Штормовая мореходность корабля (вычислительный эксперимент) Ship on Stormy Waves (computational experiment)

236039 Калининград, Калининград, 190121 Ленинград, 190121 Ленинград, 690095 Владивосток, Дальневсточный государственный институт, Кораблестроительный факультет, кафедра гидромеханики. 191186 Санит-Петербург, Российское научно-техническое общество судостроительный институт, Кораблестроительный факультет, кафедра гидромеханики. 19186 Санит-Петербург, Российское научно-техническое общество судостроительный инверситет, кафедра теории и проектирования корабля. 19186 Санит-Петербург, Российское научно-техническое общество судостроительный инверситет, факультет Прикладиой математики – процессов управления, кафедра компьютерного моделирования и многопроцессорных систем, Университетский проспект, 35

Рабочие записи, части 1 и 2

Руководство «Hull» – гидростатика, остойчивость и ходкость корабля, и «Aurora» – вычислительный эксперимент и практика штормового мореходства

Объединенный комплекс математических моделей и вычислительных алгоритмов по теории корабля «Hull» и мореходный вычислительный эксперимент «Aurora» ¹:

- ориентированы на мореходные изыскания в ходе этапов проектирования океанского флота повышенной штормовой мореходности;
- на опытовую апробацию цифровой модели действующего корабля в навигационной практике, включая обоснования эффективных или комфортных режимов хода в условиях интенсивного волнения;
- интерактивное управление опытовым экспериментом полезно штурманской службе в качестве тренажера для практического освоения методов эффективного вариантов штормового судовождения, включением маневрирования корабля особых сложных навигационных И гидрометеорологических условиях.

Вычислительный эксперимент настраивается на проведение испытаний ходкости и качки корабля в реальном масштабе времени с проектными размерными и динамическими характеристиками настоящего корабля. В процессе моделирования возможно изменение аппликаты центра тяжести (метацентрической высоты), осадки и параметров демпфирования. Интерактивная управление курсом включает авторулевой, выбор скорости хода определяется тягой движителей по условиям тихой воды, что сообразует штормовую ходкость и рыскание, включая дельфинирование, захваты корпуса или брочинг.

 $^{^{1}}$ © 1975 CBO KMУ \div 2012 KMMC ПМ-ПУ СПбГУ \div 2024 יְרוּשֶׁלִיִם.

Морское волнение в акватории вычислительного эксперимента возбуждается с помощью трёх перенастраиваемых групповых структур, с возможностью достижения предельной крутизны и высоты гребней штормовых трохоидальных волн. Все гребни волн представляются чисто подвижными (прогрессивными), что верно для моделирования по принципу «ближе опасности», но всё же, на море экстремально высокие гребни считаются отчасти стоячими, что актуально для хорошей морской практики, и будет внедрено в вычислительный эксперимент сразу по обоснованию математической модели.

Оглавление

«Hull» – обводы корпуса, теория корабля и волнообразование	3
Модель цифровых теоретических чертежей – таблицы плазовых ординат и	
штевней корабля в комплексе «Vessel»	6
Графическая визуализация корпуса корабля и применение вычислительных процеду Простые математические модели формы корпуса с возможностью аффинной и	p8
скуловой трансформации	9
Аналитические обводы для отработки ключевых характеристик формы корпуса корабля	11
Кривые элементов теоретического чертежа и диаграммы остойчивости в	
диапазонах осадок интенсивной вертикальной качки	13
Интенсивность корабельного волнообразования в расчётах волнового	
сопротивления движению корабля	16
«Aurora» – вычислительный эксперимент и практика штормового мореходства	21
Краткое представление математических моделей и алгоритмов	
1. Информационная консоль и графические окна визуализации мореходности	
корабля в штормовом море, интерактивное управление вычислительным	
экспериментом	26
Общий графический интерфейс морского вычислительного эксперимента	
Гидромеханика корабля: выбор и включение в эксперимент математических и	
алгоритмических моделей	
Интерактивное управление ходом и курсом корабля	34
Сохранение цифровых моделей корабля в инородных форматах	36
2. «Аксонометрический вид корабля и профилей морских волн»	
Гидростатические и метацентрические воззрения в динамике корабля	
3. «Корабль и трохоидальные штормовые структуры морских волн»	
Предустановка условий опытовых испытаний в штормовой мореходности корабл	
Результаты опытовых мореходных экспериментов	57
Использованные литературные источники	62
Авторское наследие настояших корабельных изысканий:	63

«Hull» - обводы корпуса, теория корабля и волнообразование

Математическая модель геометрии корпуса корабля строится по теоретическим шпангоутам, дополняемым в диаметральной плоскости контурами штевней с транцевыми расширениями. Оцифровка визуально соответствует графическому представлению корпуса в трёх проекциях типовых теоретических чертежей, что формально позволяет опираться на исторически поверенные форматы исходных данных для традиционных расчётных методик. Сбережение преемственности служит для возможности сопоставления результатов и поверки новых математических алгоритмов в теории корабля с вычислительными экспериментами в гидромеханике штормового плавания.

Рис. 1. Изображение по цифровой модели крейсера «Аврора», выполненной с помощью числовых последовательностей для шпангоутов и штевней. Отсчёты абсцисс ведутся от кормы в нос, шпангоуты размечаются от носового перпендикуляра в корму. Симметричный относительно диаметральной плоскости корпус имеет положительные ординаты, при этом функции их описания могут быть неоднозначными. Аппликаты шпангоутов и штевней размечаются снизу — вверх, от основной линии к ширстреку, с оконтуриванием фальшбортов и надстроек. Три проекции теоретического чертежа на верхних рисунках подготовлены программой «Hull», аксонометрические проекции — в программе «Aurora».

Числовое представление теоретических чертежей корпуса в форме таблиц плазовых ординат предполагает последующие развитие базы данных «Vessel», изначально ориентированной на проведение прямых вычислительных

экспериментов с использованием комплекса алгоритмов «**Aurora**» для оценок мореходных качеств корабля в условиях интенсивного штормового волнения.

Регуляризованные последовательности шпаций и точек в контурах шпангоутов, дополненные очертанием штевней в диаметральной плоскости, служат ускоренной выборке ординат для вычисления объемных и поверхностных интегралов с учётом быстро меняющейся посадки корпуса корабля в условиях интенсивной качки; при движении по склонам и между гребнями морских волн большой высоты. Абсциссы шпангоутов размечаются от кормы в нос, опорные точки кривых на шпангоутах и штевнях отсчитываются от киля вверх до палубного ширстрека, с оконтуриванием фальшбортов, палубных надстроек и других крупных элементов общекорабельной архитектуры.

Относительно малое количество шпангоутов и интерполирующих точек (**Puc. 1**), тем не менее, позволяет с удовлетворительной точностью аппроксимировать гладкую поверхность бортовой обшивки, что минимально необходимо для оценочных расчётов в теории корабля, так же как и в проведении адекватных прямых вычислительных экспериментов по моделированию качки, ходкости, и штормового маневрирования, включая опытовое обоснование наиболее эффективных режимов всепогодного мореходства.

Поверочным инструментом выступает система управления базой данных «Vessel» – программный комплекс «Hull» [7] Сахалинского государственного университета, в котором все расчёты по теории корабля выполняются в строгом соответствии с общепринятыми [1] (историческими) методиками. База данных «Vessel» также включает иные цифровые форматы описания корпуса корабля, которые по необходимости конвертируются к принятому здесь обновлённому представлению. В частности, программа «Hull» без параметров порождает образец корпуса с уменьшенным моментом инерции площади действующей ватерлинии «Hull.vsl» в формате кафедры конструкции судов Ленинградского кораблестроительного института, который широко использовался ранее при опытовых мореходных испытаниях на кафедре теории корабля в 1985-1986 годах.

Попутно в программе «Hull» выполняются расчёты водоизмещения, смоченной поверхности, центров объема И коэффициентов полноты, непосредственно визуализации проекций выполняемых при всех трёх теоретических чертежей.

В интерактивном режиме возможно построение аналитических синусоидальных, полиномиальных и простейших геометрических обводов корпуса, а также проведение аффинных геометрических преобразований.

В отдельных окнах, с использованием трёх авторских методик, выполняются вычисления и построение кривых элементов теоретического чертежа (гидростатических кривых); а также расчеты и построение диаграмм остойчивости при различных осадках с различными методами фиксации аппликаты центра тяжести. Реализовано также построение кривых волнового и остаточного сопротивления движению корабля на тихой воде, с прорисовкой вдоль корпуса интенсивности излучения корабельных волн.

Варианты цифровых моделей корабельных корпусов систематизированы в составе базы данных цифровых теоретических чертежей «Vessel» [5]. зарегистрированной Роспатенте Санкт-Петербургским государственным университетом. Исходные оригиналы теоретических чертежей в основном оцифровывались по копиям в традиционных кораблестроительных проекциях, и являются либо авторскими [5], либо выбраны из открытых публикаций и материалов научных кораблестроительных конференций. Некоторые модели действующих кораблей и судов оцифровывались по растровым копиям из условно «безымянных» источников, и B TOM числе с видимыми оригинальных чертежей, и потому ограниченно рекомендуются для практического использования в навигационных тренажерах по штормовому маневрированию. База данных «Vessel» в целом управляется специальной программой «Hull», и по необходимости дополняется файлами конфигурации-протоколами <имя>.vil для прямых вычислительных экспериментов ПО моделированию штормового маневрирования корабля с использованием комплекса «Aurora». целом: («Hull»+«Aurora») – предназначается академическим исследованиям и оценочным изысканиям на этапах проектирования новых кораблей и судов повышенной штормовой мореходности, и будет весьма полезна судоводителям для отработки вариантов штормового хода и маневрирования в условиях интенсивного ветрового волнения с наложением двух структур зыби.

Числовой формат базы данных «Vessel» изначально ориентирован на оцифровку традиционных теоретических чертежей корабля, непосредственно по копиям на бумаге. Преимуществом принятого числового описания корпуса по штевням и шпангоутам видится в относительной простоте и компактности компоновки исходных данных, которые могут быть подготовлены, и впоследствии отредактированы в качестве текстовых строк.

Модель цифровых теоретических чертежей – таблицы плазовых ординат и штевней корабля в комплексе «Vessel»

Выбранная цифровая модель позволяет опираться на поверенные методики теории корабля и корабельной гидромеханики, что обоснования корректности новых вычислительных экспериментов сопоставлении многочисленными историческими сериями кораблестроительных расчётов, включая материалы бортовой корабельной документации и результаты ранее систематизированных экспериментов в опытовых бассейнах и мореходных испытаниях в открытом море.

Рис. 2. Структура текстового формирования числовой таблицы ординат корпуса корабля, *с доопределениями граничных контуров штевней и транцевых расширений*

Формализованное описание геометрии корпуса корабля в составе базы данных «Vessel» представляется строковыми записями, включающими название и размерения корпуса корабля, с последовательным описанием кормовой оконечности, полной таблицы плазовых ординат, и затем — форштевня (Рис. 2).

Контуры шпангоутов начинаются от основной килевой линии или межкорпусного подволока катамарана (z_{min}) в диаметральной плоскости (y=0), с замыканием через верхние точки (z_{max}) палубы или судовых надстроек. Штевни представляются однозначными функциями абсцисс (x) по аргументу от аппликат (z), дополняемые ординатами (y) для транцевых расширений по аналогии с

замкнутыми контурами теоретических шпангоутов (y(z(x))). Величина ΔT – погружение используется в случае оцифровки таблицы ординат не от основной плоскости, а, например – от конструктивной ватерлинии. Это же величина полезна для указания начального погружения корпуса, например в вычислительных экспериментах с подводной лодкой (автоматическое управление глубиной хода ещё в разработке).

При включении цифровой модели корпуса «*.vsl» в базу данных «Vessel» в комментариях описываются необходимые тактико-технические и исторические данные о корабле, а также расчетные водоизмещение, площадь смоченной поверхности, коэффициент общей полноты корпуса, дата и время создания файла и последней правки обводов и формы корпуса.

Ориентация на стандартные методики в теории корабля с использованием методов интегрирования по таблицам плазовых ординат, к сожалению, некорректно применяется в случаях с неоднозначными функциям ординат по аппликатам шпангоутных контуров, возникающих в тоннельных обводах, на бортовых килях и других выступающих частях на смоченной обшивке корпуса. В программном комплексе «Hull» такие вычисления ведутся с погрешностями от простого отсечения повторных пересечений ватерлиний при последовательном считывании шпангоутных контуров от киля к палубам. То есть, геометрические вычисления в моделях теории корабля и корабельного волнообразования реально получаются с ограничениями по точности, свойственными ориентации на расчёты по традиционным таблицам плазовых ординат.

В алгоритмах программы «**Aurora**» такие проблемы разрешаются задействованием полноценных контурных или параметрических интегралов в векторно-тензорном представлении вычислительных операций в трёхмерном пространстве, и это обеспечивает вполне адекватные геометрические построения для всех гидростатических и гидродинамических вычислений, включая моделирование движения корабля во взаимодействии с *ураганным ветром* (не включено) u штормовым волнением на море.

Графическая визуализация корпуса корабля и применение вычислительных процедур

Рис. 3. Образцовая экспериментальная модель корпуса гипотетического корабля с уменьшенными моментами инерции площади действующей ватерлинии (МИДВ), и со смещенным в нос центром величины подводного объема. В 1985 г. модель участвовала в мореходных испытаниях [1] в опытовом бассейне кафедры теории корабля Ленинградского кораблестроительного института под руководством профессора Александра Николаевича Холодилина

Программа «**Hull**» единственным параметром принимает текстовый файл с цифровой моделью корпуса корабля «*.vsl». При неудаче, в текущую директории будет записан, и сразу же считан файл-образец 2 «Hull.vsl» с изначальной цифровой моделью [1] корпуса МИДВ 3 -1985 (**Puc. 3**).

прорисовываются экране проекции теоретического чертежа, ординаты, аппликаты и абсциссы которого считываются подвижным курсором нижних красных строках справа. В левой части приводятся размерности корпуса, водоизмещение, коэффициент общей смоченной полноты И площадь поверхности обшивки корпуса на заданной осадке.

На основном экране доступна справка <**F1**>, где упоминаются операции Hull Обводы, гидростатика и остойчивость корабля + волновое сопротивление. F1 краткая справка F2/F2 запись/считывание корпуса F4 Математическая аналитика F5 Гидростатика + остойчивость Волнообразование и ходкость от «Штормовой мореходности» из Корабелки + А.Н.Шебалов F9 ++ остаточное от А.Ш.Готман <Enter> масштаб по ширине окна <Space> шпангоуты сплайн\линии <Esc>/<ctrlC> завершение

² в формате кафедры конструкции судов ЛКИ (©1985, Игорь Владимирович Степанов).

³ с Малыми моментами Инерция площади Действующей Ватерлинии.

записи<**F2**>/считывания<**F3**> нового корпуса; <**F4**> аффинные преобразования размерностей или построение двух вариантов аналитических корпусов; а также вызов процедур для расчетов гидростатики и остойчивости <**F5**>; и три модели вычислений волнового <**F8-F9**> и остаточного сопротивления <**F7**> воды движению корабля.

Для прорисовки контуров шпангоутов по команде: <Пробел> последовательно переключается режимы изображения в отрезках, или со сглаживанием контуров сплайн-функциями с разметкой узловых точек.

Перемасштабирование чертежей: **Ввод**>выполняется в пропорциях исходного масштаба с сохранением ширины активного графического окна.

<F2 – Ship Hull Digital Loft> — запись цифровой модели корпуса из оперативной памяти во внешний файл. Запрашивается новое имя, в котором по умолчанию предлагаются цифры даты и времени: «ггммдд-ччмм. vsl».

При запросе на считывание нового цифрового теоретического чертежа: <**F3** – Choice hull from 'vsl' file or Esc to MIDV ship> –открывается стандартное окно файловой системы для выбора файлов с расширением «*.vsl». При отказе от считывания нового файла происходит автоматическое формирование, запись и считывание файла-образца «Hull.vsl» цифровой модели гипотетического корпуса МИДВ-85 (**Puc. 3**).

Простые математические модели формы корпуса с возможностью аффинной и скуловой трансформации

Пропорциональные трансформации корпуса и ссылки на построение аналитических обводов собраны в меню **<F4>** – «Математическая аналитика».

Изначально в меню «Аналитические обводы корпуса» предназначалось для доступа к построению комбинированных моделей из 1-полиноминальных и 2-экспоненциальнотригонометрических функций. Эти весьма сложные модели рассматриваются в следующем параграфе.

В текущей версии программного << обводы скуловых волн >> комплекса добавлены возможности «аффинной геометрической трансформации» корпуса в оперативной памяти, с

возможностью

Аналитические обводы корпуса

1 — на степенных функциях

2 — синусно-показательных

<аффинная трансформация>>

X: 1.000 Y: 1.000 Z: 1.000

<< выбор простой модели >>

Эллипс: L=20 B=10 №=65

<< обводы скуловых волн >>

ниже

задаются

В

строке

его последующего сохранения.

