

Office européen des brevets

(11) EP 0 835 937 A2

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication15.04.1998 Bulletin 1998/16
- (21) Application number 97308044.3
- (22) Date of filing 10.10.1997

- (51) Int CI ⁶ **C12N 15/54**, C12N 9/12, C12N 1/21, C07K 16/40, A61K 38/45
- (84) Designated Contracting States

 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

 NL PT SE
- (30) Priority 11.10.1996 US 30389 P
- (71) Applicant. SMITHKLINE BEECHAM CORPORATION
 Philadelphia Pennsylvania 19103 (US)
- (72) Inventors

- Mccarte-Roshak, Amy K.,
 SmithKline Beecham Pharma
 King of Prussia, Pennsylvania 19406 (US)
- Marshall, Lisa A., SmithKline Beecham Pharma King of Prussia, Pennsylvania 19406 (US)
- (74) Representative. Crump, Julian Richard John et al fJ Cleveland
 40-43 Chancery Lane
 London WC2A 1JQ (GB)

(54) Human MYT-1 kinase clone

(57) Homan Myr Likimse polypoptides and ENA (RNA) encoding such enzyme and a procedure for producing such polypoptides by recombinant techniques is disclosed. Also disclosed are methods for utilizing such human Myt-1 kinase in the development of treatments for cancers, such as leukemias, solid tumors and metastases, chronic inflammatory proliferative diseases, such as psoriasis and rheumatoid arthritis, proliferative

carriovase, rancisoasos, such as disbetic retinopathy and macular degeneration; and benign hyperproliferative diseases, such as benign prostatic hypertrophy and hemangiomas, among others, are also disclosed. Also disclosed are diagnostic assays for detecting diseases related to mutations in the nucleic acid sequences and altered concentrations of the polypeptides.

Description

5

Field of the Invention

This invention relates in part to newly identified polynucleotides and polypeptides variants and derivatives of the polynucleotides and polypeptides processes for making the polynucleotides and the polypeptides and their variants and derivatives agonists and antagonists of the polypeptides and uses of the polynucleotides polypeptides variants derivatives agonists and antagonists in particular in these and in other regards, the invention relates to novel polynucleotides and polypeptides of the family of Odd-regulatory kinases, hereinafter referred to as human Myt-1 kinase.

Background of the Invention

Cyclin dependent kinases (CDKs) are a family of serinc threonine kinases that are essential to cell cycle progression. Consequently, the activities of these kinases are tightly regulated. In mammals, at least seven different CDKs have been described to date and have been characterized as CDKs 1-7. They are well conserved, sharing 40 to 75% identity. In addition, extensive similarity has been shown with other serine/threonine protein kinases within their catalytic domains. See Fines, J. Semin, Cell Biol. 1994, 5, 399-408. Morgan, Dr.O., Nature, 1995, 374, 131-134, and Nigg. N.A. Bicessays, 1995, 17, 471-480. Various mechanisms to regulate CDK activity are used to ensure that the cell's normal cycle is tightly controlled, and yet remains exquisitely sensitive to changes in the environment. Lees, E. Cuir. Opin Cell Biol. 1995, 7, 773-780.

For example, entry of cells into mitosis is initiated by the Miphase-promoting factor (MPF), a complex of the Cdc2 protein kinase and cyclin B. Proper regulation of MPF ensures that mitosis occurs only after earlier phases of the cell cycle are complete. Phosphorylation of Cdc2 at Tyr15 and Thr14 suppresses the activity of MPF during interphase. At G.-Mitransition the Cdc2 is dephosphorylated at Tyr15 and Thr14 allowing MPF to phosphorylate its mitotic substrates.

A distinct family of Odd-regulatory kinases referred to as Wee-1, has been identified and characterized. Wee-1 was first identified in the fission yeast *Schirosaccharomyces pombe* as an important negative regulator of mitosis Russell. Pland Nurse. Pl. *Cell.* 1987, 49:559. Homologs of Wee-1 have since been identified in at least six other organisms in human and *Xenopus*. WEE-1 is a soluble enzyme that phosphorylates Cdd2 on Tyr¹⁵, but not on Thr¹⁴. Mueller et al. *Mol. Biol. Cell.* 1995, 6:119. McGowan, C.H. and Russell, Pl. *EMBO J.* 1993, 12:75; Parker, L.L. and Piwnica-Worms, H. *Science.* 1992, 257:1955, and McGowan, C.H. and Russell, Pl. *EMBO J.* 1995, 14:2166. Watnabe et al. *ibid.* pl. 1878.

A Thr¹⁴-specific kinase activity has been detected in the membrane fraction of *Xenopus* egg extracts. Atherton-Fessler et at *Mol. Cell Biol.* 1994-5-989. Kembluth et al. *ibid.*, p.273. It has also been demonstrated using extracts of *Xenopus* eggs, that this Thr¹⁴-specific kinase is tightly membrane associated. Kembluth et al. *Mol. Biol. Cell* 1994-5-273-282. Further, the Thr¹⁴-specific Cdb kinase in referred to as *Xenopus* Myt-1 membrane-associated inhibitory kinase, was recently shown to be an important regulator of Cdc2rcyclin B kinase activity. Mueller et al., *Science*, 1995-270-86-90. Conceptual translation of the *Xenopus* gene encoding Myt-1 revealed that it is most similar to the Wee-1 family of kinases. Thus Myt-1 is a subclass of the Wee-1 family.

Regulation of Myt-1 kinase offers a means of controlling a critical event in the cell cycle. Inhibition of Myt-1 kinase activity is believed to result in de-regulation of the timing for entry of cells into mitosis. This generally results in catastrophic mitosis and cell death due to the believed to mitosis before all essential proteins and/or DNA is produced. Thus is it believed that inhibition of Myt-1 activity has utility in treating cancers, such as leukemias, solid tumors and metastases, chronic inflammatory proliferative diseases, such as psoriasis, and rheumatoid arthritis, proliferative cardiovascular diseases, such as restenosis, proliferative ocular disorders, such as diabetic retinopathy, and macular degeneration, and benign hyperproliferative diseases, such as benign prostatic hypertrophy and hemangiomas.

Clearly there is a need for identification and characterization of human homologs of Myt-1 kinase

Summary of the Invention

Toward these ends, and others, it is an object of the present invention to provide polypeptides, inter alia, that have been identified as novel human Myt-1 kinase by homology between the amino acid sequence set out in Figure and known amino acid sequences of other proteins such as $X \in nopus$ Myt-1 kinase.

it is a further object of the invention, imcreover, to provide polynucleotides that encode human Myt-1 kinase, particularly polynucleotides that encode the polypeptide herein designated by SEQ ID NO 2.

In a particularly preferred embodiment of this aspect of the invention, the polynucleotide comprises the region encoding human Myt-1 kinase in the sequence set out in Figure 1.

In accordance with this aspect of the invention, there are provided isolated nucleic acid molecules encoding human Myt-1 kinase, including mRNAs, cEiNAs, genomic DNAs, and fragments, and, in further embodiments of this aspect of

45

50

the invention, biologically diagnostically clinically or therapeutically useful variants, analogs or derivatives thereof including fragments of the variants, analogs and derivatives

Among the particularly preferred embodiments of this aspect of the invention are naturally occurring allelic variants of human Myt-1 kinase

It also is an object of the invention to provide Myt-1 kinase polypeptides, particularly human Myt-1 kinase polypeptides, that may be employed for therapeutic purposes, for example, in the treatment of cancers, such as leukemias solid tumors and metastases, chronic inflammatory proliferative diseases, such as psoriasis, and rhoumatoid arthritis proliferative cardiovascular diseases, such as restenosis; proliferative ocular disorders, such as diabetic retinopathy and macular degeneration, and benign hyperproliferative diseases, such as benign prostatic hypertrophy and hemangiomas, among others.

In accordance with this aspect of the invention, there are provided novel polypeptides of human origin, referred to herein as human Myt-1 kinase, as we'll as biologically diagnostically or therapeutically useful fragments, variants and derivatives thereof, variants and derivatives of the fragments, and analogs of the foregoing.

Among the particularly preferred embodiments of this aspect of the invention are variants of human Myt-1 kinase encoded by naturally occurring alleles of the human Myt-1 kinase gene

In accordance with another aspect of the present invention, there are provided methods of screening for compounds which bind to and activate or inhibit activation of the kinase of the present invention.

It is another object of the invention to provide a process for producing the aforementioned polypeptides, polypeptide fragments, variants and derivatives, fragments of the variants and derivatives, and analogs of the foregoing. In a preferred embodiment of this aspect of the invention, there are provided methods for producing the aforementioned human Myt-1 kinase polypeptides comprising culturing host cells having expressibly incorporated therein an exogenously-derived human Myt-1 kinase-encoding polypubleotide under conditions for expression of human Myt-1 kinase in the host, expressing the human Myt-1 kinase in the host cells, and then recovering the expressed polypeptide from the host cells.

In accordance with another object of the invention, there are provided products, compositions, processes and methods that utilize the aforementioned polypeptides and polynucleotides for research, biological, clinical and therapeutic purposes, into take

In accerdance with cenain prote of dribodicion to the applied of the months there are provided or who is compositions and methods. *Inter alia* for among other things, assessing human Myt-1 kinase expression in cells by determining human Myt-1 kinase polypeptides or human Myt-1 kinase-encoding mRNA, to treat cancers, such as lockemias, solid tumors and motastases, chronic inflammatory proliferative diseases, such as psoriasis and rhournatoid arthritish proliferative cardiovascular diseases, such as restenos signoidance ocular disorders, such as diabetic retinopathy and macular degeneration, and benign hyperproliferative diseases, such as benign prostatic hypertrophy and hemang pimas, lamping others, in vitro, ex vivo or in vitro by exposing cells to human Myt-1 kinase polypeptides or polynucleotides as disclosed herein, assaying genetic variation, and aberrations, such as defects in human Myt-1 kinase genes, and administering a human Myt-1 kinase polypeptide or polynucleotide to an organism to augment human Myt-1 kinase function or remediate human Myt-1 kinase dysfunction.

In accordance with still another embodiment of the present invention, there is provided a process of using such activating compounds to stimulate encryme of the present, evention for the treatment of conditions related to the underexpression of human Myt-1 kinase.

In apportance with another aspect of the present invention, there is provided a process of using such inhibiting compounds for treating conditions asconated with over-expression of the human Myt-1 kinase.

In accordance with yet another aspect of the present invention, there is provided non-naturally accurring synthetic isolated and or recombinant human Myt-1 kinase polypoptides which are fragments, consensus fragments and or sequences having conservative aminus are substitute is of at in astone domain of the human Myt-1 kinase of the present invention, such polypoptides being capable of modulating, quantifatively or qualifatively, human Myt-1 kinase binding to its resent.

In accordance with stid another aspect of the present invention, there are provided synthetic or recombinant human Mytick mase polypopulus. Descriptive substitution and delivers there is additional function and deliver in the deliv

It is still another object of the present invention to provide synthetic isolated or recombinant polypeptides which are designed to inhibit or minic various human Myt-1 kinase or fragments thereof

In accordance with certain preferred embodiments of this and other aspects of the invention, there are provided probes that hybridize to human Myt-1 kinase sequences

In certain additional preferred embodiments of this aspect of the invention, there are provided antibodies against human Myt-1 kinase polypeptides. In certain particularly preferred embodiments in this regard, the antibodies are highly

5

10

15

20

25

30

35

selective for human Myt-1 kinase.

In accordance with another aspect of the present invention, there are provided human Myt-1 kinase agonists. Among preferred agonists are molecules that mimic the human Myt-1 kinase enzyme, that bind to human Myt-1 kinase-binding molecules or receptors, and that elicit or augment human Myt-1 kinase-induced responses. Also among preferred agonists are indicates that interact with human Myt-1 kinase or human Myt-1 kinase polypeptides, or with other modulators of human Myt-1 kinase activities, thereby potentiating or augmenting an effect of human Myt-1 kinase or more than one effect of human Myt-1 kinase.

In accordance with yet another aspect of the present invention, there are provided human Myt-1 kinase antagonists. Among preferred antagonists are those which mimic the human Myt-1 kinase enzyme so as to bind to human Myt-1 kinase receptors or cinding molecules but not elicit a human Myt-1 kinase-induced response or more than one human Myt-1 kinase-induced response. Also among preferred antagonists are molecules that bind to or in pract with human Myt-1 kinase so as to inhibit an effect of human Myt-1 kinase or more than one effect of human Myt-1 kinase. Preferred antagonists also include compounds that prevent expression of human Myt-1 kinase such antisense agents.

In a further aspect of the invention, there are provided compositions comprising a human Myt-1 kinase polynucle-ctide or an antisense sequence to this polynucleotide or a human Myt-1 kinase polypeptide for administration to cells in vitro to cells ex vivo and to cells in vivo, or to a multicellular organism. In certain particularly preferred embodiments of this aspect of the invention, the compositions comprise a human Myt-1 kinase polypucleotide for expression of a human Myt-1 kinase polypeptide in a host organism for treatment of disease. Particularly preferred in this regard is expression in a human patient for treatment of a dysfunction associated with aberrant endogenous activity of human Myt-1 kinase.

Other objects teatures advantages and aspects of the present invention will become apparent to those of skill in the art from the following description. It should be understood nowever that the following description and the specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only. Various changes and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the following description and from reading the other parts of the present disclosure.

Brief Description of the Drawings

The following drawings depict certain embodiments of the invention. They are illustrative only and do not limit the invention otherwise disclosed herein

Figure 1 shows the partial nucleotide sequence of human Myt-1 kinase (SEQ_D NO 1).

Figure 2 shows the deduced amino acid sequence of human Myt-1 kinase. SEQ ID NO 2)

Figure 3 shows a comparison between the deduced amino acid sequence of human Myt-1 kinase (SEQ. D NO 2) and *Xenopus* Myt-1 kinase (SEQ ID NO 3)

Glossary

15

20

25

30

35

40

45

50

The following illustrative explanations are provided to facilitate understanding of certain terms used frequently herein particularly in the examples. The explanations are provided as a convenience and are not meant to limit the invention.

"Bigestion" of DNA refers to caralytic cleavage of a DNA with an enzyme such as but not limited to a restriction enzyme that acts only at certain sequences in the DNA. The various restriction enzymes referred to herein are commercially available and their reaction conditions, cofactors and other requirements for use are known and routine to the skilled artisan.

For analytical purposes, typically, 1 microgram of plasmid or DNA fragment is digested with about 2 units of enzyme in about 20 microliters of reaction buffer. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to 50 micrograms of DNA are digested with 20 to 250 units of enzyme in proportionately larger volumes.

Appropriate buffers and substrate amounts for particular restriction enzymes are described in standard laboratory manuals, such as those referenced below, and are specified by commercial suppliers.

Incubation times of about 1 hour at 37°C are ordinarily used, but conditions may vary in accordance with standard procedures, the supplieds instructions and the particulars of the reaction. After digestion, reactions may be analyzed and fragments may be purified by electrophoresis through an agarose or polyacrylamide gell using well known methods that are routine for those skilled in the art.

"Genetic element" generally means a polynucleotide comprising a region that encodes a polypeptide or a region that expulates replication, transcription, translation or other processes important to expression of the polypeptide in a hosticell, or a polynucleotide comprising both a region that encodes a polypeptide and a region operably linked thereto that regulates expression.

