Latent class analysis

LCA model fit

DL Oberski & L Boeschoten

The Latent Class Model

- Observed (continuous or) categorical Items
- Categorical Latent Class Variable (X)
- Continuous or Categorical Covariates (Z)

Small example: data from GSS 1987

Y1: "allow anti-religionists to speak"

Y2: "allow anti-religionists to teach"

Y3: "remove anti-religious books from the library"

(1 = allowed, 2 = not allowed), (1 = allowed, 2 = not allowed), (1 = do not remove, 2 = remove).

Y1	Y2	Y3	Observed frequency (n)	Observed proportion (n/N)
1	1	1	696	0.406
1	1	2	68	0.040
1	2	1	275	0.161
1	2	2	130	0.076
2	1	1	34	0.020
2	1	2	19	0.011
2	2	1	125	0.073
2	2	2	366	0.214

N = 1713

Profile for 2-class model

```
$Y1
          Pr(1) Pr(2)
class 1: 0.9601 0.0399
class 2: 0.2284 0.7716
$Y2
          Pr(1) Pr(2)
class 1: 0.7424 0.2576
class 2: 0.0429 0.9571
$Y3
          Pr(1) Pr(2)
class 1: 0.9166 0.0834
class 2: 0.2395 0.7605
```

Estimated class population shares 0.6205 0.3795

Model equation for 2-class LC model for 3 indicators

Model for

$$P(y_1, y_2, y_3)$$

the probability of a particular response pattern.

For example, how likely is someone to hold the opinion "allow speak, allow teach, but remove books from library: P(Y1=1, Y2=1, Y3=2) = ?

Two key model assumptions

(X is the latent class variable)

1. (MIXTURE ASSUMPTION)

Joint distribution mixture of 2 class-specific distributions:

$$P(y_1, y_2, y_3) = P(X = 1)P(y_1, y_2, y_3 \mid X = 1) + P(X = 2)P(y_1, y_2, y_3 \mid X = 2)$$

2. (LOCAL INDEPENDENCE ASSUMPTION)

Within class X=x, responses are independent:

$$P(y_1, y_2, y_3 | X = 1) = P(y_1 | X = 1)P(y_2 | X = 1)P(y_3 | X = 1)$$

 $P(y_1, y_2, y_3 | X = 2) = P(y_1 | X = 2)P(y_2 | X = 2)P(y_3 | X = 2)$

Example: model-implied proprtion

	X=1	X=2
P(X)	0.620	0.380
P(Y1=1 X)	0.960	0.229
P(Y2=1 X)	0.742	0.044
P(Y3=1 X)	0.917	0.240

(Mixture assumption)

$$P(Y1=1, Y2=1, Y3=2 \mid X=1) P(X=1) +$$

Example: model-implied proprtion

	X=1	X=2
P(X)	0.620	0.380
P(Y1=1 X)	0.960	0.229
P(Y2=1 X)	0.742	0.044
P(Y3=1 X)	0.917	0.240

(Mixture assumption)

(Local independence assumption)

$$P(Y1=1|X=1) P(Y2=1|X=1) P(Y2=2|X=1) 0.620 +$$

$$P(Y1=1|X=2) P(Y2=1|X=2) P(Y2=2|X=2) 0.380$$

Example: model-implied proprtion

	X=1	X=2
P(X)	0.620	0.380
P(Y1=1 X)	0.960	0.229
P(Y2=1 X)	0.742	0.044
P(Y3=1 X)	0.917	0.240

```
P(Y1=1, Y2=1, Y3=2) =
```

```
(Mixture assumption)
P(Y1=1, Y2=1, Y3=2 | X=1) 0.620 +
P(Y1=1, Y2=1, Y3=2 | X=2) 0.380 =
```

```
(Local independence assumption)

(0.960) (0.742) (1-0.917) (0.620) +

(0.229) (0.044) (1-0.240) (0.380) \approx
```

