

Patent
Case No. GY20a

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Group: 1202
Examiner: C. Shen
Applicant: Zahler et al.
Serial No. 763,033
Filed: September 20, 1991
For: Hydroxymethyl(Methylenecyclopentyl)Purines
And Pyrimidines

TH/CHM
10-23-92

Princeton, New Jersey 08543-4000

October 9, 1992

DECLARATION UNDER 37 CFR 1.131

To the Commissioner of Patents and Trademarks:

We, Robert Zahler and William A. Slusarchyk, declare as follows:

1. That we are the inventors of United States patent application Serial No. 763,033 filed September 20, 1991 which is a continuation-in-part of Serial No. 599,568 filed October 18, 1990.

2. That the invention described in Claims 4 - 8, 15, and 23 - 26 of Serial No. 763,033 was conceived and reduced to practice by us in the United States prior to May 2, 1990.

3. That prior to May 2, 1990 the synthesis of [1S-(1 α ,3 α ,4 β)]-2-amino-1,9-dihydro-9-[4-hydroxy-3-(hydroxymethyl)-2-methylenecyclopentyl]-6H-purin-6-one was carried out under the direct supervision of William A. Slusarchyk in the United States and reported to Robert Zahler. This compound was assigned the identification number SQ34,676. The synthetic procedure employed is shown in attachment A which is a contemporaneous document prepared by the chemist who performed the synthesis with the dates deleted.

4. That prior to May 2, 1990, samples of SQ34,676 were submitted by Robert Zahler and William A. Slusarchyk for

antiviral testing by the Virology Department of the Squibb Institute.

5. That such antiviral testing was performed in the United States and the results were reported back to Robert Zahler and William A. Slusarchyk prior to May 2, 1990. That the results of such testing are shown in Attachments B through J which are contemporaneous documents prepared by the person who conducted the tests with the date of testing deleted.

The undersigned declare further that all statements made herein of their own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements are made with the knowledge that willful false statements and the like are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of application Serial No. 763,033 or any patent issued thereon.

Date Oct 9, 1992

Robert Zahler

Date October 9, 1992

William A. Slusarchyk

ATTACHMENT A

SQUIBB INSTITUTE CHEMICAL TRANSMISSION RECORD Chemistry/Infectious & Metabolic Diseases	Date	Number
	Project	SQ-34676
	AVR-000	Batch NN001

SQ-34676 [1S-(1α,3α,4β)]-2-Amino-1,9-dihydro-9-[4-hydroxy-3-(hydroxymethyl)-2-methylenecyclopentyl]-6H-purin-6-one.

C12H15N5O3

MW/FW 277.28

Physical State: solid

CHIRAL

HANDLING PRECAUTIONS

Hygroscopic: yes

Stability: refrigerate

Other:

SOLUBILITY

H2O: %, pH See comments
Adjustable to pH

Novel Compound: yes

Chemist: W. G. YOUNG

MGY

Notebook: L030-195-32

Checked by:

W.A. Slusarchyk

Preliminary Data Sheet:

Complete Data Sheet:

- Comments: 1) 80 mg sent to Virology on .
2) Not soluble in PBS buffer pH 7.2 at 5mg/ml but soluble at 0.145 mg/ml.
3) Soluble in DMSO 5 mg/ml.

Assays:

Antiviral

Elemental Analysis (%)	m.p.: > 220°C	IR: 75180 (KBr)
C12H15N5O3 · 0.9 H2O	1H NMR: L030195-32 (DMSO-d6) 270 MHz	
Calc. 49.12	13C NMR:	
H 5.77	M.S. # MGY 131	
N 23.87	U.V. λmax at pH 7.2 253.3nm (ε = 12,900) [α]D ^{22°} = +34.0 [c=0.30, water]	

Fischer:

TLC: Preliminary HI = 97.3 CHCl₃: CH₃OH: NH₃ (6:3:1)

HPLC:
TLE:

sent to Research Chemicals
1 mg Distribution on:
Distribution by RCD:
Microbiology:
Pharmacology:
.....

Copies to:

RIC
RCD
Dr. G. Bisacchi
Dr. C. Cimorusti
Dr. A. Field
Dr. O. Kacy
Dr. W. Koster

Dr. K. Lindner
Dr. C. Moyers
Dr. W. Scott
Dr. R. Zahler

CHEMIST'S REPORT-FLOW SHEET

PAGE 1 of 1

OUTLINE OF PREPARATION OF:

SYNTHETIC CHEMICAL NUMBER
SQ 34,676

DATE

NOTEBOOK
PAGES

YIELDS

CHEMIST
NO.

COMPOUNDS: Start with preparation of first intermediate not previously prepared in this series.
Yields should be calculated on basis of total starting material.

Ref. 1

L030081

72%

1. Na, THF, -5°
2. Benzyl chloromethyl ether, -50°

Ref. 2

1. 2, -60° for 1 hr,
-10° for 18 hr
2. 3N NaOH, 30% H₂O₂

Ref. 2

L030093

25% for
2 steps

$\text{VO}(\text{acac})_2, \text{t-BuOOH}$
 CH_2Cl_2

CHEMIST'S NAME
Marian Young

CHEMIST'S REPORT-FLOW SHEET

PAGE 2 of 4

OUTLINE OF PREPARATION OF:

SYNTHETIC CHEMICAL NUMBER:
SQ 34,676

DATE

NOTEBOOK
PAGES

YIELDS

CHEMIST
NO.COMPOUNDS: Start with preparation of first intermediate not previously prepared in this series.
Yields should be calculated on basis of total starting material.

