

WTN4 系列语音芯片说明书

3 I/O Single-Chip Speech Synthesizer

目录

1、概述	-
2、功能简述:	
3、管脚描述:	
3. 1、WTN4045/WTN4065/WTN4105-8S 管脚介绍	
3. 2、WTN4165-8S 管脚介绍	
3.3、极限参数:	
3.4、直流特性:	
4、一线串口通讯:	
4.1、管脚分配:	
4.2、一线语音地址对应关系:	
4.3、一线语音及命令码对应表:	5
4.4、一线串口时序图:	5
4.5、一线串口程序范例:	6
5、两线串口通讯:	7
5.1、管脚分配:	7
5.2、语音地址对应关系:	7
5.3、语音及命令码对应表:	8
5.4、两线串口时序图:	8
5.5、两线串口程序范例:	8
6、数脉冲控制方式:	9
6.1、管脚分配:	10
6.2、语音地址对应关系:	10
6.3、数脉冲控制时序:	10
6.4、数脉冲程序范例:	11
7、应用电路:	11
7.1、WTN4045/065/105-8S 一线串口控制应用电路	12
7.2 、WTN4045/065/105-8S 两线串口控制应用电路	
7.3、WTN4045/065/105-8S 数脉冲控制应用电路	
7.4、WTN4165-8S 一线串口控制应用电路	
7. 5、WTN4165-8S 两线串口控制应用电路	
7. 6、WTN4165-8S 数脉冲控制应用电路	
8. 管脚封装图:	
9. 版本记录	

1、概述

WTN4 系列语音芯片是深圳唯创知音电子有限公司推出的一系列语音芯片,其性能优越,价格实惠。该系列芯片包括 WTN4045、WTN4065、WTN4105(6KHz 采样时语音长度分别为 45s、65s、105s)等语音芯片。WTN4 为多功能单芯片 CMOS 语音合成 4 位元为控制器。提供一通道的语音输出,有一组高音质的 PWM 来直推喇叭。语音合成方式采用高音质 ADPCM 演算法,音频采样率最高可达 44. 1KHz 。精准的+/-1%内部震荡,不需要加外部震荡,具备超低功耗待机。

2、功能简述:

- (1) 工作电压: $2.4V^{5}$. 5V; (需根据供电电压设定芯片为3.3V或5V,后续有详解)。
- (2) 具有待机模式,可节省功耗,静态电流小于1uA。
- (3) PWM纯音频输出,可直接驱动8Ω/0.5W喇叭和蜂鸣器。
- (4) 高音质ADPCM语音合成演算法,可以经由简单的调整采样位数来提升音质。
- (5) 精准的+/-1%内部震荡,内置低压复位(LVR=1.8V)和看门狗,支持BUSY状态输出功能。
- (6) 具备一线串口控制模式,两线串口控制模式;数脉冲控制模式。

选型注意:

芯片的供电电压、控制方式,在写程序时已经设定好,不可以再次更改,订做芯片时需 要

和业务员说明应用要求。

芯片电压的设定决定了内部 LDO 的打开和关闭。注意芯片电压设定需和供电电压及电路接线必须匹配,否则会导致芯片损坏或不工作。供电电压如下图:

芯片设定电压	供电电压范围
3.3V	2. 4V~3. 5V
5V	3. 6V~5. 0V

3、管脚描述:

3.1、WTN4045/WTN4065/WTN4105-8S 管脚介绍

WTN4045/065/105-8S

Pad Name	Pad No.	ATTR.	Description 描述
PA2	1	I/0	BUSY 输出口
PA1	2	I/0	两线串口时钟信号/一线串口的数据信号/数脉冲数据信号输入端
PA0	3	I/0	两线串口数据信号/数脉冲的复位信号输入端
VDD	4	I/0	电源正极,靠近芯片处建议连接 104 或 224 电容到地
PWM2	5	out	PWM 输出脚
PWM1	6	out	PWM 输出脚
GND	7	power	电源负极
VPP	8	Program	烧写电源脚

3.2、WTN4165-8S 管脚介绍

Pad Name	Pad No.	ATTR.	Description 描述
PA0	1	I/0	两线串口数据信号/数脉冲的复位信号输入端
PA1	2	I/0	两线串口时钟信号/一线串口的数据信号/数脉冲数据信号输入端
PA2	3	I/0	BUSY 输出口
VPP	4	Program	烧写电源脚
VDD	5	I/0	电源正极,靠近芯片处建议连接 104 或 224 电容到地
PWM2	6	out	PWM 输出脚
PWM1	7	out	PWM 输出脚
GND	8	power	电源负极

3.3、极限参数:

标识	范围值	单位
VDD~GND 电源电压	-0.5 [~] +6.0	V
Vin 输入电压	GND-0.3< Vin <vdd+0.3< th=""><th>V</th></vdd+0.3<>	V
Top 工作温度	0 ~ +70	° C
Tst 存储温度	−25 [~] +85	° C

3.4、直流特性:

标识	参量		最小值	典型 值	最大 值	单位	条件	
VDD	工作电压		2	3. 0	5. 5	V	1MHZ 或 2MHz	
Isb		待机	VDD=3V			1	uA	
180	供出	电流	VDD=4.5V			1	uA	
	电电	工作	VDD=3V		1.2		mA	无负载
Iop	流	电流	VDD=4.5V		3		mA	
	输 入	弱上拉 (750Ko	3V		-4			
	电	hms)	4. 5V		-11			
Iih	流 内	高上拉	3V		-90		Au	Vil=0V
	部 上 拉	(33K ohms)	4. 5V		-225			
Ioh	输出驱动电流		3V		-8		mA	VDD=3V, Voh=2.0V
1011	1111 1111		4. 5V		-12		III 1	VDD=4.5V, Voh=3.5V
Iol	输入	倒灌电流	3V		18		mA	VDD=3V, Voh=1.0V
	1147	, ,,,,	4. 5V		25			VDD=4.5V, Voh=1.0V
			3V		60			VDD=3V, Load=8 ohms
Ipwm	PWM ²	输出电流	4. 5V		100		mA	VDD=4.5V, Load=8 ohms
Iol	电压	波动频偏	3V		1.5			错误!
△F/F		1MHz)	4. 5V		-0. 5		%	错误!
△F/F		(VDD=3V) 荡频率	3	-1		1	%	Fmax (3. 0v) -Fmin (3. 0 v) Fmax (3. 0v)
Fosc		llation equency	-	0. 90	1	1.05	MHz	VDD=2.0~5.5V

4、一线串口通讯:

一线串口模式可以利用 MCU 通过 DATA 线给 WTN4 系列语音芯片发送数据以达到控制目的。可以实现控制语音播放、循环播放当前曲目、停止当前曲目播放功能。

4.1、管脚分配:

封装形式		管脚
	PA1	PA2
SOP8	DATA	默认为 BUSY 信号输出端

4.2、一线语音地址对应关系:

数据(十六进制)	功能
ООН	播放第0段语音
01H	播放第1段语音
02Н	播放第2段语音
•••••	•••••
ECH	播放第 236 段语音
EDH	播放第 237 段语音
ЕЕН	播放第 238 段语音
EFH	播放第 239 段语音

每条地址指令的时间间隔需大于 10ms。

4.3、一线语音及命令码对应表:

命令	〉码	功能	描述
	F2H	循环播放当前语音	执行此命令可循环播放当前段语音,可在语音播放/语音停止时发送。
	FEH	停止播放当前语音	执行此命令可停止播放当前段语音。

4.4、一线串口时序图:

一线串口只通过一条数据通讯线控制时序,依照电平占空比不同来代表不同的数据位。先将数据信号拉低 5ms,然后发送数据。高电平与低电平数据占空比 1:3 即代表数据位 0,高电平与低电平数据位占空比为 3:1 代表数据位 1。高电平在前,低电平在后。数据先发低位再发高位,D0~D7表示一个地址或者命令数据,数据中的 00H~EFH 为地址指令。F2H 为循环播放当前曲目命令,FEH 为停止当前语音播放命令。

注: 通讯 I0 口平时为高,发完数据之后应拉高。

注: BUSY 为语音芯片忙信号输出,数据成功发送后等待 250us, BUSY 输出将做出响应。BUSY 输出 25ms 后,语音输出将做出响应。DATA 拉低时间范围:5ms~40ms;一线串口高低电平 1:3 比例时序范围:350us:1.05ms~~1.2ms:3.6ms,推荐使用 1:3 比例为 400us:1.2ms。

4.5、一线串口程序范例:

```
#define UC8
             unsigned char
/*-
;模块名称:Line_1A_WTN4(UC8 SB_DATA)
      能:实现一线串口通信函数
;功
      参: SB_DATA 为发送数据
;入
      参:
:出
;P_DATA 为数据口
Line_1A_WTN5( UC8 SB_DATA)
{
     UC8 S DATA;
    bit
           B_DATA;
   S_DATA = SB_DATA;
   P_DATA = 0;
```



```
//延时 5ms
   Delay_1ms(5);
   B_DATA = S_DATA\&0X01;
   for (j=0; j<8; j++)
       if(B DATA == 1)
           P_DATA = 1;
           Delay_N10us(120);
                             //延时 1.2ms
           P_DATA = 0;
           Delay_N10us(40); / /延时 400us
       }
       else
       {
           P_DATA = 1;
           Delay_N10us(40);
                              //延时 400us
           P_DATA = 0;
           Delay_N10us(120); //延时 1.2ms
       }
       S_DATA = S_DATA>>1;
       B_DATA = S_DATA\&0X01;
   }
   P_DATA = 1;
}
```

5、两线串口通讯:

二线串口模式是由两条通讯线组成,分别是数据 DATA, 时钟 CLK, 通过 MCU 利用两线通讯来控制 WTN4 系列语音芯片,以达到操控播放、循环播放当前曲目、停止当前曲目播放功能。

5.1、管脚分配:

封装形式	管脚			
到表形以	PA2	PA1	PA0	
SOP8	默认为 BUSY 信号输出端	CLK	DATA	

5.2、语音地址对应关系:

数据(十六进制)	功能
00Н	播放第0段语音
01H	播放第1段语音
02Н	播放第2段语音

•••••	•••••
ECH	播放第 236 段语音
EDH	播放第 237 段语音
ЕЕН	播放第 238 段语音
EFH	播放第 239 段语音

每条地址指令的时间间隔需大于 10ms。

5.3、语音及命令码对应表:

命令码	功能	描述
F2H	循环播放当前语音	执行此命令可循环播放当前段语音,可在语音播放/语音停止时发送。
FEH	停止播放当前语音	执行此命令可停止播放当前段语音。

5.4、两线串口时序图:

两线串口控制模式由片时钟 CLK 和数据 DATA 脚组成,每发一个字节数据,时钟信号 CLK 拉低 4ms 至 40ms,推荐使用 5ms 以唤醒 WTN4 语音芯片,接收数据低位在先,在时钟的上升沿接收数据。时钟周期介于 320us~1.5ms 之间,,推荐周期使用 400us,。发数据时先发低位,再发高位。D0~D7 表示一个语音地址或者命令数据,数据中的 00H~EFH 为语音地址指令,F2H 为循环播放当前语音命令,FEH 为停止播放当前语音命令。

注: CLK 拉低时间范围: 4ms~40ms, 推荐使用 5ms; CLK 周期高电平时间范围: 150us~4ms; CLK 周期低电平时间范围: 150us~4ms。推荐使用 CLK 高低电平的时间为 200us. 通讯 IO 口平时为高,发完数据之后应拉高。

5.5、两线串口程序范例:


```
;模块名称:Line_2A_WTN4(UC8 SB_DATA)
;功 能:实现二线串口通信函数
;入 参:SB_DATA 为发送数据
:出
      参:
; CLK_2A
              //时钟线
; P DATA 2A //数据线
UC8 Line_2A_WTN5(SB_DATA)
{
   CLK 2A = 1;
                                 //时钟线
                                 //数据线
  P_DATA_2A = 1;
  S_DATA = SB_DATA;
   CLK_2A = 0;
  Delay_1ms(5);
                   //延时 5ms
  B_DATA = S_DATA\&0X01;
  for(j=0;j<8;j++)
                                        // 拉低
      CLK_2A
                      = 0;
     P_DATA_2A
                 = B_DATA;
                                        //传输数据一位
      Delay_N10us(40);
                                            //延时 400us
                                        //拉高
      CLK_2A
              = 1;
      Delay_N10us(40);
                                        //延时 400us
      S_DATA = S_DATA >> 1;
      B_DATA = S_DATA\&0X01;
  }
  P_DATA_2A = 1;
  CLK 2A = 1;
}
```

6、数脉冲控制方式:

数脉冲控制模式是通过在 DATA 线上发送不同的脉冲数量以达到控制语音地址播放的目

的,该控制模式具有控制端口少,可控制语音地址数量多等优点。常用于 MCU 控制端口紧缺的场合。

6.1、管脚分配:

封装形式	管脚			
到表形以	PA2	PA1	PA0	
SOP8	默认为 BUSY 信号输出端	DATA	RESET	

6.2、语音地址对应关系:

序号	脉冲数	语音地址
1	1	1
2	2	2
3	3	3
•••••		•••••
238	238	238
239	239	239

6.3、数脉冲控制时序:

数脉冲控制时序中,先拉高 RESET 信号 150us,然后发送 DATA,DATA 中的脉冲高电平需要保持 100us 的高电平,且两个脉冲之间的间隔时间需要 100us。脉冲数据发送完后 4.6ms,BUSY 信号输出。BUSY 输出 36ms 后开始播放地址语音,语音播放结束 BUSY 也发生变化。注:脉冲信号高电平宽度时间范围:50us²ms,推荐使用 100us;脉冲信号间隔时间范围:

 $100us^4ms$,推荐使用 100us。复位信号的高电平范围为大于 100us,推荐使用 150us。通讯 10 口平时为低,发完数据后应拉低。

6.4、数脉冲程序范例:

```
#define UC8
                 unsigned char
/*----
;模块名称:Line_one
    能:发送指定地址的脉冲数
;功
;入
      参: DDATA 为脉冲个数
    参:0
; 出
;RST 为复位信号
;DATA_CLK 为脉冲信号
void Line_one(UC8 DDATA)
{
 UC8 i;
 RST = 0;
 DATA\_CLK = 0;
 RST
     = 1;
                         // 拉高复位
                             //延时
 Delay_N10us(15);
 RST = 0;
                         // 拉低
 for(i=0;i<DDATA;i++)</pre>
     DATA\_CLK = 1;
     Delay_N10us(10);
     DATA\_CLK = 0;
     Delay_N10us(10);
 }
 RST = 0;
 DATA\_CLK = 0;
}
```

7、应用电路:

7.1、WTN4045/065/105-8S 一线串口控制应用电路

注意: 建议 3V 或者 5V 工作时,在单片机 IO 口和 WTN4 IO 口间串一个 470R 的电阻。一线控制时管脚 PA1 为数据输入脚,两线控制时管脚 PA1 为时钟输入脚。布线时 VDD 端的电容 C1,要尽量靠近 VDD 管脚,以增强 WTN4 系列语音芯片的抗干扰能力。

7.2 、WTN4045/065/105-8S 两线串口控制应用电路

注意: 建议 3V 或者 5V 工作时,在单片机 IO 口和 WTN4 IO 口间串一个 470R 的电阻。布线时 VDD 端的电容 C1,要尽量靠近 VDD 管脚,以增强 WTN4 系列语音芯片的抗干扰能力。

7.3 、WTN4045/065/105-8S 数脉冲控制应用电路

注意: 建议 3V 或者 5V 工作时,在单片机 IO 口和 WTN4 IO 口间串一个 470R 的电阻。布线时 VDD 端的电容 C1,要尽量靠近 VDD 管脚,以增强 WTN4 系列语音芯片的抗干扰能力。

7.4、WTN4165-8S 一线串口控制应用电路

注意: 建议 3V 或者 5V 工作时,在单片机 IO 口和 WTN4 IO 口间串一个 470R 的电阻。一线控制时管脚 PA1 为数据输入脚,两线控制时管脚 PA1 为时钟输入脚。布线时 VDD 端的电容 C1,要尽量靠近 VDD 管脚,以增强 WTN4 系列语音芯片的抗干扰能力。

7.5、WTN4165-8S 两线串口控制应用电路

注意: 建议 3V 或者 5V 工作时,在单片机 IO 口和 WTN4 IO 口间串一个 470R 的电阻。一线控制时管脚 PA1 为数据输入脚,两线控制时管脚 PA1 为时钟输入脚。布线时 VDD 端的电容 C1,要尽量靠近 VDD 管脚,以增强 WTN4 系列语音芯片的抗干扰能力。

7.6、WTN4165-8S 数脉冲控制应用电路

注意: 建议 3V 或者 5V 工作时,在单片机 IO 口和 WTN4 IO 口间串一个 470R 的电阻。一线控制时管脚 PA1 为数据输入脚,两线控制时管脚 PA1 为时钟输入脚。布线时 VDD 端的电容 C1,要尽量靠近 VDD 管脚,以增强 WTN4 系列语音芯片的抗干扰能力。

8. 管脚封装图:

	INCHES			MILLIMETERS		
	MIN	TYP	MAX	MIN	TYP	MAX
А	0.355	0.365	0.400	9.02	9.27	10.16
В	0.240	0.250	0.280	6.10	6.35	7.11
С	_	-	0.210	-	-	5.33
D	_	0.018	_	_	0.46	_
F	-	0.060	-	-	1.52	-
G	-	0.100	-	-	2.54	-
н	0.050	_	0.090	1.27	_	2.29
J	0.008	-	0.015	0.20	-	0.38
к	0.115	0.130	0.150	2.92	3.30	3.81
L	0.300 BSC.			7.62 BSC.		
м	-	7°	15°	-	7°	15°

Note: For 8-pin S.O.I.C., 100 units per tube.

	INCHES			MILLIMETERS		
	MIN	TYP	MAX	MIN	TYP	MAX
А	0.183	-	0.202	4.65	-	5.13
В	0.144	-	0.163	3.66	1	4.14
С	0.068	-	0.074	1.35		1.88
D	0.010	-	0.020	0.25	-	0.51
F	0.015	1-0	0.035	0.38	-	0.89
G	0.050 BSC			1.27 BSC		
J	0.007	-	0.010	0.19	-	0.25
к	0.005	-	0.010	0.13	-	0.25
L	0.189	-	0.205	4.80	_	5.21
м	-	-	80	-	_	8°
Р	0.228	-	0.244	5.79	-	6.20

9. 版本记录

版本号	修改说明	修改日期
V1. 00	原始版本	2015-3-21
V1. 01	增加 WTN4165-8S	2015-7-4
V1. 02	修改原理图中部分管脚描述不正确的地方	2015-8-10
V1. 03	修改 WTN4165-8S 不正确的地方	2015-12-10
V1. 04	修改原理图,将 VPP 跟 VDD 分开	2016-04-01
V1. 05	修改公司地址	2017-01-17