Analysis and Comparison of Feature Selection Methods Towards Performance and Stability

Matheus Cezimbra Barbieri, Bruno Iochins Grisci, Márcio Dorn October 8, 2023

Supplementary Material

Table 1: Selection accuracy Mean and Variance for tested Feature Selectors on XOR dataset

Feature	Number of	% of inf	ormative	% of sele	ected features
Selector	selected features		selected		informative
	5	50.00		20.00	
DecisionTree	10	50.00		10.00	
D coloron 11 co	20	51.61	±8.980	5.16	±0.89
	5	0.00		0.00	
KW Filter	10	0.00		0.00	
	20	0.00		0.00	
	5	0.00		0.00	
Lasso	10	0.00		0.00	
	20	50.00		5.00	
	5	0.00		0.00	
LinearSVM	10	50.00		10.00	
	20	50.00		5.00	
	5	4.83	± 15.02	1.93	± 6.01
MI Filter	10	19.35	± 30.76	3.87	± 6.15
	20	37.09	± 34.07	3.70	± 3.40
	5	9.67	± 20.08	3.87	± 8.03
MRMR	10	14.51	± 23.07	02.90	± 4.61
	20	38.70	± 38.10	3.87	± 3.81
	5	100.00		40.00	
RandomForest	10	100.00		20.00	
	20	100.00		10.00	
	5	100.00		40.00	
ReliefF	10	100.00		20.00	
	20	100.00		10.00	
	5	67.74	± 24.31	27.09	± 9.72
ReliefF-GA	10	70.96	± 28.20	14.19	± 5.64
	20	93.54	± 17.03	9.35	± 1.70
	5	27.41	± 40.49	10.96	± 16.1
SVM-GA	10	33.87	± 41.60	6.77	± 8.32
	20	77.41	± 33.76	7.74	± 3.37
	5	0.00		0.00	
SVM-RFE	10	0.00		0.00	
	20	50.00		5.00	

Table 2: Selection accuracy Mean and Variance for tested Feature Selectors on ${\bf Synth_A}$ data

	NT 1 C	D7 C .		C7 C 1	1.6
Feature	Number of		formative		ected features
Selector	selected features		s selected		informative
	5	0.00		0.00	
D T	10	0.00		0.00	
DecisionTree	20	0.00		0.00	
	50	0.00		0.00	
	100	0.00		0.00	
	5	4.00		40.00	
IZIIZ Dili	10	4.00		20.00	
KW Filter	20	8.00		20.00	
	50	10.00		10.00	
	100	14.00		7.00	
	5	0.00		0.00	
T	10 20	0.00 2.00		0.00 5.00	
Lasso	-				
	50	4.00		4.00	
	100	4.00		2.00	
	5	2.00		20.00	
LinearSVM	10	4.00		20.00	
Linearsvivi	50	4.00		4.00	
	100	4.00		2.00	
	5	0.00		0.00	
	10	0.00		0.00	
MI Filter	20	0.00		0.00	
MI Filter	50	2.00		2.00	
	100	4.00		2.00	
	5	0.00		0.00	
	10	0.00		0.00	
MRMR	20	0.00		0.00	
MICMIC	50	0.00		0.00	
	100	2.00		1.00	
	5	0.45	±0.99	4.51	±9.94
	10	0.70	±1.21	3.54	±6.08
RandomForest	20	1.35	±1.80	3.38	±4.54
realiteoilli orese	50	2.70	±1.96	2.70	±1.96
	100	3.67	±2.58	1.83	±1.29
	5	6.00	12.00	60.00	11.20
	10	6.00		30.00	
ReliefF	20	8.00		20.00	
	50	10.00		10.00	
	100	10.00		5.00	
	5	1.80	±1.19	18.06	±11.9
	10	2.00	±1.46	10.00	±7.30
ReliefF-GA	20	2.51	±1.93	6.29	±4.82
	50	3.41	±2.54	3.41	±2.54
	100	3.93	±3.03	1.96	±1.51
	5	2.00	±1.03	20.00	±10.3
	10	3.22	±1.90	16.12	±9.54
SVM-GA	20	3.54	±1.98	8.87	±4.95
	50	3.93	±2.03	3.93	±2.03
	100	4.06	±2.55	2.03	±1.27
	5	0.00		0.00	
	10	0.00		0.00	
SVM-RFE	20	0.00		0.00	
	50	4.00		4.00	
	100	4.00		2.00	

Table 3: Averaged prediction accuracy with standard deviation of the 31 executions of feature selection algorithms on XOR dataset for all the evaluated subset sizes.

Feature	Num. of	Accuracy								
Selector	features	S	VM	Decisi	ion Tree	Rando	om Forest	Naïve	e Bayes	
	5	0.51	± 0.02	0.50	±0.02	0.50	±0.02	0.49	±0.03	
DecisionTree	10	0.49	± 0.02	0.49	±0.03	0.48	±0.03	0.49	± 0.02	
	20	0.49	±0.08	0.50	±0.06	0.50	± 0.07	0.48	±0.01	
	5	0.55		0.54		0.55	± 0.01	0.55		
KW Filter	10	0.51		0.53	± 0.01	0.52	± 0.01	0.53		
	20	0.53		0.49	± 0.01	0.50	± 0.02	0.54		
	5	0.53		0.51		0.51	± 0.01	0.57		
Lasso	10	0.54		0.49	± 0.01	0.48	± 0.01	0.56		
	20	0.50		0.52	± 0.01	0.51	± 0.01	0.51		
	5	0.51		0.51		0.52	± 0.01	0.54		
LinearSVM	10	0.53		0.52	± 0.01	0.53	± 0.01	0.56		
	20	0.48		0.50	± 0.01	0.49	± 0.02	0.52		
	5	0.49	± 0.03	0.49	± 0.03	0.49	± 0.03	0.49	± 0.03	
MI Filter	10	0.54	± 0.13	0.52	± 0.11	0.53	± 0.13	0.49	± 0.02	
	20	0.56	± 0.15	0.52	± 0.07	0.56	± 0.13	0.49	± 0.02	
	5	0.50	± 0.03	0.50	± 0.02	0.50	± 0.03	0.50	± 0.03	
MRMR	10	0.50	± 0.02	0.50	± 0.03	0.49	± 0.02	0.49	± 0.02	
	20	0.58	± 0.18	0.53	± 0.06	0.57	± 0.16	0.49	± 0.02	
	5	1.00		1.00		1.00		0.51	± 0.03	
RandomForest	10	1.00		0.90	± 0.04	1.00		0.51	± 0.02	
	20	0.93	± 0.01	0.68	± 0.04	0.87	± 0.02	0.50	± 0.02	
	5	1.00		1.00		1.00		0.50		
ReliefF	10	1.00		0.93	± 0.01	1.00		0.50		
	20	0.94		0.66	± 0.01	0.89	± 0.01	0.46		
	5	0.68	± 0.25	0.68	± 0.24	0.68	± 0.24	0.50	± 0.02	
ReliefF-GA	10	0.73	± 0.25	0.68	± 0.21	0.72	± 0.25	0.49	± 0.03	
	20	0.88	± 0.14	0.66	± 0.08	0.84	± 0.12	0.50	± 0.02	
	5	0.65	± 0.17	0.64	± 0.18	0.64	± 0.18	0.51	± 0.02	
SVM-GA	10	0.65	± 0.19	0.60	± 0.17	0.63	± 0.20	0.50	± 0.02	
	20	0.80	± 0.20	0.63	± 0.11	0.75	± 0.18	0.50	± 0.02	
	5	0.51		0.51		0.50	± 0.01	0.56		
SVM-RFE	10	0.50		0.48	± 0.01	0.48	± 0.01	0.54		
	20	0.49		0.51	± 0.01	0.50	± 0.02	0.50		

Table 4: Averaged prediction F-measure with standard deviation of the 31 executions of feature selection algorithms on XOR dataset for all the evaluated subset sizes.

