# Лабораторная работа 1: Методы градиентного спуска и метод Ньютона

# Белова Юлия

# 20 апреля 2023 г.

# Содержание

| 1 | Логистическая регрессия                                                                                                                               | 2           |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2 | Эксперимент 1: Траектория градиентного спуска на квадратичной функции    2.1 Большое число обусловленности                                            | <b>2</b> 2  |
| 3 | Эксперимент 2: Зависимость числа итераций градиентного спуска от числа обусловленности и размерности пространства                                     | 5           |
| 4 | Эксперимент 3: Сравнение методов градиентного спуска и Ньютона на реальной задаче логистической регрессии    4.1 w8a     4.2 gisette     4.3 real-sim | 6<br>6<br>7 |
| 5 | Эксперимент 4: Стратегия выбора длины шага в градиентном спуске                                                                                       | 9           |
| 6 | Эксперимент 5: Стратегия выбора длины шага в методе Ньютона                                                                                           | 12          |

## 1 Логистическая регрессия

Введем обозначения:  $X \in \mathbb{R}^{m \times n}, \ \overrightarrow{y} \in \mathbb{R}^{m \times 1}, \ \overrightarrow{w} \in \mathbb{R}^{n \times 1}$ . Выражение для функции логистической регрессии:

$$L(\overrightarrow{w}) = \frac{1}{M} \|\ln(1_m + \exp(-\overrightarrow{y} \odot X\overrightarrow{w}))\|_1 + \frac{\lambda}{2} \|\overrightarrow{w}\|_2^2$$

Выражение для градиента логистической регрессии:

$$\nabla_{\overrightarrow{w}L(\overrightarrow{w})} = \lambda \overrightarrow{w} - \frac{1}{M} X^T \left[ \overrightarrow{y} \odot \sigma \left( -\overrightarrow{y} \odot X \overrightarrow{w} \right) \right]$$

Выражение для гессиана логистической регрессии:

$$H(\overrightarrow{w}) = \lambda I_n + X^T \left[ \sigma \left( \overrightarrow{y} \odot X \overrightarrow{w} \right) \left( 1_m - \sigma \left( \overrightarrow{y} \odot X \overrightarrow{w} \right) \right) \right] X$$

# 2 Эксперимент 1: Траектория градиентного спуска на квадратичной функции

Для проведения эксперимента были выбраны две квадратичные функции с разным по степени числом обусловленности: 18.11 и 2.99. Также были сгенерированы три начальные точки. Для каждой функции перебирались начальные точки и стратегии выбора шага (константная стратегия, Армихо, Вульф).

### 2.1 Большое число обусловленности

Рассмотрим результаты эксперимента для каждой из начальных точек:



(а) Постоянный шаг: 384 шага



(b) Армихо: 23 шага



(с) Вульф: 15 шагов

Рис. 1: Начальная точка 1



Рис. 3: Начальная точка 3

Для функции с большим числом обусловленности градиентный спуск хуже всего работает при постоянном шаге. Метод Вульфа сходится к оптимуму чуть быстрее метода Армихо. Видно, что спуск с использованием метода Армихо движется к оптимуму зигзагами, в то время как Вульф идет напрямую.

# 2.2 Маленькое число обусловленности



Рис. 4: Начальная точка 1



Рис. 6: Начальная точка 3

Несмотря на низкую обусловленность матрицы, постоянный шаг дает плохие результаты: методу нужно сделать очень много шагов, в то время как Армихо и Вульф очень быстро справляются с задачей. Таким образом, чем выше обусловленность матрицы, тем дольше работает градиентный спуск.

# 3 Эксперимент 2: Зависимость числа итераций градиентного спуска от числа обусловленности и размерности пространства

В данном эксперименте рассматривается квадратичная задача. Исследуем, сколько итераций необходимо совершить методу градиентного спуска до сходимости в зависимости от числа обусловленности матрицы и количества оптимизируемых переменных. Для проведения эксперимента были выбраны следующие параметры:

- 1. Размерность пространства  $n: [10, 10^2, 10^3, 10^4, 10^5]$
- 2. Число обусловленности матрицы k: числа в интервале [1, 1000] с шагом 50

Для каждой размерности пространства n задача генерировалась случайным образом 5 раз. В градиентном спуске использовались параметры по умолчанию:

- Начальная точка  $x_0 = 0$
- Метод подбора шага алгоритм Вульфа с параметрами  $c_1=1\mathrm{e}{-4},\,c_2=0.9$

На рис. 7 отображены результаты эксперимента: ярким цветом выделены средние результаты (по случайным генерациям) для каждого n.



Рис. 7: Зависимость значения функции от реального времени работы метода

По результатам эксперимента можно сделать следующий вывод: для градиентного спуска наблюдается линейная зависимость числа итераций от обусловленности матрицы. С увеличением числа зависимых переменных количество итераций, необходимых для сходимости, не растет. Наоборот, при достаточно высокой обусловленности матрицы градиентный спуск работает быстрее на матрицах с большим числом признаков.

# 4 Эксперимент 3: Сравнение методов градиентного спуска и Ньютона на реальной задаче логистической регрессии

Для сравнения методов градиентного спуска и Ньютона на задаче обучения логистической регрессии были использованы три датасета. Их параметры представлены ниже:

- 1. w8a: количество наблюдений 49 740, количество признаков 300.
- 2. *gisette*: количество наблюдений 6 000, количество признаков 5 000. Данный датасет хранится в формате scipy.sparse.csr\_matrix, однако 99% данных имеют ненулевые значения.
- 3. real-sim: количество наблюдений 72 309, количество признаков 20 958. Данный датасет хранится в формате scipy.sparse.csr\_matrix, процент ненулевых значений в матрице с данными 0.002%.

Параметры обоих методов взяты по умолчанию, начальная точка  $x_0 = 0$ .

Градиентному спуску нужно  $\mathcal{O}(n)$  памяти на хранение значений функции и градиента, стоимость итерации  $\mathcal{O}(q) + \mathcal{O}(n)$ , которая складывается из времени работы при обращении к оракулу и линейного поиска шага. Метод Ньютона требует  $\mathcal{O}(n^2)$  памяти (все то же самое + гессиан), а стоимость одной итерации составляет  $\mathcal{O}(n^3) + \mathcal{O}(qn^2)$ , которое складывается из времени работы при обращении к оракулу (значение функции, градиент, гессиан), решения системы линейных уравнений для нахождения направления и времени на поиск оптимального шага.

### 4.1 w8a







(b) Зависимость относительного квадрата нормы градиента от реального времени работы

Градиентному спуску потребовалось 36 итераций, а методу Ньютона 7 итераций. Итерация градиентного спуска стоит примерно 0.03 секунд, а метода Ньютона 0.11 секунд. При этом метод Ньютона сошелся чуть быстрее. Из графика зависимости относительного квадрата нормы градиента против реального времени работы можно увидеть, что в

случае работы методы Ньютона логарифм относительной невязки уменьшается быстрее вблизи оптимального решения (следующая значащая цифра получилась быстрее, чем в методе градиентного спуска). Вывод: если нам не нужна высокая точность решения, то используем градиентный спуск, потому что вначале он работает быстрее.

### 4.2 gisette





(а) Зависимость значения функции от реального времени работы метода

(b) Зависимость относительного квадрата нормы градиента от реального времени работы

Градиентному спуску потребовалось 2004 итерации, методу Ньютона 7 итераций. Итерация градиентного спуска стоит примерно 0.5 секунд, а метода Ньютона 500 секунд. Из-за высокой размерности набора данных и высокой density данных метод Ньютона работал очень долго (искал гессиан, решал СЛАУ). Можно сделать вывод, что предпочтительнее использовать метод градиентного спуска в случае задач в пространстве большой размерности: итераций больше, но они значительно дешевле по времени. Метод Ньютона следует использовать для задач небольшой размерности (или на довольно разреженных данных), он будет эффективнее себя показывать ввиду квадратичной сходимости.

