Section 10.8 052512.notebook May 25, 2012

Announcement:

Chapter 10 Test on Wednesday, 5/30!

Homework Review - 10.6

$$-4y^{2}-3y+3=2y+4$$

$$-2y-4-2y-4$$

$$-4y^{2}-5y-1=0$$

$$a=-4 b=-5 c=-1$$

$$\chi = \frac{-(-5)}{-5}-\frac{1}{5}-\frac{4}{4}-\frac{4}{1}$$

$$=\frac{5-\sqrt{9}}{-8}=\frac{5-3}{-8}=\frac{2}{-8}=-\frac{1}{4}$$
or
$$\frac{5+\sqrt{9}}{-8}=\frac{5+3}{-8}=\frac{8}{-8}=-1$$

$$\chi = \frac{-1}{4} \text{ or } \chi = -1$$

$$y = -46.7x^{2} + 169x + 2656$$

$$2,500 = -50x^{2} + 150x + 2656$$

$$-2,500 = -2500$$

$$-50x^{2} + 150x + 150 = -6$$

$$-50$$

$$-50$$

$$x^{3} - 3x = -0$$

$$x^{3} - 3x = -0$$

$$-(-3) \qquad 59 - 4(1)(150)$$

$$9 \qquad 3$$

Section 10.8 052512.notebook May 25, 2012

Comparing Linear, Exponential, and Quadratic graphs

Determining the type of function from ordered pairs:

4. (-2, 16), (-1, 8), (0, 4), (1, 2), (2, 1)

Exponential

5. (-3, 4), (-2, 0), (-1, -2), (0, -2), (1, 0)

Quadratic

Use Differences and Ratios to Determine

the Type of Function:

X	-2	-1	0	1	2			
y	-10	-7	-4	-1	2			
-7+10=3 -4+7= 2+1=								

	1-4	~	8-1 - 1	1-0	4-1
V	4	1	0	1	4
X	-1	0	1	2	3

X	0	1	2	3	4
y	1	5	25	125	625

V-values 2 Linear: constant difference (Same distance between y's)

Quadratic: constant second difference

(Same distance between the distances!)

Exponential: Constant ratio

$$\frac{5}{1}$$
 = $5\frac{25}{5}$ = $5\frac{125}{25}$ = $5\frac{625}{125}$ = $5\frac{625}{125}$ = $5\frac{625}{125}$

14.

X	-2	-1	0	1	2
y	32	8	2	$\frac{1}{2}$	$\frac{1}{8}$

Expofreakinential

$$\frac{3}{3} = \frac{1}{8} = \frac{1}{4}$$

$$\frac{1}{3} = \frac{1}{4} = \frac{1}{3} = \frac{1}{4}$$

$$\frac{1}{3} = \frac{1}{4} = \frac{1}{3} = \frac{1}{4}$$

$$\frac{1}{3} = \frac{1}{4} = \frac{1}{3} = \frac{1}{4} = \frac{1}{4}$$

$$\frac{1}{3} = \frac{1}{4} = \frac{1}$$

16.

X	-2	-1	0	1	2
<i>y</i>	1	3	5	7	9

a a a a a line honkar

Section 10.8 052512.notebook May 25, 2012

Write an Equation for the Function:

Use x,y coordinate pairs from the graph to determine the function (not 0,0)!

(assume quadratic is $y=ax^2$) 4=a(2) $4=a\cdot 4$ (assume exponential is $y=ab^x$;

pick the point where x = 0 to find a, then pick the point where x = 1 to find b)

15.

X	-2	-1	0	1	2
y	-4	-1	0	[-1]	-4

Quadratic
$$y=-x^{2}$$

14.

			15+	2 ~	
X	-2	-1	0	1	2
y	32	8	2	$\frac{1}{2}$	1/8

exponential

$$y=2\cdot\left(\frac{1}{4}^{\times}\right)$$

$$y = a \cdot b^{x}$$

$$2 = a \cdot b^{0} \quad (b^{0} = 1)$$

$$2 = a$$

$$y = 2 \cdot b^{x}$$

$$\frac{1}{2} = 2 \cdot b$$

$$3 = \frac{1}{4}$$

$$4 = \frac{1}{4}$$

Computer Value The value *V* of a computer between 1999 and 2003 is given in the table. Tell whether the data should be modeled by a *linear function*, an *exponential function*, or a *quadratic function*. Then write an equation for the function.

						_		
Years since 1999, 🔨	0	1	2	3	4			
Value, V (dollars)	800	725	650	575	500			
	-7	5 -	75 -	75-7	75			
		line						
$M = \frac{\lambda^2 \lambda^2}{\lambda^2 - \lambda^2}$		725	_%	50	_ 7	S		
$\frac{3}{X_2-X_1}$			~ <u>/</u>		$=\frac{1}{1}$	=-75		
			O					
M = -75	<+	>		U =-	75.	(+8M)		
800 = -75(0) + 6 $y = -75x + 800$								
SAN - 1		+P	L					
000 = P								

Homework:

p. 688, 3-5, 7-17 odd, 23, 27