CS6320, Fall 2017 Dr. Mithun Balakrishna Homework 2 Due October 1st, 2017 11:59pm

A. Submission Instructions:

- Submit your solutions via eLearning.
- Please submit a single zip file with the following files:
 - o For programming questions:
 - Source code file(s) in C/C++, Java, or Python. For using any other programming language, please get prior approval from the TA.
 - A ReadMe file with instructions on how to compile/run the code.
 - o For all other questions, a PDF/Doc/PS/Image file with the solutions.
- Late Submission Penalty:
 - o up to 2 hours late 10% deduction
 - o 2 4 hours late 20% deduction
 - o 4 12 hours late 35% deduction
 - o 12 24 hours late 50% deduction
 - o 24 48 hours late 75% deduction
 - o more than 48 hours late 100% deduction (zero credit)

B. Problems:

1. Bigram Probabilities (45 points):

An automatic speech recognition system has provided a written sentence as the possible interpretation to a speech input.

Compute the probability of a written sentence using the bigram language model trained on $HW2_F17_NLP6320-NLPCorpusTreebank2Parts-CorpusA.txt$ (provided as Addendum to this homework on eLearning).

Note: Please use whitespace to tokenize the corpus into words that are required for the bigram model.

Compute the sentence probability under the three following scenarios:

- i. Use the bigram model without smoothing.
- ii. Use the bigram model with add-one smoothing
- iii. Use the bigram model with Good-Turing discounting.

Your computer program should do the following:

- 1. Compute the bigram counts on the given corpus (*HW2_F17_NLP6320-NLPCorpusTreebank2Parts-CorpusA.txt*).
- 2. For a given input written sentence:

- a. For each of the three scenarios, construct a table with the bigram counts for the sentence.
- b. For each of the three scenarios, construct a table with the bigram probabilities for the sentence.
- c. For each of the three scenarios, compute the total probability for the sentence.

2. POS Tagging Errors (10 points)

Find one tagging error in each of the following sentences that are tagged with the Penn Treebank POS tagset (Figure 1):

- 1. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN
- 2. Does/VBZ this/DT flight/NN serve/VB dinner/NNS
- 3. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP
- 4. Can/VBP you/PRP list/VB the/DT nonstop/JJ afternoon/NN flights/NNS

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two, three	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb, base form	eat
FW	foreign word	mea culpa	VBD	verb, past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb, gerund	eating
JJ	adjective	yellow	VBN	verb, past participle	eaten
JJR	adj., comparative	bigger	VBP	verb, non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb, 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, singular	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	44	left quote	' or "
POS	possessive ending	's	,,	right quote	or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	. ! ?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

Figure 1. Penn Treebank POS tagset

3. Transformation Based POS Tagging (45 points)

For this question, you have been given a POS-tagged training file, HW2_F17_NLP6320_POSTaggedTrainingSet.txt (provided as Addendum to this homework on eLearning), that has been tagged with POS tags from the Penn Treebank POS tagset (Figure 1). Use this POS tagged file to:

a. Create a unigram model containing the most probable POS tag for each word in the corpus's vocabulary.

Note: compute this probability by considering each word in isolation. Do NOT use any context (i.e. previous words or tags) for compute the most probable POS tag for a word.

- b. Brill's transformation rules: Implement Brill's transformation-based POS tagging algorithm using ONLY the previous word's tag to create transformation rules.
- c. Apply model (a) and (b) on the sentence below, and show the difference in error rates.

The president wants control of the board 's control