

Details

Ver. Rel. No.	Release Date	Prepared. By	Reviewed By	To be Approved	Remarks/Revision Details
1.	15/04/2021	Neha Tabassum			

Contents

CONTENTS	3
MINIPROJECT -1 [TEAM] : SDLC (SOFTWARE DEVELOPMENT LIFE CYCLE)	6
Module/s	
Topic and Subtopics	
Objectives & Requirements	
DESIGN	
TEST PLAN	
Implementation Summary	21
Git Link	22
Git Dashboard	22
Summary	22
Individual Contribution & Highlights	
Summary	
Challenges faced and how were they overcome	
Future Scope (If applicable):	30
MINIPROJECT -2 [INDIVIDUAL]: PYTHON	31
MODULE/s:	
Objectives & Requirements	
DESIGN	
TEST PLAN	
IMPLEMENTATION SUMMARY:	
Git Link	
Git Dashboard	
Summary	
Individual Contribution & Highlights:	
Challenges faced and how were they overcome	
/INIPROJECT -3 [TEAM] – EMBEDDED C	
MODULE/S	
Topic and Subtopics	
OBJECTIVES & REQUIREMENTS	
DESIGN	
TEST PLAN	
IMPLEMENTATION SUMMARY	
Git Link	
Git Dashboard	
Summary	44
Individual Contribution & Highlights:	44
Challenges faced and how were they overcome	44
Future Scope (If applicable):	44
MINIPROJECT -4 [INDIVIDUAL]: EMBEDDED LINUX AND KERNEL PROGRAMMING	45
Module/s	45
Topic and Subtopics	45
OBJECTIVES & REQUIREMENTS	

TEST PLAN	48
Git Link	49
Git Dashboard	49
Individual Contribution & Highlights	49
Summary	
Individual Contribution & Highlights:	
Challenges faced and how were they overcome	
Future Scope (If applicable):	49
MINIPROJECT -5 [INDIVIDUAL]: NETWORKING	50
Module/s	50
Topic and Subtopics	50
Objectives & Requirements	50
DESIGN	
TEST PLANS:	_
TESTING RESULTS:	
IMPLEMENTATION SUMMARY	
Individual Contribution & Highlights:	
Future Scope (If applicable):	
List of Figures: Figure 1: High Level Diagram of Calculator	
Figure 2: System Level Structural Diagram of Arithmetic Operation	
Figure 3: System Level Object Diagram of Arithmetic operation	
Figure 4: Subsystem level Structural Diagram of Arithmetic Operation	
Figure 5: Structural Diagram of Trigonometric Function	
Figure 6: System Level Structural Diagram of Number conversion	
Figure 7: Subsystem Level Structural Diagram of Number Conversion	
Figure 8: Structural Diagram of Area Calculator	
Figure 9: System Level Behavioural Diagram of Arithmetic Operation	
Figure 10: Subsystem Level Behavioral Diagram of Arithmetic Operation	
Figure 11: Behavioural Diagram of Number Conversion	
Figure 12: Structural Diagram of data read/write	
Figure 13: Behavioural Diagram of Data read/write	
Figure 14: V-model Implementation of data read/write	
Figure 15: High Level Design of hardware	
Figure 16:Air Conditioner Control Module	
Figure 17: Sun Shed Control Module	
Figure 18: Gas Leakage Control Module	
Figure 19: Obstacle Detector control module	
Figure 20:Wiper Control Module	
Figure 21: Headlight Control Module	
Figure 22: Serial Connection of routers for packet transmission from one server to the other	
Figure 23:Transfer of Packets from different sources to different destination	51

Figure 24: IPv4 routes on router 0 (show ip route)	51
Figure 25: IPv6 routes on router 0 (show ipv6 route)	51
Figure 26: IPv4 routes on router 1 (show ip route)	52
Figure 27: IPv6 routes on router 1 (show ipv6 route)	52
Figure 28: IPv4 routes on router 2 (show ip route)	53
Figure 29: IPv6 routes on router 2 (show ipv6 route)	53
Figure 30: Pinging from IPv4 to IPv4 in the same network	54
Figure 31: Pinging from IPv4 to IPv4 in different network	55
List of Tables:	
Table 1: HLR of Calculator	
Table 2: LLR of Arithmetic Operation	9
Table 3: LLR of Percentage and Power	
Table 4: LLR of Trigonometric Function	
Table 5: LLR of Number Conversion	
Table 6: LLR of Area Calculator	
Table 7: Test Plan of Arithmetic Operation	
Table 8: Test Plan of Trigonometric Operation	
Table 9: Test Plan of Number Conversion	
Table 10: Test Plan of Area Calculator	
Table 11: HLR of data read/write	
Table 12: LLR requirement of data read/write	
Table 13: Test Plan of Data read/write	
Table 14: HLR of hardware sensor project	
Table 15: LLR of hardware sensor project	
Table 16: High Level Test Plan of Hardware Project	
Table 17: Low Level Test Plan of Hardware project	
Table 18: HLR of Kernel Activity	
Table 19: LLR of Kernel Activity	
Table 20: Test Plan of Kernel Activity Implemented	48

Miniproject -1 [Team] : SDLC (Software Development Life Cycle)

Module/s

Module linked to the miniproject is SDLC.

Topic and Subtopics

Below is the list of core topics and subtopics being implemented:

SDLC (Software Development Life Cycle):-

SDLC is a process followed by a software project, within a software organization. Contains a detailed description of how you can improve, maintain, modify and modify or improve a particular software. The life cycle describes how to improve software quality and the overall development process.

Phase 1: Requirement and Planning Analysis

Analysis is the most important and fundamental phase in the SDLC. It is done by senior team members with input from customers, industry experts, market surveys and sales department. This information is also used to plan the basic course of the project and to conduct feasibility studies in the technical, conservation and operational areas.

Phase 2: Requirement Definition

Once the requirements has been taken the next step is to clearly define and document the product requirements and is approved for customers or market analysts. This is done through an SRS (Software Requirement Specification) document that contains all the product requirements that will be created and developed during the life cycle of the project.

Phase 3: Product Design

SRS is the trust of product manufacturers to come up with the best technology for product development. In accordance with the requirements set out in SRS, usually more than one method of product design is proposed and documented in the DDS - Design Document Specification. An excellent design approach is chosen that clearly defines all product building modules and the representation of communication and data flow through external and third party modules.

Step 4: Building or developing a product

At this stage of the SDLC, real development begins and the product is built. Application code is generated per DDS. If construction is done in a detailed and systematic way, coding can be accomplished without much hassle. Various programming languages such as C, C ++, PHP, Java and Pascal are used for encoding the design.

Step 5: Product testing

This section is usually the basis of all categories as modern models of SDLC, testing activities are very involved in all sections of SDLC.

Section 6: Market Delivery and Care

Once the product has been tested and ready for shipment it is officially released from the relevant markets.

