

Fast Plane Extraction in Organized Point Clouds Using Agglomerative Hierarchical Clustering

Chen Feng¹⁾, Yuichi Taguchi²⁾, and Vineet R. Kamat¹⁾

1) University of Michigan, USA

2) Mitsubishi Electric Research Labs, USA

June 4, 2014

Outline

Introduction

Overview

Breakdown

Experiments

Conclusions

- Real-time plane extraction is crucial to various applications in robotics, computer vision, and 3D modeling:
 - Table-top object manipulation
 - Landmarks for SLAM
 - Compact and semantic scene modeling

 Real-time plane extraction is crucial to various applications in robotics, computer vision, and 3D modeling:

- Table-top object manipulation
- Landmarks for SLAM
- Compact and semantic scene modeling
- We present an efficient and reliable fast plane extraction algorithm applicable to organized point clouds, such as depth maps obtained by Kinect sensors.

Introduction Overview Breakdown Experiments Conclusion

- RANSAC-based
 - "Surfels" from Hough Transform (Oehler et al. 2011)
 - RANSAC on local region (Taguchi et al. 2013; Hulik et al. 2012; Lee et al. 2012)

- RANSAC-based
 - "Surfels" from Hough Transform (Oehler et al. 2011)
 - RANSAC on local region (Taguchi et al. 2013; Hulik et al. 2012; Lee et al. 2012)
- Region-grow-based
 - Point-plane distance/MSE threshold (Hahnel et al. 2003; Poppinga et al. 2008)
 - Surface normal deviation threshold (Holz & Behnke 2012)
 - Line segments grow (Georgiev et al. 2011)

- RANSAC-based
 - "Surfels" from Hough Transform (Oehler et al. 2011)
 - RANSAC on local region (Taguchi et al. 2013; Hulik et al. 2012; Lee et al. 2012)
- Region-grow-based
 - Point-plane distance/MSE threshold (Hahnel et al. 2003; Poppinga et al. 2008)
 - Surface normal deviation threshold (Holz & Behnke 2012)
 - Line segments grow (Georgiev et al. 2011)
- Graph-based (Strom et al. 2010; Wang et al. 2013)

- RANSAC-based
 - "Surfels" from Hough Transform (Oehler et al. 2011)
 - RANSAC on local region (Taguchi et al. 2013; Hulik et al. 2012; Lee et al. 2012)
- Region-grow-based
 - Point-plane distance/MSE threshold (Hahnel et al. 2003; Poppinga et al. 2008)
 - Surface normal deviation threshold (Holz & Behnke 2012)
 - Line segments grow (Georgiev et al. 2011)
- Graph-based (Strom et al. 2010; Wang et al. 2013)
- Other
 - Normal space clustering (Holz et al. 2011)
 - Gradient-of-depth feature (Enjarini et al. 2012)

- Analogy to Line Regression (Nguyen et al. 2005; April Robotics Toolkit, 2010)
 - Exploit the neighborhood information given by the order of points

- Analogy to Line Regression (Nguyen et al. 2005; April Robotics Toolkit, 2010)
 - Exploit the neighborhood information given by the order of points

- Analogy to Line Regression (Nguyen et al. 2005; April Robotics Toolkit, 2010)
 - Exploit the neighborhood information given by the order of points

- Analogy to Line Regression (Nguyen et al. 2005; April Robotics Toolkit, 2010)
 - Exploit the neighborhood information given by the order of points

- Analogy to Line Regression (Nguyen et al. 2005; April Robotics Toolkit, 2010)
 - Exploit the neighborhood information given by the order of points

- Analogy to Line Regression (Nguyen et al. 2005; April Robotics Toolkit, 2010)
 - Exploit the neighborhood information given by the order of points

Non-trivial Generalization to 3D

- Non-trivial Generalization to 3D
 - None-overlapping nodes

- Non-trivial Generalization to 3D
 - None-overlapping nodes

- Non-trivial Generalization to 3D
 - None-overlapping nodes

Number of merging attempts≤2

- Non-trivial Generalization to 3D
 - None-overlapping nodes

Number of merging attempts

Algorithm Overview

Algorithm Overview

Graph Initialization

- Graph Initialization
 - Non-overlapping node initialization

- Graph Initialization
 - Non-overlapping node initialization
 - Rejecting "bad" nodes

- Graph Initialization
 - Non-overlapping node initialization
 - Rejecting "bad" nodes

- Graph Initialization
 - Non-overlapping node initialization
 - Rejecting "bad" nodes

1) High MSE

- Graph Initialization
 - Non-overlapping node initialization
 - Rejecting "bad" nodes

- Graph Initialization
 - Non-overlapping node initialization
 - Rejecting "bad" nodes

ntroduction Overview Breakdown Experiments Conclusion

- Graph Initialization
 - Non-overlapping node initialization
 - Rejecting "bad" nodes

- Good! Avoid per-point normal estimation

1 Cluster Step(s)

MSE node

1 Cluster Step(s)

2 Cluster Step(s)

Agglomerative Hierarchical Clustering

3 Cluster Step(s)

Agglomerative Hierarchical Clustering

300 Cluster Step(s)

Agglomerative Hierarchical Clustering

472 Cluster Step(s)

Average Number of Merging Attempts

- Average Number of Merging Attempts
 - Small irrespective of initial number of nodes

- Average Number of Merging Attempts
 - Small irrespective of initial number of nodes
 - Planar graph! Average node degree < 6</p>

