The Newspaper Seller Problem

This is a classical inventory problem that concerns the purchase and sale of newspapers. Here the assumptions are:

- The paper seller buys the papers for 33 cents each and sells them for 50 cents each.
- The lost profit from excess demand is 17 cents for each paper demanded that could not be provided.
- Newspapers not sold at the end of the day are sold as scrap for 5 cents each. (the salvage value of scrap papers).
- Newspapers can be purchased in bundles of 10. Thus, the paper seller can buy 50, 60, and so on. There are three types of newsdays, "good," "fair," and "poor," with probabilities different probabilities of 0.35, 0.45, and 0.20 respectively.
- The problem is to determine the optimal number of papers the newspaper seller should purchase. /Prepare Simulation table for purchase of 70 Newspapers.
- This will be accomplished by simulating demands and recording profits from sales each day.
- The distribution of papers demanded on each of these days is given table 2.15
- Table 2.16 and 2.17 provide the random digit assignments for the types of News days and the demands for those News days.

Distribution of newspaper demanded,

Demand	Good	Fair	Poor
40	0.03	0.10	0.44
50	0.05	0.18	0.22
60	0.15	0.40	0.16
70	0.20	0.20	0.12
80	0.35	0.08	0.06
90	0.15	0.04	0.00
100	0.07	0.00	0.00

Table 01: Newspaper distribution by demand

Random digit assignment for types of Newsday,

Types of Newsday	Probability	Cumulative probability	Random digit assignment	
Good	0.35	0.35	1-35	
Fair	0.45	0.80	36-80	
Poor	0.20	1.00	81-100	

Table 02: Random digit for news days.

Random digit assignment for newspaper demanded,

Demand	Good	Fair	Poor	Good	Fair	Poor
40	0.03	0.10	0.44	01-03	01-10	02-44
50	0.05	0.18	0.22	04-08	11-28	45-66
60	0.15	0.40	0.16	09-23	29-68	67-82
70	0.20	0.20	0.12	24-43	69-88	83-94
80	0.35	0.08	0.06	44-78	89-96	95-100
90	0.15	0.04	0.00	79-93	97-100	
100	0.07	0.00	0.00	94-100		

Table 03: Random digit for demand.

Solution:

Manual simulation:

Calculation:

Profit = [(revenue from sales) - (cost of newspapers) - (lost profit from excess
demand) + (salvage from sale of scrap papers)]

Revenue = Demand X Selling price

Lost Profit = (Demand - Stock) X 17 cents [Demand > Stock]

Salvage = (Stock - Demand) X 5 cents [Demand < Stock]</pre>

Cost of Newspaper = Stock X Buying price

Cost of newspaper = 70 * (33/100) = 23.1

Manual simulation table:

Day	RN for TON	TON	RN for Demand	Demand	revenue	lost profit	Salvage	Daily profit	pv of 70
1	56	fair	63	60	30	0	0.5	7.4	23.1
2	50	fair	87	70	35	0	0	11.9	23.1
3	87	poor	53	50	25	0	1	2.9	23.1
4	53	fair	73	70	35	0	0	11.9	23.1
5	11	good	62	80	40	1.7	0	15.2	23.1
6	32	good	41	70	35	0	0	11.9	23.1
7	21	good	2	40	20	0	1.5	-1.6	23.1
8	54	fair	83	70	35	0	0	11.9	23.1
9	24	good	36	70	35	0	0	11.9	23.1
10	77	fair	43	60	30	0	0.5	7.4	23.1
11	65	fair	9	40	20	0	1.5	-1.6	23.1
12	3	good	100	100	50	5.1	0	21.8	23.1
13	24	good	81	90	45	3.4	0	18.5	23.1
14	54	fair	21	50	25	0	1	2.9	23.1
15	11	good	1	40	20	0	1.5	-1.6	23.1
16	84	poor	28	40	20	0	1.5	-1.6	23.1
17	42	fair	14	50	25	0	1	2.9	23.1

18	44	fair	49	60	30	0	0.5	7.4	23.1
19	41	fair	89	80	40	1.7	0	15.2	23.1
20	33	good	86	90	45	3.4	0	18.5	23.1
21	6	good	99	100	50	5.1	0	21.8	23.1
22	90	poor	31	40	20	0	1.5	-1.6	23.1
23	52	fair	21	50	25	0	1	2.9	23.1
24	78	fair	94	80	40	1.7	0	15.2	23.1
25	81	poor	83	70	35	0	0	11.9	23.1
26	29	good	44	80	40	1.7	0	15.2	23.1
27	26	good	37	70	35	0	0	11.9	23.1
28	19	good	65	80	40	1.7	0	15.2	23.1
29	16	good	68	80	40	1.7	0	15.2	23.1
30	77	fair	86	70	35	0	0	11.9	23.1
					1000	27.2	13		693

Table 4: Solution with equations.

