MC Packet 1 - Pre-Calculus and Trig

PERIOD: _____

In-Class Together: Problems 1-6

- The graph of $y^2 = x^2 + 9$ is symmetric to which of the following?
 - I. The x-axis
 - II. The v-axis
 - III. The origin
 - (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I. II, and III

- If the function f is defined by $f(x) = x^5 1$, then f^{-1} , the inverse function of f, is defined by $f^{-1}(x) =$
 - $(A) \quad \frac{1}{\sqrt[5]{x}+1}$

 $(B) \quad \frac{1}{\sqrt[5]{x+1}}$

(C) $\sqrt[5]{x-1}$

(D) $\sqrt[5]{x} - 1$

(E) $\sqrt[5]{x+1}$

- If $\log_a(2^a) = \frac{a}{4}$, then a =
 - (A) 2
- (B) 4
- (C) 8
- (D) 16
- (E) 32

4

Let $f(x) = \left| \sin x - \frac{1}{2} \right|$. The maximum value attained by f is

- (A) $\frac{1}{2}$
- (B) 1

- (C) $\frac{3}{2}$ (D) $\frac{\pi}{2}$ (E) $\frac{3\pi}{2}$

(5)

Let $f(x) = \cos(\arctan x)$. What is the range of f?

- (A) $\left\{ x \middle| -\frac{\pi}{2} < x < \frac{\pi}{2} \right\}$ (B) $\left\{ x \middle| 0 < x \le 1 \right\}$

 $(C) \quad \{x \mid 0 \le x \le 1\}$

- (D) $\{x \mid -1 < x < 1\}$ (E) $\{x \mid -1 \le x \le 1\}$

6

If the graph of $y = \frac{ax+b}{x+c}$ has a horizontal asymptote y = 2 and a vertical asymptote x = -3, then a+c=

- (A) -5
- (B) -1 (C) 0
- (D) 1
- (E) 5

- **7** The set of all points (e^t, t) , where t is a real number, is the graph of y =
 - (A) $\frac{1}{a^x}$

- (B) $e^{\frac{1}{x}}$ (C) $xe^{\frac{1}{x}}$ (D) $\frac{1}{\ln x}$
- (E) $\ln x$

- (8) Suppose that f is a function that is defined for all real numbers. Which of the following conditions assures that f has an inverse function?
 - (A) The function f is periodic.
 - The graph of f is symmetric with respect to the v-axis.
 - (C) The graph of f is concave up.
 - (D) The function f is a strictly increasing function.
 - (E) The function f is continuous.
- 9 Which of the following equations has a graph that is symmetric with respect to the origin?
 - $(A) \quad y = \frac{x+1}{x}$

- (B) $y = -x^5 + 3x$
- (C) $y = x^4 2x^2 + 6$

- (D) $y = (x-1)^3 + 1$
- (E) $y = (x^2 + 1)^2 1$
- (10) If h is the function given by h(x) = f(g(x)), where $f(x) = 3x^2 - 1$ and g(x) = |x|, then h(x) =

 - (A) $3x^3 + |x|$ (B) $|3x^2 1|$ (C) $3x^2 |x| 1$ (D) 3|x| 1 (E) $3x^2 1$

 $4\cos\left(x+\frac{\pi}{3}\right)=$

- (A) $2\sqrt{3}\cos x 2\sin x$
- (B) $2\cos x 2\sqrt{3}\sin x$ (C) $2\cos x + 2\sqrt{3}\sin x$

- (D) $2\sqrt{3}\cos x + 2\sin x$
- (E) $4\cos x + 2$

(12) If $f(x) = e^x$, which of the following lines is an asymptote to the graph of f?

