Topology from the context of the course MTH 461: Metric and Topological Spaces

Kaedon Cleland-Host

October 7, 2022

Contents

1	Fun	ndamentals
	1.1	Functions
	1.2	Relations
	1.3	Order
	1.4	Cardinality
		1.4.0 The Cantor Theorem
	1.5	Topologies
		1.5.1 Examples of Topologies
	1.6	Well Ordered Sets
		1.6.0 Minimal Uncountable Well Ordered Set
	1.7	Product Topology
	1.8	Subspace Topology
	1.9	Interior and Closure
	1.10	Hausdorff Topologies
	1.11	Continuity
		1.11.0 Homomorphism
		1.11.0 The Pasting Theorem
	1.12	Metric Spaces
2	Pro	educt Topology

Chapter 1

Fundamentals

1.1 Functions

Definition 1.1.1. A function $f: A \to B$ is a subset of $X \times Y$ such that $\forall x \in X, \exists$ exactly one element $y \in B, (x, y) \in f$.

Definition 1.1.2. The **domain** of a function $f: A \to B$ is $\{a \in A : \exists b \in B \text{ such that } (a, b) \in f\}$.

Definition 1.1.3. The range of a function $f: A \to B$ is $\{b \in B : \exists a \in A \text{ such that } (a, b) \in f\}$.

Definition 1.1.4. A function is a **injective** denoted $f: A \hookrightarrow B$ iff $f(x) = f(u) \Rightarrow x = y$.

Definition 1.1.5. A function is a surjection denoted $f: A \rightarrow B$ iff the range of f equals B.

Definition 1.1.6. A function is a **bijection** denoted $f: A \hookrightarrow B$ iff it is both an injection and a surjection.

1.2 Relations

Definition 1.2.1. A relation on a set A is a subset of $A \times A$. Conventionally written xRy rather than $(x,y) \in R$.

Definition 1.2.2. For a relation R on a set A, R is

- Reflexive iff xAx for all $x \in A$
- Antireflexive iff $\nexists x \in A$ such that xAx
- Transitive iff xRy and $yRz \Rightarrow xRz$, for any $x, y, z \in A$.
- Symmetric iff $xRy \Leftrightarrow yRx$, for any $x, y \in A$.
- Antisymmetric iff xRy and $yRx \Rightarrow x = y$, for any $x, y \in A$.
- Connex iff for every $x, y \in R$ at least on of xRy, yRx, or x = y hold.

Definition 1.2.3. An equivalence relation is a relation that is reflexive, symmetric, and transitive.

Definition 1.2.4. The **equivalence class** of $a \in A$ for a relation \sim is $[x] := \{b \in A | a \sim b\}$.

Definition 1.2.5. A partition of a set A is a set of subsets X such that $\bigcup X = A$ and $\forall B, C \in X, A \neq B \Rightarrow A \cap B = \emptyset$.

Lemma 1.2.1. Let $x, y \in A$ and \sim be an equivalence class on A, either [x] = [y] or $[x] \cap [y] = \emptyset$.

Corollary 1.2.1.1. Any partition defines and equivalence relation and vice versa.

1.3 Order

Definition 1.3.1. An **order** on a set A is a relation that is antireflexive, transitive, and connex.

Definition 1.3.2. A partial order on a set A is a relation that is reflexive, antisymmetric, and transitive.

Definition 1.3.3. Two ordered sets have the same **order type** if there exists a bijection that preserves order.

Definition 1.3.4. Let (X, \leq) be an ordered set, and let $A \subseteq X$.

- The **maximum** of A is an element $a_{max} \in A$ such that $\forall a \in A, a \leq a_{max}$.
- The **minimum** of A is an element $a_{min} \in A$ such that $\forall a \in A, a \geq a_{min}$.
- An **upper bound** of A is an element $x \in X$ such that $\forall a \in A, a \leq x$.
- An **lower bound** of A is an element $x \in X$ such that $\forall a \in A, a \geq x$.
- The **supremum** of A is the least upper bound of A.
- The **infimum** of A is the greatest lower bound of A.

