第7讲: 可见光通信(Visible Light Communication)

Outline

- Part 1
 - VLC 简介
 - LED 简介
 - VLC 潜在应用
- Part 2
 - VLC 组件
 - 技术挑战

VLC 简介

- 可见光通信 (VLC, Visible Light Communication)
 - : New communication technology using "Visible Light".
- 可见光

: 波长~400nm (750THz,紫光) and ~700nm (428THz,红光)

VLC 简介 (2)

● 一般特征

- 可见性(Visibility): Aesthetically pleasing (美观)
- 安全(Security): What You See Is What You Send.
- 健康(Health): Harmless for human body and electronic devices
- 不受监管(Unregulated): no room to use more radio frequency (无管制)
- 在禁区内使用(Using in the restricted area): aircraft, spaceship, hospital
- 眼睛安全(Eye safety)

VLC 历史

VLC 历史 - 低速

- ❖ 镜子反射信息传递(Heliograph,日光反射器)
- ❖ 用火或灯
 - Beacon fire(烽火台), Pharos lighthouse(法罗斯灯塔), ship-to-ship comm. by Morse code (1800s)
- ◆ 红绿灯:按颜色区分信号(步行/停止)

VLC 历史 – 光电话

- ❖ Bell's Photophone (光电话, 1880)
 - 光源:阳光
 - 振动镜外调制
 - 接收器:带有结晶硒网格的抛物面镜
 - 700英尺(213米)声音传输

http://www.freespaceoptic.com/

Excerpted from: The New Idea Self-Instructor edited by Ferdinand Ellsworth Cary, A. M. (Monarch Book Company, Chicago & Philadelphia, 1904)

VLC频段

- IG-THz(IG太赫茲): contribution 15-07-0623-01, AT&T实验室讨论了太赫兹频段,覆盖300 GHz到10太赫兹.
 •该毫米波-WPAN将在包括57-64GHz未授权频段在内的新的清晰频段上工作.
- •毫米波WPAN将允许与802.15 WPAN系列中的所有其他微波系统高度共存(紧密的物理间隔).

VLC 特征

VLC 特征

VLC vs. RF 特征

属性		VLC	RF	
带宽		Unlimited, 400nm~700nm	Regulatory, BW Limited	
对外干扰(EMI)		No	High	
视线(Line of Sight)		Yes	No	
标 准		IG-VLC	Yes	
危害		No	Yes (H ₂ O reaction to 2.4GHz)	
Mobile To Mobile	可 见 性(安全性)	Yes	No	
	耗 电 量	Relative low	Medium	
	距离	Short	Medium	
	功率 预 算	Tight	Medium	
Infra to Mobile	安全性	Yes	No	
	基 础设 施	LED Illumination(照明)	Access Point	
	移动性	Limited	Yes	
	覆盖 (距离)	Short (~10m)	Wide (Short ~ Long Range)	

VLC 发展动力

通信技术发展趋向

- ₩ 无处不在(随时随地互联)
- 安全

■ LED 趋势

- LED技术(效率、亮度)
- LED成本

● 环境趋势

- 健康
- # 节能

VLC的固有特性

- 可见性
- 无干扰/无调节

101101011011100

LED技术演进

❖性能和价格比较

Source: Credit Suisse, 2006.11.2

LED driver

■ Air Pollutions(空气污染)

■ UNFCCC (United Nations Framework Convention on Climate Change,联合国气候变化框架公约), Kyoto Protocol(京都议定书) to the UNFCCC (Dec. 1997)Decreasing CO2(10 k ton/year, 2002 at Korea)

Waste Materials & Environmental Hazards

 RoHS (Restriction of the use of Certain Hazardous Substance,限制使用某些有害物质): 1, July 2006.

