Undirected Graphical Models

Introduction to Graphical Models

Prof. Alexander Ihler

Gibbs distributions

- Define $p(X) = \frac{1}{Z} \prod f_{\alpha}(X_{\alpha})$
 - where $f_{\alpha}(x_{\alpha}) \geq 0 \ \forall x_{\alpha}$

" α " are sets of variable indices; X_lpha are the associated random variables x_{α} are their values in a configuration x

• We call
$$f(X) = \prod_{\alpha} f_{\alpha}(X_{\alpha})$$
 $Z = \sum_{x} \prod_{\alpha} f_{\alpha}(x_{\alpha})$

"unnormalized measure"

$$Z = \sum_{x} \prod_{\alpha} f_{\alpha}(x_{\alpha})$$

"partition function" (normalizes p(x) to sum to 1)

- Chain rule expansion (Bayes net) is a special case with Z=1
- Called "Gibbs" or "Boltzmann" distributions from physics:

$$p(X) = \frac{1}{Z(\tau)} \exp\left[-\sum_{\alpha} E_{\alpha}(X_{\alpha})/k\tau\right] \qquad -\frac{1}{k\tau} E_{\alpha}(x_{\alpha}) = \log f_{\alpha}(x_{\alpha})$$

Markov graphs

- Undirected graphical model
- Variables represented by nodes
- Connect a variables if they appear in the same scope

• Ex: p(x, y, z) = p(x) p(y | x) p(z | y)

• Ex: p(a, b, c, d) = p(a) p(b | a) p(c | a, b) p(d | b)

Factor graphs

- Undirected graphical model
- Variables, factors are each represented by nodes
- Connect a factor to the variables in its scope

• Ex: p(x, y, z) = p(x) p(y | x) p(z | y)

• Ex: p(a, b, c, d) = p(a) p(b | a) p(c | a, b) p(d | b)

Factors

- Factors do not need to be conditional probabilities
 - Or even probabilities at all
 - Values correspond to "relative" probability for certain configurations

Factors & Exponential Family Models

• Table-based functions as (overcomplete) exp. family models

X ₁	X ₂	f ₁₂ (.)		X ₁	X ₂	log f ₁₂ (.)	
0	0	2.71	log(.)	0	0	1.0	$=\theta_{12;00}$
0	1	1		0	1	0.0	$=\theta_{12;01}$
1	0	0.37		1	0	-1.0	$=\theta_{12;10}$
1	1	7.39		1	1	2.0	$= heta_{12;11}$

$$f_{12}(X_1 = a, X_2 = b) = \exp\left(\theta_{12;ab} \, \mathbb{1}[X_1 = a, X_2 = b]\right)$$

$$\Rightarrow f_{12}(X_1, X_2) = \exp\left(\sum_{a,b} \theta_{12;ab} \, \mathbb{1}[X_1 = a, X_2 = b]\right)$$

$$= \exp\left(\theta \cdot u(X)\right) \qquad \theta = [\theta_{12;00} \dots \theta_{12;11}]$$

$$u(X) = [\mathbb{1}[X_1 = 0, X_2 = 0] \dots]$$

More generally,

$$f(X) = \prod_{\alpha} f_{\alpha}(X_{\alpha}) = \exp\left(\sum_{\alpha} \sum_{x_{\alpha}} \theta_{\alpha;x_{\alpha}} \mathbb{1}[X_{\alpha} = x_{\alpha}]\right)$$

Example

• Ising model: $X_i \in \{-1, +1\}$

$$p(X) = \frac{1}{Z} \exp\left[\sum_{i} \theta_{i} X_{i} + \sum_{ij \in E} \theta_{ij} X_{i} X_{j}\right]$$

$$=\frac{1}{Z}\prod_{\alpha}f_{\alpha}(X_{\alpha})$$

Xi	f(X _i)
-1	$exp(-\theta_i)$
1	$exp(\theta_i)$

X _i	X _j	f(X _i ,X _j)
-1	-1	$exp(\theta_{ij})$
-1	1	$\exp(-\theta_{ij})$
1	-1	$\exp(-\theta_{ij})$
1	1	$exp(\theta_{ij})$

• If θ_{ij} positive: encourages X_i , X_j to have same sign

Example: Markov logic

[Richardson & Domingos 2005]

- 1.5 $\forall x \ Smokes(x) \Rightarrow Cancer(x)$
- 1.1 $\forall x, y \ Friends(x, y) \Rightarrow \left(Smokes(x) \Leftrightarrow Smokes(y)\right)$

Two constants: **Anna** (A) and **Bob** (B)

SA	C _A	f(S _A ,C _A)
0	0	exp(1.5)
0	1	exp(1.5)
1	0	1.0
1	1	exp(1.5)

F _{AB}	SA	S _B	f(.)
0	0	0	exp(1.1)
0	0	1	exp(1.1)
0	1	0	exp(1.1)
0	1	1	exp(1.1)
1	0	0	exp(1.1)
1	0	1	1.0
1	1	0	1.0
1	1	1	exp(1.1)

