

Einführung in Data Science – Block5 Information Retrieval

Programm

Thema	Form	Zeit
Besprechung der Semesterarbeit und Hausaufgaben	Besprechung	13:45 – 14:00
Vorlesung	Vorlesung	14:00 – 14:45
Pause+Modulevaluation		14:45 – 15:15
Musterprüfung	Workshop	15:15 – 16:15
Besprechung Musterprüfung	Diskussion	16:15 – 17:00

Information Retrieval

 Bei einer Sammlung von Dokumenten und einem Informationsbedürfnis des Benutzers besteht der Zweck eines IR-Systems darin, Informationen zu finden, die für den Benutzer nützlich oder relevant sein könnten.

Funktionalität von Suchmaschinen

Was steckt dahinter?

Information Retrieval Web Search Probleme

- Verteilte Daten
- Flüchtige und variable Daten
- Riesige Datenmengen
- Unstrukturierte und redundante Daten
- Datenqualität
- Heterogene Daten

Ansätze zum IR

Klassifikation

• Dokumente werden (manuell) in ein Klassifikationsschema eingeordnet.

Anfrage

- Der Benutzer formuliert seinen "Informationswunsch" als Anfrage.
- Das System versucht (automatisch) hierzu relevante Dokumente zu finden.

Ansätze zum IR

Browsing

Der Benutzer will die Dokumentenkollektion interaktiv erarbeiten.

Information Filtering

• Aus einem andauernden Strom von Dokumenten sollen automatisch die den Benutzer interessierenden ermittelt werden.

Text Mining/Text Analytics

- Die Entdeckung neuer, bisher unbekannter Informationen durch einen Computer durch die automatische Extraktion verschiedener schriftlicher (unstrukturierter) Dokumente.
- Beispiele:
 - Sentiment Analysis
 - Inhaltsanalyse
 - Automatisches Clustering und automatische Kategorisierung
 - Bedeutung der Texte automatisch erkennen

Dokument/Retrieval Unit

 Web pages, email, books, news, stories, scholarly papers, text messages, Word, Power Point, PDF, forum postings, patents, etc.

Retrieval Unit können sein:

- Teil eines Dokuments, z.B. einen Abschnitt, eine Folie, eine Seite, etc.
- Verschiedene strukturen: html, xml, text, etc.
- Verschiedene Länge (Sizes)

Text Mining Applikationen

- Information Retrieval
- Textklassifizierung
- Textclustering
- Informationsextraktion

Schritte im IR

- Informationsbedarf kennen
- Daten beschaffen
- Daten kennen lernen
- Daten konvertieren
- Daten indexieren
- Daten interpretieren

Informationsbedarf/ Datenbeschaffung

- Komponenten einer Suchmaschine:
 - Web-Robot-System: zur Erfassung von neuen und veränderten Daten
 - Information Retrieval System zur Aufbereitung und Bewertung der erfassten Daten
 - Query Processor liefert zur Suchanfrage passende Ergebnisse aus einer Datenbank

- Query Beispiele:
- Einfache Abfrage
 - Einige Keywords oder mehr
- Boolesche Abfrage
 - 'neuronales Netzwerk AND Spracherkennung'
- Spezielle Abfrage
 - 400 chf in usd

IR Models

- Das Boolesche IR-Modell
- Vector space model
- Statistical language model
- Etc.

Allgemeines IR-Modell

Das Boolesche IR-Modell

Das Boolesche IR-Modell

Nachteile des Booleschen Retrieval

- Keine Rückführung der Wörter auf eine Grundform
- Keine Gewichtung der Wörter (weder nach Ort noch nach Häufigkeit)
- Keine Zerlegung von Mehrwortgruppen
- Relativ aufwendige Formulierung der Anfrage
- Die Ergebnismenge ist unstrukturiert
- Kein Ranking der Dokumente

Beispiel

- Welche Theaterstücke von Shakespeare enthalten die Wörter:
 - Brutus <u>AND</u> Caesar <u>NOT</u> Calpurnia?

- → grep alle Theaterstücke nach *Brutus* und *Caesar*, dann die Zeilen streichen, die *Calpurnia* enthalten?
- Langsam (für grosse Kollektionen)
- **NOT Calpurnia** ist nicht trivial
- Ranking nicht möglich

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

QUERY: Brutus AND Caesar NOT Calpurnia

110100 (Brutus)

110111 (Caesar)

010000(Calpurnia)

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

QUERY: Brutus AND Caesar NOT Calpurnia → Komplementär von Calpurnia: 101111

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
¬Calpurnia	1	0	1	1	1	1
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
$\neg Calpurnia$	1	0	1	1	1	1
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0
AND	1	0	0	1	0	0

Problem bei grossen Kollektionen

- Annahmen:
 - N = 10⁶, 1000 Tokens je (2-3 Seiten)
 - 10⁹ Tokens, Avg. 6 bytes/Wort → 6GB Datenvolumen der Dokumente
- Weitere Annahme:
 - M = 500k verschiedene Wörter (Vokabular von 500K Wörter)
 - 500k x 10⁶ matrix → halb Miliarde 0 und 1, Sparse (dünn besetzt)
 - Bessere Representation? Wie registrieren nur die 1
 - Dies führt uns zu invertierten Listen

Invertierter Index

Verarbeitungsschritte des Indexers

Sequenz von Paaren (Token, Dok. ID).

