ESERCITAZIONE O

$$e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
 $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$
 $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$
 $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix}$
7 identità
 $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$
 $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$
 $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$
 $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$

se un monero va in se stesso non c'è liso quo di rappresentarlo: (1,2) taliella moltiplicativa:

•	e	(1,2)	(2,3)	(1,3)	(1,2,3)	(1,3,2)
· e	6	(1,2)	(2,3)	(1,3)	(1,2,3)	(1,3,2)
(1,2)	(1,2)	e	(1, 2,3)	(1,2,3)	(1,2)	(1,3,2)
(2,3)	(2,3)	(1,2,3)	e	(1,2,3)	(2,3)	(1,2)
(1,3)	(1,3)	(1,2,3)	(1,2,3)	e	(1,3)	(1,3,2)
(1,2,3)	(1,2,3)	(1,3,2)	(1,3,2)	(2,3)	e	e
(1,3,2)	(1,3,2)	(2,3)	(1,3,2)	(1,2)	(1,2,3)	(1,2,3)

parto sempre dello stesso cato.

$$2 \rightarrow 1 \rightarrow 2 \Rightarrow e$$

S3 è generate da elementi o, r tali che:

$$\sigma^2 = 1 e \chi^3 = 1 e$$

$$\sigma \gamma = \gamma^2 \sigma = \sigma \gamma \gamma = \sigma \gamma^1 \gamma = \sigma \gamma^1 \gamma^2 = \sigma \gamma^4 = \sigma \gamma^3 = \sigma \gamma$$

 $(xy)^2 = 1 \Rightarrow (xy)^2 = 1 \Rightarrow 1 \Rightarrow xy = 2^{-1}$ $\Rightarrow xyy^{-1} = y^{-1}z^{-1} \Rightarrow x = y^{-1}z^{-1}$ $\Rightarrow xyz = y^2y^{-1}z^{-1} \Rightarrow xyz = 1$ procede mento valido enche per l'altro caso. A) (G_1, \cdot) , (G^0, \circ) | $a \circ b = b \cdot a$. G^0 3 ruppo?

dimostrare associatività, elt neutro e inverso esercizio dato da D'Alessandro:

dimostrare per induzione che $\sum_{i=0}^{n} 4i + 1 = (n+1) \cdot (2n+1)$

 $8.1. \Rightarrow n=0 \Rightarrow \Lambda = \Lambda \sqrt{}$ $P.1. \Rightarrow n=n+\Lambda$

 $\sum_{i=0}^{n+1} 4i + \Lambda = (n+2)(2n+2+1) = 2n^2 + 7n + 6$

 $(n+1)(2n+1) + (n+1) = 2n^2 + 4n + 2$ $7n+6 = 4n+2 \implies 3n+4=0$? Both

