

Projeto Final da Disciplina de Requisitos de Software

Relatório de projeto

Medição e análise

Fábio Teixeira - 12/0116928 Indiara Duarte - 14/0022325 Stefania bezerra - 14/0031634 Thiago Ramires Kairala - 12/0042916

Sumário

1	Intro	dução	1
	1.1	Contexto	1
	1.2	Formulação do problema	1
	1.3	Objetivos	1
	1.4	Justificativas	2
2	Funda	amentação teórica	2
3	Meto	dologia	2
4	Equip	pe	3
	4.1	Equipe de medição	3
	4.2	Equipe de desenvolvimento	3
5	Produ	uto, Atividades e Cronograma	3
	5.1	Resumo da proposta	3
	5.2	Lista de Software	3
	5.3	Descrição de atividades	4
	5 .4	Cronograma	5
6	Objet	tivos estratégicos	6
7	Proce	esso de medição	7
	7.1	Medições	7
		7 .1.1 Produtividade	7
		7 .1.1.1 Produtividade	8
		7 .1.2 Custo	9
		7 .1.3 Usabilidade	10
	7.2	Abstraction Sheet	11
	7.3	GQM	11
	7.4	Modelo de maturidade	11
8	Indica	adores	13
9	Resul	Itados Esperados	13

Lista de Figuras

Lista de Tabelas

1	Equipe de medição
2	Equipe de desenvolvimento
3	Fase 1. Entendimento do escopo do projeto
4	Fase 2. Planejar processo de medição e análise
5	Fase 3. Realizar medições
6	Fase 4. Resultados obtidos
7	Objetivo de medição de produtividade
8	Objetivo de medição de custo
9	Objetivo de medição de usabilidade
10	Efetividade da estimativa
11	Tempo estimado para realização da tarefa
12	Custo por tarefa
13	Custo de manutenção
14	Satisfação com simplicidade
15	Satisfação com complitude
16	Satisfação com a velocidade de atendimento
17	Métrica de usabilidade
18	Medicões????? ARRUMAR ESSA LEGENDA

1 Introdução

1.1 Contexto

A Agência Espacial Brasileira é um órgão integrante do Sistema de Administração dos Recursos de Tecnologia da Informação do Ministério do Planejamento, Orçamento e Gestão (SISP/MPOG). Um dos principais objetivos da instituição é a busca por uma administração pública que priorize a melhoria de gestão de recursos, e a qualidade na prestação de serviços ao cidadão. Dessa forma, a realização de um bom planejamento de TI que viabilize e potencialize a melhoria contínua da performance organizacional torna-se imprescindível. Vale salientar a necessidade de manter um alinhamento entre as estratégias da instituição com as da unidade de TI [Brasileira 2016].

No cenário atual de constantes mudanças, a divisão de TI encontra-se em uma fase de reestruturação. Os serviços de TI foram disciplinados em decorrência de regras estabelecidas pela IN04, e devido à complexidade dessas regras e procedimentos houve a necessidade de estruturar a área de Tecnologia da Informação como área estratégica da organização.

Dentre as principais atividades desempenhadas pela DINF, estão:

- Elaboração, manutenção e controle do Portfólio de Projetos;
- Desenvolvimento e manutenção de sistemas;
- Gerência de segurança;
- Gerência de máquinas virtuais e servidores;
- Elaboração, manutenção e controle da Política de Segurança da Informação e Comunicação.

1.2 Formulação do problema

Após realizar reuniões com o chefe do setor de desenvolvimento da DINF, a equipe de medição obteve acesso à informações de cunho privado que viabilizaram a análise do contexto de desenvolvimento da AEB.

Nessa vertente, foi possível constatar que nas gestões anteriores, atividades relacionadas à medição e análise não eram tidas como prioridade pela divisão. Então, a partir disso foi proposto a elaboração e execução de um plano de medição a fim de apresentar dados/estimativas reais nos seguintes âmbitos:

- Produtividade da equipe de desenvolvimento;
- custo de manutenção dos sistemas implantados;
- Satisfação do usuário que faz uso desses sistemas.

1.3 Objetivos

O objetivo geral da pesquisa consiste em tornar claro e evidente aos membros da AEB a importância de utilizar o recurso da medição, seja para medir o processo, produto ou pessoas. Diversos modelos de maturidade, tais como CMMI E Mps Br, e padrões e certificação ISO incluíram práticas de atividades de mensuração como um requisito para processo de desenvolvimento maduro. Além disso, a medição, se conduzida da maneira adequada, provê a identificação de problemas, tomada de decisões com embasamento em indicadores consistentes, e também a melhora no processo da organização.

