(19) 日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平6-75116

(43)公開日 平成6年 (1994) 3月18日

(51) Int. Cl. ⁵		識別配号	庁内整理番号	FΙ	技術表示箇所
G 0 2 B	5/32		9018-2K		
G02F	1/1335	510	9226-2K		
G09F	9/35		6447-5G		

審査請求 未請求 請求項の数12(全 20 頁)

(21)出願番号	特願平4-276076	(71)出願人	000005049
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		シャープ株式会社
(22)出顧日	平成4年(1992)10月14日		大阪府大阪市阿倍野区長池町22番22号
		(72)発明者	山原 基裕
(31)優先権主張番号	特願平4-169539		大阪府大阪市阿倍野区長池町22番22号 シ
(32)優先日	平4 (1992) 6月26日		ャープ株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	佐々木 圭
			大阪府大阪市阿倍野区長池町22番22号 シ
•			ャープ株式会社内
		(72)発明者	原 照佳
•			大阪府大阪市阿倍野区長池町22番22号 シ
			ャープ株式会社内
		(74)代理人	弁理士 西教 圭一郎
			最終頁に続く

(54) 【発明の名称】 位相差板および液晶表示装置

(57)【要約】

【目的】 表示画像の視角変化に起因するコントラスト変化、表示画面が着色する現象、白黒が反転する現象などを解消することができる位相差板、および高品質の画像を表示できる液晶表示装置を提供する。

【構成】 位相差板1は、延伸された高分子化合物など 光学的異方性を有する材料が平板状に形成されており、 屈折率楕円体の3つの主屈折率na,nb,ncのうち、最小主屈折率naの方向がy軸方向と平行であり、 主屈折率nbの方向が表面の法線方向に対して傾斜している。

【特許請求の範囲】

【請求項1】 光学的異方性を有する材料が平板状に形成された位相差板において、

屈折率楕円体の主屈折率の方向が、表面の法線方向に対 して傾斜していることを特徴とする位相差板。

【請求項2】 屈折率楕円体の3つの主屈折率のうち、 最小の主屈折率の方向が表面に対して平行であるととも に、他の主屈折率の方向が表面に対して傾斜しているこ とを特徴とする請求項1に記載の位相差板。

【請求項3】 屈折率楕円体の3つの主屈折率のうち、最小の主屈折率の方向が表面に対して平行であるとともに、他の主屈折率の方向と表面とのなす角度 θ が、20° $\leq \theta \leq$ 70° の条件を具備することを特徴とする請求項2に記載の位相差板。

【請求項4】 対向する表面に透明電極層および配向膜がそれぞれ形成された一対の透光性基板の間に液晶層が介在することによって構成される液晶表示素子と、

前記液晶表示素子の両側に配置される一対の偏光子とを含み

前記液晶表示素子と前記偏光子との間に、請求項1、2 または3に記載の位相差板が少なくとも1枚介在してい ることを特徴とする液晶表示装置。

【請求項5】 表面内に屈折率異方性を持たず、表面の 法線方向の主屈折率 n b が表面内の主屈折率 n a, n c より小さい、屈折率異方性が負である位相差板におい て、

主屈折率nbの方向が表面の法線方向に対して傾斜しており、表面内の主屈折率naまたはncの方向を軸として法線方向の主屈折率nbの方向と、表面内の主屈折率ncまたはnaの方向とが反時計まわり、または時計まわりに傾斜していることを特徴とする位相差板。

【請求項6】 請求項5に記載の位相差板から成る第1 および第2の位相差板を2枚積層し、各位相差板の法線 方向の主屈折率n bが傾斜した方向がなす角度が約90 度であることを特徴とする位相差板。

【請求項7】 前記第1の位相差板の法線方向の主屈折率nbが傾斜した方向に対して、前記第2の位相差板の法線方向の主屈折率nbが傾斜した方向とのなす角度が、時計まわりに約90度であることを特徴とする請求項6に記載の位相差板。

【請求項8】 対向する表面に透明電極層および配向膜がそれぞれ形成された一対の透光性基板間に液晶層を介在して構成される液晶表示素子と、

前記液晶表示素子の両側に配置される一対の偏光子とを 含み

前記液晶表示案子と前記偏光子との間に、請求項6または7に記載の位相差板を配置することを特徴とする液晶表示装置。

【請求項9】 請求項7に記載の位相差板のうち、第1 の位相差板を、液晶表示素子の遠方側基板のラピング方 向と第1の位相差板の法線方向の主屈折率n bが傾斜した方向とがほぼ同じ方向になるように配置し、第2の位相差板を、液晶表示素子の近接側基板のラピング方向と第2の位相差板の法線方向の主屈折率n bが傾斜した方向とはほぼ反対方向になるように配置することを特徴と

【請求項10】 対向する表面に透明電極層および配向 膜がそれぞれ形成された一対の透光性基板間に液晶層を 介在して構成される液晶表示素子と、

10 前記液晶表示素子の両側に配置される一対の偏光子とを含み

する請求項8に記載の液晶表示装置。

前記液晶表示素子と前記偏光子との間に、請求項5に記載の位相差板を少なくとも1枚配置することを特徴とする液晶表示装置。

【請求項11】 前記液晶表示素子と偏光子との間に位相差板を1枚配置することを特徴とする請求項10に記載の液晶表示装置。

【請求項12】 前記位相差板の法線方向の主屈折率n bが傾斜した方向が、前記液晶表示素子の近接側基板の 20 ラビング方向とほぼ反対方向であることを特徴とする請 求項11に記載の液晶表示装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、液晶表示装置に関し、 特に表示画面の視角特性を改善する液晶表示装置に関す る。

[0002]

【従来の技術】従来から、ネマティック液晶表示素子を 用いた液晶表示装置は、時計や電卓などの数値セグメン ト型表示装置に広く用いられており、液晶表示素子の透 光性基板には薄膜トランジスタなどの能動素子が、液晶 に電圧を印加する画素電極を選択駆動するスイッチング 手段として形成され、さらに赤色、緑色、青色などのカ ラーフィルタ層がカラー表示手段として設けられてお り、液晶のツイスト角に応じて(a)ネマティック液晶 分子を90度ねじれ配向させたアクティブ駆動型ツイス トネマティック(Twisted Nematic、以下「TN」と略 称する) 液晶表示方式と、(b) ネマティック液晶分子 のツイスト角を90度以上とすることによって透過率-40 液晶印加電圧特性の鋭い急峻性を利用したマルチプレッ クス駆動型スーパーツイストネマティック (Super Twis ted Nematic、以下「STN」と略称する)液晶表示方 式などが知られている。

