

Module 04 – Project

SALES PREDICTION

Nguyen Quoc Thai

Objectives

Regression

- * Regression Task
- Linear Regression
- **❖** Non-linear Regression
- Using Sklearn library

	TV	Radio	Social Media	Influencer	Sales
0	16.0	6.566231	2.907983	Mega	54.732757
1	13.0	9.237765	2.409567	Mega	46.677897
2	41.0	15.886446	2.913410	Mega	150.177829
3	83.0	30.020028	6.922304	Mega	298.246340
4	15.0	8.437408	1.405998	Micro	56.594181

- Exploratory Data Analysis (EDA)
- Feature Scaling
- Modeling
- ***** Evaluation
- Custom Polynomial Features

Research Ideas

Research ideas for polynomial regression applications

A Comparative Analysis of Polynomial Regression and Artificial Neural Networks for Prediction of Lighting Consumption

Các nhóm (Gồm các thành viên thuộc AIO) có lời giải sơ bộ, AD Vinh sẽ hướng dẫn tiếp để ra paper.

Outline

SECTION 1

Regression

SECTION 2

	TV	Radio	Social Media	Influencer	Sales
0	16.0	6.566231	2.907983	Mega	54.732757
1	13.0	9.237765	2.409567	Mega	46.677897
2	41.0	15.886446	2.913410	Mega	150.177829
3	83.0	30.020028	6.922304	Mega	298.246340
4	15.0	8.437408	1.405998	Micro	56.594181

Regression Task

Regression

Predict a continuous value based on the input variables

What will be the temperature tomorrow?

Training Data

Test Data

Regression Task

Data

Level	Salary		Level	Salary
0	8		3,5	?
1	15		10	?
2	18			Prediction
3	22			1 rediction
4	26			\rightarrow
5	30	Learnin	g	
6	38		∫ ⟨ ⟨ ⟨	/ >
7	47			_

Linear Regression

Data

Level	Salary
0	8
1	15
2	18
3	22
4	26
5	30
6	38
7	47

Modeling

Visualization

Linear Regression using Gradient Descent

Data

Level	Salary
0	8
1	15
2	18
3	22
4	26
5	30
6	38
7	47

Inputs / Features

$$X = \begin{bmatrix} 1 & \varphi_{1}(1) & \dots & \varphi_{d-1}(1) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \varphi_{1}(N) & \dots & \varphi_{d-1}(N) \end{bmatrix}$$

Target

Target
$$Y = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix}$$

Weight

$$\theta = \begin{bmatrix} \theta_0 \\ \vdots \\ \theta_{d-1} \end{bmatrix}$$

Predict

$$\theta = \begin{bmatrix} \theta_0 \\ \vdots \\ \theta_{d-1} \end{bmatrix} \qquad \widehat{Y} = \begin{bmatrix} \theta_0 + \theta_1 * \varphi_1(1) + \dots + \theta_{d-1} \varphi_{d-1}(1) \\ \vdots \\ \theta_0 + \theta_1 * \varphi_1(N) + \dots + \theta_{d-1} \varphi_{d-1}(N) \end{bmatrix}$$

Linear Regression using Gradient Descent

Training

data

Pick all the N

samples (x, y)

Data

$$X = \begin{bmatrix} 1 & \varphi_1(1) & \dots & \varphi_{d-1}(1) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \varphi_1(N) & \dots & \varphi_{d-1}(N) \end{bmatrix}$$

$$Y = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix}$$

$$y = wx + b$$

$$\theta = \begin{bmatrix} \mathbf{b} \\ \mathbf{w} \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \vdots \\ \theta_{\mathbf{d}-1} \end{bmatrix}$$

Compute loss

Compute derivative

Update parameters

- 1) Pick all the N samples from training data
- 2) Compute output $\hat{\mathbf{y}}$

$$\hat{y} = x\theta$$

3) Compute loss

$$L(\widehat{y}, y) = (\widehat{y} - y) \odot (\widehat{y} - y)$$

4) Compute derivative

$$k = 2(\widehat{y} - y)$$

$$L'_{\boldsymbol{\theta}} = \boldsymbol{x}^T \boldsymbol{k}$$

5) Update parameters

$$oldsymbol{ heta} = oldsymbol{ heta} - \eta rac{L_{oldsymbol{ heta}}'}{N}$$
 η is learning rate

The main disadvantage of this technique is that the model is linear in both the parameters and the features. This is a very restrictive assumption, quite of the often data exhibits behaviours that are nonlinear in the features

Extend this approach to more flexible models...

