# Contents

| 1 | Intr              | oduzione                                                                             | 3  |
|---|-------------------|--------------------------------------------------------------------------------------|----|
|   | 1.1               | Notazione ed elementi costitutivi                                                    | 3  |
|   | 1.2               | Controllo in anello aperto e anello chiuso                                           | 3  |
|   | 1.3               | Progetto di un sistema di controllo                                                  | 4  |
|   | 1.4               | Esempio di sistema di controllo: circuito elettrico                                  | 4  |
| 2 | Siste             | emi in forma di stato                                                                | 5  |
| - | 2.1               | Sistemi continui                                                                     | 5  |
|   | 2.1               | 2.1.1 Equazione di stato                                                             | 5  |
|   |                   | 2.1.2 Equazione di uscita                                                            | 5  |
|   | 2.2               | Sistemi discreti                                                                     | 6  |
|   | 2.3               | Esempio circuito elettrico                                                           | 6  |
|   | 2.0               | 2.3.1 Esempio con parametri che variano nel tempo                                    | 6  |
|   | 2.4               | Esempio carrello                                                                     | 6  |
|   | $\frac{2.4}{2.5}$ | Esempio auto in rettilineo                                                           | 7  |
|   | $\frac{2.5}{2.6}$ | Esempio pendolo                                                                      | 8  |
|   | $\frac{2.0}{2.7}$ | Traiettoria di un sistema                                                            | 9  |
|   | 2.1               | 2.7.1 Esempio                                                                        | 9  |
|   | 2.8               | Equilibrio di un sistema                                                             | 9  |
|   | 2.0               | 2.8.1 Esempio pendolo                                                                | 9  |
|   | 2.9               |                                                                                      |    |
|   |                   |                                                                                      | 10 |
|   | 2.10              | •                                                                                    | 11 |
|   | 0.11              |                                                                                      | 11 |
|   | 2.11              | · · · · · · · · · · · · · · · · · · ·                                                | 11 |
|   |                   | · · · · · · · · · · · · · · · · · · ·                                                | 11 |
|   | 0.10              | ±                                                                                    | 12 |
|   |                   |                                                                                      | 12 |
|   | 2.13              |                                                                                      | 12 |
|   |                   |                                                                                      | 13 |
|   |                   |                                                                                      | 13 |
|   |                   | r                                                                                    | 14 |
|   |                   | T                                                                                    | 14 |
|   |                   |                                                                                      | 15 |
|   | 2.15              | *                                                                                    | 15 |
|   |                   | 1                                                                                    | 16 |
|   |                   | ±                                                                                    | 17 |
|   |                   |                                                                                      | 18 |
|   |                   | 2.15.4 Esempio carrello                                                              | 19 |
|   | 2.16              |                                                                                      | 21 |
|   |                   |                                                                                      | 21 |
|   |                   |                                                                                      | 21 |
|   |                   | 2.16.3 Stabilità interna per sistemi non forzati                                     | 21 |
|   |                   | 2.16.4 Osservazioni                                                                  | 22 |
|   | 2.17              | Stabilità interna di sistemi LTI                                                     | 22 |
|   |                   | 2.17.1 Esempio stabilità del sistema carrello                                        | 23 |
|   | 2.18              | Retroazione dello stato                                                              | 24 |
|   | 2.19              | Linearizzazione di sistemi in non lineari (tempo invarianti)                         | 24 |
|   |                   | 2.19.1 Esempio pendolo                                                               | 25 |
|   |                   | 2.19.2 Stabilità di 3 sistemi lineari (linearizzzione intorno a 3 diversi equilibri) | 26 |
|   | 2.20              | Stabilità e linearizzazione                                                          | 27 |
|   |                   | 2.20.1 Controllo nonlineare mediante linearizzazione                                 | 27 |

| 3 | Tras | sformata di Laplace                                     | 28 |
|---|------|---------------------------------------------------------|----|
|   | 3.1  | Definizione                                             | 28 |
|   | 3.2  | Osservazioni                                            | 28 |
|   |      | 3.2.1 Ascissa di convergenza                            | 28 |
|   |      | 3.2.2 Trasformate razionali                             | 28 |
|   | 3.3  | Formula di antitrasformazione                           | 29 |
|   |      | 3.3.1 Perché si utilizza la trsformata di Laplace       | 29 |
|   | 3.4  | Proprietà della trasformata di Laplace                  | 29 |
|   |      | 3.4.1 Linearità                                         | 29 |
|   |      | 3.4.2 Traslazione temporale                             | 30 |
|   |      | 3.4.3 Traslazione nel dominio della variabile complessa | 30 |
|   |      | 3.4.4 Derivazione nel dominio del tempo                 | 30 |
|   |      | 3.4.5 Derivazione nel dominio della variabile complessa | 3. |
|   |      | 3.4.6 Integrazione nel tempo                            | 3. |
|   |      | 3.4.7 Convoluzione nel tempo                            | 3. |
|   |      | 3.4.8 Teorema del valore iniziale                       | 3. |
|   |      | 3.4.9 Teorema del valore finale                         | 3  |
|   | 3.5  | Trasformata di segnali elementari                       | 32 |
|   |      | 3.5.1 Trasformata della delta                           | 32 |
|   |      | 3.5.2 Trasformata del segnale gradino unitario          | 32 |
|   |      | 3.5.3 Trasformata del segnale rampa                     | 33 |
|   | 3.6  | Tabella trasformate                                     | 3  |
| 4 | Fun  | zione di trasferimento                                  | 34 |
|   | 4.1  | Introduzione                                            | 34 |
|   | 4.2  | Richiami di calcolo matriciale                          | 36 |
|   |      | 4.2.1 Matrice diagonale                                 | 36 |
|   |      | 4.2.2 Matrice triangolare alta                          | 36 |
|   |      | 4.2.3 Matrice triangolare bassa                         | 36 |
|   |      | 4.2.4 Matrice identità                                  | 36 |
|   |      | 4.2.5 Trasposta di una matrice                          | 36 |
|   |      | 4.2.6 Complemento algebrico                             | 30 |
|   |      | 4.2.7 Determinante di una matrice                       | 36 |
|   | 4.3  | Funzione di trasferimento nel dettaglio                 | 3' |

# Controlli Automatici T

Giuseppe Bumma

November 1, 2023

# 1 Introduzione

L'idea dei **controlli automatici** è sostituire l'intelligenza umana con un sistema automatico (come l'intelligenza artificiale) basata su leggi matematiche e/o algoritmi.

#### 1.1 Notazione ed elementi costitutivi



Il sistema è un oggetto per il quale si vuole ottenere un comportamento desiderato.

Esempi di sistema sono: impianto (industriale), macchinario (braccio robotico, macchina a controllo numerico, etc...), veicolo (auto, velivolo, drone, etc...), fenomeno fisico (condizioni atmosferiche), sistema biologico, sistema sociale. L'obiettivo è che l'andamento nel tempo di alcune variabili segua un segnale di riferimento.

Altri elementi sono:

- Controllore: unità che determina l'andamento della variabile di controllo (ingresso);
- Sistema di controllo: sistema (processo) + controllore;
- Sistemi di controllo naturali: meccanismi presenti in natura, come quelli presenti nel corpo umano (temperatura corporea costante, ritmo cardiaco, etc...);
- Sistemi di controllo manuali: è presente l'azione dell'uomo;
- Sistemi di controllo automatico: uomo sostituito da un dispositivo.

### 1.2 Controllo in anello aperto e anello chiuso

Controllo in anello aperto ("feedforward"): il controllore utilizza solo il segnale di riferimento



Controllo in anello chiuso ("feedback" o retroazione): il controllore utilizza il segnale di riferimento e la variabile controllata ad ogni istante di tempo



Il controllo in retroazione è un paradigma centrale nei controlli automatici.

# 1.3 Progetto di un sistema di controllo

I passi passi per progettare un sistema di controllo sono:

- definizione delle specifiche: assegnazione comportamento desiderato, qualità del controllo, costo,...
- modellazione del sistema (controllo e test): complessità del modello (compromesso), definizione ingressi/uscite, codifica del modello, validazione in simulazione
- analisi del sistema: studio proprietà "strutturali", fattibilità specifiche
- sintesi legge di controllo: è basata su modello, analisi sistema controllato, stima carico computazionale
- simulazione sistema controllato: test su modello di controllo, test realistici (modello complesso, ritardi, quantizzazione, disturbi, ...)
- scelta elementi tecnologici: sensori/attuatori, elettronica di acquisizione/attuazione, dispositivo di elaborazione
- sperimentazione: hardware in the loop, prototipazione rapida, realizzazione prototipo definitivo

### 1.4 Esempio di sistema di controllo: circuito elettrico



La legge che usiamo per definire il circuito (il nostro sistema) è la legge delle tensioni

$$v_R(t) = v_G(t) - v_C(t) (1.4.1)$$

le leggi del condensatore e del resistore sono

$$C \cdot \dot{v}_C(t) = i(t)$$
  $v_R(t) = R \cdot i(t)$ 

Scrivendo la formula in termini di  $v_C(t)$  ("stato interno") e  $v_G(t)$  ("ingresso di controllo")

$$\dot{v}_C(t) = \frac{1}{RC} \left( v_G(t) - v_C(t) \right) \tag{1.4.2}$$

### 2 Sistemi in forma di stato

#### 2.1 Sistemi continui

I sistemi continuti sono sistemi in cui il tempo è una variabile reale:  $t \in \mathbb{R}$ 

$$\dot{x}(t) = f\left(x(t), u(t), t\right)$$
 equazione di stato 
$$\dot{y}(t) = h\left(x(t), u(t), t\right)$$
 equazione (trasformazione) di uscita

Definiamo inoltre  $t_0$  come tempo iniziale e  $x(t_0) = x_0$  come stato iniziale.

$$\mathbf{N.B.}\ \dot{x}(t) := \frac{d}{dt}x(t).$$

Notazione:

- $x(t) \in \mathbb{R}^n$  stato del sistema all'istante t
- $u(t) \in \mathbb{R}^m$  ingresso del sistema all'istante t
- $y(t) \in \mathbb{R}^p$  uscita del sistema all'istante t

$$x(t) = \begin{bmatrix} x_1(t) \\ \dots \\ \dots \\ x_n(t) \end{bmatrix} \qquad u(t) = \begin{bmatrix} u_1(t) \\ \dots \\ \dots \\ u_m(t) \end{bmatrix} \qquad y(t) = \begin{bmatrix} y_1(t) \\ \dots \\ \dots \\ y_p(t) \end{bmatrix}$$
(2.1.1)

Da notare che x(t) è un vettore mentre  $x_1, ..., x_n$  sono scalari. x(t) è una variabile interna che descrive il comportamento del sistema.

#### 2.1.1 Equazione di stato

L'equazione di stato è un'equazione ordinaria (ODE) vettoriale del primo ordine (cioè l'ordine massimo delle derivate è 1)

$$\dot{x}_1(t) = f_1(x(t), u(t), t)$$

$$\vdots$$

$$\dot{x}_n(t) = f_n(x(t), u(t), t)$$

 $\mathbb{R}^n$  è detto spazio di stato, con n ordine del sistema. La funzione di stato è  $f: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^n$ .

$$\begin{bmatrix} \dot{x}_1(t) \\ \dots \\ \dots \\ \vdots \\ \dot{x}_n(t) \end{bmatrix} = \begin{bmatrix} f_1(x(t), u(t), t) \\ \dots \\ \dots \\ \vdots \\ f_n(x(t), u(t), t) \end{bmatrix} := f(x(t), u(t), t)$$

$$(2.1.2)$$

Avere solo derivate prime non è limitato, perché ad esempio posso inserire una prima variabile come derivata prima e una seconda variabile come derivata prima della prima variabile.

#### 2.1.2 Equazione di uscita

L'equazione di uscita è un'equazione algebrica

$$y_1(t) = h_1(x(t), u(t), t)$$
...
$$y_p(t) = h_p(x(t), u(t), t)$$

 $h: \mathbb{R}^n \times \mathbb{R}^m, \mathbb{R} \to R^p$  funzione di uscita

$$\begin{bmatrix} y_1(t) \\ \dots \\ \dots \\ y_p(t) \end{bmatrix} = \begin{bmatrix} h_1(x(t), u(t), t) \\ \dots \\ \dots \\ h_p(x(t), u(t), t) \end{bmatrix} := h(x(t), u(t), t)$$

$$(2.1.3)$$

Se la soluzione x(t) a partire da un istante iniziale  $t_0$  è univocamente determinata da  $x(t_0)$  e  $u(\tau)$  con  $\tau \geq t_0$ , allora il sistema è detto **causale**, cioè lo stato dipende solo da ciò che accede in passato.

Sotto opportune ipotesi di regolarità della funzione f si dimostra esistenza e unicità della soluzione dell'equazione (differenziale) di stato (Teorema di Cauchy-Lipschitz).

### 2.2 Sistemi discreti

Nei sistemi discreti il tempo t è una variabile intera,  $t \in \mathbb{Z}$ .

$$x(t+1) = f(x(t), u(t), t)$$
 equazione di stato  
 $y(t) = h(x(t), u(t), t)$  equazione (trasformazione) di uscita

L'equazione di stato è un'equazione alle differenze finite (FDE).

Notazione:

- $x(t) \in \mathbb{R}^n$  stato del sistema all'istante t
- $u(t) \in \mathbb{R}^m$  ingresso del sistema all'istante t
- $y(t) \in \mathbb{R}^p$  uscita del sistema all'istante t

x(t), u(t) e y(t) sono uguali ai sistemi continui.

Per modellare sistemi discreti nel codice basta un ciclo for.

### 2.3 Esempio circuito elettrico

Riprendiamo l'esempio del circuito elettrico; la formula trovata è

$$\underbrace{\dot{v}_C(t)}_{\dot{x}(t)} = \frac{1}{RC} \underbrace{\left(v_G(t) - v_C(t)\right)}_{u(t)} - \underbrace{v_C(t)}_{x(t)} \tag{2.3.1}$$

In questo caso lo stato del sistema x(t) è caratterizzato dalla variabile  $v_C(t)$ , l'ingresso dalla variabile  $v_G(t)$ . Supponiamo quindi di misurare (con un sensore) la tensione ai capi della resistenza, allora l'uscita del nostro sistema sarà  $v_R(t)$ 

$$\dot{x}(t) = \frac{1}{RC} \left( u(t) - x(t) \right) \qquad f(x, u) = \frac{1}{RC} (u - x)$$

da notare che in questo caso f non è funzione del tempo.

$$v_R(t) = v_G(t) - v_C(t) \Longrightarrow y(t) = u(t) - x(t)$$
(2.3.2)

### 2.3.1 Esempio con parametri che variano nel tempo

Supponiamo che la resistenza sia una funzione del tempo

$$R(t) = \overline{R} \left( 1 - \frac{1}{2} e^{-t} \right) \tag{2.3.3}$$

allora

$$\dot{x}(t) = \frac{1}{R(t)C} \left( u(t) - x(t) \right) \qquad \qquad f(x, u, t) = \frac{1}{R(t)C} (u - x)$$

in questo caso f è funzione del tempo.

### 2.4 Esempio carrello



La legge che usiamo è la legge di Newton, prendendo z come posizione del centro di massa

$$M\ddot{z} = -F_e + F_m \tag{2.4.1}$$

con M massa e  $F_e$  data da

$$F_e(z(t),t) = k(t)z(t) \tag{2.4.2}$$

quindi la nostra equazione diventa

$$M\ddot{z}(t) = -k(t)z(t) + F_m(t) \tag{2.4.3}$$

Siccome nella nostra formula compare una derivata seconda di una variabile ci conviene definire lo stato del sistema con la variabile stessa e la derivata prima della variabile.

Definiamo quindi  $x_1 := z$  e  $x_2 := \dot{z}$ , con stato  $x := [x_1 x_2]^T$ , e  $u := F_m$  (ingresso).

Quindi possiamo scrivere, tenendo conto che  $\dot{x}_2(t) = \ddot{z}$ 

$$\dot{x}_1(t) = x_2(t) 
\dot{x}_2(t) = -\frac{k}{M}x_1(t) + \frac{u(t)}{M} 
f(x, u) = \begin{bmatrix} f_1(x, u) \\ f_2(x, u) \end{bmatrix} := \begin{bmatrix} x_2 \\ -\frac{k}{M}x_1 + \frac{u}{M} \end{bmatrix}$$
(2.4.4)

Supponiamo di misurare z(t) (sensore posizione), allora y := z

$$\dot{x}_1(t) = x_2(t) 
\dot{x}_2(t) = -\frac{k}{M}x_1(t) + \frac{u(t)}{M} 
y(t) = x_1(t)$$

Sia k(t) = k e, ricordando la formula dell'energia cinetica  $E_k = \frac{1}{2}mv^2$  e la formula dell'energia elastica  $U = \frac{1}{2}k\,\Delta x^2$ , consideriamo come uscita l'energia totale  $E_T(t) = \frac{1}{2}(kz^2(t) + M\dot{z}^2(t))$ 

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -\frac{k}{M}x_1(t) + \frac{u(t)}{M}$$

$$y(t) = \frac{1}{2}\left(k(t)x_1^2(t) + Mx_2^2(t)\right)$$

quindi  $h(x) := \frac{1}{2}(kx_1^2 + Mx_2^2).$ 

N.B. Il risultato (l'uscita) vale, di solito, solo per il mio modello, in base a come l'ho impostato; nella realtà potrebbe essere diverso.

# 2.5 Esempio auto in rettilineo



Scriviamo la legge di Newton

$$M\ddot{z} = F_{\text{drag}} + F_m \tag{2.5.1}$$

con M massa e  $F_{\text{drag}}$  data da

$$F_{\rm drag} = -b\dot{z} \tag{2.5.2}$$

Definiamo  $x_1 := z$  e  $x_2 := \dot{z}$  (stato  $x := [x_1 x_2]^T$ ) e  $u := F_m$  (ingresso). Supponiamo di misurare z(t) (sensore posizione), allora y := z

$$\begin{aligned} \dot{x}_1(t) &= x_2(t) \\ \dot{x}_2(t) &= -\frac{b}{M} x_2(t) + \frac{1}{M} u(t) \\ y(t) &= x_1(t) \end{aligned}$$

Proviamo a progettare un sistema per il cruise control.

L'equazione della dinamica è

$$M\ddot{z}(t) = -b\dot{z}(t) + F_m(t) \tag{2.5.3}$$

Siccome siamo interessati a controllare la velocità e non la posizione, allora consideriamo come stato solo la velocità:  $x := \dot{z}$ ,  $u := F_m$ . Supponiamo di misurare  $\dot{z}(t)$  (sensore velocità), allora y := x

$$\dot{x}(t) = -\frac{b}{M}x(t) + \frac{1}{M}u(t)$$
$$y(t) = x(t)$$

### 2.6 Esempio pendolo



Scriviamo l'equazione dei momenti

$$M\ell^2\ddot{\theta} = C_{\text{grav}} + C_{\text{drag}} + C_m \tag{2.6.1}$$

con M massa e  $C_{\text{grav}}$  e  $C_{\text{drag}}$  date da

$$C_{\text{gray}} = Mg\ell\sin(\theta)$$
  $C_{\text{drag}} = -b\dot{\theta}$ 

con b coefficiente d'attrito.

Scriviamo l'equazione della dinamica, partendo dalla formula iniziale dei momenti

$$\ddot{\theta}(t) = -\frac{g}{\ell}\sin\left(\theta(t)\right) - \frac{b}{M\ell^2}\dot{\theta}(t) + \frac{1}{M\ell^2}C_m(t) \tag{2.6.2}$$

Definiamo quindi  $x_1 := \theta$  e  $x_2 := \dot{\theta}$  (stato  $x := [x_1 x_2]^T$ ) e  $u := C_m$  (ingresso). Supponiamo di misurare  $\theta$  (sensore angolo), allora  $y := \theta$ 

$$\begin{aligned} \dot{x}_1(t) &= x_2(t) \\ \dot{x}_2(t) &= -\frac{g}{\ell} \sin(x_1(t)) - \frac{b}{M\ell^2} x_2(t) + \frac{1}{M\ell^2} u(t) \\ y(t) &= x_1(t) \end{aligned}$$

Se misuriamo invece la posizione verticale, allora  $y := -\ell \cos(\theta)$ 

$$\dot{x}_1(t) = x_2(t) 
\dot{x}_2(t) = -\frac{g}{\ell} \sin(x_1(t)) - \frac{b}{M\ell^2} x_2(t) + \frac{1}{M\ell^2} u(t) 
y(t) = -\ell \cos(\theta)$$

### 2.7 Traiettoria di un sistema

Dato un istante iniziale  $t_0$  e uno stato iniziale  $x_{t_0}$ , la funzione del tempo (x(t), u(t)),  $t > t_0$ , che soddisfa l'equazione di stato  $\dot{x}(t) = f(x(t), u(t), t)$  si dice traiettoria (movimento) del sistema. In particolare, x(t) si dice traiettoria dello stato. Consistentemente, y(t) si dice traiettoria dell'uscita.

**N.B.** per sistemi senza ingresso (quindi non forzati) la traiettoria dello stato x(t),  $t > t_0$  è determinata solo dallo stato iniziale  $x_{t_0}$ .

#### 2.7.1 Esempio

Definiamo un sistema con stato x e stato iniziale  $x_0$ 

$$x := \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \qquad x_0 := \begin{bmatrix} 5 \\ 3 \end{bmatrix} \qquad t_0 = 0$$

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = u(t)$$

Assegno a  $x_1, x_2$  e u(t) le seguenti equazioni

$$\overline{x_1}(t) = 5 + 3t + t^2$$

$$\overline{x_2}(t) = 3 + 2t$$

$$\overline{u}(t) = 2$$

Se le equazioni di  $\overline{x_1}$  e  $\overline{x_2}$  soddisfano le condizioni iniziali e la funzione di stato  $(\dot{x}_1$  e  $\dot{x}_2)$  allora quelle equazioni sono la traiettoria del sistema.

Infatti

$$\overline{x_0} = \begin{bmatrix} 5 + 3t + t^2 \\ 3 + 2t \end{bmatrix}_{t=0} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

$$\overline{x_0} = \begin{bmatrix} 5 + 3t + t^2 \\ 3 + 2t \end{bmatrix}_{t=0} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$$

$$\frac{d}{dt} \begin{bmatrix} 5 + 3t + t^2 \\ 3 + 2t \end{bmatrix} = \begin{bmatrix} 3 + 2t \\ 2 \end{bmatrix}$$
(2.7.1)

### 2.8 Equilibrio di un sistema

Dato un sistema (non forzato)  $\dot{x}(t) = f(x(t), t)$ , uno stato  $x_e$  si dice equilibrio del sistema se  $x(t) = x_e$ ,  $t \ge t_0$  è una traiettoria del sistema.

Dato un sistema (forzato)  $\dot{x}(t) = f(x(t), u(t), t)$ ,  $(x_e, u_e)$  si dice coppia di equilibrio del sistema se  $(x(t), u(t)) = (x_e, u_e)$ ,  $t \ge t_0$ , è una traiettoria del sistema.

Per un sistema (tempo invariante continuo)  $\dot{x}(t) = f(x(t), u(t))$  data una coppia di equilibrio  $(x_e, u_e)$  vale  $f(x_e, u_e) = 0$ . Se il sistema è non forzato, dato un equilibrio  $x_e$  vale  $f(x_e) = 0$ .

### 2.8.1 Esempio pendolo

$$\dot{x}_1(t) = x_2(t) = f_1(x(t), u(t)) 
\dot{x}_2(t) = -\frac{G}{\ell} \sin(x_1(t)) - \frac{b}{M\ell^2} x_2(t) + \frac{1}{M\ell^2} u(t) = f_2(x(t), u(t))$$

Siccome sappiamo che, data una coppia di equilibrio  $(x_e, u_e)$ , vale  $f(x_e, u_e) = 0$ , allora per trovare l'equilibrio del pendolo imponiamo

$$f(x_e, u_e) = 0 (2.8.1)$$

cioè:

$$\begin{cases} x_{2e}(t) = 0 \\ -\frac{G}{\ell}\sin(x_{1e}) - \frac{bx_{2e}}{M\ell^2} + \frac{1}{M\ell^2}u_e = 0 \end{cases}$$
 (2.8.2)

sostituendo  $x_{2e}(t) = 0$  nell'ultima equazione

$$-\frac{G}{\ell}\sin(x_{1e}) + \frac{1}{M\ell^2}u_e = 0 \Longrightarrow u_e = MG\ell\sin(x_{1e})$$
(2.8.3)

In conclusione, le coppie di equilibrio del sistemo sono tutti fli  $(x_{1e}, x_{2e}, u_e)$  che soddisfano

$$\begin{cases} u_e = MG\ell \sin(x_{1e}) \\ x_{2e} = 0 \end{cases}$$
 (2.8.4)

### 2.9 Classificazione dei sistemi in forma di stato

La classe generale è  $x \in \mathbb{R}^n, u \in \mathbb{R}^m, y \in \mathbb{R}^p$ 

$$\dot{x}(t) = f(x(t), u(t), t)$$
 equazione di stato  $y(t) = h(x(t), u(t), t)$  equazione di uscita

- I sistemi **monovariabili** (SISO, Single Input Single Output) sono una sottoclasse di sistemi **multivariabili** (MIMO, Multiple Input Multiple Output); sono tali se m = p = 1, altrimenti sono dei sistemi MIMO;
- I sistemi **strettamente propri** sono una sotto classe dei **sistemi propri**; sono tali se y(t) = h(x(t), t), quindi se l'uscita dipende esclusivamente dall'ingresso, chiamati quindi sistemi causali (tutti i sistemi che abbiamo visto fin'ora sono sistemi propri).
- I sistemi non forzati sono una sotto classe dei sistemi forzati; un esempio di sistema non forzato è il seguente

$$\dot{x}(t) = f(x(t), t)$$
$$y(t) = h(x(t), t)$$

• I sistemi **tempo invarianti** sono una sotto classe di sistemi **tempo varianti**. I tempo invarianti sono tali se, data una traiettoria  $(x(t), u(t)), t \geq t_0$ , con  $x(t_0) = x_0$ , per ogni  $\Delta \in \mathbb{R}$  vale che  $x(t_0 + \Delta) = x_0$  allora  $(x_{\Delta}(t), u_{\Delta}(t)) = (x(t - \Delta), u(t - \Delta))$  è una traiettoria. Si può dimostrare che sistemi tempo invarianti sono del tipo

$$\dot{x}(t) = f(x(t), u(t))$$
  $x(0) = x_0$   
 $y(t) = h(x(t), u(t))$ 

e senza senza perdita di generalità possiamo scegliere  $t_0=0.$  Graficamente:



• I sistemi lineari sono una sotto classe di sistemi non lineari. I sistemi lineari sono tali se le funzioni di stato e di uscita sono lineari in x e u:

$$\dot{x}_1(t) = a_{11}(t)x_1(t) + a_{12}(t)x_2(t) + \dots + a_{1n}(t)x_n(t) + b_{11}(t)u_1(t) + b_{12}(t)u_2(t) + \dots + b_{1m}(t)u_m(t)$$

$$\dot{x}_2(t) = a_{21}(t)x_1(t) + a_{22}(t)x_2(t) + \dots + a_{2n}(t)x_n(t) + b_{21}(t)u_1(t) + b_{22}(t)u_2(t) + \dots + b_{2m}(t)u_m(t)$$

$$\dots$$

$$\dots$$

$$\dots$$

$$\dot{x}_n(t) = a_{n1}(t)x_1(t) + a_{n2}(t)x_2(t) + \dots + a_{nn}(t)x_n(t) + b_{n1}(t)u_1(t) + b_{n2}(t)u_2(t) + \dots + b_{nm}(t)u_m(t)$$

per y(t) invece

$$\begin{aligned} y_1(t) &= c_{11}(t)x1(t) + c_{12}(t)x_2(t) + \ldots + c_{1n}(t)x_n(t) + d_{11}(t)u_1(t) + d_{12}(t)u_2(t) + \ldots + d_{1m}(t)u_m(t) \\ y_2(t) &= c_{21}(t)x_1(t) + c_{22}(t)x_2(t) + \ldots + c_{2n}(t)x_n(t) + d_{21}(t)u_1(t) + d_{22}(t)u_2(t) + \ldots + d_{2m}(t)u_m(t) \\ &\cdots \\ &\cdots \\ y_p(t) &= c_{p1}(t)x_1(t) + c_{p2}(t)x_2(t) + \ldots + c_{pn}(t)x_n(t) + d_{p1}(t)u_1(t) + d_{p2}(t)u_2(t) + \ldots + d_{pm}(t)u_m(t) \end{aligned}$$

# 2.10 Proprietà dei sistemi lineari

#### 2.10.1 Sistemi lineri in forma matriciale

Definiamo le matrici  $A(t) \in \mathbb{R}^{n \times n}, B(t) \in \mathbb{R}^{n \times m}, C(t) \in \mathbb{R}^{p \times n}, D(t) \in \mathbb{R}^{p \times m}$ 

$$A(t) = \begin{bmatrix} a_{11}(t) & \dots & a_{1n}(t) \\ \vdots & & & \\ a_{n1}(t) & \dots & a_{nn}(t) \end{bmatrix} \qquad B(t) = \begin{bmatrix} b_{11}(t) & \dots & b_{1m}(t) \\ \vdots & & & \\ b_{n1}(t) & \dots & b_{nm}(t) \end{bmatrix}$$

$$C(t) = \begin{bmatrix} c_{11}(t) & \dots & c_{1n}(t) \\ \vdots & & & \\ c_{p1}(t) & \dots & c_{pn}(t) \end{bmatrix} \qquad D(t) = \begin{bmatrix} d_{11}(t) & \dots & d_{1m}(t) \\ \vdots & & & \\ d_{pn1}(t) & \dots & d_{pm}(t) \end{bmatrix}$$

quindi scriviamo

$$\begin{bmatrix} \dot{x}_1(t) \\ \vdots \\ \dot{x}_n(t) \end{bmatrix} = A(t) \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix} + B(t) \begin{bmatrix} u_1(t) \\ \vdots \\ u_m(t) \end{bmatrix}$$

$$(2.10.1)$$

che equivale a

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$
  
$$y(t) = C(t)x(t) + D(t)u(t)$$

### 2.11 Sistemi lineari tempo-invarianti

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

con A, B, C, D matrici costanti.

#### 2.11.1 Esempio carrello



$$\dot{x}_1(t) = x_2(t) 
\dot{x}_2(t) = -\frac{k(t)}{M}x_1(t) + \frac{1}{M}u(t) 
y(t) = x_1(t)$$

$$f_1(x, u, t) = x_2 
f_2(x, u, t) = -\frac{k(t)}{M}x_1 + \frac{1}{M}u(t)$$

 $f_2$  dipende esplicitamente da t attraverso k(t) quindi è un sistema tempo <u>variante</u>. Se  $k(t) = \overline{k}$  per ogni t allora tempo invariante.

Siccome  $f_1$  e  $f_2$  dipendono linearmente da x e u il sistema è <u>lineare</u>. (Se  $k(t) = \overline{k}$  il sistema è lineare tempo invariante.)

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & 1 \\ -\frac{k(t)}{M} & 0 \end{bmatrix}}_{A} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix}}_{B} u(t)$$
$$y(t) = \underbrace{\begin{bmatrix} 1 & 0 \end{bmatrix}}_{C} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \underbrace{0}_{D} u(t)$$

per k costante:

$$A = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \qquad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

### 2.11.2 Sistemi lineari tempo-invarianti SISO

I sistemi lineari tempo-invarianti single input single output (SISO) sono caratterizzati dalle matrici  $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times 1}, C \in \mathbb{R}^{1 \times n}, D \in \mathbb{R}^{1 \times 1}$ , ovvero B è un vettore, C è un vettore riga e D è uno scalare.

### 2.12 Principio di sovrapposizione degli effetti

Prendiamo un sistema lineare (anche tempo-variante)

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$
  
$$y(t) = C(t)x(t) + D(t)u(t)$$

Sia  $(x_a(t), u_a(t))$  traiettoria con  $x_a(t_0) = x_{0a}$ .

Sia  $(x_b(t), u_b(t))$  traiettoria con  $x_b(t_0) = x_{0b}$ .

Allora  $\forall \alpha, \beta \in \mathbb{R}$  dato lo stato iniziale  $x_{ab}(t_0) = \alpha x_{0a} + \beta x_{0b}$ , si ha che

$$(x_{ab}(t), u_{ab}(t)) = (\alpha x_a(t) + \beta x_b(t), \alpha u_a(t) + \beta u_b(t))$$
(2.12.1)

è traiettoria del sistema, ovvero applicando come ingresso  $u_{ab} = \alpha u_a(t) + \beta u_b(t)$  la traiettoria di stato è  $x_{ab}(t) = \alpha x_a(t) + \beta x_b(t)$ 

$$\frac{\alpha x_{0a}(t) + \beta x_{0b}(t)}{\alpha u_a(t) + \beta u_b(t)(t)} \Longrightarrow \alpha x_a(t) + \beta x_b(t) \tag{2.12.2}$$

IMPORTANTE: non vale per i sistemi non lineari.

#### Dimostrazione

Per dimostrarlo dobbiamo provare che soddisfa l'equazione differenziale

$$\frac{d}{dt}x_{ab}(t) = \alpha \dot{x}_a(t) + \beta \dot{x}_b(t)$$

$$= \alpha (A(t)x_a(t) + B(t)u_a(t)) + \beta (A(t)x_b(t) + B(t)u_b(t))$$

$$= A(t)(\alpha x_a(t) + \beta x_b(t)) + B(t)(\alpha u_a(t) + u_b(t))$$

Per sistemi lineari sotto opportune ipotesi su A(t) e B(t) si può dimostrare che la soluzione è unica. Si dimostra lo stesso anche per l'uscita.

### 2.13 Evoluzione libera e evoluzione forzata

Sfruttando il principio di sovrapposizione degli effetti prendiamo due sistemi (A) e (B)

chiamiamo  $x_a(t) = x_\ell(t)$  e  $x_b(t) = x_f(t)$ 

$$\alpha x_{0a} + \beta x_{0b} = \underbrace{\alpha}_{1} x_{0} = x_{0} \qquad \qquad \alpha u_{a}(t) + \beta u_{b}(t) = \underbrace{\beta}_{1} u(t) = u(t)$$

quindi

$$x_{ab}(t) = \underbrace{x_{\ell}(t)}_{\text{evoluzione}} + \underbrace{x_{f}(t)}_{\text{evoluzione forzata}}$$

$$(2.13.1)$$

L'evoluzione libera è definita come  $x_{\ell}(t)$  per  $t \geq t_0$ , tale che  $x_{\ell}(t_0) = x_0$  e  $u_l(t) = 0$  per  $t \geq t_0$ , e uscita  $y_{\ell}(t) = C(t)x_{\ell}(t)$ . L'evoluzione forzata è definita come  $x_f(t)$  per  $t \geq t_0$ , tale che  $x_f(t_0) = 0$  e  $u_l(t) = u(t)$  per  $t \geq t_0$ , e uscita  $y_f(t) = C(t)x_f(t) + D(t)u(t)$ .

IMPORTANTE: non vale per i sistemi non lineari.

### 2.13.1 Traiettorie di un sistema LTI: esempio scalare

Definiamo un sistema lineare tempo invariante (LTI) scalare  $x \in \mathbb{R}, u \in \mathbb{R}, y \in \mathbb{R}$ 

$$\dot{x}(t) = ax(t) + bu(t)$$

$$y(t) = cx(t) + du(t)$$

$$x(0) = x_0$$

dall'analisi matematica possiamo scrivere il sistema come soluzione omogenea + soluzione particolare

$$x(t) = e^{at}x_0 + \int_0^t e^{a(t-\tau)}bu(\tau)d\tau$$
  
$$y(t) = ce^{at}x_0 + c\int_0^t e^{a(t-\tau)}bu(\tau)d\tau + du(t)$$

ricordiamo che la funzione esponenziale si può scrivere come

$$e^{at} = 1 + at + \frac{(at)^2}{2!} + \frac{(at)^3}{3!} + \dots$$
 (2.13.2)

### 2.13.2 Traiettorie di un sistema LTI: caso generale

Definiamo un sistema lineare tempo invariante (LTI)  $x \in \mathbb{R}^n, u \in \mathbb{R}^m, y \in \mathbb{R}^p$ 

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

$$x(0) = x_0$$

$$\underbrace{x(t)}_{\mathbb{R}^n} = \underbrace{e^{At}}_{\mathbb{R}^{n \times n}} \underbrace{x_0}_{\mathbb{R}^n} + \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau$$
$$y(t) = Ce^{at} x_0 + c \int_0^t e^{A(t-\tau)} Bu(\tau) d\tau + Du(t)$$

Ricordiamo che l'esponenziale di matrice si può scrivere come

$$e^{At} = I + At + \frac{(At)^2}{2!} + \frac{(At)^3}{3!} + \dots$$
 (2.13.3)

$$x(t) = \underbrace{e^{At}x_0}_{\text{evoluzione libera}} + \underbrace{\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau}_{\text{evoluzione forzata}}$$
(2.13.4)

$$x_{\ell}(t) = e^{At}x_0 \qquad \qquad x_f(t) = \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

#### 2.13.3 Esempio sistema non forzato

$$\dot{x}_1(t) = \lambda_1 x_1(t) \dot{x}_1(t) = \lambda_2 x_2(t)$$

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \underbrace{\begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}}_{A} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \tag{2.13.5}$$

 $A := \Lambda$  matrice diagonale.

Il nostro è un sistema non forzato, quindi c'è solo l'evoluzione libera:

$$x(t) = e^{\Lambda t} x_0 \tag{2.13.6}$$

$$\begin{split} e^{\Lambda t} &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} + \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}^2 \frac{t^2}{2!} + \dots \\ &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} + \begin{bmatrix} \frac{\lambda_1^2 t^2}{2!} & 0 \\ 0 & \frac{\lambda_2^2 t^2}{2!} \end{bmatrix} + \dots \\ e^{at} &= 1 + at + \frac{(at)^2}{2!} + \frac{(at)^3}{3!} + \dots \Longrightarrow = \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix} \end{split}$$

Quindi nel caso generale di  $\Lambda \in \mathbb{R}^{n \times n}$ 

$$e^{\Lambda t} = \begin{bmatrix} e^{\lambda_1 t} & 0 & \dots & 0 \\ 0 & e^{\lambda_2 t} & \dots & 0 \\ \vdots & & & & \\ 0 & \dots & 0 & e^{\lambda_n t} \end{bmatrix}$$
 (2.13.7)

#### 2.13.4 Proprietà della matrice esponenziale

Esponenziale e cambio di base:

$$e^{TAT^{-1}} = Te^{At}T^{-1} (2.13.8)$$

Data una matrice  $A \in \mathbb{R}^{n \times n}$ , esiste J matrice diagonale a blocchi, chiamata matrice di Jordan, che è unica a meno di permutazioni dei blocchi, tale che

$$A = T^{-1}JT (2.13.9)$$

con T matrice invertibile (matrice del cambio base). Questa formula viene chiamata forma di Jordan.

La matrice di Jordan è fatta in questo modo

$$\begin{pmatrix}
\lambda_1 & 1 & & & \\
\lambda_1 & 1 & & & \\
& & \lambda_1
\end{pmatrix}$$

$$\lambda_2 & 1 & & \\
& & \lambda_2$$

$$\lambda_3 & & \\
& & \ddots & \\
& & & \lambda_n & 1 \\
& & & \lambda_n
\end{pmatrix}$$

con  $\lambda_i$  autovalore di A.

Utilizzando questa forma riconduco il calcolo di  $e^{At}$  al calcolo di

$$e^{\begin{bmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \dots & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & 1 \\ 0 & \dots & \dots & 0 & \lambda \end{bmatrix}} = e^{\lambda t} \begin{bmatrix} 1 & t & \frac{t^2}{2!} & \dots \\ 0 & 1 & t & \frac{t^2}{2!} & \dots \\ \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \end{bmatrix}$$

$$(2.13.10)$$

IMPORTANTE: tutti gli elementi di  $e^{At}$  sono del tipo

$$t^q e^{\lambda t} \tag{2.13.11}$$

con qintero e  $\lambda_i$ autovalori di A

### 2.14 Rappresentazioni equivalenti

Effettuiamo un cambio di base mediante una matrice T

$$\hat{x}(t) = Tx(t) \tag{2.14.1}$$

ed essendo T invertibile

$$x(t) = T^{-1}\hat{x}(t) \tag{2.14.2}$$

Sostituendo nell'equazione della dinamica si ottiene

$$T \cdot \underbrace{T^{-1} \dot{\hat{x}}(t)}_{\dot{x}(t)} = A \underbrace{T^{-1} \hat{x}(t)}_{x(t)} + Bu(t) \cdot T$$

$$\dot{\hat{x}}(t) = TAT^{-1}\hat{x}(t) + TBu(t)$$
$$y(t) = CT^{-1}\hat{x}(t) + Du(t)$$

Allora chiamo  $\hat{A} = TAT^{-1}, \hat{B} = TB, \hat{C} = CT^{-1}, \hat{D} = D$ 

$$\dot{\hat{x}}(t) = \hat{A}\hat{x}(t) + \hat{B}u(t)$$
$$y(t) = \hat{C}\hat{x}(t) + \hat{D}u(t)$$

se T è una matrice tale che

$$J = TAT^{-1} (2.14.3)$$

allora

$$\dot{\hat{x}} = J\hat{x}(t) + TBu(t) \tag{2.14.4}$$

$$\hat{x}_{\ell}(t) = e^{JT}\hat{x}_0 = T^{-1}e^{Jt}Tx_0$$

### 2.15 Modi di un sistema lineare tempo invariante

Prendiamo un sistema lineare tempo invariante con  $x \in \mathbb{R}^n, u \in \mathbb{R}^m, y \in \mathbb{R}^p$  e  $x(0) = x_0$ 

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Indichiamo con  $\lambda_1, ..., \lambda_r$  gli  $r \leq n$  autovalori (reali o complessi coniugati) distinti della matrice A, con molteplicità algebrica  $n_1, ..., n_r \geq 0$  tali che  $\sum_{i=1}^r n_i = n$ .

Le componenti dell'evoluzione libera dello stato  $x_\ell(t)$  si possono scrivere come

$$x_{\ell,j} = \sum_{i=1}^{r} \sum_{q=1}^{h_i} \gamma_{jiq} t_{q-1} e^{\lambda_i t}$$
  $j = 1, ..., n$ 

per opportuni valori di  $h_i \leq n_i$ , dove i coefficienti  $\gamma_{jiq}$  dipendono dallo stato iniziale x(0).

I termini  $t^{q-1}e^{\lambda_i t}$  sono detti modi naturali del sistema. L'evoluzione libera dello stato è combinazione lineare dei modi.

### 2.15.1 Autovalori complessi

Se la matrice A è reale e  $\lambda_i = \sigma_i + j\omega_i$  è un autovalore complesso, allora il suo complesso coniugato  $\overline{\lambda}_i = \sigma_i - j\omega_i$  è anch'esso autovalore di A.

Inoltre si dimostra che i coefficienti  $\gamma_{jiq}$  corrispondenti a  $\lambda_i$  e  $\overline{\lambda}_i$  sono anch'essi complessi coniugati.

Scriviamo l'esponenziale di autovalori complessi coniugati; se  $\lambda_i = \sigma_i + j\omega_i$  e  $\overline{\lambda}_i = \sigma_i - j\omega_i$  allora

$$e^{\lambda_i t} = e^{\sigma_i + j\omega_i}$$

$$= e^{\sigma_i t} e^{j\omega_i t}$$

$$= e^{\sigma_i t} (\cos(\omega_i t) + j\sin(\omega_i t))$$

$$= e^{\sigma_i t} (\cos(\omega_i t) - j\sin(\omega_i t))$$

$$= e^{\sigma_i t} (\cos(\omega_i t) - j\sin(\omega_i t))$$

Si verifica quindi, per calcolo diretto, che le soluzioni  $x_{\ell,j}(t)$  sono sempre reali e che i modi del sistema corrispondenti ad autovalori complessi coniugati  $\lambda_i$  e  $\overline{\lambda}_i$  sono del tipo

$$t^{q-1}e^{\sigma_i t}\cos(\omega_i t + \phi_i) \tag{2.15.1}$$

con opportuni valori della fase  $\phi_i$ .

Supponiamo che le molteplicità algebriche  $n_1, ..., n_r$  degli autovalori di A coincidano cone le molteplicità geometriche (ad esempio quando gli autovalori sono distinti).

Allora i coefficienti  $h_i$  sono tutti pari a 1 e l'espressione dei modi si semplifica in

$$e^{\lambda_i t}$$
 per autovalori reali
$$e^{\sigma_i t} \cos(\omega_i t + \phi_i)$$
 per autovalori complessi coniugati

Modi naturali: autovalori reali semplici





• 
$$e^{\lambda_i t}$$
,  $\lambda_i < 0$ 







Modi naturali: autovalori complessi coniugati semplici

• 
$$e^{\sigma_i t} \cos(\omega_i t + \phi_i)$$
,  $\sigma_i > 0$ 



• 
$$e^{\sigma_i t} \cos(\omega_i t + \phi_i)$$
,  $\sigma_i = 0$ 



• 
$$e^{\sigma_i t} \cos(\omega_i t + \phi_i)$$
,  $\sigma_i < 0$ 





# 2.15.2 Esempio sui modi naturali

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ a^2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (2.15.2)

$$p(\lambda) = \det(\lambda I - A)$$
$$= \lambda^2 - a^2$$
$$\Rightarrow \begin{cases} \lambda_1 = a \\ \lambda_2 = -a \end{cases}$$

$$e^{at}$$

Il modo  $e^{at}$  diverge a infinito, il che non è una cosa "buona" per dei sistemi di controllo, perché ad esempio se si sta realizzando un sistema di controllo della velocità vuol dire che la mia velocità sta aumentando, mentre dovrebbe rimanere fissa in un range.

Non bisogna quindi focalizzarsi sul calcolare con precisione il valore dei modi naturali ma è importante conoscere come si comporta la loro parte reale.

### 2.15.3 Esempio 1

Consideriamo il seguente sistema LTI con  $x \in \mathbb{R}^3 eu \in \mathbb{R}^3$ 

$$\dot{x}(t) = \underbrace{\begin{bmatrix} 0 & 1 & -1 \\ 1 & -1 & -1 \\ 2 & 1 & 3 \end{bmatrix}}_{A} x(t) + \underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}_{B} u(t)$$
(2.15.3)

Mediante un cambio di coordinate usando la matrice  $T = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}$  e ponendo  $\hat{x}(t) = Tx(T)$ , il sistema si può riformulare come

$$\hat{x}(t) = \underbrace{\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}}_{\hat{A} = TAT^{-1}} \hat{x}(t) + \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{\hat{B} = TB} u(t)$$
(2.15.4)

Gli autovalori di  $\hat{A}$  sono -1, -2 con molteplicità algebrica 2, 1.

Per calcolare l'evoluzione libera consideriamo la formula vista in precedenza

$$\hat{x}_{\ell} = e^{\hat{A}t}\hat{x}_0 \tag{2.15.5}$$

Calcoliamo quindi l'esponenziale di matrice  $e^{\hat{A}t}$  per  $\hat{A}=\begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ 

$$e^{\hat{A}t} = \sum_{k=0}^{\infty} \begin{bmatrix} -1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{bmatrix}^{k} \frac{t^{k}}{k!}$$

$$= \begin{bmatrix} \sum_{k=0}^{\infty} \frac{(-1)^{k} t^{k}}{k!} & t \sum_{k=0}^{\infty} \frac{(-1)^{k} t^{k}}{k!} & 0 \\ 0 & \sum_{k=0}^{\infty} \frac{(-1)^{k} t^{k}}{k!} & 0 \\ 0 & 0 & \sum_{k=0}^{\infty} \frac{(-2)^{k} t^{k}}{k!} \end{bmatrix}$$

$$= \begin{bmatrix} e^{-t} & t e^{-t} & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & e^{-2t} \end{bmatrix}$$

quindi l'evoluzione libera dello stato è

$$\hat{x}_{\ell} = \begin{bmatrix} e^{-t} & te^{-t} & 0\\ 0 & e^{-t} & 0\\ 0 & 0 & e^{-2t} \end{bmatrix} \hat{x}_{0}$$
(2.15.6)

• Se ad esempio la condizione iniziale è  $\hat{x}_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ , allora

$$\hat{x}_{\ell} = \begin{bmatrix} e^{-t} \\ 0 \\ 0 \end{bmatrix} \tag{2.15.7}$$

Scriviamolo nello coordinate originali

$$x_{\ell}(t) = \underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}_{T^{-1}} \hat{x}_{\ell}(t) = \begin{bmatrix} e^{-t} \\ 0 \\ e^{-t} \end{bmatrix}$$
(2.15.8)

• Se prendiamo come condizione iniziale  $\hat{x}_0 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ , allora

$$\hat{x}_{\ell} = \begin{bmatrix} te^{-t} \\ e^{-t} \\ 0 \end{bmatrix} \tag{2.15.9}$$

Scriviamolo nello coordinate originali

$$x_{\ell}(t) = \underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}_{T-1} \hat{x}_{\ell}(t) = \begin{bmatrix} e^{-t} + te^{-t} \\ e^{-t} \\ e^{-t} + te^{-t} \end{bmatrix}$$
(2.15.10)

• Se prendiamo come condizione iniziale  $\hat{x}_0 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ . allora

$$\hat{x}_{\ell} = \begin{bmatrix} 0\\0\\e^{-2t} \end{bmatrix} \tag{2.15.11}$$

Nelle coordinate originali:

$$x_{\ell}(t) = \underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}}_{T=1} \hat{x}_{\ell}(t) = \begin{bmatrix} 0 \\ e^{-2t} \\ e^{-2t} \end{bmatrix}$$
(2.15.12)

### 2.15.4 Esempio carrello

$$\dot{x}_1(t) = x_2(t) 
\dot{x}_2(t) = -\frac{k(t)}{M}x_1(t) + \frac{1}{M}u(t) 
 u(t) = x_1(t)$$

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 0u(t)$$

Consideriamo k costante, quindi sistema LTI.