коэффициенты трансформации по трём координатным осям **X**, **Y**, **Z**, которые приводятся в действие на строчке «аффинная трансформация», по команде «ввод» с клавиатуры, или отметкой этой строчки указателем курсора «мышь».

Для проведения сравнительных вычислительных экспериментов добавлен выбор простых моделей корпуса: «Эллипс» — удлинённый шарик; «Шлюпка» — эллипсоид с равноудаленными ватерлиниями; «Корпус» — эллипсоид с обводами кубической полноты; «Кирпич» — прямоугольный параллелепипед. Можно указывать L (>1) — длину; В (>1) — ширину нового корпуса и \mathbb{N} (>2) — количество аппроксимирующих точек, с исполнением команды на по созданию корпуса на строке «выбор простой модели». Осадка будет установлена как половина ширины корпуса T = B/2, но это можно затем настраивать с помощью аффинных преобразований.

Рис. 4. Выбор варианта простейшего «Корпуса» с однократным улучшением скуловых обводов по алгоритму: «обводы скуловых волн».

Простейшие полиноминальные и тригонометрические модели корпуса естественным образом сводятся к скруглённым скулам увеличенной полноты в оконечностях по примитивным схемам «струйных систем» обтекания И. П. Алымова⁴ [1878], негожим по ходкости и качке на волнении.

⁴ Илья Павлович Алымов. **Морской сборник**, 1879, №9, с.1÷54, №10, с.1÷52: «Очерки системы струйного образования судов и исследование опыта применения системы»; №12, с.103÷156: «Опыт фактического применения системы струйных образований судов».

Для приведения корпуса к оптимальным для штормового хода V-образным или клиперским скуловым шпангоутам (Рис. 4) предусмотрена команда «обводы скуловых волн», по которой ветви скуловых шпангоутов отчасти заостряются, с попутным улучшением гидростатических характеристик корпуса, в том числе.

Аналитические обводы для отработки ключевых характеристик формы корпуса корабля

Две аналитические модели формы корпуса подготавливаются во вложенных меню: «1 – на степенных функциях» и «2 – корпус, построенный на степенных функциях.

Ординаты корпуса Y(z,x) на «степенных функциях» (Рис. 5) образуют плавно-монотонные обводы, с полнотой определяемой показателями степеней P_x , P_z ; с

Корпус, построенный на степенных функциях

Шпангоуты Pz = 6.0

Ватерлинии Px = 3.0

Заострение Cx = 0.50 є [0÷1]

Борт Kp = 1.00 развал>1>завал

заострением на штевнях по косинусоиде с параметром $C_x \in [0 \div 1]$ — заострением до полной синусоиды при $C_x = 1$; и образованием развала борта в средней части корпуса при $K_p > 1$ или завала при $K_p < 1$.

Рис. 5. Размерения аналитической модели формы корпуса корабля

$$Y(z,x) = B \cdot (1 - |2x/L|^{P_x}) \cdot \cos(C_x \cdot \pi/2) \cdot (1 - |z/T|^{P_z}) \cdot (1 + (1 - K_p) \cdot z)/2,$$

где В – ширина корпуса.

Полнота ватерлинии оценивается как: $\alpha = P_x/(1-P_x)$; для мидельшпангоута это: $\beta = P_z/(1-P_z)$, и коэффициент общей полноты $\delta = \alpha \cdot \beta$ (без учета дополнительных заострений ватерлинии и завала/развала бортов).

Ассиметричные относительно миделя обводы создаются с использованием «синусоидально-показательных функций», которые охватывают многообразие

обводов от полной синусоиды до бульбовой капли, расширяющейся до формы подводного «крыла ската».

Показатели степени в алгоритме сопрягаются по принадлежности к носовой P_s и кормовой P_a оконечностям корпуса. Небольшая корректировка аппликаты носового бульбового расширения выполняется с помощью параметра T_s . С помощью параметра K_s применяется аналогичный развал $K_s > 1$ или завал борта $K_s < 1$ в средней части корпуса.

```
Синусоидально-показательные функции
Параметры обратной полноты: P \in [0 \div \infty]
      P > 10
               косинусоиды
  1 < P < 5
               бульбовые ватерлинии
      \mathbf{P} \approx 1
               каплеобразность
      P < 0.5
               к форме крыла ската
     Ps = 1.2
               форштевень
     Pa = 1.2
               ахтерштевень
Заглубление Tz = 0.50 \in ]0 \div 1]
Наклон борта Ks = 0.80 развал>1>завал
```

$$Y(z,x) = B \cdot \frac{(1-z)^{2+8/(P_a+P_s)}}{1+P_a^{-1}+P_s^{-1}} \cdot (1+\cos \pi x) \times$$

$$\times (1+(P_s \cdot (1-x))^{-z \cdot T_z - 1} + (P_a \cdot (1+x))^{z \cdot T_z - 1}) \cdot (1+(1-K_s) \cdot z)$$

Бульбовый форштевень и консоль кормового подзора настраиваются по сопутствующему запросу: «Описание штевней», где также можно переопределить главные размерности корпуса: длину (L), ширину (B) и осадку (D). N_s — создаёт плавную стыковку бульбового очертания с основной линией; Выступ консоли

кормового подзора L_a отсчитывается от точки на киле, а крутизна N_a — условный угол пересечения ахтерштевня с ватерлинией связан с выступом плавникового ахтерштевня и величиной наклона поверхности обшивки под кормовой раковиной:

Описание штевней

Наклон форштевня Fs $[-1\div 1] = 0.00$ Заглубление бульба Ts $[0.5\div 1] = 0.75$ Длина носового бульба Ls $[0\div 0.5] = 0.10$ Степень кривизны Ns $[1\div \approx 2] = 1.67$ Длина кормового подзора La $[0\div 0.5] = 0.15$ Крутизна подзора Na $[1\div \approx 2] = 1.60$ Длина корпуса Length = 123.74 Ширина Breadth = 16.80 Осадка Draught = 6.40

$$X(z) = L \cdot L_a \cdot \sin(2.25 \cdot \tanh(z \cdot N_a)) \cdot (z+2)/6.$$

Построение форштевня X(z) использует принудительный наклон F_s относительно образующей прямой линии, с указанием аппликаты заглубления T_s и длины L_s выступающего вперёд носового бульба. Степень кривизны N_s предопределяет изгиб форштевня на уровне конструктивной ватерлинии.

$$X(z) = \frac{L}{2} \cdot \left(1 + \frac{1 - F_{s} \cdot (1 + z)/2}{1 + L_{s}} \times \left(1 + L_{s} \cdot \left[z < 0? z^{2} \cdot (1 - L_{s}) : \left(\frac{|z|}{T_{s}} \right)^{T_{s} \cdot N_{s}/(1 - T_{s})} \cdot \left(\frac{1 - z}{1 - T_{s}} \right)^{N_{s}} \right] \right) \right),$$

где z < 0 – надводный борт с параболическим контуром форштевня.

Включение и масштабирование ватерлиний Y(x) по уровням аппликаты z в интервале между штевнями придает корпусу внешне привычный облик, но, с эквидистантными контурами ватерлиний. То есть, в обводах отсутствуют придонные сужения контуров шпангоутов в зонах носовых и кормовых скул, отвечающих за создание оптимальных условий по корабельному волнообразованию и минимизации силовых воздействий в процессе отражения штормовых волн от корпуса на ходу корабля.

Кривые элементов теоретического чертежа и диаграммы остойчивости в диапазонах осадок интенсивной вертикальной качки

Расчёты гидростатики и остойчивости выполняются в программе «Hull» строго по традиционным [1] докомпьютерным методичкам теории корабля, что необходимо для корректного сопоставления новых результатов с общепринятой корабельной документацией.

Процедура **<F5>** для расчётов гидростатики и остойчивости открывается в новом окне «Ship Hull Hydrostatics», где слева-вверху изображается проекция «корпус» теоретического чертежа (**Puc. 6**) с

Stability Гидростатика и остойчивость классика Семёнова Тянь-Шанского.

F1 эта краткая справка

F4 параметры диаграмм остойчивости

<Enter> обновление изображения <Esc> выход

V грузовой размер, водоизмещение

S плошаль смоченной общивки

Swl площадь действующей ватерлинии

xS абсцисса площади ватерлинии

хС абсцисса центра величины

zC аппликата центра величины

zM аппликата метацентра

r, R поперечный (x) и продольный (y) метацентрические радиусы

Jx,Jy поперечный и продольный моменты инерции площади ватерлинии

рассечением подводного и надводного объемов пятью контрольными ватерлиниями.

Для выполнения гидростатических расчётов по стандартным методикам, по исходной цифровой модели корпуса корабля предварительно проводится

интерполяция ординат бортовой обшивки на мелкую равномерную расчетную сетку, к формату подробной таблицы плазовых ординат. К сожалению, при таком подходе невозможно корректно обрабатывать неоднозначные параметрические контуры шпангоутов, переопределяемых к простым функциям от аппликат. В настоящей версии программы «Hull» выполняется отбор набольших ординат при очерчивании шпангоутных контуров по аппликате от киля к палубам, отчего корпус дополняется объёмами под прогибами кормовых тоннелей, за планширями фальшбортов и др.

Океанский корабль повышенной штормовой мореходности обычно не строится в сильно искривленных поверхностях обратной кривизны, которые могут подвергаться ударным волновым нагрузкам, или слемингу. Результирующий после интерполяции

Рис. 6. Вариант расчёта гидростатических кривых и диаграмм остойчивости научноисследовательского судна «Профессор Павел Гордиенко». При нулевой начальной
остойчивости на конструктивной осадке внешние кренящие моменты малы
примерно до 15° волнового склона. На чертеже корпуса и на кривых элементов
теоретического чертежа приведены линии осадок, по которым построены
диаграммы остойчивости при фиксированном положении центра тяжести.

Теоретический чертеж корабля в проекции корпус изображается левее гидростатических кривых в том же вертикальном масштабе (**Puc. 6**), со общими

горизонталями ватерлиний. Между исходными шпангоутами светло-голубыми ветвями прорисовываются переинтерполированные контуры, участвующие в расчётах, и по которым можно визуально оценить применения в расчетах обычных таблиц плазовых ординат.

При интегрировании повсеместно используется метод трапеций, для которого точно не существует числовых выбросов за счёт сильного искривления поверхностей, не возникает неадекватно сильных погрешностей даже в случае применения оцифровок с явными сбоями в данных.

Для умеренного повышения точности, таблицы ординат дополняются описанием штевней в аналогичной искусственной интерполяции по аппликатам. Штевни представляются контурами диаметральной плоскости утолщениями для уточнения дополнительных объёмов в оконечностях корпуса. В случае оконечностях корпуса требуется раздельная этом равнобедренными трапециями, абсцисса центраплощади которых уточняться как:

$$C_x = x + \frac{(S_x - x) \cdot (y + 2 \cdot S_y)}{3 \cdot (y + S_y)},$$
 [M] (1)

где: x, y – абсцисса и ордината ближайшей к штевню точки на шпангоуте, sx, sy – координаты на той же ватерлинии на срезе штевня.

(возможно, здесь полезны ключевые формулы из Семёнова-Тянь-Шанского) (2)

В диаметральной плоскости корпуса большим зелёными кружочком отмечается центр величины по конструктивной осадке, у других контрольных осадок синеватый оттенок при всплытии и желтоватый – для погружения корпуса; самые маленькие точки соответствуют промежуточным осадкам. Аналогично показываются аппликаты метацентров, только красным кружочком чуть меньшего размера, с такими же цветовыми оттенками и чуть меньшими размерами для других контрольных ватерлиний.

Кривые элементов теоретического чертежа приводятся в правой части графического окна (Рис. 6 — гидростатические кривые), где также приводятся основные и промежуточные горизонтали контрольных ватерлиний. Разметка кривых выполняется по всей высоте: от нижней точки на киле, до палубы и выше. Слева—внизу — графики диаграмм остойчивости с указанием метода отсчета положения центра тяжести: над центром величины; над действующей

ватерлинией; относительно метацентра — метацентрическая высота одинаковая для всех осадок; и над основной линией — фиксированное положение центра тяжести при вертикальной качке на волнении, характерное для реальной динамики корабля в штормовом море.

Справа внизу красным цветом подписываются текущие отсчеты под курсором мыши, с указанием названий графических секторов экрана: «Корпус», «КЭТЧ» (кривые элементов теоретического чертежа) и «Остойчивость».

Выбор количества контрольных ватерлиний, максимальный угол диаграммы остойчивости и форма представления результатов настраиваются в меню по команде: <**F4**> — «параметры диаграмм остойчивости», в меню, появляющемся правее диаграмм остойчивости.

По первой строке выбирается вариант формирования диаграмм остойчивости, где предустанавливается величина отстояния центра тяжести для исходной конструктивной осадки:

Диаграмма Рида				
ЦТ над центром величины 0.00				
Максимальный угол крена 180°				
Выбор ватерлиний с	2	по	8	

«ЦТ над центром величины» – диаграмма остойчивости формы корпуса;

«Метацентрическая высота» – остойчивость без учета изменения осадки;

«Относительно ватерлинии» – альтернативная оценка остойчивости;

«*ЦТ над основной линией*» – практическая остойчивость с фиксированным положением аппликаты центра тяжести корабля.

Во второй строке можно ограничивать максимальный угол для прорисовки диаграмм остойчивости; в нижней строке указывается интервал контрольных ватерлиний, по которым следует проводить вычисления.

Интенсивность корабельного волнообразования в расчётах волнового сопротивления движению корабля

Гидромеханика корабля и особенности его взаимодействия с внешним волнением адекватно описывается в рамках математической модели Мичелла [11], с возможностью уточнения по Кочину [3] для частичного учёта ширины корпуса и углов в(с)хождения ватерлиний.

Физическая интерпретация уравнений для оценок волнового сопротивления корабля становится наглядной, и допускающей геометрические оценки процессов волнообразования и отражения штормовых волн в том случае, если все подынтегральные выражения и аргументы будут записаны в размерном

виде. Расчетные интегралы для волнообразования с одной стороны сингулярные, но сходящиеся, и с другой не терпят разрыва лишь за счет адекватного учёта сильнейшей высокочастотной осцилляции.

В практической гидромеханике жидкости, и тем более в природе гравитационных волн на глубокой воде, не может возникать сингулярных разрывов, и тем более исключены какие-либо высокочастотные явления за пределами дисперсионных ограничений с гравитационными волнами на поверхности глубокой воды. И потому, практическая адаптация подынтегральных выражений с использованием базовых законов гидромеханики, в размерном виде, позволяет своевременно включать в расчёты адекватные асимптотики, либо сводить решения в локальных подобластях к экспериментальным — эмпирическим зависимостям.

Отметим сразу, что в обычных стационарных задачах корабельного волнообразования не участвует время, то есть, геометрические построения сводятся к стационарным — неподвижным волновым картинам в локальных отсчётах для движущегося с постоянной скоростью корабля. Излучение корабельных волн происходит в диапазоне от условно малых расходящихся волн, до максимальной по длине и скорости хода поперечной волны: $\Lambda = 2\pi \cdot V^2/\mathrm{g}$, проявляющейся за кормой корабля, где V [м/с] — скорость хода корабля.

Пусть безразмерное число $M = \sqrt{\Lambda/\lambda}$ — будет соотношением длин для максимальной поперечной волны Λ [м] к расчетной фазовой волне λ [м], рождающейся в процессе интерференции со всеми излучателями на смоченной поверхности корабельных обводов. Множитель M сам по себе привносит сходящуюся сингулярность порядка $\lambda^{-1/2}$ даже в случае фиксированной скорости хода, и в теории такой интеграл для амплитуды волны может давать бесконечно большие величины, что никак не может соответствовать жестким ограничениям для крутизны склонов в природе гравитационных трохоидальных волн на воде.

$$A(\lambda) = \frac{M}{\lambda} \cdot \left| \int_{\Omega} q(x_0, y_0) e^{k \cdot (-z_0 + i\omega_0)} \delta\Omega_0 \right| ;$$

$$R_x = -\frac{\pi}{2} \cdot \rho V_0^2 \int_{\Lambda}^0 A^2(\lambda) \cdot \frac{\delta \lambda}{\lambda \cdot M^3 \sqrt{M^2 - 1}} .$$
(3)

Все величины в интеграле Мичелла приведены к размерным физическим функциям и аргументам: $A(\lambda)$ [м] — амплитуда излучаемой корабельной волны заданной длины λ , измеряемая вблизи смоченной обшивки корпуса корабля x_0 , y_0 ; R_x — силовая реакция корабельного волнообразования на скорости хода V_0 ;

 $M=\sqrt{\Lambda/\lambda}$ — соотношение длин для максимальной поперечной волны Λ к расчетной фазовой волне λ ; $k=2\cdot\pi/\lambda=8/(V_0^2\cdot\cos^2\vartheta)$ — волновое число для данной фазовой волны;; $\omega_0=x_0/M+y_0\cdot\sqrt{M^2-1}/M$ — — фазовый отсчет расходящейся волны с параметром отставания M для элементарного приращения интенсивности корабельной волны от локального участка корабельной общивки с координатами x_0 , y_0 .

Рис. 7. Волнообразование, как процесс отражения волн от поверхности корпуса корабля. В зонах A_{+S} и $_{S}$ -В происходит рост гребня трохоидальной волны, неспособной оторваться от корпуса судна.

Механико-геометрическая интерпретация гидродинамических процессов в интеграле Мичелла (Рис. 7) связывает процессы отражения от корпуса корабля внешних волн [9], условно набегающих под косыми углами \mathcal{S} в диапазоне длин: $\lambda \in [0 \div \Lambda = 2 \cdot \pi \cdot V_0^2/g]$, где: Λ — длина поперечной корабельной волны, соответствующая скорости хода V_0 .

В оконечностях корпуса в зонах: $_{s}$ -В и A_{+s} — корабельная волна не может оторваться от корпуса и волновые процессы обращаются сложением коротких волн в форме интенсивного источника — струи жидкости вблизи судовой обшивки.

Тогда, наиболее ответственными участками по длине корпуса становятся зоны A_{i-} и $_{+i}B$, где происходит трансформация присоединённого гребня в свободно расходящуюся корабельную волну. Если в скуловых обводах корпуса не предусмотрено затягивание гребня волны под днище корпуса, то вблизи корпуса будет формироваться интенсивнейшая расходящаяся волна, в первую очередь свидетельствующая о нарушениях плавности набегающих на корпус потоков воды, с множеством негативных последствий.

В программу «Hull» встроено три алгоритма для работы с корабельным волнообразованием, которые включаются как извне при запуске, так и изнутри процедуры «Simple Wave Resistance of ship» по командам с клавиатуры:

<F7> — Текущие (условно незавершённые) проработки вычислительного эксперимента из книги [9] «История штормовой мореходности»;

< F8> – Академический алгоритм Ленинградского кораблестроительного института (Корабелки) по Александру Николаевичу Шебалову;

<**F9**> – Поверенные

математические модели и алгоритмы Ады Шоломовны Готман (расчётные кривые по

Wave Волнообразование и сопротивление движению корабля на тихой воде. F1 краткая справка F7 по «Штормовой мореходности» F8 из Корабелки + A. H. Шебалов F9 ++ остаточное от А. Ш. Готман (LMouse) + волновое излучение <Space> сброс профилей волн <Enter> обновить изображение <Tab> иная модель Мичелла <Esc>/<ctrlC> завершение

Мичеллу, их главные части и уточнение до остаточного сопротивления).

Рис. 8. Вариант расчётов корабельного волнообразования с представлением графиков относительного сопротивления движению на единицу водоизмещения корабля R/D [H/кг], и коэффициентов волнового сопротивления Cw. Верхние графики показывают интенсивность излучения волн с учётом интерференции вдоль корпуса корабля на различных скоростях хода. Справа-внизу показаны теоретические шпангоуты, задействованные в алгоритмах интегрирования по корабельным обводам.

Независимое графическое окно для процедуры «Wave» разбивается на четыре площадки (**Puc. 8**):

- справа внизу проекция корпус подводных обводов корпуса корабля в масштабе моделируемого корабля;
- слева внизу графики: C_w коэффициентов волнового сопротивлении и R/D [H/кг] удельного сопротивления на единицу объема водоизмещения. В случае алгоритмов А. Ш. Готман <**F9**> строятся графики волнового сопротивления по Мичеллу, а также главная часть расчетного интеграла с прогнозом результирующего остаточного сопротивления движению корабля;
- над графиками и шпангоутами располагается проекция полуширота теоретического чертежа, с подписью справа: V [м³] водоизмещение; и S [м²] площадь смоченной поверхности;
- над чертежом полушироты кривые интенсивности корабельного волнообразования вдоль корпуса для заданной скорости хода. Подписи над кривыми соответствуют скорости Fn по Фруду и отмечаются на вертикалях строго в координатах графиков волнового сопротивления.
- в нижней строке справа красным цветом постоянно обновляются числовые величины с активной площадки под курсором мыши.

По <**F1**> — вызывается краткая справка по командам управления процедурой «Wave».

Курсор мыши всегда репетует значениями координат и величинами в точке его текущего местоположения.

В поле кривых волнового сопротивления курсор активирует маркер — вертикальную линию скорости хода Fn по Фруду, и соответствующий график интенсивности излучения волн от корпуса корабля над чертежом корпуса в проекции «полуширота». Левой клавишей мыши изображение маркера и кривой интенсивностей фиксируются, а новые активные кривые от курсора уже не будут динамически масштабироваться. Чтобы убрать все графики интенсивностей можно воспользоваться <Пробел>ом.

При изменении размеров окна могут возникать графические огрехи в изображении, которые по команде **<Bвод>** могут быть исправлены путём полного перерасчета. Клавишей **<Taб>** можно последовательно изменять выбор метода вычислений **<F7>**<**F8>**<**F9>**.

«Aurora» – вычислительный эксперимент и практика штормового мореходства

Комплекс алгоритмов программы «Aurora» реализует прямые вычислительные эксперименты для испытаний мореходных качеств кораблей и судов в условиях штормового маневрирования произвольными ходами и курсами относительно групповых структур волнения. Такие опытовые эксперименты предназначены для изысканий в общекорабельной проектировании обводов И архитектуры корабля для повышенной штормовой мореходности, и безусловно полезны тренажера при освоении эффективных и безопасных режимов штормового хода кораблей и судов флота действующего.

Примой вычислительный эксперимент может проводиться с различными моделями гидродинамики корпуса, внешнего морского волнения и гидромеханики их взаимодействия. Групповые структуры трохоидального волнения задаются без ограничений высоты и крутизны штормовых волн, поступательные и вращательные движения цифровой модели корпуса могут иметь произвольный размах, включая ситуации с дельфинированием, брочингом или опрокидыванием корабля. Для этого модели корпуса корабля оцифровываются с палубами и крупными надстройками.

Динамическая модель перемещений и качки корпуса настроена на управляемое движение корабля произвольными ходами и курсами относительно морского волнения. Числовая модель корабля строится в полноразмерных геометрических и динамических масштабах, что позволяет проводить испытания в реальном времени. Для выявления особых режимов штормового хода предусмотрено изменение остойчивости (метацентрической высоты) и осадки корабля, коэффициентов демпфирования корпуса, с возможностью перенастройки трёх групповых структур морского волнения.

При выполнении программы «Aurora.exe» без параметров делается попытка считывания файла данных Aurora.vsl с цифровой моделью корпуса крейсера «Аврора». При отсутствии в рабочей директории этого файла представляется поисковый запрос по маске «*.vsl», и в случае его отмены по <Esc> в текущей рабочей директории порождается новый файл Aurora.vsl, который автоматически считывается и включается в активную работу.

Краткое представление математических моделей и алгоритмов

Главная часть силового гидростатического взаимодействия корабля и морского волнения определяется условно свободным вектором приращения скорости поступательного движения центра масс δV [м/с], с изменением интенсивности углового поворота $\delta \omega$ [с-1] относительно мгновенного центра величины L [м] из предыдущего шага вычислительного эксперимента во времени.

$$\delta \overrightarrow{V} = \overset{\times}{\mathbf{r}} \cdot g \cdot \frac{\overset{\leftarrow}{vS - W}}{|W|} \cdot \delta t \text{ [m/c]}; \quad \delta \overset{\rightarrow}{\omega} = \overset{\times}{\mathbf{r}} \cdot g \cdot \frac{\overset{\leftarrow}{L} \times (\overset{\leftarrow}{vS - W})}{\overset{\times}{\mathbf{M}}} \cdot \delta t \text{ [c}^{-1}\text{]},$$

где \mathbf{r} [δ] — тензор ориентации корабля — главные оси корабельного базиса; \mathbf{W} [\mathbf{kr}] — вектор гравитационной силы тяжести корабля — исходное водоизмещение; $\mathbf{v}S$ [\mathbf{kr}] — вектор архимедовых сил всплытия по нормали к волновому склону под осреднённой поверхностью действующей ватерлинии — объём погруженных обводов корпуса; \mathbf{L} [\mathbf{M}] — вектор отстояния мгновенного центра величины от фиксированного центра масс корабля — плечо пары сил; \mathbf{M} [$\mathbf{kr} \cdot \mathbf{M}^2$] — массовый (объёмный) момент инерции корпуса, зависящий от распределения масс грузов, бортовых механизмов и оборудования, и собственно корпуса.

Основной вектор архимедовых сил всплытия vS [кг] может вычисляться либо по изменчивому объему погруженной части корпуса, либо интегрированием давления по смоченной поверхности бортовой обшивки. На тихой воде без качки оба метода вычисления погруженного объема дают схожие результаты.

На элементарном треугольнике бортовой обшивки величина и направление силы давления воды вычисляется по площади с вектором нормали в локальной системе отсчета, при этом действующее давление приводится к аппликате центра элементарного треугольника h_z [м]:

$$\overleftarrow{f} = (p_i + \rho \cdot g \cdot h_z) \cdot \overleftarrow{s}$$
[H, kg·m/c²]

где p_i — избыточное или наведенное извне давление, например — в случае деформации поверхности воды или под воздействием локальных скоростных нотоков; h_z — аппликата погружения центра площади треугольника; s — вектор нормали с площадью элементарного треугольника в корабельном базисе; $\rho = 1025$ [кг/м³] — условная плотность морской воды.

Свободный или главный вектор сил 5 давления на смоченную обшивку корпуса просуммируется:

$$\overset{\leftarrow}{vS} = \sum_{\Delta} g \cdot h_z \overset{\leftarrow}{\delta s}$$
[H/\rho, \text{M}^4/c^2]

Аппликата точки приложения силы давления воды вычисляется по моменту инерции площади треугольника в проекции его отображения на вертикальной плоскости:

$$h_{\Delta} = h_z + \frac{I_c}{h_z \cdot s_z}$$
 [M]

где s_z — проекция площади элементарного треугольника на вертикальную плоскость. В случае горизонтальных площадок поправка к аппликате h_Δ обнуляется, а сила от давления сводится к центру площади треугольника h_z .

$$\stackrel{\leftarrow}{vR} = g \cdot \sum_{\Delta} h_z \cdot [\stackrel{\leftarrow}{r_{\Delta}} \times \stackrel{\leftarrow}{\delta} s], \qquad [\text{H} \cdot \text{M}/\rho, \, \text{M}^5/\text{c}^2]$$

где: r_{Δ} — вектор от центра величины до центра треугольника с поправкой по смещению его вертикальной компоненты h_{Δ} .

Интеграл по полю давлений может уточняться поправками по скорости течения вблизи элементарных фрагментов обшивки с уточнениями по условиям непротекания [1] (отражению внешнего потока от поверхности) корпуса. Нормальные компоненты вектора скорости получается двойным скалярным произведением с единичной нормалью n к элементарной:

$$\overset{\leftarrow}{v_n} = k_v \cdot (n \cdot v) \cdot n .$$
[M/c]

В случае отрицательного давления величина вектора корректируется эмпирическим параметром турбулентности/кавитации 6 : $k_{\rm V}-$ в качестве извне регулируемого множителя для вовлечения только доли стока (отрицательного давления), уменьшаемого для модели в условиях непротекания на судовой общивке.

⁶ Иначе, в чистой гидродинамике, в отличие от моделей гидромеханики, действие парадокса Даламбера взаимокомпенсирует импульсы сил отражения частиц жидкости.

⁵ В уравнениях движения в делителе всегда присутствуют масса или моменты инерции, что формально позволяет опускать множитель массы-инерции: ρ – плотности воды.

Асимметрия отражённых импульсов скорости: $v_n \times = 1 + (1 - k_v) \cdot n_v$, где k_v

— параметр в модели удовлетворения условий непротекания. По умолчанию в программе Aurora установлен коэффициент $k_v = 0.5$.

Если $k_{\nu}=1.0$ — величина отрицательного импульса давления не ослабляется, при уменьшении $k_{\nu}\in[0,0\div1,0[$ — пропорционально блокируется величина стока соразмерно проекции импульса вектора скорости на нормаль к элементарному треугольнику на поверхности смоченной поверхности корпуса.

Скользящий вектор скорости по поверхности судовой обшивки получается аналогичным по форме двойным векторным произведением:

Изменением знака (порядока) в векторном произведении получается вектор v_{\perp} для отраженных от элементарной площадки частиц жидкости в направлении нормали n :

Результирующий вектор силы на элементарном треугольнике:

$$\delta \stackrel{\leftarrow}{f_{\Delta}} = p_{\Delta} \cdot \stackrel{\leftarrow}{\delta s} = \rho \cdot \left(\frac{V^2 - |\stackrel{\leftarrow}{n \times v_s}|^2}{2} + \frac{\pm k_v \cdot (\stackrel{\leftarrow}{n \cdot v_n})^2}{2} \right) \cdot \stackrel{\leftarrow}{\delta s}, \qquad [\text{M}^2/\text{c}^2]$$

где: V — скорость хода корабля, p_{Δ} — давление воды на элементе бортовой обшивки. В последнем выражении двойные произведения в практических расчётах для $\stackrel{\leftarrow}{v_s}$ и $\stackrel{\leftarrow}{v_n}$ упрощаются, так как в оценках изменения давления в потоке жидкости требуются только величины скоростей, без задействования пространственной их ориентации.

Свободный вектор результирующей гидродинамической силы vS [кг] и связанный вектор момента относительно мгновенного центра величины для погруженной в воду части корпуса vR [кг·м] вычислены в корабельной (локальной) системе отсчёта. В морской (глобальной) системе координат вектор гидродинамической силы привязывается к мгновенному центру величины L [м],

что будет создавать дополнительный момент относительно центра силовой реакции корпуса.

$$\overrightarrow{vS} = \overrightarrow{\mathbf{r}} \cdot \overrightarrow{vS}, \\
\overrightarrow{vR} = \overrightarrow{\mathbf{r}} \cdot \overrightarrow{vS} + \overrightarrow{vS} \times (M - L), \\
[K\Gamma \cdot M]$$

где $\stackrel{\rightarrow}{M}=\stackrel{\leftarrow}{f}\stackrel{\leftarrow}{(M,W,\mu)}$ — подвижный центр силовой реакции корпуса в условиях изменчивого водоизмещения при движении на штормовом волнении, зависящий от местоположения центра масс корабля M, текущих координат действующего водоизмещения W и действия присоединенных масс жидкости μ , формально связанных с параметрами демпфирования поступательных скоростей движения корпуса (точное описание в следующем математическом разделе).

Местоположение гидродинамического подводного центра инерционной реакции корпуса, как условный центр сопротивления движению a — располагается в срединной точке между центром величины погруженной в воду части корпуса, и центром, площади действующей ватерлинии:

$$\stackrel{\leftarrow}{a} = \stackrel{\leftarrow}{(c \cdot v + f \cdot s)} / (v + s) ,$$
 [M]

где c — векторы координат центра величины, и f — центра площади ватерлинии; v — мгновенные значения водоизмещения и s — площади действующей ватерлинии.

Обобщенный динамический центр движения корпуса уточняется безразмерными коэффициентами демпфирования μ { ξ , η , ζ } [$0 \div \infty$ [. При усилении демпфирования кинематический центр корабля w смещается к погруженному центру величины, при ослаблении — к центру тяжести:

$$\overset{\leftarrow}{w} = \frac{\overset{\leftarrow}{a \cdot v \cdot m} + \overset{\leftarrow}{G \cdot V \cdot (1 - m)}}{\overset{\leftarrow}{v \cdot m} + V \cdot (1 - m)}$$
[M]

где V — максимальное водоизмещение с учетом вертикальной качки; G —центр тяжести; m { x,y,z } — параметры демпфирования, нормированные к интервалу [$0.5 \div 1.0$ [:

$$\overline{m} = (1 + \tanh \overline{\mu}) / 2$$
.

Подобно распределению давлений на крыле, на входящих носовых ватерлиниях корпуса создается повышенное давление набегающего потока в отличие от разрежения на сходящихся потоках кормовой части корпуса. При

нарушении симметрии распределения давлений при занижении отрицательных распределения коэффициентом $Kv \in [0\div1]$. Если Kv = 1 — отрицательное давление не изменяется и парадокс Даламбера о взаимокомпенсации гидродинамических давлений строго исполняется; при Kv = 0 — скалярным произведением исключается нормальная компонента из стоковых распределений скоростей течений в условиях непротекания корабельной обшивки, что соответствует приведению к нулевому давлению, давлению атмосферы или кавитации.

