Лекция 6 План лекции.

- 1. Определение функции
- 1.1. Область определения и область значений функции
- 1.2. Образ множества и элемента множества, прообраз множества и элемента множества.
- 2. Определение отображения
- 2.1. Свойство отображения.
- 2.2. Композиция отображений.
- 2.3. Сюръективное и инъективное отображения.
- 2.4. Сюръективная и инъективная функция.
- 2.5. Биекция или взаимно-однозначное соответствие

3. Способы задания функций

- 3.1. Табличный
- 3.2. Аналитический
- 3.3. Графический

4. Специальные функции

- 4.1. Тождественная функция
- 4.2. Нижнее округление
- 4.3. Верхнее округление
- 4.4. Факториал.
- 4.5. Бинарная операция
- 4.6. Конечная и бесконечная последовательности

5. Функция двух переменных

- 5.1. Матрицы, операции над матрицами
- 6. Понятие функционала
- 7. Понятие оператора

Определение функции

Функция — математическое понятие, отражающее связь между элементами множеств. Можно сказать, что функция — это «закон», по которому каждому элементу одного множества ставится в соответствие некоторый элемент другого множества.

Отображение $f: X \to Y$ называется **функцией**, если оно однозначно, т. е.

если для любых пар
$$(x_1, y_1) \in f$$
 и $(x_2, y_2) \in f$ из $(x_1 = x_2)$ следует $(y_1 = y_2)$.

Также значение y в любой из пар $(x, y) \in f$ называется функцией от x, что записывается в виде y = f(x). Следовательно,

функция – это множество

$$f = \{(x, y) \in X \times Y | y = f(x) \}$$

) }. Дадим формальное определение функции.

Отношение f на X Y называется ϕ ункцией из X в Y и обозначается через f: X Y, если для каждого X X существует единственный элемент Y Y такой, что A, B A A A0. Если A1. Если A2. Функция, и A3, A4, то говорят, что A5 A7.

Как видно из определения, символ f используется в двух смыслах:

- 1. f это множество, элементами которого являются пары, участвующие в соответствии.
 - 2. f(x) это обозначение для $y \in Y$, которое соответствует данному $x \in X$.

Множество X называется *областью определения* функции f, а множество Y называется *областью потенциальных значений*.

Если E X, то множество f E y f x y для некоторого x E называется *образом* множества E. Элемент f x называется **образом** элемента x.

Образ всего множества X называется *областью значений* функции f. Если F Y, то множество f f f x f x F называется *прообразом* множества F. Элемент X называется **прообразом** f X

Функция f: X Y называется также *отображением*; при этом говорят, что f отображает X в Y. Если X, Y f, так что Y f X, то говорят, что элемент X отображается в элемент Y.

Свойства отображения

Пусть A X. Для произвольного x A образом x будет множество $Q_X Y$. Совокупность всех элементов Y, являющихся образами Q_X для всех x A, называется образом множества A и обозначается QA. Тогда согласно этому определению

$$QA \quad Q_X . \\ x A$$

Свойство 1. Если A_1 и A_2 – подмножества X, то имеет место соотношение: $Q A_1 A_2 Q A_1 Q A_2$.

Свойство 2. Для взаимно-однозначного отображения справедливо следующее соотношение:

$$QA_1A_2QA_1QA_2$$
.

Свойство 3. Для произвольного отображения справедливо соотношение:

$$QA_1A_2QA_1QA_2$$

Обобщение свойств 1 и 3:

Частный случай

Важный частный случай, когда множества Хи Усовпадают. Тогда отображение Q: XX отображает само в себя и определяется парой X, Q, где Q X Xили Q X^2 .

Композиция отображений

Пусть даны отображения Q: X Xи G: X X.

Композицией этих отображений называется отображение Q G, определяемое соотношением:

$$QGX$$
 QGX .

Данное соотношение выражает отображение Q отображения G.