≈ 0.0396

The model again

Mixture of K classes

$$P(\mathbf{y}) = \sum_{x=1}^{K} P(\mathbf{y} | X = x) P(X = x)$$

Local independence of *p* variables

$$P(\mathbf{y} \mid X = x) = \prod_{j=1}^{p} P(y_j \mid X = x)$$

Both together gives the likelihood of the observed data:

$$P(\mathbf{y}) = \sum_{x=1}^{n} \prod_{j=1}^{n} P(y_j \mid X = x) P(X = x)$$

"Categorical data" notation

• In some literature an alternative notation is used

- Instead of Y1, Y2, Y3, variables are named A, B, C
- We define a model for the joint probability

$$P(A=i,B=j,C=k) := \pi_{ijk}^{ABC}$$

$$\pi_{ijk}^{ABC} = \sum_{t=1}^{I} \pi_{t}^{X} \pi_{ijk\ t}^{ABC|X} \qquad \text{with} \qquad \pi_{ijk\ t}^{ABC|X} = \pi_{i\ t}^{A|X} \pi_{j\ t}^{B|X} \pi_{k\ t}^{C|X}$$

Loglinear parameterization

$$\pi_{ijk\ t}^{ABC|X} = \pi_{it}^{A|X} \pi_{jt}^{B|X} \pi_{kt}^{C|X}$$

$$\ln(\pi_{ijk\ t}^{ABC|X}) = \ln(\pi_{it}^{A|X}) + \ln(\pi_{jt}^{B|X}) + \ln(\pi_{kt}^{C|X})$$

$$:= \lambda_{it}^{A|X} + \lambda_{it}^{B|X} + \lambda_{kt}^{C|X}$$

The parameterization actually used in most LCM software

$$P(y_k | X = x) = \frac{\exp(\beta_{0y_k}^k + \beta_{1y_kx}^k)}{\sum_{m=1}^{M_k} \exp(\beta_{0m}^k + \beta_{1mx}^k)}$$

$$\beta_{0y_k}^k$$
 Is a logistic intercept parameter

$$\beta_{1y_{t}x}^{k}$$
 Is a logistic slope parameter (loading)

So just a series of **logistic regressions**, with X as independent and Y dep't! Similar to CFA/EFA (but logistic instead of linear regression)

A more realistic example

(showing how to evaluate the model fit)

One form of political activism

61.31% 38.69%

Another form of political activism

	There are different ways of trying to improve things in [country] o going wrong. During the last 12 months, have you done any of the Have you READ OUT			things from
		Yes	No	(Don't know)
3 13	contacted a politician, government or local government official?	1	2	8

2

8

...worked in a political party or action group?

...worked in another organisation or association?

...worn or displayed a campaign badge/sticker?

...taken part in a lawful public demonstration?

...signed a petition?

...boycotted certain products?

B14

B15

B16

B17

B18

B19

Data from the European Social Survey round 4 Greece

contplt	wrkprty	wrkorg	badge	sgnptit	pbldmn	bctprd	clsprty
2	2	2	2	2	2	1	2
2	2	2	2	2	2	1	1
2	2	2	2	2	1	1	1
2	2	2	2	2	2	2	1
2	2	2	2	2	2	2	1
2	2	2	2	2	2	1	2
2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	1
2	2	2	2	2	2	2	2

```
ess_greece <- read_csv("https://daob.nl/files/lca/ess_greece.csv.gz")</pre>
```

ess greece, nclass = K)

badge, sgnptit, pbldmn, bctprd) ~ 1,

```
K <- 4 # Change to 1,2,3,4,...
```

fit_K <- poLCA(cbind(contplt, wrkprty, wrkorg,</pre>

Evaluating model fit

In the previous small example, you calculated the modelimplied (expected) probability for response patterns and compared it with the observed probability of the response pattern:

observed - expected

The small example had $2^3 - 1 = 7$ unique patterns and 7 unique parameters, so df = 0 and the model fit perfectly.

observed - expected = $0 \Leftrightarrow df = 0$

How did we come up with the nr of parameters?

