Microprocessors

Section 2

Prepared by/ Azzahraa Abdul-Aleim

- ► There are two big microprocessors' families:
- Intel(80xxx), used in PCs, like 8088,8086.
- Motorola(68xxx) like 6809,6800.

In this course, we will study the 8086 microprocessor.

8086 Characteristics:

- ▶40 pins.
- ▶16-bit data bus.
- ► 1M byte memory.
- >20-bit address bus.

8086 CPU MIN MODE (MAX MODE) **40■VCC** GND ■1 39 AD15 AD14 | → 38 A16/S3 AD13 ■3 → 37 A17/S4 AD12 ■4 → 36 A18/S5 AD11 | **→** 35 **A19/S6** AD10 I **→** 34 BHE/\$7 AD9 ■7 **→ 33**□MN/MX AD8 ■8 **→** 32 RD AD7 ■9 **→ → 31** Hold $(\mathbf{RQ}/\mathbf{GT0})$ AD6 ■10 <--- **→ 30 HLDA** (**RQ/GT1**) AD5 ■11 <---- **→ 29** WR_ (LOCK) AD4 ■12 <--- **→ 28** M/IΩ AD3 ■13 <--- **→ 27** DT/R AD2 ■14 →> **→ 26** DEN (<mark>S0</mark>) AD1 ■15 →-**→ 25** ALE (Q\$0) AD0 ■16 ---**→ 24** INTA (QS1) NMI ■17 **→** INTR ■ 18 **→ → 23**□TEST **→ 22**□READY CLK ■19 **→** → 21 RESET GND ■20 *

Pin name	Pin function					MAX	(MIN)
VCC/GND	Power supply (5V) \rightarrow pin 40, and GND (0V) \rightarrow pin 1, 20.	GND AD14	1 2	U	40 39	MODE U _{CC} AD15	(MODE /
AD15-AD0	Multiplexed address bus (ALE=1 [pin 25])/data bus(ALE=0). These are 16 address/data bus ADO-AD7 carries low-order byte	AD13 AD12 AD11 AD10 AD9 AD8 AD7 AD6 AD5	6 7 8 9	8086 C PU	38 37 36 35 34 33 32 31 30	A16/S3 A17/S4 A18/S5 A19/S6 BHE/S7 MN/MX RD RQ/GT0 RQ/GT1	(HOLD) (HLDA)
A19/S6- A16/S3	Multiplexed High order 4 bits of the 20-bit address/status bits S6-S3. Status bit S6 is always a logic 0, S5 indicates the condition of the IF flag bit, and S4 and S3 show which segment is accessed during the current bus cycle.	AD1 G	13 14 15 16 17		29 28 27 26 25 24 23 22] SI] SO] QSO] QSI] TEST	(WR) (M/ IO) (DT/ R) (DEN) (ALE) (INTA)
CLK	It provides timing to the processor for operations. Its frequency is different for different versions, i.e., 5 MHz, 8 MHz, and 10 MHz.	GND G			21		

0 0 Extra seg	
	ment
0 1 Stack seg	gment
1 0 Code or r	no segment
1 1 Data segr	ment

Pin name Pin function The interrupt request is used to request a hardware interrupt. If INTR is held high when IF = 1, the

interrupt. If INTR is held high when IF = 1, the microprocessor enters an interrupt acknowledge cycle after the current instruction has completed execution.

The non-maskable interrupt input is like INTR except that the NMI interrupt does not check to see whether the IF flag bit is a logic 1.

The microprocessor resets if this pin is held high for 4 clock periods. Instruction execution begins at FFFF0H. Also, the IF flag is cleared.

READY input is controlled to insert wait states into the timing of the microprocessor. If the READY pin is placed at a logic 0 level, the microprocessor enters wait states and remains idle.

READY

NMI

RESET

Pin name

Pin function

TEST'

Test pin is an input that is tested by the WAIT instruction. If is a logic 0, the WAIT instruction functions as an NOP. If is a logic 1, the WAIT instruction waits for it to become a logic 0.

Read(RD')

It is available at pin 32 and is used to read signals for Read operation. When RD= 0, the data bus is driven by memory or an I/O device.

