1.

(1) 设 p 为大学里的本科生, q 为大学里的研究生:

$$(p \land \neg q) \lor (q \land \neg p)$$

(2) 设 p 为接到超速罚单, q 为车速超过每小时 100 公里:

$$p \rightarrow q$$

(3) 设 p 为年满 18 周岁, q 为有选举权:

$$\neg p \rightarrow \neg q$$

2.

(2) 对任意指派 v, 有

$$(\neg A \rightarrow \neg B)^v = 1 - (\neg A)^v + (\neg A)^v \cdot (\neg B)$$
$$= 1 - (1 - A^v) + (1 - A^v) \cdot (1 - B^v)$$
$$= 1 - B^v + B^v \cdot A^v$$
$$= (B \rightarrow A)^v$$

故该逻辑等价成立。

(4) 对任意指派 v, 有

$$(A \to (B \to C))^v = 1 - A^v + A^v \cdot (B \to C)^v$$

$$= 1 - A^v + A^v \cdot (1 - B^v + B^v \cdot C^v)$$

$$= 1 - A^v \cdot B^v + (A^v \cdot B^v) \cdot C^v$$

$$= 1 - (A \land B)^v + (A \land B)^v \cdot C^v$$

$$= (A \land B \to C)^v$$

故该逻辑等价成立。

(6) 对任意指派 v, 有

$$1 = (\neg A \lor B)^{v}$$

$$= (\neg A)^{v} + B^{v} - (\neg A)^{v} \cdot B^{v}$$

$$= 1 - A^{v} + B^{v} - (1 - A^{v}) \cdot B^{v}$$

$$= 1 - A^{v} + A^{v} \cdot B^{v}$$

即

$$A^v \cdot B^v = A^v \tag{1}$$

同样的,有

$$1 = (A \to B \land C)^{v}$$
$$= 1 - A^{v} + A^{v} \cdot (B \land C)^{v}$$
$$= 1 - A^{v} + A^{v} \cdot B^{v} \cdot C^{v}$$

即

$$A^v \cdot B^v \cdot C^v = A^v \tag{2}$$

而

$$(\neg B \to C)^{v} = 1 - (\neg B)^{v} + (\neg B)^{v} \cdot C^{v}$$

$$= 1 - (1 - B^{v}) + (1 - B^{v}) \cdot C^{v}$$

$$= B^{v} + C^{v} - B^{v} \cdot C^{v}$$
(3)

当 $A^v=1$ 时,由式 (1) 和式 (2) 可得 $B^v=1$, $C^v=1$,此时式 (3) 成立,当 $A^v=0$ 时,由式 (1) 和式 (2) 无法得出 B^v , C^v 的值,此时无法判断式 (3) 是否成立,故该逻辑蕴含不成立。

(1)

$$\begin{split} \neg(q \to p) \wedge (r \to \neg s) &= \neg(\neg q \vee p) \wedge (\neg r \vee \neg s) \\ &= q \wedge \neg p \wedge (\neg r \vee \neg s) (合取范式) \\ &= (q \wedge \neg p \wedge \neg r) \vee (q \wedge \neg p \wedge \neg s) (析取范式) \end{split}$$

(2)

$$\neg p \land q \to r = \neg (\neg p \lor q) \land r$$

$$= p \land \neg q \land r (\text{析取范式})$$

$$= (p \land \neg q \land r) (合取范式)$$

(3)

4.

(1)

Table 1: $p \to p \land q$ 真值表

p	q	$p \wedge q$	$p \to p \land q$			
0	0	0	1			
0	1	0	1			
1	0	0	0			
1	1	1	1			

从而 $p \rightarrow p \land q$ 的主合取范式为

 $(\neg p \vee q)$

主析取范式为

$$(\neg p \land \neg q) \lor (\neg p \land q) \lor (p \land q)$$

(2)

Table 2: $p \lor q \to (q \to r)$ 真值表

p	q	r	$p \lor q$	$q \rightarrow r$	$p \vee q \to (q \to r)$
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	0	0
1	1	1	1	1	1

从而 $p \lor q \to (q \to r)$ 的主合取范式为

$$(p \lor \neg q \lor r) \land (\neg p \lor \neg q \lor r)$$

主析取范式为

 $(\neg p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge r) \vee (p \wedge \neg q \wedge \neg r) \vee (p \wedge \neg q \wedge r) \vee (p \wedge q \wedge r)$

(3)

Table 3: $(p \to p \land q) \lor r$ 真值表

(1 1 1)						
p	q	r	$p \wedge q$	$p \to p \wedge q$	$(p \to p \land q) \lor r$	
0	0	0	0	1	1	
0	0	1	0	1	1	
0	1	0	0	1	1	
0	1	1	0	1	1	
1	0	0	0	0	0	
1	0	1	0	0	1	
1	1	0	1	1	1	
1	1	1	1	1	1	

从而主合取范式为

$$(\neg p \lor q \lor r)$$

主析取范式为

 $(\neg p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge \neg r) \vee (\neg p \wedge q \wedge r) \vee (p \wedge \neg q \wedge r) \vee (p \wedge q \wedge \neg r) \vee (p \wedge q \wedge r)$