Simulation in excel:

Day	RN for TON	TON	RN for Demand	Demand	revenue	lost profit	Salvage	Daily profit	pv of 70
1	56	fair	63	60	30	0	0.5	7.4	23.1
2	50	fair	87	70	35	0	0	11.9	23.1
3	87	poor	53	50	25	0	1	2.9	23.1
4	53	fair	73	70	35	0	0	11.9	23.1
5	11	good	62	80	40	1.7	0	15.2	23.1
6	32	good	41	70	35	0	0	11.9	23.1
7	21	good	2	40	20	0	1.5	-1.6	23.1
8	54	fair	83	70	35	0	0	11.9	23.1
9	24	good	36	70	35	0	0	11.9	23.1
10	77	fair	43	60	30	0	0.5	7.4	23.1
11	65	fair	9	40	20	0	1.5	-1.6	23.1
12	3	good	100	100	50	5.1	0	21.8	23.1
13	24	good	81	90	45	3.4	0	18.5	23.1
14	54	fair	21	50	25	0	1	2.9	23.1
15	11	good	1	40	20	0	1.5	-1.6	23.1
16	84	poor	28	40	20	0	1.5	-1.6	23.1
17	42	fair	14	50	25	0	1	2.9	23.1
18	44	fair	49	60	30	0	0.5	7.4	23.1
19	41	fair	89	80	40	1.7	0	15.2	23.1
20	33	good	86	90	45	3.4	0	18.5	23.1
21	6	good	99	100	50	5.1	0	21.8	23.1
22	90	poor	31	40	20	0	1.5	-1.6	23.1
23	52	fair	21	50	25	0	1	2.9	23.1
24	78	fair	94	80	40	1.7	0	15.2	23.1
25	81	poor	83	70	35	0	0	11.9	23.1
26	29	good	44	80	40	1.7	0	15.2	23.1
27	26	good	37	70	35	0	0	11.9	23.1
28	19	good	65	80	40	1.7	0	15.2	23.1
29	16	good	68	80	40	1.7	0	15.2	23.1
30	77	fair	86	70	35	0	0	11.9	23.1
					1000	27.2	13		693

Figure 01: Newspaper problem solution in excel.

Simulation using Python:

Source Code:

```
from random import randrange
day_by_day = []
all_day = []
rn ton = 0
ton = 0
rn\ demand = 0
demand = 0
revenue = 0
lp = 0
slvg = 0
purchase\_value\_of\_70\_np = round((.33 * 70), 2)
dp = 0
def rn_for_ton(k): #2 function
 for i in range (k):
   global rn_ton, day_by_day
   day_by_day = [] # reset the list to empty
   rn\_ton = randrange(100)
   day_by_day.append(i + 1)
   day_by_day.append(rn_ton)
   type_of_news_day() #3 call
def type_of_news_day(): #3 function
 global ton
 if rn_{ton} < 36:
   ton = "good"
 elif rn_{ton} < 81:
   ton = "fair"
 elif rn_{ton} < 101:
   ton = "poor"
 day_by_day.append(ton)
 rn_for_demand() #4 call
def rn_for_demand(): #4 function
 global rn_demand
 rn\_demand = randrange(100)
 day_by_day.append(rn_demand)
 _demand() #5 call
def _demand(): #5 function
 global demand
 if ton == "poor" and rn_demand < 45:
   demand = 40
 elif ton == "poor" and rn_demand < 67:
   demand = 50
 elif ton == "poor" and rn_demand < 83:
   demand = 60
```

```
elif ton == "poor" and rn_demand < 95:
   demand = 70
 elif ton == "poor" and rn_demand < 101:
   demand = 80
 elif ton == "fair" and rn_demand < 11:
   demand = 40
 elif ton == "fair" and rn_demand < 29:
   demand = 50
 elif ton == "fair" and rn_demand < 69:
   demand = 60
 elif ton == "fair" and rn_demand < 89:
   demand = 70
 elif ton == "fair" and rn_demand < 97:
   demand = 80
 elif ton == "fair" and rn_demand < 101:
   demand = 90
 elif ton == "good" and rn_demand < 4:
   demand = 40
 elif ton == "good" and rn_demand < 9:
   demand = 50
 elif ton == "good" and rn_demand < 24:
   demand = 60
 elif ton == "good" and rn_demand < 44:</pre>
   demand = 70
 elif ton == "good" and rn_demand < 79:
   demand = 80
 elif ton == "good" and rn_demand < 94:
   demand = 90
 elif ton == "good" and rn demand < 101:
   demand = 100
 else:
   demand = 0
 day_by_day.append(demand)
 _revenue() #6 call
def _revenue(): #6 function
 global revenue
 revenue = demand * .5
 day_by_day.append(revenue)
 profit_lost() #7 call
def profit_lost(): #7 function
 global lp
 if demand > 70:
   lp = (demand - 70) * .17
 else:
   lp = 0
 day_by_day.append(round(lp, 2))
 salvage() #8 call
```

```
def salvage(): #8 function
 global slvg
 if demand < 70:
   slvg = (70 - demand) * .05
 else:
   slvg = 0
 day_by_day.append(slvg)
 daily_profit() #9 call
def daily_profit(): #9 function
 global dp
 dp = revenue - purchase_value_of_70_np - lp + slvg
 day_by_day.append(round(dp, 2))
 day_by_day.append(purchase_value_of_70_np)
 all_day.append(day_by_day)
 #end of one loop initiated in function 2
rn_for_ton(30) #1 #2 call
import pandas as pd
df = pd.DataFrame(all\_day, columns)
= ['Day',' RN for TON',' TON',' RN for Demand',' Demand',' Revenue',' Lost Profit',' Salvage
df = df.set\_index('Day')
pd.set_option('display.colheader_justify','center')
print(df)
```

Output:

	RN for TON	TON	RN for Demand	Demand	Revenue	Lost Profit	Salvage	Daily Profit	Purchase Value of 70
Day									
1	2	good	69	80	40.0	1.7	0.0	15.2	23.1
2	15	good	43	70	35.0	0.0	0.0	11.9	23.1
3	29	good	21	60	30.0	0.0	0.5	7.4	23.1
4	25	good	49	80	40.0	1.7	0.0	15.2	23.1
5	87	poor	63	50	25.0	0.0	1.0	2.9	23.1
6	18	good	72	80	40.0	1.7	0.0	15.2	23.1
7	24	good	61	80	40.0	1.7	0.0	15.2	23.1
8	34	good	41	70	35.0	0.0	0.0	11.9	23.1
9	6	good	3	40	20.0	0.0	1.5	-1.6	23.1
10	23	good	68	80	40.0	1.7	0.0	15.2	23.1
11	56	fair	32	60	30.0	0.0	0.5	7.4	23.1
12	2	good	67	80	40.0	1.7	0.0	15.2	23.1
13	99	poor	31	40	20.0	0.0	1.5	-1.6	23.1
14	17	good	80	90	45.0	3.4	0.0	18.5	23.1
15	84	poor	16	40	20.0	0.0	1.5	-1.6	23.1
16	9	good	78	80	40.0	1.7	0.0	15.2	23.1
17	70	fair	59	60	30.0	0.0	0.5	7.4	23.1
18	5	good	31	70	35.0	0.0	0.0	11.9	23.1
19	88	poor	11	40	20.0	0.0	1.5	-1.6	23.1
20	60	fair	67	60	30.0	0.0	0.5	7.4	23.1
21	7	good	2	40	20.0	0.0	1.5	-1.6	23.1
22	74	fair	23	50	25.0	0.0	1.0	2.9	23.1
23	35	good	65	80	40.0	1.7	0.0	15.2	23.1
24	35	good	57	80	40.0	1.7	0.0	15.2	23.1
25	20	good	64	80	40.0	1.7	0.0	15.2	23.1
26	18	good	95	100	50.0	5.1	0.0	21.8	23.1
27	83	poor	79	60	30.0	0.0	0.5	7.4	23.1
28	83	poor	29	40	20.0	0.0	1.5	-1.6	23.1
29	11	good	59	80	40.0	1.7	0.0	15.2	23.1
30	20	good	79	90	45.0	3.4	0.0	18.5	23.1
(dip) PS E:\Studv		021\Simulation ar	nd modeling	sessional\	Final>			

Figure 02: Simulation in Python.