Genetic elements may be comprised within a vector that replicates as an episcimal element, that is, as a molecule

physically independent of the host cell genome. They may be comprised within mini-chromosomes, such as those that arise during amplification of transfected DNA by methotrexate selection in eukaryotic cells. Genetic elements also may be comprised within a host cell genome, not in their natural state but, rather, following manipulation such as isolation, cloning and introduction into a host cell in the form of purified DNA or in a vector, among others

"Isolated" means altered "by the hand of man" from its natural state, i.e., that, if it occurs in nature, it has been changed or removed from its original environment, or both. For example, a naturally occurring polynucleotide or a polypeptide naturally present in a living animal in its natural state is not "isolated," but the same polynucleotide or polypeptide separated from the opexisting materials of its natural state is "isolated," as the term is employed herein For example, with respect to polynucleotides, the term isolated means that it is separated from the chromosome and cell in which it naturally occurs

As part of or following isolation, such polynuclectides can be joined to other polynucleotides such as DNAs for mutagenesis, to form fusion proteins, and for propagation or expression in a host, for instance. The isolated polynucleotides, along or joined to other polynucleotides such as vectors, can be introduced into host cells, in culture or in whole organisms. Introduced into host cells in culture or in whole organisms, such DNAs still would be isolated, as the term is used herein, because they would not be in their naturally occurring form or environment. Similarly, the polynucleotides and polypeptides may occur in a composition, such as a medial formulations, solutions for introduction of polynucleotides or polypeptides. For example, into cells, compositions or solutions for chemical or enzymatic reactions, for instance, which are not naturally occurring compositions, and, therein remain isolated polynucleotides or polypeptides within the meaning of that term as it is employed herein.

Ligation" refers to the process of forming phosphodiester bonds between two or more polynucleotides, which most often are double stranded DNAs. Techniques for ligation are well known to the art and protocols for ligation are described in standard laboratory manuals and references, such as, for instance. Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor, Laboratory Press, Cold Spring Harbor, New York, 1989, here-matter referred to as Sambrook et al.

Cliganucleotida(s) i refers to relatively short polynucleotides. Often the term refers to single-stranded deoxyribonium at desibut it can refer as well to single- or double-stranded ribonucleotides. BNA DNA hybrids and double-stranded and DNAs rainoing others.

© igenuclectides, such as single-stranded uNA probe biggs using description are synthesized by enemical mothcids, such as those implemented on automated origonucleotide synthesizers. However, oligonucleotides can be made by a variety of other methods, including *in vitro* recombinant DNA-mediated fechniques and by expression of DNAs in delist and organisms.

in trally chemically synthesized DNAs typically are obtained without a 5' phosphate. The 5' ends of such origonucleotides are not substrates for phosphodiester bond formation by ligation reactions that employ DNA ligases typically used to form recombinant DNA molecules. Where I gation of such oligonucleotides is desired, a phosphate can be added by standard techniques, such as those that employ a kinase and ATP.

The 3 end of a chemically synthesized eligenucleotide generally has a free hydroxyl group and, in the presence of a igase, such as T4 DNA tigase, will readily form a phosphodiester bend with a 5' phosphate of another polynucleotide, such as another eligonucleotide. As is well known, this reaction can be prevented selectively, where desired, by removing the 5' phosphates of the other polynucleotide(s) prior to ligation.

They may be comprised of DNA or RNA and may be linear or product. Plasmids code for molecules that ensure their replication and stable inheritance during coll replication and may encode products of considerable medical lagricultural and environmental importance. For example, they code for toxins that greatly increase the virulence of pathogenic bacterial. They can also produce genes that confer resistance to antibiblios. Plasmids are widely used in molecular bickedy as vectors used to clone and express recombinant gones. Plasmids denerally are designated norsen by a lower case of the confer resistance to antibiblios. Plasmids are widely used in molecular bickedy as vectors used to clone and express recombinant gones. Plasmids denerally are designated norsen by a lower case of the construction and expression numbers, in accordance with standard making conventions that are tarnital to those of suit at the artist plasmids dynamids of the procedure application of well known published procedures. Many plasmids and other cloning and expression vectors that in the collection and use of such plasmids as well as other vectors in the present invention. The properties construction and use of such plasmids as well as other vectors in the present invention will be readily apparent to those of skill from the present disclosure.

"Polynucleotide(s)" generally refers to any polyribonucleotide or poly deoxir-bonucleotide, which may be immedified RNA or DNA or modified RNA or ENA. Thus, for instance, polynucleotides as used herein refers to lamong others single- and double-stranded ENA. DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or more typically double-stranded in more typically double-stranded regions comprising RNA or DNA or both

10

15

20

25

30

BNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonuclectide. As used herein, the term polynucleotide also includes ENAs or RNAs as described above that contain one or more modified bases. Thus, ENAs or RNAs with blackbones modified for stability or for other reasons are polynucleotides, as that term is intended herein. Moreover ENAs or RNAs comprising unusual bases, such as nosine, or modified bases, such as tritylated bases, to name just two examples, are polynucleotides, as the term is used herein. It will be appreciated that a great variety of modifications have been made to ENA and RNA that serve many useful purposes known to those of skill in the art. The term polynucleotide, as it is employed herein, embraces such chemically enzymatically or metable ically modified forms of polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses, and cells, including inter alials imple and complex cells.

"Folypeptides" as used herein includes all polypeptides as described below. The basic structure of polypeptides is well known and has been described in innumerable textbooks and other publications in the art. In this context, the term is used herein to refer to any peptide or protein comprising two or more amino acids joined to each other in a linear chain by peptide bonds. As used herein, the term refers to both short chains, which also commonly are referred to in the artias peptides, obspectides and obspectides and obspective and to longer chains, which generally are referred to in the artias proteins, of which there are many types.

it will be appreciated that polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally occurring amino acids, and that many amino acids, including the ferminal amino acids, may be modified in a given polypeptide, either by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques which are well known to the art. Even the common modifications that copur naturally in polypeptides are too numerous to list exhaustively here, but they are well described in pasic texts and in more detailed monographs, as well as in a voluminous research literature, and thus are well known to those of swill in the art. Known modifications which may be present in polypeptides of the present invention include, but are not limited to lacerylation adylation ADP-ribosy at on, amidation occalent attachment of flavin obvident attachment of a heme moiety, bovalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative covalent attachment of phosphotidylinositol cross-linking cyclization, disulfide bond formation, demethylation, formation of povalent cross-links, formation of cystine, formation of pyroglutamate, formylation, gamma-parboxylation, glycosyration GPI anchor formation inydroxylation, rodination methylation myristoylation oxidation, proteolytic processing phosphicrylation prenylation racemization selency ation sulfation transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. Such modifications are well known to those of skill and have been described in great detail in the scientific literature. Several particularly common modifications including glycosylation, ripid attachment, sulfation, gamma-carboxylation of glutamic acid residues, hydroxylation and ADF-ribosylation are described in most basic texts such as PROTEINS - STRUCTURE AND MCLECULAR FROPERTIES and Ed. T.E. Creighton, W. H. Freeman and Company, New York, 1993. Detailed reviews are also available on this subject. See e.g., Wold F., Posttranslational Profein Modifications, Perspectives and Prospects, pages 1-12 in POST-TRANSLATIONAL COVALENT MODIFICATION OF PROTEINS B. D. Johnson, Ed., Academic Press, New York, 1983. Seifter et al. "Analysis for protein modifications and conprotein coffectors". Meth. Enlymol., 1990, 182,626-646 and Ratter et al. 'Protein Synthesis Posttranslational Modifications and Aging" Ann. N.Y. Acad. Sci., 1992, 663, 48-62.

It will be appreciated last is well known and as noted above, that so ypeptides are not always entirely linear. For instance polypeptides may be branched as a result of ubiquit nation, and they may be circular, with or without branching generatives a result of posttranslation events including natural processing event and events brought about by human manipulation which do not occur naturally. O coular, branched and branched circular polypeptides may be synthesized by non-translation natural processes and by entirely synthetic methods, as well.

Modifications can occur anywhere in a polypeptide including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. In fact, blockage of the amino or carboxyl group in a polypeptide, or both, by a covalent modification, is common in naturally occurring and synthetic polypeptides and such modifications may be present in polypeptides of the present invention, as well. For instance, the amino terminal residue of polypeptides made in *E. coli*, prior to processing, almost invariably will be N-formylmethionine.

The modifications that copur in a polypeptide often will be a function of how it is made. For polypeptides made by expressing a cloned gene in a host, for instance, the nature and extent of the modifications in large part will be determined by the host cell's posttranslational modification papacity and the modification signals present in the polypeptide amino acid sequence. For instance, as is well known, glycosyration often does not occur in bacterial hosts such as *E. cell*. Accordingly, when glycosylation is desired, a polypeptide should be expressed in a glycosylating host, generally a eukaryotic cell. Insect cells often carry out the same posttrans'ational glycosylations as mammalian cells and, for this reason, insect cell expression systems have been developed to express efficiently mammalian proteins having the native patterns of glycosylation. *Inter alia*. Similar considerations apply to other modifications.

It will be appreciated that the same type of modification may be present in the same or varying degrees at several

40

sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications

In general, as used herein, the term polypeptide encompasses all such modifications, particularly those that are present in polypeptides synthesized by expressing a polynucleotide in a host cell.

"Variant(s)" of polynucleotides or polypeptides, as the term is used herein, are polynucleotides or polypeptides that differ from a reference polynucleotide or polypeptide, respectively. Variants in this sense are described below and elsewhere in the present disclosure in greater detail.

Variants include polynucleotides that differ in nucleotide sequence from another reference polynucleotide. Generally, differences are limited so that the nucleotide sequences of the reference and the variant are closely similar overall and, in many regions, identical

As noted below changes in the nucleotide sequence of the variant may be silent. That is, they may not alter the amino acids encoded by the iblynucleotide. Where alterations are limited to silent changes of this type, a variant will encode a polypeptide with the same amino acid sequence as the reference. As also noted below changes in the nucleotide sequence of the variant may after the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Such nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below.

Variants also include polypeptides that differ in amino acid sequence from another, reference polypeptide. Generally, differences are limited so that the sequences of the reference and the variant are closely similar overall and, in many regions, identical

A variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions, fusions, and truncations, which may be present in any combination.

"Fusion protein" as the term is used herein is a protein encoded by two, often unrelated, fused genes or fragments thereof, EP-A-C 464-533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, employing an immunoglobulin Ec region as a part of a fusion protein is advantageous for use in therapy and diagnosis resulting in, for example, improved pharmacokinetic properties (EP-A 0232-262). On the other hand, for some uses it would be desirable to be able to defete the Ec part after the fusion protein has been expressed, defected and purified. Accordingly, it may be doshouse to the form control of the fusion protein with a chemically or environtbally cleavable linking region. This is the case when the Eo portion proves to be a constance to use in therapy, and regions for example, when the fusion protein is to be used as an antigen for immunizations. In drug discovery for example chuman proteins, such as ships-a have been fused with Ec portions for use in high-throughput screening assays to identify antagonists of high-throughput screening assays to identify antagonist of high-throughput screening assays to identify antagonist of high-throughput screening assays to i

Thus, this invention also relates to genetically engineered soluble fusion proteins comprised of human Myt-1 kinase or a portion thereof, and of various portions of the constant regions of heavy or light chains of immunoglobulins of various subclasses (IgG I M IgA, IgE). Preferred as an immunoglobulin is the constant part of the heavy chain of human IgG particularly IgG1, where fusion takes place at the hange region. In one embodiment, the Folipart can be removed simple by incorporation of a chaivage sequence which can be cleaved with blood clotting factor Xa. This invention further relates to processes for the preparation of these fusion proteins by genetic engineering, and to the use thereof for diagnosis and therapy. Act a further aspect of the invention relates to polynucleotides encoding such fusion proteins.

Membrarie ocund proteins are particularly useful in the formation of fusion proteins. Such proteins are generally characterized as clossessing three district shuctural regions in extracel of ir domain, a transmembrarie domain, and a cytopiasmic domain. This invention contemprates the use of use or more of these regions as components of a fusion protein. Examples of such fusion protein technology can be found in W094-29458 and W094-22914.

"Binding molecules" as otherwise values inversation in a cubes" or "expector compensatifactors" refer to molecules including receptors that specificary condition interests to polypectides of the present invention. Such binding molecules are a part of the present inventor behavior and an expected to present inventor behavior and appendix that be dispectable to a people of the invention.

As known in the art is minarity between the begree of second problems of a second colypeptide. Moreover also known in the art is "identity" which means the degree of second relatedness between two polypeptide or two polynoutleotide sequences is determined by the identity of the main the relatedness between two polypeptide or two polynoutleotide sequences is determined by the identity of the main the feather two strings of such sequences. Both identity and similarity can be read by calculated (ODMPUTATIONAL More at a between two strings of such sequences. Both identity and similarity can be read by calculated (ODMPUTATIONAL More at a between two strings of such sequences. Both identity and similarity can be read by calculated (ODMPUTATIONAL More at a sequence of such sequences. Both identity and similarity can be read by calculated (ODMPUTATIONAL More at a sequence of such sequences. Both identity and similarity can be considered as a sequence of such sequences. Both identity and similarity can be considered as a sequence of sequences. Both identity and sequences is determined by the identity of sequences and it is a sequence of a section of a second college of a secon

10

15

20

3.5

sequences and the terms "identity" and "similarity" are well known to skilled artisans (Carllo H. and Lipton D. SIAM J. Applied Math., 1988, 48 1073). Methods commonly employed to determine identity or similarity between two sequences include but are not limited to those disclosed in Guide to Huge Computers. Martin J. Bishop, ed. Academic Press. San Diego. 1994, and Carillo H. and Lipton D. SIAM J. Applied Math., 1988, 48 1073. Preferred methods to determine identity are designed to give the largest match between the two sequences tested. Methods to determine identity and similarity are also codified in computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to. GCIS program package (Devereux J. et al., Nucleic Acids Research, 1984, 12.1) 387.) BLASTP BLASTN. FASTA (Atschul. S.F. et al., J. Molec. Biol., 1990, 215, 403).

Detailed Description of the Invention

The present invention relates to novel human Myt-1 kinase polypeptides and polynucleotides, among other things as described in greater detail celow in particular, the invention relates to polypeptides and polynucleotides of a novel human Myt-1 kinase, which is related by amind acid sequence homology to *Xenopus* Myt-1 kinase. The invention relates especially to human Myt-1 kinase having the nucleotide and amino acid sequences set out in Figures 1 and 2.

Polynucleotides

15

20

25

30

35

40

45

50

In accordance with one aspect of the present invention, there are provided solated polynucleotides which encode the human Myt-1 kinase polypeptide having the deduced amino acid sequence of Figure 2.

Using the information provided herein, such as the polynucleotide sequence set out in Figure 1, a polynucleotide of the present invention encoding human Myt-1 kinase may be obtained using standard cloning and screening procedures. Illustrative of the invention, the polynucleotide set out in Figure 1 was discovered in a cDNA library derived from cells of a chronic lymphocytic leukernia cell line using the expressed sequence tag (EST) analysis (Adams, M.D., et al., Science, (1991), 252-1651-1656, Adams, M.D., et al., Nature, (1992), 355-632-634. Adams, M.D., et al., Nature, (1995), 377, Supp, 3-174). This partial clone represents approximately 87% of the putative full length clone based upon the assumption that human Myt-1 gene is the same size as *Yenepus* Myt-1. Other partial length clones have been identified from breast cancer, bone marrow and testes libraries.

