

Lambda Cálculo Tipado (3/3)

Inferencia de tipos

- Problema que consiste en transformar términos sin información de tipos en términos tipables
- ▶ Para ello debe inferirse la información de tipos faltante
- Beneficio para lenguajes con tipos
 - el programador puede obviar algunas declaraciones de tipos
 - en general, evita la sobrecarga de tener que declarar y manipular todos los tipos
 - todo ello sin desmejorar la performance del programa: la inferencia de tipos se realiza en tiempo de compilación

El problema de la inferencia de tipos

Primero modificamos la sintaxis de los términos de LC eliminando toda anotación de tipos

```
M ::= x
| true | false | if M then P else Q
| 0 | succ(M) | pred(M) | iszero(M)
| \lambda x.M | M N
| fix M
```

Función de borrado

Llamaremos $Erase(\cdot)$ a la función que dado un término de LC elimina las anotaciones de tipos de las abstracciones

$$Erase(\lambda x : Nat.\lambda f : Nat \rightarrow Nat.f x) = \lambda x.\lambda f.f x$$

El problema de la inferencia - Definición

Dado un término $U \sin$ anotaciones de tipo, hallar un término estándar (i.e. con anotaciones de tipos) M tal que

- 1. $\Gamma \triangleright M : \sigma$, para algún Γ y σ , y
- 2. Erase(M) = U

Ejemplos

- ▶ Para $U = \lambda x.x + 5$ tomamos $M = \lambda x : Nat.x + 5$ (observar que no hay otra posibilidad)
- ▶ Para $U = \lambda x.\lambda f.fx$ tomamos $M_{\sigma,\tau} = \lambda x: \sigma.\lambda f: \sigma \to \tau.fx$ (hay un $M_{\sigma,\tau}$ por cada σ,τ)
- ▶ Para $U = \lambda x.\lambda f.f(fx)$ tomamos $M_{\sigma} = \lambda x : \sigma.\lambda f : \sigma \to \sigma.f(fx)$ (hay un M_{σ} por cada σ)
- ▶ Para U = xx no existe ningún M con la propiedad deseada

El problema del chequeo de tipos

chequeo de tipos \neq inferencia de tipos

Chequeo de tipos

Dado un término estándar M determinar si existe Γ y σ tales que $\Gamma \rhd M$: σ es derivable.

- Es mucho más fácil que el problema de la inferencia
- Consiste simplemente en seguir la estructura sintáctica de M para reconstruir una derivación del juicio
- ▶ Es esencialmente equivalente a determinar, dados Γ y σ , si $\Gamma \rhd M : \sigma$ es derivable.

Variables de tipo

- ▶ Dado $\lambda x.\lambda f.f(fx)$, para cada σ , $M_{\sigma} = \lambda x : \sigma.\lambda f : \sigma \rightarrow \sigma.f(fx)$ es un solución posible
- ▶ ¿De qué manera podemos escribir una única expresión que englobe a todas ellas? Usando variables de tipo
 - ► Todas las soluciones se pueden representar con

$$\lambda x : s.\lambda f : s \to s.f(fx)$$

- "s" es una variable de tipos que representa una expresión de tipos arbitraria
- Si bien esta expresión no es una solución en sí misma, la sustitución de s por cualquier expresión de tipos sí arroja una solución válida

Variables de tipo

Extendemos las expresiones de tipo de LC con variables de tipo s, t, u,...

$$\sigma ::= s \mid Nat \mid Bool \mid \sigma \rightarrow \tau$$

Ejemplos

- ightharpoonup s
 ightarrow t
- ightharpoonup Nat ightarrow Nat ightarrow t
- ▶ $Bool \rightarrow t$

Sustitución de tipos (o simplemente sustitución)

Función que mapea variables de tipo en expresiones de tipo. Usamos S o T para sustituciones.

