Lezione 3 – Sospensione e riattivazione dei processi

Sistemi Operativi I

Modulo 3 - Gestione del processore

Unità didattica 1 - Processi

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

Sommario

- Come si realizza il multi-tasking
- Time sharing
- Come si realizza il time-sharing
- Sospensione di un processo
- Riattivazione di un processo

Classificazione dei processi rispetto all'uso delle risorse fisiche

- processo I/O-bound (legato all'I/O)
 - → molte operazioni di I/O
- processo CPU-bound (legato al processore)
 - → molte operazioni aritmetico-logiche e in memoria centrale

Realizzazione del multi-tasking (1)

• Obiettivo:

la turnazione dei processi sul processore per massimizzare lo sfruttamento processore

- Metodologia:
 - Sospensione del processo in esecuzione
 - Ordinamento dei processi in stato di pronto (scheduling dei processi)
 - Selezione del processo in stato di pronto da mettere in esecuzione (dispatching)
 - Riattivazione del processo selezionato

Realizzazione del multi-tasking (2)

- Politiche:
 - Definizione delle opportunità di sospensione del processo in esecuzione
 - Definizione dell'ordinamento dei processi pronti (scheduling dei processi)
- Meccanismi:
 - Sospensione del processo in esecuzione con salvataggio del suo contesto di esecuzione
 - Dispatching del processo da mettere in esecuzione
 - Riattivazione di un processo con ripristino del suo contesto di esecuzione

Politiche di sospensione dei processi nel multi-tasking

Il processo in esecuzione viene sospeso:

- dopo aver effettuato una richiesta di I/O
- dopo aver creato un sottoprocesso attendendone la terminazione
- quando rilascia volontariamente il processore
- → Sospensione sincrona con l'evoluzione della computazione in procedure del sistema operativo

Time Sharing (1)

Multi-tasking a condivisione di tempo

Obiettivo:

gestire la turnazione dei processi sul processore in modo da creare l'illusione di *evoluzione contemporanea* agli utenti interattivi

Problema:

processi CPU-bound non rilasciano il processore abbastanza frequentemente da permettere tale illusione

Soluzione:

forzare il rilascio del processore (pre-emption)

Time Sharing (3)

Real-time clock

dispositivo che scandisce il tempo generando periodicamente una interruzione

Problema:

periodo RTC p_{RTC} troppo breve

→ sovraccarico di gestione dell'interruzione
Soluzione:

$$\Delta = k p_{RTC}$$

Politiche di sospensione dei processi nel time-sharing

Il processo in esecuzione viene sospeso:

- 1. dopo aver effettuato una richiesta di I/O 🦯
- 2. dopo aver creato un sottoprocesso attendendone la terminazione
- 3. quando rilascia volontariamente il processore v
- 4. quando scade il quanto di tempo
- → Rispetto all'evoluzione della computazione
 - Sospensione sincrona: 1, 2, 3
 - Sospensione asincrona: 4
- → Rispetto alla scrittura del programma
 - Sospensione implicita: 1, 2, 4
 - Sospensione esplicita: 3

Sospensione del processo in esecuzione

- Attivazione della procedura di sospensione
 - Sincrona rispetto computazione, in stato supervisore (in procedure di I/O, creazione processi)
 - Sincrona rispetto computazione, in stato utente (in rilascio volontario)
 - Asincrona rispetto computazione (allo scadere del time slice nel time sharing)
- Salvataggio del contesto di esecuzione
 - Salvare tutti i registri del processore sullo stack
 - Salvare lo stack pointer nel Process Control Block

Come per myster e mterrupt

Riattivazione del processo

- Ripristino del contesto di esecuzione
 - Ripristinare il valore del registro che punta alla base dello stack prendendolo dal Process Control Block del processo da riattivare
 - Ripristinare il valore dello stack pointer prendendolo dal Process Control Block del processo da riattivare
 - Ripristinare tutti i registri del processore prendendoli dallo stack

Cambiamento del processo in esecuzione (1)

Cambiamento di contesto

Context Switch

Sospensione del processo in esecuzione

+

Riattivazione del processo da mettere in esecuzione

Dispatching del processo per esecuzione

 Prendere il primo processo in stato di pronto nella lista dei processi pronti generata dalla schedulazione dei processi

In sintesi

- Realizzazione del multi-tasking
- Concetto di time-sharing
 - Time slice
 - Pre-rilascio (pre-emption)
- Realizzazione del time sharing
- Sospensione di un processo
- Riattivazione di un processo