Definition 1.3.5. An **interval** on an ordered set (X,<) is

- $(a, b) = \{x \in X : a < x < b\}$ for some $a, b \in X$
- $[a,b) = \{x \in X : a \le x < b\}$ for some $a,b \in X$
- $(a, b] = \{x \in X : a < x \le b\}$ for some $a, b \in X$
- $[a,b] = \{x \in X : a \le x \le b\}$ for some $a,b \in X$

1.4 Cardinality

Definition 1.4.1. A set A is **finite** if there exists a bijection $f: A \hookrightarrow \{1, 2, 3, ..., n\}$ for some $n \in \mathbb{N}$.

Definition 1.4.2. The cardinality of a finite set A is $n \in \mathbb{N}$ such that $f: A \hookrightarrow \{1, 2, 3, ..., n\}$ is a bijection.

Theorem 1.4.1. Let A be a finite set with cardinality $n \in \mathbb{N}$ and $B \subseteq A$ be a proper nonempty subset, then

$$\nexists$$
 a bijection $B \hookrightarrow \{1, ..., n\}$

 \exists a bijection $B \hookrightarrow \{1, ..., m\}$ for some $m \in \mathbb{N}$

Corollary 1.4.1.1. For finite sets A there is no bijection between A and any proper nonempty subset $B \subseteq A$.

Definition 1.4.3. A set A is **countable** iff $\exists A \hookrightarrow \mathbb{N}$ or A is finite.

Theorem 1.4.2. Let A be a nonempty set, then the following are equivalent.

- \bullet A is countable
- There exists a surjection $g: \mathbb{N} \to A$.
- There exists an injection $f: A \hookrightarrow \mathbb{N}$.

Corollary 1.4.2.1. Every subset $A \subset \mathbb{N}$ is countable.

Corollary 1.4.2.2. A countable union of countable sets is countable.

Definition 1.4.4. The **power set** of a set A denoted P(A) is the set of all subsets of A.

Theorem 1.4.3. The Cantor Theorem states that for a nonempty set A there is no injection $f: P(A) \hookrightarrow A$ and no surjection $g: A \twoheadrightarrow P(A)$.

1.5 Topologies

Definition 1.5.1. A topology on a set A is a set of subsets $J \subset P(A)$ with the following properties

- 1. $\emptyset, A \in J$.
- 2. Any union of elements in J is also in J.
- 3. Any finite intersection of elements in J is also in J.

Definition 1.5.2. A topological space is a pair (X, \mathcal{T}) sometimes denoted \mathcal{T}_X of a set X and a topology \mathcal{T} on X.

Definition 1.5.3. A subset $A \subset X$ is **open** iff $A \in \mathcal{T}$ where (X, \mathcal{T}) is a topological space.

Definition 1.5.4. A subset $A \subset X$ is closed iff X - A is open.

Definition 1.5.5. A basis is a collection \mathcal{B} of subsets of a set X such that

- 1. $\forall x \in X, \exists B \in \mathcal{B} \text{ such that } x \in B.$
- 2. $\forall B_1, B_2 \in \mathcal{B}$, if $x \in B_1 \cap B_2$, then $\exists B_3 \in \mathcal{B}$ such that $B_3 \subseteq B_1 \cap B_1$.

Proposition 1.5.1. Let (X, \mathcal{T}) be a topological space and $\mathcal{C} \subset P(X)$. If $\forall U \in \mathcal{T}, \forall x \in U, \exists D \in \mathcal{C}$ such that $x \in D \subseteq U$, then \mathcal{C} is a basis for \mathcal{T} .

Definition 1.5.6. The topology generated by a basis \mathcal{B} on a set X is

$$\mathcal{T} = \{ U \in P(X) : U = \bigcap_{B_i \in \mathcal{C}} B_i, \mathcal{C} \subset \mathcal{B} \}$$

Definition 1.5.7. A subbasis for a topology \mathcal{T} on X is a collection \mathcal{S} of subsets of X such that the collection of all unions and finite intersections of elements in \mathcal{S} is \mathcal{T} .

