According A

A.
$$\overline{z}_{4} = -\sqrt{3} + \lambda i$$
 forme algebrique

 $\overline{z}_{4} = \overline{n}_{1} \cdot \psi_{1} = 0 + b i$

$\overline{n}_{4} = |\overline{z}_{1}| = \sqrt{-\sqrt{3}} \cdot v_{1} = \sqrt{3} \cdot \lambda = 2$

$\overline{coo} \varphi_{4} = \frac{\alpha}{n_{1}} = \frac{-\sqrt{3}}{2}$

Doin $\varphi_{1} = \frac{h}{n_{2}} = \frac{1}{2}$

Prome trigonomitrique de $\overline{z}_{1} : \overline{z}_{1} = 2 \text{ cin } 5\overline{z}_{2}$

forme trigonomitrique de $\overline{z}_{1} : \overline{z}_{2} = 2 \text{ cin } 5\overline{z}_{2}$
 $\overline{z}_{2} = \frac{3\sqrt{3} \cdot (2 - a) - 3 \cdot (1 + a)}{\sqrt{3} - \lambda} \cdot \frac{\sqrt{3} + b}{\sqrt{3} + b}$
 $\overline{z}_{2} = \frac{3\sqrt{3} \cdot (2 - a) - 3\sqrt{3} \cdot (a - a)}{\sqrt{3} - \lambda} \cdot \frac{\sqrt{3} \cdot (a + a)}{\sqrt{3} + b}$
 $\overline{z}_{2} = 7\overline{z}_{1} \cdot \cos \varphi_{1} = \alpha + b i$

$\overline{n}_{2} : |\overline{z}_{2}| = \sqrt{(-3\sqrt{3})^{2} + (-3\sqrt{3})^{2}} = \sqrt{3}\overline{z}_{1} \cdot \frac{\sqrt{3}}{2} + \frac{1}{2}$

$\overline{n}_{2} : |\overline{z}_{2}| = \sqrt{(-3\sqrt{3})^{2} + (-3\sqrt{3})^{2}} = \sqrt{3}\overline{z}_{2} \cdot \frac{\sqrt{3}}{2}$

$\overline{n}_{2} : |\overline{z}_{2}| = \sqrt{(-3\sqrt{3})^{2} + (-3\sqrt{3})^{2}} = \sqrt{3}\overline{z}_{2} \cdot \frac{\sqrt{3}}{2}$

$\overline{n}_{2} : |\overline{z}_{2}| = \sqrt{3}\overline{s}_{2} = -\frac{A}{\sqrt{2}} = -\frac{A}{2}$

$\overline{n}_{3} : |\overline{z}_{3}| = -\frac{A}{\sqrt{3}} = -\frac{A}{\sqrt{2}} = -\frac{A}{2}$

$\overline{n}_{3} : |\overline{z}_{3}| = -\frac{A}{\sqrt{2}} = -\frac{A}{2}$

$\overline{z}_{3} : |\overline{z}_{3}| = -\frac{A}{2} = -\frac{A}{2} : |\overline{z}_{3}| = -\frac{A}{2} : |\overline$

Aloni: $\varphi_2 = \frac{2\pi}{4} + 2RT$, $R \in \mathbb{Z}$ forme trigonométrique de Z_2 : $Z_2 = 3\sqrt{6} \cdot \text{cis} = \frac{5T}{4}$

2.
$$\frac{2}{2}$$
, $\frac{2 \cdot \sin \frac{SII}{6}}{3\sqrt{6} \cdot \sin \frac{SII}{3}}$, $\frac{2\sqrt{6}}{3 \cdot 6} \cdot \cos \left(\frac{SII}{6} - \frac{SII}{4}\right)$
 $\frac{1}{3}$, $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$

