Generative models and Variational Autoencoders

Shuwen Yue

Assistant Professor, Cornell University
May 1, 2025

Generative models for general use

Stabilized diffusion model from Hugging Face

VAE Samples

Diffusion samples

GAN Samples

Types of Generative models for molecules

Generation tries to recover correct molecule reconstruction AND regularization from learned molecular embedding

Generates molecules from Gaussian noise, where a discriminator learns to identify molecules as real or fake. Two networks competing against each other.

Model learns a series of invertible transformations between a prior distribution and molecular data. Can calculate exact data likelihood.

Bilodeau et al. WIREs Computational Molecular Science. (2022)

Latent space optimization for target properties

Cite This: ACS Cent. Sci. 2018, 4, 268-276

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules

Rafael Gómez-Bombarelli, $^{\dagger,\#_0}$ Jennifer N. Wei, $^{\ddagger,\#_0}$ David Duvenaud, $^{\P,\#}$ José Miguel Hernández-Lobato, $^{\$,\#}$ Benjamín Sánchez-Lengeling, ‡ Dennis Sheberla, \ddagger_0 Jorge Aguilera-Iparraguirre, † Timothy D. Hirzel, † Ryan P. Adams, $^{\nabla,\parallel}$ and Alán Aspuru-Guzik*, $^{\ddagger,\downarrow,\downarrow_0}$

[⊥]Biologically-Inspired Solar Energy Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario MSS 1M1, Canada

[†]Kyulux North America Inc., 10 Post Office Square, Suite 800, Boston, Massachusetts 02109, United States

[‡]Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States

[¶]Department of Computer Science, University of Toronto, 6 King's College Road, Toronto, Ontario MSS 3H5, Canada

[§]Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.

[∇]Google Brain, Mountain View, California, United States

Princeton University, Princeton, New Jersey, United States

Auto-encoders vs PCA

- PCA is a linear transformation, auto-encoders can describe complicated non-linear processes
- PCA features projects in orthogonal basis. Auto-encoders features optimize for reconstruction, could have correlated features
- PCA is cheaper to compute than autoencoders
- Auto-encoders have a large number of parameters, prone to overfitting

Autoencoder vs variational autoencoder

VAE encodes data as probability distribution instead of a single point

Autoencoder vs variational autoencoder

Regularization in the form of the Kullback-Leibler divergence -> this induces better organization in the latent space

loss =
$$||x - x'||^2 + KL[N(\mu_x, \sigma_x), N(0, I)] = ||x - d(z)||^2 + KL[N(\mu_x, \sigma_x), N(0, I)]$$

Autoencoder

Variational Autoencoder

Sampling the latent space

$$p(z) = \mathcal{N}(0, 1)$$

Latent Distribution

Loss function

L2/MSE

MSE between input molecule and regenerated molecule from latent space

 $\mathcal{L}(x) = \mathbb{E}_{q(z|x)} \left[\log p(x|z) \right] - \text{KL}(q(z|x) \mid p(z))$

Kullback-Leibler divergence

"regularization", generalization, how organized the latent space is

$$\mathcal{L} = \mathcal{L}_{KL}(\mathcal{N}(\mu, \sigma) \mid \mathcal{N}(0, 1)) + \mathcal{L}_2(x, x')$$

$$\mathcal{L}_{KL} = -\frac{1}{2}(1 + \log(\sigma^2) - \mu^2 - \sigma^2)$$