Problemes de Càlcul amb Vàries Variables. Full 4

Diferenciabilitat 2

1. Calculeu la matriu Jacobiana de les següents funcions:

(a)
$$f: \mathbb{R}^3 \to \mathbb{R}$$
, $f(x, y, z) = \sinh 2x \cosh 2y e^z$

(b)
$$g: \mathbb{R}^2 \to \mathbb{R}^2, g(x, y) = (x^y \log y, \cos(x^2 - y^2))$$

(c)
$$h: \mathbb{R} \to \mathbb{R}^3, h(x) = (e^{\sin x}, \cos(e^x), \tan(\sin x))$$

2. Trobeu el pla tangent a la superfície

$$1 - x\sin(\pi z) - y\cos(\pi z) - z^2 = 0$$

en el punt (0, 0, 1).

3. Demostra que una funció de la forma u(x,y) = f(x)g(y) satisfà l'equació diferencial

$$uu_{xy} - u_x u_y = 0.$$

4. Proveu que si z = f(x, y) és l'equació d'un con, aleshores

$$f_{xx}f_{yy} - f_{xy}^2 = 0$$

5. Sigui $F(x,y)=f(a\,x+g(b\,y^2))$, a i b constants. Trobeu les fórmules corresponents a totes les derivades parcials de F de primer i segon ordre expresades en funció de derivades de f i g. Comproveu que

$$\frac{\partial F}{\partial x}\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial F}{\partial y}\frac{\partial^2 F}{\partial x^2}$$

- 6. Sigui u = f(x, y), on $x = r \cos \theta$ y $y = r \sin \theta$. Trobeu $\sqrt{u_x^2 + u_y^2}$ en termes de u_r i u_θ .
- 7. Determineu si es pot resoldre l'equació f(x,y)=0 per x com a funció de y al voltant de (x_0,y_0) , per

(a)
$$f(x,y) = \sqrt{\log\left(\left(x + \frac{y}{2}\right)^2\right)}$$
 $(x_0, y_0) = (-1/2, 3)$

(b)
$$f(x,y) = \sin(y-x) + 1$$
 $(x_0, y_0) = (\pi/4, -\pi/4)$

8. Determineu si les equacions següents tenen solució única al voltant dels punts indicats:

(a)
$$u^2 + uv + v^2 + 3u + 3v - 4 = 0$$
 $(u_0, v_0) = (1, 0)$

(b)
$$\log(uv) + 2uv + \log(2/e) = 0$$
 $(u_0, v_0) = (1/2, 1)$

- 9. Trobeu les primeres i les segones derivades de les solucions de l'exercici anterior.
- 10. Demostreu que l'equació $u^2 v^2 + w + \sin(uvw) = 0$ pot resoldre's per w a prop de (u, v, w) = (0, 0, 0). Trobeu les derivades parcials de la solució.
- 11. Trobeu els valors màxims i mínims de la funció v que satisfà

$$u^2 - 2uv + v = 3$$

12. Determineu els extrems de les funcions y(x) definides implícitament a través de les equacions:

$$(a) x^3 + y^3 - 3xy = 0$$

$$(b) x^2 + y^2 + kxy = 0$$

13. Considereu $f: \mathbb{R}^3 \to \mathbb{R}^2$,

$$f_1(x, y, z) = 4y + 3z - x + 2$$

$$f_2(x, y, z) = 5y + 4z - 2x$$

Proveu que l'equació $(f_1, f_2) = (0, 0)$ determina y i z com a funcions de x, i trobeu y'i z'.

14. Trobeu les equacions de la tangent i de la normal a les corbes següents:

(a)
$$x^2 - y^2 + xy = 0$$

(b)
$$e^x \sin y - e^y \cos x = 1$$

(c)
$$\cosh(x-y) + \sin y = 0$$

(d)
$$x^2 - y^2 + y + \sin x = 0$$

- 15. La corba $y^2(a+x)=x^2(3a-x)$ té un punt doble a l'origen. Quines son les seves tangents?
- 16. La corba $x^3 y^3 + axy = 0$ té un punt doble a l'origen. Quines son les seves tangents?
- 17. Estudieu la corba $(x-b)^2(x^2+y^2)-a^2x^2=0$ al voltant de l'origen.
- 18. Trobeu els Jacobians de cadascuna de les següents transformacions:

$$\begin{cases} u = e^x \sin y \\ v = e^x \cos y \end{cases} \qquad \begin{cases} u = \tan(x - y) \\ v = \cos(x + y), \end{cases} -\pi/2 < x - y < \pi/2$$

Trobeu les derivades parcials de x i de y respecte de u i v.

19. Per a quines de les següents transformacions succesives pot definir-se x, y com funcions continuament diferenciables de u, v al voltant del punt indicat, (u_0, v_0) ?