L030105

84%

 $\downarrow \text{Ph CH}_2\text{Br, NaH, DMF}$
 Bu_4NI

L030114

76%

 $\downarrow \text{O-benzylguanine (8), LiH, DMF}$

L030121

60%

 $\downarrow \text{p-Anisylchlorodiphenylmethane, triethylamine, dimethylaminopyridine, CH}_2\text{Cl}_2$

CHEMIST'S NAME

Marian Young

CHEMIST'S REPORT-FLOW SHEET

PAGE 3 of 4

OUTLINE OF PREPARATION OF:

SYNTHETIC CHEMICAL NUMBER
SQ 34,676

CHEMIST NO.	COMPOUNDS: Start with preparation of first intermediate not previously prepared in this series. Yields should be calculated on basis of total starting material.	DATE	NOTEBOOK PAGES	YIELDS
	<p style="text-align: center;">10</p> <p style="text-align: center;">DCC, DMSO, Methyl phosphonic acid</p> <p style="text-align: center;">11</p>	L030167		74%
Ref. 3	<p style="text-align: center;">12</p> <p style="text-align: center;">Zn, TiCl₄, CH₂Br₂ THF, CH₂Cl₂</p>	L030170		
		L030189	CHEMIST'S NAME Marian Young	

CHEMIST'S REPORT-FLOW SHEET

PAGE 4 of 4

OUTLINE OF PREPARATION OF:

SYNTHETIC CHEMICAL NUMBER
SQ 34,676

DATE

CHEMIST NO.	COMPOUNDS: Start with preparation of first intermediate not previously prepared in this series. Yields should be calculated on basis of total starting material.	NOTEBOOK PAGES	YIELDS
	<p style="text-align: center;">↓</p> <p>1. aqueous 3N HCl, THF, CH₃OH</p> <p>2. 1N KOH to pH 7</p> <p style="text-align: center;">13</p>	L030190	23% for 3 steps
	<p style="text-align: center;">↓</p> <p>BCl₃, CH₂Cl₂ -78° to -40°</p> <p style="text-align: center;">14</p> <p style="text-align: right;">SQ 34,676</p>	L030195	62%

References

1. H. C. Brown, et. al. JOC, 1984, 49, 945
2. K. Biggadike, et. al. J. Chem. Soc. Perkin Trans. 1988, 549
- 3b. L. Lombardo, Tet. Let. 1982, 23, 4293
- 3a. S. Ahmed, Status Report June 5, 1989- November 30, 1989

CHEMIST'S NAME
Marian Young

CHEMIST'S REPORT

PAGE 1

PREPARATION OF:

SYNTHETIC CHEMICAL NO:
SQ 34,676

DATE:

CHEMIST'S NAME
Marian Young

CHEMIST'S NUMBER
L030195-32

Compound 2

To a solution of 10M borane-methylsulfide (100 ml, 1 mol) in THF (1 l, distilled from K) at 0° was added with stirring 1R (+)- α -pinene (158.8 ml, 1 mol) with an optical purity of less than 90%. The reaction was then placed in the cold room for 16 hr with no stirring. Then more 1R (+)- α -pinene (158.8 ml, 1 mol) was added. A precipitate began forming after 20 min and the suspension was stirred for 8 hrs at 0°. The suspension was allowed to settle for 15 min and the solvents were cannulated away. The solid was washed with ether (3x130 ml) and then dried for 16 hrs on the vacuum pump. The solid was transferred (under N₂ in a dry bag) to dry bottles and stored at -20°. Total 2 obtained was 205 g (72% yield).

Compound 3

Dicyclopentadiene (300 ml) was cracked at 186° under N₂. The cyclopentadiene was distilled through an 18 inch Vigreux column. A total of 110.73 g (b.p. 38°) was collected and stored at -78°.

Compound 5

Cyclopentadiene (28.68 g, 0.434 mol) was warmed from -78° to -30° and cannulated to an addition funnel at -30° under N₂. This was added to 40% Na sand in oil (22.5 g, 0.391 mol) in THF (156 ml, distilled from K) over a 1 hr period keeping the temperature of the reaction at -10°. The cyclopentadienyl sodium solution was then cannulated to an addition funnel at 0° over 1.3 hr. This solution was added to benzylchloromethyl ether (65.19 ml, 0.469 mol) in THF (130 ml) at -50° over 1.3 hr.

This suspension was stirred 1.3 hr at -45° and then cooled to -60°. The suspension was diluted with THF (390 ml) and then compound 2 (136 g, 0.477 mol) was added as a solid under a N₂ atmosphere. The reaction was then stirred 1 hr at -60° and warmed to -10° over 1.5 hr. This was stirred at that temperature for 16 hr. The reaction was concentrated to 1/2 the volume *in vacuo*, and the slurry was diluted with 390 ml of ether. The reaction was cooled to 0° and 3N NaOH (156 ml, 0.469 mol) was added over 45 min keeping the temperature at 0°. Then 30% H₂O₂ (156 ml) was added over 1 hr keeping the temperature below 12°. The reaction was stirred 1 hr at 10°.

