Natural Language Processing CSE 325/425

Lecture 17:

- Probabilistic CFG
- Inside probability and algorithm

Motivations

CYK algorithm only finds all parsing trees of a given sentence, and can't

- find probability of a tree;
- tell which tree is more likely than another trees;

Motivations

HMM can only model linear relationship and has difficulty in long-range

dependencies.

Massive houn

plural Pr (9t / 2t-1)

Example: parse "The velocity of the seismic waves rises to ..."

• The singular form of the verb "rise" is attached to "velocity", not its predecessor.

CFG U

PCFG

- Assign probability to each production in a CFG
 - o the probabilities of the rules with the same left-hand-side sum to one.

 \circ Want to find the probability of any derivation $N^j \stackrel{*}{\Rightarrow} w_a \cdots w_b$

$$w_a \cdots w$$

$$\Pr(N^j \stackrel{*}{\Rightarrow} w_a \dots w_b | G)$$

o In particular

$$\Pr(S \stackrel{*}{\Rightarrow} w_a \dots w_b | G)$$

$$P\begin{pmatrix} 1 \\ S \\ 2 \\ NP & 3 \\ VP \\ the man snores \end{pmatrix}$$

A superscript labels the non-terminal A subscript indicates the range of words covered

=
$$P(^{1}S_{13} \rightarrow {^{2}NP_{12}} \ ^{3}VP_{33}, {^{2}NP_{12}} \rightarrow the_{1} \ man_{2}, {^{3}VP_{33}} \rightarrow snores_{3})$$

PCFG

- The probability of a parse tree t for the sentence $w_1 \dots w_m$ given the grammar G is $\Pr(t, w_1 \dots w_m | G) = \Pr(s \leq w_1 \cdots w_m | G)$
- The probability of the sentence $w_1 \dots w_m$ is $\Pr(w_1 \dots w_m | G) = \sum_t \Pr(t, w_1 \dots w_m | G)$

• Properties:

○ Place invariance
$$\forall k \ P(N_{k(k+c)}^j \to \zeta)$$
 is the same

$$P(x) = \sum_{y} P((x,y))$$

○ Context-free
$$P(N_{kl}^j \to \zeta | \text{anything outside } k \text{ through } l) = P(N_{kl}^j \to \zeta)$$

o Ancestor-free
$$P(N_{kl}^j \to \zeta | \text{any ancestor nodes outside } N_{kl}^j) = P(N_{kl}^j \to \zeta)$$

PCFG

Probability of a parsing tree that deriving a sentence:

Example continued:

$$P\left(\begin{array}{c} 1_{S} \\ 2_{NP} \quad 3_{VP} \\ \\ \text{the man snores} \end{array} \right) = P\left(\begin{array}{c} 1_{S} \\ 2_{NP} \quad 3_{VP} \\ \\ \text{the man snores} \end{array} \right)$$

$$= P(^{1}S_{13} \rightarrow ^{2}NP_{12} \quad ^{3}VP_{33}, ^{2}NP_{12} \rightarrow the_{1} \quad man_{2}, ^{3}VP_{33} \rightarrow snores_{3})$$

$$= P(^{1}S_{13} \rightarrow ^{2}NP_{12} \quad ^{3}VP_{33})P(^{2}NP_{12} \rightarrow the_{1} \quad man_{2}|^{1}S_{13} \rightarrow ^{2}NP_{12} \quad ^{3}VP_{33}) \quad \text{undificul prob.}$$

$$= P(^{3}VP_{33} \rightarrow snores_{3}|^{1}S_{13} \rightarrow ^{2}NP_{12} \quad ^{3}VP_{33}, ^{2}NP_{12} \rightarrow the_{1} \quad man_{2}) \quad \text{Ances by}$$

$$= P(^{1}S_{13} \rightarrow ^{2}NP_{12} \quad ^{3}VP_{33})P(^{2}NP_{12} \rightarrow the_{1} \quad man_{2})P(^{3}VP_{33} \rightarrow snores_{3}) \quad \text{free}$$

$$= P(^{1}S_{13} \rightarrow ^{2}NP_{12} \quad ^{3}VP_{33})P(^{2}NP_{12} \rightarrow the_{1} \quad man_{2})P(^{3}VP_{33} \rightarrow snores_{3}) \quad \text{free}$$

$$= P(^{1}S_{13} \rightarrow ^{2}NP_{12} \quad ^{3}VP_{33})P(^{2}NP_{12} \rightarrow the_{1} \quad man_{2})P(^{3}VP_{33} \rightarrow snores_{3}) \quad \text{free}$$

$$= P(^{1}S_{13} \rightarrow ^{2}NP_{12} \quad ^{3}VP_{33})P(^{2}NP_{12} \rightarrow the_{1} \quad man_{2})P(^{3}VP_{33} \rightarrow snores_{3}) \quad \text{free}$$

$$= P(^{1}S_{13} \rightarrow ^{2}NP_{12} \quad ^{3}VP_{33})P(^{2}NP_{12} \rightarrow the_{1} \quad man_{2})P(^{3}VP_{33} \rightarrow snores_{3}) \quad \text{free}$$

$$= P(^{1}S_{13} \rightarrow ^{2}NP_{12} \quad ^{3}VP_{33})P(^{2}NP_{12} \rightarrow the_{1} \quad man_{2})P(^{3}VP_{33} \rightarrow snores_{3}) \quad \text{free}$$

$$= P(^{1}S_{13} \rightarrow ^{2}NP_{12} \quad ^{3}VP_{33})P(^{2}NP_{12} \rightarrow the_{1} \quad man_{2})P(^{3}VP_{33} \rightarrow snores_{3}) \quad \text{free}$$

