Exercice 1: (11 points) Soit $(O; \vec{i}, \vec{j})$ un repère du plan.

1. Déterminer si le point F(2;-1) appartient à la droite $d_1 = \frac{x}{9} + \frac{y}{5} = 0$.

$$\frac{2}{9} + \frac{-1}{5} = \frac{10}{45} - \frac{9}{45} = \frac{1}{45} \neq 0 \text{ et } F \notin d_1. (1 \text{ pt})$$

- 2. Dans chacun des cas, donner un vecteur directeur :
 - u_2 de la droite $d_2 : 7x 4y + 2 = 0$.
 - u_3 de la droite $d_3 : y = 5x 6$.
 - u_4 de la droite $d_4: x-3=0$.

 $\vec{u_2}(4;7)$ est un vecteur directeur directeur de d_2 . (1 pt)

 $\vec{u}_3(1;5)$ est un vecteur directeur de d_3 . (1pt)

 $\vec{u}_4(0;1)$ est un vecteur directeur de d_4 . (1pt)

3. Trouver une équation cartésienne pour la droite d_5 qui passe par le point C(3;8) et qui a pour vecteur directeur $\vec{u}(2;3)$.

 d_5 possède une équation de la forme $d_1: 3x - 2y + c = 0$.

$$C \in d_1 \Leftrightarrow 3 \times 3 - 2 \times 8 + c = 0 \Leftrightarrow c = 7$$

 d_5 admet comme équation cartésienne $d_5: 3x - 2y + 7 = 0$. (1 pt)

4. Donner l'équation réduite de la droite d_5 .

 $3x - 2y + 7 = 0 \Leftrightarrow 3x + 7 = 2y \Leftrightarrow y = \frac{3}{2}x + \frac{7}{2}d_5$ admet comme équation réduite $d_5: y = \frac{3}{2}x + \frac{7}{2}(1 \text{ pt})$

- 5. Trouver l'équation réduite de la droite d_6 dirigée par le vecteur $\vec{v}(0;5)$ passant par le point D(-2;4). d_6 est parallèle à l'axe des ordonnées, son équation réduite est de la forme $d_6: x = k$ et comme $D(-2;4) \in d_6, d_6: x = -2$. (1 pt)
- **6.** Trouver une équation cartésienne pour la droite (AB) avec A(4;7) et B(2;4).

 $\overrightarrow{AB}(2-4;4-7)=(-2;-3)$ est un vecteur directeur de (AB), $\overrightarrow{u}(2;3)$ aussi. La droite (AB) possède une équation de la forme 3x-2y+c=0. Or A(4;7) appartient à (AB) d'où $3\times 4-2\times 7+c=0$ et c=2. En définitive, (AB):3x-2y+2=0. (1pt)

7. Donner l'ordonnée à l'origine de la droite d_7 : 5x + 6y - 24 = 0.

Le point de coordonnées (0;4) est sur d_8 car $5 \times 0 + 6 \times 4 - 24 = 0$ et 4 est donc l'ordonnée à l'origine de d_8 . (1 pt)

8. Trouver toutes les valeurs de m pour lesquelles $d_8: mx+4y+3=0$ est parallèle à la droite $d_9: 3x-5y+1=0$

 d_8 est parallèle à d_9

 \Leftrightarrow

les vecteurs directeurs $\vec{u}(-4;m)$ et $\vec{v}(5;3)$ sont colinéaires. (1 pt)

 \Leftrightarrow

 $-4 \times 3 - 5 \times m = -12 - 5m = 0$ soit $m = -\frac{12}{5}$. $-\frac{12}{5}$ est la seule valeur de m pour laquelle les droites d_8 et d_9 sont parallèles. (1 pt)

Exercice 2: (1 point)

Résoudre l'inéquation $\frac{3}{2x+1} < 4x+1$.

$$\frac{3}{2x+1} < 4x+1$$

$$\frac{3}{2x+1} - (4x+1) < 0$$

$$\frac{3 - (4x+1)(2x+1)}{2x+1} < 0$$

$$\frac{-8x^2 - 6x + 2}{2x+1} < 0 (0.5 \text{ pt})$$

$$\Delta = 36 + 64 = 10^2$$
, $x_1 = \frac{-(-6) - 10}{2 \times (-8)} = \frac{1}{4}$ et $x_2 = \frac{-(-6) + 10}{2 \times (-6)} = -1$.