Moving Beyond Linearity

Linear function

$$\hat{\mathbf{y}}(\mathbf{i}) = \theta_0 + \theta_1 * \varphi(\mathbf{i})$$

Polynomial function

$$\hat{\mathbf{y}}(\mathbf{i}) = \theta_0 + \theta_1 * \varphi(\mathbf{i}) + \theta_2 * \varphi(\mathbf{i})^2$$

Nonlinear regression estimates the ouput based on nonlinear function

Notice that the prediction is **still linear in the parameters** but **nonlinear in the features**

Moving Beyond Linearity

Polynomial Regression

2-degree polynomial function

$$\hat{y}(i) = \theta_0 * 1 + \theta_1 * \varphi(i) + \theta_2 * \varphi(i)^2$$

Find θ_0 , θ_1 , θ_2 to fit the data

Polynomial Features

 $\psi(\cdot)$ is referred to as basis function and it can be seen as a funtion that transforms the input in some way (In this case its powers function)

Polynomial Features

2-degree polynomial function

$$\hat{y}(i) = \theta_0 * 1 + \theta_1 * \varphi(i) + \theta_2 * \varphi(i)^2$$

Data

Level	Salary
0	45000
1	50000
2	60000
3	80000
4	110000
5	160000

Input 0 5

Create polynomial feature

 $\psi(\varphi(i))$

()
]	l
	2
3	3
4	1
4	5

$\varphi(\mathrm{i})^2$		
0		
1		
4		
9		
16		
25		

Polynomial Features

2-degree polynomial function

$$\hat{y}(i) = \theta_0 * 1 + \theta_1 * \varphi(i) + \theta_2 * \varphi(i)^2$$

Fea	tures
T'Ca	lui cs

1	$\varphi(i)$	$\varphi(\mathrm{i})^2$
1	0	0
1	1	1
1	2	4
1	3	9
1	4	16
1	5	25

Target

45000
50000
60000
80000
110000
160000

Polynomial Features

3-degree polynomial function

$$\hat{y}(i) = \theta_0 * 1 + \theta_1 * \varphi(i) + \theta_2 * \varphi(i)^2 + \theta_3 * \varphi(i)^3$$

F	ea	fıı	res
1	vu	··	

1	$arphi(\mathrm{i})$	$\varphi(i)^2$	$\varphi(i)^3$
1	0	0	0
1	1	1	1
1	2	4	8
1	3	9	27
1	4	16	64
1	5	25	125

Target

45000
50000
60000
80000
110000
160000

Polynomial Features

T		4
In:	nı	1
	DI	III
	•	

0	
1	
2	
3	
4	
5	

Features

1	$\varphi(i)$	$\varphi(i)^2$
1	0	0
1	1	1
1	2	4
1	3	9
1	4	16
1	5	25

Algorithm

```
def create_polynomial_features(X, degree=2):
    """Creates the polynomial features
    Args:
        X: A torch tensor for the data.
        degree: A intege for the degree of
        the generated polynomial function.
    """

X_new = X
for d in range(2, degree+1):
        X_new = np.c_[X_new, np.power(X, d)]
    return X_new
```


Polynomial Features

In	DI	u	t
	~	-	•

0
1
2
3
4
5

Features

1	$arphi(\mathrm{i})$	$\varphi(i)^2$
1	0	0
1	1	1
1	2	4
1	3	9
1	4	16
1	5	25

```
1 from sklearn.preprocessing import PolynomialFeatures
```

```
1 poly_features = PolynomialFeatures(degree=2)
```

```
1 X.to_frame()
```

(10, 1)

```
1 X_poly = poly_features.fit_transform(X.to_frame())
2 X_poly
```


Vectorization

Data

Level	Salary
0	45000
1	50000
2	60000
3	80000
4	110000
5	160000

Inputs / Features with b-degree

$$X = \begin{bmatrix} 1 & \varphi_1(1) & \dots & \varphi_1(1)^b \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \varphi_1(N) & \dots & \varphi_1(N)^b \end{bmatrix}$$

