TEMA 4 REDES CONMUTADAS E INTERNET

Fundamentos de Redes 2015/2016

➤ Bibliografía Básica:

Capítulos 6 Y 9, Pedro García Teodoro, Jesús Díaz Verdejo y Juan Manuel López Soler. *TRANSMISIÓN DE DATOS Y REDES DE COMPUTADORES*, Ed. Pearson, 2ª Ed. Pearson, 2014, ISBN: 978-0-273-76896-8.

Apuntes de direccionamiento IP en web de la asignatura.

➤ Para saber más...

Capítulo 4 James F. Kurose y Keith W. Ross. *COMPUTER NETWORKING. A TOP-DOWN APPROACH*, 5ª Edición,
Addison-Wesley, 2010, ISBN: 9780136079675.

Tema 4. REDES CONMUTADAS E INTERNET

- 1. Funcionalidades
- 2. Conmutación
- 3. El protocolo IP
- 4. Asociación con Capa de Enlace: El protocolo ARP
- 5. El protocolo ICMP

FUNCIONALIDADES EN CAPA DE RED

- > Funciones y servicios en TCP/IP
 - Encaminamiento
 - Conmutación
 - > Interconexión de redes
 - > En OSI: control de congestión
- Ejemplos de protocolos de red:
 - > X.25
 - > IP

Tema 4. REDES CONMUTADAS E INTERNET

- 1. Funcionalidades
- 2. Conmutación
- 3. El protocolo IP
- 4. Asociación con Capa de Enlace: El protocolo ARP
- 5. El protocolo ICMP

- > Conmutación = redirección
- > Esquemas de conmutación
 - > Circuitos
 - ➤ Paquetes
 - ➤ Datagramas
 - > circuitos virtuales

- Conmutación de circuitos
 - > Ej. Teléfono
 - > Establecimiento de conexión previo a la transmisión

- Pasos: (i) Conexión, (ii) Transmisión, (iii) Desconexión
- > Recursos dedicados

- Conmutación de paquetes:
 - Envío en bloques
 - Conmutación mediante datagramas:
 - ➢ ej. IP
 - No hay conexión
 - > Envío independiente

- Conmutación de paquetes:
 - Conmutación de paquetes con circuitos virtuales:
 - ej. ATM (troncales)
 - Pasos: (i) Conexión, (ii) Transmisión, (iii) Desconexión
 - Recursos no dedicados

4. Estime el tiempo involucrado en la transmisión de un mensaje de datos para la técnica de conmutación de paquetes mediante datagramas (CDP) considerando los siguientes parámetros:

M: longitud en bits del mensaje a enviar.

V: velocidad de transmisión de las líneas en bps.

P: longitud en bits de los paquetes.

H: bits de cabecera de los paquetes.

N: número de nodos intermedios entre las estaciones finales.

D: tiempo de procesamiento en segundos en cada nodo.

R: retardo de propagación, en segundos, asociado a cada enlace.

Tema 4. REDES CONMUTADAS E INTERNET

- 1. Funcionalidades
- 2. Conmutación
- 3. El protocolo IP
- 4. Asociación con Capa de Enlace: El protocolo ARP
- 5. El protocolo ICMP

- ➤ IP v4 está especificado en el RFC 791:
 - > Interconexión de redes y direccionamiento en Internet.
 - > retransmisión salto a salto entre hosts y routers
 - no orientado a conexión y no fiable: máximo esfuerzo ("best-effort")
 - No hay negociación o "handshake"
 - > No existe control de errores ni control de flujo.
 - > La unidad de datos (paquete) de IP se denomina datagrama.
 - > IP gestiona la "fragmentación".

Direcciones IP:

Servidor Webmail 130.206.192.39

www.youtube.com 172.194.34.206

www.google.com 172.194.34.209

Servidor Spotify 78.31.8.101

dns3.ugr.es = 150.214.191.10 pop.ugr.es = 150.214.20.3

- Dos partes: subred y dispositivo
 - a) Dirección IP \rightarrow 200.27.4.112 = 11001000.00011011.00000100.01110000

- b) 200.27.4.112/24
- > Para obtener la dirección de la subred:

200.27.4.112 = 11001000.00011011.00000100.01110000

&

&

Subred → 200.27.4.0 = 11001000.00011011.00000100.00000000

¿Qué es una subred?