- ▶ Una sustitución S puede aplicarse a
 - 1. una expresión de tipos σ (escribimos $S\sigma$)
 - 2. un término M (escribimos SM)
 - 3. un contexto de tipado $\Gamma = \{x_1 : \sigma_1, \dots, x_n : \sigma_n\}$ (escribimos $S\Gamma$ y lo definimos como sigue)

$$S\Gamma \stackrel{\text{def}}{=} \{x_1 : S\sigma_1, \dots, x_n : S\sigma_n\}$$

Sustitución - Nociones adicionales

- ▶ El conjunto $\{t \mid St \neq t\}$ se llama soporte de S
- ► El soporte representa las variables que *S* "afecta"
- ▶ Usamos la notación $\{\sigma_1/t_1, \dots, \sigma_n/t_n\}$ para la sustitución con soporte $\{t_1, \dots, t_n\}$ definida de la manera obvia
- La sustitución cuyo soporte es ∅ es la sustitución identidad (Id)

Instancia de un juicio de tipado

Un juicio de tipado $\Gamma' \rhd M' : \sigma'$ es una instancia de $\Gamma \rhd M : \sigma$ si existe una sustitución de tipos S tal que

$$\Gamma' \supset S\Gamma$$
, $M' = SM$ y $\sigma' = S\sigma$

Función de Inferencia $\mathbb{W}(\cdot)$

Definir una función $\mathbb{W}(\cdot)$ que dado un término U sin anotaciones verifica

- Corrección $\mathbb{W}(U) = \Gamma \rhd M : \sigma$ implica
 - ightharpoonup Erase(M) = U y
 - $ightharpoonup \Gamma
 ightharpoonup M : \sigma$ es derivable

Completitud Si $\Gamma \rhd M$: σ es derivable y Erase(M) = U, entonces

- $ightharpoonup \mathbb{W}(U)$ tiene éxito y
- ▶ produce un juicio $\Gamma' \triangleright M' : \sigma'$ tal que $\Gamma \triangleright M : \sigma$ es instancia del mismo (se dice que $\mathbb{W}(\cdot)$ computa un tipo principal)

Unificación

- ► El algoritmo de inferencia analiza un término (sin anotaciones de tipo) a partir de sus subtérminos
- Una vez obtenida la información inferida para cada uno de los subtérminos debe
 - (Consistencia) Determinar si la información de cada subtérmino es consistente
 - (Síntesis) Sintetizar la información del término original a partir de la información de sus subtérminos

Ejemplo

Consideremos el término x y + x(y + 1)

- ▶ Del análisis de x y surge que x :: s \rightarrow t e y :: s
- ▶ Del análisis de x(y+1) surge que $x :: Nat \rightarrow u$ e y :: Nat
- Dado que una variable puede tener un sólo tipo debemos compatibilizar la información de tipos
 - ▶ El tipo $s \rightarrow t$ debe ser compatible o unificable con $Nat \rightarrow u$ dado que ambos se refieren a x
 - ► El tipo s debe ser compatible o unificable con Nat dado que ambos se refieren a y

Unificación

- ▶ El tipo $s \rightarrow t$ es compatible o unificable con $Nat \rightarrow u$? Sí
 - ▶ Basta tomar la sustitución $S \stackrel{\text{def}}{=} \{Nat/s, u/t\}$
 - lacksquare Y observar que $S(s
 ightarrow t) = \mathit{Nat}
 ightarrow u = S(\mathit{Nat}
 ightarrow u)$

El proceso de determinar si existe una sustitución S tal que dos expresiones de tipos σ, τ son unificables (ie. $S\sigma = S\tau$) se llama unificación

 Vamos a estudiar con precisión a la unificación, repasando antes algunos conceptos básicos sobre sustituciones

Composición de sustituciones

La composición de S y T, denotada $S \circ T$, es la sustitución que se comporta como sigue:

$$(S \circ T)(\sigma) = S(T\sigma)$$

Ejemplo

Sea $S = \{v \times Nat/u, Nat/s\}$ y $T = \{u \rightarrow Bool/t, Nat/s\}$, entonces $S \circ T = \{(v \times Nat) \rightarrow Bool/t, v \times Nat/u, Nat/s\}$

- ▶ Decimos que S = T si tienen el mismo soporte y St = Tt para todo t en el soporte de S
- \triangleright $S \circ Id = Id \circ S = S$
- $S \circ (T \circ U) = (S \circ T) \circ U$

Preorden sobre sustituciones

Una sustitución S es más general que T si existe U tal que $T = U \circ S$.

