Contents

Crystal Structure	Bloch Electron in a Magnetic Field
Symmetries of a Bravais Lattice	Bloch Oscillations
Examples of Bravais Lattices	Energy Band Occupation and Conduction
Reciprocal Lattice	The Effective Mass Tensor
Reciprocal Lattices of Common BLs	
Lattice Plates	Semiconductors
X-Ray Scattering from Crystals	Homogeneous Semiconductors
Bragg Formulation of Scattering	Carrier Densities in Homogeneous SC
Von Laue Formulation of Scattering	Intrinsic Semiconductors
Structure Factors	Doped Homogeneous Semiconductors
	Carrier Densities in Doped Semiconductors
Free Electrons	Dopant Energy Levels
Sommerfeld Free Electron Theory	Occupation Statistics of Donor Levels
Density of Levels	Carrier Concentrations in Doped SCs
Sommerfeld Expansion	The p-n Junction
Drude Model of Conduction	Mathematical Analysis of the p-n Junction
Electrone in a Desir dia Detential	p-n Junction's Equilibrium $I(V)$ Characteristic
Electrons in a Periodic Potential	p in dunionist Equinorium 1(v) ontaraccoristic
Bloch's Theorem	Lattice Oscillations
Proof of Bloch's Theorem Using Translation	Classical Theory of Lattice Oscillations
Operators	One-Dimensional, Monoatomic Lattice
Bloch's Theorem: Quantization of k Space	1D Lattice with a Diatomic Basis
Proof of Bloch's Theorem by Explicit Construc-	Quantum Theory of Lattice Oscillations
tion	One-Dimensional, Monoatomic Lattice
Generalized Density of Levels	Hamiltonian as Sum of Uncoupled Oscillators .
Nearly-Free Electron Model	Internal Energy and Heat Capacity
Weak Potential and Nondegenerate Solution	Debye Approximation
Weak Potential and Degenerate Solutions	Introduction to Anharmonic Effects
The Tight-Binding Model	Thermal Expansion in a 1D Lattice
Semiclassical Electron Dynamics	
The Bloch Equations	Kinetic Theory of Phonon Heat Conduction

Crystal Structure

Crystals are solid-state materials whose microscopic building blocks (e.g. atoms, molecules, ions, etc...) are arranged in a well-defined, highly-ordered geometric structure.

Crystal structure is analyzed in terms of *Bravais lattices*.

Bravais Lattice

A Bravais lattice Λ is the set of points $\{\mathbf{R}\} \subset \mathbb{R}^3$ given by $\Lambda \equiv \{\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3 \mid n_i \in \mathbb{Z}\}$, where... $n_1, n_2, n_3 \in \mathbb{Z}$ are arbitrary integers

 a_1, a_2, a_3 are linearly independent vectors spanning the Bravais lattice and are called *primitive vectors*.

- A set of primitive vectors $\{a_1, a_2, a_3\}$ specifies a unique Bravais lattice. However, the choice of $\{a_i\}$ used to describe a given Bravais lattice is not unique.
- A Bravais lattice appears identical when viewed from any lattice point for any fixed viewing direction.
- A Bravais lattice is a discrete set of non-coplanar vectors closed under addition and subtraction.

A Bravais lattice's coordination number is the number of lattice sites closer to any given lattice site \mathbf{R}_0 than to any other point in the lattice (the number of nearest neighbor sites any point in the lattice has).

Primitive Unit Cell

The smallest region of space that repeats periodically throughout a crystal is called a *primitive unit cell*.

The positions of a crystal's PUCs are given by a Bravais lattice. $\Lambda = \{ \mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3 \}$ (positions of PUCs) Mathematical definition: the crystal's PUC is the smallest region of space the tesselates the ambient space \mathbb{R}^3 when

translated by linear combinations of the primitive vectors a_i .

Basis

The positions of physical atoms within each PUC are given by a basis—a set of vectors $\{d_j\}$ given the positions of atoms in the PUC relative to the lattice site.

A crystal with M atoms per PUC has M basis vectors $\{d_j\}_{j=1}^M$ The positions of atoms forming a crystal are specified with a Bravais lattice together with a basis at each lattice point.

$$r_n^{(j)} = n_1 \boldsymbol{a}_1 + n_2 \boldsymbol{a}_2 + n_3 \boldsymbol{a}_3 + \boldsymbol{d}_j$$
 (position of atoms)
(for $\boldsymbol{n} = (n_1, n_2, n_3)$)

Primitive Unit Cell Properties

Consider a crystal whose PUC positions are given by the BL $\Lambda = \{ \mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3 \}$ (positions of PUCs)

- PUCs contain exactly on lattice point
- The configuration of atoms is identical in every PUC
- ullet All PUCs have the same volume V_0

 $V_0 = |\boldsymbol{a}_1 \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3)|$ (volume of a PUC) Interpretation: V_0 is the volume of the parallelepiped spanned by the Bravais lattice's primitive vectors $\{\boldsymbol{a}_i\}$.

Parallelepiped Unit Cell

The region of space spanned by a BL's primitive vectors Mathematically: the region $\Omega_{\rm pp} \subset \mathbb{R}^3$ given by $\Omega_{\rm pp} \equiv \{ \boldsymbol{r} = x_1 \boldsymbol{a}_1 + x_2 \boldsymbol{a}_2 + x_3 \boldsymbol{a}_3; \ x_i \in [0,1) \}$

Conventional Unit Cell

Constructed to display lattice's full symmetry properties Generally larger than primitive unit cell Volume is an integer multiple of PUC volume V_0

Wigner-Seitz Unit Cell

The region of space for which a given site in the Bravais lattice is the closest lattice point

Mathematically: the region $\Omega_{WS} \subset \mathbb{R}^3$ given by

 $\Omega_{\mathrm{WS}} \equiv \{ \boldsymbol{r} \in \mathbb{R}^3 \colon |\boldsymbol{r}| < |\boldsymbol{r} - \boldsymbol{R}| \text{ for all } \boldsymbol{R} \in \Lambda \}$

(assuming the origin coincides with a lattice site)

Construction:

- 1. Choose a lattice point in the BL as the origin
- 2. Draw lines connecting origin to all nearest-neighbor lattice sites
- 3. Draw perpendicularly bisecting planes through above lines. The Wigner-Seitz PUC is region bounded by the bisecting planes

The Wigner-Seitz cell preserves the lattice's full set of point symmetries.

Symmetries of a Bravais Lattice

Translation Symmetry

Consider a Bravais lattice with primitive vectors $\{a_1, a_2, a_3\}$ $\mathbf{T}_{\boldsymbol{n}} = n_1 \boldsymbol{v}_1 + n_2 \boldsymbol{v}_2 + n_3 \boldsymbol{v}_3$ (general translation operator) $v_i \in \mathbb{R}^3$ are arbitrary vectors

 $n = (n_1, n_2, n_3)$ where $n_1, n_2, n_3 \in \mathbb{Z}$

 \mathbf{T}_n represents a translation of the Bravais lattice's origin from the original position r = 0 the new position $r' = n_i v_i$

Bravais lattices are invariant under translations by the primitive vectors, i.e. under translations of the form...

$$\mathbf{T}_n = n_1 + \boldsymbol{a}_1 + n_2 \boldsymbol{a}_2 + n_3 \boldsymbol{a}_3$$
 (BL invariant if $\{\boldsymbol{v}_i\} = \{\boldsymbol{a}_i\}$)

Point Symmetries

At least on point in the lattice remains in the same position after a point operation

Examples include:

- Rotation
- Reflection
- Inversion
- Improper rotation (rotation with reflection)

Rotation: an n-fold rotation is rotation that maps a lattice back into its original position when repeated n times.

The angle of an *n*-fold rotation is $\theta_n = 2\pi/n$.

Examples of Bravais Lattices

Simple Cubic (SC)

The conventional (and primitive) unit cell is a cube with side lengths a and lattice sites at each cube vertex.

Wigner-Seitz cell is a cube centered on a lattice site

Example: Polonium

 $\boldsymbol{a}_1 = a\,\hat{\mathbf{x}}$

 $\mathbf{a}_2 = a\,\hat{\mathbf{y}}$

 $\mathbf{a}_3 = a\,\hat{\mathbf{z}}$

Body-Centered Cubic (BCC)

The conventional unit cell is a cube with side lengths a. Lattice sites occur at each cube vertex and at cube center Wigner-Seitz cell is a truncated octahedron

Examples: Ba, Cr, Cs, Fe, K

 $N_{\rm c}=8$

(coordination number)

(coordination number)

$$\mathbf{a}_1 = a\,\hat{\mathbf{x}}$$
 $\mathbf{a}_1 = \frac{a}{2}(\hat{\mathbf{y}} + \hat{\mathbf{z}} - \hat{\mathbf{x}})$

$$egin{aligned} oldsymbol{a}_2 &= a\,\hat{\mathbf{y}} & oldsymbol{a}_2 &= rac{a}{2}(\hat{\mathbf{z}} + \hat{\mathbf{x}} - \hat{\mathbf{y}}) \ oldsymbol{a}_3 &= rac{a}{2}(\hat{\mathbf{x}} + \hat{\mathbf{y}} + \hat{\mathbf{z}}) & oldsymbol{a}_3 &= rac{a}{2}(\hat{\mathbf{x}} + \hat{\mathbf{y}} - \hat{\mathbf{z}}) \end{aligned}$$

$$a_3 = \frac{a}{2}(\hat{\mathbf{x}} + \hat{\mathbf{y}} + \hat{\mathbf{z}})$$
 $a_3 = \frac{a}{2}(\hat{\mathbf{x}} + \hat{\mathbf{y}} - \hat{\mathbf{y}})$

Face-Centered Cubic (FCC)

The conventional unit cell is a cube with side lengths a.

Lattice sites occur at each cube vertex and at the center of each cube face

Wigner-Seitz cell is a rhombic dodecahedron

Examples: Ar, Ag, Au, Ca, Ce

(coordination number)

 $\mathbf{a}_1 = \frac{a}{2}(\hat{\mathbf{y}} + \hat{\mathbf{z}})$ $\mathbf{a}_2 = \frac{a}{2}(\hat{\mathbf{x}} + \hat{\mathbf{z}})$

 $\mathbf{a}_3 = \frac{a}{2}(\hat{\mathbf{x}} + \hat{\mathbf{y}})$

Diamond Structure

Structure: two FCC lattice superimposed on each other, with one shifted relative to the other along the main body diagonal by one fourth of the body diagonal length.

Formulation: FCC primitive vectors plus the basis $d_1 = 0$ and $\mathbf{d}_2 = \frac{a}{4}(\hat{\mathbf{x}} + \hat{\mathbf{y}} + \hat{\mathbf{z}})$

The diamond structure is not a Bravais lattice!

2D Hexagonal (aka Triangular) Lattice

Lattice sites are arranged in a hexagaonal pattern

The Wigner-Seitz cell is a hexagon of side length $a/\sqrt{3}$ centered on a lattice site

The Honeycomb Structure

Structure: Two hexagonal lattice sites superimposed on each other, one shifted relative to the other by $\frac{a}{2}(\hat{\mathbf{x}} + \sqrt{3}\,\hat{\mathbf{y}}/3)$.

The honeycom structure is not a Bravais lattice!

 $egin{aligned} & oldsymbol{a}_2 = rac{a}{2}(\hat{\mathbf{x}} + \sqrt{3}\,\hat{\mathbf{y}}) \ & oldsymbol{d}_1 = \hat{\mathbf{0}} \ & oldsymbol{d}_2 = rac{a}{2}(\hat{\mathbf{x}} + \sqrt{3}\,\hat{\mathbf{y}}/3) \end{aligned}$

3D Hexagonal Lattice

Structure: two 2D hexagonal lattices superimposed on each other and separated along the $\hat{\mathbf{z}}$ axis by the distance c

 $\mathbf{a}_1 = a\,\hat{\mathbf{x}}$

 $\mathbf{a}_2 = \frac{a}{2}(\hat{\mathbf{x}} + \sqrt{3}\,\hat{\mathbf{y}})$ $\mathbf{a}_3 = c\,\hat{\mathbf{z}}$

Reciprocal Lattice

A reciprocal lattice is defined only in the context of a Bravais lattice. Consider a BL Λ spanned by primitive vectors $\{a_i\}$. The BL's reciprocal lattice Λ^* is the set of all K such that... $e^{i \boldsymbol{K} \cdot \boldsymbol{R}} = 1$ for all $\boldsymbol{R} \in \Lambda$ (RL condition) $\Lambda^* \equiv \left\{ \mathbf{K} \mid e^{i\mathbf{K}\cdot\mathbf{R}} = 1 \text{ for all } \mathbf{R} \in \Lambda \right\}$ (definition of RL)

Interpretation of the Reciprocal Lattice

Consider a Bravais lattice Λ with lattice sites R.

The BL's reciprocal lattice is the set of K for which the general plane wave $e^{i \boldsymbol{K} \cdot \boldsymbol{r}}$ has the periodicity of the BL, i.e... $e^{i \boldsymbol{K} \cdot (\boldsymbol{R} + \boldsymbol{r})} = e^{i \boldsymbol{K} \cdot \boldsymbol{r}}$ for all $\boldsymbol{r} \in \mathbb{R}^3$ and $\boldsymbol{R} \in \Lambda$

 $\implies e^{i\mathbf{K}\cdot\mathbf{R}} = 1 \text{ for all } \mathbf{R} \in \Lambda$ (recovers RL condition)

Reciprocal Primitive Vectors

Consider a Bravais lattice Λ spanned by primitive vectors $\{a_i\}$ $\Lambda^* \equiv \{ \mathbf{K} \mid e^{i\mathbf{K} \cdot \mathbf{R}} = 1 \text{ for all } \mathbf{R} \in \Lambda \}$ (reciprocal lattice) The reciprocal lattice vectors may be written in the form...

 $\boldsymbol{K} = m_1 \boldsymbol{b}_1 + m_2 \boldsymbol{b}_2 + m_3 \boldsymbol{b}_3$

 $m_1, m_2, m_3 \in \mathbb{Z}$ are arbitrary integers

 $m{b}_1, m{b}_2, m{b}_3$ are reciprocal primitive vectors $V_0 = |m{a}_1 imes (m{a}_2 imes m{a}_3)|$ (review: vectors)

The RL's reciprocal primitive vectors $\{b_i\}$ are given by... $\mathbf{a}_i \cdot \mathbf{b}_j = 2\pi \delta_{ij}$ (implicit definition of reciprocal PV) $\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{V}$ (RPV in terms of PV)

 $\begin{array}{ll} \boldsymbol{b}_1 = 2\pi \frac{\boldsymbol{a}_2 \times \boldsymbol{a}_3}{V_0} & \text{(RPV in terms of PV)} \\ \boldsymbol{b}_2 = 2\pi \frac{\boldsymbol{a}_3 \times \boldsymbol{a}_1}{V_0} & \text{(RPV in terms of PV)} \\ \boldsymbol{b}_3 = 2\pi \frac{\boldsymbol{a}_1 \times \boldsymbol{a}_2}{V_0} & \text{(RPV in terms of PV)} \end{array}$

The BL's PVs $\{a_i\}$ are given in terms of $\{b_i\}$ by...

$$a_1 = 2\pi \frac{b_2 \times b_3}{V_0^*}$$
 (PV in terms of RPV)

$$a_2 = 2\pi \frac{b_3 \times b_1}{V_0^*}$$
 (PV in terms of RPV)

$$a_3 = 2\pi \frac{b_1 \times b_2}{V_0^*}$$
 (PV in terms of RPV)

$$V_0^* = |\mathbf{b}_1 \cdot (\mathbf{b}_2 \times \mathbf{b}_3)|$$
 (volume of reciprocal PUC)

$$= (2\pi)^3 / V_0$$
 (in terms of V_0)

Verifying Definition of Reciprocal Primitive Vectors

Consider a Bravais lattice Λ spanned by primitive vectors $\{a_i\}$ $\mathbf{a}_i \cdot \mathbf{b}_j = 2\pi \delta_{ij}$ (definition of reciprocal PVs $\{\mathbf{b}_j\}$) $\mathbf{K} = m_1 \mathbf{b}_1 + m_2 \mathbf{R}_2 + m_3 \mathbf{R}_3$ (reciprocal lattice vectors) Goal: show the \mathbf{b}_i are consistent with $e^{i\mathbf{K}\cdot\mathbf{R}} = 1$ for all $\mathbf{R} \in \Lambda$ $\mathbf{K} \cdot \mathbf{R} = (m_i \mathbf{b}_i) \cdot (n_j \mathbf{a}_j)$ (summation notation) $= 2\pi (n_1 m_1 + n_2 m_2 + n_3 m_3)$ (using $\mathbf{a}_i \cdot \mathbf{b}_j = 2\pi \delta_{ij}$) $= 2\pi N$ (for some integer $N \in \mathbb{Z}$) $\Rightarrow e^{i\mathbf{K}\cdot\mathbf{R}} = e^{2\pi iN} = 1$ (defs. of \mathbf{b} and \mathbf{K} are consistent)

First Brillioun Zone

Consider a Bravais lattice Λ spanned by primitive vectors $\{a_i\}$ $\Lambda^* = \{K \mid e^{iK \cdot R} = 1 \text{ for all } R \in \Lambda\}$ (the BL's RL) The RL's Wigner-Seitz cell is called the *first Brillouin zone* The first BZ is defined analogously to the Wigner-Seitz cell in position space, i.e. the first BZ is the set of all k in reciprocal space closest to the origin K = 0.

$$\Omega_{\mathrm{BZ1}} = \left\{ \boldsymbol{k} \in (\mathbb{R}^*)^3 : |\boldsymbol{k}| < |\boldsymbol{k} - \boldsymbol{K}| \text{ for all } \boldsymbol{K} \in \Lambda^* \right\}$$

Reciprocal Lattices of Common BLs

Goal: compute and interpret the reciprocal primitive vectors for common Bravais lattices.

Simple Cubic Reciprocal Lattice

Consider a simple cubic lattice with lattice constant a

 $\mathbf{a}_1 = a \hat{\mathbf{x}}$ (for review) $\mathbf{a}_2 = a \hat{\mathbf{y}}$ (for review) $\mathbf{a}_3 = a \hat{\mathbf{z}}$ (for review)

 $\mathbf{b}_1 = \frac{2\pi}{a} \,\hat{\mathbf{x}} \\ \mathbf{b}_2 = \frac{2\pi}{a} \,\hat{\mathbf{y}}$

 $\mathbf{b}_3 = \frac{a}{2\pi} \,\hat{\mathbf{z}}$

Interpretation: a SC lattice's reciprocal lattice is a SC lattice in reciprocal space with lattice constant $2\pi/a$.

FCC Reciprocal Lattice

Consider a FCC lattice with lattice constant a

 $\begin{aligned} \boldsymbol{a}_1 &= \frac{a}{2}(\hat{\mathbf{y}} + \hat{\mathbf{z}}) & \text{(for review)} \\ \boldsymbol{a}_2 &= \frac{a}{2}(\hat{\mathbf{x}} + \hat{\mathbf{z}}) & \text{(for review)} \\ \boldsymbol{a}_3 &= \frac{a}{2}(\hat{\mathbf{x}} + \hat{\mathbf{y}}) & \text{(for review)} \\ \boldsymbol{b}_1 &= \frac{2\pi}{a}(\hat{\mathbf{y}} + \hat{\mathbf{z}} - \hat{\mathbf{x}}) \\ \boldsymbol{b}_2 &= \frac{2\pi}{a}(\hat{\mathbf{z}} + \hat{\mathbf{x}} - \hat{\mathbf{y}}) \end{aligned}$

 $\mathbf{b}_3 = \frac{2\pi}{a}(\hat{\mathbf{z}} + \hat{\mathbf{x}} - \hat{\mathbf{y}})$

Interpretation: a FCC lattice's reciprocal lattice is a BCC lattice in reciprocal space with lattice constant $4\pi/a$.

BCC Reciprocal Lattice

Consider a BCC lattice with lattice constant a

 $\begin{array}{ll} \boldsymbol{a}_1 = \frac{a}{2}(\hat{\mathbf{y}} + \hat{\mathbf{z}} - \hat{\mathbf{x}}) & \text{(for review)} \\ \boldsymbol{a}_2 = \frac{a}{2}(\hat{\mathbf{z}} + \hat{\mathbf{x}} - \hat{\mathbf{y}}) & \text{(for review)} \\ \boldsymbol{a}_3 = \frac{a}{2}(\hat{\mathbf{x}} + \hat{\mathbf{y}} - \hat{\mathbf{z}}) & \text{(for review)} \\ \boldsymbol{b}_1 = \frac{2\pi}{a}(\hat{\mathbf{y}} + \hat{\mathbf{z}}) & \text{(for review)} \end{array}$

tive vectors
$$\mathbf{b}_2 = \frac{2\pi}{a}(\hat{\mathbf{x}} + \hat{\mathbf{z}})$$
 (review: volume of BL's PUC) $\mathbf{b}_3 = \frac{2\pi}{a}(\hat{\mathbf{x}} + \hat{\mathbf{y}})$

Interpretation: a BCC lattice's reciprocal lattice is a FCC lattice in reciprocal space with lattice constant $4\pi/a$.

Lattice Plates

Consider a Bravais lattice Λ spanned by primitive vectors $\{a_i\}$ A lattice plane is a plane in position space passing through three non-colinear BL points R_1 , R_2 , and R_3

Families of Lattice Planes

Defining a single lattice plane implicitly defines a family of lattice planes in which...

- all planes are parallel (have the same normal $\hat{\bf n}$)
- \bullet neighboring planes are separated by the same distance d
- the entire lattice plane family contains every lattice site in the Bravais lattice

Each family of lattice planes corresponds to a RL vector \boldsymbol{K} normal to the lattice planes for which...

 $K = \frac{2\pi}{d} \hat{\mathbf{n}}$ (RL vector for a lattice plane family) For two lattice sites R_i, R_j in the *i*-th and *j*-th planes...

 $|\mathbf{K} \cdot (\mathbf{R}_i - \mathbf{R}_j)| = 2\pi |i - j|$ (from geometrical arguments) $\implies e^{i\mathbf{K} \cdot (\mathbf{R}_i - \mathbf{R}_j)} = 1$ for all $\mathbf{R}_i, \mathbf{R}_j \in \Lambda$

 $\implies e^{i \boldsymbol{K} \cdot \boldsymbol{R}} = 1$ for all $\boldsymbol{R} \in \Lambda$ (BL closed under addition) Conclusion: $\boldsymbol{K} = \frac{2\pi}{d} \hat{\mathbf{n}}$ satisfies the condition for a RL vector

Miller Indices

Purpose: Miller indices are used to define the RL vector $\mathbf{K} = \frac{2\pi}{d} \,\hat{\mathbf{n}}$ specifying a family of lattice planes.

Consider a Bravais lattice Λ spanned by the primitive vectors $\{a_i\}$ and having reciprocal primitive vectors $\{b_i\}$.

Define a lattice plane with the three non-colinear points $n_1 \mathbf{a}_1$, $n_2 \mathbf{a}_2$ and $n_3 \mathbf{a}_3$ where $n_i \in \mathbb{Z}$ and let $\mathbf{K} = \frac{2\pi}{d} \hat{\mathbf{n}}$ be the reciprocal vector defining the lattice plane family.

 $\mathbf{K} = h\mathbf{b}_1 + k\mathbf{b}_2 + \ell\mathbf{b}_3$ (**K** in terms of Miller indices)

Miller indices are conventionally written in lowest terms, i.e. with greatest common divisor equal to one.

The planes specified by the $(hk\ell)$ intersect integer multiples of the points a_1/h , a_2/k , and a_3/ℓ .

 $(n_1 \boldsymbol{a}_1) \cdot \boldsymbol{K} = (n_2 \boldsymbol{a}_2) \cdot \boldsymbol{K} = (n_3 \boldsymbol{a}_3) \cdot \boldsymbol{K} \equiv C$ (for lattice plane) Apply $\boldsymbol{a}_i \cdot \boldsymbol{b}_j = 2\pi \delta_{ij}$ and $\boldsymbol{K} = h \boldsymbol{b}_1 + k \boldsymbol{b}_2 + \ell \boldsymbol{b}_3$ to get...

 $\implies n_1h = n_2k = n_3\ell = C$

 $\implies h: k: \ell = \frac{1}{n_1}: \frac{1}{n_2}: \frac{1}{n_3}$ (inverse ratio relationship)

X-Ray Scattering from Crystals

Motivation: x-ray scattering is used to experimentally determine crystal structure.

Restriction: we will consider only elastic scattering, for which pre- and post-scattering wavelengths are equal.

 $\lambda = \lambda'$ (assuming elastic scattering)

Photon Energy for Constructive Interference

Goal: estimate photon energies at which scattered photons will interfere constructively in the crystal lattce

 $a \sim 0.1 \, \mathrm{nm}$ (typical spacing between lattice points) $\lambda \lesssim a$ (condition for interference on lattice)

 $h\nu = \frac{hc}{\lambda} \gtrsim \frac{hc}{a} \sim \frac{1240 \,\mathrm{eV} \,\mathrm{nm}}{0.1 \,\mathrm{nm}}$ (for photon with $\lambda \lesssim a$) = 12.4 keV (min. photon energy for interference)

Conclusion: constructive interference from a crystal lattice is possible for photons with keV energy or larger (i.e. x-rays).

Bragg Formulation of Scattering

Model: in the Bragg formulation, x-rays scatter from lattice planes and not from discrete lattice sites.

Let k denote incident wave vector

Let \mathbf{k}' denote scattered wave vector

Let θ denote glancing angle between \boldsymbol{k} and lattice plane

Figure 1: The geometry of Bragg scattering.

Bragg Interference Condition

Consider x-rays incident at glancing angle θ on a family of lattice planes with spacing d.

 $|\pmb{k}| = |\pmb{k}'| \equiv k \qquad \qquad \text{(assuming elastic scattering)}$ The difference in path length Δx for x-rays scattering from neighboring lattice planes is...

 $\Delta x = 2d \sin \theta$ (for neighboring planes) $\Delta \phi = k \Delta x$ (phase difference btwn. scattered x-rays) $\Delta \phi = k \Delta x = 2\pi n$ (constructive interference condition) $\frac{2\pi}{\lambda} \cdot (2d \sin \theta) = 2\pi n$ (in terms of wavelength λ) $2d \sin \theta = n\lambda$ (Bragg interference condition)

Von Laue Formulation of Scattering

Model: in the von Laue formulation, x-rays scatter from discrete lattice sites rather than from entire lattice plantes.

Figure 2: The geometry of von Laue scattering.

Von Laue Interference Condition

Let $\mathbf{k} \equiv \frac{2\pi}{\lambda} \hat{\mathbf{n}}$ denote incident wave vector

Let $\mathbf{k}' \equiv \frac{\hat{2}\pi}{\lambda} \hat{\mathbf{n}}'$ denote scattered wave vector

 $|\mathbf{k}| = |\mathbf{k}'| \implies \lambda = \lambda'$ (assuming elastic scattering)

Consider two lattice sites connected by the vector d

Let $\boldsymbol{\theta}$ denote angle between \boldsymbol{d} and $\hat{\mathbf{n}}$

Let θ' denote angle between \boldsymbol{d} and $\hat{\mathbf{n}}'$

The difference in path length Δx for x-rays scattering from neighboring lattice sites is...

 $\begin{array}{lll} \Delta x = d\cos\theta + d\cos\theta' = \boldsymbol{d}\cdot(\hat{\mathbf{n}} - \hat{\mathbf{n}}') & \text{(for neighboring sites)} \\ \Delta\phi = k\Delta x & \text{(phase difference btwn. scattered x-rays)} \\ \Delta\phi = k\Delta x = 2\pi m & \text{(constructive interference condition)} \\ \frac{2\pi}{\lambda}\boldsymbol{d}\cdot(\hat{\mathbf{n}} - \hat{\mathbf{n}}') = 2\pi m & \text{(in terms of wavelength λ)} \\ \boldsymbol{d}\cdot(\boldsymbol{k} - \boldsymbol{k}') = 2\pi m & \text{(in terms of wave vector k)} \end{array}$

Concept: constructive interference occurs when above condition holds for all d in the BL. Let $d \to R$ to get...

 $\mathbf{R} \cdot (\mathbf{k} - \mathbf{k}') = 2\pi m$ (von Laue interference condition)

Alternate Formulation of the von Laue Condition

Consider a Bravais lattice Λ with reciprocal lattice Λ^*

 $m{R}\cdot(m{k}-m{k}')=2\pi m\, \forall\, m{R}\in \Lambda \qquad \qquad \mbox{(vL interference condition)}$ $e^{im{R}\cdot(m{k}-m{k}')}=e^{2\pi im}=1 \qquad \qquad \mbox{(exponentiating)}$

Compare $e^{i(\mathbf{k}-\mathbf{k}')\cdot\mathbf{R}}=1$ to definition $e^{i\mathbf{K}\cdot\mathbf{R}}=1$ of a general reciprocal lattice vector \mathbf{K} to conclude...

The von Laue interference condition is met if the incident and scattered wave vectors obey $\mathbf{k} - \mathbf{k}' = \mathbf{K}$ for some $\mathbf{K} \in \Lambda^*$!

scattered wave vectors obey k - k = K for some $K \in K$: k - k' = K (von Laue interference condition) $(k')^2 = (k - K)^2$ (rearranged and squared)

 $k^2 = k^2 - 2\mathbf{k} \cdot \mathbf{K} + K^2$ (k = k' for elastic scattering) Let $\hat{\mathbf{K}} = \mathbf{K}/|\mathbf{K}|$ and simplify to get...

 $\mathbf{k} \cdot \hat{\mathbf{K}} = \frac{K}{2}$ (alternate interference condition)

Bragg Plane

From above, an incident WV k scatters constructively if... $k \cdot \hat{\mathbf{K}} = \frac{K}{2}$ for some $K \in \Lambda^*$ (interference condition) This condition defines a plane in reciprocal space called a *Bragg plane*, which perpendicularly bisects the K from the interference condition k - k' = K or $k \cdot \hat{\mathbf{K}} = K/2$.

Figure 3: A Bragg plane defined by K.

Equivalence of the Bragg and Von Laue Conditions

Goal: show Bragg and von Laue conditions for constructive interference are equivalent

Consider a family of lattice planes with spacing d defined by the reciprocal lattice vector $\mathbf{K} = \frac{2\pi n}{d} \hat{\mathbf{n}}$ where $n \in \mathbb{N}$.

Let k denote incident wave vector

Let k' denote scattered wave vector

Let θ denote glancing angle between k and lattice plane

 $\mathbf{k} - \mathbf{k}' = \mathbf{K}$ (von Laue condition)

The von Laue condition requires a relationship between k, k', and K as shown in the figure below...

Figure 4: Geometry for showing the equivalence of the Bragg and von Laue interference conditions.

$$\theta = \theta' \qquad \text{(law of reflection)}$$

$$\implies k' \sin \theta = K/2 \qquad \text{(see figure)}$$

$$K/2 = k \sin \theta \qquad (k = k' \text{ for elastic scattering)}$$

$$\frac{\pi n}{d} = \frac{2\pi}{\lambda} \sin \theta \qquad \text{(using } K = 2\pi n/d \text{ and } k = 2\pi/\lambda)$$

$$\implies 2d \sin \theta = n\lambda \qquad \text{(Bragg condition)}$$

Ewald Sphere Formulation of Scattering

Summary: a geometric method for determining which incident wave vectors k will scatter constructively from a crystal lattice. The Ewald sphere for a given incident k is defined in reciprocal space as follows:

- Define an origin centred on a reciprocal lattice site
- The origin lies on the sphere's surface
- The incident k points from the origin to sphere's center
- The Ewald sphere has radius $|\mathbf{k}| = 2\pi/\lambda$

If the thus-defined sphere's surface intersects other RL vectors, the incident k will scatter with constructive interference.

Structure Factors

Motivation: analyze x-ray scattering from crystals with multiple atomic scatterers of the same element per primitive unit cell. Let \mathbf{R}_i denote positions of Bravais lattice sites

Positions of atoms in a PUC are given by the basis $\{d_i\}$

$$m{R}_{
m at}^{ij} = m{R}_i + m{d}_j$$
 (position of j-th atom at i-th lattice site) $m{K} \cdot m{R}_{
m at}^{ij} = 2\pi n + m{K} \cdot m{d}_j$ (since $m{K} \cdot m{R} = 2\pi n$) Conclusion: different RL vectors will lead to different scattering

intensities from a given atom because of the $K \cdot d_i$ term

Geometric Structure Factor

$$\begin{array}{ll} \boldsymbol{K} \cdot \boldsymbol{R}_{\mathrm{at}}^{ij} = 2\pi n + \boldsymbol{K} \cdot \boldsymbol{d}_j & (\mathrm{since} \ \boldsymbol{K} \cdot \boldsymbol{R} = 2\pi n) \\ \boldsymbol{K} \cdot \boldsymbol{R}_{\mathrm{at}}^{ik} = 2\pi n + \boldsymbol{K} \cdot \boldsymbol{d}_k & (\mathrm{since} \ \boldsymbol{K} \cdot \boldsymbol{R} = 2\pi n) \\ \Delta \phi = \boldsymbol{K} \cdot (\boldsymbol{d}_j - \boldsymbol{d}_k) & (\mathrm{phase \ difference \ btwn. \ rays \ scattered \ from \ different \ atoms \ in \ the \ same \ lattice \ site) \end{array}$$

 $e^{i\Delta\phi} = e^{i\mathbf{K}\cdot(\mathbf{d}_j - \mathbf{d}_k)}$ (ratio of amplitudes of rays scattered from j-th and k-th atoms)

$$S_{\mathbf{K}} \equiv \sum_{i} e^{i\mathbf{K}\cdot\mathbf{d}_{i}}$$
 (geometric structure factor)

Interpretation: the GSF expresses the extent to which x-rays scattered from the atoms in a given PUC diminish the intensity of the interference peak associated with a given K via the von Laue interference condition k - k' = K.

TODO: Example: GSF for a BCC Lattice

Generalization: Atomic Structure Factor

Motivation: analyze x-ray scattering from crystals with atoms of different elements in each primitive unit cell.

Concept: different elements produce different scattering intensities due to differences in electron cloud structure.

Let \mathbf{R}_i denote positions of Bravais lattice sites

Positions of atoms in a PUC are given by the basis $\{d_i\}$

Let ρ_j denote j-th atom's electron cloud charge density

Let Z_i denote j-th atom's atomic number

$$\begin{split} S_{\boldsymbol{K}}^{\mathrm{at}} &= \sum_{j} f_{j}(\boldsymbol{K}) e^{i\boldsymbol{K}\cdot\boldsymbol{d}_{j}} & \text{(atomic structure factor)} \\ f_{j} \text{ is the dimensionless scattering amplitude of the j-th atom} \\ f_{j}(\boldsymbol{K}) &= -\frac{1}{e_{0}} \iiint e^{i\boldsymbol{K}\cdot\boldsymbol{r}} \rho(\boldsymbol{r}) \, \mathrm{d}V & \text{(scattering amplitude)} \\ &\approx -\frac{1}{e_{0}} \iiint_{\mathrm{cloud}} e^{i\boldsymbol{K}\cdot\boldsymbol{r}} \rho(\boldsymbol{r}) \, \mathrm{d}V & (\rho \sim 0 \text{ outside } e^{-} \text{ cloud)} \\ &\approx -\frac{1}{e_{0}} \iiint_{\mathrm{cloud}} \rho(\boldsymbol{r}) \, \mathrm{d}V & \text{(for } \boldsymbol{K}\cdot\boldsymbol{r} \ll 1 \text{ in } e^{-} \text{ cloud)} \\ &\sim Z_{j} & \text{(using } \iiint_{\mathrm{cloud}} \rho \, \mathrm{d}V \sim -Ze_{0}) \end{split}$$

Free Electrons

Sommerfeld Free Electron Theory

Goal: describe the behavior of free electrons in crystals using the single-particle stationary Schrödinger equation:

$$\begin{split} &-\frac{\hbar^2}{2m}\nabla^2\psi_{\pmb{k}}(\pmb{r})=E_{\pmb{k}}\psi_{\pmb{k}}(\pmb{r}) & \text{(stationary Schrödinger eq.)}\\ &\psi_{\pmb{k}}=Ae^{i\pmb{k}\cdot\pmb{r}} & \text{(ansatz for electron eigenfunctions)}\\ &E_{\pmb{k}}=\frac{\hbar^2k^2}{2m} & \text{(corresponding energy eigenvalues)}\\ &=\frac{\hbar^2}{2m}(k_x^2+k_y^2+k_z^2) & \text{(by components)} \end{split}$$

Model for Crystal

Model crystal as cuboid with...

- side lengths L_x , L_y , L_z ,
- lattice constants a_x , a_y , a_z ,
- number of lattice sites N_x , N_y , N_z ,
- primitive vectors a_x , a_y , a_z , and
- reciprocal primitive vectors b_x , b_y , b_z ...

...in the $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, $\hat{\mathbf{z}}$ Cartesian directions, respectively.

$$V = L_x L_y L_z$$
 (crystal volume)
 $\Rightarrow \psi_{\mathbf{k}}(\mathbf{r}) = Ae^{i\mathbf{k}\cdot\mathbf{r}} \rightarrow \frac{1}{\sqrt{V}}e^{i\mathbf{k}\cdot\mathbf{r}} \ (A = \frac{1}{\sqrt{V}} \text{ for normalization})$

Periodic Boundary Conditions

Concept: e^- is confined to crystal interior (and not all space). Boundary conditions on the electron wave function ψ must reflect this confinement.

Important: for macroscopic crystals with $L \gg a$, bulk properties are unaffected by choice of boundary conditions.

 \implies We choose *periodic* BC for analytical convenience.

$$\psi_{\mathbf{k}}(x,y,z) \equiv \psi_{\mathbf{k}}(x+L_x,y+L_y,z+L_z)$$

$$\Longrightarrow k_x = \frac{2\pi}{L_x}n_x, \ n_x \in \mathbb{Z}$$

$$\Longrightarrow k_y = \frac{2\pi}{L_y}n_y, \ n_y \in \mathbb{Z}$$

$$\Longrightarrow k_z = \frac{2\pi}{L_z}n_z, \ n_z \in \mathbb{Z}$$
(result of PBC)
$$\Longrightarrow k_z = \frac{2\pi}{L_z}n_z, \ n_z \in \mathbb{Z}$$
(result of PBC)

Alternatively, in terms of N_i and a_i , values of k_i read...

$$k_x = \frac{2\pi}{N_x a_x} n_x \qquad \text{(using } L_x = N_x a_x)$$

$$k_y = \frac{2\pi}{N_y a_y} n_y \qquad \text{(using } L_y = N_y a_y)$$

$$k_z = \frac{2\pi}{N_z a_z} n_z$$
 (using $L_z = N_z a_z$)
Conclusion: PBC quantize the wave vector ${\bf k}!$

Quantization of k Space

Goal: determine how many allowed values of k are contained per unit volume of k space in crystal of volume V.

Assume $L_x = L_y = L_z \equiv L$ (for notational simplicity) Review: the k axes are quantized in units of $2\pi/L$.

$$V_0^* = \frac{(2\pi)^3}{L^3} = \frac{8\pi^3}{V}$$
 (spacing btwn. allowed values of \boldsymbol{k}) Consider a region of \boldsymbol{k} space with volume $\Omega \gg V_0^*$.

Concept: the number $N_{\mathbf{k}}$ of allowed \mathbf{k} in Ω will equal the volume of Ω divided by the volume V_0^* around a single k point.

$$N_{\mathbf{k}} = \frac{\Omega}{V_0*} = \frac{\Omega V}{8\pi^3}$$
 (number of discrete \mathbf{k} in Ω)
 $n_{\mathbf{k}} = \frac{N_{\mathbf{k}}}{\Omega} = \frac{V}{8\pi^3}$ (density of discrete \mathbf{k} in Ω)
 $n_{\mathbf{k}} = \frac{V}{8\pi^3}$ (\mathbf{k} -space density of \mathbf{k} values)

Interpreting k as Free Electron Momentum

$$\begin{array}{ll} \psi_{\boldsymbol{k}}(\boldsymbol{r}) = \frac{1}{\sqrt{V}}e^{i\boldsymbol{k}\cdot\boldsymbol{r}} & \text{(review: electron wave function)} \\ \hat{\boldsymbol{p}} = -i\hbar\nabla & \text{(quantum-mechanical momentum operator)} \\ \hat{\boldsymbol{p}}\psi_{\boldsymbol{k}} = +\frac{\hbar\boldsymbol{k}}{\sqrt{V}}e^{i\boldsymbol{k}\cdot\boldsymbol{r}} = \hbar\boldsymbol{k}\psi_{\boldsymbol{k}} & \text{(action of } \hat{\boldsymbol{p}} \text{ on } \psi_{\boldsymbol{k}}) \end{array}$$

Conclusion: free electron eigenfunctions $\psi_{\boldsymbol{k}}$ are eigenfunctions of the momentum operator with eigenvalues $\hbar \mathbf{k}$

 $\implies \hbar k$ may be interpreted as momentum of a free electron Heuristic comment: free electron momentum is exactly known, so (by uncertainty principle) position is completely uncertain.

⇒ Free electrons are completely delocalized in the crystal comtaining them.

Fermi Sphere

Consider the $T = 0 \,\mathrm{K}$ ground state of N free electrons Goal: build up the N-electron ground state in accordance with the Pauli exclusion principle.

$$E_{\mathbf{k}} = \frac{\hbar^2 k^2}{2m}$$
 (review: free e^- energy eigenvalues) $\implies e^-$ occupying levels with larger k have larger energy

Idea: beyond some large enough k (or large enough E_k) electron levels in a ground state crystal will no longer be occupied. The Fermi wave vector $k_{\rm F}$ is the value of k separating occupied and unoccupied free electron levels at $T=0\,\mathrm{K}.$

The Fermi sphere is the sphere in k space of radius $k_{\rm F}$, and separates occupied and unoccupied free e^- levels at $T = 0 \,\mathrm{K}$. The Fermi sphere's radius $k_{\rm F}$ defines the following...

 $V_{\rm F}^* \equiv \frac{4\pi}{3} k_{\rm F}^3$ (volume of Fermi sphere) $E_{\rm F} \equiv \frac{\hbar^2 k_{\rm F}^2}{2m}$ $T_{\rm F} \equiv \frac{E_{\rm F}}{k_{\rm B}}$ $v_{\rm F} \equiv \frac{\hbar k_{\rm F}}{m}$ (Fermi energy) (Fermi temperature) (Fermi velocity)

Number of Occupied Electron Levels I

Goal: determine number $N_{\rm e}$ and volume density $n_{\rm e}$ of occupied free electron levels in an N-electron gas's ground state.

(volume of Fermi sphere) $V_0^* = \frac{(2\pi)^3}{L^3} = \frac{(2\pi)^3}{V}$ (spacing btwn. discrete k states) To determine $N_{\rm e}$, consider the following...

- The **k**-space volume of one allowed **k** is $V_0^* = \frac{(2\pi)^3}{V}$
- All occupied ground state k reside in a volume $V_{\rm F}^*$
- Each allowed k permits two electron levels, one for $e^$ with spin up and one for e_{-} with spin down.

 \implies number of occupied free e^- levels in the ground state will equal total k-space volume $V_{\rm F}^*$, divided by V_0^* , times 2. $N_{\rm e} = 2 \cdot \frac{V_{\rm F}^*}{V_{\rm o}^*}$ (factor of 2 from e^- spin) $=\frac{k_{\rm F}^3}{3\pi^2}V$ (number of occupied free e^- levels) $k_{\rm F}^3 = 3\pi^2 \frac{N_{\rm e}}{V}$ (useful rearrangement) $n_{\rm e} = \frac{N_{\rm e}}{V} = \frac{k_{\rm F}^3}{2\pi^2}$ (volume density of free e^- levels)

Density of Levels

Goal: determine density per unit energy of occupied free electron levels in an N-electron gas's ground state.

Electron levels in an inversection gas's ground state.
$$E_{\rm F} = \frac{\hbar^2 k_{\rm F}^2}{2m} \qquad \qquad \text{(review: Fermi energy)}$$

$$N_{\rm e} = \frac{k_{\rm F}^3}{3\pi^2} \qquad \qquad \text{(review: number of } e^- \text{ levels})$$

$$= \frac{V}{3\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} E_{\rm F}^{3/2} \qquad \qquad \text{(in terms of } E_{\rm F})$$

$$\rightarrow \frac{V}{3\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} E^{3/2} \qquad \qquad \text{(generalizing } E_{\rm F} \rightarrow E)$$

$$\mathcal{D}(E) \equiv \frac{{\rm d}N_{\rm F}}{{\rm d}E} = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E} \qquad \qquad \text{(density of levels)}$$

Interpretation: Density of levels \mathcal{D} (units energy⁻¹) expresses the number of available electron energy levels per unit energy in a free electron gas at energy E.

Review: Fermi-Dirac Distribution

Consider a system of non-interacting fermions with chemical potential μ in thermodynamic equilibrium at temperature T. Chemical potential μ is the (temperature-dependent) energy needed to add one additional fermion to the system; in general the added fermion must have energy larger than all present fermions to satisfy the Pauli exclusion principle.

$$\begin{array}{ll} \beta \equiv \frac{1}{k_{\rm B}T} & \text{(thermodynamic beta)} \\ f(E) = \frac{1}{e^{\beta(E-\mu)}+1} & \text{(Fermi-Dirac distribution)} \\ f(E) \in [0,1] \text{ for } E>0 & \text{(by construction)} \end{array}$$

The FD distribution expresses the probability that a fermion level with energy E is occupied in the given fermion system at temperature T.

TODO: Chemical Potential and Fermi Energy

$$\lim_{T \to 0 \text{ K}} f(E) = \begin{cases} 1 & E < \mu \\ 0 & E > \mu \end{cases}$$
 (limit as $T \to 0 \text{ K}$)

Simultaneously: $E_{\rm F}$ is the highest-occupied energy in a ground state (i.e. at $T = 0 \,\mathrm{K}$).

Conclusion: for f(E) to be consistent with earlier analysis of free electron gas ground state...

$$E_{\rm F} = \lim_{T \to 0 \text{ K}} \mu(T)$$
 (in a free electron gas)

Number of Occupied Electron Levels II

Consider a system of free electrons with known density of levels \mathcal{D} and Fermi-Dirac distribution f(E)

Goal: express the number $N_{\rm e}$ of occupied e^- levels in a freeelectron gas in terms of $\mathcal{D}(E)$ and f(E).

 $N_{\rm e} = \int_0^\infty f(E) \mathcal{D}(E) \, \mathrm{d}E$ (number of occupied e^- states) Interpretation: $\mathcal{D}(E)$ gives density of available states and f(E)gives probability a state is occupied; the product $f(E)\mathcal{D}(E)$ integrated over E gives the total number of occupied states. $N_{\rm e} = \int_0^{E_{\rm F}} \mathcal{D}(E) \, \mathrm{d}E$

Volume-Normalized Density of Levels

 $\mathcal{D}(E) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E}$ (review: density of levels) $g(E) \equiv \frac{\mathcal{D}}{V} = \frac{1}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E} \qquad \text{(volume-normalized DoL)}$ Interpretation: volume-normalized density of levels (units energy⁻¹ volume⁻¹) expresses the number of available electron energy levels per unit energy per unit volume in a free electron gas at energy E.

Two notes:

- q and \mathcal{D} are commonly called "density of state". (Density of levels is used here to distinguish between single-electron levels and the state of an entire e^- gas.)
- g(E) is used far more commonly than $\mathcal{D}(E)$, so g(E) is usually called just the density of states/levels, omitting "volume-normalized".

(review: Fermi energy)

Alternate Expressions for Densities of Levels $E_{\rm F} = \frac{\hbar^2 k_{\rm F}^2}{2m}$

$$k_{\rm F}^3 = 3\pi^2 \frac{N_{\rm e}}{V} \qquad \text{(review: relating } k_{\rm F} \text{ and } N_{\rm e})$$

$$\left(\frac{2m}{\hbar^2}\right)^{3/2} = \frac{N_{\rm e}}{V} \frac{3\pi^2}{E_{\rm F}^{3/2}} \qquad \text{(combined and rearranged)}$$

$$\text{Let } n_{\rm e} \equiv \frac{N_{\rm e}}{V} \qquad \text{(volume density of occupied } e^{-} \text{ levels)}$$

$$\mathcal{D}(E) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E} \qquad \text{(original expression)}$$

$$= \frac{3}{2} \frac{N_{\rm e}}{E_{\rm F}} \sqrt{\frac{E}{E_{\rm F}}} \qquad \text{(using above identity)}$$

$$g(E) = \frac{1}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E} \qquad \text{(original expression)}$$

$$= \frac{3}{2} \frac{n_{\rm e}}{E_{\rm F}} \sqrt{\frac{E}{E_{\rm F}}} \qquad \text{(using } g = \frac{\mathcal{D}}{V} \text{ and } n_{\rm e} = \frac{N_{\rm e}}{V}$$

Technique: Approximating Sums over k with Integrals Goal: simplify sums over k of the form $\frac{1}{V} \sum_{k} F(k)$, where ktakes all values allowed by the crystal's periodic BC.

takes an values the weak by the crystal's periodic Be.
$$\Delta \boldsymbol{k} = \frac{(2\pi)^3}{L^3} = \frac{8\pi^3}{V} \qquad \text{(review: spacing between allowed } \boldsymbol{k})$$
$$\sum_{\boldsymbol{k}} F(\boldsymbol{k}) = \frac{1}{\Delta \boldsymbol{k}} \sum_{\boldsymbol{k}} F(\boldsymbol{k}) \Delta \boldsymbol{k} \qquad \text{(multiplying/dividing by } \boldsymbol{k})$$
$$= \frac{V}{8\pi^3} \sum_{\boldsymbol{k}} F(\boldsymbol{k}) \Delta \boldsymbol{k} \qquad \text{(from definition of } \boldsymbol{k})$$
$$\frac{1}{V} \sum_{\boldsymbol{k}} F(\boldsymbol{k}) = \frac{1}{8\pi^3} \sum_{\boldsymbol{k}} F(\boldsymbol{k}) \Delta \boldsymbol{k} \qquad \text{(rearranged)}$$

 $\frac{1}{V} \sum_{\mathbf{k}} F(\mathbf{k}) = \frac{1}{8\pi^3} \sum_{\mathbf{k}} F(\mathbf{k}) \Delta \mathbf{k} \qquad \text{(rearranged)}$ Take macroscopic limit as $V \to \infty$ and $\Delta \mathbf{k} \to 0$ to get... $\frac{1}{V} \sum_{\mathbf{k}} F(\mathbf{k}) \to \iiint F(\mathbf{k}) \frac{\mathrm{d} \mathbf{k}}{8\pi^3} \qquad \text{(result: } \sum_{\mathbf{k}} \to \iiint \mathrm{d}^3 \mathbf{k})$

Technique: Simplifying Integrals with g(E)

For integrals over d^3k with integrands depending only on $k = |\mathbf{k}|$, we can make the substitution...

$$k = |\mathbf{k}|$$
, we can make the substitution...
$$\frac{\mathrm{d}^3 \mathbf{k}}{4\pi^3} = g(E) \, \mathrm{d}E \qquad \text{(result: simplifying } \iiint \mathrm{d}^3 \mathbf{k}\text{)}$$

$$\iiint F(E(\mathbf{k})) \frac{\mathrm{d}^3 \mathbf{k}}{4\pi^3} = \int F(E)g(E) \, \mathrm{d}E \qquad \text{(example usage)}$$
Derivation

$$\overline{E = \frac{\hbar^2 k^2}{2m}}
\implies \sqrt{E} = \frac{\hbar k}{\sqrt{2m}} \text{ and } dE = \frac{\hbar^2 k}{m} dk$$
(free electron energy)

$$\frac{\text{Derivation}}{E = \frac{\hbar^2 k^2}{2m}} \qquad \text{(free electron energy)}$$

$$\implies \sqrt{E} = \frac{\hbar k}{\sqrt{2m}} \text{ and } dE = \frac{\hbar^2 k}{m} dk$$
Assuming the integrand depends only on $|\mathbf{k}| = k...$

$$\frac{d^3 \mathbf{k}}{4\pi^3} = \frac{(4\pi k^2 dk)}{4\pi^3} = \frac{k^2}{\pi^2} dk \text{ (converting to spherical coordinates)}$$

$$g(E) dE = \frac{1}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E} \cdot \frac{\hbar^2 k}{m} dk$$

$$= \frac{k^2}{\pi^2} dk \qquad \text{(after simplifying)}$$

Average Internal Energy

The average internal energy per unit volume of free electron gas with known FD distribution f(E) is

$$\langle u \rangle = \frac{2}{V} \sum_{k} f(E(k)) E(k) \qquad \text{(free } e^{-} \text{ internal energy)}$$

Interpretation: factor of 2 from e^- spin; sum runs over the discrete k required by PBC; FD distribution f(E) serves as weight for e^- energy E(k) at a given k.

Idea: assuming k are closely spaced, approximate the sum with an integral to get...

$$\langle u \rangle \approx \frac{2}{V} \cdot \left[\frac{1}{V_0^*} \iiint f(E) E(k) \, \mathrm{d}^3 \mathbf{k} \right]$$

$$V_0^* = \frac{(2\pi)^3}{V_0}$$
 is spacing by by two discrete values of k

$$V_0^* = \frac{(2\pi)^3}{Y}$$
 is spacing btwn. discrete values of \mathbf{k}
$$\langle u \rangle = \frac{1}{4\pi^3} \iiint f(E)E(k) \, \mathrm{d}^3 \mathbf{k} \qquad \qquad \text{(using } V_0^* = (2\pi)^3/V)$$

$$= \int_0^\infty f(E)g(E)E \, \mathrm{d}E \qquad \qquad \text{(using } \frac{\mathrm{d}^3 \mathbf{k}}{4\pi^3} = g(E) \, \mathrm{d}E)$$

$$\langle u \rangle \approx \int_0^\infty f(E)g(E)E \, \mathrm{d}E \qquad \qquad \text{(free e^- internal energy)}$$

Internal Energy at Zero Kelvin

$$\begin{split} \langle u \rangle &\approx \int_0^\infty f(E)g(E)E\,\mathrm{d}E & \text{(in general)} \\ &\lim_{T\to 0\,\mathrm{K}} f(E) = \begin{cases} 1 & E < E_\mathrm{F} \\ 0 & E > E_\mathrm{F} \end{cases} & \text{(review: low-temp. limit)} \\ g(E) &= \frac{3}{2}\frac{n_\mathrm{e}}{E_\mathrm{F}}\sqrt{\frac{E}{E_\mathrm{F}}} & \text{(review: expression for } g(E)) \\ &\lim_{T\to 0\,\mathrm{K}} \langle u \rangle = \int_0^{E_\mathrm{F}} Eg(E)\,\mathrm{d}E \\ &= \int_0^{E_\mathrm{F}} E \cdot \frac{3}{2}\frac{n_\mathrm{e}}{E_\mathrm{F}}\sqrt{\frac{E}{E_\mathrm{F}}}\,\mathrm{d}E & \text{(substituting in } g(E)) \\ &= \frac{3}{5}n_\mathrm{e}E_\mathrm{F} & \text{(internal energy at zero kelvin)} \end{split}$$

Sommerfeld Expansion

Consider a function of energy H(E) describing a system with Fermi-Dirac distribution f(E), Fermi temperature $T_{\rm F}$, and chemical potential μ . Without derivation, the Sommerfeld expansion of H(E) is for small temperatures $T < T_{\rm F}$ is...

$$\int_{-\infty}^{\infty} f(E)H(E) dE = \int_{-\infty}^{\mu} H(E) dE + \frac{\pi^{2}}{6} (k_{B}T)^{2} \frac{dH}{dE} \Big|_{E=\mu} + \mathcal{O}(k_{B}T)^{4}$$

Conservation of Electron Number

Important concept: the total number of electrons in a crystal is constant $\implies N_e \neq N_e(T)$

is constant
$$\implies N_{\rm e} \neq N_{\rm e}(T)$$

$$N_{\rm e}(T)\big|_{T=0} = N_{\rm e}(T)\big|_{T>0}$$

$$n_{\rm e}(T)\big|_{T=0} = n_{\rm e}(T)\big|_{T>0}$$

$$n_{\rm e} = \int_0^\infty f(E)g(E)\,\mathrm{d}E \qquad \qquad \text{(in general)}$$

$$n_{\rm e} = \int_0^{E_{\rm F}} g(E)\,\mathrm{d}E \qquad \qquad \text{(at } T=0\,\mathrm{K)}$$
By conservation of electron number, it follows that...
$$\implies \int_0^\infty f(E)g(E)\,\mathrm{d}E = \int_0^{E_{\rm F}} g(E)\,\mathrm{d}E \qquad \text{(since } n_{\rm e} \neq n_{\rm e}(T))$$

$$\implies \int_0^\infty f(E)g(E) dE = \int_0^{E_F} g(E) dE \quad \text{(since } n_e \neq n_e(T)\text{)}$$

Sommerfeld Expansion of Electron Number Density

$$\begin{array}{ll} n_{\rm e} = \int_0^\infty f(E)g(E)\,\mathrm{d}E & \text{(in general)} & N_{\rm A} \text{ is Avogadro's} \\ \text{Plan: use Sommerfeld expansion with } H(E) = g(E) \text{ and get...} & C = \frac{\pi^2}{2}zN_{\rm A}k_{\rm B}\frac{T}{T_{\rm F}} \\ n_{\rm e} \approx \int_0^\mu g(E)\,\mathrm{d}E + \frac{\pi^2}{6}(k_{\rm B}T)^2g'(\mu) & = \frac{\pi^2}{2}zR\frac{T}{T_{\rm F}} \\ = \int_0^{E_{\rm F}}g(E)\,\mathrm{d}E + \int_{E_{\rm F}}^\mu g(E)\,\mathrm{d}E + \frac{\pi^2}{6}(k_{\rm B}T)^2g'(\mu) & \equiv \gamma T \\ = n_{\rm e} + \int_{E_{\rm F}}^\mu g(E)\,\mathrm{d}E + \frac{\pi^2}{6}(k_{\rm B}T)^2g'(\mu) & \text{(1st integral is } n_{\rm e}) \\ \Longrightarrow \int_{E_{\rm F}}^\mu g(E)\,\mathrm{d}E + \frac{\pi^2}{6}(k_{\rm B}T)^2g'(\mu) = 0 & \text{(cancelling } n_{\rm e}) \end{array}$$

Sommerfeld Expansion of Chemical Potential

Goal: approximately compute $\mu(T)$ for low temperatures $\mu(T) = E_{\rm F} \pm {\rm corrections}$ $\int_{E_{\rm F}}^{\mu} g(E) \, \mathrm{d}E + \tfrac{\pi^2}{6} (k_{\rm B}T)^2 g'(\mu) = 0 \qquad \text{(from expansion of } n_{\rm e})$

To proceed, we make the following approximations...

(i) $\int_{E_{\rm F}}^{\mu} g(E) dE \approx (\mu - E_{\rm F})g(E_{\rm F})$

(ii)
$$g'(\mu) \approx g'(E_{\rm F})$$

$$\implies (\mu - E_{\rm F})g(E_{\rm F}) + \frac{\pi^2}{6}(k_{\rm B}T)^2 g'(E_{\rm F}) = 0$$

$$\mu(T) = E_{\rm F} - \frac{\pi^2}{6}(k_{\rm B}T)^2 \frac{g'(E_{\rm F})}{g(E_{\rm F})} \qquad \text{(rearranged)}$$

$$g(E) \sim \sqrt{E} = E^{1/2}$$
 (in general; for review) $\Longrightarrow g'(E) \sim \frac{1}{2} E^{-1/2}$ and $\frac{g'(E_{\rm F})}{g(E_{\rm F})} = \frac{1}{2E_{\rm F}}$

Substitute
$$\frac{g'(E_{\rm F})}{g(E_{\rm F})} = \frac{1}{2E_{\rm F}}$$
 into the $\mu(T)$ to get...

$$\begin{split} \mu(T) &= E_{\rm F} - \frac{\pi^2}{12E_{\rm F}} (k_{\rm B}T)^2 \quad \text{(Sommerfeld expansion of } \mu) \\ \mu(T) &= E_{\rm F} \left[1 - \frac{\pi^2}{12} \left(\frac{k_{\rm B}T}{E_{\rm F}} \right)^2 \right] \qquad \qquad \text{(rearranged)} \\ &= E_{\rm F} \left[1 - \frac{\pi^2}{12} \left(\frac{T}{T_{\rm F}} \right)^2 \right] \qquad \qquad \text{(in terms of } T_{\rm F}) \end{split}$$

Sommerfeld Expansion of Internal Energy

$$\langle u \rangle = \int_0^\infty f(E)g(E)E \, dE$$
 (in general)
For shorthand, let $\langle u \rangle \to u$

Plan: use Sommerfeld expansion with H(E) = g(E)E to get... (new notation)

$$u(T) \approx \int_0^{\mu} g(E)E \, dE + \frac{\pi^2}{6} (k_B T)^2 \frac{d}{dE} [Eg(E)]_{E=\mu}$$

$$= \int_0^{\mu} g(E)E \, dE + \frac{\pi^2}{6} (k_B T)^2 [g(\mu) + \mu g'(\mu)]$$

$$= \int_0^{E_F} g(E)E \, dE + \int_{E_F}^{\mu} g(E)E \, dE \quad \text{(splitting integral)}$$

$$+ \frac{\pi^2}{6} (k_B T)^2 [g(\mu) + \mu g'(\mu)]$$

To proceed, we make the following approximations...

- (i) $\int_{E_{\rm F}}^{\mu} g(E)E \, \mathrm{d}E \approx (\mu E_{\rm F})g(E_{\rm F})E_{\rm F}$
- (ii) $g(\mu) \approx g(E_{\rm F})$
- (iii) $\mu g'(\mu) \approx E_{\rm F} g'(E_{\rm F})$

$$\implies u(T) \approx \int_0^{E_{\rm F}} g(E) E \, dE + (\mu - E_{\rm F}) E_{\rm F} g(E_{\rm F}) + \frac{\pi^2}{6} (k_{\rm B} T)^2 \left[g(E_{\rm F}) + E_{\rm F} g'(E_{\rm F}) \right]$$

$$\begin{array}{l} u_0 \equiv u(T)\big|_{T \to 0 \; \mathrm{K}} = \int_0^{E_{\mathrm{F}}} g(E) E \, \mathrm{d}E \quad \text{(for review; low T limit)} \\ \Longrightarrow u(T) \approx u_0 + (\mu - E_{\mathrm{F}}) E_{\mathrm{F}} g(E_{\mathrm{F}}) \qquad \qquad \text{(recognizing u_0)} \\ + \frac{\pi^2}{6} (k_{\mathrm{B}} T)^2 \big[g(E_{\mathrm{F}}) + E_{\mathrm{F}} g'(E_{\mathrm{F}}) \big] \end{array}$$

From the Sommerfeld of chemical potential recall...

$$(\mu - E_{\rm F})g(E_{\rm F}) + \frac{\pi^2}{6}(k_{\rm B}T)^2g'(E_{\rm F}) \approx 0$$
 (TODO: reference) $\Rightarrow u(T) \approx u_0 + \frac{\pi^2}{6}(k_{\rm B}T)^2g(E_{\rm F})$ (Sommerfeld exp. of u)

Sommerfeld Expansion of Heat Capacity

 $c_{\rm V} \equiv \left(\frac{\partial u}{\partial T}\right)_{V.N_{\rm e}}$ (specific heat capacity at constant volume) $u \approx u_0 + \frac{\pi^2}{6} (k_{\rm B} T)^2 g(E_{\rm F})$ (Sommerfeld exp. of u) $\Longrightarrow c_{\rm V} = \frac{\partial u}{\partial T} = \frac{\pi^2}{3} g(E_{\rm F}) k_{\rm B}^2 T$ $g(E_{\rm F}) = \frac{3}{2} \frac{n_{\rm e}}{E_{\rm F}}$ (TODO: reference) $\implies c_{\rm V} = \frac{\pi^2}{2} \frac{n_{\rm e}}{F_{-}} k_{\rm B}^2 T$ (Sommerfeld expansion of $c_{\rm V}$)

 $= \frac{\pi^2}{2} n_{\rm e} k_{\rm B} \frac{T}{T_{\rm F}}$ (in general) Lesson: the specific heat capacity of a free electron gas is proportional to temperature as $c_{\rm V} \propto T$

(in terms of $T_{\rm F}$)

In Passing: Molar Heat Capacity

$$C \equiv \frac{zN_{\rm A}k}{n_{\rm e}}c_{\rm V}$$
 (molar heat capacity) z is material's valance (number of e^- contributed to conduction)

 $N_{\rm A}$ is Avogadro's constant (substituting in $c_{\rm V}$) $=\frac{\pi^2}{2}zR\frac{T}{T_{\rm E}}$

$$\lambda = \frac{1}{2} z N_{\rm A} k_{\rm B} \frac{1}{T_{\rm F}}$$
 (substituting in cV)
$$= \frac{\pi^2}{2} z R \frac{T}{T_{\rm F}}$$
 (using gas constant $R \equiv k_{\rm B} N_{\rm A}$)
$$\equiv \gamma T$$
 (defining $\gamma \equiv \frac{\pi^2 RZ}{2}$)

Drude Model of Conduction

The Drude model models the conduction electrons in a metal as an ideal classical monoatomic gas. Assumptions:

- Conduction electrons may collide with ion cores, which are rigidly fixed, but both electron-electron and electronion interactions are otherwise negligible. Electrons move according to Newton's law between collisions.
- Collisions are random and instantaneous.
- Collision probability per unit time is given by the mean free time parameter τ . The probability dP that a

randomly-chosen electron collide with an ion in the inelectric conductivity $\sigma_{\rm E}$ in an steady-state DC field. terval dt is $dP = dt/\tau$.

• Electrons can achieve thermal equilibrium with their surroundings via collisions only and the speed of an $e^$ emerging from a collision depends only on the temperature at the point of collision.

Current Density in the Drude Model

Consider a single electron in a metal exposed to a homogeneous external electric field $\mathcal{E}(t) = \mathcal{E}_0 e^{-i\omega t}$.

Model collisions with velocity-dependent dissipative term $-\frac{m\dot{r}}{\sigma}$. $m\ddot{\mathbf{r}} = -e_0 \mathbf{\mathcal{E}} - \frac{m\dot{\mathbf{r}}}{-}$ (Newton's law for electron) $\mathbf{r}(t) = \mathbf{r}_0 e^{-i\omega t}$ (ansatz for electron position) $egin{aligned} oldsymbol{r}_0 &= rac{e_0 oldsymbol{\mathcal{E}}_0}{m\omega^2 + im\omega/ au} \ &\Longrightarrow oldsymbol{r}(t) = rac{e_0 oldsymbol{\mathcal{E}}(t)}{m\omega^2 + im\omega/ au} \end{aligned}$ (corresponding amplitude) (electric current density in general) (using ansatz for r(t)) $= n_{\rm e} e_0 \frac{i\omega e_0 \mathcal{E}_0 e^{-i\omega t}}{m\omega^2 + im\omega/\tau}$ (substituting in r_0) (recognizing $\mathcal{E}(t)$) $=\frac{n_{\rm e}e_0^2\tau}{m}\frac{\mathcal{E}(t)}{1-i\omega t}$ (result: Drude model current density)

Conductivity in an Alternating Electric Field

Goal: determine the Drude model's prediction for a metal's electric conductivity $\sigma_{\rm E}$ in an AC field.

$$j(t) = \frac{n_{\rm e}e_0^2\tau}{m} \frac{\mathcal{E}(t)}{1-i\omega\tau}$$
 (review: current density in AC field) $j = \sigma_{\rm E}\mathcal{E}$ (Ohm's law in general)

Compare to steady-state current density and conclude...

$$\sigma_{\rm E} = \frac{n_{\rm e}e_0^2 au}{m(1-i\omega au)}$$
 (result: conductivity in an AC field)

Conductivity in a Steady DC Electric Field

Goal: determine the Drude model's prediction for a metal's

The steady state occurs when $\ddot{r} = 0$

$$\begin{array}{ll} \mathbf{0} = -e_0 \mathcal{E} - \frac{m\dot{r}}{\tau} & \text{(Newton's law in steady-state)} \\ \dot{r} = -\frac{e_0 \tau}{m} \mathcal{E} & \text{(rearranging)} \\ \dot{j} = -n_{\rm e} e_0 \dot{r} & \text{(current density in general)} \\ &= \frac{n_{\rm e} e_0^2 \tau}{m} \mathcal{E} & \text{(for steady-state velocity } \dot{r} \text{)} \\ \dot{j} = \sigma_{\rm E} \mathcal{E} & \text{(Ohm's law in general)} \end{array}$$

Compare to steady-state current density and conclude...

$$\sigma_{\rm E} = \frac{n_e e_0^2 \tau}{m}$$
 (result: conductivity in steady DC field)

Shift of Fermi Sphere

Review: electron levels in a free electron gas at $T = 0 \,\mathrm{K}$ are occupied up to the Fermi wave vector $k_{\rm F}$

Consider electrons in a conductor exposed to an external electric field \mathcal{E} .

Newton's law for a free electron)
$$\frac{d\mathbf{p}}{dt} = -e_0 \mathbf{\mathcal{E}} \qquad \text{(Newton's law for a free electron)}$$

$$\frac{d\mathbf{k}}{dt} = -e_0 \mathbf{\mathcal{E}} \qquad \text{(using } \mathbf{p} = \hbar \mathbf{k} \text{ for free electrons)}$$

$$\Rightarrow \mathbf{k}(t) = \mathbf{k}_0 - \frac{e_0 \mathbf{\mathcal{E}}}{\hbar} t$$

Conclusion: the Fermi sphere shifts in the direction of the external electric field with velocity $e_0 \mathcal{E}/\hbar$ (neglecting dissipative forces, which establish a steady state in time $\Delta t \sim \tau$).

$$\delta \mathbf{k} \sim -\frac{e_0 \mathbf{\mathcal{E}}}{\hbar} \tau$$
 (estimate for shift of Fermi sphere)

In Passing: Mean Free Path

$$v_{\rm F} = \frac{\hbar k_{\rm F}}{m}$$
 (Fermi velocity)
 $\ell \sim v_{\rm F} \tau$ (estimate for mean free path)

Interpretation: ℓ is the average distance traveled between collisions by electrons near the Fermi surface

Experimental values in copper assuming $v_{\rm F} = 1.57 \cdot 10^6 \, {\rm m \, s^{-1}}$

Temperature T	Mean free time τ	Mean free path ℓ
4 K	$2 \cdot 10^{-9} \mathrm{s}$	$0.3\mathrm{cm}$
$300\mathrm{K}$	$2 \cdot 10^{-14} \mathrm{s}$	$3 \cdot 10^{-6} \text{cm}$

Electrons in a Periodic Potential

General goal: analyze the behavior of electrons in crystals. Idea: crystal have periodic structure, so studying electron behavior in a periodic potential will help explain electron behavior in crystals.

General Considerations

Consider a crystal described by a Bravais lattice Λ with primitive vectors $\{a_i\}$ and reciprocal primitive vectors $\{b_i\}$

Fundamental assumption: the potential U(r) in the crystal shares the periodicity of the crystal's Bravais lattice.

$$U(r) = U(r + R)$$
 for all $R \in \Lambda$ (potential is periodic)

Goal: find the single-electron energy eigenstates solving the stationary single-electron Schrödinger equation...

$$H\psi(\mathbf{r}) = \left[-\frac{\hbar^2 \nabla^2}{2m} + U(\mathbf{r}) \right] \psi(\mathbf{r}) = E\psi(\mathbf{r})$$

Bloch's Theorem

Bloch's theorem: solutions to the single-electron stationary Schrödinger equation in a periodic potential may be constructed to take the general form...

$$\psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$$
 (Bloch wave function)

- \bullet *n* is a quantum number expressing energy band index
- \bullet **k** is a quantum number expressing electron wave vector \boldsymbol{k} must satisfy the crystal's periodic BC, i.e.

$$\mathbf{k} = \frac{n_x}{N_x} \mathbf{b}_x + \frac{n_y}{N_y} \mathbf{b}_y + \frac{n_z}{N_z} \mathbf{b}_z, \ n_i \in \mathbb{Z}$$
 (PBC)

• u_{nk} is a function with periodicity of the crystal's Bravais lattice, i.e.

$$u_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}) = u_{n\mathbf{k}}(\mathbf{r})$$
 (*u* has period of BL)

Interpreting Bloch's theorem: electron wave functions in periodic potential are plane waves (as for free electrons) modulated by a periodic function u_{nk} (which encodes the effect of the crystal's potential).

Alternate Formulation of Bloch's Theorem

$$\psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r}) \qquad \text{(review: Bloch wave function)}$$

$$\psi_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}) = e^{i\mathbf{k}\cdot(\mathbf{r}+\mathbf{R})}u_{n\mathbf{k}}(\mathbf{r} + \mathbf{R})$$

$$= e^{i\mathbf{k}\cdot(\mathbf{r}+\mathbf{R})}u_{n\mathbf{k}}(\mathbf{r}) \qquad \text{(since } u_{n\mathbf{k}}(\mathbf{r}+\mathbf{R}) \equiv u_{n\mathbf{k}}(\mathbf{r}))$$

$$= e^{i\mathbf{k}\cdot\mathbf{R}}e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r}) \qquad \text{(rearranging)}$$

$$= e^{i\mathbf{k}\cdot\mathbf{R}}\psi_{n\mathbf{k}}(\mathbf{r}) \qquad \text{(recognizing original } \psi_{n\mathbf{k}})$$

Conclusion: an equivalent formulation of Bloch's theorem reads: solutions to the single-electron Schrödinger equation in a periodic potential may be constructed so that associated with each solution ψ is a wave vector \boldsymbol{k} for which

$$\psi(\mathbf{r} + \mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{R}}\psi(\mathbf{r}) \; \forall \; \mathbf{R} \in \Lambda \quad \text{(alternate Bloch's theorem)}$$

Proof of Bloch's Theorem Using Translation **Operators**

Consider a crystal described by a Bravais lattice Λ with primitive vectors $\{a_i\}$ and reciprocal primitive vectors $\{b_i\}$

$$U(\mathbf{r}) = U(\mathbf{r} + \mathbf{R})$$
 for all $\mathbf{R} \in \Lambda$ (potential is periodic)
 $H = -\frac{\hbar^2 \nabla^2}{2m} + U(\mathbf{r})$ (electron Hamiltonian)
 $H(\mathbf{r} + \mathbf{R}) = H(\mathbf{r})$ (since $U(\mathbf{r}) = U(\mathbf{r} + \mathbf{R})$)

Hamiltonian and Translation Operator Commute

$$\mathbf{T}_{R} f(r) = f(r+R) \qquad \text{(def. of translation operator } \mathbf{T}_{R})$$
 (u has period of BL)
$$\mathbf{T}_{R} H(r) \psi = H(r+R) \mathbf{T}_{R} \psi$$

 $=H(\mathbf{r})\mathbf{T}_{\mathbf{R}}\psi$ $\implies \mathbf{T}_{R} H = H \mathbf{T}_{R}$ $(\mathbf{T}_{R}, H \text{ commute})$

Result: since T_R and H commute, eigenstates of H can be chosen to also be eigenstates of \mathbf{T}_R .

(eigenvalue equation for H) $H\psi = E\psi$ $\mathbf{T}_{\mathbf{R}} \psi = c(\mathbf{R}) \psi$ (eigenvalue equation for T_R)

Lemma For T_R Eigenvalues

$$\begin{aligned} \mathbf{T}_{R} \, \mathbf{T}_{R'} \, \psi(r) &= \mathbf{T}_{R'} \, \mathbf{T}_{R} \, \psi(r) = \psi(r+R+R') \\ &\Longrightarrow \mathbf{T}_{R'} \, \mathbf{T}_{R} = \mathbf{T}_{R} \, \mathbf{T}_{R'} = \mathbf{T}_{R+R'} \\ \mathbf{T}_{R'} \, \mathbf{T}_{R} \, \psi &= c(R) \mathbf{T}_{R'} \, \psi = c(R) c(R') \psi \qquad \qquad \text{(result I)} \\ &= \mathbf{T}_{R+R'} \, \psi \qquad \qquad \text{(using } \mathbf{T}_{R'} \, \mathbf{T}_{R} = \mathbf{T}_{R+R'} \,) \\ &= c(R+R') \psi \qquad \qquad \text{(result II)} \\ &\Longrightarrow c(R) c(R') = c(R+R') \qquad \qquad \text{(combining I and II)} \end{aligned}$$

Completing the Proof

 $\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3, \ n_i \in \mathbb{Z}$ (review: general BL vector) $c(\mathbf{R} + \mathbf{R}') = c(\mathbf{R})c(\mathbf{R}')$ (review: $\mathbf{T}_{\mathbf{R}}$ eigenvalue identity) Write translation operator eigenvalues for primitive vectors $\{a_i\}$ in the general form...

$$c(\boldsymbol{a}_j) = e^{2\pi i x_j}, \quad x_j \in \mathbb{C}$$
 (eigval. for primitive vectors)

$$c(\boldsymbol{R}) = c(n_1 \boldsymbol{a}_1 + n_2 \boldsymbol{a}_2 + n_3 \boldsymbol{a}_3)$$
 (substituting in \boldsymbol{R})

$$= c(n_1 \boldsymbol{a}_1) c(n_2 \boldsymbol{a}_2) c(n_3 \boldsymbol{a}_3)$$
 (using $\mathbf{T}_{\boldsymbol{R}}$ eigval identity)

$$= e^{2\pi i (n_1 x_1 + n_2 x_2 + n_3 x_3)}$$
 (using $c(\boldsymbol{a}_j) = e^{2\pi i x_i}$)

Next, consider an arbitrary RL vector of the form....

$$\boldsymbol{k} = x_1 \boldsymbol{b}_1 + x_2 \boldsymbol{b}_2 + x_3 \boldsymbol{b}_3$$

$$i\mathbf{k} \cdot \mathbf{R} = 2\pi i (n_1 x_1 + n_2 x_2 + n_3 x_3)$$
 (using $\mathbf{a}_i \mathbf{b}_j = 2\pi \delta_{ij}$)
Compare to $c(\mathbf{R}) = e^{2\pi i (n_1 x_1 + n_2 x_2 + n_3 x_3)}$ to conclude...

$$c(\mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{R}}$$
 for $\mathbf{k} = x_1\mathbf{b}_1 + x_2\mathbf{b}_2 + x_3\mathbf{b}_3$

$$c(\mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{R}}$$
 (general form of $\mathbf{T}_{\mathbf{R}}$ eigenvalue)

$$\psi(\mathbf{r} + \mathbf{R}) = \mathbf{T}_{\mathbf{R}} \psi(\mathbf{r}) = c(\mathbf{R}) \psi(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{R}} \psi(\mathbf{r})$$

Compare first and last term of equality to conclude...

$$\psi(\mathbf{r} + \mathbf{R}) = e^{i\mathbf{k} \cdot \mathbf{R}} \psi(\mathbf{r})$$
 (result: Bloch's theorem)

Bloch's Theorem: Quantization of k Space

Goal: show how the Sommerfeld free electron expressions for quantization of k space transfer to Bloch electrons.

Review: Periodic Boundary Conditions

As for free electrons, we will impose periodic boundary conditions on Bloch electron wave functions.

Reviewing from **TODO:** reference...

Consider a crystal with...

- side lengths L_1 , L_2 , L_3 ,
- lattice constants a_1 , a_2 , a_3 ,
- number of lattice sites N_1 , N_2 , N_3 ,
- primitive vectors a_1 , a_2 , a_3 , and
- reciprocal primitive vectors b_1 , b_2 , b_3 ...

 $L_i = N_i a_i$ (relating lattice constant and crystal length) Let $\boldsymbol{L}_i \equiv N_i \boldsymbol{a}_i$ (vector side length) (total number of lattice sites) $N = N_1 N_2 N_3$ $\psi_{n\mathbf{k}}(x,y,z) \equiv \psi_{n\mathbf{k}}(x+L_1,y+L_2,z+L_3)$ (PBC) $\psi_{n\mathbf{k}}(\mathbf{r} + \mathbf{L}_i) \equiv \psi_{n\mathbf{k}}(\mathbf{r}), \ i = 1, 2, 3$ (in vector form) $\psi_{n\mathbf{k}}(\mathbf{r} + N_i \mathbf{a}_i) \equiv \psi_{n\mathbf{k}}(\mathbf{r}), i = 1, 2, 3 \text{ (in terms of } N_i \text{ and } \mathbf{a}_i)$

Bloch's Theorem and Periodic Boundary Conditions

Goal: derive the general expression for Bloch wave vectors kallowed under periodic boundary conditions.

$$\psi_{n\mathbf{k}}(\mathbf{r}+\mathbf{R}) = e^{i\mathbf{k}\cdot\mathbf{R}}\psi_{n\mathbf{k}}(\mathbf{r}) \qquad \text{(review: Bloch's theorem)}$$

$$\psi_{n\mathbf{k}}(\mathbf{r}+N_j\mathbf{a}_j) = e^{iN_j\mathbf{k}\cdot\mathbf{a}_j}\psi_{n\mathbf{k}}(\mathbf{r}) \qquad \text{(letting } \mathbf{R}=N_j\mathbf{a}_j)$$
Compare to PBC $\psi_{n\mathbf{k}}(\mathbf{r}+N_j\mathbf{a}_j) \equiv \psi_{n\mathbf{k}}(\mathbf{r})$ to conclude....
$$e^{iN_j\mathbf{k}\cdot\mathbf{a}_j} = 1 \quad j = r, y, z$$

$$\begin{array}{l} e^{iN_{j}\vec{\boldsymbol{k}}\cdot\boldsymbol{a}_{j}}=1,\ j=x,y,z\\ \Longrightarrow N_{j}\boldsymbol{k}\cdot\boldsymbol{a}_{j}=2\pi m_{j},\ m_{j}\in\mathbb{Z} \qquad \text{(to satisfy }e^{iN_{j}\boldsymbol{k}\cdot\boldsymbol{a}_{j}}=1\text{)}\\ \boldsymbol{k}=x_{1}\boldsymbol{b}_{1}+x_{2}\boldsymbol{b}_{2}+x_{3}\boldsymbol{b}_{3} \qquad \text{(general Bloch wave vector)}\\ \text{Substitute }\boldsymbol{k}=\sum_{i}x_{i}\boldsymbol{b}_{i} \text{ into }N_{j}\boldsymbol{k}\cdot\boldsymbol{a}_{j}=2\pi m_{j} \text{ to get...}\\ 2\pi m_{j}=N_{j}\left(\sum_{i}x_{i}\boldsymbol{b}_{i}\right)\cdot\boldsymbol{a}_{j} \end{array}$$

$$= 2\pi N_j x_j$$

$$\implies x_j = \frac{m_j}{N_j}$$
(using $\mathbf{a}_i \cdot \mathbf{b}_j = 2\pi \delta_{ij}$
(solving for x_j

(using $H(\mathbf{r} + \mathbf{R}) = H(\mathbf{r})$) Substitute $x_j = m_j/N_j$ into $\mathbf{k} = \sum_j x_j \mathbf{b}_j$ to get... $\mathbf{k} = \sum_{j} \frac{m_j}{N_i} \mathbf{b}_j, \ m_j \in \mathbb{Z}$ (result: a general Bloch WV)

Allowed Bloch Wave Vectors Per RL PUC

Goal: determine the number of allowed Bloch wave vectors \boldsymbol{k} in a single reciprocal primitive unit cell.

$$\mathbf{k} = \sum_{j} \frac{m_{j}}{N_{j}} \mathbf{b}_{j}$$
 (review: general Bloch WV) \Longrightarrow the smallest allowed spacing between discrete \mathbf{k} occur for $m_{1} = m_{2} = m_{3} = 1$, so the smallest region of \mathbf{k} -space allowed per \mathbf{k} is a parallelepiped spanned by vectors \mathbf{b}_{j}/N_{j} .

$$\Delta \mathbf{k} = \left| \frac{\mathbf{b}_1}{N_1} \cdot \left(\frac{\mathbf{b}_2}{N_2} \times \frac{\mathbf{b}_3}{N_3} \right) \right| \qquad (\mathbf{k}\text{-space volume per allowed } \mathbf{k})$$

$$= \frac{1}{N} |\mathbf{b}_1 \cdot (\mathbf{b}_2 \times \mathbf{b}_3)| \qquad (\text{using } N = N_1 N_2 N_3)$$

$$= \frac{V_0^*}{N} \qquad (\text{recognizing volume of RL primitive unit cell})$$

TODO: change everywhere: use Δk for k space volume and V_0^* for RL PUC volume.

