Unit-5: ω -regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 1:

Specifying properties


```
Traces: {}{}{}{}{}}{}... {}{p_2}{p_2}{p_2}{p_2}{p_2}{p_2}... {p_1}{p_1,p_2}{p_2}{p_2}{p_2}{p_2}{p_2}... {p_1}{p_1,p_2}{p_1,p_2}{p_1,p_2}{p_1,p_2}{p_1,p_2}{p_1,p_2}{p_1,p_2}... :
```

$$\mathbf{AP} = \{ p_{1}, p_{2}, \dots, p_{k} \}$$

$$PowerSet(\mathbf{AP}) = \{ \{ \}, \{p_{1}\}, \dots, \{p_{k}\}, \{p_{1}, p_{2}\}, \{p_{1}, p_{3}\}, \dots, \{p_{k-1}, p_{k}\}, \dots, \{p_{1}, p_{2}, \dots, p_{k} \} \}$$

Trace(Execution) is an infinite word over PowerSet(AP)

Traces(TS) is the { Trace(σ) | σ is an execution of the TS }

AP-INF = set of **infinite words** over *PowerSet*(**AP**)

Property 1: p_1 is always true

$$\left\{ A_0 A_1 A_2 \dots \in \text{AP-INF} \mid \text{ each } A_i \text{ contains } p_1 \right\}$$

$$\left\{ p_1 \right\} \left\{ p_1, p_2 \right\} \left\{ p_1 \right\} \left\{ p_1, p_2 \right\} \left\{ p_1 \right\} \left\{ p_1, p_2 \right\} \dots \right.$$

$$\cdot \cdot \cdot \cdot$$

Property 2: p_1 is true at least once and p_2 is always true

 $\{A_0A_1A_2\cdots\in AP\text{-INF}\mid \text{ exists }A_i \text{ containing }p_1 \text{ and every }A_j \text{ contains }p_2\}$

```
{p_2}{p_1,p_2}{p_2}{p_2}{p_2}{p_1,p_2}{p_2}...
{p_1,p_2}{p_2}{p_2}{p_2}{p_2}{p_2}...
\vdots
```

AP-INF = set of **infinite words** over *PowerSet*(**AP**)

A property over AP is a subset of AP-INF

$$AP = \{ p_1, p_2 \}$$

Transition System

Property

Transition system TS satisfies property P if

 $Traces(TS) \subseteq P$

- Use ω -regular expressions to specify properties
- ightharpoonup An algorithm for model-checking ω -regular expressions on transition systems

Unit-5: ω -regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 2: ω -regular expressions

Languages over finite words

 Σ : finite alphabet $\Sigma^* = \text{ set of all words over } \Sigma$

Language: A set of finite words

```
{ ab, abab, ababab, ...}
   finite words starting with an a
    finite words starting with a b
         \{\epsilon, b, bb, bbb, \ldots\}
     \{\epsilon, ab, abab, ababab, \ldots\}
   \{\epsilon, bbb, bbbbbb, (bbb)^3, \ldots\}
words starting and ending with an a
  \{\epsilon, ab, aabb, aaabbb, a^4b^4 \dots\}
```

 $\Sigma : \text{finite alphabet} \quad \Sigma^* \ = \ \text{set of all words over } \Sigma$

Language: A set of finite words

```
ab(ab)^* { ab, abab, ababab, ...}
   a\Sigma^* finite words starting with an a
   b\Sigma^* finite words starting with a b
         b^* { \epsilon, b, bb, bbb, ...}
      (ab)^* { \epsilon, ab, abab, ababab, ...}
  (bbb)^* { \epsilon, bbb, bbbbbb, (bbb)^3, ...}
a\Sigma^*a words starting and ending with an a
           \{\epsilon, ab, aabb, aaabbb, a^4b^4 \dots\}
```