Human Myt-1 kinase of the invention is structurally related to other proteins of the Wee-1 family of kinases as shown by the results of sequencing the cDNA sequence set out in Figure 1 and also SEQ ID NO. 1. It contains an open reading frame encoding a protein of approximately 479 amino acids. Human Myt-1 kinase has 69.5% amino acid similarity (50.5% identity) to the *Xencpus* Myt-1 kinase. The clone encodes the 5 conserved amino acids representative of the distinct kinase domain of the Wee-1 kinase family. It also contains a putative transmembrane domain consistent with the membrane localization of the *Xencpus* Myt-1 which is a type II transmembrane protein. The c-terminal region of this human clone has several potential phosphorylation sites which are believed to be involved in regulation of Myt.

Polynuclectides of the present invention may be in the form of RNA such as mRNA or in the form of ENA including for instance. cENA and genomic ENA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The ENA may be double-stranded or single-stranded. Single-stranded ENA may be the coding strandal also known as the sense strand or it may be the non-coding it tend, also referred to as the anti-sense strand.

The coding sequence which encodes the polyceptide may be identical to the coding sequence of the polynucleotide shown in Figure 1. SEQ (2) NO. 1. It also may be a polynucleotide with a different sequence, which ias a result of the redundancy idegeneracy; of the genetic code, also encodes the polypeptide of Figure 2. SEQ ID NO. 2.

Polynuclectides of the present invention which encode the polypeptide of Figure 2 may include but are not limited to the coding sequence for the mature polypeptide by itself, the coding sequence for the mature polypeptide and additional coding sequences; and the coding sequence of the mature polypeptide, with or without the aforementioned additional coding sequences together with additional, non-coding sequences. Examples of additional coding sequence include but are not limited to sequences encoding a leader or secretory sequence, such as a pre-- cripro- or preproprotein sequence. Examples of additional non-coding sequences include but are not limited to introns and non-coding 5° and 3° sequences, such as the transcribed non-translated sequences that play a role in transcription, and mRNA processing including splicing and polyadenylation signals, for example, for ribosome binding and stability of mRNA. Coding sequences which provide additional functionalities may also be incorporated into the polypeptide. Thus, for instance, the polypeptide may be fused to a marker sequence as a peptide, which facilitates purification of the fused polypeptide. In certain preferred embodiments of the accent of the invention, the marker sequence is a hexahistidine peptide, such as that provided in the pQE vector.

As described in Gentz et al. Proc. Nati. Acad. Sci., USA, 1989, 86,821-824, for instance, hexa-histidine control of the fusion protein, in other embodiments, the marker sequence is a HA tag. The control of the fusion protein which has been described by Wes.

tags are commercially available

10

15

20

35

ن.

In accordance with the foregoing, the term "polynucleotide encoding a polypeptide" as used herein encompasses polynucleotides which include, by virtue of the redundancy of the genetic code, any sequence encoding a polypeptide of the present invention, particularly the human Myt-1 kinase having the amino acid sequence set out in Figure 2. SEQ ID NO 2. The term also encompasses polynucleotides that include a single continuous region or discontinuous regions encoding the polypeptide (for example, interrupted by introns) together with additional regions, that also may contain coding and/or non-coding sequences.

The present invention further relates to variants of the herein above described polynucleotides which encode for fragments, analogs and derivatives of the polypeptide having the deduced amino acid sequence of Figure 2. A variant of the polynucleotide may be a naturally occurring variant such as a naturally occurring allelic variant, or it may be a variant that is not known to occur naturally. Such non-naturally occurring variants of the polynucleotide may be made by mutagenesis techniques, including those applied to polynucleotides, cells or organisms.

Among variants in this regard are variants that differ from the aforementioned polynucleotides by nucleotide substitutions, deletions or additions may involve one or more nucleotides. The variants may be aftered in coding or non-coding regions or both. Afterations in the coding regions may produce conservative or non-conservative amino and substitutions, deletions or additions.

Among the particularly preferred embodiments of the invention in this regard are polynucleotides encoding polypeptides having the amino acid sequence of human Myt-1 kinase set out in Figure 2, variants, analogs, derivatives and fragments thereof, and fragments of the variants, analogs and derivatives

Further particularly preferred in this regard are polynucleotides encoding human Myt-1 kinase variants, analogs derivatives and fragments, and variants, analogs and derivatives of the fragments, which have the amino acid sequence of the human Myt-1 kinase polypeptide of Figure 2 in which several, a few. 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, deleted or added, in any combination. Especially preferred among these are silent substitutions, additions and deletions, which do not after the properties and activities of the human Myt-1 kinase. Also especially preferred in this regard are conservative substitutions. Most highly preferred are polynucleotides encoding polypeptides having the amino acid sequence of Figure 2, without substitutions.

Forther preferred embediments of the invention are polynucleotides that are at least 70% identical to a polynucleotide encoding the human Myt-1 k hase polynophiae naving the aristic and acquance call but in Figure 2. and polynucleotides which are complementary to such polynucleotides. More preferred are polynucleotides that comprise a region that is at least 30% identical to a polynucleotide encoding the human Myt-1 kinase polypeptide and polynucleotides complementary thereto. Polynucleotides at least 30% identical to the same are particularly preferred, and those with at least 95% are more particularly preferred. Furthermore, those with at least 95% are more highly preferred, with at least 95% being the most preferred.

Particularly preferred embodiments in this respect, moreover, are polynucleotides which encode polypeptides which retain substantially the same biological function or activity as the mature polypeptide encoded by the cDNA of Figure 1.

The present invention further relates to polynucleotides that hybridize to the herein above-described sequences in this regard, the present invention especially relates to polynucleotides which hybridize under stringent conditions to the herein above-described polynucleotides. As herein used, the term "stringent conditions" means hybridization will occur only if there is at least 95% and preferably at least 97% identity activeen the sequences.

As discussed additionally herein regarding polynuclectide assays of the invention, for instance, polynucleotides or the invention as a scussed above, may be used as hybridization probes for cENA and genomic BNA, to isolate full-length cENAs and genomic clones encoding human Myt-1 kinase and to isolate cENA and genomic clones of other genes that have a high sequence similarity to the human Myt-1 kinase gene. Such probes generally will comprise at least 15 macleotides. Professory such probes will have at least 50 nm ectides. Farticularly professor will have between 30 and 50 had beforedes.

For example the coding region of the live in MyCL kinds quarterly the solated by streening its medite known. CNA sequence to synthesize an oligonucleotide probe. A labeled oligonucleotide having a sequence complementary to that of a general the present invention is then used to screen a labely of there are ICNA denomic DNA or mENA to getermine the members of the library to which the probe hybridizes to

The polynuclectides and polypeptides of the present invention may be employed as research reagents and materials for discovery of treatments and diagnostics to human disease. As further discussed here nirelating to polynucleotide assays.

The polynuclectides may encode a polypept de which is the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature polypeptide (when the mature form has more than one polypeptide chain for instance). Such sequences may play a role in processing of a protein from procursor to a mature form may facilitate protein trafficking, may prolong or shorten protein half-life or may facilitate manipulation of a protein for assay or production, among other things. As generally is the case in situ-the additional amino acids may be proc

essed away from the mature protein by cellular enzymes

A precursor protein, having the mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide. When prosequences are removed such inactive precursors generally are activated. Some or all of the prosequences may be removed before activation. Generally, such precursors are called propreteins.

In sum, a polynuclectide of the present invention may encode a mature protein, a mature protein plus a leader sequence (which may be referred to as a preprotein), a precursor of a mature protein having one or more prosequences which are not the leader sequences of a preprotein, or a preproprotein, which is a precursor to a proprotein, having a leader sequence and one or more prosequences, which generally are removed during processing steps that produce active and mature forms of the polypeptide.

Polypeptide

15

20

25

30

35

40

45

50

The present invention further relates to a human Myt-1 kinase polypeptide which has the deduced amino acid sequence of Figure 2. SEGIDINO 2. The invention also relates to fragments analogs and derivatives of thereof. The terms "fragment" "derivative" and "analog" when referring to the polypeptide of Figure 2, mean a polypeptide which retains essentially the same biological function or activity as such polypeptide. Let functions as a Myt-1 kinase or retains the ability to bind any receptors or binding molecules even though the polypeptide does not function as the enzyme. Thus, an analog includes for example, a proprotein which can be activated by cleavage of the proprotein portion to produce an active mature polypeptide.

The polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide or a synthetic polypeptide. In certain preferred embodiments, it is a recombinant polypeptide.

The fragment derivative or analog of the polypeptide of Figure 2 may be (i) one in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably a conserved amino acid residue) and such substituted amino acid residue may or may not be one encoded by the genetic code (ii) one in which one or more of the amino acid residues includes a substituent group (iii) one in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or (iv) one in which the additional amino acids are fused to the mature polypeptide, such as a leader or secretory sequence or a sequence which is employed for purification of the mature polypeptide or a proprotein sequence. Such fragments, derivatives and analogs are deemed to be within the scope of those skilled in the art from the teachings herein.

Among the particularly preferred embodiments of the invention in this regard are polypeptides having the amino acid sequence of human Myt-1 kinase set out in Figure 2 as SEQID NO 2 variants, analogs, derivatives and fragments thereof, and variants, analogs, and derivatives of the fragments. Further particularly preferred embodiments of the invention in this regard are polypeptides having the amino acid sequence of human Myt-1 kinase, variants, analogs, derivatives, and fragments, thereof, and variants, analogs, and derivatives of the fragments which retain the activity function of this enzyme.

Among preferred variants are those that vary from a reference by conservative amino acid substitutions. Such substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the replacements one for another, among the aliphatic amino acids. Alla, Val. Leu and the interchange of the hydroxyl residues. Ser and Thr, exchange of the acidic residues. Aspland Glusubstitution between the amide residues. Ashland Gln, exchange of the basic residues Lys, and Arg and replacements among the arcmatic residues. Phe and Tyr.

Further particularly preferred in this regard are variants, analogs, derivatives and fragments, and variants, analogs and derivatives of the fragments, having the amino acid sequence of the human Myt-1 kinase polypeptide of Figure 2, in which several, a few, 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues are substituted, deleted or added, in any combination. Especially preferred among these are silent substitutions, additions, and deletions, which do not alter the properties and activities of the enzyme. Also especially preferred in this regard are conservative substitutions. Most highly preferred are polypeptides having the amino acid sequence of Figure 2. SEQ ID NO 2, without substitutions.

The polypeptides and polynucleotides of the present invention are preferably provided in an isolated form, and preferably are purified to homogeneity

The polypeptides of the present invention include the polypeptide of SEQTE NO. 2 (in particular the mature polypeptide) as well as polypeptides which have at least 70% identity to the polypeptide of SEQTE NO. 2 and more preferably at least 90% similarity imcre preferably at least 90% identity) to the polypeptide of SEQTD NO. 2 and still more preferably at least 95% similarity (still more preferably at least 95% identity) to the polypeptide of SEQTD NO. 2 and also include portions of such polypeptides with such portion of the polypeptide generally containing at least 30 amino acids and more preferably at least 50 amino acids.

Fragments or portions of the polypeptides of the present invention may be employed for producing the corresponding full-length polypeptide by peptide synthesis, therefore, the fragments may be employed as intermediates for pro-

ducing the full-length polypeptides. Fragments or portions of the polynucleotides of the present invention may be used to synthesize full-length polynucleotides of the present invention. Fragments may be "freestanding." Let. not part of or fused to other amino acids or polypeptides, or they may be comprised within a larger polypeptide of which they form a part or region. When comprised within a larger polypeptide, the presently discussed fragments most preferably form a single continuous region. However, several tragments may be comprised within a single larger polypeptide. For instance, certain preferred embodiments relate to a fragment of a human Myt-1. Linase polypeptide of the present comprised within a precursor polypeptide designed for expression in a host and having hoterologous pre- and propolypeptide regions fused to the amino terminus of the human Myt-1 kinase fragment and an additional region fused to the carboxyl terminus of the fragment. Therefore, fragments in one aspect of the meaning intended herein, refers to the portion or portions of a fusion polypeptide or fusion protein derived from human Myt-1 kinase.

As representative examples of polypeptide tragments of the invention, there may be rilentioned those which have from about 5-15, 10-20, 15-40, 30-55, 41-75, 41-80, 41-90, 50-100, 75-100, 90-115, 100-125, and 110-113 amino acids in length.

In this context "about" includes the particularly recited range and ranges larger or smaller by several, a few. 5, 4, 3, 2 or 1 amino acid residues at either extreme or at both extremes. For instance, about 40-90 amino acids in this context means a polypeptide fragment of 40 plus or minus several a few. 5, 4, 3, 2 or 1 amino acid residues to 90 plus or minus several a few. 5, 4, 3, 2 or 1 amino acids residues, i.e., ranges as broad as 40 minus several amino acids to 90 plus several amino acids to as narrow as 40 plus several amino acids to 90 minus several amino acids. Highly preferred in this regard are the recited ranges plus or minus as many as 5 amino acids at either or at both extremes. Particularly highly preferred are the recited ranges plus or minus as many as 3 amino acids at either or at both the recited extremes. Especially particularly highly preferred are ranges plus or minus 1 amino acid at either or at both extremes or the recited ranges with no additions or deletions. Most highly preferred of all in this regard are fragments from about 5-15, 10-20, 15-40, 30-55, 41-75, 41-80, 41-90, 50-100, 75-100, 90-115, 100-125, and 110-113 amino acids long.

Among especially preferred fragments of the invention are truncation mutants of human Myt-1 kinase. Truncation mutants include human Myt-1 kinase polypeptides having the amine acid sequence of Figure 2, or of variants or derivatives thereof except for deterior, of a continuous series of residues, that is a continuous region, part or portion) that includes the amine terminus or a continuous series of residues, that accludes the campa sylformer is a raisin double truncation mutants, deterior of two continuous series of residues, one including the amine terminus and one including the carboxyl terminus. Particularly preferred fragments of the membrane bound enzymes of this invention include soluble forms of the enzyme comprising the extraoetiular domain without its attendant transmembrane and cytoplasmic domains or transmembrane region deletions resulting in an enzyme in which the extracel part domain is fused directly to the cytoplasmic domain. See for example, published PCT application number W094/03620. Alternatively, fragments of the present invention include deletion of the transmembrane region only and retention of at least part of the cytoplasmic domain itself or fusion with at least part of an alternate cytoplasmic domain as described in WO96 04382. Fragments having the size ranges set out above are also preferred embodiments of truncation fragments, which are especially preferred among fragments generally.

Also preferred in this aspect of the invention are fragments characterured by structural or functional attributes of numerin Myt-1 kinase. Freferred embodiments of the invention in this regard include fragments that comprise alphabetix and alphabetix forming regions ("alpha-regions"), beta-sheet and beta-sheet-forming regions ("beta-regions") turn and turn-forming regions ("turn-regions"), coil and coil-forming regions ("coil-regions"), hydrophilic regions, hydrophilic regions, beta-amphipathic regions, flexible regions, surface-forming regions, and tright antiqenic index regions of human Myt-1 kinabe.

