Problemas de Teoría de Circuitos

CURSO 2022/23

Índice general

1	Fundamentos. Corriente continua	1
2	Corriente alterna monofásica	11
3	Sistemas trifásicos	19
4	Introducción al régimen transitorio	27

Capítulo 1

Fundamentos. Corriente continua

Ejercicios

1. Calcular las corrientes de malla mostradas en el circuito de la figura.

Datos:
$$R_1 = 2\Omega$$
; $R_2 = 5\Omega$; $R_3 = 10\Omega$; $R_4 = 4\Omega$; $R_5 = 2\Omega$; $E_1 = 25 \text{ V}$; $E_2 = 50 \text{ V}$

Sol.:
$$I_1 = -1.31 \,\text{A}$$
; $I_2 = 3.17 \,\text{A}$; $10.45 \,\text{A}$

2. Calcular el valor de E que hace que $I_0 = 7.5\,\mathrm{mA}$ en el circuito de la figura.

Datos:
$$R_1=8\,\Omega$$
; $R_2=7\,\Omega$; $R_3=4\,\Omega$; $R_4=6\,\Omega$; $R_5=6\,\Omega$; $R_6=12\,\Omega$

Sol.:
$$U_s = 0.705 \,\mathrm{V}$$

3. Calcular la intensidad *I* en el circuito de la figura.

Datos:
$$R_1 = 27 \Omega$$
; $R_2 = 47 \Omega$; $R_3 = 27 \Omega$; $E_1 = 460 V$; $E_2 = 200 V$

Sol.:
$$I = -8,77 \,\text{A}$$

4. En el circuito de la figura obtener las intensidades de corriente señaladas primero mediante un análisis por el método de las mallas y posteriormente mediante un análisis por el método de los nudos.

Datos:
$$R_1 = 2 \Omega$$
; $R_2 = 1 \Omega$; $R_3 = 4 \Omega$; $R_4 = 5 \Omega$; $R_5 = 3 \Omega$; $E_1 = 10 V$; $E_2 = 6 V$

Sol.:
$$I_1 = -3.31 \text{ A}$$
; $I_2 = 3.37 \text{ A}$; $I_3 = -0.06 \text{ A}$; $I_4 = 0.73 \text{ A}$; $I_5 = -0.79 \text{ A}$;

5. Analizar el circuito de la figura mediante el método de las mallas, obteniendo la corriente de cada una de las ramas. Con este resultado, calcular la diferencia de potencial entre A y B, y realizar un balance de potencias comparando la potencia de los elementos activos y la de los elementos pasivos.

Datos: $R_1 = R_2 = 1 \Omega$; $R_3 = 2 \Omega$; $R_4 = 3 \Omega$; $R_5 = 4 \Omega$; $\epsilon_1 = 118 \text{ V}$; $\epsilon_2 = 236 \text{ V}$; $\epsilon_3 = 118 \text{ V}$

Sol.:
$$I_1 = 32 \text{ A}$$
; $I_2 = -86 \text{ A}$; $I_3 = 54 \text{ A}$; $I_4 = 14 \text{ A}$; $I_5 = 40 \text{ A}$; $U_{AB} = 150 \text{ V}$; $P_g = P_R$

- 6. En el circuito de la figura, determinar:
 - Todas las intensidades de rama señaladas
 - Carga, polaridad y energía almacenada en los condensadores
 - Balance de potencias

Datos: $R_i = i\Omega$; $C_i = i\mu F$; $E_1 = 8 V$; $E_2 = 6 V$; $E_3 = 4 V$

Sol.:
$$I_1 = I_2 = I_3 = -I_4 = 1$$
 A; $I_5 = I_6 = I_7 = 0$ A; $Q_{1\mu F} = -7$ μC; $Q_{2\mu F} = -4$ μC; $Q_{3\mu F} = 3$ μC; $E_{1\mu F} = 24.5$ μJ; $E_{2\mu F} = 4$ μJ; $E_{3\mu F} = 1.5$ μJ

- 7. Aplicar el método de los nudos en el circuito de la figura para determinar:
 - Los potenciales de los nudos A, B, C y D.
 - Las intensidades de corriente señaladas.
 - Carga, polaridad y energía almacenada en los condensadores, supuestos sin carga inicial.

Datos: $R_i = i \Omega$; $C_i = i \mu F$; $E_1 = 6 V$; $E_2 = 18 V$; $E_3 = 6 V$

Sol.:
$$U_A = 15 \text{ V}$$
; $U_B = 11 \text{ V}$; $U_C = U_D = 0 \text{ V}$; $I_1 = I_6 = 0 \text{ A}$; $I_2 = I_4 = -1 \text{ A}$; $I_3 = I_5 = 1 \text{ A}$; $q_1 = 9 \,\mu\text{C}$; $q_2 = 30 \,\mu\text{C}$; $q_3 = 33 \,\mu\text{C}$; $E_{C1} = 40.5 \,\mu\text{J}$; $E_{C2} = 225 \,\mu\text{J}$; $E_{C2} = 181.5 \,\mu\text{J}$

- 8. En el circuito de la figura, donde se sabe que la carga inicial de los condensadores era de $10\,\mu\text{C}$ para C_1 y de $20\,\mu\text{C}$ para C_2 con las polaridades indicadas, se pide determinar:
 - Intensidades de corriente señaladas
 - Potenciales en los puntos A, B, C, D, E y F

Datos:
$$\epsilon_1 = 90 \text{ V}$$
; $\epsilon_2 = 60 \text{ V}$; $\epsilon_3 = 30 \text{ V}$; $R_1 = R_2 = R_3 = 10 \Omega$; $R_4 = R_5 = 30 \Omega$; $C_1 = 10 \mu\text{F}$; $C_2 = 20 \mu\text{F}$; $L_1 = 1 \mu\text{H}$

Sol.:
$$I_1 = 4 \text{ A}$$
; $I_2 = 5 \text{ A}$; $I_3 = -1 \text{ A}$; $I_4 = I_6 = 1 \text{ A}$; $I_5 = I_7 = 0 \text{ A}$; $I_8 = 1 \text{ A}$; $U_A = 30 \text{ V}$; $U_B = 0 \text{ V}$; $U_C = 1 \text{ V}$; $U_D = 61 \text{ V}$; $U_E = 101 \text{ V}$; $U_F = 11 \text{ V}$;

- 9. En el circuito de la figura, los condensadores se conectaron sin carga. Mediante el método de las mallas, se debe determinar:
 - Intensidades de corriente señaladas
 - Potenciales en los puntos A, B, C y D
 - Polaridades, cargas, y energías de los condensadores

Balance de potencias

Datos: $\epsilon_1 = 118 \text{ V}$; $\epsilon_2 = 236 \text{ V}$; $\epsilon_3 = 118 \text{ V}$; $R_1 = 4 \Omega$; $R_2 = R_3 = 1 \Omega$; $R_4 = 3 \Omega$; $R_5 = 2 \Omega$; $C_1 = C_2 = C_3 = 2 \mu\text{F}$; $L_1 = L_2 = L_3 = 1 \text{ mH}$

Sol.:
$$I_1=40\,\mathrm{A};\ I_2=-86\,\mathrm{A};\ I_3=32\,\mathrm{A};\ I_4=14\,\mathrm{A};\ I_5=54\,\mathrm{A};\ U_A=U_B=0\,\mathrm{V};\ U_C=42\,\mathrm{V};\ U_D=150\,\mathrm{V};\ U_{C1}=0\,\mathrm{V};\ q_1=0\,\mathrm{C};\ E_{C1}=0\,\mathrm{J};\ U_{C2}=-42\,\mathrm{V};\ q_2=84\,\mu\mathrm{C};\ E_{C2}=1,76\,\mathrm{mJ};\ U_{C3}=-42\,\mathrm{V};\ q_3=84\,\mu\mathrm{C};\ E_{C3}=1,76\,\mathrm{mJ};\ P_g=P_R$$

10. En el circuito de la figura, se debe determinar:

- Las ecuaciones para el cálculo de las intensidades
- Todas las intensidades indicadas
- Potenciales en todos los nudos
- Carga y energía almacenada en los condensadores

Datos: $R_1 = 2\Omega$; $R_2 = 4\Omega$; $R_3 = 2\Omega$; $R_4 = 1\Omega$; $R_5 = 2\Omega$; $R_6 = 1\Omega$; $E_1 = 8V$; $E_2 = 8V$; $C_i = i \mu F$

Sol.: $I_1 = I_8 = -6.5 \,\text{A}$; $I_2 = -4 \,\text{A}$; $I_3 = I_7 = -2.5 \,\text{A}$; $I_4 = 3 \,\text{A}$; $I_5 = I_6 = 0.5 \,\text{A}$; $U_A = -8 \,\text{V}$; $U_B = 2 \,\text{V}$; $U_C = 0.5 \,\text{V}$; $U_D = 0 \,\text{V}$; $Q_{1\mu\text{F}} = 8 \,\mu\text{C}$; $Q_{2\mu\text{F}} = Q_{3\mu\text{F}} = 0 \,\mu\text{C}$; $Q_{4\mu\text{F}} = -2 \,\mu\text{C}$; $E_{1\mu\text{F}} = 32 \,\mu\text{J}$; $E_{2\mu\text{F}} = E_{3\mu\text{F}} = 0 \,\text{J}$; $E_{4\mu\text{F}} = 0.5 \,\mu\text{J}$

- 11. En el circuito de la figura, se debe determinar:
 - Las corrientes señaladas.
 - El balance de potencias, diferenciando entre elementos activos y elementos pasivos.
 - Los potenciales en los puntos A, B y C.
 - La carga y polaridad en los condensadores, supuestos sin carga inicial.

Datos: $\epsilon_1 = 1 \text{ V}$; $\epsilon_2 = 7 \text{ V}$; $R_i = 1 \Omega$; $C_i = i \mu \text{F}$

Sol.:
$$I_1 = I_2 = 1\,\text{A}$$
; $I_3 = I_4 = 0\,\text{A}$; $I_5 = -2\,\text{A}$; $\sum_{\epsilon} P_{\epsilon} = \sum_{R} P_{R}$; $U_A = -1\,\text{V}$; $U_B = -5\,\text{V}$; $U_C = -3\,\text{V}$; $q_1 = 0.5\,\mu\text{C}$; $q_2 = 1\,\mu\text{C}$; $q_3 = 1.5\,\mu\text{C}$; $q_4 = 12\,\mu\text{C}$

- 12. El circuito de la figura está funcionando en régimen estacionario. Los condensadores estaban inicialmente descargados. Resuelve el circuito mediante el método que consideres conveniente para obtener los siguientes resultados:
 - Las intensidades señaladas.
 - Polaridad y energía almacenada en los condensadores.
 - Balance de potencias.

Datos:
$$\epsilon_1=40\,\mathrm{V};\ \epsilon_2=22\,\mathrm{V};\ \epsilon_3=20\,\mathrm{V};\ C_1=C_2=C_3=2\,\mu\mathrm{F};\ R_{g1}=R_{g2}=R_{g3}=4\,\Omega;\ R_1=R_2=R_3=R_4=2\,\Omega;\ R_5=R_6=R_7=1\,\Omega$$

Sol.:
$$I_1 = I_5 = 2 \text{ A}$$
; $I_2 = I_3 = I_8 = I_{10} = -1 \text{ A}$; $I_4 = I_7 = I_{11} = I_{12} = I_{13} = 0 \text{ A}$; $I_6 = I_{14} = 1 \text{ A}$; $E_{C1} = 0.676 \text{ mJ}$; $E_{C2} = 0.576 \text{ mJ}$; $E_{C3} = 1 \mu \text{J}$; $P_g = P_R$

13. En el circuito de la figura, obtener las intensidades de corriente señaladas mediante un análisis por el método de las mallas y mediante un análisis por el método de los nudos.

Datos:
$$R_1 = 9 \Omega$$
; $R_2 = 4 \Omega$; $R_3 = 18 \Omega$; $R_4 = R_5 = R_6 = 20 \Omega$; $E_1 = 16 V$; $I_g = 2 A$

Sol.:
$$I_1 = -0.74 \,\text{A}$$
; $I_2 = -1.33 \,\text{A}$; $I_3 = 0.07 \,\text{A}$; $I_4 = -0.39 \,\text{A}$; $I_5 = 0.46 \,\text{A}$; $I_6 = -0.87 \,\text{A}$; $I_7 = 1.26 \,\text{A}$

- 14. Resolver el circuito por el método que se estime conveniente, obteniendo:
 - El valor de las corrientes indicadas (*I*₁, *I*₂, *I*₃, *I*₄, *I*₅).
 - La carga y polaridad de *C*₁, *C*₂ y *C*₃.
 - La potencia entregada o absorbida por los elementos activos.

Sol.:
$$I_1 = -1,25 \text{ A}$$
; $I_2 = 3,75 \text{ A}$; $I_3 = I_4 = -2,5 \text{ A}$; $I_5 = 0 \text{ A}$; $q_1 = q_2 = \frac{5}{3} \mu\text{C}$; $q_3 = 7,5 \mu\text{C}$; $P_{\epsilon 1} = 12,5 \text{ W}$; $P_{\epsilon 2} = 25 \text{ W}$

15. Calcular la intensidad que circula por la resistencia de $30\,\Omega$ del circuito de la figura aplicando el principio de superposición.

Datos:
$$R_1 = 20 \Omega$$
; $R_2 = 30 \Omega$; $R_3 = 20 \Omega$; $E_1 = 32 V$; $E_2 = 64 V$; $I_g = 4 A$

Sol.:
$$I = 2,2 A$$

16. Obtener el generador equivalente de Thévenin del circuito de la figura respecto de A y B. A partir de este generador, calcula la resistencia a colocar en A-B para obtener la máxima potencia, calculando esta potencia y la potencia entregada por el generador ϵ .

Datos:
$$\epsilon = 54 \text{ V}$$
; $R_1 = R_4 = 8 \Omega$; $R_2 = R_3 = 10 \Omega$

Sol.:
$$R_{AB} = \frac{80}{9} \Omega$$
; $P_R = 1,0125 \text{ W}$; $P_{\epsilon} = 2,025 \text{ W}$

17. Determinar el equivalente Thévenin del circuito de la figura entre los nudos A-B. ¿Qué resistencia habría que conectar en dichos terminales para transferir la máxima potencia? ¿Cuál sería dicha potencia?

Datos:
$$R_1 = R_2 = 4 \Omega$$
; $R_3 = 2 \Omega$; $E = 10 V$; $I_g = 8 A$

Sol.:
$$\epsilon_{th} = 5 - 16 = -11 \text{ V}; \ R_{th} = 4 \Omega; \ R_L = 4 \Omega; \ P_{max} = 7.56 \text{ W}$$

18. Obtener el generador equivalente de Thévenin del circuito de la figura respecto de A y B.

Datos: $I_g = 10 \text{ A}$; $R_1 = 1 \Omega$; $\alpha = 5$

Sol.:
$$\epsilon_{th} = 60 \,\text{V}$$
; $R_{th} = 62 \,\Omega$

19. En el circuito de la figura, se debe calcular el equivalente de Norton entre terminales A-B.

Sol.:
$$I_N = 4 \text{ A}$$
; $R_N = \frac{3}{2} \Omega$

- 20. En el circuito de la figura, calcular:
 - La corriente del generador equivalente de Norton respecto de A y B, I_N .
 - La resistencia del generador equivalente de Norton respecto de A y B, R_N.
 - La resistencia de carga que se debe conectar entre A y B para conseguir la máxima potencia disponible, y el valor de esta potencia.

Datos:

 $I_g = 6 \,\mathrm{A}$

 $R_1 = R_3 = 1 \Omega$ $R_2 = 2 \Omega$ $\alpha = 0.5 \Omega^{-1}$

Datos: $R = 1 \Omega$; $\epsilon_g = 10 \text{ V}$; $\alpha = 2 \Omega$; $\beta = 1$

Sol.:
$$I_N = \frac{10}{3} \text{ A}$$
; $R_N = 3 \Omega$; $R_L = 3 \Omega$; $P_L = \frac{25}{3} \text{ W}$

Capítulo 2

Corriente alterna monofásica

Ejercicios

- 1. En un circuito serie RL con $R=5\Omega$ y L=0.06 H, la tensión en bornes de la bobina es $u_L(t)=0.06$ $15\sin(200\,t)$ V. Determinar:
 - La tensión total
 - Intensidad de corriente
 - Ángulo de desfase de la intensidad respecto de la tensión
 - Impedancia del circuito

Sol.:
$$\overline{Z}_{eq} = 5 + \mathrm{j}\,12\,\Omega$$
; $\overline{I} = 0.88 / -90^{\circ}\,\mathrm{A}$; $\overline{U} = 11.48 / -22.5304^{\circ}\,\mathrm{V}$; $\phi = 67.4696^{\circ}\,\mathrm{M}$

2. Una resistencia de 5Ω y un condensador se unen en serie. La tensión en la resistencia es $u_R(t)=$ $25 \cdot \sin(2000t + \pi/6)$ V. Si la corriente está adelantada 60° respecto de la tensión aplicada, ¿cuál es el valor de la capacidad C del condensador?

Sol.:
$$C = 100\sqrt{3}/3 \,\mu\text{F}$$

3. Para determinar las constantes R y L de una bobina, se conecta en serie con una resistencia de 25 Ω y al conjunto se le aplica una fuente de tensión de 120 V a 60 Hz. Se miden las tensiones en bornes de la resistencia y de la bobina, obteniendo los valores $U_R = 70.8 \,\mathrm{V}$ y $U_B = 86 \,\mathrm{V}$. ¿Cuáles son las constantes de la bobina en cuestión?

Sol.:
$$R = 5 \Omega$$
; $L = 79.5 \,\text{mH}$

- 4. Un circuito serie RLC con $R=5\,\Omega$, $L=0.02\,\mathrm{H}$ y $C=80\,\mu\mathrm{F}$, tiene aplicada una tensión senoidal de frecuencia variable. Determinar los valores de la pulsación ω para los cuales la corriente:
 - Adelanta 45° a la tensión
 - Está en fase con ella
 - Retrasa 45°

Sol.:
$$\omega = 675,39 \, \text{rad/s}$$
; $\omega = 790,57 \, \text{rad/s}$; $\omega = 925,39 \, \text{rad/s}$

5. Determinar el triángulo de potencias de un circuito al que se le aplica una tensión u(t)=340 $\cos(\omega t - \pi/3)$ V y por el que circula una intensidad de corriente $i(t) = 13.3 \cdot \cos(\omega t - 0.85)$ A.

Sol.:
$$P = 2217,17 \text{ W}$$
; $Q = -443,03 \text{ VA}_r$; $S = 2261 \text{ VA}$

6. En el esquema de la figura, los elementos tienen los siguientes valores:

$$R_1 = R_2 = R_3 = 10 \Omega$$

 $X_1 = X_2 = 1 \Omega$
 $R_L = X_L = 1 \Omega$

Sabiendo que $U_{CD} = 200 \,\mathrm{V}$, se debe calcular:

- Intensidades de corriente I, I_1 , I_2 e I_3 en forma fasorial, tomando U_{CD} como referencia de fase
- Lectura de los vatímetros W₁ y W₂

Sol.: $\overline{I}_1 = 19.9 / -5.7106^{\circ}$ A; $\overline{I}_2 = 19.9 / 5.7106^{\circ}$ A; $\overline{I}_3 = 20 / 0^{\circ}$ A; $\overline{I} = 59.6 / 0^{\circ}$ A; $W_1 = 19.024.3$ W; $W_2 = 11.920$ W

- 7. En el circuito de la figura, los amperímetros A_1 y A_2 marcan 4,5 A y 6 A, respectivamente, el voltímetro, 150 V, y el vatímetro, 900 W. Sabiendo que la frecuencia del generador es de 250 Hz y el f.d.p. de la impedancia Z es de 0,8 en retraso, calcula:
 - Valores de R, C y Z en forma compleja.
 - La tensión del generador.
 - Triángulo de potencias totales.

Sol.:
$$\overline{R} = 33,33\underline{/0^{\circ}}\Omega$$
; $\overline{X}_c = -j25\Omega$; $\overline{Z} = 16 + j12\Omega$; $\overline{U}_{AC} = 212,13\underline{/45^{\circ}}V$; $\overline{S} = 1575 - j225VA$

8. En el circuito de la figura, determinar las lecturas de los aparatos de medida y el balance de potencias activas y reactivas, así como el triángulo global de potencias.

Datos:
$$e(t) = 100\sqrt{2}\cos(\omega t) \text{ V}$$
; $R_1 = 2\Omega$; $R_2 = 4\Omega$; $\omega L_1 = 3\Omega$; $\omega L_2 = 4\Omega$.

Sol.: $V=100\,\mathrm{V};~A=45,20\,\mathrm{A};~W_1=2789,35\,\mathrm{W};~W_2=1250,33\,\mathrm{W};~P_{R1}=1539,02\,\mathrm{W};~P_{\underline{R2}}=1250,33\,\mathrm{W};~Q_{L1}=2308,52\,\mathrm{VA_r};~Q_{L2}=1250,33\,\mathrm{VA_r};~P_T=2789,35\,\mathrm{W};~Q_T=3558,82\,\mathrm{VA_r};~\overline{S}_T=2789,35+\mathrm{j}3558,82\,\mathrm{VA}$

- 9. El circuito de la figura tiene carácter inductivo. La impedancia de la línea es $Z=10\sqrt{2}\,\Omega$ con f.d.p. $\sqrt{2}/2$ en retraso. Tomando como referencia de fases la intensidad total I, se pide calcular:
 - Potencia activa y reactiva consumida por *Z*.
 - Expresiones complejas de las intensidades medidas por los amperímetros A, A_1 , A_2 y A_3 .
 - Expresiones complejas de las tensiones U_{AB} , U_{AC} y U_{CB} .
 - Valores de R_1 , X_1 , R_2 , R_3 y X_3 .