Idea: the number $N_{\mathbf{k}}$ of allowed \mathbf{k} in a RL primitive unit cell is the volume V_0^* of the PUC divided by the volume Δk per allowed \boldsymbol{k} , i.e.

 $N_{m{k}} = rac{V_0^*}{\Delta m{k}} = N$ (result: number of k per RL PUC) Result: the number of allowed k per reciprocal lattice PUC equals the number of lattice sites in the crystal.

Volume Per Bloch Electron Wave Vector

Goal: determine how many allowed values of electron wave vector k are contained per unit volume of k space in crystal of volume V for Bloch electrons.

Consider a crystal of volume V with N lattice sites, direct lattice primitive unit cell voluem $V_0 = V/N$ and reciprocal lattice PUC volume $V_0^* = (2\pi)^3/V_0$.

$$\Delta \mathbf{k} = \frac{V_0^*}{N}$$
 (review: \mathbf{k} -space volume per allowed \mathbf{k})
$$V_0^* = \frac{(2\pi)^3}{V_0} = (2\pi)^3 \frac{N}{V}$$
 (review: volume of RL PUC)

Combine
$$\Delta \mathbf{k} = \frac{V_0^*}{N}$$
 and $V_0^* = (2\pi)^3 N/V$ to get...
 $\Delta \mathbf{k} = \frac{(2\pi)^3}{V}$ (result: volume per Bloch WV)

Conclusion: the k-space volume per Bloch electron wave vector equals the k-space volume per free electron wave vector; see TODO: reference.

Proof of Bloch's Theorem by Explicit Construction

Consider a crystal described by a Bravais lattice Λ with primitive vectors $\{a_i\}$ and reciprocal primitive vectors $\{b_i\}$.

Plan: explicitly derive that solutions to the single-electron Schrödinger equation may be written in the form...

$$\psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r}), \ u_{n\mathbf{k}}(\mathbf{r}+\mathbf{R}) = u_{n\mathbf{k}}(\mathbf{r})$$

Assumptions:

- ψ satisfies periodic boundary conditions, i.e. $\psi(\mathbf{r} + N_i \mathbf{a}_i) = \psi(\mathbf{r}), \quad i = 1, 2, 3$ $(\psi \text{ obeys PBC})$
- The potential U has the periodicity of the BL, i.e. U(r + R) = U(r)(U has lattice periodicity)
- General Bloch wave vectors satisfy periodic boundary $\mathbf{k} = \frac{m_1}{N_1} \mathbf{b}_1 + \frac{m_2}{N_2} \mathbf{b}_2 + \frac{m_3}{N_3} \mathbf{b}_3, \ m_j \in \mathbb{Z} \text{ (general Bloch WV)}$

Ansatzes For Wave Function and Potential

Concept: since the electron wave function ψ satisfies the crystal's PBC, ψ may be expanded over a basis of plane waves with Bloch wave vectors obeying the PBC, i.e.

$$\psi(\mathbf{r}) = \sum_{\mathbf{q}} c_{\mathbf{q}} e^{i\mathbf{q} \cdot \mathbf{r}},$$
 (ansatz for e^- wave function)

Concept: since the potential U has the periodicity of the lattice, U may be expanded over a basis of plane waves with reciprocal lattice vectors

$$V(\mathbf{r} + \mathbf{R}) = \sum_{\mathbf{K}} U_{\mathbf{K}} e^{i\mathbf{K} \cdot \mathbf{r}} e^{i\mathbf{K} \cdot \mathbf{R}}$$

= $\sum_{\mathbf{K}} U_{\mathbf{K}} e^{i\mathbf{K} \cdot \mathbf{r}}$ (since $e^{i\mathbf{K} \cdot \mathbf{R}} = 1$)

Conclusion: ansatz for U satisfies lattice periodicity.

Interpreting the Potential Ansatz

$$U(\mathbf{r}) = \sum_{\mathbf{K}} U_{\mathbf{K}} e^{i\mathbf{K}\cdot\mathbf{r}}$$
 (review: potential ansatz)

Mathematical interpretation: U(r) is an inverse discrete

Fourier transform of U from reciprocal to position space. $U_{\mathbf{K}} = \frac{1}{V_0} \iiint_{\text{cell}} U(\mathbf{r}) e^{-i\mathbf{K}\cdot\mathbf{r}} \, dV$ (Fourier component) (Fourier components) V_0 is the volume of a single unit cell

 $U_{K=0} \equiv 0$ (by convention, since potential offset is arbitrary) $U_{\mathbf{K}}^* = U_{-\mathbf{K}}$ (if $U(\mathbf{r})$ is real)

 $U_{\mathbf{K}} = U_{-\mathbf{K}}$ (if $U(\mathbf{r})$ is even) (if U(r) is real and even) $U_{\mathbf{K}}^* = U_{\mathbf{K}} \implies U_{\mathbf{K}} \in \mathbb{R}$

Solving the Schrödinger Equation I

$$\left[-\frac{\hbar^2}{2m} \nabla^2 + U(\boldsymbol{r}) \right] \psi(\boldsymbol{r}) = E \psi(\boldsymbol{r}) \quad \text{(review: Schrödinger eq.)}$$

$$\psi(\boldsymbol{r}) = \sum_{\boldsymbol{q}} c_{\boldsymbol{q}} e^{i\boldsymbol{k} \cdot \boldsymbol{q}} \quad \text{(review: ansatz for } e^- \text{ wave function)}$$

$$U(\boldsymbol{r}) = \sum_{\boldsymbol{K}} U_{\boldsymbol{K}} e^{i\boldsymbol{K} \cdot \boldsymbol{r}} \quad \text{(review: ansatz for potential)}$$

$$U_{\boldsymbol{K}} = \frac{1}{V_0} \iiint_{\text{cell}} U(\boldsymbol{r}) e^{-i\boldsymbol{K} \cdot \boldsymbol{r}} \, dV \quad \text{(review: Fourier modes)}$$
Substitute ansatzes for ψ and U into Schrödinger eq. to get...
$$\nabla^2 \psi = \nabla^2 \sum_{\boldsymbol{q}} c_{\boldsymbol{q}} e^{i\boldsymbol{k} \cdot \boldsymbol{q}} = -\sum_{\boldsymbol{q}} q^2 c_{\boldsymbol{q}} e^{i\boldsymbol{k} \cdot \boldsymbol{q}} \quad \text{(aux. calculation)}$$

$$\psi(\boldsymbol{r}) U(\boldsymbol{r}) = \sum_{\boldsymbol{K}\boldsymbol{q}} c_{\boldsymbol{q}} U_{\boldsymbol{K}} e^{i(\boldsymbol{K} + \boldsymbol{q}) \cdot \boldsymbol{r}} \quad \text{(auxiliary calculation)}$$

$$= \sum_{\boldsymbol{K}\boldsymbol{q}'} c_{\boldsymbol{q}'} U_{\boldsymbol{K}} e^{i(\boldsymbol{K} + \boldsymbol{q}') \cdot \boldsymbol{r}} \quad \text{(re-indexing } \boldsymbol{q} \to \boldsymbol{q}')$$

$$= \sum_{\boldsymbol{K}\boldsymbol{q}'} c_{\boldsymbol{q} - \boldsymbol{K}} U_{\boldsymbol{K}} e^{i\boldsymbol{q} \cdot \boldsymbol{r}} \quad \text{(new var. } \boldsymbol{q} \equiv \boldsymbol{K} + \boldsymbol{q}')$$

Substitute auxiliary calculations into Sch. equation to get... $\frac{\hbar^2}{2m} \sum_{\mathbf{q}} c_{\mathbf{q}} q^2 e^{i\mathbf{k}\cdot\mathbf{q}} + \sum_{\mathbf{K},\mathbf{q}} c_{\mathbf{q}-\mathbf{K}} U_{\mathbf{K}} e^{i\mathbf{q}\cdot\mathbf{r}} = E \sum_{\mathbf{q}} c_{\mathbf{q}} e^{i\mathbf{k}\cdot\mathbf{q}} \qquad \text{(Sch. eq.)}$ $\sum_{\mathbf{q}} e^{i\mathbf{k}\cdot\mathbf{q}} \left(\frac{\hbar^2 q^2}{2m} c_{\mathbf{q}} + \sum_{\mathbf{K}} c_{\mathbf{q}-\mathbf{K}} U_{\mathbf{K}} \right) = \sum_{\mathbf{q}} e^{i\mathbf{k}\cdot\mathbf{q}} c_{\mathbf{q}} E \qquad \text{(factoring)}$

$$\sum_{\mathbf{q}} e^{i\mathbf{k}\cdot\mathbf{q}} \left(\frac{\hbar^2 q^2}{2m} c_{\mathbf{q}} + \sum_{\mathbf{K}} c_{\mathbf{q}-\mathbf{K}} U_{\mathbf{K}} \right) = \sum_{\mathbf{q}} e^{i\mathbf{k}\cdot\mathbf{q}} c_{\mathbf{q}} E \qquad \text{(factoring)}$$

Idea: both sides are sums over *orthogonal*, linearly-independent plane wave terms \implies summands must be equal for the equation to hold for arbitrary values of q.

$$\frac{\hbar^2 q^2}{2m} c_{\boldsymbol{q}} + \sum_{\boldsymbol{K}} c_{\boldsymbol{q}-\boldsymbol{K}} U_{\boldsymbol{K}} = c_{\boldsymbol{q}} E \qquad \text{(equating summands over } \boldsymbol{q}\text{)}$$

$$\left(\frac{\hbar^2 q^2}{2m} - E\right) c_{\boldsymbol{q}} + \sum_{\boldsymbol{K}} c_{\boldsymbol{q}-\boldsymbol{K}} U_{\boldsymbol{K}} = 0 \qquad \text{(rearranged)}$$

Interpretation: above result is a homogeneous system of coupled linear equations for the coefficients $c_{\mathbf{q}}$ needed to find ψ .

Intermezzo: Plane Waves are Orthogonal

Goal: justifying equating summands in the previous step by showing that plane waves of the form $e^{iq \cdot r}$, with q satisfying the crystal's PBC, are orthogonal, i.e. that...

$$\iiint_V e^{i\boldsymbol{q}\cdot\boldsymbol{r}} = \begin{cases} 0 & \boldsymbol{q} \text{ satisfies PBC} \\ 1 & \boldsymbol{q} = \boldsymbol{0} \\ \text{irrelevant} & \text{otherwise} \end{cases}$$

Shift original crystal volume V with origin at r = 0 to new

region
$$V'$$
 with origin at $\boldsymbol{r} = \boldsymbol{d}$

$$\iiint_{V} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} \, \mathrm{d}V = \iiint_{V'} e^{i\boldsymbol{q}(\boldsymbol{r}+\boldsymbol{d})} \, \mathrm{d}V$$

$$= \iiint_{V} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} \, \mathrm{d}V \qquad \text{(by PBC imposed on } \boldsymbol{q})$$

$$(1 - e^{i\boldsymbol{q}\cdot\boldsymbol{d}}) \iiint_{V} e^{i\boldsymbol{q}\cdot\boldsymbol{r}} \, \mathrm{d}V = 0 \qquad \text{(rearranged)}$$

 \implies for the equation to hold for all d, we conclude...

$$\iiint_V e^{i\boldsymbol{q}\cdot\boldsymbol{r}} = \begin{cases} 0 & \boldsymbol{q} \text{ satisfies PBC} \\ 1 & \boldsymbol{q} = \boldsymbol{0} \end{cases}$$

The Restricted Zone Scheme

$$\left(\frac{\hbar^2q^2}{2m} - E\right)c_{\boldsymbol{q}} + \sum_{\boldsymbol{K}} U_{\boldsymbol{K}} c_{\boldsymbol{q}-\boldsymbol{K}} = 0 \qquad \text{(for review)}$$
Key idea: for each wave vector \boldsymbol{q} that falls outside the first

Brillioun zone, there exists a reciprocal lattice vector \boldsymbol{K} such that k = q + K lies in the first Brillioun zone.

 \implies each q can be equivalently expressed as q = k - K.

Expressing q in terms of k in the first Brillioun zone and a RL vector \mathbf{K} is called the restricted zone scheme.

Solving the Schrödinger Equation II

Plan: express system of equations for c_q only in terms of k in the crystal's first BZ, i.e. using restricted zone scheme.

$$\left(\frac{\hbar^2 q^2}{2m} - E\right) c_{\mathbf{q}} + \sum_{\mathbf{K}} U_{\mathbf{K}} c_{\mathbf{q} - \mathbf{K}} = 0$$
 (for review)

$$\left(\frac{\hbar^2 q^2}{2m} - E\right) c_{\mathbf{q}} + \sum_{\mathbf{K}} U_{\mathbf{K}} c_{\mathbf{q} - \mathbf{K}} = 0 \qquad \text{(in terms of } \mathcal{E}_{\mathbf{q}}^{(0)})$$

$$\left(\frac{\hbar^2 q^2}{2m} - E\right) c_{\mathbf{q}} + \sum_{\mathbf{K}''} U_{\mathbf{K}''} c_{\mathbf{q} - \mathbf{K}''} = 0$$
 (re-indexing)

$$\left[\frac{\hbar^2}{2m}(\mathbf{k} - \mathbf{K})^2 - E\right]c_{\mathbf{k} - \mathbf{K}} + \sum_{\mathbf{K}''} U_{\mathbf{K}''}c_{\mathbf{k} - \mathbf{K} - \mathbf{K}''} = 0 \qquad (\mathbf{q} \to \mathbf{k} - \mathbf{K})$$

$$\left[\frac{\hbar^2}{2m}(\mathbf{k} - \mathbf{K})^2 - E\right] c_{\mathbf{k} - \mathbf{K}} + \sum_{\mathbf{K'}} U_{\mathbf{K'} - \mathbf{K}} c_{\mathbf{k} - \mathbf{K'}} = 0 \quad (\mathbf{K} + \mathbf{K''} \to \mathbf{K'})$$

Interpretation: above result is a homogeneous system of coupled linear equations for the coefficients c_q needed to find ψ , with q expressed as q = k - K via restricted zone scheme.

Completing Construction of Bloch's Theorem

Summary: using plane wave ansatzes, the Sch. eq. reduces to

$$\left[\frac{\hbar^2}{2m}(\mathbf{k} - \mathbf{K})^2 - E\right]c_{\mathbf{k} - \mathbf{K}} + \sum_{\mathbf{K}'} U_{\mathbf{K}' - \mathbf{K}} c_{\mathbf{k} - \mathbf{K}'} = 0$$

Key concept: the above system equations couples only those coefficients $c_{\mathbf{k}-\mathbf{K}'}$ separated by reciprocal lattice vectors \mathbf{K}' . Result: the Schrödinger equation for Bloch electrons decomposes into N independent problems for each k in the crystal's first Brillioun zone.

Each solution (for a given k) is indexed by an additional quantum number $n \in \mathbb{N}$ ranging from 0 to ∞ (like a hydrogen atom's principal quantum number.)

The electron wave function ansatz thus simplifies to...

$$\psi_{n\mathbf{k}} = \sum_{\mathbf{K}} c_{\mathbf{k}-\mathbf{K}}^{(n)} e^{i(\mathbf{k}-\mathbf{K})\cdot\mathbf{r}} \qquad \text{(simplified } e_{-} \text{ wave function)}$$

$$= e^{i\mathbf{k}\cdot\mathbf{r}} \sum_{\mathbf{K}} c_{\mathbf{k}-\mathbf{K}}^{(n)} e^{-i\mathbf{K}\cdot\mathbf{r}} \qquad \text{(factoring out } e^{i\mathbf{k}\cdot\mathbf{r}})$$

Let
$$u_{n\mathbf{k}}(\mathbf{r}) \equiv \sum_{\mathbf{K}} c_{\mathbf{k}-\mathbf{K}}^{(n)} e^{-i\mathbf{K}\cdot\mathbf{r}}$$
 to get...

$$\psi_{n\mathbf{k}} = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$$
 (result: Bloch's theorem)

Generalized Density of Levels

Goal: generalize expression for free electron density of levels to nearly-free electrons in a weak periodic potential.

Implicit Definition of Generalized DOL

Let $Q_n = Q_n(E_n(\mathbf{k}))$ be a function of electron energy Let Q denote the weighted sum of Q_n over all electron levels... $Q = 2 \sum_{n,K} Q_n (E_n(\mathbf{k}))$ (factor of 2 from e^- spin)

$$q = \frac{2}{V} \sum_{n,K} Q_n(E_n(\mathbf{k}))$$
 (volume-normalized)

$$= \frac{2}{V} \frac{1}{\Delta k} \sum_{n,K} Q_n (E_n(k)) \Delta k \qquad \text{(dividing/multiplying by } \Delta k)$$

$$\approx \frac{2}{V} \frac{V}{(2\pi)^3} \sum_n \iiint Q_n(E_n(\mathbf{k})) d^3 \mathbf{k} \qquad \text{(using } \Delta \mathbf{k} = \frac{(2\pi^3)}{V})$$
$$\approx \frac{1}{4\pi^3} \sum \iiint Q_n(E_n(\mathbf{k})) d^3 \mathbf{k} \qquad \text{(simplifying)}$$

$$\approx \frac{1}{4\pi^3} \sum_n \iiint Q_n(E_n(\mathbf{k})) d^3\mathbf{k}$$
 (simplifying)

If q depends on n and k only through $E_n(k)$, we may define.... $q = \int g(E)Q(E) dE$ (defining density of levels g(E)) $\int g(E)Q(E) dE = q = \sum \iiint Q_n \left(E_n(\mathbf{k}) \right) \frac{d^3 \mathbf{k}}{4\pi^3} \qquad \text{(equating } q)$

DOL in a Fixed Energy Band

$$\int g(E)Q(E) dE = \sum_{n} \iiint Q_n \left(E_n(\mathbf{k}) \right) \frac{d^3 \mathbf{k}}{4\pi^3}$$
 (for review

Comparing LHS and RHS of above equality motivates...

$$g(E) \equiv \sum_{n} g_n(E)$$
 (summed over energy bands)

$$g_n(E) \equiv \iiint \delta \left(E - E_n(\mathbf{k}) \right) \frac{\mathrm{d}^3 \mathbf{k}}{4\pi^3}$$
 (DOL in *n*-th band)

Rationale: precisely this definition of $g_n(E)$ preserves the definition of the generalized density of levels.

Proof:

Substitute $g_n(E)$ into g(E) to get... $g(E) = \frac{1}{4\pi^3} \sum_n \iiint \delta(E - E_n(\mathbf{k})) d^3\mathbf{k}$ Substitute g(E) into integral definition of q to get... $q = \int g(E)Q(E) dE$ $= \int \left\{ \sum \left[\iiint \delta \left(E - E_n(\mathbf{k}) \right) \frac{\mathrm{d}^3 \mathbf{k}}{4\pi^3} \right] Q(E) \right\} \mathrm{d}E$ $= \sum \iiint \left[\int \delta \left(E - E_n(\mathbf{k}) \right) Q(E) dE \right] \frac{d^3 \mathbf{k}}{4\pi^3}$ $= \sum \iiint Q_n (E_n(\mathbf{k})) \frac{\mathrm{d}^3 \mathbf{k}}{4\pi^3}$ (by def. of δ function)

... which agrees with the summation expression for q used in the implicit definition of the generalized DOL.

Fixed-Band DOL in Terms of Gradient

Goal: derive an explicit relationship between $E_n(\mathbf{k})$ and $g_n(E)$ $g_n(E) = \iiint \delta(E - E_n(\mathbf{k})) \frac{\mathrm{d}^3 \mathbf{k}}{4\pi^3}$ (review: DOL in *n*-th band) Goal: find the allowed k for which $E_n(k) \in (E, E + dE)$.

$$g_n(E) dE = \begin{cases} \iiint \frac{d^3 \mathbf{k}}{4\pi^3} & E_n(\mathbf{k}) \in (E, E + dE) \\ 0 & \text{otherwise} \end{cases}$$

Consider the following ideas...

- Let $S_n(E)$ denote the surface in k space of constant energy $E_n(\mathbf{k}) = E$ in the *n*-th energy band.
- The **k** for which $E_n(\mathbf{k}) \in (E, E + dE)$ fall in the region of **k**-space bounded by $S_n(E)$ and $S_n(E+dE)$.
- Idea: since dE is infinitesimal, $g_n(E)$ dE may we written as a surface integral.

Combine above three ideas to write $g_n(E) dE$ as...

$$g_n(E) dE = \iint_{S_n(E)} \frac{\delta \mathbf{k}}{4\pi^3} \cdot d\mathbf{S}$$
$$\equiv \iint_{S_n(E)} \frac{\delta \mathbf{k}_{\perp}}{4\pi^3} dS$$

 δk_{\perp} is the component of δk normal to the surface $S_n(E)$

 $dE = \nabla E_n(\mathbf{k}) \cdot \delta \mathbf{k}$ (the differential dE in general) Recall $\nabla E_n(\mathbf{k})$ is normal to surfaces of constant E to get... $dE = |\nabla E_n(\mathbf{k})| \delta k_{\perp}$ $\implies \delta k_{\perp} = \frac{dE}{|\nabla E_n(\mathbf{k})|}$ (evaluating dot product) (solving for δk_{\perp})

Substitute δk_{\perp} into surface integral for $g_n(E) dE$ to get... $g_n(E) dE = \frac{1}{4\pi^3} \iint_{S_n(E)} \frac{dS}{|\nabla E_n(\mathbf{k})|} dE$ Finally, cancell dE from both sides to get...

 $g_n(E) = \frac{1}{4\pi^3} \iint_{S_n(E)} \frac{\mathrm{d}S}{|\nabla E_n(\mathbf{k})|}$ (gen. DOL in *n*-th band)

Nearly-Free Electron Model

Model: Assume Bloch electrons are nearly free; model Bloch wave function as a free electron plane wave perturbed by the crystal's (weak) periodic potential.

The NFEM applies to metals with s or p orbitals outside a closed-shell noble gas configuration (e.g. groups I, II, III, IV).

General Considerations

Model Bloch wave function as expansion over plane waves $\psi_{\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{K}} c_{\mathbf{k} - \mathbf{K}} e^{i(\mathbf{k} - \mathbf{K}) \cdot \mathbf{r}}$

Wave function coefficients c_{k-K} and energies E are found by solving the eigenvalue problem...

$$\begin{split} & \left[\frac{\hbar^2}{2m}(\boldsymbol{k}-\boldsymbol{K})^2 - E\right]c_{\boldsymbol{k}-\boldsymbol{K}} + \sum_{\boldsymbol{K'}} c_{\boldsymbol{k}-\boldsymbol{K'}} U_{\boldsymbol{K'}-\boldsymbol{K}} = 0 \\ & U_{\boldsymbol{K}} = \frac{1}{V_0} \iiint_{\text{cell}} U(\boldsymbol{r}) e^{-\boldsymbol{K}\cdot\boldsymbol{r}} \, \mathrm{d}V \quad \text{(review: Fourier components)} \\ & \text{Shorthand: let } E_{\boldsymbol{k}}^{(0)} \equiv \frac{\hbar^2}{2m} k^2 \qquad \qquad \text{(free electron energy)} \\ & \left(E_{\boldsymbol{k}-\boldsymbol{K}}^{(0)} - E\right) c_{\boldsymbol{k}-\boldsymbol{K}} + \sum_{\boldsymbol{K'}} c_{\boldsymbol{k}-\boldsymbol{K'}} U_{\boldsymbol{K'}-\boldsymbol{K}} = 0 \text{ (in terms of } E_{\boldsymbol{k}}^{(0)}) \end{split}$$

Limit Case: Free Electrons

Goal: analyze the NFEM for completely free electrons. (for free electrons with $U(\mathbf{r}) = 0$) $U_{\mathbf{K}} = 0$ for all \mathbf{K}

$$\left(E_{\mathbf{k}-\mathbf{K}}^{(0)} - E\right)c_{\mathbf{k}-\mathbf{K}} + \sum_{\mathbf{K}'} c_{\mathbf{k}-\mathbf{K}'} U_{\mathbf{K}'-\mathbf{K}} = 0 \qquad \text{(in general)}$$

$$\left(E_{\mathbf{k}-\mathbf{K}}^{(0)} - E\right)c_{\mathbf{k}-\mathbf{K}} = 0 \qquad \text{(for free electrons)}$$

Conclusion: In limit of free electrons, for each K, either

- (a) $E = E_{\boldsymbol{k}-\boldsymbol{K}}^{(0)}$ (Bloch e^- have free e^- energy) (b) $c_{\boldsymbol{k}-\boldsymbol{K}} = 0$ (the level $\boldsymbol{k}-\boldsymbol{K}$ doesn't contribut to $\psi_{\boldsymbol{k}}$) More so, $E = E_{\boldsymbol{k}-\boldsymbol{K}}^{(0)}$ can occur...
 - (a) for a single $K = K_0$, giving the non-dengenerate solution $E = E_{\mathbf{k} - \mathbf{K}}^{(0)}$ (energy)

 $\psi_{\mathbf{k}} \propto e^{i(\mathbf{k} - \mathbf{K}) \cdot \mathbf{r}}$ (wave function)

(b) for multiple $K = K_1, ..., K_m$, giving the degenerate solution

$$E = E_{\mathbf{k} - \mathbf{K}_1} = \dots = E_{\mathbf{k} - \mathbf{K}_m}$$
 (energy)
 $\psi_{\mathbf{k}} \propto a_1 e^{i(\mathbf{k} - \mathbf{K}_1) \cdot \mathbf{r}} + \dots + a_m e^{i(\mathbf{k} - \mathbf{K}_m)}$ (wave function)

$$\psi_{\mathbf{k}} \propto a_1 e^{i(\mathbf{k} - \mathbf{K}_1) \cdot \mathbf{r}} + \dots + a_m e^{i(\mathbf{k} - \mathbf{K}_m)}$$
 (wave function)

NFEM: Typical Analysis Procedure

- 1. Choose a fixed k in the first Brillioun zone
- 2. Find the finite set of m reciprocal vectors $\{K'\}$ for which $E_{\mathbf{k}-\mathbf{K}'}$ is a degenerate solution
- 3. For the chosen wave vector \boldsymbol{k} and each $\boldsymbol{K} \in \{\boldsymbol{K}'\},$ solve the $m \times m$ homogeneous system

$$\left(E_{\mathbf{k}-\mathbf{K}}^{(0)} - E\right)c_{\mathbf{k}-\mathbf{K}} + \sum_{\mathbf{K}'} c_{\mathbf{k}-\mathbf{K}'} U_{\mathbf{K}'-\mathbf{K}} = 0$$

to get m eigenvalues $\{E_{nk}\}$ and eigenvectors $\boldsymbol{c}_{k}^{(n)} \in \mathbb{C}^{m}$ $\boldsymbol{c}_{k}^{(n)} = (c_{k-K_{1}}^{(n)}, \dots, c_{k-K_{m}}^{(n)})$ (eigenvector elements)

4. Arrange eigenvalue-eigenvector pairs in order of increas-

ing energy, indexed by the quantum number n. The quantum number n is called the energy band index.

The NFEM wave function of a Bloch electron with wave vector \boldsymbol{k} and band index n is then...

$$\psi_{n\mathbf{k}}(\mathbf{r}) = \sum_{\mathbf{K}} c_{\mathbf{k}-\mathbf{K}}^{(n)} e^{i(\mathbf{k}-\mathbf{K})\cdot\mathbf{r}}$$
 (NFEM wave function)

Weak Potential and Nondegenerate Solution

For a fixed wave vector k, consider a reciprocal lattice vector \mathbf{K}_0 with nondegenerate free electron energy $E = E_{\mathbf{k} - \mathbf{K}_0}^{(0)}$.

$$E - E_{\mathbf{k} - \mathbf{K}_0}^{(0)} = 0$$
 (free e^- nondegenerate energy)

Concept: for a weak potential U(r), the condition that $E_{\mathbf{k}-\mathbf{K}}^{(0)}$ be nondegenerate generalizes to...

$$\left|E_{\mathbf{k}-\mathbf{K}}^{(0)} - E_{\mathbf{k}-\mathbf{K}_0}^{(0)}\right| \gg U_{\mathbf{K}'}$$
 for all $\mathbf{K} \neq \mathbf{K}_0$ and $U_{\mathbf{K}'}$

Interpretation: the free electron energy $E_{\mathbf{k}-\mathbf{K}_0}^{(0)}$ is very far from all other free electron energies on the scale of a typical Fourier component $U_{\mathbf{K}'}$.

Goal: analyze how the presence of a weak potential perturbs the non-degenerate free electron level with energy $E_{\mathbf{k}-\mathbf{K}_0}^{(0)}$.

Consider the non-degenerate free
$$e^-$$
 level $E_{\mathbf{k}-\mathbf{K}_0}^{(0)}$.

$$\psi_{\mathbf{k}} = \sum_{\mathbf{K}} c_{\mathbf{k}-\mathbf{K}} e^{i(\mathbf{k}-\mathbf{K}) \cdot \mathbf{r}} \qquad \text{(review: NFEM ansatz)}$$

$$\left(E - E_{\mathbf{k} - \mathbf{K}}^{(0)}\right) c_{\mathbf{k} - \mathbf{K}} = \sum_{\mathbf{K}'} c_{\mathbf{k} - \mathbf{K}'} U_{\mathbf{K}' - \mathbf{K}} \text{ (review: NFEM eqs.)}$$

$$c_{k-K} \sim \begin{cases} 1 & K = K_0 \\ 0 & \text{otherwise} \end{cases}$$
 (for a nondegenerate level)

Interpretation: assume only the plane wave $e^{i(\mathbf{k}-\mathbf{K}_0)\cdot\mathbf{r}}$ contributes appreciably to the nondegenerate solution.

Approximate Expression for Coefficients

TODO: redo as for near-degenerate/as in Ashcroft. Goal: find approximate expression for c_{k-K} for weak potential and non-degenerate level with $K = K_0$.

$$c_{k-K} \sim \begin{cases} 1 & K = K_0 \\ 0 & \text{otherwise} \end{cases}$$
 (for a nondegenerate level)

$$\implies \sum_{\mathbf{K}'} c_{\mathbf{k}-\mathbf{K}'} U_{\mathbf{K}'-\mathbf{K}} \approx c_{\mathbf{k}-\mathbf{K}_0} U_{\mathbf{K}_0-\mathbf{K}}$$
 (for a ndg. level

Substitute this sum into general NFEM system of eq. to get...
$$\left(E - E_{\mathbf{k} - \mathbf{K}'}^{(0)}\right) c_{\mathbf{k} - \mathbf{K}'} \approx c_{\mathbf{k} - \mathbf{K}_0} U_{\mathbf{K}_0 - \mathbf{K}'}$$
 (for a ndg. level)

Solve for $c_{\mathbf{k}-\mathbf{K}'}$ and reindex $\mathbf{K}' \to \mathbf{K}$ to get...

$$\implies c_{k-K} \approx \frac{c_{k-K_0} U_{K_0-K}}{E - E_{k-K}^{(0)}} \qquad \text{(result: } c_k \text{ for ndg. level)}$$

Solving for Energy

Solve system of NFEM eqs. with chosen $K = K_0$, giving...

Solve system of NFEM eqs. with chosen
$$K = K_0$$
, giving...
$$\begin{pmatrix} E - E_{\mathbf{k}-\mathbf{K}_0}^{(0)} \end{pmatrix} c_{\mathbf{k}-\mathbf{K}_0} = \sum_{\mathbf{K}} c_{\mathbf{k}-\mathbf{K}} U_{\mathbf{K}-\mathbf{K}_0} & \text{(for } \mathbf{K} = \mathbf{K}_0) \\
= \sum_{\mathbf{K} \neq \mathbf{K}_0} c_{\mathbf{k}-\mathbf{K}} U_{\mathbf{K}-\mathbf{K}_0} & \text{(since } U_0 = 0) \\
\approx \sum_{\mathbf{K} \neq \mathbf{K}_0} \frac{c_{\mathbf{k}-\mathbf{K}_0} U_{\mathbf{K}_0-\mathbf{K}}}{E - E_{\mathbf{k}-\mathbf{K}}^{(0)}} U_{\mathbf{K}-\mathbf{K}_0} & \text{(ndg. } c_{\mathbf{k}-\mathbf{K}}) \\
\approx \sum_{\mathbf{K} \neq \mathbf{K}_0} \frac{c_{\mathbf{k}-\mathbf{K}_0} |U_{\mathbf{K}-\mathbf{K}_0}|^2}{E - E_{\mathbf{k}-\mathbf{K}}^{(0)}} & (U_{\mathbf{K}}^* = U_{-\mathbf{K}}) \\
E = E_{\mathbf{k}-\mathbf{K}_0}^{(0)} + \sum_{\mathbf{K} \neq \mathbf{K}_0} \frac{c_{\mathbf{k}-\mathbf{K}_0} |U_{\mathbf{K}-\mathbf{K}_0}|^2}{E - E_{\mathbf{k}-\mathbf{K}}^{(0)}} & \text{(solving for } E) \\
\approx E_{\mathbf{k}-\mathbf{K}_0}^{(0)} + \sum_{\mathbf{K} \neq \mathbf{K}_0} \frac{c_{\mathbf{k}-\mathbf{K}_0} |U_{\mathbf{K}-\mathbf{K}_0}|^2}{E_{\mathbf{k}-\mathbf{K}_0}^{(0)} - E_{\mathbf{k}-\mathbf{K}}^{(0)}} & (E \approx E_{\mathbf{k}-\mathbf{K}_0}^{(0)} \text{ in denom}) \\
\text{Conclusion: the NFEM corrections to a nondegenerate free}$$

$$E = E_{\mathbf{k}-\mathbf{K}_0}^{(0)} + \sum_{\mathbf{K} \neq \mathbf{K}_0} \frac{c_{\mathbf{k}-\mathbf{K}_0} \left| U_{\mathbf{K}-\mathbf{K}_0} \right|^2}{E - E_{\mathbf{k}-\mathbf{K}}^{(0)}}$$
 (solving for E

$$\approx E_{\mathbf{k}-\mathbf{K}_0}^{(0)} + \sum_{\mathbf{K} \neq \mathbf{K}_0} \frac{c_{\mathbf{k}-\mathbf{K}_0} |U_{\mathbf{K}-\mathbf{K}_0}|^2}{E_{\mathbf{k}-\mathbf{K}_0}^{(0)} - E_{\mathbf{k}-\mathbf{K}}^{(0)}} \quad (E \approx E_{\mathbf{k}-\mathbf{K}_0}^{(0)} \text{ in denom})$$

Conclusion: the NFEM corrections to a nondegenerate free electron level $E_{{m k}-{m K}}^{(0)}$ in a weak potential are second-order in the potential's Fourier components.

Weak Potential and Degenerate Solutions

For a fixed wave vector \boldsymbol{k} , consider a set of m reciprocal lattice vectors K_1, \ldots, K_m with degenerate free electron energies $E - E_{\mathbf{k} - \mathbf{K}_i}^{(0)} = 0 \text{ for } i = 1, \dots, m$

Concept: for a weak potential, the condition that the $E_{\mathbf{k}-\mathbf{K}_{i}}^{(0)}$ be degenerate generalizes to the near-degeneracy condition $\left|E_{\mathbf{k}-\mathbf{K}}^{(0)} - E_{\mathbf{k}-\mathbf{K}_i}^{(0)}\right| \gg U_{\mathbf{K}'}$ for all $\mathbf{K} \neq \mathbf{K}_1, \dots, \mathbf{K}_m$, all $U_{\mathbf{K}'}$,

Interpretation: the free electron energies $E_{\mathbf{k}-\mathbf{K}_i}^{(0)}$ are far from all other free electron energies on the scale of a typical Fourier

Goal: analyze how a weak potential perturbs the set of degenerate free electron level with energy $E_{\mathbf{k}-\mathbf{K}_i}^{(0)}$, $i=1,\ldots,m$.

Approximate Expression for Coefficients

Goal: find approximate expressions for c_{k-K} for weak poten-

tial and near-degenerate levels
$$\boldsymbol{K} = \boldsymbol{K}_1, \dots, \boldsymbol{K}_m$$
. $c_{\boldsymbol{k}-\boldsymbol{K}'} \sim \begin{cases} \frac{1}{\sqrt{m}} & \boldsymbol{K}' = \boldsymbol{K}_1, \dots, \boldsymbol{K}_m \\ 0 & \text{otherwise} \end{cases}$ (near-degenerate level)
$$\begin{pmatrix} E - E_{\boldsymbol{k}-\boldsymbol{K}}^{(0)} \end{pmatrix} c_{\boldsymbol{k}-\boldsymbol{K}} = \sum_{\boldsymbol{K}'} c_{\boldsymbol{k}-\boldsymbol{K}'} U_{\boldsymbol{K}'-\boldsymbol{K}} & \text{(review: NFEM eqs.)}$$
 $c_{\boldsymbol{k}-\boldsymbol{K}} = \frac{1}{E - E_{\boldsymbol{k}-\boldsymbol{K}}^{(0)}} \sum_{\boldsymbol{K}'} c_{\boldsymbol{k}-\boldsymbol{K}'} U_{\boldsymbol{K}'-\boldsymbol{K}} & \text{(solved for } c_{\boldsymbol{k}-\boldsymbol{K}})$
$$= \frac{1}{E - E_{\boldsymbol{k}-\boldsymbol{K}}^{(0)}} \left(\sum_{j=1}^m c_{\boldsymbol{k}-\boldsymbol{K}_j} U_{\boldsymbol{K}_j-\boldsymbol{K}} & \text{(decomposing sum)} \right)$$

$$+ \sum_{\boldsymbol{K}' \neq \boldsymbol{K}_1, \dots, \boldsymbol{K}_m} c_{\boldsymbol{k}-\boldsymbol{K}'} U_{\boldsymbol{K}'-\boldsymbol{K}} \right)$$

$$\approx \frac{1}{E - E_{\boldsymbol{k}-\boldsymbol{K}}^{(0)}} \left(\sum_{j=1}^m c_{\boldsymbol{k}-\boldsymbol{K}_j} U_{\boldsymbol{K}_j-\boldsymbol{K}} \right) \qquad \text{(using } c_{\boldsymbol{k}-\boldsymbol{K}'} \sim 0)$$

Solving for Energy

Solve the system of NFEM equations. with the neardegenerate $K = K_1, \dots, K_m$, giving...

$$\left(E - E_{\mathbf{k} - \mathbf{K}_{i}}^{(0)}\right) c_{\mathbf{k} - \mathbf{K}_{i}} = \sum_{\mathbf{K}} c_{\mathbf{k} - \mathbf{K}} U_{\mathbf{K} - \mathbf{K}_{i}}, \quad i = 1, \dots, m$$

$$= \sum_{j=1}^{m} c_{\mathbf{k} - \mathbf{K}_{j}} U_{\mathbf{K}_{j} - \mathbf{K}_{i}} \text{ (decomposing sum)}$$

$$+ \sum_{\mathbf{K} \neq \mathbf{K}_{1}, \dots, \mathbf{K}_{m}} c_{\mathbf{k} - \mathbf{K}} U_{\mathbf{K} - \mathbf{K}_{i}}$$

$$c_{\mathbf{k} - \mathbf{K}} \approx \frac{1}{E - E_{\mathbf{k} - \mathbf{K}_{i}}^{(0)}} \left(\sum_{j=1}^{m} c_{\mathbf{k} - \mathbf{K}_{j}} U_{\mathbf{K}_{j} - \mathbf{K}_{j}}\right) \text{ (review: near-dg. } c_{\mathbf{k} - \mathbf{K}}\right)$$

(for a ndg. level) Substitute in near-degenerate c_{k-K} to get...

$$\left(E - E_{\mathbf{k} - \mathbf{K}_i}^{(0)}\right) c_{\mathbf{k} - \mathbf{K}_i} = \sum_{j=1}^{m} c_{\mathbf{k} - \mathbf{K}_j} U_{\mathbf{K}_j - \mathbf{K}_i} + \cdots
+ \sum_{j=1}^{m} \left(\sum_{\mathbf{K} \neq \mathbf{K}_1, \dots, \mathbf{K}_m} \frac{U_{\mathbf{K} - \mathbf{K}_i} U_{\mathbf{K}_j - \mathbf{K}}}{E - E_{\mathbf{k} - \mathbf{K}}^{(0)}}\right) c_{\mathbf{k} - \mathbf{K}_j}$$

Conclusion: the NFEM corrections to a set of near-degenerate free electron levels $E_{{m k}-{m K}_i}^{(0)}$ in a weak potential are first-order in the potential's Fourier components, and are found by solving a coupled $m \times m$ system of equations.

