PREDIKSI KELULUSAN MAHASISWA TEPAT WAKTU BERDASARKAN USIA, JENIS KELAMIN, DAN INDEKS PRESTASI MENGGUNAKAN ALGORITMA DECISION TREE

Agus Romadhona¹, Suprapedi², H. Himawan³ ¹²³Pascasarjana Teknik Informatika Universitas Dian Nuswantoro

ABSTRACT

Prediction of the study period in college is needed in determine the accuracy of the students study period according to the specified time so that wisdom of prevention related to the study period is no ton time could be done. This research aims to find patterns to predict the timely graduation of students using data mining techniques and models to predict long period of study was Decision tree algorithm C4.5 to compare with ID3 and CHAID algorithms using test data to determine the percentage of precision, recall and accuracy is obtained that the algorithm Decision Tree C4.5 has a better performance compared with other algorithms. From this research it was found that the prediction of the students study period are affected by incoming students age, gender, GPA semesters 1 through 4 semesters GPA and the most influential is the 4th semester GPA of students graduate on time with a value of 0.340 gain of all attributes. Decision tree algorithm C4.5 reaches the highest accuracy on the amount of data 389 with 91.51% accuracy values for k-fold=3, 90.75 for k-fold = 5 and 90.77 with k-fold = 10, While ID3 and CHAID algorithms achieving a low accuracy value. So thus the value accuracy of Decision Tree algorithm C4.5 is better than the ID3 and CHAID algorithm. In this research, training data are used as much as 389. To see better performance in the accuracy of the results of each algorithm, thus for furthermore research the number of data records used training process should be improved.

Keywords: Decision Tree C.45, ID3, CHAID, Prediction, Student.

1. PENDAHULUAN

Perguruan tinggi merupakan penyelenggara pendidikan akademik bagi mahasiswa [1]. Pada setiap tahun akademik perguruan tinggi menyelenggarakan proses penerimaan mahasiswa baru. Dilihat dari banyaknya peminat dari tiap tahun akademik perguruan tinggi dapat memperhatikan berbagai faktor yang berpengaruh terhadap pengelolaan daya tampung mahasiswa, salah satunya ketepatan dari masa studi mahasiswa sesuai dengan waktu yang telah ditentukan.

Perguruan tinggi perlu mendeteksi perilaku mahasiswa sehingga dapat diketahui faktor yang menjadi penyebab kegagalan mahasiswa sehingga tidak lulus atau lulus sesuai dengan masa studi yang telah ditetapkan,diantaranya adalah rendahnya kemampuan akademik, usia masuk perguruan tinggi, indeks prestasi ataupun faktor lainnya. Salah satu penyelenggara pendidikan di Sulawesi Tengah adalah STMIK Adhiguna pada tiap tahun akademik banyak peminatnya dari dua program studi.

Dalam tiap tahun akademik terdapat beberapa hal yang tidak seimbang antara mahasiswa masuk dan keluardalam menyelesaikan studinya. Mahasiswa yang masuk dalam jumlah besar tetapi mahasiswa yang lulus tepat waktu sesuai dengan ketentuan yaitu 3 (tiga) tahun 6 (enam) bulan jauh sangat kecil dibandingkan masuknya. Sehingga terjadi penumpukan mahasiswa dalam jumlah tinggi disetiap periode kelulusan sehingga proses akademik tidak berjalan maksimal, lama studi kelulusan mahasiswa lulus tepat waktu dan lulus tidak tepat waktu dapat dilihat pada lampiran 4.

Dari data penelitian yang diperoleh perlunya mengetahui sejak dini mahasiswa yang diidentifikasi akan gagal atau lulus tidak tepat waktu, sehingga kepada mahasiswa tersebut dapat diberikan beberapa alternatif pilihan atau peningkatan kemampuan melalui bimbingan yang sifatnya khusus. Ada beberapa penelitian yang membahas atau memprediksi keberhasilan mahasiswa dalam menempuh studi.

Marselina Silvia Suhartinah melakukan penelitian tentang prediksi kelulusan mahasiswa sesuai

dengan waktu studi dengan menggunakan algoritma *Naïve Bayes* dan C4.5 teknik klastering, analisis diskriminan, *Teorema Bayes, Decision Tree, Artificial Neural Networks, Support Vector Machine, Regresi Linear, Support Vector Regresi* [2]. Metode yang digunakan untuk mengolah data yang sifatnya besar untuk menemukan pola yang terdapat di dalamnya diantaranya teknik klastering, analisis diskriminan, *Teorema Bayes, Decision Tree Artificial Neural Networks, Support Vector Machine, Regresi Linear, Support Vector Regresi* yang dapat digunakan untuk memproses data.

Muhammad Hanief Meinanda, dkk.. melakukan penelitian menggunakan metode minimasi *Sum Square Error* (SSE) sedangkan model untuk lama studi menggunakan *Ariticial Neural Network* (ANN) dengan arsitektur *Multilayer Perceptron* (MP) diperoleh bahwa lama studi mahasiswa dipengaruhi oleh Indeks Prestasi Kumulatif (IPK), jumlah mata kuliah yang diambil, jumlah mata kuliah yang mengulang dan pengambilan jumlah matakuliah tertentu [3].

S. Anupama Kumar, dkk.. melakukan penelitian untuk memprediksi tingkat keberhasilan siswa yang cenderung gagal atau lulus berdasarkan nilai studi siswa menggunakan algoritma *Tree* C4.5 kemudian membandingkan dengan algoritma ID3 dengan hasil prediksi dapat menemukan pola yang dapat membantu siswa yang cenderung lemah dapat ditingkatkan nilai yang lebih baik [4].

Lillyan Hadjaratie melakukan penelitian prediksi tingkat kelulusan mahasiswa dengan *Artificial Neural Network* (ANN) metode propagasi balik (Back Propagation). Prediksi tingkat kelulusan adalah lama studi dan Indeks Prestasi Kumulatif (IPK). Variabel inputnya berupa nilai angka mutu dari 16 (enam belas) mata kuliah dari 2 (dua) semester pada tahun pertama program perkuliahan. Variabel outputnya berupa lama studi Indeks Prestasi Akademik (IPK) [5].

