Simple Linear Regression

Simple Linear Regression

Questions

- How do you find the regression line that best fits your data?
- How do you minimize errors (i.e., deviations from the regression line)?
- In statistical parlance, how do you "estimate" the regression line?
- There are many "estimation methods"
- The most popular one is called "Ordinary Least Squares" (OLS)
- It is the line that minimizes the sum of errors squared

Estimation (Boston{MASS})

Regression for Boston House Values

Questions

- Estimation is about the method you use to develop your model
- Is OLS the best estimation method?
- OLS minimizes the sum of squared errors.
- But weighted least squares (WLS) may be more efficient if errors grow or shrink with x
- Quadratic OLS,
 Piecewise, or Spline regressions may be more accurate predictors
- Polynomial regressions may even be more accurate but it suffers from "overidentification".

Selecting your estimation method is key!!

Important Regression Statistics

- β₀ = Regression line intercept i.e., Y's predicted value when X is 0
- β₁ = Slope of the Regression line i.e., Y's change when X increases by 1 unit or the "effect size"
- Significance = whether β₁ is significantly different than 0
- **p-value** = measures **significance** (same as with correlation) i.e., the probability that β_0 , β_1 , etc. are 0 i.e., the observed effects happened by chance
 - → the **smaller** the p-value the **better**
- Confidence = 1 p; e.g., p=0.05 implies we are (0.95 or) 95% confident that the observed effect did not happen by chance

KOGOD SCHOOL of BUSINESS

