Math 164 Homework 4

Nick Monozon

Problem 6.2

We are given the function

$$f(x_1, x_2) = \frac{1}{3}x_1^3 - 4x_1 + \frac{1}{3}x_2^3 - 16x_2.$$

Since we have no constraints, this is an unconstrained optimization problem. To find critical points, we want to find points (x_1, x_2) that satisfy the FONC

$$\nabla f(x_1, x_2) = \mathbf{0}.$$

The gradient is therefore

$$\nabla f(x_1, x_2) = \begin{bmatrix} x_1^2 - 4 \\ x_2^2 - 16 \end{bmatrix}.$$

From this, there are four points (x_1, x_2) that satisfy the FONC. There are

$$\boldsymbol{x}^{(1)} = \begin{bmatrix} -2 \\ -4 \end{bmatrix}$$
, $\boldsymbol{x}^{(2)} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$, $\boldsymbol{x}^{(3)} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$, and $\boldsymbol{x}^{(4)} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$.

We then compute the Hessian matrix of f to be

$$F(x) = \begin{bmatrix} 2x_1 & 0 \\ 0 & 2x_2 \end{bmatrix}.$$

Hence, we see that $F(x^{(1)}) < 0$, so $x^{(1)}$ is a strict local maximizer. We also have that $F(x^{(4)}) > 0$, so $x^{(4)}$ is a strict local minimizer. In addition, the Hessian matrix is indefinite for $x^{(3)}$ and $x^{(4)}$, so these points are not extremizers.

Problem 6.3

Proof. Assume that x^* is a global minimizer of f over Ω and $x^* \in \Omega' \subset \Omega$. Let $x \in \Omega'$. Since $\Omega' \subset \Omega$, $x \in \Omega$ and hence $f(x^*) \leq f(x)$ for all $x \in \Omega'$. Therefore, x^* is a global minimizer of f over Ω' .

Problem 6.8

(a) We are given the function $f: \mathbb{R}^2 \to \mathbb{R}$ such that

$$f(x) = x^{\top} \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix} x + x^{\top} \begin{bmatrix} 3 \\ 5 \end{bmatrix} + 6.$$

Thus the gradient is given by

$$\nabla f(x) = 2 \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix} x + \begin{bmatrix} 3 \\ 5 \end{bmatrix},$$

which means that

$$\nabla f([1,1]^{\top}) = 2 \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
$$= 2 \begin{bmatrix} 3 \\ 11 \end{bmatrix} + \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
$$= \begin{bmatrix} 6 \\ 22 \end{bmatrix} + \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$
$$= \begin{bmatrix} 9 \\ 27 \end{bmatrix}.$$

The Hessian matrix is given by

$$F(x) = 2 \begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix}.$$

And hence $F([1,1]^{\top})$ is simply the Hessian above.

(b) The direction of the maximum rate of increase at $x^* = \begin{bmatrix} 1,1 \end{bmatrix}^\top$ is $\nabla f(x^*)$. The directional derivative with respect to a unit vector in this direction is therefore given by

$$\left(\frac{\nabla f(\boldsymbol{x}^*)}{\|\nabla f(\boldsymbol{x}^*)\|}\right)^{\top} \nabla f(\boldsymbol{x}^*) = \frac{\|\nabla f(\boldsymbol{x}^*)\|^2}{\|\nabla f(\boldsymbol{x}^*)\|} = \|\nabla f(\boldsymbol{x}^*)\|.$$

So, at $x^* = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^T$, the rate of increase of f is

$$||f([1,1]^{\top})|| = \sqrt{9^2 + 27^2} = \sqrt{810} = 28.46.$$

(c) The FONC for the interior case is satisfied when

$$\nabla f(\mathbf{x}^*) = \mathbf{0}.$$

We solve to find that

$$x^* = \begin{bmatrix} 11/2 \\ -7/2 \end{bmatrix}.$$

We now need to check if this satisfies the second-order necessary condition (SONC). We find that

$$F(x^*) = \begin{bmatrix} 2 & 4 \\ 8 & 14 \end{bmatrix}$$

which has eigenvalues $\lambda_1 = 8 - 2\sqrt{17} < 0$ and $\lambda_2 = 8 + 2\sqrt{17} > 0$. Hence, the Hessian at x^* is not positive semidefinite, so the SONC is not satisfied.