CHEMIST'S REPORT

PAGE 2

PREPARATION OF:SYNTHETIC CHEMICAL NO:
SQ 34,676DATE:CHEMIST'S NAME
Marian YoungCHEMIST'S NUMBER
L030195-32

The layers were separated, and the water layer was washed with ether (300 ml). The ether layers were combined, washed with brine (200 ml), dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was purified on Merck silica gel (5 l packed in petroleum ether:ether, 2:1). The column was eluted with petroleum ether:ether (2:1 to 1:1) to give 20 g (25% yield) of 5.

Compound 6

To a solution of compound 5 (29.63 g, 0.145 mol) and vanadyl acetylacetone (400 mg) in dichloromethane (60 ml, distilled from CaH₂) under N₂ was added 3M t-butyl hydroperoxide (87 ml, 0.261 mol) in 2,2,4-trimethylpentane (87 ml, 0.261 mol) over 75 min at such a rate to keep the temperature at 25° with a water bath. After stirring 16 hr at 25° the reaction was cooled to 0° and saturated aqueous sodium sulfite (150 ml) was added over 1 hr keeping the reaction temperature below 20°. The reaction was stirred for 1.5 hr at room temperature. The layers were separated, and the aqueous layer was extracted with 50 ml of dichloromethane. The organic layers were combined, washed with water (50 ml), dried over sodium sulfate, filtered and concentrated *in vacuo*.

The residue was purified on Merck silica gel (2 l, petroleum ether: ether 1:1). The column was eluted with petroleum ether:ether (2:1) to give 24.19 g of pure 6. Fractions containing impure 6 were purified on Merck silica gel (400 ml, petroleum ether:ether 1:1). The column was eluted with petroleum ether:ether (1:1) to give 2.71 g of pure 6. Total yield of 6 was 26.90 g (84%).

CHEMIST'S REPORT

PAGE 3

PREPARATION OF:SYNTHETIC CHEMICAL NO:
SQ 34,676

DATE:

CHEMIST'S NAME
Marian YoungCHEMIST'S NUMBER
L030195-32**Compound 7**

To a suspension of 60% sodium hydride in mineral oil (5.11 g, 0.128 mol) in tetrahydrofuran (247 ml) under N₂ was added compound 6 (25.58 g, 0.116 mol) in tetrahydrofuran (123 ml) dropwise over 20 min at room temperature. This was stirred with an overhead stirrer for 2 hr at room temperature and 1 hr at 40°. The reaction was cooled to room temperature, and benzyl bromide (15.2 ml, 0.128 mol) and tetrabutyl ammonium iodide (412 mg) were added. After 3 hr ethanol (20 ml) was added, and the reaction was stirred for 10 min. The solvents were removed *in vacuo*. The residue was partitioned between water (200 ml) and ether (200 ml). The water layer was extracted with ether (200 ml) and the organic layers were combined, dried over sodium sulfate, filtered and concentrated *in vacuo*.

The residue was purified on Merck silica gel (2 l, petroleum ether:ether 3:1). Elution with a gradient of petroleum ether:ether (3:1 to 1:1) gave 27.21 g of 7 (76% yield).

Compound 9

To a solution of 7 (6.20 g, 20 mmol) and O-benzylguanine 8 (9.64 g, 40 mmol, dried 50° *in vacuo*) in dry dimethyl formamide (80 ml, over sieves) at 60° under N₂ was added lithium hydride (80 mg, 10 mmol). The temperature was raised to 125° and stirred for 10 hr and then lowered to room temperature and stirred for 6 hr. Acetic acid (572 µl, 10 mmol) was added and the reaction was stirred for 10 min. The solvents were removed *in vacuo*, and the residue was purified on Merck silica gel (2 l, dichloromethane). The column was eluted with a gradient of dichloromethane to dichloromethane:methanol (95:5) to give 9.03 g of impure 9. This was purified on SilicAR CC-7 (1 l, chloroform) and eluted with a gradient of chloroform to chloroform:ethanol (88:12) to give 6.63 g (60% yield) of 9.

CHEMIST'S REPORT

PAGE 4

PREPARATION OF:SYNTHETIC CHEMICAL NO:
SQ 34,676DATE:CHEMIST'S NAME
Marian YoungCHEMIST'S NUMBER
L030195-32

Compound 10

To a solution of compound 9 (5.45 g, 9.89 mmol) in dichloromethane (75 ml, distilled from CaH₂) under N₂ was added p-anisylchlorodiphenylmethane (3.37 g, 10.93 mmol), triethylamine (2.35 ml, 16.81 mmol) and dimethylaminopyridine (40 mg). The reaction was stirred at room temperature for 3 hr and was then extracted with 5% sodium bicarbonate (30 ml) and water (10 ml). The organic layer was dried, filtered and concentrated *in vacuo*. The residue was purified on SilicAR CC-7 (600 ml packed in chloroform). The column was eluted with chloroform:ethanol (99:1) to give 1.5 g of pure 10. Fractions containing impure 10 were purified on SilicAR CC-7 (700 ml packed in chloroform). The column was eluted with chloroform:ethanol (99.5:0.5) to give 4.54 g of 10. Total yield of 10 was 6.04 g (74%).