Definition 1.5.8. The **topology generated by a subbasis** S on a set X is the collection of all unions and finite intersections of elements in S.

Definition 1.5.9. A topology \mathcal{T}' is finer than another topology \mathcal{T} iff $\mathcal{T}' \subseteq \mathcal{T}$.

Theorem 1.5.1. Let $\mathcal{B}, \mathcal{B}' \subset P(X)$ be bases of the topological spaces $(X, \mathcal{T}), (X, \mathcal{T}')$. The following are equivalent:

- 1. \mathcal{T}' is finer than \mathcal{T} .
- 2. $\forall x \in X$ and any basis element $B \in \mathcal{B}$ such that $x \in B$ there exists $B' \in \mathcal{B}'$ such that $x \in B' \subseteq B$

Definition 1.5.10. A homeomorphism is a bijection $f: \mathcal{X} \hookrightarrow \mathcal{Y}$ between topologies \mathcal{X} and \mathcal{Y} .

Definition 1.5.11. A topological space (X, \mathcal{T}) is **first countable** iff $\forall x \in X, \exists$ a countable set $\mathcal{B} \subset \mathcal{T}$ so that for every set $U \in \mathcal{T}$ containing $x, V \subseteq U$ for some $V \in \mathcal{B}$.

Definition 1.5.12. A topology is **second countable** iff it has a countable basis.

1.5.1 Examples of Topologies

Definition 1.5.13. The **discrete topology** on a set X is $\mathcal{T} = P(X)$.

Definition 1.5.14. The indiscrete topology on a set X is $\mathcal{T} = \{\emptyset, X\}$.

Definition 1.5.15. The finite compliment topology on a set X is $\mathcal{T} = \{U \subset X : X - U \text{ is finite}\}.$

Definition 1.5.16. The **standard topology** on \mathbb{R} is the topology generated by the basis

$$\mathcal{B} = \{(a, b) \subset \mathbb{R} : a, b \in \mathbb{R}\}\$$

Definition 1.5.17. The lower limit topology on \mathbb{R} denoted \mathbb{R}_{ℓ} is the topology generated by the basis

$$\mathcal{B} = \{ [a, b) \subset \mathbb{R} : a, b \in \mathbb{R} \}$$

Definition 1.5.18. The **upper limit topology** on \mathbb{R} is the topology generated by the basis

$$\mathcal{B} = \{(a, b] \subset \mathbb{R} : a, b \in \mathbb{R}\}\$$

Definition 1.5.19. The **K-topology** on \mathbb{R} denoted \mathbb{R}_K is the topology generated by the basis

$$\mathcal{B} = \{(a,b) \subset \mathbb{R} : a,b \in \mathbb{R}\} \cap \{(a,b) - K \subset \mathbb{R} : a,b \in \mathbb{R}\}$$

$$K = \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$$

Definition 1.5.20. The **order topology** on a ordered set S with more than 1 element is the topology generated by the a basis

$$\mathcal{B} = \{(a,b) \subset \mathbb{R} : a,b \in \mathbb{R}\} \cap \{(a,b_0] \subset \mathbb{R} : a \in \mathbb{R}\} \cap \{[a_0,b) \subset \mathbb{R} : b \in \mathbb{R}\}$$

where a_0 is the smallest element and b_0 is the largest element.

1.6 Well Ordered Sets

Definition 1.6.1. A well ordered set X is an ordered set such that any subset $S \subseteq X$ has a smallest element $s_0 \in S$ such that $s_0 \leq s$, $\forall s \in S$.

Corollary 1.6.0.1. Any finite ordered set is well ordered.

Definition 1.6.2. The section of a well ordered set X by $a \in X$ denoted S_a is

$$S_a = \{ x \in X : x < a \}$$

Theorem 1.6.1. Any set A admits a well ordering.

