Practice Prelim 1, STAT 611, Spring 2021

Name:

- 1. Let X_1, \ldots, X_n be iid random variables from a half normal distribution $HN(\mu, \sigma^2)$. The PDF is $f_X(x) = \sqrt{2/(\pi\sigma^2)} \exp\{-(x-\mu)^2/(2\sigma^2)\}$ for $x > \mu$ and $f_X(x) = 0$ for $x \le \mu$.
 - (a) Find a sufficient statistic for $(\mu, \sigma^2)^T$. Justify your answer.
 - (b) Find a minimal sufficient statistic $(\mu, \sigma^2)^T$. Justify your answer.
 - (c) Supposed μ is known, find a complete statistic for σ^2 . Justify your answer.
- 2. Let X_1, \ldots, X_n be iid random variables from the Pareto(a, b) distribution. The PDF is $f_X(x) = ba^b x^{-b-1}$ for x > a and $f_X(x) = 0$ for $x \le a$. The parameters a, b satisfy a > 0, b > 2.
 - (a) Find the moment estimator for a, b.
 - (b) Find the MLE for a, b.
- 3. Let X_1, \dots, X_n be independent random variables, and $X_i \sim \text{Exponential}(scale = \lambda)$, i.e., $f(x) = \frac{1}{\lambda} \exp(-x/\lambda)$, for $x \geq 0$
 - (a) Find a MLE for λ .
 - (b) Show that the MLE is an unbiased estimator for λ .
 - (c) Calculate the mean squared error of the MLE.
 - (d) Find the Fisher information $I(\lambda)$ for n observations.
 - (e) Find a sufficient statistics for λ .
 - (f) Find a MLE for $P(X_1 < 1)$.
- 4. Practice with distributions that do not belong to the exponential family.