

Week 9 - Sequence and Series

∷ Tags

Infinite Sequence	Ordered list of the form $\{a_n\}=a_1,a_2,a_3$
n	Index variable of the sequence
a_n	Term of the sequence
Explicit Formulae	$a_n=f(n)$
Recurrence Relation	Subsequent terms are defined in earlier terms of the sequence
Geometric Sequence	Ratio of every pair of consecutive terms is the same $a_n=cr^n$
Arithmetic Sequence	Difference between every pair of consecutive terms is the same $a_n = bn + c$
Increasing Sequence	Sequence is increasing if for all $n \geq n_0 \; a_n \leq a_{n+1}$ for all
Decreasing Sequence	Sequence is decreasing if for all $n \geq n_0 \ a_n \geq a_{n+1}$ for all
Monotone Sequence	Sequence is monotone if it is either increasing or decreasing for all $n \geq n_0$

Limits

If the terms a_n become arbitrarily close to a finite number L, as n becomes sufficiently large, $\{a_n\}$ is a convergent sequence, and L is the limit

$$\lim_{n o\infty}a_n=L$$

If it is not convergent, a_n is a divergent sequence

A sequence converges to a real number L if for all $\epsilon>0$ there exists an integer N such that $|a_n-L|<\epsilon$ if $n\geq N$.

$$\lim_{n \to \infty} a_n = L \ or \ a_n o L$$

Theorem 5.1: Limit of a Sequence Defined by a Function

Consider a sequence such that $a_n=f(n)$ for all $n\geq 1$, if a limit L exists

$$\lim_{x o \infty} f(x) = L$$

then a_n converges and

$$\lim_{n \to \infty} a_n = L$$

Theorem 5.2: Algebraic Laws

If $\lim_{n o \infty} a_n = A$ and $\lim_{n o \infty} b_n = B$

- 1. $\lim_{n \to \infty} c = c$
- 2. $\lim_{n \to \infty} c \cdot a_n = c \lim_{n \to \infty} a_n = c A$
- 3. $\lim_{n o\infty}(a_n\pm b_n)=\lim_{n o\infty}a_n\pm\lim_{n o\infty}b_n=A\pm B$
- 4. $\lim_{n o\infty}(a_n\cdot b_n)=(\lim_{n o\infty}a_n)(\lim_{n o\infty}b_n)=A\cdot B$
- 5. $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{A}{B}$ provided B
 eq 0 and each $b_n
 eq 0$

Proof:

Proving 3.

Let $\epsilon>0$

Since $\lim_{n o\infty}a_n=A$, there exists a positive N_1 such that for all $n\geq N_1$

Since $\lim_{n o\infty}b_n=B$, there exists a positive N_2 such that $|b_n-B|<rac{\epsilon}{2}$ for all $n\geq N_2$

Let N be the largest of N_1 and N_2 . Therefore $n \geq N$

$$|(a_n+b_n)-(A+B)|\leq |a_n-A|+|b_n-B|<rac{\epsilon}{2}+rac{\epsilon}{2}=\epsilon$$

Theorem 5.3: Continuous Functions Defined on Convergent Sequences

Suppose a_n converges to L

Suppose f is a continuous function at L.

Then there exists an integer N such that f is defined at all values a_n for $n \geq N$ and the sequence $f(a_n)$ converges to f(L)

Proof:

Let $\epsilon>0$

Since f is continuous at L, there exists $\delta>0$ such that $|f(x)-f(L)|<\epsilon$ if $|x-L|<\delta$

Since the sequence $\{a_n\}$ converges to L, there exists N such that $|a_n-L|<\delta$ for $n\geq N$

Therefore, for all $n\geq N$, $|a_n-L|<\delta$, which implies $|f(a_n)-f(L)|<\epsilon$ We conclude that $\{f(a_n)\}$ converges to f(L)

Theorem 5.4: Squeeze Theorem

Suppose there exists an integer N such that

$$a_n \leq b_n \leq c_n$$
 for all $n \geq N$

If there exists a real number L such that

$$\lim_{n o\infty}a_n=L=\lim_{n o\infty}c_n$$

Then b_n converges and $\lim_{n o \infty} b_n = L$

Proof:

Let $\epsilon > 0$

Since a_n converges to L, there exists an integer N_1 such that $|a_n-L|<\epsilon$ for all $n\geq N_1$

Since c_n converges to L, there exists an integer N_2 such that $|c_n - L| < \epsilon$ for all $n \geq N_2$

By assumption, there exists an integer N such that $a_n \leq b_n \leq c_n$ for all $n \geq N$ Let M be the largest of N_1 , N_2 and N

We must show that $|b_n - L| < \epsilon$ for all $n \ge M$:

$$-\epsilon < -|a_n - L| \le a_n - L \le b_n - L \le c_n - L \le |c_n - L| < \epsilon$$

Therefore, $-\epsilon < b_n - L < \epsilon$ Thus $|b_n - L| < \epsilon$ for all $n \geq M$ So, b_n converges to L

Bounded Sequences

Bounded above	a_n is bounded above if M exists such that $a_n \leq M$ for all positive integers n
Bounded Below	a_n is bounded below if M exists such that $a_n \geq M$ for all positive integers n
Bounded Sequence	a_n is bounded if it is bounded above ${f and}$ below
Unbounded Sequence	If it is not bounded, it is unbounded

Theorem 5.5: Convergent Sequences are bounded

If a_n converges, it is bounded

 a_n converges \rightarrow It is bounded

Theorem 5.6: Monotone Convergence Theorem

If a_n is bounded, and there exists a positive integer n_0 such that a_n is monotone for all $n \geq n_0$, then a_n converges

 a_n bounded \wedge a_n is monotone $\rightarrow a_n$ converges

Infinite Series

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + ...$$

The partial sum $S_k = \Sigma_{n=1}^\infty a_n = a_1 + a_2 + ... + a_k$

If the **sequence** of the partial sum converges, the infinite sum will as well

If a series converges to S, S is called the sum of the series

$$\sum_{n=1}^{\infty} a_n = S$$

If the **sequence** of a partial sum diverges, we have the divergence of a series

Theorem 5.7: Algebraic Properties of Convergent Series

Let $\Sigma_{n=1}^{\infty}a_n$ and $\Sigma_{n=1}^{\infty}b_n$ be convergent series

- 1. $\Sigma_{n=1}^\infty(a_n+b_n)$ converges and $\Sigma_{n=1}^\infty(a_n+b_n)=\Sigma_{n=1}^\infty a_n+\Sigma_{n=1}^\infty b_n$ Sum Rule
- 2. $\Sigma_{n=1}^\infty(a_n-b_n)$ converges and $\Sigma_{n=1}^\infty(a_n-b_n)=\Sigma_{n=1}^\infty a_n-\Sigma_{n=1}^\infty b_n$ Difference Rule
- 3. $\Sigma_{n=1}^\infty c \cdot a_n$ converges and $\Sigma_{n=1}^\infty c \cdot a_n = c \Sigma_{n=1}^\infty a_n$ Constant Multiple Rule

Geometric Series

$$\Sigma_{n=1}^{\infty}ar^{n-1}=a+ar+ar^2+...$$

If |r| < 1, the series converges, and $\Sigma_{n=1}^{\infty} a r^{n-1} = \dfrac{a}{1-r}$ for |r| < 1

If $|r| \geq 1$, the series diverges

Telescoping Series

Most terms cancel, leaving some of the first terms and some of the last terms

Theorem 5.8: Divergence Test

If $\lim_{n\to\infty}a_n=c
eq 0$ or $\lim_{n\to\infty}a_n$ does not exist, then the series $\Sigma_{n=1}^\infty a_n$ diverges

 $\lim_{n o\infty}a_n=c
eq 0$ V $\lim_{n o\infty}a_n$ does not exist $_{ o}$ $\Sigma_{n=1}^\infty a_n$ diverges

Theorem 5.9: Integral Test

Suppose $\Sigma_{n=1}^{\infty}a_n$ is a series with positive terms

Assume that

1. f is a continuous function

- 2. f is decreasing
- 3. $f(n)=a_n$ for all integers $n\geq N$

Then $\Sigma_{n=1}^{\infty}a_n$ and $\int_N^{\infty}f(x)dx$ both converge or diverge

p Series

For any real number, $\Sigma_{n=1}^{\infty}\frac{1}{n^p}$ is called a p series

p > 1	Converges
$p \leq 1$	Diverges

Theorem 5.10: Remainder Estimate from the Integral Test

If $\Sigma_{n=1}^{\infty}a_n$ is a convergent series with positive terms

Assume that

- 1. f is continuous
- 2. f is decreasing
- 3. $f(n) = a_n$ for all integers $n \geq 1$

Let S_N be the N^{th} partial sum of $\Sigma_{n=1}^\infty a_n$ for all positive integers N

$$S_N + \int_{N+1}^\infty f(x) dx < \Sigma_{n=1}^\infty a_n < S_N + \int_N^\infty f(x) dx$$

If we let the remainder $R_N = \Sigma_{n=1}^\infty a_n - S_N = \Sigma_{n=N+1}^\infty a_n$ then

$$\int_{N+1}^{\infty} f(x) dx < R_N < \int_{N}^{\infty} f(x) dx$$

Theorem 5.11: Comparison Test

- 1. Suppose N exists such that $0 \le a_n \le b_n$ for all $n \ge N$. If $\Sigma_{n=1}^\infty b_n$ converges then $\Sigma_{n=1}^\infty b_n$ converges
- 2. Suppose N exists such that $a_n\geq b_n\geq 0$ for all $n\geq N$. If $\Sigma_{n=1}^\infty b_n$ diverges, then $\Sigma_{n=1}^\infty a_n$ diverges

Proof:

Let S_k be the sequence of partial sums of $\sum_{n=1}^\infty a_n$

Let
$$L = \sum_{n=1}^{\infty} b_n$$

Since $a_n \geq 0$, the partial sums of a_n are increasing

Since $a_n \leq b_n$ for all $n \geq N$:

$$\sum_{n=N}^{\infty} a_n \le \sum_{n=N}^{\infty} b_n \le \sum_{n=1}^{\infty} b_n = L$$

Hence for all $k \geq 1$

$$S_k = (a_1 + a_2 + ... + a_{N-1}) + \sum_{n=N}^{\infty} a_n \le (a_1 + a_2 + ... a_{N-1}) + L$$

Since $a_1+a_2+\ldots+a_{N-1}$ is a finite number, S_k is bounded above

Therefore, S_k is an increasing sequence that is bounded above

By the Monotone Convergence Theorem, S_k convergences, and thus $\sum_{n=1}^\infty a_n$ converges

The proof of 2. is the contrapositive of this.

Theorem 5.12: Limit Comparison Test

Let $a_n,b_n\geq 0$ for all $n\geq 1$

1. If
$$\lim_{n o\infty} rac{a_n}{b_n}=L
eq 0$$
 then $\sum_{n=1}^\infty a_n$ and $\sum_{n=1}^\infty b_n$ both converge or diverge

2. If
$$\lim_{n o\infty}rac{a_n}{b_n}=0$$
 and $\sum_{n=1}^\infty b_n$ converges, then $\sum_{n=1}^\infty a_n$ converges

3. If
$$\lim_{n o\infty}rac{a_n}{b_n}=\infty$$
 and $\sum_{n=1}^\infty b_n$ diverges, then $\sum_{n=1}^\infty a_n$ diverges

Alternating Series

Series whose terms alternate sign

$$\Sigma_{n=1}^{\infty}(-1)^{n+1}b_n=b_1+b_2+b_3+...$$

Alternating Series Test

Alternating series converges if:

1.
$$0 \leq b_{n+1} \leq b_n$$
 for all $n \geq 1$

$$2. \lim_{n\to\infty} b_n = 0$$

Proof:

Consider the odd terms S_{2k+1} for $\sum_{n=1}^{\infty} (-1)^n b_n$ when $k \geq 0$

$$S_{2k+1} = S_{2k-1} - rac{1}{2k} + rac{1}{2k+1} < S_{2k-1}$$

Therefore, S_{2k+1} is a decreasing sequence

Also,
$$S_{2k+1}=\left(1-rac{1}{2}
ight)+\left(rac{1}{3}-rac{1}{4}
ight)+...+\left(rac{1}{2k-1}-rac{1}{2k}
ight)+rac{1}{2k+1}>0$$

Therefore, S_{2k+1} is bounded below

Therefore, according to the Monotone Convergence Theorem, S_{2k+1} converges Similarly, the even terms are bounded above because

$$egin{align} S_{2k} &= S_{2k-2} + rac{1}{2k-1} - rac{1}{2k} > S_{2k-2} \ S_{2k} &= 1 + (-rac{1}{2} + rac{1}{3}) + ... + (-rac{1}{2k-2} + rac{1}{2k-1}) - rac{1}{2k} < 1 \ \end{array}$$

Hence, by the Monotone Convergence Theorem, S_{2k} also converges

Since

$$S_{2k+1} = S_{2k} + rac{1}{2k+1}$$

$$\lim_{k o\infty} S_{2k+1} = \lim_{k o\infty} S_{2k} + \lim_{k o\infty} rac{1}{2k+1}$$

Let
$$S=\lim_{k o \infty} S_{2k+1}$$

$$\lim_{k o\infty}S_{2k}=S$$
 , since $\lim_{k o\infty}rac{1}{2k+1}=0$

The odd and even terms both converge to S, so the sequence of partial sums converges to S, thus the alternating series converges to S

Theorem 5.14: Remainders in Alternating Series

Let S denote the sum of the series, and S_N the N^{th} partial sum

The remainder $R_N = S - S_N$ satisfies

$$|R_N| \leq b_{N+1}$$

Absolute Convergence

Absolute Convergence	$\sum_{n=1}^{\infty} a_n $ converges
Conditional Convergence	$\sum_{n=1}^{\infty} a_n$ converges, but $\sum_{n=1}^{\infty} a_n $ diverges

Theorem 5.15: Absolute Convergence Implies Convergence

If
$$\sum_{n=1}^{\infty}|a_n|$$
 converges $\sum_{n=1}^{\infty}a_n$ converges $\sum_{n=1}^{\infty}|a_n|$ converges $\rightarrow \sum_{n=1}^{\infty}a_n$ converges

Proof:

Assume $\sum_{n=1}^{\infty} |a_n|$ converges

$$a_n = |a_n|$$
 or $a_n = -|a_n|$

Therefore, $|a_n|+a_n=2|a_n|$ or $|a_n|+a_n=0$

$$2\sum_{n=1}^{\infty}|a_n|$$
 converges

By using the comparison test, $\sum_{n=1}^{\infty}(|a_n|+a_n)$ also converges

By using algebraic properties:

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (|a_n| + a_n) - \sum_{n=1}^{\infty} |a_n|$$

will also thus converge

Theorem 5.16: Ratio Test

Let
$$ho = \lim_{n o \infty} |rac{a_{n+1}}{a_n}|$$

- 1. If $0 \leq
 ho < 1$, then $\sum_{n=1}^{\infty} a_n$ converges absolutely
- 2. If ho>1 or $ho=\infty$, then $\sum_{n=1}^\infty a_n$ diverges
- 3. If ho=1, the test does not provide any information

Theorem 5.17: Root Test

Let
$$ho = \lim_{n o \infty} \sqrt[n]{|a_n|}$$

1. If $0 \le \rho < 1$, then $\sum_{n=1}^{\infty} a_n$ converges absolutely

2. If
$$ho>1$$
 or $ho=\infty$, then $\sum_{n=1}^\infty a_n$ diverges

3. If ho=1, the test does not provide any information

Choosing a Convergence Test

p series	Check the power p
Geometric	Check the ratio r , to see if it converges
Alternating	Alternating series test
Similar to p series or geometric	Try comparison or limit comparison test
$a_n=b_n^n$	Root Test
Other powers	Ratio Test
Factorials	Ratio Test
Other scenarios	Divergence Test or Integral Test