Ishan Sethi | ID: 110941217 | CSE 215 | Homework 2 in LATEX

Professor McDonnell | Assigned: February 7, 2017 | Due: February 16, 2017

Contents

3 Predicates, Statements, Arguments and Quantified Statements

3.1 - 12, 16b, 16d, 16f, 25d, 26a, 30a, 30c and 33d

12) \forall real x and y, $\sqrt{x+y} = \sqrt{x} + \sqrt{y}$

Let x=10 and let y=10, this would make $\sqrt{x+y}$ really just be $\sqrt{20}$ which is not equal to $2\sqrt{10}$, coming from $\sqrt{x} + \sqrt{y} = \sqrt{10} + \sqrt{10}$. This would make the latter part of the implied conditional false which would make the " \forall " part false which in the end makes this statement **false**.

16 -

- b) \forall real x, x > 0, x < 0 or x = 0.
- d) \forall logicians x, \sim (logicians, x, are lazy)
- f) \forall real x, $\sim (x^2 = -1)$
- 25d) i) \forall irrational x, -x is also irrational.
 - ii) \forall irrational x, if x is irrational then -x is also irrational.

26a) $\forall x$, if x is an integer then it is rational, but \exists rational x such that if x is rational then it is not an integer.

30a) $\exists x \in \mathbb{Z}$ such that $Prime(x) \land \sim Odd(x)$

Let x = 2, 2 is prime and 2 is not odd, this makes the conditional/conjunction true and this makes the whole predicate true because the premises only requires one to satisfy to yield **true**

30c) $\exists x \in \mathbb{Z}$ such that $odd(x) \wedge square(x)$

Let x = 81, 81 is odd and 81 is a perfect square ($9^2 = 81$). This makes the conditional/conjunction true and this makes the whole predicate true because the premises only requires one to satisfy to yield **true**

33d) $\mathbb{R} = \{a, b, c, d\}$ and $(a < b) \land [(c < d) \Rightarrow (ac < bd)]$

Let a = 2, b = 3, c = -3 and d = -2, this would yield in $(2 < 3) \land [(-3 < -2) \Rightarrow (-6 < -6)]$

 $-6 \not< -6$ so this would yield in the conditional being $T \to F$ which outputs a false, which makes the conjunction $T \wedge F$ which then evaluates to a **false** predicate.

3.2 - 2, 14, 21, 31, 42, 44

- 2) Original Statement: "All dogs are loyal"
- a) "All dogs are not loyal" (Negation)
- b) "No dogs are loyal" (Negation)
- c) "Some dogs are disloyal" (Negation)
- d) "Some dogs are loyal" (Not a Negation)
- e) "There is a disloyal animal that is not a dog" (Not a Negation)
- f) "There is a dog that is loyal" (Negation)

- g) "No animals that are not dogs are loyal" (Negation)
- h) "Some animals that are not dogs are loyal" (Negation)

14) Incorrect

Corrected: \exists real x_1 and x_2 such that $x_1^2 = x_2^2$ and $x_1 \neq x_2$

21) **Original**: \forall integers n, if (n is divisible by 6), then (n is divisible by 2 and n is divisible by 3).

Negation: \exists integer n such that (n is divisible by 6) and $\sim (n \text{ is divisible by } 2 \text{ and } n \text{ is divisible by } 3)$

31) **Original**: \forall integers n, if (n is divisible by 6), then (n is divisible by 2 and n is divisible by 3). **True Converse**: \forall integers n, if (n is divisible by 2 and n is divisible by 3), then (n is divisible by 6). **True Inverse**: \forall integers n, if (n is not divisible by 6), then (n is not divisible by 2 or n is not divisible by 3). **True Contra**: \forall integers n, if (n is not divisible by 2 or n is not divisible by 3), then (n is not divisible by 6). **True**

42) $\{\exists \text{ comprehensive exams } c \text{ such that if } c \text{ is not passed, then masters is not obtained.}\}$

44) $\{\exists \text{ person } p \text{ such that } \sim (\text{if } p \text{ has happiness, then } p \text{ has a high salary. })\}$

3.3 - 10b, 10d, 10f, 11b, 11e, 11f, 19, 24b, 36, 41d and 41g

10

b) \forall students s, \exists a salad T such that s chose T.

This statement is **False** because Yuen didn't choose a salad.

d) \exists a beverage b, such that \forall students D, D chose b.

This statement is **False** because the three people didn't have one drink in common.

f) \exists a station Z, \forall students s, \exists an item I such that s chose I from Z.

This statement is **True** because all three chose one dish from one station, pie.

11

- b) If you are a student in S and then you have seen Star wars.
- e) If student s is in S and student t is in S and s is not the same as t, t and s will watch the same movie m in M.
- f) If student s is in S and student t is in S and s is not the same as t, they will watch the same but an undefined movie m in set M.
- 19) **Negation:** Any x in \mathbb{R}^+ will have one y in \mathbb{R}^+ such that x > y.