Computer Networking. A Top-down Approach. de James F. Kurose y Keith W. Ross: "Para determinar las subredes, separe cada interfaz de los hosts y routers, creando redes aisladas. Dichas redes aisladas se corresponden con las subredes."

¿Qué es una subred?

Computer Networking. A Top-down Approach. de James F. Kurose y Keith W. Ross: "Para determinar las subredes, separe cada interfaz de los hosts y routers, creando redes aisladas. Dichas redes aisladas se corresponden con las subredes."

Dirección IP \rightarrow 200.27.4.112 = 11001000.00011011.00000100.01110000

dispositivos = 2^{# ceros} - 2

- → ej. 8 ceros (/24) permite 254 dispositivos
- → El -2 viene de que la primera y última son reservadas.

- > 200.27.4.0 = 11001000.00011011.00000100.<u>00000000</u>
 - → Reservada (subred)
- > 200.27.4.1 = 11001000.00011011.00000100.<u>00000001</u>
 - → Dispositivo #1
- > ...
- > 200.27.4.254 = 11001000.00011011.00000100.<u>11111110</u>
 - → Dispositivo #254
- > 200.27.4.255 = 11001000.00011011.00000100.<u>11111111</u>
 - → Reservada (difusión)

Direcciones públicas Sólo 1 dispositivo en Internet

- > Ejercicio: Asignar direcciones
- Subredes corporativas: 30 dispositivos, IPs privadas 192.168.0.0
- Subred de acceso: dirección pública (ISP)

- > Ejercicio: Asignar direcciones
- ➤ Subredes corporativas: 30 dispositivos, IPs privadas 192.168.0.0 → 5 ceros, /27
- ➤ Subred de acceso: dirección pública (ISP) → 2 ceros, /30, 150.214.190.0 (UGR)

> El encaminamiento

- Llevar la información (paquetes) de un origen a un destino en una red conmutada
- > Encaminamiento per sé (routing): decisión de las rutas
- > Retransmisión (forwarding): operación básica en el dispositivo

- Retransmisión salto-a-salto:
 - Resolución local del camino
 - > En el dispositivo origen y todos los intermedios

> Tabla	de encaminamiento:	Dirección IP destino	Máscara	Siguiente nodo
		192.168.0.0	/27	-
		192.168.0.32	/27	192.168.0.1
	¿Para llegar a C?	192.168.0.64	/27	192.168.0.1
102 160 0 2	Lo envío a R1	150.214.190.0	/30	192.168.0.1
192.168.0.2	Host A 192.16	88.0.1		
	Subred = 192.168.0.32			
	Host B Subr	ed = 150.214.19 		nternet
192.168.0.66	Subred = 192.168.0.64			

Host C

- > Tabla de encaminamiento:
 - Dirección de destino (DD):
 - **>** 192.168.0.66
 - > Para cada entrada
 - ➤ DD & Máscara = A
 - > ¿A = Dirección de destino?

Elegir el Siguiente Nodo

Dirección IP destino	Máscara	Siguiente nodo
192.168.0.0	/27	-
192.168.0.32	/27	192.168.0.1
192.168.0.64	/27	192.168.0.1
150.214.190.0	/30	192.168.0.1

- > Tabla de encaminamiento:
 - Dirección de destino (DD):
 - **▶** 192.168.0.66
 - Primera entrada

Dirección IP destino	Máscara	Siguiente nodo
192.168.0.0	/27	-
192.168.0.32	/27	192.168.0.1
192.168.0.64	/27	192.168.0.1
150.214.190.0	/30	192.168.0.1

