MATEMATIKA ANGOL NYELVEN

KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

NEMZETI ERŐFORRÁS MINISZTÉRIUM

Instructions to examiners

Formal requirements:

- 1. Mark the paper in **ink, different in colour** from the one used by the candidate. Indicate the errors, incomplete solutions, etc. in the conventional way.
- 2. The first one of the grey rectangles under each problem shows the maximum attainable score on that problem. The **points** given by the examiner are to be entered **in the rectangle** next to that.
- 3. **If the solution is perfect**, it is enough to enter the maximum scores in the appropriate rectangles.
- 4. If the solution is incomplete or incorrect, please indicate the individual **partial scores** in the body of the paper, too.
- 5. Do not assess anything that is written in pencil, except diagrams.

Assessment of content:

- 1. The markscheme may contain more than one solution for some of the problems. If the **solution by the candidate is different**, allocate the points by identifying the parts of the solution equivalent to those of the one given in the markscheme.
- 2. The subtotals in the markscheme can be **further divided**, but the scores awarded should always be whole numbers.
- 3. If it is clear that the reasoning and the final answer are both correct, you may award the maximum score even if the solution is **less detailed** than the one in the markscheme.
- 4. If there is a **calculation error** or inaccuracy in the solution, only take off the points for that part where the error occurs. If the reasoning remains correct and the error is carried forward without changing the nature of the task, the points for the rest of the solution should be awarded.
- 5. In the case of a **principal error**, no points should be awarded at all for that section of the solution, not even for formally correct steps. (These logical sections of the solutions are separated by double lines in the markscheme.) However, if the wrong information based on the principal error is carried forward to the next section or to the next part of the problem and is used correctly there, the maximum score is due for the next part, provided that the error has not changed the nature of the task.
- 6. Where the markscheme shows a **unit** or a **remark** in brackets, the solution should be considered complete without that unit or remark as well.
- 7. If there are more than one different approaches to a problem, assess only the one indicated by the candidate.
- 8. **Do not give extra points** (i.e. more than the maximum score due for the problem or part of problem).
- 9. **Do not take off points** for steps or calculations that contain errors but are not actually used by the candidate in the solution of the problem.
- 10. Assess only two out of the three problems in part B of Paper II. The candidate was requested to indicate in the appropriate square the number of the problem not to be assessed and counted in their total score. Should there be a solution to that problem, it does not need to be marked. If it is not clear which problem the candidate does not want to be assessed, assume automatically that it is the last one in the question paper, and do not assess that problem.

I.

1.		
$A \cap B = \{a; b; d\},$	1 point	The points are only due if
$A \cup B = \{a; b; c; d; e; f\}$	1 point	there is no error.
Total:	2 points	

2.		
The group has 12 members.	1 point	
132 SMS texts were sent altogether.	1 point	
Total:	2 points	Award the 2 points for a bald statement of the correct answer.

3.		
a = -2	1 point	
$b = \frac{1}{2}$	2 points	
Total:	3 points	

4.			
The expression is meaningful if $x > -3.5$.		2 points	I point at most if equality is allowed or rearrangement is wrong.
Т	Total:	2 points	

5.		
a > 1	2 points	<i>I point for a</i> \geq 1.
Total:	2 points	

6.		
The solutions of the equation in the set A are -1 and 0 .	2 points	I point for each correct value. Take off I mark for every incorrect answer. (Deductions should not result in a negative score.)
Total:	2 points	

7.		
(By definition of trigonometric functions,) $BC = \sin \alpha$,	1 point	$AC = \cos \alpha \text{ (by def.)}$
AC = BC,	1 point	$\cos \alpha = \sin \alpha$
therefore $\alpha = 45^{\circ}$.	1 point	
Total:	3 points	

8.	
I. false;	1 point
II. true;	1 point
III. true;	1 point
IV. false.	1 point
Total:	4 points

9.		
$b = \sqrt[3]{\frac{c}{d}}$ or $b = \left(\frac{c}{d}\right)^{\frac{1}{3}}$.	2 points	I point may be awarded if one identity is used incorrectly. 0 points for more than one error.
Total:	2 points	

10.		
Correct formula.	2 points	0 points for a graph without a formula.
Correct maximum point(s).	1 point	
Total:	3 points	

11.		
Appropriate graph drawn.	2 points	
Total:	2 points	

12.		
The centre lies on the perpendicular bisector of the chord,	1 point	A correct representation of these conditions in the
so its first coordinate is 4.	1 point	diagram is accepted as explanation.
The centre is $O(4; 4)$.	1 point	
Total:	3 points	

Stating u = v: 1 point;

setting up equations $(1-u)^2 + (-u)^2 = r^2$ and $(7-u)^2 + (-u)^2 = r^2$: 1 point; solving the equations to get u=4 and O(4; 4): 1 point.

