

An introduction to Deep Learning

Pedro Lara Benítez Manuel Carranza García

Fundamental concepts

- Neurons
- Multi-layer perceptron
- Training a NN

Activation functions

Softmax for multi-class classification

Multi-layer Perceptron

Training a NN

Optimize a cost function using Gradient Descent with Back-Propagation

UNIVERSIDAD B SEVILLA

Training a NN

Learning rate

$$w = w + \Delta w$$
, where $\Delta w = -\eta \nabla J(w)$

Large learning rate: Overshooting.

Small learning rate: Many iterations until convergence and trapping in local minima.

Backpropagation - Forward

Backpropagation - Backwards

Important terms

- Optimizer: SGD, Adam, RMSProp
- Loss: Mean Squared Error, Cross Entropy
- Learning rate
- Activation function
- Batch size
- Epoch
- Dropout

Code example

Softmax activation function

Softmax Activation Function

Loss function - cross entropy

Dropout

(a) Standard Neural Net

(b) After applying dropout.

Deep learning architectures

- Convolutional neural networks
- Recurrent neural networks

Convolutional Neural Networks

Convolutional NN

MLP vs CNN

MLP CNN

CNN local connectivity

Convolution operation

Padding

30	3,	22	1	0
02	02	10	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12	12	17
10	17	19
9	6	14

(a) Padding=0, Stride=1

1	6	5
7	10	9
7	10	8

(b) Padding=1, Stride=2

Convolutional feature maps

Pooling

Max-Pooling

Single depth slice

 1
 1
 2
 4

 5
 6
 7
 8

 3
 2
 1
 0

 1
 2
 3
 4

max pool with 2x2 filters and stride 2

6	8	
3	4	

)

Important terms (CNN)

- Feature maps = Filters
- Kernel size
- Stride
- Padding
- Pool size