24b)
$$\sim (\exists x \in D(\exists y \in E(P(x,y))))$$

$$\equiv \forall x \in D \sim (\exists y \in E(P(x,y)))$$

$$\equiv \forall x \in D(\forall y \in E(\sim P(x,y)))$$

36) "Somebody trusts everybody", Let t(x,y) = "x trusts y"

Original: $\{\exists s \in S, \forall e \in E | t(s, e) \}$ Negation: $\{\forall s \in S, \exists e \in E | \sim t(s, e) \}$

41d) Original: $\{ \forall x \in \mathbb{R}^+, \exists y \in \mathbb{R}^+ | xy = 1 \}$

Yes this is **True** because if you have a positive real number, the reciprocal is of that is indeed a real number and that times the original = 1 Q.E.D (the QED is a joke, if it doesn't apply, dont take points off pls)

3

g) Original: $\{ \forall z \in \mathbb{Z}, \forall y \in \mathbb{Z} | z = x - y \}$

This is **True** because any real number subtracted from any real number will yield in 1 specific real number.

Extra Problem)

"For every object x, there is an object y such that $x \neq y$, then x and y have different colors" Let dC(x,y) = x and y have different colors"

a) True

b) **Original:** $\{ \forall \text{ objects } x, \exists \text{ object } y, | (x \neq y) \Rightarrow (dC(x, y)) \}$

c) **Negation:** $\{\exists \text{ object } x, \forall \text{ objects } y, | (x \neq y) \land (\sim dC(x, y)) \}$

3.4 - 12, 17, 18, 22, 27, 32

12)

All honest people pay taxes

Darth is not honest

... Darth does not pay taxes

This argument is **invalid** because this is an **inverse error**.

17)

If an infinite series converges, then its terms go to 0.

The terms of the infinite series $\sum_{n=1}^{\infty} \frac{1}{n}$ go to 0.

 \therefore The infinite series $\sum_{n=1}^{\infty} \frac{1}{n}$ converges.

This argument is **invalid** because this is a **converse error**.

18)

If an infinite series converges, then its terms go to 0.

The terms of the infinite series $\sum_{n=1}^{\infty} \frac{n}{n-1}$ do not go to 0.

 \therefore The infinite series $\sum_{n=1}^{\infty} \frac{n}{n-1}$ doesn't converge.

This argument is valid because universal modus tollens.

- 22) Under the Proof (Number 32)
- 27) Under the Proof (Number 32)

Number 32) - Main Proof

I) Let G(x) = "Grumble from x" and U(x) = "Understand x"

Statement: $\{\exists x \in L_e | \sim G(x) \Rightarrow U(x)\}$

II) Let Ar(x) = "x arranged like I am used to"

Statement: $\{ \forall x \in A_r | \sim Ar(x) \}$

III) Let E(x) = "Easy Examples" and H(x) = "Headache from x"

Statement: $\{\forall x \in L_e | E(x) \Rightarrow \sim H(x)\}$

IV) Phrases already defined

Statement: $\{ \forall x \in A_r, \exists e \in L_e | \sim Ar(x) \Rightarrow \sim U(e) \}$

V) Phrases already defined

Statement: $\{\exists x \in L_e | \sim H(x) \Rightarrow \sim G(x)\}$

 $\therefore \{ \forall e \in L_e | \sim E(x) \}$

A) $\{ \forall x \in A_r, \exists e \in L_e U(e) \Rightarrow Ar(x) \}$	Contrapositive of Statement 4
A) $\{ \forall x \in A_r, \exists e \in L_e U(e) \Rightarrow Ar(x) \}$	From Statement A
$2) \{ \forall x \in A_r \sim Ar(x) \}$	Statement 2
$\therefore \{\exists e \in L_e \sim U(e)\}$	B) Universal Modus Tollens
$5) \{\exists x \in L_e \sim H(x) \Rightarrow \sim G(x)\}$	Statement 5
3) $\{\forall x \in L_e E(x) \Rightarrow \sim H(x) \}$	Statement 3
$\therefore \{ \forall x \in L_e E(x) \Rightarrow \sim G(x) \}$	C) Universal Transitivity
1) $\{\exists x \in L_e \sim G(x) \Rightarrow U(x)\}$	Statement 1
B) $\{\exists e \in A_r \sim U(e)\}$	From Statement B
$\therefore \{\exists e \in A_r \sim (\sim G(e))\}$	D) Universal Modus Tollens
B) $\{\exists e \in A_r \sim (\sim G(e))\}$	From Statement D
$\therefore \{\exists e \in A_r G(e) \}$	E) Universal Double Negation Law
C) $\{\forall x \in L_e E(x) \Rightarrow \sim G(x) \}$	From Statement C
$E) \{\exists e \in A_r G(e) \}$	From Statement E
$\therefore \{ \forall e \in L_e \sim E(x) \}$	Universal Modus Tollens