Appendix S6

Model predictions

A warming western boundary current increases the prevalence of commercially disruptive parasites in broadbill swordfish

Jessica A. Bolin, Karen J. Evans, David S. Schoeman, Claire M. Spillman, Thomas S. Moore II, Jason R. Hartog, Scott F. Cummins & Kylie L. Scales

Fisheries Oceanography

Table of Contents	
Figure S1	2
Figure S2	3
Figure S3	4
Figure S4	5
Figure S5	
Figure S6	7
Figure S7	8
Figure S8	9
Figure S9	10
Figure S10	11
Figure S11	12
Figure S12	13
Figure S13	14
Figure S14	15
Figure S15	16
Figure S16	17
Figure S17	18
Figure S18	
Figure S19	20
Figure S20	21
Figure S21	
Figure S22	23
Figure S23	24
Figure S24	25
Figure S25	
Figure S26	27

Figure S1

Seasonal predictions of the prevalence of infection, and the associated uncertainty for the Austral (a-d) summer, (e-h) autumn, (i-l) winter and (m-p) spring. Dashed white line is the continental shelf as depicted by the 200 m isobath. Solid white lines are outlines of seamounts and guyots (Harris et al. 2014). Dashed black line is the extent of the Exclusive Economic Zone (EEZ). The inset map in panel (h) outlines the study region in relation to the EEZ, coloured in green.

Figure S2

Seasonal predictions of the intensity of infection, and the associated uncertainty for the Austral (a-d) summer, (e-h) autumn, (i-l) winter and (m-p) spring. Dashed white line is the continental shelf as depicted by the 200 m isobath. Solid white lines are outlines of seamounts and guyots (Harris et al. 2014). Dashed black line is the extent of the Exclusive Economic Zone (EEZ). The inset map in panel (h) outlines the study region in relation to the EEZ, coloured in green.

Figure S3

Probability of harvesting an infected swordfish in January, and associated uncertainty metrics.

Figure S4Probability of harvesting an infected swordfish in February, and associated uncertainty metrics.

156°E

160°E

162°E

154°E

160°E

Figure S5

Probability of harvesting an infected swordfish in March, and associated uncertainty metrics.

March

Figure S6Probability of harvesting an infected swordfish in April, and associated uncertainty metrics.

Figure S7Probability of harvesting an infected swordfish in May, and associated uncertainty metrics.

Figure S8

Probability of harvesting an infected swordfish in June, and associated uncertainty metrics.

Figure S9Probability of harvesting an infected swordfish in July, and associated uncertainty metrics.

Figure S10

Probability of harvesting an infected swordfish in August, and associated uncertainty metrics.

Figure S11
Probability of harvesting an infected swordfish in September, and associated uncertainty metrics.

September

Figure S12

Probability of harvesting an infected swordfish in October, and associated uncertainty metrics.

October Standard deviation Mean 18°S Standard deviation Probability of infected of predictions (0-1) swordfish (%) 50 60 70 80 90 100 0 0.02 0.04 20°S 20°S 0.06 0.08 22°S 0.1 0.12 0.14 24°S 24°S 26°S 26°S 28°S 28°S 30°S 30°S 32°S 32°S Upper 95% CI Lower 95% CI 18°S 18°S Probability of infected Probability of infected swordfish (%) swordfish (%) 50 60 70 80 90 100 50 60 70 80 90 100 20°S 20°S 22°S 22°S 24°S 24°S 26°S 26°S

28°S

30°S

32°S

150°E

162°E

28°S

30°S

32°S

152°E

160°E

Figure S13

Probability of harvesting an infected swordfish in November, and associated uncertainty metrics.

November

Figure S14

Probability of harvesting an infected swordfish in December, and associated uncertainty metrics.

December

Figure S15

Predicted spore counts of infected swordfish in January, and associated uncertainty metrics.

Figure S16

Predicted spore counts of infected swordfish in February, and associated uncertainty metrics.

154°E

152°E

150°E

158°E

160°E

162°E

150°E

152°E

154°E

156°E

160°E

156°E

Figure S17

Predicted spore counts of infected swordfish in March, and associated uncertainty metrics.

March

 $\label{eq:Figure S18} \textbf{Predicted spore counts of infected swordfish in April, and associated uncertainty metrics.}$

Figure S19

Predicted spore counts of infected swordfish in May, and associated uncertainty metrics.

Figure S20
Predicted spore counts of infected swordfish in June, and associated uncertainty metrics.

Figure S21
Predicted spore counts of infected swordfish in July, and associated uncertainty metrics.

Figure S22

Predicted spore counts of infected swordfish in August, and associated uncertainty metrics.

Figure S23
Predicted spore counts of infected swordfish in September, and associated uncertainty metrics.

September

Figure S24

Predicted spore counts of infected swordfish in October, and associated uncertainty metrics.

October

Figure S25

Predicted spore counts of infected swordfish in November, and associated uncertainty metrics.

November

Figure S26

Predicted spore counts of infected swordfish in December, and associated uncertainty metrics.

December