Datos: $A = 5\sqrt{5}$ A; $A_1 = 5\sqrt{2}$ A; $A_2 = 5$ A; $A_3 = \sqrt{10}$ A; $U_{AB} = 247$ V; $W_1 = 2350$ W; $R_1 = R_3$

Sol.:
$$P_z = 1250\,\mathrm{W};\ Q_z = 1250\,\mathrm{VA_r};\ \overline{I} = 5\sqrt{5}\underline{/0^\circ}\,\mathrm{A};\ \overline{I}_1 = 5\sqrt{2}\underline{/-34,6711^\circ}\,\mathrm{A};\ \overline{I}_2 = 5\underline{/10,3289^\circ}\,\mathrm{A};\ \overline{I}_3 = \sqrt{10}\underline{/81,8940^\circ}\,\mathrm{A};\ \overline{U}_{AB} = 247\underline{/31,6823^\circ}\,\mathrm{V};\ \overline{U}_{AC} = 50\sqrt{10}\underline{/45^\circ}\,\mathrm{V};\ \overline{U}_{CB} = 100\underline{/10,3289^\circ}\,\mathrm{V};\ R_1 = R_3 = 10\,\Omega;\ R_2 = 20\,\Omega;\ X_1 = 10\,\Omega;\ X_3 = 30\,\Omega$$

- 10. La potencia reactiva del circuito de la figura es $80\,\mathrm{VA_r}$ de tipo capacitivo. La tensión en la impedancia Z está en fase con la intensidad I_1 y las lecturas de los aparatos son $A=4\,\mathrm{A}$, $V=50\,\mathrm{V}$, $W=200\,\mathrm{W}$. Sabiendo que $R_1=10\,\Omega$ y $X_2=50\,\Omega$, calcula:
 - a) Las corrientes I_1 , I_2 , I_3 en forma fasorial.
 - *b*) Las reactancias X_1 , X_3 , y la impedancia \overline{Z} .
 - *c*) La fuerza electromotriz $\overline{\epsilon}$.

Sol.:
$$\overline{I} = 4\underline{/0^{\circ}}A$$
; $\overline{I}_1 = 2\sqrt{5}\underline{/-26,56^{\circ}}A$; $\overline{I}_2 = 1\underline{/-90^{\circ}}A$; $X_1 = 5\Omega$; $X_3 = \frac{50}{3}\Omega$; $\overline{Z} = 10 - j5\Omega$

- 11. Un motor monofásico de $S=10\,\mathrm{kVA}$ y fdp=0.8 está alimentado por una fuente de 230 V a $f=50\,\mathrm{Hz}$. Calcular:
 - El valor eficaz de la corriente absorbida por el motor.
 - La potencia aparente del generador.
 - La capacidad del condensador necesario para compensar el factor de potencia a la unidad.
 - El valor eficaz de la corriente absorbida por el conjunto condensador-motor.
 - La potencia aparente del generador necesario una vez conectado el condensador del tercer apartado.
 - Compara de forma razonada los resultados de los apartados 4 y 5 con los valores calculados en los apartados 1 y 2.

Sol.:
$$I = 43.5 \text{ A}$$
; $S_g = 10 \text{ kVA}$; $C = 361 \,\mu\text{F}$; $I' = 34.78 \,\text{A}$; $S_g' = 8 \,\text{kVA}$

- 12. Un generador de corriente alterna monofásica ($f=50\,\mathrm{Hz}$) alimenta a dos cargas a través de una línea de cobre. Esta línea, de resistividad $\rho=21\,\mathrm{m}\Omega\,\mathrm{mm}^2/\mathrm{m}$, tiene una longitud de 100 m y una sección de 16 mm². Las dos cargas, cuya tensión de alimentación es de 230 V, son dos motores, uno con potencia de 7 kW y f.d.p. de 0,65, y otro con una potencia de 5 kW y f.d.p. de 0,85. Con esta información, se pide calcular:
 - Triángulo de potencias de cada carga y del conjunto de ambas.
 - Valor eficaz de las corrientes en cada carga y de la corriente total.
 - Triángulo de potencias del generador.
 - Valor eficaz de la tensión en bornes del generador.
 - Capacidad del condensador a instalar en bornes de las cargas para mejorar el factor de potencia a 0,95.
 - Valor eficaz de la corriente entregada por el generador una vez instalado el condensador.
 - Triángulo de potencias del generador una vez instalado el condensador.

```
Sol.: P_1 = 7000 \,\mathrm{W}; \ Q_1 = 8183,91 \,\mathrm{VA_r}; \ S_1 = 10\,769,23 \,\mathrm{VA}; \ P_2 = 5000 \,\mathrm{W}; \ Q_2 = 3098,72 \,\mathrm{VA_r}; \ S_2 = 5882,53 \,\mathrm{VA}; \ P_T = 12\,000 \,\mathrm{W}; \ Q_T = 11\,282,63 \,\mathrm{VA_r}; \ S_T = 16\,471,12 \,\mathrm{VA}; \ I_1 = 46,82 \,\mathrm{A}; \ I_2 = 25,58 \,\mathrm{A}; \ I_T = 71,62 \,\mathrm{A}; \ P_g = 13\,346,23 \,\mathrm{W}; \ Q_g = 11\,282,63 \,\mathrm{VA_r}; \ S_g = 17\,476,26 \,\mathrm{VA}; \ U_g = 244,4 \,\mathrm{V}; \ C = 441,66 \,\mathrm{\mu F}; \ I' = 54,92 \,\mathrm{A}; \ P'_g = 12\,791,75 \,\mathrm{W}; \ Q'_g = 3944,21 \,\mathrm{VA_r}; \ S'_g = 13\,386,02 \,\mathrm{VA}
```

- 13. Un generador de corriente alterna monofásica (f=50Hz) alimenta a dos cargas a través de una línea de cobre. Esta línea, de resistividad $\rho=0.017\Omega mm^2/m$, tiene una longitud de 40m y una sección de 6mm². Las dos cargas, cuya tensión de alimentación es de 200V, son:
 - a) Un motor de 7kW con f.d.p. 0,7.
 - b) Un grupo de lámparas fluorescentes con potencia total 200W y f.d.p. 0,5.

Se pide:

- Esquema del circuito señalando adecuadamente los elementos, corrientes y tensiones
- Potencias activa, reactiva y aparente de cada carga
- Valor eficaz de las corrientes en cada carga, y de la corriente total
- Potencia activa y reactiva entregada por el generador
- Valor eficaz de la tensión en bornes del generador
- Capacidad necesaria a instalar en bornes de las cargas para mejorar el factor de potencia de las mismas a la unidad
- Valor eficaz de la tensión en bornes del generador, y potencia aparente entregada por el mismo una vez instalada la capacidad determinada en el apartado anterior

```
Sol.: P_M=7000W; Q_M=7141,43VAr; S_M=10000VA; P_F=200W; Q_F=346,41VAr; S_F=400VA; I_M=50A; I_F=2A; I_T=51,94A; P_g=7811,50W; Q_g=7487,8VAr; U_g=208,33V; C=595,86\mu F; U_g'=207,92V; S_g'=7485,12VA
```

14. Un generador de corriente alterna ($f=50\,\mathrm{Hz}$) alimenta una instalación eléctrica a través de una línea de cobre ($\rho=0.017\,\Omega\,\mathrm{mm^2/m}$) de 25 mm² de sección. La instalación eléctrica está compuesta por un motor de $S_m=10\,\mathrm{kVA}$ y fdp = 0,8, una instalación de alumbrado fluorescente de $P_f=800\,\mathrm{W}$ y fdp = 0,9, y diversas cargas electrónicas con una potencia conjunta $P_e=540\,\mathrm{W}$ y fdp = 0,5 en retraso.

