Francisco J. López

Final

Este examen pertenece al Banco de Exámanes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

1. En $\mathbb R$ se define la siguiente familia de subconjuntos:

$$\mathcal{B} = \{ \{q\} : q \in \mathbb{Q} \} \cup \{ |x - \epsilon, x + \epsilon| : x \in \mathbb{R} \setminus \mathbb{Q} \}$$

- lacksquare Demuestra que \mathcal{B} es una base de una topología τ sobre \mathbb{R} .
- lacktriangle Compara au con la topología usual.
- Calcula el interior, adherencia y frontera de los subconjuntos $A = [0, \sqrt{2}]$ y $B = {\sqrt{n} : n \in \mathbb{N}}$ en (\mathbb{R}, τ) .
- 2. Determina la menor topología τ sobre \mathbb{N} tal que $O_n = \{1, \ldots, n\} \in \tau$ para todo $n \in \mathbb{N}$ y la aplicación $f: (\mathbb{N}, \tau) \to (\mathbb{R}, \tau)$, dada por:

$$f(2n) = 2n - 1$$
 $f(2n - 1) = 2n$

es cerrada. Caracteriza los homeomorfismos de (\mathbb{N}, τ) en (\mathbb{N}, τ) y encontrar un homeomorfismo del producto $(\mathbb{N}^2, \tau(\tau \times \tau))$ que no sea producto de ellos.

- 3. Sea (X,τ) un espacio topológico de Hausdorff. Prueba:
 - Si $f:([0,1],\tau_u)\to (X,\tau)$ es una aplicación continua con $f(0)\in A\subset X$ y $f(1)\in X\backslash A$, entonces existe $t\in [0,1]$ tal que $f(t)\in \partial A$.
 - No existe una topología $\tau' = \tau$ sobre X con (X, τ') compacto y $\tau \subset \tau'$.
- 4. En $X = \mathbb{R} \times \{-1, 1\}$ se considera la relación de equivalencia:

$$(x_1, x_2)R(y_1, y_2) \iff \begin{cases} (x_1, x_2) = (y_1, y_2) \\ x_1, y_1 \le -2 \\ x_1, y_1 \ge 2 \end{cases}$$

- Estudia si la proyección $\pi:(X,\tau_u)\to (X/R,\tau_u/R)$ es abierta o cerrada.
- Probar que $(X/R, \tau_u/R)$ es homeomorfo a (\mathbb{S}^1, τ_u) .

Rafael López Camino

Final

Este examen pertenece al Banco de Exámanes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen

- 1. Sea $([0,2],\tau)$ donde $\tau=\{O\subset [0,2]:]0,1[\subset O\}\cup \{\emptyset\}$. Halla el interior y la adherencia de A=[0,1]. Prueba que A es compacto, pero no \overline{A} .
- 2. Prueba que cada par de conjuntos no son homeomorfos:
 - N y Q.
 - $\blacksquare \ A =]-1,0[\cup]0,1[\ y\ B =]-1,0[\cup]0,1].$
 - $A = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} \text{ y } B = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \ge 1\}.$
- 3. Establece de forma explícita un homeomorfismo entre:

$$\mathbb{S}^1 \times \mathbb{R}$$
 $X = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2 \mid z > 0\}$

4. Estudia la continuidad de la aplicación $f:(\mathbb{R},\tau_S)\to(\mathbb{R},\tau_S)$ dada por f(x)=sen(x). Estudia cuándo un subconjunto A de (\mathbb{R},τ_S) es conexo.

Final

Este examen pertenece al Banco de Exámanes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen

1. En $X = \mathbb{R} \times \{1, 5\}$ se considera la relación de equivalencia:

$$(x,y)R(x',y') \iff \begin{cases} (x,y) = (x',y') \\ x,x' \leq 0 \\ x,x' \geq 2 \end{cases}$$

- Estudia si la proyección $\pi:(X,\tau_u)\to (X/R,\tau_u)$ es abierta o cerrada.
- Calcula el interior de $\pi([1,2]\times 1,5)$ en $(X/R,\tau_u)$.
- Halla las componentes conexas de $\pi([0,1]\times\{1,5\})$.
- Estudia si $(X/R, \tau_u)$ es homeomorfo a (\mathbb{S}^1, τ_u) .
- 2. Sea $Y' = Y \cup \{p\}$, con (Y, τ) espacio topológico compacto, $p \notin Y$ y la familia

$$\tau' = \tau \cup \{O' \subset Y' : Y' \backslash O' \text{ es cerrado en } (Y, \tau)\}$$

- \blacksquare Prueba que τ' es una topología sobre Y'.
- Estudia si la identidad $1_Y: (Y,\tau) \to (Y,\tau')$ es un homeomorfismo.
- Prueba que $(Y'\tau')$ es compacto.
- Calcula la adherencia de Y en $(Y'\tau')$.
- 3. Razona si los siguientes subespacios de (\mathbb{R}^2, τ_u) son homeomorfos:
 - $A = \{(x, y) \in \mathbb{R}^2 : y = sen(\frac{1}{x}) \mid x \in]0, 1]$
 - $A \cup \{(0,0)\}$
 - $B = [0, 2] \times \{0\}$
 - Ā
 - <u>B</u>
 - $C = \{0\} \times [-1, 1]$
 - B ∪ C

Recuperación

Este examen pertenece al Banco de Exámanes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

- 1. Sea \mathbb{R} con la topología $\tau_p = \{U \subset \mathbb{R} : p \in U\} \cup \{\emptyset\}$ para $p \in \mathbb{R}$.
 - Caracteriza los entornos de $x \in \mathbb{R}$.
 - Prueba que $f:(\mathbb{R},\tau_p)\to(\mathbb{R},\tau_q)$ es continua si, y sólo si, f es constante ó f(p)=q.
 - Deduce que (\mathbb{R}, τ_p) y (\mathbb{R}, τ_q) son homeomorfos.
- 2. En $\mathbb{R} \times \{0,1\}$ se considera la familia de subconjuntos:

$$\mathcal{B} = \{ |a, b| \times \{0, 1\} : a < b \}$$

- Demuestra que \mathcal{B} es base de una topología τ sobre $\mathbb{R} \times \{0,1\}$.
- Estudia si los siguientes conjuntos son compactos en $(\mathbb{R} \times \{0,1\})$:

$$A = [2,3] \times \{0\} \cup]2, 3[\times \{1\} \qquad \qquad B =]2, 3[\times \{0\} \times [2,3] \times \{1\} \qquad \qquad A \cap B$$

- Calcula si las componentes conexas de $(\mathbb{R} \times \{0,1\})$.
- 3. En X = [-2, 2] con la topología usual inducida se define la relación de equivalencia:

$$xRy \iff \left\{ \begin{array}{l} x=y \\ y \in [-2,1] \cup [1,2] \end{array} \right.$$

- estudia si la proyección natural es abierta o cerrada.
- Prueba que $(X/R, \tau_u)$ es homeomorfo a (\mathbb{S}^1, τ_u) .
- 4. Razona si los siguientes subespacios de (\mathbb{R}^2, τ_u) son homeomorfos:
 - S¹
 - $X = [-1,1] \times \{-1,1\} \cup \{-1,1\} \times [-1,1]$
 - \blacksquare $\mathbb{S}^1 \cup \mathbb{R} \times \{1\}$
 - $\blacksquare \ \mathbb{S}^1 \cup X \times \{1\}$
 - $\blacksquare \mathbb{S}^1 \cup \mathbb{R} \times \{0\}$

Final

Este examen pertenece al Banco de Exámanes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

- 1. Sea $X =]0, 1[\cup]1, 2] \cup \{29\}$ un subconjunto de \mathbb{R} y τ la topología usual inducida en X.
 - ¿Es $A =]1, 2] \cup \{29\}$ un abierto en (X, τ) ?
 - lacktriangle Calcula la adherencia de A.
 - \blacksquare Calcula la frontera de A.
 - ¿Es (A, τ_A) compacto?
- 2. La afirmaciones siguientes son falsas. Da en cada caso un contraejemplo adecuado para demostrarlo:
 - La unión arbitraria de abiertos de un espacio topológico es un abierto.
 - El interior de la intersección de dos subconjuntos es igual a la intersección del interior de cada subconjunto.
 - Un subconjunto de un espacio euclídeo \mathbb{R}^n que esté contenido en una bola abierta es siempre un compacto.
- 3. ¿Son $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$ y $C^+ = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z^2 = 0, z > 0\}$ homeomorfos? Da un homeomorfismo entre ellos.
- 4. En el conjunto \mathbb{N} se define el subconjunto $\beta = \{D_n \subset \mathbb{N} : n \in \mathbb{N}\}$, donde D_n es el conjunto de los divisores de n.
 - \blacksquare Demuestra que β es base de una topología en $\mathbb{N}.$
 - Estudia si $(\mathbb{N}, \tau_{\beta})$ es un espacio T_2 , si es compacto y si es conexo.
- 5. Demuestra que si X es un espacio topológico tal que $X = \bigcup_{n=1}^{\infty} A_n$, donde los A_n son subconjuntos de X conexos y tales que $A_n \cap A_{n+1} \neq \emptyset \quad \forall n \in \mathbb{N}$, entonces X es conexo.

Final

Este examen pertenece al Banco de Exámanes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

1. Sea X un conjunto y $A\subset X$ un subconjunto no vacío. Se define la familia τ de subconjuntos de X definida por:

$$\tau = \{O \subset X : A \subset O\} \cup \{\emptyset\}$$

Pruébese que τ es una topología. Calcúlese el interior y la adherencia de A. Descríbase una base de entornos de cada punto de X formada por unn único entorno.

- 2. Demuéstrese que las siguientes afirmaciones son falsas poniendo un contraejemplo adecuado:
 - Si en un espacio topológico la familia de los conjuntos abiertos coincide con la familia de los conjuntos cerrados, entonces el espacio o es discreto o trivial.
 - La adherencia de la intersección de dos subconjuntos de un espacio topológico cualquiera coincide con la intersección de sus adherencias.
 - La unión de dos topologías definidas sobre un mismo conjunto es otra topología.
- 3. Sea $f:(X,\tau)\longrightarrow (X',\tau')$ una biyección continua entre un espacio (X,τ) compacto y otro (X',τ') de Hausdorff. Demuéstrese que f es un homeomorfismo.
- 4. Sea (X, τ) un espacio topológico en el que existe un punto $x_0 \in X$ que tiene un único entorno. Pruébese que tal espacio es siempre compacto y conexo. ¿En qué condiciones sería T_2 ?
- 5. Decídase razonadamente si el espacio producto $\mathbb{S}^1 \times \mathbb{R} \subset \mathbb{R}^2 \times \mathbb{R} = \mathbb{R}^3$ (donde el primer factor está dotado de la correspondiente topología inducida de la euclídea del plano y el segundo de la euclídea de la recta) y el hiperboloide $H = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z^2 = 1\}$ son o no son homeomorfos

Francisco Urbano Pérez-Aranda

Tipología de examen: Final

Este examen pertenece al Banco de Exámenes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

1. (3-4 puntos) Sea $X = \{1, 2, 3, 4, 5\}$ y τ la siguiente familia de subconjuntos de X:

$$\tau = \{X, \emptyset, \{1\}, \{4, 5\}, \{1, 4, 5\}\}\$$

- a) Probar que τ es una topología en X y encontrar una base de τ .
- b) Encontrar el sistema de entornos y una base de entornos de los puntos 1, 2 y 4.
- c) Calcular el interior, la adherencia y la frontera de los subconjuntos A y B, siendo

$$A = \{2, 3\}$$
 $B = \{1, 4\}$

d) Sea $f:([0,1],\tau_u)\to (X,\tau)$ la aplicación

$$f(t) = \begin{cases} 1 & \text{si } t \in [0, \frac{1}{2}) \\ 3 & \text{si } t \in [\frac{1}{2}, 1] \end{cases}$$

f Es f una aplicación continua?

- e) Encontrar el grupo de homeomorfismos de (X, τ) .
- f) Sea R la relación de equivalencia en X dada por xRx, $\forall x \in X$, 2R4, 4R2, 3R5 y 5R3. Describir el espacio cociente $(X/R, \tau/R)$.
- g) Calcular los subconjuntos conexos de (X, τ) y estudiar si (X, τ) es un espacio conexo por arcos.
- 2. (3 puntos) Sean $D^n = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n | x_1^2 + \dots + x_n^2 \le 1\}$ dotado de la topología usual (la inducida de la Euclídea). Se define la relación de equivalencia R en D^n dada por:

$$xRy$$
 si $x = y$ o $||x|| = ||y|| = 1$

- a) Estudiar si la proyección $\pi:(D^n,\tau_u)\to (D^n/R,\tau_u/R)$ es abierta o cerrada.
- b) Probar que $(D^n/R, \tau_u/R)$ es Hausdorff, compacto y conexo.
- c) Identificar topológicamente el espacio $(D^n/R, \tau_u/R)$.