Alphabet
$$\Sigma = \{a, b\}$$

$$\Sigma \cdot \Sigma = \{a, b\} \cdot \{a, b\}$$
$$= \{aa, ab, ba, bb\}$$

$$aba \cdot \epsilon = aba$$

 $\epsilon \cdot bbb = bbb$
 $w \cdot \epsilon = w$
 $\epsilon \cdot w = w$

```
\Sigma^0 = \{ \epsilon \} (empty word, with length 0)
\Sigma^1 = words of length 1
\Sigma^2 = words of length 2
\nabla^3 = words of length 3
\nabla^k = \text{words of length } k
\Sigma^* = \bigcup_{i>0} \Sigma^i
      = set of all finite length words
```


 $\epsilon \mid a \mid b$

$$\epsilon \mid a \mid b \mid r_1 r_2$$

$$\epsilon \mid a \mid b \mid r_1 r_2 \mid r_1 + r_2$$

$$\epsilon \mid a \mid b \mid r_1 r_2 \mid r_1 + r_2 \mid r^*$$

$$\epsilon \mid a \mid b \mid r_1 r_2 \mid r_1 + r_2 \mid r^*$$

where r_1, r_2, r are regular expressions themselves

$$\epsilon \mid a \mid b \mid r_1 r_2 \mid r_1 + r_2 \mid r^*$$

where r_1, r_2, r are regular expressions themselves

$$a^* + b^*$$

 $ab + bb + baa$
 $(a + b)^*ab(ba + bb)$
 $(ab + bb)^*$
 \vdots

Theorem

- 1. Every regular expression can be converted to an NFA accepting the language of the expression
- 2. Every **NFA** can be converted to a regular expression describing the language of the NFA

Coming next: Languages over infinite words

$$\Sigma = \{ a, b \}$$

$$\Sigma = \{ a, b \}$$

Example 1: Infinite word consisting only of a

{ aaaaaaaaaaaaaa... }

$$\Sigma = \{ a, b \}$$

Example 1: Infinite word consisting only of a

Example 2: Infinite words containing only a or only b

$$\Sigma = \{ a, b \}$$

Example 1: Infinite word consisting only of a

Example 2: Infinite words containing only a or only b

```
{ aaaaaaaaaaaaaaa..., bbbbbbbbbbbbbbb...}
```

Example 3: a word in $aa\Sigma^*aa$ followed by only b-s

```
\{aaaabbbbbbbb..., aababaabbbbbbbb..., aabbbbaabbbbbbbbb..., ...\}
```

Example 1: Infinite word consisting only of <i>a</i>	
{	
Example 2: Infinite words containing only <i>a</i> or only <i>b</i>	
{ aaaaaaaaaaaaaaa, bbbbbbbbbbbbbb}	
Example 3: a word in $aa\Sigma^*aa$ followed by only b -s	
$\{$ aaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb	
Example 4: Infinite words where b occurs only finitely often	
{ aaaaaaaaaaaaaaa, baaaaaaaaaa, babbaaaaaaaaaa]

```
Example 1: Infinite word consisting only of a
             Example 2: Infinite words containing only a or only b
        { aaaaaaaaaaaaaaa..., bbbbbbbbbbbbbb...}
 Example 3: a word in aa\Sigma^*aa followed by only b-s
 Example 4: Infinite words where b occurs only finitely often
Example 5: Infinite words where b occurs infinitely often
```

Example 1: Infinite word consisting only of a a^{ω}
{
Example 2: Infinite words containing only <i>a</i> or only <i>b</i>
$\{$ $aaaaaaaaaaaaaaaa$ $,$ $bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb$
Example 3: a word in $aa\Sigma^*aa$ followed by only b -s
$\{aaaabbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb$
Example 4: Infinite words where <i>b</i> occurs only finitely often
naaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Example 5: Infinite words where <i>b</i> occurs infinitely often
abababababab, bbbabbbabbbabbba, bbbbbbbbbb

Example 1: Infinite word consisting only of a a^{ω}	
{	
Example 2: Infinite words containing only a or only b $a^{\omega} + b^{\omega}$	υ
{ aaaaaaaaaaaaaaa, bbbbbbbbbbbbbbb}	
Example 3: a word in $aa\Sigma^*aa$ followed by only b -s	
$\{ aaaabbbbbbbb \ldots , aababaabbbbbbbb \ldots , aabbbbaabbbbbbbbb \ldots , \ldots \}$	}
Example 4: Infinite words where <i>b</i> occurs only finitely often	
{ aaaaaaaaaaaaaaaa, baaaaaaaaaa, babbaaaaaaaaaa	
Example 5: Infinite words where b occurs infinitely often	
{ abababababab, bbbabbbabbbabbba, bbbbbbbbbb	}

