Formal Specification of the Colorado Risk Limiting Audit (CORLA) tool

Joseph R. Kiniry and Daniel M. Zimmerman with input from Neal McBurnett, Stephanie Singer, and Joey Dodds

July 2017

1 Introduction

This document contains a formal specification of the ColoradoRLA system/tool. It contains a detailed technical specification of the system, annotated with prose designed to help readers who are not expert in formal system specification understand the scope and interpretations of the elements of the specification. The details of the specification itself will guide deployment, management, maintenance, and evolution of the system delivered to the Colorado Department of State. The prose annotations should help Colorado Department of State elections domain experts and technical staff to assess the completeness and correctness of the ColoradoRLA system/tool.

This document is written in a literate style using the PVS theorem prover. Writing system specifications in this fashion is called (formal) domain engineering and system specification. Our formal domain model is written in PVS's higher-order logic (HOL). Our informal domain model is written in the Free & Fair System Specification Language, or FAFESSL for short. FAFESSL is a daughter of Extended BON which was, in turn, a daughter of BON, the Business Object Notation.

See our Bibliography project at GitHub, https://github.com/FreeAndFair/Bibliography, for more information.

2 Refinement

In order to relate PVS to FAFESSL, we must define a refinement relationship between their two type systems. Informally, that mapping is described in the following paragraph.

We map PVS public theories and their contents to FAFESSL constructs. The top-level corla theory maps to the FAFESSL system specification, theories map to clusters, (PVS) types map to (FAFESSL) types, and functions map to

features. We use special comments to denote informal specifications which will be extracted using a shell script into a well-typed FAFESSL informal domain model specification.

As mentioned above, we write formal specifications using a literate style, a la Knuth. Doing so permits us to document our thinking and the system design, from domain modeling and engineering all of the way to formal specification and verification, in a fashion that produces beautifully printed books and interactive hypertext.

In order to write literate PVS we use our old friend Adriaan de Groot's scripts, originally available at Dr. de Groot's website¹ and archived in our repository in its tools subdirectory at the top-level. Our formal domain model is also annotated with structured comments in precise natural language using a standard set of annotations. A shell script will process these annotations and generates a well-typed informal FAFESSL specification.

The FAFESSL annotations we use are as follows:

system the FAFESSL name of the system

cluster the FAFESSL name of a cluster

description a short description of an artifact

explanation the (potentially longer) explanation for an artifact

indexing-CLAUSE a prefix for any indexing <CLAUSE>

These suffixes are commonly used for indexing:

author an author of an artifact

organization an organization responsible for an artifact

keywords a comma-separated list of keywords

created the creation date for an artifact

github the URL for the GitHub project containing an artifact

3 System Overview

The RLA Tool is being developed by Free & Fair for the Colorado Department of State (CDOS henceforth). The RLA Tool facilitates running a risk limiting audit across several jurisdictions. In the case of Colorado, it facilitates running risk limiting audits across all counties in the state simultaneously.

Provide a bit more context in the System Overview.

¹http://www.cs.kun.nl/~adridg/research/PVS-literate.html

4 Kinds of Concepts

There are basically three kinds of concepts, each of which is a part of speech, that are introduced in any specification:

- Nouns are formalized by regular (composite) types. The set of types available in the prelude of PVS is large, ranging from booleans to real-world concepts like time and tokenizing leers. Composite types are product types such as tuples and records.
- Verbs are formalized by function types. PVS's HOL supports higher order dependent type declarations, including higher order function types. Thus, even the most complex verb forms can be formalized in the model.
- Adjectives and adverbs are formalized by defining function types that apply to formalizations of nouns and verbs, respectively. Often these types are either predicate types (i.e., something is true or not), metric types encoded in enumerations or ordered structures such as numbers (i.e., how heavy something is), or are enumeration types (i.e., what properties something has, but with no particular ordering, such as the color of something).

Consequently, in what follows, when we formalize a concept from some background informal information, we identify all domain specific nouns, verbs, adjectives, and adverbs in that source material and capture the meaning of each and every idea relevant to the system we are defining. This identification and formalization process is iterative, with the precision of the formalization generally increasing as we refine the model of the system and being defining its implementation.

5 Refinement from Background Literature to Specification

The Colorado statues (i.e., the law) pertaining to election audits is Section 1-7-515, of the Colorado Revised Statues, or C.R.S. for short. The rules (i.e., the interpretation of the statutes and an explanation for how to realize their goals) pertaining to such are found in the "Revised Draft of Proposed Rules" whose latest version is labeled CCR 1505-1 and dated July 6, 2017. Section 25, Post-Election Audit, of that document is the salient portion of that document. We will call that particular version of the document RDPR-6-Jul-2017 for the purpose of traceability in this specification. We refer to Colorado election law as "C.R.S.".

This domain model is based upon these statues, its associated rules, our contract with CDOS for the RLA Tool or requirements stipulated in refinement of the contract through written exchanges with CDOS, and our bibliography of publications about risk-limiting audits and digital elections. Every concept introduced herein comes from one of those sources. That full collection of resources is known as the *background literature* for the system.

In general, if a concept is defined, its relationship to those non-technical artifacts (statue, rules, contract, etc.) is captured using a traceability annotation of the form

Otrace <SOURCE ARTIFACT> Discussion of traceability relationship.

If a concept is introduced and it has no explicitly annotated traceability relation, then the reason for its introduce should be spelled out in the discussion of that concept in the same section.

As discussed above, the set of all concepts defined and relevant to the system is the systems's domain model. The short definition of each and every concept is part of what constitutes the *glossary* of this system. There may be other terms in the glossary introduced because they relate to, or are mentioned in, the background literature but need not be formalized to specify the RLA Tool's behavior.

At the moment, our glossary is a hand-written Appendix on the RLA Tool Book, found in the docs directory of the project repository. Before the final system delivery, that book will be integrated with this formal specification and the glossary concepts that come from this formal specification will be automatically generated out of this specification. By integrating the artifacts in this fashion we more easily guarantee precision, correctness, completeness, and traceability of our specification, both formal and informal.

6 Refinement from Specification to Implementation

In order to turn a specification like this one into an implementation we must take the following steps.

- 1. We must decide how each type is going to be concretized into the implementation the system. Generally, modules in the formalization refine into comparable modules in the implementation. For example, a cluster of ideas that must be persisted and all relate to each other often turn into a database table or an object graph. Simpler concepts often map directly built-in primitive and library types. Function types, unsurprisingly, turn into procedures, functions, or methods.
- 2. We must ensure that all properties about types mandated by the specification are realized in the implementation. We use axiomatic definitions to encode types and their constraints, usually via dependent types and sometimes via literal axioms in the formal specification.

A simple example will provide an example of both of these steps. The concept of risk limit is that it is a percentage. Thus, it is a number between 0 and 100. It is a modeling decision how to represent such, but given the client has not mandated that risk limits must not be fractional percentages, such as 1.25choose to use a real number to formalize the idea of risk limits. Thus, we encode the concept of risk limit as the type

```
risk_limit: TYPE = n : nonneg_real | n <= 100
```

which means "the concept of risk limit is equivalent to the set of all non-negative real numbers whose value is no greater than 100".

3. We must ensure that all properties about the system and its components are realized by the system. System properties are specified using theorems.

Each theorem is refined in the system to assurance artifacts. One form of assurance is testing. Runtime verification—in the form of runtime assertion checking, automatically generated tests, or hand-written tests—can check sets of cases of each theorem. Formal verification—in the form of automatic static analysis or interactive theorem proving—can check properties wholesale in the system, ensuring that properties hold for all possible inputs in all possible environments.

Add annotation functions coupled to milestones.

fafessl: THEORY BEGIN

TBD: bool = TRUE

END fafessl

7 Background Model Elements

It is necessary to summarize a number of background concepts from computer science in order to formalize the RLA Tool. The RLA Tool is a client-server system. The server is implemented in Java and runs on servers hosted by CDOS. The client is implemented in TypeScript and JavaScript and runs in modern web browsers.

As we are hosting the RLA Tool in CDOS's system, they are providing the hosting servers, network, and a number of services in support of the tools deployment and management.

A database is used to store all of the data relevant to audits. Databases contain tables that describe the information they contain. We need not formalize database elements in any more detail than what follows.

database: THEORY BEGIN

database_table: TYPE

data: TYPE

database: TYPE = setof[database_table]

write: [database, database_table, data -> database]

read: [database, database_table -> data]

END database

We also need to be able to talk about some pretty simple ideas from information systems. For example, many files in election systems are syntactically just lists of comma-separated values. Email is used for communication between officials and with the public. Files are used to store information in a persistent fashion. Consequently, we introduce a few types for these ideas.

```
information_systems: THEORY
BEGIN
  comma_separated_value: TYPE
  csv: TYPE = comma_separated_value
  email: TYPE
  email_address: TYPE
  file: TYPE
  network: TYPE
  web_browser: TYPE
  browser: TYPE = web_browser
  javascript_code: TYPE
END information_systems
```

Several kinds of servers are necessary to deploy this system. At the minimum, two of each of a web server, an application server, a time (NTP) server, a firewall, and a database server are necessary. Two servers of each class are required for redundancy to fulfill availability requirements. Preferably redundant servers would be hosted in separate facilities, with separate and independent power systems and networks.

An Election Night Reporting (ENR) server is mentioned repeatedly in the RDPR-6-Jul-2017, so we model it here.

```
firewall?: make_filewall: firewall
database_server?(databases: set[database]):
   make_database_server: database_server
enr_server?: make_enr_server: enr_server
END server
```

Over time, as we need to introduce more background concepts, we will add them to this theory.

8 Elections

A number of general elections concepts are necessary to specify the RLA Tool. Some are generic to all elections, and others are specific to Colorado.

```
elections: THEORY BEGIN
```

Voters are the most important concept in elections, as they are who elections are for, and who make the choices that determine the outcome of legitimate elections.

Voters have first and lastnames and a political party affiliation.

```
person: TYPE =
   [# firstname: string, lastname: string #]
political_party: TYPE = string
voter: TYPE = %FROM person
   [# firstname: string,
        lastname: string,
        party_affiliation: political_party #]
elector: TYPE = voter
```

Some voters are UOCAVA voters. What follows is one way to formalize such, simply stating that the type uocava_voter is a predicate on the type voter. Consequently, all voters are either UOCAVA or not.

```
uocava_voter: pred[voter]
```

Candidates run for office to represent voters. A person can be a voter, a candidate, both, or neither.

```
candidate: TYPE FROM person
```

Elections focus on contests, each of which represents a set of choices that voters can make. Making a legal choice ranges enormously across the Earth, from marking a vote for a candidate by filling in a single bubble to enumerating a total order on all choices in a contest. Across the state, each contest has a unique name.

Need to break the cycle between the contest type and the ballots theory.

```
contest: TYPE =
  [# name: string, description: string #] % , choices: choice #]
audited_contest: TYPE FROM contest
opportunistic_contest: TYPE FROM contest
full_hand_count_contest: TYPE FROM contest
```

contest_outcome: TYPE
election_outcomes: TYPE = set[contest_outcome]
wrong_outcome: TYPE FROM election_outcomes

These types will be refined when we review the information provided by CDOS on 20 July 2017 about Dominion's file formats.

Tabulation results are calculated from the CVRs by the RLA tool. These outcomes and margins are used to drive the RLA algorithms. These outcomes should be checked against the reported_tabulation_outcome, and should match since they were generated at the same time.

```
cvr_tabulation_outcome: TYPE FROM election_outcomes
rla_tabulation_outcome: TYPE FROM election_outcomes
```

Elections are defined across cohorts of voters arranged in any number of ways—geographic, political, professional, and more. In Colorado, elections are organized across counties and the entire state. Each county has a name and a county number, both of which are unique across the state.

```
county_id: TYPE = nat
county_name: TYPE = string
county: TYPE =
  [# name: county_name, id: county_id #]
state: TYPE = set[county]
nation: TYPE = set[state]
organization: TYPE
s: VAR state
c1, c2: VAR county
county_names_unique: AXIOM
(FORALL s, c1, c2:
  member(c1, s) AND member(c2, s) AND
    c1'name = c2'name
  IMPLIES c1 = c2)
county_numbers_unique: AXIOM
(FORALL s, c1, c2:
```

```
member(c1, s) AND member(c2, s) AND
      c1'id = c2'id
      IMPLIES c1 = c2)

election_canvass: TYPE
   audit_center: TYPE
   ballot: TYPE % = [election, set[contest], ballot_id]
END elections
```

Elections come in many forms: public and private elections; national and local elections; etc. This RLA Tool focuses on state elections in Colorado, which we model as a set of county elections.

Note that county elections are actually *multi*-county elections, where the typical case is that the set of counties is a singleton. In other words, in the general case, contests are multi-county contests, which can have the same contest name in multiple counties, and county elections gather votes for contests from a single county.

```
election: DATATYPE
  WITH SUBTYPES county_election,
                state_election,
                national_election,
                private_election
BEGIN
  IMPORTING elections
  is_county_election?(name: string,
                      date: string,
                      counties: set[county],
                      contests: set[contest]):
   make_county_election: county_election
  is_state_election?(name: string,
                     date: string,
                     state: state,
                     contests: set[contest]):
   make_state_election: state_election
  is_national_election?(name: string,
                        date: string,
                        nation: nation,
                        contests: set[contest]):
   make_national_election: national_election
  is_private_election?(name: string,
                       date: string,
                       org: organization,
                       contests: set[contest]):
    make_private_election: private_election
```

9 Ballots

The second basic concept of elections that we need to specify is the ballot. Ballots are the means by which voters indicate their preferences for candidates in contests and choices in ballot questions.

