Ateliers L3 CMI

Quentin Hoarau

2025-10-09

Table des matières

ln	troduction	7
	Présentation	7
	Notation	7
I	Général	8
Pr	rojets et présentations	9
	Lien d'inscription	9
Cd	onsignes Projet 1	10
	Consignes Générales	10
	Partie SIG	10
	Partie Économétrie	11
	Rapport	11
	Évaluation	12
Ba	ases de données	13
11	Calcul Numérique	14
In	troduction	15
TI	P1 : Commandes de base de R	16
	1. Manipulation de vecteurs	16
	2. Manipulation de listes	16
	3. Manipulation de matrices	17
	4. Manipulation de chaînes de caractères	18
TI	P2 : Tableaux de données	20
	1. Les verbes de base de dplyr	20
	2. Enchaîner des opérations	21
	group_by et summarise	21
	3. Jointures	22
	4 Bonus	22

Exercice 1					23
	 				23
Exercice 2	 				24
Exercice 3	 				24
Exercice 4	 				26
Exercice 5	 				26
TP4 : Fonctions et manipulation de données					28
1. Mise en ordre des données	 				28
1.1 Représentations multiples d'un même jeu de données	 				28
1.2 Colonnes multiples représentant plusieurs variables					29
2. Fonctions en R	 				29
2.1 Introduction et exemples	 				29
2.2 Arguments et résultat	 				32
2.3 Portée des variables	 				33
2.4 Les fonctions comme objets	 				35
3. Fonctions et Dplyr					37
3.1 Appliquer ses propres fonctions	 				37
3.2 across()	 				41
3.3 Fonctions anonymes et notations abrégées	 				43
3.4 rowwise() et c_across()					47
III SIG Introduction					50 51
introduction					
TP1 : Introduction à QGIS					52
		•			52 52
1. Prise en main					$\frac{52}{52}$
1.1 Affichage / désaffichage des panneaux					- n/
1.1 Affichage / désaffichage des panneaux	 				
1.1 Affichage / désaffichage des panneaux	 		 		53
1.1 Affichage / désaffichage des panneaux	 		 	 	53 53
1.1 Affichage / désaffichage des panneaux	 		 	 	53 53 53
1.1 Affichage / désaffichage des panneaux	 		 	 	53 53 53 53
1.1 Affichage / désaffichage des panneaux	 		 	 	53 53 53 53 53
1.1 Affichage / désaffichage des panneaux 1.2 Utilisation de données vecteur			 	 	53 53 53 53 53 54
1.1 Affichage / désaffichage des panneaux 1.2 Utilisation de données vecteur 1.3 Création d'un projet 1.4 Utilisation de l'outil Identifier les entités 1.5 Jointure 1 1.6 Utilisation d'OpenStreetMap 1.7 Ordre des couches et opacité 1.8 Groupe de couches 1.9 Outil de mesure			 	 	53 53 53 53 53 54 54
1.1 Affichage / désaffichage des panneaux 1.2 Utilisation de données vecteur 1.3 Création d'un projet 1.4 Utilisation de l'outil Identifier les entités 1.5 Jointure 1 1.6 Utilisation d'OpenStreetMap 1.7 Ordre des couches et opacité 1.8 Groupe de couches 1.9 Outil de mesure 1.10 Sélection et export			 	 	53 53 53 53 54 54 54
1.1 Affichage / désaffichage des panneaux 1.2 Utilisation de données vecteur 1.3 Création d'un projet 1.4 Utilisation de l'outil Identifier les entités 1.5 Jointure 1 1.6 Utilisation d'OpenStreetMap 1.7 Ordre des couches et opacité 1.8 Groupe de couches 1.9 Outil de mesure 1.10 Sélection et export 1.11 Sélection et conditions multiples			 	 	53 53 53 53 54 54 54 54
1.1 Affichage / désaffichage des panneaux 1.2 Utilisation de données vecteur 1.3 Création d'un projet 1.4 Utilisation de l'outil Identifier les entités 1.5 Jointure 1 1.6 Utilisation d'OpenStreetMap 1.7 Ordre des couches et opacité 1.8 Groupe de couches 1.9 Outil de mesure 1.10 Sélection et export 1.11 Sélection et conditions multiples 2. Symbologie 1 : Pays du monde			 	 	53 53 53 53 54 54 54 54 54
1.1 Affichage / désaffichage des panneaux 1.2 Utilisation de données vecteur 1.3 Création d'un projet 1.4 Utilisation de l'outil Identifier les entités 1.5 Jointure 1 1.6 Utilisation d'OpenStreetMap 1.7 Ordre des couches et opacité 1.8 Groupe de couches 1.9 Outil de mesure 1.10 Sélection et export 1.11 Sélection et conditions multiples			 	 	53 53 53 53 54 54 54 54 54 55

2.2 Symboles proportionnels	55
3. Symbologie 2 : France	55
3.1 Styles	56
3.2 Étiquettes	56
3.3 Mise en page finale	56
TP2 : Traitement sur les données vectorielles	57
1. Données de départ	57
2. Création d'un GeoPackage	57
3. Zone tampon sur l'autoroute A61	58
3.1 Vérification du SCR	58
3.2 Conversion en Lambert 93	58
3.3 Sélection et tampon	58
3.4 Analyse	58
4. Matrice de distance	59
5. Grille hexagonale	59
5.1 Création	59
5.2 Nettoyage	59
6. Comptages dans la grille	59
7. Analyse de superposition (Corine Land Cover)	60
7.1 Sélection des forêts	60
7.2 Superposition	60
8. Intersection et Group Stats	60
8.1 Zone tampon des parcs	60
8.2 Intersection avec CLC	60
8.3 Tableau croisé dynamique	61
TP3 : SIG avec R	62
1. Premières cartes	62
2. Opérations sur les attributs	63
3. Opération sur les données spatiales	64
3.1 Opérations sur les vecteurs	64
3.2 Opérations sur les rasters	65
4. Opérations sur les géométries	66
4.1 Opérations sur les vecteurs	66
4.2 Opérations sur les rasters	67
5. Application : rapprochement de base par distances	67
IV Econométrie 1	68
Introduction	69

TP1 : Probabilités et Statistiques avec R	70
1. Probabilités avec R	70
1.1 - Échantillonnage	70
1.2 - Fonction de densité de probabilité	70
1.3 - Espérance et Variance	70
1.4 - Distribution Normale Standard	71
1.5 - Distribution du Chi-carré	71
1.6 - Distribution de Student	71
1.7 - Distribution de Fisher	71
2. Statistiques avec R	71
2.1 - Biais	71
2.2 - Efficience d'un estimateur	72
2.3 - Test d'hypothèse	73
2.4 - Test d'hypothèse : valeur-p	73
2.5 - Corrélation	73
	••
TP 2 : Modèle de régression multiple	75
Introduction	76
Rappel sur R	77
Retour sur la régression multiple	78
Exercices	79
bwght	79
hprice1	80
$ceosal2 \ldots \ldots \ldots \ldots \ldots$	80
attend	81
meap93	81
discrim	82
charity	82
htv	83
TP3 : Analyse des Disparités Scolaires au Collège	85
0. Installation	85
1. Données Brevet	85
1.1 Description des données	85
1.2 Evolution temporelle	86
1.3 Variation en coupe	86
2. Données socio-économiques	86
2.1 Description du jeu de données	86
211 2 00011puon au jou ao aoninoo i i i i i i i i i i i i i i i i i	\sim 0

3. Analyse jointe	87
3.1 Jointure	87
3.2 Analyse en coupe	87
3.3 Regressions linéaire	87
TP4 : Etude économétrique de l'Enquête Nationale Transport 2019	88
1. Enoncé	88
V Econométrie 2	89

Introduction

Présentation

Ce livre contient les supports de TP des quatre ateliers spécifiques de la L3 CMI de l'université Paris Nanterre :

- Calcul numérique (S1) 3 ECTS
- Système d'information géographique (S1) 3 ECTS
- Econométrie 1 (S1) 4.5 ECTS
- Econométrie 2 (S2) 3 ECTS

Notation

Toute la notation est en contrôle continu. Les notes viennent de :

- « Participation » qui inclut l'implication en classe, la qualité des rendus des TP et des pénalités pour retards et absence
- Présentations en classe
- Projets de fin de semestre :
 - Peuvent être communs à plusieurs matières
 - Sujets donnés ou sujets libres
 - Rapport écrit propre (pas de compilation de code, ou de génération IA)
 - Présentation orale avec slides (sans les lire)

Toutes les projets sont recensés dans ce fichier Excel partagé.

Me contacter à qhoarau@parisnanterre.fr

Première partie

Général

Projets et présentations

Lien d'inscription

Toutes les projets sont recensés dans ce fichier Excel partagé.

Consignes Projet 1

Consignes Générales

- Vous pouvez utiliser ChatGPT ou autre, mais posez-vous toujours la question : « Est-ce que je comprends ce qu'il me donne? »
- Les sujets sont volontairement simples et vagues : il vous appartient de vous les approprier.
- Apporter du contexte avec vos recherches personnelles.
- Décrire les métadonnées : origine, limites, etc.
- Décrire les données : taille, horizon géographique et temporel, grandeurs et catégories contenues. Colonnes utiles vs inutiles. Nombre de données manquantes.
- Vous pouvez rapprocher les données que vous avez.
- Si les données sont trop lourdes, il est accepté de restreindre le jeu de données à une aire temporelle plus réduite.

Partie SIG

- Réaliser des cartes générales (choroplèthes) à l'échelle de la France pour chaque jeu de données.
- Réaliser des cartes combinées lorsqu'un même sujet fait apparaître deux jeux de données.
 - Exemple : une carte « zoom » avec des icônes différentes pour localiser les éoliennes et les maisons vendues à proximité.
- Calculer les distances pour rapprocher les deux bases :
 - Pour chaque bien immobilier, quelle est l'éolienne la plus proche?
- Calculer les distances en intégrant la dimension temporelle.

- Restreindre le jeu de données aux observations pertinentes (ex. moins de 10 km autour de chaque évènement).
 - Exemple : enlever les maisons vendues à plus de 15 km d'une éolienne qui sera installée en 2024.

Partie Économétrie

- Faire des statistiques descriptives sur chaque jeu de données :
 - Exemple : évolution du nombre d'éoliennes installées/fermées, caractéristiques moyennes des évènements.
- Faire des statistiques descriptives sur la réunion des deux jeux de données :
 - Exemple : évolution du prix en fonction de la distance aux éoliennes.
- Estimer plusieurs régressions sur les prix de l'immobilier **sans** le deuxième jeu de données :
 - Exemple : $\log(Prix) = nb_pieces + surface + departement + anne + \dots$
- Estimer plusieurs régressions sur les prix de l'immobilier **avec** le deuxième jeu de données :
 - Exemple : $\log(Prix) = (distance < 1km) + nb_pieces + surface + dep + anne + \dots$

Rapport

- Construire une **problématique** :
 - Exemple : Quel est l'impact de l'installation d'éoliennes sur les prix des maisons en zone rurale?
- Expliciter le mécanisme à l'œuvre :
 - Exemple : Une fermeture d'usine entraîne moins de travailleurs (donc baisse de la demande), mais aussi moins de pollution (hausse de la demande).
- Plan imposé:
 - 1. Introduction + problématique + contexte + présentation des données
 - 2. SIG
 - 3. Économétrie

- Rédaction :
 - Pas moins de **20 pages**.
 - Écrit en **Word ou LaTeX** (pas de *knit* en Markdown).
- Présentation :
 - PowerPoint de **10 minutes** + **5 minutes** de questions.

Évaluation

- Ce projet constitue l'évaluation pour deux matières couvrant **7.5 crédits ECTS** : un travail conséquent est attendu.
- N'hésitez pas à poser des questions si vous rencontrez des problèmes.
- Date de rendu du projet : 20 janvier.
- Date de présentation : à déterminer après le 20 janvier.

Bases de données

Général:

- datagouv : répertoire public français
- datagov US: répertoire public américain
- datagov UK : répertoire public anglais
- kaggle : répertoire public pour data science
- TidyTuesday: projets collaboratifs de la Data Science Learning Community.
- Openintro : données éducatives

Statistiques publiques:

- DBnomics ou voir le package R dbnomics
- OCDE ou voir le package R ocde
- Eurostat ou voir le package R eurostat

Données socioéconomiques :

— Données du livre de Cagé & Piketty : données à la maille commune sur les revenus, education, résultats électoraux...

Données SIG:

- IGN
- Natural Earth

Données Energie/environnement :

- SDES (Ministère Transition Ecologique).
- ODRE (réseaux d'énergie).
- EEA (Agence européenne de l'environnement).
- Données incendies.
- Données prix carburants.

Deuxième partie Calcul Numérique

Introduction

Le cours en résumé :

- 24 h
- Objectifs: prise en main de R et markdown, statistiques descriptives, graphiques
- Langage: R & Power BI (introduction si a le temps)
- Modalités d'examens :
- Note de participation
- Un projet commun calcul numérique/économétrie avec choix du sujet libre
- Présentation individuelle d'un chapitre d'un livre sur les bonnes pratiques de la dataviz : (Fundamentals of Data Visualization) de Clause Wilke. Inscription (ici).

Le plan:

- 1. Commandes des bases de R
- 2. Les tableaux de données en R
- 3. Les graphiques

TP1 : Commandes de base de R

1. Manipulation de vecteurs

Soit le vecteur x = (1, 2, 3, 4, 5)

- 1. Créer ce vecteur dans R et le stocker dans un objet que l'on appellera x;
- 2. Afficher le mode de x, puis sa longueur;
- 3. Extraire le premier élément, puis le dernier;
- 4. Extraire les trois premier éléments et les stocker dans un vecteur que l'on nommera a
- 5. Extraire les éléments en position 1, 3, 5; les stocker dans un vecteur que l'on nommera b
- 6. Additionner le nombre 10 au vecteur x, puis multiplier le résultat par 2;
- 7. Effectuer l'addition de a et b, commenter le résultat;
- 8. Effectuer l'addition suivante : x+a, commenter le résultat, puis regarder le résultat de a+x :
- 9. Multiplier le vecteur x par le scalaire c que l'on fixera à 2;
- 10. Effectuer la multiplication de a et b, commenter le résultat;
- 11. Effectuer la multiplication suivante : x*a, commenter le résultat;
- 12. Récupérer les positions des multiples de 2 du vecteur x et les stocker dans un vecteur que l'on nommera ind, puis conserver uniquement les multiples de 2 de x dans un vecteur que l'on nommera mult_2;
- 13. Afficher les éléments de x qui sont multiples de 3 et multiples de 2;
- 14. Afficher les éléments de x qui sont multiples de 3 ou multiples de 2;
- 15. Calculer la somme des éléments de x;
- 16. Remplacer le premier élément de x par un 4;
- 17. Remplacer le premier élément de \mathbf{x} par la valeur NA, puis calculer la somme des éléments de \mathbf{x} :
- 18. Lister les objets en mémoire dans la session R;
- 19. Supprimer le vecteur a;
- 20. Supprimer la totalité des objets de la session.

