Aprendizado de Máquina 2

Aula 10

Professora: Patrícia Pampanelli

patricia.pampanelli@usp.br

Aula de Hoje

- Algoritmos Genéticos

Algoritmos genéticos

Origem dos Algoritmos Genéticos

Desenvolvimento de simulações computacionais de sistemas genéticos nos anos 1950 e 1960

Pioneiro John Holland iniciou pesquisas na Universidade de Michigan

Holland formalizou princípios que guiam os algoritmos genéticos em seu trabalho 'Adaptation in Natural and Artificial Systems'

Introdução

Definição:

- Algoritmos genéticos (AGs) são métodos de busca e otimização baseados nos princípios da seleção natural e genética
- Eles são usados para encontrar soluções aproximadas para problemas complexos

Introdução

Simulação do Processo de Seleção Natural:

- Os AGs imitam o processo de evolução biológica, onde populações de soluções potenciais evoluem ao longo do tempo
- Através de iterações sucessivas, as soluções "mais aptas" são selecionadas para gerar novas soluções

Introdução

Inspiração na Teoria da Evolução de Charles Darwin As espécies evoluem através da seleção natural Indivíduos mais adaptados têm maior probabilidade de sobreviver e reproduzir AGs utilizam processos de seleção, cruzamento e mutação para evoluir soluções Uma solução é avaliada por uma função de desempenho, semelhante à sobrevivência do mais apto na natureza

Componentes Principais

População:

 Conjunto de soluções potenciais para o problema, representadas como indivíduos ou cromossomos

Cromossomos e Genes:

 Cada solução é representada por um cromossomo, que é composto por genes. Os genes representam as variáveis ou características da solução

Componentes Principais

Operadores Genéticos:

 Seleção: Processo de escolher os melhores indivíduos para reprodução, baseado na sua aptidão

Cruzamento (Crossover):

 Combinação de dois ou mais cromossomos para criar descendentes que herdam características dos pais

Mutação:

 Alteração aleatória em um ou mais genes para introduzir diversidade genética e evitar convergência prematura.

Princípios dos Algoritmos Genéticos

Princípio da variabilidade

 As características dos indivíduos em uma população pode variar. Como resultado, as amostras de uma população variam entre si

Princípio da hereditariedade

 Algumas características são passadas para as gerações seguintes. Desta forma, os descendentes se assemelham mais com seus pais do que com qualquer outro indivíduo da população

Princípio da seleção natural

 As populações em geral competem pelos recursos disponíveis no ambiente. Os indivíduos que estão mais bem adaptados terão mais sucesso ao sobreviver e contribuir com mais descendentes para as próximas gerações

Analogia dos algoritmos genéticos

- Nos algoritmos genéticos é mantido um conjunto de indivíduos que representam soluções candidatas a resolver um determinado problema
- Estes indivíduos são avaliados iterativamente e usados para criar novas gerações de soluções
- Aqueles que são melhores em resolver determinado problema têm chances maiores de serem selecionados e passar suas características para as gerações futuras
- Como resultado, a cada geração as possíveis soluções contidas na população ficam melhores em resolver o problema em questão

Estrutura e Funcionamento dos Elementos-Chave

- Genótipo
- População
- Função de desempenho
- Métodos de Seleção
- Cruzamento
- Mutação

Genótipo:

 No caso dos algoritmos genéticos, este conceito representa uma coleção de características de um indivíduo. Estas características podem ser expressas por uma string com representação binária:

1	0	0	0	1	1	1	0	1	0

População:

 Em qualquer momento no processo de otimização, o algoritmo genético mantém um conjunto de soluções possíveis (população):

Função de desempenho:

- A função de desempenho é usada para avaliar o quão bem um determinado indivíduo resolve o problema em questão
- Também conhecida como função objetivo
- Esta medida é usada para verificar quando o processo de evolução pode ser interrompido visto que uma solução adequada foi encontrada

Métodos de Seleção:

- Roleta (ou Seleção Proporcional): Probabilidade de seleção proporcional à aptidão
- Torneio: Um grupo aleatório de indivíduos é escolhido, e o mais apto é selecionado
- Ranking: Indivíduos são ordenados por aptidão, e a seleção é baseada na posição no ranking

Cruzamento:

 Para criar um novo indivíduo, um par é escolhido dentro da população atual. Sua representação é definida a partir de parte da representação dos pais:

Cruzamento:

- Para criar um novo indivíduo, um par é escolhido dentro da população atual. Sua representação é definida a partir de parte da representação dos pais:
- Este é um cruzamento com um único ponto de contato

Cruzamento:

- O cruzamento pode ter 2 ou mais pontos de contato

Cruzamento:

 Outras estratégias de cruzamento também podem ser implementadas. Por exemplo, onde o número de genes herdados de um dos pais é diferente do outro.

Cruzamento:

Esta operação deve ser implementada respeitando a definição do problema. Por exemplo, ao resolver o problema do caixeiro viajante, uma representação para este problema é o número das cidades na ordem que elas serão visitadas. Neste caso, não podemos simplesmente combinar os vetores como fizemos anteriormente.

Mutação:

 O objetivo da mutação é trazer periodicamente e de forma randômica novas características para o conjunto de soluções possíveis presentes na população

Mutação:

- As mutações, assim como os cruzamentos, devem respeitar as restrições do problema que está sendo resolvido. No mesmo caso do caixeiro viajante, o flip de um valor pode não ser adequado.
- Neste caso, uma mutação trocando dois genes de lugar pode ser bem mais interessante.

Mutação:

- As mutações, assim como os cruzamentos, devem respeitar as restrições do problema que está sendo resolvido. No mesmo caso do caixeiro viajante, o flip de um valor pode não ser adequado.
- Neste caso, uma mutação trocando dois genes de lugar pode ser bem mais interessante.

Mutação:

- A mutação pode não envolver a modificação dos genes
- Os genes podem ser simplesmente reordenados em um processo de mutação

Diferenças entre algoritmos genéticos e os algoritmos tradicionais

Conjunto de Soluções

A maioria dos algoritmos que utilizamos até este momento, como o gradiente descendente, mantém uma única solução viável em um determinado momento no processo de otimização Isso pode ser interessante, visto que toda a população representam soluções viáveis (melhores ou piores) para o problema em questão

Representação Genética

Os algoritmos genéticos trabalham somente com a representação (ou codificação) de um determinado problema. Um exemplo de representação é a codificação binária que vimos nos slides anteriores

Dependendo do problema, podemos utilizar representações mais complexas

Integração de Algoritmos Genéticos com Redes Neurais

Otimização de Pesos e Biases

Representação dos Indivíduos

Cada indivíduo na população representa uma rede neural com um conjunto específico de pesos e biases.

Hiperparâmetros

Esses parâmetros são tratados como genes dentro do cromossomo de cada indivíduo.

Processo de Evolução

A população inicial é composta por várias redes neurais, cada uma com pesos e biases inicializados aleatoriamente.

Desempenho

O desempenho de cada rede é avaliado usando uma função que geralmente é baseada no erro de previsão da rede.

Otimização de Pesos e Biases

Crossover

Redes com melhor desempenho são selecionadas para crossover, onde seus parâmetros são combinados para criar novas redes.

Mutação

A mutação é aplicada para introduzir pequenas alterações nos parâmetros, promovendo diversidade genética.

Otimização de Hiperparâmetros

Hiperparâmetros, como a taxa de aprendizado ou o número de camadas ocultas, são considerados genes no cromossomo.

A população inicial é composta por várias configurações diferentes de hiperparâmetros.

Avaliação e Seleção

Cada configuração é avaliada em termos de desempenho da rede treinada com esses hiperparâmetros.

As melhores configurações são selecionadas para crossover e mutação, permitindo a exploração eficiente do espaço de hiperparâmetros.

Vantagens da Integração

Superação de Mínimos Locais:

 Os algoritmos genéticos podem ajudar a evitar que as redes neurais fiquem presas em mínimos locais, um problema comum em métodos baseados em gradiente.

Exploração Eficiente:

 Permitem uma exploração mais ampla do espaço de soluções possíveis, potencialmente encontrando configurações que métodos tradicionais poderiam ignorar.

Desafios e Considerações

Complexidade Computacional: O uso combinado pode ser computacionalmente intensivo devido à necessidade de avaliar muitas redes diferentes.

Calibração dos Parâmetros dos AGs: É importante ajustar corretamente parâmetros como taxas de crossover e mutação para garantir uma evolução eficaz sem convergência prematura.

Vantagens

Vantagens

- Capacidade de encontrar soluções satisfatórias em espaços de busca vastos e mal definidos.
- Capazes de lidar com problemas para os quais não conseguimos obter uma representação matemática
- Não requerem suposições sobre continuidade ou derivadas do espaço de busca.

Vantagens

- Resilientes em cenários ruidosos
- São altamente paralelizáveis e distribuíveis
- Adaptabilidade a mudanças nas condições do problema ou do ambiente

Desvantagens

Desvantagens

- Necessidade de uma definição especial para codificação, para função de desempenho, para os operações de cruzamento e mutação
- Risco de convergência prematura
- Não tem garantia de solução

Desvantagens

- Ajuste complexo dos parâmetros, como taxas de mutação e cruzamento, que afetam o desempenho:
 - Tamanho da população
 - Taxa de cruzamento
 - Taxa de mutação
 - Número máximo de gerações
 - etc

Fluxo básico de um algoritmo genético

Fluxo básico de um algoritmo genético

Aplicações

Aplicações iniciais

OTIMIZAÇÃO DE FUNÇÕES MATEMÁTICAS COMPLEXAS PROBLEMAS CLÁSSICOS COMO O CAIXEIRO VIAJANTE E ALOCAÇÃO DE RECURSOS

Evolução das Aplicações

Com o aumento do poder computacional, AGs passaram a ser usados em simulações complexas, como modelagem molecular e previsão do tempo

Na medicina, são usados para segmentação de imagens médicas e otimização de tratamentos

Discussão sobre Evolução

As aplicações evoluíram para incluir problemas multidisciplinares que exigem soluções adaptativas e robustas

A capacidade dos AGs de lidar com problemas não-lineares e mal-definidos os torna ferramentas valiosas em contextos onde métodos tradicionais falham

Framework para Algoritmos Genéticos

DEAP (Distribuited Evolutionary Algorithms in Python)

 Oferece uma ampla gama de ferramentas para implementar algoritmos evolucionários, incluindo operadores genéticos e suporte para execução paralela

DEAP

PyGAD

- PyGAD: Genetic Algorithm in Python
- Uma biblioteca fácil de usar para construir algoritmos genéticos.
 Suporta otimização de problemas de múltiplos objetivos e integração com bibliotecas como Keras e PyTorch

TPOT (Tree-based Pipeline Optimization Tool)

• TPOT é uma ferramenta de AutoML (Automated Machine Learning) em Python que utiliza programação genética para otimizar pipelines de aprendizado de máquina. Ele automatiza a seleção do melhor modelo e dos hiperparâmetros correspondentes, economizando tempo e melhorando os resultados.

Como TPOT Funciona

Estrutura Baseada em Árvores

Utiliza árvores binárias para representar modelos de pipeline, incluindo preparação de dados, modelagem algorítmica, configuração de hiperparâmetros e seleção de modelos.

Programação Genética

Explora milhares de possíveis pipelines para encontrar o mais adequado ao conjunto de dados específico.

Integração com Scikit-learn

Baseado no scikit-leam, facilitando a familiaridade com o código gerado.

Vantagens do TPOT

Automatização Completa

Automatiza as partes mais tediosas do aprendizado de máquina, como seleção de modelos e ajuste de hiperparâmetros.

Geração de Código

Fornece o código Python para o melhor pipeline encontrado, permitindo ajustes posteriores.

Eficiência

Acelera o desenvolvimento de modelos de aprendizado de máquina e ajuda a alcançar melhor desempenho nas tarefas de análise de dados.

Revisão

Árvores de Decisão

Os modelos baseados em árvore de decisão são amplamente utilizados em machine learning. São capazes de resolver desde problemas bastante simples até problemas com alta complexidade.

Árvores de Decisão

Gini Index

$$I_G = 1 - \sum_{j=1}^{c} p_j^2$$

p_j: proportion of the samples that belongs to class c for a particular node

 $Gini\ impurity = 1 - (prob.\ de\ setosa)^2 - (prob.\ de\ versicolor)^2 - (prob.\ de\ virginica)^2$

Ensembles - XGBoost

- O modelo XGBoost foi desenhado para trabalhar com datasets de alta complexidade
- Assim como o Gradient Boosting, ele é um modelo sequencial
- Normalmente, as árvores são limitadas a 6 níveis

Mapas autoorganizáveis

Passos do algoritmo:

- 1. Inicialização dos pesos da rede
- Passos do treinamento repetidos até que não haja modificação significativa nos ajustes dos pesos ou que o número máximo de iterações sea atingidos:
 - a. Escolha da amostra de entrada da rede. Escolha uma das amostras pertencentes ao dataset de entrada
 - Determinar quem é o neurônio vencedor.
 Normalmente é utilizada a distância euclidiana entre a amostra selecionada e o peso dos neurônios
 - c. Atualização dos pesos do neurônios vencedor e dos neurônios vizinhos

Autoencoders

Dúvidas?

Obrigada!