

BACHELOR OF SCIENCE (HONS) IN - APPLIED COMPUTING - COMPUTER FORENSICS & SECURITY - ENTERTAINMENT SYSTEMS - THE INTERNET OF THINGS

EXAMINATION:

DISCRETE MATHEMATICS (COMMON MODULE) SEMESTER 1 - YEAR 1

DECEMBER 2021 DURATION: 2 HOURS

INTERNAL EXAMINERS: DR DENIS FLYNN DATE: 20 DEC 2021.

DR KIERAN MURPHY
TIME: 14.15 PM
VENUE: MAIN HALL

EXTERNAL EXAMINER: MS MARGARET FINNEGAN

INSTRUCTIONS TO CANDIDATES

- 1. ANSWER ALL QUESTIONS.
- 2. TOTAL MARKS = 100.
- 3. EXAM PAPER (5 PAGES) AND FORMULA SHEET (1 PAGE)

MATERIALS REQUIRED

- 1. NEW MATHEMATICS TABLES.
- 2. GRAPH PAPER

WATERFORD INSTITUTE OF TECHNOLOGY

- Alice, Bob and Carol are three students that took last year's Discrete Mathematics exam. Given propositions
 - A = "Alice passed the exam."
 - B = "Bob passed the exam."
 - C = "Carol passed the exam."

Formalise (i.e., express using logical operators) the following statements

- (i) "Alice is the only one passing the exam."
- (ii) "Bob passed the exam."
- (iii) "All three students passed the exam."
- (iv) "At least one student, among Alice, Bob and Carol, passed the exam."
- (v) "Exactly one student passed the exam."

(10 marks)

- (b) Which of the following are well formed propositional formulas? Justify your answers.
 - (i) $\vee pq$

- (iii) $p \rightarrow (q \land q)$ (iv) $(p \land \neg q) \lor (q \rightarrow q)$

(4 marks)

Consider the functions defined by the following Python code: (c) (recall that // is integer division, and ** is exponentiation (powers).)

```
\mathbf{def} \ \mathbf{f}(\mathbf{x}):
        return x ** 2
\mathbf{def} \ \mathbf{g}(\mathbf{x}):
        return x + 1
\mathbf{def} \ h(x):
        return x // 2
```

Evaluate the following:

(i) f(5)

(iii) h(3)

(v) f(5) + g(7)

- (ii) f(g(2))
- (iv) f(g(h(1)))
- (vi) f(f(f(f(2))))

(6 marks)

(Total 20 marks)

(a) Use truth	tables to	determine	whether	the	proposition
----	-------------	-----------	-----------	---------	-----	-------------

$$(\neg p \lor q) \land (q \to (\neg r \land \neg p)) \land (p \lor r)$$

is satisfiable. (5 marks)

(b) Consider the follow diagram, consisting of three rows of eight dots.

How many

- (i) Squares (Hint: Count 1×1 and 2×2 sized squares separately.)
- (ii) Rectangles (Hint: Count cases based on top row of rectangle.)
- (iii) Right angled triangles

can be drawn using the dots as vertices (corners).

(9 marks)

- (c) Draw the following graphs. Classify each as Eulerian, semi-Eulerian, or neither.
 - (i) The wheel graph, W_4 .
 - (ii) The complete bipartite graph, $K_{4,2}$.
 - (iii) The Peterson graph.

(6 marks)

(Total 20 marks)

(a) Construct sets A and B satisfying the following three properties:

$$A \setminus B = \{4, 9\},$$
 $B \setminus A = \{8\},$ $A \cap B = \{1\}.$ (2 marks)

(b) Consider the Collatz function with definition and Python implementation

```
f(n) = \begin{cases} 3n+1 & n \text{ odd} \\ n/2 & n \text{ even} \end{cases}
\begin{bmatrix} def & f(n): \\ if & n\%2 == 1: \\ return & 3 * n + 1 \\ else: \\ return & n // 2 \end{bmatrix}
```

Also implemented in python are the following functions

```
def g(n):
    return f(f(f(n)))

def h(n):
    result = [n]
    while n!=1:
    n = f(n)
    result .append(n)
    return result
```

- (i) What is the output of f(7)? and f(10)?
- (ii) What is the output of h(12)?
- (iii) What is the output of g(10)?
- (iv) For which values of n does the expression g(n)==n compute to True?

(8 marks)

- (c) Let $S = \{1, 2, 3, 4, 5, 6\}$
 - (i) How many subsets are there of cardinality 4?
 - (ii) How many subsets of S are there? That is, find $|\mathcal{P}(S)|$.
 - (iii) How many subsets of cardinality 4 have $\{2,4,6\}$ as a subset?
 - (iv) How many subsets of cardinality 4 contain at least one prime (2, 3, or 5)?
 - (v) How many subsets of cardinality 4 contain exactly one prime?

(10 marks)

(a) Let $A = \{0, 2, 3\}$, $B = \{2, 3\}$, and $C = \{1, 5, 9\}$. Determine which of the following statements are true. Give reasons for your answers.

(i)
$$3 \in A$$

(iv)
$$\emptyset \subseteq C$$

(ii)
$$\{3\} \in A$$

(v)
$$\emptyset \in A$$

(iii)
$$\{3\} \subseteq A$$

(vi)
$$A \subseteq A$$

(6 marks)

(b) Let R be the relation on the set $A = \{0, 1, 2, 3\}$ given by

$$R = \{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\}$$

- (i) Represent R using a digraph.
- (ii) Is R reflexive? symmetric? transitive? Justify your answers.
- (iii) Is R irreflexive? Justify your answer.

$$(2+6+1=9 \text{ marks})$$

- (c) How many shortest lattice paths start at (2,4) and
 - (i) end at (20,15)?
 - (ii) end at (20,15) and pass through (10,6)?
 - (iii) end at (20,15) and avoid (10,6)?

$$(1+2+2=5 \text{ marks})$$

 $({\rm Total}\ 20\ {\rm marks})$

(a) Consider the following logical circuit with two inputs, and single output.

(i) Construct a logical expression to represent this circuit.

(ii) Is there an input case for which the output is on?

(iii) Hence, construct a logical circuit or equivalent expression, containing three inputs, x, y, and z, for which the output is on when exactly one input is on.

$$(2+2+2=6 \text{ marks})$$

(b) Consider the function $f: \{1, 2, 3, 4, 5\} \rightarrow \{1, 2, 3, 4\}$ given by the table below:

(i) Is f injective? Explain.

(ii) Is f surjective? Explain.

(4 marks)

(c) How many 9-bit strings (that is, bit strings of length 9) are there which satisfy each of the following criteria? Explain your answers.

(i) Start with the sub-string 101.

(ii) Have weight 5 (i.e., contain exactly five 1's) and start with the sub-string 101.

(iii) Either start with 101 or end with 11 (or both).

(iv) Have weight 5, and starts with 101 and ends with 11.

$$(2+2+3+3=10 \text{ marks})$$

(Total 20 marks)

Laws of Logic

Logical Connective	Symbol	Python Operator	Precedence	Logic Gate
Negation (Not)		not	Highest	\triangleright
Conjunctive (AND)	\land	and	Medium	
Disjunctive (OR)	V	\mathbf{or}	Lowest	\triangleright

Basic Rules of Logic

Implications and Equivalences

Commutative Laws

$$p \vee q \Leftrightarrow q \vee p \qquad p \wedge q \Leftrightarrow q \wedge p$$

Detachment (Modus Ponens)
$$(p \to q) \land p \Rightarrow q$$

Associative Laws

$$(p \vee q) \vee r \Leftrightarrow p \vee (q \vee r) \qquad (p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$$

Indirect Reasoning (Modus Tollens)

$$(p \to q) \land \neg q \Rightarrow \neg p$$

Distributive Laws

$$p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r) \qquad p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$$

Disjunctive Addition
$$p \Rightarrow (p \lor q)$$

Identity Laws

$$p \lor \mathbf{F} \Leftrightarrow p \qquad p \land \mathbf{T} \Leftrightarrow p$$

Conjunctive Simplification
$$(p \land q) \Rightarrow p \qquad (p \land q) \Rightarrow q$$

Negation Laws

$$p \wedge (\neg \, p) \Leftrightarrow \mathbf{F} \qquad p \vee (\neg \, p) \Leftrightarrow \mathbf{T}$$

Disjunctive Simplification
$$(p \lor q) \land \neg p \Rightarrow q \qquad (p \lor q) \land \neg q \Rightarrow p$$

Idempotent Laws

$$p \lor p \Leftrightarrow p \qquad p \land p \Leftrightarrow p$$

Chain Rule
$$(p \to q) \land (q \to r) \Rightarrow (p \to r)$$

Null Laws

$$p \wedge \mathbf{F} \Leftrightarrow \mathbf{F} \qquad p \vee \mathbf{T} \Leftrightarrow \mathbf{T}$$

Resolution
$$(\neg p \lor r) \land (p \lor q) \Rightarrow (q \lor r)$$

Absorption Laws

$$p \land (p \lor q) \Leftrightarrow p \qquad p \lor (p \land q) \Leftrightarrow p$$

Conditional Equivalence
$$p \to q \Leftrightarrow \neg p \lor q$$

DeMorgan's Laws

$$\neg (p \lor q) \Leftrightarrow \neg \, p \land \neg \, q \qquad \neg (p \land q) \Leftrightarrow \neg \, p \lor \neg \, q$$

Biconditional Equivalences
$$(p \leftrightarrow q) \Leftrightarrow (p \to q) \land (q \to p)$$
 $\Leftrightarrow (p \land q) \lor (\neg q \land \neg q)$

Involution Law

$$\neg(\neg p) \Leftrightarrow p$$

Contrapositive $p \to q \Leftrightarrow \neg q \to \neg p$

OUTLINE MODEL ANSWERS & MARKING SCHEME

- 1		
	Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 1 of 7
	Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

Question 1

- (a) _____
- (i) "Alice is the only one passing the exam."

$$\neg C \land A \land \neg B$$

(ii) "Bob passed the exam."

B

(iii) "All three students passed the exam."

$$A \wedge B \wedge C$$

(iv) "At least one student, among Alice, Bob and Carol, passed the exam."

$$A \vee B \vee C$$

(v) "Exactly one student passed the exam."

$$(A \land \neg B \land \neg C) \lor (\neg A \land B \land \neg C) \lor (\neg A \land \neg B \land C)$$

10 marks = 5×2 marks

- (b) _____
- (i) $\vee pq$ Not well formed. Logical and, \vee is a binary operator, expected infix notation.
- (ii) $p \neg \neg r$ Not well formed. Logical not operator, \neg is a unary operator.
- (iii) $p \neg \rightarrow (q \land q)$ Not well formed. \neg applied to conditional operator
- (iv) $(p \land \neg q) \lor (q \neg \rightarrow q)$ Not well formed. Conditional operator, \rightarrow is a binary operator.

4 marks = 4×1 , justification required

- (c) _____
- (i) 25
- (ii) 9
- (iii) 1
- (iv) 1
- **(v)** 3
- (vi) $2^{16} = 65,536$

6 marks = 6×1

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 2 of 7
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

Question 2

(a)

Partial marks for correct parsing of expression, demonstrating ability to compute logical expression, implication of satisfiability definition.

Since there is (at least) one row in which the output is **True**, the expression is satisfiable.

5 marks

(b)

(i) Squares

 1×1 Square: $7 \times 2 = 14$. Pick a dot for the top left corner, leaving room for 1×1 square, the other three dots are determined. 2×2 Square: $6 \times 1 = 6$. Pick a dot for the top left corner, leaving room for 2×2 square, the other three dots are determined.

Ans: 20 Squares.

(ii) Rectangles

Starting at top row: $2 \times {8 \choose 2} = 56$ rectangles. Pick any two of the eight dots from the top row, order does not matter, and then rectnagle height is either 1 or 2.

Starting at middle row: $1 \times {8 \choose 2} = 28$ rectangles. Pick any two of the eight dots from the middle row, order does not matter, and then rectnagle height is 1.

Ans: 84 Rectangles.

(iii) Right angled triangles

We could count triangles directly but easier to think of any right angled triangle is half of a rectangle (cut diagonally). There are two ways to cut a rectangle diagonally so each rectangle gives rise to four distinct right angled triangles.

Ans: $84 \times 4 = 336$ Right angled triangles.

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT	Semester: 1	Page 3 of 7
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy	
0 1 2 2 1		

9 marks = 3×3 marks

(c)

- (i) The wheel graph, W_4 . Is non-Eulerian as it has 4 nodes with odd degree.
- (ii) The complete bipartite graph, $K_{4,2}$. Is Eulerian as is connected and all vertices are of even degree.
- (iii) The Peterson graph.Is non-Eulerian as all 10 vertices are of odd degree.

6 marks

OUTLINE MODEL ANSWERS & MARKING SCHEME

- 1			٦
	Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 4 of 7	
Ì	Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy]

Question 3

(a)

$$A = \{1, 4, 9\}, \qquad B = \{1, 8\}$$

2 marks

(b)

(ii)

- (i) What is the output of f(7)? and f(10)?
- f(7) = 22, f(10) = 5

What is the output of h(12)?

- (iii) What is the output of g(10)? g(10) = 8
- (iv) For which values of n does the expression g(n)==n compute to True? 4,2, or 1 since this sequence forms a cycle in f.

8 marks

(c)

(i) How many subsets are there of cardinality 4?

$$\binom{6}{4} = 15$$
 subsets.

- (ii) How many subsets of S are there? That is, find $|\mathcal{P}(A)|$. $2^6 = 64$ subsets.
- (iii) How many subsets of cardinality 4 have {2,4,6} as a subset?

 $\binom{3}{1} = 3$ subsets. We need to select 1 of the 3 remaining elements to be in the subset.

- (iv) How many subsets of cardinality 4 contain at least one prime number (2, 3, or 5)?
 - $\binom{6}{4}$ = 15 subsets. All subsets of cardinality 4 must contain at least one prime.
- (v) How many subsets of cardinality 4 contain exactly one prime?

 $\binom{3}{1} = 3$ subsets. Select 1 of the 3 primes. The three non-primes (composite numbers) of S must all be in the set.

10 marks = 5×2 marks

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 5 of 7
Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

Question 4

(a)

(reason = any correct, relevant statement)

(i) True

(iii) True

(v) False

(ii) False

(iv) True

(vi) True

6 marks =
$$6 \times 1$$

- (b)
- (i) Represent R using a digraph.

(ii) Is R reflexive? symmetric? transitive?

R is reflexive, i.e. there is a loop at each vertex.

R is symmetric, i.e. the arrows joining a pair of different vertices always appear in a pair with opposite arrow directions.

R is not transitive. This is because otherwise the arrow from 1 to 0 and arrow from 0 to 3 would imply the existence of an arrow from 1 to 3 (which doesn't exist).

(iii) Is R irreflexive?

No (+ justification)

Mark breakdown: 2 (digraph) + 6 $(3 \times 2)+1=9$

- (c)
- (i) start at (2,4) and end at (20,15)?

 $\binom{18+11}{11} = 34,597,290$ paths. The paths all have length 29 (18 steps right and 11 steps up), we just select which 11 of those 29 should be up.

- (ii) start at (2,4) and end at (20,15) and pass through (10,6)? $\binom{8+2}{2}\binom{10+9}{9} = 45 \times 92,378 = 4,157,010 \text{ paths. First travel to (10,6), and then continue on to (20,15).}$
- (iii) start at (2,4) and end at (20,15) and avoid (10,6)?

$$\binom{29}{11} - \binom{10}{2} \binom{19}{9} = 34,597,290 - 4,157,010 = 30,440,280$$
 paths.

Remove all the paths found in preceding question.

$$5 = 1 + 2 + 2$$

OUTLINE MODEL ANSWERS & MARKING SCHEME

Course: BSc (H) in AC, in CF, in the IoT		Semester: 1	Page 6 of 7
	Subject: Discrete Mathematics	Examiner: D	r D. Flynn, Dr K Murphy

Question 5

(a)

(i) Construct a logical expression to represent this circuit.

$$(y \land \neg x) \lor (\neg y \land x)$$

(ii) Is there an input case for which output is on?

\boldsymbol{x}	y	$y \land \neg x$	$\negy\wedge x$	$(y \land \neg x) \lor (\neg y \land x)$
$\overline{\mathbf{F}}$	\mathbf{F}	\mathbf{F}	F	\mathbf{F}
${f F}$	${f T}$	${f T}$	${f F}$	${f T}$
${f T}$	${f F}$	\mathbf{F}	${f T}$	${f T}$
${f T}$	${f T}$	\mathbf{F}	${f F}$	${f F}$

Output is on when exactly one input is one.

(iii) Hence, construct a logical circuit or equivalent expression, containing three inputs that will have output on when exactly one input is on.

Define logical operator $x \uparrow y = (y \land \neg x) \lor (\neg y \land x)$ then required expression is

$$x \uparrow y \uparrow z$$

Note $x \uparrow y$ is the exclusive or operator.

$$oxed{6 ext{ marks} = 2 + 2 + 2}$$

(b)

- (i) No, element 2 in target set has two incoming arrows.
- (ii) Yes, every element in target set has at least one incoming arrow.

4 marks

(c)

(i) Start with the sub-string 101.

No constraints on remaining 6 bits, so 2^6 .

(ii) Have weight 5 (i.e., contain exactly five 1's) and start with the sub-string 101.

In the remaining 6 bit, three of which must be 1, so $\binom{6}{3} = 20$

(iii) Either start with 101 or end with 11 (or both).

Start with 101: No constraints on remaining 6 bits, so 2^6 .

Ends with 11: No constraints on preceding 7 bits, so 2^7 .

Start with 101 and ends with 11: No constraints on middle 4 bits, so 2^4 .

Ans (remove double counting): $2^6 + 2^7 - 2^4 = 64 + 128 - 16 = 176$

OUTLINE MODEL ANSWERS & MARKING SCHEME

	Course: BSc (H) in AC, in CF, in the IoT	Semester: 1 Page 7 of 7
Ì	Subject: Discrete Mathematics	Examiner: Dr D. Flynn, Dr K Murphy

(iv) Have weight 5, and starts with 101 and ends with 11.

The middle 4 digits must have weight 1 so that the entire string has weight 5. Hence have $\binom{4}{1} = 4$ possibilities.

$$10 \; \mathrm{marks} = 2 + 2 + 3 + 3$$