

Article: Video-to-Video Synthesis

Speaker: Valeria Bubnova 27/09/2018

$$s_1^T = (s_1, \dots s_T)$$

$$x_1^T = (x_1, ... x_T)$$

$$f(s_1^T) = \tilde{x}_1^T$$
$$p(\tilde{x}_1^T | s_1^T) = p(x_1^T | s_1^T)$$

$$f(s_1^T) = \tilde{x}_1^T$$

$$p(\tilde{x}_1^T | s_1^T) = p(x_1^T | s_1^T)$$

Conditional GAN

What is a video?

What is a video?

Markov assumption:

$$\tilde{x}_t = F(\tilde{x}_{t-L}^{t-1}, s_{t-L}^{t-1})$$

$$p(\tilde{x}_1^T | s_1^T) = \prod_{t=1}^T p(\tilde{x}_t | \tilde{x}_{t-L}^{t-1}, s_{t-L}^t)$$

L=2

What is an image?

What is an image?

Background

- + Mostly saves its shape and details
- Moves on the canvas

Foreground

- + May be moves a bit
- + Changes
- + Depends on the sourse

What is an image?

Background

- + Mostly saves its shape and details
- + Moves on the canvas

$$\tilde{h}_{B,t} = H_B(\tilde{x}_{t-L}^{t-1}, s_{t-L}^t)$$

Foreground

- + May be moves a bit
- + Changes
- + Depends on the sourse

$$\tilde{h}_{F,t} = H_F(s_{t-L}^t)$$

How do images change?

Background

- Mostly saves its shape and details
- + Moves on the canvas

$$\tilde{h}_{B,t} = H_B(\tilde{x}_{t-L}^{t-1}, s_{t-L}^t)$$

1) Optical flow

How do images change?

2) From the source

How do we get the final t-th image?

$$F(\tilde{x}_{t-L}^{t-1}, s_{t-L}^{t-1}) = (1 - \tilde{m}_t) \odot \tilde{w}_{t-1}(\tilde{x}_{t-1}) + \tilde{m}_t \odot ((1 - m_{B,t}) \odot \tilde{h}_{F,t} + m_{B,t} \cdot \tilde{h}_{B,t})$$

How do we get the final t-th image?

Image transformed by Mask $\tilde{m}_t \in (0,1)^{n \times m}$ optical flow

$$F(\tilde{x}_{t-L}^{t-1}, s_{t-L}^{t-1}) = (1 - \tilde{m}_t) \odot \tilde{w}_{t-1}(\tilde{x}_{t-1}) + \\ + \tilde{m}_t \odot ((1 - m_{B,t}) \odot \tilde{h}_{F,t} + m_{B,t} \cdot \tilde{h}_{B,t})$$

Ground truth background mask based on s

Newly generated images

How do we get the final t-th image?

$$\tilde{w}_{t-1} = W(\tilde{x}_{t-L}^{t-1}, s_{t-L}^t)$$

Same NN, differ in last layer only: Residual Network Architecture by Wang et al.

$$\tilde{m}_{t-1} = M(\tilde{x}_{t-L}^{t-1}, s_{t-L}^t)$$

$$\tilde{h}_{t-1} = H(\tilde{x}_{t-L}^{t-1}, s_{t-L}^t)$$

#Pix2Pix

Jensen-Shannon divergence

$$\max_{D} \min_{G} E_{(\mathbf{x}_{1}^{T}, \mathbf{s}_{1}^{T})}[\log D(\mathbf{x}_{1}^{T}, \mathbf{s}_{1}^{T})] + E_{\mathbf{s}_{1}^{T}}[\log(1 - D(G(\mathbf{s}_{1}^{T}), \mathbf{s}_{1}^{T}))]$$

$$\begin{array}{ll} D_i: & D_v: \\ (x_t, s_t) \to 1 & (x_{t-K}^{t-1}, w_{t-K}^{t-2}) \to 1 \\ (\tilde{x}_t, s_t) \to 0 & (\tilde{x}_{t-K}^{t-1}, w_{t-K}^{t-2}) \to 0 \end{array}$$

Architecture: PatchGan

$$\min_{F} \left(\max_{D_I} \mathcal{L}_I(F, D_I) + \max_{D_V} \mathcal{L}_V(F, D_V) \right) + \lambda_W \mathcal{L}_W(F)$$

$$\min_{F} \left(\max_{D_I} \mathcal{L}_I(F, D_I) + \max_{D_V} \mathcal{L}_V(F, D_V) \right) + \lambda_W \mathcal{L}_W(F)$$

$$\mathcal{L}_{I} = E_{\phi_{I}(\mathbf{x}_{1}^{T}, \mathbf{s}_{1}^{T})} [\log D_{I}(\mathbf{x}_{i}, \mathbf{s}_{i})] + E_{\phi_{I}(\tilde{\mathbf{x}}_{1}^{T}, \mathbf{s}_{1}^{T})} [\log (1 - D_{I}(\tilde{\mathbf{x}}_{i}, \mathbf{s}_{i}))]$$

$$\mathcal{L}_{V} = E_{\phi_{V}(\mathbf{w}_{1}^{T-1}, \mathbf{x}_{1}^{T}, \mathbf{s}_{1}^{T})} [\log D_{V}(\mathbf{x}_{i-K}^{i-1}, \mathbf{w}_{i-K}^{i-2})] +$$

$$+ E_{\phi_{V}(\mathbf{w}_{1}^{T-1}, \tilde{\mathbf{x}}_{1}^{T}, \mathbf{s}_{1}^{T})} [\log(1 - D_{V}(\tilde{\mathbf{x}}_{i-K}^{i-1}, \mathbf{w}_{i-K}^{i-2}))]$$

$$\mathcal{L}_{W} = \frac{1}{T-1} \sum_{t=1}^{T-1} (||\tilde{\mathbf{w}}_{t} - \mathbf{w}_{t}||_{1} + ||\tilde{\mathbf{w}}_{t}(\mathbf{x}_{t}) - \mathbf{x}_{t+1}||_{1})$$

Details

- ADAM, 40 epochs
- NVIDIA 8 V100 16GB (DGX1 machine)
- Increasing resolution (up to 2048*1024)
- 10 days (for 2K)

Multiple Outputs for Edge-to-Face

Datasets

- Cityscape
- Appoloscape
- Face video dataset
- Danse Video Dataset

Metrics

Fréchet Inception Distance

$$\|\mu - \tilde{\mu}\|^2 + \text{Tr}\Big(\Sigma + \tilde{\Sigma} - 2\sqrt{\Sigma\tilde{\Sigma}}\Big)$$

Human Preference Score

Results:

Table 1: Comparison between competing video-to-video synthesis approaches on Cityscapes.

				-	
Fréchet Inception Distance	I3D	ResNeXt	Human Preference Score	short seq.	long seq.
pix2pixHD COVST	5.57 5.55	0.18 0.18	vid2vid(ours) / pix2pixHD vid2vid(ours) / COVST	0.87 / 0.13 0.84 / 0.16	0.83 / 0.17 0.80 / 0.20
vid2vid (ours)	4.66	0.15	-		

Table 2: Ablation study. We compare the proposed approach to its three variants.

Human Preference Score						
<pre>vid2vid(ours) / no background-foreground prior</pre>	0.80 / 0.20					
<pre>vid2vid(ours) / no conditional video discriminator</pre>	0.84 / 0.16					
<pre>vid2vid(ours) / no flow warping</pre>	0.67 / 0.33					

Table 3: Comparison between future video prediction methods on Cityscapes.

Fréchet Inception Distance	I3D	ResNeXt	Human Preference Score
PredNet	11.18	0.59	vid2vid (ours) / PredNet 0.92 / 0.08 vid2vid (ours) / MCNet 0.98 / 0.02
MCNet	10.00	0.43	
vid2vid (ours)	3.44	0.18	

Result

Video:

https://tcwanq0509.github.io/vid2vid/paper_gifs/cityscapes_comparison.gif

https://tcwang0509.github.io/vid2vid/paper_gifs/apollo.gif

https://tcwang0509.github.io/vid2vid/paper_gifs/face.gif

https://tcwanq0509.github.io/vid2vid/paper_gifs/pose.gif

Source:

Video-to-Video Synthesis

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz, Bryan Catanzaro

(Submitted on 20 Aug 2018)

https://arxiv.org/abs/1808.06601