

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Mathematisches Institut Prof. Dr. P. Müller Dr. S. Morozov

Samstag, den 31. Januar 2015

Analysis 1

		_	Klausur	L		
Nachname:				Vorname: _		
Matrikelnr.:			Fach	nsemester: _		
Studiengang	:					
			Ergebnisses rifft, bitte au		sur unter Ar	ngabe meiner
			on aus und l weis sichtbar	~		ch; legen Sie
Bitte überpr	üfen Sie, ob	Sie sechs A	ufgaben erh	alten haben.		
Schreiben Si Ihren Nach ı				grün. Schrei	ben Sie auf	jedes Blatt
ten für eine	statistische Urung des Leh	Untersuchung	g anonym fre	igeben könne	en. Die Unter	e Klausurda- rsuchung soll llen Sie diese
	erwenden Sie	bitte die lee	-			r Platz nicht dies auf dem
Bitte achten deutlich durc			_	nur eine Lösu	ing abgeben;	streichen Sie
Sie haben 12	20 Minuten	Zeit, um die	Klausur zu	bearbeiten.		
			Viel Erfolg!			
1	2	3	4	5	6	Σ

Aufgabe 1. (6 Punkte)

Bestimme alle $z \in \mathbb{C}$, für die

$$(z^3 + 1)e^{z^2}\cos(z + iz) = 0$$

gilt.

Aufgase 1

•
$$Z^3 = -1$$
 hat 3 Lösuyen in C (Gly 3. Grades!)
 $Z_1 = -1$, $Z_2 = e^{i\frac{\pi}{3}}$ $Z_3 = e^{-i\frac{\pi}{3}}$

Aufgabe 2. (6 Punkte)

Sei die Funktion $f: \mathbb{R} \to \mathbb{R}$ durch

$$f(x) := \begin{cases} x \sin x, & x \in \mathbb{Q}; \\ 0, & \text{sonst}; \end{cases}$$

gegeben. In welchen Punkten von $\mathbb R$ ist f

- (a) stetig?
- (b) differenzierbar?

Aufgoese 2

(a) 1. Fall Sii
$$a \in \mathbb{R}$$
 Nullskille vou $x \mapsto x \in \mathbb{R}$ (sking)

Sii $\in 70$ Sil. $\Rightarrow \exists \delta \neq 0 : |x - \alpha| < \delta$
 $\Rightarrow |x \in \mathbb{R} \times |x \in \mathbb{R}$

Pu def gilt $f(a) = 0$, also $\forall x \in \mathbb{R} = |x - \alpha| < \delta$:

 $|f(x) - f(a)| = |f(x)| = \int |x \sin x|$, $x \in \mathbb{R}$ $\Rightarrow |x \in \mathbb{$

2. Tall Sei $\alpha \in \mathbb{R}$ beine Nollskille von $\mathbb{R} \to \mathbb{R}$ sii $(x_n)_n \subset \mathbb{R} \mid \mathbb{Q}$, $x_n \to \alpha \Rightarrow \lim_{n \to \infty} f(x_n) = 0$ sii $(x_n)_n \subset \mathbb{Q}$, $x_n \to \alpha \Rightarrow \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty}$

Aufgabe 3. (6 Punkte)

Berechne:

(a)
$$\frac{d}{dx}(x^{\tan x}), \quad x \in]0, \pi/2[;$$

(b) $\sup_{x \in \mathbb{R}} f(x)$ und $\inf_{x \in \mathbb{R}} f(x)$ für $f(x) := \frac{x}{1 + x^2}$, $x \in \mathbb{R}$.

Flogode 3

(a)
$$\frac{d}{dx} \times \frac{daux}{dx} = e \cdot \left(\frac{daux}{daux} \right)'$$

$$= e \cdot \left(\frac{daux}{daux} + \frac{daux}{daux} \right)'$$

$$= \sqrt{aux} \times \frac{daux}{daux} + \frac{daux}{daux} \cdot \frac{daux}{daux}$$

$$= \sqrt{aux} \times \frac{daux}{daux} + \frac{daux}{daux} \cdot \frac$$

(b) f ist vagerade

(1) line
$$f(x) = \lim_{x \to \pm \infty} \frac{\Delta}{2x} = 0$$

(2) la leale Exdrema:

$$f \quad 2ucal \quad diff. das \quad auf \quad R \quad mif$$

$$f'(x) = \frac{1+x^2-2x^2}{(1+x^2)^2} = \frac{1-x^2}{(1+x^2)^2} = 0 \quad (\exists) x=\pm 1$$

$$f''(x) = \frac{-2x(1+x^2)^2-(1-x^2)(1+x^2)(2x)}{(1+x^2)^4}$$

$$= (-2x)\frac{1+x^2+2(1-x^2)}{(1+x^2)^3} = (-2x)\frac{3-x^2}{(1+x^2)^3}$$

$$\Rightarrow f''(\pm i) = \mp 2 \cdot \frac{2}{2^3} \leq 0$$

 \Rightarrow fluit bei ± 1 lole. Max. beco. lole. Min.

