

Belege der Evolution

Caroline, Constantin, Laura & Theresa

Inhalt

- 1) Anatomie & Homologie
- 2) Fossilien & Paläontologie
- 3) Biogeografische Regionen
- 4) Entwicklungsbiologie
- 5) Molekularbiologie

Homologie & Analogie

Morphologie & Anatomie

Morphologie: Lehre der äußeren Gestalt, der Organismen und ihrer Teile

<u>Anatomie:</u> Lehre vom inneren Bau der Organismen

Homologie & Analogie

Homologie: Merkmale, die Arten von einem gemeinsamen Vorfahren geerbt haben

Analogie: Merkmale, die auf eine über viele Generationen erfolgte Anpassung an **ähnliche Lebensbedingungen** zurückzuführen sind

Homologiekriterien

- 1)Kriterium der Lage: Strukturen kommen in vergleichbaren Gefügesystem vor
- 2)Kriterium der spezifischen Qualität: Strukturen stimmen in vielen Einzelmerkmalen überein
- 3)Kriterium der Stetigkeit: die Strukturen lassen sich durch Zwischenformen miteinander verbinden

Analogie

Unterschiedlicher Grundbauplan, jedoch ähnliche Funktionen der Merkmale

Rudimente

Reste von Organen und Strukturen, die sich im Laufe der Evolution zurückgebildet haben

Paläontologie

Fossilien

 Erhalten gebliebene Reste oder Spuren von ausgestorbenen Lebewesen

Paläontologen erforschen Fossilien

Stratigrafie

- Hypothese: weiter oben liegende Gesteinsschichten sind jünger als solche, die tiefer liegen
- Dies ermöglicht eine relative Altersbestimmung des Gesteins und der darin eingeschlossenen Fossilien

Belege für die Evolution

- Fossilien treten in systematischer Reihenfolge auf: komplexere Arten später als weniger komplexe
- Leitfossilien helfen bei Altersbestimmung verschiedener Sedimentschichten

Biogeografie

Plattentektonik

 Das Auftreten ähnlicher Arten auf unterschiedlichen Kontinenten lässt sich durch die Verschiebung der Erdplatten erklären

So waren Südamerika und Afrika bis vor 135 Mio. Jahren über eine Landbrücke verbunden

Biogeografische Regionen

Manchmal treten bei geografisch nah beieinander gelegenen Regionen trotzdem große Unterschiede in Flora und Fauna auf

=> Plattentektonik: die Regionen waren früher weiter voneinander entfernt, die Arten konnten nicht zwischen ihnen wandern

Entwicklungbiologie

"Reste"

Bei vielen Lebewesen treten in der Entwicklung vorübergehend Merkmale auf, die Reste ihrer evolutionären Vergangenheit sein könnten

=> z. Bsp. Zähne bei Walen

Belege für die Evolution

- Hypothese: diese Entwicklungen im frühen Lebensstadium zeigten, dass Evolution eher auf der neuartigen Nutzung bereits vorhandener Gene als auf dem Erwerb von neuen Genen beruhe
- Hypothese entwickelte sich parallel zur Sequenzierung des Genoms

Molekularbiologie

Molekulare Homologie

- Viele chemische Grundprozesse fast aller Lebewesen laufen beinahe identisch ab; fast alle Lebewesen bestehen aus den gleichen chemischen Stoffklassen
- Stärkste Stütze einer Verwandschaft aller Lebewesen: Universalhomologie des genetischen Codes

Analyse der DNA

- DNA-DNA-Hybridisierung: ähnlichere Doppelstränge haften stärker aneinander und halten deswegen höhere Temperaturen aus ohne sich zu trennen
- DNA-Sequenzanalyse: direkter Vergleich der Basensequenzen verschiedener Arten

Analyse der DNA 2

DNA-DNA-Hybridisierung	DNA-Sequenzanalyse
Direkter Vergleich zweier DNA- Stränge auf Ähnlichkeit mit einem dritten	Auslesen der Basensequenz eines einzelnen DNA-Stranges; Vergleich erfolgt später
Relativ einfaches Verfahren	Kompliziertes Verfahren
Relativ ungenaue Ergebnisse (Ähnlichkeit in %)	Extrem genaue Ergebnisse (genaue Basensequenz

Belege für die Evolution

- Vergleiche der mitochondrialen DNA (mDNA) zeigen Abstammung, Migration und Vermischung
- Die hohe, konstante Mutationsrate der mDNA ist ein guter Indikator um Arten nach ihrem Verwandschaftsgrad sehr genau zu klassifizieren