Análisis Comparativo modelo RF Detr

Puntos clave:

Modelo actual:

- Todavía hay algunos errores
- Buena anotación en la mayoría de clases
- Recortes un poco salidos
- El modelo no se equivoca a la hora de identificar clases, o muy poco el problema es en los recortes
- YOLOv11 Nano es el modelo más ligero con solo 0.91M parámetros, ideal para sistemas embebidos en drones.

Modelo RF Detr:

- No puede correr con polígonos (instance segmentation) y todo nuestro proyecto es con polígonos
- Rf detr corre únicamente en proyectos de bounding boxes o object detection
- Rf detr es por naturaleza mas pesado para un embebido o una jetson
- RF Detr supera a Yolov11 con mas de 60 AP de precisión en coco, YoloV11 llega de 54 a 57

Conclusion:

Rf detr actualmente solo puede utilizarse en modelos de Bounding boxes u Object detection, por lo que en nuestro proyecto actual (instance segmentation o polígonos), no podremos correr el modelo de rf detr.

La precisión de rf detr no rebasa mucho a la de yolov11, por lo que no hay mucha necesidad de actualizar, rf detr es mas pesado para un embebido.

Modelo	Precisión (mAP)	Tamaño del modelo
RF-DETR	60+ AP en COCO	Modelo mas pesado
YOLOv11	54-57 AP en COCO	Modelo más ligero

<u>Modelo</u>	Precisión (mAP)	Velocidad (FPS)	Tamaño del modelo
RF-DETR Base	<u>60+ AP</u>	Inferencia más lenta	29M parámetros
RF-DETR Large	<u>60+ AP</u>	Inferencia más lenta	129M parámetros
YOLOv11 Nano	<u>54-57 AP</u>	Inferencia rápida	0.91M parámetros
YOLOv11 Small	<u>54-57 AP</u>	Inferencia rápida	9M parámetros
YOLOv11 Medium	<u>54-57 AP</u>	Inferencia rápida	25M parámetros
YOLOv11 Large	54-57 AP	Inferencia rápida	54M parámetros

Modelo anterior

Análisis de clases mas utilizadas:

Análisis del dataset:

Number of Images

9793

⊙ 0 missing annotationsØ 6 null examples

Number of Annotations

140757

☐ 14.4 per image (average) </> Across 59 classes

Average Image Size

1.44 mp

© from 0.13 mp ⊕ to 12.19 mp

Median Image Ratio 1280x1200

ዛት wide

Dimension Insights (1)

Overview of the sizes and aspect ratios of the images in your dataset.

The dashed lines represent the median width (1280 px) and median height (1200 px) of images in your dataset.

Images

Sizes	9793 total images
jumbo 9653	98.6%
large 137	1.4%
medium 3	0.0%

Aspect Ratios				
wide 4079	41.7%			
tall 3733	38.1%			
very wide 1934	19.7%			
very tall 33	0.3%			
extra wide 6	0.1%			
square 8	0.1%			

Annotation Heat Map (1)

Shows you where most of your annotations are. Color gradients signify the number of annotations per grid cell.

Ejemplos de imágenes:

Puntos de feedback:

- Todavía hay algunos errores
- Buena anotación en la mayoría de clases
- Recortes un poco salidos
- El modelo no se equivoca a la hora de identificar clases, o muy poco el problema es en los recortes

Nuevo modelo RF Detr

RF detr no esta disponible para nuestro tipo de proyecto actual mente por el uso de polígonos (Instance segmentation)

Si lo cambiamos a object detection (con bounding boxes) ahora si nos permite usar rf detr

En mi caso mi modelo tuvo una precisión del 75.2% pero fluctúa dependiendo la imagen

Annotation Heat Map (1)

Shows you where most of your annotations are. Color gradients signify the number of annotations per grid cell.

Drag over a

Conclusiones modelo rf detr:

- No puede correr con polígonos (instance segmentation) y todo nuestro proyecto es con polígonos
- Rf detr corre únicamente en proyectos de bounding boxes o object detection
- Rf detr es por naturaleza mas pesado para un embebido o una jetson
- RF Detr supera a Yolov11 con mas de 60 AP de precisión en coco, YoloV11 llega de 54 a 57
- Mucho más preciso