

Φ ізика І Механіка Концепція сили 2/3

Зміст

1	Реакція опори та підвісу									
	1.1	Сила	реакції опори та вага	4						
	1.2	1.2 Приклади								
		1.2.1	Рух у ліфті	5						
		1.2.2	Система тіл, що з'єднані ниткою	7						
2	Сила пружності та закон Гука									
	2.1 Послідовне та паралельне з'єднання пружин									

1 Реакція опори та підвісу

Перед вами дві ситуації ightarrow

В обох ситуаціях на тіло діє сила тяжіння. З іншого боку в обох ситуаціях прискорення a=0. За другим законом Ньютона нульове прискорення може бути при умові, що рівнодійна сили дорівнює нулю. Силу тяжіння урівноважує так звана **сила реакції опори або підвісу**.

Означення

- **1.** Сила реакції опори \vec{N} сила, що діє на тіло зі сторони опори (поверхні). Напрямлена перпендикулярно до поверхні, тому її також називають нормальною силою.
- **2.** Сила натягу нитки \vec{T} сила, що діє на тіло з боку нитки. Напрямлена вздовж неї.

У двох зображених випадках ці сили виникають згідно з **третім законом Ньютона**. Внаслідок сили тяжіння тіло діє на опору (підвіс), які у свою чергу діють на тіло з такою самою силою, але у протилежному напрямку.

Зображувати дію усіх сил на центр тіла можна у випадку розгляду тіл, як матеріальних точок. В цьому курсі виключення будуть вказані.

1.1 Сила реакції опори та вага

Важливо пригадати формулювання третього закону Ньютона:

« Тіла діють одне на одне із силами, спрямованими вздовж однієї прямої, рівними за модулем і протилежними за напрямком. »

$$\vec{F}_A = -\vec{F}_R$$

 F_{A} - дія першого тіла на друге; F_{R} - дія другого тіла на перше

У розглянутих нами випадках сила тяжіння і сила реакції опори — сили, що діють **на** тіло. Отже, вони не є силами з визначення третього закону Ньютона. Сила реакції опори за третім законом Ньютона дорівнює силі, з якою тіло діє на опору або підвіс. Ця сила називається вагою.

Означення

Bara \vec{P} — сила, з якою тіло діє на горизонтальну опору або вертикальний підвіс. За третім законом Ньютона дорівнює по модулю **силі реакції опори** \vec{N} .

Вимірюється вага за допомогою **вагів або терезів**. Сучасні ваги на своєму табло показують масу тіла. Насправді вони вимірюють **силу**, з якою тіло тисне на них — вагу, а потім здійснюється перерахунок у масу і виводиться на екран. У випадку, коли ваги нерухомо стоять на землі вага дорівнює силі тяжіння P = mq.

Авторський алгоритм Отримання ваги в задачах

Вага за третім законом Ньютона дорівнює за модулем силі реакції опори або підвіса.

1. За другим законом Ньютона рівнодійна сил дорівнює масі тіла помноженій на прискорення:

$$\vec{F_1} + \vec{F_2} + \ldots + \vec{F_N} = m\vec{a}$$

2. Розв'язуючи це рівняння, наприклад, за допомогою розкладання на проекції, виражаємо силу реакції опори або підвіса (в залежності від задачі)

$$\vec{N}/\vec{T}$$

3. За третім законом Ньютона:

$$\vec{P} = -\vec{N}$$

1.2 Приклади

Зараз ми розглянемо кілька розповсюджених прикладів на знаходження ваги \vec{P} .

1.2.1 Рух у ліфті

Розглядаємо три випадки руху в ліфті: рівномірний або стан спокою, рівноприскорений (вгору), рівноприскорений (вниз). Оцінимо, як будуть відрізнятися покази вагів.

На тіло діє всього дві сили: сила тяжіння $\vec{F}_{\scriptscriptstyle
m T} = m \vec{g}$ та сила реакції опори $\vec{N}.$

Другий закон Ньютона:

$$\vec{N} + m\vec{q} = m\vec{a}$$

1. Ліфт у стані спокою або рухається с постійною швидкістю a=0 Другий закон Ньютона в проекції на у:

$$N - mg = 0 \implies N = mg$$

Третій закон Ньютона:

$$P = N = mg$$

2. Ліфт рухається з прискоренням, напрямленим вниз $a_y < 0$ Другий закон Ньютона в проекції на у:

$$N - mg = -ma \implies N = m(g - a)$$

Третій закон Ньютона:

$$P = N < mq$$

3. Ліфт рухається з прискоренням, напрямленим вгору $a_y > 0$ Другий закон Ньютона в проекції на у:

$$N - mq = ma \implies N = m(q + a)$$

Третій закон Ньютона:

$$P = N$$

Отже, при русі ліфта з прискоренням напрямленим вниз, вага тіла зменшується. При прискоренні напрямленому вверх, вага — збільшується. Ви можете відчути ці ефекти самостійно рухаючись у ліфті. При початку руху вниз відчувається «легкість», а при русі вверх — навпаки, вас ніби притискає до підлоги.

Означення

Невагомість (відсутність ваги) – стан тіла при якому відсутня взаємодія з опорою.

В нашому прикладі з ліфтом тіло перебувало би у стані невагомості, якщо би він рухався вниз з прискорення \vec{q} .

$$P = N = m(g - a) = |a = g| = 0$$

Полум'я свічки при звичайних умовах та при невагомості (знімок з сайту NASA).

З іншого боку збільшення ваги внаслідок прискорення називають **переванта-** женням. Часто, наприклад, при виконанні трюків на літаках перевантаження вимірюють в кількості g. Наприклад, при польоті на спортивних літаках досягається перевантаження 10g. Це означає, що вага при цьому 10mg.

1.2.2 Система тіл, що з'єднані ниткою

Уявіть блок, що обертається. Через нього перекинута **нерозтяжна** нитка, на якій з двох сторін закріплені блоки різної маси $m_2 > m_1$. Таким чином з'явлається прискорення.

Перше, що важливо. Якщо сказано, що нитка **нерозтяжна**, сила натягу T у будьякій її точці **однакова**. За третім законом Ньютона вага дорівнює силі натягу нитки. Виходить, що для даного випадку **вага у двох тіл різної маси однакова**. Це дуже важливий концептуальний момент. Не плутайте масу з вагою!

Другий момент. Коли ви маєте систему тіл, ви можете розглядати кожне тіло окремо. У англомовній літературі такий підхід називається Free body diagram.

Напрямимо вісь y вгору та розглянемо кожне тіло окремо.

- 1. Другий закон Ньютона: $m_1 \vec{g} + \vec{T} = m_1 \vec{a} \ \Rightarrow \ -m_1 g + T = m_1 a$ $T = m_1 (a+g)$
- 2. Другий закон Ньютона: $m_2 \vec{g} + \vec{T} = m_2 \vec{a} \ \Rightarrow \ -m_2 g + T = -m_2 a$ $T = m_2 (q-a)$

Тепер можна прирівняти сили натягу нитки і отримати прискорення кожного з блоків. Вони, до речі, також однакові.

$$m_1(a+g) = m_2(g-a) \implies a(m_1+m_2) = g(m_2-m_1) \implies a = g\frac{m_2-m_1}{m_1+m_2}$$

Оцінимо правильність формули.

• Якщо би маси були однакові, то система перебувала би у рівновазі.

$$m_1 = m_2 \to a = 0$$

• Якщо би одного тіла взагалі не було, то інше тіло рухалось би просто з прискоренням \vec{q} .

$$m_1 = 0 \rightarrow a = g \frac{m_2}{m_2} = g$$

2 Сила пружності та закон Гука

Якщо прикласти силу до якогось тіла, то воно деформується.

Означення

Деформація – це зміна форми твердого тіла під дією зовнішньої сили.

Пружна деформація – деформація, яка повністю зникає після припинення дії зовнішньої сили. Форма тіла повертається у своє "звичне" положення.

 l_0 – довжина тіла у спокої; l - довжина тіла після деформації;

 $\Delta l = l - l_0$ – видовження тіла;

S — площа поперечного перерізу;

 \vec{F} – прикладена сила;

 \vec{F}_{Π} – сила пружності;

Означення

Сила пружності \vec{F}_{Π} — сила, що виникає внаслідок деформації тіла і напрямлена в протилежну сторону до напрямку, вздовж якого відбувається деформація.

На рисунку зображено тверде тіло, яке розтягують з силою \vec{F} . Виникає сила пружності \vec{F}_{Π} , яка противиться деформації тіла і намагається повернути його в "звичний" стан.

Інтуітивно зрозумілі наступні моменти

1. Чим більша початкова довжина l_0 , тим легше видовжити тіло на певну Δl

$$\Delta l \sim l_0$$

2. Чим більше прикладена сила \vec{F} , тим більше видовження тіла Δl

$$\Delta l \sim F$$

3. Чим більша площа перерізу S, тим складніше видовжити тіло на певну Δl

$$\Delta l \sim \frac{1}{S}$$

3 усього вищезазначеного:
$$\Delta l \sim \frac{F l_0}{S}$$

Перетворивши отриману пропорційність отримаємо $\frac{F}{S} \sim \frac{\Delta l}{l_0}$

Ми використали усі параметри, що пов'язані з формою об'єкта. Залишилось для повної рівності використати параметр, який характеризує фізичну властивість матеріала створювати спротив диформації — модуль Юнга E [$\frac{H}{M^2}$ = Паскаль (Па)].

