Handling Outliers & Variability + Data Analysis - I

6

Learning Goals:

- Understand the basics of feature engineering.
- Learn pivot tables and their powerful data summarization capabilities.
- Explore advanced pivot table features like filters, grouping, slicers, and GETPIVOTDATA.
- Create charts and analyze data visually in Excel.

Handling Outlier

QUARTILE - Q

Q2 is close to median ~

Q3 - Q1 = IQR [Interquartile Range]

Lower Bound - Q1 - (1.5 times IQR)

Upper Bound - Q3 + (1.5 times IQR)

any value < L.B [Low outliers]

any value > U.B [High outliers]

INCLUSIVE ->

[0,100] Inclusive. >=0 AND <=100.

EXCLUSIVE -> [0,100] Exclusive >0 AND <100

=QUARTILE.INC(\$A\$2:\$A\$11,

QUARTILE.INC(array, quart)	For valu () 0 - Minimum value
	For valu () 1 - First quartile (25th percentile) () 2 - Median value (50th percentile)
	For valu ()3 - Third quartile (75th percentile)
	()4 - Maximum value

SALES REVENUE	QUART VALUE	RESULT
45000	0	11000
23000	1	23500
32000	2	38500
11000	3	55250
67000	4	89000
89000		
50000		
17000		
25000		
57000		

=QUARTILE.INC(\$A\$2:\$A\$11,0) =QUARTILE.INC(\$A\$2:\$A\$11,1) =QUARTILE.INC(\$A\$2:\$A\$11,2) =QUARTILE.INC(\$A\$2:\$A\$11,3) =QUARTILE.INC(\$A\$2:\$A\$11,4)

0 1 2
3
4

IQR = Q3 - Q1.

QUART VALUE	RESULT
0	11000
1	23500
2	38500
3	55250
4	89000
IQR(Q3-Q1)	31750
Lower Bound	=D3-(1.5*D8)

LOWER BOUND = Q1 - (1.5 * IQR)

QUART VALUE RESULT 0 11000 23500 1 2 38500 55250 3 4 89000 IQR(Q3-Q1) 31750 Lower Bound -24125 **Upper Bound** =D5+(1.5*D8)

UPPER BOUND = Q3 + (1.5 * IQR)

There is no outlier present in the dataset.

		_
SALES REVENUE	QUART VALUE	RESULT
45000	0	11000
23000	1	23500
32000	2	38500
11000	3	55250
67000	4	89000
89000		
50000	IQR(Q3-Q1)	31750
17000	Lower Bound	-24125
25000	Upper Bound	102875
57000	*	

=IF(OR(B14<\$F\$8,B14>\$F\$9), "Outlier", "Not a Outlier")

2 filters

Alberta Fabela	79	Not a Outlier	QUARTILE VALU RESUL	
Betty scruggs	3	Outlier	1	67
Debbie Orone	94	Not a Outlier	2	83.5
Elvin Catron	58	Not a Outlier	3	94.25
Era Gassner	73	Not a Outlier	4	194
Grisede Mariscal	84	Not a Outlier	IQR	27.25
Gustano Primm	58	Not a Outlier	Lower Bound	26.125
Jacinda Moffett	68	Not a Outlier	/ Upper Bound	135
Juan Luker	95	Not a Outlier		
Karisa Oquwndo	155	Outlier		
Lacresha Whitty	61	Not a Outlier	-,	
Laticia Crimi	75	Not a Outlier	-	
Loralee Widell	194	Outlier		
Octavio Ricci	64	Not a Outlier		
Ricky Cheshire	91	Not a Outlier		
Season Viers	94	Not a Outlier		
Shan texeria	99	Not a Outlier		
sylvester Willbourn	85	Not a Outlier	`,	
Taylor Pogue	83	Not a Outlier	``	
Yee Bordeau	111	Not a Outlier	1	