Among highly preferred fragments in this regard are those that comprise regions of number Myt-1 kinase that comprise several structural features, such as several of the fragment of the present invention, as discussed above with high agreement are that the fragment of the present invention, as discussed above it we be approximated from an expense of a professional fragments in general.

Further preferred regions are mose that he data activities of the Myt Flarity is. Most highly preferred in this regard are tragments that have a chemical biological or other activity of human Myt-1 kir ase including those with a similar activity or an improved activity or with a decreased undesirable activity. Highly preferred in this regard are fragments that centain regions that are homologs in sequence or in position or in both sequence and position to active regions of related polypeptides, such as human Myt-1 kinase. Among particularly preferred tragments in these regards are truncation mutants, as discussed above, or fragments comprising cytoplasmic, transmembrane or extracellular domains.

It will be appreciated that the invention also relates to lamcing others, polynuclectides encoding the aforementioned fragments, polynucleotides that hybridize to polynucleotides encoding the fragments, particularly those that hybridize under stringent conditions, and polynucleotides, such as PCR primers, for amplifying polynucleotides that encode the

10

15

20

fragments. In these regards, preferred polynucleotides are those that correspond to the preferred fragments, as discussed above.

Vectors, host cells, expression

15

20

25

30

35

45

The present invention also relates to vectors which contain polynucleotides of the present invention host cells which are genetically engineered with vectors of the invention and the production of polypeptides of the invention by recombinant techniques.

Host cells can be genetically engineered to incorporate polynucleotides and express polypeptides of the present invention. For instance, polynucleotides may be introduced into host cells using well known techniques of infection transduction transfection transfection and transformation. The polynucleotides may be introduced alone or with other polynucleotides. Such other polynucleotides may be introduced independently, co-introduced or introduced joined to the polynucleotides of the invention.

Thus for instance polynucleotides of the invention may be transfected into host cells with another separate polynucleotide encoding a selectable marker using standard techniques for co-transfection and selection in for instance mammalian cells. In this case the polynucleotides generally will be stably incorporated into the host cell genome

Alternatively, the polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. The vector construct may be introduced into host cells by the aforementioned techniques. Generally, a plasmid vector is introduced as DNA in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. Electroporation may also be used to introduce polynucleotides into a host. If the vector is a virus, it may be packaged in vitro or introduced into a packaging cell and the packaged virus may be transduced into cells. A wide variety of techniques suitable for making polynucleotides and for introducing polynucleotides into cells in accordance with this aspect of the invention are well known and routine to those of skill in the art. Such techniques are reviewed at length in Sambrook at al. which is merely illustrative of the many laboratory manuals that detail these techniques.

in accordance with this aspect of the invention the vector may be for example, a plasmid vector a single- or double-stranded RNA or DNA viral vector. Such vectors may be introduced into cells as polynucleotides, preferably DNA, by well known techniques for introducing DNA and RNA into cells. The vectors in the case of phage and viral vectors may also be and preferably are introduced into cells as packaged or encapsidated virus by well known techniques for infection and transduction. Viral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

Preferred among vectors in certain respects, are those for expression of polynucleotides and polypeptides of the present invention. Generally, such vectors comprise dis-acting control regions effective for expression in a host operatively linked to the polynucleotide to be expressed. Appropriate trans-acting factors are either supplied by the host supplied by a complementing vector or supplied by the vector itself upon introduction into the host.

In certain preferred embodiments in this regard, the vectors provide for specific expression. Such specific expression may be inducible expression or expression only in certain types of cells or both inducible and cell-specific expression. Particularly preferred among inducible vectors are vectors that due be induced to express a protein by environmental factors that are easy to manipulate, such as temperature and nutrient additives. A variety of vectors suitable to this aspect of the invention, including constitutive and inducible expression vectors for use in prokaryotic and eukaryotic hosts, are well known and employed routinely by those of skilling the art

The engineered host cells can be cultured in conventional nutrient media, which may be modified as appropriate for interialial activating promoters, selecting transformants or amplifying genes. Culture conditions, such as temperature pH and the like, previously used with the host cell selected for expression, generally will be suitable for expression of polypeptides of the present invention as will be apparent to those of skill in the art.

A great variety of expression vectors can be used to express a polypeptide of the invention. Such vectors include chromosomal, episomal and virus-derived vectors e.g., vectors derived from bacterial plasmids, bacteriophages, yeast episomes, yeast chromosomal elements, and viruses such as baculov ruses, papova viruses. SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorables viruses, and retroviruses, and vectors derived from combinations thereof such as those derived from plasmid and bacteriophage genetic elements, cosmids and phagemids. Generally, any vector suitable to maintain, propagate or express polynucleotides to produce a polypeptide in a host may be used for expression in this regard.

The appropriate DNA sequence may be inserted into the vector by any of a variety of well-known and routine techniques. In general, a DNA sequence for expression is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction endonucleases and then joining the restriction fragments together using T4 DNA ligase. Procedures for restriction and ligation that can be used to this end are well known and routine to those of skill. Suitable procedures in this regard, and for constructing expression vectors using alternative techniques, which also are well known and routine to those skilled in the art, are set forth in great detail in Sambrook *et al.*

The ENA sequence in the expression vector is operatively linked to appropriate expression control sequence(s)

including, for instance, a promoter to direct mRNA transcription. Representatives of such promoters include the phage lambda PL promoter the *E. coli* lactorpland tac promoters the SV40 early and late promoters and promoters of retroviral LTRs, to name just a few of the well-known promoters. It will be understood that numerous other promoters useful in this aspect of the invention are well known and may be routinely employed by those of skill in the manner illustrated by the discussion and the examples herein

In general, expression constructs will contain sites for transcription initiation and terminition, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the mature transcripts expressed by the constructs will include a translation initiating AUG at the beginning and a termination codon appropriately positioned at the end of the polypeptide to be translated.

In addition, the constructs may contain control regions that regulate as well as engender, expression. Generally in accordance with many commonly practiced procedures, such regions will operate by controlling transcription. Examples include repressor binding sites and enhancers, among others.

Vectors for propagation and expression generally will include selectable markers. Selectable marker genes provide a phenotypic trait for selection of transformed host cells. Preferred markers include, but are not limited to, dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, and tetracycline or ampicillin resistance genes for culturing E. coli and other bacteria. Such markers may also be suitable for amplification. Alternatively, the vectors may contain additional markers for this purpose.

The vector containing a selected polynucleotide sequence as described elsewhere herein, as well as an appropriate promoter, and other appropriate control sequences, may be introduced into an appropriate host using a variety of well known techniques suitable for expression therein of a desired polypeptide. Representative examples of appropriate hosts include bacterial cells, such as *E. coli. Streptomyces* and *Salmonella typhimurium* cells; fungal cells, such as yeast cells, insect cells such as *Drosophila* S2 and *Spodoptera* Sf9 cells; animal cells such as CHO. COS and Bowes melanoma cells, and plant cells. Hosts of a great variety of expression constructs are well known, and those of skill will be enabled by the present disclosure to routinely select a host for expressing a polypeptide in accordance with this aspect of the present invention.

More particularly, the present invention also includes recombinant constructs, such as expression constructs, combining one or more of the sequences described above. The constructs comprise a vector such as a plasmid or viral vector into which such a sequence of the invention mass been invented. The sequence may be inserted in a forward or reverse prentation. In certain preferred embodiments in this regard, the construct further comprises regulatory sequences, including, for example, a promoter, operably linked to the sequence. Large numbers of suitable vectors and promoters are known to those of skill in the art, and there are many commercially available vectors suitable for use in the present invention.

The following vectors which are commercially available, are provided by way of example. Among vectors preferred for use in bacteria are pQE70_pQE60 and pQE49_available from Gragen_pBS vectors. Phagescript vectors. Bluescript vectors pNH8A, pNH16a_cNH18A_pNH46A, available from Stratagene, and ptrc99a_pKK223-3, pKK233-3_pDF540_pB_T5_available from Pharmacia. Among preferred eukaryotic vectors are pWENEO_pSV2CAT_pQG44_pXT1_and pSG_available from Stratagene, and pSVK3_pBPV_pMSG_and pSVL available from Pharmacia. These vectors are listed solely by way of illustration of the many commercially available and well-known vectors that are available to those of sk_lin_the art for use in accordance with this aspect of the present invention. It will be appreciated that any other plasmid or vector suitable for, for example, introduction_maintenance, propagation or expression of a polynucleotide or polypeptide of the invention in a host may be used in this aspect of the invention.

Fromotor regions can be delected from any desired gene using vectors that contain a reporter transcription unit lacking a promoter region, such as a chipramphenical acetyl transferase ("CAT") transcription unit, downstream of a restriction site or sites for introducing a candidate promoter fragment, i.e., a fragment that may contain a promoter as well-known introduction into the vector of a promoter containing fragment at the restriction site upstream of the CAT gene engineers production of CAT activity, which can be detected by standard CAT assays. Vectors suitable to this ending vectors will be Till as implicated about 5 miledopkK232-4 and pCM7. This is promoters for expression of polynoptical design the present invention include not only well known and readily available promoters but also promote is that may be leadily about acid by the foregoing terminal inventor gene.

Among known bacterial promoters suitable for expression of polynuciectides and polypeptides in accordance with the present invention are the Eulophiable and acZ promoters the 13 and 17 promoters the gpt promoter the familiar PRI PL promoters and the trp promoter.

Among known aukaryatic premoters suitable in this regard are the CMV immediate carry promoter the HSV thy-midine kinase promoter, the early and late SV40 promoters, the promoters of retroviral LTRs, such as those of the Rous Sarcoma Virus ("RSV"), and metallothionein promoters, such as the mouse metallothionein-promoter.

Selection of appropriate vectors and promoters for expression in a host cell is a well-known procedure and the requisite techniques for construction of expression vectors introduction of the vector into the host and expression in the host are routine skills in the art.

10

15

20

25

30

The present invention also relates to host cells containing the above-described constructs. The host cell can be a higher eukaryotic cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a prokaryotic cell, such as a pacterial cell.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection. DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection or other methods. Such methods are described in many standard laboratory manuals.

Constructs in nost cells can be used in a conventional manner to produce the gene product encoded by the recombinant sequence. Alternatively, the polypeptides of the invention can be synthetically produced by conventional peptide synthesizers.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with proxaryotic and eukaryotic hosts are described by Sambrook *et al.*

Generally recombinant expression vectors will include crigins of replication, a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence, and a selectable marker to permit isolation of vector containing cells following exposure to the vector. Among suitable promoters are those derived from the genes that encode glycolytic enzymes such as 3-phosphoglycerate kinase ("PGK"), a-factor, acid phosphatase, and heat shock proteins, among others. Selectable markers include the ampicillin resistance gene of E. *coli* and the trp1 gene of S. *calevisiae*.

Transcription of DNA encoding the polypeptides of the present invention by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are dis-acting elements of DNA insually from about 10 to 300 bp, that act to increase transcriptional activity of a promoter in a given host cell-type. Examples of enhancers include the SV40 enhancer, which is located on the late side of the replication origin at bp 100 to 270, the cytomegaliovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.

A polynucleotide of the invention encoding the heterologous structural sequence of a polypeptide of the invention generally will be inserted into the vector using standard techniques so that it is operably linked to the promoter for expression. The polynucleotide will be positioned so that the transcription start site is located appropriately 5 to a ribosome binding site. The ribosome binding site will be 5' to the AUG that initiates translation of the polypeptide to be expressed. Generally, there will be no other open reading frames that begin with an initiation codon, usually AUG, and lie between the ribosome binding site and the initiation codon. Also, generally, there will be a translation stop codon at the end of the polypeptide and a polyadenylation signal and transcription termination signal appropriately disposed at the 3' end of the transcribed region.

Appropriate secretion signals may be incorporated into the expressed polypeptide for secretion of the translated protein into the lumen of the endoplasmic reticulum, the periplasmic space or the extracellular environment. The signals may be endogenous to the polypeptide or heterologous.

The polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals but also additional heterologous functional regions. Thus, for example, a region of additional amino acids particularly charged amino acids may be added to the N-terminus of the polypeptide to improve stability and persistence in the host cell during purification or subsequent handling and storage. A region may also be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of poptide moleties to polypeptides to engender secretion, or excretion, to improve stability, and to facilitate purification among others, are familiar, and routine techniques in the art.

Suitable prokaryotic hosts for propagation, maintenance or expression of polynucleotides and polypeptides in accordance with the invention include *Escherichia coli. Bacillus subtilis* and *Salmonella typhimurium*. Various species of *Pseudomonas, Streptomyces,* and *Staphylecoccus* are also suitable hosts in this regard. Moreover, many other hosts also known to those of skill may be employed in this regard.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well-known cloning vector pBR322 (ATCC 37017). Such commercial vectors include for example pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotec, Madison, WI, USA). In these vectors the pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain, the host strain is grown to an appropriate cell density. Where the selected promoter is inducible, it is induced by appropriate means (e.g., temperature shift or exposure to chemical inducer) and cells are cultured for an additional period. Cells typically then are harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-

1.7

25

35

thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Such methods are well known to those skilled in the art

Various mammalian cell culture systems can be employed for expression as well. Examples of mammalian expression systems include the C127-3T3. CHO. HeLa. human kidney 293 and BHK cell lines, and the COS-7 line of monkey kidney fibroblasts, described by Gluzman *et al.*, *Cell.*, 1981-23 175

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and any necessary ribosome binding sites, polyadenylation sites, splice dericr and acceptor sites, transcriptional termination sequences, and 5' flanking non-transcribed sequences that are necessary for expression. In certain preferred embodiments. DNA sequences derived from the SV40 splice sites and the SV40 polyadenylation sites are used for required non-transcribed genetic elements.

The human Myt-1 kinase polypeptide can be recovered and purified from recombinant cell cultures by well-known methods including ammon um surfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, and lectin chromatography. Most preferably, high performance liquid chromatography ("HPEC") is employed for purification. We'll known techniques for refolding proteins may be employed to regenerate active conformation when the polypeptide is denatured during isolation and or purification.

Polypeptides of the present invention include naturally purified polypeptides, polypeptides produced by chemical synthetic procedures, and polypeptides produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or non-glycosylated. In addition, polypeptides of the invention may include an initial modified methionine residue, in some cases as a result of host-mediated processes.

Human Myt-1 kinase polynucleotides and polypeptides may be used in accordance with the present invention for a variety of applications, particularly those that make use of the chemical and biological properties of the enzyme. Additional applications relate to diagnosis and to treatment of disorders of cells, tissues and organisms. These aspects of the invention are illustrated further by the following discussion.

Polynucleotide assays

5

10

15

20

25

35

55

This invention is also related to the use of human Myt-1 kinase polynucleotides to detect complementary polynucleotides for use, for example, as a diagnostic reagent. Detection of a mutated form of numan Myt-1 kinase associated with a dysfunction will provide a diagnostic teol that can add to or define diagnosis of a disease or susceptibility to a disease which results from under-expression, over-expression or altered expression of human Myt-1 kinase. Individuals carrying mutations in the human Myt-1 kinase gene may be detected at the DNA level by a variety of techniques. Nucleic acids for diagnosis may be obtained from a patient's cells, such as from blood, urine, salival, tissue becase or autopsy material. The genomic DNA may be used directly for detection or may be amplified enzymatically by using PCR prior to analysis. PCR (Saik et al. Nature, 1986, 324, 163-166). RNA or cDNA may also be used in similar fashion. As an example, PCR primers complementary to the nucleic acid encoding human Myt-1 kinase can be used to identify and analyze human Myt-1 kinase expression and mutations. For example, deletions and insertions can be detected by a change in size of the amplified product in comparison to the normal genotype. Point mutations can be identified by hybridizing amprified DNA to radiolabeled Myt-1 kinase RNA or radiolabeled Myt-1 kinase antisense DNA sequences. Perfectly matched sequences can be distinguished from mismatched duplexes by RNase A digestion or by differences in melting temperatures.

