Matlab Assignments

Student Name: Karim Shoorbajee
Lab Section No.: 36
Class Number:
Major (BME, CEE, CS, ECE, EMSE, MAE, Undecided, Others):
E-mail (GWU):karims99@gwu.edu

Please complete this sheet, print it and use it as your cover sheet.

SEAS-001-Lab Assignment and HW #2A

Matlab Exercises

Total:	50 points	Grade:	
Problem 4.	20 points		
Problem 3.	10 points		
Problem 2.	10 points		
Problem 1.	10 points		

Matlab Exercises HW#2A SEAS-001

1. Find the zeros (roots) of the following polynomial:

$$x^5 + 9x^4 - 37x^3 - 357x^2 - 36x + 1620 = 0$$

```
x= (-9,6,-5,-3,2)

karims99 ► Documents ► MATLAB

Editor - C:\Users\karims99\Documents\MATLAB\questionA1.m

+2 questionA1.m × questionA2.m × questionA2_2.m* × questionA3.m ×

1 - p=[1,9,-37,-357,-36,1620];
2 - r=roots(p)

3
```

2. Given the following three equations and three unknowns, solve for x, y, and z:

$$x + 2y = 20$$

 $2x + 5y - z = 46$
 $4x + 10y - z = 95$

```
X=2,y=9,z=3
```

```
Editor - C:\Users\karims99\Documents\MATLAB\questionA2.m

questionA2.m  questionA2_2.m*  questionA3.m  questionA4.m  questionA4.m  questionA3.m  questionA4.m  questionA4.
```

note: these equations can be rewritten in matrix form as

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 5 & -1 \\ 4 & 10 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 20 \\ 46 \\ 95 \end{bmatrix}$$

Now again solve for x, y, and z when the right hand side changes to

$$x + 2y = 13$$

 $2x + 5y - z = 24$
 $4x + 10y - z = 53$

$$X=7,y=3,z=5$$

3. Use MATLAB to compute the following expression:

$$sin(cos(e^{ln25}))+100(55/7-1000tan(.23))$$

-2.2628e+04

4. Plot (on the same graph) the first 200 terms in the sequences

$$a_n = (-1)^n (n^3 + n)/(n+1)^3$$
 and $b_n = \sin(n^3)$.

Student Name: Karım Snoorbajee
Lab Section No.: 36
Class Number:
Major (BME, CEE, CS, ECE, EMSE, MAE, Undecided, Others):
E-mail (GWU): karims99@gwu.edu

Please complete this sheet, print it and use it as your cover sheet.

SEAS-001 – Lab Assignment and HW #2B

Total:	30 points	Grade:	
Problem 3.	10 points		
Problem 2.	10 points		
Problem 1.	10 points		

Matlab Exercises

HW#2B

SEAS-001

Plot the following functions and find the Maximum and Minimum values attained for each of them within the given range of values.

Problem 1.

- a) Generate values for *x between 0 and 4 in steps of 0.25*.
- b) Calculate the Maximum and Minimum values attained for the function f_1 .

$$Max = 45.6949$$

$$Min = -5.8235$$

$$f_1 = \frac{1}{(x-0.3)^2 + 0.1} + \frac{1}{(x-0.9)^2 + 0.01} - 6$$

c) Plot x $vs. f_1$

Problem 2.

a) Generate values for *N between -10 and 10 in steps of 1*.

b) Calculate the Maximum and Minimum values attained for the function f_2 .

Max: 1

Min: 0

$$f_2 = \frac{1}{(1+N^2)} - \frac{2N}{(1+N^2)^2}$$

c) Plot N $vs. f_2$

Karim Shoorbajee lab 36

Problem 3.

a) Generate values for <u>M between -2 and 2 in steps of 0.25</u>.

Max: 0.25

Min: -6

b) Calculate the Maximum and Minimum values attained for the function f₃.

$$f_3 = \left(\frac{-1}{3}\right)M^2 + 2\left(\frac{1}{2} - \frac{1}{3}M\right)M$$

c) Plot M vs. f_3

Karim Shoorbajee

SEAS 1001 LAB 3 Problem set A

Assignment 3a:

Max Range: 2.5495

Degrees that yield max range: 44

Max Height: 1.2755

Degrees that yield max height: 90

2) Value of RI that yields max power: 500

3) The relationship is as follows: To attain maximum power, load resistance and supply resistance should be equal

Karim Shoorbajee SEAS 1001 LAB 3 Problem set B

Assignment 3b:

1) Value of RI that yields max power: 330

Karim Shoorbajee Lab 3 problem set 3c

Assignment 3c:

Max volume: 2,030 cm³

Length = 41.2 cm Width = 11.2 cm

Height 4.4 cm

Karim Shoorbajee lab 36

