データ構造とアルゴリズム (第10回)

グラフのアルゴリズム(1)

第6章 グラフアルゴリズム

- □ 6.1 グラフの利用
- □ 6.2 グラフの表現
- □ 6.3 用語の定義
- □ 6.4 グラフの探索
- □ 6.5 最短経路問題
- □ 6.6 ネットワークフロー

第6章 グラフアルゴリズム

- □ 6.1 グラフの利用
- □ 6.2 グラフの表現
- □ 6.3 用語の定義 → 自習(付録参照)
- □ 6.4 グラフの探索
- □ 6.5 最短経路問題
- □ 6.6 ネットワークフロー

第6章 グラフアルゴリズム

- □ 6.1 グラフの利用
- □ 6.2 グラフの表現
- □ 6.3 用語の定義 → 自習(付録参照)
- □ 6.4 グラフの探索
- □ 6.5 最短経路問題
- □ 6.6 ネットワークフロー

第6章 グラフアルゴリズム

- □ 6.1 グラフの利用
- □ 6.2 グラフの表現
- □ 6.3 用語の定義 → 自習(付録参照)
- □ 6.4 グラフの探索
- □ 6.5 最短経路問題

第11週

□ 6.6 ネットワークフロー

第6章 グラフアルゴリズム

□ 6.1 グラフの利用

□ 6.2 グラフの表現

□ 6.3 用語の定義 → 自習(付録参照)

□ 6.4 グラフの探索

□ 6.5 最短経路問題

□ 6.6 ネットワークフロー

第11週

第12週

この章の学習目標

- □ 隣接行列, 隣接リストとその特徴を説明できる
- □ グラフアルゴリズムを実行例を示しながら説明できる
 - ■幅優先探索,深さ優先探索,最短経路,最大フロー
- □ 上記アルゴリズムの(漸近的)計算時間を説明できる

グラフによる表現の例

- グラフは「ものともののつながり」を表現する 数学的構造
- □ 道路網・通信路
- □回路
- □ ソーシャルネットワーク

などなど,応用は山ほど存在

グラフの表現

- □ グラフG = (V, E) (|V| = n, |E| = mとする)を計算機上で 表現するには?
- □ 2つの表現(データ構造)
 - 隣接行列(Adjacency matrix): 2次元配列を利用
 - 隣接リスト(Adjacency list): リスト配列を利用

(リスト配列:各要素がリストであるような配列)

それぞれ詳しく説明

隣接行列(無向グラフ)

- □無向グラフのとき
 - □ 辺(i,j)が存在:有向辺 $i \rightarrow j \lor j \rightarrow i$ が両方あると思う

- 行列は対称になる(メモリ量は同様にO(n²)ビット)
 - ■情報量的には半分は無駄だが、あえてこうするのが普通

隣接行列(有向グラフ)

- □ n×n正方行列(=2次元配列)で表現
 - 有向辺i → jが存在 ⇔ i,j成分が1

□ メモリ使用量0(n²)ビット

隣接行列(重み付きグラフ)

□ 辺に重みがついているときは、行列の各成分に重みを 記載する

- □ メモリ使用量 $O(n^2 \log M)$ ビット(Mは重みの最大値)
 - Mを定数と思うとO(n²)ビット

隣接リスト(有向グラフ)

□ 各頂点の接続辺のリストからなる配列で表現

■ メモリ使用量0((n+m) log n)ビット

隣接リスト (無向グラフ)

□ 隣接行列のときと同様に,双方向辺として扱う

隣接リスト (重み付きグラフ)

□ 辺の重みはリストの中に記載する (レコードの要素として(相手の頂点, 辺重み)の対を記録する)

どちらを使う?