Sujana melakukan penelitian dengan aplikasi *mining data* mahasiswa dengan metode klasifikasi *Decision Tree*. Pada penerapan algoritma C4.5 apakah IPK seorang mahasiswa dapat diperkirakan berdasarkan nilai beberapa mata kuliah yang dianggap paling siginifikan dalam menentukan IPK seorang mahasiswa? Peneliti mengambil matakuliah hanya sampai semester IV dan rata-rata 2 matakuliah, sehingga dosen dapat melihat IPK dan menentukan matakuliah yang harus diulang atau diambil agar IPK seorang mahasiswa dapat meningkat [6].

Dari hasil uji, prosentase dari beberapa matakuliah terhadap nilai IPK seorang mahasiswa. Prosentase *error rate* yang dihasilkan pada hasil *testing* rata-rata adalah di bawah 50%, bahkan ada yang 26 %. Itu menandakan bahwa *rule* yang dihasilkan sudah cukup baik. Hasil ini diperoleh dari data *training* pada matakuliah Algoritma I, Algoritma II, Basis Data, Statistika, dan Struktur Data. Data *training* pada matakuliah tersebut menghasilkan *rule* yang digunakan untuk data *testing* dengan prosentase *error rate* yang sangat kecil. Semakin besar prosentase nilai *error rate* yang dihasilkan pada data *testing*, maka *rule* yang dihasilkan pun tidak baik. Sebaliknya, semakin kecil prosentase *error rate* yang dihasilkan pada data *testing*, maka akan menghasilkan *rule* yang baik pula.

Berdasarkan beberapa pandangan penelitian terkait tersebut di atas penulis melakukan penelitian dengan mengambil data dari indeks prestasi mahasiswa yang diperoleh dari pengambilan matakuliah yang ditawarkan pada setiap semesternya sesuai dengan kurikulum yang berlaku saat ini. Persentase kurikulum pada STMIK Adhiguna mengacu pada Keputusan Menteri Pendidikan Nasional Republik Indonesia Nomor 045/u/2002 tentang kurikulum inti pendidikan tinggi.

Penelitian dilakukan dengan mengambil data dari indeks prestasi mahasiswa yang diperoleh dari pengambilan matakuliah yang ditawarkan pada setiap semesternya. Kelulusan tepat waktu merupakan indikator keberhasilan mahasiswa dalam proses pendidikan dilihat dari nilai yang diperoleh, indeks prestasi serta faktor lain yang dapat menyebabkan kegagalan masa studi mahasiswa sehingga perlu adanya *tool* yang mampu memprediksi. Penekanan pada penelitian ini adalah mahasiswa angkatan 2009 sebagai *training set* yang akan diprediksi kelulusannya ditinjau dari usia, jenis kelamin, indeks prestasi selama 4 semester pertama yaitu semester 1, semester 2, semester 3 dan semester 4. Selanjutnya dilakukan analisis komparasi algoritma klasifikasi yaitu *Algoritma Decision Tree C4.5, ID3 dan Chaid* sehingga dapat diketahui algoritma yang paling akurat untuk memprediksi kelulusan mahasiswa lulus tepat waktu pada STMIK Adhiguna.

Dharapkan penelitian ini dapat bermanfaat dan dapat dijadikan sebagai bahan pertimbangan bagi program studi untuk melakukan langkah-langkah dalam meningkatkan persentase tingkat kelulusan mahasiswa yang ditetapkan dan untuk mencegah secara dini kegagalan akademik mahasiswa.

2. TINJAUAN PUSTAKA

2.1. Penelitian Terkait

Marselina Silvia Suhartinah [2], prediksi kelulusan mahasiswa dengan waktu studi menggunakan algoritma *naïve bayes* dan *C4.5* teknik klastering, analisis diskriminan, *teorema bayes,decision tree,artificial neural networks, support vector machine, regresi linear, support vector regresi.* Tujuan penelitian ini mencari dan menemukan pola yang terdapat pada data mahasiswa berdasarkan data NEM, IP DNS semester 1, IP DNS semester 2, IPK DNU semester 1-2, gaji orang tua dan pekerjaan orang tua, untuk memprediksi mahasiswa yang lulus atau tidak lulus sesuai dengan waktu studi dengan menggunakan algoritma *naïve bayes* dan *C4.5*, kemudian membandingkan hasil dan akurasi kedua algoritma tersebut diperoleh akurasi ketepatan hasil prediksi *naive bayes* adalah : ((17/21) x 100%) = 80,85%. Sementara Presentase kesalahan adalah : ((4/21) x 100%) = 19,05%. Akurasi ketepatan hasil prediksi C4.5 adalah : ((18/21) x 100%) = 85,7%. Sedangkan nilai kesalahan pada penelitian dengan algoritma C4.5 adalah : ((3/21) x 100%) = 14,3%. Disimpulkan, algoritma *decision tree* memiliki kompleksitas yang lebih besar, karena *entropi* masing-masing nilai digunakan untuk mencari ukuran *purity* dari atribut yang dinyatakan dengan *information gain* sehingga membentuk pola pohon keputusan.

Muhamad Hanief Meninanda, dkk. [3] memprediksi masa studi sarjana dengan *Artificial Neural* Network. Variabel prediktor dari data akademis yang berpengaruh terhadap masa studi dan pembuatan model ANN untuk prediksi masa studi, model prediksi digunakan model *multiple regression* sebagai model pembanding. Data input 1289 mahasiswa dengan variabel ID mahasiswa, masa studi, kode mata kuliah, nama mata kuliah, pengambilan mata kuliah, nilai, bobot, sks, ipk, jumlah mata kuliah dan jumlah mengulang mata kuliah. Eksperimen penelitian menggunakan algoritma ANN *Multilayer Preceptron, Linier Regression* dan *Spearman Correlation*. Diperoleh uji beda menghasilkan nilai *p-value* sebesar 0.65 nilai tersebut lebih besar dari nilai kritis (α =0.05) dengan tingkat keperayaan 95% tidak ada perbedaan signifikan antara nilai masa studi aktual dengan nilai masa studi berdasarkan model prediksi.

