2020-MA-14-26

EE24BTECH11006 - Arnay Mahishi

1) Consider the following statements:

I: $\log(|z|)$ is harmonic on $\mathbb{C}\setminus\{0\}$

II: $\log(|z|)$ has a harmonic conjugate on $\mathbb{C}\setminus\{0\}$

a) both I and II are true

c) I is false but II is true

1

b) I is true but II is false

d) both I and II are false

2) Let G and H be defined by

 $G = \mathbb{C} \setminus \{z = x + iy \in \mathbb{C} : x \le 0, y = 0\},$

 $H = \mathbb{C} \setminus \{z = x + iy \in \mathbb{C} : x \in \mathbb{Z}, x \leq 0, y = 0\},$

Suppose $f: G \to \mathbb{C}$ and $g: H \to \mathbb{C}$ are analytical functions. Consider the following statements:

I: $\int_{\gamma} f dz$ is independent of paths γ in G joining -i and i II: $\int_{\gamma} g dz$ is independent of paths γ in H joining -i and i

a) both I and II are true

c) I is false but II is true

b) I is true but II is false

- d) both I and II are false
- 3) Let $f(z) = e^{\frac{1}{z}}, z \in \mathbb{C} \setminus \{0\}$ and let, for $n \in \mathbb{N}$, $R_n = \left\{ z = x + iy \in \mathbb{C} : |x| < \frac{1}{n}, |y| < \frac{1}{n} \right\} \setminus \{0\}.$

If for a subset of S of \mathbb{C} , \overline{S} denotes the closure of S in \mathbb{C} , then

- a) $\overline{f(R_{n+1})} \neq f(R_n)$ b) $\overline{f(R_n)} \setminus f(R_{n+1}) = \overline{f(R_n \setminus R_{n+1})}$ c) $\overline{f(\bigcap_{n=1}^{\infty} R_n)} = \bigcap_{n=1}^{\infty} \overline{f(R_n)}$ d) $\overline{f(R_n)} = f(R_{n+1})$

- 4) Suppose that $U = \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 : x,y \in \mathbb{Q}\}, V = \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 : x > 0, y = \frac{1}{x}\}.$ Then with repsect to the Euclidean metric on \mathbb{R}^2 ,
 - a) both U and V are disconnected
- c) U is connected but V is disconnected
- b) U is disconnected but V is connected d) both U and V are connected
- 5) If (D1) and (D2) denote the dual problems of the linear programming problems (P1) and (P2), respectively, where

(P1): minimize $x_1 - 2x_2$, subject to $-x_1 + x_2 = 10, x_1, x_2 \ge 0$

(P2): minimize $x_1 - 2x_2$, subject to $-x_1 + x_2 = 10$, $x_1 - x_2 = 10$, $x_1, x_2 \ge 0$, then

- a) both (D1) and (D2) are infeasible
- b) (P2) is infeasible and (D2) is feasible
- c) (P2) is infeasible and (D2) is feasible but unbounded

- d) (P1) is feasible but unbounded and (D1) is feasible
- 6) If (4,0) and $(0,-\frac{1}{2})$ are the critical points of the function $f(x,y) = 5 (\alpha + \beta)x^2 + \beta y^2 + (\alpha + 1)y^3 + x^3$, where $\alpha, \beta \in \mathbb{R}$, then
 - a) $\left(4, -\frac{1}{2}\right)$ is point of local maxima of f c) $\alpha = 4, \beta = 2$ b) $\left(4, -\frac{1}{2}\right)$ is a saddle point of f d) $\left(4, -\frac{1}{2}\right)$ is a point of local minima of f
- 7) Consider the iterative scheme $x_n = \frac{x_{n-1}}{2} + \frac{3}{x_{n-1}}, n \ge 1$ with initial point $x_0 > 0$. Then the sequence $\{x_n\}$
 - a) converges only if $x_0 > 1$

c) converges for any x_0

b) converges only if $x_0 > 3$

- d) does not converge for any x_0
- 8) Let C [0, 1] denote the space of all real-valued continuous functions on [0, 1] equipped with the supremum norm $\|.\|_{\infty}$. Let $T: C[0,1] \to C[0,1]$ be the linear operator defined by $T(f)(x) = \int_0^x e^{-y} f(y) dy$ Then
 - a) ||T|| = 1

c) T is surjective

b) I - T is not invertible

- d) ||I + T|| = 1 + ||T||
- 9) Suppose that M is a 5×5 matrix with real entries and p(x) = det(xI M). Then
 - a) p(0) = det(M)
 - b) every eigen value of M is real if p(1) + p(2) = 0 = p(2) + p(3)
 - c) M^{-1} is necessarily a polynomial in M in degree 4 if M is invertible
 - d) M is not invertible if $M^2 2M = 0$
- 10) Let C [0, 1] denote the space of all real-valued continous functions on [0, 1] equipped with the supremum norm $\|.\|_{\infty}$. Let $f \in \mathbb{C}[0,1]$ be such that $|f(x) - f(y)| \le M|x - y|$, for all $x, y \in [0, 1]$ and for some M > 0. For $n \in \mathbb{N}$, let $f_n(x) = f(x^{1+\frac{1}{n}})$. If $S = (x^{1+\frac{1}{n}})$ $\{f_n : n \in \mathbb{N}\}$, then
 - a) the closure of S is compact
- c) S is bounded but not totally bounded

b) S is closed and bounded

- d) S is compact
- 11) Let $K: \mathbb{R} \times (0, \infty) \to \mathbb{R}$ be a function such that the solution of the initial value problem $\frac{\delta u}{\delta t} = \frac{\delta^2 u}{\delta x^2}, u(x,0) = f(x), x \in R, t > 0$, is given by $u(x,t) = \int_{\mathbb{R}} K(x-y,t) f(y) dy$ for all bounded continous functions f, Then the value of $\int_{\mathbb{R}} K(x,t) dx$ is _____
- 12) The number of cyclic subgroups of the quaternion group $Q_8 = \langle a, b | a^4 = 1, a^2 = 1 \rangle$ b^2 , $ba = a^3b$ is _
- 13) The number of elements of order 3 in the symmetric group S_6 is ______