1 Introduction

The Creutz algorithm [1] was implemented as another example of a Monte Carlo method to simulate a microcanonical ('NVE') ensemble for the 3D Ising model. We focus our experiment on energy E and calculate temperature T of the system from it in two different ways.

2 Algorithm Description

The implemented Creutz algorithm works as follows:

- initialize 3d Ising grid with all spins aligned down.
- \bullet randomly pick a site: If flipping its spin increases total energy, do so; repeat until system reaches target energy E
- release demon once system has reached target energy: Demon has energy $E_d = 0$ with $E_{max} = 0.05 \cdot E$.
- demon jumps to random site and calculates ΔE for a potential spin flip: Iff $E_{max} \geq E_d \geq 0$ keep flip.
- recording E_d completes one Monte Carlo step; repeat demon jump until number of steps required

The temperature T then is calculated using two different ways for comparison:

The probability distribution $P(E_d)$ of the demon energy E_d is plotted in a semilog plot. The slope of the linear fit to $P(E_d)$ then equals the inverse temperature β as in equation 1.

$$P(E_d) \approx e^{-\frac{E_d}{k_B T}} \tag{1}$$

For comparison, the temperature is calculated analytically according to equation 2.

$$\frac{k_B T}{J} = \frac{4}{\log(1 + \frac{4J}{\langle E_d \rangle})} \tag{2}$$

3 Results

The program was implemented as described above and submitted with this report. For all experiments, the coupling constant J was fixed to the simplest ferromagnetic value of J=1.0. Experiments where run for system side lengths $L \in \{10, 20\}$ and average site energies $E \in \{-2.9, -2.5, -2.0, -1.5, -1.0, -0.5\}$ (figures 1 and 2).

Calculated temperatures and plotted temperatures then were plotted for all energies (figures 3 and 4).

4 Discussion

The results for dimensionless temperature T agree almost perfectly between the two calculation methods

Also, plotting temperatures for several energies in a single plot manages to reproduce the behaviour simulated using the Metropolis algorithm during a previous exercise (figures 3 and 4).

References

- Creutz, M.
 Microcanonical Monte Carlo Simulation,
 Phys. Rev. Lett. American Physical Society. 50 (19): 1411–1414,
 1983.
- [2] Boettcher, L., Computational Statistical Physics - Lecture Notes, ETH Zurich, 2019.

Figure 1: $P(E_d)$ plots for L = 10

Figure 2: $P(E_d)$ plots for L=20

Figure 3: T calculated and plotted versus E for L=10.

Figure 4: T calculated and plotted versus E for L=20.