TUGAS AKHIR JARINGAN SYARAF TIRUAN FORECASTING/PREDIKSI DATA CURAH HUJAN, SUHU, DAN KELEMBAPAN KOTA PALEMBANG

DISUSUN OLEH MUHAMMAD IQBAL APRIZA NIM: 03041282227043

DOSEN PENGAMPU Ir. IRMAWAN, S.Si., M.T.

TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSITAS SRIWIJAYA Peramalan cuaca telah menjadi bagian penting dalam kehidupan manusia modern. Dari aktivitas sehari-hari hingga perencanaan besar seperti pembangunan infrastruktur dan mitigasi bencana, informasi cuaca yang akurat dan terpercaya memberikan dampak signifikan terhadap berbagai aspek kehidupan. Dalam konteks perubahan iklim dan fenomena cuaca ekstrem yang semakin sering terjadi, kebutuhan akan peramalan cuaca yang lebih canggih dan akurat menjadi semakin mendesak.

Pada tugas ini, akan dilakukan peramalan cuaca di kota Palembang. Peramalan ini meliputi peramalan curah hujan, suhu, dan kelembapan. Data yang digunakan yaitu data dari tahun 1997 samapi dengan 2005 dan akan memprediksi curah hujan, suhu, dan kelembapan pada tahun 2006. Data akan di training menggunakan algoritma Jaringan Syaraf Tiruan yaitu Backpropagation.

Data curah hujan (mm/hari)

1997	1998	1999	2000	2001	2002	2003	2004	2005	
106.2	181	315	59	216.5	90.8	169.4	138.8	189.1	JAN
96.6	50.2	268.8	86.7	15.1	78.5	85.7	200.8	43.9	FEB
134.4	29.4	196.9	182.2	158	96.5	162.6	237.9	62.5	MAR
109.8	35.3	322	115	164.8	73.4	285.3	88.5	168.2	APR
80.9	133.5	302.6	60.3	252.8	195.2	245.7	68	229.5	MEI
175.3	144.6	256.2	191.1	306.7	191.7	196.3	200.5	174	JUN
225.8	213	29.9	121.9	121.3	139.2	312.1	206.8	210.8	JUL
95.7	381	78.6	342.6	417.6	156.3	282	204.3	145.7	AGT
290.6	170.8	407.2	451.1	395.7	382.5	561.5	475.3	290.5	SEP
391.1	340.3	204.1	367.5	733	363.8	471.9	377.5	175.5	OKT
265.4	275.8	126.4	108	467.6	164.3	125.4	141.2	206.4	NOV
182.4	394.2	456.3	173.6	342.5	102.2	187.7	166.4	311.4	DES

Data suhu (Celsius)

1997	1998	1999	2000	2001	2002	2003	2004	2005	
30.1	30.4	29.7	29.1	29.9	29.7	30.1	30	30.9	JAN
30.4	31.6	30.2	29.9	30.8	30.9	30.2	30.9	31.4	FEB
31.5	32.5	30.8	30.9	31.6	32.2	31.7	31.2	32.5	MAR
31.1	33.3	29.5	31	30.4	31.6	31	31.2	32.7	APR
32.5	33.2	31	32.2	32.1	32.4	32.8	32.7	32.7	MEI
31.2	32.2	31.4	31.1	31.9	32.6	31.6	32	32.7	JUN
31.3	31.8	31.6	32.3	32	32.1	30.9	29.8	32.3	JUL
32.2	30	31.1	31.2	31	30.2	30.9	31.8	32.8	AGT
30.1	30.6	30.4	29.4	30.2	30.9	30.6	30.5	32	SEP
30.1	31.9	29.4	31.4	31	30.5	29.7	30.3	30.3	OKT
30.3	30.5	30.2	29.8	30.4	30.5	29.8	30.6	30.5	NOV
30.1	29.5	28.4	30.6	30.1	30.8	29.5	30.6	29.8	DES

Data kelembapan (%)

1997	1998	1999	2000	2001	2002	2003	2004	2005	
66	72	70	74	72	72	72	66	66	JAN
67	69	70	69	67	67	72	62	66	FEB
64	64	72	66	66	65	66	64	62	MAR
65	61	71	69	72	69	73	65	63	APR
59	62	72	65	67	67	63	56	64	MEI
64	64	69	68	65	63	66	58	62	JUN
64	67	63	61	63	64	67	67	62	JUL
58	73	66	65	65	65	66	58	58	AGT
70	70	71	74	72	69	66	65	65	SEP
70	69	70	68	71	72	69	68	69	OKT
73	70	70	72	71	72	68	70	69	NOV
73	72	76	67	71	74	68	69	72	DES

Dari data tersebut, data pada tahun 1997 sampai dengan 2004 akan digunakan sebagai data latih (training) sedangkan data pada tahun 2005 akan digunakan sebagai data uji (testing). Arsitektur yang digunakan yaitu Backpropagation dengan 2 layer, 8 input layer, 6 hidden layer, dan 1 output layer.