Problem 6.9

(a) Given the function

$$f(x_1, x_2) = x_1^2 x_2 + x_2^3 x_1,$$

the gradient is

$$\nabla f(x_1, x_2) = \begin{bmatrix} 2x_1x_2 + x_2^3 \\ x_1^2 + 3x_1x_2^2 \end{bmatrix}.$$

At the point $x^{(0)} = \begin{bmatrix} 2,1 \end{bmatrix}^{\mathsf{T}}$, f decreases most rapidly in the direction of the negative gradient. That is, the direction

$$-\nabla f(\mathbf{x}^{(0)}) = -\begin{bmatrix} 5\\10 \end{bmatrix}.$$

(b) The rate of increase of f at $x^{(0)}$ in the direction $-\nabla f(x^{(0)})$ is given by

$$\nabla f(\mathbf{x}^{(0)})^{\top} \frac{-\nabla f(\mathbf{x}^{(0)})}{\|\nabla f(\mathbf{x}^{(0)})\|} = -\|\nabla f(\mathbf{x}^{(0)})\| = -\sqrt{125} = -5\sqrt{5}.$$

(c) Hence, the rate of increase of f at the point $x^{(0)}$ in the direction $d = \begin{bmatrix} 3,4 \end{bmatrix}^{\mathsf{T}}$ is

$$\left\langle \nabla f([2,1]^{\top}), \frac{d}{\|d\|} \right\rangle = \begin{bmatrix} 5,10 \end{bmatrix} \begin{bmatrix} 3/5 \\ 4/5 \end{bmatrix} = 5 \times 3/5 + 10 \times 4/5 = 3 + 8 = 11.$$

2

Problem 6.12

(a) We have that $f(x) = 5x_2$ and $\Omega = \{x : x_1^2 + x_2 \ge 1\}$. For $x^* = [0, 1]^\top$ satisfy the first-order necessary condition (FONC), we require that for any feasible direction d at x^* ,

$$d^{\top}\nabla f(x^*) \ge 0.$$

We must first find the set of feasible directions at x^* , denoted \mathcal{D}_{x^*} . If $d \in \mathcal{D}_{x^*}$, then there exists $\bar{\alpha} > 0$ such that for any $\eta \in [0, \bar{\alpha}]$, we have that $x^* + \eta d \in \Omega$. We have that

$$\begin{split} \left[0,1\right]^\top + \eta \left[d_1,d_2\right]^\top &= \left[\eta d_1,1 + \eta d_2\right]^\top \in \Omega \quad \Leftrightarrow \quad (\eta d_1)^2 + (1 + \eta d_2) \geq 1 \\ & \Leftrightarrow \quad \eta^2 d_1^2 + \eta d_2 \geq 0 \\ & \Leftrightarrow \quad \eta d_1^2 + d_2 \geq 0 \\ & \Leftrightarrow \quad \eta \geq -\frac{d_2}{d_1^2} \qquad (d_1 \neq 0). \end{split}$$

Since $\eta \ge 0$ and $d_1^2 > 0$, we require that $d_2 \ge 0$ and $d_1 \in \mathbb{R}^*$. However, we now consider the case when $d_1 = 0$. We have that

$$[0,1]^{\top} + \eta [0,d_2]^{\top} = [0,1+\eta d_2]^{\top} \Leftrightarrow 0^2 + (1+\eta d_2) \ge 1.$$

So we have that $d_1 = 0$ and $d_2 \ge 0$. This means that

$$d \in \mathcal{D}_{x^*} \quad \Rightarrow \quad d \in \left\{ d \in \mathbb{R}^2 : d_1 \in \mathbb{R}, d_2 \ge 0 \right\}$$
$$\Rightarrow \quad \mathcal{D}_{x^*} \subset \left\{ d \in \mathbb{R}^2 : d_1 \in \mathbb{R}, d_2 \ge 0 \right\}.$$

Let's now show the other containment. Let $\mathcal{A} = \{d \in \mathbb{R}^2 : d_1 \in \mathbb{R}, d_2 \ge 0\}$. If $d \in \mathcal{A}$, this implies that $d_1 \in \mathbb{R}, d_2 \ge 0$. We have that for all $\eta \ge 0$,

$$[0,1]^{\top} + \eta [d_1, d_2]^{\top} = [\eta d_1, 1 + \eta d_2]^{\top}$$

and $(\eta d_1)^2 + (1 + \eta d_2) \ge 1$, meaning that $d \in \mathcal{D}_{x^*}$ and hence $\mathcal{A} \subset \mathcal{D}_{x^*}$. By showing both directions of containment, we have shown that the set of feasible directions is given by

$$\mathcal{D}_{\mathbf{x}^*} = \{ \mathbf{d} \in \mathbb{R}^2 : d_1 \in \mathbb{R}, d_2 \ge 0 \}.$$

We can now check if the FONC is satisfied. We have that

$$\boldsymbol{d}^{\top} \nabla f(\boldsymbol{x}^*) = \boldsymbol{d}^{\top} \begin{bmatrix} 0 \\ 5 \end{bmatrix} = 5d_2 \ge 0$$

because $d \in \mathcal{D}_{x^*}$ where $d_2 \ge 0$. Hence, the FONC is satisfied at $x^* = \begin{bmatrix} 1, 0 \end{bmatrix}^\top$.

