Control continuo con aprendizaje por refuerzo profundo

Emmanuel Peto Gutiérrez

IIMAS UNAM

8 de noviembre de 2023

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Antecedentes

aigoritino

Resultados

Lonclusiones

La interfaz agente-ambiente

Figure 3.1: The agent–environment interaction in a Markov decision process.

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Antecedente

l algoritm

Resultados

Conclusiones

Conceptos

- Política: $\pi(a|s)$ (probabilidad).
- ▶ Retorno: $G_t = R_{t+1} + \gamma G_{t+1}$
- Función de acción-valor: $Q_{\pi}(s, a)$ (retorno esperado).
- ► Función de estado-valor: $v_{\pi}(s)$ (retorno esperado).
- Política determinista: $\pi(a|s) = 1$ o $\mu(s) = a$.

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

71111000000111000

El algoritmo

Resultados

Conclusiones

Gradiente de política

► Política parametrizada:

$$\pi(a|s,\theta) = p(A_t = a|S_t = s, \theta_t = \theta)$$

o si es determinista: $\mu(s|\theta)$

- Medida de desempeño:J(θ)
- Gradiente ascendente: $\theta = \theta + \alpha \nabla J(\theta)$

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Antecedentes

algoritmo

.....

Conclusiones

Actor-critic

Un método actor-crítico aprende las funciones de aproximación tanto para la política como para la función de valor.

- Actor: la función relacionada con la política $(\pi(a|s) \circ \mu(s))$.
- ightharpoonup Crítico: la función relacionada con el valor $(q(s, a) \circ v(s))$.

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Antecedentes

El problema

Problema: encontrar una política donde las variables acción (a) y (estado) s son continuas, y probar resultados en problemas de control físico (como balancear un péndulo o manejar un carro).

Control continuo con aprendizaje por refuerzo profundo

Emmanuel Peto Gutiérrez

Aprendizaje po refuerzo

Antecedentes

algorium

Resultados

Conclusiones

Solución

Lo que se conoce hasta el momento de publicar el artículo (2016)

- ► Algoritmo Deep Q-Network (DQN)
- ► Algoritmo Deterministic Policy Gradient (DPG)

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje po refuerzo

Antecedentes

El algoritmo

Resultados

Conclusiones

Solución

Lo que se conoce hasta el momento de publicar el artículo (2016)

- ► Algoritmo Deep Q-Network (DQN)
- ► Algoritmo Deterministic Policy Gradient (DPG)

Solución: combinar las ideas de los dos algoritmos para crear uno nuevo.

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje po refuerzo

Antecedentes

algoritmo

Resultados

Conclusiones

Pérdida para función Q

Acción-valor dada una política determinista
$$(\mu: S \to A)$$
 $Q^{\mu}(s_t, a_t) = \mathbb{E}[r(s_t, a_t) + \gamma Q^{\mu}(s_{t+1}, \mu(s_{t+1}))]$

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Antecedentes

El algoritmo

Resultados

Conclusiones

Pérdida para función Q

Acción-valor dada una política determinista $(\mu:S\to A)$ $Q^{\mu}(s_t,a_t)=\mathbb{E}[r(s_t,a_t)+\gamma Q^{\mu}(s_{t+1},\mu(s_{t+1}))]$ Se consideran aproximadores de funciones parametrizadas por θ , con pérdida: $L(\theta)=\mathbb{E}[(Q(s_t,a_t|\theta)-y_t)^2]$ donde $y_t=r(s_t,a_t)+\gamma Q(s_{t+1},\mu(s_{t+1})|\theta)$

Control continuo con aprendizaje por refuerzo profundo

Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Antecedentes

l algoritmo

Resultados

Conclusiones

DDPG y aproximadores de funciones

El nombre del algoritmo es *Deep deterministic policy gradient* (DDPG). Usa redes neuronales para aproximar las funciones $\mu(s)$ y Q(s,a).

- **Actor:** Red neuronal que mantiene una política parametrizada $\mu(s|\theta)$.
- ▶ **Crítico:** Red neuronal que aproxima la función $Q(s, a|\theta)$. Se aprende usando la ecuación de Bellman como en Q-learning.

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Antecedente

El algoritmo

resurtados

Conclusiones

El algoritmo mantiene copias de las redes de Q y μ :

redes neuronales para aproximar las funciones $\mu(s)$ y Q(s,a).

usando la ecuación de Bellman como en Q-learning.

El nombre del algoritmo es Deep deterministic policy gradient (DDPG). Usa

Actor: Red neuronal que mantiene una política parametrizada $\mu(s|\theta)$. **Crítico:** Red neuronal que aproxima la función $Q(s, a|\theta)$. Se aprende

- $\triangleright Q'(s, a|\theta^{Q'})$
- $\blacktriangleright \mu'(s|\theta^{\mu'})$

Control continuo con

El algoritmo

La medida de desempeño

Medida:

$$J(\mu) = \mathbb{E}[r(s, \mu(s|\theta))]$$

Gradiente:

$$\nabla_{\theta^{\mu}} J = \mathbb{E}[\nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{t}, a=\mu(s_{t})} \nabla_{\theta_{\mu}} \mu(s | \theta^{\mu})|_{s=s_{t}}]$$

Control continuo con aprendizaje por refuerzo profundo

Emmanuel Peto Gutiérrez

Aprendizaje po refuerzo

El algoritmo

Resultados

Conclusiones

Buffer de recuerdos

Al usar una red neuronal como un aproximador de función se asume que los ejemplos son:

- Independientes
- Identicamente distribuidos

Para ello se usa un *buffer de recuerdos*, que es un espacio finito de memoria que almacena tuplas (s_t, a_t, r_t, s_{t+1}) .

Nota: El algoritmo DQN también usa el buffer de recuerdos.

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Antecedente

El algoritmo

Resultados

Conclusiones

Algorithm 1 DDPG algorithm

Randomly initialize critic network $Q(s, a|\theta^Q)$ and actor $\mu(s|\theta^\mu)$ with weights θ^Q and θ^μ .

Initialize target network Q' and μ' with weights $\theta^{Q'} \leftarrow \theta^Q$, $\theta^{\mu'} \leftarrow \theta^{\mu}$

Initialize replay buffer R

for episode = 1, M do

Initialize a random process \mathcal{N} for action exploration

Receive initial observation state s_1

for t = 1, T do

Select action $a_t = \mu(s_t|\theta^{\mu}) + \mathcal{N}_t$ according to the current policy and exploration noise

Execute action a_t and observe reward r_t and observe new state s_{t+1}

Store transition (s_t, a_t, r_t, s_{t+1}) in R

Sample a random minibatch of N transitions (s_i, a_i, r_i, s_{i+1}) from R

Set $y_i = r_i + \gamma Q'(s_{i+1}, \mu'(s_{i+1}|\theta^{\mu'})|\theta^{Q'})$ Update critic by minimizing the loss: $L = \frac{1}{N} \sum_i (y_i - Q(s_i, a_i|\theta^Q))^2$

Update the actor policy using the sampled policy gradient:

$$\nabla_{\theta^{\mu}} J \approx \frac{1}{N} \sum_{i} \nabla_{a} Q(s, a | \theta^{Q})|_{s=s_{i}, a=\mu(s_{i})} \nabla_{\theta^{\mu}} \mu(s | \theta^{\mu})|_{s_{i}}$$

Update the target networks:

$$\theta^{Q'} \leftarrow \tau \theta^{Q} + (1 - \tau)\theta^{Q'}$$
$$\theta^{\mu'} \leftarrow \tau \theta^{\mu} + (1 - \tau)\theta^{\mu'}$$

end for end for

Control continuo con aprendizaje por refuerzo profundo

Emmanuel Peto Gutiérrez

Aprendizaje po refuerzo

El algoritmo

resultados

Lonciusiones

Experimentos

Para la simulación de ambientes se utilizó MuJoCo. Para la representación de estados se usó primero una descripción de baja dimensión (como la posición y el ángulo) y luego imágenes de 64×64 .

Se realizó el experimento con 4 variantes del algoritmo.

- DPG con normalización por lotes.
- Con red objetivo.
- Con red objetivo y normalización por lotes.
- Con red objetivo usando solo pixeles.

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

Antecedente.

l algoritmo

Resultados

Conclusiones

Retorno

Se puede observar la recompensa normalizada (eje y) después de millones de pasos (eje x) en algunos ambientes. El color de la gráfica representa la variante del algoritmo: normalización por lotes (gris claro), red objetivo (gris oscuro), red objetivo y normalización por lotes (verde), red objetivo usando solo pixeles (azul).

Control continuo con aprendizaje por refuerzo profundo

Emmanuel Peto Gutiérrez

Aprendizaje po refuerzo

Antecedentes

Resultados

Canalinatanaa

Conclusiones

- ► La combinación de los avances en RL y DeepL resultan en algoritmos que resuelven problemas a lo largo de una variedad de dominios con espacios de acción continuos.
- ► Los experimentos realizados usaron menos pasos que los usados por DQN para encontrar soluciones en el dominio de Atari.
- ▶ DDPG requiere un gran número de episodios de entrenamiento para encontrar soluciones.

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

El algoritmo

Resultados

Conclusiones

Apéndices

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

El algoritmo

Resultados

Conclusiones

Paper

Published as a conference paper at ICLR 2016

CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING

Timothy P. Lillicrap; Jonathan J. Hunt; Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver & Daan Wierstra Google Deepmind London, UK {
countzero, jjhunt, apritzel, heess, etom, tassa, davidsilver, wierstra} @ google.com

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

..

Resultados

Conclusiones

MuJoCo

El enlace a los videos que está en el paper te lleva a videos privados. Sin embargo, se pueden observar algunos ambientes de MuJoCo en los siguientes videos:

- Cheetah: https://youtu.be/emuPEFYkIYo?si=eKOCZHP9BBa8eFo7
- Cartpole: https://youtu.be/fXbqDDaJDvg?si=aeEZCLdTRpVcFWRr

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje po refuerzo

algoritmo

Resultados

Conclusiones

Q-learning

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize Q(s,a), for all $s \in S^+, a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$$

 $S \leftarrow S'$

until S is terminal

Control continuo con aprendizaje por refuerzo profundo

Emmanuel Peto Gutiérrez

Aprendizaje poi refuerzo

Conclusiones

- Initialize the parameters for O(s, a) and $\hat{O}(s, a)$ with random weights, $\varepsilon \leftarrow 1.0$, and empty the replay buffer.
- With probability ε , select a random action, a; otherwise, $a = \arg \max_{\alpha} Q(s, \alpha)$.
- Execute action a in an emulator and observe the reward, r, and the next state, $s^{!}$.
- Store transition (s, a, r, s') in the replay buffer.
- Sample a random mini-batch of transitions from the replay buffer.
- For every transition in the buffer, calculate target y = r if the episode has ended at this step, or $y = r + \gamma \max_{a' \in A} \hat{Q}(s', a')$ otherwise.
- Calculate loss: $\mathcal{L} = (Q(s, a) y)^2$.
- Update Q(s, a) using the SGD algorithm by minimizing the loss in respect to the model parameters.
- Every N steps, copy weights from Q to \hat{Q} .
- 10. Repeat from step 2 until converged.

Hiperparámetros

- ► Aprendizaje de la red: Adam
- ► Tasa de aprendizaje del actor: 10⁻⁴
- ightharpoonup Tasa de aprendizaje del crítico: 10^{-3}
- Factor de descuento (γ) : 0.99
- τ : 0.001

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje po refuerzo

El algoritmo

Resultados

Conclusiones

Arquitectura de red

- Función de activación en capas ocultas: rectified non-linear.
- Función de activación en última capa: tanh.
- Para ambientes de baja dimensión: 2 capas ocultas con 400 y 300 neuronas respectivamente.
- ▶ Para ambientes de pixeles: 3 capas convolucionales con 32 filtros, seguido de dos capas densas de 200 neuronas.

Control continuo con aprendizaje por refuerzo profundo

> Emmanuel Peto Gutiérrez

Aprendizaje por refuerzo

zi algoritmo

Resultados

Conclusiones