Dokument 1

I did enact Julius Caesar I was killed i' the Capitol; Brutus killed me. Dokument 2

So let it be with Caesar. The noble Brutus hath told you Caesar was ambitious

	Term	Doc#
	1	1
	did	1
	enact	1
	julius	1
	caesar	1
	1	1
	was	1
	killed	1
	i'	1
	the	1
	capitol	1
	brutus	1
	killed	1
-	me	1
	so	2
	let	2
	it	2
	be	2
	with	2
	caesar	2
	the	2
	noble	2
	brutus	2
	hath	2
	told	2
	you	2
	caesar	2
	was	2
	ambitious	2

Verarbeitungsschritte des Indexers

Sortiere Terme alphabetisch.

Term	Doc #
1	1
did	1
enact	-1
julius	1
caesar	1
I.	1
was	1
killed	1
i'	- 1
the	1
capitol	1
brutus	1
killed	- 1
me	1
so	2
let	2
it	2
be	2
with	2
caesar	2
the	2
noble	2
brutus	2
hath	2
told	2
you	2
caesar	2
was	2
ambitious	2

Term	Doc#
ambitious	2
be	2
brutus	1
brutus	2
capitol	1
caesar	1
caesar	2
caesar	2
did	1
enact	1
hath	1
1	1
I	1
i'	1
it	2
julius	1
killed	1
killed	1
let	2
me	1
noble	2
so	2
the	1
the	2
told	2
you	2
was	1
	2
was	2

Verarbeitungsschritte des Indexers

- Mehrfacheinträge von Termen im gleichen Dokument werden zusammengeführt.
- Vorkommenshäufigkeit wird hinzugefügt.

Term	Doc #
am bitious	
be	2
brutus	1
brutus	2
capitol	1
caesar	1
caesar	2
caesar	2
did	1
enact	1
hath	1
I	1
1	1
i'	1
it	2
julius	1
killed	1
killed	1
let	2
me	1
noble	2
so	2
the	1
the	2
told	2
you	2
was	1
was	2
with	2

Basic Vector Space Model

business computer PowerPoint presentation user web

Document

We are doing an e-business presentation in PowerPoint.

Distance

$$\sqrt{(1-0)^2+(0-1)^2+(1-0)^2+(1-1)^2+(0-0)^2+(0-0)^2}$$

Query

computer presentation

Vector Space Model

Funktiosweise der Informationsbeschaffung: Die tf-idf-Formel

 Term Frequency- Inverse Dokument Frequency: die Seltenheit eines Begriffs innerhalb der Sammlung ist ein gutes Mass für die Bedeutung eines Begriffs

$$tf = \frac{H \ddot{a}u fig keit des Suchbegriffs}{H \ddot{a}u fig keit des höchst frequenten Begriffs}$$

$$idf = log \frac{Anzahl der Dokumente}{Anzahl der Dokumente, die den Suchbegriff enthalten}$$

Funktiosweise der Informationsbeschaffung: Die tf-idf-Formel

Berücksichtigung der Vorkommenshäufigkeit $tf_{dk} \cdot \log \frac{N}{n_{\nu}}$ Berücksichtigung der Trennschärfe des Begriffs (idf)

- Beispiel:
- Dokument mit Wörter mit deren Frequency:
- Kent = 3, Ohio = 2, University = 1
- Sammlung von 10000 Dokumente und Dokumentfrequenze:
- Kent = 50; Ohio = 1300; University = 250
- THEN
- Kent: tf = 3/3; idf = log(10000/50) tf-idf=5.3
- Ohio: tf=2/3; idf=log(10000/1300); tf-idf=1.3
- University: tf = 1/3; idf=log(10000/250); tf-idf=1.2

Evaluierung von IR-Systemen: Recall und Precision

- Ist das Objekt relevant oder nicht relevant?.
- Wie vollständing ist das Ergebnis? → RECALL
 - Anteil der gefundenen relevanten Dokumente an der Gesamtzahl der relevanten Dokumenten
 - 50 relevante gefunden; 100 relevante insgesamt → **Recall** = 50%

- Wie genau ist das Ergebnis? Enthält es nur relevante Einträge? → PRECISION
 - Anteil der relevante Dokumente im Ergebnis
 - 50 relevante gefunden; 75 insgesamt im Ergebnis → **Precision** = 67%

