AGENDA

- Exit survey questions
- Homework
- Project
- Follow up from last time
- Bias Variance Tradeoff
- Cross Validation

BIAS VARIANCE

BIAS VARIANCE TRADEOFF

Expected Loss = (bias)2 + variance + noise

$$E[(y - \hat{f}(x))^2] = Bias[\hat{f}(x)]^2 + Var[\hat{f}(x)] + \sigma^2$$

$$Bias[\hat{f}(x)] = E[\hat{f}(x)] - f(x)$$

$$Var[\hat{f}(x)] = E[(\hat{f}(x) - E[\hat{f}(x)])^2]$$

BIAS VARIANCE TRADEOFF

CROSS VALIDATION

There are many model options

Q: Which one do we choose?

Let's choose the model that gives us the best performance

Q: How do we measure performance? How well does it work?

Can we use our dataset for an error estimate?

How would this work? Issues?

Training Error

Dataset

Q: Are there any issues with training error?

Q: How small can we make our training error?

A: We can make the training error go to zero. We just need to memorize.

This is called over fitting

Want performance on new observations. Data that we haven't seen

Problem:

- Error depends on the particular test points which can be highly variable
- 2. We miss out on some of the data because only a subset is used to train

CROSS VALIDATION

K-Fold Cross Validation

- 1. Split data set into k subset
- Use each fold as a validation set once while the union of all others are the training set
- 3. Combine the generalization error for each fold and combine the results

	—	Total N	umber of	Dataset			
Experiment 1							
Experiment 2						Т	Training
Experiment 3							Validation
Experiment 4							vanuation
Experiment 5							