= \(\sigma \) (a) forme trigonométrique

$$\frac{2}{2_{2}} = \frac{-\sqrt{5} + \lambda}{-3\sqrt{5} - 3\sqrt{5} \lambda} = \frac{-\sqrt{3} + \lambda}{-3\sqrt{5} (4 + \lambda)} \cdot \sqrt{5} \cdot \frac{A - \lambda}{A - \lambda}$$

$$= -\frac{(-\sqrt{5} + \lambda) \cdot \sqrt{5} \cdot (4 - \lambda)}{3(A + \lambda)}$$

$$= -\frac{4}{18} \cdot (-\sqrt{5} + \sqrt{5} \lambda + \lambda + \lambda)$$

$$= +\frac{A}{18} \cdot (3 - 3\lambda - \sqrt{5} \lambda - \sqrt{3})$$

$$= \frac{A}{18} \cdot [(3 - \sqrt{5}) + \lambda (-3 - \sqrt{5})]$$

$$= \frac{3 - \sqrt{5}}{18} + \frac{-3 - \sqrt{5}}{18} \cdot \lambda (2) \text{ observe algebrique}$$

$$(\text{oritime } (A) = (\lambda)_{1} \text{ on } \Omega \cdot \frac{1}{18} \cdot (\text{cos} (-\frac{5\pi}{A}) + \lambda) \sin((-\frac{5\pi}{A})) = \frac{3 - \sqrt{5}}{18} + \frac{3\pi}{48}$$

$$(\text{cos} (-\frac{5\pi}{A}) = \frac{3 - \sqrt{5}}{18} \cdot \frac{3}{\sqrt{6}}$$

$$(\text{cos} (-\frac{5\pi}{A}) = \frac{3 - \sqrt{5}}{2\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}$$

$$(\text{cos} (-\frac{5\pi}{A}) = \frac{3 - \sqrt{5}}{2\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}$$

$$(\text{cos} (-\frac{5\pi}{A}) = \frac{3 - \sqrt{5}}{2\sqrt{6}} \cdot \frac{\sqrt{6}}{\sqrt{6}}$$

$$(\text{cos} (-\frac{5\pi}{A}) = \frac{3\sqrt{6} - \sqrt{18}}{2\sqrt{6}}$$

$$(\text{cos} (-\frac{5\pi}{A}) = \frac{3\sqrt{6} - \sqrt{3\sqrt{2}}}{2\sqrt{6}}$$

$$(\text{cos} (-\frac{5\pi}{A}) = \frac{3\sqrt{6} - \sqrt{3\sqrt{2}}}{2\sqrt{6}}$$

$$(\text{cos} (-\frac{5\pi}{A}) = \frac{3\sqrt{6} - \sqrt{3\sqrt{2}}}{2\sqrt{6}}$$

$$(3) \begin{cases} \cos \left(-\frac{5\pi}{12}\right) = \frac{3\sqrt{6} - 3\sqrt{2}}{2\cdot 6} \\ \sin \left(-\frac{5\pi}{12}\right) = \frac{-3\sqrt{6} - 3\sqrt{2}}{2\cdot 6} \\ \cos \left(-\frac{5\pi}{12}\right) = \sqrt{6} - \sqrt{2} \end{cases}$$

(3)
$$\left(\frac{517}{11}\right) = \frac{\sqrt{6} - \sqrt{2}}{4}$$

$$\operatorname{Ain}\left(-\frac{517}{11}\right) = -\frac{\sqrt{6} - \sqrt{2}}{4}$$

d'où : don
$$\left(-\frac{5\overline{11}}{11}\right) = \frac{\sin\left(-\frac{5\overline{11}}{11}\right)}{\cos\left(-\frac{5\overline{11}}{11}\right)} = \frac{-\sqrt{6}-\sqrt{2}}{4} \cdot \frac{4}{\sqrt{6}-\sqrt{2}}$$

$$don\left(-\frac{511}{A2}\right) = \frac{-V6 - V2}{V6 - V2} \cdot \frac{V6 + V2}{V6 + V2}$$

