# Formal Languages Turing's Thesis

# Turing's thesis:

Any computation carried out by mechanical means can be performed by a Turing Machine

(1930)

### Computer Science Law:

A computation is mechanical if and only if it can be performed by a Turing Machine

There is no known model of computation more powerful than Turing Machines

## Definition of Algorithm:

An algorithm for function f(w) is a Turing Machine which computes f(w)

# Algorithms are Turing Machines

# When we say:

There exists an algorithm

#### We mean:

There exists a Turing Machine that executes the algorithm

# Variations of the Turing Machine

#### The Standard Model

# Infinite Tape

Read-Write Head (Left or Right)

#### Control Unit



Deterministic

#### Variations of the Standard Model

# Turing machines with:

- Stay-Option
  - · Semi-Infinite Tape
  - · Off-Line
  - Multitape
  - Multidimensional
  - Nondeterministic

# The variations form different Turing Machine Classes

We want to prove:

Each Class has the same power as the Standard Model

#### Same Power of two classes means:

The two classes of Turing machines accept the same languages

#### Same Power of two classes means:

For any machine  $\,M_1\,$  of first class there is a machine  $\,M_2\,$  of second class

such that: 
$$L(M_1) = L(M_2)$$

And vice-versa

Simulation: a technique to prove same power

Simulate the machine of one class with a machine of the other class

<u>First Class</u> Original Machine

 $M_1$ 

Second Class
Simulation Machine



# Configurations in the Original Machine correspond to configurations in the Simulation Machine

Original Machine: 
$$d_0 \succ d_1 \succ \cdots \succ d_n$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
Simulation Machine:  $d_0' \succ d_1' \succ \cdots \succ d_n'$ 

# Final Configuration

$$d_f$$



Simulation Machine:

$$d_f'$$

The Simulation Machine and the Original Machine accept the same language

# Turing Machines with Stay-Option

The head can stay in the same position

Left, Right, Stay

L,R,S: moves

## Example:

#### Time 1



#### Time 2





#### Theorem:

Stay-Option Machines
have the same power as
Standard Turing machines

# Proof?

#### Proof:

Part 1: Stay-Option Machines are at least as powerful as Standard machines

Proof: a Standard machine is also a Stay-Option machine (that never uses the S move)

#### Proof:

Part 2: Standard Machines

are at least as powerful as

Stay-Option machines

Proof: a standard machine can simulate a Stay-Option machine

# Stay-Option Machine



#### Simulation in Standard Machine

$$\begin{array}{c}
a \rightarrow b, L \\
\hline
q_1 & q_2
\end{array}$$

## Similar for Right moves

# Stay-Option Machine



#### Simulation in Standard Machine

### For every symbol X

# Example

# Stay-Option Machine:



#### Simulation in Standard Machine:



# Standard Machine--Multiple Track Tape

| $\Diamond$ | $\Diamond$ | a | b | a | b | $\Diamond$ | track 1 |
|------------|------------|---|---|---|---|------------|---------|
| $\Diamond$ | $\Diamond$ | b | a | C | d | $\Diamond$ | track 2 |
|            |            |   |   |   |   |            |         |

# Proof of equivalence?

# Standard Machine--Multiple Track Tape







track 1 track 2

$$\underbrace{q_1} \xrightarrow{(b,a) \to (c,d), L} \underbrace{q_2}$$

# Semi-Infinite Tape



# Proof of equivalence?

# Standard Turing machines simulate Semi-infinite tape machines:

Trivial

# Semi-infinite tape machines simulate Standard Turing machines:





# Semi-infinite tape machine with two tracks



#### Standard machine



# Semi-infinite tape machine



#### Standard machine

$$\underbrace{q_1} \quad a \to g, R \quad q_2$$

# Semi-infinite tape machine

Right part

$$\underbrace{q_1^R} \xrightarrow{(a,x) \to (g,x),R} \underbrace{q_2^R}$$

Left part

$$\underbrace{q_1^L} \xrightarrow{(x,a) \to (x,g),L} \underbrace{q_2^L}$$

For all symbols x

#### Time 1



# Semi-infinite tape machine



#### Time 2



# Semi-infinite tape machine



#### At the border:

## Semi-infinite tape machine

Right part 
$$q_1^R$$
  $(\#,\#) \rightarrow (\#,\#), R$   $q_1^L$ 

Left part

$$\underbrace{q_1^L} \xrightarrow{(\#,\#) \to (\#,\#), R} \underbrace{q_1^R}$$

## Semi-infinite tape machine





#### Theorem:

Semi-infinite tape machines have the same power as Standard Turing machines

## The Off-Line Machine



## Proof of equivalence?

## Off-line machines simulate Standard Turing Machines:

#### Off-line machine:

1. Copy input file to tape

2. Continue computation as in Standard Turing machine

#### Standard machine



#### Off-line machine



## 1. Copy input file to tape

## Standard machine $\Rightarrow a b c \Rightarrow \Rightarrow$

Off-line machine



2. Do computations as in Turing machine

## Standard Turing machines simulate Off-line machines:

Use a Standard machine with four track tape to keep track of the Off-line input file and tape contents

#### Off-line Machine



### Four track tape -- Standard Machine

| # | $\overline{a}$ | b | C | d |   |   |
|---|----------------|---|---|---|---|---|
| # | 0              | 0 | 1 | 0 |   |   |
|   | e              | f | g |   |   |   |
|   | 0              | 1 | 0 |   |   |   |
|   | <b></b>        |   |   |   | ı | П |

Input File
head position
Tape
head position

### Reference point



Input File
head position
Tape
head position

## Repeat for each state transition:

- Return to reference point
- · Find current input file symbol
- Find current tape symbol
- Make transition

Theorem: Off-line machines have the same power as Standard machines

## Multitape Turing Machines





#### Time 2



$$\underbrace{q_1}^{(b,f) \to (g,d), L, R} \underbrace{q_2}$$

## Proof of equivalence?

## Multitape machines simulate Standard Machines:

Use just one tape

## Standard machines simulate Multitape machines:

#### Standard machine:

· Use a multi-track tape

 A tape of the Multiple tape machine corresponds to a pair of tracks

### Multitape Machine



## Standard machine with four track tape

| a            | b | C |   |   | Tape 1        |
|--------------|---|---|---|---|---------------|
| 0            | 1 | 0 |   |   | head position |
| e            | f | g | h |   | Tape 2        |
| 0            | 0 | 1 | 0 |   | head position |
| <br><b>^</b> | I | I | ı | 1 | -             |

### Reference point



## Repeat for each state transition:

- ·Return to reference point
- ·Find current symbol in Tape 1
- ·Find current symbol in Tape 2
- Make transition

#### Theorem:

Multi-tape machines have the same power as Standard Turing Machines

## Same power doesn't imply same speed:

Language 
$$L = \{a^n b^n\}$$

Acceptance Time

Standard machine

 $n^2$ 

Two-tape machine

n

## Algorithms?

$$L = \{a^n b^n\}$$

#### Standard machine:

Go back and forth  $n^2$  times

## Two-tape machine:

Copy  $b^n$  to tape 2 (n steps)

Leave  $a^n$  on tape 1 (n steps)

Compare tape 1 and tape 2 (n steps)

## MultiDimensional Turing Machines



MOVES: L,R,U,D

U: up D: down

HEAD

Position: +2, -1

## Proof of equivalence?

## Multidimensional machines simulate Standard machines:

Use one dimension

## Standard machines simulate Multidimensional machines:

#### Standard machine:

- Use a two track tape
- Store symbols in track 1
- Store coordinates in track 2

#### Two-dimensional machine



 a
 b

 1
 #

 1
 #

 4

symbols coordinates

#### Standard machine:

## Repeat for each transition

- Update current symbol
- · Compute coordinates of next position
- · Go to new position

#### Theorem:

MultiDimensional Machines have the same power as Standard Turing Machines

## NonDeterministic Turing Machines



#### Non Deterministic Choice







#### Choice 1



#### Time 1

#### Choice 2



## Input string W is accepted if this is a possible computation:



## Proof of equivalence?

## NonDeterministic Machines simulate Standard (deterministic) Machines:

## NonDeterministic Machines simulate Standard (deterministic) Machines:

Every deterministic machine is also a nondeterministic machine

## Deterministic machines simulate NonDeterministic machines:

Deterministic machine:

Keeps track of all possible computations

#### Non-Deterministic Choices



#### Non-Deterministic Choices



#### Simulation

#### Deterministic machine:

Keeps track of all possible computations

 Stores computations in a two-dimensional tape

#### NonDeterministic machine



#### Deterministic machine

|   | 1 |                  |   |   | ı | ı |               |
|---|---|------------------|---|---|---|---|---------------|
|   | # | #                | # | # | # | # |               |
| : | # | $\boldsymbol{a}$ | b | C | # |   | Computation 1 |
|   | # | $q_1$            |   |   | # |   | Joinparamon 1 |
|   | # | #                | # | # | # |   |               |
|   |   |                  |   |   |   |   | _             |

### NonDeterministic machine



#### Deterministic machine

|    | #     | # | #     | #                          | # | # |  |
|----|-------|---|-------|----------------------------|---|---|--|
| #  |       | b | b     | $\boldsymbol{\mathcal{C}}$ | # |   |  |
| #  | $q_2$ |   |       |                            | # |   |  |
| ## |       | С | b     | $\mathcal{C}$              | # |   |  |
| #  |       |   | $q_3$ |                            | # |   |  |

Computation 1

Computation 2

### Repeat

- · Execute a step in each computation:
- If there are two or more choices in current computation:
  - 1. Replicate configuration
  - 2. Change the state in the replica

# Theorem: NonDeterministic Machines have the same power as Deterministic machines

#### Remark:

The simulation in the Deterministic machine takes exponential time of time needed by the NonDeterministic machine