Exact Equations – IVPs

Example 3.

Solve
$$\frac{dy}{dx} = \frac{xy^2 - \cos x \sin x}{y(1 - x^2)}$$
, $y(0) = 2$.

SOLUTION By writing the differential equation in the form

$$(\cos x \sin x - xy^2) dx + y(1 - x^2) dy = 0,$$

we recognize that the equation is exact because

$$\frac{\partial M}{\partial y} = -2xy = \frac{\partial N}{\partial x}.$$

Putting values of M = $\cos x \sin x - xy^2$ and N = $y - yx^2$ in the formula:

$$\int M dx + \int (Terms \ of \ N \ without \ x) \ dy = c$$

$$\int (\cos x \sin x - xy^2) \ dx + \int y \ dy = c$$

$$y^2 (1 - x^2) - \cos^2 x = c$$
Using $y(0) = 2 \implies c = 3$

Hence, solution of given IVP is

$$y^2(1 - x^2) - \cos^2 x = 3$$

In Problems 21-26 solve the given initial-value problem.

21.
$$(x + y)^2 dx + (2xy + x^2 - 1) dy = 0$$
, $y(1) = 1$

22.
$$(e^x + y) dx + (2 + x + ye^y) dy = 0$$
, $y(0) = 1$

23.
$$(4y + 2t - 5) dt + (6y + 4t - 1) dy = 0$$
, $y(-1) = 2$

24.
$$\left(\frac{3y^2 - t^2}{y^5}\right) \frac{dy}{dt} + \frac{t}{2y^4} = 0$$
, $y(1) = 1$

25.
$$(y^2 \cos x - 3x^2y - 2x) dx$$

+ $(2y \sin x - x^3 + \ln y) dy = 0$, $y(0) = e$

26.
$$\left(\frac{1}{1+y^2} + \cos x - 2xy\right) \frac{dy}{dx} = y(y + \sin x), \ y(0) = 1$$

Making Non-exact Equations Exact

Method

For the non-exact ODE

$$M(x,y)dx + N(x,y)dy = 0$$
 (1)

- 1. Evaluate $M_y N_x$.
- 2. Check:
 - If $\frac{M_y N_x}{N}$ is a function of x alone, then integrating factor for (1) is:

$$I.F = e^{\int \frac{M_y - N_x}{N} dx}$$

• If $\frac{M_y - N_x}{M}$ is a function of y alone, then integrating factor for (1) is:

$$I.F = e^{-\int \frac{M_y - N_x}{M} dy}$$

3. Multiply the integrating factor with (1) to make it exact.

Example 4.

The nonlinear first-order differential equation

$$xy dx + (2x^2 + 3y^2 - 20) dy = 0$$

is not exact. With the identifications M = xy, $N = 2x^2 + 3y^2 - 20$, we find the partial derivatives $M_y = x$ and $N_x = 4x$. The first quotient from (13) gets us nowhere, since

$$\frac{M_y - N_x}{N} = \frac{x - 4x}{2x^2 + 3y^2 - 20} = \frac{-3x}{2x^2 + 3y^2 - 20}$$

Whereas,

$$\frac{N_x - M_y}{M} = \frac{4x - x}{xy} = \frac{3x}{xy} = \frac{3}{y}.$$

The integrating factor is then $e^{\int 3dy/y} = e^{3\ln y} = e^{\ln y^3} = y^3$. After we multiply the given DE by $\mu(y) = y^3$, the resulting equation is

$$xy^4 dx + (2x^2y^3 + 3y^5 - 20y^3) dy = 0.$$

Which is an exact DE. Solving this equation using the formula for exact equations, we get the solution as

$$\frac{1}{2}x^2y^4 + \frac{1}{2}y^6 - 5y^4 = c.$$

Solve the given ODEs by finding an appropriate integrating factor.

$$(2y^2 + 3x) \, dx + 2xy \, dy = 0$$

$$6xy \, dx + (4y + 9x^2) \, dy = 0$$

$$\cos x \, dx + \left(1 + \frac{2}{y}\right) \sin x \, dy = 0$$

$$(10 - 6y + e^{-3x}) dx - 2 dy = 0$$

$$(y^2 + xy^3) dx + (5y^2 - xy + y^3 \sin y) dy = 0$$