과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명
≻Intro	• 왜 고양이와 강아지를 구분할 수 있을까요?	① 본 학습 내용으로 들 어가기 전, 학습 주제
•학습열기	우리 눈에는 너무나 당연하게 느껴지는 일이 있습니다. 예를 들어, 우리는 사진 속 고양이와	<mark>의 흥미를 이끌 만한</mark> 도입부의 내용이 있
•학습목표	강아지를 한눈에 구분합니다. 하지만 컴퓨터에게 이 일을 맡긴다면 어떨까요? 머신러닝이 처음 등장했을 때, 고양이 사진 수천 장을 학습시켜도 모델은 개와 구분하지 못하곤 했습니다.	<mark>다면 제시해주세요.</mark> ② ex. 관련 뉴스기사,
> 학습하기 1. CNN 학습 최	그 이유는 무엇일까요? 바로 이미지 속 픽셀 정보만으로는 패턴을 파악하는 것이 쉽지 않기 때문입니다. 이를 해결하기 위해 우리는 합성곱 신경망(CNN)이라는 강력한 도구를 사용하게	실생활과 관련된 이 야기 등
적화 2. CNN 구조 최 적화	되었습니다. 어을 해결하기 위해 우리는 합성합 전성성(CMM)이다는 성격한 모두를 지용하게 되었습니다. CNN은 이미지를 구성하는 각 요소인 윤곽, 색상, 질감 등을 점진적으로 학습하여 의미 있는 특성을 추출합니다. 하지만 이 CNN도 학습의 효율과 정확도를 높이기 위해 여러	③ 저작권 침해가 되지 않도록 내용을 구성 해 주세요.
3. Dataset 최적 화	기술적 최적화가 필요합니다. 이번 학습에서는 데이터 증강, 학습률 조정, 과적합 방지 기법, 그리고 클래스 불균형 대응 전략 등을 통해 실제로 모델이 어떻게 똑똑해지는지를 체험하게 됩니다. 인간의 시각을 흉내 내는 인공 지능의 첫걸음을 여러분과 함께 디버깅하며 확인해보	④ 출처가 있을 경우 반 드시 작성해 주세요.
	고 싶습니다.	
≻적용하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션		3

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명
▶Intro•학습열기•학습목표	◈ 학습목표	① 학습내용과 학습목표 는 강의계획서와 일 치해야 하며, 필요시 강의계획서를 수정할 수 있습니다.
▶학습하기 1. CNN 학습 최 적화 2. CNN 구조 최 적화	1. 데이터 증강 및 학습률 조정을 적용할 수 있다. 2. 네트워크 깊이와 필터 크기를 조정하여 성능을 비교할 수 있다. 3. 불균형 데이터 문제 해결 기법을 적용할 수 있다.	② <mark>학습목표</mark> ✓ 각 레슨에 맞는 학습 목표를 2~3개 작성 해 주세요. ③ <mark>학습내용</mark>
3. Dataset 최적 화	◈ 학습내용	 ✓ 1회차 당 25분 분량 이 되도록 2~3개 레 슨으로 구성해주세요. ✓ 학습내용과 레슨명은 일치해야 합니다.
≽적용하기	1. CNN 학습 최적화 2. CNN 구조 최적화	용어설명
➤Outro •문제풀기	3. Dataset 최적화	
내 레 이 션		4

과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명	10		화면설명
≻Intro						
•학습열기						
•학습목표						
▶학습하기		간지			_	
1. CNN 학습 최 적화						
2. CNN 구조 최 적화						
3. Dataset 최적 화			CNN 학습	최적화		
▶적용하기						용어설명
> Outro						
•문제풀기						
내 레						
내 레 이 션						
선						5

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명
≻Intro	• 고도화된 CNN 모델 구현	
•학습열기	필요 라이브러리 메모리 로드	
•학습목표		
▶ 학습하기		
1. CNN 학습 최 적화	# PyTorch를 이용한 고도화된 CNN 모델 구현	
2. CNN 구조 최 적화	# CIFAR-10 데이터셋을 기반으로 모델 성능 향상을 위해 다양한 기법을 적용한 예제	
3. Dataset 최적 화	<pre>import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt</pre>	
▶ 적용하기	<pre>import numpy as np from torchsummary import summary</pre>	용어설명
≻Outro	from torch.utils.data import WeightedRandomSampler from collections import Counter	
•문제풀기	Trom corrections impore counter	
내 레 이 션		6

