Support Vector Machines

Dr. Saed Sayad

University of Toronto
2010
saed.sayad@utoronto.ca

SVM

A New Generation of Learning Algorithms

Pre 1980

- Almost all learning methods learned linear decision surfaces.
- Linear learning methods have nice theoretical properties.

• 1980's

- Decision trees and Neural Networks allowed efficient learning of nonlinear decision surfaces.
- Little theoretical basis and all suffer from local minima.

• 1990's

- Developing efficient learning algorithms for non-linear functions based on computational learning theory.
- Robust theoretical properties.

SVM and Linear Regression

$$\mathbf{y} = {\mathbf{y}_{\mathbf{j}}}$$

m samples

$$y = \sum_{j=1}^{n} w_j x_j + b$$

Support Vector Machines - Ideas

- Three main ideas:
 - 1. Define an optimal hyperplane: maximize margin
 - 2. Extend the above definition for non-linearly separable problems: have a penalty term for misclassifications.
 - 3. Map data to high dimensional space where it is easier to classify with linear decision surfaces: reformulate problem so that data is mapped implicitly to this space.

How would you classify this data?

Maximizing the Margin

Support Vectors

Optimization Problem

Optimization problem is maximizing the width of the margin

$$\max \frac{k}{\|w\|}$$

s.t.

$$(w \cdot x + b) \ge k, \forall x \text{ of class } 1$$

$$(w \cdot x + b) \le -k, \forall x \text{ of class } 2$$

Optimization Problem

There is a scale and unit for data so that k=1. Then problem becomes:

$$\max \frac{2}{\|w\|}$$

s.t.

$$(w \cdot x + b) \ge 1, \forall x \text{ of class } 1$$

$$(w \cdot x + b) \le -1, \forall x \text{ of class } 2$$

Setting Up the Optimization Problem

 If class 1 corresponds to 1 and class 2 corresponds to -1, we can rewrite

$$(w \cdot x_i + b) \ge 1$$
, $\forall x_i \text{ with } y_i = 1$
 $(w \cdot x_i + b) \le -1$, $\forall x_i \text{ with } y_i = -1$

as

$$y_i(w \cdot x_i + b) \ge 1, \ \forall x_i$$

So the problem becomes:

$$\max \frac{2}{\|w\|} \qquad \text{or} \qquad \min \frac{1}{2} \|w\|^2$$

$$s.t. \ y_i(w \cdot x_i + b) \ge 1, \ \forall x_i \qquad \qquad s.t. \ y_i(w \cdot x_i + b) \ge 1, \ \forall x_i$$

Margin Width

Linear, Hard-Margin SVM Formulation

Find w, b that solves

$$\min \frac{1}{2} \|w\|^2$$

$$s.t. \ y_i(w \cdot x_i + b) \ge 1, \ \forall x_i$$

- Problem is convex so, there is a unique global minimum value (when feasible).
- Non-solvable if the data is not linearly separable
- Quadratic Programming

Soft vs Hard Margin SVMs

Non-Linearly Separable Data

slack variable:

 ξ_i

Allow some instances to fall off the margin, but penalize them

Formulating the Optimization Problem

Constraint becomes:

$$y_i(w \cdot x_i + b) \ge 1 - \xi_i, \ \forall x_i$$
$$\xi_i \ge 0$$

Objective function

penalizes for misclassified instances and those within the margin

$$\min \frac{1}{2} \|w\|^2 + C \sum_{i} \xi_i$$

C trades-off margin width and misclassifications

Linear, Soft-Margin SVMs

$$\min \frac{1}{2} \|w\|^2 + C \sum_{i} \xi_{i} \qquad y_{i}(w \cdot x_{i} + b) \ge 1 - \xi_{i}, \ \forall x_{i} \\ \xi_{i} \ge 0$$