【0003】後者の(b) マルチプレックス駆動型ST N液晶表示方式は、特有の色付きが存在するため、白黒 表示を行うには、光学的補償板を配置する方式が有力で あると考えられており、光学的補償板に応じて、(b-1)表示用液晶セルと逆方向のツイスト角でねじれ配向 させた液晶セルを用いた二層型のダブルスーパーツイス 50 トネマティック (Double Super Twisted Nematic) 液 3

品表示方式と、(b−2)光学的異方性を有するフィルムを配置したフィルム付加型液晶表示方式とに大別され、軽量性、低コストの観点から、(b−2)フィルム付加型液晶表示方式が有力であると考えられている。

[0004] 一方、前者の(a) アクティブ駆動型TN 液晶表示方式は、(a-1) 一対の偏光板の偏光方向を相互に平行に配置して、液晶層に電圧を印加しいない状態 (オフ状態) で黒色を表示するノーマリブラック方式と、(a-2) 偏光方向を相互に直交するように配置して、オフ状態で白色を表示するノーマリホワイト方式の2種類に大別され、表示コントラスト、色再現性、表示の視角依存性の観点からノーマリホワイト方式が有力であると考えられている。

[0005]

【発明が解決しようとする課題】しかしながら、従来のTN液晶表示装置において、液晶分子に屈折率異方性が存在し、また上下の電極基板に対して液晶分子が傾斜して配向しているため、観察する視角によって表示画像のコントラストが変化して、視角依存性が大きくなるという課題がある。特に、図3や図19の液晶表示素子の平面図で示すように、画面法線方向から正視角方向に視角を傾けていくと、ある角度以上で表示画像が着色する現象(以下、「着色現象」という)や、白黒が反転する現象(以下、「反転現象」という)が発生する。また、反視角方向に視角を傾けてゆくと、急激にコントラストが低下する。

【0006】そこで、このような視角依存性を改善するために、図7の斜視図で示すような、屈折率楕円体の1つの主屈折率の方向が表面の法線方向に対して平行な位相差板を液晶層と偏光板の間に介在させることによって、光の位相を補償することが考えられているが、このような位相差板を用いても正視角方向の反転現象を改善するには限界があるという課題がある。

【0007】本発明の目的は、前述した課題を解決するため、表示画像の視角に依存して生ずるコントラスト変化、着色現象、反転現象を解消することができる位相差板および当該位相差板を用いることによって高品質の画像を表示することができる液晶表示装置を提供することである。

[8000]

【課題を解決するための手段】本発明は、光学的異方性を有する材料が平板状に形成された位相差板において、 屈折率楕円体の主屈折率の方向が、表面の法線方向に対 して傾斜していることを特徴とする位相差板である。

【0009】また本発明は、屈折率楕円体の3つの主屈 折率のうち、最小の主屈折率の方向が表面に対して平行 であるとともに、他の主屈折率の方向が表面に対して傾 斜していることを特徴とする。

【0010】また本発明は、屈折率楕円体の3つの主屈 折率のうち、最小の主屈折率の方向が表面に対して平行 であるとともに、他の主屈折率の方向と表面とのなす角度 θ が、 $20^{\circ} \le \theta \le 70^{\circ}$ の条件を具備することを特徴とする。

【0011】また本発明は、表面に透明電極層および配向膜が形成された一対の透光性基板の間に液晶層が介在することによって構成される液晶表示案子と、前配液晶表示案子の両側に配置される一対の偏光子と、前配液晶表示素子と前配偏光子との間に、上述の位相差板が少なくとも1枚介在していることを特徴とする液晶表示装置である。

【0012】本発明は、表面内に屈折率異方性を持たず、表面の法線方向の主屈折率 n b が表面内の主屈折率 n a n c より小さい、屈折率異方性が負である位相差板において、主屈折率 n b の方向が表面の法線方向に対して傾斜しており、表面内の主屈折率 n a または n c の方向を軸として法線方向の主屈折率 n b の方向と、表面内の主屈折率 n c または n a の方向とが反時計まわり、または時計まわりに傾斜していることを特徴とする位相差板である。

20 【0013】また本発明は、上述の位相差板から成る第 1および第2の位相差板を2枚積層し、各位相差板の法 線方向の主屈折率nbが傾斜した方向がなす角度が約9 0度であることを特徴とする位相差板である。

【0014】また本発明は、前記第1の位相差板の法線 方向の主屈折率nbが傾斜した方向に対して、前記第2 の位相差板の法線方向の主屈折率nbが傾斜した方向と のなす角度が、時計まわりに約90度であることを特徴 とする。

(0015) また本発明は、対向する表面に透明電極層 30 および配向膜がそれぞれ形成された一対の透光性基板間 に液晶層を介在して構成される液晶表示素子と、前記液晶表示素子の両側に配置される一対の偏光子とを含み、前記液晶表示素子と前記偏光子との間に、上述の位相差 板を配置することを特徴とする液晶表示装置である。

【0016】また本発明は、上述の2枚積層した位相差板のうち、第1の位相差板を、液晶表示素子の遠方側基板のラピング方向と第1の位相差板の法線方向の主屈折率nbが傾斜した方向とがほぼ同じ方向になるように配置し、第2の位相差板を、液晶表示素子の近接側基板のラピング方向と第2の位相差板の法線方向の主屈折率nbが傾斜した方向とはほぼ反対方向になるように配置することを特徴とする液晶表示装置である。

【0017】また本発明は、対向する表面に透明電極層 および配向膜がそれぞれ形成された一対の透光性基板間 に液晶層を介在して構成される液晶表示素子と、前配液 晶表示素子の両側に配置される一対の偏光子とを含み、 前配液晶表示素子と前配偏光子との間に、上述の位相差 板を少なくとも1枚配置することを特徴とする液晶表示 装置である。

