

Raising the Roof: A Recap of the 2026/27 PJM Capacity Auction

PJM Fall 2025 Outlook

Wednesday 27th August 2025

Speakers

James Khumalo

Market Associate

Jacob Shell

Market Associate

Tien Tong

Market Analyst

Jade White-Thomson

Market Associate

Zach Szumloz

Research Manager

Ask us a question!

This webinar is being recorded. For details on how your data is used and stored, see our <u>Privacy Notice</u>. This content is for the purpose of the webinar only; it is not for use in any publication or for posting online.

Agenda

- 1 Look Back at Summer 2025
- 2 Fall 2024 Recap
- 3 Seasonal Demand & Weather Forecast
 - 3.1 Temperature and Precipitation Anomalies
 - 3.2 Fall Demand Scenarios
- 4 Generation Changes
 - 4.1 Nuclear Outage Schedule
 - 4.2 Generation Additions
- **5 Transmission Outlook**
 - 5.1 Ongoing Congestion Threat Analysis
 - 5.2 Forecasted Constraints
- 6 Fuel
- 7 Raising the Roof: A Recap of the 2026/27 PJM Capacity Auction
 - 7.1 Policy Changes leading up to the Auction
 - 7.2 Auction Results and Ramifications
- 8 Summary
 - 8.1 Monthly Breakdown

A Look Back at Summer 2025

Summer 2024/25 Evaluation

Summer 2024

RT WHUB

TETCO - M3:

MCC: \$2.42

RT WHUB

LMP: \$46.06

Summer 2025

TETCO - M3: \$2.55

\$1.56

16.5 GW

Gen Outages:

Gen Outages: 21.5 GW

RT WHUB

MCC: \$0.45

RT WHUB

LMP: \$63.62

Lenox – N. Meshoppen 115kV

• Shadow Price: \$792,372.

 \triangle

RE, PN

PPL

- NYISO Exports
- PPL/PN Thermal Gen Strength

Pleasant View 500/230kV XF

• Shadow Price: \$254,078.

A PEPCO, DOM, WHUB

lacksquare

EKPC, OVEC

DOM Load Strength

Goose Creek 500/230kV XF

• Shadow Price: \$143,600.

▼ EKPC, OVEC

DOM Load Strength

Dresden CT 138/1kV XF

Shadow Price: \$140,896.

COMED, NIHUB

7

- ComEd Load Strength
- ComEd Thermal Gen Strength
- ComEd Wind Gen Weakness

^{*} Please note that the numbers presented for Summer 2025 are preliminary and subject to change as more data becomes available

Summer 2024/25 Evaluation, cont.

 Summer 2025 Settles:
 June: \$71.75
 July: \$68.66
 August: \$46.32*

 Forecast:
 June: Buy
 July: Buy
 August: Buy

Summer Verification

WoodMac Forecast

Summer Actuals

Summer Breakdown

Summer

- Verified warmer than forecast.
- Multiple intense heatwaves.
- Demand peak verified significantly stronger than forecast.

June

Record breaking late month heatwave.

- 160.2 GW Actual Peak
- 140.9 GW Forecast Peak

July

Persistent heat.

- 154.2 GW Actual Peak
- 150.4 GW Forecast Peak

August

Hot start then much cooler end.

- 146.4 GW Actual Peak
- 140.4 GW Forecast Peak

Demand Verification

Month	June	July	August
Warmer Scenario	146.4 GW	152.7 GW	148.5 GW
Colder Scenario	135.9 GW	146.9 GW	138.3 GW
Forecast Peak Demand (GW)	140.9 GW	150.4 GW	140.4 GW

Actual Peak	160.2 GW	154.2 GW	146.4 GW
-------------	----------	----------	----------

Sources: WoodMac and PJM

Temp and Demand Comparison

DOM Load Growth Contribution

Wind Verification

- Weaker than normal wind in both MISO and PJM
- Generally inline with expectations in MISO where weak wind gen was forecast.
- Decrease compared to Summer 2024 was much more drastic than expected in PJM.

Summer MISO Average Daily Wind Generation

Summer PJM Average Daily Wind Generation

A Look Back at Fall 2024

Fall 2024 Recap

Fall 2024 Fall 2023 RT WHUB RT WHUB TETCO - M3: TETCO - M3: MCC: \$4.45 MCC: \$1.56 \$1.47 \$1.57 **RT WHUB RT WHUB Gen Outages: Gen Outages:** 43.90 GW 45.71 GW LMP: \$39.33 LMP: \$31.96

Lenox – N. Meshoppen 115kV

• Shadow Price: \$255,753.

RE, PN

▼ PPL

- NYISO Exports
- PPL/PN Thermal Gen Strength

Mardela - Vienna 69kV

- Shadow Price: \$131,108.
- DPL, EHUB
- **▼** .
 - DPL Load Strength.
- Indian River Retirement.

E Lima – Haviland 138kV

• Shadow Price: \$131,108.

_

▼ COMED, NIHUB

- Wind Gen Strength
- Marysville Network Outages.

Preston – Tibbs 138kV

Shadow Price: \$106,970.

_

▼ COMED, NIHUB

- MISO North Wind Gen Strength
 - St Louis Load Strength

Fall 2024 Recap, cont.

On-Peak LMPs (\$/MWh)			WHUB			ADHUB			NIHUB			EHUB	
		DA	RT	DA/RT									
	2022	82.19	76.41	5.77	78.75	74.60	4.15	71.54	69.19	2.35	63.42	57.39	6.03
September	2023	31.94	32.95	-1.01	29.38	29.07	0.31	27.50	26.53	0.97	26.03	25.02	1.01
	2024	30.95	30.79	0.16	30.08	30.75	-0.67	26.75	28.30	-1.54	25.34	27.43	-2.09
	2022	61.14	56.69	4.45	58.81	56.22	2.59	48.41	48.05	0.36	53.45	54.57	-1.12
October	2023	37.17	36.96	0.20	35.08	33.81	1.27	30.22	29.32	0.90	20.86	19.28	1.58
	2024	35.46	32.97	2.50	33.10	31.98	1.11	25.95	25.83	0.12	31.27	30.47	0.81
	2022	54.68	50.75	3.93	52.58	50.04	2.55	44.84	43.81	1.04	46.99	44.13	2.86
November	2023	39.97	38.59	1.38	31.84	30.28	1.57	24.56	23.78	0.78	30.02	33.25	-3.23
	2024	30.48	29.26	1.21	29.31	28.04	1.28	22.75	19.37	3.37	28.58	27.64	0.94

Fall 2025 Weather and Demand Forecast

Fall Composite

- Warmer-than-normal conditions expected across the footprint.
- Warmth focused on October and November is generally a bearish influence.
- Cooler risks in September, particularly early in the month.

Temperature Breakdown

September

Cooler risks present, particularly over first half of month.

119.8 GW forecast peak

October

Generally warm conditions for the heart of shoulder season.

97.3 GW forecast peak

November

Warmer than normal lean is generally bearish to demand, but late month heating load spike drives up forecast.

110.2 GW forecast peak

Precipitation Breakdown

September

Drier than normal forecast but wetter risks exist shoulder cooler scenario pan out.

October

Slightly drier than normal conditions accompany a mild October.

November

Drier than normal conditions expected to persist.

Demand Scenarios

Month	September	October	November
Warmer Scenario	126.9 GW	101.2 GW	104.7 GW
Colder Scenario	115.2 GW	98.7 GW	118.6 GW
Forecast Peak Demand (GW)	119.8 GW	97.3 GW	110.2 GW

2024 Actual Peak	120.0 GW	96.7 GW	104.1 GW
------------------	----------	---------	----------

Sources: WoodMac and PJM

Wind Generation Forecast

- 2025 forecast top, previous three years bottom.
- Notable rebound in wind gen year-over-year in MISO.
- Slight rebound in wind gen year-over-year in PJM.

Composite interpolated 80 m wind speed (% of normal)

(1991-2020 Climatology)

Nuclear Outages

Nuclear Outages

Confirmed Schedule

Source: BHI Energy, Outage Calendar, RoadTechs, NukePowers, Day&Zimmerman

Nuclear Outages Start Date - Month Potential Schedule **October** Output **Potential Start** Unit Zone Dresden (MW) Date **PECO** Peach Bottom 3 1308 10/08 **Braidwood** Braidwood 1 1194 COMED 10/15 Dresden 3 895 COMED 10/26 **Peach Bottom** Dresden **Braidwood Increased Risk Decreased Risk Increased Risk Decreased Risk** SF% SF% **Constraint** Constraint Constraint SF% Constraint SF% Nelson - Electric Jct. 138kV 9.3 Dresden CT 345/1 kV 16.2 Crete - St. John 345kV 4.9 Olive - University Park North 345kV 2.6 **Peach Bottom**

Generation Additions

Generation Additions

 ~555 MW of capacity is planned to be added this fall, all of which comes from Solar

Source: PJM: EIA

CPV Backbone Solar

Background & Impacts

Owner: CPV Backbone Solar, LLC

Type: Solar

Nameplate Capacity: 175.0 MW

Zone: APS

Status: Under construction, more than 50

percent complete

Planned Operation month: 10/2025

Reference Node: MTZI APS138 KV T1

Monitor	Contingency	Shift Factor*	Impact over WHUB
Nottingham 230kV SD	Conastone 500/230kV XF	2%	2%
Otter Creek – Yorkana 230kV	Conastone 500/230kV XF	2%	2%

^{*}Note: positive (+) shift factors represent sink-side nodes, while negative (-) shift factors represent source-side nodes. // represents a parallel transmission line.

Spring Grove Solar

Background & Impacts

Owner: Urban Grid Solar

Type: Solar

Nameplate Capacity: 150.0 MW

Zone: DOM

Status: Under construction, less than or equal

to 50 percent complete.

Planned Operation month: 9/2025

Reference Node: COLTRAIL34.5 KV

Monitor	Contingency	Shift Factor*	Impact over WHUB
Nottingham 230kV SD	Conastone 500/230kV XF	4%	2%
Otter Creek – Yorkana 230kV	Conastone 500/230kV XF	4%	2%
Harrowgate – Locks 230kV	Carson – Midlothian 500kV	4%	1%
Chaparral Tap – Carson 230kV	Carson – Midlothian 500kV	2%	1%
Remington – Marsh Run 230kV	Remington – Remington CT 230kV	-2%	0%

^{*}Note: positive (+) shift factors represent sink-side nodes, while negative (-) shift factors represent source-side nodes. // represents a parallel transmission line.

American Beech Solar

Background & Impacts

Owner: MN8 Energy LLC

Type: Solar

Nameplate Capacity: 110.0 MW

Zone: DOM

Status: Under construction, more than 50

percent complete

Planned Operation month: 10/2025

Reference Node: DAWSONCR115 KV

Otter Creek - Yorkana 230kV Remington – Marsh Run 230kV VIRGINIA Harrowgate - Locks 230kV Chaparral Tap - Carson 230kV

Monitor	Contingency	Shift Factor*	Impact over WHUB
Nottingham 230kV SD	Conastone 500/230kV XF	3%	2%
Otter Creek – Yorkana 230kV	Conastone 500/230kV XF	3%	2%
Harrowgate – Locks 230kV	Carson – Midlothian 500kV	-6%	1%
Chaparral Tap – Carson 230kV	Carson – Midlothian 500kV	-7%	1%
Remington – Marsh Run 230kV	Remington – Remington CT 230kV	-2%	0%

^{*}Note: positive (+) shift factors represent sink-side nodes, while negative (-) shift factors represent source-side nodes. // represents a parallel transmission line.

Transmission

Transmission Outlook woodmac.com

Historical Analysis: Ongoing Risk Assessment for the Top RT Constraints of Summer 2025

Summer 2025	Risk in September?	Risk in October?	Risk in November?	Commentary
Lenox – North Meshoppen 230kV	✓	✓	✓	NYISO exports, source-side generation from Panda Liberty and Lackawanna, paired with the outage at East Sayre - North Waverly caused this constraint to bind for the majority of Summer. RT risks extends into the Fall.
Pleasant View 500/230kV XF	×	×	×	Strong DOM load exceeding 20GW, paired with outages in the data center valley particularly Idylwood – Clark, drove this constraint to bind strongly throughout Summer. RT risks subside as DOM load softens due to comfortable conditions in the South.
Goose Creek View 500/230kV XF	×	\Leftrightarrow	×	Strong DOM load exceeding 20GW, paired with outages in the data center valley, drove this constraint to bind strongly throughout Summer. RT risks subside as DOM load softens due to comfortable conditions in the South, however, outage on Doubs network may re-introduce risk
Dresden CT 138/1kV XF	×	×	×	Strong ComEd load exceeding 17GW, combined with source-sink imbalances between thermal generation strength from Dresden, Jackson and Kendall County on the source, with wind IL wind generation on sink drove this constraint to bind aggressively throughout Summer. RT risks subside as ComEd load softens due to comfortable conditions in the West.
Beatty – Bolton 138kV	×	×	×	Strong AEP load exceeding 17GW, paired with Hyatt 345/138kV XF outage increase pressure on Beatty – Cole, this constraint contingency drove this constraint to bind across June. No further RT risk is expected in Fall with the return of Hyatt XF.
Cool Springs – Milford 230kV	\Leftrightarrow	×	×	Strong DPL load exceeding 3 GW, an outage at Red Lion 500/230kV XF combined with sink-side weakness with the retirement of Indian River drove this constraint across Summer. RT risks extends into Fall with outages increasing pressure on the DPL network.
Beco - Paragon Park 230kV	×	×	×	Strong DOM load exceeding 20GW, coupled with the Beaumede – BECO outage drove this constraint to bind strongly throughout Summer. RT risks subside with Beaumeade – BECO line in full service.
		✓ = High Risk ⇔	= Medium Risk 🗶 = Low	Risk Source: WoodMac PowerIQ, WoodMac Congesti

