NYPD Data

pablo

4/29/2023

Importing the Data

library(tidyverse)

We read the data directly from the below URL, ad display the frist rows to get an idea of the schema.

```
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
              1.1.2
                       v readr
## v dplyr
                                    2.1.4
## v forcats
              1.0.0
                        v stringr
                                    1.5.0
## v ggplot2
              3.4.2
                        v tibble
                                    3.2.1
## v lubridate 1.9.2
                        v tidyr
                                    1.3.0
## v purrr
              1.0.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
```

```
url_i<-"https://data.cityofnewyork.us/api/views/833y-fsy8/rows.csv?accessType=DOWNLOAD"
d<-read.csv(url_i)
head(d)</pre>
```

```
##
     INCIDENT_KEY OCCUR_DATE OCCUR_TIME
                                             BORO LOC OF OCCUR DESC PRECINCT
## 1
        228798151 05/27/2021
                                21:30:00
                                           QUEENS
                                                                           105
## 2
        137471050 06/27/2014
                                17:40:00
                                            BRONX
                                                                            40
## 3
        147998800 11/21/2015
                                03:56:00
                                           QUEENS
                                                                           108
## 4
        146837977 10/09/2015
                                18:30:00
                                                                            44
                                            BRONX
## 5
         58921844 02/19/2009
                                22:58:00
                                            BRONX
                                                                            47
## 6
        219559682 10/21/2020
                                21:36:00 BROOKLYN
     JURISDICTION_CODE LOC_CLASSFCTN_DESC LOCATION_DESC STATISTICAL_MURDER_FLAG
## 1
                     0
                                                                             false
## 2
                     0
                                                                             false
                     0
## 3
                                                                              true
## 4
                     0
                                                                             false
## 5
                     0
                                                                              true
                                                                              true
     PERP_AGE_GROUP PERP_SEX PERP_RACE VIC_AGE_GROUP VIC_SEX
##
                                                                     VIC_RACE
## 1
                                                 18-24
                                                             М
                                                                         BLACK
## 2
                                                18-24
                                                             М
                                                                        BLACK
## 3
                                                25-44
                                                             М
                                                                         WHITE
```

```
## 4
                                                  <18
                                                            M WHITE HISPANIC
## 5
              25 - 44
                           M
                                 BLACK
                                                45-64
                                                                       BLACK
## 6
                                                25-44
                                                                       BLACK
     X_COORD_CD Y_COORD_CD Latitude Longitude
##
## 1
        1058925
                  180924.0 40.66296 -73.73084
        1005028
## 2
                  234516.0 40.81035 -73.92494
## 3
        1007668
                  209836.5 40.74261 -73.91549
                  244511.1 40.83778 -73.91946
## 4
        1006537
## 5
        1024922
                  262189.4 40.88624 -73.85291
                  186461.7 40.67846 -73.92795
## 6
        1004234
##
                                            Lon_Lat
## 1 POINT (-73.73083868899994 40.662964620000025)
## 2 POINT (-73.92494232599995 40.81035186300006)
## 3 POINT (-73.91549174199997 40.74260663300004)
     POINT (-73.91945661499994 40.83778200300003)
## 5 POINT (-73.85290950899997 40.88623791800006)
## 6 POINT (-73.92795224099996 40.678456718000064)
```

length(d\$INCIDENT_KEY)

[1] 27312

Next we check the class type of each column,

sapply(d,typeof)

OCCUR_TIME	OCCUR_DATE	INCIDENT_KEY	##
"character"	"character"	"integer"	##
PRECINCT	LOC_OF_OCCUR_DESC	BORO	##
"integer"	"character"	"character"	##
LOCATION_DESC	LOC_CLASSFCTN_DESC	JURISDICTION_CODE	##
"character"	"character"	"integer"	##
PERP_SEX	PERP_AGE_GROUP	STATISTICAL_MURDER_FLAG	##
"character"	"character"	"character"	##
VIC_SEX	VIC_AGE_GROUP	PERP_RACE	##
"character"	"character"	"character"	##
Y_COORD_CD	X_COORD_CD	VIC_RACE	##
"double"	"double"	"character"	##
Lon_Lat	Longitude	Latitude	##
"character"	"double"	"double"	##

