## Spectral bounds for mixing times

When working with finite-state, irreducible, aperiodic, reversible Markov chains, we can use the eigenvalues of the transition matrix to bound mixing times. These are some notes I took during an independent study with Professor Ursula Porod.

## Spectral decomposition

First we note that the stationary distribution  $\pi$  is strictly positive because the Markov chain is irreducible. Therefore, we define

$$\mathbf{D} := diag(\pi(1), ..., \pi(n))$$

and

$$\mathbf{P}^* := \mathbf{D}^{\frac{1}{2}} \mathbf{P} \mathbf{D}^{-\frac{1}{2}}$$

Then

$$P_{ij}^* = \frac{\sqrt{\pi(i)}}{\sqrt{\pi(j)}} P_{ij}.$$

This follows directly from the computation of  $\mathbf{P}^*$ . Since  $\mathbf{P}^*$  is assumed to be reversible, we know  $P^*_{ij} = P^*_{ij}$ . Hence  $\mathbf{P}^*$  is symmetric, and its eigenvectors are orthonormal by the real spectral theorem. It shares the same eigenvalues with  $\mathbf{P}$  since they are similar matrices. Moreover, since our Markov chain is assumed to be irreducible and aperiodic, we know  $\mathbf{P}^*s_1 = s_1$  where  $s_1$  is the stationary distribution corresponding to  $\mathbf{P}^*$ , and the rest of the eigenvalues  $\lambda_2, ..., \lambda_k$  are all in the range (-1, 1]. Let  $\mathbf{S}$  be the matrix of eigenvectors of  $\mathbf{P}^*$  i.e. each column is an eigenvector. Defining  $\boldsymbol{\Lambda}$  as the diagonal matrix of eigenvalues, we have

$$\mathbf{P}^* = \mathbf{S} \mathbf{\Lambda} \mathbf{S}^T$$

since the inverse of S is its transpose (it is orthonormal). It follows that

$$\mathbf{P}_{ij}^* = \sum_{k=1}^n S_{ik} \lambda_k S_{jk},$$

and then

$$\mathbf{P}_{ij} = \frac{\sqrt{\pi(j)}}{\sqrt{\pi(i)}} \sum_{k=1}^{n} S_{ik} \lambda_k S_{jk}.$$

Now, since

$$\mathbf{P} = \mathbf{D}^{-\frac{1}{2}} \mathbf{S} \mathbf{\Lambda} \mathbf{S}^T \mathbf{D}^{\frac{1}{2}},$$

we have

$$\mathbf{P}^m = \mathbf{D}^{-\frac{1}{2}} \mathbf{S} \mathbf{\Lambda}^m \mathbf{S}^T \mathbf{D}^{\frac{1}{2}},$$

and equivalently

$$P_{ij}^m = \frac{\sqrt{\pi(j)}}{\sqrt{\pi(i)}} \sum_{k=1}^n S_{ik} \lambda_k^m S_{jk}.$$

If we take the first term out of the sum since  $\lambda_1 = 1$ , we have

$$P_{ij}^{m} = \frac{\sqrt{\pi(j)}}{\sqrt{\pi(i)}} S_{i1} S_{j1} + \sum_{k=2}^{n} S_{ik} \lambda_{k}^{m} S_{jk}.$$

Note that the since  $P_{ij}^{m} \xrightarrow{m \to \infty} \pi(j)$  and  $\lim_{m \to \infty} \lambda^m = 0$ , it follows that

$$P_{ij}^m = \pi(j) + \sum_{k=2}^n S_{ik} \lambda_k^m S_{jk}.$$

This equation tells us that mixing times depend on their non-trivial eigenvalues. Specifically, there exists constants for each  $i, j \leq n$  such that

$$|P_{ij}^m - \pi(j)| \le C_{ij} \lambda_*^m$$

where  $\lambda_* := \max\{\lambda_2, ..., \lambda_n\}$ . Taking  $C = \max_{i,j \leq n} C_{ij}$ , we can conclude that for any initial distribution  $\mu_0$ , and  $\mu_m := \mu_0 \mathbf{P}^m$ , we have

$$||\mu_m - \pi(j)||_{TV} \le C\lambda_*.$$