

je jen jeden minimum matrě existaje =
$$\frac{1}{2}$$
 to minimum

 $Pii : f(x,y) = e^{-xy}, Pi = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \leq 2\}$

• $(x,y) \in in+1i$:

 $\frac{\partial f}{\partial x} = -x e^{-xy} = 0$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial M = \{(x,y) \in \mathbb{R}^2 | x^2 + x^2 \} = 1$

• $(x,y) \in \partial$