Ballots are stored by one of several possible means. Some ballot storage containers are secure, others are not. Some facilitate an easy means by which to find a particular ballots, others do not.

```
storage_container: DATATYPE
  WITH SUBTYPES box,
                bin,
                ballot_box
BEGIN
  IMPORTING elections
 box?(ballots:list[ballot]): make_box: box
 bin?(ballots:list[ballot]): make_bin: bin
 ballot_box?(ballots:list[ballot]): make_ballot_box: ballot_box
END storage_container
elections_equipment: THEORY
BEGIN
  IMPORTING storage_container
 voting_system: TYPE
  dominion_voting_system: TYPE FROM voting_system
  scanner_id: TYPE = string
  scanner: TYPE =
    [# name: string, model: string, id: scanner_id #]
  vvpat: TYPE
  verified?: TYPE = pred[storage_container]
```

Voting system's logs are precisely defined in federal standards. Those standards are known as the "Voluntary Voting System Guidlines", or VVSG for short.

END elections_equipment

ballots: THEORY

BEGIN

IMPORTING elections,

elections_equipment,
storage_container

Several of our concepts are simply numbers or strings. For example, ballot identifiers (ids) and batch sizes are just natural numbers (integers starting from zero). Batch ids are strings.

ballot_id: TYPE = nat
batch_id: TYPE = string
batch_size: TYPE = nat

Ballots are marked by voters or ballot marking devices. A ballot mark is any kind of mark made on a ballot that is not found on a blank ballot. A voter_marking is any mark made by a voter. An ambiguous mark is a mark for which there is ambiguity in its interpretation (voter or machine). A stray mark is a mark that is outside of the legitimate regions of a ballot, such as hesitation marks outside of the mark regions for a contest or marks made by coffee spilled on a paper ballot.

ballot_mark: TYPE

voter_marking: TYPE FROM ballot_mark
ambiguous_mark: TYPE FROM ballot_mark
stray_mark: TYPE FROM ballot_mark

Ballots come in several varieties. All ballots are represented in a digital fashion (a scan, PDF, etc.), or are paper ballots, or both. Ballots are also classified based upon where they originate, such as delivery via mail, UOCAVA ballots, early ballots, etc. Ballots are also either tabulated or not. Note that none of these categories of ballots are mutually exclusive.

digital_ballot: TYPE FROM ballot
paper_ballot: TYPE FROM ballot
mail_ballot: TYPE FROM ballot
uocava_ballot: TYPE FROM ballot
early_ballot: TYPE FROM ballot
tabulated_ballot: TYPE FROM ballot
provisional_ballot: TYPE FROM ballot
property_owner_ballot: TYPE FROM ballot
original_ballot: TYPE FROM ballot

duplicated_ballot: TYPE FROM ballot

```
non_voter_verifiable_ballot: TYPE FROM ballot
voter_verifiable_ballot: TYPE FROM ballot
phantom_ballot: TYPE FROM ballot
```

Ballots can be in various stages of processing, as implicitly mentioned in the C.R.S.

```
verified_accepted?: pred[mail_ballot]
```

Each ballot has a single ballot style, which indicates (at least) the contests that are listed on that ballot. Ballot styles are usually encoded as natural numbers.

```
ballot_style: TYPE = nat
ballot_style?: [ballot -> ballot_style]
```

ballot_contest: TYPE = contest

option: TYPE = string
choice: TYPE = set[option]

batch: TYPE = set[ballot]

The county must secure and maintain in sealed ballot containers all tabulated ballots in the batches and order they are scanned. The county must maintain and document uninterrupted chain-of-custody for each ballot storage container. Sometimes ballots are processed, either manually or by machines, in such a way that an imprint is made on each ballot processed. By hand, a stamp and signature is sometimes used, e.g. Another example is that a scanner might automatically print a new ballot identifer on the corner of each ballot scanned. We call such a ballot an imprinted ballot.

```
imprinted_ballot: TYPE FROM ballot
ballot_certification: TYPE
number_elected: TYPE = posnat
votes_allowed: TYPE = posnat
```

END ballots

9.1 Ballot Manifests

While tabulating ballots, the county must maintain an accurate ballot manifest in a form approved by the Secretary of State. At a minimum, the ballot manifest Need to clarify choices vs options vs votes.

Need to add model information for write-in votes.

must uniquely identify for each tabulated ballot the scanner on which the ballot is scanned, the ballot batch of which the ballot is a part, the number of ballots in the batch, and the storage container in which the ballot batch is stored after tabulation.

Should this information also include what kind of ballot each ballot is? I.e., re-marked, phantom, etc.?

These types will be refined when we review the information provided by CDOS on 20 July 2017 about Dominion's file formats.

Ballot position number is still not explicitly specified.

The interpretation of the meaning of a voter's choice in a single ballot contest is either a legal vote, an overvote, or an undervote.

END ballot_manifests

Should we model a blank vote separately from an undervote? Or do they simply use the term blank vote to denote an undervote?

```
END vote

ballot_interpretation: THEORY
BEGIN
   IMPORTING ballots,
        vote

  cast_vote_record: TYPE = set[set[choice]]
END ballot_interpretation

ballots_collections: THEORY
BEGIN
  IMPORTING ballots
```

Ballots are often ordered, such as after they are hand or machine sorted, when they are kept in storage that maintains order, or an order is induced upon them by a random shuffle.

```
ballot_order: TYPE = sequence[ballot]
```

Sometimes, but not always, a total order is induced by ballot ids.

END ballots_collections

10 Instructions, Forms, and Reports

Elections have all kinds of different published instructions, forms, and reports. We enumerate a few here that are specific to Colorado, and the RLA Tool in particular.

```
empty_audit_investigation_report: audit_investigation_report
  audit_report: TYPE =
    [# name: string,
       election: election,
       audit_board: audit_board,
       county_administrator: county_administrator #]
  summary_results_report: TYPE =
    [overvotes: nat, undervotes: nat,
    blank_voted_contests: nat, valid_write_in_votes: nat]
 results_file: TYPE FROM file
 form: TYPE
  sos_audit_form: TYPE
  instructions: TYPE
 ballot_instructions: TYPE FROM instructions
  sos_voter_intent_guide: TYPE FROM instructions
 ballots_under_audit_instructions: TYPE =
    [ sequence[ballot], sequence[ballot_style],
      sequence[ballot_manifest_info] ]
END instructions_forms_reports
```

11 Roles

Within the RLA Tool, a person involved with the system can have a number of roles. Some of these roles are mutually exclusive for legal reasons.

```
sos: TYPE FROM person
  state?: [sos -> state]
  county_clerk: TYPE FROM person
  county?: [county_clerk -> county]
  administrator: TYPE FROM person
  audit_supervisor: TYPE FROM person
  county_administrator: TYPE FROM administrator
  state_administrator: TYPE FROM administrator
  system_administrator: TYPE FROM administrator
  candidates_cannot_be_administrators: AXIOM TBD
END roles
canvas_boards: THEORY
BEGIN
  IMPORTING election,
            roles
 canvas_board?: [election -> canvas_board]
END canvas_boards
```