SWOT Analysis:

SWOT analysis is used to assess the organization's current position before going to any new strategy.

SWOT stands for Strengths, Weaknesses, Opportunities, and Threats, so SWOT Analysis is a way to evaluate four business aspects. SWOT analysis is used to make the most of what a person has gained, benefiting their organization. It can also reduce the likelihood of failure, and eliminating the risks that would otherwise be unknown.

Strength

It is the thing that an organization does best, or in a way that separates the organization from its competitors.

Weaknesses

Now is the time to look at organization weaknesses. Be honest! SWOT analysis will be useful only if one collects all the necessary information. Therefore, it is better to be realistic, and to deal with unpleasant facts very quickly.

Opportunities

Opportunities to open up or opportunities for something good to happen, but one needs to seek them out through the organization.

Threats

Threats include anything that could adversely affect the business from the outside, such as procurement problems, changes in market demand, or a shortage of employees.

Unified Modelling Language (UML) Diagrams:

UML is a common language for interpreting, visualizing, constructing and transcribing software archeology. UML drawings are designed not only for engineers but also for business users, the general public, and anyone with an interest in understanding the system. There are two broad categories of it and they are further subdivided as follows:

Structural Diagrams:

- Class Diagram
- Object Diagram
- Component Diagram
- Deployment Diagram
- Profile Diagram
- Package Diagram
- Composite Structure Diagram

Behavioral Diagrams:

- Use Case Diagram
- State Machine Diagram
- Activity Diagram

- Communication Diagram
- Sequence Diagram
- Interaction Overview Diagram
- Timing Diagram

Objectives & Requirements

The designed product has all the necessary features required by the undergraduates and postgraduates students including scholars. The High level requirements include arithmetic operations, decimals, trigonometric functions, nth root, power of n, fractions, percentage, logarithms, exponentials, number conversions etc. The low level requirements of the product includes addition, subtraction, multiplication, division under arithmetic operation, decimal upto 8 digits, trigonometric functions with square root and radians. Under number conversions there are the features like Binary to decimal conversion, Decimal to binary conversion, Decimal to octal conversion. Calculators also includes the functions of database management, higher accuracy, wider and has smart touch, solar cell operations, battery charging and is waterproof.

Requirement:-

High Level Requirement (HLR):

Table 1: HLR of Calculator

ID	Requirements	Description	Status
HLR_01	Arithmetic operations	Addition, Subtraction, Multiplication, Division, Remainder, GCD	Implemented
HLR_02	Percentage and power	Calculates percentage of one number wrt to another and raised to power of a number to the number provided.	Implemented
HLR_03	Trigonometric functions	Sine, cosine, tangent functions	Implemented
HLR_04	Number Conversions	Converts Binary to Decimal, Decimal to Binary and Decimal to Octal.	Implemented
HLR_05	Area Calculation	Calculates area of Square, Rectangle, Triangle and circle.	Implemented

Low Level Requirement (LLR):-

1. Arithmetic Operations:

Table 2: LLR of Arithmetic Operation

ID	Requirements	Description	Status
LLR_01	Addition	Takes two numbers as an input and adds them	Implemented
LLR_02	Subtraction	Takes two numbers as an input and subtracts them	Implemented
LLR_03	Multiply	Takes two numbers as an input and multiplies them	Implemented
LLR_04	Divide	Taking two numbers as an input and divides them	Implemented
LLR_05	Percentage	Takes two numbers as an input and calculate percentage of one number with the other	Implemented
LLR_06	Greatest Common Divisor(GCD)	Takes two numbers and calculate their GCD	Implemented

2. Percentage and Power:

Table 3: LLR of Percentage and Power

ID	Requirements	Description	Status
LLR_01	Percentage	Calculates percentage of two numbers	Implemented
LLR_02	Power	Calculates power of one number raised to the other	Implemented

3. Trigonometric Functions:

Table 4: LLR of Trigonometric Function

ID	Requirements	Description	Status
LLR_01	Sine Function	Calculate sine function of a number in both degree and radian	Implemented
LLR_02	Cosine Function	Calculate cosine function of a number in both degree and radian	Implemented
LLR_03	Tangent Function	Calculate tan function of a number in both degree and radian	Implemented

4. Number conversions:

Table 5: LLR of Number Conversion

ID	Requirements	Description	Status
LLR_01	Binary Function	Convert binary number to decimal number	Implemented
LLR_02	Decimal Function	Convert Decimal number to binary number	Implemented
LLR_03	Octal Function	Convert Decimal to octal number	Implemented

4. Area Calculator:

Table 6: LLR of Area Calculator

ID	Requirements	Description	Status
LLR_01	Square Function	Calculate area of a square	Implemented
LLR_02	Rectangle Function	Calculate area of a rectangle	Implemented
LLR_03	Circle Function	Calculate area of a Circle	Implemented
LLR_04	Triangle Function	Calculate area of a Triangle	Implemented

Design

Figure 1: High Level Diagram of Calculator

Structural Diagram:-Arithmetic Operation:

Figure 2: System Level Structural Diagram of Arithmetic Operation

Figure 3: System Level Object Diagram of Arithmetic operation

Subsystem Level:

Figure 4: Subsystem level Structural Diagram of Arithmetic Operation

Trigonometry Function:

Figure 5: Structural Diagram of Trigonometric Function

Number Conversion:

System Level:

Figure 6: System Level Structural Diagram of Number conversion

Subsystem-level

Figure 7: Subsystem Level Structural Diagram of Number Conversion

Area Calculator:

Figure 8: Structural Diagram of Area Calculator

Behavioral Diagram:
Arithmetic Operation:
System Level:

Figure 9: System Level Behavioural Diagram of Arithmetic Operation

Subsystem-Level:

Figure 10: Subsystem Level Behavioral Diagram of Arithmetic Operation

Number Conversion:

Figure 11: Behavioural Diagram of Number Conversion.

