

10/31/00

76 A

REFERENCE & ASSOCIATES
PATENT FILING TRANSMITTAL

DOCKET NO. YOR20000388US1

(590.022)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Box Patent Application
Commissioner of Patents and Trademarks
Washington, D.C. 20231

PATENT FILING TRANSMITTAL

Transmitted herewith for filing is the Patent Application of: Mukund Padmanabhan and George A. Saon

For: MINIMUM BAYES ERROR FEATURE SELECTION IN SPEECH RECOGNITION

TYPE OF FILING

This new patent application is for a(n):

- Utility
- Design
- Plant
- Divisional
- Continuation
- Continuation-in-part

Benefit of a prior filed application

- This application claims the benefit of an earlier filed U.S. Patent Application under 35 USC 120.
- Please accord Applicant the benefit of the priority date of _____ to this case pursuant to 35 USC 119. Applicant's claim for priority is based on application _____ filed in _____ on that date.

Filing under 37 CFR 1.53 (Utility) or 37 CFR 1.153 (Design)

- This is an application filed pursuant to 37 CFR 1.53 or 37 CFR 1.153, permitting receipt of a filing date upon filing of a specification, at least one claim and necessary drawings.
- In the event any parts of this application are incomplete, please treat this as a filing under 37 CFR 1.53 or 37 CFR 1.153.

ENCLOSURES

- 19 - pages of written description;
- 4 - pages of claims;
- 1 - pages of abstract;
- _____ - sheets of formal drawings;
- 3 - sheets of informal drawings;
- Declaration and Power of Attorney or listing of inventors;
and
- Two postcards for return to us as proof of receipt of the above documents.

plus

- An Assignment of the invention to IBM Corporation and an Assignment cover sheet;
- Verified Statement Claiming Small Entity Status (37 CFR 1.9(f) and 1.27(b))
- Form PTO-1449 (IDS) and two copies of the references listed thereon;

- A certified copy of Japan (country) patent application number _____ (priority document).
- A preliminary amendment;
- Declaration of Biological Deposit;
- Submission of sequence listing, computer readable copy and/or amendment relating thereto for biotechnology invention containing nucleotide and/or amino acid sequence;
- An associate power of attorney;
- Other.

DECLARATION OR OATH

The enclosed Declaration or Oath has been executed by:

Inventor(s);

Legal representative of the inventors (37 CFR 1.42 or 1.43);

Joint inventor or person showing proprietary interest on behalf of an inventor who refused to sign or who cannot be reached and this is a petition required by 37 CFR 1.47 and the statement required by 37 CFR 1.47 is attached;

Has not been executed and is enclosed for the purposes of identifying the inventors.

INVENTORSHIP STATEMENT

The inventorship for all the claims in this application is:

the same;
 not the same and, as an explanation, a statement is/ will be submitted

LANGUAGE

The application submitted herewith is:

[X] in English;
[] in not in English and in terms of 37 CFR 1.52(d) a verified translation is
[] attached
[] not attached.

FEE CALCULATION

The filing fee has been calculated as shown below:

			SMALL ENTITY OR	OTHER THAN A SMALL ENTITY
BASIC FEE Design Patent		\$160	\$	\$320 \$
BASIC FEE Utility Patent		\$355	\$	\$710 \$710
EXTRA FEES	RATE	FEE	RATE	FEE
TOTAL CLAIMS 13 MINUS 20= 0	x 9=	\$0	x18=	\$
INDEP. CLAIMS 3 MINUS 3 = 0	x 40=	\$0	x80=	\$
[] MULTIPLE DEP. CLAIM	+135=	\$	+270=	\$
[] ASSIGNMENT	+ 40=	\$	+40=	\$
[] RULE 53 SURCHARGE	+ 65=	\$	+130=	\$
TOTAL		\$		\$710

FEE PAYMENT

Attached is Check No. ____ in the sum of \$ ____ to cover the filing fee and, if applicable, the assignment fee.

Please charge **IBM Corporation Deposit Account No. 50-0510** the amount of \$710, to cover the filing fee. Duplicate copies of this letter are enclosed. In the event of non-payment or improper payment of a required fee, the Commissioner is authorized to charge or credit **Deposit Account No. 50-0510** as required to correct the error.

Respectfully submitted,

Stanley D. Ference III
Reg. No. 33,879

Dated: October 30, 2000

ERENCE & ASSOCIATES
129 Oakhurst Road
Pittsburgh, Pennsylvania 15215
(412) 781-7386
(412) 781-8390-Facsimile

PATENT

Docket No. YOR920000388US1

(590.022)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s) : Mukund Padmanabhan et al Group Art: not yet assigned
Serial No. : not yet assigned Examiner: not yet assigned
Filed : herewith
For : MINIMUM BAYES ERROR FEATURE SELECTION IN
SPEECH RECOGNITION

JC926 U.S. PRO
09/699894
10/30/00

EXPRESS MAIL CERTIFICATE

Express Mail Label No. EL503717434US

Date of Deposit 30 October 2000

I hereby certify that the following attached paper(s) or fee:

Patent Application
Written Description
Claims 1-13
Abstract
Drawings (Figs. 1-4)
Declaration and Power of Attorney
Patent Filing Transmittal
Certificate of Express Mail
Two Return Postcards

are being deposited with the United States Postal Service "Express Mail Post Office to Addressee" service under 37 C.F.R. 1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C. 20231.

Stanley D. Ference III

(Typed or printed name of person mailing paper)

(Signature of person mailing paper(s) or fee)

Mailing Address:

FERENCE & ASSOCIATES
129 Oakhurst Road
Pittsburgh, Pennsylvania 15215
(412) 781-7386
(412) 781-8390-Facsimile

MINIMUM BAYES ERROR FEATURE SELECTION
IN SPEECH RECOGNITION

Field of the Invention

The present invention relates to speech recognition and to methods and apparatus
5 for facilitating the same.

Background of the Invention

Modern speech recognition systems use cepstral features characterizing the short-term spectrum of the speech signal for classifying frames into phonetic classes.
Cepstral features are features that are typically obtained through an orthogonal
10 transformation (such as a discrete cosine transform) of short-term spectral features. These cepstral features are augmented with dynamic information from the adjacent frames to capture transient spectral events in the signal. What is commonly referred to as MFCC+ Δ + $\Delta\Delta$ features include "static" mel-frequency cepstral coefficients (usually 13) plus their first and second order derivatives computed over a sliding window of typically 9
15 consecutive frames yielding 39-dimensional feature vectors every 10ms. One major drawback of this front-end scheme is that the same computation is performed regardless of the application, channel conditions, speaker variability, etc. In recent years, an

alternative feature extraction procedure based on discriminant techniques has emerged, wherein the consecutive cepstral frames are spliced together forming a supervector which is then projected down to a manageable dimension. One of the better known objective functions for designing the feature space projection is linear discriminant analysis (LDA).

5 LDA, as discussed in Duda et al., “Pattern classification and scene analysis” (Wiley, New York, 1973) and Fukunaga, “Introduction to statistical pattern recognition” (Academic Press, New York, 1973), is a standard technique in statistical pattern classification for dimensionality reduction with a minimal loss in discrimination. Its application to speech recognition has shown consistent gains for small vocabulary tasks
10 and mixed results for large vocabulary applications (see Haeb-Umbach et al., “Linear Discriminant Analysis for improved large vocabulary continuous speech recognition”, Proceedings of ICASSP ’92, and Kumar et al., “Heteroscedastic discriminant analysis and reduced rank HMM’s (Hidden Markov Models) for improved speech recognition”, Speech Communication, 26:283-297, 1998). Recently, there has been an interest in
15 extending LDA to heteroscedastic discriminant analysis (HDA) by incorporating the individual class covariances in the objective function (see Kumar et al., *supra*, and Saon et al., “Maximum likelihood discriminant feature spaces”, Proceedings of ICASSP ‘2000, Istanbul, 2000). Indeed, the equal class covariance assumption made by LDA does not

always hold true in practice making the LDA solution highly suboptimal for specific cases (see Saon et al., *supra*).

However, since both LDA and HDA are heuristics, they do not guarantee an optimal projection in the sense of a minimum Bayes classification error (i.e., a minimum probability of misclassification). A need has thus been recognized in connection with selecting features on the basis of a minimum probability of misclassification.