12 Cryptography

We will add additional cryptographic primitives here as required.

```
cryptography: THEORY
BEGIN
  digest: TYPE = bvec[256]
  sha256: [size: nat, bvec[size] -> digest]
END cryptography
```

12.1 Randomness

High quality randomness is key to the legitimacy of any risk-limiting audit.

randomness: THEORY

BEGIN

unit: TYPE

12.1.1 Random Seed

As stated in RDPR-6-Jul-2017 Section 25.2.2(K):

The Secretary of State will convene a public meeting on the tenth day after election day to establish a random seed for use with the Secretary of State's RLA tool's pseudo-random number generator based on Philip Stark's online tool, Pseudo-random Number Generator using SHA-256. This material is incorporated by reference in the election rules and does not include later amendments or editions. The following material incorporated by reference is posted on the Secretary of State website and available for review by the public during regular business hours at the colorado secretary of state's office: pseudo-random number generator using SHA-256 available at https://www.stat.berkeley.edu/~stark/java/ html/sha256rand.htm. The Secretary of State will give public notice of the meeting at least seven calendar days in advance. The seed is a number consisting of at least 20 digits, and each digit will be selected in order by sequential rolls of a 10-sided die. The Secretary of State will randomly select members of the public who attend the meeting to take turns rolling the die, and designate one or more staff members to take turns rolling the die in the event that no members of the public attend the meeting. The Secretary of State will publish the seed on the audit center immediately after it is established.

13 Audits

Election audits come in many forms. The two main kinds of audits we focus on in this system are ballot polling audits and comparison audits, both of which are risk-limiting audits.

audits: THEORY

BEGIN

IMPORTING roles

audit: TYPE

Audits are run by audit boards, whose members come from various constituancies and have various roles. Deciding who is on an audit board is also usually a matter of law, policy, and history.

```
audit_board: TYPE = set[audit_board_member]
audit_board_size: AXIOM TBD
audit_board_members_political_parties_disjoint: AXIOM TBD
```

These two terms are used but underdefined at this time. When the C.R.S. or CO law is further refined to explain audit investigations (i.e., the process by which a mismatch between the human adjudication and the machine interpretation is resolved), then we will have clarity on the notions of "audit investigation" and "audit progress".

```
audit_investigation: TYPE
audit_progress: TYPE
```

The count of the total number of ballots to audit varies across audit types. For example, historically in Colorado random audits must audit 500 ballots or 5% of all ballots, whichever is smaller.

```
ballots_to_audit: TYPE = nat
```

We list various other terms relating to audits here. They will be defined and refined in later versions of the domain model.

```
contest_margin: TYPE = nat
margin: TYPE = real

digital_ballot_adjudication: TYPE
manual_ballot_adjudication: TYPE

diluted_margin: TYPE FROM margin

margin_overstatement: TYPE = nat
```

margin_understatement: TYPE = nat

random_audit: TYPE

END audits

14 RLAs

Audits ideally come after all the votes are tabulated, canvassed and reconciled. In Colorado, however, since the certification deadline comes shortly after the last date for voters to cure signature verification problems, etc., there is not always enough time to do them sequentially. An updated vote count may be released at the end of the tabulation and canvass, and the risk limit of the audit needs to apply to the updated outcome.

Given these constraints, it is generally best to audit conservatively. For example, we could assume that any late-tabulation ballots are cast for the losers. As discussed in [BanuelosEtAl12], counties should add a batch of phantom ballots to the manifest, one for each possible late-tabulation ballot. Another possibility, if it turns out that not enough phantom ballots were added, would be to use more flexible Bayes audit techniques to do a followup audit after the late-tabulation ballots and tabulations are available; however, that capability is not implemented at this time.

```
rlas: THEORY
BEGIN
   IMPORTING elections

risk_limit: TYPE = {n : nonneg_real | n <= 100}

risk_limiting_audit: TYPE
   RLA: TYPE = risk_limiting_audit

ballot_polling_audit: TYPE FROM risk_limiting_audit

comparison_audit: TYPE FROM risk_limiting_audit</pre>
```

These are some terms of the art that we will more carefully define as the model is refined.

discrepency: TYPE
random: TYPE

sample_size: TYPE = nat

```
number_of_ballots_to_audit: [audited_contest -> nat]
```

END rlas

Still need to model core RLA algorithm(s).

15 Cast Vote Records

Cast vote records, also known as CVRs, are the digital interpretations of paper ballot records by a computer. They frequently, but not always, contain an interpretation of all voter choices in all contests on a ballot. CVRs are sometimes syntactically written as comma-separated values, and other times in plain English. Some CVRs use a election-specific encoding scheme to represent choices (e.g., a '1' means "John Doe"); others use plain English.

CDOS requirements mandate that CVRs are exported and uploaded to the RLA back-end as CSV files by county officials using their voting systems and the RLA Tool, respectively.

For a given election, there must be a 1-1 correspondence between its ballots and its CVRs.

16 User Interfaces

The user interfaces of the system are the visible interactive parts of the application. There are three different user interfaces in the RLA Tool. The precise names of these interfaces are still under discussion; one is for CDOS personnel responsible for the audit at the state-level, one is for county personnel at the county-level, and one is for audit board members.

```
user_interface: DATATYPE
 WITH SUBTYPES uploading_interface,
                cvr_uploading_interface,
                county_auditing_interface,
                audit_adjudication_interface,
                public_interface
BEGIN
  uploading_interface?:
   make_uploading_interface: uploading_interface
  cvr_uploading_interface?:
    make_cvr_uploading_interface: cvr_uploading_interface
  county_auditing_interface?:
    make_county_auditing_interface: county_auditing_interface
  audit_adjudication_interface?:
    make_audit_adjudication_interface: audit_adjudication_interface
  public_interface?:
   make_public_interface: public_interface
END user_interface
```

After a county administrator attempts to upload artifacts to the RLA system's server, one of several different messages is shown. Each is self-explanatory in this domain model, and each must be used in a scenario of the system.

Authentication attempts can result in two different kinds of message: either a person authenticated successfully, or they did not.

17 Dashboards

The system has several dashboards that are the main user interfaces to the system. State officials use the state-wide dashboard; county officials use the county dashboard; audit board members use the audit board dashboard; and the general public uses the public dashboard.

