Cours d'Analyse 1

Damerdji Bouharis A.

Université des Sciences et de la Technologie Mohamed Boudiaf Faculté des Mathématiques et Informatique.

2 [Ch.0

Table des matières

1				5
2				7
3				9
4	Fonctions réelles d'une variable réelle (partie 2)			11
	4.1	Foncti	ions continues	11
		4.1.1	Continuité uniforme	12
		4.1.2	Prolongement par continuité	14
		4.1.3	Théorèmes sur les fonctions continues	14
	4.2	Foncti	ions trigonométriques inverses	20
		4.2.1	Fonction arcsin	20
		4.2.2	Fonction arccos	20
		4.2.3	Fonction arctan	20
		4.2.4	Fonction arccot	21
	4.3	4.3 Fonctions élémentaires		21
		4.3.1	Fonction exponentielle	21
		4.3.2	Fonction logarithme népérien	22
		4.3.3	Fonction logarithme de base quelconque	23
		4.3.4	Fonction puissance	24
	4.4	Foncti	ions hyperboliques et leurs inverses	24
		4.4.1	Fonction cosinus hyperbolique	24
		4.4.2	Fonction sinus hyperbolique	24
		4.4.3	Fonction tangente hyperbolique	25
		4.4.4	Fonction cotangente hyperbolique	25

Chapitre 4

Fonctions réelles d'une variable réelle (partie 2)

4.1 Fonctions continues

Définition 4.1.1 1. Soit f une fonction définie d'un intervalle I de \mathbb{R} dans \mathbb{R} , $x_0 \in I$. On dit que f est continue en x_0 si

$$\lim_{x \to x_0} f(x) = f(x_0),$$

ceci est équivalent à

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in I / |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

2. f est dite continue à droite de x_0 si $\lim_{x \to x_0} f(x) = f(x_0)$, ceci est équivalent à

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in I / x_0 < x < x_0 + \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

3. f est dite continue à gauche de x_0 si $\lim_{x \to x_0} f(x) = f(x_0)$, ceci est équivalent à

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x \in I / x_0 - \alpha < x < x_0 \Rightarrow |f(x) - f(x_0)| < \varepsilon.$$

4. f est dite continue en x_0 si f est continue à droite et à gauche de x_0 :

$$\lim_{x \le x_0} f(x) = \lim_{x \ge x_0} f(x) = f(x_0).$$

- 5. Une fonction qui n'est pas continue en x_0 est dite discontinue en x_0 .
- 6. Une fonction définie d'un intervalle I de \mathbb{R} dans \mathbb{R} est dite continue sur I; si elle est continue en tout point de I.
- 7. L'ensemble des fonctions continues sur I est noté C(I).

Exemple 4.1.2 1. Toute fonction polynôme est dérivable sur \mathbb{R} .

- 2. La fonction f définie par $f(x) = \begin{cases} \frac{\sin x}{x}, & \text{si } x \neq 0 \\ 1, & \text{si } x = 0 \end{cases}$ est continue en x = 0.
- 3. La fonction f définie par $f(x) = \begin{cases} \ln x & \text{, si } x \geq 1 \\ \frac{x-1}{x^3-1} & \text{, si } x < 1 \end{cases}$ est discontinue en x = 1.

Théorème 4.1.3 La fonction f est continue en x_0 si et seulement si pour toute suite de points $(x_n)_{n\in\mathbb{N}}$, telle que $\lim_{n\to +\infty} x_n = x_0$ alors :

$$\lim_{n \to +\infty} f(x_n) = f(x_0).$$

4.1.1 Continuité uniforme

Définition 4.1.4 Soit f une fonction définie sur un intervalle I de \mathbb{R} . f est dite uniformément continue sur I si :

$$\forall \varepsilon > 0, \exists \alpha > 0, \forall x_1, x_2 \in I / |x_1 - x_2| < \alpha \Rightarrow |f(x_1) - f(x_2)| < \varepsilon.$$

Remarques:

- 1. La continuité uniforme concerne tous les points de l'intervalle, tandis que la continuité simple peut ne concerner qu'un point de l'intervalle.
- 2. Toute fonction uniformément continue sur un intervalle I, est continue sur I, la réciproque n'est pas vraie.

Exemple 4.1.5 Montrer que :

- 1. La fonction $f(x) = x^2$, est uniformément continue sur]0,1],
- 2. La fonction $f(x) = x^2$ n'est pas uniformément continue sur \mathbb{R} .

Solution:

1. Soit $\varepsilon > 0$, et soient $x_1, x_2 \in [0, 1]$ alors on a :

$$0 < x_1 \le 1$$
 et $0 < x_2 \le 1 \Rightarrow 0 < x_1 + x_2 \le 2$

or

$$|f(x_1) - f(x_2)| = |x_1^2 - x_2^2| = |x_1 - x_2|(x_1 + x_2)$$

d'où

$$|f(x_1) - f(x_2)| \le 2|x_1 - x_2|$$

alors il suffit de prendre $\alpha = \frac{\varepsilon}{2} > 0$.

