

Time Series Analysis & Forecasting Using R

9. Dynamic regression

Outline

- 1 Regression with ARIMA errors
- 2 Some useful predictors
- 3 Dynamic harmonic regression
- 4 Lab Session 16
- 5 Forecasting with regressors
- 6 Lab Session 17

Outline

- 1 Regression with ARIMA errors
- 2 Some useful predictors
- 3 Dynamic harmonic regression
- 4 Lab Session 16
- 5 Forecasting with regressors
- 6 Lab Session 17

Time series regression

i Regression models

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \varepsilon_t,$$

- y_t modeled as function of k explanatory variables
- In regression, we assume that ε_t is white noise.

Time series regression

Regression models

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \varepsilon_t,$$

- y_t modeled as function of k explanatory variables
- In regression, we assume that ε_t is white noise.

Specify this model with TSLM().

Much like lm(), regressors are specified on the formula's right.

Regression with ARIMA errors

RegARIMA models

$$y_t = \beta_0 + \beta_1 x_{1,t} + \cdots + \beta_k x_{k,t} + \eta_t,$$

 $\eta_t \sim \mathsf{ARIMA}$

- Residuals are from ARIMA model.
- Estimate model in one step using MLE
- Select model with lowest AICc value.

Simply add regression terms to the ARIMA() formula's right.

Outline

- 1 Regression with ARIMA errors
- 2 Some useful predictors
- 3 Dynamic harmonic regression
- 4 Lab Session 16
- 5 Forecasting with regressors
- 6 Lab Session 17

i Linear trend

The time index is an effective predictor for trends. It can be added to models as a regressor with trend().

i Linear trend

The time index is an effective predictor for trends. It can be added to models as a regressor with trend().

Piecewise linear trend

Trends often change over time.
We can add changepoints in the trend with trend(knots = <times>).

i Dummy variables

Identify categories of observations with $\{0,1\}$ indicators. Useful for public holidays, special events & policy changes.

i Dummy variables

Identify categories of observations with $\{0,1\}$ indicators. Useful for public holidays, special events & policy changes.

i Dummy seasonality

Use dummy variables for each season.

It can be added to models as a regressor with season().

Fourier terms use sine and cosine harmonics to model seasonality.

It offers key advantages over dummy seasonality:

- Reduce model complexity
- Non-integer seasonality

Use fourier(K = ???) to add fourier seasonality with K harmonics to the model.

Outline

- 1 Regression with ARIMA errors
- 2 Some useful predictors
- 3 Dynamic harmonic regression
- 4 Lab Session 16
- 5 Forecasting with regressors
- 6 Lab Session 17

Dynamic harmonic regression

Capture seasonality with fourier terms instead of ARIMA PDQ().

Advantages

- all the benefits of fourier terms;
- supports multiple seasonality via multiple fourier terms;
- capture remaining dynamics with a simple ARMA model.

Disadvantages

seasonality cannot change over time.

```
aus_cafe <- aus_retail |>
  filter(
    Industry == "Cafes, restaurants and takeaway food services",
    year(Month) %in% 2004:2018
) |>
  summarise(Turnover = sum(Turnover))
aus_cafe |> autoplot(Turnover)
```


.model	sigma2	log_lik	AIC	AICc	BIC
K = 1	0.002	317	-616	-615	-588
K = 2	0.001	362	-700	-698	-661
K = 3	0.001	394	-763	-761	-725
K = 4	0.001	427	-822	-818	-771
K = 5	0.000	474	-919	-917	-875
K = 6	0.000	474	-920	-918	-875

Outline

- 1 Regression with ARIMA errors
- 2 Some useful predictors
- 3 Dynamic harmonic regression
- 4 Lab Session 16
- 5 Forecasting with regressors
- 6 Lab Session 17

Lab Session 16

Produce forecasts of preschool and school education jobs from the ABS payroll data (payroll_education).

```
payroll_education |>
  filter(Industry == "Preschool and School Education")
```

- Estimate a TSLM model with appropriate regression terms (trend, fourier harmonics, ...)
- Produce and visualise forecasts from this model
- Perform residual diagnostic checks on the model
- Instead use dynamic harmonic regression
- Do the residuals and forecasts look better?

Outline

- 1 Regression with ARIMA errors
- 2 Some useful predictors
- 3 Dynamic harmonic regression
- 4 Lab Session 16
- 5 Forecasting with regressors
- 6 Lab Session 17

Forecasting with regressors

i Additional regressors

Using additional information from other variables is a great way to enhance your time series model.

Add them the the formula just like lm().

Additional regressors in forecasting models can make it harder to produce forecasts. Why?

Forecasting with regressors

Future values

Future regressor values need to be given for forecasting.

Forecasting with regressors

Future values

Future regressor values need to be given for forecasting.

Advantages

- Future values could be known in advance.
- Forecasts under different scenarios can be compared.

Disadvantages

- Unknown future values also need forecasting.
- Forecasts ignore the uncertainty in predictors.

Sometimes a change in x_t does not affect y_t instantaneously

- y_t = sales, x_t = advertising.
- y_t = stream flow, x_t = rainfall.
- y_t = size of herd, x_t = breeding stock.

Sometimes a change in x_t does not affect y_t instantaneously

- y_t = sales, x_t = advertising.
- y_t = stream flow, x_t = rainfall.
- y_t = size of herd, x_t = breeding stock.
- These are dynamic systems with input (x_t) and output (y_t) .
- \blacksquare x_t is often a leading indicator.
- There can be multiple predictors.

The model include present and past values of predictor:

$$X_t, X_{t-1}, X_{t-2}, \ldots$$

$$y_t = a + \nu_0 x_t + \nu_1 x_{t-1} + \cdots + \nu_k x_{t-k} + \eta_t$$

where η_t is an ARIMA process.

