1. (Chapter 0, exercise 40)

If
$$x \ge 0$$
 and $y \ge 0$, prove that $\sqrt{xy} \le \frac{x+y}{2}$. (*Hint:* Use the fact that $(\sqrt{x} - \sqrt{y})^2 \ge 0$.)

Proof. Let $x \ge 0$ and $y \ge 0$. Then, by Theorem 0.23, $\sqrt{x} \ge 0$ and $\sqrt{y} \ge 0$ and we may consider $(\sqrt{x} - \sqrt{y})^2$. Given $0 \le (\sqrt{x} - \sqrt{y})^2 = x - 2\sqrt{xy} + y$, it follows from property 8 of $\mathbb R$ that $2\sqrt{xy} \le x + y$. Furthermore, by property 11 of $\mathbb R$, we have $\sqrt{xy} \le \frac{x+y}{2}$, as was to be shown.

2. (Chapter 0, exercise 41)

If 0 < a < b, prove that $0 < a^2 < b^2$ and $0 < \sqrt{a} < \sqrt{b}$.

Proof. Suppose 0 < a < b. Then by property 11 for the real numbers, we have the following three inequalities:

$$0(a) < a(a),$$
 $a(a) < b(a),$ $a(b) < b(b).$

Property 2 gives us that ba = ab. Hence, putting the three above inequalities together we obtain

$$0 < a^2 < ab < b^2$$
,

which implies $0 < a^2 < b^2$ as desired.

For the second part of the exercise, Theorem 0.23 tells us $0 < \sqrt{a}$ and $0 < \sqrt{b}$. It remains to show that $\sqrt{a} < \sqrt{b}$. Suppose for the sake of contradiction that $\sqrt{b} \le \sqrt{a}$. By what we have just shown, it follows that $(\sqrt{b})^2 \le (\sqrt{a})^2$, that is, $b \le a$. This, however, contradicts the assumption that 0 < a < b. Hence, it must be true that $0 < \sqrt{a} < \sqrt{b}$.

3. (Chapter 1, exercise 3)

Suppose x is a real number and $\epsilon > 0$. Prove that $(x - \epsilon, x + \epsilon)$ is a neighborhood of each of its members; in other words, if $y \in (x - \epsilon, x + \epsilon)$, then there is $\delta > 0$ such that $(y - \delta, y + \delta) \subset (x - \epsilon, x + \epsilon)$.

Proof. Let $x \in \mathbb{R}$, $\epsilon > 0$, and consider $(x - \epsilon, x + \epsilon)$. For any $y \in (x - \epsilon, x + \epsilon)$ it follows that $x - \epsilon < y < x + \epsilon$. Hence,

$$0 < x + \epsilon - y$$
 and $0 < y - x + \epsilon$.

Set
$$\delta = \min\left\{\frac{x+\epsilon-y}{2}, \frac{y-x+\epsilon}{2}\right\}$$
. We claim that $(y-\delta,y+\delta) \subset (x-\epsilon,x+\epsilon)$. It is sufficient to show (i) $x-\epsilon < y-\delta$ and (ii) $y+\delta < x+\epsilon$.

Observe, (i) is equivalent to $\delta < y - x + \epsilon$. By definition of δ ,

$$\delta \leq \frac{y - x + \epsilon}{2} < y - x + \epsilon,$$

and (i) holds. Similarly, (ii) is equivalent to $\delta < x + \epsilon - y$, and by definition of δ ,

$$\delta \le \frac{x + \epsilon - y}{2} < x + \epsilon - y,$$

showing that (ii) holds as well and the claim is proved.

Picture idea for this exercise:

Figure 1

^{*}Take minimum of the two distances and cut in half to REALLY ensure that the symmetric interval about y is contained in $(x - \epsilon, x + \epsilon)$.