- $(A) \quad y = 0$
- (B) x = 0
- (C) $y \approx y$
- (D) y = -x

(13) $\ln(x-2) < 0$ if and only if

(A) x < 3

(B) 0 < x < 3

 $(C) \quad 2 < x < 3$

(D) x > 2

(E) x > 3

(4)The function defined by $f(x) = \sqrt{3}\cos x + 3\sin x$ has an amplitude of

- (A) $3-\sqrt{3}$
- (B) $\sqrt{3}$
- (C) $2\sqrt{3}$ (D) $3-\sqrt{3}$ (E) $3\sqrt{3}$

(5) The graph of y = f(x) is shown in the figure above. Which of the following could be the graph of v = f(|x|)?

(A)

(D)

- 6 If $f(g(x)) = \ln(x^2 + 4)$, $f(x) = \ln(x^2)$, and g(x) > 0 for all real x, then g(x) =
 - (A) $\frac{1}{\sqrt{x^2+4}}$ (B) $\frac{1}{x^2+4}$ (C) $\sqrt{x^2+4}$ (D) x^2+4 (E) x+2

- **7** The domain of the function defined by $f(x) = \ln(x^2 - 4)$ is the set of all real numbers x such that

 - (A) |x| < 2 (B) $|x| \le 2$ (C) |x| > 2 (D) $|x| \ge 2$
- (E) x is a real number
- (13) If $f(x) = e^x \sin x$, then the number of zeros of f on the closed interval $[0, 2\pi]$ is
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E) 4

If the domain of the function f given by $f(x) = \frac{1}{1-x^2}$ is $\{x: |x| > 1\}$, what is the range of f? (19)

- $\{1->x>x-1\}$
- (B) $\{x: -\infty < x < 0\}$ (C) $\{x: -\infty < x < 1\}$

- $\{x > x > 1 1x\}$ (C)
- (E) $\{x: 0 < x < x\}$

If $\ln x - \ln \left(\frac{1}{x} \right) = 2$, then x =20)

- (A) $\frac{1}{a^2}$ (B) $\frac{1}{e}$
- (C) e

(21) The fundamental period of $2\cos(3x)$ is

- (A) $\frac{2\pi}{3}$
- (B) 2π
- (C) 6π
- (D) 2
- (E) 3

If $f(x) = \frac{4}{x-1}$ and g(x) = 2x, then the solution set of f(g(x)) = g(f(x)) is (22)

- (A) $\left\{\frac{1}{3}\right\}$ (B) $\left\{2\right\}$ (C) $\left\{3\right\}$ (D) $\left\{-1,2\right\}$ (E) $\left\{\frac{1}{3},2\right\}$

Which of the following defines a function f for which f(-x) = -f(x)? (23)

 $(A) \quad f(x) = x^2$

(B) $f(x) = \sin x$

 $(C) \quad f(x) = \cos x$

(D) $f(x) = \log x$

(E) $f(x) = e^x$

- The figure above shows the graph of a sine function for one complete period. Which of the 24) following is an equation for the graph?
 - (A) $y = 2\sin\left(\frac{\pi}{2}x\right)$
- (B) $y = \sin(\pi x)$

(C) $y = 2\sin(2x)$

(D) $v = 2\sin(\pi x)$

- (E) $v = \sin(2x)$
- What is the domain of the function f given by $f(x) = \frac{\sqrt{x^2 4}}{x 2}$? (25)
 - (A) $\{x: x \neq 3\}$

 $(B) \quad \{x \colon |x| \le 2\}$

- $(C) \quad \{x \colon |x| \ge 2\}$
- (D) $\{x : |x| \ge 2 \text{ and } x \ne 3\}$ (E) $\{x : x \ge 2 \text{ and } x \ne 3\}$
- (26) If $f(x) = \frac{x}{x+1}$, then the inverse function, f^{-1} , is given by $f^{-1}(x) =$
 - (A) $\frac{x-1}{x}$ (B) $\frac{x+1}{x}$ (C) $\frac{x}{1-x}$ (D) $\frac{x}{x+1}$

- (E) x
- 27) The graph of which of the following equations has y = 1 as an asymptote?

- (A) $y = \ln x$ (B) $y = \sin x$ (C) $y = \frac{x}{x+1}$ (D) $y = \frac{x^2}{x-1}$ (E) $y = e^{-x}$