

Compiler Design

Lecture 4: Lexical Analysis III

Sahar Selim

Agenda

- 1. Conversion From a Regular Expression to Non-Deterministic Finite Automaton (NFA)
- 2. Transition Table
- 3. Conversion From NFA to DFA
- 4. Minimizing DFA

Implementing Lexical Analyzer

The steps of implementing the lexical analyzer of a compiler

From a Regular Expression to an NFA

- Associate each regular expression with an NFA with the following properties:
 - There is exactly one accepting state.
 - There are no transitions out of the accepting state.
 - There are no transitions into the starting state.

Thompson's Construction

NG

- \triangleright Use ϵ -transitions
 - ▶ to "glue together" the machine of each piece of a regular expression
 - ▶ to form a machine that corresponds to the whole expression

Base Cases

Automaton for single character a

Automaton for ε

Thompson's Construction: Concatenation (A o B)

Construct an NFA equal to rs

Sahar Selim

- \triangleright To connect the accepting state of the machine of r to the start state of the machine of s by an ϵ -transition.
- ▶ The start state of the machine of ras its start state and the accepting state of the machine of s as its accepting state.
- This machine accepts L(rs) = L(r)L(s) and so corresponds to the regular expression rs.

Sahar Selim

Thompson's Construction: Alternatives (A U B)

- Construct an NFA equal to r | s
 - Add a new start state and a new accepting state and connect them using ε-transitions.
 - ► Clearly, this machine accepts the language

CSCI415 | Compiler Design

L(r|s) = L(r) U L(s), and so corresponds to the regular expression r|s.

Thompson's Construction: Repetition

- Given a machine that corresponds to r, Construct a machine that corresponds to r*
 - Add two new states, a start state and an accepting state.
 - The repetition is afforded by the new ϵ -transition from the accepting state of the machine of r to its start state.
 - Draw an ε-transition from the new start state to the new accepting state.
 - ► This construction is not unique, simplifications are possible in the many cases.

Lecture 4: Lexical Analysis III

Sahar Selim

Lecture 4: Lexical Analysis III

Sahar Selim

Sahar Selim

CSCI415 | Compiler Design

Sahar Selim

CSCI415 | Compiler Design

CSCI415 | Compiler Design

Sahar Selim

CSCI415 | Compiler Design

Sahar Selim

Translate regular expression ab a into NFA

Translate regular expression abla into NFA

Sahar Selim

Translate regular expression letter(letter/digit)* into NFA

Translate regular expression letter(letter/digit)* into NFA

Sahar Selim

► Construct the NFA for the regular expression (a l b)*abb

Construct the NFA for the regular expression (a l b)*abb

NFA for a l b

► NFA for (alb)*abb

2 Transition Table

- ► We can also represent an FSA by a transition table, whose rows correspond to states, and whose columns correspond to the input symbols and ϵ
- ▶ The entry for a given state and input is the value of the transition function applied to those arguments.
- ▶ If the transition function has no information about that state-input pair, we put 0 or φ in the table for the pair.

Lecture 4: Lexical Analysis 111

Sahar Selim

The transition graph for an FSA recognizing the language of regular expression (a|b)*abb

The transition graph for an FSA recognizing the language of regular expression (a|b)*abb

STATE	а	b	e
0	{0,1}	{0}	0
1	0	{2}	0
2	0	{3}	0
3	0	Ο	0

3 NFA to DFA

NFA to DFA

Sahar Selim

- A DFA is like an NFA, but with tighter restrictions
 - Every state must have exactly one transition defined for every letter.

Lecture 4: Lexical Analysis III

> ε-moves are not allowed.

Goal and Methods

- ▶ Goal
 - ► Given an arbitrary NFA, construct an equivalent DFA. (i.e., one that accepts precisely the same strings)
- Some methods
 - 1. Eliminating ε -transitions
 - \blacktriangleright ϵ -closure: the set of all states reachable by ϵ -transitions from a state or states
 - 2. Eliminating multiple transitions from a state on a single input character.
 - Keeping track of the set of states that are reachable by matching a single character
 - ▶ Both these processes lead us to *consider sets of states instead of single states.* Thus, it is not surprising that the DFA we construct has sets of states of the original NFA as its states.

Subset Construction Algorithm

- The ε -closure of a Set of states:
 - The ϵ -closure of a single state s is the set of states reachable by a series of zero or more ϵ -transitions, and we write this set as s.
- Example: regular a*

The Subset Construction Algorithm

- (1) Compute the ε -closure of the start state of M; to obtain new state \overline{M} .
- (2) For this set, and for each subsequent set, compute transitions on characters *a* as follows.

Given a set S of states and a character a in the alphabet,

Compute the set

 $S'_a = \{ t \mid \text{for some } s \text{ in S there is a transition from } s \text{ to } t \text{ on } a \}.$

Then, compute S_a ', the ε -closure of S_a '.