Bedington – Black Oak Interface

Drivers

- W-E flows into DOM drive this constraint to bind.
- On days where N-S flows aren't as likely due to Mid-A load levels, there is increased risk for this constraint to occur.

Outages				
Increases Risk	Duration	LODF		
Black Oak 500/138kV	9/12 – 12/8	44%		
Conastone – Northwest 230kV	10/30 – 12/19	3%		

Hub Impac	ts
Increases Risk	LODF
WHUB	1%
EHUB	0%
ADHUB	-4%
NIHUB	-3%

Transmission Outlook woodmac.com

Bremo – Fork Union 115kV

Drivers

- DOM load, source-side thermal generation strength from Bear Garden and John H Kerr drives risk for this constraint over the morning when Bath County is pumping on the sinkside.
- The Red Hill Sherwood 115kV outage will add further pressure over the majority of November.

Outages					
Increases Risk	Duration	LODF			
Red Hill – Sherwood 115kV	11/10 – 1/12	36.1%			

Hub Impacts				
Increases Risk	LODF			
N/A				

Tanners Creek – Miami Fort 345kV

Drivers

 Cincinnati load combined with Miami Fort running weak and the nearby outage at Miami Fort - Ebenezer adds pressure over Tanners Creek – Miami Fort 345kV.

Outages			Hub Impacts		
Increases Risk	Duration	LODF	Increases Risk	LODF	
Miami Fort – Ebenezer 138kV	10/11 – 12/19	5.7%	NIHUB	-7%	

Zonal Impacts

Conastone - Northwest 230kV

Drivers

- N-S flows driven DOM load strength paired with generation source-side imbalance between the Mid-A and South.
- Parallel outage will increase pressure across the Conastone network as well Conastone – Northwest.

Outages				
Increases Risk	Duration	LODF		
Conastone – Northwest 230kV	10/30 – 12/19	33.2%		

Hub Impacts			
Increases Risk	LODF		
WHUB	+2%		
EHUB	-9%		
ADHUB	+1%		
NIHUB	+1%		

Summer Fuel Update

Natural Gas Price Trends

Futures Reflect Premium from Previous Cash Settles.

Past M3 Settles (September – November)

Foreword Basis Prices

Date	Henry Hub	Tetco M3	Transco Z6 (Non- NY)	Transco Z5	Eastern Gas- South (DOM)	Chicago Citygate
2025-09	2.76	1.93	1.84	3.30	1.80	2.47
2025-10	2.86	1.85	1.75	3.26	1.70	2.48
2025-11	3.20	2.57	2.50	3.70	2.25	2.96

Natural Gas

Natural Gas Markets Remain Calm Heading Into Fall.

Supply/Demand Balance

Gas Storage

Working gas in underground storage compared with the 5-year maximum and minimum

Data source: U.S. Energy Information Administration

Coal

Coal Stockpiles Remain Healthy.

Coal Burn

Days of burn by non-lignite coal rank, January 2010 - May 2025

Data source: U.S. Energy Information Administration

Coal Stockpiles

Coal stocks by type, January 2009 - May 2025

Data source: U.S. Energy Information Administration

Raising The Roof: A Recap of the 2026/2027 PJM Capacity Auction

Key Changes to the 2026/27 Auction

In response to the 2025/26 Auction:

Key Changes to the 2026/27 Auction

01

Price Collar

Sets a minimum (\$177.24/ MW-day) and a maximum (\$329.17/MW-day) clearing price.

02

Reliability Requirement Raised

Increased Forecasted Peak Load, RTO Reliability Requirement and Installed Reserve Margin

Reserve Requirement Parameters	2025/2026 BRA	2026/2027 BRA	Change in Value	Change in Percent	
Installed Reserve Margin (IRM)	17.80%	19.10%	1.30%	7.3%	
Reference Resource AUCAP Factor	79.00%	78.00%	-1.00%	-1.3%	
Pool Wide Accredited UCAP Factor	79.69%	76.99%	-2.70%	-3.4%	
Forecast Pool Requirement (FPR)	0.9387	0.917	-0.0217	-2.3%	
Forecast Peak Load (MW)	153,883	159,329	5,446	3.5%	
PJM RTO Reliability Requirement (UCAP MW)	144,450	146,105	1,655	1.1%	
FRR Obligation (UCAP MW)*	10,886	11,585	699	6.4%	
PJM RTO Reliability Requirement adjusted for FRR (UCAP MW)*	133,564	134,520	956	0.7%	

^{* -} FRR Obligations for DY 2026/2027 were updated 7/25

2. Reliability Requirement Raised

From Peak Load to Reliability Requirement (with ELCC)

Forecast Peak Load 159,329MW + Installed Reserve Margin IRM = 19.1% Installed Capacity
Target
~189,000MW

Convert UCAP via FPR (0.917) (Accounts for Outages + ELCC) Reliability Requirement 146,105 MW (Pre-FRR) 134,520 MW (After FRRR)

Key Changes to the 2026/27 Auction

03

Must-Offer Expanded

All Generation – Fossil Fuels and Renewables, Storage and Demand Response must participate in the auction. 04

\$0 Offers for RMR Units

Reliability Must-Run (RMR) units (Brandon Shores and Wagner) to bid \$0 to avoid distorting clearing prices.

05

Energy Efficiency (EE) Category Eliminated

EE projects no longer participate as a separate capacity product, shifting focus to deliverable resources during peak demand.

Breaking Down PJM's 2026/2027 Capacity Auction

Results

New price heights for almost all zones

Settlements

- The entire system settled at the same price in this auction at \$329.17/MW-day.
- 2026/2027 capacity auction pushed prices to new heights for almost all zones.
- This is a decrease in price for previously constrained zones BGE and DOM, which both cleared at over
 \$440/MW-day in the 2025/2026 auction

Drivers

- Price Cap/Floor
- Rising Demand
- Stagnant Interconnection Queue > Tightening Supply

PJM BRA RTO clearing price and reserve margin

Supply/Demand Dynamics

Tight margins between supply and demand

Supply:

- The auction clearing margin was just 139 MW above reliability requirements.
- 17 units withdrew retirement plans, and only 816 MW –
 Unforced Capacity (UCAP) of generation capacity offered into the market did not clear.
- Gas-fired capacity offered into the 2026/2027 BRA declined by almost 3 GW, or about 4.5%.
- Of the new capacity offered into the market, uprates and reactivations were equivalent to new generation capacity, about 1.5 GW each. Meanwhile, peak load increased by
 5.4 GW, driven by data centers and electrification.

Offered and Cleared UCAP

	202	3/24	4 2024/25		2025/26 (Reflects ELCC Accreditation)		2026/27 (Reflects ELCC Accreditation)		2026/27 - 2025/26 Change	
Туре	Offered	Cleared	Offered	Cleared	Offered	Cleared	Offered	Cleared	Offered	Cleared
Coal	37,164	31,811	35,114	31,532	30,081	30,081	30,948	30,948	867	867
Distillate Oil (No.2)	2,894	2,855	2,776	2,674	2,408	2,408	2,608	2,608	201	201
Gas	85,217	81,643	85,469	83,258	66,354	66,354	63,377	63,377	(2,977)	(2,977)
Nuclear	31,960	31,960	31,835	31,629	30,549	30,549	30,562	30,562	13	13
Oil	2,350	2,269	2,493	2,220	578	578	1,155	1,155	578	578
Solar	2,945	2,935	4,234	4,232	1,337	1,337	1,584	1,567	247	230
Water	6,375	6,375	6,137	6,137	5,365	5,361	5,597	5,597	233	236
Wind	1,608	1,416	1,396	1,396	2,618	1,676	4,507	3,717	1,888	2,041
Battery/Hybrid	16	16	36	36	14	14	35	35	20	20
Other	1,185	1,185	1,153	1,153	911	911	899	899	(11)	(11)
Demand Response	10,652	8,631	10,334	8,180	6,363	6,342	5,795	5,795	(568)	(547)
Aggregate Resource	511	511	503	503	327	273	58	49	(269)	(224)
Total (without EE)	182,875	171,605	181,481	172,951	146,905	145,883	147,125	146,309	220	426
Energy Efficiency	5,471	5,471	8,417	7,669	1,460	1,460	-	-	NA	NA

