Superposition des champs de déformation

Encadrants:

Pierre-Olivier BOUCHARD et Guillaume CORVEC

Plan

Introduction

Concepts de base

Protocole expérimental

Superposition des champs de déformation

Résultats et conclusions

Références

Introduction

Contexte et objectifs

Identifier les paramètres d'un matériau à l'aide d'une analyse inverse:

- A l'aide de la courbe force-déplacement : manque de richesse d'information
- Solution ? Ajouter les champs de déformation
- Comment faire dialoguer les champs numériques et expérimentaux ?
- Quelle fonction coût ?

Experience Conditions aux limites Deplacements results Experience Experience Conditions aux limites Deplacements results Colondo Colondo Service Jesus des sensibilités Jesus de parametres identifié Jesus de parametres identifié

Fig. 1.4 – Schéma de principe de la méthode inverse de type recalage de modèle Éléments Finis (FEU-U-F) utilisée dans le présent travail de thèse.

Concepts de base

Mécanique : essai de traction

Nous exerceons une **force** sur **l'éprouvette**. Elle s'allonge et se déforme.

F: Force

l^o : longeur initiale de l'éprouvette

I : longeur après application de la force

Mécanique : force-déplacement et contrainte déformation

$$\varepsilon_{\rm E} = \frac{L - L_0}{L_0}$$

$$\varepsilon_{\mathrm{T}} = \ln \left(\frac{L}{L_0} \right)$$

$$\sigma_{\rm E} = \frac{\rm F}{\rm S_0}$$

$$\sigma_{\rm T} = \frac{F}{S}$$

1MPa=1N/mm²

DIC: Corrélation d'image digitale

• Introduction à la DIC :

- Technique optique pour mesurer les déformations et les déplacements à la surface d'un matériau.
- Utilisation d'images capturées avant et après déformation.
- Image de DIC avec Région d'Intérêt (ROI) :
 - **ROI**: Zone spécifique sur l'image où les mesures sont effectuées.
 - Explication : La ROI est analysée pour suivre les déplacements et calculer les déformations.

Eléments finis

Construction du modèle d'éléments finis par Abaqus :

Analyse inverse : le modèle direct

Analyse inverse : la boîte noire

Protocole expérimental

Matériau: Aluminium 7075-T6

Propriétés	Alu 7075-T6
Module de Young (E)	71,7 GPa
Limite élastique (σ)	503 MPa
Module de Poisson (ν)	0,33

Loi de Johnson Cook

$$\sigma = (A + B\varepsilon^n)(1 + C\ln \dot{\varepsilon})(1 - T^m)$$

- Machine de traction : Applique une force contrôlée sur l'éprouvette.
- Caméra haute résolution : Capture des images de la surface de l'éprouvette avant et après déformation.
- **Système DIC** : Logiciel pour analyser les images et mesurer les déplacements et déformations.

Superposition des champs de déformation

Données FEM

- Force Déplacement
- Coordonnées des nœuds (mm)
- Déplacement de chaque nœud (mm)

Données DIC

- Force Déplacement
- Coordonnées des nœuds (pixel)
- Déplacement de chaque nœud (pixel)

Protocole de superposition

- 1. Inerpolation spatiale DIC (données manquantes)
- 2. Interpolation temporelle (temps Abaqus)
- 3. Interpolation spatiale FEM sur la grille expérimentale

Tableau blanc

Calcul de la fonction coût

$$D = \sum_{i=1}^{n} \left((x_i^{\text{exp}})^2 + (yi^{\text{exp}})^2 \right)$$

$$N = \sum_{i=1}^{n} \left[\left(x_i^{\text{exp}} - x_i^{\text{interp_num}} \right)^2 + \left(y_i^{\text{exp}} - y i^{\text{interp_num}} \right)^2 \right]$$

$$\operatorname{Error} = \frac{\sqrt{N}}{\sqrt{D}} = \sqrt{\frac{\sum_{i=1}^{n} \left(\left(x_{i}^{\operatorname{exp}} - x_{i}^{\operatorname{interp_num}} \right)^{2} + \left(y_{i}^{\operatorname{exp}} - y i^{\operatorname{interp_num}} \right)^{2} \right)}{\sum_{i=1}^{n} \left(\left(x_{i}^{\operatorname{exp}} \right)^{2} + \left(y_{i}^{\operatorname{exp}} \right)^{2} \right)}}$$

Résultats: superposition

Résultats: superposition en

zone utile

Conclusion

Résumé des Travaux :

- Utilisation de la corrélation d'image digitale (DIC) pour mesurer les déformations.
- Superposition des champs de déformation expérimentaux et numériques.
- Code Python d'analyse inverse pour identifier les paramètres matériaux.

• Principaux Résultats :

- Dialogue entre les données expérimentales et numériques.
- Calcul de la fonction coût pour quantifier les écarts.
- 3 itérations d'optimisation pour valider le code python

Perspectives Futures :

- Tenter de minimiser la fonction coût
- Intégration de données thermiques pour une analyse multi-physique.
- Extension à d'autres types de matériaux et essais mécaniques.

Merci!

Références

- [1] Roux, E. "Assemblage Mécanique : Stratégies d'optimisation des procédés et d'identification des comportements mécaniques des matériaux", Thése à l'Ecole nationale supérieur des mines de Paris (2011)
- [2] **Pottier, T.** . "Identification paramétrique par recalage de modèles éléments finis couplée à des mesures de champs cinématiques et thermiques" , Thèse de l'Université de Savoie. (2010)
- [3] Robert, L., Velay, V., Decultot, N., & Ramde, S. "Identification of hardening parameters using finite element models and full-field measurements: some case studies", Journal of Strain Analysis for Engineering Design, Vol. 47, N° 1, pp. 3-17, 2012. https://doi.org/10.1177/0309324711430022
- [4] Martins, J. M. P., Andrade-Campos, A., & Thuillier, S. . "Comparison of inverse identification strategies for constitutive mechanical models using full-field measurements", Inernational Journal of Mechanical Science, Vol. 145, pp. 330-345, 2018