Vector Calculus Week 2 - More Suffix Notation

James Arthur

September 29, 2020

Contents

1	adient, Divergence and Curl	2	
	1.1	Gradient	2
	1.2	Divergence	2
	1.3	Curl	2
\mathbf{C}	ombi	nations of ∇f , $\nabla \cdot ()$ and $\nabla \times ()$ 2	

1 Gradient, Divergence and 2 Co Curl an

1.1 Gradient

Assume we have a f = f(x, y, z) or $f = f(x_1, x_2, x_3)$, so a scalar calued function. Then we define grad f as:

$$\underline{\nabla} f = \left(\frac{\partial}{\partial x} \hat{\boldsymbol{i}} + \frac{\partial}{\partial y} \hat{\boldsymbol{j}} + \frac{\partial}{\partial z} \hat{\boldsymbol{k}} \right) f$$

We say grad of f is a differential operator. So:

$$\underline{\nabla} f = \left(\frac{\partial f}{\partial x} \hat{\boldsymbol{\imath}} + \frac{\partial f}{\partial y} \hat{\boldsymbol{\jmath}} + \frac{\partial f}{\partial z} \hat{\boldsymbol{k}} \right)$$

and we can write it in suffix notation aswell:

$$[\underline{\nabla} f]_i = \frac{\partial}{\partial x_i}$$
 $i = 1, 2, 3$

1.2 Divergence

Assume we have a vector field, $\underline{\mathbf{u}} = \underline{\mathbf{u}}(x, y, z, t)$. We define the divergence of this vector field as;

$$\underline{\nabla} \cdot \underline{\mathbf{u}} = \left(\frac{\partial u_1}{\partial x_1} + \frac{\partial u_2}{\partial x_2} + \frac{\partial u_3}{\partial x_3} \right)$$

Placing this in suffix notation, we get that:

$$[\underline{\nabla} \cdot \underline{\mathbf{u}}]_j = \frac{\partial u_j}{\partial x_i}$$

1.3 Curl

the curl of a vector field can be written as:

$$\underline{\nabla} \times \underline{\mathbf{u}}$$

To write this in suffix notation, we can just use the cross produce formula:

$$[\underline{\nabla} \times \underline{\mathbf{u}}]_i = \varepsilon_{ijk} \underline{\nabla}_i u_k$$

which then can be manipulated into:

$$[\underline{\nabla}\times\underline{\mathbf{u}}]_i=\varepsilon_{ijk}\frac{\partial u_k}{\partial x_j} \qquad j,k=1,2,3$$

where i is a free index and j,k are dummy suffixes, so j,k=1,2,3

2 Combinations of $\underline{\nabla} f$, $\underline{\nabla} \cdot ()$ and $\underline{\nabla} \times ()$

If we take $\nabla \cdot \nabla f$ where $f = (x_1, x_2, x_3, t)$. We can write the div of grad as:

$$\begin{split} \underline{\nabla} \cdot \underline{\nabla} f &= \left(\frac{\partial}{\partial x} \hat{\pmb{\imath}} + \frac{\partial}{\partial y} \hat{\pmb{\jmath}} + \frac{\partial}{\partial z} \hat{\pmb{k}} \right) \cdot \left(\frac{\partial f}{\partial x} \hat{\pmb{\imath}} + \frac{\partial f}{\partial y} \hat{\pmb{\jmath}} + \frac{\partial f}{\partial z} \hat{\pmb{k}} \right) \\ &= \frac{\partial}{\partial x_1} \frac{\partial f}{\partial x_1} + \frac{\partial}{\partial x_2} \frac{\partial f}{\partial x_2} + \frac{\partial}{\partial x_3} \frac{\partial f}{\partial x_3} \\ &= \frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2} + \frac{\partial^2 f}{\partial x_3} \\ &= \Delta f \end{split}$$

Where the $\Delta = \underline{\nabla}^2$ is the laplacian. So how do we write this in suffix notation?

$$\begin{split} \underline{\nabla} \cdot \underline{\nabla} f &= \underline{\nabla}_j [\underline{\nabla} f]_j \\ &= \frac{\partial}{\partial x_j} \frac{\partial f}{\partial x_j} \\ &= \frac{\partial^2 f}{\partial x_i} \end{split}$$