Os objetivos específicos pretendidos são conhecer a produtividade da equipe sob o ponto de vista do desenvolvimento de um software; identificar o custo das hora trabalhada de cada integrante da equipe; estimar e avaliar o custo de manutenção de sistemas; avaliar a qualidade dos sistemas que são produzidos e quão satisfeitos os clientes estão ao usarem; analisar o custo-benefício dos sistemas para a equipe de desenvolvimento.

1.4 Justificativas

Medição de software é uma avaliação quantitativa de qualquer aspecto dos processos e produtos de software, que permite seu melhor entendimento e, com isso, auxilia o planejamento, controle e melhoria do que se produz e de como é produzido [Bass e Clements 1999].

Embora a equipe de desenvolvimento tenha um nível de conhecimento técnico elevado, seja independente e disciplinada, ainda não há um método consistente que verifique a relação de quanto um membro produz em um determinado período de tempo.

Sabe-se que um software de baixa qualidade demanda alto custo de manutenção, e consequentemente, diminui a lucratividade da empresa (Como reduzir o Custo de Manutenção de Software com a Análise de Código, 2014).

A título de exemplificação vale citar o sistema de almoxarifado da AEB, cuja qualidade de código é baixa e seu custo de manutenção é elevado, entretanto esse sistema agrada e atende às exigências do cliente. Nessa perspectiva, é importante conhecer em que circunstâncias há viabilidade econômica para que a instituição mantenha determinados sistemas em operação.

Questões relacionadas ao valor de recursos financeiros repassados à AEB não são de grande preocupação no contexto atual, porém faz-se necessário compreender a relação de custo-benefício dos sistemas implantados. A satisfação do cliente impacta diretamente nessa relação, e com base nesse fator será possível entender se o cliente responde de maneira positiva ou negativo ao que foi entregue a ele. Em suma, é muito importante averiguar o feedback do usuário, pois ele é o elemento principal que justifica o porquê de desenvolver de um software.

2 Fundamentação teórica

Métrica de software é qualquer tipo de medida que diz respeito a um sistema de software, processo ou a sua documentação. A principal razão para a medição de um projeto de software é obter informações sobre ele e sobre a organização, e ser capaz de controlar os projetos melhor.

Há muitas mais razões específicas para medir e elas diferem entre perspectiva dos gerentes e do desenvolvedor. Os gestores estão preocupados com questões como: "qual é o custo do processo?", "como é a produtividade da equipe?", "o quão bom é o código?", "é o cliente satisfeito?", e "como podemos fazer melhor?". Os desenvolvedores se preocupam mais com: "existem muitas falhas?", "podemos testar os requisitos?", "temos conseguido atingir os nossos processos e produtos?", "o que vai acontecer no futuro?". A medição de software pode ajudar a manter os gerentes e desenvolvedores informados sobre as suas preocupações, mas não tem a pretensão de dar quaisquer soluções absolutas [Lindstrom 2004]).

3 Metodologia

Para o desenvolvimento e implantação do processo de medição, inicialmente será feito o processo de conscientização da equipe de desenvolvimento para que o processo seja entendido não como uma obrigação, e sim como uma agregação de valor ao processo de desenvolvimento e produto.

Após esse processo de conscientização iniciaremos o processo de recolhimento de métricas, aplicando questionários, realizando contagem de horas das atividades, assim como a atribuição de estimativas para cada umas tarefas a serem realizadas. Por pedido do cliente, não será introduzida uma nova ferramenta de desenvolvimento, sendo apenas utilizada a ferramenta gitlab já preparada e ambientada nos servidores da AEB.

As medidas de tempo e produtividade então serão marcadas dentro dos commits dados pelos desenvolvedores, apenas colocando o padrão TIME XX:XX onde o XX:XX será a duração da tarefa.

Finalmente após obter as métricas será possível analisá-las, a fim de descobrir se o processo e o produto estão eficazes e se estão sendo aplicados da melhor forma possível, e caso necessário aplicar melhorias, e recomeçar o processo.

4 Equipe

O projeto é composto por duas equipes distintas, sendo elas: a equipe de medição e a equipe de desenvolvimento da AEB, descritas nas seções abaixo.

4 .1 Equipe de medição

A equipe de medição tem como responsabilidade a elaboração de um plano de medição a ser executado, assim como analisar os resultados obtidos e criar um conjunto de indicadores acerca dos objetivos definidos. A equipe é composta por cinco pessoas como mostrado na Tabela 1.

Nome	Papel
Elaine Venson	Orientadora do processo de me-
	dição
Fabio Teixeira	Analista de medição
Indiara Duarte	Analista de medição
Stefania Bezerra	Analista de medição
Thiago Kairala	Analista de medição

Tabela 1. Equipe de medição

4.2 Equipe de desenvolvimento

A equipe de desenvolvimento da AEB é responsável pelo desenvolvimento dos sistemas a serem analisados, assim como por fazer a análise final dos indicadores a fim de tomar as decisões baseadas nas métricas entregues, e está representada pela Tabela 2.

Nome	Papel	Horas/Semana	Custo por hora
Eduardo Santos	Chefe de desenvolvimento	40	
Juliano Raphael	Desenvolvedor	40	
Felipe Sampaio	Bolsista desenvolvedor	30	
Vinicius Lyra	Bolsista desenvolvedor	30	
Bruno Contessoto	Estagiário	20	
Barbara Danielle	Estagiária	20	

Tabela 2. Equipe de desenvolvimento

5 Produto, Atividades e Cronograma

5.1 Resumo da proposta

A proposta que será abordada pelo grupo é de coletar métricas referentes a custo, produtividade e usabilidade, melhorando a qualidade de desenvolvimento de software, com o propósito de agregar mais valor para a empresa.

5.2 Lista de Software

Os softwares utilizados para o projeto serão apenas os softwares já utilizados na AEB, como o gitlab, o GNU plan além de um editor de documentos para a criação dos questionários de satisfação.

5.3 Descrição de atividades

Id	Atividade	Descrição	Responsáveis
A1	Reunião com	Reunião presencial com o res-	Time de medição e
	o responsá-	ponsável da DINF na AEB para	análise.
	vel da equipe	compreender o contexto do tra-	
	de desenvol-	balho realizado pelos desenvolve-	
	vimento da	dores e para a afirmação de um	
	DNIF	acordo(verbal) de solicitação de	
		dados dos projetos realizados.	
A2	Compreender	Tendo como base a reunião com	Time de medição e
	as necessi-	o responsável da DINF da AEB o	análise.
	dades da	time de medição e análise poderá	
	AEB quanto	esboçar quais as possíveis apli-	
	a medição e	cações da medição e análise no	
	análise.	DINF.	

 ${\bf Tabela~3.}$ Fase 1. Entendimento do escopo do projeto

Id	Atividade	Descrição	Responsáveis
A3	Definir quais	Com base nas necessidades da	Time de medição e
	projetos da	AEB quanto a medição e aná-	análise.
	AEB serão	lise, definir quais dos projetos da	
	analisados.	AEB serão analisados.	
A4	Definir medi-	Escolher que tipo de medições se-	
	ções a serem	rão realizadas nos projetos esco-	
	realizadas	lhidos.	
A5	Definir ferra-	Escolher quais ferramentas serão	
	mentas utili-	utilizadas para a coleta e análise	
	zadas na me-	dos dados.	
	dição.		
A6	Elaborar		
	Abstraction		
	Sheet		
A7	Elaborar		
	GQM		

Tabela 4. Fase 2. Planejar processo de medição e análise

Id	Atividade	Descrição	Responsáveis
A8	Identificar	Identificar os riscos de cada pro-	
	os riscos de	jeto escolhido para medição e	
	cada projeto.	análise.	
A9	Identificar	Identificar os custos de cada pro-	
	os custos de	jeto escolhido para medição e	
	cada projeto	análise.	
A10	Identificar	Identificar a produtividade da	
	a produti-	equipe de desenvolvimento do	
	vidade da	DNIF em cada uma dos projetos	
	equipe da	analisados.	
	AEB em		
	cada projeto.		
A11	Identificar a	Identificar a satisfação dos usuá-	
	satisfação do	rios em cada um dos projetos es-	
	cliente em	colhidos para análise.	
	cada projeto.		
A12	Coletar mé-	Com a devida permissão do res-	
	tricas de có-	ponsável DINF serão coletadas	
	digo fonte.	métricas de código fonte dos pro-	
		jetos escolhidos.	

Tabela 5. Fase 3. Realizar medições

Id	Atividade	Descrição	Responsáveis
A13	Diagnosticar		
	sobre custos		
	de cada		
	projeto		
A14	Diagnosticar		
	sobre a qua-		
	lidade do		
	código fonte		
	de cada		
	projeto		
A15	Diagnosticar		
	sobre a sa-		
	tisfação dos		
	usuários.		

