GUIA DE UTILIZAÇÃO DO SOFTWARE NTT GEN (NETWORK TRANSPORT TOPOLOGY GENERATOR)

Marina Girolimetto, Rafael Augusto Galuppo, Claunir Pavan

Brazil, Chapecó (SC), março de 2013.

1 NTT Gen

O NTT Gen (Network Transport Topology Generator) é uma ferramenta para geração de topologias físicas para redes ópticas de transporte de telecomunicações. O software foi implementado em linguagem Java, utilizando API Graphstream e requer a Java Virtual Machine 7.0.

2 Como usar

Ao abrir o programa, irá aparecer a seguinte tela:

2.1 Lista de variáveis de entrada:

N = Número de nós.

É definido a quantidade de nós que cada topologia gerada terá.

(δ)_{max =} Grau máximo do nó.

É definido um grau máximo para se obter ligações apenas até este grau.

(δ)_{mín =} Grau mínimo do nó.

É definido um grau mínimo para se obter ligações até pelo menos a este grau.

I= Distância mínima entre nós.

É definido uma distância entre os nós para eles não ficarem tão próximos.

A = Raiz quadrada do plano

É definido uma área no plano para ser inserido os nós.

α = Parâmetro de probabilidade de ligação Waxman.

É definido este parâmetro através da probabilidade de ligação do modelo de Waxman.

β = Parâmetro de probabilidade de ligação Waxman.

É definido este parâmetro através da probabilidade de ligação do modelo de Waxman.

R = Número de regiões.

É definido um número para que o plano seja dividido em regiões menores.

 Φ = Número de simulações.

É definido um número para quantidade de simulações que o programa deve fazer.

S = Posição dos nós ("varied" ou "uniform")

É definido dois modos para inserir os nós no plano. No modo "varied" cada região pode receber uma quantidade diferente de nós. No modo "uniform" cada região recebe o mesmo número de nós (exceto quando N for ímpar).

Caracterization type = "specific" ou "general"

É definido dois modos de vizualização de resultados. No modo "specific" é mostrado os resultados de cada nó. No modo "general" é mostrado os resultados de cada topologia. Neste último, é padrão o cálculo do número médio de saltos do caminho de trabalho (h) e do número médio de saltos do caminho de backup (h').

Measures=

Betweenness Centrality = Medida de centralidade.

É definido como opcional esta medida de centralidade, que quantifica em quantos menores caminhos um nó está presente.

Node Degree = Grau do nó.

É definido como opcional verificar o grau dos nós das topologias.

2.2 Uso:

2.2.1) Indique valores para as variáveis de entrada.

Lembrando que, uma quantidade muito grande de nós pode resultar numa complexidade maior para o programa, causando uma espera pelo resultado final.

Exemplo:

N = 6; $\langle \delta \rangle_{max} = 3$; $\langle \delta \rangle_{min} = 2$; I = 1; A = 40; $\alpha = 0.4$; $\beta = 0.4$; R = 4; $\phi = 1$;

S = varied; Caracteration type = general; Measures: Betweenness Centrality; Node Degree;

2.2.2) Clique em "simulate".

No exemplo:

O programa irá criar um plano de 40x40, com 4 regiões divididas no plano, com 6 nósde grau máximo 3 e grau mínimo 2, possuindo um ponto de distância do nó com outros nós, com inserção de nós de modo variável, com probabilidades de Waxman 0.4 e 0.4, com a escolha de uma simulação, podendo receber de resultado uma caracterização mais geral das topologias geradas e mais as medidas.

2.2.3) O programa irá retornar dois arquivos.

Os arquivos gerados pelo programa serão criados dentro de uma pasta chamada "sims". Na plataforma Windows e no terminal do Linux, esta pasta estará localizada no mesmo diretório em que o programa está sendo executado. Na plataforma Linux (não pelo terminal), a pasta é criada no diretório do usuário.

A imagem abaixo mostra um dos arquivos do **exemplo**. Nele são registradas as posições dos nós no plano em coordenadas (x, y), junto com a informação das ligações das topologias e o comprimento de cada ligação.

Topolog 4 10 0 4 32 30	14 9 24 37 9 32	
Topolog From 0 0 1 1 2 3 4	TO 1 2 4 2 4 3 5 5 5	Lenght 7,81 10,77 28,44 18,03 22,00 13,60 26,48 23,09

Na seguinte imagem abaixo, é mostrado o outro arquivo das variáveis de entrada do **exemplo**, onde são armazenadas medidas como o número médio de saltos do caminho de trabalho $\langle h \rangle$, número médio de saltos do caminho de backup $\langle h' \rangle$, o grau do nó mínimo $\langle \langle \delta \rangle_{mín} \rangle$, médio $\langle \langle \delta \rangle_{avg} \rangle$ e máximo $\langle \langle \delta \rangle_{max} \rangle$ e o betweenness centrality minímo (bcMin), médio (bcMed) e máximo (bcMax) de cada topologia.

Id	nNodes	nEdges	h	h'	dMin	dMax	dMed	bcMin	bcMed	bcMax
Topology	6	8	1,467	2,800	2	3	2,167	1,000	2,167	4,000

• Se caso a opção escolhida for "specific" o programa retornaria no segundo arquivo, como é mostrado na imagem abaixo:

Topology	[1:1]			
id	x	у	degree	bc
0	10	10	3	3,000
1	8	7	2	0,000
2	0	30	2	0,000
3	6	30	2	0,000
4	25	3	3	3,000
5	22	27	4	12,000

obs: imagem de simulação diferente da anterior, porém com os mesmos dados.

- Se caso não tenha sido escolhido o betweenness centrality e/ou o node degree, eles apenas não são mostrados no segundo arquivo.
- 2.2.4) A partir daí é possível iniciar o programa denovo com novos valores de entrada ou clicar em "exit" para sair.