2.2. Landasan Teori

2.2.1 Data mining

Data mining adalah proses yang menggunakan statistik, matematika, kecerdasan buatan, dan machine learning untuk mengekstraksi dan mengidentifikasi informasi yang bermanfaat dan pengetahuan yang terkait dari berbagai database besar. Data mining adalah analisis pengamatan Dataset untuk menemukan hubungan tak terduga dan untuk meringkas data dengan cara baru yang baik dimengerti dan berguna untuk pengguna data [7].

Inti dari tugas *data mining* adalah pemodelan prediktif, analisa asosiasi, analisa *cluster* dan deteksi terhadap anomali. Prediksi menurut Kamus Besar Bahasa Indonesia adalah "ramalan" atau "prakiraan" [8] Prediksi dalam penelitian ini adalah memperkirakan masa studi mahasiswa yang dinyatakan lulus tepat waktu dan mahasiswa yang dinyatakan lulus tidak tepat waktu dengan menggunakan sumber data pada transaksi aktifitas mahasiswa kuliah dan transaksi nilai.

Gambar 1. Empat Tugas Inti Data Mining

Data mining adalah suatu algoritma didalam menggali informasi yang tersembunyi pada suatu koleksi data (database). Analisa data mining berjalan pada data yang cenderung terus membesar untuk mendapatkan kesimpulan dan keputusan paling layak. Datamining memiliki beberapa sebutan atau nama lain yaitu: Knowledge discovery(mining) indatabases (KDD), ekstraksi pengetahuan (knowledge extraction), analisa data/pola, kecerdasan bisnis (business intelligence), dll [9]

Sumber: Data Minig "Concepts and Techniques", Jiawei Han and Micheline Kember, 2006.

Gambar 2. Proses dalam KDD

Knowledge Discovery in Database (KDD) yaitu sebuah proses mencari pengetahuan yang bermanfaat dari data. Tahapan proses dalam *data mining* secara garis besar dimulai dari data sumber dan berakhir dengan adanya informasi yang dihasilkan dari beberapa tahapan. Proses KDD secara garis besar sebagai berikut [9]:

a. Seleksi Data

Pemilihan (seleksi) data baru dari sekumpulan data operasional perlu dilakukan sebelum tahap penggalian informasi dalam KDD dimulai. Data hasil seleksi yang akan digunakan untuk proses *data mining*, disimpan dalam suatu berkas, terpisah dari basis data operasional.

b. Pembersihan data (*Cleaning*)

Sebelum proses *data mining* dapat dilaksanakan, perlu dilakukan proses pembersihan pada data yang menjadi fokus KDD. Proses pembersihan mencakup antara lain membuang *duplikasi data*, memeriksa data yang *inkonsisten*, dan memperbaiki kesalahan pada data, seperti kesalahan cetak (*tipografi*).

c. Transformasi

Pada tahap transformasi data diubah kedalam bentuk yang sesuai untuk di*mining*. Beberapa teknik *data mining* membutuhkan format data yang khusus sebelum bisa diaplikasikan. Sebagai contoh, beberapa teknik standar seperti analisis asosiasi dan klastering hanya bisa menerima input data kategorikal. Disini juga dilakukan pemilihan data yang diperlukan oleh teknik *data mining* yang dipakai.

d. Data mining

Data mining adalah proses mencari polaatau informasi menarik dalam data terpilih dengan menggunakan teknikatau metode tertentu. Teknik, metode,atau algoritma dalam data mining sangat bervariasi. Pemilihan metode atau algoritma yang tepat sangat bergantung pada tujuan dan proses KDD secara keseluruhan.

e. Interpretasi/Evaluasi

Pola informasi yang dihasilkan dariproses *data mining* perlu ditampilkandalam bentuk yang mudah dimengertioleh pihak yang berkepentingan. Tahap ini merupakan bagian dari proses KDD

yang disebut dengan *interpretation*. Tahap ini mencakup pemeriksaan apakah pola atau informasi yang ditemukan bertentangan dengan fakta atau hipotesa yang ada sebelumnya?

2.2.2 Decision Tree C4.5

Algoritma C4.5 pengembangan dari algoritma *ID3*. Algoritma *C4.5* dan *ID3* diciptakan oleh *j. Rose quinlan* pada akhir tahun 1970-an. Algoritma *C4.5* membuat pohon keputusan dari atas ke bawah, atribut paling atas merupakan akar, dan yang paling bawah dinamakan daun [10].

Decision tree adalah algoritma yang paling banyak digunakan untuk masalah klasifikasi. Sebuah decision tree terdiri dari beberapa simpul yaitu tree's roo, internal nod dan leafs. Konsep entropi digunakan untuk penentuan pada atribut mana sebuah pohon akan terbagi (split). Semakin tinggi entropy sebuah sampel, semakin tidak murni sampel tersebut [11].

Hasil kualitas keputusan yang didapatkan dari metode pohon keputusan sangat bergantung pada bagaimana pohon tersebut didesain. Sehingga jika pohon keputusan yang dibuat kurang optimal, maka akan berpengaruh pada kualitas dari keputusan yang didapat [12].

Penerapan *feature selection* pada penelitian ini adalah dengan menghitung *information gain* pada setiap atributnya. *Information gain* dari suatu atribut, diperoleh dari nilai *entropy* sebelum pemisahan dikurangi *entropy* setelah pemisahan [13].

$$Entropy(S) = \sum_{i=1}^{k} (P_i) \log 2(P_i) \dots (2)$$

Pi adalah proporsi data S dengan kelas i, dan k adalah jumlah kelas pada output S. Nilai entropy setelah pemisahan adalah sebagai berikut:

Membuat pohon keputusan adalah memilih atribut yang harus diuji pada setiap simpul. Proses ini disebut *information gain*, yang berguna untuk menentukan atribut mana yang akan digunakan pada setiap simpul. *Information Gain* itu sendiri didapatkan dari perhitungan yang menggunakan satuan yang disebut *entropy* [14].

$$Gain(S, A) = Entropy(S) - Entropy(S, A)$$
(4)

2.2.3 Algoritma ID3

Algoritma *ID3* atau *Iterative Dichotomiser 3* (ID3) merupakan sebuah metode yang digunakan untuk membangkitkan pohon keputusan Secara ringkas, langkah kerja Algoritma *ID3* dapat digambarkan sebagai berikut [15].

