University of Rajshahi
Department of Computer Science and Engineering
B.Sc. Engg. Part-1 Even Semester, Examination-2016
Course: MATH-1211 (Differential and Integral Calculus)

Full Marks: 52.5

Time: 3 Hours

Answer any six questions taking three from each group

PART: A

		-
1	(a) Define domain and range of a function. Find the domain and range of the function f defined by $f(x) = \frac{x-3}{2x+1}$	2.75
	 (b) State L' Hospital's rule. Evaluatelim_{x→0} (cosx)^{cot²x}. (c) Define continuity of functions. Show that f(x) = x is continuous at x=0 but f `(x) does not exist. 	3
2	(a) If $\sin y = x \sin(a+y)$, prove that $dy/dx = \frac{\sin^2(a+y)}{\sin a}$.	3
	(b) If $y = e^{a\sin^{-1} x}$, show that $(1-x^2)y_{n+2}-(2n+1)xy_{n+1}-(n^2+a^2)y_n=0$ (c) State and prove Mean Value theorem.	2.75
3	(a) Show that the maximum value of x+1/x is less than its minimum value.	2.75
	(b) If $u=F(x^2+y^2+z^2)f(xy+yz+zx)$, then show that $(y-z)\frac{\partial u}{\partial x}+(z-x)\frac{\partial u}{\partial y}+(x-y)\frac{\partial u}{\partial z}=0$.	3
	(c) Define homogeneous functions. If $u = \cos^{-1}(\frac{x+y}{\sqrt{x}+\sqrt{y}})$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{1}{2}\cot u = 0$.	3
	(a) If $x\cos\alpha + y\sin\alpha = p$ touches the $curve_{am}^{xm} + \frac{y^m}{b^m} = 1$, show that $(a\cos\alpha)_{m-1}^{m} + (b\sin\alpha)_{m-1}^{m} = p_{m-1}^{m}$.	3
4	(b) If lx+my=1 is normal to the parabola $y^2=4ax$, then prove that $al^2+2alm^2=m^2$.	2.75
	(c) Define asymptotes. Find the asymptotes of $x^2y^2-4(x-y)^2+2y-3=0$.	3
	PART: B	
5	(a) Evaluate any three of the followings:	8.75
	(i) $\int_{x}^{\sqrt{\frac{a+x}{x}}} dx$ (ii) $\int_{\sqrt{(1+x)^2}}^{\sqrt{x}} dx$	
	(iii) $\int_{1+\cos x}^{x+\sin x} dx$ (iv) $\int \sqrt{2ax-x^2} dx$	
6	(a) Evaluate $\int_0^{\pi/2} \frac{dx}{3+5\cos x}$.	3
	(b) Show that $\int_0^{\pi} x \log \sin x dx = \frac{\pi^2}{2} \log \frac{1}{2}$.	3
	(c) Evaluate $lt_{n\to\infty} \left[\frac{1^2}{n^3+1^3} + \frac{2^2}{n^3+2^3} + \dots + \frac{n^2}{n^3+n^3} \right]$	2.75
7	(a) Show that $\int_0^{\pi/2} sin^n x dx = \frac{(n-1)}{n} \frac{(n-3)}{n-2} \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$, where n is a positive integer.	3
	(b) Evaluate $\int_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx$.	2.75
	(b) Evaluate $\int_0^{\pi/2} \frac{\sin^4 x}{\sin x + \cos x} dx$. (c) If $I_n = \int_0^{\pi/4} \tan^n \theta d\theta$, show that $I_n = \frac{1}{n-1} - I_{n-2}$.	2.75
8	(c) If $I_n = \int_0^{\pi/4} tan^n \theta d\theta$, show that $I_n = \frac{1}{n-1} - I_{n-2}$. (a) Find the area bounded by the curves $\sqrt{2} = 4ax$ and $x^2 = 4ay$.	
8	(c) If $I_n = \int_0^{\pi/4} tan^n \theta d\theta$, show that $I_n = \frac{1}{n-1} - I_{n-2}$. (a) Find the area bounded by the curves $y^2 = 4ax$ and $x^2 = 4ay$. (b) If s is the arc length of $3ay^2 = x(x-a)$ measured from the origin to the point (x, y) , show that $3s^2 = 4x^2 + 3y^2$.	3 2.75 3
8	(c) If $I_n = \int_0^{\pi/4} tan^n \theta d\theta$, show that $I_n = \frac{1}{n-1} - I_{n-2}$. (a) Find the area bounded by the curves $\sqrt{2} = 4ax$ and $x^2 = 4ay$.	3 2.75 3