Compound 11

To a solution of 10 (4.10 g, 4.88 mmol, dried by concentration from toluene) in dimethyl sulfoxide (12 ml, dried over sieves) was added dicyclohexylcarbodiimide (3.08 g, 14.9 mmol) and methyl phosphonic acid (0.239 g, 2.49 mmol). The reaction was stirred 4 hr at room temperature and then sat for 16 hr at -20°. The reaction was then warmed to room temperature and oxalic acid dihydrate (60 mg) in methanol (8.0 ml) was added. This was stirred for 2.5 hr. The reaction was filtered, and the filtrate was dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was dissolved in dichloromethane (10 ml), filtered and concentrated *in vacuo*. The NMR spectra indicated there was unreacted dicyclohexylcarbodiimide in the residue.

The residue was dissolved in dimethylsulfoxide (9 ml) and then methyl phosphonic acid (150 mg) in methanol (6 ml) and oxalic acid dihydrate (60 mg) were added. This was stirred for 4 hrs. The reaction was filtered and the precipitate was washed with dichloromethane (120 ml). The organic layer was washed with water (3 x 50 ml), dried over sodium sulfate, filtered and concentrated *in vacuo*. The residue was dissolved in dichloromethane (10 ml) filtered and concentrated *in vacuo* to give 3.73 g of 11. The NMR spectra indicated there was no unreacted dicyclohexylcarbodiimide in the residue.

PREPARATION OF:SYNTHETIC CHEMICAL NO.:
SQ 34,676

CHEMIST'S NAME
Marian YoungCHEMIST'S NUMBER
L030195-32

DATE:

Compound 12

To a solution of 11 (1.8 g, 2.19 mmol) in dichloromethane (40 ml distilled from CaH₂) was added a slurry of 0.3M Zn-TiCl₄-CH₂Br₂ (40 ml, 12.3 mmol) by teflon cannula under N₂. After 3 hrs the reaction was poured slowly into saturated sodium bicarbonate (200 ml) and dichloromethane (200 ml). The mixture was filtered through celite and the celite pad was washed with dichloromethane (3 x 75 ml). The organic layers were combined, dried over magnesium sulfate, filtered and concentrated *in vacuo*. The residue was dissolved in dichloromethane (10 ml) and refiltered through celite. The pad was washed with dichloromethane (30 ml). The organic washes were combined and concentrated to give 1.43 g of 12.

Compound 13

To a solution of 12 (2.5 g, crude) in tetrahydrofuran (25 ml) and methanol (25 ml) was added 3N HCl (12.5 ml). The reaction was heated at 50° for 2.5 hr and then cooled to room temperature. The pH of the reaction was raised to 7.3 with 1N KOH, and the mixture was extracted with ethyl acetate (3 x 120 ml). The extracts were combined, dried over sodium sulfate, filtered and concentrated *in vacuo*.

The residue was purified on Merck silica gel (340 ml, packed in chloroform: ethanol, 97:3). The column was eluted with a gradient of chloroform:ethanol (97:3 to 80:20) to give 316 mg (23% yield for 3 steps) of compound 13.

Compound 14

To a solution of 13 (304 mg, 0.673 mmol) in dichloromethane (12 ml, distilled from CaH₂) at -78° under N₂ was added 1M boron trichloride in dichloromethane (6.7 ml, 6.7 mmol). The reaction was stirred at -78° for 2 hr and -40° for 30 min. It was then cooled to -78° and methanol (60 ml) was added slowly over 10 min. The reaction mixture was concentrated from methanol (4 x 40 ml). After dissolving the reaction in methanol (5 ml) and water (5 ml), the pH was adjusted to 6.8 with 1N KOH. The slurry was concentrated *in vacuo*, suspended in water and purified on CHP-20P (16 ml, water). The column was eluted with a gradient of water to water:acetonitrile (93:7) to give 115 mg (62% yield) of 14 as a solid, m.p. >220°.

CHEMIST'S REPORT

PAGE 6

PREPARATION OF:

SYNTHETIC CHEMICAL NO:
SQ 34,676

CHEMIST'S NAME
Marian Young

CHEMIST'S NUMBER
L030195-32

Analysis: Calc'd for $C_{12}H_{15}N_5O_3 \cdot 0.9 H_2O$

C, 49.12; H, 5.77; N, 23.87

Found: C, 49.17; H, 5.87; N, 23.81

1H NMR (270 MHz, DMSO $_d_6$) δ 10.52(s, 1H, NH), 7.64(s, 1H, H-8), 6.38(s, 2H, NH_2), 5.35(m, 1H, H-1'), 5.09(m, 1H, vinylic H), 4.84 (d, 1H, $CHOH$), 4.79 (t, 1H, CH_2OH), 4.56(m, 1H, vinylic H), 4.22(m, 1H, $CHOH$), 3.53(m, 2H, CH_2OH), 2.49 (m, DMSO $_d_6$ and $CHCH_2OH$), 2.21(m, 1H, $CHCH_2CH$), 1.67(m, 1H, $CHCH_2CH$).

