ST518 - The independent samples t-test as SLR

Jason A. Osborne

N. C. State Univ.

T-test with SLR

Consider the good, old **equal variances t-test** of the hypothesis of equality of two population means, sampled independently from two populations with the same variance. Let Y_{ij} denote the j^{th} observation from the i^{th} sample, with n_i observations from population i=1,2. Let the population means be denoted μ_i . Then under $H_0: \mu_1 = \mu_2$, the t-statistic below follows a t-distribution with $df = n_1 + n_2 = 2$:

$$t = \frac{\overline{Y}_{1.} - \overline{Y}_{2.}}{\sqrt{S_p^2(\frac{1}{n_1} + \frac{1}{n_2})}}$$

with S_n^2 denoted the weighted average of the two sample variances from the two samples, S_1^2 and S_2^2 :

$$S_p^2 = \frac{n_1 - 1}{n_1 + n_2 - 2} S_1^2 + \frac{n_2 - 1}{n_1 + n_2 - 2} S_2^2$$

We will show that this t-test and the F-test from simple linear regression (SLR) are equivalent.

Before establishing equivalence, let's simulate some data and observe that $T^2 = F$

```
data one;
   do i=1 to 16;
      supp=(i>10); *sample sizes are 10 and 6;
      y=10 + 2*supp + rannor(234)*2;
      *y normally dist'd with mean = 10 or 12, variance=4;
      output;
   end:
run;
proc ttest;
   class supp;
   var y;
run;
proc reg;
   model y=supp;
run;
```

The SAS System The TTEST Procedure

supp	Method	N	Mean	Std Dev	Std Err
0		10	9.5930	2.0517	0.6488
1		6	11.2189	2.1512	0.8782
Diff (1-2)	Pooled		-1.6260	2.0878	1.0781
Diff (1-2)	Satterthwaite		-1.6260		1.0919
ĺ					

Method Variances t Value Pr > |t| DF Pooled Equal 14 -1.51 0.1538 Satterthwaite Unequal 10.251 -1.49 0.1666

The REG Procedure Model: MODEL1

Analysis of Variance

Ш				Sum of	Mean			
Ш	Source		DF	Squares	Square	F	Value	Pr > F
Ш	Model		1	9.91396	9.91396		2.27	0.1538
Ш	Error		14	61.02346	4.35882			
l	Corrected	Total	15	70.93742				
	Root MSE		2.08778	R-Square	0.1398			
Ш	Dependent	Mean	10.20272	Adj R-Sq	0.0783			
	Coeff Var		20.46296					
			Parameter	Standard				
Ш	Variable	DF	Estimate	Error	t Value		Pr >	t
Ш	Intercept	1	9.59299	0.66021	14.53		< .00	01
Ш	supp	1	1.62595	1.07812	1.51		0.15	38

In a regression formulation of this problem,

$$\begin{pmatrix} y_{11} \\ \vdots \\ y_{1n_1} \\ y_{21} \\ \vdots \\ y_{2n_2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} E_1 \\ \vdots \\ B_n \end{pmatrix}$$

The least squares estimator of β is given by $\widehat{\beta} = (X'X)^{-1}X'Y$. Here.

$$X'X = \begin{pmatrix} n_1 + n_2 & n_2 \\ n_2 & n_2 \end{pmatrix}$$

$$(X'X)^{-1} = \frac{1}{n_1 n_2} \begin{pmatrix} n_2 & -n_2 \\ -n_2 & n_1 + n_2 \end{pmatrix} = \begin{pmatrix} 1/n_1 & -1/n_1 \\ -1/n_1 & (n_1 + n_2)/(n_1 n_2) \end{pmatrix}$$

$$(X'Y)' = \begin{pmatrix} \sum y_i, & n_2 \overline{y}_2 \end{pmatrix}$$

And the product, $\widehat{\beta}$ is

$$(X'X)^{-1}X'Y = \begin{pmatrix} n_1 + n_2 & n_2 \\ n_2 & n_2 \end{pmatrix} \begin{pmatrix} \sum y_i \\ n_2 \overline{y}_2 \end{pmatrix} = \begin{pmatrix} \frac{\sum y_i - n_2 \overline{y}_2}{n_1} \\ -\frac{\sum y_i}{n_1} + \frac{n_1 + n_2}{n_1} \overline{y}_2 \end{pmatrix}$$

