Exponents and Roots

For questions in the Quantitative Comparison format ("Quantity A" and "Quantity B" given), the answer choices are always as follows:

- (A) Quantity A is greater.
- (B) Quantity B is greater.
- (C) The two quantities are equal.
- (D) The relationship cannot be determined from the information given.

For questions followed by a numeric entry box _____, you are to enter your own answer in the

box. For questions followed by fraction-style numeric entry boxes $\$, you are to enter your answer in the form of a fraction. You are not required to reduce fractions. For example, if the answer is 1/4, you may enter 25/100 or any equivalent fraction.

All numbers used are real numbers. All figures are assumed to lie in a plane unless otherwise indicated. Geometric figures are not necessarily drawn to scale. You should assume, however, that lines that appear to be straight are actually straight, points on a line are in the order shown, and all geometric objects are in the relative positions shown. Coordinate systems, such as *xy*-planes and number lines, as well as graphical data presentations such as bar charts, circle graphs, and line graphs, *are* drawn to scale. A symbol that appears more than once in a question has the same meaning throughout the question.

1.

Quantity A	Quantity B
25 ⁷	5 ¹⁵

2.

$$216 = 2^x 3^y$$
x and y are integers.

Quantity A	Quantity B
x	у

Quantity A	Quantity B
-------------------	-------------------

4.

5.

8.

	1
	1
Ī	1

- 11. $\overline{5^{-2}}$ is equivalent to:
 - (A) 1/25
 - (B) 1/5
 - (C) 1
 - (D) 5
 - (E) 25

12. If 77,742
$$y^{11} = 4x^2$$
, what is $\frac{77,742y^{11}}{8x^2}$?

$$_{13}$$
, $\sqrt{2+\sqrt{2+\sqrt{4}}} =$

- (A) $\sqrt{2}$ (B) 2
- (C) $2\sqrt{2}$ (D) 4
- (E) $4\sqrt{2}$

Quantity A	Quantity B
200	1
$\sqrt{200}$	√200

- 15. For what positive integer is the square of the integer divided by the cube root of the integer equal to nine times the integer?
 - (A) 4
 - (B) 8
 - (C) 16
 - (D) 27
 - (E) 125

If the hash marks above are equally spaced, what is the value of p?

- (A) 3/2
- (B) 8/5
- (C) 24/15
- (D) 512/125
- (E) 625/256
- 17. What is the greatest prime factor of 2^{99} 2^{96} ?

18. If $2^k - 2^{k+1} + 2^{k-1} = 2^k m$ what is m?

- (A) -1
- (B) -1/2
- (C) 1/2
- (D) 1
- (E) 2

19.

Quantity A

Quantity B

20. If $5^{k+1} = 2,000$, what is $5^k + 1$?

- (A) 399
- (B) 401
- (C) 1,996
- (D) 2,000
- (E) 2,001
- 21. If $3^{11} = 9^x$, what is the value of x?

22. If $x^7 = 2.5$, what is x^{14} ?

23. If
$$\sqrt[5]{\chi^6} = \chi^{\frac{a}{b}}$$
, then the value of $a/b =$

$$\frac{20^{-5}5^{10}8^6}{10^825^{-2}} = ?$$

- (A) 1
- (B) 4
- (C) 5
- (D) 6
- (E) 10

$$\frac{5^7}{5^{-4}} = 5^a \quad \frac{2^{-3}}{2^{-2}} = 2^b$$
 and $3^8(3) = 3^c$, what is the value of $a + b + c$?

26. If 12^x is odd and x is an integer, what is the value of x^{12} ?

$$\frac{200^{\frac{5}{2}}}{\sqrt{200}} = ?$$

- (A) 4
- (B) 40
- (C) 400
- (D) 4,000
- (E) 40,000

$$\frac{(10^3)(0.027)}{(900)(10^{-2})} = (3)(10^m)$$

The value of m

 $\frac{1}{3}(10^6 - 10^4) = ?$

(A) $33.\overline{3}$

(B) 3,333. $\overline{3}$

(C) 33,000

(D) 330,000

(E) 333,333

 $\frac{2^2 + 2^2 + 2^3 + 2^4}{\left(\sqrt{5} + \sqrt{3}\right)\left(\sqrt{5} - \sqrt{3}\right)}$ 30. Simplify:

(A) 2

(B) 4

(C) 8

(D) 16

(E) 32

 $\frac{2^{-4}3^{-20}}{4^{-1}9^{-6}} =$

(A) 2^23^8

(B) 2^13^{12}

1

(C) 2^23^8

(D) $2^{1}3^{12}$

1

(E) 2^23^{12}

 $\frac{0.000027 \times 10^{x}}{900 \times 10^{-4}} = 0.03 \times 10^{11}$

, what is the value of x?

(A) 13

(B) 14

(C) 15

(D) 16

(E) 17

 $_{33}$. $\left(\sqrt[2]{x}\right)\left(\sqrt[3]{x}\right) =$

3

(C)
$$\sqrt[3]{X^2}$$

(C)
$$\sqrt[3]{X^2}$$

(D) $\sqrt[5]{x^6}$

(E)
$$\sqrt[6]{x^5}$$

$$(\sqrt[3]{x^2})(\sqrt[4]{x^5}) =$$

(A)
$$\sqrt[7]{x^{10}}$$

(B)
$$\sqrt[12]{x^{10}}$$

(C)
$$\sqrt[12]{x^7}$$

(A)
$$\sqrt[7]{x^{10}}$$

(B) $\sqrt[12]{x^{10}}$
(C) $\sqrt[12]{x^7}$
(D) $\sqrt[9]{x^{23}}$
(E) $\sqrt[12]{x^{23}}$

(E)
$$\sqrt[12]{x^{23}}$$

35.

$$n = 0.00025 \times 10^4$$
 and $m = 0.005 \times 10^2$

Quantity A **Quantity B** n 0.5

$$\frac{40^{50}-40^{48}}{2^{96}}\times10^{-45}=$$

- (A) 20
- (B) $10^3(1,599)$
- (C) $10^2(1,601)$
- (D) 200^6
- (E) 200^{53}
- 37. Which of the following is equal to $X^{\overline{2}}$?

- (A) $x^2 \sqrt{x}$

- (B) $x\sqrt{x}$ (C) $\sqrt[3]{x^2}$ (D) $\sqrt[3]{x}$ (E) $(x^3)^2$
- $_{38.} \sqrt{(360)(240)(3)(2)} =$
 - (A) 180
 - (B) 360
 - (C)720
 - (D) 1,440
 - (E) 3,600
- 39. If $125^{14}48^8$ is written out as an integer, how many consecutive zeroes will that integer have at the end?
 - (A) 22
 - (B) 32
 - (C) 42
 - (D) 50
 - (E) 112