To leading order in the Fourier components $U_{K'}$, the neardegenerate equations simplify to...

$$\left(E - E_{\mathbf{k} - \mathbf{K}_i}^{(0)}\right) c_{\mathbf{k} - \mathbf{K}_i} \approx \sum_{j=1}^{m} c_{\mathbf{k} - \mathbf{K}_j} U_{\mathbf{K}_j - \mathbf{K}_i}$$
 (to leading order)

Example: Twice-Degenerate Level

For a fixed k, consider a set of two reciprocal lattice vectors K_1, K_2 with near-degenerate energies $E_{k-K_i}^{(0)}$ given by...

$$\left|E_{\mathbf{k}-\mathbf{K}}^{(0)} - E_{\mathbf{k}-\mathbf{K}_i}^{(0)}\right| \gg U_{\mathbf{K}'}$$
 for all $\mathbf{K} \neq \mathbf{K}_1, \mathbf{K}_2$, all Fourier components $U_{\mathbf{K}'}$, and for $i = 1, 2$.

Goal: analyze how a weak potential perturbs the two degenerate free electron level with energy $E_{\mathbf{k}-\mathbf{K}_{i}}^{(0)}$, i=1,2.

$$\left(E - E_{\mathbf{k} - \mathbf{K}_i}^{(0)}\right) c_{\mathbf{k} - \mathbf{K}_i} = \sum_{j=1}^{2} c_{\mathbf{k} - \mathbf{K}_j} U_{\mathbf{K}_j - \mathbf{K}_i}$$
 (for $m = 2$)

Use U_0 and write out the two equations to get...

$$\left(E - E_{\mathbf{k} - \mathbf{K}_1}^{(0)}\right) c_{\mathbf{k} - \mathbf{K}_1} = c_{\mathbf{k} - \mathbf{K}_2} U_{\mathbf{K}_2 - \mathbf{K}_1}$$
 (for $i = 1$)

$$\left(E - E_{\mathbf{k} - \mathbf{K}_2}^{(0)}\right) c_{\mathbf{k} - \mathbf{K}_2} = c_{\mathbf{k} - \mathbf{K}_1} U_{\mathbf{K}_1 - \mathbf{K}_2}$$
 (for $i = 2$)

Shorthand: let $q \equiv k - K_1$ and $K \equiv K_2 - K_1$

$$\left(E_{\mathbf{q}}^{(0)} - E\right)c_{\mathbf{q}} + c_{\mathbf{q} - \mathbf{K}}U_{\mathbf{K}} = 0 \qquad (\text{for } i = 1)$$

$$\left(E_{\mathbf{q}-\mathbf{K}}^{(0)} - E\right)c_{\mathbf{q}-\mathbf{K}} + c_{\mathbf{q}}U_{-\mathbf{K}} = 0$$
 (for $i = 2$)

$$\begin{pmatrix}
E_{\mathbf{q}}^{(0)} - E & U_{\mathbf{K}} \\
U_{\mathbf{K}}^* & E_{\mathbf{q}-\mathbf{K}}^{(0)} - E
\end{pmatrix}
\begin{pmatrix}
c_{\mathbf{q}} \\
c_{\mathbf{q}-\mathbf{K}}
\end{pmatrix} = \mathbf{0} \qquad \text{(in matrix form)}$$
For a non-trivial solution for $c_{\mathbf{q}}$ and $c_{\mathbf{q}-\mathbf{K}}$, we require...

$$\det \begin{pmatrix} E_{\mathbf{q}}^{(0)} - E & U_{\mathbf{K}} \\ U_{\mathbf{K}}^* & E_{\mathbf{q}-\mathbf{K}}^{(0)} - E \end{pmatrix} = 0$$

$$\implies E = \frac{1}{2} \left(E_{\mathbf{q}}^{(0)} + E_{\mathbf{q} - \mathbf{K}}^{(0)} \right) \pm \frac{1}{2} \sqrt{\left(E_{\mathbf{q}}^{(0)} - E_{\mathbf{q} - \mathbf{K}}^{(0)} \right)^2 + 4|U_{\mathbf{K}}|^2}$$

Interpretation: $\frac{1}{2} \left(E_{\boldsymbol{q}}^{(0)} + E_{\boldsymbol{q} - \boldsymbol{K}}^{(0)} \right) = \frac{1}{2} \left(E_{\boldsymbol{k} - \boldsymbol{K}_1}^{(0)} + E_{\boldsymbol{k} - \boldsymbol{K}_2}^{(0)} \right)$ is degenerate free electron energy. The square root term breaks the degeneracy assuming non-zero $U_{\mathbf{K}} = U_{\mathbf{K}_2 - \mathbf{K}_1}$.

Bragg Plane Interpretation of Double Degeneracy

Double near-degeneracy condition: $E_{{m q}-{m K}}^{(0)} \approx E_{{m q}}^{(0)}$ and $\left| E_{\boldsymbol{q}}^{(0)} - E_{\boldsymbol{q} - \boldsymbol{K}'}^{(0)} \right| \gg U_{\boldsymbol{K}''}$ for all $\boldsymbol{K}' \neq \boldsymbol{K}$ and all $U_{\boldsymbol{K}''}$.

Concept: $E_{q-K}^{(0)} = E_q^{(0)}$ only for reciprocal lattice vectors K for which |q| = |q - K|.

$$\begin{aligned} |\boldsymbol{q}| &= |\boldsymbol{q} - \boldsymbol{K}| & \text{(for double degeneracy)} \\ |\boldsymbol{q}|^2 &= |\boldsymbol{q} - \boldsymbol{K}|^2 & \text{(squaring)} \\ q^2 &= q^2 - 2\boldsymbol{q} \cdot \boldsymbol{K} - K^2 & \text{(multiplying out)} \\ \boldsymbol{q} \cdot \boldsymbol{K} &= \frac{K^2}{2} & \text{(simplified and rearranged)} \\ \boldsymbol{q} \cdot \hat{\mathbf{K}} &= \frac{K}{2} & \text{(letting } \hat{\mathbf{K}} \equiv \boldsymbol{K}/|\boldsymbol{K}|) \end{aligned}$$

Interpretation: $\mathbf{q} \cdot \hat{\mathbf{K}} = K/2$ is the equation of Bragg plane defined by the reciprocal lattice vector $K \implies$ the degeneracy condition $E_{\bm{q}}^{(0)}=E_{\bm{q}-\bm{K}}^{(0)}$ is satisfied for \bm{q} falling in the Bragg plane defined by \bm{K} .

TODO: interpret:

"The case of two near-degenerate levels applies to an electron whose wave vector very nearly satisfies the condition for a single Bragg scattering".

"A weak periodic potential has its major effects only on those free electron levels whose wave vectors are close to ones at which Bragg reflections can occur."

Energy Gradient

Goal: evaluate the gradient of the electron energy at a doublydegenerate level $E_{\boldsymbol{q}}^{(0)} = E_{\boldsymbol{q}-\boldsymbol{K}}^{(0)}$ in a weak potential.

$$\begin{split} E_{\boldsymbol{q}} &= \frac{1}{2} \left(E_{\boldsymbol{q}}^{(0)} + E_{\boldsymbol{q}-\boldsymbol{K}}^{(0)} \right) \quad \text{(review: doubly-degenerate level)} \\ &+ \frac{1}{2} \sqrt{ \left(E_{\boldsymbol{q}}^{(0)} - E_{\boldsymbol{q}-\boldsymbol{K}}^{(0)} \right)^2 + 4 |U_{\boldsymbol{K}}|^2} \\ &\nabla_{\boldsymbol{q}} E_{\boldsymbol{q}} \big|_{E_{\boldsymbol{q}}^{(0)} = E_{\boldsymbol{q}-\boldsymbol{K}}^{(0)}} &= \frac{1}{2} \nabla_{\boldsymbol{q}} \left(E_{\boldsymbol{q}}^{(0)} + E_{\boldsymbol{q}-\boldsymbol{K}}^{(0)} \right)_{E_{\boldsymbol{q}}^{(0)} = E_{\boldsymbol{q}-\boldsymbol{K}}^{(0)}} + \mathbf{0} \end{split}$$

(square root term vanishes when evaluated at
$$E_{\boldsymbol{q}}^{(0)} = E_{\boldsymbol{q}-\boldsymbol{K}}^{(0)}$$
)
$$\nabla_{\boldsymbol{q}} E_{\boldsymbol{q}} = \frac{\hbar^2}{4m} \nabla_{\boldsymbol{q}} \left(|\boldsymbol{q}|^2 + |\boldsymbol{q} - \boldsymbol{K}|^2 \right) \qquad \text{(at } E_{\boldsymbol{q}}^{(0)} = E_{\boldsymbol{q}-\boldsymbol{K}}^{(0)}$$

$$= \frac{1}{2} \frac{\hbar^2}{2m} \nabla_{\boldsymbol{q}} \left(2|\boldsymbol{q}|^2 - 2\boldsymbol{q} \cdot \boldsymbol{K} + |\boldsymbol{K}|^2 \right) \qquad \text{(multiplying out)}$$

$$= \frac{\hbar^2}{4m} (4\mathbf{q} - 2\mathbf{K} + \mathbf{0})$$
 (evaluating gradient)
$$= \frac{\hbar^2}{m} (\mathbf{q} - \frac{\mathbf{K}}{2})$$
 (simplifying)

 $=\frac{\frac{\hbar^2}{m}\left(q-\frac{K}{2}\right)}{m} \text{ (simplifying)}$ Conclusion: $\nabla_{q}E_{q}$ lies in the Bragg plane defined by the RL vector K. Meanwhile, by definition, $\nabla_{q} E_{q}$ points in the direction of greatest change in E_q with respect to q, and thus perpendicular to planes of constant $E_q \implies$ planes of constant E_{q} are perpendicular to the Bragg plane defined by K.

The Tight-Binding Model

Model: Assume e^- are tightly bound to lattice sites and interact appreciably only with nearby lattice sites; expand Bloch $e^$ eigenstates over a basis of hydrogen-like atomic eigenfunctions. The TBM applies to insulators and to energy bands associated with partially-filled d shells in transition metals.

Review: Isolated Single-Electron Atom

Consider a single-electron (mass m) in the presence of a proton (mass $M \gg m$), isolated from external interactions.

Align origin of coordinate system with proton's center.

$$\begin{split} U_{\rm at} &= -\frac{e_0^2}{4\pi\epsilon_0 r} \qquad \text{(the atomic sytem's Coulomb potential)} \\ \mu &= \frac{mM}{m+M} \approx m \qquad \qquad \text{(reduced mass)} \\ H_{\rm at} &= -\frac{\hbar^2}{2\mu} \nabla^2 - U_{\rm at} \qquad \qquad \text{(system's Hamiltonian)} \\ &\approx -\frac{\hbar^2}{2m} \nabla^2 - \frac{e_0^2}{4\pi\epsilon r} \qquad \qquad \text{(since } \mu \approx m) \\ H_{\rm at} \psi_{nlm_l} &= E_{nlm_l} \psi_{nlm_l} \qquad \text{(electron Schrödinger equation)} \\ \psi_{nlm_l} \text{ are electron energy eigenfunctions} \end{split}$$

n is principal quantum number

l is orbital quantum number

 m_l is magnetic quantum number

(tuple quantum number, for shorthand) Let $\nu \equiv (n, l, m_l)$ $(e^{-}$ Schrödinger eq. in terms of $\nu)$ $H_{\rm at}\psi_{\nu}=E_{\nu}\psi_{\nu}$

Single-Electron Atom in Periodic Potential

Consider a single-electron atom at the origin of a surrounding crystal lattice of identical atoms.

Motivation: the TBM assumes that near lattice sites the lattice Hamiltonian is well-approximated by an atomic Hamiltonian. $U_{
m at}(m{r}) = -rac{e_0^2}{4\pi\epsilon_0 r}$ (a single atom's potential) $U_{
m lattice}({m r}) = \sum_{{m R}} U_{
m at}({m r} - {m R})$ (the lattice's potential) $\Delta U \equiv \sum_{{m R} \neq {m 0}} U_{
m at}({m r} - {m R})$ (lattice potential minus origin atom)

$$H_{\rm at} = -\frac{\hbar^2}{2m} \nabla^2 + U_{\rm at}(\mathbf{r})$$
 (for isolated atom at origin)
 $H = H_{\rm at} + \Delta U$, (for atom at origin plus lattice)
 $\approx H_{\rm at}$ (near origin atom)

TBM Ansatz for Bloch Electrons

Let $\nu = (n, l, m_l)$ be a shorthand tuple index of quantum numbers for isolated atomic eigenfunctions.

 ψ_{ν} are isolated atomic eigenfunctions

$$\psi(\mathbf{r}) = \sum_{\mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} \phi(\mathbf{r} - \mathbf{R})$$
 (TBM ansatz for Bloch e^-)
$$\phi(\mathbf{r}) = \sum_{\mathbf{R}} b_{\nu} \psi_{\nu}(\mathbf{r})$$
 (TBM basis function)

Interpretation: $\phi(\mathbf{r})$ is a linear combination of (in practice, a small number of) atomic eigenfunctions.

TBM: Solving the Schrödinger Equation I

Goal: Solve the Schrödinger equation for electrons in a periodic potential using the TBM ansatz $\psi(\mathbf{r})$.

 $(H_{\rm at} + \Delta U)\psi(\mathbf{r}) = E\psi(\mathbf{r})$ (review: Schrödinger equation) Take scalar product with arbitrary atomic eigenfun. ψ_{μ} to get...

$$\iiint_{CC} \psi_{\mu}^* (H_{\text{at}} + \Delta U) \psi \, dV = E \iiint_{CC} \psi_{\mu}^* \psi \, dV$$

 $\iiint \psi_{\mu}^* H_{\rm at} \psi \, dV = E_{\mu} \iiint \psi_{\mu}^* \psi \, dV$ (using $H_{\rm at}\psi_{\mu}^* = E_{\mu}\psi_{\mu}^*$)

Substitute TMB ansatz for
$$\psi$$
 into scalar product to get...
$$\iiint \psi_{\mu}^{*} \psi \, dV = \iiint \psi_{\mu}^{*} \sum_{\nu, \mathbf{R}} e^{i\mathbf{k}\cdot\mathbf{R}} b_{\nu} \psi_{\nu}(\mathbf{r} - \mathbf{R}) \, dV$$

$$= \sum_{\nu, \mathbf{R}} b_{\nu} e^{i\mathbf{k}\cdot\mathbf{R}} \iiint \psi_{\mu}^{*} \psi_{\nu}(\mathbf{r} - \mathbf{R}) \, dV$$

 $\iiint_{\mu} \psi_{\mu}^{*} \psi_{\nu}(\mathbf{r}) \, dV = \delta_{\nu,\mu} \quad \text{(if } \mathbf{R} = \mathbf{0}, \text{ since } \psi_{\nu} \text{ are orthonormal)} \\
\text{Decompose sum over } \mathbf{R} \text{ into } \mathbf{R} = \mathbf{0} \text{ and } \mathbf{R} \neq \mathbf{0} \text{ to get...} \\
\iiint_{\mu} \psi_{\mu}^{*} \psi \, dV = b_{\nu} \delta_{\nu,\mu} + \sum_{\nu,\mathbf{R}\neq\mathbf{0}} b_{\nu} e^{i\mathbf{k}\cdot\mathbf{R}} \iiint_{\mu} \psi_{\mu}^{*} \psi_{\nu}(\mathbf{r} - \mathbf{R}) \, dV \\
= b_{\mu} + \sum_{\nu,\mathbf{R}\neq\mathbf{0}} b_{\nu} e^{i\mathbf{k}\cdot\mathbf{R}} \iiint_{\mu} \psi_{\mu}^{*} \psi_{\nu}(\mathbf{r} - \mathbf{R}) \, dV$

$$= b_{\mu} + \sum_{\nu, \mathbf{R} \neq \mathbf{0}}^{\nu, \mathbf{R} \neq \mathbf{0}} b_{\nu} e^{i\mathbf{k} \cdot \mathbf{R}} \iiint \psi_{\mu}^{*} \psi_{\nu}(\mathbf{r} - \mathbf{R}) \, dV$$

Summarizing Results So Far

$$\iiint \psi_{\mu}^* H \psi \, dV = E_{\mu} \iiint \psi_{\mu}^* \psi \, dV$$
 (i)

$$\iiint \psi_{\mu}^{*} H \psi \, dV = E_{\mu} \iiint \psi_{\mu}^{*} \psi \, dV \qquad (i)$$

$$\iiint \psi_{\mu}^{*} \psi \, dV = b_{\mu} + \sum_{\nu, \mathbf{R} \neq \mathbf{0}} b_{\nu} e^{i\mathbf{k} \cdot \mathbf{R}} \iiint \psi_{\mu}^{*} \psi_{\nu} (\mathbf{r} - \mathbf{R}) \, dV \qquad (ii)$$

TBM: Solving the Schrödinger Equation II

Continue with scalar product of Schrödinger eq. with ψ_{μ}^* , i.e. $\iiint \psi_{\mu}^* (H_{\rm at} + \Delta U) \psi \, dV = E \iiint \psi_{\mu}^* \psi \, dV$ $E \iiint \psi_{\mu}^{*} \psi \, dV - \iiint \psi_{\mu}^{*} H_{at} \psi \, dV = \iiint \psi_{\mu}^{*} \Delta U \psi \, dV \text{ (rearranged)}$ Substitute in results from Part I to get..

$$(E - E_{\mu}) \iiint \psi_{\mu}^* \psi \, dV = \iiint \psi_{\mu}^* \Delta U \psi \, dV \qquad \text{(using result (i))}$$

$$(E-E_{\mu})\left[b_{\mu} + \sum_{\nu, \mathbf{R} \neq \mathbf{0}} b_{\nu} e^{i\mathbf{k} \cdot \mathbf{R}} \iiint \psi_{\mu}^{*} \psi_{\nu}(\mathbf{r} - \mathbf{R}) \, dV\right] = \iiint \psi_{\mu}^{*} \Delta U \psi \, dV$$
(using result (ii))

Finally, substitute ansatz for ψ into RHS, rearrange integration and summation, and decompose sum over R into R = 0

$$(E - E_{\mu}) \left[b_{\mu} + \sum_{\nu, \mathbf{R} \neq \mathbf{0}} b_{\nu} e^{i\mathbf{k} \cdot \mathbf{R}} \iiint \psi_{\mu}^{*} \psi_{\nu} (\mathbf{r} - \mathbf{R}) \, dV \right] = \cdots$$

$$\cdots = \sum_{\nu} b_{\nu} \iiint \psi_{\mu}^{*} \Delta U(\mathbf{r}) \psi_{\nu} (\mathbf{r}) \, dV + \cdots$$

$$\cdots + \sum_{\nu, \mathbf{R} \neq \mathbf{0}} b_{\nu} e^{i\mathbf{k} \cdot \mathbf{R}} \iiint \psi_{\mu}^{*} (\mathbf{r}) \Delta U(\mathbf{r}) \psi_{\nu} (\mathbf{r} - \mathbf{R}) \, dV$$

Interpretation: in principle, this result is a system of equations for the coefficients b_{ν} used in the TBM ansatz for electron wave functions $\psi(\mathbf{r})$.

Simplifications

Concept: in the tight-binding approximation of highlylocalized electron levels, overlap integrals are small.

 $\iiint \psi_{\mu}^{*}(\mathbf{r})\psi_{\nu}(\mathbf{r}-\mathbf{R})\,\mathrm{d}V\approx0\qquad \text{(overlap integrals are small)}$ $\iiint \psi_{\mu}^{*}(\boldsymbol{r}) \Delta U \psi_{\nu}(\boldsymbol{r} - \boldsymbol{R}) \, dV \approx 0 \quad \text{(overlap integrals are small)}$ Concept: atomic wavefunctions $\psi_n(\mathbf{r})$ are small at wherever lattice Hamiltonian differs appreciably from atomic Hamilto-

nian, i.e. wherever $\Delta U(\mathbf{r})$ is large. $\iiint \psi_{\mu}^*(\mathbf{r}) \Delta U \psi_{\nu}(\mathbf{r}) \, dV \approx 0$ (assuming $\psi_n \Delta U$ is small) Use the above simplifications to make the approximation...

 $(E - E_{\mu})b_{\mu} \approx 0$ (approximate TBM result) Interpretation: the TBM predicts that the Bloch electron energy E must be close to some atomic energy E_0 , implying... $E \approx E_0$ and $b_{\mu} \approx 0$ if $E_{\mu} \not\approx E_0$

Example: Tight-Binding Model and the s Orbital

Consider only electrons in s orbital where $(l = 0, m_l = 0)$

$$b_{\nu} \approx \begin{cases} b_s & \nu \text{ is an } s \text{ orbital} \\ 0 & \text{otherwise} \end{cases}$$
 (consider only s orbital)

$$\sum_{\nu} b_{\nu} \approx b_s$$
 (neglecting other orbitals)

$$(E - E_{\mu}) \left[b_{\mu} + \sum_{\nu, \mathbf{R} \neq \mathbf{0}} b_{\nu} e^{i\mathbf{k} \cdot \mathbf{R}} \iiint \psi_{\mu}^{*} \psi_{\nu}(\mathbf{r} - \mathbf{R}) \, dV \right] = \cdots$$

$$\cdots = \sum_{\nu} b_{\nu} \iiint \psi_{\mu}^{*} \Delta U(\mathbf{r}) \psi_{\nu}(\mathbf{r}) \, dV + \cdots \quad \text{(general TBM eqs.)}$$

$$\cdots + \sum_{\nu, \mathbf{R} \neq \mathbf{0}} b_{\nu} e^{i\mathbf{k} \cdot \mathbf{R}} \iiint \psi_{\mu}^{*}(\mathbf{r}) \Delta U(\mathbf{r}) \psi_{\nu}(\mathbf{r} - \mathbf{R}) \, dV$$

Considering only the s orbital, this simplifies to...

$$(E - E_s) \left[b_s + \sum_{R \neq 0} b_s e^{i\mathbf{k} \cdot \mathbf{R}} \iiint \psi_s^* \psi_s(\mathbf{r} - \mathbf{R}) \, dV \right]$$

$$\cdots = b_s \iiint \psi_s^* \Delta U(\mathbf{r}) \psi_s(\mathbf{r}) \, dV + \cdots \qquad \text{(for } s \text{ orbital only)}$$

$$\cdots + \sum_{R \neq 0} b_s e^{i\mathbf{k} \cdot \mathbf{R}} \iiint \psi_s^*(\mathbf{r}) \Delta U(\mathbf{r}) \psi_s(\mathbf{r} - \mathbf{R}) \, dV$$

For shorthand, define the following overlap integrals...

$$\alpha(\mathbf{R}) \equiv \iiint \psi_s^* \psi_s(\mathbf{r} - \mathbf{R}) \, dV$$
$$\beta \equiv -\iiint \psi_s^* \Delta U(\mathbf{r}) \psi_s(\mathbf{r}) \, dV$$

$$\gamma(\mathbf{R}) \equiv -\iiint \psi_s^*(\mathbf{r}) \Delta U(\mathbf{r}) \psi_s(\mathbf{r} - \mathbf{R}) \, dV$$

In terms of
$$\alpha$$
, β , γ , the system of eqs. for E becomes...
$$(E - E_s)b_s + (E - E_s)\sum_{\mathbf{R}\neq 0}b_se^{i\mathbf{k}\cdot\mathbf{R}}\alpha(\mathbf{R}) = -b_s\beta - \sum_{\mathbf{R}\neq 0}b_se^{i\mathbf{k}\cdot\mathbf{R}}\gamma(\mathbf{R})$$

Cancel
$$b_s$$
 to get...
$$E - E_s + (E - E_s) \sum_{R \neq 0} e^{i\mathbf{k} \cdot \mathbf{R}} \alpha(\mathbf{R}) = -\beta - \sum_{R \neq 0} e^{i\mathbf{k} \cdot \mathbf{R}} \gamma(\mathbf{R})$$

Solve for TBM electron energy
$$E = E(\mathbf{k})$$
 to get...

$$E(\mathbf{k}) = E_s - \frac{\beta + \sum_{\mathbf{R} \neq \mathbf{0}} \gamma(\mathbf{R}) e^{i\mathbf{k} \cdot \mathbf{R}}}{1 + \sum_{\mathbf{R} \neq \mathbf{0}} \alpha(\mathbf{r}) e^{i\mathbf{k} \cdot \mathbf{R}}}$$
 (TBM for s orbital)

In Practice:

- Neglect $\alpha(\mathbf{R})$ (because TBM overlap integrals are small)
- ullet Sum only over nearest neighbor R

$$E(\mathbf{k}) = E_s - \beta - \sum_{\mathbf{R} \in \{\text{nn}\}} \gamma(\mathbf{R}) \cos(\mathbf{k} \cdot \mathbf{R})$$
 (with above approxs.)

Semiclassical Electron Dynamics

Goal: provide a semi-classical formalism for analyzing electron dynamics in a periodic potential.

Summary of Free Electron Dynamics

Consider a free electron with wave vector \boldsymbol{k}

$$\begin{array}{ll} \psi_{\boldsymbol{k}}(\boldsymbol{r}) \propto e^{i\boldsymbol{k}\cdot\boldsymbol{r}} & \text{(free electron wave function)} \\ E(\boldsymbol{k}) = \frac{\hbar^2 k^2}{2m} & \text{(free electron energy)} \\ \boldsymbol{p} = \hbar \boldsymbol{k} & \text{(free electron momentum)} \\ \boldsymbol{v} = \frac{\hbar \boldsymbol{k}}{m} = \frac{1}{\hbar} \nabla_{\!\boldsymbol{k}} E(\boldsymbol{k}) & \text{(free electron velocity)} \end{array}$$

Free electron wave functions are eigenfunctions of the quantummechanical momentum operator with eigenvalue $\hbar \mathbf{k}!$ $\hat{\mathbf{p}}\psi_{\mathbf{k}}=-i\hbar\nabla Ae^{i\mathbf{k}\cdot\mathbf{r}}=-i^2\hbar\mathbf{k}Ae^{i\mathbf{k}\cdot\mathbf{r}}=\hbar\mathbf{k}\psi_{\mathbf{k}}$ (eigval. relation)

$$\hat{p}\psi_{\mathbf{k}} = -i\hbar\nabla Ae^{i\mathbf{k}\cdot\mathbf{r}} = -i^2\hbar\mathbf{k}Ae^{i\mathbf{k}\cdot\mathbf{r}} = \hbar\mathbf{k}\psi_{\mathbf{k}}$$
 (eigval. relation)

Summary: Electrons in a Periodic Potential

Electrons in a periodic potential are called *Bloch electrons* A Bloch electron's state is determined by its wave vector kand band index n

 $\psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} u_{n\mathbf{k}}(\mathbf{r})$ (Bloch electron wave function) $u_{n\mathbf{k}}$ is a periodic function with period of the underlying Bravais lattice Λ , i.e. $u_{n\mathbf{k}}(\mathbf{r} + \mathbf{R}) = u_{n\mathbf{k}}(\mathbf{r})$ for all $\mathbf{R} \in \Lambda$.

The Bloch Equations

The Bloch equations govern the dynamics of electrons in a periodic potential under the influence of an external electric field ${\cal E}$ and magnetic field ${\cal B}$

Assumptions

(i) Electron energy band index n is conserved (electrons cannot jump between energy bands).

- (ii) A Bloch electron's wave vector is undetermined up to an arbitrary reciprocal lattice vector K, i.e. k and k+Kdescribe equivalent levels.
- (iii) The velocity of a Bloch electron is...

$$v_n(k) = \frac{1}{\hbar} \nabla_{k} E_n(k)$$
 (velocity of Bloch electron)

(iv) The dynamics of a Bloch electron are governed by...

$$\hbar \frac{\mathrm{d} \pmb{k}}{\mathrm{d} t} = -e_0 \big[\pmb{\mathcal{E}} + \pmb{v}_n \times \pmb{B} \big]$$
 (Bloch electron dynamics)

Electron Dynamics: Informal Derivation

Consider an electron in the n-th energy band in an external electric field $\boldsymbol{\mathcal{E}}$ with electric potential $\phi = \phi(\boldsymbol{r}, t)$

$$E_{\text{tot}} = E_n(\mathbf{k}) - e_0 \phi(\mathbf{r}, t) \qquad \text{(total electron energy)}$$

$$E_{\text{tot}} = \text{constant} \qquad \text{(total } e^- \text{ energy is a constant of motion)}$$

$$\dot{E}_{\text{tot}} = \frac{\mathrm{d}\mathbf{k}}{\mathrm{d}t} \nabla_{\mathbf{k}} E_n(\mathbf{k}) - e_0 \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \nabla_{\mathbf{r}} \phi(\mathbf{r}, t) \qquad \text{(chain rule)}$$

$$= \left(\hbar \frac{\mathrm{d}\mathbf{k}}{\mathrm{d}t}\right) \frac{1}{\hbar} \nabla_{\mathbf{k}} E_n(\mathbf{k}) + e_0 \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \mathcal{E} \qquad (\mathcal{E} = -\nabla_{\mathbf{r}} \phi)$$

$$= \hbar \frac{\mathrm{d}\mathbf{k}}{\mathrm{d}t} \mathbf{v}_n(\mathbf{k}) + e_0 \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \mathcal{E} \qquad (\text{recognizing } \mathbf{v}_n(\mathbf{k}))$$

$$= \hbar \frac{\mathrm{d}\mathbf{k}}{\mathrm{d}t} \mathbf{v}_n(\mathbf{k}) + e_0 \mathbf{v}_n(\mathbf{k}) \mathcal{E} \qquad (\text{assuming } \mathbf{v}_n(\mathbf{k}) = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t})$$

$$= \mathbf{v}_n(\mathbf{k}) \cdot \left[\hbar \frac{\mathrm{d}\mathbf{k}}{\mathrm{d}t} + e_0 \mathcal{E}\right] = 0 \qquad (\text{factoring)}$$
Idea: the dot product equality $\mathbf{v} \cdot \left[\hbar \frac{\mathrm{d}\mathbf{k}}{\mathrm{d}t} + e_0 \mathcal{E}\right] = 0$ still holds

Idea: the dot product equality $\mathbf{v} \cdot \left[\hbar \frac{d\mathbf{k}}{dt} + e_0 \mathbf{\mathcal{E}} \right] = 0$ still holds if we include terms orthogonal to $oldsymbol{v}$ in the brackets. We thus add on $\boldsymbol{v} \times \boldsymbol{B}$ to get...

$$\mathbf{v}_{n}(\mathbf{k}) \cdot \left[\hbar \frac{\mathrm{d}\mathbf{k}}{\mathrm{d}t} + e_{0} \mathbf{\mathcal{E}} + \mathbf{v} \times \mathbf{B} \right] = 0$$
 (adding on $\mathbf{v} \times \mathbf{B}$)
 $\implies \hbar \frac{\mathrm{d}\mathbf{k}}{\mathrm{d}t} + e_{0} \mathbf{\mathcal{E}} + \mathbf{v}_{n} \times \mathbf{B} = \mathbf{0}$ (second Bloch equation)

Bloch Electron in a Magnetic Field

Consider Bloch electron in a homogeneous magnetic field (homog. magnetic field) $\boldsymbol{B}(\boldsymbol{r},t) = B_0 \,\hat{\mathbf{e}}_z$ with B_0 constant (review: Bloch e_- velocity) $\boldsymbol{v}_n = \frac{1}{\hbar} \nabla_{\!\boldsymbol{k}} E_n(\boldsymbol{k})$ $\hbar \frac{\mathrm{d} \mathbf{k}}{\mathrm{d} t} = -e_0 (\mathbf{\mathcal{E}} + \mathbf{v}_n \times \mathbf{B})$ (review: Bloch e_- dynamics) = $-e_0 \mathbf{v}_n \times \mathbf{B}$ (assume zero external $\mathbf{\mathcal{E}}$ field) (assume zero external \mathcal{E} field) $\begin{bmatrix} \boldsymbol{v}_n(\boldsymbol{k}) \times \boldsymbol{B} \end{bmatrix}_z = 0 \implies \frac{\mathrm{d}k_z}{\mathrm{d}t} = 0 \qquad \text{(for } \boldsymbol{B} = B_0 \, \hat{\mathbf{e}}_z)$ $\implies k_z \text{ is a constant of motion in a homog. magnetic field}$ $\frac{\mathrm{d}}{\mathrm{d}t} E_n(\boldsymbol{k}) = \frac{\mathrm{d}\boldsymbol{k}}{\mathrm{d}t} \cdot \nabla_{\boldsymbol{k}} E_n(\boldsymbol{k}) \qquad \text{(chain rule)}$ (multiply/divide by \hbar) $= \frac{1}{\hbar} \nabla_{\mathbf{k}} E_n(\mathbf{k}) \cdot \left(\hbar \frac{\mathrm{d} \mathbf{k}}{\mathrm{d} t} \right)$ $= -\mathbf{v}_n(\mathbf{k}) \cdot (e_0 \mathbf{v}_n \times \mathbf{B})$ (Bloch equations) (since $\mathbf{v}_n \perp (\mathbf{v}_n \times \mathbf{B})$ by construction)

Conclusion: in a homogeneous magnetic field $\mathbf{B} = B_0 \,\hat{\mathbf{e}}_z \dots$

- (i) k_z is a constant of motion
- (ii) $E_n(\mathbf{k})$ is a constant of motion.

Physical interpretation: E_n is constant because a magnetic field cannot do work

Bloch Oscillations

Consider an electron in a constant, homogeneous electric field $\mathcal{E}(\mathbf{r},t) = \mathcal{E}_0$ and no external magnetic field.

Conclusion: an electron's wave vector k increases linearly with time in a homogeneous external field.

Complication: as k increases, $E_n(k)$ also increases, and eventually $E_n(\mathbf{k})$ would reach end of energy band.

Resolution: in a periodic potential, $E_n(\mathbf{k})$ is a periodic function of k, so $E_n(k)$ is bounded above and below and energy band index is fixed.

Example: Bloch Oscillations in One Dimension

Consider an electron in a one-dimensional Bravais lattice with lattice constant a and known TBM overlap integral γ $k \in \left[-\frac{\pi}{a}, \frac{\pi}{a}\right]$ (first Brillioun zone)

$$E(k) = -\gamma \cos(ka)$$
 (see "TBM and the s Orbital") $\mathbf{k}(t) = \mathbf{k}_0 - \frac{e_0 \mathcal{E}_0}{\hbar} t$ (in three dimensions) $k(t) = -\frac{e_0 \mathcal{E}}{\hbar} t$ (in one dimension, neglecting k_0)

 $\implies E(k(t)) = -\gamma \cos\left(\frac{e_0 \mathcal{E}a}{\hbar}t\right)$ (using above k(t)) Conclusion: although k increases linearly with time in an external electric field, electron energy oscillates because of the electron's sinusoidal energy dispersion relation. The electron energy's oscillation with time are called *Bloch oscillations*.

Analyzing One-Dimensional Bloch Oscillations

 $E(k(t)) = -\gamma \cos\left(\frac{e_0 \mathcal{E}a}{\hbar}t\right)$ (Bloch oscillations)

Consider one period $t_{\rm B}$ of a Bloch oscillation...

$$\begin{array}{ll} \frac{ae_0\mathcal{E}}{\hbar}t_{\mathrm{B}} = 2\pi & \text{(eq. for Bloch oscillation period } t_{\mathrm{B}}) \\ \Longrightarrow t_{\mathrm{B}} = \frac{2\pi\hbar}{e_0a\mathcal{E}} & \text{(solving for } t_{\mathrm{B}}) \\ v(k) = \frac{1}{\hbar}\frac{\mathrm{d}}{\mathrm{d}k}E_n(k) = -\frac{\gamma}{\hbar}\frac{\mathrm{d}}{\mathrm{d}k}\cos(ka) & (e^- \text{ velocity in 1D}) \\ = \frac{\gamma k}{\hbar}\sin(ka) & \text{(differentiating)} \\ v\left(k(t)\right) = -\frac{\gamma k}{\hbar}\sin\left(\frac{e_0\mathcal{E}}{\hbar}t\right) & \text{(using } k(t) = -\frac{e_0\mathcal{E}}{\hbar}t) \\ x\left(k(t)\right) = \int v(t)\,\mathrm{d}t = \frac{\gamma}{\hbar}\cos\left(\frac{e_0a\mathcal{E}}{\hbar}t\right) + x_0 & (e^- \text{ position}) \\ x_{\mathrm{B}} = \frac{\gamma}{e_0\mathcal{E}} & \text{(1D Bloch oscillation amplitude)} \end{array}$$

In Passing: Validity of Semiclassical Equations

Consider electrons in the n-th band of a material with Fermi energy $E_{\rm F}$ and band gap $E_{\rm gap}$ between the n-th band and closest band with $n' \neq n$.

The semiclassical analysis neglects the possibility that electrons jump between energy bands. Without proof, this assumption is valid in the regime...

$$ae_0\mathcal{E} \ll \frac{E_{\mathrm{gap}}^2}{E_{\mathrm{F}}}$$
 (condition for constant band index)
 $\hbar \frac{e_0 B}{m} \ll \frac{E_{\mathrm{gap}}^2}{E_{\mathrm{F}}}$ (condition for constant band index)

For orientation, typical parameter values might be $a\sim 0.1\,\mathrm{nm}$ and $\mathcal{E} \sim 10^{-2} \, \text{V cm}^{-1} \implies ae_0 \mathcal{E} \sim 10^{-10} \, \text{eV}.$

 $E_{\rm F} \sim 1\,{\rm eV}$ to $10\,{\rm eV}$ in metals

 $E_{\rm gap} \sim 1 \, {\rm eV}$ in metals

$$\implies ae_0\mathcal{E} \sim 10^{-10} \,\mathrm{eV} \ll \frac{E_{\mathrm{gap}}^2}{E_{\mathrm{p}}} \sim 0.1 \,\mathrm{eV}$$

 $\Longrightarrow ae_0\mathcal{E} \sim 10^{-10}\,\mathrm{eV} \ll \frac{E_{\mathrm{gap}}^2}{E_{\mathrm{F}}} \sim 0.1\,\mathrm{eV}$ Conclusion: condition for constant band index is often satisfied in practice.

Energy Band Occupation and Conduction

Condition for Filled Bands

In a ground state, a filled energy band is a band in which all energies $E_n(\mathbf{k})$ are below the crystal's Fermi energy $E_{\rm F}$.

Generally, a filled band is one in which $\mu(T) - E_n(\mathbf{k}) \gg k_B T$, so that $f(E_n(\mathbf{k})) \approx 1$ for all \mathbf{k} in the band.

 $E_n(\mathbf{k}) < E_{\rm F}$ for all \mathbf{k} (filled *n*-th band, ground state) $\mu - E_n(\mathbf{k}) \gg k_{\rm B}T$ for all \mathbf{k} (filled n-th band, finite temp.)

(review: density of allowed k in region d^3k) Review: band index n is preserved in the semiclassical model Consequence: since band index is conserved, a filled band will remain filled for all time, neglecting interband transitions.

Electron Current in Filled Bands

Goal: generalize the free electron expression $\mathbf{j}_{\rm el} = -n_{\rm e}e_0\mathbf{v}$ to Bloch electrons in a filled energy band.

 $n_{\boldsymbol{k}} = \frac{\mathrm{d}^3 \boldsymbol{k}}{4\pi^3}$ (review: density of $\boldsymbol{v}_n(\boldsymbol{k}) = \frac{1}{\hbar} \nabla_{\!\boldsymbol{k}} E_n(\boldsymbol{k})$ (review: Bloch electron velocity)

will account for all electron levels in the band. $egin{aligned} oldsymbol{j}_{\mathrm{el}}^{(n)} &= -e_0 \iiint_{\mathrm{BZ}} oldsymbol{v}_n(oldsymbol{k}) rac{\mathrm{d}^3 oldsymbol{k}}{4\pi^3} \ &= -rac{e_0}{\hbar} \iiint_{\mathrm{BZ}}
abla_{oldsymbol{k}} E_n(oldsymbol{k}) rac{\mathrm{d}^3 oldsymbol{k}}{4\pi^3} \end{aligned}$ (current density in filled band) (in terms of $E_n(\mathbf{k})$)

Heat Current in Filled Bands

Goal: generalize the free electron expression $j_{\rm el} = n_{\rm e} E v$ to Bloch electrons in a filled energy band.

 $n_{\mathbf{k}} = \frac{\mathrm{d}^{3} \mathbf{k}}{4\pi^{3}}$ $\mathbf{v}_{n}(\mathbf{k}) = \frac{1}{\hbar} \nabla_{\mathbf{k}} E_{n}(\mathbf{k})$ (review: density of allowed k) (review: Bloch electron velocity) Concept: in a filled energy band, integrating over the first BZ will account for all electron levels in the band.

$$j_{\text{heat}}^{(n)} = \iiint E_n(\mathbf{k}) v_n(\mathbf{k}) \frac{\mathrm{d}^3 \mathbf{k}}{4\pi^3}$$
 (heat current in filled band)

$$= \frac{1}{\hbar} \iiint E_n(\mathbf{k}) \nabla_{\mathbf{k}} E_n(\mathbf{k}) \frac{\mathrm{d}^3 \mathbf{k}}{4\pi^3} \qquad \text{(in terms of } E_n(\mathbf{k}))$$

$$= \frac{1}{2\hbar} \iiint \nabla_{\mathbf{k}} \left[E_n(\mathbf{k})^2 \right] \frac{\mathrm{d}^3 \mathbf{k}}{4\pi^3} \qquad \text{(reverse-engineered gradient)}$$

Full Bands Cannot Carry Current

Fully-occupied electron energy bands do not carry either electric current or heat current.

