BPL_TEST2_Chemostat script with PyFMI

The key library PyFMI is installed.

After the installation a small application BPL_TEST2_Chemostat is loaded and run. You can continue with this example if you like.

```
!lsb_release -a # Actual VM Ubuntu version used by Google

→ No LSB modules are available.

     Distributor ID: Ubuntu
                      Ubuntu 22.04.3 LTS
     Description:
     Release:
                      22.04
     Codename:
                      jammy
%env PYTHONPATH=
→ env: PYTHONPATH=
!python --version
→ Python 3.10.12
!wget https://repo.anaconda.com/miniconda/Miniconda3-py310_23.1.0-1-Linux-x86_64.sh
!chmod +x Miniconda3-py310_23.1.0-1-Linux-x86_64.sh
!bash ./Miniconda3-py310_23.1.0-1-Linux-x86_64.sh -b -f -p /usr/local
sys.path.append('/usr/local/lib/python3.10/site-packages/')
--2024-05-15 11:50:38-- <a href="https://repo.anaconda.com/miniconda/Miniconda3-py310_23.1.0-1-Linux-x86_64.sh">https://repo.anaconda.com/miniconda/Miniconda3-py310_23.1.0-1-Linux-x86_64.sh</a>
     Resolving repo.anaconda.com (repo.anaconda.com)... 104.16.191.158, 104.16.32.241, 2606:4700::6810:bf9e, ... Connecting to repo.anaconda.com (repo.anaconda.com)|104.16.191.158|:443... connected.
     HTTP request sent, awaiting response... 200 OK
     Length: 74403966 (71M) [application/x-sh]
     Saving to: 'Miniconda3-py310_23.1.0-1-Linux-x86_64.sh'
    223MB/s
                                                                                in 0.3s
     2024-05-15 11:50:38 (223 MB/s) - 'Miniconda3-py310_23.1.0-1-Linux-x86_64.sh' saved [74403966/74403966]
     PREFIX=/usr/local
     Unpacking payload ...
     Installing base environment...
     Downloading and Extracting Packages
     Downloading and Extracting Packages
     Preparing transaction: done
     Executing transaction: done
     installation finished.
!conda update -n base -c defaults conda --yes
\overline{2}
```

Preparing transaction: done Verifying transaction: done Executing transaction: done

!conda --version
!python --version

conda 23.1.0 Python 3.10.14

!conda install -c conda-forge pyfmi --yes # Install the key package

→

```
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
```

Now specific installation run a simulation and notebook for that

Start with connecting to Github. Then upload the two files:

- FMU BPL_TEST2_Chemostat_linux_om_me.fmu
- Setup-file BPL_TEST2_Chemostat_explore.py

```
# Filter out DepracationWarnings for 'np.float as alias' is needed - wish I could make filter more narrow
import warnings
warnings.filterwarnings("ignore")
%%bash
git clone https://github.com/janpeter19/BPL_TEST2_Chemostat
Cloning into 'BPL_TEST2_Chemostat'...
\c BPL\_TEST2\_Chemostat
/content/BPL_TEST2_Chemostat
run -i BPL_TEST2_Chemostat_explore.py
→ Linux - run FMU pre-comiled OpenModelica 1.21.0
    Model for bioreactor has been setup. Key commands:
                   - change of parameters and initial values
     - par()
     - init()
                   - change initial values only
     - simu()
                   - simulate and plot
     - newplot()

    make a new plot

    show plot from previous simulation

     - show()
     - disp()
                   - display parameters and initial values from the last simulation
     - describe() - describe culture, broth, parameters, variables with values/units
    Note that both disp() and describe() takes values from the last simulation
    and the command process_diagram() brings up the main configuration
    Brief information about a command by help(), eg help(simu)
    Key system information is listed with the command system_info()
%matplotlib inline
plt.rcParams['figure.figsize'] = [25/2.54, 20/2.54]
process_diagram()
```

No processDiagram.png file in the FMU, but try the file on disk.

describe('culture')

→ Simplified text book model – only substrate S and cell concentration X


```
\# The maximal biomass productivity FX_max [g/h] marked red in the diagram above \# can be calculated for CSTR from the FMU and is cstrProdMax(model)
```

→ 5.625

describe('cstrProdMax')

 \longrightarrow Calculate from the model maximal chemostat productivity FX_max : 5.625 [g/h]

-Interaction: FMU-explore version 1.0.0