaran gelombang ultrasonic.
- 2. Melakukan uji coba pemancaran gelombang ultrasonic dengan berbagai rentang frekuensi.
 - 3. melakukan uji coba jarak atau kekuatan pancar yang optimal dari alat yang dirancang.

1.4 Batasan Masalah

Batasan yang membatasi realisasi proyek ini adalah:

- 1. penggunaan frekuensi yang digunakan pada alat yang digunakan pada rentang ultrasonic.
- 2. Sasaran dari keberfungsian alat yang dirancang adalah dapat terusirnya nyamuk dengan gelombang ultrasonic.

1.5 Luaran yang Diharapkan

Luaran yang diharapkan dari pelaksanaan program ini adalah terciptanya suatu alat yang dapat mengusir nyamuk pada suatu ruangan baik didalam maupun didalam ruangan.

1.6 Manfaat

Manfaat dari proyek ini adalah untuk mengusir nyamuk meminimalisir gigitan nyamuk kepada manusia sehingga terhindar dari penyakit, membuat suatu alat yang dapat memberikan peringatan pada nyamuk untuk menjauh.

BAB 2

TINJAUAN PUSTAKA

Bab ini membahas tentang tinjauan pustaka yang mendukung dalam pemecahan permasalahan dan penyelesaian sistem ini.

2.1 Tinjauan Pustaka

Anda pasti sudah akrab dengan suara dengungan nyamuk yang tiap malam terdengar dekat telinga. Hewan kecil bersayap ini memang bergantung hidup pada manusia, mereka mengisap darah manusia untuk membuat telur dengan "mencuri" protein dan zat besi dalam darah [8]. Nyamuk adalah organisme hidup yang terdapat melimpah di alam hampir semua tempat, dianggap merugikan karena gigitannya mengganggu kehidupan manusia, yaitu menyebabkan dermatitis dan menularkan berbagai penyakit. Spesies nyamuk yang dapat menjadi penular penyakit, diantaranya genus Anopheles, Culex, Aedes dan Mansonia yang menularkan malaria, filaria, demam berdarah, Japanese encephalitis dan lainnya [9]. Untuk mengusir nyamuk sudah terdapat beberapa solusi diantaranya dengan raket listrik, obat nyamuk bakar maupun elektrik, manual pakai tangan bahkan ada tanaman untuk mengusir nyamuk.

Sebagai solusi yang sudah disebutkan tadi, tentunya terdapat kelebihan dan kekurangan pada metode atau solusi yang sudah ada. Diantara kelebihannya yaitu pada pemakaian raket listrik, dengan raket listrik ini kita dengan mudah bisa mengusir nyamuk, bukan hanya mengusir tetapi bisa juga membasmi nyamuk yang mengganggu [5] [7]. Kelebihan lainnya dari obat nyamuk yaitu sama seperti raket listrik, obat nyamuk bakar atau elektrik mampu membasmi nyamuk yang mengganggu dengan mengan menghirup asap dari obat nyamuk tersebut [4] [6]. Selanjutnya kelebihan dari tanaman pengusir nyamuk seperti bunga lavender, lavender ini dikenal sebagai anti nyamuk, karena pada tanaman tersebut mengandung zat linalool dan linalil asetat sehingga nyamuk akan menghindar [3].

Adapun kekurangan atau kelemahan dari solusi yang sudah ada tersebut. Diantara kelemahannya pada raket listrik yaitu dalam islam dilarang membunuh binatang dengan cara membakarnya, akan tetapi jika aliran listrik dianggap beda dengan api, maka bolehboleh saja menggunakan raket listrik untuk membasmi nyamuk. Buktikan raket listrik tidak dapat membakar kertas yang ada di atas jaring raket. Maka membunuh nyamuk dengan raket listrik tidak bisa disamakan dengan membakarnya [5] [7]. Lalu kelemahan pada obat nyamuk yaitu asap yang terdapat pada obat nyamuk tersebut mengandung bahan aktif yang dapat membahayakan tubuh jika sering terhirup [4] [6]. Selanjutnya kelemahan dari tanaman lavender yang dikenal sebagai anti nyamuk ternyata dapat membahayan kesehatan manusia pula, karena tanaman merupakan makhluk hidup dan membutuhkan oksigen. Jika tanaman tersebut disimpan didalam ruangan seperti kamar untuk mengusir nyamuk maka oksigen mau tidak mau kita harus membagi oksigen dengan tanaman tersebut [3].