II/A.

13. a)		
$12x - 6 \cdot (x - 1) > 3 \cdot (x - 3) - 4 \cdot (x - 2)$	1 point	
12x - 6x + 6 > 3x - 9 - 4x + 8	1 point	
6x+6>-x-1	1 point	
7x > -7 that is $x > -1$	1 point	
	1 point	
Total:	5 points	

13. b)				
$-3x^2 \le -3$	1 point			
$x^2 \ge 1$	2 points	These 2 points cannot be divided further.		
(The set of solutions of the inequality is the set of numbers x , such that) $x \ge 1$,	1 point			
or $x \le -1$.	1 point			
0 1	2 points	The 1 point for each part is only due if the endpoint is correct.		
Total:	7 points			

1	4.	a)
_	т.	a,

$2.88 \text{ dl} = 288 \text{ cm}^3$.	1 point	
The base area of the tetrahedron (pyramid) is		These 2 points are also
$T_b = \frac{x^2}{2}$, (the height is x ,)	1 point	of the pyramid is
and its volume is $V = \frac{x^3}{6}$.	1 point	obtained from a different reasoning.
$288 = \frac{x^3}{6}$, hence	1 point	
$x^3 = 1728; x = 12.$	1 point	
The sides of triangle <i>ABD</i> are all equal,	1 point	
and their length is $x \cdot \sqrt{2} \approx 16.97 \approx 17$ cm.	1 point	
The edges of the tetrahedron (pyramid) are 12 cm and 17 cm long.	1 point	
		Award at most 6 points if
Total:	8 points	the result is wrong owing
		to incorrect conversion
		of units.

14. b)		
The area of each of the congruent right-angled triangles is $T_{I} = \frac{144}{2} = 72 \text{ (cm}^{2}\text{)}.$	1 point	
The area of the fourth face is $T_2 = \frac{2x^2 \cdot \sqrt{3}}{4} \approx$	1 point	
$\approx 124.7 \text{ (cm}^2).$	1 point	
The surface area of the carton is $A = 3T_1 + T_2 = 340.7 \approx 341 \text{ cm}^2$.	1 point	Calculating with the rounded value of 17 cm, $T_2 = 125.1 \text{ cm}^2$, and the surface area is $A \approx 341 \text{ cm}^2$.
Total:	4 points	

15. a) Solution 1.		
(Every outcome of the pairs of rolls is equally probable, so the classical model is applicable.) There are $6^2 = 36$ outcomes for a round altogether.	2 points	The 2 points are also due if these ideas are only reflected by the solution.
There are 2 ways to roll the first time and 4 ways the second time,	1 point	
thus there are $2.4 = 8$ "favourable" pairs of rolls,	1 point	
and $\frac{8}{36} \left(= \frac{2}{9} \approx 0.22 \right)$ is the probability of scoring 1 point in a round, and scoring it in the first roll.	1 point	
Total:	5 points	

15. a) Solution 2.		
(The first and second rolls are independent.)		
The probability of scoring a point in the first roll is		
2	1 point	
6'	1	
and the probability of not scoring in the second roll		
$\frac{4}{100}$.	1 point	
$\frac{18}{6}$.	_	
The probability in question is $\frac{2}{6} \cdot \frac{4}{6}$,	2 points	
	- points	
that is $\frac{8}{36} = \left(\frac{2}{9} = 0.22\right)$.	1 point	
Total:	5 points	

15. b)		
Exactly one point may be scored by scoring in the		The 2 points are also due
first roll and not scoring in the second roll, or the	2 points	if this idea is only
other way round.		reflected by the solution.
This is $2 \cdot 2 \cdot 4 = 16$ cases altogether.	1 point	
2 points are scored in $2 \cdot 2 = 4$ cases.	1 point	
Thus the probability of scoring at least one point in a round is $\frac{20}{36} = \frac{5}{9}$.	1 point	At least one point is scored in 20 out of the 36 possible cases.
The probability of not scoring any point is $1 - \frac{5}{9} = \frac{4}{9}$,	1 point	No points are scored in 16 cases.
therefore the first event is more probable.	1 point	
Total:	7 points	

15. a) and b), another method

The **first row of the table shows** the possible outcomes of the **first roll**, and **the first column shows** those of **the second roll**. The fields of the table represent the total scores for the **round**. There are 36 equally probable cases, the combinatorial model is applicable.

