SC 2000

Криптоалгоритм SC 2000 1 шифрует 128-битовые блоки открытых данных под управлением секретного ключа, длина которого может составлять 128, 192 или 256 битов.

Обозначения

a, b, c, d, e, f, g, h, mask - 32-битовые слова (блоки);

 $a_i - i$ -ый бит в слове a; $a = a_0 \parallel a_1 \parallel \ldots \parallel a_{31}$, где $a_0 -$ старший, $a_{31} -$ младший биты;

 $a_{k..m}$, где $k \leq m$, — блок, составленный из битов a_k , a_{k+1} , ..., a_m , т.е. $a_{k..m} = a_k \parallel a_{k+1} \parallel \cdots \parallel a_m$;

KeyLength – длина (128/192/256) секретного ключа К.

ek[0..63] — массив из 64 32-битовых раундовых подключей, генерируемых на основе секретного ключа K (если KeyLength=128, то используются только подключи ek[0..55]).

Операции над 32- битовыми словами

 \bigoplus (*xor*) — побитовое сложение по модулю 2;

& (and) — побитовое умножение;

 $\vee (or)$ – побитовая дизъюнкция;

 \coprod_{32} — сложение по модулю 2^{32} ;

 \Box_{32} — вычитание по модулю 2^{32} ;

 \boxtimes_{32} — умножение по модулю 2^{32} ;

 $rol_1(a)$ – циклический сдвиг слова a влево на 1 бит.

Функции, используемые в SC 2000

Функция Rf(a, b, c, d, mask) (см. рис.1) возвращает значение (e, f, g, h):

 $(s,t) \coloneqq Ff(c,d,mask);$

(g,h):= $(a \oplus s, b \oplus t)$;

 $(s,t) \coloneqq Ff(g,h,mask);$

 $(e,f) \coloneqq (c \oplus s, d \oplus t).$

Рис. 1. Функция Rf

Функция Ff(a, b, mask) (см. рис. 2) возвращает значение

(c,d) = Lf(M(S(a)), M(S(b)), mask).

¹ Авторы шифра: Shimoyama, H. Yanami, K. Yokoyama, M. Takenaka, K. Itoh, N. Torii, H. Yajima (Япония)

Рис. 2. Функция Ff

Функция Sf(a) (см. рис. 3) возвращает 32-битовое значение

 $S_6(a_{0..5})||S_5(a_{6..10})||S_5(a_{11..15})||S_5(a_{16..20})||S_5(a_{21..25})||S_6(a_{26..31}),$

где S_6 и S_5 — подстановки соответственно на множествах 6-битовых и 5-битовых подблоков, заданные таблицей 1.

Рис. 3. *Функция Sf*

Функция Mf(a) возвращает 32-битовое значение b:

$$b := 0;$$

for i := 0 to 31 do if $a_i = 1$ then $b := b \oplus M_i$,

где M[0..31] — массив 32-битовых констант, заданный таблицей 2.

Функция Lf(a, b, mask) (см. рис. 4) возвращает значение

$$(c,d) = (b \oplus (a \& mask), a \oplus (b \& (not mask))).$$

Функция Bf(a, b, mask) возвращает значение (e, f, g, h), вычисляемое следующим образом:

for i := 0 **to** 31 **do** $e_i \parallel f_i \parallel g_i \parallel h_i := S_4(a_i \parallel b_i \parallel c_i \parallel d_i),$

где S_4 — подстановка на множестве 4-битовых подблоков полубайтов, заданная табл. 1.

(Пояснение: полубайт $x^{(4)}$, образованный очередной четверкой битов a_i , b, c_i и d_i , преобразуется с помощью подстановки S_4 в полубайт $y^{(4)} = S_4(x^{(4)})$, биты которого задают соответствующие биты результата – слов e, f, g, h. Обратная функция Bf^{-1} задается аналогично — с заменой подстановки S_4 на S_4^{-1} . Функция Gf(a, b, c, d) и Wf(a, b, c, d) возвращают 32-битовые значения:

$$Gf(a,b,c,d) \equiv (rol_1(a) \coprod_{32} b) \oplus rol_1(rol_1(c) \coprod_{32} d).$$

$$Wf(a,b,c,d) \equiv Mf(Sf((Mf(Sf(a)) \coprod_{32} Mf(Sf(b))) \oplus (Mf(Sf(c)) \boxtimes_{32} d))).$$

