Deep Deterministic Policy Gradients - Components and Extensions

Yannik Frisch Tabea Wilke Maximilian Gehrke

Group 19 Oleg Arenz

Deep Deterministic Policy Gradient

Actor-Critic Method

- Approximated critic $Q(s, a|\theta^Q)$
- ▶ Approximated actor $\pi(s|\theta^{\pi})$

Deep Q-Learning

- Q-Learning with approximated critic by nn
- ► Experience Replay Buffer
- Target Network(s)

Deterministic Policy Gradient

- $\blacktriangleright \ \, \nabla_{\theta^\pi} J(\theta^\pi) \approx \mathsf{E} \left[\nabla_a Q(s,a) |_{a=\pi(s|\theta^\pi)} \nabla_{\theta^\pi} \pi(s|\theta^\pi) \right]$
- Enables to learn a deterministic policy while following a stochastic exploratory policy

DDPG Pseudocode

Algorithm 2 Deep Deterministic Policy Gradient (DDPG)

Initialize: Replay buffer D with high capacity

Initialize: Critic network $Q(s,a|\theta^Q)$ and actor network $\pi(s|\theta^\pi)$ with random weights θ^Q and θ^π

Initialize: Initialize target networks Q' and π' with weights $\theta^{Q'} \leftarrow \theta^Q$ and $\theta^{\pi'} \leftarrow \theta^{\pi}$

- 1: for episode 1 to M do
- 2: Initialize random process N for action exploration
- Reset environment to state s₁
- 4: for t = 1 to T do
- 5: Select action $a_t = \pi(s_t|\theta^{\pi}) + N_t$ from local actor
- 6: Execute action a_t and observe reward r_t and next state s_{t+1}
- 7: Save (s_t, a_t, r_t, s_{t+1}) in replay buffer D
- 8: Sample mini-batch $(s_i, a_i, r_i, s_{i+1})_k$ with size k from D
- 8: Sample mini-batch $(s_i, a_i, r_i, s_{i+1})_k$ wi 9: Set TD-target from target networks:
- $y_i = r_i + \gamma Q'(s_{i+1}, \pi'(s_{i+1}|\theta^{\pi'})|\theta^{Q'})$ 0: Update the critic by minimizing the loss:
- 10: Update the critic by minimizing the loss: $L = \frac{1}{N} \sum_{i} (y_i Q(s_i, a_i | \theta^Q))^2$
- 11: Update the actor using the sampled policy gradient:
- $\nabla_{\theta^{\pi}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\pi(s_{i})} \nabla_{\theta^{\pi}} \pi(s | \theta^{\pi})|_{s=s_{i}}$ 12: Update the target networks:
- $\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 \tau)\theta^{Q'}$ $\theta^{\pi'} \leftarrow \tau \theta^{\pi} + (1 \tau)\theta^{\pi'}$
- 13: end for
- 14: end for

Improvements for DDPG

- ► D4PG
 - Importance Weighted Experience Sampling
 - Utilizing N-Step return
 - Parallelized Actors
- ► Parameter Noise for Exploration

Deep Changes

Sources

- ► For publication references please see our paper "Deep Deterministic Policy Gradients: Components and Extensions"
- GoogLenet: https://towardsdatascience.com/an-intuitive-guide-to-deepnetwork-architectures-65fdc477db41
- Parameter noise for exploration: https://openai.com/blog/better-exploration-with-parameter-noise/