НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КПІ імені ІГОРЯ СІКОРСЬКОГО»

Кафедра Автоматизованих Систем Обробки Інформації та Управління

Спеціальні розділи математики

Лабораторна робота № 2

Розв'язання систем лінійних алгебраїчних рівнянь (СЛАР) прямими методами. Звичайний метод Гауса та метод квадратних коренів.

3міст

1 Теоретичні відомості	2
2 Завдання	3
3 Варіанти завдань	
4 Вимоги до звіту	
5 Література	
σ στιτοραι γρα····································	••••

1 Теоретичні відомості

Будемо розглядати системи вигляду

$$Ax = b, (1)$$

де $A(n \times n)$ - матриця системи, b - вектор правої частини, x - вектор розв'язку.

Метод Гауса.

Метод складається з двох етапів:

- 1) прямого хода методу (приведення системи (1) до еквівалентної системи з трикутною матрицею);
- 2) зворотного ходу (визначення невідомого вектору x).

Існує декілька варіантів методу Гауса.

Схема з вибором головного елемента полягає у наступному:

- 1) Прямий хід.
- 1.1) Відшукати $a_{main} = \max_{i,j} |a_{i,j}|, i,j=1..n$. Нехай $a_{main} = a_{pq}$. Рядок p

називається головним.

- 1.2) Обчислити множники $m_i = \frac{a_{iq}}{a_{pq}}, \ i \neq p$.
- 1.3) 3 кожного *i*-го неголовного рядка віднімаємо покомпонентно головний рядок, який помножено на m_i :

$$a_{ij} := a_{ij} - m_i a_{pj}, \quad i \neq p, \quad j = 1..n,$$

для вектора правої частини:

$$b_i := b_i - m_i b_p$$
.

В результаті отримуємо матрицю, де всі елементи стовпця q, крім a_{pq} , дорівнюють нулю. Відкидаючи стовпець q та головний рядок p, і відповідний елемент b_p , отримуємо систему з матрицею A_1 ($(n-1)\times(n-1)$). Якщо n-1>1, покладаємо n:=n-1, і переходимо до п.1.1, інакше переходимо до п.2.

Примітка: Елементи головного рядка та відповідного елементу b_p потрібно зберігати у окремому масиві, оскільки вони знадобляться в n.2).

- 2) Зворотний хід.
- 2.1) Складаємо систему, еквівалентну вихідній, що складається з головних рядків, які отримувались у п.1. Права частина складається з відповідних елементів b_p . Отримана система має трикутну матрицю. Знаходимо послідовно значення елементів x_i .

Метод квадратного кореня.

Метод використовується для розв'язання СЛАР виду (1), у яких матриця A ϵ симетричною, тобто

$$a_{ij} = a_{ji} \quad \forall i, j.$$

Метод полягає у наступному:

1) <u>Прямий хід</u>: факторизація A = T'T, де

$$T = \begin{pmatrix} t_{11} & t_{12} & \dots & t_{1n} \\ 0 & t_{22} & \dots & t_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & t_{nn} \end{pmatrix}, T' = \begin{pmatrix} t_{11} & 0 & \dots & 0 \\ t_{12} & t_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ t_{1n} & t_{2n} & \dots & t_{nn} \end{pmatrix}$$

1.1) Знаходимо елементи t_{ii} матриць-множників.

$$\begin{split} t_{11} &= \sqrt{a_{11}} \;,\; t_{1j} = \frac{a_{1j}}{t_{11}} \; (j > 1) \,, \\ t_{ii} &= \sqrt{a_{ii} - \sum_{k=1}^{i-1} t_{ki}^2} \; (1 < i \le n) \,, \\ t_{ij} &= \frac{a_{ij} - \sum_{k=1}^{i-1} t_{ki} t_{kj}}{t_{ii}} \; (i < j) \,, \\ t_{ij} &= 0 \; (i > j) \end{split}$$

1.2) Формуємо замість вихідної системи дві наступні системи:

$$T'y = b$$
, $Tx = y$.