(...уточнить модель расчётов для установления местоположения центра силовой реакции корпуса корабля)

1. Информационная консоль и графические окна визуализации мореходности корабля в штормовом море, интерактивное управление вычислительным экспериментом

Числовая модель корабля оцифровывается полномасштабными теоретическими чертежами обводов корпуса с частичной обрисовкой главных элементов общекорабельной архитектуры, что позволяет проводить вычислительные эксперименты в реальном масштабе времени, с соблюдением инерционных характеристик, пульсаций скорости и периодов качки в наглядном представлении штормовой мореходности настоящего корабля.

Морское волнение моделируется ячеистыми трохоидальными структурами, где фазовые скорости гребней волн вдвое больше их групповых проявлений, то есть, девятые валы существуют на поверхности моря лишь ограниченное время. Характер волнения может перенастраиваться в ходе эксперимента, изначально это три характерные системы волн усиливающегося шторма⁷ по курсу корабля на Nord с ходом «вразрез волне» 15° с правого борта:

- интенсивное ветровое волнение (λ =64 м, h=6,88 м, C=195°);
- свежая зыбь действующего шторма (λ =100 м, h=5,37 м, C=160°);
- пологие реликтовые валы от удалённых ураганов

 $(\lambda = 160 \text{ m}, h = 3.82 \text{ m}, C = 230^{\circ}).$

Маневры корабля в вычислительном эксперименте выполняются по плавным траекториям циркуляции; плавно происходит набор и потеря скорости хода, что в целом соответствует реальному плаванию со всеми шестью степенями свободы по угловым и поступательным видам качки, с креном на циркуляции и ходовым дифферентом при разгоне и торможении корабля; и что важно – с

 $^{^{7}}$ Сложение девятых валов превышает 16 м – почти невозможная оценка опасности сверху.

переменчивой скоростью хода в зависимости от характера взаимодействия корпуса с конкретными гребнями штормовых волн.

Курс корабля удерживается авторулевым с ограничением скорости циркуляции по трём условным вариантам перекладки руля «помалу», на «полборта» и «на борт» (угловая скорость изменения курса на циркуляции здесь не зависит от скорости хода).

Скорость хода регулируется условной «тягой движителей», с сопротивлением движению с заданной скоростью по «тихой воде», что допускает как потерю штормового хода на интенсивном волнении, так и разгон с дельфинированием на гребнях попутных волн. При остановленных машинах демпфирование хода применяется по всем компонентам вектора скорости дрейфа, на ходу – только к поперечным компонентам от заданной скорости.

В ходе эксперимента можно изменять метацентрическую высоту, отмеряемую от метацентра тихой воды, соответственно, относительно этого метацентра будет сдвигаться аппликата центра тяжести ($G_z = m_z - h$). Таким образом определяются условия для оценок и анализа характера и интенсивности качки корабля в различных режимах штормового плавания.

Любопытной характеристикой может стать величина метацентрической высоты для возвращения в положение «на ровный киль» опрокинувшегося корабля. Адекватно отработанные обводы и надводная архитектура корабля должны сохранять положительность восстанавливающих моменты в широком диапазоне углов крена, также как и при переменных посадках корпуса в условиях интенсивной качки. При неблагоприятных проектных разработках опрокидывание на резкой качке происходит при положительной метацентрической высоте, и тогда возврат корпуса на ровный киль теоретически будет возможен при безмерном увеличении метацентрической высоты (смещении аппликаты центра тяжести «ниже киля»).

Осадка и дифферент корабля могут изменяться в предустановках параметров вычислительного эксперимента. В процессе эксперимента возможно интерактивное изменение действующей осадки корпуса, при этом опытовые испытания корабля будут автоматически перенастраиваться и перезапускаться, а в то же время графики с результатами прерываться не будут.

Для быстрого выведения плавающей модели из устойчивого равновесия предусмотрено импульсное изменение крена на $\pm 30^{\circ}$ правого или левого борта.

В проведении вычислительного эксперимента задействуются текстовая информационная консоль и два активных графических окна Windows под управлением OpenGL:

1 – Текстовая консоль с подзаголовком:

«Штормовая мореходность корабля (вычислительный эксперимент)» – с текстовой информацией об исходном состоянии корабля, о характеристиках трёх групповых структур морского волнения, о геометрических и динамических параметрах корпуса, ходкости и удержания корабля на курсе;

```
Штормовая морекодность корабля (вычислительный эксперимент)
 Ленинград, Кораблестроительный институт \ Санкт-Петербург, Государственный университет
                  Научно-инженерное общество судостроителей им.А.Н.Крылова,
                              подсекция мореходных качеств корабля в штормовых условиях
  «МИДВ» ©1975-2023 Калининград-Севастополь-Ленинград-Сахалин - ירוּשֹׁלִים - В.Храмушин
 >>> Краснознамённый ордена Октябрьской революции крейсер «Аврора»
 >>> { L=123.7,B=16.8,T=6.4,Ψ=00'\δd=0cm }^6.4 N (A.103<+147+>113.Φ) Statum{4}
BOTHA: \lambda = 56 \text{ M}, \tau = 6.0", \zeta = 6.0/0.89 \text{ M}, C = 9.4 \text{ M/c}, \lambda = 191°, \delta S = 4.7 \text{M} [172 ·154] = {800 ·720} M 3 · 0.0 / 0 M, 12.5 M/c, 158°, 6.2 M [130 ·116]
                                                        236°,
                  10.0",
                                                                 7.8m [104·94]
Вал:
                             0.0/
                                           15.6 M/c,
         156 м,
                                    0 м,
                            C:{ 2.6,-0.9,-2.9 } mC:| 0.38 -0.92 -0.01 | = -6°
 Time
         03'06" + 0.20"
                                                          | 0.91 \ 0.38 \ 0.14 \ | = 3^{\circ}
                                   1.5, -0.5, -1.8
 Speed 17.1y3(0.25=0.4L) W:{
            6817 << 6097 vW: {
                                  0.1,0.0,1.0 }
                                                           | -0.13 -0.07 0.99
                               :| 19151 5484.1 | mM:| 135605 -11078.9 41635.3 |
| 5484.1 918267 | |-11078.9 3570954 -6461.6 |
            2354 << 1876
 Surface
                            mW :
 Floatable 1436 << 1318
 pCenter 0.8 >> 0.3 >> -0.2 Gravity
                                                           | 41635.3 -6461.6 3573807 |
        h 0.84 >> 1.2 -- μM 156.5 >> 156.3 inMass: | 160625 -0.0
                                                                                33485.8
                                                               -0.0 4566025 -0.0
\otimes Курс( \partial )заданный => 67.3°<0.2> 67.5°
                                                         | 33485.8 -0.0 4592476 |
            крен 8.2°, дифферент 0.7°
            Скорость 17.1 из 18.0 узлов
    [м] - положение мгновенного центра величины (подводного объёма)
 {
m mC} (\delta) - матрица ориентации корпуса (корабельные оси в морском базисе)
 vF [м] - корабельные координаты центра площади действующей ватерлинии
 vW (\delta) - интегральная нормаль к действию гидростатических сил всплытия
 VD [м] - условный центр сосредоточения гидродинамических пар сил
 vS [H/\rho] - накопительный вектор сил от перепадов уровня моря
 vR [H \cdot M/\rho] - поворотный момент от криво-наклонной ватерлинии
    [м4] - моменты инерции площади действующей ватерлинии
 {\tt mM} [{\tt m}^5] - объёмные моменты инерции погруженного корпуса
 inMass - исходные моменты инерции корпуса
«Аврора» <=кратко: ход, курс; вертикаль, борт, киль {корма, мидель, нос}
```

Текстовая информационная консоль открывается в отдельном независимом окне для отображения исходных размерений по корпусу корабля с характеристиками морского волнения. На консоли непрерывно обновляются геометрические и инерционные характеристики корпуса в условиях качки на волнении, приводится информация об углах курса, крена и дифферента, текущая и заданная скорости хода, и другие результаты вычислений по гидромеханике

корабля на волнении. В нижней части текстовой страницы приводятся пояснения в форме краткой справки по обозначениям числовых величин.

В самой нижней строке приводится информация о режиме и параметрах ведения текстового протокола, который записывается вслед за параметрами конфигурационного файла *<имя файла модели>**.vil.

2 – Графическое окно состояния корабля:

«Аксонометрический вид корпуса корабля и профилей морских волн»

– с изображением корабля и его гидростатических центров в корпусном пространстве; с контурами морского волнения; графиками бортовой, килевой и вертикальной качки; ходкости, рыскания и вертикальных ускорений на корпусе и в его оконечностях; с картушкой для навигационной и гидрометеорологической информации, включающей параметры морского волнения

Рис. 9. Прорисовки динамического состояния корабля в двух графических окнах: в корабельном базисе и в морской системе координат. Показана картушка с текущим курсом и скоростью хода. Стрелками отмечается длина, крутизна и направления движения групповых структур волн. В нижней части графики бортовой, килевой и вертикальной качки, выше ходкость, рыскание и вертикальные ускорения в средней части корпуса и в оконечностях.

Управление вычислительным экспериментом и визуализацией моделируемых процессов выполняются в активных графических окнах: 2) - «корабль»; и 3 - «море» (Рис. 9 и Рис. 10), где имеются краткие контекстные подсказки: <**F1**>, и меню настройки основных параметров: <**F4**>.

3 – Графическое окно вычислительного эксперимента в целом:

«Корабль и трохоидальные штормовые структуры морских волн» — основное графическое окно с изображением корабля в условиях морского волнения. По необходимости, поверхность моря представляется с помощью подвижной сетки, которая может разрежаться до 100 ячеек по каждому направлению.

Рис. 10. Изображение всех волновых полей, корабля и маршрута его движения для наглядного представления хода вычислительного эксперимента. В верхних строках записываются действующие режимы моделирования морского волнения и гидромеханики корабля. В нижней строке текущее компьютерное время и количество выполненных циклов. Красные отсчеты минут означают нехватку вычислительных ресурсов, и отставание вычислительного эксперимента от реального времени.

Волновые структуры могут представляться разделёнными поверхностями, располагающимися ниже основного комбинированного уровня моря, что полезно при раздельном рассмотрении силового воздействия на корабль и отражения волн от корпуса. В нижней строке показывается количество шагов и время проведения эксперимента, с отметкой запаздывания для реальных отсчётов в случае нехватки вычислительных ресурсов.

Общий графический интерфейс морского вычислительного эксперимента

Настройка режимов моделирования и управление вычислительным экспериментом выполняется с помощью компьютерной клавиатуры и графического курсора мыши, действия которых контекстно связаны с активными графическими окнами и охватывают все возможные операции по визуализации, перестроению гидростатики корпуса, маневрирование изменением хода и курса корабля. Предусматривается также возможность интерактивного перестроения всех трех волновых систем и характера силового взаимодействия корпуса корабля с морским волнением, при этом, по необходимости вычислительный эксперимент может полностью перезапускаться.

Указатель «мыши» может использоваться для настройки графической сцены, поворотов, смещений или приближения изображений корабля и морской акватории. Эти же операции дублируются аккордами стрелок с <ctrl> и <shift>. Маневрирование ходом и курсом корабля адаптировано к правой цифровой группе клавиш, но может управляться и обычными цифрами с клавиатуры. В обоих графических окнах горячие клавиши быстрого управления экспериментом действуют, как правило, одинаково.

К графическим экранам привязана обработка прерываний\команд от клавиатуры, которые управляют методами раскраски и трехмерной визуализации; включая возможности быстрого возврата к исходным проекциям визуализации, или временной приостановки вычислительного эксперимента:

<Del или Home> — визуализация возвращается в исходное состояние;

<ВkSp> – происходит временное исключение моделирования морского волнения, а при последующем восстановлении волнового поля может выполняться полный перезапуск всего вычислительного эксперимента;

< Таб> и < Пробел> – методы раскраски в контексте графических окон;

- <Стрелки> и <мышка слева> поворот сцены относительно видимой горизонтальной (вверх-вниз) или вертикальной (вправо-влево) оси на экране;
- <Shift+Стрелки> и <мышка справа> поступательное перемещение графической сцены в направлении курсора-указателя;
- <Ctrl+Стрелки вверх-вниз> и <колёсико мышки> приближение / отдаление сцены, изменение видимого масштаба;
- <Ctrl+Стрелки вправо-влево> модель на экране наклоняется относительно собственной поперечной оси (z), вращение по ориентации взгляда на графическую сцену.
- < Escap> запрос на завершение вычислительного эксперимента с корректным закрытием протоколов и остановкой программы «Aurora».

При вызове подсказки <**F1**> или контекстного меню <**F4**>, вычислительный эксперимент не должен останавливаться. Если это случается, то лучше закрыть и снова открыть текстовое окошко, так как иначе прерванные вычисления затем с явной перегрузкой будут настигать упущенное «реальное время» эксперимента.

<u>Гидромеханика корабля: выбор и включение в эксперимент</u> математических и алгоритмических моделей

Выбор и установка модели гидромеханики корабля осуществляется либо в строке внутри стандартного меню настроек **<F4>**, либо по команде **<F8>** из любого графического окна.

В подборке вычислительных моделей внутри вложенного меню <**F8**> - «Выбор модели гидромеханики корабля», предлагается к использованию пять взаимодополняющихся вычислительных моделей пространственной динамики и гидромеханики корабля, каждая из которых может целевым образом применяться

как в проектных изысканиях, так и в интересах достижения практической эффективности и безопасности плавания корабля в штормовых условиях.

Выбор модели гидромеханики корабля

Кинематика качки на 4-х точках по склонам волн Объёмная плавучесть переменного водоизмещения Давление смоченных элементов бортовой обшивки Давление на встречном потоке с качкой корабля Давление с волновыми и ходовыми потоками воды

1 – «Кинематика качки на 4-х точках по склонам волн»: динамическое скольжение с использованием быстрых градиентов волнового склона по

пятиточечному шаблону из четырех смежных треугольников, с корректным учетом инерционных характеристик корабля в движении на склонах волн;

- 2 «Объёмная плавучесть переменного водоизмещения»: вычисление объёмных интегралов с уточнением силового действия по интегральному градиенту относительно поверхности действующей ватерлинии;
- 3 «Давление смоченных элементов бортовой обшивки»: интегрируются давления на элементарных треугольниках смоченной бортовой обшивки;
- 4 «Давление на встречном потоке с качкой корабля»: в расчёты включаются встречные потоки воды, распределённые по смоченной поверхности бортовой общивки, что моделирует обтекания корпуса на ходу корабля;
- 5 «Давление с волновыми и ходовыми потоками воды»: вычислительный эксперимент дополняется скоростями течений в толще воды под волновыми гребнями.

За исключением первой условно кинематической модели, в вычислительном эксперименте задействуются все шесть компонент внешних поступательных и вращательных воздействий со стороны штормовых волн, с гидромеханическим инерционным откликом в свободном пространственном движении корабля относительно некоего условного центра силовой реакции корпуса (как бы «центра бокового сопротивления»).

Рабочим режимом в комплексе «Aurora» предустанавливается последний, приведённый в нижней пятой строке, №5, где в алгоритмическом синтезе включаются все внешние гидростатические и гидродинамические возмущающие силовые воздействия.

Формально второй режим, №2, наиболее корректно соответствует Архимедовым законам плавания твёрдого тела по законам замещаемого объёма для погружаемого в воду корпуса корабля. Для тихой воды объемный интеграл в точности совпадает с интегрированием давлений вода по поверхности судовой общивки. На волне можно применять ассиметричную поправку по уровням воды на противоположных бортах корабля. В условиях интенсивного морского волнения для объёмного интеграла возникают неопределённости по форме поверхности действующей ватерлинии, и потому, всё же в качестве основного выбирается вариант интегрирования давлений по смоченной поверхности корабельных обводов.

Две оставшиеся модели гидромеханики (№3 и №4) – облегчённые, в одной не учитываются никакие скорости течений вблизи корпуса, у другой в расчет принимается только поступательный встречный скоростной поток воды. Такие

модели гидродинамики корабля могут быть полезны в отладке вычислительных экспериментов, или в проектной отработке конкретных гидродинамических эффектов, с выявлением каких-либо геометрических и гидродинамических особенностей в корабельных обводах.

Интерактивное управление ходом и курсом корабля

На картушке справа—вверху курс корабля указывается *светло-синей* прорисовкой конструктивной ватерлинии, с *синим* обрамлением изменчивого контура ватерлинии действующей. Жёлтая стрелка со светлым контуром показывает заданный курс, дополняемый по картушке буквами румбов.

При маневрировании или рыскании корабля заданный и действующий рассогласуются. Для приведения на курс используется условно автоматическое управление «рулем», при котором движение корабля дополнительная скорость циркуляции, величина характеризуется по аналогии естественным командам на руль как: «помалу», «руль полборта» (7-влево, 9-вправо = 120 сек на полный круг циркуляции) или «руль на борт» (4-влевоб 6-вправо = 60 сек), что отмечается изображением пера руля на отображении корпуса внутри картушки.

