Asignatura	Datos del alumno	Fecha	
Procesamiento de Señales, Sonido e Imágenes Digitales	Apellidos: Balsells Orellana		
	Nombre: Jorge Augusto	06/Enero/2021	

Hoja de respuesta Lab 1:

Representación de Señales

Tarea 1: Representación de señales discretas

Rellene la siguiente tabla con la respuesta a las preguntas de esta tarea, y entregue un fichero tareal.m con los comandos usados.

Comandos usados	Gráfica resultante
Comandos usados clear clc $x0 = 0;$ $x1 = 1;$ $x2 = -1;$ $x3 = 2;$ $x4 = 3;$ $x5 = 0;$ $n = [-4:4]$ $x = x0.*(n <= -3) + x1.*(n == -2) + x2.*(n == -1) + x3.*(n == 0) + x4.*(n == 1) + x5.*(n >= 2);$ stem(n,x); grid on	Representación de señales discretas × 1 -2 -4 -2 -2 0 2 4
axis([-4 4 -2 4]); title('Representación de señales discretas'); xlabel("n") ylabel("x")	

Tarea 2: Representación de señales complejas

Rellene la siguiente tabla con la respuesta a las preguntas de esta tarea, y entregue un

fichero tarea2.m con los comandos usados.

Comandos usados	Gráfica resultante
inct = 0.01; t = [-8:inct:8]; x = exp(j*t*(pi/2));	Grafico resultante con incremento de 0.01.
<pre>valor_modulo = abs(x); valor_argumento = angle(x); valor_real = real(x); valor_complejo = imag(x); subplot(1,2,1); hold on plot(t, valor_real); plot(t, valor_complejo); axis([-8 8 -1.5 1.5]); title('x(t) = e^{{j*(\langle pi/2)*t}')}; legend('Re(x)', 'Im(x)');</pre>	$x(t) = e^{j^*(\pi/2)^*t}$ 1.5 $Re(x)$ $Im(x)$ 0.5 -0.5 -1 -1.5 -5 0 0 -0.5 1 -1.5 -5 0 0 0 0 0 0 0 0 0 0
xlabel("t") ylabel("x(t)")	En este ejercicio, fue agregado un incremento en el
grid on hold off	vector t de 0.01, ya que de no agregarse, la cantidad de muestras era muy baja y la grafica no representa una
subplot(1,2,2); hold on	señal precisa.
plot(t, valor_modulo); plot(t, valor_argumento); axis([-8 8 -4 4]); title('x(t) = e^{{j*(\langle pi/2)*t}')}; legend('modulo', 'argumento'); xlabel("t") ylabel("x(t)") grid on hold off	$x(t) = e^{j*(\pi/2)*t}$ 1.5 $Re(x)$ 0.5 0.5 -0.5 -1 -1.5 -5 0 0 -2 -4 -5 0 0 0 0 0 0 0 0 0 0

Tarea 3: Representación de señales periódicas

Rellene la siguiente tabla con la respuesta a las preguntas de esta tarea, y entregue un fichero tarea3.m con los comandos usados. Incluya todos los comandos y sus parámetros, no haga un resumen de los comandos.

Indiqué qué señales de las anteriores son periódicas o aperiódicas. En las periódicas indique su periodo fundamental.

Señal	¿Periódica?	Periodo	Señal	¿Periódica?	Periodo
$x_1(t)$	SI	17/7	$x_1[n]$	SI	17
$x_2(t)$	SI	10*(Pi)	$x_2[\mathbf{n}]$	NO	X

¿A qué se debe que no sean periódicas las que no lo sean?

M debe tomar solamente valores enteros, y para que sea válido el periodo en este caso debe tomar valor de Pi, por lo que no es periódica.

Tarea 4: Convolución de señales

Rellene la siguiente tabla con la respuesta a las preguntas de esta tarea, y entregue un fichero tarea4.m con los comandos usados.

Represente con subplot las señales x[n] y h[n] en el intervalo $n \in [0,10]$

```
Comandos usados
                                                            Gráfica resultante
inct = 1;
n = [0:inct:10];
                                                                                 Señal x[n]
x0 = 0:
x1 = n+1;
                                                               ž
x = x0.*(n<0) + x1.*((n>=0)&(n<=4)) + x0.*(n>4)
h0 = 0;
h1 = 2;
h = h0.*(n<0) + h1.*((n>=0)&(n<=2)) + h0.*(n>2)
                                                                                 Señal h[n]
                                                                2.5
subplot(2,1,1);
  hold on
  stem(n, x);
                                                             도 <sup>1.5</sup>
× 1
  axis([0 10 0 5.5]);
  title('Señal x[n]');
                                                                0.5
  xlabel("n")
  ylabel("x[n]")
  grid on
  hold off
subplot(2,1,2);
  hold on
  stem(n, h);
  axis([0 10 0 2.5]);
  title('Señal h[n]');
  xlabel("n")
  ylabel("x[n]")
  grid on
  hold off
```


Represente con subplot las sumas parciales $y_m[n] = x[m]h[n-m]$ en los vectores y0, y1, ... y4 con $m \in [0,4]$, y la convolución y[n] en el vector y sumando los vectores con las sumas parciales.


```
ylabel("y[n]")
  grid on
  hold off
subplot(4,2,5);
  hold on
  stem(n, y2);
  stem(n, y0 + y1 + y2);
  title('Y[2]. Sumas parciales');
  legend('Ym[n]', 'suma con Ym[n]
anteriores');
  xlabel("n")
  ylabel("y[n]")
  grid on
  hold off
subplot(4,2,6);
  hold on
  stem(n, y3);
  stem(n, y0 + y1 + y2 + y3);
  title('Y[3]. Sumas parciales');
  legend('Ym[n]', 'suma con Ym[n]
anteriores');
  xlabel("n")
  ylabel("y[n]")
  grid on
  hold off
subplot(4,2,7);
  hold on
  stem(n, y4);
  stem(n, y0 + y1 + y2 + y3 + y4);
  title('Y[4]. Sumas parciales');
  legend('Ym[n]', 'suma con Ym[n]
anteriores');
  xlabel("n")
  ylabel("y[n]")
  grid on
  hold off
subplot(4,2,8);
  hold on
  stem(n, y5);
  stem(n, y0 + y1 + y2 + y3 + y4 + y5);
  title('Y[5]. Sumas parciales');
  legend('Ym[n]', 'suma con Ym[n]
anteriores');
  xlabel("n")
  ylabel("y[n]")
  grid on
```

Representar la convolución z[n]=x[n]*h[n] usando la función conv de Octave.

Comandos usados	Gráfica resultante			
inct = 1; n = [0:inct:10];				
x0 = 0; x1 = n+1; x = x0.*(n<0) + x1.*((n>=0)&(n<=4)) +	Convolucion z[n] con comando Conv			
x0.*(n>4) h0 = 0; h1 = 2; h = h0.*(n<0) + h1.*((n>=0)&(n<=2)) + h0.*(n>2) z = conv(x,h); nz = [0:length(z)-1]; subplot(1,2,[1 2]);	20 -			
subplot(1,2,[12]), hold on stem(nz, z); axis([0 10 0 25]); title('Convolucion z[n] con comando Conv'); xlabel("n") ylabel("z[n]") grid on hold off				
Posición de comienzo y fin de la convolución	Es una matriz que tiene un corrimiento de una unidad			
	a la vez, y ese corrimiento se aplica en h. Mientras se			
	corre h, esta misma se multiplica por los valores de x			
	hasta finalizar x. dado que x tiene valores de 1,2,3,4 y			
	5 sicesivamente, y h tiene valores de 2,2 y 2, la matriz queda asi:			
	[[02 02 02 00 00 00 00],			
	[00 04 04 04 00 00 00],			
	[00 00 06 06 06 00 00],			
	[00 00 00 08 08 08 00],			
	[00 00 00 00 10 10 10]]			
	Donde la suma total de cada columna es la siguiente:			
	[02 06 12 18 24 18 10]			
Duración de la convolución	La convolución dura el recorrido total de h sobre x, por			
	lo que, el valor inicial de h debe llegar hasta el valor			
	final de x, considerando en la longitud la longitud de x			
	mas el recorrido de h, siendo la siguiente ecuación:			
	Duración = Lh + (m-1). Donde Lh es la longitud de H.			
	Duracion = $3 + (4-1) = 6$			