► La idea es que *S* es más general que *T* porque *T* se obtiene instanciando *S*

Unificador

Una ecuación de unificación es una expresión de la forma $\sigma_1 \doteq \sigma_2$. Una sustitución S es una solución de un conjunto de ecuaciones de unificación $\{\sigma_1 \doteq \sigma'_1, \ldots, \sigma_n \doteq \sigma'_n\}$ si $S\sigma_1 = S\sigma'_1 = \ldots = S\sigma'_n$

Ejemplos

- ► La sust. $\{Bool/v, Bool \times Nat/u\}$ es solución de $\{v \times Nat \rightarrow Nat \doteq u \rightarrow Nat\}$
- ▶ $\{Bool \times Bool/v, (Bool \times Bool) \times Nat/u\}$ también!
- $\{v \times Nat/u\}$ también!
- ▶ ${Nat \rightarrow s \doteq Ref \ u}$ no tiene solución
- ▶ $\{u \rightarrow Nat \doteq u\}$ no tiene solución

Unificador más general (MGU)

Una sustitución S es un MGU de $\{\sigma_1 \doteq \sigma'_1, \ldots, \sigma_n \doteq \sigma'_n\}$ si

- 1. es solución de $\{\sigma_1 \doteq \sigma'_1, \dots, \sigma_n \doteq \sigma'_n\}$
- 2. es más general que cualquier otra solución de $\{\sigma_1 \doteq \sigma'_1, \dots, \sigma_n \doteq \sigma'_n\}$

Ejemplos

- La sust. {Bool/v, Bool × Nat/u} es solución de {v × Nat → Nat = u → Nat} pero no es un MGU pues es instancia de la solución {v × Nat/u}
- $\{v \times Nat/u\}$ es un MGU del conjunto

Algoritmo de unificación

Teorema

Si $\{\sigma_1 \doteq \sigma_1', \dots, \sigma_n \doteq \sigma_n'\}$ tiene solución, existe un MGU y además es único salvo renombre de variables

- Entrada:
 - ▶ Conjunto de ecuaciones de unificación $\{\sigma_1 \doteq \sigma_1', \dots, \sigma_n \doteq \sigma_n'\}$
- Salida:
 - ▶ MGU S de $\{\sigma_1 \doteq \sigma'_1, \ldots, \sigma_n \doteq \sigma'_n\}$, si tiene solución
 - ▶ falla, en caso contrario

Algoritmo de Martelli-Montanari

- Vamos a presentar un algoritmo no-determinístico
- Consiste en reglas de simplificación que reescriben conjuntos de pares de tipos a unificar (goals)

$$G_0 \mapsto G_1 \mapsto \ldots \mapsto G_n$$

- ► Las secuencias que terminan en el goal vacío son exitosas; aquellas que terminan en falla son fallidas
- Algunos pasos de simplificación llevan un sustitución que representa una solución parcial al problema

$$G_0 \mapsto G_1 \mapsto_{S_1} G_2 \mapsto \ldots \mapsto_{S_k} G_n$$

▶ Si la secuencia es exitosa el MGU es $S_k \circ ... \circ S_1$

Reglas del algoritmo de Martelli-Montanari

1. Descomposición

$$\begin{aligned}
\{\sigma_1 \to \sigma_2 &\doteq \tau_1 \to \tau_2\} \cup G \mapsto \{\sigma_1 &\doteq \tau_1, \sigma_2 &\doteq \tau_2\} \cup G \\
\{Nat &\doteq Nat\} \cup G \mapsto G \\
\{Bool &\doteq Bool\} \cup G \mapsto G
\end{aligned}$$

2. Eliminación de par trivial

$$\{s \doteq s\} \cup G \mapsto G$$

3. **Swap**: si
$$\sigma$$
 no es una variable $\{\sigma \doteq s\} \cup G \mapsto \{s \doteq \sigma\} \cup G$