Supply/Demand Dynamics

Impact of load growth not as strong as expected

Demand:

- The impact of load growth was muted for this year's auctions, but this may not be the case going forward.
- Peak load for the 2026/2027 DY grew by about 5.4
 GW (or 3.5%) but the reliability requirement for this year's auctions, after adjustments, was only about 1
 GW (or 0.7%) higher.
- If the peak load grows as PJM forecasts, there will be larger increments in reliability requirements for future auctions. Supply/demand balances will remain very tight for the near term.

Demand Response

Lack of Demand Response participation contributing to the new price

- Demand response participation declined further compared to previous years.
- Despite the huge jump in clearing prices in last year's auctions, demand response participation did not increase noticeably. The offered capacity in UCAP terms decreased by 534 MW because of lower accreditation.
- What's notable is that 100% of those demand response resources cleared, underscoring their growing importance and reliability as a grid resource.

Demand Response Capacity Offered and Cleared by Delivery Year

Cleared UCAP	2026/2027
Coal	30,948
Distillate Oil	2,608
Gas	63,377
Nuclear	30,562
Oil	1,155
Solar	1,567
Water	5,597
Wind	3,717
Battery/Hybrid	35
Other	899
DR	5,795
AR	49
Total (w/o EE)	146,309

Ramifications

Tight market conditions to persist for the coming DYs

Main Drivers:

- Two additional auctions will still include current RMR units in the supply stack
- Most of the larger projects awarded through the Reliability Resource Initiative (RRI) not anticipated to come online for several years

Future Impacts:

- Ordering of retirement deferrals
- ELCC methodology revisions
- Plausible massive swings in prices for the next auctions
- Whether this higher priced auction prompt another political pressure?

PJM RRI Project Capacity

Summary

Cooler conditions will drive softer demand and temper risks.

Softer demand will help contain prices, though congestion and lingering generation risks will continue to apply upward pressure.

Q&A

Contacts

Presenters

James Khumalo (Associate)

T +44 131 243 4466

E James.Khumalo@woodmac.com

Jade White-Thomson (Associate)

T +44 131 243 4439

E Jade.Whitethomson@woodmac.com

Tien Tong (Analyst)

T +1 857 453 5692

E Tien.Tong@woodmac.com

Jacob Shell (Associate)

T +1 281 243 8330

E Jacob.Shell@woodmac.com

Zach Szumloz (Research Manager)

T +1 617 790 0915

E Zachary.Szumloz@woodmac.com

Disclaimer

These materials, including any updates to them, are published by and remain subject to the copyright of the Wood Mackenzie group ("Wood Mackenzie"), or its third-party licensors ("Licensors") as relevant, and are made available to clients of Wood Mackenzie under terms agreed between Wood Mackenzie and those clients. The use of these materials is governed by the terms and conditions of the agreement under which they were provided. The content and conclusions contained are confidential and may not be disclosed to any other person without Wood Mackenzie's prior written permission. Wood Mackenzie makes no warranty or representation about the accuracy or completeness of the information and data contained in these materials, which are provided 'as is'. The opinions expressed in these materials are those of Wood Mackenzie, and do not necessarily represent our Licensors' position or views. Nothing contained in them constitutes an offer to buy or to sell securities, or investment advice. Wood Mackenzie's products do not provide a comprehensive analysis of the financial position or prospects of any company or entity and nothing in any such product should be taken as comment regarding the value of the securities of any entity. If, notwithstanding the foregoing, you or any other person relies upon these materials in any way, Wood Mackenzie does not accept, and hereby disclaims to the extent permitted by law, all liability for any loss and damage suffered arising in connection with such reliance.

Copyright © 2023, Wood Mackenzie Limited. All rights reserved.

Europe +44 131 243 4477 Americas +1 713 470 1700 Asia Pacific +65 6518 0888

Email contactus@woodmac.com

Website www.woodmac.com

Wood Mackenzie[™] is a trusted intelligence provider, empowering decision-makers with unique insight on the world's natural resources. We are a leading research and consultancy business for the global energy, power and renewables, subsurface, chemicals, and metals and mining industries.

For more information visit: woodmac.com

WOOD MACKENZIE is a trademark of Wood Mackenzie Limited and is the subject of trademark registrations and/or applications in the European Community, the USA and other countries around the world.