

Estimating Spatially-Varying Lighting in Urban Scenes with Disentangled Representation

Jiajun Tang¹, Yongjie Zhu², Haoyu Wang¹, Jun Hoong Chan¹, Si Li², Boxin Shi^{1, 3}

PROBLEM&CONTRIBUTION

Goal: Estimating spatially-varying lighting in urban scenes.

Contributions: A flexible and editable local lighting estimation by

- using disentangled global and local lighting representation
- designing SOLD-Net network architecture for spatially-varying outdoor lighting estimation with disentangled representation
- enhancing synthetic data and capturing unclipped HDR real data

FORMULATION

Global lighting disentanglement:

Local property disentanglement:

 $z_{local} \in \mathbb{R}^{64}$: local content information

 $=\Psi(z_{\text{local}})$

 $z_{\text{vis}} \in \mathbb{R}$: sun visibility, M_{sun} : determined by $z_{\text{pos}} \in \mathbb{R}^2$

Spatially-varying lighting disentanglement:

 $P_{\rm app} \odot M_{\rm sil}$

Compact encoding:

Relighting

MAE↓

3.384/4.206 0.186/0.310 0.337/0.601

0.140/0.274 2.814/6.496 0.081/0.299 0.159/0.552

0.190/0.244 **1.943/2.367** 0.081/0.269 **0.139**/0.469

0.170/**0.179** 2.785/2.748 0.093/0.318 0.179/0.560

0.128/0.240 2.394/4.872 **0.075/0.259** 0.145/**0.437**

 $All \rightarrow z_{
m sun} \in \mathbb{R}^{45}$

METHOD

Network Architecture: SOLD-Net consists of a global lighting encoder-decoder, a local content encoder-renderer, and a spatiallyvarying lighting estimator.

Self-supervised Losses: Info loss (IF) [2], local identity loss (ID), and cross rendering loss (CR) are used to ensure the disentanglement of different lighting components.

$$\mathcal{L}_{\mathrm{IF}} = \max \mathbb{E}_{z_{\mathrm{sky}}} \left[\log E_{z_{\mathrm{sky}}}^{i} \left(z_{\mathrm{sky}}^{\prime} \middle| P_{\mathrm{sky}}^{\prime} \right) \right] + \max \mathbb{E}_{z_{\mathrm{sun}}, z_{\mathrm{pos}}} \left[\log E_{z_{\mathrm{sun}}}^{i} \left(z_{\mathrm{sun}}^{\prime} \middle| P_{\mathrm{sun}}^{\prime} \right) \right]$$

$$\mathcal{L}_{\mathrm{ID}} = \parallel z_{\mathrm{local}}^{\prime 1} - z_{\mathrm{local}}^{\prime 2} \parallel_{1}$$

 $\mathcal{L}_{CR} = \|P_{local}^{1} \odot M_{sil} - P_{local}^{'1}(z_{local}^{'2}) \odot M_{sil}\|_{1} + \|P_{local}^{2} \odot M_{sil} - P_{local}^{'2}(z_{local}^{'1}) \odot M_{sil}\|_{1}$

 $E_{z_{skv}}^i$ and $E_{z_{sun}}^i$ are encoders, $\{P_{local}^1, P_{local}^2\}$ are paired local lighting (same local content, different global lighting), $P'_{local}(z'^i_{local})$ is rendered appearance.

EXPERIMENT RESULTS

Φ: lighting (rendering) process

 P_{global}

Global lighting estimation:

Methods	Panorama		Relighting				
	MAE↓	RMSE↓	MAE↓	RMSE↓			
SkyNet[3]	0.431	8.357	0.226	0.253			
SOLID-Net[1]	0.384	6.360	0.153	0.174			
Ours	0.439	7.607	0.098	0.119			
Quantitative evaluation on synthetic dataset							
Methods	$oldsymbol{\xi}_{ang}\downarrow$	$\xi_{\mathrm{az}}\downarrow$		$\xi_{ m el} \downarrow$			
SkyNet[3]	27.38°/32.83°	30.11%	32.81°	6.93°/14.20°			
SOLID-Not[1]	23 000/30 820	26 369/	33 020	5 000/11 050			

Sun position estimation on synthetic/real dataset ξ_{ang} : angular error ξ_{az} : azimuth error ξ_{el} : elevation error

Methods

20.31°/20.76°

Lighting model comparison:

24 spherical (24576 parameters)(128 parameters) (144 parameters) (108 parameters)

Spatially-varying lighting estimation:

Virtual object insertion on real data

Relighting results on in-the-wild data

Quantitative evaluation on synthetic/real dataset **Ablation study:**

Methods	Reconstruction		Cross Rendering		
	MAE↓	RMSE↓	MAE↓	RMSE↓	
Ours w/o M_{\cos}	0.034	0.083	0.036	0.085	
Ours w/o \mathcal{L}_{CR}	0.029	0.083	0.048	0.101	
Ours w/o $\mathcal{L}_{ ext{ID}}$	0.032	0.087	0.035	0.089	
Ours	0.028	0.075	0.031	0.079	

3.61°/8.44°

Local appearance evaluation on synthetic dataset

Real-world local lighting capture

Local lighting editing

- [1] Zhu et al., Spatially-varying outdoor lighting estimation from intrinsics, CVPR 2021.
- [2] Yu et al., Hierarchical disentangled representation learning for outdoor illumination estimation and editing, ICCV 2021.
- [3] Hold-Geoffroy et al., Deep sky modeling for single image outdoor lighting estimation, CVPR 2019.

