РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ

ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1

дисциплина: Основы администрирования операционных систем

Студент: Барсегян Вардан Левонович

Группа: НПИбд-01-22

МОСКВА

2023 г.

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов

Техническое обеспечение

- 8 GB оперативной памяти, 40 GB свободного места на жёстком диске;
- OC Linux Gentoo (http://www.gentoo.ru/);
- VirtualBox верс. 7.0 или старше;
- Сетевой каталог с образами ОС для работающих в дисплейном классе: /afs/dk.sci.pfu.edu.ru/common/files/iso/.

Выполнение лабораторной работы

1) Выбираю в VirtualBox нужный дистрибутив, ввожу имя Rocky-vlbarsegyan (рис. 1)

Рис. 1 Выбор дистрибутива

2) Выбираю размер памяти (рис. 2)

Рис. 2 Выбор размера памяти

3) Создаю новый диск (рис. 3)

Рис. 3 Создание диска

4) Выбираю тип файла для жесткого диска (рис. 4)

Рис. 4 Выбор типа файла

5) Выбираю размер файла и его расположение (рис. 5)

Рис. 5 Выбор размера и расположения файла

6) Выбираю скачанный образ Rocky-9.2 (рис. 6, рис. 7)

Рис. 7 Выбранный образ Rocky

7) Запускаю виртуальную машину (рис. 8)

Рис. 8 Запуск ВМ

8) Выбор языка (рис. 9)

Рис. 9 Выбор языка

9) Дополнительно выбираю инструменты разработчика для установки (рис. 10)

Puc. 10 Development tools

10) Убираю КDUMР (рис. 11)

Рис. 11 Выкл. КDUMP

11) Выбираю жесткий диск (рис. 12)

Рис. 12 Выбор жесткого диска

12) Указываю hostname (рис. 13)

Puc. 13 Hostname

13) Указываю пароль гоот (рис. 14)

Рис. 14 Root-пароль

14) Создаю нового пользователя и указываю пароль (рис. 15)

Рис. 15 Новый пользователь

15) Начинаю инсталляцию (рис. 16)

Рис. 16 Процесс установки

16) После запуска ВМ, устанавливаю образ диска дополнений гостевой ОС и запускаю его (рис. 17, рис. 18)

Рис. 17 Установка образа диска гостевой ОС

Рис. 18 Запуск образа диска гостевой ОС

Домашнее задание

1) Открываю терминал и выполняю команду dmesg | less (рис. 19)

```
ⅎ
                          vlbarsegyan@vlbarsegyan:~ — less
    0.000000] Linux version 5.14.0-284.11.1.el9_2.x86_64 (mockbuild@iad1-prod-b
uild001.bld.equ.rockylinux.org) (gcc (GCC) 11.3.1 20221121 (Red Hat 11.3.1-4), G
NU ld version 2.35.2-37.el9) #1 SMP PREEMPT_DYNAMIC Tue May 9 17:09:15 UTC 2023
    0.000000] The list of certified hardware and cloud instances for Enterprise
Linux 9 can be viewed at the Red Hat Ecosystem Catalog, https://catalog.redhat.
    0.000000] Command line: BOOT_IMAGE=(hd0,msdos1)/vmlinuz-5.14.0-284.11.1.el9
_2.x86_64 root=/dev/mapper/rl_10-root ro resume=/dev/mapper/rl_10-swap rd.lvm.lv
=rl_10/root rd.lvm.lv=rl_10/swap rhgb quiet
    0.000000] x86/fpu: Supporting XSAVE feature 0x001: 'x87 floating point regi
sters'
    0.000000] x86/fpu: Supporting XSAVE feature 0x002: 'SSE registers'
    0.000000] x86/fpu: Supporting XSAVE feature 0x004: 'AVX registers'
    0.000000] x86/fpu: xstate_offset[2]: 576, xstate_sizes[2]: 256
    0.000000] x86/fpu: Enabled xstate features 0x7, context size is 832 bytes,
using 'standard' format.
     0.000000] signal: max sigframe size: 1776
    0.000000] BIOS-provided physical RAM map:
    0.000000] BIOS-e820: [mem 0x0000000000000000000000000000009fbff] usable
    0.000000] BIOS-e820: [mem 0x000000000009fc00-0x00000000009ffff] reserved
    0.000000] BIOS-e820: [mem 0x000000000000000000000000007ffeffff] usable
     0.000000] BIOS-e820: [mem 0x000000007fff0000-0x000000007ffffffff] ACPI data
```

Puc. 19 Команда dmesg / less

2) Используя команду dmesg | grep -i "Linux version", получаю информацию о версии линукс (рис. 20)

Puc. 20 Команда dmesg | grep -i "Linux version"

3) Используя команду dmesg | grep -i "Mhz", получаю информацию о частоте процессора (рис. 21)

```
[vlbarsegyan@vlbarsegyan ~]$ dmesg | grep -i "Mhz"
[ 0.000006] tsc: Detected 2688.000 MHz processor
[ 2.032150] e1000 0000:00:03.0 eth0: (PCI:33MHz:32-bit) 08:00:27:aa:72:7c
[vlbarsegyan@vlbarsegyan ~]$
```

Puc. 21 Команда dmesg / grep -i "Mhz."

