4 $H_1,\,\cdots,\,H_n$ を空間内の相異なる n 枚の平面とする . $H_1,\,\cdots,\,H_n$ によって空間が $T(H_1,\,\cdots,\,H_n)$ 個の空間領域に分割されるとする . 例えば , 空間の座標を $(x,\,y,\,z)$ とするとき ,

平面 x=0 を H_1 , 平面 y=0 を H_2 , 平面 z=0 を H_3 とすると $T(H_1,H_2,H_3)=8$, 平面 x=0 を H_1 , 平面 y=0 を H_2 , 平面 x+y=1 を H_3 とすると $T(H_1,H_2,H_3)=7$, 平面 x=0 を H_1 , 平面 x=1 を H_2 , 平面 y=0 を H_3 とすると $T(H_1,H_2,H_3)=6$, 平面 x=0 を H_1 , 平面 y=0 を H_2 , 平面 z=0 を H_3 , 平面 x+y+z=1 を H_4 とすると $T(H_1,H_2,H_3,H_4)=15$,

である.

- (1) 各 n に対して $T(H_1, \dots, H_n)$ のとりうる値のうち最も大きいものを求めよ.
- (2) 各 n に対して $T(H_1,\,\cdots,\,H_n)$ のとりうる値のうち 2 番目に大きいものを求めよ. ただし $n\geq 2$ とする.
- (3) 各 n に対して $T(H_1,\,\cdots,\,H_n)$ のとりうる値のうち 3 番目に大きいものを求めよ. ただし $n\geq 3$ とする.