Three tasks with PCFG

Find the probability of a sentence

$$\Pr(w_1 \dots w_m | G) = \sum_t \Pr(t, w_1 \dots w_m | G)$$

Find the most likely parsing tree

$$t^* = \underset{t}{\operatorname{arg\,max}} \Pr(t|w_1 \dots w_m, G)$$

Learn a PCFG from a training corpus using MLE.

$$G^* = \operatorname*{arg\,max} \Pr(w_1 \dots w_m | G)$$

From HMM to PCFG

- Assuming Chomsky Normal Form of the PCFG
- From HMM to PCFG

Can we generalize a HMM sequence to a PCFG tree?

From HMM to PCFG

- Assuming Chomsky Normal Form of the PCFG
- From HMM to PCFG
- Between HMM and PCFG, there is a grammar called Probabilistic Regular Grammar (PRG): $N^i \rightarrow w^j N^k \text{ or } N^i \rightarrow w^j$

So what do the forward and backward probabilities correspond to on the tree?

yo Outside probability Pr(the , big , N') forward % Outside probability

backward % Inside probability

Pr (brown fox (N')

Inside and outside probabilities

Inside probabilities

 $= P(w_{1m}|N_{1m}^1,G) = \beta_1(1,m)$

Sentence probability derived from a PCFG $P(w_{1m}|G) = P(N^1 \stackrel{*}{\Rightarrow} w_{1m}|G)$

• Base case
$$\beta_j(k,k) = P(w_k|N_{kk}^j,G)$$

$$= P(N^j \to w_k|G) \leftarrow P(FG)$$

- Induction due to CNFCYK with probabilities
- N^{j} N^{r} N^{s} W_{p} W_{d+1} W_{q}

$$\beta_{j}(p,q) = P(w_{pq}|N_{pq}^{j},G)$$

$$= \sum_{r,s} \sum_{d=p}^{q-1} P(w_{pd},N_{pd}^{r},w_{(d+1)q},N_{(d+1)q}^{s}|N_{pq}^{j},G)$$

$$= \sum_{r,s} \sum_{d=p}^{q-1} P(N_{pd}^{r},N_{(d+1)q}^{s}|N_{pq}^{j},G)P(w_{pd}|N_{pq}^{j},N_{pd}^{r},N_{(d+1)q}^{s},G)$$

$$\times P(w_{(d+1)q}|N_{pq}^{j},N_{pd}^{r},N_{(d+1)q}^{s},W_{pd},N_{pd}^{r},G)$$

$$= \sum_{r,s} \sum_{d=p}^{q-1} P(N_{pd}^{r},N_{(d+1)q}^{s}|N_{pq}^{j},G)P(w_{pd}|N_{pd}^{r},G)$$

$$\times P(w_{(d+1)q}|N_{(d+1)q}^{s},G)$$

$$= \sum_{r,s} \sum_{d=p}^{q-1} P(N_{pd}^{j} \rightarrow N_{pd}^{r},N_{(d+1)q}^{s},G)$$

$$FFF_{g}$$

Inside probabilities

Compute inside probabilities using dynamic programming

PP → VP →		1.0 1.0 0.7 0.3 1.0 1.0	NP → NP PP NP → astronome NP → ears NP → saw NP → stars NP → telescopes	ers 0.1 0.18 0.04 0.18	$d=3$ N_{33}^{N}	$= \begin{cases} N_{3J}^{J} \rightarrow N_{3d}^{Y} & N_{(dh)}^{S} \\ N_{3J}^{P} \rightarrow N_{3J}^{P} & N_{4S}^{P} \end{cases}$ $= \begin{cases} N_{3J}^{J} \rightarrow N_{3d}^{Y} & N_{(dh)}^{S} \\ N_{4S}^{P} \rightarrow N_{3J}^{P} & N_{4S}^{P} \end{cases}$	
	1		2	3	4	5	
1	$\beta_{NP} =$	0.1		$\beta_{\rm S} = 0.0126$		$\beta_{\rm S} = 0.0015876$	
2			$\beta_{NP} = 0.04$	$\beta_{\rm VP} = 0.126$		$\beta_{\rm VP} = 0.015876$	- Textbook
		\uparrow	$\beta_{\rm V} = 1.0$				
3			1	$\beta_{\rm NP} = 0.18$		$\beta_{\rm NP} = 0.01296$	FSNLP
4					$\beta_{\rm P} = 1.0$	$\beta_{PP} = 0.18$	Lehigh Lib
5						$\beta_{\rm NP} = 0.18$	eboole
astronomers		nomers	saw	stars	with	ears	613001

HW5: compute cell (1,3)