COMP318 Ontologies and Semantic Web

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk

Where were we

Ontology engineering principles

Ontology engineering methodologies: Ontology 101

More criteria

- All the siblings must denote concepts at the same level of generality
 - similar to sections and subsections in a book
- If a class has more than a dozen direct superclasses, then it an additional level of generality is needed
 - compare to bullets in a bullet list
 - But in some cases, if no natural classification exist, a long list might reflect the reality better.
- Class names should be either singular or plural, don't mix!
 - Animal is not a kind-of Animals
- Classes represent concepts in the domain, but names do not
 - a class name can change but the concept represented will still be the same
 - Synonym names for the same concepts refer to different labels, not to different classes

Define properties

- Often interleaved with the previous step
- Properties (or roles in DL) describe the attributes of the members of a class
 - Defined in terms of domain and range constraints
 - if anything is used in a special way, then add comments
 - Animal eat LivingThing, domain: Animal range: LivingThing
 - Person owns LivingThing except Person, domain: Person
 range: LivingThing and not Person
 - Animal parentOf Animal, domain: Animal range: Animal

- Defined in terms of property restrictions
 - What can we say about all instances of a class?
 - all Cows eat some Plants
 - all Cats eat some Animals
 - all Pigs eat some Animals and eat some Plants
- For the semantics of subClassOf whenever A is a subclass of B, every property statement that holds for instances of B must also apply to instances of A
 - It makes sense to attach properties to the highest class in the hierarchy to which they apply

State constraints: definable things

- Definitions need to be paraphrased and formalised in terms of primitive classes, relations and other definable entities
 - Add comments when providing definitions
 - Note any assumptions that need to be represented somewhere else.
 - Paraphrasing needs to achieve consensus on what we meant to represent and how we represent it.

```
:Parent owl:equivalentClass [
   rdf:type owl:Class;
   owl:intersectionOf (:Animal [
    rdf:type owl:Restriction;
   owl:onProperty :hasChild;
   owl:someValuesFrom :Animal .])
].
```

```
:Herbivore owl:equivalentClass [
   rdf:type owl:Class;
   owl:intersectionOf (:Animal [
   rdf:type owl:Restriction;
   owl:onProperty :eats;
   /* eats range LivingThing */
   owl:allValuesFrom :Plant .])
] .
```

State constraints: definable things

- A Parent is an Animal that is a parent of some Animal
 - Parent = Animal and parentOf some Animal
- A Herbivore is an Animal that eats only Plants
 - assume that Animals eat some LivingThing
 - Herbivore = Animal and eatsonly Plant
- An Omnivore is an Animal that eats both Plants and Animals
 - Omnivore = Animal and eats
 some Plant and eats some Animal

Creating instances

- Create an instance of a class
 - The class becomes a direct type of the instance
 - Any superclass of the direct type is a type of the instance
- Assign property values for the instance description
 - property values should conform to the constraints asserted for the property
 - Knowledge-acquisition tools often check that constraints are satisfied

Check for anomalies

- An important advantage of the use of OWL over RDF Schema is the possibility to detect inconsistencies
 - In ontology
 - incoherent ontology: at least an unsatisfiable class, class that cannot have any instance
 - In ontology+instances
 - inconsistent ontology: every class is interpreted as the empty set
- Examples of common inconsistencies

- incompatible domain and range definitions for transitive, symmetric, or inverse properties
- cardinality properties
- requirements on property values can conflict with domain and range restriction

- Examples from the Pizza tutorial for Protege
 - http://owl.cs.manchester.ac.uk/tutorials/ protegeowltutorial/

End of Ontology Engineering - Part 3

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk