Fairness, equality, and power in algorithmic decision making

Rediet Abebe Maximilian Kasy

May 2020

Introduction

- Public debate and the computer science literature:
 Fairness of algorithms, understood as the absence of discrimination.
- We argue: Leading definitions of fairness have three limitations:
 - 1. They legitimize inequalities justified by "merit."
 - 2. They are narrowly bracketed; only consider differences of treatment within the algorithm.
 - 3. They only consider between-group differences.
- Two alternative perspectives:
 - 1. What is the causal impact of the introduction of an algorithm on **inequality**?
 - 2. Who has the **power** to pick the objective function of an algorithm?

Fairness in algorithmic decision making - Setup

• Treatment W, treatment return M (heterogeneous), treatment cost c. Decision maker's objective

$$\mu = E[W \cdot (M-c)].$$

- All expectations denote averages across individuals (not uncertainty).
- M is unobserved, but predictable based on features X. For m(x) = E[M|X = x], the optimal policy is

$$w^*(x) = \mathbf{1}(m(X) > c).$$

Examples

- Bail setting for defendants based on predicted recidivism.
- Screening of job candidates based on predicted performance.
- Consumer credit based on predicted repayment.
- Screening of tenants for housing based on predicted payment risk.
- Admission to schools based on standardized tests.

Definitions of fairness

- Most definitions depend on three ingredients.
 - 1. Treatment W (job, credit, incarceration, school admission).
 - 2. A notion of merit M (marginal product, credit default, recidivism, test performance).
 - 3. Protected categories A (ethnicity, gender).
- I will focus, for specificity, on the following **definition of fairness**:

$$\pi = E[M|W = 1, A = 1] - E[M|W = 1, A = 0] = 0$$

"Average merit, among the treated, does not vary across the groups a."

This is called "predictive parity" in machine learning, the "hit rate test" for "taste based discrimination" in economics.

• "Fairness in machine learning" literature: Constrained optimization.

$$w^*(\cdot) = \underset{w(\cdot)}{\operatorname{argmax}} E[w(X) \cdot (m(X) - c)]$$
 subject to $\pi = 0$.

Fairness and \mathcal{D} 's objective

Observation

Suppose that

- 1. m(X) = M (perfect predictability), and
- 2. $w^*(x) = \mathbf{1}(m(X) > c)$ (unconstrained maximization of \mathcal{D} 's objective μ).

Then $w^*(x)$ satisfies predictive parity, i.e., $\pi = 0$.

In words:

- If \mathscr{D} is a firm that is maximizing profits
- and has perfect surveillance capacity
- then everything is fair by assumption
- no matter how unequal the outcomes within and across groups!
- Only deviations from profit-maximization are "unfair."

Reasons for bias

1. Preference-based discrimination.

The decision maker is maximizing some objective other than μ .

2. Mis-measurement and biased beliefs.

Due to bias of past data, $m(X) \neq E[M|X]$.

3. Statistical discrimination.

Even if $w^*(\cdot) = \operatorname{argmax} \pi$ and m(X) = E[M|X],

 $w^*(\cdot)$ might violate fairness if X does not perfectly predict M.

Three limitations of "fairness" perspectives

- 1. They legitimize and perpetuate **inequalities justified by "merit."** Where does inequality in *M* come from?
- They are narrowly bracketed.
 Inequality in W in the algorithm,
 instead of some outcomes Y in a wider population
- Fairness-based perspectives focus on categories (protected groups) and ignore within-group inequality.
- \Rightarrow We consider the impact on inequality or welfare as an alternative.

Three limitations of "fairness" perspectives

- 1. They legitimize and perpetuate **inequalities justified by "merit."** Where does inequality in *M* come from?
- They are narrowly bracketed.
 Inequality in W in the algorithm,
 instead of some outcomes Y in a wider population.
- Fairness-based perspectives focus on categories (protected groups) and ignore within-group inequality.
- \Rightarrow We consider the impact on inequality or welfare as an alternative.

Three limitations of "fairness" perspectives

- 1. They legitimize and perpetuate **inequalities justified by "merit."** Where does inequality in *M* come from?
- They are narrowly bracketed.
 Inequality in W in the algorithm,
 instead of some outcomes Y in a wider population.
- 3. Fairness-based perspectives **focus on categories** (protected groups) and ignore within-group inequality.
- \Rightarrow We consider the impact on inequality or welfare as an alternative.

Fairness

Inequality

Power

Examples

Case study

The impact on inequality or welfare as an alternative

Outcomes are determined by the potential outcome equation

$$Y = W \cdot Y^1 + (1 - W) \cdot Y^0.$$

• The realized outcome distribution is given by

$$p_{Y,X}(y,x) = \int \left[p_{Y^0|X}(y,x) + w(x) \cdot \left(p_{Y^1|X}(y,x) - p_{Y^0|X}(y,x) \right) \right] p_X(x) dx.$$

• What is the impact of $w(\cdot)$ on a **statistic** ν ?

$$\nu = \nu(p_{Y,X}).$$

- Examples:
 - Variance Var(Y),
 - "welfare" $E[Y^{\gamma}]$,
 - between-group inequality E[Y|A=1] E[Y|A=0].

Influence function approximation of the statistic u

$$\nu(p_{Y,X}) - \nu(p_{Y,X}^*) \approx E[IF(Y,X)],$$

- IF(Y,X) is the influence function of $\nu(p_{Y,X})$.
- The expectation averages over the distribution $p_{Y,X}$.
- Examples:

$$\begin{split} \nu &= E[Y] & IF = Y - E[Y] \\ \nu &= \operatorname{Var}(Y) & IF = (Y - E[Y])^2 - \operatorname{Var}(Y) \\ \nu &= E[Y|A=1] - E[Y|A=0] & IF = Y \cdot \left(\frac{A}{E[A]} - \frac{1-A}{1-E[A]}\right). \end{split}$$

The impact of marginal policy changes on profits, fairness, and inequality

Proposition

Consider a family of assignment policies $w(x) = w^*(x) + \epsilon \cdot dw(x)$. Then

$$d\mu = E[dw(X) \cdot I(X)], \quad d\pi = E[dw(X) \cdot p(X)], \quad d\nu = E[dw(X) \cdot n(X)],$$

where

$$I(X) = E[M|X = x] - c,$$

$$p(X) = E\left[(M - E[M|W = 1, A = 1]) \cdot \frac{A}{E[WA]} - (M - E[M|W = 1, A = 0]) \cdot \frac{(1 - A)}{E[W(1 - A)]} \middle| X = x\right],$$

$$n(x) = E\left[IF(Y^{1}, x) - IF(Y^{0}, x)|X = x\right].$$
(1)

Power

- Recap:
 - 1. Fairness: Critique the unequal treatment of individuals i who are of the same merit M. Merit is defined in terms of \mathcal{D} 's objective.
 - 2. Equality: Causal impact of an algorithm on the distribution of relevant outcomes Y across individuals i more generally.
- Elephant in the room:
 - Who is on the other side of the algorithm?
 - who gets to be the decision maker \mathscr{D} who gets to pick the objective function μ ?
- Political economy perspective:
 - Ownership of the means of prediction.
 - Data and algorithms.

Implied welfare weights

- What welfare weights would rationalize actually chosen policies as optimal?
- That is, in who's interest are decisions being made?

Corollary

Suppose that welfare weights are a function of the observable features X, and that there is again a cost of treatment c. A given assignment rule $w(\cdot)$ is a solution to the problem

$$\underset{w(\cdot)}{\operatorname{argmax}} E[w(X) \cdot (\omega(X) \cdot E[Y^1 - Y^0 | X] - c)]$$

if and only if

$$w(x) = 1 \Rightarrow \omega(X) > c/E[Y^1 - Y^0|X])$$

$$w(x) = 0 \Rightarrow \omega(X) < c/E[Y^1 - Y^0|X])$$

$$w(x) \in]0,1[\Rightarrow \omega(X) = c/E[Y^1 - Y^0|X]).$$

Fairness

Inequality

Power

Examples

Case study

Example of limitation 1: Improvement in the predictability of merit.

- Limitation 1: Fairness legitimizes inequalities justified by "merit."
- Assumptions:
 - Scenario a: The decisionmaker only observes A.
 - Scenario b: They can perfectly predict (observe) M based on X.
 - Y = W, M is binary with $P(M = 1|A = a) = p^a$, where $0 < c < p^1 < p^0$.
- Under these assumptions

$$W^{a} = \mathbf{1}(E[M|A] > c) = 1,$$
 $W^{b} = \mathbf{1}(E[M|X] > c) = M.$

- Consequences:
 - The policy a is unfair, the policy b is fair. $\pi_a = p^1 p^0$, $\pi_b = 0$.
 - Inequality of outcomes has increased.

$$Var_a(Y) = 0,$$
 $Var_b(Y) = E[M](1 - E[M]) > 0.$

• Expected welfare $E[Y^{\gamma}]$ has decreased.

$$E_a[Y^{\gamma}] = 1,$$
 $E_b[Y^{\gamma}] = E[M] < 1.$

Example of limitation 2: A reform that abolishes affirmative action.

- Limitation 2: Narrow bracketing. Inequality in treatment W, instead of outcomes Y.
- Assumptions:
 - Scenario a: The decisionmaker receives a subsidy of 1 for hiring members of the group A=1.
 - Scenario b: They subsidy is abolished
 - (M, A) is uniformly distributed on $\{0, 1\}^2$, M is perfectly observable, 0 < c < 1.
 - Potential outcomes are given by $Y^w = (1 A) + w$.
- Under these assumptions

$$W^a = \mathbf{1}(M + A \ge 1), \qquad W^b = M.$$

- Consequences:
 - The policy a is unfair, the policy b is fair. $\pi_a = -.5$, $\pi_b = 0$.
 - Inequality of outcomes has increased.

$$Var_a(Y) = 3/16,$$
 $Var_b(Y) = 1/2,$

• Expected welfare $E[Y^{\gamma}]$ has decreased.

$$E_a[Y^{\gamma}] = .75 + .25 \cdot 2^{\gamma},$$
 $E_b[Y^{\gamma}] = .5 + .25 \cdot 2^{\gamma}.$

Example of limitation 3: A reform that mandates fairness.

- Limitation 3: Fairness ignores within-group inequality.
- Assumptions:
 - Scenario a: The decisionmaker is unconstrained.
 - Scenario b: They decisionmaker has to maintain fairness, $\pi = 0$.
 - P(A = 1) = .5, c = .7,

$$M|A = 1 \sim Unif(\{0, 1, 2, 3\})$$
 $M|A = 0 \sim Unif(\{1, 2\}).$

- Potential outcomes are given by $Y^w = M + w$.
- Under these assumptions

$$W^a = \mathbf{1}(M \ge 1),$$
 $W^b = \mathbf{1}(M + A \ge 2).$

- Consequences:
 - The policy a is unfair, the policy b is fair. $\pi_a = .5$, $\pi_b = 0$.
 - Inequality of outcomes has increased.

$$Var_a(Y) = 1.234375,$$
 $Var_b(Y) = 2.359375,$

• Expected welfare $E[Y^{\gamma}]$ has decreased. For $\gamma = .5$,

$$E_a[Y^{\gamma}] = 1.43,$$
 $E_b[Y^{\gamma}] = 1.08.$

Fairness

Inequality

Power

Examples

Case study

Case study

- Compas risk score data for recidivism.
- From Pro-Publica's reporting on algorithmic discrimination in sentencing.

Mapping our setup to these data:

- A: race (Black or White),
- W: risk score exceeding 4,
- M: recidivism within two years,
- Y: jail time,
- X: race, sex, age, juvenile counts of misdemeanors, fellonies, and other infractions, general prior counts, as well as charge degree.

Counterfactual scenarios

Compare three scenarios:

- 1. "Affirmative action:" Adjust risk scores ± 1 , depending on race.
- 2. Status quo.
- 3. Perfect predictability: Scores equal 10 or 1, depending on recidivism in 2 years.

For each: Impute counterfactual

- W: Counterfactual score bigger than 4.
- Y: Based on a causal-forest estimate of the impact on Y of risk scores, conditional on the covariates in X.
- This relies on the assumption of conditional exogeneity of risk-scores given X.
 Not credible, but useful for illustration.

Table: Counterfactual scenarios, by group

	Black			White		
Scenario	(Score>4)	Recid (Score>4)	Jail time	(Score>4)	Recid (Score>4)	Jail time
Aff. Action	0.49	0.67	49.12	0.47	0.55	36.90
Status quo	0.59	0.64	52.97	0.35	0.60	29.47
Perfect predict.	0.52	1.00	65.86	0.40	1.00	42.85

Table: Counterfactual scenarios, outcomes for all

Scenario	Score>4	Jail time	IQR jail time	SD log jail time
Aff. Action	0.48	44.23	23.8	1.81
Status quo	0.49	43.56	25.0	1.89
Perfect predict.	0.48	56.65	59.9	2.10

Thank you!