

$$f(-s) = \frac{1}{1} \lim_{x \to -s} f(x) = \frac{1}{1}$$

$$\lim_{x \to -5} f(x) = \frac{1}{x \to -5}$$

$$f(-4) = \frac{1}{x \to -4}$$

$$\lim_{x \to -4} f(x) = \frac{1}{x \to -4}$$

$$\lim_{x \to -4} f(x) = \frac{1}{x \to -4}$$

$$f(-2) = \frac{1}{1} \text{ im } f(x) = \frac{1}{1} \text{ i$$

$$f(4) = \underline{\qquad}$$

$$\lim_{x \to 4} f(x) = \underline{\qquad}$$

$$\lim_{x \to 4^{+}} f(x) = \underline{\qquad}$$

$$\lim_{x \to 4^{+}} f(x) = \underline{\qquad}$$

$$f(q) = \frac{1}{|x|}$$

$$\lim_{x \to q} f(x) = \frac{1}{|x|}$$

$$\lim_{x \to q} f(x) = \frac{1}{|x|}$$

$$\lim_{x \to q} f(x) = \frac{1}{|x|}$$

$$f(0) = \frac{1}{1}$$

$$\lim_{x \to 0} f(x) = \frac{1}{1}$$

$$\lim_{x \to 0} f(x) = \frac{1}{1}$$

$$\lim_{x \to 0} f(x) = \frac{1}{1}$$

$$f(4) = \frac{1}{1}$$

$$\lim_{x \to -4} f(x) = \frac{1}{1}$$

$$\lim_{x \to -4} f(x) = \frac{1}{1}$$

$$\lim_{x \to -4} f(x) = \frac{1}{1}$$

$$f(z) = \frac{1}{|x|} f(x) = \frac{1}{|x|} f(x)$$

$$f(6) = \frac{1}{1} \int_{0}^{1} f(x) = \frac{1}{1} \int_{0$$

$$f(-s) = 4$$

$$\lim_{x \to -5} f(x) = \frac{3}{3}$$

$$\lim_{x \to -5} f(x) = \frac{3}{3}$$

$$\lim_{x \to -5} f(x) = \frac{3}{3}$$

$$f(-4) = \frac{DNE}{1 \text{ im}}$$

$$f(x) = \frac{-00}{2}$$

$$\lim_{x \to -4^+} f(x) = \frac{-\infty}{-\infty}$$

$$\lim_{x \to -4^-} f(x) = \frac{-\infty}{-\infty}$$

$$f(-2) = \frac{2}{1}$$

 $\lim_{x \to -2} f(x) = \frac{1}{1}$

$$\lim_{x \to -2^+} f(x) = \frac{3}{1}$$

$$\lim_{x \to -2^+} f(x) = 0$$

$$\lim_{x \to -2^+} f(x) = 0$$

$$\lim_{x \to -2^+} f(x) = 0$$

$$f(4) = 0$$

$$\lim_{x \to 4} f(x) = \frac{3}{x}$$

$$\lim_{x \to 4} f(x) = 0$$

$$f(q) = \frac{DNE}{1 \text{ im } f(x) = \frac{2}{2}}$$

$$\lim_{x \to q^+} f(x) = \frac{2}{2}$$

$$\lim_{x \to q^+} f(x) = \frac{2}{2}$$

$$\lim_{x \to q^+} f(x) = \frac{2}{2}$$

$$f(0) = \frac{4}{4}$$

$$\lim_{x \to 0} f(x) = \frac{4}{4}$$

$$\lim_{x \to 0} f(x) = \frac{4}{4}$$

$$\lim_{x \to 0} f(x) = \frac{4}{4}$$

$$\int f(4) = DNE$$

$$\lim_{x \to -4} f(x) = -\infty$$

$$\lim_{x \to -4} f(x) = -\infty$$

$$\lim_{x \to -4} f(x) = -\infty$$

$$f(2) = DNE$$

$$\lim_{x \to 2^{-}} f(x) = \infty$$

$$\lim_{x \to 2^{+}} f(x) = \infty$$

$$\lim_{x \to 2^{+}} f(x) = \infty$$

$$f(6) = \frac{DNE}{1 \text{ im } f(x) = -\infty}$$

$$\lim_{x \to 6^{+}} f(x) = \frac{-\infty}{1 \text{ im } f(x) = DNE}$$

$$\lim_{x \to 6^{+}} f(x) = DNE$$

	Find
	$\lim_{\chi \to q} \frac{3(\chi - q)}{\chi^2 - 81}$
	$\chi \rightarrow q \chi^2 - 81$
4 · · · · · · · · · · · · · · · · · · ·	1) Try plugging in x = 9
a , *	$f(9) = \frac{3(9-9)}{81-81} = \frac{0}{0} = DNE $ $(\neq 1)$
	81-81 (\$ 0)
e v	=> discontinuous, which occurs whenever
29	you get: anything inegative
	or y Thegative, or log o or log (negative).
	(Even root)
*	means it could either be a hole:
	in or a vertical asymptote.
-	2) Try to cancel algebraically: since
	$\chi \to q$ means $\chi \neq q$ just getting close to q.
	$= \lim_{X \to q} \frac{3(x-q)}{(x-q)(x+q)}$
	$= \lim_{n \to \infty} 3$
	$\times \rightarrow 9 \times 19$
	Now do step 1) again, and this time its continuous!
	$= \frac{3}{9+9} = \frac{3}{18} = \frac{1}{6} . (This is a hole.)$