Conditioning on observations

- Observing a variable's value
 - Reduces the scope of the factor

$$p(X) = \frac{1}{Z} \left[f_{12}(X_1, X_2) f_{13}(X_1, X_3) f_{24}(X_2, X_4) f_{34}(X_3, X_4) \right]$$

$$p(\mathbf{x_1}, X_{2:4}) = \frac{1}{Z} \left[f_{12}(\mathbf{x_1}, X_2) f_{13}(\mathbf{x_1}, X_3) f_{24}(X_2, X_4) f_{34}(X_3, X_4) \right]$$

$$p(X_{2:4}|\mathbf{x_1}) = \frac{1}{Z'} \left[g_2(X_2) \cdot g_3(X_3) \cdot f_{24}(X_2, X_4) f_{34}(X_3, X_4) \right]$$

Conditioning a factor

A	В	f(A,B)
b	b	4
b	g	5
b	r	1
g	b	2
g	g	6
g	r	3
r	b	1
r	g	1
r	r	6

Conditional independence

- Undirected graphs have very simple conditional independence
 - X conditionally independent of Y given Z?
 - Check all paths from X to Y
 - A path is "inactive" (blocked) if it passes through a variable node in Z
 - If no path from X to Y, conditionally independent

Examples:

Markov blanket of X: set of variables directly connected to X

Conditional independence

- Undirected graphs have very simple conditional independence
 - X conditionally independent of Y given Z?
 - Check all paths from X to Y
 - A path is "inactive" (blocked) if it passes through a variable node in Z
 - If no path from X to Y, conditionally independent

• Examples:

Markov blanket of X: set of variables directly connected to X

More examples

• Ex:

A, E independent given D

A,F independent given D, G

A, G independent given B, D

...

(A,C), (KL) independent given E,F

(all), G independent given D, F

•••

Factorization and Independence

- p(X) is Markov with respect to graph G:
 - p(X) obeys the independence relations in the connectivity of G
- Given a factorization of p(X), can draw Markov graph G
 - p(X) is then Markov with respect to G
- Converse?
- Theorem [Hammersly & Clifford, 1971]
 - If p(X) is Markov with respect to G, and p(x) > 0 for all x, then p(X) factors as $p(X) = \frac{1}{Z} \prod f_{\alpha}(X_{\alpha})$

where α are the cliques (fully connected subsets) of G

Pairwise models

- Markov network may mask some structure
- Factor graph shows more detail

Fully connected Markov graph

Pairwise model O(n² d²) parameters

Full clique O(dⁿ) parameters

Pairwise models: Gaussian

Exponential family:

$$\mathcal{N}(x; \mu, \Sigma) = \frac{1}{(2\pi)^{n/2}} |\Sigma|^{-\frac{1}{2}} \exp\left[-\frac{1}{2}(x-\mu)\Sigma^{-1}(x-\mu)^T\right]$$

$$= \frac{1}{Z} \exp\left[-\frac{1}{2}x\Sigma^{-1}x^T + \mu\Sigma^{-1}x^T\right]$$
"Information" form
$$= \frac{1}{Z} \exp\left[-\frac{1}{2}xJx^T + hx^T\right] = \mathcal{N}^{-1}(x; h, J)$$

$$= \frac{1}{Z} \prod_{i} \exp[h_i x_i - .5J_{ii} x_i] \prod_{i < j} \exp[-J_{ij} x_i x_j]$$
(Canonical exp. family form)

Gaussian distribution = pairwise MRF

$$\Sigma_{ij}^{-1} = 0 \Rightarrow$$

No factor between (i,j)

$$\Sigma^{-1} = ?$$

?	?	0	0
?	?	?	0
0	?	?	?
0	0	?	?

Pairwise models: Boltzmann machines

Boltzmann machines:

$$p(x) = \frac{1}{Z} \exp\left[\sum_{i} a_i x_i + \sum_{ij} w_{ij} x_i x_j\right]$$

$$p(v,h) = \frac{1}{Z} \exp\left[\sum_{i} a_i v_i + \sum_{j} b_j h_j + \sum_{ij} w_{ij} v_i h_j\right]$$

Deep Boltzmann machines:

$$p(v, h_1, h_2) = \frac{1}{Z} \exp \left[\sum_{ij} w_{1ij} v_i h_{1j} + \sum_{jk} w_{2jk} h_{1j} h_{2k} + \dots \right]$$

MNIST:

Binary pairwise GM:

Directed to undirected models

- We can convert directed models to undirected ones:
 - Write factorization associated with Bayes net structure
 - Create factors for each term in the product

- But, some independence implications are lost
 - Not clear that E, B are independent without observing A, J, or M

Undirected to directed models

- We can similarly convert undirected to directed
 - Up to a constant, since factors can have values > 1.0
- Method 1: choose an ordering, check for independence
 - Need to choose an ordering
 - Can lose a lot of independence info

- Method 2: introduce auxiliary variables
 - For each factor, create an observation $z_{\alpha}=0$

- Let
$$p(Z_{\alpha} = 0|X_{\alpha}) = f_{\alpha}(X_{\alpha})/f_{\max}$$

 $p(Z_{\alpha} = 1|X_{\alpha}) = \text{anything}$

Very "artificial" construction

Tree-structured models

- Equivalent
 - Bayesian network is a tree (single root)
 - Markov graph is a tree
 - In each case, factors only involve pairs of variables

- BN and MG representations interchangeable
- Unique path between any pair of variables

Note: "Poly-tree" = more than one root

Summary

- Undirected models
 - Factor graphs
 - Markov graphs
- Conditioning as a graph reduction
- Graph separation ⇒ conditional independence
- Directed vs. undirected representations
 - Not equivalent
 - May be more or less appropriate for model assumptions