Реализация протокола автоматического запроса повторной передачи Go-Back-N и Selective Repeat

Никита Лансков

16 января 2022 г.

Содержание

1	Постановка задачи						
2	Реализация	2					
3	Оценка эффективности протоколов 3.1 Зависимость от вероятности потери пакета	2 3 4					
4	Результаты	4					

1 Постановка задачи

Требуется разработать систему из двух агентов, способных обмениваться данными друг с другом.

Требования к системе:

- 1. Должна моделироваться ненадежность канала связи: с заданной вероятностью пакеты должны теряться при передаче.
- 2. Должна обеспечиваться доставка получателю всех отправленных данных, посредством протоколов автоматического запроса повторной передачи Go-Back-N и $Selective\ Repeat$

2 Реализация

Система реализована на языке программирования *Python*. Система организована в виде двух потоков выполнения: поток отправителя и поток получателя. Взаимодействие между ними реализовано в виде очередей сообщений.

Программа разделена на следующие составляющие:

- Sender отправитель, формирует сообщения с данными.
- Reciever получатель, получает сообщения и сообщает о факте доставки.
- MsgQueue канал коммуникации, который хранит сообщения между отправкой и получением, а также имитирует их потерю.

Каждый пакет содержит информацию о своем порядковом номере в окне, уникальный номер блока, а также свой статус (доставлен, потерян).

Система принимает следующие параметры:

- protocol протокол связи (GBN/SRP)
- window size величина скользящего окна в выбранном протоколе.
- **timeout** время в секундах, после которого пакет считается утерянным в случае отсутствия подтверждения его доставки.
- loss probability вероятность потери сообщения при передаче ((0,1])

3 Оценка эффективности протоколов

Оценку эффективности протоколов будем проводить по двум параметрам:

- 1. коэффициент эффективности $k = \frac{\kappa o \pi 60 \ bcex \ nakemob}{\kappa o \pi 60 \ nepedahhux \ nakemob}$
- 2. Время от начала до конца передачи в секундах t

Для оценки проведем серию экспериментов с различными значениями размера окна и вероятности потери пакетов. Во всех тестах количество передаваемых пакетов равно $100,\,timeout=0.2c.$

3.1 Зависимость от вероятности потери пакета

Таблица 1: Зависимость эффективности протоколов от вероятности потери пакета при w=3

W	Go-Back-N		Selective repeat	
	t	k	t	k
0.0	0.53	1.00	0.36	1.00
0.1	3.62	0.77	1.35	0.84
0.2	9.80	0.53	1.96	0.65
0.3	10.95	0.50	4.82	0.57
0.5	19.18	0.36	5.62	0.44
0.6	23.76	0.31	10.94	0.35
0.7	48.66	0.18	19.89	0.22
0.8	71.67	0.13	24.34	0.17
0.9	174.72	0.06	78.28	0.07

Зависимость коэффициента эффективности от вероятности потери пакета при w=3

Зависимость времени передачи от вероятности потери пакета при w=3

3.2 Зависитость от размера окна

Таблица 2: Зависимость эффективности протоколов от размера окна при p=0.2

W	Go-Back-N		Selective repeat	
	t	k	t	k
2	7.14	0.77	6.20	0.73
3	6.08	0.65	1.97	0.74
4	5.30	0.58	1.67	0.68
5	4.63	0.55	2.23	0.65
6	6.03	0.42	1.79	0.55
7	3.50	0.51	1.16	0.64
8	5.15	0.38	1.14	0.51
9	5.35	0.35	1.33	0.48
10	3.86	0.41	1.51	0.53

Зависимость коэффициента эффективности от размера окна при p=0.2

Зависимость времени передачи от размера окна при p=0.2

4 Результаты

По рассмотренным выше зависимостям можно сделать следующие выводы:

- При малых вероятностях потери пакета эффективность протоколов практически не отличается. Далее протокол *Go-Back-N* все значительнее проигрывает протоколу *Selective repeat*
- Зависимость от размера окна менее явная. Можно заметить, что для протокола *Selective repeat* эффективность улучшается с увеличением окна. Протокол *Go-Back-N* ведет себя более хаотично, но общая тенденция аналогична.