Justification: both $E_n(\mathbf{k})$ and $\left[E_n(\mathbf{k})\right]^2$ are periodic over the first Brillioun zone. The integral of a periodic function over one period is zero, so the integrals in both $j_n^{(e)}$ and $j_n^{(E)}$ are zero.

Condition the a Material Be an Insulator

Underlying concept:

- Fully-occupied electron energy bands do not carry either electric current or heat current.
- Consequence: only partially-filled bands should be considered in determined a solid's insulating properties.
- Materials with only filled ground-state bands are insulators.
- Materials with some partially-filled ground-state bands are conductors.

Consider a crystal with N lattice sites, resulting in N possible values of k in the crystal's first Brillioun zone.

- Each k level can be occupied by two e^- (spin up/spin
- Each energy band can thus hold 2N electron levels.
- Solids with only filled bands are insulators.

Combine the above three ideas to conclude...

A necessary condition for a material to have only filled bands is that the material have an even number of valence electrons.

Holes

TODO: just add more explanation in words.

 $j_{\rm e} = -e_0 \iiint_{\rm occupied} {m v}({m k}) {{
m d}^3 {m k} \over 4\pi^3}$ (general Review: filled bands cannot carry current. (general electron current)

 $\boldsymbol{j}_{\mathrm{full}} = -e_0 \iiint_{\mathrm{BZ}} \boldsymbol{v}(\boldsymbol{k}) \frac{\mathrm{d}^3 \boldsymbol{k}}{4\pi^3} = \boldsymbol{0}$ (in a filled band) Idea: decompose integral over entire BZ in a full band into integrals over the occupied and empty levels.

$$egin{aligned} oldsymbol{j}_{ ext{full}} &= -e_0 \iiint_{ ext{BZ}} oldsymbol{v} rac{\mathrm{d}^3 oldsymbol{k}}{4\pi^3} = oldsymbol{0} \ &= -e_0 \iiint_{ ext{occupied}} oldsymbol{v} rac{\mathrm{d}^3 oldsymbol{k}}{4\pi^3} + (-e_0) \iiint_{ ext{empty}} oldsymbol{v} rac{\mathrm{d}^3 oldsymbol{k}}{4\pi^3} = oldsymbol{0} \ &\Longrightarrow \ (-e_0) \iiint_{ ext{occupied}} oldsymbol{v} rac{\mathrm{d}^3 oldsymbol{k}}{4\pi^3} = (+e_0) \iiint_{ ext{empty}} oldsymbol{v} rac{\mathrm{d}^3 oldsymbol{k}}{4\pi^3} \end{aligned}$$

Conclusion: current $j_{\rm e}$ due to electrons in all occupied levels is identical to the current due to fictitious particles of positive charge, called *holes*, in all empty levels.

The Effective Mass Tensor

Goal: develop a method allowing the use of free electron expressions (Fermi function, density of levels, etc...) to approximately describe the dynamics of *Bloch* electrons.

Rough summary of results: replacing free electron mass mwith an effective mass tensor m permits the use of free electron expressions for Bloch electrons.

Expansion of Bloch Electron Dispersion

Consider an electron energy band with known dispersion relation $E_n(\mathbf{k})$ and a parabolic minimum centered at $\mathbf{k} = \mathbf{k}_0$.

Let $\delta \mathbf{k} = \mathbf{k} - \mathbf{k}_0$ (position from minimum point) Expand the dispersion relation to second order in k about the

minimum point k_0 (using summation convention) to get...

$$E_n(\mathbf{k}) \approx E_n(\mathbf{k}_0) + \frac{\partial E_n(\mathbf{k})}{\partial k_i} \Big|_{\mathbf{k}_0} \delta k_i + \frac{1}{2} \frac{\partial^2 E_n(\mathbf{k})}{\partial k_i \partial k_j} \Big|_{\mathbf{k}_0} \delta k_i \delta k_j$$

$$= E_n(\mathbf{k}_0) + \frac{1}{2} \frac{\partial^2 E_n(\mathbf{k})}{\partial k_i \partial k_j} \Big|_{\mathbf{k}_0} \delta k_i \delta k_j \text{ (first derivatives of } E_n$$
must vanish at the minimum \mathbf{k}_0)

Review: Free Electron Dispersion

$$E_0(\mathbf{k}) = \frac{\hbar^2 k^2}{2m}$$
 (free electron dispersion)
$$\implies \frac{2E_0}{\hbar^2 k^2} = \frac{1}{m} = \frac{1}{\hbar^2} \frac{\partial^2 E_0}{\partial k^2}$$

$$\implies m^{-1} = \frac{1}{\hbar^2} \frac{\partial^2 E_0}{\partial k^2} \qquad \text{(for free electrons)}$$

$$E_0(\mathbf{k}) = \frac{1}{2\hbar^2} \frac{\partial^2 E_0}{\partial k^2} \cdot (\hbar^2 k^2) \qquad \text{(in terms of above } 1/m)$$

Introducing the Effective Mass Tensor

$$E_n(\mathbf{k}) \approx E_n(\mathbf{k}_0) + \frac{1}{2} \frac{\partial^2 E_n}{\partial k_i \partial k_j} \Big|_{\mathbf{k}_0} \delta k_i \delta k_j$$
 (Bloch electrons)

$$E_0(\mathbf{k}) = \frac{1}{2\hbar^2} \frac{\partial^2 E_0}{\partial k^2} \cdot (\hbar^2 k^2)$$
 (free electrons)

$$m^{-1} = \frac{1}{\hbar^2} \frac{\partial^2 E_0}{\partial k^2}$$
 (free electrons)

Comparing expressions for free and Bloch electrons motivates the definition of an effective mass tensor m according to...

$$\left[\mathsf{m}_n^{-1}(\pmb{k})\right]_{ij} = \pm \frac{1}{\hbar^2} rac{\partial^2 E_n(\pmb{k})}{\partial k_i \partial k_j}$$
 (effective mass tensor)

Plus sign corresponds to effective mass of electrons

Minus sign corresponds to effective mass of holes

$$E_n(\mathbf{k}_0 + \delta \mathbf{k}) = E_n(\mathbf{k}_0) + \frac{\hbar^2}{2} \delta k_i (\mathbf{m}_n^{-1})_{ij} \delta k_j$$
 (in terms of m)

Effective Mass Tensor in Terms of Velocity
$$\begin{bmatrix} \mathsf{m}_n^{-1}(\boldsymbol{k}) \end{bmatrix}_{ij} = \pm \frac{1}{\hbar^2} \frac{\partial^2 E_n(\boldsymbol{k})}{\partial k_i \partial k_j} \qquad \text{(review: effective mass tensor)}$$

$$\boldsymbol{v}_n(\boldsymbol{k}) = \frac{1}{\hbar} \nabla_{\boldsymbol{k}} E_n(\boldsymbol{k}) \qquad \text{(review: Bloch electron velocity)}$$

$$\begin{bmatrix} \boldsymbol{v}_n(\boldsymbol{k}) \end{bmatrix}_i = \frac{1}{\hbar} \frac{\partial}{\partial k_i} E_n(\boldsymbol{k}) \qquad \text{(by components)}$$
 Recognize expression for \boldsymbol{v}_n in effective mass tensor to get...
$$\begin{bmatrix} \mathsf{m}_n^{-1}(\boldsymbol{k}) \end{bmatrix}_{ij} = \pm \frac{1}{\hbar} \frac{\partial}{\partial k_j} \big[\boldsymbol{v}_n(\boldsymbol{k}) \big]_i \qquad \text{(in terms of } \boldsymbol{v}_n)$$

$$\boldsymbol{m}_n^{-1}(\boldsymbol{k}) = \pm \frac{1}{\hbar} \nabla_{\boldsymbol{k}} \boldsymbol{v}_n(\boldsymbol{k}) \qquad \text{(in vector form)}$$

Dynamics in Terms of Effective Mass Tensor

$$\begin{array}{ll} \hbar \frac{\mathrm{d} \boldsymbol{k}}{\mathrm{d} t} = -e_0 (\boldsymbol{\mathcal{E}} + \boldsymbol{v}_n \times \boldsymbol{B}) \text{ (review: dynamics of Bloch electron)} \\ \mathbf{m}_n^{-1}(\boldsymbol{k}) = \pm \frac{1}{\hbar} \nabla_{\!\boldsymbol{k}} \boldsymbol{v}_n(\boldsymbol{k}) & \text{ (review: m in terms of } \boldsymbol{v}_n(\boldsymbol{k})) \\ \boldsymbol{a}_n = \frac{\mathrm{d} \boldsymbol{v}_n(\boldsymbol{k})}{\mathrm{d} t} & \text{ (acceleration of Bloch electron)} \\ = \nabla_{\!\boldsymbol{k}} \boldsymbol{v}_n(\boldsymbol{k}) \cdot \frac{\mathrm{d} \boldsymbol{k}}{\mathrm{d} t} & \text{ (using the chain rule)} \\ = \pm \hbar \mathbf{m}_n^{-1} \frac{\mathrm{d} \boldsymbol{k}}{\mathrm{d} t} & \text{ (using } \mathbf{m}^{-1} = \pm \frac{1}{\hbar} \nabla_{\!\boldsymbol{k}} \boldsymbol{v}) \\ \mathbf{m}_n \boldsymbol{a}_n = \pm \hbar \frac{\mathrm{d} \boldsymbol{k}}{\mathrm{d} t} & \text{ (rearranged)} \\ = \mp e_0 (\boldsymbol{\mathcal{E}} + \boldsymbol{v}_n \times \boldsymbol{B}) & \text{ (result: dynamics in terms of m)} \end{array}$$

Important: expressions involving the effective mass tensor hold only if charge charrier energy is well-approximated by a quadratic expansion of the electron dispersion relation $E_n(\mathbf{k})!$

Electron Dispersions Near Conduction Band Minima Consider the behavior of electrons at the minimum of a conduction band. Assume the band has minimum E_c at k = 0.

 $E_{\rm cb}(\mathbf{k}) = E_{\rm c} + \frac{\hbar^2}{2} k_i (\mathsf{m_c})^{-1} k_j$ (conduction band dispersion) Work in the mass tensor's system of principle axes...

Work in the mass tensor's system of principle axes...
$$\mathbf{m}_{c} = \begin{pmatrix} m_{c_{1}}^{*} & 0 & 0 \\ 0 & m_{c_{2}}^{*} & 0 \\ 0 & 0 & m_{c_{3}}^{*} \end{pmatrix} \qquad \text{(in system of principle axes)}$$

$$\mathbf{m}_{c}^{-1} = \begin{pmatrix} \frac{1}{m_{c_{1}}^{*}} & 0 & 0 \\ 0 & \frac{1}{m_{c_{2}}^{*}} & 0 \\ 0 & 0 & \frac{1}{m_{c_{3}}^{*}} \end{pmatrix} \qquad \text{(in system of principle axes)}$$

$$m_{c_{i}}^{*} \text{ are the effective mass tensor's eigenvalues}$$

$$m_{c_i}^*$$
 are the effective mass tensor's eigenvalues $E_{cb}(\mathbf{k}) = E_c + \frac{\hbar^2}{2} \left(\frac{k_1^2}{m_{c_1}^*} + \frac{k_2^2}{m_{c_2}^*} + \frac{k_3^2}{m_{c_3}^*} \right)$ (in system of PA)

Hole Dispersions Near Valence Band Maxima

Consider the behavior of holes at the maximum of a valence band. Assume the band has maximum E_{v} at k = 0.

 $E_{\rm vb}(\boldsymbol{k}) = E_{\rm v} - \frac{\hbar^2}{2} k_i \big({\rm m_v} \big)^{-1} k_j$ (valence band dispersion) Work in the mass tensor's system of principle axes...

$$\begin{split} \mathbf{m}_{\mathbf{v}} &= \begin{pmatrix} m_{\mathbf{v}_{1}}^{*} & 0 & 0 \\ 0 & m_{\mathbf{v}_{2}}^{*} & 0 \\ 0 & 0 & m_{\mathbf{v}_{3}}^{*} \end{pmatrix} & \text{(in system of principle axes)} \\ \mathbf{m}_{\mathbf{v}}^{-1} &= \begin{pmatrix} \frac{1}{m_{\mathbf{v}_{1}}^{*}} & 0 & 0 \\ 0 & \frac{1}{m_{\mathbf{v}_{2}}^{*}} & 0 \\ 0 & 0 & \frac{1}{m_{\mathbf{v}_{3}}^{*}} \end{pmatrix} & \text{(in system of principle axes)} \end{split}$$

$$m_{\mathbf{v}_i}^*$$
 are the effective mass tensor's eigenvalues $E_{\mathbf{vb}}(\mathbf{k}) = E_{\mathbf{v}} - \frac{\hbar^2}{2} \left(\frac{k_1^2}{m_{\mathbf{v}_1}^*} + \frac{k_2^2}{m_{\mathbf{v}_2}^*} + \frac{k_3^2}{m_{\mathbf{v}_3}^*} \right)$ (in system of PA)

Semiconductors

Insulators, Semiconductors, and Conductors Review:

- Fully-occupied electron energy bands do not carry either electric current or heat current.
- Consequence: only partially-filled bands should be considered in determined a solid's insulating properties.
- Materials with only full ground-state bands are insula-
- Materials with some partially-filled ground-state bands are conductors.

New terminology:

- An insulator's valence band is the highest filled ground state energy band.
- An insulator's conduction band is the lowest empty ground state energy band.
- An insulator's band gap $E_{\rm g}$ is the energy difference between the maximum energy in the valence band and the minimum energy in the conduction band.

Semiconductors are ground-state insulators with a smallenough band gap that appreciable conduction due to thermal excitation can occur at temperatures $T > 0 \,\mathrm{K}$ (but below the material's melting point).

$$\begin{array}{ll} E_{\rm g} \lesssim 1\,{\rm eV} & {\rm (typical\ semiconductor\ band\ gap)} \\ E_{\rm g} \gtrsim 5\,{\rm eV} & {\rm (typical\ insulator\ band\ gap)} \\ k_{\rm B} T \sim 0.025\,{\rm eV} \ {\rm at} \ T \sim 300\,{\rm K} & {\rm (for\ reference)} \end{array}$$

Classes of Semiconductors:

- In *intrinsic* semiconductors, conduction is dominated by electrons thermally excited from VB to CB
- In extrinsic semiconductors, conduction is dominated by electrons excited into the CB (or captured from the VB) from energy levels of impurities in the SC crystal. Extrinsic SC are often called *doped* semiconductors.
- TODO: homogeneous
- TODO: inhomogeneous

Homogeneous Semiconductors

TODO: homogeneous semiconductors are...

Carrier Densities in Homogeneous SC

Goal: derive expressions for the number densities of charge carriers in a homogeneous SC's valence and conduction bands.

Review: Fermi Function

$$f(E) = \frac{1}{1 + e^{\beta(E - \mu)}}$$
 (Fermi function)

Interpretation: the Fermi function gives the probability that a single-electron level with energy E in a system with chemical potential μ is occupied at temperature $T = 1/(k_B\beta)$.

$$1 - f(E) = \frac{1}{1 + e^{\beta(\mu - E)}}$$
 (useful identity)

Meaning of Common Symbols Used Below

 $E_{\rm c}$ is the minimum of the conduction band

 $E_{\rm v}$ is the maximum of the valence band

 $g_{\rm c}$ is the density of levels for conduction band electrons

 $g_{\rm v}$ is the density of levels for valence band holes

 $n_{\rm c}$ is density of electrons in the conduction band $p_{\rm v}$ is density of holes in the valence band

Electron and Hole Number Densities

$$\begin{split} n_{\rm c} &= \int_{-\infty}^{\infty} g_{\rm c}(E) f(E) \, \mathrm{d}E & \text{(from first principles)} \\ &= \int_{E_{\rm c}}^{\infty} g_{\rm c}(E) f(E) \, \mathrm{d}E & \text{(CB occupied only above } E_{\rm c}) \\ &= \int_{E_{\rm c}}^{\infty} \frac{g_{\rm c}(E)}{1 + e^{\beta(E - \mu)}} \, \mathrm{d}E & \text{(substituting in } f(E)) \\ p_{\rm v} &= \int_{-\infty}^{\infty} g_{\rm v}(E) \big[1 - f(E) \big] \, \mathrm{d}E & \text{(from first principles)} \\ &= \int_{-\infty}^{E_{\rm v}} g_{\rm c}(E) \big[1 - f(E) \big] \, \mathrm{d}E & \text{(VB occupied only up to } E_{\rm v}) \\ &= \int_{-\infty}^{E_{\rm v}} \frac{g_{\rm v}(E)}{1 + e^{\beta(\mu - E)}} \, \mathrm{d}E & \text{(substituting in } 1 - f(E)) \end{split}$$

On using [1 - f(E)]: f(E) applies to electrons (not holes); every e^- moving from VB to CB leaves behind one hole in $VB \implies$ the occupation probability for holes in VB is the complement of the occupation probability for e^- in CB.

 $E_{\rm c} > \mu$ (follows from requiring $n_c \to 0$ as $T \to 0$ K) $E_{\rm v} < \mu$ (follows from requiring $p_{\rm v} \to 0$ as $T \to 0 \, {\rm K}$) $\implies E_{\rm v} < \mu < E_{\rm c}$ (chemical potential lies in band gap)

Non-Degenerate Semiconductor Approximation

both the CB minimum and VB maximum.

The non-degenerate semiconductor approximation assumes the chemical potential obeys the two conditions...

 $E_{\rm c} - \mu \gg k_{\rm B}T$ (non-degenerate SC approximation) $\mu - E_{\rm v} \gg k_{\rm B}T$ (non-degenerate SC approximation) Interpretation: on a scale of thermal energy $k_{\rm B}T$, the chemical potential lies deep in the SC's energy band gap, i.e. far from

Electron Density in the Non-Degenerate SC Approx.

Electron Density in the Non-Degenerate SC Approx.
$$f(E) = \frac{1}{1 + e^{\beta(E - \mu)}} \approx e^{-\beta(E - \mu)} \qquad (\text{if } E_{\text{c}} - \mu \gg k_{\text{B}}T)$$

$$n_{\text{c}} = \int_{E_{\text{c}}}^{\infty} g_{\text{c}}(E) f(E) \, \mathrm{d}E \qquad (\text{in general})$$

$$\approx \int_{E_{\text{c}}}^{\infty} g_{\text{c}}(E) e^{-\beta(E - \mu)} \, \mathrm{d}E \qquad (\text{if } E_{\text{c}} - \mu \gg k_{\text{B}}T)$$

$$= e^{-\beta(E_{\text{c}} - \mu)} \int_{E_{\text{c}}}^{\infty} g_{\text{c}}(E) e^{-\beta(E - E_{\text{c}})} \, \mathrm{d}E \qquad (\text{factoring exponent})$$

$$\equiv e^{-\beta(E_{\text{c}} - \mu)} N_{\text{c}}(T) \qquad (\text{defining } N_{\text{c}})$$

$$N_{\text{c}}(T) \equiv \int_{E_{\text{c}}}^{\infty} g_{\text{c}}(E) e^{-\beta(E - E_{\text{c}})} \, \mathrm{d}E \qquad (\text{definition of } N_{\text{c}})$$
 Hole Density in the Non-Degenerate SC Approx.

Hole Density in the Non-Degenerate SC Approx.
$$1-f(E)=\frac{1}{1+e^{\beta(\mu-E)}}\approx e^{-\beta(\mu-E)} \qquad (\text{if }\mu-E_{\text{v}}\gg k_{\text{B}}T)$$

$$p_{\text{v}}=\int_{-\infty}^{E_{\text{v}}}g_{\text{v}}(E)f(E)\,\mathrm{d}E \qquad (\text{in general})$$

$$\approx \int_{-\infty}^{E_{\text{v}}}g_{\text{v}}(E)e^{-\beta(\mu-E)}\,\mathrm{d}E \qquad (\text{if }\mu-E_{\text{v}}\gg k_{\text{B}}T)$$

$$=e^{-\beta(\mu-E_{\text{v}})}\int_{-\infty}^{E_{\text{v}}}g_{\text{v}}(E)e^{-\beta(E_{\text{v}}-E)}\,\mathrm{d}E \qquad (\text{factoring exponent})$$

$$\equiv e^{-\beta(\mu-E_{\text{v}})}P_{\text{v}}(T) \qquad (\text{defining }P_{\text{v}})$$

$$P_{\text{v}}(T)\equiv \int_{-\infty}^{E_{\text{v}}}g_{\text{v}}(E)e^{-\beta(E_{\text{v}}-E)}\,\mathrm{d}E \qquad (\text{definition of }P_{\text{v}})$$

Conduction and Valence Band Dispersion Relatins

Motivation: evaluating N_c and P_v requires expressions for the densities of state g_c and g_v , and finding g_c and g_v requires the CB and VB dispersion relations $E_{cb}(\mathbf{k})$ and $E_{vb}(\mathbf{k})$. Assumptions

- (i) electrons occupy levels in the neighborhood of the conduction band minimum
- (ii) holes occupy levels in the neighborhood of the valence band maximum
- (iii) both the CB and VB effective mass tensors have three equal eigenvalues

Important: assuming holes and e^- occupy states in energy band extrema permits expanding the energy band dispersion relations as in "Electron Dispersion Near CB Minima" and "Hole Dispersion Near VB Maxima"

$$E_{\rm cb}(\boldsymbol{k}) = E_{\rm c} + \frac{\hbar^2}{2} k_i \left(\mathsf{m}_{\rm c}^{-1}\right)_{ij} k_j \quad \text{(conduction band dispersion)} \qquad P_{\rm v}(T) = \frac{1}{4} \left(\frac{2m_{\rm v}^* k_{\rm B}T}{\pi \hbar^2}\right)^{3/2}$$

$$= E_{\rm c} + \frac{\hbar^2}{2} \left(\frac{k_1^2}{m_{c_1}^*} + \frac{k_2^2}{m_{c_2}^*} + \frac{k_3^2}{m_{c_3}^*}\right) \quad \text{(in m's system of PA)} \qquad n_{\rm c} = \frac{1}{4} \left(\frac{2m_{\rm v}^* k_{\rm B}T}{\pi \hbar^2}\right)^{3/2} e^{-\beta(E_{\rm c}-\mu)} \qquad \text{(approx. CB e^- density)}$$

$$= E_{\rm c} + \frac{\hbar^2 k_2^2}{2m_{\rm c}^*} \qquad \text{(assuming three equal eigenvalues)} \qquad n_{\rm c} = \frac{1}{4} \left(\frac{2m_{\rm v}^* k_{\rm B}T}{\pi \hbar^2}\right)^{3/2} e^{-\beta(E_{\rm c}-\mu)} \qquad \text{(approx. CB e^- density)}$$

$$E_{\rm vb}(\boldsymbol{k}) = E_{\rm v} - \frac{\hbar^2}{2} k_i \left(\mathsf{m}_{\rm v}^{-1}\right)_{ij} k_j \qquad \text{(valence band dispersion)} \qquad p_{\rm v} = \frac{1}{4} \left(\frac{2m_{\rm v}^* k_{\rm B}T}{\pi \hbar^2}\right)^{3/2} e^{-\beta(E_{\rm c}-\mu)} \qquad \text{(approx. VB hole density)}$$

$$\begin{split} &= E_{\rm v} - \frac{\hbar^2}{2} \left(\frac{k_1^2}{m_{\rm v_1}^*} + \frac{k_2^2}{m_{\rm v_2}^*} + \frac{k_3^2}{m_{\rm v_3}^*} \right) \text{ (in m's system of PA)} \\ &= E_{\rm v} - \frac{\hbar^2 k^2}{2m_{\rm v}^*} \qquad \text{(assuming three equal eigenvalues)} \end{split}$$

TODO: clarify k-space position of extrema e.g. at k_0 and adjust expansions accordingly.

Expressions for Densities of State

$$E_{\rm free}(\boldsymbol{k}) = \frac{\hbar^2 k^2}{2m}$$
 (review: free electron dispersion)
 $E_{\rm cb}(\boldsymbol{k}) = E_{\rm c} + \frac{\hbar^2 k^2}{2m_c^*}$ (review: CB dispersion)
 $E_{\rm vb}(\boldsymbol{k}) = E_{\rm v} - \frac{\hbar^2 k^2}{2m_c^*}$ (review: VB dispersion)

Important: the free e^- dispersion takes the same functional form as the CB and VB dispersion. The difference are:

- (i) shift in energy by E_c or E_v
- (ii) electron m replaced by m_c^* or m_v^*

⇒ we find the CB and VB densities of state by shifting the free e^- DOS by E_c or E_v and replacing m with m_c^* or m_v^* .

$$g_{\text{free}}(E) = \frac{1}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} \sqrt{E}$$
 (review: free electron DOS)

$$g_{\rm c}(E) = \frac{1}{2\pi^2} \left(\frac{2m_{\rm c}^*}{\hbar^2}\right)^{3/2} \sqrt{|E_{\rm c}-E|} \quad \text{(CB density of state)}$$

$$g_{\rm v}(E) = \frac{1}{2\pi^2} \left(\frac{2m_{\rm v}^*}{\hbar^2}\right)^{3/2} \sqrt{|E_{\rm v} - E|}$$
 (VB density of state)

Note: for an effective mass tensor with different eigenvalues $m_1^*, m_2^*, m_3^*,$ replace m_c^* or m_v^* with...

$$(m_{\rm c}^*)^{3/2} \to (m_{\rm c_1}^*, m_{\rm c_2}^*, m_{\rm c_3}^*)$$
 (for $m_{\rm c}$ with different eigvals.) $(m_{\rm v}^*)^{3/2} \to (m_{\rm v_1}^*, m_{\rm v_2}^*, m_{\rm v_3}^*)$ (for $m_{\rm v}$ with different eigvals.)

$$\begin{array}{ll} \textbf{Evaluating} \ N_{\rm c} \\ N_{\rm c}(T) = \int_{E_{\rm c}}^{\infty} g_{\rm c}(E) e^{-\beta(E-E_{\rm c})} \, {\rm d}E & \text{(from above)} \\ & = \frac{1}{2\pi^2} \left(\frac{2m_{\rm c}^*}{\hbar^2}\right)^{3/2} \int_{E_{\rm c}}^{\infty} e^{-\beta(E-E_{\rm c})} \sqrt{|E_{\rm c}-E|} \, {\rm d}E \\ \text{Let } x \equiv \beta(E-E_{\rm c}) & \text{(new integration variable)} \\ N_{\rm c}(T) = \frac{\sqrt{2}}{\pi^2} \left(\frac{m_{\rm c}^* k_{\rm B} T}{\hbar^2}\right)^{3/2} \int_0^{\infty} \sqrt{x} e^{-x} \, {\rm d}x & \text{(in terms of } x) \\ \int_0^{\infty} \sqrt{x} e^{-x} \, {\rm d}x = \Gamma(3/2) = \frac{\sqrt{\pi}}{2} & \text{(using the gamma function)} \\ \end{array}$$

 $N_{\rm c}(T) = \frac{1}{4} \left(\frac{2m_{\rm c}^* k_{\rm B}T}{\pi\hbar^2}\right)^{3/2}$

Evaluating
$$P_{\mathbf{v}}$$

$$P_{\mathbf{v}}(T) = \int_{-\infty}^{E_{\mathbf{v}}} g_{\mathbf{v}}(E) e^{-\beta(E_{\mathbf{v}} - E)} dE \qquad \text{(from above)}$$

$$= \frac{1}{2\pi^2} \left(\frac{2m_{\mathbf{v}}^*}{\hbar^2}\right)^{3/2} \int_{-\infty}^{E_{\mathbf{v}}} e^{-\beta(E_{\mathbf{v}} - E)} \sqrt{|E_{\mathbf{v}} - E|} dE$$
Let $x \equiv \beta(E_{\mathbf{v}} - E) \qquad \text{(new integration variable)}$

$$P_{\mathbf{v}}(T) = \frac{\sqrt{2}}{\pi^2} \left(\frac{m_{\mathbf{v}}^* k_{\mathbf{B}} T}{\hbar^2}\right)^{3/2} \int_0^\infty \sqrt{x} e^{-x} \, \mathrm{d}x \qquad \text{(in terms of } x)$$

$$\int_0^\infty \sqrt{x} e^{-x} \, \mathrm{d}x = \Gamma(3/2) = \frac{\sqrt{\pi}}{2} \qquad \text{(using the gamma function)}$$

$$P_{\mathbf{v}}(T) = \frac{1}{4} \left(\frac{2m_{\mathbf{v}}^* k_{\mathbf{B}} T}{\pi \hbar^2}\right)^{3/2} \qquad \text{(result for } P_{\mathbf{v}})$$

Summary of Results: Charge Carrier Densities

$$n_{\rm e} = \int_{E_{\rm c}}^{\infty} g(E) f(E) \, \mathrm{d}E$$
 (in general)
 $p_{\rm v} = \int_{-\infty}^{E_{\rm v}} f(E) g(E) \, \mathrm{d}E$ (in general)

What follows assumes $E_c - \mu \gg k_B T$ and $\mu - E_v \gg k_B T!$

$$n_{\rm c} \approx e^{-\beta(E_{\rm c}-\mu)} N_{\rm c}(T)$$

 $p_{\rm v} \approx e^{-\beta(\mu-E_{\rm v})} P_{\rm v}(T)$

$$N_{\rm c}(T) = \frac{1}{4} \left(\frac{2m_{\rm c}^* k_{\rm B} T}{\pi \hbar^2} \right)^{3/2}$$

$$P_{\mathbf{v}}(T) = \frac{1}{4} \left(\frac{2m_{\mathbf{v}}^* k_{\mathbf{B}} T}{\pi \hbar^2} \right)^{3/2}$$

$$n_{\rm c}=rac{1}{4}\left(rac{2m_{
m c}^*k_{
m B}T}{\pi\hbar^2}
ight)^{3/2}e^{-eta(E_{
m c}-\mu)}$$
 (approx. CB e^- density)

$$p_{
m v}=rac{1}{4}\left(rac{2m_{
m v}^{*}k_{
m B}T}{\pi\hbar^{2}}
ight)^{3/2}e^{-eta(\mu-E_{
m v})}$$
 (approx. VB hole density)

Intrinsic Semiconductors

Review: in intrinsic semiconductors, conduction is dominated by electrons thermally excited from VB to CB.

Concept: In instrinsic SC, every electron excited into the CB from the VB leaves behind a hole in the VB.

$$\implies n_{\rm c} = p_{\rm v}$$
 (in intrinsic semiconductors)

Interpretation: The equality $n_{\rm c}=p_{\rm v}$ expresses conservation of total electron number in intrinsic semiconductors.

Assumption: the content of this section implicitly assumes the non-degenerate semiconductor approximation!

Intrinsic Chare Carrier Density

The equality of n_c and p_v in intrisic semiconductors motivates the definition of an *intrinsic carrier density* n_i given by...

$$\begin{array}{ll} n_{\rm c} \equiv n_{\rm i} \equiv p_{\rm v} & \text{(intrisic carrier density)} \\ n_{\rm i}^2 = n_{\rm c} p_{\rm v} = N_{\rm c} P_{\rm v} e^{-\beta (E_{\rm c} - E_{\rm v})} & \text{(from above } n_{\rm c} \text{ and } p_{\rm v}) \\ = N_{\rm c} P_{\rm v} e^{-\beta E_{\rm g}} & \text{(since } E_{\rm g} = E_{\rm c} - E_{\rm v}) \\ \implies n_{\rm i} = \sqrt{N_{\rm c} P_{\rm v}} e^{-\frac{\beta E_{\rm g}}{2}} \end{array}$$

Chemical Potential in Intrisic Semiconductors

Goal: find an expression for the temperature dependence $\mu(T)$ of an intrinsic semiconductor's chemical potential.

$$\begin{array}{ll} n_{\rm c} = p_{\rm v} & \text{(by definition of intrinsic SC)} \\ n_{\rm c} = p_{\rm v} \Longrightarrow N_{\rm c} e^{-\beta(E_{\rm c}-\mu)} = P_{\rm v} e^{-\beta(\mu-E_{\rm v})} \\ e^{-\beta(E_{\rm c}-\mu)} = \frac{P_{\rm v}}{N_{\rm c}} e^{-\beta(\mu-E_{\rm v})} & \text{(rearranged)} \\ -\beta(E_{\rm c}-\mu) = \ln\frac{P_{\rm v}}{N_{\rm c}} - \beta(\mu-E_{\rm v}) & \text{(taking logarithm)} \\ &= \frac{3}{2} \ln\frac{m_{\rm v}^*}{m_{\rm c}^*} - \beta(\mu-E_{\rm v}) & \text{(using } \frac{P_{\rm v}}{N_{\rm c}} = \left(\frac{m_{\rm v}^*}{m_{\rm c}^*}\right)^{3/2}) \\ \mu(T) = \frac{1}{2}(E_{\rm c} + E_{\rm v}) + \frac{3}{4}k_{\rm B}T\ln\frac{m_{\rm v}^*}{m_{\rm c}^*} & \text{(solving for } \mu) \\ \text{Finally, use } E_{\rm c} = E_{\rm v} + E_{\rm g} \Longrightarrow E_{\rm c} + E_{\rm v} = 2E_{\rm v} + E_{\rm g} \text{ to get...} \\ \mu(T) = E_{\rm v} + \frac{E_{\rm g}}{2} + \frac{3}{4}k_{\rm B}T\ln\frac{m_{\rm v}^*}{m_{\rm c}^*} & \text{(chem. pot. of an ISC)} \end{array}$$

Interpretation: Chemical Potential in Intrinsic SC

$$\mu(T) = E_{\rm v} + \frac{E_{\rm g}}{2} + \frac{3}{4}k_{\rm B}T\ln\frac{m_{\rm v}^*}{m_{\rm c}^*} \qquad \text{(for review)}$$

$$E_{\rm F} \equiv \mu(T)\big|_{T=0\text{ K}} = E_{\rm v} + \frac{E_{\rm g}}{2} \qquad \text{(Fermi energy in ISC)}$$

Conclusion: an intrinsic semiconductor's Fermi energy lies exactly in the middle of the band gap

$$\begin{array}{ll} m_{\rm v}^* \sim m_{\rm c}^* & \text{(in typical materials and conditions)} \\ \Longrightarrow & \ln \frac{m_{\rm v}^*}{m_{\rm c}^*} \lesssim 1 & \text{(since } m_{\rm v}^* \sim m_{\rm c}^*) \\ \Longrightarrow & \frac{3}{4} k_{\rm B} T \ln \frac{m_{\rm v}^*}{m_{\rm c}^*} \lesssim k_{\rm B} T & \text{(since } \ln \frac{m_{\rm v}^*}{m_{\rm c}^*} \lesssim 1) \end{array}$$

Conclusion: the non-zero temperature deviation of $\mu(T)|_{T>0}$ away from $E_{\rm F}=E_{\rm v}+\frac{E_{\rm g}}{2}$ is of the order $k_{\rm B}T$.

Consequence: at temperatures for which $k_{\rm B}T \ll E_{\rm g}$, an intrinsic semiconductor obeys $\mu(T) \approx E_{\rm g}$, and the non-degenerate semiconductor approximation $E_{\rm c} - \mu \ll k_{\rm B}T$ and $\mu - E_{\rm v} \ll k_{\rm B}T$ is an excellent approximation.

Doped Homogeneous Semiconductors

Review: in extrinsic (aka doped) SC, conduction is dominated by electrons excited into the CB (or captured from the VB) from energy levels of impurities in the SC crystal.

Assumption: the content of this section implicitly assumes the non-degenerate semiconductor approximation!

For Orientation: Typical Carrier Densities

 $\begin{array}{ll} n_{\rm pure} \sim 5 \cdot 10^{22} \, {\rm cm}^{-3} & {\rm (atom \ density \ in \ pure \ Si)} \\ n_{\rm i} \sim 10^{10} \, {\rm cm}^{-3} & {\rm (intrinsic \ density \ in \ Si \ at \ } T \sim 300 \, {\rm K)} \\ N_{\rm d}, N_{\rm a} \sim 10^{13} \, {\rm cm}^{-3} & {\rm to \ } 10^{18} \, {\rm cm}^{-3} & {\rm (typical \ dopant \ densities)} \end{array}$

Some General Considerations

Doped semiconductors are characterized by the relationships... $n_{\rm c}-p_{\rm v}\neq 0 \qquad \qquad ({\rm in~doped~semiconductors}) \\ n_{\rm c}p_{\rm v}=n_{\rm i}^2 \qquad ({\rm in~doped~semiconductor}) \\ {\rm Let~} \mu_{\rm i}(T)\equiv E_{\rm v}+\frac{E_{\rm g}}{2}+\frac{3}{4}\ln\frac{m_{\rm v}^*}{m_{\rm s}^*} \qquad ({\rm in~intrinsic~SC}) \\ \label{eq:condition}$

 $\mu(T) \neq \mu_{\rm i}(T)$ (in doped SC)

Carrier Densities in Doped Semiconductors

Goal: derive expressions for charge carrier densities in the valence and conduction bands of doped homogeneous SCs.

Differences in Carrier Densities vs. Intrinsic SC

Differences between intrinsic and doped SC may arise from...

- (i) different effective masses m_c^* and m_v^* (via N_c and P_v)
- (ii) different energy levels $E_{\rm v}$ and $E_{\rm c}$
- (iii) different chemical potential μ

Concept: effective mass and the energy levels $E_{\rm v}$ and $E_{\rm c}$ depend on the semiconductor's underlying lattice structure. Since dopant concentrations are typically orders of magnitude less than intrinsic ion concentrations, doped and intrinsic SC crystal structures are essentially identical.

Conclusion: carrier densities in doped and intrinsic SC differ appreciably only because of changes in chemical potential μ ! $N_{\rm c}^{({\rm d})} \approx N_{\rm c}^{({\rm i})}$ and $P_{\rm v}^{({\rm d})} \approx P_{\rm v}^{({\rm i})}$ (due to low dopant densities) $n_{\rm c} = N_{\rm c}(T)e^{-\beta(E_{\rm c}-\mu)}, \ \mu \neq \mu_{\rm i}$ (in doped SC) $p_{\rm v} = P_{\rm v}(T)e^{-\beta(\mu-E_{\rm v})}, \ \mu \neq \mu_{\rm i}$ (in doped SC)

Extrinsic Carrier Densities I: CB Electrons

Let
$$\Delta n \equiv n_{\rm c} - p_{\rm v}$$
 (difference in carrier densities) $n_{\rm c}^2 - p_{\rm v} n_{\rm c} = n_{\rm c} \Delta n$ (multiplying through by $n_{\rm c}$) $n_{\rm c}^2 - n_{\rm c} \Delta n - n_{\rm i}^2 = 0$ (using $n_{\rm i}^2 = p_{\rm v} n_{\rm c}$) $n_{\rm c} = \frac{1}{2} \left[\Delta n \pm \sqrt{\Delta n^2 + 4 n_{\rm i}^2} \right]$ (quadratic formula) $= \frac{1}{2} \left[\Delta n + \sqrt{\Delta n^2 + 4 n_{\rm i}^2} \right]$ (use positive solution so $n_{\rm c} > 0$)

Extrinsic Carrier Densities II: VB Holes

$$E_{\rm c} + E_{\rm v} = 2E_{\rm v} + E_{\rm g} \ {\rm to} \ {\rm get...} \qquad \Delta n = n_{\rm c} - p_{\rm v} \qquad ({\rm difference \ in \ carrier \ densities})$$

$$({\bf chem. \ pot. \ of \ an \ ISC}) \qquad n_{\rm c}p_{\rm v} - p_{\rm v}^2 = p_{\rm v}\Delta n \qquad ({\rm multiplying \ through \ by \ } p_{\rm v})$$

$$p_{\rm v}^2 + p_{\rm v}\Delta n - n_{\rm i}^2 = 0 \qquad ({\rm using \ } n_{\rm i}^2 = n_{\rm c}p_{\rm v})$$

$$p_{\rm v} = \frac{1}{2} \left[-\Delta n \pm \sqrt{\Delta n^2 + 4n_{\rm i}^2} \right] \qquad ({\rm quadratic \ formula})$$

$$({\rm Fermi \ energy \ in \ ISC}) \qquad = \frac{1}{2} \left[\sqrt{\Delta n^2 + 4n_{\rm i}^2} - \Delta n \right] \ ({\rm use \ positive \ solution \ so \ } p_{\rm v} > 0)$$

Explicit Expression for Density Difference Δn

$n_{\rm c} = N_{\rm c} e^{-\beta(\bar{E}_{\rm c} - \mu)}$	(in doped SC)
$n_{\rm i} = N_{\rm c} e^{-\beta (E_{\rm c} - \mu_{\rm i})}$	(in intrinsic SC)
$\implies n_{\rm c} = n_{\rm i} e^{\beta(\mu - \mu_{\rm i})}$	(dividing $n_{\rm c}$ by $n_{\rm i}$)
$p_{\rm v} = P_{\rm v} e^{-\beta(\mu - E_{\rm v})}$	(in doped SC)
$n_{\rm i} = P_{\rm v} e^{-\beta(\mu_{\rm i} - E_{\rm v})}$	(in intrinsic SC)
$\implies p_{\rm v} = n_{\rm i} e^{-\beta(\mu - \mu_{\rm i})}$	(dividing $p_{\rm v}$ by $n_{\rm i}$)
$\Delta n = n_{\rm c} - p_{\rm v}$	(by definition)
$= n_{\rm i} \left[e^{\beta(\mu - \mu_{\rm i})} - e^{-\beta(\mu - \mu_{\rm i})} \right]$	(from just-derived $n_{\rm c}$ and $p_{\rm v}$)
$=2n_{ m i}\sinh\left[eta(\mu-\mu_{ m i}) ight]$	(result: difference in densities)

Dopant Energy Levels

Review: Hydrogen Atom Electrons

The distance and binding energy scale of an atomic electron in an isolated hydrogen atom are of the scale...

$$a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_{\rm e}e_0^2} \approx 0.05\,{\rm nm} \qquad \qquad \text{(Bohr radius; distance scale)} \\ 1\,{\rm Ry} = \frac{\hbar^2}{2m_{\rm e}a_0^2} \approx 13.6\,{\rm eV} \qquad \qquad \text{(Rydberg energy; energy scale)}$$

Gr	oup III	Gr	oup IV	Gı	roup V
Al Ga	$3s^{2} 3p^{1}$ $4s^{2} 4p^{1}$	Si Ge	$3s^{2} 3p^{2}$ $4s^{2} 4p^{2}$	P As	$3s^{2} 3p^{3}$ $4s^{2} 4p^{3}$

Model for Levels of Donor Impurities

- Begin with a pure (intrinsic) semiconductor crystal made with volume density $N_{\rm pure}$ of group IV elements.
- Distribute group V donor impurities with donor density $N_{\rm D} \ll N_{\rm pure}$ throughout the pure crystal; assume donor density is low enough that every donor is surrounded by very many group IV atoms.