MN/MX'

It stands for Minimum/Maximum. It indicates what mode the processor is to operate in; when it is high, it works in the minimum mode. While it is low, the microprocessor works in the maximum mode

BHE'

The bus high enable pin is used in the 8086 to enable the most-significant data bus bits (D15-D8) during a read or a write operation. The state of S7 is always a logic 1

Minimum Mode Pins

		1 = 1
Pin	Function	
INTA'	The interrupt acknowledgment signal is a response to INTR pin and is generated by the microprocessor. If an interrupt request is received at INTR, then the acknowledgment for it is sent through this pin. It causes the interrupt vector to be put auto data bus.	G AD AD AD
ALE	Address latch enable, if ALE=1 address/data bus (AD0-AD15) contains the memory address or I/O port number, else it will carry data.	A A A
DEN'	Data enable, activates the external data bus buffer. It is an active low signal.	A
DT/R'	Data transmission/receive, the microprocessor transfers the data when the pin is at 1, and at 0, it receives data.	A
M/IO'	This pin selects memory or I/O. This pin indicates that the microprocessor address bus contains either a memory address or an I/O port address.	IN G

Minimum Mode Pins

Pin	Function	
WR'	This signal is used for writing purposes. It is an active low signal. This signal indicates transmitting data to memory or IO devices.	GND AD14 AD13 AD12 AD11 AD10
HLDA	Hold acknowledgment indicates that the 8086/8088 has entered the hold state.	AD 9 AD 8 AD 7 AD 6 AD 5 AD 4 AD 3
HOLD	The hold input requests a direct memory access (DMA). If the HOLD signal is a logic 1, the microprocessor stops executing software and places its address, data, and control bus at the high-impedance state. If the HOLD pin is	AD 2 AD 1 AD 0 NMI INTR CLK GND

a logic 0, the microprocessor executes software normally

Maximum Mode Pins

Pin	Function				
RQ'/GT0'an d RQ'/GT1'	between the DMA and the 8086 microprocessor. These lines	GND		MAX MODE 40 Ucc 39 AD15 38 A16/S3 37 A17/S4 36 A18/S5 35 A19/S6 34 BHE/S3 33 MN/MX 32 RD	,
LOCK'	The lock output is used to lock peripherals off the system.	AD 6	8086 CPU	31 RQ/GT0 30 RQ/GT0 29 LOCK 28 S2 27 S1	•
S0,S1, S2	Status bits, the different values of these pins are taken together to indicate the function of the current bus cycle.	AD1 15 AD0 16 NMI 17 INTR 18		26	(DEN) (ALE) (INTA)
QS0, QS1	The queue status bits show the status of the internal instruction queue.	GND 20		22 READY 21 RESET	

S2	S1	SO	Function
0	0	0	INTA'
0	0	1	IO read
0	1	0	IO write
0	1	1	halt
1	0	0	Opcode fetch
1	0	1	Memory read
1	1	0	Memory write
1	1	1	passive

QS1	QS0	Function
0	0	Queue is idle
0	1	First byte of opcode
1	0	Queue is empty
1	1	Subsequent byte of opcode

Minimum mode	Maximum mode
In minimum mode there can be only one processor i.e. 8086.	In maximum mode there can be multiple processors with 8086, like 8087 and 8089.
MN/\overline{MX} is 1 to indicate minimum mode.	MN/\overline{MX} is 0 to indicate maximum mode.
ALE for the latch is given by 8086 as it is the only processor in the circuit.	ALE for the latch is given by 8288 bus controller as there can be multiple processors in the circuit.
\overline{DEN} and DT/\overline{R} for the trans-receivers are given by 8086 itself.	and DT/\overline{R} for the trans-receivers are given by 8288 bus controller.
Direct control signals $M/\overline{IO},\overline{RD}$ and \overline{WR} are given by 8086.	Instead of control signals, each processor generates status signals called $\overline{S_2}$, $\overline{S_1}$ and $\overline{S_0}$.
Control signals M/\overline{IO} , \overline{RD} and \overline{WR} are decoded by a 3:8 decoder like 74138.	Status signals $\overline{S_2}$, $\overline{S_1}$ and $\overline{S_0}$ are decoded by a bus controller like 8288 to produce control signals.
\overline{INTA} is given by 8086 in response to an interrupt on INTR line.	\overline{INTA} is given by 8288 bus controller in response to an interrupt on INTR line.
HOLD and HLDA signals are used for bus request with a DMA controller like 8237.	$\overline{RQ}/\overline{GT}$, lines are used for bus requests by other processors like 8087 or 8089.
The circuit is simpler.	The circuit is more complex.
Multiprocessing cannot be performed hence performance is lower.	As multiprocessing can be performed, it can give very high performance.