Modelos lineales

Armando Ocampo

Librerias de trabajo

Antes de comenzar a trabajar, te recomiendo abrir las siguientes librerias. Si no cuentas con alguna de ellas es posible instalarla mediante la función *install.packages()*

```
library(readr)
library(dplyr)
library(corrplot)
library(ggplot2)
library(scales)
library(ggpubr)
library(broom)
```

Asimismo, se agregan dos conjuntos de datos. Los cuales debes descargar y guardar en la carpeta clean_data.

Modelos lineales

Para este apartado utilizaremos el conjunto de datos de vacunación obtenido del portal **Our World in Data**, el cual se conforma por información de 171 países, agregando las variables esperanza de vida, producto interno bruto per capita y porcentaje de vacunación de 13 inmunizaciones. Este dataset tiene actualización al 31 de diciembre de 2019. El formato es un archivo de valores separados por coma (comma separate values, csv). Antes de comenzar, lo llamaremos a nuestro ambiente de trabajo.

```
vacunas_df <- read_csv('../data/dataset_vacunas.csv')</pre>
```

Para facilitar el uso de las variables del conjunto de datos utilizaremos la función attach() de la paquetería base. Esta permite que cada variable del dataset se vuelva un vector independiente, sin saturar la memoria del ambiente.

```
attach(vacunas_df)
```

Los modelos lineales describen la relación de la variable respuesta (dependiente) y la(s) variable(s) explicativa(s) (independiente). Esta relación puede ser positiva, negativa o estar ausente. En R, este tipo de modelos se realiza mediante la función lm() de la paquetería stats. Los argumentos que se colocan son los siguientes. $formula = y_x$, describe la relación de la variable "y" con la variable "x" <math>(yx), este elemento indica, en medida que x explica y). El siguiente argumento, data = detalla el conjunto de datos a utilizar. En el siguiente ejemplo se creará un modelo lineal que exlique la relación de la esperanza de vida con el producto interno bruto en el conjunto de datos de vacunas.

```
gdp_vs_life <- lm(Life_expectancy~GDP, data = vacunas_df)</pre>
```

Para extraer la información del modelo se utilizan las funciones print(), summary() y tidy().

```
summary(gdp_vs_life)
```

```
##
## Call:
## lm(formula = Life_expectancy ~ GDP, data = vacunas_df)
```

```
##
## Residuals:
##
       Min
                1Q
                    Median
                                30
                                       Max
  -15.901
           -3.883
                     1.317
                             4.144
                                      8.623
##
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
  (Intercept) 6.756e+01 5.798e-01
##
                                     116.53
                                               <2e-16 ***
##
  GDP
               2.485e-04 1.962e-05
                                       12.66
                                               <2e-16 ***
##
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 5.386 on 169 degrees of freedom
## Multiple R-squared: 0.4869, Adjusted R-squared: 0.4839
## F-statistic: 160.4 on 1 and 169 DF, p-value: < 2.2e-16
confint(gdp_vs_life)
##
                      2.5 %
                                  97.5 %
## (Intercept) 6.641799e+01 6.870703e+01
               2.097573e-04 2.872285e-04
tidy(gdp_vs_life)
## # A tibble: 2 x 5
##
     term
                  estimate std.error statistic
                                                  p.value
##
     <chr>>
                     <dbl>
                               <dbl>
                                          <dbl>
                                                    <dbl>
## 1 (Intercept) 67.6
                           0.580
                                          117.
                                                2.30e-163
## 2 GDP
                  0.000248 0.0000196
                                           12.7 2.83e- 26
```

Además de los estadísticos de confianza, estas funciones generan los coeficientes que permiten generar la función que explica el modelo. Proporcionando la intercepción con el eje de las "y", y la relación de entre variables.

De esta manera obtenemos la siguiente fórmula y = (0.000248)x + 67.6. Posteriormente, podemos graficar el modelo. Para esto generaremos un gráfico de dispersión en la paquetería ggplot2, agregando la función $geom_smooth(method = 'glm')$, este argumento crea un modelo lineal generalizado.

```
ggplot(vacunas_df, aes(x = GDP, y = Life_expectancy)) +
  geom_point()+
  geom_smooth(method = 'glm')+
  xlab('Producto Interno Bruto')+
  ylab('Esperanza de vida')+
  theme_bw()
```

'geom_smooth()' using formula = 'y ~ x'