We have to convert the dates from string to a date object

```
d['OCCUR_DATE2'] <- as.Date(d$OCCUR_DATE,"%m/%d/%Y")
head(d$OCCUR_DATE2)</pre>
```

```
## [1] "2021-05-27" "2014-06-27" "2015-11-21" "2015-10-09" "2009-02-19" ## [6] "2020-10-21"
```

We see that most of our variables are categorical, so it is better to expore by using frequenices. We can ignore the coordinates as we won't conduct a geostatistical analysis.

```
pct_na<-sapply(d,function(x){sum(is.na(x))/length(x)*100})
names <-names(d)

df<-data.frame(names,pct_na)
df</pre>
```

```
##
                                                        pct_na
                                             names
## INCIDENT_KEY
                                      INCIDENT_KEY 0.00000000
## OCCUR_DATE
                                        OCCUR_DATE 0.00000000
                                        OCCUR_TIME 0.00000000
## OCCUR_TIME
## BORO
                                              BORO 0.000000000
## LOC OF OCCUR DESC
                                 LOC OF OCCUR DESC 0.000000000
## PRECINCT
                                          PRECINCT 0.00000000
## JURISDICTION CODE
                                 JURISDICTION CODE 0.007322789
## LOC_CLASSFCTN_DESC
                                LOC_CLASSFCTN_DESC 0.000000000
## LOCATION DESC
                                     LOCATION_DESC 0.000000000
## STATISTICAL_MURDER_FLAG STATISTICAL_MURDER_FLAG 0.000000000
## PERP AGE GROUP
                                    PERP AGE GROUP 0.00000000
## PERP_SEX
                                          PERP_SEX 0.00000000
## PERP_RACE
                                         PERP_RACE 0.000000000
## VIC_AGE_GROUP
                                     VIC_AGE_GROUP 0.00000000
## VIC_SEX
                                           VIC_SEX 0.000000000
## VIC_RACE
                                          VIC_RACE 0.00000000
## X_COORD_CD
                                        X_COORD_CD 0.000000000
## Y_COORD_CD
                                        Y_COORD_CD 0.00000000
## Latitude
                                          Latitude 0.036613943
## Longitude
                                         Longitude 0.036613943
## Lon_Lat
                                           Lon_Lat 0.000000000
## OCCUR_DATE2
                                       OCCUR_DATE2 0.00000000
```

