阻尼振动与受迫振动 实验报告

2018011365 计84 张鹤潇

一、 数据处理

任务 1. 阻尼振动

1. 测量最小阻尼时的阻尼比和固有角频率.

		表上阻尼	万 0 时的测重数据		
	170	169	167	166	165
	164	163	161	161	159
	158	157	156	155	154
	153	152	151	150	149
o(°)	148	147	146	145	144
$ heta(^{\circ}$)	143	142	140	139	138
	137	136	135	134	133
	132	131	130	129	128
	127	127	125	125	124
	123	122	121	120	119
$10\overline{T_d}(s)$	14. 944	15.003	15. 011	15. 017	15. 024

$$\overline{D} = \frac{1}{I} \sum_{j=1}^{I} \left(\ln \theta_{j+I} - \ln \theta_{j} \right) = -0.1820$$

$$b = \frac{\overline{D}}{I} = -7.281 \times 10^{-3}$$

$$S_{b} = \frac{1}{I} \sqrt{\frac{\sum (D_{i} - \overline{D})^{2}}{I - 1}} = 1.904 \times 10^{-4}$$

测量次数n = 50时,
$$\Delta_b = \frac{t_p(n-1)}{\sqrt{n}} S_b = 5.465 \times 10^{-5}$$

$$T_d = \frac{\sum_{i=1}^{50} T_d}{50} = 1.500 \, s$$

周期的不确定度取其10-5倍加上其显示值末位变化"1"所对应的量值,即

$$\Delta_{T_d} = 1.015 \times 10^{-3} \, s$$

$$\mathbb{X} \boxplus b = -\frac{2\pi}{\sqrt{\zeta^{-2}-1}},$$

$$\xi = \sqrt{\frac{1}{1 + \left(\frac{2\pi}{b}\right)^2}} = 1.159 \times 10^{-3}$$

$$\Delta_{\zeta} = -\frac{4\pi^2}{(4\pi^2 + b^2)^{\frac{3}{2}}} \Delta_b = -8.698 \times 10^{-6}$$

$$\omega_0 = \frac{2\pi}{T_d \sqrt{1 - \zeta^2}} = 4.189 \ rad/s$$

$$\Delta_{\omega_0} = \omega_0 \sqrt{\left(\frac{\Delta T_d}{T_d}\right)^2 + \left(\frac{\xi \Delta \xi}{1 - \xi^2}\right)^2} = 2.835 \times 10^{-3} \ rad/s$$

综上, ζ + Δ_{ζ} = (1.159 \pm 0.009) \times 10⁻³, ω_0 + Δ_{ω_0} = 4.189 \pm 0.003rad/s.

2. 阻尼为 2

表 2 阻尼为 2 时的测量数据

$\theta(^{\circ})$	143	131	121	111	102	93	86	79	72	66	61	55
T _d (s)	1.501	1.502	1. 503	1. 503	1.504	1.504	1.505	1.505	1. 506	1. 505	1.506	1.506

$$\overline{D} = \frac{1}{I} \sum_{j=1}^{I} \left(\ln \theta_{j+I} - \ln \theta_{j} \right) = -0.5154$$

$$b = \frac{\overline{D}}{\overline{I}} = -8.591 \times 10^{-2}$$

$$\Delta_{b} = \frac{t_{p}(n-1)}{\sqrt{n}} \frac{1}{I} \sqrt{\frac{\sum (D_{i} - \overline{D})^{2}}{I - 1}} = 7.830 \times 10^{-4}$$

$$T_{d} = \frac{\sum_{i=1}^{12} T_{d}}{12} = 1.504 \text{ s, } \Delta_{T_{d}} = 1.015 \times 10^{-3} \text{ s}$$

$$\xi = \sqrt{\frac{1}{1 + \left(\frac{2\pi}{b}\right)^{2}}} = 1.367 \times 10^{-2}, \ \Delta_{\zeta} = -\frac{4\pi^{2}}{(4\pi^{2} + b^{2})^{\frac{3}{2}}} \Delta_{b} = -1.246 \times 10^{-4}$$

$$Q = \frac{1}{2\zeta} = 36.57, \ \Delta_{Q} = -\frac{\Delta_{\zeta}}{2\zeta^{2}} = 0.3334$$

$$\tau = -\frac{T_{d}}{b} = 17.51 \text{ s, } \Delta_{\tau} = \tau \sqrt{\left(\frac{\Delta_{b}}{b}\right)^{2} + \left(\frac{\Delta_{T_{d}}}{T_{d}}\right)^{2}} = 0.1600 \text{ s}$$

综上 ζ + $_{\zeta}$ = (1.367 \pm 0.012) \times 10⁻², $_{\tau}$ + $_{\tau}$ = 17.51 \pm 0.16 s, $_{Q}$ + $_{Q}$ = 36.57 \pm 0.33,

$$\omega_0 = \frac{2\pi}{T_d\sqrt{1-\zeta^2}} = 4.178 \ rad/s, \ \beta = \frac{1}{\tau} = 5.711 \times 10^{-2} \ s^{-1}.$$

 $\omega_0 = \frac{2\pi}{T_{cl}\sqrt{1-\zeta^2}} = 4.176 \ rad/s, \ \beta = \frac{1}{\tau} = 7.380 \times 10^{-2} \ s^{-1}$

3. 阻尼为3

表 3 阻尼为 3 时的测量数据

θ(°)	149	133	120	108	97	87	77	69	62	56	49	44
$T_d(s)$	1.501	1. 502	1. 503	1.503	1. 505	1. 505	1.505	1.506	1. 507	1. 506	1. 507	1.507

4. 阻尼为 4

表 4 阻尼为 4 时的测量数据

$\theta(^{\circ})$	161	139	121	104	90	77	67	57	50	43	37	32
$T_d(s)$	1. 501	1. 502	1. 503	1. 504	1. 505	1. 505	1. 506	1. 505	1. 506	1. 506	1. 506	1. 506

$$\bar{D} = \frac{1}{I} \sum_{j=1}^{I} (\ln \theta_{j+I} - \ln \theta_j) = -0.8837$$

$$b = \frac{\bar{D}}{I} = -0.1473$$

$$\begin{split} \Delta_b &= \frac{t_p(n-1)}{\sqrt{n}} \frac{1}{I} \sqrt{\frac{\sum (D_i - \overline{D})^2}{I - 1}} = 6.124 \times 10^{-4} \\ &T_d = \frac{\sum_{i=1}^{12} T_d}{12} = 1.505 \text{ s, } \Delta_{T_d} = 1.015 \times 10^{-3} \text{ s} \\ \xi &= \sqrt{\frac{1}{1 + \left(\frac{2\pi}{b}\right)^2}} = 2.344 \times 10^{-2}, \ \Delta_\zeta = -\frac{4\pi^2}{(4\pi^2 + b^2)^{\frac{3}{2}}} \Delta_b = -9.739 \times 10^{-5} \\ Q &= \frac{1}{2\zeta} = 21.33, \ \Delta_Q = -\frac{\Delta_\zeta}{2\zeta^2} = 8.865 \times 10^{-2} \\ \tau &= -\frac{T_d}{b} = 10.22\text{s, } \Delta_\tau = \tau \sqrt{\left(\frac{\Delta_b}{b}\right)^2 + \left(\frac{\Delta_{T_d}}{T_d}\right)^2} = 4.303 \times 10^{-2} \text{s} \end{split}$$

综上
$$\zeta$$
 + Δ_{ζ} = $(2.344 \pm 0.010) \times 10^{-2}$, τ + Δ_{τ} = 10.22 ± 0.04 s, Q + Δ_{Q} = 21.33 ± 0.09 ,
$$\omega_{0} = \frac{2\pi}{T_{d}\sqrt{1-\zeta^{2}}} = 4.176 \, rad/s, \; \beta = \frac{1}{\tau} = 9.785 \times 10^{-2} \, s^{-1}$$

任务 2. 受迫振动

1. 阻尼为 2

表 5 阻尼为 2 时受迫振动实验数据

组别	1	2	3	4	5	6	7	8
T (s)	1. 455	1. 472	1. 483	1. 487	1. 491	1. 495	1. 498	1.501
$\theta_m(^{\circ})$	52	74	105	116	133	141	145	148
$\frac{\omega}{\omega_0}$	1.034	1.022	1.014	1.011	1.009	1.006	1.004	1.002
Φ(°)	158. 5	150. 5	137. 5	130. 5	117. 5	108. 5	100. 5	89. 5
Ф _{#Й} (°)	158. 24	148. 12	136. 21	130. 07	122. 65	113. 83	106. 36	98. 33
$\left \frac{\Phi_{\cancel{\#}\cancel{k}}-\Phi}{\Phi_{\cancel{\#}\cancel{k}}}\right $	0. 16%	1.61%	0.76%	0.14%	3. 99%	4. 68%	5. 51%	8. 98%

组别	9	10	11	12	13	14	15
T(s)	1.504	1.509	1.515	1.522	1. 529	1. 547	1. 567
$\theta_m(^{\circ})$	146	141	126	111	97	68	50
$\frac{\omega}{\omega_0}$	1.000	0. 997	0.993	0.988	0.984	0. 972	0.960
Ф(°)	82. 5	72. 0	58. 5	50.0	42. 0	28. 5	21.0
Ф _{理论} (°)	90.00	76. 40	62. 11	49. 30	40. 13	26. 51	19. 14
$\left \frac{\Phi_{\Xi\dot{k}} - \Phi}{\Phi_{\Xi\dot{k}}} \right $	8. 33%	5. 75%	6. 22%	0.91%	4. 67%	7. 52%	9.75%

测定出的 ω_0 ` = 4.186 rad/s, 而 ω_0 = 4.178 rad/s.

2. 阻尼为3

表 6 阻尼为 3 时受迫振动实验数据

组别	1		2	;	3	4		5		6	7	8
T(s)	1. 448	1	. 461	1. 4	174	1. 48	32	1. 48	9	1. 495	1. 5	1. 504
$\theta_m(^{\circ})$	45		54	7	1	87		100		109	114	118
$\frac{\omega}{\omega_0}$	1.039	1	. 030	1. ()21	1. 0	16	1.01	1	1.007	1.003	1.001
Ф(°)	157.8	1	50. 5	140). 5	131.	. 3	120.	8	110.0	99. 0	89. 0
Φ _{理论} (°)	156. 29	15	50.04	140	. 33	131.	59	121.	51	110. 85	100. 73	92. 16
$\frac{\left \Phi_{\underline{\mathbf{u}}\widehat{\mathbf{v}}}-\Phi\right }{\Phi_{\underline{\mathbf{u}}\widehat{\mathbf{v}}}}$	0. 93%	0	. 31%	0. 12%		0. 20	3%	0.62	%	0. 76%	1.71%	3. 43%
组别	9			10		11		12		13	14	15
T(s)	1. 50	9	1. 513		1.519		1.	527	1. 537		1.55	1. 576
$\theta_m(^{\circ})$	115		10	8	1	02		91		75	59	43
$\frac{\omega}{\omega_0}$	0.99	7	0.9	95	0.	991	0.	986	(). 979	0. 971	0. 955
Ф(°)	78. ()	70.	8	61	1.3	5	1. 3		41.8	30. 5	21.3
Ф _{理论} (°)	82. 9	8	74.	77	63	. 72	5	1.86	4	41.18	32. 04	22. 01
$\frac{\left \frac{\Phi_{\text{\tiny 240}}-\Phi}{\Phi_{\text{\tiny 240}}}\right }{\Phi_{\text{\tiny 240}}}$	6.00	%	5. 3	7%	3.	87%	1.	18%		1. 37%	4. 81%	3. 46%

测定出的 ω_0 ` = 4.179 rad/s, 而 ω_0 = 4.176 rad/s.

3. 阻尼为4

表 7 阻尼为 4 时受迫振动实验数据

组别	1		2	3	3	4		5		6	7	8
T(s)	1.396	1.	. 449	1.4	167	1.4	78	1. 48	86	1. 493	1. 499	1.506
$\theta_m(\degree)$	24		43	5	6	68	;	76		83	84	85
$\frac{\omega}{\omega_0}$	1.078	1.	. 039	1. ()26	1. 0	18	1.01	.3	1.008	1.004	0.999
Ф(°)	161.25	1	50. 5	139	. 75	129	9	119.	75	110. 25	99. 25	89. 5
Ф _{理论} (°)	163. 89	14	19. 26	138. 23		128.	19	118.	77	109.00	99. 71	88. 38
$\left \frac{\Phi_{\underline{u}\underline{v}}-\Phi}{\Phi_{\underline{u}\underline{v}}}\right $	1.61%	0.	. 83%	1. 1	1.10%		3%	0.82%		1. 14%	0. 46%	1. 27%
组别	9		10)]	1	12			13	14	15
T(s)	1. 514	1	1. 5	52	1.527		1.	. 536		1.548	1. 567	1.6
$\theta_m(\degree)$	83		82	2	7	75		68		58	46	32
$\frac{\omega}{\omega_0}$	0. 994	1	0. 9	90	0.	986	0.). 980		0. 972	0.960	0. 941
Ф(°)	78. 25	0	69)	58	3. 5	50	0.75	4	41.25	31	21.5
Ф _{理论} (°)	75. 83	1	67.	26	58	. 60	49	9. 55	4	40. 54	31. 14	22. 13
$\frac{\left \Phi_{\Xi\dot{\mathcal{U}}}-\Phi\right }{\Phi_{\Xi\dot{\mathcal{U}}}}$	3. 239	6	2. 58%		0.	17% 2.		. 43%		1.74%	0. 45%	2.86%

测定出的 ω_0 `= 4.173 rad/s, 而 ω_0 = 4.176 rad/s.

图 1 受迫振动的幅频特性曲线

二、 思考题

1. 如何判断受迫振动已处于稳定状态?

答:观察仪表盘示数,若连续五个周期内振幅和周期示数变化量不超过其显示值末尾的"1" 所对应的量值,则可判定受迫振动已经处于稳定状态。

2. 从幅频曲线的相对振幅比为 $\frac{1}{2}$ 的点,也可求出 β 值。试用你做出的幅频特性曲线计算,将

结果与练习2中的结果比较。

答:由

$$\theta_{m} = \frac{\alpha_{m}}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_{0}}\right)^{2}\right]^{2} + 4\zeta^{2}\left(\frac{\omega}{\omega_{0}}\right)^{2}}}$$

可求得

$$\beta = \zeta \omega_0 = \omega_0 \sqrt{\frac{\left(1 - k_{1/2\theta_m}^2\right)^2 - 4\left(1 - k_{\theta_m}^2\right)^2}{16k_{\theta_m}^2 - 4k_{1/2\theta_m}^2}}$$

阻尼状态	2	2	;	3	4	1		
$k_{1/2\theta_m}$	0.974	1.022	0.973	1.027	0.958	1.039		
$k_{ heta_m}$	1. (002	1.0	001	0. 999			
$eta_{ m fi}(10^{-2}s^{-1})$	6.047	5.303	6.339	6.63	9.782 9.727			
$\beta_{\text{in}}(10^{-2}s^{-1})$	5. 7	711	7. 3	380	9. 785			

两种方法求得的β存在一定差异,这既与绘图与读数的误差有关,也与振幅测量中存在误差 有关。

3. 实验中如何判断达到共振? 共振频率是多少?

答: 在共振点附近反复测量,细调外激励频率,使振幅达到最大时就达到了共振。 由实验原理,共振频率 $\omega = \sqrt{\omega_0^2 - 2\beta^2}$.

三、 实验小结

经过本次实验,我掌握了测量振动系统基本参数的方法,对受迫振动的特性和共振现象 有了更深的了解。并通过亲自动手处理数据,提高了分析处理实验数据的能力。

阻尼振动

2018011365 计84 张鹤潇

1. 无阻尼

θ		4		×	
	170	169	167	166	165
	164	103	161	161	11-9
	11.8	157	116	15-5	154
	143	1/2	151	150	149
	148	147	148	145	144
- · ·	143	142	140	139	138
1- ,-,	137	136	131	134	133
	13.2	13 1	130	129	128 124
11,0	127	127	125	125	124
	123	122	121	120	119
$10\overline{T_d}$	14.944	15.003	15.011	15.017	15.024

119 117 117

阳尼为9

•		y 4	ے														
	组别		,1	2	3	4	5	6	7	8	9	10	11	12	13	14	
	θ	1	r6	143	131	121	[1]	102	93	86	79	72	66	61	1-1-	10	
	T_d	à	Iron	1-101	1 to	1.tn2	1.103	1. You	1. ro4	v. tor	1.505	1.506	1.505	1.506	1.506	1.506	

阻尼为 8

,	0. 111/0/	' 1	1											10	10	14	ı
	组别		1	2	3	4	5	6	7	8	9	10	11	12	13	14	
	组加		1	2	J	1			22		10		1.1	1, G	(6(6	29	
	А	١,	01	1119	122	120	108	97	81	77	67	62	50	41	99	1/3	
	0	-/	18	141	152	700	100	110 1	166	111	156	1 to 7	1106	1.07	1.101	1.501	
	T_d		V. 9	141.50	1.102	1.103	1.59	1.505	1.10	1.65	1.500	1.101	1.100	1.4			