7 【0018】また本発明は、前記液晶表示素子と偏光子

との間に位相差板を1枚配置することを特徴とする。

【0019】また本発明は、前配位相差板の法線方向の 主屈折率nbが傾斜した方向が、前配液晶表示素子の近 接側基板のラビング方向とほぼ反対方向であることを特 徴とする。

[0020]

【作用】本発明に従えば、直線偏光の光が液晶などの複 屈折性を有する部材を通過して、正常光と異常光が発生 し、これらの位相差に伴って楕円偏光に変換される場 合、複屈折性を有する部材の片側または両側に、主屈折 率の方向が表面の法線方向に対して傾斜している位相差 板を介在させることによって、視角に応じて生ずる正常 光と異常光との位相差変化を補償して、視角の広い範囲 に亘って直線偏光に変換することが可能となる。

【0021】また、このような位相差板において屈折率 楕円体の3つの主屈折率のうち最小の主屈折率の方向 が、表面に対して平行であるとともに、他の主屈折率の 方向が表面に対して傾斜していることによって、表面法 線を含み、かつ最小の主屈折率の方向に対して垂直な平 面内での正視角方向における方向の視角変化に対して、 正常光と異常光との位相差変化を補償することが可能と なる。

【0022】さらに、最小の主屈折率の方向が表面に対して平行であるとともに、他の主屈折率の方向と表面とのなす角度 θ が、 $20° \le \theta \le 70°$ の条件を具備することによって、正視角方向における0°から60°の範囲の視角変化に対する位相補償が良好に行われる。

【0023】また、表面に透明電極層および配向膜が形成された一対の透光性基板の間に液晶層が介在することによって構成される液晶表示素子と、液晶表示素子の両側に配置される一対の偏光子と、液晶表示素子と偏光子との間に、上述のような位相差板が少なくとも1枚介在していることによって、視角変化に伴う着色現象や反転現象を解消することができ、視角依存性が無い液晶表示装置を得ることができる。

【0024】また本発明に従えば、直線偏光の光が液晶などの複屈折性を有する部材を通過して、正常光と異常光が発生し、これらの位相差に伴なって楕円偏光に変換された場合、複屈折性を有する部材の片側または両側に、表面内に屈折率異方性を持たず、表面の法線方向の主屈折率nbが表面内の主屈折率na、ncより小さい、屈折率異方性が負である位相差板であって、表面内の主屈折率nbの方向と、表面内の主屈折率ncまたはnaの方向とが反時計まわりまたは時計まわりに傾斜している位相差板を少なくとも1枚介在させることによって、視角に応じて生ずる正常光と異常光との位相差変化を補償して、視角の広い範囲にわたって直線偏光に変換することが可能となる。

【0025】また、このような位相差板を2枚積層し、

かつ各位相差板の主屈折率n bが傾斜した方向のなす角度が約90度であることによって、正視角方向の位相差変化の補償に限らず、反視角方向および左右方向での位相差変化を補償することができる。

【0026】さらに、前述の2枚積層した位相差板を、第1の位相差板の法線方向の主屈折率nbが傾斜した方向に対して、第2の位相差板の法線方向の主屈折率nbが傾斜した方向とのなす角度が時計まわりに約90度となるように積層することによって、上述の位相差変化の補償をより確実に実行することができる。

[0027] また、表面に透明電極層および配向膜が形成された一対の透光性基板の間に液晶層が介在することによって構成される液晶表示素子と、液晶表示素子の両側に配置される一対の偏光子と、液晶表示素子と偏光子との間に上述のような位相差板が少なくとも1枚介在していることによって、視角変化に伴う着色現象や反転現象を解消することができ、視角依存性がない液晶表示装置を得ることができる。

[0028] この場合、位相差板を1枚配置する場合 は、位相差板の法線方向の主屈折率nbが傾斜した方向が、液晶表示素子の近接側基板のラピング方向とほぼ反対方向となるように配置することによって、上述の位相差変化の補償をより確実に実行することができる。位相差板を2枚積層する場合は、第1の位相差板を、液晶表示素子の速方側基板のラピング方向と第1の位相差板の法線方向の主屈折率nbが傾斜した方向とがほぼ同じ方向になるように配置し、第2の位相差板を、液晶表示素子の近接側基板のラピング方向と第2の位相差板の法線方向の主屈折率nbが傾斜した方向とはほ反対方向になるように配置することによって、上述の位相差変化の補償をより確実に実行することができる。

[0029]

【実施例】図1は、本発明の一実施例である位相差板の 斜視図である。位相差板1は、延伸された高分子化合物、たとえばポリカーポネート、ポリエステルなど光学的異方性を有する材料が厚さdの平板状に形成されており、表面をx-y平面とする直交座標系xyzを定義すると、屈折率楕円体の3つの主屈折率na,nb,ncのうち、最小の主屈折率naの方向(進相軸)がy軸方のと平行であり、主屈折率nbの方向が表面の法線方向(図1中のz軸)に対してy軸まわりを角度ので矢印20の方向に傾斜して構成されている。

【0030】図2は、本発明の一実施例である液晶表示 装置の分解断面図である。液晶表示装置2は、表面にI TO (インジウム錫酸化物) などから成る透明電極層 8,9およびポリイミド、ポリピニルアルコールなどか ら成る配向膜10,11が形成された一対のガラス基板 6,7の間に、ネマティック液晶などから成る液晶層1 2が樹脂などから成る対止部材13で封入されることに 50よって構成される液晶表示素子5と、液晶表示素子5の 両側に配置される一対の偏光板3,4と、液晶表示素子5と偏光板3との間に図1に示す位相差板1が介在して、図2の示す順序で積層されることによって構成される。

【0031】配向膜10,11の各表面は、介在する液晶分子が約90°のねじれ配向するように、予めラビング処理が施されており、図3の平面図に示すように、ガラス基板6上の配向膜10のラビング方向は矢印21の方向であり、ガラス基板7上の配向膜11のラビング方向は、矢印21に対して垂直な矢印22の方向に処理されている。

