## Exploratory Data Analysis of Red Wine Quality UCI Machine Learning Repository Dataset

Kevin Bell Angelie Reyes-Sosa Dani Lopez

Fall 2025



#### Agenda

- Motivation and dataset overview
- Three guiding questions and hypotheses
- Descriptive statistics, visuals, and interaction modeling
- Dimensionality reduction, clustering, and anomalies
- Future research plan and closing takeaways

## Why This Dataset?

- **Scope:** 1599.00 Portuguese *Vinho Verde* red wines with 11.00 physicochemical features plus quality score.
- **Relevance:** Widely cited benchmark that still leaves room for actionable winemaking insights.
- Course fit: Easily satisfies requirements on feature count and observation size.

#### Feature Definitions

| Feature              | Description                                           |  |  |
|----------------------|-------------------------------------------------------|--|--|
| Fixed acidity        | Non-volatile acids (g/dm³).                           |  |  |
| Volatile acidity     | Acetic acid $(g/dm^3)$ ; vinegar aromas.              |  |  |
| Citric acid          | Adds freshness and structure $(g/dm^3)$ .             |  |  |
| Residual sugar       | Sugar remaining post-fermentation $(g/dm^3)$ .        |  |  |
| Chlorides            | Salt content $(g/dm^3)$ .                             |  |  |
| Free sulfur dioxide  | Protects against oxidation (mg/dm <sup>3</sup> ).     |  |  |
| Total sulfur dioxide | Combined bound and free $SO_2$ (mg/dm <sup>3</sup> ). |  |  |
| Density              | Proxy for sugar/alcohol balance (g/cm <sup>3</sup> ). |  |  |
| pH                   | Acidity (unitless).                                   |  |  |
| Sulfates             | Potassium sulfate $(g/dm^3)$ ; antimicrobial.         |  |  |
| Alcohol              | Ethanol percentage by volume.                         |  |  |
| Quality              | Median sensory rating (3–8 scale).                    |  |  |

# Guiding Questions and Analytical Assumptions

- Which chemistry attributes best distinguish higher-quality wines?
- 4 How do acidity profiles interact with sulfur management across quality tiers?
- Are there latent subgroups that signal distinct wine styles?

#### **Assumptions and biases**

- Treat quality score as approximately continuous for correlation work.
- Lab measurements assumed unbiased; focus is chemistry-centric.

## Working Hypotheses

- Alcohol and sulfates will correlate positively with quality.
- Volatile acidity will correlate negatively with quality.
- Density and residual sugar play limited roles because most wines are dry.

## Summary Statistics Highlights

|           | Alcohol | Vol. acidity | Citric acid | Sulfates | Density | рН   |
|-----------|---------|--------------|-------------|----------|---------|------|
| Mean      | 10.42   | 0.53         | 0.27        | 0.66     | 1.00    | 3.31 |
| Std. dev. | 1.07    | 0.18         | 0.20        | 0.17     | 0.00    | 0.15 |

- ullet Alcohol and sulfates show the greatest relative spread o leverage for quality differentiation.
- Volatile acidity variability flags riskier sensory outcomes.

#### Means by Quality Tier

| Quality | Alcohol | Vol. acidity | Citric acid | Sulfates | Total SO <sub>2</sub> |
|---------|---------|--------------|-------------|----------|-----------------------|
| 3       | 9.96    | 0.89         | 0.17        | 0.57     | 24.90                 |
| 4       | 10.27   | 0.69         | 0.17        | 0.60     | 36.25                 |
| 5       | 9.90    | 0.58         | 0.24        | 0.62     | 56.51                 |
| 6       | 10.63   | 0.50         | 0.27        | 0.68     | 40.87                 |
| 7       | 11.47   | 0.40         | 0.38        | 0.74     | 35.02                 |
| 8       | 12.09   | 0.42         | 0.39        | 0.77     | 33.44                 |

- Alcohol climbs steadily with quality while volatile acidity drops.
- Total SO<sub>2</sub> peaks at mid-tier quality, pointing to a sweet spot.

## Alcohol vs. Quality



Positive slope reinforces alcohol as a top quality discriminator.

## Feature Correlations with Quality



Alcohol dominates; volatile acidity is the strongest negative signal.

## Volatile Acidity Tightens at Higher Quality



scores cluster at lower, tighter volatility levels.

#### Notable Anomalies

- Sulfate-heavy outliers: extreme additions sometimes coincide with lower quality despite average upward trend.
- High-chloride, low-quality samples merit lab re-checks and potential process audits.

#### Interaction Model Insights

- Linear model: quality = 5.68 1.03 (vol. acidity) + 1.20 (sulfates) 0.86 (vol. acidity × sulfates).
- Model explains 17.70% of variance; negative interaction captures diminishing sulfate returns.
- High sulfates help only when volatile acidity is under control; guides winemaking trade-offs.

#### PCA Signals Latent Styles

- First two principal components capture 45.70% of variance (PC1 28.20%, PC2 17.50%).
- PC1 contrasts structural acidity and density against pH and alcohol; PC2 emphasizes sulfur management and residual sugar.
- High-quality wines cluster at higher PC1 scores with controlled volatility, confirming balanced chemistry.

## Chemistry Clusters

| Cluster  | Size   | Mean quality | Mean alcohol (%) | Mean vol. acidity | Mean sulfates |
|----------|--------|--------------|------------------|-------------------|---------------|
| Premium  | 638.00 | 0.01         | 10.58            | 0.42              | 0.75          |
| Baseline | 961.00 |              | 10.32            | 0.60              | 0.60          |

Highest silhouette (0.207) separates a premium profile with higher alcohol and managed volatility from the mainstream cohort.

#### Synthesis

- High-scoring wines: higher alcohol, moderate sulfates, elevated citric acid, lower volatile acidity.
- Interaction model ( $R^2$ =0.177) shows sulfates lose impact when volatile acidity spikes.
- PCA + k-means isolate a premium cluster (638.00 wines, mean quality 5.87) distinct from a baseline group (961.00 wines, 5.48).

#### Future Research and Predictive Plan

- Build predictive models (regularized regression, gradient boosting, tree ensembles) with key interactions.
- Explore segmentation via Gaussian mixtures or density-based clustering.
- Simulate chemistry adjustments with causal inference tools (e.g., propensity score weighting).

Additional questions: missing vintage/producer effects? blending strategies to mitigate deficiencies?

#### Conclusion

- Met objectives: characterized data, answered core questions, charted next steps.
- Key takeaways: alcohol and balanced sulfates aid quality; volatile acidity detracts; actionable subgroups emerge.
- Thank you! Report and repository contain full reproducible analysis.

Thank you!

Team: Kevin Bell, Angelie Reyes-Sosa, Dani Lopez