University of Rajshahi Department of Computer Science and Engineering B. Sc. (Engg.) Part-I, Even Semester, Examination 2015 Course: MATH1211 (Differential and Integral Calculus) Full Marks: 52.5 Time: 3 Hours

[Answer any Six questions taking three from each part]

Part A

1. a) Find the domain and range of the function $\frac{x-3}{2x+1}$ and also find its inverse function, if	3
exists.	
b) $f(x)$ is defined as follows:	3
f(x) = 0, x = 0	
=x, x>0	
=-x, x<0	
Draw the graph of the function. Does $f'(x)$ exist at $x=0$? Justify your answer.	
c) Examine the continuity of the function $f(x)$ at $x=3/2$ where	2.75
$(3-2x,0 \le x < 3/2)$	
$f(x) = \begin{cases} 3 - 2x, 0 \le x < 3/2 \\ -3 - 2x, x \ge 3/2 \end{cases}$	
2. a) Define differentiability of a function. Prove that every finitely derivable function is continuous.	-3
b) If $y = e^{ax} sinbx$, prove that $y_2 - 2ay_1 + (a^2 + b^2)y = 0$	2.75
c) If $y = \sin(a\sin^{-1}x)$, with the help of Leibnitz's theorem prove that	3
$y_{n+2}(1-x^2) - (2n+1)xy_{n+1} - (n^2 - a^2)y_n = 0$	
3. a) State and prove the Rolle's theorem.	3
b) Verify the mean value theorem for $f(x)=2x^2-7x+10$, $a=2$, $b=5$.	2.75
c) Expand excosx in a finite series in power of x with Lagrange's remainder using	3
Maclaurin series.	
4. a) Define maxima and minima of a function. Find the maximum and minimum values of $2x^3-9x^2+12x-3$.	3
b) State Euler's theorem. Verify Euler's theorem for the function $u = \sin \frac{x^2 + y^2}{xy}$.	3
c) Find the asymptotes of $x^3 + 2x^2y - xy^2 - 2y^3 + xy + y^2 - 1 = 0$.	2.75
	4.15

Part B

5. a) Integrate the following with respect to x (any two)	
i). $\int \frac{dx}{(1+x)\sqrt{(1+2x+x^2)}}$ ii). $\int \frac{dx}{a+bsinx}$ iii). $\int \sqrt{\frac{dx}{a+bsinx}}$	$\left\{\frac{\sin\left(x-\alpha\right)}{\sin\left(x+\alpha\right)}\right\}dx$
b) Integrate $\int \frac{\log (\log x)}{x} dx$.	
c) Evaluate $\int \frac{dx}{\cos x (5+3\cos x)}$.	
	2.75
6. a) Evaluate $\int_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx.$	2.75
b) Prove that $\int_0^1 \frac{dx}{(1+x^2)\sqrt{(1-x^2)}} = \frac{\pi}{2\sqrt{2}}$.	3
c) Evaluate $\lim_{n\to\infty} \sum_{r=0}^n \frac{n}{n^2+r^2}$.	3
7. a) Prove that $\int_0^{\pi/4} \log(1 + \tan\theta) d\theta = \frac{\pi}{8} \log 2$.	3
b) Prove that $\int_0^{\pi} \frac{x \tan x}{s e c x + t a n x} dx = \frac{1}{2} \pi (\pi - 2).$	2.75
c) Obtain the reduction formula for $\int \frac{dx}{(x^2+a^2)^{\pi/2}}$.	3
Hence, find the value of $\int \frac{dx}{(x^2+a^2)^{7/2}}$.	
8. a) Find the area included between the ellipses $x^2+2y^2=a^2$ and $2x^2+y^2=a^2$	3
b) Show that the length of the area of the evolute $27ay^2 = 4(x y^2 = 4ax)$, from the cusp to one of the points where the evolute $2a(3\sqrt{3}-1)$.	
c) Find the volume and the surface area of the solid general cardioids $r=a(1-\cos\theta)$ about the initial line.	ted by revolving the 2.75

