CSC373S: Algorithm Design, Analysis & Complexity

Lecture 26

Monday March 13, 2017

based on notes by Denis Pankratov

Complexity Theory

 $P = \{L \subseteq \{0, 1\}^* | L \text{ is solvable in } polytime\}$

P- class of decision problems that are efficiently solvable

 $NP = \{L|L \text{ is polytime verifiable }\}$

NP- class of decision problems, so that given a solution to the problem, the solution can be verified efficiently

<u>Definition</u>: L is polytime verifiable if $\exists c > 0$ and $\exists A$ -polytime algorithm of (x, y) so that:

$$(\forall x \in \{0,1\}^*)(x \in L \Leftrightarrow \exists y \text{ (certificate)} : |y| \leq |x|^c \text{ and } A(x,y) = 1)$$

Claim: $P \subseteq NP$

<u>Proof:</u> $L \in P$. There exists polytime B so that:

$$(\forall x)(x \in L \Leftrightarrow B(x) = 1)$$

verifier A on (x,y):
return B(x)

Example: Say c = 1

Since $\overline{A(x,y)}$ ignores y:

$$\exists y : |y| \le |x| \text{ and } A(x,y) = 1 \Leftrightarrow B(x) = 1 \Leftrightarrow x \in L$$

Question: P = NP

Many believe $P \neq NP$

Figure 1: Visualization of $P \neq NP$

<u>Definition</u>: A variable is **Boolean** if it takes values in $\{0,1\}$

<u>Definition</u>: A literal is a variable or its negation. Example: $x_1, \neg x_1$

<u>Definition</u>: A clause is a disjunction of literals. Example: $(x_1 \cup \neg x_7 \cup x_3 \cup x_{15})$

<u>Definition</u>: A formula is in **CNF** (conjunctive normal form) if it is a conjunction of clauses. *Example*: $(x_1 \cup \neg x_7 \cup x_3) \cap (x_5 \cup \neg x_2 \cup x_1) \cap (x_3 \cup \neg x_8) \cap x_{15}$, with *clauses* 1 to 4 of different sizes <u>Definition</u>: k - CNF is a formula in CNF form so that every clause *contains* exactly k literals

 $L_{k-SAT} = \{ \langle \varphi \rangle | \varphi \text{ is a } k - CNF \& \varphi \text{ is satisfiable } \}$ (Note: $\langle \varphi \rangle$ is an encoding of φ over $\{0, 1\}$

Exercise: $L_{2-SAT} \in P$

 L_{3-SAT} is not known to be in P and it is widely believed not to be in P

Claim: $L_{3-SAT} \in NP$

<u>Proof:</u> Verifier A for L_{3-SAT} runs on inputs

 $x = <\varphi>$ where φ is 3-CNF $y = <\tau>$ where τ is an assignment to variables in τ

A: evaluate φ on τ , and if φ is satisfied by τ , return 1

 $<\varphi>\in L_{3-SAT} \Leftrightarrow \exists <\tau> \text{ so that } A(<\varphi>,<\tau>)=1$ Note: $|<\tau>|\leq |<\varphi>|$

$$(\forall x \in \{0,1\}^*)(x \in L \Leftrightarrow \exists y : |y| \le |x|, A(x,y) = 1$$

Example 2:

 $\overline{L_{SPATH}} = \{ \langle G, w, s, t, k \rangle \mid \text{ there exists a path from } s \text{ to } t \text{ in } G \text{ of weight } \leq k; G \text{ is a directed graph } \& w > 0 \text{ edge weights} \}$

 $Dijkstra's \Rightarrow L_{SPATH} \in P$

 $L_{LPATH} = \{ \langle G, w, s, t, k \rangle \mid \text{ there exists a simple path from } s \text{ to } t \text{ in } G \text{ of weight } \geq k; G - \text{directed graph}, w > 0 - \text{ edge weights} \}$

 L_{LPATH} is not known to be in P & it is believed not to be in P. $L_{LPATH} \in NP$

Example 3:

 $\overline{L_{MST}} = \{ \langle G, w, k \rangle \mid \text{ there exists a spanning tree in } G \text{ of weight } \leq k \}$

Prim's, Kruskall's: $L_{MST} \in P$

Travelling Salesman Problem (TSP)

 $L_{TSP} = \{ \langle G, w, k \rangle \mid \text{ there exists a tour* of weight } \leq k \}$ * closed walk that visits each vertex exactly once

Exercise: $L_{TSP} \in NP$

 L_{TSP} is not known to be in P & it is believed not to be in P. All of these are in some sense equivalent:

- \bullet L_{3-SAT}
- \bullet L_{LPATH}
- \bullet L_{TSP}

Nobody has been able to solve these!

Figure 2: Conjectured picture

<u>Definition</u>: L_1 reduces to L_2 in polynomial time if there exists a polytime algorithm $A:\{0,1\}^* \to \mathbb{R}$ $\overline{\{0,1\}^*}$ so that:

$$(\forall x \in \{0,1\}^*)(x \in L_1 \Leftrightarrow A(x) \in L_2)$$

Figure 3: Reduction A

We have done reductions before, but for single problems.

Claim: $L_1 \leq_p L_2 \& L_2 \in P$, then $L_1 \in P$ Proof: SInce $L_2 \in P$, $\exists B$ -polytime so that $(\forall x)(x \in L_1 \Leftrightarrow B(x) = 1)$

* \leq_p is reduces to, while the subscript p means it is a polynomial reduction

Since $L_1 \leq_p L_2$, $\exists A$ -polytime so that:

$$(\forall x)(x \in L_1 \Leftrightarrow A(x) \in L_2$$

Let
$$C = B \cdot A$$
. C on input x : — $y = A(x)$ — return $B(y)$

$$(\forall x)(x \in L_1 \Leftrightarrow A(x) \in L_2 \Leftrightarrow B(A(x)) = 1)$$

<u>Definition:</u> L is NP-hard if $(\forall \tilde{L} \in NP)(\tilde{L} \leq_p L)$

<u>Definition:</u> L is NP-complete:

- 1. $L \in NP$
- 2. L is NP-hard

(*Note:* class of NP-complete languages is NPC)

Claim: If $L \in NPC$ and $L \in P$ then P = NP

Proof: Let $\tilde{L} \in NP$

 $\overline{\text{Since }}L \in NPC,$

 $\tilde{L} \subseteq L \ \& \ L \in P$

 $\Rightarrow \tilde{L} \in P$ (by previous claim)