Knowledge Representation and Reasoning

Exercise Sheet 14

Albert-Ludwigs-Universität Freiburg

Bernhard Nebel, Gregor Behnke, Thorsten Engesser, Rolf-David Bergdoll, Leonardo Mieschendahl, Johannes Herrmann

February 10th, 2022

Exercise 14.1 LTL_f and LDL_f

NE NE

Exercise 14.1

14.1 (a) 14.1 (b) 14.1 (c)

Exercise 14.1 (LTL_f and LDL_f, 2+2+2+2)

- (a) Translate the LTL_f formula $G(p \to W \neg p)$ to LDL_f and try to simplify it as much as possible.
- (b) Using the respective semantics, verify that the finite run $(p, \neg p, p)$ satisfies both formulas.
- (c) Use the algorithm from the lecture to construct a DFA for the LDL_f formula $[p](\mathrm{end} \vee \langle \neg p \rangle \ tt)$.
- (d) How can the DFA be changed to represent to the LDL_f formula [true*; p](end ∨ ⟨¬p⟩ tt)? Note: It is sufficient if you produce an equivalent DFA, we don't require you to adhere to the algorithm from the lecture for this part of the exercise.

14.1 (a) – LTL_f-Translation of $G(p \rightarrow W \neg p)$

We first do some equivalence transformations on the LTL_f formula:

$$G(\rho \to W \neg \rho) \equiv G(\rho \to \neg X \rho) \equiv \neg F(\rho \land X \rho) \equiv \neg (\top \mathcal{U}(\rho \land X \rho))$$

We then apply the translation to LDL_f :

$$\begin{split} &tr(\neg(\top\mathcal{U}(p\wedge Xp)))\\ = \neg tr(\top\mathcal{U}(p\wedge Xp))\\ = \neg \langle (tr(\top)?;\top)^*\rangle(tr(p\wedge Xp)\wedge\neg end)\\ = \neg \langle (tr(\top)?;\top)^*\rangle(tr(p)\wedge tr(Xp)\wedge\neg end)\\ = \neg \langle (tr(\top)?;\top)^*\rangle(tr(p)\wedge\langle \top\rangle tr(p)\wedge\neg end)\\ = \neg \langle (\langle \top\rangle tt?;\top)^*\rangle(\langle p\rangle tt\wedge\langle \top\rangle\langle p\rangle tt\wedge\neg end) \end{split}$$

Fyercise 14

14.1 (a) 14.1 (b)

14.1 (d)

14.1 (a) – LTL_f-Translation of $G(p \rightarrow W \neg p)$

UNI

Since $\langle p \rangle tt$ already implies $\neg end$ and $(\langle \top \rangle tt?; \top)^*$ characterizes the same paths as \top^* (all paths), we can further simplify the formula:

$$\neg \langle (\langle \top \rangle tt?; \top)^* \rangle (\langle \rho \rangle tt \wedge \langle \top \rangle \langle \rho \rangle tt \wedge \neg end)$$

$$\equiv \neg \langle \top^* \rangle (\langle \rho \rangle tt \wedge \langle \top \rangle \langle \rho \rangle tt)$$

If we want, we can use the equivalences $[\rho]\phi \equiv \neg \langle \rho \rangle \neg \phi$ and $\neg (\phi \land \psi) \equiv \phi \rightarrow \neg \psi$ to further transform the formula:

$$\neg \langle \top^* \rangle (\langle p \rangle tt \land \langle \top \rangle \langle p \rangle tt)$$

$$\equiv [\top^*](\langle p \rangle tt \rightarrow \neg \langle \top \rangle \langle p \rangle tt)$$

$$\equiv [\top^*](\langle p \rangle tt \rightarrow [\top] \neg \langle p \rangle tt)$$

Exercise 14.1 (a) 14.1 (b)

13.1 (b) – Checking $G(p \rightarrow W \neg p)$

We consider
$$\langle (q_1, q_2, q_3), \tau \rangle$$
 with $\tau(q_1) = \tau(q_3) = \{p\}$ and $\tau(q_2) = \emptyset$.

- $\blacksquare \langle (q_2, q_3), \tau \rangle \models Xp$, but $\langle (q_1, q_2, q_3), \tau \rangle \not\models Xp$ and $\langle (q_3), \tau \rangle \not\models Xp$
- Thus, $\neg Xp$ is satisfied from q_1 and q_3 but not from q_2 .
- Subsequently, $p \rightarrow \neg Xp$ is satisfied from q_1, q_2, q_3 .
- This means also $G(p \rightarrow \neg Xp)$ is satisfied from q_1, q_2, q_3 .
- In particuar, $\langle (q_1, q_2, q_3), \tau \rangle \models G(p \rightarrow \neg Xp)$.

14.1 (a) 14.1 (b)

14.1 (d)

13.1 (b) – Checking $[\top^*](\langle p \rangle tt \rightarrow \neg \langle \top \rangle \langle p \rangle tt)$

We consider $\langle (q_1, q_2, q_3), \tau \rangle$ with $\tau(q_1) = \tau(q_3) = \{p\}$ and $\tau(q_2) = \emptyset$.

- 14.1 (a)
 - 14.1 (b) 14.1 (c)

- Furthermore, $\langle \top \rangle \langle p \rangle tt$ is satisfied from q_2 but not from q_1 or q_3 .
- Thus, $\neg\langle \top \rangle\langle p \rangle tt$ is satisfied from q_1 and q_3 but not from q_2 .
- Thus, $\langle p \rangle tt \rightarrow \neg \langle \top \rangle \langle p \rangle tt$ is satisfied from q_1 , q_2 and q_3 .
- Thus, $[\top^*](\langle p \rangle tt \rightarrow \neg \langle \top \rangle \langle p \rangle tt)$ is satisfied from q_1, q_2 and q_3 .
- In particular, $\langle (q_1, q_2, q_3), \tau \rangle \models [\top^*](\langle p \rangle tt \rightarrow \neg \langle \top \rangle \langle p \rangle tt)$.

14.1 (c) – DFA for $[p](end \lor \langle \neg p \rangle tt)$

We first construct A(tt) and $A(\langle \neg p \rangle tt)$:

$$A(tt) = A(\langle \neg p \rangle \top) = A(\langle \neg p \rangle \top) = A(tt)$$

We also construct A(end) (remember that $end = [\top]ff$):

14.1 (b) 14.1 (c) 14.1 (d)

14.1 (c) – DFA for $[p](end \lor \langle \neg p \rangle tt)$

Remeber: We have constructed $A(\langle \neg p \rangle \top)$ and A(end) as follows:

By computing their union and determinizing/minimizing, we obtain:

14.1 (c) – DFA for $[p](end \lor \langle \neg p \rangle tt)$

Remeber: We have constructed $A(end \lor (\neg p) \top)$ as follows:

$$A(end \lor \langle \neg p \rangle \top) = \bigcirc$$

We thus obtain $A([p](end \lor \langle \neg p \rangle tt))$ as follows:

Exercise 14.1 14.1 (a)

14.1 (d) – DFA for $[\top^*; p](end \lor \langle \neg p \rangle tt)$

Remember: We constructed $A([p](end \lor \langle \neg p \rangle tt))$ as follows:

For $A([\top^*; p](end \lor \langle \neg p \rangle tt))$ we change a few edges and minimize:

