Travaux Dirigés de Physique

CHARLES TUCHENDLER

MPSI 4 – Lycée Saint-Louis

Année 2019/2020

Table des matières

TD n° 5	Cinématique du point	1
Exercice n° 1 -	Calcul d'éléments de surface et de volume	1
Exercice n° 2 -	Entraînement d'un spationaute	1
Exercice n° 3 -	Déplacement sur un manège	2
Exercice n° 4 -	Risque de collision au freinage	2
Exercice n° 5 -	Trajectoire cycloïdale	2
Exercice n° 6 -	Sauvetage en mer [®]	3
Exercice n° 7 -	Quel est le chemin le plus court	3
Exercice n° 8 -	Escalier en colimaçon	3
Exercice n° 9 -	Particule freinée sur son axe	3
Exercice n° 10 -	Echelle	4
Exercice n° 11 -	Tige	4

TD N° 5

CINÉMATIQUE

Exercice n° 1 - Calcul d'éléments de surface et de volume

Retrouver les expressions de la surface d'un disque, et de la surface et du volume d'une sphère à partir des éléments surfaciques et volumiques élémentaires.

Exercice n° 2 - Entraînement d'un spationaute

Un spationaute doit subir différents tests d'aptitude aux vols spatiaux, notamment le test des accélérations. Pour cela, on l'installe dans une capsule de centre S fixée au bout d'un bras métallique horizontal dont l'autre extrémité est rigidement liée à un arbre de rotation vertical Δ . La longueur du bras est notée L.

L'ensemble {capsule + bras + arbre} est mis en rotation avec une vitesse angulaire croissant progressivement selon la loi $\omega(t) = \omega_0 \left[1 - \exp(-t/\tau)\right]$, où ω_0 est la vitesse angulaire nominale du simulateur et τ un temps caractéristique.

On assimilera le spationaute au point matériel S.

- 1. Dessiner la trajectoire du spationaute ainsi que son vecteur vitesse dans le référentiel du laboratoire en faisant figurer la base adaptée à l'étude de ce mouvement.
- 2. Donner l'expression des vecteurs position, vitesse et accélération du spationaute à un instant t quelconque dans le référentiel du laboratoire.
- 3. A partir de quelle durée peut-on supposer que le mouvement est circulaire et uniforme? Que deviennent les expressions des vecteurs vitesse et accélération dans ce cas? Calculer alors la norme de l'accélération subie par le spationaute.
- 4. Quelle doit être la valeur de ω_0 pour que l'accélération atteigne 10 g lors du régime de rotation uniforme (g est l'accélération de la pesanteur)? On donnera le résultat en tours par seconde.

Application numérique : L = 10.0 m; $g = 9.8 \text{ m.s}^{-2}$.

Exercice n° 3 - Déplacement sur un manège

On considère un manège tournant à vitesse angulaire constante ω_0 . Un observateur part du centre du manège, et marche à vitesse constante v_0 dans le référentiel du manège, le long d'un rayon du plateau du manège.

- 1. Déterminer la vitesse et l'accélération de l'observateur dans le référentiel du manège.
- 2. Déterminer la position de l'observateur dans le référentiel lié au sol, en coordonnées cylindriques, puis donner l'équation de la trajectoire et tracer son allure.
- 3. Déterminer l'expression de la vitesse et de l'accélération de l'observateur dans le référentiel lié au sol, en utilisant les coordonnées cylindriques.

Exercice n° 4 - Risque de collision au freinage

1. Une voiture roule à une vitesse constante V_1 en ligne droite. Au temps t=0, le conducteur aperçoit un obstacle, mais il ne commence à freiner qu'au bout d'un temps $\varepsilon=0,6$ s (temps de réaction du conducteur). La voiture possède alors une décélération constante a=7,5 m.s⁻².

Calculer la distance parcourue par le véhicule depuis l'instant initial jusqu'à l'arrêt dans les deux cas suivants : $V_1 = 54 \text{ km.h}^{-1}$, puis $V_1 = 108 \text{ km.h}^{-1}$.

2. Deux voitures se suivent sur une route droite, à une distance d, et roulent à la même vitesse constante V_2 . A l'instant t=0, la première voiture commence à freiner avec une décélération a, la seconde voiture ne commence à freiner qu'après un temps ε avec une décélération b < a.

Quelle condition doit satisfaire d pour que la seconde voiture s'arrête avant de heurter la première? Données : $V_2 = 108 \text{ km.h}^{-1}$; $b = 6 \text{ m.s}^{-2}$.

Exercice nº 5 - Trajectoire cycloïdale

On s'intéresse au mouvement d'un point d'une roue de vélo de rayon R. On note C le point au centre de la roue et M le point de la périphérie de la roue qui coïncide avec le point de contact avec le sol à t=0.

La roue roule sans glisser sur le sol (axe Ox), c'est-à-dire que lorsqu'un rayon de la roue tourne d'un angle θ , l'abscisse x_C du centre augmente de $R\theta$.

Soit \mathcal{R} le référentiel lié au sol (repère spatial $(O\,x\,y\,z)$ avec O le point coïncidant avec M à t=0). Soit \mathcal{R}' le référentiel lié à la roue (repère spatial $(C\,x'\,y'\,z')$ dont les axes sont parallèles aux axes de \mathcal{R}).

- 1. Quelle est la trajectoire du point C dans le référentiel \mathcal{R} ? Donner l'évolution de la position de C avec le temps. Mêmes questions dans le référentiel \mathcal{R}' .
- 2. Quelle est la trajectoire du point M dans le référentiel \mathcal{R}' ? Donner l'évolution de la position de M avec le temps.
- 3. Montrer que les coordonnées (x_M, y_M) du point M s'écrivent, dans le référentiel \mathcal{R} (équation paramétrique d'une cycloïde):

$$x_M = R(\theta - \sin \theta)$$

 $y_M = R(1 - \cos \theta)$

- 4. En déduire les composantes de la vitesse et de l'accélération de M dans \mathcal{R} en fonction de R, θ et des dérivées de θ . En quels point la norme de la vitesse est-elle nulle? maximale?
- 5. Déterminer la longueur d'un arc de cycloïde.

Exercice n° 6 - Sauvetage en mer®

Un maître nageur doit secourir une personne en train de se noyer en mer.

- 1. Quelle est la trajectoire que le sauveteur doit suivre pour arriver sur le nageur le plus vite possible, sachant que l'axe sauveteur/nageur n'est pas perpendiculaire à la plage?
- 2. Quel est le lien avec les Lois de Descartes?

Exercice n° 7 - Quel est le chemin le plus court

- 1. On considère deux points distincts A et B à la surface de la Terre de même latitude λ . Est-il plus court de se déplacer de A à B selon le parallèle terrestre correspondant ou bien selon le grande cercle, c'est-à-dire le cercle de rayon égal au rayon terrestre R_T et de centre le centre de la Terre (supposée sphérique)?
- 2. On montre en réalité que, sur une sphère de rayon R, le grand cercle est le plus court chemin entre deux points. λ étant la latitude et ψ étant la longitude, déterminer la longueur du chemin le plus court entre Paris ($\lambda_1 = 48^{\circ}52'$ N; $\psi_1 = 2^{\circ}20'$ E) et Tokyo ($\lambda_1 = 35^{\circ}42'$ N; $\psi_1 = 139^{\circ}30'$ E).

On donne $R_T = 6.37(1) \times 10^6 \,\mathrm{m}$

Exercice nº 8 - Escalier en colimaçon

On s'intéresse au mouvement d'un objet ponctuel M se déplaçant sur la rampe d'un escalier en colimaçon. On modélise le mouvement de deux façons :

- en utilisant tout d'abord les coordonnées cartésiennes.
- puis avec les coordonnées cylindriques, mieux adaptées à la descritpion d'un tel mouvement.

• Coordonnées cartésiennes

Les coordonnées cartésiennes du point M sont données par : $x(t) = a \cos \theta(t)$, $y(t) = a \sin \theta(t)$ et $z(t) = b \theta(t)$ où $\theta(t)$ est l'angle usuel des coordonnées cylindriques.

- 2. Exprimer en fonction de θ , $\dot{\theta}$ et $\ddot{\theta}$ les composantes cartésiennes de la vitesse et de l'accélération de M.
- 3. Montrer que le point H, projeté de M sur le plan z=0, a un mouvement de rotation circulaire. En déduire que le mouvement de M est la combinaison de deux mouvements dont on précisera la nature.
- 4. Déterminer le pas h de l'hélice.
- 5. A quelle condition sur $\theta(t)$ le mouvement est-il uniforme?

• Coordonnées cylindriques

Les coordonnées cylindriques du point M sont données par : $r=R_0, \ \theta=\omega t$ et $z=h\,\frac{\omega t}{2\,\pi}$ où $R_0, \ \omega$ et h sont des constantes.

- 1. Déterminer les expressions de la position, la vitesse et l'accélération de M dans la base locale $(\overrightarrow{u_r}, \overrightarrow{u_\theta}, \overrightarrow{u_z})$.
- 2. Montrer que la norme de la vitesse est constante.
- 3. Montrer que le vecteur vitesse fait avec l'axe Oz un angle α constant. Exprimer $\tan \alpha$ en fonction de R_0 et h.

Exercice n° 9 - Particule freinée sur son axe

Une particule astreinte à évoluer sur un axe (Ox) a pour accélération $\overrightarrow{d} = -Kv^n\overrightarrow{e_x}$ avec K constante positive. A t=0 elle est en O avec une vitesse $\overrightarrow{v}(0)=v_0\overrightarrow{e_x}$.

- 1. Quelle est la dimension de K? Le mouvement est-il uniforme, accéléré ou freiné?
- 2. Pour les cas n=1 puis n=2, déterminer la loi de vitesse en fonction du temps, l'équation horaire du mouvement et l'expression de la vitesse en fonction de x (trajectoire). Dans chaque cas, que peut-on dire de la distance parcourue par la particule avant immobilisation?

Exercice n° 10 - Echelle

Un homme H monte à une échelle de hauteur 2L. L'échelle est appuyée en A sur le sol et en B sur un mur vertical. Lorsque l'homme a monté les trois quarts de l'échelle, celle-ci se met à glisser. On pourra noter G le milieu de l'échelle, avec R = OG et θ l'angle $(Ox, \overrightarrow{OG})$.

- 1. Exprimer $x_H(\theta)$ et $y_H(\theta)$, puis donner l'équation cartésienne de la trajectoire.
- 2. Déterminer la vitesse \overrightarrow{v}_H de l'homme en fonction de $\omega = \frac{d\theta}{dt}$, et donner son expression au moment où il arrive au sol et la commenter.

Exercice n° 11 - Tige

On représente ci-dessous un système mécanique dont le mouvement s'effectue dans le plan (xOy). Ce système comporte deux roues tournant dans le sens trigonométrique à la vitesse angulaire ω autour de leurs axes respectifs $(O_1, \overrightarrow{u_z})$ et $(O_2, \overrightarrow{u_z})$. Elles sont reliées par une tige \mathcal{T} homogène de longueur ℓ et de centre de masse C. les axes sont fixes et les liaisons en A et B sont articulées.

On pose $O_1A = O_2B = a$. À t = 0, les vecteurs $\overrightarrow{O_1A}$ et $\overrightarrow{O_2B}$ font un même angle θ_0 avec $\overrightarrow{u_x}$. On se place dans le référentiel terrestre \mathcal{R} auquel on associe le repère fixe $(O, \overrightarrow{u_x}, \overrightarrow{u_y}, \overrightarrow{u_z})$.

- 1. Quelle est la nature du mouvement de la tige?
- 2. Représenter graphiquement et déterminer les expressions de $\overrightarrow{v}(A/\mathcal{R})$, $\overrightarrow{v}(B/\mathcal{R})$ et $\overrightarrow{v}(C/\mathcal{R})$.

