Otomata Teorisi (BİL 2114)

Hafta 3: Sonlu Otomata (II.Bölüm)

Hafta 3 Plan

- I. NSO inşası
- 2. Epsilon Geçişleri
- 3. Nondeterministik Sonlu Otomata'nın Resmi Gösterimi
- 4. Bir NSO'yu bir DSO'ya Dönüştürme

ör. $\Sigma = \{0,1\}$ alfabesi kullanılarak üretilen kelimerlerden sonu '101' ile biten kelimeri kabul eden determinstik ve nondeterminstik sonlu otomatalar:

Nondeterministik

Bir önceki soruda NSO'yu inşa ederken:

Oncelikle 101 geldiginde kabul durumuna ulasan otomata insa edilir:

Ve buna q_0 dan 0 ve 1 oklari ekleriz ki, 0 yada 1 ile baslayip 101 ile biten kelimeri kabul etsin.

Ek bilgi:

Onceki ornekteki nondetermistik otomata ${q_0}^\prime$ da karsilastigi her 1 harfi icin <u>kendini kopyalar.</u> Ornek olarak 1101 kelimesini aldigini dusunelim.

Epsilon(ε) geçişleri

NSO'nun bir diğer güzelliği epsilon geçişlerine izin vermesidir.

Bu geçiş diğer geçişlerden farklı olarak harf almaz. Yani epsilon (ε) ile bağlanan iki durumdan, birinden diğerine geçmek için bir harf gerekmez; otomatik olarak geçeriz. Yani bu iki durumdan ilkine vardığımızda diğerine de varmış oluruz.

ör. $\Sigma = \{a, b, c\}$ alfabesi kullanılarak oluşturulan kelimelerden a,b,c harflerinden ucunu birden iceren kelimeri kabul etmeyen sonlu otomata:

F. Ismailoglu

Epsilon(ε) geçişleri

Aralarında bir ε geçişi olan iki durumdan ilkine vardığımızda ilkiyle beraber ikinciye de otomatik olarak varmış oluruz.

ör. $\Sigma = \{a, b\}$ alfabesi kullanılarak üretilen kelimerlerden ε , a, baa ve baba kelimelerini kabul eden; fakat b ve bbkelimelerini kabul etmeyen sonlu otomata:

ör. $\Sigma = \{0,1\}$ alfabesi kullanılarak üretilen kelimerlerden sonu '0110' yada '010' yada '00' ile biten kelimeleri kabul eden nondeterminstik sonlu otomata:

ör. $\Sigma = \{0\}$ alfabesi kullanılarak oluşturulan kelimelerden 2'nin yada 3'ün katı uzunluğundaki kelimeleri tanıyan sonlu otomata:

Neden Nondeterministik?

ör. $\Sigma = \{0,1\}$ alfabesi kullanılarak üretilen kelimerlerden sondan 3. harfi yada sondan 2. harfi 1 olan kelimeleri tanıyan nondeterministik sonlu otomata:

Nondeterministik

Deterministik

Nondeterministik Sonlu Otomatanin Formal Tanımı

Bir nondterminitik sonlu otomata 5-li sıradır ve $(Q, \Sigma, \delta, q_0, F)$ ile gösterilir. Burada:

- Q tüm durumları içeren sonlu bir kümedir,
- Σ kullandığımız harfleri (inputları) içeren alfabedir,
- $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ geçiş fonksiyonudur (transition function),
- $q_0 \in Q$ baslangıç durumudur,
- 5. $F \subseteq Q$ final durumları içeren kümedir.

Not $I.\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$. Yani NSO'da ε geçişine de izin veriyoruz.

Not 2. Dikkat et! NSO'da geçiş fonksiyonun değer kümesi Q değil, Q'nun güç kümesi olan $\mathcal{P}(Q)$ ' dur. $\mathcal{P}(Q)$ 'nun elemanları Q'nun altkümeleri idi. Yani böylece NSO'da bir durumdan yalnız bir duruma değil birden çok duruma geçiş yapabiliriz.

ör.

$$\begin{split} Q &= \{q_0, q_1, q_2, q_3\}, \\ \Sigma &= \{0, 1\}, \\ q_0, \end{split}$$

 $F = \{q_3\}$.

