Algebra Review Modular Arithmetic Boolean Algebra

Lecture 2

Termeh Shafie

algebraic properties* [axioms]

property	addition	multiplication
associative	(a+b)+c=a+(b+c)	(ab)c = a(bc)
commutative	a+b = b+a	ab = ba
identity	a+0 = a = 0+a	
inverse	a+(-a) = 0 = (-a)+a	a · a-1=1=a-1 · a if a ≠ 0
distributive	a(b+c)=ab+ac and	ab + ac = a(b + c)

algebraic properties* [axioms] properties of equality and inequality (1)

property	equality	inequality		
multiplicative property of zero	a ·0 = 0 = 0 · a			
zero product	if ab= 0, then a = 0 or b =0			
reflexive	a = a			
symmetric	if $a = b$, then $b = a$			
transitive	if $a = b$ and $b = c$, then $a = c$	if $a > b$ and $b > c$, then $a > c$ if $a < b$ and $b < c$, then $a < c$		
addition	if $a=b$, then $a+c=b+c$	if $a < b$, then $a + c < b + c$ if $a > b$, then $a + c > b + c$		
subtraction	if a = b, then a-c = b-c	if $a < b$, then $a - c < b - c$ if $a > b$, then $a - c > b - c$		
*given a, b, and c are real numbers				

algebraic properties* [axioms] properties of equality and inequality (2)

property	equality	inequality	
multiplication	if a = b, then ac = bc	if $a < b$ and $c > 0$, then $ac < bc$ if $a < b$ and $c < 0$, then $ac > bc$ if $a > b$ and $c > 0$, then $ac > bc$ if $a > b$ and $c < 0$, then $ac < bc$	
division	If $a = b$ and $c \neq 0$, then $a/b = b/c$	if $a < b$ and $c > 0$, then $a/c < b/c$ if $a < b$ and $c < 0$, then $a/c > b/c$ if $a > b$ and $c > 0$, then $a/c > b/c$ if $a > b$ and $c < 0$, then $a/c < b/c$	
substitution	if $a = b$, then b can be substituted for a in any equation or inequality		
*einen a h and care real aumhers			

fractions (or pizza math) addition and subtraction: Least Common Denominator (LCD)

generally
$$\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d}{b \cdot d} + \frac{c \cdot b}{d \cdot b}$$

fractions (or pizza math)

$$\frac{1}{2}$$
 \div $\frac{1}{6}$

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$

Factoring writing a polynomial as a product of polynomials • The greatest common factor (GCF): largest quantity that is a factor of all the integers or polynomials involved Example. 6,8 and 46 6 = 2 · 3 8 = 2 · 2 · 2 46 - 2 · 23 ⇒ GCF is 2 Example. $6x^5$ and $4x^3$ $6x^5 = 2 \cdot 3 \cdot x \cdot x \cdot x \cdot x \cdot x$ $4x^3 = 2 \cdot 2 \cdot x \cdot x \cdot x$ ⇒ GCF is $2 \cdot x \cdot x \cdot x$ Exercise 1. a^3b^2 , a^2b^5 and a^4b^7 ⇒ GCF is a^2b^2

factoring trinomials

First Outer Inner Last

Example, $25x^2 + 20x + 4$

- possible factors of $25x^2$ are $\{x,25x\}$ or $\{5x,5x\}$ and possible factors of 4 are $\{1,4\}$ or $\{2,2\}$
- try each pair of factors until we find a combination that works (or exhausts all possible pairs)
- ullet look for a combination that gives sum of the products of the outside terms and the inside terms equal to 20x

Factors of $25x^2$	Factors of 4	Resulting Binomials	Product of Outside Terms	Product of Inside Terms	Sum of Products
$\{x,25x\}$	{1, 4}	(x+1)(25x+4) (x+4)(25x+1)	4 <i>x</i> <i>x</i>	25 <i>x</i> 100 <i>x</i>	29 <i>x</i> 101 <i>x</i>
$\{x,25x\}$	{2, 2}	(x+2)(25x+2)		50x	52x
$\{5x,5x\}$	{2, 2}	(5x+2)(5x+2)	10x	10x	20x

