

Autoencoder

Industrial AI Lab.

Prof. Seungchul Lee

Autoencoders

- It is like 'deep learning version' of unsupervised learning
- Definition
 - An autoencoder is a neural network that is trained to attempt to copy its input to its output
 - The network consists of two parts: an encoder and a decoder that produce a reconstruction
- Encoder and Decoder
 - Encoder function : z = f(x)
 - Decoder function : x = g(z)
 - We learn to set g(f(x)) = x

Autoencoder

- Dimension reduction
- Recover the input data

Autoencoder

- Dimension reduction
- Recover the input data
 - Learns an encoding of the inputs so as to recover the original input from the encodings as well as possible

Original space

Latent space

Autoencoder with MNIST

Autoencoder with TensorFlow

- MNIST example
- Use only (1, 5, 6) digits to visualize in 2-D

$$\frac{1}{m} \sum_{i=1}^{m} (t_i - y_i)^2$$

Test or Evaluation

```
test_x, _ = test_batch_maker(1)
x_reconst = sess.run(reconst, feed_dict = {x: test_x})
```

Imput Image

Reconstructed Image

Distribution in Latent Space

• Make a projection of 784-dim image onto 2-dim latent space

```
test_x, test_y = test_batch_maker(500)
test_y = np.argmax(test_y, axis = 1)
test_latent = sess.run(latent, feed_dict = {x: test_x})
```


Generative Capabilities

