Facilitating Magnetic Recording Technology Scaling for Data Center Hard Disk Drives through Filesystem-level Transparent Local Erasure Coding

Yin Li, Hao Wang, Xuebin Zhang, Ning Zheng, Shafa Dahandeh, and Tong Zhang

Data Center HDDs: Rationale

Data center: The main driver for future HDD market growth

? Minimize HDD \$/GB

[1] E. Brewer et al., "Disks for data centers," Technical report, Google, 2016.

Data Center HDDs: Rationale

Exploit the characteristics of datacenter infrastructure & workloads

Relax the per-HDD reliability spec

Lower manufacturing cost

Read retry rate: <10⁻⁵~10⁻⁶

Hard sector failure rate: <10⁻¹²~10⁻¹⁴

- ☐ The pervasive use of replication and distributed erasure coding to ensure system-level reliability in datacenters
- Dominantly coarse-grained HDD data access in datacenters

Data Center HDDs: Our First Step

? How datacenters can embrace HDD with relaxed read retry rate

Higher HDD read retry rate

Longer per-HDD tail read latency

Effect will be amplified in large-scale systems (e.g., datacenters)

[1] J. Dean and L. A. Barroso, "The tail at scale," Communications of the ACM, 56:74-80, 2013.

Data Center HDDs: A Simple First Step

? How datacenters can embrace HDD with relaxed read retry rate

Hybrid Erasure Coding for Data Centers

☐ Distributed erasure coding: Mitigate catastrophic HDD failures & server unavailability at high coding redundancy (e.g., 25%~50%)

Distributed erasure coding

Hybrid Erasure Coding for Data Centers

- □ Distributed erasure coding: Mitigate catastrophic HDD failures & server unavailability at high coding redundancy (e.g., 25%~50%)
- □ Local erasure coding: Mitigate HDD sector read failures at low coding redundancy (e.g., 3% and below)

Distributed erasure coding

Simple Basic Concept

☐ Local erasure coding: data + coding redundancy on the same HDD

Application layer

OS layer

Hardware layer

Filesystem-level Local Erasure Coding

Per-file erasure coding for data & per-sector replication for metadata

Some Non-trivial Issues

- ? Mathematically formulate its effect on HDD read tail latency
- ? How to deal with unaligned HDD write and data update
- ? Impact of encoding/decoding on system speed performance

Tail Latency

- ☐ Let T denote the latency to read N consecutive sectors from HDD
- Model T as a discrete variable and let f(T) denote its probability mass function
- \Box Given the latency percentile P_{tail} (e.g., 99%), we search for the tail latency T_{tail} subject to

$$\sum_{T=0}^{T_{tail}} f(T) \ge P_{tail}$$

Derived a set of mathematical formulations to estimate the data read tail latency when using local erasure coding (see the paper for details)

Unaligned HDD Write

☐ Use of (250, 5) local erasure code

Data Update

☐ Use of (250, 5) local erasure code

Analysis and Experimental Results

- ☐ RS-based local erasure codes with codeword length of 255 and 1023
- ☐ Relaxed HDD sector read failure probability: 1x10⁻⁴, 5x10⁻⁴, 1x10⁻³, 5x10⁻³
- ☐ Target local erasure code decoding failure probability: 1x10-8

	255		1023	
	k	m	k	m
1x10 ⁻⁴	252	3	1019	4
5x10 ⁻⁴	251	4	1016	7
1x10 ⁻³	250	5	1014	9
5x10 ⁻³	246	9	1004	19

Encoding/Decoding Engine

Software-based implementation

- ☐ Intel CPU 3.3GHz with 64kB L1, 256kB L2, and 6MB L3
- Matrix-based encoding and decoding
- ☐ Utilization of x86 SSE (Streaming SIMD Extensions) instructions

Encoding/Decoding Engine

Emerging CPU chip with built-in FPGA

Encoding/Decoding Engine

Hardware-based Implementation

- ☐ Parallel polynomial-based encoder and parallel Berlekamp-Massey decoder
- → Verilog-based HDL design entry with target throughput of 4GB/s

Coding Parameters		Equivalent XOR Gate Number		
k	m	Encoder	Decoder	
252	3	11k	156k	
251	4	11k	161k	
250	5	17k	185k	
246	9	28k	232k	
1019	4	16k	634k	
1016	7	31k	699k	
1014	9	39k	732k	
1004	19	78k	894k	

Tail Latency Analysis

 \square 7200rpm, P_{tail} = 99%, average per-sector retry latency: 20ms and 40ms

Impact on System Speed Performance

- Integrate the local erasure coding into Kernel 3.10.102 (ext4 filesystem)
- □ Big data benchmark suite HiBench 3.0
 - 1. Job based micro benchmarks sort and wordcount
 - 2. SQL benchmark *hivebench*
 - 3. Web search/indexing benchmarks *pagerank* and *nutch*
 - 4. Machine learning benchmarks *bayes* and *kmeans*
 - 5. HDFS benchmark *dfsioe*
 - 6. Big data sorting benchmark *terasort*

Impact on System Speed Performance

Conclusion and Future Work

- ✓ A first step exploring datacenter HDDs: local erasure coding.
- ? Minimize CPU workload for distributed & local erasure coding
- ? Cross-layer system/HDD design
 - ? Software-defined datacenter HDD with configurable read channel
 - ? Iterative read channel and system-level erasure code decoding
 - ? Use of >4kB HDD sector size
- ? Modeling of soft and hard sector failures in future HDDs, and development of corresponding system-level coding design techniques
- ? Implication to overall HDD design (read channel, servo, head, ...)
- ? ..