CS174A Lecture 11

Announcements & Reminders

- Team project proposals due (final version): Nov 8
- Projects due: Dec 1
- Project presentations: Dec 3 and 5, in class
- Final exam: Dec 12

TA Session This Friday

Team project proposals

Last Lecture Recap

Hidden Surface Removal

- Painter's algorithm
- Z-buffer algorithm
- Scanline z-buffer algorithm
- Properties, advantages, disadvantages of each.
- Efficiency considerations.

Next Up

- Lighting/Illumination Models
 - Ambient
 - Diffuse
 - Specular
- Barycentric Coordinates, Trilinear Interpolations
- Flat and Smooth Shading
- Hidden Surface Removal
 - 2-pass z-buffer algorithm (shadows)
 - Ray casting

Lighting/Illumination

Geometric Properties

- Object: position, orientation (normal)
- Light: position, direction, point vs. spot vs. area
- Eye: position, orientation

Material Properties

- Object: color, reflectivity, shininess, bumpiness, translucency
- Light: color
- Eye: filter, color blindness.

Lighting/Illumination

- Types of Lighting
 - Ambient
 - Diffuse
 - Specular

Ambient Lighting

Properties

- Background light
- Unrealistic
- Works as a good approximation of scattered light
- Does NOT depend on position/orientation of light, object or eye
- Only depends on object's material property.
- k_a = ambient reflection coefficient, values [0..1], may be different for R, G, B
- I_a = intensity of ambient light source, values [0..1], different for R; G; B
- Ambient light reflected off object = k_a * l_a

Diffuse Lighting

Properties

- Point light source
- Lambertian (of diffuse) reflection for dull, matte surfaces.
- Surfaces look equally bright from all directions
- Reflect light equally in all directions.
- Lambert's Law: amount of light reflected from a differential unit area dA toward a viewer is α the cosine of the angle between the incident light and the normal (θ)
- k_d = diffuse reflection coefficient, values [0..1]
- I_p = intensity of point light source, values [0..1]
- Diffuse light reflected off object = $k_d * l_p * \cos\theta = k_d * l_p * (N-L)$

Diffuse Lighting (Contd.)

Incident angle θ

- θ < 90° \Rightarrow some light based on angle θ
- $\theta = 0^{\circ} \Rightarrow \text{max light}$
- $\theta > 90^{\circ} \Rightarrow \text{self occlusion}$

Directional light source

- A light at sufficient distance from object (e.g., sun)
- L remains the same for entire scene
- N remains the same for entire polygon.
- Therefore, N·L = constant on poly; L = constant everywhere

Attenuated light source

- Diffuse light reflected off object = $f_{att} * k_d * l_p * \cos\theta = f_{att} * k_d * l_p * (N-L)$
- $f_{\text{att}} = \frac{1}{d^2} \text{ or } \frac{1}{c_1 + c_2 * d + c_3 * d^2}; f_{\text{att}} = \min(f_{\text{att}}, 1)$

Diffuse Lighting (Contd.)

Colored Light and Objects

- Object's Diffuse Color (O_{dλ}): O_{dR}, O_{dG}, O_{dB}
- $I_{\lambda} = [k_a * I_{a \lambda} + f_{att} * k_d * I_{p \lambda} * (N \cdot L)] * O_{d \lambda}$

Atmospheric Attenuation or Blending

- Depth cueing or fog (fog color = $I_{dc\lambda}$)
- $I'_{\lambda} = S_o * I_{\lambda} + (1 S_o) * I_{dc\lambda}$
- $s_o = s_b$ when $z > z_b$
- $s_o = s_f$ when $z < z_f$
- $S_0 = S_{f_1} + \frac{(sb sf)}{(zb zf)}(z zf)$

Specular Lighting

Properties

- Shiny surfaces
- Color of light, not object
- Does depend on position of light, object and eye
- Light reflects unequally in different directions (e.g., perfect reflector: mirror)
- For non-perfect reflectors.
- k_s = specular reflection coefficient, values [0..1], may be different for R, G, B
- n = material's specular reflection exponent, values [1..100s], perfect reflector n = ∞
- Specular light reflected off object = f_{att} * k_s * I_p * cosⁿα = f_{att} * k_s * I_p * (R-V)ⁿ
- $I_{\lambda} = K_{a} * I_{a \lambda} * O_{d \lambda} + f_{att} * K_{d} * I_{p \lambda} * (N \cdot L) * O_{d \lambda} + f_{att} * K_{s} * I_{p \lambda} * (R \cdot V)^{n}$

Specular Lighting (Contd.)

- Specular Term: Smoothness Exponent Effect
 - Exponentiating a term that has values < 1 draws it closer to 0
 - Higher exponent ⇒ smaller region where point light's reflection is considered aligned with the viewer ⇒ smaller shiny spot
 - -ve values of $\cos \alpha$ is clamped to $0 = \max(0, (R \cdot V)^n)$
 - Max specular reflection when $\alpha = 0$

Specular Lighting (Contd.)

Calculating R Vector: reflection of point light source

The $\overrightarrow{n'}$ is the projection of \vec{l} on \vec{N} $\overrightarrow{n'} = (\vec{N} \cdot \vec{I}) \vec{N}, \text{ with } ||\vec{N}||^2 = 1$ $\vec{u} = \overrightarrow{n'} \cdot \vec{l}$

$$\vec{R} = \vec{I} + 2\vec{u} = \vec{I} + 2(\overrightarrow{n'} - \vec{I})$$

$$\vec{R} = 2(\vec{N} \cdot \vec{I}) \vec{N} - \vec{I}$$

Specular Lighting (Contd.)

- Halfway Vector: Alternate Formulation of R-V
 - Halfway vector (H) between L and V = normalize(L + V)
 - Replace (R·V)ⁿ with (H·N)ⁿ

Final Light Equation

Lighting: Misc Improvements

Spot Lights

Smooth spot silhouette

Multiple Light Sources

Sum the light terms over all light sources

Clamping

- x = max(0,x) and min(x,1)
- x = normalize(x) wrt to max value of color in entire image

Fast Alternative to Phong Illumination

- $t = R \cdot V \text{ or } H \cdot N$
- Instead of t^n , do $\frac{t}{n-nt+t}$