Chapter 4: Network Access

Introduction to Networks v5.1

Chapter Outline

- 4.0 Introduction
- 4.1 Physical Layer Protocols
- 4.2 Network Media
- 4.3 Data Link Layer Protocols
- 4.4 Media Access Control
- 4.5 Summary

Section 4.1: Physical Layer Protocols

Upon completion of this section, you should be able to:

- Identify device connectivity options.
- Describe the purpose and functions of the physical layer in the network.
- Describe basic principles of the physical layer standards.

Topic 4.1.1: Physical Layer Connection

Types of Connections

Home Router

Connecting to the Wired LAN

Network Interface Cards

Wired Connection Using an Ethernet NIC

Connecting to the Wireless LAN with Range Extender

Topic 4.1.2: Purpose of the Physical Layer

The Physical Layer

Physical Layer Media

Electrical Signals -Copper cable

Light Pulse -Fiber-optic cable

Microwave Signals -Wireless

Physical Layer Standards

Topic 4.1.3: Physical Layer Characteristics

Functions

Manchester Encoding

Frequency Modulation (FM)

Modulation

Amplitude Modulation (AM)

12

Bandwidth

Unit of Bandwidth	Abbreviation	Equivalence
Bits per second	bps	1 bps = fundamental unit of bandwidth
Kilobits per second	kbps	1 kbps = 1,000 bps = 10^3 bps
Megabits per second	Mbps	1 Mbps = 1,000,000 bps = 10^6 bps
Gigabits per second	Gbps	1 Gbps = 1,000,000,000 bps = 10^9 bps
Terabits per second	Tbps	1 Tbps = 1,000,000,000,000 bps = 10^12 bps

Throughput

Types of Physical Media

Section 4.2: Network Media

Upon completion of this section, you should be able to:

- Identify the basic characteristics of copper cabling.
- Build a UTP cable used in Ethernet networks (scope does not include cabling area discussion).
- Describe fiber-optic cabling and its main advantages over other media.
- Connect devices using wired and wireless media.

Topic 4.2.1: Copper Cabling

Characteristics of Copper Cabling

Copper Media

Unshielded Twisted-Pair (UTP) cable

Shielded Twisted-Pair (STP) cable

Coaxial cable

Unshielded Twisted-Pair Cable

Shielded Twisted-Pair Cable

Coaxial Cable

Copper Media Safety

The separation of data and electrical power cabling must comply with safety codes.

Cables must be connected correctly.

Installations must be inspected for damage.

Equipment must be grounded correctly.

Topic 4.2.2: UTP Cabling

Properties of UTP Cabling

UTP Cabling Standards

Category 5 and 5e Cable (UTP)

Category 6 Cable (UTP)

Category 3 Cable (UTP)

- Used for voice communication
- Most often used for phone lines

Category 5 and 5e Cable (UTP)

- Used for data transmission
- Cat5 supports 100 Mb/s and can support 1000 Mb/s, but it is not recommended
- Cat5e supports 1000 Mb/s

Category 6 Cable (UTP)

- · Used for data transmission
- An added separator is between each pair of wires allowing it to function at higher speeds
- Supports 1000 Mb/s 10 Gb/s, though 10 Gb/s is not recommended

UTP Connectors

RJ-45 UTP Plugs

RJ-45 UTP Socket

Bad connector - Wires are exposed, untwisted, and not entirely covered by the sheath.

Good connector - Wires are untwisted to the extent necessary to attach the connector.

Types of UTP Cable

T568B

Cable Type	Standard	Application
Ethernet Straight- through	Both ends T568A or both ends T568B	Connects a network host to a network device such as a switch or hub.
Ethernet Crossover	One end T568A, other end T568B	 Connects two network hosts Connects two network intermediary devices (switch to switch, or router to router)
Rollover	Cisco proprietary	Connects a workstation serial port to a router console port, using an adapter.

Testing UTP Cables

UTP Testing Parameters:

- Wire map
- Cable length
- Signal loss due to attenuation
- Crosstalk

Topic 4.2.3: Fiber Optic Cabling

Properties of Fiber Optic Cabling

Fiber Media Cable Design

Jacket

Typically a PVC jacket that protects the fiber against abrasion, moisture, and other contaminants. This outer jacket composition can vary depending on the cable usage.

Core

The core is actually the light transmission element at the center of the optical fiber. This core is typically silica or glass. Light pulses travel through the fiber core.

Buffer

Used to help shield the core and cladding from damage.

