Office national des Aéroports
Aéroport Agadir Al Massira

Division technique navigation Service Radionavigation

Instruction de mode d'emploi du wattmètre Bird

AGA.PS08.I.174/00

Date d'application :

But : définir le wattmètre BIRD et les différents mesure de puissance qu'on peut obtenir

<u>Domaine d'application</u>: la présente instruction est applicable aux opérations de maintenance préventive et corrective

Responsable: ELECTRONICIEN DE LA SECURITE AERIENNE

Ressources: instruments de mesure:

- un wattmètre BIRD avec les bouchons de mesures adaptés.
- Adaptateurs coaxiaux, exemples :
- N mâle / BNC mâle N femelle / BNC mâle N mâle / N mâle
- N mâle / BNC femelle N femelle / BNC femelle N femelle / N femelle
- BNC mâle / BNC mâle BNC femelle / BNC femelle PL 259 / PL 259
- N mâle / SO 239 N mâle / PL 259 SO 239 / SO 239

NB: Si possible, connecter le Wattmètre au plus près de l'émetteur directement sur son connecteur.

Mode d'emploi :

- Le sens de mesure :

Le wattmètre est réversible c'est la flèche dessinée sur le bouchon qui indique le sens de la mesure.

- lecture sur wattmètre :

3 échelles de mesures sont utilisables :

- De 0 à 25 pour le bouchon 25 W en lecture directe.

Chaque graduation correspond à 0,5 W.

- De 0 à 50 pour un bouchon 50 W en lecture directe.

Chaque graduation correspond à 1 W.

- De 0 à 100 pour le bouchon 100 W en lecture directe.

Chaque graduation correspond à 2 W.

Bouchon utilisé	Echelle de lecture	Indication aiguille	Espace entre graduations
500 W	0-50	Multiplier la lecture par 10	10 W
50 W	0-50	Lecture directe en W	1 W
5 W	0-50	Diviser la lecture par 10	0,1 W (= 100 mW)
250 W	0-25	Multiplier la lecture par 10	5 W
25 W	0-25	Lecture directe en W	0,5 W (= 500 mW)
2,5 W	0-25	Diviser la lecture par 10	0,05 W (= 50 mW)
1000 W	0-100	Multiplier la lecture par 10	20 W
100 W	0-100	Lecture directe en W	2 W
10 W	0-100	Diviser la lecture par 10	0,2 W (= 200 mW)
1 W	0-100	Diviser la lecture par 100	0,02 W (= 20 mW)
100 mW	0-100	Lecture directe en mW	2 mW

- mesure de la puissance directe sur un émetteur

Utiliser un bouchon adapté à la fréquence à mesurer et surtout d'une puissance supérieure Exemple :

Office national des Aéroports Aéroport Agadir Al Massira

Division technique navigation Service Radionavigation

Instruction de mode d'emploi du wattmètre Bird

AGA.PS08.I.174/00

Date d'application :

- mesure de puissance réfléchie
- Cette mesure doit donner une valeur la plus faible possible.
- Avant de placer un bouchon de puissance inférieure, retourner le bouchon précédent afin d'évaluer la puissance réfléchie.

Exemple:

2°) Un bouchon de 1 W peut être mis en place :

l'échelle 0-100 avec

le bouchon 1 W.

Lecture de 0,34 W l'échelle 0-100 avec

Rangement du wattmètre :

Cette opération permet protéger l'aiguille des chocs, en court-circuitant les 2 bornes de la bobine du galvanomètre.

Se fait par placer le bouchon aluminium ou placer un bouchon quelconque dont la flèche vers le haut :

- Calcul du ROS:

Le ROS Rapport d'Ondes Stationnaires dont la formule est la suivante :

$$ROS = \frac{1 + \sqrt{\frac{Pr}{Pd}}}{1 - \sqrt{\frac{Pr}{Pd}}}$$

Pd étant la puissance directe et Pr la puissance réfléchie.

NB : En règle générale, on considère qu'un ROS supérieur à 1,5 est incorrect.

	I			
00	1ère édition			
Révision	Motifs de la modification			
	Rédigé par	Vérifié par	Approuvé par	
Nom et Visa	A.AZEM			
DATE				