计算机网络试卷 A (宣城校区)

计算机网络试卷 B (宣城校区)

-. 选择题(共20分)

1. 计算机网络按其所涉及及范围的大小和计算机之间互连的 距离,其类型可分为: (A)

- A. 局域网、城域网和广域网
- B. 局域网和广域网
- C. 分布的、集中的和混合的
- D. 通信网、因特网和万维网
- 2. 在以太网结构中,工作站间通过以下机制协调数据传输(A)
- A. CSMA/CD B. RARP C. 令牌 D. 预约
- 3. 若两台主机在同一子网中,则两台主机的 IP 地址分别与它 们的子网掩码相"与"的结果一定: (C)
- A. 为全 0 B. 为全 1 C. 相同 D. 不同
- 4. 工作在 OSI 参考模型中网络层上的网络互连设备是: (D)
- A. 中继器 B. 网桥 C. 网关 D. 路由器
- 5. 数据链路层上信息传输的基本单位称为: (C) A. 段
- C. data
- B. 位 D. 报文
- 6. ATM 信元及信元头的字节数分别为: (D)
- A) 5, 53 B) 50, 5 C) 50, 3 D) 53, 5

- 7. 互联网中所有端系统和路由器都必须实现(D)协议。
- A. SNMP B. SMTP C. TCP D. IP
- 8. ARP 协议实现的功能是: (C)
- A、域名地址到 IP 地址的解析
- B、IP 地址到域名地址的解析
- C、IP地址到物理地址的解析
- 9. 下列交换技术中, 节点不采用 " 存储 一 转发 " 方式 的是: (A)
 - A 、电路交换技术 B 、报文交换技术
 - C 、虚电路交换技术 D 、数据报交换技术
 - 10. TCP 提供面向(A)的传输服务。
 - A. 连接 B. 无连接 C. 地址 D. 端口

二. 填空题 (共30分)

- 1. 每个 IP 地址被分割成前缀和后缀两部分, 其中前缀部分用于确 定_网络号_,后缀部分用于确定_主机号_
- 2. 用一对传输线传送多路信息的方法称为复用,常用的多路复用

方式有_频分复用、_时分复用_和波分复用。

- 3. 局域网的数据链路层分为 逻辑链路控制 LLC 子层 和 媒体 10. 局域网交换机主要采用以下两种交换方式: <u>存储转发</u>和 <u>直</u> 接入控制 MAC 子层,与接入到传输媒体有关的内容是 MAC 通转发。 子层。
- 4. 数据链路层使用<u>硬件</u>地址,而网络层和以上各层使用<u>IP</u>地 址。这两个地址的映射问题由_ARP 协议解决。
- 5. 网桥建立转发表是根据 接收到的帧的源 MAC 地址(源地址) 写入的,对收到的数据帧是根据 MAC 帧的目的地址 转发的。网 桥可分为 透明网桥 、源路由网桥 两种。
- 6. HDLC 帧可分为 <u>信息帧</u> 、 <u>监督帧</u> 和 <u>无编号帧</u> , HDLC 用 零比特填充法_保证数据的透明传输。
- 7. 在_物理_层扩展局域网使用集线器,另一种扩展扩展局域网是 在数据链路层使用网桥。
- 8. 计算机网络从逻辑可由 资源子网 和 通信子网 组成。
- 9. OSI 七层模型中,提供端到端可靠传输的是 **运输层** 提供路由

选择是是 网络层。

- 11. 网络层向运输层提供数据报 服务或虚电路 服务,其中虚 电路 能提供服务质量的承诺, 而数据报 特点是"尽力而为"。
- 12. 电路交换必须经过 建立连接 、 通话 和 释放连接 三个步
- 13. 根据自治系统的划分可以将因特网的路由选择协议分为_内部 网关协议 IGP 和 外部网关协议 EGP 。
- 14. 10BASE-T 中, "10" 代表 数据传输速率 10Mbit/s , "BASE" 代表 连接线上的信号是基带信号 , "T"代表 双绞线 。
- 15. 异步传输模式(ATM)实际上是 电路交换 和 分组交换 两 种交换技术的结合。

三. 阿答题 (50分)

1. 解释 CSMA/CD 的含义,并简述其过程? (书 P91)

