TD 5. Équations elliptiques

Exercice 1. Identification de formulations variationnelles

On considère le problème suivant pour $f \in L^2(0,1)$ et $a_0, a_1 \in \mathbb{R}$:

trouver
$$u \in V$$
 tel que : $\forall v \in V$, $a(u, v) = L(v)$ (1)

où
$$a(u,v) = \int_0^1 u'(x) \, v'(x) dx$$
, $L(v) = \int_0^1 f(x) \, v(x) dx + a_0 \, v(0) + a_1 \, v(1)$

1. Vérifier si le problème est bien posé dans chacun des cas suivants :

$$V = H_0^1(0,1) V = H^1(0,1) V = \{v \in H^1(0,1) ; v(0) = 0\}$$
$$V = \{v \in H^1(0,1) ; v(0) = v(1)\} V = \{v \in H^1(0,1) ; \int_0^1 v(x) \, dx = 0\}$$

- 2. Dans les cas bien posés, montrer que la solution u de (1) vérifie (au sens des distributions) une équation différentielle que l'on précisera. Montrer que $u' \in C^0[0,1] \cap H^1(0,1)$. En déduire que, pour tout $v \in V$, a(u,v) L(v) peut s'écrire sous une forme ne faisant intervenir que des termes au bord.
- 3. Montrer que, dans chacun des cas bien posés, (1) équivaut à un problème différentiel à conditions au bord, que l'on précisera.
- 4. Montrer que:

$$\text{si } f \in H^m(0,1) \text{ alors } u \in H^{m+2}(0,1)$$
 et $\text{si } f \in C^m([0,1]) \text{ alors } u \in C^{m+2}([0,1])$

Exercice 2. Fonction de Green en dimension 1

Soit $f \in C^0([0,1])$. On considère le problème suivant :

$$\begin{cases} -\frac{d^2u}{dx^2} = f, & \text{pour } x \in]0, 1[\\ u(0) = u(1) = 0 \end{cases}$$

1. Vérifier que la solution de ce problème s'écrit $u(x) = \int_0^1 G(x,y) f(y) dy$ avec

$$G(x,y) = y(1-x)$$
 si $0 \le y \le x \le 1$ et $G(x,y) = x(1-y)$ si $0 \le x \le y \le 1$

2. En déduire le principe du maximum :

si
$$f \ge 0$$
 alors $u \ge 0$ et si $f \ge 0$ et $f \not\equiv 0$ alors $u > 0$

3. On remplace la condition de Dirichlet u(0) = u(1) = 0 par une condition de Neumann : u'(0) = 0 = u'(1) = 0. Démontrer que le problème admet une solution, unique à une constante près, sous la condition nécessaire et suffisante

$$\int_0^1 f(x)dx = 0,$$

et que cette solution prend une forme similaire, avec le noyau donné cette fois par

$$G(x,y) = y - x$$
 si $0 \le y \le x$ et $G(x,y) = 0$ sinon

4. Étudier le cas de la condition mixte Dirichlet-Neumann : u(0) = u'(1) = 0.

Exercice 3. Condition de Neumann homogène

On considère le problème avec condition de Neumann sur I =]0,1[:

$$\begin{cases} -u'' + u = f \\ u'(0) = u'(1) = 0 \end{cases}$$

Montrer que si $f \in L^2(I)$, le problème admet une unique solution faible $u \in H^2(I)$. Si de plus $f \in C^0([0,1])$, montrer que $u \in C^2([0,1])$ et est une solution forte.

Exercice 4. Problème elliptique en dimension d

Soit Ω un ouvert borné de \mathbb{R}^d . On considère l'opérateur différentiel d'ordre 2 suivant :

$$Lu := -\sum_{i,j=1}^{d} \partial_{x_j} (a_{ij}\partial_{x_i} u) + \sum_{i=1}^{d} b_i \partial_{x_i} u + cu$$

où les coefficients a_{ij}, b_i, c sont des fonctions $L^{\infty}(\Omega)$. On définit la forme bilinéaire associée :

$$B(u,v) := \int_{\Omega} \left(\sum_{i,j=1}^{d} a_{ij} (\partial_{x_i} u) (\partial_{x_j} v) + \sum_{i=1}^{d} b_i (\partial_{x_i} u) v + cuv \right) dx$$

On dira que:

- 1. Ω est à bord "lisse" si son bord $\partial\Omega$ peut être paramétré par des fonctions lipschitziennes.
- 2. L'est uniformément elliptique si il existe une constante $\theta > 0$ telle que :

$$p.p.x \in \Omega, \ \forall \xi \in \mathbb{R}^d, \ \sum_{i,j=1}^d a_{ij}(x)\xi_i\xi_j \geqslant \theta |\xi|^2$$

On se place dans la suite sous ces hypothèses. On admet l'inégalité de Poincaré valable si Ω est un ouvert borné à bord lisse :

$$\exists C > 0, \ \forall u \in H_0^1(\Omega), \ \|u\|_{L^2} \leqslant C \|\nabla u\|_{L^2(\Omega)^d}$$

- 1. Montrer que B est une forme bilinéaire continue sur $H_0^1(\Omega)$.
- 2. Montrer qu'il existe $\beta > 0$ et $\gamma \geqslant 0$ tels que :

$$\forall u \in H^1(\Omega), \ \beta \|u\|_{H_0^1}^2 \leqslant B(u, u) + \gamma \|u\|_{L^2}^2$$

3. Montrer que pour tout μ assez grand et $f \in L^2(\Omega)$, le problème elliptique

$$\begin{cases} Lu + \mu u = f & \text{sur } \Omega \\ u = 0 & \text{sur } \partial \Omega \end{cases}$$

admet une unique solution faible $u \in H_0^1(\Omega)$.

Remarque. La condition u=0 sur $\partial\Omega$ n'a évidemment pas de sens à proprement parler car u n'est pas forcément continue, mais est à comprendre ici au sens $u\in H^1_0(\Omega)$. On peut effectivement donner un sens rigoureux à u sur le bord mais c'est plus technique.