AP Calculus A Notebook

Peter Bossev

Contents

1	Uni	t 2: Differentiation: Definition and Basic Derivative Rules	2
	1.1	Defining Average and Instantaneous Rates of Change at a Point	2
	1.2	Defining the Derivative of a Function and Using Derivative Notation	2
	1.3	Estimating Derivatives of a Function at a Point	2
	1.4	Connecting Differentiability and Continuity: Determining When	
		Derivatives Do and Do Not Exist	2
	1.5	Applying the Power Rule	2
	1.6	Derivative Rules: Constant, Sum, Difference, and Constant Mul-	
		tiple	2
	1.7	Derivatives of $\cos x$, $\sin x$, ex , and $\ln x \dots \dots \dots \dots$	3
	1.8	The Product Rule	3
	1.9	The Quotient Rule	3
	1.10	Finding the Derivatives of Tangent, Cotangent, Secant, and/or	
		Cosecant Functions	3
	1.11	Overview	4

1 Unit 2: Differentiation: Definition and Basic Derivative Rules

This unit will make up 10-12% (AB) or 4-7% (BC) of the AP exam score, and is usually covered in $\sim 13-14$ (AB) or $\sim 9-10$ (BC) class periods

- 1.1 Defining Average and Instantaneous Rates of Change at a Point
- 1.2 Defining the Derivative of a Function and Using Derivative Notation
- 1.3 Estimating Derivatives of a Function at a Point
- 1.4 Connecting Differentiability and Continuity: Determining When Derivatives Do and Do Not Exist
- 1.5 Applying the Power Rule

The Power Rule

$$\frac{d}{dx}[x^n] = nx^{n-1}$$

1.6 Derivative Rules: Constant, Sum, Difference, and Constant Multiple

Constant Rule

$$\frac{d}{dx}[kx] = k\frac{d}{dx}[x]$$

- 1.7 Derivatives of $\cos x$, $\sin x$, ex, and $\ln x$
- 1.8 The Product Rule
- 1.9 The Quotient Rule
- 1.10 Finding the Derivatives of Tangent, Cotangent, Secant, and/or Cosecant Functions

Coefficient Rule

$$\frac{d}{dx}[kf(x)] = k\frac{d}{dx}[f(x)]$$

Sum/Difference Rule

$$\frac{d}{dx}[f(x) \pm g(x)] = \frac{df}{dx} \pm \frac{dg}{dx}$$

Chain Rule

$$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx}$$

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$$

Product Rule

$$\frac{d}{dx}[f(x)g(x)] = \frac{df}{dx}g(x) + \frac{dg}{dx}f(x)$$

Quotient Rule

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\frac{df}{dx} - f(x)\frac{dg}{dx}}{g(x)^2}$$

Derivative of transcendental functions

$$\frac{d}{dx}[ln(x)] = \frac{1}{x}$$

$$\frac{d}{dx}[a^x] = a^x ln(x)$$

$$\frac{d}{dx}[e^x] = e^x$$

$$\frac{d}{dx}[sin(x)] = cos(x)$$

$$\frac{d}{dx}[cos(x)] = -sin(x)$$

$$\frac{d}{dx}[log_a(x)] = \frac{1}{ln(x)a}$$

REMEMBER CHAIN RULE

1.11 Overview

Acknowledgments

Thanks to ${f John~Smith}$ for proofreading, and ${f The~Princeton~Review}$ for inspiring me to create this document.