University of Rajshahi Department of Computer Science and Engineering B. Sc. (Engg) Part-I Even Semester Examination 2014 Course: MATH-1211 (Differential and Integral Calculus) Full Marks: 52.5 Duration: 3(Three) Hours Answer 06(Six) questions taking any 03(Three) questions from each section in separate answer script

1. a) Draw the graph of $y = x - [x]$, where $[x]$ denotes the greatest integer not greater than x . b) Define the differentiability of a function at $x = a$. Let $f(x)$ be defined by	2.7
$f(x) = \begin{cases} x \sin \frac{1}{x}, & when \ x \neq 0 \\ 0, & when \ x = 0 \end{cases}$	
(0, when $x = 0$ Examine the differentiability of $f(x)$ at $x = 0$. c) Evaluate $\lim_{x\to 0} (sinx)^{2tanx}$	3
	2
2. a) If $y = \sin(10\sin^{-1}x)$, then use Leibnitz's theorem to show that $(1-x^2)_{12} - 21xy_{11} = 0$. b) Differentiate $\tan^{-1}\frac{\sqrt{(1+x^2)}-1}{x}$ with respect to $\tan^{-1}x$.	
c) If $y = x^{2n}$, where n is a positive integer, show that $y_n = 2^n \{1.3.5(2n-1)\}x^n$.	2.75
3. a) State Mean Value theorem. In the Mean Value theorem $f(h) = f(0) + hf(\theta h)$, $0 < \theta < 1$ show that the limiting value of θ as $h \to 0$ is $1/2$, according as $f(x) = \cos x$.	1, 3
b) If $f(x)$ be a maximum at $x = c$ and if $f(c)$ exists, then show that $f(c) = 0$.	2.75
c) Given $\frac{x}{2} + \frac{y}{3} = 1$, find the maximum value of xy and minimum value of $x^2 + y^2$.	3
4. a) Define homogeneous function for n variables. Verify Euler's theorem for $u = \tan^{-1} \frac{x^3 + y^3}{x - y}$.	3
b) Define subtangent and subnormal. Show that for the curve $by^2 = (x + a)^3$, the square of the subtangent varies as the subnormal	-
c) Prove that the asymptotes of the cubic $(x^2 - y^2)y - 2ay^2 + 5x - 7 = 0$ form a triangle of area a^2 .	f 2.75
Section—B	
5. a) Integrate the following: i. $\int \frac{e^x - 1}{e^x + c} dx$.	3
ii. $\int \frac{e^{x+1}}{x} dx$.	
b) Evaluate the integral $\int \frac{e^x}{x} (1 + x \log x) dx$.	2.75
c) Integrate $\int \frac{dx}{5+4\sin x}$	3
6. a) State the Fundamental Theorem of Integral Calculus. Evaluate $\int_0^a \sqrt{a^2 - x^2} dx$.	3
b) Prove that $\int_{2}^{e} \left\{ \frac{1}{\log x} - \frac{1}{(\log x)^{2}} \right\} dx = e - \frac{2}{\log 2}$.	3
c) Evaluate $\lim_{n\to\infty} \left[\frac{n!}{n^n}\right]^{1/n}$.	2.75
7. a) If $I_n = \int_0^{\pi/4} \tan^n\theta \ d\theta$, show that $I_n = \frac{1}{n-1} - I_{n-2}$. Hence find the value of $\int_0^{\pi/4} \tan^6x \ dx$.	3
b) Obtain a reduction formula for $\int \frac{dx}{(a+b\sin x)^n}$.	3
c) If $u_n = \int_0^{\pi/2} x^n \sin x dx (n > 0)$. Prove that $u_n + n(n-1)u_{n-2} = n(\pi/2)^{n-1}$.	2.75
8. a) Show that the area bounded by the parabola $y^2 = 4ax$ and $x^2 = 4ay$ is $\frac{16}{3}a^2$.	3
	2.75
c) Find the whole length of the solid generated by revolving the cardioide $\pi = a(1 - \cos \theta)$ about the initial line.	3

University of Rajshahi Department of Computer Science and Engineering B.Sc. Engg. Part-1 Even Semester, Examination-2013 Course: MATH-1211 (Differential and Integral Calculus) Full Marks: 52.5 Time: 3 Hours Answer six questions taking any three from each Section

Section: A

1	(0)	Find the department of the X ² -1	3
		Find the domain and range of the function $\frac{x^2-1}{x-1}$. Also sketch the graph.	
	·(b)	Define continuity at a point. If the function $f(x) = \begin{cases} -\frac{x^2 - 16}{x - 4} & \text{if } x \neq 4 \\ a & \text{if } x = 4 \end{cases}$ is continuous at point 4, what is the value of a?	2.7:
	(c)	Evaluate $\lim_{x \to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x}}$.	3
2	(b)	Show that $f(x)= x $ is not differentiable at $x=0$. State Leibnitz's theorem. If $y=(\sin^{-1}x)^2$, then prove that $(1-x^2)y_{n^22}$ $(2n+1)xy_{n+1}$ - $n^2y_n=0$. On a dark night, a thin man 6 feet tall walks away from a lamp post 24 feet high at the rate of 5 mph. How fast is the end of his shadow moving? How fast is the shadow lengthening?	2.75 3 3
3	(b)	State Rolle's Theorem. Verify Roll's theorem for $f(x) = x^2 - 2x - 3$ on $[-1, 3]$ and give geometrical interpretation. Suppose that $f(0) = -3$ and $f'(x) \le 5$ for all values of x. How large can $f(2)$ be possible? Find two positive numbers whose sum is 100 and the sum of whose square is minimum.	4 3 1.75
4	(a)	Find the shortest distance from the point P $(1, 0)$ to the parabola $x=y^2$.	3
	(b)	State Euler's Theorem. If $u = x\phi(y/x) + \phi(y/x)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial x} = x\phi(y/x)$.	3
	(c)	Find the condition that the conics $ax^2+by^2=1$ and $a_1x^2+b_1y^2=1$ shall cut orthogonally.	2.75
5	(a)	Section: B Find the antidevivative of the following:	,
-	(4)	(i) $f(x) = \cos(2\cot^{-1}(\sqrt{\frac{1-x}{1+x}}))$.	6
	(b)	(ii) $f(x) = log(x + \sqrt{x_t^2 + a^2})$. A rocket shot straight up from the ground hits the ground 8 seconds later. Find its maximum height using integration.	2.75
6	(a)	Using the definition of definite integral Evalute. (i) $\int_a^b e^{x} dx$. (ii) $\lim_{n\to a} (\frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}]$.	4
	(b)	Evaluate $\int_a^b \frac{\log x}{x} dx$.	3
	(c)	Prove that $\int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \frac{\pi}{4}.$	1.75
	-	Evaluate $\int \cos^m x dx$ and hence $\int_0^{\pi/2} \cos^6 x dx$.	3
2		Joseph Aux and hence jo cos x ax.	The same of the sa
7	b)	Obtain the reduction formula for $\int x^m (\log x)^n dx$.	2.75
7	b)	Obtain the reduction formula for $\int x^m (\log x)^n dx$. If $u_n = \int_0^{\pi/2} \theta \sin^n \theta \ d\theta$ and $n > 1$, then prove that $u_n = \frac{n-1}{n} u_{n-2} + \frac{1}{n^2}$.	2.75
7	b) c) a)	Obtain the reduction formula for $\int x^m (\log x)^n dx$. If $u_n = \int_0^{n/2} \theta \sin^n \theta \ d\theta$ and $n > 1$, then prove that $u_n = \frac{n-1}{n} u_{n-2} + \frac{1}{n^2}$. Find the area of the region bounded by the x-axis and one of the arc of y=sinx. If s be the length of an arc of $3ay^2 = x(x-a)^2$ measured from the origin to the point (x, y) , then show that $3a^2 - 4x^2 + 3x^2$.	

University of Rajshahi

Dept. Of Computer Science and Engineering

B. Sc. Engg.(CSE) 1st Year Even Semester Examination 2012

Course: MATH 1211 (Differential and Integral calculus)

Full Mark: 52.5 Duration: 4 hours

Answer 6 questions taking at least 3 from each part

Part -A

		ran-A	
1.	a)	Find the domain and range of .	3
		$f(x) = \frac{x^2 + 1}{x^2 - 5x + 6}$	
		2 32.0	2
	b)	A function defined as	3
		$f(x) = x \qquad 0 \le x < \frac{1}{2}$	
		$=1-x \qquad \frac{1}{2} \le x < 1$	
		Discuss the continuity and differentiability of $f(x)$ at $x = \frac{1}{2}$	2.75
	c)	Evaluate $\underset{x\to 0}{Lt}(\cos x)^{Cot^2x}$	2.75
			-
2.	a)	If $\sin y = x \sin(a + y)$, prove that	3
		$\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}$	
			3
	b)	If $y = \frac{x}{x^2 + a^2}$, find y_n	
	c)	If $\sin^{-1} y = m \sin^{-1} x$, prove that	2.75
		$(1-x^2)y_{n+2} - (2n+1)xy_{n+1} + (m^2 - n^2)y_n = 0$	
		a la la company de la company	3
3.	a) b)	State and prove mean value theorem. Expand $Sin x$ in a finite series in power of x , with the reminder in Lagrange's form.	3
	c)		2.75
		Examine whether $x^{\frac{1}{x}}$ possesses a maximum or a minimum, and determine the same.	
4.	a)	If $u = \cos^{-1}\left\{(x+y)/(\sqrt{x}+\sqrt{y})\right\}$, then show that	2.75
		$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} + \frac{1}{2}\cot u = 0.$	
	b)	If the tangent at (x_1, y_1) to the curve $x^3 + y^3 = a^3$ meets the curve again in (x_2, y_2) , show that	3
		$\frac{x_2}{x_1} + \frac{y_2}{y_1} + 1 = 0$.	
	c)	Define asymptotes. Find the asymptotes of the curve $x^3 + y^3 = 3axy$.	3
		Define any improvement and	

Part -B

8.75

2.75

Integrate any three of the following:

i)
$$\int \sqrt{\frac{x}{a-x}} dx$$

i)
$$\int \sqrt{\frac{x}{a-x}} dx$$
 ii) $\int \frac{dx}{(2x+1)\sqrt{4x+3}}$

iii)
$$\int \frac{xe^x}{(x+1)^2} dx$$
 iv) $\int \frac{\cos x \, dx}{5 - 3\cos x}$

iv)
$$\int \frac{\cos x \, dx}{5 - 3\cos x}$$

6. a) Evaluate $\int_{0}^{1} x^3 dx$ and $\int_{0}^{1} t^3 dx$ and $\int_{0}^{1} t^3 dx = \int_{0}^{1} t^3 dx = \int_{0}^{$

b) Show that $\int_{0}^{\frac{\pi}{2}} \frac{x \sin x \cos x}{(a^2 \cos^2 x + b^2 \sin^2 x)^2} dx = \frac{\pi}{4ab^2(a+b)}, [a, b > 0].$

c) Evaluate the definite integral $\int_{0}^{1} \frac{\log(1+x)}{1+x^{2}} dx.$

7. a) Find the reduction formula for $\int \sin^n x dx$, and hence show that

 $\int_{0}^{\frac{\pi}{2}} \sin^{n} x \, dx = \frac{(n-1)}{n} \frac{(n-3)}{(n-2)} \dots \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \text{ where } n \text{ is a positive integer.}$

b) If $I_n = \int e^{ax} \cos^n x dx$, prove that

 $I_n = \int \frac{e^{ax} \cos^{n-1} x(a \cos x + n \sin x)}{n^2 + a^2} + \frac{n(n-1)}{n^2 + a^2} I_{n-2}$

2.75 c) If $I_n = \int_{1}^{\frac{\pi}{4}} \tan^n \theta \ d\theta$, Show that $I_n = \frac{1}{n-1} - I_{n-2}$. Hence find the value of $\int_{1}^{\frac{\pi}{4}} \tan^6 x \ dx$.

8. a) Find the area of the quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ between the major and minor axes. b) If s be the length of an arc of $3ay^2 = x(x-a)^2$ measured from the origin to the point (x, y),

show that $3s^2 = 4x^2 + 3y^2$.

2.75 c) Evaluate the integral $\int_{0}^{1} \int_{0}^{1-y^{2}} [(x-1)^{2} + y^{2}] dxdy.$

University of Rajshahi Department of Computer Science and Engineering B.Sc. Engg.(CSE) 1st Year 2nd Semester 2011 Course: MATH 1211 (Differential and Integral Calculus) Time: 4 Hrs. Full Marks: 52.5 [N.B. Answer SIX questions taking at least THREE from each part.]

Part A

1.a) Define function, domain and range of a function. Determine the domain and range of the function $f(\mathbf{x}) = \frac{ \mathbf{x} }{2}$.	3
b) A function $f(x)$ is defined as follows:	2.75
$f(x) = 3 + 2x$ for $-\frac{3}{2} \le x < 0$	
$= 3 - 2x \qquad for \ 0 \le x < \frac{3}{2}$	
$=-3-2x$ for $x \ge \frac{3}{2}$	
Show that $f(x)$ is continuous at $x = 0$ and discontinuous at $= \frac{3}{2}$.	
c) State L' Hospital theorem. Evaluate $\lim_{x\to 0} (sinx)^x$	3
2.a) Differentiate $x^{\sin^{-1}x}$ with respect to $\sin^{-1}x$.	3
b) State Leibnitz's theorem. If $y = e^{a \sin^{-1} x}$, then show that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + \alpha^2)y_n = 0$.	3
c) Suppose that $f(0) = -3$ and $f'(x) \le 5$ for all values of x. How large can $f(2)$ possible be?	2.75
3.a) Define the differentiability of a function $f(x)$ at $x = a$. Give the geometrical interpretation of $\frac{dy}{dx}$.	3
b) Explain $log(1-x)$ in a finite series in powers of x with remainder of Lagrange's form.	2.75
c) Define maxima and minima of a function at a point $x=c$. Find the maximum and minimum values of u where $u=\frac{4}{x}+\frac{36}{y}$ and $x+y=2$.	3
4.a) Define homogeneous function. If $u=\cos^{-1}(\frac{x+y}{\sqrt{x}+\sqrt{y}})$, show that $x\frac{\partial u}{\partial x}+y\frac{\partial u}{\partial y}+\frac{1}{2}\cot u=0$.	3
b) Find the asymptotes of the curve $xy=1$.	2.75
c) Find the condition that the conics $ax^2 + by^2 = 1$ and $a_1x^2 + b_1y^2 = 1$ shall cut orthogonally.	3
Part B	
d of Charles	
	3.75
(i) $\int \frac{e^{m} \tan^{-1} x}{(1+x^{2})^{2}} dx$ (ii) $\int \frac{dx}{13+3\cos x+4\sin x}$ (iii) $\int \frac{11\cos x-16\sin x}{2\cos x+5\sin x} dx$ (iv) $\int \frac{dx}{\cos x(5+3\cos x)}$	
6. Evaluate the following:	3.75
(a) $\int_0^{\pi/2} log sinx dx$ (b) $\lim_{n \to \infty} \left[\frac{1}{\sqrt{n^2 - 1^2}} + \frac{1}{\sqrt{n^2 - 2^2}} + \cdots + \frac{1}{\sqrt{n^2 - (n-1)^2}} \right]$ (c) $\int_0^1 x^3 (1 - x)^3 dx$	
7.a) Show that $\int_0^1 \frac{\log x}{\sqrt{(1-x^2)}} dx = \frac{\pi}{2} \log \frac{1}{2}$.	2.75
-la	3
c) Define Gamma and Beta function. Find the relation between Gamma and Beta function.	3
8.a) Find the area of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$.	3
b) Show that the volume of a right circular cone of height h and base of radius a is $\frac{1}{2}\pi a^2 h$.	
	2.75