GRUPO MOTOPROPULSOR (AS350 B-BA-B2-B3)

GRUPO TURBOMOTOR ARRIEL

☐ Circuito elétrico de partida.

A aeronave é equipada com um motor ARRIEL

1. Os aspectos tecnológicos e funcionais deste motor estão descritos no Manual de Instrução do fabricante do motor. Este capítulo trata somente da instalação do motor na aeronave:
Fixação
Circuito de arrefecimento do óleo
Comandos e controles

PRINCIPAIS CARACTERÍSTICAS DO MOTOR

- □ Grupo turbomotor com turbina livre: o eixo da geradora de gases e o eixo da turbina livre são independentes.
 □ O calculador numérico de regulação mantém constante a velocidade da turbina livre seja qual for o valor do passo coletivo (isto é, seja qual for a potência necessária ao vôo) por ação no regime da geradora de gases, portanto, na potência desenvolvida.
 A velocidade da turbina livre sendo constante, a potência transmitida aos rotores só depende do torque do motor. Isto explica que é possível utilizar um torquímetro para medir a potência fornecida pelo motor.
- ☐ Motor de concepção modular: é possível inspecionar, substituir as peças principais e evitar o retorno do motor completo à fábrica.
- □ Peso do motor = 130 kg□ Potências: Ver capítulo 1.

FUNÇÃO

O grupo turbomotor (GTM) fornece a potência transformando a energia do ar e do combustível em energia mecânica no eixo de potência.

PRINCIPAIS CARACTERÍSTICAS

- Tipo: Motor turbo-eixo turbina livre, tomada de potência frontal, eixo de transmissão de potência externo.
- Concepção: modular
- Velocidade do eixo de saída: 6000 RPM (a 100%)
- Massa □ 126 kg (277 lbs). A massa pode variar um pouco de acordo com as versões do motor.

DESCRIÇÃO GERAL DO MOTOR

Esta descrição considera os principais componentes funcionais do motor.

Gerador de gás

- Compressor axial de um estágio
- Compressor centrífugo
- Câmara de combustão anular (circular) com injeção centrífuga de combustível
- Turbina axial com dois estágios

Turbina livre

- Turbina axial de um estágio
- Duto
- Duto de forma elíptica com escapamento axial

Redutor

- Caixa de redução compreendendo três pinhões com engrenagens helicoidais.

Eixo de Transmissão

- Eixo externo localizado dentro de um tubo de proteção o qual está conectado á caixa de redução e à caixa de acessórios.

Caixa de acessórios

- Compreende o trem de acionamento dos acessórios e o acionamento de potência principal.

SISTEMAS DO MOTOR - DESCRIÇÃO GERAL Esta parte trata de forma genérica dos sistemas e funções do motor.

Circuito de óleo

O circuito de óleo lubrifica e refrigera os componentes do motor.

Sistema tipo cárter seco, óleo sintético, reservatório e unidade refrigeradora instalados na aeronave. Indicação de pressão, temperatura e partículas magnéticas.

Circuito de ar

Circuito interno para pressurizar e refrigerar internamente as partes do motor. Sistema de alimentação dos acessórios (Ventilação dos injetores de partida, regulação do motor). Válvula de sangria do compressor. Suprimento de ar para a aeronave.

Circuito de combustível

O combustível é fornecido através de uma bomba de engrenagem. Liberado através de uma unidade dosadora e uma válvula. Injeção através de dois injetores e simples injeção principal por uma roda centrífuga.

Regulação

Velocidade de rotação da turbina de potência constante . Controle da aceleração. Diversos sistemas de proteção.

Regulação de tipo "hidromecânico" (com comando manual de segurança) utiliza combustível como fluído hidráulico.

Operação do motor

Totalmente automática. Alavanca de comando para partida, corte e operação da emergência. Controle do motor (Indicações)

- Velocidades de rotação. Temperatura dos gases . Torque do motor. Temperatura e pressão do óleo. Indicações diversas.

Partida

Acionamento por um motor de arranque elétrico. Ignição por ignitores de alta energia. Controle manual.

Circuito elétrico

Circuito de partida. Circuito de controle. Circuito de sobre-velocidade. Cablagens com dois ou três conectores de acordo com a versão.

Instalação do Motor

- Projetado para rápida remoção e instalação do motor.
- Suporte dianteiro e traseiro. Anéis para içamento.
- Equipamentos diversos (entrada de ar, escapamento, paredes

de fogo, eixo de acionamento, sangria de ar, drenos, proteção de fogo).

