

北京航空航天大学

实 验 报 告

实验名称:	密立根油滴实验
-------	---------

姓	名: 19415	_
同组	组者:	_
日	期:	_
评	分:	

-. 实验重点

- ◎ 肾月轻立根油滴实验思 想.
- @ 用静态平衡法测量基本电荷的大小、验证电防量子性
- ③ 培养产革的科学实验方法、学会对处器的调整,油滴的选定、跟游,测量 以及数据自处建、

二. 冥弦原理

F海=袁TR3月至9.

0 未加电压时,油滴匀速下降时: 由斯·托克斯定律。fr=617ayVg 这对有。 6πay Vg = mg (1)

◎ 加3电压,油滴匀速上升时:

且 $E = \frac{U}{d}$

$$2 - 40$$
 代入(1) 得: 油滴半径 $\alpha = (\frac{97 \text{ Vg}}{2 \text{ Pg}})^{1/2}$ (5) $2 - \frac{1}{1 + \frac{1}{Pa}}$ (b为修正常数, P为坚气压强, a为 T丽半红).

实验时取油商与逐上升和下降距离相等,均为 l ,测出油商与速下降时 tg, 引速上升时间 te

$$|v| \quad \forall g = \frac{l}{tg} \quad \forall e = \frac{l}{te}$$
 (7)

$$\frac{18\pi}{\sqrt{2}} \left[\frac{18\pi}{(1+\frac{b}{Pa})}\right]^{\frac{1}{2}} \frac{d}{u} \left(\frac{1}{te} + \frac{1}{tg}\right) \left(\frac{1}{tg}\right)^{\frac{1}{2}}$$

取
$$K = \frac{18\pi d}{\sqrt{2\rho g}} \left[\frac{gl}{(l+\frac{1}{16})} \right]^{\frac{3}{2}}$$
 , 以为匀速上4 財提供电压。

得. & = K
$$\left(\frac{1}{t_e} + \frac{1}{t_g}\right) \left(\frac{1}{t_g}\right)^{1/2} \frac{1}{U}$$
 (8)

(只要求)

对 若调节平行核椒润电压、使油滴不动,此时所加电压U为平衡电压 , ve =o , te→+20

$$P: & = \frac{18\pi}{\sqrt{2}\sqrt{9}} \left[\frac{yl}{tg(1+\frac{b}{pa})} \right]^{\frac{3}{2}} \frac{d}{dl}$$

$$\Delta n = 0.25 mm \times 6$$

$$2 = (-2) = 1.5 mm$$

三. 仪器介绍,

油滴盆, coD 就显微镜、电路箱、玻璃器 OM99 ccD 微机密记根油滴仪

四.实验内容

- 1. 独被油桶仪调整
- 2.测量练引
 - 心选择油煮
 - úi) 控制油滴
 - 1111 沙量油角
- 3. 静态法 测量油滴电荷
- 4. 动态注测量 油滴电荷

立.数据

原始数据:

l=1d= 0.25 mm x 6= 1.5 mm

	र भिषि	1	,		TOMM		
编号	作压(v) (图别) 1	١.	3	4	5	平均
1	118	21.93	23.17	22.79	22.28	23.19	22.671
2	212	23.22	23.65	23.38	23.74	23.97	23.595
3.	278	20.86	20.40	20.41	20.28	21-33	20.658
4.	196	25.50	24.85	24.93	25.13	24.77	25.056
5.	181	17.17	17.08	17.40	16.85	16.96	17.082
6	112	22.87	22.23	22.17	22.35	22.45	22.416
7	250	16.88	16.55	16.58	16.76	16.60	16.674
8	115	20.10	18.90	20.19	20.01	18.75-	191.800
9	133	11.34	11.22	11.33	11.23	11.30	11.28/2
10.	154	22.63	24.5	24.07	23.5/	23.72	2 3.688

数据处理:

3 =
$$ne = \frac{181}{\sqrt{2\rho_g}} \cdot \left[\frac{12}{t_g(H\frac{b}{pa})} \right]^{\frac{1}{2}} \frac{d}{dy}$$

$$= 9.2787207x/6 \times d \times \left(\frac{1}{t_g(H\frac{b}{pa})} \right)^{\frac{1}{2}}$$

$$= 9.2787207x/6 \times d \times \left(\frac{1}{t_g(H\frac{b}{pa})} \right)^{\frac{1}{2}}$$

$$= 9.2787207x/6 \times d \times \left(\frac{1}{t_g(H\frac{b}{pa})} \right)^{\frac{1}{2}}$$
代入计算:
$$e_0 = 1.602176565x/6^{-18}$$

$$\frac{e}{e} = \frac{\sum_{i=1}^{n=1} e_{i}}{10} = 1.5889 \times 10^{-18} \qquad 1 = \left| \frac{\bar{e} - e_{o}}{e_{o}} \right| = 0.8274\%$$
不确定度计算: $U_{o}(e) = \sqrt{\left| \frac{\bar{e}^{3} - \bar{e}^{2}}{6 - 1} \right|} = 2.3515 \times 10^{-21}$

$$U_{o}(e) = \sqrt{U_{o}(e)^{2} + U_{o}(e)^{2}} = 2.3515 \times 10^{-21}$$

$$U_{o}(e) = \sqrt{U_{o}(e)^{2} + U_{o}(e)^{2}} = 2.3515 \times 10^{-21}$$

$$U_{o}(e) = \sqrt{U_{o}(e)^{2} + U_{o}(e)^{2}} = 2.3515 \times 10^{-21}$$

$$U_{o}(e) = \sqrt{U_{o}(e)^{2} + U_{o}(e)^{2}} = 2.3515 \times 10^{-21}$$

$$U_{o}(e) = \sqrt{U_{o}(e)^{2} + U_{o}(e)^{2}} = 2.3515 \times 10^{-21}$$

2.作图法:

作图得:

由表列和 电荷约为 $e_0 = 1.607 \times 10^{-18} C$ 的整数性,体现3带电量的不连续性, 云电荷 $\overline{e} = \frac{1.64 \times 10^{-18} C}{n} = 1.64 \times 10^{-18} C$ $y = \left| \frac{\overline{e} - e_0}{e_0} \right| = 2.18\%$ 误差在含理 范围内。