(1) loke. Extrema sind global =>
$$sap f(x) = 1/2 \quad inf f(x) = -1/2$$

$$x \in \mathbb{R}$$

Aufgabe 4. (6 Punkte)

Seien f,g beliebig oft differenzierbare Funktionen auf \mathbb{R} . Beweise, dass für jedes $n\in\mathbb{N}_0$ die Leibnizsche Regel

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$$

gilt. Hierbei bezeichnet $f^{(k)}$ die k-te Ableitung von f.

カーファナイ:

$$\Rightarrow \left(f_{\theta}\right)^{(u+1)} = \sum_{k=0}^{n+1} {n+1 \choose k} f^{(k)} g^{(n+1-k)}$$

Aufgabe 5. (6 Punkte)

- (a) Sei $(a_n)_n$ eine Folge nicht-negativer reeller Zahlen, so dass $\sum_{n\in\mathbb{N}} a_n$ konvergent ist. Beweise, dass dann auch die Reihe $\sum_{n\in\mathbb{N}} a_n^2$ konvergiert.
- (b) Bleibt die Behauptung aus (a) auch ohne der Annahme über die Nicht-Negativität wahr? Gib einen Beweis oder ein Gegenbeispiel an!
- (c) Sei R der Konvergenzradius der Potenzreihe $\sum_{n\in\mathbb{N}}a_nz^n$. Drücke den Konvergenzradius der Potenzreihe $\sum_{n\in\mathbb{N}}a_n^2z^n$ durch R aus.

Aufgase 5

(a)
$$\sum_{n}^{\infty} \alpha_{n} (yt) \Rightarrow (\alpha_{n})_{n} \text{ ist Multfolge}$$
 $a_{n} > 0 \Rightarrow \exists N \in \mathbb{N} \ \forall u > N : \ \alpha_{n} \in [0, 1]$
 $a_{n} > 0 \Rightarrow a_{n} > 0 \Rightarrow a_{n} \Rightarrow a$

 $\sum_{n} a_{n}^{2} = \sum_{n} \frac{1}{n} d_{n} d_{n} d_{n} d_{n}$

Vesally. gilt also widet!

(c)
$$R := \left(\frac{|\operatorname{discop}|}{|\operatorname{au}|} \right)^{-1} = R^{2}$$

$$R := \left(\frac{|\operatorname{discop}|}{|\operatorname{au}|} \right)^{-1} = R^{2}$$

$$\left(\frac{|\operatorname{au}|}{|\operatorname{au}|} \right)^{2}$$

$$\left(\frac{|\operatorname{discop}|}{|\operatorname{au}|} \right)^{2}$$

$$\left(\frac{|\operatorname{au}|}{|\operatorname{au}|} \right)^{2}$$

alknowlives Figure 4 at (Gody-Folgen in Sa). Monotonic

(Su)_u isodoce, reige (Su)_u beschoander (dem = lept.)

FRSO: (1) Su \leq S_N für $1 \leq$ le \leq N

(2) Su = S_N + $\sum_{n=N+1}^{k} a_n^2 \leq S_N + \sum_{n=N+1}^{n} a_n^2$

Aufgabe 6. (6 Punkte)

Für $-\infty < a < b < \infty$ sei $(f_n)_{n \in \mathbb{N}}$ eine Folge stetiger Funktionen von [a,b] nach \mathbb{C} , die gleichmäßig gegen $f:[a,b] \to \mathbb{C}$ konvergiert. Beweise, dass dann die Funktionenfolge $(f_n^2)_{n \in \mathbb{N}}$ gleichmäßig gegen f^2 konvergiert.

For $\int g \cos \delta x = 6$ Sei E70. N.V. $\exists N \in \mathbb{N} \ \forall u = \mathbb{N} \ \forall x \in [a, b]$. (a, E, sii E4) $|f_n(x) - f(x)| < E$ $\Rightarrow |f_n(x)|^2 - (f(x))^2| = |f_n(x) - f(x)| |f_n(x) + f(x)|$ $\leq E + 2|f(x)|$

fokky = frimm + Max. an auf Kompalehune =)] M < o wit |f(x)| < M \ X \ E [a, 6]

also J NEN Y ">N Y * E [a, 6] $|(f, (*))^{2} - (f(*))^{2}| < \varepsilon (\varepsilon + 2M)$ $= f_{n}^{2} \text{ leyt. flew. gegen } f^{2}$

De da f gleichmofiges linnes sktyes Flet'en!