Feature	Num. of				F-m	easure			
Selector	features	S	VM	Decisi	on Tree	Rando	om Forest	Naïve Bayes	
	5	0.50	± 0.02	0.49	±0.02	0.49	±0.02	0.48	±0.03
DecisionTree	10	0.49	± 0.02	0.49	±0.03	0.48	±0.03	0.49	± 0.02
	20	0.49	± 0.09	0.50	±0.06	0.49	± 0.07	0.48	±0.01
-	5	0.55		0.54		0.54	± 0.01	0.55	
KW Filter	10	0.51		0.52	± 0.01	0.52	± 0.01	0.53	
	20	0.53		0.48	± 0.01	0.50	± 0.02	0.54	
	5	0.52		0.50		0.51	± 0.01	0.57	
Lasso	10	0.54		0.49	± 0.01	0.48	± 0.01	0.56	
	20	0.50		0.52	± 0.01	0.51	± 0.01	0.51	
	5	0.51		0.50		0.52	± 0.01	0.54	
LinearSVM	10	0.53		0.52	± 0.01	0.53	± 0.01	0.56	
	20	0.48		0.50	± 0.01	0.49	± 0.01	0.52	
	5	0.49	± 0.03	0.49	± 0.03	0.49	± 0.03	0.49	± 0.03
MI Filter	10	0.53	± 0.13	0.52	± 0.11	0.53	± 0.13	0.49	± 0.02
	20	0.56	± 0.15	0.52	± 0.07	0.56	± 0.13	0.49	± 0.02
	5	0.50	± 0.03	0.50	± 0.03	0.50	± 0.03	0.50	± 0.03
MRMR	10	0.49	± 0.02	0.49	± 0.03	0.49	± 0.02	0.49	± 0.02
	20	0.58	± 0.18	0.53	± 0.06	0.57	± 0.16	0.49	± 0.02
	5	1.00		1.00		1.00		0.51	± 0.03
RandomForest	10	1.00		0.90	± 0.04	1.00		0.51	± 0.02
	20	0.93	± 0.01	0.68	± 0.04	0.87	± 0.02	0.50	± 0.02
	5	1.00		1.00		1.00		0.50	
ReliefF	10	1.00		0.93	± 0.01	1.00		0.50	
	20	0.94		0.66	± 0.01	0.89	± 0.01	0.46	-
	5	0.67	± 0.25	0.68	± 0.24	0.68	± 0.24	0.50	± 0.02
ReliefF-GA	10	0.73	± 0.25	0.68	± 0.22	0.72	± 0.25	0.49	± 0.03
	20	0.88	± 0.14	0.66	± 0.08	0.84	± 0.12	0.50	± 0.02
	5	0.65	± 0.18	0.64	± 0.18	0.64	± 0.18	0.51	± 0.02
SVM-GA	10	0.65	± 0.19	0.60	± 0.17	0.63	± 0.20	0.50	± 0.02
	20	0.80	± 0.20	0.63	± 0.12	0.75	± 0.18	0.50	± 0.02
	5	0.51		0.51		0.50	± 0.01	0.56	-
SVM-RFE	10	0.50		0.48	± 0.01	0.48	± 0.01	0.54	
	20	0.49		0.51	± 0.01	0.50	± 0.02	0.50	

Table 5: Averaged prediction accuracy with standard deviation of the 31 executions of feature selection algorithms on Synth_A dataset for all the evaluated subset sizes.

Feature	Num. of				Acc	uracy			
Selector	features	S	VM	Decis	ion Tree		om Forest	Naïve	Bayes
	5	0.72	±0.03	0.86	±0.02	0.81	±0.04	0.70	±0.04
	10	0.68	± 0.04	0.85	± 0.03	0.78	±0.03	0.68	± 0.05
DecisionTree	20	0.66	± 0.03	0.83	± 0.03	0.72	± 0.04	0.64	± 0.04
	50	0.61	± 0.03	0.74	± 0.04	0.62	± 0.04	0.55	± 0.03
	100	0.62	± 0.02	0.70	± 0.04	0.60	± 0.04	0.57	± 0.03
	5	0.72		0.58	± 0.01	0.70	± 0.02	0.77	
	10	0.82		0.68	± 0.02	0.80	± 0.03	0.82	
KW Filter	20	0.91		0.64	± 0.02	0.86	± 0.02	0.90	
	50	0.93		0.58	± 0.02	0.89	± 0.02	0.93	
	100	0.98		0.58	± 0.03	0.92	±0.02	0.98	
	5	0.83		0.69	±0.02	0.80	±0.02	0.77	
_	10	0.82		0.62	± 0.02	0.77	± 0.02	0.82	
Lasso	20	0.93		0.62	±0.02	0.87	±0.02	0.90	
	50	0.97		0.57	±0.02	0.87	±0.02	0.94	
	100	0.93		0.56	±0.02	0.83	±0.03	0.87	
	5	0.76		0.69	±0.02	0.75	±0.03	0.75	
T : C37M	10	0.83		0.71	±0.02	0.82	±0.02	0.87	
LinearSVM	50	0.88		0.62	±0.02	0.85	±0.02	0.89	
	100	0.99		0.59	± 0.02 ± 0.02	0.89	± 0.02 ± 0.03	0.93	
	5	0.57		0.63	± 0.02 ± 0.02	0.39	±0.03 ±0.02	0.57	
	10	0.66		0.03	± 0.02 ± 0.02	0.70	±0.02	0.60	
MI Filter	20	0.54		0.54	± 0.02 ± 0.03	0.71	±0.02 ±0.03	0.63	
MI FILLEI	50	0.61	±0.01	0.55	± 0.03 ± 0.02	0.73	±0.03	0.69	±0.01
	100	0.71	± 0.01	0.61	± 0.02	0.80	±0.03	0.80	± 0.01
	5	0.63		0.67	±0.02	0.75	±0.02	0.62	
	10	0.65		0.64	±0.02	0.73	±0.02	0.61	
MRMR	20	0.56		0.52	±0.02	0.72	±0.03	0.61	
	50	0.61	±0.01	0.52	±0.03	0.71	±0.03	0.72	±0.02
	100	0.69	± 0.01	0.55	± 0.02	0.78	± 0.03	0.79	± 0.01
	5	0.62	± 0.05	0.56	± 0.05	0.61	±0.06	0.64	±0.05
	10	0.68	±0.07	0.60	± 0.05	0.70	± 0.05	0.69	±0.06
RandomForest	20	0.71	± 0.06	0.59	± 0.04	0.70	± 0.05	0.70	± 0.07
	50	0.73	± 0.06	0.58	± 0.05	0.70	± 0.06	0.72	± 0.06
	100	0.71	± 0.05	0.56	± 0.05	0.68	± 0.05	0.70	± 0.05
	5	0.73		0.66	± 0.01	0.71	± 0.02	0.73	
	10	0.79		0.60	± 0.02	0.76	± 0.02	0.80	
ReliefF	20	0.87		0.63	± 0.02	0.85	± 0.02	0.89	
	50	0.91		0.64	± 0.03	0.88	± 0.02	0.89	
	100	0.95		0.59	± 0.03	0.89	± 0.03	0.96	
	5	0.59	± 0.08	0.55	± 0.06	0.59	±0.06	0.60	± 0.07
D 11 / D 01	10	0.63	± 0.07	0.57	± 0.05	0.64	± 0.07	0.64	±0.07
ReliefF-GA	20	0.66	±0.06	0.57	±0.06	0.67	±0.06	0.67	±0.06
	50	0.73	±0.04	0.57	±0.07	0.70	±0.05	0.71	±0.04
	100	0.78	±0.06	0.55	±0.05	0.73	±0.05	0.77	±0.05
	5	0.88	±0.01	0.71	±0.04	0.81	±0.04	0.80	±0.03
SVM-GA	10	0.88	± 0.02 ± 0.02	0.66	± 0.05 ± 0.05	0.82	± 0.04 ± 0.04	0.87	± 0.03 ± 0.03
SVM-GA	50								
	100	0.96	± 0.02 ± 0.02	0.60	± 0.04 ± 0.05	0.84	± 0.03 ± 0.05	0.90	± 0.03 ± 0.04
	5	0.96	±0.02	0.58	± 0.05 ± 0.02	0.78	± 0.05 ± 0.02	0.80	±0.04
	10	0.78		0.07	± 0.02 ± 0.02	0.79	±0.02 ±0.03	0.79	
SVM_RFE	20	0.83		0.72	± 0.02 ± 0.03	0.79	± 0.03 ± 0.02	0.79	
SVM-RFE	50	1.00		0.03	± 0.03	0.93	±0.02	0.98	
ļ	100	1.00		0.57	± 0.03 ± 0.02	0.93	±0.02	1.00	
	100	1.00		0.01	±0.02	0.00	0.02	1.00	

