AMENDMENTS TO THE CLAIMS:

Please change the heading at page #, line 1, from "Claims:" to --WHAT IS CLAIMED IS:--

The following listing of claims will replace all prior versions of claims in the application.

Claims 1-17 (canceled)

-- Claim 18 (new): A process for preparing fluoromethyl-substituted heterocycles of formula (I)

$$F \xrightarrow{R^1} CO_2 R^3$$
 (I)

in which

R¹ is hydrogen, fluorine, or chlorine,

R² is hydrogen, fluorine, or chlorine,

 R^3 is C_1 - C_6 -alkyl,

A is a 5-membered heterocycle selected from the group consisting of pyrazole that is substituted by R⁴ in the 1-position, thiazole that is substituted by R⁴ in the 2-position, and oxazole that is substituted by R⁴ in the 2-position, and

 R^4 is C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -alkyl, or phenyl,

comprising converting a chloromethyl-substituted heterocycle of formula (II)

$$CI \xrightarrow{R^1} CO_2R^3$$
 (II)

in which R¹, R², R³, and A are each as defined for formula (I), to a fluoromethyl-substituted heterocycle of formula (I) in the presence of a fluorinating agent and optionally in the presence of a diluent.

Claim 19 (new): A process according to Claim 18 wherein for the chloromethylsubstituted heterocycle of formula (II),

R¹ is hydrogen, fluorine, or chlorine,

R² is hydrogen, fluorine, or chlorine,

 R^3 is C_1 - C_4 -alkyl,

A is a 5-membered heterocycle selected from the group consisting of

where in each case the bond marked by * is joined to the -CCIR 1 R 2 group and the other bond is joined to the CO $_2$ R 3 ester group, and

R⁴ is methyl, ethyl, n-propyl, isopropyl, cyclopropyl, cyclopentyl, cyclohexyl, or phenyl.

Claim 20 (new): A process according to Claim 18 wherein the chloromethyl-substituted heterocycle of formula (II) is selected from the group consisting of compounds of formulas (II-a), (II-b), (II-c), and (II-d)

$$CI \xrightarrow{R^{1}} CO_{2}R^{3}$$

$$CI \xrightarrow{R^{2}} CO_{2}R^{3}$$

$$CI \xrightarrow{R^{1}} CO_{$$

in which R^1 , R^2 , and R^3 are as defined in Claim 18.

Claim 21 (new): A process according to Claim 20 in which R^1 is chlorine, R^2 is hydrogen, and R^3 is methyl or ethyl.

Claim 22 (new): A process according to Claim 18 wherein the fluorinating agent is an alkali metal fluoride, cobalt(III) fluoride, halogen fluoride, antimony fluoride, molybdenum fluoride, hydrogen fluoride, hydrogen fluoride/pyridine mixture, a tertiary ammonium hydrofluoride, or a trialkylamine hydrofluoride of the formula n HF / N(Alk)₃ in which n is 1, 2, or 3, and Alk is C₁-C₄-alkyl.

Claim 23 (new): A process according to Claim 18 wherein the fluorinating agent is 3 HF / N(Et)₃ (Franz reagent), 3 HF / N(n-Bu)₃, or HF/pyridine (Olah's reagent).

Claim 24 (new): A process according to Claim 18 wherein the fluorinating agent is 3 HF / N(Et)₃ (Franz reagent) or 3 HF / N(n-Bu)₃.

Claim 25 (new): A process according to Claim 18 that it is carried out at a temperature of 80°C to 170°C.

Claim 26 (new): A process according to Claim 18 that it is carried out at a temperature of 120°C to 150°C.

Claim 27 (new): A process for preparing a fungicidally active carboxamide of formula (VII)

in which

R¹ is hydrogen, fluorine, or chlorine,

R² is hydrogen, fluorine, or chlorine,

A is a 5-membered heterocycle selected from the group consisting of pyrazole that is substituted by R⁴ in the 1-position, thiazole that is substituted by R⁴ in the 2-position, and oxazole that is substituted by R⁴ in the 2-position,

 R^4 is C_1 - C_4 -alkyl, C_3 - C_6 -cycloalkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -alkyl, or phenyl,

is hydrogen, C₁-C₈-alkyl, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; is C₁-C₆-haloalkyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulphinyl, C₁-C₄-haloalkylsulphonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; is formyl, formyl-C₁-C₃-alkyl, (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl, or (C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkyl)carbonyl-C₁-C₃-alkyl or halo-(C₁-C₃-alkoxy)carbonyl-C₁-C₃-alkyl having in each case 1 to 13 fluorine, chlorine, and/or bromine atoms; is (C₁-C₈-alkyl)carbonyl, (C₁-C₈-alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-cycloalkyl)carbonyl; is (C₁-C₆-haloalkyl)carbonyl, (C₁-C₆-haloalkoxy)-carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, or (C₃-C₈-halocycloalkyl)carbonyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or is -C(=O)C(=O)R¹⁰, -CONR¹¹R¹², or -CH₂NR¹³R¹⁴,