2. Manipulation de listes

1. Évaluer le code suivant : TRUE+FALSE+TRUE*4 et le commenter ;

- 2. Évaluer les expressions suivantes : c(1, 4, TRUE), et c(1, 4, TRUE, "bonjour"), commenter:
- 3. Créer une liste que l'on appellera 1 et qui contient les éléments 1, 4 et TRUE en première, seconde et troisième positions respectivement;
- 4. Extraire le premier élément de la liste 1, et afficher son mode. En faire de même avec le troisième élément, et commenter;
- 5. Ajouter un quatrième élément à la liste 1 : "bonjour", puis afficher la structure de 1;
- 6. Retirer le troisième élément de la liste 1;
- 7. Créer une liste de trois éléments : votre nom, votre prénom, et votre année de naissance. Ces trois éléments de la liste devront être nommés respectivement "nom", "prenom" et année de naissance. Stocker la liste ainsi créée dans un objet nommé moi;
- 8. Extraire le prénom de la liste moi de deux manières : en utilisant l'indice, et en utilisant le nommage;
- 9. Créer une liste avec la même structure que celle de moi, en la remplissant avec les informations d'une autre personne et la nommer toi Puis, créer la liste personnes, qui contiendra les listes toi et moi;
- 10. Extraire la liste toi de personnes (en première position);
- 11. Extraire directement depuis personnes le prénom de l'élément en première position.

3. Manipulation de matrices

1. Créer la matrice suivante :

$$A = \begin{bmatrix} -3 & 5 & 6 \\ -1 & 2 & 2 \\ 1 & -1 & -1 \end{bmatrix}$$

;

- 2. Afficher la dimension de A, son nombre de colonnes, son nombre de lignes et sa longueur;
- 3. Extraire la seconde colonne de A, puis la première ligne;
- 4. Extraire l'élément en troisième position à la première ligne;
- 5. Extraire la sous-matrice de dimension 2×2 du coin inférieur de A
- 6. Calculer la somme des colonnes puis des lignes de A
- 7. Afficher la diagonale de A;
- 8. Rajouter le vecteur colonne (1, 2, 3) à droite de la matrice A et stocker le résultat dans un objet appelé B;
- 9. Retirer le quatrième vecteur de B;
- 10. Retirer la première et la troisième ligne de B;
- 11. Ajouter le scalaire 10 à A;
- 12. Ajouter le vecteur colonne (1 2 3) à A;

- 13. Ajouter la matrice identité I_3 à A;
- 14. Diviser tous les éléments de la matrice A par 2;
- 15. Multiplier la matrice A par le vecteur colonne (1 2 3);
- 16. Afficher la transposée de A;
- 17. Effectuer le produit avec transposition A^tA .

4. Manipulation de chaînes de caractères

Charger le package tidyverse, qui contient le package stringr.

- 1. Créer les objets a et b afin qu'il contiennent respectivement les chaînes de caractères suivantes : 23 à 0 et C'est la piquette, Jack!;
- 2. Créer le vecteur phrases de longueur 2, dont les deux éléments sont a et b;
- 3. À l'aide de la fonction appropriée dans le package stringr, afficher le nombre de caractètres de a, de b, puis appliquer la même fonction à l'objet phrases;
- 4. En utilisant la fonction str_c(), concaténer a et b dans une seule chaîne de caractères, en choisissant la virgule comme caractère de séparation;
- 5. Concaténer les deux éléments du vecteur phrases en une seule chaine de caractères, en les séparant par le caractère de retour à la ligne, puis utiliser la fonction cat() pour afficher le résultat;
- 6. Appliquer la même fonction que dans la question précédente à l'objet suivant : c(NA, phrases) et commenter;
- 7. Mettre en majuscules, puis en minuscules les chaînes du vecteur phrases (afficher le résultat, ne pas modifier phrases);
- 8. À l'aide de la fonction word() du package stringr, extraire le mot la, puis Jack de la chaîne b;
- 9. Même question que la précédente, en utilisant la fonction str sub();
- 10. À l'aide de la fonction str_detect(), rechercher si le motif piqu puis mauvais sont présents dans b;
- 11. À l'aide de la fonction str_detect(), rechercher si le motif piqu est présent dans les éléments du vecteur phrases;
- 12. À l'aide de la fonction str_detect(), rechercher si le motif piqu ou le motif à sont présents dans les éléments du vecteur phrases;
- 13. En utilisant la fonction str_locate(), retourner les positions de la première occurence du caractère a dans la chaîne b, puis essayer avec le caractère w pour observer le résultat retourné;
- 14. Retourner toutes les positions du motif a dans la chaîne b;
- 15. En utilisant la fonction str_replace(), remplacer la première occurence du motif a, par le motif Z (afficher le résultat, ne pas modifier phrases);

- 16. Remplacer toutes les occurences de a par Z dans la chaîne b (afficher le résultat, ne pas modifier phrases);
- 17. Utiliser la fonction str_split() pour séparer la chaîne b en utilisant la virgule comme séparateur de sous-chaînes;
- 18. Retirer tous les caractères de ponctuation de la chaîne b, puis utiliser la fonction tr_trim() sur le résultat pour retirer les caractères blancs du début et de la fin de la chaîne.

TP2: Tableaux de données

On commence par charger les extensions et les données nécessaires.

```
library(tidyverse)
library(nycflights13)
data(flights)
data(airports)
data(airlines)
```

1. Les verbes de base de dplyr

Exercice 1.1

Sélectionner la dixième ligne du tableau des aéroports (airports).

Sélectionner les 5 premières lignes de la table airlines.

Sélectionner l'aéroport avec l'altitude la plus basse.

Exercice 1.2

Sélectionnez les vols du mois de juillet (variable month).

Sélectionnez les vols avec un retard à l'arrivée (variable arr_delay) compris entre 5 et 15 minutes.

Sélectionnez les vols des compagnies Delta, United et American (codes DL, UA et AA de la variable carrier).

Exercice 1.3

Triez la table flights par retard au départ décroissant.

Exercice 1.4

Sélectionnez les colonnes name, lat et lon de la table airports

Sélectionnez toutes les colonnes de la table airports sauf les colonnes tz et tzone

Sélectionnez toutes les colonnes de la table flights dont les noms se terminent par "delay".

Dans la table airports, renommez la colonne alt en altitude et la colonne tzone en fuseau_horaire.

Exercice 1.5

Dans la table airports, la colonne alt contient l'altitude de l'aéroport en pieds. Créer une nouvelle variable alt_m contenant l'altitude en mètres (on convertit des pieds en mètres en les divisant par 3.2808). Sélectionner dans la table obtenue uniquement les deux colonnes alt et alt_m.

2. Enchaîner des opérations

Exercice 2.1

Réécrire le code de l'exercice précédent en utilisant le pipe %>%.

Exercice 2.2

En utilisant le *pipe*, sélectionnez les vols à destination de San Francico (code SFO de la variable dest) et triez-les selon le retard au départ décroissant (variable dep_delay).

Exercice 2.3

Sélectionnez les vols des mois de septembre et octobre, conservez les colonnes dest et dep_delay, créez une nouvelle variable retard_h contenant le retard au départ en heures, et conservez uniquement les 5 lignes avec les plus grandes valeurs de retard_h.

group by et summarise

Exercice 3.1

Affichez le nombre de vols par mois.

Triez la table résultat selon le nombre de vols croissant.

Exercice 3.2

Calculer la distance moyenne des vols selon l'aéroport de départ (variable origin).

Exercice 3.3

Calculer le nombre de vols à destination de Los Angeles (code LAX) pour chaque mois de l'année.

Exercice 3.4

Calculer le nombre de vols selon le mois et la destination.

Ne conserver, pour chaque mois, que la destination avec le nombre maximal de vols.

Exercice 3.5

Calculer le nombre de vols selon le mois. Ajouter une colonne comportant le pourcentage de vols annuels réalisés par mois.

Exercice 3.6

Calculer, pour chaque aéroport de départ et de destination, la durée moyenne des vols (variable air_time). Pour chaque aéroport de départ, ne conserver que la destination avec la durée moyenne la plus longue.

3. Jointures

Exercice 4.1

Faire la jointure de la table airlines sur la table flights à l'aide de left_join.

Exercice 4.2

À partir de la table résultat de l'exercice précédent, calculer le retard moyen au départ pour chaque compagnie, et trier selon ce retard décroissant.

Exercice 4.3

Faire la jointure de la table airports sur la table flights en utilisant comme clé le code de l'aéroport de destination.

À partir de cette table, afficher pour chaque mois le nom de l'aéroport de destination ayant eu le plus petit nombre de vol.

Exercice 4.4

Créer une table indiquant, pour chaque vol, uniquement le nom de l'aéroport de départ et celui de l'aéroport d'arrivée.

4. Bonus

Exercice 5.1

Calculer le nombre de vols selon l'aéroport de destination, et fusionnez la table airports sur le résultat avec left_join. Stocker le résultat final dans un objet nommé flights_dest.

TP3: Premiers Graphiques

Exercice 1

- 1. Avant toute chose, charger tidyverse. Charger aussi le jeu de données rp2018 dans le package questionr. Assigner un dataframe rp69 comme la restriction de rp2018 aux départements du Rhône et de la Loire. Faire un nuage de points croisant le pourcentage de sans diplôme (dipl_aucun) et le pourcentage d'ouvriers (ouvr).
- 2. Faire un nuage de points croisant le pourcentage de sans diplôme et le pourcentage d'ouvriers, avec les points en rouge et de transparence 0.2.
- 3. Représenter la répartition du pourcentage de propriétaires (variable proprio) selon la taille de la commune en classes (variable pop_cl) sous forme de boîtes à moustaches.
- 4. Représenter la répartition du nombre de communes selon la taille de la commune en classes sous la forme d'un diagramme en bâtons.
- 5. Faire un nuage de points croisant le pourcentage de sans diplôme et le pourcentage d'ouvriers. Faire varier la couleur selon le département (departement).
- 6. Sur le même graphique, faire varier la taille des points selon la population totale de la commune (pop_tot).
- 7. Enfin, toujours sur le même graphique, rendre les points transparents en plaçant leur opacité à 0.5.
- 9. Représenter la répartition du pourcentage de propriétaires (variable proprio) selon la taille de la commune en classes (variable pop_cl) sous forme de boîtes à moustaches. Faire varier la couleur de remplissage (attribut fill) selon le département.
- 10. Représenter la répartition du nombre de communes selon la taille de la commune en classes (variable pop_cl) sous forme de diagramme en bâtons empilés, avec une couleur différente selon le département.
- 11. Faire varier la valeur du paramètre **position** pour afficher les barres les unes à côté des autres.

- 12. Changer à nouveau la valeur du paramètre position pour représenter les proportions de communes de chaque département pour chaque catégorie de taille.
- 13. Faire un nuage de points représentant en abscisse le pourcentage de cadres (cadres) et en ordonnée le pourcentage de diplômés du supérieur (dipl_sup). Représenter ce nuage par deux graphiques différents selon le département en utilisant facet_grid.
- 14. Sur le même graphique, faire varier la taille des points selon la population totale de la communes (variable pop_tot) et rendre les points transparents.
- 15. Faire le nuage de points croisant pourcentage de chômeurs (chom) et pourcentage de sans diplôme. Y ajouter les noms des communes correspondant (variable commune), en rouge et en taille 2.5 :
- 16. Dans le graphique précédent, n'afficher que le nom des communes ayant plus de 15% de chômage.

Exercice 2

Avant tout, charger le package tidyverse.

- 1. Utiliser la fonction data() pour charger en mémoire le jeu de données economics. Consulter la page d'aide de ce jeu de données pour prendre connaissance de son contenu;
- À l'aide de la fonction ggplot(), représenter les dépenses personnelles de consommation (pce) en fonction de la date (date). Les observations doivent être connectées par une ligne.
- 3. Modifier le graphique de la question précédente de manière à ce que la couleur de la ligne soit dodger blue et définir la taille de la ligne à 0.5. Stocker le résultat dans un objet que l'on appellera p_1;
- 4. Ajouter une couche au graphique p_1 pour modifier les titres des axes (les retirer), et définir le titre suivant : "Personal Consumption Expenditures (billions dollars)".
- 5. Utiliser la fonction scale_x_date() du package scales pour modifier l'échelle des abscisses de p_1, afin que les étiquettes des marques soient affichées tous les 5 ans;
- 6. A l'aide de l'option date_labels() de la fonction précédente, modifier le format de ces étiquettes pour que seule l'année des dates s'affiche;

Exercice 3

1. Utiliser la fonction data() pour charger en mémoire le jeu de données economics. Consulter la page d'aide de ce jeu de données pour prendre connaissance de son contenu;

- 2. Sélectionner les variables date,psavert et uempmed dans le tableau de données economics et utiliser la fonction gather() sur le résultat pour obtenir un tableau dans lequel chaque ligne indiquera la valeur (value) pour une variable donnée (key) à une date donnée (date). Stocker le résultat dans un objet que l'on appellera df;
- 3. Sur un même graphique, représenter à l'aide de lignes, l'évolution dans le temps du taux d'épargne personnelle (psavert) et de la durée médiane en semaines du chômage (uempmed). Stocker le graphique dans un objet que l'on appellera p_2;
- 4. Modifier le code ayant servi à construire le graphique p_2 pour que le type de ligne soit différent pour chacune des deux séries représentées. Les deux lignes doivent être tracées en bleu. Stocker le graphique dans un objet que l'on appellera p_3;
- 5. À présent, modifier le code ayant servi à construire p_3 pour qu'à la fois la couleur et le type de ligne servent à différencier les deux séries. Stocker le graphique dans un objet que l'on appellera p_4;
- 6. Modifier le graphique p_4 en ajoutant une couche d'échelle de couleur pour que le taux d'épargne personnelle (psavert) soit représenté en dodger blue, et que la durée de chômage (uempmed) soit représentée en rouge. Par ailleurs, retirer le titre de la légende;
- 7. Modifier le graphique p_4 en ajoutant une couche d'échelle de type de ligne pour que le taux d'épargne personnelle (psavert) soit représenté par des tirets, et que la durée de chômage (uempmed) soit représentée par une ligne pleine. Par ailleurs, retirer le titre de la légende des types de lignes, afin que les légendes de couleur et de type de ligne soient fusionnées;
- 8. Créer le tableaux de données df_2, une copie de df, dans lequel la variable key doit être un facteur dont les niveaux sont uempmed et psavert;
- 9. Créer le vecteur etiq suivant etiq <- c("psavert" = "Pers. Saving Rate", "uempmed" = "Median Duration of Unemployment (weeks)") Ce vecteur contient des valeurs d'étiquettes pour la légende du graphique qu'il va falloir créer. Représenter sur un même graphique l'évolution dans le temps du taux d'épargne personnelle et de la durée médiane du chômage en semaines, en s'appuyant sur les données contenues dans le tableau df_2. La courbe du taux d'épargne personnelle doit être composée de tirets et être de couleur dodger blue; la courbe de la durée médiane du taux de chômage doit être une ligne rouge. La légende ne doit pas comporter de titre, et ses étiquettes doivent être modifiées pour que "Pers. Saving Rate" s'affiche 'a la place de "psavert", et pour que "Median Duration of Unemployment (weeks)" s'affiche à la place de "uempmed". Stocker le graphique dans un objet que l'on appellera p_5; Note: il s'agit de reprendre le code ayant servi à créer le graphique p_4, en modifiant légèrement les échelles de couleur et de ligne pour prendre en compte les étiquettes proposées dans le vecteur etiq.
- 10. Modifier p_5 pour lui ajouter une couche permettant de déplacer la légende en bas du graphique (utiliser la fonction theme());
- 11. Ajouter une couche au graphique p_5 qui permet de définir un thème. Utiliser le thème minimal (theme_minimal()). Que se passe-t-il pour la légende ? Repositionner la légende en dessous, et retirer les titres des axes;

12. Sauvegarder le graphique p_5 au format PDF en précisant une largeur de 12 et une hauteur de 8.

Exercice 4

- 1. Charger le jeu de données mpg contenu dans lepackage ggplot2 en mémoire, puis consulter la page d'aide du jeu de données pour en prendre connaissance;
- 2. Représenter à l'aide d'un nuage de points la relation entre la consommation sur autoroute des véhicules de l'échantillon (hwy) et la cylindrée de leur moteur (displ)
- 3. Reprendre le code du graphique précédent et modifier la forme des points pour les changer en symbole +; modifier la couleur des + de manière à la faire dépendre du nombre de cylindres (cyl);
- 4. À présent, représenter par des boîtes à moustaches la distribution de la consommation sur autoroute des véhicules (hwy) pour chacune des valeurs possibles du nombre de cylindres (cyl);
- 5. Charger le jeu de données economics contenu dans le package ggplot2 en mémoire, puis consulter la page d'aide du jeu de données pour en prendre connaissance. Ensuite, ajouter au tableau (les créer) les variables u_rate et e_rate, respectivement le taux de chômage et le taux d'emploi (on définira le taux de chômage de manière très grossière ici : nombre de personnes non employées sur la population totale);
- 6. Représenter à l'aide de barres l'évolution dans le temps du taux de chômage, et remplir les barres avec la couleur rouge;
- 7. Reprendre le code du graphique précédent et ajouter une couche permettant de modifier les limites de l'axe des abscisses pour afficher les valeurs uniquement sur la période "2012-01-01" à "2015-01-01" (utiliser la fonction coord_cartesian()). Stocker le graphique dans un objet que l'on appellera p;
- 8. Dans le tableau de données economics, sélectionner les variables date, u_rate et e_rate, puis utiliser la fonction gather() pour obtenir un tableau dans lequel chaque ligne correspond à la valeur d'une des variables (taux de chômage ou taux d'emploi) à une date donnée. Stocker le résultat dans un objet que l'on appellera df_3;
- 9. Utiliser le tableau de données df_3 pour représenter graphiquement à l'aide de barres les taux de chômage et taux d'emploi par mois sur la période "2012-01-01" à "2015-01-01". Sur le graphique, les barres représentant le taux de chômage et celles représentant le taux d'emploi devront être superposées. Note : il s'agit de modifier légèrement le code ayant permis de réaliser le graphique p.

Exercice 5

1. À l'aide de la fonction WDI du package WDI, récupérer la série fournie par la Banque Mondiale du PIB par tête (NY.GDP.PCAP.PP.KD) pour tous les pays disponibles pour

- l'année 2010, et stocker ces données dans un tableau que l'on appellera gdp_capita;
- 2. Dans le tableau gdp_capita, modifier la valeur de la variable country pour l'observation de la Slovaquie, pour qu'elle vaille Slovakia au lieu de Slovak Republic;
- 3. Filtrer les observations du tableau gdp_capita pour ne conserver que les observations des pays membres de l'Union Européenne dont les noms sont contenus dans le vecteur membres_ue. Stocker le résultat dans un tableau que l'on nommera gdp_capita_eu;
- 4. Utiliser le package rworldmap pour récupérer les données nécessaires à la réalisation d'une carte du monde;
- 5. Afficher une carte du monde à l'aide des fonctions contenues dans le package ggplot2;
- 6. Modifier les échelles des axes pour faire figurer les méridiens de -60 à 60 par pas de 30 et les parallèles de -180 à 180 par pas de 45. Modifier également la projection cartographique pour choisir la projection orthographique, à l'aide de la fonction coord_map();
- 7. Joindre les informations contenues dans le tableau gdp_capita_eu au tableau contenant les données permettant la réalisation des cartes;
- 8. Réaliser une carte choroplèthe reflétant pour chaque pays membre de l'Union Européenne la valeur du PIB par tête de 2012;
- Modifier les couleurs de l'échelle continue de la carte précédente, pour que les faibles valeurs du PIB par tête soient représentées en jaune, et les valeurs les plus hautes en rouge;
- 10. Modifier les ruptures de l'échelle de couleur pour qu'elles aillent de 10000 à 100000; modifier également l'étiquette de ces ruptures de sorte que 35000 soit affiché comme 35k, 60000 comme 60k, etc. Enfin, ajouter un titre au graphique et retirer les titres d'axes.

TP4 : Fonctions et manipulation de données

1. Mise en ordre des données

Pour reprendre la définition du manuel de Julien Barnier, le concept de tidy data repose sur trois règles interdépendantes. Des données sont considérées comme tidy si :

- chaque ligne correspond à une observation
- chaque colonne correspond à une variable
- chaque valeur est présente dans une unique case de la table ou, de manière équivalente, des unités d'observations différentes sont présentes dans des tables différentes

Dans cette partie, nous allons travailler sur les fonctions du package tidyr : pivot_longer(), pivot_wider(), separate() et unite().

Les jeux de données utilisés (table1, table2, table3, table4a, table4b, table5) sont directement disponibles après avoir chargé tidyverse.

```
library(tidyverse)

data(table1)
data(table2)
data(table3)
data(table4a)
data(table4b)
data(table5)
```

1.1 Représentations multiples d'un même jeu de données

Avec table1, table2, et table3 On vous donne trois représentations du nombre de cas de tuberculose (TB) par pays et par année.

- 1. Affichez les trois jeux de données et comparez leurs structures.
- Quelles différences remarquez-vous?
- Quelles sont les variables présentes dans chacun?

- 2. Parmi eux, lequel est déjà au format tidy? Justifiez.
- 3. Transformez table2 et table3 en jeux de données tidy comparables à table1. Indice : utilisez pivot_wider() et pivot_longer().

1.2 Colonnes multiples représentant plusieurs variables

Les tableaux table4a et table4b contiennent respectivement le nombre de cas et la population.

2. Fonctions en R

En R, la syntaxe des fonctions est la suivante :

```
ajoute <- function(x,y) {
  res <- x + y
  return(res)
}</pre>
```

2.1 Introduction et exemples

Exercice 1.1

Écrire une fonction nommée perimetre qui prend en entrée un argument nommé \mathbf{r} et retourne le périmètre d'un cercle de rayon \mathbf{r} , c'est-à-dire $\mathbf{2} * \mathbf{pi} * \mathbf{r}$ (\mathbf{pi} est un objet \mathbf{R} qui contient la valeur de π).

Vérifier avec l'appel suivant :

```
perimetre(4)

perimetre <- function(r) {</pre>
```

```
perimetre <- function(r) {
  resultat <- 2 * pi * r
  return(resultat)
}</pre>
```

Exercice 1.2

Écrire une fonction **etendue** qui prend en entrée un vecteur numérique et retourne la différence entre la valeur maximale et la valeur minimale de ce vecteur.

Vérifier avec l'appel suivant :

```
etendue(c(18, 35, 21, 40))
```

```
etendue <- function(v) {
  vmax <- max(v)
  vmin <- min(v)
  return(vmax - vmin)
}</pre>
```

Exercice 1.3

Écrire une fonction nommée alea qui accepte un argument n, génère un vecteur de n valeurs aléatoires entre 0 et 1 avec la fonction runif(n) et retourne ce vecteur comme résultat.

```
alea <- function(n) {
  v <- runif(n)
  return(v)
}</pre>
```

Modifier la fonction pour qu'elle accepte deux arguments supplémentaires min et max et qu'elle retourne un vecteur de n valeurs aléatoires comprises entre min et max avec la fonction runif(n, min, max).

```
alea <- function(n, min, max) {
  v <- runif(n, min, max)
  return(v)
}</pre>
```

Modifier à nouveau la fonction pour qu'elle retourne un vecteur de n nombres *entiers* aléatoires compris entre min et max en appliquant la fonction trunc() au vecteur généré par runif().

Vérifier le résultat avec :

```
v <- alea(10000, 1, 6)
table(v)</pre>
```

```
alea <- function(n, min, max) {
    v <- runif(n, min, max + 1)
    v <- trunc(v)
    return(v)
}</pre>
```

Exercice 1.4

Écrire une fonction nommée meteo qui prend un argument nommé ville avec le corps suivant :

```
out <- readLines(paste0("https://v2.wttr.in/", ville, "?A"))
cat(out, sep = "\n")</pre>
```

Tester la fonction avec par exemple meteo("Lyon") (il est possible que l'affichage dans la console ne soit pas lisible si vous travaillez sous Windows).

```
meteo <- function(ville) {
  out <- readLines(paste0("https://v2.wttr.in/", ville, "?A"))
  cat(out, sep = "\n")
}</pre>
```

Exercice 1.5

Soit le code suivant, qui recode une variable du jeu de données hdv2003 en utilisant str_to_lower() puis fct_recode() :

```
library(questionr)
library(tidyverse)
data(hdv2003)

hdv2003$hard.rock <- str_to_lower(hdv2003$hard.rock)
hdv2003$hard.rock <- fct_recode(hdv2003$hard.rock, "o" = "oui", "n" = "non")</pre>
```

Transformer ce code en une fonction nommée recode_oui_non, et appliquer cette fonction à hard.rock, lecture.bd et cuisine.

```
recode_oui_non <- function(var) {
  var_rec <- str_to_lower(var)
  var_rec <- fct_recode(var_rec, "o" = "oui", "n" = "non")
  return(var_rec)
}

hdv2003$hard.rock <- recode_oui_non(hdv2003$hard.rock)
hdv2003$lecture.bd <- recode_oui_non(hdv2003$lecture.bd)
hdv2003$cuisine <- recode_oui_non(hdv2003$cuisine)</pre>
```

2.2 Arguments et résultat

Exercice 2.1

Observer le code de la fonction suivante pour comprendre à quoi correspondent chacun de ses trois arguments, puis réordonner et renommer ces arguments de manière plus pertinente :

```
moyenne_arrondie <- function(d, vecteur_contenant_les_donnees, supprimer_les_na) {
   res <- mean(vecteur_contenant_les_donnees, na.rm = supprimer_les_na)
   res <- round(res, d)
   return(res)
}

moyenne_arrondie <- function(v, decimales, na.rm) {
   res <- mean(v, na.rm = na.rm)
   res <- round(res, decimales)
   return(res)
}</pre>
```

Donner aux arguments de la fonction une valeur par défaut.

```
moyenne_arrondie <- function(v, decimales = 2, na.rm = TRUE) {
  res <- mean(v, na.rm = na.rm)
  res <- round(res, decimales)
  return(res)
}</pre>
```

Simplifier la fonction en utilisant la syntaxe plus compacte qui ne fait pas appel à return().

```
moyenne_arrondie <- function(v, decimales = 2, na.rm = TRUE) {
  res <- mean(v, na.rm = na.rm)
   round(res, decimales)
}</pre>
```

Exercice 2.2

Simplifier la fonction suivante pour que son corps ne fasse plus qu'une seule ligne:

```
centrer_reduire <- function(x) {
  res <- x - mean(x)
  res <- res / sd(x)
  return(res)
}</pre>
```

```
centrer_reduire <- function(x) {
  (x - mean(x)) / sd(x)
}</pre>
```

Exercice 2.3

Le code suivant permet de déterminer la lettre initiale et la longueur d'un mot.

```
initiale <- str_sub(mot, 1, 1)
longueur <- nchar(mot)</pre>
```

Utiliser ce code pour créer une fonction caracteristiques_mot() qui prend un argument mot et retourne à la fois son initiale et sa longueur.

```
caracteristiques_mot("Bidonnage")

caracteristiques_mot <- function(mot) {
  initiale <- str_sub(mot, 1, 1)
  longueur <- nchar(mot)
  list(initiale = initiale, longueur = longueur)
}</pre>
```

Facultatif: modifier la fonction pour qu'elle retourne un vecteur plutôt qu'une liste, et l'appliquer sur un mot de votre choix. Que constatez-vous?

Comme les vecteurs atomiques ne peuvent contenir que des données du même type, le nombre correspondant à longueur a été converti en chaîne de caractères.

2.3 Portée des variables

Exercice 3.1

En lisant les codes suivants, essayer de prévoir quelle va être la valeur affichée par la dernière ligne. Vérifier en exécutant le code :

```
f <- function() {
    x <- 3
    x
}</pre>
```

```
f <- function() {
    x
}

x <- 5
f()</pre>
```

```
f <- function(x) {
    x
}

x <- 5
f(30)</pre>
```

```
f <- function(x = 100) {
    x
}

x <- 5
f()</pre>
```

```
f <- function(x = 100) {
    x <- 150
    x
}

x <- 5
f(30)</pre>
```

```
f <- function() {
   x <- 5
}

x <- 1000
f()
x</pre>
```

Exercice 3.2

Dans le code suivant, on a essayé de créer une fonction qui modifie un tableau de données passé en argument pour ne conserver que les lignes correspondant aux pommes. Est-ce que ça fonctionne?

```
df <- data.frame(
   fruit = c("Pomme", "Pomme", "Citron", "Citron"),
   poids = c(147, 189, 76, 91)
)

filtre_pommes <- function(d) {
   d <- dplyr::filter(d, fruit == "Pomme")
}

filtre_pommes(df)
df</pre>
```

Modifier le code pour obtenir le résultat souhaité.

```
filtre_pommes <- function(d) {
   dplyr::filter(d, fruit == "Pomme")
}

df <- filtre_pommes(df)
df</pre>
```

2.4 Les fonctions comme objets

Exercice 4.1

Écrire une fonction nommée bonjour qui ne prend aucun argument et affiche juste le texte "Bonjour!" dans la console.

```
bonjour <- function() {
  cat("Bonjour !")
}</pre>
```

Exécuter dans la console les deux commandes suivantes tour à tour :

- bonjour()
- bonjour

Comprenez-vous la différence entre les deux?

Copier la fonction dans un nouvel objet nommé salut. Exécuter la nouvelle fonction ainsi créée.

```
salut <- bonjour
salut()</pre>
```

Exercice 4.2

Construire une fonction etendue() qui prend en entrée un vecteur numérique et retourne la différence entre la valeur maximale et la valeur minimale de ce vecteur (vous pouvez récupérer le code de l'exercice 1.2).

```
etendue <- function(v) {
  max(v) - min(v)
}</pre>
```

À l'aide de tapply(), appliquez la fonction etendue() à la variable age pour chaque valeur de qualif dans le jeu de données hdv2003.

```
library(questionr)
data(hdv2003)

tapply(hdv2003$age, hdv2003$qualif, etendue)
```

Réécrire le code précédent en utilisant une fonction anonyme (ie en définissant la fonction directement dans le tapply).

```
tapply(hdv2003$age, hdv2003$qualif, function(v) {
  max(v) - min(v)
})
```

Exercice 4.3

Exécutez le code suivant. Comprenez-vous les résultats obtenus?

```
f <- function(y) {
    y * 4
}

body(f)
f(5)

body(f) <- quote(y + 2)
body(f)
f(5)</pre>
```

Intuitivement, comprenez-vous à quoi sert la fonction quote?

3. Fonctions et Dplyr

Pour certains des exercices qui suivent on utilisera le jeu de données starwars. Le jeu de données contient les caractéristiques de 87 personnages présents dans les films : espèce, âge, planète d'origine, etc.

3.1 Appliquer ses propres fonctions

Exercice 1.1

Créer une fonction imc qui prend en argument un vecteur taille (en cm) et un vecteur poids (en kg) et retourne les valeurs correspondantes de l'indice de masse corporelle, qui se calcule en divisant le poids en kilos par la taille en mètres au carré.

```
imc <- function(tailles, poids) {
   tailles_m <- tailles / 100
   poids / tailles_m ^ 2
}</pre>
```

Utiliser cette fonction pour ajouter une nouvelle variable imc au tableau starwars.

```
starwars %>%
  mutate(imc = imc(height, mass))
```

À l'aide de group_by() et summarise(), utiliser à nouveau cette fonction pour calculer l'IMC moyen selon les valeurs de la variable species.

```
starwars %>%
  group_by(species) %>%
  summarise(
    imc = mean(imc(height, mass), na.rm = TRUE)
)
```

Exercice 1.2

Toujours dans le jeu de données starwars, à l'aide d'un group_by() et d'un summarise(), calculer pour chaque valeur de la variable sex la valeur de l'étendue de la variable height du jeu de données starwars, c'est-à-dire la différence entre sa valeur maximale et sa valeur minimale.

```
starwars %>%
  group_by(sex) %>%
  summarise(
    etendue_taille = max(height, na.rm = TRUE) - min(height, na.rm = TRUE)
)
```

En partant du code précédent, créer une fonction etendue qui prend en argument un vecteur et retourne la différence entre sa valeur maximale et sa valeur minimale. En utilisant cette fonction, calculer pour chaque valeur de sex la valeur de l'étendue des variables height et mass.

```
etendue <- function(v) {
    max(v, na.rm = TRUE) - min(v, na.rm = TRUE)
}
starwars %>%
    group_by(sex) %>%
    summarise(
        etendue_taille = etendue(height),
        etendue_poids = etendue(mass)
)
```

Exercice 1.3

On a vu que la fonction suivante permet de calculer le pourcentage des éléments d'un vecteur de chaînes de caractères se terminant par un suffixe passé en argument.

```
prop_suffixe <- function(v, suffixe) {
    # On ajoute $ à la fin du suffixe pour capturer uniquement en fin de chaîne
    suffixe <- pasteO(suffixe, "$")
    # Détection du suffixe
    nb_detect <- sum(str_detect(v, suffixe))
    # On retourne le pourcentage
    nb_detect / length(v) * 100
}</pre>
```

Modifier cette fonction en une fonction prop_prefixe qui retourne le pourcentage d'éléments commençant par un préfixe passé en argument. *Indication*: pour détecter si une chaîne commence par "ker", on utilise l'expression régulière "^ker".

```
prop_prefixe <- function(v, prefixe) {
    # On ajoute $ à la fin du prefixe pour capturer uniquement en début de chaîne
    prefixe <- paste0("^", prefixe)
    # Détection du motif
    nb_detect <- sum(str_detect(v, prefixe))
    # On retourne le pourcentage
    nb_detect / length(v) * 100
}</pre>
```

Utiliser prop_prefixe dans un summarise appliqué à rp2018 pour calculer le pourcentage de communes commençant par "Saint" selon le département. Ordonner les résultats par pourcentage décroissant.

```
rp2018 %>%
    group_by(departement) %>%
    summarise(
        prop_saint = prop_prefixe(commune, "Saint")
    ) %>%
    arrange(desc(prop_saint))
```

Créer une fonction tab_prefixe qui prend un seul argument prefixe et renvoie le tableau obtenu à la question précédente pour le préfixe passé en argument. Tester avec tab_prefixe("Plou") et tab_prefixe("Sch")

```
tab_prefixe <- function(prefixe) {
    rp2018 %>%
        group_by(departement) %>%
        summarise(
        prop = prop_prefixe(commune, prefixe)
        ) %>%
        arrange(desc(prop))
}
```

Exercice 1.4

Le vecteur suivant donne, pour chacun des neuf principaux films de la saga *Star Wars*, la date à laquelle ils se déroulent dans l'univers de la saga.

```
c(
"I" = -32,
"II" = -22,
```

```
"III" = -19,

"IV" = 0,

"V" = 3,

"VI" = 4,

"VII" = 34,

"VIII" = 34,

"IX" = 35
```

Dans le jeu de données starwars, la variable birth_year indique l'année de naissance du personnage en "années avant l'an zéro" (une valeur de 19 signifie donc une année de naissance de -19).

Créer une fonction age_film qui prend en entrée un vecteur d'années de naissance au même format que birth_year ainsi que l'identifiant d'un film, et calcule les âges à la date du film.

Vérifier avec :

```
age_film(starwars$birth_year, "IV")
```

```
age_film <- function(annees, film) {</pre>
    annees_films <- c(</pre>
        "I"
                = -32,
        "II"
                = -22,
         "III"
                = -19,
        "IV"
         ''V''
        "VI"
        "VII" = 34,
        "VIII" = 34,
        "IX"
                  35
    annees_naissance <- -annees
    annee_ref <- annees_films[film]</pre>
    annee_ref - annees_naissance
}
```

Utiliser la fonction pour ajouter deux nouvelles variables au tableau starwars : age_iv qui correspond à l'âge (potentiel) au moment du film IV, et age_ix qui correspond à l'âge au moment du film IX.

```
starwars %>%
  mutate(
    age_iv = age_film(birth_year, "IV"),
    age_ix = age_film(birth_year, "IX"),
)
```

3.2 across()

Exercice 2.1

Reprendre la fonction etendue de l'exercice 1.2 :

```
etendue <- function(v) {
    max(v, na.rm = TRUE) - min(v, na.rm = TRUE)
}</pre>
```

Dans le jeu de données starwars, calculer l'étendue des variables height et mass pour chaque valeur de sex à l'aide de group_by(), summarise() et across().

```
starwars %>%
  group_by(sex) %>%
  summarise(
    across(
        c(height, mass),
        etendue
    )
)
```

Toujours à l'aide d'across(), appliquer etendue à toutes les variables numériques, toujours pour chaque valeur de sex.

```
starwars %>%
  group_by(sex) %>%
  summarise(
    across(
        where(is.numeric),
        etendue
    )
)
```

En utilisant & et!, appliquer etendue à toutes les variables numériques sauf à celles qui finissent par "year".

```
starwars %>%
  group_by(sex) %>%
  summarise(
    across(
        where(is.numeric) & !ends_with("year"),
        etendue
    )
)
```

Exercice 2.2

Dans le jeu de données starwars, appliquer en un seul summarise les fonctions min et max aux variables height et mass.

```
starwars %>%
summarise(
    across(
        c(height, mass),
        list(min = min, max = max)
    )
)
```

Si vous ne l'avez pas déjà fait à la question précédente, modifier le code pour que le calcul des valeurs minimales et maximales ne prennent pas en compte les valeurs manquantes.

```
summarise(
    across(
        c(height, mass),
        list(min = min, max = max),
        na.rm = TRUE
    )
)
```

Exercice 2.3

Dans le jeu de données hdv2003, utiliser across() pour transformer les modalités "Oui" et "Non" en TRUE et FALSE pour toutes les variables de hard.rock à sport.

```
detecte_oui <- function(v) {
    v == "Oui"
}
hdv2003 %>%
    mutate(
        across(
             hard.rock:sport,
             detecte_oui
        )
    )
```

Ajouter un argument .names à across() pour que les variables recodées soient stockées dans de nouvelles colonnes nommées avec le suffixe "_true".

3.3 Fonctions anonymes et notations abrégées

Exercice 3.1

Dans un exercice précédent, on a vu que le code ci-dessous permet de calculer l'étendue des variables height et mass du jeu de données starwars.

Modifier ce code en supprimant la définition de **etendue** et en utilisant à la place une fonction anonyme directement dans le **across()**.

```
starwars %>%
  group_by(sex) %>%
  summarise(
    across(
        c(height, mass),
        function(v) {
        max(v, na.rm = TRUE) - min(v, na.rm = TRUE)
      }
  )
)
```

Modifier à nouveau ce code pour utiliser la syntaxe abrégée de type "formule" du tidyverse.

```
starwars %>%
  group_by(sex) %>%
  summarise(
    across(
        c(height, mass),
        ~ max(.x, na.rm = TRUE) - min(.x, na.rm = TRUE)
    )
)
```

Exercice 3.2

Soit le code suivant, qui renomme les colonnes du tableau **starwars** de type liste en leur ajoutant le préfixe "liste_".

```
ajoute_prefixe_liste <- function(nom) {
    paste0("liste_", nom)
}
starwars %>%
    rename_with(ajoute_prefixe_liste, .cols = where(is.list))
```

Réécrire ce code avec une fonction anonyme en utilisant les trois notations :

```
classique (avec function())
formule (du tidyverse)
compacte (à partir de R 4.1)
```

```
# Classique
starwars %>%
   rename_with(
        function(nom) { paste0("liste_", nom) },
        .cols = where(is.list)
    )
# Formule
starwars %>%
   rename_with(
        ~ paste0("liste_", .x),
        .cols = where(is.list)
    )
# Compacte
starwars %>%
    rename_with(
        \(nom) pasteO("liste_", nom),
        .cols = where(is.list)
```

Exercice 3.3

Le code suivant indique, pour chaque région du jeu de données rp2018, le nom de la commune ayant la valeur maximale pour les variables dipl_aucun et dipl_sup.

```
nom_commune_max <- function(valeurs, communes) {
    communes[valeurs == max(valeurs)]
}</pre>
```

```
rp2018 %>%
    group_by(region) %>%
    summarise(
        across(
            c(dipl_aucun, dipl_sup),
            nom_commune_max,
            commune
        )
    )
```

Réécrire ce code en utilisant une fonction anonyme, avec la syntaxe de votre choix (classique, formule ou compacte).

```
# Classique
rp2018 %>%
    group_by(region) %>%
    summarise(
        across(
            c(dipl_aucun, dipl_sup),
            function(valeurs, communes) { communes[valeurs == max(valeurs)] },
            commune
        )
    )
# Formule
rp2018 %>%
    group_by(region) %>%
    summarise(
        across(
            c(dipl_aucun, dipl_sup),
            \sim .y[.x == max(.x)],
            commune
        )
    )
# Compacte
rp2018 %>%
    group_by(region) %>%
    summarise(
        across(
            c(dipl_aucun, dipl_sup),
            \(valeurs, communes) communes[valeurs == max(valeurs)],
            commune
```

```
)
```

