An Actuated Universal Joint using the Twisted String Actuator: Design and Experimentation*

Damian Crosby¹, Joaquin Carrasco², William Heath², and Andrew Weightman²

Abstract—Actuated universal joints, or equivalent joint systems, are found in a number of robotic applications, in particular mobile snake robots, snake-arm robots and robotic tails. Such joints use a variety of actuation methods, including direct drive motors, linear screw drives, cable based systems, and hydraulics/pneumatics. In this paper the authors design and create a mechanism that uses the Twisted String Actuator (TSA) in an antagonistic triad to actuate the universal joint, using orientation sensors to create a robust closed loop control system. Various experiments then defined the performance of the system. This results in a compact high performance actuation system that exploits the properties of TSA to give it various advantages over existing actuation methods.

I. INTRODUCTION

Actuated Universal Joint (AUJ) mechanisms are found in a wide range of robotic applications, such as confined space inspection using snake-arm robots [1], highly manoeuvrable mobile snake robots [2], and biomimetic robot tails for stability [3]. Mobile snake robots must usually incorporate electric actuators inline with their joints. This results in an AUJ having to shift the mass of the follower segments and all the actuators inside the follower segments, which results in high torque requirements and therefore Snake-arm robots and robotic tails can reduce the mass and size of the AUJ by moving their actuators away from the AUJs and use cables to transfer the force to the joints, or use hydraulic or pneumatic actuators which tend to be lighter than equivalent electric motors, at the expense of increased mass and bulk at the base of the arm or tail.

First developed by [4] in 2010, the Twisted String Actuator (TSA) uses two or more strings between two fixtures as a linear actuator. When one fixture is rotated (typically by an electric motor), the looped string twists into a helix, decreasing the distance between them. Equation 2 calculates the distance l_s for a two string system with infinite stiffness for a given rotation angle θ_s , where l_u is the unwound length between the fixtures and r_s is half the string thickness.

The primary advantage of TSA over similar linear actuators such as a leadscrew is the reduction the TSA provides is not proportional (or even slightly inversely proportional) to the mass of the actuator. By decreasing r_s (or r_s+r_c when there are more than two strings, where r_c is the "core radius", or half the gap between any two strings that intersects the

Email correspondence: damian.crosby@manchester.ac.uk

axis of rotation) the reduction increases for a constant l_u and θ_s , resulting in a greater reduction with no increase, or even a slight decrease, in actuator mass. While the reduction in a leadscrew can be increased by decreasing the lead on the thread (typically denoted as λ) which also has no increase in mass, this has a limited range and can quickly run up against manufacturing tolerances or material strength requirements. In order to achieve greater or more robust reductions, the screw radius has to be increased, or the driving motor has to have a larger reduction before driving the screw, both of which usually result in more material (typically steel) and therefore more mass.

However, TSA does have some drawbacks, the most significant of which is a non-linear reduction equation, which is also dependent on the motor angle θ_s (and therefore actuator position). The reduction decreases in a non-linear fashion as the angle increases, with the derivative decreasing as the angle increases. There is also the compliance of the strings to consider, depending on the thickness and material chosen, which becomes a significant factor under high forces. Both of these issues can be addressed with accurate modelling [5] and/or a robust control strategy, as demonstrated in [4]. What is perhaps more an issue regarding mass for an AUJ is the unidirectional force of the TSA, which can only impart force in tension. This means that for an AUJ, a minimum of three TSA are required unless spring return mechanisms are used, which would impart additional force on the TSA and therefore reduce performance. However, the potential high force to mass ratio of the TSA due to the non-proportional reduction may adequately compensate for the additional actuator requirement.

The focus of this research is to discover if the TSA is a suitable candidate for control of an AUJ considering both the benefits and drawbacks. To this end, the first objective is to simulate a model and then construct a physical experimental prototype to validate the proposed control system. Then, the second objective is to compare the results from both the simulation and experimental prototype with other inline actuation methods for an AUJ to analyse and discuss the potential advantages and disadvantages of TSA actuation against alternatives.

A. Antagonstic Triad

As mentioned in the introduction, because the TSA provides only tensile force, a minimum of three actuators are required. These can be arranged in a triangular configuration to create an "antagonistic triad", akin to the antagonistic pairs of muscles found in animals. Where a revolute joint

^{*}This work was not supported by any organization

¹Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, United Kingdom.