答:含义:它是载波监听多点接入/碰撞检测的缩写。

过程: (1)载波侦听: 是指用电子技术检测总线上有没有其它计算机发送的数据信号,以免发生碰撞

(2)冲突检测:在每个站发送帧期间,同时具有检测冲突的能力。一旦遇到冲突,则立即停止发送,并向总线上发一串阻塞信号, 通报总线上各站点已发生冲突。

(3)多路访问: 当检测到冲突并在发完阻塞信号后,需要等待一个随机时间, 然后再用 CSMA 的算法重新发送。

2. 解释 RIP 和 OSPF 协议的三个要点? (书 P175 和书 P178)

答: RIP 协议: (1)仅和相邻路由器交换信息; (2)交换的信息是当前本路由器所知道的全部信息,即自己的路由表; (3)按固定的时间

OSPF 协议:(1)向本自治系统中的所有路由器发送信息,这里使用的方法是洪泛法;(2)发送的信息就是与本路由器相邻的所有路由器 的链路状态,但这只是路由器所知道的部分信息。所谓"链路状态"就是说明本路由器都和哪些路由器相邻以及该链路的"度量";(3) 只有当链路状态发生变化时,路由器才用洪泛法向所有路由器发送此消息。

运输层(传输层) 网际层(互联层)

3. 画出 TCP/IP 协议体系,并简述各层功能? (书 P31)

答: TCP/IP 协议体系如右图所示。(图中不在括号里的是书本里的名称,括号里的是课件里的名称)

应用层:主要功能是为用户提供网络服务,比如 FTP、Telnet、DNS 和 SNMP 等。

网络接口层 传输层:主要功能是提供可靠的数据流传输服务,确保端到端应用进程间无差错地的通信,常称为端到端(End-to-End)通信。 互联层:负责异构网或同构网进程间的通信,将传输层分组封装为数据报格式进行传送,每个数据报必须包含目的地址和源地址。 网络接口层: 是网络访问层, 其主要功能是负责与物理网络的连接。

4.图1是具有4个结点交换机的广域网,写出各结点的使用默认路由的简化转发表。(书P130) 、结束上的转发表。 给第2的规划人 《《自3的知识》,《数是4的转发初 孤认 3 4 MUSH 图 1 图 6-7 使用了数认路市的简化转发表。 5.图 2 中是包括三个子网的网络拓扑,写出 RI 的路由表,并介绍若主机 HI 要发送分组给 H2 的主要步骤。 答

目的网络地址	子网掩码	下一跳
128.30.33.0	255.255.255.128	接口 0
128.30.33.128	255.255.255.128	接口1
128.30.36.0	255.255.255.0	R2

HI 首先检查主机 128.30.33.138 是否在本网络上,将 255.255.128AND128.30.33.138≠H1 的网络地址,因此 H1 必须把分组传送到 R1,然后逐项查找路由表。255.255.255.128AND128.30.30.138=128.30.33.128 与第一行的 128.30.33.0 不匹配。继续下一行, 128.30.33.138=255.255.255.128=128.30.33.128, 这表明子网二就是说要寻找的目的网络。(其中 H1、R1 中的 1 均是下标)

- ---、項至經 6. 运输层中伪首部的作用_用于计算运输层数据报检验和。 8. 10 个站点连接到一个 10Mbit/s 以太网交换机。每一个站所能得到带宽是_10Mbit/s。 12.网络协议的三个要素是_语法,语义,同步。

- 三. 何答题(50 分)
 1. 以太网使用的 CSMA/CD 协议是以争用方式接入到共享信道。这与传统的时分复用 TDM 相比优缺点如何?
 答: CSMA/CD 是一种动态的媒体随机接入共享信道方式,而传统的时分复用 TDM 是一种静态的划分信道,所以对信道的利用,
 否定 CSMA/CD 是用户共享信道,更灵活,可提高信道的利用率,不像 TDM,为用户按时隙固定分配信道,所以对信道的利用,
 时,信道在用户时隙也是浪费的;也因为 CSMA/CD 是用户共享信道,所以当同时有用户需要使用信道时会发生碰撞,就降低信道的利用率,而 TDM 中用户在分配的时隙中不会与别的用户发生冲突。对局域网来说,连入信道的是相距较近的用户,因此通常信道带宽较宽,如果使用 TDM 方式,用户在自己的时隙内没有数据发送的情况会更多,不利于信道的充分利用。对计算机通信来说,突发
- 2. 设某路由器建立了如下路由表(这三列分别是目的网络、子网掩码和下一跳路由器,若直接交付则最后一列表示应当从哪一个接口 转发出去):

