Lecture 4: Model-Free Prediction and Control

Hado van Hasselt

January 22, 2020, UCL

Background

Sutton & Barto 2018, Chapters 5+6 (+7+12)

Recap

- ▶ Reinforcement learning is the science of learning to make decisions
- Agents can learn a policy, value function and/or a model
- ► The general problem involves taking into account time and consequences
- Decisions affect the reward, the agent state, and environment state

Sample-based reinforcement learning

- Last lecture:
 - ▶ Planning by dynamic programming to solve a known MDP
- ► This lecture & next lecture:
 - ► Model-free prediction to estimate values in an unknown MDP
 - Model-free control to optimise values in an unknown MDP
- Not yet:
 - Learning policies directly in sequential problems (policy gradients)
 - Continuous MDPs
 - Deep reinforcement learning

Sample-based reinforcement learning

- ▶ We can use experience samples to learn without a model
- ► We call direct sampling of episodes **Monte Carlo**
- ▶ MC is model-free: no knowledge of MDP required, only samples

Sample-based reinforcement learning

- Simple example, multi-armed bandit:
 - For each action, average reward samples

$$q_t(a) = \frac{\sum_{i=0}^t \mathcal{I}(A_i = a) R_{i+1}}{\sum_{i=0}^t \mathcal{I}(A_i = a)} \approx \mathbb{E}[R_{t+1} | A_t = a] = q(a)$$

Equivalently:

$$q_t(A_t) = q_{t-1}(A_t) + lpha_t(R_t - q_{t-1}(A_t))$$
 $q_t(a) = q_{t-1}(a)$ $orall a
eq A_t$ with $lpha_t = rac{1}{N_t(A_t)} = rac{1}{\sum_{i=0}^t \mathcal{I}(A_i = a)}$

Note: we changed notation $R_t \to R_{t+1}$ for the reward after A_t In MDPs, the reward is said to arrive on the time step after the action

Contextual bandits

- Consider bandits with different states ('context')
 - episodes are still one step
 - actions do not affect states
 - no long-term consequences
- Then, we want to estimate

$$q(s,a) = \mathbb{E}\left[R_{t+1}|S_t = s, A_t = a\right]$$

ightharpoonup q could be a parametric function, e.g., neural network, and we could use loss

$$L(w) = \frac{1}{2}\mathbb{E}\left[(R_{t+1} - q_w(S_t, A_t))^2\right]$$

ightharpoonup Also works for large (continuous) state spaces S — this is just regression

Contextual bandits (continued)

We want to minimise

$$L(w) = \frac{1}{2}\mathbb{E}\left[(R_{t+1} - q_w(S_t, A_t))^2\right]$$

► Then the gradient update is

$$\begin{split} w_{t+1} &= w_t - \alpha \nabla_{w_t} L(w_t) \\ &= w_t - \alpha \nabla_{w_t} \frac{1}{2} \mathbb{E} \left[(R_{t+1} - q_{w_t}(S_t, A_t))^2 \right] \\ &= w_t + \alpha \mathbb{E} \left[(R_{t+1} - q_w(S_t, A_t)) \nabla_{w_t} q_{w_t}(S_t, A_t) \right]. \end{split}$$

We can sample this to get a **stochastic gradient update** (SGD)

ightharpoonup The tabular case is a special case (only updates the value in cell $[S_t, A_t]$)

Monte-Carlo Policy Evaluation

- Now consider sequential decision problems
- ▶ Goal: learn v_{π} from episodes of experience under policy π

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

▶ The **return** is the total discounted reward (for an episode ending at time T > t):

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$$

► The value function is the expected return:

$$v_{\pi}(s) = \mathbb{E}\left[G_t \mid S_t = s, \pi\right]$$

- We can just use sample average return instead of expected return
- We call this Monte Carlo policy evaluation

Blackjack Example

- ► States (200 of them):
 - Current sum (12-21)
 - ► Dealer's showing card (ace-10)
 - Do I have a "useable" ace? (yes-no)
- Action stick: Stop receiving cards (and terminate)
- Action draw: Take another card (random, no replacement)
- Reward for stick:
 - ightharpoonup +1 if sum of cards > sum of dealer cards
 - 0 if sum of cards = sum of dealer cards
 - ▶ -1 if sum of cards < sum of dealer cards
- Reward for draw:
 - ► -1 if sum of cards > 21 (and terminate)
 - 0 otherwise
- ► Transitions: automatically **draw** if sum of cards < 12

