الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطنى للامتحانات والمسابقات

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

اختبار في مادة: علوم الطبيعة والحياة المدة: 04 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

يحتوي الموضوع الأول على (04) صفحات (من الصفحة 1 من 8 إلى الصفحة 4 من 8)

التمرين الأول: (05 نقاط)

يمر تركيب البروتينات بآليات محددة ومنظمة، لإبراز ذلك نقترح الدراسة التالية: تمثل الوثيقة التالية مراحل تركيب البروتين عند خلية حقيقية النواة.

- 1) اكتب البيانات الموافقة للأرقام وسمّ المرحلتين (أ) و (ب).
- 2) حدّد في جدول العناصر الضرورية لحدوث كل من المرحلة (أ) والمرحلة (ب) و دور كل عنصر.
- 3) احسب عدد الوحدات البنائية في العنصر 6 الوظيفي إذا كان عدد النيكليوتيدات في العنصر 3 يساوي 327.
 - 4) بيّن في نص علمي كيف يتحكم العنصر 7 في تحديد البنية الفراغية للعنصر 6.

التمرين الثاني: (07 نقاط)

تستجيب العضوية بإنتاج عناصر دفاعية إثر دخول أجسام غريبة فتعمل على إقصائها، للتعرّف على بعض مظاهر ومراحل الرّد المناعي نستعرض الدراسة التالية:

1-أ) تعرّف على الخلية a والخلية d.

I- تمثل الوثيقة 1 بعض مظاهر الرّد المناعي.

ب) حدّد المرحلة الممثلة في الوثيقة 1
ونوع الاستجابة المناعية المعنية.

2-أ) أنجز رسما تخطيطيا تفسيريا للشكل(1).

ب) اشرح الظاهرة الممثلة بالشكل(2).

الوثيقة 1

II - قصد تحديد العلاقة بين الخلايا المناعية، تؤخذ خلايا لمفاوية من طحال فأر وتُحقِّق التجارب المبينة في جدول الوثيقة 2.

5	4	3	2	1	أوساط زرع جيلاتينية			
خلايا سرطانية للفأر	خلايا سرطانية للفأر	جزیئات مستضد x	جزیئات مستضد x	جزیئات مستضد x	العنصر المثبت على الوسط الجيلاتيني	المرحلة		
LT8	LT8	LB	LB	LB	اللمفاويات المضافة			
% 0.01	% 0.01	% 0.01	% 0.01	% 0.01	نسبة اللمفاويات المثبتة في الوسط الجيلاتيني بعد الغسل	المرحلة 2		
LT4 محسسة ضد الخلايا السرطانية	K	LT8	LT4 محسسة ضد X	ż	إضافة لمفاويات أخرى	المرحلة		
انحلال الخلايا السرطانية	عدم انحلال الخلايا السرطانية	غياب الأجسام المضادة	وجود أجسام مضادة	غياب الأجسام المضادة	النتيجة			

الوثيقة 2

- 1-1) قدّم تحليلا مقارنا للنتائج التجريبية للأوساط (1، 2 و 8) والوسطين (4 و 8)، استنتج العلاقة بين الخلايا اللمفاوية المستعملة.
 - ب) علّل نسبة اللمفاويات المثبتة بعد غسل الوسط الجيلاتيني في المرحلة 2.
 - ج) تُعاد تجربة وسط الزرع 2 مع إضافة LT8 عوض LB، توقّع نسبة اللمفاويات المثبتة بعد غسل الوسط الجيلاتيني، برّر إجابتك.
 - 2) لخّص في نص علمي مراحل الرّد المناعي مبرزا دور LT4.

التمرين الثالث: (08 نقاط)

تعتبر النباتات الخضراء مقرا لظاهرة حيوية تسمح بتحويل الطاقة الضوئية إلى طاقة كيميائية كامنة في جزيئات المادة العضوية وفق سلسلة من التفاعلات الحيوية الخلوية.

I- بهدف معرفة مراحل هذه الظاهرة وشروطها نجري التجارب التالية:

1) الشكل (1) من الوثيقة 1 يمثّل التركيب التجريبي والنتائج المحصل عليها باستعمال معلق لصانعات خضراء.