- Answer: (5x + 2)(5x + 2) (check via FOIL)
- Exercise 2. Factor the polynomial $21x^2 41x + 10$

solving quadratic equations by factoring

· quadratic equations of the standard form

$$ax^2 + bx + c = 0$$

where a,b and c are real numbers and $a \neq 0$

• below theorem is very useful in solving quadratic equations

Zero Factor Theorem

If a and b are real numbers and ab = 0, then a = 0 or b = 0

solving quadratic equations by factoring

step by step for solving a quadratic equation by factoring

- 1. write the equation in standard form.
- 2. factor the quadratic completely
- 3. set each factor containing a variable equal to 0
- 4. solve the resulting equations
- 5. check each solution in the original equation

mple: solve $x^2 - 5x = 24$

$$r^2 - 5r - 24 - 0$$

$$x^2 - 5x - 24 = (x - 8)(x + 3) = 0$$

$$x - 8 = 0$$
 and $x + 3 = 0$

$$8^2 - 5(8) = 64 - 40 = 24 \implies true$$

Exercise 3, 4x(8x + 9) = 5

modular arithmetic

a fundamental tool in number theory ("the study of integers") deals with repetitive cycles of numbers and remainders

mod 12 arithmetic

congruence modulo

Definition Congruence

We say that a is congruent to b modulo m if and only if m divides a - b

- Whether two integers a and b have the same remainder when divided by n
- Notation: $a \equiv b \mod m \leftrightarrow a$ is congruent to b modulo m $a \not\equiv b \mod m \leftrightarrow a$ is not congruent to b modulo m
- A congruence modulo asks whether or not a and b are in the same equivalence class

Example

The numbers 31 and 46 are congruent $\mod 3$ because they differ by a multiple of 3. We can write this as $31 \equiv 46 \mod 3$ Since the difference between 31 and 46 is 15, then these numbers also differ by a multiple of 5; i.e., $31 \equiv 46 \mod 5$

Exercise 4.

Find the equivalence classes of $\mod 3$

rules of modular arithmetic

Addition (and subtraction)

If $a \equiv b \mod m$ and $c \equiv d \mod m$ then $a+c \equiv b+d \mod m$

Multiplication

If $a \equiv b \mod m$ and $c \equiv d \mod m$ then $a \times c \equiv b \times d \mod m$

<u>Division</u>

The remainder after division is always congruent to the number we are dividing.

Example. 87 \equiv 2 mod 17 and 222 \equiv 1 mod 17 \equiv 3 mod 17 \equiv 87 + 222 mod 17 \equiv 2 + 1 mod 17 \equiv 3 mod 17

Example. $9876 \equiv 6 \mod 10$ and $17642 \equiv 2 \mod 10$ $9876 \times 17642 \mod 10 \equiv 6 \times 2 \mod 10 \equiv 2 \mod 10$

Evample

What is the remainder of 17×18 when it is divided by 19? We know that $17 \equiv -2 \mod 19$ and $18 \equiv -1 \mod 19$ $\implies 17 \times 18 \equiv (-2) \times (-1) = 2 \mod 19$

Boolean algebra

- consider the following statements that can be either TRUE or FALSE:
- Today is Monday AND it is raining
- Today is Monday OR today is NOT Monday
- Today is Monday AND today is NOT Monday
- Boolean algebra allows us to formalize this sort of reasoning
- Boolean variables may take one of only two possible values: TRUE, FALSE
- there are three fundamental Boolean operators: AND, OR, NOT
- an exhaustive approach to describing when some statement is true (or false): TRUTH TABLES
- the = in Boolean algebra indicates equivalence

Boolean algebra

The three fundamental Boolean operators

1. Logical conjunction: AND \(\)
True only when both A and B are true.

Α	В	A AND B
F	F	F
F		
ī	F	F
T	T	

A AND $B = A \wedge B = AB$

Boolean algebra

The three fundamental Boolean operators

1. Logical disjunction: OR ∨
True unless both A and B are false.

A	В	A OR B
F	F	F
F		
Ţ	F	Ī

 $A OR B = A \lor B = A+$

NOT A= ¬A = A'

Boolean algebra Truth table

A	В	A'	B'	AB	A+B
F	F				
	F				
	Ī				

NOT A

Boolean algebra

Truth table

A	В	A'	B'	AB	A+B
F	F	ī	Ī	F	F
					ī
	F	F	Ī		Ī
	Ī				Ī

Boolean algebra

Exercise 5, write the truth table for (A+B)B

A	В	A+B	(A+B)B
ī	F		
	Ī		

Truth tables can be used to prove equivalencies. What have we proved in this table?