For the Categorical let's make a few frequencies

```
[1] "OCCUR_DATE"
                                   "OCCUR TIME"
   [3] "BORO"
##
                                   "LOC_OF_OCCUR_DESC"
   [5] "LOC_CLASSFCTN_DESC"
                                   "LOCATION_DESC"
   [7] "STATISTICAL_MURDER_FLAG" "PERP_AGE_GROUP"
##
                                   "PERP_RACE"
   [9] "PERP_SEX"
## [11] "VIC_AGE_GROUP"
                                   "VIC_SEX"
## [13] "VIC RACE"
                                   "Lon Lat"
## Warning: 'as.tibble()' was deprecated in tibble 2.0.0.
## i Please use 'as_tibble()' instead.
## i The signature and semantics have changed, see '?as_tibble'.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
## # A tibble: 5 x 2
##
     x
                        n
##
     <chr>
                    <dbl>
                   0.291
## 1 BRONX
## 2 BROOKLYN
                   0.400
```

```
## 3 MANHATTAN
                 0.131
## 4 QUEENS
                  0.150
## 5 STATEN ISLAND 0.0284
## # A tibble: 3 x 2
##
##
                <dbl>
    <chr>
## 1 ""
              0.937
## 2 "INSIDE" 0.00886
## 3 "OUTSIDE" 0.0540
## # A tibble: 10 x 2
##
     x
##
                      <dbl>
     <chr>
##
  1 ""
                   0.937
## 2 "COMMERCIAL" 0.00366
## 3 "DWELLING"
                   0.00465
## 4 "HOUSING"
                   0.0103
## 5 "OTHER"
                   0.00114
  6 "PARKING LOT" 0.000256
##
  7 "PLAYGROUND" 0.00110
## 8 "STREET"
                   0.0404
## 9 "TRANSIT"
                   0.000549
## 10 "VEHICLE"
                   0.000842
## # A tibble: 41 x 2
##
     х
                                 n
##
      <chr>>
                             <dbl>
  1 ""
                         0.548
##
   2 "(null)"
                         0.0358
##
   3 "ATM"
                         0.0000366
## 4 "BANK"
                         0.000110
## 5 "BAR/NIGHT CLUB"
                         0.0230
## 6 "BEAUTY/NAIL SALON" 0.00410
   7 "CANDY STORE"
##
                         0.000256
##
  8 "CHAIN STORE"
                         0.000183
## 9 "CHECK CASH"
                         0.0000366
## 10 "CLOTHING BOUTIQUE" 0.000513
## # i 31 more rows
## # A tibble: 2 x 2
##
    х
##
     <chr> <dbl>
## 1 false 0.807
## 2 true 0.193
## # A tibble: 11 x 2
##
     x
                       n
##
                   <dbl>
     <chr>>
  1 ""
##
               0.342
   2 "(null)" 0.0234
##
##
   3 "<18"
               0.0583
##
  4 "1020"
               0.0000366
## 5 "18-24"
               0.228
## 6 "224"
               0.0000366
## 7 "25-44"
               0.208
               0.0226
## 8 "45-64"
## 9 "65+"
               0.00220
## 10 "940"
               0.0000366
```

```
## 11 "UNKNOWN" 0.115
## # A tibble: 5 x 2
##
##
    <chr>>
             <dbl>
## 1 ""
             0.341
## 2 "(null)" 0.0234
## 3 "F"
            0.0155
## 4 "M"
             0.565
## 5 "U"
             0.0549
## # A tibble: 9 x 2
   x
                                            n
##
                                        <dbl>
   <chr>
## 1 ""
                                    0.341
## 2 "(null)"
                                    0.0234
## 3 "AMERICAN INDIAN/ALASKAN NATIVE" 0.0000732
## 4 "ASIAN / PACIFIC ISLANDER"
                                    0.00564
## 5 "BLACK"
                                    0.419
## 6 "BLACK HISPANIC"
                                    0.0481
## 7 "UNKNOWN"
                                    0.0672
## 8 "WHITE"
                                    0.0104
## 9 "WHITE HISPANIC"
                                    0.0857
## # A tibble: 7 x 2
##
   х
                   n
##
    <chr>
                <dbl>
## 1 <18
          0.104
## 2 1022
          0.0000366
## 3 18-24 0.369
## 4 25-44 0.450
## 5 45-64 0.0682
## 6 65+
          0.00663
## 7 UNKNOWN 0.00223
## # A tibble: 3 x 2
##
         n
##
   <chr> <dbl>
## 1 F
         0.0957
## 2 M
         0.904
## 3 U
          0.000403
## # A tibble: 7 x 2
## x
                                         n
   <chr>
##
## 1 AMERICAN INDIAN/ALASKAN NATIVE 0.000366
## 2 ASIAN / PACIFIC ISLANDER
                                  0.0148
## 3 BLACK
                                  0.712
## 4 BLACK HISPANIC
                                  0.0969
## 5 UNKNOWN
                                  0.00242
## 6 WHITE
                                  0.0256
## 7 WHITE HISPANIC
                                  0.148
                LOC_OF_OCCUR_DESC LOC_CLASSFCTN_DESC LOCATION_DESC
##
    BORO
## x character,5 character,3
                               character,10
                                                   character,41
## n numeric,5 numeric,3
                                 numeric,10
                                                   numeric,41
## STATISTICAL_MURDER_FLAG PERP_AGE_GROUP PERP_SEX PERP_RACE
                                                                 VIC_AGE_GROUP
## x character,2
                          character, 11 character, 5 character, 9 character, 7
                                          numeric,5 numeric,9 numeric,7
## n numeric,2
                           numeric,11
```

```
## VIC_SEX VIC_RACE
## x character,3 character,7
## n numeric,3 numeric,7
```

1.- We see that LOC_OF_OCCUR_DESC, LOC_CLASSFCTN_DESC have 93% missing so we can't use those columns. 2.- Sex of the perpetrator is empty for 36%, but it is safe to impute M 3.- Sex of the victim has no missing values and 90% is male.