الوثيقة 1

- أ) استخرج المعلومات التي تقدمها نتائج تجربة الشكل(1) من الوثيقة 1.
 - ب) سمّ الظاهرة المدروسة في الشكل (1) من الوثيقة 1.
 - ج) اكتب المعادلة الإجمالية التي تعبر عن الظاهرة المدروسة.
- 2) الشكل(2) من الوثيقة 1 يمثل نتائج تجريبية لدراسة على أشنة خضراء (الكلوريلا) في وسط مناسب غني
- ب ${\sf CO}_2$ وفي درجة حرارة ثابتة مع تعريضه لفترة إضاءة قوية ثم نقله إلى الظلام مع قياس كمية ${\sf CO}_2$ المثبتة.
 - حلّل المنحنى وماذا تستنتج؟

II- لتحديد بعض تفاعلات ونتائج مراحل الظاهرة السابقة نستعرض التجربتين التاليتين:

التجربة 1: يُعَرِّضُ معلق من الصانعات الخضراء في درجة حرارة 25° لشدّة إضاءة مختلفة، يتم إيقاف التفاعلات الحيوية بعد كل ثلاث دقائق ويقاس تركيز كل من الـADP ، الـADP ، المركب R مؤكسَدا (مستقبل الكترونات) وتركيز غاز الـ 0_2 . النتائج موضحة في الشكل (1) من الوثيقة 2.

التجربة 2: عُرضت صانعات معزولة لشدة إضاءة مثلى ولمدة كافية في وجود CO_2 ثم تمّت تجزئتها. زُوّدت الحشوة بـ CO_2 ذي الكربون المشع، الشروط التجريبية والنتائج ممثلة بالشكل (2) من الوثيقة 2.

[-۱] فسّر النتائج التجريبيه الممتله بالشكل (1) من الوتيفه 2 مع إبراز نواتج المرحله المعنيه. ب) لخّص بمعادلات كيميائية مختلف التفاعلات التي تسمح بتشكيل نواتج هذه المرحلة.

2- باستغلال نتائج التجربة 2 استنتج المرحلة المعنية من الظاهرة المدروسة؛ مقرها وشروط حدوثها.

III من خلال نتائج الدراسة السابقة ومعلوماتك المكتسبة أنجز رسما تخطيطيا وظيفيا تبرز فيه العلاقة بين مراحل الظاهرة المعنية في هذه الدراسة.

الموضوع الثانى

يحتوي الموضوع الثاني على (04) صفحات (من الصفحة 5 من 8 إلى الصفحة 8 من 8) التمرين الأول: (05 نقاط)

تحتاج الخلية الحية إلى إمداد مستمر من المادة والطاقة لأداء مختلف وظائفها والمحافظة على حيويتها. لدراسة تحولات المادة والطاقة في الخلية نقترح الوثيقة التالية:

- 1) سمّ العضيتين (س، ص)، صنف الخليتين (أ) و (ب) حسب نمط التغذية.
- 2) مستغلا الوثيقة استخرج ما يحدث في الخلية (أ) وعلاقته بما يحدث في الخلية (ب) من حيث التحولات الطاقوية مدعّما إجابتك بمعادلات كيميائية إجمالية.
- 3) تستعمل الخلايا الحية جزيئات الـ ATP للقيام بوظائفها المختلفة، من خلال ما تقدم ومعلوماتك اكتب نصا علميا توضّح فيه ترافق تحولات المادة والطاقة عند الخلية (ب) مبرزا أهم النشاطات التي تُستهلك فيها الطاقة.

التمرين الثاني: (07 نقاط)

تلعب البروتينات أدوارا مختلفة نتيجة تخصصها الوظيفي.

لإبراز دور بعض البروتينات في الاتصال العصبي نقترح الدراسة التالية:

الشكل (1) من الوثيقة 1 يبيّن تركيب تجريبي، أمّا الشكل (2) من نفس الوثيقة فيبيّن التسجيل (أ) منه ما تم الحصول عليه بواسطة الجهاز τ والتسجيل (ب) ما تم الحصول عليه بواسطة الجهاز τ والتسجيل (ب) ما تم الحصول عليه بواسطة الجهاز τ

- 1-أ) سمّ التسجيلين (أ)، (ب).
- ب) حلَّل التسجيلين (أ)، (ب) واستنتج العلاقة بينهما.
- 2) باستعمال نفس التركيب التجريبي السابق وإثر تنبيه فعّال تمّ حساب عدد القنوات المفتوحة في الموضع (م) وفي أزمنة مختلفة، النتائج المحصل عليها ممثلة في جدول الوثيقة 2.

الزمن بالميلي ثانية										الوثيقة 2			
5	4.5	4	3.5	3	2.5	2	1.5	1	0.5	0			
0	0	0	0	0	2	5	25	40	5	0	قنوات النمط 1	عدد القنوات المفتوحة في	
0	1	2	8	12	18	20	15	5	0	0	قنوات النمط 2	الميكرو متر مربع	

- أ) ترجم نتائج الجدول إلى منحنيين على نفس المعلم.
- ب) أوجد العلاقة بين المنحنيين والتسجيلين (أ) و (ب) من الوثيقة 1.
- ج) حدّد نمطي القنوات المقصودة في هذه الدراسة ومصدر كل تيار.