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차	명 10	화면설명
≻Intro	• 데이터 증강 강화 1		
•학습열기	ColorJitter()를 통해 학습 데이터 다양성 증기		
•학습목표		무작위로 변경해 다양한 광학 조건에 대응 가능	
▶학습하기	한 학습을 유도함		
1. CNN 학습 최 적화	모델은 다양한 색상 조건에서도 견고한	예측을 할 수 있게 됨	
2. CNN 구조 최	brightness=0.2		
적화 3. Dataset 최적	밝기를 ±20% 범위 내에서 무작위로 조	절, 픽셀이 어두운 사진, 밝은 사진 모두 학습	
화	contrast=0.2		
	대비를 ±20% 범위로 조정		
	명암 차가 뚜렷한 사진과 흐릿한 사진 또	2두 대응하도록 함	
▶적용하기	saturation=0.2		용어설명
> Outro	채도를 ±20% 조정해서 색감이 풍부하기	너나 밋밋한 이미지 모두 학습하게 함	
•문제풀기	<pre>transforms.ColorJitter(brightness=0.2,</pre>	# 대비 조설	
내 레 이 션			7

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명
≻Intro	• 데이터 증강 강화 2	
•학습열기	RandomRotation 을 통해 학습 데이터 다양성 증가	
•학습목표	이미지를 -10도에서 +10도 사이로 무작위 회전시킴	
▶학습하기	-10° ≤ θ ≤ +10° 범위 내에서 무작위 회전	
1. CNN 학습 최 적화	객체가 항상 정방향으로만 존재하는 건 아니므로 약간 기울어진 이미지를 학습하도록 만듦	
2. CNN 구조 최 적화		
3. Dataset 최적 화	transforms.RandomRotation(10), # -10도 ~ +10도 범위에서 무작위 회전	
·		
▶적용하기		용어설명
≻Outro		
•문제풀기		
LH		
내레		
이 선		0

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명
≽Intro	• 학습 데이터 적용한 데이터 증강 기법 코드	
•학습열기		
•학습목표	# 학습 데이터에 다양한 데이터 증강 기법을 적용해 모델의 일반화 성능을 향상 <mark>transform train</mark> = transforms.Compose([
⇒학습하기	transforms.RandomHorizontalFlip(), # 이미지를 좌우로 무작위 반전 transforms.RandomCrop(32, padding=4), # 4픽셀 패딩 후 32x32 크기로 무작위	크롭
1. CNN 학습 최 적화	transforms.ColorJitter(brightness=0.2, # 밝기 조절	
2. CNN 구조 최 적화	contrast=0.2, # 대비 조절 saturation=0.2), # 채도 조절 # 제도 조절	
3. Dataset 최적 화	transforms.RandomRotation(10), # -10도~+10도 범위에서 무작위 회전 transforms.ToTensor(), # PIL 이미지를 Tensor로 변환	
4	transforms.Normalize((0.4914, 0.4822, 0.4465), # 각 채널별 평균과 표준편차로 정규화 (0.2023, 0.1994, 0.2010))	
])	
	# 테스트 데이터는 데이터 증강 없이 정규화만 수행	
▶ 적용하기		용어설명
≻Outro	# CIFAR-10 학습/테스트 데이터셋 로드	
•문제풀기	<pre>trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True,</pre>	
E.ME.I		
1 11		
내 레		
O		
션		<u>_</u>

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명			
≻Intro	• 데이터 수는 증가하지 않지만 매 에폭마다 다양한 데이터로 학습				
•학습열기	예를 들어, RandomHorizontalFlip()은 50% 확률로 좌우 반전				
•학습목표	RandomRotation(10)은 -10°~+10° 사이에서 무작위 각도로 회전				
▶학습하기	ColorJitter()는 무한히 다양한 조합의 밝기/채도/대비 변화를 생성함				
1. CNN 학습 최 적화	• 위 조합은 epoch마다 다르게 적용되므로 같은 이미지가 매 epoch마다 다르게 보여				
2. CNN 구조 최	집				
적화 3. Dataset 최적	예로, 고양이 이미지 하나				
화	→ 첫 epoch: 좌우 반전 + 약간 밝게				
	→ 둘째 epoch: 원본 그대로				
	→ 셋째 epoch: 약간 회전 + 대비 낮춤				
▶ 적용하기	→ 넷째 epoch: 좌우 반전 + 회전	용어설명			
≻Outro	→				
•문제풀기					
내					
레					
이 선					

과정명	PyTorch로 배우는 머신러닝 알고리語	회차명 10	화면설명
_	•		7660
≻Intro	• 옵티마이저를 설정		
•학습열기	AdamW		
•학습목표	Adam의 변형으로, 과적힙	(overfitting) 을 막기 위해 적용한 버전	
▶ 학습하기	더 안정적이고 일반화 잘	- 됨	
1. CNN 학습 최 적화	net.parameters() → 네트웨	크의 학습 가능한 파라미터들을 optimizer에 전달	
2. CNN 구조 최 적화	lr=0.001 → 초기 학습률 설	<mark>설정</mark>	
3. Dataset 최적 화	구성 요소	설명	
4	AdamW L2 정	규화가 개선된 Adam 옵티마이저	
	ReduceLROnPlateau 성능	개선이 정체되면 학습률을 자동으로 줄이는 스케줄러	
▶적용하기	aritarian - nn CraagEntran	rLoss() # 다중 클래스 분류용 손실 함수	용어설명
		/Loss() # 디딩 트네― 문규딩 는트 남구 :.parameters(), lr=0.001) # Adam의 정규화 강화 버전	
≻Outro			
•문제풀기			
내 레 이 션			1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명
≻Intro	• 학습률 조절 설정	
•학습열기	ReduceLROnPlateau() 사용	
•학습목표	손실 값이 줄어들지 않으면 학습률을 자동으로 줄여주는(이전의 10%로) 스케줄러	
▷학습하기	파라미터 의미	
1. CNN 학습 최 적화	optimizer 조정 대상 옵티마이저	
2. CNN 구조 최 적화	mode='min' 모니터링할 지표가 낮을수록 좋은 경우 (ex: loss)	
3. Dataset 최적 화	patience=3 성능이 개선되지 않아도 3번 참았다가 학습률 줄임	
▶적용하기	criterion = nn.CrossEntropyLoss() # 다중 클래스 분류용 손실 함수 optimizer = optim.AdamW(net.parameters(), lr=0.001) # Adam의 L2 정규화 강화 버전 scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=3)	용어설명
>Outro		
•문제풀기		
내 레 이 션		1

과정명	PyTorch로 배우는 머신러닝 알	고리즘	회차명	10	 화면설명
≻Intro					
•학습열기					
•학습목표		71 1			
▶학습하기	1	간지			
7. CNN 학습 최 적화					
2. CNN 구조 최 적화					
3. Dataset 최적 화		CN	N 구조	최적화	
▶적용하기					용어설명
≻Outro					
•문제풀기					
내 레 이 션					1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명
≻Intro	• CNN 네트워크 구조의 고도화	
•학습열기	합성곱 블록 1 = 합성곱 층 2개 + 최대풀링	
•학습목표	합성곱 블록 2 = 합성곱 층 2개 + 최대풀링	
▶학습하기	합성곱 블록 3 = 합성곱 층 1개 + 최대풀링	
1. CNN 학습 최 적화	완전 연결 층 = ANN 1개(256 * 4 * 4 -> 512) + 10개 클래스 분류 층(512 -> 10))	
2. CNN 구조 최 적화	• 필터는 3으로 고정	
3. Dataset 최적 화		
▶ 적용하기		용어설명
≻Outro		
•문제풀기		
내		
0		
션		1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명
≻Intro	• 특징 추출 부(feature extractor)	
•학습열기	이미지 입력을 받아 점점 더 복잡한 특징을 추출하도록 설계된 합성곱 계층 블록	
•학습목표	3채널(RGB) 입력 이미지를 64 채널의 특징 맵(feature map)으로 변환	
▶학습하기	커널 크기: 3×3 → 공간적으로 인접한 9픽셀 기반 특징 추출	
1. CNN 학습 최 적화	padding=1 → 출력 크기를 입력과 동일하게 유지 (32×32 → 32×32)	
2. CNN 구조 최 적화	<pre>class ImprovedCNN(nn.Module): def init (self):</pre>	
3. Dataset 최적 화	super(ImprovedCNN, self)init()	
	# 특징 추출을 위한 Convolutional Layer 블록 정의 self.features = nn.Sequential(# 첫 번째 블록: 3채널 입력 → 64채널 출력 nn.Conv2d(3, 64, kernel_size=3, padding=1),	
▶ 적용하기	<pre>nn.BatchNorm2d(64), nn.ReLU(),</pre>	용어설명
≻Outro	<pre>nn.Conv2d(64, 64, kernel_size=3, padding=1), nn.BatchNorm2d(64),</pre>	
•문제풀기	<pre>nn.ReLU(), nn.MaxPool2d(kernel_size=2), nn.Dropout(0.25),</pre>	
내 레 이 션		1

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	10	화면설명
≻Intro	• 두 번째 블록과 세 번째 블록			
•학습열기	합성곱 블록 2 = 합성곱 층 2개 + 최[대풀링		
•학습목표	합성곱 블록 3 = 합성곱 층 1개 + 최[대풀링		
▶학습하기 1. CNN 학습 최 적화 2. CNN 구조 최 적화 3. Dataset 최적 화	# 두 번째 블록: 64채널 → nn.Conv2d(64, 128, ker nn.BatchNorm2d(128), nn.ReLU(), nn.Conv2d(128, 128, ke nn.BatchNorm2d(128), nn.ReLU(), nn.ReLU(), nn.MaxPool2d(kernel_si nn.Dropout(0.25),	ernel_size=3 ernel_size=		
▶적용하기	# 세 번째 블록: 128채널 nn.Conv2d(128, 256, ke		-3, padding=1),	용어설명
≻Outro	nn.BatchNorm2d(256), nn.ReLU(),			
•문제풀기	<pre>nn.MaxPool2d(kernel_si nn.Dropout(0.3)</pre>	ze=2),		
내 레 이 션				1

과정명	PyTorc	h로	L 배우는 머신i	러닝 알고리즘	회	차명	10			화면설명
≻Intro	• CN	IN	합성곱 블록	구조 요약						
•학습열기	블	로	계층 종류	입력 채널	출력 채널	ᅰ	널 크기	출력 크기 변화	역할 요약	
•학습목표			Conv2d	3	64		3×3	32×32 → 32×32	기본 특징 추출	
▶학습하기			BatchNorm2d ReLU	-	64 -		-	동일 동일	정규화 비선형성 추가	
1. CNN 학습 최 적화	1		Conv2d BatchNorm2d	64 -	64 64		3×3 -	32×32 → 32×32 동일	특징 심화 정규화	
2. CNN 구조 최			ReLU MaxPool2d	-	-		- 2×2	동일 32×32 → 16×16	비선형성 추가 다운샘플링	
적화 3. Dataset 최적			Dropout(0.25) Conv2d	- 64	- 128		- 3×3	동일 16×16 → 16×16	과적합 방지 중간 수준 특징 추출	
s. Dataset 기기 화			BatchNorm2d	-	128		-	동일	정규화	
		,	ReLU Conv2d	- 128	- 128		- 3×3	동일 16×16 → 16×16	비선형성 추가 특징 심화	
	2		BatchNorm2d ReLU	-	128 -		-	동일 동일	정규화 비선형성 추가	
≽적용하기			MaxPool2d Dropout(0.25)	-	-		2×2	16×16 → 8×8 동일	다운샘플링 과적합 방지	용어설명
			Conv2d	128	256		3×3	$8 \times 8 \rightarrow 8 \times 8$	고수준 특징 추출	0 120
≻Outro	3		BatchNorm2d ReLU	-	256 -		-	동일 동일	정규화 비선형성 추가	
•문제풀기			MaxPool2d Dropout(0.3)	-	-		2×2 -	8×8 → 4×4 동일	최종 다운샘플링 과적합 방지	
								0 _	1 12 6 1	
내 레 이 션										1

