ARITHMETIC

Chapter 21 Sesión I

Números racionales I

HELICO MOTIVATING

NÚMEROS FRACCIONARIOS

Interprete el gráfico de la rica torta

HELICO THEORY

NUMEROS RACIONALES

$$Q = \left\{ \frac{a}{b} / a \in Z \land b \in Z - \{0\} \right\}$$

$$\frac{12}{5}$$
; $\frac{-9}{13}$; $\frac{8}{-5}$; $\frac{1}{4}$; $\frac{18}{6}$

Números enteros

Números

FRACCIONES

Son aquellos números fraccionarios $\frac{a}{b}$, donde a y b son positivos, a no es divisible entre b.

$$\frac{9}{25}$$
; $\frac{7}{3}$; $\frac{15}{10}$

En general:

$$F = \left\{ \frac{a}{b} / a \in Z^{+} \land b \in Z^{+}; a \neq \dot{b} \right\}$$

Llamamos:

→ a :Numerador

b :Denominador

HELICO THEORY

Por la comparación de su valor con respecto a la unidad

$$\frac{15}{25}$$
; $\frac{9}{13}$; $\frac{19}{30}$

$$f = \frac{a}{b} < 1 \rightarrow a < b$$

2. Impropia

Ejm
$$\frac{18}{12}; \frac{11}{3}; \frac{5}{2}$$

$$f = \frac{a}{b} > 1 \rightarrow a > b$$

Por su denominador

1. Decimal

$$\frac{7}{10^2}$$
; $\frac{23}{10}$; $\frac{45}{10^3}$

$$\frac{\mathsf{a}}{\mathsf{b}} \to \mathsf{b} = 10^{\mathsf{n}} \quad \forall \ n \in \mathbb{Z} + 10^{\mathsf{n}}$$

2. Ordinaria

$$\frac{5}{26}$$
; $\frac{12}{8}$; $\frac{15}{6}$

$$f = \frac{a}{b} \rightarrow b \neq 10^{n}$$

∀ n∈Z+

HELICO THEORY

Por los divisores comunes de los términos

Por grupo de fracciones

$$\frac{12}{9}; \frac{8}{9}; \frac{5}{9}$$

(Ejm

$$\frac{16}{25}$$
; $\frac{7}{13}$; $\frac{19}{5}$

a y b son PESI

$$\frac{9}{15}$$
; $\frac{16}{10}$; $\frac{45}{24}$

$$f = \frac{a}{b} \rightarrow a y b no son PESI$$

1. Homogéneas

$$\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}, \dots, \frac{a_n}{b_n},$$

$$\frac{8}{15}$$
; $\frac{32}{10^2}$; $\frac{15}{6}$

$$\frac{a_1}{b_1}, \frac{a_2}{b_2}, \frac{a_3}{b_3}, \dots, \frac{a_n}{b_n}$$

a.

Fracción propia

Fracción impropia •

flechas según

b.

Fracción reductible

Fracción irreductible •

Realice las siguientes

Resolución

$$\Rightarrow \frac{1}{5} + \frac{2}{3} =$$

$$\frac{1 \times 3 + 5 \times 2}{5 \times 3} = \frac{1}{1}$$

$$\frac{5}{8} - \frac{2}{5} =$$

$$- = \frac{9}{40}$$

$$\frac{3 \times 2}{4 \times 7} = \frac{6}{28}$$

$$=\frac{3}{14}$$

$$\frac{8}{12} \div \frac{5}{10} =$$

$$\frac{8 \times 10}{12 \times 5} = \frac{80}{60}$$

$$=\frac{4}{3}$$

Cuántas fracciones propias con denominador 15 existen?

Resolución

f. propia:

$$\frac{a}{15}$$
 < 1

Cuántas fracciones propias e irreductibles con denominador 16 existen?

Resolución

f. propia:

$$\frac{a}{16}$$
<1 \Rightarrow a<16

a:1;2;3;...;15

f. irreductible:

a y 16 son (PESI)

a≠2

Entonces:

a:1;3;5;7;9;11;13;15.

RPTA:

8

¿Cuántas fracciones propias irreductibles con numerador 24 existen?

f. propia:

$$\frac{a}{24}$$
 < 1

a<24

a:1;2;3;...;24

f. irreductible:

$$a$$
 y 24 son (PESI)

$$24 = 2^3 x^3$$

a≠2

Entonces: a:1;5;7;11;13;17; 19; 23.

8

Luana tiene $\frac{3}{5}$ de S/900 y gasta los $\frac{5}{6}$ de S/300. ¿Cuántos dinero le quedó a Luana ?

Resolución
Luana
$$\frac{3}{8}$$
 x900=540
tiene:

50
Gasta
 $\frac{5}{8}$ x300=250
:

Quedó

S/.290

•

En una canasta se observa 5 plátanos, 3 naranjas y 2 mangos. ¿Qué fracción representa los mangos? ¿Qué fracción representa las naranjas? Dé como respuesta la diferencia de las fracciones resultantes.

Resolució

Recordar

$$f = \frac{parte}{todo}$$
 Todo=5+3+2=10

Mangos
$$m = \frac{2}{10} = \frac{1}{5}$$

naranjasn=
$$\frac{3}{10}$$

:

Respuesta

$$\frac{3}{10} = \frac{1}{5} = \frac{3-2}{10}$$

En una fiesta se observa en un momento determinado que todos los varones están bailando y 40 mujeres no bailan, además en la pista de baile se encuentran 20 parejas. ¿Cuántos varones deben llegar para que los varones sean la mitad de las mujeres?

Bailan No

Una mediante flechas según corresponda.

Resolución *b*. a. $\frac{15}{21}$ Fracción reductible Fracción propia Fracción irreductible Fracción impropia $\frac{20}{21}$ $\frac{71}{3}$

Resolución

$$\frac{a}{15} < 1 \Rightarrow a < 15$$

a: 1; 2; 3; ...; 14

RPTA:

14

Realice las siguientes operaciones.

Resolución

$$\frac{1}{5} + \frac{2}{3} = \frac{1 \times 3 + 5 \times 2}{5 \times 3} = \frac{13}{15}$$

$$> \frac{5}{8} - \frac{2}{5} = \frac{5 \times 5 - 8 \times 2}{8 \times 5} = \frac{9}{40}$$

$$\Rightarrow \frac{3}{4} \times \frac{2}{7} = \frac{3 \times 2}{4 \times 7} = \frac{6}{28} = \frac{3}{14}$$

Resolución

$$\frac{a}{16} < 1 \implies a < 16$$

a: 1; 2; 3; ...; 15

f. irreductible: $a \ y \ 16 \ \text{son} \ (PESI) \implies 16 = 2^4$

 $a \neq 2$

Entonces: a: 1; 3; 5; 7; 11; 13; 15.

80

MUCHAS GRACIAS

Figura 1. Dr. Uriel García Cáceres

Lo conocéis?

Patólogo ,científico Peruano creador de varias vacunas

El cólera