Corollary 1.6.1.1. There exists an uncountable well ordered set.

Theorem 1.6.2. There exists a well ordered set S such that any section is countable S_{Ω} where Ω is the largest element.

Definition 1.6.3. The minimal uncountable well ordered set denoted S_{Ω} is the uncountable well-ordered set such that any section is countable.

Theorem 1.6.3. If $A \subset S_{\Omega}$ is a countable subset of S_{Ω} then A has an upper bound in S_{Ω} .

1.7 Product Topology

Definition 1.7.1. The **Product Topology** denoted $\mathcal{T} \times \mathcal{T}'$ for two topologies $\mathcal{T}, \mathcal{T}'$ is the topology generated by the basis

$$\mathcal{B} = \{U \times V : U \in \mathcal{T}, V \in \mathcal{T}'\}$$

Theorem 1.7.1. For topologies \mathcal{T} and \mathcal{T}' with bases \mathcal{B} and \mathcal{B}' the product topology is equivalently generated by the basis

$$\mathscr{B} = \{B \times B' : B \in \mathcal{B}, B' \in \mathcal{B}'\}$$

Definition 1.7.2. The function $\pi_n: \prod_{i\in I} X_i \to X_n$ is the function mapping $(\ldots, x_n, \ldots) \mapsto x_n$.

Theorem 1.7.2. The product topology on $X \times Y$ is the weakest topology such that $\pi^{-1}(U)$ and $\pi^{-1}(V)$ are both open \forall open $U \subset X$, $V \subset Y$.

Lemma 1.7.3. Let X, Y be topological spaces the set $\{U \times Y : U \in X\} \cap \{X \times V : V \subset Y\}$ is a subbasis for $X \times Y$.

1.8 Subspace Topology

Definition 1.8.1. The subspace topology denoted \mathcal{T}_Y for a subset $Y \subset X$ of a topological space (X, \mathcal{T}) is

$$\mathcal{T}_Y = \{Y \cap U : U \in \mathcal{T}\}$$

Lemma 1.8.1. If \mathcal{B} is a basis for a topological space X and $Y \subset X$ then $\mathcal{B}_Y = \{Y \cap B : B \in \mathcal{B}\}$ is a basis for \mathcal{T}_Y .

Lemma 1.8.2. For $Y \subset X$ with the subspace topology, if $U \subset Y$ is open in Y and $Y \subset X$ is open in X then U is open in X.

Theorem 1.8.3. Let $A \subset X$, $B \subset Y$ be topological spaces with subspace topologies, then for $A \times B \subset X \times Y$ the product topology agrees with the subspace topology.

Definition 1.8.2. A subset $Y \subset X$ is **convex** iff $\forall a, b, c \in Y$, if a < c < b then $c \in Y$.

Theorem 1.8.4. If X be an ordered set with a convex subset $Y \subset X$, then the subspace topology on Y is the order topology on Y.

1.9 Interior and Closure

Definition 1.9.1. For a subset $V \subset X$ of a topological space X the **interior** of V denoted V^o is the largest open set in V or equivalently

$$V^o = \bigcup_i U_i \quad \forall U_i \in V$$

Definition 1.9.2. For a subset $V \subset X$ of a topological space X the **closure** of V denoted \overline{V} is the smallest closed set containing V or equivalently

$$\bar{V} = X - (X - V)^o = \bigcap_j F_j \quad \forall F_j \in \mathcal{T} \text{ such that } V \subset F_j$$

Lemma 1.9.1. Let $A \subset X$ be a subset of a topological space X, then $x \in \overline{A}$ if and only if every open set containing $x \in X$ intersects A.

Lemma 1.9.2. Let $A \subset X$ be a subset of a topological space X and \mathcal{B} be a basis for X, then $x \in \overline{A}$ if and only if every basis element $B \in \mathcal{B}$ containing $x \in X$ intersects A.