2. Si on prend $\varepsilon = 2$; on peut trouver deux points $x_1, x_2 \in \mathbb{R}$, tels que : $x_1 = n + \frac{1}{n}$, $x_2 = n$ et pour $\alpha > 0$; on a

$$|x_1 - x_2| < \alpha \Leftrightarrow \frac{1}{n} < \alpha \Leftrightarrow \frac{1}{\alpha} < n;$$

il suffit alors de prendre $n = \left[\frac{1}{\alpha}\right] + 1$ alors

$$|f(x_1) - f(x_2)| = \frac{1}{n^2} + 2$$

d'où

$$|f(x_1) - f(x_2)| \ge 2;$$

par suite

$$\exists \varepsilon > 0, \forall \alpha > 0, \exists x_1, x_2 \in \mathbb{R} / |x_1 - x_2| < \alpha \wedge |f(x_1) - f(x_2)| \ge \varepsilon$$

et donc f n'est pas uniformément continue sur \mathbb{R} .

Le procédé qui suit est la méthode la plus simple pour montrer qu'une fonction est uniformément continue.

Définition 4.1.6 On dit qu'une fonction f définie de $I \subset \mathbb{R}$ dans \mathbb{R} est k-Lipschitzienne sur I si :

$$\exists k \geq 0, \forall x_1, x_2 \in I : |f(x_1) - f(x_2)| \leq k |x_1 - x_2|.$$

Remarque : Une fonction k-Lipschitzienne sur I est uniformément continue sur I.

en effet; pour $\varepsilon > 0$, il suffit de prendre $\alpha = \frac{\varepsilon}{k}$, tel que

$$\forall x_1, x_2 \in I / |x_1 - x_2| < \alpha \text{ alors } |f(x_1) - f(x_2)| \le k |x_1 - x_2| < \varepsilon.$$

Définition 4.1.7 On dit qu'une fonction f est contractante sur I si f est k-Lipschitzienne avec $0 \le k < 1$.

Conclusion 1 Une fonction contractante sur I est uniformément continue sur I.

Exemple 4.1.8 La fonction $f(x) = \sqrt{x}$ est une fonction contractante sur $[1, +\infty[$. En effet;

$$\forall x_1, x_2 \in [1, +\infty[: |f(x_1) - f(x_2)| = \left| \frac{x_1 - x_2}{\sqrt{x_1} + \sqrt{x_2}} \right|$$

d'où

$$|f(x_1) - f(x_2)| \le \frac{1}{2} |x_1 - x_2|; \ k = \frac{1}{2}.$$

Théorème 4.1.9 (de Heine) Toute fonction continue sur un intervalle fermé borné [a,b] est une fonction uniformément continue sur [a,b].

Preuve:

On suppose par l'absurde que f est continue mais non uniformément continue sue [a,b], alors il existe $\varepsilon > 0$; tel que pour tout entier naturel n; il existe deux suites $(x_n)_{n \in \mathbb{N}}$, $(x'_n)_{n \in \mathbb{N}}$ dans [a,b] telles que

$$|x_n - x_n'| < \frac{1}{n} \wedge |f(x_n) - f(x_n')| \ge \varepsilon > 0 \tag{4.1}$$

Comme les suites $(x_n)_{n\in\mathbb{N}}$ et $(x_n')_{n\in\mathbb{N}}$ sont bornées dans [a,b] alors d'après le

théorème de Bolzano Weierstrass on peut en extraire deux sous-suites convergentes $(x_{n_k})_{k\in\mathbb{N}}$ et $(x'_{n_k})_{k\in\mathbb{N}}$.

Soit $\lim_{k \to +\infty} x_{n_k} = x_0$ donc $\lim_{k \to +\infty} x'_{n_k} = x_0$ aussi car $|x_n - x'_n| < \frac{1}{n}$, et comme $x_{n_k} \in [a,b]$; $\forall k \in \mathbb{N}$, alors $x_0 \in [a,b]$ et donc f est continue en x_0 et on a

$$\lim_{k \to +\infty} f(x_{n_k}) = \lim_{k \to +\infty} f(x'_{n_k}) = f(x_0)$$

ce qui est absurde car $|f(x_{n_k}) - f(x'_{n_k})| > 0; \forall k \in \mathbb{N}.$

4.1.2 Prolongement par continuité

Définition 4.1.10 Soit f une fonction définie sur un intervalle I, sauf peut être en $x_0 \in I$, si f admet une limite finie l en x_0 ; $\lim_{x \to x_0} f(x) = l$, alors la fonction définie par

$$\widetilde{f}(x) = \begin{cases} f(x) & si \ x \neq x_0 \\ l & si \ x = x_0 \end{cases};$$

est appelée prolongement par continuité de f sur I.

Remarques:

- 1. Les deux fonctions \widetilde{f} et f coincident sur $I \setminus \{x_0\}$.
- 2. La fonction \widetilde{f} est continue en x_0 .

Exemples 4.1.11 1. La fonction définie par $f(x) = \frac{\sin x}{x}$ est prolongeable par continuité en $x_0 = 0$, car $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin x}{x} = 1$, d'où

$$\widetilde{f}(x) = \begin{cases} \frac{\sin x}{x} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

2. La fonction définie par $f(x) = \ln\left(\frac{1+x^2}{x^2}\right)$ n'est pas prolongeable par continuité en $x_0 = 0$, car $\lim_{x \to 0} f(x) = +\infty$.

4.1.3 Théorèmes sur les fonctions continues

Théorème 4.1.12 (Opérations sur les fonctions continues) Soient f et g deux fonctions continues en x_0 et soient $\alpha, \beta \in \mathbb{R}$; alors les fonctions f+g, f.g, $\alpha f + \beta g$, |f| et $\frac{f}{g}$ (si $g(x_0) \neq 0$) sont continues en x_0 .

Théorème 4.1.13 Soient f et g deux fonctions, telles que $f: I_1 \to I_2$, $g: I_2 \to \mathbb{R}$, I_1, I_2 étant deux intervalles de \mathbb{R} . Si f est une fonction continue en $x_0 \in I_1$, et g une fonction continue en $f(x_0) \in I_2$, alors $g \circ f: I_1 \to \mathbb{R}$ est une fonction continue en x_0 .

Preuve:

Soit $x_0 \in I_1$ alors $f(x_0) \in I_2$ et comme g est continue en $y_0 = f(x_0)$; on a

$$\forall \varepsilon > 0, \exists \alpha' > 0; \forall y \in I_2 : |y - y_0| < \alpha' \Rightarrow |g(y) - g(y_0)| < \varepsilon$$

or comme f est continue en x_0 alors pour $\varepsilon' = \alpha'$; on a

$$\exists \alpha > 0; \forall x \in I_1 : |x - x_0| < \alpha \Rightarrow |f(x) - f(x_0)| < \varepsilon'$$

d'où

$$\forall \varepsilon > 0, \exists \alpha > 0; \forall x \in I_1 : |x - x_0| < \alpha \Rightarrow |(g \circ f)(x) - (g \circ f)(x_0)| < \varepsilon$$

Théorème 4.1.14 Soit f une fonction définie de l'intervalle [a,b] de \mathbb{R} dans \mathbb{R} . Si f est continue sur [a,b] alors f est bornée sur [a,b].

Preuve:

On suppose par l'absurde que f n'est pas bornée sur [a, b], alors

$$\forall n \in \mathbb{N} : \exists x_n \in [a, b] / |f(x_n)| > n$$

dans ce cas la suite $(x_n)_{n\in\mathbb{N}}$ est bornée ; et donc elle admet une sous-suite convergente $(x_{n_k})_{k\in\mathbb{N}}$, et on a

$$\lim_{x \to 0} x_{n_k} = x_0 \text{ avec } x_0 \in [a, b]$$

et

$$\lim_{k \to +\infty} |f(x_{n_k})| = +\infty \text{ car } \forall n \in \mathbb{N} : |f(x_n)| > n,$$

or f est continue sur [a, b] alors |f| est continue sur [a, b]; d'où

$$\lim_{k \to +\infty} |f(x_{n_k})| = |f(x_0)| < \infty,$$

ce qui est absurde.

Théorème 4.1.15 Toute fonction continue sur un intervalle [a,b]; atteint au moins sa borne supérieure et sa borne inférieure dans [a,b].

Preuve:

Comme f est continue sur [a, b] alors f est bornée sur [a, b], donc $\sup_{x \in [a, b]} f(x) = M$ existe

$$\forall x \in [a, b] : f(x) \le M$$

on suppose par l'absurde que f n'atteint pas sa borne supérieure c'est à dire que

$$\forall x \in [a, b] : f(x) < M$$

Damerdji Bouharis A.

et on considère la fonction $g(x) = \frac{1}{M - f(x)}$, g est continue sur [a, b] alors bornée sur [a, b], donc $\sup_{x \in [a, b]} g(x) = \alpha$ existe, or

$$g(x) > 0; \forall x \in [a, b] \Rightarrow \alpha > 0$$

On a aussi

$$\forall x \in [a, b] : g(x) \le \alpha \Leftrightarrow \frac{1}{M - f(x)} \le \alpha \Leftrightarrow f(x) \le M - \frac{1}{\alpha} < M$$

ce qui est absurde car M étant la borne supérieure ; est le plus petit des majorants de $\{f(x); x \in [a,b]\}$.

Comme f est continue sur [a,b] alors f est bornée sur [a,b], donc $\inf_{x\in [a,b]} f(x) = m$ existe

$$\forall x \in [a, b] : m \le f(x)$$

on suppose par l'absurde que f n'atteint pas sa borne inférieure c'est à dire que

$$\forall x \in [a, b] : m < f(x)$$

et on considère la fonction g(x) = f(x) - m, g est continue sur [a,b] alors bornée sur [a,b], donc $\inf_{x \in [a,b]} g(x) = \beta$ existe, or

$$g(x) > 0; \forall x \in [a, b] \Rightarrow \beta > 0$$

On a aussi

$$\forall x \in [a, b] : g(x) \ge \beta \Leftrightarrow f(x) - m \ge \beta \Leftrightarrow f(x) \ge m + \beta > M$$

ce qui est absurde car m étant la borne inférieure; est le plus grand des minorants de $\{f(x); x \in [a, b]\}$.