²Department of Electrical and Electronic Engineering, University of Manchester, United Kingdom.

Fig. 1: Kinematic diagram of the antagonistic triad.

would be found between the connecting ends of the actuator, a universal joint is found instead. The geometric structure of the system can be described with two equilateral triangles of inradius r on two planes separated in the z axis. The centroids are then connected via a universal joint from each plane normal to an intersecting point, described by vector $\boldsymbol{\theta} = \begin{bmatrix} \theta_1 & \theta_2 \end{bmatrix}$ to denote the rotation of the second plane relative to the first, in the x and y axis around the intersecting point, and l_1 and l_2 to denote the normal distance from the intersection to the first and second plane centroids respectively. When $\theta = \begin{bmatrix} 0 & 0 \end{bmatrix}$ the triangles are parallel to each other. The distance between the vertex pairs of each triangle is then denoted as $\begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 \end{bmatrix}$ for the "top", "left" and "right" vertices of the triangles. When θ is changed, this will change λ_1 , λ_2 and λ_3 respectively. A diagram of this is shown in figure 1.

To calculate the lengths of the strings for a given $\boldsymbol{\theta}$ of the universal joint, we can define a vector function $\Lambda(\boldsymbol{\theta}) = \begin{bmatrix} \lambda_1(\boldsymbol{\theta}) & \lambda_2(\boldsymbol{\theta}) & \lambda_3(\boldsymbol{\theta}) \end{bmatrix}$ with l_1 , l_2 and r as the coefficients, where the scalar functions are defined in equation 1.

The geometric structure of the system can be described with two equilateral triangles of circumscribed radius r on two planes separated in the z axis. The centroids are then connected via a universal joint from each plane normal to an intersecting point, described by vector $\boldsymbol{\theta} = \begin{bmatrix} \theta_1 & \theta_2 \end{bmatrix}$ to denote the rotation of the second plane relative to the first, in the x and y axis around the intersecting point, and l_1 and l_2 to denote the normal distance from the intersection to the first and second plane centroids respectively. When $\boldsymbol{\theta} = \begin{bmatrix} 0 & 0 \end{bmatrix}$ the triangles are parallel to each other. The distance between the vertex pairs of each triangle is then denoted as $\begin{bmatrix} \lambda_1 & \lambda_2 & \lambda_3 \end{bmatrix}$ for the "top", "left" and "right" vertices of the triangles. When $\boldsymbol{\theta}$ is changed, this will change λ_1 , λ_2 and λ_3 respectively. A diagram of this is shown in figure 1.

To calculate the lengths of the strings for a given θ of the AUJ, we can define a vector function $\Lambda(\theta)=$

 $\begin{bmatrix} \lambda_1\left(\boldsymbol{\theta}\right) & \lambda_2\left(\boldsymbol{\theta}\right) & \lambda_3\left(\boldsymbol{\theta}\right) \end{bmatrix}$ with l_1 , l_2 and r as the coefficients, where the scalar functions are defined in equation 1.

$$\lambda_{1}(\theta) = \sqrt{\frac{(l_{1} + l_{2}\cos\theta_{1}\cos\theta_{2} + r\cos\theta_{1}\sin\theta_{2})^{2}}{+(r - r\cos\theta_{2} + l_{2}\sin\theta_{2})^{2}} + (l_{2}\cos\theta_{2}\sin\theta_{1} + r\sin\theta_{1}\sin\theta_{2})^{2}} + (l_{2}\cos\theta_{2}\sin\theta_{1} + r\sin\theta_{1}\sin\theta_{2})^{2}}$$

$$\lambda_{2}(\theta) = \sqrt{(a - b + c)^{2} + (l_{1} - d)^{2} + (e)^{2}}$$

$$\lambda_{3}(\theta) = \sqrt{(a + b - c)^{2} + (l_{1} + d)^{2} + (e)^{2}}$$
where:
$$a = -\frac{\sqrt{3}r(\cos\theta_{1} - 1)}{2}$$

$$b = l_{2}\cos\theta_{2}\sin\theta_{1}$$

$$c = \frac{r\sin\theta_{1}\sin\theta_{2}}{2}$$

$$d = \frac{\sqrt{3}r\sin\theta_{1}}{2} + l_{2}\cos\theta_{1}\cos\theta_{2} - \frac{r\cos\theta_{1}\sin\theta_{2}}{2}$$

$$e = \frac{r\cos\theta_{2}}{2} - \frac{r}{2} + l_{2}\sin\theta_{2}$$

These were simply calculated by computing the transformation matrix for each string from one end to the other in cartesian coordinates, then acquiring the Euclidean norm of the resulting translation vector $\|[x_n \ y_n \ z_n]\|_2$.