Definition 1.9.3. For a subset $A \subset X$ of a space X, a point $x \in X$ is a **limit point** or **cluster point** of A iff for every neighborhood $U \in \mathcal{T}$ of x, $U - \{x\}$ intersects A.

Theorem 1.9.3. Let $A \subset X$ be a subset of a topological space X and A' be the set of limit points of A, then $\bar{A} = A \cup A'$.

1.10 Hausdorff Topologies

Definition 1.10.1. A topological space X is **Hausdorff** iff $\forall x, y \in X$ such that $x \neq y$, there exists $U \in \mathcal{T}$ and $V \in \mathcal{T}$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Theorem 1.10.1. Every finite subset of a Hausdorff space is closed.

Definition 1.10.2. A sequence in a space X is a series of points $x_i \in X$ for $i \in \mathbb{N}$.

Definition 1.10.3. A sequence **converges** to a point $x \in X$ iff for all open subsets $U \subset X$ such that $x \in U \exists N$ such that for all $n \geq N$, $x_n \in U$.

Proposition 1.10.1. Let $A \subset X$ be a subset of a topological space X. If a sequence $x_n \in A$ converges to $x \in A$, then $x \in \overline{A}$.

Theorem 1.10.2. If a space X is Hausdorff, then any sequence $x_n \in X$ can only converge to at most one point.

1.11 Continuity

Definition 1.11.1. A function $f: X \to Y$ is **continuous** iff for any open subset $V \subset Y$ in the range of $f, f^{-1}(V)$ is open.

Proposition 1.11.1. A function $f: X \to Y$ is continuous iff for \mathcal{B} basis of $Y, f^{-1}(\mathcal{B})$ is open $\forall B \in \mathcal{B}$.

Theorem 1.11.1. If $f: \mathbb{R} \to \mathbb{R}$ is continuous under the epsilon delta definition from real analysis, then it is continuous.

Definition 1.11.2. A homomorphism is a function between spaces that is continuous in both directions.

Theorem 1.11.2. Let $f: X \to Y$ a function between spaces. The following are equivalent"

- f is continuous.
- $\forall A \subset X, f(\overline{A}) \subset \overline{f(A)}.$
- $\forall B \subset Y \text{ closed}, f^{-1}(B) \text{ is closed}$
- $\forall x \in X$, if $f(x) \in B$ is a neighborhood of f(x) then $f^{-1}(B)$ contains a neighborhood of x.

Theorem 1.11.3. Let X, Y, Z be spaces.

- $f: X \to Y$ defined by $x \mapsto y$ for some $y \in Y$ and $\forall x \in X$, is continuous.
- For $A \subset X$ with the subspace topology, $j: A \to X$ defined by $x \mapsto x$ is continuous.
- If $f: X \to Y$ and $g: Y \to Z$ are both continuous then $g \circ f = g(f(x))$ is continuous.
- If $f: X \to Y$ is continuous. For $A \subset X$, the restriction $f_A: A \to Y$ is continuous.
- For $Y \subset Z$ with the subspace topology, if $f: X \to Y$ is continuous then $f: X \to Z$ is also continuous.
- The map $f: X \to Y$, where $X = \bigcup_{\alpha} U_{\alpha}$ for open subsets U_{α} is continuous if and only if $f_{\bigcup_{\alpha \in A} U_{\alpha}}$ is open for all A.

Theorem 1.11.4. The Pasting Theorem states that for $X = A \cup B$ where $A, B \subset X$ are closed subsets. If $f : A \to Y$ is continuous, $g : B \to Y$ is continuous and f = g on $A \cap B$, then $h : X \to Y$ is continuous where

$$h(x) = \left\{ \begin{array}{ll} f(x) & x \in A \\ g(x) & x \in B \end{array} \right\}$$

Theorem 1.11.5. Let $f: X \to Y \times Z$ for spaces X, Y, Z where $f(x) = (f_1(x), f_2(x))$. f is continuous iff f_1, f_2 are continuous.

