The group G is isomorphic to the group labelled by [6,2] in the Small Groups library. Ordinary character table of $G\cong C6$:

	1a	6a	3a	2a	3b	6b
χ_1	1	1	1	1	1	1
χ_2	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$
χ_3	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)
χ_4	1	-1	1	-1	1	-1
χ_5	1	-E(3)	$E(3)^{2}$	-1	E(3)	$-E(3)^2$
χ_6	1	$-E(3)^2$	E(3)	-1	$E(3)^{2}$	-E(3)

Trivial source character table of $G \cong C6$ at p = 2:

Till the source character table of a country 2.										
Normalisers N_i	N_1			N_2						
p-subgroups of G up to conjugacy in G	P_1			P_2						
Representatives $n_j \in N_i$	1a	3b	3a	1a	3b	3a				
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	2	2	2	0	0	0				
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6$	2	2 * E(3)	$2 * E(3)^2$	0	0	0				
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6$	2	$2 * E(3)^2$	2 * E(3)	0	0	0				
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	1	1	1	1	1				
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	E(3)	$E(3)^{2}$	1	E(3)	$E(3)^{2}$				
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6$	1	$E(3)^{2}$	E(3)	1	$E(3)^{2}$	E(3)				

$$P_1 = Group([()]) \cong 1$$

$$P_2 = Group([(1, 2)]) \cong C2$$

$$N_1 = Group([(1,2),(3,4,5)]) \cong C6$$

 $N_2 = Group([(1,2),(3,4,5)]) \cong C6$