CIS 471/571 (Fall 2020): Introduction to Artificial Intelligence

Assignment Project Exam Help

Lecture 11:htReitstreement Learning Wechargetuteco

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Reminder

- Project 3: Reinforcement Learning
 - Deadline: Nov 10th, 2020

Assignment Project Exam Help

- -Homework 3: MDPshtprd/Reinforcement Learning
 - Deadline: Nov 10th, 2020 cstutorcs

Thanh H. Nguyen 11/4/20

Reinforcement Learning

- We still assume an MDP:
 - A set of states $s \in S$
 - A set of actions (per Atasignment Project Exam Help
 - A model T(s,a,s')
 - A model T(s,a,s')
 A reward function R(s,a,sttps://tutorcs.com/li>
- Still looking for a polic Wz (shat: cstutorcs
- New twist: don't know T or R, so must try out actions
- Big idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Goal Technique

Assignment Project Exam Help

Compute V*, Q*, π* Value / policy iteration

https://tutorcs.com Evaluate a fixed policy π Policy evaluation

WeChat: cstutorcs

Unknown MDP: Model-Based

Goal Technique

Compute V*, Q*, π * VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, π * Q-learning

Evaluate a fixed policy π Value Learning

Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes

Assignment Project Exam Help
$$(s, a, r, s', a', r', s'', a'', r'', s''', s'''')$$
 https://tutorcs.com

- Update estimates each transition (s, a, r, s') WeChat: cstutorcs
- Over time, updates will mimic Bellman updates

Q-Learning

• We'd like to do Q-value updates to each Q-state:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$
• But can't compute this uposite with the project Exam Help

- Instead, compute average as we go
 - Receive a sample transition (sweethat: cstutorcs
 - This sample suggests

$$Q(s, a) \approx r + \gamma \max_{a'} Q(s', a')$$

- But we want to average over results from (s,a) (Why?)
- So keep a running average

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha)\left[r + \gamma \max_{a'} Q(s',a')\right]$$

Example

• Two states: A, B

Two actions: Up, Down Assignment Project Example

• Discount factor: $\gamma = 0.5$ https://tutorcs.com

• Learning rate: $\alpha = 0.5$

WeChat: cstutorcs

• Q(A,	Down)) =	?
------	----	-------	-----	---

-Q(B, Up) = ?

	t	s_t	a_t	s_{t+1}	r_t
	0	A	Down	В	2
	$\frac{1}{m}$ L	B	Down	В	-4
L	$\frac{m_2L}{2}$	B	Up	В	0
	3	В	Up	A	3
	4	A	Up	A	-1

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

Thanh H. Nguyen

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy
 - -- even if you're acting suboptimally!

Assignment Project Exam Help

Caveats:

https://tutorcs.com

- You have to explore enough Chat: cstutorcs
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly
- Basically, in the limit, it doesn't matter how you select actions
 (!)

Exploration vs. Exploitation

How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flassignment Project Exam Help

 - With (small) probability \(\epsilon\), act randomly
 With (large) probability 1-\(\epsilon\), act on current policy

WeChat: cstutorcs

- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually step exploring oject Exam Help

https://tutorcs.com

- Exploration function
 - Takes a value estimate **u** and **a wisit pount estandres** returns an optimistic utility, e.g.

$$f(u,n) = u + k/n$$

Modified Q-Update:
$$Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$$

• Note: this propagates the "bonus" back to states that lead to unknown states as well!

Regret

 Even if you learn the optimal policy, you still make mistakes along the way!

Regret is a measure of your total mistake cost: the difference structure of Project Exam Help your (expected) rewards, including youthful suboptimality, and optimal/tutorcs.com (expected) rewards

We Chat: cetutores

 Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal

 Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret

Approximate Q-Learning

Generalizing Across States

Basic Q-Learning keeps a table of all q-values

In realistic situations, we cannot persibly Exam Help learn about every single state!

- Too many states to visit them latting that into ges.com

Too many states to hold the q-tables in memory

WeChat: cstutorcs

- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

Example: Pacman

Let's say we discover through experience

In naïve q-learning, we know nothing that this state is bad: Assignmehout this state is bad: Assign Or even this one!

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

WeChat: cstutorcs

Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1^{\text{Assignment-Project Exam Help}}(s)$$

$$Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \dots + w_n f_n(s, a)$$

$$\text{WeChat: cstutorcs}$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

• Q-learning with linear Q-functionsment Project Exam Help transition = (s, a, r, s')

difference =
$$r + \gamma \max_{a'} Q(s', h)$$
 tps://stutorcs.com

$$Q(s,a) \leftarrow Q(s,a) + \alpha$$
 Weither colutors Exact Q's

$$w_i \leftarrow w_i + \alpha$$
 [difference] $f_i(s, a)$ Approximate Q's

- Adjust weights of active features
- E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

Example: Q-Pacman

$$Q(s,a) = 4.0 f_{DOT}(s,a) - 1.0 f_{GST}(s,a)$$

 $f_{DOT}(s, NORTH) = 0.5$ Assignment Project Exam Help

 $f_{GST}(s, NOR ttps://tutorcs.com -500)$

WeChat: cstutorcs

$$Q(s, NORTH) = +1$$

 $r + \gamma \max_{a'} Q(s', a') = -500 + 0$

$$Q(s',\cdot)=0$$

$$difference = -501$$

$$w_{DOT} \leftarrow 4.0 + \alpha [-501] 0.5$$

$$w_{GST} \leftarrow -1.0 + \alpha [-501] \ 1.0$$

$$Q(s, a) = 3.0 f_{DOT}(s, a) - 3.0 f_{GST}(s, a)$$

Q-Learning and Least Squares

Linear Approximation: Regression*

Prediction:

$$\hat{y} = w_0 + w_1 f_1(x)$$

Prediction:

$$\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$$

Thanh H. Nguyen 11/4/20

Optimization: Least Squares*

total error =
$$\sum_{i} (y_i - \hat{y_i})^2 = \sum_{i} \left(y_i - \sum_{k} w_k f_k(x_i) \right)^2$$

Assignment Project Exam Help

(22)

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\frac{\partial \text{ error}(w)}{\partial w_m} = -\left(y - \frac{\text{https://tutorcs.com}}{w_k f_k(x)}\right)^2$$

$$\frac{\partial \text{ error}(w)}{\partial w_m} = -\left(y - \frac{\text{https://tutorcs.com}}{w_k f_k(x)}\right)^2$$

$$\frac{\partial \text{ WeChat: cstutorcs}}{\partial w_m \leftarrow w_m + \alpha} \left(y - \sum_k w_k f_k(x)\right) f_m(x)$$

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$
"target" "prediction"

Overfitting: Why Limiting Capacity Can Help*

Policy Search

Thanh H. Nguyen

Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren't the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced the Exam Help
 - Q-learning's priority: get Q-values close (modeling)
 - Action selection priority: get ordering of the value of the property of the
 - We'll see this distinction between modeling and prediction again later in the course WeChat: cstutorcs
- Solution: learn policies that maximize rewards, not the values that predict them

 Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Policy Search

- Simplest policy search:
 - Start with an initial linear value function or Q-function
 - Nudge each feature weight up and down and see if your policy is better than before

https://tutorcs.com

- Problems:
 - How do we tell the policy got hatterstutores
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

Conclusion

 We're done with Part I: Search and Planning!

• We've seen how AI methods can solve problems in: problems in: https://tutorcs.c

Search

Markov Decision Problems

Reinforcement Learning

 Next up: Part II: Uncertainty and Learning!

