CS343 - Operating Systems

Module-8C

Security Mechanisms in Operating Systems

Dr. John Jose

Assistant Professor

Department of Computer Science & Engineering

Indian Institute of Technology Guwahati, Assam.

http://www.iitg.ac.in/johnjose/

Overview

- Cryptography
- User Authentication
- Implementing Security Defenses
- Firewalling to Protect Systems and Networks

Objectives

- To explain the fundamentals of encryption, authentication, and hashing
- To examine the uses of cryptography in computing
- ❖ To describe the various countermeasures to security attacks

Security Violation Categories

- Breach of confidentiality
 - Unauthorized reading of data
- Breach of integrity
 - Unauthorized modification of data
- Breach of availability
 - Unauthorized destruction of data
- Theft of service
 - Unauthorized use of resources
- Denial of service (DOS)
 - Prevention of legitimate use

Standard Security Attacks

Cryptography as a Security Tool

- Broadest security tool Art of secret writing
- Source and destination of messages can be known and protected
 - ❖OS creates, manages, protects process IDs, communication ports
- Source and destination of messages on network cannot be trusted without cryptography
 - ❖Local network IP address?
 - Consider unauthorized host added
 - ❖WAN / Internet how to establish authenticity
 - ❖Not via IP address

Cryptography

- Means to constrain potential senders (sources) and / or receivers (destinations) of messages
 - Based on secrets (keys)
 - Confirmation of source
 - Receipt only by certain destination
 - Trust relationship between sender and receiver
- Symmetric cryptography based on transformations
- Asymmetric cryptography based on mathematical functions
 - ❖ Asymmetric much more compute intensive
 - Typically not used for bulk data encryption

Encryption

- Constrains the set of possible receivers of a message
- Encryption algorithm consists of
 - Set K of keys
 - Set M of Messages
 - Set C of ciphertexts (encrypted messages)
 - ❖ A function E : K → (M→C). That is, for each $k \in K$, E_k is a function for generating ciphertexts from messages
 - ❖ E_k for any k should be efficiently computable functions
 - * A function D : $K \to (C \to M)$. That is, for each $k \in K$, D_k is a function for generating messages from ciphertexts
 - ❖D_k for any k should be efficiently computable functions

Encryption

- Essential property of encryption algorithm
- ❖ Given a ciphertext c ∈ C, a computer can compute m such that E_k(m) = c only if it possesses k
 - Thus, a computer holding k can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding k cannot decrypt ciphertexts
 - Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive k from the ciphertexts

Symmetric Encryption

- Same key used to encrypt and decrypt
 - ❖ Therefore *k* must be kept secret
- DES was most commonly used symmetric block-encryption algorithm
- ❖ Triple-DES considered more secure $c = E_{k3}(D_{k2}(E_{k1}(m)))$
- Block cipher Advanced Encryption Standard (AES)
 - * Keys of 128, 192, or 256 bits, works on 128 bit blocks

Secure Communication over Insecure Medium

Asymmetric Encryption

- Public-key encryption based on each user having two keys:
 - public key published key used to encrypt data
 - private key key known only to individual user used to decrypt data
- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme
 - Most common is RSA block cipher

Asymmetric Encryption

- Formally, it is computationally infeasible to derive k_{d,N} from k_{e,N}, and so k_e need not be kept secret and can be widely disseminated
 - ❖ k_e is the public key
 - ❖ k_d is the private key
 - ❖ N is the product of two large, randomly chosen prime numbers p and q (for example, p and q are 512 bits each)
 - ❖ Encryption algorithm is $E_{ke,N}(m) = m^{k_e} \mod N$, where k_e satisfies $k_e k_d \mod (p-1)(q-1) = 1$
 - ❖ The decryption algorithm is then $D_{kd,N}(c) = c^{k_d} \mod N$

Asymmetric Encryption Example

- \Rightarrow Assume, p = 7 and q = 13
- ❖ We then calculate N = 7*13 = 91 and (p-1)(q-1) = 72
- ❖ We next select k_e relatively prime to 72 and< 72, yielding 5</p>
- Finally, we calculate k_d such that $k_e k_d$ mod 72 = 1, yielding 29
 - Public key, $k_{e,N} = 5$, 91
 - ❖ Private key, k_{d,N} = 29, 91
- Encrypting the message 69 with the public key results in the cyphertext 62
- Cyphertext can be decoded with the private key
 - Public key can be distributed in cleartext to anyone who wants to communicate with holder of public key

Encryption using RSA Asymmetric Cryptography

- ❖ Public key, $k_{e,N} = 5$, 91
- ❖Private key, k_{d.N} = 29, 91
- ❖ Encryption algorithm: $E_{ke,N}(m) = m^{k_e} \mod N$.
- ❖ Decryption algorithm: $D_{kd,N}(c) = c^{k_d} \mod N$

Authentication

- Constraining set of potential senders of a message
 - Complementary to encryption
 - Also can prove message unmodified
- ❖ A set K of keys, set M of messages, A set A of authenticators
 - A A function S : $K \rightarrow (M \rightarrow A)$
 - **That** is, for each $k \in K$, S_k is a function for generating authenticators from messages
 - ❖Both S and S_k for any k should be efficiently computable functions
 - ❖ A function V : K → (M × A→ {true, false}). That is, for each $k \in K$, V_k is a function for verifying authenticators on messages
 - ❖Both V and V_k for any k should be efficiently computable functions

Authentication

For a message m, a computer can generate an authenticator a ∈ A such that V_k(m, a) = true only if it possesses k