This defines a new state in the subset construction, together with a new transition $S \rightarrow \overline{S_a}$.

- (3) Continue with this process until no new states or transitions are created.
- (4) Mark as accepting those states constructed in this manner that contain an accepting state of M.

Lecture 4: Lexical Analysis III

Sahar Selim

State / Alphabet	a	σ
→ q0	q 0	q0, q1
q1	_	*q2
*q2	_	_

DFA Table				
State / Alphabet	a	Ь		
→ q0	90	{q0, q1}		
{q0, q1}	90	*{q0, q1, q2}		
*{q0, q1, q2}	90	*{q0, q1, q2}		

CSCI415 | Compiler Design

Deterministic Finite Automata (DFA)

State / Alphabet	a	3
→1	-	{1, 2, 4}
2	3	{2}
3	-	{2, 3, 4}
*4	-	{4}

DFA Table				
State / Alphabet	a			
→{1,2,4}	{2,3,4}			
{2,3,4}	{2,3,4}			

State	a	Ь	С	3
→1	2	ı	4	1
2	-	3	-	2,1
3	2	-	-	3
4	-	-	3	4,3

State	a	Ь	С
→1	2,1	1	4,3
2,1	2,1	3	4,3
4,3	2,1	-	3
3	2,1	-	-

DFA Table

Summary of Conversion Steps

- Find e-closure of all states from the NFA
- 2. Draw the NFA transition table
- 3. Start computing the DFA table from the first state and take the resulting states as the next state in each step
- 4. Draw the DFA from generated DFA table

Sahar Selim

a(b|c)*:

States		ε-closure(Move(s,*))		
DFA	NFA	а	b	С
s ₀	q 0			

a(b|c)*:

Sto	ates	ε-closure(Move(s,*))		
DFA	NFA	а	Ь	С
s ₀	9 0	91, 92, 93, 94, 96, 99		

NU

a(b|c)*:

States		ε-closure(Move(s,*))		
DFA	NFA	<u>a</u>	<u>b</u>	<u>C</u>
s ₀	9 0	91, 92, 93, 94, 96, 99	none	none

a(b|c)*:

NU

a(b|c)*:

States		ε-closure(Move(s,*))		
DFA	NFA	<u>a</u>	<u>b</u>	<u>c</u>
s ₀	q_0	9 ₁ , 9 ₂ , 9 ₃ , 9 ₄ , 9 ₆ , 9 ₉	none	none
s_1	91, 92, 93, 94, 96, 99	none		

a(b|c)*:

Sahar Selim

States		ε-closure(Move(s,*))		
DFA	NFA	<u>a</u>	<u>b</u>	<u>c</u>
s ₀	90	9 ₁ , 9 ₂ , 9 ₃ , 9 ₄ , 9 ₆ , 9 ₉	none	none
s ₁	91, 92, 93, 94, 96, 99	none	95, 98, 99, 93, 94, 96	

NG

a(b|c)*:

States		ε-closure(Move(s,*))		
DFA	NFA	<u>a</u>	<u>b</u>	<u>c</u>
s ₀	q_0	91, 92, 93, 94, 96, 99	none	none
\mathcal{S}_1	9 ₁ , 9 ₂ , 9 ₃ , 9 ₄ , 9 ₆ , 9 ₉	none	95, 98, 99, 93, 94, 96	9 ₇ , 9 ₈ , 9 ₉ , 9 ₃ , 9 ₄ , 9 ₆

a(b|c)*:

States		ε-closure(Move(s,*))		
DFA	NFA	<u>a</u>	<u>b</u>	<u>c</u>
s ₀	q_0	9 ₁ , 9 ₂ , 9 ₃ , 9 ₄ , 9 ₆ , 9 ₉	none	none
s_1	9 ₁ , 9 ₂ , 9 ₃ , 9 ₄ , 9 ₆ , 9 ₉	none	$q_5, q_8, q_9, q_3, q_4, q_6$	9 ₇ , 9 ₈ , 9 ₉ , 9 ₃ , 9 ₄ , 9 ₆
52	9 ₅ , 9 ₈ , 9 ₉ , 9 ₃ , 9 ₄ , 9 ₆			

NU

a(b|c)*:

Sahar Selim

States		ε-closure(Move(s,*))		
DFA	NFA	а	Ь	С
s ₀	q_0	9 ₁ , 9 ₂ , 9 ₃ , 9 ₄ , 9 ₆ , 9 ₉	none	none
s_1	9 ₁ , 9 ₂ , 9 ₃ , 9 ₄ , 9 ₆ , 9 ₉	none	9 ₅ , 9 ₈ , 9 ₉ , 9 ₃ , 9 ₄ , 9 ₆	$q_7, q_8, q_9, q_3, q_4, q_6$
s ₂	95, 98, 99, 93, 94, 96			
S ₃	97, 98, 99, 93, 94, 96			