Evaluierung von IR-Systemen: Recall und Precision

- Recall R: Anzahl der relevanten Dokumente im Ergebnis / Gesamtzahl der relevanten Dokumente
- Precision P: Anzahl der relevanten Dokumente im Ergebnis / Gesamtzahl der Dokumente im Ergebnis

	relevant	nicht relevant
im Ergebnis	tp	fp
nicht im Ergebnis	fn	tn

- Recall R = tp / (tp + fn)
- Precision P = tp / (tp + fp)

Evaluierung von IR-Systemen: Recall und Precision

- Precision: Anteil der abgerufenen Dokumente, die für die Informationsbedürfnisse des Benutzers relevant sind (correct/all).
- Recall: Anteil relevanter Dokumente in der Sammlung, die abgerufen werden (correct/should have been found)

Rec = retrieved/relevante = 15/20 = 0.75

Parsen der Dokumente

- Daten sind häufig unstrukturiert (Format: pdf, doc, xls, html, usw.)
- Sprache des Dokuments
- Konvertierung und Bereinigung der Daten ist Grundlage für ein qualitativ hochwertiges IR-System
- Daten können zusätzlich veredelt werden
 - Anreicherung durch Begriffe aus Fachvokabularen
 - Synonyme, untergeordnete Begriffe, Begriffe in anderen Sprachen
 - Methode:
 - 1. End of Sentence (EOS) Detection
 - 2. Stemming
 - 3. Tokenization
 - 4. Part-of-Speech Tagging
 - 6. Chunking
 - 7. Extraction

Stemming

- Die Wörter werden auf ihre grammatikalische Grundform zurückgeführt
- Substantive auf den Nominativ Singular: Häuser → Haus
- Verben auf den Infinitiv: erprobte → erproben
- Stammformreduction: computer, computation, computerization → comput

for example compressed and compression are both accepted as equivalent to compress.

for exampl compress and compress ar both accept as equival to compress

Stemming: Sprachenprobleme

- In Englisch wenige Regeln decken die meisten Fälle
- In Deutsch → Stammänderungen für viele Wörter
- Umlauts → Haus Häuser
- neue Präfixe → laufen gelaufen
- Trennbare Verben → mitbringen er brachte den Brief mit; überbringen er überbrachte den Brief
- Schwein-kram, Schwein-s-haxe, Schwein-e-braten
- Konjugation: laufen lief gelaufen
- Deklination: das Haus, des Hauses, die Häuser
- Derivationsformen: proben, Erprobung, Probe

Tokenization

- Jeder Token ist ein Kandidat für einen Indexeintrag
- Welche Tokens können ausgelassen werden?
 - → Terme die wenig Semantik tragen (and, or, if, usw.)

Tokenization: Sprachenprobleme

- New York → One Token or Two?
- Jammu & Kashmir → One Token or Three?
- Huh, Hmmm, Uh → ??
- India's Economy → India? Indias? India's?
- Won't, isn't → Will not? Is not? Isn't?
- Mother-in-law → Mother in Law?
- Ph.D. → PhD? Ph.D.?

Tokenization: Sprachenprobleme

- French
 - L'ensemble → one token or two?
 - · L?L'?Le?
 - Want I'ensemble to match with un ensemble
- German noun compounds are not segmented
 - Lebensversicherungsgesellschaftsangestellter
 - 'life insurance company employee'
 - German information retrieval needs compound splitter

Part of Speech Tagging

Chunking

Thesauri

- Behandlung von Synonymen und Homonymen
- Manuell erstellt / gepflegte Äquivalenzklassen (car = automobile, color = colour)
- 2 Möglichkeiten:
 - Indexierung der Äquivalenzklassen: Dokument enthält automobile, car wird indexiert
 - Anfragenerweiterung: Anfrage enthält automobile, suche ebenso nach car

Zipf'sche Gesetzt

 Aussage des Zipfschen Gesetzes: Wenn die Wörter eines Textes nach ihrer Häufigkeit geordnet werden, ist die Wahrscheinlichkeit ihres Auftretens umgekehrt proportional zur Position innerhalb der Rangfolge:

$$p(n) \sim \frac{1}{n}$$
.

Rang r einer Wortform in der Liste multipliziert mit seiner Häufigkeit n ist in etwa konstant.

rxn~k

Wortform	Häufigkeit n	Rang r	r×n
sich	1.680.106	10	16.801.060
immer	197.502	100	19.750.200
Mio	36.116	500	18.059.500
Medien	19.041	1.000	19.041.000
Miete	3.755	5.000	18.775.000
vorläufige	1.664	10.000	16.640.000

Rang	Wortform	Anzahl	
1	der	7377897	
2	die	7036092	
3	und	4813169	
4	in	3768565	
5	den	2717150	
6	von	2250642	
7	zu	1992268	
8	das	1983589	
9	mit	1878243	
10	sich	1680106	
11	des	1646885	
12	auf	1640124	
13	für	1638774	
14	ist	1633510	
15	im	1626923	