Indicación: Considerar la aplicación $f:D^n\to\mathbb{R}^{n+1}$ dada por $f(x)=(\frac{\sin(\pi||x||)}{||x||}x,\cos(\pi||x||))$

3. (4 puntos) Sea (X, τ) un espacio topológico no compacto y ∞ un punto no perteneciente a X. En $\widehat{X} = X \cup \{\infty\}$ definimos la familia $\widehat{\tau} = \tau \cup \tau(\infty)$, donde:

$$\tau(\infty) = \{O \subset \widehat{X} | \widehat{X} - O \text{ es un subconjunto cerrado y compacto de } (X, \tau)\}$$

- a) Probar que τ y $\tau(\infty)$ son disjuntas y que $\hat{\tau}$ es una topología en \hat{X} .
- b) Probar que $\hat{\tau}_X = \tau$, esto es, que la topología inducida por $\hat{\tau}$ en X es τ .
- c) Probar que $\overline{X} = \hat{X}$ y que ∞ no es un punto aislado en $(\hat{X}, \hat{\tau})$.
- d) Probar que $(\widehat{X}, \widehat{\tau})$ es compacto.
- e) Si $(X, \tau) = (\mathbb{R}, \tau_u)$, ¿sabrías identificar al espacio $(\widehat{X}, \widehat{\tau})$?
- 4. (3 puntos) Sea $X = (\bigcup_{n \in \mathbb{N}} A_n) \cup B$, donde A_n es el segmento de recta en \mathbb{R}^2 uniendo los puntos (0,0) y $(1, \frac{1}{n})$ y $B = \{(t,0) \in \mathbb{R}^2 | \frac{1}{2} < t \le 1\}$. Dotamos a X de la topología usual (inducida de la Euclídea).
 - a) Probar que (X, τ_u) es un espacio conexo. ¿Es (X, τ_u) conexo por arcos?
 - b) Calcular las componentes conexas de $(X \{(0,0)\}, \tau_u)$

Francisco Milán y Francisco Martín

Tipología de examen: Final

Este examen pertenece al Banco de Exámenes de la Asociación de Estudiantes de Matemáticas de la Universidad de Granada. Si bien su autoría corresponde a los profesores ya citados, en la asociación nos encargamos de almacenarlos y ceder su uso a los estudiantes para que sea más satisfactoria su labor a la hora de preparar un examen.

Todos los ejercicios tienen la misma puntuación.

- 1. Sea $\mathbb R$ con la topología $\tau_p = \{O \subset \mathbb R \, / \, p \in O\} \cup \{\emptyset\}$, para $p \in \mathbb R$.
 - a) Caracterizar los entornos de $x \in \mathbb{R}$.
 - b) Probar que $f:(\mathbb{R},\tau_p)\to(\mathbb{R},\tau_q)$ es continua si y solo si f es constante o $f(p)=q\in\mathbb{R}$.
 - c) Deducir que (\mathbb{R}, τ_p) y (\mathbb{R}, τ_q) son homeomorfos.
- 2. Sea $f:(X,\tau)\to (Y,\tau')$ una aplicación biyectiva. Probar que son equivalentes:
 - a) f es continua y abierta.
 - b) $f(\overline{A}) = \overline{f(A)}, \forall A \subset X.$
- 3. a) Razonar si puede existir una biyección abierta del plano (\mathbb{R}^2, τ_u) en algún cociente de la esfera $(\mathbb{S}^2, (\tau_u)_{\mathbb{S}^2})$.
 - b) Probar que si $\mathcal{B} = \{B_i / i \in I\}$ es una base de (\mathbb{R}^2, τ_u) , entonces las componentes conexas de B_i , $i \in I$, forman otra base de (\mathbb{R}^2, τ_u) .