

中华人民共和国通信行业标准

YD/T XXXXX—XXXX

接入网设备测试方法 ——GPON 系统互通性

Test method for access network

——Interoperability of GPON system

(送审稿)

(本稿完成日期: 2010年6月)

XXXX - XX - XX 发布

XXXX-XX-XX 实施

目 次

前	言		ا
1	范	围	1
2	规	范性引用文件	1
3	缩	略语	1
4		PON 系统互通测试参考配置	
5		AM 功能互通测试	
	5.1	ONU 激活流程ONU 对 Disable-serial-number 消息的响应	
	5.2 5.3		
	5.4		
	_	MCI 协议互通测试	
	6.1	OMCC 建立过程MIB 审计和同步	
	6.2 6.3	MIB 申订和问步ONU 初始创建的 ME 最小集	
	6.4	ONO 初始 回達的 Wie 取り来	
	6.5	软件镜像下载流程	
	6.6	ONU 远程重启	
7	11/2	务功能互通测试	19
	7.1	グ / A.N. 透传功能	
	7.1	VLAN 标记功能	
	7.3	TLS 功能	
	7.4	VLAN 切换功能	
	7.5	QoS 功能	29
	7.6	帧过滤功能	29
	7.7	可控组播功能	33
炣	1	GPON 系统互通测试参考配置	0
图图		基于 SN 认证方式的 ONU 激活流程(认证成功)	
图		基于 Password 认证方式的 ONU 激活流程(认证成功)	
图		DBA 互通测试配置	
图		OMCC 建立流程(以 SN 认证方式为例)	
图		新 ONU MIB 审计和同步流程	
图	7	旧 ONU MIB 重审计流程(OLT 和 ONU 的同步计数器值相同)	11
冬	8	旧 ONU MIB 审计和同步流程(ONU 侧同步计数器为 0)	12
图	9	旧 ONU MIB 审计和同步流程(OLT 和 ONU 侧同步计数器不相等且均不为 0)	13

图 10	OLT 重置 ONU 当前 GEM 连接模式流程(ONU 无需重新启动)	16
图 11	OLT 重置 ONU 当前 GEM 连接模式流程(ONU 重新启动)	16
图 12	软件镜像下载流程	18
图 13	软件镜像激活和软件镜像提交流程	19
图 14	VLAN 透传的 ME 关系图(基于桥+VLAN 方式)	21
图 15	VLAN 透传的 ME 关系图(基于桥+Pbit 方式)	23
图 16	帧过滤的 ME 关系图(基于桥+VLAN 方式)	31
图 17	帧过滤的 ME 关系图(基于桥+Pbit 方式)	32
图 18	可控组播的 ME 关系图(基于桥+VLAN 模式)	35
图 19	可控组播的 ME 关系图(基于桥+Pbit 模式)	36
表 1	Extended VLAN Tagging Operation Configuration Data 主要属性取值	22
表 2	VLAN tagging filter data 主要属性取值(UNI 侧)	22
表 3	VLAN tagging filter data 主要属性取值(ANI 侧,对应 VID=10 的报文)	22
表 4	VLAN tagging filter data 主要属性取值(ANI 侧,对应 VID=20 的报文)	23
表 5	802.1p mapper service profile 主要属性取值	24
表 6	Extended VLAN Tagging Operation Configuration Data 主要属性取值	25
表 7	VLAN tagging filter data 主要属性取值(UNI 侧)	25
表 8	Extended VLAN Tagging Operation Configuration Data 主要属性取值	
表 9	VLAN tagging filter data 主要属性取值(UNI 侧)	27
表 10	Extended VLAN Tagging Operation Configuration Data 主要属性取值	28
表 11	VLAN tagging filter data 主要属性取值(UNI 侧)	29
表 12	Extended VLAN Tagging Operation Configuration Data 主要属性取值(与端口 1 关联)	33
表 13	Extended VLAN Tagging Operation Configuration Data 主要属性取值(与端口 2 关联)	33

前 言

本标准是 GPON 系列标准之一,该系列标准的名称和结构如下:

- ——YD/T 1949-2009《接入网技术要求——吉比特的无源光网络(GPON)》
- ——YD/T 1995-2009《接入网设备测试方法——吉比特的无源光网络(GPON)》
- ——YD/T XXXX-XXXX《接入网技术要求——吉比特的无源光网络(GPON)系统互通性》

本标准按照GB/T 1.1-2009给出的规则起草。

本标准由中国通信标准化协会提出并归口。

本标准起草单位:工业和信息化部电信研究院、中国联合网络通信集团公司、中国电信集团公司、 华为技术有限公司、上海贝尔股份有限公司、武汉邮电科学研究院、UT斯达康(重庆)通讯有限公司。

本标准主要起草人: 陆洋、陈洁、刘谦、敖立、张文钺、张雷、周娟、党梅梅、程强、葛坚、李云洁。

接入网设备测试方法——GPON 系统互通性

1 范围

本标准规定了GPON设备OAM层、OMCI协议和业务相关功能互通性的测试方法。 本标准适用于公众电信网环境下的GPON设备,专用电信网也可参照使用。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

YD/T XXXX-XXXX 接入网技术要求——吉比特的无源光网络(GPON)系统互通性

3 缩略语

下列缩略语适用于本标准。

ANI	Access Node Interface	接入节点接口
BWMap	BandWidth Map	带宽映射
DBA	Dynamic Bandwidth Assignment	动态带宽分配
GEM	GPON Encapsulation Method	GPON 封装方法
GPON	Gigabit-Capable Passive Optical Network	吉比特无源光网络
IGMP	Internet Group Management Protocol	互联网组管理协议
ME	Managed Entity	管理实体
MIB	Management Information Base	管理信息库
OAM	Operations, Administration and Maintenance	操作管理维护
ODN	Optical Distribution Network	光分配网络
OLT	Optical Line Terminal	光线路终端
ONU	Optical Network Unit	光网络单元
OMCC	ONU Management and Control Channel	ONU 管理控制通道
OMCI	ONU Management and Control Interface	ONU 管理控制接口
PLOAM	Physical Layer OAM	物理层操作管理维护
PON	Passive Optical Network	无源光网络
PPPoE	PPP over Ethernet	以太网上的点到点协议

QoS	Quality of Service	服务质量
SN	Serial Number	序列号
SNI	Service Node Interface	业务节点接口
SNMP	Simple Network Management Protocol	简单网络管理协议
SP	Strict priority	绝对优先级
SVID	Service VLAN ID	业务 VLAN 标识
T-CONT	Transmission Container	传输容器
TLS	Transparent LAN Service	透明 LAN 业务
UNI	User Network Interface	用户网络接口
VID	VLAN ID	VLAN 标识
VLAN	Virtual Local Area Network	虚拟局域网
VoIP	Voice over IP	IP 语音

4 GPON 系统互通测试参考配置

GPON系统互通测试参考配置如图1 所示。其中OLT与ONU 为不同厂家的设备,OLT通过光分路器连接多个ONU。

图1 GPON 系统互通测试参考配置

5 OAM 功能互通测试

5.1 ONU 激活流程

5.1.1 测试目的

测试OLT基于序列号(SN)和基于密码(password)两种方式对ONU进行合法性认证时,ONU 的激活流程。

5.1.2 测试配置

测试配置见图1。

5.1.3 测试步骤

测试步骤如下:

- 1) 按图 1 连接线路,在 OLT 上配置正确的 ONU 认证信息,将 ONU 上电;
- 2) 观察 ONU 是否测距成功,检查 ONU 的启动流程;
- 3) 在 OLT 上配置错误的 ONU 认证信息,将 ONU 重新上线,检查此时的 ONU 启动流程;
- 4) 重新正确配置 ONU 的认证信息,再次将 ONU 上线,检查启动流程。

5.1.4 预期结果

步骤2)中,基于SN和基于password认证方式的ONU激活流程应分别符合图2 和图3。

步骤3)中,当OLT检查收到的ONU SN或password后认为该ONU不合法,则向该ONU下发 Disable_Serial_ Number(Disable)消息。

步骤4)中,OLT向ONU下发Disable_Serial_Number(Enable)消息,通知该ONU进入待机状态(O2),重新开始激活流程。

图2 基于 SN 认证方式的 ONU 激活流程(认证成功)

图3 基于 Password 认证方式的 0NU 激活流程(认证成功)

- 5.2 ONU 对 Disable-serial-number 消息的响应
- 5.2.1 测试目的

测试ONU对PLOAM消息Disable-serial-number的响应能力。

5.2.2 测试配置

测试配置见图1 。

5.2.3 测试步骤

测试步骤如下:

- 1) OLT 和 ONU 上电, ONU 注册成功;
- 2) OLT 下发 Disable-serial-number (diable) 消息去激活该 ONU, 观察 ONU 的状态;
- 3) ONU 掉电再重新上电,观察 ONU 的状态;
- 4) OLT 下发 Disable-serial-number (enable) 消息激活该 ONU, 观察 ONU 的状态;
- 5) ONU 掉电再上电,观察 ONU 的状态。

5.2.4 预期结果

步骤2)中,ONU进入O7状态,不再响应除Disable-serial-number(enable)消息外的OLT下发的任何PLOAM消息,也无法再进行正常的业务。

步骤3)中,ONU上电后仍然处于O7状态。

步骤4)中,ONU成功激活,可以正常业务。

步骤5)中,ONU可以正常注册,并进行正常的业务。

5.3 ONU 断电通知

5.3.1 测试目的

测试ONU在断电时通过Dying Gasp消息告知OLT的能力。

5.3.2 测试配置

测试配置见图1 。

5.3.3 测试步骤

测试步骤如下:

- 1) OLT 和 ONU 上电, ONU 注册成功;
- 2) 关闭 ONU 的电源,在 OLT 上观察 ONU 的状态,通过 GPON 协议分析仪检查 ONU 的断电通知消息。

5.3.4 预期结果

步骤2)中,ONU断电时,应发送Dying Gasp消息,OLT上应能看到该ONU的DGi告警。

5.4 DBA 互通测试

5.4.1 测试目的

验证对于不同类型的T-CONT,当OLT下发的BWmap消息中每个Alloc-ID的最小分配时隙长度为15 byte时,ONU能正确识别和执行。

5.4.2 测试配置

测试配置见图4 。

图4 DBA 互通测试配置

5.4.3 测试步骤

测试步骤如下:

- 1) 按图 4 连接设备, OLT 和 ONU 上电, ONU 成功注册到 OLT 上, 上下行业务流能够正常的 发送和接收:
- 2) 通过 OLT 为 ONU 配置 1 条上行业务流,映射到 type2 的 T-CONT 中,在其对应的 BWmap 中为这个 Alloc-ID 分配 15 byte 的上行时隙;
- 3) 配置网络测试仪发送 1 条上行业务流,以太帧流量应大于 512 kbit/s;
- 4) 停止发送上行业务流。

5.4.4 预期结果

步骤3)中,OLT应能正确接收ONU发送的T-CONT为type2的上行业务流,且以太帧速率等于512 kbit/s。

- 6 OMCI 协议互通测试
- 6.1 OMCC 建立过程
- 6.1.1 测试目的

验证OLT和ONU之间的OMCC是否能够建立成功,流程是否符合规范。

6.1.2 测试配置

测试配置见图1 。

6.1.3 测试步骤

测试步骤如下:

- 1) 按照图 1 连接 OLT 和 ONU,并在 OLT 上配置 ONU 设备认证的相应信息;
- 2) 在 OLT 侧观察 ONU 的注册过程及状态,通过 GPON 协议分析仪检查并分析 OMCC 建立流程。

6.1.4 预期结果

OMCC建立成功,并符合图5 规定的流程。

图5 OMCC 建立流程(以 SN 认证方式为例)

6.2 MIB 审计和同步

6.2.1 测试目的

验证在各种情况下进行MIB审计和同步的流程。

6.2.2 测试配置

测试配置见图1 。

6.2.3 测试步骤

测试步骤如下:

- 1) 按照图 1 连接 OLT 和 ONU;
- 2) 新 ONU 上电启动;
- 3) 分别在 OLT 和 ONU 侧监测 OMCI 消息,直到 MIB 同步过程结束;
- 4) 分析 ONU 启动后 MIB 同步过程中的 OMCI 消息流程是否符合预期结果;
- 5) 断开 ONU 和 OLT 之间的光纤 10 s, 再重新连接(ONU 不掉电);
- 6) 利用 GPON 协议分析仪监测 OMCI 消息;

- 7) 分析光纤重新连接后的 MIB 审计消息流程是否符合预期结果;
- 8) 断开 ONU 和 OLT 之间的光纤,在 ONU 侧删除自身的 MIB,使 ONU 侧的 MIB 同步计数器为 0,再重新连接(ONU 需要掉电);
- 9) 分析光纤重新连接后的 MIB 审计消息流程是否符合预期结果;
- 10) 断开 ONU 和 OLT 之间的光纤,将 ONU 与另一个 OLT 相连,新的 OLT 应把该 ONU 当作新 ONU 处理,MIB 审计和同步过程同步骤 4)的内容;用新的 OLT 对 ONU 进行远程配置操作,改变 ONU 的同步计数器值;
- 11) 断开 ONU 和新 OLT 之间的光纤, ONU 不掉电, 重新连接到旧 OLT 上;
- 12) 分析光纤重新连接后的 MIB 审计消息流程是否符合预期结果。

6.2.4 预期结果

步骤4)中,OLT和ONU之间启动MIB同步流程实现MIB同步,并且MIB同步流程符合图6 的要求。步骤7)中,OLT和ONU两端MIB同步计数器值相等,且不等于0,之间无需启动MIB同步流程,并且OMCI消息流程符合图7 的要求。

步骤9)中,OLT和ONU两端MIB同步计数器值不相等,ONU侧为0,OLT侧不为0,可当作新ONU来处理,同图6 ; 或当作旧ONU来处理,OLT不下发MIB reset命令,而是直接通过通过MIB upload 和MIB upload next命令,将ONU上的数据上载到OLT;对于两端数据不一致的情况,以OLT侧数据为准,修正ONU侧数据,如图8 的所示。

步骤12)中,OLT和ONU两端MIB同步计数器值不相等,且都不为0,OLT和ONU之间的MIB审计和同步流程图见图9 ,过程如下:

- a) OLT 下发 MIB reset 命令给 ONU (此动作为可选);
- b) OLT 通过 MIB upload 和 MIB upload next 命令,将 ONU 上的数据上载到 OLT,同时将 OLT 侧对该 ONU 的配置数据,下发到 ONU:
- c) OLT 将本地的 MIB 同步计数器通过 Set 命令设置到 ONU,以确保 ONU 和 OLT 两端计数器相等。

图6 新 ONU MIB 审计和同步流程

图7 旧 ONU MIB 重审计流程(OLT 和 ONU 的同步计数器值相同)

图8 旧 ONU MIB 审计和同步流程 (ONU 侧同步计数器为 0)

图9 旧 ONU MIB 审计和同步流程 (OLT 和 ONU 侧同步计数器不相等且均不为 0)

6.3 ONU 初始创建的 ME 最小集

6.3.1 测试目的

验证ONU上电完成初始化后,自动创建的ME集。

6.3.2 测试配置

测试配置见图1 。

6.3.3 测试步骤

测试步骤如下:

- 1) 按照图 1 连接 OLT 和 ONU,并在 OLT 上配置 ONU 设备认证的相应信息;
- 2) ONU 上电,使用 GPON 协议分析仪监测 OMCI 消息,直到 MIB 同步过程结束,记录 ONU 初始自动创建的 ME。

6.3.4 预期结果

ONU上电完成初始化后,自动创建的ME集中应至少包括下列ME:
——1 个 ONU-G 实例;
——1 个 ONU2-G 实例;
——1 个 ONU data 实例;
——2 个 Software Image 实例;
——J 个 Cardholder 实例(J 由 ONU 的实际能力决定);
——J 个 Circuit Pack 实例(J 由 ONU 的实际能力决定);
——K 个 T-CONT 实例(K 由 ONU 的实际能力决定);
——M 个 ANI-G 实例;
——N 个 UNI-G (N 为 ONU 的用户端口数量);

——N 个 PPTP 实例 (N 为 ONU 的用户端口数量);

P 个上行 priority queue-G 实例;Q 个下行 priority queue-G 实例。

6.4 GEM 连接模式协商流程

6.4.1 测试目的

测试ONU通过扩展后的ONT2-G ME向OLT上报GEM连接模式的机制。

6.4.2 测试配置

测试配置见图4 。

6.4.3 测试步骤

测试步骤如下:

- 1) 按照图 4 连接 OLT 和 ONU,并在 OLT 上配置 ONU 设备认证的相应信息;
- 2) ONU 上电,分析 ONU 上报的 ONU2-G ME 的内容;
- 3) 根据 ONU 上报的 GEM 连接模式, OLT 对 ONU 进行业务配置:

- 4) 配置网络测试仪发送业务流;
- 5) 如果 ONU 支持其他 GEM 连接模式,则 OLT 重置 ONU 的 GEM 连接模式;
- 6) OLT 按照重置后的新 GEM 连接模式对 ONU 进行业务配置,并配置网络测试仪发送业务流。

6.4.4 预期结果

步骤2)中,ONU应通过ONU2-G ME向OLT上报其支持的GEM连接模式能力和当前GEM连接模式,ONU应至少支持N:P bridge-filtering(桥+VLAN)方式和N:M bridge-mapping(桥+Pbit)中的一种。

步骤3)中,OLT能够根据ONU上报的GEM连接模式对ONU进行配置,OLT至少应同时支持N:P bridge-filtering(桥+VLAN)方式和N:M bridge-mapping(桥+Pbit)两种GEM连接方式,并且若ONU 当前连接模式和OLT的模式匹配,OLT不应重置当前连接模式。

步骤4)中,业务流应能正常工作。

步骤5)中,OLT重置ONU的GEM连接模式后,ONU可以不进行或进行重启来改变模式状态并自动进行MIB reset恢复至新连接模式初始状态,其流程应分别符合图10 和图11 所示流程。此时ONU的ONU2-G ME中的当前GEM连接模式属性值应为新配置值。

图10 OLT 重置 ONU 当前 GEM 连接模式流程 (ONU 无需重新启动)

图11 OLT 重置 ONU 当前 GEM 连接模式流程 (ONU 重新启动)

6.5 软件镜像下载流程

6.5.1 测试目的

验证ONU从OLT上下载软件镜像及激活、提交的流程。

6.5.2 测试配置

测试配置见图1 。

6.5.3 测试步骤

测试步骤如下:

- 1) 按照图 1 连接 OLT 和 ONU,并在 OLT 上配置 ONU 设备认证的相应信息;
- 2) OLT 下发软件镜像下载命令, 开始软件镜像下载流程;
- 3) 下载成功后, OLT 下发激活软件镜像和提交软件镜像命令。

6.5.4 预期结果

步骤2)中,软件镜像下载流程应符合图12 。当ONU把软件镜像写入Flash时接收到OLT下发的 End software download命令消息时,应把响应消息中的响应代码设置为"device busy",此时OLT应进行重发,重发流程符合《接入网技术要求——GPON系统互通性》8.4.4.3节的要求。

步骤3)中,软件镜像激活和提交流程应符合图13 ,ONU上软件镜像的状态属性应设为相应的取值。

6.6 ONU 远程重启

6.6.1 测试目的

测试通过OLT对ONU进行重启。

6.6.2 测试配置

测试配置见图1 。

6.6.3 测试步骤

测试步骤如下:

- 1) 按照图 1 连接 OLT 和 ONU, ONU 正常上线;
- 2) 通过 OLT 对某 ONU 进行重启。

6.6.4 预期结果

步骤2)中,指定ONU收到Reboot消息并响应,然后正常重启。Reboot消息中的Entity Class域应为256 ONT-G。

图12 软件镜像下载流程

图13 软件镜像激活和软件镜像提交流程

7 业务功能互通测试

7.1 VLAN 透传功能

7.1.1 测试目的

测试OLT配置ONU工作在VLAN透传模式,在此模式下,ONU透传VLAN正确的报文,丢弃untag、priority-tag和VLAN错误的报文。

7.1.2 测试配置

测试配置见图4 。

7.1.3 测试步骤

测试步骤如下:

- 1) 按照图 4 连接 OLT 和 ONU, 并在 OLT 上配置 ONU 设备认证的相应信息;
- 2) ONU 上电, OLT 配置 ONU 对 VID 为 10 和 20 的报文透传, 丢弃 untag、priority-tag 和 VID 为 5 的报文, 使用 GPON 协议分析仪监测 OMCI 消息;
- 3) 网络分析仪向 ONU 发送 5 条上行测试流,分别为 untagged 报文、priority-tag(VID=0, Pbit=1) 报文、tagged 报文(VID=5, Pbit=1)、tagged 报文(VID=10, Pbit=0)、tagged 报文(VID=20, Pbit=1),观察 OLT 上联接口收到的数据流情况;
- 4) 网络分析仪向 OLT 发送 2 条下行测试流,分别为 tagged 报文(VID=10, Pbit=0)、tagged 报文(VID=20, Pbit=1),观察 ONU 下联接口收到的数据流情况。

7.1.4 预期结果

步骤2)中,若ONU工作在桥+VLAN模式下,OLT下发的配置应符合图14 所示ME关系图;若ONU工作在桥+Pbit模式下,OLT下发的配置应符合图15 所示ME关系图。

步骤3)中,与OLT相连的网络分析仪仅收到2条上行业务流,分别是(VID=10,Pbit=0)和 (VID=20,Pbit=1)的业务流,untag报文、priority tagged和tagged报文(VID=5)被丢弃。

步骤4)中,与ONU相连的网络分析仪可收到2条下行业务流,分别是(VID=10, Pbit=0)和(VID=20, Pbit=1)的业务流。

图14 VLAN 透传的 ME 关系图 (基于桥+VLAN 方式)

图14 中几个关键ME的主要属性取值见表1至表4,其中Extended VLAN Tagging Operation Configuration Data和UNI侧VLAN tagging filter data两个ME实现VLAN透传功能配置。

表1 Extended VLAN Tagging Operation Configuration Data 主要属性取值

属性名称	取值	说明
Managed entity id	0x00000xFFFF	不作强制要求,但需要保证全 局唯一。
Association type	2	PPTP Ethernet UNI。
Downstream mode	1	透传。
Received frame	15,x,x,8,10,0,0, (0,15,x,x,15,x,x)	Tag 为 10 透传。
	15,x,x,8,20,0,0, (0,15,x,x,15,x,x)	Tag 为 20 透传。
VLAN tagging operation table	15,x,x,8,4096,0,0, (1,15,x,x,15,x,x)	其他单层 tag 的报文去掉 tag。
	8,4096,0,8,4096,0,0, (2,15,x,x,15,x,x)	双层 tag 的报文去掉 tag。
Associated ME pointer		端口 PPTP UNI 的 ME ID。

表2 VLAN tagging filter data 主要属性取值(UNI侧)

属性名称	取值	说明
Managed entity id	与对应的 MAC Bridge Port Config Data 实例 ME ID 相同	
VLAN filter list	0x000A 0x0014	VID=10 加入列表, VID=20 加入列表。
Forward operation	0x10	VLAN filter list 中包括的 VID 报文转发,不包含的报文和 untag 报文丢弃。
Number of entries	0~12	

表3 VLAN tagging filter data 主要属性取值(ANI 侧,对应 VID=10 的报文)

属性名称	取值	说明
Managed entity id	与对应的 MAC Bridge Port Config Data 实例 ME ID 相同	
VLAN filter list	0x000A	VID=10 加入列表。
Forward operation	0x10	VLAN filter list 中包括的 VID 报文转发,不包含的报文和 untag 报文丢弃。
Number of entries	0~12	

表4 VLAN tagging filter data 主要属性取值(ANI侧,对应 VID=20的报文)

属性名称	取值	说明
Managed entity id	与对应的 MAC Bridge Port Config Data 实例 ME ID 相同	
VLAN filter list	0x0014	VID=20 加入列表。
Forward operation	0x10	VLAN filter list 中包括的 VID 报文转发,不包含的报文和 untag 报文丢弃。
Number of entries	0~12	

图15 VLAN 透传的 ME 关系图 (基于桥+Pbit 方式)

图15 中ME 802.1p mapper service profile的主要属性取值见表5 ,其他相关ME取值见表1和表 2。

表5 802.1p mapper service profile 主要属性取值

属性名称	取值	说明
Managed entity id	0x00000xFFFF	不作强制要求,但需要保证全 局唯一。
TP Pointer	0xFFFF	桥端口的指针,对应 TPtype 为 0。
Interwork TP pointer for P-bit priority 0	指向 pbit 为 0 的 GEM Interworking TP 的 ME ID	先初始化成 0xFFFF,后续再通过 SET 操作修改为对应 GEM IWTP 的 ME ID。
Interwork TP pointer for P-bit priority 1	指向 pbit 为 1 的 GEM Interworking TP 的 ME ID	先初始化成 0xFFFF,后续再通过 SET 操作修改为对应 GEM IWTP 的 ME ID。
Interwork TP pointer for P-bit priority 2	0xFFFF	不使用。
Interwork TP pointer for P-bit priority 3	0xFFFF	不使用。
Interwork TP pointer for P-bit priority 4	0xFFFF	不使用。
Interwork TP pointer for P-bit priority 5	0xFFFF	不使用。
Interwork TP pointer for P-bit priority 6	0xFFFF	不使用。
Interwork TP pointer for P-bit priority 7	0xFFFF	不使用。
Unmarked frame option	N/A	
DSCP to P-bit mapping	N/A	
Default P-bit marking	N/A	
TP type	0	表明是桥映射的 mapper。

7. 2 VLAN 标记功能

7.2.1 测试目的

测试 OLT 配置 ONU 工作在 VLAN 标记模式。在此模式下,ONU 对 untag 报文进行 VLAN 标记,丢弃 priority-tag 和 tagged 报文。

7.2.2 测试配置

测试配置见图 4。

7.2.3 测试步骤

测试步骤如下:

- 1) 按照图 4 连接 OLT 和 ONU,并在 OLT 上配置 ONU 设备认证的相应信息;
- 2) ONU 上电,OLT 配置 ONU 工作在 VLAN 标记模式下,为 untag 报文标记 VLAN 10,丢弃其 他报文,使用 GPON 协议分析仪监测 OMCI 消息;
- 3) 网络分析仪向 ONU 发送 4 条上行测试流,分别为 untagged 报文、priority-tag(VID=0, Pbit=1) 报文、tagged 报文(VID=5, Pbit=1)、tagged 报文(VID=10, Pbit=0),观察 OLT 上联接口收到的数据流情况;
- 4) 网络分析仪向 OLT 发送 1 条下行测试流,为 tagged 报文(VID=10, Pbit=0),观察 ONU 下 联接口收到的数据流情况。

7.2.4 预期结果

步骤2)中,若ONU工作在桥+VLAN模式下,OLT下发的配置应符合图14 所示ME关系图;若ONU工作在桥+Pbit模式下,OLT下发的配置应符合图15 所示ME关系图。其中实现VLAN标记操作的ME的主要属性取值见表6 和表7 ,其他ME属性取值与7.1 节类似。

步骤3)中,与OLT相连的网络分析仪仅收到1条上行业务流(VID=10,Pbit=0),对应于untag报文,其他priority tagged、tagged报文(VID=5)、tagged报文(VID=10)被丢弃。

步骤4)中,与ONU相连的网络分析仪可收到1条下行业务流,为untag报文。

表6 Extended VLAN Tagging Operation Configuration Data 主要属性取值

属性名称	取值	说明
Managed entity id	0x00000xFFFF	不作强制要求,但需要保证全 局唯一。
Association type	2	PPTP Ethernet UNI。
Downstream mode	0	反向操作。
	15,x,x,15,x,x,0, (0,15,x,x,0,10,6)	untag 报文添加 VID 10。
Received frame VLAN tagging operation table	15,x,x,8,4096,0,0, (1,15,x,x,15,x,x)	单层 tag 的报文去掉 tag。
	8,4096,0,8,4096,0,0, (2,15,x,x,15,x,x)	双层 tag 的报文去掉 tag。
Associated ME pointer		端口 PPTP UNI 的 ME ID。

表7 VLAN tagging filter data 主要属性取值(UNI侧)

属性名称	取值	说明
Managed entity id	与对应的 MAC Bridge Port Config Data 实例 ME ID 相同	
VLAN filter list	0x000A	VID=10 加入列表。
Forward operation	0x10	VLAN filter list 中包括的 VID 报文转发,不包含的报文和 untag 报文丢弃。

Number of entries	0~12	
-------------------	------	--

7.3 TLS 功能

7.3.1 测试目的

测试 OLT 配置 ONU 工作在 TLS 模式。在此模式下, ONU 对 TLS 业务(包括 untag 报文、priority-tag 和 tagged 报文)添加 S-tag 标记,对非 TLS 业务(tagged 报文)进行透传。

7.3.2 测试配置

测试配置见图 4。

7.3.3 测试步骤

测试步骤如下:

- 1) 按照图 4 连接 OLT 和 ONU,并在 OLT 上配置 ONU 设备认证的相应信息;
- 2) ONU 上电, OLT 配置 ONU 工作 TLS 模式下, 配置非 TLS 业务 VLAN 表, 其中 VID=10、20, 并配置 TLS 业务的 SVID=3000、Spbit=7, 使用 GPON 协议分析仪监测 OMCI 消息;
- 3) 网络分析仪向 ONU 发送 5 条上行测试流,分别为 untagged 报文、priority-tag(VID=0, pbit=1) 报文、tagged 报文(VID=5, pbit=7)、tagged 报文(VID=10, pbit=0)、tagged 报文(VID=20, pbit=1),观察 OLT 上联接口收到的数据流情况;
- 4) 网络分析仪向 OLT 发送 5 条下行测试流,分别为(SVID=3000,Spbit=7)、(SVID=3000,spbit=7,CVID=0,Cpbit=1)、(SVID=3000,spbit=7,CVID=5,Cpbit=7)、(VID=10,Pbit=0)、(VID=20,Pbit=1),观察 ONU 下联接口收到的数据流情况。

7.3.4 预期结果

步骤2)中,若ONU工作在桥+VLAN模式下,OLT下发的配置应符合图14 所示ME关系图;若ONU工作在桥+Pbit模式下,OLT下发的配置应符合图15 所示ME关系图。其中实现TLS业务VLAN操作的ME的主要属性取值见表8 和表9 ,其他ME属性取值与7.1 节类似。

步骤3)中,与OLT相连的网络分析仪收到5条上行业务流,分别是(SVID=3000,Spbit=7)、(SVID=3000,spbit=7,CVID=0,Cpbit=1)、(SVID=3000,spbit=7,CVID=5,Cpbit=7)、(VID=10,Pbit=0)、(VID=20,Pbit=1)。

步骤4)中,与ONU相连的网络分析仪可收到5条下行业务流,分别是untagged报文、priority-tag (VID=0,pbit=1)报文、tagged报文(VID=5,pbit=7)、tagged报文(VID=10,pbit=0)、tagged报文(VID=20,pbit=1)。

表8 Extended VLAN Tagging Operation Configuration Data 主要属性取值

属性名称	取值	说明
Managed entity id	0x00000xFFFF	不作强制要求,但需要保证全 局唯一。
Association type	2	PPTP Ethernet UNI。
Output TPID	0x88A8	设置 TPID 的值。
Downstream mode	0	反向操作。
Received frame VLAN tagging operation table	15,x,x,15,x,x,0, (0,15,x,x,7,3000,6)	untag 报文添加 S-tag (3000, 7)。
	15,x,x,8,0,0,0, (0,15,x,x,7,3000,6)	priority-tag 报文添加 S-tag (3000, 7)。
	15,x,x,8,10,0,0, (0,15,x,x,15,x,x)	Tag 为 10 透传
	15,x,x,8,20,0,0, (0,15,x,x,15,x,x)	Tag 为 20 透传
	15,x,x,8,4096,0,0, (0,15,x,x,7,3000,6)	TLS 业务中的 tagged 报文打 上 S-tag (3000, 7)。
Associated ME pointer		端口 PPTP UNI 的 ME ID。

表9 VLAN tagging filter data 主要属性取值(UNI侧)

属性名称	取值	说明
Managed entity id	与对应的 MAC Bridge Port Config Data 实例 ME ID 相同	
VLAN filter list	0x000A 0x0014 0x0BB8	VID=10 加入列表, VID=20 加入列表, VID=3000 加入列表。
Forward operation	0x10	VLAN filter list 中包括的 VID 报文转发,不包含的报文和 untag 报文丢弃。
Number of entries	0~12	

7. 4 VLAN 切换功能

7.4.1 测试目的

测试 OLT 配置 ONU 工作在 VLAN 切换模式。在此模式下,ONU 将 VLAN 正确的报文切换为指定 VLAN,丢弃 untag、priority-tag 和 VLAN 错误的报文

7.4.2 测试配置

测试配置见图 4。

7.4.3 测试步骤

测试步骤如下:

- 1) 按照图 4 连接 OLT 和 ONU,并在 OLT 上配置 ONU 设备认证的相应信息;
- 2) ONU 上电,OLT 配置 ONU 工作在 VLAN 切换模式下,将 VLAN 为 20 的报文切换为 VLAN 10, 丢弃其他报文,使用 GPON 协议分析仪监测 OMCI 消息;
- 3) 网络分析仪向 ONU 发送 4 条上行测试流,分别为 untagged 报文、priority-tag(VID=0, Pbit=1) 报文、tagged 报文(VID=10, Pbit=1)、tagged 报文(VID=20, Pbit=0),观察 OLT 上联接口收到的数据流情况;
- 4) 网络分析仪向 OLT 发送 1 条下行测试流,为 tagged 报文(VID=10, Pbit=0),观察 ONU 下 联接口收到的数据流情况。

7.4.4 预期结果

步骤2)中,若ONU工作在桥+VLAN模式下,OLT下发的配置应符合图14 所示ME关系图;若ONU工作在桥+Pbit模式下,OLT下发的配置应符合图15 所示ME关系图。其中实现VLAN标记操作的ME的主要属性取值见表10 和表11 ,其他ME属性取值与7.1 节类似。

步骤3)中,与OLT相连的网络分析仪仅收到1条上行业务流(VID=10,Pbit=0),对应于VLAN为20的报文,untag报文、priority tagged、tagged报文(VID=10)的业务流被丢弃。

步骤4)中,与ONU相连的网络分析仪可收到1条下行业务流,VLAN为20。

表10 Extended VLAN Tagging Operation Configuration Data 主要属性取值

属性名称	取值	说明
Managed entity id	0x00000xFFFF	不作强制要求,但需要保证全 局唯一。
Association type	2	PPTP Ethernet UNI。
Downstream mode	0	反向操作。
Received frame VLAN tagging operation table	15,x,x,8,20,x,0, (1,15,x,x,0,10,6)	VID 为 20 的报文切换 VID 为 10。
	15,x,x,8,4096,0,0, (1,15,x,x,15,x,x)	其他单层 tag 的报文去掉 tag。
	8,4096,0,8,4096,0,0, (2,15,x,x,15,x,x)	双层 tag 的报文去掉 tag。
Associated ME pointer		端口 PPTP UNI 的 ME ID。

属性名称	取值	说明
Managed entity id	与对应的 MAC Bridge Port Config Data 实例 ME ID 相同	
VLAN filter list	0x000A	VID=10 加入列表。
Forward operation	0x10	VLAN filter list 中包括的 VID 报文转发,不包含的报文和 untag 报文丢弃。
Number of entries	0~12	

表11 VLAN tagging filter data 主要属性取值(UNI侧)

7.5 QoS 功能

7.5.1 测试目的

测试 OLT 配置 ONU 工作在绝对优先级调度模式下。

7.5.2 测试配置

测试配置见图 4。

7.5.3 测试步骤

测试步骤如下:

- 1) 按照图 4 连接 OLT 和 ONU,并在 OLT 上配置 ONU 设备认证的相应信息;
- 2) ONU 上电,按 7.1 节对 ONU 进行配置,同时配置 ONU 工作在绝对优先级调度模式下,限制 ONU 的上行最大带宽为 10Mbps,使用 GPON 协议分析仪监测 OMCI 消息;
- 3) 网络分析仪向 ONU 发送 2 条上行测试流,分别为 tagged 报文(VID=10, Pbit=1)、tagged 报文(VID=20, Pbit=0),速率均略大于 10Mbps,并发送少量对应下行流,观察 OLT 上联接口收到的数据流情况。

7.5.4 预期结果

步骤2)中,若ONU工作在桥+VLAN模式下,OLT下发的配置应符合图14 所示ME关系图;若ONU工作在桥+Pbit模式下,OLT下发的配置应符合图15 所示ME关系图。其中ME属性取值与7.1 节类似,对应VLAN 10业务的Priority Queue-G的related port属性后两个字节,应比VLAN 20的业务小。

步骤3)中,与OLT相连的网络分析仪仅收到1条上行业务流(VID=10, Pbit=0)。

7.6 帧过滤功能

7.6.1 测试目的

测试 OLT 配置 ONU 基于以太网协议对上行业务流进行过滤的能力。

7.6.2 测试配置

测试配置见图 4。

7.6.3 测试步骤

测试步骤如下:

- 1) 按照图 4 连接 OLT 和 ONU,并在 OLT 上配置 ONU 设备认证的相应信息;
- 2) ONU 上电,配置端口 1 和端口 2 均工作在 VLAN 标记模式,分别增加 VLAN 10 和 20,同时配置端口 1 只允许 PPPoE 报文通过,端口 2 只允许 IP 报文通过,使用 GPON 协议分析仪监测 OMCI 消息;
- 3) 网络分析仪向 ONU 的端口 1 和 2 均发送 2 条 untag 的上行测试流,包括 PPPoE 报文和 IP 报文,观察 OLT 上联接口收到的数据流情况。

7.6.4 预期结果

步骤2)中,若ONU工作在桥+VLAN模式下,OLT下发的配置应符合图16 所示ME关系图;若ONU工作在桥+Pbit模式下,OLT下发的配置应符合图17 所示ME关系图。其中各关键ME的主要属性取值见表12 和表13 。

步骤3)中,与OLT相连的网络分析仪仅收到来自端口1的PPPoE报文(VLAN为10)和端口2的IP报文(VLAN为20)。

图16 帧过滤的 ME 关系图(基于桥+VLAN 方式)

图17 帧过滤的 ME 关系图 (基于桥+Pbit 方式)

表12 Extended VLAN Tagging Operation Configuration Data 主要属性取值(与端口 1 关联)

Attribute	Value	Description
Managed entity id	0x00000xFFFF	不作强制要求,但需要保证全 局唯一
Association type	2	PPTP Ethernet UNI
Downstream mode	0	反向操作
Received frame VLAN tagging operation table	15,x,x,15,x,x,2, (0,15,x,x,0,10,6)	untag 的 PPPoE 报文标记 VLAN 10
	15,x,x,8,4096,0,0, (1,15,x,x,15,x,x)	带 1 层 tag 的报文去掉 tag
	8,4096,0,8,4096,0,0, (2,15,x,x,15,x,x)	带 2 层 tag 的报文去掉 tag
Associated ME pointer		端口 1PPTP UNI 的 ME ID

表13 Extended VLAN Tagging Operation Configuration Data 主要属性取值(与端口 2 关联)

Attribute	Value	Description
Managed entity id	0x00000xFFFF	不作强制要求,但需要保证全 局唯一
Association type	2	PPTP Ethernet UNI
Downstream mode	0	反向操作
Received frame VLAN tagging operation table	15,x,x,15,x,x,1, (0,15,x,x,x,20,6)	untag 的 IPoE 报文标记 VLAN 20
	15,x,x,8,4096,0,0, (1,15,x,x,15,x,x)	带 1 层 tag 的报文去掉 tag
	8,4096,0,8,4096,0,0, (2,15,x,x,15,x,x)	带 2 层 tag 的报文去掉 tag
Associated ME pointer		端口 1PPTP UNI 的 ME ID

7.7 可控组播功能

7.7.1 测试目的

测试 OLT 对 ONU 可控组播功能的配置。

7.7.2 测试配置

测试配置见图 4。

7.7.3 测试步骤

测试步骤如下:

- 1) 按照图 4 连接 OLT 和 ONU,并在 OLT 上配置 ONU 设备认证的相应信息;
- 2) ONU 上电, 并开启 IGMP Snooping 功能;
- 3) 按 7.1 节对 ONU 进行配置,并增加一条组播业务连接,使用 GPON 协议分析仪监测 OMCI 消息:
- 4) 在 OLT 上配置 ONU 下用户 1 的权限为观看节目 P1 和 P2, 并增加另外一个 ONU, 其下的用户 2 权限为观看节目 P1 和 P3;
- 5) 配置 OLT 接收 ONU 发送的组播协议流的(VID=10),并将 SVID=4000 的下行组播媒体流切换为 VID=10;
- 6) OLT 上启动 IGMP Proxy 功能,配置组播上行口、IGMP 客户端 IP 地址,增加 4 个组播节目 P1~P4:
- 7) 用户 1 点播节目 P1, 检查用户 1 组播节目 P1 使用的 GEM Port ID;
- 8) 用户 1 离开节目 P1,点播 P2,用户 2 也点播 P2,在 OLT 上查询组播组下的成员信息,检查 用户 1 组播节目 P2 使用的 GEM Port ID:
- 9) 在用户 1 离开节目 P1 的情况下,用户 2 点播节目 P1,观察用户 1 接收节目 P1 的情况
- 10) 用户 1 点播节目 P3,观察接收情况;
- 11) 修改用户 1 对 P3 权限为预览,再次观察接收情况。

7.7.4 预期结果

步骤3)中,若ONU工作在桥+VLAN模式下,OLT下发的配置应符合图18 所示ME关系图;若ONU工作在桥+Pbit模式下,OLT下发的配置应符合图19 所示ME关系图。

步骤7)中,用户1可正常点播节目P1,OLT为Multicast GEM Interworking TP ME中的组播地址表增加P1的地址。

步骤8)中,用户1不再接收P1的业务流,可收到节目P2,使用的GEM Port与步骤7)中的相同。 离开节目P1时,OLT从Multicast GEM Interworking TP ME中的组播地址表删除P1的地址,点播节目 P2时,增加P2的地址。用户2不能收到P2的业务流。

步骤9)中,用户2可收到节目P1,用户1无法收到。

步骤10)中,用户1无法收到节目P3。

步骤11)中,用户可收到节目P3,超过预览时间后不再收到节目P3。点播时,OLT为Multicast GEM Interworking TP ME中的组播地址表增加P3的地址,超时后删除P3地址。

图18 可控组播的 ME 关系图 (基于桥+VLAN 模式)

图19 可控组播的 ME 关系图 (基于桥+Pbit 模式)