Поддержание курса выполняется «авторулевым», и в случае отклонения на один румб руль автоматически перекладывается в режим «помалу» (240 сек), что придаёт кораблю циркуляцию вдвое меньшую, чем «руль полборта». В спокойном свободном плавании модель обладает слабой устойчивостью на заданном курсе, обеспечиваемой шестикратно меньшей скоростью поворота (24 мин), чем в автоматическом приведении на курс с перекладкой руля «по малу».

По мере набора хода за форштевнем прорисовывается расходящийся *светло-голубой* с *зеленым* контуром треугольник Кельвина, сторона которого соответствует видимой длине корабельной волны для заданной скорости хода. При реверсе хода этот волновой клин будет расходиться от ахтерштевня.

Три перекрещивающиеся стрелки на картушке характеризуют моделируемое в эксперименте морское волнение. Длины стрелок соответствуют длине волны, а утолщение характеризует высоту и крутизну гребней девятых валов. Характеристики волн и цвета стрелок могут переназначаться, исходно это: зеленая — ветровая волна; голубая — свежая ветровая зыбь; синяя — пологий накат океанских валов — реликтовых волн от дальних штормов.

В центре картушки приводятся действующие на данный момент времени курс и скорость хода корабля.

Текстовыми надписями на графических экранах слева вверху показываются режимы проведения вычислительного эксперимента: полная гидромеханика; градиенты архимедовых сил; вертикальная гидростатика; и скольжение по хордам четырех точек на поверхности волн.

Слева внизу приводятся время проведения эксперимента, заданная и действующая скорости хода, в том числе по Фруду (Fr) и в длинах корабельных волн (Lw/L); а также основные гидростатические и метацентрические характеристики корпуса корабля, предварительно замеряемые по тихой воде и на текущий момент времени.

Управление ходом корабля выполняется с использованием правого дополнительного блока клавиатуры, и также могут применяться обычные цифровые клавиши:

```
<7> – поворот на один румб влево; <9> – вправо, руль кладётся полборта;
```

- <4> выход на один румб влево; <6> вправо, руль на борт быстрый поворот;
- <5> «так держать» устанавливается мгновенный действующий курс корабля;
- <al>- изменение курса временно приостанавливается (одерживается);
- <8> ход быстрее два узла вперёд; <2> два узла тише ход или ход назад;
- <0> полная остановка машины, ход медленно спадает до выхода в дрейф;
- <1> добавляется крен 30° на левый борт; <3> плюс 30° на правый борт;
- <Ctrl> временная приостановка вычислительного эксперимента;
- <Ctrl+Shift> остановка вычислений в ожидании повторного <Ctrl>.

Сдерживание циркуляции клавишей **<Alt>** может быть полезно во избежание сильного (аварийного) накренения корабля, выполняющего поворот на большой скорости хода.

Временная приостановка вычислительного эксперимента с необходимым смещением часов реального времени выполняется при удержании нажатой клавиши <Ctrl>. При дополнении аккорда до <Ctrl>+<Shift> пауза в проведении вычислительного эксперимента будет зафиксирована на ожидание следующей команды с нажатием и от пусканием <Ctrl> (обнаружилось, что Windows не связывает эти команды с активностью конкретных окон, позже это исправится, а пока желательно быть внимательным к <Ctrl> и <Shift> во время проведения вычислительных экспериментов).

Сохранение цифровых моделей корабля в инородных форматах

В программном комплексе «**Aurora**» не предусматривается возможностей по редактированию цифровых моделей корпуса корабля. Отчасти такие операции допустимы в системе управления базой данных «**Vessel**», в модуле «**Hull**». Предусмотрена специальная процедура для экспорта 3D-модели корпуса корабля во внешний файл в одном из обменных текстовых вариантов программы «DesignCAD».[dc2,dc3], или в популярном формате «WaveFront's».obj.

<**F2**> – команда функциональной клавиатуры может быть подана с любого

из графических экранов, по которой вызывается специальное меню с заголовком: «Выходной формат модели корпуса корабля».

Выходной формат модели корпуса корабля
Wavefront Technologies Advanced Visualizer .obj
Шпангоуты и контуры диаметральной плоскости. dc2
Контурная модель в трёхмерной проекции .dc3
Корабль с контурами и обшивкой корпуса .dc3

Простейшую геометрическую модель корабля в виде связной поверхности из множества разрозненных треугольников можно записывать в популярном формате графической визуализации: «Wavefront Technologies for Advanced Visualizer».obj.

При создании такого графического файла используется только два предустановленных цвета. Подводная часть корпуса отмечается формально зеленым, надводная — шаровой расцветкой, что сопровождается

Aurora.mtl
newmtl gray
Kd 0.6 0.6 0.6
newmtl green
Kd 0 0.5 0

текстовыми описаниями с предустановленными названиями цветов в файле «**Aurora**.mtl».

Практические настройки расцветки выполняются в этом текстовом файле под названиями: gray и green, там же можно подстроить прозрачность или особую освещенность цифровой модели корпуса, или переназначить реальную расцветку модели корабля.

Для последующей правки цифровой модели можно воспользоваться одним из трёх вариантов формирования модели корабля в типовой среде графического редактирования программы **DesignCAD**, для которой ранее свободно публиковались обменные форматы файлов и графических примитивов в текстовом представлении.

Рис. 11. Вариант экспорта модели корабля для работы в DesignCAD-express (*.dc2) в традиционном двумерном или «бумажном» представлении теоретических чертежей. Здесь совмещаются проекции бок и корпус, с разметкой аппликат относительно основной линии.

При воссоздании цифровой модели корабля в привычном формате двумерного чертежа не отбрасываются компоненты для пространственного представления корпуса. Выполняется также предметное связывание в блоки элементов корпуса корабля, и тематическое разделение графических объектов по нумерованным и именованным слоям:

- 0 <имя файла цифровой модели корабля>.dc2
- 1-Grid- светло-голубая разметка сетки шпангоутов, основной линии и ватерлинии в проекции бок (**Puc. 11**), с пространственная разметка габаритов корпуса;
- 2-Frames группы шпангоутов, две варианте двумерного В представления теоретического чертежа в проекции «корпус». Средствами группировки графических примитивов в формате <DesignCAD-express>.dc2, шпангоуты разделяются на носовые И кормовые ветви мидельшпангоута;
- 3-Stern and Stem line контуры корпуса на пересечении с диаметральной плоскостью в проекции бок теоретического чертежа, разделяются на описания по форштевню и ахтерштевню, с записью в последовательности по возрастание аппликат точек на штевнях;
- $4-{\rm Aft}$ and Bow breadth поперечная проекция по тем же контурам штевней на диаметральной плоскости, но с ординатами транцевых или бульбовых расширений по тем же отсчетам аппликат, которые требуются для уточнения потерянных объемов и чувствительных моментов инерции в бульбовых расширениях и транцевых сломах в оконечностях корпуса.

Рис. 12. Корабль «Васа», экспортированный в трёхмерный проект корпуса для работы с программой DesignCAD (*.dc3). Аппликаты приведены к ватерлинии. Слева четыре проекции контурной модели корабля, справа — с треугольниками бортовой обшивки, в том виде, как они задействуются в вычислительном эксперименте.

В трёхмерном представлении <DesignCAD>.dc3, начиная со второго слоя разделение графических объектов выполняется иначе:

- 0 <имя файла цифровой модели корабля>.dc3
- 1-Grid- разметка шпангоутов (**Puc. 12**-слева) и пространственная разметка габаритов корпуса;
- $2-{\tt Portside}-{\tt по}$ левому борту записываются все шпангоуты с общей величиной абсциссы, все добавляемые и отклонённые штевнями точки исключаются.
- 3 Starboard side шпангоутные контуры правого борта заносятся в таблицу ординат вместе с абсциссами смежных точек, копируемых со штевней;
- 4 Stern and Stem line контуры штевней, возможно с горизонталями днища и палуб из проекции «бок» теоретического чертежа.
- 5-Hull plating треугольники обшивки формируются строго по тем же алгоритмам (**Puc. 12**-справа), что и в процессе проведения вычислительного эксперимента.

Дополнительно при формирования файла числовой модели выполняется группировка связных графических объектов, как правило блоками по слоям: «сетка и разметка»; «диаметральная плоскость», «правый» и «левый» борта, и другие по необходимости.

Из графического редактора DesignCAD возможен экспорт цифровых теоретических чертежей в иные популярные цифровые форматы, типа «Initial Graphics Exchange Specification».iges, или «AutoCAD».dwg, и другие...

2. «Аксонометрический вид корабля и профилей морских волн»

Подводная часть корпуса зеленая, надводная – шаровая, смоченная поверхность немного затемнена. Белой полосой размечена конструктивная ватерлиния, изменчивая действующая - синими линиями-стрелками, окаймляющими поверхность воды внутри шпаций. К действующей ватерлинии примыкают

стрелки ортов нормалей к поверхности обшивки. (Рис. **13**) геометрического центра корабля на конструктивной ватерлинии И мидельшпангоуте, как от начала корабельной системы координат начинается разметка цепочки точек маршрута по ходу корабля на каждый расчётный момент времени.

<**F2**> вызывает меню с выбором вариантов для экспорта цифровой модели корабля в один графических форматов файлов: WaveFront.obj или DesignCAD.dc2/3.

<**F3**> выполняется запрос нового имени файла цифровой модели корабля, и происходит считывание иного корпуса в стандартном формате <имя>.vsl, при этом заменённый корпус оказывается ПОЛ действием ранее инициированного волнового поля.

Ship Целевое проектирование, теория и штормовая мореходность корабля.

F1 краткая справка F2

запись модели в САО-формате F3 выбор и чтение иного корпуса

F4 параметры корпуса/картинки F8 гидромеханика штормования

« Управление ходом корабля » $< 8/2 > \pm$ два узла вперёд/обратно $< 7/9 > \pm$ румб влево/право полборта

<4/6> ± румб влево/вправо на борт <1/3> ± крен 30° на левый/правый

<5/Alt> руль прямо/так держать <0> стоп машина

« Настройки моделирования » <Enter> отрисовка графиков <Tab/Space> закраски/контуры <Ctrl/+Shift> задержка или стоп <cтрелки•leftMouse> ориентация <+Shift•rightMouse> смещение <+Ctrl•(roll)> дальность, наклон <+<Shift> исходный обзор <BkSp> прекращение волнения

<F4> меню: «Гидростатика и динамика корпуса» — здесь выполняются

настройке запросы ПО визуализации, методов возможностью линамического выбора модели гидромеханики, и интерактивного изменения гидростатических и динамичеспараметров модели

Гидростатика и динамика корпуса

Давление с волновыми и ходовыми потоками воды Начальная метацентрическая высота: Факторы демпфирования: x = 0.10 y = 0.80 z = 0.60бортовая: 0.04 килевая: 0.20 рыскание: 0.10 Практическая осадка: 6.40 M Закрашиваемая поверхность корабельной обшивки Обшивка корабельного корпуса и надводный борт Протяжённость кинематической выборки 0.20 мин

корабля в вычислительном эксперименте.

В первой строке приводится ссылка на вложенное меню с режимами гидромеханики силового взаимодействия корабля с морским волнением, точно такая же, как и в другом, синхронно работающем окне для вычислительного эксперимента на трохоидальном волнении. Вне меню эти же режимы проведения вычислительного эксперимента переключаются на функциональной клавиатуре по команде <**F8**>, что упоминалось выше в разделе «Гидромеханика корабля: выбор и включение...».

Во второй строке метацентрическая высота h [м], может изменяться динамически в любое время, непосредственно в процессе вычислительного эксперимента, что может потребоваться, например, для повторной постановки на ровный киль опрокинувшегося корпуса корабля.

В третьей и четвёртой строках коэффициенты демпфирования для поступательных и угловых скоростей качки $\{0-$ без демпфирования; больше нуля — стандартные факторы торможения скоростей качки; меньше нуля — неограниченное раскачивание или самовозбуждаемое отклонение корпуса от сбалансированного состояния $\}$. Формально, положительные факторы учитывают влияние вязкости на мгновенные скорости отклонения от нейтрального положения корпуса, а также инерционные поправки для присоединенных массы жидкости при ускоренных движениях корабля.

В строке «Практическая осадка» возможно динамическое изменение осадки в отсчётах относительно основной линии, после чего выполняется перерасчет всех геометрических и инерционных характеристик корпуса корабля, и происходит автоматических перезапуск всего вычислительного эксперимента. При этом построение кинематических графиков продолжается с текущими настройками и временными отсчётами.

В следующей строке неявно переключатся метод прорисовки судовых поверхностей с закраской, либо с помощью рёбер треугольников, с последовательным выбором вариантов отображения одного или двух полей с графическими результатами. В меню действующий режим отображается как:

«Закрашиваемая поверхность корабельной обшивки» и «Контуры рёбер триангуляционного покрытия»

Вне меню, с клавиатуры метода выбор закраски делается по команде $\langle \text{Пробел} \rangle$.

Выбор отображения одной или двух полос для графической регистрации в заданном интервале времени некоторых динамических параметров состояния корабля выполняется по команде **Enter**> с клавиатуры.

По предпоследней строке последовательно перебираются четыре варианта закраски корпуса с режимами прозрачности для проявления действующей ватерлинии и пространственного местоположения гидростатических центров. Эта же выборка может исполняться вне меню по команде **Таб**> с клавиатуры:

«Обшивка корабельного корпуса и надводный борт» - обычная раскраска рабочей модели корпуса корабля;

«Смоченная обшивка под поверхностью ватерлинии» - с прорисовкой только шпангоутов открывается надводный борт;

«Контуры шпангоутов при поверхности ватерлинии» - относительно непрозрачной остаётся только поверхность действующей ватерлинии;

«Полупрозрачная тень, гидростатические отметки» - корпус становится прозрачным и еле-еле видимым, открываются для контроля все статические и быстро перемещающиеся гидростатические центры.

В нижней строке: «Протяжённость кинематической выборки 0.5 мин» - устанавливается длительность скользящего интервала времени для визуализации графиков бортовой, килевой [°], вертикальной качки [м], ускорений на миделе и в оконечностях [м/с²], ходкости [узлы], рыскания [°] и др.

В табличке слева-внизу (Рис. 13) приводятся навигационные параметры по ходу парусного галеона «Wasa»: текущее время и расчётный шаг вычислительного эксперимента; заданная скорость хода — 9 узлов и мгновенная величина достигнутой ходкости на крупной волне только 6,2 узла; другие исходные и текущие геометрические, инерционные и метацентрические характеристики корпуса на ходу на волнении.

Правее в нижней части графического окна, в прямоугольном поле с разметкой по скользящему интервалу времени, строятся кинематические графики состояния моря и корабля. Отсчёт времени для графиков в минутах и секундах размечается по нижней шкале.

В варианте двух полей для регистрации параметров хода вычислительного эксперимента, переключаемых по команде $\langle \mathtt{Enter} \rangle$, в нижнем поле представляются четыре графика: фиолетовым — бортовая качка (X); синим — килевая качка (Y); и закрашенная полоса с серым контуром для вертикальной качки, плавно переходящая в голубой цвет с расширением полосы до уровня моря в точке миделя по корпусу корабля на тот же момент времени. Для вертикальной качки экстремумы сводятся строго к половине вертикального масштаба нижнего

поля, при этом уровень моря вблизи корабля может зашкаливать за горизонтали указываемых ограничений.

По правой стороне графических полей в едином масштабе приводится шкала экстремумов для бортовой и килевой качки: фиолетовым — бортовая (X); синим — килевая (Y) качка в угловых градусах. В середине шкалы цветом отмечаются метки измеряемых величин, и ближайшие значения по (Z) — максимальные отклонения корпуса от уровня спокойного моря в темпе вертикаль ной качки в метрах.

Рис. 13. Ход вычислительного эксперимента в окне для представления гидромеханики корабля. Вертикальная качка превышает 7 метров. Сильное рыскание и дрейф по курсу возникает в моменты экстремальной бортовой качки. Внизу графики бортовой X, килевой Y и вертикальной Z качки с масштабной шкалой справа. На левой шкале верхних графиков масштаб для кривых вертикальных ускорений.

Во второй верхней полосе тонкими линиями изображаются: зелёным цветом - текущая скорость хода в узлах в глобальной морской системе координат, и синим – рыскание на курсе, как отклонение от заданного курса в оградусах. центральной горизонтали Здесь симметрично OT закрашиваются пульсирующие всплески ускорений в оконечностях (Рис. 13), синим –по корме; зеленым – по носу, в масштабе относительно отклонений от ускорения свободного падения. Толстой желтой линией поверху накладывается кривая ускорений в средней части корпуса. На левой шкале приводятся отметки фиксированного масштаба от -g до $+3 \cdot g$ для замеров вертикальных ускорений на палубе корабля, и правее текущие экстремумы в видимой части графиков для частей корпуса: в корме - синей, на миделе - коричневой (вместо жёлтой) и по носу - зелёной расцветкой экстремальных числовых значений.

