Přehled funkcí v OpenOffice.calc

Matematické funkce

```
RAND()
                                        náhodné číslo z intervalu (0, 1);
RAND(a, b)
                                        náhodné číslo z intervalu (a, b);
ABS(x)
                                        |x| absolutní hodnota
SQRT(x)
                                        \sum_{i=1}^{N} x_i \text{ součet dat souboru}\sum_{i=1}^{n} x_i^2 \text{ součet čtverců dat souboru}
SUM
SQR
PRODUCT(x_1, x_2, \ldots, x_n)
                                        x_1.x_2...x_n
FACT(n)
                                        n! = 1.2 \dots n
COMBIN(n, k)
COMBINA(n, k)
PI()
SIGN(x)
                                        sgn(x)
POWER(x, y)
                                        x^y
RADIANS(x)
                                        rad \rightarrow deq
DEGREES(x)
                                        deg \to rad
```

Elementární funkce

EXP(x)	e^x ;
LN(x)	$\ln x;$
LOG10(x)	$\log x$;
LOG(x;a)	$\log_a x;$
SIN(x)	$\sin x;$
COS(x)	$\cos x;$
TAN(x)	tgx;
COT(x)	$\cot gx;$
ASIN(x)	$\arcsin x;$
ACOS(x)	$\arccos x;$
ATAN(x)	$\operatorname{arctg} x;$
ACOT(x)	arctgx;
SINH(x)	$\sinh x;$
COSH(x)	$ \cosh x; $
TANH(x)	tghx;
COTH(x)	$\operatorname{cotgh} x;$
ASINH(x)	$\operatorname{argsinh} x;$
ACOSH(x)	$\operatorname{argcosh} x;$
ATANH(x)	$\operatorname{argtgh} x;$
ACOTH(x)	$\operatorname{argcotgh} x;$

Zvláštní funkce

TRUNC(x)	celá část čísla,
QUOTIENT(a,b)	celá část čísla $\frac{a}{b}$,
MOD(a, b)	zbytek po dělení $\frac{a}{b}$,
INT(x)	celá část dolů,
ODDx	,
EVEN(x)	,
ROUND(x; n)	,
ROUNDUP(x; n)	,
ROUNDDOWN(x; n)	

Statistické funkce

AVERAGE $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$, aritmetický průměr

AVERAGEA text počítá jako nulu

GEOMEAN $\sqrt[n]{x_1.x_2...x_n}$ geometrický průměr souboru

HARMEAN harmonický průměr souboru

AVEDEV $\frac{1}{n}\sum_{i=1}^{n}|x_i-\bar{x}|, \text{ průměrná odchylka}$

SQ $\sum_{i=1}^{n} x_i^2$, součet čtverců

DEVSQ $\sum_{i=1}^{n} (x_i - \bar{x})^2$, kvadratická odchylka

VAR $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$, výběrový rozptyl

VARP $s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$, střední kvadratická odchylka

STDEV $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$, směrodatná odchylka

STDEVP $s = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2},$

MIN $\min\{x_i, 1 \le i \le n\}$, minimum souboru MAX $\max\{x_i, 1 \le i \le n\}$, maximum souboru MODUS $modus \ \hat{x}$, hodnota s největší četností

MEDIAN $\hat{x} = x_{0,5} \text{ medián}$

PERCENTILE $x_{ij}, percentily - \text{kvantily pro } \alpha = 0, ij$

QUARTILE kvantily pro hodnoty $\alpha = 0$; 0, 25; 0, 5; 0, 75; 1.

Zadávají se hodnotou 0 - MIN, $1 - x_{0,25}$ dolní kvartil, $2 - x_{0,5} = \tilde{x}$ medián,

 $3 - x_{0.75}$ horní kvartil 4 - MAX

SKEW A_3 – koeficient šikmosti KURT A_4 – koeficient špičatosti

COVAR koeficient kovariance C(x, y) = var(x, y),

CORREL koeficient korelace $\rho(x,y)$ PEARSON koeficientPearsonovy korelace

Hodnoty k rozdělením

BINOMDIST
$$C = 0 - p_i = \binom{n}{i} p_i (1 - p)^{n-i}, \ 0 \le i \le n$$

BINOMDIST
$$C = 1: \sum_{i=1}^{k} p_i$$

 $CRITBINOM$ $M: \sum_{i=1}^{M} p_i \ge \alpha$

CRITBINOM
$$M: \sum_{i=1}^{M} p_i \geq \alpha$$

$$NORMDIST$$
 $C = 0$:

 $C=1: \Phi(x) - \text{hodnota distribuční funkce}$ NORMDIST

Testy

TTESTt-test pro rovnost středních hodnot

C = 1: párový test;

C=2: rovnost rozptylů $\sigma_1=\sigma_2$;

C=3: různé rozptyly $\sigma_1 \neq \sigma_2$;

F – test pro rovnost rozptylů; FTEST