### 4.3 real-sim



(а) Зависимость значения функции от реального времени работы метода



(b) Зависимость относительного квадрата нормы градиента от реального времени работы

Градиентному спуску потребовалось 104 итерации, методу Ньютона 6 итераций. Итерация градиентного спуска стоит примерно 0.4 секунд, а метода Ньютона 57 секунд. Хоть данный датасет самый большой, но матрица с данными очень разреженная, поэтому метод Ньютона отработал сильно быстрее, чем на датасете gisette.

#### Выводы:

- Высокая размерность пространства и (или) высокая плотность данных  $\to$  градиентный спуск.
- ullet Низкая размерность пространства или разреженность данных o метод Ньютона.

# 5 Эксперимент 4: Стратегия выбора длины шага в градиентном спуске

Для проведения данного эксперимента были сгенерированы:

- 1. Квадратичная задача размерности 500 с числом обусловленности 10 (построение как в третьем эксперименте).
- 2. Логистическая регрессия, где n=m=500. Для генерации датасета была использована встроенная функция из sklearn.

Три типа начальных точек:

1. 
$$x_0 = 0$$

2. 
$$x_0 = x^* + N(10, 5)$$

3. 
$$x_0 = x^* + N(50, 5)$$

Приведем результаты эксперимента для логистической регрессии.



Рис. 11: Начальная точка 1

Из графиков наблюдаем, что градиентный спуск очень чувствителен к выбору постоянного шага: для больших значений шага алгоритм сошелся достаточно быстро, для маленьких не сошелся вообще. Поэтому в данном случае исследователю необходимо самому подбирать шаг для решения задачи оптимизации. Градиентный спуск с выбором шага с помощью методов Армихо и Вульфа сошелся для каждой начальной точки и для каждого перебираемого параметра. Разница между полученными результатами небольшая.

Теперь рассмотрим начальные точки, более удаленные от оптимума.



Рис. 12: Начальная точка 2



Рис. 13: Начальная точка 1

Для стратегий с постоянным шагом количество итераций до сходимости сильно подскочило для всех констант, кроме c=10. Для c=0.1 метод перестал сходиться. Таким образом, резуюмируя, выбирая стратегию с постоянным шагом, есть высокий риск не сойтись, если не подобрать правильную константу. Для методов Армихо и Вульфа скорость сходимости стала незначительно хуже.

Вывод: для логистической регрессии следует выбирать стратегию подбора шага Армихо или Вульфа, потому что они сами настраивают оптимальный шаг и вероятность не сойтись гораздо ниже, чем у стратегии с постоянным шагом.

Приведем результаты эксперимента для квадратичной функции. Мне не удалось построить графики для начальной точки  $x_0=0$ , потому что, хоть все методы и сошлись, но значения  $\log \frac{f(x_k)}{f(x_0)}$  улетают в nan.



Рис. 14: Начальная точка 2



Рис. 15: Начальная точка 3

Для стратегий с выбором константного шага метод сошелся не везде (для  $c \in [0.5, 1, 10]$ ). Для оставшихся констант метод сошелся относительно быстро, но опять же, нужно самостоятельно подбирать константу. Методы Армихо и Вульф сошлись очень быстро, разницы между ними практически не наблюдается.

Вывод: для решения задачи оптимизации квадратичной функции используем стратегии с адаптивным шагом.

# 6 Эксперимент 5: Стратегия выбора длины шага в методе Ньютона

В данном эксперименте для логистической регрессии была использована модельная выборка из эксперимента 4. Начальные точки и перебираемые параметры те же самые. Результаты эксперимента приведены ниже.



Рис. 16: Начальная точка 1



Рис. 17: Начальная точка 2



Рис. 18: Начальная точка 3

Для постоянного шага наблюдается расходимость при некоторых c, при c=1 градиентный спуск сходится всего за 6 итераций. Результаты для стратегий Армихо и Вульфа практически одинаковые. По мере отдаления от оптимальной точки методу Ньютона требуется больше итераций. Лучше всего себя показал метод Вульфа с константами 0.001 и 0.01 - сходимость квадратичная.

Вывод: при использовании метода Ньютона для оптимизации функции логистической регрессии лучше всего работает стратегия подбора шага, основанная на условиях Вульфа. Константный шаг c=1 хорошо себя показал вблизи оптимальной точки, однако при отдалении от нее метод не сошелся.