Demo 1 Project Documentation

Table of Contents

Translational Open Loop Step Response	1
Rotational Open Loop Step Response	2
Rotational Outer Loop	3
Controller Design	4

Group 10

Trevor Bachand, Andrew Burton, William Peyton, Kyra Squier

Translational Open Loop Step Response

Graphs the experimental step response and the estimated transfer function step response.

```
%experimental
[V,T,VT] = xlsread('RobotOpenLoopResponse.xlsx','Translational');
t = V(:,1);
y = V(:,8);
plot(t,y)
%transfer function
K_{rho} = 40.8;
                    %0.16
sigma_rho = 5.305;
sys = tf(K_rho*sigma_rho, [1 sigma_rho]);
hold on
step(sys)
xlim([0 5])
xlabel('Time')
ylabel('rho_dot (cm/s)')
title('Translational Open Loop Step Response')
hold off
```


Rotational Open Loop Step Response

Graphs the experimental step response and the estimated transfer function step response.

```
%experimental
[W,R,WR] = xlsread('RobotOpenLoopResponse.xlsx','Rotational');
x = W(:,1);
v = W(:,9);
plot(x,v)
%transfer function
K_{phi} = 2.93;
                  %0.0115
sigma_phi = 6.061;
sys2 = tf(K_phi*sigma_phi, [1 sigma_phi]);
hold on
step(sys2)
xlim([0 5])
xlabel('Time')
ylabel('phi_dot (rad/s)')
title('Rotational Open Loop Step Response')
hold off
```


Rotational Outer Loop

Determines the gain of the outer loop controller by plotting the root locus.

```
sys3 = tf([0.1 17.759],[1 7.837 17.759 0]);
rlocus(sys3)
hold on
hold off
```


Controller Design

Once the transfer functions were estimated using the open loop step response, the closed loop systems were created in Simulink. The proportional and intergral gains were tuned using the built-in tuning function. The designs in Simulink have an overshoot of ~0% and a rise time of less than 1 second.

```
out = sim('innerLoopPhi');
plot(out.phi_dot)
hold on
hold off
```



```
open_system('innerLoopPhi')
out = sim('innerLoopRho');
plot(out.rho_dot)
```

open_system('innerLoopRho')

Published with MATLAB® R2020b