Student Information

Author: mergen

Answer 1

- **a**)
- (i) $D = A \cap (B \cup C)$
- (ii) $E = (A \cap B) \cup C$
- (iii) $F = (A B) \cup (A \cap C)$
- b) Let $A = \{e,n,t\}$, $B = \{t,e,r\}$, and $C = \{s,e,r\}$

 $\begin{array}{l} \text{(i) (A X B) X C} = \{(e,t),(e,e),(e,r),(n,t),(n,e),(n,r),(t,t),(t,e),(t,r)\} \ X \ \{s,e,r\} = \{(e,t,s),(e,e,s),(e,r,s),(n,t,s),(n,e,s),(n,e,s),(n,r,s),(t,t,s),(t,e,s),(t,r,s),(e,t,e),(e,e,e),(e,r,e),(n,t,e),(n,e,e),(n,r,e),(t,t,e),(t,e,e),(t,r,e),(e,t,r),(e,e,r),(e,r,r),(n,t,r),(n,e,r),(n,r,r),(t,t,r),(t,e,r),(t,r,r)\} = \{e,n,t\} \ X \ \{(t,s),(t,e),(t,r),(e,s),(e,e),(e,r),(r,s),(r,e),(r,s)\} \\ = A \ X \ (B \ X \ C \) \end{array}$

(ii) (A
$$\cap$$
 B) \cap C = {e,t} \cap {s,e,r} = {e} = {e,n,t} \cap {e,r} = A \cap (B \cap C)

(iii) (
$$A \oplus B$$
) $\oplus C = \{n,r\} \oplus \{s,e,r\} = \{s,e,n\} = \{e,n,t\} \oplus \{t,s\} = \{e,n,s\} = A \oplus (B \oplus C)$

Answer 2

- a) Take any $x \in A_0$, then we have $f(x) \in f(A_0)$. By definition, $f^1(f(A_0)) = \{a \mid f(a) \in f(A_0)\}$. Since $f(x) \in f(A_0)$, x satisfies the condition(1): $f(a) \in f(A_0)$; we have $x \in f^1(f(A_0))$. We have proved $x \in A_0 \to x \in f^1(f(A_0))$. That means $A_0 \subseteq f^1(f(A_0))$. Now, suppose f injective. We want to prove that $A_0 = f^1(f(A_0))$. Suppose not; that means we can find an $x \in f^1(f(A_0))$ such that $x \notin A_0$. Because we already know $A_0 \subseteq f^1(f(A_0))$, $x \in f^1(f(A_0)) \to x$ satisfies the contidion(1) then $f(x) = u \in f(A_0)$. $u \in f(A_0)$ means, there exists a $y \in A_0$ with f(y) = u. Since f is injective and f(x) = u = f(y), we must have x=y. But $x \notin A_0$ and $y \in A_0$; contradiction.
- Take any $y \in f^{1}(f(B_{0})) \to y = f(x)$ for some $x \in f^{1}(B_{0})$. $x \in f^{1}(B_{0}) = \{a \mid f(a) \in B_{0}\}$ means x satisfies the condition(1); $f(x) \in B_{0} \to y \in B_{0}$. So, $f(f^{1}(B_{0})) \subseteq B_{0}$. Suppose f is surjective, but $f(f^{1}(B_{0})) \neq B_{0}$. That means we can find a $y \in B_{0}$ such that $y \notin f(f^{1}(B_{0}))$. By surjectivity, there exists an x such that $f(x) = y \to x$ satisfies the condition(1); $f(x) \in B_{0} \to x \in f^{1}(B_{0}) \to f(x) \in f(f^{1}(B_{0})) \to y \in f(f^{1}(B_{0}))$; hence contradiction.

Answer 3

Let A be a non-empty set.

- (i) A is countable
- (ii) There is a surjective function $f: \mathbb{Z}^+ \to \mathbb{A}$
- (iii) There is an injective function $g: A \to Z^+$
- (i) \rightarrow (ii): If A is countably infinite, then there exists a bijection $f: \mathbb{Z}^+ \rightarrow \mathbb{A}$ and then (ii) follows. If A is finite, then there is bijection $h: \{1,2,...,n\} \rightarrow \mathbb{A}$ for some n. Then the function $f: \mathbb{Z}^+ \rightarrow \mathbb{A}$ defined by;

$$f(t) = \begin{cases} h(t) & 1 \le t \le n, \\ h(n) & t > n \end{cases}$$
 is a surjection.

