SUITES NUMÉRIQUES

I Les suites numériques

Définition n°1.

Une suite **numérique** est une application $u: \mathbb{N} \to \mathbb{R}$.

- Pour $n \in \mathbb{N}$, u(n) est souvent noté u_n et on l'appelle le **terme** d'indice n de la suite.
- La suite est notée u, ou plus souvent $(u_n)_{n\in\mathbb{N}}$ ou simplement (u_n) .
- Il arrive fréquemment que l'on considère des suites définies à partir d'un certain entier naturel n_0 plus grand que 0, on note alors $(u_n)_{n \ge n_0}$.

Exemple n°1.

La suite $(u_n)_{n \ge 1}$ définie par : Pour $n \ge 1$, u_n est le n^{ième} nombre premier . $u_1 = 2$, $u_2 = 3$, $u_3 = 5$, $u_4 = 7$, $u_5 = 11$...

Définition n°2. Suite définie de façon explicite

Une suite u est **définie de façon fonctionnelle ou explicite** lorsque u_n peut être calculé directement en fonction de n sans que l'on ait besoin de calculer tous les termes précédents.

Exemple n°2.

La suite $(v_n)_{n\geq 0}$ définie par : Pour $n\geq 0, \ v_n=n^2+\sqrt{n}-4$ $v_0=0^2+\sqrt{0}-4=-4$,..., on peut calculer directement v_{100} $v_{100}=100^2+\sqrt{100}-4=10000+10-4=10096$

Remarque n°1.

Attention, v_{100} n'est pas le $100^{\text{ième}}$ terme mais le $101^{\text{ième}}$ car le premier indice est zéro.

Définition n°3. Suite définie par récurrence

Une suite u est définie par récurrence lorsqu'on : dispose du terme initial et d'une formule permettant de passer d'un terme au suivant.

Exemple n°3.

La suite $(w_n)_{n\geq 0}$ définie par $\begin{cases} w_0 = 2 \\ w_{n+1} = 2 \times w_n + n \end{cases}$ $w_1 = 2 \times w_0 + 1 = 2 \times 2 + 1 = 5$ $w_2 = 2 \times w_1 + 2 = 2 \times 5 + 2 = 12$

Remarque n°2.

Si on veut calculer w_{100} alors il faut calculer w_{99} qui lui même nécessite w_{98} etc ...

Méthode n°1. Représentation graphique

Pour représenter graphiquement une suite u dans un repère, on place:

- les indices n sur l'axe des abscisses;
- les termes $u_n = u(n)$ sur l'axe des ordonnées ;
- les points de coordonnées $(n; u_n)$ dans le repère, sans les relier (nuage de points).

Définition n°4. Suite croissante, suite décroissante

• Une suite u est dite **croissante** lorsque les termes de la liste sont classés en ordre croissant : pour tout indice n :

$$u(n-1) \le u(n)$$
 ou bien $u(n) \le u(n+1)$.

• Une suite u est dite **décroissante** lorsque ses termes sont classés en ordre décroissant : pour tout indice n :

$$u(n-1) \ge u(n)$$
 ou bien $u(n) \ge u(n+1)$.

II Les suites arithmétiques

Définition n°5. Suite arithmétique

Une suite u est dite arithmétique si l'on passe d'un terme au suivant en ajoutant toujours la même valeur, appelée la raison de la suite.

Exemple n°4.

La suite
$$v$$
 de terme initial $v_0 = 5$ et de raison $r = -3$. $v_0 = 5$, $v_1 = v_0 + r = 5 + (-3) = 2$, $v_2 = v_1 + r = 2 + (-3) = -1$,...

Propriété n°1. Relation de récurrence

Si u est une suite arithmétique de raison r, de terme initial k dont l'indice est zéro , alors : pour $n \ge 0$, $u : \begin{cases} u_0 = k \\ u(n+1) = u(n) + r \end{cases}$ (si l'indice de départ , n'est pas zéro, on adapte ...)

Propriété n°2. Représentation graphique

- Si une suite est arithmétique, elle est représentée par un nuage de points alignés.
- Si une suite est représentée par un nuage de points alignés, elle est arithmétique.

Exemple n°5. géogébra

Propriété n°3. Sens de variation

Soit u une suite arithmétique de raison r:

- si r>0, la suite est croissante (et même strictement croissante);
- si r=0 , la suite est constante;
- si r < 0, la suite est décroissante (et même strictement décroissante).

III Les suites géométriques

Définition n°6. Suite géométrique

Une suite u est dite **géométrique** si l'on **passe d'un terme au suivant en multipliant toujours par la même valeur**, appelée la raison de la suite.

Exemple n°6.

La suite
$$v$$
 de terme initial $v_0 = 10$ et de raison $q = 0.5$. $v_0 = 10$, $v_1 = v_0 \times q = 10 \times 0.5 = 5$, $v_2 = v_1 \times q = 5 \times 0.5 = 2.5$,...

Propriété n°4. Relation de récurrence

Si u est une suite géométrique de raison q, de terme initial k dont l'indice est zéro, alors : pour $n \ge 0$, $u : \begin{cases} u_0 = k \\ u(n+1) = u(n) \times q \end{cases}$ (si l'indice de départ, n'est pas zéro, on adapte ...)

Propriété n°5. Représentation graphique

- Si une suite est géométrique, elle est représentée par un nuage de points exponentiel.
- Si une suite est représentée par un nuage de points exponentiel, elle est géométrique.

Propriété n°6. Sens de variation

Soit u une suite géométrique de raison q et de premier terme strictement positif :

- si q > 1, la suite est croissante (et même strictement croissante);
- si q=1, la suite est constante;
- si 0 < q < 1, la suite est décroissante (et même strictement décroissante).