ENV 710

discrete probability

roadmap

- any questions?
- pod work Bernoulli random variable
- pod work binomial distribution

	Name	Pod	Name	Pod	Name	Pod
poas -	Benaka, Isaac	1	Go, Li Jia	5	Palia, Sophia	94
	Bernaus, Katrina	1	Gulino, Justin	5	Pang, Miaojun	9
	Bi, Yuntian	1	Haber, Jordan	5	Pike, Rachel	9
	Bliska, Hanna	2	Harvey, Marla	6	Price, Noah	10
	Brentjens, Emma	2	Hays, Brandon	6	Rowley, Caroline	10
	Campos, Gabriel	2	Healey, Liam	6	Satagopan, Nanditha Ram	10
	Carlson, Maria	43 12h	Hyun, Jiwon	7	Seagle, Jenna	-11
	Davidson, Kelly		Jackson, Rachel	7	Sepe, Stevie	11
	Diaz, Danae	3	Kuhlmann, Emily	7	Sun, Suri	11
	Dye, Logan	4	Martinez, Laura	8	White, Libby	12
	Franzetti, Tristan	4	Merritt, Melissa	8	Wong, Richard	12
	Freedman, Jacob	4	Owens, Katie	8	Yang, Wookeun	12
					Zungailia, Isabel	12

5 Rules of Probability

(So simple even your cat can understand them)

 $0 \le P(A) \le 1$

P(A) + P(B) = 1

P(not A) = 1 - P(A)

P(A or B) = P(A) + P(B)

P(A or B) = P(A) + P(B) - P(A and B)

1. The probability Felix will eat pizza for dinner tonight is somewhere between zero and 100%.

2. Left alone in the yard, the probability Fido will dig up the flower garden = 88%; The probability he will find other "entertainment" = 12%

(Probability he'll get up to some kind of mischief = 88% + 12%= 100%). 3. Felix is Asleep 75% of the time. So the probability he is not Asleep is 100% - 75% = 25%.

he's not in a box (i.e. he can't be both). If he's in the box 40% of the time, then the probability Felix is in a box OR he's not in a box = 40% + 60% = 100%

4. Felix is in a box, or

5. Fido brings you one of his favorite toys.

The probability it's a ball OR it's red = 50% + 50% (-25%) = 75%

Probability Rules Cheat Sheet

$$complement rule$$

 $P(A) = 1 - P(A')$

multiplication rules (joint probability)

dependent
$$P(A \cap B) = P(A) * P(B|A)$$

independent
$$P(A \cap B) = P(A) * P(B)$$

mutually exclusive
$$P(A \cap B) = 0$$

addition rules (union of events)

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

mutually exclusive
$$P(A \cup B) = P(A) + P(B)$$

conditional probability
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Conditional Probability

What is the Probability of

rolling a dice and it's value is less than 4

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

knowing that the value is an odd number

I – Bernoulli random variable

Discuss the following and solve the problems together (10 min).

- what is a probability distribution? why are we learning about them?
- what are the possible outcomes of a Bernoulli random variable?
- what is the probability of rolling a die 3 times and getting a 4 all 3 times?
- what is the probability of rolling a die 3 times and only getting 4 one time?

I – Bernoulli random variable

Discuss the following and solve the problems together (10 min).

- what is a probability distribution? why are we learning about them?
- what are the possible outcomes of a Bernoulli random variable?
- what is the probability of rolling a die 3 times and getting a 4 all 3 times?
- what is the probability of rolling a die 3 times and only getting 4 one time?

```
mathematical function that gives the probabilities
of occurrence of different possible outcomes for
an experiment

binary outcomes, 0/1

> (1/6)^3
[1] 0.00462963

> dbinom(x = 1, size = 3, prob = 0.167)
[1] 0.3476384
> (1/6*5/6*5/6)+(5/6*1/6*5/6)+(5/6*5/6*1/6)
[1] 0.3476384
```

Discuss the following and solve the problems together (10 min).

- under what situations do you use the binomial distribution?
- describe an example (research scenario) from your field of expertise when you would use the binomial distribution

• what does the binomial function generate? what are the variables and parts of the binomial function?

$$P(X = k) = \frac{n!}{k!(n-k)!} \cdot p^k \cdot (1-p)^{n-k}$$

Discuss the following and solve the problems together (10 min).

- under what situations do you use the binomial distribution?

 when you have a series of Bernoulli experiments/trials
- describe an example (research scenario) from your field of expertise when you would use the binomial distribution

• what does the binomial function generate? what are the variables and parts of the binomial function?

$$P(X = k) = \frac{n!}{k!(n-k)!} \cdot p^k \cdot (1-p)^{n-k}$$

```
X \sim Bin(n,p) where n = number of trials, <math>p = probability of success, k = number of outcomes
```

Discuss the following and solve the problems together (10 min).

- if COVID infects 15% of a local population, what is the probability of finding 7 people in a sample of 20 people with the disease at a testing center? (solve 'by hand' or with R)
- what is the probability of finding more than 4 people infected with the disease in a sample of 20 people? (solve with R)

what is the mean and standard deviation of this example?

Discuss the following and solve the problems together (15 min).

• if COVID infects 15% of a local population, what is the probability of finding 7 people in a sample of 20 people with the disease at a testing center?

```
> dbinom(x = 7, size = 20, prob = 0.15) [1] 0.01601396
```

• what is the probability of finding more than 4 people infected with the disease in a sample of 20 people?

```
> sum(dbinom(x = 5:20, size = 20, prob = 0.15))
[1] 0.1701532
> 1 - pbinom(q = 4, size = 20, prob = 0.15)
[1] 0.1701532
```

what is the mean and standard deviation of this example?

```
> mu <- 20 * 0.15
> sigma <- sqrt((20*0.15)*(1-0.15))
```

what is cumulative probability? what is the cumulative density function?

Discuss the following and solve the problems together (15 min).

- if COVID infects 15% of a local population, what is the probability of finding 7 people in a sample of 20 people with the disease at a testing center? (solve 'by hand' or with R)
- what is the probability of finding more than 4 people infected with the disease in a sample of 20 people? (solve with R)
- create a figure in R of either of the above scenarios

what should the graphs look like?

Discuss the following and solve the problems together (15 min).

- if COVID infects 15% of a local population, what is the probability of finding 7 people in a sample of 20 people with the disease at a testing center? (solve 'by hand' or with R)
- what is the probability of finding more than 4 people infected with the disease in a sample of 20 people? (solve with R)
- create a figure in R of either of the above scenarios

Discuss the following and solve the problems together (10 min).

- if COVID infects 15% of a local population, what is the probability of finding 7 people in a sample of 20 people with the disease at a testing center? (solve 'by hand' or with R)
- what is the probability of finding more than 4 people infected with the disease in a sample of 20 people? (solve with R)
- create a figure in R of either of the above scenarios