Blackjack Value Function after Monte-Carlo Learning

Temporal Difference Learning by Sampling Bellman Equations

Previous lecture: Bellman equations,

$$v_{\pi}(s) = \mathbb{E} [R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s, A_t \sim \pi(S_t)]$$

Previous lecture: Approximate by iterating,

$$v_{k+1}(s) = \mathbb{E}[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, A_t \sim \pi(S_t)]$$

► We can sample this!

$$v_{t+1}(S_t) = R_{t+1} + \gamma v_t(S_{t+1})$$

▶ This is likely quite noisy — better to average:

$$v_{t+1}(S_t) = v_t(S_t) + \alpha_t \left(\underbrace{R_{t+1} + \gamma v_t(S_{t+1})}_{\mathsf{target}} - v_t(S_t)\right)$$

Temporal difference learning

▶ In dynamic programming (DP) we use one step of the model and **bootstrap**

target =
$$\mathbb{E}\left[R_{t+1} + \gamma v_k(S_{t+1}) \mid S_t = s, \pi\right]$$
 (DP)

▶ In Monte Carlo (MC) we sample, and use:

target =
$$G_t$$
 (= $R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ...$) (MC)

Alternatively, we could sample and bootstrap, and use

target =
$$R_{t+1} + \gamma v_t(S_{t+1})$$
. (TD)

► This is called temporal-difference learning (TD)

Temporal-Difference Learning

- ► TD is model-free (no knowledge of MDP) and learn directly from experience
- ► TD can learn from **incomplete** episodes, by **bootstrapping**
- ► TD can learn during each episode

MC and TD

- \triangleright Consider prediction: learn v_{π} online from experience under policy π
- Incremental Monte-Carlo
 - ▶ Update value $v_n(S_t)$ towards sampled return G_t

$$v_{n+1}(S_t) = v_n(S_t) + \alpha \left(\mathbf{G_t} - v_n(S_t) \right)$$

- Simplest temporal-difference learning algorithm:
 - ▶ Update value $v_t(S_t)$ towards estimated return $R_{t+1} + \gamma v(S_{t+1})$

$$v_{t+1}(S_t) \leftarrow v_t(S_t) + \alpha \left(\underbrace{\frac{\mathsf{TD}\;\mathsf{error}}{R_{t+1} + \gamma v_t(S_{t+1})} - v_t(S_t)}_{\mathsf{target}} \right)$$

 $\delta_t = R_{t+1} + \gamma v_t(S_{t+1}) - v_t(S_t)$ is called the TD error

Driving Home Example

State	Elapsed Time (minutes)	Predicted Time to Go	Predicted Total Time
leaving office	0	30	30
reach car, raining	5	35	40
exit highway	20	15	35
behind truck	30	10	40
home street	40	3	43
arrive home	43	0	43

Driving Home Example: MC vs. TD

Changes recommended by Monte Carlo methods (α =1)

Changes recommended by TD methods (α =1)

Advantages and Disadvantages of MC vs. TD

- TD can learn before knowing the final outcome
 - ► TD can learn online after every step
 - ▶ MC must wait until end of episode before return is known
- TD can learn without the final outcome
 - TD can learn from incomplete sequences
 - ► MC can only learn from complete sequences
 - ► TD works in continuing (non-terminating) environments
 - ▶ MC only works for episodic (terminating) environments
- ► TD needs reasonable value estimates

Bias/Variance Trade-Off

- ▶ MC return $G_t = R_{t+1} + \gamma R_{t+2} + \dots$ is an **unbiased** estimate of $v_{\pi}(S_t)$
- ► TD target $R_{t+1} + \gamma v_t(S_{t+1})$ is a **biased** estimate of $v_{\pi}(S_t)$ (Unless $v_t(S_{t+1}) = v_{\pi}(S_{t+1})$)
- ▶ But the TD target has **lower variance**:
 - Return depends on many random actions, transitions, rewards
 - ► TD target depends on one random action, transition, reward