B. Twisted String Actuator

First developed by [4] in 2010, TSA uses two or more strings between two fixtures as a linear actuator. When one fixture is rotated (typically by an electric motor), the strings twist into a helix, decreasing the distance between the fixtures.

Equation 2 from [4] calculates the actuator length l_s for a given θ_s , given l_u and r_s for a two string TSA. This equation assumes an infinite string stiffness, so is only reasonably accurate under low tension.

$$l_s(\theta_s) = \sqrt{l_u^2 - \theta_s^2 r_s^2} \tag{2}$$

Although theoretically the stroke of the TSA can be the entire domain of $[0,l_n]$, in reality the thickness of the string prevents a geometric helix from forming once the helix pitch $q < 4r_s$ (or $q < 2nr_s$ for n strings). This limits the lower bound of the stroke to the value calculated by equation 3, or approximately 46% of l_n for a two string TSA.

$$l_{min} = \frac{l_u}{\sqrt{\frac{\pi^2}{2} + 1}} \approx 0.46 \ l_u$$
 (3)

II. CONTROL SYSTEM

The control system is a four layer cascade design, using feedback of the joint position from the accelerometers and TSA force from the load cells. It uses a second order setpoint trajectory q as input, which can either be pre-defined or generated dynamically from user input. Feedback is provided by the AUJ angular position θ , angular velocity $\dot{\theta}$, and TSA tension force \dot{f} .

Fig. 2: Surface plots of each element of the vector function $\Lambda(\theta)$, assuming coefficient values from table I.

Fig. 3: TSA string length against motor angle with coefficients from table I.

A. AUJ Position PID Controller with Acceleration Feedforward

Firstly, a PID controller is used to generate a control signal u with the input q as the setpoint, and the AUJ angular position θ and velocity $\dot{\theta}$ as feedback, plus the addition of a feedforward term for the input acceleration \ddot{q} .

$$\boldsymbol{u} = \boldsymbol{k}_{p} (\boldsymbol{q} - \boldsymbol{\theta}) + \boldsymbol{k}_{i} \left(\int_{0}^{t} \boldsymbol{q} - \boldsymbol{\theta} \right) dt + \boldsymbol{k}_{d} \left(\dot{\boldsymbol{q}} - \dot{\boldsymbol{\theta}} \right) + \ddot{\boldsymbol{q}}$$
(4)

B. Inverse Dynamics

The control signal u from the PID controller is then converted to the desired AUJ torque au using the Euler-Lagrange method.

$$\tau = D(\theta) u + C(\theta, \dot{\theta}) \dot{\theta} + G(\theta)$$
 (5)

C. TSA Force Optimisation Algorithm

This function uses a modified algorithm from [6] to select an optimal force vector from the desired joint torque. A force matrix F is created from the torque input τ , jacobian J_{Λ} from the vector function Λ as defined in equation 1, and

minimum force constant f_{min} . f_{ii} is equal to f_{min} , while the other elements in the column are based on a calculation using $J_{\Lambda_{-i,*}}$ where -i is a row removed from the matrix.

$$J_{\Lambda} = \begin{bmatrix} \frac{\partial \lambda_{1}}{\partial \theta_{1}} & \frac{\partial \lambda_{2}}{\partial \theta_{1}} & \frac{\partial \lambda_{3}}{\partial \theta_{1}} \\ \frac{\partial \lambda_{1}}{\partial \theta_{2}} & \frac{\partial \lambda_{2}}{\partial \theta_{2}} & \frac{\partial \lambda_{3}}{\partial \theta_{2}} \end{bmatrix}$$

$$F(\tau, \boldsymbol{\theta}) = \begin{cases} f_{i,i} = f_{min} \\ f_{-i,i} = -J_{\Lambda_{-i,*}}^{-\mathsf{T}} \left(J_{\Lambda_{i,*}}^{\mathsf{T}} f_{min} + \boldsymbol{\tau} \right) \end{cases}$$

$$= \begin{bmatrix} f_{min} & f_{12} & f_{13} \\ f_{21} & f_{min} & f_{23} \\ f_{31} & f_{32} & f_{min} \end{bmatrix}$$

$$(6)$$

The following algorithm then selects one column of F to be the output force vector f.

$$\begin{array}{l} \text{1: } s \leftarrow \begin{bmatrix} \top & \top & \top \end{bmatrix} \\ \text{2: if } f_{23} > f_{min} \text{ then } s_2 \leftarrow \bot \text{ else } s_3 \leftarrow \bot \text{ end if} \\ \text{3: if } f_{31} > f_{min} \text{ then } s_3 \leftarrow \bot \text{ else } s_1 \leftarrow \bot \text{ end if} \\ \text{4: if } f_{12} \geq f_{min} \text{ then } s_1 \leftarrow \bot \text{ else } s_2 \leftarrow \bot \text{ end if} \\ \text{5: for } i = 1 \text{ to } 3 \text{ do} \\ \text{6: } \text{if } s_i \rightarrow \top \text{ then } f \leftarrow f_{*,i} \text{ end if} \\ \text{7: end for} \end{array}$$

D. TSA Force P Controller with Deadband Compensation

The selected forces are then used as an input to a P controller using the measured load cell forces $\hat{\boldsymbol{f}}$ as feedback. The output from this can then be used to control the top, left and right TSA motor's velocity as $\boldsymbol{\omega}$ (each motor controller has a hardware velocity PI controller). Due to a hardware velocity controller deadband within $\pm 10\,\mathrm{min}^{-1}$, an adjustable deadband compensator is used to create $\bar{\boldsymbol{\omega}}$, with $h\in[0,10]$ changing the size of the deadband, where 0 is no deadband, and 10 is full deadband.

$$\bar{\boldsymbol{\omega}} = \boldsymbol{\omega} \mid \omega_{i} \begin{cases} \omega_{i} & \omega_{i} > 10 \lor \omega_{i} < -10 \\ 10 & \omega_{i} < 10 \land \omega_{i} > h \\ -10 & \omega_{i} > -10 \lor \omega_{i} < -h \\ 0 & \text{otherwise} \end{cases}$$
 (7)

The result from the TSA is then a compressive force acting between each of the three TSA and its corresponding endpoint on the Antagonistic Triad, imparting a torque on the axes of the universal joint.

Fig. 4: Simulation results for a trajectory of θ_1 from 0 to $\frac{\pi}{4}$.

Fig. 5: Block diagram of the complete control system, excluding the hardware velocity controllers for the motors.

III. SIMULATION

To design and refine the parameters of the control system, a Simscape Multibody $^{\rm TM}$ model of the antagonistic triad and control system was created in MATLAB $^{\otimes}$ /Simulink $^{\rm TM}$. This allowed for model design coeffecients l1,2 and controller gains K_P, K_I, K_{P_s} to be modified in order to have the most stable control within design limits. Plots of a test joint trajectory can be seen in figure 4 with the paramaters from table I.

A. TSA State Space Definition

In order to approximate a TSA plant from within a simulation, a state space model was required which takes motor current u as an input and outputs y as the TSA tension force f_i . [4] defines it as such, where J is the motor inertia, C is the motor coulomb friction (modified from viscous friction as the 1724TSR only has dry friction),, K_t is the motor torque constant, and K_L is the load stiffness. As the original definition is for a fixed load l_u distance from the motor a modified model is required which takes

TABLE I: Simulation and performance estimation coefficients.

Coefficient	Value	Coefficient	Value
l_1	$45\mathrm{mm}$	J	$1 \times 10^{-6} \mathrm{kg} \mathrm{m}^{-2}$
l_2	$600\mathrm{m}$	K_L	$1000 \mathrm{N m^{-1}}$
r	$13\mathrm{mm}$	f_{min}	1 N
l_n	$60\mathrm{mm}$	K_P	800
r_s	$200\mathrm{m}$	K_I	5000
m	$72.61913\mathrm{g}$	K_D	50
C	$0.1315\mathrm{N}\mathrm{mm}$	K_{P_s}	19
K_t	$0.0263\mathrm{N}\mathrm{m}\mathrm{A}^{-1}$	ω_s	$441.9 \mathrm{rad} \mathrm{s}^{-1}$
α_s	$1 \times 10^5 \mathrm{rad}\mathrm{s}^{-2}$	I_s	$0.19\mathrm{A}$
$ au_s$	$4.5\mathrm{mN}\mathrm{m}$		

into account the varying length between the motor and load defined by $\Lambda(\theta)$. A saturation function is used to prevent incorrect compression forces when the string is slack. All of the motor coefficients were taken from the Faulhaber 1724TSR datasheet [7] as this is the motor to be used in the experimental model. An estimated value is used for the load stiffness, this was chosen to be a high number as the

model is expected to be very stiff.

$$h(\theta_s) = \frac{\theta r_s^2}{\sqrt{l_u^2 - \theta_s^2 r_s^2}}$$

$$k(\theta_s, \boldsymbol{\theta}) = \lambda_n(\boldsymbol{\theta}) - \sqrt{l_u^2 - \theta_s^2 r_s^2}$$

$$\dot{\boldsymbol{x}} = \begin{bmatrix} x_2 \\ -\frac{K_L}{J} h(x_1) k(x_1, \boldsymbol{\theta}) - \frac{B}{J} \operatorname{sgn}(x_2) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{K_t}{J} \end{bmatrix} u$$

$$y = K_L \operatorname{sat}_0^{\infty} k(x_1, \boldsymbol{\theta})$$
(8)

The state space model was then adapted to include constraints on motor velocity and acceleration set by the motor controller in order to keep the motor within design limits, by replacing \dot{x} with \dot{x}' which contains saturation functions for maximum motor velocity v_s and acceleration α_s .

$$\dot{\boldsymbol{x}'} = \begin{bmatrix} \operatorname{sat}_{\omega_s} \dot{x}_1 \\ \operatorname{sat}_{\alpha_s} \dot{x}_2 \end{bmatrix} \tag{9}$$

IV. EXPERIMENT

For the experimental validation, a physical prototype of the mechanism was constructed with coefficients from table I as design parameters. The motors to be used would be Faulhaber 1724T024SR micromotors, selected for their compact size but high torque. These would be controlled by Fauhaber MCDC3002 motor controllers, which could interface with a National Instruments MyRIO via the USB port, using a USB to serial converter. The load cells would be Futek LCM100 minature load cells, selected for their small size. The signals from these would be amplified using Flyde FE-359-TA instrumentation amplifiers and decoded using an external AD7606 ADC before being fed into the MyRIO using SPI.

V. CONCLUSION

REFERENCES

- R. O. Buckingham and A. C. Graham, "Dexterous manipulators for nuclear inspection and maintenance case study," in 2010 1st International Conference on Applied Robotics for the Power Industry, 2010, pp. 1–6.
- [2] M. Luo, R. Yan, Z. Wan, Y. Qin, J. Santoso, E. H. Skorina, and C. D. Onal, "Orisnake: Design, fabrication, and experimental analysis of a 3-d origami snake robot," *IEEE Robotics and Automation Letters*, vol. 3, no. 3, pp. 1993–1999, 2018.
- [3] W. S. Rone, W. Saab, and P. Ben-Tzvi, "Design, Modeling, and Integration of a Flexible Universal Spatial Robotic Tail," *Journal of Mechanisms and Robotics*, vol. 10, no. 4, 04 2018, 041001. [Online]. Available: https://doi.org/10.1115/1.4039500
- [4] T. Wrtz, C. May, B. Holz, C. Natale, G. Palli, and C. Melchiorri, "The twisted string actuation system: Modeling and control," in 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, July 2010, pp. 1215–1220.
- [5] S. Nedelchev, I. Gaponov, and J. Ryu, "Accurate dynamic modeling of twisted string actuators accounting for string compliance and friction," *IEEE Robotics and Automation Letters*, vol. 5, no. 2, pp. 3438–3443, 2020.
- [6] F. Dessen, "Coordinating control of a two degrees of freedom universal joint structure driven by three servos," in *Proceedings. 1986 IEEE International Conference on Robotics and Automation*, vol. 3, April 1986, pp. 817–822.
- [7] DC Micromotors Precious Metal Commutation, Dr. Fritz Fauhaber GmbH & Co. KG, 2 2020. [Online]. Available: https://www.faulhaber. com/fileadmin/Import/Media/EN_1724_SR_DFF.pdf

Fig. 6: Schematic of the experimental model.