Ourata della prova: 1h 30'			
		1	.1

Esame di Logica e Algebra				
Politecnico di Milano – Ingegneria Informatica – 31 Agosto 2018				
Nome:	Matricola:			
	ecnico di Milano – Ingegneria I	ecnico di Milano – Ingegneria Informatica – 31 Agosto 2018		

Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il testo e sul retro. I fogli di brutta non devono essere consegnati. I compiti privi di indicazione leggibile di nome e cognome non verranno corretti.

1. Sia $X = \{a, b, c, d, e\}$ $Y = \{x, y, z\}$ e sia $R \subseteq X \times Y$ la relazione definita da:

$$R = \{(a,x),(b,y),(b,z),(c,x),(d,z),(e,x),(e,y),(e,z)\}$$

- (a) Quante funzioni sono contenute in R? Quante di queste sono iniettive?
- (b) Indicare una funzione $f: X \to Y$ che sia contenuta in R. Determinare $\ker f$, e costruire $X/_{\ker f}$.
- (c) Dire se esiste una funzione $g: X \to Y$ che sia suriettiva e contenuta in R. In caso affermativo costruire una sua inversa sinistra e dire quante sono le possibili inverse sinistre di g.

Soluzione:

- (a) Dato che l'unico elemento in relazione con a e c è x e con d è z, allora se $f \subseteq R$ necessariamente f(a) = f(c) = x, mentre f(d) = z, f(b) può essere o z o y, mentre f(e) può essere x, y, z. Quindi $2 \cdot 3 = 6$ scelte. Non ci sono funzioni iniettive dato che se esistesse una funzione iniettiva g avremmo $5 = |g(X)| \le |Y| = 3$, assurdo.
- (b) Una possibile funzione è f(a) = f(c) = x, f(d) = f(b) = f(e) = z. Le ker f-classi di f sono $[a]_{\ker f} = \{a, c\}$, $[b]_{\ker f} = \{d, b, e\}$ da cui $X/_{\ker f} = \{[a]_{\ker f}, [b]_{\ker f}\}$.
- (c) Una possibile funzione suriettiva è g(a) = g(c) = x, g(d) = g(b) = z, g(e) = y. Un'inversa sinistra è data scegliendo $h(x) \in \{a, c\}, h(z) \in \{b, d\}, h(e) = y$, quindi 4 possibili inverse sinistre, una possibile è data da h(x) = a, h(z) = b, h(e) = y. È facile verificare che $h \cdot f$ è l'identità su Y.

- 2. (a) Dire se nella teoria \mathcal{L} la formula $(A \wedge B) \Rightarrow (A \Rightarrow \neg B)$ può essere dedotta da $A \vee \neg B$.
 - (b) Provare lo stesso risultato utilizzando la teoria della risoluzione.

Soluzione:

- (a) Per il teorema di correttezza e completezza nella teoria \mathcal{L} abbiamo $A \vee \neg B \vdash_{\mathcal{L}} (A \wedge B) \Rightarrow (A \Rightarrow \neg B)$ se e solo se $A \vee \neg B \vDash (A \wedge B) \Rightarrow (A \Rightarrow \neg B)$ dato che $(A \wedge B) \Rightarrow (A \Rightarrow \neg B)$ è falso solo quando A e B sono entrambe vere, abbiamo che $(A \wedge B) \Rightarrow (A \Rightarrow \neg B)$ è equivalente a $\neg (A \wedge B) = \neg A \vee \neg B$. Quindi il modello A = 1, B = 1 di $A \vee \neg B$ non è modello di $(A \wedge B) \Rightarrow (A \Rightarrow \neg B)$, da cui possiamo dedurre $A \vee \neg B \nvdash_{\mathcal{L}} (A \wedge B) \Rightarrow (A \Rightarrow \neg B)$.
- (b) Dal teorema di correttezza e completezza per refutazione dobbiamo mostrare che $\{\neg((A \land B) \Rightarrow (A \Rightarrow \neg B)), (A \lor \neg B)\}^c \vdash_R \Box$. Dato che $\neg((A \land B) \Rightarrow (A \Rightarrow \neg B))$ è equivalente a $(A \land B)$, abbiamo $\{\neg((A \land B) \Rightarrow (A \Rightarrow \neg B)), (A \lor \neg B)\}^c = \{\{A\}, \{B\}, \{A, \neg B\}\}\}$. Si nota subito che l'unica risolvente significativa che si può ottenere è quella tra $\{A, \neg B\}$ e $\{B\}$ che da ancora $\{A\}$, quindi non si può ottenere la clausola vuota e quindi $A \lor \neg B \nvdash_{\mathcal{L}} (A \land B) \Rightarrow (A \Rightarrow \neg B)$.

