CÀLCUL INTEGRAL EN DIVERSES VARIABLES

EXAMEN PARCIAL Abril 2011

- 1. a) (1 punt) Doneu la definició de funció mesurable.
 - b) (2 punts) Definiu la integral d'una funció simple, mesurable, positiva.
 - c) (1 punt) Definiu la integral d'una funció mesurable positiva.
 - d) (1 punt) Definiu la integral d'una funció mesurable.
 - e) (3 punts) Enuncieu les propietats fonamentals de les funcions integrables.
 - f) (2 punts) Expliqueu el canvi a coordenades esfèriques en \mathbb{R}^3 .
- **2.** (10 punts) Sigui $A = \{(x, y) \in \mathbf{R}^2 | x^2 < y < 10 x^2, \frac{y^2}{2} < x < 6 y^2 \}.$

Proveu que les equacions $u = \frac{y^2}{x}$, $v = \frac{x^2}{y}$, defineixen un canvi de variables en $(0, +\infty)^2$.

Si
$$f(x,y) = exp(-\frac{x^3 + y^3}{xy})$$
, calculeu $\int_A f$.

3. (10 punts) Es consideren les funcions $f_p(x,y,z) = \frac{xz \sin(x^2 + y^2)}{(x^2 + y^2)^p}$

Estudieu, en termes del paràmetre $p \in \mathbf{R}$, la seva integrabilitat sobre el conjunt mesurable

$$E = \{(x, y, z) \in \mathbf{R}^3 | \ x > 0, \ y > 0, \ 0 < z < x^2 + y^2 < 1\}$$

ENTREGUEU ELS EXERCICIS EN FULLS SEPARATS POSEU EL NOM EN TOTS ELS FULLS