Infintesimal Calculus 3

Lecture 1, Sunday October 23, 2022 Ari Feiglin

Just like how the focus of Calculus 1 and 2 were of single value functions:

$$f: X \subseteq \mathbb{R} \longrightarrow \mathbb{R}$$

The focus of this course will be on functions:

$$f: X \subseteq \mathbb{R} \longrightarrow \mathbb{R}^m$$

1.1 A Soft Review of Linear Algebra

Definition 1.1.1:

We will recall that a normed vector space V is a vector space equipped with a norm function:

$$\|\cdot\|:W\longrightarrow\mathbb{R}$$

Which satisfies the following axioms:

- Positivity: $||v|| \ge 0$ for every $v \in V$.
- Homogeneity: $\|\alpha v\| = |\alpha| \cdot \|v\|$ for every $\alpha \in \mathbb{R}$ and $v \in V$.
- The Triangle Inequality: $||v + u|| \le ||v|| + ||u||$ for every $v, u \in V$.

Notice that by the triangle inequality:

$$||v - u|| + ||u|| \ge ||v|| \quad ||v - u|| + ||v|| \ge ||u||$$

So we have that

$$||v - u|| \ge |||v|| - ||u|||$$

Example:

Some examples of norms over \mathbb{R}^n are:

- $\bullet \quad \|x\|_{\infty} = \max |x_1|, \dots, |x_n|$
- $||x||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}}$ for $1 \le p < \infty$.

These are actually special cases of the more general ℓ^p norm, which itself can be seen as a special case of the $L^p(\mathbb{R})$ norm.

Example:

The set:

$$C([a,b]) := \{f : [a,b] \longrightarrow \mathbb{R} \mid f \text{ is continuous}\}$$

is also a vector space, and we can norm it by the $\left\| \cdot \right\|_{\max}$ norm:

$$||f||_{\max} \coloneqq \max_{x \in [a,b]} f(x)$$

We can also define the $\|\cdot\|_p$ norm:

$$||f||_p \coloneqq \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}}$$

This too is a specific case of the $L^p[a,b]$ norm.

Note that C[a,b] is infinite-dimensional. We can show this by showing that the set $\{x^n\}_{n\in\mathbb{N}}\subseteq C[a,b]$ is linearly independent. Suppose then that there is a finite sum of x^n s which equals 0:

$$\sum_{k=1}^{n} a_k x^{k_n} = 0$$

Notice that the sum above is a polynomial, we will let it equal p(x), so $p \equiv 0$. But we know that a polynomial is identically 0 if and only if its coefficients are all 0, meaning that $a_k = 0$. So $\{x^n\}_{n \in \mathbb{N}}$ is indeed linearly independent, so C[a, b] is infinite dimensional.

Definition 1.1.2:

Again recall that given a vector space V, an inner product on V is a function:

$$\langle \cdot, \cdot \rangle : V \times V \longrightarrow \mathbb{R}$$

Such that:

- $\langle v, v \rangle \ge 0$ and is 0 if and only if v = 0.
- $\bullet \quad \langle \alpha v, u \rangle = \alpha \, \langle v, u \rangle$
- $\langle v, u \rangle = \overline{\langle u, v \rangle}$. Since we are working over \mathbb{R} we can simplify this to $\langle v, u \rangle = \langle u, v \rangle$.

If V has an inner product, it is called an inner product space.

An inner product also generates a norm, we can define:

$$||v|| = \sqrt{\langle v, v \rangle}$$

Example:

Over C[a,b] we can define:

$$\langle f, g \rangle = \int_a^b f(x) \cdot g(x) \, dx$$

This inner product actually generates the $\|\cdot\|_2$ norm.

Example:

The ℓ^p space is the space of all infinite sequences $\{a_n\}_{n=1}^{\infty}$ such that:

$$\sum_{n=1}^{\infty} |a_n|^p < \infty$$

And we define the ℓ^p norm, also denoted $\|\cdot\|_p$ to be the pth root of this.

Over ℓ^2 we can define an inner product:

$$\langle \{a_n\}_{n=1}^{\infty}, \{b_n\}_{n=1}^{\infty} \rangle = \sum_{n=1}^{\infty} a_n \cdot b_n$$

It can be seen that this is well-defined and it is trivial to see that this generates the ℓ^2 norm.

Definition 1.1.3:

Given a normed vector space V, we can define the distance metric to be:

$$d(v, u) = ||v - u||$$

Definition 1.1.4:

A set M equipped with a function:

$$d(\cdot,\cdot)\colon M\times M\longrightarrow \mathbb{R}_{>0}$$

Which satisfies the following:

- Positivity: $d(v, u) \ge 0$ and is 0 if and only if v = u.
- Symmetry: d(v, u) = d(u, v).
- The Triangle Inequality: $d(v, u) \leq d(v, w) + d(w, u)$.

Notice then that a normed vector space is a metric space since:

$$d(v, w) + d(w, u) = ||v - w|| + ||w - u|| \ge ||v - u|| = d(v, u)$$

And the other two requirements are simple to prove.

Example:

Not every metric space is a vector space. We can define the \mathbb{S}^n space as:

$$\mathbb{S}^n \coloneqq \left\{ v \in \mathbb{R}^{n+1} \mid ||v|| = 1 \right\} \subset \mathbb{R}^{n+1}$$

We can define a metric on \mathbb{S}^n to be the length of the smallest arc between two points. This is obviously not a vector space, but it is a metric space.