Untitled

Delete this sentence and enter your text here.

pander(summary(lm(Price~Rooms+Crime+NOX)))

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-19371	3251	-5.959	4.79e-09
Rooms	7933	407.9	19.45	3.203e-63
\mathbf{Crime}	-199.7	35.05	-5.697	2.079e-08
NOX	-1306	266.1	-4.907	1.249 e-06

Table 2: Fitting linear model: Price \sim Rooms + Crime + NOX

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
506	6103	0.5634	0.5608

Background

This data analyzes the various factors that could go into a home purchase. The data includes: home prices, crimes committed per capita in the neighborhood, how much nitrous oxide is present on the site, average number of bedrooms per house, estimated distance to work, accessibility to radial highways, property taxes, student teacher ratio in the school districe, and the percentage of 'low status' people in the vicinity.

pander(summary(reg))

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	-43.04	4.08	-10.55	2.348e-25
INC	0.7993	0.05973	13.38	3.451e-39
AGE	0.8427	0.09202	9.158	1.266e-19

Table 4: Fitting linear model: NETTFA \sim FSIZE + INC + AGE

Observations	Residual Std. Error	R^2	Adjusted R^2
2017	44.68	0.1193	0.1185

pander(t.test(Other, mu = mean(Other), alternative = "two.sided", conf.level = 0.95))

Table 5: One Sample t-test: Other

Test statistic	df	P value	Alternative hypothesis	mean of x
0	9274	1	two.sided	39.25

```
pander(t.test(INC, mu = mean(INC), alternative = "two.sided", conf.level = 0.95))
```

Table 6: One Sample t-test: INC

Test statistic	df	P value	Alternative hypothesis	mean of x
0	2016	1	two.sided	29.45

```
pander(t.test(AGE, mu = mean(AGE), alternative = "two.sided", conf.level = 0.95))
```

Table 7: One Sample t-test: AGE

Test statistic	df	P value	Alternative hypothesis	$mean\ of\ x$
0	2016	1	two.sided	39.28

Table 8: One Sample t-test: NETTFA

Test statistic	df	P value	Alternative hypothesis	mean of x
0	2016	1	two.sided	13.59