Gli autovalori della matrice A sono  $\lambda_1=j\sqrt{\frac{k}{M}}, \lambda_2=-j\sqrt{\frac{k}{M}}$  immaginari puri.

Applichiamo un controllo  $u = -hx_2$ . Le equazioni di stato del sistema diventano:

$$\dot{x}_1(t) = x_2(t)$$

$$\dot{x}_2(t) = -\frac{k}{M}x_1(t) - \frac{h}{M}x_2(t)$$

in forma matriciale

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & -\frac{h}{M}x_2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$

Quindi calcoliamo gli autovalori della matrice

$$A = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & -\frac{h}{M} \end{bmatrix}$$

$$A - \lambda I = \begin{bmatrix} -\lambda & 1\\ -\frac{k}{M} & -\frac{h}{M} - \lambda \end{bmatrix}$$

calcolando il determinante e ponendolo a zero si trova il polinomio caratteristico associato a essa

$$p(\lambda) = \lambda^2 + \lambda \frac{h}{M} + \frac{k}{M} \Longrightarrow$$

$$\lambda_1 = -\frac{h}{2M} + \sqrt{\frac{h^2}{4M^2} - \frac{k}{M}}$$

$$\lambda_2 = -\frac{h}{2M} - \sqrt{\frac{h^2}{4M^2} - \frac{k}{M}}$$

le cui soluzioni sono gli autovalori della matrice A.

Prendiamo ora in considerazione la quantità sotto radice; è evidente che se  $h^2 > 4Mk$  gli autovalori sono reali, mentre se  $h^2 < 4Mk$  sono complessi coniugati.

Se invece  $h^2 = 4Mk$ ,  $\lambda_1 = \lambda_2 = -\frac{h}{2M}$ , con molteplicità algebrica pari a 2. Si può dimostrare che la molteplicità geometrica è pari a 1, quindi il blocco di Jordan sarà  $2 \times 2$  (guardare 2.13.4)

$$J = TAT^{-1} = \begin{bmatrix} -\frac{h}{2M} & 1\\ 0 & -\frac{h}{2M} \end{bmatrix} \qquad e^{Jt} = e^{-\frac{h}{2M}t} \begin{bmatrix} 1 & t\\ 0 & 1 \end{bmatrix}$$
$$\hat{x}_{\ell} = \begin{bmatrix} e^{-\frac{h}{2M}t}\hat{x}_{1}(0) + te^{-\frac{h}{2M}t}\hat{x}_{2}(0)\\ e^{-\frac{h}{2M}t}\hat{x}_{2}(0) \end{bmatrix} = \begin{bmatrix} \hat{x}_{1\ell}(t)\\ \hat{x}_{2\ell}(t) \end{bmatrix}$$
(2.15.13)

Quindi i modi naturali del sistema sono

$$e^{-\frac{h}{2M}t}$$
  $te^{-\frac{h}{2M}t}$ 

da notare che anche si effettua il cambio di coordinate i modi del sistema non cambiano.

• Supponiamo 
$$\hat{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, allora

$$\hat{x}_{\ell}(t) = \begin{bmatrix} e^{-\frac{h}{2M}t} \hat{x}_{1}(0) \\ 0 \end{bmatrix}$$
 (2.15.14)

• Supponiamo 
$$\hat{x}(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
, allora

$$\hat{x}_{\ell}(t) = \begin{bmatrix} 0 \\ e^{-\frac{h}{2M}t} \hat{x}_{2}(0) \end{bmatrix}$$
 (2.15.15)



Si nota dal grafico che se  $-\frac{h}{2M}$  è "grande" il modo va a zero, quindi sono in un punto di equilibrio.

• Se h = 4Mk = 0 con M > 0, h = 0, k = 0, il sistema diventa

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
 (2.15.16)

i cui modi naturali sono 1, t. È evidente come si possano scrivere queste equazioni differenziali come combinazione lineare dei modi:

$$x_1(t) = x_1(0) + x_2(0)t$$
  
 $x_2(t) = x_2(0)$ 

### 2.16 Stabilità interna

#### 2.16.1 Richiami sull'equilibrio di un sistema

Prendiamo un sistema lineare tempo invariante

$$\dot{x}(t) = f(x(t), u(t)) \tag{2.16.1}$$

Poniamo  $u(t) = u_e \ \forall t \geq 0$ , allora

$$\dot{x}(t) = f(x(t), u_e) \qquad \qquad x(0) = x_0$$

Esiste, per un sistema di questo tipo, una  $x_e$  tale che se  $x(0) = x_e \Longrightarrow x(t) = x_e \ \forall t \ge 0$ , quindi tale che se lo stato iniziale è costante la x(t) rimane costante in ogni istante di tempo?

Chiamo  $x_e$  equilibrio,  $(x_e, u_e)$  la chiamo coppia stato-ingresso di equilibrio.

Proprietà fondamentale di una coppia di equilibrio è che

$$f(x_e, u_e) = 0 (2.16.2)$$

#### 2.16.2 Definizioni

Per sistemi tempo-invarianti (anche se si può generalizzare) la stabilità interna di un sistema è l'insieme delle conseguenze sulla traiettoria legate a incertezze sullo stato iniziale con ingressi fissi e noti.

#### 2.16.3 Stabilità interna per sistemi non forzati

$$\dot{x}(t) = f(x(t))$$
  $x_e$  equilibrio

**Equilibrio stabile:** uno stato di equilibrio  $x_e$  si dice stabile se  $\forall \epsilon > 0, \exists \delta > 0$  tale che  $\forall x_0 : ||x_0 - x_e|| \leq \delta$  allora risulti  $||x(t) - x_e|| < \epsilon \ \forall t \geq 0$ .

**Equilibrio instabile:** uno stato di equilibrio  $x_e$  si dice instabile se non è stabile.

**Equilibrio attrattivo:** uno stato di equilibrio  $x_e$  si dice attrattivo se  $\exists \delta$  tale che  $\forall x_0 : ||x_0 - x_e|| \leq \delta$  allora risulti  $\lim_{t \to \infty} ||x(t) - x_e|| = 0$ ; quindi se il sistema è in equilibrio solo a infinito.

Equilibrio asintoticamente stabile: uno stato di equilibrio  $x_e$  si dice asintoticamente stabile se è stabile e attrattivo.

Equilibrio marginalmente stabile: uno stato di equilibrio si dice marginalmente stabile se è stabile ma non asintoticamente.

Rappresentazione grafica di un sistema in equilibrio stabile



Rappresentazione grafica di un sistema in equilibrio attrattivo



#### 2.16.4 Osservazioni

Le definizioni date sottintendono la parola locale, ovvero che la proprietà vale in un intorno dello stato di equilibrio  $x_e$ .

Stabilità globale: le proprietà di stabilità e asintotica stabilità sono globali se valgono per ogni  $x \in \mathbb{R}^n$ , invece che valere solo per  $x_0$  tale che  $||x(0) - x_e|| \leq \delta$ .

Stabilità di una traiettoria: le definizioni di stabilità si possono generalizzare a una traiettoria  $\overline{x}(t), t \geq 0$ .



### 2.17 Stabilità interna di sistemi LTI

Nei sistemi lineari x = 0 è sempre un equilibrio.

Per sistemi lineari si può dimostrare che tutti gli equilibri e tutte le traiettorie hanno le stesse proprietà di stabilità, tutte uguali a x = 0. Per questo motivo si parla di **stabilità del sistema**.

#### Dimostrazione

$$\begin{vmatrix}
\dot{x}(t) = Ax(t) + Bu(t) \\
u(t) = u_e \quad \forall t \ge 0
\end{vmatrix} \Longrightarrow Ax_e + Bu_e = 0$$
(2.17.1)

Sia  $\tilde{x}(t) := x(t) - x_e$ , allora

$$\dot{\tilde{x}}(t) = \dot{x}(t) - \underbrace{\frac{d}{dt}x_e}_{0}$$

$$= Ax(t) + Bu_e$$

$$= A(\tilde{x}(t) + x_e) + Bu_e$$

$$= A\tilde{x}(t) + \underbrace{Ax_e + Bu_e}_{0}$$

quindi

$$\dot{\tilde{x}}(t) = A\tilde{x}(t) \tag{2.17.2}$$

Concludiamo che

$$\tilde{x} = 0 \Longleftrightarrow x = x_e \tag{2.17.3}$$

cioè per studiare l'equilibrio di un sistema nel generico punto  $x_e$  posso studiare l'equilibrio del sistema nell'origine.

#### Teorema

Un sistema LTI è asintoticamente stabile se e solo se tutti gli autovalori hanno parte reale strettamente negativa.

N.B. Se gli autovalori hanno parte reale strettamente negativa i modi del sistema tendono a 0 (2.15.1).

#### Teorema

Un sistema LTI è stabile se e solo se tutti gli autovalori hanno parte reale minore o uguale a zero e tutti gli autovalori a parte reale nulla hanno molteplicità geometrica uguale alla molteplicità algebrica (i mini blocchi di Jordan associati hanno dimensione uno).

#### Osservazione

Si ha instabilità se almeno un autovalore ha parte reale positiva o se almeno un autovalore con parte reale nulla ha molteplicità algebrica maggiore della molteplicità geometrica.

#### Osservazione

La stabilità asintotica di sistemi LTI è sempre globale

$$x(0) = x_0 \Longrightarrow x(t) \ t \ge 0$$
  
 $x(0) = \alpha x_0 \Longrightarrow \alpha x(t) \ t \ge 0$ 

#### Proprietà

Se un sistema LTI è globalmente asintoticamente stabile, x=0 è l'unico equilibrio.

Nota: anche per sistemi non lineari se  $x_e$  è GAS (Globalmente Asintoticamente Stabile) allora è l'unico equilibrio.

Questo perché

### 2.17.1 Esempio stabilità del sistema carrello

$$\dot{x}_1(t) = x_2(t) 
\dot{x}_2(t) = -\frac{k(t)}{M}x_1(t) + \frac{1}{M}u(t) 
y(t) = x_1(t)$$

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\frac{k}{M} & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{M} \end{bmatrix} u(t)$$
 
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + 0u(t)$$

Consideriamo k costante, quindi sistema LTI.

Gli autovalori della matrice A sono  $\lambda_1=j\sqrt{\frac{k}{M}}, \lambda_2=-j\sqrt{\frac{k}{M}}$  immaginari puri, quindi sistema semplicemente (marginalmente) stabile.

Se applichiamo  $u = -hx_2$  gli autovalori diventano  $\lambda_1 = -\frac{h}{2M} + \sqrt{\frac{h^2}{4M^2} - \frac{k}{M}}$  e  $\lambda_2 = \frac{h}{2M} - \sqrt{\frac{h^2}{4M^2} - \frac{k}{M}}$ .

- Se  $h^2 \ge 4Mk$  gli autovalori sono 2 reali negativi, quindi il sistema è asintoticamente stabile;
- Se  $h^2 < 4Mk$  gli autovalori sono 2 complessi coniugati con parte reale negativa, quindi il sistema è asintoticamente stabile;
- Se  $h^2 = 4Mk$ ,  $\lambda_1 = \lambda_2 = -\frac{h}{2M}$ , con molteplicità algebrica pari a 2. Si può dimostrare che la molteplicità geometrica è pari a 1, quindi il blocco di Jordan sarà  $2 \times 2$  (guardare 2.13.4)

$$J = TAT^{-1} = \begin{bmatrix} -\frac{h}{2M} & 1\\ 0 & -\frac{h}{2M} \end{bmatrix} \qquad e^{Jt} = e^{-\frac{h}{2M}t} \begin{bmatrix} 1 & t\\ 0 & 1 \end{bmatrix}$$

Gli autovalori sono a parte reale negativa, quindi il sistema è asintoticamente stabile;

• Se  $h = k = 0 \Longrightarrow \lambda_1 = \lambda_2 = 0$ , quindi il sistema è instabile.

#### 2.18 Retroazione dello stato

Prendiamo un sistema lineare tempo invariante

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Supponendo di misurare l'intero stato, ovvero se x(t) = y(t), allora possiamo progettare

$$u(t) = Kx(t) + v(t) (2.18.1)$$

con  $K \in \mathbb{R}^{m \times n}$  una matrice di guadagni e v(t) un ulteriore ingresso per il sistema retroazionato

$$\dot{x}(t) = (A + BK)x(t) + Bv(t) \tag{2.18.2}$$

Se vogliamo il sistema in anello chiuso asintoticamente stabile allora dobbiamo progettare K tale che (A + BK) abbia autovalori tutti a parte reale negativa.

**Nota:** la possibilità di scegliere gli autovalori di (A + BK) (e.g., per renderli tutti a parte reale negativa) dipende dalla coppia (A, B) ed è legata alla proprietà di **raggiungibilità**.

Se non è possibile misurare l'intero stato, ovvero se  $y(t) \neq x(t)$ , esistono tecniche per ricostruire lo stato a partire dalle misure mediante sistemi ausiliari chiamati **osservatori**.

Se sia possibile o meno ricostruire lo stato dipende dalla coppia (A, C) ed è legato alla proprietà di osservabilità.

### 2.19 Linearizzazione di sistemi in non lineari (tempo invarianti)

Prendiamo un sistema non lineare tempo invariante

$$\dot{x}(t) = f(x(t), u(t))$$
$$y(t) = h(x(t), u(t))$$

Sia  $(x_e, u_e)$  una coppia di equilibrio,  $f(x_e, u_e) = 0$ , consideriamo una traiettoria a partire da uno stato stato iniziale  $x(0) = x_e + \tilde{x}_0$ 

$$x(t) = x_e + \tilde{x}(t)$$
  
$$u(t) = u_e + \tilde{u}(t)$$

 $\operatorname{con} y(t) = h(x_e, u_e) + \tilde{y}(t) = y_e + \tilde{y}(t).$ 

Essendo una traiettoria vale

$$\frac{d}{dt}(x_e + \tilde{x}(t)) = f(x_e + \tilde{x}(t), u_e + \tilde{u}(t))$$
$$y_e + \tilde{y}(t) = h(x_e + \tilde{x}(t), u_e + \tilde{u}(t))$$

Sviluppando in serie di Taylor (con f e h sufficientemente regolari) in (xe, ue) <sup>1</sup>

$$\frac{d}{dt}(x_e + \tilde{x}(t)) = \underbrace{f(x_e, u_e)}_{0} + \underbrace{\frac{\partial}{\partial x} f(x, u) \Big|_{\substack{x = x_e \\ u = u_e}}}_{A_e} \tilde{x}(t) + \underbrace{\frac{\partial}{\partial u} f(x, u) \Big|_{\substack{x = x_e \\ u = u_e}}}_{B_e} u(\tilde{t}) + \text{term. ord. sup.}$$

$$y_e + \tilde{y}(t) = h(x_e, u_e) + \underbrace{\frac{\partial}{\partial x} h(x, u) \Big|_{\substack{x = x_e \\ u = u_e}}}_{u = u_e} \tilde{x}(t) + \underbrace{\frac{\partial}{\partial u} h(x, u) \Big|_{\substack{x = x_e \\ u = u_e}}}_{u = u_e} \tilde{u}(t) + \text{term. ord. sup.}$$

quindi

$$\tilde{x}(t) = A_e \tilde{x}(t) + B_e \tilde{u}(t) + \text{term. ord. sup.}$$
  $\tilde{x}(0) = \tilde{x}_0$   $\tilde{y}(t) = C_e \tilde{x}(t) + D_e \tilde{u}(t) + \text{term. ord. sup.}$ 

Se consideriamo i termini di ordine superiore come un resto  $\mathcal{R}(x,u)$  si osserva che

$$\lim_{\|(x,u)\|\to 0} \frac{\|\mathcal{R}(\tilde{x},\tilde{u})\|}{\|(\tilde{x},\tilde{u})\|} = 0 \tag{2.19.1}$$

 $<sup>^{1}</sup>$ i termini del tipo  $\frac{\partial}{\partial x}f(x,u)$ vengono chiamati Jacobiani

di fatto è come se si avesse  $\lim_{x\to 0}\frac{x^2}{x}$ . Quindi le due equazioni di prima si possono approssimare

$$\tilde{\dot{x}}(t) \approx A_e \tilde{x}(t) + B_e \tilde{u}(t)$$
  
 $\tilde{y}(t) \approx C_e \tilde{x}(t) + D_e \tilde{u}(t)$ 

Il sistema linearizzato è

$$\Delta \dot{x}(t) = A\Delta x(t) + B\Delta u(t)$$
$$\Delta y(t) = C\Delta x(t) + D\Delta u(t)$$

Le traiettorie del sistema non lineare soddisfano

$$x(t) = x_e + \tilde{x}(t) \approx x_e + \Delta x(t)$$
  

$$u(t) = u_e + \tilde{u}(t) \approx u_e + \Delta u(t)$$
  

$$y(t) = y_e + \Delta y(t) \approx y_e + \Delta y(t)$$

per variazioni sufficientemente piccole.

**Nota:**  $(\Delta x(t), \Delta u(t)), t \geq 0$  traiettoria del sistema linearizzato.

### 2.19.1 Esempio pendolo

$$\dot{x}_1(t) = x_2(t) = f_1(x(t), u(t))$$

$$\dot{x}_2(t) = -\frac{g}{l}\sin(x_1(t)) - \frac{b}{M\ell^2}x_2(t) + \frac{1}{M\ell^2}u(t) = f_2(x(t), u(t))$$

 $(x_e, u_e)$  coppia di equilibrio

$$f(x_e, u_e) = 0 \Rightarrow \begin{cases} x_{2e} = 0 \\ -\frac{g}{\ell} \sin(x_{1e}) - \frac{b}{M\ell^2} x_{2e} + \frac{1}{M\ell^2} u_e \end{cases}$$
 (2.19.2)

Prendiamo come equilibrio  $x_e = \begin{bmatrix} x_{1e} \\ 0 \end{bmatrix}$ , allora

$$-\frac{g}{\ell}\sin(x_{1e}) - \frac{b}{M\ell^2} \cdot 0 + \frac{1}{M\ell^2}u_e = 0$$

$$\Longrightarrow u_e = gM\ell\sin(X_{1e})$$

Eseguiamo la linearizzazione intorno a  $(x_e, u_e)$ 

$$\Delta \dot{x}(t) = A_e \Delta x(t) + B_e \Delta u(t) \tag{2.19.3}$$

$$\underbrace{\frac{A_e}{\frac{\partial f(x,u)}{\partial x}}\Big|_{\substack{x = x_e \\ u = u_e}}}_{=} = \begin{bmatrix} \frac{\partial f_1(x,u)}{\partial x_1} & \frac{\partial f_1(x,u)}{\partial x_2} \\ \frac{\partial f_2(x,u)}{\partial x_1} & \frac{\partial f_2(x,u)}{\partial x_2} \end{bmatrix}_{\substack{x = x_e \\ u = u_e}}$$

$$= \begin{bmatrix} 0 & 1 \\ -\frac{g}{\ell}\cos(x_1) & -\frac{b}{M\ell^2} \end{bmatrix}_{\substack{x = x_e \\ u = u_e}}$$

$$= \begin{bmatrix} 0 & 1 \\ -\frac{g}{\ell}\cos(x_{1e}) & -\frac{b}{M\ell^2} \end{bmatrix}$$

$$\underbrace{\frac{\partial f_1(x,u)}{\partial u}}_{\frac{\partial f_2(x,u)}{\partial u}}\Big|_{\substack{x = x_e \\ u = u_e}} = \underbrace{\left[\frac{\partial f_1(x,u)}{\partial u}\right]}_{\substack{x = x_e \\ u = u_e}}^{x = x_e}$$

$$= \begin{bmatrix} 0 \\ \frac{1}{M\ell^2} \end{bmatrix}_{\substack{x = x_e \\ u = u_e}}$$

$$= \begin{bmatrix} 0 \\ \frac{1}{M\ell^2} \end{bmatrix}$$

• se 
$$x_e = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 e  $u_e = 0$ 

$$A_e = \begin{bmatrix} 0 & 1 \\ -\frac{g}{\ell} & -\frac{b}{M\ell^2} \end{bmatrix} \qquad B_e = \begin{bmatrix} 0 \\ \frac{1}{M\ell^2} \end{bmatrix}$$

• se 
$$x_e = \begin{bmatrix} \pi \\ 0 \end{bmatrix}$$
 e  $u_e = 0$ 

$$A_e = \begin{bmatrix} 0 & 1 \\ \frac{g}{\ell} & -\frac{b}{M\ell^2} \end{bmatrix} \qquad B_e = \begin{bmatrix} 0 \\ \frac{1}{M\ell^2} \end{bmatrix}$$

• se 
$$x_e = \begin{bmatrix} \pi/2 \\ 0 \end{bmatrix}$$
 e  $u_e = MG\ell$ 

$$A_e = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{b}{M\ell^2} \end{bmatrix} \qquad B_e = \begin{bmatrix} 0 \\ \frac{1}{M\ell^2} \end{bmatrix}$$

### 2.19.2 Stabilità di 3 sistemi lineari (linearizzzione intorno a 3 diversi equilibri)

1.

$$A_{e} = \begin{bmatrix} 0 & 1 \\ -\frac{g}{\ell} & -\frac{b}{M\ell^{2}} \end{bmatrix}$$

$$p(\lambda) = \lambda \left( \lambda + \frac{b}{\ell} M \ell^{2} \right) + \frac{g}{\ell}$$

$$= \lambda^{2} + \frac{b}{M\ell^{2}} \lambda + \frac{g}{\ell}$$

$$\lambda_{1/2} = -\frac{b}{2M\ell^{2}} \pm \sqrt{\left( \frac{b}{2M\ell^{2}} \right) - \frac{g}{\ell}}$$

$$(2.19.4)$$

Abbiamo 2 autovalori a parte reale negativa, quindi il sistema linearizzato è asintoticamente stabile (globalmente).

2.

$$A_{e} = \begin{bmatrix} 0 & 1 \\ \frac{g}{\ell} & -\frac{b}{M\ell^{2}} \end{bmatrix} \qquad p(\lambda) = \lambda \left(\lambda + \frac{b}{M\ell^{2}}\right) - \frac{g}{\ell}$$

$$= \lambda^{2} + \frac{b}{M\ell^{2}}\lambda - \frac{g}{\ell}$$

$$\lambda_{1/2} = -\frac{b}{2M\ell^{2}} \pm \sqrt{\left(\frac{b}{2M\ell^{2}}\right) + \frac{g}{\ell}} \Longrightarrow \begin{cases} \lambda_{1} = -\frac{b}{2M\ell^{2}} - \sqrt{\left(\frac{b}{2M\ell^{2}}\right) + \frac{g}{\ell}} < 0 \\ \lambda_{2} = -\frac{b}{2M\ell^{2}} + \sqrt{\left(\frac{b}{2M\ell^{2}}\right) + \frac{g}{\ell}} > 0 \end{cases}$$

$$(2.19.5)$$

Dato che abbiamo un autovalore a parte reale positiva il sistema è instabile.

3. Se poniamo 
$$x_e = \begin{bmatrix} \pi/2 \\ 0 \end{bmatrix}$$
 e  $M_e = Mg\ell$ 

$$A_e = \begin{bmatrix} 0 & 1 \\ 0 & -\frac{b}{M\ell^2} \end{bmatrix}$$

$$p(\lambda) = \lambda \left( \lambda + \frac{b}{M\ell^2} \right)$$

$$\lambda_1 = 0$$

$$\lambda_2 = -\frac{b}{M\ell^2}$$

Il sistema linearizzato è stabile, ma non asintoticamente, cioè marginalmente stabile (ricordando 2.17)

#### 2.20 Stabilità e linearizzazione

### Teorema

Dato un sistema non lineare tempo invariante,  $\dot{x}(t) = f(x(t), u(t))$ , sia  $x_e, u_e$  una coppia di equilibrio. Se il sistema linearizzato intorno a  $(x_e, u_e)$  è asintoticamente stabile, allora l'equilibrio  $x_e$ , relativo all'ingresso  $u_e$ , è (localmente) asintoticamente stabile.

#### Teorema

Dato un sistema non lineare tempo invariante,  $\dot{x}(t) = f(x(t), u(t))$ , sia  $x_e, u_e$  una coppia di equilibrio. Se il sistema linearizzato intorno a  $(x_e, u_e)$  ha almeno un autovalore a parte reale positiva, allora l'equilibrio  $x_e$ , relativo all'ingresso  $u_e$ , è instabile.

#### 2.20.1 Controllo nonlineare mediante linearizzazione

Consideriamo il sistema non lineare

$$\dot{x}(t) = f(x(t), u(t)) \tag{2.20.1}$$

Linearizzazione intorno all'equilibrio  $(x_e, u_e)$ 

$$\Delta \dot{x}(t) = A_e \Delta x(t) + B_e \Delta u(t) \tag{2.20.2}$$

Proviamo a portare  $\Delta x(t)$  a 0, ovvero x(t) a  $x_e$  "in modo approssimato". Usando la retroazione dello stato  $\Delta u(t) = K\Delta x(t) + \Delta v(t)$  otteniamo il seguente sistema in anello chiuso

$$\Delta \dot{x}(t) = (A_e + B_e K) \Delta x(t) + B_e \Delta v(t) \tag{2.20.3}$$

Così sono in grado di progettare la matrice K in modo che  $A_e + B_e K$  sia asintoticamente stabile. Grazie ai teoremi sulla linearizzazione,  $x_e$  risulta un equilibrio (localmente) asintoticamente stabile per il sistema non lineare in anello chiuso (detto retroazionato).