В случае, когда Q G возможно получить отображения:

$$Q_X^2 \ Q \ Q_X,$$
 $Q_X^3 \ Q \ Q_X^2 \ и т. д.$

В общем случае при m 2 получаем выражение Q_X^m Q_X^m Q_X^m .

Введем соотношение Q_X^0 X и получим соотношение для отрицательных *m* :

$$Q_X Q_X Q_X \qquad {}^1 Q Q Q \qquad {}^1 X.$$

Поскольку Q $\stackrel{1}{\underset{X}{\bigvee}}$ – обратное отображение, то $\stackrel{2}{\underset{X}{\bigvee}}$ Q Q $\stackrel{1}{\underset{X}{\bigvee}}$, $\stackrel{3}{\underset{Z}{\bigvee}}$ 2

$$Q_X^2$$
 $Q Q_X$, Q_X^2 , Q_X^2 , $Q Q_X^2$, $Q Q_X^2$

Пример. Пусть X – множество людей. Для каждого человека x из его детей определим как Q_X . Тогда ${Q_X}^2$ будет множество представлять множество его внуков, Q_X^3 – множество его правнуков, а Q_X^{-1} – множество родителей. Изобразив множество людей точками, а стрелками представив соответствия между X, Q_X , Q_X^2 и т. д., получаем родословную или генеалогическое дерево для данного множества людей.

Отображение множества X в множество Y называется **сюръективным,** если каждый элемент из Y имеет по крайней мере один прообраз из X. Следовательно, имеет место одномногозначное и много-однозначное соответствия.

Функция называется *отображением «на»*, или *сюръективной* функцией, или *сюръекцией*, если для каждого у Y существует некоторое x X такое, что f x y .

Отображение множества X в множество Y называется **инъективным,** если каждый образ f_X обладает ровно одним прообразом X. Следовательно, имеет место одно-однозначное соответствие.

Функция f: X У называется **инъективной**, или **инъекцией**, если из f x f х следует х х.

Функция, которая является одновременно и инъективной, и сюръективной, называется *взаимно-однозначным* соответствием, или биекцией. Если XY и f:XY является взаимно-однозначным соответствием, то f называется перестановкой множества X.

Способы задания функций.

1. Табличный способ задания функции

x	1	2	3	4	5	6	7	8	9
f(x)	1	4	9	16	25	36	49	64	81

В данной таблице столбцы представляют собой множество упорядоченных пар: $y = f(x) = \{(1,1),(2,4),(3,9),(4,16),(5,25),(6,36),(7,49),(8,64),(9,81)\}$, что соответствует определению функции, представленному ранее.

2. Аналитический способ задания функции

При аналитическом задании функция представлена в виде формулы, т. е. математического выражения, включающего математические операции, которые необходимо выполнить над $x \in X$, чтобы получить $y \in Y$:

$$y = f(x) = \{(x, y) \in \mathbb{R}^2 \mid y = x^2\}.$$

2. Графический способ задания функции

Если $X \subseteq R$ и $Y \subseteq R$, т. е. X и Y являются подмножествами множества вещественных чисел, то пары $(x,y) \in R^2$ возможно представить в виде точек на плоскости. Полная совокупность точек будет представлять собой график функции.

Специальные функции

Пусть I: X X определено соотношением f xx для всех x X. Функция I называется **тождественной функцией** на X.

Функция f: X Y, где X— множество действительных чисел, а Y— множество целых чисел, называется *нижним округлением* и обозначается f_X , если она каждому X X ставит в соответствие наибольшее целое число, меньшее или равное X.

Функция f: F B называется верхним округлением и обозначается f x x, если она каждому x x ставит в соответствие наименьшее целое число, большее или равное x.

Пусть A и B совпадают со множеством неотрицательных целых чисел. Факториалом назовем функцию f: X Y, обозначаемую через f n n! и определяемую следующими соотношениями: 0!=1 1!=1 2! 12 2

3! 1236

4! 1234 24

k! 123 ... k

Бинарная операция

Пусть X, Y, Z — тройка непустых множеств. **Бинарной операцией** или **двуме́стной опера́цией** в паре (x, y), $x \in X$ и $y \in Y$ со значением в $z \in Z$ называется функция $b: P \to Z$, где $P \subset X \times Y$.

