Spatially-Coupled Codes for Write-Once Memories

Santhosh Kumar

Avinash Vem Krishna Narayanan Henry Pfister

Allerton 2015

Write-Once Memories

Flash Memory

- ▶ In typical flash memory, changing from 0 to 1 is easy
- Resetting 1 to 0 requires rewriting whole block
- ▶ Write-once memories model such storage systems

Write-Once Memories

Flash Memory

- ▶ In typical flash memory, changing from 0 to 1 is easy
- Resetting 1 to 0 requires rewriting whole block
- Write-once memories model such storage systems

Binary Write-Once Memories

 $ightharpoonup 0 \longrightarrow 1$ is allowed

Write-Once Memories

Flash Memory

- ▶ In typical flash memory, changing from 0 to 1 is easy
- Resetting 1 to 0 requires rewriting whole block
- Write-once memories model such storage systems

Binary Write-Once Memories

- $ightharpoonup 0 \longrightarrow 1$ is allowed
- $ightharpoonup 1 \longrightarrow 0$ is forbidden

Capacity Region (I) - Noiseless

Write-Once Memory without Noise

- ▶ In 1982, Rivest and Shamir gave first WOM codes
 - 2 bits in 2 writes with only 3 cells
- ▶ Only about $nt/\log(t)$ cells required to store n bits for t writes

Capacity Region (I) - Noiseless

Write-Once Memory without Noise

- ▶ In 1982, Rivest and Shamir gave first WOM codes
 - 2 bits in 2 writes with only 3 cells
- ▶ Only about $nt/\log(t)$ cells required to store n bits for t writes
- ▶ In 1985, Heegard gave the capacity for *t*-write system
- For a 2-write system, it is

$$\{(R_1,R_2) \mid 0 \le R_1 < h(\delta), \ 0 \le R_2 < 1 - \delta\}$$

Capacity Region (II) - Read Errors

Write-Once Memory with Read Errors

- Different from write errors
- ▶ $Y = X \oplus Ber(p)$, where Ber(p) denotes the Bernoulli noise
- Capacity region is unknown

Objective

- Construct low-complexity coding schemes that achieve the capacity region of the WOM system
 - Low-complexity encoding and decoding

Objective

- Construct low-complexity coding schemes that achieve the capacity region of the WOM system
 - Low-complexity encoding and decoding
- ► Focus on the 2-write WOM system
 - Achieves the capacity region of the noiseless system
 - ► For read errors, achieves

$$R_1 < h(\delta) - h(p),$$
 $R_2 < 1 - \delta - h(p).$

Objective

- Construct low-complexity coding schemes that achieve the capacity region of the WOM system
 - Low-complexity encoding and decoding
- ► Focus on the 2-write WOM system
 - Achieves the capacity region of the noiseless system
 - For read errors, achieves

$$R_1 < h(\delta) - h(p),$$
 $R_2 < 1 - \delta - h(p).$

Extension to multi-write systems seems possible with BPGD

Objective

- Construct low-complexity coding schemes that achieve the capacity region of the WOM system
 - Low-complexity encoding and decoding
- ► Focus on the 2-write WOM system
 - Achieves the capacity region of the noiseless system
 - For read errors, achieves

$$R_1 < h(\delta) - h(p),$$
 $R_2 < 1 - \delta - h(p).$

Extension to multi-write systems seems possible with BPGD

Idea

- ▶ Use compound LDGM/LDPC codes
- Encoding for second write is erasure quantization
- Use spatial coupling with message-passing

Compound LDGM/LDPC Codes

- ▶ Codebook (n, m k k')
- ► Message constraints

$$u_1 \oplus u_2 \oplus u_5 = s_1, \quad u_1 \oplus u_3 \oplus u_6 = 0$$

▶ Codeword (x_1, \dots, x_9) :

$$x_1 = u_1 \oplus u_4, \quad x_2 = \cdots$$

▶ Parametrized by s^k : $C(s^k)$

Compound LDGM/LDPC Codes

- ▶ Codebook (n, m k k')
- Message constraints

$$u_1 \oplus u_2 \oplus u_5 = s_1, \quad u_1 \oplus u_3 \oplus u_6 = 0$$

ightharpoonup Codeword (x_1, \dots, x_9) :

$$x_1 = u_1 \oplus u_4, \quad x_2 = \cdots$$

▶ Parametrized by s^k : $C(s^k)$

Key Properties of Compound Codes

- ▶ a natural coset decomposition: $C = \bigcup_{s^k \in \{0,1\}^k} C(s^k)$
- ightharpoonup achieves capacity over eras. chan. under MAP (when m=n)
- a good source code under optimal encoding
- a good channel code under optimal decoding

Good Code

"Good" source code

- Rate of the code is $R = 1 h(\delta) + \varepsilon$
- ▶ When this code is used to optimally encode $Ber(\frac{1}{2})$
- lacktriangle The average Hamming distortion is at most δ

"Good" channel code

- ▶ Rate of the code is $R = 1 h(p) \varepsilon$
- ▶ When this code is used for channel coding on BSC(p)
- ▶ Message est. under optimal decoding with error at most ε

Coding Scheme for 2-write WOM: First Write

$$R_1 < h(\delta) - h(p)$$

- With message s^k , encode 0^n to x^n (Distortion $\approx \delta$)
- ightharpoonup Store x^n

