

Структура из движения

Many slides adopted from Svetlana Lazebnik, Steve Seitz, Richard Hartley and Noah Snavely

Что умеем

- Калибровка камеры
 - Оценка Р (K,R,T) по набору соответствий 2D и 3D точек $\{(x_i,X_i)\}, i=1,k$
- Триангуляция
 - Оценка 3D точки X по проекциям x_i на калиброванные камеры P_i
- Вычисление существенной матрицы Е
 - По набору соответствий 2D точек $\{(x_i,x_i')\}$, i=1,k на 2x изображениях и внутренней калибровке K, K'
 - Извлечение R,Т (внешней калибровки) из Е
- •Вычисление фундаментальной матрицы F
 - По набору соответствий 2D точек $\{(x_i, x_i')\}, i=1,k$ на 2x изображениях

Структура из движения

Драконь, видимый подъ раздичными углами эрвнія По граворь на міли нап "Oculus artificialis telediopericus" Цана. 1702 года.

Структура из движения

•Дано: *т* изображений *п* фиксированных 3D точек

$$\mathbf{e}\mathbf{x}_{ij} = \mathbf{P}_i \mathbf{X}_j$$
, $i = 1, \ldots, m, \quad j = 1, \ldots, n$

•Задача: оценить m матриц проекции \mathbf{P}_i и n 3D точек \mathbf{X}_i из mn соответствий \mathbf{x}_{ii}

Неоднозначность решения

•Если мы умножим всю сцену на некоторый коэффициент k и в то же время умножим матрицы камер на 1/k, проекции точек сцены на изображения не изменятся:

$$\mathbf{x} = \mathbf{PX} = \left(\frac{1}{k}\mathbf{P}\right)(k\mathbf{X})$$

Вывод: оценить абсолютный масштаб (размеры) сцены по изображениям невозможно!

Неоднозначность решения

• Обобщение: если мы преобразуем сцену с помощью преобразования **Q** и применим обратное преобразование к матрицам камер, изображения не изменятся:

$$\mathbf{x} = \mathbf{P}\mathbf{X} = \left(\mathbf{P}\mathbf{Q}^{-1}\right)\left(\mathbf{Q}\mathbf{X}\right)$$

Иерархия 3D преобразования

Проективное 15dof

$$\begin{bmatrix} A & t \\ v^{\mathsf{T}} & v \end{bmatrix}$$

Оох и ка

Сохраняет пересечения и касание

Аффинное 12dof

$$\begin{bmatrix} A & t \\ 0^{\mathsf{T}} & 1 \end{bmatrix}$$

Сохраняет параллельность, отношения объемов

Подобие 7dof

$$\begin{bmatrix} s \mathbf{R} & \mathbf{t} \\ 0^{\mathsf{T}} & 1 \end{bmatrix}$$

Сохраняет углы, отношения длин

Евклидово 6dof

$$\begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix}$$

Сохраняет углы, длины

Проективная неоднозначность

Проективная неоднозначность

Аффинная неоднозначность

Аффинная неоднозначность

$$\mathbf{x} = \mathbf{P}\mathbf{X} = \left(\mathbf{P}\mathbf{Q}_{\mathbf{S}}^{-1}\right)\left(\mathbf{Q}_{\mathbf{S}}\mathbf{X}\right)$$

Неоднозначность подобия

Research

Иерархия реконструкций

Research

- Если нет ограничений на калибровку камеры или сцену, мы получим проективную реконструкцию
- С добавлением дополнительных ограничений мы можем усовершенствовать (upgrade) реконструкцию до аффинной, подобия или евклидовой
- Если известна матрица внутренней калибровки, тогда получаем реконструкцию с точностью до подобия
- Если есть и расстояние тогда с точностью до евклидова преобразования

Проективное 15dof $\begin{bmatrix} A & t \\ v^{\mathsf{T}} & v \end{bmatrix}$

Аффинное 12dof $\begin{vmatrix} A & t \\ 0^T & 1 \end{vmatrix}$

Подобие 7dof $\begin{bmatrix} s \mathbf{R} & \mathbf{t} \\ \mathbf{0}^\mathsf{T} & \mathbf{1} \end{bmatrix}$

Евклидово 6dof $\begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix}$

Чтобы провести измерения по изображениям (задача фотограмметрии), необходимо знать расстояние между минимум 2мя точками и внутреннюю калибровку камеры

Структура из движения

•Рассмотрим случай аффинных камер

Ортографическая проекция

- •Вырожденный случай перспективной
 - •Расстояние от центра проекции до картинной плоскости