II-عند وضع الجهاز ج 2 على قطعة من الجزء المكبّر من الشكل (1) الوثيقة 1 وإحداث عدة تنبيهات متزايدة الشدة في الموضع (ه) أو حقن كميات متزايدة من الأستيل كولين في الشق المشبكي.

- 1) مثّل بالرسم النتيجة الممكن الحصول عليها، مبررا إجابتك.
- 2) وضّح دور البروتينات المدروسة في نقل المعلومة العصبية عند إحداث تنبيه فعّال على مستوى الخلية قبل المشبكية.

التمرين الثالث: (08 نقاط)

تقوم البروتينات ومنها الإنزيمات بأدوار مهمة في حياة الخلية، يرتبط نشاطها بالمعلومات الوراثية في المورثات المشفرة لها. نبحث في هذه الدراسة العلاقة بين نشاط الإنزيم والمورثة المسؤولة عنه.

I عند بعض الأشخاص حساسية مفرطة للأشعة فوق البنفسجية (UV) التي توجد ضمن أشعة الشمس، حيث تظهر على جلودهم بقع سوداء قد تتطور إلى سرطان جلدي ويعرف هذا المرض بجفاف الجلد :Xéroderma pigmentosum لغرض التعرّف على سبب هذا المرض الوراثي الخطير والنادر، نقدم المعطيات التالية:

نص الوثيقة 1: يمثّل معطيات عامة حول هذه الإصابة، أمّا جدول نفس الوثيقة فيمثل جزء من تتالي النيكليوتيدات في السلسلة غير الناسخة والجزء الموافق لها من تتالي الأحماض الأمينية لدى شخص سليم وآخر مريض.

النص:

أثناء تضاعف الـ ADN اللازم لانقسام خلايا العضوية، قد تطرأ بعض الأخطاء وذلك باستبدال أو حذف أو تعويض نيكليوتيدة بأخرى أو تشكُّل روابط غير مرغوبة بين بعض النيكليوتيدات فيما بينها. غير أنه يوجد في نواة الخلية إنزيمات تصحح هذه الأخطاء،

ومن بينها إنزيم XPA الذي

يتشكل من 215 حمض أميني.

	71	72	73	74	75	76	77	78	7 9	80	81	82	83	84	85	86
شخص سليم																
ADN	AGG	GAT	GCT	GAT	AAA	CAC	AAG	CTT	ATA	ACC	AAA	ACA	GAG	GCA	AAA	CAA
بروتين XPA	ARG	ASP	ALA	ASP	LYS	HIS	LYS	LEU	ILE	THR	LYS	THR	GLU	ALA	LYS	GLn
شخص مريض																
ADN	AGG	ATG	CTG	ATG	ATA	AAC	ACA	AGC	TTA	TAA	CCA	AAA	CAG	AGG	CAA	AAC
برونتين XPA	ARG	MET	LEU	MET	ILE	ASN	THR	SER	LEU							

الجدول

الوثيقة 1

- 1) تعرَّف على البرنامج الذي قُدّم به جدول الوثيقة 1. حدّد الغرض من استعماله.
- 2) أعط تتالى نكليوتيدات الـ ARNm عند الشخصين وأنجز جدولا للشفرة الوراثية انطلاقا من معطيات الوثيقة 1.

II - لغرض معرفة سبب ظهور الإصابة بمرض جفاف الجلد نقدّم التجرية التالية:

نعرّض خلايا جلدية من شخص سليم وأخرى من شخص مريض بجفاف الجلد للأشعة فوق البنفسجية (UV) التي تتسبب في ظهور ثنائيات التايمين (Thymine) المتجاورة في نفس سلسلة الـ ADN.

في الزمن ز $_0$ نوقف تعريض هذه الخلايا للأشعة (UV)، النتائج المحصل عليها مبيَّنة في الشكل (أ) من الوثيقة 2 بينما الشكل (ب) من نفس الوثيقة فيوضح آلية عمل إنزيم XPA.

الوثيقة 2

- 1-أ) حلّل نتائج الشكل(أ) من الوثيقة 2.
- ب) استخرج من الشكل (ب) آلية عمل إنزيم XPA.
- ج) اقترح فرضية حول علاقة نشاط الانزيم بالمرض.
- 2) تحقّق من الفرضية بتفسير النتائج المحصّل عليها في الشكل (أ) اعتمادا على معطيات الشكل (ب).

III- انطلاقا من المعطيات المقدمة في II، I ومعلوماتك، بيّن في نص علمي العلاقة بين المورثة وإنزيم XPA ومرض جفاف الجلد، مع اقتراح حلول لحماية الأشخاص المصابين بهذا المرض.