Estructuras de Datos y Algoritmos Grado en Ingeniería Informática

Evaluación contínua, 4 de octubre de 2012

1. (2,5 puntos) ¿Verdadero o falso?

- 1. $2^{n} + n^{99} \in \Omega(n^{99})$. 2. $2^{n} + n^{99} \in \Theta(n^{99})$.
- 2. (3,5 puntos) Comparar con respecto a O y Ω los siguientes pares de funciones:
 - 1. (n+1)!. n!.
 - 2. $\log n$, \sqrt{n} .
 - 3. Para cualquier $a \in \mathbb{R}^+$, $\log n$, n^a .
 - 3. (4 puntos) Supongamos que $t_1(n) \in O(f(n))$ y $t_2(n) \in O(f(n))$. Razonar la verdad o falsedad de las siguientes afirmaciones:
 - 1. $t_1(n) \cdot t_2(n) \in O(f(n^2))$.
 - 2. $t_1(n)/t_2(n) \in O(1)$.

Los siguientes ejercicios corresponden a la parte del Tema 1 del examen del año pasado.

- 3. (0,5 puntos) El algoritmo A tarda $207 + 4n^2$ segundos en resolver un problema de tamaño n, mientras que el algoritmo B lo resuelve en $3n^4$ segundos. Razonar para qué valores de n es mejor cada uno de ellos.
- 4. (0,5 puntos) Compara las clases de complejidad O y Θ de las siguientes parejas de funciones:
 - 1. $n \log n \sqrt{n \sqrt{n}}$.
 - 2. $(n+1)^2$ y $(n-1)^2$. 3. (n+1)! y n!.

 - 4. n^a y (a^n) , con $a \in \mathbb{R}^+$, a > 1.
- 5. (0,5 puntos) En el siguiente algoritmo, si el sub-algoritmo $A \in O(n)$, indicar la complejidad asintótica de todo el algoritmo.