•Матрица ортографической проекции:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \Rightarrow (x, y)$$

Аффинные камеры

Ортографическая проекция

Параллельная проекция

Аффинная камера

•Общая аффинная камера объединяет аффинное преобразование в 3D пространстве, ортографическую проекцию, и аффинное преобразование изображения

$$\mathbf{P} = [3 \times 3 \text{ affine}] \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} [4 \times 4 \text{ affine}] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

•Аффинная проекция это линейное отображение плюс сдвиг в неоднородных координатах

$$\mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \mathbf{AX} + \mathbf{b}$$
 Проекция центра Мировых координат

• Дано: *m* изображений *n* фиксированных 3D точек:

$$\mathbf{x}_{ij} = \mathbf{A}_i \mathbf{X}_j + \mathbf{b}_i, \quad i = 1, \dots, m, j = 1, \dots, n$$

- Задача: по mn соответствиям \mathbf{x}_{ij} оценить m матриц проекции \mathbf{A}_i и векторов сдвига \mathbf{b}_i , и n точек \mathbf{X}_j
- Реконструкция определена с точностью до произвольного аффинного преобразования **Q** (12 степеней свободы):

$$\begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \rightarrow \begin{bmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \mathbf{Q}^{-1}, \qquad \begin{pmatrix} \mathbf{X} \\ \mathbf{1} \end{pmatrix} \rightarrow \mathbf{Q} \begin{pmatrix} \mathbf{X} \\ \mathbf{1} \end{pmatrix}$$

- •Даны 2mn известных и 8m + 3n неизвестных (минус 12 dof из-за аффинной неоднозначности)
- •Значит, 2mn >= 8m + 3n 12 (должно быть)
- •Для 2х видов нужно 4 соответствия

•Центровка: вычитаем центроид точек изображения

$$\hat{\mathbf{x}}_{ij} = \mathbf{x}_{ij} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{x}_{ik} = \mathbf{A}_{i} \mathbf{X}_{j} + \mathbf{b}_{i} - \frac{1}{n} \sum_{k=1}^{n} (\mathbf{A}_{i} \mathbf{X}_{k} + \mathbf{b}_{i})$$

$$= \mathbf{A}_{i} \left(\mathbf{X}_{j} - \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_{k} \right) = \mathbf{A}_{i} \hat{\mathbf{X}}_{j}$$

- •Для простоты, пусть центр мировых координат центроид 3D точек
- •После центровки, каждая нормализованная точка \mathbf{x}_{ij} относится к \mathbf{X}_i следующим образом:

$$\hat{\mathbf{x}}_{ij} = \mathbf{A}_i \mathbf{X}_j$$

•Запишем данные $2m \times n$ в виде матрицы измерений

$$\mathbf{D} = egin{bmatrix} \hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1n} \\ \hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2n} \\ & & \ddots & \\ \hat{\mathbf{x}}_{m1} & \hat{\mathbf{x}}_{m2} & \cdots & \hat{\mathbf{x}}_{mn} \end{bmatrix}$$
 камеры (2 m)

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. *IJCV*, 9(2):137-154, November 1992.

•Запишем данные $2m \times n$ в виде матрицы измерений

$$\mathbf{D} = \begin{bmatrix} \hat{\mathbf{x}}_{11} & \hat{\mathbf{x}}_{12} & \cdots & \hat{\mathbf{x}}_{1n} \\ \hat{\mathbf{x}}_{21} & \hat{\mathbf{x}}_{22} & \cdots & \hat{\mathbf{x}}_{2n} \\ & \ddots & \\ \hat{\mathbf{x}}_{m1} & \hat{\mathbf{x}}_{m2} & \cdots & \hat{\mathbf{x}}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_m \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$
cameras
$$(2m \times 3)$$

У матрицы измерений D = MS должен быть ранг 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. *IJCV*, 9(2):137-154, November 1992.

•SVD разложение матрицы D:

•SVD разложение матрицы D:

• Вычисляем разложение через SVD:

Research

Факторизация матрицы измерений

• Вычисляем разложение через SVD :

Аффинная неоднозначность

- •Разложение неоднозначно. Мы получим ту же **D** используя любую 3×3 матрицу **C** и применив преобразование **M** \rightarrow **MC**, $S \rightarrow C^{-1}S$
- •Это происходит потому, что у нас есть только аффинные преобразования и мы не требуем соблюдение Евклидовых ограничений (например, перпендикулярности осей изображения)

Удаление неоднозначности

•Ортография: оси изображения перпендикулярны и масштабированы к 1

•Это даёт 3*m* уравнений на **L** = CC^T :

$$\bullet \mathbf{A_i} \mathbf{L} \mathbf{A_i}^\mathsf{T} = \mathbf{Id}, \qquad i = 1, ..., m$$

$$i = 1, ..., m$$

- •Находим **L**
- •Вычисляем **C** с помощью разложения Cholesky **L = CC**^T
- •Обновляем **M** и **S**: **M** = **MC**, **S** = **C**-1**S**

- •Дано: m изображений и n точек \mathbf{x}_{ij}
- •Для каждого изображения *i*, центрируем координаты точек
- •Строим матрицу измерений $2m \times n$ **D**:
 - •Столбец j содержит проекции точки j на все виды
 - •Строка *і* содержит координаты проекций всех *п* точек на изображение *і*
- •Разложение **D**:
 - •Вычисляем SVD: **D** = **U W V**^T
 - •Строим \mathbf{U}_3 из 3 первых столбцов \mathbf{U}
 - •Строим V_3 из 3 первых столбцов V
 - •Строим W_3 из верхнего левого 3 × 3 блока W
- •Строим матрицы движения и структуры:
 - •М = $U_3W_3^{1/2}$ и S = $W_3^{1/2}V_3^{\mathsf{T}}$ (или M = U_3 и S = $W_3V_3^{\mathsf{T}}$)
- •Устраняем аффинную неоднозначность

Результат реконструкции

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: A factorization method. *IJCV*, 9(2):137-154, November 1992.

Пропущенные данные

- •В методе факторизации использует предположение, что все точки видны на всех изображениях
- •В действительности, матрица измерений выглядит обычно так:

Пропущенные данные

- •Решение: разбиваем матрицу на плотные блоки, факторизуем каждый блок, объединяем результаты
 - •Поиск максимальных блоков в матрице NP-полная задача (эквивалентная поиску максимальных клик в графе) maximal

(1) Факторизация блока

(2) Триангулируем 3D точки, видимые хотя бы на 2х камерах

(3) Вычисляем калибровку камер, которые видят хотя бы 3 известные 3D точки

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. <u>Segmenting, Modeling, and Matching Video Clips Containing Multiple Moving Objects.</u> PAMI 2007.

Проективная реконструкция

•Дано: *т* изображений *п* фиксированных 3D точек

•
$$z_{ij} \mathbf{x}_{ij} = \mathbf{P}_i \mathbf{X}_j$$
, $i = 1, ..., m, j = 1, ..., n$

•Задача: оценить m матриц проекции \mathbf{P}_i и n 3D точек \mathbf{X}_i из mn соответствий \mathbf{x}_{ij}

Проективная реконструкция

•Дано: *т* изображений *п* фиксированных 3D точек

•
$$z_{ij} \mathbf{x}_{ij} = \mathbf{P}_i \mathbf{X}_j$$
, $i = 1, ..., m, j = 1, ..., n$

- •Задача: оценить m матриц проекции \mathbf{P}_i и n 3D точек \mathbf{X}_i из mn соответствий \mathbf{x}_{ij}
- •В отсутствие информации о калибровке, камеры и точки можно восстановить с точностью до 4х4 проективного преобразования **Q**:

$$\bullet X \rightarrow QX, P \rightarrow PQ^{-1}$$

•Решить задачу можно в следующем случае

$$\cdot 2mn > = 11m + 3n - 15$$

•Для 2х камер, нужно не менее 7 точек

SFM: Случай 2х камер

- •Вычислим фундаментальную матрицу Г
- •Первая матрица камеры [I|0]
- •Вторая матрица камеры [A|b]

•Тогда
$$z\mathbf{x} = [\mathbf{I} \mid \mathbf{0}]\mathbf{X}, \quad z'\mathbf{x}' = [\mathbf{A} \mid \mathbf{b}]\mathbf{X}$$
 $z'\mathbf{x}' = \mathbf{A}[\mathbf{I} \mid \mathbf{0}]\mathbf{X} + \mathbf{b} = z\mathbf{A}\mathbf{x} + \mathbf{b}$ $z'\mathbf{x}' \times \mathbf{b} = z\mathbf{A}\mathbf{x} \times \mathbf{b}$ $(z'\mathbf{x}' \times \mathbf{b}) \cdot \mathbf{x}' = (z\mathbf{A}\mathbf{x} \times \mathbf{b}) \cdot \mathbf{x}'$ $\mathbf{x}'^{\mathrm{T}}[\mathbf{b}_{\vee}]\mathbf{A}\mathbf{x} = 0$

$$\mathbf{F} = [\mathbf{b}_{\times}] \mathbf{A}$$
 b: эпиполь $(\mathbf{F}^{\mathrm{T}} \mathbf{b} = 0)$, $\mathbf{A} = -[\mathbf{b}_{\times}] \mathbf{F}$

Проективная факторизация

$$\mathbf{D} = \begin{bmatrix} z_{11}\mathbf{X}_{11} & z_{12}\mathbf{X}_{12} & \cdots & z_{1n}\mathbf{X}_{1n} \\ z_{21}\mathbf{X}_{21} & z_{22}\mathbf{X}_{22} & \cdots & z_{2n}\mathbf{X}_{2n} \\ \vdots & \vdots & \vdots \\ z_{m1}\mathbf{X}_{m1} & z_{m2}\mathbf{X}_{m2} & \cdots & z_{mn}\mathbf{X}_{mn} \end{bmatrix} = \begin{bmatrix} \mathbf{P}_1 \\ \mathbf{P}_2 \\ \vdots \\ \mathbf{P}_m \end{bmatrix} \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \cdots & \mathbf{X}_n \end{bmatrix}$$

Камеры

(3 $m \times 4$)

$$\mathbf{D} = \mathbf{MS} \text{ ранг } 4$$

- •Если мы знаем глубину *z*, мы можем разложить **D** и оценить **M** и **S**
- •Если мы знаем **М** и **S**, мы можем найти z
- •Решение: итеративный метод (чередуем оба вышеуказанных шага)

Недостатки факторизации

- Предполагается, что все точки видны на всех кадрах
 - Приходится разбивать на отдельные задачи и решать их
- Предполагается, что все точки правильные, нет ложных соответствий
 - В факторизации нет простого способа фильтровать ложные соответствия
- He оптимизируется оптимальный («gold standard») критерий
- Поэтому обычно используется последовательный метод «структуры и движения»

Последовательный SFM

- Инициализируем движение через существенную матрицу двух камер
- Инициализируем структуру
- •Для каждого вида:
 - •Оцениваем матрицу проекции новой камеры по всем известным 3D точкам, видимым на этом изображении калибровка

- •Инициализируем движение через существенную матрицу двух камер
- Инициализируем структуру
- •Для каждого вида:
 - •Оцениваем матрицу проекции новой камеры по всем известным 3D точкам, видимым на этом изображении калибровка •Уточняем и дополняем структуру, вычисляем новые 3D точки, уточняем существующие точки, видимые на камере триангуляция

- Инициализируем движение через существенную матрицу двух камер
- Инициализируем структуру
- Для каждого вида:
 - •Оцениваем матрицу проекции новой камеры по всем известным 3D точкам, видимым на этом изображении калибровка •Уточняем и дополняем структуру, вычисляем новые 3D точки, уточняем существующие точки, видимые на камере триангуляция
 - •Уточняем структуру и в движение методом связок

Метод связок (Bundle adjustment)

- •Нелинейный метод для уточнения структуры и движения
- •Минимизируем сумму ошибок проекций всех точек на все камеры:

$$E(\mathbf{P}, \mathbf{X}) = \sum_{i=1}^{m} \sum_{j=1}^{n} D(\mathbf{x}_{ij}, \mathbf{P}_i \mathbf{X}_j)^2$$

Research

Итеративная оптимизация

- Имеем задачу X = f(P) , где X вектор измерений, P параметры, f() функция
- Есть начальное приближение $e_0 = f(P_0) X$
- Предположим, что можно приблизить $f(P_0 + \Delta) pprox f(P_0) + J\Delta$
- Ищем P₁, минимизирующее

$$f(P_1) - X = f(P_0) + J\Delta - X = e_0 + J\Delta$$

- Задача, найти минимум $\left\| e_0 + J\Delta
 ight\|$ по Δ
- Или $(e_0 + J\Delta)^T (e_0 + J\Delta)$
- Нужно решить нормальные уравнения $J^T J \Delta = -J^T e_0$

Блочная структура матриц

- Огромный размер матриц, но блочная структура
- Специальные реализация методов оптимизации для матриц такой формы
- Методы улучшения структуры матриц для повышения производительности

Проективная реконструкция

- Вместо существенной матрицы можем оценивать фундаментальную и использовать специальную триангуляцию
- Затем наложим дополнительные ограничения для устранения неоднозначности реконструкции

Автокалибровка (Self-calibration)

- •Автокалибровка это оценка внутренних параметров камеры непосредственно по некалиброванным изображениям
- •Например, если изображения получены с одной движущейся камеры, мы можем использовать ограничение, что матрица калибровки фиксирована для всех изображений
 - •Вычислим исходную проективную реконструкцию и найдем такое преобразование ${f Q}$, что матрицы проекций всех камер можно представить в виде ${f P}_i = {f K} \ [{f R}_i \ | \ {f t}_i]$
- •Можем использовать ограничения на форму матрицы калибровки, пр. нулевой скос (прямоугольную форму пикселей)

Большая задача

Research

Коллекция изображений из интернета

Трёхмерная модель

В 24 часа...

Коллекции изображений

Несколько миллионов изображений по тегу «Rome»

Обычные фотографии

•Получены разными пользователями с разных фотоаппаратов

iPhone 3G

Nikon D3

- •Разное время года, разное время суток
- •Случайный порядок изображений

Загрузим из интернета

http://graphics.cs.cmu.edu/projects/im2gps/flickr_code.html

Найдем соответствующие точки

Поиск особых точек (SIFT)

Сопоставление изображений

- Сопоставляем точки по дескрипторам SIFT
- Фильтруем ложные соответствия по эпиполярной геометрии
- Для этого будем с помощью RANSAC вычислять фундаментальную матрицу

Граф связанности изображений

Объем задачи

- •250К изображений -> 31М пар изображений
- •2 пары изображений в секунду
 - •1 год на 500 машинах
- •1М изображений -> 500 000М пар изображений
 - •15 лет на 500 машинах

Поиск похожих изображений

- •Метод «Мешок слов»
 - •Обучаем словарь визуальных слов размером 100К
 - •Строим гистограмму частот для каждого изображения:

- •Для каждого изображения ищем 40 наиболее похожих
- •Сопоставляем точки между этими парами изображений
- Раскрываем запросы (query expansion)

Результат сопоставлений

Мощность SIFT!

Граф связанности изображений

Построение «следов»

- Объединяем соответствия в «следы»
 - •Отбрасываем незамкнутные следы, как потенциальные ошибки
- Пример (3000 изображений), всего 1.5М+ следов
 - •79% длины 2
 - •90% длины <=3
 - •98% длины <= 10
 - •Самый длинный след 385 точек

Исходные соответствия

После построения следов

«Скелет» графа

[Snavely, et al., "Skeletal sets for efficient structure from motion," CVPR 2008]

- •Выбор опорных пар изображений
- •Вычисление структуры по паре изображений
 - •Построение матрицы внутренней калибровки
 - •Вычисление фундаментальной и существенной матрицы
 - •Триангуляция точек
 - •Уточнение методом связок
- •Добавление новых изображений
 - •Калибровка камеры по известным 2D/3D соответствиям
 - •Триангуляция новых точек
 - •Уточнение методом связок

Выбор опорной пары

Research

Выбор опорной пары

- (+) много точек
- (-) малая база

- (+) большая база
- (-) мало точек

- (+) много точек
- (+) большая база

Выбор опорной пары

- •Возможны разные эвристики
- •Гомография плохо описывает сцену, когда сцена не плоская, и существенный параллакс (большая база)
- •Пример:
 - Возьмем пары, в которых > 100 соответствий
 - Вычислим гомографию и фундаментальную матрицу
 - Выберем пару изображений, минимизирующее отношение:

 $\frac{\text{numInliers}_{\text{homography}}}{\text{numInliers}_{\text{Fmatrix}}}$

Внутренняя калибровка

File size : 85111 bytes

File date : 2005:12:16 04:17:12

Camera make : Panasonic Camera model : DMC-FZ20

Date/Time : 2005:03:19 12:52:33

Resolution : 450 x 600

Flash used : No

Focal length: 6.0mm

Exposure time: 0.0012 s (1/800)

Aperture : f/5.6

ISO equiv. : 80

Whitebalance : Auto

Metering Mode: matrix

Exposure : program (auto)

Структура EXIF-данных

Параметры камеры

Research

Research

Photosynth

Коды

- Pedagogical Bundle
 - •http://www.maths.lth.se/matematiklth/personal/nicolas/bundle.html
- •SBA
 - http://www.ics.forth.gr/~lourakis/sba/
- Bundler
 - http://phototour.cs.washington.edu/bundler

- Стереореконструкция
- Реконструкция по 1 изображению