# Class 10: Halloween Candy

Aparajita Pranjal 5/5/23

#### **Importing Candy Data**

```
candy_file <- "https://raw.githubusercontent.com/fivethirtyeight/data/master/candy-power-r
candy = read.csv(candy_file, row.names=1)
head(candy)</pre>
```

|              | chocolate | fruity | caramel | peanutyalmondy | nougat | crispedricewafer |
|--------------|-----------|--------|---------|----------------|--------|------------------|
| 100 Grand    | 1         | 0      | 1       | 0              | 0      | 1                |
| 3 Musketeers | 1         | 0      | 0       | 0              | 1      | 0                |
| One dime     | 0         | 0      | 0       | 0              | 0      | 0                |
| One quarter  | 0         | 0      | 0       | 0              | 0      | 0                |
| Air Heads    | 0         | 1      | 0       | 0              | 0      | 0                |
| Almond Joy   | 1         | 0      | 0       | 1              | 0      | 0                |

|              | hard | bar | pluribus | sugarpercent | pricepercent | winpercent |
|--------------|------|-----|----------|--------------|--------------|------------|
| 100 Grand    | 0    | 1   | 0        | 0.732        | 0.860        | 66.97173   |
| 3 Musketeers | 0    | 1   | 0        | 0.604        | 0.511        | 67.60294   |
| One dime     | 0    | 0   | 0        | 0.011        | 0.116        | 32.26109   |
| One quarter  | 0    | 0   | 0        | 0.011        | 0.511        | 46.11650   |
| Air Heads    | 0    | 0   | 0        | 0.906        | 0.511        | 52.34146   |
| Almond Joy   | 0    | 1   | 0        | 0.465        | 0.767        | 50.34755   |

• Q1. How many different candy types are in this dataset? 85

```
dim(candy)
```

[1] 85 12

• Q2. How many fruity candy types are in the dataset? 38

```
sum(candy["fruity"])
```

[1] 38

## **Finding Favorite Candy**

```
candy["Twix", ]$winpercent
[1] 81.64291
  • Q3. What is your favorite candy in the dataset and what is it's winpercent value?
  candy["Hershey's Kisses", ]$winpercent
[1] 55.37545
  • Q4. What is the winpercent value for "Kit Kat"?
  candy["Kit Kat", ]$winpercent
[1] 76.7686
  • Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?
  candy["Tootsie Roll Snack Bars", ]$winpercent
[1] 49.6535
Using the skimr package:
  #install.packages("skimr")
  library(skimr)
  skim(candy)
```

Table 1: Data summary

| Name                   | candy |
|------------------------|-------|
| Number of rows         | 85    |
| Number of columns      | 12    |
| Column type frequency: |       |
| numeric                | 12    |
| Group variables        | None  |

#### Variable type: numeric

| skim_variable n_ | _missingcom | plete_ra | tmenean | $\operatorname{sd}$ | p0    | p25   | p50   | p75   | p100  | hist |
|------------------|-------------|----------|---------|---------------------|-------|-------|-------|-------|-------|------|
| chocolate        | 0           | 1        | 0.44    | 0.50                | 0.00  | 0.00  | 0.00  | 1.00  | 1.00  |      |
| fruity           | 0           | 1        | 0.45    | 0.50                | 0.00  | 0.00  | 0.00  | 1.00  | 1.00  |      |
| caramel          | 0           | 1        | 0.16    | 0.37                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| peanutyalmondy   | 0           | 1        | 0.16    | 0.37                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| nougat           | 0           | 1        | 0.08    | 0.28                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| crispedricewafer | 0           | 1        | 0.08    | 0.28                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| hard             | 0           | 1        | 0.18    | 0.38                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| bar              | 0           | 1        | 0.25    | 0.43                | 0.00  | 0.00  | 0.00  | 0.00  | 1.00  |      |
| pluribus         | 0           | 1        | 0.52    | 0.50                | 0.00  | 0.00  | 1.00  | 1.00  | 1.00  |      |
| sugarpercent     | 0           | 1        | 0.48    | 0.28                | 0.01  | 0.22  | 0.47  | 0.73  | 0.99  |      |
| pricepercent     | 0           | 1        | 0.47    | 0.29                | 0.01  | 0.26  | 0.47  | 0.65  | 0.98  |      |
| winpercent       | 0           | 1        | 50.32   | 14.71               | 22.45 | 39.14 | 47.83 | 59.86 | 84.18 |      |

- Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset? winpercent is on a different scale as it goes from 0 to 100, all the others only range form 0 to 1.
- Q7. What do you think a zero and one represent for the candy\$chocolate column? 0 indicates that the candy does not have chocolate and the 1 means that it does.

## **Graphing Data**

• Q8. Plot a histogram of winpercent values

```
library(ggplot2)

ggplot(candy, aes(winpercent, binwidth = 30)) +
   geom_histogram()
```

`stat\_bin()` using `bins = 30`. Pick better value with `binwidth`.



- Q9. Is the distribution of winpercent values symmetrical? No, it is skewed to the right
- Q10. Is the center of the distribution above or below 50%? Below 50%
- Q11. On average is chocolate candy higher or lower ranked than fruit candy? Chocolate is ranked higher

```
chocolate_mean <- mean(candy$winpercent[as.logical(candy$chocolate)])
chocolate_mean</pre>
```

[1] 60.92153

```
fruity_mean <- mean(candy$winpercent[as.logical(candy$fruity)])
fruity_mean

[1] 44.11974

• Q12. Is this difference statistically significant?

choc_fruit <- t.test(candy$winpercent[as.logical(candy$chocolate)],candy$winpercent[as.logichoc_fruit]

Welch Two Sample t-test

data: candy$winpercent[as.logical(candy$chocolate)] and candy$winpercent[as.logical(candy$fruit)]

t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:
11.44563 22.15795
sample estimates:
mean of x mean of y
60.92153 44.11974</pre>
```

boxplot(candy)



```
t_nums <- factor(candy$chocolate)
t_nums <- factor(candy$fruity)
levels(t_nums) <- list(Chocolate = "0", Fruity = "1")

candy_box <- ggplot(candy) +
   aes(t_nums, winpercent) +
   geom_boxplot()

candy_box + labs(y= "Winpercent", x = "Candy Types")</pre>
```



# **Overall Candy Rankings**

 $\bullet~$  Q13. What are the five least liked can dy types in this set?

 $\label{lem:nead} \verb| head(candy[order(candy$winpercent),], n=5) |$ 

|                  | (   | chocolate  | fruity   | carar        | nel j | peanutyaln | nondy | nougat  |              |
|------------------|-----|------------|----------|--------------|-------|------------|-------|---------|--------------|
| Nik L Nip        |     | 0          | 1        |              | 0     |            | 0     | 0       |              |
| Boston Baked Bea | ans | 0          | 0        |              | 0     |            | 1     | 0       |              |
| Chiclets         |     | 0          | 1        |              | 0     |            | 0     | 0       |              |
| Super Bubble     |     | 0          | 1        |              | 0     |            | 0     | 0       |              |
| Jawbusters       |     | 0          | 1        |              | 0     |            | 0     | 0       |              |
|                  | (   | crispedric | ewafer   | ${\tt hard}$ | bar   | pluribus   | sugar | percent | pricepercent |
| Nik L Nip        |     |            | 0        | 0            | 0     | 1          |       | 0.197   | 0.976        |
| Boston Baked Bea | ans |            | 0        | 0            | 0     | 1          |       | 0.313   | 0.511        |
| Chiclets         |     |            | 0        | 0            | 0     | 1          |       | 0.046   | 0.325        |
| Super Bubble     |     |            | 0        | 0            | 0     | 0          |       | 0.162   | 0.116        |
| Jawbusters       |     |            | 0        | 1            | 0     | 1          |       | 0.093   | 0.511        |
|                  | 7   | winpercent | ;        |              |       |            |       |         |              |
| Nik L Nip        |     | 22.44534   | <u> </u> |              |       |            |       |         |              |
| Boston Baked Bea | ans | 23.41782   | 2        |              |       |            |       |         |              |

 Chiclets
 24.52499

 Super Bubble
 27.30386

 Jawbusters
 28.12744

• Q14. What are the top 5 all time favorite candy types out of this set?

```
tail(candy[order(candy$winpercent),], n=5)
```

