

Institutt for matematiske fag

Eksamensoppgåve i TMA4115 Matematikk 3

Fagleg kontakt under eksamen:	Antoine Julien,	Eugenia Malinnikova
-------------------------------	-----------------	---------------------

Tlf: 73597782, 73550257

Eksamensdato: 26. mai, 2015

Eksamenstid (frå-til): 09:00-13:00

Hjelpemiddelkode/Tillatne hjelpemiddel: C: Enkel kalkulator (Casio fx-82ES PLUS, Citizen SR-270X eller Citizen SR-270X College, Hewlett Packard HP30S), Rottmann: *Matematisk*

formelsamling

Annan informasjon:

Alla svara skal grunngjevast og det skal gå klårt fram korleis svara er oppnådd. Kvar av dei 12 punkta tel likt ved sensur.

Målform/språk: nynd	orsk
----------------------------	------

Sidetal: 2

Sidetal vedlegg: 0

	Kontrollert av:	
Dato	Sign	

Oppgåve 1 Løys den kvadratiske likninga $z^2 + (4+2i)z + 3 = 0$, skriv løysingane på normalforma.

Oppgåve 2

a) Løys initialverdiproblemet

$$x'' + 6x' + 8x = 0$$
, $x(0) = 0$, $x'(0) = 8$.

Kva er den største verdien til løysinga x(t) når t > 0?

b) Finn den stasjonære løysinga av likninga

$$x'' + 6x' + 8x = 4\cos 2t$$
.

Oppgåve 3 Finn generell løysing til likninga

$$y'' + y = 3x + \tan(x).$$

(Hint $\int (\cos x)^{-1} dx = \ln|\sec x + \tan x|$.)

Oppgåve 4 Lat

$$A = \begin{bmatrix} 1 & t \\ t & 2 \end{bmatrix}.$$

- a) For kva for verdiar av t har likninga $A\mathbf{x} = \mathbf{b}$ ei løysing for alle \mathbf{b} i \mathbb{R}^2 ?
- b) Finn ein LU-dekomposisjon av A (svaret skal vere avhengig av t).

Oppgåve 5 Gjeve dei følgjande vektorane i \mathbb{R}^4

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \qquad \mathbf{v}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix}, \qquad \mathbf{v}_3 = \begin{pmatrix} 4 \\ -3 \\ -2 \\ 4 \end{pmatrix}, \qquad \mathbf{v}_4 = \begin{pmatrix} 3 \\ -2 \\ 1 \\ 1 \end{pmatrix},$$

lat $V = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}.$

- a) Er vektorane $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ lineært uavhengige? Finn ein basis for V.
- b) Finn ein ortogonal basis for V.
- c) Finnast det ein vektor $\mathbf{u} \neq \mathbf{0}$ i \mathbb{R}^4 som er ortogonal til $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$?

Oppgåve 6

a) Finn (komplekse) egenverdiar og (komplekse) egenvektorar til matrisa

$$\begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$$

b) Finn løysinga til likningssystemet

$$\begin{aligned}
 x_1' &= x_1 - 2x_2 \\
 x_2' &= x_1 + 3x_2
 \end{aligned}$$

som oppfyller startvilkåra $x_1(0) = 1$ og $x_2(0) = 1$. Skriv svaret med reelle funksjonar.

Oppgåve 7 Anta at A er ei $m \times n$ -matrise med reelle element. Vis at $\mathbf{x} \cdot A^T A \mathbf{x} \geq 0$ for kvar \mathbf{x} i \mathbb{R}^n , og difor er kvar reell egenverdi til $A^T A$ ikkje-negativ.