Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA

Nazareno Faillace Mullen

A continuación, a través de un ejemplo, veremos un paralelismo entre el método de diccionarios y el método matricial para hallar la solución óptima de un modelo de Programación Lineal con Simplex. Sean $A \in \mathbb{R}^{m \times n} (m < n), c \in \mathbb{R}^n, t \in \mathbb{R}^n, t \in \mathbb{R}^m$, consideramos el problema de Programación Lineal: $máx c^T x$

s.a:
$$Ax = b$$

$$x \ge 0$$
 Introducimos la siguiente notación, que utilizaremos en el método matricial:

 A_{i} j-ésima columna de A

matriz básica, es decir, submatriz de A cuyas columnas definen una base de \mathbb{R}^m

submatriz de A que consiste en las columnas de A que no están en B

coordenadas de x correspondientes a las columnas de B (variables básicas) coordenadas de x correspondientes a las columnas de R (variables no básicas)

coordenadas de c correspondientes a las variables básicas

coordenadas de c correspondientes a las variables no básicas vector de costos reducidos de las variables no básicas

Definición: dada una matriz básica B, el valor de las variables básicas viene dado por $B^{-1}b$. Si $B^{-1}b \ge 0$, decimos que B es una matriz básica factible.

Recordar: dada una matriz básica factible B, los costos reducidos de las variables no básicas se calculan de la siguiente manera: $\bar{c}_{R}^{T} = c_{R}^{T} - c_{R}^{T} B^{-1} R$

s.a:
$$2x_1+3x_2+x_3\leq 5$$
 $4x_1+x_2+2x_3\leq 11$ $3x_1+4x_2+2x_3\leq 8$ $x_1,x_2,x_3\geq 0$ Como siempre que querramos aplicar SIMPLEX, estandarizamos:

$$A = \begin{pmatrix} 2 & 3 & 1 & 1 & 0 & 0 \\ 4 & 1 & 2 & 0 & 1 & 0 \\ 3 & 4 & 2 & 0 & 0 & 1 \end{pmatrix} \quad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ w_1 \\ w_2 \end{pmatrix} \quad b = \begin{pmatrix} 5 \\ 11 \\ 8 \end{pmatrix} \quad c = \begin{pmatrix} 5 \\ 4 \\ 3 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

 $x_1, x_2, x_3, w_1, w_2, w_3$

Entra x_1 a la base.

ces, w_1 deja la base.

En este caso, tenemos que:

$$A = \begin{pmatrix} 4 & 1 & 2 & 0 & 1 & 0 \\ 3 & 4 & 2 & 0 & 0 & 1 \end{pmatrix} \quad x = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \quad b = \begin{pmatrix} 11 \\ 8 \end{pmatrix} \quad c = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
Hallamos una base inicial factible
(En este caso, no es necesario aplicar Método de Dos Fases ni Método Big-M porque podemos comenzar con las slack)

Método diccionarios

Escribimos el primer diccionario despejando las variables slack Consideramos:

Calculamos los costos reducidos de las variables no básicas

Método diccionarios

Método matricial Calculamos los costos reducidos de las variables no básicas, aplicando la

Método matricial

 $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad R = \begin{pmatrix} 2 & 3 & 1 \\ 4 & 1 & 2 \\ 3 & 4 & 2 \end{pmatrix} \ x_B = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \ x_R = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

En el diccionario ya están calculados los costos reducidos, son los coeficientes de las variables no básicas en el último renglón:

 $z = 5x_1 + 4x_2 + 3x_3$ Como hay costos reducidos positivos, todavía no alcanzamos un óptimo.

Seleccionamos la variable que entra a la base

 $\bar{c}_R^T = c_R^T - c_B^T B^{-1} R = (5,4,3) - (0,0,0) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 & 1 \\ 4 & 1 & 2 \\ 3 & 4 & 2 \end{pmatrix} = (5,4,3)$ Como hay costos reducidos positivos, todavía no alcanzamos un óptimo.

Método matricial Identificamos a la variable no básica con mayor costo reducido: El mayor costo reducido positivo le corresponde a la variable en la primera

coordenada de x_R , pues 5 es la primera coordenada de \bar{c}_R^T . Entonces, x_1 $z = 5x_1 + 4x_2 + 3x_3$

Determinamos qué variable deja la base

Método diccionarios

Método diccionarios

tal que $w_i \geq 0$: $0 \le w_1 = 5 - 2x_1 \Rightarrow x_1 \le \frac{5}{2}$

 $0 \le w_2 = 11 - 4x_1 \Rightarrow x_1 \le \frac{11}{4}$

Cada ecuación del diccionario acota el valor que puede tomar x_1 de manera

$$0 \le w_3 = 8 - 3x_1 \Rightarrow x_1 \le \frac{8}{3}$$
 La cota relevante es la más restrictiva. En este caso, es la primera. Entonces, w_1 deja la base.