17.1 Department of State Dashboard

The status of uploaded data will be summarized in a Department of State Dashboard, along with information on which counties have not yet uploaded their CVRs, and uploads that have formatting or content issues. The status of data, and results as audits are performed, will be provided for each contest to be audited.

```
department_of_state_dashboard: THEORY
```

```
BEGIN
    IMPORTING dashboard,
        elections,
        fafessl,
        instructions_forms_reports,
        randomness,
```

rlas

CDOS staff, after authenticating to the state-wide dashboard, can see the status of the entire election. Various static information about the election is displayed along with dynamic information, the type and content of which is dependent upon the current audit stage.

```
audit_stage: TYPE =
  { initial, authenticated, risk_limits_set,
    contests_to_audit_identified, random_seed_published,
    ballot_order_defined, audit_ongoing, audit_complete,
    audit_results_published }
```

No later than 30 days before Election Day, the Secretary of State will establish and publish on the audit center the risk limit(s) that will apply in RLAs for that election. The Secretary of State may establish different risk limits for comparison audits and ballot polling audits, but in no event will the risk limit exceed five percent.

```
establish_risk_limit_for_comparison_audits:
  [department_of_state_dashboard, risk_limit ->
    department_of_state_dashboard]
establish_risk_limit_for_ballot_polling_audits:
  [department_of_state_dashboard, risk_limit ->
    department_of_state_dashboard]
```

The RLA status of each county is a part of the Department of State dashboard. At the moment, from a UX point of view, we are assuming that it is simply rolled into the overall dashboard, thus there is not a state administrator means by which to trigger an update of this data separate from all other election data.

```
county_status: TYPE =
    { no_data, cvrs_uploaded_successfully, error_in_uploaded_data }
upload_status: [department_of_state_dashboard -> set[county_status]]
```

17.1.1 Selection of Audited Contests

No later than 5:00 PM MT on the Friday after Election Day, the Secretary of State will select for audit at least one statewide contest, and for each county

at least one countywide contest. The Secretary of State will select other ballot contests for audit if in any particular election there is no statewide contest or a countywide contest in any county. The Secretary of State will publish a complete list of all audited contests on the audit center. The Secretary of State will consider the following factors in determining which contests to audit:

- 1. The closeness of the reported tabulation outcome of the contests;
- 2. The geographical scope of the contests;
- 3. Any cause for concern regarding the accuracy of the reported tabulation outcome of the contests;
- 4. Any benefits that may result from opportunistically auditing certain contests; and
- 5. The ability of the county clerks to complete the audit before the canvass deadline.

```
audit_reason: TYPE =
    { state_wide_contest, county_wide_contest, close_contest,
        geographical_scope, concern_regarding_accuracy,
        opportunitic_benefits, county_clerk_ability, no_audit }

select_contests_for_comparison_audit:
    [department_of_state_dashboard, set[[contest, audit_reason]] ->
        [department_of_state_dashboard, set[audited_contest]]]
at_least_one_statewide_contest: AXIOM TBD
at_least_one_countywide_contest_per_county: AXIOM TBD
```

At the moment, CDOS has not contracted support for the selection of opportunistic audited contents. But, since we know that CDOS wishes to support this feature in the future, we model it for future support.

```
select_contest_for_opportunistic_audit:
  [department_of_state_dashboard,contest, audit_reason ->
    [department_of_state_dashboard, opportunistic_contest]]
```

Ballots can be randomly selected for audit in two ways, either by:

- 1. permuting all ballots and auditing a prefix of ballots (thereby auditing ballots "with no replacement"); or
- 2. randomly selecting ballots ballot-by-ballot (thereby auditing ballots "with replacement" as the same ballot may be audited multiple times).

Obviously this type has to be strengthened considerably to guarantee permutation. That is, that both the set and the list are finite and converting the list into a set results in a set equivalent to the original set.

```
ballot_permutation:
    [set[ballot] -> list[ballot]]
random_list_of_ballots:
    [set[ballot] -> sequence[ballot]]

print_ballots_under_audit_list:
    [county, list[ballot] -> ballots_under_audit_instructions]
```

17.2 Random Selection of Ballots for Audit

The Secretary of State will randomly select the individual ballots to audit. The Secretary of State will use a pseudo-random number generator with the seed established under subsection (H) of this rule to identify individual ballots as reflected in the county ballot manifests. The Secretary of State will notify each county of, and publish on the audit center, the randomly selected ballots that each county must audit no later than 11:59 PM MT on the tenth day after Election Day.

```
publish_seed:
    [department_of_state_dashboard, seed -> department_of_state_dashboard]
public_ballots_to_audit:
    [department_of_state_dashboard ->
        [department_of_state_dashboard, list[[contest, list[ballot]]]]]
```

The Secretary of State can indicate that a contest must be a full hand count contest.

```
indicate_full_hand_count_contest:
  [department_of_state_dashboard, contest ->
      [department_of_state_dashboard, full_hand_count_contest]]
```

Lastly, state administrators can simply get updates on the current state of the election under audit and its RLAs.

END department_of_state_dashboard

17.3 County Dashboard

The County dashboard is used by county officials to communicate with the Secretary of State for the purpose of planning and executing risk-limiting audits.

Some of the generation information contained in the county dashboard is stipulated by C.R.S.

```
general_static_information: string

establish_audit_board:
  [county_dashboard, set[elector] -> county_dashboard]
```

17.3.1 Verification of Election Report Artifacts

To prepare for uploading of artifacts to the Secretary of State, counties conducting a comparison audit must verify several properties (all of which are discussed in Section 20). After verifying those properties, counties must generate a digest of the CVR file using a hash designated by the Secretary of State.

17.3.2 Digest Generation

After verifying the accuracy of the CVR export, the county must apply a hash value to the CVR export file using the hash value utility provided by the Secretary of State.

Note that this function/feature is implemented by a tool provided by the Secretary of State. We have not been asked to produce such a tool, though one could compute the hash of a file locally in a web browser, so this could be part of our system. From an assurance standpoint it is a better idea to use a completely separate tool, developed independently from us, to perform this hashing.

```
generate_cvr_digest: [cvr_file -> digest]
```

Each county performing a comparison audit must upload a hash (digest) of its ballot manifest to the RLA Tool.

```
generate_ballot_manifest_digest: [ballot_manifest_file -> digest]
```

17.3.3 Comparison Audit Uploads

Each county conducting a comparison audit must upload:

1. its verified and hashed ballot manifest to the RLA Tool;

```
county_upload_verified_ballot_manifest:
  [county_dashboard, ballot_manifest_file, digest ->
    [county_dashboard, email, upload_system_message]]
```

2. its verified and hashed CVR export to the RLA Tool; and

```
upload_verified_cvrs:
  [county_dashboard, cvr_file, digest ->
    [county_dashboard, email, upload_system_message]]
```

3. its RLA tabulation results export to the Secretary of State's election night reporting system.

```
upload_tabulation_results:
  [enr_server, rla_tabulation_outcome -> enr_server]
```

17.3.4 Ballot Polling Audit Uploads

Mo later than 11:59 PM MT on the ninth day after Election Day, each county conducting a ballot polling audit must upload:

- 1. its verified and hashed ballot manifest to the RLA tool; and
- 2. its RLA tabulation results export to the Secretary of State's election night reporting system.