Target

$$Y = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix}$$

Weight

$$\theta = \begin{bmatrix} \theta_0 \\ \vdots \\ \theta_b \end{bmatrix}$$

Predict

$$\widehat{\mathbf{Y}} = \begin{bmatrix} \theta_0 + \theta_1 * \varphi_1(1) + \dots + \theta_b \varphi_1(1)^b \\ \vdots \\ \theta_0 + \theta_1 * \varphi_1(\mathbf{N}) + \dots + \theta_b \varphi_1(\mathbf{N})^b \end{bmatrix}$$

Model

Nonlinear Regression Model

$$\mathbf{X} = \begin{bmatrix} 1 & \varphi_1(1) & \dots & \varphi_1(1)^{\mathbf{b}} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \varphi_1(\mathbf{N}) & \dots & \varphi_1(\mathbf{N})^{\mathbf{b}} \end{bmatrix}$$

$$Y = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix} \qquad \theta = \begin{bmatrix} \theta_0 \\ \vdots \\ \theta_b \end{bmatrix}$$

$$\widehat{\mathbf{Y}} = \begin{bmatrix} \theta_0 + \theta_1 * \varphi_1(1) + \dots + \theta_b \varphi_1(1)^b \\ \vdots \\ \theta_0 + \theta_1 * \varphi_1(\mathbf{N}) + \dots + \theta_b \varphi_1(\mathbf{N})^b \end{bmatrix}$$

Both models are linear in the parameters

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} (\hat{y} - y)^2$$

Linear Regression Model

$$X = \begin{bmatrix} 1 & \varphi_1(1) \\ \vdots & \vdots \\ 1 & \varphi_1(N) \end{bmatrix}$$

Using Gradient Decent
$$Y = \begin{bmatrix} y(1) \\ \vdots \\ y(N) \end{bmatrix}$$
 $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$

$$\widehat{\mathbf{Y}} = \begin{bmatrix} \theta_0 + \theta_1 * \varphi_1(1) \\ \vdots \\ \theta_0 + \theta_1 * \varphi_1(\mathbf{N}) \end{bmatrix}$$

Degree Choice

b-degree polynomial function

$$\hat{y}(i) = \theta_0 * 1 + \theta_1 * \varphi(i) + \theta_2 * \varphi(i)^2 + \dots + \theta_b * \varphi(i)^b$$

The choice of the degree of the polynomial if critical and depends on the dataset at hand

Degree Choice

b-degree polynomial function

$$\hat{y}(i) = \theta_0 * 1 + \theta_1 * \varphi(i) + \theta_2 * \varphi(i)^2 + \dots + \theta_b * \varphi(i)^b$$

The choice of the degree of the polynomial if critical and depends on the dataset at hand

Good method for choice of the degree: K-fold cross-validation

Choose the degree which has the lowest out-of-sample error

Disadvantages

Increasing the degree of the polynomial always results in a model that is more sensitive to stochastic noise (even if that degree is the best one obtained from validation), especially at the boundaries (where we often have less data).

Outline

SECTION 1

Regression

SECTION 2

	TV	Radio	Social Media	Influencer	Sales
0	16.0	6.566231	2.907983	Mega	54.732757
1	13.0	9.237765	2.409567	Mega	46.677897
2	41.0	15.886446	2.913410	Mega	150.177829
3	83.0	30.020028	6.922304	Mega	298.246340
4	15.0	8.437408	1.405998	Micro	56.594181


```
Dataset
```

```
1 import pandas as pd
2
3 df = pd.read_csv('./SalesPrediction.csv')
4 df
```

	TV	Radio	Social Media	Influencer	Sales
0	16.0	6.566231	2.907983	Mega	54.732757
1	13.0	9.237765	2.409567	Mega	46.677897
2	41.0	15.886446	2.913410	Mega	150.177829
3	83.0	30.020028	6.922304	Mega	298.246340
4	15.0	8.437408	1.405998	Micro	56.594181