Método matricial

 $B^{-1}b = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 11 \\ 8 \end{pmatrix} = \begin{pmatrix} 5 \\ 11 \\ 8 \end{pmatrix}$

Como x_1 entra a la base, calculamos $B^{-1}A_{\cdot 1}$:

Primero, calculamos el valor de las variables básicas

$$B^{-1}A_{\cdot 1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$$

Para los j tales que $(B^{-1}A_{\cdot 1})_j > 0$, calculamos $\frac{(B^{-1}b)_j}{(B^{-1}A_{\cdot 1})_j}$

$$\frac{(B^{-0})^3}{(B^{-1}A_{\cdot 1})_3} = \frac{6}{3}$$
 El mínimo de los tres es $\frac{5}{2}$, que le corresponde a la primera coordenada de $B^{-1}A_{\cdot 1}$. Por ende, la variable que sale de la base es la primera coordenada de x_B : w_1 .

Método matricial En B, la columna de A correspondiente a x_1 reemplaza a la columna correspondiente a w_1 , dando lugar a:

$B = \begin{pmatrix} 2 & 0 & 0 \\ 4 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \quad R = \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 2 \\ 0 & 4 & 2 \end{pmatrix} \ x_B = \begin{pmatrix} x_1 \\ w_2 \\ w_3 \end{pmatrix} \ x_R = \begin{pmatrix} w_1 \\ x_2 \\ x_3 \end{pmatrix}$ Luego, reemplazamos x_1 por la igualdad de arriba en las ecuaciones 2 y 3

Calculamos los costos reducidos de las variables no básicas

Determinamos qué variable deja la base

Pivote: se realiza el cambio en la base

de x_B : w_1 .

 $w_2 = 11 - 4\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}w_1\right) - x_2 - 2x_3 = 1 + 5x_2 + 2w_1$

Método diccionarios

Debemos reescribir el nuevo diccionario, donde x_1 es básica y w_1 es no

 $w_1 = 5 - 2x_1 - 3x_2 - x_3 \quad \Rightarrow \quad x_1 = \frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}w_1$

básica. De la primera ecuación del diccionario obtenemos que:

Nuestro nuevo diccionario queda:

Entra x_3 a la base.

tal que $x_1, w_2, w_3 \ge 0$:

 $w_3 = 8 - 3\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}w_1\right) - 4x_2 - 2x_3 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}w_1$ $z = 5\left(\frac{5}{2} - \frac{3}{2}x_2 - \frac{1}{2}x_3 - \frac{1}{2}w_1\right) + 4x_2 + 3x_3 = \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}w_1$

$$x_{1} = \frac{5}{2} - \frac{3}{2}x_{2} - \frac{1}{2}x_{3} - \frac{1}{2}w_{1}$$

$$w_{2} = 1 + 5x_{2} + 2w_{1}$$

$$w_{3} = \frac{1}{2} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} + \frac{3}{2}w_{1}$$

$$z = \frac{25}{2} - \frac{7}{2}x_{2} + \frac{1}{2}x_{3} - \frac{5}{2}w_{1}$$

Método diccionarios

En el diccionario ya están calculados los costos reducidos, son los coefi-

 $z = \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}w_1$

Como hay costos reducidos positivos, todavía no alcanzamos un óptimo.

cientes de las variables no básicas en el último renglón:

Método matricial

Calculamos los costos reducidos de las variables no básicas, aplicando la

 $\bar{c}_R^T = (0,4,3) - (5,0,0) \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ -2 & 1 & 0 \\ -\frac{3}{2} & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 & 1 \\ 0 & 1 & 2 \\ 0 & 4 & 2 \end{pmatrix} = \begin{pmatrix} -\frac{5}{2}, -\frac{7}{2}, \frac{1}{2} \end{pmatrix}$

Como hay costos reducidos positivos, todavía no alcanzamos un óptimo.

Seleccionamos la variable que entra a la base

Método diccionarios Identificamos a la variable no básica con mayor costo reducido:

 $z = \frac{25}{2} - \frac{7}{2}x_2 + \frac{1}{2}x_3 - \frac{5}{2}w_1$

Método diccionarios

 $0 \le w_2 = 1 + 0x_3 \Rightarrow$ no se restringe el crecimiento de x_3

Método matricial

coordenada de x_R , pues $\frac{1}{2}$ es la tercera coordenada de \bar{c}_R^T . Entonces, x_3 entra a la base.