Table 6: Averaged prediction F-measure with standard deviation of the 31 executions of feature selection algorithms on Synth_A dataset for all the evaluated subset sizes.

Feature	Num. of				F-m	easure			
Selector	features	S	VM	Decis	ion Tree		m Forest	Naïve	Bayes
	5	0.71	±0.03	0.86	±0.02	0.80	±0.04	0.69	±0.04
	10	0.68	±0.04	0.84	±0.03	0.78	±0.04	0.68	±0.05
DecisionTree	20	0.66	± 0.03	0.83	± 0.03	0.71	± 0.04	0.63	±0.04
	50	0.60	± 0.03	0.73	± 0.04	0.62	± 0.04	0.54	± 0.03
	100	0.61	±0.03	0.69	± 0.04	0.59	± 0.04	0.55	±0.03
	5	0.72		0.57	±0.02	0.70	±0.02	0.77	
	10	0.82		0.68	± 0.02	0.80	± 0.03	0.82	
KW Filter	20	0.91		0.63	± 0.02	0.86	± 0.02	0.90	
	50	0.93		0.57	± 0.02	0.89	± 0.02	0.93	
	100	0.98		0.58	± 0.03	0.92	± 0.02	0.98	
	5	0.83		0.69	± 0.02	0.80	± 0.02	0.77	
	10	0.82		0.62	± 0.02	0.77	± 0.02	0.82	
Lasso	20	0.93		0.61	± 0.02	0.86	± 0.02	0.90	
	50	0.97		0.56	± 0.02	0.87	± 0.02	0.94	
	100	0.93		0.55	± 0.02	0.83	± 0.03	0.87	
	5	0.76		0.68	± 0.02	0.75	± 0.03	0.75	
	10	0.83		0.71	± 0.02	0.82	± 0.02	0.87	
LinearSVM	20	0.88		0.61	± 0.02	0.85	± 0.02	0.89	
	50	0.95		0.58	± 0.02	0.87	± 0.02	0.93	
	100	0.99		0.52	± 0.02	0.89	± 0.03	0.97	
	5	0.56		0.62	± 0.02	0.70	± 0.02	0.57	
	10	0.65		0.53	± 0.02	0.71	± 0.03	0.58	
MI Filter	20	0.54		0.54	± 0.03	0.73	± 0.03	0.62	
	50	0.61	± 0.01	0.54	± 0.02	0.72	± 0.04	0.69	± 0.01
	100	0.70	± 0.01	0.60	± 0.02	0.80	± 0.03	0.80	± 0.01
	5	0.62		0.66	± 0.02	0.74	± 0.02	0.62	
	10	0.64		0.63	± 0.02	0.72	± 0.02	0.60	
MRMR	20	0.55	1001	0.51	±0.02	0.72	±0.03	0.60	
	50	0.60	± 0.01	0.51	±0.03	0.71	±0.03	0.71	±0.02
	100	0.69	10.00	0.55	±0.02	0.77	±0.03	0.79	±0.01
	5	0.61	±0.06	0.55	±0.06	0.61	±0.06	0.64	±0.05
D	10	0.68	±0.07	0.60	±0.05	0.69	±0.05	0.68	±0.06
RandomForest	20 50	0.71	±0.06	0.58 0.57	±0.05	0.70	±0.05	$0.70 \\ 0.71$	±0.07
	100		±0.06		±0.05		±0.06		±0.06
	5	0.71	± 0.05	0.55	±0.05	0.68	±0.05	0.69	± 0.05
	10	0.73		0.65	± 0.01 ± 0.02	0.71	± 0.02	0.73	
ReliefF	20	0.79		0.63	± 0.02 ± 0.02	0.76	± 0.02 ± 0.03	0.89	
ценен	50	0.01		0.63	± 0.02 ± 0.03	0.87	± 0.03	0.89	
	100	0.95		0.58	± 0.03	0.89	±0.02	0.96	
	5	0.59	±0.08	0.54	± 0.06	0.58	± 0.06	0.59	±0.07
	10	0.62	± 0.03 ± 0.07	0.54	± 0.06	0.63	±0.07	0.63	± 0.07
ReliefF-GA	20	0.65	±0.06	0.56	± 0.06	0.66	±0.06	0.66	±0.06
Itelieli -GA	50	0.03	±0.04	0.56	± 0.00 ± 0.07	0.70	±0.05	0.70	± 0.04
	100	0.72	±0.04	0.54	±0.05	0.70	±0.05	0.77	±0.04
	5	0.11	± 0.00	0.70	± 0.03 ± 0.04	0.12	±0.03	0.80	± 0.03
	10	0.88	± 0.01 ± 0.02	0.70	± 0.04 ± 0.05	0.80	±0.04	0.87	± 0.03
SVM-GA	20	0.00	± 0.02	0.62	± 0.05	0.86	±0.04 ±0.04	0.01	± 0.03
S 1111 OII	50	0.94	± 0.02	0.59	± 0.03 ± 0.04	0.83	±0.04 ±0.03	0.91	± 0.03
	100	0.96	± 0.02	0.57	±0.05	0.78	±0.05	0.85	± 0.03
	5	0.78	0.02	0.66	± 0.02	0.78	±0.02	0.80	
	10	0.85		0.71	±0.02	0.79	±0.03	0.79	
SVM-RFE	20	0.99		0.62	±0.03	0.88	±0.02	0.96	
SVM-RFE	50	1.00		0.56	±0.03	0.93	±0.02	0.98	
	100	1.00		0.56	±0.03	0.93	±0.02	1.00	
	1	00		0.00		5.55		00	

Table 7: Averaged prediction accuracy with standard deviation of the 31 executions of feature selection algorithms on Synth_B dataset for all the evaluated subset sizes.