Filter it down to High Outliers or Low Outliers. [Hint : IFS]


```
=IF(OR)(B2<$6$8,B2>$6$9),"Outlier","Not a Outlier")
```

```
=IFS(B2<$G$8,"Low Outlier",
B2>$G$9,"High Outlier",
(OR)(B2>=$G$8,B2<=$G$9),"Not an Outlier")
```


IF ELSE Ladder

DATA	OUTLIERS	QUARTILE	RESULTS	IQR (Q3-Q1)	UPPER BOUND	LOWER BOUND	IQR= Inter Quartile Range
33	Not An Outlier	0	-100	58.5	179.25	-54.75	Upper bound= Q3+1.5*IQR
54	Not An Outlier	1	33				Upper bound= Q1-1.5*IQR
33	Not An Outlier	2	59				
120	Not An Outlier	3	91.5				lower than the "Lower bound", then those data will be considered as outliers
64	Not An Outlier	4	231				
47	Not An Outlier						
92	Not An Outlier						
200	Outlier						
231	Outlier						
12	Not An Outlier						
-100	Outlier						
90	Not An Outlier						
77	Not An Outlier						
11	Not An Outlier						

DATA	OUTLIERS	QUARTILE	RESULTS	IQR (Q3-Q1)	UPPER BOUND	LOWER BOUND
33	=IF(OR(A2<\$G\$2,A2>\$F\$2),"(0		=QUARTILE.INC(\$A\$2:\$A\$15,	=D5-D3	=D5 + 1.5*E2	=D3-(1.5*E2)
4	=IF(OR(A3<\$G\$2,A3>\$F\$2),"(1		=QUARTILE INC(\$A\$2:\$A\$15,			
3	=IF(OR(A4<\$G\$2,A4>\$F\$2),"(2		=QUARTILE.INC(\$A\$2:\$A\$15,			
20	=IF(OR(A5<\$G\$2,A5>\$F\$2),"(3		=QUARTILE INC(\$A\$2:\$A\$15,			
4	=IF(OR(A6<\$G\$2,A6>\$F\$2),"(4		=QUARTILE INC(\$A\$2:\$A\$15,			
7	=IF(OR(A7<\$G\$2,A7>\$F\$2),"0					
2	=IF(OR(A8<\$G\$2,A8>\$F\$2),*0					
00	=IF(OR(A9<\$G\$2,A9>\$F\$2),"0					
31	=IF(OR(A10<\$G\$2,A10>\$F\$2)					
2	=IF(OR(A11<\$G\$2,A11>\$F\$2)					
00	=IF(OR(A12<\$G\$2,A12>\$F\$2)					
)	=IF(OR(A13<\$G\$2,A13>\$F\$2)					
	=IF(OR(A14<\$G\$2,A14>\$F\$2)					
1	=IF(OR(A15<\$G\$2,A15>\$F\$2)					

Data Analysis - I

What is Feature Engineering?

- It is a process of selecting, transforming and creating new features on a particular table.

AGE ranging from 0 - 100 is also not a idea call to find an insights.

0-10 -> Kids 11-18 -> Teens 18-35 -> Adults 35-60 -> Adult Pro Max 60+ -> Seniors

Sales Transaction Tables Product Product Order Sales Expenses Product Cost Price Order Qty Order Qty Product Price Order Qty Order Qty

What is Pivot Table?

"Summarization"

Pivot table is like a summary table of a larger data to get insights on few aspects, to calculate, summarize, and analyze data that lets you see comparisons, patterns, and trends in your data

Grouping the data
[Taking each instance of a value]
[showing Distinct Value]

Provide the location of the cell where you want to create a pivot

PivotTable from table or range

'Office supplies'!\$I\$3

Row Labels	Sum of total sales
Central	11139.07
East	6002.09
West	2486.72
Grand Total	19627.88

DISTINCT VS UNIQUE

DISTINCT - 5 one or more Occurrence Final show at least one UNIQUE - 1 (only 1 occurrence)

Football Golf Cricket Football Badminton Football Cricket Football Badminton Football Cricket Golf Cricket Football Football BasketBall Badminton

Cricket
Football
Badminton
Basketball
Golf

Basketball