Dataset

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4572 entries, 0 to 4571
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	TV	4562 non-null	float64
1	Radio	4568 non-null	float64
2	Social Media	4566 non-null	float64
3	Influencer	4572 non-null	object
4	Sales	4566 non-null	float64
1.0	67 . 64.645	1 1 1 245	

dtypes: float64(4), object(1)

memory usage: 178.7+ KB

1 df.describe()

	TV	Radio	Social Media	Sales
count	4562.000000	4568.000000	4566.000000	4566.000000
mean	54.066857	18.160356	3.323956	192.466602
std	26.125054	9.676958	2.212670	93.133092
min	10.000000	0.000684	0.000031	31.199409
25%	32.000000	10.525957	1.527849	112.322882
50%	53.000000	17.859513	3.055565	189.231172
75%	77.000000	25.649730	4.807558	272.507922
max	100.000000	48.871161	13.981662	364.079751

Preprocessing – One hot encoding

```
1 df = pd.get_dummies(df)
2 df
```

Radio	Social Media	Sales	Influencer_Macro	Influencer_Mega	Influencer_Micro	Influencer_Nano
6.566231	2.907983	54.732757	False	True	False	False
9.237765	2.409567	46.677897	False	True	False	False
15.886446	2.913410	150.177829	False	True	False	False
30.020028	6.922304	298.246340	False	True	False	False
8.437408	1.405998	56.594181	False	False	True	False

Preprocessing – Handling Missing Values

1 df.isnull().sum() 0 TV 10 Radio 4 **Social Media** 6 **Sales** 6 Influencer_Macro 0 Influencer_Mega 0 Influencer Micro 0 Influencer_Nano 0

dtype: int64

1 df = df.fillna(0)
2 df.isnull().sum()

TV 0

Radio 0

Social Media 0

Sales 0

Influencer_Macro 0

Influencer_Mega 0

Influencer_Micro 0

Influencer_Nano 0

dtype: int64

1 df = df.fillna(df.mean())
2 df.isnull().sum()

TV 0

Radio 0

Social Media 0

Sales 0

Influencer_Macro 0

Influencer_Mega 0

Influencer_Micro 0

Influencer_Nano 0

dtype: int64

<pre>1 df[['TV', 'Radio', 'Social Media', 'Sales']].corr()</pre>							
	TV	Radio	Social Media	Sales			
TV	1.000000	0.860518	0.522565	0.988570	11.		
Radio	0.860518	1.000000	0.604450	0.863790			
Social Media	0.522565	0.604450	1.000000	0.526777			
Sales	0.988570	0.863790	0.526777	1.000000			

Train Test Split

```
1 from sklearn.model_selection import train_test_split
 2 X_train, X_test, y_train, y_test = train_test_split(
       Χ,
       у,
       test_size=0.33,
       random_state=0
 7)
 1 X_train.shape, X_test.shape
((3063, 7), (1509, 7))
 1 y_train.shape, y_test.shape
((3063, 1), (1509, 1))
```


(1509, 7)

Feature Scaling

MaxAbsScaler

$$x_{new} = \frac{x}{x_{max}}$$

MinMaxScaler

$$x_{new} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

StandardScaler

$$x_{new} = \frac{x - \mu}{\sigma}$$

```
1 from sklearn.preprocessing import StandardScaler
 3 scaler = StandardScaler()
 4 X_train_processed = scaler.fit_transform(X_train)
 1 scaler.mean_
array([53.9970617, 18.22209011, 3.33487105, 0.24779628, 0.25138753,
        0.25008162, 0.25073457])
 1 scaler.scale_
array([26.24285095, 9.6336957, 2.21929717, 0.43173288, 0.43381083,
       0.43305981, 0.43343598
 1 X_test_processed = scaler.transform(X_test)
 1 X_train_processed.shape
(3063, 7)
 1 X_test_processed.shape
```


(!) M

Modeling

- 1) Pick all the N samples from training data
- 2) Compute output $\hat{\mathbf{y}}$

$$\hat{y} = x\theta$$

3) Compute loss

$$L(\widehat{y}, y) = (\widehat{y} - y) \odot (\widehat{y} - y)$$

4) Compute derivative

$$\mathbf{k} = 2(\widehat{\mathbf{y}} - \mathbf{y})$$

 $L'_{\boldsymbol{\theta}} = \boldsymbol{x}^T \boldsymbol{k}$

5) Update parameters

$$\boldsymbol{\theta} = \boldsymbol{\theta} - \eta \frac{L_{\boldsymbol{\theta}}'}{N}$$
 η is learning rate


```
Modeling
```