- Algorithm tries to maintain ξ_i to zero while maximizing margin
- Notice: algorithm does not minimize the number of misclassifications (NP-complete problem) but the sum of distances from the margin hyperplanes
- Other formulations use ξ_i^2 instead
- As $C \rightarrow \infty$, we get closer to the hard-margin solution

Soft vs Hard Margin SVM

- Soft-Margin always have a solution
- Soft-Margin is more robust to outliers
 - Smoother surfaces (in the non-linear case)
- Hard-Margin does not require to guess the cost parameter (requires no parameters at all)

Non-linear SVM

- The original optimal hyperplane algorithm proposed by Vladimir Vapnik in 1963 was a linear classifier.
- However, in 1992, Bernhard Boser, Isabelle Guyon and Vapnik suggested a way to create non-linear classifiers by applying the kernel trick to maximum-margin hyperplanes.
- The resulting algorithm is formally similar, except that every dot product is replaced by a non-linear kernel function.
- This allows the algorithm to fit the maximum-margin hyperplane in a transformed feature space.
- The transformation may be non-linear and the transformed space high dimensionalthus though the classifier is a hyperplane in the high-dimensional feature space, it may be non-linear in the original input space.

Linear Classifiers in High-Dimensional Spaces

Find function $\Phi(x)$ to map to a different space

Mapping Data to a High-Dimensional Space

• Find function $\Phi(x)$ to map to a different space, then SVM formulation becomes:

$$\min \frac{1}{2} \|w\|^2 + C \sum_{i} \xi_i \qquad s.t. \quad y_i(w \cdot \Phi(x) + b) \ge 1 - \xi_i, \forall x_i \\ \xi_i \ge 0$$

- Data appear as $\Phi(x)$, weights w are now weights in the new space.
- Explicit mapping expensive if $\Phi(x)$ is very high dimensional.
- Solving the problem without explicitly mapping the data is desirable.

The Kernel Trick

Linear SVM

$$X_i \cdot X_j$$

Non-linear SVM

$$\phi(x_i) \cdot \phi(x_j)$$

map data into new space, then take the inner product of the new vectors.

Kernel function

$$k(x_i \cdot x_j)$$

the image of the inner product of the data is the inner product of the images of the data.

SVM – Kernel functions

Polynomial

$$k(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i.\mathbf{x}_j)^d$$

Gaussian Radial Basis function

$$k(\mathbf{x}_{i}, \mathbf{x}_{j}) = \exp\left(-\frac{\left\|\mathbf{x}_{i} - \mathbf{x}_{j}\right\|^{2}}{2\sigma^{2}}\right)$$

Other Types of SVM

- SVMs that perform regression (SVR).
- SVMs that perform clustering.
- SVM formulations that take into consideration difference in cost of misclassification for the different classes.
- Kernels suitable for sequences of strings, or other specialized kernels.

Variable Selection with SVMs

Recursive Feature Elimination

- Train a linear/non-linear SVM.
- Remove the variables with the lowest weights (those variables affect classification the least), e.g., remove the lowest 50% of variables.
- Retrain the SVM with remaining variables and repeat until classification is reduced.
- Some of the best and most efficient variable selection methods.

MultiClass SVMs

- One-versus-all
 - Train n binary classifiers, one for each class against all other classes.
 - Predicted class is the class of the most confident classifier
- Truly MultiClass SVMs
 - Generalize the SVM formulation to multiple categories

Comparison with Neural Networks

Neural Networks

- Hidden Layers map to lower dimensional spaces
- Search space has multiple local minima
- Training is expensive
- Classification extremely efficient
- Requires number of hidden units and layers
- Very good accuracy in typical domains

SVMs

- Kernel maps to a very-high dimensional space
- Search space has a unique minimum
- Training is extremely efficient
- Classification extremely efficient
- Kernel and cost the two parameters to select
- Very good accuracy in typical domains
- Extremely robust

References

- www.dsl-lab.org/ml_tutorial/Presentation/file4.ppt
- http://en.wikipedia.org/wiki/Support vector machine