

(19)

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11)

EP 1 170 021 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
09.01.2002 Patentblatt 2002/02

(51) Int Cl.7: **A61K 49/00**

(21) Anmeldenummer: 01250164.9

(22) Anmelddetag: 14.05.2001

(84) Benannte Vertragsstaaten:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU
MC NL PT SE TR
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

- Licha, Kai, Dr.
14612 Falkensee (DE)
- Bornhop, Darryl, Dr.
Lubbock, Texas 79413 (US)
- Platzek, Johannes, Dr.
12621 Berlin (DE)

(30) Priorität: 15.05.2000 US 571407

(71) Anmelder: Shering Aktiengesellschaft
13353 Berlin (DE)

(72) Erfinder:

- Bauer, Michael, Dr.
13503 Berlin (DE)
- Becker, Andreas, Dr.
85570 Markt Schwaben (DE)

Bemerkungen:

Das Sequenzprotokoll, das als Anlage zu den Anmeldungsunterlagen mitveröffentlicht ist, ist nach dem Anmelddetag eingereicht worden. Der Anmelder hat erklärt, dass dieses nicht über den Inhalt der Anmeldung in der ursprünglich eingereichten Fassung hinausgeht.

(54) **Konjugate von Peptiden und Lanthanid-Chelaten für die Fluoreszenzdiagnostik**

(57) Die Erfindung betrifft neue Verbindungen zur

Fluoreszenzdiagnostik, die Verwendung dieser Verbindungen sowie ein Verfahren zu deren Herstellung.

Beschreibung

[0001] Die Erfindung liegt auf dem Gebiet der Fluoreszenzdiagnostik und betrifft neue Verbindungen, welche in den Patentansprüchen definiert sind. Die Erfindung betrifft weiterhin die Verwendung dieser Verbindungen sowie ein Verfahren zu deren Herstellung.

[0002] Die Verwendung von Lanthanid-Chelaten in der endoskopischen Diagnostik wurde bereits beschrieben (Houle et al., Journal of Biomedical Optics, April 1998, Vol. 3, No. 2, Seite 145 ff.; WO 97/40055). Insbesondere Terbium- und Europiumkomplexe mit Tri- und Tetraazamakrocyclischen Chelatoren wurden bereits erfolgreich als fluoreszierende in vitro- oder in vivo-Diagnostika eingesetzt. Werden die Verbindungen mit Licht geeigneter Wellenlänge bestrahlt, senden sie eine langlebige Fluoreszenz im sichtbaren Bereich aus. Dies gilt auch für die in WO 99/46600 beschriebenen Europiumkomplexe.

[0003] Für eine medizinische Anwendung ist es jedoch nicht nur notwendig, daß ein Fluoreszenzdiagnostikum Licht bestimmter Wellenlänge absorbiert und Licht anderer Wellenlänge emittiert. Vielmehr ist die Gewebeselektivität der Substanz eine Grundvoraussetzung dafür, daß der behandelnde Arzt eine sichere Diagnose stellen kann. Dies ist insbesondere bei der Tumorerkennung eine wichtige Anforderung an ein Diagnostikum, um falschpositive Resultate zu vermeiden. Die bekannten Verbindungen des Standes der Technik weisen noch keine ausreichende Gewebeselektivität auf. Verbesserungen betreffend die selektive Anreicherung einer fluoreszierenden Substanz in erkranktem Gewebe sind daher wünschenswert.

[0004] Aufgabe der Erfindung ist es daher, Verbindungen bereitzustellen, die sich selektiv in erkranktem Gewebe anreichern und nach Anregung mit Licht bestimmter Wellenlänge eine langlebige Fluoreszenz aussenden.

[0005] Diese Aufgabe wird dadurch gelöst, daß Konjugate aus Komplexverbindungen und rezeptorbindenden Peptiden bereitgestellt werden. Die rezeptorbindenden Peptide reichern sich selektiv in erkranktem Gewebe an.

[0006] Die neuen Verbindungen sind Verbindungen der allgemeinen Formel (I)

$$A^1 - L^1 - (X)_m - L^2 - A^2 \quad (I)$$

worin

X für eine beliebige α , β oder γ -Aminosäure mit D- oder L-Konfiguration und

m für eine Zahl von 5 bis 30 steht, wobei die resultierende Aminosäuresequenz $(X)_m$, welche aus beliebigen aneinander gereihten Aminosäuren X besteht, geradkettiger Natur oder über eine Disulfidbrücke zwischen zwei Cysteinen oder Homocysteinen oder amidisch zwischen N- und C-Terminus cyclisiert sein kann und für die Aminosäuresequenz des vasoaktiven intestinalen Peptids (VIP), des Somatostatins oder des Neuropeptides Y, oder für Fragmente, Teilsequenzen, Derivate oder Analoga des VIP, des Somatostatins oder des Neuropeptides Y steht,

A¹ für ein Wasserstoffatom, eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyporphosphonsäure steht, welche eine Arylgruppe oder einen Heteroaromatenten enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert,

L¹ und L² unabhängig voneinander einen Acetylrest oder einen Alkylrest mit bis zu 10 C-Atomen, der gegebenenfalls mit 1 bis 3 Carboxygruppen und/oder 1 bis 6 Hydroxygruppen und/oder 1 bis 6 Amidgruppen substituiert sein kann, oder einen Poly(oxyethylen)rest mit 2 bis 30 -CH₂CH₂O-Einheiten darstellen,

A² für eine Hydroxygruppe, eine Aminogruppe, eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyporphosphonsäure steht, welche eine Arylgruppe oder einen Heteroaromatenten enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert,

unter der Bedingung, daß mindestens einer der Reste A¹ oder A² eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyporphosphonsäure darstellt, welche eine Arylgruppe oder einen Heteroaromatenten enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert,

wobei für den Fall, daß A¹ und/oder A² eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyporphosphonsäure darstellen, welche eine Arylgruppe oder einen Heteroaromatenten enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert, A¹ an die N-terminale Aminogruppe und A² an eine Aminogruppe der Amino-

säure Lysin oder an eine Hydroxygruppe der Aminosäure Serin oder an die Mercaptogruppe der Aminosäure Cystein oder Homocystein in beliebiger Position innerhalb der Aminosäuresequenz (X_m) geknüpft ist, und deren physiologisch verträgliche Salze.

[0007] Der Begriff "Aminosäure" im Sinne dieser Erfindung steht für eine Carbonsäure mit einer oder mehreren Aminogruppen im Molekül sowie für cyclisierte Aminosäuren wie z.B. Pyroglutaminsäure.

[0008] Bevorzugte Chelatoren (Komplexbildner) sind Derivate der Diethylentriaminpentaessigsäure (DTPA) und des 1,4,7,10-Tetraazacyclododecans (DOTA).

[0009] Von den DTPA-Derivaten sind solche der allgemeinen Formeln (II), (III) und (IV) bevorzugt:

10

20

30

45

worin Z unabhängig voneinander für ein Wasserstoffatom oder ein Metallionenäquivalent eines Elementes der Ordnungszahlen 57 bis 83 steht, und worin R für einen offenkettigen oder cyclischen, verzweigten oder unverzweigten C_1 - C_{10} -Alkylrest steht, welcher mindestens einen aromatischen Ring sowie gegebenenfalls 1 bis 5 Sauerstoffatome, 1 bis 3 Carboxygruppen und/oder 1 bis 3 Amidgruppen enthält, oder worin R einen der folgenden Reste darstellt:

55

5

10

15

20

25

30

35

40

worin T jeweils die Verknüpfungsstelle mit dem Peptid darstellt, p für eine Zahl 0 oder 1 steht und n für eine Zahl zwischen 2 und 6 steht.

45 [0010] Von den DOTA-Derivaten sind solche der allgemeinen Formel (IX) bevorzugt:

55

EP 1 170 021 A2

worin R¹ einen Rest—CHR⁵-COM darstellt, worin M für eine OZ-Gruppe steht, mit Z in der obengenannten Bedeutung, oder die Verknüpfung zum Peptid darstellt, und worin R⁵ für einen Rest (VIII) oder
5 für eine C₁-C₂₀-Alkylgruppe steht, welche mindestens eine Arylgruppe oder einen Heteroaromat, welche gegebenenfalls mit einem Halogenatom substituiert sein können, und mindestens eine weitere COOH-Gruppe oder eine Isothiocyanatgruppe enthält, und welche gegebenenfalls 1 bis 3 Sauerstoffatome und/oder 1 bis 3 Amidgruppen enthält, und worin R² bis R⁴ unabhängig voneinander einen Rest CH₂COOZ, einen Phosphonsäurerest oder eine Gruppe —(CH₂)_p-Y darstellen, in der p für 0 oder 1 steht und Y einen gegebenenfalls substituierten Heteroaromat darstellt.
[0011] Weitere bevorzugte Komplexbildner sind die folgenden Verbindungen der allgemeinen Formel (X):

10

15

20

worin R⁶ einen Rest—CHR⁹-COM darstellt, worin M für eine OZ-Gruppe steht oder die Verknüpfung zum Peptid darstellt, und worin R⁹ für einen Rest (VIII) oder eine C₁-C₆-Alkylgruppe steht, welche gegebenenfalls eine weitere COOH-Gruppe oder eine Isothiocyanatgruppe enthält, und welche gegebenenfalls 1 bis 2 Sauerstoffatome und/oder 1 bis 2 Amidgruppen enthält,
25 und worin R⁷ und R⁸ unabhängig voneinander einen Rest CH₂COOZ oder einen Phosphonsäurerest darstellen.

[0012] Die Metallkomplexe enthalten bevorzugt ein Terbium- oder Europiumkation.

[0013] Die rezeptorbindenden Peptide sind das native vasoaktive intestinale Peptid (VIP), das Somatostatin oder
30 das Neurotensin sowie Fragmente, Teilsequenzen, Derivate oder Analoga des VIP, des Somatostatins oder des Neurotensins.

[0014] Das native VIP wird durch die Aminosäuresequenz

35

HSDAVFTDNYTRLRKQMAVKKYLNSILN

beschrieben.

[0015] Das Somatostatin wird durch die Aminosäuresequenz

40

AGCKNFFWKTFTSC

45

beschrieben.

[0016] Das Neurotensin wird durch die Aminosäuresequenz

50

Pyroglutaminsäure-LYENKPRRPYIL

beschrieben.

[0017] Als Fragmente, Teilsequenzen, Derivate oder Analoga des VIP seien beispielhaft die folgenden Verbindungen
55 genannt:

5	RLRKQMAVKYLNSILN	RLRKQMAVKYLNSIL	RLRKQMAVKYLNSI
	LRKQMAVKYLNSILN	LRKQMAVKYLNSIL	LRKQMAVKYLNSI
	RKQMAVKYLNSILN	RKQMAVKYLNSIL	RKQMAVKYLNSI
10	KQMAVKYLNSILN	KQMAVKYLNSIL	KQMAVKYLNSI
	QMAVKYLNSILN	QMAVKYLNSIL	QMAVKYLNSI
	MAVKYLNSILN	MAVKYLNSIL	MAVKYLNSI
15	AVKYLNSILN	AVKYLNSIL	AVKYLNSI

20	RLRKQMAVKYLNS	RLRKQMAVKYLN	RLRKQMAVKYL
	LRKQMAVKYLNS	LRKQMAVKYLN	LRKQMAVKYL
	RKQMAVKYLNS	RKQMAVKYLN	RKQMAVKYL
25	KQMAVKYLNS	KQMAVKYLN	KQMAVKYL
	QMAVKYLNS	QMAVKYLN	QMAVKYL
	MAVKYLNS	MAVKYLN	MAVKYL
30	AVKYLNS	AVKYLN	AVKYL

[0018] Weitere Beispiele für Fragmente, Teilesequenzen, Derivate oder Analoga des VIP sind die folgenden Verbindungen:

35	rlrkqmavkylnsiln	rlrkqmavkylnsil	rlrkqmavkylnsi
	lrkqmavkylnsiln	lrkqmavkylnsil	lrkqmavkylnsi
	rkqmavkylnsiln	rkqmavkylnsil	rkqmavkylnsi
40	kqmavkylnsiln	kqmavkylnsil	kqmavkylnsi
	qmavkylnsiln	qmavkylnsil	qmavkylnsi
	mavkylnsiln	mavkylnsil	mavkylnsi

50	avkylnsiln	avkylnsil	avkylnsi
----	------------	-----------	----------

	RLRKQMAvKKyLNSILN	RLRKQMAvKKyLNSIL	RLRKQMAvKKyLNSI
5	LRKQMAvKKyLNSILN	LRKQMAvKKyLNSIL	LRKQMAvKKyLNSI
	RKQMAvKKyLNSILN	RKQMAvKKyLNSIL	RKQMAvKKyLNSI
	KQMAvKKyLNSILN	KQMAvKKyLNSIL	KQMAvKKyLNSI
10	QMAvKKyLNSILN	QMAvKKyLNSIL	QMAvKKyLNSI
	MAvKKyLNSILN	MAvKKyLNSIL	MAvKKyLNSI
	AvKKyLNSILN	AvKKyLNSIL	AvKKyLNSI

[0019] Weiter können 1 bis m Aminosäuren unabhängig voneinander gegen ihre jeweilige D-Aminosäure oder gegen andere L- oder D-Aminosäuren ausgetauscht sein, wobei m die oben angegebene Bedeutung hat. Sämtliche Aminosäuren (X_m) können auch gegen ihre jeweilige D-Aminosäure ausgetauscht sein. Als Fragmente, Teilsequenzen, Derivate oder Analoga des vasoaktiven intestinalen Peptides können auch retrosynthetische Aminosäuresequenzen ausgewählt sein. Bei diesen retrosynthetischen Aminosäuresequenzen können 1 bis m Aminosäuren gegen die jeweilige D-Aminosäure ausgetauscht sein.

[0020] Ferner seien im folgenden weitere Beispiele für VIP-Analoga aufgeführt:

25	FSDAVFTDNY TRLRKQMAVK KYLNSILN
	ISDAVFTDNY TRLRKQMAVK KYLNSILN
	LSDAVFTDNY TRLRKQMAVK KYLNSILN
30	HFDAVFTDNY TRLRKQMAVK KYLNSILN
	HHDAVFTDNY TRLRKQMAVK KYLNSILN
	HIDA VFTDNY TRLRKQMAVK KYLNSILN
35	HLDAVFTDNY TRLRKQMAVK KYLNSILN
	HMDAVFTDNY TRLRKQMAVK KYLNSILN
	HQDAVFTDNY TRLRKQMAVK KYLNSILN
40	HTDAVFTDNY TRLRKQMAVK KYLNSILN

45

50

55

5 HVDAVFTDNY TRLRKQMAVK KYLNSILN
HWDAVFTDNY TRLRKQMAVK KYLNSILN
HYDAVFTDNY TRLRKQMAVK KYLNSILN
HSAAVFTDNY TRLRKQMAVK KYLNSILN
HSEAVFTDNY TRLRKQMAVK KYLNSILN
HSFAVFTDNY TRLRKQMAVK KYLNSILN
HSHAVFTDNY TRLRKQMAVK KYLNSILN
HSIAVFTDNY TRLRKQMAVK KYLNSILN
HSLAVFTDNY TRLRKQMAVK KYLNSILN
HSMAVFTDNY TRLRKQMAVK KYLNSILN
HSWAVFTDNY TRLRKQMAVK KYLNSILN
HSDFVFTDNY TRLRKQMAVK KYLNSILN
HSDGVFTDNY TRLRKQMAVK KYLNSILN
HSDMVFTDNY TRLRKQMAVK KYLNSILN
HSDQVFTDNY TRLRKQMAVK KYLNSILN
HSDSVFTDNY TRLRKQMAVK KYLNSILN
HSDWVFTDNY TRLRKQMAVK KYLNSILN
HSDYVFTDNY TRLRKQMAVK KYLNSILN
HSDAFFTDNY TRLRKQMAVK KYLNSILN
HSDAIFTDNY TRLRKQMAVK KYLNSILN
HSDALFTDNY TRLRKQMAVK KYLNSILN
HSDAMFTDNY TRLRKQMAVK KYLNSILN
HSDATFTDNY TRLRKQMAVK KYLNSILN
HSDAWFTDNY TRLRKQMAVK KYLNSILN
HSDAYFTDNY TRLRKQMAVK KYLNSILN
HSDAVKTDNY TRLRKQMAVK KYLNSILN
HSDAVFVDNY TRLRKQMAVK KYLNSILN
HSDAVFWDNY TRLRKQMAVK KYLNSILN
HSDAVFTDNW TRLRKQMAVK KYLNSILN
HSDAVFTDNY TRRRKQMAVK KYLNSILN
HSDAVFTDNY TRWRKQMAVK KYLNSILN

55

5 HSDAVFTDNY TRLRFQMAVK KYLNSILN
HSDAVFTDNY TRLRLQMAVK KYLNSILN
HSDAVFTDNY TRLRMQMAVK KYLNSILN
HSDAVFTDNY TRLRRQMAVK KYLNSILN
HSDAVFTDNY TRLRKAMAVK KYLNSILN
10 HSDAVFTDNY TRLRKFMAVK KYLNSILN
HSDAVFTDNY TRLRKIMAVK KYLNSILN
HSDAVFTDNY TRLRKKMAVK KYLNSILN
HSDAVFTDNY TRLRKLMAVK KYLNSILN
HSDAVFTDNY TRLRKMMAVK KYLNSILN
15 HSDAVFTDNY TRLRKRMAVK KYLNSILN
HSDAVFTDNY TRLRKVMAVK KYLNSILN
HSDAVFTDNY TRLRKWMAVK KYLNSILN
HSDAVFTDNY TRLRKYMAVK KYLNSILN
HSDAVFTDNY TRLRKQFAVK KYLNSILN
20 HSDAVFTDNY TRLRKQIAVK KYLNSILN
HSDAVFTDNY TRLRKQKAVK KYLNSILN
HSDAVFTDNY TRLRKQLAVK KYLNSILN
HSDAVFTDNY TRLRKQQAVK KYLNSILN
HSDAVFTDNY TRLRKQRAVK KYLNSILN
25 HSDAVFTDNY TRLRKQWAVK KYLNSILN
HSDAVFTDNY TRLRKQMFK KYLNSILN
HSDAVFTDNY TRLRKQMIVK KYLNSILN
HSDAVFTDNY TRLRKQMVK KYLNSILN
HSDAVFTDNY TRLRKQMLVK KYLNSILN
30 HSDAVFTDNY TRLRKQMVMVK KYLNSILN
HSDAVFTDNY TRLRKQMVK KYLNSILN
HSDAVFTDNY TRLRKQMVRVK KYLNSILN
HSDAVFTDNY TRLRKQMVVK KYLNSILN
HSDAVFTDNY TRLRKQMWWVK KYLNSILN
35 HSDAVFTDNY TRLRKQMYVK KYLNSILN
HSDAVFTDNY TRLRKQMYVK KYLNSILN
HSDAVFTDNY TRLRKQMYVK KYLNSILN
HSDAVFTDNY TRLRKQMYVK KYLNSILN
40 HSDAVFTDNY TRLRKQMYVK KYLNSILN
45 HSDAVFTDNY TRLRKQMYVK KYLNSILN
50 HSDAVFTDNY TRLRKQMYVK KYLNSILN
HSDAVFTDNY TRLRKQMYVK KYLNSILN
HSDAVFTDNY TRLRKQMYVK KYLNSILN
HSDAVFTDNY TRLRKQMYVK KYLNSILN
55 HSDAVFTDNY TRLRKQMYVK KYLNSILN

