Computability and Complexity COSC 4200

Regular Expressions

A regular expression is a way of defining a language. For example:

- 10*
 Strings that begin with a 1 and end in any number of 0's.
- $(0 \cup 1)^*01$ Binary strings that end with 01.

Examples of regular expressions

```
\epsilon
0
011
(01 \cup 1)
(0 \cup 01)^*
(01^* \cup 0^*1)^*
0(0 \cup 1)^*1
Note: \cup is the same as
```

A regular expression is built from alphabet symbols, ϵ , \emptyset , \cup , \cdot , *, and parentheses. Defined formally using induction:

A regular expression is built from alphabet symbols, ϵ , \emptyset , \cup , \cdot , *, and parentheses. Defined formally using induction:

Definition

- **1** a for some $a \in \Sigma$
 - **2** ε
- 3 (

A regular expression is built from alphabet symbols, ϵ , \emptyset , \cup , \cdot , *, and parentheses. Defined formally using induction:

Definition

- **1** a for some $a \in \Sigma$
- **2** ε
- **3** Ø
- $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions

A regular expression is built from alphabet symbols, ϵ , \emptyset , \cup , \cdot , *, and parentheses. Defined formally using induction:

Definition

- **1** a for some $a \in \Sigma$
- **2** ε
- **3** Ø
- $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions
- $(R_1 \cdot R_2)$ where R_1 and R_2 are regular expressions

A regular expression is built from alphabet symbols, ϵ , \emptyset , \cup , \cdot , *, and parentheses. Defined formally using induction:

Definition

- **1** a for some $a \in \Sigma$
- **2** ε
- **3** Ø
- $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions

A regular expression is built from alphabet symbols, ϵ , \emptyset , \cup , \cdot , *, and parentheses. Defined formally using induction:

Definition

Let Σ be an alphabet. R is a regular expression if R is

- **1** a for some $a \in \Sigma$
- **2** ε
- **3** (
- $(R_1 \cup R_2)$ where R_1 and R_2 are regular expressions
- $(R_1 \cdot R_2)$ where R_1 and R_2 are regular expressions
- \bullet (R_1^*) where R_1 is a regular expressions

Often the parentheses and concatenation are omitted, if the meaning is clear.

Definition

- **1** If R = a for some $a \in \Sigma$, then $L(R) = \{a\}$.
- 2 If $R = \epsilon$, then $L(R) = {\epsilon}$.

Definition

- If R = a for some $a \in \Sigma$, then $L(R) = \{a\}$.
- 2 If $R = \epsilon$, then $L(R) = {\epsilon}$.
- If $R = (R_1 \cup R_2)$ for two regular expressions R_1 and R_2 , then $L(R) = L(R_1) \cup L(R_2)$.

Definition

- If R = a for some $a \in \Sigma$, then $L(R) = \{a\}$.
- 2 If $R = \epsilon$, then $L(R) = {\epsilon}$.
- If $R = (R_1 \cup R_2)$ for two regular expressions R_1 and R_2 , then $L(R) = L(R_1) \cup L(R_2)$.
- If $R = (R_1 \cdot R_2)$ for two regular expressions R_1 and R_2 , then $L(R) = L(R_1) \cdot L(R_2)$.

Definition

- **1** If R = a for some $a \in \Sigma$, then $L(R) = \{a\}$.
- 2 If $R = \epsilon$, then $L(R) = {\epsilon}$.
- If $R = (R_1 \cup R_2)$ for two regular expressions R_1 and R_2 , then $L(R) = L(R_1) \cup L(R_2)$.
- If $R = (R_1 \cdot R_2)$ for two regular expressions R_1 and R_2 , then $L(R) = L(R_1) \cdot L(R_2)$.
- If $R = (R_1^*)$ for some regular expression R_1 , then $L(R) = [L(R_1)]^*$.