과정명	PyTorch로 배우는 머션	<u></u> 닌러닝 알고리즘	회차명 10			화면설명	
≻Intro	• 완전 연결층 구성	5					
•학습열기							
•학습목표	계층 종류	입력 크기	출력 크기	설명			
▶학습하기	Linear	256×4×4 = 4096	512	특징 맵 flatten 후 FC 연결			
1. CNN 학습 최	ReLU	-	-	활성화 함수			
적화	Dropout	-	-	과적합 방지 (50%)			
2. CNN 구조 최 적화	Linear	512	10	CIFAR-10 클래스 수만큼 출력			
3. Dataset 최적 화	# 전결합층 (Flatten 후 Classifier) self.classifier = nn.Sequential(nn.Linear(256 * 4 * 4, 512), # Conv 결과를 FC 입력으로 변환 nn.ReLU(),						
▶ 적용하기	nn.D	ropout (0.5),	# GTD31	. 1 ↑ 크레스 스마크 츠려		용어설명	
➤Outro •문제풀기	nn.1)	inear(512, 10)	# CIFAF	R-10 클래스 수만큼 출력			
내 레 이 션						1	

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명 10		화면설명
≻Intro	• CNN 구조 요약 결과			
•학습열기	device = torch.device("cuda" if to			
•학습목표	<pre>net = ImprovedCNN().to(device) # summary(net, (3, 32, 32)) #</pre>	모델을 GPU 또는 모델 구조 요약	: CPU도 이동 축련	
	<u> </u>		= 1	
▶학습하기		ut Shape Param #		
1. CNN 학습 최	Conv2d-1 [-1, 64, BatchNorm2d-2 [-1, 64,	32, 32] 128		
적화	ReLU-3 [-1, 64, Conv2d-4 [-1, 64,	32, 32] 0 32, 32] 36,928		
2. CNN 구조 최	BatchNorm2d—5 [-1, 64,	32, 32] 128		
적화	ReLU-6 [−1, 64, MaxPool2d-7 [−1, 64,	32, 32] 0 16, 16] 0		
3. Dataset 최적	Dropout-8 [-1, 64, Conv2d-9 [-1, 128,			
화	BatchNorm2d-10 [-1, 128,	16, 16] 73,856 16, 16] 256		
	ReLU-11 [-1, 128,	16, 16] 0		
	Conv2d-12 [-1, 128, BatchNorm2d-13 [-1, 128,	16, 16] 147,584 16, 16] 256		
	ReLU-14 [-1, 128,	16, 16] 200		
	MaxPool2d-15 [-1, 12	8, 8, 8] 0		
	Dropout-16 [-1, 12	8, 8, 8] 0		
, TIOHITI	Conv2d-17 [-1, 25 BatchNorm2d-18 [-1, 25	6, 8, 8] 295,168 6, 8, 8] 512		용어설명
▶적용하기	ReLU-19 [-1, 25	6, 8, 8]		0 1 5 0
	MaxPool2d-20 [-1, 25	6, 4, 4] 0		
≻Outro		6, 4, 4] 0 -1, 512] 2,097,664		
	•	-1, 512] 2,097,004 -1, 512] 0		
•문제풀기		-1, 512] 0		
	Linear-25	[-1, 10] 5,130		
	Total params: 2,659,402			
	Trainable params: 2,659,402			
내	Non-trainable params: 0			
레	Input size (MB): 0.01			
	Forward/backward pass size (MB): 5.32			
0	Params size (MB): 10.14 Estimated Total Size (MB): 15.48			
션				
				1

