Nuclear operators and nuclear spaces

(EXERCISES FOR LECTURES 13–15)

- **11.1.** Let $S: X \to Y$ and $T: Y \to Z$ be bounded linear operators between Banach spaces. Show that, if either S or T is nuclear, then so is TS.
- **11.2.** Let $X = \ell^p$ (where $1 \leq p \leq \infty$) or $X = c_0$. Given $\alpha = (\alpha_n) \in \ell^{\infty}$, consider the diagonal operator

$$M_{\alpha} \colon X \to X, \qquad (x_1, x_2, \ldots) \mapsto (\alpha_1 x_1, \alpha_2 x_2, \ldots).$$

Show that M_{α} is nuclear iff $\alpha \in \ell^1$, and that $||M_{\alpha}||_{\mathcal{N}} = ||\alpha||_1$. (*Hint:* for 1 , use Exercise 10.2 (a)).

11.3. Let I = C[a, b] and let $K \in C(I \times I)$. Prove that the integral operator

$$T \colon C(I) \to C(I), \qquad (Tf)(x) = \int_a^b K(x, y) f(y) \, dy$$

is nuclear.

- **11.4.** Let T be a bounded linear operator on ℓ^1 with matrix (a_{ij}) in the standard basis (e_j) (i.e., $Te_j = \sum_i a_{ij}e_i$ for all $j \in \mathbb{N}$). Find a nuclearity criterion for T and calculate the nuclear norm of T in terms of the matrix elements a_{ij} .
- **11.5.** Do the same as in the previous exercise with c_0 in place of ℓ^1 .
- **11.6.** Let Y be a Banach space and $Z \subset Y$ a closed vector subspace. Suppose that there exists a Banach space X such that the map $Z \,\widehat{\otimes}_{\pi} \, X' \to Y \,\widehat{\otimes}_{\pi} \, X'$ generated by the inclusion $Z \hookrightarrow Y$ is not topologically injective (cf. Exercises 10.6–10.8). Assume also that the canonical map $Y \,\widehat{\otimes}_{\pi} \, X' \to \mathcal{L}(X,Y)$ is injective. Prove that there exists a nuclear operator from X to Y whose range is contained in Z but which is not a nuclear operator from X to Z.
- **11.7.** Let M be a complex manifold (for simplicity, you may assume that M is an open subset of \mathbb{C}), and let U be an open, relatively compact subset of M. Show that the restriction map $\mathscr{O}(M) \to \mathscr{O}(U)$ is nuclear.
- **11.8.** Let X and Y be vector spaces, $\varphi \colon X \to Y$ a linear map, and $B \subset X$ a Banach disk. Show that $\varphi(B)$ is a Banach disk in Y.
- **11.9.** Let X be a locally convex space, and let $B \subset X$ be an absolutely convex bounded set. Show that
- (a) the inclusion $j_B: X_B \to X$ is continuous;
- (b) if X is Hausdorff, then X_B is a normed space;
- (c) if X is Hausdorff and B is complete, then B is a Banach disk.
- **11.10.** Let X be a locally convex space, and let p be a continuous seminorm on X. Consider the set $B_p = \{f \in X' : |f(x)| \le 1 \ \forall x \in U_p\}$. Show that B_p is a Banach disk, and construct an isometric isomorphism $(X')_{B_p} \cong (X_p)'$.
- **11.11.** Let φ_1 and φ_2 be nuclear operators between locally convex spaces. Show that the operators $\varphi_1 \otimes_{\pi} \varphi_2$ and $\varphi_1 \widehat{\otimes}_{\pi} \varphi_2$ are nuclear.
- 11.12. Let $\varphi \colon X \to Y$ be a nuclear operator between locally convex spaces. Show that the dual operator $\varphi' \colon Y'_{\beta} \to X'_{\beta}$ is nuclear.

- **11.13.** Prove that a complete locally convex space X is nuclear iff it can be represented as $X \cong \lim(X_i, \varphi_{ij})$, where X_i are Banach spaces and the connecting maps φ_{ij} are nuclear for all i < j.
- 11.14. Let S^n be the *n*-sphere, and let $p \in S^n$. Construct a topological isomorphism

$$\mathscr{S}(\mathbb{R}^n) \cong \{ f \in C^{\infty}(S^n) : Df(p) = 0 \quad \forall D \in A \},$$

where A is the algebra of linear operators on $C^{\infty}(S^n)$ generated (as a subalgebra of End $C^{\infty}(S^n)$) by vector fields. As a corollary (see the lecture), $\mathscr{S}(\mathbb{R}^n)$ is nuclear.

- 11.15. Show that the strongest locally convex space of uncountable dimension (or, equivalently, the locally convex direct sum of uncountably many copies of \mathbb{K}) is not nuclear.
- **11.16** (the Grothendieck-Pietsch criterion). Prove that a Köthe space $\lambda^1(I, P)$ is nuclear iff for every $p \in P$ there exist $q \in P$ and $\lambda \in \ell^1(I)_{\geq 0}$ such that $p_i \leq \lambda_i q_i$ for all $i \in I$. (We proved this at the lecture under the assumption that $I = \mathbb{N}$ and $p_i > 0$ for all $p \in P$, $i \in I$.)
- **11.17.** Let P be a countable Köthe set. Show that $\lambda^1(I,P)$ is nuclear iff $\lambda^1(I,P) = \lambda^{\infty}(I,P)$ (as vector subspaces of \mathbb{K}^I).
- 11.18. Show that each bounded subset of a complete nuclear locally convex space X is relatively compact in X.
- **11.19.** Let X be a Fréchet space such that each bounded subset of X is relatively compact in X. Does this imply that X is nuclear?
- **11.20.** Let $0 \to X_1 \to X_2 \to X_3 \to 0$ be an exact sequence of Fréchet spaces, and let Y be a Fréchet space. Suppose that X_1 is nuclear. Show that the sequence

$$0 \to X_1 \widehat{\otimes}_{\pi} Y \to X_2 \widehat{\otimes}_{\pi} Y \to X_2 \widehat{\otimes}_{\pi} Y \to 0$$

is exact. (This was proved at the lecture under the assumption that either Y or X_2 is nuclear.)