(b) The SONC is satisfied if for any feasible direction $d \in \mathcal{D}_{x^*}$,

$$d^{\top} \frac{\partial^2 f}{\partial x^2} d \ge 0.$$

We find the Hessian matrix to be

$$\frac{\partial^2 f}{\partial x^2} = \mathbf{J}(\nabla f(x)) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Thus, for any $d \in \mathcal{D}_{x^*}$,

$$d^{\top} \frac{\partial^2 f}{\partial x^2} d = 0 \ge 0,$$

so the SONC is satisfied at $x^* = \begin{bmatrix} 1, 0 \end{bmatrix}^T$.

(c) Consider points of the form $x = [x_1, 1 - x_1^2]^{\top}$ where $x_1 \in \mathbb{R}$. All such points are in Ω , but we see that for $x \neq x^*$,

$$f(x) = -5(-x_1^2 + 1) = 5x_1^2 - 5 < 5 = f(x^*).$$

So $x^* = [0,1]^{\top}$ is not a local minimizer.

Problem 6.16

We have that $f(x) = 4x_1^2 - x_2^2$ and $\Omega = \{x : x_1^2 + 2x_1 - x_2 \ge 0, x_1 \ge 0, x_2 \ge 0\}$. For $x^* = \begin{bmatrix} 0, 0 \end{bmatrix}^\top$ satisfy the first-order necessary condition (FONC), we require that for any feasible direction d at x^* ,

$$d^{\top}\nabla f(x^*) \ge 0.$$

We must first find the set of feasible directions at x^* , denoted \mathcal{D}_{x^*} . If $d \in \mathcal{D}_{x^*}$, then there exists $\bar{\alpha} > 0$ such that for any $\eta \in [0, \bar{\alpha}]$, we have that $x^* + \eta d \in \Omega$. We have that

$$\begin{split} \left[0,0\right]^\top + \eta \left[d_1,d_2\right]^\top &= \left[\eta d_1,1 + \eta d_2\right]^\top \in \Omega \quad \Leftrightarrow \quad (\eta d_1)^2 + 2(\eta d_1) - \eta d_2 \geq 0 \\ &\Leftrightarrow \quad \eta^2 d_1^2 + 2\eta d_1 - \eta d_2 \geq 0 \\ &\Leftrightarrow \quad \eta d_1^2 + 2d_1 - d_2 \geq 0 \\ &\Leftrightarrow \quad \eta \geq \frac{d_2 - 2d_1}{d_1^2} \qquad (d_1 \neq 0). \end{split}$$

Since $\eta \ge 0$ and $d_1^2 > 0$, we require that $d_2 - 2d_1 \le 0$, or that $d_2 \le 2d_1$. However, we must also consider the case when $d_1 = 0$. We have that

$$\begin{bmatrix} [0,0]^\top + \eta \begin{bmatrix} 0,d_2 \end{bmatrix}^\top = \begin{bmatrix} 0,\eta d_2 \end{bmatrix}^\top \quad \Leftrightarrow \quad 0^2 + 2(0) - \eta d_2 \ge 0$$
$$\Leftrightarrow \quad 0 \ge \eta d_2.$$

Since $\eta \ge 0$ and we have the constraint $d_2 \ge 0$, we must have here that $d_2 = 0$. So we see that

$$d \in \mathcal{D}_{x^*} \quad \Rightarrow \quad d \in \left\{ d \in \mathbb{R}^2 : 2d_1 \ge d_2, d_1 \ge 0, d_2 \ge 0 \right\}$$
$$\Rightarrow \quad \mathcal{D}_{x^*} \subset \left\{ d \in \mathbb{R}^2 : 2d_1 \ge d_2, d_1 \ge 0, d_2 \ge 0 \right\}.$$

