Basi	cl	Use	
Duoi	•		

Include and install packages

if(!require(psych)) {install.packages("psych")}

Set directory to read files

setwd(this.path::here())

Read a file

data <-readLines("file.txt")

Sort data

headTail(Data)

Compact display data

str(Data)

Summary of data

summary(Data)

ANOVA monofactorial

Confidence interval charts

Sum = groupwiseMean(factorX~ factorY, Data, conf = 0.95, digits = 3, traditional = FALSE, percentile = TRUE)

ggplot(Sum ,aes(x=factorX, y=Mean))+ geom_errorbar(aes(ymin=Per centile.lower, ymax=Percentile.upper), width=0.05, size=0.5)+ geom_point(shape=15, size=4)+ theme_bw()+ theme(axis.title = element_text(face='bold'))+

ANOVA monofactorial

Basic Analysis Summarize with factors

Summarize(FactorX ~ FactorY, Data, digits = 4)

Normal Histograms

plotNormalHistogram(X)

Box Plot

M = tapply(Data\$factorX, INDEX = Data\$factorY, FUN = mean) boxplot(factorX~ factorY, data = Data) points(M, col="red", pch="+", cex=2)

Basic T-Test

t.test(factorX~ factorY, data=Data)

ylab("Tiempo promedio, s")

Lineal Model

Im(factorX~factorY, Data)

Anova

Anova(model, type="II")

Anova assumptions

Residuals Histogram

x = residuals(model)plotNormalHistogram(x)

Homosteacidity

plot(fitted(model), residuals(model))

plot(model)

Post-Hoc Analysis

Means

Ismeans(model, ~factorX)

Pairs with tukey

pairs(marginal, adjust="tukey")

CLD

cld(marginal, alpha=0.05, Letters = letters, adjust="tukey")

CLD Groups chart

ggplot(CLD, aes(x = factorX, y))= Ismean, label=.group)) + geom_point(shape = 15, size = 4) +geom_errorbar(aes(ymin = lower.CL, ymax = upper.CL), width = 0.2, size = 0.7) + theme_bw() + theme(axis.title = element_text(face="bold"), axis.text = element_text(face = "bold"), plot.caption = element_text(vjust = 0)) + ylab("Promedio del minimo cuadrado \n Tiempo de

ejecucion") +

geom_text(nudge_x =

c(0,0,0), nudge_y = c(1100,

1100, 1100), color="black")

ANOVA multifactorial

Interaction Charts

interaction.plot(x.factor= Data\$factorX, trace.factor= Data\$factorY, response = Data\$factorZ, fun=mean, type="b", col=c("black", "red", "green"), pch=c(19,17,15), fixed=TRUE, leg.bty="o")

Lineal Model

Im(factorX~ factorY* factorZ, data=Data)

Data Transformation

Square Root

T.sqrt = sqrt(Data\$factorX)

model = Im(T.sqrt ~ factorX * factorY * factorZ, data=Data)

Anova(model, type="II")

Cubic Power

T.cub = sign(Data\$factorX) * abs(Data\$factorX) ^ (1/3)

model = Im(T.cub ~ factorY * factorZ* factorW, data=Data)

Anova(model, type="II")

Logarithmic

T.log = log(Data\$factorX)

model = Im(T.log ~ factorY* factorZ * factorW , data=Data)

Anova(model, type="II")

Levene Test

leveneTest(T.log ~ factorX * factorY * factorZ, data=Data)

Group and Interaction charts

ggplot(Sum, aes(x = factorX,y = mean, color = factorX)) + geom_errorbar(aes(ymin = mean - se, ymax = mean + se), width = 0.2, size = 0.7, position = pd) +geom_point(shape=15, size=4, position=pd) + theme_bw() + theme(axis.title = element_text(face="bold")) +

scale_color_manual(values= c("black", "red", "green")) ylab("Description")

Non parametric tests

Create ranges

XT = xtabs(~factorX+ factorY.f, data=Data) XT

prop.table(XT, margin = 1)

Ranges histogram

histogram(~factorY.f | factorX, data = Data, layout = c(1, 3))

Kruskal Test

kruskal.test(factorY~ factorX, data=Data)

Dunn Test

dunnTest(factorY~ factorX, data = Data, method = "bh")