G3b Conditions for Parallelograms Coordinate Proofs

SKETCH THE PICTURE and solve.

For what values of x and y must each figure be a parallelogram?

G3a Conditions for Parallelograms

Objective: We will prove that a given quadrilateral is a parallelogram.

Homework: Page 402-403: 6-7, 14-15, 26, 27 (write as a two column proof)

Theorems Conditions for Parallelograms

	THEOREM	EXAMPLE
6-3-1	If one pair of opposite sides of a quadrilateral are parallel and congruent, then the quadrilateral is a parallelogram. (quad. with pair of opp. sides \parallel and $\cong \to \square$)	$A \xrightarrow{B} \longrightarrow D$
6-3-2	If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram. (quad. with opp. sides $\cong \to \square$)	A - H D
6-3-3	If both pairs of opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram. (quad. with opp. $\triangle \cong \rightarrow \square$)	A D D

	THEOREM	EXAMPLE
6-3-	If an angle of a quadrilateral is supplementary to both of its consecutive angles, then the quadrilateral is a parallelogram. (quad. with \angle supp. to cons. $\triangle \rightarrow \Box$)	$A = \frac{B}{(180 - x)^{\circ}} C$ $A = \frac{(180 - x)^{\circ}}{D}$
6-3-	If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram. (quad. with diags. bisecting each other → □)	A Z D C

Show that quadrilateral ABCD is a parallelogram by using the definition.

$$A(-3,2), B(-2,7), C(2,4), D(1,-1)$$

slope of
$$\overline{AB} = \frac{7-2}{-2-(-3)} = \frac{5}{1} = 5$$

slope of $\overline{CD} = \frac{-1-4}{1-2} = \frac{-5}{-1} = 5$
slope of $\overline{BC} = \frac{4-7}{2-(-2)} = \frac{-3}{4} = -\frac{3}{4}$
slope of $\overline{DA} = \frac{2-(-1)}{-3-1} = \frac{3}{-4} = -\frac{3}{4}$

Since both pairs of opposite sides are parallel, *ABCD* is a parallelogram by definition.

Show that quadrilateral FGHJ is a parallelogram by using the Theorem 6-3-1. If one pair of opposite sides of a quadrilateral is parallel and congruent, then the quadrilateral is a parallelogram.

$$F(-4,-2), G(-2,2), H(4,3), J(2,-1)$$

slope of
$$\overline{GH} = \frac{3-2}{4-(-2)} = \frac{1}{6}$$

slope of $\overline{JF} = \frac{-2-(-1)}{-4-2} = \frac{-1}{-6} = \frac{1}{6}$
 $GH = \sqrt{[4-(-2)]^2 + (3-2)^2} = \sqrt{37}$
 $\overline{JF} = \sqrt{(-4-2)^2 + [-2-(-1)]^2} = \sqrt{37}$

 \overline{GH} and \overline{JF} have the same slope, so $\overline{GH} \parallel \overline{JF}$. Since GH = JF, $\overline{GH} \cong \overline{JF}$. So by Theorem 6-3-1 FGHJ is a parallelogram.

Show that quadrilateral NPQR is a parallelogram by using the Theorem 6-3-2. If both pairs of opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.

Class Work

6-3 Practice B: 6-7

Summary

Name three different ways to prove a quadrilateral is a parallelogram on the coordinate plane.