阳尼为4

4. 阻化人	14					0	7	0	a	10	11	12	13	14	
组别	1	2	3	4	5	6	- 1	0	1.2	10	1/42	27	2.2	27	
	18	161	129	121	104	90	27	61	11	50	93	51	52	-61	
θ			12/	121	11.6		1 + 6	156	Itor	1106	Irok	1.101	1.504	1.504	
T.	1.499	1.50	1.502	1.503	1.54	1.18	1.50	1.10	1.101	1.100	1.101	11/11		•	

二、受迫振动

1. 阻尼为 2					_	6	7	8	\mathscr{D}
组别	1	2	3	4	5				
	, 4	(.0	14	105	116	133	1401	14数5	// (
振幅	13		- ' '	-	1.487	1.491	1.49r	1.494	8
受迫周期T	1.372	1.475	1.412	. 14.83					1
	1600	/18.0°	11.0	137.0°	130.00	118.0°	700		٠ -
ϕ_1	103.00	11900	150.0		130.50	117.50	109.00	100,00	
φ ₂	167-60			12	13	14	15	16	
组别	9	10	11		10			Ka	1 '
	148	14\$6	141	126	111	97	69	50	-
振幅			1. 109	1.115	1.r22	1.129	1.547	1.567	
受迫周期T	1.501	1.504					27 40		laro
	89.00	82.00	71.50	17.00	49.00	41.0°	27.50	240	20.50
φ ₁	20 12	83.00	72.50	19.50	to.50	43.00	29.50	2/.50	
ϕ_2	88.10	83.0	12.)	1/.1	10.0	17.0			_
2 阳尼为3	90.0°							Τ ο	7

2. 阻尼万3	70				_	C	7	Q
组别	1	2	3	4	Э	б	14	
组剂	1110	1.//	B& 11	27	00	1 of	11.50	1110
振幅	4r	54	08 11	8 1	7-1	IVI	1173	
3/10 114					100		-	

306

受迫周期T								
ϕ_1	1.443	,		1.482	11109	1.495	1 400	1 Knul
ϕ_2	117.0		140.0	-	1.489	109.50	1.500	1.504
组别	18.5		141.0	0 BI.to			98.50	89.5
振幅	9	10	11	12	13	14	15	16
受迫周期T	111	108	102	91	7r	74	19	43
	1.509	1.1/3	1.519	1.527	1.537	1.540	1.110	1.576
φ ₁	78.5°	70.ro	60.5°	50.50	41.00	38.00	29.50	20.50
φ ₂	77.5°	71.00	62.0°	f2.00	42.50	39.5°	31.50	22.00
3. 阻尼为 4			- 1				71	
组别	1	2	3	4	5	6	7	8
振幅	24	43	16	68	76	83	84	8r
受迫周期T	1.396	1.449	1.467	1.478	७ 1.486	1.493	1.499	1.506
φ ₁	160.50	150.8	139.50	129.50	119.50	10989		89.0°
φ ₂	1628	151.8	140.00	128.50	1200	110.5	100.0	90.00
组别	9	10	11 -	12	13	14	15	16
振幅	83	832	75	68	18	47	46	32
受迫周期T	1.514	1.520	1.527	1.536	1.548	1.165	1.567	1600
	79.00	68.50	17.50	50.00	40.50	30.50	30.0°	20.50
φ ₁	77.10	69. r°	1-9.5°	11.50	42.00	325°	32.00	22.50
φ ₂	1.1	N1.1	- , -		- , ' , ' .		, 11 . 1	
					1			

阻尼振动与受迫振动 预习报告

2018011365 计84 张鹤潇

一、 实验任务

1. 实验仪器

波尔共振仪主要由振动系统和提供外激励的两个部分组成。振动系统包括弹簧和摆轮。弹簧一端固定在摇杆上。摆轮周围有一圈槽型缺口,其中有一个长缺口在平衡时对准光电门。右侧的部分通过连杆向振动装置提供外激励,其周期可进行调节。上面的有机玻璃盘随电机一起转动。当摆轮转到平衡位置时,闪光灯闪烁,照亮玻璃盘上的白色刻度线,其示数即为在外激励下摆轮转动时落后于电动机的相位。

