The listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

- 1. (Currently Amended) A process for the preparation of tetrahydropterin and tetrahydropterin derivatives by the hydrogenation of pterin and pterin derivatives with hydrogen in the presence of a hydrogenation catalyst, wherein the hydrogenation is carried out in a polar reaction medium and metal complexes that are soluble in the reaction medium are used as the hydrogenation catalysts with (i) ligands comprising tertiary phosphines, (ii) ligands comprising tertiary phosphanes, or comprising (iii) bidentate ligands with a tertiary amine group and a phosphine group, or (iv) bidentate ligands with two tertiary phosphine groups as complexing groups, whereby the bidentate ligands form together with a metal atom a five- to ten membered ring.
- 2. (Previously Presented) The process according to claim 1, wherein the polar reaction medium is an aqueous or alcoholic reaction medium.
- 3. (Previously Presented) The process according to claim 1, wherein the pterin derivatives used are folic acid, folic acid salts, folic acid esters, folic acid ester salts or dihydro forms thereof for hydrogenation with hydrogen in the presence of a hydrogenation catalyst, the hydrogenation carried out at elevated pressure in the presence of metal complexes dissolved in the reaction medium as hydrogenation catalysts, with the proviso that in the event of using folic acid, carboxylic acids thereof or dihydro forms

thereof the reaction medium is aqueous, and in the event of using folic acid esters, folic acid ester salts or dihydro forms thereof the reaction medium is an alcohol.

- 4. (Previously Presented) The process according to claim 1 for the asymmetric hydrogenation of prochiral pterin derivatives with hydrogen in the presence of a hydrogenation catalyst, wherein the hydrogenation is carried out in a polar reaction medium and metal complexes that are soluble in the reaction medium are used as the hydrogenation catalysts, the metal complexes containing chiral ligands.
- 5. (Previously Presented) The process according to claim 4 for the asymmetric hydrogenation of folic acid, folic acid salts, folic acid esters, folic acid ester salts or dihydro forms thereof as pterin derivatives, with hydrogen in the presence of a hydrogenation catalyst, wherein the hydrogenation is carried out at elevated pressure in the presence of metal complexes dissolved in the reaction medium as hydrogenation catalysts, the metal complexes containing chiral ligands, with the proviso that where folic acid, carboxylic acid salts thereof or dihydro forms are used, that the reaction medium is aqueous, and where folic acid esters, folic acid ester salts or dihydro forms thereof are used, the reaction medium is an alcohol.

6. (Currently Amended) The process according to claim 5, wherein the folic acid ester salts satisfy formula III and are in the form of their enantiomers or mixtures,

in which

one of R_1 or R_2 is H, and the other one of R_1 or R_2 is a monovalent hydrocarbon radical or a heterohydrocarbon radical attached via a carbon atom, wherein the heterohydrocarbon radical contains one or more heteroatoms selected from the group consisting of $-O_{-}$, $-S_{-}$, and $-N_{-}$, or

both R₁ and R₂ independently of one another represent a monovalent hydrocarbon radical or a heterohydrocarbon radical attached via a carbon atom, with wherein the heterohydrocarbon radical contains one or more heteroatoms selected from the group consisting of comprising -O-, -S-, and -N-,

HA stands for a monobasic to tribasic inorganic or organic acid, and x denotes an integer from 1 to 6 or a fractional number between 0 and 6.

- 7. (Previously Presented) The process according to claim 6, wherein the acid HA in formula III is unsubstituted or substituted phenylsulphonic acid.
- 8. (Previously Presented) The process according to claim 1, wherein said process is carried out at a hydrogen pressure of 1 to 500 bars.
- 9. (Previously Presented) The process according to claim 1, wherein the temperature is 0 to 150° C.
- 10. (Previously Presented) The process according to claim 1, wherein the molar ratio of substrate to catalyst is 10 to 100,000.
- 11. (Previously Presented) The process according to claim 1, wherein the aqueous reaction medium is water or water in admixture with an organic solvent.
- 12. (Previously Presented) The process according to claim 2, wherein the alcoholic reaction medium is an alcohol, or an alcohol in admixture with an organic solvent.
- 13. (Previously Presented) The process according to claim 1, wherein the metal complexes contain a d-8 metal comprising iridium, rhodium or ruthenium.

- 14. (Currently Amended) The process according to claim 1 A process for the preparation of tetrahydropterin and tetrahydropterin derivatives by the hydrogenation of pterin and pterin derivatives with hydrogen in the presence of a hydrogenation catalyst, wherein the hydrogenation is carried out in a polar reaction medium and metal complexes that are soluble in the reaction medium are used as the hydrogenation catalysts with (i) ligands comprising tertiary phosphines, (ii) ligands comprising tertiary phosphanes, (iii) bidentate ligands with a tertiary amine group and a phosphine group, or (iv) bidentate ligands with two tertiary phosphine groups as complexing groups, whereby the bidentate ligands form together with a metal atom a five- to ten membered ring, wherein the metal complex contains achiral or chiral ditertiary diphosphines as ligand.
- 15. (Currently Amended) The process according to claim 14, wherein the reaction medium is an alcoholic reaction medium, wherein the ditertiary diphosphines for an alcoholic reaction medium are ones in which the phosphine groups are attached (a) to various carbon atoms of a hydrocarbon chain having 2 to 4 carbon atoms, or (b) directly via a bridging group $-CR_aR_b$ in the ortho positions of a cyclopentadienyl ring or to a cyclopentadienyl ring of a ferrocenyl, where Ra and Rb are the same or different and stand for H, C_1 - C_8 alkyl, C_1 - C_4 fluroalkyl, C_5 - C_6 cycloalkyl, phenyl, benzyl, or phenyl or benzyl substituted with 1 to 3 C_1 - C_4 alkyl or C_1 - C_4 alkoxy.
- 16. (Currently Amended) The process according to claim 14, wherein the reaction medium is an alcoholic reaction medium, wherein the diphosphines which can be used in an alcoholic reaction medium satisfy formula IV,

 $R_4R_5P-R_6-PR_7R_8$

(IV)

in which

R₄, R₅, R₇ and R₈ independently of one another represent a hydrocarbon radical with 1 to 20 carbon atoms, which is unsubstituted or substituted with halogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, $(C_6H_5)_3Si$, $(C_1$ - C_{12} alkyl) $_3Si$, -NH2, - $NH(C_1-C_{12} \text{ alkyl})$, -NH(phenyl), -NH(benzyl), $-N(C_1-C_{12} \text{ alkyl})_2$, $-N(\text{phenyl})_2$, -N(phenylN(benzyl)₂, morpholinyl, piperidinyl, pyrrolidinyl, piperazinyl, -ammonioum-X₃-, -SO₃M₁, -CO₂M₁, -PO₃M₁, or -CO₂.C₁-C₆ alkyl, in which M₁ represents an alkali metal or hydrogen and X_3 is the anion of a monobasic acid; or R_4 and R_5 , and R_7 and R_8 respectively together denote tetramethylene, pentmethylene, or 3-oxa-pentane-1,5-diyl, unsubstituted or substituted with halogen, C₁-C₆ alkyl or C₁-C₆ alkoxy; and R6 is C2-C4 alkylene, unstubstituted or substituted with C₁-C₆ alkyl, C₁-C₆ alkoxy, C₅ or C₆ cylcoalkyl, phenyl, napthyl, or benzyl; 1,2 or 1,3-cycloalkylene, 1,2- or 1,3cycloalkyenvlene, 1,2- or 1,3-bicylcoalkylene or 1,2- or 1,3-bicylcoalkenylene with 4 to 10 carbon atoms, unsubstituted or substituted with C_1 - C_6 alkyl, phenyl, or benzyl; 1,2- or 1,3-cycloalkylene, 1,2- or 1,3-cycloalkylene, 1,2- or 1,3-bicycloalkylene or 1,2- or 1,3bicycloalkylene with 4 to 10 carbon atoms, unsubstituted or substituted with C₁-C₆ alkyl, phenyl, or benzyl, at whose 1 and/or 2 positions or at whose 3-position methylene or C₂-C₄ alkylidene is attached; 1,4-butylene substituted in the 2,3 positions with R_0R_{10} C(O-)2, and which in the 1 and/or 4 positions is unsubstituted or substituted with C_1 - C_6 alkyl, phenyl, or benzyl, and where R_9 and R_{10} independently of one another

represent hydrogen, C_1 - C_6 alkyl, phenyl or benzyl; 3,4- or 2,4-pyrrolidinylene or methylene-4-pyrrolidine-4-yl whose nitrogen atom is substituted with hydrogen, C_1 - C_{12} alkyl, phenyl, benzyl, C_1 - C_{12} alkoxycarbonyl, C_1 - C_8 acyl, C_1 - C_{12} alkylaminocarbonyl; or denotes 1,2-phenylene, 2-benzylene, 1,2-xylylene, 1,8-naphthylene, 2,2'-dinaphthylene or 2,2'-diphenylene, unsubstituted or substituted with halogen, -OH, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, phenyl, benzyl, phenyloxy or benzyloxy; or R_6 stands for a radical of the formulas

in which R_9 denotes hydrogen, C_1 - C_8 alkyl, C_1 - C_4 fluoroalkyl, unsubstituted phenyl or phenyl substituted with 1 to 3F, Cl, Br, C_1 - C_4 alkyl, C_1 - C_4 alkoxy of fluoromethyl.

17. (Currently Amended) The process according to claim 14, wherein the reaction medium is an aqueous reaction medium, the wherein diphosphines for an aqueous reaction medium are ones that contain one or more water-solubilising polar substituents, which are attached either direct or via a bridging group to substituents of the phosphine groups.

18. (Currently Amended) The process according to claim 17, wherein the reaction medium is an aqueous reaction medium, wherein the diphosphines for an aqueous reaction medium are ones of formula XLIII,

$$(M_1O_2C-CH_2CH_2-O-CH_2)_3 C-NR_{42}-CO-R_{41}$$
 (XLIII)

in which M_1 , stands for H, an alkali metal cation or an ammonium cation, R_{42} denotes C_1 - C_4 alkyl or and preferably H, and R_{41} is the monovalent radical of a chiral diteritary diphosphine, with the CO group being attached direct to a carbon or nitrogen atom of the diphosphine skeleton, or to an oxygen or nitrogen atom or to a carbon atom of a bridging group of the diphosphine skeleton.

19. (Currently Amended) The process according to claim 1 A process for the preparation of tetrahydropterin and tetrahydropterin derivatives by the hydrogenation of pterin and pterin derivatives with hydrogen in the presence of a hydrogenation catalyst, wherein the hydrogenation is carried out in a polar reaction medium and metal complexes

that are soluble in the reaction medium are used as the hydrogenation catalysts with (i) ligands comprising tertiary phosphines, (ii) ligands comprising tertiary phosphanes, (iii) bidentate ligands with a tertiary amine group and a phosphine group, or (iv) bidentate ligands with two tertiary phosphine groups as complexing groups, whereby the bidentate ligands form together with a metal atom a five- to ten membered ring, wherein the hydrogenation catalysts are metal complexes of formulas XLIV, XLIVa and XLIVb,

 $[X_7Me_2YZ]$ (XLIV), $[X_7Me_2Y]^+A_2^-$ (XLIVa) $[X_7Ru(II)X_8X_9](XLIVb)$,

in which

Y stands for monoolefin ligands or a diene ligand;

 X_7 represents an achiral or chiral ditertiary diphosphine that forms a 5 to 7 membered ring with the metal atom Me₂ or Ru;

Me2 denotes Ir(I) or Rh(I);

Z represents -Cl, -Br, or -I; and

A2 is the anion of an oxy-acid or complex acid;

 X_8 and X_9 are the same or different and have the meaning of Z and A_2 , or X_8 , and X_9 stands for allyl or 2-methylallyl, or X_8 has the meaning of Z or A and X_9 stands for hydride.

20-28. (Cancelled)

- 29. (Currently Amended) A process for the preparation of tetrahydropterin and tetrahydropterin derivatives by the hydrogenation of pterin and pterin derivatives with hydrogen in the presence of a hydrogenation catalyst, wherein the hydrogenation is carried out in a polar reaction medium and metal complexes that are soluble in the reaction medium are used as the hydrogenation catalysts and wherein the <u>polar alcoholic</u> reaction medium is an alcohol, or an alcohol in admixture with an organic solvent.
- 30. (Previously Presented) A process for the preparation of tetrahydropterin and tetrahydropterin derivatives by the hydrogenation of pterin and pterin derivatives with hydrogen in the presence of a hydrogenation catalyst, wherein the hydrogenation is carried out in a polar reaction medium and metal complexes that are soluble in the reaction medium are used as the hydrogenation catalysts and wherein the metal complex contains achiral or chiral ditertiary diphosphines as ligand.
- and tetrahydropterin derivatives by the hydrogenation of pterin and pterin derivatives with hydrogen in the presence of a hydrogenation catalyst, wherein the hydrogenation is carried out in a polar reaction medium and metal complexes that are soluble in the reaction medium are used as the hydrogenation catalysts wherein the metal complex contains achiral or chiral ditertiary diphosphines as ligand and wherein the reaction medium is an alcoholic reaction medium, the ditertiary diphosphines for an alcoholic reaction medium are ones in which the phosphine groups are attached (a) to various carbon atoms of a hydrocarbon chain having 2 to 4 carbon atoms, or (b) directly via a

bridging group $-CR_aR_b$ - in the ortho positions of a cyclopentadienyl ring or to a different and stand for H, C_1 - C_8 alkyl, C_1 - C_4 fluroalkyl, C_5 - C_6 cycloalkyl, phenyl, benzyl, or phenyl or benzyl substituted with 1 to 3 C_1 - C_4 alkyl or C_1 - C_4 alkoxy.

32. (Currently Amended) The process according to claim 14, wherein the ditertiary diphosphines are are tertiary phosphino imines.