4) Используя команду dmesg | grep -i "CPU0", получаю информацию о модели процессора (рис. 22)

```
[vlbarsegyan@vlbarsegyan ~]$ dmesg | grep -i "CPUO"

[ 0.151424] smpboot: CPUO: 11th Gen Intel(R) Core(TM) i5-11400H @ 2.70GHz (family: 0x6, model: 0x8d, stepping: 0x1)

[vlbarsegyan@vlbarsegyan ~]$
```

Puc. 22 Команда dmesg | grep -i "CPU0"

5) Используя команду dmesg | grep -i "available", получаю информацию об объеме доступной ОП (рис. 23)

```
[ 0.001901] [mem 0x80000000-0xfebfffff] available for PCI devices
[ 0.008237] Memory: 260860K/2096696K available (14342K kernel code, 5536K rwd ata, 10180K rodata, 2792K init, 7524K bss, 143180K reserved, 0K cma-reserved)
```

Puc. 23 Команда dmesg | grep -i "available"

6) Используя команду dmesg | grep -i "Hypervisor detected", получаю информацию о типе обнаруженного гипервизора (рис. 24)

```
[vlbarsegyan@vlbarsegyan ~]$ dmesg | grep -i "Hypervisor detected"

[ 0.000000] Hypervisor detected: KVM
```

Puc. 24 Команда dmesg | grep -i "Hypervisor detected"

7) Используя команду findmnt, узнаю тип файловой системы корневого раздела (рис. 25)

Puc. 25 Команда findmnt

8) С помощью команды dmesg | grep -i "mount" узнаю последовательность монтирования файловых систем (рис. 26)

```
[vlbarsegyan@vlbarsegyan ~]$ dmesg | grep -i "mount"
[     0.036806] Mount-cache hash table entries: 4096 (order: 3, 32768 bytes, line ar)
[     0.036809] Mountpoint-cache hash table entries: 4096 (order: 3, 32768 bytes, linear)
[     2.432712] XFS (dm-0): Mounting V5 Filesystem
[     2.447675] XFS (dm-0): Ending clean mount
[     2.958236] systemd[1]: Set up automount Arbitrary Executable File Formats File System Automount Point.
[     2.964168] systemd[1]: Mounting Huge Pages File System...
[     2.965097] systemd[1]: Mounting POSIX Message Queue File System...
[     2.966181] systemd[1]: Mounting Kernel Debug File System...
[     2.979047] systemd[1]: Mounting Kernel Trace File System...
[     3.024954] systemd[1]: Starting Remount Root and Kernel File Systems...
[     4.635864] XFS (sdal): Mounting V5 Filesystem
[     4.635966] XFS (dm-2): Mounting V5 Filesystem
[     4.647020] XFS (dm-2): Ending clean mount
[     4.744038] XFS (sdal): Ending clean mount
[     4.744038] XFS (sdal): Ending clean mount
```

Puc. 26 Команда dmesg / grep -i "mount"

Контрольные вопросы

1) Учётная запись пользователя содержит информацию о сведения, необходимые для опознания пользователя при подключении к системе, сведения для авторизации и учёта, т.е. логин, пароль, идентификаторы учетной записи и группы пользователя и ее названии

2)

- Для получения справки о команде команда *man <command>*
- Перемещение по файловой системе cd < path >
- Просмотр содержимого каталога ls
- Определение объема каталога du -sh <path>
- Создание файла touch <file_name>, удаление файла rm <file_name>, создание каталога mkdir <dir_name>, удаление каталога rm -r <dir_name> или rmdir <dir_name>, если каталог пустой
- Для задания прав доступа файла/каталога *chmod*
- Просмотр истории команд history или использование стрелок вверх/вниз в терминале
- 3) Файловая система способ организации хранения информации в компьютерах и на других носителях информации. Пример файловой системы macOS:

Disk MyDisk APFS Container UUID xx UUID yy APFS Volume Vol1 Vol2 Vol3 APFS Namespace FS1 FS2 FS3

APFS

- 4) Команда dmesg | grep "filesystem"
- 5) Для уничтожения процесса kill -9

Вывод: Я создал виртуальную машину на дистрибутиве Rocky, настроил необходимые функции, вспомнил некоторые команды в Linux