

Seminar Approximation Algorithms

Approximating Nash Social Welfare under Submodular Valuations through (Un)Matchings

Based on a paper of the same name by Garg, Kulkarni and Kulkarni

Zeno Adrian Weil Supervised by Dr Giovanna Varricchio

4th July 2023 · Algorithms and Complexity (Prof. Dr Martin Hoefer)

Introduction

What is the issue?

We need to distribute goods amongst recipients fast, efficient and fairly.

Where is this encountered?

- industrial procurement
- mobile edge computing
- satellites
- water withdrawal

- 1 Preliminaries
 - Allocations
 - Valuation Functions
 - Maximum Nash Social Welfare Problem

- 2 SMatch
 - Naiver Ansatz

- 1 Preliminaries
 - Allocations
 - Valuation Functions
 - Maximum Nash Social Welfare Problem

- 2 SMatch
 - Naiver Ansatz

Preliminaries

Allocations

Setting:

- \blacksquare goods: set \mathscr{G} of m items
 - unsharable
 - indivisible
- **recipients**: set \mathcal{A} of n agents

Definition

An *allocation* is a tuple $\mathbf{x} = (\mathbf{x}_i)_{i \in \mathcal{A}}$ of bundles $\mathbf{x}_i \subset \mathcal{G}$ such that each item is element of precisely one bundle.

Item *j* is *assigned* to agent *i* if $j \in x_i$.

But how to measure the efficiency and fairness of the allocation?

Preliminaries

Valuation Functions

Requirements:

- monotonically non-decreasing: $v_i(S_1) \le v_i(S_2)$ $\forall S_1 \subset S_2 \subset \mathcal{G}$
- normalised: $v_i(\emptyset) = 0$
- non-negative: $v_i(\mathcal{S}) \ge 0 \quad \forall \mathcal{S} \subset \mathcal{G}$

Types:

- additive: $v_i(\mathcal{S}) := \sum_{j \in \mathcal{S}} v_i(j) \quad \forall \mathcal{S} \subset \mathcal{G}$
- submodular: $v_i(S_1 \mid S_2) := v_i(S_1 \cup S_2) v_i(S_2)$ $\forall S_1, S_2 \subset \mathcal{G}$ with S_1, S_2 disjoint
 - encompasses additivity
 - diminishing returns

Asymmetric Maximum Nash Social Welfare Problem

Definition

$$x^* \stackrel{!}{=} \underset{x \in X_{\mathscr{A}}(\mathscr{C})}{\operatorname{arg max}} \{ \operatorname{NSW}(x) \} \quad \text{with NSW}(x) := \Big(\prod_{i \in \mathscr{A}} v_i(x_i)^{\eta_i} \Big)^{1/\sum_{i \in \mathscr{A}} \eta_i}$$

- $X_{\mathcal{A}}(\mathcal{G})$: all possible allocations
- η_i : agent weight
- middle ground between efficiency and fairness

Challenge

Algorithm with approximation factor $independent\ from\ m!$

- 1 Preliminaries
 - Allocations
 - Valuation Functions
 - Maximum Nash Social Welfare Problem

- 2 SMatch
 - Naiver Ansatz

Naiver Ansatz

Inhalt...