Coding Scheme for 2-write WOM: First Write

$$R_1 < h(\delta) - h(p)$$

- With message s^k , encode 0^n to x^n (Distortion $\approx \delta$)
- ightharpoonup Store x^n
- Decoder has

$$y_i = x_i \oplus \mathrm{Ber}(p)$$

Coding Scheme for 2-write WOM: First Write

$$R_1 < h(\delta) - h(p)$$

- With message s^k , encode 0^n to x^n (Distortion $\approx \delta$)
- ightharpoonup Store x^n
- Decoder has

$$y_i = x_i \oplus \operatorname{Ber}(p)$$

- ightharpoonup Dec. x^n and compute s^k
- $R_1 = \frac{k}{n} \approx h(\delta) h(p)$

Need to find a consistent codeword in $C(s^k)$

- Need to find a consistent codeword in $C(s^k)$
- Closely related to Binary Erasure Quantization (BEQ)
- ► En Gad, Huang, Li and Bruck (ISIT 2015)

Binary Erasure Quantization

- ▶ Quantize a sequence in $\{0,1,*\}^n$ to $x^n \in \mathcal{C} \subset \{0,1\}^n$
 - ▶ 0's and 1's should match exactly
 - *'s can take either 0 or 1
- Can map the second write of 2-write WOM to BEQ
 - ► Map 0's to *'s and keep 1's
 - Quantize to codeword in $C(s^k)$
- BEQ is the dual of decoding on binary erasure channel
 - Martinian and Yedidia (Allerton 2003)
 - lacktriangle Can quan. all seq. with erasure pattern $e^n \in \{0,1\}^n$ to $\mathcal C$

Chan. dec. for \mathcal{C}^\perp can correct all vectors with eras. $1^n \oplus e^n$

• Choose a good (dual) code $C(s^k)$

$$R_2 < 1 - \delta - h(p)$$

- Change 0's to *'s
- ► With message s^k , encode seq. to $C(s^k)$

$$R_2 < 1 - \delta - h(p)$$

- ► Change 0's to *'s
- ▶ With message s^k , encode seq. to $C(s^k)$
- Decoder has

$$y_i = x_i \oplus \mathrm{Ber}(p)$$

$$R_2 < 1 - \delta - h(p)$$

- ► Change 0's to *'s
- With message s^k , encode seq. to $C(s^k)$
- Decoder has

$$y_i = x_i \oplus \mathrm{Ber}(p)$$

- ▶ Dec. x^n and compute s^k
- $R_2 = \frac{k}{n} \approx 1 \delta h(p)$

Iterative Erasure Quantization Algorithm

Peeling type encoder

```
while \exists non-erasures in V do

if \exists non-erased u \in U such that only one of its neighbors

v \in V is not erased then

Pair (u, v).

Erase u and v.

else

FAIL.

break.

end if

end while
```

- ► Need codes that are <u>simultaneously good</u> for channel/source coding and erasure quantization
- Use message-passing algorithms instead of optimal
- Use spatial-coupling for goodness of codes under message-passing

Decoding in Spatially-Coupled Compound Codes

- Standard message-passing algorithm
- Threshold saturation proven for SC compound codes on BEC
- Empirically observed for BMS channels

Numerical Results: Noiseless WOM

LDGM/LDPC	δ^*	δ	δ	δ
(d_v, d_c, d'_v, d'_c)		w = 2	w = 3	w=4
(3, 3, 3, 6)	0.500	0.477	0.492	0.494
(3, 3, 4, 6)	0.333	0.294	0.324	0.326
(3, 3, 5, 6)	0.167	0.095	0.156	0.158
(4,4,3,6)	0.500	0.461	0.491	0.492
(4, 4, 4, 6)	0.333	0.278	0.323	0.325
(4,4,5,6)	0.167	0.086	0.155	0.159
(5,5,3,6)	0.500	0.436	0.488	0.491
(5, 5, 4, 6)	0.333	0.260	0.320	0.324
(5, 5, 5, 6)	0.167	0.079	0.154	0.159

- $ightharpoonup \delta^*$ is the Shannon threshold
- ▶ L = 30, Single system length ≈ 24000

Numerical Results: WOM with Read Errors

LDGM/LDPC	W	(δ^*, p^*)	(δ, p)
(d_v, d_c, d_v', d_c')			
(3, 3, 4, 6)	3	(0.333, 0.0615)	(0.321, 0.0585)
(3, 3, 4, 8)	3	(0.500, 0.0417)	(0.490, 0.0387)
(3,3,6,8)	4	(0.250, 0.0724)	(0.239, 0.0684)
(4, 4, 4, 6)	4	(0.333, 0.0615)	(0.324, 0.0585)
(4, 4, 4, 8)	4	(0.500, 0.0417)	(0.492, 0.0387)
(4, 4, 6, 8)	4	(0.250, 0.0724)	(0.241, 0.0694)

- δ^* and p^* are the Shannon thresholds
- ▶ L = 30, Single system length ≈ 30000

Numerical Results: Small Blocklength

- ► (L, w) = (30, 3), Single system length 1200, Shannon threshold of 0.5
- ► A total of 10⁵ were attempted to encode
- ▶ No failures for δ < 0.43

Concluding Remarks

Conclusion

- Spatially-coupled compound codes achieve the capacity of 2-write systems
- Coupling structure is also crucial
 - to achieve optimum thresholds
 - for encoding to succeed

Multi-Write Systems

Will BPGD work for multi-write systems?