5 HSDAVFTDNY TRLRKQMAAK KYLNSILN
 HSDAVFTDNY TRLRKQMAIK KYLNSILN
 HSDAVFTDNY TRLRKQMALK KYLNSILN
 HSDAVFTDNY TRLRKQMAVR KYLNSILN
 10 HSDAVFTDNY TRLRKQMAVK RYLN SILN
 HSDAVFTDNY TRLRKQMAVK WYLNSILN
 HSDAVFTDNY TRLRKQMAVK KFLNSILN
 15 HSDAVFTDNY TRLRKQMAVK KWLN SILN
 HSDAVFTDNY TRLRKQMAVK KYLASILN
 HSDAVFTDNY TRLRKQMAVK KYLFSILN
 20 HSDAVFTDNY TRLRKQMAVK KYLISILN
 HSDAVFTDNY TRLRKQMAVK KYLMSILN
 HSDAVFTDNY TRLRKQMAVK KYLSSILN
 25 HSDAVFTDNY TRLRKQMAVK KYLV SILN
 HSDAVFTDNY TRLRKQMAVK KYLWSILN
 HSDAVFTDNY TRLRKQMAVK KYLNNILN
 HSDAVFTDNY TRLRKQMAVK KYLNRILN
 30 HSDAVFTDNY TRLRKQMAVK KYLNWILN
 HSDAVFTDNY TRLRKQMAVK KYLNYILN
 HSDAVFTDNY TRLRKQMAVK KYLNSLLN
 HSDAVFTDNY TRLRKQMAVK KYLNSSLN
 35 HSDAVFTDNY TRLRKQMAVK KYLNSWLN
 HSDAVFTDNY TRLRKQMAVK KYLNSYLN
 HSDAVFTDNY TRLRKQMAVK KYLN SIFN
 HSDAVFTDNY TRLRKQMAVK KYLN SIIN
 40 HSDAVFTDNY TRLRKQMAVK KYLN SIWN
 HSDAVFTDNY TRLRKQMAVK KYLN SILW
 45
 50

[0021] Weiter können VIP-Analoga verwendet werden, die durch die folgende Formel beschrieben werden:

55 HSDAVFTX¹X²Y X³RLRKQMAVK KYLNSILN,

worin X¹, X² und X³ jede beliebige Aminosäure darstellen können.

[0022] Als Fragmente, Teilsequenzen, Derivate oder Analoga des Somatostatins können folgende Sequenzen aus-

gewählt sein:

[0023] Als Fragmente, Teilsequenzen, Derivate oder Analoga des Neurotensins können folgende Sequenzen ausgewählt sein:

50 [0024] Die Terbiumkomplexe emittieren nach Einstrahlung von nicht sichtbarem Licht der Wellenlänge 250 bis 450 nm eine langlebige Fluoreszenz im Millisekundenbereich, welche Wellenlängen im Bereich von 480 bis 600 nm aufweist. In diesem Wellenlängenbereich ist das menschliche Auge am empfindlichsten. Die langlebige Fluoreszenz der erfindungsgemäßen Verbindungen überdauert die bei der endoskopischen Untersuchung auftretende Autofluoreszenz des Gewebes. Die endoskopische Diagnostik von oberflächlichen Tumoren wird durch die erfindungsgemäßen Verbindungen wesentlich erleichtert. Ähnliche Vorteile ergeben sich durch die Möglichkeit der topischen Applikation (z.B. durch Versprühen).

[0025] Eine Anreicherung im krankhaften Gewebe wird auch durch i.v.-Applikation erreicht. Werden die erfindungsgemäßen Substanzen während einer Operation interstitiell appliziert, reichern sie sich in den sogenannten "Wächter-

Lymphknoten" an. Der Chirurg kann dadurch diesen Lymphknoten durch seine Fluoreszenz besser erkennen und entsprechende therapierelevante Entscheidungen treffen.

[0026] Die erfindungsgemäßen Substanzen sind daher besonders geeignet zur In-vivo-Diagnostik von Tumoren, anderen erkrankten Gewebebereichen oder Adenomen mittels optischer Detektionsverfahren, oder zur In-vivo-Fluoreszenzdiagnostik von Tumoren, Tumorzellen und/oder entzündlichen Geweben mittels endoskopischer Verfahren im Gastrointestinaltrakt, Oesophagus, Bronchialtrakt, der Blase oder der Zervix.

[0027] Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur endoskopischen In-vivo-Fluoreszenzdiagnostik unter Verwendung der erfindungsgemäßen Verbindungen, wobei dem Patienten die Verbindungen topisch durch Versprühen im Gastrointestinaltrakt, Oesophagus, der Blase, oder durch Inhalation den Bronchien zugeführt werden. Im Falle des Versprühens im Gastrointestinaltrakt, im Oesophagus und der Blase wird der nicht gebundene, überschüssige Anteil der Verbindung anschließend durch Waschen entfernt. Schließlich wird die endoskopische Untersuchung durch örtliche Anregung mit einer aus dem Spektralbereich von 250 bis 450 nm ausgewählten Anregungswellenlänge und durch ortsabhängige Detektion der spezifischen, von der Verbindung emittierten Fluoreszenzstrahlung durchgeführt.

[0028] Die Synthese der Verbindungen erfolgt nach den dem Fachmann bekannten Verfahren. Detaillierte Syntheseverorschriften befinden sich in den nachfolgenden Beispielen. Eine besonders vorteilhafte Möglichkeit der Synthese der Konjugate ergibt sich durch den Einbau einer Essigsäureeinheit an den Aromaten des Metallkomplexes. Diese Carbonsäure, die sich außerhalb des Metallkomplexes befindet, ist besonders gut aktivierbar, wobei die Stabilität des Komplexes durch die Aktivierung nicht beeinflußt wird. Dadurch kann der Metallkomplex unter besonders milden Reaktionsbedingungen an ein Peptid gekoppelt werden. Der Vorteil nur einer aktivierbaren Gruppe, wie z.B. einer Carboxylgruppe, oder einer bereits aktivierten Gruppe, wie z.B. einem Isothiocyanat, einer Halogenalkylgruppe oder einer Halogenacetylgruppe, besteht darin, daß eine chemisch einheitliche Kopplung erfolgen kann. Die Halogenacetylgruppe hat den besonderen Vorteil, daß eine chemisch einheitliche Kopplung an die Mercaptogruppe des Cysteins oder Homocysteins erfolgt. Diese Kopplung kann in Lösung an das ungebundene und von Schutzgruppen befreite Peptid erfolgen. Durch die aktivierten Gruppen ist eine Kopplung an Peptide möglich, ohne daß Nebenreaktionen auftreten. Bei dem neuen Herstellungsverfahren wird demnach zunächst ein Metallkomplex hergestellt, welcher anschließend durch Aminolyse des entsprechenden Aktivesters an ein Peptid gekoppelt wird.

[0029] Gegenstand der Erfindung ist auch ein optisches Diagnostikum zur in-vivo-Diagnostik erkrankter Gewebebereiche, welches mindestens eine erfindungsgemäße Verbindung zusammen mit den üblichen Hilfs- und/oder Trägerstoffen sowie Verdünnungsmitteln enthält. Derartige galenische Zubereitungen werden vorteilhafterweise durch Sterilfiltration der entsprechenden Lösungen hergestellt.

[0030] Erfindungsgemäße Verbindungen, die paramagnetische Metallatome enthalten, sind darüber hinaus für die Magnetresonanz-Bildgebung und —Spektroskopie geeignet.

[0031] Die nachfolgenden Beispiele erläutern die Erfindung.

Beispiel 1

[0032] N-Terminal verknüpftes Peptid-Konjugat mit dem Terbiumkomplex des Dinatriumsalzes von N,N-Bis-[2-[N',N'-bis-(carboxymethyl)-amino]-ethyl]-L-3-[(4-carboxymethoxy)-phenyl]-alanin

a) N,N-Bis-[2-[N',N'-bis-(benzyloxycarbonyl-methyl)-amino]-ethyl]-L-3-[(4-benzyloxycarbonylmethoxy)-phenyl]-alaninbenzylester

[0033] 1,9 g (2 mmol) N,N-Bis-[2-[N',N'-bis-(benzyloxycarbonyl-methyl)-amino]-ethyl]-L-tyrosinbenzylester (WO 96/26180, Beispiel 1a) werden in 10 ml wasserfreiem N,N-Dimethylformamid gelöst und bei 0°C unter Argon mit 53 mg (2,2 mmol) Natriumhydriddispersion (60 % in Mineralöl) versetzt. Man läßt den Ansatz 15 Minuten röhren, gibt dann 0,5 g (2,3 mmol) Bromessigsäurebenzylester zu, läßt die Reaktionsmischung auf Raumtemperatur kommen und röhrt weitere sechs Stunden. Zur Aufarbeitung wird der Ansatz in Toluol aufgenommen und mehrmals gegen wässrige Natriumhydrogencarbonatlösung ausgeschüttelt. Die organische Phase wird abgetrennt, über Magnesiumsulfat getrocknet, filtriert und eingedampft. Der ölige Rückstand wird an Kieselgel chromatographiert, die produktinhaltigen Fraktionen werden vereint und eingedampft.

Ausbeute: 2,0 g (91 % d. Th.) farbloses Öl.

Analyse (bezogen auf lösungsmittelfreie Substanz):				
ber.	C 71,09	H 6,15	N 3,83	O 18,94
gef.	C 71,01	H 6,28	N 3,67	

b) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-carboxymethoxy)-phenyl]-alanin

[0034] Eine Lösung von 1,9 g (1,7 mmol) N,N-Bis-{2-[N',N'-bis-(benzyloxycarbonylmethyl)-amino]-ethyl}-L-3-[(4-benzyloxycarbonylmethoxy)-phenyl]-alaninbenzylester (Beispiel 1a) in 15 ml Methanol wird mit 0,2 g Palladium auf Aktivkohle (10 % Pd) versetzt und unter Wasserstoffatmosphäre über Nacht kräftig gerührt. Anschließend wird filtriert und das Filtrat im Vakuum eingedampft.

Ausbeute: 0,9 g (95 % d. Th.) farbloses Öl.

Analyse (bezogen auf lösungsmittelfreie Substanz):						
ber.	C 49,55	H 5,60	N 7,54	O 37,31		
gef.	C 49,37	H 5,72	N 7,40			

c) Terbiumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-carboxymethoxy)-phenyl]-alanin

[0035] 0,8 g (1,4 mmol) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-carboxymethoxy)-phenyl]-alanin (Beispiel 1b) werden zusammen mit 0,7 g (1,4 mmol) Terbiumcarbonat in 10 ml Wasser vier Stunden bei 50°C gerührt. Anschließend wird filtriert, eingedampft und an Kieselgel RP-18 chromatographisch (Wasser/Acetonitril) gereinigt.

Ausbeute: 1,0 g (94 % der Theorie) farbloser Feststoff.

Analyse (bezogen auf lösungsmittelfreie Substanz):						
ber.	C 36,48	H 3,46	N 5,55	Na 6,07	Tb 20,98	O 27,46
gef.	C 36,24	H 3,55	N 5,39	Na 5,93	Tb 20,84	

d) N-Terminal verknüpftes Peptid-Konjugat mit dem Terbiumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-carboxymethoxy)-phenyl]-alanin

[0036] 0,3 g (0,4 mmol) Terbiumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-carboxymethoxy)-phenyl]-alanin (Beispiel 1c) werden in 2 ml Dimethylsulfoxid gelöst und bei 60°C mit 50 mg (0,45 mmol) N-Hydroxysuccinimid und 93 mg (0,45 mmol) Dicyclohexylcarbodiimid umgesetzt. Nach einer Stunde kühlt man auf Raumtemperatur ab und setzt mit 35 mg (0,03 mmol) dPhe-cyclo-[Cys-Phe-dTrp-Z-Lys-Thr-Cys]-Thr-OH um. Nach 4 Stunden fällt man das Produkt mit Ether, saugt die Fällung ab und wäscht den Feststoff mehrmals mit Ether. Das Zwischenprodukt wird in Wasser/Methanol aufgenommen und an Palladium auf Aktivkohle hydriert. Nach drei Stunden bei Raumtemperatur wird filtriert und das Filtrat gefriergetrocknet. Das Terbiumkomplex-Peptid-Konjugat kann zur Reinigung dialysiert werden oder per HPLC chromatographiert werden.

Ausbeute: 36 mg (68 % der Theorie).

Analyse (bezogen auf lösungsmittelfreie Substanz):							
ber.	C 48,79	H 5,00	N 10,27	Na 2,59	Tb 8,97	S 3,62	O 20,76
gef.	C 48,62	H 4,88	N 9,98	Na 2,31	Tb 8,82	S 3,50	

Beispiel 2

[0037] Europiumkomplex des Dinatriumsalzes der 3,6,9-Triaza-3,6,9-tris-(carboxymethyl)-4-(4-carboxymethoxybenzyl)-undecandisäure

a) 3,6,9-Triaza-3,6,9-tris-(tert.-butoxycarbonylmethyl)-4-(4-tert.-butoxycarbonylmethoxybenzyl)-undecandisäure-di-tert.-butylester

[0038] 1,56 g (2 mmol) N,N-Bis-{2-[N',N'-bis-(tert.-butoxycarbonyl-methyl)-amino]-ethyl}-L-tyrosintert.-butylester (DOS 3710730) werden in 8 ml wasserfreiem N,N-Dimethylformamid gelöst und bei 0°C unter Argon mit 53 mg (2,2 mmol) Natriumhydriddispersion (60 % in Mineralöl) versetzt. Man lässt den Ansatz 20 Minuten röhren, gibt dann 0,45 g (2,3 mmol) Bromessigsäure-tert.-butylester zu, lässt die Reaktionsmischung auf Raumtemperatur kommen und röhrt weitere fünf Stunden. Zur Aufarbeitung wird der Ansatz in Toluol aufgenommen und mehrmals gegen wässrige Natri-

EP 1 170 021 A2

umhydrogencarbonatlösung ausgeschüttelt. Die organische Phase wird abgetrennt, über Magnesiumsulfat getrocknet, filtriert und eingedampft. Der ölige Rückstand wird an Kieselgel chromatographiert, die produkthaltigen Fraktionen werden vereint und eingedampft.

Ausbeute: 1,6 g (89 % d. Th.) farbloses Öl.

5

Analyse (bezogen auf lösungsmittelfreie Substanz):				
	C	H	N	O
ber.	C 63,13	H 8,91	N 4,70	O 23,26
gef.	C 62,94	H 9,03	N 4,58	

10

b) 3,6,9-Triaza-3,6,9-tris-(carboxymethyl)-4-(4-carboxymethoxybenzyl)-undecandisäure

[0039] 1,5 g (1,7 mmol) 3,6,9-Triaza-3,6,9-tris-(tert.-butoxycarbonylmethyl)-4-(4-tert.-butoxycarbonylmethoxybenzyl)-undecandisäure-di-tert.-butylester (Beispiel 2a) werden in 0,8 ml (11 mmol) Trifluoressigsäure gelöst und 12 Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung verdünnt man mit Wasser und dampft zur Trockne ein. Dieser Vorgang wird mehrmals wiederholt. Anschließend wird eine wäßrige Lösung des Produktes über eine Anionenaustauschersäule gereinigt und die produkthaltigen Fraktionen eingedampft.

Ausbeute: 0,8 g (83 % d. Th.) farbloses Öl.

20

Analyse (bezogen auf lösungsmittelfreie Substanz):				
	C	H	N	O
ber.	C 49,55	H 5,60	N 7,54	O 37,31
gef.	C 49,39	H 5,72	N 7,63	

25 c) Europiumkomplex des Dinatriumsalzes der 3,6,9-Triaza-3,6,9-tris-(carboxymethyl)-4-(4-carboxymethoxybenzyl)-undecandisäure

[0040] 0,7 g (1,2 mmol) 3,6,9-Triaza-3,6,9-tris-(carboxymethyl)-4-(4-carboxymethoxybenzyl)-undecandisäure (Beispiel 2b) werden in 5 ml Wasser gelöst und mit 290 mg (0,6 mmol) Europiumcarbonat versetzt. Man addiert 0,5 ml Essigsäure und refluxiert über Nacht. Nach beendeter Komplexbildung reinigt man das Rohprodukt über eine Ionenaustauschersäule und lyophilisiert die produkthaltigen Fraktionen.

Ausbeute: 0,8 g (94 % der Theorie) farbloses Lyophilisat.

35

Analyse (bezogen auf wasserfreie Substanz):				
	C	H	N	Eu
ber.	C 39,10	H 4,00	N 5,95	Eu 21,51
gef.	C 38,98	H 4,13	N 5,76	Eu 21,43

[0041] Die Umsetzung von Beispiel 2c zum Europiumkomplex-Peptid-Konjugat erfolgt analog zu Beispiel 1d.