S = ruang (data) sample yang digunakan untuk training. P + = jumlah yang bersolusi positif (mendukung) pada data sample untuk kriteria tertentu.

$$Gain(S,A) = Entropy(S) - \sum_{S} \frac{S_v}{S} Entropy(Sv) \dots \dots \dots (6)$$

S = ruang (data) sample yang digunakan untuk training.

A = atribut.

V = suatu nilai yang mungkin untuk atribut A.

Nilai(A) = himpunan yang mungkin untuk atribut A.

|Sv|= jumlah sampel untuk nilai V

|S|= jumlah seleuruh sampel data.

Entropy(Sv) = entropy untuk sampel yang memiliki nilai V

2.2.4 Algoritma Chaid

Metode Chaid digunakan untuk menduga variabel dependen berdasarkan variabel-variabel independen. Tahapan yang harus dilakukan dalam analisis Chaid untuk menghasilkan sebuah diagram pohon pada dasarnya melalui tiga tahap yaitu penggabungan, pemisahan, dan penghentian. Pada tahap pengabungan dibentuk tabel kontingensi dari variabel dependen dan variabel independen yang telah dikategorikan [16].

Keterangan: o_{rk} dan e_{rk} masing-masing adalah jumlah pengamatan dan nilai harapan pada baris ker dan kolom ke-k. Kriteria pengujian hipotesisnya adalah tolak H_0 jika $\chi^2_{\text{hitung}} > \chi^2_{\text{tabel}} = 0.05$ dengan derajat bebas adalah (k-1)(r-1).

$$B = {c-1 \choose g-1} = \frac{(c-1)!}{(g-1)!((c-1)-(g-1)!}\dots\dots(8)$$

c adalah banyak kategori variabel independen awal ke-i; g adalah banyak kategori variabel independen ke-i setelah penggabungan; dan i adalah 1,2,...,n. Apabila skala pengukuran variabelnya adalah skala nominal maka nilai pengali Bonferroni dihitung dengan rumus sebagai berikut.

Persamaan Bonferroni kemudian dihitung dengan rumus sebagai berikut.

Keterangan: α adalah comparison-wise error rate (CWER), adalah family-wide error rate (FWER) dan B adalah pengali Bonferroni.

2.2.5 Pengukuran Kinerja

Permasalahan dalam klasifikasi, pengukuran yang biasa digunakan adalah precision, recall dan accuracy dapat dihitung dengan cara seperti berikut ini [17].

Tabel 1. Penilaian Pengkuran Kinerja

	Lulus Tidak Tepat Waktu	Lulus Tepat Waktu
Tidak Tepat Waktu	а	b
Tepat Waktu	С	d

Precision a.

Precision dapat dinyatakan sebagai kepersisan atau persamaan, seberapa persis dokumen tersebut untuk keperluan pencarian informasi. *Precision* adalah bagian data yang di ambil sesuai dengan informasi yang dibutuhkan.

b. Recall

Recall adalah pengambilan data yang berhasil dilakukan terhadap bagian data yang relevan dengan query.

c. Accuracy

Accuracy adalah persentase dari total data yang benar diidentifikasi.

2.2.6 n-Fold Cross Validation

n-fold cross validation atau k-fold cross validation merupakan salah satu metode yang digunakan untuk mengetahui rata-rata keberhasilan dari suatu sistem dengan cara melakukan perulangan dengan mengacak atribut masukan sehingga sistem tersebut teruji untuk beberapa atribut input yang acak. n-foldcross validation diawali dengan membagi data sejumlah n-fold yang diinginkan. Dalam proses crossvalidation data akan dibagi dalam n buah partisi dengan ukuran yang samaD1,D2,D3..Dn selanjutnya proses testing dan training dilakukan sebanyak n kali. Dalam iterasi ke-i partisi Di akan menjadi data testing dan sisanya akan menjadi datatraining. Untuk penggunaan jumlah fold terbaik untuk uji validitas, dianjurkan menggunakan 10-fold cross validation dalam model [18]. n-fold cross validation, data dibagi sejumlah n dan data ke-n digunakan sebagai data testing sedangkan data selain data ke-n sebagai data pembentuk pola atau data training. Pada proses fold ke n, Parameter nilai k tertentu digunakan untuk menguji validitas data terhadap data testing menggunakan algoritma C4.5, ID3 dan Chaid.

2.3. Prediksi Kelulusan Mahasiswa Tepat Waktu Berdasarkan Usia, Jenis Kelamin, dan Indeks Prestasi Menggunakan Algoritma *Decision Tree*

Kerangka pemikiran dari penelitian ini bersumber dari fenomena akademik pada STMIK Adhiguna yaitu tidak seimbangnya jumlah mahasiswa yang masuk dan yang lulus pada perguruan tinggi sehingga perlunya sebuah solusi yang tepat agar terdapat kesinambungan proses akademik yang relevan dengan mengevaluasi transaksi aktifitas kuliah mahasiswa 4 (empat) semester pertama sebagai acuan pengolahan data diambil berdasarkan usia, jenis kelamin, IP Semester pada 4 (empat) semester pertama.

Untuk mendapatkan nilai akurasi dari masa studi mahasiswa berdasarkan atribut tersebut menggunakan Algoritma *Decision Tree C4.5* kemudian membandingkannya dengan algoritma lain ID3 dan *Chaid* yang bertujuan menemukan pola yang terdapat pada data mahasiswa berdasarkan data usia, jenis kelamin, dan Indeks Pretasi Kumulatif (IPK) selama 4 (empat) semester pertama untuk memprediksi kelulusan mahasiswa tepat waktu.