На правой шкале здесь также приводятся экстремальные значения на видимом интервале времени, с левой стороны картушка с наглядным представлением направления движения корабля относительно штормового волнения с отмеченной крутизной волновых склонов.

Если вертикальные ускорения отмечаются отрицательными значениями, то незакреплённый (без найтовов) груз на палубах корабля, оказавшись в невесомости, отрывается от палубы с угрозой разрушения корпусных конструкций.

При повторении команды **Enter**> с клавиатуры, верхнее поле с кривыми ходкости и рыскания исключаются, а графики ускорений переносятся поверх изображения бортовой, килевой и вертикальной качки.

Можно обратить внимание, что эпизодически происходит сильная раскачка корабля под воздействием крутых гребней в средней части групповых структур трохоидального волнения, и особо при встрече с девятыми валами. Как правило, такая интенсивная раскачка случается одновременно по всем регистрируемым параметрам.

Старинный корабль «Васа» вполне уверенно держится на опасном курсе лагом к волне шестиметровой высоты.

На картушке слева, под княвдигедом корабля, показана перекладка руля помалу влево на восстановление заданного курса, это работа авторулевого в случае рыскания на курсе с отклонением более 1 румба (11°15'). Тонкая жёлтая стрелка с синим окаймлением указывает заданный курс. Над картушкой приводятся параметры трёх групповых структур морского волнения: направление

распространения в румбах; высота волны в метрах и период волны в секундах. Тремя стрелками на картушке показываются направление и длина активированных волн в сопоставлении с длиной корабля, утолщение стрелок в точности характеризует крутизну волны (как отношение высоты к длине).

Гидростатические и метацентрические воззрения в динамике корабля

Для информационной полноценности отомкап вычислительного эксперимента, в специальном графическом окне приводится комплекс данных по текущей динамике и гидромеханике корабля в текстовом и графическом представлениях. Дополнительно показываются сведения о навигационном и гидрометеорологическом окружении на море, что в целом востребуется в проектных изысканий практике для всепогодного корабля, навигационных проработках штормового маневрирования, ДЛЯ эффективного хода и курса корабля при наилучшем исполнении морских операций по предназначению.

Чисто академический интерес определяется необходимостью сверки традиционных метацентрических воззрений на остойчивость и безопасность штормового плавания корабля, теоретическая ориентация на которые весьма затруднительна в эмпирических прогнозах интенсивной качки, что ограничивается математически ввиду больших поступательных и вращательных смещений корпуса корабля под ударами волн на интенсивном трохоидальном волнении. Тем не менее, мгновенные оценки внешних сил и реакций корпуса, в том числе с использованием ключевых положений метацентрического анализа, по результатам прямых вычислительных экспериментов могут быть улучшены и синтезированы для новых адекватных оценок опасности экстремальной качки и опрокидывания корабля.

Для наглядного представления метацентрической динамики корабля, для углублённого понимания привычных наставлений из теории корабля, внутри полупрозрачного корпуса всегда изображаются начальные (для тихой воды) и текущие мгновенные положения гидростатических центров и центров силовых реакций подвижного корпуса.

Так, полупрозрачный корпус галеона «Васа» в режиме визуализации «Контуры шпангоутов...» (Рис. 13) открывает поверхность действующей ватерлинии с проявлением цветных шариков и линий связи для действующих в данный момент времени гидростатических центров. В режиме «Полупрозрачная

тень...» корпус прорисовывается с почти невидимой обшивкой, и такие центры сил, вращений и метацентры уже ничем не укрываются.

Первым внутри корпуса корабля прорисовываются оси корабельного базиса { x, y, z } — локальной системы координат, опирающейся на динамический центр пространственного движения корабля — центр силовой реакции корпуса. Базис отмечается белым шариком и соединяется утолщенной стрелкой с шариком поменьше — интегральным центром действия внешних сил.

Затем изображается треугольный «флажок» начальной остойчивости: синий нижний угол: \mathbf{C} – исходный центр величины; выше: \mathbf{G} – серый центр масс корабля; на той же вертикали третья точка: \mathbf{M} – метацентр начальной остойчивости подкрашивается в <u>зеленый</u> цвет при повышении метацентрической высоты, в желтый – при уменьшенной положительной величине, и в красный – когда остойчивость становится отрицательной; четвертая точка голубая: \mathbf{F} – это исходный центр площади ватерлинии на тихой воде (на симметричном корпусе все точки могут выстраиваться по одной вертикали).

Из указанных центров начальной остойчивости, в тех же цветах направляются стрелки к действующим на данный момент центру величины погруженного объёма корпуса, к новому мгновенному центру площади ватерлинии и к действующему на данный момент метацентру, отсчитываемому строго по вертикали от центра величины на величину поперечного метацентрического радиуса r = J/W [м], как частного от момента инерции площади действующей ватерлинии J [м4] с делителем по исходному водоизмещению корабля W [м3].

Геометрический центр корабля приходится на пересечение плоскостей мидельшпангоута, конструктивной ватерлинии и диаметральной плоскости корпуса. Этот центр никак не отмечается в пространственном изображении корабля, однако именно него ведутся все отсчёт поступательных и угловых смещений корпуса. В частности, из этого центра строится цепочка точек маршрута движения корабля, помечаемого в каждый расчетный момент времени.

В проведении вычислительного эксперимента желательно контролировать малость расстояний между точками на маршруте движения корабля, и плавность образуемом этими контрольными т очками траектории.

Важно заметить, что все эти метацентрические характеристики никак не задействуются в вычислительном эксперименте, и служат только в качестве кинематических и динамических иллюстраций к текущему состояния корабля.

3. «Корабль и трохоидальные штормовые структуры морских волн»

В основном окне вычислительного эксперимента изображается корабль в

окружении морского волнения. Здесь могут рассматриваться и настраиваться различные варианты штормового хода и управляемого маневрирования, с наглядным представлением взаимодействия корабля со штормовым волнением, с конкретными гребнями штормовых волн или волновых структур.

В верхней—левой части в верхней строке показывается информация о режимах воспроизведения морского волнения, в строке ниже краткое описание вычислительной модели гидромеханики корабля и его силового взаимодействия корабля с морским волнением, и в третьей строке — текущие навигационные данные: курс и рыскание (дрейф) корабля, скорость хода в

Меню <**F4**> «Вычислительный

Sea: Вычислительный эксперимент, штормового маневрирования корабля в открытом море F1 - краткая справка F4 настройка волнового режима F8 штормовая гидромеханика « Управление ходом корабля » $< 8/2 > \pm$ два узла вперёд/обратно $< 7/9 > \pm$ румб влево/право полборта <4/6> ± румб влево/вправо на борт <1/3> ± крен 30° на левый/правый <5/Alt>руль прямо/так держать <0> стоп машина « Настройки моделирования » <Tab/Space> закраски/контуры <Ctrl/+Shift> задержка или стоп <cтрелки•leftMouse> ориентация <+Shift•rightMouse> смещение <+Ctrl•(roll)> дальность, наклон <+<Shift> исходный обзор <BkSp> остановка волнения

узлах, по Фруду (Fr) и в отношениях длин корпуса и корабельных волн (Lw/L).

настройка методов визуализации, выбирается вычислительная модель штормового трохоидального волнения, устанавливаются характеристики морского волнения для трёх независимых условных структур, например: ветровых волн, активной зыби и пологих реликтовых валов от дальних ураганов.

Вычислительный эксперимент

эксперимент» - здесь выполняется

Математическая модель штормовых волн Высокие волны с дрейфовыми течениями Раскраска сине-зелено-пенных склонов Тёмная вода с освещенными оттенками Цуги: длина высота направление Ветер: 64 м $0.99 \ 5.7 \text{ M}$ 190 град° Зыбь: 104 м 0.56\5.1 M 160 град° 160 м 0.25\3.6 M 230 град° Вал: Расстояние от корабля: -640

В первой строке четыре варианта вычислительного эксперимента:

«Математическая модель штормовых волн» (гидростатическая постановка); «Трохоидальный вычислительный процесс» (волна отражается от корабля); «Континуально-корпускулярные решения» (... заложено на перспективу); «Чистая штилевая морская поверхность» (динамика и качка на тихой воде).

Вот второй строке выбор модели трехмерного трохоидального волнения или модели полных потоков для плоского волнового процесса:

```
«Высокие волны с дрейфовыми течениями» (структуры трохоидальных волн); «Поверхностные волны в полных потоках» (аналог длинноволновых процессов).
```

Морское волнение временно отключается и восстанавливается вне меню по команде **<BkSP>**

Во третьей строке четыре варианта прорисовки волнового поля, которые вне меню переключаются по команде **Таб**:

```
«Раскраска сине-зелёных-пенных склонов» (цветовая раскраска волнения); «Сеточное покрытие в цветовой палитре» (расчётная сетка волнового поля); «Разреженная сетка, сто контуров волн» (сетка волн без полного покрытия); «Профили волнения по курсу и траверзу» (сетка с векторами скоростей).
```

В четвёртой строке четыре варианта раскраски морских волн, исполняемых вне меню по команде $\langle \mathbf{пробел} \rangle$:

```
«Тёмная вода с освещенными оттенками» (типовая палитра в световых лучах); «Светлая вода с выделением ватерлинии» (раскраска гребней и ложбин волн); «Тёмная вода +три слоя исходных волн» (результирующее поле морского ... «Светлая вода с послойным разложением» ... волнение + три структуры волн).
```

В первых двух вариантах изображение волн выполняется полупрозрачным, с видимой подводной частью корпуса корабля. В случае прорисовки трёх опорных волновых структур прозрачность снимается, чтобы четыре волновых поля не искажали расцветку друг друга.

В следующих строках меню приводятся параметры трех структур морского волнения:

```
«Ветер» — активные ветровые волны с обрушающимися гребнями; «Зыбь» — свежая зыбь недавних штормовых условий в этой же акватории; «Вал» — пологие реликтовые валы от далёких ураганов.
```

Здесь определяется длина, относительная или фактическая высота волн и направление их распространения из картушки компаса.

В последней строке показано «расстояние до корабля», из точки обзора до центра графической сцены в метрах. Изменение этой величины может использоваться вместо интерактивного перемещения графической сцены, и будет полезным при точной подстройке изображения волновых полей непосредственно из этого меню.

Предустановка условий опытовых испытаний в штормовой мореходности корабля

Проведение вычислительного эксперимента в программном комплексе «Аигога» реализуется в интерактивной графической среде. Систематизация начальных условий с протоколированием результатов вычислительных экспериментов возможны с использованием специальных ключевых записей в файлах исходной конфигурации (*.vil = vessel-initiation+logging).

Aurora.vil — исходная настройка вычислительного эксперимента для всех цифровых моделей в рабочей директории. Предполагается, что в таком обобщающем файле могут устанавливаться геометрические настройки в динамических масштабах относительно размеров корпуса, в том числе по длинам и высотам волн в соотношениях со скоростью хода корабля, что требуется для быстрых оценок результатов сравнительных испытаний.

«Имя-модели».vil — начальная подстройка опытовых испытаний для конкретной модели корабля. В процессе вычислительного эксперимента такой файл конфигурации будет дополняться протоколом с результатами моделирования мореходности и управляемого маневрирования корабля в условиях морского волнения.

Конфигурационный файл *.vil может содержать произвольные тексты, строки (абзацы) которого, по необходимости, могут начинаться с символов комментария «;» или «//» в первой позиции.

Значимая информация должна размещаться в целой строке, отмечаемой в самом начале ключевым словом с двоеточием. Порядок таких строк несущественен. За ключевым словом в строго определённом порядке следуют термины, числовые величины или индексы режимов, разделяемые запятыми. Последовательность запятых без данных означает пропуск информации, для которой ранее определяемые исходные значения не изменяются. В завершение строки, после всех параметров с запятыми может размещаться произвольный текстовый комментарий. Пропуск данных отмечается нужным количеством запятых, или обрывом строки, но в последнем случае нежелателен завершающий строковый комментарий.

Символом $\bigvee -unu$ далее будет обозначаться возможность выбора вариантов физической размерности или масштаба для входного параметра.

Значимые величины применятся в различных, ниже оговаривемых нотациях и физических величинах. Линейные размеры в абсолютных измерениях за числовой величиной должны отмечаться символами физических размерностей, как: «м»-метры; «дм»-дециметры или «см»-сантиметры.

Символ «Д» означает отсутствие явного указания физических размерностей или отмечает безразмерные величины, измеряемые относительно оговоренных размерений длин волн или размерностей корпуса корабля. Аналогичные по сути величины могут отмечаться знаками % – процента или % – промили, например, для указания целочисленных значений в сотых или тысячных долях относительных размерений.

Угловые отсчеты отмеряются по часовой стрелке от направления северного меридиана, и могут задаваться в градусах, отмечаемых традиционными символами [°'"] слитно с цифрами. Как пример: -123°45'56"789, либо в румбах [$\Leftrightarrow \lor *$] навигационной картушки.

NNO

SSO

NO

ONO

oso

SO

NW

WNW

wsw

SW

SSW

Четыре главных румба отмечаются одной прописной буквой или целым словом для указания сторон света: Nord, Ost, Su"d и West, разметка промежуточных 0020 курсов по картушке [$\mbox{$\stackrel{\triangle}{\Rightarrow}$}$] осуществляется с помощью буквосочетаний румбов навигационного курса с точностью $11^{\circ}15'$ ($11^{\circ}25$), и аналогично для розы ветров $-\mbox{$\stackrel{\bigstar}{\approx}$}$:

 $N \lor$ Nord, NtO, NNO, NOtN, NO, NOtO, ONO, OtN,

o∨ost, ots,oso,soto,so,sots,sso,sto,

 $S \bigvee Su"d$, StW, SSW, SWtS, SW, SWtW, WSW, WtS,

 $\mathbf{W} \lor \mathbf{West}$, \mathbf{WtN} , \mathbf{WNW} , \mathbf{NWtW} , \mathbf{NW} , \mathbf{NWtN} , \mathbf{NNW} , \mathbf{NtW} .

Ключевое слово «**Корабль:**» (или «**Ship:**») определяет указание требуемых курса и скорости хода корабля, его рабочие осадку и дифферент корпуса, и вариант математической модели гидромеханики взаимодействия корабля со штормовым волнением и ураганным ветром. В начальный момент корабль хода не имеет, и плавно разгоняется с выходом на экспериментальные показатели по ходкости на тихой воде, с учетом потерь хода или дельфинирования на склонах волн.

 $1 - \kappa ypc$ [$\mbox{$\dot{\sim}$}\mbox{$\vee$}$] — в румбах [$\mbox{$*$}$] $\mbox{$\vee$}$ или в градусах[$\mbox{$\circ$}$] в географических отсчетах от северного меридиана (+180 $\mbox{$\circ$}$ на восток, -180 $\mbox{$\circ$}$ к западу), градусные обозначения можно опускать (измерение углов в радианах здесь не предусматривается);

- 2- требуемая скорость хода [$\Delta \lor$ узл \lor м/с] в соотношениях длины корпуса с длиной корабельной волной по Фруду: Fn = $V/\sqrt{g \cdot L}$ [Δ без указания размерности]; \lor или скорость V в узлах, где одна угловая минута по меридиану или морская «равнообъёмная» миля в час [узл...]; \lor или как V [м/с] в стандарте длины метрового маятника с односекундными колебаниями на Парижской параллели. Выполняется контроль: максимальная скорость хода ограничивается до Fn \leq 0,8 ранее принимаемого контрольного ограничения опытовых и вычислительных экспериментов Ленинградского кораблестроительного института;
- $3- pабочая осадка [\pm \Delta \lor м,дм,см] при явном указании знака числовой величины выполняется изменение осадки <math>\delta T [\pm m] -$ аппликаты конструктивной ватерлинии; \lor иначе действующая осадка T[m] переназначается. В случае подводной лодки в подводном положении будет отслеживаться глубина управляемого погружения относительно конструктивной ватерлинии под условно невозмущенной поверхностью моря (пока дорабатывается). Выполняется контроль осадка может быть только положительной.
- $4-\partial u \phi \phi e p e h m \ [\pm \Delta \lor \%\% \lor \circ \lor M] з н а к «+плюс» дифферент на нос, з нак «-минус» на корму. Угловой отсчёт <math>\psi$ [\pm °] в градусах, или \lor безразмерная величина относительно осадки, с возможностью масштабирования в процентах и промилях (тысячных долях), или непосредственно \lor [\pm м] как размерная величина $\delta d = (T_{\text{корма}} T_{\text{нос}})/2$ устанавливается относительно полудлины корпуса по видимым изменениям уровня водя на марках углубления. В эксперименте дифферент создаётся путём фиксации абсциссы центра тяжести по однократно предвычисленному положению центра величины в начальный момент времени для опорных гидростатических вычислений. Выполняется контроль: дифферент не может превышать действующей осадки корпуса.
- 5 метацентрическая высота $h\left[\Delta\bigvee\%\bigvee\mathsf{M}\right]$ фактически определяет аппликату центра тяжести корабля zG=zM-h относительно поперечного метацентра zM на тихой воде. Задается в долях заданной ширины корпуса $\left[\Delta\bigvee\%\right]$, или фиксируется $h\left[\mathsf{M}\right]$ в метрах (к примеру, для регистровой перестраховки в 0,5 м).