À l'aide d'une fonction anonyme supplémentaire, modifier le code pour qu'il retourne également, pour les mêmes variables, le nom des communes avec les valeurs minimales.

```
# Formule
rp2018 %>%
    group_by(region) %>%
    summarise(
        across(
             c(dipl_aucun, dipl_sup),
            list(
                 \max = \sim .y[.x == \max(.x)],
                 \min = \sim .y[.x == \min(.x)]
            ),
             commune
        )
    )
# Compacte
rp2018 %>%
    group_by(region) %>%
    summarise(
        across(
            c(dipl_aucun, dipl_sup),
            list(
                 max = \((valeurs, communes) communes[valeurs == max(valeurs)],
                 min = \(valeurs, communes) communes[valeurs == min(valeurs)]
            ),
             commune
        )
    ) %>% View()
```

3.4 rowwise() et c_across()

Exercice 4.1

On repart du code final de l'exercice 2.3, qui recodait une série de variables de hdv2003 en valeurs TRUE/FALSE dans de nouvelles variables avec le suffixe "_true".

```
detecte_oui <- function(v) {
    v == "Oui"
}
hdv2003 <- hdv2003 %>%
    mutate(
        across(
            hard.rock:sport,
            detecte_oui,
            .names = "{.col}_true"
        )
    )
}
```

Calculer le plus simplement possible une nouvelle variable total qui contient, pour chaque ligne, le nombre de valeurs TRUE des deux variables cinema_true et sport_true (si une ligne contient TRUE pour ces deux variables, total doit valoir 2, etc.)

```
hdv2003 %>%
  mutate(total = cuisine_true + sport_true)
```

Recalculer la variable total pour qu'elle contienne le nombre de TRUE par ligne pour les variables bricol_true, cinema_true et sport_true.

```
hdv2003 %>%
    rowwise() %>%
    mutate(total = sum(cuisine_true, sport_true, bricol_true))
```

Recalculer la variable total pour qu'elle contienne le nombre de TRUE par ligne pour toutes les variables se terminant par "_true".

```
hdv2003 %>%
    rowwise() %>%
    mutate(total = sum(c_across(ends_with("_true"))))
```

Reprendre le code précédent pour qu'il puisse s'appliquer directement sur les variables hard.rock...sport, sans passer par le recodage en TRUE/FALSE.

```
count_oui <- function(v) {
   sum(v == "Oui")
}</pre>
```

```
hdv2003 %>%
    rowwise() %>%
    mutate(
        total = count_oui(c_across(hard.rock:sport))
)
```

Exercice 4.2

Dans le jeu de données starwars, la colonne films contient la liste des films dans lesquels apparaissent les différents personnages. Cette colonne a une forme un peu particulière puisqu'il s'agit d'une "colonne-liste" : les éléments de cette colonne sont eux-mêmes des listes.

```
head(starwars$films, 3)
```

On essaye de calculer le nombre de films pour chaque personnage avec le code suivant. Est-ce que ça fonctionne? Pourquoi?

```
starwars %>%
  mutate(n_films = length(films))
```

Trouver une manière d'obtenir le résultat attendu.

```
starwars %>%
  rowwise() %>%
  mutate(n_films = length(films))
```

Troisième partie

SIG

Introduction

Le cours en résumé :

- 24 h
- objectifs : appréhender les données géographiques et maîtriser les principales opérations sur ce type de données (intersection, distance etc)
- Langage: R & QGIS (introduction)
- modalités d'examens :
 - Note de participation
 - Un projet commun SIG/économétrie avec choix du sujet imposé
 - Présentation en classe d'une carte réalisée avec QGIS : 3mn de présentation

Le plan:

- 1. Introduction à QGIS
- 2. Traitement sur les données vectorielles
- 3. Les SIG avec R

Toutes les données des TP sont disponibles sur ce drive.

TP1: Introduction à QGIS

1. Prise en main

1.1 Affichage / désaffichage des panneaux

- Fermez les panneaux Couches et Identifier les résultats.
- Affichez-les de nouveau avec le menu Vue > Panneaux.

1.2 Utilisation de données vecteur

Toutes les données des TP sont disponibles sur ce drive.

- 1. Examinez la liste des fichiers du répertoire Data/ADMIN EXPRESS.
- 2. Affichez:
 - ARRONDISSEMENT.shp
 - EPCI.shp
 - communes_ara.gpkg
- 3. Ouvrez la table attributaire de la couche ARRONDISSEMENT:
 - Trier selon la colonne INSEE_DEP.
 - Quels sont les arrondissements du département de la Loire (42)?
- 4. Supprimez la couche **ARRONDISSEMENT**.
- 5. Ouvrez les propriétés de la couche **COMMUNE** :
 - Notez le système de coordonnées, la géométrie, la liste des attributs.
- 6. Ouvrez la table attributaire de la couche COMMUNE :
 - Quel est le nombre de communes?

7. Identifiez la commune de Saint-Maurice-en-Gourgois:

- Dans quel département est-elle?
- Chargez la couche DEPARTEMENT. shp et identifiez le département 43.
- Quelle est sa population (champ POPULATION)?

1.3 Création d'un projet

— Enregistrez le projet sous le nom TP1-1.qgs.

1.4 Utilisation de l'outil Identifier les entités

- Utilisez l'outil sur Saint-Maurice-en-Gourgois : quelle est la longueur du périmètre ?
- Zoomez sur la dalle.

1.5 Jointure 1

- Joindre la couche **EPCI** à **COMMUNE**.
- Quel est le nom de l'EPCI de Saint-Maurice-en-Gourgois?

1.6 Utilisation d'OpenStreetMap

- 1. Créez une connexion XYZ:
- Nom : OpenStreetMap
- URL: https://tile.openstreetmap.org/ $\{z\}/\{x\}/\{y\}$.png
- 2. Installez l'extension QuickMapServices.
- 3. Affichez le fond de carte OSM Standard.

1.7 Ordre des couches et opacité

— Classez les couches dans l'ordre : Communes \rightarrow EPCI \rightarrow Arrondissement.

1.8 Groupe de couches

— Groupez ARRONDISSEMENT et COMMUNE en **ADMIN**.

1.9 Outil de mesure

— Mesurez la distance maximale de Saint-Maurice-en-Gourgois.

1.10 Sélection et export

- Sélectionnez les communes d'Auvergne-Rhône-Alpes.
- Exportez dans CommunesEPCI_ARA.gpkg.
- Créez une couche des seuls EPCI d'Auvergne-Rhône-Alpes.

1.11 Sélection et conditions multiples

- Communes ARA > 1000 habitants \rightarrow combien?
- Communes Haute-Loire $> 1000 \text{ habitants} \rightarrow \text{combien}$?
- Exportez les deux sélections.

2. Symbologie 1 : Pays du monde

- 1. Téléchargez les données physiques et culturelles de NaturalEarth à 50m sur ce lien
- 2. Ouvrez:
- ne_50m_admin_0_countries
- ne_50m_populated_places_simple
- ne_50m_geographic_lines
- 3. Avec la première couche, créez une symbologie par PIB du pays (GDP_MD) en prenant une graduation Jenks.

- 4. Utilisez palette Viridis, projection World Robinson (EPSG:54030).
- 5. Renommez la couche : Countries by GDP.
- 6. Enregistrez le projet : TP1_2.qgz.

2.1 Mise en page

- Créez une mise en page gpd en A4 paysage.
- Ajoutez carte, légende, fond gris clair, export en PNG 300 dpi.

2.2 Rendu gradué : Villes du monde

- 1. Utilisez pop_max.
- 2. Créez 6 classes (Jenks ou seuils manuels).
- 3. Symbole ponctuel rose, transparence 60 %, taille 0.5–4 mm.
- 4. Exportez en PNG 300 dpi.

2.2 Symboles proportionnels

- Symbole unique, rose, transparence 60 %.
- Taille proportionnelle pop_max.
- Enregistrez le projet.

3. Symbologie 2 : France

Ouvrir:

- liste_cheflieu.geojson,
- occitanie_communes.gpkg,
- occitanue_limites.gpkg,
- liste-des-gares.geojson,
- RéseauFerré.gpkg

Dans cette parties, il faut faire une carte de l'occitanie en utilisant les 5 jeux de données

3.1 Styles

- Régions en gris clair + bordures blanches.
- Chefs-lieux : symboles catégorisés (Préfecture région et Préfecture).
- Réseau ferré : catégorisé sur type_voie.
- Communes Occitanie : densité de population (Jenks, OrRd, bornes manuelles).

3.2 Étiquettes

— Chefs-lieux avec règles selon statut administratif.

3.3 Mise en page finale

- A4 portrait, titre *Réseau ferré en Occitanie*, carte 1/2 000 000, légende, échelle, nord, sources.
- Ajoutez une carte miniature France + Occitanie.
- Export PNG et PDF.

TP2: Traitement sur les données vectorielles

1. Données de départ

Dans un nouveau projet, ouvrez les couches :

- departement_occitanie.gpkg
- CLC12_RLRMP_RGF.shp

Pour visualiser les types d'occupation du sol avec les couleurs standard **Corine Land Cover**, ouvrez les propriétés de la couche et chargez le fichier de style CLC12.sld (dans le dossier *FichiersLegende*).

Ajoutez aussi:

- trace-du-reseau-autoroutier-doccitanie.geojson
- dreal-occitanie-mats-eoliens.geojson

Enregistrez le projet sous le nom TP2.qgz.

2. Création d'un GeoPackage

Toutes les couches produites seront enregistrées dans une base unique GeoPackage.

- 1. Créez TP2_couches.gpkg (répertoire data) en exportant la couche des mâts éoliens.
- 2. Options:
 - format = GeoPackage
 - nom fichier = TP2_couches.gpkg
 - nom couche = Mâts éoliens
 - -- SCR = EPSG:2154

3. Zone tampon sur l'autoroute A61

3.1 Vérification du SCR

Dans les propriétés de trace-du-reseau-autoroutier-doccitanie, identifiez le système de coordonnées.

3.2 Conversion en Lambert 93

```
Exporte la couche vers TP2_couches.gpkg avec : 

- nom couche = Réseau autoroutier 

- SCR = EPSG:2154
```

3.3 Sélection et tampon

- 1. Ouvrir la table attributaire \rightarrow champ num_route.
- 2. Sélectionner les tronçons correspondant à A61.
- 3. Créer un tampon de 5000 m avec options : entités sélectionnées uniquement = Oui
 - Nb segments = 10
 - extrémités = Rond
 - regrouper = Oui
 - sortie = TP2_couches.gpkg \rightarrow Tampon A61 5000m

3.4 Analyse

Avec Compter les points dans les polygones, combien d'éoliennes se trouvent dans cette zone tampon?

4. Matrice de distance

Pour chaque mât éolien, calculer la distance avec les 2 plus proches voisins.

- entrée = Mâts éoliens
- identifiant = id_mat
- type = Matrice de distance linéaire (Nk+3)*
- k = 2
- $sortie = TP2_couches.gpkg \rightarrow Calcul$ Eoliennes 2 voisins

Inspectez le résultat avec l'outil Identifier : remarquez-vous le type de géométrie?

5. Grille hexagonale

5.1 Création

- 1. Dans departement_occitanie, sélectionnez l'Aude et zoomez.
- 2. Avec Créer une grille :
 - type = hexagonale
 - étendue = canevas
 - espacement = 5000
 - SCR = EPSG:2154
 - $sortie = TP2_couches.gpkg \rightarrow Grille Aude 5km$

5.2 Nettoyage

Supprimez les hexagones hors de l'Aude :

- sélection par localisation \rightarrow inverser \rightarrow supprimer en mode édition.

6. Comptages dans la grille

- Compter points/polygones \rightarrow nb d'éoliennes par maille hexagonale.
 - -- sortie = TP2_couches.gpkg o Calcul nb éoliennes
- Somme longueurs lignes \rightarrow total autoroutes par maille.

7. Analyse de superposition (Corine Land Cover)

7.1 Sélection des forêts

Selectionner dans CLC12_RLRMP_RGF les polygones dont CODE_12 commence par "3". Exporter vers TP2_couches.gpkg → CLC12 Forets Milieux SemiNat.

7.2 Superposition

Avec Analyse de superposition :

- source = Grille Aude 5km
- superposition = CLC12 Forets Milieux SemiNat
- $sortie = TP2_couches.gpkg \rightarrow Calcul P ForetsSemiNat$

8. Intersection et Group Stats

8.1 Zone tampon des parcs

Créer tampon 2000 m autour de chaque mât \to Tampon Eol 2000m. Puis regrouper par id_parc, n_parc \to Calcul ParcEol 2000m.

8.2 Intersection avec CLC

Avec Intersection:

- source = CLC12_RLRMP_RGF
- superposition = Tampon Eol 2000m
- champs conservés : ID, CODE_12, id_parc, n_parc
- $sortie = TP2_couches.gpkg \rightarrow Calcul Inter ParcEol CLC12$

8.3 Tableau croisé dynamique

Dans l'extension **Group Stats**:

- Couches = Calcul Inter ParcEol CLC12
- Colonnes = $CODE_12$
- Lignes = id_parc, n_parc
- Valeurs = Surface (somme)

Exporter le tableau et coller dans Excel/Calc.

TP3: SIG avec R

Chargez les libraries suivantes :

```
#install.packages("spDataLarge", repos = "https://geocompr.r-universe.dev")
#install.packages("remotes")
#remotes::install_github("r-tmap/tmap")

library(tidyverse)
library(sf)
library(stars)
library(terra)
library(spData)
library(spDataLarge)
library(tmap)
library(leaflet)

#remotes::install_github("r-tmap/tmap")
```

1. Premières cartes

- 1. Décrire l'objet Utilisez world. Utiliser summary() sur la colonne de géométrie de l'objet world inclus dans le package spData. Utilisez ggplot2. Tracez la carte des continents. Utiliser le theme_void(). Tracez le continent asiatique, en filtrant puis appliquant la fonction d'union de formes géométrique st_union.
- Rajouter à la carte des continents des ronds pour chaque pays représentant la racine carré de leur population divisé par 10000. Il faudra pour ça calculer les centroides de chaque pays avec la commande st_centroid du package sf
- 3. Tracez la carte de l'Inde dans le continent asiatique. Il faut :
- filtrer et tracer le continent asiatique dans world.
- créer un object india qui filtre l'Inde dans world.
- rajouter la carte le l'Inde en grisant son contour

- créer le centroide de l'inde et rajouter sur la carte une étiquette "Inde" à la coordonnée du centroide du pays
- 4. Créer un raster de 10x10 pixels avec la commande rast, dont les niveaux avec des valeurs aléatoires allant de 0 à 10 (avec la commande runif). Tracez ce raster avec geom_raster.
- 5. Chargez le fichier raster/nlcd.tif du package spDataLarge à l'aide de la commande. Décrire cet objet. Utiliser la fonction plot. Enfin, convertir le raster en objet du package stars et décrire le résultat.