• Model donor impurities as a group IV atom with one additional proton (fixed at the nucleus) and one additional donor electron (which may be ionized).

Concept: the donor electron in an isolated donor atom would have ionization energy $1 \, \mathrm{Ry} \sim 10 \, \mathrm{eV}$, but a donor electron embedded in a surrounding group IV lattice has greatly reduced binding energy because...

- 1. The electric field of the positive nucleus binding the donor e^- is reduced by the SC's dielectric constant $\epsilon \sim 15$.
- 2. The donor electron mass is replaced by effective electron mass $m^* \sim 0.1 m_e$.

Conclusion: model donor electron and additional proton as a free electron of effective mass m^* in the presence of a scaled attractive proton charge e_0/ϵ .

Replace $m_{\rm e}$ with m^* and ϵ_0 with $\epsilon \epsilon_0$ in the expressions for a_0 and 1 Ry to get...

 $r_0 \sim \frac{m_e}{m^*} \epsilon \cdot a_0 \sim 100 a_0$ (donor e^- distance scale) $E_{\rm b} = \frac{m^*}{m_{\rm e}} \frac{1}{\epsilon^2} \cdot \text{Ry} \sim 0.0005 \,\text{Ry}$ (donor e^- binding energy) Conclusion: donor electrons have a far greater range and far lower binding energy than an e^- in an isolated hydrogen atom. $E_{\rm b} \sim 0.0005 \, {\rm eV}$ to $0.01 \, {\rm eV}$ (typical donor e^- binding energy) $k_{\rm B}T|_{T\sim 300~{\rm K}} \sim 0.025\,{\rm eV} \gg E_{\rm b}$ $(k_{\rm B}T \text{ at room temp.})$ Result: donor electrons are easily freed from their donor ion

Model for Levels of Acceptor Impurities

Replace group V donor impurities with group III acceptor impurities and donor electron with acceptor hole. The resulting ideas are analogous.

cores as a result of room-temperature thermal fluctuations!

 $E_{\rm b} \sim 0.0005 \, {\rm eV} \, \, {\rm to} \, \, 0.01 \, {\rm eV}$ (typical acceptor hole $E_{\rm b}$) $k_{\rm B}T|_{T\sim 300~{\rm K}} \sim 0.025\,{\rm eV} \gg E_{\rm b}$ $(k_{\rm B}T \text{ at room temp.})$ Result: acceptor holes are easily freed from their acceptor ion

cores as a result of room-temperature thermal fluctuations!

TODO: Energy Levels

Just introduce how the small binding energy for dopant charge carriers produces the new energy levels $E_{\rm d}$ just below $E_{\rm c}$ and $E_{\rm a}$ just above $E_{\rm v}$, on a scale of $E_{\rm g}$.

Occupation Statistics of Donor Levels

Review: Grand Canonical Ensemble

Consider a system of non-interacting particles in thermodynamic equilibrium in contact with an external reservoir, with which the system may exchange both energy and particles. μ is the system's chemical potential

Let j index the system's possible states

 E_j is the energy of the j-th state

 N_j is the number of particles occupying the j-th state $Z_{\rm gc} = \sum_j e^{-\beta(E_j - \mu N_j)}$ (GC partition function)

The average number
$$\langle n \rangle$$
 of particles in the system is... $\langle n \rangle = \frac{1}{Z_{\rm gc}} \sum_j N_j e^{-\beta(E_j - \mu N_j)}$

$$= \frac{\sum_j N_j e^{-\beta(E_j - \mu N_j)}}{\sum_j e^{-\beta(E_j - \mu N_j)}}$$

Occupation Statistics of Donor Energy Levels

Consider a doped SC with donor density $N_{\rm d} \ll N_{\rm pure}$ Goal: compute the number density $n_{\rm d}$ of electrons bound to donor ion cores.

Assumption: assumpe donor density is low enough that donor electrons are non-interacting

 $\implies n_{\rm d}$ is the product of donor density $N_{\rm d}$ and the average donor electron occupation $\langle n \rangle$ of a single donor site.

Idea: express occupation of a single donor site with GC ensemble Possible e^- occupation states of a single donor site are...

- 1. no occupation; N=0, E=0
- 2. occupation by one spin up electron; $N=1, E=E_{\rm d}$

- 3. occupation by one spin down electron; $N=1, E=E_{\rm d}$
- 4. occupation by two electrons with spin up and spin down; N = 2, $E = 2E_{\rm d} + E_{\rm repulsion}$

Neglect double-electron occupation because large electrostatic repulsion $E_{\text{repulsion}} \gg E_{\text{d}}$ makes occupation unlikely.

$$\begin{split} Z_{\rm gc} &= \sum_{j} e^{-\beta(E_{j} - \mu N_{j})} \\ &= 2 \cdot e^{-\beta(E_{\rm d} - 1 \cdot \mu)} + e^{-\beta(0 - 0 \cdot \mu)} \\ &= 1 + e^{-\beta(E_{\rm d} - \mu)} \\ \sum_{j} N_{j} e^{-\beta(E_{j} - \mu N_{j})} &= 2 \cdot \left(1 \cdot e^{-\beta(E_{\rm d} - \mu)}\right) + 0 \cdot e^{-\beta \cdot 0} \\ &= 2e^{-\beta(E_{\rm d} - \mu)} \\ \langle n \rangle &= \frac{1}{Z_{\rm gc}} \sum_{j} N_{j} e^{-\beta(E_{j} - \mu N_{j})} \qquad \text{(for a single donor site)} \\ &= \frac{2e^{-\beta(E_{\rm d} - \mu)}}{1 + 2e^{-\beta(E_{\rm d} - \mu)}} \qquad \text{(using above } Z_{\rm gc} \text{ and sum)} \\ &= \frac{1}{1 + \frac{1}{2} e^{\beta(E_{\rm d} - \mu)}} \qquad \text{(simplified)} \end{split}$$

$$\begin{array}{l} = \frac{1}{1+\frac{1}{2}e^{\beta(E_{\rm d}-\mu)}} & \text{(simplified)} \\ n_{\rm d} = \langle n \rangle \, N_{\rm d} & \text{(assuming donor } e^- \text{ are noninteracting)} \\ = \frac{N_{\rm d}}{1+\frac{1}{2}e^{\beta(E_{\rm d}-\mu)}} & \text{(donor } e^- \text{ occupation density)} \end{array}$$

(simplified)

(simplifying)

Occupation Statistics of Acceptor Energy Levels

Consider a doped SC with acceptor density $N_{\rm a} \ll N_{\rm pure}$ Goal: compute the number density $p_{\rm v}$ of holes bound to ac-

Assumption: assume acceptor density is low enough that donor holes are non-interacting

 $\implies p_{\rm a}$ is the product of acceptor density $N_{\rm a}$ and the average donor hole occupation $\langle p \rangle$ of a single acceptor site.

Idea: express *electron* occupation of one acceptor site with GC ensemble, then convert electron density to hole density Possible e^- /hole occupation states of one acceptor site are...

- 1. occupation by two electrons of opposite spins/occupation by zero holes; N = 2, $E = 2E_a$
- 2. occupation by one spin up electron/occupation by one hole; N = 1, $E = E_a$
- 3. occupation by one spin down electron/occupation by one hole; $N = 1, E = E_a$
- 4. occupation by zero electrons/occupation by two holes; N = 0, E = 0.

Neglect double-hole/zero-electron occupation because large electrostatic repulsion $E_{\rm repulsion} \gg E_{\rm a}$ between two holes makes occupation unlikely.

$$Z_{\rm gc} = \sum_{j} e^{-\beta(E_{j} - \mu N_{j})} = e^{-\beta(2E_{\rm a} - 2 \cdot \mu)} + 2e^{-\beta(E_{\rm a} - 1 \cdot \mu)}$$

$$\sum_{j} N_{j} e^{-\beta(E_{j} - \mu N_{j})} = 2 \cdot e^{-\beta(2E_{\rm a} - 2\mu)} + 2 \cdot (1 \cdot e^{-\beta(E_{\rm a} - \mu)})$$

$$\langle n \rangle = \frac{1}{Z_{\rm gc}} \sum_{j} N_{j} e^{-\beta(E_{j} - \mu N_{j})} \text{ (for } electrons \text{ in acceptor levels)}$$

$$= \frac{2e^{-\beta(E_{\rm a} - \mu)} + 2e^{-2\beta(E_{\rm a} - \mu)}}{2e^{-\beta(E_{\rm a} - \mu)} + e^{-2\beta(E_{\rm a} - \mu)}}$$

$$= \frac{2 + 2e^{-\beta(E_{\rm a} - \mu)}}{2 + e^{-\beta(E_{\rm a} - \mu)}} \text{ (dividing by } e^{-\beta(E_{\rm a} - \mu)})$$

$$\langle p \rangle = 2 - \langle n \rangle \text{ (electron-hole occupation relationship)}$$

$$= 2 \cdot \frac{2 + e^{-\beta(E_{\rm a} - \mu)}}{2 + e^{-\beta(E_{\rm a} - \mu)}} - \frac{2 + 2e^{-\beta(E_{\rm a} - \mu)}}{2 + e^{-\beta(E_{\rm a} - \mu)}} \text{ (common denominator)}$$

$$\begin{array}{l} = \frac{1}{1 + \frac{1}{2}e^{\beta(\mu - E_{\rm a})}} & \text{(simplifying)} \\ p_{\rm a} = \left\langle p \right\rangle N_{\rm a} & \text{(assuming acc. holes are noninteracting)} \\ = \frac{N_{\rm a}}{1 + \frac{1}{2}e^{\beta(\mu - E_{\rm a})}} & \text{(acc. hole occupation density)} \end{array}$$

Carrier Concentrations in Doped SCs

Goal: analyze how the intrinsic semiconductor relationship $n_{\rm c} = p_{\rm v}$ generalizes to extrinsic semiconductor due to the addition of dopant energy levels.

Equilibrium Densities in a Doped SC if $N_{\rm d} > N_{\rm a}$ Consider an doped SC with dopant densities $N_{\rm d} > N_{\rm a}$. Consider the SC's ground state configuration at $T = 0 \,\mathrm{K}$ At $T = 0 \,\mathrm{K}$, e^- will assume lowest possible energy configuration $\implies N_{\rm a}$ donor electrons drop into acceptor levels At $T = 0 \,\text{K} \text{ if } N_{\text{d}} > N_{\text{a}}...$

• Conduction band is fully empty

- Donor levels hold $N_{\rm d} N_{\rm a}$ electrons (i.e. as empty as the $N_{\rm a} < N_{\rm d}$ available lower-energy acceptor levels allow)
- Acceptor levels are fully occupied with donor e^-
- Valence band is fully occupied with valence e^-

Summary: at $T = 0 \,\mathrm{K}$, acceptor/valence bands are full, and conduction/donor bands hold $N_{\rm d}-N_{\rm a}$ electrons.

Idea: in thermal equilibrium at T > 0 K, electrons will be redistributed among these levels, but the total electron number in the SC is conserved!

Consequence: at $T > 0 \,\mathrm{K}$, the density $n_{\rm c} + n_{\rm d}$ of e^- in conduction and donor bands must exceed the $T=0\,\mathrm{K}$ value of $N_{\rm d}-N_{\rm a}$ by the number of e^- vacating the originally-full acceptor and valence bands, given by $p_{\rm v} + p_{\rm a}$.

$$\implies n_{\rm c} + n_{\rm d} = N_{\rm d} - N_{\rm a} + p_{\rm v} + p_{\rm a} \; (\text{eq. densities in DSC})$$

Equilibrium Densities in a Doped SC if $N_a > N_d$ Consider an doped SC with dopant densities $N_{\rm a} > N_{\rm d}$. Note: result is the same as derived above if $N_{\rm d} > N_{\rm a}$, i.e. $n_{\rm c} + n_{\rm d} = N_{\rm d} - N_{\rm a} + p_{\rm v} + p_{\rm a}$

This section is given just as an excercise/alternative perspective.

Consider the SC's ground state configuration at $T = 0 \,\mathrm{K}$ At $T = 0 \,\mathrm{K}$, e^- will assume lowest possible energy configuration \implies all $N_{\rm a}$ donor electrons drop into acceptor levels At $T = 0 \,\mathrm{K}$ if $N_{\mathrm{a}} > N_{\mathrm{d}}$...

- Conduction band is fully empty
- Donor levels are fully empty
- Acceptor levels hold $N_{\rm d}$ electrons (or $N_{\rm a}-N_{\rm d}$ holes)
- Valence band is fully occupied with valence e^-

Summary: at $T = 0 \,\mathrm{K}$, conduction/donor bands are fully empty, and acceptor/valence bands hold $N_{\rm a}-N_{\rm d}$ holes

Idea: in thermal equilibrium at $T > 0 \,\mathrm{K}$, electrons (holes) will be redistributed among these levels, but the total electron (hole) number in the SC is conserved!

Consequence: at $T > 0 \,\mathrm{K}$, the density $p_{\rm v} + p_{\rm a}$ of holes in valence and acceptor bands must exceed the $T = 0 \,\mathrm{K}$ value of $N_{\rm a}-N_{\rm d}$ by the number of electrons occupying the originallyempty donor and conduction bands, given by $n_{\rm c} + n_{\rm d}$.

$$\implies p_{\rm a} + p_{\rm v} = N_{\rm a} - N_{\rm d} + n_{\rm c} + n_{\rm d} \quad \text{(same as for } N_{\rm d} > N_{\rm a}!)$$

Dopant Carrier Concentrations at Room Temperature Consider a doped SC at room temp. where $k_{\rm B}T \sim 0.025\,{\rm eV}$ $E_{\rm b} \sim 0.0005 \,\mathrm{eV}$ to $0.01 \,\mathrm{eV}$ (typical dopant binding energy) $(E_{\rm c} - E_{\rm d}), (E_{\rm a} - E_{\rm v}) \sim E_{\rm b} \ll k_{\rm B}T$

These relationships, together with the implicit non-degenerate SC approximation, permit the following assumptions...

Assume:
$$E_{\rm d} - \mu \gg k_{\rm B}T$$
 (based on $E_{\rm c} - E_{\rm d} \ll k_{\rm B}T$)
Assume: $\mu - E_{\rm a} \gg k_{\rm B}T$ (based on $E_{\rm a} - E_{\rm v} \ll k_{\rm B}T$)

Interpretation: at room temperature, nearly all dopant $e_$ are thermally excited out the dopant levels (so $n_{\rm d} \ll N_{\rm d}$) and nearly all acceptor levels are filled with electrons thermally excited from valence band (so $p_a \ll N_a$).

$$n_{\rm c} - p_{\rm v} \approx N_{\rm d} - N_{\rm a}$$
 (room temp. densities in DSC) $n_{\rm c} \approx p_{\rm v} + N_{\rm d}$ (n-type SC at room temp.) $p_{\rm v} \approx n_{\rm c} + N_{\rm a}$ (p-type SC at room temp.)

Fermi Energy and Chemical Potential In Doped SC

Review: a system's Fermi energy $E_{\rm F}$ is the energy of the highest-energy occupied electron level at $T=0\,\mathrm{K}$.

$$E_{\rm F} = \begin{cases} E_{\rm d} & N_{\rm d} > N_{\rm a} \\ E_{\rm a} & N_{\rm a} > N_{\rm d} \end{cases}$$
 (Fermi energy in doped SC)

If $N_{\rm d} > N_{\rm a}$, the chemical potential falls from $E_{\rm d}$ towards the center of band gap with increasing temperature.

If $N_{\rm a} > N_{\rm d}$, the chemical potential grows from $E_{\rm a}$ towards the center of band gap with increasing temperature.

Heuristic explanation: typical dopant densities are many orders of magnitude less than densities of intrinsic atoms \implies

the doped SC chemical potential rapidly approaches the intrinsic SC chemical potential (which occurs near the band gap center) once thermal effects become appreciable.

Carrier Densities in Lightly-Doped Semiconductors

Consider a doped semiconductor in the room temperature limit where $E_{\rm d} - \mu \gg k_{\rm B}T$ and $\mu - E_{\rm a} \gg k_{\rm B}T$ $n_{\rm c} - p_{\rm v} \approx N_{\rm d} - N_{\rm a}$ (review: room temp. densities in DSC) $\Delta n \equiv n_{\rm c} - p_{\rm v}$ (from "Difference in Carrier Densities") $\Delta n \approx N_{\rm d} - N_{\rm a}$ (at room temp.) $\Delta n \ll n_{\rm i}$ (from assumption of light doping) $n_{\rm c} = \frac{1}{2} \left[\Delta n + \sqrt{\Delta n^2 + 4n_{\rm i}^2} \right]$

$$\begin{split} n_{\rm c} &= \frac{1}{2} \left[\Delta n + \sqrt{\Delta n^2 + 4 n_{\rm i}^2} \right] \quad \text{(from "Diff. in Densities I")} \\ &\approx n_{\rm i} + \frac{1}{2} (N_{\rm d} - N_{\rm a}) + \mathcal{O}(\Delta n)^2 \quad \quad \text{(for } \Delta n \ll n_{\rm i}) \\ p_{\rm v} &= \frac{1}{2} \left[\sqrt{\Delta n^2 + 4 n_{\rm i}^2} - \Delta n \right] \quad \text{(from "Diff. in Densities II")} \end{split}$$

$$\approx n_{\rm i} - \frac{1}{2}(N_{\rm d} - N_{\rm a}) + \mathcal{O}(\Delta n)^{2} \qquad \text{(for } \Delta n \ll n_{\rm i})$$

$$\begin{cases} n_{\rm c} \\ p_{\rm v} \end{cases} \approx n_{\rm i} \pm \frac{1}{2}(N_{\rm d} - N_{\rm a}) \qquad \text{(limit of light doping)}$$

Carrier Densities in Heavily-Doped Semiconductors

Consider a doped semiconductor in the room temperature limit where $E_{\rm d} - \mu \gg k_{\rm B}T$ and $\mu - E_{\rm a} \gg k_{\rm B}T$

 $n_{\rm c} - p_{\rm v} \approx N_{\rm d} - N_{\rm a}$ (review: room temp. densities in DSC) $\Delta n \equiv n_{\rm c} - p_{\rm v}$

$$\Delta n \approx N_{\rm d} - N_{\rm a}$$
 (at room temp.)
 $\Delta n \gg n_{\rm i}$ (from assumption of heavy doping)

$$n_{\rm c} = \frac{1}{2} \left[\Delta n + \sqrt{\Delta n^2 + 4n_{\rm i}^2} \right]$$
 (from "Diff. in Densities I")

$$\Delta n \gg n_{\rm i}$$
 (from assumption of heavy doping)
$$n_{\rm c} = \frac{1}{2} \left[\Delta n + \sqrt{\Delta n^2 + 4n_{\rm i}^2} \right]$$
 (from "Diff. in Densities I")
$$\approx \begin{cases} \Delta n + \frac{n_{\rm i}^2}{\Delta n} + \mathcal{O}(n_{\rm i})^4 & N_{\rm d} > N_{\rm a} \\ -\frac{n_{\rm i}^2}{\Delta n} + \mathcal{O}(n_{\rm i})^4 & N_{\rm a} > N_{\rm d} \end{cases}$$
 (for $\Delta n \gg n_{\rm i}$)

$$p_{\rm v} = \frac{1}{2} \left[\sqrt{\Delta n^2 + 4n_{\rm i}^2} - \Delta n \right]$$
 (from "Diff. in Densities II")

$$\approx \begin{cases} \frac{n_{\rm i}^2}{\Delta n} + \mathcal{O}(n_{\rm i})^4 & N_{\rm d} > N_{\rm a} \\ -\Delta n - \frac{n_{\rm i}^2}{\Delta n} + \mathcal{O}(n_{\rm i})^4 & N_{\rm a} > N_{\rm d} \end{cases}$$
 (for $\Delta n \gg n_{\rm i}$)

The p-n Junction

Informally: a p-n junction is a p-type semiconductor placed next to an n-type semiconductor.

More formally: a p-n junction is a semiconductor in which dopant concentration varies from dominantly p-type to dominantly n-type along a single spatial direction.

Coordinate System and Notation

Consider the junction of a p-type semiconductor with acceptor density $N_{\rm a}$ and n-type semiconductor with donor density $N_{\rm d}$ Choose coordinate system so dopant concentration change along x axis and junction occurs at x = 0

Assumption: assume dopant densities have perfect stepfunction distributions of the form...

$$N_{\rm d}(x) = \begin{cases} 0 & x < 0 \\ N_{\rm d} & x > 0 \end{cases}$$
 (donor density)
$$N_{\rm a}(x) = \begin{cases} N_{\rm a} & x < 0 \\ 0 & x > 0 \end{cases}$$
 (acceptor density)

Condition for Semiclassical Analysis

Let $\phi(x)$ denote the electrostatic potential across the junction Let a denote the semiconductor's lattice constant

Let $E_{\rm g}$ denote the semiconductor's band gap

Let $\Delta \phi(\Delta x)$ denote the change in potential corresponding to a distance Δx across the junction.

A necessary condition for semiclassical analysis is...

$$e\Delta\phi(\Delta x) \ll E_{\rm g}$$
 for $\Delta x \sim a$ (for semiclassical analysis)

Formation of the Depletion Region

Assume room temp. and $E_{\rm d} - \mu \ll k_{\rm B}T$ and $\mu - E_{\rm a} \ll k_{\rm B}T$ Before contact, the p-type and n-type separately obey

- n-type CB occupation is $n_{\rm c} \sim N_{\rm d}$
- p-type VB occupation is $p_{\rm v} \sim N_{\rm a}$

After contact, donor electrons in n-type region diffuse across junction to occupy acceptor holes in p-type region. Result:

- n-type region has a small layer near p-n interface of positive bound charge from positive donor ion cores
- p-type region has a small layer near p-n interface of negative bound charge from negative acceptor ion cores
- The increasing presence of positive donor cores in n-type and negative acceptor cores in p-type due to e^- diffusion establishes an internal electric field opposing further e^{-} diffusion from n-type to p-type.

The region of charged ion cores is called the *depletion region*. There are no mobile charge carrriers in the depletion region! $d_{\rm pn} \sim 10 \, \rm nm \, to \, 10^3 \, \rm nm$ (typical depletion region widths)

Energy Levels Across Junction

Let $\phi(x)$ denote electrostatic potential in p-n junction $E_{\rm c} \to E_{\rm c} - e_0 \phi(x)$ (CB energy shifts due ϕ) $E_{\rm v} \to E_{\rm v} - e_0 \phi(x)$ (VB energy shifts due ϕ) Chemical potential μ is constant across junction

Mathematical Analysis of the p-n Junction

This section implicitly assumes a room-temperature semiconductor obeying $E_{\rm d} - \mu \ll k_{\rm B}T$ and $\mu - E_{\rm a} \ll k_{\rm B}T$!

Goal: find potential $\phi(x)$ across the p-n junction

Concept: $\phi(x)$ varies appreciably only on a scale of the depletion region width $d_{\rm pn}$, which is large on a scale of lattice constant $a \implies$ it is permissible to use macroscopic electostatics equations to solve for ϕ .

 $\nabla^2 \phi(\mathbf{r}) = -\frac{\rho(\mathbf{r})}{2\pi}$ (Poisson equation in 3D) $\frac{\mathrm{d}^2 \phi}{\mathrm{d}x^2} = -\frac{\rho(x)}{\epsilon \epsilon_0}$ (p-n junction properties vary only with x)

Boundary Conditions

Assume n-type conditions prevail for large positive x

Assume p-type conditions prevail for large negative x

 $\implies n_{\rm c}(x \to \infty) = N_{\rm d}$ (all donor electrons ionized) $\implies p_{\mathbf{v}}(x \to -\infty) = N_{\mathbf{a}}$ (all acceptor holes ionized)

Goal: relate boundary conditions to above expressions for carrier densities $n_{\rm c}$ and $p_{\rm v}$.

Conduction Band Electrons

 $n_{\rm c}(x) = N_{\rm c}e^{-\beta(E_{\rm c} - e_0\phi(x) - \mu)}$ $n_{\rm c}(\infty) = N_{\rm d} = N_{\rm c}e^{-\beta(E_{\rm c} - e_0\phi(\infty) - \mu)}$

Divide $n_{\rm c}(x)$ by $n_{\rm c}(\infty)$ to get...

 $n_{\rm c}(x) = N_{\rm d} e^{-\beta e_0(\phi(\infty) - \phi(x))}$ $= N_{\rm c} e^{-\beta(E_{\rm c} - e_0\phi(x) - \mu)}$ (alternate expression)

Valence Band Holes

 $p_{\rm v}(x) = P_{\rm v}e^{-\beta(\mu - E_{\rm v} + e_0\phi(x))}$ (review: VB hole density) $p_{\mathbf{v}}(-\infty) = N_{\mathbf{a}} = P_{\mathbf{v}}e^{-\beta(\mu - E_{\mathbf{v}} + \phi(-\infty))}$ Divide $p_{\rm v}(x)$ by $p_{\rm v}(-\infty)$ to get... $p_{\mathbf{v}}(x) = N_{\mathbf{a}} e^{-\beta e_0(\phi(x) - \phi(-\infty))}$ $= P_{\mathbf{v}} e^{-\beta(\mu - E_{\mathbf{v}} + e_0 \phi(x))}$ (alternate expression)

Relating Band Gap and Potential Drop

 $n_{\rm c}(x) = N_{\rm d} e^{-\beta e_0(\phi(\infty) - \phi(x))} = N_{\rm c} e^{-\beta(E_{\rm c} - e_0\phi(x) - \mu)}$ $p_{\mathbf{v}}(x) = N_{\mathbf{a}}e^{-\beta e_{0}(\phi(x) - \phi(-\infty))} = P_{\mathbf{v}}e^{-\beta(\mu - E_{\mathbf{v}} + e_{0}\phi(x))}$ Multiply the two sides of above equations to get...

$$\begin{array}{l} N_{\rm d}N_{\rm a}e^{-\beta e_0(\phi(\infty)-\phi(-\infty))} = N_{\rm c}P_{\rm v}e^{-\beta(E_{\rm c}-E_{\rm v})} \\ \frac{N_{\rm d}N_{\rm a}}{N_{\rm c}P_{\rm v}} = e^{+\beta e_0(\phi(\infty)-\phi(-\infty))} \cdot e^{-\beta(E_{\rm c}-E_{\rm v})} & \text{(rearranged)} \\ \ln\frac{N_{\rm d}N_{\rm a}}{N_{\rm c}P_{\rm v}} = \beta e_0\left[\phi(\infty)-\phi(-\infty)\right] - \beta(E_{\rm c}-E_{\rm v}) & \text{(logarithmed)} \\ e_0\left[\phi(\infty)-\phi(-\infty)\right] = E_{\rm c} - E_{\rm v} + k_{\rm B}T\ln\frac{N_{\rm d}N_{\rm a}}{N_{\rm c}P_{\rm v}} & \text{(simplified)} \\ e_0\Delta\phi = E_{\rm g} + k_{\rm B}T\ln\frac{N_{\rm d}N_{\rm a}}{N_{\rm c}P_{\rm v}} & \text{(recognizing } E_{\rm g} = E_{\rm c} - E_{\rm v}) \\ \Delta\phi = \phi(\infty) - \phi(-\infty) & \text{is potential drop across p-n junction} \\ \phi(x) - \phi(-x) \approx \Delta\phi & \text{for } |x| \sim 100 \, \text{nm} & \text{(in practice)} \end{array}$$

Simplified Expression for Charge Density

 $\frac{\mathrm{d}^2 \phi}{\mathrm{d}x^2} = -\frac{\rho(x)}{\epsilon \epsilon_0}$ (the Poisson equation) Solving the Poisson equation requires an expression for $\rho(x)$! $\rho(x) = e_0 |N_{\rm d}(x) - n_{\rm c}(x) - (N_{\rm a}(x) - p_{\rm v}(x))|$ assuming ionized dopant levels)

$$N_{\rm d}(x) = \begin{cases} 0 & x < 0 \\ N_{\rm d} & x > 0 \end{cases}$$
 (review: assumed donor density)
$$N_{\rm a}(x) = \begin{cases} N_{\rm a} & x < 0 \\ 0 & x > 0 \end{cases}$$
 (review: assumed acceptor density)

$$n_{\rm c}(x) = N_{\rm d} e^{-\beta e_0(\phi(\infty) - \phi(x))}$$
 (in general; for review)
$$p_{\rm v}(x) = N_{\rm a} e^{-\beta e_0(\phi(x) - \phi(-\infty))}$$
 (in general; for review)

Complication: the above expression for $\rho(x)$ is too complicated to analytically solve the Poisson equation.

Solution: use an approximate charge density given by...

Solution: use an approximate charge density given by...
$$\rho(x) \approx \begin{cases} 0 & x < -d_{\rm p} \\ e_0 \left[N_{\rm d}(x) - N_{\rm a}(x) \right] & -d_{\rm p} < x < d_{\rm n} \\ 0 & x > d_{\rm n} \end{cases}$$
 (review: law of mass action) Outside Depletion Person

Outside Depletion Region

 $\phi(x > d_{\rm n}) \sim \phi(\infty)$ (ϕ rapidly reaches asymptotic value) $\phi(x < -d_p) \sim \phi(-\infty)$ (ϕ rapidly reaches asymptotic value) $\begin{array}{ll} n_{\rm c}(x>d_{\rm n}) \sim N_{\rm d} & \text{(since } \phi(x>d_{\rm n}) \sim \phi(\infty) \text{ in n-type)} \\ p_{\rm v}(x<-d_{\rm p}) \sim N_{\rm a} & \text{(since } \phi(x<-d_{\rm p}) \sim \phi(-\infty) \text{ in p-type)} \end{array}$ $p_{\rm v}(x>d_{\rm n}) \ll n_{\rm c}(x>d_{\rm n})$ $(p_{\rm v} \sim \frac{n_{\rm i}^2}{N_{\rm d}} \ll n_{\rm c} \sim N_{\rm d} \text{ in n-type})$ $n_{\rm c}(x<-d_{\rm p})\ll p_{\rm v}(x<-d_{\rm p})~(n_{\rm c}\sim\frac{n_{\rm i}^2}{N_{\rm a}}\ll p_{\rm v}\sim N_{\rm v}$ in p-type) $\rho(x) = e_0 \left[N_{\rm d}(x) - n_{\rm c}(x) - \left(N_{\rm a}(x) - p_{\rm v}(x) \right) \right] \qquad \text{(generally)}$ $\approx e_0 \begin{cases} \left[0 - (N_{\rm a} - N_{\rm a}) \right] & x < -d_{\rm p} \\ \left[(N_{\rm d} - N_{\rm d}) - 0 \right] & x > d_{\rm n} \end{cases}$ outside depletion region)

Inside Depletion Region

 $e\Delta\phi \sim E_{\rm g}$ across the depletion region $\Delta x = d_{\rm n} + d_{\rm p}$ Important: $E_{\rm g} \gg k_{\rm B}T \implies e\Delta\phi \gg k_{\rm B}T$ $n_{\rm c}(-d_{\rm p} < x < d_{\rm n}) \ll N_{\rm d}(-d_{\rm p} < x < d_{\rm n})$ (since $e\Delta\phi \gg k_{\rm B}T$) $p_{\rm v}(-d_{\rm p} < x < d_{\rm n}) \ll N_{\rm a}(-d_{\rm p} < x < d_{\rm n})$ (since $e\Delta\phi \gg k_{\rm B}T$) $\rho(x) = e_0 [N_{\rm d}(x) - n_{\rm c}(x) - (N_{\rm a}(x) - p_{\rm v}(x))]$ $\approx e_0 [N_{\rm d}(x) - N_{\rm a}(x)]$ (inside depletion region)

Result: Approximate Charge Density

Combine approximate expressions for $\rho(x)$ inside and outside the depletion region to conclude that, except very near the DR boundararies $x = -d_{\rm p}$ or $x = d_{\rm n}$, $\rho(x)$ obeys...

$$\rho(x) \approx \begin{cases} 0 & x < -d_{\rm p} \\ e_0 \left[N_{\rm d}(x) - N_{\rm a}(x) \right] & -d_{\rm p} < x < d_{\rm n} \\ 0 & x > d_{\rm n} \end{cases} \quad \text{(as quoted)}$$

$$= \begin{cases} 0 & x < -d_{\rm p} \\ -e_0 N_{\rm a} & -d_{\rm p} < x < 0 \\ e_0 N_{\rm d} & 0 < x < d_{\rm n} \\ 0 & x > d_{\rm n} \end{cases} \quad \text{(written in full)}$$

Solving the Poisson Equation

Goal: solve the Poisson equation for $\phi(x)$ using above $\rho(x)$ $\frac{\mathrm{d}^2 \phi}{\mathrm{d}x^2} = -\frac{\rho(x)}{\epsilon \epsilon \rho}$ (Poisson equation)

$$\rho(x) = \begin{bmatrix} N_{\rm d}(x) - n_{\rm c}(x) - \left(N_{\rm a}(x) - p_{\rm v}(x)\right) \end{bmatrix} \qquad \text{(generally)}$$

$$= \begin{cases} 0 & x < -d_{\rm p} \\ -e_{\rm 0}N_{\rm a} & -d_{\rm p} < x < 0 \\ e_{\rm 0}N_{\rm d} & 0 < x < d_{\rm n} \\ 0 & x > d_{\rm n} \end{cases} \qquad \text{(approximately)}$$

$$\frac{\mathrm{d}^2 \phi}{\mathrm{d}x^2} = \begin{cases} 0 & x < -d_{\rm p} \\ \frac{e_{\rm 0}N_{\rm a}}{\epsilon \epsilon_{\rm 0}} & -d_{\rm p} < x < 0 \\ -\frac{e_{\rm 0}N_{\rm d}}{\epsilon \epsilon_{\rm 0}} & 0 < x < d_{\rm n} \\ 0 & x > d_{\rm n} \end{cases} \qquad \text{(Poisson equation)}$$

Solving Poisson Equation: First Integration

$$\frac{\mathrm{d}\phi}{\mathrm{d}x} = \begin{cases} \phi'(-\infty) & x < -d_{\mathrm{p}} \\ \frac{e_{0}N_{\mathrm{a}}}{\epsilon\epsilon_{0}}x + A_{\mathrm{p}} & -d_{\mathrm{p}} < x < 0 \\ -\frac{e_{0}N_{\mathrm{d}}}{\epsilon\epsilon_{0}}x + A_{\mathrm{n}} & 0 < x < d_{\mathrm{n}} \\ \phi'(\infty) & x > d_{\mathrm{n}} \end{cases}$$
 (integrating $\phi''(x)$)

Boundary Conditions

- (i) ϕ' is continuous at $x = -d_p$ and at $x = d_n$
- (ii) ϕ' is continuous at the p-n interface x = 0
- (iii) ϕ' is constant for $x < -d_p$ and $x > d_n$

$$\phi'(-d_{\rm p}^{-}) = 0 \equiv -\frac{e_0 N_{\rm a}}{\epsilon \epsilon_0} d_{\rm p} + A_{\rm p} = \phi'(-d_{\rm p}^{+}) \text{ (continuity at } -d_{\rm p})$$

$$\implies A_{\rm p} = \frac{e_0 N_{\rm a}}{\epsilon \epsilon_0} d_{\rm p}$$

$$\phi'(d_{\mathbf{n}}^{-}) = -\frac{e_{0}N_{\mathbf{d}}}{\epsilon\epsilon_{0}}d_{\mathbf{n}} + A_{\mathbf{n}} \equiv 0 = \phi'(d_{\mathbf{n}}^{+}) \qquad \text{(continuity at } d_{\mathbf{n}}$$

$$\Longrightarrow A_{\mathbf{n}} = \frac{e_{0}N_{\mathbf{d}}}{\epsilon\epsilon_{0}}d_{\mathbf{n}}$$

$$\phi'(-\infty) = \phi'(\infty) = 0 \qquad (\phi \text{ constant outside DR})$$

$$\phi'(-\infty) = \phi'(\infty) = 0$$
 (ϕ constant outside DR)

$$\implies \frac{\mathrm{d}\phi}{\mathrm{d}x} = \begin{cases} 0 & x < -d_{\mathrm{p}} \\ \frac{e_{0}N_{\mathrm{a}}}{\epsilon\epsilon_{0}}(x+d_{\mathrm{p}}) & -d_{\mathrm{p}} < x < 0 \\ -\frac{e_{0}N_{\mathrm{d}}}{\epsilon\epsilon_{0}}(x-d_{\mathrm{n}}) & 0 < x < d_{\mathrm{n}} \\ 0 & x > d_{\mathrm{n}} \end{cases}$$

$$N_{\rm a}d_{\rm p} = N_{\rm d}d_{\rm n}$$
 (from continuity at $x = 0$

Solving Poisson Equation: Second Integration

$$\phi(x) = \begin{cases} \phi(-\infty) & x < -d_{\mathbf{p}} \\ \frac{e_{0}N_{\mathbf{a}}}{\epsilon\epsilon_{0}} \left(\frac{x^{2}}{2} + d_{\mathbf{p}}x\right) + B_{\mathbf{p}} & -d_{\mathbf{p}} < x < 0 \\ -\frac{e_{0}N_{\mathbf{d}}}{\epsilon\epsilon_{0}} \left(\frac{x^{2}}{2} - d_{\mathbf{n}}x\right) + B_{\mathbf{n}} & 0 < x < d_{\mathbf{n}} \\ \phi(\infty) & x > d_{\mathbf{n}} \end{cases}$$
 (int. ϕ')

Boundary Conditions

- (i) ϕ is continuous at the p-n interface x=0
- (ii) $\phi(x)$ is continuous at $x = -d_p$ and at $x = d_n$
- (iii) $\phi(-\infty) \equiv 0 \implies \phi(\infty) = \Delta \phi$

$$\begin{array}{ll} B_{\rm p} = B_{\rm n} \equiv B & \text{(from first BC)} \\ 0 = -\frac{e_0 N_{\rm a}}{2\epsilon\epsilon_0} d_{\rm p}^2 + B & \text{(continuity at } -d_{\rm p}) \\ \Longrightarrow B = \frac{e_0 N_{\rm a}}{2\epsilon\epsilon_0} d_{\rm p}^2 & \text{(solving for } B) \\ \Longrightarrow \phi(d_{\rm n}) = \Delta\phi = \frac{e_0}{2\epsilon\epsilon_0} (N_{\rm d} d_{\rm n}^2 + N_{\rm a} d_{\rm p}^2) & \text{(cont. at } d_{\rm n}) \\ \Longrightarrow B = \frac{e_0 N_{\rm a}}{2\epsilon\epsilon_0} d_{\rm p}^2 = \Delta\phi - \frac{e_0 N_{\rm d}}{2\epsilon\epsilon_0} d_{\rm n}^2 & \text{(alt. expression for } B) \\ \text{Substitute results into expression for } \phi(x) \text{ to get...} \end{array}$$

$$\phi(x) = \begin{cases} 0 & x < -d_{p} \\ \frac{e_{0}N_{a}}{\epsilon\epsilon_{0}} \left(\frac{x^{2}}{2} + d_{p}x\right) + \frac{e_{0}N_{a}}{2\epsilon\epsilon_{0}} d_{p}^{2} & -d_{p} < x < 0 \\ -\frac{e_{0}N_{d}}{\epsilon\epsilon_{0}} \left(\frac{x^{2}}{2} - d_{n}x\right) + \Delta\phi - \frac{e_{0}N_{d}}{2\epsilon\epsilon_{0}} d_{n}^{2} & 0 < x < d_{n} \\ \Delta\phi & x > d_{n} \end{cases}$$

$$= \begin{cases} 0 & x < -d_{p} \\ \frac{e_{0}N_{a}}{2\epsilon\epsilon_{0}} (x + d_{p})^{2} & -d_{p} < x < 0 \\ \Delta\phi - \frac{e_{0}N_{d}}{2\epsilon\epsilon_{0}} (x - d_{n})^{2} & 0 < x < d_{n} \end{cases}$$
 (simplified)
$$\Delta\phi & x > d_{n}$$

Depletion Region Width

Goal: determine depletion region width $d_{\rm pn}$ in terms of dopant densities $N_{\rm a}$, $N_{\rm d}$ and potential difference $\Delta \phi$

$$N_{\rm a}d_{\rm p} = N_{\rm d}d_{\rm n}$$
 (from "Poisson Eq. 1st Int.")

$$\begin{array}{ll} \text{(generally)} & \Delta\phi = \frac{e_0}{2\epsilon\epsilon_0}(N_{\mathrm{d}}d_{\mathrm{n}}^2 + N_{\mathrm{a}}d_{\mathrm{p}}^2) & \text{(from "Poisson Eq. 2nd Int.")} \\ d_{\mathrm{n}}^2 = \frac{2\epsilon\epsilon_0\Delta\phi}{2\epsilon\epsilon_0(N_{\mathrm{a}}+N_{\mathrm{d}})}\frac{N_{\mathrm{a}}}{N_{\mathrm{d}}} & \text{(solved for } d_{\mathrm{n}}) \\ d_{\mathrm{p}}^2 = \frac{2\epsilon\epsilon_0\Delta\phi}{e_0(N_{\mathrm{a}}+N_{\mathrm{d}})}\frac{N_{\mathrm{d}}}{N_{\mathrm{a}}} & \text{(solved for } d_{\mathrm{p}}) \\ d_{\mathrm{pn}} = d_{\mathrm{n}} + d_{\mathrm{p}} \text{ and some algebra leads to...} \\ d_{\mathrm{pn}} = d_{\mathrm{n}} + d_{\mathrm{p}} = \sqrt{\frac{2\epsilon\epsilon_0\Delta\phi}{e_0}\frac{N_{\mathrm{a}}+N_{\mathrm{d}}}{N_{\mathrm{a}}N_{\mathrm{d}}}} & \text{(DR width)} \end{array}$$

p-n Junction with Voltage Biasing

Biasing is the application of an external bias voltage $V_{\rm b}$ across the p-n junction

Convention: $V_{\rm b}$ is positive if its application raises the potential of the p-type side relative to the n-type side.

