

Perceptrons

Lecture 15 of "Mathematics and Al"

Outline

- 1. A neural approach to Al
 - Theoretical neuron, synapses, action potential, threshold voltage, plasticity
- 2. Perceptron
- 3. Learning algorithms
 - Perceptron learning, stochastic gradient descent, mini-batch
- 4. Variants of stochastic gradient descent Momentum, Averaging, RMSProp, Adam

A neural approach to Al

Back to beginnings ...

- Al: an interdisciplinary challenge
 - Mathematics,
 - physics,
 - philosophy,
 - psychology,
 - neuroscience

The human brain as a computer

- Is the brain as a thinking machine?
- How could one build such a machine from scratch?

The neuron

 Fundamental information processing unit of the brain

Neuron as I/O system:

• Input: dendrites

• Information aggregation: soma

Output: axon terminals

Communication: synapses

Theoretical models of neural dynamics

- Mathematical models of neurons
 - Hodgkin-Huxley model, Integrateand-fire (IF) model, leaky integrate-and-fire (LIF) model
- Machine learning with spiking neural networks (SNNs)
 - Computer vision, robotics, ...

Perceptron

Perceptron

Perceptron

The Mark I Perceptron

FIG. 1 — Organization of a biological brain. (Red areas indicate active cells, responding to the letter X.)

FIG. 2 - Organization of a perceptron.

Perceptron as a binary linear classifier

Linear decision boundary for binary classification

$$\{\overrightarrow{x_i} \mid \beta_0 + \overrightarrow{\beta} \cdot \overrightarrow{x_i} < 0\}$$

$$\{\overrightarrow{x_i} \mid \beta_0 + \overrightarrow{\beta} \cdot \overrightarrow{x_i} > 0\}$$

- $\rightarrow \overrightarrow{x_i}$ on one side of hyperplane
- \triangleright $(\overrightarrow{x_i}, y_i)$ is "cat"
- $\rightarrow y_i = -1$

- $\rightarrow \overrightarrow{x_i}$ on other side of hyperplane
- \triangleright $(\overrightarrow{x_i}, y_i)$ is "dog"
- $\rightarrow y_i = +1$

For all training samples:

$$y_i \left(\beta_0 + \vec{\beta} \cdot \vec{x_i} \right) > 0$$

Learning algorithms

Perceptron learning algorithm

- Natural learning is sequential
- Gradient descent does not work with step functions
- > Perceptron learning algorithm

```
Algorithm: Perceptron Learning Algorithm
P \leftarrow inputs with label 1;
N \leftarrow inputs \quad with \quad label \quad 0;
Initialize w randomly;
while !convergence do
    Pick random \mathbf{x} \in P \cup N;
    if x \in P and w.x < 0 then
        \mathbf{w} = \mathbf{w} + \mathbf{x};
    end
    if \mathbf{x} \in N and \mathbf{w}.\mathbf{x} \geq 0 then
        \mathbf{w} = \mathbf{w} - \mathbf{x};
    end
end
//the algorithm converges when all the
 inputs are classified correctly
```


Perceptron learning

- Natural learning is sequential
- Gradient descent does not work with step functions
- Perceptron learning algorithm
 - + Works for with step functions
 - Converges slowly or not at all

Image source: Wikipedia

Stochastic gradient descent (SGD)

SGD: Sequential gradient-based learning

Gradient descent (full batch)	Stochastic gradient descent
Loss function:	Loss function:
$L_{GD}(\vec{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \ell_i(\vec{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \ell_i(\vec{\beta}, \vec{x}_i, y_i)$	$L_{SGD}(\vec{\beta}) = \ell_i(\vec{\beta}, \vec{x}_i, y_i)$
Update rule:	Update rule:
$\vec{\beta}' = \vec{\beta} - \gamma \nabla L_{GD}(\vec{\beta}) = \vec{\beta} - \frac{\gamma}{n} \sum_{i=1}^{n} \nabla \ell_i(\vec{\beta})$	$\vec{eta}' = \vec{eta} - abla L_{SGD}(\vec{eta}) = \vec{eta} - \gamma abla \ell_i(\vec{eta})$

Stochastic gradient descent (SGD)

• Example: OLS with one feature

$$L_{GD}(\vec{\beta}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (\beta_0 + \vec{\beta} \cdot \vec{x}_i - y_i)^2$$

$$L_{SGD}(\vec{\beta}) = \ell_i(\vec{\beta}, \vec{x}_i, y_i) = (\beta_0 + \vec{\beta} \cdot \vec{x}_i - y_i)^2$$

$$\vec{\beta}' = \vec{\beta} - 2\gamma (\beta_0 + \vec{\beta} \cdot \vec{x}_i - y_i) \vec{x}_i$$

Activation functions

- SGD does not work with step functions, but with many other naturalistically motivated activation functions
- Examples: logistic/sigmoid function, ReLU (Rectified linear unit)

Linear activation function?

- Unbounded function:
 - Not biologically motivated
 - Not well suited for classification problems
- Linear function:
 - $\vec{\beta} \cdot \vec{x}_i$ is already a linear transformation (LT)
 - LT(LT(\vec{x}_i)) is just another LT on \vec{x}_i
 - Does not change model expressiveness

Variants of SGD

Variants of SGD

GD can get stuck in $\nabla L_{GD}(\vec{\beta}) = 0$ zones

SGD converges slowly and is sensitive to outliers

- ➤ Variants of SGD that include smoothening effect
 - > Averaging / mini-batch
 - > Momentum
 - > RMSProp
 - > Adam

Averaging/mini-batch learning

- ➤ Split training data into "mini-batches" of size *m*
- > Loss:

$$L_{SGD}(\vec{\beta}) = \frac{1}{m} \sum_{i=1}^{m} \ell_i(\vec{\beta}, \vec{x}_i, y_i)$$

➤ Update rule:

$$\vec{\beta}' = \vec{\beta} - \gamma \nabla L_{SGD}(\vec{\beta})$$

Improves robustness to outliers

SGD with momentum

- \triangleright Add momentum to how $\vec{\beta}$ changes
- > Loss:
 - > Standard SGD loss or mini-batch
- ➤ Update rule:

$$\vec{\beta}' = \vec{\beta} + \Delta \vec{\beta}'$$
 with $\Delta \vec{\beta}' = -\gamma \nabla L_{SGD}(\vec{\beta}) + \alpha \Delta \vec{\beta}$

> Improves robustness for high-variance data

Stochastic Gradient
Descent withhout
Momentum

Stochastic Gradient
Descent with
Momentum

RMSProp, Adam

- > RMSProp (Root mean square propagation)
- > Adjust learning rate for each parameter
- ➤ Update rule:

$$\vec{\beta}' = \vec{\beta} + \Delta \vec{\beta}'$$
 with $\Delta \vec{\beta}' = -\frac{\gamma}{v} \nabla L_{SGD}(\vec{\beta})$ and v moving average of $\Delta \vec{\beta}'$

- Improves robustness to high-variance features
- ➤ Adam (Adaptive Moment Estimation)
 - > combines RMSProp with momentum