과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명 10		화면설명
≻Intro					
•학습열기					
•학습목표					
▶학습하기		간지			
1. CNN 학습 최 적화					
2. CNN 구조 최 적화					
3. Dataset 최적 화		I	Dataset 최적화		
▶적용하기					용어설명
≻Outro					
•문제풀기					
내					
내 레 이 션					
션					2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명
≻Intro	• 클래스 불균형(class imbalance) 문제란?	
•학습열기	클래스 불균형 문제는 어떤 클래스의 데이터가 매우 많고,	
•학습목표	다른 클래스는 아주 적은 경우 발생하는 머신러닝 학습 문제	
▶학습하기 1. CNN 학습 최 적화	모델이 자주 등장하는 클래스에만 편향되어 드문 클래스를 무시하거나 제대로 분류하지 못하는 문제 발생 가능성	
^극 와 2. CNN 구조 최 적화	어떤 클래스는 이미지가 많고 어떤 클래스는 적어서 모델이 자주 나오는 클래스에 편향 되기 쉬운 문제를 막기 위한 방법이 필요	
3. Dataset 최적 화		
▶적용하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션		2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명
≻Intro	• 클래스 불균형(class imbalance) 문제 해결을 위한 준비	
•학습열기	Counter()로 각 클래스별 이미지 개수를 센 다음	
•학습목표	Counter({0: 5000, 1: 5000, 2: 5000,, 9: 5000})	
▶학습하기	CIFAR-10은 클래스 균형이 잘 맞아 있는 편이지만	
1. CNN 학습 최 적화	커스텀 데이터셋이나 필터링을 거친 경우엔 불균형이 생길 수 있음	
2. CNN 구조 최 적화	적은 클래스에 더 높은 확률을 주는 방식으로 샘플링 가중치(class_weights)를 생성	
3. Dataset 최적 화	# 클래스별 샘플 수 세기 → 불균형 데이터 대응용 targets = trainset.targets class_count = Counter(targets) # {클래스: 샘플 수} class_weights = [1.0 / class_count[i] for i in targets] # 빈도에 반비례한 가중치 생성	
≻적용하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션		2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명
≻Intro	• 불균형 문제를 해결하는 샘플링 전략 수립	
•학습열기	WeightedRandomSampler를 통해 데이터를 고르게 샘플링하는 전략	
•학습목표	class_weights에 따라 샘플을 확률적으로 선택	
▶학습하기	num_samples=len(class_weights):→ 총 샘플 수는 원본 trainset과 동일하게 유지됨 (5만 개)	
1. CNN 학습 최 적화	즉, 전체 데이터 수는 유지하면서, 클래스 등장 비율만 조정	
2. CNN 구조 최 적화	replacement=True: 중복 허용 → 적은 클래스도 여러 번 뽑힐 수 있음	
3. Dataset 최적 화		
	# 클래스별 샘플 수 세기 → 불균형 데이터 대응용 targets = trainset.targets class_count = Counter(targets) # {클래스: 샘플 수} class_weights = [1.0 / class_count[i] for i in targets] # 빈도에 반비례한 가중치 생성 sampler = WeightedRandomSampler(class weights, num samples=len(class weights),	
▶적용하기	replacement=True)	용어설명
➤ Outro •문제풀기	# WeightedRandomSampler를 이용한 불균형 보정 학습 데이터로더 생성 trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, sampler=sampler, num_workers=2)	,
내 레 이 션		2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명
≻Intro	• 수립된 샘플링 전략을 DataLoader에 설정	
•학습열기	DataLoader에 sampler를 지정하면, shuffle은 무시	
•학습목표	sampler는 우리가 만든 균형 샘플링 전략을 그대로 따름	
▶학습하기	batch_size=128	
1. CNN 학습 최 적화	매 배치마다 다양한 클래스가 비슷한 비율로 포함되도록 샘플링됨	
2. CNN 구조 최 적화	num_workers=2	
3. Dataset 최적 화	데이터 준비 속도를 2배 병렬화해서 모델 학습 흐름을 끊기지 않게 만들어주는 설정	
	# 클래스별 샘플 수 세기 → 불균형 데이터 대응용 targets = trainset.targets class_count = Counter(targets) # {클래스: 샘플 수} class_weights = [1.0 / class_count[i] for i in targets] # 빈도에 반비례한 가중치 생성	
▶ 적용하기	<pre>sampler = WeightedRandomSampler(class_weights, num_samples=len(class_weights), replacement=True)</pre>	용어설명
➤ Outro •문제풀기	# WeightedRandomSampler를 이용한 불균형 보정 학습 데이터로더 생성 trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, <mark>sampler=sampler,</mark> num_workers=2)	,
내 레 이 션		2

