SCALAB

Universidad Carlos III de Madrid

Curso 2018-2019

Robótica

En este tema

Robótica

Introducción

Arquitectura clásica Comportamiento reactivo Búsqueda de caminos Planificación de tareas Otros aspectos

Robótica

Dos ejemplos de autonomía

Sojourner

Distancia recorrida: aprox. 100 m.

► Metros/día: 3-10

Misión: un instrumento

Opportunity

- Duración: desde 2004 hasta 2018
- ▶ Distancia recorrida (2008): 7km
- Metros/día: 3-10
- Misión: varios instrumentos (150.000 fotos)

Autonomia 5 Actua parsi mismo

http://www.youtube.com/watch?v=4Y2Cf9nRqOw

PSA: personal satellite assistant

Propulsons.

Sensons de temperatura de sonido

Sistema de navegación. Sistema de inteligencia.

http://www.youtube.com/watch?v=trtMoeNEDtc

Vehículos aéreos no tripulados (UAV)

https://www.youtube.com/watch?v=BUfDhpzMTOc

En este tema

Robótica

Introducción

Arquitectura clásica

Comportamiento reactivo Búsqueda de caminos Planificación de tareas Otros aspectos

Entradas y salidas

- Sensores & Modulos de entrada ol sistema.

 Distintos tipos:
 - Infrarojos
 - Láser
 - Cámaras
 - Bumpers
 - ▶ Sonido
 - Luz, movimiento, escaleras ...
- ► Actuadores € Modelar desclida
 - Anguade give

 > Velocidad de las ruedas Se resitantedas...
 - ► Brazos ~ Recoger cosas
 - Sonido
 - Camara
 - ► Software: email, etc.

importante para dexamen.

Es muy complejo controlor un robot para que sean autonomos.

Importante para el examen.

IA en control de robots

Se les de abajo a arriba.

R.O.S => Sist. Op. de robots

En este tema

Robótica

Introducción Arquitectura clásica Comportamiento reactivo

Búsqueda de caminos Planificación de tareas Otros aspectos

Control clásico [Jones et. al. 2003]

Uno de los primeros ejemplos que hubo.

Programación de comportamientos

Mover a la derecha

► Lógica clásica (reglas)

```
SI sensor[0] < 100 AND \sum_{i=1}^8 sensor[i] > 800 THEN velocidad[1] = 100, velocidad[2] = 0
```

Lógica borrosa

```
SI el sensor de la izquierda esta cerca AND el resto está lejos  \hbox{THEN } velocidad[1] = alta, \ velocidad[2] = muybaja
```


Aprendizaje de comportamientos

Aprendizaje a partir de ejemplos

Aprendizaje a partir de ejemplos. Aprendizaje por

Combinación de comportamientos simples

Descripción jerárquica

Mapas

► Generación de mapas: preprogramados, aprendidos

Seque los datos de los sensores podemos localizar al robot pava sabu que acción realizar, para ello se generaun mapa con las medidos tomados

- ► Localización: GPS, balizas, Markov, Montecarlo, Filtros de Kalman p(State=(x,y) | Sensors=(s[0],...,s[n]))
- Búsqueda de caminos (Path finding)

En este tema

Robótica

Introducción
Arquitectura clásica
Comportamiento reactivo
Búsqueda de caminos
Planificación de tareas

Otros aspectos

Encontrar el mejor camino

Encontrar el mejor camino

Dis cretitames el problema, le pasames a cel des dende hay una neta y nuestra posicion. Podemos aplicar algoritmos de busqueda.

Búsqueda A*

En este tema

Robótica

Introducción
Arquitectura clásica
Comportamiento reactivo
Búsqueda de caminos
Planificación de tareas
Otros aspectos

Se définen los estados y acciones, y se hace planificación y replanificación hasta que hace lo que esperamos.

Estado

```
at (robot1, room1),
opened_door(door1, room1, room2),
closed_door(door2, room1, room3, ...
```

- ► Aciones

 abrir, cerrar, mover, ...
- ► Metas
 at (letters, room3)
- ▶ Plan
 mover(robot1, room1, room2, door1), ...
- ► Métricas: tiempo, coste, ...

Ejemplo en robot humanoide

https://www.youtube.com/watch?v=tovwPsDm-6c https://www.youtube.com/watch?v=g2NZ_EasJv0&vl=de

En este tema

Robótica

Introducción
Arquitectura clásica
Comportamiento reactivo
Búsqueda de caminos
Planificación de tareas
Otros aspectos

Emociones y comportamiento social

http://www.youtube.com/watch?v=3GkI374ZkM4

Entornos multi-robot (varios robots que le deben coordinar)

- Algunos dominios son multi-robot
- Necesidad de coordinación, negociación, cooperación y comunicación
- Coordinación
 - Centralizada: si robot1 cercano a robot2, mover robot2
 - Distribuida: si muy cerca de otro robot en la derecha mover a la izquierda
- Comunicación. Necesidad de un lenguaje como KQML
 - ▶ inform X Y
 - request X Y
- Ejemplos

```
http://www.youtube.com/watch?v=pJVS-9sMiVY
https://www.youtube.com/watch?v=4ErEBkj_3PY
http://www.youtube.com/watch?v=qBUFX41e1mc
```

Ejemplo de robots sociales. Teatro

https://www.youtube.com/watch?v=cJu1VweV3BQ

Aplicaciones

Industry

Medicine

Exploration, science

Entertainment

Más robots

- ► P3(Honda)
 http://www.youtube.com/watch?v=7T_09BkkFik
- ► Perro

 http://www.youtube.com/watch?v=cHJJQ0zNNOM
- ► Spirit y Opportunity
 http://www.youtube.com/watch?v=Rljneh_N9WI
- ► Boss
 http://www.youtube.com/watch?v=lUL163ERek0
- ► Nao
 http://www.youtube.com/watch?v=2STTNYNF4lk
- ► Quadrópteros
 http://www.youtube.com/watch?v=_sUeGC-8dyk
- ► Jugadores de fútbol
 https://www.youtube.com/watch?v=6BchV1Pk7yc