Algebra 1A, lista 4.

Konwersatorium 7.11.2016, ćwiczenia 8.11.2016.

- 0S. Materiał teoretyczny : Warstwy lewo- i prawostronne podgrupy K grupy G. Własności warstw. Indeks podgrupy K w grupie G. Twierdzenie Lagrange'a i wnioski z niego. Małe twierdzenie Fermata. Twierdzenie Wilsona. Homo-, epi-, mono-, endo- i automorfizmy struktur: definicja, przykłady. Własności homomorfizmów grup. Jądro i obraz homomorfizmu grup. Charakteryzacja monomorfizmu grup przy pomocy jądra. Dzielnik normalny (podgrupa normalna). Grupa ilorazowa, homomorfizm ilorazowy i zasadnicze twierdzenie o homomorfizmie grup.
 - 1. S Wyznaczyć wszystkie możliwe rzędy elementów $g \in S_7$.
 - 2. S Załóżmy, że $g \in G$, ord(g) = 10. Wyznaczyć $ord(g^2)$, $ord(g^3)$.
 - 3. Załóżmy, że $g \in G$, ord(g) = n > 1 oraz k > 1. Niech $r = r_n(k)$.
 - (a) Udowodnić, że $g^k = g^r$.
 - (b) Udowodnić, że $ord(g^k) = l$, gdzie l jest najmniejszą liczbą ≥ 1 taką, że n|kl.
- (c) Udowodnić, że $ord(g^k) = n \iff NWD(k,n) = 1$ (tzn. gdy k i n sa względnie pierwsze).
- 4. Załóżmy, że G jest grupa skończoną oraz H jest niepustym podzbiorem G zamknietym względem działania z grupy G.
 - (a) Udowodnić, że $e_G \in H$.
 - (b) Udowodnić, że dla każdego $g \in H$, $g^{-1} \in H$.

Wywnioskować stad, że H jest podgrupa grupy G.

- 5. Załóżmy, że $a, b \in G$, $a \neq e$ oraz $a^4b = ba^5$. Udowodnić, że $ab \neq ba$.
- 6. (a) Wyznaczyć wszystkie podgrupy grupy ($\mathbb{Z}_{10}, +_{10}$).
- (b) Następnie sprawdzić, że wszystkie grupy ilorazowe grupy $(\mathbb{Z}_{10}, +_{10})$ są cykliczne.
- 7. Załóżmy, że G jest generowana przez zbiór $A = \{g, h\} \subseteq G$ taki, że ord(g) = 5, ord(h) = 4 oraz $gh = hg^2$.
 - (a) Niech $K = \langle a \rangle$, $H = \langle h \rangle$. Udowodnić, że $K \cap H = \{e\}$.
- (b) Udowodnić, że każdy element grupy G jest postaci g^ih^j dla pewnych $0 \le i < 5$ oraz $0 \le j < 4$ oraz, że to przedstawienie jest jednoznaczne. Ile elementów ma grupa G?
 - (c) Sporządzić tabelkę działania grupy G.
 - 8S. Obliczyć następujące reszty z dzielenia:

$$r_{13}(125^{342}), r_{29}(321^{485}), r_{31}(321^{485}).$$

9K. Załóżmy, że $f:G\to H$ jest homomorfizmem grup oraz $a\in G$. Załóżmy, że ord(a)=n jest skończony. Udowodnic, że ord(f(a)) też jest skończony i dzieli ord(a).

10K. Czy istnieją homomorfizmy grup $f: G \to H$, gdzie:

- (a) $G = (\mathbb{Z}, +), H = (\mathbb{Q}, +), f(1) = 7$
- (b) $G = (\mathbb{Z}, +), H = (\mathbb{Q}, +), f(1) = -1$
- (c) $G = (\mathbb{Z}, +), H = (\mathbb{Q}, +), f(1) = -7$
- (d) $G=(\mathbb{Z},+),\ H=(\mathbb{Z},+),\ f(2)=7$ (wsk: czemu musi być wtedy równe f(1)?)

- (e) $G = (\mathbb{Q}, +), H = (\mathbb{Z}, +), f(1) = 1$ (wsk: czemu musi być równe $f(\frac{1}{2})$?)
- (f) $G = (\mathbb{R}, +), H = (\mathbb{R}^*, \cdot), f(1) = 5$
- (g) $G = (\mathbb{R}, +), H = (\mathbb{R}^*, \cdot), f(1) = -1$
- (h) $G = (\mathbb{Q}, +), H = (\mathbb{Q}, +), f(1) = 2$
- (i) $G = (\mathbb{Q}, +), H = (\mathbb{Q}^*, \cdot), f(1) = 2$
- (j) $G = (\mathbb{Q}, +), H = (\mathbb{Q}^*, \cdot), f(2) = 1$
- (k) $G = (\mathbb{Z}_4, +_4), H = (\mathbb{Z}_5, +_5), f(1) = 1$
- (1) $G = (\mathbb{Z}_4, +_4), H = (\mathbb{Z}, +), f(1) = 1$
- (m) $G = (\mathbb{Z}_4, +_4), H = (\mathbb{Z}_2, +_2), f(1) = 1$
- 11. Załóżmy, że H < G oraz [G:H] = 2. udowodnić, że $H \triangleleft G$.