CQF Module 1.3 Exercises

Throughout this problem sheet, you may assume that W_t is a Brownian Motion (Weiner Process) and dW_t is its increment; and $W_0 = 0$.

- 1. Use Itô's lemma to obtain a SDE for each of the following functions
 - (a) $y(W_t) = \exp(W_t)$
 - (b) $g(W_t) = \ln W_t$
 - (c) $h(W_t) = \sin W_t + \cos W_t$
 - (d) $f(W_t) = a^{W_t}$, where the constant a > 1
 - (e) $f(W_t) = (W_t)^n$
- 2. Using the formula below for stochastic integrals, for a function $F(W_t, t)$,

$$\int_{0}^{t} \frac{\partial F}{\partial W_{t}} dW_{t} = F\left(W_{t}, t\right) - F\left(W_{0}, 0\right) - \int_{0}^{t} \left(\frac{\partial F}{\partial \tau} + \frac{1}{2} \frac{\partial^{2} F}{\partial W_{\tau}^{2}}\right) d\tau$$

show that we can write

a.
$$\int_0^t W_t^3 dW_\tau = \frac{1}{4} W^4(t) - \frac{3}{2} \int_0^t W_\tau^2 d\tau$$

b.
$$\int_0^t \tau dW_\tau = tW_t - \int_0^t W_\tau d\tau$$

c.
$$\int_0^t (W_\tau + \tau) dW_\tau = \frac{1}{2}W_t^2 + tW_t - \int_0^t (W_\tau + \frac{1}{2}) d\tau$$