Feature	Num. of				Acc	uracy			
Selector	features	S	VM	Decis	ion Tree		m Forest	Naïve	Bayes
	5	0.79		0.83	±0.01	0.82	±0.01	0.81	
	10	0.74	± 0.03	0.84	± 0.01	0.80	± 0.02	0.78	± 0.02
DecisionTree	20	0.63	± 0.02	0.84	± 0.02	0.75	± 0.03	0.71	± 0.02
	50	0.62	± 0.02	0.83	± 0.02	0.71	± 0.02	0.69	± 0.03
	100	0.54	± 0.02	0.76	± 0.03	0.66	± 0.04	0.61	± 0.02
	5	0.81		0.73	± 0.01	0.79	± 0.01	0.81	
	10	0.77		0.69	± 0.01	0.81	± 0.01	0.78	
KW Filter	20	0.85		0.76	± 0.02	0.81	± 0.02	0.86	
	50	0.95		0.65	± 0.02	0.87	± 0.02	0.93	
	100	0.98		0.64	± 0.02	0.92	± 0.02	0.94	
	5	0.81		0.64	± 0.01	0.75	± 0.02	0.79	
	10	0.81		0.70	± 0.02	0.80	± 0.02	0.83	
Lasso	20	0.89		0.68	± 0.02	0.81	± 0.02	0.88	
	50	0.95		0.62	± 0.03	0.89	± 0.02	0.96	
	100	0.93		0.61	± 0.02	0.85	± 0.03	0.94	
	5	0.80		0.72	± 0.02	0.77	± 0.02	0.77	
	10	0.81		0.73	± 0.01	0.81	± 0.01	0.86	
LinearSVM	20	0.89		0.71	± 0.02	0.84	± 0.02	0.88	
	50	0.94		0.67	± 0.02	0.91	± 0.02	0.96	
	100	0.99		0.66	± 0.02	0.91	± 0.03	0.97	
	5	0.51		0.53	± 0.02	0.59	± 0.02	0.42	
	10	0.56	± 0.05	0.55	± 0.03	0.65	± 0.05	0.59	± 0.07
MI Filter	20	0.69		0.65	± 0.02	0.75	± 0.02	0.75	
	50	0.79		0.69	± 0.02	0.83	± 0.02	0.79	
	100	0.76		0.68	± 0.02	0.84	± 0.03	0.85	
	5	0.45		0.50	± 0.01	0.58	± 0.02	0.43	
	10	0.59		0.58	± 0.03	0.68	± 0.02	0.66	± 0.01
MRMR	20	0.68		0.67	± 0.02	0.75	± 0.02	0.75	
	50	0.77	± 0.01	0.71	± 0.02	0.82	± 0.03	0.82	± 0.01
	100	0.77	± 0.01	0.69	± 0.02	0.83	± 0.03	0.85	± 0.01
	5	0.64	± 0.07	0.60	± 0.06	0.64	± 0.07	0.65	± 0.06
	10	0.68	± 0.07	0.62	± 0.05	0.69	± 0.06	0.69	± 0.07
RandomForest	20	0.71	± 0.05	0.61	± 0.06	0.70	± 0.05	0.72	± 0.05
	50	0.73	± 0.06	0.59	± 0.07	0.70	± 0.05	0.72	± 0.06
	100	0.70	± 0.05	0.59	± 0.08	0.68	± 0.06	0.70	± 0.05
	5	0.75		0.66	± 0.02	0.74	± 0.01	0.78	
	10	0.77		0.60	± 0.02	0.75	± 0.02	0.80	
ReliefF	20	0.79		0.74	± 0.02	0.80	± 0.02	0.82	
	50	0.86		0.72	± 0.03	0.84	± 0.02	0.87	
	100	0.91		0.70	± 0.04	0.85	± 0.02	0.91	
	5	0.62	± 0.07	0.57	± 0.04	0.62	±0.06	0.63	± 0.05
	10	0.66	± 0.05	0.57	± 0.04	0.63	± 0.05	0.65	± 0.04
ReliefF-GA	20	0.67	± 0.06	0.58	± 0.05	0.66	± 0.04	0.67	± 0.05
	50	0.70	± 0.04	0.56	± 0.06	0.67	± 0.05	0.70	±0.06
	100	0.77	± 0.05	0.56	±0.06	0.70	±0.04	0.76	± 0.05
	5	0.89	±0.01	0.72	± 0.05	0.81	±0.03	0.82	±0.03
CIDIC:	10	0.88	±0.03	0.68	±0.04	0.81	±0.03	0.88	±0.02
SVM-GA	20	0.76	±0.10	0.60	±0.07	0.72	±0.08	0.76	±0.10
	50	0.53	±0.06	0.49	±0.06	0.50	±0.05	0.52	±0.05
	100	0.52	± 0.06	0.52	±0.06	0.51	±0.06	0.51	± 0.07
	5	0.80		0.67	±0.02	0.74	±0.01	0.79	
CIMIDEE	10	0.91		0.74	±0.02	0.82	±0.02	0.85	
SVM-RFE	20	0.98		0.67	±0.02	0.88	±0.02	0.94	
	50	1.00		0.63	±0.03	0.92	±0.02	1.00	
	100	1.00		0.70	± 0.02	0.93	± 0.02	1.00	

Table 8: Averaged prediction F-measure with standard deviation of the 31 executions of feature selection algorithms on Synth_B dataset for all the evaluated subset sizes.