Бинарная операция обозначается знаком действия, который ставится обычно между операндами.

Пусть • – произвольная операция. Тогда существуют виды записей:

- Инфиксная форма записи: $x \bullet y$ 1.
- 2. Префиксная (польская запись): •ху
- Постфиксная (обратная польская запись): ху 3.

Пример: «+», «-», « » – бинарные операции на множестве рациональных чисел.

Последовательность

Определение. Пусть дано множество $X = \{x_1, ..., x_i, ..., x_n\}$ произвольной природы. Всякое отображение $f: N \to X$ множества натуральных чисел N в множество X называется **последовательностью** (элементов множества X).

Образ натурального числа i, а именно, элемент $x_i = f(i)$, называется i -м членом или элементом последовательности, а порядковый номер члена последовательности – её индексом.

Обозначения

Последовательность x_1 , x_2 ,..., x_i ,... записывают в виде

$$\left(x_i\right)_{i=1}^{\infty}$$
 , иногда $\left\{x_i\right\}$

 $ig(x_iig)_{i=1}^\infty$, иногда $\{x_i\}$ $\sum_{i=1}^\infty$. Для конечных последовательностей: $ig(x_iig)_{i=1}^n$ или $ig\{x_iig\}_{i=1}^n$

Сумма элементов последовательности: $S = \sum_{i=1}^{n} x_i$

Функция двух переменных.

Пусть дана функция f: X Y в которой значение множество Xпредставлено декартовым произведением ХАВ. Такая функция называется функцией двух переменных A и B и обозначается f a , b , где а Аиь В.

Формальное определение функции двух переменных имеет такой вид:

$f \ a, b, y \ A \ B \ Y \ y \ f \ a, b \ .$

Матрица

Пусть есть два конечных множества $M = \{1,2,...,m\}$ и $N = \{1,2,...,n\}$, где m и n — натуральные числа.

Назовем матрицей размера $m \times n$, или **массивом** $m \times n$ ($m \times n$) функцию:

$$A: M \times N \rightarrow D$$
,

где D- это, как правило, множество действительных, комплексных, рациональных или целых чисел.

Элементы D называются *скалярами*.

Таким образом, для каждого i, 1 < i < m, и каждого j, 1 < j < n, имеется элемент $A(i,j) \in D$, который находится в i-й строке и j-м столбце соответствующей прямоугольной таблицы.

Образ A (i , j) элемента области определения (i , j) сокращенно обозначается через A_i , j . Следовательно, m $\times n$ матрица A изображается прямоугольной таблицей, где образы упорядоченных пар (i , j) \in $\{1,2,...,m\}$ \times $\{1,2,...,n\}$ могут быть представлены в таком виде:

Прямоугольной Таолицей, Тде боразы упорядоченных
$$) \in \{1,2,...,m\} \times \{1,2,...,n\}$$
 могут быть представлены в таком виде:
$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{1n} \\ A_{12} & A_{13} & A_{1n} \\ A_{12} & A_{13} & A_{1n} \\ A_{13} & A_{13} & A_{1n} \\ A_{12} & A_{13} & A_{1n} \\ A_{13} & A_{13} & A_{1n} \\ A_{14} & A_{15} & A_{15} \\ A_{15} & A_{15$$

Матрица A содержит m строк и n столбцов и является матрицей размера $m \times n$. Сокращенно матрицу записывают

Значение a_{ij} называется **компонентой**, или **элементом** матрицы А.

