STUDENT GRADE ANALYSIS PREDICTION

Tikam (2022542)

Kartikeya Malik (2022243)

Different Models Tried

- 1) Linear Regression
- 2) Random Forest
- 3) Gradient Boosting
- 4) Support Vector Regression (SVM)

Different Datasets Used

- 1) Dataset1.csv
- 2) Dataset2.csv
- 3) Dataset3.csv

Contains information about students, including their Student ID, Gender, Age, Family Size, Parent's Education, Student's Education, Subject, Grades for four periods, and various social and college-related factors.

Problem Being Addressed

- \rightarrow The project aims to predict student's grades in the fourth period based on various demographic and academic factors.
- → The objective is to assist educators in identifying students who may need additional support or interventions to improve their academic performance.

Relevant Literature

- → Reviewing existing literature on student performance prediction, machine learning in education, and educational psychology can provide insights into effective methodologies and potential challenges in this domain.
- → This review guides the selection of appropriate models and features for the prediction task.

Methodology

Data Preprocessing: This involves cleaning the dataset, handling missing values, and encoding categorical variables.

Feature Selection: Identifying relevant features that may influence student's grades and preparing the data for model training.

Model Selection: Exploring various regression models such as Linear Regression, Random Forest, Gradient Boosting, and Support Vector Regression to determine the best-performing model for the task.

Model Evaluation: Assessing model performance using metrics like Mean Squared Error (MSE).

Experimental Settings

Feature Scaling: Standardization is applied to scale the features to a standard range, ensuring that all features contribute equally to the model.

Model Training: Each selected model is trained on the training data.

Model Evaluation: The trained models are evaluated on the testing data, and their performance is compared based on MSE.

Results

- → Mean Squared Error (MSE) is used as the evaluation metric for the trained models.
- → Results show the performance of each model in predicting student grades.

Comparisons:

- → Comparison of the performance of different models in terms of MSE and other relevant metrics.
- ightarrow Insights into the strengths and weaknesses of each model and potential areas for improvement.

Analysis Of Results

 \rightarrow The analysis of results involves comparing the MSE of different models and identifying the best-performing model for predicting student grades.

Analysis of Results:
Linear Regression: Mean Squared Error = 1.7932320794550862
Random Forest: Mean Squared Error = 1.17676784138968
Gradient Boosted: Mean Squared Error = 1.396983568112189
SVR: Mean Squared Error = 1.6029581780590252

Visualization:

 \rightarrow Visualizations such as KDE plots, box plots, histograms, and count plots are used to analyze the dataset and gain insights into the relationship between different attributes and the final grade.

