

Propriedades e métodos em grafos aleatórios

Uma exploração

Isabella B

Definição

Seja Ω um conjunto finito e $\mathbb{P}\colon \overline{\Omega \to [0,1]}$ tq. $\sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1$. Defina $\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\omega)$.

Definição

Seja Ω um conjunto finito e $\mathbb{P}\colon \Omega \to [0,1]$ tq. $\sum_{\omega \in \Omega} \mathbb{P}(\omega) = 1$. Defina $\mathbb{P}(A) = \sum_{\omega \in A} \mathbb{P}(\omega)$.

Propriedades

1. (complementar)

2. (monotonicidade)

3. (inclusão-exclusão)

4. (cota da união)

3. (inclusão-exclusão)

4. (cota da união)

Independência

Intro - "grafos" aleatórios

Modelo de Erdős-Rényi

Dados $n \in \mathbb{N}$ e $p \in [0,1]$, defina G(n,p) como o grafo aleatório com n vértices obtido sorteando arestas $\{u,v\}$ independentemente, com probabilidade p, onde $u,v \in [n]$.

Intro - "grafos" aleatórios

Modelo de Erdős-Rényi

$$\begin{split} V\left(G(n,p)\right) &= [n]\\ \mathbb{P}\left(e \in E\left(G(n,p)\right)\right) &= p, \quad \forall e \in E\left(K_n\right) \text{ independentemente.} \end{split}$$

Intro - "grafos" aleatórios

Modelo de Erdős-Rényi

$$V\left(G(n,p)\right)=[n]$$

$$\mathbb{P}\left(e\in E\left(G(n,p)\right)\right)=p,\quad\forall e\in E\left(K_{n}\right)\text{ independentemente}.$$

Note que:

Intro - número de independência

Definição - subgrafo

Um grafo H é subgrafo de G se $V(H)\subseteq V(G)$ e $E(H)\subseteq E(G)$. Dizemos também que G contém H e escrevemos $H\subset G$ para denotar essa relação.

Intro - número de independência

Definição - subgrafo

Um grafo H é subgrafo de G se $V(H)\subseteq V(G)$ e $E(H)\subseteq E(G)$. Dizemos também que G contém H e escrevemos $H\subset G$ para denotar essa relação.

Definição - subgrafo induzido

Dado $X\subseteq V(G)$, o subgrafo de G induzido por X (denotado G[X]) é o subgrafo $H\subset G$, onde V(H)=X e $E(H)=\{uv\in E(G)\colon u,v\in X\}.$

Intro - número de independência

Teorema

Se $p = p(n) \gg 1/\log n$, então

$$\alpha\left(G(n,p)\right) \leqslant \frac{2\log n}{p},$$

com alta probabilidade.

Teorema

Se $p = p(n) \gg 1/\log n$, então

$$\alpha\left(G(n,p)\right) \leqslant \frac{2\log n}{p},$$

com alta probabilidade.

Demonstração:

Dados $n \in \mathbb{n}$ e $p \in [0,1]$. Analisamos $e \in E\left(G(n,p)\right)$:

$$\begin{split} \mathbb{P}\left(e \in E\left(G(n,p)\right)\right) &= p \\ \Longrightarrow \mathbb{P}\left(e \notin E\left(G(n,p)\right)\right) &= (1-p) \end{split}$$

Aproximações

$$\left(\frac{n}{k}\right)^k \leqslant \binom{n}{k} \leqslant \left(\frac{\mathrm{e}n}{k}\right)^k \qquad (1-p) \leqslant \mathrm{e}^{-p}$$

Intro - número cromático

Definição

$$\chi(G) = \min \left\{r \colon \exists c : v(G) \longrightarrow \{1,...,r\} \right.$$

$$\mathsf{tq.} \ c(u) \neq c(v) \forall \{u,v\} \in E(G)\}$$

Propriedade - cota do número cromático

Corolário

Se $p = p(n) \gg 1/\log n$, então

$$\chi\left(G(n,p)\right)\geqslant rac{pn}{2\log n}$$

com alta probabilidade.

Propriedade - cota do número cromático

Lema

Seja G um grafo com n vértices, então

$$\chi(G) \geqslant \frac{n}{\alpha(G)}.$$

Propriedade - cota do número cromático

Corolário

Se $p=p(n)\gg 1/\log n$, então

$$\chi\left(G(n,p)\right)\geqslant \frac{pn}{2\log n}$$

com alta probabilidade.

Estrutura - triângulos em G(n,p)

Pergunta

Variável aleatória

- Definição: Dado um espaço de probabilidade (Ω,\mathbb{R}) , X é uma função real $X\colon\Omega\to\mathbb{R}$.
- Notação: Dado um número $x \in \mathbb{R}$, denotamos por $\{X \geqslant x\}$ o evento $\{\omega \in \Omega \colon X(\omega) \geqslant x\}$ e por $\mathbb{P}(X \geqslant x)$ sua probabilidade.

Esperança

• Definição:

$$\mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\omega) \stackrel{X \geqslant 0}{=} \sum_{k=0}^{\infty} k \cdot \mathbb{P}(X = k).$$

Note que:

$$\mathbb{E}\left[aX + bY\right] = a\mathbb{E}[X] + b\mathbb{E}[Y].$$

Variância

$$\mathrm{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$

Variância

$$\mathrm{Var}(X) = \mathbb{E}\left[(X - \mathbb{E}[X])^2\right]$$

Identidade

Definição - variável indicadora

Dado um evento A, definimos a variável indicadora como a variável aleatória $\mathbb{1}_A$ tal que, para cada $\omega \in \Omega$, temos

$$\mathbb{1}_A(\omega) = \begin{cases} 1, & \text{se } \omega \in A \\ 0, & \text{case contrário.} \end{cases}$$

Note que:

$$\mathbb{E}[\mathbb{1}_A] = \mathbb{P}(A)$$

Dados X uma variável aleatória não negativa e um número $\lambda>0.$

Desigualdade de Markov

$$\mathbb{P}(X \geqslant \lambda) \leqslant \frac{E[X]}{\lambda}$$

Dados X uma variável aleatória não negativa e um número $\lambda>0.$

Desigualdade de Chebyschev

$$\mathbb{P}\left(|X - \mathbb{E}[X]| \geqslant \lambda\right) \leqslant \frac{\mathrm{Var}(X)}{\lambda^2}$$

Estrutura - triângulos em G(n, p)

Teorema

Se $p \ll 1/n$, então

$$\mathbb{P}\left(K_3\subset G(n,p)\right)\to 0$$

quando $n \to \infty$.

Estrutura - triângulos em G(n,p)

Estrutura - triângulos em G(n, p)

Teorema

Se $p\gg 1/n$, então

$$\mathbb{P}\left(K_3\subset G(n,p)\right)\to 1$$

quando $n \to \infty$.

Estrutura - triângulos em G(n,p)

Estrutura - triângulos em G(n,p)

Estrutura - K_r em G(n,p)

Estrutura - K_r em G(n,p)

Estrutura - K_r em G(n,p)