Рис. 4. Функция Lf

Генерация раундовых подключей в SC 2000

Секретный ключ K записывается в массив 32-битовых слов uk[0], uk[1], ..., uk[7]:

```
if KeyLength = 128 then {
    uk[0..3]: = K;
    uk[4..7]: = uk[0..3]
}
else if KeyLength = 192 then {
    uk[0..5]: = K;
    uk[6..7]: = uk[0..1]
    }
else uk[0..7]: = K.
```

При вычислении раундовых подключей ek[] используется массив Index [0..8][0..3], заданный табл. 3 и массивы вспомогательных 32-битовых переменных aa[0..2], bb[0..2], cc[0..2] и dd[0..2].

```
for i := 0 to 2 do {
      aa[i] := Wf(4i, uk[0], uk[1], i + 1);
      bb[i] := Wf(4i + 1, uk[2], uk[3], i + 1);
      cc[i] := Wf(4i + 2, uk[4], uk[5], i + 1);
      dd[i] := Wf(4i + 3, uk[6], uk[7], i + 1)
if KeyLength = 128 then num\_ekey: = 55 else num\_ekey: = 63;
for n := 0 to num_ekey do {
      u := n \, mod \, 9;
      v := (n + (n \operatorname{div} 36)) \mod 12;
      x := Index[u][0];
      y := Index[u][1];
      z := Index[u][2];
      w := Index[u][3];
      case v of
            0: \{(a, b, c, d): = (aa[x], bb[y], cc[z], dd[w])\};
            1: \{(a, b, c, d) := (bb[x], aa[y], dd[z], cc[w])\};
            2: \{(a, b, c, d): = (cc[x], dd[y], aa[z], bb[w])\};
            3: \{(a, b, c, d): = (dd[x], cc[y], bb[z], aa[w])\};
            4: \{(a, b, c, d) := (aa[x], cc[y], dd[z], bb[w])\};
            5: \{(a, b, c, d) := (bb[x], dd[y], cc[z], aa[w])\};
            6: \{(a, b, c, d) := (cc[x], aa[y], bb[z], dd[w])\};
            7: \{(a, b, c, d) := (dd[x], bb[y], aa[z], cc[w])\};
            8: \{(a, b, c, d) := (aa[x], dd[y], bb[z], cc[w])\};
            9: \{(a, b, c, d) := (bb[x], cc[y], aa[z], dd[w])\};
            10: \{(a, b, c, d) := (cc[x], bb[y], dd[z], aa[w])\};
```

```
11: \{(a, b, c, d) := (dd[x], aa[y], cc[z], bb[w])\}

end case;

ek[n] := Gf(a, b, c, d)

\}.
```

Таблица 1

Π одстановки S_6 , S_5 , S_4 и S_4^{-1}

$S_{6}[063]$															
47	59	25	42	16	23	28	39	26	38	36	19	60	24	39	56
37	63	20	61	56	02	30	44	08	10	06	22	53	47	51	11
62	52	35	18	14	46	00	54	17	40	27	04	31	08	05	12
03	16	41	34	33	07	45	49	50	58	01	21	43	57	32	13
$S_{5}[031]$															
20	26	07	31	19	12	10	15	22	30	13	14	04	24	09	18
27	11	01	21	06	16	02	28	23	05	08	03	00	17	29	25
$S_4[015]$															
02	05	10	12	07	15	01	11	13	06	00	09	04	08	03	14
$S_4^{-1}[015]$															
10	06	00	14	12	01	09	04	13	11	02	07	03	08	15	05

Таблица 2

Массив М[0..31]

d0c19225	a5a2240a	1b84d250	b728a4a1
6a704902	85dddbe6	766ff4a4	ecdfe128
afd13e94	df837d09	bb27fa52	695059ad
52a1bb58	cc322f1d	1844565b	b4a8acf6
34235438	6847a851	e48c0cbb	cd181136
9a112a0c	43ec6d0e	87d8d27d	487dc995
90fb9b4b	a1f63697	fc513ed9	78a37d93
8d16c5df	9e0c8bbe	3c381f7c	e9fb0779

