

GENOMIC HERITABILITY AND LIKELIHOOD ESTIMABILITY USING THE G-BLUP

Yogasudha Veturi
II year PhD student
Department of Biostatistics
University of Alabama at Birmingham

Missing heritability

- Genome Wide Association Studies (GWAS)
 have reported large numbers of variants
 associated with important complex human
 traits and diseases (NHGRI,
 www.genome.gov/GWAStudies).
- A sizable proportion of inter-individual differences attributable to genetic factors remains largely unaccounted for (Manolio et al., 2009).
- GWAS lack power to detect associations of small-effects variants.
- With the G-BLUP we can estimate the proportion of variance that can be explained by all-available markers (Yang et al., 2010).

Phenotype

$$var(y_i) = var(g_i) + var(\varepsilon_i) + 2cov(g_i, \varepsilon_i)$$
$$\sigma_y^2 = \sigma_g^2 + \sigma_\varepsilon^2$$
$$h^2 = \frac{\sigma_g^2}{\sigma_g^2 + \sigma_\varepsilon^2}$$

Heritability: The proportion inter-individual differences of a trait (or in disease risk) that can be attributed to genetic factors.

Infinitesimal model

$$y_i = \mu + g_i + \varepsilon_i$$

$$g \sim N(0, \mathbf{A}\sigma_a^2), \ \varepsilon \sim N(0, \mathbf{I}\sigma_\varepsilon^2)$$

Henderson, 1950

G-BLUP

$$y_i = \mu + g_i + \varepsilon_i$$
 where $g_i = \sum x_{ij}u_j$

$$\boldsymbol{u} \sim N(0, \sigma_u^2), \ \boldsymbol{\varepsilon} \sim N(0, \mathbf{I}\sigma_{\varepsilon}^2),$$
 $\boldsymbol{g} \sim N(0, \sigma_g^2 = \mathbf{p}\sigma_u^2)$

$$Var(y) = G\sigma_g^2 + I\sigma_\epsilon^2$$

$\Delta x_{ij}u_{j}$									
		I-1	I-2	II-1	II-2	II-3	11-4	III-1	III-2
	I-1	1	0	0.5	0.5	0.5	0	0.25	0.25
	I-2	0	1	0.5	0.5	0.5	0	0.25	0.25
	II-1	0.5	0.5	1	0.5	0.5	0	0.25	0.25
	II-2	0.5	0.5	0.5	1	0.5	0	0.25	0.25
	II-3	0.5	0.5	0.5	0.5	1	0	0.5	0.5
	II-4	0	0	0	0	0	1	0.5	0.5
	III-1	0.25	0.25	0.25	0.25	0.5	0.5	1	0.5
	III-2	0.25	0.25	0.25	0.25	0.5	0.5	0.5	1

Computing genomic similarities

X

$$\mathbf{G} = \frac{\frac{1}{p}\mathbf{X}\mathbf{X}}{2\sum \theta_i (1-\theta_i)},$$

$$\mathbf{X} = \{x_i = 0,1,2\}$$

 θ_i allele frequency

A: expected proportion of allele sharing.

G: realized proportion of allele sharing at markers.

Materials and Methods

RACE	SAMPLE SIZE	No. SNPs		
Whites	1052	39438		
Blacks	721	49679		
Hispanics	321	75113		
Asians	130	72057		

Estimation of h_G^2 using:

- Bayesian methods
- Simulations

<u>Hypothesis</u>: G-BLUP can explain a sizeable proportion of h_G^2 for anthropomorphic traits in the TIGER study (Illumina metabochip)

ML/Bayesian Inference

Distribution of the unknowns given the data and hyper-parameters

The Scale-Inverse Chi-Sq. Density

$$\frac{df_0\sigma_0^2 + \sum_{i=1}^n (y_i - \mu)^2}{df_0 + n}$$
 Posterior density

BGLR (R)

$$df_0 = 1, 3, 5; \sigma_0^2 = 0.25, 0.5, 0.75$$
 Hyperparameters

Distribution of h_G^2 for height using MCMC. Red line = ML estimate

The Neg. Log-Likelihood Surface

Simulations (ML estimates from 1000 reps)

Simulations (ML estimates from 1000 reps)

Z_{Nxp} Simulated dataset	W_{Nxp} Predictor dataset			
p = 50,200, 39438 N = 1052	p = 50,200, 39438 $N = 1052$			
p = 250	$p = 50,200, \dots 391888$			
N = 1052	N = 1052			

Conclusions

- Variance component and heritability estimation using ML resulted in some corner solutions.
- Bayesian estimates were very sensitive to choice of prior.
- This was the result of an estimability problem caused by a flat likelihood function; there was a large area corresponding to the same likelihood.
- Thus, variance component estimates should be reported after a careful study of likelihood profiles.
- Simulation studies suggest that the probability of corner solutions reduce by increasing sample size and decreasing SNP density, however lower SNP density might result in increased bias.

Acknowledgements

University of Alabama at Birmingham

Dr. A.I. Vazquez

Dr. G. de los Campos - Advisor

University of Texas at Austin. M. Bray

Students, stuff and participants of the TIGER study.

