Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Final den 18 november 1989

- 1. Låt n vara ett positivt heltal. Visa att talen $n^2(n^2+2)^2$ och $n^4(n^2+2)^2$ i basen n^2+1 skrivs med samma siffror fast i motsatt ordning.
- 2. Bestäm alla kontinuerliga funktioner f, sådana att $f(x) + f(x^2) = 0$ för alla reella tal x.
- 3. För vilka positiva heltal n är $n^3 18n^2 + 115n 391$ kuben på ett positivt heltal?
- 4. Låt ABCD vara en regelbunden tetraeder. Var på kanten BD ska punkten P väljas så att kanten CD tangerar sfären med diametern AP?
- 5. Antag att x_1, \dots, x_5 är positiva reella tal sådana att $x_1 < x_2$ och x_3, x_4, x_5 alla är större än x_2 . Visa att om $\alpha > 0$ så gäller

$$\frac{1}{(x_1+x_3)^{\alpha}} + \frac{1}{(x_2+x_4)^{\alpha}} + \frac{1}{(x_2+x_5)^{\alpha}}$$

$$< \frac{1}{(x_1+x_2)^{\alpha}} + \frac{1}{(x_2+x_3)^{\alpha}} + \frac{1}{(x_4+x_5)^{\alpha}}.$$

6. På en cirkel väljs 4n punkter, $n \ge 1$, och varannan färgas gul, varannan blå. De gula punkterna delas i n par och punkterna i varje par förbinds med en gulfärgad sträcka. På samma sätt delas de blå punkterna i n par och punkterna i varje par förbinds med en blåfärgad sträcka. Antag att genom varje punkt i det inre av cirkeln går högst två sträckor. Visa att det finns minst n skärningspunkter mellan blå och gula sträckor.