40

Beispiel 3

[0042] Terbiumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-N'-(2-carboxynaphthylcarbonyl)-L-lysin

45

a) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-N'-(benzyloxycarbonyl)-L-lysin-tert.-butylester

[0043] 1,2 g (3,3 mmol) H-Lys(Z)-OtBu*HCl (Bachem) und 2,6 g (7,3 mmol) N,N-Bis-{(tert.-butyloxycarbonyl)-methyl}-2-bromethylamin (M. Williams und H. Rapoport, J. Org. Chem. 58, 1151 (1993)) werden in 15 ml Acetonitril vorgelegt und mit 3 ml 2 n Phosphatpufferlösung (pH 8,0) versetzt. Der Ansatz wird bei Raumtemperatur 20 Stunden kräftig gerührt, wobei die wäßrige Phosphatpufferphase nach 2 und 8 Stunden gegen frische Pufferlösung ausgetauscht wird. Dann wird die organische Phase im Vakuum eingedampft und der Rückstand an Kieselgel mit Hexan/Essigsäureethylester/Triethylamin chromatographiert. Die produkthaltigen Fraktionen werden im Vakuum eingedampft. Ausbeute: 2,5 g (86 % d. Th.) farbloses Öl.

55

Analyse (bezogen auf lösungsmittelfreie Substanz):				
	C	H	N	O
ber.	C 62,85	H 8,94	N 6,37	O 21,84

(fortgesetzt)

Analyse (bezogen auf lösungsmittelfreie Substanz):				
gef.	C 62,69	H 9,02	N 6,44	

5

b) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-L-lysin-tert.-butylester

[0044] 2,3 g (2,6 mmol) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-N'-(benzyloxycarbonyl)-L-lysin-tert.-butylester (Beispiel 3a) werden in 20 ml Ethanol gelöst und nach Zugabe von 0,1 g Palladium auf Aktivkohle (10% Palladium) bis zur beendeten Wasserstoffaufnahme hydriert. Anschließend wurde filtriert und das Filtrat vollständig eingedampft.

Ausbeute: 1,9 g (98 % d. Th.) farbloses Öl.

15

Analyse (bezogen auf lösungsmittelfreie Substanz):				
ber.	C 61,26	H 9,74	N 7,52	O 21,48
gef.	C 61,12	H 9,65	N 7,39	

20

c) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-N'-(2-carboxynaphthylcarbonyl)-L-lysin-tert.-butylester

[0045] 1,52 g (2 mmol) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-L-lysin-tert.-butylester (Beispiel 3b) werden in 15 ml Dioxan gelöst, mit 0,56 ml (4 mmol) Triethylamin und 420 mg (2 mmol) Naphthalsäure-anhydrid versetzt. Man röhrt 20 Stunden bei Raumtemperatur, dampft zur Trockne ein und extrahiert den Rückstand mehrmals mit tert.-Butylmethylether. Der Extrakt wird eingeeengt und das Rohprodukt an Kieselgel chromatographiert.

Ausbeute: 1,4 g (74 % d. Th.)

25

30

Analyse (bezogen auf lösungsmittelfreie Substanz):				
ber.	C 63,67	H 8,34	N 5,94	O 22,05
gef.	C 63,49	H 8,26	N 6,08	

d) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-N'-(2-carboxynaphthylcarbonyl)-L-lysin

[0046] 1,3 g (1,4 mmol) N,N-Bis-{2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl}-N'-(2-carboxynaphthylcarbonyl)-L-lysin-tert.-butylester (Beispiel 3c) werden in 0,7 ml (9 mmol) Trifluoressigsäure gelöst und 6 Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung verdünnt man mit Wasser und dampft zur Trockne ein. Dieser Vorgang wird mehrmals wiederholt. Anschließend wird eine wäßrige Lösung des Produktes über eine Anionenaustauschersäule gereinigt und die produkthaltigen Fraktionen eingedampft.

Ausbeute: 0,75 g (81 % d. Th.) farbloser Feststoff.

40

45

Analyse (bezogen auf lösungsmittelfreie Substanz):				
ber.	C 54,38	H 5,78	N 8,45	O 31,39
gef.	C 54,21	H 5,86	N 8,61	

e) Terbiumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-N'-(2-carboxynaphthylcarbonyl)-L-lysin

[0047] 0,6 g (0,9 mmol) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-N'-(2-carboxynaphthylcarbonyl)-L-lysin (Beispiel 3d) werden zusammen mit 225 mg (0,45 mmol) Terbiumcarbonat in 5 ml Wasser fünf Stunden bei 45°C gerührt. Anschließend wird filtriert, eingedampft und an Kieselgel RP-18 chromatographisch (Wasser/Acetonitril) gereinigt.

Ausbeute: 690 mg (89 % der Theorie) farbloser Feststoff.

55

Analyse (bezogen auf lösungsmittelfreie Substanz):						
ber.	C 41,78	H 3,86	N 6,50	Na 5,33	Tb 18,43	O 24,11

(fortgesetzt)

Analyse (bezogen auf lösungsmittelfreie Substanz):

gef.	C 41,59	H 3,97	N 6,34	Na 5,50	Tb 18,26
------	---------	--------	--------	---------	----------

5

[0048] Die Verknüpfung mit einem erfindungsgemäßen Peptid erfolgt analog zu Beispiel 1d.

Beispiel 4

[0049] N-Terminal verknüpftes Peptid-Konjugat mit dem Gadoliniumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-thiocarbonylamino)-phenyl]-alanin

a) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-isothiocyanato)-phenyl]-alanin

[0050] 155 mg (0,31 mmol) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-3-(4-aminophenyl)-alanin (JOC 58, 1151, 1993) werden in 5 ml Methanol gelöst und mit einer 0,2 normalen Lösung von Thiophosgen in Chloroform (1,7 ml, 0,34 mmol) versetzt und eine Stunde bei Raumtemperatur gerührt. Anschließend wird die Reaktionsmischung zur Trockne eingedampft, in Methanol aufgenommen und mit Aceton gefällt. Der Feststoff wird mit Aceton gewaschen und im Vakuum getrocknet.

Ausbeute: 0,16 g (95 % d. Th.) schwachgelber Feststoff.

Analyse (bezogen auf lösungsmittelfreie Substanz):

ber.	C 48,88	H 5,22	N 10,36	S 5,93	O 31,39
gef.	C 48,65	H 5,34	N 10,23	S 5,76	

25

b) Gadoliniumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-isothiocyanato)-phenyl]-alanin

[0051] 100 mg (0,18 mmol) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-isothiocyanato)-phenyl]-alanin (Beispiel 4a) werden in 3 ml Methanol gelöst und mit 66 mg (0,18 mmol) Gadoliniumchlorid in 3 ml Methanol versetzt. Nach 30 Minuten neutralisiert man mit 0,1 normaler NaOH in Methanol, röhrt weitere 30 Minuten und dampft anschließend zur Trockne ein. Der Rückstand wird in Methanol aufgenommen und mit Aceton gefällt. Die Fällung wird mit Aceton gewaschen, in Wasser aufgenommen, filtriert und lyophilisiert.

Ausbeute: 0,12 g (90 % d. Th.) farbloser Feststoff.

Analyse (bezogen auf lösungsmittelfreie Substanz):

ber.	C 35,77	H 3,14	N 7,58	S 4,34	Gd 21,29	Na 6,22	O 21,66
gef.	C 35,59	H 2,96	N 7,45	S 4,19	Gd 21,11	Na 5,96	

35

c) N-Terminal verknüpftes Peptid-Konjugat mit dem Gadoliniumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-thiocarbonylamino)-phenyl]-alanin

[0052] 74 mg (0,1 mmol) Gadoliniumkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-3-[(4-isothiocyanato)-phenyl]-alanin (Beispiel 4b) werden in 1 ml Dimethylsulfoxid gelöst und bei 50°C mit 12 mg (0,01 mmol) dPhe-cyclo-[Cys-Phe-dTrp-Z-Lys-Thr-Cys]-Thr-OH umgesetzt. Nach drei Stunden fällt man das Produkt mit Ether, saugt die Fällung ab und wäscht den Feststoff mehrmals mit Ether. Das Zwischenprodukt wird in Wasser/Methanol aufgenommen und an Palladium auf Aktivkohle hydriert. Nach drei Stunden bei Raumtemperatur wird filtriert und das Filtrat gefriergetrocknet. Das Gadoliniumkomplex-Peptid-Konjugat kann zur Reinigung dialysiert werden oder per HPLC chromatographiert werden.

Ausbeute: 15 mg (85 % der Theorie).

Analyse (bezogen auf wasserfreie Substanz):

ber.	C 48,13	H 4,95	N 11,07	Na 2,59	Gd 8,87	S 5,43	O 18,96
gef.:	C 48,01	H 4,79	N 10,86	Na 2,43	Gd 8,74	S 5,30	

55

Beispiel 5

[0053] N-Terminal verknüpftes Peptid-Konjugat mit dem Bismuthkomplex des Dinatriumsalzes von N,N-Bis-[2-[N',N'-bis-(carboxymethyl)-amino]-ethyl]-L-glycin-4-(thiocarbonylamino)-benzylamid

a) N,N-Bis-[2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl]-L-glycin-4-nitrobenzylamid

[0054] 0,98 g (1,6 mmol) N,N-Bis-[2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl]-L-glycin (US 5514810) werden in 3 ml N,N-Dimethylformamid gelöst und 200mg (1,74 mmol) N-Hydroxysuccinimid zugegeben. Man kühlt auf 0°C ab und addiert 360 mg (1,74 mmol) Dicyclohexylcarbodiimid. Es wird eine Stunde bei 0°C und vier Stunden bei Raumtemperatur gerührt. Man kühlt auf 0°C ab und tropft innerhalb von 10 Minuten eine Lösung aus 300 mg (1,74 mmol) 4-Nitrobenzylamin in 2 ml N,N-Dimethylformamid zu. Man röhrt eine Stunde bei 0°C und anschließend über Nacht bei Raumtemperatur. Es wird zur Trockne eingedampft und der Rückstand in 20 ml Essigsäureethylester aufgenommen. Man filtriert vom ausgefallenen Harnstoff ab und wäscht das Filtrat mit 20 ml 5-proz. wäßriger Sodalösung. Die organische Phase wird über Magnesiumsulfat getrocknet und im Vakuum zur Trockne eingedampft. Zur Reinigung wird an Kieselgel chromatographiert.

Ausbeute: 0,95 g (79 % d. Th.)

Analyse (bezogen auf lösungsmittelfreie Substanz):				
ber.	C 59,10	H 8,18	N 9,31	O 23,41
gef.	C 58,96	H 8,27	N 9,19	

b) N,N-Bis-[2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl]-L-glycin-4-aminobenzylamid

[0055] 0,8 g (1,1 mmol) N,N-Bis-[2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl]-L-glycin-4-nitrobenzylamid (Beispiel 5a) werden in 5 ml Ethanol gelöst und nach Zugabe von 0,08 g Palladium auf Aktivkohle (10% Palladium) bis zur beendeten Wasserstoffaufnahme hydriert. Anschließend wurde filtriert und das Filtrat vollständig eingedampft. Ausbeute: 0,75 g (95 % d. Th.) gelbliches Öl.

Analyse (bezogen auf lösungsmittelfreie Substanz):				
ber.	C 61,56	H 8,80	N 9,70	O 19,95
gef.	C 61,39	H 8,91	N 9,54	

c) N,N-Bis-[2-[N',N'-bis-(carboxymethyl)-amino]-ethyl]-L-glycin-4-aminobenzylamid

[0056] 0,7 g (0,97 mmol) N,N-Bis-[2-[N',N'-bis-(tert.-butyloxycarbonylmethyl)-amino]-ethyl]-L-glycin-4-aminobenzylamid (Beispiel 5b) werden in 0,35 ml (5 mmol) Trifluoressigsäure gelöst und 10 Stunden bei Raumtemperatur gerührt. Zur Aufarbeitung verdünnt man mit Wasser und dampft zur Trockne ein. Dieser Vorgang wird mehrmals wiederholt. Anschließend wird eine wäßrige Lösung des Produktes über eine Anionenaustauschersäule gereinigt und die produkt-haltigen Fraktionen eingedampft.

Ausbeute: 0,4 g (83 % d. Th.) farbloser Feststoff.

Analyse (bezogen auf lösungsmittelfreie Substanz):				
ber.	C 50,70	H 6,28	N 14,08	O 28,94
gef.	C 50,58	H 6,34	N 13,89	

d) N,N-Bis-[2-[N',N'-bis-(carboxymethyl)-amino]-ethyl]-L-glycin-4-(isothiocyanato)-benzylamid

[0057] 310 mg (0,61 mmol) N,N-Bis-[2-[N',N'-bis-(carboxymethyl)-amino]-ethyl]-L-glycin-4-aminobenzylamid (Beispiel 5c) werden in 10 ml Methanol gelöst und mit einer 0,2 normalen Lösung von Thiophosgen in Chloroform (3,4 ml, 0,68 mmol) versetzt und zwei Stunden bei Raumtemperatur gerührt. Anschließend wird die Reaktionsmischung zur Trockne eingedampft, in Methanol aufgenommen und mit Aceton gefällt. Der Feststoff wird mit Aceton gewaschen und im Vakuum getrocknet.

Ausbeute: 0,28 g (85 % d. Th.) schwachgelber Feststoff.

5

Analyse (bezogen auf lösungsmittelfreie Substanz):						
	ber.	C 48,97	H 5,42	N 12,98	S 5,94	O 26,69
	gef.	C 48,76	H 5,55	N 13,06	S 5,81	

e) Bismuthkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-glycin-4-(isothiocyanato)-benzylamid

10 [0058] 200 mg (0,37 mmol) N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-glycin-4-(isothiocyanato)-benzylamid (Beispiel 5d) werden in 8 ml Methanol gelöst und mit 117 mg (0,37 mmol) Bismuthchlorid in 8 ml Methanol versetzt. Nach 45 Minuten neutralisiert man mit 0,1 normaler NaOH in Methanol, röhrt 20 Minuten und dampft anschließend zur Trockne ein. Der Rückstand wird in Methanol aufgenommen und mit Aceton gefällt. Die Fällung wird mit Aceton gewaschen, in Wasser aufgenommen, filtriert und lyophilisiert.

15 Ausbeute: 0,26 g (91,5 % d. Th.) farbloser Feststoff.

Analyse (bezogen auf lösungsmittelfreie Substanz):						
	ber.	C 34,43	H 3,28	N 9,12	S 4,18	Bi 27,23
	gef.	C 34,31	H 3,19	N 8,98	S 4,10	Bi 27,07

f) N-Terminal verknüpftes Peptid-Konjugat mit dem Bismuthkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-glycin-4-(thiocarbonylamino)-benzylamid

25 [0059] 77 mg (0,1 mmol) Bismuthkomplex des Dinatriumsalzes von N,N-Bis-{2-[N',N'-bis-(carboxymethyl)-amino]-ethyl}-L-glycin-4-(isothiocyanato)-benzylamid (Beispiel 5e) werden in 1 ml Dimethylsulfoxid gelöst und bei 45°C mit 12 mg (0,01 mmol) dPhe-cyclo-[Cys-Phe-dTrp-Z-Lys-Thr-Cys]-Thr-OH umgesetzt. Nach vier Stunden fällt man das Produkt mit Ether, saugt die Fällung ab und wäscht den Feststoff mehrmals mit Ether. Das Zwischenprodukt wird in Wasser/Methanol aufgenommen und an Palladium auf Aktivkohle hydriert. Nach fünf Stunden bei Raumtemperatur wird filtriert und das Filtrat gefriergetrocknet. Das Gadoliniumkomplex-Peptid-Konjugat kann zur Reinigung dialysiert werden oder per HPLC chromatographiert werden.

30 Ausbeute: 14 mg (78 % der Theorie).

Analyse (bezogen auf wasserfreie Substanz):						
	ber.	C 47,36	H 4,98	N 11,67	Na 1,28	Bi 11,61
	gef.	C 47,22	H 5,07	N 11,73	Na 0,99	Bi 11,40

Beispiel 6

40 [0060] N-Terminal verknüpftes Peptid-Konjugat mit dem Europiumkomplex des Natriumsalzes von 1,4,7,10-Tetraazacyclododecan-1-[4-(carboxymethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure

a) 4-[O-(Ethoxycarbonylmethyl)-hydroxy]-phenylessigsäuremethylester

45 [0061] Zu 22,2 g (133 mmol) 4-Hydroxyphenylessigsäuremethylester in 150 ml Aceton addiert man 23,5 g (170 mmol) Kaliumcarbonat und versetzt unter Rückfluß mit 26,8 g (160 mmol) Bromessigsäureethylester. Nach einer Stunde gibt man 5,9 g (42,5 mmol) Kaliumcarbonat und 5,5 g (33 mmol) 4-Hydroxyphenylessigsäuremethylester zu und röhrt anschließend weitere zwei Stunden am Rückfluß. Man filtriert den Feststoff ab, dampft das Lösemittel ab und destilliert den Rückstand im Vakuum.

50 Ausbeute: 29,5 g (88 % d. Th.) farbloses Öl.

Analyse (bezogen auf lösungsmittelfreie Substanz):				
	ber.	C 61,90	H 6,39	O 31,71
	gef.	C 61,73	H 6,47	

EP 1 170 021 A2

b) 4-[O-(Ethoxycarbonylmethyl)-hydroxy]-phenyl-2-brom-essigsäuremethylester

[0062] 14,0 g (55 mmol) 4-[O-(Ethoxycarbonylmethyl)-hydroxy]-phenyl-2-brom-essigsäuremethylester (Beispiel 6a) werden in 70 ml Tetrachlorkohlenstoff vorgelegt, mit 9,9 g (55 mmol) N-Bromsuccinimid und 100 mg (0,2 mmol) Benzoylperoxid versetzt. Nach fünfständigem Kochen unter Rückfluß wird die Reaktionsmischung auf Raumtemperatur abgekühlt, zweimal mit gesättigter Natriumhydrogencarbonatlösung extrahiert, mit Wasser gewaschen und über Natriumsulfat getrocknet. Nach Filtration und Eindampfen erhält man das Produkt als schwachgelbes Öl.
Ausbeute: 18,1 g (99 % d. Th.)