Note that both of these uploads are facilitated by the functions defined above, as their types do not mandate a particular kind of audit on the county.

```
END county_dashboard
```

Improve/strengthen the dependent types in these upload signatures below.

17.4 Audit Board Dashboard

There are a number of assumptions that the RLA Tool audit board dashboard makes with respect to the C.R.S. It also facilitates the comparison audit.

```
audit_board_dashboard: THEORY
BEGIN
    IMPORTING dashboard,
        audits,
        ballots,
        cast_vote_records,
        instructions_forms_reports,
        storage_container
```

The audit board must locate and retrieve from the appropriate storage container each randomly selected ballot. The audit board must verify that the seals on the appropriate storage containers are those recorded on the applicable chain-of-custody logs.

```
ballots_to_audit_to_storage_container_list:
   [list[ballot] -> list[storage_container]]
verify_all_seals_on_storage_containers:
   [list[storage_container] -> list[storage_container]]
```

The audit board must examine each randomly selected ballot or VVPAT and report the voter markings or choices using the RLA Tool or other means specified by the Secretary of State.

```
next_ballot_for_audit:
    [audit_board_dashboard ->
        [ballot_manifest_info, audit_board_dashboard]]

report_markings:
    [audit_board_dashboard, ballot_manifest_info,
        list[ballot_mark] -> audit_board_dashboard]

report_ballot_not_found:
    [audit_board_dashboard, phantom_ballot -> audit_board_dashboard]
```

If a ballot does not have a voter-verifiable paper ballot associated with it then the Audit Board reports the lack of voter-verifiable paper ballot.

```
report_ballot_has_no_voter_verifiable_paper_record:
  [audit_board_dashboard, non_voter_verifiable_ballot ->
  audit_board_dashboard]
```

If supported by the countys voting system, the audit board may refer to the digital image of the audited ballot captured by the voting system in order to confirm it has retrieved the correct ballot randomly selected for audit. If the scanned ballot was duplicated prior to tabulation, the audit board must also retrieve and compare the markings on the original ballot. The audit board must complete its reports of all ballots randomly selected for audit no later than 5:00 PM MT one business day before the canvass deadline.

The audit board must interpret voter markings on ballots selected for audit in accordance with the Secretary of States voter intent guide.

To the extent applicable, the Secretary of State will compare the audit board's reports of the audited ballots to the corresponding CVRs and post the results of the comparison and any margin overstatements or understatements on the audit center.

```
compare_reported_markings_to_cvr:
  [ballot, cvr, list[ballot_mark] ->
   [margin_overstatement, margin_understatement]]
```

The RLA will continue until the risk limit for for each audited contests is met or until a full hand count results. If the county audit reports reflect that the risk limit has not been satisfied in an audited contest, the Secretary of State will randomly select additional ballots for audit. We presume at the moment that if errors are made during the auditing process, we should capture information in the RLA Tool about those errors and their mitigation and resolution.

```
submit_audit_investigation_report:
    [audit_board_dashboard, audit_investigation_report ->
        audit_board_dashboard]

submit_audit_report:
    [audit_board_dashboard, audit_report -> audit_board_dashboard]

signoff_intermediate_audit_report:
    [audit_board_dashboard, audit_report -> audit_board_dashboard]

END audit_board_dashboard
```

17.5 Public Dashboard

public_dashboard: THEORY
BEGIN
 IMPORTING dashboard

We are currently proposing that the following set of data and reports be included on the public dashboard:

- 1. Target and Current Risk Limits, by Contest
- 2. Audit Board names by County
- 3. County Ballot Manifests, CVRs and Hashes (status & download links)
- 4. Seed for randomization
- 5. Ballot Order
- 6. List of Audit Rounds (number of ballots, status by County, download links)
- 7. Link to Final Audit Report

END public_dashboard

18 Authentication

Authentication is currently underspecified in our system design as we do not yet have information from CDOS on the nature and kind of their mandated two-factor authentication system. Consequently, we have only modeled the necessary concepts and features of any two-factor authentication system. Included in this model are the ideas of usernames, passwords, other authentication factors mentioned in CDOS documents (such as biometrics and physical tokens like smartcards and one-time authentication code books), etc.

Given that CDOS is handling two-factor authentication, it is unclear if they want any additional features such as a password reset.

```
roles,
            upload_system_message
  credential: TYPE
  username: TYPE FROM credential
  password: TYPE FROM credential
  complex_enough?: [password -> bool]
  biometric: TYPE FROM credential
 physical_token: TYPE FROM credential
  authentication: TYPE FROM [person, set[credential]]
  two_factor_authentication: TYPE =
    [[username, password], [physical_token + biometric]]
In order to obtain a new, valid credential, some authority must issue credentials
to a specific person.
  issue_credential: TYPE =
    [cdos, state_election, person -> [person, two_factor_authentication]]
What are the credentials that have been issued to this person?
  credential?: [person -> two_factor_authentication]
Is this person authenticated?
  authenticated: [person, two_factor_authentication -> bool]
```

What follows are several functions used to authenticate various roles to their respective dashboards.

Each dashboard has an abstract state machine that captures the dashboard's workflow and consequently identifies which features are visible to its users at various stages. Those abstract state machines and features are modeled in the dashboard modules below. We focus only on authentication here.

```
authenticate_county_administrator:
    [county_dashboard, county_administrator,
        two_factor_authentication -> bool]
authenticate_state_administrator:
    [department_of_state_dashboard, state_administrator,
        two_factor_authentication -> bool]
END authentication
```

Introduce an authentication monad and a state monad for our ASMs.

19 System Architecture

As mentioned early in this chapter, the RLA Tool is a client-server system. As usual for these kinds of systems, the server part of this architectural style is known as the back-end and the client part as the front-end.

```
system_architecture_component: DATATYPE
  WITH SUBTYPES back_end,
                front_end
BEGIN
  IMPORTING database,
            information_systems,
            server
 back_end?(servers: set[server],
            networks: set[network],
            databases: set[database]): make_back_end: back_end
  front_end?(web_browser: web_browser,
             code: javascript_code): make_front_end: front_end
END system_architecture_component
The RLA system focuses on a single election and has a back-end and a front-end.
rla_tool: DATATYPE
BEGIN
  IMPORTING election,
            system_architecture_component
 rla_tool?(election: state_election,
            front_end: front_end,
            back_end: back_end): make_rla_tool
END rla_tool
```

The system architecture consists of:

- 1. several servers of different kinds deployed and configured in a redundant fashion as described elsewhere;
- several databases whose tables and data are transactionally identical (this
 means that after each transaction completes, all databases are guaranteed
 to never witness to a client an inconsistent state relative to that transaction);
- 3. a JavaScript-based front-end whose code comes only from the system's web servers; and

4. HTTPS-based connections between the front-end and the back-end over which the web application transmits data, including new HTML pages, style sheets, data input by the web browser user, etc.