Visto che  $\Delta x(t) \approx x(t) - x_e$ 

$$u(t) = u_e + K(x(t) - x_e) + \tilde{v}(t) \approx u_e + K\Delta x(t) + \tilde{v}(t)$$
(2.20.4)

Perciò la legge di controllo finale sarà

$$u(t) = u_e + K(x(t) - x_e) + \tilde{v}(t)$$
(2.20.5)



# 3 Trasformata di Laplace

### 3.1 Definizione

Data una funzione complessa f di variabile reale  $t, f : \mathbb{R} \to \mathbb{C}$  (anche se per noi tipicamente saranno funzioni  $f : \mathbb{R} \to \mathbb{R}$ ), sia  $s = \sigma + j\omega$  una variabile complessa ( $\sigma$  parte reale,  $\omega$  parte immaginaria); definiamo la Trasformata di Laplace di f(t)

$$F(s) = \int_{0^{-}}^{+\infty} f(t)e^{-st} dt$$
 (3.1.1)

se esiste per qualche s, ovvero se l'integrale converge.

Includiamo nell'integrale 0<sup>-</sup> per tener conto di eventuali impulsi cone la delta di Dirac.

Notazione: indichiamo la trasformata di Laplace con  $\mathcal{L}$  tale che

$$f(t) \xrightarrow{\mathcal{L}} F(s)$$
 (3.1.2)

con  $F: \mathbb{C} \to \mathbb{C}$ ; indichiamo l'applicazione della trasformata con  $F(s) = \mathcal{L}[f(t)]$ .

### 3.2 Osservazioni

#### 3.2.1 Ascissa di convergenza

Sia  $\overline{\sigma} > -\infty$  estremo inferiore di  $s = \sigma + j\omega$  per cui l'integrale converge. Allora la trasformata di Laplace esiste nel semipiano  $\text{Re}(s) > \overline{\sigma}$ .  $\overline{\sigma}$  viene chiamata ascissa di convergenza.

La trasformata di Laplace risulta essere una funzione analitica e, grazie alle particolari proprietà delle funzioni analitiche, la sua definizione può essere estesa anche in punti s tali che  $\text{Re}(s) \leq \overline{\sigma}$ , indipendentemente dal fatto che l'integrale non converga.

Dato che

$$e^{-st} = e^{-\sigma t}e^{-j\omega t} \tag{3.2.1}$$

possiamo dire che  $e^{-\sigma t}$  ci aiuta a ottenere un integrale che converge.



### 3.2.2 Trasformate razionali

Di particolare importanza sono le trasformate razionali, cioè quelle in cui

$$F(s) = \frac{N(s)}{D(s)} \tag{3.2.2}$$

con N(s) e D(s) polinomi primi tra loro. Le radici di N(s) = 0 si dicono **zeri** e quelle di D(s) = 0 si dicono **poli**: nell'insieme, poli e zeri si dicono *singolarità*.

Se f è reale allora i coefficienti dei polinomi N(s) e D(s) sono reali.

Esempio

$$F(s) = \frac{s^2 + 2s}{(s+1)(s+3)} = \frac{s(s+2)}{(s+1)(s+3)}$$
(3.2.3)

allora

• zeri di F(s): 0 e -2

• poli di F(s): -1 e -3

#### 3.3 Formula di antitrasformazione

La funzione trasformanda può essere ricavata dalla sua trasformata mediante la formula di antitrasformazione

$$f(t) = \frac{1}{2\pi j} \int_{\sigma - i\infty}^{\sigma + j\infty} F(s)e^{st} ds$$
(3.3.1)

**Notazione:** indichiamo l'antitrasformata di Laplace con  $\mathcal{L}^{-1}$  tale che

$$F(s) \xrightarrow{\mathcal{L}^{-1}} f(t) \qquad \qquad \sigma > \overline{\sigma}$$

indichiamo la formula di antitrasformazione con  $f(t) = \mathcal{L}^{-1}[F(s)]$ .

La f(t) è fornita per  $t \ge 0$ , perché solo nei punti di continuità in cui la f è maggiore di zero essa contribuisce a determinare F. L'antitrasformata fornisce f(t) = 0 per t < 0, per questo la corrispondenza tra f(t) e F(s) è **biunivoca**.

#### 3.3.1 Perché si utilizza la trsformata di Laplace



Se, provando a risolvere il problema oggetto, risulta difficile arrivare alla soluzione oggetto (magari perché i calcoli sono molto complessi o risulta poco conveniente in termini di risorse), allora si trasforma il problema oggetto in problema immagine con la trasformata di Laplace se risulta poi conveniente (o semplice) arrivare alla soluzione immagine, per poi antitrasformarla per ottenere la soluzione oggetto che si stava cercando.

### 3.4 Proprietà della trasformata di Laplace

#### 3.4.1 Linearità

Dati f(t) e g(t) tali per cui esistono le trasformate F(s) e G(s), allora  $\forall \alpha \in \mathbb{C}, \forall \beta \in \mathbb{C}$  risulta

$$\mathcal{L}[\alpha f(t) + \beta g(t)] = \alpha \mathcal{L}[f(t)] + \beta \mathcal{L}[g(t)] = \alpha F(s) + \beta G(s)$$
(3.4.1)

#### Dimostrazione

$$\mathcal{L}[\alpha f(t) + \beta g(t)] = \int_{0^{-}}^{+\infty} (\alpha f(t) + \beta g(t)) e^{-st} dt$$

$$= \alpha \underbrace{\int_{0^{-}}^{+\infty} f(t) e^{-st} dt}_{F(s)} + \beta \underbrace{\int_{0^{-}}^{+\infty} g(t) e^{-st} dt}_{G(s)}$$

$$= \alpha F(s) + \beta G(s)$$

### 3.4.2 Traslazione temporale

$$\mathcal{L}[f(t-\tau)] = e^{-\tau s} F(s) \qquad \forall \tau > 0$$

 $\tau$  deve essere maggiore di 0, altrimenti la f(t) sarebbe diversa da 0 per un tempo negativo.

#### Dimostrazione

$$\mathcal{L}[f(t-\tau)] = \int_{0^{-}}^{+\infty} f(t-\tau)e^{-st} dt$$

$$= \int_{\rho=t-\tau}^{+\infty} \int_{-\tau^{-}}^{+\infty} f(\rho)e^{-s(\rho+t)} d\rho$$

siccome la f(t) è nulla per t < 0 posso riscrivere gli estremi di integrazione

$$\int_{0^{-}}^{+\infty} f(\rho)e^{-s(\rho+t)} d\rho = \underbrace{\int_{0^{-}}^{+\infty} f(\rho)e^{\rho} d\rho}_{F(s)} \cdot e^{-s\tau}$$
$$= F(s)e^{-s\tau}$$

come volevasi dimostrare

$$\mathcal{L}[f(t-\tau)] = e^{-\tau s} F(s) \tag{3.4.2}$$

#### 3.4.3 Traslazione nel dominio della variabile complessa

$$\mathcal{L}[e^{\alpha t}f(t)] = F(s - \alpha) \tag{3.4.3}$$

#### Dimostrazione

$$\mathcal{L}[e^{\alpha t} f(t)] = \int_{0^{-}}^{+\infty} f(t)e^{\alpha t} \cdot e^{-st} dt$$
$$= \int_{0^{-}}^{+\infty} f(t)e^{-(s-\alpha)t} dt$$
$$= F(s-\alpha)$$

### 3.4.4 Derivazione nel dominio del tempo

$$\mathcal{L}\left[\frac{d}{dt}f(t)\right] = sF(s) - f(0) \tag{3.4.4}$$

Calcoliamo la trasformata della derivata seconda

$$\mathcal{L}\left[\frac{d^2}{dt^2}f(t)\right] = \mathcal{L}\left[\frac{d}{dt}\underbrace{\left[\frac{d}{dt}f(t)\right]}_{g(t)}\right]$$

$$= sG(s) - g(0)$$

$$= sG(s) - f'(0)$$

$$= s(sF(s) - f(0)) - f'(0)$$

$$= s^2F(s) - sf(0) - f'(0)$$

Quindi possiamo definire la derivata n-sima nel tempo

$$\mathcal{L}\left[\frac{d^n}{dt^n}f(t)\right] = s^n F(s) = \sum_{i=1}^n s^{n-i} \frac{d^{i-1}}{dt^{i-1}} f(t)|_{t=0}$$
(3.4.5)

La proprietà ci dice che, se la funzione e le sue derivate si annullano in t = 0, derivare nel dominio del tempo equivale a moltiplicare per s nel dominio della variabile complessa; infatti s viene chiamato operatore di derivazione.

#### 3.4.5 Derivazione nel dominio della variabile complessa

Supponiamo F(s) derivabile per tutti gli s; allora risulta

$$\mathcal{L}[tf(t)] = -\frac{dF(s)}{ds} \tag{3.4.6}$$

la quale è estendibile al caso della trasformata  $t^n \cdot f(t)$ .

#### Dimostrazione

Considerando che  $te^{-st} = -\frac{d}{ds}e^{-st}$ 

$$\mathcal{L}[tf(t)] = \int_{0+}^{+\infty} tf(t)e^{-st} dt$$

$$= \int_{0+}^{+\infty} f(t) \underbrace{te^{-st}}_{-\frac{d}{ds}e^{-st}} dt$$

$$= \int_{0+}^{+\infty} f(t) \left( -\frac{d}{ds}e^{-st} \right) dt$$

$$= -\frac{d}{ds} \underbrace{\int_{0+}^{+\infty} f(t)e^{-st} dt}_{F(s)}$$

$$= -\frac{dF(s)}{ds}$$

### 3.4.6 Integrazione nel tempo

Supponiamo che la funzione f(t) sia integrabile tra  $0 e +\infty$ . Allora

$$\mathcal{L}\left[\int_0^t f(\tau) \ d\tau\right] = \frac{1}{s}F(s) \tag{3.4.7}$$

La proprietà ci dice che integrare nel dominio del tempo equivale a dividere per s nel dominio della variabile complessa; infatti  $\frac{1}{s}$  viene chiamato operatore di integrazione.

### 3.4.7 Convoluzione nel tempo

Date due funzioni  $f_1$  e  $f_2$ , il loro prodotto di convoluzione è

$$f_1(t) * f_2(t) = \int_{-\infty}^{+\infty} f_1(t - \tau) f_2(t) \ d\tau = \int_{-\infty}^{+\infty} f_1(\eta) f_2(\eta) \ d\eta = f_2(t - \eta) * f_1(t)$$
(3.4.8)

e si trova

$$\mathcal{L}[f_1(t) * f_2(t)] = F_1(s) \cdot F_2(s) \tag{3.4.9}$$

### 3.4.8 Teorema del valore iniziale

Se una funzione reale f(t) ha trasformata razionale F(s) con grado del denominatore maggiore del grado del numeratore, allora

$$f(0) = \lim_{s \to \infty} sF(s) \tag{3.4.10}$$

Se f è una funzione discontinua di prima specie in t = 0, f(0) si interpreta come  $f(0^+)$ . L'equazione vale se f(0) o  $f(0^+)$  esistono.

#### 3.4.9 Teorema del valore finale

Se una funzione reale f(t) ha trasformata razionale F(s) con grado del denominatore maggiore del grado del numeratore e poli nulli o con parte reale negativa, allora

$$\lim_{t \to +\infty} f(t) = \lim_{s \to 0} sF(s) \tag{3.4.11}$$

L'equazione vale se esiste  $\lim_{t\to +\infty} f(t)$  esiste.

### 3.5 Trasformata di segnali elementari

Definiamo il delta di Dirac  $\delta(t)$  tale che

$$\int_{0^{-}}^{0^{+}} \delta(t) \ dt = 1 \tag{3.5.1}$$



$$\mathcal{L}[1(t)] = \frac{1}{s}$$





### 3.5.1 Trasformata della delta

$$\mathcal{L}[\delta(t)] = \int_{0^{-}}^{+\infty} \delta(t)e^{-st} dt$$

$$= \int_{0^{-}}^{0} \delta(t) \underbrace{e^{-s \cdot 0}}_{1} dt + \underbrace{\int_{0^{+}}^{+\infty} \underbrace{\delta(t)}_{0} e^{-st} dt}_{0}$$

### 3.5.2 Trasformata del segnale gradino unitario

Il segnale gradin unitario 1(t) è definito

$$1(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases} \tag{3.5.2}$$

$$\int_{0^{-}}^{+\infty} 1(t)e^{-st} dt = \int_{0}^{+\infty} \underbrace{1(t)}_{1} e^{-st} dt$$

$$= \int_{0}^{+\infty} e^{-st} dt$$

$$= \frac{e^{-st}}{-s} \Big|_{t \to +\infty} - \frac{e^{-0}}{-s} \Big|_{t=0}$$

$$\lim_{t \to +\infty} e^{-st} = 0, e^0 = 1$$

$$\frac{e^{-st}}{-s \atop 0}\Big|_{t \to +\infty} - \frac{e^{-0}}{-s}\Big|_{t=0} = \frac{1}{s}$$
 (3.5.3)

### 3.5.3 Trasformata del segnale rampa

Il segnale  $rampa \ r(t)$  è definito come

$$r(t) = \begin{cases} 0 & t < 0 \\ t & t \ge 0 \end{cases}$$

$$(3.5.4)$$

Per calcolare la trasformata del segnale rampa utilizziamo la proprietà di Derivazione nel dominio della variabile complessa

$$\mathcal{L}[t \cdot 1(t)] = -\frac{d\left(\frac{1}{s}\right)}{ds}$$
$$= \frac{1}{s^2}$$

Mentre per calcolare la trasformata del gradino moltiplicato un esponenziale utilizziamo la proprietà di Traslazione nel dominio della variabile complessa

$$\mathcal{L}[e^{\alpha t} \underbrace{1(t)}_{f(t)}] = \underbrace{F(s - \alpha)}_{F(s) = \frac{1}{s}}$$
$$= \frac{1}{s - \alpha}$$

# 3.6 Tabella trasformate

$$\mathcal{L}[\delta(t)] = 1$$

$$\mathcal{L}[1(t)] = \frac{1}{s}$$

$$\mathcal{L}[t \cdot 1(t)] = \frac{1}{s^2}$$

$$\mathcal{L}[e^{\alpha t} \cdot 1(t)] = \frac{1}{s - \alpha}$$

$$\mathcal{L}[\sin(\omega t)1(t)] = \frac{\omega}{s^2 + \omega^2}$$

$$\mathcal{L}[\cos(\omega t)1(t)] = \frac{\omega}{s^2 + \omega^2}$$

$$\cos(\omega t)1(t)$$

$$\mathcal{L}[\sin(\omega t + \varphi)1(t)] = \frac{\omega\cos\varphi \pm s\sin\phi}{s^2 + \omega^2}$$

$$\mathcal{L}[\cos(\omega t + \varphi)1(t)] = \frac{s\cos\phi \mp \omega\sin\varphi}{s^2 + \omega^2}$$

# 4 Funzione di trasferimento

### 4.1 Introduzione

Consideriamo il sistema LTI con  $x \in \mathbb{R}^n, u \in \mathbb{R}^m, y \in \mathbb{R}^p$ 

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

 $con x(0) = x_0.$ 

Siano  $X(s) := \mathcal{L}[x(t)], U(s) := \mathcal{L}[u(t)]$  e  $Y(s) := \mathcal{L}[y(t)]$ . Applichiamo la trasformazione di Laplace ad ambo i membri delle

equazioni precedenti, ricordando che  $\mathcal{L}\left[\frac{d}{dt}x(t)\right] = sX(s) - x(0)$ 

$$sX(s) - x(0) = AX(s) + BU(s)$$
$$Y(s) = CX(s) + DU(s)$$

se raccolgo X(s) nella prima equazione

$$(sI - A)X(s) = x_0 + BU(s)$$
$$Y(s) = CX(s) + DU(s)$$

$$X(s) = \underbrace{(sI - A)^{-1}x_0}_{X_f(s)} + \underbrace{(sI - A)^{-1}BU(s)}_{X_f(s)}$$

$$Y(s) = CX(s) + DU(s)$$

Sottolineiamo che se avessimo un sistema generico non si potrebbe riscrivere come abbiamo fatto perché <u>le matrici devono essere</u> costanti.

Inoltre per poter scrivere un sistema LTI come sopra la matrice (sI - A) deve essere invertibile; una matrice è invertibile se il suo determinante è non nullo, quindi, se s è autovalore della matrice della dinamica e p(s) è il polinomio caratteristico associato:

$$p(s) = \det(sI - A) \tag{4.1.1}$$

Quindi le trasformate dello stato e dell'uscita del sistema in funzione di  $x_0$  e U(s) sono

$$X(s) = \underbrace{(sI - A)^{-1}x_0}_{\text{evoluzione libera}} + \underbrace{(sI - A)^{-1}BU(s)}_{\text{evoluzione libera}}$$
 
$$Y(s) = \underbrace{C(sI - A)^{-1}x_0}_{\text{evoluzione libera}} + \underbrace{\left(C(sI - A)^{-1}B + D\right)U(s)}_{\text{evoluzione libera}}$$

$$X_{\ell}(s) = (sI - A)^{-1}x_0$$
  $X_f(s) = (sI - A)^{-1}BU(s)$   
 $Y_{\ell}(s) = C(sI - A)^{-1}x_0$   $Y_f(s) = (C(sI - A)^{-1}B + D)U(s)$ 

Consideriamo ora la trasformata dell'evoluzione forzata dell'uscita

$$Y_f(s) = (C(sI - A)^{-1}B + D) U(s)$$

la matrice

$$G(s) = C(sI - A)^{-1}B + D$$

è detta funzione di trasferimento; se il sistema è SISO (Single Input Single Output) è una funzione scalare.

Abbiamo così ottenuto una rappresentazione ingresso-uscita

$$Y_f(s) = G(s)U(s) \tag{4.1.2}$$

se assumiamo che x(0) = 0 otteniamo esattamente la trasformata di Laplace dell'uscita y

$$Y(s) = G(s)U(s) \tag{4.1.3}$$

Due osservazioni:

- $\triangleright$  se si conosce la funzione di trasferimento G(s) di un sistema e la trasformata di Laplace U(s) dell'ingresso, è possibile calcolare, mediante antitrasformazione dell'equazione precedente 4.1.3, il movimento forzato  $y_f$  dell'uscita (che ovviamente coincide con il movimento y se lo stato iniziale è nullo);
- $\triangleright$  la funzione di trasferimento è data dal rapporto tra la trasformata dell'uscita e dell'ingresso nel caso di x(0) = 0

$$G(s) = \frac{Y(s)}{U(s)} \tag{4.1.4}$$

### 4.2 Richiami di calcolo matriciale

#### 4.2.1 Matrice diagonale

Una matrice diagonale è una matrice quadrata tale che per  $i \neq j$  si ha sempre  $a_{ij} = 0$  (ogni matrice diagonale è simmetrica).

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 7 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & -3 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

### 4.2.2 Matrice triangolare alta

Una matrice triangolare alta è una matrice quadrata tale che per i>j  $a_{ij}=0$ 

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 4 & -3 & 7 \\ 0 & 6 & -8 & 9 \\ 0 & 0 & 3 & -5 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

### 4.2.3 Matrice triangolare bassa

Una matrice triangolare alta è una matrice quadrata tale che per i < j  $a_{ij} = 0$ 

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 \\ 6 & 7 & 0 & 0 \\ 3 & -2 & -9 & 0 \\ 5 & 4 & -8 & 3 \end{pmatrix}$$

Nota: una matrice diagonale è triangolare alta e triangolare bassa.

### 4.2.4 Matrice identità

$$I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & 1 \end{pmatrix} I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

#### 4.2.5 Trasposta di una matrice

$$\begin{pmatrix} 2 & 1 & 7 \\ 4 & 0 & 2 \end{pmatrix}^T = \begin{pmatrix} 2 & 4 \\ 1 & 0 \\ 7 & 2 \end{pmatrix}$$

 $A = (a_{ij})$  significa che l'elemento di posto (i, j) in  $A 
eq a_{i,j}$ .

 $A^T := B = (b_{ij})$  con  $b_{ij} = a_{ji}$  per ogni coppia di indici (i, j).

#### 4.2.6 Complemento algebrico

Definiamo  $\hat{A}_{ij}$  complemento algebrico dell'elemento  $a_{ij}$  il determinante della matrice ottenuta eliminando da A la riga i e la colonna j (che chiamiamo M) e moltiplicando per  $(-1)^{i+j}$ 

$$\hat{A}_{ij} = (-1)^{i+j} \det(M)$$

### 4.2.7 Determinante di una matrice

Il determinante di una matrice generica si calcola

$$det(A) = \sum_{i=1}^{n} a_{ij} \hat{A}_{ij} = \sum_{j=1}^{n} a_{ij} \hat{A}_{ij}$$

36

### 4.3 Funzione di trasferimento nel dettaglio

La funzione di trasferimento è definita

$$G(s) = C(sI - A)^{-1}B + D$$

con C matrice  $1 \times n$  e B matrice  $m \times 1$ .

Definiamo ora la **matrice aggiunta** adj(A) come matrice dei complementi algebrici di A

$$\operatorname{adj}(A) = \begin{bmatrix} \hat{A}_{11} & \hat{A}_{12} & \cdots & \hat{A}_{n1} \\ \hat{A}_{12} & \hat{A}_{22} & \cdots & \hat{A}_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{A}_{n1} & \hat{A}_{n2} & \cdots & \hat{A}_{nn} \end{bmatrix}$$
(4.3.1)

La matrice inversa può essere definita con la matrice aggiunta:

$$A^{-1} = \frac{\operatorname{adj}(A)}{\det(A)} \tag{4.3.2}$$

Quindi, se consideriamo la nostra matrice (sI - A)

$$(sI - A)^{-1} = \underbrace{\frac{\operatorname{adj}(sI - A)}{\det(sI - A)}}_{\text{polinomio}}$$
(4.3.3)

quindi scriviamo la matrice aggiunta di (sI - A)

$$\operatorname{adj}(sI - A) = \begin{bmatrix} \widehat{(sI - A)_{11}} & \widehat{(sI - A)_{12}} & \cdots & \widehat{(sI - A)_{n1}} \\ \widehat{(sI - A)_{12}} & \widehat{(sI - A)_{22}} & \cdots & \widehat{(sI - A)_{n2}} \\ \vdots & \vdots & \ddots & \vdots \\ \widehat{(sI - A)_{n1}} & \widehat{(sI - A)_{n2}} & \cdots & \widehat{(sI - A)_{nn}} \end{bmatrix}$$

$$(4.3.4)$$

matrice di polinomi in s al più di grado n-1; il determinante di sI-A è un polinomio in s di grado n. Per cui

$$(sI - A)^{-1} = \underbrace{\frac{1}{\det(sI - A)}}_{\text{scalare}} \cdot \operatorname{adj}(sI - A)$$
(4.3.5)

Allora possiamo scrivere la funzione di trasferimento come

$$G(s) = \frac{N_{sp}(s)}{D_{sp}(s)} + \underbrace{D_{sp}(s)}_{\substack{\text{polinomio di grado } n}} + \underbrace{D}_{\substack{\text{polinomio non strettamente proprio} \\ \text{di grado } n}}$$

$$(4.3.6)$$

in forma estesa:

$$G(s) = \frac{N(s)}{D(s)} = \frac{\beta_{\nu} s^{\nu} + \beta_{\nu-1} s^{\nu-1} + \dots + \beta_{1} s + \beta_{0}}{s^{\nu 1} + \alpha_{\nu-1} s^{\nu-1} + \dots + \alpha_{1} s + \alpha_{0}}$$
(4.3.7)

Le radici di N(s) si dicono **zeri**, le radici di D(s) si dicono **poli**; i poli sono radici di  $\det(sI - A)$  quindi sono autovalori di A. Poli e zeri sono reali o complessi coniugati, poiché radici di polinomi a coefficienti reali.

### Esempio 1

Se prendiamo  $y(t) = \frac{d}{dt}u(t)$ , allora la sua trasformata sarà Y(s) = sU(s), quindi la funzione di trasferimento del sistema è G(s) = s; il sistema non è causale, perché il grado del numeratore ha grado maggiore di quello del denominatore. Questa considerazione diventa evidente se si utilizza la definizione di derivata:

$$y(t) = \frac{d}{dt}(u(t)) = \lim_{h \to 0} \frac{u(t+h) - u(t)}{h}$$

infatti per conoscere la derivata in t devo conoscere il valore del segnale in t + h.

<sup>&</sup>lt;sup>1</sup>trasformata della delta di Dirac

# Esempio 2

$$y(t) = \int_0^t u(\tau) dt Y(s) = \frac{1}{s}U(s)$$