(a)
$$\xi = e^x \cosh y$$
, $\eta = e^x \sinh y$
 $u = \xi^2 + \eta^2$, $v = 2\xi\eta$,

$$= \xi^2 + \eta^2, \quad v = 2\xi\eta,$$
 $u_0 = 1, v_0 = 0$

(b)
$$\xi = \cosh x + \sinh y$$
, $\eta = \sinh y - \cosh x$
 $u = e^{\xi + \eta}$, $v = e^{\xi - \eta}$

$$u_0 = v_0 = 1$$

Trobeu en cada cas el Jacobià $\frac{\partial(x,y)}{\partial(u,v)}$.

20. Considereu la transformació

$$\begin{cases} u = \phi(\xi, \eta) \\ v = \psi(\xi, \eta) \end{cases} \begin{cases} \xi = f(x) \\ \eta = g(y) \end{cases}$$

Proveu que

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{f'(x)g'(y)} \frac{\partial(\xi,\eta)}{\partial(u,v)}$$

21. Es pot resoldre l'equació

$$x\cos(v+u) + y\sin(v-u) + z^{2} = 1$$
$$\cos(2u) + y = 1$$

per a x i y com a funcions contínuament diferenciables de les variables restants, a prop del punt $u = \pi/4, v = -\pi/4, x = y = z = 1$?

22. Trobeu explícitament la transformació inversa Ψ^{-1} de la següent transformació:

$$\Psi = \begin{cases} u &= x + e^y \\ v &= x - e^y \end{cases}$$

En quins punts (u, v) està definida Ψ^{-1} ? Trobeu els jacobians de Ψ i Ψ^{-1} i verifiqueu que es compleix el teorema de la funció inversa.

- 23. En mesurar l'alçada i el radi d'un cilindre hom fa un error d'un 1%. Calcula l'error relatiu en la seva àrea.
- 24. Doneu un valor aproximat de $\cos((.1) (.98)^{1/4} + 1)$ i de $0.97^{1.07}$.
- 25. Desenvolupeu en sèrie de Taylor fins a segon ordre la funció $f(x,y) = \sin(x-y)e^{-2x^2+x}$ al voltant de l'origen.
- 26. Demostreu que la llei dels cosinus en trigonometria hiperbòlica,

$$\cosh z = \cosh x \cosh y - \sinh x \sinh y \cos \theta,$$

es redueix al voltant de l'origen a la llei euclidiana dels cosinus,

$$z^2 = x^2 + y^2 - 2xy\cos\theta.$$

27. Trobeu el desenvolupament de Taylor fins a ordre 2 de les funcions següents:

$$f(x,y) = \frac{1}{1-x-y}$$
 $g(x,y) = e^{x+y}$

- 28. Utilitzant multiplicadors de Lagrange trobeu la distància mínima entre la recta y = ax + b i la circumferència $x^2 + y^2 = R^2$.
- 29. Estudieu els punts crítics de les següents funcions:

(a)
$$f(x,y) = x^4 + y^4 - 2y^2 + 4xy - 2x^2$$

(b) $f(x,y) = \sin x + \sin y + \cos(x+y), x, y \in (0, 2\pi)$
(c) $f(x,y) = x^2 + y^2 + 3xy$

30. Trobeu els extrems de les funcions llistades a continuació sotmeses als lligams que s'indiquen:

$$\begin{aligned} &(\mathbf{a})f(x,y,z) = x - y + z; & x^2 + y^2 + z^2 = 2 \\ &(\mathbf{b})f(x,y) = x; & x^2 + 2y^2 = 3 \\ &(\mathbf{c})f(x,y,z) = x + y + z; & x^2 + y^2 = 1, \, 2x + z = 1 \end{aligned}$$

31. Trobeu els punts de la corba $5x^2 + 6xy + 5y^2 = 16$ que estan a distància màxima i mínima de l'origen.

- 32. Determineu la distància mínima entre les corbes d'equacions x + y = 4 i $x^2 + 4y^2 = 4$.
- 33. Calculeu el volum màxim d'un paral·lelepípede de cares paral·leles als eixos coordenats, inscrit dins de l'el·lipsoide d'equació $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 34. Calculeu el valor màxim de la funció $f(x,y)=a^2x^2+b^2y^2$ sobre l'el·lipse d'equació $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, on a > b.
- 35. Trobeu els extrems absoluts de la funció $f(x,y)=x^4+2x^2y-x^3+3y^2$ definida sobre

$$\{(x,y) \in \mathbf{R}^2 | |x| = 1, |y| = 1\}$$

- 36. Considereu la funció $f(x,y)=(x^2+3y^2)e^{1-(x^2+y^2)}$.

 - (i) Determineu el caràcter dels seus punts crítics, (ii) Calculeu els extrems absoluts de la funció en el recinte $\left[\frac{\pi}{2},\pi\right]\times\left[\frac{\pi}{2},\pi\right]$.
- 37. Determineu el màxim absolut de la funció $f(x,y,z)=\frac{x}{a}+\frac{y}{b}+\frac{z}{c}$ sobre la regió definida

$$K = \{(x, y, z) | \phi(x, y, z) = 1, \ x \ge 0, \ y \ge 0 \ z \ge 0\} \quad \phi(x, y, z) = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}.$$