NORMALIZATION (Practice Questions)

Dr. Seema Gupta Bhol

Steps to find the highest normal form of a relation

- Find all possible candidate keys of the relation.
- Divide all attributes into two categories:
 - prime attributes ,
 - non-prime attributes.
- Prime attribute are those attribute which are part of candidate key.
- Check for BC Normal form then 3NF and so on.
 If it fails to satisfy nth normal form condition, check for n-1 normal form.

Test for BCNF

All determinants should be primary key.

Test for 3 NF

No transitivity

Or

 Functional Dependency, LHS→RHS is in 3 NF if LHS is candidate key or RHS is prime attribute

Test for 2NF

No partial dependency.

Consider the relation R(A,B,C,D) with set of functional dependencies $\{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$.

Relation is in which normal form?

Candidate key is A ,as it is not in RHS of any FD.

Prime attribute-A

Non Prime attribute : B,C,D

	A → B	B→C	C→D	
BCNF	Υ	N	N	Not in BCNF
3 NF	Υ	N	N	Not in 3 NF
2 NF	Υ	Υ	Υ	In 2 NF

Thus, R is in 2 NF

```
Find the highest normal form of a relation R(A,B,C,D,E)
  with FD set {A->D, B->A, BC->D, AC->BE}
Attributes on RHS are (ABDE) thus essential attribute is C.
Super key (ABCDE) can be reduced to:
(ABCE) as A \rightarrow D
(AC) as AC \rightarrow BE
(BC) as B \rightarrow A
Thus BC and AC are candidate keys
  Prime attribute :{A,B,C}, Non-prime {D,E}
```

	A->D	B->A	BC->D	AC->BE	
BCNF	N	N	Υ	Υ	Not in BCNF
3 NF	N	Υ	Υ	Υ	Not in 3 NF
2 NF	Υ	Υ	N	Υ	Not in 2 NF

BCNF-no as A and B are determinant but not candidate key.

3 NF-no

2 NF-The relation is not in 2nd Normal form because A->D is partial dependency (A which is subset of candidate key AC is determining non-prime attribute D) and 2nd normal form does not allow partial dependency.

Thus relation is in 1 NF

Find the highest normal form of a relation R(A,B,C,D,E,F) with FD set

{AB->CDEF, BD->F}

Here AB is candidate key

Prime attribute:{A,B}

Non-prime attributes {C,D,E,F}

	AB->CDEF	BD->F	
BCNF	yes	no	Not in BCNF
3NF	yes	no	Not in 3NF
2NF	yes	yes	Relation in 2 NF

Find the highest normal form of a relation R(A,B,C,D,E) with FD set {BC->D, AC->BE, B->E}

BDE are on RHS of FD , AC are essential attributes

Is AC candidate key?

{A,C} + ={A,B,C,D,E}, So AC is candidate key

Prime attribute:{A,C}, Non-prime attributes {B,D,E}

	BC→D	AC->BE	B→E	
BCNF	No	Yes	No	Not in
				BCNF
3NF	No	Yes	No	Not in 3NF
2NF	Yes	Yes	Yes	Relation in 2 NF