- m = O(n): 疎なグラフ(sparse graph)
 - ■通常隣接リストを使う
 - ■隣接行列ではスペースの無駄が多すぎる
- $m = \omega(n)$ かつ $o(n^2)$: 密でないグラフ/疎でないグラフ
- $m = \Omega(n^2)$: 密なグラフ(dense graph)
 - 場合による(必要な操作に応じて使い分ける)

実世界におけるグラフデータは疎なグラフであることが多く 利用頻度でいうと隣接リストのほうが高い

クイズ

- 次の操作はそれぞれ隣接行列,隣接リストで処理するときどの程度時間がかかるか?
 - 1. 与えられた頂点vの隣接頂点をすべてチェックする
 - 2. 与えられた辺(i,j)について逆辺(j,i)が存在するか どうかチェックする
 - 3. 重み付きグラフで,辺(*i*, *j*)の重みを変更する
 - 4. 辺(*i*, *j*)を追加する

余談:

- 最近のモダンなプログラミング言語を用いる場合, 隣接リストのリスト部分は,可変長配列を利用する ことが多い
- □ 可変長配列を用いて、かつリスト中の頂点番号を ちゃんとソートすることを前提とすれば、計算量は 以下のようになる
 - \bullet (i,j)に対して(j,i)の存在チェック: $O(\log \delta_i)$
 - **□** (*i*, *j*)の重みの変更: $O(\log \delta_i)$
- \Box その代わり,辺(i,j)の追加/削除は $\Omega(\delta_i)$ 必要
 - ■頻繁にグラフを変形させるときは効率悪い

クイズ

□ 答え

 δ_v :頂点vの次数

- 1. 与えられた頂点vの隣接頂点をすべてチェックする
 - 隣接リスト: *O*(δ_v) / 隣接行列: *O*(*n*)
- 与えられた辺(*i*, *j*)について逆辺(*j*, *i*)が存在するかどうかチェックする
 - 隣接リスト: 0(δ_i) / 隣接行列: 0(1)
- 3. 重み付きグラフで,辺(*i*, *j*)の重みを変更する
 - 隣接リスト: *O*(δ_i) / 隣接行列: *O*(1)
- 4. 辺(*i*, *j*)を追加する
 - 隣接リスト: 0(1) / 隣接行列: 0(1)

幅優先探索

グラフの探索

グラフ中の頂点を(何らかの規則に従った順序で) 順次チェックする

幅優先探索(Breadth First Search: BFS)

- ・ 始点から探索できるものすべて探索(近い方優先)
- キューを使う

深さ優先探索(Depth First Search: DFS)

- ・ 始点からの距離(遠い方) を優先して 探索
- スタックを使う

幅優先探索 (BFS)

BFSアルゴリズム(1)

未訪問

既訪問

BFSアルゴリズム(2)

BFSアルゴリズム(3)


```
アルゴリズム 6.1 BFS
入力: G=(V,E), 始点 seV
for (各頂点 veV)
頂点 v に未訪問の印をつける
始点 s に既訪問の印をつける;
キュー Q=[s] とする;
while( Qが空でない) {
    Qから頂点 u を取り出す;
    for (veadj(u)){ u の隣接頂点
    if (vが未訪問) { 集合を返す
        v を既訪問にする;
        v をQに入れる;
    }
    }
}
```

BFSアルゴリズム(4)

未訪問

既訪問

```
アルゴリズム 6.1 BFS
入力: G=(V,E), 始点 s e V
for (各頂点 v e V)
頂点 v に未訪問の印をつける
始点 s に既訪問の印をつける;
キュー Q=[s] とする;
while(Qが空でない) {
    Qから頂点 u を取り出す;
    for (v e a d j u)) {
        if (v が 未 訪問) {
        v を既訪問にする;
        v をQに入れる;
        }
    }
}
```

未訪問

既訪問

BFSアルゴリズム(5)

BFSアルゴリズム(6)

BFSアルゴリズム(7)

BFSアルゴリズム(8)

BFSアルゴリズム(9)

BFSアルゴリズム(10)

BFSアルゴリズム(11)

BFSアルゴリズム(12)

BFSアルゴリズム結果

BFSアルゴリズムの実行時間

(隣接リストを用いた場合)

```
アルゴリズム 6.1 BFS
入力: G=(V,E), 始点 s∈V
for (各頂点 v∈V)
                        O(n)
 頂点 v に未訪問の印をつける
始点 s に既訪問の印をつける;
キュー Q=[s] とする;
while(Qが空でない){
                        実行全体を通して考えると…
     Qから頂点 u を取り出す;
     for (v \in adj(u)){
                        キューの各操作= 0(1)
      if (vが未訪問) {
                        内側ループの総回数
        v を既訪問にする;
                          =次数の総和=0(m)
         v をOに入れる;
                        各頂点は Q に1度入れられる
                          (= O(n))
                            合計 O(m+n)
```

幅優先木

- BFSにおいて(訪問元,訪問先)の辺をすべて 集めたものは(sを根とする)全域木になる
 - n-1頂点の連結グラフなので

幅優先探索の応用

- □ BFS木は「始点から各頂点への最短経路」を 与える
 - ■重みなしグラフの最短経路発見に使える!

幅優先木の構成と記録

幅優先木の構成と記録

幅優先木の構成と記録

幅優先木の構成と記録

幅優先木の構成と記録

幅優先木の構成と記録

経路の復元

深さ優先探索

深さ優先探索 (DFS)

DFSアルゴリズム(1)

DFSアルゴリズム(2)

DFSアルゴリズム(3)

DFSアルゴリズム(4)

DFSアルゴリズム(5)

DFSアルゴリズム(6)

DFSアルゴリズム(7)

DFSアルゴリズム(8)

DFSアルゴリズム(9)

DFSアルゴリズム(10)

DFSアルゴリズム(11)

DFSアルゴリズム(12)

DFSアルゴリズム(13)

DFSアルゴリズムの結果

DFSアルゴリズムの実行時間

(隣接リストを用いた場合)

```
アルゴリズム 6.2 DFS
入力: G=(V,E), 始点 s∈V
スタック S を初期化
                        O(n)
for (各頂点 v∈V)
 頂点 v に未訪問の印をつける
始点 s に既訪問の印をつける;
for(各辺(s,v)∈E)
                           <mark>実</mark>行全体を通して考えると…
 辺 (s,v) をスタックに入れる
while(Sが空でない) {
                            スタックの各操作: 0(1)
     Sから辺 (x,y)を取り出す;

<u>◆</u>全ての辺が2回ずつpush: 0(m)
     if( yが未訪問) {
      yを既訪問にする;
      for( yに接続する各辺 (y,z)∈E)
        (y,z)をSに入れる;
                                合計 O(m+n)
```

アルゴリズムの実行時間とDFS木

□ アルゴリズムの実行時間:幅優先と同じくO(n+m)

(隣接リストのとき)

- □幅優先探索と同様に「DFS木」を定義できる
 - ■訪問元→訪問先の辺を取る
 - ■格納の仕方も幅優先探索のときと同じ

再帰を用いたDFS

- □ DFSの実現は,再帰呼び出しによりスタックを模倣する 実現方法もある
 - ■実装はこちらのほうがシンプル

```
アルゴリズム6.3 DFS(再帰版, 木の構成付き)
入力: G=(V,E) 始点s e V
T[0, n-1]: 幅優先木を記録する配列
T[s] = s:
s に対する手続きdfs(s)を呼び出す
手続き dfs(u) {
頂点uに既訪問の印をつける
for(頂点uに接続する各辺(u,v) ∈ E)
if (頂点 v は未訪問) {
T[v] = u;
dfs(v)
}
```

動作例

T 0 0 0 0 0 0

動作例

T 0 0 0 0 0 0

動作例

T 0 0 1 0 0 0

動作例

0 0 1 0 2 0

動作例

dfs(0)
dfs(1)
dfs(2)
dfs(4)
return
return

動作例

dfs(0)
dfs(1)
dfs(2)
dfs(4)
return
return
dfs(3)

T 0 0 1 1 2 0

動作例


```
dfs(0)
    dfs(1)
    dfs(2)
    dfs(4)
    return
    return
    dfs(3)
    dfs(5)
```

T 0 0 1 1 2 3

DFS木の性質

□ *G* = (*V*,*E*): (有向 or 無向)グラフ

 $v_1, v_2, ... v_n$: DFSの探索順序($s = v_1$)