Théorème 4.1.16 (Des valeurs intermédiaires) Soit f une fonction continue sur l'intervalle [a,b], si f(a). f(b) < 0 alors $\exists \alpha \in [a,b] / f(\alpha) = 0$.

Pour la preuve du théorème nous aurons besoin du lemme suivant :

Lemme 4.1.17 Soit E une partie non vide et majorée de \mathbb{R} . Soit M sa borne supérieure alors il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E qui converge vers M.

Preuve du Lemme:

Comme M est la borne supérieure de E; alors c'est le plus petit des majorants de E et on a

$$\forall \varepsilon > 0; \ \exists x \in E, \ M - \varepsilon < x < M$$

en particulier pour $\varepsilon = \frac{1}{n} > 0$; on a pour tout $n \in \mathbb{N}$; il existe une suite $(x_n)_{n \in \mathbb{N}}$

dans E, telle que :

$$M - \frac{1}{n} < x_n \le M$$

alors d'après le théorème d'encadrement d'une suite on a $\lim_{n \to +\infty} x_n = M$.

Preuve du théorème :

On va supposer que $f(a) \le 0$ et $f(b) \ge 0$ et on pose

$$E = \{x \in [a, b] / f(x) \le 0\}$$

On remarque que E est un ensemble non vide car $a \in E$ et que E est majoré par b, alors E admet une borne supérieure; soit $M = \sup E$ et on montre que f(M) = 0.

On a $M \in [a, b]$ et comme $M = \sup E$; alors d'après le lemme précédent ; il existe une suite $(x_n)_{n \in \mathbb{N}}$ d'éléments de E qui converge vers M alors $f(x_n) \leq 0$, $\forall n \in \mathbb{N}$, et comme f est continue donc par passage à la limite ; on a $f(M) \leq 0$.

Comme $M = \sup E$; alors

$$\forall x \in [M, b] : x \notin E \Rightarrow f(x) > 0$$

d'où il existe aussi une suite $(y_n)_{n\in\mathbb{N}}$ d'éléments de]M,b[qui converge vers M d'où

$$f(y_n) > 0, \forall n \in \mathbb{N}$$

alors par passage à la limite; on a $f(M) \ge 0$, par conséquent f(M) = 0.

Théorème 4.1.18 (Des valeurs intermédiaires généralisé) Soit f une fonction continue sur un intervalle quelconque I de \mathbb{R} , soient $x_1, x_2 \in I$ tels que $x_1 < x_2$ alors

$$\forall y \in]f(x_1), f(x_2)[: \exists x_0 \in]x_1, x_2[/ y = f(x_0).$$

(en supposant que $f(x_1) < f(x_2)$).

Preuve:

Soit $y \in]f(x_1), f(x_2)[$, alors

$$f(x_1) - y < 0$$
, $f(x_2) - y > 0$

alors en posant g(x) = f(x) - y qui est une fonction continue sur $[x_1, x_2]$; on remarque que $g(x_1) < 0$ et $g(x_2) > 0$ donc d'après le théorème des valeurs intermédiaires; on a

$$\exists x_0 \in]x_1, x_2[/ g(x_0) = 0 \Leftrightarrow f(x_0) = y$$

Corollaire 4.1.19 L'image d'un intervalle de \mathbb{R} ; par une fonction continue est un intervalle de \mathbb{R} .

Théorème 4.1.20 (du point fixe) Soit f une fonction continue d'un segment non vide [a,b] de \mathbb{R} dans [a,b], alors il existe au moins un point fixe $x_0 \in [a,b]$, ie $f(x_0) = x_0$. Géométriquement; le graphe rencontre la droite d'équation y = x (la 1ère bissectrice) au point d'abscisse x_0 .

Preuve:

On pose la fonction $g(x) = f(x) - x \operatorname{sur}[a, b]$, g est continue $\operatorname{sur}[a, b]$, on remarque que $g(a) \ge 0$ et $g(b) \le 0$.

Si
$$g(a) = 0 \Leftrightarrow f(a) = a \Rightarrow x_0 = a$$
.

Si
$$g(b) = 0 \Leftrightarrow f(b) = b \Rightarrow x_0 = b$$
.

Sinon $g\left(a\right)>0$ et $g\left(b\right)<0$ alors d'après le théorème des valeurs intermédiaires on a

$$\exists x_0 \in \left[a, b\right[/ g(x_0) = 0 \Leftrightarrow f(x_0) = x_0.$$

Exemple 4.1.21 La fonction $f(x) = x^2$ est continue sur [-1,1] et l'intervalle est stable par f, ie, $f([-1,1]) \subset [-1,1]$, d'où f admet au moins un point fixe dans l'intervalle [-1,1].

En effet,

$$x^2 = x \Leftrightarrow x = 0 \lor x = 1.$$

- Le théorème suivant assure l'existence et l'unicité du point fixe.

Théorème 4.1.22 (Banach) Soit I un segment non vide de \mathbb{R} , et f une fonction contractante de [a,b] dans [a,b] alors :

- f admet un unique point fixe l dans [a, b].
- La suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\begin{cases} u_0 \in [a, b] \\ u_{n+1} = f(u_n), \forall n \in \mathbb{N} \end{cases}$$

est convergente vers l.

Preuve:

Comme f est contractante sur [a, b], alors f est uniformément continue sur [a, b], donc continue sur [a, b], d'où d'après le théorème du point fixe; il existe au moins $x_0 \in [a, b]$, tel que $f(x_0) = x_0$.

Supposons par l'absurde qu'il existe deux points fixes $x_1, x_2 \in [a, b]$, tels que $x_1 \neq x_2$, $f(x_1) = x_1$ et $f(x_2) = x_2$, or f est contractante sur [a, b] d'où

$$\exists k : 0 \le k < 1, |f(x_1) - f(x_2)| \le k |x_1 - x_2| \Leftrightarrow 1 \le k, \text{ (contradiction)}.$$

Théorème 4.1.23 Etant donné I un intervalle de \mathbb{R} et f une fonction monotone de I dans \mathbb{R} . f est continue si et seulement si f (I) est un intervalle de \mathbb{R} .

Lemme 4.1.24 Soit $f: I \to \mathbb{R}$; une fonction définie sur un intervalle I de \mathbb{R} . Si f est strictement monotone sur I, alors f est injective sur I.

Preuve:

On suppose que f est strictement croissante, et soient x_1 et x_2 deux points de I, tels que $x_1 \neq x_2$ alors on a soit

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

soit

$$x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$$

et dans les deux cas $f(x_1) \neq f(x_2)$, d'où f est injective sur I.

Théorème 4.1.25 (inversion d'une fonction) Une fonction f continue et strictement monotone d'un intervalle I de \mathbb{R} dans \mathbb{R} est bijective de I dans f(I) et sa fonction réciproque $f^{-1}: f(I) \to I$ existe, elle est continue et suit la monotonie de f.

Preuve:

f est surjective de I sur f(I), et comme f est strictement monotone alors f est injective donc bijective sur f(I), alors f^{-1} existe et elle suit la monotonie de f; en effet, on suppose que f est strictement croissante et soient $y_1, y_2 \in f(I)$; tel que $y_1 < y_2$, alors

$$y_1 \neq y_2 \Rightarrow f^{-1}(y_1) \neq f^{-1}(y_2),$$

car f^{-1} est injective aussi; d'où

$$\exists x_1, x_2 \in I$$
; tels que $f^{-1}(y_1) = x_1, f^{-1}(y_2) = x_2$

donc $x_1 \neq x_2$. On suppose par l'absurde que $x_1 > x_2$ alors comme f est strictement croissante $f(x_1) > f(x_2)$, ce qui est absurde car $y_1 < y_2$, donc

$$x_1 < x_2 \Leftrightarrow f^{-1}(y_1) < f^{-1}(y_2),$$

d'où f^{-1} est strictement croissante.

Comme f est continue sur I alors f(I) est un intervalle, or f^{-1} existe d'où $f^{-1}(f(I)) = I$ est un intervalle donc f^{-1} est continue.

4.2 Fonctions trigonométriques inverses

4.2.1 Fonction arcsin

$$f: \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix} \to \begin{bmatrix} -1, 1 \end{bmatrix}$$
$$x \mapsto f(x) = \sin x$$

f est continue, strictement croissante sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, alors f est bijective et donc f^{-1} existe, est continue et strictement croissante, et on a $f\left(\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]\right) = \left[-1, 1\right]$ et

$$f^{-1}: [-1,1] \rightarrow \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$$

 $y \mapsto f^{-1}(y) = \arcsin y$

d'où on a:

$$\left(\begin{array}{c} \arcsin y = x \\ -1 \le y \le 1 \end{array}\right) \Leftrightarrow \left(\begin{array}{c} \sin x = y \\ -\frac{\pi}{2} \le x \le \frac{\pi}{2} \end{array}\right)$$

4.2.2 Fonction arccos

$$f: [0,\pi] \to [-1,1]$$

$$x \mapsto f(x) = \cos x$$

f est continue, strictement décroissante sur $[0, \pi]$, alors f est bijective et donc f^{-1} existe, est continue et strictement décroissante et on a $f([0, \pi]) = [-1, 1]$ et

$$\begin{array}{cccc} f^{-1}: & [-1,1] & \rightarrow & [0,\pi] \\ & y & \mapsto & f^{-1}(y) = \arccos y \end{array}$$

d'où on a :

$$\left(\begin{array}{c} \arccos y = x \\ -1 \le y \le 1 \end{array}\right) \Leftrightarrow \left(\begin{array}{c} \cos x = y \\ 0 \le x \le \pi \end{array}\right)$$

4.2.3 Fonction arctan

$$\begin{array}{ccc} f: & \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[& \to & \left] -\infty, +\infty \right[\\ & x & \mapsto & f\left(x\right) = \tan x = \frac{\sin x}{\cos x} \end{array}$$

f est continue, strictement croissante sur $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$, alors f est bijective et donc f^{-1} existe, est continue et strictement croissante et on a

$$f\left(\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\right) = \left]-\infty,+\infty\right[$$
 et

$$\begin{array}{cccc} f^{-1}: &]-\infty, +\infty[& \to & \left]-\frac{\pi}{2}, \frac{\pi}{2} \right[& & & \\ y & \mapsto & f^{-1}\left(y\right) = \arctan y \end{array}$$

d'où on a:

$$\begin{pmatrix} \arctan y = x \\ y \in \mathbb{R} \end{pmatrix} \Leftrightarrow \begin{pmatrix} \tan x = y \\ -\frac{\pi}{2} < x < \frac{\pi}{2} \end{pmatrix}$$

Damerdji Bouharis A.

4.2.4 Fonction arccot

$$\begin{array}{ccc} f: &]0,\pi[& \to &]-\infty,+\infty[\\ & x & \mapsto & f\left(x\right)=\cot x=\frac{\cos x}{\sin x} \end{array}$$

f est continue, strictement décroissante sur $]0,\pi[$, alors f est bijective et donc f^{-1} existe, est continue et strictement croissante et on a $f(]0,\pi[)=]-\infty,+\infty[$ et

$$\begin{array}{ccc} f^{-1}: &]-\infty, +\infty[& \rightarrow &]0, \pi[\\ y & \mapsto & f^{-1}\left(y\right) = \operatorname{arccot} y \end{array}$$

d'où on a:

$$\left(\begin{array}{c} \operatorname{arccot} y = x \\ y \in \mathbb{R} \end{array}\right) \Leftrightarrow \left(\begin{array}{c} \cot x = y \\ 0 < x < \pi \end{array}\right)$$

Propriétés 1: $\forall x \in [-1,1]$; $\arcsin x + \arccos x = \frac{\pi}{2}$.

Remarques:

1. Si $t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ alors $(\sin t = x) \Leftrightarrow (\arcsin x = t)$ Sinon

$$(\sin t = x) \Leftrightarrow \begin{cases} t = \arcsin x + 2k\pi \\ t = (\pi - \arcsin x) + 2k\pi \end{cases} ; k \in \mathbb{Z}$$

2. Si $t \in [0, \pi]$ alors $(\cos t = x) \Leftrightarrow (\arccos x = t)$ Sinon

$$(\cos t = x) \Leftrightarrow \begin{cases} t = \arccos x + 2k\pi \\ t = -\arccos x + 2k\pi \end{cases} ; k \in \mathbb{Z}$$

3. Si $t \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\text{ alors } (\tan t = x) \Leftrightarrow (\arctan x = t)$ Sinon

$$(\tan t = x) \Leftrightarrow t = \arctan x + k\pi; k \in \mathbb{Z}$$

4. Si $t \in]0, \pi[$ alors $(\cot t = x) \Leftrightarrow (\operatorname{arccot} x = t)$ Sinon

$$(\cot t = x) \Leftrightarrow t = \operatorname{arccot} x + k\pi; k \in \mathbb{Z}.$$

4.3 Fonctions élémentaires

4.3.1 Fonction exponentielle

Définition 4.3.1 La fonction exponentielle (népérienne), notée exp est l'unique fonction dérivable sur \mathbb{R} , égale à sa dérivée et vérifiant : $\exp(0) = 1$.

Propriétés 2 1. $\forall x \in \mathbb{R} : \exp(x) > 0$.

2. $\forall x, y \in \mathbb{R} : \exp(x+y) = \exp(x) \exp(y)$.

3. Notation d'Euler : On pose $\exp(x) = e^x$; où $e^1 = e \simeq 2.718$, d'où $\forall x, y \in \mathbb{R} : e^{x+y} = e^x e^y$, $e^{-x} = \frac{1}{e^x}$, $e^{x-y} = \frac{e^x}{e^y}$, $(e^x)^n = e^{nx}$, $n \in \mathbb{N}$.

4. La fonction exp est strictement croissante sur \mathbb{R} .

5. $\forall x, y \in \mathbb{R} : \begin{cases} e^x = e^y \iff x = y. \\ e^x < e^y \iff x < y. \end{cases}$

Quelques limites de référence :

- $$\begin{split} &1. \ \lim_{x \to -\infty} e^x = 0 \ , \ \lim_{x \to +\infty} e^x = +\infty. \\ &2. \ \lim_{x \to 0} \frac{e^x 1}{x} = 1, \ \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty, \ \lim_{x \to -\infty} x^n e^x = 0. \end{split}$$

4.3.2 Fonction logarithme népérien

Définition 4.3.2 On appelle fonction logarithme népérien notée ln ; la fonction réciproque de la fonction exponentielle, définie de $]0,+\infty[$ sur \mathbb{R} telle que :

$$x = e^y \Leftrightarrow y = \ln x; \ \forall x > 0.$$

Remarque: Les graphes de la fonction logarithme népérien et de la fonction exponentielle sont symétriques par rapport à la première bissectrice i.e la droite d'équation y = x, (voir (4.1)).

FIGURE 4.1 – Graphes des fonction exponentielle et logarithme népérien

Propriétés 3 1. $\ln 1 = 0$, $\ln e = 1$.

- 2. $\forall x \in \mathbb{R} : \ln e^x = x \ et \ \forall x \in]0, +\infty[: e^{\ln x} = x.$
- 3. La fonction ln est strictement croissante sur $]0, +\infty[$.

- 4. $\forall x, y \in]0, +\infty[: \ln x = \ln y \iff x = y.$
- 5. $\forall x, y \in [0, +\infty[: \ln(xy) = \ln x + \ln y]$.
- 6. $\forall x, y \in]0, +\infty[: \ln\left(\frac{1}{y}\right) = -\ln y; \ln\left(\frac{x}{y}\right) = \ln x \ln y$
- 7. $\forall x \in]0, +\infty[, \forall n \in \mathbb{N} : \ln x^n = n \ln x.]$

Quelques limites de référence :

- 1. $\lim_{x\to 0^+} \ln x = -\infty$, $\lim_{x\to +\infty} \ln x = +\infty$.
- 2. $\lim_{x\to 0} \frac{\ln(x+1)}{x} = 1$, $\lim_{x\to +\infty} \frac{\ln x}{x^n} = 0$, $\lim_{x\to -\infty} x^n \ln x = 0$.

4.3.3 Fonction logarithme de base quelconque

Définition 4.3.3 Soit a un réel strictement positif et différent de 1, on appelle fonction logarithme de base a ; la fonction réelle notée \log_a et définie sur $]0, +\infty[$ par

$$x \mapsto \log_a x = \frac{\ln x}{\ln a}$$

où ln est le logarithme népérien.

Pour a=e, on retrouve le cas particulier de la fonction logarithme népérien ln, car $\ln e=1.$

Si a=10, alors la fonction logarithme de base 10 est appelée fonction logarithme décimal, noté log, où $\ln 10 \simeq 2,302$.

On a également un autre logarithme utilisé souvent, c'est le logarithme en base 2 où $\log_2 x = \frac{\ln x}{\ln 2}$.

Propriétés 4 Soient a et b deux réels strictement positifs et différents de 1, on a :

- 1. $\log_a 1 = 0, \log_a a = 1, \log_{\frac{1}{a}} = -\log_a$.
- 2.

$$\log_a x = \frac{\ln b}{\ln a} \log_b x; \ \forall x > 0.$$

En particulier pour a = e et b = 10; on $a \ln x = \ln 10 \log x$.

- 3. $\forall x, y \in]0, +\infty[: \log_a x = \log_a y \iff x = y.$
- 4. $\forall x, y \in [0, +\infty[: \log_a(xy) = \log_a x + \log_a y].$
- 5. $\forall x, y \in]0, +\infty[: \log_a\left(\frac{1}{y}\right) = -\log_a y; \log_a\left(\frac{x}{y}\right) = \log_a x \log_a y$
- 6. $\forall x \in]0, +\infty[, \forall n \in \mathbb{N} : \log_a(x^n) = n \log_a x.$
- 7. La fonction \log_a est strictement croissante sur $]0, +\infty[$ pour a > 1 et strictement décroissante sur $]0, +\infty[$ pour 0 < a < 1.

4.3.4 Fonction puissance

Définition 4.3.4 Soient a un réel strictement positif et différent de 1 et x un réel quelconque, la fonction a puissance x ou fonction exponentielle de base a est la fonction notée a^x et définie par

$$a^x = e^{x \ln a}$$

c'est la fonction réciproque de la fonction \log_a (logarithme de base a).

Propriétés 5 Soient a et b deux réels strictement positifs, x et y deux réels quelconques :

- 1. $a^x > 0$; $\ln a^x = x \ln a$.
- 2. $1^x = 1$, $a^{x+y} = a^x a^y$, $a^{-x} = \frac{1}{a^x}$, $a^{y-x} = \frac{a^y}{a^x}$.
- 3. $(ab)^x = a^x b^x$, $(a^x)^y = a^{xy}$.
- 4. La fonction exponentielle de base a est strictement croissante sur \mathbb{R} pour a > 1 et strictement décroissante sur \mathbb{R} pour 0 < a < 1.

4.4 Fonctions hyperboliques et leurs inverses

4.4.1 Fonction cosinus hyperbolique

$$f: [0, +\infty[\rightarrow [1, +\infty[$$

$$x \mapsto f(x) = chx = \frac{e^x + e^{-x}}{2}$$

 $D_f = \mathbb{R}$, f est paire.

f est continue et strictement croissante sur $[0, +\infty[$ alors f^{-1} existe et est continue et strictement croissante et on a $f([0, +\infty[) = [1, +\infty[$ et

$$\begin{array}{cccc} f^{-1}: & [1,+\infty[& \rightarrow & [0,+\infty[\\ y & \mapsto & f^{-1}\left(y\right) = \arg chy \end{array}$$

d'où on a:

$$\left(\begin{array}{c} \arg chy = x \\ 1 \le y \end{array}\right) \Leftrightarrow \left(\begin{array}{c} chx = y \\ 0 \le x \end{array}\right)$$

4.4.2 Fonction sinus hyperbolique

$$\begin{array}{ccc} f: &]-\infty, +\infty[& \to &]-\infty, +\infty[\\ & x & \mapsto & f\left(x\right) = shx = \frac{e^x - e^{-x}}{2} \end{array}$$

 $D_f = \mathbb{R}, f \text{ est impaire.}$

f est continue et strictement croissante sur $]-\infty, +\infty[$ alors f^{-1} existe et est continue et strictement croissante et on a $f(]-\infty, +\infty[) =]-\infty, +\infty[$ et

$$\begin{array}{cccc} f^{-1}: &]-\infty, +\infty[& \rightarrow &]-\infty, +\infty[\\ & y & \mapsto & f^{-1}\left(y\right) = \arg shy \end{array}$$

d'où on a :

$$\left(\begin{array}{c} \arg shy = x \\ y \in \mathbb{R} \end{array}\right) \Leftrightarrow \left(\begin{array}{c} shx = y \\ x \in \mathbb{R} \end{array}\right)$$

4.4.3 Fonction tangente hyperbolique

$$\begin{array}{ccc} f: &]-\infty, +\infty[& \rightarrow &]-1, +1[\\ & x & \mapsto & f\left(x\right) = thx = \frac{e^x - e^{-x}}{e^x + e^{-x}} \end{array}$$

 $D_f = \mathbb{R}$, f est impaire.

f est continue et strictement croissante sur $]-\infty, +\infty[$ alors f^{-1} existe et est continue et strictement croissante et on a $f(]-\infty, +\infty[) =]-1, +1[$ et

$$\begin{array}{cccc} f^{-1}: &]-1,+1[& \rightarrow &]-\infty,+\infty[\\ & y & \mapsto & f^{-1}\left(y\right)=\arg thy \end{array}$$

d'où on a:

$$\left(\begin{array}{c} \arg thy = x \\ -1 < y < 1 \end{array}\right) \Leftrightarrow \left(\begin{array}{c} thx = y \\ x \in \mathbb{R} \end{array}\right)$$

4.4.4 Fonction cotangente hyperbolique

$$\begin{array}{ccc} f: &]0,+\infty[& \rightarrow & &]1,+\infty[\\ & x & \mapsto & f\left(x\right) = \coth x = \frac{1}{thx} = \frac{e^x + e^{-x}}{e^x - e^{-x}} \end{array}$$

 $D_f = \mathbb{R}^*, f \text{ est impaire.}$

f est continue et strictement décroissante sur $]0, +\infty[$ alors f^{-1} existe et est continue et strictement décroissante et on a $f(]0, +\infty[) =]1, +\infty[$ et

$$\begin{array}{cccc} f^{-1}: &]1, +\infty[& \rightarrow &]0, +\infty[\\ & y & \mapsto & f^{-1}\left(y\right) = \operatorname{arg} \coth y \end{array}$$

d'où on a:

$$\left(\begin{array}{c} \operatorname{arg} \operatorname{coth} y = x \\ y > 1 \end{array}\right) \Leftrightarrow \left(\begin{array}{c} \operatorname{coth} x = y \\ x > 0 \end{array}\right)$$

Propriétés 6 1. $chx + shx = e^x$.

2.
$$chx - shx = e^{-x}$$
.

3.
$$ch^2x - sh^2x = 1$$
.

4.
$$1 - th^2 x = \frac{1}{ch^2 x}$$
.

5.
$$ch(x+y) = chxchy + shxshy$$

6.
$$sh(x+y) = shxchy + chxshy$$
.

Expression sous forme logarithmique.

Les fonctions réciproques des fonctions hyperboliques s'expriment à l'aide de la fonction logarithme népérien, en effet;

$$\begin{split} \arg thx &= \tfrac{1}{2} \ln \left(\tfrac{1+x}{1-x} \right), \forall x \in]-1, 1[\,.\\ \arg \coth x &= \tfrac{1}{2} \ln \left(\tfrac{1+x}{x-1} \right), \forall x \in]-\infty, -1[\,\cup\,]1, +\infty[\,.\\ \arg shx &= \ln \left(x + \sqrt{1+x^2} \right), \forall x \in \mathbb{R}.\\ \arg chx &= \ln \left(x + \sqrt{x^2-1} \right), \forall x \geq 1. \end{split}$$