A Novel AutoML Solution with NePS

Ömer Emre POLAT, Barbaros INAK Dropouts

Modality 1/2

Motivation

Our main motivation was to create a versatile one click AutoML solution that can adapt to any tabular dataset using 8 different state-of the-art regression models.

NePS was chosen as an hyperparameter optimizer because it was the option which we had experience in exercises and it was transparent with the source code.

Used Methods

Bayesian Hyperparameter Optimization

Successive Halving

IQR Variable Scale Outlier Detection

Standardization

Week 1

Week 2

Week 3

Week 4

Week 5

Week 6

Week 7

Week 8

Week 9

Week 10

Bonus

Literature

Our Approach

Details

The pipeline consists of a main successive halving loop which works on 8 different regression algorithms such as:

- Sklearn and XGB Random Forest
- Gradient Boost
- Ada Boost
- MLP
- Bayesian Ridge
- Elastic Net
- Dart Boost

Optimization run on the given configuration space, the IQR scale and the validation split ratio. The resulting best model is then saved to be used for predictions.

Resources Used

For development:

- 1 Ryzen 9 5900HX (Laptop)

- Total compute estimate: 50 CPU-hours

Workforce:

- 2 full week on average

Empirical Results

y_prop Dataset

Validation 0.1229

Test 0.1135

> Chosen Algorithm: SKlearn Random Forest

Bike Sharing

Dataset

Test

0.9755

Validation

0.9423

For the Bike Sharing Dataset, our AutoML solution found the Gradient Boost as the most optimal algorithm.

Brazilian Houses Dataset

Validation 0.9997

Test 0.997

Chosen Algorithm: SKlearn Random Forest

For the Brazilian Houses
Dataset, our AutoML
solution found the MLP
as the most optimal
algorithm.

Exam Dataset

Validation 0.9016

Test 0.8868

Chosen Algorithm:
Gradient Boost

For the Exam Dataset, our AutoML solution found the Dart Boost as the most optimal algorithm.

Number of queries

for test score

generation: 5

For the y_prop dataset, our AutoML solution found the XGB Random Forest as the most optimal algorithm.

Chosen Algorithm:

XGB Random Forest