

Appendix

- O C-S inequality: Ku, vx = <u, vx < <v, v> in complex numbers: $\left|\sum_{j=1}^{n} z_{j} w_{j}\right|^{2} \leq \left(\sum_{j=1}^{n} |Z_{j}|^{2}\right) \left(\sum_{j=1}^{n} |w_{j}|^{2}\right)$
- 2) f is analytic (complex differentiable) <=> f(x+iy) = u+iv and $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$.
- 3) If f is non-constant, analytic, then for any U open, f(U) is open.
- A function f is conformal if Yy, yz intersecting with angle A, $f(y_1)$ and $f(y_2)$ also intersect with θ .

L> f is conformal on U if f'(z) \$0 YZEU.

(3) F.L.M.: $a,b,c,d \in \mathbb{C}$ s.t. $ad-bc \neq 0$. A F.L.M. then takes the form $\phi(z) = \frac{az+b}{cz+d}$. ϕ is conformal, bijective $(\overline{\mathbb{C}} \to \overline{\mathbb{C}} (\mathbb{C} \cup \{\infty\}))$.

Property (1): Any F.L.M. preserves generalized circles (circle + line).

- (2): $\phi(z) = \frac{it\bar{z}}{1+i\bar{z}}$ maps the unit disk onto right half plane; right thus, ip, -p, -ip maps the unit disk onto upper, left, lower, half planes.
- (3): Let a ED, where D is the unit disk.

Then $\phi(z) = \frac{z-a}{1-\bar{a}z}$ maps D arms D. (can be multiplied by $e^{i\phi}$)

- (4): If ad-bc=1, then \$\phi\$ maps \$H\$ bijectively to \$H\$.
- (5): (note for (2)) $\phi(z) = \frac{1+z}{1-z}$: $D \rightarrow \text{right half plane}$.

If f is conformal on U, then area of fill) is $\iint_{U} |f'(z)|^2 dxdy$

(f) {fn} converges locally uniformly on U if ADCU s.t. D compact, {fn} converges uniformly on D.

power series at $\alpha : f(z) = \sum_{n=0}^{\infty} \alpha_n (z-\alpha)^n$. It converges locally uniformly in $\{z: |z-\alpha| < R\}$, where $R = \lim_{n \to \infty} \sup_{n \to \infty} |\alpha_n|^{\frac{1}{n}}$.

If $\sum_{n=0}^{\infty} \alpha_n (z-\alpha)^n = \sum_{n=0}^{\infty} \beta_n (z-\alpha)^n$ then $\alpha_n = \beta_n$ for all $n \ge 0$

(8)
$$\exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
 =) $\sin z = \frac{e^{iz} - e^{-iz}}{2i}$; $\cos z = \frac{e^{iz} + e^{-iz}}{2}$

branch: fix the k in the formula above so that log is analytic in U (open).

An analytic branch exists on domain U if U is simply connected, or more generally, there is no closed curve in U containing D in its interior.

Define $Z^{\alpha} := (e^{\log z})^{\alpha}$, where $\log Z$ can be any well-defined branch.

(9) For
$$\gamma: [a,b] \to U$$
, $\int_{\gamma} f(z) dz = \int_{t=a}^{b} f(\gamma(t)) \gamma'(t) dt$. (Defn)
$$\longrightarrow \left[\int_{\gamma} f(z) dz \right] \leq \int_{\gamma} |f(z)| |dz|.$$

If U is simply connected, Y is from 20 to 2, , in U, $\int_{\mathcal{X}} f(z) dz = f(z_1) - f(z_0).$

(10) Let γ be a closed curve. The winding number of γ around ϵ_0 ($\epsilon_0 \in \gamma$) is the number of times γ wraps around ϵ_0 counterclockwise, also given by $\operatorname{Ind}_{\gamma}(\epsilon_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{\epsilon_0 - \delta_0} d\epsilon$. If we want to count that of ϵ_0 , $\operatorname{Ind}_{\gamma}(\epsilon_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(\epsilon_0)}{f(\epsilon_0) - \delta_0} d\epsilon$.

