Chen-Zhu Xie

谢尘竹

Portfolio: (in

Scholar:

Preference: 6

Contact: **∠** X

Personality: aries INTP ab

Education

Nanjing University	College o	iences Nanjing, Jiangsu						
Doctor of Philosophy	Optical Engineering	<i>Q.E.</i> − <i>Top 15%</i>	Nonlinear Fourier Optics 🕤 – 2025.06					
Dissertation: "Analytic 3D vector linear non-uniform & nonlinear Fourier crystal optics in arbitrary $\bar{\bar{\varepsilon}}, \bar{\bar{\chi}}$ dielectrics"								
Master 's Studies	Quantum Electronics	Courses Score – 93.5 🜎	THz OAM Source					
	Northeastern University School of Physics, College of Science Shenyang, Liaoning							
Northeastern Unive	rsity Scho	ol of Physics, College of Scie	Shenyang, Liaoning					
Northeastern University Bachelor of Science	rsity Scho	ool of Physics, College of Scie	DDTank Aimbots – 2020.06					
Bachelor of Science	Applied Physics	GPA Rank – 1/400 🜎						

Research Projects

3D Vector NonlinearFourier Crystal Optics

Solving
$$\left[\left[(\nabla \times)^2 - k_0^2 \bar{\bar{\varepsilon}} \cdot \right] \underline{\boldsymbol{E}}(\boldsymbol{r}) = k_0^2 \bar{\bar{\chi}} : \mathcal{F}_{\omega}^{-1} \left[\widetilde{\boldsymbol{E}}_{\mathrm{p}} \widetilde{\boldsymbol{E}}_{\mathrm{p}} \right] (\boldsymbol{r}) \right]$$
 analytically 2023.05 –

- First & fastest white box solver ever for this inhomogeneous wave equation
 or other similar equations, with unprecedented efficiency-accuracy product
- No competitors for the time being: other methods or software including
 k-space RK4, pseudo-spectral, SSF, Green's Function methods, FDTD, COMSOL...
- \bullet Reproduced well-known papers, all of which provide either zero or wrong theory:
 - Nat.Photo. #proven theoratically wrong by this project #femtosecond pump
 - O.E. #Bloembergen's legacy2 #experiment | O.M.E. #z-component
 - \circ O.E. | Q.E. #high N.A. # $\bar{\chi}$ anisotropy

PPTs <u>1 2 3</u> ... •

PPTs <u>1 2 3</u> ... •

PPTs 1234 ... 😱

Complex Vector Linear

Fourier Crystal Optics

Analytic solution
$$E(r)$$
 to $\left[(\nabla \times)^2 - k_0^2 \bar{\bar{\varepsilon}} \cdot \right] E(r) = 0$ where $\varepsilon_{ij} \in \mathbb{C}$ 2023.02

- Drawing insights from PRS.A. #M.V.Berry's legacy | A.O.P. | A.P.B. | J.QSRT.
- ullet Next generation will come really close to the exact solution with highly !hermitian $ar{ar{arepsilon}}$
- Reproduced well-known papers, some are purely experimental (too hard to model):
 - o J.O.S.A. #Bloembergen's legacy1 | J.O. | O.M. | O.M. | J.O. | L.P.R.
 - o JOSA.A. | O.E. #tightly focus # $\bar{\epsilon}$ anisotropy | Light.Sci.App. | O.E.

Real Scalar Nonlinear

Fourier Crystal Optics

Closed-form
$$E_3(\mathbf{r})$$
 in $\left[\nabla^2 + k_3^2 \right] E_3(\mathbf{r}) = -k_{03}^2 \chi(\mathbf{r}) E_1(\mathbf{r}) E_2(\mathbf{r}) \right]$ 2022.02 –

- Solving this multivariable/field nonlinear convolution equation on my own
- Strong alternative to Green's Function, pseudo-spectral, split-step Fourier methods
- Reproduced well-known papers & models with maximum accuracy & efficiency:
 - o P.R.L. #Green | P.R.L. #experiment #quantum | P.R.L. #experiment #scatter | P.R.L.
 - \circ L.P.R. #SSF #quantum | Matlab #RCWA | A.P.L. #femtosecond pump
 - O.L. | P.R.A.

Scientific Activities

[0] The 4th Nanjing University Doctoral Interdisciplinary Innovation Forum

"Analytic vector linear & nonlinear Fourier crystal optics in arbitrary $\bar{\bar{\epsilon}}$, $\bar{\bar{\chi}}$ dielectrics" | Talk [PPT] 2024.05.30

[-1] 2023 CSOE-NJU¹ Book Club Meeting & Sharing Session

Nanjing, Jiangsu

"A guided tour to Ray & Wave Optics Simulation" | Talk [PPT]

2023.12.09

[-2] Academic Café Salon of the Research Group

Nanjing, Jiangsu

"Bi-directional notes on Nonlinear Optics in a roam-like app: RoamEdit" | Talk [PDF]

2021.05.21

Publications

- [0] P. Chen, X. Xu, T. Wang, C. Zhou, D. Wei, J. Ma, J. Guo, X. Cui, X. Cheng, **C. Xie**, S. Zhang, S. Zhu, M. Xiao, and Y. Zhang, Laser nanoprinting of 3D nonlinear holograms beyond 25000 pixels-per-inch for inter-wavelength-band information processing, Nature Communications **14**, 5523 (2023)
- [-1] J. Guo, Y. Zhang, H. Ye, L. Wang, P. Chen, D. Mao, C. Xie, Z. Chen, X. Wu, M. Xiao, and Y. Zhang, Spatially Structured-Mode Multiplexing Holography for High-Capacity Security Encryption, ACS Photonics 10, 757–763 (2023)

Academic Focus

Next generation high N.A. 3D vector non-uniform analytic linear & nonlinear Fourier crystal			
	optics 🜎		
!Paraxial k_0^{ω} High N.A. 3D vector non-uniform analytic linear & nonlinear Fourier crystal optics \square			
Emphasizing G_{xyz}^{ω} 3D vector non-uniform analytic linear & nonlinear Fourier crystal optics \mathbb{Q}			
Involving $\bar{\bar{\chi}}^{(2)}_{\omega}$ anisotropy Vector non-uniform analytic linear & nonlinear Fourier crystal optics $m{\P}$			
!Unitary $G_{\omega}^{\pm} \Leftarrow$!Hermitian $\bar{\bar{\varepsilon}}_{\mathrm{r}}^{\omega} \Rightarrow \mathbf{Non\text{-}uniform}$ analytic li	near & nonlinear Fourier crystal optics 😱	2023.03 -	
Solution E_{ω}^{\pm} to $(\nabla^2 + k_{\omega\pm}^2) E_{\omega}^{\pm} \propto P_{\omega\pm}^{(2)}$ Analytic li	near & nonlinear Fourier crystal optics 😱	2022.09 -	
Solution $\mathcal{F}[E_3] = \mathcal{F}[f(\mathcal{F}^{-1}[\cdot])]$ to the Eq. below Nonli	inear angular spectrum theory for SFG 🕠	2022.06 -	
Solution $\mathcal{F}[E_3] = \iiint \cdot \text{to} \left(\nabla^2 + k_3^2 \right) E_3(r) \propto P_3^{(2)}(r)$	Nonlinear convolution solution to SFG 😱	2022.03 -	
Nonlinear THz LiNbO ₃ -based metasurface	Quit THz project formally COMSOL	- 2022.01	
S BWOPO + THz optical parametric amplification	Mathematica BookxNote Pro	- 2021.12	
THz backward optical parametric oscillator (BWOPO)	Mathematica VBA Excel	- 2021.11	
🕥 Multi-cycle THz orbital angular momentum (OAM) source	RoamEdit Blender	- 2021.11	
Narrow-band THz OAM source via Optical Rectification (OR) Python Blender	- 2021.10	
\bigcirc Electricity $\xrightarrow{\text{produce}}$ Acoustics $\xrightarrow{\text{modulate}}$ Optics	RoamEdit VBA Excel	- 2021.07	
\square Visible Photons $\xrightarrow{\text{SPDC}}$ THz Spectroscopy	BookxNote Pro GeoGebra VBA Excel	- 2021.06	
Cavity Phase Matching = Sheet OPO	Paint 3D RoamEdit GeoGebra VBA Excel	- 2021.05	
THz Holography via Optical Rectification	Matlab GeoGebra VBA Excel	- 2021.01	
\square Femtosecond laser $\xrightarrow{\text{Optical Rectification}}$ Terahertz (THz)	GeoGebra VBA Excel	- 2020.12	

¹The Nanjing University student branch of the Chinese Society for Optical Engineering

Honors & Awards

Academia	Doctoral Interdisciplinary Forum (Oral)	2nd place	¥500	Nanjing U.	2024.05
	Doctor's Qualification Exam (Oral)	Excellent	Top 15%	Nanjing U.	2024.01
	Bachelar Thesis 😱 & Defense	Excellent (1/90	Northeastern U.	2020.06
Competition	Three Provinces Achievement Expo	Exhibition (Leader	Three Prov.	2019.10
	"Challenge Cup" Tech Competition 🌐	Grand prize C	Leader	Liaoning Prov.	2019.06
Scholarships & Fellowships	Academic Fellowship	1st class	¥40,000	Nanjing U.	2020 - 24
	"Jinchuan" Scholarship	1st place	¥5,000	Northeastern U.	2019.04
	Academic Scholarship	1st place	¥2,000	Northeastern U.	2018.06
	Entrance Scholarship	3rd place	¥5,000	Leshan No.1 H.S.	2013.09
Honors	Graduation with Honor	Outstanding		Northeastern U.	2020.07
&	League Member	Excellent		Northeastern U.	2019.11
Titles	Undergraduate Student	Excellent ()	Northeastern U.	2018.12
Memberships	Chinese Society for Optical Engineering	Member (Nanjing U.	2021 - 25
	"Qian Sanqiang" Talent Class	Head		I.H.E.P.	2017 - 20

Personal Projects

²Non-linear Angular Spectrum Theory (= Nonlinear Fourier Optics in ??)