Thus, computer holding k can generate authenticators on messages so that any other computer possessing k can verify them

Computer not holding k cannot generate authenticators on messages that

k from the authenticators

can be verified using V_k
 ❖ Since authenticators are generally exposed (for example, they are sent on the network with the messages themselves), it must not be feasible to derive

❖ Practically, if V_k(m,a) = true then we know m has not been modified and that send of message has k

❖ If we share k with only one entity, know where the message originated

Authentication – Hash Functions

- Basis of authentication
- Creates small, fixed-size block of data message digest (hash value) from m
- Hash Function H must be collision resistant on m
 - \clubsuit Must be infeasible to find an m' \ne m such that H(m) = H(m')
- \Leftrightarrow If H(m) = H(m'), then m = m'
 - The message has not been modified

Authentication – Hash Functions

- Common message-digest functions include MD5, which produces a 128-bit hash, and SHA-1, which outputs a 160-bit hash
- Not useful as authenticators
 - ❖ For example H(m) can be sent with a message
 - ❖But if H is known someone could modify m to m' and recompute H(m') and modification not detected
 - ❖So must authenticate H(m)

Authentication - MAC

- Symmetric encryption used in message-authentication code (MAC) authentication algorithm
- Cryptographic checksum generated from message using secret key
 - Can securely authenticate short values
- If used to authenticate H(m) for an H that is collision resistant, then obtain a way to securely authenticate long message by hashing them first
- ❖ Note that k is needed to compute both S_k and V_k, so anyone able to compute one can compute the other

Authentication – Digital Signature

- ❖ Digital signatures based on asymmetric keys to verify authenticity of m.
- Similar to the RSA encryption algorithm, but the key use is reversed
- ❖ k_v is the public key and k_s is the private key
- ❖ Computationally infeasible to derive k_s from k_v
- RSA digital-signature algorithm
 - ❖ Digital signature of message S_{ks} (m) = H(m)^{ks} mod N
 - ❖ The key k_s again is a pair (d, N), where N is the product of two large, randomly chosen prime numbers p and q
 - Verification algorithm is $V_{kv}(m, a)$ $(a^{k_v} \mod N = H(m))$
 - ❖Where k_v satisfies $k_v k_s$ mod (p 1)(q 1) = 1

Key Distribution

- Delivery of symmetric key is huge challenge
 - Sometimes done out-of-band
- Asymmetric keys can proliferate stored on key ring
 - Even asymmetric key distribution needs care man-in-the-middle attack

Digital Certificates

- Proof of who or what owns a public key
- Public key digitally signed a trusted party
- Trusted party receives proof of identification from entity and certifies that public key belongs to entity
- Certificate authority are trusted party their public keys included with web browser distributions
 - They vouch for other authorities via digitally signing their keys, and so on

Man-in-the-middle Attack - Asymmetric Cryptography

Implementation of Cryptography

- Can be done at various layers of ISO Reference Model
 - SSL at the Transport layer
 - Network layer is typically IPSec
 - **❖IKE** for key exchange
 - Basis of Virtual Private Networks (VPNs)

Encryption Example - SSL

- ❖ Insertion of cryptography at one layer of network model (transport layer)
- SSL Secure Socket Layer (also called TLS)

cryptography

- Cryptographic protocol that limits two computers to only exchange messages with each other
- Used between web servers and browsers for secure communication (credit card numbers)

The server is verified with a certificate assuring client is talking to correct

- Asymmetric cryptography used to establish a secure session key
- (symmetric encryption) for bulk of communication during session
 Communication between each computer then uses symmetric key

User Authentication

- Crucial to identify user correctly, as protection systems depend on user ID
- User identity most often established through passwords, can be considered a special case of either keys or capabilities
- Passwords must be kept secret
 - Frequent change of passwords
 - History to avoid repeats
 - Use of "non-guessable" passwords
 - Log all invalid access attempts (but not the passwords themselves)
 - Unauthorized transfer
- Passwords may also either be encrypted or allowed to be used only once

Passwords

- Encrypt to avoid having to keep secret
 - But keep secret anyway
 - Use algorithm easy to compute but difficult to invert
 - Only encrypted password stored, never decrypted
- One-time passwords
 - Use a function based on a seed to compute a password, both user and computer
- Biometrics
 - Some physical attribute (fingerprint, hand scan)
- Multi-factor authentication

Implementing Security Defenses

- Defense in depth multiple layers of security
- Security policy describes what is being secured
- Vulnerability assessment compares real state of system / network compared to security policy
- Intrusion detection endeavors to detect attempted or successful intrusions
 - Signature-based detection spots known bad patterns
 - Anomaly detection spots differences from normal behavior
 - False-positives and false-negatives a problem

Implementing Security Defenses

- Virus protection
 - Searching all programs or programs at execution for known virus patterns
- Auditing, accounting, and logging of all or specific system or network activities
- Practice safe computing avoid sources of infection, download from only good sites, etc

Firewalling to Protect Systems and Networks

- ❖ A network firewall is placed between trusted and untrusted hosts
- The firewall limits network access between these two security domains
- Firewall rules typically based on host name or IP address which can be spoofed
- ❖ Personal firewall is software layer on given host
 - Can monitor / limit traffic to and from the host
- Application proxy firewall understands application protocol and can control them (i.e., SMTP)
- System-call firewall monitors all important system calls and apply rules to them (i.e., this program can execute that system call)

Network Security Through Firewall

johnjose@iitg.ac.in http://www.iitg.ac.in/johnjose/

