Automi, Calcolabilità e Complessità

Alessio Marini, 2122855

Appunti presi durante il corso di **Automi, Calcolabilità e Complessità** nell'anno **2025/2026** del professore Daniele Venturi. Gli appunti li scrivo principalmente per rendere il corso più comprensibile **a me** e anche per imparare il linguaggio Typst. Se li usate per studiare verificate sempre le informazioni ...

Contatti:

O alem1105

☑ marini.2122855@studenti.uniroma1.it

September 27, 2025

Indice

1.	Introduzione alla terminologia	3
	1.1. Operazioni sulle Stringhe	3
2.	DFA - Automa a Stati Finiti	5
3.	Linguaggi Regolari	8
	3.1. Operazioni sui Linguaggi	10
	3.2. Introduzione alla proprietà di chiusura dei Linguaggi Regolari	11
	3.2.1. Chiusura per Unione	11
4.	Non Determinismo	14
	4.1. Configurazione negli NFA	15
	4.2. Equivalenza tra NFA e DFA	16
	4.3. Convertire un NFA in DFA	17
5.	Proprietà di chiusura dei Linguaggi Regolari	19
	5.1. Chiusura per Unione	19
	5.2. Chiusura per Concatenazione	19
	5.3. Chiusura per Operazione «*» star	20
6.	Espressioni Regolari	22
	6.1. Convertire NFA in espressione regolare	25
7.	Pumping Lemma	28
	7.1. Dimostrazione	28
	7.2. Esempi	29
8.	Grammatiche Acontestuali	32
	8.1. Unione di Grammatiche	33
	8.2. Da DFA a CFG	33
	8.3. Forma Normale di Chomsky	34
9.	PDA (Push-Down Automata o Automi a Pila)	
	9.1. Corrispondenza tra PDA e CFG	38
10.	Pumping Lemma per i linguaggi CFL	43

1. Introduzione alla terminologia

Introduciamo delle definizioni e delle operazioni che utilizzeremo durante il corso.

Alfabeto

É un insieme finito di simboli, quindi ad esempio $\Sigma = \{0, 1, x, y, z\}$.

Stringa

Una stringa è una sequenza di simboli che appertongono ad un alfabeto. Quindi, ad esempio, dato l'alfabeto $\Sigma = \{0, 1, x, y, z\}$ una sua stringa è w = 01z.

1.1. Operazioni sulle Stringhe

Lunghezza di una Stringa

Data una stringa $w \in \Sigma^*$ indichiamo la lunghezza con |w| ed è definita come il numero di simboli che contiene.

Concatenazione

Data la stringa $x=x_1,...,x_n\in\Sigma^*$ e la stringa $y=y_1,...,y_m\in\Sigma^*$ definiamo come concatenazione di x con y la stringa $x\cdot y=x_1...,x_ny_1...y_m$.

Stringa Vuota

Durante il corso indicheremo con ε la stringa vuota, ovvero una stringa tale che $|\varepsilon|=0$ Se concateniamo una qualsiasi stringa non vuota con una stringa vuota otteniamo la prima stringa:

$$\forall w \in \Sigma^* \ w \cdot \varepsilon = w$$

Conteggio

Data una stringa $w \in \Sigma^*$ e un simbolo $a \in \Sigma$ indichiamo il contaggio di a in w con $|w|_a$ e lo definiamo come il numero di occorrenze del carattere a nella stringa w.

Stringa Rovesciata

Data una stringa $w=a_1...a_n\in \Sigma^*$ dove $a_1,...,a_n\in \Sigma$, definiamo la stringa rovesciata con $w^R=a_n...a_1..$

Potenza

Data la stringa $w \in \Sigma^*$ e dato $n \in \mathbb{N}$ definiamo la potenza in modo ricorsivo:

$$w^n = \begin{cases} \varepsilon & \text{se } n = 0 \\ ww^{\{n-1\}} & \text{se } n > 0 \end{cases}$$

Linguaggio

Dato un alfabeto Σ definiamo Σ^* come linguaggio di Σ , ovvero l'insieme di tutte le stringhe di quell'alfabeto.

2. DFA - Automa a Stati Finiti

Il modello di computazione che utilizzeremo per ora è un DFA, questo ha una memoria limitata e permette una gestione dell'input. La memoria gli permette di memorizzare i suoi stati e tramite gli input decide in quale stato futuro muoversi.

Esempio - Una porta automatica

Una porta automatica avrà due stati:

- Aperta
- Chiusa

E due input:

- Rileva qualcuno
- · Non rileva nessuno

Quindi lo stato iniziale sarà la porta chiusa, se rileva qualcuno va nello stato di aperta mentre se non rileva nessuno rimane chiusa.

DFA

Definiamo un DFA come una tupla $(Q, \Sigma, \delta, q_0, F)$ dove:

- ullet Q è l'insieme degli stati
- Σ è l'insieme finito dei simboli in input
- $\delta:Q\times\Sigma\to Q$ è la funzione di transizione degli stati, ovvero dato lo stato in cui si trova ed un input, restituisce lo stato in cui andremo
- $q_0 \in Q$ è lo stato iniziale dell'automa
- $F \subseteq Q$ è l'insieme degli stati di accettazione dell'automa, ovvero gli stati dove l'automa si trova dopo aver riconosciuto determinate stringhe e consente la terminazione.

Dato DFA M possiamo definire l'insieme delle stringhe riconosciute dall'automa, ovvero quelle che lo portano in uno stato di accettazione come L(M). Da notare che può anche accadere che $L(M)=\emptyset$. Daremo una definizione più formale di quest'ultimo più avanti.

Dati dei DFA vogliamo iniziare a definire dei linguaggi dedicati a questi, per farlo abbiamo bisogno della **funzione di transizione estesa**.

Funzione di Transizione Estesa

La definiamo come:

$$\delta^* = Q \times \Sigma^* \to Q$$

Quindi questa a differenza di quella classica non usa degli input singoli ma delle intere stringhe appartenenti al **linguaggio** del DFA.

È definibile in modo ricorsivo:

$$\begin{cases} \delta^*(q,\varepsilon) = \delta(q,\varepsilon) = q \\ \delta^*(q,aw) = \delta^*(\delta(q,a),w) \text{ con } w \in \Sigma^* \text{ e } a \in \Sigma \end{cases}$$

Quindi data una stringa, partiamo dal primo carattere a sinistra e andiamo avanti utilizzando la funzione di transizione fino ad arrivare ad una stringa vuota.

Adesso diamo le definizioni di **Configurazione** e **Passo di Computazione** che ci serviranno a definire più formalmente un **Linguaggio Accettato** del DFA.

Configurazione

Sia $D := (Q, \Sigma, \delta, q_0, F)$ un DFA, definiamo la coppia $(q, w) \in Q \times \Sigma^*$ come configurazione di D. Inoltre dato un $x \in \Sigma^*$, la **configurazione iniziale** è (q_0, x) .

Passo di Configurazione

Indica il passaggio da una configurazione ad un'altra rispettando la funzione di transizione δ , il passaggio lo indichiamo con il simbolo \vdash_M dove M indica il DFA. Possiamo dire quindi che esiste una relazione binaria fra un passo di configurazione e la funzione di transizione:

$$(p,ax) \vdash_M (q,x) \Leftrightarrow \delta(p,a) = q$$

Dove $p,q\in Q$ - $a\in \Sigma$ e $x\in \Sigma^*$. Un passaggio di configurazione può avvenire, quindi, soltanto se la funzione di transizione lo permette.

Possiamo estendere questa relazione con il simbolo \vdash_M^* considerando anche la **chiusura** riflessiva e transitiva:

- Riflessività: $(q, x) \vdash_M^* (q, x)$
- Transitività: Se $(q,aby) \vdash_M (p,by) \land (p,by) \vdash_M (r,y) \Rightarrow (q,aby) \vdash_M^* (r,y)$
 - Dove $q, p, r \in Q$ $a, b \in \Sigma$ ed $y \in \Sigma^*$

Definiamo quindi il linguaggio accettato dal DFA.

Linguaggio Accettato

Diciamo che $x\in \Sigma^*$ è accettato da un automa $M=(Q,\Sigma,\delta,q_0,F)$ se $\delta^*(q_0,x)\in F$ oppure usando la relazione del passaggio, se $(q_0,x)\vdash_M^* (q,\varepsilon)$ con $q\in F$.

3. Linguaggi Regolari

Definizione

$$\mathrm{REG} = \{L \subseteq \Sigma^* : \exists \;\; \mathrm{DFA} \; \mathrm{M} \; \mathrm{t.c.} \;\; L(M) = L\}$$

Quindi i linguaggi regolari sono tutti quei linguaggi che sono accettati da almeno un DFA.

Uno dei nostri obiettivi nel corso è quello di, dato un linguaggio, progettare dei DFA adatti.

Esempio

Dato il linguaggio $L=\{x\in\{0,1\}^*\ \text{t.c.}\ x=1y,y\in\{0,1\}^*\}$, un possibile DFA potrebbe essere:

Questo DFA accetta quindi tutte le stringhe che iniziano con il simbolo 1 mentre rifiuta tutte quelle che iniziano con il simbolo 0.

Attenzione - Stato Pozzo

Notiamo che è presente lo stato q_2 dal quale il DFA non esce più una volta entrato, questo è necessario perchè se omesso il DFA accetterebbe tutte le stringhe:

Infatti in questo modo se in q_0 riceve 0 rimane su stesso ma poi continua ad attendere input.