- > 192.168.0.66 & /27 = 11000000.10101000.00000000.010**00010** & /27 = 192.168.0.64
- > ≥ 192.168.0.64 = 192.168.0.0? NO
- Segunda entrada
 - > 192.168.0.66 & /27 = 11000000.10101000.00000000.010**00010** & /27 = 192.168.0.64
 - > 192.168.0.64 = 192.168.0.32? NO

- Tabla de encaminamiento:
 - > Dirección de destino (DD):
 - **>** 192.168.0.66
 - > Tercera entrada

Dirección IP destino	Máscara	Siguiente nodo
192.168.0.0	/27	-
192.168.0.32	/27	192.168.0.1
192.168.0.64	/27	192.168.0.1
150.214.190.0	/30	192.168.0.1

- > 192.168.0.66 & /27 = 11000000.10101000.00000000.010**00010** & /27 = 192.168.0.64
- \triangleright ¿192.168.0.64 = 192.168.0.64? SÍ \rightarrow Siguiente Nodo = 192.168.0.1
- Cuarta entrada
 - > 192.168.0.66 & /30 = 11000000.10101000.00000000.0100001**0** & /30 = 192.168.0.64
 - > ¿192.168.0.64 = 150.214.190.0? NO
- ¿Colisión? La de máscara más restrictiva (+ 1s)

- > Tabla de encaminamiento:
 - > Problemas:
 - ➤ No direcciona Internet (ej. www.google.com = 172.194.34.209)
 - ➤ Sólo un camino de salida → ¿necesitamos 4 entradas?

Dirección IP	Máscara	Siguiente	
destino		nodo	
192.168.0.0	/27	-	
192.168.0.32	/27	192.168.0.1	
192.168.0.64	/27	192.168.0.1	
150.214.190.0	/30	192.168.0.1	

¡¡Usar la entrada por defecto!! → /0

- > Tabla de encaminamiento:
 - > Problemas:
 - ➤ No direcciona Internet (ej. www.google.com = 172.194.34.209)
 - ➤ Sólo un camino de salida → ¿necesitamos 4 entradas?

Dirección IP destino	Máscara	Siguiente nodo
192.168.0.0	/27	-
0.0.0.0	0.0.0.0	192.168.0.1

www.google.com 172.194.34.209

Servidor Spotify 78.31.8.101

dns3.ugr.es = 150.214.191.10 pop.ugr.es = 150.214.20.3

Siguiente

nodo

Máscara

Host C

EL PROTOCOLO IP

> Ejercicio: Diseñar la Tabla de encaminamiento en R2

- i) Incorporar todas las redes directamente conectadas.
- ii) Incorporar la entrada por defecto
- iii) Añadir todas las entradas adicionales necesarias.

Dirección IP

destino

➤ Direccionamiento basado en clases (1981)

- ► Introducción de la máscara de subred (1985)
- Encaminamiento de dominios sin clase (1993)

¡¡Cuidado con las versiones obsoletas!! Ej. RIPv1

7. Imagine una situación donde hay cinco routers RA-RE. RA, RB y RC se conectan cada uno a una red local A, B y C, siendo cada router única puerta de enlace de cada red. RA, RB y RD están conectados entre sí a través de un switch. RC, RD y RE están conectados entre sí a través de un switch. RE conecta a Internet a través de la puerta de acceso especificada por el ISP. Especifique tablas de encaminamiento en los routers. Asigne a voluntad las direcciones IP e interfaces necesarias.

> Formato de datagrama

Edit View Go Capture Analyze Statistics Telephony ⊕ ⊖ ₪ 🔠 Filter: ip ▼ Expression... Clear Apply Time Source Destination Protocol 88.188.158.15 215 4.848984 150.214.191.5 wap-push-http > 23691 [PSH. TCP ⊕ Frame 215: 89 bytes on wire (712 bits), 89 bytes captured (712 bits) ⊕ Ethernet II, Src: Cisco_b7:64:00 (00:07:0d:b7:64:00), Dst: Micro-St_a8:f7:63 (00:24:21:a8:f7:63) ■ Internet Protocol, Src: 88.188.158.15 (88.188.158.15), Dst: 150.214.191.5 (150.214.191.5) Version: 4 Header length: 20 bytes ■ Differentiated Services Field: 0x00 (DSCP 0x00: Default; ECN: 0x00) Total Length: 75 Identification: 0xe87c (59516) Fragment offset: 0 Time to live: 106 Protocol: TCP (6) Source: 88.188.158.15 (88.188.158.15) Destination: 150.214.191.5 (150.214.191.5) ⊞ Transmission Control Protocol, Src Port: wap-push-http (4035), Dst Port: 23691 (23691), Seq: 36, Ack: 36, Data (35 bytes)