The model include present and past values of predictor: $X_t, X_{t-1}, X_{t-2}, \ldots$

$$y_t = a + \nu_0 x_t + \nu_1 x_{t-1} + \cdots + \nu_k x_{t-k} + \eta_t$$

where η_t is an ARIMA process.

 \blacksquare x can influence y, but y is not allowed to influence x.

Use lag() on model regressors to lag them.

Model daily electricity demand as a function of temperature using quadratic regression with ARMA errors.

```
vic_elec_daily |>
  ggplot(aes(x = Temperature, y = Demand, colour = Day_Type)) +
  geom_point() +
  labs(x = "Maximum temperature", y = "Electricity demand (GW)")
```



```
vic_elec_daily |>
  pivot_longer(c(Demand, Temperature)) |>
  ggplot(aes(x = Date, y = value)) +
  geom_line() +
  facet_grid(vars(name), scales = "free_y")
```


28

```
fit <- vic_elec daily |>
  model(fit = ARIMA(Demand ~ Temperature + I(Temperature^2) +
    (Day Type == "Weekday")))
report(fit)
Series: Demand
Model: LM w/ ARIMA(2,1,2)(2,0,0)[7] errors
Coefficients:
        ar1 ar2 ma1 ma2 sar1 sar2 Temperature
     -0.1093 0.7226 -0.0182 -0.9381 0.1958 0.417 -7.614
s.e. 0.0779 0.0739 0.0494 0.0493 0.0525 0.057 0.448
     I(Temperature^2) Day_Type == "Weekday"TRUE
             0.1810
                                      30.40
                                       1.33
s.e.
             0.0085
sigma^2 estimated as 44.91: log likelihood=-1206
ATC=2432 ATCc=2433
                   BTC=2471
```

```
augment(fit) |>
  gg_tsdisplay(.resid, plot_type = "histogram")
```



```
fit |>
  forecast(h = 14)

Error in `mutate()`:
  i In argument: `fit = (function (object, ...) ...`.
Caused by error in `value[[3L]]()`:
! object 'Temperature' not found
  Unable to compute required variables from provided `new_data`.
  Does your model require extra variables to produce forecasts?
```

More information needed

Our model depends on Temperature and Day_Type. To produce forecasts, we need to also provide future values for these variables.

i 2 more variables: Temperature <dbl>, Day_Type <chr>

```
# Forecast two weeks ahead.
vic_elec_future <- new_data(vic_elec_daily, 14) |>
 mutate(
   Temperature = 26,
   Holiday = c(TRUE, rep(FALSE, 13)),
   Day_Type = case_when(
      Holiday ~ "Holiday",
     wday(Date) %in% 2:6 ~ "Weekday",
     TRUE ~ "Weekend"
```

Scenario forecasting

Instead of forecasting most-likely values for regressors, it can be worthwhile forecasting worst-case scenarios to adequately prepare.

```
forecast(fit, vic_elec_future) |>
  autoplot(vic_elec_daily) + labs(y = "Electricity demand (GW)")
```


Consider the total school students aged 15-19 in Australia.

```
working_age_school_students <- student_labour |>
  filter(attendance == "Attending school (aged 15-19 years)") |>
  summarise(persons = sum(persons))
working_age_school_students |> autoplot(persons)
```


Without capturing the policy change, the forecasts are biased.

```
working_age_school_students |>
  model(ARIMA(persons ~ fourier(K = 3))) |>
  forecast(h = "10 years") |>
  autoplot(working_age_school_students)
```


Add dummy variable for the change in 2013 that interacts with the seasonality.

```
fit_policy <- working_age_school_students |>
  mutate(new_policy = month >= yearmonth("2013 Jan")) |>
  model(ARIMA(persons ~ new_policy*fourier(K = 3)))
report(fit_policy)
```

```
Series: persons
Model: LM w/ ARIMA(0.1.1)(2.0.0)[12] errors
Coefficients:
         ma1
                sar1 sar2 new policyTRUE fourier(K = 3)C1 12
      -0.3537 0.4544 0.3826
                                      -38178
                                                           -47610
s.e.
    0.0463 0.0436 0.0445
                                       10015
                                                             5302
      fourier(K = 3)S1_12 fourier(K = 3)C2_12 fourier(K = 3)S2_12
                  -41123
                                       -24555
                                                              2573
s.e.
                    5346
                                         3368
                                                              3371
```

The policy is expected to continue into the future.

```
future_policy <- new_data(working_age_school_students, 120) |>
   mutate(new_policy = TRUE)
fit_policy |>
   forecast(new_data(working_age_school_students, 120) |> mutate(new_policy = TRUE))
   autoplot(working_age_school_students)
```


Outline

- 1 Regression with ARIMA errors
- 2 Some useful predictors
- 3 Dynamic harmonic regression
- 4 Lab Session 16
- 5 Forecasting with regressors
- 6 Lab Session 17

Lab Session 17

What if the 2013 policy was later reverted, what would you expect the forecasts to be?

Produce forecasts from a scenario in which this policy was reverted in 2030.

Hint: Use new_data() to create the future time points, and mutate() a date comparison to create the future dummy variable values.

Visualise the forecasts, are they realistic?

Forecasting unkown scenarios

capped at 270,000 next year

Forecasting unkown scenarios

```
student_labour |>
  filter(attendance == "Attending tertiary educational institution full-time") |>
  summarise(persons = sum(persons)) |>
  autoplot(persons)
```


Forecasting unknown scenarios

- How would we forecast something without history?
 - Judgemental forecasting with expert opinions
 - Incorporate limits into the model (will these limits be met by demand?)
 - Forecast more disaggregated data separately