

国际理科

【国际数学竞赛】还有其他解法吗?!

双木止月...

上海大学 运筹学与控制论硕士

+ 关注他

19 人赞同了该文章

之前发过《一题七解——几何知识串讲》想通过一道题把几何知识点串讲一下,现 在又拿出来想了一下,发现还有很多不同的解法,感觉很有趣。下面把题目以及 方法写出来, 大家可以想想还有其他解法吗?

2009-AMC10B-20

大家可以直接思考下面两个问题,看看自己能想到多少种解法:

▲ 赞同 19

● 9条评论

7 分享

★ 收藏

【下面是我想的方法仅供参考】

【一题多解】

问题一方法			问题二方法	
1	勾股定理	1	余弦定理	
2	相似三角形	2	托勒密定理	
3	面积法	3	等腰三角形性质	
4	三角函数	4	面积法	
5	余弦定理	5	互补角的余弦值相反	
6	角平分线定理	6	向量法	
7	圆幂定理	7	两点间距离公式	
8	点到直线距离公式	8	斯特瓦尔特定理	
9	两角和差公式	9		
10	梅涅劳斯定理			
11			知乎 @双木止月Tong	

首先是第一题: BD=?

0 勾股定理

相似-

在RtDCDE中

$$(2-x)^2 = (\sqrt{\xi}-1)^2 + \chi^2$$

$$\frac{2\sqrt{5}-2=4x}{x=\sqrt{5}-1}$$

LC=LC, LCED = LCBA

@双木止月Tong

▲ 赞同 19

● 9条评论

7 分享

$$S_{\Delta}ABC = S_{\Delta}ABD^{+}S_{\Delta}ADC$$

$$\frac{1}{2}\cdot 1\cdot 2 = \frac{1}{2}\cdot 1\cdot X + \frac{1}{2}\cdot X\cdot \sqrt{5}$$

$$1 = \frac{12\sqrt{5}}{2} \times X$$

$$X = \frac{2}{\sqrt{5}+1} = \frac{2(\sqrt{5}-1)}{5-1}$$

$$X = \frac{\sqrt{5}-1}{2}$$

Sin C =
$$\frac{1}{\sqrt{5}}$$
 = $\frac{x}{2-x}$
Cosc = $\frac{2}{\sqrt{5}}$ = $\frac{\sqrt{5}-1}{2-x}$
tonc = $\frac{1}{2}$ = $\frac{x}{\sqrt{5}-1}$
 $\Rightarrow x = \frac{\sqrt{5}-1}{\sqrt{5}-1}$

DDEC

首发于 **国际理科**

$$GSA = \frac{6^{2}c^{2}-a^{2}}{2bc}$$

$$a^2 = b^2 + c^2 - 2bc GSA$$

tips: 已知任意两边及有 求另一边都用law 465/ $1 \times \frac{2\sqrt{5-2}}{1 \times 2\sqrt{5-1}}$

知乎 @双木止月Tong

$$\frac{AB}{AC} = \frac{BD}{DC}$$

$$\frac{AB}{AC} = \frac{BD}{DC}$$

AB.AC=AD.AE

AB.AC=AO

$$2-x = \frac{5-\sqrt{5}}{2}$$

协:四点类圆 ⇔对角和外的°

知乎 @双木止月Tong

$$d = \frac{1Ax_{st}Bx_{rc1}}{\sqrt{A^2 + B^2}}$$

LAC:

$$kAC = \frac{0-1}{2-6} = -\frac{1}{2}$$

 $y-1 = -\frac{1}{2}x$
 $y = -\frac{1}{2}x+1$
 $y+\frac{1}{2}x-1=0$

$$X = \frac{\left| \frac{1}{5} \times -1 \right|}{\sqrt{\left| \frac{1}{5} + \left(\frac{1}{5} \right)^2}} \propto XC2$$

$$\frac{\mathcal{E}_{X}}{|\mathcal{E}_{Y}|} = |-\frac{1}{2}|$$

$$\frac{\mathcal{E}_{X}}{|\mathcal{E}_{X}|} = |-\frac{1}{2}|$$

$$\frac$$

国际理科

$$Sinlot_{\beta}$$
) = $Sind_{\beta}$ & β & β & β & β β Cos(α & β) = β Cos(α & β Cos(α & β) = β Cos(α & β) = β Cos(α & β) = β Cos(α & β Cos(α & β) = β Cos(α & β Cos(α &

$$tan2d = \frac{tand ttand}{1 - tand. tand}$$
$$= \frac{2 tand}{1 - ta^2}$$

$$2 = \frac{2 \cdot x}{1 - x^2}$$

▲ 赞同 19

不知道大家还有其他解法吗? ~~

下面是第二题: BE=?