Biasing with positive $V_{\rm b}$ is called forward biasing

Biasing with negative $V_{\rm b}$ is called reverse biasing

Let $\Delta \phi_0$ denote p-n junction potential without biasing

Let $d_{\rm pn}^{(0)}$ denote p-n junction width without biasing

$$\Delta \phi = \Delta \phi^{(0)} - V_{\rm b} \qquad \text{(with biasing)}$$
Let $C = \sqrt{2\epsilon\epsilon_0} \frac{N_{\rm a} + N_{\rm d}}{N_{\rm a} + N_{\rm d}} \qquad \text{(for shorthand)}$

Let
$$C \equiv \sqrt{\frac{2\epsilon\epsilon_0}{e_0} \frac{N_a + N_d}{N_a N_d}}$$
 (for shorthand)

Let
$$d_{\rm pn}$$
 denote p-in function within without biasing
$$\Delta\phi = \Delta\phi^{(0)} - V_{\rm b} \qquad \qquad \text{(with biasing)}$$
 Let $C \equiv \sqrt{\frac{2\epsilon\epsilon_0}{\epsilon_0} \frac{N_{\rm a} + N_{\rm d}}{N_{\rm a} N_{\rm d}}} \qquad \qquad \text{(for shorthand)}$
$$d_{\rm pn}^{(0)} = \sqrt{C\Delta\phi_0} \qquad \qquad \text{(from "Depletion Region Width")}$$

$$d_{\rm pn} = \sqrt{C\Delta\phi} \qquad \qquad \text{(generalized to include biasing)}$$

$$= \sqrt{C(\Delta\phi_0 - V_{\rm b})}$$

$$d_{\rm pn} = d_{\rm pn}^{(0)} \sqrt{1 - \frac{V_{\rm b}}{\Delta\phi_0}}$$

(continuity at d_n) p-n Junction's Equilibrium I(V) Characteristic

Goal: analyze dependence of electric current through junction on voltage across junction in thermal equilibrium!

Notation

 $V_{\rm b}$ denotes external bias voltage applied to junction $\Delta \phi = \Delta \phi_0 - V_b$ is total potential difference across junction Let $J_{\rm e}$ denote number current density of electrons Let $J_{\rm h}$ denote number current density of holes Let $j_{\rm e}$ denote electric current density due to electrons Let j_h denote electric current density due to holes

$$j_{\rm e}=-e_0J_{\rm e}$$
 (electron current densities) $j_{\rm h}=+e_0J_{\rm h}$ (hole current densities) (int. ϕ') $J_{\rm h}=J_{\rm e}=0$ (when $V_{\rm b}=0$)

Interpretation: in thermal equilibrium there is no net movement of holes or electrons across the p-n junction in the absence of an external voltage.

Components of Hole Current

The current of holes across the junction has two components...

- 1. Generation current $J_{\rm h}^{\rm gen}$: minority-carrier holes flowing from n-type to p-type with the p-n electric field
- 2. Recombination current $J_{\rm h}^{\rm rec}$: majority-carrier holes thermally excited from p-type to n-type against the p-n electric field

Hole Generation Current

- Mechanism: holes generated by thermal excitation of VB electrons at or near n-type boundary are swept across junction by p-n electric field.
- $J_{\rm h}^{\rm gen}$ is independent of $\Delta \phi$.

Hole Recombination Current

- Mechanism: holes in p-type excited to sufficient thermal energies overcome p-n potential barrier and reach n-type, where the holes recombine with majority-carrier e^- .

•
$$J_{\rm h}^{\rm gen}$$
 falls with $\Delta \phi$ as $J_{\rm h}^{\rm gen} \propto e^{-e_0 \beta \Delta \phi_0}$
 $J_{\rm h}(V_{\rm b}) = J_{\rm h}^{\rm rec}(V_{\rm b}) - J_{\rm h}^{\rm gen}$ (total hole current) (assuming positive x from p-type to n-type)

Relating Hole Gen. and Recombination Currents

$$J_{\rm h}^{\rm rec}(V_{\rm b}) \propto e^{-\beta e_0 \Delta \phi} \qquad \qquad ({\rm review: \ hole \ gen. \ current})$$

$$= e^{-\beta e_0 (\Delta \phi_0 - V_{\rm b})} \qquad ({\rm using} \ \Delta \phi = \Delta \phi_0 - V_{\rm b})$$

$$\equiv J_0 e^{-\beta e_0 (\Delta \phi_0 - V_{\rm b})} \qquad ({\rm defining \ prop. \ constant} \ J_0)$$

$$J_{\rm h}^{\rm rec}(0) = J_0 e^{-\beta e_0 \Delta \phi_0} \qquad ({\rm when} \ V_{\rm b} = 0)$$

 $\begin{array}{l} \text{Review: } J_{\rm h} = 0 \text{ in thermal equilibrium when } V_{\rm b} = 0 \\ \Longrightarrow J_{\rm h}^{\rm gen} = J_{\rm h}^{\rm rec}(V_{\rm b})\big|_{V_{\rm b}=0} = J_0 e^{-\beta e_0 \Delta \phi_0} \\ \text{Divide } J_{\rm h}^{\rm rec}(V_{\rm b}) \text{ by } J_{\rm h}^{\rm gen} = J_0 e^{-\beta e_0 \Delta \phi_0} \text{ and rearrange to get...} \\ J_{\rm h}^{\rm rec}(V_{\rm b}) = J_{\rm h}^{\rm gen} e^{+\beta e_0 V_{\rm b}} \qquad \qquad \text{(hole recombination current)} \\ J_{\rm h}(V_{\rm b}) = J_{\rm h}^{\rm rec}(V_{\rm b}) - J_{\rm h}^{\rm gen} \qquad \qquad \text{(total hole current)} \\ = J_{\rm h}^{\rm gen}(e^{\beta e_0 V_{\rm b}} - 1) \qquad \qquad \text{(total hole current)} \\ \end{array}$

Components of Electron Current

The current of e^- across the junction has two components...

- 1. Generation current $J_{\rm e}^{\rm gen}$: minority-carrier electrons flowing from p-type to n-type with the p-n electric field.
- 2. Recombination current $J_{\rm e}^{\rm rec}$: majority-carrier electrons flowing from n-type to p-type with the p-n electric field.

Electron Generation Current

- Mechanism: electrons drifting to edge p-type boundary are swept across junction by p-n electric field.
- $J_{\rm e}^{\rm gen}$ is independent of $\Delta \phi$

Electron Recombination Current

- Mechanism: e^- in n-type excited to sufficient thermal energies overcome p-n potential barrier and reach p-type
- $J_{\rm e}^{\rm rec}$ falls with $\Delta\phi$ as $J_{\rm e}^{\rm gen}\propto e^{-e_0\beta\Delta\phi}$

$$J_{\rm e}(V_{\rm b}) = J_{\rm e}^{\rm gen} - J_{\rm e}^{\rm rec}(V_{\rm b})$$
 (total electron current)

Relating Electron Gen. and Recombination Currents $J_{\rm e}^{\rm rec}(V_{\rm b}) \propto e^{-\beta e_0 \Delta \phi}$ (review: electron gen. current)

$$= e^{-\beta e_0(\Delta\phi_0 - V_b)} \qquad \text{(using } \Delta\phi = \Delta\phi_0 - V_b)$$

$$J_e^{\text{rec}}(V_b) \equiv J_0 e^{-\beta e_0(\Delta\phi_0 - V_b)} \qquad \text{(defining prop. constant)}$$

$$J_e^{\text{rec}}(0) = J_0 e^{-\beta e_0\Delta\phi_0} \qquad \text{(when } V_b = 0)$$

Review:
$$J_{\rm e} = 0$$
 in thermal equilibrium when $V_{\rm b} = 0$
 $I_{\rm b} = I_{\rm c} =$

$$\implies J_{\rm e}^{\rm gen} = J_{\rm e}^{\rm rec}(V_{\rm b})\big|_{V_{\rm b}=0} = J_0 e^{-\beta e_0 \Delta \phi_0}$$
 Divide $J_{\rm e}^{\rm rec}(V_{\rm b})$ by $J_{\rm e}^{\rm en} = J_0 e^{-\beta e_0 \Delta \phi_0}$ and rearrange to get... $J_{\rm e}^{\rm rec}(V_{\rm b}) = J_{\rm e}^{\rm gen} e^{+\beta e_0 V_{\rm b}}$ (electron recombination current) $J_{\rm e}(V_{\rm b}) = J_{\rm e}^{\rm gen} - J_{\rm e}^{\rm rec}(V_{\rm b})$ (total electron current) $= -J_{\rm e}^{\rm gen}(e^{\beta e_0 V_{\rm b}} - 1)$ (total electron current)

Total Electric Current Across Junction

$$\begin{split} j_{\mathrm{h}} &= +e_0 J_{\mathrm{h}} \\ &= e_0 J_{\mathrm{h}}^{\mathrm{gen}} (e^{\beta e_0 V_{\mathrm{b}}} - 1) \\ j_{\mathrm{e}} &= -e_0 J_{\mathrm{e}} \\ &= e_0 J_{\mathrm{e}}^{\mathrm{gen}} (e^{\beta e_0 V_{\mathrm{b}}} - 1) \\ j_{\mathrm{tot}} &= j_{\mathrm{e}} + j_{\mathrm{h}} \\ &= e_0 \left(J_{\mathrm{h}}^{\mathrm{gen}} + J_{\mathrm{e}}^{\mathrm{gen}} \right) \cdot \left(e^{\beta e_0 V_{\mathrm{b}}} - 1 \right) \end{split}$$
 (total electric current)

Lattice Oscillations

Motivation: in practice, the ions forming a crystal are not rigidly fixed, but may oscillate about their equilibrium positions.

Classical Theory of Lattice Oscillations

General idea: model oscillating crystal lattice as a system of harmonic oscillators using classical mechanics.

One-Dimensional, Monoatomic Lattice

Consider a one-dimensional monoatomic lattice with lattice constant a formed of N ions with mass M

Notation for Ion Position

 $R_n^{(0)} = na, \ n \in \mathbb{Z}$ (equilibrium position of n-th ion) Let u_n denote displacement from equilibrium of ion at R = na $R_n(t) = R_n^{(0)} + u_n(t)$ (instantaneous position of n-th ion) $\langle u_n(t) \rangle = 0$ (average position is equilibrium position) $\implies \langle R_n(t) \rangle = R_n^{(0)}$ (average position is equilibrium)

Equations of Motion

Assume ions interact only with their nearest neighbors! Plan: expand lattice's potential energy U to second order in ion displacement u_n from equilibrium position.

- Choose global potential level so equilibrium pot. is zero
- First-order term vanishes, since $\frac{\partial U}{\partial x} = 0$ in equilibrium
- Model second-order term with a harmonic potential of the form $U_n = \frac{K}{2}(u_n u_{n+1})^2$

$$U = \frac{K}{2} \sum_{n} (u_n - u_{n+1})^2 + \mathcal{O}(u_n^3) \quad \text{(lattice potential energy)}$$

$$F_n = -\frac{\partial U}{\partial u_n} \qquad \text{(force on } n\text{-th ion)}$$

$$= -K(u_n - u_{n+1}) + K(u_{n-1} - u_n) \quad \text{(from above } U)$$

$$= -K(2u_n - u_{n+1} - u_{n-1}) \quad \text{(simplified)}$$

$$M\ddot{u}_n = -K(2u_n - u_{n+1} - u_{n-1}) \quad \text{(Newton's law for } n\text{-th ion)}$$

Interpretation: the equation of motion is the same as for a chain of point masses M connected by identical ideal springs of spring constant K.

Solution and Dispersion Relation

$$M\ddot{u}_n = -K(2u_n - u_{n+1} - u_{n-1})$$
 (Newton's law for n -th ion) $u_n(t) = u_0 e^{i(kna - \omega t)}$ (ansatz for solutions) Substitute ansatz into Newton's law and to get...

Substitute ansatz into Newton's law and to get...
$$-M\omega^2 u_0 e^{i(\omega t - kna)} = -K u_0 e^{i(kna - \omega t)} \left(2 - e^{ika} - e^{-ika}\right)$$
$$M\omega^2 = 2K \left(1 - \cos ka\right) \qquad \text{(simplifying)}$$
$$= 4K \sin^2 \frac{ka}{2} \qquad \text{(using } 1 - \cos x = 2\sin^2 \frac{x}{2}\text{)}$$
$$\omega = 2\sqrt{\frac{K}{M}} \left|\sin \frac{ka}{2}\right| \qquad \text{(dispersion relation)}$$

Boundary Conditions

Assume periodic boundary conditions of the form $u_{N+1} = u_1$ Rationale: this analysis considers only bulk crystal properties, so if N is large (and thus surface effects are immaterial) we may choose analytically convenient periodic BC.

$$\begin{array}{ll} u_{N+1} \equiv u_1 & \text{(assume periodic BC)} \\ u_n = u_0 e^{i(kna - \omega t)} & \text{(review: displacement of n-th ion)} \\ \Longrightarrow e^{ik(N+1)a} \equiv e^{ika} & \text{(using $u_{N+1} \equiv u_1$)} \\ \Longrightarrow e^{ikNa} = 1 & \text{(simplifying)} \\ \Longrightarrow kNa = 2\pi m, \ m \in \mathbb{Z} \\ \Longrightarrow k = \frac{2\pi}{Na} m \end{array}$$

Result: PBC require that k is discretized into N values Convention: choose m such that...

$$m \in \begin{cases} -\frac{N}{2}, \dots, \frac{N}{2} & N \text{ even} \\ -\frac{N-1}{2}, \dots, \frac{N+1}{2} & N \text{ odd} \end{cases}$$
$$\implies k \in \left(-\frac{\pi}{a}, \frac{\pi}{a}\right] \qquad (k \text{ is restriced to first BZ})$$

Analyzing Solution

$$u_n(t) = u_0 e^{i(kna - \omega t)}$$
 (review: ion displacement)
 $\omega(k) = 2\sqrt{\frac{K}{M}} \left| \sin \frac{ka}{2} \right|$ (review: dispersion relation)

Special case:
$$k=0$$

$$\omega(0)=0 \qquad \qquad \text{(when } k=0\text{)}$$

 $u_n(t)=u_0$ (when k=0) Interpretation: $u_n(t)=u_0$ for all n represents a translation of the entire lattice.

Special case: $k = \pi/a$

$$\omega(\pi/a) = 2\sqrt{\frac{K}{M}} \qquad \text{(when } k = \pi/2\text{)}$$

$$u_n = u_0 e^{i\pi n} e^{-i\sqrt{\frac{K}{M}}t} \qquad \text{(when } k = \pi/2\text{)}$$

$$= u_0(-1)^n e^{-i\sqrt{\frac{K}{M}}t} \qquad (\text{when } k = \pi/2)$$

Interpretation: this solution represents neighboring ions compressing/expanding in phase with equal amplitude.

Analyzing Dispersion Relation

$$\omega(k) = 2\sqrt{\frac{K}{M}} \left| \sin \frac{ka}{2} \right|$$
 (review: dispersion relation)
$$\approx \sqrt{\frac{K}{M}} ka$$
 (for $ka \ll 1$)
$$c = \frac{\omega}{k}$$
 (phase velocity)
$$\approx \sqrt{\frac{K}{M}} a$$
 (for $ka \ll 1$)

$$v_{\rm g} = \frac{\partial \omega}{\partial k} = a\sqrt{\frac{K}{M}}\cos\left(\frac{ka}{2}\right)$$

Interpretation: group velocity is the velocity at which a local disturbance, described by a wave packet, would propagate through the lattice chain

 $\psi_k(n) = \sum_k A(k) u_0 e^{i(kna - \omega(k)t)}$ (wave packet ansatz) A(k) is an amplitude function used to center wave packet about a given k

(disturbances at $k = \frac{\pi}{a}$ cause standing waves) $v_{\rm g}(\pi/a)=0$

1D Lattice with a Diatomic Basis

Consider a one-dimensional lattice of lattice constant a with two ions per primitive cell, one with mass M at the lattice site and one with mass m a distance d form the lattice site.

Notation

$$R_{n_j}^{(0)} = na + d_j, \ n \in \mathbb{Z}$$
 (equilibrium positions of ions)
$$d_j = \begin{cases} 0 & \text{for ion } M \\ d & \text{for ion } m \end{cases}$$
 (two-ion basis)

 u_n is displacement from equilibrium of ion M v_n is displacement from equilibrium of ion m

Equations of Motion

Assumptions:

(i) ions interact only with their nearest neighbors

(i) ions interact only with their nearest neighbors

(ii) all interactions are modeled by same spring constant
$$K$$

$$U = \frac{K}{2} \sum_{n} \left[(u_{n} - v_{n})^{2} + (v_{n} - u_{n+1})^{2} \right] \qquad \text{(lattice potential)}$$

$$F_{u_{n}} = -\frac{\partial U}{\partial u_{n}} \qquad \qquad \text{(force on } M \text{ ions)}$$

$$= -K(u_{n} - v_{n}) - K(u_{n} - v_{n-1})$$

$$= -K(2u_{n} - v_{n} - v_{n-1})$$

$$F_{v_{n}} = -\frac{\partial U}{\partial v_{n}} \qquad \qquad \text{(force on } m \text{ ions)}$$

$$= K(u_{n} - v_{n}) + K(u_{n+1} - v_{n})$$

$$= -K(2v_{n} - u_{n} - u_{n+1})$$

$$M\ddot{u}_{n} = -K(2u_{n} - v_{n} - v_{n-1}) \qquad \text{(Newton's law for } u_{n} \text{ ion)}$$

$$M\ddot{v}_{n} = -K(2v_{n} - u_{n} - u_{n+1}) \qquad \text{(Newton's law for } v_{n} \text{ ion)}$$

Solution and Dispersion Relation

$$M\ddot{u}_n = -K(2u_n - v_n - v_{n-1})$$
 (Newton's law for u_n ion)
 $m\ddot{v}_n = -K(2v_n - u_n - u_{n+1})$ (Newton's law for v_n ion)
 $u_n(t) = u_0 e^{i(kna - \omega t)}$ (ansatz for solutions)
 $v_n(t) = v_0 e^{i(kna - \omega t)}$ (ansatz for solutions)

Substitute ansatzes into equations of motion to get...

$$M\omega^{2}u_{0} = K(2u_{0} - v_{0} - v_{0}e^{-ika})$$

$$m\omega^{2}v_{0} = K(2v_{0} - u_{0} - u_{0}e^{+ika})$$

Write the homogeneous system of eqs. in matrix form to get... $\begin{pmatrix} M\omega^2 - 2K & K(1 + e^{-ika}) \\ K(1 + e^{+ika}) & m\omega^2 - 2K \end{pmatrix} \begin{pmatrix} u_0 \\ v_0 \end{pmatrix} = \mathbf{0}$ (matrix form)

For a nontrivial solution for u_0 and v_0 , require...

$$0 \equiv \det \begin{pmatrix} M\omega^2 - 2K & K(1 + e^{-ika}), \text{ requirement of } a_0 & \text{ and } a_0, \text{ requirement of } a_0 & \text{ and } a_0, \text{ requirement of } a_0 & \text{ and } a_0, \text{ requirement of } a_0, \text{ requireme$$

Apply the quadratic formula to get the dispersion relation...

$$\omega_{\pm}^{2} = K \left(\frac{1}{m} + \frac{1}{M} \pm \sqrt{\left(\frac{1}{m} + \frac{1}{M} \right)^{2} - \frac{4}{mM} \sin^{2} \frac{ka}{2}} \right)$$
$$= K \frac{m+M}{mM} \left[1 \pm \sqrt{1 - \frac{4mM}{m+M} \sin^{2} \frac{ka}{2}} \right]$$

Dispersion Relation: Acoustic Branch as $k \to 0$

First consider the acoustic branch ω_{-} as $k \to 0$

$$\begin{split} \omega_-^2 &= K \frac{m+M}{mM} \left[1 - \sqrt{1 - \frac{4mM}{m+M} \sin^2 \frac{ka}{2}} \right] \qquad \text{(in general)} \\ &\to K \frac{m+M}{mM} \left[1 - \left(1 - \frac{2mM}{(m+M)^2} \sin^2 \frac{ka}{2} \right) \right] \left(\sqrt{1-x} \approx 1 - \frac{x}{2} \right) \\ &= \frac{2K}{m+M} \sin^2 \frac{ka}{2} \\ \omega_- &= + \sqrt{\frac{2K}{m+M}} \sin \frac{ka}{2} \qquad \text{(take + sqrt. on physical grounds)} \end{split}$$

$$\approx \sqrt{\frac{K}{2(m+M)}} ka \qquad \text{(using sin } x = x + \mathcal{O}(x^3))$$

$$c_- = \frac{\omega_-}{k} = \sqrt{\frac{K}{2(m+M)}} a \qquad \text{(constant phase velocity as } k \to 0)$$

Motion: in a given primitive cell, m and M oscillate in phase, and the motion of all cells is identical.

Dispersion Relation: Optical Branch as $k \to 0$

Next consider the optical branch ω_+ as $k \to 0$

$$\omega_{+}^{2} = K \frac{m+M}{mM} \left[1 + \sqrt{1 - \frac{4mM}{m+M} \sin^{2} \frac{ka}{2}} \right]$$
 (in general)

$$\rightarrow 2K \frac{m+M}{mM}$$
 (as $k \rightarrow 0$)

$$\omega_{+} = \sqrt{2K \frac{m+M}{mM}}$$

Motion: in a given primitive cell, m and M ions oscillate in anti-phase, and the motion of all cells is identical.

Dispersion Relation: Limit as $k \rightarrow 1$

$$\omega_{\pm}^{2} = K \left[\frac{m+M}{mM} \pm \sqrt{\left(\frac{1}{M} + \frac{1}{m}\right)^{2} - \frac{4}{mM} \sin^{2} \frac{ka}{2}} \right]$$
 (in general)
$$\rightarrow K \left[\frac{m+M}{mM} \pm \sqrt{\left(\frac{1}{M} + \frac{1}{m}\right)^{2} - \frac{4}{mM}} \right]$$
 (as $k \to \frac{\pi}{a}$)
$$= K \left[\frac{m+M}{mM} \pm \sqrt{\left(\frac{1}{m} - \frac{1}{M}\right)^{2}} \right]$$
 (assuming $M > m$)
$$= \begin{cases} \frac{2K}{m} & \text{for } \omega_{+} \\ \frac{2K}{M} & \text{for } \omega_{-} \end{cases}$$

Motion: for $\omega_+ = \sqrt{\frac{2K}{m}}$, the M ions are at rest and m ions oscillate in anti-phase pairs across neighboring cells.

Motion: for $\omega_{-} = \sqrt{\frac{2K}{M}}$, the m ions are at rest and M ions oscillate in anti-phase pairs across neighboring cells.

Quantum Theory of Lattice Oscillations

Goal: replace the above classical discussion of lattice oscillations to a quantum-mechanical treatment.

One-Dimensional, Monoatomic Lattice

Consider a one-dimensional monoatomic lattice of N ions of mass M and lattice constant a, indexed by $n \in \mathbb{Z}$. Consider only interactions between nearest-neighbor ions Let K denote the harmonic interaction spring constant Let u and p denote position and momentum operators

General Considerations

$$H = \sum_{n} \frac{p_{n}^{2}}{2M} + \frac{K}{2}(u_{n} - u_{n+1})^{2}$$
 (lattice Hamiltonian)
Assume periodic boundary conditions of the form...
$$u_{N+1} = u_{1}$$
 (assume periodic BC)

$$u_{N+1} = u_1$$
 (assume periodic BC)
 $p_{N+1} = p_1$ (assume periodic BC)

Fourier Expansions of Position and Momentum

Plan: expand operators as Fourier series of the form...
$$u_n = \frac{1}{\sqrt{N}} \sum_k Q_k e^{ikna} \qquad \text{(Fourier expansion of } u_n\text{)}$$

$$Q_k = \frac{1}{\sqrt{N}} \sum_n u_n e^{-ikna} \qquad \text{(Fourier coefficients for } u_n\text{)}$$

$$p_n = \frac{1}{\sqrt{N}} \sum_k P_k e^{ikna} \qquad \text{(Fourier expansion of } p_n\text{)}$$

$P_k = \frac{1}{\sqrt{N}} \sum_n p_n e^{-ikna}$	(Fourier coeffi	cients for p_n)
$k = \frac{2\pi}{Na}m$ where $m = 0, \pm 1, \dots,$	$\pm \left(\frac{N}{2}-1\right), \frac{N}{2}$	$({\rm from\ BPC})$

Commutation Relations

 $[u_n,p_m] = i\hbar\delta_{nm} \quad \text{(review: canonical cummutation relation)}$ Interpretation: operators associated with different ions commute Goal: use $[u_n,p_m] = i\hbar\delta_{nm}$ to find show $[Q_k,P_{k'}] = i\hbar\delta_{kk'}$. $[Q_k,P_{k'}] = \frac{1}{N} \sum_{n,n'} [u_n,p_{n'}] e^{i(k'n'-kn)a} \quad \text{(from above } u_n,p_n)$ $= \frac{i\hbar}{N} \sum_{n,n'} \delta_{nn'} e^{i(k'n'-kn)a} \quad \text{(using } [u_n,p_{n'}] = i\hbar\delta_{nn'})$ $= \frac{i\hbar}{N} \sum_{n} e^{i(k'-k)na} \quad \text{(using Kronecker delta } \delta_{nn'})$ $= \frac{i\hbar}{N} \sum_{n=0}^{N-1} e^{i\frac{2\pi}{N}} \ell^n \quad \text{(letting } \ell \equiv m'-m)$ $= \frac{i\hbar}{N} \sum_{n=0}^{1-e^{2\pi i\ell}} e^{i\frac{2\pi}{N}\ell n} \quad \text{(letting } \ell \equiv m'-m)$ $= \frac{i\hbar}{N} \frac{1-e^{2\pi i\ell}}{1-e^{i\frac{2\pi}{N}\ell}} \quad \text{(summing geometric series)}$ $= \frac{i\hbar}{N} \begin{cases} N \quad \ell = 0 \\ 0 \quad \ell \in \mathbb{Z} \setminus \{0\} \\ = i\hbar\delta_{\ell,0} = i\hbar\delta_{m,m'} = i\hbar\delta_{k,k'} \end{cases}$ (result: commutator $[Q_k, P_{k'}]$)

$$\begin{aligned} & \mathbf{Hamiltonian \ in \ Terms \ of} \ P_k \ \ \mathbf{and} \ Q_k \\ & H = \sum_n \frac{p_n^2}{2M} + \frac{K}{2}(u_n - u_{n+1})^2 \qquad \text{(in terms of } u_n \ \text{and } p_n) \\ & \frac{1}{N} \sum_n e^{i(k'-k)na} = \delta_{k,k'} \qquad \text{(identity from above for reference)} \\ & H_{\mathrm{kin}} = \sum_n \frac{p_n^2}{2M} = \frac{1}{2MN} \sum_{n,k,k'} P_k P_{k'} e^{i(k+k')na} \qquad \text{(kinetic term)} \\ & = \frac{1}{2M} \sum_{k,k'} P_k P_{k'} \delta_{k,-k'} \qquad \text{(see identity above)} \\ & = \frac{1}{2M} \sum_{k,k'} P_k P_{-k} \qquad \text{(using Kronecker delta } \delta_{k,-k'}) \\ & H_{\mathrm{pot}} = \sum_{k} \frac{K}{2} (u_n - u_{n+1})^2 \qquad \text{(potential term)} \\ & = \frac{K}{2N} \sum_{n,k,k'} Q_k Q_{k'} \left(e^{ikna} - e^{ik(n+1)a} \right) \left(e^{ik'na} - e^{ik'(n+1)a} \right) \\ & = \frac{K}{2N} \sum_{n,k,k'} Q_k Q_{k'} \left(1 - e^{ika} \right) \left(1 - e^{ik'a} \right) e^{i(k+k')na} \\ & = \frac{K}{2} \sum_{k,k'} Q_k Q_{k'} \left(1 - e^{ika} \right) \left(1 - e^{ik'a} \right) \delta_{k,-k'} \text{ (identify above)} \\ & = \frac{K}{2} \sum_{k,k'} Q_k Q_{-k} \left(1 - e^{ika} \right) \left(1 - e^{-ika} \right) \qquad \text{(using } \delta_{k,-k'}) \\ & = \frac{K}{2} \sum_{k} Q_k Q_{-k} \left(1 - e^{ika} \right) \left(1 - e^{-ika} \right) \qquad \text{(using } \delta_{k,-k'}) \\ & = \frac{K}{2} \sum_{k} Q_k Q_{-k} \left(1 - \cos ka \right) \qquad \text{(exponential to sinusoid)} \\ & = K \sum_{k} Q_k Q_{-k} \left(1 - \cos ka \right) \qquad \text{(simplifying)} \end{aligned}$$
 Let $K(1 - \cos ka) \equiv \frac{1}{2} M \omega_k^2 \qquad \text{(defining frequency } \omega_k)$

$$\begin{array}{ll} \text{Let } K(1-\cos ka) \equiv \frac{1}{2}M\omega_k^2 & \text{(defining frequency }\omega_k) \\ \omega_k = \sqrt{\frac{2K}{M}(1-\cos ka)} & \text{(solving for }\omega_k) \\ = \sqrt{\frac{2K}{M}} \cdot 2\sin^2\frac{ka}{2} & \text{(using }1-\cos x=2\sin^2\frac{x}{2}) \\ = 2\sqrt{\frac{K}{M}}|\sin\frac{ka}{2}| & \text{(simplifying)} \\ H_{\text{pot}} = \frac{M}{2}\sum\omega_k^2Q_kQ_{-k} & \text{(in terms of }\omega_k) \\ \end{array}$$

Combine kinetic and potential Hamiltonian terms to get...

$$\begin{split} H &= H_{\rm kin} + H_{\rm pot} & \text{ (Hamiltonian in terms of } P_k \text{ and } Q_k) \\ &= \sum_k \left[\frac{P_k P_{-k}}{2M} + K(1 - \cos ka) Q_k Q_{-k} \right] \\ &= \sum_k \left(\frac{P_k P_{-k}}{2M} + \frac{M\omega_k^2}{2} Q_k Q_{-k} \right) & \text{ (in terms of } \omega_k) \end{split}$$

Review: Miscellaneous Quantum Mechanics

The time evolution of an operator O in a system governed by the Hamiltonian H is...

$$i\hbar \frac{\mathrm{d}O}{\mathrm{d}t} = [Q, H]$$
 (time evolution of O)
 $[A, BC] = B[A, C] + [A, B]C$ (commutator property)

Review: Quantum Harmonic Oscilltor

Consider a QHO of mass m and frequency ω .

$$a = \sqrt{\frac{m\omega}{2\hbar}} \left(x + \frac{i}{m\omega} p \right) \qquad \text{(lowering operator)}$$

$$a^{\dagger} = \sqrt{\frac{m\omega}{2\hbar}} \left(x - \frac{i}{m\omega} p \right) \qquad \text{(raising operator)}$$

$$x = \sqrt{\frac{\hbar}{2m\omega}} \left(a^{\dagger} + a \right) \qquad (x \text{ in terms of } a \text{ and } a^{\dagger})$$

$$p = i\sqrt{\frac{\hbar m\omega}{2}} \left(a^{\dagger} - a \right) \qquad (p \text{ in terms of } a \text{ and } a^{\dagger})$$

$$H_{\text{QHO}} = \frac{p^2}{2m} + \frac{m\omega^2}{2} x^2 \qquad \text{(QHO's Hamiltonian)}$$

$$= \hbar\omega \left(\frac{1}{2} + a^{\dagger} a \right) \qquad \text{(in terms of } a \text{ and } a^{\dagger})$$

$$\left[a, a^{\dagger} \right] = 1 \qquad \text{(commutation relation)}$$

$$\text{Let } |n\rangle \text{ where } n = 0, 1, \dots \text{ denote } n\text{-th QHO eigenstate}$$

$$a \mid n\rangle = \sqrt{n} \mid n - 1\rangle \qquad \text{(action of lowering operator)}$$

$$a^{\dagger} \mid n\rangle = \sqrt{n+1} \mid n+1\rangle \qquad \text{(action of raising operator)}$$

$$a^{\dagger} a \mid n\rangle = n \mid n\rangle \qquad (a^{\dagger} a \text{ is "counting" operator)}$$

Hamiltonian as Sum of Uncoupled Oscillators

Goal: show above Hamiltonian is a sum of Hamiltonians of uncoupled (independent) harmonic oscillators. Plan:

- 1. find time evolutions of \dot{Q}_k and \ddot{Q}_k and match to harmonic oscillator form $\ddot{Q} + \omega^2 Q = 0$
- 2. write Hamiltonian in terms of ladder operators a^+ and a and match to QHO Hamiltonian $H = \hbar\omega(\frac{1}{2} + a^{\dagger}a)$

First Time Evolution of Q_k

$$\begin{split} i\hbar Q_k &= [Q_k, H] & \text{(by definition)} \\ &= [Q_k, H_{\text{kin}} + H_{\text{pot}}] & \text{(decomposing Hamiltonian)} \\ &= [Q_k, H_{\text{kin}}] & (Q_k \text{ commutes with all } Q_{k'} \text{ in } H_{\text{pot}}) \\ &= \left[Q_k, \frac{1}{2M} \sum_{k'} P_{k'} P_{-k'}\right] & \text{(from expression for } H_{\text{kin}}) \\ &= \frac{1}{2M} \sum_{k'} P_{k'} [Q_k, P_{-k'}] + [Q_k, P_{k'}] P_{-k'} & \text{(comm. prop.)} \\ &= \frac{i\hbar}{2M} \sum_{k'} P_{k'} \delta_{k, -k'} + \delta_{k, k'} P_{-k'} & ([Q_k, P_{k'}] = i\hbar \delta_{kk'}) \\ &= 2 \frac{i\hbar}{2M} P_{-k} & \text{(using Kronecker deltas)} \\ \Longrightarrow \dot{Q}_k &= \frac{1}{M} P_{-k} & \text{(result: time evolution of } Q_k) \end{split}$$

Second Time Evolution of Q_k

$$\begin{split} i\hbar \ddot{Q}_k &= \left[\dot{Q}_k, H\right] & \text{(by definition)} \\ &= \frac{1}{M} \left[P_{-k}, H_{\text{pot}} + H_{\text{kin}}\right] & \text{(from above } \dot{Q}_k) \\ &= \frac{1}{M} \left[P_{-k}, H_{\text{pot}}\right] & \left(P_{-k} \text{ commutes with all } P_k \text{ in } H_{\text{kin}}\right) \\ &= \frac{1}{M} \left[P_{-k}, \frac{M}{2} \sum_{k'} \omega_{k'}^2 Q_{k'} Q_{-k'}\right] & \text{(from above } H_{\text{pot}}) \\ &= \frac{1}{2} \sum_{k'} \omega_{k'}^2 \left(Q_{k'} \left[P_{-k}, Q_{-k'}\right] + \left[P_{-k}, Q_{k'}\right] Q_{-k}\right) \\ &= -\frac{i\hbar}{2} \sum_{k'} \omega_{k'}^2 \left(Q_{k'} \delta_{-k, -k'} + \delta_{-k, k'} Q_{-k'}\right) \\ &= -\frac{i\hbar}{2} \omega_{k}^2 \left(Q_k + Q_k\right) \\ &\Rightarrow \ddot{Q}_k = -\omega_k^2 Q_k & \text{(result: time evolution of } \dot{Q}_k\right) \\ \text{Rearrange to get...} \\ \ddot{Q}_k + \omega_k^2 Q_k = 0 & \text{(equation for harmonic oscillator)} \end{split}$$

Hamiltonian in Terms of Ladder Operators

$$H = \sum_{k} \left(\frac{P_{k}P_{-k}}{2M} + \frac{M\omega_{k}^{2}}{2} Q_{k} Q_{-k} \right)$$
 (review: lattice Ham.)

$$Q_{k} = \sqrt{\frac{\hbar}{2M\omega_{k}}} (a_{k} + a_{-k}^{\dagger})$$
 (quoted)

$$P_{k} = i\sqrt{\frac{\hbar M\omega_{k}}{2}} (a_{k}^{\dagger} - a_{-k})$$
 (quoted)

Justification: these definitions of Q_k and P_k preserve the commutation relation $[Q_k, P_{k'}] = i\hbar \delta_{k,k'}$ via $[a, a^{\dagger}] = 1$.

$$\begin{split} [Q_k,P_{k'}] &= \frac{i\hbar}{2} \left[(a_k + a_{-k}^{\dagger}), (a_{k'}^{\dagger} - a_{-k'}) \right] \quad \text{(proving com. rel.)} \\ &= \frac{i\hbar}{2} \left([a_k,a_{k'}^{\dagger}] - [a_k,a_{-k'}] + [a_{-k}^{\dagger},a_{k'}^{\dagger}] - [a_{-k}^{\dagger},a_{-k'}] \right) \\ &= \frac{i\hbar}{2} \left([a_k,a_{k'}^{\dagger}] - [a_{-k}^{\dagger},a_{-k'}] \right) \quad ([a,a] = [a^{\dagger},a^{\dagger}] = 0) \\ &= i\hbar \delta_{kk'} \quad \qquad \text{(using } [a_k,a_k^{\dagger}] = \delta_{kk'}) \end{split}$$

Substitute Q_k and P_k into lattice Hamiltonian to get...

$$H = \sum_{k} \left(\frac{P_{k} P_{-k}}{2M} + \frac{M \omega_{k}^{2}}{2} Q_{k} Q_{-k} \right)$$
 (review: lattice Ham.)

Internal Energy and Heat Capacity

 $= -\frac{1}{2M} \frac{\hbar M}{2} \sum \omega_k (a_k^{\dagger} - a_{-k}) (a_{-k}^{\dagger} - a_k)$

 $+\frac{M}{2}\frac{\tilde{h}}{2M}\sum_{k}\frac{\omega_{k}}{\omega_{k}}(a_{k}+a_{-k}^{\dagger})(a_{-k}+a_{k}^{\dagger})$

Goal: develop expressions for phonon contributions to a 3D lattice's internal energy and heat capacity

Review: Statistical Physics

Consider a system of volume V with discrete energy states $\{E_i\}$ $Z_{c} = \sum_{i} e^{-\beta E_{i}}$ (canonical partition function) $u = \frac{1}{VZ_{c}} \sum_{i} E_{i} e^{-\beta E_{i}}$ (system's specific internal energy) $f = \frac{1}{V} \ln Z_{c}$ $= \frac{1}{V} \ln \left(\sum_{i} e^{-\beta E_{i}} \right)$ $u = -\frac{\partial f}{\partial \beta}$ (defining the quantity f) (substituting in Z_c) (internal energy in terms of f) $c_{\rm V} = \frac{\partial u}{\partial T}$ (specific heat capacity)

Lattice's Internal Energy

Without derivation, a harmonic 3D lattice's total energy is... $E = \sum \left(n_{\mathbf{k}s} + \frac{1}{2} \right) \hbar \omega_s(\mathbf{k})$ (lattice energy)

Heuristic justification: A harmonic lattice's Hamiltonian may be decomposed into a sum of uncoupled quantum harmonic oscillators \implies the total lattice energy should equal the sum of the energies of the individual QHO.

$$Z_{c} = \sum_{i} e^{\beta E_{i}} = \prod_{\mathbf{k}s} \left[\sum_{n=0}^{\infty} e^{-\beta \hbar \omega_{s}(\mathbf{k}) \left(n + \frac{1}{2}\right)} \right] \text{ (lattice's part. func.)}$$

$$= \prod_{\mathbf{k}s} e^{-\beta \hbar \omega_{s}(\mathbf{k})/2} \left[\sum_{n=0}^{\infty} \left(e^{-\beta \hbar \omega_{s}(\mathbf{k})} \right)^{n} \right]$$

$$= \prod_{\mathbf{k}s} \frac{e^{-\beta \hbar \omega_{s}(\mathbf{k})/2}}{1 - e^{-\beta \hbar \omega_{s}(\mathbf{k})}} \qquad \text{(summing the geometric series)}$$

$$= \prod_{\mathbf{k}s} \frac{e^{-\beta \hbar \omega_{s}(\mathbf{k})/2}}{1 - e^{-\beta \hbar \omega_{s}(\mathbf{k})}} \qquad \text{(summing the geometric series)}$$

$$f = \frac{1}{V} \ln Z_{c} = \frac{1}{V} \ln \prod_{\mathbf{k}s} \frac{e^{-\beta \hbar \omega_{s}(\mathbf{k})/2}}{1 - e^{-\beta \hbar \omega_{s}(\mathbf{k})}} \qquad \text{(lattice's value of } f)$$

$$= \frac{1}{V} \sum_{\mathbf{k}s} \ln \frac{e^{-\beta \hbar \omega_{s}(\mathbf{k})/2}}{1 - e^{-\beta \hbar \omega_{s}(\mathbf{k})}} \qquad \text{(using } \ln ab = \ln a + \ln b)$$

$$= \frac{1}{V} \sum_{\mathbf{k}s} \ln \frac{e^{-\beta\hbar\omega_s(\mathbf{k})/2}}{1 - e^{-\beta\hbar\omega_s(\mathbf{k})}} \qquad \text{(using } \ln ab = \ln a + \ln b\text{)}$$

$$u = -\frac{\partial f}{\partial \beta} \qquad \text{(in general)}$$

$$=\frac{1}{V}\sum_{\boldsymbol{k}s}\left(\frac{1}{e^{\beta\hbar\omega_{s}(\boldsymbol{k})}-1}+\frac{1}{2}\right)\hbar\omega_{s}(\boldsymbol{k})\;(\text{lattice internal energy})$$

Average Normal Mode Excitation Number

$$u = \frac{1}{V} \sum_{\mathbf{k}s} \left(\frac{1}{e^{\beta \hbar \omega_s(\mathbf{k})} - 1} + \frac{1}{2} \right) \hbar \omega_s(\mathbf{k}) \quad \text{(review: internal energy)}$$

$$E = \sum_{\mathbf{k}s} \left(n_{\mathbf{k}s} + \frac{1}{2} \right) \hbar \omega_s(\mathbf{k}) \quad \text{(review: total energy)}$$

Recall u is (implicitly) the lattice's average internal energy Compare expressions for E and u to conclude...