3. METODE PENELITIAN

Jenis penelitian ini adalah eksperimen untuk prediksi kelulusan mahasiswa tepat waktu berdasarkan atribut usia, jenis kelamin, indeks prestasi pada empat (4) semester pertama. Tahapan penelitian menggunakan pendekatan teknik *data mining* dengan algoritma *Decision Tree C4.5* untuk memprediksi kelulusan mahasiswa sesuai dengan waktu yang ditentukan dan membandingkan nilai akurasinya dengan algoritma *ID3* dan *Chaid*. Diagram alir metode penelitian ini tercantum pada gambar berikut ini.

Gambar 3. Diagram Alir Metode Penelitian

3.1. Pengumpulan Data

Dataset penelitian ini diambil dari *database* EPSBED STMIK Adhiguna untuk menentukan kelulusan tepat waktu didefinisikan antara usia mahasiswa pada awal masuk perguruan tinggi, jenis kelamin mahasiswa serta perolehan indeks prestasi pada semester 1 (satu) sampai dengan semester 4 (empat).

3.2. Pengolahan Data Awal

Data target diimplementasikan dengan menggunakan *Tools Rapidminer 5.3* sebagai praproses pengolahan data dengan menggunakan algoritma fitur *Decision Tree C4.5*, *ID3* dan *Chaid* untuk mendapatkan fitur perbandingan yang paling tepat antara jarak data *testing* dan data *training*.

3.3. Eksperimen dan Pengujian

Eksperimen penelitian ini untuk mencari dan membandingkan algoritma seleksi atribut yang paling tepat yang akan dipergunakan sebagai masukan ke dalam algoritma *data mining*. Algoritma *data mining* yang digunakan adalah *Decision Tree C4.5, ID3* dan *Chaid*. Eksperimen pada tahap ini dengan menggunakan *Tools Rapidminer 5.3*, setelah itu eksperimen dilakukan dengan cara memilih nilai *k*. Parameter nilai *k* digunakan untuk menguji validitas data terhadap data *testing* menggunakan algoritma *C4.5* kemudian membandingkan dengan algoritma *ID3* dan *Chaid* guna mencapai nilai akurasi yang baik.

3.4. Evaluasi dan Validasi Penelitian

Hasil pengujian dari eksperimen berupa tabel akurasi prediksi kelulusan mahasiswa menggunakan *Decision Tree C4.5, ID3* dan *Chaid.* Dari data yang diolah menggunakan algoritma tersebut masing-masing mendapat tingkatan nilai akurasi yang berbeda untuk lebih jelasnya dapat dilihat pada Hasil dan Pembahasan.

4. HASIL PENELITIAN DAN PEMBAHASAN

Data mahasiswa diambil dari tahun angkatan 2009 untuk menentukan perdiksi kelulusan tepat waktu. Terdapat 10 atribut salah satunya adalah label prediksi lulus tepat waktu dan lulus tidak tepat waktu. Data mahasiswa terdiri dari 390 data, terdiri dari 136 data lulus tetap waktu dan 389 *record* tidak tepat waktu. Adapun atribut data adalah sebagai berikut.

Tabel 2. Keterangan Atribut Data Set

Nama Atribut	Keterangan
Nim	Nomor Induk Mahasiswa
Tgl. Lahir	Tanggal Lahir Mahasiswa
Usia	Usia Masuk Mahasiswa
JK	Jenis Kelamin Mahasiswa
IPS-1	Indeks Prestasi pada Semester Satu (1)
IPS-2	Indeks Prestasi pada Semester Dua (2)
IPS-3	Indeks Prestasi pada Semester Tiga (3)
IPS-4	Indeks Prestasi pada Semester Empat (4)
Label	Indikasi Lulus Tepat Waktu dan Lulus Tidak Tepat Waktu

4.1. Hasil Pengolahan Data Awal

Data diperoleh dari *file database* mahasiswa yang akan dipakai dalam pengujian dalam penelitian ini, adapun datanya dapat dilihat pada tabel 3 adalah sebagai berikut :

Tabel 3. Dataset Awal Mahasiswa

NO	NIM	TGL. LAHIR	USIA	JK	IPS1	IPS2	IPS3	IPS4
1	5520109002	07/04/1988	21	L	3,30	2,87	3,00	3,00
2	5520109003	02/08/1988	20	L	2,26	3,30	3,75	3,75
3	5520109005	28/02/1992	17	L	2,71	3,30	3,60	3,60
4	5520109006	08/09/1981	27	L	3,00	3,52	3,40	3,40
5	5520109007	28/08/1990	18	L	2,87	3,30	3,75	3,75
6	5520109008	30/01/1990	19	L	2,74	1,57	2,75	2,99
7	5520109009	31/05/1990	19	L	3,00	2,00	2,25	2,89
8	5520109010	09/06/1989	20	L	2,87	2,70	2,90	2,90
9	5520109011	15/06/1992	17	L	2,74	2,39	2,60	3,63
10	5520109012	02/02/1991	18	L	2,67	2,91	2,90	2,90
11	5520109013	07/12/1990	18	Р	3,04	3,42	3,70	3,70
12	5520109014	24/02/1986	23	Р	2,94	2,57	2,09	2,10
13	5520109015	11/11/1987	21	L	2,44	3,30	2,63	2,60
14	5520109016	19/04/1984	25	L	3,17	3,19	3,20	3,31
15	5520109018	06/06/1988	21	L	2,26	3,61	3,45	3,45
16	5520109019	26/11/1987	21	Р	2,57	3,04	3,55	3,51
17	5520109020	01/09/1990	18	L	2,91	2,61	2,75	2,75
18	5520109022	16/11/1991	17	L	2,96	1,48	2,00	2,25
19	5520109023	26/07/1988	20	L	2,74	2,74	1,85	1,85
20	5520109024	15/08/1991	17	L	3,13	3,43	2,34	2,99
389	5520109031	10/06/1991	18	L	2,87	1,96	2,90	2,90

Pemilihan model disesuaikan dengan kebutuhan sesuai dengan tujuan penelitian. Data yang akan diprediksi lulus tepat waktu dan lulusa tidak tepat waktu untuk angkatan 2009 yang berjumlah 389 record. Data cleaning digunakan untuk membersihkan nilai yang kosong atau tuple yang kosong (missing values dan noise). Tidak semua atribut dalam tabel data digunakan, hanya atribut-atribut yang dianggap berpengaruh saja yang akan digunakan untuk penelitian.

USIA	jk	IPS-1	IPS-2	IPS-3	IPS4	LABEL
21	1	3,30	2,87	3,00	3,00	TEPAT WAKTU
20	1	2,26	3,30	3,75	3,75	TEPAT WAKTU
17	1	2,71	3,30	3,60	3,60	TEPAT WAKTU
27	1	3,00	3,52	3,40	3,40	TEPAT WAKTU
18	1	2,87	3,30	3,75	3,75	TEPAT WAKTU
19	1	2,74	1,57	2,75	2,99	TIDAK TEPAT WAKTU
19	1	3,00	2,00	2,25	2,89	TIDAK TEPAT WAKTU
20	1	2,87	2,70	2,90	2,90	TIDAK TEPAT WAKTU
17	1	2,74	2,39	2,60	3,63	TEPAT WAKTU
18	1	2,67	2,91	2,90	2,90	TIDAK TEPAT WAKTU
18	0	3,04	3,42	3,70	3,70	TEPAT WAKTU
23	0	2,94	2,57	2,09	2,10	TIDAK TEPAT WAKTU
21	1	2,44	3,30	2,63	2,60	TIDAK TEPAT WAKTU
25	1	3,17	3,19	3,20	3,31	TEPAT WAKTU
21	1	2,26	3,61	3,45	3,45	TEPAT WAKTU
21	0	2,57	3,04	3,55	3,51	TEPAT WAKTU
18	1	2,52	2,56	3,05	3,05	TEPAT WAKTU
17	1	3,00	3,74	2,75	2,75	TIDAK TEPAT WAKTU

Tabel 4. Menentukan Label Dataset Mahasiswa

Pada Tabel 4 Atribut NIM, Nama Mahasiswa dan Tanggal Lahir Mahasiswa tidak disertakan lagi karena dianggap tidak memiliki pengaruh dalam eksperimen dalam penelitian ini.

4.2. Hasil Ekperimen dan Pengujian Model

Jumlah data yang digunakan berjumlah 389 *record*, 254 dinyatakan tidak tepat waktu dan 135 dinyatakan tepat waktu, maka :

$$I(S,A) = I(254,135) = -\frac{254}{389}log2\frac{254}{389} - \frac{135}{389}log2\frac{135}{389} = 0,931$$

Hasil dari *information gain* untuk *class* dinyatakan lulus tepat waktu dan lulus tidak tepat waktu sebesar 0,931. Nilai *entropy* untuk atribut usia, dengan data sampel adalah usia <=22 sebanyak 351 *class* lulus tepat waktu sebanyak 123 sampel dan tidak tepat waktu 228. Usia<=29 sebanyak 31 dengan sampel lulus tepat waktu sebanyak 9 dan tidak tepat waktu 22 sampel. Usia<=36 sebanyak 7 dengan sampel 3 dinyatakan lulus tepat waktu dan 4 sampel tidak tepat waktu. Sehingga nilai diperoleh adalah sebagai berikut.

$$Entropy(Usia) = \frac{351}{389}(0,977) + \frac{31}{389}(0,360) + \frac{7}{389}(0,122)$$
$$= 0,912$$

Sehingga dapat diperoleh nilai gain yaitu:

$$Gain(Usia) = I(S,A) - E(Usia)$$

= 0,931 - 0,912
= 0,019

Data sampel jenis kelamin (JK) diperoleh jenis kelamin laki-laki sebanyak 230, perempuan sebanyak 159 data, jenis kelamin laki-laki lulus tepat waktu sebanyak 76 sampel dan tidak tepat waktu 154 sampel. Jenis kelamin perempuan sebanyak 59 sampel tepat waktu dan sebanyak 100 sampel tidak tepat waktu, sehingga diperoleh nilai *information gain* adalah sebagai berikut:

Entropy(JK) =
$$\frac{230}{389}(0.989) + \frac{159}{389}(0.916)$$

= 0.960

Sehingga dapat diperoleh nilai gain yaitu:

$$Gain(JK) = I(S,A) - E(JK)$$

$$= 0.931 - 0.960$$

$$= -0.028$$

Data sampel Indeks Prestasi Semester1 (IPS-1) diperoleh IP semester 2,75 – 3,00 sebanyak 332 sampel dengan data 106 sampel lulus tepat waktu dan 226 sampel tidak tepat waktu. IP semester 3,01 – 3,50 sebanyak 55 sampel dengan data 29 sampel tepat waktu dan 26 sampel tidak tepat waktu. IP semester 3,51 – 4,00 sebanyak 2 sampel tidak tepat waktu sedangkan untuk tidak tepat waktu tidak ada, sehingga diperoleh nilai *information gain* adalah sebagai berikut.

$$Entropy(IPS1) = \frac{332}{389}(0,966) + \frac{55}{389}(0,414) + \frac{2}{389}(0,039)$$

$$= 0,883$$
Sehingga dapat diperoleh nilai gain yaitu:
$$Gain(IPS1) = I(S,A) - E(IPS1)$$

$$= 0,931 - 0,883$$

$$= 0.048$$

Data sampel indeks prestasi (IPS-2) dapat diperoleh untuk IP semester 2,75 – 3,00 sebanyak 238 sampel dengan data 81sampel lulus tepat waktu dan 157 sampel tidak tepat waktu. IP semester 3,01 – 3,50 sebanyak 119 sampel dengan data 44 sampel tepat waktu dan 75 sampel tidak tepat waktu. IP semester 3,51 – 4,00 sebanyak 32 sampel dengan data 10 sampel tepat waktu dan 22 sampel tidak tepat waktu, sehingga diperoleh nilai *information gain* adalah sebagai berikut:

$$Entropy(IPS2) = \frac{238}{389}(1,000) + \frac{119}{389}(0,814) + \frac{32}{389}(0,370)$$

$$= 0,891$$
Sehingga dapat diperoleh nilai gain yaitu:
$$Gain(IPS2) = I(S,A) - E(IPS2)$$

$$= 0,931 - 0,891$$

$$= 0.040$$

Data sampel indeks prestasi (IPS-3) dapat diperoleh untuk IP semester 2,75 - 3,00 sebanyak 271 sampel dengan data 55 sampel tepat waktu dan 216 sampel tidak tepat waktu. IP semester 3,01 - 3,50 sebanyak 99 sampel dengan data 63 sampel tepat waktu dan 36 sampel tidak tepat waktu. IP semester 3,51 - 4,00 sebanyak 19 sampel dengan data 17 sampel tepat waktu dan 2 sampel tidak tepat waktu, sehingga diperoleh nilai *information gain* adalah sebagai berikut :

Entropy(IPS3) =
$$\frac{271}{389}$$
(0,870) + $\frac{99}{389}$ (0,743) + $\frac{19}{389}$ (0,236)
= 0,807
Sehingga dapat diperoleh nilai gain yaitu :
 $Gain(IPS3)$ = $I(S,A) - E(IPS3)$
= 0,931 - 0,807
= 0,105

Data sampel indeks prestasi (IPS-4) diperoleh untuk IP semester 2,75-3,00 sebanyak 240 sampel dengan data 8 sampel tepat waktu dan 232 sampel tidak tepat waktu. IP semester 3,01-3,50 sebanyak 120 sampel dengan data 100 sampel tepat waktu dan 20 sampel tidak tepat waktu. IP semester 3,51-4,00 sebanyak 29 sampel dengan data 27 sampel tepat waktu dan 2 sampel tidak tepat waktu, sehingga diperoleh nilai *information gain* adalah sebagai berikut :

Entropy(IPS4) =
$$\frac{240}{389}$$
(0,560) + $\frac{120}{389}$ (0,724) + $\frac{29}{389}$ (0,306) = 0,592

Sehingga dapat diperoleh nilai gain yaitu:

$$Gain(IPS4)$$
 = $I(S,A) - E(IPS4)$
= 0,931 - 0,592
= 0,340

Nilai gain dari masing – masing atribut diperoleh nilai gain yang tertinggi adalah sebagai berikut.

Gain(Usia)	=	0,019
Gain(JK)	=	-0,028
Gain(IPS1)	=	0,048
Gain(IPS2)	=	0,040
Gain(IPS3)	=	0,105
Gain(IPS4)	=	0,340

Dari perhitungan nilai *information gain* pada semua atribut maka atribut yang memiliki nilai *gain* tertinggi adalah atribut yang layak menjadi *root*.

Parameter pilihan atribut yaitu usia, jenis kelamin, indeks prestasi semester 1 (satu) sampai dengan semester 4 (empat) serta atribut classnya mahasiswa lulus dengan tepat waktu dan tidak tepat waktu dengan k-fold(number of validation) menggunakan $range\ k$ =3, k=5 dan k=10. Untuk mendapatkan nilai akurasi yang baik maka didapat diuji nilai accurasi, precision dan recall.

Tabel 5. Hasil Pengujian Algoritma C4.5 untuk Nilai k-fold

k=		Criterion			
K-		gain ratio	information gain	gini index	
	Accuracy	91,51	90,23	87,91	
3	Precision	90,06	88,72	86,91	
	Recall	92,64	90,96	86,24	
	accuracy	90,75	91,00	88,94	
5	precision	89,30	89,54	87,62	
	recall	92,22	92,25	88,24	
	accuracy	90,77	90,25	86,38	
10	precision	89,33	88,73	85,01	
	recall	92,40	91,31	84,88	

Akurasi tertinggi diperoleh pada k=3 yaitu sebesar 91,51% (gain ratio).

Tabel 6. Hasil Pengujian Algoritma ID3 untuk Nilai k-fold

k=		Criterion			
K=		gain ratio	information gain	gini index	
	accuracy	40,36	35,47	35,47	
3	precision	68,39	57,45	57,45	
	recal	54,33	50,42	50,42	
	accuracy	40,36	34,97	34,97	
5	precision	68,39	50,70	50,70	
	recal	54,33	50,03	50,03	
	accuracy	40,37	35,22	35,22	
10	precision	68,39	50,70	50,70	
	recal	54,33	50,05	50,05	

Nilai Precision dengan k=3 nilai $gain\ ratio$ diperoleh 68,39, nilai pada $information\ gain\ dan\ gini\ index$ diperoleh 57,45 dapat diartikan kecocokan data mahasiswa yang digunakan untuk nilai informasi lulus tepat waktu dan tidak tepat waktu.

Tab	oel 7. Hasil Peng	gujian Algoritma	Chaid untuk Nilai k-fold

		0 1 0		J	
k=			Criterion		
		minimal gain	maximal depth	confidence	
		0,10	20,00	0,25	
3	accuracy	34,70	17,35	50,00	
3	precision	34,70	17,35	50,00	
	recal	34,70	17,35	50,00	
	accuracy	34,71	17,35	50,00	
5	precision	34,71	17,35	50,00	
	recal	34,71	17,35	50,00	
10	accuracy	34,70	17,35	50,00	
	precision	34,70	17,35	50,00	
	recal	34,70	17,35	50,00	

Pada Tabel 7 nilai *Recall, Precision* dan *Accuracy* mendekati pada angka yang sama dalam artian nilai *recall* adalah proporsi jumlah dokumen yang dapat ditemukan kembali dan kecocokan jumlah dokumen yang ditemukan dan dianggap relevan menentukan pohon keputusan mahasiswa lulus tepat waktu dan tidak tepat waktu.

4.3. Perbandingan Model Algoritma

Gambar 4. Perbandingan Accuracy Algoritma Decision Tree C4.5, ID3 dan Chaid

Nilai *recall* (proporsi jumlah dokumen) besar dapat terjadi jika jumlah dokumen yang diberikan juga besar kemungkinan juga nilai *precision*-nya semakin kecil. Nilai perbandingan *accuracy* pada tiap pengujian menggunakan algoritma *DecisionTree C4.5*, *ID3* dan *Chaid*, dari dapat disimpulkan algoritma *DecisionTree C4.5* memiliki kinerja yang lebih baik dibandingkan algoritma *ID3* dan *Chaid*.

