RE	LATIONSHIP BETWEEN RIEHANN + LEBESSIE INTEGRALS
	LET f: (a, b) IZ be bounded.
A	fis Rienan Intégrable
	= $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$
(B)	If fis R.T. Then for Lebesgue Integrable
	rel Sfardre = Sfdl
	RIEMANN [a, b]
	INTERAL
NOK	This result together with Fix for R.I.
	This result together with FIC for R.I. allows us to calculate Lafesque Integrals of Continuous functions (for escample)
PROOF	
(A) Let	Profe partition of [a,b] unto 2"
sub in	Profe partition of [a,b] into 2" terrals In I equal size.
	assume each Ij so a CLOVED interval
1.4	

 $(5i) = \lim_{n \to \infty} g_n(x) = \sup_{n \to \infty} g_n(5i)$ lin John John L(f. P. [a.b]) fudi = lin Shadi - lin U(f. Pn. [a, b]) = U(f [ab]) UPPER DARBOX INNETRAL Q RI (L(G (D) = U(f, G (b)) $\Leftrightarrow \int_{[a,b]} (f_u - f_L) d\lambda = 0$

SO SUP & - INF & E TS TS

 $as h_n(x) = Surf if x \in T_j$

So Fye I; ie puyles,

So that

| f(y) - f(x) |> E/2

At loast one of A, B must be bigger Than E/2

EXERCISE Fill in details to show

\$ 20 => f CTS are

PRI => PCTS a-e. (B) FINALLY fRI > L(f, [ab]) = U(f, [ab]) = Sfor Sfidh = Sfidh = Sfdh

[a,b] [e,b] [e,b] as fr=fr=fa-e. THM2 [IMPROPOR RIEMANN INTERPRES] Suppose f: [a, b] > [a] is measurable and 42>0 fis bounded on [a+ E, b] and for RI on Fat & b] If lin I foods - offside 7