•
$$L(0) =$$

•
$$L(0) = \{0\}$$

•
$$L(0) = \{0\}$$

•
$$L(0) = \{0\}$$

•
$$L(00 \cup 01) = \{00, 01\}$$

- $L(0) = \{0\}$
- $L(00 \cup 01) = \{00, 01\}$
- $L(0^*) =$

•
$$L(0) = \{0\}$$

•
$$L(00 \cup 01) = \{00, 01\}$$

•
$$L(0^*) = \{0^n \mid n \ge 0\}$$

- $L(0) = \{0\}$
- $L(00 \cup 01) = \{00, 01\}$
- $L(0^*) = \{0^n \mid n \ge 0\}$
- $L((0 \cup 1)^*) =$

•
$$L(0) = \{0\}$$

•
$$L(00 \cup 01) = \{00, 01\}$$

•
$$L(0^*) = \{0^n \mid n \ge 0\}$$

•
$$L((0 \cup 1)^*) = \{0, 1\}^*$$

•
$$L(0) = \{0\}$$

•
$$L(00 \cup 01) = \{00, 01\}$$

•
$$L(0^*) = \{0^n \mid n \ge 0\}$$

•
$$L((0 \cup 1)^*) = \{0, 1\}^*$$

•
$$L(00(0 \cup 1)^*11) =$$

•
$$L(0) = \{0\}$$

•
$$L(00 \cup 01) = \{00, 01\}$$

•
$$L(0^*) = \{0^n \mid n \ge 0\}$$

•
$$L((0 \cup 1)^*) = \{0, 1\}^*$$

•
$$L(00(0 \cup 1)^*11) = \left\{ x \in \{0,1\}^* \mid x \text{ begins with } 00 \\ \text{and ends with } 11 \right\}$$

•
$$L(0) = \{0\}$$

•
$$L(00 \cup 01) = \{00, 01\}$$

•
$$L(0^*) = \{0^n \mid n \ge 0\}$$

•
$$L((0 \cup 1)^*) = \{0, 1\}^*$$

•
$$L(00(0 \cup 1)^*11) = \left\{ x \in \{0,1\}^* \mid \text{x begins with } 00 \text{ and ends with } 11 \right\}$$

•
$$L((0 \cup 1)*010(0 \cup 1)*) =$$

•
$$L(0) = \{0\}$$

•
$$L(00 \cup 01) = \{00, 01\}$$

•
$$L(0^*) = \{0^n \mid n \ge 0\}$$

•
$$L((0 \cup 1)^*) = \{0, 1\}^*$$

•
$$L(00(0 \cup 1)^*11) = \left\{ x \in \{0,1\}^* \mid \text{x begins with } 00 \text{ and ends with } 11 \right\}$$

•
$$L((0 \cup 1)^*010(0 \cup 1)^*) = \{x \in \{0, 1\}^* \mid x \text{ contains } 010\}$$

Conventions. In a regular expression, Σ is used as an abbreviation for the \cup over all symbols in Σ . For example, if $\Sigma = \{0,1\}$, then Σ means $(0 \cup 1)$ in a regular expression.

e.g. can write $\Sigma^*010\Sigma^*$ instead of $(0\cup 1)^*010(0\cup 1)^*$

Conventions. In a regular expression, Σ is used as an abbreviation for the \cup over all symbols in Σ . For example, if $\Sigma = \{0,1\}$, then Σ means $(0 \cup 1)$ in a regular expression.

e.g. can write
$$\Sigma^*010\Sigma^*$$
 instead of $(0\cup 1)^*010(0\cup 1)^*$

Often, we just write R when we formally mean L(R). For example:

$$0^* = \{0^n \mid n \ge 0\}$$

$$0^*10^* = \{w \in \{0,1\}^* \mid w \text{ has exactly one } 1\}$$

Theorem

A language is regular if and only if it can be described by a regular expression.

We've already shown conversion procedures for the solid arrows. We now need to show the conversions for the dashed arrows.

Now: regular expression \rightarrow NFA.

Lemma

If a language is described by a regular expression, then it is regular (there is an NFA that accepts it).

Proof. For any regular expression R, we will show that L(R) is regular by explaining how to construct an NFA N with L(N) = L(R). The proof is by induction on the structure of regular expressions.

Lemma

If a language is described by a regular expression, then it is regular (there is an NFA that accepts it).

Proof. For any regular expression R, we will show that L(R) is regular by explaining how to construct an NFA N with L(N) = L(R). The proof is by induction on the structure of regular expressions.

We have three base cases:

1 R = a for some $a \in \Sigma$. Then $L(R) = \{a\}$, and the following NFA accepts L(R).

② $R = \epsilon$. Then $L(R) = \{\epsilon\}$, and the following NFA accepts L(R).

② $R = \epsilon$. Then $L(R) = \{\epsilon\}$, and the following NFA accepts L(R).

§ $R = \emptyset$. Then $L(R) = \emptyset$, and the following NFA accepts L(R).

4 $R = R_1 \cup R_2$. Then $L(R) = L(R_1) \cup L(R_2)$ by definition, so L(R) is also regular because the regular languages are closed under union. Specifically, we may use the NFA union construction to obtain an NFA N with $L(N) = L(N_1) \cup L(N_2) = L(R_1) \cup L(R_2) = L(R)$.

- **3** $R = R_1 \cup R_2$. Then $L(R) = L(R_1) \cup L(R_2)$ by definition, so L(R) is also regular because the regular languages are closed under union. Specifically, we may use the NFA union construction to obtain an NFA N with $L(N) = L(N_1) \cup L(N_2) = L(R_1) \cup L(R_2) = L(R)$.
- **③** $R = R_1 \cdot R_2$. Then $L(R) = L(R_1) \cdot L(R_2)$ by definition, so L(R) is regular by closure under concatenation. We may use the concatenation construction to obtain an NFA N with $L(N) = L(N_1) \cdot L(N_2) = L(R_1) \cdot L(R_2) = L(R)$.

- **③** $R = R_1 \cup R_2$. Then $L(R) = L(R_1) \cup L(R_2)$ by definition, so L(R) is also regular because the regular languages are closed under union. Specifically, we may use the NFA union construction to obtain an NFA N with $L(N) = L(N_1) \cup L(N_2) = L(R_1) \cup L(R_2) = L(R)$.
- **⑤** $R = R_1 \cdot R_2$. Then $L(R) = L(R_1) \cdot L(R_2)$ by definition, so L(R) is regular by closure under concatenation. We may use the concatenation construction to obtain an NFA N with $L(N) = L(N_1) \cdot L(N_2) = L(R_1) \cdot L(R_2) = L(R)$.
- $R = R_1^*$. Then $L(R) = L(R_1)^*$ by definition, so L(R) is regular by closure under the star operation. We may use the star operation to obtain an NFA N with $L(N) = L(N_1)^* = L(R_1)^* = L(R)$.

1:
$$\rightarrow \bigcirc \longrightarrow \bigcirc$$

$$0: \longrightarrow \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$$

$$1: \longrightarrow \bigcirc \bigcirc \bigcirc \bigcirc$$

$$01: \longrightarrow \bigcirc \bigcirc \bigcirc \bigcirc$$

$$0*: \longrightarrow \bigcirc \bigcirc \bigcirc$$

$$0*: \longrightarrow \bigcirc \bigcirc$$

$$0$$

$$0*: \longrightarrow \bigcirc \bigcirc$$

$$0$$

$$(01 \cup 10^*)^*: \longrightarrow \bigcirc \qquad \stackrel{\epsilon}{\longrightarrow} \stackrel{\bullet}{\longrightarrow} \stackrel{\bullet}{\longrightarrow}$$

$$0: \longrightarrow \bigcirc \longrightarrow \bigcirc$$

$$1: \longrightarrow \bigcirc \longrightarrow \bigcirc$$

$$01: \longrightarrow \bigcirc \longrightarrow \bigcirc$$

$$0: \longrightarrow \bigcirc \longrightarrow \bigcirc$$

$$1: \longrightarrow \bigcirc \longrightarrow \bigcirc$$

$$01: \longrightarrow \bigcirc \longrightarrow \bigcirc$$

$$0^*: \longrightarrow \bigcirc \bigcirc$$

$$0: \longrightarrow \bigcirc \bigcirc \bigcirc \bigcirc$$

$$1: \longrightarrow \bigcirc \bigcirc \bigcirc$$

$$01: \longrightarrow \bigcirc \bigcirc$$

$$0^*: \longrightarrow \bigcirc \bigcirc$$

$$10^*: \longrightarrow \bigcirc \bigcirc$$

Theorem

A language is regular if and only if it can be described by a regular expression.

Next: DFA \rightarrow regular expression.