- 2) Зворотний хід.
- 2.1) Послідовно знаходимо:

$$y_{1} = \frac{b_{1}}{t_{11}}, \ y_{i} = \frac{b_{i} - \sum_{k=1}^{i-1} t_{ki} y_{k}}{t_{ii}} \ (i > 1),$$

$$x_{n} = \frac{y_{n}}{t_{nn}}, \ x_{i} = \frac{y_{i} - \sum_{k=i+1}^{n} t_{ik} x_{k}}{t_{ii}} \ (i < n).$$

2 Завдання

Розв'язати систему рівнянь з кількістю значущих цифр m=6. Якщо матриця системи симетрична, то розв'язання проводити за методом квадратних коренів, якщо матриця системи несиметрична, то використати метод Гауса. Вивести всі проміжні результати (матриці A, що отримані в ході прямого ходу методу Гауса, матрицю зворотного ходу методу Гауса, або матрицю Т та вектор у для методу квадратних коренів), та розв'язок системи. Навести результат перевірки: вектор нев'язки r=b-Ax, де x- отриманий розв'язок.

Розв'язати задану систему рівнянь за допомогою програмного забезпечення Mathcad. Навести результат перевірки: вектор нев'язки $r = b - Ax_m$, де x_m - отриманий у Mathcad розв'язок.

Порівняти корені рівнянь, отримані у Mathcad, із власними результатами за допомогою методу середньоквадратичної похибки:

$$\delta = \sqrt{\frac{1}{n}} \sum_{k=1}^{n} (x_k - x_{mk})^2 ,$$

де x - отриманий у програмі розв'язок, x_m - отриманий у Mathcad розв'язок.

Зазвичай при використанні для обчислень 4-байтових чисел (тип float y Visual C++) порядок δ :

- у методі Гауса $10^{-4} 10^{-6}$,
- у методі квадратних коренів $10^{-5} 10^{-7}$, бувають і повні співпадання рішень до 6 знаків після коми.

3 Варіанти завдань

Система має вигляд (1).

$N_{\overline{0}}$	Матриця системи А	Вектор правої частини b
вар.		

1-4	$(3,81 0,25 1,28 0,75+\alpha)$	(4,21)
	$\begin{bmatrix} 2,25 & 1,32 & 4,58+\alpha & 0,49 \end{bmatrix}$	$ 6,47 + \beta $
	$\begin{bmatrix} 5,31 & 6,28+\alpha & 0.98 & 1.04 \end{bmatrix}$	2,38
	$9,39 + \alpha$ 2,45 3,35 2,28	$(10,48+\beta)$
	$\alpha = 0.5k, k = N_2 \epsilon ap - 1,$	$\beta = 0.5k$, $k = N_2 \epsilon ap - 1$
5-9	$8,30 2,62 + \alpha 4,10 1,90$	$\left(-10,65+\beta\right)$
	$\begin{bmatrix} 3,92 & 8,45 & 8,78-\alpha & 2,46 \end{bmatrix}$	12,21
	$\begin{bmatrix} 3,77 & 7,21+\alpha & 8,04 & 2,28 \end{bmatrix}$	$ 15,45-\beta $
	$(2,21 3,65-\alpha 1,69 6,99)$	(-8,35)
	$\alpha = 0.2k, k = N_2 \epsilon ap - 5$	$\beta = 0.2k, k = N_2 \epsilon ap - 5$
10	$\begin{pmatrix} 1,00 & 0,42 & 0,54 & 0,66 \end{pmatrix}$	(0,3)
	0,42 1,00 0,32 0,44	0,5
	0,54 0,32 1,00 0,22	0,7
	(0,66 0,44 0,22 1,00)	(0,9)
11-	$\left(5,18+\alpha 1,12 0,95 1,32 0,83\right)$	$\left(6.19+\beta\right)$
15	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3,21
	$\begin{bmatrix} 0.95 & 2.12 & 6.13 + \alpha & 1.29 & 1.57 \end{bmatrix}$	$ 4,28-\beta $
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6,25
	$\begin{bmatrix} 0.83 & 0.91 & 1.57 & 1.25 & 5.21 + \alpha \end{bmatrix}$	$(4,95+\beta)$
	$\alpha = 0.25k, k = N_2eap - 11$	$\beta = 0.35k, \ k = Neap - 11$
16	(2,12 0,42 1,34 0,88)	(11,172)
	0,42 3,95 1,87 0,43	0,115
	1,34 1,87 2,98 0,46	0,009
	(0,88 0,43 0,46 4,44)	(9,349)
17	$\left(6,92 1,28 0,79 1,15 -0,66\right)$	$\left(\begin{array}{c}2,1\end{array}\right)$
	0,92 3,5 1,3 -1,62 1,02	0,72
	1,15 - 2,46 6,1 2,1 1,483	3,87
	1,33 0,16 2,1 5,44 -18	13,8
10	(1,14 -1,68 -1,217 9 -3)	(-1,08)
18	$ \begin{bmatrix} 7,03 & 1,22 & 0,85 & 1,135 & -0,81 \\ 0.00 & 2.20 & 1.2 & 1.62 & 0.57 \end{bmatrix} $	$\begin{pmatrix} 2,1\\0,0,1 \end{pmatrix}$
	0,98 3,39 1,3 -1,63 0,57	0,84
	1,09 -2,46 6,21 2,1 1,033	2,58
	1,345 0,16 2,1 5,33 -12	11,96
	(1,29 -1,23 -0,767 6 1)	(-1,47)