4. Eliminación de variable: si
$$s \notin FV(\sigma)$$
 $\{s \doteq \sigma\} \cup G \mapsto_{\sigma/s} G[\sigma/s]$

5. Falla

$$\{\sigma \doteq \tau\} \cup G \mapsto \mathbf{falla}, \ \mathsf{con}\ (\sigma, \tau) \in T \cup T^{-1} \ \mathsf{y}$$

 $T = \{(\mathit{Bool}, \mathit{Nat}), (\mathit{Nat}, \sigma_1 \to \sigma_2), (\mathit{Bool}, \sigma_1 \to \sigma_1)\}$

6. Occur check: si
$$s \neq \sigma$$
 y $s \in FV(\sigma)$ $\{s \doteq \sigma\} \cup G \mapsto falla$

Ejemplo de secuencia exitosa

$$\{(Nat \rightarrow r) \rightarrow (r \rightarrow u) \stackrel{.}{=} t \rightarrow (s \rightarrow s) \rightarrow t\}$$

$$\mapsto^{1} \qquad \{Nat \rightarrow r \stackrel{.}{=} t, r \rightarrow u \stackrel{.}{=} (s \rightarrow s) \rightarrow t\}$$

$$\mapsto^{3} \qquad \{t \stackrel{.}{=} Nat \rightarrow r, r \rightarrow u \stackrel{.}{=} (s \rightarrow s) \rightarrow t\}$$

$$\mapsto^{4}_{Nat \rightarrow r/t} \qquad \{r \rightarrow u \stackrel{.}{=} (s \rightarrow s) \rightarrow (Nat \rightarrow r)\}$$

$$\mapsto^{1} \qquad \{r \stackrel{.}{=} s \rightarrow s, u \stackrel{.}{=} Nat \rightarrow r\}$$

$$\mapsto^{4}_{s \rightarrow s/r} \qquad \{u \stackrel{.}{=} Nat \rightarrow (s \rightarrow s)\}$$

$$\mapsto^{4}_{Nat \rightarrow (s \rightarrow s)/u} \qquad \emptyset$$

► EI MGU es $\{Nat \rightarrow (s \rightarrow s)/u\} \circ \{s \rightarrow s/r\} \circ \{Nat \rightarrow r/t\} = \{Nat \rightarrow (s \rightarrow s)/t, s \rightarrow s/r, Nat \rightarrow (s \rightarrow s)/u\}$

Ejemplo de secuencia fallida

$$\begin{cases} r \rightarrow (s \rightarrow r) \doteq s \rightarrow ((r \rightarrow Nat) \rightarrow r) \} \\ \mapsto^{1} \quad \{r \doteq s, s \rightarrow r \doteq (r \rightarrow Nat) \rightarrow r \} \\ \mapsto^{4}_{s/r} \quad \{s \rightarrow s \doteq (s \rightarrow Nat) \rightarrow s \} \\ \mapsto^{1} \quad \{s \doteq s \rightarrow Nat, s \doteq s \} \\ \mapsto^{6} \quad \text{falla}$$

Propiedades del algoritmo

Teorema

- ► El algoritmo de Martelli-Montanari siempre termina
- ▶ Sea G un conjunto de pares G
 - si G tiene un unificador, el algoritmo termina exitosamente y retorna un MGU
 - ▶ si G no tiene unificador, el algoritmo termina con falla

Algoritmo de inferencia

- Vamos a presentar un algoritmo de inferencia para LC
- ▶ El objetivo es definir $\mathbb{W}(U)$ por recursión sobre la estructura de U
- ▶ Primero presentamos la cláusulas que definen a W(U) sobre las constantes y las variables, luego pasamos a las demás construcciones
- Utilizaremos el algoritmo de unificación

