Math 450b Homework 9

Trevor Klar

April 10, 2018

1. Let $P = (\{0, \frac{1}{2}, 1\}, \{0, \frac{1}{2}, 1\})$ be a partition of $A = [0, 1] \times [0, 1]$, and let $f(x, y) = x^2 + y^2$. Compute L(f, P) and U(f, P).

Answer:

2. Give an example of a rectangle $A \subset \mathbb{R}^n$ and functions f and g from A to \mathbb{R} for which $M_A(f) + M_A(g) \neq M_A(f+g)$.

Answer: Let $f, g: [0, 2\pi] \to \mathbb{R}$ be $f(x) = \sin(x), g(x) = -\sin(x)$. Then

$$M_A(f) + M_A(g) = 1 + 1 \neq M_A(f+g) = 0.$$

3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise.} \end{cases}$$

Show that f is integrable on $[0,1] \times [0,1]$ and find $\int_A f$.

PROOF Observe that for any subrectangle $S = [a, b] \times [c, d]$, either $a \neq c$ or $a \neq d$, so there exists some $(x, y) \in S$ such that f(x, y) = 0. Thus,

$$L(f, P) = 0$$

for any partition P. To show that f is integrable, we will show that for any $\epsilon > 0$, there exists a partition P such that

$$U(f, P) - L(f, P) = U(f, P) < \epsilon.$$

1

Let $\epsilon > 0$ be given. Choose $n \in \mathbb{N}$ such that

$$\frac{3}{n} < \epsilon$$
.

Let $P_0 = \{0, \frac{1}{n}, \frac{2}{n}, \dots \frac{n-1}{n}, 1\}$, and let $P = \{P_0, P_0\}$.

Denote $\Delta = \{(x,x) \in [0,1] \times [0,1]\}$, denote $S = \{S_i \in P : S_i \cap \Delta \neq \emptyset\}$ and S' = P - S. Note that S contains (3n-2) subrectangles, and $M_{S_i}(f) = 1$ for every S_i . Also, $M_{S_i'}(f) = 0$ for every S_i' Now we calculate U(f,P):

$$\begin{split} U(f,P) &= \sum_{i=1}^{3n-2} M_{S_i}(f) \text{vol}(S_i) + \sum_{S'} M_{S_i'}(f) \text{vol}(S_i') \\ &= (3n-2)(1)(\frac{1}{n^2}) + 0 \\ &< \frac{3n}{n^2} \\ &= \frac{3}{n} \\ &< \epsilon. \end{split}$$

4. Let $f:[0,1]\times[0,1]\to\mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} 0 & \text{if } x \text{ irrational} \\ 0 & \text{if } x \text{ rational}, y \text{ irrational} \\ \frac{1}{q} & \text{if } x \text{ rational}, y = \frac{p}{q} \text{ in lowest terms.} \end{cases}$$

Show that f is integrable, and $\int_{[0,1]\times[0,1]}f=0$.

PROOF To simplify notation, let $g:[0,1] \to \mathbb{R}$ be defined as

$$g(y) = \begin{cases} 0 & \text{if } y \text{ irrational} \\ 1/q & \text{if } y = p/q \text{ in lowest terms.} \end{cases}$$

Thus,

$$f(x,y) = \begin{cases} 0 & \text{if } x \text{ irrational} \\ g(y) & \text{otherwise.} \end{cases}$$

We will show that:

(a)
$$\sup_{P} L(f, P) = 0$$
.

Lemma (b) For any $\epsilon > 0$, there are finitely many real numbers $y \in [0,1]$ such that $g(y) > \epsilon$.

(c) For any $\epsilon > 0$, there exists a partition P such that $U(f, P) - L(f, P) < \epsilon$.

Thus by (a) and (c), f is integrable and $\int_{[0,1]^2} f = 0$.

Proof of (a) Observe that for any subrectangle $S = [a, b] \times [c, d]$, there exists an irrational number γ such that $a < \gamma < b$, thus $f(\gamma, c) = m_S(f) \text{vol}(S) = 0$. Since this holds for arbitrary subrectangles, L(f, P) = 0 for any partition P.

