

Instituto Tecnológico de Estudios Superiores de Monterrey

Campus Puebla

Implementación de robótica inteligente (Gpo 501)

Actividad 1.12 (Modelado Cinemático de Piernas)

Alumno

Víctor Manuel Vázquez Morales A01736352

Fecha de entrega

Lunes 27 de Mayo de 2024

- **1. Obtener** la matriz de transformación **homogénea T** de los siguientes sistemas la cual relacione la posición y orientación del extremo del robot respecto a su sistema de referencia fijo (la base).
- 2. Implementar el código requerido para generar el cálculo de las matrices homogéneas (H1, H2, H3, etc.) y la matriz de transformación (T) de cada sistema. Simulando cada una de las transformaciones desde la trama absoluta hasta la trama final.

Sistema 1:

Matrices de transformación:

1. Observemos que para este primer sistema, lo primero que debemos realizar es una rotación de 90 grados sobre el eje x y, a su vez, nos trasladaremos en 3 unidades sobre el eje z:

```
%Calculamos las matrices de transformación homogénea
H0 =SE3; % Punto de origen
H1=SE3(rotx(pi/2), [0 0 3]);
```

2. Una vez que hemos llegado a este punto, nuestro sistema se traslada en 3 ocasiones a lo largo de su eje x, por lo que agregaremos movimientos de una unidad en este eje:

```
H2=SE3([1 0 0]);
H3=SE3([1 0 0]);
H4=SE3([1 0 0]);
```

3. Finalmente, procedemos a obtener la matriz de transformación homogénea global:

```
H20= H1*H2;
H30= H20*H3; %Matriz de transformación homogénea global de 3 a 0
H40= H30*H4;
```

Simulación del sistema:

Sistema 2:

Matrices de transformación:

1. Observemos en el sistema que la primera transformación es una rotación de 90 grados sobre el eje x, a la vez que este se traslada cierta unidad (definida como 2 en este caso) a lo largo de su eje z:

```
%Calculamos las matrices de transformación homogénea
H0=SE3; %Punto de origen
H1=SE3(rotx(pi/2), [0 0 2]);
```

2. Posterior a esto, el sistema rota 90 grados sobre el eje z a la vez que se traslada ciertas unidades (2) sobre su eje y:

```
H2=SE3(rotz(pi/2), [0 2 0]);
```

3. Una vez en este punto, el sistema rota de manera negativa 90 grados sobre su eje z y a su vez se traslada en sentido negativo (1 unidad) sobre su eje y:

```
H3=SE3(rotz(-pi/2),[0 -1 0]);
```

4. Para el siguiente movimiento, el sistema tiene una traslación de a lo largo de su eje x y, además, este rota tanto sobre el eje x como sobre el eje z:

```
rotate = (rotx(pi/2)) % Rotacion extra para el sistema
H4=SE3(rotz(pi/2)*rotate, [2 0 0])
```

5.El sistema se traslada 1 unidad en z:

```
H5=SE3([0 0 1])
```

6. Por último, obtenemos la matriz de transformación homogénea global y simulamos:

```
H20= H1*H2;

H30= H20*H3 %Matriz de transformación homogenea global de 3 a 0

H40= H30*H4

H50= H40*H5
```

Simulación del sistema:

Sistema 3:

Matrices de transformación:

1. Comenzamos por definir o ajustar la estructura:

```
%Calculamos las matrices de transformación homogénea
new_origin = [0 4 0];
rotateOrigin = rotz(-pi/2);
H0=SE3(new_origin);
H1=SE3(rotateOrigin, newOrigin);
```

- 2. Para este caso, notemos que los movimientos que realiza el sistema son únicamente traslaciones:
- a) El sistema se traslada 4 unidades en x:

```
%Movimientos - traslación H2=SE3([4\ 0\ 0]); % en x
```

b) El sistema se traslada -4 unidades en z:

```
H3=SE3([0 \ 0 \ -4]); % en z
```

c) El sistema se traslada 2 unidades en y:

```
H4=SE3([0 2 0]); % en y
```

d) El sistema se traslada 2 unidades en y:

```
H5=SE3([0 2 0]);
```

3. Finalmente, calculamos la matriz de transformación global:

```
H20= H1*H2;

H30= H20*H3; %Matriz de transformación homogenea global de 3 a 0

H40= H30*H4;

H50= H40*H5;
```

Simulación del sistema:

