1. Basic Definitions and Concepts

1.1. Models and Languages

Definition 1.1.1: A model or structure is a tuple

$$\mathcal{M} = \left(M, \left(f_i\right)_{i \in I}, \left(R_j\right)_{j \in J}, \left(c_k\right)_{k \in K}\right)$$

where

- \bullet M is a set called the universe
- f_i are functions $f: M^{a_i} \to M$
- R_i are relations $R_i \subseteq M^{a_j}$
- c_k are constants $c_k \in M$.

Remark 1.1.2: Sometimes constants can be seen as 0-ary functions.

Example: Consider the model $(\mathbb{C}, +, \cdot, \exp)$, consisting of the universe \mathbb{C} with the 3 functions $+, \cdot, \exp$. Note that we will often write out the functions inside the brackets as above, it will be clear if an object is a function, relation or constant from context.

Example: Another model would be $(\mathbb{R}, +, \cdot, <)$, consisting of the universe \mathbb{R} with the 2 functions $+, \cdot$ and the 2-ary relation <.

Example: $(\mathbb{Z}_4, +_4, 0)$, here 0 is a constant.

Example: An important example is (V, \in) where V is any set which sort of encodes set theory (though there are several issues with this).

We can see already that models can encode many objects that we study in math, and there are many many more such encodings.

All of this is very semantic encoding of a mathematical structure, but we will also be concerned with the syntactical encoding.

Definition 1.1.3: A language (or signature) is a tuple

$$L = \left(\left(\underline{f_i} \right)_{i \in I'}, \left(\underline{R_j} \right)_{j \in J'}, \left(\underline{c_k} \right)_{k \in K'} \right)$$

where now the f_i are function symbols with arity $a_i' \in \mathbb{N}$, each R_j are relation symbols with arity $a_j' \in \mathbb{N}$, and c_j are constant symbols.

A model \mathcal{M} is an L-structure if

$$I = I', J = J', K = K', a_i = a_i', a_j = a_j'$$

If $\mathcal M$ is an L-structure then the interpretations of the symbols of the language are defined as

$$\underline{f_i}^{\mathcal{M}} = f_i, R_j^{\mathcal{M}} = R_j, \underline{c_k}^{\mathcal{M}} = c_k$$

Remark 1.1.4: For a model \mathcal{M} we will sometimes denote $|\mathcal{M}|$ to refer to the universe of a model and $||\mathcal{M}||$ to denote the cardinality of said universe.

We have defined the symbols of L, but how do we speak it? We will need the following

- Logical symbols, these will consist of
 - Connectives: $\vee, \wedge, \neg, \Rightarrow, \Leftrightarrow$
 - \rightarrow Quantifiers: \exists, \forall
- Auxiliary symbols: Parentheses, Commas
- Variables: x, y, z, v, \dots
- Equivalency Symbol: =

As with any language we will build up our language first with nouns and then with phrases.

Remark 1.1.5: We will often use \overline{a} to denote the ordered collection $(a_1,...,a_n)$ where n will be clear from context.

Definition 1.1.6: *L-terms* are defined inductively as follows

- Any constant symbol is an L-term
- Any variable symbol is an L-term
- If $\tau_1, ..., \tau_n$ are L-terms f_i is a function with arity n then

$$f_i(\tau_1,...,\tau_n)$$

is a term.

An L-term is said to be *constant* if it does not contain any variables.

Definition 1.1.7: If \mathcal{M} is an L-structure and τ is a constant L-term then the *inter*pretation of τ , $\tau^{\mathcal{M}}$, is defined equivalently

- If $\tau = c_k$ then $\tau^{\mathcal{M}} = c_k^{\mathcal{M}}$
- If $\tau = f_i(\tau_1, ..., \tau_n)$ then $\tau^{\mathcal{M}} = f_i^{\mathcal{M}}(\tau_1^{\mathcal{M}}, ..., \tau_n^{\mathcal{M}}) \in |\mathcal{M}|$

Example: $L=(+,\cdot,0,1)$ then $\mathcal{M}=(\mathbb{N},+,\cdot,0,1)$ is an L-structure in which the L-term

$$\tau = 1 + 1 + 1$$

has the interpretation 3.

However, in the L-structure $(\mathbb{Z}_3, +_3, \cdot_3, 0, 1)$ the interpretation is instead 0

Definition 1.1.8: An *L-formula* is also defined inductively

- If τ_1, τ_2 are L terms then $\tau_1 = \tau_2$ is an L-formula
- If $\tau_1,...,\tau_n$ are L-terms then $R_j(\tau_1,...,\tau_n)$ is a formula if R_j is an n-ary relation.
- If φ_1, φ_2 are L-formulas, then

$$\varphi_1 \lor \varphi_2, \varphi_1 \land \varphi_2, \neg \varphi_1, \varphi_1 \Rightarrow \varphi_2, \varphi_1 \Leftrightarrow \varphi_2$$

are all L-formulas.

• If φ is an L-formula, x is a variable, then

$$\forall x \varphi, \exists x \varphi$$

are both L-formulas.

The first 2 of these are called *atomic L*-formula.

Example: The following are all formulas,

$$1 = 1 + 1, x = 1, 0 = 1, 1 = 1, (1 = 1) \land \neg (0 = 1), \forall x(x = 1),$$
$$(\exists x(x = 1)) \Rightarrow (\forall x \forall y \ x = y), \forall x \forall x \ 1 = 1$$

Now this is all first order logic, but one might wonder, what makes it "first"? This comes from what things we can quantify over. In first order logic we can only quantify over elements $x \in |\mathcal{M}|$, in *second* order logic we can quantify over subsets $S \subseteq |\mathcal{M}|$ like all relations for example. We can also see this as $S \in \mathcal{P}(|\mathcal{M}|)$. Third order logic would then be quantification over $S \in \mathcal{P}(\mathcal{P}(|\mathcal{M}|))$, and so on.

In this course, however, we will only be looking at first order logic.

Definition 1.1.9: If φ is an L-formula then in the formulas

$$\varphi' = \forall x \varphi \text{ or } \varphi' = \exists x \varphi$$

we say that all occurrences of x are bound in φ' , and we say that φ is the range of $\forall x$ or $\exists x$ respectively.

An occurrence of a variable x in a formula φ is *free* if it is not bound in φ .

An L-sentence is an L-formula with no free variables.

Definition 1.1.10: Let φ be a formula containing x (which we will follow denote as $\varphi(x)$), $\varphi(\tau/x)$ will denote the formula obtained by replacing every free occurrence of x by τ .

Now one would expect that substitution should never change the meaning of a logical statement, but in fact, this is not quite right. Consider the case $\varphi = \forall y(y=x)$, the substitution $\varphi(^y/_x)$ is changes the meaning of the statement from "all y are equal to x" to "all y are equal to themselves". We want to avoid this outcome, which we can formalize as follows.

Definition 1.1.11: A substitution $\varphi(\tau/x)$ is called *correct* if no free variable of τ becomes bound in $\varphi(\tau/x)$

Definition 1.1.12: If $A \subseteq |\mathcal{M}|$ and \mathcal{M} is an L-structure then L(A) is the language

$$L \cup \{a : a \in A\}$$

We extend our definition of interpretation of terms to terms of $L(|\mathcal{M}|)$ by setting $\underline{a}^{\mathcal{M}} = a$

Definition 1.1.13: Let \mathcal{M} be an L-structure and σ an $L(|\mathcal{M}|)$ -sentence. We say that σ is true in \mathcal{M} , and write $\mathcal{M} \models \sigma$ if

- If σ is of the form $\tau_1 = \tau_2$ then $M \vDash \sigma$ if and only if $\tau_1^{\mathcal{M}} = \tau_2^{\mathcal{M}}$ (note that while this may look circular, the first equality is in the space of *terms* while the second is in the universe $|\mathcal{M}|$)
- If σ is of the form $\underline{R}_j(\tau_1,...,\tau_n)$, then $\mathcal{M} \vDash \sigma$ if and only if $\left(\tau_1^{\mathcal{M}},...,\tau_n^{\mathcal{M}}\right) \in R_j$
- If σ is of the form $\sigma_1 \wedge \sigma_2$ then $\mathcal{M} \models \sigma_1 \wedge \sigma_2$ if $\mathcal{M} \models \sigma_1$ and $\mathcal{M} \models \sigma_2$. A similar definition follows for the other logical connectives.
- If σ is of the form $\exists x \varphi$ then $\mathcal{M} \vDash \sigma$ if there exists $a \in |\mathcal{M}|$ with $\mathcal{M} \vDash \varphi(\frac{a}{x})$. Similarly for $\forall x \varphi$.

Definition 1.1.14: Let \mathcal{M} be a model. The *theory* of \mathcal{M} is defined also

$$Th(\mathcal{M}) = \{ \sigma \text{ is an } L\text{-sentence} : \mathcal{M} \vDash \sigma \}$$

We say that two L-structures, \mathcal{M} and \mathcal{N} , are elementary equivalent, and write $\mathcal{M} \equiv \mathcal{N}$ if $\text{Th}(\mathcal{M}) = \text{Th}(\mathcal{N})$.

We write that $\mathcal{M} \subseteq \mathcal{N}$ to mean that \mathcal{M} is a substructure of \mathcal{N} , meaning that

$$|\mathcal{M}|\subseteq |\mathcal{N}|, \underline{f_i}^{\mathcal{M}}\subseteq \underline{f_i}^{\mathcal{N}}, R_j^{\mathcal{M}}=R_j^{\mathcal{N}}\cap |\mathcal{M}|^{a_j}, \text{ and } \underline{c_k}^{\mathcal{M}}=\underline{c_k}^{\mathcal{N}}$$

We write $\mathcal{M} \simeq \mathcal{N}$ and say that \mathcal{M} and \mathcal{N} are isomorphic if there is a bijection g with

$$\begin{split} g\left(\underline{c_k}^{\mathcal{M}}\right) &= \underline{c_k}^{\mathcal{N}} \\ (a_1,...,a_n) &\in \underline{R_j}^{\mathcal{M}} \Leftrightarrow (g(a_1),...,f(a_n)) \in \underline{R_j}^{\mathcal{N}} \\ g\left(\underline{f_i}^{\mathcal{M}}(a_1,...,a_n)\right) &= \underline{f_i}^{\mathcal{N}}(a_1,...,a_n) \end{split}$$

We write $\mathcal{M} \prec (\not\prec) \mathcal{N}$ to mean \mathcal{M} is an elementary substructure of \mathcal{N} which is true if $\mathcal{M} \subseteq \mathcal{N}$ and for every formula $\varphi(\overline{x})$ and for every $\overline{a} \subseteq |\mathcal{M}|$ we have

$$\mathcal{M} \vDash \varphi(\overline{a}) \Leftrightarrow \mathcal{N} \vDash \varphi(\overline{a})$$

Theorem 1.1.15 (Tarski-Vaught test): Suppose \mathcal{M} is an L-structure, $A \subseteq |\mathcal{M}|$, then A is the universe of an elementary substructure iff the following condition holds, called the Tarski-Vaught test

For every formula $\varphi(x, \overline{y})$ in L and every $\overline{a} \subseteq A$, if $\mathcal{M} \models \exists x \, \varphi(x, \overline{a})$ then there exists $b \in A$ such that $\mathcal{M} \models \varphi(b, \overline{a})$

Proof: First the \Leftarrow direction, assume that the T-V test holds, then we need to show that A is a substructure. First we use $\varphi = (x = c)$ to show that A contains all constants of \mathcal{M} , then $\varphi = (x = \varphi_i(\overline{a}))$ for $\overline{a} \subseteq A$, and we define the interpretation of R_j to be exactly $R_j^{\mathcal{M}} \cap A^{a_j}$ to make it a substructure.

Now A being a substructure is equivalent to

$$A \vDash \varphi(\overline{a}) \Leftrightarrow \mathcal{M} \vDash \varphi(\overline{a})$$

for all $\overline{a} \subseteq A$ and φ being an atomic formula. So now we only need to prove this is true for the other formula types.

- The connective types are immediate.
- Let us assume $\varphi(\overline{x}) = \exists y \, \psi(y, \overline{x})$. Then $\mathcal{M} \models \varphi(\overline{a})$ iff $\mathcal{M} \models \exists y \, \psi(y, \overline{a})$ iff there exists $b \in A$ with $\mathcal{M} \models \psi(b, \overline{a})$. But by definition this last form is equivalent to $A \vDash \exists y \, \psi(y, \overline{a})$

Assume on the other hand that A is the universe of an elementary substructure \mathcal{A} , then we need to prove the T-V test holds, assume then that for some formula $\varphi(x,\overline{y})$ in L and some $\overline{a}\subseteq A$ we have $\mathcal{M}\vDash\exists x\,\varphi(x,\overline{a})$ and so since it is an elementary substructure we also have that $\mathcal{A} \models \exists x \, \varphi(x, \overline{a})$ and so we must have some $x \in \mathcal{A}$ A such that $\varphi(x, \overline{a})$ holds.

Theorem 1.1.16 (Lowenheim-Skolem downwards Theorem): Let L be countable, for any L-structure \mathcal{M} and every $A \subseteq |\mathcal{M}|$, there exists an elementary substructure $\mathcal{N} \prec \mathcal{M}$ with $A \subseteq |\mathcal{N}|$

$$\|\mathcal{N}\| = |A| + |L| + \aleph_0$$

Proof: Set $\kappa = |A| + |L| + \aleph_0$, by transfinite induction on κ we will define a sequence a_{α} for $\alpha < \kappa$ of elements in \mathcal{M} , where at each step α we will try to satisfy a formula $\varphi_a(x) \in L(A \cup a_{<\alpha})$, we will then set $|\mathcal{N}| = \{a_\alpha : \alpha < \kappa\}$.

To formalize this, consider $\kappa \times \kappa$ with lexicographical ordering, then for all elements $(0,\alpha)$ we will enumerate the formulas of L and the substitutions of A elements as parameters, pick an element $a_{0,\alpha}$ in $|\mathcal{M}|$ making the formula true, and add it to A. For all elements $(1, \alpha)$ we do the same thing but now our parameters can also include $a_{0,0}$, for $(2,\alpha)$ our parameters can include $a_{0,1}$, for $(3,\alpha)$ our parameters can include $a_{1,0}$, and we will continue in this pattern and eventually include witnesses to every formula we need. The statement follows then from the fact that $|\kappa \times \kappa| = |\kappa|$ for all ordinals larger than ω_0 . **Remark 1.1.17** (Skolem's Paradox): Let $ZFC^* \subseteq ZFC$ be a finite substructure which proves cantor's theorem. Let $V \vDash ZFC^*$. By the previous theorem we can find a countable $\mathcal{M} \prec V$ for which $\mathcal{M} \vDash ZFC^*$ and $\mathcal{M} \vDash$ "exists an uncountable set".

Definition 1.1.18: In FOL we have the concept of a *proof system*, consisting of two parts. Axioms, and proofs which is a finite sequence of L-formulas such that every step is either an axiom of follows from the previous steps using an inference rule.

Example: An example proof system has the following 4 types of axioms.

- All instances of propositional tautologies are axioms.
- $[\forall x \varphi \to \psi] \to [\varphi \to \forall \psi]$ as long as x is not free in φ .
- $\forall x \to \varphi(t/s)$ where t is any L-term where the substitution is correct.
- $\bullet \quad x = x,$

$$x = y \rightarrow t(..., x, ...) = t(..., y, ...)$$
 for any *L*-term, $x = y \rightarrow (\varphi(..., x, ...) \rightarrow \varphi(..., y, ...))$

And the following inference rules.

- If φ and $\varphi \to \psi$ then ψ .
- If φ then $\forall x \varphi$.

We will use the notation $\Gamma \vdash \varphi$ to mean " Γ proves φ " and define it as the existence of a proof whose final step is φ and every step is either an axiom or an element of Γ or follows from a previous step or by an inference in φ .

Definition 1.1.19: We say that Γ is consistent if there exists φ such that $\Gamma \not\vdash \varphi$.

By a famous theorem of Gödel that we will not prove in this class we can actually not care about any proof system details.

Theorem 1.1.20 (Gödel's completeness theorem): Let Γ be a set of sentences in L then Γ is consistent if and only if Γ has a model.

We will not prove this theorem in this class but we will use an important corollary of it.

Corollary 1.1.20.1 (Compactness Theorem): Let Γ be a set of L-sentences, Γ has a model if and only if every finite subset of Γ has a model.

Proof: The \Rightarrow direction is immediate, the hard part is the \Leftarrow direction. By Gödel's completeness theorem, we can replace "having a model" with "is consistent".

We now prove this by contrapositive, assume that Γ is inconsistent, then we have $\Gamma \vdash \exists x \, (x=x) \land (\lnot(x=x))$, now this proof consists of finitely many steps and thus can only use finitely many statements in Γ , let Γ_0 be that subset of statements. Since we can prove a contradiction using Γ_0 it must also be inconsistent, thus one of the finite subsets of Γ is inconsistent.

As an example use we have the following theorem.

Theorem 1.1.21 (Lowenheim-Skolem upwards Theorem): If \mathcal{M} is an infinite L-structure then $\forall k > ||\mathcal{M}||$ there exists $\mathcal{M} \prec \mathcal{N}$ such that $||\mathcal{N}|| = k$

Proof: Let us consider the language $L' = L(\mathcal{M}) \cup \{c_{\alpha} : \alpha < \kappa\}$ where c_{α} are new constants. Now set

$$\Gamma = \operatorname{Th}(\mathcal{M}) \cup \{c_{\alpha} \neq c_{\beta} : \alpha \neq \beta < \kappa\}$$

We want to show now that Γ is consistent, to see this we use compactness and take an arbitrary finite subset Γ_0 . Let $\alpha_1, ..., \alpha_n$ be such that

$$\Gamma_0 \subseteq \operatorname{Th}(M) \cup \left\{ c_{\alpha_i} \neq c_{\alpha_j} : i \neq j \right\}$$

choose then any $a_1,...,a_n$ which are distinct and interpret c_{α_i} as a_i to get a model of Γ_0 , hence Γ_0 is consistent.

Now we have by Gödel's completeness theorem that there exists a model \mathcal{N} such that $\mathcal{N} \models \Gamma$ then by construction we have $\mathcal{M} \prec \mathcal{N}$ and $\|\mathcal{N}\| \geq \kappa$ and so by downwards theorem we can now decrease the cardinality until we reach κ .

Definition 1.1.22: A theory is a set Γ of sentences such that if $\Gamma \vdash \varphi$ then $\varphi \in \Gamma$. A theory T is complete if for every sentence φ either $\varphi \in T$ or $\neg \varphi \in T$.

Remark 1.1.23:

- For any model \mathcal{M} the theory $Th(\mathcal{M})$ is complete.
- For any theory T which is complete, there exists a model \mathcal{M} with $T = \text{Th}(\mathcal{M})$.

Corollary 1.1.23.1: If \mathcal{M} is infinite then there exists \mathcal{N} such that $\mathcal{M} \equiv \mathcal{N}$ but $\mathcal{M} \not\simeq \mathcal{N}$.

Jacob Reznikov Mathematical Logic Notes

January 17, 2024

Proof: We simply pick some $\kappa > \|\mathcal{M}\|$ and then use the upwards theorem to get a model \mathcal{N} with $\mathcal{M} \prec \mathcal{N}$ with $\|\mathcal{N}\| = \kappa$, now there can't exist a bijection between the two since they have different cardinalities.

Definition 1.1.24: Let κ be an infinite cardinal, a theory T is κ -categorical if it has infinitely many models but exactly one model (up to isomorphism) of size κ .

Proposition 1.1.25: If T is κ -categorical, then T is complete.

Proof: Suppose that T is not complete, let σ be such that $\sigma \notin T$ and $\neg \sigma \notin T$, then let $T_1 = T \cup \{\sigma\}$ and $T_2 = T \cup \{\neg \sigma\}$. Both are consistent but are not isomorphic, this contradicts the fact that there is only one model of this size.