① 条弦定理

$$\cos \angle CAB = \frac{1^2 + 1^2 - \chi^2}{2 \cdot 1 \cdot 1}$$

$$\frac{1}{\sqrt{5}} = 2 - x^{2}$$

$$x^{2} = 2 - \frac{35}{5}$$

$$x^{2} = \frac{10 - 35}{5}$$

$$x = \sqrt{\frac{5}{5}}$$

Tolemys theolem

B内核四边形 AB·DC + ADBC =AC·BD

$$AD.BE = AE.BD + AB.DE$$

$$BE = \frac{1.\frac{5}{2} + 1.\frac{5}{2}}{\sqrt{10-\frac{3}{5}}} = \sqrt{\frac{10-\frac{3}{5}}{10-\frac{3}{5}}}$$

$$\frac{10-\frac{3}{5}}{\sqrt{10-\frac{3}{5}}} = \sqrt{\frac{10-\frac{3}{5}}{10-\frac{3}{5}}}$$

▲ 赞同 19

● 9条评论

7 分享

★ 收藏

$$AO = AB^{2} + BD^{2}$$

$$AO = \sqrt{1+\frac{(E-1)^{2}}{2}}$$

$$= \sqrt{10-2/E}$$

$$BH = \frac{AB \cdot BD}{AD} = \frac{\sqrt{5+1}}{\sqrt{10-2/E}}$$

$$= \sqrt{6-2/E}$$

$$= \sqrt{3-5}$$

$$= \sqrt{3-5}$$

$$= \sqrt{5-5/E}$$

$$= \sqrt{10-2/E}$$

$$= \sqrt{10-2/E$$

$$S_{2ABDE} = S_{ABD} + S_{ADE} = 2 S_{ABD} = \frac{1}{2} \cdot AD \cdot BE$$

$$2 \cdot S_{ABD} = 2 \cdot \frac{1}{2} \cdot 1 \cdot \frac{f_{-1}}{2} = \frac{1}{2} \cdot \frac{f_{-1}f_{-1}}{2} \cdot BE$$

$$BE = \frac{\sqrt{f_{-1}}}{\sqrt{5 \cdot f_{-1}}} = \frac{12 \cdot 4f_{-1}}{5 \cdot \sqrt{5}}$$

$$= \frac{(12 \cdot 4f_{-1})(5 \cdot 4f_{-1})}{(5 \cdot f_{-1})(5 \cdot 4f_{-1})}$$

$$= \frac{f_{0} + 12f_{-1} \cdot 20f_{-1} \cdot 20}{20}$$

知平

$$EF = 1. \sin A = \frac{1}{15} = \frac{35}{5}$$

$$EG = 1 - 1. \cos A = 1 - \frac{1}{15} = \frac{5-15}{5}$$

$$BE^{2} = (\frac{5-15}{5} - 0)^{2} + (\frac{25}{5})^{2}$$

$$= \frac{30-10f+20}{25}$$

知乎 @双木止月Tong

Stewart's Theorem

$$\frac{BD}{DC} = \frac{n}{m}$$

m. AB + mAC = m. BD + n. CO + (m+m) AD

▲ 赞同 19

知乎 @双木止月Tong

大家还有其他想法吗? 欢迎大家留言讨论~

如果想了解更多的国际数学竞赛及课程的知识,可参阅:

双木止月Tong: 国际数学竞赛及课程

@ zhuanlan.zhihu.com

编辑于 2019-11-22

平面几何

解析几何

数学竞赛

▲ 赞同 19

文章被以下专栏收录

国际理科

传播数学知识, 接轨国际教育。

关注专栏

推荐阅读

三元不等式: SOS-Schur方法

简介竞赛党可能比较熟悉不等式里 的SOS大法,以三元不等式为例, 就是把一个关于 a,b,c 的函数配凑成 以下形式 f (a,b,c)=S_a(bc)^2+S_b(c-a)^2+S_c(a-b)^2 其中 S_a,S_b,S_c 是关于 a,b,c 的...

譞譞 发表于中等偏上数...

[超难的几何] CYB问题的解答

cyb酱

发表于cyb酱の...

娄

作

9条评论 ⇒ 切换为时间排序 写下你的评论... 〇一言一字 2个月前 文章封面的字好好看呀! **炒** 赞 📉 双木止月Tong (作者) 回复 一言一字 2个月前 嗯嗯[赞同]以后都让她写 [捂嘴][捂嘴] **炒** 赞 情归陌路 ● 9条评论

▲ 赞同 19

★ 收藏

7 分享

📉 双木止月Tong (作者) 回复 情归陌路

2个月前

[尴尬][尴尬]感谢指正

歩 赞

驝乸

2个月前

总结得非常赞,就是哪个体系元素, (角/边/旋)发生动态变化时候就不太好解释了,并且不 好固定, 延展线无穷长, 不好确定边界定义域值。

岭 赞

tsai

2个月前

不錯!

歩 赞

驝乸

2个月前

确实很专业,历史课老师要批评你了。

歩 赞

📉 双木止月Tong (作者) 回复 驝乸

2个月前

是的呀, 教不了体育了。

炒 赞

驝乸 回复 驝乸

1个月前

你的爱好超越了你选择专业的初心,显然你是找不太准基础专业学生的基调啦!提问回 答活跃但太突兀, 不敢恭维。

炒 赞

▲ 赞同 19