Hanging Assist AFK/Bot script for game \[\text{Duel City \]} \] — a knock-off \[\text{Yu-Gi-Oh \]} -2020.04 Automatic matching: Players (PVP), NPCs (PVE) Automatic switching: Multiple accounts supported + Anti-disconnection • Display program stages: Real time understanding of current software state Stackable record: Incrementally output history for every hang-up to the log file.ini ▶ which is also loaded as the configuration file for the next boot EPL 😱 • to restore the program state from the last exit Extended 1A2B A Code-breaking Game \lceil Bulls and cows \rfloor : Guessing 4 digits \rightarrow 1-9 digits -2019.09 Hardware - MicroController (C8051F350.h) version of Original 1A2B: Guessing 4 numbers • Software - VC++6.0 version of Upgraded 1A2B: Guessing 1-9 numbers Keil.C | C++ D **DDTank** An inverse solving toolkit for a projectile game similar to Angry Birds -2018.04Aimbots ullet Established an aerodynamic model with air resistance $oldsymbol{R} = -koldsymbol{v}$ for the game DDTank \longrightarrow by solving $v' \propto R + F$, where driving force F = gravity G + wind force W \longrightarrow which lead to the core transcendental equation $1 - e^{kt} + kt = k^2 M(\mathbf{F}; \Delta \mathbf{r}, \hat{\mathbf{v}}_0)$ \rightarrow that can be numerically solved by Newton's method for t with given $k, F; \Delta r, \hat{v}_0$ ▶ Finally, for each Δr , \hat{v}_0 , one can obtain corresponding initial velocity $v_0(k, F; t, M)$ • after k, F are determined (by the game engine itself) $\rightarrow v_0$ ends up the very info required to accurately hit an enemy at a distance of Δr from you • Software Features: multi-OS/end, multi-hit mode, multi-trajectory, multi-thread supported → Multi-OS: classic Web game on Windows, Mobile game on Android & Android Emulator \longrightarrow Multi-hit_mode: charge-mode for value v_0 , drag_mode (like angry birds) for extended curve \rightarrow Multi-trajectory: predicts up to 6 = (1+2)*2 trajectories for the player: split 3 + backward 3 Multi-threading: succeeded in coordinating multiple timers to implement multi-threading • Capturing game data semi-automatically with computer vision purely → call *dm.findmulticolorEX()* in dm.dll for pixel-level monitoring VBA Excel | E4A | EPL 🔼 📢 Three e-books Freely explored math, physics, and programming with raw intellect -2017.09• Book 1: mainly on mathematics, some intriguing chapters are: Multinomial theorem: $(\sum_{i=1}^n a_i)^m = \sum_{\substack{\Pi_{i=1}^n b_i! \\ \Pi_{i=1}^n b_i!}} \prod_{i=1}^n a_i^{b_i} \text{ over } \{b_i \geq 0\}, \text{ where } \sum_{i=1}^n b_i = m$ \rightarrow Strive to get the general formula for the n-th derivatives $f(g(x))^{(n)}$ of a composite function Connection between the sums of certain series and the indefinite integrals of their terms ightharpoonup Explaining Euler's formula a+b-c=n through topology ► Retracing the birth of the determinant calculation rules ♦ Book 2: up to 12 programs designed to solve mathematical / physical problems Multinomial theorem \Longrightarrow Microstate count $\Omega_l = \frac{(g_l + a_l - 1)!}{(g_l - 1)! a_l!}$ of Bose-Einstein systems \longrightarrow All solutions $\{b_i\}$ that meet the condition $\Sigma_{i=1}^m i \cdot b_i = m$ of the Faà di Bruno Formula \rightarrow Deep recursion algorithms for partition number P(n) & the two aforementioned contexts lacktriangle General solution $\{x_i\}$ of multivariable linear Diophantine equation $\Sigma_{i=1}^n a_i \cdot x_i = b$ ightharpoonup Complete solution $v_{\text{max}}, v_{\text{min}}$ to the Double Comb/Ruler problem \rightarrow Minimum integer solution x, y of linear Diophantine equation $a \cdot x + b \cdot y = c$ Book 3: geometry-related mathematics & physics → Spherical trigonometry: from which I designed a non-Euler angle rotation operator for NLAST ullet which converts direction θ , ϕ of a 3D real vector v between two coordinate systems

→ Special relativity: Had it been animated (by Manim?), it would have looked stunning

C++ (7)

Historical Details

Senior-high-school	Activities 🜎		
Undergraduate -	Activities 😱	Courses 😱	
Postgraduate -	Activities 😱	Courses 😱	Academia 😱
Doctoral -	Activities 😱		Academia 😱