Suponiendo que las cargas trabajan a su tensión nominal de 230 V y que están situadas a 100 m del generador, calcule:

- a) Triángulo de potencias total de las cargas (P_T, Q_T, S_T) y factor de potencia.
- b) Valor eficaz de la corriente que circula por la línea.
- c) Potencia disipada en la línea.
- *d*) Triángulo de potencias del generador (P_g, Q_g, S_g) y factor de potencia.

- e) Valor eficaz de la tensión de salida del generador.
- *f*) Capacidad del banco de condensadores a instalar en bornes de la carga necesario para reducir la corriente que circula por la línea a un valor de 45 A.

Independientemente del resultado obtenido, suponga que la capacidad instalada es $C=172\,\mu\text{F}$. En estas condiciones, calcule:

- g) Potencia aparente de las cargas (incluyendo al banco de condensadores)
- h) Valor eficaz de la corriente que circula por la línea y potencia disipada en la misma.
- i) Triángulo de potencias del generador y factor de potencia.
- j) Tensión de trabajo del generador.

Sol.
$$S_T=11\,868,4\,\mathrm{VA};I=51,6\,\mathrm{A};P_L=362,1\,\mathrm{W};S_g=12\,155,4\,\mathrm{VA};U_g=235,6\,\mathrm{V};C=172,3\,\mathrm{\mu F};S_T'=10\,350,1\,\mathrm{VA};I'=45\,\mathrm{A};S_g'=10\,599,2\,\mathrm{VA};U_g'=235,5\,\mathrm{V}$$

15. Calcular la corriente i(t) del circuito de la figura.

Datos: $i_g(t) = 10\sqrt{2}\sin(100t)$ A; $R_1 = R_2 = 1\Omega$; $L_1 = L_2 = 0.01$ H; $C_1 = 0.01$ F; $u_g(t) = 10\sqrt{2}\cos(100t)$ V

Sol.:
$$i(t) = 10\sqrt{2}\cos(100 t) A$$

- 16. Del circuito de la figura, obtener:
 - Expresiones analíticas de las intensidades $i_1(t)$ e $i_2(t)$.
 - Potencia disipada por todas las resistencias.

Datos:
$$e_g(t) = 50\sqrt{2}\cos(1000\,t)$$
 V; $i_g(t) = 10$ A; $R_1 = R_2 = 2\,\Omega$; $R_3 = 7\,\Omega$; $L_1 = L_2 = 1\,\mathrm{mH}$; $L_3 = 2\,\mathrm{mH}$

Sol.:
$$i_1(t) = -5 + 5\sqrt{10}\sin(1000t - 0.46)$$
 A; $i_2(t) = 5 + 5\sqrt{10}\sin(1000t - 0.46)$ A; $P_T = 1300$ W

- 17. En el circuito de la figura, determina:
 - $\blacksquare u_R(t) \vee u_L(t).$
 - Balance de potencias activas.

Datos: $e_a(t) = 3\sqrt{2}\sin(10^3t) \text{ V}; \ e_b(t) = 30\sqrt{2}\sin(10^4t) \text{ V}; \ R = 30 \Omega; \ L = 3 \text{ mH}$

$$Sol.: \ u_R(t) = 30\sqrt{2}\sin(10^4t) \ \mathrm{V}; \ u_L(t) = 3\sqrt{2}\sin(10^3t) - 30\sqrt{2}\sin(10^4t) \ \mathrm{V}; \ P_R = 30 \ \mathrm{W}; \ P_\epsilon = 30 \ \mathrm{W$$

18. El circuito de la figura se encuentra en régimen permanente. Determinar analíticamente la expresión de i(t), así como las potencias entregadas por los generadores y disipadas por las resistencias R_1 y R_2 .

Datos:
$$e_1(t) = 50\sin(1000t) \text{ V}; \ e_2(t) = 30 \text{ V}; \ R_1 = 6 \Omega; \ R_2 = 6 \Omega; \ L = 8 \text{ mH}; \ C = 10 \,\mu\text{F}$$

Sol.:
$$i(t) = 5 + 5\sin(1000t - 0.9273)A$$
; $P_{R1} = 225W$; $P_{R2} = 0W$; $P_{\epsilon} = 225W$

19. Obtén el equivalente de Thévenin del circuito de la figura respecto de A y B, así como la impedancia a conectar en estos terminales para obtener la máxima potencia posible.

Datos:
$$\overline{\epsilon}_g = 12 - 16j \text{ V}$$
; $\overline{Z}_1 = 1 - j \Omega$; $\overline{Z}_2 = 1 + j \Omega$; $\overline{Z}_3 = 5 + 3j \Omega$; $\alpha = 2$

Sol.:
$$\overline{\epsilon}_{th} = 11,66/-59,04^{\circ} \text{ V}; \ \overline{Z}_{th} = 0,64+0,52j \Omega; \ \overline{Z}_{L} = 0,64-0,52j \Omega; \ P_{L} = 53,11 \text{ W}$$

20. Obtén el equivalente de Thévenin del circuito de la figura respecto de A y B. A partir de este equivalente, calcula la impedancia a colocar en AB para obtener la máxima potencia, calculando también dicha potencia.

Datos:

$$\overline{\epsilon}_1 = 10/0 \text{ V}$$

$$\overline{\epsilon}_2 = 10j \text{ V}$$

$$\overline{Z}_1 = 4 - 3j \Omega$$

$$\overline{Z}_2 = 3 + 4j \Omega$$

$$\alpha = 2$$

Sol.:
$$\overline{\epsilon}_{th}=10-10j\,\mathrm{V};\ \overline{Z}_{th}=4-3j\,\Omega;\ \overline{Z}_L=4+3j\,\Omega;\ P_L=12,5\,\mathrm{W}$$

Capítulo 3

Sistemas trifásicos

Ejercicios

- 1. El receptor trifásico de la figura tiene secuencia de fases inversa y tensión de línea $200\sqrt{3}$ V. Su potencia activa es 12 kW, y el vatímetro 2 (W_2) indica 6 kW. Hallar:
 - Valor de la impedancia \overline{Z} , en forma compleja.
 - Fasores correspondientes a las intensidades de línea.

Sol.:
$$\overline{Z} = 10/0^{\circ} \Omega$$
; $\overline{I}_A = 20/-90^{\circ} A$; $\overline{I}_B = 20/30^{\circ} A$; $\overline{I}_C = 20/150^{\circ} A$

- 2. En el sistema trifásico de la figura, de secuencia de fases directa y f=60 Hz, el receptor equilibrado disipa una potencia total $P_T=51\,984\,\mathrm{W}$ con un factor de potencia de 0,6 en retraso. Sabiendo que el amperímetro indica $76\sqrt{3}$ A, determinar:
 - Lecturas de los vatímetros 1 y 2
 - Valor de la impedancia \overline{Z} en forma compleja
 - Capacidad mínima para mejorar el factor de potencia a 0,95

Sol.:
$$W_1 = 46\,000,65\,\text{W}$$
; $W_2 = 5983,35\,\text{W}$; $\overline{Z} = 3 + \text{j}\,4\,\Omega$; $C_{\triangle} = 319,8\,\mu\text{F}$

- 3. En el sistema trifásico de la figura, de secuencia de fases inversa y tensión de línea $200\sqrt{3}$ V, los dos receptores son equilibrados, con impedancias $\overline{Z}_1 = 6 + j8 \Omega$ y $\overline{Z}_2 = 8 + j6 \Omega$. Determinar:
 - Lecturas de los amperímetros.
 - Lecturas de los vatímetros y la potencia compleja total.

