Domain Theory

A partially ordered set is a pair $D = (U, \sqsubseteq)$ where

 $\forall x \in U, x \sqsubseteq_{D} X (Reflexivity)$

 $\forall x,y \in U, x \sqsubseteq_n y \text{ and } y \sqsubseteq_n x \text{ implies } x = y \text{ (Antisymmetry)}$

 $\forall x,y,z \in U, x \sqsubseteq_{\mathbb{D}} y \text{ and } y \sqsubseteq_{\mathbb{D}} z \text{ implies } x \sqsubseteq_{\mathbb{D}} z \text{ (Transitivity)}$

Examples

Three partially ordered sets:

- The set of numbers with ≤, (N, ≤).
- The set of sets with \subseteq , (S, \subseteq)
- The set of Haskell values is partially ordered by the approximation relation: □

 $x \sqsubseteq y$ if x is an approximation of y

Bottom

⊥ is used to represent the bottom element of the partially ordered set of Haskell values and most partially ordered sets.

 $\forall x \in U, \bot \sqsubseteq x$

In (N, \leq) , $_{-L} = 0$, for natural numbers

In (S, \subseteq) , _L is the empty set

In Haskell, _L represents an incomplete evaluation. _L is an approximation of every value.

Haskell Approximation

Value A approximates value B, A ⊆ B, if A is _| or A and B have the same form with each part of A approximating the corresponding part of B.

Join

The *join* of elements x and y of a partially ordered set D is $x \sqcup y \in D$ where

 $x \sqsubseteq x \sqcup y \text{ and } y \sqsubseteq x \sqcup y$

 $\forall z \in D, x \sqsubseteq z \text{ and } y \sqsubseteq z \text{ implies } x \sqcup y \sqsubseteq z$

For sets, the join is usually the union. For numbers, the join is the max of x and y.

Least Upper Bound

For a subset X of a partially ordered set D, the least upper bound is $\coprod X \in D$ where

 $\forall x \in X, x \sqsubseteq \coprod X$ $\forall y \in D, \text{ if } \forall x \in X, x \sqsubseteq y \text{ then } \coprod X \sqsubseteq y$

Chains

A chain is a sequence of approximations, such as:

A nonempty set C is a *chain* if

$$\forall x,y \in C, x \sqsubseteq y \text{ or } y \sqsubseteq x$$

For numbers, all sets are chains.

For sets, a chain is like a Russian doll.

Complete Partial Order

- A partially ordered set is *complete* if every chain has a least upper bound.
- A complete partial order may also require a bottom element, depending on who you ask.
- The set of numbers is not a complete partial order for ≤, but any finite subset is.
- For any set S, power set of S is a complete partial order for ⊆.

Monotonicity

For any two partially ordered sets, D_1 and D_2 , $f: D_1 \rightarrow D_2$ is *monotonic* if

 $\forall x,y \in D_1, x \sqsubseteq y \text{ implies } f(x) \sqsubseteq f(y)$

Continuity

For any two complete partial orders, D_1 and D_2 , $f: D_1 \rightarrow D_2$ is *continuous* if for all chains of D_1 ,

$$f(\sqcup C) = \sqcup \{f(c) \mid c \in C\}$$

Fixpoint

Let D be a partially ordered set Let f be a function from D to D d is a fixpoint of f if $d \in D$ and f(d) = d

d is the *least fixpoint* if $\forall d' \in D[f(d') = d' \Rightarrow d \sqsubseteq d']$

Fixpoint and Continuity

For any continuous function *f*, the least fixpoint is fix(*f*), where

$$fix(f) = \bigsqcup \{f^i(_L) \mid i \ge 0\}$$

$$f^{\circ}(x) = x \text{ and } f^{i}(x) = f(f^{i-1}(x))$$