NU

a(b|c)*:

States		ε-closure(Move(s,*))			
DFA	NFA	<u>a</u>	<u>b</u>	<u>C</u>	
s_0	90	91, 92, 93, 94, 96, 99	none	none	
s_1	91, 92, 93, 94, 96, 99	none	95, 98, 99, 93, 94, 96	9 ₇ , 9 ₈ , 9 ₉ , 9 ₃ , 9 ₄ , 9 ₆	
s ₂	9 ₅ , 9 ₈ , 9 ₉ , 9 ₃ , 9 ₄ , 9 ₆	none			
s ₃	97, 98, 99, 93, 94, 96	none			

a(b|c)*:

States		9-3	closure(Move(s,	*))
DFA	NFA	<u>a</u>	<u>b</u>	<u>C</u>
s ₀	9 0	9 ₁ , 9 ₂ , 9 ₃ , 9 ₄ , 9 ₆ , 9 ₉	none	none
s_1	9 ₁ , 9 ₂ , 9 ₃ , 9 ₄ , 9 ₆ , 9 ₉	none	95, 98, 99, 93, 94, 96	9 ₇ , 9 ₈ , 9 ₉ , 9 ₃ , 9 ₄ , 9 ₆
s ₂	95, 98, 99, 93, 94, 96	none	s ₂	S ₃
S ₃	97, 98, 99, 93, 94, 96	none		

a(b|c)*:

q₅ is the core state of s₂

States		ε-closure(Move(s,*))			
DFA	NFA	а	Ь	С	
s ₀	9 0	91, 92, 93, 94, 96, 99	none	none	
s_1	9 ₁ , 9 ₂ , 9 ₃ , 9 ₄ , 9 ₆ , 9 ₉	none	95, 98, 99, 93, 94, 96	9 ₇ , 9 ₈ , 9 ₉ , 9 ₃ , 9 ₄ , 9 ₆	
s ₂	95, 98, 99, 93, 94, 96	none	s ₂	S ₃	
S ₃	97, 98, 99, 93, 94, 96	none	s ₂	S ₃	

a(b|c)*:

States		-3	ε-closure(Move(s,*))		
DFA	NFA	<u>a</u>	<u>b</u>	<u>C</u>	
s_0	q_{0}	9 ₁ , 9 ₂ , 9 ₃ , 9 ₄ , 9 ₆ , 9 ₉	none	none	
s_1	9 ₁ , 9 ₂ , 9 ₃ , 9 ₄ , 9 ₆ , 9 ₉	none	9 ₅ , 9 ₈ , 9 ₉ , 9 ₃ , 9 ₄ , 9 ₆	9 ₇ , 9 ₈ , 9 ₉ , 9 ₃ , 9 ₄ , 9 ₆	
s ₂	q ₅ , q ₈ , q ₉ , q ₃ , q ₄ , q ₆	none	s ₂	s ₃	
S ₃	97, 98, 99, 93, 94, 96	none	s ₂	s ₃	

a (b | c)*:

*))	closure(Move(s,	-3	tates	St
С	b	а	NFA	DFA
none	none	s_1	q_{o}	s ₀
S ₃	s ₂	none	91, 92, 93, 94, 96, 99	s_1
S ₃	s ₂	none	95, 98, 99, 93, 94, 96	s ₂
S ₃	s ₂	none	97, 98, 99, 93, 94, 96	5 ₃

Transition table for the DFA

	а	b	С
s ₀	s_1	none	none
s_1	none	s ₂	s ₃
s ₂	none	s ₂	5 3
s ₃	none	s ₂	s ₃

- Much smaller than the NFA (no ε-transitions)
- ► All transitions are deterministic
- Use same code skeleton as before

DFA Can be minimized to

Minimizing the Number of States in a DFA

Why need Minimizing?

- ▶ DFA minimization/optimization stands for converting a given DFA to its equivalent DFA with minimum number of states.
- ➤ The process of deriving a DFA algorithmically from a regular expression has the unfortunate property that the resulting DFA may be more complex than necessary.

The derived DFA for the regular expression a* and an equivalent DFA

Lecture 4: Lexical Analysis 11

73

An Important Result from Automata Theory for Minimizing

Given any DFA, there is an equivalent DFA containing a minimum number of states, and, that this minimum-state DFA is unique (except for renaming of states)

DFA Minimization using Equivalence Theorem

- ▶ Step 1 All the states Q are divided in two partitions final states and non-final states and are denoted by P_0 . All the states in a partition are 0^{th} equivalent. Take a counter k and initialize it with 0.
- **Step 2** Increment k by 1. For each partition in P_k , divide the states in P_k into two partitions if they are k-distinguishable. Two states within this partition X and Y are k-distinguishable if there is an input S such that $\delta(X, S)$ and $\delta(Y, S)$ are (k-1)-distinguishable.
- ▶ Step 3 If $P_k \neq P_{k-1}$, repeat Step 2, otherwise go to Step 4.
- > Step 4 Combine kth equivalent sets and make them the new states of the reduced DFA.

