Universidade de Brasília Departamento de Estatística

Lista de Exercícios 5 – Estatística Matemática

R. Vila

1. Sejam X_1, X_2, \ldots variáveis independentes com distribuição comum Poisson (λ) . Qual o limite em probabilidade da sequência $(Y_n)_{n\geqslant 1}$, onde

$$Y_n = \frac{X_1^2 + \dots + X_n^2}{n}$$
?

Rpt. $\lambda(1+\lambda)$.

2. Seja $(X_n)_{n\geqslant 1}$ uma sequência de variáveis aleatórias. Verifique que: se $\lim_{n\to\infty} \mathbb{E}(X_n) = \alpha$ e $\lim_{n\to\infty} \mathrm{Var}(X_n) = 0$, então $X_n \stackrel{\mathrm{P}}{\longrightarrow} \alpha$.

Rpt. Use a Desigualdade de Markov.

3. Sejam X_1, X_2, \ldots variáveis independentes tais que $X_1 = 0$ e para $j \geqslant 2$, X_j é variável aleatória discreta satisfazendo

$$\mathbb{P}(X_j = k) = \begin{cases} \frac{1}{j^3}, & \text{se } k = \pm 1, \pm 2, \dots, \pm j; \\ 1 - \frac{2}{j^2}, & \text{se } k = 0. \end{cases}$$

Verifique que

$$\frac{\sum_{j=1}^{n} X_j}{n^{\alpha}} \stackrel{P}{\longrightarrow} 0,$$

quando $n \to \infty$, se $\alpha > 1/2$.

Rpt. Aplique o Exercício 2.

4. Sejam X_1, X_2, \ldots variáveis independentes tais que $\mathbb{P}(X_n = 1) = 1/n$, $\mathbb{P}(X_n = 0) = 1 - 1/n$. Verifique que $X_n \stackrel{\mathrm{P}}{\longrightarrow} 0$ mas $\mathbb{P}(\lim_{n \to \infty} X_n = 0) = 0$.

Rpt. Para obter $X_n \stackrel{\mathrm{P}}{\longrightarrow} 0$, aplique o Exercício 2. Para verificar $\mathbb{P}(\lim_{n\to\infty} X_n = 0) = 0$, aplique o Lema de Borel-Cantelli e a caracterização de convergência quase certa.

- 5. Sejam X_1, X_2, \ldots variáveis independentes e identicamente distribuídas tais que $X_1 \sim U[0,1]$. Verifique que $n^{-X_n} \stackrel{\mathrm{P}}{\longrightarrow} 0$.
- 6. Sejam X_1, X_2, \ldots variáveis independentes e identicamente distribuídas tais que $X_1 \sim U[0,1]$. Determine o limite quase certo da média geométrica

$$\left(\prod_{k=1}^n X_k\right)^{1/n}.$$

Rpt. e^{-1} .

Propriedade de convergência quase certa.

- (a) Se $X_n \xrightarrow{\text{q.c.}} X$ e $Y_n \xrightarrow{\text{q.c.}} Y$ com $\mathbb{P}(Y \neq 0) = 1$, então $X_n/Y_n \xrightarrow{\text{q.c.}} X/Y$.
- (b) Propriedades similares são válidas para a soma, substração e multiplicação.
- 7. Verifique que, se X_1, X_2, \dots são variáveis independentes e identicamente distribuídas, com $\mathbb{E}(X_1) = 1 = \text{Var}(X_1)$, então

$$\frac{\sum_{i=1}^{n} X_i}{\sqrt{n \sum_{i=1}^{n} X_i^2}} \xrightarrow{\text{q.c.}} \frac{1}{\sqrt{2}}.$$

Rpt. Aplique a propriedade de convergência quase certa.