卷之三

09:41:34
SCUDIB GX-270
1H-1KA# _____
DEFILE PROTON
COMINT SU34, 676
SU.VNT DMSO ^{see p. 6}
BO
SCANS

SQ 34, 676

SQ 34,676

09:39:47
SQUBB GX-270
1H-NMR#
FILE PHOTON
COUNT SQ34,676
SLVNT DMSO
SCANS 80

09: 17: 42

09. 17. 42
 SQUIBB GX-270
1H-NMR#
D FILE, PROTON
SLVNT DMSO
SCANS
80

S Q 34 676

SQUIBB GX- ω 70
 1H-NMR #
DFILE PROTON
 COUNT MYL030195-3
 SLYNT DMSO
 SCANS

MYL030195-32

L030-195-32

SQ 34,676

SQUBB GX-179778

13C-NMR#

DFILE 11478

COMNT L030-195-32

SLVNT DMSO

SCANS 10000

run P 16:00'
for water up

PEAK	PPM	POSITION	W.A. 60PPM
7	71.9400	H _{4'}	
RIAT	71.9400	H _{4'}	
RESOL	71.9400	H _{4'}	
E1REF	71.9400	H _{4'}	
US	71.9400	H _{4'}	
ADSB	71.9400	H _{4'}	
HEATH	71.9400	H _{4'}	
COMNT	71.9400	H _{4'}	
L030-195-32	71.9400	H _{4'}	
	116.740	C ₁	
	116.543	C ₁	
	116.345	C ₁	
	116.147	C ₁	
	115.949	C ₁	
	115.751	C ₁	
	115.553	C ₁	
	115.355	C ₁	
	115.157	C ₁	
	114.959	C ₁	
	114.761	C ₁	
	114.563	C ₁	
	114.365	C ₁	
	114.167	C ₁	
	113.969	C ₁	
	113.771	C ₁	
	113.573	C ₁	
	113.375	C ₁	
	113.177	C ₁	
	112.979	C ₁	
	112.781	C ₁	
	112.583	C ₁	
	112.385	C ₁	
	112.187	C ₁	
	111.989	C ₁	
	111.791	C ₁	
	111.593	C ₁	
	111.395	C ₁	
	111.197	C ₁	
	110.999	C ₁	
	110.791	C ₁	
	110.593	C ₁	
	110.395	C ₁	
	110.197	C ₁	
	109.999	C ₁	
	109.791	C ₁	
	109.593	C ₁	
	109.395	C ₁	
	109.197	C ₁	
	108.999	C ₁	
	108.791	C ₁	
	108.593	C ₁	
	108.395	C ₁	
	108.197	C ₁	
	107.999	C ₁	
	107.791	C ₁	
	107.593	C ₁	
	107.395	C ₁	
	107.197	C ₁	
	106.999	C ₁	
	106.791	C ₁	
	106.593	C ₁	
	106.395	C ₁	
	106.197	C ₁	
	105.999	C ₁	
	105.791	C ₁	
	105.593	C ₁	
	105.395	C ₁	
	105.197	C ₁	
	104.999	C ₁	
	104.791	C ₁	
	104.593	C ₁	
	104.395	C ₁	
	104.197	C ₁	
	103.999	C ₁	
	103.791	C ₁	
	103.593	C ₁	
	103.395	C ₁	
	103.197	C ₁	
	102.999	C ₁	
	102.791	C ₁	
	102.593	C ₁	
	102.395	C ₁	
	102.197	C ₁	
	101.999	C ₁	
	101.791	C ₁	
	101.593	C ₁	
	101.395	C ₁	
	101.197	C ₁	
	100.999	C ₁	
	100.791	C ₁	
	100.593	C ₁	
	100.395	C ₁	
	100.197	C ₁	
	99.999	C ₁	
	99.791	C ₁	
	99.593	C ₁	
	99.395	C ₁	
	99.197	C ₁	
	98.999	C ₁	
	98.791	C ₁	
	98.593	C ₁	
	98.395	C ₁	
	98.197	C ₁	
	97.999	C ₁	
	97.791	C ₁	
	97.593	C ₁	
	97.395	C ₁	
	97.197	C ₁	
	96.999	C ₁	
	96.791	C ₁	
	96.593	C ₁	
	96.395	C ₁	
	96.197	C ₁	
	95.999	C ₁	
	95.791	C ₁	
	95.593	C ₁	
	95.395	C ₁	
	95.197	C ₁	
	94.999	C ₁	
	94.791	C ₁	
	94.593	C ₁	
	94.395	C ₁	
	94.197	C ₁	
	93.999	C ₁	
	93.791	C ₁	
	93.593	C ₁	
