# **Normalization Proofs**

**Project Title: Movie Booking System** 

**Group Number: T604** 

# **ER Diagram**



# **Relational Schema**



# **Minimal FD Set**

CBFC\_No → Title

CBFC\_No → Description

CBFC No → Runtime

CBFC\_No → Rating

Show ID → Date

Show\_ID → Time

Show ID → CBFC No

Show\_ID → Hall\_ID

Hall\_ID → Total\_Seats

Hall\_ID → Cinema\_ID

Cinema ID → Name

Cinema\_ID → No\_of\_Halls

Cinema\_ID → City\_ID

City\_ID → City\_Name

City\_ID → State

{Seat\_No, Hall\_ID} → Type

 ${Show\_Seat\_ID, Show\_ID} \rightarrow Status$ 

{Show\_Seat\_ID, Show\_ID} → Price

{Show\_Seat\_ID, Show\_ID} → Ticket\_No

Ticket No → Payment ID

Payment\_ID → Amount

Payment\_ID → Mode

Payment\_ID → Timestamp

Payment\_ID → UID

UID → Fname

UID → Lname

UID → Contact

UID → DOB

UID → Email

UID → Password

## **Normalization Proof**

# **Proof that the relations are in Boyce-Codd Normal Form (BCNF)**

- 'Movie' Relation:
  - Attributes :

Movie {CBFC No, Title, Description, Runtime, Rating}

• Functional Dependencies :

CBFC No → Description

CBFC No → Runtime

CBFC No → Rating

Let X = CBFC No

X<sup>+</sup> = {CBFC\_No, Title, Description, Runtime, Rating}

So we can Say That X is the Primary Key for the given relation.

Hence, Primary Key = CBFC\_No

For a relation R to be in Boyce-Codd Normal Form, for every Functional Dependency  $A \rightarrow B$  that holds on relation on R, A is its super-key.

Here, for the relation 'Movie', for every Functional Dependency, the left side is its super-key = CBFC\_No.

Hence, the relation 'Movie' is in BCNF.

## • 'Language' Relation:

#### • Attributes:

Let 
$$X = CBFC$$
 No

$$X^+ = \{CBFC \ No\}$$

This value of X does not give us all the attributes of the relation.

Therefore we take,  $X = \{Language, CBFC No\}$ 

$$X^+ = \{Language, CBFC_No\}$$

So we can Say That X is the Primary Key for the given relation.

Hence, Primary Key = {Language, CBFC\_No}

According to the Normal Form Theorem, a relation having only two attributes is always in Boyce-Codd Normal Form.

Here, the relation 'Language' has only two attributes, namely, language and CBFC No, Hence, the relation 'Language' is in BCNF.

#### • 'Genre' Relation:

#### • Attributes:

Let 
$$X = CBFC$$
 No

$$X^+ = \{CBFC \ No\}$$

This value of X does not give us all the attributes of the relation.

Therefore we take,  $X = \{Genre, CBFC\_No\}$ 

$$X^+ = \{Genre, CBFC\_No\}$$

So we can Say That X is the Primary Key for the given relation.

According to the Normal Form Theorem, a relation having only two attributes is always in Boyce-Codd Normal Form.

Here, the relation 'Genre' has only two attributes, namely, genre and CBFC No, Hence, the relation 'Genre' is in BCNF.

#### • 'Show' Relation:

• Attributes:

Show {Show\_ID, Date, Time, CBFC\_No, Hall\_ID}

## • Functional Dependencies :

Show\_ID → Time

Show ID → CBFC No

Show ID → Hall ID

Let X = Show ID

X<sup>+</sup> = {Show\_ID, Date, Time, CBFC\_No, Hall\_ID}

So we can Say That X is the Primary Key for the given relation.

Hence, Primary Key = Show\_ID

For a relation R to be in Boyce-Codd Normal Form, for every Functional Dependency  $A \rightarrow B$  that holds on relation on R, A is its super-key.

Here, for the relation 'Show', for every Functional Dependency, the left side is its super-key = Show\_ID.

Hence, the relation 'Show' is in BCNF.

#### • 'Cinema Hall' Relation:

• Attributes:

Cinema Hall {Hall ID, Total Seats, Cinema ID}

• Functional Dependencies :

Let 
$$X = Hall_ID$$

$$X^+ = \{Hall\ ID, Total\ Seats, Cinema\ ID\}$$

So we can Say That X is the Primary Key for the given relation.

Hence, Primary Key = Hall\_ID

For a relation R to be in Boyce-Codd Normal Form, for every Functional Dependency  $A \rightarrow B$  that holds on relation on R, A is its super-key.

Here, for the relation 'Cinema Hall', for every Functional Dependency, the left side is its super-key = Hall ID.

Hence, the relation 'Cinema Hall' is in BCNF.