Seluruh data di atas akan dilakukan normalisasi terlebih dahulu sebelum di training sehingga data di atas berada pada rentang 0 - 1. Normalisasi data dilakukan dengan rumus

Norm =
$$\frac{0.8(\text{data asli} - \text{min data})}{\text{max data} - \text{min data}} + 0.1$$

Setelah di normalisasi, maka selanjutnya data dapat di training menggunakan Backpropagasi.

Data akan di training dengan 3 langkah yang berbeda dan dengan 4 target error yang berbeda

- 1. Dengan inisialisasi bobot random
- 2. Dengan inisialisasi bobot random dan penambahan momentum
- 3. Dengan inisialisasi bobot nguyen-widrow dan penambahan momentum

Dari setiap 3 langkah tersebut akan di training dengan 4 target error yang berbeda yaitu 0,1; 0,01; 0,001; dan 0,0001

Nilai learning rate α yang digunakan adalah 0,9 dan konstanta momentum μ yang digunakan adalah 0,5

Setelah dilakukan training, berikut grafik perbandingan nilai curah hujan, suhu, dan kelembapan dengan data normalisasi per bulannya

Data curah hujan

Data suhu

Data kelembapan

Dan dari grafik di atas, selanjutnya akan dicari nilai akurasi antara output dengan target. Nilai akurasi dapat dicari dengan rumus

$$\left| \frac{Output_i - Target_i}{Target_i} \right| \le Tolerance$$

Dalam kasus ini, nilai toleransi yang digunakan yaitu 0,1 atau $\pm 10\%$. Dari sini akan diperoleh apakah data i bernilai **True** atau **False**. Dari sini, maka kita bisa menghitung akurasi yaitu dengan rumus

$$Accuracy = \frac{Total\ True}{Total\ Data} \times 100\%$$

Berikut adalah hasilnya

Hasil pengujian data curah hujan

Target Error (1	MSE)	0.1	0.01	0.001	0.0001
Bobot random	Akurasi	33,3% Epoch = 1	33,3% Epoch = 1	41,6% Epoch = 164	75% Epoch = 551
Bobot random + momentum (0,5)	Akurasi	25% Epoch = 1	25% Epoch = 1	50% Epoch = 70	91,6% Epoch = 241
Bobot nguyen- widrow + momentum (0,5)	Akurasi	25% Epoch = 1	25% Epoch = 1	50% Epoch = 72	91,6% Epoch = 259

Hasil pengujian data suhu

Target Error (1	Target Error (MSE)			0.001	0.0001
Bobot random	Akurasi	8,3% Epoch = 1	8,3% Epoch = 1	25% Epoch = 65	66,6% Epoch = 196
Bobot random + momentum (0,5)	Akurasi	8,3% Epoch = 1	8,3% Epoch = 1	33,3% Epoch = 28	75% Epoch = 89
Bobot nguyen- widrow + momentum (0,5)	obot nguyen- idrow + Akurasi		8,3% Epoch = 1	33,3% Epoch = 27	75% Epoch = 90

Hasil pengujian data kelembapan

Target Error (1	MSE)	0.1	0.01	0.001	0.0001
Bobot random	Akurasi	16,6% Epoch = 1	16,6% Epoch = 1	25% Epoch = 76	75% Epoch = 320
Bobot random + momentum (0,5)	Akurasi	33,3% Epoch = 1	33,3% Epoch = 1	25% Epoch = 32	58,3% Epoch = 185
Bobot nguyen- widrow + momentum (0,5)	Akurasi	33,3% Epoch = 1	33,3% Epoch = 1	25% Epoch = 33	58,3% Epoch = 167

ANALISA HASIL PERCOBAAN

Dari data dan grafik di atas maka dapat terlihat bahwa semakin kecil nilai target error yang ditetapkan, maka hasil outputnya akan semakin mendekati nilai tergetnya. Hal ini berlaku baik di data curah hujan, suhu, maupun kelembapan. Penambahan nilai momentum dan inisialisasi Nguyen-Widrow dapat membantu mengurangi epoch pada saat pelatihan. Nilai akurasi yang didapat berbanding terbalik dengan nilai terget error yang ditetapkan. Semakin kecil nilai target errornya, maka nilai akurasi akan semakin besar. Pada data curah hujan dan data suhu, penambahan momentum dan inisialisasi Nguyen-Widrow juga dapat meningkatan nilai akurasi. Dapat dilihat dari data curah hujan dengan target error 0,0001. Dengan hanya menggunakan bobot random, nilai akurasi yang didapat hanya sebesar 75% sedangkan dengan momentum dan Nguyen-Widrow, nilai akurasi meningkat menjadi 91,6%. Namun, hal ini tidak berlaku pada data kelembapan. Pada data kelembapan, dengan bobot random, nilai akurasi pada target error 0,0001 mencapai 75%, namun bila menggunakan momentum dan inisialisasi Nguyen-Widrow, akurasinya turun menjadi 58,3%. Hal ini mungkin saja disebabkan oleh nilai momentum (μ) yang kurang sesuai atau nilai learning rate yang kurang sesuai. Untuk meningkatkan nilai akurasi, maka dapat dilakukan pengaturan ulang nilai learning rate (α) , momentum (μ) , dan target error yang lebih kecil.

FORECASTING

Setelah dilakukan training, maka akan didapatkan nilai bobot akhir. Nilai bobot akhir ini dapat digunakan untuk peramalan pada tahun yang akan datang. Pada proses training, kita menggunakan data dari tahun 1997 sampai 2004 untuk mendapatkan data tahun 2005 dan membandingkannya dengan data asli tahun 2005. Untuk mendapatkan data tahun 2006, maka kita bisa menggunakan data dari tahun 1998 sampai tahun 2005 dengan menggunakan bobot akhir yang didapat dari hasil training. Prosedur yang digunakan sama seperti pada saat testing. Berikut hasil forecasting untuk curah hujan, suhu, dan kelembaban tahun 2006.

Forecasting hujan tahun 2006

Forecasting suhu tahun 2006

Forecasting kelembaban tahun 2006

Disini saya akan mengambil data forecasting dengan nilai akurasi yang besar. Untuk data curah hujan dan suhu yaitu dengan inisialisasi Nguyen-Widrow dan momentum sedangkan data kelembaban yaitu dengan bobot random.

Data curah hujan

1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
106.2	181	315	59	216.5	90.8	169.4	138.8	189.1	165.1
96.6	50.2	268.8	86.7	15.1	78.5	85.7	200.8	43.9	196
134.4	29.4	196.9	182.2	158	96.5	162.6	237.9	62.5	185.7
109.8	35.3	322	115	164.8	73.4	285.3	88.5	168.2	142.3
80.9	133.5	302.6	60.3	252.8	195.2	245.7	68	229.5	115.4
175.3	144.6	256.2	191.1	306.7	191.7	196.3	200.5	174	158.2
225.8	213	29.9	121.9	121.3	139.2	312.1	206.8	210.8	133.8
95.7	381	78.6	342.6	417.6	156.3	282	204.3	145.7	243.9
290.6	170.8	407.2	451.1	395.7	382.5	561.5	475.3	290.5	282.9
391.1	340.3	204.1	367.5	733	363.8	471.9	377.5	175.5	225.6
265.4	275.8	126.4	108	467.6	164.3	125.4	141.2	206.4	99.2
182.4	394.2	456.3	173.6	342.5	102.2	187.7	166.4	311.4	217.1

Data suhu

1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
30.1	30.4	29.7	29.1	29.9	29.7	30.1	30	30.9	30.8
30.4	31.6	30.2	29.9	30.8	30.9	30.2	30.9	31.4	32.3
31.5	32.5	30.8	30.9	31.6	32.2	31.7	31.2	32.5	32.7
31.1	33.3	29.5	31	30.4	31.6	31	31.2	32.7	32.7
32.5	33.2	31	32.2	32.1	32.4	32.8	32.7	32.7	32.9
31.2	32.2	31.4	31.1	31.9	32.6	31.6	32	32.7	32.8
31.3	31.8	31.6	32.3	32	32.1	30.9	29.8	32.3	32
32.2	30	31.1	31.2	31	30.2	30.9	31.8	32.8	32.7
30.1	30.6	30.4	29.4	30.2	30.9	30.6	30.5	32	31.7
30.1	31.9	29.4	31.4	31	30.5	29.7	30.3	30.3	31.9
30.3	30.5	30.2	29.8	30.4	30.5	29.8	30.6	30.5	31.5
30.1	29.5	28.4	30.6	30.1	30.8	29.5	30.6	29.8	30.5

Data kelembaban

1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
66	72	70	74	72	72	72	66	66	71.3
67	69	70	69	67	67	72	62	66	71.1
64	64	72	66	66	65	66	64	62	62.6
65	61	71	69	72	69	73	65	63	65.7
59	62	72	65	67	67	63	56	64	59
64	64	69	68	65	63	66	58	62	64.4
64	67	63	61	63	64	67	67	62	66
58	73	66	65	65	65	66	58	58	70
70	70	71	74	72	69	66	65	65	65.8
70	69	70	68	71	72	69	68	69	64.9
73	70	70	72	71	72	68	70	69	65.9
73	72	76	67	71	74	68	69	72	64.9

Grafik curah hujan, suhu, dan kelembaban dari tahun 1997 sampai 2006