	93.395	C ₁	
	93.197	C ₁	
	92.999	C ₁	
	92.791	C ₁	
	92.593	C ₁	
	92.395	C ₁	
	92.197	C ₁	
	91.999	C ₁	
	91.791	C ₁	
	91.593	C ₁	
	91.395	C ₁	
	91.197	C ₁	
	90.999	C ₁	
	90.791	C ₁	
	90.593	C ₁	
	90.395	C ₁	
	90.197	C ₁	
	89.999	C ₁	
	89.791	C ₁	
	89.593	C ₁	
	89.395	C ₁	
	89.197	C ₁	
	88.999	C ₁	
	88.791	C ₁	
	88.593	C ₁	
	88.395	C ₁	
	88.197	C ₁	
	87.999	C ₁	
	87.791	C ₁	
	87.593	C ₁	
	87.395	C ₁	
	87.197	C ₁	
	86.999	C ₁	
	86.791	C ₁	
	86.593	C ₁	
	86.395	C ₁	
	86.197	C ₁	
	85.999	C ₁	
	85.791	C ₁	
	85.593	C ₁	
	85.395	C ₁	
	85.197	C ₁	
	84.999	C ₁	
	84.791	C ₁	
	84.593	C ₁	
	84.395	C ₁	
	84.197	C ₁	
	83.999	C ₁	
	83.791	C ₁	
	83.593	C ₁	
	83.395	C ₁	
	83.197	C ₁	
	82.999	C ₁	
	82.791	C ₁	
	82.593	C ₁	
	82.395	C ₁	
	82.197	C ₁	
	81.999	C ₁	
	81.791	C ₁	
	81.593	C ₁	
	81.395	C ₁	
	81.197	C ₁	
	80.999	C ₁	
	80.791	C ₁	
	80.593	C ₁	
	80.395	C ₁	
	80.197	C ₁	
	79.999	C ₁	
	79.791	C ₁	
	79.593	C ₁	
	79.395	C ₁	
	79.197	C ₁	
	78.999	C ₁	
	78.791	C ₁	
	78.593	C ₁	
	78.395	C ₁	
	78.197	C ₁	
	77.999	C ₁	
	77.791	C ₁	
	77.593	C ₁	
	77.395	C ₁	
	77.197	C ₁	
	76.999	C ₁	
	76.791	C ₁	
	76.593	C ₁	
	76.395	C ₁	
	76.197	C ₁	
	75.999	C ₁	
	75.791	C ₁	
	75.593	C ₁	
	75.395	C ₁	
	75.197	C ₁	
	74.999	C ₁	
	74.791	C ₁	
	74.593	C ₁	
	74.395	C ₁	
	74.197	C ₁	
	73.999	C ₁	
	73.791	C ₁	
	73.593	C ₁	
	73.395	C ₁	
	73.197	C ₁	
	72.999	C ₁	
	72.791	C ₁	
	72.593	C ₁	
	72.395	C ₁	
	72.197	C ₁	
	71.999	C ₁	
	71.791	C ₁	
	71.593	C ₁	
	71.395	C ₁	
	71.197	C ₁	
	70.999	C ₁	
	70.791	C ₁	
	70.593	C ₁	
	70.395	C ₁	
	70.197	C ₁	
	69.999	C ₁	
	69.791	C ₁	
	69.593	C ₁	
	69.395	C ₁	
	69.197	C ₁	
	68.999	C ₁	
	68.791	C ₁	
	68.593	C ₁	
	68.395	C ₁	
	68.197	C ₁	
	67.999	C ₁	
	67.791	C ₁	
	67.593	C ₁	
	67.395	C ₁	
	67.197	C ₁	
	66.999	C ₁	
	66.791	C ₁	
	66.593	C ₁	
	66.395	C ₁	
	66.197	C ₁	
	65.999	C ₁	
	65.791	C ₁	
	65.593	C ₁	
	65.395	C ₁	
	65.197	C ₁	
	64.999	C ₁	
	64.791	C ₁	
	64.593	C ₁	
	64.395	C ₁	
	64.197	C ₁	
	63.999	C ₁	
	63.791	C ₁	
	63.593	C ₁	
	63.395	C ₁	
	63.197	C ₁	
	62.999	C ₁	
	62.791	C ₁	
	62.593	C ₁	
	62.395	C ₁	
	62.197	C ₁	
	61.999	C ₁	
	61.791	C ₁	
	61.593	C ₁	
	61.395	C ₁	
	61.197	C ₁	
	60.999	C ₁	
	60.791	C ₁	
	60.593	C ₁	
	60.395	C ₁	
	60.197	C ₁	
	59.999	C ₁	
	59.791	C ₁	
	59.593	C ₁	
	59.395	C ₁	
	59.197	C ₁	
	58.999	C ₁	
	58.791	C ₁	
	58.593	C ₁	
	58.395	C ₁	
	58.197	C ₁	
	57.999	C ₁	
	57.791	C ₁	
	57.593	C ₁	
	57.395	C ₁	
	57		

