MATH 0200: Preparation for Scientific Calculus

Polynomial Bonus

Problem 1 [2 pts]

zeros?

(a) How many polynomials of degree ≤ 2 (up to multiplication by a number) have **ONLY** x = -1, x = 0 and x = 1 as

(b)	Make a list of all polynomials of degree 3 (up to multiplication by a number) that have ONLY $x = -1$, $x = 0$ and $x = 1$ as zeros?

- (c) Make a list of all polynomials of degree 5 (up to multiplication by a number) that have **ONLY** x = -1, x = 0 and x = 1 as zeros?
- (d) Make a list of all polynomials of degree 6 (up to multiplication by a number) that have **ONLY** x = -1, x = 0 and x = 1 as zeros?

Problem 3 [2 pts] Consider the two friends Michelangelo and Leonardo . They love to eat pizzas. You have n pizzas and must give each of them at least one. How many ways are there to distribute the pizzas among the two friends?

- (a) n = 1.
- (b) n = 2.
- (c) n = 3.
- (d) n = 5.

(-)			1 1
1e	ı n	=	IU.

Problem 4 [2 **pts**] Now Raphael joined the party. How many ways are there to distribute n pizzas among the three friends?

- $(\mathfrak{a})\ \mathfrak{n}\leq 2.$
- (b) n = 3.
- (c) n = 5.
- (d) n = 6.

Problem 5 [2 pts] Compare your answers to Problem 1 and 2. Can you explain the pattern that you observe?

Problem *1 How is the picture below related to the problems above and what is a general formula (any number n, three turtles)?

¹ Award: slice of pizza of your choice for full explanation!