Cladding

Made from slightly different chemicals than those used to create the core. It tends to act like a mirror by reflecting light back into the core of the fiber. This keeps light in the core as it travels down the fiber.

Strengthening Material

Surrounds the buffer, prevents the fiber cable from being stretched when it is being pulled. The material used is often the same material used to produce bulletproof vests.

Types of Fiber Media

- Small core
- Less dispersion
- Suited for long distance applications
- Uses lasers as the light source
- Commonly used with campus backbones for distances of several thousand meters

Types of Fiber Media (cont.)

- · Larger core than single mode cable
- Allows greater dispersion and therefore, loss of signal
- Suited for long distance applications, but shorter than single mode
- Uses LEDs as the light source
- Commonly used with LANs or distances of a couple hundred meters within a campus network

Network Fiber Connectors

Fiber Optic Connectors

ST Connectors

LC Connector

SC Connectors

Duplex Multimode LC Connectors

Network Fiber Connectors (cont.)

Common Fiber Patch Cords

SC-SC Multimode Patch Cord

LC-LC Single-mode Patch Cord

ST-LC Multimode Patch Cord

SC-ST Single-mode Patch Cord

Testing Fiber Cables

Optical Time Domain Reflectometer (OTDR)

Fiber versus Copper

Implementation Issues	UTP Cabling	Fiber-optic Cabling
Bandwidth supported	10 Mb/s - 10 Gb/s	10 Mb/s - 100 Gb/s
Distance	Relatively short (1 - 100 meters)	Relatively high (1 - 100,000 meters)
Immunity to EMI and RFI	Low	High (Completely immune)
Immunity to electrical hazards	Low	High (Completely immune)
Media and connector costs	Lowest	Highest
Installation skills required	Lowest	Highest
Safety precautions	Lowest	Highest

Topic 4.2.4: Wireless Media

Properties of Wireless Media

Types of Wireless Media

Wireless LAN

Section 4.3: Data Link Layer Protocols

Upon completion of this section, you should be able to:

 Describe the purpose and function of the data link layer in preparing communication for transmission on specific media.

Topic 4.3.1: Purpose of the Data Link Layer

The Data Link Layer

The Data Link Layer (cont.)

Layer 2 Data Link Address

Data Link Sublayers

Media Access Control

Data link layer protocols govern how to format a frame for use on different media.

Different protocols may be in use for different media.

Providing Access to Media

Data Link Layer Standards

Section 4.4: Media Access Control

Upon completion of this section, you should be able to:

- Compare the functions of logical topologies and physical topologies.
- Describe the basic characteristics of media access control methods on WAN topologies.
- Describe the basic characteristics of media access control methods on LAN topologies.
- Describe the characteristics and functions of the data link frame.

Topic 4.4.1: Topologies

Controlling Access to the Media

Physical and Logical Topologies

Physical and Logical Topologies (cont.)

Topic 4.4.2: WAN Topologies

Common Physical WAN Topologies

Point-to-point topology

Hub and spoke topology

Full mesh topology

Physical Point-to-Point Topology

Logical Point-to-Point Topology

Logical Point-to-Point Topology (cont.)

Topic 4.4.3: LAN Topologies

Physical LAN Topologies

Star topology

Extended star topology

Bus topology

Ring topology

Half and Full Duplex

Media Access Control Methods

Contention-Based Access

Media Access Control Methods (cont.)

Contention Based Access – CSMA/CD

Contention Based Access – CSMA/CD (cont.)

Contention Based Access – CSMA/CA

I see in the wireless frame that the channel is going to be unavailable for a specific amount of time so I cannot send.

channel is going to be unavailable for a specific amount of time so I cannot send.

I see in the wireless frame that the

Topic 4.4.4: Data Link Frame

The Frame

Frames have three basic parts:

- Header
- Data

Frame Fields

Layer 2 Address

Layer 2 Address (cont.)

Layer 2 Address (cont.)

LAN and WAN Frames

Examples of Layer 2 protocols:

- 802.11 Wireless Frame
- PPP Frame
- HDLC
- Frame Relay
- Ethernet Frame

Section 4.5: Summary

Chapter Objectives:

- Explain how physical layer protocols and services support communications across data networks.
- Build a simple network using the appropriate media.
- Explain how the Data Link layer supports communications across data networks.
- Compare media access control techniques and logical topologies used in networks.

Thank you.

CISCO Cisco Networking Academy
Mind Wide Open