2. Opérations sur les attributs

Pour ces exercices, nous utiliserons les ensembles de données us_states et us_states_df du package spData.

- 1. Créez un nouvel objet appelé us_states_name qui contient uniquement la colonne NAME de l'objet us_states en utilisant la syntaxe de base R ([) ou tidyverse (select()). Quelle est la classe du nouvel objet et qu'est-ce qui le rend géographique?
- 2. Sélectionnez les colonnes de l'objet us_states contenant les données de population. Obtenez le même résultat en utilisant une autre commande (bonus : essayez de trouver trois façons d'obtenir le même résultat). Indice : essayez d'utiliser des fonctions d'aide, telles que contains ou matches de dplyr (voir ?contains).
- 3. Trouvez tous les États ayant les caractéristiques suivantes (bonus : trouvez-les et affichez-les) :
- Appartiennent à la région Midwest.
- Appartiennent à la région Ouest, ont une superficie inférieure à 250 000 km² et en 2015, une population supérieure à 5 000 000 d'habitants (astuce : vous devrez peut-être utiliser la fonction units::set_units() ou as.numeric()).
- Appartiennent à la région Sud, avaient une superficie supérieure à $150~000~\rm{km^2}$ ou une population totale en 2015 supérieure à $7~000~000~\rm{d}$ d'habitants.
- 4. Quelle était la population totale en 2015 dans l'ensemble de données us_states? Quelle était la population minimale et maximale en 2015?
- 5. Combien d'États y a-t-il dans chaque région?
- 6. Quelle était la population minimale et maximale en 2015 dans chaque région? Quelle était la population totale en 2015 dans chaque région?

- 7. Ajoutez des variables de us_states_df à us_states et créez un nouvel objet appelé us_states_stats. Quelle fonction avez-vous utilisée et pourquoi? Quelle variable sert de clé dans les deux ensembles de données? Quelle est la classe du nouvel objet?
- 8. us_states_df a deux lignes de plus que us_states. Comment pouvez-vous les trouver? (astuce : essayez d'utiliser la fonction dplyr::anti_join())
- 9. Quelle était la densité de population en 2015 dans chaque État? Quelle était la densité de population en 2010 dans chaque État?
- 10. Combien la densité de population a-t-elle changé entre 2010 et 2015 dans chaque État? Calculez le changement en pourcentage et cartographiez-le.
- 11. Changez les noms des colonnes dans us_states en minuscules. (Astuce : les fonctions d'aide tolower() et colnames() peuvent aider.)
- 12. Utilisez us_states et us_states_df pour créer un nouvel objet appelé us_states_sel. Le nouvel objet ne doit contenir que deux variables median_income_15 et geometry. Changez le nom de la colonne median income_15 en Income.
- 13. Calculez le changement du nombre de résidents vivant en dessous du seuil de pauvreté entre 2010 et 2015 pour chaque État. (Astuce : voir ?us_states_df pour la documentation sur les colonnes du seuil de pauvreté.) Bonus : Calculez le changement en pourcentage des résidents vivant en dessous du seuil de pauvreté dans chaque État.
- 14. Quelle était la population minimale, moyenne et maximale des personnes vivant en dessous du seuil de pauvreté en 2015 pour chaque région? Bonus : Quelle est la région où l'augmentation du nombre de personnes vivant en dessous du seuil de pauvreté est la plus importante?
- 15. Créez un raster grain vide avec neuf lignes et colonnes et une résolution de 0,5 degré décimal (WGS84). Remplissez-le avec des nombres aléatoires. Extraire les valeurs des quatre cellules de coin.
- 16. Quelle est la classe la plus courante de notre exemple de raster grain?
- 17. Tracez l'histogramme et la boîte à moustaches du fichier dem.tif du package spData-Large (system.file("raster/dem.tif", package = "spDataLarge")).

3. Opération sur les données spatiales

3.1 Opérations sur les vecteurs

1. Utiliser les jeux de données nz et nz_height du package spData. Combien de ces points élevés la région de Canterbury contient-elle?

Bonus: tracez le résultat en utilisant la fonction plot() pour montrer toute la Nouvelle-Zélande, la région de Canterbury en jaune, les points élevés à Canterbury représentés par des croix rouges (astuce: pch = 7) et les points élevés dans d'autres parties de la Nouvelle-Zélande

représentés par des cercles bleus. Consultez la page d'aide ?points pour plus de détails avec une illustration des différentes valeurs pch.

- 2. Quelle région a le deuxième plus grand nombre de points nz_height, et combien en a-t-elle?
- 3. En généralisant la question à toutes les régions : combien des 16 régions de Nouvelle-Zélande contiennent des points qui appartiennent aux 100 points les plus élevés du pays ? Quelles sont ces régions ?

Bonus : créez un tableau listant ces régions par ordre du nombre de points et leur nom.

- 4. Le point de départ de cet exercice est de créer un objet représentant l'État du Colorado aux États-Unis. Faites ceci avec la fonction filter() (tidyverse) et tracez l'objet résultant dans le contexte des États-Unis.
- Créez un nouvel objet représentant tous les États qui se chevauchent géographiquement avec le Colorado et tracez le résultat (astuce : la manière la plus concise de le faire est avec la méthode de sous-ensemble [).
- Créez un autre objet représentant tous les objets qui touchent (ont une frontière commune avec) le Colorado et tracez le résultat (astuce : souvenez-vous que vous pouvez utiliser l'argument op = st_intersects et d'autres relations spatiales lors des opérations de sous-ensemble spatial en R de base).

Bonus : créez une ligne droite allant du centroïde du district de Columbia près de la côte Est au centroïde de la Californie près de la côte Ouest des États-Unis (astuce : les fonctions st_centroid(), st_union() et st_cast() peuvent aider) et identifiez quels États cette longue ligne est.

3.2 Opérations sur les rasters

- 5. Utilisez dem = rast(system.file("raster/dem.tif", package = "spDataLarge")), et reclassifiez l'élévation en trois classes : basse (<300), moyenne et haute (>500). Ensuite, lisez le raster NDVI (ndvi = rast(system.file("raster/ndvi.tif", package = "spDataLarge"))) et calculez la moyenne du NDVI et de l'élévation pour chaque classe d'altitude.
- 6. Appliquez un filtre de détection de lignes à rast(system.file("ex/logo.tif", package = "terra")). Tracez le résultat. Astuce : Lisez ?terra::focal().

7 Calculez l'indice d'eau normalisé (NDWI; (green - nir)/(green + nir)) d'une image Landsat. Utilisez l'image Landsat fournie par le package spDataLarge (system.file("raster/landsat.tif", package = "spDataLarge")). Calculez également une corrélation entre le NDVI et le NDWI pour cette région (astuce : vous pouvez utiliser la fonction layerCor()).

- 8. Un message sur StackOverflow montre comment calculer les distances jusqu'à la côte la plus proche en utilisant raster::distance(). Essayez de faire quelque chose de similaire mais avec terra::distance() : récupérez un modèle numérique d'élévation de l'Espagne et calculez un raster qui représente les distances jusqu'à la côte à travers le pays (astuce : utilisez geodata::elevation_30s()). Convertissez les distances résultantes de mètres en kilomètres. Note : il peut être judicieux d'augmenter la taille de cellule du raster d'entrée pour réduire le temps de calcul lors de cette opération (aggregate()).
- 9. Essayez de modifier l'approche utilisée dans l'exercice ci-dessus en pondérant le raster de distance avec le raster d'élévation; chaque tranche de 100 mètres d'altitude devrait augmenter la distance jusqu'à la côte de 10 km. Ensuite, calculez et visualisez la différence entre le raster créé en utilisant la distance euclidienne (E7) et le raster pondéré par l'élévation.

4. Opérations sur les géométries

4.1 Opérations sur les vecteurs

- 1. Générez et tracez des versions simplifiées de l'ensemble de données nz. Expérimentez avec différentes valeurs de keep (allant de 0,5 à 0,00005) pour ms_simplify() et dTolerance (de 100 à 100 000) pour st_simplify().
- À partir de quelle valeur le résultat commence-t-il à se détériorer pour chaque méthode, rendant la Nouvelle-Zélande méconnaissable?
- Avancé: Quelle est la différence entre le type de géométrie des résultats de st_simplify() par rapport au type de géométrie de ms_simplify()? Quels problèmes cela crée-t-il et comment cela peut-il être résolu?
- 2. Dans le premier exercice du chapitre sur les opérations de données spatiales, il a été établi que la région de Canterbury avait 70 des 101 points les plus élevés de Nouvelle-Zélande. En utilisant st_buffer(), combien de points dans nz_height se trouvent à moins de 100 km de Canterbury?
- 3. Trouvez le centroïde géographique de la Nouvelle-Zélande. À quelle distance se trouve-t-il du centroïde géographique de Canterbury?
- 4. La plupart des cartes du monde ont une orientation nord en haut. Une carte du monde avec une orientation sud en haut pourrait être créée par une réflexion (l'une des transformations affines non mentionnées dans ce chapitre) de la géométrie de l'objet world. Écrivez le code pour le faire. Astuce : vous devez utiliser un vecteur à deux éléments pour cette transformation. Bonus : créez une carte à l'envers de votre pays.
- 5. Exécutez le code de la section 5.2.6. En référence aux objets créés dans cette section, sélectionnez le point dans p qui est contenu à la fois dans x et y.
- Utilisez les opérateurs de sous-ensemble de base.

- Utilisez un objet intermédiaire créé avec st_intersection().
- 6. Calculez la longueur des lignes de frontières des États-Unis en mètres. Quel État a la frontière la plus longue et lequel a la frontière la plus courte? Astuce : La fonction st_length calcule la longueur d'une géométrie de type LINESTRING ou MULTILINESTRING. Il faut aussi transformer la géométrieavec un CRS qui puisse calculer des ditances : ici ESPG=2163.

4.2 Opérations sur les rasters

7. Lisez le fichier srtm.tif dans R (srtm = rast(system.file("raster/srtm.tif", package = "spDataLarge"))). Ce raster a une résolution de 0,00083 par 0,00083 degrés. Modifiez sa résolution en 0,01 par 0,01 degrés en utilisant toutes les méthodes disponibles dans le package terra. Visualisez les résultats. Pouvez-vous remarquer des différences entre les résultats de ces méthodes de rééchantillonnage?

5. Application: rapprochement de base par distances

Le but de cet exercice est d'identifier la nature de stations de services. Un jeu de données issu de https://www.data.gouv.fr/fr/datasets/prix-des-carburants-en-france-flux-instantane-v2-amelioree/ donne les prix des carburants mais on n'a pas d'information sur le type de station (station d'autoroute, de supermarché...). Le jeu de données magasins d'openstreetmap pourrait permettre d'apporter des informations.

- Charger les données de TP3.zip. Les gpkg s'ouvrent la commande st_read du package sf.
- 2. Restreindre la base magasins aux types de magasins (shop) suivants : "gas", "supermarket", "convenience", "car_repair", "car", "mall", "convenience; gas"
- 3. Transformer les deux jeux en sf dataframe en système de coordonnées EPSG 2154. Attention, pour la base station, il faut diviser longitude et latitude par 100000.
- 4. Pour chaque station station, le magasins le plus proche et calculer la distance correspondate.
- 5. Quelle est la part des magasins à moins de 100 mètres d'une station.
- 6. Ajouter les attributs shop et operator pour chaque magasins les plus proche à la base stations.

Quatrième partie

Econométrie 1

Introduction

Le cours en résumé : - 30 h - objectifs : développer, interpréter et critiquer des modèles économétriques - modalités d'examens : - Note de participation - Un projet commun calcul numérique/économétrie avec choix du sujet libre - Un projet commun SIG/économétrie avec choix du sujet imposé

Le plan : 1. Statistiques et probabilités en R 2. Régression linéaire multiple 3. Projet 1 4. Projet 2

TP1: Probabilités et Statistiques avec R

1. Probabilités avec R

1.1 - Échantillonnage

Vous êtes la fée des loteries dans une loterie hebdomadaire, où 6 numéros uniques sur 49 sont tirés.

1. Tirez aléatoirement les numéros gagnants de cette semaine (fixez la graine à 123) en utilisant la fonction sample.

1.2 - Fonction de densité de probabilité

Considérez une variable aléatoire X avec une fonction de densité de probabilité (PDF)

$$f_X(x) = \frac{x}{4}e^{-x^2/8}, \quad x \ge 0.$$

- 1. Définissez la PDF ci-dessus comme une fonction f().
- 2. Vérifiez si la fonction que vous avez définie est effectivement une PDF.

1.3 - Espérance et Variance

Dans cet exercice, vous devez calculer l'espérance et la variance de la variable aléatoire X considérée dans l'exercice précédent.

La PDF f() de l'exercice précédent est disponible dans votre environnement de travail.

- 1. Définissez une fonction appropriée ex () qui s'intègre à l'espérance de X.
- 2. Calculez l'espérance de X. Stockez le résultat dans expected_value.
- 3. Définissez une fonction appropriée ex2() qui s'intègre à l'espérance de X^2 .
- 4. Calculez la variance de X. Stockez le résultat dans variance.

1.4 - Distribution Normale Standard

Soit $Z \setminus \{N\}(0, 1)$.

- 1. Calculez \$\phi(3)\$, c'est-à-dire la valeur de la densité de probabilité standard normale en \$c=3\$.
- 2. Calculez $P(|Z| \leq 1.64)$ en utilisant la fonction 'pnorm()'.

