PROBLEM SHEET 1: REVIEW OF DIFFERENTIATION

1. Differentiate the following functions using the rules.

(i)
$$4x^7 + 9x^5 - x^3 + 2x^2 + 11$$
; (ii) $\frac{x^2 + 3x + 2}{x^4 + x^2 + 1}$; (iii) $(x^2 + 7x + 1)(x^3 - x^2 - x)$;
(iv) $\frac{1}{x^2 + 1}$; (v) $\frac{1}{x + 1}$; (vi) $x^4 + \sin(x)$; (vii) $\frac{1}{x^2 + 1} + x^5 \cos(x)$;
(viii) $\frac{1}{2 + \cos(x)}$; (ix) $\frac{x \sin(x)}{1 + x^2}$; (x) $\frac{x + \sqrt{x}}{\sin(x)}$.

2. Differentiate the following functions using the power rule:

(i)
$$x^{10} + 3x^7 + \frac{1}{2}x^5 + 14x^2$$
; (ii) $x^{1/3} + 2x^{1/4}$; (iii) $\frac{1}{x^2} + \frac{1}{x^6}$; (iv) $2\sqrt{x} + \sqrt[3]{x}$
(v) $\frac{1}{\sqrt[4]{x^3}}$; (vi) $\frac{\sqrt{x}}{x^{1/6} \cdot \sqrt[3]{x}}$; (vii) x^{π} .

3. Use the chain rule to differentiate the functions

(i)
$$\sin(x^3 - 5x^2)$$
; (ii) $\tan(\frac{1}{x^4 + 2})$; (iii) $5\cos^6(2x + 1)$;
(iv) $\exp(\tan(x))$; (v) $\sqrt{1 + 2x^2}$; (vi) $(\frac{x^5}{4} + \frac{1}{x} + 2x)^3$; (vii) $\cot(\frac{1}{x^3})$.

4. Use the chain rule to differentiate the functions

(i)
$$(x^2 + 1)^{10}$$
; (ii) $\frac{\sin^2(x)}{\sin(2x)}$; (iii) $\sqrt{1 + \sqrt{x}}$;
(iv) $\exp(x^3 - 1)$; (v) $\ln(\sin(x))$; (vi) $\tan(x^3)$;

- 5. Find the extreme values of $f(x) = x^3 12x 5$. Determine whether they are maximum or minimum points.
- 6. The height of an object moving vertically is given by

$$H(t) = -16t^2 + 96t + 112$$

where H(t) is the height at time t. (H is measured in metres and t is measured in seconds.) Find: (i) the object's velocity when t = 0; (ii) its maximum height and when it occurs; (iii) its velocity when H = 0.

Differentiation rules

Addition rule

$$\frac{d}{dx}(f(x) + g(x)) = \frac{d}{dx}f(x) + \frac{d}{dx}g(x) \qquad \text{or} \quad (f+g)' = f' + g'$$

Product Rule:

$$\frac{d}{dx}(f(x)g(x)) = \left(\frac{d}{dx}f(x)\right)g(x) + f(x)\left(\frac{d}{dx}g(x)\right) \quad \text{or} \quad (fg)' = f'g + fg'$$

Quotient rule

$$\frac{d}{dx}\frac{f(x)}{g(x)} = \frac{g(x)\frac{d}{dx}f(x) - f(x)\frac{d}{dx}g(x)}{g(x)^2} \quad \text{or} \quad (\frac{f}{g})' = \frac{gf' - fg'}{g^2}$$

Chain rule:

$$\frac{d}{dx}\left(f(g(x)) = \frac{df}{dx}(g(x)).\frac{d}{dx}g(x) \qquad \text{or} \quad (f(g))' = f'(g).f'$$

Derivatives of elementary functions

f(x)	f'(x)
x^n	nx^{n-1} (Power rule)
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$1/\cos^2 x = 1 + \tan^2 x$
$\cot x$	$-1/\sin^2 x = -(1 + \cot^2 x)$
e^x	e^x
a^x	$a^x(\ln a)$
ln(x)	$\frac{1}{x}$
$\log_a(x)$	$\frac{1}{x \ln a}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$

Maximum and minimum points

A point x_0 such that $f'(x_0) = 0$ is called a **critical point** or **extreme point** of the function f. Recall the **Second Derivative Test for Extreme Points**:

If $f'(x_0) = 0$ and $f''(x_0) < 0$ then x_0 is a maximum point.

If $f'(x_0) = 0$ and $f''(x_0) > 0$ then x_0 is a minimum point.