Algoritmo de inferencia (caso constantes y variables)

```
\mathbb{W}(\textit{true}) \stackrel{\text{def}}{=} \emptyset \rhd \textit{true} : \textit{Bool}
\mathbb{W}(\textit{false}) \stackrel{\text{def}}{=} \emptyset \rhd \textit{false} : \textit{Bool}
\mathbb{W}(x) \stackrel{\text{def}}{=} \{x : s\} \rhd x : s, \quad \textit{s} \text{ variable fresca}
\mathbb{W}(0) \stackrel{\text{def}}{=} \emptyset \rhd 0 : \textit{Nat}
```

Algoritmo de inferencia (caso *succ*)

- ▶ Sea $\mathbb{W}(U) = \Gamma \triangleright M : \tau$
- ▶ Sea $S = MGU\{\tau \doteq Nat\}$
- Entonces

$$\mathbb{W}(\mathit{succ}(U)) \stackrel{\mathrm{def}}{=} S\Gamma \rhd S \mathit{succ}(M) : Nat$$

▶ Nota: Caso *pred* es similar

Algoritmo de inferencia (caso iszero)

- ▶ Sea $\mathbb{W}(U) = \Gamma \triangleright M : \tau$
- ▶ Sea $S = MGU\{\tau \doteq Nat\}$
- Entonces

$$\mathbb{W}(iszero(U)) \stackrel{\text{def}}{=} S\Gamma \rhd S iszero(M) : Bool$$

Algoritmo de inferencia (caso ifThenElse)

- Sea
 - \blacktriangleright $\mathbb{W}(U) = \Gamma_1 \rhd M : \rho$
 - \blacktriangleright $\mathbb{W}(V) = \Gamma_2 \triangleright P : \sigma$
 - \blacktriangleright $\mathbb{W}(W) = \Gamma_3 \triangleright Q : \tau$
- Sea

$$S = MGU\{\sigma_1 \doteq \sigma_2 \mid x : \sigma_1 \in \Gamma_i \land x : \sigma_2 \in \Gamma_j, i \neq j\}$$

$$\cup$$

$$\{\sigma \doteq \tau, \rho \doteq Bool\}$$

Entonces

$$\mathbb{W}(\text{if } U \text{ then } V \text{ else } W)$$

$$\stackrel{\text{def}}{=} S\Gamma_1 \cup S\Gamma_2 \cup S\Gamma_3 \rhd S(\text{if } M \text{ then } P \text{ else } Q) : S\sigma$$

Algoritmo de inferencia (caso aplicación)

- Sea
 - $\blacktriangleright \mathbb{W}(U) = \Gamma_1 \rhd M : \tau$
 - $\blacktriangleright \mathbb{W}(V) = \Gamma_2 \triangleright N : \rho$
- Sea

$$\begin{split} S &= \textit{MGU}\{\sigma_1 \doteq \sigma_2 \mid \textit{x}: \sigma_1 \in \Gamma_1 \land \textit{x}: \sigma_2 \in \Gamma_2\} \\ & \cup \\ \{\tau \doteq \rho \rightarrow t\} \text{ con } \textit{t} \text{ una variable fresca} \end{split}$$

Entonces

$$\mathbb{W}(\textcolor{red}{U}\textcolor{red}{V}) \stackrel{\text{def}}{=} S\Gamma_1 \cup S\Gamma_2 \rhd S(MN) : St$$

Algoritmo de inferencia (caso abstracción)

- ► Sea $\mathbb{W}(U) = \Gamma \triangleright M : \rho$
- ▶ Si el contexto tiene información de tipos para x (i.e. $x : \tau \in \Gamma$ para algún τ), entonces

$$\mathbb{W}(\lambda x. U) \stackrel{\text{def}}{=} \Gamma \setminus \{x : \tau\} \rhd \lambda x : \tau. M : \tau \to \rho$$

► Si el contexto no tiene información de tipos para x (i.e. $x \notin Dom(\Gamma)$) elegimos una variable fresca s y entonces

$$\mathbb{W}(\lambda x. U) \stackrel{\text{def}}{=} \Gamma \rhd \lambda x : s.M : s \to \rho$$

Algoritmo de inferencia (caso fix)