1.5 - Distribution du Chi-carré

- 1. Soit $W \sim \chi^2_{1,0}$. Tracez la PDF correspondante à l'aide de curve(). Spécifiez la plage de valeurs x comme [0,25] via l'argument xlim.
- 2. Soient X_1 et X_2 deux variables aléatoires normalement distribuées indépendantes avec $\mu=0$ et $\sigma^2=15$. Calculez $P(X_1^2+X_2^2>10)$

1.6 - Distribution de Student

- 1. Soit $X \sim t_{10000}$ et $Z \sim N(0,1)$. Calculez le quantile à 95 % des deux distributions. Que remarquez-vous ?
- 2. Soit $X \sim t_1$. Générez 1000 nombres aléatoires à partir de cette distribution et attribuezles à la variable x. Calculez la moyenne de l'échantillon de x. Pouvez-vous expliquer le résultat?

1.7 - Distribution de Fisher

- 1. Soit $Y \sim F(10,4)$. Tracez la fonction quantile de la distribution donnée à l'aide de la fonction curve().
- 2. Soit $Y \sim F(4,5)$. Calculez P(1 < Y < 10) en intégrant la PDF avec la fonction integrate.

2. Statistiques avec R

2.1 - Biais

On considère l'estimateur alternatif suivant pour μ_Y , la moyenne de Y:

$$\tilde{Y} = \frac{1}{n-1} \sum_{i=1}^{n} Y_i$$

1. Définissez une fonction Y_tilde() qui implémente l'estimateur ci-dessus.

- 2. Tirez aléatoirement 5 observations au hasard à partir de la distribution N(10, 25) et calculez une estimation en utilisant Y_tilde(). Répétez cette procédure 10000 fois et stockez les résultats dans est_biased en utilisant la fonction replicate.
- 3. Tracez un histogramme de est_biased. Ajoutez une ligne verticale rouge à $\mu = 10$ en utilisant la fonction abline().
- 4. Tirez aléatoirement 1000 observations au hasard à partir de la distribution N(10, 25) et calculez une estimation de la moyenne en utilisant Y_{tilde} . Répétez cette procédure 10000 fois et stockez les résultats dans $est_{consistent}$.
- 5. Tracez un histogramme de est_consistent. Ajoutez une ligne verticale rouge à $\mu = 10$ en utilisant la fonction abline().

2.2 - Efficience d'un estimateur

Dans cet exercice, nous souhaitons illustrer le résultat selon lequel la moyenne de l'échantillon :

$$\hat{\mu}_Y = \sum_{i=1}^n a_i Y_i$$

avec le schéma de pondération égale $a_i = \frac{1}{n}$ pour i = 1, ..., n est l'estimateur linéaire non biaisé meilleur (BLUE) de μ_Y .

En tant qu'alternative, considérez l'estimateur :

$$\tilde{\mu}_Y = \sum_{i=1}^n b_i Y_i$$

où b_i donne aux premières $\frac{n}{2}$ observations un poids plus élevé de 3 que les deuxièmes $\frac{n}{2}$ observations (nous supposons que n est pair pour simplifier).

%Le vecteur de poids w a déjà été défini et est disponible dans votre environnement de travail.

- Définissez un vecteur de pondération pour une taille d'échantillon n=100. Il doit être normalisé.
- 2. Vérifiez que $\tilde{\mu}_Y$ est un estimateur non biaisé de μ_Y , la moyenne de Y_i .
- 3. Implémentez l'estimateur alternatif de μ_V en tant que fonction $mu_tilde()$.
- 4. Tirez au hasard 100 observations à partir de la distribution $\mathcal{N}(5,10)$ et calculez les estimations avec les deux estimateurs. Répétez cette procédure 10000 fois et stockez les résultats dans $\mathtt{est_bar}$ et $\mathtt{est_tilde}$. Utilisez la fonction $\mathtt{replicate}$.
- 5. Calculez les variances de l'échantillon de est_bar et est_tilde. Que pouvez-vous dire sur les deux estimateurs?

2.3 - Test d'hypothèse

Considérez l'ensemble de données wage1 du package wooldridge. La variable wage donne les gains horaires moyens des individus. Nous supposons que les gains horaires moyens wage dépassent 10 dollars par heure et souhaitons tester cette hypothèse à un niveau de signification de $\alpha = 0,05$. Veuillez faire ce qui suit :

- 1. Calculez la statistique de test manuellement et attribuez-la à tstat.
- 2. Utilisez tstat pour accepter ou rejeter l'hypothèse nulle.
- 3. Refaites-le en utilisant l'approximation normale.
- Calculez la valeur-p manuellement et attribuez-la à pval en utilisant l'approximation normale.
- 5. Utilisez pval pour accepter ou rejeter l'hypothèse nulle.
- 6. Effectuez le test d'hypothèse des questions précédentes en utilisant la fonction t.test().
- 7. Extrayez la statistique t et la valeur-p de la liste créée par t.test(). Attribuez-les aux variables tstat et pvalue.
- 8. Vérifiez que l'utilisation de l'approximation normale ici est également valide en calculant la différence entre les deux valeurs-p.

2.4 - Test d'hypothèse : valeur-p

On considère les données CO2 (data(CO2)).

- 1. Tester s'il existe une différence significative dans l'absorption entre les plantes traitées et les plantes non traitées à un niveau de signification de α =0,05.
- 2. Obtenez l'intervalle de confiance.

2.5 - Corrélation

Charger la librairie corrgram et le jeu de données auto.

- 1. Calculez la corrélation simple (linéaire) entre le prix de la voiture (Price) et son économie de carburant MPG (mesurée en miles par gallon, ou mpg).
- 2. Utilisez la fonction cor.test pour vérifier si le coefficient obtenu est statistiquement significatif au niveau de 5 %.
- 3. La corrélation simple suppose une relation linéaire entre les variables, mais il peut être utile de relâcher cette hypothèse. Calculez le coefficient de corrélation de Spearman pour les mêmes variables et trouvez sa signification statistique.

- 4. En R, il est possible de calculer la corrélation pour toutes les paires de variables numériques dans un dataframe en une seule fois. Cependant, cela nécessite d'exclure d'abord les variables non numériques. Créez un nouveau dataframe, auto_num, qui ne contient que les colonnes avec des valeurs numériques du dataframe auto. Vous pouvez le faire en utilisant la fonction filter.
- 5. Utilisez la fonction cor pour créer une matrice de coefficients de corrélation pour les variables du dataframe auto_num.
- 6. La fonction standard cor.test ne fonctionne pas avec des dataframes. Cependant, la signification statistique des coefficients de corrélation pour un dataframe peut être vérifiée à l'aide de la fonction rcorr du package Hmisc. Transformez le dataframe auto_num en une matrice (auto_mat) et utilisez-le pour vérifier la signification des coefficients de corrélation avec la fonction rcorr.
- 7. Utilisez la fonction corrgram du package corrgram pour créer un correlogramme par défaut afin de visualiser les corrélations entre les variables du dataframe auto.
- 8. Créez un autre correlogramme qui (1) ne comprend que le panneau inférieur, (2) utilise des diagrammes en camembert pour représenter les coefficients de corrélation et (3) ordonne les variables selon l'ordre par défaut.
- 9. Créez un nouveau dataframe, auto_subset, en sous-échantillonnant le dataframe auto pour inclure uniquement les variables Price, MPG, Hroom et Rseat. Utilisez le nouveau dataframe pour créer un correlogramme qui (1) affiche les coefficients de corrélation dans le panneau inférieur et (2) montre des diagrammes de dispersion (points) dans le panneau supérieur.
- 10. Utilisez la fonction correlations du package ggm pour créer une matrice de corrélation avec à la fois des coefficients de corrélation complets et partiels pour le dataframe auto_subset. Trouvez la corrélation partielle entre le prix de la voiture et son économie de carburant.

TP 2 : Modèle de régression multiple

library(tidyverse)
library(wooldridge)
library(AER)
library(stargazer)
library(fixest)

Introduction

Lancez **RStudio** et ouvrez un nouveau **R Markdown**. Ce sera votre document de travail durant tout le TP. L'intérêt des Markdown est de pouvoir lancer une multitude de petits scripts successivement. Typiquement, un *chunk* (petit script) par question. Lorsque c'est nécessaire, répondez aux questions entre les chunks.

Créez un fichier partagé "Econométrie-votre nom" sur votre drive fourni de l'université (One-Drive ou Google Drive). Envoyez-moi le lien de ce drive. Ce dossier partagé sera votre dossier de travail pendant toute la durée du cours. Créez un dossier "TP1" et enregistrez-y votre markdown sous le nom "TP1".

Rappel sur R

- (i) Chargez le package \mathbf{AER} (téléchargez-le si besoin). Ouvrez le fichier de données CASchools avec la commande : $\mathrm{data}(CASchools)$.
- (ii) Définissez les variables STR = students/teachers et score = (read + math)/2.
- (iii) Affichez les statistiques descriptives de ce jeu de données avec la commande summary.
- (iv) Estimez le modèle suivant avec la commande lm et affichez les résultats de la régression :

$$score = \beta_0 + \beta_1 STR + \beta_2 english + u$$

- (v) Reprérentez les résultats précédents à l'aide du **stargazer** et utilisez la commande **stargazer** (data, type = 'text') en remplaçant *data* par les jeux de données précédemment appelés.
- (vi) Faites la même chose avec la fonction feols() du package fixest pour lm et etable() pour stargazer.

Retour sur la régression multiple

La première partie de ce TP vise à reproduire manuellement les fonctions de régression basiques de R. On considère le modèle linéaire suivant :

$$Y = X'\beta + u$$

Le but de cet exercice est de reproduire les résultats de la fonction lm de R tels qu'obtenus à la partie précédente.

- (i) Rappelez la formule générale de l'estimateur des moindres carrés ordinaires (MCO) $\hat{\beta}$ sous forme matricielle.
- (ii) Proposez une fonction sur R qui prennent en argument un vecteur Y et une matrice X de variables dépendantes et renvoie l'estimateur $\hat{\beta}$. Appliquez votre fonction de façon à reproduire les résultats de la regression précédentes.
- (iii) Rappelez la formule de l'estimateur des moindres carrés ordinaires (MCO) $\hat{\sigma}^2$ de la variance des résidus et la matrice de variance-covariance associée aux coefficients.
- (iv) Modifiez la fonction de la question (ii) pour y intégrer l'estimateur des MCO de la déviation standard des résidus, et l'erreur standard $\hat{\sigma}_{\beta_i}$ associé à chaque coefficient β_i . Combinez $\hat{\beta}$ et les $\hat{\sigma}_{\beta_i}$ dans un dataframe avec comme nom de colonnes "coefficient" et "déviation standard". Appliquez votre fonction de façon à reproduire les résultats de la régression précédentes.
- (v) Rappelez la formule du \mathbb{R}^2 . Modifiez votre fonction pour que le dataframe intègre aussi le \mathbb{R}^2 . Appliquez votre fonction de façon à reproduire les résultats de la régression précédentes.
- (vi) Rappelez les formules des statistiques de Fisher F et de student t_i pour chaque coefficient.
- (vii) Modifier la fonction pour y ajouter les tests sur le coefficient. Le résultat de votre fonction reverra un dataframe avec des dans des colonnes séparées :
 - les coefficients de la régression
 - les erreurs standards associés aux coefficients
 - les statistiques des tests des coefficients
 - les valeurs des statistiques de student pour un risque de 1\%, 5\%, 10\%
 - les p-value associées
 - la statistique de Fisher et sa p-value.
- (viii) Appliquez votre fonction de façon à reproduire les résultats de la régression précédentes.

Exercices

Ces exercices utilisent les données issus du package wooldridge.

bwght

Jeu de données : data(bwght) issu du package wooldridge

Un problème qui intéresse les responsables de santé (et d'autres) est de déterminer les effets du tabagisme pendant la grossesse sur la santé des nourrissons. L'une des mesures de la santé du nourrisson est le poids de naissance; un poids de naissance trop faible peut exposer le nourrisson au risque de contracter diverses maladies. Étant donné que des facteurs autres que le tabagisme qui influent sur le poids à la naissance sont susceptibles d'être corrélés au tabagisme, nous devons tenir compte de ces facteurs. Par exemple, un revenu plus élevé donne généralement accès à de meilleurs soins prénataux, ainsi qu'à une meilleure nutrition pour la mère. Une équation qui en tient compte est la suivante :

$$bwght = \beta_0 + \beta_1 cigs + \beta_2 faminc + u$$

Avec bwght le poids du bébé à la naissance, cigs le nombre de cigarette fumées par jour par la mère, et faminc le revenu de la famille.

- (i) Quel est le signe le plus probable pour β_2 ?
- (ii) Pensez-vous que *cigs* et *faminc* sont susceptibles d'être corrélés? Expliquez pourquoi cette corrélation corrélation pourrait être positive ou négative.
- (iii) Maintenant, estimez l'équation avec et sans faminc

Présentez les résultats sous forme d'équation, y compris la taille de l'échantillon et le R^2 . Discutez de vos résultats, en vous concentrant sur la question de savoir si l'ajout de la faminc modifie sensiblement l'effet estimé de la cigarette sur le poids corporel.

hprice1

Utilisez les données hprice1 pour estimer le modèle :

$$price = \beta_0 + \beta_1 sqrft + \beta_2 bdrms + u$$

où price est le prix de la maison mesuré en milliers de dollars, sqrft est la surface du logement et bdrms le nombre de chambres.

- (i) Rédigez les résultats sous forme d'équation.
- (ii) Quelle est l'augmentation estimée du prix d'une maison comportant une chambre à coucher de plus, la superficie en pieds carrés étant constante?
- (iii) Quelle est l'augmentation estimée du prix d'une maison avec une chambre supplémentaire de 140 pieds carrés? Comparez ce résultat à votre réponse dans la partie (ii).
- (iv) Quel pourcentage de la variation du prix s'explique par la superficie en pieds carrés et le nombre de chambres à coucher?
- (v) La première maison de l'échantillon a une superficie de q=1438 et un nombre de chambres à coucher p=16. Trouvez le prix de vente prédit pour cette maison à partir de la ligne de régression MCO.
- (vi) Le prix de vente réel de la première maison de l'échantillon est de 300 000 \$ (donc price = 300). Trouvez le résidu pour cette maison. Cela suggère-t-il que l'acheteur a sous-payé ou sur-payé la maison?

ceosal2

Le fichier **ceosal2** contient des données sur 177 PDG et peut être utilisé pour examiner les effets de la performance de l'entreprise sur le salaire du PDG.

- (i) Estimez un modèle reliant le salaire annuel salary aux ventes de l'entreprise sales et à la valeur marchande mktval. Transformer le modèle de façon à obtenir des élasticités constantes pour les deux variables indépendantes. Écrivez les résultats sous forme d'équation.
- (ii) Ajoutez *profits* au modèle de la partie (i). Pourquoi cette variable ne peut-elle pas être incluse sous sous forme logarithmique? Diriez-vous que ces variables de performance de l'entreprise expliquent la plus grande partie de la variation des salaires des PDG?
- (iii) Ajoutez la variable *ceoten* au modèle de la partie (ii). Quel est le pourcentage de rendement estimé estimé pour une année supplémentaire de mandat du PDG, les autres facteurs étant fixes?
- (iv) Trouvez le coefficient de corrélation de l'échantillon entre les variables $\log(mktval)$ et profits. Ces variables sont-elles fortement corrélées? Qu'est-ce que cela signifie pour les estimateurs MCO?

attend

Cet exercice étudie les lien entre présence en classe et réussite scolaire. Utilisez les données de **attend** pour cet exercice.

- (i) Obtenez les valeurs minimum, maximum et moyenne pour les variables *atndrte* (pourcentage de présence en classe), *priGPA* (GPA cumulé), et *ACT* (score ACT).
- (ii) Estimez le modèle

$$atndrte = \beta_0 + \beta_1 priGPA + \beta_2 ACT + u$$

et écrivez les résultats sous forme d'équation. Interprétez l'ordonnée à l'origine. A-t-il une signification utile?

- (iii) Discutez les coefficients de pente estimés. Y a-t-il des surprises?
- (iv) Quel est atndrte prédit si priGPA = 3.65 et ACT = 20? Que pensez-vous de ce résultat? Existe-t-il des étudiants dans l'échantillon avec ces valeurs des variables explicatives?
- (v) Si l'étudiant A a une priGPA de 3,1 et un ACT de 21, et que l'étudiant B a une priGPA de 2,1 et un ACT de 26, quelle est la valeur de atndrte? et ACT = 26, quelle est la différence prédite dans leurs taux de présence?

meap93

Utilisez les données de meap93 pour répondre à cette question.

(i) Estimez le modèle

$$math_{10} = \beta_0 + \beta_1 \log(expend) + \beta_2 lnchprg + u$$

et rapportez les résultats sous la forme habituelle, y compris la taille de l'échantillon et le R-carré. Les signes des coefficients de pente sont-ils ceux que vous attendiez? Expliquez. (ii) Que faites-vous de l'ordonnée à l'origine que vous avez estimée dans la partie (i)? En particulier, cela a-t-il un sens de mettre les deux variables explicatives à zéro? (Indice : rappelez-vous que $\log(1)=0$). (iii) Exécutez maintenant la régression simple de math10 sur $\log(expend)$, et comparez le coefficient de pente avec l'estimation obtenue dans la partie (i). L'effet de dépense estimé est-il maintenant plus grand ou plus petit que dans la partie (i)? (iv) Trouvez la corrélation entre $lexpend = \log(expend)$ et lnchprg. Son signe vous semble-t-il logique? (v) Utilisez la partie (iv) pour expliquer vos résultats dans la partie (iii).

discrim

Utilisez les données de **discrim** pour répondre à cette question. Il s'agit de données au niveau du code postal sur les prix de divers articles dans les fast-foods, ainsi que des caractéristiques de la population du code postal, dans le New Jersey et en Pennsylvanie. L'idée est de voir si les restaurants fast-food pratiquent des prix plus élevés dans les zones où la concentration de Noirs est plus importante. (i) Trouvez les valeurs moyennes de *prpblck* et de revenu dans l'échantillon, ainsi que leurs écarts types. Quelles sont les unités de mesure de *prpblck* et du revenu ? (ii) Considérez un modèle pour expliquer le prix du soda, *psoda*, en fonction de la proportion de la population qui est noire et du revenu médian :

$$psoda = \beta_0 + \beta_1 prpblck + \beta_2 revenu + u$$

Estimez ce modèle par MCO et rapportez les résultats sous forme d'équation, y compris la taille de l'échantillon et le R-carré. (N'utilisez pas la notation scientifique pour présenter les estimations.) Interprétez le coefficient de *prpblck*. Pensez-vous qu'il soit économiquement important?

- (iii) Comparez l'estimation de la partie (ii) avec l'estimation de régression simple de *psoda* sur *prpblck*. L'effet de discrimination est-il plus important ou plus faible lorsque vous contrôlez le revenu?
- (iv) Un modèle avec une élasticité-prix constante par rapport au revenu pourrait être plus approprié. Présentez les estimations du modèle :

$$log(psoda) = \beta_0 + \beta_1 prpblck + \beta_2 log(income) + u$$

Si prpblck augmente de 0,20 (20 points de pourcentage), quelle est la variation estimée en pourcentage de psoda? (Indice : la réponse est 2.xx, où vous remplissez le "xx"). (v) Ajoutez maintenant la variable prppov à la régression de la partie (iv). Que se passe-t-il? attendu?

(vii) Évaluez l'énoncé suivant : "Parce que le log(income) et la variable prppov sont si fortement corrélés, ils n'ont rien à faire dans la même régression."

charity

Utilisez les données de charity pour répondre aux questions suivantes :

(i) Estimez l'équation :

$$gift = \beta_0 + \beta_1 mailsyear + \beta_2 giftlast + \beta_3 propresp + u$$

par MCO et rapportez les résultats de la manière habituelle, y compris la taille de l'échantillon et le R-carré. Comment le R^2 se compare-t-il à celui de la régression simple qui omet giftlast et propresp?

- (ii) Interprétez le coefficient de l'année postale. Est-il plus grand ou plus petit que le coefficient de régression simple correspondant?
- (iii) Interprétez le coefficient de *propresp*, en prenant soin de noter les unités de mesure de *propresp*.
- (iv) Ajoutez maintenant la variable avggift à l'équation. Que devient l'effet estimé de mailsyear?
- (v) Dans l'équation de la partie (iv), qu'est-il arrivé au coefficient de *giftlast*? A votre avis, que se passe-t-il?

htv

Utilisez les données de **htv** pour répondre à cette question. L'ensemble de données comprend des informations sur les salaires, l'éducation, l'éducation des parents et plusieurs autres variables pour 1 230 hommes actifs en 1991.

- (i) Quelle est la fourchette de la variable éducation dans l'échantillon? Quel pourcentage d'hommes ont terminé leur 12ème année mais pas une année supérieure? Les hommes ou leurs parents ont-ils, en les hommes ou leurs parents ont-ils, en moyenne, un niveau d'éducation plus élevé?
- (ii) Estimez le modèle de régression

$$educ = \beta_0 + \beta_1 motheduc + \beta_2 fatheduc + u$$

par MCO et présentez les résultats sous la forme habituelle. Quelle est la part de la variation de l'échantillon dans *educ* est expliquée par l'éducation des parents? Interprétez le coefficient de *motheduc*.

- (iii) Ajoutez la variable abil (une mesure de l'aptitude cognitive) à la régression de la partie
 (ii), et rapportez les résultats.
- (iv) Ajoutez la variable abil (une mesure de l'aptitude cognitive) à la régression de la partie (ii), et présentez les résultats sous forme d'équation. La "capacité" permet-elle d'expliquer expliquer les variations de l'éducation, même après avoir contrôlé l'éducation des parents? Expliquez.

(v) (Nécessite un calcul) Estimez maintenant une équation où l'aptitude apparaît sous forme quadratique :

$$educ = \beta_0 + \beta_1 motheduc + \beta_2 fatheduc + \beta_3 abil + \beta_4 abil^2 + u$$

En utilisant les estimations $\hat{\beta}_3$ et \hat{b}_4 , utiliser le calcul pour trouver la valeur de abil, l'appeler $abil^*$, où educ est minimisé. (Les autres coefficients et valeurs des variables d'éducation des parents n'ont pas d'effet; nous maintenons l'éducation des parents fixe). Remarquez que abil est mesuré de manière à ce que des valeurs négatives soient autorisées. Vous pouvez également vérifier que la dérivée seconde est positive et que vous avez bien un minimum.

- (v) Argumentez que seule une petite fraction des hommes de l'échantillon a une "capacité" inférieure à la valeur calculée dans la partie (iv). En quoi cela est-il important?
- (vi) Si vous avez accès à un programme statistique qui comprend des capacités graphiques, utilisez les estimations de la partie (iv) pour représenter graphiquement la relation entre l'éducation et l'aptitude prédites. Supposons que la *motheduc* et la *fatheduc* ont leurs valeurs moyennes dans l'échantillon, 12.18 et 12.45, respectivement.

TP3 : Analyse des Disparités Scolaires au Collège

Les inégalités de performance scolaire sont un sujet récurrent dans les débats sur le système éducatif. Parmi les examens importants en France, le brevet des collèges permet de mesurer les compétences acquises par les élèves à la fin du cycle secondaire. Cependant, les résultats obtenus peuvent varier en fonction de divers facteurs, notamment le contexte socio-économique local.

Ce TP vous propose d'explorer l'influence de facteurs socio-économiques, tels que le revenu médian, le taux de chômage ou encore le niveau d'éducation dans les communes, sur les résultats du brevet des collèges. À travers l'analyse de jeux de données réels, vous serez amenés à identifier des corrélations et à mieux comprendre les déterminants de la performance scolaire.

0. Installation.

Charger les packages tidyverse, stargazer. ChatGPT ou autre chatbot sont autorisés pour ce TP.

Les données socio-économiques sont bien formatées ici : https://www.unehistoireduconflitpoliti que.fr/telecharger.html. Commencer par télécharger les données sur les revenus des communes. On pourra réitérer l'analyse sur les diplômes et les catégories socio-professionnelles.

1. Chercher sur internet et télécharger les données sur les résultats de brevets par établissement.

1. Données Brevet

1.1 Description des données

- 1. Décrire le jeu de données : colonnes, taille, niveau géographique, horizon temporel...
- 2. Quelle est la période étudiée?
- 3. Combien y a-t-il d'établissements?

1.2 Evolution temporelle

On veut caractériser les résultas du brevet au niveau national.

- 1. Créer un fichier de donnée aggrégé par année au niveau national (utiliser group_by et summarize).
- Comment semble calculé la colonne taux_de_reussite. Tester son intuition une colonne taux_de_reussite2 et comparer avec taux_de_reussite.
- 3. Faire des graphiques montrant l'évolution des nombres d'inscrits et d'admis.
- 4. Faire des graphiques montrant le taux annuel d'admis.
- 5. Faire des graphiques montrant les taux annuels d'admis pour chaque mention.
- 6. Décrire et interpréter chaque graphiques.

1.3 Variation en coupe

On considère la dernière session reportée par le jeu de donnée.

- 1. Créer un jeu de donnée filtré sur cette dernière année.
- 2. Montrer es graphiques en barres pour représenter les différences sur les taux de réussites selon le type d'établissement et le secteur d'enseignement.
- 3. Faire des classements des dix meilleurs départements selon les différents taux de réussites.

2. Données socio-économiques

2.1 Description du jeu de données

- 1. Décrire le jeu de données de la même façon que pour le premier jeu. Utiliser les annexes où les données sont décrites.
- 2. Quelles colonnes (ou ensemble de colonnes) vous semble-t-il pertinent de garder?

2.2 Transformation du jeu

Transformer ce jeu de données en format "long" avec pivot_longer.

3. Analyse jointe.

3.1 Jointure

Pour chaque année et pour chaque établissement, on souhaite avoir les informations socioéconomiques de la commune correspondante.

- 1. Faire la jointure entre les deux jeux de données.
- 2. Analyser les données manquantes du nouveau jeu de données.

3.2 Analyse en coupe

- 1. Faire des graphiques par points représentant le revenu moyen de la commune de l'établissement avec ses différents taux de réussites.
- 2. Faire des graphiques en bar dans lequel par décile de revenu (utiliser la colonne de percentile coté socioeco).

3.3 Regressions linéaire

Pour une année donnée vs toutes taux de reussite en fonction de la taille de la commune, revenus moyen

1. Faites une régression

Notes : - on fait les régressions avec la commande lm. - Pour visualiser les régressions, on enregistre les résultats de chaque regressions (eg, lm1,lm2...) et on visualise avec la commande stargazer du package du même nom (eg stargazer(type="text",lm1,lm2)).

TP4 : Etude économétrique de l'Enquête Nationale Transport 2019

1. Enoncé

Dans ce TP, nous allons travaillons sur enquête nationale de l'INSEE. Vous aurez la liberté de choisir une question de recherche et de sélectionner les variables qui vous semblent pertinentes (en n'en prenant pas trop tout de même).

Les données sont disponibles ici : https://www.statistiques.developpement-durable.gouv.fr/resultats-detailles-de-lenquete-mobilite-des-personnes-de-2019.

On considère les caractéristiques socio-économiques des ménages suivantes : le revenu, la catégorie socio-professionnelle, le lieux de résidence, la composition du ménage (nombre de personnes, age).

Questions : comment varie les grandeurs suivantes en fonction des grandeurs suivantes :

- les caractéristiques du véhicule : age, motorisation
- distance et nombre de trajets parcourue à velo pour les trajets du quotidient
- distance et nombre de trajets parcourue en voiture en commun pour les trajets du quotidient
- distance et nombre de trajets parcourue en transport en commun pour les trajets du quotidient
- distance et nombre de trajets parcourue en avion pour les voyages

Travail à faire :

- 1. identifier dans les jeux de données où trouver les informations pertinentes
- 2. effectuer des statistiques descriptives sur les caractéristiques socio-économiques
- 3. construire votre jeu de donnée en construisant les grandeurs de transport puis en réalisant en appariemment sur les données socioéconomiques.
- 4. Effectuer des régressions linéaires en combinant différemment les variables de controlms.

Cinquième partie

Econométrie 2

Introduction

- $--\ 24\ h$
- objectifs : économétrie avancée : tests statistiques (en parallèle du cours) et introduction à l'inférence causale
- modalités d'examens :
 - Note de participation (20%)
 - Présentations en groupe en classe de chapitre d'un manuel d'inférence causale (30%)
 - Projet libre d'économétrie (50%)