Analyse (bezogen auf lösungsmittelfreie Substanz):				
ber.	C 47,15	H 4,57	Br 24,13	O 24,16
gef.	C 47,03	H 4,68	Br 23,96	

c) 1,4,7,10-Tetraazacyclododecan-1-[4-(ethoxycarbonylmethoxy)-phenyl]-essigsäuremethylester

[0063] 17,6 g (53 mmol) 4-[O-(Ethoxycarbonylmethyl)-hydroxy]-phenyl-2-brom-essigsäuremethylester (Beispiel 6b) werden in 120 ml Chloroform gelöst und unter Eiskühlung mit 27,4 g (159 mmol) Cyclen versetzt. Man röhrt über Nacht bei Raumtemperatur, wäscht viermal mit Wasser, trocknet die organische Phase, filtriert und dampft zur Trockne ein.
Ausbeute: 21,6 g (96 % d. Th.)

Analyse (bezogen auf lösungsmittelfreie Substanz):				
ber.	C 59,70	H 8,11	N 13,26	O 18,93
gef.	C 59,58	H 8,05	N 13,39	

d) 1,4,7,10-Tetraazacyclododecan-1-[4-(ethoxycarbonylmethoxy)-phenyl]-essigsäuremethylester-4,7,10-triessigsäure-tert.-butylester

[0064] 21,0 g (50 mmol) 1,4,7,10-Tetraazacyclododecan-1-[4-(ethoxycarbonylmethoxy)-phenyl]-essigsäuremethylester (Beispiel 6c) werden in 160 ml Acetonitril gelöst. Man gibt 18,2 g (170 mmol) Natriumcarbonat hinzu und addiert tropfenweise 33,5 g (170 mmol) Bromessigsäure-tert.-butylester. Nach drei Stunden Röhren bei 60°C saugt man ab, engt die Lösung ein und chromatographiert den Rückstand an Kieselgel.
Ausbeute: 23,9 g (62 % d. Th.)

Analyse (bezogen auf lösungsmittelfreie Substanz):				
ber.	C 61,24	H 8,43	N 7,32	O 23,01
gef.	C 61,14	H 8,50	N 7,18	

e) 1,4,7,10-Tetraazacyclododecan-1-[4-(ethoxycarbonylmethoxy)-phenyl]-essigsäuremethylester-4,7,10-triessigsäure

[0065] 13,8 g (18 mmol) 1,4,7,10-Tetraazacyclododecan-1-[4-(ethoxycarbonylmethoxy)-phenyl]-essigsäuremethylester-4,7,10-triessigsäure-tert.-butylester (Beispiel 6d) werden in 80 ml Anisol mit 200 ml Trifluoressigsäure umgesetzt. Man röhrt über Nacht bei Raumtemperatur und zwei Stunden bei 60°C. Anschließend engt man ein und destilliert mehrmals mit Wasser nach.
Ausbeute: 9,8 g (92 % d. Th.)

Analyse (bezogen auf lösungsmittelfreie Substanz):				
ber.	C 54,72	H 6,12	N 9,45	O 29,70
gef.	C 54,83	H 6,07	N 9,36	

f) 1,4,7,10-Tetraazacyclododecan-1-[4-(carboxymethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure, Pentakaliumsalz

[0066] 9,5 g (16 mmol) 1,4,7,10-Tetraazacyclododecan-1-[4-(ethoxycarbonylmethoxy)-phenyl]-essigsäuremethylester-4,7,10-triessigsäure (Beispiel 6e) werden in 30 ml Methanol gelöst, mit 4,5 g Kaliumhydroxid in 30 ml Wasser

EP 1 170 021 A2

gelöst versetzt und vier Stunden bei Raumtemperatur gerührt. Anschließend kocht man drei Stunden am Rückfluß. Man zieht das Methanol ab und setzt das Rohprodukt in die nächste Stufe ohne weiteren Reinigungsschritt ein.
Rohausbeute: 11,8 g (99 % d. Th.)

- 5 g) Europiumkomplex des Natriumsalzes von 1,4,7,10-Tetraazacyclododecan-1-[4-(carboxymethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure

[0067] 10,4 g (14 mmol) 1,4,7,10-Tetraazacyclododecan-1-[4-(carboxymethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure, Pentakaliumsalz (Beispiel 6f) werden in 40 ml Wasser gelöst und mit 3,4 g (7 mmol) Europiumcarbonat versetzt. 10 Man addiert 5,7 ml Essigsäure und refluxiert über Nacht. Nach beendeter Komplexierung neutralisiert man mit zweinormaler Natronlauge, reinigt das Rohprodukt über eine Ionenaustauschersäule und lyophilisiert die produktähnlichen Fraktionen.

Ausbeute: 9,8 g (94 % der Theorie) farbloses Lyophilisat.

15 Analyse (bezogen auf wasserfreie Substanz):							
ber.	C 38,57	H 3,91	N 7,50	Na 6,15	Eu 20,33	O 23,55	
gef.	C 38,43	H 4,02	N 7,28	Na 5,97	Eu 20,21		

- 20 h) N-Terminal verknüpftes Peptid-Konjugat mit dem Europiumkomplex des Natriumsalzes von 1,4,7,10-Tetraazacyclododecan-1-[4-(carboxymethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure

[0068] 0,1 g (0,13 mmol) Europiumkomplex des Natriumsalzes von 1,4,7,10-Tetraazacyclododecan-1-[4-(carboxymethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure (Beispiel 6g) werden in 1 ml Dimethylsulfoxid gelöst und bei 50°C mit 48 mg (0,15 mmol) O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluroniumtetrafluoroborat (TBTU) umgesetzt. 25 Nach einer Stunde kühlte man auf Raumtemperatur ab und setzte mit 9,5 mg (5 µmol) Ala-Gly-cyclo-[Cys-Z-Lys-Asn-Phe-Phe-Trp-Z-Lys-Thr-Phe-Thr-Ser-Cys]-OH um. Nach 3 Stunden fällt man das Produkt mit Ether, saugt die Fällung ab und wäscht den Feststoff mehrmals mit Ether. Das Zwischenprodukt wird in Wasser/Methanol aufgenommen und an Palladium auf Aktivkohle hydriert. Nach drei Stunden bei Raumtemperatur wird filtriert und das Filtrat gefriergetrocknet. 30 Das Europiumkomplex-Peptid-Konjugat kann zur Reinigung dialysiert werden oder per HPLC chromatographiert werden. Ausbeute: 10,6 mg (90 % der Theorie)

35 Analyse (bezogen auf wasserfreie Substanz):							
ber.	C 48,79	H 5,00	N 10,27	Na 2,59	Eu 8,97	S 3,62	O 20,76
gef.	C 48,62	H 4,88	N 9,98	Na 2,31	Eu 8,82	S 3,50	

Beispiel 7

- 40 **[0069]** Cystein-verknüpftes Peptid-Konjugat mit dem Terbiumkomplex der 1,4,7,10-Tetraazacyclododecan-1-[4-(4-aza-6-thio-5-oxo-hexylaminocarbonylmethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure

a) [3-[N-(tert.-Butoxycarbonyl)amino]propyl]-N'-(bromacetyl)-amid

- 45 **[0070]** 2,5 g (14,4 mmol) [3-[N-(tert.-Butoxycarbonyl)amino]propyl]amin werden in 15 ml Dioxan gelöst und nach Zugabe von 4,4 ml Triethylamin bei 0°C mit 3,2 g (16 mmol) Bromacetylborimid versetzt. Man röhrt über Nacht bei Raumtemperatur und addiert anschließend weitere 320 mg Bromacetylborimid. Nach zwei Stunden bei Raumtemperatur wird der Niederschlag abgesaugt, die Lösung eingeengt und der Rückstand in Essigsäureethylester aufgenommen. Man wäscht mit Wasser und trocknet die organische Phase über Natriumsulfat.

50 Ausbeute: 3,2 g (75 % d. Th.)

55 Analyse (bezogen auf lösungsmittelfreie Substanz):							
ber.	C 40,69	H 6,49	Br 27,07	N 9,49	O 16,26		
gef.	C 40,50	H 6,37	Br 26,89	N 9,58			

b) [3-[N-(Bromacetyl)amino]propyl]amin, Hydrochlorid

[0071] 3,1 g (10,5 mmol) [3-[N-(tert.-Butoxycarbonyl)amino]propyl]-N'-(bromacetyl)-amid (Beispiel 7a) werden mit 50 mmol 1M Salzsäure in Essigsäureethylester für fünf Stunden bei Raumtemperatur gerührt. Man saugt das Produkt ab und wäscht den Feststoff mit Essigsäureethylester nach.

Ausbeute: 2,3 g (95 % d. Th.)

Analyse (bezogen auf lösungsmittelfreie Substanz):						
ber.	C 25,94	H 5,22	Cl 15,31	Br 34,51	N 12,10	O 6,91
gef.	C 25,76	H 5,41	Cl 15,55	Br 34,34	N 11,97	

c) Terbiumkomplex der 1,4,7,10-Tetraazacyclododecan-1-[4-(4-aza-6-brom-5-oxohexylaminocarbonylmethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure

[0072] 1,5 g (1,95 mmol) Terbiumkomplex des Natriumsalzes von 1,4,7,10-Tetraazacyclododecan-1-[4-(carboxymethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure (hergestellt in Analogie zu Beispiel 6g) werden in 10 ml Dimethylsulfoxid gelöst und bei 60°C mit 720 mg (2,25 mmol) O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-tetrafluoroborat (TBTU) umgesetzt. Nach einer Stunde kühlt man auf Raumtemperatur ab und versetzt mit 522 mg (2,25 mmol) [3-[N-(Bromacetyl)amino]propyl]amin, Hydrochlorid (Beispiel 7b) und 0,63 ml (4,5 mmol) Triethylamin. Nach sechs Stunden fällt man das Produkt mit Ether, saugt die Fällung ab und wäscht den Feststoff mehrmals mit Ether.

Ausbeute: 1,3 g (75 % der Theorie)

Analyse (bezogen auf wasserfreie Substanz):						
ber.	C 39,25	H 4,54	Br 9,00	N 9,47	Tb 17,91	O 19,83
gef.	C 39,09	H 4,66	Br 8,83	N 9,54	Tb 17,68	

d) Cystein-verknüpftes Peptid-Konjugat mit dem Terbiumkomplex der 1,4,7,10-Tetraazacyclododecan-1-[4-(4-aza-6-thio-5-oxo-hexylaminocarbonylmethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure

[0073] 0,33 mg (0,1 µmol) H-His-Ser-Asp-Ala-Val-Phe-Tyr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Glu-Cys-Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn-OH werden in 0,1 ml wasserfreiem N,N-Dimethylformamid gelöst und mit 0,244 mg (0,75 µmol) Cäsiumcarbonat versetzt. Nach zehn Minuten gibt man 0,887 mg (1 µmol) Terbiumkomplex der 1,4,7,10-Tetraazacyclododecan-1-[4-(4-aza-6-brom-5-oxohexylaminocarbonylmethoxy)-phenyl]-essigsäure-4,7,10-triessigsäure (Beispiel 7c) hinzu und lässt eine Stunde bei 40°C röhren. Das Terbiumkomplex-Peptid-Konjugat kann zur Reinigung dialysiert werden oder per HPLC chromatographiert werden.

Ausbeute: 0,29 mg (71 % der Theorie)

Analyse (bezogen auf wasserfreie Substanz):						
ber.	C 50,92	H 6,70	N 17,06	Tb 3,87	S 0,78	O 20,66
gef.	C 50,86	H 6,81	N 16,92	Tb 3,59	S 0,64	

Example 8

Synthesis of ligands

General Material and methods

[0074] All reagents were obtained from commercial suppliers and used without further purification. NMR spectra were recorded on Bruker Ac-200 MHz or 500 MHz spectrometer equipped with a multi-nuclear quad probe (¹H, ¹³C, ³¹P and ¹⁹F) at 297° K. ¹H spectra in D₂O were recorded by employing solvent suppression pulse sequence. Melting points were determined by capillary melt methods and were uncorrected.

Synthetic procedures

[0075] 1,7-Bis(benzyloxycarbonyl)-1,4,7,10-tetraazacyclododecane (1) and 1,7-Bis(benzyloxycarbonyl)-

1,4,7,10-tetraazacyclododecane-bis(methanephosphonic acid diethyl ester) (2) were prepared according to the literature.¹

a) Synthesis of 1,4,7,10-Tetraazacyclododecane-1,7-bis-(methanephosphonic acid diethyl ester)

[0076] A solution of 5g (6.75 mmol) of 1,7-Bis(benzyloxycarbonyl)-1,4,7,10-tetraazacyclododecane bis(methanephosphonic acid diethyl ester) in absolute ethanol was mixed with 6.84 ml (67.50 mmol) cyclohexene and 1g of 5% Pd/C catalyst was added. The mixture was stirred under reflux 2h, filtered from catalyst washed with ethanol, and the combined filtrates were evaporated under vacuum. The residue is a pale yellow oil; 3.18g, 100%.

¹H NMR and ¹³C NMR conformable to literature.¹

b) Synthesis of 1-(6-Fluoro-2-quinolinemethyl)-1,4,7,10-tetraazacyclododecane-4,10-bis(methanephosphonic acid diethyl ester)

[0077] 1,4,7,10-Tetraazacyclododecane-1,7-bis(methanephosphonic acid diethyl ester) (10mmole) was dissolved in 150 ml of dry acetonitrile and solution of 2-Chloromethylene-6-fluoro-quinoline (10 mmole) in acetonitrile was added dropwise. The mixture was stirred at 40 C for two days. Solvent was removed under vacuum. The residue was purified on silica gel column using solvent system (10:2:1) dioxane: methanol: ammonium hydroxide. Yield 25% of monoalkylated.

¹H NMR (500MHz, CDCl₃) δ: 1.16 (t, J= 7.00 Hz, 3H, CH₃), 2.74 (br d,J=8.41 Hz,12H, NCH₂CH₂N), 2.89 (br, 8H, NCH₂CH₂N and PCH₂N), 3.86 (d, J=2.41 Hz, 4H, CH₂Ar), 3.93 (q, J=7.03 Hz, 8H, OCH₂), 7.24-7.42 (m, 4H, Ar), 7.84 (d J=8.62 Hz 2H, Ar), 8.05-8.09 (m, 4H, Ar); ¹³C NMR (300MHz, CDCl₃) δ: 162.04 (Ar), 158.76 (Ar), 144.72 (Ar), 135.58 (d, J=20.04 Hz, Ar), 131.52 (d, J=35.70 Hz, Ar), 128.05 (d, J= 39.28 Hz Ar), 122.51 (Ar), 119.13 (d, J=102.30 Hz, Ar), 110.54 (d, J= 86.1 Hz, Ar), 61.63 (POCH₂), 60.10 (CH₂Ar), 53.63 (d, J=23.39 Hz, PCH₂N), 52.02 (NCH₂CH₂N), 49.98 (NCH₂CH₂N), 16.46 (CH₃); ³¹P NMR (300MHz, CDCl₃) δ: 26.26.

c) 1-(6-Fluoro-2-quinolinemethyl)-7-(methanecarboxylic acid ethyl ester)-1,4,7,10-tetraazacyclododecane-4,10-bis(methanephosphonic acid diethyl ester)

[0078] 1-(6-Fluoro-2-quinolinemethyl)-1,4,7,10-tetraazacyclododecane-4,10-bis(methanephosphonic acid diethyl ester) (10 mmol) was dissolved in dry acetonitrile and ethyl bromoacetate (10% excess) and anhydrous K₂CO₃ (11 mmole) were added. The solution was stirred at 40 C a few hours. Subsequently the solvent was removed under vacuum. The residue was dissolved in dichloromethane and purified on silica gel column eluting with dioxane: methanol: ammonium hydroxide (10:2:1). After concentration of eluent, the product was isolated as a thick pale yellow liquid. Yield 78%.

¹H NMR (500MHz, CDCl₃) δ: 1.14-1.19 (m, 15H, CH₃), 2.71-2.88 (br 20H, NCH₂CH₂N, PCH₂N), 3.42 (s, 2H, NCH₂CO), 3.76 9s, 2H, CH₂Ar), 3.98 (m, 10H, OCH₂), 7.32-7.45 (m, 2H, Ar), 7.78 (d, J=8.02 Hz 1H, Ar), 7.96-8.08 (m, 2H, Ar); ¹³C NMR (300MHz, CDCl₃) δ: 171.57 (COOEt), 162.03 (Ar), 158.75 (Ar), 144.71 (Ar), 135.58 (d, J=20.04 Hz, Ar), 131.52 (d, J=60.01 Hz, Ar), 128.05 (d, J= 39.60 Hz Ar), 122.84 (Ar), 119.36 (d, J=102.30 Hz, Ar), 110.53 (d, J= 86.41 Hz, Ar), 62.48 (CH₂Ar), 61.62 (d, J=30.01 Hz, OCH₂) 60.10 (OCH₂), 55.63 (d, J=23.39 Hz, PCH₂N), 52.71 (NCH₂CH₂N), 52.02 (NCH₂CH₂N), 49.97 (NCH₂CH₂N), 16.46 (d, J=22.08 Hz, CH₃); ³¹P NMR (300MHz, CDCl₃) δ: 26.26.

d) Synthesis of 1-(6-Fluor-2-quinolinemethyl)-7-(methanecarboxylic acid)-1,4,7,10-tetraazacyclododecane-4,10-bis(methanephosphonic acid)

[0079] 1-(6-Fluor-2-quinolinemethyl)-7-(methanecarboxylic acid ethyl ester)-4,10-bis(methylenephosphonic acid diethyl ester)-1,4,7,10-tetraazacyclododecane (5 mmol) was dissolved in 6M hydrochloric acid. The solution was refluxed for two days. Hydrochloric acid was removed under vacuum by azeotropic distillation. The residue was purified on anion-exchange column Q- Sepharosc,™ eluting first with deionized water, then with 1M hydrochloric acid. Follow freeze-drying of the eluent, the product was isolated as white solid and further characterized by:

¹H NMR

¹³C NMR

³¹P NMR

Yield 96%

¹ Z. Kovacs, A.D. Sherry, *Synthesis*, 759, (1996)Z. Kovacs and A.D. Sherry, *J. Chem. Soc. Chem. Commun.*, 185, (1995)

e) Synthesis of 1-(6-Chloro-2-quinolinemethyl)-4,10-bis(benzyloxycarbonyl)-1,4,7,10-tetraazacyclododecane

[0080] 1,7-Bis-(benzyloxycarbonyl)-1,4,7,10-tetraazacyclododecane (10mmole) was dissolved in 150 ml of dry acetonitrile and solution of 6-Chloro-2-chloromethylene-quinoline (2-Chloromethylene-6-fluoro-quinoline) (10 mmole) in acetonitrile was added dropwise. The mixture was stirred at 40 C for three days. Solvent was removed under vacuum. The residue was purified on silica gel column using solvent system 10:4:1 (ethyl acetate : Methanol : ammonium hydroxide). Yield 75%.