Матеріал	Алмаз	Скло	Гума	Лід	Фарфор	Нейлон
Модуль Юнга, ГПа	1220	50 - 90	0.01 - 0.1	3	59	1,2 - 1,5 кПа

Тепер ми готові к отриманню фундаментального закону, який пов'язує силу пружності з видовженням тіла:

Закон Гука говорить про пропорційність між силою пружності F_{Π} , яка виникає внаслідок деформації і видовженням тіла Δl . Чим більший коефіцієнт жорсткості k, тим швидше зі збільшенням видовження зростає сила пружності, яка намагається повернути тіло у свій "звичний" стан. На рисунку $k=tg\,\alpha$.

Слід зауважити, що закон Гука в реальному житті виконується до **певної межі** по механічній напрузі. Після цієї межі тіло вже стає деформованим і не повертається у початковий стан. В школі не розглядається цей випадок.

2.1 Послідовне та паралельне з'єднання пружин

В задачах з пружинами використовується закон Гука. При цьому на відміну від розглянутої нами деформації твердих тіл, тут використовується саме коефіцієнт жорстоксті k. На рисунку зображено видовження пружини під дією сили \vec{F} та виникаючу внаслідок цього силу \vec{F}_{Π} , напрямлену протилежно до напрямку здійснення видовження (x).

Комбінація пружин з різними коефіцієнтами жорсткості $k_1, k_2...k_n$ може бути заміненою однією еквівалентною пружиною з певним k. Для того, щоб вміти робити такі операції розглянемо паралельне та послідовне з'єднання пружин.

1. Паралельне з'єднання пружин Нехай дві пружини з k_1 та k_2 з'єднані паралельно. Тоді, якщо ми закріпимо вантаж, як зображено на рисунку, то внаслідок дії сили тяжіння \vec{F}_T виникає деформація пружин і відповідно дві сили пружності \vec{F}_1 і \vec{F}_2 .

Модуль сили пружності першої пружини: $F_1=k_1x$ Модуль сили пружності другої пружини: $F_2=k_2x$ За другим законом Ньютона: $\vec{F}_T+\vec{F}_1+\vec{F}_2=0 \implies F_T=F_1+F_2$

$$F_T = k_1 x + k_2 x$$

Коли ми замінемо цю систему однією еквівалентною пружиною з коефіцієнтом жорсткості k, то сила пружності, яка в ній виникне буде дорівнювати силі тяжіння: $F=F_T=kx$

Отже, якщо пружини з'єднані паралельно, то їх можна замінити однією пружиною, коефіцієнт жорсткості якої є сумою коефіцієнтів кожної із пружин:

$$kx = k_1 x + k_2 x \implies \boxed{k = k_1 + k_2}$$

2. Послідовне з'єднання пружин Нехай дві пружини з k_1 та k_2 з'єднані послідовно. Тоді, якщо ми закріпимо вантаж, як зображено на рисунку, то внаслідок дії сили тяжіння \vec{F}_T виникає деформація пружин і відповідно сила пружності F в кожній з пружин. Це зрозуміло, якщо використати третій закон Ньютона. Сила тяжіння викликає силу пружності у першій пружині, яка дорівнює силі тяжіння. З такою ж силою перша пружина діє на другу, і в ній виникає сила пружності, яка також дорівнює силі тяжіння. $F_1 = F_2 = F$

Кожна пружина внаслідок дії на них однакової сили розтягується на різні x_1 та x_2 . Якщо ми систему послідовно з'єднаних пружин замінимо однією еквівалентною, то видовження такої пружини x повинно дорівнювати сумі видовжень x_1 та x_2 . Давайте отримаємо для кожної з пружин видовження та підставимо у $x = x_1 + x_2$.

Видовження першої пружини: $x_1 = \frac{F}{k_1}$

Видовження другої пружини: $x_2 = \frac{F_1}{k_2}$

Видовження еквівалентної пружнии: $x = \frac{F}{k}$

Підставляємо у $x = x_1 + x_2$:

$$\frac{F}{k} = \frac{F}{k_1} + \frac{F}{k_2} \implies \boxed{\frac{1}{k} = \frac{1}{k_1} + \frac{1}{k_2}}$$

Отже, якщо пружини з'єднані послідовно, то їх можна замінити однією пружиною, коефіцієнт жорсткості якої можна розрахувати за допомогою вищезазначеної формули.