Fiche d'exercices nº VI.1 Nombres complexes Module et argument

△ Exercice 1.

Le plan est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$. Les points A et B ont pour affixes respectives $z_A = \sqrt{6} + i\sqrt{2}$ et $z_B = \sqrt{5} + i\sqrt{15}$.

- 1°) Démontrer que $\sqrt{8} = 2\sqrt{2}$ puis déterminer un argument de z_A .
- **2°)** Démontrer que $\sqrt{20} = 2\sqrt{5}$ puis déterminer un argument de z_B .
- 3°) En déduire une mesure de l'angle $(\overrightarrow{OA}; \overrightarrow{OB})$.
- **4°)** Calculer arg $\left(\frac{z_{\rm B}}{z_{\rm A}}\right)$.

*

△ Exercice 2.

Le plan est muni d'un repère orthonormé direct (O ; $\overrightarrow{u}, \overrightarrow{\nu}$).

1°) Déterminer et représenter l'ensemble (E_1) des points M d'affixe z tels que :

$$|z - 2i| = 1.$$

2°) Déterminer et représenter l'ensemble (E₂) des points M d'affixe z tels que :

$$|z-2i| = |z+4-i|$$
.

3°) Déterminer et représenter l'ensemble (E_3) des points M d'affixe z tels que :

$$|2z - 8 + 2i| = 8.$$

4°) Déterminer et représenter l'ensemble (E₄) des points M d'affixe z tels que :

$$|z-3+i| = |z+4-2i|$$
.

*

△ Exercice 3.

Le plan est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

On considère les points A, B et C définis par leurs affixes réspectives :

$$z_A = -2$$
 ; $z_B = 1 + i\sqrt{3}$ et $z_C = 1 - i\sqrt{3}$.

- **1°)** Montrer que le triangle ABC est équilatéral.
- **2°)** Calculer les longueurs OA, OB et OC.
- 3°) Justifier précisément ce que représente le point O pour le triangle ABC?
- **4°**) D est le point d'affixe z_D tel que ABCD est un parallélogramme. Calculer z_D .
- 5°) Donner la nature précise du quadrilatère ABCD en justifiant la réponse.

*

△ Exercice 4.

Le plan est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

On considère les points A, B, E et F définis par leurs affixes respectives :

$$z_A = 5 - 5i$$
 ; $z_B = 3 + 3i$; $z_E = 7 - 4i$ et $z_F = 5 + 3i$.

- 1°) Faire une figure.
- **2°)** Déterminer l'écriture trigonométrique des nombres complexes z_A et z_B .
- 3°) En déduire la nature du triangle OAB.
- **4°)** Soit \mathscr{C} le cercle circonscrit au triangle OAB de centre I. Déterminer $z_{\rm I}$, affixe de I.
- 5°) Les points E et F appartiennent-ils à \mathscr{C} ?