Test Plan

High Level Test Plan:

Arithmetic Operation

Table 7: Test Plan of Arithmetic Operation

Test	Description	Expected Input	Exp. Out.	Actual	Type of Test
ID				output	
H_01	Perform operations of 2 positive numbers	> 2+4.05 > 4/6+2/3 > 4-3 > 3*4 > 8/4	> 6.05 > 8/6=1.33 3333 > 1.0 > 12.0 > 2.0	> 6.0 > 1.33 > 1 > 12.0 > 2.0	Requirement based
H_02	Perform operation of positive number and zero	> 2+0 > 2-0 > 2*0	> 2 > 2 > 0	> 2.0 > 2.0 > 0	Scenario based
H_03	Perform operation of large numbers	> 345+567 > 893.03-876.23 > 45*34 > 345/28	> 912 > 16.8 > 1530 > 12.32	> 912.0 > 16.80 > 1530.0 > 12.32	Boundary based

Trigonometric Operation

Table 8: Test Plan of Trigonometric Operation

Test ID	Description	Expected Input	Expected Output	Actual Output	Type of Test
Н_01	Should ask for the selection of operation to perform	Enter your choice	Options to choose from	Options get displayed	Requirement Based
H_02	Should run the selected function	Ask for entering the angle and to select the identity	Angle & identity should get selected & answer should get displayed	Output get displayed	Scenario based
H_03	Should run the Exit function	Entering 3	Get lost	get lost	Scenario based

Number Conversion

Table 9: Test Plan of Number Conversion

Test ID	** Description **	** Expected input	Expected output **	** Type of test**
H_01	Binary to decimal	1010	10	Requirement based
H_02	Decimal to binary	55	45	Requirement based
H_03	Decimal to octal	20	24	Requirement based

Area Calculation

Table 10: Test Plan of Area Calculator

TestID**	Description	** Expected input **	** Expected output **
H_01	Area:if any side of input	Any negative value	Area cannot be negative
	is in negative of shape	example:-5	
H_02	Area: if any side is		if you put zero it give
	zero then whole area	0	you invalid so please
	of shape becomes zero		enter any other value
H_03	Area:input should be	First input should be	Both input should have
	in same dimension	in same	same dimension

Low Level Test Plan:

Addition:

Test ID	Description	Expected Input	Exp. Out.	Actual output	Type of Test
L_01	Addition of positive integers and zero	4+0	4	4.0	Requirement based
L_02	 Addition of negative integers Addition of positive integers and negative integers Addition of negative integer and zero 	-4+-2 4+-3 -8+0	-6 1 -8	Error 1.0 error	Scenario based
L_03	Addition of very large integers,	34+789	823	823.0	Boundary Based

Subtraction:-

Test ID	Description	Expected Input	Exp. Out.	Actual output	Type of Test
L_01	 Subtraction of higher number from a lower number Subtraction of zero from a number 	140-39 34-0	101 34	101.0 34.0	Requirement based
L_02	Subtraction of lower number from higher number	45-35	10	10.0	Scenario based
L_03	 Subtraction of two non-numerals Subtraction of number from zero 	@-! 0-37	Error -37	Error Error	Boundary based

Multiplication:-

Test ID	Description	Expected Input	Exp. Out.	Actual output	Type of Test
L_01	Multiply two number of different bits	140*39	5460	5460.0	Requirement based
L_02	Multiplication by zero	45*0	0	0.0	Scenario based
L_03	Multiplication of Large Numbers	140*657	91,980	91,980.0	Boundary based

Division:-

Test ID	Description	Expected Input	Exp. Out.	Actual output	Type of Test
L_01	Division of higher number by lower number and vice versa.	140/20 20/140	7 0.14	7.0 0.1428	Requirement based
L_02	Division by zero	45/0	Error	Put a valid input	Scenario based
L_03	Division of large numbers	11654/456	25.55	25.55701	Boundary based

Percentage:-

Test ID	Description	Expected Input	Exp. Out.	Actual output	Type of Test
L_01	 Calculation of percentage of one number by another number 	5/10 40/50	50 80	50.0 80.0	Requirement based
L_02	 Percentage calculation wrt zero 	10/0	Error	Put a valid input	Scenario based
L_03	 Percentage of large numbers 	456/984	46.34	46.34	Boundary based

Power:-

Test ID	Description	Expected Input	Exp. Out.	Actual output	Type of Test
L_01	 Power Calculation of a number 	(3^3)	27	27	Requirement based
L_02	 Power calculation of number one 	(1^2)	1	1	Scenario based
L_03	➤ Power raised to zero	(2^0)	1	1	Boundary based

Remainder:-

Test ID	Description	Expected	Exp. Out.	Actual	Type of Test
		Input		output	
L_01	Remainder of two	(45,5)	0	0	Requirement
	numbers	(17,5)	2	2	based
L_02	 Remainder of one large and small number 	(1,2)	1	1	Scenario based
L_03	➤ Remainder by zero	(1,0)	Error	NA	Boundary based

GCD:-

Test ID	Description	Expected Input	Exp. Out.	Actual output	Type of Test
L_01	 Greatest Common divisor of two number 	(1,2) (2,5)	1 1	1	Requirement based
L_02	 GCD of large Numbers 	(35,64)	1	1	Scenario based
L_03	GCD of Even numbers	(24,36)	12	12	Boundary based

Trigonometry:-

Test ID	Description	Expected Input	Expected Output	Actual Output	Type of Test
L_01	Convert sin degree into sin radian	sin60	sin(pi/3)	sin(pi/3)	Scenario Based
L_02	Convert cos degree into cos radian	cos60	cos(pi/3)	cos(pi/3)	Scenario Based
L_03	Convert tan degree into tan radian	tan60	tan(pi/3)	tan(pi/3)	Scenario Based
L_04	Convert sec degree into sec radian	sec60	sec(pi/3)	sec(pi/3)	Scenario Based
L_05	Convert cosec degree into cosec radian	cosec60	cosec(pi/3)	cosec(pi/3)	Scenario Based
L_06	Convert cot degree into cot radian	cot60	cot(pi/3)	cot(pi/3)	Scenario Based
L_07	Convert sin radian into sin degree	Sin(pi/3)	sin60	sin60	Scenario Based
L_08	Convert cos radian into cos degree	cos(pi/3)	cos60	cos60	Scenario Based
L_09	Convert tan radian into tan degree	tan(pi/3)	tan60	tan60	Scenario Based
L_10	Convert sec radian into sec degree	sec(pi/3)	sec60	sec60	Scenario Based
L_11	Convert cosec radian into cosec degree	cosec(pi/3)	cosec60	cosec60	Scenario Based
L_12	Convert cot radian into cot degree	cot(pi/3)	cot60	cot60	Scenario Based

Number Conversion:-

Test** ID **	** Description **	** Expected **input	Expected** output **	** Type of test**
L_01	Binary to decimal	1010	10	Requirement based
		101	5	
		11111	63	
		11101	29	
		1110	14	
		110	16	
L_02	Decimal to binary	10	1010	Requirement based
		5	101	
		63	111111	
		29	11101	
		14	1110	
		16	110	
L_03	Decimal to octal	20	24	Requirement based
		12	12	
		67	67	
		5	5	
		45	55	
		85	125	

Implementation Summary

The implementation part consist of software implementation of the designed product known as calculator as per the specification mentioned in requirements and design. The folder consist of inc folder which consist of various header files (.h) of various section of designed calculator. It also contains src folder which is having the source files (i.e. c file). The test folder contains the test case implementation of the designed product. It also contains the Makefile which is used to build, run and clean all the multiple files and check for the test cases that are formulated according to the requirement specified.