Sequence differences between a reference gene and genes having mutations may also be revealed by direct ENA sequencery. In addition, clonad ENA segments may be employed as probes to detect specific DNA segments. The sensitivity of such methods can be greatly enhanced by appropriate use of PCR or other amplification methods. For example, is sociated gradient and with double stranded PCR production a single-stranded template molecule generated by a modified PCR. The sequence determination is performed by convertional procedures with radiotabeled a receptor or as suffer a resequence gradient significant assent that

Generic festing based on DNA sequence differences may be achieved by detection of alterations in electrophoretic mobility of DNA fragments in gois. With or without denaturing agents. Small sequence deletions and insertions can be visualized by high resolution gerelectrophoresis. DNA fragments of different sequences may be distinguished on denaturing formarrido gradient gels in which the mobilities of different BNA fragments are retarded in the gel at different positions according to their specific melting or partial melting temperatures (see le.g., Myers et al., Science, 1985–230–1242).

Sequence changes at specific locations may also be revealed by nuclease protection assays, such as RNase and S1 protection or the chemical cleavage method is q. Cotton *et al. Prod. Nati. Acad. Sci., USA*, 1986-85, 4397-4401.

Thus, the detection of a specific ENA sequence may be achieved by methods such as hybridization. RNase pro-

tection, chemical cleavage, direct DNA sequencing or the use of restriction enzymes, reign restriction fragment length polymorphisms ("RFLP") and Southern blotting of genomic DNA.

n accordance with a further aspect of the invention, there is provided a process for diagnosing or determining a susceptibility to hyperproliferative diseases including cancers, such as leukemia, solid tumors and metastases, chronic inflammatory, proliferative disease, such as psorias s and rheumatord artifitis, proliferative cardiovascular diseases, such as restenosis proliferative ocular disorders, such as diabetic retinopathy, and madular degeneration, and benigh hyperproliferative diseases, such as benigh prostation hypertrophy, and hemanglimas, among others. A mutation in the human Myt-1 kinase gene may be indicative of a susceptibility to hyperproliferative diseases including cancers, such as leukemia, solid tumors and metastases, chronic inflammatory pro-ferative disease, such as psoriasis, and rheumatorid arthritis, pro-ferative cardiovascular diseases, such as restenosis, proliferative ocular disorders, such as diabetic retinopathy, and macular degeneration, and benigh hyperproliferative diseases, such as benigh prostation hypertrophy, and hemanglomias, among others, and the nucleic acid sequences described above may be employed in an assay for ascertaining such susceptibility. Thus, for example, the assay may be employed to determine a mutation in a human Myt-1 kinase gene, as herein described, such as a substitution, deletion, truncation, insertion, frame shift, etc., with such mutation being indicative of a susceptibility to a hyperproliferative disease, among others.

The invention provides a process for diagnosing diseases iparticularly hyperproliferative diseases including cancers such as leukemia, solid tumors and metastases, chronic inflammatory proliferative disease, such as pscriasis and rheumatoid arthritis preliferative cardiovascular diseases, such as restenosis proliferative ocular disorders, such as diabetic retinopathy and macular degeneration, and benign hyperproliferative diseases, such as benign prostatic hypertrophy and hemangiomas, among others, comprising determining from a sample derived from a patient an abnormally decreased or increased level of expression of polynucleotide having the sequence of Figure 1, SEQ ID NO 1. Decreased or increased expression of polynucleotide can be measured using any of the methods well known in the art for the quantitation of polynucleotides, such as, for example, PCR, RT-PCR, RNase protection, Northern blotting and other hybridization methods.

In addition to more conventional gel-electrophoresis and DNA sequencing imutations can also be detected by in situ analysis.

Chromosome assays

15

20

25

30

35

50

The sequences of the present invention are also valuable for chromosome identification. The sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome. Moreover, there is a current need for identifying particular sites on the chromosome. Few chromosome marking reagents based on actual sequence data (repeat polymorphisms) are presently available for marking enromosomal location. The mapping of EiNAs to chromosomes according to the present invention is an important first step in correlating those sequences with gene associated disease.

Briefly sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the cDNA. Computer analysis of the 3' untranslated region is used to rapidly select primers that do not soan more than one exercine the genomic DNA, because primers that span more than one exercine could complicate the amplification process. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gane corresponding to the primer will yield an amplified fragment.

POR mapping of somatic cell hybrids is a rapid procedure for assigning a particular DNA to a particular chromosome. Using the present invention with the same oligonucleotide primers, sublicialization can be achieved with pane's of fragments from specific chromosomes or pools of large genomic clones in an analogous manner. Other mapping strategies that can be used similarly to map to the chromosome include *in situ* hybridization, prescreening with labeled flow-sorted chromosomes and preselection by hybridization to construct chromosome specific-cDNA libraries.

Fluorespende in situ hybridization (FISH) of a cDNA clone to a metaphase chromosomal spread can be used to provide a precise chromosomal location in one step. This technique can be used with cDNAs as short as 50 to 60 bases. For a review of this technique, see Verma et al. HUMAN CHROMOSOMES, A MANUAL OF BASIC TECHNIQUES, PERGAMON PRESS, NEW YORK, 1988.

As an example of how this technique is performed, human Myt-1 kinase DNA is digested and purified with a QiAEX IP DNA purification kit (Qiagen, Inc., Chatsworth, CA) and ligated to Super Cost cosmid vector (Stratagene, La Jolla CA). DNA is purified using a Qiagen Plasmid Purification kit (Qiagen, Inc., Chatsworth, CA) and 1 mg is labeled by nick translation in the presence of Biotin-dATP using a BioNick Labeling Kit (GibcoBRL, Life Technologies Inc., Gaithersburg, MD). Biotinylation is detected with GENE-TECT Detection System (Clontech Laberatories, Inc., Palo Alto, CA). In situ hybridization is performed on slides using ONCOR Light Hybridization kit (Oncor, Gaithersburg, MD) to detect single copy sequences on metaphase chromosomes. Peripheral blood of normal donors is cultured for three days in RPMI 1640 supplemented with 20% FCS, 3% PHA and penicillin-streptomycin, synchronized with 10⁻⁷ M methotrexate for 17 hours, and washed twice with unsupplemented RPMI. Cells are then incubated with 10⁻⁹ M thymidine for 7 hours.

The cells are arrested in metaphase after a 20 minute incubation with colcemid (0.5 µg/ml) followed by hypotonic lysis in 75 mM KCI for 15 minutes at 37°C. Cell pellets are then spun out and fixed in Carnoy's fixative (3:1 methanol/acetic acid).

Metaphase spreads are prepared by adding a drop of the suspension onto slides and air drying the suspension Hybridization is performed by adding 100 ng of probe suspended in 10 ml of hybridization mix (50% formamide 2xSSC 1% dextran sulfate) with blocking human placental ENA (1 µg/ml). Probe mixture is denatured for 10 minutes in a 70% water bath and incubated for 1 hour at 37% before placement on a prewarmed (37%C) slide, previously denatured in 70% formamide/2xSSC at 70%C, dehydrated in ethanol series, and chilled to 4%C.

Slides are incubated for 16 hours at 37°C in a humidified chamber. Slides are washed in 50°s formamide/2xSSC for 10 minutes at 41°C and 2xSSC for 7 minutes at 37°C. Hybridization probe is detected by incubation of the slides with FTC-Avidin (ONCOR, Gaithersburg, ME) according to the manufacturer's protocol. Chromosomes are counterstained with propridium iodine suspended in mounting medium. Slides are visualized using a Leitz ORTHOPLAN 2-epifluorescence microscope and five computer images are taken using a imagenetics. Computer and MacIntosh printer.

Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic mapidata. Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (coinheritance of physically adjacent genes).

It is then necessary to determine the differences in the cDNA or genomic sequence between affected and unaffected individuals. If a mutation is observed in some or all of the affected individuals but not in any normal individuals, then the mutation is likely to be the causative agent of the disease.

With current resolution of physical mapping and genetic mapping techniques, a cDNA precisely localized to a chromosomal region associated with the disease could be one of between 50 and 500 potential causative genes assuming 1 megaplase mapping resolution and one gene per 20 kb.

Polypeptide assays

20

25

30

50

The present invention also relates to diagnostic assays, or extracting to else of himsian Myth kinese protein in rigits and tissues. Such assays may be quantitative or qualitative. Thus, for instance, a diagnostic assay in accordance with the invention for detecting over-expression of human Myth kinase protein compared to normal control tissue samples may be used to detect the presence of hyperproliferative diseases including cancers, such as leukemia, solid tumors and metastases; chronic inflammatory proliferative disease, such as psonasis, and rheumatoid arthritis, proliferative cardiovascular diseases, such as restenosis; proliferative ocular disorders, such as diabetic retinopathy, and macular degeneration, and benign hyperproliferative diseases, such as benign prostatic hypertrophy and hemangiomas, among others. Assay techniques that can be used to determine levels of a protein, such as a human Myth kinase protein of the present invention, in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays. Western Biot analysis and enzyme linked immunosorbent assays (ELISAs). Among these, ELISAs are frequently preferred. An ELISA assay initially comprises preparing an antibody specific to human Myth hase, preferably a moneclonal antibody. In addition, a reporter antibody generally is prepared which binds to the moneclonal antibody. The reporter antibody is attached to a detectable reagent such as a radioactive, theorescent or enzymatic reagent, in this example, horseradish peroxidase enzyme.

To carry out in ELISA is tample is removed from a host and incubated on a solid support, e.g. a polystyrene dish that binds the proteins in the sample. Any free protein binding is tes on the dish are then covered by incubating with a non-specific protein such as bevine serum albumin. The monoclonal antibody is then incubated in the dish during which time the monoclonal antibody is antibodics attail hite environment. My first incurate his attached to the polystyrene dish. Unbound monoclonal antibody is washed out with buffer. The reporter antibody inked to horseradish perbxidase is placed in the dish resulting including a management in a local, to account of the dy bound to My it kinase protein. Unattached reporter antibody is then washed out. Beagents for peroxidase intivity including a ecronimetric substrate are then added to the dish aminoclosure of dash individually and secondary antibodies produces a colored reaction product. The amount of celebrate results typically are obtained by inference to instandard curve.

A competition assay may also be employed wherein and the separate to human Myt-1 kinase attached to a solid support and labeled human Myt-1 kinase and a sample done in the most are passed over the solid support. The amount of detected label attached to the solid support pands to the solid support pands to the solid support pands.

Antibodies

20

30

35

The polypeptides, their fragments or other derivatives, or analogs thereof, or cells expressing them can also be used as immurbigens to produce antibodies thereto. These antibodies can be, for example, polyclonal or monoclonal antibodies. The present invention also includes chimeric, single chain, and numanized antibodies, as well as Fab fragments, or the product of a Fab expression library. Various procedures known in the art may be used for the production of such antibodies and fragments.

Antibodies generated against polypeptides corresponding to a sequence of the present invention can be obtained by various means well-known to those of skill in the art. For example, in one embodiment, the polypeptide is directly injected into an animal preferably a nonhuman. The antibody so obtained will then bind the polypeptide itself. In this embodiment, even a sequence encoding only a fragment of the polypeptide can be used to generate antibodies binding the whole native polypeptide. Such antibodies can then be used to solate the polypeptide from tissues expressing that polypeptide.

For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler G. and Milstein C. Nature, 1975, 256, 495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today, 1983, 4-72), and the EBV-hybridoma technique (Cole et al., MONOCLONAL ANTIBODIES AND CANCER THERAPY pages 77-96. Alan B. Liss. Inc., 1985).

Techniques described for the production of single chain antibodies (U.S. Patent No. 4 946-778) can also be adapted to produce single chain antibodies to immunogenic polypeptide products of this invention. Also, transgenic mice, or other organisms including other marnmals, may be used to express humanized antibodies to immunogenic polypeptide products of this invention.

The above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or to purify the polypeptide of the present invention by attachment of the antibody to a solid support for isolation and/or pur fication by affinity chromatography.

Antibodies against human Myt-1 kinase may also be employed to inhibit hyperproliferative diseases including cancers such as leukemia, solid tumors and metastases, chronic inflammatory proliferative disease, such as psoriasis, and rheumatoria arthritis, proliferative cardiovascular diseases, such as restenosis, proliferative ocular disorders, such as diabetic retinopathy, and macular degeneration, and benign hyperproliferative diseases, such as benign prostatic hypertrophy, and hemangiomas, among others.

Myt-1 kinase binding molecules and assays

Human Myt-1 kinase can also be used to isolate proteins which interact with it, this interaction can be a target for interference. Inhibitors of protein-protein interactions between human Myt-1 kinase and other factors could lead to the development of pharmaceutical agents for the modulation of human Myt-1 kinase activity.

Thus this invention also provides a method for identification of binding molecules to human Myt-1 kinase. Genes encoding proteins for conding molecules to human Myt-1 kinase can be identified by numerous methods known to those of skill in the art-for example. Irgand panning and FACS sorting. Such methods are described in many laboratory manuals such as for instance. Coligan et al., CURRENT PROTOCOLS IN IMMUNOLOGY 1. Chapter 5, 1991.

For example, the yeast two-nybrid system provides methods for detecting the interaction between a first test protein and a second test protein in vivo, using reconstitution of the lativity of a transcriptional activator. The method is disclosed in U.S. Fatent No. 5-283-173 reagents are available from Clontech and Stratagene. Briefly, human Myt-1 kinase cDNA is fused to a Gal4 transcription factor DNA binding domain and expressed in yeast cerls, cDNA library members obtained from cells of interest are fused to a transactivation domain of Gal4, cDNA clones which express proteins which can interact with human Myt-1 kinase will lead to reconstitution of Gal4 activity and transactivation of expression of a reporter gene such as Gal4-acZ.

An alternative method involves screening of $\lambda gt11-\lambda ZAP$ (Stratagene) or equivalent cDNA expression libraries with recombinant human Myt-1 kinase. Recombinant human Myt-1 kinase protein or fragments thereof are fused to small peptide tags such as FEAG_HSV or GST. The peptide tags can possess convenient phosphorylation sites for a kinase such as heart muscle creatine kinase or they can be obstantiated. Recombinant human Myt-1 kinase can be phosphorylated with $^{32}[P]$ or used unlabeled and detected with shorted with or antibodies against the tags $\lambda gt11cENA$ expression libraries are made from cells of interest and $\frac{1}{2}$ included with the recombinant human Myt-1 kinase washed and cDNA clones which interact with human Myt-1 kinase. See leight Sambrook et al

Another method is the screening of a mammalian expression of a mammalian expression of a mammalian expression of a mammalian expression of a mammalian promoter and polyadenylation site. The screen of a mammalian promoter and polyadenylation site. The screen of a mammalian protein is detected by incubation of the screen of cells with labeled human Myt-1 kinase.

