УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа Часть 1

Часть 1 Вариант 6

> Студент Левченко Ярослав Алексеевич Р3118

Преподаватель Поляков Владимир Иванович Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $0 < |x_1x_2x_4 - x_3x_5| \le 2$ и неопределенное значение при $|x_1x_2x_4 - x_3x_5| = 5$

Таблица истинности

№	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄	X 5	$X_1X_2X_4$	<i>X</i> ₃ <i>X</i> ₅	$X_1X_2X_4$	<i>X</i> ₃ <i>X</i> ₅	f
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1	0	1	1
2	0	0	0	1	0	1	0	1	0	1
3	0	0	0	1	1	1	1	1	1	0
4	0	0	1	0	0	0	2	0	2	1
5	0	0	1	0	1	0	3	0	3	0
6	0	0	1	1	0	1	2	1	2	1
7	0	0	1	1	1	1	3	1	3	1
8	0	1	0	0	0	2	0	2	0	1
9	0	1	0	0	1	2	1	2	1	1
10	0	1	0	1	0	3	0	3	0	0
11	0	1	0	1	1	3	1	3	1	1
12	0	1	1	0	0	2	2	2	2	0
13	0	1	1	0	1	2	3	2	3	1
14	0	1	1	1	0	3	2	3	2	1
15	0	1	1	1	1	3	3	3	3	0
16	1	0	0	0	0	4	0	4	0	0
17	1	0	0	0	1	4	1	4	1	0
18	1	0	0	1	0	5	0	5	0	d
19	1	0	0	1	1	5	1	5	1	0
20	1	0	1	0	0	4	2	4	2	1
21	1	0	1	0	1	4	3	4	3	1
22	1	0	1	1	0	5	2	5	2	0
23	1	0	1	1	1	5	3	5	3	1
24	1	1	0	0	0	6	0	6	0	0
25	1	1	0	0	1	6	1	6	1	d
26	1	1	0	1	0	7	0	7	0	0
27	1	1	0	1	1	7	1	7	1	0
28	1	1	1	0	0	6	2	6	2	0
29	1	1	1	0	1	6	3	6	3	0
30	1	1	1	1	0	7	2	7	2	d
31	1	1	1	1	1	7	3	7	3	0

Аналитический вид

Каноническая ДНФ:

 $f = \overline{X_1} \overline{X_2} \overline{X_3} \overline{X_4} X_5 \lor \overline{X_1} \overline{X_2} \overline{X_3} X_4 \overline{X_5} \lor \overline{X_1} \overline{X_2} X_3 \overline{X_4} \overline{X_5} \lor \overline{X_1} \overline{X_2} X_3 X_4 \overline{X_5} \lor \overline{X_1} \overline{X_2} X_3 X_4 X_5 \lor \overline{X_1} \overline{X_2} \overline{X_3} \overline{X_4} \overline{X_5} \lor \overline{X_1} \overline{X_2} \overline{X_1} \overline{X_2} \overline{X_1} \overline{X_2} \overline{X_1} \overline{X_2} \overline{X_1} \overline{X_1} \overline{X_2} \overline{X_1} \overline{X_1} \overline{X_2} \overline{X_1} \overline{X_2} \overline{X_1} \overline{X_2} \overline{X_1} \overline{X_1} \overline{X_2} \overline{X_1} \overline{X_1} \overline{X_1} \overline{X_2} \overline{X_1} \overline{X$

Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5)$ $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5})$ $(\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5)$ $(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K ¹	(f)	<i>Z</i> (<i>f</i>)		
m_1	00001	С	<i>m</i> ₄ - <i>m</i> ₆	001X0	001X0		
m_2	00010	С	m_2 - m_6	00X10	00X10		
m_4	00100	С	m_8 - m_9	0100X	0100X		
m_8	01000	С	m_1 - m_9	0X001	0X001		
m_6	00110	С	m_2 - m_{18}	X0010	X0010		
<i>m</i> ₉	01001	С	m_4 - m_{20}	X0100	X0100		
m_{20}	10100	С	<i>m</i> ₆ - <i>m</i> ₇	0011X	0011X		
m_{18}	10010	С	m_9 - m_{11}	010X1	010X1		
m_7	00111	С	m_9 - m_{13}	01X01	01X01		
m_{11}	01011	С	m_6 - m_{14}	0X110	0X110		
<i>m</i> ₁₃	01101	С	m_{20} - m_{21}	1010X	1010X		
m_{14}	01110	С	m_9 - m_{25}	X1001	X1001		
m_{21}	10101	С	m_{21} - m_{23}	101X1	101X1		
m_{25}	11001	С	m_7 - m_{23}	X0111	X0111		
m ₂₃	10111	С	m_{14} - m_{30}	X1110	X1110		
<i>m</i> ₃₀	11110	С					

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

		0-кубы												
		ф	0	0	0	0	Ф	ф	Ф	ф	0	1	1	1
	Простые импликанты		0	0	0	0	1	1	1	1	1	0	0	0
Пре			0	1	1	1	0	φ.	0	1	1	1	1	1
			1	0	1	1	•	. 0	1	• •	1	0	0	1
		1	0	0	0	1	•	1	1	1	0	0	1	1
			2	4	6	7	1	9	1	1	14	20	21	23
A	001X0			X	X							•		
В	00X10		X		X									
	0100X	`					X	X						
	0X001	X						X						
C	X0010		X											
D	X0100			X								X		
Е	0011X				X	X								
	010X1							X	X					
	01X01							X		X				
F	0X110				X			. .			X			
G	1010X											X	X	
	X1001		•					X						
Н	101X1												X	X
I	X0111					X								X
J	X1110										X			

Ядро покрытия:

$$T = 0X001 \\ 0100X \\ 010X1 \\ 01X01$$

Получим следующую упрощенную импликантную таблицу:

		0-кубы								
			0	0	0	0	1	1	1	
		0	0	0	0	1	0	0	0	
Пр	остые импликанты	0	1	1	1	1	1	1	1	
		1	0	1	1	1	0	0	1	
			0	0	1	0	0	1	1	
		2	4	6	7	14	20	21	23	
Α	001X0		X	X						
В	00X10	X		X						
С	X0010	X								
D	X0100		X				X			
Е	0011X			X	X					
F	0X110			X		X				
G	1010X						X	X		
Н	101X1							X	X	
Ι	X0111				X				X	
J	X1110					X				

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = (B \lor C) (A \lor D) (A \lor B \lor E \lor F) (E \lor I) (F \lor J) (D \lor G) (G \lor H) (H \lor I)$$

Приведем выражение в ДНФ:

Y = AB E F GHVAB E GH JVAB F GIVAB GI JVAC DH I JVAC E F GHVAC E GH JVAC F GIV AC GI JVB DE F HVB DE H JVB D F GIVB D F H IVB D GI JVB DH I JVC DE F HVC DE GI JV CDE H J V C D F GI V C D F H I

Возможны следующие покрытия:

 $S^b = 50$

 $\begin{array}{c}
\stackrel{a}{\overline{6}} \\
S \\
b \\
6
\end{array}$ =
5
0

0×001.	, 0 × 001.	. 0×001.
	7 • • 0100X	<i>T</i> • • 0100 <i>X</i>
$C = \begin{cases} C & 0100X \\ 010X1 \\ 01X01 \\ 001X0 \\ 0001X0 \\ 00001X0 \\ 00001X1 \\ X1110 \end{cases}$	$C_8 = \begin{array}{c} A & 010X1 \\ CF & 01X01 \\ \hline & & 01X01 \\ \hline & & & 01X0 \\ \hline & & & & X0010 \\ \hline & & & & 0X110 \\ \hline & & & & 1010X \\ \hline & & & & X0111 \\ \hline \end{array}$	$C_9 = \begin{array}{c} A & 01001 \\ CG = 001X0 \\ IJ & X0010 \\ 1010X \\ X0111 \\ X1110 \end{array}$
$S_7^a = 40$ $S_7^b = 50$	S ^a = 36 S ^b = 45	$S_9^{a} = 36$ $S_9^{b} = 45$
0×001	. 0×001.	,0X001,
$C_{10} = \begin{bmatrix} T & & 0100X \\ B & & 010X1 \\ D & & 01X01 \\ E & & 00X10 \\ & & X0100 \\ & & & & & \\ F & & & & & & \\ H & & & & & & \\ & & & & &$	$C_{11} = \begin{pmatrix} T & 0100X \\ B & 010X1 \\ D & 01X01 \\ E & 00X10 \\ X0100 \\ M & 0011X \\ 101X1 \\ X1110 \end{pmatrix}$	$C_{12} = \begin{array}{c} T & 0100X \\ B & 010X1 \\ D & 01X01 \\ F & 00X10 \\ \hline & & & & & \\ & & & \\ $
$S_{10}^a = 36$ $S_{10}^b = 45$	$S_{11}^a = 36$ $S_{11}^b = 45$	$S_{12}^a = 36$ $S_{12}^b = 45$
0 X 001	, 0×001,	, 0×001.
$C_{13} = \begin{cases} T & 0100X \\ B & 010X1 \\ D & 01X01 \\ F & 00X10 \\ X0100 & X0100 \\ 0X110 & 101X1 \\ X0111 & X0111 \end{cases}$	$C_{14} = \begin{matrix} T & 0100X \\ B & 010X1 \\ O & 01X01 \\ G & 00X10 \\ X0100 \\ & 1010X \\ & X0111 \\ & & X1110 \end{matrix}$	$C_{15} = \begin{matrix} T & & 0100X \\ B & & 010X1 \\ D & & 01X01 \\ H & & 00X10 \\ X0100 & & X0100 \\ & & & 101X1 \\ & & & X0111 \\ & & & & X1110 \end{matrix}$
$S_{13}^a = 36$ $S_{13}^b = 45$	$S_{14}^a = 36$ $S_{14}^b = 45$	$S_{15}^a = 36$ $S_{15}^b = 45$
0×001	. 0 × 001.	, 0 X 001,
$C_{16} = \begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & $	$C_{17} = E = \begin{array}{c} & 0100X \\ & 010X1 \\ X00101X01 \\ & X0100 \\ & & X0100 \\ & & & \\ & & $	$C_{18} = \begin{array}{c} & & & & & & & \\ & & & & & & & \\ & C & & & &$
$S_{16}^a = 36$ $S_{16}^b = 45$	$S_{17}^a = 40$ $S_{17}^b = 50$	$S_{18}^a = 36$ $S_{18}^b = 45$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0X001 \\ 0100X \\ 010X1 \\ 01X01 \\ 001X0 \\ 00X10 \\ 0X110 \\ 1010X \\ X0111 \end{cases}$$

$$S^{a} = 36$$

$$S^{b} = 45$$

Этому покрытию соответствует следующая МДНФ:

 $f = \overline{X_1} \overline{X_3} \overline{X_4} X_5 \lor \overline{X_1} X_2 \overline{X_3} \overline{X_4} \lor \overline{X_1} X_2 \overline{X_3} X_5 \lor \overline{X_1} X_2 \overline{X_4} X_5 \lor \overline{X_1} \overline{X_2} X_3 \overline{X_5} \lor \overline{X_1} \overline{X_2} X_4 \overline{X_5} \lor \overline{X_1} X_3 X_4 \overline{X_5} \lor \overline{X_1} \overline{X_2} X_3 \overline{X_4} \lor \overline{X_2} X_3 \overline{X_4} \lor \overline{X_2} X_3 \overline{X_4} \lor \overline{X_5} \lor \overline{X_1} \overline{X_2} X_4 \overline{X_5} \lor \overline{X_1} \overline{X_2} X_4 \overline{X_5} \lor \overline{X_1} \overline{X_2} X_3 \overline{X_4} \lor \overline{X_2} X_3 \overline{X_4} X_3$

Минимизация булевой функции на картах Карно

Определение МДНФ

 $f = x_{1} x_{3} x_{4} x_{5} \lor x_{1} x_{2} x_{3} x_{4} \lor x_{1} x_{2} x_{3} x_{5} \lor x_{1} x_{2} x_{4} x_{5} \lor x_{1} x_{2} x_{3} x_{5} \lor x_{1} x_{2} x_{4} x_{5} \lor x_{1} x_{2} x_{4} x_{5} \lor x_{1} x_{2} x_{4} x_{5} \lor x_{1} x_{2} x_{3} x_{4} \lor x_{2} x_{3} x_{4} x_{2} x_{3} x_{4} x_{2} x_{3} x_{4} x_{4} x_{5} \lor x_{4} x_{4} x_{5} \lor x_{4} x_{4} x_{5} \lor x_{5} x_{5} \lor x_{5} x_{5} x_{5} \lor x_{5} x_{5} x_{5} \lor x_{5} x_{5} x_{5} x_{5} x_{5} x_{5} x_{5} x_{5} x_{5} x_$

Определение МКНФ

$$f = (x_2 \lor x_3 \lor x_4 \lor x_5) (x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) (\overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5)$$

$$(\overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor \overline{x_2})$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f = \overline{x_1} \overline{x_3} \overline{x_4} x_5 \lor \overline{x_1} x_2 \overline{x_3} \overline{x_4} \lor \overline{x_1} x_2 \overline{x_3} x_5 \lor \overline{x_1} x_2 \overline{x_4} x_5 \lor \overline{x_1} \overline{x_2} x_3 \overline{x_5} \lor \overline{x_1} \overline{x_2} x_4 \overline{x_5} \lor \overline{x_1} \overline{x_2} x_4 \overline{x_5} \lor \overline{x_1} x_3 x_4 \overline{x_5} \lor \overline{x_1} \overline{x_2} x_3 x_4 x_5 \lor \overline{x_1} \overline{x_2} x$$

Факторизация и декомпозиция МКНФ

$$f = (x_2 \lor x_3 \lor x_4 \lor x_5) (x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5)$$

$$(\overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (\overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor x_3)$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) ((x_2 \lor x_3) (\overline{x_2} \lor \overline{x_3}) \lor (x_4 \lor x_5) (\overline{x_4} \lor \overline{x_5})) (\overline{x_4} \lor x_5 \lor \overline{x_1} (\overline{x_2} \lor x_3))$$

$$(x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) ((x_2 \lor x_3) (x_2 \lor \overline{x_3}) \lor (x_4 \lor x_5) (\overline{x_4} \lor \overline{x_5})) (x_4 \lor x_5 \lor \overline{x_1} (\overline{x_2} \lor x_3))$$

$$f = (\overline{x_1} \lor \phi) ((x_2 \lor x_3) (x_2 \lor x_3) \lor (x_4 \lor x_5) (x_4 \lor x_5)) (x_4 \lor x_5 \lor x_1 (x_2 \lor x_3))$$

$$(\overline{\phi} \lor x_1 \lor x_4 \lor \overline{x_5})$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) ((x_2 \lor x_3) (\overline{x_2} \lor \overline{x_3}) \lor (x_4 \lor x_5) (\overline{x_4} \lor x_5)) (x_4 \lor x_5 \lor \overline{x_1} (\overline{x_2} \lor x_3))$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) ((x_2 \lor x_3) (\overline{x_2} \lor \overline{x_3}) \lor (x_4 \lor x_5) (\overline{x_4} \lor \overline{x_5})) (\overline{x_4} \lor x_5 \lor \overline{x_1} (\overline{x_2} \lor x_3))$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) ((x_2 \lor x_3) (\overline{x_2} \lor \overline{x_3}) \lor (x_4 \lor x_5) (\overline{x_4} \lor \overline{x_5})) (\overline{x_4} \lor x_5 \lor \overline{x_1} (\overline{x_2} \lor x_3))$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) ((x_2 \lor x_3) (\overline{x_2} \lor \overline{x_3}) \lor (x_4 \lor x_5) (\overline{x_4} \lor \overline{x_5})) (\overline{x_4} \lor x_5 \lor \overline{x_1} (\overline{x_2} \lor x_3))$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) ((x_2 \lor x_3) (\overline{x_2} \lor \overline{x_3}) \lor (x_4 \lor x_5) (\overline{x_4} \lor \overline{x_5})) (\overline{x_4} \lor x_5 \lor \overline{x_1} (\overline{x_2} \lor x_3))$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) ((x_2 \lor x_3) (\overline{x_2} \lor \overline{x_3}) \lor (x_4 \lor x_5) (\overline{x_4} \lor \overline{x_5}))$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) ((x_2 \lor x_3) (\overline{x_2} \lor \overline{x_3}) \lor (x_4 \lor x_5) (\overline{x_4} \lor \overline{x_5})$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) ((x_2 \lor x_3) (\overline{x_2} \lor \overline{x_3}) \lor (x_4 \lor x_5) (\overline{x_4} \lor \overline{x_5})$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) (\overline{x_2} \lor \overline{x_3}) (\overline{x_2} \lor \overline{x_3}) \lor (x_4 \lor x_5) (\overline{x_4} \lor \overline{x_5})$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) (\overline{x_2} \lor \overline{x_3}) (\overline{x_2} \lor \overline{x_3}) \lor (x_4 \lor \overline{x_5})$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) (\overline{x_2} \lor \overline{x_3}) (\overline{x_2} \lor \overline{x_3}) (\overline{x_2} \lor \overline{x_3})$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) (\overline{x_2} \lor \overline{x_3}) (\overline{x_2} \lor \overline{x_3}) (\overline{x_2} \lor \overline{x_3})$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) (\overline{x_2} \lor \overline{x_3}) (\overline{x_2} \lor \overline{x_3})$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) (\overline{x_2} \lor \overline{x_3})$$

$$f = (\overline{x_1} \lor \overline{x_2} x_3) (\overline{x_2} \lor \overline{$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 0$$

 $f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 1]) = 0$
 $f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 1$
 $f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0]) = 1$

Булев базис

Схема по упрощенной МДНФ:

$$f = \overline{x_1} \, \overline{x_5} \, (x_4 \, (\overline{x_2} \vee x_3) \vee \phi) \vee \overline{x_1} \, x_2 \, \overline{x_3} \, (\overline{x_4} \vee x_5) \vee \overline{x_1} \, \overline{x_4} \, x_5 \, \phi \vee \phi \, x_1 \, \overline{x_4} \vee \phi \, x_4 \, x_5 \quad (S_Q = 33, \tau = 5)$$

$$\phi = \overline{x_2} \, x_3$$

Схема по упрощенной МКНФ:

$$f = (\overline{x_1} \vee \overline{x_2} x_3) ((x_2 \vee x_3) (\overline{x_2} \vee \overline{x_3}) \vee (x_4 \vee x_5) (\overline{x_4} \vee \overline{x_5})) (\overline{x_4} \vee x_5 \vee \overline{x_1} (\overline{x_2} \vee x_3))$$

$$(S_Q = 34, \tau = 4)$$

$$(x_1 \vee x_2 \vee x_3 \vee x_4 \vee x_5)$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{x_1} x_2 \overline{x_3} \overline{x_4} \overline{x_5} \overline{x_1} x_4 \overline{x_5} \overline{x_2} \overline{x_3} \overline{x_1} \overline{x_4} x_5 \phi \phi \overline{x_1} \overline{x_5} \phi x_1 \overline{x_4} \phi x_4 \overline{x_5}$$
 (S_Q = 43, \tau = 6)
$$\phi = \overline{x_2} x_3$$

Схема по упрощенной МКНФ в базисе И, НЕ:

$$f = \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5} \overline{x_2} \overline{x_3} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5} \overline{x_4} \overline{x_5} \overline{x_4} \overline{x_5} \overline{x_1} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5}$$
 (S_Q = 46, \tau = 7)

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДНФ в базисе И-НЕ с ограничением на число входов:

$$f = \overline{x_1} \overline{x_5} \overline{x_4} \overline{x_2} \overline{x_3} \overline{\phi} \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5} \overline{x_4} \overline{x_5} \overline{\phi} \overline{\phi} \overline{x_1} \overline{x_4} \overline{x_4} \overline{x_5}$$

$$(S_Q = 44, \tau = 9)$$

$$\phi = \overline{x_2} x_3$$

Схема по упрощенной МКНФ в базисе И-НЕ с ограничением на число входов:

