

Batch: C7-2 Roll No.:27

Experiment / assignment / tutorial No. Grade: AA / AB / BB / BC / CC / CD /DD Signature of the Staff In-charge with date

TITLE: Basic Data Structure in Python

AIM: Use suitable methods to get output for a given input.

OUTCOME: Students will be able to use basic data structures in Python.

Resource Needed: Python IDE

Theory:

Python Collections (Arrays)

There are four collection data types in the Python programming language:

- A list is a collection that is ordered and changeable. Allows duplicate members.
- Tuple is an unchangeable collection that has been ordered. Allows duplicate members.
- A set is a collection that is unordered and unindexed. There are no duplicate members.
- A dictionary is a collection that is unordered and changeable. There are no duplicate members.

When choosing a collection type, it is useful to understand the properties of that type. Choosing the right type for a particular data set could mean retention of meaning, and it could mean an increase in efficiency or security.

List: Lists are used to store multiple items in a single variable. Lists are created using square brackets. e.g. mylist = ["apple", "banana", "cherry"]

List Methods

Python has a set of built-in methods that you can use on lists. L:list, e:element, i:index

Method	Description
L.append(e)	Adds an element at the end of the list
L.clear()	Removes all the elements from the list
L.copy()	Returns a copy of the list
L.count(e)	Returns the number of elements with the specified value
L.extend(L2)	Add the elements of a list (or any iterable), to the end of the current list
L.index(e)	Returns the index of the first element with the specified value
L.insert(i,e)	Adds an element at the specified position
L.pop(i)	Removes the element at the specified position
L.remove(e)	Removes the item with the specified value
L.reverse()	Reverses the order of the list

L.sort()	Sorts the list
()	

Tuple

Tuples are used to store multiple items in a single variable. A tuple is a collection that is ordered and **unchangeable**. Tuples are written with round brackets. e.g. mytuple = ("apple", "banana", "cherry")

Tuple Methods

Python has two built-in methods that you can use on tuples. T:tuple, e:element

Method	Description
T.count(e)	Returns the number of times a specified value occurs in a tuple
T.index(e)	Searches the tuple for a specified value and returns the position of where it was
	found

Set

Sets are used to store multiple items in a single variable. A set is a collection which is both *unordered* and *unindexed*. Sets are written with curly brackets. e.g. myset = {"apple", "banana", "cherry"}

Set Methods

Python has a set of built-in methods that you can use on sets.

Method	Description	
S.add(e)	Adds an element to the set	
S.clear()	Removes all the elements from the set	
S.copy()	Returns a copy of the set	
S1.difference(S2)	Returns a set containing the difference between two	
	or more sets	
S1.difference_update(S2)	Removes the items in this set that are also included	
	in another, specified set	
S1.discard(e)	Remove the specified item	
S1.intersection(S2)	Returns a set, that is the intersection of two other	
	sets	
S1.intersection_update(S2)	Removes the items in this set that are not present in	
	other, specified set(s)	
S1.isdisjoint(S2)	Returns whether two sets have a intersection or not	
S1.issubset(S2)	Returns whether another set contains this set or not	
S1.issuperset(S2)	Returns whether this set contains another set or not	
S.pop()	Removes an element from the set	
S.remove(e)	Removes the specified element	
S1.symmetric_difference(S2)	Returns a set with the symmetric differences of two	
	sets	
S1.symmetric_difference_update(S2)	inserts the symmetric differences from this set and	
	another	

S1.union(S2)	Return a set containing the union of sets
S1.update(L1)	Update the set with the union of this set and others

Dictionary

Dictionaries are used to store data values in key:value pairs. A dictionary is a collection which is **ordered (3.7 version onward)**, **changeable** and **does not allow duplicates**.

Dictionaries are written with curly brackets, and have keys and values.

e.g. thisdict = {"brand": "Ford", "model": "Mustang", "year": 1964}

Dictionary Methods

Python has a set of built-in methods that you can use on dictionaries.

Method	Description
D.clear()	Removes all the elements from the dictionary
D.copy()	Returns a copy of the dictionary
D.get(k)	Returns the value of the specified key
D.items()	Returns a list containing a tuple for each key value pair
D.keys()	Returns a list containing the dictionary's keys
D.pop(k)	Removes the element with the specified key
D.popitem()	Removes the last inserted key-value pair
D.setdefault(k,v)	Returns the value of the specified key. If the key does not exist: insert the
	key, with the specified value
D.update({k:v})	Updates the dictionary with the specified key-value pairs
D.values()	Returns a list of all the values in the dictionary

Problem Definition:

1. In below table input variable, python code and output column is given. You have to complete blank cell in every row.

List			
Input	Python Code	Output	
thislist=["apple","banana","cherry","ora nge","kiwi","melon","mango"]	print(len(thislist)) print(type(thislist)) print(thislist[1]) print(thislist[-1]) print(thislist[2:5]) print(thislist[:4]) print(thislist[2:])	7 <class 'list'=""> banana mango ['cherry', 'orange', 'kiwi'] ['apple', 'banana', 'cherry', 'orange'] ['cherry', 'orange', 'kiwi', 'melon', 'mango']</class>	
thislist = ["orange", "mango", "kiwi", "pineapple", "apple"]	<pre>if "apple" in thislist: print("Yes, 'apple' is in the fruits list") for x in thislist: print(x) for i in range(len(thislist)): print(thislist[i]) thislist.sort()</pre>	Yes, 'apple' is in the fruits list orange mango kiwi pineapple apple orange	

	tya Conege of Engineering, Wumbai-7	1
	print(thislist)	mango kiwi pineapple apple ['apple', 'kiwi', 'mango', 'orange', 'pineapple']
thislist=["apple","banana","cherry"]	<pre>thislist.pop(1) thislist.insert(1,"blackcurr ant") print(thislist)</pre>	['apple','blackcurrant','cherry']
thislist=["apple", "banana", "cherry"]	<pre>thislist.insert(2,"watermelo n") print(thislist)</pre>	['apple','banana','watermelon', 'cherry']
thislist=["apple","banana","cherry"]	thislist.append("orange") print(thislist)	['apple', 'banana', 'cherry', 'orange']
thislist=["apple", "banana", "cherry"] tropical=["mango", "pineapple"]	thislist.extend(tropical) print(thislist)	['apple', 'banana', 'cherry', 'mango', 'pineapple']
thislist = ["apple", "banana", "cherry"]	thislist.pop(1) print(thislist)	['apple', 'cherry']
thislist = ["apple", "banana", "cherry"]	del thislist print(thislist)	error: not defined
thislist = ["apple", "banana", "cherry"]	thislist.clear() print(thislist)	
thislist = ["apple", "banana", "cherry"]	x=thislist y= thislist.copy() thislist.clear() print(x) print(y)	[] ['apple', 'banana', 'cherry']
$ list1 = [5, 6, 7] \\ list2 = [1, 2, 3] $	list3 = list1 + list2 print(list3)	[5, 6, 7, 1, 2, 3]

T	umlo
1	upie

Input	Python Code	Output
x = ("apple",)	print(type(x))	<class 'str'=""></class>
y = ("apple")		<class 'str'=""></class>
	print(type(y))	
thistuple=("apple","banana","cherry")	print(thistuple[-1])	cherry
x = ("apple", "banana", "cherry")	x[1] = "kiwi"	error: tuple
11	print(x)	cannot be
		changed
x = ("apple", "banana", "cherry")	y = list(x)	('apple', 'kiwi',
, , , , , , , , , , , , , , , , , , ,	y[1] = "kiwi"	'cherry')
	x = tuple(y)	
	print(x)	
fruits = ("apple", "banana", "cherry", "strawberry",	(green, yellow, *red) = fruits	apple
"raspberry")		banana
- · · ·	print(green)	['cherry',
	print(yellow)	'strawberry',
	print(red)	'raspberry']
	print(type(red))	<class 'list'=""></class>
fruits = ("apple", "banana", "cherry")	mytuple = fruits * 2	2
	print(mytuple.count("apple"))	1
	print(mytuple.index("banana"))	

	Set	
Input	Python Code	Output
myset = {"abc", 34, True, 40.5}	print(myset) print(len(myset)) print(type(myset)) print(34 in thisset) myset.add("orange") print(myset)	NameError: name 'thisset' is not defined
	thisset=thisset+tropical print(thisset)	TypeError: unsupported operand type(s) for +: 'set' and 'set'
<pre>thisset = {"apple", "mango", "cherry"} tropical={"papaya", "mango"}</pre>	thisset.update(tropical) print(thisset)	{'papaya', 'apple', 'mango', 'cherry'}?
	thisset.intersection_update (tropical) print(thisset)	{'mango'}
	thisset.symmetric_difference_update(tro pical) print(thisset)	{'papaya', 'apple', 'cherry'}

Dictionaries			
Input	Python Code	Output	
	<pre>print(thisdict) print(type(thisdict)) print(len(thisdict)) print(thisdict["brand"]) print(thisdict["year"]) x = thisdict.get("model") print(x) y = thisdict.keys() print(y) z = thisdict.values() print(z) thisdict["color"] = "white" print(thisdict) if "model" in thisdict: print("Yes")</pre>	SyntaxError: unterminated string literal	
thisdict={"brand":"Ford","model": "Mustang","year": 1964, "year": 2020}	thisdict["year"] = 2018 print(thisdict)	{'brand': 'Ford', 'model': 'Mustang', 'year': 2018}	
	thisdict.pop("model") print(thisdict)	{'brand': 'Ford', 'year': 2020}	
	for x in thisdict: print(x) print(thisdict[x])	brand Ford model Mustang year 2020	
	for x, y in thisdict.items(): print(x, y)	brand Ford model Mustang year 2020	

- 2. Write a python program to take list values as input parameters and returns another list without any duplicates.
- 3. Write a program that takes a string as input from user and computes the frequency of each letters. Use a variable of dictionary type to maintain the count.

Books/ Journals/ Websites referred:

- 1. Reema Thareja, *Python Programming: Using Problem-Solving Approach*, Oxford University Press, First Edition 2017, India
- 2. Sheetal Taneja and Naveen Kumar, *Python Programming: A modular Approach*, Pearson India, Second Edition 2018,

Implementation details:

2. Write a python program to take list values as input parameters and returns another list without any duplicates.

INPUT:

```
11=list(input("enter a list "))
12=list(set(l1))
print(l2)
```

3. Write a program that takes a string as input from user and computes the frequency of each letters. Use a variable of dictionary type to maintain the count.

```
INPUT.
```

```
str=input("enter a string: ")
dict={i:str.count(i) for i in set(str)}
print(dict)
```

Output(s):

2.

```
enter a list reverse
['s', 'r', 'v', 'e']
PS C:\Users\Admin>
```

3

```
enter a string: mathematics {'c': 1, 'a': 2, 'i': 1, 't': 2, 'h': 1, 'e': 1, 'm': 2, 's': 1}
```


Conclusion:

Post Lab Descriptive Questions

1. List out Mutable and Immutable Data Types in Python.

ANS.

- Mutable Data Types: Data types in python where the value assigned to a variable can be changed. Example: List, Dictionary, Set.
- Immutable Data Types: Data types in python where the value assigned to a variable cannot be changed. Example: Numeric, String, Tuple.
- 2. What do you mean by indexed and ordered data type in Python?

ANS.

- Ordered means that the items have a defined order, and that order will not change. If you add new items to a list, the new items will be placed at the end of the list.
- An indexed data type means you can access elements of the collection by their index, which is a numerical representation of their position in the collection. In Python, the index starts at 0 for the first element, 1 for the second, and so on. List and tuples are examples of indexed datatype.

Date: Signature of faculty in-charge		Department of Department of Science and Humanities
	Date:	Signature of faculty in-charg

PP/I/July-November_2024_Page No.-____