Il modo corretto per lasciare lo stesso significato del primo DFA ma omettere lo stato q_2 è quello di omettere anche il comportamento di q_0 in caso riceviamo 0, ovvero:

Adesso dobbiamo dimostrare formalmente che questo DFA accetta il linguaggio fornito, dobbiamo quindi dimostrare che:

DFA accetta
$$x \Leftrightarrow x \in L$$

Innanzitutto facciamo due osservazioni, ovvero che se il DFA si trova in q_1 o q_2 allora non cambierà mai più stato:

- $\bullet \ \delta^*(q_1,u)=q_1 \quad \forall u \in \{0,1\}^*$
- $\bullet \ \delta^*(q_2,u)=q_2 \quad \forall u \in \{0,1\}^*$

Dimostriamo per induzione che il linguaggio è accettato, quindi presa una stringa dobbiamo far vedere che se inizia con 1 terminiamo in q_1 altrimenti in q_2 .

Dimostrazione

Caso Base

Come caso base prendiamo una stringa vuota, quindi |x|=0 ovvero $x=\varepsilon$, abbiamo che:

$$\delta^*(q_0,\varepsilon)=\delta(q_0,\varepsilon)=q_0\notin F$$

Infatti se abbiamo una stringa vuota il DFA non fa nulla e rimane in q_0

Passo Induttivo

Adesso dobbiamo prendere una stringa w tale che $|w| \le n$ con n > 0, la funzione di transizione avrà quindi 3 risultati possibili:

$$\delta^*(q_0,w) = \begin{cases} q_0 & \text{se} \ w = \varepsilon \\ q_1 & \text{se} \ w \ \text{inizia con} \ 1 \\ q_2 & \text{se} \ w \ \text{inizia con} \ 0 \end{cases}$$

Prendiamo quindi una stringa x tale che |x| = n + 1 e la costruiamo come x = au con $a \in \{0, 1\}$ e $u \in \{0, 1\}^*$, la funzione di transizione ci restituirà:

$$\delta^*(q_0,x) = \delta^*(q_0,au) = \delta^*\left(\underbrace{\delta(q_0,a)}_{\text{ha 2 soluzioni}},u\right)$$

Le due soluzione del passaggio evidenziato sono:

- $\delta(q_0, a) = q_1 \text{ se } a = 1$
- $\bullet \ \delta(q_0,a)=q_2 \ \mathrm{se} \ a=0$

Quindi il DFA andrà sicuremente in uno dei due stati q_1 o q_2 e da lí non si muoverà più, per il ragionamento fatto all'inizio della dimostrazione.

Esercizi

DFA₁

Dato il linguaggio $L=\{x:x\in\{0,1\}^*\wedge W_H(x)\geq 3\}$ con $W_H(x)=\#1$ ovvero il numero di 1 presenti nella stringa. Progettare un automa che accetta il linguaggio e dimostrarlo.

Un possibile automa potrebbe essere:

Dimostrazione: Copiare da iPad

DFA 2

Dato il linguaggio $L=\{x: x=0^n1 \ \ {\rm con} \ \ n\in \mathbb{N}\}$ progettare un automa che accetta il linguaggio e dimostrarlo.

Un possibile automa potrebbe essere:

Dimostrazione: Copiare da iPad

3.1. Operazioni sui Linguaggi

Definiamo adesso delle operazioni sui linguaggi che ci torneranno utili.

Unione

$$L_1 \cup L_2 = \{x \in \Sigma^* : x \in L_1 \vee x \in L_2\}$$

Intersezione

$$L_1\cap L_2=\{x\in\Sigma^*:x\in L_1\wedge x\in L_2\}$$

Complemento

$$\overline{L} = \{x \in \Sigma^* : x \not\in L\}$$

Concatenazione

$$L_1 \circ L_2 = \{xy : x \in L_1 \land y \in L_2\}$$

Da notare che questa operazione non è commutativa quindi $L_1 \circ L_2 \neq L_2 \circ L_1$

Potenza

Possiamo definirla ricorsivamente:

$$\begin{cases} L^0 = \{\varepsilon\} \\ L^{n+1} = L^N \circ L \end{cases}$$

Operatore * «star»

$$L^* = \bigcup_{n \geq 0} L^n = \{\varepsilon\} \cup L^1 \cup L^2 \cup \dots$$

3.2. Introduzione alla proprietà di chiusura dei Linguaggi Regolari

Vogliamo capire se dati due linguaggi regolari $L_1, L_2 \in \text{REG}$ il linguaggio risultante di operazioni effettuate con questi linguaggi è regolare o no, ad esempio se $L_1 \cup L_2 \in \text{REG}$ oppure se $L_1 \cap L_2 \in \text{REG}$.

Vedremo qualche dimostrazione ma in realtà sarà più semplice dimostrare tutte le chiusure utilizzando gli NFA, ovvero gli automi non deterministici.

3.2.1. Chiusura per Unione

Teorema - Chiusura per Unione

Come prima idea possiamo dire che:

$$L_1,L_2 \in \mathrm{REG} \Rightarrow \exists M_1,M_2 \in \mathrm{DFA\ t.c.}\ L(M_1) = L_1 \wedge L(M_2) = L_2$$

Quindi dati due linguaggi regolari esistono due automi che li hanno come linguaggi accettati. Noi dobbiamo definire un terzo automa M tale che $L(M)=L_1\cup L_2$, ma data una stringa x candidata non possiamo provare a vedere prima cosa succede su M_1 e se non la accetta provare M_2 perchè perderemmo la sequenza corretta della stringa su M.

Quello che dobbiamo fare è testare ogni carattere di x in parallelo su M_1 e M_2 e in base al risultato aggiorniamo lo stato di M.

Input Dimostrazione

Vogliamo mostrare che dati

- $M_1 = (Q_1, \Sigma, \delta_1, q_o^1, F_1)$
- $\bullet \ M_2=\left(Q_2,\Sigma,\delta_2,q_0^2,F_2\right)$

Assumiamo lo stesso Σ per semplicità

Tali che: $L(M_1) = L_1 \wedge L(M_2) = L_2$

Costruiamo un terzo DFA $M(Q, \Sigma, \delta, q_0, F)$ t.c. $L(M) = L_1 \cup L_2$

Avremo che:

- $Q=\{(r_1,r_2):r_1\in Q_1,r_2\in Q_2\}=Q_1\times Q_2$ (Tutte le coppie di stati possibili)
- $\delta: Q \times \Sigma \to Q$
 - \bullet $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$

 $\bullet \ F = \{(r_1, r_2) : r_1 \in F_1 \lor r_2 \in F_2\} = \underbrace{(F_1 \times Q_2)}_{\text{il primo stato è accettato}} \cup \underbrace{(F_2 \times Q_1)}_{\text{il secondo stato è accettato}}$

Infatti basta che soltanto uno dei due stati della coppia venga accettato per accettare la coppia.

Da notare che per l'intersezione abbiamo una situazione molto simile, infatti avremo che:

$$F = \{(r_1, r_2) : r_1 \in F_1 \land r_2 \in F_2\} = F_1 \times F_2$$

Dimostrazione

Vogliamo mostrare che dato

$$\delta^*(q_0, x) = \delta^*((q_0^1, q_0^2), x)$$

Si ha che $\forall x \in \Sigma^*$

$$= \left(\delta_1^* \big(q_0^1, x \big), \delta_2^* \big(q_0^2, x \big) \right)$$

TODO: MANCA UNA PARTE DI DIMOSTRAZIONE (Mostrare che funziona per n e 0)

$$\begin{split} \forall x \in \Sigma^*, x \in L(M) \Leftrightarrow x \in L_1 \cup L_2 \\ \Rightarrow x \in L(M) \Rightarrow \delta^*(q_0, x) \in F = F_1 \times Q_2 \cup F_2 \times Q_1 = (p, q) \\ \text{Dove } p = \delta_1^*(q_0^1, x), q = \delta_2^*(q_0^2, x)) \end{split}$$

Questo significa che

- Se $x \in L_1$ allora $\delta^* \big(q_0^1, x \big) \in F_1$ e quindi:

$$\delta^*(q_0,x) = \left(\delta_1^*(q_0^1,x), \delta_2^*(q_0^2,x)\right) \in F_1 \times Q_2 \Rightarrow M \ \text{accetta} \ x$$

- Se $x \in L_2$ allora $\delta^*(q_0^2,x) \in F_2$ e quindi:

$$\delta^*(q_0,x) = \left(\delta_1^*(q_0^1,x), \delta_2^*(q_0^2,x)\right) \in F_2 \times Q_1 \Rightarrow M \ \text{accetta} \ x$$

Spiegato a parole, abbiamo che la funzione di transizione dell'automa M equivale ad eseguire lo stesso input sui due automi M_1, M_2 . Presa una stringa del linguaggio questa è accettata dall'automa se e solo se appartiene all'unione dei due linguaggi di $M_1~{\rm e}~M_2$.

Partendo dalla sinistra dell'implicazione abbiamo che $x\in L(M)$ quindi la stringa è accettata e allora la funzione di transizione estesa ci porta in uno stato appartenente ad F. Ricordiamo che lo stato in cui ci troviamo è in realtà una coppia di stati uno dei quali deve essere accettato o da M_1 o da M_2 e questo appunto significa rispettivamente che o $x\in L(M_1)$ oppure $x\in L(M_2)$.