4.
$$z_1 := \sqrt{5} + i = 2 \cdot cis \frac{5\pi}{6}$$

$$|x = \sqrt{2} | x = \sqrt{2} | x = 2 \cdot cis \frac{5\pi}{6}$$

$$|x = \sqrt{2} | x = \sqrt{2\pi} | x = 2 \cdot cis \frac{5\pi}{6} | x = 2 \cdot cis \frac{2\pi}{6} | x$$

en de la la completación de la com La completación de la completación de la completación de la completación de la completación de la completación

ا با آنام المعادي بعد المياري الميارية المعادية المعادية المعادية المعادية المعادية المعادية المعادية المعادية والمعادية المعادية ا

راي ي السائر والسروح و براي براي بيني والمستور و المراز و المراز و المراز و المراز و المراز و المراز

الراجعة مستسبس فللماكي بمسائل الراجع الراجع المراجع الأفساع والأنجيان والمساج المرجع المرجع المرجع المرجع

الراقي الإنهادات الزغاه والمنبط المعطيط المستدي والمالا

الكران في المراج المراج المراج المراج المرج المرج المراج المراج المراج المراج المراج المراج المراج المراج المراج

그 사이를 모든 내내를 보면서 없는 사람이 하나는 모든 내용을 즐겁는 수 있는 그는 사람은 점점을 받았다.

و و الكريات أن المحمد أأ مستحد أن عن إنساس الأوا. و و الكريات أن المحمد أن مستحد أن عن إنساس الأوا.

en announce a les amontés de la gran a de marches à ambient de métro de me

The second secon

and the second s

سيوني وللمناب والمبط ويستكار معدوها والراوال الأسر The second secon

الله المعجمة بالطراب المهينية الفرايا المهارية

مناها أنما ولينفه للمتهل فالمتهاج والمارات والمارات

```
Question 2
      Di est une racine de P(2) soi P(bi)=0
  (bi) - (3+2i)(bi) + 3bi (5+i)+2·(7i-3)=0
(=) -632 - (3+2i)·(-6) + 1562 - 36 + 142 - 18 = 0
    i (-63+262+15b+14) + (362-36-18)=0
     ( - 63 + 26 + 156 + 14 = 0
                36-36-18=0 1:3
         - 6 + 26 + 156 + 18-0
             b2 - b - 6 20
               (6+2).(6-3)
             8+8-30+14=0
   b =-2:
             - 27 + 18 + 45 + 14 +0
  b=3:
            b = -2 est solution et olons
                                         Z = -2 i est une novine
                                          de P(Z)
   - - 3-2i
                    15+3i
                              141-18
                     -8+6+
                              -146 + WP
                     7+82
        P(2) = (2+22) · [2+(-3-46)2+7+8i]
                           A=(-3-4i)2-4. (7+8i)
                                 = 3+242-16-28-36x
                                 = -35 - 12i
  Déterminons les socieses complexes de D
                                                5 2 0
   Soit 5=x+yi tel que 5 = 1
                                                  (=) X M = (-35) 4-4)
                       (*) X - Y = -35
244 = -42 1:2
                                                        = 4363
                       (a) X1-7, 3-32
                                          (1)+(3): X=1 (3) X=1 on x=-1
                       \begin{cases} x^{2} - y^{2} = -35 & (4) \\ xy = -6 & (2) \\ x^{2} + y^{2} = 37 & (3) \end{cases}
   Répolvom le système:
                                          [3]-11): y=36(=) y=6 on y=-6
```

Comme xy = -6 < 0, x et y ent des signes contrainesDonc: $S_1 = 1 - 6\lambda$; $S_2 = -1 + 6i$ et elon $\Delta = (1 - 6i)^2$ $Z_4 = \frac{3 + 4i + 1 - 6i}{2} = \frac{4 - 2i}{2} = 2 - i$ $Z_4 = \frac{3 + 4i - 1 + 6i}{2} = \frac{2 + 10i}{2} = 1 + 5i$ $S_6 = \{-2i; 2 - i; 1 + 5i\}$

