

Bereich Mathematik und Naturwissenschaften, Fakultät Mathematik, Institut für Algebra

Jun.-Prof. Friedrich Martin Schneider, Dr. Henri Mühle.

Wintersemester 2018/19

4. Übungsblatt zur Vorlesung "Diskrete Strukturen für Informatiker"

Assoziatiulat, (KHM) th= Kt(mHn) (4)

- H(D), m+0=n=0+n

 H(D), m+0=n=0+n

 H(D), generable Aussage Kann ungefrant window Zu H'(n)

 This in festes may

 The property of Zahlen kommutativ ist, also dass m + n = n + m für zwei beliebige natürliche Zahlen m, n gilt.
 - Ü19. (a) Beweisen Sie mit vollständiger Induktion, dass folgende Gleichungen für alle natürlichen Zahlen $n \ge 1$ gelten.

(i)
$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 (ii)
$$\sum_{k=1}^{n} (2k-1)^2 = \frac{n(2n-1)(2n+1)}{3}$$

Schlussfolgern Sie eine geschlossene Formel für die Summe $\sum_{k=1}^{n} (2k)^2$.

- (b) Es bezeichne d(n) die Anzahl der Diagonalen eines ebenen, konvexen n-Ecks. Beweisen Sie mit vollständiger Induktion, dass $d(n) = \frac{n(n-3)}{2}$ für $n \ge 3$ gilt.
- Ü20. Für eine natürliche Zahl n definieren wir ihre Fakultät rekursiv über n! = n(n-1)!mit der Anfangsbedingung 0! = 1.

Seien m, n natürliche Zahlen mit $1 \le m \le n$. Beweisen Sie die folgenden Behauptungen mittels vollständiger Induktion.

- (i) Es gibt genau n! bijektive Abbildungen von einer n-elementigen Menge in eine *n*-elementige Menge.
- (ii) Es gibt genau $\frac{n!}{(n-m)!}$ injektive Abbildungen von einer m-elementigen Menge in eine *n*-elementige Menge.
- Ü21. Seien m, n natürliche Zahlen mit $0 \le m \le n$. Beweisen Sie die folgenden Behauptungen mittels vollständiger Induktion.
 - (i) Eine n-elementige Menge besitzt genau 2^n Teilmengen.
 - (ii) Eine n-elementige Menge besitzt genau $\frac{n!}{m!(n-m)!}$ m-elementige Teilmengen.

 $\frac{n}{\sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n$

- A22. Hausaufgabe, bitte vor Beginn der 5. Übung (oder im Lernraum) unter Angabe von Name, Matrikelnummer, Übungsgruppe und Übungsleiter abgeben.
 - (a) Beweisen Sie mittels vollständiger Induktion, dass die folgende Formel für $n \ge 1$ gilt.

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$$

- (b) Beweisen Sie mittels vollständiger Induktion, dass für $n \geq 3$ die Summe der Innenwinkel eines natürlichen n-Ecks $\pi(n-2)$ beträgt.
- H23. Für eine natürliche Zahl n definieren wir die n-te Fibonacci-Zahl rekursiv über F(n) = F(n-1) + F(n-2) mit den Anfangsbedingungen F(0) = F(1) = 1.
 - (a) Geben Sie die ersten zehn Fibonacci-Zahlen explizit an.
 - (b) Beweisen Sie mittels vollständiger Induktion, dass die folgende Gleichung für alle $n \ge 1$ gilt:

$$F(n)F(n+1) - F(n-1)F(n+2) = (-1)^n$$
.

(c) Für eine natürliche Zahl $n \geq 1$ betrachten wir ein rechteckiges Brett mit Seitenlängen 2 und n. Ein *Domino* ist ein rechteckiger Spielstein mit Seitenlängen 1 und 2. Zeigen Sie mittels vollständiger Induktion, dass es genau F(n) Möglichkeiten gibt, das Brett mit exakt n Dominos zu überdecken.

<u>Hinweis:</u> Hier sehen Sie eine Überdeckung eines 2 × 10-Bretts mit zehn Dominos.

- H24. Beweisen Sie die folgenden Ungleichungen mittels vollständiger Induktion.
 - (i) $2n < n^2 \text{ für } n \ge 3$ (ii) $n^2 < 2^n \text{ für } n \ge 5$
 - (iii) $2^n < n!$ für $n \ge 4$ (iv) $n! < n^n$ für $n \ge 2$