Bias/Variance Trade-Off

- ▶ In some cases. TD can have irreducible bias
- ► The world may be partially observable
 - ▶ MC would implicitly account for all the latent variables
- ▶ The function to approximate the values may fit poorly
- lacktriangle In the tabular case, both MC and TD will converge: $v_t
 ightarrow v_\pi$

Random Walk Example

Random Walk: MC vs. TD

Batch MC and TD

- ▶ Tabular MC and TD converge: $v_t \rightarrow v_{\pi}$ as experience $\rightarrow \infty$ and $\alpha_t \rightarrow 0$
- ▶ But what about finite experience?
- Consider a fixed batch of experience:

episode 1:
$$S_1^1, A_1^1, R_2^1, ..., S_{T_1}^1$$
 \vdots episode K: $S_1^K, A_1^K, R_2^K, ..., S_{T_K}^K$

- ▶ Repeatedly sample each episode $k \in [1, K]$ and apply MC or TD(0)
 - = sampling from an empirical model

AB Example

Two states A, B; no discounting; 8 episodes of experience

A, 0, B, 0 B, 1

B, 1

B, 1

B, 1 B, 1

B, 1

B, 0

What is v(A), v(B)?

AB Example

Two states A, B; no discounting; 8 episodes of experience

What is v(A), v(B)?

Differences in batch solutions

▶ MC converges to best mean-squared fit for the observed returns

$$\sum_{k=1}^K \sum_{t=1}^{T_k} \left(G_t^k - v(S_t^k) \right)^2$$

- ▶ In the AB example, v(A) = 0
- ▶ TD converges to solution of max likelihood Markov model, given the data
 - ▶ Solution to the empirical MDP (S, A, \hat{p}, γ) that best fits the data
 - ▶ In the AB example: $\hat{p}(S_{t+1} = B \mid S_t = A) = 1$, and therefore v(A) = v(B) = 0.75

Advantages and Disadvantages of MC vs. TD (3)

- TD exploits Markov property
 - Usually more efficient in Markov environments
- MC does not exploit Markov property
 - Usually more accurate in non-Markov environments
- With finite data, or with function approximation, the solutions may differ

Dynamic Programming Backup

$$v(S_t) \leftarrow \mathbb{E}\left[R_{t+1} + \gamma v(S_{t+1}) \mid A_t \sim \pi(S_t)\right]$$

Monte-Carlo Backup

Temporal-Difference Backup

$$v(S_t) \leftarrow v(S_t) + \alpha \left(R_{t+1} + \gamma v(S_{t+1}) - v(S_t) \right)$$

Bootstrapping and Sampling

- ► Bootstrapping: update involves an estimate
 - MC does not bootstrap
 - DP bootstraps
 - ► TD bootstraps
- ► Sampling: update samples an expectation
 - MC samples
 - ▶ DP does not sample
 - ► TD samples

Unified View of Reinforcement Learning

Multi-step updates

- ▶ When we bootstrap, updates use old estimates
- Information can propagate back quite slowly
- ▶ In MC information propagates faster, but the updates are noisier
- ► We can go in between TD and MC

n-Step Prediction

Let TD target look *n* steps into the future

n-Step Return

▶ Consider the following *n*-step returns for $n = 1, 2, \infty$:

$$n=1$$
 (TD) $G_t^{(1)} = R_{t+1} + \gamma v(S_{t+1})$
 $n=2$ $G_t^{(2)} = R_{t+1} + \gamma R_{t+2} + \gamma^2 v(S_{t+2})$
 \vdots \vdots
 $n=\infty$ (MC) $G_t^{(\infty)} = R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-t-1} R_T$

In general, the n-step return is defined by

$$G_t^{(n)} = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n v(S_{t+n})$$

Multi-step temporal-difference learning

$$v(S_t) \leftarrow v(S_t) + \alpha \left(G_t^{(n)} - v(S_t) \right)$$

Multi-step Return

(SARSA is TD for action values q(s, a) — more on that later)

