Image Formation

Computer Vision: AI3604

Image Formation and Optics

Image: Projection of 3D scene onto 2D plane. We need to understand Geometric and Radiometric relations between the scene and its image.

Topics:

- (1) Pinhole and Perspective Projection
- (2) Vanishing Point
- (3) Image formation using Lenses
- (4) Lens Related Issues

Image Formation

Is an image being formed on the screen?

Yes! But not a "clear" one.

Perspective Imaging with Pinhole

Using similar triangles:

$$\frac{\overline{\mathbf{r}_i}}{f} = \frac{\overline{\mathbf{r}_o}}{z_o}$$

$$\Rightarrow \frac{x_i}{f} = \frac{x_o}{z_o}, \quad \frac{y_i}{f} = \frac{y_o}{z_o}$$
9/19/2022 Computer Vision, SJTU, Wei Shen

f: Effective Focal Length

Camera Obscura

"Dark Chamber"

Pinhole Eye of Nautilus pompilius

$$\text{Magnification:} \quad |m| = \frac{\|\bar{\mathbf{d}}_i\|}{\|\bar{\mathbf{d}}_o\|} \ = \frac{\sqrt{\delta {x_i}^2 + \delta {y_i}^2}}{\sqrt{\delta {x_o}^2 + \delta {y_o}^2}}$$

From Perspective Projection:

$$\frac{x_i}{f} = \frac{x_o}{z_o} \quad \text{and} \quad \frac{y_i}{f} = \frac{y_o}{z_o} \tag{A}$$

$$\frac{x_i + \delta x_i}{f} = \frac{x_o + \delta x_o}{z_o} \quad \text{and} \quad \frac{y_i + \delta y_i}{f} = \frac{y_o + \delta y_o}{z_o} \tag{B}$$

9/19/2022

Computer Vision, SJTU, Wei Shen

From (A) and (B) we get:

$$\frac{\delta x_i}{f} = \frac{\delta x_o}{z_o} \quad \text{and} \quad \frac{\delta y_i}{f} = \frac{\delta y_o}{z_o}$$

Magnification:

$$|m| = \frac{\|\bar{\mathbf{d}}_i\|}{\|\bar{\mathbf{d}}_o\|} = \frac{\sqrt{\delta x_i^2 + \delta y_i^2}}{\sqrt{\delta x_o^2 + \delta y_o^2}} = \left| \frac{f}{z_o} \right|$$

$$m = \frac{f}{z_o}$$

$$m = \frac{f}{Z_O}$$

Image size inversely proportional to depth

Notes:

• m can be assumed to be constant if the range of scene depth Δz is much smaller than the average scene depth \tilde{z}

$$\bullet \quad \frac{Area_i}{Area_o} = m^2$$

Vanishing Point

Parallel straight lines converge at a single image point

Vanishing Point

Location of Vanishing Point depends on the orientation of parallel straight lines.

Finding the Vanishing Point

Finding Vanishing Point

Vanishing point of the line is the projection of point P.

$$(x_{vp}, y_{vp}) = \left(f\frac{l_x}{l_z}, f\frac{l_y}{l_z}\right)$$

Image plane

Optical

axis

Use of Vanishing Point in Art

The Music Lesson, Johannes Vermeer, c. 1662-1664

https://www.bilibili.com/video/BV1Ab41167ca?spm_id_from=333.337.search-card.all.click&t=4.1

Use of Vanishing Point in Sport

Use of Vanishing Point in Sport

What is the Ideal Pinhole Size?

The pinhole must be tiny, but if it's too tiny it will cause diffraction.

Diffraction

Ideal pinhole diameter: $d \approx 2\sqrt{f\lambda}$

$$d \approx 2\sqrt{f\lambda}$$

f : effective focal length

λ: wavelength

What about Exposure Time?

Pinholes pass less light and hence require long exposures to capture bright images.

$$f = 73 mm, d = 0.2 mm,$$

Exposure, $T = 12 s$

Lenses

Same projection as pinhole, but gather more light!

21

Gaussian Lens (Thin Lens) Law

f: focal length

i: image distance

o: object distance

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$

Example: If f = 50mm & o = 300mm, then image distance i = 60mm 22 Computer Vision, SJTU, Wei Shen

How to Find the Focal Length?

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$
 \Rightarrow If $o = \infty$, then $f = i$

Focal length: Distance at which incoming rays that are parallel to the optical axis converge.

Relation Between Lens and Pinhole

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$

 \Rightarrow

Usually $o \gg i$, then $f \approx i$ Point A is approaching F, which is similar to a pinhole system

$$m = \frac{h_i}{h_o} = \frac{i}{o}$$

Blur Circle (Defocus)

Blur Circle (Defocus)

From similar triangles:

$$\frac{b}{b} = \frac{|i' - i|}{i'}$$

$$\frac{D}{D} = \frac{1}{i'}$$

Blur circle diameter:

$$b = \frac{D}{i'}|i' - i|$$

 $b \propto D$

Blur Circle (Defocus)

Focused Point

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$

$$i = \frac{of}{o - f}$$

Defocused Point

$$\frac{1}{i'} + \frac{1}{o'} = \frac{1}{f}$$

(Gaussian Lens Law)

$$i = \frac{of}{o - f} \qquad \qquad i' = \frac{o'f}{o' - f}$$

$$i' - i = \frac{f}{(o'-f)} \cdot \frac{f}{(o-f)} \cdot (o-o')$$

$$b = D \left| \frac{f(o - o')}{o'(o - f)} \right|$$

Focusing

Defocused System

Move the image plane

Image

plane

Move the lens

Object

Depth of Field (DoF)

Range of object distances (o - o') over which the image is "sufficiently well" focused. i.e., Range (o - o') for which blur b is less than pixel size.

Focal Length 50 mm, Focus = 1 m, Aperture D = 25 mm

Focal Length 50 mm, Focus = 1 m, Aperture D = 12.5 mm

Focal Length 50 mm, Focus = 1 m, Aperture D = 6.25 mm

Focal Length 50 mm, Focus = 1 m, Aperture D = 3.125 mm

Large Aperture

- Bright Image or Small Exposure Time
- Shallow Depth of Field

Small Aperture

- Dark Image or Long Exposure Time
- Large Depth of Field

f-number

DOF is a function of both focus distance and aperture diameter d

f-number is a common number associated with cameras, which is

usually denoted f/#

$$f/\# = N = \frac{f}{d}$$

f: focal length

d: aperture diameter

This is usually written as f/#, where # is the actual number N (e.g., f/1.4, f/2, f/2.8, ..., f/22). We interpret these numbers by noticing that dividing the focal length by the f-number gives the aperture diameter d.

f-number

f-number

Vignetting

Brightness fall-off (Vignetting) in image of a White Wall

Brightness fall-off (Vignetting) in image of a Natural Scene

Vignetting

More light passes through L3 from point A than point B. Results in a smooth fall-off of brightness from A to B.

Chromatic Aberration

Refractive index (and hence focal length) of lens is different for different wavelengths.

Geometric Distortion

Radial distortion

Tangential distortion

Due to lens imperfections

When Geometric Distortion is Useful?

When Geometric Distortion is Useful?

When Geometric Distortion is Useful

Fisheye Lens

Geometric Distortion Correction

Radial (Barrel) distortion

Undistorted image

The Digital Camera

Two main kinds of sensors

<u>Charge-Coupled Device (CCD)</u>: photons are accumulated in each active *well* during exposure and all charges are transferred from well-to-well until they are deposited at the amplifiers, and this is then passed to the Analog-to-Digital Converter (ADC).

Complimentary Metal Oxide on Silicon (CMOS)

The Digital Camera

Two main kinds of sensors

<u>Charge-Coupled Device (CCD)</u>: photons are accumulated in each active well during exposure and all charges are transferred from well-to-well until they are deposited at the amplifiers, and this is then passed to the Analog-to-Digital Converter (ADC).

Complimentary Metal Oxide on Silicon (CMOS): photons hit the sensor directly and affect the conductivity of the photodetector, which can be selectively gated to control exposure duration and locally amplified before being read out.

Complimentary Metal-Oxide Semiconductor (CMOS)

Comparison: CCD vs. CMOS

	CCD	CMOS
Signal Output	Separate circuit to convert photons to voltage	Convert photons to voltage within each pixel
Noise	Low	Moderate
Dynamic Range	High	Moderate
Uniformity	High	Low to Moderate
Windowing	Limited	Extensive
Power Consumption	Moderate	Low

What is "Color"?

Human Response to different wavelengths

Visible light:

Do We recover Spectral Distribution $p(\lambda)$?

Sensors in the human eye: Rods & Cones Neurochemical Sensors (3 types)

The Mixing of Colors

Human Sensation of nearly all colors can be produced using 3 wavelengths!

$$(\lambda_r, \lambda_g, \lambda_b) = (650,530,410)nm$$

Hence, cameras and displays often use 3 filters:

(red, green, blue)

Young's Experiment on Color Mixture

Sensing Color Using Color Mosaic

Raw Image

Interpolated Image

Color Filled in by Interpolation (Demosaicing)

High Dynamic Range: Multiple Exposures

Assume Camera Response $f(\cdot)$ is Linear

 e_2

$$e_3$$

$$M_0 = \min(e_0 \cdot I, 255)$$

$$M_1 = \min(e_1 \cdot I, 255)$$

$$M_2 = \min(e_2 \cdot I, 255)$$

$$M_3 = \min(e_3 \cdot I, 255)$$

High Dynamic Range: Multiple Exposures

Aggregate Image: $M_{HDR} = M_0 + M_1 + M_2 + M_3$

Camera Response $f(\cdot)$ for Aggregate Image:

High Dynamic Range: Single Shot

Assorted Pixels: Spatially Varying Color & Exposure

SuperCCD SR, FujiFilm: Pixels with Subpixels

References: Textbooks

Robot Vision (<u>Chapter 2 - Recommended Reading</u>)

Horn, B. K. P., MIT Press

Computer Vision: A Modern Approach (Chapter 1)

Forsyth, D and Ponce, J., Prentice Hall

A Guided Tour of Computer Vision (Chapter 2, Pg:31-49)

Nalwa, V., Addison-Wesley Pub

Animal Eyes

Land, M. and Nilsson, D., Oxford University Press

Medical Physiology, Vol. I (Eye Physiology)

Mountcastle, V. B., C. V. Mosby Company

Eye and Brain (Human Vision)

Gregory, R., Princeton University Press

References: Papers

[Aizenberg 2001] J. Aizenberg, A. Tkachenko, S. Weiner, L. Addadi and G. Hendler. "Calcitic microlenses as part of the photoreceptor system in brittlestars." Nature, 2001.

[Clarkson 2006] E. Clarkson, R. Levi-Setti, G. Horváth. "The eyes of trilobites: The oldest preserved visual system". Arthropod structure and development, 2006.

[Descartes 1637] R. Descartes. "La Dioptrique". 1637.

[Frisius 1545] Gemma-Frisius. "De Radio Astronomica Et Geometrico". 1545.

[Nillson 1994] D-E. Nilsson and S. Pelger. "A pessimistic estimate of the time required for an eye to evolve". Proc of Royal Society, 1994.