Tutorial 4: Discussion / Hints

2.1

First focus on sharing s s.t.

(any two dogs) and (any two cats)

can recover s.

This problem is an example of 2-level secret sharing.

Hint 1: How to share a secret s among
t 'groups' such that they recover
it only if all t are present?

Combine Hint-1 with (2-out-of-4)-SS and (3-out-of-5)-SS

2.2

1. gcd(m,n) = 1. $\varphi(m,n) = \varphi(m) \cdot \varphi(n)$.

Solution: In the last tutorial, you showed the Chinese Remainder Thm:

Bijection between $Z_{m,n}$ and $Z_m \times Z_n$. $(x \mod m, x \mod n)$ Z_{mn} $Z_m \times Z_n$

The same mapping is also a bijection \mathbb{Z}_{mn}^* $\mathbb{Z}_m^* \times \mathbb{Z}_n^*$

To show this, we only need to show that the mapping $f(x) = (x \mod m, x \mod n)$ maps every \mathbb{Z}_{mn} element to $\mathbb{Z}_m^* \times \mathbb{Z}_n^*$, and maps no element in $\mathbb{Z}_{mn} \setminus \mathbb{Z}_m^*$ to $\mathbb{Z}_m^* \times \mathbb{Z}_n^*$.

Show this to conclude $|Z_{mn}| = |Z_{n}| \cdot |Z_{n}|$.

2.
$$\varphi(p^k)$$
: let $n=p^k$

$$\mathbb{Z}_{n}^{*} = \left\{ m : \gcd(m, p^{k}) = 1 \right\}$$

Observation: 9f
$$gcd(m, p^k) \neq 1$$
,
then p divides m .

Follows from the definition of gcd, and the fact that the only divisors of n are powers of p.

Therefore
$$|Z_n^*| = P^{k-1}(p-1)$$

3. Use (1) and (2), together with Fundamental Theorem of Arikametic.

2.3

9 $x \in \mathbb{Z}_n \setminus \mathbb{Z}_n^+$, then x is either

0, or multiple of P, or mult. of Q.

case 1: x = 0. Result holds.

case 2: x = kp for some $1 \le k \le Q$. $x \mod p = 0$. Let $x \mod q = y$

Let $z = exp_n(exp_n(x, e), d) \in \mathbb{Z}_n$.

Consider $(z \mod p, z \mod q)$

Z mod p = 0.

What can we say about 2 mod 9?

Use Chinese Remainder Theorem.

2.4 Predicate is false, show a counterexample.

2.5 $\exp_{\rho}(x,2) = 1$ is a deq. 2 polynomial, therefore it has at most 2 distinct roots. Check that 1 and $(\rho-1)$ are two roots of this equation.

Every element 'a' other than 1 and (p-1) has a mult-inverse 'b' s.t. $a \neq b$. has a mult-inverse b' $s \neq b$. (using the fact that $exp_p(a, 2) \neq 1$)

Pair the elements in the set $\{2, 3, ..., p-2\}$ appropriately.

Conclude that the product of all elements in Zp\803 is (P-1).

 $\frac{2.6}{1}$ For n = 4, $1 \times 2 \times 3 = 2$

N = 6, 1x, 2x, 3x, ... x, 5 = 0

n = 8, $1 \times_8 2 \times_8 3 \times_8 \dots \times_8 7 = 0$.

You can observe that for $n \ge 6$,

n always divides $1 \times n \times 2 \times n \times n \times (n-1)$.

Prove this formally. One approach is

via the fundamental thm of

Arithmetic [maybe break into two cases:]

n=pk, n + pk

2.7

Suppose $(\chi-1) \times_n (\chi-2) \times_n (\chi-3) = 0$. (*)

Then $(\chi-1) \times_p (\chi-2) \times_p (\chi-3) = 0$...(i)

and $(\chi-1) \times_q (\chi-2) \times_n (\chi-3) = 0$...(ii)

How many elements in Zp satisfy (i)?
How many elements in Zp satisfy (ii)?

Given a solution $\alpha \in \mathbb{Z}_p$ that satisfies (i), and a sol." $\beta \in \mathbb{Z}_q$ " " (ii), now to construct a sol." in \mathbb{Z}_n that satisfies (*)?

Use this to give a bound on the number of roots of (*) in Zn.

to show that 2, 3 and 7 9t suffices

for all $n \in \mathbb{N}$. n 7 - n divide

a) 2 divides $n^7 - n$: even, in both n is either odd ev cases 2 divides n⁷ - n.

b) 3 divides $n^7 - n$:

Take any $n \in \mathbb{N}$.

 $n^7 - n \pmod{3}$

 $= \left(\left(n \mod 3 \right)^{\frac{7}{3}} - \left(n \mod 3 \right) \right) \mod 3$

 $= \left[\left(n \mod 3 \right) \mod 3 \right) (n \mod 3) - \left(n \mod 3 \right) \right]$ $\mod 3$

Then, $= 2 \left[1 \cdot (n \mod 3) - (n \mod 3) \right] \mod 3$

c) 7 divides $n^7 - n$ Same argument as (b).

2.9 Look up Euler's criterion online.