SG 341676

IR#75180 L030-195-32 | M. Young KBr Pellet

Peak	Pick	Intensity
cm ⁻¹		
644.	.265	0.063
655.	.839	0.082
684.	.773	0.118
783.	.148	0.143
812.	.388	0.082
1018.	.550	0.143
1053.	.200	0.112
1072.	.489	0.126
1170.	.865	0.150
1185.	.841	0.085
1363.	.759	0.224
1408.	.125	0.207
1481.	.424	0.176
1535.	.434	0.292
1570.	.155	0.336
1597.	.180	0.650
1629.	.952	0.970
1683.	.963	1.148
2879.	.904	0.112
2931.	.885	0.163
3211.	.881	0.398
3219.	.397	0.404
3232.	.900	0.408
3427.	.722	0.963

Marrow ground

ATTACHMENT B

PRELIMINARY

IN VITRO ANTIVIRAL ACTIVITY CMVCompound: 50 34676 FW 277.28

Structure:

Concentrations: 25 mg/mlSolvent: DMSOAssay Procedure: PLAQUE REDUCTION IN WI-38 CELLSCompound (μ M)ED₅₀ CMV, 36-36.1Control (μ M) AD169 SQ 31917 (DHPG)ED₅₀ CMV: 2-4Comments:

	CONC		% REDUCTION
	μ M	ug/ml	
	36.1	100	100
	36.1	10	57
	3.6.1	1	36

Notebook Page: L 374 -077

Copies to:

DR. W. SCOTT

DR. A.K. FIELD

DR. W. KOSTER

DR. B. TERRY

DR. R. ZAHLER

DR. G. BISACCHI

DR. W. SLUSARCHYK

DR. M. Haffey

DR. J. Tino

DR. V. GOODFELLOW

DR. G. YAMANAKA

DR. G. VITE

DR. S. AMINAD

Assay Date: _____

Analyst: A.V. TuomariB. McGeever-Rubin

* TO BE REPEATED

ATTACHMENT CIN VITRO ANTIVIRAL ACTIVITYCompound: SQ 34676

Structure:

Concentrations: 20 mg/mlSolvent: DMSOAssay Procedure: PLAQUE REDUCTION IN WI-38 CELLSCompound (μ M)

<u>ED₅₀ HSV-1: (SCH)</u>	<u><3.6</u>	<u>ED₅₀ HSV-2: (180)</u>	<u><3.6</u>	Toxicity: <u>NT 361</u>
---	----------------	---	----------------	-------------------------

Control (μ M)

<u>ED₅₀ HSV-1: (SCH)</u>	<u>0.22-0.44</u>	<u>ED₅₀ HSV-2: (180)</u>	<u>0.22</u>
---	------------------	---	-------------

Comments:PERCENT REDUCTION OF PLAQUES

<u>μg/ml</u>	<u>μM</u>	<u>SCH</u>	<u>186</u>
<u>900</u>	<u>361</u>	<u>100 %</u>	<u>100 %</u>
<u>10</u>	<u>3.6</u>	<u>100 %</u>	<u>100 %</u>
<u>1</u>	<u>0.36</u>	<u>73 %</u>	<u>55 %</u>

Notebook Page: L 300 ; 063-065

Copies to:

DR. W. SCOTT
 DR. A.K. FIELD
 DR. W. KOSTER
 DR. B. TERRY
 DR. R. ZAHLER
 DR. G. BISACCHI
 DR. W. SWARZHYK
 DR. J. TINO
 DR. M. HAFFEY
 DR. V. GOOD FELLOW
 DR. G. YRMANAKA
 DR. G. VITE
 Dr. S. Ahmad

Assay Date:

Analyst: B McGeever
AV Tuomari

X preliminary results

ATTACHMENT D

CMV

IN VITRO ANTIVIRAL ACTIVITY

Compound: SQ 39676

Structure:

Concentrations: 50 mg/ml

Solvent: DMSO

Assay Procedure: PLAQUE REDUCTION IN WI-38 CELLS

Compound (μM)

ED_{50} CMV: 90
(AD 169)

Control (μM): SQ 31919

ED_{50} CMV: 0.8 - 2
(AD 169)

Comments:

μM	CONC $\mu g/ml$	% REDUCTION	
361	100	72	
180	50	65	
90	25	47	
36.1	10	6	
18	5	19	

Notebook Page: L 374-098

Copies to:

DR. W. SCOTT
DR. A.K. FIELD
DR. W. KOSTER
DR. S. TERRY
DR. R. ZAHLER
DR. G. BISACCHI
DR. W. SWARZHYK
Dr. M. Haffey
Dr. J. Tino
DR. V. GOODFELLOW
DR. G. YAMANAKA
DR. G. VITE
DR. S. AHMAD

Assay Date:

Analyst: A.V. Tuomari,
B. McGeever-Rubin

ATTACHMENT E

VZV

IN VITRO ANTIVIRAL ACTIVITY(ELLEN)Compound: SQ 34676 FW 277.28

Structure:

Concentrations: 50 mg/mlSolvent: DMSOAssay Procedure: PLAQUE REDUCTION IN WI-38 CELLSCompound (μM) $\text{ED}_{50}^{\text{VZV}}$ ELLEN : ≤ 7.2 Control (μM) SQ 31933 $\text{ED}_{50}^{\text{VZV}}$ ELLEN : 24 -Comments:

<u>μM</u>	<u>CONC.</u>	<u>% REDUCTION</u>	
		<u>ug/ml</u>	<u>100</u>
<u>361</u>	<u>100</u>	<u>100</u>	
<u>180</u>	<u>50</u>	<u>100</u>	
<u>90</u>	<u>25</u>	<u>92</u>	
<u>36.1</u>	<u>10</u>	<u>87</u>	
<u>18</u>	<u>5</u>	<u>69</u>	
<u>7.2</u>	<u>2</u>	<u>56</u>	

Notebook Page: L374-097

Copies to:

DR. W. SCOTT
 DR. A.K. FIELD
 DR. W. KOSTER
 DR. S. TERRY
 DR. R. ZAHLER
 DR. G. BISACCHI
 DR. W. SWARZENYK
 Dr. M. Haffey
 Dr. J. Tino
 Dr. V. GOODFELLOW
 DR. G. YAMANAKA
 DR. G. VITE
 DR. S. AHMED

Assay Date:

Analyst: A.V. Tuomari
B. McGeever Rubin

ATTACHMENT F

IN VITRO ANTIVIRAL ACTIVITY

VZV
ELLEN

Compound: SQ 34676

Structure:

Concentrations: 50 mg/ml

Solvent: DMSO

Assay Procedure: PLAQUE REDUCTION IN WI-38 CELLS

Compound (μM)

ED₅₀ VZV : 19-36
ELLEN

Control (μM) SQ 31933

ED₅₀ VZV : 2-4
ELLEN

Comments:

CONC. μM	% REDUCTION	
	ug/ml	
94	25	86
36.1	10	65
18.8	5	30
7.5	2	10

Notebook Page: L 374 - 105

Copies to:

DR. W. SCOTT
 DR. A.K. FIELD
 DR. W. KOSTER
 DR. S. TERRY
 DR. R. ZAHLER
 DR. G. BISACCHI
 DR. W. SWISAROVIC
 Dr. M. Haffey
 Dr. J. Tino
 DR. V. GOODFELLOW
 DR. G. YAMAKAKA
 DR. G. VITE
 DR. S. AHMAD

Assay Date:

Analyst: B. McGeever Rubin
A.V. Tuomari

ATTACHMENT 6

* VZV
PP II A

IN VITRO ANTIVIRAL ACTIVITY

Compound: SQ 34676

Structure:

Concentrations: 20 mg/ml

CHIRAL

Solvent: DMSO

Assay Procedure: PLAQUE REDUCTION in WI-38 cells

Compound (μM)

VZV
 ED_{50} : PP II A: 23.6

Control (μM)

VZV
 ED_{50} : PP II A: 31933 (PCV)

VZV
 ED_{50} : PP II A: 0.22-0.44

Comments:

<u>ug/ml</u>	<u>μM</u>	<u>% Reduction</u>
100	361	100 %
10	36	100 %
1	3.6	87 %

Notebook Page: 1300; 063-065

Copies to:

Assay Date: _____

Analyst: B. McGeehan
A. Tuomari

DR. W. SCOTT
 DR. A.K. FIELD
 DR. W. KOSTER
 DR. B. TERRY
 DR. R. ZAHLER
 DR. G. BISACCHI
 DR. W. SWSARCHYK
 Dr. M. Haffey
 Dr. J. Tino
 DR. V. GOODFELLOW
 DR. G. YAMAKAKA
 DR. G. VITE
 DR. S. FRIMAD

* VZV (PP II A) - wild type VZV strain
Sawyer et al., 1988

ATTACHMENT H

IN VITRO ANTIVIRAL ACTIVITY HSV

Compound: SQ 34676 FW 277.28

Structure:

Concentrations: 50 mg/l ml

Solvent: DMSO

Assay Procedure: PLAQUE REDUCTION IN WI-38 CELLS

Compound (μ M)

ED₅₀ HSV-1: 3.6 ED₅₀ HSV-2: 7.2 - 18 Toxicity: NT OT 9C
Control (μ M) SQ 31933 (Acv)

Comments:

PERCENT REDUCTION OF PLAQUES

CONC	SCH	186
µM	µg/ml	
90	25	—
36	10	99
18	5	97
7.2	2	78
3.6	1	51
1.8	0.5	24
0.72	0.2	13

Notebook Page: L374-078

Copies to:

Assay Date:

Analyst: A.V.Tuomari

DR. W. SCOTT
DR. A.K. FIELD
DR. W. KOSTER
DR. B. TERRY
DR. R. ZAHLER.
DR. G. BISACCHI
DR. W. SWISCHCZYK
DR. J. TINO
DR. M. HAFFEY
DR. V. GOOD FELLOW
DR. G. YAMANAKA
DR. G. VITE

ATTACHMENT I

CELL GROWTH INHIBITION

CHIRAL

Compound: SQ 34676 Structure:Solvent: DMSO

Assay Procedure: Inhibition of WI-38 cell proliferation after 3 days in the presence of compound

Results (μM):ED₅₀ 450CELL GROWTH INHIBITION AS PERCENT OF CONTROL

<u>Conc. μM</u>	<u>%</u>
<u>600</u>	<u>50.0</u>
<u>150</u>	<u>37.5</u>
<u>38</u>	<u>72.9</u>
<u>10</u>	<u>68.0</u>

Notebook Page: L799 c 013

Assay Date: -Analyst: P. VetterCopies to: Dr. A. K. Field
Dr. M. L. Haffey
Dr. R. Zahler

ATTACHMENT J

CELL GROWTH INHIBITION

Compound: SQ 34676 NN001 Structure:

Solvent: DMSO

Assay Procedure: Inhibition of WI-38 cell proliferation after 3 days in the presence of compound

Results (μM):

ED₅₀ 310

CELL GROWTH INHIBITION AS PERCENT OF CONTROL
(3 DAYS POST-COMPound)

<u>Conc. μM</u>	<u>%</u>
<u>800</u>	<u>17</u>
<u>200</u>	<u>32</u>
<u>50</u>	<u>66</u>
<u>12.5</u>	<u>106</u>

Notebook Page: L374-170

Assay Date: _____

Analyst: A.V. Tuomari

Copies to: Dr. A. K. Field
Dr. M. L. Haffey
Dr. R. Zahler