SEMINARUL 2 Grupuri

- 1. Fie (M,\cdot) monoid și U(M) mulțimea elementelor inversabile ale lui M. Arătați că U(M) este o parte stabilă a lui (M,\cdot) și U(M) formează în raport cu operația indusă un grup, numit grupul elementelor inversabile.
- 2. Determinați grupul elementelor inversabile ala monoizilor:
 - a) $(\mathbb{N},+), (\mathbb{N},\cdot), (\mathbb{Z},\cdot), (\mathbb{Q},\cdot), (\mathbb{R},\cdot), (\mathbb{C},\cdot)$
 - b) (M^M, \circ) , M mulţime
 - c) $(\mathbb{Z}[i], \cdot)$, unde $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$
 - d) $(M_n(\mathbb{R}), \cdot)$
 - e) (\mathbb{Z}_4,\cdot)
- 3. Pe \mathbb{R} se defineste operația * astfel:

$$x * y = xy + 2ax + by, \forall x, y \in \mathbb{R}$$

Să determine $a, b \in \mathbb{R}$ astfel ca $(\mathbb{R}, *)$ să fie un semigrup comutativ.

4. Fie (G,\cdot) un grup. Dacă pentru orice $x,y\in G$ există un numar întreg k astfel ca:

$$(\mathbf{x} \cdot \mathbf{y})^{i} = \mathbf{x}^{i} \cdot \mathbf{y}^{i}$$
, pentru $i = k - 1, k, k + 1$,

atunci G este comutativ.

- 5. Fie (S, \cdot) un semigrup având proprietațile:
 - a) există $e \in S$ astfel încât $e \cdot a = a$, $\forall a \in S$,
 - b) $\forall \alpha \in S, \exists \alpha' \in S \text{ astfel încât } \alpha' \cdot \alpha = e.$

Să se arate că (S, \cdot) este grup.

- 6. Fie "*" operația definită pe \mathbb{R} de x * y = xy 5x 5y + 30;
 - a) Este $(\mathbb{R}, *)$ grup?
 - b) Dar $(\mathbb{R} \setminus \{5\}, *)$
 - c) $((5,\infty),*)$?
 - d) $((-\infty,5),*)$?
- 7. Determinați ordinul elementelor

$$X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, Y = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, Z = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$$

în $(GL_2(\mathbb{C}), \cdot)$.