 $T: GOv_1$ を根とするDFS木

DFS木の性質

 v_i を根とするTの部分木は、 $G - \{v_1, v_2, ... v_{i-1}\}$ において v_i から到達可能な頂点をすべて含む

動作例

dfs(1)
dfs(2)
dfs(4)
return
return
dfs(3)
dfs(5)
return
return
return
return

T 0 0 1 1 2 3

DFS木の性質

DFS木の性質

 v_i を根とするTの部分木は、 $G - \{v_1, v_2, ... v_{i-1}\}$ において v_i から到達可能な頂点をすべて含む

DFS木の性質

DFS木の性質

 v_i を根とするTの部分木は、 $G - \{v_1, v_2, ... v_{i-1}\}$ において v_i から到達可能な頂点をすべて含む

DFS木の性質

DFS木の性質

 v_i を根とするTの部分木は、 $G - \{v_1, v_2, ... v_{i-1}\}$ において v_i から到達可能な頂点をすべて含む

DFS木の性質

DFS木の性質

 v_i を根とするTの部分木は, $G - \{v_1, v_2, ... v_{i-1}\}$ において v_i から到達可能な頂点をすべて含む

性質1の応用:トポロジカルソート

性質1の応用:トポロジカルソート

トポロジカルソート

- □ 入力
 - G = (V, E): 閉路のない有向グラフ(DAGという)
 - 閉路があると問題が成立しないことに注意
- 。 出力
 - ■以下を満たす頂点の並び 「Gにおいてuからvに到達可能ならば,並びに おいてuはvに先行する」

EをV上の部分順序関係と思ったとき、順序関係に矛盾しないようにVを並べる問題といってもよい

トポロジカルソート:アルゴリズム

□ DFS木の性質1を思い返す

DFS木の性質

 v_i を根とするTの部分木は, $G - \{v_1, v_2, ... v_{i-1}\}$ において v_i から到達可能な頂点をすべて含む

□ これと「子は親よりも探索順序において後」という事実から

DFSの探索順の並びはトポロジカルソート列 (の一部)

という事実がわかる

トポロジカルソート:アルゴリズム

- □ 実際には、1つの頂点からDFSを始めても全頂点を訪問できるとは限らない
 - →DFSを繰り返す

```
入力: G=(V,E) 始点s∈V
出力: リストL
while (未訪問頂点が存在) {
    sを任意の未訪問頂点とする
    s に対する手続きtsort(s)を呼び出す
}
手続き tsort(u) {
    頂点uに既訪問の印をつける
    for(頂点uに接続する各辺(u,v)∈E)
    if (頂点 v は未訪問) {
        tsort(v);
        }
        Lの先頭にuを追加
}
```

最後に

- □ DFSは他にも色々な応用がある
 - 有向グラフがサイクルを持つか?の判定
 - ■強連結成分への分解
 - ■関節点,橋の発見
 - □平面性の判定

などなど...

グラフとは

- □ 頂点(vertex)を辺(edge)でつないだもの
 - G = (V, E)のような二項組で書く
 - *V*: 頂点集合(集合であればなんでもよい)
 - **E**: 辺集合 (*E*⊆*V*×*V*, 空もOK)
 - 有向グラフ:辺に向きあり/無向グラフ:辺に向きなし

頂点集合V = {1,2,3,4,5,6}の 無向グラフの例

頂点集合V = {1,2,3,4,5,6}の 有向グラフの例

付録:グラフ用語集

グラフとは

- □ 頂点(vertex)を辺(edge)でつないだもの
 - G = (V, E)のような二項組で書く
 - *V*: 頂点集合(集合であればなんでもよい)
 - E: 辺集合 ($E \subseteq V \times V$)
 - 有向グラフ:辺に向きあり/無向グラフ:辺に向きなし

無向グラフの図示例

頂点集合V = {1,2,3,4,5,6}の 有向グラフの図示例

グラフとは

- □ 頂点(vertex)を辺(edge)でつないだもの
 - G = (V, E)のような二項組で書く
 - *V*: 頂点集合(集合であればなんでもよい)
 - **■** *E* : 辺集合 (*E* ⊆ *V* × *V*)
 - 有向グラフ:辺に向きあり/無向グラフ:辺に向きなし

グラフとは

グラフとは

- □ 重み付きグラフ(weighted graph)
 - *V*: 頂点集合(集合であればなんでもよい)
 - *E* : 辺集合 (*E* ⊆ *V* × *V*)
 - w: 重み関数 (w: $E \to \mathbb{N}$) (値域は \mathbb{R} とするときもある)

基本的な用語

- □ 頂点 v_1 が頂点 v_2 に<mark>隣接</mark>(adjacent)している
 - □ 辺(v₁, v₂)がある
- □ 辺eが頂点v₁に接続 (incident) している
 - ullet eの端点のいずれかが v_1 (すなわち, $e=(v_1,v_*)$)