Example 1: Infinite word consisting only of a a^{ω}
{
Example 2: Infinite words containing only a or only $b \ a^{\omega} + b^{\omega}$
{ aaaaaaaaaaaaaaa, bbbbbbbbbbbbbbb}
Example 3: a word in $aa\Sigma^*aa$ followed by only b -s $aa\Sigma^*aa \cdot b^{\omega}$
$\{ \textit{aaaabbbbbbb} \ldots, \textit{aababaabbbbbbb} \ldots, aabbbbaabbbbbbbbbbbbbbbbbbbbbbbbbbbbb$
Example 4: Infinite words where <i>b</i> occurs only finitely often
{ aaaaaaaaaaaaaaaa, baaaaaaaaaa, babbaaaaaaaaaa
Example 5: Infinite words where <i>b</i> occurs infinitely often
{ abababababab, bbbabbbabbbabbba, bbbbbbbbbb

```
\Sigma = \{ a, b \}
```

```
Example 1: Infinite word consisting only of a
                                     a^{\omega}
                Example 2: Infinite words containing only a or only b \ a^{\omega} + b^{\omega}
         { aaaaaaaaaaaaaaa..., bbbbbbbbbbbbbb...}
                                     аа\Sigma^*аа \cdot b^\omega
 Example 3: a word in aa\Sigma^*aa followed by only b-s
 Example 4: Infinite words where b occurs only finitely often (a + b)^* \cdot b^{\omega}
Example 5: Infinite words where b occurs infinitely often
```

```
Example 1: Infinite word consisting only of a
                                      a^{\omega}
                Example 2: Infinite words containing only a or only b \ a^{\omega} + b^{\omega}
         { aaaaaaaaaaaaaaa..., bbbbbbbbbbbbbb...}
                                     аа\Sigma^*аа \cdot b^\omega
 Example 3: a word in aa\Sigma^*aa followed by only b-s
 Example 4: Infinite words where b occurs only finitely often (a + b)^* \cdot b^{\omega}
(a^*b)^{\omega}
 Example 5: Infinite words where b occurs infinitely often
```

ω -regular expressions

$$G = E_1 \cdot F_1^{\omega} + E_2 \cdot F_2^{\omega} + \cdots + E_n \cdot F_n^{\omega}$$

$$E_1, \ldots, E_n, F_1, \ldots, F_n$$
 are regular expressions and $\epsilon \notin L(F_i)$ for all $1 \le i \le n$

ω -regular expressions

$$G = E_1 \cdot F_1^{\omega} + E_2 \cdot F_2^{\omega} + \cdots + E_n \cdot F_n^{\omega}$$

$$E_1, \ldots, E_n, F_1, \ldots, F_n$$
 are regular expressions and $\epsilon \notin L(F_i)$ for all $1 \le i \le n$

$$L(F^{\omega}) = \{ w_1 w_2 w_3 \dots \mid \text{each } w_i \in L(F) \}$$

• $(a+b)^{\omega}$ set of all infinite words

- $(a+b)^{\omega}$ set of all infinite words
- $a(a+b)^{\omega}$ infinite words starting with an a

- ▶ $(a+b)^{\omega}$ set of all infinite words
- $a(a+b)^{\omega}$ infinite words starting with an a
- $(a+bc+c)^{\omega}$ words where every b is immediately followed by c

- ► $(a+b)^{\omega}$ set of all infinite words
- $a(a+b)^{\omega}$ infinite words starting with an a
- $(a + bc + c)^{\omega}$ words where every b is immediately followed by c
- $(a+b)^*c(a+b)^{\omega}$ words with a single occurrence of c

- $(a+b)^{\omega}$ set of all infinite words
- $a(a+b)^{\omega}$ infinite words starting with an a
- $(a + bc + c)^{\omega}$ words where every b is immediately followed by c
- $(a+b)^*c(a+b)^{\omega}$ words with a single occurrence of c
- $((a+b)^*c)^{\omega}$ words where c occurs infinitely often

$$\mathbf{AP} = \{ p_1, p_2, \dots, p_k \}$$

$$\Sigma = PowerSet(\mathbf{AP}) = \{ \{ \}, \{ p_1 \}, \dots, \{ p_k \}, \{ p_1, p_2 \}, \{ p_1, p_3 \}, \dots, \{ p_{k-1}, p_k \}, \dots, \{ p_1, p_2, \dots, p_k \} \}$$

A property is a language of infinite words over alphabet Σ

$$\mathbf{AP} = \{ p_1, p_2, \dots, p_k \}$$

$$\Sigma = PowerSet(\mathbf{AP}) = \{ \{ \}, \{p_1\}, \dots, \{p_k\}, \{p_1, p_2\}, \{p_1, p_3\}, \dots, \{p_{k-1}, p_k\}, \dots, \{p_1, p_2, \dots, p_k\} \}$$

A property is a language of infinite words over alphabet Σ

The property is ω -regular if it can be described by an ω -regular expression

```
\begin{array}{ll} \textbf{AP} = \; \{\; \text{wait, crit} \; \} \\ \\ \Sigma = \textit{PowerSet}(\textbf{AP}) = \; \{\; \{\; \}, \; \{\text{wait}\}, \; \{\text{crit}\} \; , \; \{\text{wait, crit}\} \; \} \end{array}
```

$$\begin{split} AP = & \{ \text{ wait, crit } \} \\ \Sigma = \textit{PowerSet}(AP) = & \{ \{ \}, \{ \text{wait} \}, \{ \text{crit} \}, \{ \text{wait, crit} \} \} \end{split}$$

Property: Process enters critical section infinitely often

$$\begin{array}{ll} \textbf{AP} = \; \left\{ \; \text{wait, crit} \; \right\} \\ \\ \boldsymbol{\Sigma} = \textit{PowerSet}(\textbf{AP}) = \; \left\{ \; \left\{ \; \right\}, \; \left\{ \text{wait} \right\}, \; \left\{ \text{crit} \right\}, \; \left\{ \text{wait, crit} \right\} \; \right\} \end{array}$$

Property: Process enters critical section infinitely often

```
( ({ } + {wait})* ({crit} + {wait, crit}) )^{\omega}
```

 ω -regular properties

 ω -regular expressions

Next goal: Find algorithms to model-check ω -regular properties

Unit-5: ω -regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 3:

Büchi automata

Goal

- Give some kind of an automaton for ω -regular expressions
- ► Take **synchronous product** with the transition system of the model
- ► Check **emptiness** of this automaton

Goal

- Give some kind of an **automaton** for ω -regular expressions
- ► Take synchronous product with the transition system of the model
- ► Check **emptiness** of this automaton

Coming next: A short recap of finite automata

abbaabab

abbaabab

$$q_0 \stackrel{a}{\longrightarrow} q_0 \stackrel{b}{\longrightarrow} q_0 \stackrel{b}{\longrightarrow} q_0 \stackrel{a}{\longrightarrow} q_0 \stackrel{a}{\longrightarrow} q_0 \stackrel{b}{\longrightarrow} q_0 \stackrel{a}{\longrightarrow} q_0$$

abbaabab

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0$$

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2$$

Runs:

a b b b a

Runs:

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0$$

Runs:

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0$$
 Not accepted

In finite words, there is an end

A run is accepting if it ends in an accepting state

In finite words, there is an **end**A run is accepting if it **ends in an accepting state**

How do we define accepting runs for infinite words?

ababaabbbbbb...

ababaabbbbbb...

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \dots$$

ababaabbbbb ...

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \dots$$

Run is accepting if some accepting state occurs infinitely often

ababaabbbbbb...

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \xrightarrow{b} q_1 \dots$$

Above word is accepted by this automaton

Run is accepting if some accepting state occurs infinitely often

abababababab ...

abababababab ...

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \dots$$

abababababab ...

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \dots$$

Run is accepting if some accepting state occurs infinitely often

a ha ha ha ha ha h...

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \dots$$

Above word is accepted by this automaton

Run is accepting if some accepting state occurs infinitely often

ababaaaaaaa ...

ababaaaaaaa ...

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \dots$$

ababaaaaaaa...

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \dots$$

Run is accepting if some accepting state occurs infinitely often

ababaaaaaaa...

$$q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{b} q_1 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \xrightarrow{a} q_0 \dots$$

Above word is **not accepted** by this automaton

Run is accepting if some accepting state occurs infinitely often

Language: set of infinite words which contain infinitely many b-s

Non-deterministic Büchi Automata

- ▶ States, transitions, initial and accepting states like an NFA
- ▶ Difference in accepting condition

Word is accepted if it has a run in which some accepting state occurs infinitely often

Example: $a^{\omega} + b^{\omega}$

Example: $(a + b)^*a^{\omega}$

Example: $aa(a+b)^*ab^{\omega}$

Example: $(aa(a+b)^*ab)^{\omega}$

Non-deterministic Büchi Automaton

Accepting state occurs infinitely often

Unit-5: ω -regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Module 4: Simple properties of NBA

Determinization

Product construction

Emptiness

Complementation

Union

Deterministic Büchi Automata

Words where *b* occurs infinitely often

- ► Single initial state
- ► From every state on an alphabet, there is a **unique transition**

Question: Can every NBA be converted to an equivalent DBA?

 $(a+b)^*b^\omega$: a occurs only finitely often

 $(a+b)^*b^{\omega}$: a occurs only finitely often

- ightharpoonup Automaton has to **guess** the point from where only b occurs
- A deterministic Büchi automaton cannot make this guess

Unit-5: ω -regular properties

B. Srivathsan

Chennai Mathematical Institute

NPTEL-course

July - November 2015

Summary

- \triangleright ω -regular expressions for specifying properties
- Non-deterministic Büchi automata
- ▶ Properties of NBA

Important concepts: DBA not equivalent to NBA, product construction for NBA, complementation and union

 $(a+b)^*b^{\omega}$: a occurs only finitely often

- \triangleright Automaton has to guess the point from where only b occurs
- A deterministic Büchi automaton cannot make this guess

The above language cannot be accepted by a DBA

 $(a+b)^*b^{\omega}$: a occurs only finitely often

- \triangleright Automaton has to guess the point from where only b occurs
- A deterministic Büchi automaton cannot make this guess

The above language cannot be accepted by a DBA

Theorem 4.50 (Page 190) of Principles of Model Checking, Baier and Katoen. MIT Press (2008)

Determinization

DBA less powerful than NBA

Product construction

Emptiness

Complementation

Union

Word $(ab)^{\omega}$ is accepted by both automata

Word $(ab)^{\omega}$ is accepted by both automata

Coming next: The synchronous product construction

But intersection of the two automata is not empty

- ▶ Need to **modify** the product construction
- ► Track accepting states of both automata
- ► Ensure that both automata visit accepting states infinitely often

Word is accepted by product ← it is accepted by both component automata

Determinization

DBA less powerful than NBA

Product construction

Language intersection

Emptiness

Complementation

Union

Determinization

DBA less powerful than NBA

Product construction

Language intersection

Emptiness

Next unit ...

Complementation

Union

Language: b occurs infinitely often

Language: b occurs infinitely often

Language: a occurs infinitely often

Language: b occurs infinitely often

Language: a occurs infinitely often

Not the complement!

 $(ab)^{\omega}$ present in both

Challenges

▶ Mere interchange of accepting states does not work

► Moreoever, NBA are more expressive than DBA

Complementation

Theorem

Given an NBA \mathcal{A} , there is an algorithm to compute the NBA accepting the complement language $\mathcal{L}(\mathcal{A})^c$

Proof out of scope of this course

For union, take the disjoint union of the two NBA

Determinization

DBA less powerful than NBA

Product construction

Language intersection

Emptiness

Next unit ...

Complementation

Union