STA257

Last update: Oct 2

List of theorems or properties:

Properties of a probability measure:

- $0 \le P(A) \le 1$
- P(S) = 1
- If $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$
- $P(A^c) = 1 P(A)$
- $ullet P(A) = P(A\cap B) + P(A\cap B^c)$
- $B \subseteq A$ then $P(A) = P(B) + P(A \cap B^c)$
- $B \subseteq A$ then $P(B) \le P(A)$
- A_1,A_2,\ldots a partition of S, then $P(B)=\sum_i P(B\cap A_i)$
- $P(A \cup B) = P(A) + P(B) + P(A \cap B)$
- $P(A_1 \cup A_2 \cup ...) \leq P(A_1) + P(A_2) + ...$

Combinatorics

- n! is the number of permutations of a set of n elements (How many different arrangements)
- $\binom{n}{k} = rac{n!}{k!(n-k!)} o$ choose k elements from a set of n order doesn't matter
- What if order matters? $\binom{n}{k} \times k!$
- $\frac{n!}{(n-k!)}$ Number of ways to pick k items out of n where order does matter.
 - Is the same as $\binom{n}{k} \times k!$ Choosing without order and then calculating permutations of k items.

Conditional probability

- $P(A|B) = \frac{P(A \cap B)}{P(B)}$ if P(B) > 0
- $P(A \cap B) = P(A)P(B|A) = P(B)P(A|B)$

• A_1,A_2,\ldots a partition of S, then $P(B)=\sum_i P(A_i)P(B|A_i)=\sum_i P(B\cap A_i)$

•
$$P(A|B) = \frac{P(A)}{P(B)}P(B|A)$$

Independence

- A and B are independent if $P(A \cap B) = P(A)P(B)$
- A_1,A_2,A_3,\ldots are independent if $P(A_{i_1}\cap A_{i_2}\cap\ldots\cap A_{i_k})=P(A_{i_1})P(A_{i_2})\ldots P(A_{i_k})$ for any finite subcollection of events.

Continuity

- If $\{A_n\}
 earrow A$ then $\lim_{n o \infty} P(A_n) = P(A)$
- If $\{A_n\} \searrow A$ then $\lim_{n o \infty} P(A_n) = P(A)$

Random variables (r.v)

- A function $X:S o \mathbb{R}$ is a random variable
- The distribution of a random variable is the collection of all of the probabilities
 of the variable being in every possible subset of R.
- A r.v. is discrete if $\sum_{x \in \mathbb{R}} P(X=x) = 1$
- Probability function $p_X(k) := P(X = k)$

Discrete random variables

ullet $X \sim Bernoulli(heta)$ if

$$p_X(k) = heta^k (1- heta)^{1-k} \, \mathbb{1}_{k \in \{0,1\}}$$
 $p_X(k) = egin{cases} heta & ext{if } k=1 \ 1- heta & ext{if } k=0 \ 0 & ext{otherwise} \end{cases}$

 $ullet \ X \sim Binomial(n, heta)$ if

$$p_X(k) = inom{n}{k} heta^k (1- heta)^{n-k} \, \mathbb{1}_{k \in \{0,1,...,n\}}$$

ullet $X \sim Geometric(heta)$ if

$$p_X(k) = (1- heta)^k heta \, \mathbb{1}_{k \in \{0,1,...\}}$$

This one counts # of failures before the first success. there's a second parametrization of geometric counting the number of trials until first success. Check wikipedia!

$$p_Y(k) = (1- heta)^{k-1} heta \, \mathbb{1}_{k \in \{1,2,...\}}$$

#probability

#ta