CNC1S101,CNZ3132,CNZ3133,CNZ3134

Optoisolators

Overview

CNC1S101 is a DIL type 4-pin single-channel optoisolator which is housed in a small package. This optoisolator series also includes the two-channel CNZ3132, the three-channel CNZ3133, and the four-channel 3134.

The CNC1S101 series has a number of good features, including high I/O isolation voltage and current transfer ratio (CTR), as well as high speed response.

Features

• High current transfer ratio : CTR ≥ 100%

• High I/O isolation voltage : $V_{ISO} = 5000 V_{rms}$ (min.)

• Fast response : $t_r = 2 \mu s$, $t_f = 3 \mu s$ (typ.)

Low dark current : I_{CEO} ≤ 100 nA

• UL listed (UL File No. E79920)

Applications

• Switching power supply

• Computer terminal equipment

• System equipment, measuring equipment

• Telephones, copier, vending machines

• Televisions, VCRs, and other consumer electronics products

• Medical equipment and phsical and chemical equipment

 Signal transmission between circuits with different potentials and impedances

Pin Connection

■ Absolute Maximum Ratings (Ta = 25°C)

	Parameter	Symbol	Ratings	Unit	
	Reverse voltage (DC)	V_R	6	V	
Input (Light	Forward current (DC)	I_F	50	mA	
emitting diode)	Pulse forward current	I _{FP} *1 1		A	
	Power dissipation	P _D *2	75	mW	
Output (Photo transistor)	Collector current	I_{C}	50	mA	
	Collector to emitter voltage	V_{CEO}	80	V	
	Emitter to collector voltage	V _{ECO}	7	V	
	Collector power dissipation	P _C *3	150	mW	
Total power di	P_{T}	200	mW		
Operating amb	T _{opr}	-30 to +100	°C		
Storage tempe	T_{stg}	-55 to +125	°C		

^{*1} Pulse width $\leq 100 \,\mu s$, repeat 100 pps

■ Electrical Characteristics (Ta = 25°C)

Parameter		Symbol	Conditions	min	typ	max	Unit
Input characteristics	Reverse current (DC)	I_R	$V_R = 3V$			10	μΑ
	Forward voltage (DC)	V _F	$I_F = 50 \text{mA}$		1.35	1.5	V
	Capacitance between pins	C _t	$V_R = 0V$, $f = 1MHz$		15		pF
Output characteristics	Collector cutoff current	I _{CEO}	$V_{CE} = 20V$		5	100	nA
	Collector to emitter voltage	V _{CEO}	$I_C = 100\mu A$	80			V
	Collector to emitter capacitance	C _C	$V_{CE} = 10V$, $f = 1MHz$		3		pF
	Emitter to collector voltage	V _{ECO}	$I_E = 10\mu A$	7			V
Transfer characteristics	DC current transfer ratio	CTR*1, *5	$V_{CE} = 5V$, $I_F = 5mA$	100		600	%
	Isolation voltage, input to output	V _{ISO}	t = 1 min., RH < 60%	5000			V _{rms}
	Isolation capacitance, input to output	C _{ISO}	f = 1MHz		0.7		pF
	Isolation resistance, input to output	R _{ISO}	$V_{\rm ISO} = 500 V$	1011			Ω
	Rise time	t _r *2, *4	$V_{CC} = 10V, I_C = 2mA$		2		μs
	Fall time	t _f *3, *4	$R_{\rm L} = 100\Omega$		3		μs
	Collector to emitter saturation voltage	V _{CE(sat)}	$I_F = 20 \text{mA}, I_C = 1 \text{mA}$		0.1	0.2	V

^{*1} DC current transfer ratio (CTR) is a ratio of output current against DC input current.

^{*4} Rise and fall time measurement circuit

t_d: Delay time

*5 CTR classifications

Class	General	R	S
CTR (%)	100 to 600	100 to 300	200 to 600

^{*2} Input power derating ratio is 0.75 mW/°C at Ta \geq 25°C.

^{*3} Output power derating ratio is 1.5 mW/°C at Ta \geq 25°C.

 $^{^{*2}}$ t_r: Time required for the collector current to increase from 10% to 90% of its final value

^{*3} t_f: Time required for the collector current to decrease from 90% to 10% of its initial value

Frequency characteristics

Measurement circuit of frequency characteristics

