Math 493 Lecture 8

Professor Andrew Snowden

Transcribed by Thomas Cohn

Prop: Suppose V is a vector space on field K. We have a bijection

$$\{(v_1, \dots, v_n \in V^n)\} \leftrightarrow \{\text{linear transformation } K^n \to V\}$$
$$(v_1, \dots, v_n) \mapsto \left(\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \to \sum_{i=1}^n a_i v_i \right)$$
$$[T(e_1) \cdots T(e_n)] \leftrightarrow T$$

We write $i_{(v_1,\ldots,v_n)}$ for the linear transformation $K^n \to V$ corresponding to (v_1,\ldots,v_n) .

$$im(i_{(v_1,...,v_n)}) = span\{v_1,...,v_n\}$$

$$\ker(i_{(v_1,\ldots,v_n)}) = \left\{ \text{linear relations between } v_1,\ldots,v_n \right\} = \left\{ (a_1,\ldots,a_n) \in K^n \ \middle| \ \sum_{i=1}^n a_i v_i = 0 \right\}$$

 $i_{(v_1,\ldots,v_n)}$ is surjective if and only if v_1,\ldots,v_n span, and injective if and only if v_1,\ldots,v_n are linearly independent. Hence, it's a bijection if and only if v_1,\ldots,v_n forms a basis.

Conclusion: ordered bases of V correspond with isomorphisms $K^n \to V$.

Let $T: V \to W$ be a linear transformation. Let $B = (v_1, \ldots, v_m)$ and $C = (w_1, \ldots, w_n)$ be bases of V and W, respectively.

$$V \xrightarrow{T} W$$

$$\downarrow \downarrow_{i_B} \qquad \downarrow \downarrow_{i_C}$$

$$K^m \xrightarrow{T'} K^n$$

where $T' = (i_C^{-1}) \circ (T) \circ (i_B)$.

T' is left multiplication by some $n \times n$ matrix, denoted A_p .

Defn: A_p is the matrix of T with respect to B and C.

Ex: Let $T:P_{\leq 2}(x)\to P_{\leq 2}(x)$. Let $B=C=(1,x,x^2).$ Want to find T'. $f\mapsto \frac{df}{dx}$

$$T'(e_1) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad T'(e_2) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \qquad T'(e_3) = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

So

$$A = \begin{bmatrix} | & | & | \\ T'(e_1) & T'(e_2) & T'(e_3) \\ | & | & | \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Now let $B = (2, x - x^2, -x)$ and $C = (1, x, x^2)$. Then

$$T'(e_1) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \qquad T'(e_2) = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} \qquad T'(e_3) = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

So

$$A = \begin{bmatrix} 0 & 1 & -1 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Now suppose $B = (v_1, \ldots, v_m)$ and $B' = (v'_1, \ldots, v'_m)$ are bases of V. Then

$$K^{m} \xrightarrow{T_{X}} K^{m}$$

with $T_X = (i_{B'}^{-1}) \circ (i_B)$. X is the matrix of T_X , associated with the standard basis of K^m .

$$T_X(e_1) = ((i_{B'}^{-1}) \circ (i_B))(e_1) = (i_{B'}^{-1})(v_1) = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}$$
 s.t. $v_1 = \sum_{i=1}^m a_i v_i'$

Now also suppose $C = (w_1, \ldots, w_n), C' = (w'_1, \ldots, w'_n)$ are bases for W. Then we have

$$V \xrightarrow{\operatorname{Id}} V \xrightarrow{T} W \xrightarrow{\operatorname{Id}} W$$

$$\downarrow \downarrow i_{B'} \qquad \downarrow \downarrow i_{B} \qquad \downarrow \downarrow i_{C} \qquad \downarrow \downarrow i_{C'}$$

$$K^{m} \xleftarrow{T_{X}} K^{m} \xrightarrow{T'=A} K^{n} \xrightarrow{T_{Y}} K^{n}$$

 $T'' = T_Y \circ T' \circ T_X^{-1}$. So the matrix for T'' is $M = YAX^{-1}$.

Conclusion: If A is the matrix for T w.r.t. B, C, then YAX^{-1} is the matrix for T w.r.t. B', C'.

Defn: An endomorphism of V (or a linear operator on V) is a linear transformation on V.

Let T be an endomorphism of V, and B and ordered basis of V. We get a matrix T w.r.t. B. Call it A. If B' is a different basis of V, XAX^{-1} is the matrix of T with respect to B'.

Defn: A, A' are two $n \times n$ matrices. We say they are **similar** if $\exists X \in GL_n(K)$ s.t. $A' = XAX^{-1}$.

Note: this implies that if A and A' are matrices of T w.r.t. two bases, then A and A' are similar. Using this, we can define some numerical invariants of a linear transformation.

Defn: det(T) = det(A), where A is a matrix of T. This is well defined because similar matrices have equal determinants.

Defn: tr(T) = tr(A), where A is a matrix of T. This is well defined because tr(AB) = tr(BA).

Ex: $T: P_{\leq 2} \to P_{\leq 2}$. Consider basis $(1, x, x^2)$.

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \text{tr}(T) = 0, \text{det}(T) = 0$$

Eigenvalues and Eigenvectors

Let T be a linear operator on V.

Defn: An **eigenvector** for T is a nonzero $v \in V$ s.t. $T(v) = \lambda v$, for some $\lambda \in K$. We say λ is an **eigenvalue** for T.

 λ is an eigenvalue for T

- $\Leftrightarrow T \lambda \text{Id has a nontrivial kernel.}$
- $\Leftrightarrow T \lambda \text{Id is not invertible.}$
- $\Leftrightarrow \det(T \lambda \mathrm{Id}) = 0.$

Defn: The characteristic polynomial of T is

$$\mathcal{X}_T(t) = \det(T - t\mathrm{Id}) = (-t)^m \pm \operatorname{tr}(T)t^{m-1} + \dots + \det(T)$$

The eigenvalues of T are the roots of \mathcal{X} .

How to find eigenvectors of T:

- 1. Compute \mathcal{X}_T .
- 2. Find the roots of \mathcal{X}_T (eigenvalues).
- 3. For each eigenvalue λ_i , compute $\ker(T \lambda_i \mathrm{Id})$.

Defn: Let A be an $m \times m$ matrix. We can say A is **diagonalizable** if it is similar to a diagonal matrix.

Let $T:V\to V$ be an endomorphism. Pick a basis and supposed the matrix of T is diagonalizable. So $\exists X\in \mathrm{GL}_m(K)$ s.t. XAX' is diagonal.

Let $B'=(v'_1,\dots,v'_m)$ be the basis with change of basis matrix X.

Then the matrix of T with respect to B' is

$$A' = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_m \end{bmatrix}$$

According to

$$V \xrightarrow{T} V$$

$$\downarrow \downarrow_{i_B} \qquad \downarrow \downarrow_{i_{B'}}$$

$$K^m \xrightarrow{T'_A} K^m$$

So $T'_{A}(e_1) = A'e_1 = \lambda e_1$, thus $T(v'_1) = \lambda_1 v'_1$.

Conclusion: Let $T:V\to V$ be an endomorphism with matrix A w.r.t. some basis. The following are equivalent:

3

- 1. A is diagonalizable.
- 2. There is a basis of V consisting of eigenvectors of T.