

Continuous Assessment 4 - Programing for Big Data

CIARAN O'DRISCOLL - 10357873

Data has been placed in a dataframe 'df' and exported to a file 'dataframe2.csv'

Using the data in this file I have tried to find some interesting details in the data.

pivot1 =

pd.pivot_table(df,index='user',values=['added','deleted','modified'],aggfunc=np.sum,margins=True)

pivot1

Out[99]:

	added deleted modified
user	
/OU=Domain Control Validated/CN=svn.company.net	0.0 0.0 24.0
Alan	9.0 6.0 15.0
Dave	10.0 0.0 66.0
Freddie	0.0 0.0 9.0
Jimmy	690.0 66.0 401.0
Nicky	0.0 0.0 7.0
Thomas	87.0 663.0 609.0
Vincent	260.0 32.0 45.0
ajon0002	0.0 0.0 9.0
murari.krishnan	0.0 0.0 1.0
All	1056.0 767.0 1186.0

Doing a pivot on the data we can see the total number of 'added', 'deleted' and 'modified' items were 1056, 767 and 1186 respectively and we can see the person that made the most 'adds' was Jimmy with 690, the person who made the most 'deletes' was Thomas with 663 and the person who made the most 'modifications' was also Thomas with 609.

We can group the timestamps by month and see the total values per month of each type of commit object :

df['timestamp']=pd.to_datetime(df['timestamp'], format ='%Y-%m-%d %H:%M: %S').dt.to_period('M')

pivot1 = pd.pivot_table(df,index='timestamp',values=['added','deleted','modified'],aggfunc=np.sum)

pivot1 Out[52]:

added deleted modified timestamp 53 463 371 2015-07 53 125 158 2015-08 2015-09 31 2 144 550 116 246 2015-10 2015-11 369 61 267

We can see that October was the busiest month for 'additions', July was the busiest month for 'deleteions' and July was also teh busiest month for 'modifications.

We can view this as a stacked bar chart:

I then decided to creat pivots on each of 'added', 'modified' and 'deleted' per user showing the percentages by user.

 $pd.pivot_table(df,index='user',values=['added'],aggfunc=np.sum,margins=True).div(sum(df.added))\\.mul(100)$

Out[101]:

Cui, 101.	added
user	
/OU=Domain Control Validated/CN=svn.company.net	0.000000
Alan	0.852273
Dave	0.946970
Freddie	0.000000
Jimmy	65.340909
Nicky	0.000000
Thomas	8.238636
Vincent	24.621212
ajon0002	0.000000
murari.krishnan	0.000000
All	100.000000

This shows 65.3% of the total adds were done by Jimmy

pd.pivot_table(df,index='user',values=['modified'],aggfunc=np.sum,margins=True).div(sum(df.modified)).mul(100)

Out[105]:

	modified
user	
/OU=Domain Control Validated/CN=svn.company.net	2.023609
Alan	1.264755
Dave	5.564924
Freddie	0.758853
Jimmy	33.811130
Nicky	0.590219
Thomas	51.349073
Vincent	3.794266
ajon0002	0.758853
murari.krishnan	0.084317
All	100.000000

This shows 33.8% of the total 'modifications' were done by Jimmy

 $pd.pivot_table(df,index='user',values=['deleted'],aggfunc=np.sum,margins=True).div(sum(df.deleted')).mul(100)\\Out[107]:$

	deleted
user	
/OU=Domain Control Validated/CN=svn.company.net	0.000000
Alan	0.782269
Dave	0.000000
Freddie	0.000000
Jimmy	8.604954
Nicky	0.000000
Thomas	86.440678
Vincent	4.172099
ajon0002	0.000000
murari.krishnan	0.000000
All	100.000000

This shows 86.4% of the 'deletions' were done by Thomas

I then decided to see if I could see the variation in the activities with time.

We can see most of the 'additions' were done later in the year

```
In [137]: d = {'timestamp' :df['timestamp'], 'added':df['deleted']}
In [138]: df2 = pd.DataFrame(d)
In [139]: df.plot(x = 'timestamp', y = 'deleted')
Out[139]: <matplotlib.axes._subplots.AxesSubplot at 0x181be51c90>
    300
                                                   deleted
    250
    200
    150
    100
     50
2015.07.17
     2015.07.31
          2015.08.14
                2015.08.28
                          2015.09.25
                               2015:10.09
                                    2015-10-23
                                         2015:11.06
                                              2015.11.20
                     2015.09.11
                             timestamp
In [140]:
```

Most of the deletions appear to have been done ealier in the year.

The modifications appear to be more evenly spread over the timeframe, with peaks at either end.