University of Toronto

Department of Computer & Mathematical Sciences

STAB57: an Introduction to Statistics

Assignment Nr 2

taught by Louis de Thanhoffer de Volcsey

-email me

-website

-textbook

This week's list of problems is based on the material from:

Chapter 5: sections 5.1,5.2,5.3 and 5.5

You are expected to work on this list of problems prior to the upcoming tutorial.

Problems have the following tags:

Terminology and Concepts to learn:

- random sample, iid random variables
- the normal distribution, the central limit theorem, approximating distributions (see problem 3)
- the idea of inference, statistical model
- descriptive statistics, sample mean, sample quantile
- injective, surjective and bijective functions

Problem 1 =

Practice your skills on descriptive statistics by doing problems 5.5.16, 5.5.17, 5.5.22 (note that empirical distribution is the same as the sample distribution)

Problem 2 C

Let $X_1, \ldots X_n$ be a random sample with mean μ and variance σ^2 and define $M_n = \frac{1}{n} \sum X_i$. Show that

$$\sqrt{n} \left(\frac{M_n - \mu}{\sigma} \right)$$

has mean 0 and variance 1.

Problem 3 🖹

For this problem, you'll need a little more background: for any n, let (X_1, \ldots, X_n) be a sequence of random samples with mean μ and variance σ^2 . We wish to approximate the distribution of $\sum_i X$ using the central limit theorem.

• rewrite the central limit theorem to conclude that $\lim_{i} P_{\frac{S_n - m\mu}{\sqrt{n}\sigma}} \sim N(0, 1)$

In other words, if $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{\frac{-t^2}{2}}$, we conclude that

$$\lim_{i} P\left(\frac{S_n - \mu}{\sqrt{n}\sigma} \le x\right) = \Phi(x)$$

• use the above observation to argue why it makes sense to approximate

$$P(S_n \le x)$$
 by $\Psi\left(\frac{x-\mu}{\sqrt{n}\sigma}\right)$ and $P(x \le S_n \le y)$ by $\Psi\left(\frac{y-\mu}{\sqrt{n}\sigma}\right) - \Psi\left(\frac{x-\mu}{\sqrt{n}\sigma}\right)$

- Work through example 4.4.10 to see how this works
- Finally, do exercises 4.4.5,6 and 7

Problem 4 C

Let X be the set of the 143 students in STAB57 . This is a probability space when given the uniform probability.

Let $X \longrightarrow \mathbb{R}$ be the random variable that associates to each student their quiz 1 mark. Assume that the three (sample) quantiles for P_X are respectively 3,6 and 8.

• What are the outliers?

Assume now that we split up X into two groups X_1 and X_2 , giving a probability of $\frac{2}{143}$ to students in X_1 and $\frac{1}{286}$ in X_2

- How do the quartiles and outliers change?
- Are there any conditions under which the outliers do not change?

Problem 5 C

Let X be the set of students in STAB57. Find a set Y and a function $f: X \longrightarrow Y$ which is

- surjective and not injective
- injective and not surjective
- bijective

Problem 6

Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be two functions, recall that $g \circ f: X \longrightarrow Z$ is the function defined by $g \circ f(x) = g(f(x))$. Then show the following statements:

- if both f and g are injective (resp. surjective) then so is $g \circ f$
- if $g \circ f$ is injective, then so is f, but g doesn't need to be (give a counterexample)
- if $g \circ f$ is surjective then so is g, but f doesn't need to be (give a counterexample)