Таблица 3

Массив Index

и	0	1	2	3	4	5	6	7	8
Index[u][0]	0	1	2	0	1	2	0	1	2
Index[u][1]	0	1	2	1	2	0	2	0	1
Index[u][2]	0	1	2	0	1	2	0	1	2
Index[u][3]	0	1	2	1	2	0	2	0	1

Алгоритм зашифрования SC 2000

(см. рис. 5)

 $Bxo\partial$: P=(a,b,c,d)-128-битовый блок открытых данных в виде четырех 32-битовых слов a,b,c,d.

```
c0:=0x555555555;

c1:=0x33333333;

(e,f,g,h):=(a,b,c,d);

for i:=0 to 5 do \{

(e,f,g,h):=(e \oplus ek[8i], f \oplus ek[8i+1], g \oplus ek[8i+2], h \oplus ek[8i+3]);

(e,f,g,h):=Bf(e,f,g,h);

(e,f,g,h):=(e \oplus ek[8i+4], f \oplus ek[8i+5], g \oplus ek[8i+6], h \oplus ek[8i+7]);

(e,f,g,h):=Rf(e,f,g,h,c0);
```

```
c0 \leftrightarrow c1
};
(e, f, g, h) := (e \oplus ek[48], f \oplus ek[49], g \oplus ek[50], h \oplus ek[51]);
(e, f, g, h) := Bf(e, f, g, h);
(e, f, g, h) := (e \oplus ek[52], f \oplus ek[53], g \oplus ek[54], h \oplus ek[55]);
if KeyLength \neq 128 \ then \{
(e, f, g, h) := Rf(e, f, g, h, c0);
(e, f, g, h) := (e \oplus ek[56], f \oplus ek[57], g \oplus ek[58], h \oplus ek[59]);
(e, f, g, h) := Bf(e, f, g, h);
(e, f, g, h) := (e \oplus ek[60], f \oplus ek[61], g \oplus ek[62], h \oplus ek[63]
}.
```

Bыход: C = (e, f, g, h) - 128-битовый блок шифртекста в виде четырех 32-битовых слов e, f, g, h.

Алгоритм расшифрования SC 2000

(см. рис. 5)

```
Bxod: C = (e, f, g, h) - 128-битовый блок шифртекста в виде четырех 32-битовых слов
e, f , g , h .
       c0: = 0x55555555;
      c1:=0x3333333333;
       (a, b, c, d) := (e, f, g, h);
       if KeyLength \neq 128 then {
              (a, b, c, d) := (a \oplus ek[60], b \oplus ek[61], c \oplus ek[62], d \oplus ek[63]);
              (a, b, c, d) := Bf^{-1}(a, b, c, d);
             (a, b, c, d) := (a \oplus ek[56], b \oplus ek[57], c \oplus ek[58], d \oplus ek[59]);
             (a, b, c, d) := Rf(a, b, c, d, c0);
      for i := 6 downto 1 do {
             (a, b, c, d) := (a \oplus ek[8i + 4], b \oplus ek[8i + 5], c \oplus ek[8i + 6], d \oplus ek[8i + 7]);
              (a, b, c, d) := Bf^{-1}(a, b, c, d);
              (a, b, c, d) := (a \oplus ek[8i], b \oplus ek[8i + 1], c \oplus ek[8i + 2], d \oplus ek[8i + 3]);
             c0 \leftrightarrow c1
       };
```

Bыход: P = (a, b, c, d) - 128-битовый блок открытых данных в виде четырех 32-битовых слов a, b, c, d.

(a, b, c, d) := Rf(a, b, c, d, c0);

 $(a, b, c, d) := Bf^{-1}(a, b, c, d);$

(a,b,c,d): = $(a \oplus ek[4],b \oplus ek[5],c \oplus ek[6],d \oplus ek[7])$;

 $(a,b,c,d) := (a \oplus ek[0], b \oplus ek[1], c \oplus ek[2], d \oplus ek[3]);$

Рис. 5. Функция зашифрования/расшифрования SC 2000