Introduction to Natural Language Processing

PARSING:

Earley, Bottom-Up Chart Parsing

Jean-Cédric Chappelier

Jean-Cedric.Chappelier@epfl.ch

Artificial Intelligence Laboratory

Objectives of this lecture

After CYK algorithm, present two other algorithms used for syntactic parsing

Earley Parsing

Top-down algorithm(predictive)

Bottom-up = inference

Top-down = search

3 advantages:

- adaptive complexity for least complex languages (e.g. regular languages)

2 drawbacks:

- No way to correct/reconstruct non-parsable sentences ("early error detection")
- not very intuitive

Earley Parsing (2)

<u>Idea:</u> on-line (i.e during parsing) binarization of the grammar

doted rules and "Earley items"

doted rules: $X \to X_1...X_k \bullet X_{k+1}...X_m$

with $X o X_1 ... X_m$ a rule of the grammar

Earley item: one doted rule with one integer i

 $(0 \le i \le n, n)$: size of the input string)

the part before the dot (ullet) represents the subpart of the rule that derives a substring of the input string starting at position i+1

Example: $(V\!P \to V \bullet N\!P, 2)$ is an Earley item for input string

the cat ate a mouse

1 2 3 4 5

Earley Parsing (3)

<u>Principle:</u> Starting from all possible $(S \to \bullet X_1 ... X_m, 0)$, parallel construction of all the dotted rules deriving (larger and larger) substrings of the input string, up to a point where the whole input sentence is derived

 \square construction of sets of items (E_i) such that:

$$(X \to \alpha \bullet \beta, i) \in E_j \iff$$

$$\exists \gamma, \delta: S \Rightarrow^* \gamma X \delta \quad \text{and} \quad \gamma \Rightarrow^* w_1 \dots w_i \quad \text{and} \quad \alpha \Rightarrow^* w_{i+1} \dots w_j$$

Example: in the former example $(VP \rightarrow V \bullet NP, 2) \in E_3$

The input string (length n) is syntactically correct (accepted) iff at least one $(S \to X_1 \dots X_m \bullet, 0)$ is in E_n

Earley Parsing (4)

- Initialization: construction of E_0
- 1. For each rule $S \to X_1 \dots X_m$ in the grammar: add $(S \to \bullet X_1 \dots X_m, 0)$ to E_0
- 2. For each $(X \to \bullet Y \beta, 0)$ in E_0 and every rule $Y \to \gamma$, add $(Y \to \bullet \gamma, 0)$ to E_0
- 3. Iterate (2) until convergence of E_0

Earley Parsing: Interpretation

- **2** Iterations: building of derivations of $w_1...w_j$ (E_j)
 - 1. <u>Linking with words:</u> Introduce word w_j whenever a derivation of $w_1...w_{j-1}$ can "eat" w_j (i.e. "there is a \bullet before w_j ")
- 2. Stepping in the derivation: Whenever non-terminal X can derive a subsequence starting at w_{i+1} and if there exists one subderivation ending in w_i which can "eat" X, do it!
- 3. **Prediction** (of useful items): If at some place Y could be "eaten" by some rule, then introduce all the rules that might (later on) produce Y

Earley Parsing (next)

- **2** Iterations: construction of the E_j sets $(1 \le j \le n)$
 - 1. for all $(X \to \alpha \bullet w_j \beta, i)$ in E_{j-1} , add $(X \to \alpha w_j \bullet \beta, i)$ to E_j
- 2. For all $(X \to \gamma \bullet, i)$ of E_j , for all $(Y \to \alpha \bullet X\beta, k)$ of E_i , add $(Y \to \alpha X \bullet \beta, k)$ to E_j
- 3. For all $(Y \to \alpha \bullet X\beta, i)$ in E_j and for each rule $X \to \gamma$, add $(X \to \bullet \gamma, j)$ to E_j
- 4. Repeat to (2) while E_j keeps changing

Earley Parsing: Full Example

Example for "I think", and the grammar:

$$S \rightarrow NP VP$$

$$Pron \rightarrow I$$

$$NP \rightarrow Pron$$

$$V o ext{think}$$

$$NP \rightarrow Det N$$

$$VP \rightarrow V$$

$$VP \rightarrow V S$$

$$VP \rightarrow V NP$$

$$E_0$$
: $(S \to \bullet NP \ VP, 0)$
 $(NP \to \bullet \ Det \ N, 0)$

$$(NP \rightarrow \bullet Pron, 0)$$

 $(Pron \rightarrow \bullet I, 0)$

$$E_1$$
: $(Pron \rightarrow I \bullet, 0)$
 $(S \rightarrow NP \bullet VP, 0)$
 $(VP \rightarrow \bullet VP, 1)$
 $(V \rightarrow \bullet \text{ think}, 1)$

$$(NP \rightarrow Pron \bullet, 0)$$

 $(VP \rightarrow \bullet V, 1)$
 $(VP \rightarrow \bullet V NP, 1)$

$$E_2$$
: $(V o \operatorname{think} ullet, 1)$ $(VP o V ullet S, 1)$ $(S o NP \ VP ullet, 0)$ $(NP o ullet Pron, 2)$ $(Pron o ullet, 2)$

$$(VP \rightarrow V \bullet, 1)$$

 $(VP \rightarrow V \bullet NP, 1)$
 $(S \rightarrow \bullet NP VP, 2)$
 $(NP \rightarrow \bullet Det N, 2)$

Link between CYK and Earley

$$(X \to \alpha \bullet \beta, i) \in E_j \iff (X \to \alpha \bullet \beta) \in \operatorname{cell}_{j-i, i+1}$$

$$\iff$$

$$(X \to \alpha \bullet \beta) \in \operatorname{cell}_{j-i, i+1}$$

$$(S \rightarrow NP VP \bullet, 0)$$

$$(S \rightarrow NP \bullet VP, 0)$$

 $(NP \rightarrow Pron \bullet, 0)$

 $(Pron \rightarrow I \bullet, 0)$

$$(VP \rightarrow V \bullet S, 1)$$

$$(VP \rightarrow V \bullet NP, 1)$$

$$(VP \rightarrow V \bullet, 1)$$

$$(V o \mathsf{think} \, ullet, 1)$$

$$(S \to \bullet NP VP, 0)$$

$$(NP \rightarrow \bullet Pron, 0)$$

$$(NP \rightarrow \bullet Det N, 0)$$

$$(Pron \rightarrow \bullet 1, 0)$$

$$(VP \rightarrow \bullet V, 1)$$

$$(VP \rightarrow \bullet V S, 1)$$

$$(VP \rightarrow \bullet V NP, 1)$$

$$(V \rightarrow \bullet \text{ think}, 1)$$

$$(S \rightarrow \bullet NP VP, 2)$$

$$(NP \rightarrow \bullet N, 2)$$

$$(NP \rightarrow \bullet Det N, 2)$$

$$(Pron \rightarrow \bullet 1, 2)$$

think

Bottom-up Chart Parsing

Idea: keep the best of both CYK and Earley

on-line binarization "à la" Earley (and even better) within a bottom-up CYK-like algorithm

Mainly:

- no need for indices in items: cell position is enough
- factorize (with respect to α) all the $X \to \alpha \bullet \beta$ $\alpha \bullet \ldots$ This is possible when processing **bottom-up**
- ullet replace all the X o lpha ullet simply by X
- \bullet supression of $X\to \bullet$ α This is possible when processing <code>bottom-up</code> (and without lookahead)

Bottom-up Chart Parsing: Example

Bottom-up Chart Parsing (3)

More formally, a CYK algorithm in which:

If cell contents are denoted by $[\alpha \bullet ..., i, j]$ and [X, i, j] respectively

Then initialization is $w_{ij} \Rightarrow [X, i, j]$ for $X \to w_{ij} \in \mathcal{R}$

and the completion phase becomes:

(association of two cells)

$$[\alpha \bullet ..., i, j] \oplus [X, k, j + i] \Rightarrow \begin{cases} [\alpha X \bullet ..., i + k, j] & \text{if } Y \to \alpha X \beta \in \mathcal{R} \\ [Y, i + k, j] & \text{if } Y \to \alpha X \in \mathcal{R} \end{cases}$$

("self-filling")

$$[X,i,j] \Rightarrow \begin{cases} [X \bullet ...,i,j] & \text{if } Y \to X\beta \in \mathcal{R} \\ [Y,i,j] & \text{if } Y \to X \in \mathcal{R} \end{cases}$$

Bottom-up Chart Parsing: Example

Det N V Det N

The dog hate the cat

Initialization:

Completion:

Dealing with compounds

Example on how to deal with compouds during initialization phase:

Complexity

still in $\mathcal{O}(n^3)$

What coefficient for n^3 ? (with respect to grammar parameters)

$$m(\mathcal{R}') \cdot |\mathcal{NT}| \cdot n^3$$

where $m(\mathcal{R}')$ the number of **internal** nodes of the trie of the right-hand sides of the **non-lexical** grammar rules

 \mathcal{NT} : the set of non-terminals

 \mathcal{R}' : the set of non-lexical grammar rules

Keypoints

- The way algorithms work (Earley items, linking, stepping, prediction, link CYK-Earley)
- worst-case complexity $\mathcal{O}(n^3)$
- Advantages and drawbacks of algorithms

References

[1] D. Jurafsky & J. H. Martin, *Speech and Language Processing*, pp. 377-385, Prentice Hall, 2000.

[2] R. Dale, H. Moisi, H. Somers, *Handbook of Natural Language Processing*, pp. 69-73, Dekker, 2000.

