CPSC 471: Computer Communications

Introduction to Networks and Network Architecture

Figures from Computer Networks: A Systems Approach, version 6.02dev (Larry L. Peterson and Bruce S. Davie)

You may not distribute/post these lecture slides without written permission from Dr. Mike Turi, ECE Dept., California State University, Fullerton

Applications

- Know the Internet through use of applications
 - World Wide Web (WWW)
 - Email
 - Streaming Video/Audio
 - Examples?
 - Real-time Audio/Video
 - Examples?

WWW Application Example

- URL (Uniform resource locater)
 - https://www.fullerton.edu/ecs/cs/degree/undergrad.php
 - Use HTTP (Hyper Text Transfer Protocol)
 - Name of the machine: www.fullerton.edu
 - Location of webpage: /ecs/cs/degree/undergrad.php
- 17 messages for one URL request
 - 6 to find the IP (Internet Protocol) address
 - 3 for connection establishment of TCP (Transmission Control Protocol)
 - 4 for HTTP request/reply and acknowledgements
 - 4 messages for tearing down TCP connection

Requirements

- Different requirements for different users
 - Application Programmer
 - Requires certain network services and bandwidth and delays
 - Network Operator
 - Requires network system characteristics that are easy to administer/manage
 - Network Designer
 - Requires cost-effective design for supported users

Nodes and Links

- Computers are "nodes"
- Physical medium that connects computers are "links"
 - May be point-to-point or multiple-access

Figure 2

Switched Networks

- Circuit Switched
 - Telephone Network,
 Optical Networking
- Packet Switched
 - Majority of computer networks
 - Send blocks of data (packets)
 - Uses Switches
 - Store-and-forward

Figure 3

internetwork or internet

- Independent networks are connected by a node
 - A router or gateway

Figure 4

Network Types

- PAN: Personal Area Network
- LAN: Local Area Network
- MAN: Metropolitan Area Network
- WAN: Wide Area Network
- The Internet

- SAN: Storage Area Network
 - High performance storage servers and data vaults

Addressing

- Each node needs an identifier
- Unicast: Source sends to one destination
- Broadcast: Source sends to all nodes
- Multicast: Source sends to some, but not all nodes

Figure 4

How to share a link?

• Multiplexing (multiplex and demultiplex)

Multiplexing

- Synchronous Time-Division Multiplexing (STDM)
 - Round-robin division of time for each flow
- Frequency-Division Multiplexing
 - Transmit each flow using a different frequency
 - E.g., coaxial cable
- Opening the property of the
 - What if a flow has nothing to send?
 - Fixed number of flows

Statistical Multiplexing

- Like STDM, link is shared over time
- Unlike STDM, data is transmitted from each flow based on demand
- Packet
 - Limited-size block of data
 - Source may need to split message/data into multiple packets

Switch Design

- Use a first-in, first-out (FIFO) queue
- Use round-robin
 - Allocate bandwidth (give more time) for flows which need particular Quality of Service (QoS)
- If switch is overloaded, it will drop (discard) packets

Logical Channels

- Provided to applications for common services
- Questions
 - Ok if some messages fail to arrive?
 - Must messages arrive in same order?
 - Privacy?

Figure 7

Clients and Servers

- Example (early network) applications
 - File Transfer Protocol (FTP)
 - Network File System (NFS)
- Client requests file access
- Server supports access to file
- Reading File
 - Client: request (small), Server: file data (large)
- Writing File
 - Client: file data (large), Server: confirmation (small)

Channel Types

- Request/receive channels (e.g., file transfer)
 - Guarantee message delivery
 - Only one copy delivered
 - Privacy
- Message stream channels (e.g., videoconferencing)
 - Guarantee messages arrive in order sent
 - Support multicast
 - Privacy

New Channel Types

- Invent new types of channels for new applications
 - For a good fit for application requirements
- Where to put complexity of channel design?
 - At ends of channel?
 - On the switches?

Reliability/Classes of Failures

- Nodes/links may not always be functioning correctly, why?
- Bit errors: e.g., "1" turned into a "0", why?
 - Often burst errors occur (several consecutive bits corrupted)
 - 1 of 10⁶ to 10⁷ bits on copper-based cable
 - 1 of 10¹² to 10¹⁴ bits for optical fiber
 - Detect these errors with high probability, correct them if possible
 - Need ECC (Error Correction Code) (preferred)
 or EDC (Error Detection Code)

Classes of Failures

- Packet loss, why?
 - Distinguish between a lost packet and a packet that is late in arriving
- Node or Link-level failure
 - Packet-switched network can sometimes route around a failed node or link
 - Must distinguish between a failed computer and a slow computer
 - Must distinguish between a cut link and a faulty link

Network Architectures

- Guide the design and implementation of networks
 - Provide general, cost-effective, fair, and robust connectivity to many computers
 - Evolve to accommodate changes in technologies and application requirements
- Abstraction
 - Provide a model/interface for an important aspect of the system, but hide complexities
 - Leads to layering

Layered Network Architecture

- Why layer?
- Most-to-host
 - Abstracts away the complex network topology between hosts
- Process-to-process
 - Handles occasional packet loss
 - Etc.

Application programs Process-to-process channels Host-to-host connectivity Hardware Figure 8 Application programs Request/reply Message stream channel channel Host-to-host connectivity Hardware Figure 9

Protocols

- Abstract objects that make up layers of a network system
- Provides communication service that higherlevel objects use to exchange messages
- Define service and peer interfaces

Protocol Interfaces

- Service Interface
 - For other objects on same computer that want to use its communication services
- Figure 10

- Local servicing
- Peer Interface
 - Defines the form and meaning of messages exchanged between protocol peers to implement the communication service

Protocol Graph and Protocol Stack

- Protocols communicate with peers by passing messages to lower-level protocols (which exchange with their peers)
 - Except at hardware level

Figure 11

RRP: Request-Reply Protocol

MSP: Message Stream Protocol

HHP: Host-to-Host Protocol

Definitions/Standardization

- Protocol
 - Module that implements service and peer interfaces
- Protocol Specification
 - Operations defined by the service interface and the form/meaning of messages exchanged between peers
- Network Architecture
 - Rules that govern the form/content of a protocol graph
- Standardization
 - Internet Engineering Task Force (IETF)
 - International Standards Organization (ISO)

Encapsulation

- How to keep track of which app data came from?
- Header
 - Peer-to-peer control information attached at front of message
- Trailer
 - Like header, but attached at end of message
- Body or Payload
 - The rest of the data being transmitted on behalf of app
 - Also include demultipexing information (demux key)
 - Often placed in header

Encapsulation

Figure 12

OSI Architecture (7-layer model)

- Open SystemsInterconnection
 - Defined by the ISO
 - A reference model for a protocol graph

Figure 13

OSI Architecture (7-layer model)

- Physical Layer
 - Handles transmission of raw bits over a communication link
- Data Link Layer
 - Collects a stream of bits into frames
 - Network adaptors and device drivers
- Network Layer
 - Handles routing among nodes in a packet-switched network
- Transport Layer
 - Implements a process-to-process channel

Figure 13

OSI Architecture (7-layer model)

Session Layer

- Ties together different transport streams that are part of the same application
 - E.g., manage audio and video streams for teleconferencing
- Presentation Layer
 - Concerned with data format between peers
 - Is integer 16, 32, or 64 bits long?
 - Is MSB transmitted first or last?
 - Similar to big endian/little endian
 - How is a video stream formatted?
- Application Layer (e.g., HTTP, etc.)

Figure 13

Internet Architecture

- Also called TCP/IP architecture
 - Transmission Control Protocol (TCP)
 - Internet Protocol (IP)
- Evolved from ARPANET

Figure 15

Subnetwork

- A variety of network protocols implemented by hardware and software
 - Hardware
 - Network adapter
 - Software
 - Network Device Driver
- Ethernet and wireless protocols at this layer

Figure 15

IP and Transport Layers

- Internet Protocol (IP) or Internetworking or Network Layer
 - Supports interconnection of multiple networking technologies into one network
- TCP/UDP or Transport Layer
 - Provide alternative logical channels to application programs
 - Transmission Control Protocol (TCP)
 - Provides a reliable byte-stream channel
 - User Datagram Protocol (UDP)
 - Provides an unreliable datagram delivery channel

Application Layer

- Contains application protocols such as:
 - HTTP
 - FTP
 - Telnet (remote login)
 - Simple Mail Transfer Protocol (SMTP)
 - Etc.
- Enables the interoperation of popular applications

OSI Model vs. Internet Architecture

OSI Model

TCP/IP or Internet Arch.

7: Application

6: Presentation

5: Session

4: Transport

3: Network

2: Data Link

1: Physical

Application

--not present--

--not present--

Transport

Internet

Host-to-network

Host-to-network

Adapted from Figure 1-21, Computer Networks, 4th Ed., Andrew S. Tanenbaum