19	(5,5 7,0 6,0 5,5)	(23)
	7,0 10,5 8,0 7,0	32
	6,0 8,0 10,5 9	33
	$\left(5,5 7 9 10,5\right)$	(31)
20	(6,59 1,28 0,79 1,195 -0,21)	(2,1)
	0,92 3,83 1,3 -1,63 1,02	0,36
	1,15 -2,46 5,77 2,1 1,483	3,89
	1,285 0,16 2,1 5,77 -18	11,04
	(0,69 -1,68 -1,217 9 -6)	(-0.27)
21	(3,81 0,25 1,28 1,75)	(4,21)
	2,25 1,32 5,58 0,49	8,97
	5,31 7,28 0,98 1,04	2,38
	(10,39 2,45 3,35 2,28)	(12,98)
22-	$(5,18+\alpha 1,12 0,95 1,32 0,83)$	$\left(6,19+\beta\right)$
25	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3,21
	0.95 2.12 $6.13 + \alpha$ 1.29 1.57	$ 4,28-\beta $
	1,32 0,57 1,29 4,57 – α 1,25	6,25
	$\left(\begin{array}{ccc} 0.83 & 0.91 & 1.57 & 1.25 & 5.21 + \alpha \end{array}\right)$	$(4,95+\beta)$
	. 0.251 1 No 25	0 0 251 1 1 1 20 21
	$\alpha = 0.25k, k = \mathcal{N}_{2} \epsilon ap - 25 $	$\beta = 0.35k, \ k = \mathcal{N}_2 \epsilon ap - 21$

4 Вимоги до звіту

Звіт має містити:

- постановку задачі;
- вихідну систему рівнянь;
- проміжні результати та кінцевий результат;
- вектор нев'язки;
- копія розв'язку задачі у Mathcad; вектор нев'язки для цього розв'язку;
- порівняння власного розв'язку та розв'язку, отриманого у Mathcad;
- лістинг програми.

5 Література

- 1. Самарский А.А., Гулин А.В. Численные методы. М., Наука, 1989.
- 2. Волков Е.А., Численные методы. М., Наука, 1987.
- 3. Демидович В.П., Марон И.А. Основы вычислительной математики. Наука, 1986.
- 4. Березин И.С., Жидков Н.П. Методы вычислений. Т.1., М., Наука, 1966; Т.2., М., Физматгиз, 1960.
- 5. Кузнецов В.М., Жданова О.Г., Галицька І.Є. Методи розв'язання систем лінійних і нелінійних рівнянь та їх систем. Проблема власних значень. Методичні вказівки до виконання розрахунково-графічної роботи з дисципліни "Числові методи". "Політехніка", НТУУ "КПІ", 2001.