STT-2920 LISTE DES FORMULES POUR L'EXAMEN 1 VERSION 2015

- $\mathbb{P}[\emptyset] = 0$, $0 \le \mathbb{P}[A] \le 1$ et $\mathbb{P}[\Omega] = 1$.
- Si $A_1, A_2, A_3, ...$ sont mutuellement exclusifs, alors $\mathbb{P}[\cup_i A_i] = \sum_i \mathbb{P}[A_i]$.
- $\mathbb{P}[A] = 1 \mathbb{P}[A^c]$.
- Si $A \subset B$, alors $\mathbb{P}[A] \leq \mathbb{P}[B]$.
- $\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] \mathbb{P}[A \cap B].$
- $\mathbb{P}[A \cup B \cup C] = \mathbb{P}[A] + \mathbb{P}[B] + \mathbb{P}[C] \mathbb{P}[A \cap B] \mathbb{P}[B \cap C] \mathbb{P}[A \cap C] + \mathbb{P}[A \cap B \cap C].$
- Dans le cas équiprobable (c'est-à-dire le cas où Ω est un ensemble fini et où chaque élément de Ω a la même probabilité de se réaliser), on a $\mathbb{P}[A] = \operatorname{Cardinal}(A)/\operatorname{Cardinal}(\Omega)$.
- Nombre de façons de choisir k objets parmi n objets: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.
- $\bullet \ \mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}.$
- A et B sont indépendants si et seulement si $\mathbb{P}[A \cap B] = \mathbb{P}[A] \mathbb{P}[B]$.
- La règle de multiplication:
 - $\mathbb{P}[A \cap B] = \mathbb{P}[A] \mathbb{P}[B|A].$
 - $\mathbb{P}[A \cap B \cap C] = \mathbb{P}[A] \mathbb{P}[B|A] \mathbb{P}[C|A \cap B].$
- Si $B_1, B_2, ..., B_k$ sont mutuellement exclusifs et exhaustifs (c'est-à-dire si $B_1, B_2, ..., B_k$ forment une partition de Ω), alors
 - $-\mathbb{P}[A] = \sum_{i=1}^k \mathbb{P}[B_i] \mathbb{P}[A|B_i]$. (Loi des probabilités totales).

$$- \mathbb{P}[B_j|A] = \frac{\mathbb{P}[B_j] \mathbb{P}[A|B_j]}{\sum_{i=1}^k \mathbb{P}[B_i] \mathbb{P}[A|B_i]}.$$
(Théorème de Bayes).

Loi	Fonction de masse ou densité	Moyenne	Variance
Bernoulli (p)	$\mathbb{P}[X=0] = 1 - p, \ \mathbb{P}[X=1] = p$	p	p(1-p)
Binomiale (n, p)	$\mathbb{P}[X=k] = \binom{n}{k} p^k (1-p)^{n-k}, \text{pour } 0 \le k \le n$	np	np(1-p)
Géométrique (p)	$\mathbb{P}[X=k] = (1-p)^{k-1}p, \text{pour } k \ge 1$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Pascal (m, p)	$\mathbb{P}[X=k] = \binom{k-1}{m-1} p^m (1-p)^{k-m}, \text{pour } k \ge m$	$\frac{m}{p}$	$\frac{m(1-p)}{p^2}$
Hypergéométrique	$\mathbb{P}[X=k] = \binom{N}{k} \binom{M}{n-k} / \binom{N+M}{n}, \text{pour } 0 \le k \le n$	np_*	$np_*(1-p_*)f_c$
Exponentielle (λ)	$f(x) = \lambda e^{-\lambda x}$, pour $x \ge 0$	$1/\lambda$	$1/\lambda^2$
Uniforme (a, b)	$f(x) = \frac{1}{b-a}, a < x < b$	(a+b)/2	$(b-a)^2/12$

Pour l'hypergéométrique, $p_* = N/(N+M)$ et $f_c = 1 - \frac{n-1}{N+M-1}$. La loi de Pascal s'appelle aussi la loi binomiale négative.

Cas d'une variable discrète	Cas d'une variable continue
$\mathbb{P}[a < X \le b] = \sum_{a < x \le b} p(x)$	$\mathbb{P}[a < X \le b] = \int_{a}^{b} f(x)dx$
$F(x) = \mathbb{P}[X \le x] = \sum_{-\infty < u \le x} p(u)$	$F(x) = \mathbb{P}[X \le x] = \int_{-\infty}^{x} f(u)du$
$p(x) = \mathbb{P}[X = x]$	$f(x) = \frac{d}{dx}F(x)$
$\mu = \mathbb{E}[X] = \sum_{x} xp(x)$	$\mu = \mathbb{E}[X] = \int_{-\infty}^{+\infty} x f(x) dx$
$\mathbb{E}[g(X)] = \sum_{x} g(x)p(x)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx$

•
$$\mathbb{E}[aX + b] = a\mathbb{E}[X] + b$$
 $\sigma^2 = \mathbb{V}\operatorname{ar}[X] = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2] - \mu^2$

•
$$Var[aX + b] = a^2 Var[X]$$

Cas de deux variables discrètes	Cas de deux variables continues
$\mathbb{P}[(X,Y) \in B] = \sum_{(x,y)\in B} p(x,y)$	$\mathbb{P}[(X,Y) \in B] = \int \int_{B} f(x,y) dx dy$
$F(x,y) = \sum_{-\infty < u \le x} \sum_{-\infty < v \le y} p(u,v)$	$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(u,v) du dv$
$p(x,y) = \mathbb{P}[(X=x) \cap (Y=y)]$	$f(x,y) = \frac{d^2}{dxdy}F(x,y)$
$\mathbb{E}[g(X,Y)] = \sum_{x} \sum_{y} g(x,y)p(x,y)$	$\mathbb{E}[g(X,Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y)f(x,y)dxdy$
$p_X(x) = \sum_{y} p(x, y)$	$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$
$p_{Y X=x}(y) = \frac{p(x,y)}{p_X(x)}$	$f_{Y X=x}(y) = \frac{f(x,y)}{f_X(x)}$

$$\bullet \ \mathbb{C}\mathrm{ov}[X,Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y] \qquad \ \rho = \mathbb{C}\mathrm{ov}[X,Y]/\sigma_X\sigma_Y$$

• Si X et Y sont indépendantes, $\mathbb{E}[h(X)g(Y)] = \mathbb{E}[h(X)]\mathbb{E}[g(Y)]$

•
$$\operatorname{Var}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \operatorname{Var}\left[X_i\right] + 2 \sum_{1 \le i < j \le n} \operatorname{Cov}\left[X_i, X_j\right]$$

• Pour
$$n = 0, 1, 2, 3, \dots$$
 on a $\int_a^b x^n \ dx = \left. \frac{x^{n+1}}{n+1} \right|_a^b = \frac{b^{n+1} - a^{n+1}}{n+1}$

• Pour
$$n=0,1,2,3,\dots$$
 on a $\int_0^\infty u^n\ e^{-u}\ du=n!$