Knowing when and where to get help

Jeff Leek

@jtleek

www.jtleek.com

Inference vs. prediction

Definitely different, but not predictive

Different and predictive

Key quantities

		+	_
TEST	+	TP	FP
	_	FN	TN

DISEASE

 $\begin{array}{lll} \textbf{Sensitivity} & \rightarrow & \text{Pr (positive test } | \text{ disease)} \\ \textbf{Specificity} & \rightarrow & \text{Pr (negative test } | \text{ no disease)} \\ \textbf{Positive Predictive Value} & \rightarrow & \text{Pr (disease } | \text{ positive test)} \\ \textbf{Negative Predictive Value} & \rightarrow & \text{Pr (no disease } | \text{ negative test)} \\ \textbf{Accuracy} & \rightarrow & \text{Pr (correct outcome)} \\ \end{array}$

$$\begin{array}{lll} & \rightarrow & TP \ / \ (TP+FN) \\ & \rightarrow & TN \ / \ (FP+TN) \\ & \rightarrow & TN \ / \ (FP+TN) \\ & \rightarrow & TP \ / \ (TP+FP) \\ & \rightarrow & TP \ / \ (TP+FP) \\ & \rightarrow & TN \ / \ (FN+TN) \\ & \rightarrow & TN \ / \ (FN+TN) \\ & \rightarrow & (TP+TN) \ / \ (TP+FP+FN+TN) \\ & \rightarrow & (TP+TN) \ / \ (TP+FP+FN+TN) \\ \end{array}$$

An example

Assume that some disease has a 0.1% prevalence in the population. Assume we have a test kit for that disease that works with 99% sensitivity and 99% specificity. What is the probability of a person having the disease given the test result is positive, if we randomly select a subject from

- the general population?
- a high risk sub-population with 10% disease prevalence?

DISEASE

+

Sensitivity
$$\rightarrow$$
 99 / (99+1) = 99%

Specificity
 \rightarrow 98901 / (999+98901) = 99%

Positive Predictive Value
 \rightarrow 99 / (99+999) \approx 9%

Negative Predictive Value
 \rightarrow 98901 / (1+98901) > 99.9%

Accuracy
 \rightarrow (99+98901) / 100000 = 99%

HEALTH

Vast Study Casts Doubts on Value of Mammograms

By GINA KOLATA FEB. 11, 2014

At risk subpopulation

		+	_
TEST	+	9900	900
	_	100	89100

Sensitivity
$$\rightarrow$$
 9900 / (9900+100) = 99%

Specificity
 \rightarrow 89100 / (900+89100) = 99%

Positive Predictive Value
 \rightarrow 9900 / (9900+900) \approx 92%

Negative Predictive Value
 \rightarrow 89100 / (100+89100) \approx 99.9%

Accuracy
 \rightarrow (9900+89100) / 100000 = 99%

Notes and further reading

- Prediction is a whole class (no joke): https://www.coursera.org/course/predmachlearn
- Prediction with genomics underlies precision medicine
- So far this has been a major challenge