Proof of Lemma (b). Let $\epsilon > 0$ be given. For any $g(y) = \frac{1}{n} > \epsilon$, we have that $n < \frac{1}{\epsilon}$, and there are finitely many such $n \in \mathbb{N}$. Also, given any natural number n, there are finitely many fractions $\frac{k}{n} \in [0,1]$; that is, $k = 1, 2, \ldots, n$. Furthermore, $g\left(\frac{k}{n}\right) \geq \frac{1}{n}$ for all such fractions. Thus,

$$\left\{\frac{k}{n}: g\left(\frac{k}{n}\right) \ge \epsilon, \quad k, n \in \mathbb{N}, \quad k \le n\right\}$$

is finite. \Box

Proof of (c) By Lemma (b), let $\{y_1, y_2, \dots, y_n\}$ denote the rational numbers in [0, 1] such that

$$g(y_i) > \frac{\epsilon}{2}$$

where i = 1, ..., n. Note that for ϵ smaller than 2, $y_n = 1$. Let

$$\delta = \min \left\{ \frac{\epsilon}{4n}, \frac{|0 - y_1|}{2}, \frac{|y_i - y_{i+1}|}{2} \right\}.$$

This ensures that

$$2\delta \le \frac{\epsilon}{2n}$$
,

and that P_y (defined below) is truly a partition, with terms ordered as expected. Let

$$P_x = \{0,1\} P_y = \{0,(y_1-\delta),(y_1+\delta),(y_2-\delta),(y_2+\delta),\dots,(y_{n-1}-\delta),(y_{n-1}+\delta),(1-\delta),1\},$$

and let $P = \{P_x, P_y\}$. We denote the constituent subrectangles S_i and S_i' as follows:

$$S_i = \begin{cases} [0,1] \times [(y_i - \delta), (y_i + \delta)] & 1 \le i < n \\ [0,1] \times [(1 - \delta), 1] & i = n \end{cases}$$

$$S_i' = \begin{cases} [0,1] \times [0,(y_1 - \delta)] & i = 1\\ [0,1] \times [(y_{i-1} + \delta),(y_i - \delta)] & 1 < i \le n \end{cases}$$

Now, observe that

$$U(f,P) = \sum_{i=1}^{n} M_{S_i}(f) \operatorname{vol}(S_i) + \sum_{i=0}^{n} M_{S'_i}(f) \operatorname{vol}(S'_i)$$

$$\leq \sum_{i=1}^{n} (1) 2\delta + \sum_{i=0}^{n} \frac{\epsilon}{2} \operatorname{vol}(S'_i)$$

$$\leq \sum_{i=1}^{n} \frac{\epsilon}{2n} + \frac{\epsilon}{2} \sum_{i=0}^{n} \operatorname{vol}(S'_i)$$

$$< \sum_{i=1}^{n} \frac{\epsilon}{2n} + \frac{\epsilon}{2} (1)$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

In evaluating $M_{S_i}(f)$ and $M_{S_i'}(f)$ above, we used the fact that f is bounded above by 1, and the fact that every y_i such that $g(y_i) > \frac{\epsilon}{2}$ is contained in exactly one S_i . Thus, $M_{S_i}(f) \leq 1$ and $M_{S'}(f) \leq \frac{\epsilon}{2}$ for all appropriate i.

Therefore, given any $\epsilon > 0$, we have produced a partition P such that $U(f, P) - L(f, P) < \epsilon$, so we are done.

5. (a) Let $A \subset \mathbb{R}^n$ be a rectangle, and assume that $f: A \to \mathbb{R}$ is integrable and satisfies $F \geq 0$ on A. Prove that $\int_A f \geq 0$.

PROOF For any subrectangle S of any partition P of the domain A,

 $f(\mathbf{x}) \ge 0$ for any $\mathbf{x} \in S$, so

 $m_S(f) \ge 0$ for any $S \in P$, so

 $L(f, P) \ge 0$ for any partition P of A, so

since $0 \le L(f, P) \le \int_A f$, then we are done.

(b) Assume in addition that f is continuous and f is positive at some point in A. Prove that $\int_A f > 0$.

PROOF Let a denote the assumed element of A such that f(a) > 0. Let $\epsilon = f(a)$. Since f is continuous, there exists some $\delta > 0$ such that if $x \in A$ and $||x - a|| < \delta$, then $|f(x) - f(a)| < \epsilon$, so f(x) > 0. Now, let P be a partition of A containing the subrectangle

$$S_0 = \prod_{i=1}^n \left[\left(a_i - \frac{\delta}{\sqrt{n}} \right), \left(a_i + \frac{\delta}{\sqrt{n}} \right) \right].$$

Since $S_0 \subset B(a, \delta)$,

$$m_{S_0}(f) > 0,$$

and by (a),

$$m_S(f) \ge 0$$

for all other S, so

$$L(f,P) < \int_{A} f$$

and we are done.