- 7.22) Trivially $H \land K \leq H$ and $H \land K \leq K$, so by Lagrange's thm $|H \land K| = g c d (|2,35) = 1$. $|H \land K| = g c d (|H|,|K|) \square$
- Then $\langle g^2 \rangle < G$ is a contradiction. Then $\langle g^2 \rangle < G$ is a contradiction. Then |g| must be finite $\forall g \in G$. But then $\langle g \rangle < G$ is a contradiction $\forall e \neq g \in G$. So $|G| \neq \infty$. Consider $g \in G$ such that $g \neq e$. Then $\langle g \rangle = G$, lest it be nontrivial/proper. Then $|\langle g \rangle| = |G| = n$, and by FTCG $\langle g \rangle$ has exactly one subgroup per divisor of n. Since G has no proper subgroups, only divisors of n must be I and $n \Rightarrow n$ prime G
- 7.40) Let |G| = 63 and $g \in G$ s.t. $g \neq e$. Cor of $LT \Rightarrow |g| \in \{3,7,9,2\}, 63\}$ |g| = 3 trivial $|g| = 9 \Rightarrow |g^3| = 3$ $|g| = 21 \Rightarrow |g^7| = 3$ $|g| = 63 \Rightarrow |g^2| = 3$

Assume |g|=7 fg^{*} G. There are 62 such g. But Thm 4.4 cor \Rightarrow # elt eG w/order $7 = \phi(7) = 6$.

Since 6162, our assumption must be false 07.44) Recall all reflections hove order 2.

If a sqp of D_n contains a reflection, by closure half of the sqp must be reflections \Rightarrow |sqp| is even. Thus any sqp of D_n of odd order must only contain

rotations => it is cyclic. []

- 8.2) h=(a,b,c) $\forall h \in \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$ where $a,b,c \in \{0,1,2\}$. There are $2^3=8$ elements incl. e=(0,0,0) in $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, forming 7 subgroups. Each of these has order $2 \text{ by Thm 8.1.} \square$
- No. If $\mathbb{Z}_3 \oplus \mathbb{Z}_4 \cong \mathbb{Z}_{27}$, $\exists g \in \mathbb{Z}_3 \oplus \mathbb{Z}_4$ such that |g|=27. Then g=(a,b) where lcm(a,b)=27 by Thun 8.1. But there is no such $(a,b) \in \mathbb{Z}_3 \oplus \mathbb{Z}_4$, as lcm(3,4)=9.

8.10) #eH & Zz D Zq oford 9

case 1: |a|=1 $|b|=9 \Rightarrow a=0$ b=1,2,4,5,7,8

case 2: |a|=3 $|b|=9 \Rightarrow a=1,2$ b=1,2,4,5,7,8

 $6+(2\cdot6)=18$ elements \Box

8.54) By property of isomorphisms, generator \mapsto gentr. Thus $\phi(1) \mapsto (1,1)$.

By preservation of operation, $\phi(n) = \phi(1^n) = \phi(1)^n = (1, 1)^n = (n \mod 4, n \mod 3) \square$