Soil-Structure Interaction

Foundation Design with Geotechnical Considerations

FIGURE 1. SOIL-STRUCTURE INTERACTION MODEL

Fig. 1. Foundation behavior under structural loads considering soil properties and seismic effects

SOIL CONDITIONS		
	ROCK	
	DENSE SAND	
	SOFT CLAY	
SELECTED SOIL PROPERTIES: • Vs = 150 m/s • Bearing = 100 kPa • Soft clay, poor foundation GROUNDWATER DEPTH (M)		

5.000

FOUNDATION TYPE		
	SPREAD FOOTING	
	STRIP FOOTING	
	MAT FOUNDATION	
	PILE FOUNDATION	

FOUNDATION SIZING	
WIDTH (M)	
2.000	
LENGTH (M)	
2.000	
DEPTH (M)	
1.500	

STRUCTURAL LOADING COLUMN LOAD (KN) 1000.000 SEISMIC ACCELERATION (G) 0.25

EARING PRESSURE:	250.0 kPa
LLOWABLE BEARING:	130.0 kPa
AFETY FACTOR:	0.52
ETTLEMENT:	16.7 m
EISMIC AMPLIFICATION:	1.33
X INADEQUATE	

DISPLAY OPTIONS

- ✓ SHOW STRESS DISTRIBUTION
- ✓ SHOW SETTLEMENT PROFILE

VERIFY WITH WOLFRAM ALPHA →

Foundation Design Principles

KEY DESIGN FACTORS

- Bearing Capacity: Maximum pressure soil can support
- Settlement: Vertical deformation under load
- Safety Factor: Margin against bearing failure
- Seismic Response: Dynamic amplification effects
- Groundwater: Reduces effective stress and capacity

FOUNDATION SELECTION

- Spread Footings: Good soil, moderate loads
- Strip Footings: Walls, uniform loading
- Mat Foundations: Poor soil, heavy structures
- Pile Foundations: Very poor surface soils
- Deep Foundations: High loads, weak soils

SEISMIC CONSIDERATIONS

Seismic forces modify foundation design through soil amplification effects. Softer soils amplify ground motion more than stiff soils. The shear wave velocity (Vs) is a key parameter for determining site amplification factors used in seismic design.