8. Seja $0 < \theta < 1/2$. Verifique que, se X_1, X_2, \ldots são variáveis independentes tais que $\mathbb{P}(X_n = n^{\theta}) = 1/2 = \mathbb{P}(X_n = -n^{\theta})$, então

$$X_1 + \cdots + X_n \xrightarrow{\text{q.c.}} 0.$$

9. Sejam X_1, X_2, \ldots variáveis independentes com densidade comum

$$f(x) = \begin{cases} e^{-(x+1/2)}, & x \geqslant -1/2; \\ 0, & x < -1/2. \end{cases}$$

Verifique que $X_1 + \cdots + X_n \xrightarrow{\text{q.c.}} + \infty$.

10. Sejam X_1, X_2, \ldots variáveis independentes com distribuição comum N(0,1). Qual o limite quase certo de

$$\frac{X_1^2 + \dots + X_n^2}{(X_1 - 1)^2 + \dots + (X_n - 1)^2}?$$

Rpt. 1/2 (Aplique a propriedade de convergência quase certa).

11. Verifique que $X_n \stackrel{\text{q.c.}}{\longrightarrow} 2$, com $(X_n)_{n\geqslant 1}$ sendo uma sequencia de variáveis aleatórias tais que

$$\mathbb{P}(X_n = 1) = \mathbb{P}(X_n = 3) = \frac{1}{n^2}$$
 e $\mathbb{P}(X_n = 2) = 1 - \frac{2}{n^2}$, $\forall n \ge 1$.

Rpt. Aplique o Lema de Borel-Cantelli e a caracterização de convergência quase certa.

2

- 12. As variáveis X_n , $n \ge 1$, são independentes e todas têm distribuição exponencial de parâmetro λ . Verifique que a sequencia $(X_n^2)_{n \ge 1}$ satisfaz a Lei Forte dos Grandes Números.
- 13. Sejam X_1, \ldots, X_n variáveis aleatórias independentes com $X_n \sim \text{Poisson}(\sqrt{n})$, para cada $n \geqslant 1$. Verifique que $(\overline{X} \sqrt{n}) \stackrel{L^2}{\longrightarrow} 0$, onde $\overline{X} = (X_1 + \cdots + X_n)/n$.
- 14. Sejam $(X_n)_{n\geqslant 1}$ variáveis aleatórias i.d.d. com média μ e variância σ^2 , ambas finitas, Verifique que

$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2 \stackrel{P}{\longrightarrow} \sigma^2.$$

15. Sejam $\mu \in \mathbb{R}$, $\sigma > 0$ e $(X_n)_{n \geqslant 1}$ uma sequência de variáveis aleatórias tal que para todo $n \geqslant 1$, X_n é normalmente distribuída com média μ e variância σ^2 . Assuma que X_1, \ldots, X_n são independentes para todo $n \geqslant 1$. Seja $\overline{X} = (X_1 + \cdots + X_n)/n$. Verifique que \overline{X} converge em L^p a μ , para todo $p \geqslant 1$.

Rpt. Lembre que, neste caso, $\overline{X} \sim N(\mu, \sigma^2/n)$.

- 16. Para $k\geqslant 1$, $X_k\sim$ Bernoulli (p_k) são variáveis aleatórias independentes. Defina Y_n como o número de sucessos, nas primeiras n realizações. Verifique que
 - (a) $(Y_n \sum_{i=1}^n p_i)/n \stackrel{P}{\longrightarrow} 0$.
 - (b) $(Y_n \sum_{i=1}^n p_i)/n \xrightarrow{L^2} 0$.
- 17. A variável aleatória Y é tal que $\mathbb{P}(-1 < Y \leqslant 1) = 1$. Defina, para $n \geqslant 1$, uma nova variável $X_n = \sum_{i=1}^n (-1)^{i+1} Y^i / i$. Verifique que $X_n \xrightarrow{\text{q.c.}} X$, com $X = \log(1+Y)$.

Rpt. Use a convergência pontual.

- 18. As variáveis aleatórias X_1, X_2, \dots, X_n são i.i.d. com média μ e variância σ^2 , ambas finitas. Sendo \overline{X} a média amostral, verifique que $\overline{X} \xrightarrow{L^2} \mu$.
- 19. Seja $(X_n)_{n\geqslant 1}$ uma sequencia de variáveis aleatórias com

$$\mathbb{P}(X_n = x) = \begin{cases} 1, & x = 2 + \frac{1}{n} \\ 0, & \text{outro caso.} \end{cases}$$

Verifique que $X_n \xrightarrow{D} X$, onde X é uma variável tal que $\mathbb{P}(X=2) = 1$.

20. É válida a Lei Fraca dos Grandes Números para as variáveis aleatórias independentes $X_n, n \ge 1$, com $X_n \sim \exp(2^{n/2})$? Justifique!

Rpt. Sim!

21. Seja $(X_n)_{n\geqslant 2}$ uma sequencia de variáveis aleatórias independentes com

$$\mathbb{P}(X_n = 0) = 1 - \frac{1}{\log(n)} \quad \mathbf{e} \quad \mathbb{P}(X_n = n) = \frac{1}{\log(n)}, \quad \forall n \geqslant 2.$$

Verifique que $X_n \stackrel{\mathrm{P}}{\longrightarrow} 0$, mas X_n não converge em média r, para qualquer r > 0.

22. Suponha que X_n , para $n \ge 1$, tem a seguinte função de distribuição:

$$F_n(x) = \begin{cases} 0, & \text{se } x \leq 0; \\ x^n, & \text{se } 0 < x \leq 1; \\ 1, & \text{se } x > 1. \end{cases}$$

Determine o limite em distribuição para a sequencia $(X_n)_{n\geq 1}$.

Rpt. $X_n \xrightarrow{D} X$, onde $\mathbb{P}(X = 1) = 1$.

- 23. Se $X_n \sim N(n, \sigma^2)$, as variáveis X_n 's convergem em distribuição? Justifique! **Rpt.** Não!
- 24. Se $X_n \sim N(a,1/n)$, $a \in \mathbb{R}$ e $n \geqslant 1$, determine seu limite em distribuição.

Rpt. $X_n \xrightarrow{D} X$, onde $\mathbb{P}(X = a) = 1$.

25. Sejam X_n , $n \geqslant 1$, variáveis aleatórias i.i.d. com média μ e variância σ^2 , ambas finitas. Com o uso do Teorema do Limite Central , determine o tamanho da amostra n para que $\mathbb{P}(|\overline{X} - \mu| \leqslant \sigma/10) \approx 0,95$.

Rpt. 384.

26. Sejam $X_n \in \{0,1\}$, $n \ge 1$, variáveis independentes tais que $X_n \sim \text{Bernoulli}(1/n)$. Defina a variável Y_n como o número de sucessos nas primeiras n realizações. Verifique que

$$\frac{1}{\sqrt{\log(n)}} \left[Y_n - \log(n) \right] \stackrel{\mathcal{D}}{\longrightarrow} N(0, 1).$$

Rpt.

- Use o Teorema de Slutsky;
- Use que: $\lim_{n\to\infty} \left[\sum_{k=1}^n \frac{1}{k} \log(n)\right] = \gamma$ (constante de Euler) e $\lim_{n\to\infty} \frac{1}{\log(n)} \sum_{k=1}^n \frac{1}{k} = 1$;
- Use o Teorema do Limite Central de Lyapunov. Para verificar a condição de Lyapunov, tome $\delta=1$ e use o fato de que $\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k}(1-\frac{1}{k})=\infty$.

Lema técnico. Para $\alpha > 0$,

$$\lim_{n \to \infty} \frac{1}{n^{\alpha+1}} \sum_{k=1}^{n} k^{\alpha} = \frac{1}{\alpha+1}.$$

27. Seja $(X_n)_{n\geqslant 1}$ uma sequencia de variáveis aleatórias independentes com $\mathbb{P}(X_n=-n)=\mathbb{P}(X_n=n)=1/2$. Verifique que não vale a Lei Fraca dos Grandes Números, mas a sequencia satisfaz o Teorema do Limite Central (de Lyapunov).

