Correction

1.a
$$x^2 - 3y^2 = 1 \Leftrightarrow \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 avec $a = 1$ et $b = 1/\sqrt{3}$.
 $A(1,0)$ et $A'(-1,0)$.

1.b
$$c^2 = a^2 + b^2 = 4/3$$
, $c = 2/\sqrt{3}$ puis $e = c/a = 2/\sqrt{3}$.

2.a Soit
$$M(x,y)$$
, $M'(x',y')$, $M''(x'',y'')$:
$$(M \star M') \star M'' \begin{vmatrix} (xx' + 3yy')x'' + 3(xy' + yx')y'' \\ (xx' + 3yy')y'' + (xy' + yx')x'' \end{vmatrix} \text{et } M \star (M' \star M'') \begin{vmatrix} x(x'x'' + 3y'y'') + 3y(x'y'' + y'x'') \\ x(x'y'' + y'x'') + y(x'x'' + 3y'y'') \end{vmatrix}$$

donc $(M \star M') \star M'' = M \star (M' \star M'')$ ainsi \star est associative.

Sans difficulté : $M \star M' = M' \star M$ et donc \star est commutative.

Sans difficulté : $A \star M = M \star A = M$ et donc A est élément neutre pour \star .

- 2.b L'ensemble des points M tels que F(M) = 0 est la réunion de deux asymptotes de l'hyperbole \mathcal{H} . L'ensemble des points M tels que F(M) = 1 est l'hyperbole \mathcal{H} .
- 2.c Soit M(x,y), M'(x',y'). $F(M \star M') = (xx' + 3yy')^2 3(xy' + yx')^2$ donc en développant puis en factorisant $F(M \star M') = x^2x'^2 3x^2y'^2 3y^2x'^2 + 9y^2y'^2 = (x^2 3y^2)(x'^2 3y'^2) = F(M)F(M')$. Si $M, M' \in \mathcal{H}$ alors F(M) = F(M') = 1 donc $F(M \star M') = 1$ d'où $M \star M' \in \mathcal{H}$.
- 3.a \mathcal{H} est stable pour \star , \star est associative, \star est commutative et $A \in \mathcal{H}$ donc (\mathcal{H}, \star) est un monoïde commutatif.

Soit $M \begin{vmatrix} x \\ y \end{vmatrix} \in \mathcal{H}$ et $M' \begin{vmatrix} x \\ -y \end{vmatrix}$ son symétrique par rapport à (Ox).

Par calculs $M \star M' = A = M' \star M$ donc M est symétrisable et M' est son symétrique.

Finalement (\mathcal{H},\star) est un groupe abélien.

3.b \mathcal{H}^+ est inclus dans \mathcal{H} , contient A, et on vérifie aisément que \mathcal{H}^+ est stable par passage à l'inverse. Soit M(x,y), M'(x',y') deux points de \mathcal{H}^+ et x''=xx'+3yy' l'abscisse de $M\star M'$. Puisque $x^2-3y^2=1$, on a $\sqrt{3}|y|<|x|$ et de même $\sqrt{3}|y'|<|x'|$ donc 3|yy'|<|xx'| d'où x''>0. Ainsi \mathcal{H}^+ est aussi stable par composition. Finalement \mathcal{H}^+ est un sous-groupe de (\mathcal{H},\star) .

 \mathcal{H}^- n'est pas un sous-groupe de \mathcal{H} car, entre autres, cet ensemble ne contient pas A.

4.a
$$\overrightarrow{MM'}\begin{vmatrix} x'-x \\ y'-y \end{vmatrix}$$
, $\overrightarrow{AN}\begin{vmatrix} xx'+3yy'-1 \\ xy'+yx' \end{vmatrix}$.

$$\det(\overrightarrow{MM'}, \overrightarrow{AN}) = (x'-x)(xy'+yx') - (y'-y)(xx'+3yy'-1) = -x^2y'+x'^2y-3yy'^2+3y^2y'-y'+y = 0$$
 car $x^2-3y^2=x'^2-3y'^2=1$ donc (MM') et (AN) sont parallèles.

4.b $\overrightarrow{AN}\begin{vmatrix} x^2+3y^2-1\\2xy \end{vmatrix}$ et la tangente en M est dirigée par $\overrightarrow{u}\begin{vmatrix} 3y\\x \end{vmatrix}$ (car la tangente en $M_0(x_0,y_0)$ a pour

équation $xx_0 - 3yy_0 = 1$).

 $\operatorname{Det}(\overrightarrow{AN}, \overrightarrow{u}) = x^3 + 3xy^2 - x - 6xy^2 = 0$ donc (AN) et la tangente en M à $\mathcal H$ sont parallèles.

4.c Soit $M, M' \in \mathcal{H}$ et $N = M \star M'$.

Si M=M' on obtient N en considérant l'intersection autre que A de $\mathcal H$ avec la parallèle à la tangente à M en $\mathcal H$ passant par A.

Si M et M' sont symétriques par rapport à (Ox) alors N = A.

Dans les autres cas, on obtient N en considérant l'intersection autre que A de $\mathcal H$ avec la parallèle à (MM') passant par A.