

Programación Declarativa

Ingeniería Informática Cuarto curso. Primer cuatrimestre

Escuela Politécnica Superior de Córdoba Universidad de Córdoba

Curso académico: 2024 - 2025

Práctica número 3.- Iteración, recursión y funciones usadas como parámetros o devueltas como resultados

Operaciones con números

1. Conjetura de Collatz

• Considérese la siguiente función

$$f(n) = \begin{cases} n/2, & \text{si } n \text{ es par} \\ 3n+1, & \text{si } n \text{ es impar} \end{cases}$$

• Y la sucesión numérica para un número "n"

$$a_i = \begin{cases} n, & \text{si } i = 0\\ f(a_{i-1}), & \text{si } i > 0 \end{cases}$$

- La conjetura de Lothar Collatz afirma que la sucesión numérica siempre se repite indefinidamente cuando alcanza los términos 4, 2, 1, independientemente del valor de "n".
- Por ejemplo
 - Para n = 1, se genera la siguiente sucesión numérica
 1, 4, 2, 1.
 - Para n = 2, se genera la siguiente sucesión numérica
 2, 1, 4, 2, 1.
 - Para n = 3, se genera la siguiente sucesión numérica
 3, 10, 5, 16, 8, 4, 2, 1.
 - Para n = 4, se genera la siguiente sucesión numérica
 4, 2, 1.
 - Para n = 5, se genera la siguiente sucesión numérica
 5, 16, 8, 4, 2, 1.
 - \circ Para n = 6, se genera la siguiente sucesión numérica
 - **6**, 3, 10, 5, 16, 8, 4, 2, 1.
- Codifica **dos funciones**, una <u>iterativa</u> y otra <u>recursiva</u>, que muestren la sucesión numérica de la conjetura de Collatz para un número "n" que se pasará como parámetro.

2. Número primo

 Un número es primo si no tiene divisores propios menores o iguales que su raíz cuadrada.

- Codifica un predicado <u>iterativo</u>, denominado **primolterativo?**, para comprobar si un número es primo o no.
- Codifica un predicado <u>recursivo</u>, denominado **primoRecursivo?**, para comprobar si un número es primo o no.

3. Números afortunados de Euler

- Un número natural "n" es un número afortunado de Euler si son primos todos los números de la forma k² - k - n, donde 1 ≤ k < n.
- Solamente existen seis números afortunados de Euler: 2, 3, 5, 11, 17 y 41.
- Codifica una función iterativa que permita generar todos los números primos usando el polinomio de Euler k² - k + n, donde "n" es un número afortunado de Euler.

Sucesiones numéricas y límites

4. Número e

 Considera el término general de una sucesión numérica que converge al número e: 2.718281...

$$a_n = (1 + 1/n)^n$$

- Codifica las siguientes funciones:
 - terminoNumeroE
 - Calcula el término n-ésimo de la sucesión numérica.
 - Recibe como parámetro el valor de n.
 - limiteSucesionNumeroE
 - Se debe codificar una función <u>iterativa</u> que permita calcular el límite de la sucesión numérica que converge al número e.
 - La función debe recibir como argumento la **cota de error**, que permitirá terminar la función cuando dos elementos consecutivos de la sucesión disten menos que dicha cota de error: $|a_{n+1} a_n| < cota$

5. El número áureo

• El número áureo se define como

$$\varphi = \frac{1+\sqrt{5}}{2} = 1,61803398 9....$$

• Codifica una función <u>recursiva</u> denominada "sumaAureo" que permita calcular el número áureo usando la siguiente suma infinita:

$$\varphi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}}}$$

- o La función recibirá como parámetro el número de sumandos.
 - (suma-aureo 0)0

- (suma-aureo 1)
- (suma-aureo 2) 1.4142135623730951
- (suma-aureo 10) 1.6180165422314876
- (suma-aureo 100)1.618033988749895
- Codifica una versión iterativa de la función.

Funciones pasadas como argumentos

6. Fracciones continuas

• Una fracción continua infinita es una expresión de la forma:

$$f = \frac{N_1}{D_1 + \frac{N_2}{D_2 + \frac{N_3}{D_3 + \frac{N_4}{D_4 + \cdots}}}}$$

- Codifica una función <u>iterativa</u>, denominada "fracción-continua", que permita calcular la fracción continua hasta el término k.
 - o La función debe recibir tres argumentos: (fracción-continua N D k)
 - N: función de un argumento que calcula el valor de N_k
 - D: función de un argumento que calcula el valor de D_k
 - k: número de términos de la fracción continua
- Comprueba que la siguiente llamada a la función permite obtener una aproximación a $1/\phi = 0.6180339887498948$

$$\frac{1}{\varphi} = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}}$$

```
(fracción-continua (lambda (x) 1.0) ;; función que calcula el valor de N_k (lambda (x) 1.0) ;; función que calcula el valor de D_k k
```

- Codifica una versión <u>recursiva</u> de la función "fracción-continua" y comprueba su funcionamiento con la llamada que calcula la aproximación a 1/φ.
 - Nota: se recomienda usar una función auxiliar local.

7. Límite de cualquier sucesión numérica convergente

• Codifica una función <u>iterativa</u> denominada "limitelterativa" que permita calcular una aproximación al límite de cualquier sucesión numérica

convergente.

- o La función debe recibir como argumentos a:
 - Una función que represente el término general de la sucesión numérica convergente.
 - La cota de error, que permitirá terminar la función cuando dos elementos consecutivos de la sucesión disten menos que dicha cota de error.
- ¿Cómo se llamaría a la función "límitelterativa" si se desea calcular el límite de la sucesión numérica cuyo término general es $a_n = (1 + 1/n)^n$ con una cota de error de 0.001?

8. Integral definida usando el método de los trapecios

- Codifica una función iterativa, denominada integral, que
 - reciba cuatro parámetros:
 - Los dos extremos de un intervalo: a y b
 - Una función que sea positiva en el intervalo [a,b]: f
 - Un número: *n*
 - y devuelva la aproximación a la integral definida según el método de los trapecios.

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n-1} \left(\frac{f(x_i) + f(x_{i-1})}{2} \right) * h$$

donde
$$h = (b - a) / n$$
 $y x_i = a + i * h$

- ¿Cómo se llamaría a la función integral para calcular el área de la función
 - f(x) = 1/x definida en el intervalo [1,2]?
- 9. Suma de series convergentes basadas en una cota de error
 - Codifica una función <u>iterativa</u> que permita calcular la suma de cualquier serie numérica convergente teniendo en cuenta una <u>cota de error</u>.

$$serie = \sum_{\substack{n=inicial\\n=n+signient(n)}} f(n)$$

- o La función recibirá como parámetros
 - Una función que represente el término general de la serie: f
 - El índice del primer término: inicial
 - Una función que permita pasar al siguiente término de la serie: siguiente
 - Una cota de error de forma que la suma de la serie <u>finalizará</u> cuando el valor absoluto del término actual que se vaya a sumar sea menor que dicha cota de error: |f(n)| < cota
- Codifica una versión recursiva de la función anterior.
- **Utiliza las funciones anteriore**s para comprobar que la siguiente serie numérica permite calcular una aproximación al número *e*: 2.71828182...

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

Función "devuelta" como resultado

10. Codifica una función denominada *suavizar* que

- reciba como parámetros a una función f y una pequeña cantidad positiva dx
- y devuelva como resultado la función suavizada que calcularía la siguiente expresión:

$$\frac{f(x-dx)+f(x)+f(x+dx)}{3}$$

• ¿Cómo se invocaría la **función suavizada** si se desea aplicar a la función **sqrt** y al número 2?