Mufeng Chen

Interests: Compute-in-Memory (CiM),

Neuromorphic-Computing, Resistive-RAM (RRAM) Personal Website: https://chenmufeng0119.github.io/

EDUCATION

Zhejiang University

Master of Science in Electronic Engineering

Hangzhou, Zhejiang, China Sept. 2021 - Present

Email: chenmufeng@zju.edu.cn

o **GPA**: 3.93/4.00

Huazhong University of Science and Technology

Bachelor of Engineering in Optical&Electronic Engineering

Wuhan, Hubei, China Sept. 2017 - Jul. 2021

o **GPA**: 3.92/4.00

Core courses: Circuit Theory: 98/100; Probability Theory and Mathematical Statistics: 100/100; Electrodynamics: 95/100; Micro/Nano Electronics: 90/100; Micro-nano Optoelectronic Devices: 94/100; Signal and Linear System: 94/100; Principle and Application of Single Chip Microcomputer: 94/100;

Microcomputer Experiments: 94/100

Publications

• Yu, C., Du, Y., Chen, M., Wang, A., Wang, G., & Li, E. (2022). MAP-SNN: Mapping spike activities with adaptability, and plasticity into bio-plausible spiking neural networks. Frontiers in Neuroscience, 16, 945037.

o Li, E. P., Ma, H., Ahmed, M., Tao, T., Gu, Z., Chen, M., ... & Chen, W. (2023). An Electromagnetic Perspective of Artificial Intelligence Neuromorphic Chips. Electromagnetic Science.

Preprints and Other Research Projects

- o Mufeng Chen, Erping Li. Spiking Mixers for Robust and Energy-efficient Vision-and-Language Learning. 2023. (under review for ICLR 2024)
- o Mufeng Chen, Haitong Li. Neuro-Vector-Symbolic Vison Transformer for Few Shot Classification and Generation. 2023. (to be submitted to DAC-24)
- Mufeng Chen, Erping Li, et. al. SNN-DNN hybrid distillation with mixture of experts. (to be published)

RESEARCH EXPERIENCES

Reconfigurable Neuromorphic RRAM-CiM for Spiking/Non-spiking Transformer Workload Advisor: Aili Wang, Liang Zhao, Erping Li Nov. 2022 - Present

Zhejiang University - University of Illinois Urbana-Champaign Institute

Jiaxing, Zhejiang, China

- Developed a bitline-sharing eDRAM-RRAM hybrid CiM aiming to provide better throughput characteristics against
 the inherent variation of RRAM cell while taking advantage of the small footprint of RRAM storage and its zeroleakage feature.
- The bitline is reconfigurable to support differential amplifier/transmission gate for diff-frame operations and denoising as well as adaptive ADC for DNN computations.
- Special Input encoding scheme is adapted to support MSB/LSB input format simultaneously in bit-serial DNN mode and spike counting mode for SNN.

Neuro-Vector-Symbolic Vision Transformer for Few Shot Classification and Generation Advisor: Haitong Li Apr. 2023 - Present

NanoX Lab, Purdue University

West Lafayette, IN, USA

- Developed Vision Transformer with Hyperdimensional (HD) Computing ladder part, which harnessed HD for enhanced on-chip learning capability. Exploited HRR-based VSA models to retrieve input data generatively and avoid the computation cost of traditional parallel read out schemes for distributed memory systems.
- Developed and modeled in-memory FFT circuit for handling the computation of HRR-based HD computing.

• Trade-off between 2D, 2.5D, and 3D CiM for the above model is investigated, and an accelerator featuring a separate FFN core, attention core, and HD core is developed.

Multimodal Spiking-Mixer with Robustness-Improved ODE-Neuron Advisor: Erping Li

Jun. 2023 - Oct. 2023

EIEI Center, Zhejiang University

Hangzhou, Zhejiang, China

- $\circ\,$ Proposed the first vision-language multimodal spiking neural network for image-caption application.
- Viewed SNN as Neural-ODE and analyzed the stability of the ODE to gain adversarial robustness.
- Extended the multimodal vison-language adversarial attack to the SNN domain, proposed the first black-box vision-language attack method, and demonstrated effectiveness compared to naive unimodal implementation.

Charge-Domain CiM for Bayesian Neural Network Advisor: Kaiyuan Yang

Feb. 2022 - Aug. 2022

SIMS Lab, Rice University

Houston, TX, USA

- Built a variable bit precision neural network quantization method based on variational inference targeting flops reduction.
- Constructed a charge-domain SRAM-CiM for uncertainty-aware CNN quantized by the above algorithm.
- Intended to gain effective energy reduction with charge reuse and unstructured sparsity routing/zero skipping based on workload characteristics.

MAP: A New SNN Training Method Advisor: Yang Du, Aili Wang, Erping Li

Nov. 2021 - Feb. 2022

EIEI Center, Zhejiang University

Hangzhou, Zhejiang, China

- Proposed an algorithm investigating the discretization problem in time-iteration and demonstrated the robustness of our algorithm under varying iterative step lengths.
- Proposed a spike frequency adaptation (SFA) mode as a multi-spike pattern (MSP) implementation for efficient spike inference and robustness under this mode.
- Enhanced temporal expressiveness using a state-free synaptic response model (SFSRM), and it is compatible with deep learning frameworks.

Polarization—Sensitive Achromatic Metalenses Advisor: Chen Lin

Aug. 2019 - Jun. 2020

Huazhong University of Science and Technology

Wuhan, Hubei, China

- Designed and developed the FDTD script code of the layout of the monochromatic metalenses.
- Therotically analyzed the principles of achromatic metalenses and swept the parameters.
- Optimized the metalens, compared it with the monochromatic ones and generated a report.
- Experimentally demonstrated the stable focal length of the designed lens in the visible band.

Awards and Honors

Outstanding Dissertation for Bachelor's Degree, Huazhong University of Science and Technology People's scholarship, Huazhong University of Science and Technology Jun. 2021

Jun. 2018

SKILLS

- o Coding: C, C++, Python, MATLAB, Verilog, Chisel.
- o EDA Tools: Virtuoso, Design Compiler, Synopsys VCS, Lumerical.