The front-end, which is written in TypeScript and JavaScript, is provided to a web browser client directly from the web server.

```
browser_code_origins: AXIOM
  (FORALL (rla):
    member(code_origins?(code(fe)), servers(be))
    WHERE fe = front_end(rla), be = back_end(rla))

transactionally_synchronized?: [set[database] -> bool]
```

The back-end consists of two or more servers, two or more networks, and two or more databases. At least two of each is necessary because the system must have redundancy to be fault tolerant and not have a single point of failure.

```
redundancy: AXIOM
  (FORALL (be): 2 <= card(servers(be))
        AND 2 <= card(networks(be))
        AND 2 <= card(databases(be)))</pre>
```

Multiple databases need multiple synchronized database servers among the back-end's servers. Note that our model is simplified here insofar as we are presuming that all databases across synchronized database servers are synchronized. It is certainly possible to deploy synchronized databases in a fashion that does not fulfill this requirement, but for all databases relevant to this system, this requirement does hold.

```
database_redundancy: AXIOM
    (FORALL (be): EXISTS (db1, db2):
        member(db1, servers(be)) AND member(db2, servers(be))
AND db1 /= db2
AND transactionally_synchronized?(union(databases(db1),databases(db2))))
END system_architecture
```

20 System Assumptions

This system architecture includes a number of explicit assumptions derived from C.R.S.

```
system_assumptions: THEORY
BEGIN
IMPORTING election,
fafessl
e: VAR state_election
```

According to the section entitled "CVR Export Verification", counties conducting a comparison audit must verify that:

1. The number of individual CVRs in its CVR export equals the aggregate number of ballots reflected in the county's ballot manifest as of the ninth day after election day;

```
CVR_count_equals_ballot_manifest_count: AXIOM TBD
```

2. The number of individual CVRs in its CVR export equals the number of ballots tabulated as reflected in the summary results report for the RLA tabulation;

```
CVR_count_equals_summary_results_report_count: AXIOM TBD
```

3. The number of individual CVRs in its CVR export equals the number of in-person ballots issued plus the number of mail ballots in verified-accepted stage in SCORE, plus the number of provisional ballots and property owner ballots included in the RLA tabulation, if any; and

```
CVR_count_equals_aggregate_count_over_ballot_kinds: AXIOM TBD
```

4. The vote totals for all choices in all ballot contests in the CVR export equals the vote totals in the summary results report for the RLA tabulation.

CVR_vote_totals_equals_summary_results_vote_totals: AXIOM TBD

END system_assumptions

21 System Logging

The system must log a variety of events. One reason to log information is to help understand how the system is operating, fix bugs post-facto, understand how users are using the system, etc. Another, reason to log in this context of this system is to provide an indelible record of administrator and auditor actions so that any audit can be "replayed" by any third party.

logging: THEORY
BEGIN
 log: TYPE = sequence[string]
 chain_of_custody_log: TYPE FROM log
 rla_tool_log: TYPE FROM log
END logging

22 Data Model

A single, mirrored relational database is used to store all persistent information for the RLA Tool. In order to define the data model of the system, we need to:

- 1. identify the *core concepts* that must be persistent in the system
- 2. identify the relationships that must be persistent in the system
- 3. derive from these pieces of information:
 - (a) the necessary tables that collect concepts,
 - (b) the *indexing concept* of each table, and
 - (c) definitions of the appropriate joins that realize relationships

db: VAR database

The first set of data persistently stored relates to authentication. Some of this data will be stored in the two-factor authentication system provided by CDOS. All other data must be stored in the RLA Tool database. In general, each entry in the authentication table is simply an administrator and two-factor authentication credential pair.

```
authentication_table: TYPE =
  sequence[[administrator, two_factor_authentication]]
```

The Department of State dashboard permits State administrators to establish risk limits for each contest, specify which kinds of audits are used for which races and in which counties, etc. Most of the dynamic data available to State administrators is provided via County administrators using the County dashboard.

There is also some background information that relates to the RLA overall, much of which is relevant to the Department of State dashboard. In particular, geographic (such as the identity of the State and its Counties) and political (registered political parties) information must be stored, as must information about each election under audit.

Notice that these tables are simply a flattening of the election data type. This is a standard pattern in mapping HOL specifications to relational data models.

```
geography_table: TYPE =
   sequence[[nation, state, county]]
political_party_table: TYPE =
   sequence[[political_party]]
county_contest_table: TYPE =
   sequence[[county, contest]]

public_meeting_to_determine_seed_table: TYPE =
   [# location: string, date: string #]
rla_information_table: TYPE =
   sequence[[RLA, audit_reason, contest, risk_limit]]
ballots_to_audit_list_table: TYPE =
   sequence[[contest, sequence[ballot_manifest_info]]]
```

County administator actions create and update several kinds of data. For example, they define who is on their audit boards, they generate digests of files critical to the audit (principly, ballot manifests and CVRs), they upload those files, etc.

For general county information, we currently model the data as property/value pairs in a record. For example, we imagine that each county will want to display who their County Clerk is, etc.

```
county_general_information_table: TYPE =
  sequence[[# property: string, value: string #]]
audit board table: TYPE =
  sequence[[county, audit_board_member]]
ballot_manifest_digest_table: TYPE =
  sequence[[# county: county,
              ballot_manifest_file_name: string,
              digest: string,
              data: ballot_manifest_file #]]
cvr_digest_table: TYPE =
  sequence[[# county: county,
              cvr_file_name: string,
              digest: string,
              data: cvr_file #]]
ballot_manifest_table: TYPE =
  sequence[[county, ballot_manifest_info]]
```

Cast vote records uploaded by counties contain CVRs of three kinds: CVRs for local (county) contests, CVRs for contests that span counties, and CVRs for contests that span the whole state. These latter two cases are identical from a modeling point of view, as the whole state is simply a spanning contest over all counties.

We can store and organize this information in several different ways. First, we can simply store the individual CVRs uploaded by a given county in a table.

```
cvr_table: TYPE =
  sequence[[county, cvr]]
```

But we also need to store all CVRs for each contest, aggregating all CVRs across the upload from all counties in which the contest was on the ballot.

```
contest_cvr_table: TYPE =
  sequence[[contest, cvr]]
```

Tabulation results as calculated from the CVRs.

```
tabulation_result_table: TYPE =
  sequence[[contest, cvr_tabulation_outcome]]
```

While running the RLA, the Audit Board uploads information about each ballot they audit. Also, if any investigations are made and remedied during the audit, that information must be stored as well. Finally, after an audit is complete an audit report is uploaded and stored.

All of the information on the public dashboard is derived from the above data.

```
END data_model
```

Add election as first column to every table? Or have a different DB per election?

23 Protocol

As discussed in Sections 7 and 19, the RLA Tool is a client-server system. In this section we describe the protocol used by the client and server to communicate with each other.