So we see an obvious pattern, that males are way overrepresented as victims ad pepetrators in this type of violent crime. Which matches our intuition

Graphical Presentation of frequencies

Lets se the Frequencies Graphically

```
library(ggplot2)
ggplot(data=data)+geom_bar(aes(x=BORO))+ggtitle("Borough")
ggplot(data=data)+geom_bar(aes(x=PERP_AGE_GROUP))+ggtitle("Perpetrator Age Group")
ggplot(data=data)+geom_bar(aes(x=PERP_RACE))+ggtitle("Perpetrator Race")+coord_flip()
ggplot(data=data)+geom_bar(aes(x=VIC_RACE))+ggtitle("Victim Race")+coord_flip()
```


Seasonality

Lets group the events by month and see if there are any patterns

```
## # A tibble: 6 x 2
##
     df
##
     <date>
                 <int>
## 1 2006-01-01
                  129
                   97
## 2 2006-02-01
## 3 2006-03-01
                  102
## 4 2006-04-01
                  156
## 5 2006-05-01
                  173
## 6 2006-06-01
                  180
```



```
## # A tibble: 6 x 2
##
     mth
               n
##
     <ord> <int>
## 1 Jan
            1716
            1340
## 2 Feb
## 3 Mar
            1688
## 4 Apr
            1983
## 5 May
            2571
## 6 Jun
            2829
```


And we see a spike in Summer.

We see a clear Seasonality Patter.

Test Seasonality

We will try to figure out the seasonality

```
ts2<- d %>%
  group_by(df ) %>%
  summarise(n = n())
head(ts2)
## # A tibble: 6 x 2
##
     df
##
     <date>
                <int>
## 1 2006-01-01
                  129
## 2 2006-02-01
                   97
                  102
## 3 2006-03-01
## 4 2006-04-01
                  156
## 5 2006-05-01
                  173
## 6 2006-06-01
                  180
ts3<-ts(ts2$n,frequency = 12,start=c(2006,1))
plot(ts3)
```


ts_components <- decompose(ts3)
plot(ts_components)</pre>

Decomposition of additive time series

summary(ts_components)

```
##
            Length Class Mode
## x
            204
                    ts
                           numeric
## seasonal 204
                           numeric
                    ts
## trend
            204
                           numeric
## random
            204
                    ts
                           numeric
## figure
             12
                    -none- numeric
## type
              1
                    -none- character
```

Notice in trend the the downward slope and the structural breakdown due to COVID which caused asharp increase and brought us back to pre 2010 levels. We see a strong seasonality component

Below, we fit an arima model and we can see that the seasonal component is h

```
###
library(forecast)

## Registered S3 method overwritten by 'quantmod':
```

```
## method from
## as.zoo.data.frame zoo
```


plot(acf(ts3))

Series ts3

plot(pacf(ts3))

Series ts3


```
model<-auto.arima(ts3,seasonal = TRUE)
plot(model$fitted)
lines(ts3, col='red')</pre>
```


qqnorm(model\$residuals)

Normal Q-Q Plot

summary(model)

```
## Series: ts3
## ARIMA(1,0,0)(1,1,0)[12] with drift
##
## Coefficients:
##
                             drift
            ar1
                    sar1
         0.6803 -0.3835
##
                          -0.1351
## s.e. 0.0532
                  0.0689
                           0.4114
## sigma^2 = 917.1: log likelihood = -927.02
## AIC=1862.04 AICc=1862.25
                                BIC=1875.07
##
## Training set error measures:
                                                    MPE
                                                            MAPE
                         ME
                                 {\tt RMSE}
                                          MAE
                                                                      MASE
## Training set -0.02437165 29.14876 21.3069 -2.240472 16.99186 0.767672
                       ACF1
##
## Training set -0.08032225
```