When is \mathbb{Z}_n an integral domain? Is it commutative? Yes. Does it have identity? Yes. Zero divisors? No if n is prime. Yes otherwise.

Proposition

If p is prime, \mathbb{Z}_p is a domain.

Proof

Suppose ab = 0 in \mathbb{Z}_p . Then $ab = 0 \mod p$. Then $p/(ab) \Rightarrow p/a$ or p/b which is a property of primes. So a = 0 or b = 0 in \mathbb{Z}_p .

Note. \mathbb{Z}_1 is not a domain because it doesn't have the identity.

20:

Theorem: Fermat's little theorem

If p is a prime and $a \in \mathbb{Z}$, gcd(a, p) = 1, then $a^{p-1} = 1 \mod p$. Equivalently, in \mathbb{Z}_p , if $a \neq 0$ then $a^{p-1} = 1$ in \mathbb{Z}_p .

Lemma: 1

If G is a finite group and $x \in G$ then o(x) divides |G|. If $x^n = 1$, then o(x) is a divisor of n.

Proof

If k = o(x) then n = qk + r for $0 \le r < k$.

$$x^{n} = x^{qk+r} = x^{r}(x^{k})^{q} = x^{r}e^{q} = x^{r}.$$

But since k is the smallest m>0 with $x^m=e$. This means $r=0\Rightarrow k/n$.

Lemma: 2

If G is a finite group and $x \in G$, then $x^{|G|} = e$.

Because o(x)/|G|.

Question: how big is the group of units of \mathbb{Z}_p ?

 $(\mathbb{Z}_p)^*$ has order p-1.

Example. $(\mathbb{Z}_7)^* \simeq (\mathbb{Z}_6, +_6)$. In fact, this is generated by 3. Its inverse is also a generator, so 5. 3 or 5 is a primitive root modulo 7.

Proof

If $a \in (\mathbb{Z}_p)^*$ then $a^{|(\mathbb{Z}_p)^*|} = e$. Then $a^{p-1} = 1$ in \mathbb{Z}_p .

Example. Find the remainder of 8^{103} when divided by 13.

By F.l.T,

$$a^{p-1} = 1 \mod p \text{ if } \gcd(a, p) = 1.$$

Take $p = 13, a = 8, \gcd(8, 13) = 1$. So

$$8^{12} = 1 \mod 13$$

$$8^{24} = 8^{12^2} = 1^2 = 1 \mod 13$$

$$8^{36} = 1 \mod 13$$

$$\dots$$

$$8^{96} = 1 \mod 13$$

$$8^{103} = 8^{96} \times 8^7 \mod 13$$

If we track $8^k \mod 13$ for $k = 1, \dots, 7$, we get $8^7 = 5 \mod 13$. Therefore, $8^{103} = 5 \mod 13$.

Example. Show that $2^{11213} - 1$ is not divisible by 11. (This is actually the Mersenne prime, $2^p - 1$).

What is $2^{11213} \mod 11$? (We hope it's not 1).

By F.l.T, $2^{10}=1 \mod 11$. Then we want a multiple of 10 just under the number. Then $2^{11210}=1$. So $2^{11213}=2^3\times 2^{11210}=8 \mod 11$.

Example. Show that $15/(n^{33}-n)$ for all $n \in \mathbb{Z}$.

Is 11215 a multiple of 15? The last digit is 5, but it's not a multiple of 3.