Tabel 8. Perbandingan Akurasi Algoritma *Decision Tree C4.5 ID3* dan *Chaid* dengan Kondisi *K-Fold* Berbeda.

k =	C4.5	ID3	CHAID
3	91,51	40,36	34,70
5	90,75	40,36	34,71
10	90,77	40,37	34,70

Perbandingan kinerja ketiga model algoritma berdasarkan jumlah data secara keseluruhan disimpulkan bahwa algoritma *Decision Tree C4.5* memiliki kinerja (*precision, recall,* dan *accuracy*) lebih baik dibandingkan dengan algoritma *ID3* dan *Chaid*.

5. KESIMPULAN DAN SARAN

5.1. Kesimpulan

Dari perhitungan nilai *information gain* pada atribut yang digunakan yaitu atribut Indeks Prestasi Semester 4 (IPS-4) mendapat nilai *gain* tertinggi yaitu 0,340 dengan demikian atribut tersebut layak menjadi *root*. Algoritma *Decision Tree C4.5* memiliki kompleksitas yang lebih besar, karena setiap nilai dalam suatu atribut ditelusuri dan diproses untuk mendapatkan *entropi* masing-masing nilai yang akan digunakan untuk mencari ukuran *purity* masing-masing atribut yang dinyatakan dengan *information gain*. Proses penelusuran ini akan membentuk sebuah pola berupa pohon keputusan.

5.2. Saran

Data *training* yang digunakan sebanyak 389 *record* data dan ketidaklengkapan data yang diperoleh penulis. Untuk melihat kinerja yang lebih baik dalam hasil akurasi masing-masing algoritma maka untuk penelitian selanjutnya jumlah *record* data yang digunakan untuk proses *training* sebaiknya ditingkatkan.

UCAPAN TERIMAKASIH

Penelitian ini dapat terselesaikan karena bantuan berbagai pihak, oleh karena itu peneliti berterimakasih kepada pihak-pihak yang mendukung terlaksananya penelitian yaitu para pembimbing penelitian, penguji,, serta pihak-pihak lain yang mendukung terlaksananya penelitian ini.

PERNYATAAN ORIGINALITAS

"Saya menyatakan dan bertanggung jawab dengan sebenarnya bahwa Artikel ini adalah hasil karya saya sendiri kecuali cuplikan dan ringkasan yang masing-masing telah saya jelaskan sumbernya" [Agus Romadhona – P31.2011.00964]

DAFTAR PUSTAKA

- [1] Peraturan Pemerintah Republik Indonesia Nomor 66 tahun 2010 tentang Perubahan atas Peraturan Pemerintah Nomor 17 tahun 2010 tentang Pengelolaan dan Penyelenggaraan Pendidikan.
- [2] Marselina SS, Ernastuti, "Aplikasi Algoritma Naive Bayes dan Algoritma C4.5 dalam Prediksi Kelulusan Mahasiswa Universitas Gunadarma" Universitas Gunadarma, Jakarta, 2010
- [3] Muhamad Hanief Meinanda, dkk.. "Prediksi masa studi sarjana dengan Artificial Neural Network".Institut Teknologi Bandung, Bandung, 2009.
- [4] S. Anupama Kumar dan Vijayalakshmi M.N, "Efficiency Of Decision Trees In Predicting Student's Academic Performance." R.V.College of Engineering, Bangalore, India, 2011
- [5] Lillyan Hadjaratie, "Jaringan Saraf Tiruan Untuk Prediksi Tingkat Kelulusan Mahasiswa Diploma Program Studi Manajemen Informatika Universitas Negeri Gorontalo." Institut Pertanian Bogor, Bogor, 2011.
- [6] Sujana, "Aplikasi Mining Data Mahasiswa Dengan Metode Klasifikasi Decision Tree", Universitas Widyatama, Yogyakarta, 2010.
- [7] Larose, Daniel T. "*Data mining* methods and models". Department of Mathematical Sciences Central Connecticut State University, 2006.
- [8] Kamus Besar Bahasa Indonesia, httpkamusbahasaindonesia.orgprediksi, diakses Tanggal 10 Bulan Oktober 2013.
- [9] Han Jiwei and Kamber Micheline, "*Data mining*: Concepts and Techniques", Second Edition, by Elsevier Inc. All Rights Reserved, 2006.
- [10] Budanis Dwi Meilani Achmad dan Fauzi Slamat, "Klasifikasi Data Karyawan untuk Menentukan Jadwal Kerja Menggunakan Metode Decision Tree", ITATS, 2012.
- [11] Dian Oktfia Dan D. L. Crispina Pardede, "Perbandingan Kinerja Algoritma Decision Tree Dan Naïve Bayes Dalam Prediksi Kebangkrutan", Jakarta.
- [12] Muhammad Hasby, "Penggunaan Pohon Keputusan Dalam Teori Keputusan" Institut Teknologi Bandung, Bandung.
- [13] Warih Maharani, "Klasifikasi Data Menggunakan Jst Backpropagation Momentum Dengan Adaptive Learning Rate Warih Maharani, Institut Teknologi Telkom, Bandung, 2009

- [14] Mohammad Noor. A, "Penerapan Pohon Untuk Machine Learning", Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Bandung.
- [15] Holisatul Munawaroh, "Perbandingan Algoritma Id3 Dan C5.0 Dalam Indentifikasi Penjurusan Siswa SMA", Universitas Trunojoyo
- [16] Yustisia Wirania, dkk., "Pembentukan Pohon Klasifikasi dengan Metode *Chaid*", UNTAN Pontianak, 2013.
- [17] Sofi Deviyanti, dkk., "Perbandingan Kinerja Algoritma ID3 Dan C4.5 Dalam Klasifikasi Spam-Mail", Universitas Gunadarma, Jakarta.
- [18] Emerensye S. Y. Pandie, "Sistem Informasi Pengambilan Keputusan Pengajuan Kredit Dengan Algoritma K-Nearest Neighbour (Studi Kasus: Koperasi Simpan Pinjam)", Universitas Diponegoro, Semarang, 2012.