3. Si consideri la seguente formula del primo ordine:

$$((\forall x)(\forall y)A(f(x,y),z)) \Rightarrow (\exists x) (A(x,y) \Rightarrow (\forall y)A(x,y))$$

- (a) Si indichino le occorrenze libere e vincolate di ogni variabile e si porti la formula data in forma normale prenessa.
- (b) Si consideri l'interpretazione avente come dominio i naturali \mathbb{N} , in cui la lettera predicativa A(x,y) viene interpretata come x>y e la lettera funzionale f(x,y) viene interpretata come il prodotto $x\cdot y$. Dire se in tale interpretazione la formula è vera, falsa o soddisfacibile ma non vera.

Soluzione:

(a) z è una variabile libera ed inoltre è libera la prima occorrenza di y nel conseguente. Tutte le altre occorrenze di x ed y sono vincolate. Per portare la formula a forma prenessa cominciamo a portare in forma prenessa il suo conseguente:

$$((\forall x)(\forall y)A(f(x,y),z)) \Rightarrow (\exists x)(\forall u)(A(x,y) \Rightarrow A(x,u))$$

poi portiamo davanti a tutto i quantificatori dell'antecedente:

$$(\exists x)(\exists v)\left((A(f(x,v),z)\Rightarrow(\exists x)(\forall u)\left(A(x,y)\Rightarrow A(x,u)\right)\right)$$

e da ultimo portiamo davanti a tutto i quantificatori del conseguente:

$$(\exists x)(\exists v)(\exists w)(\forall u) (A(f(x,v),z) \Rightarrow (A(w,y) \Rightarrow A(w,u)))$$

(b) Nell'interpretazione suggerita dal testo la formula data si legge come: "se per ogni x e per ogni y xy > z allora esiste un x tale che se x > y allora per ogni y, x > y, dove x,y,z stanno in \mathbb{N} . Comunque assegniamo un valore a z, la formula per ogni x e per ogni y xy > z é falsa (basta prendere x = y = 1 e z = 1), dunque la nostra formula è vera.

4. Sia consideri sull'insieme dei numeri reali R l'operazione binaria interna # definita nel seguente modo:

$$a\#b = a + b - (a \cdot b)$$

dove + e \cdot sono le usuali operazioni di addizione e moltiplicazione in \mathbb{R} e l'elemento $-(a \cdot b)$ è l'opposto rispetto all'operazione + dell'elemento $a \cdot b$.

- (a) Mostrare che (R, #) è un monoide commutativo.
- (b) (R, #) è anche un gruppo? In caso contrario, descrivere l'insieme degli elementi che **non** sono invertibili.

Soluzione:

1. Dobbiamo verificare che l'operazione sia associativa. Si ha

$$a\#(b\#c) = a + (b+c-bc) - a(b+c-bc) = a+b+c-bc-ab-ac+abc$$

inoltre si ha:

$$(a\#b)\#c = (a+b-ab)+c-(a+b-ab)c = a+b+c-ab-ac-bc+abc$$

che sono chiaramente uguali, quindi l'operazione è associativa. É chiaramente commutativa:

$$a\#b = a + b - ab = b + a - ba = b\#a$$

Cerchiamo l'unità. Questa è un elemento x che deve soddisfare:

$$a\#x = a$$

per ogni a. Quindi a + x - ax = a da cui otteniamo che necessariamente x(1 - a) = 0 per ogni a, quindi x = 0. Si verifica facilmente che a # 0 = a per ogni a, quindi $0 \in l$ 'unità e dunque $(\mathbb{R}, \#)$ è un monoide.

2. Per verificare se è un gruppo, dato che # è commutativa, basta verificare se, dato un qualunque elemento a, esiste un elemento x tale che:

$$a\#x = 0$$

cioè a+x-ax=0 da cui otteniamo che necessariamente $x=-\frac{a}{1-a}$. Quindi non è un gruppo, dato che l'elemento 1 non è invertibile. Nel caso in cui $a\neq 1$ si verifica subito che $a\#-\frac{a}{1-a}=0$, da cui deduciamo che l'insieme degli elementi che non sono invertibili è l'insieme $\{1\}$.