⁸ Так, к примеру, Российский морской регистр судоходства перестраховывается величиной метацентрической высоты $h \ge 0.5$ м, отчего штормовая мореходность среднетоннажного судна может утрачиваться на ранних этапах проектирования.

- 6 код выбора модели гидромеханики корабля в силовом взаимодействии с морским волнением:
 - динамическое позиционирование корпуса со скольжением по хордам пяти точек на склонах волн (на четырех треугольниках);
 - 1 штормовая динамика корабля в условиях переменного водоизмещения с перепадами уровней моря на противоположных бортах (гидростатическая постановка на волну);
 - 2 гидродинамика корабля с использованием прямых вычислений давления воды в толще под трохоидальным волнением на море по всей смоченной поверхности судовой обшивки, включая надводный борт, палубы и надстройки;
 - 3 ++ к распределению давлений по судовой обшивке добавляются вихреисточники, моделирующие условия непротекания с импульсами отражения корабельной волны при поступательном движении корпуса корабля;
 - <u>4</u> ++ вихреисточники на поверхности судовой обшивки модифицируются с учётом скоростей течений в морской толще под гребнями трохоидальных штормовых волн

Рис. 14. «Корабль и трохоидальные штормовые структуры морских волн» — воспроизведение морского волнения в опытовых изысканиях мореходности корабля в условиях штормового плавания. Контурные прорисовки профилей трохоидальных волн большой крутизны выполняются на фоне соизмеримой по высоте длиннопериодной зыби.

Два числовых вектора: «Демпфирование:» («Damp:») — факторы затухания скоростей поступательных и угловых колебаний корпуса. Задаются парой векторов, разделяемых одной запятой между тройками чисел. В начальных условиях, принятых по умолчанию как:

 μ : { ζ =0,1 η =0,8 ζ =0,6 } — продольной, поперечной и вертикальной качки μ : { ϑ =0,2 ψ =0,6 χ =0,8 } — для бортовой, килевой качки и рыскания.

В штормовой качке действует гидромеханический парадокс вязкого действия внешних скоростных потоков под гребнями волн, особо влияющих на днищевые и бортовые кили, крылья рулей и др. Потому целесообразно применить гашение больших скоростей качки в кубической зависимости с двукратным пределом.

$$V = (1 - 0.5 \tanh(\mu V^2 \cdot \delta t)) \frac{(1 - \exp(\mu \cdot \delta t))}{\mu},$$

где V –скорость качки; μ – фактор демпфирования; δt – расчетный шаг времени.

На расчетных площадках с отрицательным фактором отраженных потоков действует парадокс Даламбера по взаимокомпенсации источников и стоков из условий непротекания. Kv=0.5 – доля стока внутрь обшивки.

Строка «Эксперимент:» («Test»)⁹ состоит из последовательности ключей управления записями результатов эксперимента. При отсутствии этого раздела в исходных настройках программы включена регистрация всех параметров с записью каждого из обнаруживаемых экстремумов.

При активации раздела «Эксперимент:» без параметров все ключи регистрации очищаются.

Среди ключей может указываться интервал времени для графиков в окне «Аксонометрический вид корпуса корабля и профилей морских волн», если за числом указывается размерность « " » - секунды или « ' » - минуты. Минимальный интервал ограничивается в 12" секунд, верхний предел не контролируется.

Одновременно все ключи регистрации инициируются словом «всё», при обнаружения которого другие специальные ключи инвертируются в режим исключения указываемых ими параметров.

⁹ В будущем раздел «Эксперимент:» планируется к расширению в качестве блока управления собственно вычислительным экспериментом.

Основная таблица протокола организуется подборкой ключей из произвольной по порядку последовательности слов: «ход»кость, «рыск»ание, «верт»икальная, «борт»овая и «кил»евая качка; ускорения в «корм»е, на «мид»еле и по «нос»у, в которых поиском выбираются отмеченные буквосочетания.

Первые два столбца таблицы содержат значения текущей скорости «**ход**» с действующим курсом, относительно которых регистрируются максимальные разгоны и потери скорости, а также «**рыск**»ания – как отклонения от заданного курса.

Следующие три ключа связаны с качкой корпуса, имеющих собственные периоды колебаний гравитационного действия. Это «верт»икальная, «борт»овая и «кил»евая качка.

Оставшиеся три ключа предназначены для регистрации экстремумов по вертикальным ускорениям в «**корм**»овой части корпуса, в районе «**мид**»еля и на форштевне в «**нос**»овой оконечности.

Всего восемь ключей: «ход», «рыск», «верт» «борт», «кил», «корм», «мид» и «нос», а также указание «всё», от которого инвертируется действие восьми специальных ключей.

С целью сокращения объема протокола можно задействовать ключ разрешения записи только для наи«больш» их значений из регистрируемых экстремальных событий. При отсутствии ключа «больш» в протокол последовательно заносятся все максимумы замеряемых в ходе эксперимента числовых величин.

Ключевые слова «Волна:», «Зыбь:» и «Вал:» («Wave:», «Swell:» или «Surge:») начинают определение характеристик для трёх одновременно действующих групповых структур штормового трохоидального волнения на море:

- $1-\partial$ лина волны λ [Δ \bigvee м \bigvee '"] в долях от длины парохода λ /L [Δ], \bigvee в метрах L [м] или \bigvee в секундах периода гребней волн τ [$^{\circ}$ '"] относительно неподвижной точки на поверхности воды;
- 2 высота волны $\zeta_W [\Delta \lor \% | \% \lor M]$ в долях от максимальной высоты обрушающегося гребня [Δ], или \lor в процентах и промилях в отношение к осадке корпуса корабля [%|%], или \lor по расчетной высоте 10 в метрах [M],

 $^{^{10}}$ Расчетная высота волны — удвоенный радиус трохоидальной траектории на уровне невозмущенной поверхности воды.

- 3 направление распространения пакета волн [$\mbeta\lor$ $\mbox{°}$] может задаваться в румбах [$\mbox{*}$] или $\mbox{\lor}$ в градусах [$\mbox{°}$] от северной ориентации меридиана с отсчетом направления из картушки¹¹ компаса;

Строка настройки «**Mope:**» («**Sea:**») — определяет размеры числового испытательного бассейна и режимы моделирования морского волнения.

- $1-\partial$ лина и ширина акватории [Δ \vee м] задается в отношениях к длине корпуса цифровой опытовой модели Long/L [Δ], или \vee в абсолютных измерениях λ [м] в метрах. Размерность указывается следом за двумя числами длины и ширины бассейна только один раз; при отсутствии размерности числа означают отношение к длине корпуса Long/L [Δ]. Выполняется контроль: протяженность акватории должна превышать четыре длины корпуса, ширина не менее утроенной длины корабля;
- 2 модели генерации, свободного распространения и отражения от корпуса корабля штормовых волн:
 - 0 чистое штилевое море без волнения и ветра;
 - <u>чисто теоретическая модель гидродинамики штормового волнения с трохоидальной стратификацией скоростей подводных потоков воды;</u>
 - 2 вычислительный эксперимент в дифференциальных разностях для волновых уравнений, с разделением аппроксимаций по изменениям уровня моря и подводных скоростных потоков. Ведется отработка дисперсионных соотношений для моделей волнения с групповыми структурами и стоячими девятыми валами. Ввиду сложностей отражения волн от быстродвижущихся элементов бортовой обшивки корабля, визуализация корабельных волн временно отключена
 - 3 континуально-корпускулярный процесс штормовой гидромеханики корабля (в разработке).

¹¹ Направление ветра задаётся внутрь картушки компаса – откуда ветер видится; волны бегут из картушки по истинному – видимому с борта судна направлению.

- 3 тип разностной схемы для моделирования штормового волнения.
- 0 модель поверхностного волнения в полных потоках с равномерными узлами сетки необходима для отладки дифференциальных разностей и визуального выявления проблем пространственной аппроксимации с более простыми условиями устойчивости на неравномерных узлах расчётной сетки;
- <u>трёхмерный трохоидальный процесс с динамически распределением</u> расчетных узлов со значительно различающейся геометрией смежных ячеек в аппроксимациях волновых полей и подводных пространств.

Первые две строки файла *.vil условно, могут представляться текстом заголовка с подзаголовком к планируемым испытаниям мореходности корабля, и затем использоваться в описаниях к результатам вычислительного эксперимента (пока не используются, так как серийных испытаний еще не проводилось).

При пропуске инициирующих данных в конфигурационных записях, в вычислительном эксперименте задействуются предустановки исходной инициализации внутренних конструкторов программы «Aurora», что будет соответствовать следующим записям начальной настройки вычислительного эксперимента:

Корабль: 0° , 0, 0, 0, 1 — скорость хода, курс, дополнительная загрузка (осадка), дифферент, метацентрическая высота и модель гидромеханики;

Демпфирование: 0.1~0.8~0.6, 0.2~0.6~0.8, 0.5~ { $\xi\,\eta\,\zeta$ }м,{ $\vartheta\,\psi\,\chi$ }, Cp

- первые две тройки чисел по абсциссе-ординате-аппликате, и затем по бортовой, килевой качке и рысканию,
- после второй запятой указывается фактор компенсирующего силового противодействия гидродинамическим импульсам сил в соответствии с проявлением парадокса Даламбера по отрицательному давлению на элементарных площадках судовой обшивки и выступающих частях корпуса.

Эксперимент: интервал графиков - <u>12"</u>, наи<u>больш</u>ее «<u>веё</u>»: скорость <u>ход</u>а, курс и <u>рыск</u>ание; <u>верт</u>икальная, <u>борт</u>овая и <u>кил</u>евая качка; ускорения в <u>корм</u>е, на <u>мид</u>еле и по <u>нос</u>у.

Море: 800720 м, 1, 1 размеры акватории и варианты штормового волнения **Волна**: 64 м, 0.9, -165° , 0 свежая ветровая волна с обрушающимися гребнями **Зыбь**: 100 м, 0.44, 160° , 0 интенсивное, ранее сформировавшееся волнение **Вал**: 160 м, 0.2, -130° , 0 реликтовое пологое волнение удалённых ураганов

```
Штормовая мореходность и маневренность корабля <прямой вычислительный эксперимент>
Ленинград, Кораблестроительный институт \ Санкт-Петербург, Государственный университет,
     Научно-инженерное общество судостроителей имени А.Крылова - штормовая мореходность
      «МИДВ» ©72-2023 Сыэрань-Калининград-Севастополь-Ленинград-Владивосток-Сахалин-п יווּשָׁל יִם,
Корабль: NOtO, 9 узлов, 0 м, 0°, 50%, 4 — курс, скорость хода, осадка, дифферент,
                              .. метацентрическая высота и модель гидромеханики
                                                                                              eng: (Ship)
Демпфирование: 0.1 0.8 0.6, 0.2 0.6 0.8, 0.5 — демпфирование по абсциссе, ординате и аппликате,
                                           ... по бортовой, килевой качке и рысканию
                                                                                                   (Damp)
Эксперимент: 12" всё, <u>больш</u>ее, <u>код</u>, <u>рыск</u>ание; <u>верт</u>икаль, <u>борт</u>овая, <u>кил</u>евая <u>{корма, мид</u>ель, <u>нос</u>} (Test)
Море: 800 720 м, 1,1 — Размеры числовой акватории и варианты генерации штормовых волн (Sea) Волна: 64 м, 0.6 м, StW, 0 — Свежая и крутая ветровая волна с обрушающимися гребнями =6 м (Wave)
Зыбь: 100 м, 0.4 м, SSO, 0 — Наиболее интенсивное, ранее сформировавшееся волнение =4 м (Swell)
Вал: 160 м, 0.3 м, SWTW, 0 — Реликтовое пологое волнение от совсем дальних ураганов =3 м (Surge)
                                            ( пустая строка → разделитель)
 Корабль: — установка курса и скорости хода корабля, осадки, дифферента и волновой гидромеханики
   course [°|X] установка начального курса в градусах [°] или румбах из картушки компаса [X]
   speed [\Delta|y3\pi|M/c] скорость хода по Фруду, в [y3\pi]ах или [M/c] по тяге двигателей на тихой воде
                       действует ограничение 0,8 по Фруду, но может преодолеваться интерактивно
                       при указании знака числа - изменение осадки, иначе её переназначение текущей
   draught [±м|м]
   trim [\pm^{\circ}|\pm_{M}]
                     дифферент в угловой мере [\pm^{\circ}], или по изменениям посадки в оконечностях [\pm m]
           [\Delta \%] метацентрическая высота в долях ширины корпуса или по абсолютной величине[\mathtt{M}]
   statum
             0
                       позиционирование корпуса со скольжением по хордам пяти точек на склонах волн
              ⇒ 1
                       штормовая динамика корабля под воздействием сил гидростатического всплытия
                       динамика корабля с моделями гидростатического давления на смоченной обшивке
                       вихреисточники скользящего потока с импульсами отражения от корпуса корабля
                    ÷ ≈ набегающий поток дополняется скоростями течений под гребнями штормовых волн
 Демпфирование: -- факторы затухания скоростей поступательных и угловых колебаний корпуса.
   \mu : { \xi=0,1 n=0,8 \zeta=0,6 } - пульсаций хода, поперечных сдвигов и вертикальной качки;
   \mu: { \vartheta=0,2 \psi=0,6 \chi=0,8 } - для бортовой, килевой качки и рыскания на курсе.
                  - 1 - с учётом парадокса Даламбера; [0..1[ - частичная взаимокомпенсация давлений
 Эксперимент: — настройка эксперимента в целом, активация регистрируемых экстремальных событий
    12 ["|']
                   установка продолжительности графиков с кинематическими замерами качки корабля
                    выбор сразу всех событий, и теперь ключевые слова будут служить для исключения
                    регистрация скорости хода с разгонами и потерями относительно заданной
                   курс с наблюдениями за экстремальными отклонениями от заданного направления
    «верт» икальная, «борт» овая и «кил» евая качка - возбуждающаяся под действием гравитационных сил
    в «корм»е, на «мид»еле и по «нос»у - вертикальные ускорения, нормированные свободным падением с
    наи «больш» ие - в протоколе отмечаются наибольшие из экстремальных событий, иначе все максимумы
         — Размеры акватории для вычислительного эксперимента и выбор модели штормового волнения
   long wide [\Delta|\%|M] протяженность и ширина акватории в метрах [M] или относительно длины корабля
   wave
                       чистое штилевое море без волнения и ветра
           ⇒ 1
                      чисто теоретическая модель гидродинамики штормового трохоидального волнения
                       вычислительный эксперимент в дифференциальных разностях с отражениями волн
                       континуально-корпускулярный процесс штормовой гидромеханики корабля на волне
   peak
               Ω
                       модель поверхностного волнения в полных потоках с равномерными узлами сетки
                       трёхмерный трохоидальный процесс с динамически распределяемыми ячейками
 Волна:, Зыбь: и Вал: — Характеристики трёх групповых структур штормового трохоидального волнения
   length [\Delta|M|'"]
                      длина относительно корпуса корабля [\Delta], в метрах [м] или период во времени ['"] высота относительно обрушающегося гребня [\Delta], в процентах от осадки корпуса,
   height [\Delta|\%|M]
                           или собственно в метрах в отношении удвоенного трохоидального радиуса [м]
         [°|☆]
                       направление распространения пакета волн в градусах[°] или румбах [☆] компаса
   phase ≡⇒ 0
                        начальный отсчет номера/фазы трохоидальной волны: (+)-в ожидание (-)-пропуск
 Стороны света и буквосочетания румбов компаса: 11°15'=(11°25) (и розы ветров)
   N ∨ Nord, NtO, NNO, NOtN, NO, NOtO, ONO, OtN,
   0 ∨ 0st, 0tS,0S0,S0t0,S0,S0tS,SS0,St0,
   S ∨ Su"d, StW, SSW, SWtS, SW, SWtW, WSW, WtS,
```

В рабочей директории может предусматриваться общий файл с именем «Aurora.vil» для предварительной инициализации цифровых моделей, который будет первым заменять принятые по умолчанию исходные параметры и условия проведения вычислительного эксперимента в комплексе «Aurora».

В файле - образце, составленном при разработке программного комплекса, содержится все варианты конфигурационных записей для построения вычислительного эксперимента, сопровождающиеся полным листингом необходимых кратких пояснений и примером.