- ▶ Sea $\mathbb{W}(U) = \Gamma \triangleright M : \tau$
- ▶ Sea $S = MGU\{\tau \doteq t \rightarrow t\}$, t variable fresca

$$\mathbb{W}(fix(U)) \stackrel{\mathrm{def}}{=} S\Gamma \rhd S fix(M) : St$$

Ejemplo

- Vamos a mostrar cómo inferir el tipo de if true then succ(x y) else x (succ(y))
- ► Aplicaremos el algoritmo, paso por paso

Ejemplo (1/4)

if true then succ(x y) else x(succ(y))

 $\mathbb{W}(true) = \emptyset \triangleright true : Bool$

Ejemplo (2/4)

if true then succ(x y) else x(succ(y))

Ejemplo (3/4)

if true then succ(x y) else x(succ(y))

Ejemplo (4/4)

$$M = if true then succ(x y) else x (succ(y))$$

- \blacktriangleright $\mathbb{W}(true) = \emptyset \rhd true : Bool$
- $\blacktriangleright \ \mathbb{W}(\mathit{succ}(x\,y)) = \{x: t \to \mathit{Nat}, y: t\} \rhd \mathit{succ}(x\,y) : \mathit{Nat}$

$$\mathbb{W}(M) = \{x : Nat \rightarrow Nat, y : Nat\} \triangleright M : Nat$$

donde
$$S = MGU(\{t \rightarrow Nat \doteq Nat \rightarrow w, t \doteq Nat, Nat \doteq w\}) = \{Nat/t, Nat/w\}$$

Un ejemplo de falla

```
M = if true then x 2 else x true
       \mathbb{W}(x) = \{x:s\} \triangleright x:s
       \mathbb{W}(\underline{2}) = \emptyset \triangleright 2 : Nat
    \mathbb{W}(x\,2) = \{x : Nat \rightarrow t\} \triangleright x\,2 : t
       \mathbb{W}(x) = \{x : u\} \triangleright x : u
  \mathbb{W}(true) = \emptyset \triangleright true : Bool
\mathbb{W}(x \text{ true}) = \{x : Bool \rightarrow v\} \triangleright x2 : v
      \mathbb{W}(M) = falla
no existe el MGU(\{Nat \rightarrow t = Bool \rightarrow v\})
```

Complejidad

- Tanto la unificación como la inferencia para LC se puede hacer en tiempo lineal
- ► El tipo principal asociado a un término sin anotaciones puede ser exponencial en el tamaño del término

Considerar inferir el tipo de $P^n M$ con $P: s \rightarrow s \times s$ y $M: \sigma$

- ¿Esto no contradice lo antedicho?
- No. Se pueden representar usando dags en cuyo caso el tamaño del tipo principal de U será O(n)
- ► NB: En la presencia de polimorfismo la inferencia es exponencial

Let-Polymorphism

▶ Los lenguajes funcionales como ML, Haskell, etc. permiten tipos polimórficos de la forma

$$\forall s_1 \dots s_n \sigma \ (\sigma \ \text{sin} \ \text{cuantificadores})$$

- ► Este tipo de polimorfismo restringido se llama predicativo
- ► En particular no se pueden definir funciones que tomen a otras funciones polimórficas como argumento

Let-Polymorphism

```
Prelude> (\f-> (f True, f 3)) (\x -> 5)
ERROR - Illegal Haskell 98 class constraint in inferred type
*** Expression : (\f -> (f True, f 3)) (\x -> 5)
*** Type : Num Bool => (Integer,Integer)

Prelude> (\f-> (f True, f 3)) id
ERROR - Illegal Haskell 98 class constraint in inferred type
*** Expression : (\f -> (f True, f 3)) id
*** Type : Num Bool => (Bool,Bool)
```

Let-Polymorphism

 Para poder declarar y usar funciones polimórficas se introduce la construcción let

```
Prelude> let g = x->5 in (g True, g 3) (5,5)
```

- Polimorfismo predicativo con declaraciones let polimórficas forman el núcleo (básico) del sistema de tipos de ML y Haskell
- La inferencia de tipos para este sistema es muy similar a aquella vista hoy
- Para más detalles consultar capítulo 11 del texto de Mitchell o capítulo 22 del texto de Pierce