R⁸ is hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio, or trifluoromethyl,

n is 1, 2, 3 or 4,

 R^9 is optionally mono- to pentasubstituted phenyl having identical or different substituents selected from the group consisting of halogen, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_2 -haloalkyl, and C_1 - C_2 -haloalkoxy having in each case 1 to 5 fluorine, chlorine, and/or bromine atoms, hydroxyimino-C₁-C₄-alkyl, C₁-C₄-alkoxyimino-C₁-C₄-alkyl, C₁-C₄-haloalkoxyimino-C₁-C₄-alkyl, and, when substituted with two adjacent substituents, difluoromethylenedioxy or tetrafluoroethylenedioxy; is C₃-10-cycloalkyl or C₃-C₁₀-bicycloalkyl that is in each case optionally mono- to tetrasubstituted, identically or differently, by halogen and/or C₁-C₄-alkyl; is unsubstituted C₂-C₂₀-alkyl, or C₁-C₂₀-alkyl that is monoor polysubstituted, identically or differently, by fluorine, chlorine, bromine, iodine, and/or C₃-C₆-cycloalkyl in which case the cycloalkyl moiety is itself optionally mono- to tetrasubstituted, identically or differently, by fluorine, chlorine, bromine, iodine, C₁-C₄-alkyl, and/or C_1 - C_4 -haloalkyl; or is C_2 - C_{20} -alkenyl or C_2 - C_{20} -alkynyl that is in each case optionally mono- or polysubstituted, identically or differently, by

P. 36

- fluorine, chlorine, bromine, iodine, and/or C_3 - C_6 -cycloalkyl in which the cycloalkyl moiety is itself optionally mono- to tetrasubstituted, identically or differently, by fluorine, chlorine, bromine, iodine, C_1 - C_4 -alkyl, and/or C_1 - C_4 -haloalkyl,
- R¹⁰ is hydrogen, C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or is C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R¹¹ and R¹² are each independently hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or are each independently C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or R¹¹ and R¹², together with the nitrogen atom to which they are bonded, are a saturated heterocycle having 5 to 8 ring atoms that is optionally monoor polysubstituted, identically or differently, by halogen or C₁-C₄-alkyl, and in which the heterocycle optionally contains 1 or 2 additional nonadjacent heteroatoms selected from the group of oxygen, sulphur, and NR¹⁵,
- R¹³ and R¹⁴ are each independently hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or are each independently C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or R¹³ and R¹⁴, together with the nitrogen atom to which they are bonded, are a saturated heterocycle having 5 to 8 ring atoms that is optionally mono- or polysubstituted, identically or differently, by halogen or C₁-C₄-alkyl, and in which the heterocycle optionally contains 1 or 2 additional nonadjacent heteroatoms selected from the group of oxygen, sulphur, and NR¹⁵, and
- ${\ensuremath{\mathsf{R}}}^{15}$ is hydrogen or ${\ensuremath{\mathsf{C}}}_1\text{-}{\ensuremath{\mathsf{C}}}_6\text{-alkyl},$ comprising

(1) hydrolyzing a fluoromethyl-substituted heterocycle of formula (I)

in which

 R^1 , R^2 , and A are each as defined for formula (VII), and R^3 is C_1 - C_6 -alkyl,

in the presence of a base and optionally in the presence of a diluent, to form a free acid, and

- (2) subsequently either
 - converting the free acid to the corresponding acid chloride in the presence of a chlorinating agent and optionally in the presence of a diluent, or
 - (ii) reacting the free acid directly with an aniline derivative of the formula (VIII)

in which R⁷, R⁸, n and R⁹ are each as defined for formula (VII), optionally in the presence of a catalyst, optionally in the presence of a condensing agent, optionally in the presence of an acid binding agent, and optionally in the presence of a diluent.

Claim 28 (new): A process according to Claim 27 wherein the compound of formula (I) is obtained by reacting a chloromethyl-substituted heterocycle of formula (II)

$$CI \xrightarrow{R^1} CO_2R^3$$
 (II)

in which

R¹ is hydrogen, fluorine, or chlorine,

R² is hydrogen, fluorine, or chlorine,

 R^3 is C_1 - C_6 -alkyl, and

A is a 5-membered heterocycle selected from the group consisting of pyrazole that is substituted by R⁴ in the 1-position, thiazole that is substituted by R⁴ in the 2-position, and oxazole that is substituted by R⁴ in the 2-position,

with a fluorinating agent, optionally in the presence of a diluent.

Claim 29 (new): A chloromethyl-substituted heterocycle of formula (II)

$$CI \xrightarrow{R^1} CO_2R^3$$
 (II)

in which

R¹ is hydrogen, fluorine, or chlorine,

R² is hydrogen, fluorine, or chlorine,

 R^3 is C_1 - C_6 -alkyl, and

A is a 5-membered heterocycle selected from the group consisting of pyrazole that is substituted by R⁴ in the 1-position, thiazole that is substituted by R⁴ in the 2-position, and oxazole that is substituted by R⁴ in the 2-position.

4.7

Claim 30 (new): A compound of formula (II-a)

$$CI \xrightarrow{R^1} CO_2R^3$$

$$\downarrow N \qquad \qquad N$$

$$\downarrow CH_3 \qquad \qquad (II-a)$$

in which

R¹ is hydrogen, fluorine, or chlorine,

R² is hydrogen, fluorine, or chlorine, and

 R^3 is C_1 - C_6 -alkyl.

Claim 31 (new): A compound of formula (II-b)

$$CI \xrightarrow{R^1} CO_2R^3$$
 $H_3C \xrightarrow{N} N$
(II-b)

in which

R¹ is hydrogen, fluorine, or chlorine,

R² is hydrogen, fluorine, or chlorine, and

 R^3 is C_1 - C_6 -alkyl.

Claim 32 (new): A compound of formula (II-c)

$$CI \xrightarrow{R^1} CO_2R^3$$
 S
 CH_3
(II-c)

in which

R¹ is hydrogen, fluorine, or chlorine,

R² is hydrogen, fluorine, or chlorine, and

 R^3 is C_1 - C_6 -alkyl.

Claim 33 (new): A compound of formula (II-d)

$$CI \xrightarrow{R^1} CO_2R^3$$
 CH_3
(II-d)

in which

R¹ is hydrogen, fluorine, or chlorine,

R² is hydrogen, fluorine, or chlorine, and

 R^3 is C_1 - C_6 -alkyl. --