2. 实验步骤

(1). 调整仪器

打开电源并断开电机和闪光灯的开关。阻尼调至 0 档。手动调整电机的偏心轮使其 0 标志线与 0 度刻线对齐。同时,调整连杆和摇杆使摆轮处于平衡位置。拨动摆轮使其偏离平衡位置 150 度至 180 度,松开后观察摆轮自由摆动的情况,如衰减很慢则性能优良。

(2). 测量最小阻尼比ζ和固有角频率ω0

开关置于摆轮,阻尼开关置于 0 档,拨动摆轮至偏转约 180 度后松开,使之摆动。由 大到小依次读取显示窗中的振幅;

将周期置于"10"位置按复位钮启动周期测量,停止时读取数据,并立即按复位钮启动周期测量,记录每次的值:

(3). 测量阻尼振动的振幅

将周期选择位于位于"1"位置,阻尼开关置于4档,拨动摆轮至偏转至一定角度后松开,使之摆动。由大到小依次读取显示窗中的振幅;再次拨动摆轮使之摆动,依次读取显示窗中的周期值。测量不少于10组数据;

将阳尼开关置于5档,重复上述步骤:

(4). 测量受迫振动的周期和振幅

开启电机开关,开关置于强迫力,周期选择置于 1,将阻尼档置于 4 档,调节强迫力周期旋钮以调节电机转动的角频率,在振幅和周期都达到稳定后,记录下该频率的强迫力下摆轮受迫振动的周期和振幅。并开启闪光灯,两次读取闪光灯亮时有机玻璃转盘上的读数。调节电机频率,重复上述步骤。至少测量 18 组数据,包括共振时的数据即有机玻璃盘

读数为^π时的数据,在共振点附近应多测几组;

二、计算公式

1. 阻尼振动

在转动系统中,设其无阻尼时的固有角频率为ω0,并定义阻尼系数β.

$$\beta < \omega \ 0$$
 时, θ 和 t 满足如下关系 $\theta(t) = \theta_i ex \, p(-\beta t) \cos\left(\sqrt{\omega_0^2 - \beta^2}t + \emptyset_i\right)$ 解得阻尼振动角频率为 $\omega_d = \sqrt{\omega_0^2 - \beta^2}$,阻尼振动周期为 $T_d = \frac{2\pi}{\sqrt{\omega_0^2 - \beta^2}}$

2. 周期性外力作用下的受迫振动

当存在周期性外力作用时, θ和 t 满足如下关系:

$$\theta(t) = \theta_i \exp(-\beta t) \cos\left(\sqrt{\omega_0^2 - \beta^2} t + \varphi_i\right) + \theta_m \cos(\omega t - \varphi)$$

该式中的第一项随着时间 t 的增大逐渐趋于 0,因此经过足够长时间后,系统在外力作用下达到平衡,第一项等于 0,在该稳定状态下,系统的 θ 和 t 满足关系: $\theta(t)$ =

$$\theta_{m} co\, s(\omega t - \varphi), \, \sharp \, \dot{\tau} \, \theta_{m} = \frac{\frac{M}{J}}{\sqrt{\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + 4\beta^{2}\omega^{2}}} \;\; ; \;\; \varphi = arctan \frac{2\beta\omega}{\omega_{0}^{2} - \omega^{2}}, \theta \in (0,\pi).$$

3. 电机运动时的受迫振动

当波尔共振仪的长杆和连杆的长度远大于偏心轮半径时,当偏心轮电机匀速转动时,设其角速度为ω,此时弹簧的支座是弹簧受迫振动的外激励源,

$$\begin{split} \theta_{m} &= \frac{\alpha_{m}\omega_{0}^{2}}{\sqrt{(\omega_{0}^{2} - \omega^{2})^{2} + 4\beta^{2}\omega^{2}}} = \frac{\alpha_{m}}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_{0}}\right)^{2}\right)^{2} + 4\zeta^{2}\left(\frac{\omega}{\omega_{0}}\right)^{2}}} \\ \varphi &= \arctan\frac{2\beta\omega}{\omega_{0}^{2} - \omega^{2}} = \arctan\frac{2\zeta\left(\frac{\omega}{\omega_{0}}\right)}{1 - \left(\frac{\omega}{\omega_{0}}\right)^{2}} \end{split}$$

可知,当 $\omega = \omega 0$ 时 ϕ 最大为 $\frac{\pi}{2}$,此时系统处于共振状态。