目的网络	子网掩码	下一跳
128.96.39.0	255.255.255.128	接口0
128.96.39.128	255.255.255.128	接口 1
128.96.40.0	255.255.255.128	
192.4.153.0	255.255.255.192	
* (默认)	1.200.200.172	R3
		R4

现共收到 5 个分组, 其目的站 IP 地址分别为:

(1) 128.96.39.10 (2) 128.96.40.12 (3) 128.96.40.15 (3) 128.96.40.15 (3) 128.96.40.15 答: (1) 分组的目的站 IP 地址为: 128.96.39.10. 先与子网拖码 255.255.255.128 相与, 得 128.96.39.0, 可见该分组经接口 0 转发。

(2) 分组的目的 IP 地址为: 128.96.40.12。

① 与子网掩码 255.255.255.128 相与得 128.96.40.0,不等于 128.96.39.0。

② 与子网境码 255.255.255.128 相与得 128.96.40.0,经查路由表可知,该项分组经 R2 转发。

(3) 分组的目的 IP 地址为: 128.96.40.151, 与子网掩码 255.255.255.128 相与后得 128.96.40.128, 与子网掩码 255.255.255.192 相与后得 128.96.40.128. 经查路由表知,该分组转发选择默认路由,经 R4 转发。

3. 试简单说明 IP 、 ARP 、 RARP 和 ICMP 协议的作用。

答: IP: 网际协议,它是 TCP/IP 体系中两个最重要的协议之一,IP 使互连起来的许多计算机网络能够进行通信。无连接的数据报传输。数据报路由。 ARP (地址解析协议): 实现地址转换,将 IP 地址转换成物理地址。

RARP (逆向地址解析协议): 将物理地址转换成 IP 地址。

ICMP: Internet 控制消息协议,进行差错控制和传输控制,减少分组的丢失。

注:ICMP 协议帮助主机完成某些网络参数测试,允许主机或路由器报告差错和提供有关异常情况报告,但它没有办法减少分组丢失。这是高层协议应 该完成的事情。IP 协议只是尽最大可能交付,至于交付是否成功,它自己无法控制。

4. 电路交换和分组交换的原理,比较其优缺点?

答: 电路交换方式

优点: 通信实时性强, 适用于交互式会话类通信。

缺点: 对突发性通信不适应, 系统效率低, 系统不具有存储数据的能力, 不能平滑交通量

优点: (1) 存储量要求较小,可以用内存来缓冲分组,速度快; (2) 转发延时小,适用于交互式通信; (3) 某个分组出错仅重发该分组,效率高; (4)

各分组可通过不同路径传输, 可靠性高。

缺点:(1)分组在各结点存储转发时需要排队,这就会造成一定的时延;(2)分组必须携带的首部造成了一定的开销。

5. 网桥的工作原理和特点是什么? 网桥与转发器以及以太网交换机有何异同?

答。网桥的每个端口与一个网段相连,网桥从端口接收网段上传送的各种帧。每当收到一个帧时,就先暂存在其缓冲中。着此帧未出现差错。且歌发往 的目的站MAC 地址属于另一网段,则通过查找站表,将收到的帧送往对应的端口转发出去。着该帧出现差错,则丢弃此帧。网桥过速了通信量。扩大 了物理范围,提高了可靠性,可互连不同物理层、不同 MAC 子层和不同速率的局域网。但同时也增加了时延,对用户太多和通信量太大的高速解不适

1. 网桥与转发器不同,(1) 网桥工作在数据链路层,而转发器工作在物理层;(2) 网桥不像转发器转发所有的帧,而是只转发未出现差错,且目的站置 于另一网络的帧或广播帧;(3)转发器转发一帧时不用检测传输媒体,而网桥在转发一帧前必须执行 CSMA/CD 算法。(4)网桥和转发器都有扩展局域 网的作用,但网桥还能提高局域网的效率并连接不同 MAC 子层和不同速率局域网的作用。

2.以太网交换机通常有十几个端口,而网桥一般只有 2-4 个端口;它们都工作在数据链路层;网桥的端口一般连接到局域网。而以太网的每个器口都直接与主机相连,交换机允许多对计算机间能同时通信,而网桥允许每个网段上的计算机同时通信。所以实质上以太网交换机是一个多端口的网络。连到 交换机上的每台计算机就像连到网桥的一个局域网段上。网桥采用存储转发方式进行转发,而以太网交换机还可采用直通方式转发。以太两交换机采用 了专用的交换机构芯片,转发速度比网桥快。