Método matricial

El mayor costo reducido positivo le corresponde a la variable en la tercera

Cada ecuación del diccionario acota el valor que puede tomar x_3 de manera $0 \le x_1 = \frac{5}{2} - \frac{1}{2}x_3 \Rightarrow x_3 \le 5$

 $0 \le w_3 = \frac{1}{2} - \frac{1}{2}x_3 \Rightarrow \mathbf{x_3} \le \mathbf{1}$ Como la tercera es la condición más restrictiva, x_3 entra a la base y w_3 sale de la base.

$B^{-1}b = \begin{pmatrix} \frac{1}{2} & 0 & 0 \\ -2 & 1 & 0 \\ \frac{3}{2} & 0 & 1 \end{pmatrix} \begin{pmatrix} 5 \\ 11 \\ 8 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ 1 \\ \frac{1}{2} \end{pmatrix}$

Para los j tales que $(B^{-1}A_{\cdot 3})_j > 0$, calculamos $\frac{(B^{-1}b)_j}{(B^{-1}A_{\cdot 3})_i}$

Primero, calculamos el valor de las variables básicas

Como x_3 entra a la base, calculamos $B^{-1}A_{\cdot 3}$:

 $B^{-1}A_{\cdot 3} = \begin{pmatrix} \frac{1}{2} & 0 & 0\\ -2 & 1 & 0\\ -\frac{3}{2} & 0 & 1 \end{pmatrix} \begin{pmatrix} 1\\ 2\\ 2 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}\\ 0\\ \frac{1}{2} \end{pmatrix}$

$$\frac{(B^{-1}b)_1}{(B^{-1}A_{\cdot 3})_1} = 5$$

$$\frac{(B^{-1}b)_3}{(B^{-1}A_{\cdot 3})_3} = 1$$
 El mínimo de los dos es 1, que le corresponde a la tercera coordenada de $B^{-1}A_{\cdot 3}$. Por ende, la variable que sale de la base es la tercera coordenada de $B^{-1}A_{\cdot 3}$.

Método matricial

$$B = \begin{pmatrix} 2 & 0 & 1 \\ 4 & 1 & 2 \\ 3 & 0 & 2 \end{pmatrix} \quad R = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 4 & 1 \end{pmatrix} \ x_B = \begin{pmatrix} x_1 \\ w_2 \\ x_3 \end{pmatrix} \ x_R = \begin{pmatrix} w_1 \\ x_2 \\ w_3 \end{pmatrix}$$

Calculamos los costos reducidos de las variables no básicas

Podemos obtener esta información a partir de nuestro último diccionario. Valor de las variables básicas en el óptimo:

Método matricial

 $\bar{c}_R^T = (0, 4, 0) - (5, 0, 3) \begin{pmatrix} 2 & 0 & -1 \\ -2 & 1 & 0 \\ -3 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 4 & 1 \end{pmatrix} = (-1, -3, -1)$

Como no hay costos reducidos positivos, hemos alcanzado un óptimo :)

Calculamos el valor de las variables básicas

$$= c_B^T B^{-1} b = (5, 0, 3) \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 13$$

Reemplazando x_3 por esa expresión en las demás ecuaciones, nos queda el

En el diccionario ya están calculados los costos reducidos, son los coeficientes de las variables no básicas en el último renglón:

Como no hay costos reducidos positivos, hemos alcanzado un óptimo :)

Método diccionarios

 $B^{-1}b = \begin{pmatrix} 2 & 0 & -1 \\ -2 & 1 & 0 \\ -3 & 0 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 11 \\ 8 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$ $x_1 = 2$ $x_3 = 1$ $w_2 = 1$ Valor de la función objetivo en el óptimo: 13

$$z = c_P^T B^{-1} b = (5, 0, 3) \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 13$$

 $z = c_B^T B^{-1} b = (5, 0, 3) \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} = 13$

Método diccionarios Debemos reescribir el nuevo diccionario, donde x_3 es básica y w_3 es no En B, la columna de A correspondiente a x_3 reemplaza a la columna correspondiente a w_3 , dando lugar a:

a. De la tercera ecuación, teníamos que:
$$w_3 = \frac{1}{2} + \frac{1}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}w_1 \Rightarrow x_3 = 1 + x_2 + 3w_1 - 2w_3$$

básica. De la tercera ecuación, teníamos que:

siguiente diccionario:

 $z = 13 + (-3)x_2 + (-1)w_1 + (-1)w_3$

fórmula:

de x_B : w_3 .

Pivote: se realiza el cambio en la base

Método matricial

n el óptimo:
$$x_1=2 \quad x_3=1 \quad w_2=1$$
 lado, para calcular el valor de la f.o.:

Método diccionarios Calculamos los costos reducidos de las variables no básicas, aplicando la

Valor de las variables básicas y la f.o. en el óptimo

Luego, en el óptimo:
$$x_1=2 \quad x_3=1 \quad w_2=1$$
 Por otro lado, para calcular el valor de la f.o.: