A.03.02 – Processos Politrópicos (Sistemas Fechados)

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-09-11 01h00m22s UTC

Sumário da Parte I

- Processos Politrópicos
 - Apresentação
 - Trabalho de Fronteira

Tópicos de Leitura

Sumário da Parte II

- Tópicos Especiais em Processos Politrópicos
 - Fundamentação Teórica
 - Processos Localmente Politrópicos

Tópicos de Leitura

Parte I

Apresentação de Processo Politrópico

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

Onde:

• P é a pressão do sistema

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

- P é a pressão do sistema
- *v* é o volume específico do sistema

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

- P é a pressão do sistema
- v é o volume específico do sistema
- *n* é o expoente politrópico

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

A equação é utilizada na forma:

$$P_1v_1^n = P_2v_2^n.$$

- P é a pressão do sistema
- v é o volume específico do sistema
- n é o expoente politrópico

É todo o processo para o qual:

$$Pv^n = \text{const.}$$

A equação é utilizada na forma:

$$P_1v_1^n = P_2v_2^n.$$

A versão $PV^n = \text{const.}$, também é usual.

- P é a pressão do sistema
- v é o volume específico do sistema
- *n* é o expoente politrópico

Em processos politrópicos,

• um parâmetro de processo, n, é mantido constante

Em processos politrópicos,

- um parâmetro de processo, n, é mantido constante
- e não necessariamente uma propriedade do sistema.

Em processos politrópicos,

- um parâmetro de processo, n, é mantido constante
- e não necessariamente uma propriedade do sistema.
- porém uma propriedade pode ficar constante, como veremos.

Em processos politrópicos,

- um parâmetro de processo, n, é mantido constante
- e não necessariamente uma propriedade do sistema.
- porém uma propriedade pode ficar constante, como veremos.

Um exemplo trivial é reconhecer que para n = 0, tem-se:

Em processos politrópicos,

- um parâmetro de processo, *n*, é mantido constante
- e não necessariamente uma propriedade do sistema.
- porém uma propriedade pode ficar constante, como veremos.

Um exemplo trivial é reconhecer que para n = 0, tem-se:

$$Pv^0 = \text{const.} \rightarrow P = \text{const.}$$

$$Pv^n = \text{const.}$$

$$Pv^n = c_1$$

$$\log\left(Pv^n=c_1\right) \rightarrow$$

$$\log (Pv^n = c_1) \rightarrow \log(Pv^n) = \log(c_1) \equiv c_2 \rightarrow$$

$$\log \left(P v^n = c_1 \right)
ightharpoonup \ \log (P v^n) = \log (c_1) \equiv c_2
ightharpoonup \ \log P + n \log v = c_2
ightharpoonup \$$

$$\log (Pv^n = c_1) \rightarrow \log(Pv^n) = \log(c_1) \equiv c_2 \rightarrow \log P + n \log v = c_2 \rightarrow \log P = c_2 - n \log v$$

$$\log\left(Pv^n=c_1
ight)
ightharpoonup \ \log(Pv^n)=\log(c_1)\equiv c_2
ightharpoonup \ \log P+n\log v=c_2
ightharpoonup \ \log P=c_2-n\log v \qquad \therefore \qquad \text{uma equação na forma}$$

$$\log \left(P v^n = c_1 \right)
ightharpoonup \ \log \left(P v^n \right) = \log \left(c_1 \right) \equiv c_2
ightharpoonup \ \log P + n \log v = c_2
ightharpoonup \ \log P = c_2 - n \log v \qquad \therefore \qquad \text{uma equação na forma} \ y = A + B x \qquad \text{para } y \equiv \log P, \quad x \equiv \log v, \quad \text{etc.}$$

Assim

- Todo processo politrópico
- o é representado por um segmento de reta
- que une os estados inicial e final
- em coordenadas $\log P \times \log v$.

Assim

- Todo processo politrópico
- é representado por um segmento de reta
- que une os estados inicial e final
- em coordenadas $\log P \times \log v$.

Logo, processos politrópicos a v = const., são obtidos fazendo $n \to \pm \infty$.

Segundo (Chantraine, 1968), o termo "politrópico":

• origina do grego "πολύτροπος", o qual é composto de "πολύς" e de "τρόπος".

- origina do grego "πολύτροπος", o qual é composto de "πολύς" e de "τρόπος".
- "πολύς" inclui significados de « nombreux, vaste », a saber, "numeroso, vasto".

- origina do grego "πολύτροπος", o qual é composto de "πολύς" e de "τρόπος".
- "πολύς" inclui significados de « nombreux, vaste », a saber, "numeroso, vasto".
- "τρόπος" inclui significados de « manière, mode », a saber, "maneira, modo".