#### • 'Cinema' Relation:

• Attributes :

Cinema {Cinema ID, Name, No of Halls, City ID}

• Functional Dependencies :

Cinema ID → Name

Cinema ID → No of Halls

Cinema\_ID → City\_ID

Let  $X = Cinema_ID$ 

 $X^+ = \{Cinema ID, Name, No of Halls, City ID\}$ 

So we can Say That X is the Primary Key for the given relation.

Hence, Primary Key = Cinema\_ID

For a relation R to be in Boyce-Codd Normal Form, for every Functional Dependency  $A \rightarrow B$  that holds on relation on R, A is its super-key.

Here, for the relation 'Cinema', for every Functional Dependency, the left side is its super-key = Cinema\_ID.

Hence, the relation 'Cinema' is in BCNF.

### • 'City' Relation:

• Attributes:

• Functional Dependencies :

Let 
$$X = City ID$$

So we can Say That X is the Primary Key for the given relation.

For a relation R to be in Boyce-Codd Normal Form, for every Functional Dependency  $A \rightarrow B$  that holds on relation on R, A is its super-key.

Here, for the relation 'Cinema Hall', for every Functional Dependency, the left side is its super-key = City ID.

Hence, the relation 'City' is in BCNF.

#### • 'Cinema Seats' Relation:

• Attributes:

o Functional Dependencies :

Let 
$$X = Seat No$$

$$X^+ = \{ Seat No \}$$

This value of X does not give us all the attributes of the relation.

Therefore we take, X = {Seat\_No, Hall\_ID}

$$X^+ = \{Seat\_No, Hall\_ID, Type\}$$

So we can Say That X is the Primary Key for the given relation.

Hence, Primary Key = {Seat\_No, Hall\_ID}

For a relation R to be in Boyce-Codd Normal Form, for every Functional Dependency  $A \rightarrow B$  that holds on relation on R, A is its super-key.

Here, for the relation 'Cinema Seats', for every Functional Dependency, the left side is its super-key = {Seat\_No, Hall\_ID}.

Hence, the relation 'Cinema Seats' is in BCNF.

#### • 'Show Seat' Relation:

• Attributes:

Show Seat {Show Seat ID, Show ID, Status, Price, Ticket No}

• Functional Dependencies :

Let  $X = Show\_Seat\_No$ 

$$X^+ = \{Show Seat No\}$$

This value of X does not give us all the attributes of the relation.

Therefore we take,  $X = \{Show Seat No, Show ID\}$ 

So we can Say That X is the Primary Key for the given relation.

For a relation R to be in Boyce-Codd Normal Form, for every Functional Dependency  $A \rightarrow B$  that holds on relation on R, A is its super-key.

Here, for the relation 'Show Seat', for every Functional Dependency, the left side is its super-key = {Show Seat No, Show ID}

Hence, the relation 'Show Seat' is in BCNF.

#### • 'E Ticket' Relation:

• Attributes :

```
E Ticket {Ticket No, Payment ID}
```

• Functional Dependencies :

Let X = Ticket No

So we can Say That X is the Primary Key for the given relation.

Hence, Primary Key = Ticket\_No

For a relation R to be in Boyce-Codd Normal Form, for every Functional Dependency  $A \rightarrow B$  that holds on relation on R, A is its super-key.

Here, for the relation 'E Ticket', for every Functional Dependency, the left side is its super-key = Ticket\_No.

Also, according to the Normal Form Theorem, a relation having only two attributes is always in Boyce-Codd Normal Form.

Here, the relation 'E Ticket' has only two attributes, namely, Ticket\_No and Payment ID.

Hence, the relation 'E Ticket' is in BCNF.

## • 'Payment' Relation:

• Attributes:

Payment {Payment ID, Amount, Mode, Timestamp, UID}

o Functional Dependencies:

Payment ID → Amount

Payment ID → Mode

Payment\_ID → Timestamp

Payment ID → UID

Let X = Payment\_ID

 $X^+ = \{Payment\_ID, Amount, Mode, Timestamp, UID\}$ 

So we can Say That X is the Primary Key for the given relation.

Hence, Primary Key = Payment\_ID

For a relation R to be in Boyce-Codd Normal Form, for every Functional Dependency  $A \rightarrow B$  that holds on relation on R, A is its super-key.

Here, for the relation 'Payment', for every Functional Dependency, the left side is its super-key = Payment\_ID.

Hence, the relation 'Payment' is in BCNF.

#### • 'User' Relation:

• Attributes:

User {UID, Fname, Name, Contact, DOB, Email, Password}

• Functional Dependencies :

UID → Fname

UID → Lname

UID → Contact

UID → DOB

UID → Email

UID → Password

Let X = UID

 $X^+ = \{UID, Fname, Name, Contact, DOB, Email, Password\}$ 

So we can Say That X is the Primary Key for the given relation.

Hence, **Primary Key = UID** 

For a relation R to be in Boyce-Codd Normal Form, for every Functional Dependency  $A \rightarrow B$  that holds on relation on R, A is its super-key.

Here, for the relation 'User', for every Functional Dependency, the left side is its super-key = UID.

Hence, the relation 'User' is in BCNF.