- Average Number of Merging Attempts
 - Small irrespective of initial number of nodes
 - Planar graph! Average node degree < 6</p>
 - Merging is empirically a constant-time operation
 - O(nlogn), only arise from maintaining the min-heap

Implementation Details

- Implementation Details
 - Disjoint set

- Implementation Details
 - Disjoint set
 - Min-heap

- Implementation Details
 - Disjoint set
 - Min-heap
 - Second-order statistics

- Implementation Details
 - Disjoint set
 - Min-heap
 - Second-order statistics
 - Depth discontinuity/MSE threshold (Holzer et al. IROS 2012; Khoshelham & Elberink, 2012)

- Implementation Details
 - Disjoint set
 - Min-heap
 - Second-order statistics
 - Depth discontinuity/MSE threshold (Holzer et al. IROS 2012; Khoshelham & Elberink, 2012)
 - Avoid strip-like initial node shape

Segmentation Refinement

- Segmentation Refinement
 - Artifacts

- Segmentation Refinement
 - Artifacts

- Segmentation Refinement
 - Artifacts

- Segmentation Refinement
 - Artifacts

- Pixel-wise region-grow refinement
 - Only check boundary blocks and points

- Segmentation Refinement
 - Artifacts

Only check boundary blocks and points

Simulated Data

- Robustness to uniformly distributed depth noise (Georgiev et al., IROS 2011)
- Noise magnitude E = 0, 10, ..., 200mm
- Ground truth depth ranges from 1396mm to 3704mm

- Real-World Kinect Data
 - 2102 frames of an indoor scene
 - $-640 \times 480 \text{ pixel/frame}$

Real-World Kinect Data

- 2102 frames of an indoor scene
- $-640 \times 480 \text{ pixel/frame}$

Real-World Kinect Data

Algorithm Breakdown

1) Graph Initialization

• SegComp Datasets (Hoover et al. PAMI 1996)

- ABW-TEST

— PERCEPTRON-TEST

• SegComp Benchmark (Gotardo et al. CVPR 2003; Oehler et al.

ICIRA 2011; Holz & Behnke IAS 2012)

Approach	Regions in	Correctly	Orientation	Over-	Under-	Missed	Noise
Approach	_						
	ground truth	detected	deviation (°)	segmented	segmented	(not detected)	(non-existent)
SegComp ABW data set (30 test images) by Hoover et al. [26], assuming 80% pixel overlap as in [27]							
USF [27]	15.2	12.7 (83.5%)	1.6	0.2	0.1	2.1	1.2
WSU [27]	15.2	9.7 (63.8%)	1.6	0.5	0.2	4.5	2.2
UB [27]	15.2	12.8 (84.2%)	1.3	0.5	0.1	1.7	2.1
UE [27]	15.2	13.4 (88.1%)	1.6	0.4	0.2	1.1	0.8
OU [27]	15.2	9.8 (64.4%)	_	0.2	0.4	4.4	3.2
PPU [27]	15.2	6.8 (44.7%)	_	0.1	2.1	3.4	2.0
UA [27]	15.2	4.9 (32.2%)	_	0.3	2.2	3.6	3.2
UFPR [27]	15.2	13.0 (85.5%)	1.5	0.5	0.1	1.6	1.4
Oehler et al. [2]	15.2	11.1 (73.0%)	1.4	0.2	0.7	2.2	0.8
Holz et al. [8]	15.2	12.2 (80.1%)	1.9	1.8	0.1	0.9	1.3
Ours	15.2	12.8 (84.2%)	1.7	0.1	0.0	2.4	0.7
SegComp PERCEPTRON data set (30 test images) by Hoover et al. [26], assuming 80% pixel overlap as in [27]							
USF [27]	14.6	8.9 (60.9%)	2.7	0.4	0.0	5.3	3.6
WSU [27]	14.6	5.9 (40.4%)	3.3	0.5	0.6	6.7	4.8
UB [27]	14.6	9.6 (65.7%)	3.1	0.6	0.1	4.2	2.8
UE [27]	14.6	10.0 (68.4%)	2.6	0.2	0.3	3.8	2.1
UFPR [27]	14.6	11.0 (75.3%)	2.5	0.3	0.1	3.0	2.5
Oehler et al. [2]	14.6	7.4 (50.1%)	5.2	0.3	0.4	6.2	3.9
Holz et al. [8]	14.6	11.0 (75.3%)	2.6	0.4	0.2	2.7	0.3
Ours	14.6	8.9 (60.9%)	2.4	0.2	0.2	5.1	2.1

 We presented an efficient plane extraction algorithm based on agglomerative clustering for organized point clouds.

- We presented an efficient plane extraction algorithm based on agglomerative clustering for organized point clouds.
- We analyzed the complexity of the clustering algorithm and shown that it is log-linear in the number of initial nodes.

- We presented an efficient plane extraction algorithm based on agglomerative clustering for organized point clouds.
- We analyzed the complexity of the clustering algorithm and shown that it is log-linear in the number of initial nodes.
- We demonstrated real-time performance with the accuracy comparable to state-of-the-art algorithms.

Acknowledgement

- MERL
 - Jay Thornton
 - Srikumar Ramalingam
- Rackham Graduate School, University of Michigan
- NSF Student Travel Grant

Chen Feng (in Chinese: 冯晨) PhD Candidate

Department of Civil and Environmental Engineering University of Michigan, Ann Arbor

E-mail: cforrest@umich.edu

Web: http://www.umich.edu/~cforrest/