The source file contains the implementation of the following functions:

- Arithmetic operation (Addition, Subtraction, Multiplication, Division, Remainder, GCD)
- Percentage and power operation
- Trigonometric functions (Radian and Degree)
- Number conversion function (Binary, Decimal, Octal)
- Area Calculator operation (Rectangle, Square, Triangle, Circle)

Git Link

https:/github.com/99003781/N8-Calculator.git

Git Dashboard

Contributors List and Summary

PS No.	Name	Description	Issuess Raised	Issues Resolved	No Test Cases	Test Case Pass
99003779	Neha Tabassum	Addition() function	1	1	5	5
99003779	Neha Tabassum	Subtraction() function	1	1	5	5
99003779	Neha Tabassum	Multiplication() function	No	No	5	5
99003779	Neha Tabassum	Division() function	NO	No	5	5
99003779	Neha Tabassum	Percentage() function	NO	No	5	5
99003779	Neha Tabassum	Remainder() function	1	1	5	5
99003779	Neha Tabassum	GCD() function	1	1	5	5
99003779	Neha Tabassum	Power() function	NO	No	5	5
99003780	G Sai Kiran	Binary() function	1	1	6	6
99003780	G Sai Kiran	decimal() function	1	1	6	6
99003780	G Sai Kiran	octal() function	NO	No	6	6
99003781	Aman Shivachh	Degree to radian() function	2	2	10	10
99003781	Aman Shivachh	Radian to degree() function	1	1	10	10
99003776	Pawan Kumar	triangle area() function	2	2	2	2
99003776	Pawan Kumar	square area() function	NO	No	2	2
99003776	Pawan Kumar	rectangular area() function	1	1	2	2
99003776	Pawan Kumar	circum area() function	1	1	2	2

Summary

The whole project begins with the research on different calculators. The Research has been divided on the basis of cost and features of different calculators. After the research the requirements for the customized calculator was documented in the form high level and low level requirements. Once the requirements were decided the same was implemented using UML diagrams. Once the UML diagrams were made for visual understanding of the design then the software implementaion was started using c code. Once the header files

and source files were written then the same was tested using the test cases. Different files were combined using a single Makefile which build and run the code as a single code. After software implementation of codes CPP and unity check was done inn order to generate various badges for the correctness of the code.

Git inspector summary

"In linux install gitinspector and Run the command — gitinspector -H -l -m -T -w -r --grading --format=html > gitinsp.html and upload the same to your repo and paste the snapshot in the report"

Build

Setup Done:

```
17 lines (13 sloc) 236 Bytes
  1 name: C/C++ CI
    on:
      push:
        branches: [ main ]
      pull_request:
  6
        branches: [ main ]
  8
     jobs:
 10
      build:
 11
 12
        runs-on: ubuntu-latest
 14
        steps:
 15

    uses: actions/checkout@v2

 16
         - name: make
 17
          run: make -C 3_Implementation/ all
```

Outcome:

Code quality and Issues or Bug Tracking

Setup:-

Static Analysis:

```
19 lines (15 sloc) 341 Bytes
     name: Code Quality - Static Code - Cppcheck
  2
  3
     on:
     push:
  5
       branches: [ main ]
      pull_request:
        branches: [ main ]
  7
  9
      jobs:
 10
      cppcheck:
 11
         runs-on: ubuntu-latest
 12
 13
 14
         steps:
         - uses: actions/checkout@v2
 15
         - name: Install cppcheck
 17
           run: sudo apt -y install cppcheck
         - name: Run cppcheck
 19
           run: cppcheck 3_Implementation
```


Dynamic Analysis:

```
1 name: CodeQuality Dynamic Code Analysis Valgrind
     push:
      branches: [ main ]
   pull_request:
      branches: [ main ]
8 jobs:
9
    test:
10
      runs-on: ubuntu-latest
      steps:
14
      - uses: actions/checkout@v2
      - name: apt install dependency
        run:
          sudo apt-get -y install valgrind
           sudo apt-get -y install libcunit1 libcunit1-doc libcunit1-dev
19
      - name: make test
20
        run: make -C 3_Implementation/ test
      - name: Valgrid
         run: valgrind ./3_Implementation/build/Test_Calculator.out
```

Outcome:

Static Analysis:


```
V 🕢 Run cppcheck
       ► Run cppcheck 3_Implementation
       Checking 3_Implementation/src/AREA.c ...
     5 1/8 files checked 0% done
      Checking 3_Implementation/src/Bin_to_dec.c ...
      2/8 files checked 1% done
       Checking 3_Implementation/src/Dec_to_bin.c ...
       3/8 files checked 2% done
    10 Checking 3_Implementation/src/Dec_to_oct.c ...
    11 4/8 files checked 2% done
    12 Checking 3_Implementation/src/calculator_operations.c ...
    13 5/8 files checked 4% done
    14 Checking 3_Implementation/src/main.c ...
    15 6/8 files checked 5% done
    16 Checking 3_Implementation/test/test.c ...
    17 7/8 files checked 19% done
    18 Checking 3_Implementation/unity/unity.c ...
    19 Checking 3_Implementation/unity/unity.c: AVR...
    20 Checking 3_Implementation/unity/unity.c: CMOCK...
    22 Checking 3_Implementation/unity/unity.c: UINTPTR_MAX...
    23 Checking 3_Implementation/unity/unity.c: UNITY_CLOCK_MS;UNITY_EXEC_TIME_START;UNITY_EXEC_TIME_STOP;UNITY_PRINT_EXEC_TIME_;UNITY_TIME_TYPE;UNITY_INCLUDE_EXEC_TIME...
    24 Checking 3_Implementation/unity/unity.c: UNITY_DIFFERENTIATE_FINAL_FAIL...
    25 Checking 3_Implementation/unity/unity.c: UNITY_EXCLUDE_DETAILS...
       Checking 3_Implementation/unity/unity.c: UNITY_EXCLUDE_FLOAT...
    27 Checking 3_Implementation/unity/unity.c: UNITY_EXCLUDE_FLOAT_PRINT...
28 Checking 3_Implementation/unity/unity.c: UNITY_EXCLUDE_SETJMP_H...
    29 Checking 3_Implementation/unity/unity.c: UNITY_EXEC_TIME_START;UNITY_EXEC_TIME_STOP;UNITY_PRINT_EXEC_TIME;UNITY_TIME_TYPE;UNITY_INCLUDE_EXEC_TIME...
    nofile:8:8: information: Too many #ifdef configurations - cppcheck only checks 12 configurations. Use --force to check all configurations. For more details, use --enable=information.
       [toomanyconfigs]
> Post Run actions/checkout@v2
> O Complete job
```

Dynamic Analysis:

Unit Testing

Setup:

```
17 lines (13 sloc) 248 Bytes
  name: Unit Testing - Unity
 3 on:
     push:
      branches: [ main ]
 6 pull_request:
      branches: [ main ]
 9 jobs:
 10
     test:
      runs-on: ubuntu-latest
 14
      steps:
      - uses: actions/checkout@v2
 15
      - name: make
 16
        run: make -C 3_Implementation/ test
```