Polynominal Regression

```
1 from sklearn.preprocessing import PolynomialFeatures
 3 poly_features = PolynomialFeatures(degree=2)
 4 X_train_poly = poly_features.fit_transform(X_train_processed)
1 X_train_poly
-1.00174084, 0.33464052],
     \lceil 1. \qquad , -0.19041611, -0.28821416, \ldots, 0.33347845,
       0.33405898, 0.334640527,
     [1. , -0.41904981, -1.07312224, ..., 0.33347845,
      -0.99826219, 2.988281257,
      [1. , -1.6003239, -1.72760008, ..., 0.33347845,
      -0.99826219, 2.98828125],
     [1. , -0.57147227, -0.9126861, ..., 2.99869452,
      -1.00174084, 0.33464052,
     [1., -1.25737336, -1.45632493, ..., 2.99869452.
      -1.00174084, 0.3346405277)
```


Polynominal Regression

```
1 poly_model = LinearRegression()
2 poly_model.fit(X_train_poly, y_train)

v LinearRegression • 
LinearRegression()
```

```
1 preds = poly_model.predict(X_test_poly)
2 r2_score(y_test, preds)
```

0.9785743009106321

Custom Polynominal Regression


```
1 X_train_processed[:, 2:3]
array([[-0.17117575],
       [-1.47454833]
       [-0.55726535],
       [ 0.58703816],
       [-1.22457248],
       [-1.04684805]])
 1 x_train_poly = create_polynomial_features(X_train_processed[:, 2:3], degree=2)
 2 x_train_poly
array([[-0.17117575, 0.02930114],
       \lceil -1.47454833, 2.17429276 \rceil
       [-0.55726535, 0.31054467],
       [0.58703816, 0.3446138],
       [-1.22457248, 1.49957777],
       [-1.04684805, 1.09589085]
```


Custom Polynominal Regression

0.9820873203866817

```
1 x_test_poly = create_polynomial_features(X_test_processed[:, 2:3], degree=2)
 2 X_test_poly = np.hstack((X_test_processed, x_test_poly[:, 1:]))
 3 X_test_poly
array([[-0.34283858, -0.11361891, -0.84351677, ..., 1.73167391,
        -0.57848122, 0.71152054],
      [0.76222428, 1.17276695, -0.45136527, ..., -0.57747593,
        1.72866459, 0.20373061],
      [1.14328044, 1.04152694, 1.06570814, ..., -0.57747593,
       -0.57848122, 1.13573384],
       [0.95275236, 1.11773825, 1.06866838, ..., -0.57747593,
        -0.57848122, 1.14205211],
      [-0.41904981, -0.32445517, 1.20063234, ..., -0.57747593,
       -0.57848122, 1.44151802],
      [-0.91442282, -1.25598448, -0.32806086, ..., -0.57747593,
        -0.57848122, 0.1076239377)
 1 X_train_poly.shape, X_test_poly.shape
((3063, 8), (1509, 8))
 1 poly_model = LinearRegression()
 2 poly_model.fit(X_train_poly, y_train)
    LinearRegression ① ②
LinearRegression()
 1 preds = poly_model.predict(X_test_poly)
 2 r2_score(y_test, preds)
```


Model	R2
Linear Regression	0.9821
Polynominal Regression (2)	0.9786
Custom Polynominal Regression	0.9821

Summary

Regression

- * Regression Task
- Linear Regression
- **❖** Non-linear Regression
- Using Sklearn library

				/-/-
			/	/
· .		/:		•
• ,	/··		•	

	TV	Radio	Social Media	Influencer	Sales
0	16.0	6.566231	2.907983	Mega	54.732757
1	13.0	9.237765	2.409567	Mega	46.677897
2	41.0	15.886446	2.913410	Mega	150.177829
3	83.0	30.020028	6.922304	Mega	298.246340
4	15.0	8.437408	1.405998	Micro	56.594181

- Exploratory Data Analysis (EDA)
- Feature Scaling
- Modeling
- ***** Evaluation
- Custom Polynomial Features

Thanks! Any questions?