				_			
$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{6ik}{(3+2k^2)^2t_3}$	$\frac{3 i \sqrt{2} k}{(3+2 k^2)^2 t_3}$	0	$\frac{6k^2}{(3+2k^2)^2t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	$\frac{3}{(3+2k^2)^2t_3}$	0	$-\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+2k^2)^2t_3}$	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	0	$\frac{6ik}{(3+2k^2)^2t_3}$
$\tau_{1}^{\#1}_{+}$	$-\frac{2i\sqrt{2}}{3kr_3+3k^3r_3}$	$\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	$\frac{9k^2r_3+4t_2}{3(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_1^{\#2}{}_+\alpha\beta$	$-\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{9k^2r_3+4t_2}{3(k+k^3)^2r_3t_2}$	$-\frac{i(9k^2r_3+4t_2)}{3k(1+k^2)^2r_3t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2}{3k^2r_3}$	$-\frac{2\sqrt{2}}{3k^2r_3+3k^4r_3}$	$\frac{2i\sqrt{2}}{3kr_3+3k^3r_3}$	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$J_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$

	Lagrangian density
(No massless particles)	

 $\frac{1}{3}r_2\partial_\kappa\omega^{\alpha\beta\theta}\partial^\kappa\omega_{\alpha\beta\theta} + \frac{2}{3}r_2\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta} - \frac{2}{3}r_2\partial^\beta\omega_{\alpha}^{\ \alpha\lambda}\partial_\lambda\omega_{\alpha\beta}^{\ \prime} + \frac{2}{3}r_2\partial^\beta\omega_{\lambda\alpha}^{\ \lambda\alpha}\partial_\lambda\omega_{\alpha\beta}^{\ \prime} - 4r_3\partial^\beta\omega_{\lambda\alpha}^{\ \lambda\alpha}\partial_\lambda\omega_{\alpha\beta}^{\ \prime} - r_3\partial_\alpha\omega_{\alpha}^{\ \alpha}\partial^\lambda\omega_{\alpha\beta}^{\ \prime} + r_3\partial_\theta\omega_{\lambda\alpha}^{\ \alpha}\partial^\lambda\omega_{\beta\kappa}^{\ \prime}$ $\frac{1}{3}t_{2} \omega_{\theta l K} \partial^{K} f^{l \theta} + \frac{2}{3}t_{2} \omega_{\theta K l} \partial^{K} f^{l \theta} + \frac{2}{3}t_{3} \omega_{l \alpha}^{\ \alpha} \partial^{K} f^{l}_{\ K} + \frac{2}{3}t_{3} \omega_{l \lambda}^{\ \lambda} \partial^{K} f^{l}_{\ K} _{\kappa}^{}\partial^{\kappa}f_{\alpha\lambda}^{}-\frac{2}{3}\,t_{3}\,\,\omega_{\kappa\alpha}^{\phantom{}}\,\,\partial^{\kappa}f'_{\phantom{}}-\frac{2}{3}\,t_{3}\,\,\omega_{\kappa\lambda}^{\phantom{}}\,\,\partial^{\kappa}f'_{\phantom{}}$ $^{1}_{\lambda}\partial^{\kappa}f'_{l}+\frac{1}{3}t_{2}\omega_{l\theta\kappa}\partial^{\kappa}f'^{\theta}-\frac{2}{3}t_{2}\omega_{l\kappa\theta}\partial^{\kappa}f'^{\theta} (\alpha^{0} \partial_{\kappa} \omega^{0 \kappa \lambda} + \frac{1}{6} t_2 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha})^{\epsilon}$ $_{\kappa}\partial^{\kappa}f_{\lambda\alpha}-\frac{1}{6}t_{2}\partial_{\kappa}f_{\beta}^{}\partial^{\kappa}f_{\lambda}^{\theta}+\frac{1}{6}t_{2}\partial_{\kappa}f^{\lambda}_{\theta}$ $_{\alpha}^{\theta} + \frac{1}{6} t_2 \partial^{\alpha} f^{\lambda}_{\kappa}$ $r_3\,\partial_{lpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{ heta\kappa\lambda}$ - $r_3\,\partial_{ heta}\omega_{\lambda}^{\alpha}_{c}$ $\frac{4}{3}t_3\partial^{\alpha}f_{K\alpha}\partial^{\kappa}f'_{1}+\frac{2}{3}t_3\partial_{\kappa}f^{\lambda}_{2}$ $\frac{1}{6}t_2\,\partial^{lpha}f_{\kappa\theta}\partial^{\kappa}f_{}^{}$ $\frac{1}{6} t_2 \partial^{\alpha} f^{\lambda}_{\kappa}$

$f_{1^-}^{\#2}$	0	0	0	$-\frac{2}{3} \bar{l} k t_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1^{-}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}$ i $\sqrt{2}$ kt_3
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_1^{\#1}_{\alpha\beta}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+^2$	$\frac{\sqrt{2} t_2}{3}$	3 (2 2	$-\frac{1}{3}ikt_2$	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{6} (9 k^2 r_3 + 4 t_2)$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{I}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{\#1} + ^{lphaeta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$

(I)

 $\tau_0^{\#1} - 2ik\sigma_0^{\#1} = 0$

П

Source constraints

SO(3) irreps

 $\tau_{0}^{\#2} == 0$

 $^{\circ}$

 $\tau_{1}^{\#2}{}^{\alpha} - i k \ \sigma_{1}^{\#1}{}^{\alpha} == 0$

 \sim

 $\tau_{1}^{\#1}{}^{\alpha} := 0$

 $^{\circ}$

 $\sigma_{1}^{\#_{1}\alpha} + 2 \ \sigma_{1}^{\#_{2}\alpha} = 0$

 \sim

 $\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$

0 ==

 $\sigma_{2}^{\#1}\alpha\beta\chi$

 $\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$

 $\tau_2^{\#1}_{\alpha\beta}$

 $\sigma_{2}^{\#1}$ $\alpha\beta$

0

0

0

0

0

0

0

0

3 42 13

 $k^2 r_2 + t_2$

0

0

0

$f_{0}^{\#2}$	0	0	0	0	
$f_0^{\#1}$	- $I \sqrt{2} k t_3$	$2 k^2 t_3$	0	0	
$\omega_{0}^{\#1}$	<i>t</i> ³	$i\sqrt{2}~kt_3$	0	0	
	$\omega_0^{\#1}\dagger$	$f_0^{\#1}$ †	$f_0^{#2} +$	$\omega_{0^-}^{\#1} \dagger$	

 $\omega_{0^{\text{-}}}^{\#1}$

5 5 24

 $\tau_{2+}^{\#1}\alpha\beta==0$

Total #:

	Massive partic	le
	Pole residue:	$-\frac{1}{r_2}$ >
0	Polarisations:	1
— ?	Sauare mass:	_t2 ~

Massive partic	e
Pole residue:	$-\frac{1}{r_2} > 0$
Polarisations:	1
Square mass:	$-\frac{t_2}{r_2} > 0$
Spin:	0
Parity:	Odd

	Massive particl	e
? /	Pole residue:	$-\frac{1}{r_2}$ >
$J^P = 0^-$	Polarisations:	1
k^{μ} ?	Square mass:	$-\frac{t_2}{r_2}$
?	Spin:	0
	Parity:	Odd

	?	

r_2	<	0	&&	t_2	>	0
٠ ۷		_	-1-1	- ۷		_