Logic for Computer Science - Week 5 - Exercise Sheet

- 1. Bring the following formulae into CNF:
 - (a) $(p \land q) \lor r$;
 - (b) $(p \lor q) \land r$;
 - (c) $\neg((p \lor q) \land r);$
 - (d) $\neg((p \land q) \lor r);$
 - (e) $(p \wedge q) \vee (\neg p \wedge \neg q);$
 - (f) $(p \land (q \land r)) \lor \neg p$;
 - (g) $\neg((\neg(p \land q)) \lor (p \lor q));$
 - $(\mathrm{h}) \ (\neg(p \wedge q)) \to (\neg p \wedge \neg q);$
 - (i) $(p \leftrightarrow (q \rightarrow (\neg p \land \neg q)))$;
 - (j) $((p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p))$;
 - (k) $(p_1 \wedge q_1) \vee (p_2 \wedge q_2) \vee \ldots \vee (p_n \wedge q_n)$ (first solve for n = 2 and n = 3, then generalize);
 - (l) $(p_1 \vee q_1) \wedge (p_2 \wedge q_2) \wedge \ldots \wedge (p_n \wedge q_n)$ (first solve for n = 2 and n = 3, then generalize);.
- 2. Compute the complement of the CNFs found above.
- 3. Design an algorithm for bringing a formula into DNF.