Name: Ananya Prasad

Reg No: 20BCE10093

Course: MAT2002

Faculty: Dr Navnet Verma

Exam: Midlem Fall 22-23

Date: 13/08/2022

(5) Graph can

Graph cannot have more than (n-k) (n-k+1) eages

of vertices in ith component we ni.

: ni+n2+n3....nk=n where ni>1

.. Maximum number of cages is ni(ni-1)

Equating, $k (n_i - 1)^2 = (n - k)^2$ $k (n_i - 1)^2 + 2R = n^2 + k^2 - 2nk , (k is a non-negative)$ $k (n_i^2 - 1 - 2n_i^2) \leq n^2 + k^2 - 2nk$

$$\sum_{k=1}^{k} (n_{i}^{2}+1-2n_{i}^{2}) \leq (n^{2}+k^{2}-2nk)$$

$$\sum_{k=1}^{k} (n_{i}^{2}+1-2n_{i}^{2}) \leq (n^{2}+k^{2}-2nk)$$
Separating,
$$\sum_{k=1}^{k} n_{i}^{1}+k-2n \leq (n^{2}+k^{2}-2nk) \qquad \left[\sum_{k=1}^{k} + k \right] \sum_{i=1}^{k} n_{i}^{2}=n$$
adding $(n-k)$,
$$\sum_{k=1}^{k} n_{i}^{2}-n \leq (n^{2}+k^{2}-2nk+n-k)$$

$$\sum_{k=1}^{k} n_{i}^{2}-n \leq (n^{2}+k^{2}-2nk+n-k)$$

$$\sum_{k=1}^{k} n_{i}^{2}-n \leq (n^{2}+k^{2}-2nk)+(n-k)$$

$$\leq (n-k)^{2}+(n-k)$$

$$\leq (n-k)^{2}+(n-k)$$

$$\sum_{k=1}^{k} n_{i}^{2}(n_{i}^{2}-1) \leq (n-k)(n-k+1)$$

$$\sum_{k=1}^{k} n_{i}^{2}(n_{i}^{2}-1) \leq (n-k)(n-k+1)$$

i. a graph G with n vertices and k components cannot have more than (n-k)(n-k+1) edges

the same of the same of the same of

3 (2)	If Neha wing, then Shally loss.
(6)	converce it a this
(C)	inot of a is odd
(5)	If all call meon, then some dogs bark. [I john wine there were dogs bark. [I john wine there were
ره،	If john wine, then many loses and the school closer.
C 43	
(a)	converse - if shally loses, then Neha wine.
	Inverse - If Meha does not win, then shally does not lose.
	Contrapositive - 12 Napa 11 01
	Contrapositive - 12 Nama If Shelly does not lose, then nema does not win. Negation - If Nema wine, then Shelly
	Negation - If Nena wine, then shelly does not lose
(6)	
	Converse in square of 9 is odd.
	square of q'is add.
	The old than the
	contrapositive - If the square of 9 is not odd.
	contrapositive - If the square of 9 is not odd then q'is not odd. hegation - If 9 is odd then 4.
	by a wood then the sallow as
(C)	regation - If a is odd then the square of a is not odd. If all cate marries.
	then some down
	converse - If some dog
	Inverse - if not all cats mean.
	the mean then
	- was and finely to
	negation - 16 all cate me
	negation - 16 all cats meon, then some dogs dont bark.
(d)	If John wine, then Mary loses and the school closes
	Converse " and the school closes
	Many loses and the school closes, then John wins.
	Inverse - If John does not win, then Many does not lose and the school closes.
	Contrapositive - If Mary does not loses.
	Contrapositive - If Mary closs not lose and truschool does not close, John aves not win.
	regation - If John wire, then Mary does not lose and school does not close,

 $(a + 1)^n > 1 + na$ for a > -1 and $n \ge 2$ Alt $P(n) = (1 + a^n) > (1 + na)$ for a > -1Por $n \le 2$, $LHS = (1 + a^2) = (1 + 2a)$ $a^2 > 0$

itru (P(1) is true

(1+0) k > 1+ka

We have to prove P(k+1) 'u true

i.e, $(1+a)^{k+1} \ge 1+ (k+1) a$ now, $(1+a)^{k+1} \ge 1+ ka$ (: P(k) 'u true)

 $(1+a)^{k}(1+a) \ge (1+ka) (1+a)$ = $(1+a)^{k+1} \ge 1+ ka + a + ka^{2}$ $(1+a)^{k+1} \ge 1+ (k+1) a + ka^{2} \longrightarrow 0$

how, $1+(k+1)a + ka^2 \ge 1+(k+1)a \longrightarrow 2$ $\therefore \text{ from } 0 \neq 0,$

 $(1+a)^{k+1} \ge 1+(k+1)^{\frac{k}{2}}$

Hence P(n) is true for a >-1 and n > 2

set A ____ set B

A (Dumain)

B (Lo domain)

TO PROVE = 1)(RUS) = R'US" (ii) (RNS)-1= R-1 NS-1

(i) RE(RUS) IFF (1) E RUE '41 f(x) e R OR f(x) e B H replor regi its x e R 1 u g -1 ... [(Rus) = R -1 u s -1]

(ii) HE (RNB) -1, It means XERNS and farer and fares so, $x \in f'(R)$ and $x \in f'(s)$ 80, xe Rn 5

Hence proved

k: kelation over z arb give ab=ba

reflexive: les us assume a Ra

 $\therefore a^a = a^a \quad \forall \quad a \in Z$

i r'u reflexive

Symmetric: Let aRb V a, b & Z

· a, b e z ,

 $a^b = b^a$ and $b^a = a^b \forall a, b \in Z$.

.. R is symmetric

Transidire: Let a Rb and bRC & a,b,CEZ.

then, $ab = b^a$ and $b^c = cb$

 \Rightarrow abla=b and b=cblc

equating, abla = cblc

equaling the roots by eliminating to from exponential a'/a = c'/c

i. a = ca (property) Craising both to the power ac)

R is transitive.

. R'is an equivalance relation as it is reflexive,

Symmetric and transitive.

```
1 (b) verify AUBU(AnEnc) = U
    LHS = AUB U (AnEni)
    by di-morgan's law, (A NB)
                                         (AUB = A n E)
       · (An B) U (An Bnc)
    again by de-morgan's law, AnBnc = AUBUC
      · (ĀNĒ) U (Ā UĒ U Z)
     by double regation \bar{A} = A and \bar{c} = B
        · (Ā N Ē) U (A) U (B) U Ē
     commutative law: (AnB) 4 A4B4 C
                  = (AU(ĀNĒ) UBUĒ)
     " redundancy law, (AU(ANB))UBUC = (AUB) UBUC
 >
     Commutative Law, AUEUBUC = A UBUBUC
 \Rightarrow
     complement law ( X UK = 1).
 \Rightarrow
                  AU(BUE) vc = AUCU(U) = AU(U) UC
              and x u(u) = u
                  and (v)v\bar{c} = v = RHS
       .. LHS = RHS hence proved
```