Theorems:

(converse) Morera: If f is continuous, Complex-valued on U, $\int_{\gamma} f(z)dz=0$ for all closed, rectifiable γ , then f is analytic. (Holds if $\int_{\gamma} f(z)dz=0$ for all triangle γ .).

Cauchy's integral formula: With the same condition in Cauchy's thm, if c is inside γ , then for $n \ge 0$,

$$f^{(n)}(c) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-c)^{n+1}} dz$$

(Maximum Modulus Principle)

- (1) U open. KCU compact, f analytic in U, then If lattains max at ak If If I has max a in int(K) then f is constant.
 - (2) (Liouville): A bounded, entire function is constant.
 - (3) (Schwarz lemma): If f is analytic in unit disk D, $|f(z)| \le 1$, f(0) = 0, then |fiz)| ≤ 121 YzeD, and |f'10)|≤1.

Moreover, if |f(z)| = |z| for $z \neq 0$ or if |f'(0)| = 1, then $f(z) = \lambda z$, where $|\lambda| = 1$. (4) (Min module principle): same condition, but fix) \$0 42 = K, then min is attained in ak.

- Identity Principle: If $\{\alpha \in U : f(\alpha) = 0\}$ has a limit point in U, then (12) fio in U.
 - =) If { $\alpha \in U : f(\alpha) = g(\alpha)$ has a limit point, then f = g.

(f,g analytic, U a domain)

Theorem: If $f(\alpha)=0$, $f(z)\neq 0$ in U, then $\exists g(\alpha)\neq 0$ s.t. $f(z)=(z-\alpha)^ng(z)$.

Argument Principle: If f is meromorphic in K, then $\oint_C \frac{f'(z)}{f(z)} dz = 2\pi i (N-P), \quad \text{where } SC \text{ is } \partial K, \quad \text{multiplicity}$ | N is number of zeros with | P is number of poles withmultiplicity.

- Rouché's theorem: f, g analytic on 2K&K, 1915 If I on 2K, then f and f+g have the same number of zeros (counting multiplicities)
- (13) f has an isolated singularity at α if f is analytic on punctured disk $\{z: g \ D \le |z-\alpha| \le k\}$ but not on α .
 - (1) removable: If $f(z) \rightarrow C$ as $z \rightarrow d$, then by defining $f(\alpha) = C$ f becames analytic in the whole disk.
 - (2) pole: If $\exists k \text{ s.t. } (z-a)^k f(z) \text{ exists, is bounded as } z \to \alpha$, and $(z-a)^j f(z)$ is unbounded $\forall j < k$, then f has a pole of order k at α .
 - (3) essential: If none of the above.
 - Alote: $\{11\}$ If $\{1\}$ is bounded in $N_{\epsilon}(\alpha)$ then $\{1\}$ is removable singularity.
 - (2) If flat is essential then $\forall c \in \mathbb{C}$, $\exists \{z_j\} \Rightarrow d s.t. \{f(z_j)\} \Rightarrow c.$
 - (Casorati Weierstrass)

 at so

 (3) An entire function with a pule of degree k is a polynomial of degree k.

(14) If f is analytic on {=: r<12-a1<R}, then I (n's s.t. + in the annulus,

Let y be any simple closed curve in the annulus with & inside it. $C_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-d)^{n+1}} dz. \qquad (i.e., Gunely integral formula divided by n!)$ $f^{(n)}(c) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-c)^{n+1}} dz$

- SIII If $c_n=0$ $\forall n<0$, then α is removable.

 (2) If $\exists k \neq 0$, s.t. $c_n=0$ $\forall n<-k$, then α is a pole of degree k.
 - (3) If there exist infinite $Cn \neq 0 \ \forall n < 0$, then a is essential.