基本的な用語

- □ 頂点v₁の次数(degree)
 - □接続する辺の本数

(それぞれ「でじすう」 「いりじすう」と読む)

■ 有向グラフの場合, 出次数(out-degree)と 入次数(in-degree)の2つがある

基本的な用語

- 頂点 v_1 と頂点 v_2 が連結(connected)している 辺をたどって v_1 から v_2 に行ける
- 特に、任意の2頂点が連結であるとき、そのグラフは 連結であるという

 v_1 と v_2 は連結 v_1 と v_3 は非連結 v_2 と v_3

基本的な用語

- 頂点 v_1 と頂点 v_2 が連結(connected)している 辺をたどって v_1 から v_2 に行ける
- 特に、任意の2頂点が連結であるとき、そのグラフは 連結であるという

基本的な用語

- 頂点 v_1 と頂点 v_2 が<mark>連結</mark>(connected)している ■ 辺をたどって v_1 から v_2 に行ける
- 特に、任意の2頂点が連結であるとき、そのグラフは 連結であるという

基本的な用語

- 頂点 v_1 と頂点 v_2 が<mark>連結</mark>(connected)している
 辺をたどって v_1 から v_2 に行ける
- 特に,任意の2頂点連結であるという

こういうのは連結だが 連結成分とは言わない (極大=入れられるものはすべて入れる)

 $v_1
ewline v_2$ は連結 $v_1
ewline v_3$ は非連絡

グラフ全体としては非連結 (連結成分数2)

■ 辺をたどって v_1 から v_2 に行ける

□ 頂点v₁と頂点v₂が連結(connected)している

特に,任意の2頂点た連結であるという

互いに連結な頂点のグループ からなるグラフ(の一部分)を 連結成分(connected component)と呼ぶ(*)

 v_1 と v_2 は連結

 $\begin{bmatrix} v_1 & b & v_3 \\ v_2 & b & v_3 \end{bmatrix}$ は非連結

グラフ全体としては非連結 (連結成分数2)

(誘導)部分グラフと全域部分グラフ

- G = (V, E)の部分グラフ(subgraph)G' = (V', E')
 - $□ V' \subseteq V, E' \subseteq E$ であるようなグラフ
 - ただしE'中の辺の端点はV'に含まれないといけない
- □ 特にV = V'のとき, 全域部分グラフ(spanning subgraph)と呼ぶ

もとのグラフ

部分グラフ

全域部分グラフ

これも全域部分グラフ

(誘導)部分グラフと全域部分グラフ

- $G = (V, E) OV' による誘導部分グラフ <math>(V' \subseteq V)$ (subgraph induced by V')
 - \bullet $E' = (V' \times V') \cap E$ であるような部分グラフG' = (V', E')
 - 両端点がV'に含まれるような辺はすべて含まれないといけない

もとのグラフ

(色のついた頂点集合による) 誘導部分グラフ

部分グラフだが 誘導部分グラフではない

パスに関して補足(1)

□ 自分自身から自分自身へのパスは特に閉路(cycle)と呼ぶ

パスに関して補足(1)

□ 自分自身から自分自身へのパスは特に閉路(cycle)と呼ぶ

パスに関して補足(2)

□ これは v_1 から v_2 へのパスだろうか?

パスに関して補足(2)

□ これは v_1 から v_2 へのパスだろうか?

- □一応パスである
- ■同じ頂点を2回通らないものを 「単純(simple)なパス」と呼んで区別する
- ■ただし、「パス」といったとき、暗黙に 単純なパスを指していることも多い

(同様に閉路も「単純な閉路」と区別する)

木(Tree)

□ 定義:閉路を持たない連結グラフ

木(Tree)

□ 定義:閉路を持たない連結グラフ

木(Tree)

□ 定義:閉路を持たない連結グラフ

木(Tree)

特別な1頂点(根(root)という)を指定して親子関係を 定めたものを根つき木(rooted tree)と呼ぶ

木(Tree)

特別な1頂点(根(root)という)を指定して親子関係を 定めたものを根つき木(rooted tree)と呼ぶ

eはdの親(parent) / dはeの子(child) hはeの子孫(descendant) / eはhの祖先(ancestor)