¹H NMR (500MHz, CDCl₃) δ: 3.07-3.47 (br 8H, NCH₂CH₂N), 3.58-3.74 (br, 4H, NCH₂CH₂N), 3.98-4.06 (br, 4H, NCH₂CH₂N), 4.13 (s, 2H, CH₂Ar), 4.27-4.49 (br, 4H, OCH₂Ar), 6.95-7.23 (m, 7H, Ar), 7.27-7.38 (m, 4H, Ar), 7.52-7.57 (m, 1H, Ar), 7.64-7.75 (m, 2H, Ar), 7.90-7.96 (m, 1H, Ar); ¹³C NMR (500MHz, CDCl₃) δ: 167.63 (Ar), 159.59 (Ar), 156.10 (m, NCOO), 145.96 (d, J=30.15 Hz, Ar), 135.75-135.29 (m, Ar), 130.47 (d J=16.49 Hz, Ar), 128.48 (d, J= 29.49 Hz, Ar), 128.30 (Ar), 128.12 (d, J=51.49 Hz, Ar), 127.83 (d, J=115.47 Hz, Ar), 127.49 (d, J= 33.02 Hz Ar), 126.30 (Ar), 121.68 (Ar), 67.25 (d, J=66.06 Hz, OCH₂Ar), 66.13 (CH₂Ar), 52.86 (NCH₂CH₂N), 48.15 (NCH₂CH₂N), 45.06 (HNCH₂CH₂N).

f) 1-(6-Chloro-2-quinolinemethyl)-4,10-bis(benzyloxycarbonyl)-7-(methanecarboxylic acid ethyl ester)-1,4,7,10-tetraazacyclododecane

[0081] 1,7-Bis(benzyloxycarbonyl)-4-(6-chloro-2-quinolinemethyl)-1,4,7,10-tetraazacyclododecane was dissolved in dry acetonitrile and ethyl bromoacetate and di-isopropylethylamine was added. The solution was stirred at 40 °C a few hours. The mixture was evaporated to dryness. The residue was dissolved in ethyl acetate. After a few minutes di-isopropylethylamine hydrochloride was filtered off, washed with ethyl acetate. After evaporation of the solvent under vacuum, the residue was purified on silica gel column eluting with ethyl acetate. Yield 78%.

In vacuum, the residue was purified on silica gel column eluting with ethyl acetate (10g, 15%).
¹H NMR (500MHz, CDCl₃) δ: 1.14-1.19 (m, 15H, CH₃), 2.71-2.88 (br, 20H, NCH₂CH₂N, PCH₂N), 3.42 (s, 2H, NCH₂CO), 3.7 (br, 4H, NCH₂CH₂N), 3.98-4.06 (br, 4H, NCH₂CH₂N), 4.13 (s, 2H, CH₂Ar), 4.27-4.49 (br, 4H, OCH₂Ar), 6.95-7.23 (m, 7H, Ar), 7.27-7.38 (m, 4H, Ar), 7.52-7.57 (m, 1H, Ar), 7.64-7.75 (m, 2H, Ar), 7.90-7.96 (m, 1H, Ar); ¹³C NMR (500MHz, CDCl₃) δ: 167.63 (Ar), 159.59 (Ar), 156.10 (m, NCOO), 145.96 (d, J=30.15 Hz, Ar), 135.75-135.29 (m, Ar), 130.47 (d J=16.49 Hz, Ar), 128.48 (d, J= 29.49 Hz, Ar), 128.30 (Ar), 128.12 (d, J=51.49 Hz, Ar), 127.83 (d, J=115.47 Hz, Ar), 127.49 (d, J= 33.02 Hz Ar), 126.30 (Ar), 121.68 (Ar), 67.25 (d, J=66.06 Hz, OCH₂Ar), 66.13 (CH₂Ar), 52.86 (NCH₂CH₂N), 48.15 (NCH₂CH₂N), 45.06 (HNCH₂CH₂N).

g) 1-(6-Chloro-2-quinolinemethyl)-7-(methanecarboxylic acid ethyl ester)-1,4,7,10-tetraazacyclododecane

[0082] 1,7-Bis(benzyloxycarbonyl)-4-(6-chloro-2-quinolinemethyl)-10-(ethyl methanecarboxylic acid)-1,4,7,10-tetraazacyclododecane was dissolved in ethanol, and 5% Pd/C and cyclohexene were added. Mixture was stirring under reflux for one hour. The catalyst was filtered off and washed with ethanol. The solvent was removed under vacuum. Yield 80%

¹H NMR (500 MHz, CDCl₃) δ: 1.17 (t, J=7.20 Hz, 3H, CH₃) 2.64 (br, 9H, HNCH₂CH₂NH), 2.82 (br, 9H, NCH₂CH₂N), 3.46 (s, 2H, NCH₂CO), 3.98 (s, 2H, CH₂Ar), 4.06 (q, J=7.22 Hz, 2H, OCH₂), 7.40 (t, J=8.02 Hz, 1H, Ar), 7.54-7.62 (m, 1H, Ar), 7.69 (d, J=7.20 Hz, 1H, Ar), 7.91 (d J=8.20 Hz, 1H, Ar), 8.02 (d, J= 8.46 Hz, 1H, Ar); ¹³C NMR (500 MHz, CDCl₃) δ: 171.48 (COOEt), 159.87, 147.21, 136.29, 129.29, 128.74, 127.41, 127.14, 126.10, 121.35 (quinoline carbones), 63.47 (OCH₂), 60.35 (CH₂Ar), 56.14 (NCH₂CO), 52.37 (NCH₂CH₂N), 51.42 (NCH₂CH₂N), 46.79 (d, J=69.5 Hz, HNCH₂CH₂N)

[0083] Alkylation: 1-(6-Chloro-2-quinolinemethyl)-7-(ethyl methanecarboxylic acid)-1,4,7,10-tetraazacyclododecane was dissolved in triethyl phosphite and paraformaldehyde was added. The mixture was stirred for three days. The volatile impurities were removed under vacuum. The residue was purified on silica gel column. Yield 64%.

[0084] Hydrolysis: 1-(6-Chloro-2-quinolinemethyl)-7-(ethyl methanecarboxylic acid)-4,10-bis(methyleneephosphonic acid diethyl ester)-1,4,7,10-tetraazacyclododecane was dissolved in 6M hydrochloric acid. The solution was refluxed for two days.

[0085] Hydrochloric acid was removed under vacuum by azeotropic destillation. The residue was purified on ion-exchange column. Yield 96%.

Annex to the application documents-subsequently filed sequences listing

[0086]

5

SEQUENCE LISTING

10 <110> BAUER, MICHAEL
 BECKER, ANDREAS
 LICHA, KAI
 BORNHOP, DARRYL
 PLATZEK, JOHANNES

 15 <120> NEW COMPOUNDS FOR FLUORESCENCE DIAGNOSIS

 20 <130> SCH-1755

 25 <140> 09/571,407
 <141> 2000-05-15

 30 <160> 241
 <170> PatentIn Ver. 2.1

 35 <210> 1
 <211> 28
 <212> PRT
 <213> Unknown Organism

 40 <220>
 <223> Description of Unknown Organism: Naturally
 occurring VIP

 45 <400> 1
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

 50 <210> 2
 <211> 14
 <212> PRT
 <213> Unknown Organism

 55 <220>
 <223> Description of Unknown Organism: Naturally
 occurring somatostatin

 60 <400> 2
 Ala Gly Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
 1 5 10

 65 <210> 3
 <211> 12
 <212> PRT
 <213> Unknown Organism

 70 <220>
 <223> Description of Unknown Organism: Naturally
 occurring neuropeptid Y

 75 <400> 3
 Leu Tyr Glu Asn Lys Pro Arg Arg Pro Tyr Ile Leu

1 5 10

5 <210> 4
 <211> 17
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

15 <400> 4
 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
 1 5 10 15
 Asn

20 <210> 5
 <211> 16
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

30 <400> 5
 Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10 15
 Asn

35 <210> 6
 <211> 15
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

45 <400> 6
 Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10 15
 Asn

50 <210> 7
 <211> 14
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

 <400> 7
 Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10
 Asn

5 <210> 8
 <211> 13
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 8
 Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10

20 <210> 9
 <211> 12
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

30 <400> 9
 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10

35 <210> 10
 <211> 11
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <400> 10
 Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10

50 <210> 11
 <211> 16
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

55 <400> 11
 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
 1 5 10 15

55 <210> 12
 <211> 15
 <212> PRT
 <213> Artificial Sequence

5 <220>
5 <223> Description of Artificial Sequence: Synthetic
 peptide

10 <400> 12
10 Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
10 1 5 10 15

15 <210> 13
15 <211> 14
15 <212> PRT
15 <213> Artificial Sequence

20 <220>
20 <223> Description of Artificial Sequence: Synthetic
 peptide

25 <400> 13
25 Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
25 1 5 10

30 <210> 14
30 <211> 13
30 <212> PRT
30 <213> Artificial Sequence

35 <220>
35 <223> Description of Artificial Sequence: Synthetic
 peptide

40 <400> 14
40 Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
40 1 5 10

45 <210> 15
45 <211> 12
45 <212> PRT
45 <213> Artificial Sequence

50 <220>
50 <223> Description of Artificial Sequence: Synthetic
 peptide

55 <400> 15
55 Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
55 1 5 10

55 <210> 16
55 <211> 11
55 <212> PRT
55 <213> Artificial Sequence

55 <220>
55 <223> Description of Artificial Sequence: Synthetic
 peptide

5

<400> 16
Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
1 5 10

10

<210> 17
<211> 10
<212> PRT
<213> Artificial Sequence

15

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 17
Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
1 5 10

20

<210> 18
<211> 15
<212> PRT
<213> Artificial Sequence

25

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 18
Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
1 5 10 15

30

<210> 19
<211> 14
<212> PRT
<213> Artificial Sequence

35

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 19
Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
1 5 10

40

<210> 20
<211> 13
<212> PRT
<213> Artificial Sequence

45

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 20
Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
1 5 10

5 <210> 21
 <211> 12
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

15 <400> 21
 Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
 1 5 10

20 <210> 22
 <211> 11
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

30 <400> 22
 Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
 1 5 10

35 <210> 23
 <211> 10
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

45 <400> 23
 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
 1 5 10

50 <210> 24
 <211> 9
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

 <400> 24
 Ala Val Lys Lys Tyr Leu Asn Ser Ile
 1 5

 <210> 25
 <211> 14
 <212> PRT
 <213> Artificial Sequence

5 <220>
5 <223> Description of Artificial Sequence: Synthetic
5 peptide

10 <400> 25
10 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser
10 1 5 10

15 <210> 26
15 <211> 13
15 <212> PRT
15 <213> Artificial Sequence

20 <220>
20 <223> Description of Artificial Sequence: Synthetic
20 peptide

25 <400> 26
25 Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser
25 1 5 10

30 <210> 27
30 <211> 12
30 <212> PRT
30 <213> Artificial Sequence

35 <220>
35 <223> Description of Artificial Sequence: Synthetic
35 peptide

40 <400> 27
40 Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser
40 1 5 10

45 <210> 28
45 <211> 11
45 <212> PRT
45 <213> Artificial Sequence

50 <220>
50 <223> Description of Artificial Sequence: Synthetic
50 peptide

55 <400> 28
55 Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser
55 1 5 10

55 <210> 29
55 <211> 10
55 <212> PRT
55 <213> Artificial Sequence

55 <220>
55 <223> Description of Artificial Sequence: Synthetic
55 peptide

55 <400> 29

Gln Met Ala Val Lys Lys Tyr Leu Asn Ser
1 5 10

5 <210> 30
<211> 9
<212> PRT
<213> Artificial Sequence

10 <220>
<223> Description of Artificial Sequence: Synthetic peptide

15 <400> 30
Met Ala Val Lys Lys Tyr Leu Asn Ser
1 5

20 <210> 31
<211> 8
<212> PRT
<213> Artificial Sequence

25 <220>
<223> Description of Artificial Sequence: Synthetic peptide

30 <400> 31
Ala Val Lys Lys Tyr Leu Asn Ser
1 5

35 <210> 32
<211> 13
<212> PRT
<213> Artificial Sequence

40 <220>
<223> Description of Artificial Sequence: Synthetic peptide

45 <400> 32
Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn
1 5 10

50 <210> 33
<211> 12
<212> PRT
<213> Artificial Sequence

55 <220>
<223> Description of Artificial Sequence: Synthetic peptide

50 <400> 33
Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn
1 5 10

55 <210> 34

5 <211> 11
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

15 <400> 34
 Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn
 1 5 10

20 <210> 35
 <211> 10
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

30 <400> 35
 Lys Gln Met Ala Val Lys Lys Tyr Leu Asn
 1 5 10

35 <210> 36
 <211> 9
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

45 <400> 36
 Gln Met Ala Val Lys Lys Tyr Leu Asn
 1 5

50 <210> 37
 <211> 8
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

 <400> 37
 Met Ala Val Lys Lys Tyr Leu Asn
 1 5

 <210> 38
 <211> 7
 <212> PRT
 <213> Artificial Sequence

 <220>

5 <223> Description of Artificial Sequence: Synthetic
 peptide

10 <400> 38
 Ala Val Lys Lys Tyr Leu Asn
 1 5

15 <210> 39
 <211> 12
 <212> PRT
 <213> Artificial Sequence

20 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

25 <400> 39
 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu
 1 5 10

30 <210> 40
 <211> 11
 <212> PRT
 <213> Artificial Sequence

35 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

40 <400> 40
 Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu .
 1 5 10

45 <210> 41
 <211> 10
 <212> PRT
 <213> Artificial Sequence

50 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

55 <400> 41
 Arg Lys Gln Met Ala Val Lys Lys Tyr Leu
 1 5 10

 <210> 42
 <211> 9
 <212> PRT
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

 <400> 42
 Lys Gln Met Ala Val Lys Lys Tyr Leu

1

5

5 <210> 43
 <211> 8
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

 <400> 43
 Gln Met Ala Val Lys Lys Tyr Leu
 1 5
15

20 <210> 44
 <211> 7
 <212> PRT
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide
25 <400> 44
 Met Ala Val Lys Lys Tyr Leu
 1 5

30 <210> 45
 <211> 6
 <212> PRT
 <213> Artificial Sequence

35 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

 <400> 45
 Ala Val Lys Lys Tyr Leu
 1 5
40

45 <210> 46
 <211> 17
 <212> PRT
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

 <400> 46
 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
 1 5 10 15
50
55 Asn

5 <210> 47
 <211> 16
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 47
Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10 15

20 <210> 48
 <211> 15
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

30 <400> 48
Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10 15

35 <210> 49
 <211> 14
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <400> 49
Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10

50 <210> 50
 <211> 13
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

56 <400> 50
Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10

57 <210> 51
 <211> 12
 <212> PRT
 <213> Artificial Sequence

5 <220>
5 <223> Description of Artificial Sequence: Synthetic
 peptide

10 <400> 51
Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10

15 <210> 52
<211> 16
<212> PRT
<213> Artificial Sequence

20 <220>
20 <223> Description of Artificial Sequence: Synthetic
 peptide

25 <400> 52
Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
 1 5 10 15

30 <210> 53
<211> 15
25 <212> PRT
<213> Artificial Sequence

35 <220>
35 <223> Description of Artificial Sequence: Synthetic
 peptide

40 <400> 53
Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
 1 5 10 15

45 <210> 54
<211> 14
<212> PRT
<213> Artificial Sequence

50 <220>
50 <223> Description of Artificial Sequence: Synthetic
 peptide

55 <400> 54
Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
 1 5 10

55 <210> 55
<211> 13
<212> PRT
<213> Artificial Sequence

55 <220>
55 <223> Description of Artificial Sequence: Synthetic
 peptide

```

<400> 55
Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
    1           5           10
5

<210> 56
<211> 12
<212> PRT
<213> Artificial Sequence
10

<220>
<223> Description of Artificial Sequence: Synthetic
      peptide

15 <400> 56
Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
    1           5           10

20 <210> 57
<211> 11
<212> PRT
<213> Artificial Sequence

25 <220>
<223> Description of Artificial Sequence: Synthetic
      peptide

<400> 57
Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
    1           5           10
30

35 <210> 58
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      peptide

40 <400> 58
Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
    1           5           10           15
45

45 <210> 59
<211> 14
<212> PRT
<213> Artificial Sequence

50 <220>
<223> Description of Artificial Sequence: Synthetic
      peptide

<400> 59
Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
    1           5           10
55

```

5 <210> 60
 <211> 13
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 60
 Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
 1 5 10

20 <210> 61
 <211> 12
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

30 <400> 61
 Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
 1 5 10

35 <210> 62
 <211> 11
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <400> 62
 Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
 1 5 10

50 <210> 63
 <211> 10
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

56 <400> 63
 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
 1 5 10

57 <210> 64
 <211> 11
 <212> PRT
 <213> Artificial Sequence

5 <220>
5 <223> Description of Artificial Sequence: Synthetic
5 peptide

10 <400> 64
10 Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
10 1 5 10

15 <210> 65
15 <211> 10
15 <212> PRT
15 <213> Artificial Sequence

20 <220>
20 <223> Description of Artificial Sequence: Synthetic
20 peptide

25 <400> 65
25 Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
25 1 5 10

30 <210> 66
30 <211> 9
30 <212> PRT
30 <213> Artificial Sequence

35 <220>
35 <223> Description of Artificial Sequence: Synthetic
35 peptide

40 <400> 66
40 Ala Val Lys Lys Tyr Leu Asn Ser Ile
40 1 5

45 <210> 67
45 <211> 17
45 <212> PRT
45 <213> Artificial Sequence

50 <220>
50 <223> Description of Artificial Sequence: Synthetic
50 peptide

55 <400> 67
55 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
55 1 5 10 15