Feature	Num. of				F-m	easure			
Selector	features	S	VM	Decis	ion Tree		m Forest	Naïve	Bayes
	5	0.79		0.83	±0.01	0.82	±0.01	0.81	
	10	0.74	±0.03	0.84	±0.01	0.80	±0.02	0.78	±0.02
DecisionTree	20	0.62	±0.02	0.84	±0.02	0.75	±0.03	0.70	±0.02
	50	0.61	± 0.03	0.83	± 0.02	0.71	± 0.02	0.68	± 0.03
	100	0.52	±0.03	0.76	± 0.03	0.66	±0.04	0.61	±0.02
	5	0.81		0.73	± 0.01	0.79	±0.01	0.81	
	10	0.76		0.69	± 0.01	0.81	± 0.01	0.77	
KW Filter	20	0.85		0.76	± 0.02	0.81	± 0.02	0.86	
	50	0.95		0.64	± 0.02	0.87	± 0.02	0.93	
	100	0.98		0.63	± 0.02	0.91	± 0.02	0.94	
	5	0.81		0.63	± 0.01	0.75	± 0.02	0.79	
	10	0.81		0.70	± 0.02	0.80	± 0.02	0.83	
Lasso	20	0.89		0.68	± 0.02	0.80	± 0.02	0.88	
	50	0.95		0.61	± 0.03	0.89	± 0.02	0.96	
	100	0.93		0.60	±0.03	0.85	±0.03	0.94	
	5	0.80		0.72	±0.02	0.76	±0.02	0.77	
	10	0.81		0.73	±0.01	0.81	±0.01	0.86	
LinearSVM	20	0.89		0.71	±0.02	0.84	±0.02	0.88	
	50	0.94		0.67	±0.02	0.91	±0.02	0.96	
	100	0.99		0.65	±0.02	0.91	±0.03	0.97	
	5	0.51	10.05	0.52	±0.02	0.58	±0.02	0.41	10.07
MI Filter	10	0.55	± 0.05	0.55	± 0.03 ± 0.02	0.64	± 0.05 ± 0.02	0.58	± 0.07
MI FILLER	50	0.08		0.68	± 0.02 ± 0.02	0.73	± 0.02 ± 0.02	0.79	
	100	0.79		0.68	± 0.02 ± 0.02	0.84	±0.02 ±0.03	0.79	
	5	0.42		0.49	± 0.02	0.54	±0.03	0.42	
	10	0.42		0.49	± 0.02 ± 0.03	0.68	±0.02	0.42	±0.01
MRMR	20	0.68		0.67	± 0.02	0.75	±0.02	0.75	
MIGNIE	50	0.77	±0.01	0.71	±0.02	0.81	±0.02	0.82	±0.01
	100	0.77	±0.01	0.68	±0.02	0.83	±0.03	0.85	±0.01
	5	0.64	±0.07	0.59	±0.06	0.64	±0.07	0.64	±0.06
	10	0.67	±0.08	0.62	±0.05	0.68	±0.06	0.69	± 0.07
RandomForest	20	0.70	±0.05	0.60	±0.06	0.70	±0.05	0.72	±0.05
	50	0.72	± 0.06	0.59	± 0.07	0.70	± 0.05	0.72	±0.06
	100	0.69	± 0.05	0.58	± 0.08	0.68	± 0.06	0.70	± 0.05
	5	0.75		0.66	± 0.02	0.74	±0.01	0.78	
	10	0.77		0.60	± 0.02	0.74	± 0.02	0.80	
ReliefF	20	0.79		0.74	± 0.02	0.80	± 0.02	0.82	
	50	0.86		0.71	± 0.03	0.84	± 0.02	0.87	
	100	0.91		0.70	± 0.04	0.85	± 0.02	0.91	
	5	0.61	± 0.07	0.56	± 0.05	0.61	± 0.06	0.61	± 0.06
	10	0.65	± 0.05	0.56	± 0.04	0.62	± 0.05	0.64	± 0.05
ReliefF-GA	20	0.67	± 0.06	0.57	± 0.05	0.65	± 0.04	0.67	± 0.05
	50	0.69	± 0.04	0.55	± 0.06	0.66	± 0.05	0.69	± 0.06
	100	0.76	± 0.05	0.56	±0.06	0.69	±0.04	0.76	± 0.05
	5	0.89	±0.01	0.72	± 0.05	0.81	±0.03	0.82	±0.03
CIDI CA	10	0.88	±0.03	0.68	±0.04	0.80	±0.04	0.87	±0.02
SVM-GA	20	0.76	±0.10	0.59	±0.07	0.72	±0.08	0.76	±0.10
	50	0.52	±0.06	0.48	±0.06	0.49	±0.05	0.52	±0.05
	100	0.51	± 0.07	0.51	± 0.07	0.51	±0.06	0.50	± 0.07
	5 10	0.80		0.67	±0.02	0.74	±0.01	0.79	
CVM DEE	20	0.91		0.74	± 0.02 ± 0.02	0.82	± 0.02 ± 0.02	0.85	
SVM-RFE	50	1.00		0.67	± 0.02 ± 0.03	0.88	± 0.02 ± 0.02	1.00	
	100	1.00		0.62	± 0.03 ± 0.02	0.92	± 0.02 ± 0.02	1.00	
	100	1.00		0.70	⊥0.02	0.34	⊥0.02	1.00	

Table 9: Averaged prediction accuracy with standard deviation of the 31 executions of feature selection algorithms on Liver dataset for all the evaluated subset sizes.

Feature	Num. of				Λ				
Selector	features	S	VM	Decis	ion Tree	uracy	m Forest	Naive	Bayes
	5	0.87	±0.06	0.94	±0.03	0.93	±0.02	0.89	±0.05
	10	0.86	±0.05	0.94	±0.02	0.92	±0.03	0.86	±0.04
Decision Tree	20	0.81	± 0.04	0.94	± 0.03	0.90	± 0.03	0.75	± 0.04
Decision Tree	50	0.77	± 0.04	0.91	± 0.02	0.86	± 0.04	0.69	± 0.04
	100	0.80	± 0.03	0.92	± 0.02	0.87	± 0.03	0.75	± 0.03
	200	0.83	± 0.02	0.87	±0.03	0.89	±0.03	0.83	± 0.01
	10	0.96		0.86	±0.02 ±0.03	0.97	± 0.01	0.98	
	20	0.98		0.84	±0.03	0.98		0.98	
KW Filter	50	0.98		0.83	±0.03	0.98	±0.01	0.98	
	100	0.98		0.82	± 0.04	0.98	± 0.01	0.98	
	200	0.98		0.81	± 0.03	0.97	± 0.01	0.98	
	5	0.96		0.89	±0.01	0.92	±0.01	0.94	
	10	0.96		0.82	±0.02 ±0.03	0.94	±0.01 ±0.01	0.96	
Lasso	50	0.98		0.84	±0.03	0.97	±0.01	0.98	
	100	0.94		0.83	± 0.03	0.98		0.96	
	200	0.98		0.81	±0.03	0.98		0.96	
	5	0.94		0.89	±0.02	0.91	±0.02	0.92	
	10	0.94		0.88	± 0.02	0.95	± 0.01	0.92	
LinearSVM	20	0.92		0.86	± 0.02	0.92	± 0.01	0.92	
231100110 7 112	50	0.90		0.83	±0.02	0.92	±0.02	0.90	
	100 200	0.92		0.84	±0.03 ±0.02	0.94	±0.02 ±0.02	0.90	
	5	0.98		0.89	±0.02	0.97	±0.02	0.98	
	10	0.96		0.86	±0.02	0.98	±0.01	0.98	
MI Filter	20	0.94		0.85	±0.03	0.98		0.98	
MI Filter	50	0.96		0.84	± 0.03	0.98		0.98	
	100	0.98		0.82	± 0.03	0.98		0.98	
	200	0.96		0.82	± 0.03	0.97	± 0.01	0.96	
	5	0.92		0.92	10.04	0.95	±0.02	0.94	
	10	0.94		0.87	±0.04 ±0.04	0.94	±0.01	0.94	
MRMR	50	0.98		0.85	±0.04	0.98		0.98	
	100	0.98		0.82	±0.03	0.98	±0.01	0.98	
	200	0.98		0.82	± 0.03	0.98	± 0.01	0.98	
	5	0.91	± 0.05	0.83	± 0.04	0.91	± 0.03	0.91	± 0.04
	10	0.94	± 0.02	0.82	± 0.06	0.93	± 0.03	0.93	± 0.02
Random Forest	20	0.95	±0.02	0.82	±0.05	0.94	±0.02	0.93	±0.03
	50 100	0.94	± 0.02 ± 0.03	0.82	±0.05 ±0.06	0.94	±0.03 ±0.02	0.90	± 0.04 ± 0.04
	200	0.93	± 0.03	0.81	±0.06	0.93	±0.02	0.86	±0.04
	5	0.90		0.84	±0.01	0.90	±0.01	0.92	
	10	0.92		0.87	±0.03	0.94		0.96	
ReliefF	20	0.98		0.88	± 0.03	0.97	± 0.01	0.96	
Renen	50	0.98		0.85	± 0.03	0.97	± 0.01	0.92	
	100	0.98		0.83	±0.04	0.96	±0.01	0.94	
	200	0.98	±0.07	0.81	±0.04 ±0.07	0.97	±0.01 ±0.06	0.94	±0.05
	10	0.87	±0.04	0.79	±0.07	0.80	±0.00	0.00	±0.03
	20	0.95	±0.02	0.80	±0.06	0.92	±0.04	0.93	±0.03
ReliefF-GA	50	0.97	±0.01	0.82	±0.05	0.95	±0.02	0.96	±0.02
	100	0.96	± 0.01	0.80	± 0.05	0.95	± 0.02	0.96	±0.01
	200	0.96	± 0.01	0.81	± 0.04	0.96	± 0.01	0.96	± 0.01
	5	1.00	10.00	0.87	±0.04	0.92	±0.03	0.93	±0.04
	10	0.97	± 0.02 ± 0.02	0.84	±0.06 ±0.06	0.94	±0.04 ±0.03	0.95	±0.03 ±0.03
SVM-GA	50	0.97	±0.02 ±0.01	0.82	±0.06	0.96	±0.03 ±0.03	0.95	±0.03
	100	0.97	± 0.01	0.78	±0.06	0.96	±0.03	0.93	±0.03
	200	0.96	±0.01	0.80	±0.06	0.95	±0.03	0.93	±0.03
	5	0.98		0.88	± 0.02	0.94		0.98	
	10	0.98		0.84	± 0.02	0.95	± 0.01	0.96	
SVM-RFE	20	0.98		0.85	±0.04	0.97	± 0.01	0.98	
-	50 100	0.98		0.81	±0.03 ±0.03	0.98	±0.01	0.98	
	200	0.98		0.84	±0.03	0.97	±0.01	0.96	
	200	0.30		0.01	⊥0.00	0.91	_U.U1	0.30	

Table 10: Averaged prediction F-measure with standard deviation of the 31 executions of feature selection algorithms on Liver dataset for all the evaluated subset sizes.

Feature	Num. of				F-m	easure			
Selector	features	S	VM	Decis	ion Tree		om Forest	Naive	Bayes
	5	0.86	± 0.07	0.93	±0.03	0.92	±0.02	0.89	±0.05
	10	0.85	± 0.06	0.94	± 0.02	0.92	± 0.03	0.85	± 0.04
Decision Tree	20	0.80	±0.04	0.93	±0.03	0.89	±0.03	0.73	±0.05
	50 100	0.76	±0.04 ±0.03	0.91	±0.02 ±0.02	0.85	±0.05 ±0.03	0.68	±0.04 ±0.03
	200	0.79	±0.03	0.92	±0.02	0.89	±0.03	0.74	±0.03
	5	0.96	±0.02	0.87	±0.03	0.97	±0.03	0.98	±0.01
	10	0.98		0.86	±0.03	0.98		0.98	
KW Filter	20	0.98		0.84	± 0.02	0.98		0.98	
Kw Finer	50	0.98		0.82	± 0.03	0.98	± 0.01	0.98	
	100	0.98		0.82	±0.04	0.98	±0.01	0.98	
	200	0.98		0.81	±0.03	0.97	±0.01	0.98	
	5	0.96		0.89	±0.01 ±0.02	0.92	±0.01 ±0.01	0.94	
	20	0.98		0.84	±0.02	0.94	±0.01	0.98	
Lasso	50	0.94		0.82	±0.03	0.98	20.01	0.96	
	100	0.98		0.81	±0.03	0.98		0.96	
	200	0.98		0.81	± 0.03	0.98		0.96	
	5	0.94		0.89	± 0.02	0.91	± 0.02	0.91	
	10	0.94		0.88	±0.02	0.95	±0.01	0.91	
LinearSVM	20 50	0.91		0.86	± 0.02 ± 0.02	0.92	±0.01 ±0.02	0.91	
	100	0.89		0.83	±0.02 ±0.03	0.91	±0.02 ±0.02	0.89	
	200	0.91		0.83	±0.03	0.94	±0.02	0.89	
	5	0.98		0.89	±0.02	0.97	±0.01	0.98	
	10	0.96		0.85	±0.04	0.98		0.98	
MI Filter	20	0.94		0.85	± 0.03	0.98		0.98	
MI Filter	50	0.96		0.84	± 0.03	0.98		0.98	
	100	0.98		0.82	±0.03	0.98	1004	0.98	
	200	0.96		0.82	± 0.04	0.97	±0.01 ±0.02	0.96	
	5 10	0.91		0.92	±0.04	0.95	±0.02 ±0.01	0.94	
	20	0.94		0.86	±0.04	0.94	±0.01	0.94	
MRMR	50	0.98		0.85	±0.03	0.98		0.98	
	100	0.98		0.82	± 0.04	0.98	± 0.01	0.98	
	200	0.98		0.81	± 0.04	0.98	± 0.01	0.98	
	5	0.91	± 0.05	0.83	± 0.04	0.90	± 0.03	0.91	± 0.04
	10	0.94	±0.02	0.81	±0.06	0.93	±0.03	0.93	±0.03
Random Forest	20 50	0.95	± 0.02 ± 0.02	0.81	±0.05 ±0.06	0.94	±0.03 ±0.03	0.93	± 0.03 ± 0.04
	100	0.94	±0.02	0.81	±0.06	0.94	±0.03	0.87	±0.04
	200	0.93	±0.02	0.81	±0.06	0.94	±0.03	0.86	±0.04
	5	0.89		0.84	±0.01	0.90	±0.01	0.92	
	10	0.91		0.87	± 0.03	0.94		0.96	
ReliefF	20	0.98		0.87	± 0.03	0.97	± 0.01	0.96	
Tonon	50	0.98		0.84	±0.03	0.97	±0.01	0.91	
	100 200	0.98		0.83	±0.04 ±0.04	0.96	±0.01 ±0.01	0.93	
	5	0.98	±0.08	0.78	±0.04 ±0.08	0.85	±0.01 ±0.07	0.93	±0.06
	10	0.91	±0.03	0.78	±0.08	0.90	±0.03	0.91	±0.03
D. P. CD. CLA	20	0.95	±0.02	0.79	±0.06	0.92	±0.04	0.93	±0.03
ReliefF-GA	50	0.97	± 0.01	0.81	±0.06	0.95	± 0.02	0.96	± 0.02
	100	0.96	± 0.01	0.79	± 0.05	0.95	± 0.02	0.96	± 0.01
	200	0.96	± 0.01	0.81	±0.04	0.96	±0.01	0.96	±0.01
	5	1.00	10.00	0.87	±0.05	0.92	±0.03	0.93	±0.04
	10	0.97	± 0.02 ± 0.02	0.84	±0.06 ±0.06	0.94	±0.04 ±0.03	0.95	± 0.03 ± 0.04
SVM-GA	50	0.97	±0.02	0.82	±0.06 ±0.07	0.95	±0.03	0.96	±0.04 ±0.03
	100	0.97	±0.01	0.77	±0.07	0.96	±0.03	0.94	±0.03
	200	0.96	±0.01	0.79	±0.07	0.95	±0.03	0.93	±0.03
	5	0.98		0.87	± 0.02	0.94		0.98	
	10	0.98		0.83	± 0.02	0.95	±0.01	0.96	
SVM-RFE	20	0.98		0.85	±0.04	0.97	± 0.01	0.98	
	50 100	0.98		0.81	±0.03 ±0.03	0.98	±0.01	0.98	
	200	0.98		0.84	±0.03	0.97	±0.01	0.96	
	200	0.30		0.01	±0.03	0.91	±0.01	0.30	

Table 11: Averaged prediction accuracy with standard deviation of the 31 executions of feature selection algorithms on Prostate dataset for all the evaluated subset sizes.

Feature	Num. of				Acc	uracy			
Selector	features	S	VM	Decis	ion Tree		om Forest	Naïve	Bayes
	5	0.71		0.75	± 0.02	0.79	±0.01	0.70	
	10	0.70	± 0.04	0.81	± 0.03	0.75	± 0.03	0.66	± 0.03
Decision Tree	20 50	0.67	±0.04	0.77	±0.03	0.70	±0.03	0.62	±0.04
	100	0.63	±0.03 ±0.02	0.75	±0.03 ±0.02	0.65	±0.03 ±0.02	0.59	±0.03 ±0.01
	200	0.66	±0.01	0.63	±0.03	0.67	±0.03	0.67	±0.01
	5	0.71		0.64	±0.01	0.70	±0.01	0.75	
	10	0.73		0.67	± 0.02	0.68	± 0.02	0.76	
KW Filter	20	0.73		0.60	±0.02	0.72	±0.01	0.72	
	50 100	0.73		0.63	± 0.02 ± 0.03	0.72	±0.01 ±0.01	0.72	
	200	0.74		0.63	±0.03	0.71	±0.01	0.70	
	5	0.69		0.62	±0.02	0.66	±0.02	0.70	
	10	0.74		0.63	± 0.01	0.71	± 0.02	0.72	
Lasso	20	0.85		0.68	± 0.02	0.78	± 0.02	0.85	
	50	0.87		0.61	±0.02	0.79	±0.03	0.79	
	100 200	0.83		0.63	± 0.03 ± 0.02	0.77	±0.02 ±0.02	0.79	
	5	0.70		0.67	±0.02	0.71	±0.02	0.70	
	10	0.75		0.63	±0.02	0.73	±0.02	0.77	
LinearSVM	20	0.77		0.68	± 0.02	0.78	± 0.02	0.83	
Linearsvivi	50	0.87		0.62	±0.02	0.85	±0.02	0.85	
	100 200	0.87		0.63	±0.03 ±0.02	0.81	±0.03 ±0.03	0.83	
	5	0.69		0.64	±0.02	0.53	±0.03	0.83	
	10	0.64		0.63	±0.02	0.70	±0.02	0.68	
MI Filter	20	0.72		0.59	±0.03	0.72	±0.02	0.69	
MI Filter	50	0.70		0.63	± 0.02	0.73	± 0.02	0.70	
	100	0.72		0.59	±0.02	0.73	±0.02	0.72	
	200	0.71		0.56	± 0.02 ± 0.02	0.72	±0.01 ±0.02	0.71	
	5 10	0.03		0.60	±0.02	0.09	±0.02	0.03	
1 m 1 m	20	0.77		0.60	±0.02	0.76	±0.01	0.74	
MRMR	50	0.73		0.62	± 0.03	0.76	± 0.01	0.74	
	100	0.71		0.62	± 0.02	0.75	± 0.02	0.70	
	200	0.70	10.02	0.61	±0.02	0.75	±0.02	0.77	10.02
	5 10	0.69	± 0.03 ± 0.04	0.60	± 0.05 ± 0.04	0.68	±0.04 ±0.03	0.70	± 0.03 ± 0.03
	20	0.70	±0.04	0.63	±0.04	0.73	±0.03	0.72	±0.03
Random Forest	50	0.73	±0.03	0.63	±0.05	0.72	±0.02	0.73	±0.02
	100	0.71	± 0.03	0.61	± 0.04	0.71	±0.02	0.72	± 0.03
	200	0.69	± 0.03	0.60	± 0.04	0.70	± 0.03	0.69	± 0.02
	5	0.71		0.60	±0.02	0.69	±0.01	0.71	
	10	0.71		0.63	± 0.02 ± 0.02	0.69	±0.01 ±0.01	0.72	
ReliefF	50	0.72		0.62	±0.02	0.70	±0.02	0.73	
	100	0.74		0.65	±0.02	0.71	±0.02	0.74	
	200	0.75		0.59	± 0.03	0.72	± 0.01	0.77	
	5	0.66	±0.04	0.59	±0.04	0.65	±0.05	0.67	±0.04
	10	0.70	±0.04	0.60	±0.05	0.67	±0.04	0.69	±0.04 ±0.03
ReliefF-GA	50	0.71	±0.03 ±0.03	0.61	±0.05 ±0.04	0.71	±0.03 ±0.02	0.73	±0.03 ±0.02
	100	0.72	±0.03	0.62	±0.04	0.71	±0.02	0.73	±0.02
	200	0.74	± 0.02	0.59	± 0.05	0.72	± 0.02	0.73	±0.01
	5	0.88	± 0.01	0.69	± 0.04	0.78	± 0.03	0.81	± 0.03
	10	0.87	±0.03	0.68	±0.04	0.82	±0.03	0.85	±0.02
SVM-GA	20 50	0.86	±0.03 ±0.03	0.65	±0.05 ±0.05	0.81	±0.02 ±0.04	0.84	±0.02 ±0.03
	100	0.81	±0.03	0.63	±0.05	0.76	±0.04 ±0.04	0.79	± 0.03 ± 0.04
	200	0.62	± 0.03	0.55	±0.03	0.62	±0.04	0.65	±0.03
	5	0.77		0.69	±0.01	0.72	±0.02	0.77	
	10	0.88		0.70	± 0.02	0.79	± 0.02	0.84	
SVM-RFE	20	0.97		0.64	±0.02	0.82	±0.03	0.85	
	50 100	0.97		0.63	±0.02 ±0.02	0.84	±0.02 ±0.02	0.87	
	200	0.97		0.62	±0.02	0.84	±0.02 ±0.02	0.88	
	200	0.91		0.00	±0.00	0.00	⊥0.02	0.90	

Table 12: Averaged prediction F-measure with standard deviation of the 31 executions of feature selection algorithms on Prostate dataset for all the evaluated subset sizes.

Selector 6 stures SVM Decision Tree Raulow For 100 Naïve Bayes Decision Tree 5 0.75 ±0.02 0.79 ±0.01 0.66 ±0.04 0.77 ±0.03 0.66 ±0.03 0.66 ±0.03 0.66 ±0.03 0.66 ±0.03 0.66 ±0.03 0.61 ±0.04 0.77 ±0.03 0.61 ±0.04 0.70 ±0.03 0.61 ±0.04 0.70 ±0.03 0.61 ±0.04 0.69 ±0.01 0.61 ±0.01 0.69 ±0.01 0.61 ±0.03 0.62 ±0.03 0.62 ±0.03 0.62 ±0.03 0.72 ±0.01 0.75 50 0.73 0.66 ±0.02 0.60 ±0.02 0.60 ±0.02 0.60 ±0.02 0.60 ±0.02 0.60 ±0.02 0.60 ±0.02 0.73 ±0.01 0.72 ±0.01 0.72 ±0.01 0.72 ±0.02 0.60 ±0.02 0.60 ±0.02 0.60 ±0.02 0.62	Feature	Num. of				F-m	easure			
Decision Tree 10			S	VM	Decisi			om Forest	Naïve	Bayes
Decision Tree		5	0.70		0.75	±0.02	0.79	±0.01	0.69	
Decision free 50										
100	Decision Tree									
No. 1.00										
KW Filter 5										
KW Filter 10				⊥0.01						±0.02
KW Filter 20		-								
SO	IZIV ETI									
Section Column	KW Filter				0.62					
Lasso										
Lasso										
Lasso										
Section Sect										
100	Lasso									
Section Sect										
LinearSVM										
LinearSVM 20		5	0.69		0.66	± 0.01	0.71	± 0.02	0.70	
Sumarsymatic Suma										
No.	LinearSVM									
MI Filter 200										
MI Filter 5										
MI Filter 10										
MI Filter										
Name	MI Dile									
MRMR Second Column Colu	MI Filter	50	0.70		0.61	± 0.02	0.73	± 0.02	0.69	
MRMR \begin{array}{c c c c c c c c c c c c c c c c c c c										
MRMR										
MRMR										
MRMR 50										
Relieff 100	MRMR									
Random Forest \$										
Random Forest 10		200	0.70				0.75	±0.02	0.77	
Random Forest 20		5	0.68	± 0.03		± 0.05	0.68		0.70	± 0.02
ReliefF-GA Solution Forest 50										
ReliefF-GA 100	Random Forest									
Relieff-GA Relief										
ReliefF-GA 5										
ReliefF Rel				±0.05						10.02
Relieff-										
SVM-RFE SO	D.11.60									
ReliefF-GA	Relieir									
$ \text{ReliefF-GA} \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$										
Relieff-GA 10				1001						1001
ReliefF-GA										
Relieff'-GA 50										
SVM-GA 100 0.72 ±0.03 0.61 ±0.04 0.71 ±0.02 0.73 ±0.02 200 0.73 ±0.02 0.59 ±0.05 0.71 ±0.02 0.73 ±0.01 10 0.87 ±0.01 0.68 ±0.04 0.78 ±0.03 0.80 ±0.03 20 0.86 ±0.03 0.65 ±0.05 0.80 ±0.02 0.84 ±0.02 50 0.80 ±0.03 0.62 ±0.05 0.76 ±0.04 0.79 ±0.03 100 0.72 ±0.05 0.57 ±0.05 0.76 ±0.04 0.79 ±0.03 200 0.61 ±0.03 0.62 ±0.05 0.76 ±0.04 0.79 ±0.03 200 0.61 ±0.03 0.55 ±0.04 0.61 ±0.04 0.72 ±0.04 200 0.61 ±0.03 0.55 ±0.04 0.61 ±0.04 0.61 ±0.04 0.64 ±0.04	ReliefF-GA									
SVM-GA										
SVM-GA										
SVM-GA 20 0.86 ±0.03 0.65 ±0.05 0.80 ±0.02 0.84 ±0.02 50 0.80 ±0.03 0.62 ±0.05 0.76 ±0.04 0.79 ±0.03 100 0.72 ±0.05 0.57 ±0.05 0.70 ±0.04 0.72 ±0.04 200 0.61 ±0.03 0.55 ±0.04 0.61 ±0.04 0.72 ±0.04 0.61 ±0.04 0.72 ±0.04 0.61 ±0.04 0.61 ±0.04 0.61 ±0.04 0.61 ±0.04 0.61 ±0.04 0.61 ±0.04 0.61 ±0.04 0.61 ±0.04 0.72 ±0.04 0.61 ±0.04 0.72 ±0.04 0.72 ±0.04 0.72 ±0.04 0.72 ±0.04 0.72 ±0.04 0.72 ±0.04 0.72 ±0.02 0.76 ±0.04 ±0.02 0.84 ±0.02 0.84 ±0.02 0.84 ±0.02 0.87 ±0.02 0.87 ±0.02										
SVM-GA 50 0.80 ±0.03 0.62 ±0.05 0.76 ±0.04 0.79 ±0.03 100 0.72 ±0.05 0.57 ±0.05 0.70 ±0.04 0.72 ±0.04 200 0.61 ±0.03 0.55 ±0.04 0.61 ±0.04 0.61 ±0.04 0.62 ±0.04 5 0.77 0.69 ±0.01 0.71 ±0.02 0.76 10 0.88 0.70 ±0.03 0.78 ±0.02 0.84 SVM-RFE 20 0.96 0.64 ±0.02 0.81 ±0.03 0.85 50 0.97 0.62 ±0.02 0.84 ±0.02 0.84 ±0.02 0.87										
100 0.80 ±0.03 0.62 ±0.05 0.76 ±0.04 0.79 ±0.05 100 0.72 ±0.05 0.57 ±0.05 0.70 ±0.04 0.72 ±0.04 200 0.61 ±0.03 0.55 ±0.04 0.61 ±0.04 0.64 ±0.04 5 0.77 0.69 ±0.01 0.71 ±0.02 0.76 10 0.88 0.70 ±0.03 0.78 ±0.02 0.84 20 0.96 0.64 ±0.02 0.81 ±0.03 0.85 50 0.97 0.62 ±0.02 0.84 ±0.02 0.87	SVM-GA									
200 0.61 ±0.03 0.55 ±0.04 0.61 ±0.04 0.64 ±0.04 5 0.77 0.69 ±0.01 0.71 ±0.02 0.76 10 0.88 0.70 ±0.03 0.78 ±0.02 0.84 SVM-RFE 20 0.96 0.64 ±0.02 0.81 ±0.03 0.85 50 0.97 0.62 ±0.02 0.84 ±0.02 0.87										
5 0.77 0.69 ±0.01 0.71 ±0.02 0.76 10 0.88 0.70 ±0.03 0.78 ±0.02 0.84 SVM-RFE 20 0.96 0.64 ±0.02 0.81 ±0.03 0.85 50 0.97 0.62 ±0.02 0.84 ±0.02 0.87										
SVM-RFE 10 0.88 0.70 ±0.03 0.78 ±0.02 0.84 50 0.96 0.64 ±0.02 0.81 ±0.03 0.85 50 0.97 0.62 ±0.02 0.84 ±0.02 0.87				0.00						⊥0.04
SVM-RFE 20 0.96 0.64 ±0.02 0.81 ±0.03 0.85 50 0.97 0.62 ±0.02 0.84 ±0.02 0.87										
$\begin{bmatrix} 50 & 0.97 & 0.62 & \pm 0.02 & 0.84 & \pm 0.02 & 0.87 \end{bmatrix}$	SVM DEE									
	ovm-ree									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 200	⊥ 0.97		0.66	± 0.03	0.83	± 0.02	0.90	

Figure 1: Stability results obtained for kuncheva index, spearman ρ , pearson correlation and canberra distance metrics applied on all 5 datasets with significant amounts of perturbation (Bootstrap sampling).

Figure 2: Stability results obtained for kuncheva index, spearman ρ , pearson correlation and canberra distance metrics applied on all 5 datasets with small amounts of perturbation (90% sampling).

Figure 3: Reliability results obtained for kuncheva index, spearman ρ , pearson correlation and canberra distance metrics applied on all 5 datasets.