On pose
$$f(x) = -8x^2 - 6x + 2$$
 et $g(x) = \frac{-8x^2 - 6x + 2}{2x + 1}$

1							
x	-∞	-1		$\frac{1}{2}$	$\frac{1}{4}$		+∞
f(x)	_	- 0	+	-	0	_	
2x + 1		_	Ć		+		
g(x)	+	- 0	_	+	0	_	

d'où
$$S = \left[-1; -\frac{1}{2} \right] \cup \left[\frac{1}{4}; +\infty \right] (0.5 \text{ pt})$$

Exercice 3: (8 points)

Soit ABCD un parallélogramme non aplati et soient M et N les points tels que :

$$\overrightarrow{AM} = \frac{4}{5}\overrightarrow{AB}$$
, et $\overrightarrow{CN} = \frac{5}{4}\overrightarrow{CB}$

- 1. Pourquoi les vecteurs \vec{AB} et \vec{AD} permettent de réaliser un repère $(A; \vec{AB}, \vec{AD})$?

 ABCD étant un parallélogramme non aplati, les vecteurs \vec{AB} et \vec{AD} ne sont pas colinéaires et peuvent ainsi former un repère $(A; \vec{AB}, \vec{AD})$. (1pt)
- 2. Calculer les coordonnées des points D, M, C et N dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AD})$.

Comme
$$\overrightarrow{AD} = 0 \times \overrightarrow{AB} + 1 \times \overrightarrow{AD}$$
, $D(0;1)$. (1pt)

Comme
$$\vec{AM} = \frac{4}{5}\vec{AB}, M(\frac{4}{5}; 0).$$
 (1pt)

Comme \overrightarrow{ABCD} est un parallélogramme $\overrightarrow{AC} = 1 \times \overrightarrow{AB} + 1\overrightarrow{AD}$ et C(1;1). (1pt)

Or
$$\vec{CN}(x_N - 1, y_N - 1) = \frac{5}{4}\vec{CB}(\frac{5}{4}(1 - 1); \frac{5}{4}(0 - 1)) = (0; -\frac{5}{4})$$
 d'où $N(1; -\frac{1}{4})$. (1pt)

3. Montrer que les points D, M et N sont alignés.

$$\vec{DM}(\frac{4}{5} - 0; 0 - 1) = (\frac{4}{5}; -1) \text{ et } \vec{DN}(1 - 0; -\frac{1}{4} - 1) = (1; -\frac{5}{4})$$

 $\vec{DN} = \frac{5}{4}\vec{DM}$ donc \vec{DN} est colinéaire à \vec{DM} et les points D, N, M sont alignés. (1pt)

4. On considère un nombre réel a non nul, et P et Q définis par

$$\overrightarrow{AP} = a\overrightarrow{AB}$$
, et $\overrightarrow{CQ} = \frac{1}{a}\overrightarrow{CB}$

Les points D, P et Q sont-ils toujours alignés?

$$P(a;0)$$
 et $\overrightarrow{CQ}(x_Q - 1, y_Q - 1) = \frac{1}{a}\overrightarrow{CB} = (\frac{1}{a}(1 - 1); \frac{1}{a}(0 - 1) = (0; -\frac{1}{a}) \text{ d'où } Q(1; 1 - \frac{1}{a}); (1pt)$

$$\vec{DP}(a-0;0-1) = (a;-1) \text{ et } \vec{DQ}(1-0;1-\frac{1}{a}-1) = (1;-\frac{1}{a}).$$

Ainsi \vec{DP} et \vec{DQ} sont colinéaires. Les points D, P, Q sont toujours alignés. (1pt)