Методы анализа данных Александр Широков ПМ-1701

Преподаватель:

Ивахненко Дарья Александровна

Санкт-Петербург 2020 г., 7 семестр

Список литературы

[1]

Содержание

1	1 01.09.2020		2
	1.1	Задача обучения по предедентам	2
	1.2	Типы залач	2

$1 \quad 01.09.2020$

1.1 Задача обучения по предедентам

Пусть X - множество объектов, а Y - множество ответов. $y:X\to Y$ - неизвестная зависимость.

Дано: $\{x_1,\ldots,x_l\}\subset X$ - обучающая выборка, а $y_i=y(x_i), i=1,\ldots,l$ - известные ответы.

Требуется найти $a:X\to Y$ - алгоритм, решающую функцию, приближающую y на всем множестве X.

1.2 Типы задач

Задачи восстановления регрессии:

- $Y = \mathbb{R}$ вся числовая ось:
 - определение температуры воздуха метеорологического поля
 - оценка влияния факторов потребления
- $Y \in [0; +\infty)$:
 - задачи медицинской диагностики: прогнозирование ожидаемого время действия препарата
 - задачи кредитного скоринга: определение величины кредитного лимита
 - определение расхода топлива по техническим характеристикам
- $Y \in [0,1,\ldots,+\infty)$ счетная целевая переменная

Задача классификации:

- $Y = \{-1, +1\}$ классификация на два класса:
 - задачи кредитного скоринга: решение о выдаче кредита
 - предсказание оттока клиентов
- $Y = \{1, \dots, K\}$ классификация на K непересекающихся классов:
 - задачи медицинской диагностики: определение диагноза

- распознавание символов
- определение жанра
- $Y = \{0,1\}^K$ на K классов, которые могут пересекаться:
 - определение ключевых слов для оптимизации поиска
 - определение присутствующих на фото объектов

Типы признаков

- $D_j = \{0,1\}$ бинарный признак f_j :
 - пол
 - является ли..?
- $|D_j| < \infty$ номинальный признак f_j :
 - город
 - цвет
- $|D_j| < \infty, \, D_j$ упорядочено порядковый признак f_j :
 - уровень холестерина (ниже нормы, норма, выше нормы)
- $D_j = \mathbf{R}$ количественный признак f_j :
 - длина и ширина объекта