Quedion 3
$$|m \times - y + z| = m$$

 $|-x + 2y + mz| = 2$
 $|-x - y - mz| = A$
 $|-x - y| = -m \cdot (-2m + m) + 1 \cdot (m + m) + A \cdot (A + 2)$
 $|-A - A - m| = -m \cdot + 2m + 3$
 $|-A - A - m| = -m \cdot + 2m + 3$
 $|-A - A - m| = -m \cdot + A \cdot (m - 3)$
 $|-A - A - m| = -m \cdot (-2m + m) + A \cdot (-2m + m) + A \cdot (-2 + 2)$
 $|-A - A - m| = -m \cdot (-2m + m) + A \cdot (-m + A) - A \cdot (m^2 - 2)$
 $|-A - A - m| = -m \cdot (-2m + m) + A \cdot (-m^2 + A) - A \cdot (m^2 - 2)$
 $|-A - A - m| = -m \cdot (-2m + m) + A \cdot (-m^2 + A) - A \cdot (m^2 - 2)$
 $|-A - A - m| = -m \cdot (-2m + m) + A \cdot (-m^2 + A) - A \cdot (m^2 - 2)$
 $|-A - A - m| = -m \cdot (-2m + m) + A \cdot (-m^2 + A) - A \cdot (m^2 - 2)$
 $|-A - A - m| = -m \cdot (-2m + m) + A \cdot (-m^2 + A) - A \cdot (m^2 - 2)$
 $|-A - A - m| = -m \cdot (-2m + m) + A \cdot (-m^2 + A) - A \cdot (-2 - 2m)$
 $|-A - A - m| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m \cdot (-2m + 2m) + A \cdot (-2m + 2m) + A \cdot (-2m + 2m)$
 $|-A - A| = -m$

```
Les 3 plans
                     m'ent per de point commun
                      (AO) = \begin{cases} X = 5 - k \\ Y = -3 + 2k \end{cases} k \in \mathbb{R}
2 = k
Question 4 1.
\overrightarrow{AB}\begin{pmatrix} -2\\4\\2 \end{pmatrix} on \overrightarrow{A}\begin{pmatrix} -4\\1\\4 \end{pmatrix}
2. (AM) NII
                    X= 5-6 (4)
                      1 y=-3+2 (2)
                      4x-y+22-3=0 (4)
   (4),(4),(3) dom (4): 20-4 R = 3-2 + 2 R-3=0
                     (=) -4 R + 20 =0
     Done: (AB) ATT = {I(0;7;5)} la droite (AB) pour le plan II en I
     Verteur normal ni à TI: ni (-1) est vert. dir. de TI'
       H(x, y; ≥) ∈ T (=> AH est une combinaison linéaire de de etm
                        (e) det [AH, ii, m) =0
                       (a) X-7 -1 4 30
                        Yt7 2 -1
                       e) (x-7). (4+1)-(y+7)(-2-4)+(2+2). (1-8)=0
                       (e) 5x-35+6y+42-72-14=0
                       (=) 5x+6y-72-4=0
       Done: T = 5x+6y-72-7=0
        T / T = \begin{cases} 4x - y + 22 - 3 = 0 & (1) \\ 5x + 6y - 72 - 7 = 0 & (2) \end{cases}
      Chairing X = a , a & R : \ Y - 22 = 4 d -3 \ (-6)
                                          64-72 - 74 +7
```

(=)
$$\begin{cases} Y-2z=4a-3\\ 5z=-14a+25 \}:5 \end{cases}$$

Dom: Les oleux plans Tet T'se coupent socident une devite d'possant par D(0;7;5) et de vecteur directeur

5.
$$C(3,4,-1) \in d^{1/2}$$

(=)
$$\begin{cases} -3 = -42 \\ -6 = -51 \end{cases}$$
 impossible