GRC MEETING: 2016 - 2017

Comparative Genomics of Soil-adapted E. coli

Nick Waters

March 27, 2017

Department of Microbiology School of Natural Sciences National University of Ireland, Galway

Overview

Outline

- · Genome Assembly
- · Phylogenetics, MLST, and Collection Overview
- · Virulence
- · Plans

2

Genome Assembly

State of Available Bacterial Genomes

Table: Bacterial Genome Completion as of 4/1/17

Total	Complete genome	Chromosome	Contig	Scaffold
85799	6255	1143	38429	39972

State of Sequencing Data Availability

Table: Hits per Search Term in NCBI's SRA

Search term	hits	percentage
'illumina'	2242225	(94.27)
'pacbio'	21131	(0.89)
'ion'	30560	(1.28)
'roche'	42445	(1.78)
'oxford'	12301	(0.52)
'solid'	29791	(1.25)
Total	2378453	(100)

Improving Illumina Short Read Assembly

- 1. Within a taxonomic group, GC content is largely conserved.
- 2. Within a taxonomic group, genome size is largely conserved.
- 3. Bacterial genomes are dense.
- 4. Nucleotide order is not random.

7

Benchmarking riboSeed

- · Simulated Reads on a Simulated Genome
- · Simulated Reads on Real Genomes
- · Hybrid Assembly Validation
- · GAGE-B Dataset

Benchmarking: Simulated Genome

Benchmarking: Simulated Reads on Sakai

Table: riboSeed on simulated Sakai reads

Coverage	Ref. rDNAs	De novo(skip, miss)	De fere novo (skip, miss)
10	7	0 (7, 0)	3 (4, 0)
20	7	0 (7, 0)	6 (1, 0)
50	7	0 (7,0)	6 (1, 0)
100	7	0 (7,0)	6 (1, 0)

Benchmarking: Hybrid Assembly

Table: riboSeed on Pseudomonas aeruginosa strain BAMCPA07-48

Coverage	Re. rDNA	De novo (skip, miss)	De fere novo (skip, miss)
200	4	1(3, 0)	4(0, 0)

riboSeed: next steps

- · Finish benchmarking
- · Applicability to fungal and archaeal genomes
- · Improve Signal-to-noise ratio

Aggregating Metadata

Experimental Metadata

Problem: lack of single repository for the data related to the collection

- · Sample Isolation data
- · Phenotypic tests
- · Phylotyping

In silico Metadata

- · Library preparataion and sequencing QC
- · Average nucleotide identity
- · In silico Clermont PCR
- · MLST

Results and Implications

After eliminating isolates falling beneath the 95% ANI threshold and those with poor sequencing data, the collection consists of 153 isolates.

- · Prevents duplication of work
- · Aids automation
- · Allows investigation of meta-variables

Preliminary Virulence Profiling

Virulence

- · Search literature for genes implicated in virulence
- · Select representative sequences for 50 virulence factors
- · Use reciprocal translated blast to find occurrences
- · Filter results, visualize

<u>Vi</u>rulence

Virulence: Next Steps

- · Compare with recent tools (ARIBA, VirulenceFinder, etc)
- · Experimentally assess phenotypes as needed

Plans for 2017-2018

Future Work

riboSeed development:

- · Improve progressive QC to identify problems early
- Investigate characteristics of rDNAs that may be predictive of riboSeed success

Exploring the E. coli pangenome:

- · Attempt to isolate genomic trends indicative of soil-adaptation
- · Establish pangenomic context of the the collection
- · Correlate metadata with pangenome

Curli loss:

 Utilize phenotypic data from Y. Soronin and others to determine additional causes of curli loss

Acknowledgments

OÉ Gaillimh NUI Galway

NUIG Microbiology

- · Dr. Fiona Brennan
- · Dr. Florence Abram
- · Matthias Waibel
- · Stephen Nolan
- · Camilla Thorn

James Hutton Institute, Dundee

- · Dr. Leighton Pritchard
- · Dr. Ashleigh Holmes