Sol.:
$$A = 79,40\,\text{A}; A_1 = 20\,\text{A}; A_2 = 60\,\text{A}; W_A = 27\,007,43\,\text{W}; W_B = 18\,013,85\,\text{W}; W_C = 8993,58\,\text{W}; \overline{S}_T = 36 + j\,31,2\,\text{kVA}$$

- 4. El sistema trifásico de la figura es de 380 V a 50 Hz y secuencia de fases inversa. \overline{Z} es un elemento pasivo ideal, tal que el factor global de potencia es la unidad. El motor es de 1,8 CV, rendimiento 90 % y factor de potencia 0,8. Determinar:
 - Impedancia \overline{Z} en forma compleja.
 - Intensidad en el motor.
 - Fasores intensidad de línea.
 - Lectura de los aparatos de medida: V, A, W₁, W₂ y W₃.

Sol.:
$$\overline{Z}=-j$$
 129,76 $\Omega/fase;\ I_M=2,83$ A; $\overline{I}_A=2,27/\underline{-90^\circ}$ A; $\overline{I}_B=2,27/\underline{30^\circ}$ A; $\overline{I}_C=2,27/\underline{150^\circ}$ A; $W_1=0;\ W_2=-645,24$ W; $W_3=645,24$ W

- 5. Una plantación agrícola emplea dos bombas sumergibles para extraer agua de un pozo y transportarla a través de un sistema de riego por goteo. Estas dos bombas están alimentadas a 400 V por una línea trifásica en secuencia de fases directa y frecuencia 50 Hz. Una de las bombas funciona con un motor trifásico de 30 kW y factor de potencia de 0,78. La otra bomba trabaja con un motor de 7,5 kW y factor de potencia de 0,67. La línea que alimenta estas dos bombas es resistiva, con resistividad $\rho = 0.017 \,\Omega\,\mathrm{mm}^2/\mathrm{m}$, longitud de 300 m y una sección de 35 mm².
 - *a*) Calcula el triángulo de potencias (potencia activa, reactiva, y aparente) de cada carga, y total de las cargas (a la salida de la línea).

- b) Calcula el valor eficaz de la corriente de línea de cada carga y de la corriente total.
- c) Determina la lectura de los siguientes aparatos de medida conectados a la entrada de las cargas:
 - Un vatímetro en la fase A, midiendo tensión entre las fases A y C.
 - Un vatímetro en la fase B, midiendo tensión entre las fases B y C.
 - Un vatímetro en la fase C, midiendo tensión entre las fases B y A.
- d) Calcula el triángulo de potencias a la entrada de la línea.
- e) Calcula el valor eficaz de la tensión a la entrada de la línea.
- *f*) Calcula los condensadores que se deben conectar a la salida de la línea para mejorar el factor de potencia del sistema hasta la unidad. Indica modo de conexión más eficiente.

Una vez conectados los condensadores del último apartado:

- g) Calcula el valor eficaz de la corriente de línea total.
- h) Calcula el triángulo de potencias a la entrada de la línea.
- i) Calcule el valor eficaz de la tensión a la entrada de la línea.
- j) Determina la lectura de los vatímetros descritos anteriormente.

Sol.:
$$P_1=30\,\mathrm{kW};\ Q_1=24,06\,\mathrm{kVA_r};\ S_1=38,46\,\mathrm{kVA};\ P_2=7,5\,\mathrm{kW};\ Q_2=8,31\,\mathrm{kVA_r};\ S_2=11,19\,\mathrm{kVA};\ P_T=37,5\,\mathrm{kW};\ Q_T=32,37\,\mathrm{kVA_r};\ S_T=49,54\,\mathrm{kVA};\ I_1=55,51\,\mathrm{A};\ I_2=16,15\,\mathrm{A};\ I_T=71,5\,\mathrm{A};\ W_{A,AC}=28,09\,\mathrm{kW};\ W_{B,BC}=9,41\,\mathrm{kW};\ W_{C,BA}=-18,66\,\mathrm{kW};\ P_g=39,73\,\mathrm{kW};\ Q_g=32,33\,\mathrm{kVA_r};\ S_g=51,22\,\mathrm{kVA};\ U_g=413,64\,\mathrm{V};\ C_\triangle=214,4\,\mathrm{\mu F/fase};\ I_T'=54,13\,\mathrm{A};\ P_g'=38,78\,\mathrm{kW};\ Q_g'=0\,\mathrm{VA_r};\ S_g'=38,78\,\mathrm{kVA};\ U_g'=413,63\,\mathrm{V};\ W_{A,AC}'=18,75\,\mathrm{kW};\ W_{B,BC}'=18,75\,\mathrm{kW};\ W_{C,BA}'=0\,\mathrm{kW}$$

- 6. El circuito de la figura es de secuencia de fases directa y 50 Hz. Determinar:
 - a) Potencias activas y reactivas totales.
 - b) Capacidad mínima de los condensadores a instalar para mejorar el factor de potencia total hasta la unidad.
 - c) Intensidades de línea, en forma fasorial, una vez mejorado el factor de potencia.

Datos:

$$\overline{Z}_1 = 100/60^{\circ} \Omega$$

$$W_1 = 300 \text{ W}$$

$$W_2 = 300 \text{ W}$$

$$V = 200\sqrt{3} \text{ V}$$

Sol.:
$$P_T = 2400 \,\text{W}; \ Q_T = 1800 \sqrt{3} \,\text{VA}_r; \ C = 27,57 \,\mu\text{F/fase}; \ \overline{I}_A = 4/90^\circ \,\text{A}; \ \overline{I}_B = 4/-30^\circ \,\text{A}; \ \overline{I}_C = 4/-150^\circ \,\text{A}$$

- 7. En la figura, dos vatímetros miden una carga trifásica inductiva equilibrada, alimentada a una tensión $U = 400 \,\text{V}$. El vatímetro W_B indica una lectura de 11 320 W, y el vatímetro W_C indica una lectura de 1815 W. A partir de esta información se pide:
 - a) Determinar la secuencia de fases del sistema.
 - b) Triángulo de potencias de la carga.
 - c) Impedancia equivalente de la carga en estrella y en triángulo.

- *d*) Tensión de alimentación a la entrada de la línea U_1 , sabiendo que la línea de alimentación es resistiva pura con valor $R = 0.1 \Omega$.
- e) Capacidad de los condensadores que se deben conectar en bornes de la carga para conseguir mejorar su factor de potencia a la unidad. Determinar las nuevas lecturas de los vatímetros W_B y W_C .

Sol.: SFI;
$$P=20\,825\,\mathrm{W}$$
; $Q=3143,7\,\mathrm{VA}_r$; $\overline{S}=21\,060,9/8,58^\circ\,\mathrm{VA}$; $\overline{Z}_\triangle=22,8/8,58^\circ\,\Omega$; $\overline{Z}_\triangle=7,6/8,58^\circ\,\Omega$; $U_1=405,21\,\mathrm{V}$; $C_\triangle=20,85\,\mu\mathrm{F}$; $W_B'=10\,412,5\,\mathrm{W}$; $W_C'=0\,\mathrm{W}$

- 8. Del circuito de la figura se sabe que tiene una secuencia de fases directa ABC. El amperímetro indica 5 A, el voltímetro 400 V, y los vatímetros A y C muestran una lectura idéntica. Se pide:
 - a) Valor de la impedancia Z en forma compleja.
 - b) Expresión fasorial de todas las intensidades del circuito.
 - c) Lecturas de los vatímetros A y C.