Tabela 6. Fase 4. Resultados obtidos

5 .4 Cronograma

[Inserir aqui um cronograma com as atividades (no mínimo) citadas na seção anterior. Representar a unidade de tempo como pelo menos mensal, podendo ser semanal ou diário]

6 Objetivos estratégicos

Analisar	Produtividade da equipe.
Com o propósito	Conhecer
de	
Com respeito a	Desenvolvimento de software
Do ponto de	Chefe de desenvolvimento
vista de	
No contexto de	DINF

Tabela 7. Objetivo de medição de produtividade

Analisar	Custo de manutenção
Com o propósito	Controlar
de	
Com respeito a	Manutenção de software
Do ponto de	Chefe de desenvolvimento
vista de	
No contexto de	DINF

Tabela 8. Objetivo de medição de custo

Analisar	Satisfação do cliente
Com o propósito	Melhorar
de	
Com respeito a	Experiência do usuário
Do ponto de	Chefe de desenvolvimento
vista de	
No contexto de	DINF

Tabela 9. Objetivo de medição de usabilidade

7 Processo de medição

7 .1 Medições

7 .1.1 Produtividade

Objetivo da medição	Esforço gasto para concluir cada issue.	
Fórmula	$E = \frac{Horastrabalhadas}{Estimativa dehoras decadais sue}$	
Escala da medição	Racional	
Coleta	 Responsável: Thiago Kairala Periodicidade ou Evento: Semanalmente. Procedimentos: Preenchimento de formulário específico com as seguintes informações: Nome do desenvolvedor; Data; Projeto; Issue; Duração. 	
Análise	 Responsável: Indiara Duarte Procedimentos: Identificar possíveis causas de desvios e possíveis ações. 	
Meta	Limites de especificação • Inferior: 0,9 • Superior: 1,1 Limites de controle	
	Inferior: 0,95Superior: 1,05	

Tabela 10. Efetividade da estimativa

Objetivo da medição	Estimar quanto tempo uma ta-	
	refa deve durar	
Fórmula	O cálculo é feito por estima-	
	tiva de quantas horas cada tarefa	
	deve durar.	
Escala da medição		
Coleta	A coleta é feita no momento	
	de priorização da tarefa, colo-	
	cando na descrição da mesma,	
	pelo chefe de desenvolvimento.	
Análise	A análise é feita no planeja-	
	mento da sprint, para garantir	
	que não seja proposto mais do	
	que a equipe tenha capacidade de	
	entregar.	
Procedimento	Os possíveis desvios são subesti-	
	mação ou superestimação da ta-	
	refa, causando uma estimativa	
	muito maior ou menor que o real,	
	podendo causar atraso ou dias	
	sem atividade.	
Meta	Todas as tarefas devem ser feitas	
	entre 4 a 40 horas.	

Tabela 11. Tempo estimado para realização da tarefa

7 .1.1.1 Produtividade

7.1.2 Custo

Objetivo da medição	Analisar o custo de desenvolvi-	
	mento de uma tarefa	
Fórmula	Tempoderealização *	
	Custoda hora do executor	
Escala da medição		
Coleta	A coleta é feita no momento de	
	fechamento da sprint pelo Chefe	
	de desenvolvimento.	
Análise	A análise será feita ao final do	
	projeto, para se analizar o custo	
	final, e poder apresentar para a	
	alta direção da AEB.	
Procedimento	Os possíveis desvios são causados	
	pelo possível desvio na medição	
	de tempo, podendo aumentar ou	
	diminuir o custo final do projeto.	
Meta	A meta depende de projeto para	
	projeto.	

Tabela 12. Custo por tarefa

Objetivo da medição	Analisar o custo de manuteção	
	de cada sistema.	
Fórmula	Tempoderealização *	
	Custodahoradoexecutor	
Escala da medição		
Coleta	A coleta é feita a cada vez que	
	uma tarefa de manutenção for	
	executada.	
Análise	A análise será feita quando exix-	
	tir a necessidade de análise sobre	
	a continuidade ou não de um pro-	
	jeto.	
Procedimento	Os possíveis desvios são causados	
	pelo possível desvio na medição	
	de tempo, podendo aumentar ou	
	diminuir o custo final da manu-	
	tenção.	
Meta	A meta depende de projeto para	
	projeto.	

Tabela 13. Custo de manutenção

7 .1.3 Usabilidade

Objetivo da medição	Analisar a qualiidade da simpli-	
	cidade do sistema	
Fórmula	Totaldepontos	
Tormula	$n\'umero de question\'arios$	
Escala da medição		
Coleta	A coleta é feita sempre que uma	
	funcionalidade grande for entre-	
	gue, por algum integrante da	
	equipe de desenvolvimento, rea-	
	lizando um questionário para os	
	clientes que utilizam cada sis-	
	tema.	
Análise	A análise será feita sempre que	
	for coletada a métrica.	
Procedimento	Existem possíveis desvios devido	
	ao fato da métrica ser subjetiva.	
Meta	A meta da métrica é estar sempre	
	a cima de 3.5, numa escala de 1	
	a 5.	