cabecera

➤ Fragmentación IPv4:

- ightharpoonup Tamaño máximo: 2^{16} -1 = 65.535 bytes.
- Adaptarse a la MTU (Maximum Transfer Unit)
- > Ensamblado en destino final
- desplazamiento:
 - > offset respecto del comienzo del paquete.
- indicadores (I):
 - "Don't Fragment", "More Fragments".

Nivel de enlace	MTU (bytes)
PPP normal	1500
PPP bajo retardo	296
X.25	1600 (RF <i>C</i> 1356)
Frame Relay	1600 (normalment e)
Ethernet DIX	1500
Ethernet LLC-SNAP	1492
Token Ring	4440
4 Mb/s	(THT 8ms)
Classical IP over ATM	9180

> Fragmentación IPv4:

Tema 4. REDES CONMUTADAS E INTERNET

- 1. Funcionalidades
- 2. Conmutación
- 3. El protocolo IP
- 4. Asociación con Capa de Enlace: El protocolo ARP
- 5. El protocolo ICMP

- Direcciones MAC
 - ➤ Tras la redirección IP → Enviar a la MAC del siguiente nodo

- Direcciones MAC
 - > Tras la redirección IP > Enviar a la MAC del siguiente nodo
 - Usadas en redes Ethernet y Wifi
 - ➤ Formato: HH-HH-HH-HH-HH → ej. 00-24-21-A8-F7-6A
 - ➤ Únicas, asignadas por IEEE en lotes de 2²⁴
 - Dirección de difusión (broadcast) FF-FF-FF-FF-FF
 - Protocolo ARP
 - > Obtener MAC a partir de IP (a) y (b)

- Protocolo RARP
 - > IP a partir de MAC (a) y (c)

0 8 16 31

> Formato ARP:

Htipo		Ptipo
Hlen	Plen Operación	
Hemisor (bytes 0-3)		
Hemisor (bytes 4-5)		Pemisor (bytes 0-1)
Pemisor (bytes 2-3)		Hsol (bytes 0-1)
Hsol (bytes 2-5)		
Psol (bytes 0-3)		

Tema 4. REDES CONMUTADAS E INTERNET

- 1. Funcionalidades
- 2. Conmutación
- 3. El protocolo IP
- 4. Asociación con Capa de Enlace: El protocolo ARP
- 5. El protocolo ICMP

- ➤ ICMP (Internet Control Message Protocol)
 - ➤ Informa sobre situaciones de error → señalización
 - Hacia el origen del datagrama IP
 - > Se encapsula en IP
 - > Cabecera de 32 bits
 - > Tipo (8 bits): tipo de mensaje
 - > Código (8 bits): subtipo de mensaje
 - ➤ Comprobación (16 bits)

0 8 16
tipo código comprobación

Mensajes ICMP:

Campo tipo	Mensaje ICMP
8/0	Solicitud/respuesta de eco
3	Destino inalcanzable
4	Ralentización del origen
5	Redireccionamiento
11	Tiempo de vida excedido
12	Problema de parámetros
13/14	Solicitud/respuesta de sello de tiempo
17/18	Solicitud/respuesta de máscara de red

- ➤ ICMP (Internet Control Message Protocol)
 - > informa sobre situaciones de error > señalización
 - Hacia el origen del datagrama IP.
 - Se encapsula en IP
 - Cabecera de 32 bits

TEMA 4 REDES CONMUTADAS E INTERNET

Fundamentos de Redes 2015/2016