Proposition 1.11.2. The functions $+, \times, /$ are continuous, defined by

$$+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
 defined by $(a, b) \mapsto a + b$
 $\times: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by $(a, b) \mapsto ab$
 $/: \mathbb{R} \times \mathbb{R} - \{0\} \to \mathbb{R}$ defined by $(a, b) \mapsto a/b$

1.12 Metric Spaces

Definition 1.12.1. A metric space X is a set with a function $d: X \to \mathbb{R}$ such that $\forall x, y, z \in X$,

- $d(x,y) \ge 0$
- $d(x,y) = 0 \Leftrightarrow x = y$
- d(x,y) = d(y,x)
- d(x,y) + d(y,z) < d(x,z)

Definition 1.12.2. The **metric ball** denoted $B(x,\varepsilon)$ for a point $x \in X$ in a metric space (X,d) and a real number $\varepsilon > 0$ is the set

$$B(x,\varepsilon) = \{ y \in X : d(x,y) < \varepsilon \}$$

Definition 1.12.3. The topology on a metric space is the topology generated by the basis

$$\mathcal{B} = \{B(x, \varepsilon) : x \in X, \varepsilon > 0\}$$

Definition 1.12.4. A topological space X is **metrizable** iff \exists a metric on X whose metric topology is that of X.

Theorem 1.12.1. For two metrics (X, d) and (X, d'), the metric topology generated by d' is finer than d if and only if $d(x, y) \leq d'(x, y)$

Corollary 1.12.1.1. For two metrics (X, d) and (X, d') with metric topologies \mathcal{T} and \mathcal{T}' . \mathcal{T}' is finer than \mathcal{T} if and only if for all $x \in X$ and all $\varepsilon > 0 \in \mathbb{R}$, $\exists \ \delta > 0$ such that $B_{d'}(x, \delta) \subseteq B_d(x, \varepsilon)$

Definition 1.12.5. A subset set $A \subseteq X$ of a metric space X is bounded iff $\exists k > 0 \in \mathbb{R}$ so that d(x,y) < k for all $x,y \in A$.

Definition 1.12.6. The diameter of a metric space is $\sup_{x,y\in A} d(x,y)$.

Theorem 1.12.2. Let (X, d) be a metric space, then $\overline{d}: X \times X \to \mathbb{R}$ defined by $\overline{d}(x, y) = \min\{d(x, y), 1\}$ is a metric that induces the same topology.

Proposition 1.12.1. Let $A \subset X$, where X is a metric $\forall x \in \overline{A}$, \exists a sequence $x_n \in A$ for $n \in \mathbb{N}$ that converges to X.

Theorem 1.12.3. Let X be a metric space and $f: X \to Y$ a function. f is continuous if and only if $\lim f(x_n) = f(x)$ for all sequences $x_n \in X$ that converge to $x \in X$.

Proposition 1.12.2. Every metrizable space is first countable.

Theorem 1.12.4. Let X, Y be spaces and $f: X \to Y$ a function.

If f is continuous, then for every sequences $x_n \in X$ converging to $x \in X$, $f(x_n)$ converges to f(x).

If X is first countable and for every sequence $x_n \in X$ converging to $x \in X$, $f(x_n)$ converges to f(x), then f is continuous.

Chapter 2

Product Topology

[&]quot;At least if you believe in calculus."

[&]quot;I hope that homework didn't kill anyone too much."

[&]quot;I'm actually currently a zombie now."

[&]quot;Yeah, that's the thing about homework."

[&]quot;It's like set theory but actually interesting!"

[&]quot;If you want to make class more interesting just replace 'bases' with Al-Qaeda."

[&]quot;If you're trapped in the U-ball, you're screwed!"

[&]quot;It's in all these weird languages that nobody should be speaking with too many consonants."

[&]quot;When you see a circle and you see a line; You don't see the same thing!"

[&]quot;Hmm, maybe"

[&]quot;The inverse function theorem is basically the reason the world works."