1. A method of fabricating a dental restoration comprising:

providing a framework possessing a coefficient of thermal expansion of as high as about 18×10^{-6} °C; and

fusing a dental porcelain composition comprising a leucite crystallite phase dispersed in a feldspathic glass matrix to said framework to provide a smooth, non-abrasive surface thereon;

said fused dental porcelain composition having a maturing temperature in the range from about 750° to about 1050° C., a coefficient of thermal expansion (room temperature to 450° C.) of from about 12×10^{-6} °C to about 17.5×10^{-6} °C, and comprising:

10

5

Component	Amount (wt. %)
SiO ₂	57-66
Al ₂ O ₃	7-15
K ₂ O.	7-15
Na ₂ O	7-12
Li ₂ O	0.5-3

15

and further comprising a dispersed leucite crystallite phase representing from about 5 to about 65 weight percent of the dental porcelain, and wherein the leucite crystallites possess diameters not exceeding about 10 microns.

 The method of Claim 1 wherein the leucite crystallites of the fused porcelain have diameters not exceeding about 5 microns.

- The method of Claim 2 wherein the leucite crystallite are less than have diameters not exceeding about 1 micron.
- 4. The method of Claim 1, wherein the dental porcelain has a maturing temperature of from about 800° to about 1000°C.
- 5. The method of Claim 1, wherein the dental porcelain is fired at a temperature ranging from about 780° to about 870°C.
 - 6. The method of claim 1, wherein the fused porcelain is a two-phase porcelain.
- 7. The method of Claim 1 wherein the fused dental porcelain composition further comprises at least one of:

Component	Amount (wt. %)
CaO	0-3
MgO	0-7
F	0-4
CeO ₂	0-1.