If f is analytic in some 121>R, then f has a Laurent series about ∞ , it is G佳), where G② is the Laurent series of g② = f년) at the origin.

(15) If f is analytic on $0 \le |z-\alpha| \le r$, then the residue of f at α is $Res_f(\alpha) = C_{-1}$, the first negative term's coefficient.

Residue Theorem: γ simple closed curve, enclosing $\alpha_1, \dots, \alpha_K$ singularities interior)

inside it, then $\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_{j=1}^{K} Res_{j}(\alpha_{j})$.

Calculate - the residue:

(1) essential: calculate the Laurent series

(1) essential

(2) pole: (k-th order) Res_f(x) =
$$\frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} \left[(z-\alpha)^k f(z) \right]$$

[In particular, for a simple pole, it's $\lim_{z\to a} (z-\alpha)$, fix $f(z)$.

Special case: if $f = \frac{g}{h}$, $g(x) \neq 0$ and h has a simple zero at α , $\operatorname{Res}_{f}(\alpha) = \frac{g(\alpha)}{h'(\alpha)}.$

Residue at ∞): If f is analytic in a neighborhood lot ∞ , γ is a simple closed curve in U, then

Res f (\infty) =
$$\frac{-1}{2\pi i} \int_{\gamma} f(z) dz$$
.

Let $g(z) = \frac{1}{z^2} f(\frac{1}{z})$, then $Res_f(\infty) = Res_g(0)$. then $Res_f(\infty) = -\lim_{z \to \infty} zf(z)$.

(exterior)

Residue Theorem: Let f be analytic in a neighborhood of ∞ , except for singularities

a,,..., ax including so). Then if y is a simple closed curve

with $\alpha_1, \cdots, \alpha_k$ in its exterior,

$$\frac{1}{2\pi i} \int_{\gamma} f(z) dz = -\frac{k}{j-1} \operatorname{Res}_{f}(A_{j})$$

Motivation: integrating in an easier way. (16)

For example $\int_0^{2\eta} \frac{\cos x}{1+\sin x} dx = \operatorname{Re} \int_0^{2\eta} \frac{e^{ix}}{1+\sin x} dx$.

Useful theorems:

(1) If f has a simple pole at a, Cr is a semicircle about d,

=)
$$\lim_{r\to 0} \frac{1}{2\pi i} \int_{C_r} f(z) dz = \frac{1}{2} \operatorname{Res}_{f}(x)$$
.

(2) (Jordan) Let a>0. CR = {Reiθ | 05θ ≤π}.

then, $\left|\int_{C_D} g(z) \cdot e^{i\alpha z} dz\right| \le \frac{\pi}{\alpha} g_{\text{max}}$, where $g_{\text{max}} = \max_{g \in D, \pi} |g(Re^{i\theta})|$.

Various methods:

2. box :

3. keyhole:

useful for

fixidx.

where fize has finite singularities in upper/lower half planes.

useful when $3 \times singularities$.

useful when there is logarithm.

Appendix

- ① Laurent series: $\ln (1+2) = 3 \frac{2^2}{2} + \frac{2^3}{3} \cdots$ - $\ln (1-3) = 2 + \frac{2^2}{3} + \cdots$
- (2) automorphism of D: $f(z) = e^{i\varphi} \frac{z-a}{1-\bar{a}z}$.
- B Harmonic function: In \Box is \Box is analytic, then both u and v are harmonic, In \Box is real-valued, harmonic, then \exists ! \forall cup to a real constant) s.t. utiv is analytic.

Mean value: u(20) = = = = (2" u(20 + reit) do.

$$u(x) = \frac{1}{n\omega_n r^{n-1}} \int_{\partial B(x,r)} u \, dy = \frac{1}{n\omega_n r^n} \int_{B(x,r)} u \, dy.$$

Max/min: In compact K, a harmonic, real valued u attains max/min in ∂K . If u attains max/min in int(K) then $u \equiv C$.