

PAGES 22 OF 26

CLAIMS:

1. A method of forming a thin film transistor relative to a
2 substrate comprising the following steps:

3 providing a thin film transistor layer of polycrystalline material on
4 a substrate, the polycrystalline material comprising grain boundaries;

5 providing a fluorine containing layer adjacent the polycrystalline
6 thin film layer;

7 annealing the fluorine containing layer at a temperature and for
8 a time period which in combination are effective to drive fluorine from
9 the fluorine containing layer into the polycrystalline thin film layer and
10 incorporate fluorine within the grain boundaries to passivate said grain
11 boundaries; and

12 providing a transistor gate operatively adjacent the thin film
13 transistor layer.

14
15
16 2. The method of forming a thin film transistor of claim 1
17 wherein the thin film transistor layer is provided before the fluorine
18 containing layer is provided.

19
20
21 3. The method of forming a thin film transistor of claim 1
22 wherein the thin film transistor layer is provided after the fluorine
23 containing layer is provided.

1 4. The method of forming a thin film transistor of claim 1
2 wherein the fluorine containing layer predominately comprises WSi_x .

3
4 5. The method of forming a thin film transistor of claim 1
5 wherein the fluorine containing layer predominately comprises elemental
6 W.

7
8 6. The method of forming a thin film transistor of claim 1
9 wherein the fluorine containing layer comprises W, and is deposited by
10 chemical vapor deposition using WF_6 as a precursor.

11
12 7. The method of forming a thin film transistor of claim 1
13 wherein the annealing temperature is from about 600°C to about 1000°C.

14
15 8. The method of forming a thin film transistor of claim 1
16 wherein the annealing temperature is less than 700°C.

17
18 9. The method of forming a thin film transistor of claim 1
19 further comprising providing a buffering layer intermediate the thin film
20 transistor layer and the fluorine containing layer, the buffering layer
21 being transmissive of fluorine from the fluorine containing layer during
22 the annealing step.

1 10. The method of forming a thin film transistor of claim 1
2 further comprising providing a buffering layer intermediate the thin film
3 transistor layer and the fluorine containing layer, the buffering layer
4 being transmissive of fluorine from the fluorine containing layer during
5 the annealing step, the buffering layer having a thickness of less than
6 or equal to about 200 Angstroms.

7

8 11. A thin film transistor produced according to the process of
9 claim 1.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1 12. A method of forming a thin film transistor relative to a
2 substrate comprising the following steps:

3 providing a thin film transistor layer of polycrystalline material on
4 a substrate, the polycrystalline material comprising grain boundaries;

5 providing a sacrificial fluorine containing layer over the
6 polycrystalline thin film layer;

7 annealing the fluorine containing layer at a temperature and for
8 a time period which in combination are effective to drive fluorine from
9 the fluorine containing layer into the polycrystalline thin film layer and
10 incorporate fluorine within the grain boundaries to passivate said grain
11 boundaries;

12 after annealing, etching the sacrificial layer from the polycrystalline
13 thin film layer; and

14 providing a gate dielectric layer and a gate relative to the
15 passivated polycrystalline thin film layer.

16
17 13. The method of forming a thin film transistor of claim 12
18 wherein the gate dielectric layer and gate are provided after etching the
19 sacrificial layer.

20
21 14. The method of forming a thin film transistor of claim 12
22 wherein the gate dielectric layer and gate are provided before etching
23 the sacrificial layer.

1 15. The method of forming a thin film transistor of claim 12
2 wherein the gate dielectric layer and gate are provided before providing
3 the sacrificial layer.

4

5 16. The method of forming a thin film transistor of claim 12
6 wherein the fluorine containing layer predominately comprises WSi_x .

7

8 17. The method of forming a thin film transistor of claim 12
9 wherein the fluorine containing layer predominately comprises elemental
10 W.

11

12 18. The method of forming a thin film transistor of claim 12
13 wherein the fluorine containing layer comprises W, and is deposited by
14 chemical vapor deposition using WF_6 as a precursor.

15

16 19. The method of forming a thin film transistor of claim 12
17 wherein the annealing temperature is from about 600°C to about 1000°C.

18

19 20. The method of forming a thin film transistor of claim 12
20 wherein the annealing temperature is less than 700°C.

1 21. The method of forming a thin film transistor of claim 12
2 further comprising providing a buffering layer intermediate the thin film
3 transistor layer and the fluorine containing layer, the buffering layer
4 being transmissive of fluorine from the fluorine containing layer during
5 the annealing step, the method further comprising etching the buffering
6 layer from outwardly of the polycrystalline thin film layer after the step
7 of etching the fluorine containing layer.

8
9 22. The method of forming a thin film transistor of claim 12
10 further comprising providing a buffering layer intermediate the thin film
11 transistor layer and the fluorine containing layer, the buffering layer
12 being transmissive of fluorine from the fluorine containing layer during
13 the annealing step, the buffering layer having a thickness of less than
14 or equal to about 200 Angstroms, the method further comprising etching
15 the buffering layer from outwardly of the polycrystalline thin film layer
16 after the step of etching the fluorine containing layer.

17
18 23. A thin film transistor produced according to the process of
19 claim 12.

24. A method of forming a thin film transistor relative to a substrate comprising the following steps:

providing a thin film transistor layer of polycrystalline material on a substrate, the polycrystalline material comprising grain boundaries;

providing a fluorine containing layer adjacent the polycrystalline thin film layer; and

annealing the fluorine containing layer at a temperature sufficiently high to drive fluorine from the fluorine containing layer into the polycrystalline thin film layer and incorporate fluorine within the grain boundaries to passivate said grain boundaries but sufficiently low to prevent chemical reaction of the fluorine containing layer with the polycrystalline thin film layer.

25. The method of forming a thin film transistor of claim 24 wherein the thin film transistor layer is provided before the fluorine containing layer is provided.

26. The method of forming a thin film transistor of claim 24 wherein the thin film transistor layer is provided after the fluorine containing layer is provided.

27. The method of forming a thin film transistor of claim 24 wherein the fluorine containing layer predominately comprises WSi_x .

1 28. The method of forming a thin film transistor of claim 24
2 wherein the fluorine containing layer predominately comprises elemental
3 W.

4

5 29. The method of forming a thin film transistor of claim 24
6 wherein the fluorine containing layer comprises W, and is deposited by
7 chemical vapor deposition using WF₆ as a precursor.

8

9 30. The method of forming a thin film transistor of claim 24
10 wherein the annealing temperature is less than 700°C.

11

12 31. The method of forming a thin film transistor of claim 24
13 further comprising providing a buffering layer intermediate the thin film
14 transistor layer and the fluorine containing layer, the buffering layer
15 being transmissive of fluorine from the fluorine containing layer during
16 the annealing step, the buffering layer having a thickness of less than
17 or equal to about 200 Angstroms.

18

19 32. A thin film transistor produced according to the process of
20 claim 24.