A Speedrun to the Yoneda Lemma

Pete Su

31 October 2021

1. The Big Picture

The Yoneda Lemma is a basic and beloved result in category theory. In most treatments it shows up fairly early in the books and lecture notes on the subject. Its statement is also deceivingly compact because all of its content is buried inside layers of abstraction and notation that would have been built up while working through the conceptual basis of category theory.

In particular the result ties together the following sets of ideas:

- Categories (objects and arrows).
- Functors
- Natural transformations
- Functor categories

For me the hard part of understanding this result was unwrapping the abstraction ladder in its statement, especially when the definitions required to do so are spread across several different sections of whatever book or lecture notes you are reading.

I am going to do the following dumb thing: I am going to state the result in several different kinds of notation and then define the only the pieces we need to make that notation make sense as fast as possible, so all of the material is contained in a single small document for easy reference. In the spirit of video game speedruns, it will be only what is absolutely necessary, and it will skip a lot of interesting material that you should really talk about before completing the cateogry theory "game", but which we can ignore for our purposes right now.

Note that I am not a mathematician or a category theory expert. I'm just a guy trying to figure out the notation. So everything in this document is probably wrong.

2. Statement of the Lemma

This section lists several statements of the Lemma that use various different notations. You will notice that all of the statements have the same shape, but they all seem to be using slightly different language. The sections after this one will unwrap all the language.

Lemma 1 (Yoneda). Let C be a locally small category. Then

$$[\mathbf{C}^{\mathrm{op}}, \mathbf{Set}](\mathsf{H}_{\mathsf{X}}, \mathsf{F}) \cong \mathsf{F}(\mathsf{X}) \tag{2.1}$$

naturally in $X \in \mathbf{C}$ and $F \in [\mathbf{C}^{op}, \mathbf{Set}]$.

Lemma 2 (Yoneda). Let **C** be a locally small category and $X \in \mathbf{C}$. Then for any functor $F : \mathbf{C} \to \mathbf{Set}$ there is a bijection

$$Hom(\mathbf{C}(X, -), F) \cong FX$$

that associates each natural transformation $\alpha: \mathbf{C}(X,-) \Rightarrow F$ with the element $\alpha_X(1_X) \in FX$. Moreover, this correspondence is natural in both X and F.

Lemma 3 (Yoneda). For any locally small category C, object $X \in C$, and functor $F : C \to Set$ we have $Nat(C(X, -), F) \cong FX$ both naturally in $X \in C$ and $F \in [C, Set]$

You can also write that one an opposite way:

Lemma 4 (Yoneda). For any locally small category C, object $X \in C$, and functor $F : C^{op} \to Set$ we have $Nat(C(-, X), F) \cong FX$ both naturally in $X \in C$ and $F \in [C^{op}, Set]$

Lemma 5 (Yoneda). Let **C** be a category, let X be an object of **C**, and let $F : \mathbf{C}^{\mathrm{op}} \to \mathbf{Set}$ be a presheaf on **C**. Consider the map from

$$Hom_{[\mathbf{C}^{\mathrm{op}},\mathbf{Set}]}(Hom_{\mathbf{C}}(-,X),\mathsf{F})\to\mathsf{F}X$$

assigning to a natural transformation $\alpha: Hom_{\mathbf{C}}(-,X) \Rightarrow F$ the element $\alpha_X(\mathrm{id}_X) \in FX$, which is the value of the component α_X of α on the identity at X.

This assignment is a bijection, and it is natural both in X and in F.

This version peels away some of the layers:

Lemma 6 (Yoneda). Let **C** be a locally small category, let X be an object of **C**, and let $F: \mathbf{C} \to \mathbf{Set}$ be a functor. Then

- (i) There is a bijection between the set of natural transformations from $\mathbf{C}(X,-)$ to F and the elements of FX
 - (ii) The bijection in (i) is natural in both F and X.

I've made these statements look a bit more uniform than they do in real life just by using the same style of typesetting for all of them. But, there is still a lot to unpack. So let's get into it.

3. Categories

Categories have a deliciously multi-part definition.

Definition 1. A category **C** consists of:

- A collection of *objects* that we will denote with upper case letters X, Y, Z, ..., and so on. We call this collection *Objects*(**C**). Traditionally people write just **C** to mean *Objects*(**C**) when the context makes clear what is going on.
- A collection of *arrows* denoted with lower case letters f, g, h, ..., and so on. Other names for *arrows* include *mappings* or *functions* or *morphims*. We will call this collection *Arrows*(**C**).

The objects and arrows of a category satisfy:

- Each arrow f maps one object $A \in Objects(\mathbf{C})$ to another object $B \in Objects(\mathbf{C})$ and we denote this by writing $f : A \to B$. Here A is called the *domain* of f and B the *codomain*.
- For each pair of arrows $f: A \to B$ and $g: B \to C$ we can form a new arrow $g \circ f: A \to C$ called the *composition* of f and g. This is also sometimes written gf.
- For each A ∈ Objects(C) there is a function 1_A: A → A, called the *identity* at
 A that maps A to itself. Sometimes this object is also written as id_A.

Finally, we have the last two rules:

• For any $f: A \to B$ we have that $1_B \circ f$ and $f \circ 1_A$ are both equal to f.

• Given $f: A \to B$, $g: B \to C$, $h: C \to D$ we have that $(h \circ g) \circ f = h \circ (g \circ f)$, or alternatively (hg)f = h(gf). What this also means is that we can always just write hgf if we want.

We will call the collection of all arrows from A to B $Arrows_{\mathbf{C}}(A,B)$. We will usually write Arrows(A,B) when it's clear what category A and B come from. Traditionally people write Hom(A,B) or $Hom_{\mathbf{C}}(A,B)$, or just $\mathbf{C}(A,B)$ to mean Arrows(A,B). Here "Hom" stands for homomorphism, which is a word that often means mappings that preserve some kind of structure.

At this point every category theory book will list a few dozen examples of categories that show up in various areas of math. These will have strangely truncated names like **Measu** or **Htpy** or **Matr**¹ and will be typeset in a different font. For these short notes I think the only specific category that we will run into is **Set**, where the objects are sets and the arrows are mappings between sets.

Speaking of sets, the definition of categories we were careful about not calling anything a *set*. This is because some categories involve collections of things that are too "large" to be called sets and not get into set theory trouble. Here are two more short definitions about this that we will need.

Definition 2. A category **C** is called *small* if *Arrows*(**C**) is a set.

Definition 3. A category **C** is called *locally small* if $Arrows_{\mathbf{C}}(A, B)$ is a set for every $A, B \in \mathbf{C}$.

For the rest of this note we will only deal with locally small categories, since in the the setup for the Lemma, we are given a category **C** that is locally small.

Finally, one more notion that we'll need later is the idea of an isomorphism.

Definition 4. An arrow $f: X \to Y$ in a category C is an *isomorphism* if there exists an arrow $g: B \to A$ such that $gf = 1_X$ and $fg = 1_Y$. We say that the objects X and Y are *isomorphic* to each other whenever there exists an isomorphism between them. If two objects in a category are isomorphic to each other we write $X \cong Y$.

Note that in the category **Set** the isomorphisms are exactly the invertible mappings between sets.

As we navigate our way from basic categories up to the statement of the lemma we will travel through multiple layers conceptual abstraction. Functors are the first step up this ladder.

¹The general fear of readable names in the mathematical literature is fascinating to me, having spent most of my life trying to think up readable names in program source code. In the modern world of ŁTŁX there is no reason to limit names to being only four or five random letters in length. Thus, I have done the unthinkable and written many names out in full.

4. Functors

Functors are the *arrows between categories*. That is, if you were to define the category where the objects were all categories of some kind then the arrows would be functors. Of course you have to be careful about how you do this to not get into set theory trouble, but if all the categories are small it works out.

Definition 5. Given two categories C and D a functor $F:C\to D$ is defined by two sets of parallel rules. First:

- For each object $X \in \mathbf{C}$ we assign an object $F(X) \in \mathbf{D}$.
- For each arrow $f: X \to Y$ in **C** we assign an arrow $F(f): F(X) \to F(Y)$ in **D**.

So F maps objects in \mathbf{C} to objects in \mathbf{D} and also arrows in \mathbf{C} to arrows in \mathbf{D} such that the domains and codomains match up the right way. That is, the domain of F(f) is F applied to the domain of f, and the codomain of F(f) is F applied to the codomain of f. In addition the following must be true:

- If $f: X \to Y$ and $g: Y \to Z$ are arrows in C then $F(g \circ f) = F(g) \circ F(f)$ (or F(gf) = F(g)F(f)).
- For every $X \in \mathbf{C}$ it is the case that $F(1_X) = 1_{F(X)}$.

So, a functor consists of two mappings, one on objects and one on arrows. And, these mappings preserve all of the structure of a category, namely domains and codomains, composition, and identities.

We'll define one more notation for convenience here

Definition 6. Given any functor $F : \mathbf{C} \to \mathbf{D}$ from a category \mathbf{C} to another category \mathbf{D} and an object $X \in \mathbf{C}$ we may write FX to mean F(X). This is analogous to the more compact notation for composition of arrows above.

Some of the statements of the Lemma use this notation for both arrows and functors.

Functors are notationally confusing because we are using one letter to denote two mappings. So if $F: \mathbf{C} \to \mathbf{D}$ and $X \in \mathbf{C}$ then F(X) is the functor applied to the object, which will be an object in \mathbf{D} . On the other hand, if $f: A \to B$ is an arrow in \mathbf{C} then F(f) is an arrow in \mathbf{D} . This seems obvious from the definition but in proofs and calculations the notations will often shift back and forth without enough context and can be very confusing.

Functors appear in the Lemma in a couple of places. The core content of the result has to do with when one set of functors is isomorphic (in some sense) to another set of functors. To see how we study that question we need go up one more step in our abstraction ladder and ask: what do arrows between functors look like?

5. Natural Transformations

Natural transformations map functors to functors in the same way that arrows in a category map objects to objects. The definition is a bit more complicated and abstract, but that's what it ultimately means.

Definition 7. Let **C** and **D** be categories, and let F and G be functors $C \to D$. To define a *natural transformation* α from F to G, we assign to each object X of C, an arrow $\alpha_X : FX \to GX$ in **D**, called the *component* of α at X. In addition, for each arrow $f: X \to Y$ of C, the following diagram has to commute:

$$\begin{array}{ccc}
\mathsf{FX} & \xrightarrow{\mathsf{Ff}} & \mathsf{FY} \\
\downarrow^{\alpha_{\mathsf{X}}} & \downarrow^{\alpha_{\mathsf{Y}}} \\
\mathsf{GX} & \xrightarrow{\mathsf{Gf}} & \mathsf{GY}
\end{array}$$

This is the first commutative diagram that I've tossed up. There is no magic here. The idea is that you get the same result no matter which way you travel through the diagram. So here $\alpha_Y \circ F$ and $G \circ \alpha_X$ must be equal.

We denote natural transformations as double arrows, $\alpha : F \Rightarrow G$, to distinguish them in diagrams from functors (which are denoted by single arrows):

$$C \xrightarrow{F} D$$

You might wonder to yourself: what makes natural transformations "natural"? The answer appears to be related to the fact that you can construct them from *only* what is given to you in the categories at hand. The natural transformation takes the action of F on C and lines it up exactly with the action of G on C. No other assumptions or conditions are needed. In this sense they define a relationship between functors that is just sitting there in the world no matter what, and thus "natural". Another apt way of putting this is that natural transformations give a canonical way of mapping between the images of two functors.

As with arrows, it will be useful to define what an isomorphism means in the context of natural transformations:

Definition 8. A *natural isomorphism* is a natural transformation $\alpha : F \Rightarrow G$ in which every component α_X is an isomorphism. In this case, the natural isomorphism may be depicted as $\alpha : F \cong G$.

In addition we'll use this notation:

Definition 9. Let **C** and **D** be categories, and let F and G be functors $C \to D$. Then we'll write Nat(F, G) for the set of all natural transformations from F to G.

You will also see people write Hom(F, G) or C(F, G) for this, which overloads Hom to work on both categories and functors.

6. Functor Categories

We are almost there, but there are a few more steps up the abstraction ladder. We have in our one hand objects called functors, and we have in our other hand the natural transformations. So the next obvious thing is to make a category out of them.

Definition 10. Let C and D be categories. The *functor category* between C and D is constructed as follows:

- Objects are functors $F : \mathbf{C} \to \mathbf{D}$;
- Morphisms are natural transformations $\alpha : F \Rightarrow G$.

Right now you should be wondering to yourself: "wait, does this definition actually work?" I have brazenly claimed without any justification that the it's OK to use the natural transformations as arrows. Luckily it's fairly clear that this works out if you just do everything component-wise. So if we have all of these things:

- Three functors, $F : C \to D$ and $G : C \to D$ and $H : C \to D$.
- Two natural transformations $\alpha:F\Rightarrow G$ and $\beta:G\Rightarrow H$
- One object $X \in \mathbf{C}$.

Then you can define $(\beta \circ \alpha)(X) = \beta(X) \circ \alpha(X)$ and you get the right behavior. Similarly, the identity transformation 1_F can be defined component-wise: $(1_F)(X) = 1_{F(X)}$.

There are a lot of standard notations for this object, none of which I really like. The most popular seems to be [C, D], but you also see D^C , and various abbreviations like Fun(C, D) or Func(C, D), or Funct(C, D). I think we should just spell it out and use Functor(C, D). So there.

7. Represented Functors

The last conceptual step that we need is a way to construct *functors* from *objects*. The following definition is a natural way to do this.

Definition 11. Given a locally small category C and an object $X \in C$ we define a functor

$$Arrows(X, -) : \mathbf{C} \to \mathbf{Set}$$

using the following assignments:

- A mapping from $C \to Set$ that assigns to each $Yin\ Objects(C)$ the set Arrows(X,Y)
- A mapping from $Arrows(\mathbf{C}) \to Arrows(\mathbf{Set})$ that assigns to each arrow $f : A \to B$ the function defined by mapping each $g : X \to A$ the arrow $f \circ g$.

The functor defined this way is called the functor represented by X.

The definition for objects here is pretty clear. But the one for arrows maybe needs some thought. Given an arrow $f:A\to B$, it should be the case that Arrows(X,-) applied to f is an arrow from $Arrows(X,A)\to Arrows(X,B)$. Since C is locally small $f\in Arrows(Set)$. Now, if $g:X\to A$ we have that $(f\circ g):X\to B$ is the arrow we want. This mapping on f is called the *post-composition* mapping, since it composes f *after* g. As an overloaded abuse of notation we will also write $Arrows(X,-)(f)=Arrows(X,f)=f\circ -$. Note how the placeholder symbols mean completely different things on each side of this formula. Some people write f_* for $f\circ -$, but that doesn't seem as fun.

Other notations for this functor include just C(X, -), Hom(X, -), $Hom_C(X, -)$, H^X and h^X . In my notational convention we probably should have written this as $Arrows_C(X, -)$. Some people call this kind of functor a *hom-functor*.

8. Opposites/Duals

Duality in mathematics comes up in a lot of different ways. Covering it all is way beyond the scope of these notes. But for the purposes of the lemma we need this:

Definition 12. Let C be a category. Then we write C^{op} for the *opposite* or *dual* category of C, and define it as follows:

• The objects of C^{op} are the same as the objects of C.

- $Arrows(\mathbf{C}^{op})$ is defined by taking each arrow $f: X \to Y$ in $Arrows(\mathbf{C})$ and flipping their direction, so we put $f': Y \to X$ into $Arrows(\mathbf{C}^{op})$. In particular for $X, Y \in Objects(\mathbf{C})$ we have $Arrows_{\mathbf{C}}(A, B) = Arrows_{\mathbf{C}^{op}}(B, A)$ (or $\mathbf{C}(A, B) = \mathbf{C}^{op}(B, A)$.
- Composition of arrows is the same, but with the arguments reversed.

The *principle of duality* then says, informally, that every categorical definition, theorem and proof has a dual, obtained by reversing all the arrows.

You will have noticed that some of the statements of the Lemma refer to $C^{\rm op}$ and some do not. These results are all basically equivalent, except for how the arrows go.

The opposite category also leads to some terminology for functors that you will see used a lot:

Definition 13. Given categories **C** and **D** a *contravariant* functor from **C** to **D** is a functor $F: \mathbf{C}^{\mathrm{op}} \to \mathbf{D}$ where:

- $F(X) \in Objects(\mathbf{D})$ for each $X \in Objects(\mathbf{C})$.
- For each arrow $f \in Arrows(\mathbf{C})$ an arrow $F(X) : Y \to X$.

In addition

- For any two arrows f, $g \in Arrows(\mathbf{C})$ where $g \circ f$ is defined we have $F(f) \circ F(g) = F(g \circ f)$.
- For each $X \in \textit{Objects}(\textbf{C})$ we have $1_{F(X)} = F(1_X)$

Note how the arrows go backwards when they need to. With this terminology in mind, we call regular functors from $C \to D$ *covariant*.

9. The Full Stack

10. Notes

Category theory loves overloaded notation, so I've done it too. Here is a list of some examples.

No two writers seem to agree on what basic notations to use for basic concepts. So I've made up my own shit too.

11. Who I Stole From

- https://arxiv.org/abs/1912.10642
- https://math.jhu.edu/~eriehl/context/
- https://arxiv.org/abs/1612.09375
- https://www.logicmatters.net/2018/01/29/category-theory-a-gentle-introduction/
- http://pi.math.cornell.edu/~dmehrle/notes/partiii/cattheory partiii notes.pdf
- http://www.julia-goedecke.de/pdf/CategoryTheoryNotes.pdf

And of course, a bit from

https://en.wikipedia.org/wiki/Categories_for_the_Working_Mathematician