12ML:: BASICS

Data

 $\mathcal{X} \subseteq \mathbb{R}^p$: p-dimensional **feature space** / input space Usually we assume categorical features to be numerically encoded.

\mathcal{Y} : target space

e.g.: $\mathcal{Y}=\mathbb{R}$ for regression, $\mathcal{Y}=\{0,1\}$ or $\mathcal{Y}=\{-1,+1\}$ for binary classification, $\mathcal{Y}=\{1,\ldots,g\}$ for multi-class classification with g classes

 $x = (x_1, \dots, x_p)^T \in \mathcal{X}$: feature vector / covariate vector

 $y \in \mathcal{Y}$: **target variable** / output variable Concrete samples are called labels

 $(x^{(i)}, y^{(i)}) \in \mathcal{X} \times \mathcal{Y}$: i -th **observation** / sample / instance / example

 $\mathbb{D} = \bigcup_{n \in \mathbb{N}} (\mathcal{X} \times \mathcal{Y})^n$: set of all finite data sets

 $\mathbb{D}_n = (\mathcal{X} \times \mathcal{Y})^n \subseteq \mathbb{D}$: set of all finite data sets of size n

 $\mathcal{D} = ((\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})) \in \mathbb{D}_n$: **data set** of size n. An n-tuple, a family indexed by $\{1, \dots, n\}$. We use \mathcal{D}_n to emphasize its size.

 $\mathcal{D}_{\mathsf{train}}$, $\mathcal{D}_{\mathsf{test}} \subseteq \mathcal{D}$: data sets for training and testing Often: $\mathcal{D} = \mathcal{D}_{\mathsf{train}} \ \dot{\cup} \ \mathcal{D}_{\mathsf{test}}$

 \mathbb{P}_{xy} : joint probability distribution on $\mathcal{X} imes \mathcal{Y}$

Classification

 $o_k(y) = \mathbb{I}(y = k) \in \{0, 1\}$: multiclass one-hot encoding, if y is class k. We write o(y) for the g-length encoding vector and $o_k^{(i)} = o_k(y^{(i)})$

 $\pi_k = \mathbb{P}(y = k)$: **prior probability** for class k In case of binary labels we might abbreviate: $\pi = \mathbb{P}(y = 1)$.

Model and Learner

Model / Hypothesis: $f: \mathcal{X} \to \mathbb{R}^g$ maps features to predictions, often parametrized by $\theta \in \Theta$ (then we write $f_{\theta}(x)$ or $f(x|\theta)$).

 $\Theta \subseteq \mathbb{R}^d$: parameter space

 $\boldsymbol{\theta} = (\theta_1, \theta_2, ..., \theta_d) \in \Theta$: model **parameter** vector Some models may traditionally use different symbols.

 $\mathcal{H} = \{f : \mathcal{X} \to \mathbb{R}^g \mid f \text{ belongs to a certain functional family} \}$: **Hypothesis space** – set of functions to which we restrict learning

Learner / Inducer : $\mathbb{D} \times \Lambda \to \mathcal{H}$ takes a training set $\mathcal{D}_{\mathsf{train}} \in \mathbb{D}$, produces model $f: \mathcal{X} \to \mathbb{R}^g$, with hyperparam. configuration $\lambda \in \Lambda$. We also write : $\mathbb{D} \times \Lambda \to \Theta$ or $\lambda : \mathbb{D} \to \Theta$

 $\Lambda = \Lambda_1 \times \Lambda_2 \times ... \times \Lambda_{\ll} \subseteq \mathbb{R}^{\ll}$: hyperparameter space Λ_j are usually bounded real or integer intervals or a finite categorical set

 $oldsymbol{\lambda}=(\lambda_1,\lambda_2,...,\lambda_\ll)\in oldsymbol{\Lambda}$: hyperparameter configuration

r = y - f(x) or $r^{(i)} = y^{(i)} - f(x^{(i)})$: (i-th) **residual** in regression

Classification

 $\pi_k(x): \mathcal{X} \to [0,1]$ probability prediction for class k, approximates $\mathbb{P}(y=k\mid x)$; for binary we abbreviate with $\pi(x)$ for $\mathbb{P}(y=1\mid x)$.

 $f_k(x): \mathcal{X} \to \mathbb{R}$: **scoring** / discriminant **function** for class k; for binary we use $f(x) = f_1(x) - f_2(x)$

 $h(x): \mathcal{X} \to \mathcal{Y}:$ hard label function; Typically created by $h(x) = \arg\max_{k \in \{1,...,g\}} f_k(x)$ or $h(x) = \arg\max_{k \in \{1,...,g\}} \pi_k(x)$

yf(x) or $y^{(i)}f(x^{(i)})$: margin for (i-th) observation in binary classification

 $c \in \mathbb{R}$, s.t. $h(x) := [\pi(x) \ge c]$ or $h(x) := [f(x) \ge c]$: **threshold** for hard label assignment in binary case (common: c = 0 for scoring, c = 0.5 for probabilistic classifiers)

 \hat{y} , \hat{f} , \hat{h} , $\hat{\pi}_k(x)$, $\hat{\pi}(x)$ and $\hat{\theta}$

The hat symbol denotes learned functions and parameters.

Loss, Risk and ERM

 $L: \mathcal{Y} \times \mathbb{R}^g \to \mathbb{R}_0^+:$ loss function: Quantifies "quality" L(y, f(x)) of prediction f(x) (or $L(y, \pi(x))$ of prediction $\pi(x)$) for true y.

(Theoretical) risk: $\mathcal{R}: \mathcal{H} \to \mathbb{R}$, $\mathcal{R}(f) = \mathbb{E}_{((\mathsf{x}, y) \sim \mathbb{P}_{\mathsf{x}y})}[L(y, f(\mathsf{x}))]$ Empirical risk: $\mathcal{R}_{\mathsf{emp}}: \mathcal{H} \to \mathbb{R}$, $\mathcal{R}_{\mathsf{emp}}(f) = \sum_{i=1}^n L(y^{(i)}, f(\mathsf{x}^{(i)}))$, analogously: $\mathcal{R}_{\mathsf{emp}}: \Theta \to \mathbb{R}$; $\mathcal{R}_{\mathsf{emp}}(\theta) = \sum_{i=1}^n L(y^{(i)}, f(\mathsf{x}^{(i)} \mid \theta))$

Empirical risk minimization (ERM): $\hat{m{ heta}} \in \mathop{\mathsf{arg}} \min_{m{ heta} \in \Theta} \mathcal{R}_{\mathsf{emp}}(m{ heta})$

Bayes-optimal model: $f^* = \arg\min_{f: \mathcal{X} \to \mathbb{R}^g} \mathcal{R}(f)$

Regularized risk: $\mathcal{R}_{reg}: \mathcal{H} \to \mathbb{R}$, $\mathcal{R}_{reg}(f) = \mathcal{R}_{emp}(f) + \lambda \cdot J(f)$ with regularizer J(f), complexity control parameter $\lambda > 0$ (analogous for θ).

Regression Losses

L2 loss / squared error:

- $ightharpoonup L(y, f(x)) = (y f(x))^2 \text{ or } L(y, f(x)) = 0.5(y f(x))^2$
- ► Convex and differentiable, non-robust against outliers
- ► Optimal constant model: $\hat{f}(x) = \frac{1}{n} \sum_{i=1}^{n} y^{(i)} = \bar{y}$
- ▶ Optimal model over \mathbb{P}_{xy} for unrestricted \mathcal{H} : $\hat{f}(x) = \mathbb{E}[y|x]$

L1 loss / absolute error:

- ightharpoonup L(y, f(x)) = |y f(x)|
- ► Convex and more robust, non-differentiable
- ► Optimal constant model: $\hat{f}(x) = med(y^{(1)}, \dots, y^{(n)})$
- ▶ Optimal model over \mathbb{P}_{xy} for unrestricted \mathcal{H} : $\hat{f}(x) = \text{med}[y|x]$

Classification Losses

0-1-loss (binary case)

 $L(y, h(x)) = \mathbb{I}(y \neq h(x))$ $L(y, f(x)) = \mathbb{I}(yf(x) < 0)$ for $\mathcal{Y} = \{-1, +1\}$ Discontinuous, results in NP-hard optimization

Brier score (binary case)

$$L(y, \pi(x)) = (\pi(x) - y)^2$$
 for $\mathcal{Y} = \{0, 1\}$
Least-squares on probabilities

Log-loss / Bernoulli loss / binomial loss (binary case)

$$L(y, \pi(x)) = -y \log(\pi(x)) - (1 - y) \log(1 - \pi(x))$$
 for $\mathcal{Y} = \{0, 1\}$
 $L(y, \pi(x)) = \log(1 + (\frac{\pi(x)}{1 - \pi(x)})^{-y})$ for $\mathcal{Y} = \{-1, +1\}$

Assuming a logit-link $\pi(x) = \exp(f(x))/(1 + \exp(f(x)))$: $L(y, f(x)) = -y \cdot f(x) + \log(1 + \exp(f(x)))$ for $\mathcal{Y} = \{0, 1\}$ $L(y, f(x)) = \log(1 + \exp(-y \cdot f(x)))$ for $\mathcal{Y} = \{-1, +1\}$ Penalizes confidently-wrong predictions heavily

Brier score (multi-class case)

$$L(y, \pi(x)) = \sum_{k=1}^{g} (\pi_k(x) - o_k(y))^2$$

Log-loss (multi-class case)

$$L(y, \pi(x)) = -\sum_{k=1}^{g} o_k(y) \log(\pi_k(x))$$

Optimal constant models

0-1-loss: $h(x) \in \operatorname{arg\,max}_{j \in 0,1} \sum_{i=1}^{n} \mathbb{I}(y^{(i)} = j)$

Brier and log-loss (binary): $\hat{\pi}(x) = \bar{y}$

Brier and log-loss (multiclass): $\hat{\pi}(x) = \left(\frac{1}{n}\sum_{i=1}^{n}o_{1}^{(i)},\ldots,\frac{1}{n}\sum_{i=1}^{n}o_{g}^{(i)}\right)$