

1.6.2 CPU的循环处理

船说:计算机基础

1. CPU的设计与结构 1.6.2 本节主要内容

- 汇编指令处理死循环—简单 01
- 条件指令介绍

- GCD的简单实现 03
- 04 带条件的循环也不难
 - 影响循环处理效率的因素

1. CPU的设计与结构 汇编指令处理死循环

1	START		
2		mov	r0,#10
3	LOOP		
4		sub	r0,r0,#1
5		b	LOOP

1. CPU的设计与结构 死循环的对比

```
int main()
                                                  36
                                                       main:
                                                  37
                                                               sub
                                                                       sp, sp, #8
13
                                                                       r0, #0
                                                  38
                                                               mov
14
         int x;
                                                  39
                                                                       r0, [sp, #4]
                                                               str
         while(1)
15
                                                  40
                                                                       .LBB1 1
                                                               b
16
             x--;
                                                       .LBB1_1:
                                                  41
17
                                                  42
                                                               ldr
                                                                       r0, [sp]
18
         x = gcd(15, 18);
                                                                       r0, r0, #1
                                                  43
                                                               sub
19
                                                  44
                                                                       r0, [sp]
                                                               str
         return 0;
20
                                                                       .LBB1 1
                                                  45
                                                               b
21
```


1. CPU的设计与结构 ARM内核中的可用条件语句

cond	Mnemonic extension	Meaning (integer)	Meaning (floating-point) ab	Condition flags
0000	EQ	等于		Z == 1
0001	NE	不等于		Z == 0
0010	CS c	进位置位/无符号数大于	- 或相同	C == 1
0011	CC d	进位未置位/无符号数小	\于	C == 0
0100	MI	负数		N == 1
0101	PL	正数或零		N == 0
0110	VS			V == 1
0111	VC	溢出		V == 0
1000	HI	无溢出		C == 1 and $Z == 0$
1001	LS	无符 号 数大于		C == 0 or Z == 1
1010	GE	无符号数小于或相同		N == V
1011	LT	有符号数大于等于		N != V
1100	GT	有符号数小于		Z == 0 and $N == V$
1101	LE	有符号数大于		Z == 1 or N != V
1110	None (AL) e	总是执行(无条件)		Any

海城宝藏 专注IT教育在线学习平台

辗转相减法:

比较要计算的两个数,并将较大数减去较小数,并覆盖掉原来的数,直到两个数相等,那么它们的最大公约数就是最终相等的这个数。

1. CPU的设计与结构 GCD的C语言实现

1. CPU的设计与结构 GCD的C语言实现

```
1 #include <stdio.h>
 3 int gcd(int a, int b) {
    while (a != b){ // a != b 一直循环
     if (a > b) //如果 a > b
        a -= b; //a = a - b
      else //如果 a < b
       b -= a; //b = b - a
                 //继续去判断a是否等于b
    return a;
11 }
13 int main(){
    printf("gcd(27,84) = %d\n",gcd(27,84));
    return 0;
16 }
```


1. CPU的设计与结构 ARM内核中的可用条件语句

cond	Mnemonic extension	Meaning (integer)	Meaning (floating-point) ab	Condition flags
0000	EQ	Equal	Equal	Z == 1
0001	NE	Not equal	Not equal, or unordered	Z == 0
0010	CS ^c	Carry set	Greater than, equal, or unordered	C == 1
0011	CC d	Carry clear	Less than	C == 0
0100	MI	Minus, negative	Less than	N == 1
0101	PL	Plus, positive or zero	Greater than, equal, or unordered	N == 0
0110	VS	Overflow	Unordered	V == 1
0111	VC	No overflow	Not unordered	V == 0
1000	HI	Unsigned higher	Greater than, or unordered	C == 1 and $Z == 0$
1001	LS	Unsigned lower or same	Less than or equal	C == 0 or Z == 1
1010	GE	Signed greater than or equal	Greater than or equal	N == V
1011	LT	Signed less than	Less than, or unordered	N != V
1100	GT	Signed greater than	Greater than	Z == 0 and $N == V$
1101	LE	Signed less than or equal	Less than, equal, or unordered	Z == 1 or N != V
1110	None (AL) e	Always (unconditional)	Always (unconditional)	Any

1. CPU的设计与结构 ARM内核中的可用条件语句

1100	GT	Signed greater than	Greater than	Z == 0 and $N == V$
1101	LE	Signed less than or equal	Less than, equal, or unordered	Z == 1 or $N != V$

1. CPU的设计与结构 条件的应用

1	START		
2		mov	r0,#18
3		mov	r1,#15
4	LOOP		
5		cmp	r0,r1
6		beq	STOP
7		subgt	r0,r0,r1
8		suble	r1,r1,r0
9		b	LOOP
10			
11	STOP		

1. CPU的设计与结构 影响循环处理的部分因素

- 1、数据依赖性
- 2、分支预测
- 3、寄存器分配

1. CPU的设计与结构 1.6.2 条件循环指令处理

- 1. 跳转指令其实就是改变PC寄存器(R15)
- 2. 如果要带条件就看CPSR寄存器的NZCV
- 3. 条件执行的区域取决于CPSR的条件变化
- 4. 指令的条件码根据不同的数据的比较选择

欢迎参与学习

WELCOME FOR YOUR JOINING

船说:计算机基础