	1	2	3	4	5	6
1	0	0	0			0
2	0	0	0			0
3	0	0	0			0
4	1	1	1	2	2	1
5	1	1	1	2	2	1
6	0	0	0			0

Table filled out correctly.	6 points	
marks the fields representing the event a):		
the probability in question is $\frac{8}{36}$.	2 points	
b) The probability of not scoring any point		
(fields marked \square) is $\frac{16}{36}$.	4 maints	
This is less than $\frac{1}{2}$, therefore the probability of	4 points	
scoring at least one point is larger.		
Total:	12 points	

II/B.

16. a)				
$a_8 = a_1 + 7d$, where d is the common difference of				
the sequence.	1 point			
14 = -7 + 7d				
d=3.	1 point			
$660 \ge S_n$	1 point			
$S_n = \frac{2a_1 + (n-1) \cdot d}{2} \cdot n = \frac{-14 + 3 \cdot (n-1)}{2} \cdot n$	1 point			
$3n^2 - 17n - 1320 \le 0.$	1 point	These 7 points are also due		
The quadratic expression on the left-hand side has a minimum $(x = 2 > 0) \text{ or reference to a graph, etc.}$	1 point	if the candidate does not state (and manipulate) an		
its zeros are 24 and $-\frac{55}{3}$ (which is negative).	1 point	inequality but explains that the solutions are the positive integers not greater than 24.		
$\left(-\frac{55}{3} < 0 < \right) n \le 24$	1 point	inan 24.		
Since in this problem n is a positive integer, the possible values of n are 1, 2,, 23, 24.	1 point			
Total:	9 points			
A correct answer based on investigating S_1 , S_2 ,, S_{24} , S_{25} is also worth full mark.				
Award 7 points if S_{25} is not considered or there is no reference to monotonicity.				

Award 4 points if only an equation is used and the answer is n = 24.

16. b)		
$a_4 = a_1 \cdot q^3$, where q is the common ratio of the sequence. $-189 = -7 \cdot q^3$	1 point	
q=3.	1 point	
$S_n = a_1 \frac{q^n - 1}{q - 1} = -7 \cdot \frac{3^n - 1}{2}$	1 point	
$-68887 = -7 \cdot \frac{3^n - 1}{2}$	1 point	
$3^n = 19 683$	2 points	
The exponential function is one-to-one / strictly monotonic,	1 point	Accept any other valid explanation.
n=9.	1 point	
Total:	8 points	

17. a)		
The area of the regular triangle of side <i>a</i> is		
$t_1 = \frac{a^2 \sqrt{3}}{4} \approx 2.7 (\text{cm}^2)$.	1 point	
The region above the regular triangle is a circular		
segment intercepted by a central angle of 60° of the circle.	1 point	
Its area is		
$t_2 = \frac{a^2 \pi}{6} - \frac{a^2 \sqrt{3}}{4} = \frac{a^2}{2} \cdot \left(\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right) \approx 0.6 \text{ (cm}^2).$	1 point	
The uppermost region is a "crescent", its area is obtained by subtracting the area of the circular		The 1 point is also due if
segment from that of the semicircle of radius $\frac{a}{2}$.	1 point	this idea is only reflected by the solution.
$t_3 = \frac{1}{2} \cdot \left(\frac{a}{2}\right)^2 \pi - t_2 = \frac{a^2 \pi}{8} - \frac{a^2}{2} \left(\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right) = .$	1 point	
$= \frac{a^2}{2} \left(\frac{\pi}{4} - \frac{\pi}{3} + \frac{\sqrt{3}}{2} \right) \approx 1.9 (\text{cm}^2) .$	1 point	
Total:	6 points	

17 h) Salution 1		
17. b) Solution 1.		
If condition (1) is considered only, the crescent	1 point	
may have four different colours,	F	
then, also because of (1), the circular segment may	1 point	
only have three colours,	1 point	
and the regular triangle may also have three		
colours since it may be any colour different from	1 point	
that of the circular segment.		
Thus there are $4 \cdot 3 \cdot 3 = 36$ different ways to meet	1	
condition (1).	1 point	
From these 36 cases, the number of cases violating	1	
condition (2) should be subtracted.	1 point	
The number of cases when three colours are used		
and a red region lies next to a yellow region is	2 points	
$4 \cdot 2 = 8$	•	
since there are 4 ways to place the red and yellow		
regions next to each other, and the third region	1 point	
may get two colours in each case.	1	
There are two ways to use red and yellow only.	2 ponts	
Thus the number of ways to meet both conditions		
is $36 - (8 + 2) = 26$.	1 point	
Total:	11 points	