Resto delle dimostrazioni

Per dimostrare il resto delle proprietà introduciamo il concetto di non determinismo.

4. Non Determinismo

Per adesso abbiamo visto soltanto automi deterministici, questo significa che trovandoci in uno stato e ricevendo un input possiamo soltanto andare in un altro stato o rimanere fermi, ma in generale un solo movimento.

Nel **non determinismo** invece:

- Quando l'automa è in $q \in Q$ e legge $a \in \Sigma$ può andare in diversi stati
- Sono ammessi gli « ε -archi» ovvero l'automa può muoversi senza leggere input. Dallo stesso stato possono partire più « ε -archi».
- Accettazione: Se e solo se esiste un ramo che accetta, vedremo più avanti che quando studiamo un NFA avremo un albero con vari rami, se un ramo accetta allora consideriamo la stringa come accettata per il NFA.

Nel non determinismo quindi abbiamo un input che si dirama in vari stati invece che seguire un cammino di *uno stato alla volta*.

Determinismo

• Non Determinismo

Definizione - NFA

Un NFA è (Q,Σ,δ,q_0,F) dove Q,Σ,q_0,F sono come nei DFA ma:

$$\delta: Q \times \Sigma_{\varepsilon} \to \mathbb{P}(Q)$$
 Dove $\Sigma_{\varepsilon} \cup \{\varepsilon\}$

e ℙ è l'insieme delle parti.

Vediamo un esempio e capiamo come ci si muove al loro interno.

Esempio

Che ha come linguaggio:

$$L = \{x : x \in \{0,1\}^* \text{ che hanno un '1' in terzultima posizione}\}$$

Da notare che lo stato q_5 possiamo anche ometterlo, ma non dobbiamo indicare in q_4 nessun arco.

Per muoverci, ad esempio nel NFA dell'esempio sopra, ci torna utile disegnare un albero con tutte i cammini che stiamo intrapendendo. Se ad esempio riceviamo in input la stringa «10110»:

4.1. Configurazione negli NFA

Possiamo estendere il concetto di **configurazione** anche per gli NFA.

Dato un NFA N indichiamo come configurazione una coppia $(q,x) \in Q \times \Sigma_{\varepsilon}^*$ e avremo un passo di configurazione come:

$$(p, ax) \vdash_N (q, x) \Leftrightarrow q \in \delta(p, a)$$

Con:

- $x \in \Sigma_{\varepsilon}^*$
- $a \in \Sigma_{\varepsilon}$
- $p, q \in Q$

Quindi il risultato di una transizione deve far parte dell'insieme delle parti degli stati:

$$\delta(p, a) \in \mathbb{P}(Q)$$

Quando, l'automa N, accetta $w \in \Sigma_{\varepsilon}^*$?

• Se e solo se $\exists q \in F \; \text{ t.c. } (q_0, w) \vdash_N^* (q, \varepsilon)$. Dove \vdash_N^* è la relazione estesa.

4.2. Equivalenza tra NFA e DFA

Prendiamo le due classi:

- $\mathcal{L}(DFA) \subseteq REG$
- $\mathcal{L}(NFA) = \{L : \exists NFA \ N \ t.c. \ \mathcal{L}(N) = L\}$

Teorema - Per ogni automa finito non deterministico esiste un automa finito deterministico equivalente.

Dimostrazione. Dobbiamo dimostrare la doppia implicazione $\mathcal{L}(DFA) \subseteq \mathcal{L}(NFA)$ e $\mathcal{L}(NFA) \subseteq \mathcal{L}(DFA)$.

La **prima implicazione** è molto semplice infatti dato un linguaggio $L \in \mathcal{L}(\mathrm{DFA})$ e un DFA D tale che L = L(D) e siccome gli NFA sono una generalizzazione dei DFA avremo che D è anche un NFA e quindi $L \in \mathcal{L}(\mathrm{NFA})$. Quindi $\mathcal{L}(\mathrm{DFA}) \subseteq \mathcal{L}(\mathrm{NFA})$.

Per la **seconda implicazione** prendiamo un NFA = $(Q_N, \Sigma, \delta_N, q_0^N, F_N)$ che riconosce un linguaggio A. Dobbiamo costruire un DFA $D = (Q_D, \Sigma, \delta_D, q_0^N, F_D)$ che riconosce A.

Consideriamo il caso in cui non abbiamo ε — archi:

- 1. $Q_D = \mathbb{P}(Q_N)$ Uno stato del DFA equivale quindi ad un insieme di stati del NFA.
- 2. Presi un $R \in Q_D$ e $a \in \Sigma$, sia

$$\delta_D(R,a) = \{q \in Q_N : q \in \delta_N(r,a) \ \text{ per qualche } \ r \in R\}$$

Quindi la funzione di transizione del DFA equivale ad eseguire la transizione su tutti gli stati di R nel NFA.

Possiamo anche scriverla come:

$$\delta_D(R,a) = \bigcup_{r \in R} \delta(r,a)$$

3.
$$q_0^D = \{q_0^N\}$$

4. $F_D = \{R \in Q : R \text{ contiene uno stato accettante di } N\}$ - Quindi il DFA accetta se e solo se nell'insieme risultante della transizione abbiamo almeno uno stato accettante dell'NFA. I due automi sono equivalenti.

Adesso consideriamo il caso con gli ε -archi, introduciamo delle notazioni. Per ogni R di D definiamo E(R) come la collezione di stati che possono essere raggiunti dagli elementi di R proseguendo solo con ε -archi, includendo anche gli stessi elementi di R, in modo formale possiamo dire:

$$E(R) = \{q : q \text{ può essere raggiunto con } \geq 0 \quad \varepsilon - \text{archi}\}$$

Adesso modifichiamo la funzione di transizione di D in modo da far aggiungere gli stati che possono essere raggiunti da ε — archi dopo ogni passo, sostituendo $\delta_N(r,a)$ con $E(\delta_N(r,a))$:

$$\delta_D(R,a) = \{q \in Q : q \in E(\delta_N(r,a)) \ \text{ per qualche } \ r \in R\}$$

Dobbiamo anche modificare lo stato iniziale di D in modo che anche nello stato iniziale raggiunga subito tutti gli stati possibili tramite ε – archi e lo facciamo cambiando q_0^D in $E(\{q_0^N\})$.

Abbiamo completato la costruzione del DFA equivalente ad NFA, infatti ad ogni passo del NFA avremo che il DFA entra in uno stato equivalente all'insieme degli stati in cui si trova l'NFA.

4.3. Convertire un NFA in DFA

Prendiamo come esempio l'NFA:

Iniziamo a definire gli elementi del DFA *D*:

- $\bullet \ Q_D = \left\{q_0, q_{\{1\}}, q_{\{2\}}, q_{\{3\}}, q_{\{1,2\}}, q_{\{1,3\}}, q_{\{2,3\}}, q_{\{1,2,3\}}\right\}$
- $q_0^D=E(\{q_1\})=q_{\{1,3\}}$ Consideriamo quindi l'estensione dello stato iniziale con gli ε archi
- $F_D=\left\{q_{\{1\}},q_{\{1,2\}},q_{\{1,3\}},q_{\{1,2,3\}}
 ight\}$ Sono tutti gli stati che contengono almeno uno stato accettante, in questo caso soltanto q_1

Adesso dobbiamo calcolare δ_D , vediamo alcuni casi ma non tutti:

•
$$\delta_D(q_{\{2\}}, a) = q_{\{2,3\}}$$

•
$$\delta_D (q_{\{2\}}, b) = q_{\{3\}}$$

- $\delta_D \! \left(q_{\{3\}}, a \right) = q_{\{1,3\}}$ Perché dobbiamo considerare anche l' ε -archi
- $\delta_D \! \left(q_{\{3\}}, b \right) = q_{\{\emptyset\}}$ Infatti finisce la stringa ma non siamo in uno stato accettante

Ci sarebbero altre funzioni, ma vediamo cosa otteniamo:

5. Proprietà di chiusura dei Linguaggi Regolari

5.1. Chiusura per Unione

Rivediamo l'unione utilizzando gli NFA, infatti adesso sappiamo che NFA e DFA sono equivalenti.

