

University of Tehran School of Electrical and Computer Engineering

Course:	Machine Learning											
Course type:		EE*			CE*				Credit:			
		Com	Е	P	В	Con	D	SW	HW	IT	MI	
	Required					⊠					⊠	3
	Elective	\boxtimes	\boxtimes	\boxtimes	\boxtimes		\boxtimes	\boxtimes	\boxtimes	\boxtimes		
Level:	Undergraduate □ Graduate ⊠											
Co-requisite(s):	None.											
Prerequisite(s):	None.											
Prerequisite by topic:	 Probability Random Variables, Expectations, Distributions Statistical inference Estimation Theory Hypothesis Testing Linear Algebra & Multivariate/Matrix Calculus Eigenvalue/vector Optimization Gradient descent and Newton–Raphson algorithm Lagrange multiplier Basic computer science principles Complexity of algorithm 											
Textbook(s):	 [1] C. M. Bishop, Pattern recognition and machine learning. Springer Verlag, 2006. [2] R. O. Duda, P. E. Hart, and G. David, Stork - Pattern classification. Wiley, 2001. [3] T. Hastie, J. Friedman, and R. Tibshirani, The elements of statistical learning. New York, NY: Springer New York, 2001. [4] S. Theodoridis and K. Koutroumbas, Pattern recognition. Elsevier, 2006. 											
Coordinator(s):	Babak Nadjar Araabi, Professor, School of ECE. Mohammadreza A. Dehaqani, Assistant Professor, School of ECE.											
Goals:	In this course, the concepts of machine learning are introduced and acquaintance with different branches of this field is done and important practical and theoretical aspects are introduced. Important techniques and algorithms are discussed in various disciplines. In the field of observer learning, regression and classification problems will be examined and methods for solving these problems and evaluating models will be introduced. Relevant perspectives and algorithms are proposed for the classification problem. In the unsupervised learning section, we will talk about density estimation, unsupervised dimension reduction, and clustering. Finally, there will be a brief introduction to the branch of reinforcement learning.											

Topics:	Module	Material Covered	HW	Hands on	
	Introduction and Basic Concepts	1. What is learning 2. Bias variance trade-off 3. Training/Testing 4. Decision Theory 5. Generalization 6. Overfitting/Underfitting 7. Classification 8. Evaluation 9. Linear regression (LMS algorithm and gradient descent) 10. Regularized Least Squares Regression	HW1	HO1. Linear Regression	
	Bayesian Decision Theory and linear models	Cost/Risk Bayes Optimal Classifier Neyman-Pearson Decision Boundary Minimum Distance Classifier Discriminability logistic regression (Discriminative vs. Generative models)	HW2	HO2. Classification HO3. Logistic Regression	
	Parametric Models	Maximum Likelihood Bayesian Density Estimation Expectation Maximization Hidden Markov Models Bayesian Networks	HW3	HO4. Parametric Density Estimation	
	Non-parametric Models	 Non-parametric Density Estimation Parzen K-Nearest Neighbor Decision trees Boosting 	· HW4	HO5. Non-Parametric Density Estimation	
	Dimensionality	4. Linear Discriminant Analysis5. Independent Component Analysis		HO6. PCA & LDA	
	Margin-based approaches	Linear Discriminant Functions SVM Kernel Trick Nonlinear and Kernel Regression	HW5	HO7. SVM	
	Clustering	K-Means Hierarchical Clustering Density-Based Clustering Clustering Evaluation	HW6	HO8. Clustering	
	Neural Nets	I. Intro to Neural Nets Learning Convolutional Neural Networks	HW7	HO9. CNN	
	Learning Theory	PAC learning Probably Approximately Correct Error Bounds Vapnik-Chervonenkis dimension	HW8		
	Learning to make decisions	Markov decision processes Reinforcement learning	HW9	HO10. RL	
Computer usage:		non and MATLAB (preferably Pyth	hon)	1	
Assignments:	• 9 homework				
		ork per each course module.			
		gnments will include analytical qu	estions	and computing	
Projects:	exercises. • Give you a chance to exercise what you learned in the course in some realworld problem and data. • Students get involved in				
	Data GatheringProblem SolvingImplementationDocumentation				

Grading:	Assignments:	40%			
	Review Quiz:	10%			
	Final exam:	30%			
	Project:	20%			
Prepared by:	Babak Nadjar Araabi, Professor, School of ECE.				
	Mohammadreza A. Dehaqani, Assistant Professor, School of ECE.				
Date:	September 12, 2021				

*EE: Electrical Engineering		*CE: Computer Engineering		
Com	Communications	SW	Software	
Е	Electronics	HW	Hardware	
P	Power	IT	Information Technology	
В	Bioelectronics	MI	Machine Intelligence and Robotics	
Con	Control			