Outcome:


```
∨ ⊘ make
       ► Run make -C 3_Implementation/ test
       make: Entering directory '/home/runner/work/N8-Calculator/N8-Calculator/3_Implementation'
       gcc src/main.c src/calculator_operations.c src/AREA.c test/test.c unity/unity.c src/Bin_to_dec.c src/Dec_to_bin.c src/Dec_to_ot.c -Iinc -Iunity -o build/Test_Calculator.out -lm
       ./build/Test Calculator.out
    10 test/test.c:116:cos_func_test:PASS
    11 test/test.c:117:cosec func test:PASS
    14 test/test.c:120:test dectooct:PASS
    15 test/test.c:121:test_bintodec:PASS
       test/test.c:127:tan_func_test_1:PASS
    18 test/test.c:128:cos func test 1:PASS
       test/test.c:129:cosec_func_test_1:PASS
    21 test/test.c:135:sin_func_test_2:PASS
       test/test.c:136:tan_func_test_2:PASS
       test/test.c:139:sec func test 2:PASS
       test/test.c:144:sin_func_test_3:PASS
       test/test.c:147:cosec_func_test_3:PASS
       test/test.c:152:test_add:PASS
       test/test.c:153:test_add_testcase2:PASS
       test/test.c:154:test_add_testcase3:PASS
       test/test.c:155:test add testcase4:PASS
       test/test.c:160:test subtract testcase2:PASS
       test/test.c:161:test_subtract_testcase3:PASS
     37 test/test.c:161:test subtract testcase3:PASS
        test/test.c:166:test_multiply:PASS
     41 test/test.c:167:test_multiply_testcase2:PASS
        test/test.c:169:test multiply testcase4:PASS
        test/test.c:170:test_multiply_testcase5:PASS
         test/test.c:174:test_divide_testcase2:PASS
        test/test.c:175:test divide testcase3:PASS
        test/test.c:180:test_percentage:PASS
     51 test/test.c:181:test_percentage_testcase2:PASS
         test/test.c:182:test_percentage_testcase3:PASS
        test/test.c:183:test percentage testcase4:PASS
        test/test.c:184:test_percentage_testcase5:PASS
         test/test.c:188:test_gcd_testcase2:PASS
        test/test.c:189:test gcd testcase3:PASS
         test/test.c:190:test_gcd_testcase4:PASS
         test/test.c:191:test_gcd_testcase5:PASS
        test/test.c:194:test_rem:PASS
        test/test.c:195:test_rem_testcase2:PASS
        test/test.c:197:test_rem_testcase4:PASS
        test/test.c:198:test_rem_testcase5:PASS
         test/test.c:201:test_power:PASS
         test/test.c:203:test power testcase3:PASS
         test/test.c:205:test_power_testcase5:PASS
         test/test.c:207:test_positive_area_square:PASS
        test/test.c:208:test_positive_rect_area:PASS
         test/test.c:209:test_positive_triangle_area:PASS
         test/test.c:210:test_Negative_area_square:PASS
         test/test.c:211:test_Negative_rect_area:PASS
         test/test.c:212:test_Negative_triangle_area:PASS
        68 Tests 0 Failures 0 Ignored
         make: Leaving directory '/home/runner/work/N8-Calculator/N8-Calculator/3_Implementation
```


Individual Contribution & Highlights

Contributions by me for the Team:

Arithmetic Operations:

- Implements various arithmetic operations which includes addition, subtraction, multiplication, division, remainder and GCD
- Implements low-level and high-level designs
- Contributed for low-level and high-level requirements in arithmetic operations
- Write various test cases for the same.

Percentage and Power:

- Implements percentage and power operation functions.
- Implements low-level and high-level designs
- Wrote various test cases for the same.

Summary

Hardware is not implemented yet. Only software portion has been implemented.

Challenges faced and how were they overcome

- 1. Found difficulty in writing the make file but with the help of collegues we are able to make our own make file
- Initially it was difficult to understand the functions in test cases, but with self and group study we resolved the problems
- 3. Code debugging was a bit time consuming, but with brainstorming we excel it.
- 4. Integration of individual codes was difficult to understand, but with peer support, we did it.

Future Scope (If applicable):

NA

Miniproject -2 [Individual]: Python

Reading Excel Sheet and summarizing the data in the mastersheet

Module/s:

Modules linked to this mini-project is Python and SDLC

Topic and Subtopics

Objectives & Requirements

Objective:

The main objective of the designed code is to read and write data. The code implemented, has considered the basic requirement of reading and writing data with user friendly environment.

An excel sheet has been made manually which consists of 5 sheets, 1 master sheet and 1 summary sheet. Here we are searching details of an individual in all the 5 sub-sheets corresponding to:

Name:

Registration number:

Email ID:

Once the data has been fetched from the sub sheets then it will be printed to the master sheet. The excel sheet also consists of a summary sheet which indicates the count number of data fetched from each sheet. The whole implementation is used to read a file for better searching and writing. The code makes the study easier in the field of data science where lots and lots of data needs extraction.

SWOT ANALYSIS:

Strength:		Weakness:			
>	High Accuracy	>	Sometimes overwriting of		
>	Reading data		data occurs		
>	Writing data	>	Difficulty in reading huge data		
			in a single sheet		
Oppo	Opportunities:		Threats:		
>	Has a great advantage in the field of Data <u>Science.</u>	>	Data merging to a single sheet can lead to security issues		
>	Advantageous in merging multiple sheets				

4W's and 1H:-

Who:- Basically used in research field and data science fields where large data needs manipulation and extraction.

What:- Xlsx file or CSV file with python code to read and write data

When:- Used when large data needs to manipulated and extracted.

Where:- In Research and technical fields

How:- User friendly and easily accessible.

Requirements:

High-Level:

Table 11: HLR of data read/write

ID	Requirements	Description	Status
HLR_01	Search Data	Able to search data corresponding to a particular keyword	Implemented
HLR_02	Read Data	Read Data from sheet	Implemented
HLR_03	Write Data	Write data to sheet	Implemented
HLR_04	Easy accessible	Easy to handle and user friendly	Implemented

Low-Level:

Table 12: LLR requirement of data read/write

ID	Requirements	Requirements Description	
LLR_01	Search Data from different sheets of single xlsx file	Able to search data corresponding to a particular keyword in multiple xlsx sheets	Implemented
LLR_02	Read Data from all the sheets	Read Data from different sheets of single xlsx file	Implemented
LLR_03	Write Data to a master sheet as per the user input	Write data to a single master sheet as per the user input, after reading all the sheets	Implemented
LLR_04	Printing Data	Reading the data and printing to console as well as writing data after printing to the console	Implemented
LLR_05	Summarize data	Reading the content of master sheet and printing the conut to the Summary Sheet	Implemented

Design

Structural Diagram: Class Diagram

Figure 12: Structural Diagram of data read/write

Behavioral Diagram: Activity Diagram

Figure 13: Behavioural Diagram of Data read/write

V – Model:

Figure 14: V-model Implementation of data read/write

Test Plan

Table 13: Test Plan of Data read/write

Test_ID	Description	Expected Input	Expected Output	Actual Output
TP_01	User enters the registration number, name and Email ID of the person being searched	99673798 Ali Adibi Ali.adibi@ece.gatech.edu	The data corresponding to the given input will be searched in all the sub-sheets and printed to mastersheet.	The data is printed to mastersheet and summary count has been incremented.
TP_02	User enters the registration number, name and Email ID of the person being searched. Now it takes multiple input of data by selecting Yes/No in the terminal window.	99673798 Ali Adibi Ali.adibi@ece.gatech.edu Continue (y/n) ? y 99673786 Professor Peter Y. K. Cheung p.cheung@imperial.ac.uk	The data corresponding to the given multiple inputs will be searched in all the sub-sheets and printed to mastersheet.	The data is printed to mastersheet and summary count has been incremented.
TP_03	User enters the registration number, name and Email ID of the person being searched. Now it takes multiple input of data by selecting Yes/No in the terminal window. Now user select no for further data intake.	99673798 Ali Adibi Ali.adibi@ece.gatech.edu Continue (y/n) ? y 99673786 Professor Peter Y. K. Cheung p.cheung@imperial.ac.uk Continue (y/n) ? n	The data corresponding to the given multiple inputs will be searched in all the sub-sheets and printed to mastersheet. Data has been printed to Mastersheet	The data is printed to mastersheet and summary count has been incremented.

Implementation Summary:

The user provides data of the person being searched which includes:

- > Registration number:
- Name:
- > Email ID:

The designed python code will search for the provided data in all the sheets of a single excel file and summarize the complete data of that person in a single excel Mastersheet. Once all the data of a single person or multiple person has been printed to master sheet then the summary sheet will summarize the total number count of the mastersheet. The detailed steps are on Git Link shown below.

Git Link

https://github.com/99003779/Python Mini Project.git

Git Dashboard

Summary

In this python mini-project, 5 sheets were created in a single excel file which contains data of a delegates. It sheet contains 40 rows with 10 columns. The user provides data of the person being searched which includes:

- Registration number:
- Name:
- ➤ Email ID:

The designed python code will search for the provided data in all the sheets of a single excel file and summarize the complete data of that person in a single excel Mastersheet. Once all the data of a single person or multiple person has been printed to master sheet then the summary sheet will summarize the total number count of the mastersheet.

Individual Contribution & Highlights:

The whole python mini project is a single and individual project.

Challenges faced and how were they overcome

- > Initially hard coded was implemented but soft coded
- > Excel sheet was not linked initially with the python file.
- Multiple entry was not there initially
- > Summary Sheet was not understandable initially but later understood after discussion with faculty

Miniproject -3 [Team] - Embedded C

Module/s

Modules linked to this miniproject is Embedded C

Topic and Subtopics

Driver Designing
GPIO Programming
I2C, SPI, UART and ADC Protocols
Hardware Abstraction Layer (HAL) Application interface

Objectives & Requirements

Objective:

The main objective of the project is design a Body Control Module (BCM) with some features using STM32F407VG microcontroller with 32-bit ARM cortex-M4 FPU core processor.

A control module is a computer component in a car that monitors, controls and uses electrical devices throughout the vehicle. When electric devices began to be used in cars and trucks, each tool was controlled by a different electrical component. There was a cooling module, an interior lighting module, a door lock module, and so on. The body control module combines all these different modules under a single system to work together instead of partitioning, a simple format for both production and problem solving. While there are many different types of body control modules, they are generally the same, the sensors for connecting, switching and automatic switching together in a single computer system. These components are subdivided into inputs, such as sensor data about temperature or speed, and the effects, or the way a computer control system responds to control motor performance. Inputs and outputs are further divided into analog and digital information types - analog signals used by modular continuous modules (such as oil pressure) and digital signals used for modules that can either turn on or off (such as headlights or oil indicator light).

Requirement:

In our project we have implemented six features on a microcontroller STM32f4 discovery board. In the project we integrated IR Sensor, thermal sensor, Gas sensor (mq7), LDR sensor,

Moisture sensor, ignition sensor with microcontroller STM32f4 using GPIO protocol.

- > IR Sensor:-An IR sensor is an electronic device, which illuminates light to detect the surrounding environment. The IR sensor can detect movement. Usually, in the infrared spectrum, all substances emit a certain type of radiation. These types of radiation are invisible to our eyes, but the infrared sensor can detect these rays.
- ➤ The gas sensor receives the attention of the liquor gas in the air and the analog voltage reading output. The sensor can operate at temperatures ranging from -10 to 50 ° C with an electrical power of less than 150 Ma to 5V. Sensitivity range ranges from 0.04 mg / L to 4 mg / L, suitable for breathalyzers.
- LDR or light-resistant light resistor is also known as photo resistor, photocell, photoconductor. One type of opposition its resistance varies depending on the amount of light falling on its surface. When light falls on an opponent, the resistance changes.
- Moisture sensors measure the amount of water in the soil. Since direct gravimetric measurement of free soil moisture requires removal, drying, and weight of the sample, soil moisture sensors measure water content indirectly using other earth materials, such as electricity resistance, dielectric constant, or neutron contact, as representative of moisture content.

- The ignition system produces sparks or burns the electrode at high temperatures to heat a mixture of gasoline gas in combustion engines fire engines, oil-fired boilers and gas, rocket engines, etc.
- > Thermal sensors detect a change in a physical parameter such as resistance or output voltage that corresponds to a temperature change.