【0032】図4は、図2に示す液晶表示装置2の分解 斜視図である。偏光板3の透過軸23と偏光板4の透過 軸24とが互いに直交するように配置されているととも に、偏光板4の透過軸24と液晶表示素子5の配向膜1 0のラピング方向21と、位相差板1の最小主屈折率n aの方向である進相軸25とが互いに平行となるように 設定され、一方、偏光板3の透過軸23と液晶表示素子 5の配向膜11のラビング方向22とが互いに平行とな るように設定されている。したがって、液晶表示素子5 の液晶層12に電圧を印加しないとき、液晶表示装置2 が光を透過して白色表示を行う方式、いわゆるノーマリ ホワイト表示方式で構成されている。なお、位相差板 1 は、偏光板3と偏光板4の間のいずれかに介在していれ ば位相補償が可能となり、偏光板4と液晶表示素子5と の間に介在しても構わず、さらに2枚以上の複数枚で構 成されていても構わない。

【0033】次に、こうして得られる液晶表示装置2の具体的実施例とその視角依存性を測定した結果を説明する。図5は、液晶表示装置2の視角依存性の測定系を示す概略斜視図である。液晶表示装置2を構成する液晶表示素子5のガラス基板6と位相差板1とが接触する面26を直交座標系xyzの基準面x-yに設定して、面26の法線方向27に対して角度ψの方向であって、座標原点から所定距離の位置に、一定の立体受光角を有する受光素子71を配置して、偏光板4側から波長550nmの単色光を入射する。なお、受光素子71の出力は、増幅器72で所定のレベルに増幅され、波形メモリやレコーダなどの記録手段73によって記録される。

【0034】(実施例1)図2の液晶表示装置2において、液晶層12として屈折率異方性Δnが0.08であるネマティック液晶材料を用い、液晶層12の厚さを4.5μmに設定するとともに、位相差板1としてポリカーボネート、ポリエステルなどの高分子化合物を延伸したものであって、図1に示すように、主屈折率ncと主屈折率naとの差および位相差板1の厚さdの積(nc-na)×dを意味する第1のリタデーション(retardation)値が0nmであって、主屈折率ncと主屈折率nbとの差および位相差板1の厚さdの積(nc-nb)×dを意味する第2のリタデーション値が-100

nmである一軸性のものを使用しており、主屈折率nbの方向が位相差板1の表面の法線方向に対して矢印20で示す反時計まわりに40°傾いており、同様に主屈折率ncの方向が表面に対して40°の角度をなしている。

【0035】このような液晶表示装置2を図5に示す測定系に設置して、受光素子71が一定の角度がで固定された場合に、液晶表示素子5への印加電圧に対する受光素子71の出力レベルを測定し、その結果を図6の透過20 率一液晶印加電圧特性のグラフとして示す。図6において、ラインL1は角度が=0°の場合、ラインL2は角度が=30°の場合、ラインL3は角度が=45°の場合をそれぞれ示している。この結果から、液晶印加電圧を0Vから徐々に上げていくと4.5V付近までに透過率が0%に下がり、さらに液晶印加電圧を上げても透過率があまり再上昇していないことが理解される。さらに、液晶印加電圧が約1V付近での透過率が、ラインL1、ラインL2、ラインL3において大差なく、視角依存性が改善されていることが理解される。

20 【0036】(比較例1)図8の液晶表示装置32は、位相差板1を除いて図2の液晶表示装置2と同様な構成であって、液晶層12として屈折率異方性△nが0.08であるネマティック液晶材料を用い、液晶層12の厚さを4.5μmに設定するとともに、図1に示した位相差板1の代わりに図7に示す位相差板31を用いている。位相差板31は、ポリカーボネートなどの高分子化合物を延伸したものであって、第1のリタデーション値(nc-na)×dが0nmであって、第2のリタデーション値(nc-nb)×dが-100nmである一軸90性のもので、主屈折率nbの方向が表面の法線方向と平行に形成されている。

【0037】このような液晶表示装置32を、実施例1 と同様に、図5に示す測定系に設置して、受光素子71 が一定の角度がで固定された場合に、液晶印加電圧に対 する受光素子71の出力レベルを測定し、その結果を図 9の透過率-液晶印加電圧特性のグラフとして示す。図 9において、ラインL4は角度か=0°の場合、ライン L5は角度 $\psi=30^\circ$ の場合、ラインL6は角度 $\psi=4$ 5°の場合をそれぞれ示している。この結果から、液晶 40 印加電圧を0Vから徐々に上げていくと、ラインL5は 3. 2 V付近で透過率がほぼ0%に下がるが、さらに液 晶印加電圧を上げていくと僅かに上昇する傾向があり、 ラインL6は、透過率が完全に0%にならずに再上昇し ていることが理解される。さらに、液晶印加電圧が1 V 付近での透過率が、角度ψ=0° から大きくなるにつれ て低下している。したがって、実施例1のものは本比較 例1のものと比べて視角依存性がかなり改善されている ことが理解される。

【0038】 (実施例2) 図2の液晶表示装置2におい 50 て、液晶層12として屈折率異方性Δnが0.08であ るネマティック液晶材料を用い、液晶層12の厚さを4.5μmに設定するとともに、位相差板1としてポリカーボネート、ポリエステルなどの高分子化合物を延伸したものであって、第1のリタデーション値(nc-na)×dが220nmであり、第2のリタデーション値が(nc-nb)×dが35nmである二軸性のもので、主屈折率nbの方向が位相差板1の表面の法線方向に対して図1中の矢印20とは反対方向の時計まわりに40°傾いており、同様に主屈折率ncの方向が表面に対して時計まわりに40°の角度をなしている。

【0039】このような液晶表示装置2を、図5に示す測定系に設置して、受光素子71が一定の角度かで固定された場合に、液晶表示素子5への液晶印加電圧に対する受光素子71の出力レベルを測定し、その結果を図10の透過率一液晶印加電圧特性のグラフとして示す。図10において、ラインL7は角度か=0°の場合、ラインL8は角度か=30°の場合、ラインL9は角度か=45°の場合をそれぞれ示している。この結果から、液晶印加電圧を0Vから徐々に上げていくと4.5V付近までに透過率が0%に下がり、さらに液晶印加電圧を上げても透過率が1%に下がり、さらに液晶印加電圧を上げても透過率が再上昇していないことが理解される。さらに、液晶印加電圧が約1V付近での透過率が、ラインL7、ラインL8、ラインL9において大差なく、視角依存性が改善されていることが理解される。

【0040】(比較例2)図8に示す液晶表示装置32は、位相差板1を除いて図2の液晶表示装置2と同様な構成であって、液晶層12として屈折率異方性 Δ nが0.08であるネマティック液晶層を用い、液晶層12の厚さを4.5 μ mに設定するとともに、図1に示した位相差板1の代わりに図7に示す位相差板31を用いている。位相差板31は、ポリカーポネートなどの高分子化合物を延伸したものであって、第1のリタデーション値(nc-na)×dが220nmであって、第2のリタデーション値(nc-na)×dが35nmの二軸性のもので、主屈折率nbの方向が表面の法線方向と平行に形成されている。

【0041】このような液晶表示装置32を実施例2と同様に、図5に示す測定系に設置して、受光素子71が一定の角度がで固定された場合に、液晶中加電圧に対する受光素子71の出力レベルを測定し、その結果を、図11の透過率一液晶印加電圧特性のグラフとして示す。図11において、ラインL10は角度が一つの場合、ラインL11は角度が一つの場合、ラインL11は角度が一つの場合、ラインL11は2.9V付近で透過率がほぼ0%に下がるが、さらに液晶印加電圧を10%に下がるが、さらに液晶印加電圧を上げていくと僅かに上昇する傾向にあり、ラインL12は透過率が2.8V付近でほぼ0%になるが、さらに上げていくと再上昇していることが理解される。さらに、液晶印加電圧が1V付近での

透過率が、角度 $\psi=0^\circ$ から大きくなるにつれて低下している。したがって実施例2のものは本比較例2のものと比べて視角依存性がかなり改善されていることが理解される。

10

[0042] (実施例3) 図12の液晶表示装置2にお いて、液晶層12として屈折率異方性Anが0.08で あるネマティック液晶材料を用い、液晶層12の厚さを 4. 5μmに設定するとともに、液晶表示素子5と偏光 板3の間に介在する2枚の位相差板1a、1bとしてポ 10 リカーボネート、ポリエステルなどの高分子化合物を延 伸したものであって、位相差板1aについては第1のリ タデーション値 (nc-na) ×dが350 nmであっ て、第2のリタデーション値(nc-nb)×dが21 0 nmの二軸性のものであって、主屈折率nbの方向が 位相差板1の表面の法線方向に対して図1中の矢印20 とは反対方向の時計まわりに20°傾いており、同様に 主屈折率ncの方向が表面に対して時計まわりに20° の角度をなしている。さらに、最小主屈折率naの方向 (進相軸) 25 aはガラス基板6上の配向膜10のラビ 20 ング方向21と平行になるように配置されている。

【0043】一方、位相差板1 bにおいて、位相差板1 aと同様に、ポリカーボネート、ポリエステルなどの高分子化合物を延伸したものであって、第1のリタデーション値(nc-nb)×dが210nmの二軸性のものであって、主屈折率nbの方向が位相差板1の表面の法線方向に対して図1中の矢印20で示す反時計まわりに20°傾いており、同様に主屈折率ncの方向が表面に対して20°の角度をなしている。さらに、最小主屈折率naの方向(進相軸)25 bは、ガラス基板6上の配向膜10のラピング方向21と垂直になるように配置される。

【0044】このような液晶表示装置2を、図5に示す 測定系に設置して、受光素子71が一定の角度すで固定 された場合に、液晶表示素子5への液晶印加電圧に対す る受光素子71の出力レベルを測定し、その結果を図1 3の透過率-液晶印加電圧特性のグラフとして示す。図 13において、ラインL13は角度す=0°の場合、ラインL15は角度する。の場合、ラインL15は角度する。の場合、ラインL15は角度である。この結果から、液晶印加電圧を0Vから徐々に上げていくと4.5 V付近までに透過率が0%に下がり、さらに液晶印加電圧を上げても透過率が再上昇していないことが理解される。さらに、液晶印加電圧が1V付近での透過率が、ラインL13、ラインL14、ラインL15においてあまり大差なく、視角依存性が改善されていることが理解される。

【0045】 (比較例3) 本比較例において、図14の 液晶表示装置34は、位相差板1a、1bを除いて図1 50 2の液晶表示装置2と同様な構成であって、液晶層12 として屈折率異方性 Δ nが 0.08であるネマティック 液晶層を用い、液晶層 12の厚さを 4.5 μmに設定するとともに、位相差板 31 a、31 bとして図1に示した位相差板 1の代わりに図7に示す位相差板 31をそれぞれ用いている。位相差板 31 aは、ポリカーボネートなどの高分子化合物を延伸したものであって、第1のリタデーション値(nc-nb)×dが 210 nmの二軸性のものであって、主屈折率 nbの方向が表面の法線方向と平行に形成されている。さらに、最小主屈折率 naの方向(進相軸)33 aはガラス基板 6上の配向膜 10のラビング方向 21と平行になるように配置される。

【0046】一方、位相差板31bは、位相差板31aと同様に、ポリカーボネートなどの高分子化合物を延伸したものであって、第1のリタデーション値(nc-na)×dが350nmであり、第2のリタデーション値(nc-nb)×dが210nmの二軸性のものであって、主屈折率nbの方向が表面の法線方向と平行に形成されている。さらに、最小主屈折率naの方向(進相軸)33bはガラス基板6上の配向膜10のラビング方向21と垂直となるように配置される。

【0047】このような液晶表示装置34を、実施例3 と同様に、図5に示す測定系に設置して、受光素子71 が一定の角度がで固定された場合に、液晶印加電圧に対 する受光素子71の出力レベルを測定し、その結果を図 15の透過率-液晶印加電圧特性のグラフとして示す。 図15において、ラインL16は角度が=0°の場合、 ラインL17は角度が=30°の場合、ラインL18は 角度ψ=45°の場合をそれぞれ示している。この結果 から、液晶印加電圧を0Vから徐々に上げていくと、 4. 5 V付近までに透過率が0%に下がるが、さらに液 晶印加電圧を上げていくと透過率が再上昇しており、そ の上昇幅は実施例3のものと比べて大きいことが理解さ れる。さらに、液晶印加電圧が1V付近での透過率が、 角度 v=0° から大きくなるにつれて低下している。し たがって実施例3のものは本比較例3のものと比べて視 角依存性が若干改善されていることが理解される。

【0048】なお、以上の実施例では、延伸された高分子化合物を用いた例を説明したが、ポリカーボネートやポリエステルなどの液晶性高分子を傾斜配向させたものも用いることができる。

【0049】図16は、本発明の他の実施例である位相 差板の斜視図である。位相差板41は、延伸された高分子化合物、たとえばポリスチレンなどの光学的異方性を 有する材料が厚さ dの平板状に形成されており、表面を x-y平面とする直交座標系xyzを定義すると、屈折率 常円体の3つの主屈折率na,nb,ncのうち、主屈折率naの方向はy軸に平行であり、主屈折率nbの 方向は表面の法線方向(図16中のz軸)に対してy軸

12 まわりを角度 θ で矢印60の方向に傾斜している。また、主屈折率ncの方向は表面に沿ってx軸まわりに角

度ので矢印59の方向に傾斜している。さらに主屈折率

na, nb, ncには、na=nc>nbの関係が成立 する。

【0050】図17は、本発明のさらに他の実施例である位相差板42の斜視図である。位相差板42は、前述の図16に示される位相差板41を2枚積層して構成されている。すなわち位相差板42は、第1位相差板41 aの主屈折率nbが傾斜した方向61aに対して、第2位相差板41bの主屈折率nbが傾斜した方向61bとのなす角度が、約90度である。

【0051】図18は、本発明の他の実施例である液晶表示装置54の分解新面図である。液晶表示装置54は、表面にITOなどから成る透明電極層48,49およびボリイミド、ボリピニルアルコールなどから成る配向膜50,51が形成された一対のガラス基板46,47の間に、ネマティック液晶などから成る液晶層52が樹脂などから成る対止部材53で封入されることによって構成される液晶表示素子45と、液晶表示素子45の両側に配置される一対の偏光板43,44とを含み、液晶表示素子45と偏光板43との間に図17に示す位相差板42が介在して、図18の示す順序で積層されることによって構成される。

【0052】配向膜50,51の各表面は、介在する液晶分子が約90度のねじれ配向するように、予めラピング処理が施されており、図19の平面図に示すように、ガラス基板46上の配向膜50のラピング方向は矢印62の方向であり、ガラス基板47上の配向膜51のラピング方向は、矢印62に対して垂直な矢印63の方向に処理されている。

【0053】図20は、図18に示す液晶表示装置54の分解斜視図である。偏光板43の透過軸64と偏光板44の透過軸65とが互いに直交するように配置されているとともに、偏光板44の透過軸65と、液晶表示素子45の配向膜50のラピング方向62と、位相差板41bの主屈折率nbが傾斜している方向61bとが互いに平行、かつ液晶表示素子45の配向膜50のラピング方向62と、位相差板41bの主屈折率nbが傾斜して40いる方向61bとが反対方向となるように設定される。

【0054】一方、偏光板43の透過軸64と液晶表示素子45の配向膜51のラピング方向63と位相差板41aの主屈折率nbが傾斜している方向61aとが互いに平行、かつ液晶表示素子45の配向膜51のラピング方向63と、位相差板41aの主屈折率nbが傾斜している方向61aとが同じ方向となるように設定されている。したがって、液晶表示素子45の液晶層52に電圧を印加しないとき、液晶表示表置54が光を透過して白色表示を行う方式、いわゆるノーマリホワイト表示方式で構成されている。なお、位相差板42は、偏光板43

と偏光板44の間のいずれかに介在していれば位相補償 が可能となり、偏光板44と液晶表示素子45との間に 介在してもかまわない。

【0055】次に、こうして得られる液晶表示装置54の具体的実施例とその視角依存性を測定した結果を説明する。図21は、液晶表示装置54の視角依存性の測定系を示す概略斜視図である。液晶表示装置54を構成する液晶表示素子45のガラス基板46と位相差板41bとが接触する面66を直交座標系xyzの基準面x-yに設定して、面66の法線方向67に対して角度ψの方向であって、座標原点から所定距離の位置に前述の図5と同様に、一定の立体受光角を有する受光素子71を配置して、偏光板44側から波長550nmの単色光を入射する。なお、受光素子71の出力は、増幅器72で所定のレベルに増幅され、波形メモリやレコーダなどの記録手段73によって記録される。測定方向は、正視角方向、右方向、反視角方向、左方向の4方向である。

【0056】(実施例4)図18の液晶表示装置54において、液晶層52として屈折率異方性△nが0.08であるネマティック液晶材料を用い、液晶52の厚さを4.5μmに設定するとともに、位相差板42を構成する位相差板41a,41bとしてポリスチレンなどの高分子化合物を延伸したものであって、図16に示すように、主屈折率ncと主屈折率naとの差および位相差板41a,41bの厚さdとの積(nc-na)×dを意味する第1のリタデーション値が0nmであって、主屈折率ncと主屈折率nbとの差および位相差板41a,41bの厚さdの積(nc-nb)×dを意味する第2のリタデーション値が100nmである一軸性のものを

使用しており、主屈折率nbの方向が位相差板41a,41bの表面の法線方向に対して矢印60で示す時計まわりに20度傾いており、同様に主屈折率ncの方向が表面に対して20度の角度をなしている。

14

【0057】このような液晶表示装置54を図21に示す測定系に設置して、受光素子71が一定の角度がで固定された場合に、液晶表示素子45への印加電圧に対する受光素子71の出力レベルを測定し、その結果を図22の透過率-液晶印加電圧特性のグラフとして示す。図22において、ラインL21は角度か=0度の場合の特性曲線を示す。またラインL22、L23、L24、L25は、正視角方向、右方向、反射角方向、左方向に角度か=30度傾けた位置から見たときの特性曲線をそれぞれ示している。この結果から、印加電圧が3.5Vから5.5Vで、透過率がほとんどフラットであることが確認される。その上、電圧の印加時の透過率が真上から見たときと、視角を傾けたときとあまり透過率が変化していないことが確認される。

【0058】また、ラインL23, L25において、真 20 上から見たときの印加電圧-透過率特性とほとんど変化 せず、左右の比対照性もほとんどないことが確認される。さらにラインL24において、電圧印加時の透過率 がかなり落ちており、黒表示ができ、反視角方向が改善されていることが確認される。

【0059】液晶表示装置54の正視角方向と反視角方向のコントラスト比を以下の表1に示す。

[0060]

【表1】

	コントラスト比		
	正視角方向	反视角方向	
液晶表示装置54	76	18	
液晶表示装置80	10	8	
位相差板無しTN	42	′4	

【0061】(比較例4)図23の液晶表示装置80は、位相差板82を除いて図18の液晶表示装置54と同様の構成であって、液晶層52として屈折率異方性Δnが0.08であるネマティック液晶材料を用い、液晶52の厚さを4.5μmに設定するとともに、図16に示した位相差板41の代わりに図24に示す位相差板81を用いている。位相差板82を構成する位相差板81。81bは、ボリスチレンなどの高分子化合物を延伸したものであって、第1のリタデーション値(nc-na)×dが0nmであって、第2のリタデーション値

 $(nc-nb) \times d$ が 100nm である一軸性のもので、主屈折率 nbの方向は表面の法線方向と平行に形成されている。

[0062]第1の位相差板81aの主屈折率ncの方向83aはガラス基板47上の配向膜51のラピング方向63と平行に、第2の位相差板81bの主屈折率ncの方向83bはガラス基板46上の配向膜50のラピング方向62と平行にそれぞれ配置されている。

【0063】図25は、液晶表示装置80の印加電圧-50 透過率特性を示すグラフである。図25において、液晶 表示装置80を真上から見たときの特性曲線がラインL26で示されており、正視角方向、右方向、反視角方向、左方向にか=30度傾けた位置から見たときの特性曲線が、それぞれラインL27、L28、L29、L30で示されている。図25のラインL27において、印加電圧が2.7Vで一度下がった透過率は3.0Vから再上昇していることが確認され、反転現象が生じる。その上、電圧の印加時の透過率は視角を傾けると低下していることが確認される。

[0064] また、ラインL28, L30は、図22のラインL23, L25に比べて、やや左右が非対象であることが確認される。さらにラインL29において、電圧印加時の透過率が落切れていないことが確認された。

【0065】したがって、図18に示す液晶表示装置54の視角特性は、図23に示す従来の液晶表示装置80の視角特性に比べてかなり改善されていることが分かる。なお、位相差板41としては、液晶性高分子を傾斜配向させたものや高分子フィルムをローリングさせたものでもよい。ローリングとは、上下ローラの間にフィルムを通すことである。

【0066】(実施例5)図26の液晶表示装置85は、位相差板86を除いて図18の液晶表示装置54と同様の構成であって、液晶層52として屈折率異方性Δnが0.08であるネマティック液晶材料を用い、液晶層52の厚さを4.5μmに設定するとともに、図16に示した位相差板41の代わりに図27に示す位相差板86を用いている。位相差板86は、ポリスチレンなどの高分子化合物を延伸したものであって、第1のリタデーション値(nc-nb)×dが200nmの一軸性のもので、主屈折率nbの方向が位相差板86の

表面の法線方向に対して矢符60で示す時計まわりに25度傾いており、同様に主屈折率ncの方向が表面に対して25度の角度をなしている。

16

[0067] 図28は、液晶表示装置85の構成を示す 斜視図である。図28に示すように、液晶表示装置85 の偏光板43,44の透過軸64,65はガラス基板46,47上の配向膜50,51のラピング方向62,6 3とそれぞれ垂直となるように配置され、位相差板86 の異方性方向の主屈折率nbが傾斜した方向87はガラス基板46の配向膜50のラピング方向62と反対方向となるように配置する。したがって、液晶表示装置85 は電圧の印加時において光を透過して白色表示を行ういわゆるノーマリホワイト表示を行う。

【0068】図29は、液晶表示装置85の印加電圧-透過率特性を示すグラフである。図31において液晶表 示装置85の真上、すなわちゅ=0度から見たときの特 性曲線が実線L31で示されている。また、液晶表示装 置85の正視角方向および反視角方向にゅ=30度傾け た位置から見たときの特性曲線がそれぞれラインL3

20 2、L33で示されている。図29のラインL32において、印加電圧が3.5Vから5.5Vで、透過率がほとんどフラットであることが確認される。その上、電圧印加時の透過率が真上から見たときと、視角を傾けたときとであまり透過率が変化していないことが確認される。またラインL33において、電圧印加時の透過率がかなり落ちており、黒表示ができ、反視角方向が改善されていることが確認される。

【0069】液晶表示装置85の正視角方向と反視角方向のコントラスト比を下記の表2に示す。

30 [0070]

【表2】

	コントラスト比		
	正视角方向	反視角方向	
液晶表示装置85	147	19	
液晶表示装置88	11	7	
位相差板無しTN	4 2	4	

[0071] (比較例5) 図30の液晶表示装置88 は、位相差板89を除いて図26の液晶表示装置85と同様な構成であって、液晶層52として屈折率異方性 Δ nが0.08であるネマティック液晶材料を用い、液晶層52の厚さを4.5 μ mに散定するとともに、図27に示す位相差板86の代わりに図31に示す位相差板89を用いている。位相差板89は、ボリスチレンなどの高分子化合物を延伸したものであって、第1のリタデーション値(nc-na)×dが200nmであり、第2のリタデーション値(nc-nb)×dが200nm0一軸性のもので、主屈折率nb0方向が表面の法線方向と平

40 行に形成されている。また図30において位相差板89 の主屈折率ncの方向が表面に対して平行に形成されて いる。位相差板89の主屈折率ncの方向90はガラス 基板46の配向膜50のラピング方向62と平行に配置 されている。

【0072】図32は、液晶表示装置88の印加電圧-透過率特性を示すグラフである。図32において液晶表示装置88を真上から見たときの特性曲線がラインL34で示され、正視角方向および反視角方向にψ=30度傾けた位置から見たときの特性曲線がそれぞれラインL35、L36で示されている。図32のラインL34に

おいて、印加電圧が2.7Vで一度下がった透過率が3.0Vから再上昇していることが確認され、反転現象が生じる。その上、電圧の印加時の透過率は視角を傾けると低下していることが確認される。同様に図32のラインL36において、電圧印加時の透過率は落ちきれていないことが確認された。

[0073] したがって、図26に示す液晶表示装置85の視角特性は、図30に示す従来の液晶表示装置88の視角特性に比べてかなり改善されていることが分かる。なお、位相差板86としては、液晶性高分子を傾斜配向させたものや高分子フィルムをローリングさせたものなどでもよい。

[0074]

【発明の効果】以上詳説したように、本発明によれば、主屈折率方向を傾けた位相差板、特に最小主屈折率na 方向を軸にして主屈折率nb,ncの方向を傾斜させた位相差板を用いることによって、液晶表示素子などの複屈折性を有する部材で生ずる視角や出射角に対応した位相差変化を補償することができる。また、このような位相差板を用いた液晶表示装置は、着色現象や反転現象に起因するコントラスト比の低下を防止することができるため、白黒表示におけるコントラスト比が視角方向によって影響されず、表示画像の品質を格段に向上させることができる。

【0075】また本発明によれば、主屈折率がna=nc>nbの屈折率異方性が負である位相差板であって主屈折率の方向を傾けた位相差板は、特に表面内の主屈折率naまたはncの方向を軸として法線方向の主屈折率nbの方向と、もう一方の主屈折率ncまたはnaの方向を傾斜した位相差板は少なくとも1枚配置することによって、液晶表示素子で生じる視角に対応した位相差を解消することができ、液晶表示素子における反転現象に起因するコントラスト比の低下、および反視角方向の視角特性がさらに改善される。したがって、白黒表示におけるコントラスト比がさらに向上し、液晶表示装置の表示品位が格段に向上する。

【図面の簡単な説明】

【図1】本発明の一実施例である位相差板の斜視図である。

【図2】本発明の一実施例である液晶表示装置の分解断 面図である。

【図3】液晶表示素子のラピング方向および正視角方向 を示す概略図である。

【図4】図2に示す液晶表示装置2の分解斜視図である。

【図5】液晶表示装置の視角依存性の測定系を示す概略 斜視図である。

【図6】実施例1における液晶表示装置2の透過率-液晶印加電圧特性を示すグラフである。

【図7】従来の位相差板31の主屈折率na, nb, n

cを示す斜視図である。

【図8】位相差板31を用いた従来の液晶表示装置32 の構成を示す分解斜視図である。

18

【図9】比較例1における液晶表示装置32の透過率-液晶印加電圧特性を示すグラフである。

【図10】実施例2における液晶表示装置2の透過率-液晶印加電圧特性を示すグラフである。

【図11】比較例2における液晶表示装置32の透過率 -液晶印加電圧特性を示すグラフである。

10 【図12】実施例3における液晶表示装置2の構成を示す分解斜視図である。

【図13】実施例3における液晶表示装置2の透過率-液晶印加電圧特性を示すグラフである。

【図14】従来の位相差板31a,31bを用いた液晶 表示装置51の構成を示す分解斜視図である。

【図15】比較例3における液晶表示装置51の透過率 --液晶印加電圧特性を示すグラフである。

【図16】本発明の他の実施例である位相差板41の斜 視図である。

20 【図17】本発明のさらに他の実施例である位相差板42の斜視図である。

【図18】本発明の他の実施例である液晶表示装置54 の分解断面図である。

【図19】液晶表示素子45のラビング方向を示す平面 図である。

【図20】液晶表示装置54の分解斜視図である。

[図21] 液晶表示装置54の視角依存性の測定系を示す概略斜視図である。

【図22】実施例4における液晶表示装置54の透過率 -液晶印加電圧特性を示すグラフである。

【図23】比較例4の液晶表示装置80の構成を示す分解斜視図である。

【図24】液晶表示装置80に用いられる位相差板81 の主屈折率na, nb, ncを示す斜視図である。

【図25】比較例4における液晶表示装置80の透過率 -液晶印加電圧特性を示すグラフである。

【図26】実施例5の液晶表示装置85の構成を示す分解析面図である。

【図27】液晶表示装置85に用いられる位相差板86 40 の主屈折率na. nb. ncを示す斜視図である。

【図28】液晶表示装置85の構成を示す分解斜視図で ある

【図29】実施例5における液晶表示装置85の透過率 -液晶印加電圧特性を示すグラフである。

【図30】比較例5における液晶表示装置88の構成を示す分解斜視図である。

【図31】液晶表示装置88に用いられる位相差板89 の主屈折率na, nb, ncを示す斜視図である。

【図32】比較例5における液晶表示装置88透過率-50 液晶印加電圧特性を示すグラフである。

(11)

19

【符号の説明】

1, 1a, 1b, 41, 41a, 41b, 86 位相差

2,54,85 液晶表示装置

3, 4, 43, 44 偏光板

5, 45 液晶表示素子

6, 7, 46, 47 ガラス基板

【図1】

20

8, 9, 48, 49 透明電極層

10, 11, 50, 51 配向膜

12,52 液晶層

21, 22, 62, 63 ラピング方向

23, 24, 64, 65 透過軸方向

25, 25a, 25b 最小主屈折率naの方向

61a, 61b, 87 主屈折率nbの傾斜方向

[図2]

【図4】

【図5】

[図8]

【図6】

[図14]

[図7]

[図28]

[図9]

[図10]

[図11]

[図12]

【図16】

[図18]

(15)

[図13]

[図30]

[図15]

[図26]

[図19]

[図20]

[図21]

[図22]

[図24]

[図27]

[図25]

[図29]

【図31】

[図32]

【手続補正書】

【提出日】平成5年9月6日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0058

【補正方法】変更

【補正内容】

【0058】また、ラインL23, L25において、真上から見たときの印加電圧-透過率特性とほとんど変化せず、左右の非対称性もほとんどないことが確認される。さらにラインL24において、電圧印加時の透過率がかなり落ちており、黒表示ができ、反視角方向が改善されていることが確認される。

【手統補正2】

【補正対象書類名】明細書

【補正対象項目名】0064

【補正方法】変更

【補正内容】

[0064] また、ラインL28, L30は、図22のラインL23, L25に比べて、やや左右が非対称であることが確認される。さらにラインL29において、電圧印加時の透過率が落切れていないことが確認された。

【手続補正3】

【補正対象書類名】図面

【補正対象項目名】図28

【補正方法】変更

【補正内容】

37

38

(20)

特開平6-75116

[図28]

10

(72)発明者 神崎 修一 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内