# Assignment # 1( Theory Of Automata)

### Zaeem Yousaf (19L-1196 5C)

Teacher: Sobia Tariq

### Contents

| 1 | Pro         | olem 1                                                                            | 1 |  |  |  |
|---|-------------|-----------------------------------------------------------------------------------|---|--|--|--|
|   | 1.1         | L1                                                                                | 1 |  |  |  |
|   |             | 1.1.1 L1 solution                                                                 | 2 |  |  |  |
|   | 1.2         | L4                                                                                | 2 |  |  |  |
|   |             | 1.2.1 L4 solution                                                                 | 4 |  |  |  |
| 2 | Problem 2 4 |                                                                                   |   |  |  |  |
|   | 2.1         | 2b/L1                                                                             | 4 |  |  |  |
|   |             | 2.1.1 2b/L1 Solution                                                              | 5 |  |  |  |
|   | 2.2         | 2b/L2                                                                             |   |  |  |  |
|   |             | 2.2.1 2b/L2 Solution                                                              | 6 |  |  |  |
|   | 2.3         | $2b/L4  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  \ldots  $ | 6 |  |  |  |
|   | 2.4         | Run DFA                                                                           | 7 |  |  |  |
|   |             | 2.4.1 Rules of Extended transitions                                               | 8 |  |  |  |

### 1 Problem 1

### 1.1 L1

L1: The language of all strings containing even number of a's and each a is followed by at least one b.

### 1.1.1 L1 solution



### 1.2 L4

The language of all strings containing no more than one occurrence of the string aa. (the string aaa should be viewed as containing 2 occurrences of aa)

Let L is the string which contains occurance of an more than once Solution by complement

Now L4 = L - L'



Figure 1: DFA of Complement

### 1.2.1 L4 solution



## 2 Problem 2

## $2.1 \quad 2b/L1$

strings over  $\{0,1\}$  such that their decimal equivalent is multiple of 5 Eg:  $\{0,\,101,\!1010.\ldots\}$ 

### 2.1.1 2b/L1 Solution



### $2.2 ext{ } 2b/L2$

all strings over  $\{0,1\}$  that start with 0 and end with 010 and do not have 000 as part of a string.

### 2.2.1 2b/L2 Solution



## $2.3 \quad 2b/L4$

all the string x in which  $n_0$  (x)%3=0 and  $n_1$  (x)%3=0



### 2.4 Run DFA

Run DFA of L1 of problem 2 for following strings, and answer which ones are accepted and which are rejected {000111, 101000, 10110100,0000100000}



### 2.4.1 Rules of Extended transitions

1: 
$$\delta^*(q, \hat{}) - > q$$
  
2:  $\delta^*(q, xa) - > \delta(\delta^*(q, x), a)$   
3:  $\delta^*(q, xy) - > \delta^*(\delta^*(q, x), y)$   
1.  $\delta^*(q_0, 000111)$   
using rule 1  
 $\delta(\delta^*(q_0, 00011), 1)$   
 $\delta(\delta(\delta^*(q_0, 0001), 1), 1)$   
 $\delta(\delta(\delta(\delta^*(q_0, 000), 1), 1), 1)$   
 $\delta(\delta(\delta(\delta(\delta^*(q_0, 000), 0), 1), 1), 1)$   
 $\delta(\delta(\delta(\delta(\delta(\delta(q_0, 0), 0), 0), 1), 1), 1)$   
 $\delta(\delta(\delta(\delta(\delta(q_0, 0), 0), 1), 1), 1)$   
 $\delta(\delta(\delta(q_0, 1), 1), 1)$   
 $\delta(\delta(q_1, 1), 1)$ 

```
q_3 is not final state (hence rejected)
2. \delta^*(q_0, 101000)
     using rule 1
     \delta(\delta^*(q_0, 10100), 0)
     \delta(\delta(\delta^*(q_0, 1010), 0), 0)
     \delta(\delta(\delta(\delta^*(q_0, 101), 0), 0), 0)
     \delta(\delta(\delta(\delta(\delta^*(q_0,10),1),0),0),0)
     \delta(\delta(\delta(\delta(\delta(\delta(\delta^*(q_0,1),0),1),0),0),0))
     \delta(\delta(\delta(\delta(\delta(q_1,0),1),0),0),0)
     \delta(\delta(\delta(\delta(q_2,1),0),0),0)
     \delta(\delta(\delta(q_0,0),0),0)
     \delta(\delta(q_0,0),0)
     \delta(q_0,0)
     q_0 is final state (hence accepted)
3. \delta^*(q_0, 10110100)
     using rule 1
     \delta(\delta^*(q_0, 1011010), 0)
     \delta(\delta(\delta^*(q_0, 101101), 0), 0)
     \delta(\delta(\delta(\delta^*(q_0, 10110), 1), 0), 0)
     \delta(\delta(\delta(\delta(\delta(\delta^*(q_0, 1011), 0), 1), 0), 0))
     \delta(\delta(\delta(\delta(\delta(\delta(\delta(q_0, 101), 1), 0), 1), 0), 0))
     \delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta((q_0,10),1),1),0),1),0),0))
     \delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta((q_0,1),0),1),1),0),1),0),0)
     \delta(\delta(\delta(\delta(\delta(\delta(q_1,0),1),1),0),1),0),0)
     \delta(\delta(\delta(\delta(\delta(\delta(q_2,1),1),0),1),0),0)
     \delta(\delta(\delta(\delta(\delta(q_0,1),0),1),0),0)
     \delta(\delta(\delta(\delta(q_1,0),1),0),0)
     \delta(\delta(\delta(q_2,1),0),0)
     \delta(\delta(q_2,0),0)
     \delta(q_0,0)
     q_0 is final state (hence accepted)
```

```
4. \delta^*(q_0, 0000100000)
     using rule 1
     \delta(\delta^*(q_0, 000010000), 0)
     \delta(\delta(\delta^*(q_0, 00001000), 0), 0)
     \delta(\delta(\delta(\delta^*(q_0, 0000100), 0), 0), 0)
     \delta(\delta(\delta(\delta(\delta(\delta^*(q_0,000010),0),0),0),0))
     \delta(\delta(\delta(\delta(\delta(\delta(\delta((q_0, 00001), 0), 0), 0), 0), 0)))
     \delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(q_0,0000),1),0),0),0),0),0))
     \delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(0,0),0),0),0),0),0),0),0),0))
     \delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta((q_0,00),0),0),0),0),0),0),0),0)),0)
     \delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta((q_0,0),0),0),0),0),0),0),0),0),0),0))
     \delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(q_0,0),0),0),1),0),0),0),0))
     \delta(\delta(\delta(\delta(\delta(\delta(\delta(\delta(q_0,0),0),1),0),0),0),0))
     \delta(\delta(\delta(\delta(\delta(\delta(\delta(q_0,0),1),0),0),0),0),0)
     \delta(\delta(\delta(\delta(\delta(\delta(q_0,1),0),0),0),0),0)
     \delta(\delta(\delta(\delta(\delta(q_1,0),0),0),0),0)
     \delta(\delta(\delta(\delta(q2,0),0),0),0)
     \delta(\delta(\delta(q_3,0),0),0)
     \delta(\delta(q_4,0),0)
     \delta(q1,0)
     q_2 is not final state, (hence rejected)
```

Table 1: Summary of Dry Run;

| ,          |          |                                   |  |  |  |
|------------|----------|-----------------------------------|--|--|--|
| strings    | status   | Reason                            |  |  |  |
| 000111     | Rejected | q <sub>3</sub> is not final state |  |  |  |
| 101000     | Accepted | $q_0$ is final state              |  |  |  |
| 10110100   | Accepted | $q_0$ is final state              |  |  |  |
| 0000100000 | Rejected | $q_2$ is not final state          |  |  |  |