Для временного отключения именованной записи конфигурации достаточно в начале строки использовать любой символ, например ';', или исказить ключевое слово, например, отодвинув пробелом двоеточие ':'

Результаты опытовых мореходных экспериментов

Окончанием конфигурационных записей является любая пустая строка или завершение текстового файла. При использовании инициирующих настроек для конкретной модели корабля, в конец файла или после первой пустой строки, начинается запись протокола с полным комплексом исходных данных и строками регистрации динамических параметров корабля для экстремальных событий по любому из измеряемых параметров.

Для получения протокола с результатами эксперимента без какого-либо изменения исходных условий моделирования, например предопределённых в файле «Aurora.vil», можно разместить в рабочей директории произвольный файл с именем цифровой модели и расширением <*.vil>. Файл может быть пустым или содержать произвольный текст с описанием эксперимента и без пустых строк, который будет предшествовать записям журнала мореходных испытаний.

Протокол начинается с полного описания исходных данных и условий моделирования, задействуемых на момент начала вычислительного эксперимента.

- дата и компьютерное время начала вычислительного эксперимента;
- название корабля, участвующего в мореходных испытаниях;
- действующий режим ведения опытового журнала, как выбираются экстремальные события, и какие параметры могут создавать записи текущего состояния корабля;
- размеры акватории в {метрах} и количестве [узлов]; $\delta S \approx Kt \cdot V_W \cdot \delta t$ [м] пространственный шаг квадратных ячеек расчетной сетки определяется на сонове критерия устойчивости (Найквиста) по заданному интервалу времени δt [сек], с

учётом фазовой скорости моделируемой волны V_W и некоторого увеличивающего множителя Kt — коэффициента кратности для предотвращения сложных факторов неустойчивости в ускоряемых процессах взаимодействия волн с движущимся кораблём. Величина Kt указывается за косой чертой при δt .

```
Краснознамённый ордена Октябрьской революции крейсер «Аврора»
Штормовая мореходность и маневренность корабля ≤прямой вычислительный эксперимент≥
  Корабль: OtN, 9 узлов, 0 м, 0°, 50‰, 4 \, -- курс, скорость хода, осадка, дифферент
                                                                                                eng: (Ship)
  \dots метацентрическая высота и модель гидромеханики Демпфирование: 0.1 0.8 0.6, 0.2 0.6 0.8, 0.5 — демпфирование по абсциссе, ординате и аппликате,
                             ... по бортовой, килевой качке и рысканию, и доля в стоке потока (Damp)
  Mope: 800 720 м, 1,1
                             -- Размеры числовой акватории и варианты генерации штормовых волн (Sea)
  Волна: 0.75, 0.8, StW, 1 -- Свежая и крутая ветровая волна с обрушающимися гребнями =6 м (Wave)
  Зыбь: 100 м, 8 м, SSO, 0 -- Наиболее интенсивное, ранее сформировавшееся волнение =4 м (Swell)
  Вал: 160 м, 4 м, SWTW, 0 -- Реликтовое пологое волнение от совсем дальних ураганов =3 м (Surge)
 Штормовая мореходность корабля (вычислительный эксперимент)
 2024 апрель 29 понедельник 12 "03 16"
 Краснознамённый ордена Октябрьской революции крейсер «Аврора»
 эксперимент, в записях регистрация всех экстремальных событий:
 ход, рыскание, вертикальная, бортовая и килевая; ускорения в корме, на миделе, по носу
 акватория: { 800 \times 720 м } [268 \cdot 241] \sim \delta S = 3.00 м, { \delta t = 0.5"/4.2 }[+0]
  ⇒ Краснознамённый ордена Октябрьской революции крейсер «Аврора»
  \Rightarrow { L=123.7, B=16.8, T=6.4, \Psi= 00'\\deltad=0cm }^6.4 K(a.103<\min[147]>113.\phi)
  \Rightarrow { \delta=0.51, W=6797.9 m³, S=2565.4 m², F=1428.7 m² }
  \Rightarrow C{ x=1.2, z=-2.67 }, zG=-0.04, r=3.47, h=0.84 [M]
  ⇒ Демпфирование: \mu V\{ \xi=0.10, \eta=0.80, \zeta=0.60 \}; \mu \omega\{ \theta=0.20, \psi=0.60, \chi=0.80 \}, Kv=0.5
  ⇒ Гидромеханика[4]: Давление с волновыми и ходовыми потоками воды
 Волна: \lambda= 93 м, \tau= 7.7", \zeta=10.00 м, \alpha=0.90, C=12.0 м/с, \lambda=191°, \deltaS=6.0 м [134·120]
                              0.00 M, =0.00, 12.5 M/c, 158°, 6.2 M [130·116]
0.00 M, =0.00, 15.8 M/c, 230°, 7.9 M [102·92]
  Зыбь: 100 м, 8.0",
   Вал: 160 м,
                    10.1",
  ⇒ моделирование гидродинамики на теоретическом волнении (трохоидальный процесс)
  ⇒ Время Кt   ⇒ скорость,узл. курс±рыскание руль Z миделя∫волн бортовая килевая « корма мидель нос »/д
   12"23"59/105 \quad \Rightarrow \text{Демпфирование: } \mu \text{V{ }} \{ \pm 0.10, \ \eta = 0.80, \ \zeta = 1.60 \ \}; \ \mu \omega \{ \ \theta = 0.20, \ \psi = 1.60, \ \chi = 0.80 \ \}, \ \text{Kv} = 0.80 \ \}
              12'23"85/109
 12'23"96/110
              ⇒ << успешное завершение >>
 25'22"17/129
        скорость хода \pm \xi [\text{м/c}] - 14.79 < -0.00 > +18.89
        рыскание на курсе \pm \chi[°] 50.47 < +0.10 > -0.70 вертикальная качка \pm \zeta[м] -0.34 < +0.00 > +0.36
        бортовая качка \pm \vartheta [°] -30.00 < -0.01 > +22.88
        килевая качка \pm \psi [°] -0.24 < -0.00 > +0.23 ускорения по корме \{a/g\} -0.07 < -0.00 > +0.06
        килевая качка
        [\text{M}/\text{C}^2/\text{g}] на миделе \{\text{m}/\text{g}\} -0.07 < +0.00 > +0.07

-- у форштевня \{\text{f}/\text{g}\} -0.12 < +0.00 > +0.11
```

В следующем блоке приводятся геометрические и гидромеханические характеристики корабельного корпуса, начиная с:

- ⇒ названия с кратким описанием корабля, и представляемого настоящим протоколом опытового эксперимента.
- \Rightarrow L, B, T расчетная длина, ширина и осадка корпуса. Ψ дифферент в градусной мере и в сантиметрах разница осадок носом и кормой. Положительная величина это дифферент с погружением носа и всплытием кормы, при этом

корпус раскрашивается со сменой цветов по конструктивной ватерлинии, а новая ватерлиния с учётом дифферента наносится жирной линией по условиям погружения на тихой воде. За скобкой размерностей корпуса приводится величина дополнительного погружения относительно конструктивной осадки. В угловых скобках
в завершении строки — количество аппроксимирующих точек на ахтерштевне, затем — количество сшпангоутов
и количество — точек форштевня.

- \Rightarrow δ коэффициент общей полноты корпуса; W [м³] водоизмещение; S [м²] площадь смоченной поверхности корпуса; F [м²] площадь ватерлинии на спокойной воде.
- \Rightarrow C{ x,z } абсцисса и аппликата центра величины; zG аппликата центра тяжести и r метацентрический радиус для заданной метацентрической высоты h [м].
- ⇒ В скобках термина «гидромеханика» указывается выбор режима моделирования динамики корабля под воздействием штормового волнения:
 - 0 Кинематика качки в 4-х точках на склонах волн скольжение
 - 1 Объёмная плавучесть переменного водоизмещения гидростатика
 - 2 Давление смоченных элементов бортовой обшивки гидродинамика
 - 3 Давление на встречном потоке без морских волн ++ ход корабля
 - 4- Давление с волновыми и ходовыми потоками воды ++ *действие волн*
- \Rightarrow В завершение блока описания корпуса приводятся действующие факторы демпфирования скоростей качки μ по поступательным { ξ , η , ζ } и угловым { θ , ψ , χ } движениям корабля.

В третьем блоке исходной информации расписываются параметры трех групповых структур морского трохоидального волнения. Предполагается, что морское волнение моделируется с помощью активного ветрового волнения «Волна», в которое включается ассиметричная поправка для увеличения крутизны подветренного склона волн. Две системы зыби могут описывать недавно зародившиеся крупные волны в том районе плавания «Зыбь», а также влияние пологих валов от дальних штормов «Вал».

В информационных записях приводятся λ [м] — длина и ζ [м] — высота максимального гребня в волновом пакете; безразмерная величина α — отношение заданной высоты волны к максимально возможному — обрушающемуся трохоидальному гребню; $A[^{\circ}]$ — направление движения волнового пакета; τ [сек] — период и C [м/с] — фазовая скорость движения фронта волны;

С каждым их трёх волновых полей связываются собственные сеточные акватории для разностного моделирования в рамках волновых уравнений, чем

обеспечиваются соразмерные критерии моделирования для свободного распространения и отражения волн от подвижного корпуса корабля. $\delta S[M]$ — шаг и [количество] узлов сеточной области.

- \Rightarrow в завершение блока параметров волновых полей даётся строчка описания включаемой математической модели для проведения вычислительного эксперимента 12 :
 - 0 чистое штилевое море без волнения и ветра;
 - 1 моделирование гидродинамики на теоретическом волнении (2D \vee 3D);
 - 2 вычислительный эксперимент с отражением волн от корпуса (2D \vee 3D);
 - 3 эксперимент с учётом скоростей течений и дисперсией волн (2D \vee 3D);

В скобках указывается тип волновой модели (3D трохоидальный процесс) при использовании регулярных неравномерных сеток с трохоидальным распределением локальных уровней и скоростей потоков по всей глубине водной толщи; (2D поверхностный поток) — для простых волновых уравнений на строго равномерной поверхностной сетке с квадратными ячейками, в которых вертикальная стратификация скоростных потоков и давления воды учитываются в рамках математических зависимостей для волн Герстнера.

В процессе интерактивного проведения мореходного вычислительного эксперимента допускается изменение условий моделирования, различных характеристик морского волнения, включая осадку корпуса и другие параметры состояния корабля, что обязательно отображается отдельными строками в текстовом протоколе.

Основной же объем протокола образуется записями событий с экстремальными значениями специально регистрируемых параметров:

- 1 время начала или возобновления эксперимента и номер шага расчётов;
- $2 \bullet \pm \xi$ [узлы] текущая скорость хода и её различие с заданной;
- 3 •±ҳ заданный курс и рыскание или отклонение от курса;
- 4 положение пера руля: «л» на левый ∨ или «п» на правый борт:
 - – \leq Б> лево \vee право на борт, и выход на обратный курс за 30 секунд.
 - – <_P> руль лево \lor право полборта, и на обратный курс за 1 минуту.
- — <_M> помалу лево \vee право используется авторулевым при отклонении от заданного курса более одного румба, с выходом на обратный курс

¹² Действующая версия комплекса «Aurora» отлаживается на трохоидальной математической модели морского волнения. В решениях с разностными схемами временно отключен процесс отражения волн ввиду сложностей высокочастотной трансформации вблизи быстродвижущейся обшивки корпуса корабля.

за 2 минуты. На крупном волнении авторулевой не всегда может вывести судна на заданный курс, тогда ему необходимо помогать перекладкой на борт или полборта вручную, с помощью изменения заданного курса и быстрым возвратом его к исходному.

- $5- {}^{ullet} \zeta \pm$ корпус $\int \pm$ волна вертикальное смещение, высота волны на миделе;
- $6 \bullet 9$ углы бортовой и $\bullet \psi$ килевой качки в градусах;
- 7 в трёх столбцах «корма мидель нос» приводится отклонения от гравитационного ускорения в кормовой, средней и носовой частях корпуса корабля, нормированные по ускорению свободного падения. Так, для фиксации отрыва свободно лежащих предметов от палубы, в состоянии невесомости или ускоренного отталкивания, величина регистрируемого ускорения быть менее минус единицы (а<-1).

В случае успешного завершения вычислительного эксперимента в последней стоке отпечатывается его длительность с фразой «успешное завершение», также означающей отметку конца и закрытие текстового файла протокола:

<< 04'06" успешное завершение >>

Использованные литературные источники

- 1. Войткунский Ярослав Иосифович, Фадеев Юрий Иванович, Федяевский Константин Константинович. Гидромеханика. Л. Судостроение, 1968. 568 с.
- 2. Прандтль Людвиг. Гидроаэромеханика. М. 2002. 572 с. (Геттинген–1942)
- 3. Кочин Николай Евграфович, Кибель Илья Афанасьевич, Розе Николай Владимирович. Теоретическая гидромеханика. М.: Физматгиз, 1959, ч. I, 584 с., ч. II, 728 с.
- 4. *Семенов-Тянь-Шанский Владимир Вениаминович*. Статика и динамика корабля: Плавучесть, остойчивость и спуск на воду. Л.: Судостроение, 1973. 607 с.
- 5. *Шебалов Александр Николаевич*. Нелинейная теория волн и волнового сопротивления: Учебное пособие. Л.: Изд.ЛКИ, 1984. 107 с.
- 6. *Богданов А. В., Храмушин В. Н.* База данных: «Vessel» Цифровые теоретические чертежи для проектного анализа гидростатических характеристик, остойчивости и ходкости корабля. Роспатент. База данных СПбГУ № 2015621368 от 2015.09.08. shipdesign.ru/SoftWare/2015621368.html
- 7. *Храмушин В. Н.* «Hull» Построение аналитической формы корпуса корабля, расчеты волнового сопротивления, кривых элементов теоретического чертежа и диаграмм остойчивости морских судов. Роспатент. Программа СахГУ № 2010615849 от 2010-09-08. shipdesign.ru/SoftWare/2010615849.html
- 8. *Храмушин В. Н.* Трехмерная тензорная математика вычислительных экспериментов в гидромеханике. Владивосток: ДВО РАН 2005. 212c. shipdesign.ru/Khram/Tensor_Mathematics-2005.pdf
- 9. *Храмушин В. Н.* Поисковые исследования штормовой мореходности корабля. *История эволюционного становления корабельного дела, о единении морских инженерных наук и хорошей морской практики*. Lambert Academic Publishing. ISBN-13: 978-613-8-23643-6, 2018. 470 стр. shipdesign.ru/Khram/History-III.pdf
- 10. Gerstner Franz Joseph: 1802 "Theorie der Wellen," Böhmische Gesellschaft der Wissenschaften, Abhandlungen; 1804 "Theorie der wellen samt einer daraus abgeleiteten Theorie der Deichprofile". Теория волн вместе с основанной на ней теорией волновых профилей (Prague: Gottlieb Haase); sowie 1809 in Annalen der Physik, 32, 412–445.
- 11. *Mr. J. H. Michell* on the Wave–Resistance of a Ship. Волновое сопротивление корабля. Philosophical Magazine, 1898, vol.45, Ser.5, pp.106–123. shipdesign.ru/JHM-rus.html
- 12. Sommerfeld Arnold. Mechanik der deformierbaren medien. Leipzig.: Zweite, neuberbeitete Auflage. 1949. (Арнольд Зоммерфельд. Механика деформируемых сред. М.: Издательство иностранной литературы, 1954. 491 с.)

Авторское наследие настоящих корабельных изысканий:

- Судоводительское отделение Калининградского мореходного училища министерства Рыбного хозяйства СССР;
- Специальное экспериментально-конструкторское бюро
 - по подводным исследованиям, Азчеррыба, г. Севастополь;
- Кафедры гидромеханики и теории корабля Кораблестроительного факультета Ленинградского кораблестроительного института;
- Тихоокеанское управление промысловой разведки и научно-исследовательского флота, ТУРНИФ, Дальрыба, г. Владивосток;
- Кафедра теории и проектирования корабля
 - Дальневосточного государственного технического университета;
- Сахалинский научно-исследовательский институт рыбного хозяйства и океанографии, СахНИРО, Дальрыба, г. Южно-Сахалинск;
- Лаборатория вычислительной гидромеханики и океанографии
 - СКБ средств автоматизации морских исследований ДВО РАН;
- Подсекция мореходных качеств судов в штормовых условиях,
 - Российского Научно-технического общества судостроителей имени Алексея Николаевича Крылова;
- Лаборатория вычислительной гидромеханики и морских исследований и кафедра математики Сахалинского государственного университета;
- Кафедра компьютерного моделирования и многопроцессорных систем, факультета Прикладной математики процессов управления, Санкт-Петербургского государственного университета;

Архив исполняемых модулей программ с подборкой цифровых теоретических чертежей различных кораблей и судов доступны по адресу интернет: ShipDesign.ru/SoftWare/Ship.zip, pyководство к программам Aurora и Hull: ShipDesign.ru/SoftWare/Vessel-action.pdf, математические модели и алгоритмы: =//= Vessel-master.pdf,

исходные тексты программ и помощь в их освоении: GitHub.com/Khram-V/Vessel и Khram@mail.ru .