Note that $\overline{y} = \frac{n_1 y_1}{n_1 + n_2} + \frac{n_2 y_2}{n_1 + n_2}$ is a weighted average of \overline{y}_1 and \overline{y}_2 and $(n_1 + n_2)\overline{y} = \sum y_i = n_1\overline{y}_1 + n_2\overline{y}_2$. The intecept and slope can then be simplified

$$\begin{array}{lcl} \widehat{\beta}_0 & = & \frac{n_1 \overline{y}_1 + n_2 \overline{y}_2}{n_1} - \frac{n_2}{n_1} \overline{y}_2 & = & \overline{y}_1 \\ \widehat{\beta}_1 & = & \frac{-n_1 \overline{y}_1 - n_2 \overline{y}_2}{n_1} + \overline{y}_2 + \frac{n_2}{n_1} \overline{y}_2 & = & \overline{y}_2 - \overline{y}_1 \end{array}$$

To show that $MS(E) = S_p^2$ is a little more involved, but not too bad.

$$SSE = \sum (Y_{i} - \widehat{Y}_{i})^{2}$$

$$= (Y - \widehat{Y})'(Y - \widehat{Y})$$

$$= Y'(I - H)Y$$

$$H = X(X'X)^{-1}X'$$

$$= \begin{pmatrix} 1 & 0 \\ \vdots & \vdots \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1/n_{1} & -1/n_{1} \\ -1/n_{1} & \frac{n_{1}+n_{2}}{n_{1}n_{2}} \end{pmatrix} \begin{pmatrix} 1 & \dots & 1 \\ 0 & \dots & 1 \end{pmatrix}$$

$$= \dots$$

$$= \begin{pmatrix} 1/n_{1} * I_{n_{1}} & \mathbf{0} \\ \mathbf{0} & 1/n_{2} * I_{n_{2}} \end{pmatrix},$$

an $(n_1 + n_2) \times (n_1 + n_2)$ matrix, with submatrices which are multiples of identity matrices I with n_1 and n_2 rows, respectively, and **0** denotes a submatrix of zeros.

$$HY = \begin{pmatrix} \overline{Y}_1 \\ \vdots \\ \overline{Y}_1 \\ \overline{Y}_2 \\ \vdots \\ \overline{Y}_2 \end{pmatrix} = \hat{Y}$$

$$e = Y - \hat{Y}$$

$$e'e = SS(E) = \sum (Y_{1i} - \overline{Y}_1)^2 + \sum (Y_{2i} - \overline{Y}_2)^2$$

$$= (n_1 - 1) * S_1^2 + (n_2 - 1)S_2^2$$

$$= (n_1 + n_2 - 2)S_p^2$$

$$MS(E) = SS(E)/(n - 2)$$

$$= S_p^2$$

To review, we have shown that $\widehat{\beta}_1 = \overline{Y}_2 - \overline{Y}_1$ and $MS(E) = S_n^2$. It remains to show that $T^2 = MS(R)/MS(E)$.

Recall that $MS(R) = \sum (\widehat{Y}_i - \overline{Y})^2$, quantifying variation between least squares regression line, $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x$ and horizontal line, \overline{Y} . Note that

$$MS(R) = \sum (\widehat{Y}_i - \overline{Y})^2$$

$$= \sum (\widehat{\beta}_0 + \widehat{\beta}_1 x_i - (\widehat{\beta}_0 + \widehat{\beta}_1 \overline{x}))^2$$

$$= \widehat{\beta}_1^2 \sum (x_i - \overline{x})^2$$

$$F = MS(R)/MS(E) = \widehat{\beta}_1^2 \sum (x_i - \overline{x})^2/MS(E)$$

$$= \widehat{\beta}_1^2/(MSE/\sum (x_i - \overline{x})^2)$$

After some algebra, the reciprocal of

 $\sum (x_i - \overline{x})^2 = (n_1 n_2^2 + n_1^2 n_2)/(n_1 + n_2)^2$ can be shown to be $1/n_1 + 1/n_2$ and

$$F = MS(R)/MS(E) = \left(\frac{\overline{Y}_1 - \overline{Y}_2}{\sqrt{MS(E)(1/n_1 + 1/n_2)}}\right)^2$$