Pemakaian obat nyamuk, raker listrik maupun tanaman lavender memang saat ini sudah banyak sekali dimanfaatkan dan diaplikasikan untuk mengusir nyamuk. Namun, untuk mengurangi kelemahan-kelemahan tersebut perlu dibuatkan alat baru untuk mengusir nyamuk.

Untuk permasalahan tersebut diatas, disusulkan judul Perancangan dan Realisasi Prototype Alat Pengusir Nyamuk Menggunakan Frekuensi Ultrasonik. Sistem atau alat ini cocok untuk dimanfaatkan atau diaplikasikan sebagai pengusir nyamuk. Berdasarkan penelitian tersebut didapatkan persentase nyamuk Aedes aegypti yang mati akibat

terkena gelombang ultrasonik 30 kHz sampai 100 kHz selama 24 jam mencapai 74 persen. Dan pancaran gelombang ultrasonik ini bisa mencapai 5 meter. Dalam penelitian ini juga diuji apakah ultrasonik tersebut bisa berdampak negatif terhadap manusia atau tidak dengan melakukan pengujian biomedis. Pengujian ini menggunakan hewan percobaan monyet berekor panjang (Macaca fascicularis) yang secara filogenik dan fisiologis memiliki kemiripan relatif dengan manusia. Parameter yang diuji adalah perilakunya, hematologi, kimia darah, fungsi jantung dan metabolismenya. Ternyata tidak ditemukan perbedaan yang signifikan antara monyet yang terkena gelombang ultrasonik dengan monyet yang digunakan sebagai kontrol. Hal ini menunjukkan bahwa gelombang tersebut tidak berbahaya [9]. Cara kerja dari alat yang kami buat adalah ketika alat diberikan daya dari adaptor lalu masuk ke cayu daya maka arduino memiliki fungsi untuk mengatur keluaran dan membangkitkan frekuensi ultrasonik dari frekuensi 20KHz-65KHz secara berkala sesuai dengan yang kita inginkan. Lalu masuk ke rangkaian penguat sehingga keluaran bunyi memancarkan gelombang ultasonik melalui speaker dan kuat lemahnya bunyi akan diatur oleh potensiometer. Lalu pada LCD akan menampilkan nilai frekuensi.

2.2 Gambaran Umum Sistem

2.2.1. Ilustrasi Sistem Monitoring

Pada saat nyamuk memasuki ruangan yang terdapat alat pengusir nyamuk, saat alat itu memancarkan frekuensi ultrasonik dari speaker akan terpancar ke nyamuk tersebut sehingga nyamuk akan menghindar karena frekuensi tersebut sangat sensitif bagi nyamuk.

2.2.2. Blok Diagram Sistem

Pada blok diagram diatas input masuk dari adaptor lalu masuk ke catu daya, selanjutnya ke arduino untuk membangkitkan sinyal lalu masuk ke rangkaian penguat sinyal lalu keluaran output melalui speaker.

Keterangan dari diagram blok diatas adalah:

- •Arduino: berfungsi untuk mengatur keluaran dan membangkitkan frekuensi ultrasonik dari frekuensi 20 kHz -65 kHz secara berkala sesuai dengan yang kita inginkan. Selain itu mikrokontroller juga berfungsi untuk mengatur tampilan nilai frekuensi didalam LCD.
- •LCD 2x16: berfungsi untuk menampilkan nilai frekuensi.
- •Rangkaian penguat sinyal: keluaran dari bunyi yang sudah diatur dalam arduino masih belum cukup kuat untuk memancarkan gelombang ultrasonik, oleh sebab itu dibutuhkan rangkaian penguat sinyal agar keluaran dapat memancarkan gelombang ultrasonik melalui speaker dan kuat lemahnya bunyi juga dapat diatur dengan menggunakan potensiometer yang ada dalam rangkaian penguat sinyal.
- •Speaker: berfungsi untuk memancarkan gelombang ultrasonik.
- •Tombol UP: berfungsi jika kita ingin menaikkan frekuensi maka kita harus menekan tombol up, dimana dalam satu penekanan tombol maka frekuensi akan naik 1 kHz. Akan tetapi penekanan tombol up tidak dapat berfungsi lagi jika LCD sudah menunjukkan frekuensi 65 kHz.
- •Tombol DOWN: berfungsi jika kita ingin menurunkan frekuensi maka kita harus menekan tombol down, dimana dalam satu penekanan tombol maka frekuensi akan turun 1 kHz. Akan tetapi penekanan tombol down

