Еластично огъване

Васил Николов (21.11.2021)

І. ЦЕЛ НА УПРАЖНЕНИЕТО

Да се изследва зависимостта на деформацията на метална линия като функция на приложена сила в средата на линията, и да се измери модулът на Юнг на стоманата.

II. ЕКСПЕРИМЕНТАЛНА УСТАНОВКА

Тънка метална линия с дебелина $a=(1.52\pm0.02)$ mm и широчина $b=(24.05\pm0.05)$ mm е окачена от две страни на два метални ръба, разстоянието между които е $l_0=(45.9\pm0.1)$ cm. Над средата на линията има микрометър с точност 0.002 mm с проводящ връх, така че когато се докосне до линията да се затвори верига, която индикира, че линията и върхът на микрометъра са допряни. Така може да се измери с голяма точност деформацията на линията. Сила върху линийката се прилага като се закачат различни тежести на средата на линийката.

ІІІ. ТЕОРЕТИЧНА ОБОСНОВКА

Може да се изведе, че при така описаната установка деформацията зависи по следният начин от приложената сила и параметрите на системата:

$$\Delta h = \frac{l_0^3 G}{4Ea^3 b} \tag{1}$$

където G е силата на тежестта на закачената маса и E е модулът на Юнг на материала, от който е направена линийката. При много измервания можем да направим графика на зависимостта на

$$y = \Delta h; \quad x = m$$

$$\frac{dy}{dx} = \frac{l_0^3 g}{4Ea^3 b}$$

$$E = \frac{l_0^3 g}{4a^3 b \frac{dy}{dx}}$$
(2)

IV. ЕКСПЕРИМЕНТАЛНИ ДАННИ И РЕЗУЛТАТИ

По гореописания метод се мери деформацията на линийката като функция на окачетата маса. В рамките на грешката двете стойности съвпадат, както се и очаква от закона за запазване на импулса.

Таблица I. Зависимост на деформацията от окачената маса

$N_{\overline{0}}$	m, g	$\Delta h, \mathrm{mm}$
1	0	0
2	104	1.738
3	97	1.37
4	100	1.382

На графиката $\frac{dy}{dx}=1.41*10^{-2}~m~kg^{-1}\pm2\%$. Оценяме грешката на производната по това колко далеч от правата са точките. Заедно с грешките на останалите резултати получаваме

$$E = 201 \; GPa \pm 4\%$$

което се вписва добре в табличните стойности от 190 до 215 GPa.