Dato: $\overline{Z}_L = 1 + j\Omega$

Sol.:
$$\overline{Z} = 138.5 - j3\Omega$$
; $\overline{I}_{AB} = 2.89 / 121.24^{\circ} \text{ A}$; $\overline{I}_{BC} = 2.89 / 1.24^{\circ} \text{ A}$; $\overline{I}_{CA} = 2.89 / -118.76^{\circ} \text{ A}$; $\overline{I}_{A} = 5 / 91.24^{\circ} \text{ A}$; $\overline{I}_{B} = 5 / -28.76^{\circ} \text{ A}$; $\overline{I}_{C} = 5 / -148.76^{\circ} \text{ A}$; $W_{a} = W_{c} = 1768.8 \text{ W}$

- 9. En el circuito de la figura se debe determinar:
 - a) Lectura del vatímetro W_c .
 - b) Lectura del amperímetro.
 - c) Factor de potencia total de las cargas (en retraso o adelanto).
 - d) Lectura de los vatímetros W_a y W_b .
 - e) Lectura del voltímetro.

- f) Valor de los condensadores conectados en $A_1B_1C_1$ para que el f.d.p. en ese punto sea la unidad.
- g) Lecturas de los cinco aparatos de medida tras el apartado anterior.

Datos:

- Secuencia de fases directa, $f = 50 \,\mathrm{Hz}$, $(A_1 B_1 C_1) \,U_1 = 420 \,\mathrm{V}$.
- Z_1 : motor de 10 CV, con $\eta = 0.83$, y f.d.p. de 0.9.
- Z_2 : conjunto de iluminación fluorescente, con $P = 2400 \,\text{W}$, y f.d.p. de 0,85.
- $R_L = 1 \Omega$.

Sol.:
$$W_c = -3338.3 \,\mathrm{W}; \ A = 17.41 \,\mathrm{A}; \ fdp = 0.89; \ W_A = 7757.6 \,\mathrm{W}; \ W_B = 4419.27 \,\mathrm{W}; \ U' = 447.02 \,\mathrm{V}; \ C = 34.78 \,\mu\mathrm{F}$$

10. Una línea ideal trifásica de 4 hilos alimenta a dos cargas a una tensión de 400 V en secuencia de fases inversa (SFI) y frecuencia 50 Hz.

Las cargas tienen las siguientes características:

- Un motor trifásico de 70 kW y f.d.p. de 0,8.
- Un conjunto equilibrado de 90 lámparas fluorescentes. Las características de cada lámpara son: potencia de 12 W, f.d.p. de 0,7 en retraso, tensión 230 V.

Con esta información se pide:

- a) Conectar adecuadamente los siguientes aparatos de medida antes de las cargas:
 - Un voltímetro que mida la tensión de línea (etiquetado como V_L) y otro voltímetro que mida la tensión de fase (etiquetado como V_F).
 - Un vatímetro que permita calcular la potencia reactiva total del sistema (etiquetado como W_r).
 - Dos vatímetros que, de forma conjunta, permitan calcular la potencia activa total del sistema (etiquetados como W_X y W_Y).
- b) Calcular el valor eficaz de la corriente de línea total.
- c) Calcular la lectura de cada uno de los aparatos de medida del primer apartado.
- *d*) Calcular los condensadores necesarios para mejorar el factor de potencia hasta 0,9, indicando cómo se deben conectar.
- *e*) Una vez conectados los condensadores del anterior apartado, determinar la corriente de línea y la lectura de todos los aparatos de medida del apartado 2.

Sol.:
$$I=128,5\,\mathrm{A};~V_L=400\,\mathrm{V};~V_F=230,9\,\mathrm{V};~W_r=30\,947\,\mathrm{W};~W_X=20\,666,5\,\mathrm{W};~W_Y=51\,013,5\,\mathrm{W};~C=127,2\,\mathrm{\mu F};~I'=114\,\mathrm{A};~W_X'=25\,602,2\,\mathrm{W};~W_Y'=45\,477,8\,\mathrm{W};~W_R'=19\,875,6\,\mathrm{W}$$

- 11. En el sistema de la figura de secuencia de fases directa y frecuencia $f=60\,\mathrm{Hz}$, se dispone de un receptor equilibrado con una potencia total $P_T=51\,984\,\mathrm{W}$ y factor de potencia de 0,6 en retraso. Sabiendo que el amperímetro marca $76\sqrt{3}\,\mathrm{A}$, determinar:
 - a) Medida de los vatímetros 1 y 2.
 - b) Valor de la impedancia \overline{Z} en forma módulo-argumento.
 - c) Valor de la capacidad mínima para mejorar el factor de potencia a 0,95 en retraso.
 - d) Valor de la impedancia equivalente en estrella.

Sol.:
$$W_1 = 46\,001\,\text{W}$$
; $W_2 = 17\,328\,\text{W}$; $\overline{Z} = 5/53,13^{\circ}\,\Omega$

- 12. Un sistema trifásico a cuatro hilos de 200 V, 50 Hz y secuencia de fases directa está constituido por un motor a cuatro hilos de 3200 W de potencia y factor de potencia de 0,9, y un triángulo de impedancias $20/30^{\circ} \Omega$. Con esta información, se debe determinar:
 - a) Impedancia equivalente del motor.
 - b) Impedancia equivalente de todo el sistema.

Sol:
$$\overline{Z}_{m,\perp} = 11,25/25,84^{\circ} \Omega$$
; $\overline{Z}_{\perp} = 4,19/28,45^{\circ} \Omega$

- 13. En el circuito de la figura la tensión es $275\sqrt{3}$ V. Los motores 1 y 2 tienen factores de potencia 0,96 y 0,8, respectivamente. El vatímetro W_a da una lectura de $2420\sqrt{3}$ W. Al medir las intensidades de los motores se comprueba que son iguales en ambos. Con esta información se debe determinar:
 - a) Secuencia de fases del sistema.
 - b) Lectura del vatímetro W_b .
 - c) Impedancias de cada uno de los motores e impedancia equivalente del conjunto.

Sol.: SFD; $W_b = 5164.2 \,\mathrm{W}; \ \overline{Z}_{1\perp} = 27.5/16.26^{\circ} \,\Omega; \ \overline{Z}_{2\perp} = 27.5/36.87^{\circ} \,\Omega; \ \overline{Z}_{\perp} = 13.97/26.56^{\circ} \,\Omega$

Capítulo 4

Introducción al régimen transitorio

Ejercicios

1. En el circuito de la figura, el interruptor ha estado abierto durante un tiempo prolongado, y en el instante t=0 se cierra. Se debe determinar el valor de las tensiones y corrientes del circuito en $t=0^+$.

Sol.:
$$i_1(0^+) = i_3(0^+) = 4 \text{ A}$$
; $u_1(0^+) = 12 \text{ V}$; $u_2(0^+) = 0 \text{ V}$; $u_3(0^+) = 8 \text{ V}$; $u_L(0^+) = u_3(0^+) = 8 \text{ V}$

2. El interruptor de la figura lleva cerrado un tiempo que se puede considerar infinito. En el instante t=0, se abre, permaneciendo en esta posición definitivamente. Calcular la expresión de la intensidad i(t) desde t=0 en adelante.

Datos:
$$E = 1 \text{ V}$$
; $R_1 = 1 \Omega$; $R_2 = R_3 = 2 \Omega$; $C = 4 \text{ mF}$

Sol.:
$$i(t) = \frac{1}{9} e^{-\frac{t}{0.012}} A$$

3. El circuito de la figura se encuentra en régimen permanente. En el instante t=0 se abre el interruptor. Calcular u_1 y u_2 para t>0.