			,
과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명 10	화면설명
≻Intro	• 학습		
•학습열기	에폭 수 30: - GPU 사용: 약 20분 소요	, CPU 사용: 약 4~5시간 소요	
•학습목표	<pre>epochs = 30 train_losses = []</pre>		
▶학습하기	test_accuracies = []		
1. CNN 학습 최 적화	<pre>for epoch in range(epochs): net.train()</pre>		
2. CNN 구조 최 적화	running_loss = 0.0		
3. Dataset 최적 화	<pre>for i, (inputs, labels) in inputs, labels = inputs optimizer.zero_grad() outputs = net(inputs) loss = criterion(output loss.backward() optimizer.step()</pre>	.to(device), labels.to(device) # 이전 gradient 초기화 # 순전파 s, labels) # 손실 계산	
▶적용하기	running_loss += loss.it	em()	용어설명
≻Outro	<pre>avg_loss = running_loss / 1 train losses.append(avg los</pre>		
•문제풀기	# 테스트 정확도 평가 		
내 레 이 션			2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명
≽Intro	• 학습 시, 에폭마다 평가 실시	
•학습열기	학습 과정에서 train_losses, test_accuracies 계산해 저장	
•학습목표	for epoch in range(epochs): # 학습 과정	
▶ 학습하기 1. CNN 학습 최 적화	<pre> avg_loss = running_loss / len(trainloader) train_losses.append(avg_loss)</pre>	
2. CNN 구조 최 적화	# 테스트 정확도 평가 net.eval()	
3. Dataset 최적 화	<pre>correct = 0 total = 0 with torch.no_grad(): for inputs, labels in testloader:</pre>	
	<pre>inputs, labels in testloader: inputs, labels = inputs.to(device), labels.to(device) outputs = net(inputs) _, predicted = torch.max(outputs, 1) total += labels.size(0)</pre>	
▶적용하기	correct += (predicted == labels).sum().item()	용어설명
▶Outro •문제풀기	<pre>accuracy = 100 * correct / total test_accuracies.append(accuracy) scheduler.step(avg_loss) print(f'[Epoch {epoch+1:2d}] Loss: {avg_loss:.3f} Accuracy: {accuracy:.2f}%')</pre>	
내 레 이 션		2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 10	화면설명
▶Intro•학습열기•학습목표	PyTorch 기반의 CNN 이미지 분류 모델 학습 과정에서 다음과 같은 문제가 발생했다고 가정해 봅시다. 학습 초기에는 손실이 빠르게 감소하지만 일정 에폭 이후에는 개선이 거의 없음	① 학습 내용과 관련하여 실제 적용력을 높일 수 있는 문제, 혹은 주제를 작성해 주세요.
▶학습하기 1. CNN 학습 최 적화	모델이 특정 클래스에 과도하게 예측값을 집중함 테스트 정확도는 일정 수준에서 정체되어 있음	② ex. 사례 제시 후 전 문가 의견, 실습과제, 응용 예시 시뮬레이 션 등
2. CNN 구조 최 적화 3. Dataset 최적 화	 ReduceLROnPlateau 스케줄러 적용: 손실 감소가 정체되는 경우, 학습률을 자동으로 낮춰서 더 미세한 학습을 유도함으로써 손실 감소 정체를 완화할 수 있습니다. 데이터 증강 기법 강화: 좌우 반전, 회전, 밝기 조절 등의 데이터 증강을 적용하면 모델이다양한 이미지 상황에 대응할 수 있어 과적합을 방지하고 테스트 정확도 정체를 완화할수 있습니다. 	 ③ 저작권 침해가 되지 않도록 내용을 구성해 주세요. ④ 출처가 있을 경우 반드시 작성해 주세요.
▶ 적용하기 ▶Outro •문제풀기	 클래스 불균형 보정 (WeightedRandomSampler): 특정 클래스에 예측이 집중되는 문제는 데이터의 불균형에서 비롯되므로, 클래스별 샘플링 확률을 조정하여 균형 있게 학습하도 록 유도할 수 있습니다. 	용어설명
내 레 이 션		2