Summary of the Invention

In view of the foregoing, the present invention, in accordance with at least one presently preferred embodiment, broadly contemplates employing feature space projections according to objective functions which are more intimately linked to the probability of misclassification. More specifically, the probability of misclassification in the original space, ε , will be defined, as well as in the projected space, ε_θ , while conditions will be given under which $\varepsilon_\theta = \varepsilon$. Since after a projection $\mathbf{y} = \theta\mathbf{x}$ discrimination information is usually lost, the Bayes error in the projected space will always increase, that is $\varepsilon_\theta \geq \varepsilon$. Therefore, minimizing ε_θ amounts to finding θ for which the equality case holds.

An alternative approach is to define an upper bound on ε_θ and to directly minimize this bound.

In summary, one aspect of the present invention provides a method of providing pattern recognition, the method comprising the steps of: inputting a pattern; transforming the input pattern to provide a set of at least one feature for a classifier; the transforming step comprising the step of minimizing the probability of subsequent misclassification of
5 the at least one feature in the classifier; the minimizing step comprising: developing an objective function; and optimizing the objective function through gradient descent.

Another aspect of the invention provides apparatus for providing pattern recognition, the apparatus comprising: an input interface for inputting a pattern; a transformer for transforming the input pattern to provide a set of at least one feature for a
10 classifier; the transformer being adapted to minimize the probability of subsequent misclassification of the at least one feature in the classifier; the transformer further being adapted to: develop an objective function; and optimize the objective function through gradient descent.

Furthermore, an additional aspect of the present invention provides a program
15 storage device readable by machine, tangibly embodying a program of instructions executable by the machine to perform method steps for providing pattern recognition, the method comprising the steps of: inputting a pattern; transforming the input pattern to provide a set of at least one feature for a classifier; the transforming step comprising the

step of minimizing the probability of subsequent misclassification of the at least one feature in the classifier; the minimizing step comprising: developing an objective function; and optimizing the objective function through gradient descent.

For a better understanding of the present invention, together with other and further
5 features and advantages thereof, reference is made to the following description, taken in conjunction with the accompanying drawings, and the scope of the invention will be pointed out in the appended claims.

Brief Description of the Drawings

Figure 1 schematically illustrates a general pattern recognition arrangement.
10 Figure 2 schematically sets forth a method of minimum Bayes error feature selection.

Figure 3 illustrates the evolution of objective functions for divergence.

Figure 4 illustrates the evolution of objective functions for the Bhattacharyya bound.

Description of the Preferred Embodiments

Fig. 1 illustrates a general arrangement 100, such as a speech recognition arrangement, in which an input pattern 102, such as a spoken utterance, enters a feature extractor 104, from which features 106 will progress to a classifier 108. The output 110 of classifier 108 will go into a post-processor 112, from which the final output 114 emerges. The makeup and function of a feature extractor, classifier and post-processor are generally well-known to those of ordinary skill in the art. Duda et al., *supra*, provides a good background discussion of these and other general concepts that may be employed in accordance with at least one presently preferred embodiment of the present invention.

10 Towards extracting features from extractor 104, the present invention broadly contemplates the use of minimum Bayes error feature selection, indicated schematically at 117, and as will be elucidated upon herebelow.

Reference is made immediately herebelow and throughout to Figure 2, which schematically illustrates a method for providing minimum Bayes error feature selection.

15 With regard to Bayes error, one may first consider the general problem of classifying an n -dimensional vector \mathbf{x} (input 102) into one of C distinct classes. Records (104) are input and a full-covariance gaussian clustering of the records is undertaken for

every class (122). By way of means, covariances and priors (124), an objective function is formed (126), and the objective function is preferably optimized through gradient descent (130). If the optimization converges (132), then all of the records \mathbf{x} are transformed into $\mathbf{y} = \theta\mathbf{x}$, and the resulting output (106) represents the final features for the classifier 108

5 (see Fig. 1).

This portion of the disclosure first addresses the Bayes error rate and its link to the divergence and the Bhattacharyya bound, as well as general considerations relating to minimum Bayes error feature selection.