In a preferred embodiment, the human Myt-1 kinase is iodinated, and any bound human Myt-1 kinase is detected by autoradiography. See Sims et al., Science, 1988, 241,585-589 and McMahan et al., EMBO J., 1991, 10,2821-2832. In this manner, pools of cDNAs containing the cDNA encoding the binding protein of interest can be selected and the cDNA of interest can be isolated by further subdivision of each pool followed by cycles of transient transfection, binding and autoradiography. Alternatively, the cDNA of interest can be isolated by transfecting the entire cDNA library into mammalian cells and panning the cells on a dish containing human Myt-1 kinase bound to the plate. Cells which attach after washing are lysed and the plasmid DNA isolated, ambified in bacteria, and the cycle of transfection and panning repeated until a single cDNA clone is obtained. See Seed et al. Proc. Natl. Acad. Sci. USA, 1937, 84,3365 and Aruffo et al., EMBO J., 1937, 6,3313. If the binding protein is secreted, its cDNA can be obtained by a similar pooling strategy cince a binding or neutralizing assay has been established for assaying supernatants from transiently transfected cells. General methods for screening, upernatants are disclosed in Wong et al., Science, 1985, 228,810-815.

Another method involves isolation of proteins interacting with human Myt-1 kinase directly from cells. Fusion proteins of human Myt-1 kinase with GST or small pooted tags are made and immobilized on beads. Biosynthetically tabeled or unlabeled protein extracts from the cells of interest are prepared, incubated with the beads and washed with buffer. Proteins interacting with human Myt-1 kinase are cluted specifically from the beads and analyzed by SDS-FAGE. Binding partner primary amino acid sequence data are obtained by microsequencing. Optionally the cells can be treated with agents that induce a functional response such as tyrosine phosphorylation of cellular proteins. An example of such an agent would be a growth factor or cytokine such as interleukin-2.

Another method is immunoaffinity purification. Recombinant human Myt-1 kinase is incubated with labeled or unlabeled cell extracts and immunoprecipitated with anti-Myt-1 kinase antibodies. The immunoprecipitate is recovered with protein A-Sepharose and analyzed by SDS-PAGE. Unlabelled proteins are labeled by biotinylation and detected on SDS gels with streptavidin. Binding partner proteins are analyzed by microsequencing. Further, standard biochemical purification steps known to those skilled in the art may be used prior to microsequencing.

Yet another alternative method involves screening of peptide libraries for binding partners. Recombinant tagged or labeled human Myt-1 kinase is used to select peptides from a peptide or phosphopeptide library which interact with human Myt-1 kinase. Sequencing of the peptides loads to identification of consensus peptide sequences which might be found in interacting proteins.

Agonists and antagonists - assays and molecules

The human Myt-1 kinase of the present invention may be employed in a screening process for compounds which activate (agonists) or inhibit activation (antagonists) of this enzyme

Examples of potential kinase antagonists include aritibodies or, in some cases, cligonucleotides which bind to the enzyme but do not elicit a second messenger response such that the activity of the enzyme is prevented

Potential antagonists also include proteins which are closely related to human Myt-1 kinase . Let a tragment of the enzyme, which have lost enzymatic activity.

A potential antagonist also includes an antisense construct prepared through the use of antisense technology. Antisense technology can be used to control gene expression through triple-helix formation or antisense DNA or RNA both methods of which are based on binding of a polyhuclectide to DNA or RNA. For example, the 5' coding portion of the polyhuclectide sequence, which encodes for the mature polypeptides of the present invention is used to design an antisense RNA oligonuclectide of from about 10 to 40 base pairs in length. A DNA oligonuclectide is designed to be complementary to a region of the gene involved in transcription (triple helix -see Lee *et al. Nucl. Acids Res.*, 1979 is 3073. Cooney *et al. Science*, 1983, 241,456, in 3 Derivan *et al. Science*, 1991, 261,136C), thereby preventing transcription and production of the human Myt-1 kinase. The antisense RNA oligonucleotide hybridizes to the mRNA in erior and blocks translation of the mANA molecular into the or hymnic integrated see Okano. *I. Neurochem.* (1991) 56, 560. Oligoded kynicleotides as Antisense Inhibitors of Gene Expression. ORC Press. Book Raton. Fig. (1988). The oligonucleotides discribed and according to the production of numan Myt-1 kinase.

Another potential antagor is a small molecule which binds to ble enviyor or rak and traccess big to liquid for each that normal biological activity is prevented. Examples of small molecules include but are not limited to small popules or peptide-like molecules.

Potential antagonists also include scluble forms of human Myt-1 kinase oig i fragmonts of the enzyme, which cind to ligands thus preventing the ligand from interacting with membrane cound human Myt-1 kinase.

The Myt-1 kinases are ubiquitous in the mammalian host and are responsible for many biological functions, including many pathologies. Accordingly, it is desirous to find compounds and drugs which stimulate enzyme activity on the one hand and which can inhibit the function of Myt-1 kinase on the other hand.

Antagonists for human Myt-1 kinase may be employed for a variety of therapeutic and prophylactic purposes for such hyperproliferative diseases or disorders as cancers, such as leukemia, solid timors and metastases, chronic

20

30

35

40

inflammatory proliferative disease, such as psoriasis and rheumatoid arthritis, proliferative diseases, such as restenosis, proliferative ocular diseases, such as diabetic retinopathy and macular degeneration, and benign hyperproliferative diseases, such as benign prostatic hypertrophy and hemang omas, among others

This invention additionally provides a method of treating an abnormal condition where Myt-1 activity is involved in the abnormal conditions. This method comprises administering to a subject an inhibitor compound (antagonist) as hereinabove described along with a pharmaceutically acceptable carrier in an amount effective to inhibit activation of the enzyme or by inhibiting a second signal, and thereby alleviating the abnormal condition. For example, blocking activity of Myt-1 in hyperproliferative cells with an antagonist will disrupt the timing of the cell cycle, thus causing cells to divide before they are ready and resulting in cell death.

The invention also provides a method of treating abnormal conditions related to an under-expression of numan Myt-1 kinase and its activity, which comprises administering to a subject a therapeutically effective amount of a compound which activates (agonist) the enzyme, to thereby alleviate the abnormal condition

Compositions and Kits

.5

20

25

30

40

45

50

The soluble form of human Myt-1 kinase and compounds which activate or enhibit such enzyme may be employed in combination with a suitable pharmaceutical carrier. Such compositions comprise a therapeutically effective amount of the polypeptide or compound, and a pharmaceutically acceptable carrier or excipient. Such carriers include but are not limited to saline buffered saline dextrose water glycerol ethanol and combinations thereof. The formulation should suit the mode of administration. Selection of an appropriate carrier in accordance with the mode of administration is routinely performed by those skilled in the art.

The invention further relates to pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention

Administration

Polypeptides and other compounds of the present invention may be employed alone or in conjunction with other compounds, such as therapeutic compounds.

The pharmaceutical compositions may be administered in any effective convenient manner including for instance administration by topical oral anal vaginal intravenous intraperitoneal intramuscular subcutaneous intranasal or intradermal routes, among others

The pharmaceutical compositions generally are administered in an amount effective for treatment or prophylaxis of a specific indication or indications. In general, the compositions are administered in an amount of at least about 10 µg kg body weight. In most cases they will be administered in an amount not in excess of about 8 mg kg body weight per day. Preferably in most cases, the administered dose is from about 10 µg/kg to about 1 mg/kg body weight, daily. It will be appreciated that opt mum dosage will be determined by standard methods for each treatment modality and indication, taking into account the indication, its severity route of administration, complicating conditions and the like

Gene therapy

Human Myt-1 kinase polynucieotides ipolypeptides agonists and antagen sts that are polypeptides may be employed in accordance with the present invention by expression of such polypeptides in treatment modalities eften referred to as "gene therapy."

Thus for example cells from a patient may be engineered with a polynuclectide, such as a DNA or BNA, to encode a polypeptide ex vivo. The engineered cells can then be provided to a patient to be treated with the polypeptide. In this embodiment, cells may be engineered ex vivo, for example, by the use of a retroviral plasmid vector containing BNA encoding a polypeptide of the present invention. Such methods are well-known in the art and their use in the present invention will be apparent from the teachings herein

Similarly cells may be engineered in vivo for expression of a polypeptide in vivo by procedures known in the art. For example, a polynucleotide of the invention may be engineered for expression in a replication defective retroviral vector, as discussed above. The retroviral expression construct may then be isolated and introduced into a packaging cell transduced with a retroviral plasmid vector containing RNA encoding a polypeptide of the present invention such that the packaging cell now produces infectious viral particles containing the gene of interest. These producer cells may be administered to a patient for engineering cells in vivo and expression of the polypeptide in vivo. These and other methods for administering a polypeptide of the present invention should be apparent to those skilled in the art from the teachings of the present invention.

Retroviruses from which the retroviral plasmid vectors herein above mentioned may be derived include, but are not limited to. Moloney Murine Leukemia Virus, Spleen Necrosis Virus, Rous Sarcoma Virus, Harvey Sarcoma Virus,

Avian Leukosis Virus. Gibbon Ape Leukemia Virus. Human Immunodeficiency Virus. Adenovirus. Myeloproliferative Sarcoma Virus, and Mammary Tumor Virus. In a preferred embodiment, the retroviral plasmid vector is derived from Moloney Murine Leukemia Virus.

Such vectors will include one or more promoters for expressing the polypeptide. Suitable promoters which may be employed include, but are not limited to, the retroviral LTR; the SV40 promoter, and the human cytomegalovirus (CMV) promoter described in Miller et al., Biotechniques, 1989, 7,980-990. Cellular promoters such as eukaryotic cellular promoters including, but not limited to the histone. RNA polymerase III. and 13-actin promoters can also be used. Additional viral promoters which may be employed include, but are not limited to, adenovirus promoters thymidine kinase rTK) promoters, and B19 parvovirus promoters. The selection of a suitable promoter will be apparent to those skilled in the art from the teachings contained herein.

The nucleic acid sequence encoding the polypeptide of the present invention will be placed under the control of a suitable promoter. Suitable promoters which may be employed include, but are not limited to adenoviral promoters, such as the adenoviral major late promoter, or heterologous promoters, such as the cytomegalovirus (CMV) promoter the respiratory syncytial virus (RSV) promoter inducible promoters, such as the MMT promoter, the metallothionein promoter heat shock promoters the albumin promoter; the AppAl promoter; human globin promoters, viral thymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter, retroviral LTRs (including the modified retroviral LTRs herein above described), the β-actin promoter, and human growth hormone promoters. The promoter may also be the native promoter which controls the gene encoding the polypeptide.

The retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cells which may be transfected include but are not limited to the PE501 PA317, Y-2, Y-AM, PA12 T19-14X, VT-19-17-H2, YCRE, YCRIP GP+E-86, GP+envAm12, and DAN cell lines as described in Miller, A., Human Gene Therapy, 1990, 1:5-14. The vector may be transduced into the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaPO₄ precipitation. In one alternative, the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.

The producer cell line will generate intectious retroviral vector particles, which include the nucleic acid sequence (s) encoding the polypeotides. Such retrov ral vector particles may then be employed to transduce eukaryotic cells either *in vitro* or *in vivo*. The transduced eukaryotic delias will explose the nucleic acid ecquencers' encoding the polypeotide. Eukaryotic cells which may be transduced include, but are not limited to empryonic stem cells, embryonic carcinoma cells, as well as hematopoletic stem cells, hepatocytes, fibroblasts, myoblasts, keratinocytes, endothe ial cells, and pronchial epithel al cells.

EXAMPLES

10

20

25

30

35

The present invention is further described by the following examples. The examples are provided solely to illustrate the invention by reference to specific embodiments. These exemplifications, while illustrating pertain specific aspects of the invention, do not portray the limitations or or cumscribe the scope of the disclosed invention.

Certain terms used herein are explained in the foregoing glossary

All examples are carried out using standard techniques, which are well known and routine to those of skill in the art, except where otherwise described in data. Boutine molecular biology techniques of the following examples can be carried out as described in standard laboratory manuals, such as Sambrook *et al.*

EXAMPLE 1: Protein Analysis

Samples are resolved by sectum dedecyt suitate polyamy amide get electrophores's (SDS PAGE) on 10% polyacrylamide gets. To analyze cdc2, the substrate of Myt-1 kinase, anti-cdc2 immunobletting is performed with an affinity-puriod rabbit and poptive anti-series, prepared against 10 terms, poques considered protein as described by Milarski et al. Cold Spring Harber Symp. Quant. Biol., 1991, 56, 377-084. Following immunobletting, the introdellulose filters are treated with. Ell protein A. Auteradiography is perfected with a interestying screen at 2010.

For peptide mapping, ³²P-labeled samples are resolved by SDS-PAGE, transferred to IMMOBILON-P (Millipore Bedford, MA) and analyzed by autoradiography. Peptide mapping is performed in accordance with procedures described by Boyle et al. *Meth. Enzymol.*, 1991, 201, 110-149. The ³²P-labeled tryptic digests are spetted onto 100 μM thin-layer cellulose plates and electrophoresed at pH 1.9 for 25 minutes at 1 kV. Ohromatography in the second dimension is performed in phosphochrome buffer. Phosphoamino acid analysis is performed in accordance with procedures described by Boyle et al. *Meth. Enzymol.*, 1991, 201, 110-149.

EXAMPLE 2: Shift Assays. Cyclin. and p13 Binding

To assay the activity of Myt-1 kinase, a mobility shift of the substrate cod2; is measured. To assay the mobility of the cdc2 protein, 80 µl aliquots of extracts, with or without added membranes) are incubated at room temperature for 30 minutes. Phosphatase activity is then inhibited by addition of 0.5 mM sodium orthoxanadate. Glutathione-S-transferase sea urchin cyclin B (GST fusion protein) is then added and the incubation is continued for an additional 15 minutes. Following the incubation, the samples are rapidly frozen in liquid nitrogen for storage at -70°C.

For processing, samples are thawed by a 1-1 dilution in buffer containing 30 mM B-glycerophosphate, 5 mM EDTA 2 mM sodium orthoxanadate, 0.1% Nonidet P-40 and 0.5 M NaCL Samples are either bound to glutathione agarose beads or p13-% epharose and processed in accordance with procedures described by Smythe, C, and Newport, J W Call, 1992, 3.1, -27

EXAMPLE 3: H1 Assays

20

25

30

35

40

45

50

55

To assay the activity of edc2 phosphorylation of histone H1 is followed in this assay recombinant GST-cyclin is added to interphase extracts in the presence or absence of added membranes and $2\,\mu l$ of EB buffer containing 20 mM B-glycerophosphate pH 7.3. 20 mM EGTA, and 15 mM MgCl₂. Samples are frozen in liquid nitrogen and stored at -70°C. The histone kinase activity is assayed in accordance with procedures described by Kombluth *et al. Mol. Cell. Biol.* 1992, 12, 3216-3223.