Uniamo due DFA in un NFA equivalente ai due:

Infatti possiamo semplicemente considerare un NFA che come primo stato ci porta in modo parallelo su entrambi i DFA, avremo quindi che:

$$\bullet \ Q = Q_1 \cup Q_2 \cup \{q_0\}$$

•
$$F = F_1 \cup F_2$$

•
$$\forall q \in Q, a \in \Sigma_{\varepsilon}$$
:

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{se } q \in Q_1 \\ \\ \delta_2(q,a) & \text{se } q \in Q_2 \\ \\ \{q_0^1,q_0^2\} & \text{se } q = q_0 \land a = \varepsilon \\ \\ \emptyset & \text{se } q = q_0 \land a \neq \varepsilon \end{cases}$$

5.2. Chiusura per Concatenazione

Dati due NFA N_1,N_2 per L_1,L_2 costruisco NFA per $L=L_1 \circ L_2$

Quindi li stati finali di N_1 li facciamo diventare dei normali stati che però hanno un ε — arco verso lo stato iniziale di N_2

Formalmente:

•
$$N = \{Q, \Sigma, \delta, q_0, F\}$$

•
$$Q = Q_1 \cup Q_2$$

•
$$q_0 = q_0^1$$

•
$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

•
$$F = F_2$$

•
$$\forall q \in Q, \forall a \in \Sigma_{\varepsilon}$$
:

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & \text{se } q \in Q_1 \land q \notin F_1 \\ \\ \delta_1(q,a) & \text{se } q \in F_1 \land a \neq \varepsilon \\ \\ \delta_1(q,a) \cup \left\{q_0^2\right\} & \text{se } q \in F_1 \land a = \varepsilon \\ \\ \delta_2(q,a) & \text{se } q \in Q_2 \end{cases}$$

5.3. Chiusura per Operazione «*» star

Dato un NFA N t.c. L(N) = L devo costruire NFA N^* t.c. $L(N^*) = L^*$

Formalmente abbiamo $N^* = (Q', \Sigma, \delta', {q_0}', F')$ e $N = (Q, \Sigma, \delta, q_0, F)$:

- ${q_0}^\prime$ nuovo stato iniziale
- $\bullet \ F' = F \cup \{{q_0}'\}$
- $\bullet \ Q' = Q \cup \{{q_0}'\}$
- $\bullet \ \forall q \in Q', \forall a \in \Sigma_{\varepsilon} :$

$$\delta(q,a) = \begin{cases} \delta(q,a) & \text{se } q \in Q \land q \notin F \\ \delta(q,a) & \text{se } q \in F \land a \notin \varepsilon \\ \\ \delta(q,a) \cup \{q_0\} & \text{se } q \in F \land a = \varepsilon \\ \\ \{q_0\} & \text{se } q = {q_0}' \land a = \varepsilon \\ \\ \emptyset & \text{se } q = {q_0}' \land a \neq \varepsilon \end{cases}$$

6. Espressioni Regolari

Possiamo vederle come delle espressioni algebriche, ma definiscono dei linguaggi su un certo alfabeto.

Esempio

$$(0 \cup 1) \cap 0^*$$
 che equivale a $\{0,1\} \cap 0^*$

Definizione

Sia Σ un alfabeto possiamo definire un'espressione regolare ssu Σ (denotata con re(Σ)) in modo ricorsivo:

caso base
$$\begin{cases} \emptyset \in \operatorname{re}(\Sigma) \\ \varepsilon \in \operatorname{re}(\Sigma) \\ a \in \operatorname{re}(\Sigma) \text{ con } a \in \Sigma \end{cases}$$

$$\begin{aligned} & \text{caso base} \begin{cases} \emptyset \in \operatorname{re}(\Sigma) \\ & \varepsilon \in \operatorname{re}(\Sigma) \\ & a \in \operatorname{re}(\Sigma) \text{ con } a \in \Sigma \end{cases} \\ & \text{induzione} \begin{cases} R_1 \cup R_2 & \text{se } R_1, R_2 \in \operatorname{re}(\Sigma) \\ & R_1 \odot R_2 & \text{se } R_1, R_2 \in \operatorname{re}(\Sigma) \\ & (R_1)^* & \text{se } R_1 \in \operatorname{re}(\Sigma) \end{cases}$$

Ogni espressione regolare ha un solo linguaggio associato:

$$L(r)$$
 t.c. $r \in re(\Sigma)$

Vediamolo ricorsivamente:

caso base
$$\begin{cases} L(r)=\emptyset & \text{se } r=\emptyset\\ L(r)=\varepsilon & \text{se } r=\varepsilon\\ L(r)=\{a\} & \text{se } r=a \end{cases}$$

$$\text{induzione} \begin{cases} L(r) = L(R_1) \cup L(R_2) & \text{se} \ r = R_1 \cup R_2 \\ \\ L(r) = L(R_1) \bigcirc L(R_2) & \text{se} \ r = R_1 \bigcirc R_2 \\ \\ L(r) = \left(L(R_1)\right)^* & \text{se} \ r = R_1^* \end{cases}$$

Qualche esempio:

- $0*10* = \{w : w \text{ contiene esattamente un } 1\}$
- $\Sigma^* 1 \Sigma^* = \{ w : w \text{ contiene almeno un } 1 \}$

- $\Sigma^*001\Sigma^* = \{w : w \text{ contiene } 001 \text{ come sottostringa}\}$
- $(0 \cup 1000)^* = \{w : \text{ogni occorrenza di 1 \'e seguita da } 000\}$

Teorema

Un linguaggio regolare è regolare se e solo se esiste un'espressione regolare che lo descrive:

$$REG \equiv L(re)$$

Per dimostrar
lo dobbiamo dimostrare la doppia implicazione $L(\text{re}) \subseteq \text{REG}$ e REG
 $\subseteq L(\text{re})$.

Iniziamo dimostrando $L(\text{re})\subseteq \text{REG}$, quindi data un'espressione regolare r costruiamo un NFA N_r tale che $L(N_r)=L(r)$.

I casi base sono 3, quando l'espressione regolare è un solo carattere, quando l'espression regolare è la stringa vuota oppure quando è l'insieme vuoto.

Data l'espressione regolare r=a con $a\in \Sigma$ costruiamo l'NFA che la riconosce:

Dove:

- $N_r = (\{q_0, q_1\}, \Sigma, \delta, q_0, \{q_1\})$
- $\bullet \ \delta(q_0,a)=q_1$
- $\delta(q,b) = \emptyset \text{ con } q \neq q_1 \land b \neq a$

Se invece abbiamo $r=\varepsilon$, possiamo costrutire:

Definiamo:

- $\bullet \ N_r=(\{q_1\},\Sigma,\delta,q_1,\{q_1\})$
- $\delta(q_1, b) = \emptyset, \forall b \in \Sigma$

Se invece $r = \emptyset$ costruiamo:

Definiamo:

- $N_r = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$
- $\delta(q_1, b) = \emptyset, \forall b \in \Sigma$

Adesso per il caso induttivo dobbiamo considerare un'espressione regolare $r=R_1\cup R_2$ e per ipotesi induttiva sappiamo che $\exists M_1,M_2$ t.c. $L(M_1)=L(R_1)\wedge L(M_2)=L(R_2)$ e per chiu-

sura di REG sappiamo che questo implica che $\exists M \;\; {\rm t.c.} \;\; L(M) = L(R_1) \cup L(R_2).$ Questo è analogo per la concatenazione e l'operatore star.

Esempio

Vogliamo costruire un NFA che riconosce il linguaggio $(ab \cup a)^*$

• Possiamo costruire prima l'automa che riconosce *a*:

• Poi costruiamo l'automa che riconosce *b*:

• Adesso possiamo ricavare quello che riconosce *ab*:

• Costruiamo l'automa che riconosce (ab \cup a):

• Infine costruiamo l'NFA che riconosce il linguaggio dell'espressione regolare:

Adesso dobbiamo dimostrare la seconda implicazione, quindi REG $\subseteq L(re)$. Dobbiamo quindi prendere un NFA e vogliamo trovare l'espressione regolare corrispondente.

Prima di farlo vediamo come convertire un NFA in un'espressione regolare.

6.1. Convertire NFA in espressione regolare

Partiamo da un NFA N con $L \in REG : L(N) = L$ e introduciamo il concetto di **GNFA (NFA Generalizzato)**.

Per GNFA intendiamo un NFA dove le etichette degli archi sono delle espressioni regolari.

Forma Canonica del GNFA

Un GNFA si trova in forma canonica quando:

- Lo stato iniziale ha solo archi uscenti verso tutti gli altri stati
- Lo stato finale ha solo archi entranti
- Fatta eccezione per lo stato finale ed iniziale esiste un arco fra ogni coppia di stati

Più formalmente dato GNFA= $(Q, \Sigma, \delta, q_{\text{START}}, q_{\text{ACC}})$:

$$\delta: Q \setminus \{q_{\mathrm{ACC}}\} \times Q \setminus \{q_{\mathrm{START}}\} \to \mathcal{R} = \mathrm{re}(\Sigma)$$

Dove $\mathcal R$ è l'insieme di tutte le espressioni regolari sul linguaggio Σ

Definiamo adesso la funzione Convert(G) che prende in input un grafo e restituisce l'espressione regolare associata.

Definiamo Convert:

- Definiamo k = numero di stati in G.
- Se k=2 significa che abbiamo soltanto $q_{\rm start}, q_{\rm acc}$ e un singolo arco con etichetta $R\in\mathcal{R}.$ Avremo R come output.
- Se k>2 scegliamo uno stato $q_{\rm rip}$ diverso da $q_{\rm start}$ e $q_{\rm acc}$ e definiamo $G'=\{Q',\Sigma,\delta',q_{\rm start},q_{\rm acc}\}$ dove:
 - $\bullet \ Q' = Q \setminus \left\{q_{\mathrm{rip}}\right\}$
 - $\bullet \ \delta': Q' \setminus \{q_{\mathrm{acc}}\} \times Q' \setminus \{q_{\mathrm{start}}\} \to \mathcal{R}$

Adesso $\forall q_i \in Q' \setminus \{a_{\rm acc}\}, q_j \in Q' \setminus \{q_{\rm start}\}$ consideriamo l'automa:

Dove:

- R1 = $\delta(q_i, q_{\rm rip})$
- R2 = $\delta \left(q_{\mathrm{rip}}, q_{\mathrm{rip}}\right)$
- R3 = $\delta \left(q_j, q_{\rm rip}\right)$

• R4 =
$$\delta(q_i, q_i)$$

Consideriamo questo automa perché ci interessano soltanto gli archi che collegano q_i e q_j oppure che riguardano $q_{\rm rip}$. Avremo quindi che

$$\delta'(q_i, q_i) = (R1)(R2)^*(R3) \cup (R4)$$

Abbiamo quindi definito un automa che ci permette di muoverci fra q_i e q_j anche senza $q_{\rm rip}$, dobbiamo continuare a ripetere questo procedimento finché non rimaniamo soltanto con lo stato iniziale e lo stato accettante.