Pb(铅), Hg(汞), Cd(镉), Cr6+, Polybrominated biphenyls(PBB,多溴联苯), Polybrominated diphenyl eters(PBDE,多溴二苯醚)

WEEE (Electrical and Electronic Equipment)
 Producer Responsibility

Energy saving effect

- Electricity at Korea
 278 TWh(万亿瓦时),2002, 7.2 % of USA
- 20% for Lighting 55.6 TWh
- 50% saving by LED:27.8TWh
- Energy Saving Effect:3 Nuclear Stations (1GW/day)2 B\$/year

CONT \$1011100 00 0010101000 001001001001010

Source: KOPTI (The Korea Photonics Technology Institute)

LED 应用

LED调制特性

101101011011101

B + Phosphor(磷光体) LED

R+G+B LED

RCLED (共振腔LED)

~40 Mb/s

~100 Mb/s

~500 Mb/s

VLC 应用

101101011011100

室内应用

LED Illumination Infrastructure

Security

要求(室内应用)

	Mobile to Mobile	Mobile to Fixed	Mobile to Infra	Fixed to Infra
Link	Bi-direction	Bi-direction	Bi or Uni	Bi or Uni
Reach	~1m	~1m	~3m	~3m
Rate	~100M	~100M	~10M	~10M
Application	Contents sharing	File transfer Video streaming M-commerce(移动商务)	Indoor navigation LBS(基于位置的 服务) Networked robot (网络机器人)	Data broadcast
Alternative	IrDA, Bluetooth, UWB	IrDA, Bluetooth, UWB		WLAN

Traffic control Infrastructure

Vehicle-to-Vehicle

Outdoor advertising

VLC应用发展

室内导航方案

	Uni-direction	Bi-direction	Hybrid	Hot spot
Link	Rx	TRX	Rx	RX
Rate	■ Down : ~10k	■ Down : ~10M	■ Down : ~10k	■ Down(light): ~10k
		■ Up : ~100M	■ Up : ~10M	■ Down(HS) : ~100M
Infra	Lighting with optical ID			
		■ Receiver	■ RF access point	■ Hot spot
		■ In-building network	■ In-building network	
		■ Routing server	■ Routing server	
Mobile	■ Receiver	■ Receiver	■ Receiver	■ Receiver
	■ Large storage	■ Transmitter	■ RF connectivity	■ Large storage
	■ Map info			■ Routing software
	■ Routing software			
Other		LBS	LBS	
service		Ad-hoc connection		

高速高安全连接

What You See Is What You Send (WYSIWYS)

第二部分

- > 可见光通信
 - > 发射机
 - > 信道
 - > 接收机
- > 技术挑战
 - > 更高的带宽
 - > 实现移动性和可靠性

802.15 DCN: 15-08-0114-00-0000

VLC源

> 蓝色LED和磷光体

- > 低成本
- > 磷光体限制了带宽
- > 调制会引起色变

Single chip LED spectrum

> RGB三<u>重态</u>

- > 更高的成本
- > 可能更高的带宽
- > 波分复用的潜力
- > 无色移调制

RGB LED spectrum

802.15 DCN: 15-08-0114-00-0000

LED调制

> 光电响应

 $R_{\rm s} = 0.9727~\Omega$ $L = 33.342~{\rm nH}$ $C_{\rm s} = 2.8~{\rm nF}$ $C_{\rm d} = 2.567~{\rm nF}$ $tt = 1.09~{\rm ns}$

Luxeon LED

Measured LED small-signal bandwidth

改善信道响应

> 接收机均衡

| --- Unequalized LED response | Equalized LED

Measured LED impulse response

Improved LED transmission BW

信道建模

- > 两条传播路径:
- > 视线 (LOS) : 使用LED阵列的照明模式计算的强路径
- > 漫反射(漫射):假设房间相当于一个积分球
- > 计算室内每个点的信道冲激响应

VLC建模

未来发展: 光MIMO

- > 射频MIMO
- > 散射提供可逆的H矩阵和去相关 (容量增益)
- > 小天线难以形成辐射方向图
- > 光MIMO
- > 无去相关
- > 系统实现可逆H矩阵及几何设计
- 简单的低成本元件(透镜)可以提供高方向性和/或复杂的波束成形

802.15 DCN: 15-08-0114-00-0000

MIMO-VLC: 仿真系统

MIMO-VLC:初步结果

Position of the receiver

聚合数据速率与信道数和信道速率成线性比例

作业:

- > 1、VLC的一般特征有哪些?
- > 2、VLC信道的两条传播路径是什么?