Let each class i be characterized by its own “prior” (i.e., prior probability) λ_i and 10 probability density function p_i , $i = 1, \dots, C$. Assume that \mathbf{x} is classified as belonging to class j through the Bayes assignment:

$$j = \operatorname{argmax}_{1 \leq i \leq C} \lambda_i p_i(\mathbf{x}) d\mathbf{x}.$$

The expected error for this classifier is called Bayes error (see Fukunaga, supra), or probability of misclassification, and is defined as

15
$$\varepsilon = 1 - \int_{R^n} \max_{1 \leq i \leq C} \lambda_i p_i(\mathbf{x}) d\mathbf{x} \quad (1)$$

Suppose next that the linear transformation $f: \Re^n \rightarrow \Re^p$, $\mathbf{y} = f(\mathbf{x}) = \theta\mathbf{x}$ is performed, with θ being a $p \times n$ matrix of rank $p \leq n$. Moreover, one may denote by p_i^θ the transformed density for class i . The Bayes error in the range of θ now becomes

$$\varepsilon = 1 - \int_{\Re^p} \max_{1 \leq i \leq C} \lambda_i p_i^\theta(y) dy \quad (2)$$

5 Since the transformation $\mathbf{y} = \theta\mathbf{x}$ produces a vector whose coefficients are linear combinations of the input vector \mathbf{x} , it can be shown (see Decell et al., "An iterative approach to the feature selection problem", Proc. Purdue Univ. Conf. On Machine Processing of Remotely Sensed Data, 3B1-3B12, 1972) that, in general, information is lost and $\varepsilon_\theta \geq \varepsilon$.

10 For a fixed p , the feature selection problem can be stated as finding $\hat{\theta}$ such that

$$\hat{\theta} = \arg \min_{\theta \in \Re^{p \times n}, \text{rank}(\theta)=p} \varepsilon_\theta \quad (3)$$

However, an indirect approach to equation (3) is now contemplated: by maximizing the average pairwise divergence and relating it to ε_θ and by minimizing the union Bhattacharyya bound on ε_θ .

In Kullback, "Information theory and statistics" (Wiley, New York, 1968), the symmetric divergence between class i and j is given by

$$D(i,j) = \int_{\mathbb{R}^n} p_i(x) \log \frac{p_i(x)}{p_j(x)} + p_j(x) \log \frac{p_j(x)}{p_i(x)} dx \quad (4)$$

$D(i,j)$ represents a measure of the degree of difficulty of discriminating between
 5 the classes (the larger the divergence, the greater the separability between the classes).

Similarly, one can define $D_\theta(i,j)$, the pairwise divergence in the range of θ . Kullback,
 supra, showed that $D_\theta(i,j) \geq D(i,j)$. If the equality case holds, then θ is called a "sufficient
 statistic for discrimination." The average pairwise divergence is defined as

$$D = \frac{2}{c(c-1)} \sum_{1 \leq i < j \leq c} D(i,j) \text{ and respectively } D_\theta = \frac{2}{c(c-1)} \sum_{1 \leq i < j \leq c} D_\theta(i,j). \text{ It follows}$$

10 that $D_\theta \leq D$.

The following theorem, from Decell et al., supra, provides a link between Bayes
 error and divergence for classes with uniform priors $\lambda_1 = \dots = \lambda_c (= 1/C)$:

Theorem: *If $D_\theta = D$ then $\varepsilon_\theta = \varepsilon$.*

The main idea of the proof of the above theorem is to show that if the divergences
 15 are the same then the Bayes assignment is preserved because the likelihood ratios are

preserved almost everywhere: $\frac{p_i(x)}{p_i(x)} = \frac{p_i^\theta(x)}{p_j^\theta(x)}$, $i \neq j$. The result follows by noting that

for any measurable set $A \subset \Re^p$

$$\int_A p_i^\theta(y) dy = \int_{\theta^{-1}(A)} p_i(x) dx \quad (5)$$

where $\theta^{-1}(A) = \{\mathbf{x} \in \Re^n \mid \theta\mathbf{x} \in A\}$. The previous theorem provides a basis for selecting θ

such as to maximize D_θ

The assumption may now be made that each class i is normally distributed with mean μ_i and covariance Σ_i , that is, $p_i(x) = N(x; \mu_i, \Sigma_i)$ and

$p_i^\theta(y) = N(y; \theta\mu_i, \theta\Sigma_i\theta^T)$, $i = 1, \dots, C$. It is straightforward to show that, in this case,

the divergence is given by

$$D(i, j) = \frac{1}{2} \text{trace} \left\{ \Sigma_i^{-1} \left[\Sigma_j + (\mu_i - \mu_j)(\mu_i - \mu_j)^T \right] + \Sigma_j^{-1} \left[\Sigma_i + (\mu_i - \mu_j)(\mu_i - \mu_j)^T \right] \right\} - n \quad (6)$$

Thus, the objective function to be maximized becomes

$$D_\theta = \frac{1}{C(C-1)} \text{trace} \left\{ \sum_{i=1}^C (\theta\Sigma_i\theta^T)^{-1} \theta S_i \theta^T \right\} - p \quad (7)$$

where $S_i = \sum_{j \neq i} \Sigma_j + (\mu_i - \mu_j)(\mu_i - \mu_j)^T$, $i = 1, \dots, C$.

Following matrix differentiation results from Searle, "Matrix algebra useful for statistics" (Wiley Series in Probability and Mathematical Statistics, New York, 1982), D_θ (indicated at 128 in Fig. 2) has a gradient with respect to θ and has the expression

$$5 \quad \frac{\partial D_\theta}{\partial \theta} = \frac{1}{C(C-1)} \sum_{i=1}^C (\theta \Sigma_i \theta^T)^{-1} \left[\theta S_i \theta^T (\theta \Sigma_i \theta^T)^{-1} \theta \Sigma_i - \theta S_i \right] \quad (8)$$

The use of equation (8) is indicated in Fig. 2 at 130.

Unfortunately, it turns out that $\frac{\partial D_\theta}{\partial \theta} = 0$ has no analytical solutions for the stationary points. Instead, one has to use numerical optimization routines for the
10 maximization of D_θ .

An alternative way of minimizing the Bayes error is to minimize an upper bound on this quantity. First, the following statement will be proven:

$$\varepsilon \leq \sum_{1 \leq i \leq j \leq C} \sqrt{\lambda_i \lambda_j} \int_{\mathbb{R}^n} \sqrt{p_i(x) p_j(x)} dx \quad (9)$$

Indeed, from Decell et al., supra, the Bayes error can be rewritten as

$$\begin{aligned}
\varepsilon &= \int_{\mathbb{R}^n} \sum_{i=1}^C \lambda_i p_i(x) dx - \int_{\mathbb{R}^n} \max_{1 \leq i \leq C} \lambda_i p_i(x) dx \\
&= \int_{\mathbb{R}^n} \min_{1 \leq i \leq C} \sum_{j \neq i} \lambda_j p_j(x) dx
\end{aligned} \tag{10}$$

and for every \mathbf{x} , there exists a permutation of the indices $\sigma_{\mathbf{x}} : \{1, \dots, C\} \rightarrow \{1, \dots, C\}$ such that the terms $\lambda_1 p_1(\mathbf{x}), \dots, \lambda_C p_C(\mathbf{x})$ are sorted in increasing order, i.e.

$\lambda_{\sigma_{\mathbf{x}}(1)} p_{\sigma_{\mathbf{x}}(1)}(\mathbf{x}) \leq \dots \leq \lambda_{\sigma_{\mathbf{x}}(C)} p_{\sigma_{\mathbf{x}}(C)}(\mathbf{x})$. Moreover, for $1 \leq k \leq C-1$

$$5 \quad \lambda_{\sigma_{\mathbf{x}}(k)} p_{\sigma_{\mathbf{x}}(k)}(\mathbf{x}) \leq \sqrt{\lambda_{\sigma_{\mathbf{x}}(k)} p_{\sigma_{\mathbf{x}}(k)}(\mathbf{x}) \lambda_{\sigma_{\mathbf{x}}(k+1)} p_{\sigma_{\mathbf{x}}(k+1)}(\mathbf{x})} \tag{11}$$

from which it follows that

$$\begin{aligned}
\min_{1 \leq i \leq C} \sum_{j \neq i} \lambda_j p_j(x) &= \sum_{k=1}^{C-1} \lambda_{\sigma_{\mathbf{x}}(k)} p_{\sigma_{\mathbf{x}}(k)}(\mathbf{x}) \leq \sqrt{\lambda_{\sigma_{\mathbf{x}}(k)} p_{\sigma_{\mathbf{x}}(k)}(\mathbf{x}) \lambda_{\sigma_{\mathbf{x}}(k+1)} p_{\sigma_{\mathbf{x}}(k+1)}(\mathbf{x})} \\
&\leq \sum_{1 \leq i \leq j \leq C} \sqrt{\lambda_i p_i(\mathbf{x}) \lambda_j p_j(\mathbf{x})}
\end{aligned} \tag{12}$$

which, when integrated over \mathbb{R}^n , leads to equation (9).

As previously, if it is assumed that the p_i 's are normal distributions with means μ_i and covariances Σ_i , the bound given by the right-hand side of equation (9) has the closed form expression

$$\sum_{1 \leq i \leq j \leq C} \sqrt{\lambda_i \lambda_j} e^{-p(i,j)} \quad (13)$$

where

$$p(i,j) = \frac{1}{8} (\mu_i - \mu_j)^T \left[\frac{\Sigma_i + \Sigma_j}{2} \right]^{-1} (\mu_i - \mu_j) + \frac{1}{2} \log \frac{\left| \frac{\Sigma_i + \Sigma_j}{2} \right|}{\sqrt{|\Sigma_i||\Sigma_j|}} \quad (14)$$

is called the Bhattacharyya distance between the normal distributions p_i and p_j (see

5 Fukunaga, supra). Similarly, one can define $\rho_\theta(i,j)$, the Bhattacharyya distance between the projected densities p_i^θ and p_j^θ . Combining equations (9) and (13), one obtains the following inequality (indicated in Fig. 2 at 126) involving the Bayes error rate in the projected space:

$$\varepsilon_\theta \leq \sum_{1 \leq i \leq j \leq C} \sqrt{\lambda_i \lambda_j} e^{-p_\theta(i,j)} (= B_\theta) \quad (15)$$

10 The following simplifying notations will now be introduced:

- $B_\eta = \frac{1}{4} (\mu_i - \mu_j) (\mu_i - \mu_j)^T$ and

- $W_\eta = \frac{1}{2} (\Sigma_i + \Sigma_j), 1 \leq i \leq j \leq C.$

From equation (14), it follows that:

$$p_{\theta}(i, j) = \frac{1}{2} \text{trace} \left\{ (\theta W_y \theta^T)^{-1} \theta B_y \theta^T \right\} + \frac{1}{2} \log \frac{|\theta W_y \theta^T|}{\sqrt{|\theta \Sigma_i \theta^T| |\theta \Sigma_j \theta^T|}} \quad (16)$$

(indicated in Fig. 2 at 126) and the gradient of B_θ (indicated in Fig. 2 at 128) with respect to θ is

$$5 \quad \frac{\partial B_\theta}{\partial \theta} = - \sum_{1 \leq i \leq j \leq C} \sqrt{\lambda_i \lambda_j} e^{-p_\theta(i, j)} \frac{\partial p_\theta(i, j)}{\partial \theta} \quad (17)$$

(indicated in Fig. 2 at 130) with, again by making use of differentiation results from Searle, supra

$$\frac{\partial p_\theta(i, j)}{\partial \theta} = \frac{1}{2} (\theta W_y \theta^T)^{-1} \left[\theta B_y \theta^T (\theta W_y \theta^T)^{-1} \theta W_y - \theta B_y \right] + (\theta W_y \theta^T)^{-1} \theta W_y - \frac{1}{2} \left[(\theta \Sigma_i \theta^T)^{-1} \theta \Sigma_i + (\theta \Sigma_j \theta^T)^{-1} \theta \Sigma_j \right] \quad (18)$$

The use of equation (18) is indicated in Fig. 2 at 130.

10 In connection with the foregoing discussion, speech recognition experiments were conducted on a voicemail transcription task (see Padmanabhan et al., "Recent improvements in voicemail transcription", Proceedings of EUROSPEECH'99, Budapest,

Hungary, 1999). The baseline system had 2.3 K context dependent HMM states and 134K diagonal gaussian mixture components and was trained on approximately 70 hours of data. The test set consisted of 86 messages (approximately 7000 words). The baseline system used 39-dimensional frames (13 cepstral coefficients plus deltas and double deltas computed from 9 consecutive frames).

For the divergence and Bhattacharyya projections, every 9 consecutive 24-dimensional cepstral vectors were spliced together forming 216-dimensional feature vectors which were then clustered to estimate one full covariance gaussian density for each state. Subsequently, a 39×216 transformation θ was computed using the objective functions for the divergence (equation [7]) and the Bhattacharyya bound (equation [15]), which projected the models and feature space down to 39 dimensions.

As mentioned in Haeb-Umbach et al, *supra*, it is not clear what the most appropriate class definition for the projections should be. The best results were obtained by considering each individual HMM state as a separate class, with the priors of the gaussians summing up to one across states. Both optimizations were initialized with the LDA matrix and carried out using a conjugate gradient descent routine with user supplied analytic gradient from the NAG (Numerical Algebra Group) Fortran library. (The NAG Fortran library is a collection of mathematical subroutines - or subprograms - for

performing various scientific/mathematical computations such as: solving systems of linear or non-linear equations, function integration, differentiation, matrix operations, eigensystem analysis, constrained or unconstrained function optimization, etc.)

The routine performs an iterative update of the inverse of the hessian of the
5 objective function by accumulating curvature information during the optimization.

Figure 3 illustrates the evolution of objective functions for divergence, while
Figure 4 illustrates the evolution of objective functions for the B Bhattacharyya bound.

The parameters of the baseline system (with 134K gaussians) were then
re-estimated in the transformed spaces using the EM algorithm. Table 1 summarizes the
10 improvements in the word error rates for the different systems.

TABLE 1

System	Word Error Rate
Baseline (MFCC+ Δ + $\Delta\Delta$)	39.61%
LDA	37.39%
Interclass divergence	36.32%
Bhattacharyya bound	35.73%

In recapitulation, two methods for performing discriminant feature space projections have been presented. Unlike LDA, they both aim to directly minimize the
5 probability of misclassification in the projected space by either maximizing the interclass divergence and relating it to the Bayes error or by directly minimizing an upper bound on the classification error. Both methods lead to defining smooth objective functions which have as argument projection matrices and which can be numerically optimized.
Experimental results on large vocabulary continuous speech recognition over the
10 telephone show the superiority of the resulting features over their LDA or cepstral counterparts.

Some primary applications of the methods and arrangements discussed herein relate to pattern recognition, including speech recognition. Other examples of pattern recognition, which may make use of the embodiments of the present invention, include but are not limited to: handwriting and optical character recognition (OCR), speaker

5 identification and verification, signature verification (for security applications), object recognition and scene analysis (such as aircraft identification based on aerial photographs), crops monitoring, submarine identification based on acoustic signature, and several others.

It is to be understood that the present invention, in accordance with at least one presently preferred embodiment, includes an input interface for inputting a pattern and a

10 transformer for transforming the input pattern to provide a set of at least one feature for a classifier. Together, the input interface and transformer may be implemented on at least one general-purpose computer running suitable software programs. These may also be implemented on at least one Integrated Circuit or part of at least one Integrated Circuit. Thus, it is to be understood that the invention may be implemented in hardware, software,

15 or a combination of both.

If not otherwise stated herein , it is to be assumed that all patents, patent applications, patent publications and other publications (including web-based publications)

mentioned and cited herein are hereby fully incorporated by reference herein as if set forth in their entirety herein.

Although illustrative embodiments of the present invention have been described herein with reference to the accompanying drawings, it is to be understood that the
5 invention is not limited to those precise embodiments, and that various other changes and modifications may be affected therein by one skilled in the art without departing from the scope or spirit of the invention.

CONFIDENTIAL - THIS DOCUMENT CONTAINS TRADE SECRET INFORMATION

Claims

What is claimed is:

1. A method of providing pattern recognition, said method comprising the steps of:

5 inputting a pattern;

transforming the input pattern to provide a set of at least one feature for a classifier;

said transforming step comprising the step of minimizing the probability of subsequent misclassification of the at least one feature in the classifier;

10 said minimizing step comprising:

developing an objective function; and

optimizing the objective function through gradient descent.

2. The method according to Claim 1, wherein said minimizing step comprises maximizing an average pairwise divergence.

3. The method according to Claim 1, wherein said minimizing step comprises minimizing a union Bhattacharyya bound.

4. The method according to Claim 1, further comprising the step of querying whether the optimized objective function converges.

5 5. The method according to Claim 4, further comprising the step of repeating said
optimizing step if the optimized objective function does not converge.

6. The method according to Claim 1, wherein said pattern recognition is speech recognition.

7. Apparatus for providing pattern recognition, said apparatus comprising:

10 an input interface for inputting a pattern;

a transformer for transforming the input pattern to provide a set of at least one

feature for a classifier;

said transformer being adapted to minimize the probability of subsequent misclassification of the at least one feature in the classifier;

15 said transformer further being adapted to:

develop an objective function; and

optimize the objective function through gradient descent.

8. The apparatus according to Claim 7, wherein said transformer is adapted to minimize the probability of subsequent misclassification of the at least one feature in the classifier via maximizing an average pairwise divergence.

5

9. The apparatus according to Claim 7, wherein said transformer is adapted to minimize the probability of subsequent misclassification of the at least one feature in the classifier via minimizing a union Bhattacharyya bound.

10. The apparatus according to Claim 7, wherein said transformer is further adapted to query whether the optimized objective function converges.

10

11. The apparatus according to Claim 10, wherein said transformer is further adapted to repeat optimization of the objective function if the optimized objective function does not converge.

12. The apparatus according to Claim 7, wherein said pattern recognition is speech recognition.

15

13. A program storage device readable by machine, tangibly embodying a program of instructions executable by the machine to perform method steps for providing pattern recognition, said method comprising the steps of:

inputting a pattern;

5 transforming the input pattern to provide a set of at least one feature for a classifier;

said transforming step comprising the step of minimizing the probability of subsequent misclassification of the at least one feature in the classifier;

said minimizing step comprising:

10 developing an objective function; and

optimizing the objective function through gradient descent.

MINIMUM BAYES ERROR FEATURE SELECTION

IN SPEECH RECOGNITION

Abstract of the Disclosure

In connection with speech recognition, the design of a linear transformation

5 $\theta \in \Re^{p \times n}$, of rank $p \times n$, which projects the features of a classifier $\mathbf{x} \in \Re^n$ onto
 $\mathbf{y} = \theta\mathbf{x} \in \Re^p$ such as to achieve minimum Bayes error (or probability of misclassification).

Two avenues are explored: the first is to maximize the θ -average divergence between the
class densities and the second is to minimize the union Bhattacharyya bound in the range
of θ . While both approaches yield similar performance in practice, they outperform
10 standard linear discriminant analysis features and show a 10% relative improvement in the
word error rate over known cepstral features on a large vocabulary telephony speech
recognition task.

Fig. 1

3/3

Padmanabhan al.
YOR920000388US1 (PJO)

Fig. 3

Fig. 4

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name;

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

MINIMUM BAYES ERROR FEATURE SELECTION IN SPEECH RECOGNITION

the specification of which (check one)

is attached hereto.

was filed on _____ as International Business Machines Docket No. Y0R920000388US1

and was amended on _____ (if applicable)

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the patentability of this application in accordance with Title 37, Code of Federal Regulations, Section 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, §119(a)-(d) or §365(b) of any foreign application(s) for patent or inventor's certificate, or §365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application, having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s)			Priority Claimed
(Number)	(Country)	(Day/Month/Year Filed)	<input type="checkbox"/> Yes <input type="checkbox"/> No
(Number)	(Country)	(Day/Month/Year Filed)	<input type="checkbox"/> Yes <input type="checkbox"/> No
(Number)	(Country)	(Day/Month/Year Filed)	<input type="checkbox"/> Yes <input type="checkbox"/> No

I hereby claim the benefit under 35 U.S.C. §119(e) of any United States provisional application(s) listed below.

(Application Number)	(Filing Date)
(Application Number)	(Filing Date)

DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

George A. Saon

Full name of sole or second inventor

George A. Saam
Inventor's Signature

10/24/2000

142 Kramers Pond Road, Putnum Valley, New York 10579

Residence

~~as~~ Romania

Citizenship

Same as above

Post Office Address