Adesso possiamo concludere la dimostrazione iniziata nel capitolo precedente.

Dobbiamo dimostrare che quello che otteniamo da Convert(G) è equivalente a G.

Se k = 2 è sicuramente vero.

L'espressione regolare R descrive tutte le stringhe che portano, in G, da $q_{\rm start}$ a $q_{\rm acc}$.

Supponiamo che sia vero per k-1 stati e dimostriamo che è vero per k stati mostrando che L(G)=L(G') dove G' è l'automa con uno stato rimosso.

Se l'automa G accetta una stringa w significa che esiste un ramo di computazione che permette a G di percorrere gli stati $q_{\rm start}...q_{\rm acc}$, se questa sequenza non contiene $q_{\rm rip}$ allora abbiamo che L(G)=L(G') perché le nuove espressioni regolari conterranno le vecchie per unione.

Se invece $q_{\rm rip}$ è presente nella sequenza avremo comunque che gli stati a lui adiacenti (q_1,q_2) in G' hanno degli archi che tengono conto di tutti i modi per percorrere un cammino da q_1 a q_2 direttamente o passando per $q_{\rm rip}$ e quindi otteniamo di nuovo L(G)=L(G').

7. Pumping Lemma

Serve a dimostare che un linguaggio non è regolare.

Teorema - Pumping Lemma

Se L è regolare, allora esiste p t.c. presa $w \in L$ con $|w| \ge p$, allora w può essere scomposta in w = xyz in modo che:

- 1. $\forall i \geq 0$ si ha che $xy^iz \in L$
- 2. |y| > 0
- 3. $|xy| \le p$

Vedremo che questo p è il numero di stati dell'automa, infatti prima di dimostrare ragionamo su questo caso:

Fissiamo p =#stati automa ed M t.c. L(M) = L e siccome $|w| \ge p$, scomponiamo in questo modo:

Una ripetizione, in questo caso y, deve esistere sempre dato che la stringa è più grande del numero di stati. Significa appunto che uno stato deve sicuramente ripetersi.

7.1. Dimostrazione

Sia $M=(Q,\Sigma,\delta,q_1,F)$ t.c. L(M)=L e sia p=|Q|. Consideriamo inoltre $w=w_1w_2...w_n$ con $n\geq p$.

Consideriamo anche la sequenza di stati $r_1,...,r_{n+1}$ attraversati da M su input w, avremo che $r_1=q_1$ e $r_{n+1}\in F$. Ovviamente avremo che $n+1\geq p+1$.

Per il **pigeonhole principle**, nella sequenza considerata ci sarà sicuramente uno stato che si ripete, sia questo stato r_j nella prima apparizione e r_l nella seconda ($j \neq l$, lo stato è lo stesso ma consideriamo due iterazioni diverse ovvero j quando lo incontriamo e l quando si ripete per la prima volta), avremo ovviamente che $l \leq p+1$ perché r_l si presenta tra le prime p+1 posizioni nella sequenza che inizia con r_1 .

Scomponiamo la stringa in w = xyz e poniamo:

- $x = w_1, ... w_{i-1}$. Ovvero la stringa prima del primo stato che si ripete.
- $y = w_i...w_{l-1}$. Prima della prima ripetizioni.
- $z = w_l...w_n$. Tutto il resto della stringa.

Abbiamo che:

- x porta M da $r_1 = q_1$ ad r_i
- y porta M da r_i ad $r_l = r_i$
- z porta M da $r_j = r_l$ a $r_{n+1} \in F$

Quindi notiamo che possiamo ripetere y quante volte vogliamo e la stringa ottenuta xy^iz apparterrà sempre al linguaggio. **Dimostrata la prima condizione**.

Siccome $j \neq l$ per costruzione allora |y| > 0. Seconda condizione.

Infine $l \le p+1$ e allora $|xy|=l-1 \le p$. Terza condizione

7.2. Esempi

Utilizziamo il pumping lemma.

1) Mostrare che $L = \{o^n 1^n : n \ge 0\}$ non è regolare.

Scegliamo una stringa 0^p1^p con p che sarà il nostro **valore di pumping** che scegliamo per contraddire la prova. Vogliamo comunque $|w| \ge q$ per rientrare nelle condizioni.

Se il linguaggio fosse regolare allora presa $w = 0^p 1^p$, per qualsiasi scomposizione w = xyz t.c. $|xy| \le p$ avremo che y è composta da soli "0":

$$w = 0... 01....1$$

Per falsificare la condizione quindi ci basta prendere una $i \ge 2$ e avremo una stringa $xy^iz = o^q1^p$ con q > p che non rientra nel linguaggio dato che il numero di 0 ed 1 non è lo stesso.

2) Mostrare che il linguaggio $L=\{w\in\{0,1\}^*:\#_0w=\#_1w\}$ ovvero le stringhe hanno lo stesso numero di 0 ed 1 ma in qualsiasi ordine.

Proviamo a scomporre con $w \in L$ t.c. $w = (01)^p$ e con $|w| = 2p \ge p$

Otteniamo una stringa:

$$\underbrace{010101010...01}_{y} \quad x = \varepsilon$$

Notiamo però che questa scomposizione non va bene per falsificare le condizioni, infatti qualsiasi i prendiamo aumentiamo sia il numero di 0 che di 1 quindi la stringa appartiene al linguaggio.

Proviamo con la stringa $w = 0^p 1^p$ con |w| = 2p e rispettiamo $|xy| \le p$ e |y| > 0.

Siccome $|xy| \le p$ allora y è fatta solo da 0:

$$\underbrace{0...0}_{x}\underbrace{0....0}_{y}\underbrace{1....1}_{z}$$

In questo caso aumentando y aumentiamo soltanto gli 0 e quindi la stringa non appartiene a L.

Più precisamente abbiamo che:

• |y|=k>0 ma $k\leq p$ e inoltre |x|=p-k, |z|=p, tuttavia $|xy^2z|=(p-k)+2k+p=2p+k$ ma il numero di 0 è (p-k)+2k=p+k mentre quello degli 1 è sempre p che è < p+k, quindi non rientra nel linguaggio.

Con la stessa stringa possiamo provare anche questa scomposizione:

$$\underbrace{0...._{x} \underbrace{00....01...1}_{y}}_{z}$$

Anche in questo caso aumentiamo solo gli 0 e quindi non rientriamo nel linguaggio. Più precisamente:

- |y| = k > 0
- |z| = p + l
- |x| = p k l
- Assumendo l > 0

Tuttavia $|xy^2z|=(p-k-l)+2k+p+l=2p+k$ ma il numero di 0 è (p-k-l)+2k+l=p+k mentre quello degli 1 è p< p+k.

Esercizio

Costruire un DFA per il linguaggio $L = \{w \in \{0,1\}^* : w \notin (01^+)^*\}$. Realizzare dei DFA che non rispettano delle regole potrebbe essere complicato considerando solo questa richiesta. Un'idea però potrebbe essere quella di realizzare un DFA che rispetta quella regola e poi usare il complemento per ottenere un linguaggio, sempre regolare per la proprietà di chiusura, che rispetta la richiesta iniziale.

Costruiamo quindi un DFA che riconosce $(01^+)^*$:

Per realizzare il complemento dobbiamo scambiare gli stati accettanti con quelli non accettanti, per non perdere delle stringhe però è importante **completare l'automa**:

Esercizio - continuo

A questo punto possiamo eseguire il complemento:

Abbiamo ottenuto l'automa che cercavamo inizialmente.

8. Grammatiche Acontestuali

Le grammatiche sono un mezzo di computazione utile in diverse applicazioni come ad esempio i compilatori, queste coincidono con un automa.

Ad esempio possiamo indicare come grammatica quella che genera le stringhe $0^n 1^n$ con $n \ge 0$

Una grammatica è una sequenza di **sostituzioni e produzioni**, facciamo un esempio di grammatica:

$$A \to 0A1$$
$$A \to B$$
$$B \to \#$$

Queste sono chiamate **regole della grammatica**; **A,B** sono **variabili** e **0,1,**# sono detti **terminali**. In ogni grammatica c'è sempre una variabile speciale ovvero la **variabile iniziale**.

