

Sistemas de Processamento Digital de Sinais Problemas sobre amostragem e representação

${f I}$ — Assinale apenas uma resposta.

1) Num processador digital com palavras de n bits com aritmética de vírgula fixa, uma palavra
fraccionária (com sinal) no formato Q_m representando um valor x :
\square pode representar valores $-4 \le x \le 4 - 2^{-m}$ se $m = n - 3$.
\square tem o menor erro relativo médio quando $m = n - 2$.
\square tem o maior erro relativo médio quando $n = m - 1$.
\square permite representar $\sqrt{2}/2$ com erro relativo nulo desde que $m=n-1$.
,
2) Num sistema de amostragem impulsiva com retenção, com frequência de amostragem
$f_s=1/T_s$ e tempo de retenção $ au=T_s/3$:
\square apenas as réplicas de ordem n para n múltiplo inteiro de 3 sofrem distorção.
□ não existem réplicas de ordem par.
□ todas as réplicas sofrem distorção.
\square não existem réplicas de ordem n para n múltiplo inteiro de 3.
3) A amostragem impulsiva ideal:
\square não se pode utilizar na prática.
\Box origina um espectro com distorção nas réplicas pares.
\square origina um espectro finito.
\square origina um espectro infinito com réplicas sem distorção.
4) Num sistema de amostragem ideal com retenção, com frequência de amostragem $f_s=1/T_s$ e
tempo de retenção $\tau = T_s/4$:
\square não existem réplicas de ordem par.
\square todas as réplicas sofrem distorção.
\square não existem réplicas de ordem n para n múltiplo inteiro de 4.
\square não existem réplicas de ordem n para n múltiplo inteiro de 2.
5) Com palavras x,y e z de 16 bit no formato $Q_{13},$ a operação $w=x^2y+z$ está sempre
correcta se for guardada no formato com (w com 16 bit, formato com maior precisão):
$\square \ Q_{12}$.
$\square \ \ Q_{10}$.
$\square \ Q_8$.
$\square Q_{\!\scriptscriptstyle 9} .$
•0
6) Num sistema de amostragem rectangular com frequência de amostragem $f_s=1/T_s$ e tempo de
seguimento $\tau = T_s/2$:
□ o espectro do sinal amostrado consiste num número finito de réplicas do sinal de entrada.
☐ não existem réplicas nos múltiplos pares da frequência de amostragem.
□ as réplicas do espectro no sinal amostrado sofrem distorção.
□ não é necessário observar o teorema da amostragem.

1) Num sistema de amostragem ideal com retenção com frequencia de amostragem $f_s = 1/T_s$ e
tempo de retenção $\tau = T_s/2$:
\square o número de réplicas no sinal amostrado é finito.
\square não existem réplicas de ordem par.
\Box todas as réplicas sofrem distorção.
\square só as réplicas de ordem ímpar sofrem distorção.
8) Com palavras $x,\ y$ e z de 16 bit no formato $Q_{13},$ a operação $w=x+y\cdot z$ está sempre
correcta se for guardada no formato:
$\square \ \ Q_{12} .$
$\square \ \ Q_{10}$.
$\square \ Q_8$.
$\ \ \square \ \ Q_9 .$
9) Considere a equação às diferenças $y_n=1.3x_n+0.2x_{n-1}+0.2x_{n-2}-1.3x_{n-3}$ e a sua
implementação num processador digital com palavras de N bits com aritmética de vírgula fixa. O
formato aritmético mais preciso para representar y_n é:
\square Q_{N-3} se as amostras x_n estiverem em Q_{N-1} .
\square Q_{N-4} se as a mostras x_n estiverem em Q_{N-4} .
$\hfill Q_{N-6}$ se as amostras x_n estiverem em $Q_{N-3}.$
$\hfill \hfill Q_{15}$ independentemente do formato das amostras $x_n^{}.$
10) Quando se multiplicam dois números fraccionários de 16 bit nos formato Q_{14} e Q_{12} , o resultado:
\Box pode sempre guardar-se correctamente em Q_{10} mas este não é o formato mais preciso.
\square está sempre correcto se for guardado em $Q_{12}.$
\square nunca está correcto se for guardado em $Q_{13}.$
\square pode sempre guardar-se correctamente em Q_{13} se tiver valor absoluto inferior a 8.
II = Considere on númerou regio e a a representados com 16 hit no formato O num processador

II — Considere os números reais x e y representados com 16 bit no formato Q_{14} num processador de vírgula fixa.

- a) Determine o formato aritmético mais preciso que garante que $z=x^2+y^2-1$ é sempre calculado correctamente. Justifique.
- b) Escreva o código C (32 bit sempre que possível) que realiza esta operação incluindo as inicializações das variáveis considerando $x=1.2\,,\;y=0.5$ e z do tipo Int16.
- c) Calcule o erro relativo que se obtém em $\,z\,$ e diga como poderia diminuí-lo.

III — Considere os números reais x e y representados com 16 bit no formato $Q_{1,14}$ num processador de vírgula fixa. Nota: Considere que no formato $Q_{i,m}$ o número w é representado no intervalo $-(2^i-2^{-m}) \le w \le 2^i-2^{-m}$.

- a) Diga qual é o formato aritmético que garante que $z=x^2-y^2$ é sempre calculado correctamente. Justifique.
- b) Escreva o código C que realiza esta operação considerando x, y e z variáveis do tipo short (16 bit).
- c) Determine o erro relativo que se obtém em z para os valores particulares de x=1.51 e y=-1.31.

IV — Considere os números fraccionários x Q_{12} , y Q_{15} e z Q_{15} e o seu processamento num processador de vírgula fixa de 16 bit.

- a) Determine o formato que deve ser utilizado para representar $w=(x+y)\cdot(z-1)$ com 16 bit de modo que o valor de w esteja sempre correcto quaisquer que sejam os valores de x, y e z nos formatos anteriores. Justifique detalhadamente.
- b) Considere agora x=-7.1, y=0.75 e z=0.9. Escreva o código C em vírgula fixa que permite calcular w, incluindo as declarações de variáveis e as inicializações, utilizando apenas palavras de 16 bit.

 ${\bf V} = {\rm Considere} \ {\rm um} \ {\rm sistema} \ {\rm de} \ {\rm amostragem} \ {\rm ideal} \ {\rm com} \ {\rm retenção} \ {\rm a} \ {\rm funcionar} \ {\rm com} \ f_s = \frac{1}{T_s} \ {\rm e} \ {\rm com} \ {\rm um} \ {\rm tempo} \ {\rm de} \ {\rm retenção} \ \tau = T_s \ / \ 2 \ . \ {\rm O} \ {\rm sinal} \ {\rm de} \ {\rm entrada} \ {\rm \acute{e}} \ {\rm uma} \ {\rm sinus\acute{o}ide} \ {\rm com} \ {\rm amplitude} \ A \ {\rm e} \ {\rm frequência} \ f_0 = \frac{1}{T_0} = f_s \ / \ 4 \ .$

- a) Represente o sinal de entrada e o sinal amostrado no domínio do tempo para $0 \le t \le T_0$ e no domínio da frequência para $0 \le f \le 6f_s$.
- b) Diga se ocorre aliasing na amostragem e explique porque é que este tipo de amostragem é muito utilizado quando se pretende passar do domínio digital para o domínio analógico utilizando um conversor D/A seguido de um retentor.

Cotação: I - 8 II - a) 1 b) 1.5 c) 1 III - a) 1 b) 1.5 c) 1 IV - a) 1 b) 1 V - a) 1.5 b) 1.5