4

Rpt. Para a primeira parte, use o Teorema da Continuidade de Paul Lèvy junto com a identidade $\lim_{n\to\infty}\prod_{k=1}^n\cos(\pi k/n)=0$. Para a segunda parte, use o Lema técnico.

28. Sejam X_n , $n \ge 1$ variáveis aleatórias independentes definidas como segue

$$X_n = \begin{cases} -1/\sqrt{n}, & \text{com probabilidade } 1/2; \\ 1/\sqrt{n}, & \text{com probabilidade } 1/2. \end{cases}$$

Verifique que sequencia $(X_n)_{n\geqslant 1}$ satisfaz o Teorema do Limite Central (de Lyapunov).

Rpt. Use o Lema técnico.

29. As sequencias $(X_n)_{n\geqslant 1}$ e $(Y_n)_{n\geqslant 1}$ são de variáveis aleatórias i.i.d. com médias μ_X e μ_Y , respectivamente, e variâncias finitas σ_X^2 e σ_Y^2 , respectivamente. Assuma que as sequencias são independentes entre si e que $\mu_X \neq 0$. Obtenha o limite em distribuição de

$$\sqrt{n} \left(\frac{\overline{Y}}{\overline{X}} - \frac{\mu_Y}{\mu_X} \right) = \sqrt{n} \left(\frac{\mu_X \overline{Y} - \mu_Y \overline{X}}{\mu_X \overline{X}} \right).$$

Rpt. $X \sim N(0, \sigma^2)$, onde $\sigma^2 = \frac{\mu_X^2 \sigma_Y^2 + \mu_Y^2 \sigma_X^2}{\mu_X^4}$.

- 30. (a) Se $X \sim \text{binomial}(n, p)$, qual a função característica de X?
 - (b) Verifique, usando funções características, que se $X \sim \text{binomial}(m, p)$, $Y \sim \text{binomial}(n, p)$, e X e Y são independentes, então $X + Y \sim \text{binomial}(m + n, p)$.

Rpt. (a) $(pe^{it} + 1 - p)n$, (b) Imediato! Segue por combinar o Item (a) com o Teorema da Unicidade.

31. Seja φ uma função característica. Verifique que $\psi(t)=\mathrm{e}^{\lambda[\varphi(t)-1]}$, onde $\lambda>0$, também é função característica.

Rpt. Determine a função característica da variável aleatória $S_N = \sum_{i=1}^N X_i$, com $N \sim \operatorname{Poisson}(\lambda)$, $X_1, X_2 \ldots$ i.i.d. e $\varphi_{X_i}(t) = \varphi(t)$, de tal forma que a sequencia $(X_n)_{n\geqslant 1}$ é independente de N.

32. (a) Suponha que $X \sim \exp(\lambda)$ e verifique que a função característica de X é

$$\varphi(x) = \frac{\lambda}{\lambda - it}.$$

(b) Seja Y exponencial dupla com densidade

$$f_Y(y) = \frac{\lambda}{2} e^{-\lambda|y|}, \ y \in \mathbb{R}.$$

Determine a função característica de Y.

(c) Verifique que, se Z e W são independentes e i.i.d. com $Z\sim\exp(\lambda)$, então Z-W é exponencial dupla.

Rpt. (b) $\lambda^2/(\lambda^2+t^2)$, (c) Use o Teorema da Unicidade...

33. Use a função característica do exercício anterior para verificar que se $X \sim \mathrm{Gama}(n,\beta)$, então

$$\varphi_X(t) = \left(\frac{\beta}{\beta - it}\right)^n.$$

Rpt. Use o fato de que, se X_1, X_2, \ldots são independentes e identicamente distribuídas, com $X_n \sim \exp(\beta) \ \forall n \geqslant 1$, então $\sum_{k=1}^n X_k \sim \operatorname{Gama}(n, \beta)$.

5

34. Encontre a variável aleatória associada à função característica definida por $\varphi(t)=\cos^2(t)$? **Rpt.**

$$egin{array}{c|cccc} X+Y & -2 & 0 & 2 \\ \hline p_{X+Y}(z) & 1/4 & 1/2 & 1/4 \\ \hline \end{array}$$

- 35. Sejam X_1, X_2, \ldots independentes e identicamente distribuídas, com $X_n \sim U[0,1]$, e sejam $Y_n = \min\{X_1, \ldots, X_n\}, \ Z_n = \max\{X_1, \ldots, X_n\}, \ U_n = nY_n, \ V_n = n(1-Z_n)$. Verifique que, quando $n \to \infty$:
 - (a) $Y_n \stackrel{P}{\longrightarrow} 0$ e $Z_n \stackrel{P}{\longrightarrow} 1$.
 - (b) $U_n \xrightarrow{D} W$ e $V_n \xrightarrow{D} W$, onde W tem distribuição exponencial de parâmetro 1.
- 36. Seja $(X_n)_{n\geqslant 1}$ uma sequencia de variáveis aleatórias i.i.d., tais que $\mathbb{P}(X_n=1)=1/2=\mathbb{P}(X_n=-1)$, e seja

$$Y_n = \sum_{k=1}^n \frac{1}{2^k} X_k.$$

Verifique que $Y_n \xrightarrow{D} U[-1,1]$.

Rpt. Use a identidade $\prod_{k=1}^{\infty} \cos(t/2^k) = \sin(t)/t$.

37. Sejam X_1, X_2, \ldots independentes e identicamente distribuídas tais que $X \sim U[0, \theta]$, onde $\theta > 0$. Verifique que

$$Y_n = \sqrt{n}[\log(2\overline{X}) - \log(\theta)]$$

converge em distribuição para N(0, 1/3).

Rpt. Use o método Delta.

- 38. Sejam X_1, X_2, \ldots independentes e identicamente distribuídas tais que $\mathbb{E}(X_1) = 0$. Encontre o limite, quando $n \to \infty$, da função característica de $Y_n = \cos(\overline{X})$. **Rpt.** e^{it} .
- 39. Sejam X_1, X_2, \ldots independentes e identicamente distribuídas, com $\mathbb{E}(X_1) = 0$ e $\mathbb{E}(X_1^2) = 2$. Encontre o limite em distribuição das seguintes sequencias:
 - (a) $Y_1, Y_2, ...$, onde

$$Y_n = \frac{\sqrt{n}(X_1 + \dots + X_n)}{X_1^2 + \dots + X_n^2}.$$

(b) $Z_1, Z_2, ...,$ onde

$$Z_n = \frac{X_1 + \dots + X_n}{\sqrt{X_1^2 + \dots + X_n^2}}.$$

Rpt. Ao combinar o Teorema do Limite Central com o Teorema de Slutsky, temos que: (a) N(0,1/2), (b) N(0,1).

40. Sejam X_1, X_2, \ldots independentes e identicamente distribuídas, com $\mathbb{E}(X_1) = 0$ e $\mathrm{Var}(X_1) = \sigma^2$, onde $0 < \sigma^2 < \infty$. Sejam Y_1, Y_2, \ldots independentes e identicamente distribuídas tais que $\mathbb{E}(Y_1) = \mu$, onde $\mu \in \mathbb{R}$. Verifique que

$$\overline{Y} + \sqrt{n} \, \overline{X} \stackrel{\mathcal{D}}{\longrightarrow} N(\mu, \sigma^2).$$

Rpt. Combine o Teorema do Limite Central com o Teorema de Slutsky.