

PACING OPTIMISATION OF A WING IN GROUND CLEARANCE

Hashan Mendis s3449757

FRONT WING DESIGN

Current Design:

• Simple design

Problem Statement:

Need more front downforce

Objective:

- Evaluate optimum ground clearance and flap angle
- Optimise design to produce more downforce

Figure 1 – Current design of the front wing

Full Design of Experiments

- 2D CFD
- Quick run time (1 minute)
- 2D flow structure

Partial Design of Experiments

- 3D CFD
- Long run time (2 hours)
- 3D flow structure

Optimisation

- 3D CFD
- Increase downforce

RMIT COMPUATIONAL FLUID DYNAMICS

3D Geometry

RMIT COMPUATIONAL FLUID DYNAMICS

2D - 43 000 elements

3D - 11 000 000 elements

RMIT COMPUATIONAL FLUID DYNAMICS

Set up

- 60 km/hr wind speed
- Turbulence model SST

Solution

Ensure monitor points stable

DESIGN OF EXPERIMENTS

2D Results

- 20° flap angle
- GroundClearance110 mm

3D Results

- 30° flap angle
- GroundClearance 70mm

PRESSURE DISTRIBUTION

Pressure

0.150

Improvement: 8%

ITTERATION 2

Improvement: 9%

RMIT

ITTERATION 3

Improvement: 2%

PACING ITTERATION 4

Improvement: 9%

Improvement: 30%

