

Process State Transition and Process Scheduling

Comprehensive Course on Operating System for GATE - 2024/25

Vishvadeep Gothi • Lesson 3 • Apr 20, 2023

Operating System Process & Scheduling

By: Vishvadeep Gothi

Process

Process

O Process:

Program under execution

An instance of a program

Schedulable/Dispatchable unit (CPU)

Unit of execution (CPU)

Locus of control (OS)

Process

Representation of a Process

Operations on a Process

- © Create (Resource Allocation)
- Schedule, Run
- Wait/Block
- Suspend, Resume
- Terminate (Resource Deallocation)

Attributes of a Process

- PID

- List of Devices
- Type
- Size
- Memory Limits
- Priority
- State
- List of Files

PCB

Also known as processor descriptor

Context

The content of PCB of a process are collectively know as 'Context' of that process

Context Switch

defined based on what process is doing?

```
Dispalcher:
```

It does Context switch

Process States (Preem) tive system)

New:

All installed processes are in known to be in new state

new state procusses are in secondary memory.

Ready:

All processes which are waiting to run on CPU are known to be in ready state

Running:

A process which is running on CPU has its state as running

Terminated:

A completed process has its state as terminated

Blocked:

All processes which are waiting for any IO or event

New To Ready: When process is admitted by OS (memory files)

Ready to Running: When a process is dispatched to CPU

Running to Terminated: When a process is completed - Resource Leadlo cally

Running to Blocked: When a process goes for IO or event

Running to Ready: When a process is preempted

Blocked to Ready: When a process completes IO or event

If knows is in ready or running orblecked state then knows is in main memory.

- 2 Transitions are voluntary: (Locus and with it's own wish)
 - Running to Terminated
 - Running to Blocked

Remaining all, 05 loes

Non-preemptive Process States

CPU vs IO Bound Process

CPU Bound: If the process is intensive in terms of CPU operations (CPU intensive process)

IO Bound: If the process is intensive in terms of IO operations (T/O intensive process)

CPU vs 10 Bound Process

CRU Bound. If the process is intensive in terms of CPU operations

IO Bound: If the process is intensive in terms of IO operations

Process Scheduling

Needed Because?

Scheduling Queues

② Job Queue ⇒ all processes which are in ready 5 tote, are kept in ready enemy e Queue

Soul process on which are wonting four a specifice device.

Seach device has it's own Ruene.

are left into it's device away.

Types of Schedulers

- O Long-Term Scheduler (Job)
- Short-Term Scheduler (CPU)
- Mid-Term Scheduler (Medium-term)

```
to ready state.

(brings process from secondary memory to main memory)
```


Short-Tern Scheduler:
It selects one of the ready processes to run on CPV
next.

=> short-tean scheduler does not affect degree of multiprogramming.

Mid-Term Schedwers- Main nemany se condany me man 412 GAMES 5wab-In Tele jum whats A pp

•

- =) mid-term schedulere performs swapping of Process

 (swap-out, swap-th)
 - => If swap-out & swap-In done based on priority of known. then known-as roll-out, roll-in
- => Mid-term scheduler com increase and con decrease Legnee of multiproporming.

on "swep-space".

Updates Process States

CPU Scheduling

Function:

Make a selection, which process will run next on cpv.

Goal

Minimize Wait time and Turn-around time Maximize CPU utilization (Throughput) Fairness

Question

Which of the following scheduler reduces the degree of multiprogramming?

- a) Short-Term
- b) Long-Term

d) Long-Term and Mid-Term both

CPU Scheduling Types

-> Preemptine

-> Non-preemptive

Scheduling Times

```
Arrival Time (AT):
```

Burst/Service Time (BT):

Waiting Time (WT):

Completion Time (CT):

Turn-Around Time (TAT):

Scheduling Times

Response Time (RT):

Scheduling Length (L):

Throughput:

Scheduling Algorithms

- FCFS
- 2. SJF
- 3. SRTF
- HRRN
- Priority Based
- Round Robin
- 7. Multilevel Queue Scheduling
- 8. Multilevel Feedback Queue Scheduling

Happy Learning.!