55 Asn

50 <210> 68
50 <211> 16
50 <212> PRT
50 <213> Artificial Sequence

55 <220>
55 <223> Description of Artificial Sequence: Synthetic

peptide

5 <400> 68
Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10 15

10 <210> 69
<211> 15
<212> PRT
<213> Artificial Sequence

15 <220>
<223> Description of Artificial Sequence: Synthetic
 peptide

20 <400> 69
Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10 15

25 <210> 70
<211> 14
<212> PRT
<213> Artificial Sequence

30 <220>
<223> Description of Artificial Sequence: Synthetic
 peptide

35 <400> 70
Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10

40 <210> 71
<211> 13
<212> PRT
<213> Artificial Sequence

45 <220>
<223> Description of Artificial Sequence: Synthetic
 peptide

50 <400> 71
Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10

55 <210> 72
<211> 12
<212> PRT
<213> Artificial Sequence

56 <220>
<223> Description of Artificial Sequence: Synthetic
 peptide

57 <400> 72
Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10

5 <210> 73
 <211> 11
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 73
 Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 1 5 10

20 <210> 74
 <211> 16
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

30 <400> 74
 Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
 1 5 10 15

35 <210> 75
 <211> 15
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <400> 75
 Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
 1 5 10 15

50 <210> 76
 <211> 14
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

55 <400> 76
 Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
 1 5 10

55 <210> 77
 <211> 13
 <212> PRT

5 <213> Artificial Sequence

10 <220>
15 <223> Description of Artificial Sequence: Synthetic
 peptide

10 <400> 77
15 Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
 1 5 10

15 <210> 78
20 <211> 12
25 <212> PRT
30 <213> Artificial Sequence

35 <220>
40 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <400> 78
50 Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
 1 5 10

55 <210> 79
60 <211> 11
65 <212> PRT
70 <213> Artificial Sequence

75 <220>
80 <223> Description of Artificial Sequence: Synthetic
 peptide

85 <400> 79
90 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu
 1 5 10

95 <210> 80
100 <211> 10
105 <212> PRT
110 <213> Artificial Sequence

115 <220>
120 <223> Description of Artificial Sequence: Synthetic
 peptide

5 <400> 81
Arg Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
1 5 10 15

10 <210> 82
<211> 14
<212> PRT
<213> Artificial Sequence

15 <220>
<223> Description of Artificial Sequence: Synthetic
peptide

20 <400> 82
Leu Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
1 5 10

25 <210> 83
<211> 13
<212> PRT
<213> Artificial Sequence

30 <220>
<223> Description of Artificial Sequence: Synthetic
peptide

35 <400> 83
Arg Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
1 5 10

40 <210> 84
<211> 12
<212> PRT
<213> Artificial Sequence

45 <220>
<223> Description of Artificial Sequence: Synthetic
peptide

50 <400> 84
Lys Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
1 5 10

55 <210> 85
<211> 11
<212> PRT
<213> Artificial Sequence

56 <220>
<223> Description of Artificial Sequence: Synthetic
peptide

57 <400> 85
Gln Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
1 5 10

5 <210> 86
 <211> 10
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 86
 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile
 1 5 10

20 <210> 87
 <211> 9
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

30 <400> 87
 Ala Val Lys Lys Tyr Leu Asn Ser Ile
 1 5

35 <210> 88
 <211> 28
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <400> 88
 Phe Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

50 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

55 <210> 89
 <211> 28
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

55 <400> 89
 Ile Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

55 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

5 <210> 90
 <211> 28
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

15 <400> 90
Leu Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

15 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

20 <210> 91
 <211> 28
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

25 <400> 91
His Phe Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

30 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

35 <210> 92
 <211> 28
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

45 <400> 92
His His Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

45 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

50 <210> 93
 <211> 28
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic peptide

5 <400> 93
 His Ile Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15
 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

10 <210> 94
 <211> 28
 <212> PRT
 <213> Artificial Sequence

15 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

20 <400> 94
 His Leu Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

25 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

30 <210> 95
 <211> 28
 <212> PRT
 <213> Artificial Sequence

35 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

40 <400> 95
 His Met Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

45 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

50 <210> 96
 <211> 28
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

60 <400> 96
 His Gln Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

65 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

70 <210> 97

```

<211> 28
<212> PRT
<213> Artificial Sequence
5
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide

<400> 97
10   His Thr Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
        1           5           10           15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
15   20           25

<210> 98
<211> 28
<212> PRT
<213> Artificial Sequence
20
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide

<400> 98
25   His Val Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
        1           5           10           15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
30   20           25

<210> 99
<211> 28
<212> PRT
<213> Artificial Sequence
35
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide

<400> 99
40   His Trp Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
        1           5           10           15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
45   20           25

<210> 100
<211> 28
<212> PRT
<213> Artificial Sequence
50
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide

<400> 100
55   His Tyr Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln

```

1	5	10	15
---	---	----	----

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 5 20 25

<210> 101
<211> 28
<212> PRT
 10 <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

15 <400> 101
His Ser Ala Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

<210> 102
<211> 28
<212> PRT
 25 <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

30 <400> 102
His Ser Glu Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 35 20 25

<210> 103
<211> 28
<212> PRT
 40 <213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

45 <400> 103
His Ser Phe Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 50 20 25

<210> 104
<211> 28
<212> PRT
 55 <213> Artificial Sequence

5 <220>
5 <223> Description of Artificial Sequence: Synthetic
5 peptide

10 <400> 104
10 His Ser His Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
10 1 5 10 15

10 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
10 20 25

15 <210> 105
15 <211> 28
15 <212> PRT
15 <213> Artificial Sequence

20 <220>
20 <223> Description of Artificial Sequence: Synthetic
20 peptide

25 <400> 105
25 His Ser Ile Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
25 1 5 10 15

25 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
25 20 25

30 <210> 106
30 <211> 28
30 <212> PRT
30 <213> Artificial Sequence

35 <220>
35 <223> Description of Artificial Sequence: Synthetic
35 peptide

40 <400> 106
40 His Ser Leu Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
40 1 5 10 15

40 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
40 20 25

45 <210> 107
45 <211> 28
45 <212> PRT
45 <213> Artificial Sequence

50 <220>
50 <223> Description of Artificial Sequence: Synthetic
50 peptide

55 <400> 107
55 His Ser Met Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
55 1 5 10 15

55 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn

20

25

5 <210> 108
 <211> 28
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 108
 His Ser Trp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

15 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

20 <210> 109
 <211> 28
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

30 <400> 109
 His Ser Asp Phe Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

30 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

35 <210> 110
 <211> 28
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <400> 110
 His Ser Asp Gly Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

45 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

50 <210> 111
 <211> 28
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic

peptide

5 <400> 111
 His Ser Asp Met Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

10 <210> 112
 <211> 28
 <212> PRT
 <213> Artificial Sequence

15 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

20 <400> 112
 His Ser Asp Gln Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

25 <210> 113
 <211> 28
 <212> PRT
 <213> Artificial Sequence

30 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

35 <400> 113
 His Ser Asp Ser Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

40 <210> 114
 <211> 28
 <212> PRT
 <213> Artificial Sequence

45 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

50 <400> 114
 His Ser Asp Trp Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

55

5 <210> 115
 <211> 28
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 115
 His Ser Asp Tyr Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

20 <210> 116
 <211> 28
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

30 <400> 116
 His Ser Asp Ala Phe Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

35 <210> 117
 <211> 28
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <400> 117
 His Ser Asp Ala Ile Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25 .

50 <210> 118
 <211> 28
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

55 <400> 118

His Ser Asp Ala Leu Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

5 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

10 <210> 119
 <211> 28
 <212> PRT
 <213> Artificial Sequence

15 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

20 <400> 119
 His Ser Asp Ala Met Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

25 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

30 <210> 120
 <211> 28
 <212> PRT
 <213> Artificial Sequence

35 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

40 <400> 120
 His Ser Asp Ala Thr Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

45 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

50 <210> 121
 <211> 28
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

60 <400> 121
 His Ser Asp Ala Trp Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

65 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

70 <210> 122
 <211> 28
 <212> PRT

5 <213> Artificial Sequence

5 <220>
5 <223> Description of Artificial Sequence: Synthetic
5 peptide

10 <400> 122
10 His Ser Asp Ala Tyr Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
10 1 5 10 15

10 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
10 20 25

15 <210> 123
15 <211> 28
15 <212> PRT
15 <213> Artificial Sequence

20 <220>
20 <223> Description of Artificial Sequence: Synthetic
20 peptide

25 <400> 123
25 His Ser Asp Ala Val Lys Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
25 1 5 10 15

25 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
25 20 25

30 <210> 124
30 <211> 28
30 <212> PRT
30 <213> Artificial Sequence

35 <220>
35 <223> Description of Artificial Sequence: Synthetic
35 peptide

40 <400> 124
40 His Ser Asp Ala Val Phe Val Asp Asn Tyr Thr Arg Leu Arg Lys Gln
40 1 5 10 15

40 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
40 20 25

45 <210> 125
45 <211> 28
45 <212> PRT
45 <213> Artificial Sequence

50 <220>
50 <223> Description of Artificial Sequence: Synthetic
50 peptide

55 <400> 125
55 His Ser Asp Ala Val Phe Trp Asp Asn Tyr Thr Arg Leu Arg Lys Gln
55 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
20 25

5

<210> 126
<211> 28
<212> PRT
<213> Artificial Sequence

10

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 126

15 His Ser Asp Ala Val Phe Thr Asp Asn Trp Thr Arg Leu Arg Lys Gln
1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
20 25

20

<210> 127
<211> 28
<212> PRT
<213> Artificial Sequence

25

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 127

30 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Arg Arg Lys Gln
1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
20 25

35

<210> 128
<211> 28
<212> PRT
<213> Artificial Sequence

40

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 128

45 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Trp Arg Lys Gln
1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
20 25

50

<210> 129
<211> 28
<212> PRT
<213> Artificial Sequence

55 <220>

<223> Description of Artificial Sequence: Synthetic peptide

5 <400> 129
His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Phe Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25
10

15 <210> 130
<211> 28
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

20 <400> 130
His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Leu Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25
25

30 <210> 131
<211> 28
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

35 <400> 131
His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Met Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25
40

45 <210> 132
<211> 28
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

50 <400> 132
His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Arg Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25
55

5 <210> 133
 <211> 28
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 133
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Ala
 1 5 10 15

15 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

20 <210> 134
 <211> 28
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

25 <400> 134
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Phe
 1 5 10 15

30 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

35 <210> 135
 <211> 28
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

40 <400> 135
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Ile
 1 5 10 15

45 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

50 <210> 136
 <211> 28
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

5 <400> 136
His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Lys
1 5 10 15

10 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
20 25

15 <210> 137
<211> 28
<212> PRT
<213> Artificial Sequence

20 <220>
<223> Description of Artificial Sequence: Synthetic peptide

25 <400> 137
His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Leu
1 5 10 15

30 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
20 25

35 <210> 138
<211> 28
<212> PRT
<213> Artificial Sequence

40 <220>
<223> Description of Artificial Sequence: Synthetic peptide

45 <400> 138
His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Met
1 5 10 15

50 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
20 25

55 <210> 139
<211> 28
<212> PRT
<213> Artificial Sequence

60 <220>
<223> Description of Artificial Sequence: Synthetic peptide

65 <400> 139
His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Arg
1 5 10 15

70 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
20 25

75 <210> 140
<211> 28

5 <212> PRT
 <213> Artificial Sequence
 10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide
 15 <400> 140
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Val
 1 5 10 15
 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25
 20 <210> 141
 <211> 28
 <212> PRT
 <213> Artificial Sequence
 25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide
 30 <400> 141
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Trp
 1 5 10 15
 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25
 35 <210> 142
 <211> 28
 <212> PRT
 <213> Artificial Sequence
 40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide
 45 <400> 142
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Tyr
 1 5 10 15
 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25
 50 <210> 143
 <211> 28
 <212> PRT
 <213> Artificial Sequence
 55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide
 <400> 143
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

5 Phe Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
20 25

10 <210> 144
<211> 28
<212> PRT
<213> Artificial Sequence

15 <220>
<223> Description of Artificial Sequence: Synthetic
peptide

20 <400> 144
His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
1 5 10 15

Ile Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
20 25

25 <210> 145
<211> 28
<212> PRT
<213> Artificial Sequence

30 <220>
<223> Description of Artificial Sequence: Synthetic
peptide

35 <400> 145
His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
1 5 10 15

Lys Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
20 25

40 <210> 146
<211> 28
<212> PRT
<213> Artificial Sequence

45 <220>
<223> Description of Artificial Sequence: Synthetic
peptide

50 <400> 146
His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
1 5 10 15

Leu Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
20 25

55 <210> 147
<211> 28
<212> PRT
<213> Artificial Sequence

5 <220>
6 <223> Description of Artificial Sequence: Synthetic
7 peptide

8 <400> 147
9 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
10 1 5 10 15

11 Gln Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
12 20 25

13 10

14 <210> 148
15 <211> 28
16 <212> PRT
17 <213> Artificial Sequence

18 <220>
19 <223> Description of Artificial Sequence: Synthetic
20 peptide

21 <400> 148
22 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
23 1 5 10 15

24 Arg Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
25 20 25

26 25

27 <210> 149
28 <211> 28
29 <212> PRT
30 <213> Artificial Sequence

31 <220>
32 <223> Description of Artificial Sequence: Synthetic
33 peptide

34 <400> 149
35 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
36 1 5 10 15

37 Trp Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
38 20 25

39 40

40 <210> 150
41 <211> 28
42 <212> PRT
43 <213> Artificial Sequence

44 <220>
45 <223> Description of Artificial Sequence: Synthetic
46 peptide

47 <400> 150
48 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
49 1 5 10 15

50 Met Phe Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
51 20 25

52 55

5 <210> 151
 <211> 28
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 151
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Ile Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

20 <210> 152
 <211> 28
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

30 <400> 152
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Lys Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

35 <210> 153
 <211> 28
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <400> 153
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Leu Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

50 <210> 154
 <211> 28
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

5 <400> 154
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Met Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

10 <210> 155
 <211> 28
 <212> PRT
 <213> Artificial Sequence

15 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

20 <400> 155
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Gln Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

25 <210> 156
 <211> 28
 <212> PRT
 <213> Artificial Sequence

30 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

35 <400> 156
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Arg Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

40 <210> 157
 <211> 28
 <212> PRT
 <213> Artificial Sequence

45 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

50 <400> 157
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Val Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

55 <210> 158

5 <211> 28
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 158
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

15 Met Trp Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

20 <210> 159
 <211> 28
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

25 <400> 159
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

30 Met Tyr Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

35 <210> 160
 <211> 28
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

40 <400> 160
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

45 Met Ala Ala Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

50 <210> 161
 <211> 28
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

55 <400> 161
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln

EP 1 170 021 A2

5 <220>
5 <223> Description of Artificial Sequence: Synthetic
 peptide

10 <400> 165
10 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
10 1 5 10 15

10 Met Ala Val Lys Trp Tyr Leu Asn Ser Ile Leu Asn
10 20 25

15 <210> 166
15 <211> 28
15 <212> PRT
15 <213> Artificial Sequence

20 <220>
20 <223> Description of Artificial Sequence: Synthetic
 peptide

25 <400> 166
25 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
25 1 5 10 15

25 Met Ala Val Lys Lys Phe Leu Asn Ser Ile Leu Asn
25 20 25

30 <210> 167
30 <211> 28
30 <212> PRT
30 <213> Artificial Sequence

35 <220>
35 <223> Description of Artificial Sequence: Synthetic
 peptide

40 <400> 167
40 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
40 1 5 10 15

40 Met Ala Val Lys Lys Trp Leu Asn Ser Ile Leu Asn
40 20 25

45 <210> 168
45 <211> 28
45 <212> PRT
45 <213> Artificial Sequence

50 <220>
50 <223> Description of Artificial Sequence: Synthetic
 peptide

55 <400> 168
55 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
55 1 5 10 15

55 Met Ala Val Lys Lys Tyr Leu Ala Ser Ile Leu Asn

20

25

5 <210> 169
 <211> 28
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 169
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Phe Ser Ile Leu Asn
 20 25

20 <210> 170
 <211> 28
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

30 <400> 170
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Ile Ser Ile Leu Asn
 20 25

35 <210> 171
 <211> 28
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <400> 171
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Met Ser Ile Leu Asn
 20 25

50 <210> 172
 <211> 28
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic

peptide

5 <400> 172
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

 10 Met Ala Val Lys Lys Tyr Leu Ser Ser Ile Leu Asn
 20 25

 15 <210> 173
 <211> 28
 <212> PRT
 <213> Artificial Sequence

 20 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

 25 <400> 173
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

 30 Met Ala Val Lys Lys Tyr Leu Val Ser Ile Leu Asn
 20 25

 35 <210> 174
 <211> 28
 <212> PRT
 <213> Artificial Sequence

 40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

 45 <400> 174
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

 50 Met Ala Val Lys Lys Tyr Leu Trp Ser Ile Leu Asn
 20 25

 55 <210> 175
 <211> 28
 <212> PRT
 <213> Artificial Sequence

 60 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

 65 <400> 175
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

 70 Met Ala Val Lys Lys Tyr Leu Asn Asn Ile Leu Asn
 20 25

5 <210> 176
 <211> 28
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 176
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

15 Met Ala Val Lys Lys Tyr Leu Asn Arg Ile Leu Asn
 20 25

20 <210> 177
 <211> 28
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

25 <400> 177
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

30 Met Ala Val Lys Lys Tyr Leu Asn Trp Ile Leu Asn
 20 25

35 <210> 178
 <211> 28
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

40 <400> 178
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

45 Met Ala Val Lys Lys Tyr Leu Asn Tyr Ile Leu Asn
 20 25

50 <210> 179
 <211> 28
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

55 <400> 179

His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15
 5 Met Ala Val Lys Lys Tyr Leu Asn Ser Leu Leu Asn
 20 25

10 <210> 180
 <211> 28
 <212> PRT
 <213> Artificial Sequence

15 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

20 <400> 180
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15
 25 Met Ala Val Lys Lys Tyr Leu Asn Ser Ser Leu Asn
 20 25

30 <210> 181
 <211> 28
 <212> PRT
 <213> Artificial Sequence

35 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

40 <400> 181
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15
 45 Met Ala Val Lys Lys Tyr Leu Asn Ser Trp Leu Asn
 20 25