 $n_s(\mathbf{k}) = \frac{1}{e^{\beta \hbar \omega_s(\mathbf{k})} - 1}$ (mean excitation number) Interpretation: $n_s(\mathbf{k})$ is the mean excitation number of the (\mathbf{k}, s) lattice normal mode at temperature $T = 1/k_{\rm B}T$.

Equivalently: $n_s(\mathbf{k})$ is the mean number of phonons with index (\mathbf{k}, s) present in the lattice at $T = 1/k_{\rm B}T$.

Note: $n_s(\mathbf{k})$ is the Bose-Einstein distribution function (with $\mu = 0$ \Longrightarrow phonons obey boson statistics!

Lattice's Specific Heat Capacity

$$u = \frac{1}{V} \sum_{\mathbf{k}s} \left(\frac{1}{e^{-\beta\hbar\omega_s(\mathbf{k})} - 1} + \frac{1}{2} \right) \hbar\omega_s(\mathbf{k})$$
 (review: internal energy)
$$c_V = \frac{\partial u}{\partial T} = \frac{1}{V} \frac{\partial}{\partial T} \sum_{\mathbf{k}s} \frac{\hbar\omega_s(\mathbf{k})}{e^{\beta\hbar\omega_s(\mathbf{k})} - 1}$$

Complication: the above general expression for specific heat cannot be evaluated analytically.

Solution: analyze $c_{\rm V}$ in limit cases or using approximations.

Phonon Specific Heat: High-Temperature Limit

Heuristically: as $T \to \infty$ every normal mode will be excited and quantization of modes grows negligible, so we expect a classical result independent of \hbar .

Consider a 3D lattice with N lattice sites and 3p branches $c_{\rm V} = \frac{1}{V} \frac{\partial}{\partial T} \sum_{\mathbf{k}_o} \frac{\hbar \omega_s(\mathbf{k})}{e^{\beta \hbar \omega_s(\mathbf{k})} - 1}$

Let
$$x \equiv \beta \hbar \omega_s(\mathbf{k}) \Longrightarrow x \ll 1$$
 for $T \to \infty$
 $\frac{1}{e^x - 1} \approx \frac{1}{1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots - 1} = \frac{1}{x} \frac{1}{1 + \frac{x}{2} + \frac{x^2}{6}}$ (for later use)
 $\approx \frac{1}{x} \left[1 - \left(\frac{x}{2} + \frac{x^2}{6} \right) + \left(\frac{x}{2} + \frac{x^2}{6} \right)^2 \right]$ $\left(\frac{1}{1 + y} \approx 1 - y + y^2 \right)$
 $= \frac{1}{x} \left[1 - \frac{x}{2} + \frac{x^2}{12} + \mathcal{O}(x^3) \right]$

Use the expansion with
$$c_{V}$$
 and $x = \beta\hbar\omega_{s}(\mathbf{k})$ to get...
$$c_{V} \approx \frac{1}{V} \frac{\partial}{\partial T} \sum_{\mathbf{k}_{s}} \frac{\hbar\omega_{s}(\mathbf{k})}{\hbar\omega_{s}(\mathbf{k})\beta} \left[1 - \frac{\hbar\omega_{s}(\mathbf{k})\beta}{2} + \frac{1}{12} \left(\beta\hbar\omega_{s}(\mathbf{k}) \right)^{2} \right]$$

$$= \frac{1}{V} \frac{\partial}{\partial T} \sum_{\mathbf{k}_{s}} k_{\mathrm{B}} T \left[1 - \frac{\hbar\omega_{s}(\mathbf{k})}{2k_{\mathrm{B}}T} + \frac{(\hbar\omega_{s}(\mathbf{k}))^{2}}{12(k_{\mathrm{B}}T)^{2}} \right] \qquad \text{(in terms of } T \text{)}$$

$$= \frac{1}{V} \frac{\partial}{\partial T} \sum_{\mathbf{k}_{s}} \left[k_{\mathrm{B}} T - \frac{\hbar\omega_{s}(\mathbf{k})}{2} + \frac{(\hbar\omega_{s}(\mathbf{k}))^{2}}{12k_{\mathrm{B}}T} \right] \qquad \text{(simplifying)}$$

$$= \frac{k_{\mathrm{B}}}{V} \sum_{\mathbf{k}_{s}} \left[1 - \frac{(\hbar\omega_{s}(\mathbf{k}))^{2}}{12(k_{\mathrm{B}}T)^{2}} \right] \qquad \text{(as } T \to \infty \text{)}$$

$$= \frac{k_{\mathrm{B}}}{V} \sum_{\mathbf{k}_{s}} 1 \qquad \qquad \text{(as } T \to \infty \text{)}$$

$$= \frac{k_{\mathrm{B}}}{V} 3pN \qquad \qquad (N \text{ values of } \mathbf{k} \text{ and } 3p \text{ branches)}$$

Let $n = \frac{3Np}{V}$ denote number density of ions in crystal to get... (high-temperature limit) $c_{\rm V} = 3nk_{\rm B}$ Interpretation: $c_{\rm V} = 3nk_{\rm B}$ is the law of Dulong and Petit

Phonon Specific Heat: Low-Temperature Limit

$$c_{\rm V} = \frac{1}{V} \frac{\partial}{\partial T} \sum_{\mathbf{k}s} \frac{\hbar \omega_s(\mathbf{k})}{e^{\beta \hbar \omega_s(\mathbf{k})} - 1} \qquad \text{(for review)}$$

$$\approx \frac{\partial}{\partial T} \sum_{\mathbf{k}s} \iiint_{\rm BZ} \frac{\hbar \omega_s(\mathbf{k})}{e^{\beta \hbar \omega_s(\mathbf{k})} - 1} \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} \quad \text{(approximating } \sum \text{ with } \int)$$

Idea: at low temperature $(k_{\rm B}T \ll \hbar\omega_s(\mathbf{k}))$ only low-frequency modes are excited. As a result...

- the contribution of acoustic modes far from k = 0 and optical modes (both high-frequency) to specific heat is negligible.
- \bullet we may take the integral over all k space instead of over only the first Brillioun zone.
- we may approximate $\omega_s(\mathbf{k})$ with a linear dispersion of the form...

(low-temperature approximation) $\omega_s(\mathbf{k}) \approx c_s(\mathbf{k})k$ Validity: the approx. holds as long as $k_{\rm B}T \ll \hbar \omega_s(\mathbf{k})$ for all

 $\omega_s(\mathbf{k})$ that are poorly approximated by $\omega_s(\mathbf{k}) \approx c_s(\hat{\mathbf{k}})k$.

$$c_{\rm V} \approx \frac{1}{8\pi^3} \frac{\partial}{\partial T} \sum_s \iiint \frac{\hbar c_s(\hat{\mathbf{k}}) k}{e^{\beta \hbar c_s(\hat{\mathbf{k}}) k} - 1} \, \mathrm{d}^3 \mathbf{k}$$
 (for low temperatures)

$$= \frac{1}{8\pi^3} \frac{\partial}{\partial T} \sum_{s} \iiint \frac{\hbar c_s(\hat{\mathbf{k}}) k}{e^{\beta \hbar c_s(\hat{\mathbf{k}}) k} - 1} k^2 \, \mathrm{d}k \, \mathrm{d}\Omega \quad \text{(to spherical coords.)}$$

Let
$$x \equiv \beta \hbar c_s(\hat{\mathbf{k}}) k$$
 (new variable)
 $c_{\rm V} = \frac{1}{8\pi^3} \frac{\partial}{\partial T} \sum \iint \frac{\mathrm{d}\Omega}{\beta^4 \hbar^3 c_s(\hat{\mathbf{k}})} \int_0^\infty \frac{x^3}{e^x - 1} \, \mathrm{d}x$ (in terms of x)

$$\int_0^\infty \frac{x^3}{e^x - 1} \, \mathrm{d}x = \frac{\pi^4}{15}$$
 (tabulated integral)
Let $\frac{1}{c^3} \equiv \frac{1}{3} \sum_s \iint \frac{\mathrm{d}\Omega}{4\pi c_s^3(\hat{\mathbf{k}})}$ (average speed over solid angle)

$$c_{V} = \frac{1}{8\pi^{3}} \frac{1}{\hbar^{3}} \frac{\partial}{\partial T} \frac{1}{\beta^{4}} \left(\frac{3 \cdot 4\pi}{c^{3}}\right) \cdot \frac{\pi^{4}}{15}$$
 (in terms of c and integral)

$$= \frac{\pi^{2}}{10} \frac{1}{(\hbar c)^{3}} \frac{\partial}{\partial T} (k_{B}T)^{4}$$
 (simplifying)

$$= \frac{2\pi^{2}}{5} k_{B} \left(\frac{k_{B}T}{\hbar c}\right)^{3}$$
 (**low-temperature limit**)

Primary result: $c_{\rm V} \propto T^3$ for at low temperatures

Debye Approximation

Goal: develop an approximate interpolation scheme connecting the low- and high-temperature limits of phonon $c_{\rm V}$.

General Considerations

Consider the dispersion of a 3D lattice with N lattice sites and a basis with p atoms per primitive cell.

(number of ions in the crystal) $N_{\rm ion} = pN$ The Debye approximation is to...

- Approximate the three acoustic branches with three identical linear branches of the form w = ck, ranging from $\mathbf{k} = \mathbf{0}$ to a *finite* value $k = k_{\rm D}$. $k_{\rm D}$ is the *Debye* wave vector and generally lies outside the first BZ.
- Neglect optical branches. Heuristic justification: the portions of linear branches beyond first BZ approximate the otherwise-neglected optical branches

Review: the Fermi wave vector $k_{\rm F}$ is defined as the smallest radius in k space enclosing all $N_{\rm e}$ occupied electron levels.

$$N_{\rm e} = 2 \cdot \frac{V_{\rm F}}{\Delta \mathbf{k}} = 2 \cdot \frac{4\pi k_{\rm F}^3}{3} \frac{V}{8\pi^3} \qquad \text{(factor 2 from } e^- \text{ spin)}$$

$$= \frac{k_{\rm F}^3}{6\pi^2} V \qquad \text{(Fermi wave vector for } e^-\text{)}$$

$$\implies k_{\rm F}^3 = 6\pi^2 \frac{N_{\rm e}}{V} = 6\pi^2 n_{\rm e} \qquad \text{($k_{\rm F}$ in terms of e^- density)}$$

Analogy: the Debye wave vector is defined as the smallest radius in \boldsymbol{k} space enclosing exactly N_{ion} wave vectors.

$$N_{\rm ion} = \frac{V_{\rm D}}{\Delta k} = \frac{4\pi k_{\rm D}^3}{3} \frac{V}{8\pi^3} \quad \text{(phonons are spin-less; no 2 factor)}$$

$$= \frac{k_{\rm D}^3}{6\pi^2} V \quad \text{(Debye wave vector for phonons)}$$

$$\implies k_{\rm D}^3 = 3\pi^2 \frac{N_{\rm ion}}{V} = 3\pi^2 n_{\rm ion} \quad (k_{\rm D} \text{ in terms of ion density)}$$

(average c over acoustic branches)

Debye Approximation: General Expression

Let $\frac{1}{c^3} \equiv \frac{1}{3} \sum_{s} \iint \frac{d\Omega}{4\pi c_s(\hat{\mathbf{k}})^3}$ $c_{\rm V} = \frac{1}{V} \frac{\partial}{\partial T} \sum_{s} \frac{\hbar \omega_s(\mathbf{k})}{e^{\beta \hbar \omega_s(\mathbf{k})} - 1}$ (in general) $\approx \frac{\partial}{\partial T} \sum_{k=1}^{\kappa_s} \iint_{BZ} \frac{\hbar \omega_s(\mathbf{k})}{e^{\beta \hbar \omega_s(\mathbf{k})} - 1} \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3} \quad \text{(approximating } \sum \text{ with } \int)$ $\approx 3 \cdot \frac{1}{8\pi^3} \frac{\partial}{\partial T} \iiint_{\mathrm{BZ}} \frac{\hbar c k}{e^{\beta \hbar \omega k} - 1} \, \mathrm{d}^3 \boldsymbol{k} \quad \text{(Debye: } \omega_s(\boldsymbol{k}) \to c k \ \forall \ 3 \ s)$ $\approx \frac{3}{8\pi^3} \frac{\partial}{\partial T} \iiint \frac{\hbar ck}{e^{\beta \hbar \omega k} - 1} d^3 \mathbf{k}$ (integrate over all k) $8\pi^{\circ} \frac{\partial T}{\partial I} \int_{0}^{B} \frac{\partial F}{\partial I} \int_{0}^{B} d\Omega \int_{0}^{A_{\text{CD}}} \frac{\hbar c k}{e^{\beta \hbar \omega k} - 1} k^{2} dk$ $= \frac{3 \cdot 4\pi}{8\pi^{3}} \frac{\partial}{\partial I} \int_{0}^{K_{\text{D}}} \frac{\hbar c k^{3}}{e^{\beta \hbar \omega k} - 1} dk$ $= \frac{3}{2\pi^{2}} \frac{(\hbar c)^{2}}{k_{\text{B}} I^{2}} \int_{0}^{K_{\text{D}}} \frac{k^{4} e^{\beta \hbar c k}}{(e^{\beta \hbar \omega k} - 1)^{2}} dk$ (to spherical coords.) (integrating over $d\Omega$) (differentiating) Let $x = \beta \hbar c k$ (new variable) $x_{\mathrm{D}} \equiv x(k_{\mathrm{D}}) = \frac{\hbar c}{k_{\mathrm{B}}T} k_{\mathrm{D}}$ (integration limit)

 $x_{\rm D} \equiv x(k_{\rm D}) = \frac{1}{k_{\rm B}T}k_{\rm D} \qquad \text{(integration limit)}$ $k_{\rm B}\Theta_{\rm D} = \hbar ck_{\rm D} \qquad \text{(definition of Debye temperature }\Theta_{\rm D}\text{)}$ $c_{\rm V} = \frac{3}{2\pi^2} \frac{k_{\rm B}(\hbar c)^2 (k_{\rm B}T)^5}{(k_{\rm B}T)^2 (\hbar c)^5} \int_0^{x_{\rm D}} \frac{x^4 e^x}{(e^x - 1)^2} \, \mathrm{d}x \qquad \text{(in terms of } x\text{)}$ $= \frac{3k_{\rm B}}{2\pi^2} \left(\frac{k_{\rm B}T}{\hbar c}\right)^3 \int_0^{x_{\rm D}} \frac{x^4 e^x}{(e^x - 1)^2} \, \mathrm{d}x \qquad \text{(simplifying)}$ Multiply above/below by $(k_{\rm B}\Theta_{\rm D})^3$ and use $k_{\rm D}^3 = 6\pi^2 n_{\rm ion}$ to get... $c_{\rm V} = 9k_{\rm B}n_{\rm ion} \left(\frac{T}{\Theta_{\rm D}}\right)^3 \int_0^{x_{\rm D}} \frac{x^4e^x}{(e^x-1)^2} \,\mathrm{d}x \quad \text{(Debye: general result)}$ $= \frac{3k_B}{2\pi^2} \left(\frac{k_{\rm B}T}{\hbar c}\right)^3 \int_0^{x_{\rm D}} \frac{x^4e^x}{(e^x-1)^2} \,\mathrm{d}x \quad \text{(alternate expression)}$

Problem: the expression is not analytically solvable

Resolution: observe limit cases of high and low temperature

Debye Approximation: Low-Temperature Limit

$$x_{\rm D} = \frac{\hbar c}{k_{\rm B}T} k_{\rm D} \qquad ({\rm for \ review})$$

$$\Longrightarrow x_{\rm D} \to \infty \text{ as } T \to 0$$

$$\int_0^{x_{\rm D}} \frac{x^4 e^x}{(e^x - 1)^2} \, \mathrm{d}x \to \int_0^{\infty} \frac{x^4 e^x}{(e^x - 1)^2} \, \mathrm{d}x = \frac{4\pi^4}{15} \qquad ({\rm tabulated \ integral})$$

$$c_{\rm V} = \frac{3k_B}{2\pi^2} \left(\frac{k_{\rm B}T}{\hbar c}\right)^3 \int_0^{x_{\rm D}} \frac{x^4 e^x}{(e^x - 1)^2} \, \mathrm{d}x \qquad ({\rm generally})$$

$$\to \frac{3k_B}{2\pi^2} \left(\frac{k_{\rm B}T}{\hbar c}\right)^3 \frac{4\pi^4}{15} \qquad ({\rm as } T \to 0)$$

$$= \frac{2\pi^2}{5} \left(\frac{k_{\rm B}T}{\hbar c}\right)^3 k_{\rm B} \qquad ({\rm Debye \ result: \ low-temp. \ limit})$$

$$= \frac{12\pi^4}{5} \left(\frac{T}{\Theta_{\rm D}}\right)^3 n_{\rm ion} k_{\rm B} \qquad ({\rm in \ terms \ of \ }\Theta_{\rm D})$$

Note: agrees with earlier result in "Low-Temp. Limit"

Debye Approximation: High-Temperature Limit

$$x_{\rm D} = \frac{\hbar c}{k_{\rm B}T} k_{\rm D} \qquad ({\rm for\ review})$$

$$x_{\rm D} \to 0 \text{ as } T \to \infty$$

$$x_{\rm D} = \Theta_{\rm D}/T \qquad ({\rm in\ general,\ for\ later\ use})$$

$$\int_0^{x_{\rm D}} \frac{x^4 e^x}{(e^x - 1)^2} \, {\rm d}x \to 0 \qquad ({\rm as\ } T \to \infty)$$
Plan: expand integral for small x to get...
$$\int_0^{x_{\rm D}} \frac{x^4 e^x}{(e^x - 1)^2} \, {\rm d}x = \int_0^{x_{\rm D}} \frac{x^4 e^x}{(e^x - 1)^2} \, {\rm d}x$$

 $\int_0^{x_{\rm D}} \frac{x^4 e^x}{(e^x - 1)^2} \approx \int_0^{x_{\rm D}} \frac{x^4 \cdot 1}{(1 + x - 1^2)} = \int_0^{x_{\rm D}} x^2 \, \mathrm{d}x$

$$= \frac{x_{\rm D}^3}{3} = \frac{1}{3} \left(\frac{\Theta_{\rm D}}{T}\right)^3 \qquad \text{(using } x_{\rm D} = \Theta_{\rm D}/T)$$

$$c_{\rm V} = 9k_{\rm B}n_{\rm ion} \left(\frac{T}{\Theta_{\rm D}}\right)^3 \int_0^{x_{\rm D}} \frac{x^4 e^x}{(e^x - 1)^2} \, \mathrm{d}x \qquad \text{(in general)}$$

$$\to 9k_{\rm B}n_{\rm ion} \left(\frac{T}{\Theta_{\rm D}}\right)^3 \frac{1}{3} \left(\frac{\Theta_{\rm D}}{T}\right)^3 \qquad \text{(as } T \to \infty)$$

 $=3n_{\rm ion}k_{\rm B}$ (Debye result: high-temp. limit)

Comparing Electron and Photon Specific Heats

Note: agrees with earlier result in "High-Temp. Limit"

Goal: determine the temperature at which the contribution of phonons to $c_{\rm V}$ surpasses the contribution of electrons.

of phonons to
$$c_{\rm V}$$
 surpasses the contribution of electrons. $c_{\rm V}^{\rm ph} = \frac{12\pi^4}{5} \left(\frac{T}{\Theta_{\rm D}}\right)^3 n_{\rm ion} k_{\rm B}$ (phonon specific heat; low T) Review: from "Sommerfeld Expansion of Heat Capacity"... $c_{\rm V}^{\rm el} = \frac{\pi^2}{2} \frac{n_e}{E_{\rm F}} k_{\rm B}^2 T$ (electron specific heet) $= \frac{\pi^2}{2} \frac{T}{T_{\rm F}} n_{\rm e} k_{\rm B}$ (in terms of Fermi temp. $T_{\rm F} = E_{\rm F}/k_{\rm B}$)

Divide $c_{\rm V}^{\rm el}$ by $c_{\rm V}^{\rm ph}$ to get...

$$\begin{array}{l} \frac{c_{\rm V}^{\rm el}}{c_{\rm V}^{\rm ph}} = \frac{5}{24\pi^4} \frac{n_{\rm el}}{n_{\rm ion}} \frac{\Theta_{\rm D}^3}{T^2 T_{\rm F}} \\ = \frac{5z}{24\pi^4} \frac{\Theta_{\rm D}^3}{T^2 T_{\rm F}} \quad (z = n_{\rm el}/n_{\rm ion} \ {\rm is \ number \ conduction} \ e^- \ {\rm per} \\ {\rm ion}) \end{array}$$

Let $T_{\rm C}$ denote crossover temperature where $c_{
m V}^{
m el}/c_{
m V}^{
m ph}=1$ $T_{\rm c} = \sqrt{\frac{5z}{24\pi^4} \frac{\Theta_{\rm D}}{T_{\rm F}}} \Theta_{\rm D}$ (crossover btwn. dominance of $c_{\rm V}^{\rm el} / c_{\rm V}^{\rm ph}$) $c_{\rm V}^{\rm ph}$ dominates above $T_{\rm c}$ and $c_{\rm V}^{\rm el}$ below $T_{\rm c}$

For orientation: $T_{\rm c} \sim 5\,{\rm K}$ to $10\,{\rm K}$

Introduction to Anharmonic Effects

For review: the analysis of lattice oscillations so far was harmonic, involving an expansion of lattice potential energy Uabout its equilibrium position only to leading order in displacement from equilibrium.

Motivation: many observed properties of solids emerge theoretically only from higher-order anharmonic corrections in the expansion of U.

Some phenomena requiring anharmonic corrections:

- thermal expansion of solids
- temperature dependence of elastic constants
- deviation of $c_{\rm V}^{\rm ph}$ from $3n_{\rm ion}k_{\rm B}$ for $T\gg\Theta_{\rm D}$
- finite (non-zero) peak width in neutron scattering spectra

Thermal Expansion in a 1D Lattice

Goal: provide a simple model of thermal expansion in a 1D monoatomic lattice in which deviation of ions from equilibrium sites is proportional to T.

General Considerations

Let x_0 denote equilibrium spacing between lattice sites. Let x_1 denote post-expansion spacing btwn. lattice sites. $x \equiv x_1 - x_0$ (new variable, moves origin to x_0 for shorthand) $U(x) = U_{\text{eq}} + cx^2 - gx^3 - fx^4$ (quoted: ansatz for potential) $\equiv cx^2 - gx^3 - fx^4$ (set eq. potential to zero) $|gx^3|, |fx^4| \ll |cx^2|$

Thermal Expansion

Plan: find expected value $\langle x \rangle$ from eq. position for small x Note: calculation is highly approximate, results are qualitative. $Z = \int_0^\infty e^{-\beta E} dE$ (partition function)

$$\langle x \rangle = \frac{1}{Z} \int_{-\infty}^{\infty} x e^{-\beta U(x)} \, \mathrm{d}x \qquad \qquad \text{(expected value of } x)$$

$$e^{-\beta U(x)} = e^{-\beta cx^2} e^{+\beta (gx^3 + fx^4)} \qquad \text{(auxiliary approximation)}$$

$$\approx e^{-\beta cx^2} (1 + \beta gx^3 + \beta fx^4) \qquad \text{(for small } x)$$

$$\approx e^{-\beta cx^2} \qquad \text{(neglecting } x^3 \text{ and } x^4)$$

$$\langle x \rangle = \frac{\int_{-\infty}^{\infty} x e^{-\beta U(x)} \, \mathrm{d}x}{\int_{-\infty}^{\infty} e^{-\beta U(x)} \, \mathrm{d}x} \qquad \text{(review: exp. value of } x)$$

$$\approx \frac{\int_{-\infty}^{\infty} x \left(1 + \beta gx^3 + \beta fx^4\right) e^{-\beta cx^2} \, \mathrm{d}x}{\int_{-\infty}^{\infty} e^{-\beta cx^2} \, \mathrm{d}x} \qquad \text{(with above approx.)}$$
Shortcut: only even terms in numerator integrate to non-zero
$$\langle x \rangle = \frac{\int_{-\infty}^{\infty} \beta gx^4 e^{-\beta cx^2} \, \mathrm{d}x}{\int_{-\infty}^{\infty} e^{-\beta cx^2} \, \mathrm{d}x} \qquad \text{(odd terms integrate to zero)}$$

$$\text{Let } y^2 = \beta cx^2 \qquad \text{(new integration variable)}$$

$$\langle x \rangle = \frac{g\sqrt{\beta c}}{\sqrt{\beta^3 c^5}} \frac{\int_{-\infty}^{\infty} y^4 e^{-y^2} \, \mathrm{d}y}{\int_{-\infty}^{\infty} e^{-y^2} \, \mathrm{d}y} \qquad \text{(in terms of } y)$$

$$\int_{-\infty}^{\infty} e^{-y^2} \, \mathrm{d}y = \sqrt{\pi} \qquad \text{(tabulated integral)}$$

$$\Rightarrow \langle x \rangle = \frac{3}{4} \frac{g}{\beta c^2} \qquad \text{(result: expected deviation from eq.)}$$

$$= \frac{3g}{4c^2} k_{\rm B} T \propto T \qquad \text{(in terms of } T)$$
Main lesson: deviation of lattice sites from equilibrium posi-

Main lesson: deviation of lattice sites from equilibrium position increases linearly with increasing T (as in experiment). Note: U(x) must be asymmetric about eq. position for $\langle x \rangle \neq 0$.

Kinetic Theory of Phonon Heat Conduction

General Considerations

 $=\int_{-\infty}^{\infty} e^{-\beta U(x)} dx$

- consider only a monoatomic Bravais lattice
- model dispersions with the Debye approx. w = ck
- phonons interact via scattering processes parameterized by a mean free time τ between scatterings
- $\ell = c\tau$ is phonon mean free path between scattering, where c is average phonon speed

Assumption: post-scattering phonon energy depends only on temperature at position of scattering.

Model and Geometry

Consider a lattice with a temperature gradient in the x direction. (heat current density, assuming 1D ∇T) $\mathbf{j} = j \,\hat{\mathbf{e}}_x$ Consider an arbitrary point at $x = x_0$ in the lattice.

Assumption: heat current at x_0 depends only on phonons scattering a radial distance ℓ from x_0 .

Finding Heat Current Density

Let u(x) denote energy density at position x Let c denote post-scattering phonon velocity

 $c_x = c \cos \theta \qquad \text{(projection of } c \text{ onto } x \text{ axis)}$ $j = \langle c_x \cdot u(x_0 - \ell \cos \theta) \rangle_{\Omega} \qquad \text{(heat current density at } x_0)$ $= \frac{1}{4\pi} \iint c_x \cdot u(x_0 - \ell \cos \theta) \, d\Omega \qquad \text{(avg. over solid angle)}$ $= \frac{2\pi}{4\pi} \int_0^{\pi} (c \cos \theta) \cdot u(x_0 - \ell \cos \theta) \sin \theta \, d\theta \qquad (2\pi \text{ from } \varphi)$ $c_x = c\cos\theta$ (projection of c onto x axis) Let $y \equiv \cos \theta$ (new integration variable) $j = \frac{c}{2} \int_{-1}^{1} y \, u(x_0 - \ell y) \, dy$ (in terms of y) $= \frac{c}{2} \int_{-1}^{1} y \left[u(x_0) - ly \frac{\partial u}{\partial x} \Big|_{x_0} + \mathcal{O}(ly)^2 \right] dy \quad \text{(expanding } u(x))$ $\approx -\frac{cl}{3} \cdot \frac{\partial u}{\partial x}\Big|_{x_0}$ $= -\frac{cl}{3} \frac{\partial u}{\partial T}\Big|_{x_0} \frac{\partial T}{\partial x}\Big|_{x_0}$ $= -\frac{cl}{3} c_V(x_0) \frac{\partial T}{\partial x}$ $j(x) = -\frac{cl}{3} c_V(x) \frac{\partial T}{\partial x}$ (evaluating integral to $\mathcal{O}(ly)$) (chain rule) (recognizing $c_{\rm V} = \frac{\partial u}{\partial T}$)

(result: phonon heat current)

(in terms of
$$x$$
) Let $\kappa \equiv \frac{cl}{3}c_{\rm V} = \frac{c^2\tau}{3}c_{\rm V}$ (thermal conductivity) (expected value of x) $j(x) = -\kappa \frac{\partial T}{\partial x}$ (in terms of thermal conductivity)

(auxiliary approximation) Temperature Dependence of Thermal Conductivity

(for small x) $\kappa = \frac{cl}{3}c_{V} = \frac{c^{2}\tau}{3}c_{V}$ (review: thermal conductivity) (neglecting x^3 and x^4) Contributions to $\kappa(T)$ arise from...

- $c_{\rm V}(T)$ (phonon heat capacity)
- $\tau(T)$ (T-dependence of scattering mean free time)
- $c(T) \approx \text{constant (neglect } T\text{-dependence of phonon speed)}$ Justification: c depends on crystal's elastic constants, which are only weakly temperature dependent.

Contributions to $\tau(T)$ arise from...

- phonon-phonon scattering
- impurities in the crystal (which we'll neglect)
- phonon scattering from crystal surface (which we'll neglect)

Plan: only analyze phonon-phonon scattering in any detail.

Conservations Laws for Phonon Scattering

 n_{ks} is pre-scattering phonon occoputation number n'_{ks} is post-scattering phonon occoputation number $\omega_s(\mathbf{k})$ is frequency of phonon in s-th branch with WV \mathbf{k} Phonon scattering obeys the following conservation laws...

1.
$$\sum_{\mathbf{k}s} n_{\mathbf{k}s} \hbar \omega_s(\mathbf{k}) = \sum_{\mathbf{k}s} n'_{\mathbf{k}s} \hbar \omega_s(\mathbf{k})$$
 (conservation of energy)

2.
$$\sum_{ks}^{\kappa s} k n_{ks} = \sum_{ks} k n_{ks}^{\kappa s} + K$$
 (cons. of crystal momentum)

Note: crystal momentum is conserved only up to a reciprocal lattice vector K. Intuition: if two phonons combine to have k outside first BZ, K is needed to map the combined k back into the first BZ.

Sums are taken over k in the first Brillioun zone!

Phonon MFT: High-Temperature Limit

Consider behavior of $n_s(\mathbf{k})$ for $T \gg \Theta_{\rm D}$...

$$n_s(\mathbf{k}) = \frac{1}{e^{\beta \hbar \omega_s(\mathbf{k})} - 1} \text{ (in general (Bose-Einstein distribution))}$$

$$\approx \frac{1}{\left(1 + \beta \hbar \omega_s(\mathbf{k})\right) - 1} \text{ (expanding exp for } k_{\rm B}T \gg \hbar \omega_s(\mathbf{k}))$$

$$= \frac{k_{\rm B}T}{\hbar \omega_s(\mathbf{k})} \text{ (high-temperature limit)}$$

Assumption: $\tau \sim 1/\sum n_s(\mathbf{k})$. Interpretation: scattering increases (and τ decreases) with increasing phonon number n_{ks} . Since $\tau \sim \frac{1}{n_s(\mathbf{k})}$ and $n_s(\mathbf{k}) \sim T$, for $T \gg \Theta_D$ MFT τ scales as... $\begin{array}{l} \tau \sim \frac{1}{T} & \text{(theoretical phonon MFT for } T \gg \Theta_{\mathrm{D}}) \\ \tau \sim \frac{1}{T^x} \text{ with } x \in (1,2) & \text{(typical measured behavior)} \end{array}$

Phonon MFT: Low-Temperature Limit I

$$\sum_{k} k n_{ks} = \sum_{k} k n'_{ks} + K$$
 (review: conservation of k

 $\sum_{ks} k n_{ks} = \sum_{ks} k n'_{ks} + K$ (review: conservation of k) Review: K maps post-scattering wave vector $\sum_{ks} k n'_{ks}$ back

into the first Brillioun zone (if necessary)

Idea: for $T \ll \Theta_D$, only phonons with frequency $\omega_s(\mathbf{k}) \ll \omega_D$ and wave vector $k \ll k_{\rm D}$ occur appreciably.

Consequence: the k of all phonons participating in scattering processes are $\ll k_{\rm D} \implies$ the total post-scattering wave vector $\sum k n'_{ks}$ will lie *inside* the first Brillioun zone $\implies K = 0$.

Terminology

- normal processes are scattering processes with K=0
- ullet umklapp processes are scattering processes with K
 eq 0

Normal processes dominate at $T \ll \Theta_D$ because K = 0 $\sum k n_{ks} = \sum k n'_{ks}$ (normal processes)

⇒ normal processes conserve crystal momentum exactly Plan: digress somewhat to discuss phonon heat current density, equilibrium, and normal processes. Return to MFT τ at "Return to Equilibrium via Umklapp Processes"

Phonon Heat Current Density

$$u = \frac{1}{V} \sum_{ks} \hbar \omega_s(\mathbf{k})$$
 (lattice's phonon internal energy)

$$j_{\rm ph} = \frac{1}{V} \sum_{ks} \hbar \omega_s(\mathbf{k}) n_s(\mathbf{k}) \nabla_{\!\mathbf{k}} \omega_s(\mathbf{k})$$
 (heat current density)

$$\approx \sum_{s} \iiint_{\mathrm{BZ}} \hbar \omega_{s}(\boldsymbol{k}) n_{s}(\boldsymbol{k}) \nabla_{\boldsymbol{k}} \omega_{s}(\boldsymbol{k}) \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2\pi)^{3}} \qquad \text{(as an integral)}$$

Interpretation: $\boldsymbol{j}_{\rm ph}$ is internal energy u times group velocity $\boldsymbol{v}_{\rm g} = \nabla_{\boldsymbol{k}} \omega_s(\boldsymbol{k})$ times phonon density $n_s(\boldsymbol{k})$

Idea:
$$\omega_s(\mathbf{k}) = \omega_s(-\mathbf{k}) \implies \nabla_{\mathbf{k}}\omega_s(\mathbf{k}) = -\nabla_{\mathbf{k}}\omega_s(-\mathbf{k})$$

$$\implies \omega_s(\mathbf{k})$$
 is even and $\nabla_{\mathbf{k}}\omega_s(\mathbf{k})$ is odd \implies integrand in \mathbf{j}_{ph} is odd if $n_s(\mathbf{k})$ is even, i.e. if $n_s(\mathbf{k}) = n_s(-\mathbf{k})$

Conclusion: $j_{\rm ph} \neq 0$ only if $n_{\rm s}(k) \neq n_{\rm s}(-k)$ (since the integral of an odd function over its domain (1st BZ for k) is zero).

Normal Processes Preserve Equilibrium

In thermal equilibrium:

$$n_s(\mathbf{k}) = \frac{1}{e^{\beta \hbar \omega_s(\mathbf{k})} - 1}$$
 (in thermal equilibrium) $\omega_s(\mathbf{k}) = \omega_s(-\mathbf{k}) \implies n_s(\mathbf{k}) = n_s(-\mathbf{k})$ (in equilibrium) Conclusion: $n_s(\mathbf{k})$ is even in equilibrium, so $\mathbf{j}_{eq} = \mathbf{0}$.

Meanwhile:
$$\mathbf{k}_{\text{tot}} = \mathbf{0}$$
 if $n_{\text{s}}(\mathbf{k})$ is even, since $n_{s}(\mathbf{k})$ even $\Longrightarrow \mathbf{k} \cdot n_{s}(\mathbf{k})$ is odd, which vanishes during $\sum_{\mathbf{k} \in \text{BZ}}$ Conclusion: $\mathbf{k}_{\text{tot}} = \mathbf{0}$ in equilibrium (when $n_{\text{s}}(\mathbf{k})$ is even).

Meanwhile: consider normal processes only.

$$\sum_{\mathbf{k}s} \mathbf{k} n_s(\mathbf{k}) = \sum_{\mathbf{k}s} \mathbf{k} n_s'(\mathbf{k})$$
 (for normal processes)

$$\implies \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{k}_{\mathrm{tot}} = \frac{\mathrm{d}}{\mathrm{d}t} \sum_{\mathbf{k}s} \mathbf{k} n_s(\mathbf{k}) = \mathbf{0}$$
 ($\mathbf{k}_{\mathrm{tot}}$ conserved)

Conclusion: normal processes conserve total wave vector.

Summary of results

- $n_s(\mathbf{k})$ is even in equilibrium
- $j_{\rm ph} = 0$ in equilibrium (by definition and by analysis) $j_{\rm ph} \neq 0$ out of equilibrium (by definition and by analysis)
- $k_{\rm tot}$ must equal 0 in equilibrium
- Normal processes preserve total crystal momentum

Since normal processes conserve $k_{\rm tot}$, normal processes alone cannot return a state with non-zero $k_{\rm tot}$ to equilibrium $k_{\rm tot}=0$.

Result: considering normal processes only, the phonon thermal conductivity of crystal is infinite, since a nonzero k_{tot} and thus nonzero j_{ph} remain nonzero for all t!

Return to Equilibrium via Umklapp Processes

Review: normal processes alone cannot return a state with non-zero j to equilibrium \implies umklapp processes must be responsible for return to equilibrium.

Review: normal processes involve phonons with $k \ll k_{\rm D}$ and thus $\omega_s(\mathbf{k}) \ll \omega_{\rm D}$. Consequence: umklapp processes involve phonons with $\omega_s(\mathbf{k}) \gtrsim \omega_{\rm D}$

$$n_s(\mathbf{k}) = \frac{1}{e^{\beta\hbar\omega_{\rm S}(\mathbf{k})}-1}$$
 (in general)
 $\sim \frac{1}{e^{\beta\hbar\omega_{\rm D}}-1}$ (for first occuring umklapp processes)
 $= \frac{1}{e^{\Theta_{\rm D}/T}-1}$ (in terms of $\Theta_{\rm D}$)
 $\approx e^{-\Theta_{\rm D}/T}$ (in low-temp limit $T \ll \Theta_{\rm D}$)

Review: $\tau \sim 1/\sum n_s(\mathbf{k})$. Interpretation: scattering increases (and τ decreases) with increasing phonon number $n_{\mathbf{k}s}$.

(and τ decreases) with increasing phonon number $n_{\boldsymbol{k}s}$. Since $\tau \sim \frac{1}{n_s(\boldsymbol{k})}$ and $n_s(\boldsymbol{k}) \sim e^{-\Theta_{\rm D}/T}$, for $T \ll \Theta_{\rm D}$ the phonon mean free time τ scales as...

 $au \sim e^{\Theta_{\rm D}/T}$ (theoretical phonon MFT for $T \ll \Theta_{\rm D}$) $au \sim e^{T_0/T}$ with $T_0 \sim \Theta_{\rm D}$ (typical measured behavior)

Phonon MFT: Low-Temperature Limit II

 $\tau \sim e^{\Theta_{\rm D}/T}$ (review: phonon MFT for $T \ll \Theta_{\rm D}$) In words: phonon-phonon scattering mean free time τ increases exponentially for $T \ll \Theta_{\rm D}$.

Naive conclusion: phonon thermal conductivity $\kappa \propto T$ increases exponentially as $T \to 0 \, \mathrm{K}$

- In practice: as $T \to 0$ K, phonon-phonon scattering τ is dominated by τ for phonon-impurity and phonon-surface scattering, and total $\tau_{\rm tot}$ remains finite as $T \to 0$ K
- Additionally: phonon scattering MFP $\ell \propto 1/\tau$ is bounded above by finite crystal size, so τ reaches a constant max. value as $T \to 0 \, \mathrm{K}$.