Per costruire delle stringhe si parte dalla variabile iniziale e si applicano le regole come vogliamo, usando l'esempio di prima possiamo costruire:

$$A \rightarrow 0$$
A1 $\rightarrow 0$ 0A11 $\rightarrow 000$ A111 $\rightarrow 000$ B111 $\rightarrow 000$ #111

Abbiamo applicato, in ordine, le regole 1, 1, 1, 2, 3. Ad ogni produzione che effettuiamo possiamo associare un albero sintattico:

TODO: IMMAGINE

Definizione - CFG (Context-free grammar)

Una CFG è una tupla (V, Σ, R, S) dove:

- ullet V è l'insieme finito delle variabili
- Σ è l'insieme finito dei terminali $(V \cap \Sigma = \emptyset)$
- R è l'insieme di regole
- $S \in V$ è la variabile iniziale

Se $u,v,w\in \Sigma\cup V$ e $(A\to w)\in R$ allora uAv produce uwve lo scriviamo come $uAv\Rightarrow uwv$

Diciamo inoltre che u deriva v, con la notazione $u \stackrel{*}{\Rightarrow} v$ se:

• u = v

oppure

• $\exists u_1, ..., u_k \text{ con } k \ge 0 \text{ t.c.}$:

$$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \ldots \Rightarrow u_k \Rightarrow v$$

Quindi se esiste una sequenza di sostituzione che ci permettono di arrivare a v partendo da u.

Questo ci permette di definire il linguaggio assocciato alla grammatica, ovvero:

Sia
$$G=(V,\Sigma,R,S)$$
allora $L(G)=\left\{w\in\Sigma^*:S\stackrel{*}{\Rightarrow}w\right\}$

Esempio

Sia
$$G = (V = \{S\}, \Sigma = \{a, b\}, R, S)$$
 e $R : S \to asb|ss|\varepsilon$.

Avremo che la stringa $ab \in L(G)$, ottenuta tramite la sequenza:

$$S \Rightarrow asb \Rightarrow a\varepsilon b \Rightarrow ab$$

Oppure anche la stringa $aabb \in L(G)$, con la sequenza:

$$S \Rightarrow asb \Rightarrow aasbb \Rightarrow aa\varepsilon bb = aabb$$

Vedremo delle tecniche per costruire delle grammatiche:

- Unendo grammatiche
- Passando da un DFA ad una grammatica
- Sfruttando la ricorsione

8.1. Unione di Grammatiche

Supponiamo di avere $G_i = (V_i, \Sigma_i, R_i, S_i)$ tutte CFG tali che $\forall i \in [1, 2, 3, ..., k]$ con $k \in \mathbb{N}$, vogliamo costruire una grammatica $G = (V, \Sigma, R, S)$ t.c. $L(G) = \bigcup_i L(G_i)$.

Lo facciamo costruendola in questo modo:

- $V=\cup_i V_i \cup \{S\}$, senza perdere generalità possiamo assumere che $V_i \cap U_j=\emptyset$ con $\forall i,j \in [1,2,3,...,k]$ t.c. $i\neq j$
- S è la nuova variabile iniziale
- $\Sigma = \bigcup_i \Sigma_i$
- $R = \bigcup_{i=1}^{n} R_i \cup \{S \rightarrow S_1 \mid \ldots \mid S_k\}$

Dimostriamo che l'unione è anche essa una grammatica acontestuale, dobbiamo mostrare che $\cup_i L(G_i) = L(G)$ e quindi la doppia implicazione.

Prima parte -
$$\cup_i L(G_i) \subseteq L(G)$$

Sia $w \in \cup_i L(G_i) : \exists j \in [k]$ t.c. $w \in L(G_j)$ ovvero esiste una sostituzione $S_j \overset{*}{\underset{G_j}{\Rightarrow}} w$ ma allora per definizione $S \Rightarrow S_j \overset{*}{\underset{G_j}{\Rightarrow}} w$ ovvero $w \in L(G)$

Seconda parte - $L(G) \subseteq \cup_i L(G_i)$

Sia $w \in L(G)$ ovvero $S \overset{*}{\underset{G}{\Rightarrow}} w$, per definizione $\exists j \in [k]$ t.c. $S \Rightarrow S_j \overset{*}{\underset{G}{\Rightarrow}} w$, siccome V_j è disgiunto da tutte le altre variabili abbiamo che $S_j \overset{*}{\underset{G}{\Rightarrow}} w$ implica che $w \in L(G_j) \cup_i L(G_i)$

8.2. Da DFA a CFG

Dato un DFA $D=(Q,\Sigma,\delta,q_0,F)$ voglio definire $G=(V,\Sigma,R,S)$ t.c. L(G)=L(D).

La costruiamo con:

- Σ rimane lo stesso
- $V = \{V_q : q \in Q\}$
- $S = V_{q_0}$
- Si aggiunge la regola $V_q \to a V_p$ per ogni $p,q \in Q, a \in \Sigma$ t.c. $\delta(q,a) = p$

•
$$\forall V_q \in F$$
 aggiungo $V_q \to \varepsilon$

Quindi creo una variabile della grammatica per ogni stato del DFA e i terminali sono le etichette tra uno stato e l'altro. *Esempio*:

Abbiamo quindi le regole:

$$S=V_{q_0}\rightarrow aV_{q_1};V_{q_1}\rightarrow bV_{q_2};V_{q_2}\rightarrow \varepsilon$$

La costruzione della stringa ab è:

$$S \Rightarrow aV_{q_0} \Rightarrow abV_{q_1} \Rightarrow ab$$

Ricorsione

Per ricorsione nelle gremmatiche intendiamo regole del tipo:

$$R \rightarrow 0R1$$

Regole di questo tipo sono utili per ricordare delle «informazioni limitate»

8.3. Forma Normale di Chomsky

Una CFG è in forma normale se ogni regola è del tipo:

$$A \to BC$$
 $A \to a$

con ABC variabili ed a terminale inoltre $B,C\neq S$ ed è ammessa la regola $S\to \varepsilon.$

Teorema - Ogni CFG ammette una CGF equivalente in forma normale.

Dimostrazione.

Seguiamo delle regole per passare da una qualsiasi CFG alla sua forma normale:

- 1. Se la variabile iniziale compare a destra di una regola aggiungiamo una nuova variabile iniziale S_0 insieme alla regola $S_0 \to S$
- 2. Eliminare le ε -regole, se ad esempio abbiamo $A \to \varepsilon$ dobbiamo andare a controllare tutte le regole dove la A compare a destra e considerare che possiamo andare in ε aggiungendo quindi una nuova regola.
- 3. Elimino le regole unitarie $A \to B$, per ogni occorrenza $B \to u$ aggiungo $A \to u$ a meno che questa regola non è già stata eliminata.
- 4. Trasformare le regole restanti, se abbiamo $A \to u_1 u_2 ... u_k$ con $k \ge 3$ spezziamo la regola in

$$A \to u_1 A_1$$
 $A_1 \to u_2 A_2 ... A_{k-2} \to u_{k-1} u_k$

Dove A_i nuova variabile. Se u_i è terminale allora lo sostituisco con U_i e aggiungo la regola $U_i \to u_i$

Esempio:

Consideriamo una grammatica con le regole:

- $S \rightarrow ASA \mid aB$
- $A \rightarrow B \mid S$
- $B \rightarrow b \mid \varepsilon$

Usiamo le regole per passare in formale normale:

- 1. Aggiungiamo la variabile S_0 e la regola $S_0 \to S$
- 2. Eliminiamo le ε -regole, la prima è $B \to \varepsilon$ questo significa che una volta rimossa dobbiamo considerare che in ogni regola dove B sta a destra possiamo andare anche in ε , otteniamo quindi:
- $S_0 \rightarrow S$
- $S \rightarrow ASA \mid aB$
- $A \rightarrow B \mid S \mid \varepsilon$
- $B \rightarrow b$

Adesso eliminiamo $A \to \varepsilon$ e andiamo a controllare quelle dove la A compare a destra, otteniamo:

- $S_0 \rightarrow S$
- $S \rightarrow ASA \mid aB \mid SA \mid AS \mid S$
- $A \rightarrow B \mid S$
- $B \rightarrow b$
- 3. Eliminiamo le regole unitarie, partiamo da $S \to S, S_0 \to S$, ovvero sostituiamo la variabile a destra con la regola rimossa, otteniamo:
- $S_0 \rightarrow ASA \mid aB \mid SA \mid AS$
- $S \rightarrow ASA \mid aB \mid SA \mid AS$
- $A \rightarrow B \mid S$
- $B \rightarrow b$

Vanno rimosse anche $A \rightarrow B, A \rightarrow S$:

- $S_0 \rightarrow ASA \mid aB \mid SA \mid AS$
- $S \rightarrow ASA \mid aB \mid SA \mid AS$
- $A \rightarrow b \mid ASA \mid aB \mid SA \mid AS$
- $B \rightarrow b$
- 4. Finiamo le sostituzioni rimuovendo le regole che hanno a destra 3 o più variabili e quelle che hanno terminali e variabili insieme, in questo caso non vanno bene le regole che ci portano nella stringa ASA e in aB, creiamo quindi una variabile A_1 che ci porta in SA e sostituiamo questa variabile nelle regole, per le regole che ci portano in aB creiamo la variabile U:
- $S_0 \rightarrow AA_1 \mid UB \mid SA \mid AS$

- $\begin{array}{l} \bullet \;\; S \to AA_1 \;|\; UB \;|\; SA \;|\; AS \\ \bullet \;\; A \to b \;|\; AA_1 \;|\; UB \;|\; SA \;|\; AS \end{array}$
- $B \rightarrow b$
- $U \rightarrow a$
- $A_1 \rightarrow SA$

La grammatica è adesso in forma normale di Chomsky.

9. PDA (Push-Down Automata o Automi a Pila)

I PDA sono un'estensione dei DFA che riescono a riconoscere anche i linguaggi non regolari, loro infatti sono equivalenti alle CFG.

Possiamo vederli come degli NFA con associata una pila di tipo LIFO. Ad ogni passo di computazione il PDA può operare sulla cima della pila con diverse operazioni:

- Sostituzione del simbolo in cima
- PUSH ovvero inserimento di un simbolo in cima
- POP ovvero rimozione del simbolo in cima

Graficamente abbiamo che:

Il PDA sopra permette di spostarci da q_1 a q_2 se leggiamo a e se in cima alla pila abbiamo b, nel passaggio sostitusce b con c.

Sempre facendo riferimento all'esempio, questo significa che se leggiamo a ma sulla pila non abbiamo b allora non possiamo effettuare la transizione.

Osservazioni

Dato che il PDA avrà più rami di computazione per via del non determinismo è importante notare che ogni ramo avrà una sua pila.

Inoltre l'alfabeto della pila può anche essere diverso dall'alfabeto dell'automa.

La funzione di transizione è definita come:

Dominio :
$$Q \times \Gamma_{\varepsilon} \times \Gamma_{\varepsilon}$$
, Immagine : $\mathcal{P}(Q \times \Gamma_{\varepsilon})$

Diamo una definizione formale di PDA.

Un PDA è una tupla $(Q,\Sigma,\Gamma,\delta,q_0,F)$ dove Q,Σ,q_0,F sono come nei DFA / NFA mentre Γ è l'alfabeto usato dalla pila.

Cosa succede in una transizione? Prendiamo $(q,c)\in\delta(p,a,b)$, abbiamo diversi casi:

- Se $a, b, c \neq \varepsilon$ allora la transizione leggendo a ci porta dallo stato p, con b in cima alla pila, allo stato q con c in cima alla pila.
- Se $c \neq \varepsilon, b = \varepsilon$ e a in lettura allora fa PUSH di c. Ovvero abbiamo la siturazione $a; \varepsilon \to c$
- Se $c=\varepsilon, b\neq \varepsilon$ e a in lettura allora fa POP di b. Ovvero $a;b\to \varepsilon$

Notiamo quindi che le configurazioni di un PDA sono del tipo $Q \times \Sigma^* \times \Gamma^*$

Quando, i PDA, si trovano in uno stato di accettazione? Un PDA M accetta una stringa $w=w_1...w_n$ t.c. $w_i\in \Sigma$ se $\exists r_0,...,r_m\in Q$ e stringhe $s_0,...,s_m\in \Gamma^*$ t.c.:

- All'inizio $r_0 = q_0$ e $s_0 = \varepsilon$
- $r_m \in F$

• $\forall i = 0, ..., m$:

$$\bullet \ (r_{i+1}, b) \in \delta(r_i, w_i, a)$$

-
$$s_i = at$$
 e $s_{i+1} = bt$ con $a,b \in \Gamma_{\varepsilon}$ e $t \in \Gamma^*$

Quindi partiamo con r_0 uguale allo stato iniziale e con lo stack s vuoto, ad ogni transizione passiamo da r_i a r_{i+1} se abbiamo in cima allo stack un carattere a e leggendo w_i , infatti avremo che lo stack ad s_i è uguale alla stringa composta da a ovvero l'ultimo carattere e t la stringa precedente, all'ultima transizione ovvero s_{i+1} avremo come carattere in cima b e poi t che comprende tutti gli altri caratteri.

Quindi possiamo mettere in relazione due configurazioni:

$$(p,ax,by) \underset{M}{\vdash} (q,x,cy)$$
 se e solo se $(q,c) \in \delta(p,a,b)$

Con
$$a \in \Sigma; x \in \Sigma^*; a, b \in \Gamma, y \in \Gamma^*; p, q \in Q$$

Come per i DFA e NFA possiamo estendere la chiusura con la chiusura simmetrica e transitiva:

$$L(M) = \left\{ w \in \Sigma^* : (q_0, w, \varepsilon) \stackrel{*}{\underset{M}{\vdash}} (q, \varepsilon, y) \quad q \in F, y \in \Gamma^* \right\}$$

Nota

Il PDA accetta **indipendentemente dal contenuto della pila** quindi, senza perdere generalità, possiamo assumere che la pila deve essere vuota.

9.1. Corrispondenza tra PDA e CFG

Teorema

Un linguaggio è acontestuale se e solo se esiste un PDA che lo riconosce.

Lemma - Se L è acontestuale allora $\exists M \in \text{PDA t.c. } L = L(M)$. Ovvero una delle due implicazioni del teorema.

Dimostrazione - Sia $M=(Q,\Sigma,\Gamma,\delta,q_0,F)$, scriviamo le transizioni in questo modo:

Questa transizione implica che $(r, xyz) \in \delta(q, a, s)$.

Consideriamo la grammatica $G = (V, \Sigma, R, S)$.

Definiamo il PDA:

- $Q=\{q_{\rm START},q_{\rm LOOP},q_{\rm ACC})\}\cup Q'$ dove Q' sono degli stati ausiliari che ci serviranno per definire δ .
- $\Gamma = V \cup \Sigma$
- $F = \{q_{\text{ACCEPT}}\}$

- Dato $q_{\mathrm{START}} \in Q$, inseriamo S\$ nello stack, si ha che:

$$\delta(q_{\text{START}}, \varepsilon, \varepsilon) = \{(q_{\text{LOOP}}, S\$)\}$$

A questo punto, nello stato $q_{\rm LOOP}$ abbiamo diversi casi:

• Se la cima dello stack contiene una variabile $(A \in V)$ allora

$$\delta(q_{\text{LOOP}}, \varepsilon, A) = \{(q_{\text{LOOP}}, w) : A \to w \text{ con } w \in G\}$$

• Se la cima contiene un terminale $(a \in \Sigma)$ allora

$$\delta(q_{\text{LOOP}}, a, a) = \{(q_{\text{LOOP}}, \varepsilon)\}$$

• Se la cima contiene \$ allora

$$\delta(q_{\text{LOOP}}, \varepsilon, \$) = \{(q_{\text{ACC}}, \varepsilon)\}$$

Graficamente abbiamo che:

Esempio

Consideriamo la grammatica G con le regole $S \to aTb \mid b$ e $T \to Ta \mid \varepsilon$, costruire il PDA equivalente, usando le regole della dimostrazione precedente:

Dimostriamo quindi la seconda parte dell-implicazione.

Lemma - Se L è riconosciuto da un PDA M allora L è acontestuale.

Abbiamo un PDA P e vogliamo costruire una grammatica G che genera tutte le stringhe accettate da P. Generiamo una grammatica che per ciascuna coppia di stati $p,q\in P$ avrà una variabile A_{pq} , questa variabile genera tutte le stringhe che portano P da p con pila vuota a q con pila vuota. Da notare che queste stringhe possono portare P da p a q independentemente dal contenuto della pila ma lasciandola comunque nella stessa condizione di prima.

Forniamo a P delle caratteristiche per semplificare la dimsotrazione ma senza perdere di generalità:

- Ha un unico stato accettante $p_{
 m acc}$
- Svuota lo stack prima di accettare
- Ciascuna transizione o fa un POP o fa un PUSH, non può farle entrambe

Per fornire l'ultima caratterstica al PDA dobbiamo sostituire tutte le transizione che sostituiscono simboli (POP e PUSH contemporaneamente) con una sequenza di transizioni, inoltre sostituiamo anche ogni transizione che non fa POP o PUSH con una sequenza di transizioni che inserisce ed elima un simbolo dalla pila.

Per qualsiasi stringa x che dobbiamo generare, l'automa P farà come prima azione un PUSH, dato che non può eliminare dalla pila vuota, l'ultima azione invece sarà sicuramente un POP perchè la pila deve essere vuota.

Durante questa computazione possono verificarsi due casi:

1. Il simbolo eliminato alla fine è lo stesso simbolo che è stato inserito all'inizio, in questo caso la pila potrebbe essere vuota soltanto all'inizio e alla fine della computazione su x.

Questa possibilità la gestiamo con la regola:

$$A_{pq} \rightarrow aA_{rs}b$$

dove a è l'input della prima transizione e b nell'ultima, r è lo stato che segue p ed s è lo stato che precede q.

2. Il simbolo inserito all'inizio viene tolto durante la computazione ma non alla fine, la pila si svuota in quel punto.

Questa possibilità la simuliamo con la regola:

$$A_{pq} \to A_{pr} A_{rq}$$

 $\textbf{Dimostrazione} \text{ - Prendiamo } P=(Q,\Sigma,\Gamma,\delta,q_0,\{q_{\mathrm{acc}}\}) \text{ e assumiamo che sia nella forma di prima. La grammatica } G \text{ sarà definita da } V=\left\{A_{pq}:p,q\in Q\right\} \text{ ed } S=A_{q_0q_{\mathrm{acc}}}. \text{ Le regole sono: } P=\{A_{pq}:p,q\in Q\} \text{ ed } S=A_{q_0q_{\mathrm{acc}}}.$

- $\forall p, q, r, s \in Q; u \in \Gamma; a, b \in \Sigma_{\varepsilon}$
 - Se $(r,u)\in\delta(p,a,\varepsilon)$ e $(q,\varepsilon)\in\delta(s,b,u)$ allora $A_{pq}\to aA_{rs}b$
- $\forall p,q \in Q; A_{pq} \rightarrow A_{pr}A_{rq}$
- $\forall p \in Q; A_{pp} \to \varepsilon$

Proviamo che questa costruzione funziona dimostrando che A_{pq} genera x se e solo se x porta P da p con pila vuota a q con pila vuota. Consideriamo la doppia implicazione.

Fatto 1 - Se A_{pq} genera x allora x può portare P da p con pila vuota a q con pila vuota. Dimostriamolo per induzione sul numero di passi nella derivazione di x da A_{pq}

- Caso Base: La derivazione è in un solo passo, in questo caso deve usare una regola dove nella parte destra non ci sono variabili, l'unica regola è $A_{pp} \to \varepsilon$ e ovviamente questa regola porta da p con pila vuota a p con pila vuota.
- Induzione: Assumiamo il fatto vero per k derivazioni con $k \ge 1$ e dimostriamo per k+1. Supponiamo che $A_{pq} \stackrel{*}{\Rightarrow} x$ in k+1 passi, il primo passo può usare una delle due regole di prima, vediamo entrambi i casi:
- Caso $A_{pq} \to aA_{rs}b$: Dividiamo x in x=ayb e consideriamo la parte y generata da A_{rs} . Dato che $A_{rs} \stackrel{*}{\Rightarrow} y$ in k passi, l'ipotesi induttiva ci dice che P può andare da r con la pila vuota a s con la pila vuota. Dato che $A_{pq} \to aA_{rs}b$ è una regola di G allora $(r,u) \in \delta(p,a,\varepsilon)$ e $(q,\varepsilon) \in \delta(s,b,u)$ per qualche simbolo u della pila. Quindi se p inizia con pila vuota, legge a e può andare in r con u nella pila, leggendo y può andare in s e lasciare u sulla pila, poi può leggere s ed andare in s eliminando s.
- Caso $A_{pq} \to A_{pr} A_{rq}$: Consideriamo le parti di x=yz, dato che $A_{pr} \stackrel{*}{\Rightarrow} y$ in al più k passi e $A_{rq} \stackrel{*}{\Rightarrow} z$ in al più k passi, l'ipotesi induttiva ci dice che y può portare P da p ad q con la pila vuota all'inizio e alla fine.

Quindi x può portare P da p a q con la pila vuota.

Fatto 2 - Se x può portare P da p a q con la pila vuota allora A_{pq} genera x. Dimostriamo sempre per induzione sul numero di passi nella computazione da p a q con input x.

- Caso Base: La computazione ha 0 passi quindi inizia e termina nello stesso stato p. Dobbiamo mostrare che $A_{pp} \stackrel{*}{\Rightarrow} x$. P non può leggere alcun carattere in 0 passi quindi $x = \varepsilon$ e per costruzione di G abbiamo la regola $A_{pp} \to \varepsilon$ quindi il caso base è dimostrato
- Passo Induttivo: Assumiamo l'enunciato vero per computazioni lunghe $k \geq 0$, dimostriamo per k+1. Supponiamo ci sia una computazione in P dove x lo porta da p a q con pile vuote in k+1 passi, anche qui o la pila è vuota solo all'inizio e solo alla fine o si svuota in altri momenti.

Nel primo caso il simbolo inserito all'inizio deve essere quello rimosso alla fine, chiamiamo u questo simbolo e sia a il simbolo di input letto nella prima mossa e b quello letto nell'ultima, r lo stato dopo la prima mossa ed s lo stato prima dell'ultima allora $(r,u) \in \delta(p,a,\varepsilon)$ e $(q,\varepsilon) \in \delta(s,b,u)$ e quindi la regola $A_{pq} \to aA_{rs}b$ è in G.

Consideriamo la parte y di x=ayb, l'input può portare P da r ad s senza toccare u e quindi far muovere P da r a s con una pila vuota su input y, abbiamo eliminato il primo e l'ultimo passo dei k+1 quindi abbiamo ottenuto k-1 passi, per ipotesi induttiva abbiamo $A_{rs} \stackrel{*}{\Rightarrow} y$ e quindi $A_{pq} \stackrel{*}{\Rightarrow} x$

Nel secondo caso sia r uno stato in cui si svuota la pila oltre alla fine o inizio, allora le computazioni da p a r e da r a q contengono al più k passi, sia y l'input letto nella prima parte e sia z l'input letto nella seconda, l'ipotesi induttiva ci dice che $A_{pr} \stackrel{*}{\Rightarrow} y$ e $A_{rq} \stackrel{*}{\Rightarrow} z$. Siccome la regola $A_{pq} \to A_{pr} A_{rq}$ è in G allora $A_{pq} \stackrel{*}{\Rightarrow} x$.

Possiamo dire quindi che ogni linguaggio regolare è context-free.

10. Pumping Lemma per i linguaggi CFL

Segue 1:1 il libro in modo che me la studio da qui

Se A è un linguaggio context-free allora esiste un numero p tale che, se s è una stringa in A di lunghezza almeno p allora può essere divisa in cinque parti s=uvxyz che soddisfano:

- $\forall i > 0, uv^i x y^i z \in A$
- |vy| > 0, serve per dire che entrambe non sono la stringa vuota altrimenti il teorema sarebbe banalmente vero.
- $|vxy| \le p$, afferma che queste 3 parti hanno al più lunghezza p, utile per dimostrare che alcuni linguaggi non sono context-free.

Preso un CFL A e una CFG G che lo genera dobbiamo mostrare che ogni stringa sufficientemente lunga $s \in A$ può essere iterata e restare in A. Sia s una stringa molto lunga in A, essa è derivabile da G e quindi ha un albero sintattico.

Anche l'albero sintattico sarà molto lungo e ci deve essere un cammino dalla variabile alla radice a uno dei simboli terminali su una foglia. Per il principio della piccionaia qualche simbolo di variabile R si deve ripetere in questo cammino lungo. Questa ripetizione ci permette di sostituire il sottoalbero sotto la seconda occorrenza di R con il sottoalbero sotto la prima occorrenza di R e ottenere un albero sintattico consentito:

Questo significa che possiamo dividere la stringa in cinque parti uvxyz e possiamo replicare il secondo e quarto pezzo e ottenere ancora una stringa nel linguaggio, formalmente $uv^ixy^iz \in A$ per ogni $i \geq 0$.

Vediamo la **dimostrazione**: Sia G una CFG per il CFL A e sia b il massimo numero di simboli nel lato destro di una regola (assumiamo che sia almeno 2), questo significa che in ogni albero sintattico di questa grammatica un nodo non può avere più di b figli, abbiamo quindi che:

- Ci sono al più b foglie in un passo dalla variabile iniziale.
- Ci sono al più b^2 foglie in 2 passi dalla variabile iniziale

• Ci sono al più b^h foglie in h passi dalla variabile iniziale.

Quindi se l'altezza dell'albero è al più h, la lunghezza della stringa generata è al più b^h . Viceversa se una stringa generata ha lunghezza maggiore o uguale a $b^h + 1$ allora ciascuno dei suoi alberi sintattici deve avere un'altezza maggiore o uguale a h + 1.

Sia V il numero delle variabili in G, poniamo p (lunghezza del pumping) uguale a $b^{|V+1}$. Ora se s è una stringa in A e la sua lunghezza è maggiore o uguale a p allora il suo albero sintattico deve avere altezza maggiore o uguale a |V|+1 dato che $b^{|V|+1} \geq b^{|V|}+1$.

Presa la stringa s e τ il suo albero sintattico che abbia il più piccolo numero di nodi, τ deve avere altezza maggiore o uguale a |V|+1 quindi il suo cammino più lungo radice-foglia ha lunghezza almeno |V|+1, questo cammino:

- Ha almeno |V| + 2 nodi
- Uno etichettato da un terminale
- Gli altri etichettati da variabili, almeno |V+1>

Siccome G ha solo |V| variabili allora qualche variabile R è presente più volte su questo cammino, scegliamo una variabile che si ripete più in basso per comodità.

Dividiamo la stringa in cinque parti come nella figura precedente, ogni occorrenza di R ha un sottoalbero sotto essa che genera una parte della stringa s, l'occorrenza più in alto di R ha un sottoalbero più grande e genera vxy mentre quella più in basso soltanto x. Entrambi questi sottoalberi sono generati dalla stessa variabile, quindi possiamo sostituire l'uno con l'altro e ottenere comunque un albero corretto.

- Sostituire continuamente il più piccolo con il più grande fornisce gli alberi per le stringe uv^ixy^iz per ogni i>1
- Sostituire il più grande con il più piccolo genera la stringa uxz.

Questo dimostra la condizione 1.

Per ottenere la condizione 2 dobbiamo essere certi che $v,y\neq \varepsilon$. Se lo fossero, l'albero ottenuto sostituendo il più piccolo al più grande avrebbe meno nodi di τ e genererebbe ancora s, questo però non è possibile perché abbiamo scelto τ in modo che sia l'albero per s con meno nodi.

Per ottenere la condizione 3 dobbiamo essere sicuri che la lunghezza di vxy sia al più p. Nell'albero sintattico per s l'occorrenza più in alto di R genera vxy, abbiamo scelto R in modo che entrambe le occorrenze di essa cadano nelle |V|+1 variabili più in basso del cammino e abbiamo scelto il più lungo cammino nell'albero sintattico, in modo che il sottoalbero in cui R genera vxy sia alto al più |V|+1. Ma un albero con questa altezza può generare una stringa di lunghezza al più $b^{|V|+1}=p$.

Esempi