EXAMPLE 4: Salt and Detergent Extraction of Cell Membranes

Cell membranes are incubated on ice for 30 minutes with lysing buffer in various concentrations of KCI. Cell membranes are pelleted by ultracentrifugation and then diluted 5-fold in lysis buffer and repelleted in 0.5 M sucrose. The membranes are then added at 1.10 volume to buffer and variadate and GST cyclin cdc2 kinase. For detergent treatment, membranes are incubated on ice for 15 minutes with detergent and lysing buffer. Membranes are then pelleted by microcentrifugation for 30 minutes. The pellets are resuspended in 5 volumes of lysis buffer containing 2 mM ATP 20 mM phosphocreatinine and 50 µg ml creatine kinase. The pellet and supernatant fractions are incubated separately with GST cyclin/cdc2 complexes, which are prepared in the absence of variadate to allow phosphorylation of cdc protein kinase, and Tyr¹⁵ and Thr¹⁴.

SEQUENCE LISTING

5	(i) APPLICANT: SmithKline Beecham Corporation
10	(ii) TITLE OF INVENTION: Human Myt-1 Kinase Clone
	(iii) NUMBER OF SEQUENCES: 3
15	(iv) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE: SmithKline Beecham, Corporate Intellectual Property
20	(B) STREET: Two New Horizons Court
	(C+CITY: Brentford
25	(D-COUNTY: Middlesex
20	(I COUNTRY: GB
	POST CODE: TWX 9FP

(v) COT PUTER READABLE FORM:

(1) GENERAL INFORMATION:

- A) MEDIUM TYPE: DISKETTE, 3.5 INCH, 1.44 Mb STORAGE
- (B) COMPUTER: IBM 486
- (C) OPERATING SYSTEM: WINDOWS FOR WORKGROUPS
- (D) SOFTWARE: MICROSOFT WORD
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER—not yet assigned
 - (B) HLING DATE. Herewith.
 - COULASSHICATION
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
- (B) FILING DATE:

30

35

40

(viii) ATTORNEY AGENT INFORMATION

	(A) NAME: CONNELL, Anthony Christopher
5	(B) GENERAL AUTHORISATION NUMBER 5630
	(C) REFERENCE DOCKET NUMBER: ATG 50027
10	(ix) TELECOMMUNIC ATION INFORMATION:
	(A) TELEPHONE: -44 127 964 4395
15	(B) TELEFAX: +44 181 975 6294
	(2) INFORMATION FOR SEQ ID NO: 1
20	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 1448
25	(B) TYPE: Nucleic Acid
	(C) STRANDEDNESS: Single
	(D) TOPOLOGY: Linear
30	(iv) ANTI-SENSE: No
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1
35	COGGGT OGAC COACGOGT OU GIOGRAMS AGTI GGGCGGACGC GT/GGGT DCGG 50
	GGCGAGGCCT CAGAGACTCT GCAGAGCCCT GGGTATGACC CAAGCCGGCC 1.
40	AGAGT DOTT TO TOUAR TARA REMOVED ARE DOT CARROTTED TO PARE DEATHS 15
	FUT OUT ACGG AGAGUT OTT I AAGUTGUUUT UCAAGGAGGA COG OOG OOG O
45	PATG DGGTAA AG DGTT TOAT GT DAGDATT 1 DGGGG DDDGA AGGA 1139GD DE
	DOGICARGIT GI GIOCGAGGICGO IS JAGICOA MA IGAARGI BOGG I DAGICA DOCAT IB M
50	GOT GOTT GOT GOT GOAG CAS GOOT GOGAGO AGGGOUGGAT COOT GOASUTS 33
	DAGA BOGAGO TETO CEGUDO DAGO MADAR DAADAMETE AGO OMEGGG 40
e e	

THE COAGRETIS COTTGAGGETCO AGGT TTGGGGG THA CITYUCUS GACA TENTISH 45 P

	TTG JUCT GG J	CCAT CTG CAO	AG 10AGGG 00	TGGTGCACCT	TGATGT CAAG	500
5	DOTIGICOAAICA	ICTTCCTGGG	G 0000033300	ug miginaagid	товетзаст	5,5,7
	usukanu ara	7000A00003	GT ACAGCAGG	AS CTIGSTISAS	STOCARGAGE	60°
0	GAGA COCCCG	CTACAT 36 JU	ocosag man	TG TAGGG IT C	GT AT GGGA CA	65]
	GCAGCGGAT G	TGTT CAGT CT	GGGCCTCACC	AT COTOGAAC	TUGCATUCAA	→
5	CATGGAGCTG	CCCCACGGTG	GGGAGGG TTG	G CAG CAG CTG	OG COAGGG CT	75.0
	A 000 0 00000	TGAGTT CAST	GCCCGT CLUI	JIT CCGAGCT	odann man r	3 M
20	CTTGT CATGA	TGCTGGAGCC	AGACCCCAAG	CTG CGGG CCA	CGGCCGAGGC	850
	COTGOTGGCA	CIGCCIGTGT	TGAGGCAGCC	GCGGGCCTGG	GGTGTGCTGT	900
25	GGTGCATGGC	AGCGGAGGCC	CTGAGCCGAG	garage acar	GT GG CAGG CC	95.0
	या अध्याग ७ ७००	रतमा सारसार	GOT OT GOG DAT	ತಡಡ ಪಾ ತತಹಾತ	ACCCT GCCAG	1001
30	M GG CT A CAG	cccmesses	GU SCAG DEAC	oddaddi aga	TOACCACCO	1057
	GCAGTTTGCT	COTGGACAGC	AGOOT OT DOA	G DAACT GOGA	TORCORCAGO	1107
35	UT AGG JOUTT	CACT TO COOS	TGAGG TIGT C	modocodda	CTGTGGGGAG	1150
	DAGGT GGAGG	CCCCGGAGCA	GGTG CACA CC	CAGGGATGCC	CTGGATCTAA	1200
∔ <i>Ù</i>	GTGAJAFCAA	mickskach.	तम् उडवडडम्			1250
	193 AA 1911 00	TORGITTOTT	TUAGRADA 17	77A34711AA	170 374 3 1 2 2 2	1:1:
45	A ARCH TOTAL	Pung a met	TAAS MOTTA	TOTTTO	A CONTRACTOR OF THE CONTRACTOR	13:3
	Talkazas.			ONT SET ITT S		1111
5 0			T AARTTICE	elija Alb	eskî Aessâ	: -
	(2) INFORMA	HON FOR SEC) ID NO-2			

25

(i) SEQUENCE CHARACTERISTICS:

A-LENGTH: 479

(B) TYPE: Amino Acid

(D) TOPOLOGY. Linear

(X1) SEQUENCE DESCRIPTION: SEQ ID NO: 2

.0															
	317 1	Ser	25.2	mls	Ala 5	Ses	Ala	ڊ چنڊ	Al a	T rp 10	il a	ÀS Ç	Ala	Trp	Val 15
15	Erg	āiy	G1 a	Ala	Jer J	321	Ihr	leu	315	3e r 25	Pro	Gly	Tyr	Aક¢	Pro es
	Bar	Arg	Pri	31.4	36 r 35	Pne	E'h e	iln	31n	3e: 40	Fhe	ul::	Arg	Leu	3e: 43
20	Arg	Leu	Gly	E.4 8	31y 50	3∺r	Tyr	77.	314	7al 55	Phe	Tys	7781 7	Arr	3e ± 60
_0	Lys	Glu	As p	Gly	Arg 65	Leu	Туг	Аla	Val	Lys	Arg	Sar	Met	Ser	Fro
)-	₽ħ⊕	Ara	31;	Fro	Lys 30	<i>ಾ</i> ನಿವ್ಯಾ	Arg	Ala	Aij	Lys 50	Leu	Ala	Gli	Val	31y 30
0 5	Ser	His	Gin	Lys	Val 95	31y	Gln	His	Pro	Cys 100	Ŋs	Val	Arg	Lea	G14 105
	G1::	Ala	Trp	314	31:1 110	Cly	Gly	Ţ.,z	Leu	Tyr 115	Leu	Gln	Thr	Gla	Let:
30	Ü ; s	31.y	Pro	3er	Leu 125	G15	Gln	His	Ŋs	Gln 130	Ala	Trp	Gly	Ala	3er 135
	I.e.:	Pro	GI:	Ala	Gla 147	Val	Prp	Зlу	172	leu 145	Arş	As p	Thr	Leq	Lea 150
35	Ala	Let	Ala	His	155	Fis	Sar	N n	317	Leu 160	Val	His	leu	As p	Val 185
	Lys	8 20	Ala	As n	Ile 170	Phe	īe;	317	Pro	175 175	Gly	Arg	Oys	Lys	Den 130
40	Fly	As p	ihe	94Y	jei jei	Len	73.	314	le:	31,	71:1	Ala	319	Ala	31y 1
	51.		3. 1.			43 p	E #0	Ard	7.7	Met Lui	Alá	£ 1	j .	le:	16. 11.
45					115					200	Ene	S-PY	Ţ. ⊷¹	314	5 a .
	Ih r	Ile	les	. 1	Wai 236	Àla	::ye	Azir.	Met	11:0 13:5	Ĭ.ēt.	9 ma	Fis	31,	31. 14
50	i :	Ny	TY	71n	31n 345	191	Ara	·. n	317	Ty :	ž÷.	Pit	Res	3	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Ti. 2	A⊥á	3-:	le.	Sei In)		1	*.**.	Art	ing s	Mai	le:	17 = 1	Жет	::
55	le:	314	1 50	Asp	:51.2 51.5	273	Leu	Aiş	Al i	75. m 240		714	M.	I.44 1	1.6% 185

Ala Leu Pro Val Leu Arg Glo Ero Arg Ala Trp Gly Val Leu Trp

				290				,	295	•	,			3 0 0
5	Oys M	ec Ala	Ala		Ala	Let	ŝer	Arg		lrp	Ala	Leu	Trp	
	ala 1	eu lei	Al a		_e.	ြဲ့ခ	Tip	Lau		His	313	Leu	À13	
10	Pro A	la Ser	Trp		uln	Fro	Leu	Gly		Pro	ala	Thr	Pr:	
	aly s	er Pro	Pro		Ser	jeu	Leu	Leu		Ser	391	Leu	3er	
15	Ash T	rp Asp	As p	2s p 165	Ser	leu	317	Fro		Leu	Ser	Pro	Glu	
	Val L	eu Ala	Arg		Val	Gly	der	Thr		Thr	Pro	Arq	Ser	
20	Oys T	hr Pro	Arg		Ala	Leu	Asp	Leu		Asp	Ile	Asn	Ser	
	Pro P	ro Arg	Э1ү		Phe	Fro	3er	Phe		Pro	Arg	Asn	Leu	
25	Ser L	eu Phe	Glu		Thr	Leu	As p	P ro		Xaa	Ala	Pru	Asp	
	Ala S	er Ala	Leu	Leu 11-		Eh-a	Tyr	Piso	Val 445	Ser	Leu	Pro	Ser	450
30	lei L	ys Ala	Gly	Ala 455	Pro	Aij	31 x	Leu	Pino 460	Trp	Far	Ser	Der.	Pirit 465
	aly A	rg Val	Naa	Kaa 470	Lys	al	Phe	3.U	9 10 475	Trp	Glu	His	Pro	
35	(2) I NF	ORMAT	ION FO)R SI	EQ ID	NO: I	;							
		(i) SEQU	ENCE	СНА	.R.A.C	ΓERIS	TICS							
±0		(:	A) LEN	GTH	: 508									
		٠F	3+T\P	F A	mino .	Acid								
₹o		(I)) TOP	(A) [(A)	GY 1	inear								
		rzir zgó	LEZO	E Dio	SCRIJ) TT(-)×	i- 30	y -1 y S	() 3					
50		1 A		7										11 1 11
	3.=: I	ing Sen	11.5	E for	Art	1 2	:		:	J-I	P1.=	A::	2003	2 v
55	Ali. A	en lys	T::1	8 f	Al a	* *			: 1	145 s	7.	v ++1	1,5	3., 4≅

	A.a p	Tor	₽£€	Ph.e	1,s	32.0	1:3	Phe		391 45	:1=	Ĵý3	1/3	1 _e ,	317 21
5		Gly			÷ 5			·							Asp E
	3 = x	7,5	€:.÷	Tyr	Ala	Val	. ; 3	Arş	342	Val ag	Jer	₽ ¥1	€1.9	Arg	Bly Bu
10	12.3	Ser	AZ Ç	àrş	31m 35	Arg	1/5	lea	31.5		731	heq.	Lya	H13	313 1 8
	Arg	Val	017	514	813 110	l ro	As n	Dy 3	let	2 mg	Ene	Val	Arg	Ala	
15		31 u			115					130					133
		Leu			143					45					
20	Aru	A. £ Q	Tal.	Tip	Ast. 155	<u> </u>	Thi	<i>0;</i> s	Asp	leu 160	Leu	His	Gly	Leu	Lys 165
	E :: 3	Leu	H13	Asp	Arg 170	As n	Leu	Leu	His	193 173	Asp	I.a	Lys	210	Ala 160
25		∵al			185					190	_		_	_	201
	317	Leu	Met	Val	G10 205	1,34	As p	Cly	Thr	G1n 210	Gly	Ser	Gly	314	Ala 215
30		Glu			220					2.25					230
		Phe			235					240		·			245
35		Glu			15 0					155					250
		Gln			೭ಥೆ 5					.170					
<i>40</i>		Leu			2.4					19.5					
	_	Aut			* . =					1 1/2				ನಾರ -	
45		.ea			310					+ 15					3.1%
		32.3			3 70					330					335
50		. rp			341					3.45			yeş		. a
		ايوا ند د. - د د د د			:55	-	i i just			: 1		i an		Ara	eri Bell
55	- F 5 1	ri.			3 7 2		7 r						្រឹ ត្ តព្		3 ± 7
	- = X	∵e r	AU Ç	- E	es p	48 F	41.3				=ವ ⊊	HE D	T ± 1	ಕ್ರಗಳ	2.4.3

					385					390					3 95
5	Val	Pro	P ro	Ser	Pro 400	Leu	Ala	Thr	His	Arg 405	Asn	Leu	Thr	Tyr	His 410
	Sly	Cln	Dli	Leu		Sly					Δsp		Leu	Ser	Arg 425
10	Pro	Ser	Lei	Gly	Ser 430	Thr	Ser	Thr	Pro	Arg 435	As n	Leu	Ser	Pro	Glu 440
	Phe	Ser	Met	Arg	Lys 445	Arg	∂er	Ala	Lei	Pro 450	Leu	Thr	Pro	As n	Val 455
15	Ser	Arg	Ile	Ser	Gln 460	Asp	Je r	Thr	Jly	Lys 465	Ser	Arg	Ser	Pro	Se: 470
	Thr	Ser	His	Ser	Ser 475	Ser	Gly	Phe	Val	Asp 480	Ala	Glu	Val	Gln	Arg 485
20	Thr	Leu	Phe	Leu	Pro 490	Arg	Asn	Leu	Leu	Gly 500	Met	Phe	Asp	Asp	Ala 5 05
	Thr	Glu	Gla												