Tabela 14. Satisfação com simplicidade

Objetivo da medição	Analisar se o sistema atende real-	
	mente as necessidades do cliente	
Fórmula	Totaldepontos	
Tormula	$n\'umero de question\'arios$	
Escala da medição		
Coleta	A coleta é feita sempre que uma	
	funcionalidade grande for entre-	
	gue, por algum integrante da	
	equipe de desenvolvimento, rea-	
	lizando um questionário para os	
	clientes que utilizam cada sis-	
	tema.	
Análise	A análise será feita sempre que	
	for coletada a métrica.	
Procedimento	Existem possíveis desvios devido	
	ao fato da métrica ser subjetiva.	
Meta	A meta da métrica é estar sempre	
	a cima de 4.5, numa escala de 1	
	a 5.	

Tabela 15. Satisfação com complitude

Objetivo da medição	Analisar o tempo de atendimento	
	na visão do cliente	
Fórmula	Totaldepontos	
Formula	$n\'umero de question\'arios$	
Escala da medição		
Coleta	A coleta é feita sempre que uma	
	funcionalidade grande for entre-	
	gue, por algum integrante da	
	equipe de desenvolvimento, rea-	
	lizando um questionário para os	
	clientes que utilizam cada sis-	
	tema.	
Análise	A análise será feita sempre que	
	for coletada a métrica.	
Procedimento	Existem possíveis desvios devido	
	ao fato da métrica ser subjetiva.	
Meta	A meta da métrica é estar sempre	
	a cima de 3.5, numa escala de 1	
	a 5.	

Tabela 16. Satisfação com a velocidade de atendimento

7.2 Abstraction Sheet

7.3 GQM

Goal	Question	Metrics

Tabela 17. Métrica de usabilidade

7.4 Modelo de maturidade

A escolha do modelo de maturidade atuante no projeto foi o MPS-BR. Tendo em vista que esse modelo é o que mais se adapta a realidade brasileira, tendo em vista que para se obter um certificado do CMMI tem custo entre duzentos mil reais à um milhão de reais.

O propósito do processo Medição é coletar, armazenar, analisar e relatar os dados relativos aos produtos desenvolvidos e aos processos implementados na organização e em seus projetos, de forma a apoiar os objetivos organizacionais (SOFTEX, 2012) !!!!! fazer citação no latex.

Medição - MED		
Identificador	Resultado esperado	Aplicação no projeto
MED 1	Objetivos de medição são estabelecidos e mantidos a partir dos objetivos de negócio da organização e das necessidades de informação de processos técnicos e gerenciais;	Essa etapa é realizada quando há entrevista com o diretor da organização.
MED 2	Um conjunto adequado de medidas, orientado pelos objetivos de medição, é identificado e definido, priorizado, documentado, revisados e, quando pertinente, atualizado;	Essa etapa é realizada quando se faz a (atividade que esqueci o nome).
MED 3	Os procedimentos para a coleta e o armazenamento de medidas são especificados;	Essa etapa é realizada quando se coleta os dados para observar os resultados obtidos e fazer comparações quando necessário.
MED 4	Os procedimentos para a análise das medidas são especificados;	Essa etapa é realizada quando se coleta as métricas e analisadas de acordo com o GQM.
MED 5	Os dados requeridos são coletados e analisados;	Essa etapa é feita para que haja um interpretação dos dados.
MED 6	Os dados e os resultados das análises são armazenados;	Os dados são armazenados para que haja comparação no decorrer do tempo em que se está analisando a organização.
MED 7	Os dados e os resultados das análises são comunicados aos interessados e são utilizados para apoiar decisões.	Ao final do projeto, os dados serão disponibilizados a organização, informando como o processo pode ser mudado.

Tabela 18. Medições????? ARRUMAR ESSA LEGENDA

- 8 Indicadores
- 9 Resultados Esperados

Referências Bibliográficas

[Bass e Clements 1999]BASS, L.; CLEMENTS, P. Constructing Superior Software; Applying Proven Practices. [S.l.]: New Riders Publishing, 1999.

[Brasileira 2016]BRASILEIRA, A. E. <u>Plano Diretor de Tecnologia da Informção da Agência Espacial Brasileira</u>. [S.l.: s.n.], 2016.

[Lindstrom 2004]LINDSTROM, B. A software measurement case study using gqm. Lund University, USA, 2004.