δ	0	1	3
q_0	$\{q_0\}$	$\{q_0,q_1\}$	Ø
q_1	$\{q_2\}$	$\{q_2\}$	$\{q_2\}$
q_2	$\{q_3\}$	$\{q_3\}$	Ø
q_3	Ø	Ø	Ø

NSO ve DSO'nun Denkliği

NSO, DSO'dan daha güçlü görünmesine karşın, aslında NSO ve DSO aynı dili tanırlar; yani birbirlerine denktirler.

Teorem I: Her bir DSO zaten bir NSO dur. (DSO⊆NSO)

Bir DSO, bir NSO'ya dönüştürülürken yalnızca geçiş fonksiyonu aşağıdaki gibi değiştirilir:

$$\delta: Q \times \Sigma \to Q$$
 iken, $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ olur.

$$\ddot{\text{or}}. \, \delta(q_i, 0) = q_i, \delta(q_i, 0) = \{q_i\} \text{ olur.}$$

Teorem 2: Her bir NSO'ya karşılık bir DSO vardır.

Bir NSO'yu bir DSO'ya dönüştürürken şu süreç izlenir.

Bir NSO'yu bir DSO'ya dönüştürme:

Bir NSO N = $(Q, \Sigma, \delta, q_0, F)$, bir D DSO'ya dönüştürülürken:

- I. $\mathcal{P}(Q)$ oluşturulur, yani Q'nun bütün altkümeleri. D'nin durumları bu $\mathcal{P}(Q)$ 'nun elemanlari olan altkümeler olur.
- 2. D'nin başlangıç ve final (kabul) durumlarına karar verilir:

Başlangıç durumu: N'deki başlangıç durumu q_0 'ı ve varsa q_0 'ın ε ile bağlandığı diğer durumları içeren $\mathcal{P}(Q)$ 'nun elemanı olan küme D'nin başlangıç durumu olur.

Kabul durumu: N'deki kabul durumlarını içeren $\mathcal{P}(Q)$ 'nun her elemanı D'nin bir kabul durumu olur.

3. D için geçiş tablosu oluşturulur. Bunun için $\mathcal{P}(Q)$ 'nun her biri bir altküme olan elemanı için, bu altkümedeki her bir durumun Σ 'daki her bir harf için hangi duruma gittiği bulunur. Bulunan durumların oluşturduğu birleşim kümesi geçiş durumu olur.

Bir NSO'yu bir DSO'ya dönüştürme:

4. Son olarak $\mathcal{P}(Q)$ 'nun geciş alan elemanları için 3'de bulunan geçiş tablosu yardimiyla DSO çizilir.

ör.

$$N = (Q = \{q_0, q_1, q_2\}, \Sigma = \{0,1\}, \delta, q_0, F = \{q_2\})$$

NSO'sunun DSO'ya dönüşümü:

$$\mathsf{I}.\,P(Q) = \left\{\emptyset, \{q_0\}, \{q_1\}, \{q_2\}, \{q_0, q_1\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}\right\}$$

2. Başlangıç durumu: $\{q_0\}$,

Kabul durumları: $\{q_2\}, \{q_0, q_2\}, \{q_1, q_2\}, \{q_0, q_1, q_2\}$

(P(Q))'nun q_2 'yi içeren her elemanını aldık)

3. Geçiş tablosu:

	$_{-}$	0	1
Yeni durumlar	Ø	Ø	Ø
	$\{q_0\}$	$\{q_0,q_1\}$	$\{q_0\}$
	$\{q_1\}$	Ø	$\{q_2\}$
	$\{q_2\}$	Ø	Ø
	$\{q_0,q_1\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$
	$\{q_0, q_2\}$	$\{q_0,q_1\}$	$\{q_0\}$
	$\{q_1, q_2\}$	Ø	$\{q_2\}$
	$\{q_0,q_1,q_2\}$	$\{q_0,q_1\}$	$\{q_0,q_2\}$

4. Yukarıdaki tabloda yalnızca \emptyset , $\{q_0\}$, $\{q_0\}$, $\{q_0, q_1\}$ ve $\{q_0, q_2\}$ durumlarına geçiş vardır. O yuzden DSO'yu inşa ederken yalnızca bu durumları dikkate alacağız.

Bu parçaya başlangıç durumu $\{q_0\}$ 'dan ulaşılamayacağı için, bu parçayı atıyoruz.

Not I. Baslangic durumu yalnız q_0 değil, q_0 ile birlikte q_0' ın ε ile bağlandığı q_2 .

Not 2. Kabul durumları NSA'daki kabul durumu olan q_0 'ı içeren tüm alt kümeler.