- Total parameters = class probabilities + item response probabilities
- Class probabilities: C-1 parameters
 - C=2 \rightarrow 2-1 = 1 parameter
- Item response probabilities: for dichotomous indicators, 1 parameter per indicator per class.
 - 3 indicators * 2 classes = 6 parameters
- Total parameters = 1 + 6 = 7

Evaluating model fit

Current model (with 1 class, 2 classes, ...)

Has $2^7 - 1 = 128 - 1 = 127$ unique response patterns But much fewer parameters

So the model can be **tested**.

Different models can be compared with each other.

Calculation of nr of parameters

- Class probabilities: 4 classes 1 = 3 parameters
- Item response probabilities: 7 indicators with 2 classes → 7 * 4
 = 28
- \bullet 3 + 28 = 31

Evaluating model fit

• Global fit

Local fit

• Substantive criteria

Global fit

Goodness-of-fit "chi-squared" statistics

$$\chi^2 = \sum_{\text{patterns}} \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$$

$$L^2 = 2$$
 observed $\cdot \ln \left(\frac{\text{observed}}{\text{expected}} \right)$

- L² is sometimes called G2 and χ^2 is sometimes written as X2
- df = number of patterns 1 Npar
- Sparseness: bootstrap *p*-values

Information criteria

- For model comparison
- Parsimony versus fit

Common criteria:

$$BIC(L^2) = L^2 - \operatorname{df} \cdot \ln N$$
 $BIC(LL) = -2LL + q \cdot \ln N$
 $AIC(L^2) = L^2 - 2 \operatorname{df}$ $AIC(LL) = -2LL - 2 q$
 $AIC3(L^2) = L^2 - 3 \operatorname{df}$ $AIC3(LL) = -2LL - 3 q$

The L2 and LL versions are equivalent (but give different numbers)

Model fit comparisons

	L ²	BIC(L²)	AIC(L²)	df	p-value
1-Cluster	1323.0	-441.0	861.0	120	0.000
2-Cluster	295.8	-1407.1	-150.2	112	0.001
3-Cluster	219.5	-1422.3	-210.5	104	0.400
4-Cluster	148.6	-1432.2	-265.4	96	1.000
5-Cluster	132.0	-1387.6	-266.0	88	1.000
6-Cluster	122.4	-1336.1	-259.6	80	1.000

BIC is lowest at four classes

Number of latent classes

Local fit

Why doesn't an LC model fit?

→ because **local independence assumption** is violated

Local fit: bivariate residuals (BVR)

Pearson "chi-squared" comparing observed and estimated frequencies in 2-way tables.

Expected frequency in two-way table:

$$N \cdot P(y_k, y_{k'}) = N \cdot \sum_{k=1}^{C} P(X = x) P(y_k \mid X = x) P(y_{k'} \mid X = x)$$

Observed:

Just make the bivariate cross-table from the data!

Example calculating a BVR

Observed

	No	Yes
No	3250	280
Yes	123	216

Expected

	No	Yes
No	3217	313
Yes	156	183

Bivariate residuals

	No	Yes
No	32.6	-32.6
Yes	-32.6	32.6

BVR_{1,3} =
$$r_{11}^2 \sum_{k,l} \hat{\mu}_{kl}^{-1} = (32.6)^2 \sum_{k,l} \hat{\mu}_{kl}^{-1} \approx 1063(0.0154) \approx 16.3$$

1-class model BVR's

	contplt	wrkprty	wrkorg	badge	sgnptit	pbldmn	bctprd
contplt							
wrkprty	342.806						
wrkorg	133.128	312.592					
badge	203.135	539.458	396.951				
sgnptit	82.030	152.415	372.817	166.761			
pbldmn	77.461	260.367	155.346	219.380	272.216		
bctprd	37.227	56.281	78.268	65.936	224.035	120.367	

2-class model BVR's

	contplt	wrkprty	wrkorg	badge	sgnptit	pbldmn	bctprd
contplt							
wrkprty	15.147						
wrkorg	0.329	2.891					
badge	2.788	12.386	8.852	-			
sgnptit	2.402	1.889	9.110	0.461			
pbldmn	1.064	1.608	0.108	0.945	3.957		
bctprd	1.122	2.847	0.059	0.717	18.025	4.117	

3-class model BVR's

	contplt	wrkprty	wrkorg	badge	sgnptit	pbldmn	bctprd
contplt							
wrkprty	7.685						
wrkorg	0.048	0.370					
badge	0.282	0.054	0.273				
sgnptit	2.389	2.495	8.326	0.711			
pbldmn	2.691	0.002	0.404	0.086	2.842		
bctprd	2.157	2.955	0.022	0.417	13.531	1.588	

4-class model BVR's

	contplt	wrkprty	wrkorg	badge	sgnptit	pbldmn	bctprd
contplt							
wrkprty	0.659						
wrkorg	0.083	0.015					
badge	0.375	0.001	1.028				
sgnptit	0.328	0.107	0.753	0.019			
pbldmn	0.674	0.939	0.955	0.195	0.004		
bctprd	0.077	0.011	0.830	0.043	0.040	0.068	-

Bivariate residuals

■ 0.000-5.000 ■ 5.000-10.000 ■ 10.000-15.000 ■ 15.000-20.000

Local fit: bootstrapping BVR

The bivariate residual (BVR) is not actually chi-square distributed! (Oberski, Van Kollenburg & Vermunt 2013)

Solutions:

- Bootstrap p-values of BVR (LG5)
- "Modification indices" (score test) (LG5)

What are BVR, EPC and Score?

- BVR: Bivariate residual.
- EPC: Expected value that a currently fixed parameter would take on if you freed it in the model.
- Score test: how much would the model fit would improve if a new parameter were added? Tests are calculated without reestimating the full model. It reflect the expected drop in deviance (-2LL).

Example of modification index (score test) for 2-class model

Covarian	ces / Asso	ociations					
term	1		coef	EPC(self)	Score	df	BVR
contpl	<->	wrkprty	0	1.7329	28.5055	1	15.147
wrkorg	<->	wrkprty	0	0.6927	4.3534	1	2.891
badge	<->	wrkprty	0	1.3727	16.7904	1	12.386
sgnptit	<->	bctprd	0	1.8613	37.0492	1	18.025

wrkorg <-> wrkparty is "not significant" according to BVR but is when looking at score test!

(but not after adjusting for multiple testing)

Why doesn't an LC model fit?

Answer: because local independence assumption is violated

Three possible solutions:

- 1. Increase the number of clusters or latent classes;
- 2. Increase the number of discrete factors or latent variables;
- 3. Allow for **local dependencies** or direct relationships between certain items;
- 4. Ignore the issue.

Option 3 is similar to correlated errors in structural equation models (SEM)

Interpreting the results and using substantive criteria

EPC-interest for looking at change in substantive parameters

After fitting two-class model, how much would loglinear "loadings" of the items change if local dependence is accounted for?

term			Y1	Y2	Y3	Y4	Y5	Y6	Y7
contplt	<->	wrkprty	-0.44	-0.66	0.05	1.94	0.05	0.02	0.00
wrkorg	<->	wrkprty	0.00	-0.19	-0.19	0.63	0.02	0.01	0.00
badge	<->	wrkprty	0.00	-0.37	0.03	-1.34	0.03	0.01	0.00
sgnptit	<->	bctprd	0.01	0.18	0.05	1.85	-0.58	0.02	-0.48

See Oberski (2013); Oberski & Vermunt (2013); Oberski, Moors & Vermunt (2015)

Model fit evaluation: summary

Different types of criteria to evaluate fit of a latent class model:

Global

BIC, AIC, L2, X2

Local

Bivariate residuals, modification indices (score tests), and expected parameter changes (EPC)

Substantive

Change in the solution when adding another class or parameters

Model fit evaluation: summary

 Compare models with different number of classes using BIC, AIC, bootstrapped L2

Evaluate overall fit using bootstrapped L2 and bivariate residuals

 Can be useful to look at the profile of the different solutions: if nothing much changes, or very small classes result, fit may not be as useful