- origina do grego "πολύτροπος", o qual é composto de "πολύς" e de "τρόπος".
- "πολύς" inclui significados de « nombreux, vaste », a saber, "numeroso, vasto".
- "τρόπος" inclui significados de « manière, mode », a saber, "maneira, modo".
- Ou seja: "muitas formas ou maneiras". O termo composto

- origina do grego "πολύτροπος", o qual é composto de "πολύς" e de "τρόπος".
- "πολύς" inclui significados de « nombreux, vaste », a saber, "numeroso, vasto".
- "τρόπος" inclui significados de « manière, mode », a saber, "maneira, modo".
- Ou seja: "muitas formas ou maneiras". O termo composto
- "πολύτροπος" inclui significados de « souple, très varié »: "flexível, muito variado",

- origina do grego "πολύτροπος", o qual é composto de "πολύς" e de "τρόπος".
- "πολύς" inclui significados de « nombreux, vaste », a saber, "numeroso, vasto".
- "τρόπος" inclui significados de « manière, mode », a saber, "maneira, modo".
- Ou seja: "muitas formas ou maneiras". O termo composto
- "πολύτροπος" inclui significados de « souple, très varié »: "flexível, muito variado",
- indicando flexibilidade e a vasta variedade de processos que pode representar!

$$Pv^n = c_1$$

$$Pv^n = c_1 = P_1v_1^n = P_2v_2^n -$$

$$Pv^n = c_1 = P_1v_1^n = P_2v_2^n \rightarrow$$

$$Pv^n = c_1 = P_1v_1^n = P_2v_2^n -$$

$$P = c_1 v^{-n}$$

$$w_f = \int_1^2 P \, dv - dv$$

$$Pv^{n} = c_{1} = P_{1}v_{1}^{n} = P_{2}v_{2}^{n} \rightarrow$$

$$P = c_{1}v^{-n};$$

$$w_{f} = \int_{1}^{2} P dv \rightarrow$$

$$Pv^{n} = c_{1} = P_{1}v_{1}^{n} = P_{2}v_{2}^{n} \rightarrow$$

$$P = c_{1}v^{-n};$$

$$w_{f} = \int_{1}^{2} P dv \rightarrow$$

$$w_{f} = c_{1} \int_{1}^{2} v^{-n} dv \rightarrow$$

$$w_{f} = P_{1}v_{1}^{n} \int_{1}^{2} v^{-n} dv.$$

$$Pv^{n} = c_{1} = P_{1}v_{1}^{n} = P_{2}v_{2}^{n}$$

$$P = c_{1}v^{-n}$$
:

$$w_f = \int_1^2 P \, dv \to$$

$$w_f = c_1 \int_1^2 v^{-n} dv - c$$

$$w_f = P_1 v_1^n \int_1^2 v^{-n} dv.$$

A integração de v^{-n} toma formas diferentes dependendo se n = 1 ou não:

$$Pv^{n} = c_{1} = P_{1}v_{1}^{n} = P_{2}v_{2}^{n} \rightarrow$$

$$P = c_{1}v^{-n};$$

$$\int_{0}^{2} p_{1} dx$$

$$J_1$$

$$w_s = c_1 \int_0^2 v^{-n} dv =$$

$$w_f = c_1 \int_1^2 v^{-n} \, dv -$$

$$w_f = P_1 v_1^n \int_1^2 v^{-n} dv.$$

A integração de v^{-n} toma formas diferentes dependendo se n = 1 ou não:

$$w_f = egin{cases} rac{P_2 v_2 - P_1 v_1}{1-n} & ext{para } n
eq 1, \ P v \ln \left(rac{v_2}{v_1}
ight) & ext{para } n = 1. \end{cases}$$

$$Pv^{n} = c_{1} = P_{1}v_{1}^{n} = P_{2}v_{2}^{n} \rightarrow$$

$$P = c_{1}v^{-n};$$

$$w_{f} = \int_{1}^{2} P dv \rightarrow$$

$$w_{f} = c_{1} \int_{1}^{2} v^{-n} dv \rightarrow$$

$$w_{f} = P_{1}v_{1}^{n} \int_{1}^{2} v^{-n} dv.$$

A integração de v^{-n} toma formas diferentes dependendo se n = 1 ou não:

$$w_f = egin{cases} rac{P_2 v_2 - P_1 v_1}{1 - n} & ext{para } n
eq 1, \ P v \ln \left(rac{v_2}{v_1}
ight) & ext{para } n = 1. \end{cases}$$

No último caso, o produto Pv pode ser tanto P_1v_1 ou P_2v_2 , em função do próprio processo.

Para gases ideais, Pv = RT, passando por um processo politrópico, $Pv^n = \text{const.}$, o resultado

$$w_f = egin{cases} rac{P_2 v_2 - P_1 v_1}{1-n} & ext{para } n
eq 1, \ P v \ln \left(rac{v_2}{v_1}
ight) & ext{para } n = 1. \end{cases}$$

Para gases ideais, Pv = RT, passando por um processo politrópico, $Pv^n = \text{const.}$, o resultado

$$w_f = egin{cases} rac{P_2 v_2 - P_1 v_1}{1 - n} & ext{para } n
eq 1, \ P v \ln \left(rac{v_2}{v_1}
ight) & ext{para } n = 1. \end{cases}$$

é válido, mas pode ser escrito como:

Para gases ideais, Pv = RT, passando por um processo politrópico, $Pv^n = \text{const.}$, o resultado

$$w_f = egin{cases} rac{P_2 v_2 - P_1 v_1}{1-n} & ext{para } n
eq 1, \ P v \ln \left(rac{v_2}{v_1}
ight) & ext{para } n = 1. \end{cases}$$

é válido, mas pode ser escrito como:

$$w_f = egin{cases} rac{R(T_2 - T_1)}{1 - n} & ext{para } n
eq 1, \ Pv \ln \left(rac{v_2}{v_1}
ight) & ext{para } n = 1. \end{cases}$$
 (gás ideal)

Para gases ideais, Pv = RT, passando por um processo politrópico, $Pv^n = \text{const.}$, o resultado

$$w_f = egin{cases} rac{P_2 v_2 - P_1 v_1}{1-n} & ext{para } n
eq 1, \ P v \ln \left(rac{v_2}{v_1}
ight) & ext{para } n = 1. \end{cases}$$

é válido, mas pode ser escrito como:

$$w_f = egin{cases} rac{R(T_2 - T_1)}{1 - n} & ext{para } n
eq 1, \ Pv \ln \left(rac{v_2}{v_1}
ight) & ext{para } n = 1. \end{cases}$$
 (gás ideal)

Para gases ideais, expoente n = 1 significa:

Para gases ideais, Pv = RT, passando por um processo politrópico, $Pv^n = \text{const.}$, o resultado

$$w_f = egin{cases} rac{P_2 v_2 - P_1 v_1}{1-n} & ext{para } n
eq 1, \ P v \ln \left(rac{v_2}{v_1}
ight) & ext{para } n = 1. \end{cases}$$

é válido, mas pode ser escrito como:

$$w_f = egin{cases} rac{R(T_2 - T_1)}{1 - n} & ext{para } n
eq 1, \ Pv \ln \left(rac{v_2}{v_1}
ight) & ext{para } n = 1. \end{cases}$$
 (gás ideal)

Para gases ideais, expoente n = 1 significa:

$$Pv^1 = \text{const.} = RT \quad \neg \quad T = \text{const.}$$

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A. *Termodinâmica* 7^a *Edição*. Seção 4-1.

AMGH. Porto Alegre. ISBN 978-85-8055-200-3

Parte II

Tópicos Especiais em Processos Politrópicos

Tópicos Especiais em Processos Politrópicos – Pré-Requisitos

Os tópicos especiais em processos politrópicos têm por pré-requisito:

- A primeira lei da Termodinâmica;
- O balanço de energia; e
- Propriedades energéticas de gases ideais.

Que constituem o tópico A0303 desta série.

Tomando-se a 1^a lei na forma diferencial e:

• definindo a razão de calor e trabalho, $K \equiv \frac{\delta q}{\delta w}$,

- definindo a razão de calor e trabalho, $K \equiv \frac{\delta q}{\delta w}$,
- também conhecida como razão de transferência de energia,

- definindo a razão de calor e trabalho, $K \equiv \frac{\delta q}{\delta w}$,
- também conhecida como razão de transferência de energia,
- e substituindo no balanço de energia na forma direfencial, tem-se:

- definindo a razão de calor e trabalho, $K \equiv \frac{\delta q}{\delta w}$,
- também conhecida como razão de transferência de energia,
- e substituindo no balanço de energia na forma direfencial, tem-se:

$$\delta q - \delta w = du$$
 \rightarrow

- definindo a razão de calor e trabalho, $K \equiv \frac{\delta q}{\delta w}$,
- também conhecida como razão de transferência de energia,
- e substituindo no balanço de energia na forma direfencial, tem-se:

$$\delta q - \delta w = du \qquad \neg$$
$$(K-1)\delta w = du \qquad \neg$$

- definindo a razão de calor e trabalho, $K \equiv \frac{\delta q}{\delta w}$,
- também conhecida como razão de transferência de energia,
- e substituindo no balanço de energia na forma direfencial, tem-se:

$$\delta q - \delta w = du \qquad \neg$$

$$(K-1)\delta w = du \qquad \neg$$

$$(K-1)P dv = du.$$

Assumindo comportamento ideal da substância que compõe o sistema:

Tópicos Especiais – Processos Localmente Politrópicos

A SER CONTINUADO PARA A PARTE-II...

Tópicos de Leitura I

Çengel, Y. A. e Boles, M. A. *Termodinâmica* 7^a *Edição*. Seção 4-1.

AMGH. Porto Alegre. ISBN 978-85-8055-200-3