Let's show the other containment now. Let $\mathcal{A} = \{d \in \mathbb{R}^2 : 2d_1 \ge d_2, d_1 \ge 0, d_2 \ge 0\}$. If $d \in \mathcal{A}$, this implies that $2d_1 \ge d_2, d_1 \ge 0$, $d_2 \ge 0$. Hence, for all $\eta \ge 0$,

$$[0,0]^{\top} + \eta [d_1, d_2]^{\top} = [\eta d_1, \eta d_2]^{\top}$$

and therefore $(\eta d_1)^2 + 2(\eta d_1) - \eta d_2 \ge 0$, meaning that $d \in \mathcal{D}_{x^*}$ and hence $\mathcal{A} \subset \mathcal{D}_{x^*}$. By showing both directions of containment, we have established that the set of feasible directions is

$$\mathcal{D}_{x^*} = \{ d \in \mathbb{R}^2 : 2d_1 \ge d_2, d_1 \ge 0, d_2 \ge 0 \}.$$

We now check whether the FONC is satisfied. We have that

$$d^{\top} \nabla f(x^*) = d^{\top} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0 \ge 0.$$

So x^* satisfies the FONC.

(b) The SONC is satisfied if for any feasible direction $d \in \mathcal{D}_{x^*}$,

$$d^{\top} F(x^*) d \ge 0.$$

We find the Hessian matrix for x^* to be

$$F(x^*) = J(\nabla f(x^*)) = \begin{bmatrix} 8 & 0 \\ 0 & -2 \end{bmatrix}.$$

So, for any $d \in \mathcal{D}_{x^*}$,

$$d^{\top} F(x^*) d = 8d_1^2 - 2d_2^2 \ge 8d_1^2 - 2(2d_1)^2 = 0 \ge 0.$$

The SONC is satisfied at x^* .

(c) We are told that $f(x^*) = 0$. Consider points of the form $x = [x_1, x_1^2 + 2x_1]^{\top}$ for $x_1 > 0$. Clearly all of these points are in Ω and hence feasible. We see that

$$f(x) = 4x_1^2 - (x_1^2 + 2x_1)^2 = -(4x_1^3 + x_1^4) < 0 = f(x^*).$$

So although x^* satisfies the FONC and SONC, it is not a local minimizer.

Problem 6.18

Given $x \in \mathbb{R}$, define

$$f(x) = \sum_{i=1}^{n} (x - x_i)^2.$$

Let \bar{x} be the minimizer of f. By the FONC, this means that

$$f'(\bar{x})=0,$$

so \bar{x} is the minimizer of f when

$$\sum_{i=1}^{n} 2(\bar{x} - x_i) = 0 \quad \Leftrightarrow \quad 2\sum_{i=1}^{n} \bar{x} = 2\sum_{i=1}^{n} x_i$$

$$\Leftrightarrow \quad \sum_{i=1}^{n} \bar{x} = \sum_{i=1}^{n} x_i$$

$$\Leftrightarrow \quad n\bar{x} = \sum_{i=1}^{n} x_i$$

$$\Leftrightarrow \quad \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

Problem 6.23

The FONC for the interior case is satisfied for all points x^* such that

$$\nabla f(x) = \mathbf{0}.$$

Hence, we compute

$$\nabla f(x) = \begin{bmatrix} 4(x_1 - x_2)^3 + 2x_1 - 2 \\ -4(x_1 - x_2)^3 - 2x_2 + 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix},$$

which yields the system of equations

$$\begin{cases} 4(x_1 - x_2)^3 + 2x_1 - 2 &= 0, \\ -4(x_1 - x_2)^3 - 2x_2 + 2 &= 0. \end{cases}$$

Adding the two equations, we find that $x_1 = x_2$, which we can substitute back in to find that $x_1 = x_2 = 1$. So, $x^* = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^T$ is the only point that satisfies the FONC. The Hessian matrix at x^* is

$$F(x^*) = \mathbf{J}(\nabla f(x^*)) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}.$$

Since the matrix $F(x^*)$ has eigenvalues $\lambda_1 = -2$ and $\lambda_2 = 2$, it is not positive semidefinite. Therefore, the SONC is not satisfied at $x^* = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^T$.

Problem 6.33

Proof. (\Rightarrow) We know that if x^* minimizes f, then x^* satisfies the FONC by necessity, so this direction is complete. We just need to show the other direction.

 (\Leftarrow) We can express f(x) as

$$f(x) = \frac{1}{2}(x - x^*)^{\top} Q(x - x^*) - \frac{1}{2}x^{*\top} Qx^*$$

where we define $x^* = Q^{-1}b$ to be the unique vector that satisfies the FONC. Since $\frac{1}{2}x^{*\top}Qx^*$ is a constant and Q > 0, it follows that

$$f(x) \ge f(x^*) = -\frac{1}{2}x^{*\top}Qx^*$$

where $f(x) = f(x^*)$ if and only if $x = x^*$. This completes the proof of the second implication, so we are done.