Solutions to Tutorial Sheet 6 - Counters

1.
$$A_J = A_0 A_1 A_2 \qquad A_K = A_0 \qquad B_J = B_K = A_0 A_1 \qquad \begin{array}{c|c} J \ K & Q \\ \hline 0 \ 0 & Q \\ \hline 0 \ 1 & 0 \\ \hline 0 \ 1 & 0 \\ \hline 1 \ 1 & Q \\ \hline \end{array}$$

Minterm	Count	$A_3A_2A_1A_0$		Flipflo	p Inputs	I
			$A_J A_K$	$B_J B_K$	$C_J C_K$	$D_J D_K$
0	0	0000	0 0	0 0	0 0	1 1
1	1	0001	0 1	0 0	1 1	1 1
2	2	0010	0 0	0 0	0 0	1 1
3	3	0011	0 1	1 1	1 1	1 1
4	4	0100	0 0	0 0	0 0	1 1
5	5	0101	0 1	0 0	1 1	1 1
6	6	0110	0 0	0 0	0 0	1 1
7	7	0111	1 1	1 1	1 1	1 1
8	8	1000	0 0	0 0	0 0	1 1
9	9	1001	0 1	0 0	0 1	1 1
0	0	0000				

Since the minterms follow the count exactly form 0 through to 9, the BCD counter must be using weights 8 4 2 1.

2.
$$J_A = K_A = 1 \qquad J_B = K_B = \overline{\overline{ACD}} = A + C\overline{D} \qquad J_D = C$$

$$J_C = K_C = \overline{\overline{ABCD}} = AB + C\overline{D} \qquad K_D = \overline{\overline{A} + \overline{B} + \overline{C}} = ABC$$

Minterm	Count	ABCD		Flipflo	p Inputs	
8 4 2 1		1 2 4 2	J _A K _A	$J_B K_B$	$J_C K_C$	$J_D K_D$
0	0	0000	1 1	0 0	0 0	0 0
8	1	1000	1 1	1 1	0 0	0 0
4	2	0100	1 1	0 0	0 0	0 0
12	3	1100	1 1	1 1	1 1	0 0
2	4	0010	1 1	1 1	1 1	1 0
13	5	1101	1 1	1 1	1 1	0 0
3	6	0011	1 1	0 0	0 0	1 0
11	7	1011	1 1	1 1	0 0	1 0
7	8	0111	1 1	0 0	0 0	1 0
15	9	1111	1 1	1 1	1 1	1 1
0	0	0000				

This counter uses a 1 2 4 2 weighted code (this is the code that relates the sequence to a conventional count sequence of 0, 1, 2, 3, 4, 5, ... etc.)

3.

Minterm	WXYZ	Flipflop Inputs						
		W _J W _K	$X_J X_K$	$Y_J Y_K$	$Z_J Z_K$			
0	0000	0 X	0 X	0 X	1 X			
1	0001	0 X	0 X	1 X	X 0			
3	0 0 1 1	0 X	1 X	X 1	X 0			
5	0101	0 X	X 0	1 X	X 0			
7	0 1 1 1	1 X	X 1	X 1	X 1			
8	1000	X 0	0 X	0 X	1 X			
9	1001	X 0	0 X	1 X	X 0			
11	1011	X 0	1 X	X 1	X 0			
13	1 1 0 1	X 0	X 0	1 X	X 0			
15	1 1 1 1	X 1	X 1	X 1	X 1			
0	0000							

Operation	J K
Stay at 0	0 X
Stay at 1	X 0
Go to 0	X 1
Go to 1	1 X

Carry out minimisation using KMaps. The unused states 2, 4, 6,10, 12 and 14 can be treated as don't care terms.

$$W_J = W_K = XY \\$$

$$X_J = X_K = Y \\$$

Carry out a self check:

$$W_J = W_K = XY \qquad \quad X_J = X_K = Y \qquad \quad Y_J = Z \qquad \quad Y_K = Y \qquad \quad Z_J = \overline{Y} \qquad \quad Z_K = XY$$

Count	Minterm	WXYZ		Flipflo	o Inputs			
			$W_J W_K$	$X_J X_K$	$Y_J Y_K$	Z_JZ_K	J K	Q
0	0	0000	0 0	0 0	0 0	1 0	0 0	Q
1	1	0001	0 0	0 0	1 0	1 0	0 1	0
2	3	0011	0 0	1 1	1 1	0 0	10	$\frac{1}{Q}$
2 3	5	0101	0 0	0 0	1 0	1 0	1 1	Q
4	7	0 1 1 1	1 1	1 1	1 1	0 1		I
5	8	1000	0 0	0 0	0 0	1 0		
6	9	1001	0 0	0 0	1 0	1 0		
7	11	1011	0 0	1 1	1 1	0 0		
8	13	1 1 0 1	0 0	0 0	1 0	1 0		
9	15	1111	1 1	1 1	1 1	0 1		
0	0	0000						
	2	0010	0 0	1 1	0 1	0 0		
	4	0100	0 0	0 0	0 0	1 0		
	5	0101	OK					
	-							
	6	0110	1 1	1 1	0 1	0 1		
	8	1000	OK					
	10	1010	0 0	1 1	0 1	0 0		
	12	1100	0 0	0 0	0 0	1 0		
	13	1 1 0 1	OK					
	14	1110	1 1	1 1	0 1	0 1		
	0	$0\ 0\ 0\ 0$	OK					

No lockout, as all the unused states return to the main sequence. The counter employs a weighted code of 5 2 1 1.