17. b) Solution 2.				
If red and yellow are both used in the colouring, then it follows from (2) that they must be applied to the crescent and the regular triangle.	1 point	Award I point for a correct answer without		
Then the circular segment may be green or blue. That is $2 \cdot 2 = 4$ possibilities.	1 point	an explanation.		
If red is not used at all, then there are two cases: 1. The remaining three colours are all used. Then the number of colourings is 3!= 6.	1 point			
2. Only two out of the remaining three colours are used. These two colours may be selected in three ways,	1 point			
and it follows from (1) that two different badges can be made with the two colours chosen.	1 point	Award 1 point for a correct answer without		
Thus the number of possibilities in this case is $3 \cdot 2 = 6$.	1 point			
Altogether, the number of colourings not containing red is therefore $6+6=12$.	1 point			
The number of colourings not containing yellow is also 12.	1 point	Award 3 point out of these 4 if the candidate		
These include two that do not contain either of the colours red and yellow.	1 point	does not consider the cases counted twice.		
Those two cases have been counted above, so the number of new cases not using yellow is 10.	1 point			
Therefore the number of all cases that meet both conditions is $4+12+10=26$.	1 point			
Total:	11 points			

17. b) Solution 3		
If condition (1) is considered only, there are		
$4 \cdot 3 \cdot 2 = 24$ ways to colour the badge with exactly	2 points	
three of the four colours.		
If condition (1) is considered only, there are		
$\binom{4}{2}$ · 2 = 12 ways to colour it with exactly two	2 points	
colours.		
This is 36 cases altogether. The number of cases not	1 point	
meeting condition (2) should be subtracted.	1 point	
The number of ways to use three colours with a red	2 points	
region lying next to a yellow region is $4 \cdot 2 = 8$,	1	
since there are four ways to place the red and yellow		
regions, next to each other, and the third region may	1 point	
get two colours in each case.		
There are two ways to use red and yellow only.	2 points	
Thus the number of ways to meet both conditions is	1	
36 - (8 + 2) = 26.	1 point	
Total:	11 points	

Remark. If the solution is sought by listing the individual cases:

- 11 points for a systematic list of all cases;
- award at most 9 points if the candidate lists all 26 colourings in some way but the list does not make it clear that there are no further colourings possible;
- at most 3 points if one of the conditions is ignored;
- at most 5 points if the cases listed are all good but the list is incomplete.

18. a)		
The sum of the elements of the sample of 25 is 101 400.	1 point	
The mean is $\frac{101400}{25}$ =	1 point	
= 4056 (forints).	1 point	
Total:	3 points	

Monthly expenses Number of families	The frequent Forints:	ncy table	of the	clas	ses o	of rai	nge 1	000		
A correct diagram with the axes interchanged is also accepted. The 2 points are also due if a correct graph (correct axes, correct units on axes) is made with the wrong data		in forints 1-100 1001-200 2001-300 3001-400 4001-500 5001-600 6001-700 7001-800	8 00 00 00 00 00 00 00 00			1 2 5 6 5 3 2			3 points	1 or 2 entries are wrong, 1 point is due for 3 or 4 errors, no points
	6	1001-2000	3001-4000	4001-5000	5001-6000	6001-7000	7001-8000	8001-9000	2 points	the axes interchanged is also accepted. The 2 points are also due if a correct graph (correct axes, correct units on axes) is made with the wrong data

18. c)		
The new mean with the two extremes omitted is $\frac{91900}{23} \approx$	1 point	
\approx 3996(forints).	1 point	
Since $\frac{3996}{4056} \approx 0.9852$,	1 point	
the mean decreased by $\approx 1.48\%$.	1 point	Accept 1.49%, too.
The smallest item of the new list of data is 1200 forints and the largest item is 6800 forints,	1 point	
thus the range is 5600 forints.	1 point	
Total:	6 points	

18. d)		
The new mean is $\frac{25 \cdot 4056 + (4056 - 1000) + (4056 + 1000)}{27} =$	2 point	Correct numerator: 1 point, correct denominator: 1 point.
$=\frac{27\cdot 4056}{27}=4056.$	1 point	
Total:	3 points	