

Numeric Data Transformations

```
import numpy as np
2 breaks = np.linspace(10, 90, 9).tolist()
3 census data["age group"] = census data["age"].cut(breaks)
5 census data["log1p capital-gain"] = census data["capital-gain"].log1p()
6 census data["log1p capital-loss"] = census data["capital-loss"].log1p()
7 print(census data["age group"].table())
```

age_group	Count
(10.0,20.0]	2410
(20.0,30.0]	8162
(30.0,40.0]	8546
(40.0,50.0]	6983
(50.0,60.0]	4128
(60.0,70.0]	1792
(70.0,80.0]	441
(80.0,90.0]	99

Date/Time Manipulations

- Date/Time Creation
 - o h2o frame[x].as date(format)
- Date Extraction
 - o h2o_frame[x].day()
 - o h2o frame[x].dayOfWeek()
 - o h2o frame[x].month()
 - o h2o_frame[x].week()
 - o h2o_frame[x].year()
- Time Extraction
 - o h2o_frame[x].hour()
 - o h2o frame[x].minute()
 - o h2o_frame[x].second()

Numeric Data Transformations

```
import numpy as np
breaks = np.linspace(10, 90, 9).tolist()
census_data["age_group"] = census_data["age"].cut(breaks)

census_data["log1p_capital-gain"] = census_data["capital-gain"].log1p()
census_data["log1p_capital-loss"] = census_data["capital-loss"].log1p()
print(census_data["age_group"].table())
```

age_group	Count
(10.0,20.0]	2410
(20.0,30.0]	8162
(30.0,40.0]	8546
(40.0,50.0]	6983
(50.0,60.0]	4128
(60.0,70.0]	1792
(70.0,80.0]	441
(80.0,90.0]	99