Виды матриц

1. *Матрица-столбец*. Матрица размера $m \times 1$ называется *матрицей-столбцом или вектором-столбцом*.

$$A = \begin{bmatrix} a_{11} \\ a \end{bmatrix} \begin{bmatrix} a_{1} \\ a \end{bmatrix}$$

$$A = \begin{bmatrix} 2,1 \\ | | \end{bmatrix} = \begin{bmatrix} a_{2} \\ a_{m} \end{bmatrix}$$

2. *Матрица-строка*. Матрица размера $1 \times n$ называется *матрицей-строкой или вектором-строкой*.

$$A = [a_{11} \ a_{12}a_{1n}] = [a_1 \ a_2 \ a_n]$$

Если A — матрица-строка или матрица-столбец, то индекс строки или, соответственно, столбца, обычно опускают.

3. Квадратичная матрица. Если в матрице число строк и число столбцов совпадает m = n = k, она называется **квадратной матрицей.**

SSIBACTER Redoputation Main
$$A = \begin{bmatrix} A_{11} & A_{12} & A_{1k} \\ A & A & A \end{bmatrix}$$

$$A = \begin{bmatrix} 12 & 22 & 2k \\ A & A & A \end{bmatrix}$$

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{1k} \\ A & A & A \end{bmatrix}$$

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{1k} \\ A & A & A \end{bmatrix}$$

4. Диагональная матрица. Это квадратичная матрица, в которой все элементы, кроме диагональных, нулевые.

$$\forall (i \neq j) \Rightarrow A_{ij} = 0 . A = diag(A_1, A_2, ..., A_k).$$

5. Единичная матрица. Это диагональная матрица с единичными элементами на диагонали.

Операции над матрицами

Равенство матриц Две матрицы $A= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\ -ij \end{smallmatrix} \right\rfloor$ и $B= \left\lfloor \begin{smallmatrix} A \\$ соответствующие элементы; т. е. A=B тогда и только тогда, когда $A_{ij}=B_{ij}$ для всех i, 1 < j < m, и всех j, 1 < j < n.

Умножение матрицы на скаляр

Если d — скаляр, $a^{A=\lfloor A_{ij} \rfloor}$ — матрица $m \times n$, то dA есть матрица $D = \lfloor D_{ij} \rfloor$ размера $m \times n$, где $D_{ij} = dA_{ij}$, т. е. каждая компонента есть произведение соответствующей компоненты A на d . Произведение числа d и матрицы A называется умножением матрицы на скаляр.

Сумма и разность матриц

Складывать и вычитать можно только матрицы одного размера!!

Разность

Разность двух матриц определим через их сумму. Запись A - B означает $A + (-1) \cdot B$.

Следовательно, если $A = \begin{bmatrix} A & A & A \\ A & B \end{bmatrix}$ и $B = \begin{bmatrix} A & A \\ B & B \end{bmatrix}$ — $m \times n$ -матрицы, тогда A - B есть $m \times n$ матрица $C = \begin{bmatrix} C_{ij} & A \\ B & B \end{bmatrix}$, где $C_{ij} = A_{ij} - B_{ij}$.

Произведение матриц

1. Умножение матрицы на матрицу-столбец

Матрица должна быть слева, а матрица-столбец - справа:

2. Умножение матрицы-строки на матрицу.

Матрица-строка должна быть слева, а матрица-справа:

$$[A_1 A_2 \dots A_m] \times \begin{bmatrix} B & B & B \\ D & D & B \\ 21 & 22 & B_{2n} \end{bmatrix} = \begin{bmatrix} M & \sum_{k=1}^{m} A_k B_k \\ \sum_{k=1}^{m} A_k B_k \end{bmatrix} = \begin{bmatrix} M & \sum_{k=1}^{m} A_k B_k \\ \sum_{k=1}^{m} A_k B_k \end{bmatrix}$$

Б) Пусть A матрица $M \times p : A =$

$$\begin{bmatrix} A_{11} & A_{12} & A_{13} & A_{1p} \\ A_{21} & 22 & 23 & A_{2p} \end{bmatrix}$$

 $\begin{bmatrix} A & A & A & A \\ m_1 & D^{m_2} & D^{m_3} & B_{n_1} \\ B_{11} & D_{12} & D_{13} & B_{1n} \\ D & D & D & B_{21} \\ D & D & D & B_{2n} \end{bmatrix}$ Пусть B матрица $p \times n$: $B = \begin{bmatrix} B & D & D & B \\ D_{p_1} & D^{p_2} & D^{p_3} & B_{n_2} \end{bmatrix}$

Тогда произведением матриц A и B называется матрица $C = \begin{bmatrix} c_{ij} \end{bmatrix}$ размера $m \times n$, где C_{ij} — это скалярное произведение i -й строки матрицы A на j -й столбец матрицы B . C = AB

Транспонированная матрица

Пусть A — матрица $m \times n$.

Ее *транспонированной матрицей* называется матрица A^{l} размера $n \times m$ такая, что

$$A_{ij}^{\iota} = A_{ji}$$
,

где A_{ij} — элемент i -ой строки и j - го столбца матрицы A .

Симметричная матрица

Если A — матрица $n \times n$ и $A_{ij} = A_{ji}$ для всех $1 \le i$, $j \le n$, то матрица A называется *симметричной*. Иными словами, матрица A симметрична тогда и только тогда, когда $A = A^t$.

Матричное представление отношения

Пусть $A = \{a_1, a_2, a_3, ..., a_m\}$ и $B = \{b_1, b_2, b_3, ..., b_n\}$, и пусть R — отношение на $A \times B$.

Матричным представлением R называется матрица размера $m \times n$, определенная соотношениями

$$M_{ij} = \begin{cases} (a,b_j) \in R, \\ a & b \\ 0, (a,b_j) \notin K. \end{cases}$$

Пусть M — матрица размера $n \times n$, в каждой строке и в каждом столбце которой только один элемент равен 1, а все остальные равны 0. Такая матрица M называется **матрицей перестановок.**

Понятие о функционала

Понятие функционала является более широким, чем понятие функции.

Когда мы говорим об отображении f: X Y как о функции с вещественными значениями, мы не накладываем на характер элементов множества X каких-либо ограничений. В простейших задачах множество X, как и множество Y, представляет собой множества вещественных чисел. Каждая пара X, Y f ставит в соответствие одному вещественному числу X другое вещественной число Y. Однако для практики важным является случай, когда множество X представляет собой множество функций, а множество Y — множество вещественных чисел. Этот случай приводит к понятию функционала.

Представим себе некоторый набор кривых (траекторий) y f_i x , соединяющих фиксированные точки A и B, как показано на рисунке.

Пусть по каждой из этих траекторий может происходить свободное перемещение точки. Обозначим через t время, которое требуется на перемещение из точки A в точку B. Это время очевидно зависит от характера траектории AB, т. е. от вида функции f_i x.

Обозначим через F x множество из n различных функций, изображающих траекторию AB,

$$Fx f_1 x, f_2 x, ..., f_i x, ..., f_n x$$
,

а через T — множество вещественных чисел t T , определяющих время перемещения точки, то зависимость времени движения от вида функции может быть записана как отображение.

Функционал — это отображение J, которое имеет такое формальное представление:

$$J: Fx T$$
,

или
$$J f x$$
, t

Понятие оператора. Оператор представляет более общее понятие по сравнению с функционалом.

Оператором называется отображение

где множества X и Y являются множествами функций с элементами x t X и y t Y

Отсюда следует, что элементами множества L являются пары $x\ t$, $y\ t$, а оператор L преобразует функцию

$$yt Lxt$$
,

Таким образом, оператор устанавливает соответствие между двумя множествами функций, так, что каждой функции из одного множества соответствует функция из другого множества.

Пример. Обозначим через p оператор дифференцирования. Тогда связь между

производной
$$f x$$
 $\frac{df x}{dx}$ и функцией $f x$ может быть представлена в

операторном виде
$$f x$$
 $p t x$.