Rechnerkommunikation

Felix Leitl

1. August 2023

Inhaltsverzeichnis

Anwendungsschicht	2	
Paradigmen	2	
Client-Server	2	
Wechselnde Rollen	2	
Verteilte Anwendung	2	
Peer-to-Peer	2	
Anforderungen	2	
Hypertext Transfere Protocol (HTTP)	3	
Ablauf	3	
Format der Anfragen	3	
Anfragenachricht	3	
Format der Antworten	4	
Antwortnachricht	4	
HTTP-Ablauf	4	
Antwortzeit	5	
Dynamische Inhalte	5	
Caching	6	
$\mathrm{HTTP/2}$	6	
File Transfere Protocol (FTP)	6	
Simple Mail Transfer Protocol (SMTP)	7	
Vertraulichkeit und Datenintegrität	8	
Netzwerkmanagement	8	
Transportschicht	8	
Netzwerkschicht	8	
Sicherungsschicht		
Physikalische Schicht	8	

Anwendungsschicht

Netzwerkanwendung:

- Anwendungsprozesse auf verschiedenen Hosts
- kann direkt unter Verwendung der Dienste der Transportschicht implementiert werden
- standardisieret Anwendung benutzen ein Anwendungsprotokoll, das das Format der Nachrichten und das Verhalten beim Empfang festlegt

Paradigmen

Client-Server

Server stellt Dienst zur Verfügung, der vom Client angefragt wird

Wechselnde Rollen

Hosts übernehmen mal die eine, mal die andere Rolle

Verteilte Anwendung

Besteht aus mehreren unabhängigen Anwendungen, die zusammen wie eine einzelne Anwendung erscheinen (z.B. WebShop mit Web-Server, Applikations-Server und Datenbank), Koordination ist zwar verteilt, findet aber für das Gesamtsystem statt

Peer-to-Peer

Vernetzung von Gleichen:

- dezentrale Architektur (z.B. Bitcoin)
- Hybridarchitektur: Initialisierung findet über zentrale Architektur statt, Anwendung dezentral zwischen Hosts

Anforderungen

- Verlust
- Bitrate
- Verzögerungszeit

Hypertext Transfere Protocol (HTTP)

Ablauf

- 1. Benutzer gibt URI (Uniform Resource Identifier) in Web-Browser ein
- 2. URI enthält Host-Namen eines Web-Servers und den Pfad zu einem Objekt
- 3. Web-Browser stellt Anfrage an Web-Server für dieses Objekt
- 4. Web-Server liefert Objekt an Web-Browser zurück
- 5. Web-Browser stellt Objekt für Nutzer lesbar da

Format der Anfragen

Anfragenachricht

- Methoden:
 - GET: Abruf eines Dokuments, besteht aus Methode, URI, Version
 - HEAD: Abruf von Metainformationen eines Dokuments
 - POST: Übergabe von Informationen an Server
 - PUT
 - DELET
- Kopfzeilen:
 - Typ/Wert-Paare, Typen: Host, User-agent, ...
- Rumpf:
 - leer bei GET, kann bei POST Inhalt haben

GET: /somedir/page.html HTTP/1.1
HOST: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language: de-de

Format der Antworten

Antwortnachricht

HTTP/1.1	200 OK
Connection:	close
Date:	Thu, 06 Aug 1998 12:00:15 GMT
Server:	Apache/1.3.0 (Unix)
Last-Modified:	Mon, 22 Jun 1998
Content-Length:	6821
Content-Type:	$\mathrm{text/html}$
data	data

HTTP-Ablauf

Nicht-persistentes HTTP:

Für jedes Objekt wird eine einzelne TCP-Verbindung aufgebaut. Entweder Basisseite und eingebettete Objekte sequentiell oder parallele Verbindung für eingebettete Objekte

Persistentes HTTP:

Server lässt Verbindung bestehen, alle Objekte werden über eine TCP Verbin-

dung gesendet. Ohne Pipelining wird jedes Objekt einzeln Angefragt, mit alle auf einmal

Antwortzeit

Basisseite: Aufbau der TCP-Verbindung (1x RTT) + Anfrage hin und Antwort zurück (1x RTT) \Rightarrow 2RTT + Zeit zum Senden + weitere Wartezeiten durch TCP

Dynamische Inhalte

Common Gate Interface (CGI) verarbeitet als externer Prozess die Information und liefert neue HTML-Seite an Server

Scripting: Durch Interpretation von eingebetteten Skripten können dynamische Inhalte erzeugt werden.

Serverseitig: im HTML ist Code eingebettet, der vom Server interpretiert wird und dabei HTML erzeugt, z.B. PHP

Clientseitig: im HTML ist Code eingebettet, der vom Client interpretiert wird, z.B. JavaScript

Caching

Cache (Proxy Server) ist Server für Web-Browser und Client für Web-Server, der als Zwischenspeicher zur Verringerung der Wartezeit des Nutzers und des Netzverkehrs dient

HTTP/2

Wesentliche Elemente:

- gleiche Methoden
- binäres statt textbasiertes Format
- Multiplexing verschiedener Ströme über eine TCP-Verbindung, Vermeidung von Head-of-Line (HOL) Blockierung durch große Objekte durch Aufteilung in kleinere Frames und Interleaving
- Header-Kompression
- Server-Push

File Transfere Protocol (FTP)

- Übertragung zwischen zwei Hosts
- eine TCP-Verbindung (Port 21) zur Steuerung

- lesbare Kommandos: USER username, PASS password, LIST, PETR filename, STOR filename, \dots
- jeweils eine TCP-Verbindung (Port 20) zur Übertragung einer Datei
- 'out-of-band-controll'

Simple Mail Transfer Protocol (SMTP)

- Nachrichten im ASCII-Format, Kopf, Rumpf
- andere Daten werden in ASCII umgewandelt angehängt
- Versenden mit SMPT über TCP (lesbar)
- Abholen mit POP3, IMAP, HTTP (lesbar)

- nutzt TCP (Port 25)
- direkte Übertragung: vom Sendenden zu empfangendem Server
- drei Phasen der Übertragung:
 - Handshake
 - Nachrichtenübertragung
 - Abschlussphase
- Interaktion mittels Befehlen und Antworten

- Befehle: ASCII-text

- Antworten: Statuscode und Text

• Nachrichten müssen 7-bit ASCII-text sein

Vertraulichkeit und Datenintegrität

- 1. Erzeugung eines Hashwerts der E-Mail
- 2. Signierung mit privatem Schlüssel ${\cal K}_A^-$ von Alice
- 3. Verschlüsselung der Mail und der Signatur mit K_S
- 4. Asymmetrische Verschlüsselung von K_S mit dem öffentlichen Schlüssel K_B^+ von Bob

 ${\bf Netzwerk management}$

Transportschicht

Netzwerkschicht

Sicherungsschicht

Physikalische Schicht