Final Counter Design:

4. (a)

Minterm	WXYZ	F	Flipflop Inputs			
		W_T	X_T	Y_T	Z_{T}	Operation
0	0000	0	0	0	1	Stay at 0
1	0001	0	0	1	1	Stay at 1
2	0010	0	0	0	1	Go to 0
3	0011	0	1	1	1	Go to 1
4	0100	1	1	1	1	l
11	1011	0	1	1	1	
12	1 1 0 0	0	0	0	1	
13	1 1 0 1	0	0	1	1	
14	1110	0	0	0	1	
15	1111	1	1	1	1	
0	0000					

Minterms 5, 6, 7, 8, 9 and 10 can be treated as don't care terms.

$$W_T = \overline{W}X + XYZ$$
$$= (\overline{\overline{\overline{W}X}})(\overline{XYZ})$$

$$X_T = \overline{\overline{WX} + YZ}$$
$$= (\overline{\overline{\overline{WX}})(\overline{YZ})$$

Each dashed box represents one 7410 IC

Carry out a self check:

Minterm	WXYZ	I	Flipflo	p Inpu	ts		
		W_{T}	X_T	Y_T	Z_{T}		
0	0000	0	0	0	1		
1	0001	0	0	1	1		
2	0010	0	0	0	1		
3	0011	0	1	1	1		
4	0100	1	1	1	1		
11	1011	0	1	1	1		
12	1100	0	0	0	1		
13	1101	0	0	1	1		
14	1110	0	0	0	1		
15	1111	1	1	1	1		
0	0000						
5	0101	1	1	1	1		
10	1010	0	0	0	1		
11	1011	OK					
6	0110	1	1	1	1	No Lo	ckout in
9	1001	0	0	1	1	curren	t design
10	1010	OK					J
7	0111	1	1	1	1		
8	1000	0	0	0	1		
9	1001	OK					
	I	I					

4. (b)	Minterm	WXYZ	1		p Inpu		
			$W_{\rm T}$	X_{T}	Y_T	Z_{T}	
	5	0 1 0 1	0	1	0	1	
	0	0000					
	6	0110	0	1	1	0	
	0	0 0 0 0					
	7	0 1 1 1	0	1	1	1	
	0	0000					
	8	1000	1	0	0	0	
	0	0 0 0 0					
	9	1001	1	0	0	1	
	0	0000					
	10	1010	1	0	1	0	
	0	0 0 0 0					
	!		I				

Operation	Т
Stay at 0	0
Stay at 1	0
Go to 0	1
Go to 1	1

$$\begin{aligned} Y_T &= YZ + \overline{W}\overline{X}Z + \overline{W}X\overline{Z} + WXZ + WY\overline{Z} \\ &= (\overline{YZ})(\overline{\overline{W}}\overline{\overline{X}Z})(\overline{\overline{W}}\overline{X\overline{Z}})(\overline{WXZ})(\overline{W}\overline{Y}\overline{Z}) \end{aligned}$$

$$X_T = \overline{\overline{W}X} + YZ$$
$$= (\overline{\overline{\overline{W}X}})(\overline{YZ})$$

$$Z_T = \underbrace{Z + \overline{WX} + WX + W\overline{X}\overline{Y}Z}_{= \overline{Z}.(\overline{WX}).(\overline{WX}).(\overline{WX}\overline{Y}Z)}$$

Hence, the modified design becomes:

$$\begin{split} W_T &= (\overline{\overline{W}X\overline{Y}\overline{Z}})(\overline{W}XYZ)(\overline{W}\overline{X}\overline{Y})(\overline{W}\overline{X}\overline{Z}) \\ X_T &= (\overline{\overline{W}X})(\overline{Y}Z) \\ Y_T &= (\overline{Y}Z)(\overline{W}\overline{X}Z)(\overline{W}X\overline{Z})(\overline{W}XZ)(\overline{W}\overline{Y}Z) \\ Z_T &= \overline{Z}.(\overline{W}\overline{X}).(\overline{W}X).(\overline{W}X\overline{Y}\overline{Z}) \end{split}$$

This design requires a total of 16 NAND gates, 1 five-input NAND gate, 4 four-input NAND gates, 6 three-input NAND gates and 5 two-input NAND gates.

To implement this design using only three-input NAND gates, a total of 26 gates would be required (i.e. 9 7410 ICs). Note, each four-input and five-input NAND gate can be replaced with 3 three-input NAND gates!!

5.

Minterm	WXYZ	F	lipflo	p Input	S	
		W_{D}	X_D	Y_D	Z_{D}	Operation
0	0000	0	0	0	1	Stay at 0
1	0001	0	0	1	0	Stay at 1
2	0010	0	0	1	1	Go to 0
3	0011	0	1	0	0	Go to 1
4	0100	1	0	1	1	
11	1011	1	1	0	0	
12	1 1 0 0	1	1	0	1	
13	1 1 0 1	1	1	1	0	
14	1110	1	1	1	1	
15	1111	0	0	0	0	
0	0000					

Minterms 5, 6, 7, 8, 9 and 10 can be treated as don't care terms.

This design requires 10 NAND gates, 1 four-input gate, 3 three-input gates and 6 two-input gates. Using three-input gates only, 12 NAND gates are necessary to implement the design. This is equivalent to using **four** 7410 ICs.

Alternative minimisation of W_D as follows:

$$\begin{split} W_D &= \overline{X\overline{Y}} + W\overline{Z} + W\overline{X} \\ &= \overline{(\overline{X\overline{Y}})} \overline{(\overline{W\overline{Z}})} \overline{(\overline{W\overline{X}})} \end{split}$$

Yields a design that requires a total 11 three-input NAND gates. However, **four** 7410 ICs are still required.