Random Walk Example

- ▶ Uniform random transitions (50% left, 50% right)
- lnitial values are v(s) = 0.5, for all s
- True values happen to be $v(A) = \frac{1}{6}$, $v(B) = \frac{2}{6}$, $v(C) = \frac{3}{6}$, $v(D) = \frac{4}{6}$, $v(E) = \frac{5}{6}$

Large Random Walk Example

..., but with 19 states, rather than 5

Benefits of multi-step returns

- Multi-step returns have benefits from both TD and MC
- Bootstrapping can have issues with bias
- Monte Carlo can have issues with variance
- ► Typically, intermediate values of *n* are good

Independence of temporal span

- ► MC and multi-step returns are not **independent of span**: To update values in a long episode, you have to wait
- ► TD can update immediately, and is independent of span
- Can we get both?

- ightharpoonup Consider ightharpoonup to be a vector with components v_s
- Let \mathbf{x}_s be a one-hot vector: $\mathbf{x}_s = [0, 0, \dots, 0, 1, 0, \dots, 0, 0]^{\top}$ with the s^{th} element equal to one: $\mathbf{x}_s[s] = 1$ and $\mathbf{x}_s[s'] = 0$ for all $s' \neq s$
- ▶ The Monte Carlo update to \mathbf{v} for a state S_t is then

$$\mathbf{v}_{k+1} = \mathbf{v}_k + \alpha (G_t - v(S_t)) \mathbf{x}_{S_t}$$
.

Note, this only updates the relevant entry in \boldsymbol{v} , as intended. Note, this is the same update as before, just written differently

We can rewrite the MC error as a sum of TD errors:

$$\begin{split} \delta_t^{\mathsf{MC}} &= G_t - v(S_t) \\ &= R_{t+1} + \gamma G_{t+1} - v(S_t) \\ &= \underbrace{R_{t+1} + \gamma v(S_{t+1}) - v(S_t)}_{= \delta_t} + \gamma \underbrace{(G_{t+1} - v(S_{t+1}))}_{= \delta_t} \\ &= \delta_t + \gamma \delta_{t+1}^{\mathsf{MC}} \\ &= \delta_t + \gamma \delta_{t+1}^{\mathsf{MC}} \\ &= \delta_t + \gamma \delta_{t+1}^{\mathsf{MC}} \\ &= \ldots \\ &= \sum_{k=0}^{T-t} \gamma^k \delta_{t+k} \,. \end{split}$$

(used in the next slide)

 $\left(=\sum_{k=1}^{r}\gamma^{k-t}\delta_{k}\right)$

Now consider accumulating a whole episode (from time t = 0 to T) of updates:

$$\Delta \mathbf{v} = \sum_{t=0}^{T} \alpha (G_t - v(S_t)) \mathbf{x}_{S_t}$$

$$= \sum_{t=0}^{T} \alpha \sum_{k=t}^{T} \gamma^{k-t} \delta_k \mathbf{x}_{S_t}$$

$$= \sum_{k=0}^{T} \alpha \sum_{t=0}^{k} \gamma^{k-t} \delta_k \mathbf{x}_{S_t}$$

$$= \sum_{k=0}^{T} \alpha \delta_k \sum_{t=0}^{k} \gamma^{k-t} \mathbf{x}_{S_t}$$

$$= \sum_{k=0}^{T} \alpha \delta_k \sum_{t=0}^{k} \gamma^{k-t} \mathbf{x}_{S_t}$$

$$= \sum_{t=0}^{T} \alpha \delta_t \mathbf{e}_t.$$

$$(using \sum_{i=0}^{m} \sum_{j=i}^{m} z_{ij} = \sum_{i=0}^{m} \sum_{i=0}^{j} z_{ij})$$

$$= \sum_{t=0}^{T} \alpha \delta_t \mathbf{e}_t.$$

$$\begin{aligned}
& = \delta_3 \mathbf{e}_3 \\
\delta_1 \mathbf{x}_1 & \delta_2 \mathbf{x}_1 & \delta_3 \mathbf{x}_1 & \delta_4 \mathbf{x}_1 \\
& \delta_2 \mathbf{x}_2 & \delta_3 \mathbf{x}_2 & \delta_4 \mathbf{x}_2 & = (G_2 - v(S_2)) \mathbf{x}_2 \\
& \delta_3 \mathbf{x}_3 & \delta_4 \mathbf{x}_3 \\
& & \delta_4 \mathbf{x}_4
\end{aligned}$$