tidak dapat berfungsi lagi jika LCD sudah menunjukkan frekuensi 20 kHz.

2.2.3. Flowchart

"Mulai" disini sama hal nya dengan catu daya dari adaptor yang akan memberikan tegangan ke alat pengusir nyamuk ini dalam memberikan daya. Lalu pada Arduino membatasi frekuensi dari 20 kHz -65 kHz. Pembatas frekuensi yang dimaksud adalah sistem akan menolak untuk menurunkan frekuensi jika frekuensi sudah menunjukkan 20 kHz dan menolak untuk menaikkan frekuensi jika frekuensi sudah menunjukkan 65 kHz. Tombol UP berfungsi jika kita ingin menaikkan frekuensi. Tombol DOWN berfungsi jika kita ingin menurunkan frekuensi. Frekuensi dibangkitkan oleh perhitungan dari arduino, dimana frekuensi erat kaitannya dengan timer, setelah itu untuk memancarkan suara ultrasonik maka kita harus menghubungkan ke dalam rangkaian penguat sinyal yang di dalamnya terdapat output speaker dan kuat lemahnya bunyi juga dapat diatur dengan menggunakan potensiometer yang ada dalam rangkaian penguat sinyal.

BAB 3

METODOLOGI PENYELESAIAN

3.1 Perancangan

Secara keseluruhan perancangan sistem pada alat yang telah dibuat adalah ketika alat diberikan daya dari adaptor lalu masuk ke dalam catu daya 7805 maka Arduino memiliki fungsi untuk mengatur keluaran dan membangkitkan frekuensi ultrasonik dari frekuensi 20 kHz – 65 kHz secara berkala sesuai dengan yang kita inginkan. Di dalam arduino ini frekuensi dibangkitkan dengan menggunakan timer, dimana timer sangat berhubungan dengan frekuensi, Jika kita ingin menaikkan frekuensi maka kita harus menekan tombol up, begitu juga sebaliknya jika kita ingin menurunkan frekuensi maka kita harus menekan tombol down, dimana dalam satu penekanan tombol maka frekuensi akan naik atau turun 1 kHz. Setelah dari arduino lalu masuk ke rangkaian penguat sinyal, keluaran dari bunyi yang sudah diatur dalam arduino masih belum cukup kuat untuk memancarkan gelombang ultrasonik, oleh sebab itu dibutuhkan rangkaian penguat sinyal agar keluaran dapat memancarkan gelombang ultrasonik melalui speaker dan kuat lemahnya bunyi juga dapat diatur dengan menggunakan potensiometer yang ada dalam rangkaian penguat sinyal. Lalu LCD akan menampilkan nilai frekuensi dan speaker akan memancarkan bunyi ultrasonik.

3.2 Implementasi

Berdasarkan perancangan yang dibuat maka terdapat realisasi hardware dan software. Pada realisasi hardware skema akan diimplementasikan dalam sebuah PCB, kemudian setiap komponen disesuaikan dengan jenis komponen yang digunakan dengan membuat jalur serta besar jalur yang di sesuaikan dengan kebutuhan desain nya. Untuk realisasi dari perancangan software direalisasikan pemrograman menggunakan Arduino IDE.

3.3 Pengujian

Pengujian output keluaran arduino. Pengujian ini menggunakan osiloskop, dimana kita melihat gelombang sinyal dan juga kesesuain dari output yang dikeluarkan oleh LCD dengan frekuensi output yang dikeluarkan oleh arduino.

Pengujian output keluaran ultrasonik. Pengujian ini menggunakan osiloskop, dimana kita melihat gelombang sinyal dan juga kesesuain dari output yang dikeluarkan oleh LCD dengan frekuensi output yang dikeluarkan oleh speaker ultrasonik.