FUNCIONAMENTO GERAL

Está parte mostra de forma genérica o funcionamento do motor.

Gerador de gás

- Compressão de ar no compressor axial e centrífugo.
- Combustão da mistura ar/combustível câmara de combustão anular
- Expansão do gás na turbina do gerador de gás, a qual faz o acionamento dos compressores e acessórios do motor.

Turbina livre

Expansão dos gases na turbina mono-estágio que, através da caixa de redução, fornece a potência no eixo de saída.

Escapamento

- Descarga de gases para a área externa.

Redutor

- Redução da velocidade da turbina livre e envio da potência para a parte dianteira no eixo de potência .

Eixo de transmissão

Transmissão de potência da caixa de redução para o eixo de saída do movimento.

Caixa de acessórios

- Saída principal de potência para acionamento da caixa de transmissão principal do helicóptero.
- Acionamento dos acessórios pelo gerador de gás através de uma engrenagem cônica , um eixo de acionamento vertical e um trem de engrenagens.

CARACTERÍSTICAS PRINCIPAIS (1) Massa, Dimensões e Identificações

Massa

- Motor com equipamento específico e sem fluído □ 126 Kg (277 lbs). A massa pode variar ligeiramente conforme a versão. Dimensões
- Motor:
- ☐ Comprimento 1. 166 mm(45,5 polegadas)
- ☐ Largura 465,5 mm (18,2 polegadas)
- ☐ Altura 609 mm (23,8 polegadas)

Identificação:

- Cada módulo tem uma placa de identificação;
- A placa de identificação do motor completo está localizada no tubo de proteção do módulo 1.

1977	ARRIEL 1A ARRIEL 1B	DAUPHIN 365 C ESQUILO AS 350 B	485 kW (2'30") 477 kW (5')	Roda livre, escapamento longo
1979	ARRIEL 1A1 ARRIEL 1A2	DAUPHIN 365 C 1 DAUPHIN 365 C 2	498 kW (2'30") 500 kW (2'30")	N1Máximo, W e aumento do envelope de vôo novo compressor centrífugo
1980	ARRIEL 1C	DAUPHIN 365 N DAUPHIN 365 C 3	522 kW (2'30")	Turbinas gerador de gás com montagem de palhetas em árvore tipo pinheiro, nova câmara de combustão, aumento de N 2.
1982	ARRIEL 1C 1	DAUPHIN 365 N 1	540 kW (2'30")	Material de turbina, rolamento de turbina livre modificado
1983	ARRIEL 1M	DAUPHIN 365 F	580 kW (2'30")	Regime PSU 1'
1985	ARRIEL 1K1 ARRIEL 1D	AGUSTA A 109 K ESQUILO AS 350 B1/L1	540 kW (2'30") 510 kW (5')	Adaptação para aeronave Agusta, limite de fluxo máximo de de combustivel Roda livre, suporte da turbina livre e escapamento do 1B
1986	ARRIEL 18	SIKORKY \$ 76 A	576 kW (2'30")	Palhetas das turbinas seladas, adaptação para a aeronave Skorsky (suporte, transmissão, circuitos)
1988	ARRIEL 1 MN ARRIEL 1 D1 ARRIEL 1 M1 ARRIEL 1 C2	DAUPHIN 365 F ESQUILO AS 350 B2/L2 PANTHER 365 K DAUPHIN 365 N2	580 kW (2'30")	
1991	ARRIEL 1E	BK 117	576 kW (2°30°')	1 S básico, Adaptação para o helicóptero BK 117

FIXAÇÃO DO GTM

O GTM está instalado em um compartimento à prova de fogo. Na parte dianteira está solidário com a CTP por uma trompa de ligação. Sua própria fixação no piso da estrutura traseira é realizada por dois amortecedores de borracha.

ARREFECIMENTO DO ÓLEO DO GTM E CONTROLE DO CIRCUITO DE ÓLEO

Os rolamentos e engrenagens do motor são lubrificados e refrigerados pela circulação de óleo sob pressão. Após lubrificar o motor, o óleo está "carregado" de calorias, portanto, muito quente. É necessário, antes de reciclálo, baixar sua temperatura a fim de conservar todas as suas qualidades lubrificantes. É este o papel do circuito de arrefecimento do óleo. NOTA: É recomendável a leitura com interesse das generalidades relativas ao circuito de lubrificação da CTP, pois são aplicáveis ao motor.