- (ii) \rightarrow (iii): Assume that $\mathbf{f}: \mathbf{Z}^+ \rightarrow \mathbf{A}$ is a surjection. We claim that there is an injection $\mathbf{g}: \mathbf{A} \rightarrow \mathbf{Z}^+$. To define \mathbf{g} note that if $\mathbf{a} \in \mathbf{A}$, then $\mathbf{f}^{-1}(\{\mathbf{a}\}) \neq \emptyset$. Hence we set $\mathbf{g}(\mathbf{a}) = \min \mathbf{f}^{-1}(\{\mathbf{a}\})$. Now note that if $\mathbf{a} \neq \mathbf{a}'$, then the sets $\mathbf{f}^{-1}(\{\mathbf{a}\}) \cap \mathbf{f}^{-1}(\{\mathbf{a}'\}) = \emptyset$ which implies $\min^{-1}(\{\mathbf{a}\}) \neq \min^{-1}(\{\mathbf{a}'\})$. Hence $\mathbf{g}^{-1}(\mathbf{a}) \neq \mathbf{g}^{-1}(\mathbf{a}')$ and $\mathbf{g}: \mathbf{A} \rightarrow \mathbf{Z}^+$ is an injective function.
- (iii) \rightarrow (i): Assume that $g: A \rightarrow Z^+$ is an injection. We want to show that A is countable. Since $g: A \rightarrow g(A)$ is a bijection and $g(A) \subset Z^+$, proposition "Any subset of a countable set is countable." implies that A is countable.

Answer 4

a)

Let **F** be the set containing finite binary strings and ϵ denote the empty sequence (the sequence with no terms). Then, the sequence $\mathbf{F} = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ...\}$ in which the binary sequences of length 0 are listed, then the binary sequences of length 1 are listed in increasing numeric order, then the binary sequences of length 2 are listed in increasing numeric order, and so on, contains every finite binary sequence exactly once.

b)

Let \mathbf{I} be the set of all infinite sequences of 0s and 1s. We use Cantor's diagonal argument. So we assume (toward a contradiction) that we have an enumeration of the elements of \mathbf{I} , say as $\mathbf{I} = \{i_1 i_2 i_3 ...\}$ where each s_n is an infinite sequence of 0s and 1s. We will write $s_1 = s_{1,1} s_{1,2} s_{1,3} \cdots$, $s_2 = s_{2,1} s_{2,2} s_{2,3} \cdots$, and so on; so $s_n = s_{n,1} s_{n,2} s_{n,3} \cdots$. So we denote the \mathbf{m} th element of s_n by $s_{n,m}$. Now we create a new sequence $t = t_1 t_2 t_3 t_4 \cdots$ of 0s and 1s as follows: $t_n = s_{n,n} - 1$ (so $t_n = 1$ if $s_{n,n} = 0$ and $t_n = 0$ if the $s_{n,n}$ is 1). It is clear that t is an element of \mathbf{I} - it is an infinite sequence of 0s and 1s. However, we will now see that t is not in the list above. Suppose that $t = i_k$ for some value of k. Then $t_k = t_{k,k}$, but by the construction, $t_k \neq i_{k,k}$, so this is not possible. We conclude that \mathbf{I} is not countable, is uncountable.

Answer 5

a) $f(n) \text{ is } \Theta(g(n)), \text{ where } f(n) = n\log(n), \ g(n) = \log(n!) \text{ and there exist constants c and k, if:}$ $(i) \ f(n) \text{ is } O(g(n)) \to f(n) \leq cg(n) \text{ whenever } n > k$ $\log(n!) = \log(1) + \log(2) + \dots + \log(n)$ $\leq \log(n) + \log(n) + \dots + \log(n)$ $\log(n!) \leq n\log(n); \text{ where } c = 1 \text{ and } n > 1$ $(ii) \ f(n) \text{ is } \Omega(g(n)) \to f(n) \geq cg(n)$ $\log(n!) = \sum_{i=1}^{n} \log(i)$ $\geq \sum_{i=n/2}^{n} \log(i)$ $\geq \sum_{i=n/2}^{n} \log(n/2)$ $\geq \frac{n}{2} \log(n/2)$

 $= \tilde{\Omega} (n\log(n))$

b)

$$2^n = \underbrace{2 * 2 * \dots * 2 * 2}_{\text{n times}}$$

$$n! = \underbrace{1 * 2 * \dots * (n-1) * n}_{\text{n elements}}$$

$$\frac{2^n}{n!} = \frac{2}{1} * \frac{2}{2} * \frac{2}{3} * \dots * \frac{2}{n-1} * \frac{2}{n}$$

$$\frac{2^n}{n!} \le \frac{2}{1} * \frac{2}{2} * 1 * \dots * 1 * \frac{2}{n} = \frac{4}{n}$$

 $=\frac{n}{2}(\log(n) - \log(2)); \text{ where } c = \frac{1}{2} \text{ and } n > 1$

Hence 2^n is O(n!) such that n! grows faster than 2^n ($|2^n| \le c|n!|$); where c=1 and $n\ge 4$