Accumulating a whole episode of updates:

$$\begin{split} \Delta \mathbf{v} &= \sum_{t=0}^{T} \alpha \delta_t \mathbf{e}_t \\ \text{where} \qquad \mathbf{e}_t &= \sum_{j=0}^{t} \gamma^{t-j} \mathbf{x}_{S_j} \\ &= \gamma \sum_{j=0}^{t-1} \gamma^{t-1-j} \mathbf{x}_{S_j} + \mathbf{x}_{S_t} \\ &= \gamma \mathbf{e}_{t-1} + \mathbf{x}_{S_t} \,. \end{split}$$

This is called an eligibility trace

Every step, it decays (according to γ) and then the current one-hot is added

Accumulating a whole episode of updates:

$$\Delta_t {m v} \equiv lpha \delta_t {f e}_t$$
 $\Delta {m v} = \sum_{t=0}^{\mathcal T} \Delta_t {m v}$ where ${f e}_t = \gamma {f e}_{t-1} + {m x}_{\mathcal S_t}$.

(And then apply Δv at the end of the episode)

- Intuition: decay the eligibility of past states for the current TD error
- ▶ Intuition: the same TD error shows up in multiple MC errors—we grouped them so that we can applied it to all past states in one update
- ► This is kind of magical: we can reupdate all past states (to account for the new TD error) with a single update! No need to even recompute their values (You can't always do that, but here it works out)

Mixing multi-step returns

Multi-step returns bootstrap on one state, $v(S_{t+n})$:

$$G_t^{(n)} = R_{t+1} + \gamma G_{t+1}^{(n-1)}$$
 (while $n > 1$, continue)
 $G_t^{(1)} = R_{t+1} + \gamma v(S_t)$. (truncate & bootstrap)

You can also bootstrap a little bit on multiple states:

$$G_t^{\lambda} = R_{t+1} + \gamma \bigg((1-\lambda) v(S_{t+1}) + \lambda G_{t+1}^{\lambda} \bigg)$$

This turns out to be a weighted average of *n*-step returns:

$$G_t^{\lambda} = \sum_{n=1}^{\infty} (1 - \lambda) \lambda^{n-1} G_t^{(n)}$$

(Note,
$$\sum_{n=1}^{\infty} (1-\lambda)\lambda^{n-1} = 1$$
)

Mixing multi-step returns

$$G_t^{\lambda} = R_{t+1} + \gamma igg((1-\lambda) v(S_{t+1}) + \lambda G_{t+1}^{\lambda} igg)$$

Special cases:

$$G_t^{\lambda=0} = R_{t+1} + \gamma v(S_{t+1})$$
 (TD)
 $G_t^{\lambda=1} = R_{t+1} + \gamma G_{t+1}$ (MC)

Mixing multi-step returns

Intuition: $1/(1-\lambda)$ is the 'horizon'. E.g., $\lambda=0.9\approx n=10$.

Mixing multi-step returns & traces

$$G_t^{\lambda} = R_{t+1} + \gamma \bigg((1-\lambda) v(S_{t+1}) + \lambda G_{t+1}^{\lambda} \bigg)$$

The associated error and trace update are

$$\begin{split} G_t^\lambda &= \sum_{k=0}^{T-t} \lambda^k \gamma^k \delta_{t+k} & \text{(same as before, but with } \lambda \gamma \text{ instead of } \gamma \text{)} \\ \mathbf{e}_t &= \gamma \lambda \mathbf{e}_{t-1} + \mathbf{x}_{\mathcal{S}_t} & \text{and} & \Delta \mathbf{v}_t = \alpha \delta_t \mathbf{e}_t \,. \end{split}$$

- ► This is called an **accumulating trace** with decay $\gamma\lambda$ (instead of γ for MC, or 0 for TD)
- It is exact for batched episodic updates, similar traces exist for online updating
- ▶ We can also derive traces for function approximation (in a later lecture)

Next lecture

Model-free control