Nachklausur Mathematische Methoden der Physik I Übungsserie

Dr. Agnes Sambale agnes.sambale@uni-jena.de

Wintersemester 17/18 Letzte Bearbeitung: 13. März 2018

Abgabe: Mittwoch, 17.8.17

Aufgabe 1

Variation der Konstanten

Lösen Sie die Differentialgleichung eines R-L-Schwingkreis

$$\frac{\mathrm{d}I}{\mathrm{d}t} + \frac{R}{L}I = \frac{U_0}{L}\sin(\omega t)$$

wobei R, L, U_0, ω Konstanten sind. Verwenden Sie dazu das Verfahren der Variation der Konstanten.

Aufgabe 2

Inhomogene Differentialgleichung 2. Ordnung

Bestimmen Sie die allgemeine Lösung der Differentialgleichung

$$y'' - 2y' - 3y = 64xe^{-x}$$

indem Sie für die Lösung der inhomogenen Gleichung einen speziellen Ansatz machen.

Aufgabe 3

Eulersche Differentialgleichung (unfertig)

Bestimmen Sie die Lösung der Differentialgleichung

$$x^2y'' - xy' + 2y = 0, \quad x > 0$$

in 3 Schritten:

(a) Zeigen Sie, dass die Substitution $x=e^t$ auf die tranformierte Gleichung mit konstanten Koeffizienten

$$\ddot{u} - 2\dot{u} + 2u = 0$$

führt.

- (b) Lösen Sie die transformierte Gleichung und substitutieren Sie anschließend zurück.
- (c) Bestimmen Sie diejenige Lösung, die mit den Anfangsbedingungen y(1) = 1 und y'(0) = 1 verträglich ist.

1

bitte wenden

Aufgabe 4

Wegintegrale berechnen

Berechnen Sie das Kurvenintegral

$$W = \int_C \vec{F} d\vec{r} = \int_C \left(\frac{x^2}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy \right)$$

wobei die Kurve C durch $C: x^2 + y^2 = 9$ (entgegen dem Uhrzeigersinn) gegeben ist.

Aufgabe 5

Wegintegrale berechnen

Gegeben sei das Vektorfeld $\vec{v}=(x+y)\vec{i}+z\vec{j}+3\vec{k}$. Berechnen Sie das Vektorfeld

$$W = \int_C \vec{F} \mathrm{d}\vec{r}$$

wobei die Kurve C die Schnittkurve der Flächen $z=1-x^2$ und $x^2+y^2=1$ ist.