Draw a state transition table for the given DFA

Draw a state transition table for the given DFA

State	a	Ь
→ q0	q 1	q 2
q1	q 1	q 3
q2	q 1	q 2
q 3	q 1	*q4
*q4	q 1	q 2

Lecture 4: Lexical Analysis III

Sahar Selim

Start applying equivalence theorem

DO - 1	\sim 0	<u>_1</u>	\sim	~3 J	٢	~ 1	1
$P0 = {$	QU,	qı,	QZ,	93	1	94	}

- ▶ P2 = { q0 , q2 } { q1 } { q3 } { q4 }
- ▶ P3 = { q0 , q2 } { q1 } { q3 } { q4 }
- ► Since $P_3 = P_2$, so we stop
- ▶ From P_3 , we infer that states q_0 and q_2 are equivalent and can be merged together.
- So, Our minimal DFA

State	a	Ь
→ q0	q 1	q 2
q 1	q 1	q 3
q 2	q 1	q 2
q 3	q 1	*q4
*q4	q 1	q 2

Start with PO

Two partitions

- final states
- non-final states

Minimal DFA

▶ Remove dead and inaccessible states

 \triangleright State q_3 is inaccessible from the initial state.

> So, we eliminate it and its associated edges from the DFA.

Draw a state transition table

State	a	Ь
→ q0	*91	q 0
*q1	*q2	*91
*q2	*91	*q2

Sahar Selim

Now using Equivalence Theorem, we have-

- $P_0 = \{ q_0 \} \{ q_1, q_2 \}$
- Arr P₁ = { q_0 } { q_1 , q_2 }
- ► Since $P_1 = P_0$, so we stop.
- ▶ From P_1 , we infer that states q_1 and q_2 are equivalent and can be merged together.
- So, Our minimal DFA is-

State	a	Ь
→ q0	*q1	q 0
*q1	*q2	*q1
*q2	*q1	*q2

NU

The regular expression letter(letter/digit)*

The accepting sets	{2,3,4,5,7,10},{4,5,6,7,9,10},{4,5,7,8,9,10}
The nonaccepting sets	{1}

NU

The regular expression (a| ϵ) b^*

a distinguishes state 1 from states 2 and 3, and we must repartition the states into the sets $\{1\}$ and $\{2,3\}$

The accepting sets	{1,2,3}
The non-accepting sets	

Sahar Selim

NG

Review Questions

NFA to DFA Question 1

Solution of Question 1

M	ε-closure of M (S)	S'_a	S'_b
1	1,2,6	3,7	
3,7	3,4,7,8		5
5	5,8		

NFA to DFA Question 2

the DFA for (a | b)* abb

NFA to DFA Question 2

the DFA for (a | b)* abb

NFA to DFA Question 3

4,5,6,7,9,10

4,5,7,8,9,10

_		2	3
ε-closure of M (S)	S' _{letter}	S' _{digit}	
1	2		
2,3,4,5,7,10	6	8	

8

(10)

3

letter

M

6

8

6

6

Summary of this lecture

- ▶ RE to NFA: Thompson's construction
 - Core insight: inductively build up NFA using "templates"
 - ► Core concept: use null transitions to build NFA quickly
- ► NFA to DFA: Subset construction
 - ► Core insight: DFA nodes represent subsets of NFA nodes
 - ► Core concept: use null closure to calculate subsets
- ▶ DFA minimization: Hopcroft's algorithm
 - ► Core insight: create partitions, then keep splitting

Supplementary Material

NG

- NFA to DFA
 - ► https://www.youtube.com/watch?v=taClnxU-nao
 - https://www.youtube.com/watch?v=U71roXRINIg
- Regular Expressions
 - https://www.youtube.com/watch?v=upu_TeZImN0&list =PLBInK6fEyqRgp46KUv4ZY69yXmpwKOlev&index=45
 - https://www.youtube.com/watch?v=paOPoZyjzdg&list =PLBlnK6fEyqRgp46KUv4ZY69yXmpwKOlev&index=46

- Presentation slides of the book: COMPILER CONSTRUCTION, Principles and Practice, by Kenneth C. Louden
- Presentation slides of Introduction to the Theory of Computation, Michael Sipser book

Prepared by:

- ► Shachar Lovett, University of California
- > Ananth Kalyanaraman, Washington State University

See you next lecture

