Teoría de Distribución

Cristian Camilo Triana García 31 de enero de 2022

Resumen

Estudiar teoría de distribución

1. Introducción

La teoría de distribuciones se puede ver como una extensión de la diferenciación, de la misma manera que podemos ver la teoría de la medida como una extensión de la integración.

El objetivo de ésta teoría es extender la clase de funciones derivables, más específicamente nuestra definición de diferenciación. Para conseguir esto, necesitamos construir una clase de objetos(que llamaremos distribuciones) que cumplan los siguientes requisitos:

- 1. Toda función continua debe ser una distribución.
- 2. La nueva noción de derivada debe coincidir con la anterior.
- 3. Las derivadas parciales de toda distribución, deben ser también distribuciones.
- 4. Las propiedades usuales del cálculo deben conservarse.
- 5. Es necesario tener varios teoremas de convergencia para las distribuciones, que nos permitan trabajar con límites.

Esta nueva noción de distribuciones es de utilidad para formalizar varias ideas matemáticas que se usaban en el cálculo de manera intuitiva y

nada formal, especialmente en la física a la hora de trabajar con ecuaciones diferenciales parciales.

Consideremos, por ejemplo, la función $escalón\ de\ Heaviside\ H$ definida por:

$$H(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0. \end{cases}$$
 (1)

Se dice que la "derivada" de esta función es la función delta de Dirac $\delta(x)$, la cual se anula en todo su dominio salvo en el origen, en donde su valor es tan grande que tenemos que:

$$\int_{-\infty}^{+\infty} \delta(x)dx = 1. \tag{2}$$

Esta "funciónz sus "derivadas. es usada con bastante frecuencia en la matemática. Para definir la función delta de Dirac, es necesario utilizar la noción de medida.