Claims

25

30

35

40

- 1. An isolated polymistratide comprising a member sciented from the group consisting of
 - (a) a polynucleotide having at least a 70% identity to a polynucleotide encoding a polypeptide comprising amino acids of SEQ ID NO: 2.
 - (b) a polynucleotide which by virtue of the redundancy of the genetic code, encodes the same amino acids of SEQ ID NO 2:
 - (c) a polynuclectide which is complementary to the polynucleotide of (a) or (b) and
 - (d) a polynucleotide comprising at least 15 contiguous bases of the polynucleotide of (a) (b) or (c)
- 2. The polynucleotide of Claim 1 wherein the polynucleotide is DNA
- 3. The polynucleotide of Claim 1 wherein the polynucleotide is RNA
- 4. The polynucleotide of Claim 2 comprising nucleotides set forth in SEQ ID NO 1
- 5. The polynuzleotide of Claim 2 which encodes a polypeptide comprising amino acids of SEQ ID NO 2
- s 6. A vector comprising the DNA of Claim 2
 - 7 A host cell comprising the vector of Claim 6
- 8. A process for producing a polypept de compres na expressina from the host online? Othern 7 a polypopt de encoderé by said DNA.
 - 9. A process for producing a cell which expresses a polypeptide comprising transforming or transfecting the cell with the vector of Craim 6 such that the cell expresses the polypeptide encoded by the human cDNA contained in the vector.
 - **10.** A polypeptide comprising an amino acid sequence which is at least 70% identical to the amino acid sequence of SEQ-DINO-2

11. A polypeptide comprising an amino acid sequence as set forth in SEQ ID NO 2

12. An agonist to the polypeptide of claim 10 5 13. An antibody against the polypeptide of claim 10 14. An antagonist to the polypeptide of claim 10 15. A method for the treatment of a patient having need of Myt-kinase comprising administering to the patient a ther-10 apeutically effective amount of the polypeptide of claim 10 16. The method of Claim 15 wherein said therapeutically effective amount of the polypeptide is administered by providing to the patient DNA encoding said polypeptide and expressing said polypeptide in vivo 15 17. A method for the treatment of a patient having need to inhibit Myt-1 kinase polypeptide comprising administering to the patient a therapeutically effective amount of the antagonist of Claim 14 18. A process for diagnosing a disease or a susceptibility to a disease related to expression of the polypeptide of claim 10 comprising determining a mutation in the nucleic acid sequence encoding said polypeptide 20 19. A diagnostic process comprising analyzing for the presence of the polypeptide of claim 10 in a sample derived from a host 20. A method for identifying agonists and antagonists of human Myt-1 kinase comprising 25 preparing a mixture containing Myt-1 kinase polypeptide of claim 10 and a substrate for Myt-1 kinase which undergoes phosphorylation contacting the mixture with a test compound, and determining whether the test compound increases or decreases the kinase activity of Myt-1 by measuring 30 phosphorylation of the substrate 35 ÷0

45

50

FIGURE 1: Partial Nucleotide Sequence of Human Myt-1 Kinase

1	CCGGGT CGAC	CCACG CGT CC	GCGGACGCGT	GGGCGGACGC	GT 3GGT CCGG
5 1	GGCGAGGCCT	CAGAGACT CT	GCAGAGCCCT	GGGTATGACC	CAAGCCGGCC
101	AGAGT COTT C	TT CCAG CAGA	GOTT COAGAG	GOT CAGCOS C	cmissis coard
151	G CT CCT ACGG	AGAGGT CTT C	AAGGT G CG CT	CCAAGGAGGA	cee ceee me
201	TATGCGGTAA	AGCGTT JCAT	GT CACCATT C	OGGGGCCCCA	AGGACCGGGC
25 1	CCGCAAGTTG	GCCGAGGTGG	GCAGCCACGA	GAAGGT 3556	CAG CA CC CAT
301	corectrace	GOT GGAG CAG	GCCTGGGAGG	AGGG CGG CAT	COTGTACOTG
351	CAGACGGAGC	TGTGCGGGCC	CAG COT SICAG	CAACACTGTG	AGGUCTGGGG
401	TGCCAGCCTG	CCTGAGGCCC	AGGT CT GGGG	OT A COT G CGG	GACACGCTGC
15.1	TTG COOTGG C	COATETS TAC	AS 00AG 33 00	me are calcin	TGATUT CAAG
501	CCTGCCAACA	TOTTOTTEGE	GCCCCGGGGGC	CG CT G CAAG C	TGGGTGACTT
551	CGGACTGCTG	STEGASSIGE	GT ACAG CAGG	AG CT GGT GAG	GT CCAGGAGG
601	GAGACCCCCG	CT A CAT GG DC	COCGAG TTGC	TGCA333 TIO	CT AT GGGA CA
651	GCAGCGGATG	TGTT CAGT CT	GUG TOT DACT	ATCCTGGAAG	TGGCATGCAA
-1	CAT GGAG TT G	cocoaos st s	SEGAGGESTS	GICAGICAGICTIC	
751	ACCTGCCCC	TGAGTT CACT	GCCGGTCCGT	OTT CCGAGOT	GCGTTCTGTC
80:	CTTGT CATGA	Tedregasio	AGACCCCAAG	OT G COGG ONA	0300038040
85:	om om sack	em a dimemen	DGAGGMAG ID	Gudaata na	gareram in
\$ 2 L	3 T 3 TAT 3 T C	43193 A GGT1	m sala nataja	and the second s	emperature of the contract of
95.1	and ann 1900 t	TECTORGIE	GCTCTGGCAT	ಆಆರ್ಥಾತರ್ ನ	A DOOT B DOAG
1001	CT GG CT A CAG	ccamegaac	COCCAGCCAC	adagearaa	TIDACCA NO DI
. 65 1	an Admin adm	COTIGGAGA	AGONT CICCA	GCAACT GGGA	TGA IGA IAGO

	OI MGGGGGT	CACL OF COUC	TOMOROLG, D	C.GG D D GGGA	uk dik deladak
1151	CACCT CCACC	CCCCGGAGCA	GGTGCACACC	CAGGGATGCC	CTGGACCTAA
1201	GT GA CAT CAA	CT CAGAG CCT	ಂಡ್ ೦೦೦೦೦ ರಾ	oar coom c	CTTTGAGCCT
1 25 1	CGGAACCT CC	T CAG DOT GTT	TGAGGACACC	CTAGACCCAA	CCTGAGCCCC
1301	AGACT CTGCC	TCTGCACTTT	TAACCTTTTA	T COTGT GT OT	CT CCCGT CG (
1351	CCTTGAAAGC	TGGGGCCCT	CGGGAACT CC	CATIGGT CTT C	Targaareea
1401	CGT GT CT AAT	AAAAGT ATT	TGAACCTTGG	GAG CACCCAA	AAAAAAA

FIGURE 2: Deduced Amino Acid Sequence of Human Myt-1 Kinase

1 GSTHASADAW ADAWVRGEAS ETLQSPGYDP SPPESFFQQS FQRLSRLGHG
51 SYGEVFKVRS KEDGRLYAVK RSMSPFRGPK DPAPKLAEVG SHEKVGQHPC
101 CVRLEQAWEE GGILYLQTEL CGPSLQQHCE AWGASLPEAQ VWGYLRDTLL
151 ALAHLHSQGL VHLDVKPANI FLGPRGRCKL GDFGLLVELG TAGAGEVQEG
201 DPPYMAPELL QGSYGTAADV FSLGLTILEV ACNMELPHGG EGWQQLRQGY
251 LPPEFTAGLS SELRSVLVMM LEPDPKLRAT AEALLALPVL RQPRAWGVLW
301 CMAAEALSRG WALWQALLAL LCWLWHGLAH PASWLQPLGP PATPPGSPPC
351 SLLLDSSLSS NWDDDSLGPS LSPEAVLAFT VGSTSTPRSP CTPRDALDLS
401 DINSEPPRGS FPSFEPRNLL SLFEDTLDPT *APDSASALL TFYPVSLPSP

FIGURE 3: A comparison of the Deduced Amino Acid Sequence of Human Myt-Lvs. *Xenopus* Myt-1

1	⊋ 38	Human
:::::		
5 1 F BALP MARIFP NK Q RSWISQPIRRQ SMASH RSPQNKTR A SKLYDIQ SKGDIT <u>FFK</u>	100	Xenopus
39 Q SFQ PLS RLGHG SYGEVFKV BSKEDG FLYAVK BSMSP F FGPKD PA PKLAE	5 8	
::::		
101 JOFK SICKLG PG SFGEVYKV Q SLEDG CFYAVK RSV SP F RGE SD RQ RKLQE	15 C	
8.9 VG SHEKVGQHP COV FLEQA w eeggilylotelogp slooh ceawga slpe	138	
. ::::::::::::::::::::::::::::::::::::		
151 V FKHE PVJEHP NOL FFV RAWEEK FMLYLQTELCAG SLQQH SEEFAG SLPP	20 C	
139 AQVWGYI POT LLALAHLH SQGLVHLDVKE ANI FLGP RG RCKLGD FGLLVE	188	
A CONTROL OF THE PROPERTY OF T		
201 RRVWNIT CDLLHGLKHLHD RNLLHLDIKF ANVFISFSGVCKLGDFGLMVE	25 C	
189 L. GTAGAGEVQEGDF RYMAPELLQG SYGTAADVFSLGLTILEVACNYELP	23.7	
25 1 LDGTEGSGEAQEGDPRYMAPELLDGIFSKAADVFSLGMSLLEVACNMELP	300	
138 HGGE FWQQLRQGYLPPEFT AGLSSEL RKVLVYMLEPDPKL RAT AEALLAL	287	
301 KGGDGWQQLRQGHLPTEFT SDLPFDFLKVLSAMLEPDYRRRATVDWLLSL	350	
- 388 FVLRQP PAWGVLWCMAAEALSRGWALWCALLALLCWLWHGLAHPA. SWLQ	33.6	
351 FAIRNAERWEMYTLAGERTLGKIIAVYDFIVWLUSEVEQWIMRRVIGELH	4 00	
337 FLGEPATEPGSPFGSLLLDSSLSSNWDDDSLGPSL	371	
401 YOSL PALP RSPECSPEPNHLGES SESSWODDESLGDDVFEVPP SPLATH P	450	
372 PROALDL	399	
45.1 NLTYHGQELIG PHISPOILIS PPISLG STISTE PNISPEIF SM PKIRSALPLTP NV	500	
400 SDINSEPP RG SEPS FEP PNLL SLFEDTLDPT	451	
501 3RI 3QD STIGK SIRSPIST SHIS SISGIFYD AEVQ PTILFIP RNILIGMFDD AT EQ	⊃ 48	

Europäisches entamt European Patent Office

Office européen des brevets

EP 0 835 937 A3

(12)

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 23.09.1998 Bulletin 1998/39
- (43) Date of publication A2 15.04.1998 Bulletin 1998/16
- (21) Application number 97308044.3
- (22) Date of filling 10.10.1997
- (84) Designated Contracting States
 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC
 NL PT SE
- (30) Priority 11.10.1996 US 30389 P
- (71) Applicant: SMITHKLINE BEECHAM
 CORPORATION
 Philadelphia Pennsylvania 19103 (US)

(51) Int CI[®]. **C12N 15/54**, C12N 9/12, C12N 1/21, C07K 16/40, A61K 38/45

(11)

- (72) Inventors
 - Mccarte-Roshak, Amy K.,
 SmithKline Beecham Pharma
 King of Prussia, Pennsylvania 19406 (US)
 - Marshall, Lisa A., SmithKline Beecham Pharma King of Prussia, Pennsylvania 19406 (US)
- (74) Representative Crump, Julian Richard John et al fJ Cleveland.
 40-43 Chancery Lane London WC2A 1JQ (GB)

(54) Human MYT-1 kinase clone

(57) Human Myt-1 kinase polypeptides and DNA (RNA) encoding such enzyme and a procedure for producing such polypeptides by recombinant techniques is disclosed. Also disclosed are methods for utilizing such human Myt-1 kinase in the development of treatments for cancers, such as leukemias, solid tumors and metastases, chronic inflammatory proliferative diseases such as psoriasis and rheumatoid arthritis, proliferative

cardiovascular diseases such as restenosis proliferative ocular disorders, such as diabetic retinopathy and macular degeneration; and benign hyperproliferative diseases such as benign prostatic hypertrophy and hemangiomas among others are also disclosed. Also disclosed are diagnostic assays for detecting diseases related to mutations in the nucleic acid sequences and altered concentrations of the polypeptides.

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent Convention EP 97 30 8044 shall be considered, for the purposes of subsequent proceedings, as the European search report

	DOCUMENTS CONSIDERED Citation of document with indication		Relevant	CLASSIFICATION OF THE
ategory	of relevant passages	г. жнеге арргорлаге,	to claim	APPLICATION (Int Cl.6)
X	DATABASE : EMBL SEQUL	NCES	1-4,6-9	C12N15/54
	EMBL, Heidelberg, FRG		1	C12N9/12
	Accession No. D61277, 2	7 August 1995		C12N1/21
	FUJIWARA T. ET AL.: "Hu	man fetal brain		CO7K16/40
	cDNA GEN-174G10 (EST),	similar to none."		A61K38/45
	XP002057981			
	* abstract *			
Р,Х	LIU F. ET AL.: "The hu	man Mvtl kinase	1-11	
	preferentially phosphor			
	Thr14 and localizes to			
	reticulum and Golgi com		1	
	MOL. CELL. BIOL.,	•		
	vol. 17, no. 2, Februar	y 1997,		
	pages 571-583, XP002057		:	
	* the whole document *		:	
A.D	ATHERTON-FESSLER S. ET	Al · "fell cycle	1-20	
,0	regulation of the p34/c		1 60	
	kinases"	ace similariory		İ
	MOL. BIOL. CELL,		1	TECHNICAL FIELDS
	vol. 5, no. 9, 1994,			SEARCHED (Int.Cl 6)
	pages 989-1001, XP00205	7979		C12N
	* abstract *			C07K
				A61K
		-/		
INCO	MPLETE SEARCH			
	rch Division considers that the present application by with the EPC to such an extent that a meaning			
be came	d out, or can only be carned out partially, for th			
Clauma s	earched completely			
Claims s	earched incompletely			
Giaims n	ot searched			
Reason	for the limitation of the search			
588	sheet C			
300	SHEEL C			
	Place of search	Date of completion or the search	C- 1	Framiner
	THE HAGUE	11 March 1998		lli, I
C	CATEGORY OF CITED DOCUMENTS	Filtheory or princy Ellearlier patent d		
Y 04	rticularly relevant if taken alone rticularly relevant if combined with another	after the filing d O dooument ofter	ate	
		U gooument offec	in the upplication	
V ⊃au doc	current of the same category		for other reasons	
doc A tec				v correspondină

INCOMPLETE SEARCH SHEET C

Application Number EP 97 30 8044

Remark: Although claims 15-17 and 18 (the latter as far as methods in vivo are concerned) are directed to methods of treatment and diagnosis of the human/animal body (Article 52(4) EPC), the search has been carried out and based on the alleged effects of the compound/composition.

PARTIAL EUROPEAN SEARCH REPORT

Application Number EP 97 30 8044

(DOCUMENTS CONSIDERED TO BE RELEVANT		CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
ategory	Otation of document with indication, where appropriate, of relevant passages	Relevant to laim	
A,D	MUELLER P. ET AL.: "Mytl: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both Thr14 and Tyr15." SCIENCE, vol. 270, 6 October 1995, pages 86-90, XP002057980 * abstract * figure 1 *	1-20	
		1	TECHNICAL FIFT DS SEARCHED (Int.CI.6)
		1	i
		1	
		:	
			i
		!	
		!	
			i
			i i