## PRELIMINARIES

AND

INTRODUCTION

What should you already know? Discrete maths (col 202) \* Sets: Membership, equality, set operations, properties, inductive definitions, subsets, power sets, Cartesian products A Kelations: Composition, properties, closures \* tunctions: Total/partial functions, in/sur-/bi-jections, composition \* Cardinality: Finite vs infinite sets, countable vs uncountable, diagonalization

\* Proof techniques: Induction (mathematical/structural) especially!

| What is this course about?                                                               |
|------------------------------------------------------------------------------------------|
| Introduction to Automata and Theory of Computation                                       |
|                                                                                          |
|                                                                                          |
| Why do we need a theory of computation?                                                  |
| To know what is computable, and what is not                                              |
| If something is computable,                                                              |
| -> How much computing machinery does it require?                                         |
| → How much computing machinery does it require?<br>→ How efficiently can it be computed? |

| So how do we figure out whether something is    | coruptable! |
|-------------------------------------------------|-------------|
| What counts as a computation?                   | •           |
| Need some uniform way to talk about computation |             |



We can describe a computation as a set of pairs of the form (Input, Output)—Skip if none/trivial

Such a set is called a language