Shortest Path Problem

詹江岳

Date: 2017-12-21

Chapter 1: Introduction

问题描述:用一个有向图表示给定的 n 个 (要求至少 10 个)城市 (或校园中的一些地点)及其之间的道路、距离情况,道路是有方向的。要求完成功能:根据用户输入的任意两个城市,给出这两个城市之间的最短距离及其路径。

算法背景: 寻找两地间的开销最小的路径, 具有重要的现实意义。旅游出行, 上下班等, 如果能走开销最小的路径, 那就能省下不少钱。

Chapter 2: Algorithm Specification

● 主要数据结构设计说明

Graph

逻辑上由顶点和连接顶点的边组成,采用矩阵(二维数组)实现。

每两个顶点间可以存在边,也可以不存在边。边是有向的,带有权值。如果存在从顶点 i 到顶点 j 的权值为 w 的边,则存储矩阵第 i 行、第 i 列元素的取值为 w: 否则为 0。

主要操作	方法说明	
int n() const	获取顶点数目	
int e() const	获取边的数目	
<pre>void setEdge(int v, int w, double weight)</pre>	设置从 v 到 w 的权值为 weight 的边	
void delEdge(int v, int w)	删除从 v 到 w 的边	
bool hasEdge(int v, int w) const	判断是否存在从 v 到 w 的边,存在则返	
	回 true	
double weight(int v, int w) const	获取从 v 到 w 的边的权值	
int first(int v) const	获取与 v 邻接的点的集合中的第一个元	
	素	
int next(int v, int w) const	获取与 v 邻接的点的集合中元素 w 的下	
	一个元素	
void setMark(int v, char mark)	设置顶点 v 的标记为 mark	
char getMark(int v) const	获取顶点 v 的标记	

系统设计思想:

程序流程图

见附件《附件1 流程图.png》

Chapter 3: Testing Results

模块	用例	用例描述	预期结果	实际结果	错误估计	现状
强连通图 cg.png	载入cg.txt	加载地图信息	载入文件,进入查 询页	载入文件,进入查 询页		pass
	查询A到C	查询可达的两点		none INFINITY	计算最短路径时出错,distance[i][j]和distance[i][k]+distance[k][j]比较时未考虑distance[i][i]为INFINITY的特殊情况	pass
	查询C到A	查询可达的两点	CA 1	CA 1		pass
	查询A到FF	查询可达的两点	ADE,FF 16.6	ADE,FF 16.6		pass
非连通图 ucg.png	载入ucg.txt	加载地图信息	载入文件, 进入查 询页	载入文件, 进入查 询页		pass
	查询C到A	查询可达的两点	CA 1	CA 1		pass
	查询A到FF	查询不可达的两 点	none INFINITY	none INFINITY		pass
平凡图 tg.png	载入tg.txt	加载地图信息	载入文件,进入查 询页	载入文件,进入查 询页		pass
	查询A到A	查询到自身的路 径	A 0	A 0		pass
	查询A到FF	查询到不存在的 点的路径	none INFINITY	none INFINITY		pass
完全图 cpg.png	载入cpg.txt	加载地图信息	载入文件,进入查询页	载入文件,进入查询页		pass
	查询A到D	查询可达的两点	AD 5.6	AD 5.6		pass
	查询D到C	查询连接两点的 边不是最短路径 时的最短路径	DAC 7	DAC 7		pass
零图 ng.png	载入ng.txt	加载地图信息	载入文件,进入查 询页	载入文件,进入查 询页		pass
	查询A到D	查询不可达的两 点	none INFINITY	none INFINITY		pass
	查询D到C	查询不可达的两 点	none INFINITY	none INFINITY		pass
空白(没有图)	载入nerr.txt	试图载入顶点数 标记为0的文件	报错	报错		pass
实际场景 rg.png	载入rg.txt	加载地图信息	询页	载入文件,进入查 询页		pass
	查询ERji到Ylcan	查询可达的两点	ERji-FAxueyuan- Ylyun-Ylshiyanlou- Ylshuxueyuan- Yican 4080m	ERji-FAxueyuan- Ylyun-Ylshiyanlou- Ylshuxueyuan- Yican 4080m		pass
	查询JIANhuan到 TUshuguan	查询可达的两点	JIANhuan-ERji- TUshuguan 1190m	JIANhuan-ERji- TUshuguan 1190m		pass
文件	载入err.txt	试图载入空文件		报错		pass
	载入不存在的文件 null.txt	试图载入不存在 的文件	报错	报错		pass

Chapter 4: Analysis and Comments

● 算法分析:

时间复杂度: 对于有 n 个顶点的有向图,初始化矩阵是 n^2 的操作,计算最短路径的过程需要 n^3 次操作,因此整个生成最短路径矩阵的过程的时间复杂度为 $\Theta(n^3)$ 。查询两点间的最短路径只要查询矩阵的某一行,因此时间复杂度为 O(n)。

空间复杂度:图用邻接矩阵存储,因此复杂度为 $\Theta(n^2)$ 。最短路径矩阵的存储也是 $\Theta(n^2)$ 。此外,生成最短路径矩阵时所用的最短距离矩阵的复杂度也是 $\Theta(n^2)$ 。因此算法整体的空间复杂度为 $\Theta(n^2)$ 。

● 算法特色:

对一个顶点数为 n 的图 g,连续的 m 次查询的时间复杂度是 $O(n^3+mn)$,查询次数越多(m>n),平均每次查询的时间开销越少。

● 不足:

如果图 g 的邻接矩阵是稀疏矩阵,那么用二维数组的实现方式空间浪费较大。如果对一个图,只进行几次查询,那么 $O(n^3+mn)$ 的时间复杂度无法显现平均上的优势,此时直接用 Dijkstra 算法更好(复杂度为 $\Theta(mn^2)$;用堆优化后是 $\Theta(m(e+n)logn)$,e 为边数;堆的实现可以在实验 Huffman Compression 里找到)。可以考虑增加对图顶点数和边数的判断,动态决定使用邻接矩阵还是邻接表存储图。可以考虑增设查询模式,针对用户预期的不同查询情况,采用不同的算法。

此外,载入文件的格式上,可以考虑增加[起点 终点 距离]这样的格式的输入,减少一些写邻接矩阵时带来的麻烦。可以考虑增加文件格式检查(含地点重名检查等),提高程序的安全性。

目前尚不支持中文输入,可以考虑采用更好的技术,或改变交互方式来解决。

Declaration

I hereby declare that all the work done in this project titled "Shortest Path Problem" is of my independent effort as an individual.

Duty Assignments:

Programmer: 詹江岳

Tester: 詹江岳

Report Writer: 詹江岳