|                           | chocolate  | fruity   | caran        | nel j | peanutyaln | nondy | nougat   |
|---------------------------|------------|----------|--------------|-------|------------|-------|----------|
| Snickers                  | 1          | 0        |              | 1     |            | 1     | 1        |
| Kit Kat                   | 1          | 0        |              | 0     |            | 0     | 0        |
| Twix                      | 1          | 0        |              | 1     |            | 0     | 0        |
| Reese's Miniatures        | 1          | 0        |              | 0     |            | 1     | 0        |
| Reese's Peanut Butter cup | 1          | 0        |              | 0     |            | 1     | 0        |
|                           | crispedrio | cewafer  | ${\tt hard}$ | bar   | pluribus   | sugai | rpercent |
| Snickers                  |            | 0        | 0            | 1     | 0          |       | 0.546    |
| Kit Kat                   |            | 1        | 0            | 1     | 0          |       | 0.313    |
| Twix                      |            | 1        | 0            | 1     | 0          |       | 0.546    |
| Reese's Miniatures        |            | 0        | 0            | 0     | 0          |       | 0.034    |
| Reese's Peanut Butter cup |            | 0        | 0            | 0     | 0          |       | 0.720    |
|                           | priceperce | ent wing | percer       | nt    |            |       |          |
| Snickers                  | 0.6        | 351 76   | 6.6737       | 78    |            |       |          |
| Kit Kat                   | 0.5        | 511 76   | 3.7686       | 30    |            |       |          |
| Twix                      | 0.9        | 906 81   | 1.6429       | 91    |            |       |          |
| Reese's Miniatures        | 0.2        | 279 81   | 1.8662       | 26    |            |       |          |
| Reese's Peanut Butter cup | 0.6        | S51 84   | 1.1802       | 29    |            |       |          |

• Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)

ggplot(candy) +
  aes(winpercent, rownames(candy)) +
  geom_col()
```



• Q16. This is quite ugly, use the reorder() function to get the bars sorted by winpercent?

```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"

ggplot(candy) +
   aes(winpercent, reorder(rownames(candy), winpercent)) +
   geom_col(fill = my_cols)
```



- Q17. What is the worst ranked chocolate candy? Sixlets
- Q18. What is the best ranked fruity candy? Starburst

# **Exploring pricepercent**

```
library(ggrepel)

ggplot(candy) +
  aes(winpercent, pricepercent, label=rownames(candy)) +
  geom_point(col=my_cols) +
  geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps



• Q19. Which candy type is the highest ranked in terms of winpercent for the least money - i.e. offers the most bang for your buck? Reese's miniatures

```
ord <- order(candy$winpercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

|                           | pricepercent | winpercent |
|---------------------------|--------------|------------|
| Reese's Peanut Butter cup | 0.651        | 84.18029   |
| Reese's Miniatures        | 0.279        | 81.86626   |
| Twix                      | 0.906        | 81.64291   |
| Kit Kat                   | 0.511        | 76.76860   |
| Snickers                  | 0.651        | 76.67378   |

• Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular? Nik L Nip

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head( candy[ord,c(11,12)], n=5 )</pre>
```

```
pricepercent winpercent Nik L Nip 0.976 22.44534
```

| Nestle Smarties          | 0.976 | 37.88719 |
|--------------------------|-------|----------|
| Ring pop                 | 0.965 | 35.29076 |
| Hershey's Krackel        | 0.918 | 62.28448 |
| Hershey's Milk Chocolate | 0.918 | 56.49050 |

• Q21. Make a barplot again with geom\_col() this time using pricepercent and then improve this step by step, first ordering the x-axis by value and finally making a so called "dot chat" or "lollipop" chart by swapping geom\_col() for geom\_point() + geom\_segment().



### **Correlation Structures**

```
library(corrplot)
```

```
cij <- cor(candy)
corrplot(cij)</pre>
```



- Q22. Examining this plot what two variables are anti-correlated (i.e. have minus values)? Chocolate and fruity
- Q23. Similarly, what two variables are most positively correlated? Chocolate and bar or chocolate and winpercent

## **Principal Component Analysis**

```
pca <- prcomp(candy, scale = T)
summary(pca)</pre>
```

#### Importance of components:

Base Plotting PCA results:

```
plot(pca$x[,1:2], col=my_cols, pch=16)
```



Using ggplot for PCA results:



```
library(ggrepel)

p + geom_text_repel(size=3.3, col=my_cols, max.overlaps = 7) +
    theme(legend.position = "none") +
    labs(title="Halloween Candy PCA Space",
        subtitle="Colored by type: chocolate bar (dark brown), chocolate other (light brown caption="Data from 538")
```

Warning: ggrepel: 59 unlabeled data points (too many overlaps). Consider increasing max.overlaps

### Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),



Data from 538

#### Generating interactive plots:

#library(plotly)

#ggplotly(p)

#Could not export as pdf due to this interactive graph, attached png of graph below.



## PCA contributions plot:

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```



• Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you? Fruity, hard, and pluribus are first picked up and this makes sense as PCA1 shows the highest variance among the variables.