Logistic Regression

© Malay K. Das, 210 Southern Lab, ph-7359, mkdas@iitk.ac.in

Office hours: W 1030-1130, SL-210 Previously:

Optimization

Today:

Use of linear regression technique for classification

HW due:

September 03, 2024

Computing quiz:

September 04, 2024

1

©Malay K. Das, ME, IIT Kanpur, mkdas@iitk.ac.in

So far in this course

- 1. Regression
 - Linear regression
 - Simple linear regression
 - Multiple linear regression
 - Nonlinear regression
- 2. Classification
 - K-nearest neighbor

- 3. Mathematics for machine learning
 - Linear algebra
 - Optimization
- 4. Applications problems

Logistic regression: Classification using regression techniques

Predicts probabilities of certain output

Simple Linear Regression

For training data $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^n$ estimate $\widehat{y}_\star\left(x_\star\right)$

in simple linear regression $x_i\in\mathbb{R},y_i\in\mathbb{R}$ residual (not the noise from experiments) we assume a hypothesis $\widehat{y}=w_0+w_1x$ $y=\widehat{y}+e$

Loss Function
$$L_i = e_i^2 = (w_0 + w_1 x_i - y_i)^2$$
 Cost Function $E(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n L_i$

Least square estimate minimizes **Cost Function**

in simple Multiple Linear Regression training data $\mathcal{T} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$ $\mathbf{x}_i \in \mathbb{R}, y_i \in \mathbb{R}$

Linear regression (simple or multiple) fits smooth curves/surfaces

3

©Malay K. Das, ME, IIT Kanpur, mkdas@iitk.ac.in

Simple linear regression: application

Shear strength of rocket propellant

Test	Propellant age (Weeks) x_i	Shear strength (MPa) y_i
1	15.5	14.88
2	23.75	11.57
3	8	15.97
4	17	14.21
5	5.5	15.22
6	19	11.78
7	24	12.31
8	2.5	17.78
9	7.5	16.26
10	11	15.56

The same problem can also be modeled as a classification problem

Logistic regression uses regression technique for classification

Regression uses training dataset $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^n$ to estimate $\widehat{y}_{\star}(x_{\star})$

Logistic regression is used when $y_i = 0, 1$

Linear regression cannot produce discrete output; not a good option here

 $y_i=0,1~$ are categorical variables (yes/no, pass/fail etc.) – Logistic regression is thus a Classification technique

y = 1 y = 0Innear fit

Therefore, for the test input x_{\star}

the model should give an output of $y_\star=0$ or $y_\star=1$

We can solve the problem using regression, if we accept that the model will give us the **probabilities** of being in a class!

5

©Malay K. Das, ME, IIT Kanpur, mkdas@iitk.ac.in

Example: Propellant strength degradation with age

Below certain strength (above certain age), we rate the propellant as unusable (marked as fail)

Test	Propellant age (Weeks) \boldsymbol{x}	Shear strength test results	
1	15.5	fail = 1	
2	23.75	fail = 1	
3	8	pass = 0	
4	17	fail = 1	
5	5.5	pass = 0	_
6	19	fail = 1	
7	24	fail = 1	
8	2.5	pass = 0	
9	7.5	pass = 0	
10	11	pass = 0	

	Test	Propellant age (Weeks) \boldsymbol{x}	Class c	y = P	$(c = 1 \mid x)$		
	1	15.5	1	1	probability that $c=$		
	2	23.75	1	1	for a given x (can take values 0 or 1 only)		
	3	8	0	0			
	4	17	1	1			
	5	5.5	0	0			
	6	19	1	1	$\widehat{y}=$ estimated		
	7	24	1	1	probability that $c=1$ for a given x (takes any value in $[0,1]$)		
	8	2.5	0	0			
	9	7.5	0	0			
	10	11	0	0			

©Malay K. Das, ME, IIT Kanpur, mkdas@iitk.ac.in

We wish to predict
$$\widehat{y} = P(c = 1 \mid x) = \frac{1}{1 + e^{-z}}$$
 $z = w_0 + w_1 x$