Pengujian alat terhadap nyamuk. Pertama-tama larva nyamuk dimasukkan ke dalam kotak aquarium, setelah larva berkembang menjadi nyamuk, alat mulai dinyalakan dan frekuensi di ubah-ubah, dan yang terjadi adalah nyamuk tidak ada yang mendekati speaker dan juga nyamuk mulai kalang kabut setelah speaker di dekatkan.

3.4 Analisa

Hasil analisis yang didapat dari alat pengusir nyamuk dengan menggunakan frekuensi ultrasonik berbasis arduino yang telah dibuat adalah nyamuk akan merasa terganggu jika didekatkan dengan frekuensi antara 20 kHz - 65 kHz. Sesuai dengan teori yang didapat bahwa nyamuk tidak menyukai atau merasa terganggu dengan frekuensi ultrasonik.

BAB 4
BIAYA DAN JADWAL KEGATAN

4.1 Anggaran Biaya

No	Jenis Pengeluaran	Biaya		
1	Peralatan Penunjang	500.000		
2	Bahan Habis Pakai	2.530.000		
3	Perjalanan	975.000		
4 Lain-Lain		2.445.000		
	Total (Rp)	6.450.000		

4.2 Jadwal Kegiatan

No	Agenda						Wal	ztu l	Denc	rerio	an (N	Vina	an)				
INO	Agenda	1	2	3	4	5	6	7	8	9	10	vinig 11	12	13	14	14	16
1	Survey pasar,	1		5	4	J	U	1	O	7	10	11	14	13	14	14	10
1	material bahan																
	dan komponen																
2	Pemilihan dan																
	pembelian bahan																
	serta komponen																
3	Perancangan Alat																
	Pengusir Nyamuk																
	menggunakan																
	Frekuensi																
	Ultrasonik																
	Berbasis Arduino																
4	Realisasi Alat																
	Pengusir Nyamuk																
	menggunkan																
	Frekuensi																
	Utrasonik																
	Berbasis Arduino																
5	Pengecekan fungsi																
	alat dan																
	komponen																
6	Pengujian kinerja																
	alat pada																
	lingkungan																
7	Analisis dan																
	pemecahan																
	masalah																
8	Proses perbaikan																
	dan																
	penyempurnaan																
9	Penulisan laporan																
	TA																

DAFTAR PUSTAKA

- [1] Adam, Masuli Ibnu, "Rancang Bangun Perangkap Nyamuk Menggunakan Metode Cockroft-Walton Berbasis Tegangan Tinggi" Jurusan Teknik Elekro, Universitas Islam Indonesia, Yogyakarta, Indonesia, 2018.
- [2] Diana. (2015, Aug 26). *Ini Alasan Kenapa Nyamuk Suka Terbang Dekat Telinga* [online]. Available: http://inafeed.com/1694/ini-alasan-kenapa-nyamuk-suka-terbang-dekat-telinga-kamu/
- [3] Detikhealth. (2009, Oct 08). *Nyamuk Keok Dengan Gelombang Ultrasonik* [online]. Available: https://health.detik.com/berita-detikhealth/1217975/nyamuk-keok-dengan-gelombang-ultrasonik
- [4] Hartiyoko, Wahid, "Rancang Bangun Alat Pendeteksi dan Pengusir Nyamuk Brbasis Frekuensi" Fakultas Matematika dan Pengetahuan Alam, Universitas Indonesia, Depok, Indonesia, 2012.
- [5] Munif, Amrul. "Nyamuk Vektor Malaria dan Hubungannya Dengan Aktivitas Kehidupan Manusia di Indonesia", *Aspirator*, vol.1, No 2, pp. 94-102, 2009.
- [6] NU Online. (2013, Nov 13). *Raket Listrik Untuk Membunuh Nyamuk* [online]. Available: http://www.nu.or.id/post/read/48175/raket-listrik-untuk-membunuh-nyamuk
- [7] Palupi, Dian. (2015, june 25). *Tanaman Pengusir Nyamuk* [online]. Available: http://bio.unsoed.ac.id/sites/default/files/Tanaman%20Pengusir%20Nyamuk-.pdf
- [8] Prastiwi, Elya Putri, "Pengaruh Penggunaan Obat Nyamuk Coil dan Met Elektrik Terhadap Sel Darah MENCIT (Mus Musculus, L)" Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia, 2015.
- [9] Teknologi Lab Medik. (2013, Apr 21). *Pengertian Nyamuk Secara Umum* [online]. Available : http://lab-anakes.blogspot.com/2013/04/pengertian-nyamuk-secara-umum.html
- [10] Wahjuni, Suirta. "Residu Bahan Aktif Asap Obat Nyamuk Bakar Yang Terbuat Dari Daun Legundi Pada Organ Paru-Paru Mencit", *Jurusan Kimia FMIFA Universitas Undayana*, vol.1, pp. 1-6, Januari-April.

Lampiran 1. Biodata Ketua, Anggota, dan Dosen Pendamping 1.1 Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Khoerunisa Nurul Jannah
2	Jenis Kelamin	Perempuan
3	Program Studi	D4 - Teknik Telekomunikasi
4	NIM	161344016
5	Tempat dan Tanggal Lahir	Bandung,08 November 1997
6	E-mail	Jannah8116@gmail.com
7	Nomor Telepon/HP	089606554207

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDN Cingcin III	SMPN 1 Soreang	SMKN 1 Katapang
Jurusan	-	-	Teknik Komputer dan Jaringan
Tahun Masuk-Lulus	2004-2010	2010-2013	2013-2016

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	-	-

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Perancangan dan Realisasi Prototype Alat Pengusir Nyamuk dengan Gelombang Ultrasonik Berbasis Arduino Uno"

Bandung, 26 Mei 2018 Pengusul,

Khoerunnisa Nurul Jannah

1.2 Biodata Anggota 1

A. Identitas Diri

1	Nama Lengkap	Desi Dewi Anjani
2	Jenis Kelamin	Perempuan
3	Program Studi	D4 – Teknik Telekomunikasi
4	NIM	151344009
5	Tempat dan Tanggal Lahir	Bandung, 15 Juni 1997
6	E-mail	desidewianjani26@gmail.com
7	Nomor Telepon/HP	0895320078015

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDN Tenjolaya III	SMP FK Bina Muda Cicalengka	SMA Bina Muda Cicalengka
Jurusan	-	-	IPA
Tahun Masuk-Lulus	2003-2009	2009-2012	2012-2015

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	-	-

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Perancangan dan Realisasi Prototype Alat Pengusir Nyamuk dengan Gelombang Ultrasonik Berbasis Arduino Uno"

Bandung, 26 Mei 2018 Pengusul,

Desi Dewi Anjani

1.3 Biodata Anggota 2

A. Identitas Diri

1	Nama Lengkap	Muhammad Asadullah Al-muzani
2	Jenis Kelamin	Laki-Laki
3	Program Studi	D4 – Teknik Telekomunikasi
4	NIM	151344021
5	Tempat dan Tanggal Lahir	Bandung, 5 September 1996
6	E-mail	asadullahalmuzani@gmail.com
7	Nomor Telepon/HP	087824149557

B. Riwayat Pendidikan

	SD	SMP	SMA
Nama Institusi	SDIT Luqmanul	SMPIT Asy-Syifa	SMAN 3
	Hakim	Boarding School	Tasikmalaya
		Subang	
Jurusan	-	-	IPA
Tahun Masuk-Lulus	2002-2008	2008-2011	2011-2014

C. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Nama Pertemuan/Seminar Ilmiah	Judul Artikel Ilmiah	Waktu dan Tempat
1	-	-	-

D. Penghargaan dalam 10 tahun terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah "Perancangan dan Realisasi Prototype Alat Pengusir Nyamuk dengan Gelombang Ultrasonik Berbasis Arduino Uno"

Bandung, 26 Mei 2018 Pengusul,

Muhammad Asadullah A

1.4 Biodata Dosen Pembimbing

A. Identitas Diri

1	Nama Lengkap (dengan gelar)	Tata Supriyadi, DUT., ST., M.Eng.
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Telekomunikasi
4	NIM/NIDN	0026112603
5	Tempat dan Tanggal Lahir	Bandung, 26 Nopember 1963
6	E-mail	tatasupriyad@gmail.com
7	Nomor Telepom/HP	08121496565

B. Riwayat Pendidikan

No.	Pendidikan	Perguruan Tinggi	Tahun
1.	DIPLOMA	IUT Le Montet Universite de Nancy I, Nancy – Perancis, Genie Electrique, Informatique Industrielle.	1986- 1988
2.	STRATA 1	Universitas Kristen Maranatha, Bandung Jurusan Teknik Elektro.	1998- 2000
3.	STRATA 2	Universitas Gadjah Mada, Yogyakarta Jurusan Teknik Elektro, Program Sistem Komputer dan Informatika	2009- 2011

C. Pengalaman Penelitian

No.	Tahun	Sumber Dana	Peran	Judul
1.	2002	Mandiri	Ketua	Disain dan Implementasi Detektor Perembesan Air pada Mainhole Sambungan Kabel Telepon Bawah Tanah
2.	2006	PKM DIKTI	Anggota	Perancangan dan realisasi alat pendeteksi kantuk dengan menggunakan kamera digital cmucam
3.	2010	Pemula DIPA	Ketua	Online Self-Assessment untuk mahasiswa Politeknik
4.	2011	Mandiri	Anggota	Sistem Peringatan DiniTanggap Darurat Bencana Banjir
5.	2012	Mandiri	Anggota	Sistem Pemantau Keamanan Rumah melalui jaringan GSM dengan User

		Interface Berbasis Handphone Android
		Aliarola

D. Pemakalah Seminar Ilmiah (Oral Presentation)

No.	Karya Tulis	Tahun
1.	Disain dan Implementasi Detektor Perembesan Air pada Mainhole	2002
	Sambungan Kabel Telepon Bawah Tanah di Proceedings Industrial	
	Electronics Seminar 2002, ITS, Surabaya.	
2.	Perancangan dan realisasi alat pendeteksi kantuk dengan	2006
	menggunakan kamera digital cmucam di Proceedings Seminar	
	Nasional POLBAN, Bandung	
3.	Design of Product Service System:	2010
	Online Self-Assessment for Higher Education Institution	
	Studentsdi APTECS 2010 Conference, ITS, Surabaya.	
4.	Penggunaan Sensor Ultrasonik Sebagai Pendeteksi	2011
	Ketinggian Air Sungai Pada Sistem Peringatan Dini	
	Tanggap Darurat Bencana Banjir	
5.	Pemanfaatan Jaringan Seluler dan Jaringan Internet Untuk	2012
	Memantau Sistem Keamanan Rumah	
	dengan User Interface Berbasis Handphone Android, di	
	Proceedings Seminar IRWNS POLBAN, Bandung, 2012	
6.	Upaya Meningkatkan Indeks Prestasi Mahasiswa Politeknik	2012
	Melalui Online Self Assesment System, di Jurnal ELEKTRAN,	
	VOL. 2, NO. 1, JUNI 2012, Jurusan Teknik Elektro, POLBAN	

E. Penghargaan dalam 10 tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya)

No.	Jenis Penghargaan	Institusi Pemberi Penghargaan	Tahun
1.	Satyalancana Karya Satya X Tahun	Presiden	2009

F. Pengalaman Pengabdian Kepada Masyarakat

No.	Tahun	Judul	Sumber	Jumlah (Rp)
1.	2012	Pelatihan Administrasi Perkantoran di Kelurahan Gegerkalong	DIPA	10.000.000,-
2.	2012	Sistem Peringatan Intercom melalui jaringan LAN untuk mendukung	DIPA	10.000.000,-

		SISKAMLING di Kelurahan Gegerkalong		
3.	2015	Pendampingan Penataan Ulang dan Teknik Pengoperasian Sound Sistem di Mesjid Jami Al-Haq	DIPA	15.000.000,-
4.	2016	Pendampingan Dan Pelatihan Teknik Perancangan, Penginstalasian dan Pengoperasian Sistem Komunikasi Radio Dan Data Untuk Anggota SENKOM Mitra POLRI	DIPA	20.000.000,-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalampengajuan Program Kreativitas Mahasiswa Karsa Cipta.

Bandung, 26 Mei 2018 Dosen Pembimbing,

Tata Supriyadi, DUT., ST., M.Eng.

Lampiran 2. Justifikasi Anggaran Kegiatan 1. Peralatan penunjang

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Toolkit	Alat penunjang perancangan sistem	1 paket	500.000	500.000
	500.000			

Bahan Habis Pakai 2.

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Protoboard	Tempat perangkaian alat	2 board	200.000	400.000
Kabel konektorKabel PowerSupply	Komponen Pendukung	1 paket	200.000	200.000
Arduino Uno	Board Mikrokontroller	1 unit	500.000	500.000
Sensor Ultrasonil HC-SR04	Sensor Ultasonik	1 unit	175.000	175.000
• Layar LCD 16x2	Penampil frekuensi yang digunakan	1 unit	300.000	300.000
• IC Regulator LM 386	Regulator	1 unit	130.000	130.000
Power Supply	Sumber energi listrik	1 unit 300.000		300.000
• Fiber glass	Diorama	1 paket	525000	525.000
SUB TOTAL (Rp)			2.530.000	

3. Perjalanan

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
Survey komponen	Survey pembelian komponen dan material	14 Lot	25.000	350.000
Pembelian Komponen	Ongkos perjalanan Sarijadi-Dago Sarijadi-Baltos Sarijadi-Jaya Plaza	12 Lot	25.000	303.000
Parkir	Biaya Parkir	36 Lot	2.000	72.000
Bimbingan TA dan pengukuran alat	Ongkos perjalanan Polban-ITB	10 Lot	25.000	250.000
SUB TOTAL (Rp)				975.000

4. Lain-lain

Material	Justifikasi Pemakaian	Kuantitas	Harga Satuan (Rp)	Jumlah (Rp)
DVD RW	Penyimpanan proposal dan laporan akhir	2 buah	10.000	20.000
Kertas A4 70gr	Pembuatan proposal dan laporan	2 Rim	150.000	300.000
Tinta	Pembuatan proposal dan laporan	1 Set	325.000	325.000
Fotocopy & jilid	Pembuatan proposal dan laporan	2 Lot	150.000	300.000
Seminar	Menyampaikan Hasil	3 orang	500.000	1.500.000
SUB TOTAL (Rp)				2.445.000

Lampiran 3. Susunan Organisasi Tim Kegiatan dan Pembagian Tugas

	4				
No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Khoerunnisa Nurul Jannah/151344016	D4 Teknik Telekomunikasi	Teknik Elektro	16 Minggu	Mengkoordinir tim dalam perancangan & pelaksanaan serta penggabungan hardware dan software
2	Desi Dewi Anjani/151344009	D4 Teknik Telekomunikasi	Teknik Elektro	16 Minggu	Software
3	Muhammad Asadullah/151344022	D4 Teknik Telekomunikasi	Teknik Elektro	16 Minggu	Hardware

Lampiran 4. Surat Pernyataan Ketua Peneliti

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI POLITEKNIK NEGERI BANDUNG

Jln. Gegerkalong Hilir, Ds. Ciwaruga, Bandung 40012, Kotak Pos 1234, Telepon (022) 2013789, Fax. (022) 2013889 Homepage: www.polban.ac.id Email: polban@polban.ac.id

SURAT PERNYATAAN KETUA PENELITI/PELAKSANA

Yang bertanda tangan di bawah ini:

Nama : Khoerunnisa Nurul Jannah

NIM : 151433016

Program Studi : D4-Teknik Telekomunikasi

Fakultas : Teknik Elektro

Dengan ini menyatakan bahwa usulan (Isi sesuai dengan bidang PKM) saya dengan judul:

Perancangan dan Realisasi Prototype Alat Pengusir Nyamuk Menggunakan Gelombang Ultrasonik Berbasis Arduino Uno.

yang diusulkan untuk tahun anggaran 2018 bersifat original dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Bandung, 26 Mei 2018
Mengetahui,
Yang menyatakan,
Ketua

Bidang Kemahasiswaan,

Meterai Rp6.000 Tanda tangan

Angki Apriliandi Rachmat, SST., M.T. Khoerunnisa Nurul J

NIP. 19810425 200501 1 002 NIM.161344016