# Cancer Progression Modeling

Rebecca Wang, Alexis Georgiades

**Mentor: Anja Vogt** 



### Intro & Biological Background



# Deterministic Modeling (ODEs)



### **System of Equations**

- $N_{\theta}$  = Initial Stem Cell count (18)
- $r = \text{Stem Cell asymmetric division rate } (1/2.5 \text{ d}^{-1})$
- $\lambda = \text{TA symmetric division rate } (1/30 \text{ h}^{-1})$
- d = TA to FD differentiation rate
- $\gamma$  = FD cell apoptosis rate (1/3.5 d<sup>-1</sup>)

 $\left. \begin{array}{l} m_{\mathrm{TA}}'(t) = rN_0 + (\lambda - d)m_{\mathrm{TA}}(t) \\ m_{\mathrm{FD}}'(t) = dm_{\mathrm{TA}}(t) - \gamma m_{\mathrm{FD}}(t). \end{array} \right\}$ 

\*d is adjusted so that the total crypt size stays around 2300\*

$$S \xrightarrow{r} S TA$$

$$TA \xrightarrow{\lambda} TA TA$$

$$TA \xrightarrow{d} FD$$

$$FD \xrightarrow{\gamma} \emptyset.$$

### **Solution to ODE**

This system starts with only Stem Cells ( $N_0$ ) and grows to a steady state of ~1800 FD cells and ~625 TA cells. This result is verified when the equilibrium points, calculated via the jacobian, are plotted as well.



### **Stability analysis**



If  $\lambda$  is greater than d, system is unstable and grows exponentially



Various  $\gamma$  and d values always result in steady system

# Stochastic Modeling (Gillespie Algorithm)



### **ODE v.s. Stochastic Simulation**

- **Solid Lines**: Show the average number of TA and FD cells from many Gillespie simulations.
- **Shaded Bands**: Represent the variability around the average for TA and FD.
- **Dashed Lines**: Show predictions from the deterministic ODE model.
- Comparison:
  - The means from the simulations closely match the ODE predictions.
  - The stochastic simulations have more spread as time goes on, especially for FD cells.
- **Insight**: Deterministic models capture the average trend, but Gillespie simulations show how much real systems can vary due to randomness.



### **TA and FD Dynamics with Stochasticity**



The stochastic models show the same dynamics that we would expect based on the ODE stability analysis.

### Gillespie Simulation With TA Cell Death





- **More fluctuation:** TA and FD curves show bumpier paths with more ups and downs.
- **Stabilized growth:** Cell counts settle around a steady level instead of growing forever.
- Wider spread: Variability  $(\pm 1\sigma)$  increases, especially for FD, due to added randomness from cell death.
- Biologically realistic: Models natural cell divide and die to maintain tissue balanceUNIVERSITY of WASHINGTON

### **Future Directions with Stochasticity!**

#### **Introducing stem cell dynamics**

- Asymmetric Division (default behavior):  $S \rightarrow S+TA$
- Symmetric Renewal:  $S \rightarrow S + S$
- Symmetric Differentiation (Loss): S→∅

#### **Alternative additions of stochasticity**

• Uses alternative methods for determining probability of an event happening such as a binomial distribution.

# Machine Learning Modeling



### **Background**

#### **Dataset Overview: Acute Lymphoblastic Leukemia (ALL)**

- Source: ALL Challenge Dataset ISBI 2019
- **Total Images:** 15,135 segmented cell images from 118 patients
- ALL: One of the most prevalent forms of childhood cancer.
- Classes:
  - Normal cells
  - Leukemia blast cells
- Annotations: Verified by expert oncologists
- Image Format: .bmp files from microscopic scans
- Image Quality: Preserves real-world imperfections (e.g., staining, lighting)







#### **PCA Explained Variance:**

- Indicates how many principal components are needed to retain a certain amount of total variance in the dataset.
- ~300 components retain 90% of the variance, and ~500 reach 95%, suggesting strong feature redundancy.
- Helps determine a suitable dimensionality reduction threshold before classification.
- The leukemia and normal cells are not linearly separable





UNIVERSITY of WASHINGTON

### KNN



- Not linearly separable needed to use a higher order classifier
- Training Score: 0.8994413407821229
- Testing Score: 0.7925581395348837
- Alternative number of neighbors (k) as hyperparameter tuning
  - Optimal number of neighbors: 3



# **Classifiers Comparison**

- **Top-left (TN):** Predicted normal, actually normal
- **Top-right (FP):** Predicted leukemia, actually normal
- **Bottom-left (FN):** Predicted normal, actually leukemia
- **Bottom-right (TP):** Predicted leukemia, actually leukemia

#### Takeaways:

- **SVM** is the most balanced and effective overall.
- Random Forest is very accurate on the normal class but struggles with leukemia class.
- **KNN** and **Ridge** are simpler and faster but less reliable in distinguishing complex patterns.



UNIVERSITY of WASHINGTON

## **Classifiers Comparison**

| Model            | Accuracy (%)             | Precision<br>(Leukemia) | Recall<br>(Leukemia) | Strengths                                      | Weaknesses                          |
|------------------|--------------------------|-------------------------|----------------------|------------------------------------------------|-------------------------------------|
| SVM              | 83.92                    | 80%                     | 65%                  | Highest overall accuracy, balanced performance | Still moderate recall on leukemia   |
| Random<br>Forest | 83.12                    | 89%                     | 54%                  | High recall for normal class (97%)             | Low recall for leukemia class       |
| Ridge            | 81.34                    | 75%                     | 62%                  | Simpler and interpretable model                | Lower performance on minority class |
| KNN              | 80.83                    | 76%                     | 58%                  | Performs comparably to Ridge                   | Sensitive to local variations       |
|                  | IINIVERSITY of WASHINGTO |                         |                      |                                                |                                     |

### **Model Evaluation – Random Forest**

- Performed 5-fold Stratified Cross-Validation
- Mean Accuracy: 84.8%
- Standard Deviation: ±3.1%
- Accuracy remains strong across folds with mild variance, showing model stability and generalization.

| Metric   | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Fold 5 |
|----------|--------|--------|--------|--------|--------|
| Accuracy | 86.6   | 87.9   | 87.2   | 82.5   | 79.8   |



### **Convolutional Neural Network Training Performance**



• **Model:** Simple CNN with 2 Conv layers and 2 FC layers

• **Input Size:** 64×64 RGB cell images

• **Epochs Trained:** 10

• Train Accuracy: Improved from  $78.4\% \rightarrow 84.8\%$ 

• Validation Accuracy: Rose from 80.6% → 84.3%

• Loss: Steady decline in both training and validation loss

• No signs of overfitting: Validation closely follows training

Epoch 1 | Train Acc: 78.42% | Val Acc: 80.59% Epoch 2 | Train Acc: 80.16% | Val Acc: 80.87% Epoch 3 | Train Acc: 80.36% | Val Acc: 81.11% Epoch 4 | Train Acc: 80.71% | Val Acc: 81.48% Epoch 5 | Train Acc: 81.74% | Val Acc: 81.86% Epoch 6 | Train Acc: 82.07% | Val Acc: 81.90% Epoch 7 | Train Acc: 82.83% | Val Acc: 83.68% Epoch 8 | Train Acc: 83.62% | Val Acc: 84.01% Epoch 9 | Train Acc: 83.79% | Val Acc: 84.15% Epoch 10 | Train Acc: 84.79% | Val Acc: 84.34%



# Thank you for listening!