Estimated probabilities

$$P(c = 1 \mid x) = \widehat{y}(x)$$
 $P(c = 0 \mid x) = 1 - \widehat{y}(x)$

since either
$$c=0$$
 or $c=1$
$$\mathrm{P}\left(c=0\mid x\right)=1-\frac{1}{1+e^{-z}}$$

Combining
$$P(c \mid x) = (\widehat{y})^c (1 - \widehat{y})^{1-c} = (\widehat{y})^y (1 - \widehat{y})^{1-y}$$
 since $c = y$

 $\text{for the training data } (x_i,y_i) \qquad \text{estimated probability} \quad \mathrm{P_i} = \mathrm{P}\left(c_i \mid x_i\right) = \left(\widehat{y}_i\right)^{y_i} \left(1-\widehat{y}_i\right)^{1-y_i}$

for the training dataset $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^n$

where
$$\hat{y}_i = \frac{1}{1 + \exp(-w_0 - w_1 x_i)}$$

We may minimize the least square cost function $\frac{1}{n}\sum_{n}\left[y_{i}-(\widehat{y}_{i})^{y_{i}}\left(1-\widehat{y}_{i}\right)^{1-y_{i}}\right]^{2}$

Minimizing such cost function is difficult, we may define other kind of cost function

9

©Malay K. Das, ME, IIT Kanpur, mkdas@iitk.ac.in

For the training data (x_i, y_i) estimated probability $P\left(c_i \mid x_i\right) = (\widehat{y}_i)^{y_i} \left(1 - \widehat{y}_i\right)^{1 - y_i}$

If the estimation is correct $\hat{y}_i = y_i \Rightarrow P\left(c_i \mid x_i\right) = \left(y_i\right)^{y_i} \left(1 - y_i\right)^{1 - y_i}$ For $y_i = 0, 1$ $P\left(c_i \mid x_i\right) = 1$

If the estimation is incorrect $P(c_i \mid x_i) = 1 - \widehat{y}_i$ or $P(c_i \mid x_i) = \widehat{y}_i \Rightarrow P(c_i \mid x_i) < 1$

for the training dataset $\mathcal{T} = \{(x_i, y_i)\}_{i=1}^n$ we maximize $\phi = \prod_{i=1}^n \left(\widehat{y}_i\right)^{y_i} \left(1 - \widehat{y}_i\right)^{1-y_i}$ Ideally the maximum value of ϕ should be 1 $\widehat{y}_i = \frac{1}{1 + \exp\left(-w_0 - w_1 x_i\right)}$

We now define cost function $E = -\frac{1}{n} \ln \phi$

The above cost function, different from standard least square cost function, is known as **Cross Entropy cost function**

There is no closed form solution for the minimization problem, we may use, gradient descent, or any other suitable optimization methods

$$\widehat{y}_i = \frac{1}{1 + \exp(-z_i)}$$
 $1 - \widehat{y}_i = \frac{1}{1 + \exp(z_i)}$

We wish to maximize $\phi = \prod_{i=1}^n \left(\widehat{y}_i\right)^{y_i} \left(1-\widehat{y}_i\right)^{1-y_i}$ Cost function $E=-\frac{1}{n}\ln\phi$ (to be minimized)

z_i	=	w_0	+	w_1	x_i
·					

Test	Propellant age (Weeks) x	y = c
1	15.5	1
2	23.75	1
3	8	0
4	17	1
5	5.5	0
6	19	1
7	24	1
8	2.5	0
9	7.5	0
10	11	0
		·

11

©Malay K. Das, ME, IIT Kanpur, mkdas@iitk.ac.in

Linear regression

Activation $\varphi\left(z\right) = z$ function

Logistic regression

function

Both algorithms converge toward a general structure: artificial neural network

Perceptron is the simplest unit of artificial neural network, to be discussed later