Historique et architecture générale des ordinateurs

Zekrifa Djabeur

Ordinateur

- Ordinateur : une définition (Hachette)
 - Machine capable d'effectuer automatiquement des opérations arithmétiques et logiques (à des fins scientifiques, administratives, comptables, . . .) à partir de programmes définissant la séquence de ces opérations.
- But d'un ordinateur
 - Définir et exécuter des séquences de calcul

- Apparition du calcul
 - Dès la préhistoire on comptait avec des cailloux et avec ses doigts
 - Calcul vient du latin calculi signifiant caillou
- Antiquité
 - Chaque civilisation (Grecs, Romains, Chinois ...) avait développé des
 - Systèmes et bases de numérotation
 - Méthodes pour compter et calculer
- Ensuite sont apparus les outils pour aider aux calculs

3

- Outils de calcul
 - Les premiers : boulier chinois, abaque
- 17ème siècle : la science s'intéresse de plus en plus aux outils de calcul
 - ◆ 1620 : règle à calcul (selon les principes de Neper)
 - 1623, Shickard : première machine à calculer, roues dentées et retenues
 - 1642, Pascal : machine faisant des additions et soustractions de 6 chiffres (la Pascaline)
 - ◆ 1674, Leibniz : calculatrice avec 4 opérations arithmétiques

- Automatisation des calculs
 - 1728, Falcon : planchette de bois trouée pour commander un métier à tisser
 - 1805, Jacquard : utilise à la place des cartons perforés, perfectionne le système
 - 1834, Babbage : utilise un système de commande pour des machines à calculer
 - On pouvait programmer des calculs
 - Le « premier ordinateur »
 - Notions de processeur, entrées/sorties, mémoire ...
 - Mais trop complexe pour la technologie de l'époque

- Avancées théoriques
 - 1854, Boole : algèbre de Boole, logique symbolique
 - 1938, Shannon : liens entre nombres binaires, algèbre de Boole et les signaux électriques
 - 1936, Turing : machine de Turing
- Naissance de l'ordinateur
 - Fin des années 30/début 40, plusieurs prototypes fonctionnant en binaire et basés sur logique booléenne
 - Ex: 1941, Zuse: Z3, calculateur utilisant une technologie électro-mécanique
 - 1945, Eckert & Mauchly : ENIAC (Electronical Numerical Integrator And Calculator)

ENIAC

- Premier calculateur/ordinateur moderne
- Entièrement électronique
 - Utilise des tubes à vide et des relais
- Machine universelle, programmable
- Utilise un système décimal
- Inconvénient : difficulté de passer d'un programme à un autre (6000 commutateurs connectables pour programmer)
- 30 tonnes, forme de U de
 6 mètres de large et 12 de long

- Avancée majeure : Von Neumann, 1945
 - Idée : stocker le programme à exécuter dans la mémoire de l'ordinateur
 - Avant : suite séquentielle d'instructions
 - Programme était généralement entré via des cartes perforées
 - Maintenant
 - Le programme peut prendre des décisions selon des résultats intermédiaires
 - Changer de chemin dans la séquence d'instructions
 - Effectuer des tests, des boucles, des sauts conditionnels ...
 - Von Neumann définit également une architecture générale : naissance de l'ordinateur

Machine de Von Neumann

- Machine de Von Neumann = ordinateur
 - Machine universelle contrôlée par un programme
 - Les instructions du programme sont stockées en mémoires et codées en binaire
 - Les instructions sont exécutées en séquence par défaut
 - Mais le programme peut en modifier l'ordre d'exécution
 - Création d'instructions pour ruptures de séquences
 - Le programme peut se modifier

Architecture de Von Neumann

- Von Neumann a également défini l'architecture générale d'un ordinateur
- 5 éléments principaux
 - Unité arithmétique et logique (UAL ou ALU)
 - Unité de commande
 - Unité d'entrées
 - Unité de sorties
 - Mémoire centrale
- Cette architecture est toujours en vigueur de nos jours

10

Avancées technologiques

- ◆ Génération 0 : 17ème siècle à 1945
 - Calculateurs mécaniques
- Première génération : 1945 1955
 - Tubes à vide
 - Premiers calculateurs électroniques
 - ◆ Ex: ENIAC
- ◆ Seconde génération : 1955 1965
 - Transistors remplacent les tubes à vides
 - Premières séries commerciales d'ordinateurs

Avancées technologiques

- ◆ Troisième génération : 1965 1980
 - Circuits intégrés : permettent de placer un nombre important de transistors sur une même puce de silicium
 - Début de la montée en puissance et de la miniaturisation
 - ◆ 1971 : Intel 4004
 - Première unité de calcul (sur 4 bits) intégrée entièrement sur une seule puce
 - Premier micro-processeur

Avancées technologiques

- Quatrième génération : 1980 à aujourd'hui
 - VLSI: Very Large Scale Integration
 - Intégration de millions de transistors sur une même puce
 - Toujours plus de puissance et de miniaturisation à un coût toujours moindre
- Cinquième génération : ??
 - **?**?

Éléments principaux d'un ordinateur

- UAL : réalise des opérations élémentaires
 - Arithmétique : addition, soustraction, multiplication ...
 - Logique : ET, OU, comparaison ...
- Unité de commande
 - Coordinateur général
 - Lit les instructions du programme en mémoire
 - Commande l'UAL pour exécuter ces instructions

Éléments principaux d'un ordinateur

- Mémoire centrale
 - Stocke les programmes et les données
 - Enregistre les résultats intermédiaires et/ou finaux
- Unités d'entrées et de sorties, pour communication avec
 - En entrée : clavier, souris, disque dur, ...
 - En sortie : carte graphique, disque dur, ...

Éléments principaux d'un ordinateur

- Processeur central
 - Contient
 - UAL
 - Unité de commande
 - Mémoire cache
 - Mémoire intermédiaire pour optimiser les performances
 - Aussi appelé CPU (Central Processing Unit)
- CPU communique avec
 - ◆ La mémoire, les entrées, les sorties ...
 - ... via des bus

Bus

- Les systèmes/éléments sont reliés par
 - Un ensemble de câbles faisant transiter les informations (signaux électriques)
- Besoin de communication entre tous les éléments
 - Maillage complet : chaque élément relié à tous les autres éléments
 - Autre solution : partage des câbles via bus
- Bus
 - Relie plusieurs systèmes via le même câblage électrique : canal partagé (multiplexage)
 - Seuls 2 éléments communiquent simultanément

Bus

- En pratique : plusieurs bus +/- rapides ou partagés
- Dans un PC, bus rapides
 - Bus système (FSB ou Front Side Bus)
 - Bus de communication avec le CPU
 - Bus mémoire : communication avec la mémoire
 - Bus AGP (ou PCI-X): communication avec la carte graphique
- Dans un PC, bus plus lents
 - ◆ PCI : cartes réseaux, son ...
 - Connexion périphérique de stockage (DD, CD, DVD...)
 - ◆ ATA, SATA, SCSI ...
 - Connexion de périphériques extérieurs
 - USB, FireWire ...

Bus

- Chipset: dispositif interconnectant tous ces bus
- Composé de 2 éléments
 - Pont nord (NorthBridge): pour les bus rapides
 - Pont sud (SouthBridge): pour les bus lents

AGP

Carte mère PC

PCI

South Bridge

ATA

North Bridge

CPU

RAM