Predmet: Mataliza 1

Ukol: 11.Verze: 3.

Autor: David Napravnik

Prezdivka: DN

## zadani

plocha utvaru ohraniceneho parabolou  $y^2 = x$  a primkou y = x - 2

# reseni

nejdrive si problem obratime prohozenim x a y

funkce se protinaji v 
$$x=-1$$
 a  $x=2$  
$$\int x + 2 \ dx = \frac{x^2}{2} + 2x + C$$
 
$$\int_{-1}^2 x + 2 \ dx = \frac{15}{2}$$
 
$$\int x^2 \ dx = \frac{x^3}{3} + C$$
 
$$\int_{-1}^2 x^2 \ dx = 3$$

ohranicena plocha je velka  $\frac{15}{2}-3=\underline{\frac{9}{2}}$ 



## zadani

plocha utvaru ohraniceneho krivkou funkce  $\ln x,$ osou xa primkou x=e

#### reseni

$$\int_{1}^{e} \ln x \ dx = x(\ln x - 1) + C$$

$$\int_{1}^{e} \ln x \ dx = e(\ln e - 1) - 1(\ln 1 - 1)$$

$$\int_{1}^{e} \ln x \ dx = e(1 - 1) - (0 - 1)$$

$$\int_{1}^{e} \ln x \ dx = 1$$



# zadani

objem telesa vznikleho z utvaru b) rotaci kolem osy x

#### reseni

$$\int_{1}^{\pi} (\ln(x))^{2} dx = \pi (2x - 2x \log(x) + x \log^{2}(x)) + C$$
$$\int_{1}^{e} \pi (\ln(x))^{2} dx = \pi (e - 2)$$

#### zadani

objem komoleho rotacniho kuzele s vyskou v a polomery podstav r a R

## reseni

plocha 2D telesa: 
$$vr+\frac{(R-r)*v}{2}=\frac{v(r+R)}{2}$$
 obtocime kolem osy  $y$  podle vzorecku  $S=\pi r^2$  
$$\pi(\frac{(r+R)}{2})^2\mid \text{mame prumerny obsah vodorovne plosky}$$
 
$$\pi(\frac{(r+R)}{2})^2*v\mid \text{prinasobime velikost telesa (ta se obtocenim kolem osy nemeni)}$$