The client-side of the system is exclusively a web browser running an HTML/Javascript-based web application. Recall that in Section 19 we mandated that all client artifacts (static content, HTML, and Javascript) are provided directly from the (web) server.

client: VAR front_end
browser: VAR web_browser

The server-side of the system is a web server which communicates over HTTPS. It serves both static content, such as images and HTML fragments, and executable content, such as Javascript code. As such, this is a standard REST-based, multi-tier architecture.

To provide assurance about system availability, we deploy multiple instances of web and application servers providing content and databases providing persistent data storage. All of these artifacts are connected over multiple networks in CDOS's hosting service. We underspecify the details of the deployment network configuration here at the request of CDOS.

server: VAR back_end
servers: VAR set[server]
web_server: VAR web_server

application_server: VAR application_server

networks: VAR set[network]
databases: VAR set[database]

Multiple databases run in a failover configuration. Web application servers communicate with databases over a standard secure remote SQL connection. Web servers serve static content and delegate dynamic content services to the application servers.

All communication between the client web browsers and the server(s) is initiated by the client, as with normal REST-based architectures. As such, functions defined in the dashboards (Section 17) of the system are the endpoint of all communication in the system. The RLA Tool protocol is consequently the union of all of those endpoints.

23.1 Department of State Dashboard Protocol

As discussed in Section 17.1, the Department of State Dashboard has eight (8) features: one for authentication, six for providing information about a given election and RLA, and one for getting updates on the current RLA. Each feature is encoded in a function in the department_of_state_dashboard module.

- 1. authenticate_state_administrator: authentication of state administrators (the mandatory first step in the protocol),
- select_contest_for_comparison_audit: defining the contests under audit.
- 3. publish_seed: the publication of the random seed for RLAs in the election under audit,
- 4. establish_risk_limit_for_comparison_audits: establishments of risk limits for the election under audit,
- 5. select_contest_for_comparison_audit: selection of audited contests for the election under audit.
- 6. public_ballots_to_audit: publishing the list of ballots to be audited for each audited contest,
- 7. indicate_full_hand_count_contest: indicate that a contest must be a full hand count contest, and
- 8. refresh: update the dashboard on the current state of the election and its RLAs, including the status of all counties.

The first mandatory step in the protocol is authentication. All other features can be used in any order, though typically, as mandated by the C.R.S., risk limits are defined earlier than the selection of audited contests. Refreshes are automatic and periodic, the periodicity of which will be determined via UX and load testing.

Each of these functions is a public feature of the system encoding what we call a "public inbound event" to the RLA Tool's servers. By examining one such event in detail, we will elucidate how to read and understand its specification and derive from it our network data model.

23.2 Drill-down Example of a Public Inbound Event

We will examine the function select_contests_for_comparison_audit in detail in this section.

The first thing to note about this function is its *type signature*. The type signature tells us what types of values it depends upon (on the lefthand side of the arrow ("->") and what types of values it produces (on the righthand side). The type signtuare of this function is

[department_of_state_dashboard, set[[contest, audit_reason]] ->
[department_of_state_dashboard, set[audited_contest]]]

As a consequence of the first type parameter mentioned in the signature, this function operates on the Department of State Dashboard, thus is visible to authenticated State administrators.

The second parameter states that the function expects to send a set of pairs of contests and audit reasons to the server. By virtue of the fact these two generic types (sets and pairs) are mentioned says that we must have a means by which to encode those generic notions over the network. Because we are using JSON as our general textual wire encoding format, we have a straightforward means by which to encode such. The mention of the domain-specific types contest and audit_reason mean that we must be able to encode values of these types as well on the wire.

To encode a value of a given type on the wire (and, commensurately, store a value in a database), one must be able to either or both encode its constituant values on the wire or refer to a uniquely identified and encoded value that has been previously defined. The type contest is defined as a record containing strings and choices, the latter of which ends up being encoded as a set of options which are strings. So, in the end, a contest value's contents are nothing more than a structured assembly of strings—a straightforward thing to encode.

The type audit_reason is simply an *enumeration*, thus can be encoded in any number of ways. Commonly such structures are encoded by either string representations of the enumeration's values (such as "state_wide_contest" and "county_wide_contest", for example) or by using an encoding to natural numbers (e.g., 0 means state_wide_contest, etc.). The means of encoding enumerations does not matter, so long as it is a full bijective encoding (encoding covers all values and preserves all information and is reversible). We will discuss the precise means by which we define data types and derive their JSON encodings in ?? below.

The righthand side of the function's type signature says that the dashboard will be updated after the communication with the server completes (successfully or not). If we have sufficient information about potential exceptional failure cases for the function (e.g., we decide to deny the ability for state administrators to call this function twice to update the contests to audit more than once, we may need a response code to indicate such), then the codomain of the function must indicate such. See, for example, county_upload_verified_ballot_manifest

23.3 County Dashboard Protocol

The County Dashboard has four (4) functions defined on it, all of which are public external events: establish_audit_board, county_upload_verified_ballot_marker, how we are doupload_verified_cvrs, and upload_tabulation_results, the meaning and use of each is clear from its definition.

END protocol

Add citation or explanation of encoding of sets and pairs.

Add response code for all external public events.

ing the definition of data types and the derivation of JSON encodings.

24 Domain Model

The overall domain model and specification of this system is the sum total of all concepts introduced in this chapter.

```
terminology: THEORY
BEGIN
  IMPORTING
    ballots,
    elections,
    audits,
    instructions_forms_reports,
    roles,
    randomness,
    cryptography,
    rlas,
    elections_equipment,
    authentication,
    cast_vote_records,
    user_interface,
    dashboard,
    database,
    information_systems,
    system_architecture
END terminology
corla: THEORY
BEGIN
  IMPORTING
    terminology
END corla
```

Todo list

Provide a bit more context in the System Overview	2
Add annotation functions coupled to milestones	5
Need to break the cycle between the contest type and the ballots theory.	7
These types will be refined when we review the information provided	
by CDOS on 20 July 2017 about Dominion's file formats	8
Need to clarify choices vs options vs votes	12
Need to add model information for write-in votes	12
Should this information also include what kind of ballot each ballot	
is? I.e., re-marked, phantom, etc.?	13
These types will be refined when we review the information provided	
by CDOS on 20 July 2017 about Dominion's file formats	13
Ballot position number is still not explicitly specified	13
Should we model a blank vote separately from an undervote? Or do	
they simply use the term blank vote to denote an undervote?	13
Still need to model core RLA algorithm(s)	20
For a given election, there must be a 1-1 correspondence between its	
ballots and its CVRs	20
Obviously this type has to be strengthened considerably to guarantee	
permutation. That is, that both the set and the list are finite and	
converting the list into a set results in a set equivalent to the original	
set	24
Improve/strengthen the dependent types in these upload signatures	
below	27
Introduce an authentication monad and a state monad for our ASMs.	31
Add election as first column to every table? Or have a different DB	
per election?	38
Add citation or explanation of encoding of sets and pairs	41
Add response code for all external public events	41
Explan how we are doing the definition of data types and the derivation	
of JSON encodings.	41