Chapter 6

Problems 5 and 6

Nathan Bickel

September 13, 2024

Exercise 5

For each of the following, use the "quick falsification" method to find an assignment of truth values to the atomic statements which makes the entire statement false.

- (a) $(p \lor q)$
- (b) $((p \lor q) \rightarrow (p \& q))$
- (c) $(\sim (\sim q \lor p) \lor (p \rightarrow q))$
- (a) Need $(p \lor q) = 0$:

$$p = 0, q = 0$$

(b) Need $(p \lor q) = 1$, (p & q) = 0:

$$p = 1, q = 0$$

(c) Need $\sim (\sim q \lor p) = 0$, $(p \to q) = 0$:

$$p = 1, q = 0$$

Exercise 5

For each of the following, use the "quick falsification" method to find an assignment of truth values to the atomic statements which makes the entire statement false.

- (d) $((((p \rightarrow q) \rightarrow r) \rightarrow s) \rightarrow (p \rightarrow q))$
- (e) $(((p \lor q) \& (r \& s)) \leftrightarrow (((p \& q) \& r) \& s))$
- **(d)** Need $(((p \rightarrow q) \rightarrow r) \rightarrow s) = 1$, $(p \rightarrow q) = 0$, so need $((0 \rightarrow r) \rightarrow s)) = 1$, so need $(1 \rightarrow s) = 1$:

$$p = 1, q = 0, r = 0, s = 1$$

(e) Need $(((p \lor q) \& (r \& s)) = 1, (((p \& q) \& r) \& s)) = 0$, so need $(p \lor q) = 1, (r \& s) = 1, (p \& q \& r \& s) = 0$, so need (p & q) = 0:

$$p = 0, q = 1, r = 1, s = 1.$$

Exercise 6

Let p, q, and r be atomic statements. Which of the following are tautologies, contradictions or contingent statements?

- (a) $(p \lor \sim p)$
- (b) $(p \lor q)$
- (c) $((p \& q) \rightarrow (p \lor r))$
- (d) $(\sim p \& \sim (p \rightarrow q))$
- (e) $((p \lor r) \rightarrow \sim p)$
- (a) Tautology: Clear
- **(b)** Contingent: 1 when p = q = 1 but 0 when p = q = 0
- (c) Tautology: $(p \& q) \Rightarrow p \Rightarrow (p \lor r)$
- (d) Contradiction: $\sim (p \to q) \Rightarrow (p \& \sim q) \Rightarrow p$, and $(\sim p \& p)$ is a contradiction
- (e) Contingent: 1 when p = r = 0 but 0 when p = r = 1