

Michael Shoemate

This proof resides in "contrib" because it has not completed the vetting process.

Proves soundness of the implementation of MakeNoise over scalars for IntExpFamily in mod.rs at commit f5bb719 (outdated1).

The intuition of this implementation is that a vector-valued mechanism can be used to privatize a scalar-valued input, by transforming the input into a singleton vector, applying the vector mechanism, and then unpacking the resulting singleton vector.

This matches the code and proof for the float case, MakeNoise<AtomDomain<T>, AbsoluteDistance<QI>, MO> for FloatExpFamily<P>, except for elementary data type.

1 Hoare Triple

Precondition

Compiler-Verified

- Generic T implements trait Integer and SaturatingCast<IBig> The saturating cast is for infallible postprocessing of big into back to type T.
- Const-generic P is of type usize
- Generic QI implements trait Integer
- Generic MO implements trait Measure
- Type IBig implements trait From<T>. This infallible exact cast is for converting integers to big ints in the preprocessing transformation.
- Type RBig implements trait TryFrom<QI>. This is for fallible casting from input sensitivity of type QI to a rational in the privacy map.
- Type ZExpFamily<P> implements trait NoisePrivacyMap<LpDistance<P, RBig>, MO>. This bound requires that it must be possible to construct a privacy map for this combination of noise distribution, distance type and privacy measure.

User-Verified

None

 $^{^1\}mathrm{See}$ new changes with git diff f5bb719..e337a86 rust/src/measurements/noise/nature/integer/mod.rs

Pseudocode

```
class IntExpFamily:
    def make_noise(
        self, input_space: tuple[AtomDomain[T], AbsoluteDistance[QI]]

) -> Measurement[AtomDomain[T], T, AbsoluteDistance[QI], M0]:
        t_vec = make_vec(input_space) #
        m_noise = self.make_noise(t_vec.output_space()) #

return t_vec >> m_noise >> then_index_or_default(0) #
```

Postcondition

Theorem 1.1. For every setting of the input parameters (self, input_space, MO, T, P, QI) to make_noise such that the given preconditions hold, make_noise raises an exception (at compile time or run time) or returns a valid measurement. A valid measurement has the following properties:

- 1. (Data-independent runtime errors). For every pair of elements x, x' in input_domain, function(x) returns an error if and only if function(x') returns an error.
- 2. (Privacy guarantee). For every pair of elements x, x' in input_domain and for every pair (d_in, d_out), where d_in has the associated type for input_metric and d_out has the associated type for output_measure, if x, x' are d_in-close under input_metric, privacy_map(d_in) does not raise an exception, and privacy_map(d_in) \leq d_out, then function(x), function(x') are d_out-close under output_measure.

Proof. Neither constructor make_vec nor MakeNoise.make_noise have manual preconditions, and the post-conditions guarantee a valid transformation and valid measurement, respectively. then_index_or_default also does not have preconditions, and its postcondition guarantees that it returns a valid postprocessor.

The chain of a valid transformation, valid measurement and valid postprocessor is a valid measurement.

2