Přerovnání neabsolutně konvergentních řad

Petr Rašek, Matúš Letko

Charles University, Czech Republic

26. února 2023

Teorie

Definice (Přerovnání řady)

Něchť $a_n \in \mathbb{R}$ a $\varphi : \mathbb{N} \to \mathbb{N}$ je bijekce. Pak řadu $\sum_{n=1}^{\infty} a_{\varphi(n)}$ nazveme přerovnáním řady $\sum_{n=1}^{\infty} a_n$ (odpovídajícím bijekci φ).

Věta (Riemannova)

Nechť $a_n \in \mathbb{R}$ a řada $\sum_{n=1}^{\infty} a_n$ konverguje neabsolutně. Pak pro každé $S \in \mathbb{R}^*$ existuje přerovnání řady $\sum_{n=1}^{\infty} a_n$ se součtem S

Příklad (Neabsolutně konvergentní řady)

- $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \log(2)$
- $\sum_{n=2}^{\infty} \frac{(-1)^n}{n \log(n)} = 0.526412$
- $\bullet \sum_{n=1}^{\infty} \frac{\sin(n)}{n} = \frac{1}{2}(\pi 1)$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

Částečné součty

2.00

1.95

1.90

1.85

50

150

200

100

250

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

Cílový součet $\frac{-1}{2}$

$$\sum_{n=1}^{\infty} \frac{(-1)^{-1+n}}{n}$$

Částečné součty

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \log(n)}$$

Cílový součet $\frac{1}{2}$

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \log(n)}$$

$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n}$$

$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n}$$