50 <210> 182
 <211> 28
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

60 <400> 182
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15

65 Met Ala Val Lys Lys Tyr Leu Asn Ser Tyr Leu Asn
 20 25

70 <210> 183
 <211> 28
 <212> PRT

5 <213> Artificial Sequence
 <220>
 10 <223> Description of Artificial Sequence: Synthetic
 peptide -
 <400> 183
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 1 5 10 15
 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Phe Asn
 20 25
 15 <210> 184
 <211> 28
 <212> PRT
 <213> Artificial Sequence
 20 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide
 <400> 184
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 25 1 5 10 15
 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Ile Asn
 20 25
 30 <210> 185
 <211> 28
 <212> PRT
 <213> Artificial Sequence
 35 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide
 <400> 185
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 40 1 5 10 15
 Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Trp Asn
 20 25
 45 <210> 186
 <211> 28
 <212> PRT
 <213> Artificial Sequence
 50 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide
 <400> 186
 His Ser Asp Ala Val Phe Thr Asp Asn Tyr Thr Arg Leu Arg Lys Gln
 55 1 5 10 15

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Trp
 20 25

5

<210> 187
<211> 28
<212> PRT
<213> Artificial Sequence

10

<220>
<223> Description of Artificial Sequence: Formula
sequence

15

<220>
<221> MOD_RES
<222> (8)
<223> Any amino acid

20

<220>
<221> MOD_RES
<222> (9)
<223> Any amino acid

25

<220>
<221> MOD_RES
<222> (11)
<223> Any amino acid

<400> 187
His Ser Asp Ala Val Phe Thr Xaa Xaa Tyr Xaa Arg Leu Arg Lys Gln
1 5 10 15

30

Met Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
20 25

35

<210> 188
<211> 14
<212> PRT
<213> Artificial Sequence

40

<220>
<223> Description of Artificial Sequence: Synthetic
peptide

<400> 188
Ala Gly Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
1 5 10

45

<210> 189
<211> 14
<212> PRT
<213> Artificial Sequence

50

<220>
<223> Description of Artificial Sequence: Synthetic
peptide

<400> 189
Ala Gly Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys

55

1 5 10

5

<210> 190
<211> 12
<212> PRT
<213> Artificial Sequence

10

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 190
Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
1 5 10

15

20

<210> 191
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

25

<400> 191
Phe Phe Tyr Trp Lys Val Phe Thr
1 5

30

<210> 192
<211> 8
<212> PRT
<213> Artificial Sequence

35

<220>
<223> Description of Artificial Sequence: Synthetic peptide

<400> 192
Phe Cys Phe Trp Lys Val Cys Thr
1 5

40

45

<210> 193
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic peptide

50

<400> 193
Phe Cys Tyr Trp Lys Val Cys Thr
1 5

55

<210> 194
<211> 8

5 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 194
 Phe Cys Phe Trp Lys Thr Cys Thr
 1 5

20 <210> 195
 <211> 8
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

30 <400> 195
 Phe Cys Tyr Trp Lys Thr Cys Thr
 1 5

35 <210> 196
 <211> 6
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <210> 196
 Cys Tyr Trp Lys Val Cys
 1 5

50 <210> 197
 <211> 7
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <221> MOD_RES
 <222> (6)
 <223> Abu

 <400> 197
 Phe Cys Tyr Trp Lys Xaa Cys
 1 5

 <210> 198
 <211> 14

5 <212> PRT
5 <213> Artificial Sequence

10 <220>
10 <223> Description of Artificial Sequence: Synthetic
10 peptide

15 <400> 198
15 Ala Gly Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
15 1 5 10

15 <210> 199
15 <211> 14
15 <212> PRT
15 <213> Artificial Sequence

20 <220>
20 <223> Description of Artificial Sequence: Synthetic
20 peptide

25 <400> 199
25 Ala Gly Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
25 1 5 10

25 <210> 200
25 <211> 12
25 <212> PRT
25 <213> Artificial Sequence

30 <220>
30 <223> Description of Artificial Sequence: Synthetic
30 peptide

35 <400> 200
35 Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
35 1 5 10

40 <210> 201
40 <211> 8
40 <212> PRT
40 <213> Artificial Sequence

45 <220>
45 <223> Description of Artificial Sequence: Synthetic
45 peptide

45 <400> 201
45 Phe Cys Phe Trp Lys Val Cys Thr
45 1 5

50 <210> 202
50 <211> 8
50 <212> PRT
50 <213> Artificial Sequence

55 <220>
55 <223> Description of Artificial Sequence: Synthetic

peptide

5 <400> 202
Phe Cys Tyr Trp Lys Val Cys Thr
 1 5

10 <210> 203
<211> 8
<212> PRT
<213> Artificial Sequence

15 <220>
<223> Description of Artificial Sequence: Synthetic
 peptide

20 <400> 203
Phe Cys Phe Trp Lys Thr Cys Thr
 1 5

25 <210> 204
<211> 8
<212> PRT
<213> Artificial Sequence

30 <220>
<223> Description of Artificial Sequence: Synthetic
 peptide

35 <400> 204
Phe Cys Tyr Trp Lys Thr Cys Thr
 1 5

40 <210> 205
<211> 6
<212> PRT
<213> Artificial Sequence

45 <220>
<223> Description of Artificial Sequence: Synthetic
 peptide

50 <400> 205
Cys Tyr Trp Lys Val Cys
 1 5

55 <210> 206
<211> 7
<212> PRT
<213> Artificial Sequence

55 <220>
<223> Description of Artificial Sequence: Synthetic
 peptide

55 <220>
<221> MOD_RES
<222> (6)

5 <223> Abu

10 <400> 206
Phe Cys Tyr Trp Lys Xaa Cys
 1 5

15 <210> 207
<211> 13
<212> PRT
<213> Artificial Sequence

20 <220>
<223> Description of Artificial Sequence: Synthetic
peptide

25 <400> 207
Glu Leu Tyr Gln Asn Lys Pro Arg Arg Pro Phe Ile Leu
 1 5 10

30 <210> 208
<211> 13
<212> PRT
<213> Artificial Sequence

35 <220>
<223> Description of Artificial Sequence: Synthetic
peptide

40 <400> 208
Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro Tyr Ile Leu
 1 5 10

45 <210> 209
<211> 13
<212> PRT
<213> Artificial Sequence

50 <220>
<223> Description of Artificial Sequence: Synthetic
peptide

55 <400> 209
Glu Leu Tyr Gln Asn Lys Pro Arg Arg Pro Tyr Ile Leu
 1 5 10

5 <210> 211
 <211> 13
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 211
 Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro Phe Ile Leu
 1 5 10

20 <210> 212
 <211> 13
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

30 <400> 212
 Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro Phe Ile Leu
 1 5 10

35 <210> 213
 <211> 12
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <400> 213
 Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro Tyr Ile
 1 5 10

50 <210> 214
 <211> 13
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

50 <400> 214
 Glu Leu Tyr Gln Asn Lys Pro Arg Arg Pro Phe Ile Leu
 1 5 10

55 <210> 215
 <211> 13
 <212> PRT

5 <213> Artificial Sequence

10 <220>
15 <223> Description of Artificial Sequence: Synthetic
 peptide

10 <400> 215
15 Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro Trp Ile Leu
 1 5 10

15 <210> 216
15 <211> 13
15 <212> PRT
15 <213> Artificial Sequence

20 <220>
20 <223> Description of Artificial Sequence: Synthetic
 peptide

20 <400> 216
20 Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro Trp Ile Leu
 1 5 10

25 <210> 217
25 <211> 13
25 <212> PRT
25 <213> Artificial Sequence

30 <220>
30 <223> Description of Artificial Sequence: Synthetic
 peptide

30 <400> 217
30 Glu Leu Tyr Gln Asn Lys Pro Arg Arg Pro Trp Ile Leu
 1 5 10

35 <210> 218
35 <211> 13
35 <212> PRT
35 <213> Artificial Sequence

40 <220>
40 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <400> 218
45 Glu Leu Tyr Gln Asn Lys Pro Arg Arg Pro Trp Ile Leu
 1 5 10

50 <210> 219
50 <211> 11
50 <212> PRT
50 <213> Artificial Sequence

55 <220>
55 <223> Description of Artificial Sequence: Synthetic
 peptide

5 <400> 219
Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro Tyr
 1 5 10

10 <210> 220
<211> 10
<212> PRT
<213> Artificial Sequence

15 <220>
<223> Description of Artificial Sequence: Synthetic
 peptide

20 <400> 220
Glu Leu Tyr Glu Asn Lys Pro Arg Arg Pro
 1 5 10

25 <210> 221
<211> 9
<212> PRT
<213> Artificial Sequence

30 <220>
<223> Description of Artificial Sequence: Synthetic
 peptide

35 <400> 221
Glu Leu Tyr Glu Asn Lys Pro Arg Arg
 1 5

40 <210> 222
<211> 8
<212> PRT
<213> Artificial Sequence

45 <220>
<223> Description of Artificial Sequence: Synthetic
 peptide

50 <400> 222
Glu Leu Tyr Glu Asn Lys Pro Arg
 1 5

55 <210> 223
<211> 7
<212> PRT
<213> Artificial Sequence

56 <220>
<223> Description of Artificial Sequence: Synthetic
 peptide

57 <400> 223
Glu Leu Tyr Glu Asn Lys Pro
 1 5

5 <210> 224
 <211> 9
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 224
 Asn Lys Pro Arg Arg Pro Tyr Ile Leu
 1 5

20 <210> 225
 <211> 8
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

30 <400> 225
 Lys Pro Arg Arg Pro Tyr Ile Leu
 1 5

35 <210> 226
 <211> 9
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <400> 226
 Asn Lys Pro Arg Arg Pro Tyr Ile Leu
 1 5

50 <210> 227
 <211> 8
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

56 <400> 227
 Lys Pro Arg Arg Pro Tyr Ile Leu
 1 5

57 <210> 228
 <211> 9
 <212> PRT
 <213> Artificial Sequence

5 <220>
5 <223> Description of Artificial Sequence: Synthetic
 peptide

10 <400> 228
10 Asn Lys Pro Arg Arg Pro Phe Ile Leu
 1 5

15 <210> 229
15 <211> 8
15 <212> PRT
15 <213> Artificial Sequence

20 <220>
20 <223> Description of Artificial Sequence: Synthetic
 peptide

25 <400> 229
25 Lys Pro Arg Arg Pro Phe Ile Leu
 1 5

30 <210> 230
30 <211> 9
30 <212> PRT
30 <213> Artificial Sequence

35 <220>
35 <223> Description of Artificial Sequence: Synthetic
 peptide

40 <400> 230
40 Asn Lys Pro Arg Arg Pro Trp Ile Leu
 1 5

45 <210> 231
45 <211> 8
45 <212> PRT
45 <213> Artificial Sequence

50 <220>
50 <223> Description of Artificial Sequence: Synthetic
 peptide

55 <210> 232
55 <211> 7
55 <212> PRT
55 <213> Artificial Sequence

55 <220>
55 <223> Description of Artificial Sequence: Synthetic
 peptide

5 <400> 232
 Pro Arg Arg Pro Tyr Ile Leu
 1 5

10 <210> 233
 <211> 6
 <212> PRT
 <213> Artificial Sequence

15 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

20 <400> 233
 Arg Arg Pro Tyr Ile Leu
 1 5

25 <210> 234
 <211> 7
 <212> PRT
 <213> Artificial Sequence

30 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

35 <400> 234
 Pro Arg Arg Pro Tyr Ile Leu
 1 5

40 <210> 235
 <211> 6
 <212> PRT
 <213> Artificial Sequence

45 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

50 <400> 235
 Arg Arg Pro Tyr Ile Leu
 1 5

55 <210> 236
 <211> 7
 <212> PRT
 <213> Artificial Sequence

56 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

57 <400> 236
 Pro Arg Arg Pro Phe Ile Leu
 1 5

5 <210> 237
 <211> 6
 <212> PRT
 <213> Artificial Sequence

10 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

15 <400> 237
 Arg Arg Pro Phe Ile Leu
 1 5

20 <210> 238
 <211> 7
 <212> PRT
 <213> Artificial Sequence

25 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

30 <400> 238
 Pro Arg Arg Pro Trp Ile Leu
 1 5

35 <210> 239
 <211> 6
 <212> PRT
 <213> Artificial Sequence

40 <220>
 <223> Description of Artificial Sequence: Synthetic
 peptide

45 <400> 239
 Arg Arg Pro Trp Ile Leu
 1 5

50 <210> 240
 <211> 14
 <212> PRT
 <213> Artificial Sequence

55 <220>
 <223> Description of Artificial Sequence: Synthetic
 cyclo peptide

60 <400> 240
 Ala Gly Cys Lys Asn Phe Phe Trp Lys Thr Phe Thr Ser Cys
 1 5 10

65 <210> 241
 <211> 28
 <212> PRT
 <213> Artificial Sequence

5 <220>
 <223> Description of Artificial Sequence:
 Cysteine-linked peptide conjugate
 <400> 241
 His Ser Asp Ala Val Phe Tyr Asp Asn Tyr Thr Arg Leu Arg Lys Glu
 1 5 10 15
 10 Cys Ala Val Lys Lys Tyr Leu Asn Ser Ile Leu Asn
 20 25

15 **Patentansprüche**

20 1. Verbindungen der allgemeinen Formel (I)

worin

25 X für eine α , β oder γ -Aminosäure mit D oder L-Konfiguration und

30 m für eine Zahl von 5 bis 30 steht,
 wobei die resultierende Aminosäuresequenz $(X)_m$ geradkettiger Natur oder über eine Disulfidbrücke zwischen zwei Cysteinen oder Homocysteinen oder amidisch zwischen N- und C-Terminus cyclisiert sein kann und für die Aminosäuresequenz des vasoaktiven intestinalen Peptids (VIP), des Somatostatins oder des Neurotensins, oder für Fragmente, Teilsequenzen, Derivate oder Analoga des VIP, des Somatostatins oder des Neurotensins steht,

35 A¹ für ein Wasserstoffatom, eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyphosphonsäure steht, welche eine Arylgruppe oder einen Heteroaromat enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert,

40 L¹ und L² unabhängig voneinander einen Acetylrest oder einen Alkylrest mit bis zu 10 C-Atomen, der gegebenenfalls mit 1 bis 3 Carboxygruppen und/oder 1 bis 6 Hydroxygruppen und/oder 1 bis 6 Amidgruppen substituiert sein kann, oder einen Poly(oxyethylen)rest mit 2 bis 30 $-CH_2CH_2O-$ -Einheiten darstellen,

45 A² für eine Hydroxygruppe, eine Aminogruppe, eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyphosphonsäure steht, welche eine Arylgruppe oder einen Heteroaromat enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert,

50 unter der Bedingung, daß mindestens einer der Reste A¹ oder A² eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyphosphonsäure darstellt, welche eine Arylgruppe oder einen Heteroaromat enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert, wobei für den Fall, daß A¹ und/oder A² eine offenkettige oder cyclische Polyaminopolycarbonsäure oder Polyaminopolyphosphonsäure darstellen, welche eine Arylgruppe oder einen Heteroaromat enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert, A¹ an die N-terminale Aminogruppe und A² an eine Aminogruppe der Aminosäure Lysin oder an eine Hydroxygruppe der Aminosäure Serin oder an die Mercaptogruppe der Aminosäure Cystein oder Homocystein in beliebiger Position innerhalb der Aminosäuresequenz $(X)_m$ geknüpft ist, und deren physiologisch verträgliche Salze.

55 2. Verbindungen nach Anspruch 1, **dadurch gekennzeichnet, daß** die offenkettige Polyaminopolycarbonsäure, welche eine Arylgruppe oder einen Heteroaromat enthält und ein Metallatom der Ordnungszahlen 57 bis 83 kom-

plexiert, ein Derivat der Diethylentriaminpentaessigsäure (DTPA) ist.

- 5 3. Verbindungen nach Anspruch 1, **dadurch gekennzeichnet**, daß die cyclische Polyaminopolycarbonsäure, welche
eine Arylgruppe oder einen Heteroaromat enthält und ein Metallatom der Ordnungszahlen 57 bis 83 komplexiert,
ein Derivat von 1,4,7,10-Tetraazacyclododecan (DOTA) ist.
- 10 4. Verbindungen nach Anspruch 1, **dadurch gekennzeichnet**, daß die offenkettige Polyaminopolycarbonsäure ein
Molekül gemäß allgemeiner Formel (II) ist:

25 worin Z unabhängig voneinander für ein Wasserstoffatom oder ein Metallionenäquivalent eines Elementes der
Ordnungszahlen 57 bis 83 und R für einen offenkettigen oder cyclischen, verzweigten oder unverzweigten C₁-C₁₀-
Alkylrest steht, welcher mindestens einen aromatischen Ring sowie gegebenenfalls 1 bis 5 Sauerstoffatome, 1
bis 3 Carboxygruppen und/oder 1 bis 3 Amidgruppen enthält.

- 30 5. Verbindungen nach Anspruch 4, **dadurch gekennzeichnet**, daß R für einen der folgenden Reste steht:

10 worin T jeweils die Verknüpfungsstelle mit dem Peptid darstellt, p für eine Zahl 0 oder 1 und n für eine Zahl zwischen 2 und 6 steht.

- 15 6. Verbindungen nach Anspruch 1, **dadurch gekennzeichnet, daß** die offenkettige Polyaminopolycarbonsäure ein Molekül gemäß allgemeiner Formel (III) ist:

30 worin Z unabhängig voneinander für ein Wasserstoffatom oder ein Metallionenäquivalent eines Elementes der Ordnungszahlen 57 bis 83 und R für einen offenkettigen oder cyclischen, verzweigten oder unverzweigten C₁-C₁₀-Alkylrest steht, welcher mindestens einen aromatischen Ring sowie gegebenenfalls 1 bis 5 Sauerstoffatome, 1 bis 3 Carboxygruppen und/oder 1 bis 3 Amidgruppen enthält.

- 35 7. Verbindungen nach Anspruch 6, **dadurch gekennzeichnet, daß** der Rest R für einen der folgenden Reste steht:

10

20 worin T jeweils die Verknüpfungsstelle mit dem Peptid darstellt, p für eine Zahl 0 oder 1 und n für eine Zahl zwischen 2 und 6 steht.