Datos:
$$E=15\,\mathrm{V};\ R_1=200\,\Omega;\ R_2=100\,\Omega;\ C_1=2\,\mu\mathrm{F};\ C_2=4\,\mu\mathrm{F}$$

Sol.:
$$u_1(t) = 15 - 10 \cdot e^{-2500t}$$
 V; $u_2(t) = 5 \cdot e^{-2500t}$ V

4. El interruptor del circuito de la figura lleva cerrado un timepo que se considera infinito. En el instante t=0, se abre y permanece en dicha posición definitivamente. Hállese la expresión de u(t) e i(t) para t>0.

Datos: E = 36 V; $R_1 = 2 \Omega$; $R_2 = 4 \Omega$; $R_3 = 3 \Omega$; C = 3 mF; L = 6 mH

Sol.:
$$u(t) = 36 - 12 \cdot e^{-166,67t}$$
 V; $i(t) = 6 \cdot e^{-500t}$ A

5. El circuito de la figura lleva en esa posición un tiempo que se puede considerar infinito. En el instante t=0, ambos interruptores cambian su posición. Calcular la expresión de u(t) para t>0. Datos: $E_1=40\,\mathrm{V};\ R_1=20\,\Omega;\ R_2=60\,\Omega;\ R_3=3\,\Omega;\ R_4=6\,\Omega;\ C=0,5\,\mathrm{mF};\ e_2(t)=120\,\cos(1000t)\mathrm{V}$

Sol.:
$$u(t) = 10 \cdot e^{-1000 t} + 20\sqrt{2} \cos(1000 t - \frac{\pi}{4}) \text{ V}$$

6. En el circuito de la figura se abre el interruptor después de un tiempo suficientemente grande para considerar que el circuito funcionaba en régimen permanente. Expresar las formas de onda de i_1 , i_2 y u_L para t > 0.

Datos: $e(t) = 220\sqrt{2} \cos(100\pi t) \text{ V}$; L = 0.2 H; $R_1 = 25 \Omega$; $R_2 = 275 \Omega$

Sol.:
$$i_1(t) = 1.7 \cdot e^{-1500 t}$$
 A; $i_2(t) = -1.7 \cdot e^{-1500 t}$ A; $u_L(t) = -510 \cdot e^{-1500 t}$ V

7. En el circuito de la figura, en t=0 se cierra el interruptor. Obtener la expresión analítica de la intensidad i(t), para t>0.

Datos:
$$E = 10 \text{ V}$$
; $L = 0.2 \text{ H}$; $I_g = 1 \text{ A}$; $R_1 = 10 \Omega$; $\alpha = 3 \Omega$

Sol.:
$$i(t) = \frac{3}{7} (e^{-35t} - 1) A$$

8. El interruptor de la figura ha estado cerrado por un tiempo prolongado y en t = 0 se abre.

Datos:

$$R_1 = 5 \Omega$$

$$R_2 = 5 \Omega$$

$$R_3 = 2 \Omega$$

$$L = 3.5 \,\mathrm{mH}$$

$$\epsilon_1 = 24 \, \mathrm{V}$$

$$\epsilon_2 = 12 \,\mathrm{V}$$

Con esta información, se debe calcular:

- a) Valores de $i_1(0^+)$, $i_2(0^+)$, $i_L(0^+)$, $u_L(0^+)$ y $u_{AB}(0^+)$.
- b) Expresión de $i_L(t)$ para t > 0.
- c) Expresiones de $u_L(t)$ y $u_{AB}(t)$ para t > 0.

Sol.:
$$i_L(t) = 3,43 + 0,57 \cdot e^{-2000 \cdot t}$$
 A; $u_L(t) = -4 \cdot e^{-2000 \cdot t}$ V; $u_{AB}(t) = 6,86 - 2,86 \cdot e^{-2000 \cdot t}$ V

- 9. El interruptor del circuito de la figura lleva abierto un tiempo indefinido. En el instante t=0 se cierra este interruptor. Hay que obtener:
 - a) Valores de las tensiones $u_1(0^+)$, $u_2(0^+)$, $u_3(0^+)$ y $u_c(0^+)$.
 - b) Expresión temporal de la tensión $u_c(t)$ para t > 0.
 - c) Expresiones temporales de $u_2(t)$ y $u_3(t)$ para t > 0.

Datos:

$$e(t) = 10 V$$

$$R_1 = R_2 = 2 \Omega$$

$$R_3 = 4 \Omega$$

$$C = 1 F$$

Sol.:
$$u_c(t) = 5 \cdot (1 - e^{-0.2t}) \text{ V}; \ u_2(t) = 5 - e^{-0.2t} \text{ V}; \ u_3(t) = 4 \cdot e^{-0.2t} \text{ V}$$

10. Calcular la corriente i(t) para t > 0.

Datos:

$$\epsilon = 24 \, \mathrm{V}$$
 $R_1 = 8 \, \Omega$
 $R_2 = 4 \, \Omega$
 $R_3 = 4 \, \Omega$
 $L = 15 \, \mathrm{H}$

Sol.:
$$i(t) = 0.6 \cdot e^{-4t/9} + 2.4 \text{ A}$$

11. Calcular la tensión en bornes del condensador para t>0.

Datos:

$$\epsilon = 20 \text{ V}$$

$$I_g = 4 \text{ A}$$

$$R_1 = 6 \Omega$$

$$R_2 = 4 \Omega$$

$$R_3 = 12 \Omega$$

$$C = 1/16 \text{ F}$$

Sol.:
$$u_C(t) = 4 \cdot e^{-t} + 20 \text{ V}$$

12. Determina las corrientes $i_L(t)$ e $i_1(t)$ para t > 0.

Sol.: $i_L(t) = 0.36 \cdot e^{-5 \cdot 10^4 \cdot t}$ A; $i_1(t) = -0.24 \cdot e^{-5 \cdot 10^4 \cdot t}$ A 3. El circuito de la figura ha alcanzado el régimen permane

13. El circuito de la figura ha alcanzado el régimen permanente con el interruptor cerrado. El interruptor se abre en t=0. Calcula las expresiones de la tensión en bornes del condensador y de la corriente por la bobina para t>0.

Sol.:
$$i_L(t) = 0.689 \cdot e^{-0.354 \cdot t} + 0.311 \cdot e^{-5.645 \cdot t}$$
 A; $u_C(t) = 9.7275 \cdot e^{-0.354 \cdot t} + 0.275 \cdot e^{-5.645 \cdot t}$ V

14. En el circuito de la figura calcular la tensión $u_C(t)$ para t > 0.

- 15. En el circuito de la figura el interruptor ha estado cerrado durante un tiempo elevado, y en t=0 se abre. En estas condiciones se debe determinar:
 - *a*) Tipo de transitorio presente en el circuito.
 - b) Condiciones iniciales de las siguientes variables del circuito: $u_C(0^+)$, $i_L(0^+)$, $i_C(0^+)$, $u_L(0^+)$.
 - c) Valores en régimen permanente de las siguientes variables del circuito: $u_C(\infty)$, $i_L(\infty)$, $i_C(\infty)$, $u_L(\infty)$.
 - *d*) Expresión de la corriente $i_L(t)$ para t > 0.
 - *e*) Expresión de la tensión $u_C(t)$ para t > 0.

Sol.: $i_L(t) = e^{-4687,5t} \left[\cos(1740t) + 2.7 \sin(1740t) \right] = 2.88 e^{-t} \sin(1740t + 0.3547)$ A; $u_C(t) = 500 - e^{-4687,5t} \left[435.9 \sin(1740t) + 375 \cos(1740t) \right] = 500 - 575.01 \cdot e^{-4687,5t} \cdot \sin(1740t + 0.7104)$ V