High Level Requirements:

Table 14: HLR of hardware sensor project

ID	Requirements	Description	Status
HLR_01	Enable control Module	Control Module should be enabled in order to detect different sensors.	Implemented
HLR_02	Temperature sensor	Able to detect temperature	Implemented
HLR_03	Gas Sensor	Able to detect gas leakage	Implemented
HLR_04	LDR (light dependent resistor) Sensor	Able to detect higher intensity of light	Implemented
HLR_05	Moisture Sensor	Able to detect moisture	Implemented
HLR_06	IR Sensor	Able to detect obstacles	Implemented

Low Level Requirements:

Table 15: LLR of hardware sensor project

ID	Requirements	Description	Status
LLR_01	Implementation of air Conditioning Control module	Thermal sensor detects the high temperature and AC switches ON.	Implemented
LLR_02	Implementation of gas leakage control module	Gas sensor detects gas leakage and glows LED which prevents spontaneous car explosion.	Implemented
LLR_03	Implementation of shed controller module	LDR sensor enables the intensity of sunlight and the shed is enabled when the sunlight is too bright	Implemented
LLR_04	Implementation of Headlight control module	LDR sensor senses darkness and headlight turns ON.	Implemented
LLR_05	Implementation of Wiper control module	Moisture sensor senses water in wiper and LED switches ON	Implemented
LLR_06	Implementation of obstacle detector control module	LED glows when some obstacle is detected	Implemented

Design

Figure 15: High Level Design of hardware

Figure 16:Air Conditioner Control Module

Figure 17: Sun Shed Control Module

Figure 18: Gas Leakage Control Module

Figure 19: Obstacle Detector control module

Figure 20:Wiper Control Module

Figure 21: Headlight Control Module

Test Plan

High Level Plan

Table 16: High Level Test Plan of Hardware Project

ID	Description	Expected Input	Expected Output	Actual Output
HLP_01	Enable control Module should be enabled in order to detect different sensors.	Module is turned on	Module gets enabled	Module enabled
HLP_02	Temperature sensor should be able to detect temperature	High Temperature is provided	LED glows	LED glows indicating AC switches ON.
HLP_03	Gas Sensor should be able to detect gas leakage	Excess gas leakage	LED glows and system shut down	LED glows and car shut down
HLP_04	LDR Sensor should be able to detect higher intensity of light	Excess/low sunlight/light	Sun shed enabled or headlight switches ON	Sun shed enabled or headlight switched ON
HLP_05	Moisture sensor should be able to detect moisture	Water droplets	Moisture sensor senses water droplets and wiper starts moving	Moisture sensor senses water droplets and wiper starts moving
HLP_06	IR sensor should be able to detect obstacles	Sensor occupied by any obstacle	Red LED blinks	Red LED blinks

Low Level Plan:

Table 17: Low Level Test Plan of Hardware project

ID	Description	Expected Input	Expected Output	Actual Output
LLP_01	Thermal sensor detects the high temperature and AC switches ON.	High Temperature provided at the input of thermal sensor	AC switches ON	AC Switched ON
LLP_02	Gas sensor detects gas leakage and glows LED which prevents spontaneous car explosion.	Hand sanitizer containing alcohol	LED is switched ON and Buzzer starts beeping.	LED is ON
LLP_03	LDR sensor senses the intensity of sunlight and the shed is enabled when the sunlight is too bright	Torch Light (at small scale) or sunlight	Red LED turns ON	Red LED turns ON indicating Shed has been open
LLP_04	LDR sensor senses darkness and headlight turns ON.	Push button is pressed indicating seat shifts front or back	Green LED Glows.	Green LED Glows indicating headlight is ON
LLP_05	Moisture sensor senses water in wiper and LED switches ON	Water droplets	LED turned ON	LED turned ON indicating wiper is active
LLP_06	LED glows when some obstacle is detected	IR sensor detects obstacle	LED glows	Green LED Glows.

Implementation Summary

In this project, six functions of a Body Control Module has been implemented on a STM microcontroller using different sensors and Arduino board.

Following six features has been implemented:

- Air Conditioner Control Module: In this module, temperature sensor has been used. Thermal sensor
 detects the high temperature and AC switches ON. Thermal sensors detect a change in a physical
 parameter such as resistance or output voltage that corresponds to a temperature change.
- Gas Leakage control Module/ Car shut down control Module: In this module, Gas sensor has been used.
 Gas sensor detects gas leakage and glows LED which shuts down the car and prevents spontaneous car
 explosion. The gas sensor receives the attention of the liquor gas in the air and the analog voltage reading
 output.
- 3. **Sun Shed Control Module:** In this module, LDR sensor has been used. LDR sensor senses the intensity of sunlight and the shed is enabled when the sunlight is too bright. When light falls on it, the resistance changes and hence it works.
- 4. **Headlight Control Module:** In this module, again LDR sensor has been used. LDR sensor senses darkness and headlight turns ON.
- 5. **Wiper Control Module:** In this module, moisture sensor has been used. Moisture sensor senses water in wiper and LED switches ON indicating that wiper is working. Moisture sensor measures water content indirectly with the help of electricity resistance, dielectric constant, or neutron contact, as representative of moisture content.
- 6. **Obstacle Detector Control Module:** In this module, IR sensor has been used. LED glows when some obstacle is detected by the sensor. An IR sensor is an electronic device, which illuminates light to detect the surrounding environment. The IR sensor can detect movement.

Git Link

https://github.com/99003779/Embedded-C_Official.git

Git Dashboard

Summary

In this project, we have implemented a body control module showing six features on a STM32 microcontroller board having a core processor of 32-bit ARM cortex-M4 FPU. Following six features has been implemented:

- ➤ Air Conditioner Control Module
- ➤ Gas Leakage Control Module/ Car shut down control Module
- Sun Shed Control Module
- ➤ Headlight Control Module
- Wiper Control Module
- Obstacle Detector Control Module

Individual Contribution & Highlights:

Features implemented by me in the team hardware project are:

- > Air Conditioner Control Module: Thermal sensor detects the high temperature and AC switches ON.
- ➤ Gas Leakage control Module/ Car shut down control Module: The gas sensor receives the attention of the liquor gas in the air and the analog voltage reading output.

Challenges faced and how were they overcome

- ➤ Integration of all the features on a single STM32 microcontroller board.
- > Hardware implementation on STM32 IDE platform.

Future Scope (If applicable):

NA

Miniproject -4 [Individual]: Embedded linux and Kernel Programming

Module/s

Modules linked to this miniproject is Ex – Linux, Embedded C, OS programming and Kernel Device Drivers.

Topic and Subtopics

- 1. Working with QEMU:-
 - Setting up Qemu
 - Building Custom Kernel
 - Cross Compilation Techniques
 - Booting Techniques
- 2. Kernel Programming and Device Drivers
 - Introduction to Kernel
 - Static and Dynamic Modules
 - Kconfig entries
 - Adding System Calls
 - Simple Drivers
 - > File Operations
 - Kernel Data structures
 - Concurrency and Inter Process Communication (IPC)
 - > IOCTL Operations

Objectives & Requirements

Objective:

The objective of this project is to implement the learning of the module in the following activities:

- Making a System call to echo back the given string
- Making a System Call to pass the Arguments
- Making a System call to traverse process list and print PID and PPID of a process and making a System call to retrieve the attributes of calling process
- > Implementing IOCTL to echo back the string, implement two operations such that the string passed by one operation is retrieved by the other operation
- Applying mutual exclusion between first two threads by implementing three kernel threads. First two threads will write N nodes into a kernel list. The third thread waits for the first two threads and traverses the list while mutual exclusion is applied between the first two threads. Exit method cleanup the list nodes

Requirements:

High Level Requirement:

Table 18: HLR of Kernel Activity

ID	Requirements	Description	Status
HLR_01	System Call to echo back string	The system call echoes back the given string on target from user space	Implemented
HLR_02	System Call to pass the argument	The System Call passes the argument from user space to Kernel Space	Implemented
HLR_03	System Call to traverse process list and print PID and PPID and retrieve attributes of the calling process	The System Call traverse the process list, prints PID and PPID and retrieve attributes of the calling process on the target window	Implemented
HLR_04	IOCTL to echo back string using two operations	Use IOCTL to echo back string by implementing 2 operations, one for passing string and other of for retrieving it.	Implemented
HLR_05	Threads implementation of 3 threads where 3 rd third retrieves data for first 2 threads with list of N nodes and its traversal	Applying mutual exclusion to implement 3 threads where 2 write N nodes to threads and 3 rd traverses the list. Exit module cleans up the node.	Implemented

Low Level Requirement:

Table 19: LLR of Kernel Activity

ID	Requirements	Description	Status
LLR_01	The string is echoed back to Target or the kernel space by system call	The string "abcdef" gets echoed to Qemu by creating a system call invoked by the user space.	Implemented
LLR_02	The Argument is passed back to the target	The Argument is passed back to the kernel space from user space	Implemented
LLR_03	The System Call traverse the process list, prints PID and PPID and retrieve attributes of the calling process on the target window	User invokes a system call to get PID, PPID and attributes of the calling process	Implemented
LLR_04	IOCTL used to echo back string with 2 operations	OCTL to echo back string using 2 operations one to pass the argument and other to retrieve data and display it on Qemu.	Implemented
LLR_05	Mutual exclusion of three threads to traverse, list and clean up nodes	First two threads will write N nodes into a kernel list. The third thread waits for it and traverses the list. Mutual exclusion applied between the first two threads. Exit method cleanup the list nodes	Implemented

Test Plan

Table 20: Test Plan of Kernel Activity Implemented

Test ID	Description	Expected Input	Expected Output	Actual Output
TP_01	The string passed by the user is echoed to target space when invoked	"abcdef" as string passed in userspace	"abcdef" is printed in target space	"abcdef" is printed in target space using command dmesg
TP_02	The argument passed by user is printed to the kernel space	1,2,3 as argument is passed by user	1,2,3 is passed to the kernel space	1,2,3 is printed in kernel space using command dmesg in kernel space only
TP_03	The PID, PPID and the attributes of the process is retrieved in target space when user space code is invoked	User space invocation for the system call	PID, PPID, Process State, Priority, RT Priority, Static Priority and Normal priority are printed in kernel space.	PID, PPID, process State, Priority, RT Priority, Static Priority and Normal priority are printed in kernel space.
TP_04	3 threads are implemented. 1 st and 2 nd thread creates a list of N nodes, 3 rd traverses the list after waiting for 2 threads to complete.	Invocation of the code	3 rd thread waits for 1 st 2 threads to create a list through N nodes. 3 rd thread then traverses the list and adds in Kfifo.	3 rd thread waits for 1 st 2 threads to create a list through N nodes. 3 rd thread then traverses the list and adds in Kfifo.
TP_05	3 threads are implemented. 1 st and 2 nd thread creates a list of N nodes, 3 rd traverses the list after waiting for 2 threads to complete by mutual exclusion.	Invocation of the code	3 rd thread waits for 1 st 2 threads to create a list through N nodes by mutual exclusion. 3 rd thread then traverses the list. Exit method cleans up all the nodes.	3 rd thread waits for 1 st 2 threads to create a list through N nodes by mutual exclusion. 3 rd thread then traverses the list. Exit method cleans up all the nodes.

Git Link

https://github.com/99003779/Embedded linux and kernel programming.git

Git Dashboard

Individual Contribution & Highlights

This whole project is an individual project. So, all the activities performed in this project was done by me only.

Summary

The whole project is based on kernel programming with understanding of embedded linux, device drivers, concept of system call and IOCTL i.e input output control.

The Linux Kernel Driver model is a combination of all the different types of drivers that were previously used in the kernel. It aims to add bus-specific drivers to bridges and devices by integrating data collection and operating in data that are globally accessible.

System calling is a system configuration program that asks for applications from the kernel, and strace is a powerful tool that allows you to follow a small layer between user processes and Linux kernel.

loctl, which means "input output control" is a type of system call to a specific device. There are only a few system calls on Linux (300-400), which are not enough to display all the functions of unique devices. The driver can then specify loctl which allows the user app to send orders.

Individual Contribution & Highlights:

The whole project was the individual project.

Challenges faced and how were they overcome

- System call implementation.
- Depth understanding of user space and kernel space

Future Scope (If applicable):-

NA

Miniproject -5 [Individual]: Networking

Module/s

Modules linked to this miniproject is Data Communication and Networking

Topic and Subtopics

IPv4 and IPv6 addresses Routers Routing Protocols Networking

Packet Tracer Tool

Objectives & Requirements

Objective:

The objective of this project is to design a network consisting of various servers connecting two or more sub networks and is able to send data packets throughout the network. Cisco Packet tracer is the tool that has been used in network designing

Requirements:

Cisco Packet Tracer: It is a strong network simulation program or the software that allows many esearchers, scholars and students across the globe to experiment with the behavior of network. It supplements physical equipments so that students will be able to create networks immense number of devices. Following is a small network demonstrating many networks interconnected by routers and switch.

Each server should be able to send packet to every other server. Whether the server is in the same network or different network.

Design

Figure 22: Serial Connection of routers for packet transmission from one server to the other

Figure 23:Transfer of Packets from different sources to different destination

Test Plans:

Figure 24: IPv4 routes on router 0 (show ip route)

Figure 25: IPv6 routes on router 0 (show ipv6 route)

Figure 27: IPv6 routes on router 1 (show ipv6 route)

Figure 29: IPv6 routes on router 2 (show ipv6 route)

Testing Results:

To test whether a network is working properly or not, a ping command is used. Ping is a tool or a network utility program which allows you to check weather a particular host is reachable or not. Loop back address is

another IP address which used to check working of the self server. Example of loop back ip address is 127.0.0.1 and it will always return a reply unless a network security system prevents it. Eg firewall.

Figure 30: Pinging from IPv4 to IPv4 in the same network

Figure 31: Pinging from IPv4 to IPv4 in different network

Implementation Summary

The implemented design consist of three networks interconnected by router which follows RIP routing protocol. Each Data packets from every server is able to send data to every other server.

Individual Contribution & Highlights:

The whole project was the individual project.

Challenges faced and how were they overcome

- Interconnection of different networks using routers but using routing protocols it was interconnected
- Implementation of routing protocols but by learning and reading different routing protocols it was implemented
- Sending of data packets from one network to another but with proper integration data packets were able to send to different networks

Future Scope (If applicable):

NΑ