- 25 8. Verbindungen nach Anspruch 1, **dadurch gekennzeichnet, daß** die offenkettige Polyaminopolycarbonsäure ein Molekül gemäß allgemeiner Formel (IV) ist:

40 worin Z unabhängig voneinander für ein Wasserstoffatom oder ein Metallionenäquivalent eines Elementes der Ordnungszahlen 57 bis 83 und R für einen offenkettigen oder cyclischen, verzweigten oder unverzweigten C₁-C₁₀-Alkylrest steht, welcher mindestens einen aromatischen Ring sowie gegebenenfalls 1 bis 5 Sauerstoffatome, 1 bis 3 Carboxygruppen und/oder 1 bis 3 Amidgruppen enthält.

- 45 9. Verbindungen nach Anspruch 8, **dadurch gekennzeichnet, daß** R für einen der Reste

5

10

15

20

25

30

steht, worin T jeweils die Verknüpfungsstelle mit dem Peptid darstellt, p für eine Zahl 0 oder 1 und n für eine Zahl zwischen 2 und 6 steht.

- 35 10. Verbindungen nach Anspruch 1, dadurch gekennzeichnet, daß die cyclischen Polyaminopolycarbonsäuren Verbindungen der allgemeinen Formel (IX) sind:

40

45

50

(IX)

worin R¹ einen Rest —CHR⁵-COM darstellt, worin M für eine OZ-Gruppe steht, mit Z in der Bedeutung von Anspruch 4, oder die Verknüpfung zum Peptid darstellt, und worin R⁵ für einen Rest (VIII) oder für eine C₁-C₂₀-Alkylgruppe steht, welche mindestens eine Arylgruppe oder einen Heteroaromatengruppe, welche gegebenenfalls mit einem Halogenatom substituiert sein können, und mindestens eine weitere COOZ-Gruppe oder eine Isothiocyanatgruppe enthält, und welche gegebenenfalls 1 bis 3 Sauerstoffatome und/oder 1 bis 3 Amidgruppen enthält, und worin R² bis R⁴ unabhängig voneinander einen Rest CH₂COOZ, einen Phosphonsäurerest oder eine Gruppe —(CH₂)_p-Y darstellen, in der p für 0 oder 1 steht und Y einen gegebenenfalls substituierten Heteroaromatengruppe

darstellt.

11. Verbindungen nach Anspruch 1, **dadurch gekennzeichnet**, daß die cyclischen Polyaminopolycarbonsäuren Verbindungen der allgemeinen Formel (X) sind:

5

10

worin R⁶ einen Rest -CHR⁹-COM darstellt, worin M für eine OZ-Gruppe steht, mit Z in der Bedeutung von Anspruch 4, oder die Verknüpfung zum Peptid darstellt,
und worin R⁹ für einen Rest (VIII) oder eine C₁-C₆-Alkylgruppe steht, welche gegebenenfalls eine weitere COOH-Gruppe oder eine Isothiocyanatgruppe enthält, und welche gegebenenfalls 1 bis 2 Sauerstoffatome und/oder 1 bis 2 Amidgruppen enthält,
und worin R⁷ und R⁸ unabhängig voneinander einen Rest CH₂COOZ oder einen Phosphonsäurerest darstellen.

25

12. Verbindungen nach Anspruch 1, **dadurch gekennzeichnet**, daß (X)_m für die Aminosäuresequenz des nativen vasoaktiven intestinalen Peptides entsprechend

30

HSDAVFTDNYTRLRKQMAVKKYLNSILN

oder für Fragmente, Teilsequenzen, Derivate oder Analoga des vasoaktiven intestinalen Peptides, bestehend aus 5 bis 30 Aminosäuren, steht.

35

13. Verbindungen nach Anspruch 1, **dadurch gekennzeichnet**, daß (X)_m für die Aminosäuresequenz des Somatostatins entsprechend

40

AGCKNFFWKTFTSC

oder für Fragmente, Teilsequenzen, Derivate oder Analoga des Somatostatins, bestehend aus 5 bis 20 Aminosäuren, steht.

45

14. Verbindungen nach Anspruch 1, **dadurch gekennzeichnet**, daß (X)_m für die Aminosäuresequenz des Neurotensins entsprechend

50

Pyroglutaminsäure-LYENKPRRPYIL

oder für Fragmente, Teilsequenzen, Derivate oder Analoga des Neurotensins, bestehend aus 5 bis 20 Aminosäuren, steht.

55

15. Verbindungen nach Anspruch 12, **dadurch gekennzeichnet**, daß als Fragmente, Teilsequenzen, Derivate oder Analoga des vasoaktiven intestinalen Peptides folgenden Aminosäuresequenzen ausgewählt sind:

	RLRKQMAVKKYLNSILN	RLRKQMAVKKYLNSIL	RLRKQMAVKKYLNSI
5	LRKQMAVKKYLNSILN	LRKQMAVKKYLNSIL	LRKQMAVKKYLNSI
	RKQMAVKKYLNSILN	RKQMAVKKYLNSIL	RKQMAVKKYLNSI
	KQMAVKKYLNSILN	KQMAVKKYLNSIL	KQMAVKKYLNSI
10	QMAVKKYLNSILN	QMAVKKYLNSIL	QMAVKKYLNSI
	MAVKKYLNSILN	MAVKKYLNSIL	MAVKKYLNSI
	AVKKYLNSILN	AVKKYLNSIL	AVKKYLNSI
15			
	RLRKQMAVKKYLNS	RLRKQMAVKKYLN	RLRKQMAVKKYL
	LRKQMAVKKYLNS	LRKQMAVKKYLN	LRKQMAVKKYL
20	RKQMAVKKYLNS	RKQMAVKKYLN	RKQMAVKKYL
	KQMAVKKYLNS	KQMAVKKYLN	KQMAVKKYL
	QMAVKKYLNS	QMAVKKYLN	QMAVKKYL
	MAVKKYLNS	MAVKKYLN	MAVKKYL
25	AVKKYLNS	AVKKYLN	AVKKYL

16. Verbindungen nach mindestens einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet, daß** 1 bis m Aminosäuren unabhängig voneinander gegen ihre jeweilige D-Aminosäure oder gegen andere L- oder D-Aminosäuren ausgetauscht sein können, wobei m die oben angegebene Bedeutung hat.
17. Verbindungen nach mindestens einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet, daß** sämtliche Aminosäuren (X)_m gegen ihre jeweilige D-Aminosäure ausgetauscht sind.
- 30 18. Verbindungen nach mindestens einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet, daß** als Fragmente, Teilsequenzen, Derivate oder Analoga des vasoaktiven intestinalen Peptides retrosynthetische Aminosäuresequenzen ausgewählt sind.
- 35 19. Verbindungen nach mindestens einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet, daß** als Fragmente, Teilsequenzen, Derivate oder Analoga des vasoaktiven intestinalen Peptides retrosynthetische Aminosäuresequenzen, bei denen 1 bis m Aminosäuren gegen die jeweilige D-Aminosäure ausgetauscht sind, ausgewählt sind, wobei m die oben angegebene Bedeutung hat.
- 40 20. Verbindungen nach Anspruch 12, **dadurch gekennzeichnet, daß** als Fragmente, Teilsequenzen, Derivate oder Analoga des vasoaktiven intestinalen Peptides folgende Aminosäuresequenzen ausgewählt sind:
- 45

	rlrkqmvkkylnsiln	rlrkqmvkkylnsil	rlrkqmvkkylnsi
50	lrkqmvkkylnsiln	lrkqmvkkylnsil	lrkqmvkkylnsi
	rkqmvkkylnsiln	rkqmvkkylnsil	rkqmvkkylnsi
	kqmvkkylnsiln	kqmvkkylnsil	kqmvkkylnsi
	qmavkkylnsiln	qmavkkylnsil	qmavkkylnsi
55	mavkkylnsiln	mavkkylnsil	mavkkylnsi
	avkkylnsiln	avkkylnsil	avkkylnsi

	RLRKQMAvKKyLNSILN	RLRKQMAvKKyLNSIL	RLRKQMAvKKyLNSI
5	LRKQMAvKKyLNSILN	LRKQMAvKKyLNSIL	LRKQMAvKKyLNSI
	RKQMAvKKyLNSILN	RKQMAvKKyLNSIL	RKQMAvKKyLNSI
	KQMAvKKyLNSILN	KQMAvKKyLNSIL	KQMAvKKyLNSI
10	QMAvKKyLNSILN	QMAvKKyLNSIL	QMAvKKyLNSI
	MAvKKyLNSILN	MAvKKyLNSIL	MAvKKyLNSI
	AvKKyLNSILN	AvKKyLNSIL	AvKKyLNSI

- 15 21. Verbindungen nach Anspruch 12, **dadurch gekennzeichnet, daß** als Analoga des VIP Peptide aus der folgenden Gruppe von Sequenzen ausgewählt sind:

20

25

30

35

40

45

50

55

5 FSDAVFTDNY TRLRKQMAVK KYLNSILN
ISDAVFTDNY TRLRKQMAVK KYLNSILN
LSDAVFTDNY TRLRKQMAVK KYLNSILN
HFDAVFTDNY TRLRKQMAVK KYLNSILN
HHDAVFTDNY TRLRKQMAVK KYLNSILN
10 HIDAVFTDNY TRLRKQMAVK KYLNSILN
HLDAVFTDNY TRLRKQMAVK KYLNSILN
HMDAVFTDNY TRLRKQMAVK KYLNSILN
HQDAVFTDNY TRLRKQMAVK KYLNSILN
HTDAVFTDNY TRLRKQMAVK KYLNSILN
15 HVDAVFTDNY TRLRKQMAVK KYLNSILN
HWDAVFTDNY TRLRKQMAVK KYLNSILN
HYDAVFTDNY TRLRKQMAVK KYLNSILN
HSAAVFTDNY TRLRKQMAVK KYLNSILN
HSEAVFTDNY TRLRKQMAVK KYLNSILN
20 HSFAVFTDNY TRLRKQMAVK KYLNSILN
HSHA VFTDNY TRLRKQMAVK KYLNSILN
HSIAVFTDNY TRLRKQMAVK KYLNSILN
HSLAVFTDNY TRLRKQMAVK KYLNSILN
HSMAVFTDNY TRLRKQMAVK KYLNSILN
25 HSWAVFTDNY TRLRKQMAVK KYLNSILN
HSDFVFTDNY TRLRKQMAVK KYLNSILN
HSDGVFTDNY TRLRKQMAVK KYLNSILN
HSDMVFTDNY TRLRKQMAVK KYLNSILN
HSDQVFTDNY TRLRKQMAVK KYLNSILN
30 HSDSVFTDNY TRLRKQMAVK KYLNSILN
HSDWVFTDNY TRLRKQMAVK KYLNSILN
HSDYVFTDNY TRLRKQMAVK KYLNSILN
HSDAFFTDNY TRLRKQMAVK KYLNSILN
40 HSDAIFTDNY TRLRKQMAVK KYLNSILN
HSDAIFTDNY TRLRKQMAVK KYLNSILN
45 HSDALFTDNY TRLRKQMAVK KYLNSILN
50

5 HSDAMFTDNY TRLRKQMAVK KYLNSILN
HSDATFTDNY TRLRKQMAVK KYLNSILN
HSDAWFTDNY TRLRKQMAVK KYLNSILN
HS DAYFTDNY TRLRKQMAVK KYLNSILN
HSDAVKTDNY TRLRKQMAVK KYLNSILN
HSDAVFVDNY TRLRKQMAVK KYLNSILN
HSDAVFWDNY TRLRKQMAVK KYLNSILN
HSDAVFTDNW TRLRKQMAVK KYLNSILN
HSDAVFTDNY TRRRKQMAVK KYLNSILN
HSDAVFTDNY TRWRKQMAVK KYLNSILN
HSDAVFTDNY TRLRFQMAVK KYLNSILN
HSDAVFTDNY TRLRLQMAVK KYLNSILN
HSDAVFTDNY TRLRMQMAVK KYLNSILN
HSDAVFTDNY TRLRRQMAVK KYLNSILN
HSDAVFTDNY TRLRKAMAVK KYLNSILN
HSDAVFTDNY TRLRKFMAVK KYLNSILN
HSDAVFTDNY TRLRKIMAVK KYLNSILN
HSDAVFTDNY TRLRKKMAVK KYLNSILN
HSDAVFTDNY TRLRKLMAVK KYLNSILN
HSDAVFTDNY TRLRKMMAVK KYLNSILN
HSDAVFTDNY TRLRKRMAVK KYLNSILN
HSDAVFTDNY TRLRKVMAVK KYLNSILN
HSDAVFTDNY TRLRKWMAVK KYLNSILN
HSDAVFTDNY TRLRKYMAVK KYLNSILN
HSDAVFTDNY TRLRKQFAVK KYLNSILN
HSDAVFTDNY TRLRKQIAVK KYLNSILN
HSDAVFTDNY TRLRKQKAVK KYLNSILN
HSDAVFTDNY TRLRKQLAVK KYLNSILN
HSDAVFTDNY TRLRKQQAVK KYLNSILN
HSDAVFTDNY TRLRKQRAVK KYLNSILN
HSDAVFTDNY TRLRKQWAVK KYLNSILN
HSDAVFTDNY TRLRKQMFK KYLNSILN
HSDAVFTDNY TRLRKQMIVK KYLNSILN
HSDAVFTDNY TRLRKQMVK KYLNSILN
HSDAVFTDNY TRLRKQMLVK KYLNSILN
HSDAVFTDNY TRLRKQMMVK KYLNSILN

5 HSDAVFTDNY TRLRKQMVK KYLNSILN
 HSDAVFTDNY TRLRKQMVRK KYLNSILN
 HSDAVFTDNY TRLRKQMVK KYLNSILN
 HSDAVFTDNY TRLRKQMVK KYLNSILN
 HSDAVFTDNY TRLRKQMYVK KYLNSILN
 HSDAVFTDNY TRLRKQMAAK KYLNSILN
 HSDAVFTDNY TRLRKQMAIK KYLNSILN
 HSDAVFTDNY TRLRKQMALK KYLNSILN
 HSDAVFTDNY TRLRKQMAVR KYLNSILN
 HSDAVFTDNY TRLRKQMAVK RYLNSILN
 HSDAVFTDNY TRLRKQMAVK WYLNSILN
 HSDAVFTDNY TRLRKQMAVK KFLNSILN
 HSDAVFTDNY TRLRKQMAVK KWLNLSILN
 HSDAVFTDNY TRLRKQMAVK KYLASILN
 HSDAVFTDNY TRLRKQMAVK KYLFSILN
 HSDAVFTDNY TRLRKQMAVK KYLISILN
 HSDAVFTDNY TRLRKQMAVK KYLMSILN
 HSDAVFTDNY TRLRKQMAVK KYLSSILN
 HSDAVFTDNY TRLRKQMAVK KYLVSILN
 HSDAVFTDNY TRLRKQMAVK KYLWSILN
 HSDAVFTDNY TRLRKQMAVK KYLNNILN
 HSDAVFTDNY TRLRKQMAVK KYLNRLIN
 HSDAVFTDNY TRLRKQMAVK KYLNWILN
 HSDAVFTDNY TRLRKQMAVK KYLNYILN
 HSDAVFTDNY TRLRKQMAVK KYLNSLLN
 HSDAVFTDNY TRLRKQMAVK KYLNSSLN
 HSDAVFTDNY TRLRKQMAVK KYLNSWLN
 HSDAVFTDNY TRLRKQMAVK KYLNSYLN
 HSDAVFTDNY TRLRKQMAVK KYLNSIFN
 HSDAVFTDNY TRLRKQMAVK KYLNSIIN
 HSDAVFTDNY TRLRKQMAVK KYLNSIWN
 HSDAVFTDNY TRLRKQMAVK KYLNSILW

22. Verbindungen nach Anspruch 12, **dadurch gekennzeichnet, daß** als Analogon des VIP eine Verbindung gemäß folgender Formel ausgewählt ist:

55

HSDAVFTX¹X²Y X³RLRKQMAVK KYLNSILN,

worin X¹, X² und X³ jede beliebige Aminosäure darstellen können.

23. Verbindungen nach Anspruch 13, dadurch gekennzeichnet, daß als Fragmente, Teilsequenzen, Derivate oder Analoga des Somatostatins folgende Aminosäuresequenzen ausgewählt sind:

5

10

15

20

25

24. Verbindungen nach Anspruch 14, dadurch gekennzeichnet, daß als Fragmente, Teilsequenzen, Derivate oder Analoga des Neurotensins folgende Aminosäuresequenzen ausgewählt sind:

30

35

40

45

50

25. Verbindungen nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die Verbindungen ein Terbium- oder Europiumkation enthalten.

55

26. Verwendung der Verbindungen nach mindestens einem der vorangehenden Ansprüche zur In-vivo-Diagnostik von Tumoren, anderen erkrankten Gewebebereichen oder Adenomen mittels optischer Detektionsverfahren, oder zur In-vivo-Fluoreszenzdiagnostik von Tumoren, Tumorzellen und/oder entzündlichen Geweben mittels endoskopischer Verfahren im Gastrointestinaltrakt, Oesophagus, Bronchialtrakt, der Blase oder der Zervix.

27. Verfahren zur endoskopischen In-vivo-Fluoreszenzdiagnostik unter Verwendung der Verbindungen nach Anspruch 1, **dadurch gekennzeichnet, daß** dem Patienten die Verbindungen topisch durch Versprühen im Gastrointestinaltrakt, Oesophagus, der Blase, oder durch Inhalation den Bronchien zugeführt werden, der nicht gebundene, überschüssige Anteil der Verbindung gegebenenfalls anschließend durch Waschen entfernt wird, und schließlich die endoskopische Untersuchung durch örtliche Anregung mit einer aus dem Spektralbereich von 250 bis 450 nm ausgewählten Anregungswellenlänge und durch ortsabhängige Detektion der spezifischen, von der Verbindung emittierten Fluoreszenzstrahlung durchgeführt wird.
- 10 28. Optisches Diagnostikum zur In-vivo-Diagnostik erkrankter Gewebebereiche, **dadurch gekennzeichnet, daß** es mindestens eine Verbindung nach Anspruch 1 zusammen mit den üblichen Hilfs- und/oder Trägerstoffen sowie Verdünnungsmitteln enthält.
- 15 29. Verfahren zur Herstellung von Verbindungen gemäß Anspruch 1, **dadurch gekennzeichnet, daß** zunächst ein Metallkomplex hergestellt wird, welcher durch Aminolyse des entsprechenden Aktivesters an ein Peptid gekoppelt wird.

20

25

30

35

40

45

50

55